

ARMY MEDICAL LIBRARY FOUNDED 1836

WASHINGTON, D.C.

DUE TWO WEEKS FROM LAST DATE

MAR 2 6 1954

GPO 26205

OHIO RIVER POLLUTION CONTROL

LETTER

-FROM

THE ACTING SECRETARY OF WAR

TRANSMITTING

A LETTER FROM THE CHIEF OF ENGINEERS, UNITED STATES ARMY, DATED MAY 4, 1943, FORWARDING A REPORT, TOGETHER WITH ACCOMPANYING PAPERS AND ILLUSTRATIONS, ON A SURVEY OF THE OHIO RIVER AND ITS TRIBU-TARIES FOR POLLUTION CONTROL. AUTHORIZED BY SECTION 5 OF THE RIVER AND HARBOR ACT APPROVED AUGUST 26, 1937

> IN TWO PARTS (Three Volumes)

PART TWO

REPORT OF THE UNITED STATES PUBLIC HEALTH SERVICE

August 27, 1943.—Referred to the Committee on Rivers and Harbors and ordered to be printed, with 257 illustrations

OHIO RIVER POLLUTION CONTROL

LETTER

FROM

THE ACTING SECRETARY OF WAR

TRANSMITTING

A LETTER FROM THE CHIEF OF ENGINEERS, UNITED STATES ARMY, DATED MAY 4, 1943, FORWARDING A REPORT, TOGETHER WITH ACCOMPANYING PAPERS AND ILLUSTRATIONS, ON A SURVEY OF THE OHIO RIVER AND ITS TRIBUTARIES FOR POLLUTION CONTROL, AUTHORIZED BY SECTION 5 OF THE RIVER AND HARBOR ACT APPROVED AUGUST 26, 1937

IN TWO PARTS (Three Volumes) PART TWO

REPORT OF THE UNITED STATES PUBLIC HEALTH SERVICE

Night

August 27, 1943.—Referred to the Committee on Rivers and Harbors and ordered to be printed, with 257 illustrations

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1944

OHIO RIVER POLLUTION CONTROL

PELLER

THE ACTING SECRETARY OF WAR

WA 689 U580

1944

REPORT OF THE UNITED STATE

to the Philadeck to the Cornelland or Birrer and Harbors and Andrew Arth Edit chapted harbors

THE SECURIT PROPERTY.

CONTENTS

.. (Part I consists of the report of the Ohio River Committee)

(Part II consists of the report of the United States Public Health Service)

PART II	M - MA
	Page
Syllabus	147
Introduction	155
Description	160
Sources of pollution	164
Water quality	168
Low-flow regulation	181
Administration of pollution abatement	184
Acid mine drainage studies	191
Introduction to drainage basin studies	200
Main Ohio River	203
Minor tributary basins	257
Allegheny River Basin	301
Monongahela River Basin	355
Beaver River Basin	407
Hocking River Basin	469
Kanawna Kiver Dasin	489
Table Manawila Diver Dasin	523
Big Sandy River Basin Guyandot River Basin Sainta Divar Basin	537
Guyandot River Basin	561
Scioto River Basin	575
MIAMI KIVET DASIII	601
Little Miami River Basin	643
Kentucky River Basin	667
Licking River Basin	689
Salt River Basin	707
Wabash River Basin	721
Cumberland River Basin	769
Green River Basin	795
Tennessee River Basin	811
LIST OF TABLES	
1. Summary of data on water supply, sources of pollution, and cost	
estimates of remedial measures 2. Significance of laboratory determinations	152
2. Significance of laboratory determinations	158
3. Industrial wastes	167
4. Water quality requirements for various uses	177
5. Summary of laboratory results 6. Monthly distribution of flood damage at Pittsburgh	179
6. Monthly distribution of flood damage at Pittsburgh	183
7. Acid mine drainage loads	192
8. Costs of mine sealing	196
9. Damages due to acid mine drainage.	197
LIST OF FIGURES	
1. Map—Ohio River Basin, showing principal streams	147
2. Organization chart and map, showing field offices	156
3. Map—Location of coal fields	160
4. Map—Mean annual temperature	160

CONTENTS

-	36 36	Fage
5.	Map—Mean annual precipitation	160
7	Chart—Population (1890–1940) Map—Urban population (1890–1940)	162
0		162
	7.57 / 11	162
10	Map—Water supplies Map—Sources of pollution	164 164
11	Chart—Progress of sewage treatment	166
12.	Map—Suggested industrial waste correction	166
12a	. Chart—Relation between monthly average and minimum daily dis-	200
	solved oxygen results	174
	Map—Coliform results	180
14.	Map—Biochemical oxygen demand results	180
15.	Map—Dissolved oxygen results	180
16.	Map—Distribution of acid mine drainage	191
17.	Chart—Mine sealing performance	194
	SUPPLEMENTS TO PART II	
	(Bound Separately)	
A	Callection of data on governor of nellection	0.45
A.	Collection of data on sources of pollution	
	1 1 1	901 973
	Acid mine drainageIndustrial waste guides	1025
	Epidemiological studies	1217
	Biological studies	1275
-		A (U

REPORT UPON SURVEY OF THE OHIO RIVER AND ITS TRIBUTARIES FOR POLLUTION CONTROL

SYLLABUS

The Ohio River Pollution Survey was directed by section 5 of the River and Harbor Act, approved August 26, 1937, and subsequent authorizations by the Secretary of War, Secretary of the Treasury, and Federal Security Administrator. This report presents information pertaining to sources, amounts, and effects on various water uses of polluting material discharged into the watercourses of the 204,000 square miles of the Ohio River Basin, and includes cost estimates for

comprehensive pollution control measures.

The work of this survey has included locating all important sources of pollution and ascertaining the amount of polluting material discharged at each, measuring the present effects of the wastes on the streams by means of physical, chemical, bacteriological and biological examinations, determining the present and prospective uses of the streams, estimating the effects of changes in stream flows and river conditions and of possible future additional pollution, and determining the degree of pollution abatement by treatment, low-flow regulation, or other methods, which seems economically justified in the light of present and prospective stream uses. This has necessitated studies of water quality requirements for various uses, of available techniques for correcting various types of pollution and their cost, of disease outbreaks suspected of being waterborne, and of legal and administrative instruments and methods available for effecting pollution abatement.

Besides furnishing water for more than 7,000,000 persons and for industrial processes, the streams of the Ohio River Basin are used for the disposal of sewage by some 8,500,000 people, and almost two-thirds of this sewage receives no treatment. Industrial wastes with an oxygen demand equivalent to sewage from almost 10,000,000 additional persons enter the streams. Pollution problems are further complicated by the effect of waters containing 1,800,000 tons of acid per year which flow or are pumped from active and abandoned coal mines

in the extensive coal fields of the basin.

Many water supplies, both domestic and industrial, suffer from the effects of these polluting substances and outbreaks of intestinal diseases, apparently water-borne, have occurred following periods of low stream flow. Recreation facilities have been damaged. Fish and other aquatic life have been detrimentally affected. Steamboats, barges, other river craft and structures, pumps, pipe lines and condensers exposed to acid stream waters have been attacked.

Although the Ohio Basin, considered as a whole, is one in which water pollution is serious, the intensity of the problem is far from uniform. Many of the streams receive no wastes of consequence while others could be restored to good sanitary condition at a reasonable

cost. Large concentrations of population or of industries and the present need for the development of more economical methods of correction of pollution from certain types of industrial wastes are practical considerations which will delay the attainment of a high degree of stream restoration in a few areas. Continued intensive research to develop better treatment or recovery techniques is essential in certain instances if conditions are to be improved. The results of this survey have made it more than ever apparent that it is neither practicable nor desirable to establish either uniform or permanent standards of water quality applicable to all streams throughout an area as extensive and varied as the Ohio Basin. On the other hand, some degree of treatment of all municipal sewage seems to be a reasonable requirement in an area as highly urbanized and densely populated as the Ohio Basin, even though harmful effects are confined to possible odors, sludge deposits, floating sewage solids, and scum in the immediate vicinity of the outfall.

Low-flow regulation by reservoirs can be used as an important supplement to treatment and other corrective measures in abating sewage and organic industrial waste pollution and in reducing mine acid surges. Proposed and existing flood-control reservoirs in the area above Pittsburgh, those under construction on the Mahoning. New, and Cumberland Rivers, and the proposed reservoir on the Olentangy River above Columbus, Ohio, are among those with outstanding value for pollution control. Others will have minor value. In general, the cost of providing storage exclusively for pollution control is not warranted by the benefits, although this does not hold true in certain instances. If the regulated flow can be made available incidental to some other reservoir use, such as power or flood control, the value of the flow regulation for pollution abatement may be a factor in determining the economic justification of the reservoir project.

There appears to be both a need and a desire for abatement of water pollution in the Ohio Basin. About half of the sewage entering tributary streams, except at Ohio River cities, such as Pittsburgh and Cincinnati, now is being treated. However, a negligible part of the sewage, from Ohio River communities is treated and this stream serves as a source of water supply for more than 1,600,000 people. vision of sewage treatment facilities at Pittsburgh, Cincinnati, and Louisville, and various measures for the correction of mine acid pollution, principally in the upper Ohio River regions, are outstanding projects in the suggested basin-wide program for pollution abatement.

Salient features of the main Ohio River and the five Ohio River division districts of the United States Engineer Department and

their pollution problems are as follows:

Main Ohio River. - A negligible part of the sewage from Ohio River communities is treated and this stream serves as a source of water supply for more than 1,600,000 people. One of the major factors which has delayed waste treatment on the Ohio River while rapid progress was being made elsewhere is the interstate character of the stream. In general, the State agencies concerned with water pollution lack authority over waste discharges to the Ohio River. An attempt is being made to correct this situation by means of an interstate compact, the Ohio River Valley Water Sanitation Compact, which has been approved by the Congress and ratified unconditionally by four States and with reservations by two others. Ratification by the Pennsylvania Legislature is necessary before the compact can become effective. Since this is the first attempt that has been made to deal with interstate pollution problems in any large area in this manner, ratification by Pennsylvania is highly desirable in order that the compact may become operative and that this method of adminis-

trative control may be tested.

Pittsburgh district (Allegheny, Monongahela, and Beaver River Basins).—The tributaries in the Pittsburgh engineer district receive about two-thirds of all the acid mine drainage in the Ohio Basin. Large amounts of untreated sewage from Pittsburgh and its suburbs enter the lower Monongahela and Allegheny Rivers and untreated sewage and industrial wastes from the Youngstown district seriously pollute the Mahoning and Beaver Rivers. Industrial wastes from a pulp mill and tanneries cause severe pollution along the Clarion River in spite of extensive measures taken to reduce the quantity and strength of these wastes. Phenols from byproduct coke plants along the Mahoning cause obnoxious tastes and odors in water supplies from the Beaver River.

Low-flow augmentation by reservoirs on tributaries of the Allegheny and Monongahela will be valuable supplements to mine sealing and sewage treatment programs in abating pollution and the Berlin Reservoir, now under construction on the upper Mahoning, will relieve the shortage of cooling and process water for industrial use in the Youngstown area, in addition to supplementing waste treatment

works for pollution control.

Huntington district (Muskingum, Little Kanawha, Hocking, Kanawha, Guyandot, and Big Sandy River Basins).—The principal areas of heavy pollution in the Huntington engineer district are the northern part of the Muskingum Basin and the lower Kanawha River from Charleston downstream. The remaining parts of the Muskingum and Kanawha River Basins as well as the Little Kanawha, Hocking, Guyandot, and Big Sandy Basins and the minor tributaries are relatively clean. A number of the streams are polluted locally by mine drainage and untreated sewage but the communities are not large and the streams generally have sufficient natural alkalinity so that the effects of mine acid are not felt in the larger streams.

The upper Tuscarawas, headwater stream of the Muskingum River Basin, and some of its tributaries are heavily polluted by sewage and industrial wastes although steps have been taken to correct conditions. Waste salts on the upper Tuscarawas make that stream unsuitable as a source of water supply and for some other purposes for many miles. Chemical plants along the Kanawha River in the Charleston area are among the largest sources of pollution in the Ohio Basin. These wastes, together with untreated sewage from the cities in the same area, cause nuisance conditions in the river and serious taste and odor difficulties at water supplies downstream. Low-flow control by the Bluestone Reservoir now under construction on the New River will be of supplementary value in abating organic but not taste and odor pollution from this area.

Cincinnati district (Scioto, Little Miami, Licking, Miami, and Kentucky River Basius).—More than 80 percent of the sewage from communities on tributaries in the Cincinnati engineer district is treated. The most heavily polluted tributary in the district is the

lower Miami River. Two of the larger cities on the lower Miami discharge untreated sewage, but a major part of the pollution load comes from paper mills. Adequate pollution abatement will require research to develop more efficient methods of treating these wastes. Low-flow regulation for pollution abatement does not appear promising since present minimum flows are relatively high, and significant increases in these flows would require large storage capacities at high costs.

In spite of the recently constructed complete treatment plant at Columbus, the Scioto River is still polluted. There are many times when there is practically no dilution for the treatment plant effluent. Low-flow control by the proposed flood-control reservoir on the Olentangy River above Delaware would aid considerably in solving this problem. Strawboard plant wastes pollute the Scioto below Circleville, although the recently completed treatment plant has helped the situation. There is an urgent need for improved methods of treating these wastes and paper mill wastes. The Licking and Little Miami Rivers receive considerable amounts of untreated sewage and industrial wastes near their mouths in the Cincinnati metropolitan area. These should be intercepted and discharged after treatment to the Ohio River. Such a program is under way on the Little Miami. The outstanding sources of pollution in the Kentucky River Basin are distilleries, a number of which need improved waste disposal facilities. In general, the Licking, Kentucky, and Little Miami are relatively clean streams.

Louisville district (Salt, Green, and Wabash River Basins).—The Wabash River is the largest stream in the Louisville engineer district and the only one with a major pollution problem. The Salt and Green River Basins are relatively clean although some of the distilleries in

the Salt Basin have inadequate waste-disposal facilities.

About three-quarters of the sewage from communities in the Wabash River Basin is treated. The largest municipality discharging untreated sewage is Terre Haute. Industrial wastes, particularly from vegetable canneries and strawboard plants, cause the most serious problems at present. The West Fork of White River is rather heavily polluted by wastes from Indianapolis, Muncie, and Anderson, although all of these communities have sewage-treatment plants. There are no suitable reservoir sites above these cities which could be used for low-flow control. Improvements to the Indianapolis treatment

plant are needed to improve conditions in the West Fork.

Nashville district (Cumberland and Tennessee River Basins).—More than half of the pollution load in the Cumberland Basin enters the main stream in the vicinity of Nashville, the only large city in the basin. About one-half of the sewage outside of Nashville is treated at present. Under present unregulated flow conditions, secondary treatment would be required at Nashville in order to maintain satisfactory stream conditions. Upon completion of the Wolf Creek Reservoir, now under construction on the upper Cumberland, the minimum flow at Nashville will be sufficient to permit maintenance of satisfactory conditions with only primary treatment.

The Tennessee River Basin is a predominantly rural area which is experiencing a considerable industrial development due in a large degree to the program of the Tennessee Valley Authority. Scant progress has been made toward pollution abatement. The largest

cities and principal industrial centers are Chattanooga, Knoxville, and Asheville, all of which discharge sewage and other wastes without treatment. Most of the other important sources of pollution are on tributary streams in the upper half of the basin. Pulp, paper, chemical, and textile wastes account for the bulk of the industrial waste load.

The program of the Tennessee Valley Authority has increased the low flow of the main stream and some of the tributaries, and further increases will result from reservoirs now under construction and those proposed but, with the exception of Chattanooga and Knoxville, the important sources of pollution are upstream from reservoirs and will not be helped by the increased flow. Additional effort is needed to improve methods now available for treating some of the industrial wastes.

The problem of financing the necessary facilities has always been one of the principal deterrents to pollution abatement. The effectiveness of grants-in-aid and low interest loans in accelerating such work has been proved by the experience of the past 7 years. It seems doubtful that any such rapid progress will continue without aid from

either the Federal or the State Governments.

Table 1 summarizes some of the more important facts about the Ohio Basin. The cost estimates of waste-treatment facilities include both interceptors and treatment plants. The estimated capital cost of the suggested program, including a mine sealing program, is approximately \$180,000,000 and annual charges for operation, interest, and amortization approximately \$18,500,000. Cost estimates are based on average experience from 1928 to 1940. Cost for 1942 would be considerably higher and future costs will probably be subject to further change, depending upon fluctuations in construction costs for this type of work.

TABLE 1.—Ohio River Basin—Summary of data on population, public water supplies, sewerage, sewage treatment, industrial wastes, costs of existing and suggested waste treatment facilities and mine sealing by basins and States

[All populations, population equivalents, and costs are in thousands]

Mileage Dra Oronto and	5 9	Crban Ru	-										treat	ment p	treatment plants
River 881.0 981.0 988.0 985.6	2 61				Total, all supplies	all lies	Pollut face st	Polluted sur- face supplies	L .	Treatment	ıt			Sec	
0.189 0.189 0.188 0.188 0.188 7.1187 7.1187 8.808 8.808 7.1187 7.1187 8.808 7.1187 7.1187 8.808 8.808 7.1187 7.1187 8.808 8.808 8.808 7.1187 7.1187 8.808 8 8008 8008 8008 8008 8008 8008 8008 8008 8008 8008 8008 8008	780 2,		Rural T	Total	Num- ber	Popula- tion served	vum-	Popula- tion served	None	Pri- mary	Second- ary	Total	mary	ond- ary	Total
0 1 89 9 85 6 9 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	780 2, 730 350														
981.0 981.0 983.6 988.8 726.7 721.7 731.7	730	570.5 130.4 1,2	127.2 2, 254.8 1,	697.7	121	2, 172. 2	30	1,663.0	2,069.7	6.1	16.4	2,092.2	12	16	20
8808.8 208.8 21.151.1 683.9 9 8 8 9 9	145	523 5 7 5×5.1 6 477.3	713. 2 1. 679. 6 1, 251. 1	236.7 261.7 728.4	225 153 50	1,545.8 878.2 554.1	21 57 12	920.1 684.3 430.4	755. 5 795. 1 297. 3	109.0 45.8 134.3	55.3 20.3 84.1	919.8	13	19	41 20 35
7.31.7.7.1.1.3.7.1.1.3.3.3.3.3.3.3.3.3.3		398.4 4		812.0	94	471.2	400	74.00	137.0	78.7	206.9	422.6	13	18	31
463 g	1	48.1	10001	113.6 534.8 148.3	180 89	326.4 61.5	080		24.4	20.3	28.0	48.4 226.5 23.9	0000	1200	124 0
			L= 00	411.9	120	137. 5	23 22	345. 5	52. 4	13.9	357.6	55.0	0 5	m 00	23 23
diami 516.9	3,670	27.8	161.5	186.0	21 17	37.9	00,00	23.0	85, 1 14, 0	300	16.5	25.2	000	0000	128
			# G	482.0	# 88 5 88	151.0	10	113.3	35.9	2.7	68.2	105.3	200	101	13
351.1 2. 196.8 9. 133.0 33,	890 220 100 1,	16.0 44.4 198.1 1,3	123.9 400.0 310.5 2,	139. 9 444. 4 508. 6	17 39 275	27. 1 69. 9 1, 299. 1	30	23.4	3.2	29.3 39.1	15.4 5.0 782.9	20.3 45.0 1,119.7	10	r024	80 11 28
Cumi enginear district: 60.6 18,0	0000	8 631.9 1, 8	851.3 1, 859.4 2,	129.0	92	368.0	16	239.4	173.0	9.3	55.0	237.3	7 26	10	144
Total. 203, 900	00	214. 1 10, 601.	7 18,	815.8 2.	100	10, 366.6	294	5, S65. 8	5,647.9	671.3	2, 238. 5	8.541.2	173	291	101

8.82	1 3	l capital, mine	To com- plete phrough program ¹	restric- tions	480	1,480	(2) (2) 120 10 240	000
20001000000000000000000000000000000000	2 1	ma sets	hrough 1		650	1, 820 60	(2) (2) (2) (40) 70	000
63.0 1, 161.2 193.4 194.5 194.5 198.0 2, 198.8 2, 198.8 2, 198.8 2, 198.8 2, 198.8 2, 198.8 2, 198.8 2, 198.8	11.6		-	Annual	6,710	1, 155 1, 455 835	8,555 200 200 8,155 110	180
1004101010411-01	3, 5		Total suggester municipal and industrial	Capital	71, 030	10, 580 13, 250 6, 000	5, 180 210 620 6, 270 6, 270 1, 240	1,300
28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 29.00 20.00	2.1	ent facili	ted in-	Annual	1,115	230 470 370	140 0 0 405 0 0	00 0 0
58.6 53.1 439.8 650.4 29.5 98.0 1, 827.1 452.9 44.1	6.0	te treatm	Suggested in- dustrial	Capital	3, 120	1,110 1,040	310 0 1,270 0	370 50 10
39.7 103.5 744.7 744.7 819.3 24.0 24.0 1,630.3 1,630.3 486.2 486.2	5,865.8	Jo sa	ed mu-	Annual	5,595	995 985 495	395 20 20 55 410 45	250
24.88511-88532 e & & & & & & & & & & & & & & & & & &	294	mated ec	Suggested mu-	Capital	67, 910	10, 020 12, 140 4, 960	4, 870 210 6°0 5, 000 1, 240	930 530 700
83.27 232.27 1,379.6 1,114.4 119.3 124.9 2,736.2 2,654.2 2,859.8 127.2 876.3	7.8		munici-	Annual	95	410 115 415	440 115 115 0 10	1,090
25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	2.001		Existing munici-	Capital	1, 080 3, 800	5,460 1,500 4,760	4,550 190 1,300 70	12, 890 290 290
25, 4, 56, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50	94.6	oulation at (bio- oxygen nd)	As dis-		4, 468. 4	1, 514. 4	492.2 6.8 36.0 1, 675.1 53.3	251.4 149.1 18.9
386. 386. 1, 261. 1, 953. 23. 1, 656. 1, 425. 1, 425. 1, 425. 1, 275. 1, 275.	91.1	tal r uiva imic der	Before treat-	пепс	4, 484. 2 199. 0	1, 598. 2 1, 288. 5 680. 1	743.2 10.2 57.0 1,716.7 55.4	838.5 170.4 28.5
70.6 214.3 2,242.0 537.5 76.4 67.7 1,992.9 666.9 62.3 500.9	8, 214, 1	popula- t (bio- demand)	Total		2, 392. 0 31. 2	678. 4 426. 3 164. 4	320.6 1, 490.2	425.9 60.7 3.3
6,810 28,135 36,375 1,955 1,955 1,955 15,620 33,645 20,610	2,305	Industrial wastes, popula- tion equivalent (bio- chemical oxygen demand)	Not to mu- nicipal	ment	2, 392. 0	673.2 424.3 152.6	280. 5 1, 479. 1	677.3
		Industri tion chemic	To mu- nicipal treat-	ment	0.9	2.0	40.1	348.6
A labama BY STATES Infinois Indiana I Kentucky New York North Carolina Ohio Pennsylvania Pennsylvania Pennsylvania Curressee Virginia Wee Virginia Georgia, Maryland Missis-	sippi., Total		ŧ		BY BASINS Main Ohio River Minor tributaries	Fucsburgh engineer carries: Allegheny. Monongabela. Beaver	Humington retracer diserric: Muskingum Little Kanawha Hocking Kanawha Guyamdot	Scioto Little Mami Licking. See footnotes at end of table.

TABLE 1.—Ohio River Basin—Summary of data on population, public water supplies, sewage, sewage treatment, industrial wastes, costs of existing and suggested waste treatment facilities and mine sealing by basins and States—Continued

[All populations, population equivalents, and costs are in thousands]

Estimated capital costs of mine sealing	To com-		60 130	80 310 240 80	200 780	370 5, 510	270 0 0 0 0 340 1, 200 0 0	3.10	370 5,510
Estim	Through 1940			22.	22	5, 3	3.53	1,940 1,490 1,490 110 0 1,210	5,3
	Fotal suggested municipal and industrial	Annual	660 160	70 80 1,655	565 2,035	17,585	2, 030 1, 520 1, 520 8,5	2, 045 11, 780 2, 075 60	17, 585
ies	Total su munici indu	Capital	4, 860	460 780 14, 520	7, 140 24, 180	173 920		7, 55, 52, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57	173, 920
ent facilit	Suggested in- dustrial	Annual	340	45 0 470	395	4, 265	88 51 30 8 8 51 30 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30 873 873 873 873 873 873 873 873 873 873	4, 265
te treatun	Sugge	Capital	1, 180	250	1,610	13, 580	1, 830	2, 620 1, 050 1, 050 1, 050 1, 050 1, 050 1, 050 1, 050 1, 050	13, 580
sts of was	ed mu-	Annual	320	. 25 80 1,185	515	13, 320	150 230 1,515 1,290	3, 205 3, 710 1, 475 1, 200 20	13, 320
Estimated costs of waste freatment facilities	Suggested mu- nicipal	Capital	3,680	210 780 12, 830	6,870	160,340		21, 670 11, 880 14, 600 14, 600	160, 340
Est	Existing munici- pal	Annual	745 155	80 5.5 1,600	165 250	6, 240	10 340 1, 480 5600 310	2,600 585 270 130 130	6, 240
		Capital	9,380	670 450 16, 650	1,660	70, 190	3, 140 14, 990 14, 585 4, 285	25.85 1, 495 150 150 150 150 150 150 150 150 150 15	70, 190
nulation nt (bio- oxygen nd)	l otal population equivalent (bio- equivalent (bio- demand) Before As dis- treat, charged		482.7	105.3 33.8 1,818.9	1, \$32.6	15, 468.1	70.7 150.4 1,688.8 1,55.6	2, 268. 5 64. 8	15, 468. 1
Total population equivalent (bio- chemical oxygen demand)		пеп	952 0	119.2 48.8 2,891.7	495.8	18, 535 5	293 1 3,057.9 1,874.7	2, 313.7 68.6.8 1, 507.6 2, 313.7 68.6	18, 535. 5
popula- t (bio- demand)	Total		401.5	48.9 1,772.0	2.58.5	9, 974.3	89.7 1,893.7 1,025.7	2, 502.6 1, 170.0 954.0 35.5 1, 650.0	9, 974. 3
Industrial wastes, popula- tion equivalent (bio- chemical oxygen demand)	Not to mu- nicipal	ment	235. 3 98. 5	98.2 2.4 1, 224.5	240.6 1,300.6	8, 778.4	1,376.8 1,376.8 71.9	1, 922.1 1, 136.2 1, 136.2 35.5 1, 638.9	8, 778. 4
Industria tion chemic	To mu- nicipal treat-	ment	166.2	1.4	17.9	1, 195. 9	10.1 516.9 49.7	5%0.1 13.8 10.1 11.1	1, 195.9
			Cincinnati engineer—Continued. Minnii. Kentucky. Toniscello angione district.	Journal of the continuous of t	CumberlandTennessee	Total	Alabama HV STATES Illinois Illinois Kentucky Kentucky Kentucky	Ohio Ohio Ohiostavania Puntsylvania Tennesse Virginia West Virginia Georgia, Maryland, and Mississippi.	Total

¹ Areas connected to active ventilation systems and areas where costs exceed \$10 per ton per year not included.
² Hocking plus Muskingum costs given under Muskingum.

INTRODUCTION

AUTHORIZATION

The investigation of pollution in the Ohio River Basin has been made in compliance with section 5, River and Harbor Act, approved August 26, 1937, which reads in part as follows:

SEC. 5. That the Secertary of War is hereby authorized and directed to cause a survey to be made of the Ohio River and its tributaries to ascertain what pollutive substances are being deposited, directly or indirectly, therein and the sources and extent of such deposits, and with a view to determining the most feasible method of

correcting and eliminating the pollution of these streams.

The survey herein authorized shall include comprehensive investigations and The survey herein authorized shall include comprehensive investigations and studies of the various problems relating to stream pollution and its prevention and abatement. In making these investigations and studies, and in the development and formulation of corrective plans, the Secretary of War may, with the approval of the Secretary of the Treasury, secure the cooperation and assistance of the Public Health Service, and may allot funds from the appropriation hereinafter designated to pay for such cooperation and assistance. The survey shall be completed as soon as practicable after passage of this acc, and the Secretary of War shall report the results thereof to the Congress together with such recom-War shall report the results thereof to the Congress, together with such recommendations for remedial legislation as he deems advisable.

ORGANIZATION

In approving this section of the act, the President advised the Secretary of War that he desired the appointment of a committee to supervise the survey, the committee to be composed of a representative of the Army Engineer Corps, the Public Health Service, and a non-Government expert to be selected by the other two members. Pursuant to this recommendation, the survey has been made under the general supervision of a committee composed of Brig. Gen. Max C. Tyler, later succeeded by Maj. Gen. T. M. Robins, representing the Corps of Engineers, United States Army; Sanitary Engineer Director R. E. Tarbett, representing the Public Health Service; and Dr. Abel Wolman, Johns Hopkins University, selected as the non-Government expert.

Under this committee, data on sources of pollution and laboratory data have been collected by the United States Public Health Service and hydrometric data have been collected by the United States

Engineer Department.

The attached organization chart gives in detail the plan of operation for the conduct of the survey.

OHIO RIVER POLLUTION SURVEY

(Total personnel, 96)

TECHNICAL STAFF

Office of stream sanitation (38): Cincinnati headquarters (15):

Crohurst, H. R., sanitary engineer director (deceased).
Tisdale, Ellis S., sanitary engineer (reserve).
LeBosquet, M., Jr., senior public health engineer.
Hollis, Mark D., passed assistant sanitary engineer.
Woodward, Richard L., associate public health engineer.
Weibel, Samuel R., associate public health engineer.
Eiffert, William T., assistant public health engineer.
Palange, Ralph C., assistant sanitary engineer (reserve).
Draftemen (2). Draftsmen (2). Stenographers and clerks (5).

Office of stream sanitation (38)—Continued.

Field engineers, first year (8):

McCallum, Gordon E., associate public health engineer. Poston, Richard F., associate public health engineer. Keatley, Charles R., associate public health engineer. Yaffe, Charles D., assistant public health engineer. Freeman, Archie B., assistant public health engineer. Reed, George D., assistant public health engineer. Solander, Arvo A., assistant public health engineer.

Bourne, H. Gardner, Jr., assistant chemical engineer.

Additional field engineers, second year (15):

Haney, Paul D., assistant sanitary engineer (reserve). Seufer, Paul E., assistant sanitary engineer (reserve). Spencer, Charles C., assistant sanitary engineer (reserve). Pearl, Emanuel H., assistant public health engineer. Flanagan, Joseph E., Jr., assistant sanitary engineer (reserve). Johnson, Ralph J., assistant sanitary engineer (reserve). Porges, Ralph, assistant sanitary engineer (reserve) McKinstry, Edward N., assistant public health engineer. Murray, William C., assistant public health engineer. Clark, Sterling M., assistant sanitary engineer (reserve). Joseph, Edwin B., assistant sanitary engineer (reserve).

Okun, Daniel A., assistant sanitary engineer (reserve).

Raneri, Ray, assistant sanitary enginee! (reserve). Rostenbach, Royal E., assistant chemical engineer.

Terrill, James G., Jr., assistant sanitary engineer (reserve). Stream pollution investigations station (58):

Cincinnati headquarters (21):

Hoskirs, J. K., sanitary engineer director succeeded by Hasseltine H. E., medical director.

Forsbeck, Filip C., surgeon.¹
Wheeler, Ralph C., surgeon (reserve).
Brinley, Floyd J., associate biologist.
Carnahan, Charles T., public health engineer.
DeMartini, Frank E., associate public health engineer.

Burns, William E., junior bacteriologist. Ettinger, Morris B., assistant sanitary chemist. Katzin, Leonard I., junior aquatic biologist. Chambers, Cecil W., junior sanitary bacteriologist.

Draftsman (1).

Statistical clerks (4).

Laboratory attendants (4).

Sample collector (1).

Motorboat operator (1).

Field laboratories (37):
Monroe, Stanley G., associate public health engineer.
Levine, Benjamin S., bacteriologist.
Chapman, Charles R., passed assistant sanitary engineer (reserve).

Fittro, Louis L., assistant sanitary engineer (reserve).

Kass, Edwin A., assistant sanitary engineer (reserve). McNair, John C., assistant chemical engineer. Walker, William W., assistant sanitary chemist.

Walker, William W., assistant Cohen, Stuart, junior chemist.

Megregian, Stephen, junior chemist. Middleton, Francis M., junior chemist.

Norris, Francis I., junior chemist. Pettijohn, O. Glenn, junior chemist.

Snider, Ross A., junior chemist. Lucht, Robert A., junior chemical engineer.

Laboratory attendants (9).

Sample collectors (9).

Shipkeepers (3).

Motorboat operators (2).

¹ Deceased.

NOTE .- Official designations apply to the last day of each person's connection with the Ohio River Pollution Survey.

REPORT

In presenting and discussing the data collected, this general section is followed by summaries covering the main Ohio River, minor tributaries, and the individual major tributaries. Each summary follows a generally uniform pattern. A number of supplements of general interest on various phases of the work are bound separately.

SURVEY METHODS

The data collected by the Ohio River Pollution Survey comprises three principal types of information:

1. Data on sources of pollution.

2. Laboratory data.

3. Hydrometric data.

Data on sources of pollution were obtained by engineers working at, and out of, 11 field stations maintained for varying periods of time in the offices of State health departments and of the Tennessee Valley Authority. Surveys were made of some 3,700 municipalities and 1,800

industrial plants.

Special studies of industrial wastes were made in cooperation with the cities of Cincinnati and Louisville, the State of West Virginia and the Tennessee Valley Authority. These studies were of value, not only in showing the character and amount of wastes discharged at the plants studied, but also in estimating the effect of wastes from similar plants elsewhere in the basin where less detailed information was available. A special field unit surveyed the acid mine drainage problem and determined the amount and distribution of this type of waste.

Correlated work included the preparation of Industrial Waste Guides containing information on industrial plant processes and practices, the quantities and strength of wastes for representative plants, waste treatment and recovery practices and their effectiveness in reducing pollution; an investigation of pollution abatement laws in the various States, their administration, and effectiveness; a study of the cost of construction and operation of waste-treatment plants both for municipal and industrial wastes; a study of damages caused by water pollution; an investigation of soil erosion and its relation to water pollution; studies of population distribution and trends, of the physiography, climate, cultural and economic background of the basin as it might affect future pollution or abatement.

The major part of the laboratory data was obtained by physical, chemical, and bacteriological tests on samples of water from some 2,000 points on streams in the Ohio River Basin. The sampling points were located so as to give a representative picture of the quality of the streams of the basin and the effect of waste discharges on water quality. More than 71,000 samples were examined and some 131,000 tests made. Laboratories were located at the United States Public Health Service Stream Pollution Investigations Station at Cincinnati, the quarterboat Kiski, loaned by the United States Engineer Department and equipped for laboratory work, and at 6 mobile laboratories in automobile trailers. The Kiski and the trailer laboratories were

¹ Public Health Reports, April 11, 1941, pp. 754-760 (Reprint No. 2259).

moved from place to place as the work required and samples collected and brought to the laboratories by automobile and motorboat.

Laboratory work was begun in 1939 and the area from the mouth of the Kanawha River to the mouth of the Kentucky River was surveyed during that year. The survey, which had originally been planned to continue for 3 years, was then shortened to 2 years because of the defense emergency. As a result the data on the upper and lower thirds of the basin are less extensive than was originally planned.

The attached table shows the routine laboratory examinations which were made and a brief explanation of each. Special laboratory tests made from time to time on selected samples have included nitrites, nitrates, acidity to phenolphthalein (hot and cold), total hardness and phenol content.

Table 2.—Ohio Basin: Significance of various physical, chemical, and bacteriological tests used in Ohio River pollution survey

Test	Explanation
	PHYSICAL AND CHEMICAL TESTS
1. Temperature 2. Turbidity 3. pH	Governs the solubility of oxygen and influences rates of purification. An index of the density of silt or other suspended matter carried by the stream Or hydrogen-ion concentration, indicates the relative acidity or alkalinity of a
4. Alkalinity	water. Represents the content of carbonates, bicarbonates, hydroxides, and occasion
5. Total and volatile suspended matter. 1 6. Dissolved oxygen	ally borates, silicates, and phosphates. Represents the concentration of suspended matter, in terms of dry solids, and is a rough index of the organic waste material present. Essential to natural purification of streams and the maintenance of aquatic life is drawn upon to support biochemical oxidation of organic waste and is re
	placed by absorption from the atmosphere and the photosynthetic action o some water plants including algae. A deficiency in dissolved oxygen below the saturation level indicates the presence of polluting organic substance which are absorbing oxygen from the stream water. The degree of this de ficiency is a measure of the deoxygenating effect of the polluting matter an
7. Five-day biochemical oxygen demand at 20° C.	hence an index of the degree of pollution in a particular stream zone. Indicates the amount of dissolved oxygen which may be expected to be asborbed from the stream water in 5 days at 20° C. to support the biochemical oxidation of the organic pollution carried by the stream at the point of sampling.
	BACTERIOLOGICAL TESTS
8. Total count on agar in 24 hours at 37° C.1	Considered in conjunction with the coliform bacteria the plate count is of value both as an indication of pollution and as a rough measure of natural stream purification.
9. Coliform bacteria (determined by standard fermentation tube test at 37° C.).	Expressed as "most probable number" (M. P. N.). This test is the most delicate and specific test for pollution by sewage as it shows the approximate density of a group of bacteria which are always present in large numbers it sewage and are relatively few in number in other stream pollutants. Coll form bacteria are normal inhabitants of the intestines of warm-blooded ani mals and are discharged in large numbers in human feces, which constitute
10. Coliform bacteria (determined by direct plate count on brilliant green lactose bile at 37° C.).	the principal source of these bacteria in sewage. Utilizes the plate count method, rather than the fermentation tube method for the determination of coliform bacteria using a culture medium selective for this type of organism.

¹ Discontinued as a routine test at the end of 1939.

Recognizing the importance of standard techniques to secure comparable results from the several laboratories, systematic and thorough instruction in standard methods of water analysis, covering a period of from 4 to 6 weeks, was given to all laboratory personnel, at the Cincinnati laboratory, prior to detail in the field. Frequent checks were made to observe methods and results and to correct any inconsistencies in technique. Memoranda to personnel covering laboratory methods are included in a supplement to this report.

In addition to the routine stream-sampling program, a number of special investigations were made. These include an investigation of water quality requirements for various water uses; an epidemiological study of outbreaks of intestinal diseases suspected of being water-borne; a biological study of the effects of pollution on plankton and higher forms of aquatic life, notably fish; a controlled study to measure the effect of complete and partial mine sealing on streams; studies of tastes and odors in water supplies along the lower Kanawha, the Mahoning and Beaver Rivers, in cooperation with the State Health Departments of Ohio, Pennsylvania, and West Virginia; and studies of mud deposits behind the navigation dams on the main Ohio River.

All hydrometric data were obtained by the division engineer's office, United States Engineer Department, Ohio River Division, with the assistance of the five district engineer offices in the basin. In addition to the operation of the regular stream-gaging stations, the work included the measurement or estimation of stream flows at each sampling station on the days when samples were collected; compilation of monthly flows during the summer months for the entire period of record at selected stations and preparation of frequency curves of low flows; studies of water velocities and times of flow in the main Ohio River and certain tributaries; and studies of possible modification of flow conditions by proposed flood-control reservoirs.

ACKNOWLEDGEMENTS

The various State health departments of the Ohio River Basin have rendered invaluable help to this survey by making available the results of their years of experience in pollution abatement work, by furnishing office space to field engineers, and by assisting in many other ways. The State of Tennessee, in addition, furnished results of stream-sampling programs. The Health and Safety Section of the Tennessee Valley Authority has aided similarly by furnishing office space, and the results of its investigations of the streams and waste discharges in the Tennessee River Basin. Municipal officials, water and sewage treatment plant operators, and industrial officials have aided by furnishing data on waste discharges and plant operation. In a number of instances municipal officials have furnished water and electric power for trailer laboratory units without charge. The cities of Cincinnati and Louisville have assisted by making available the results of consulting engineers' studies of their waste treatment problems. The city of Dayton, Ohio, furnished results of stream sampling conducted by its sewage treatment plant laboratory. Among the Federal agencies that have assisted are the Fish and Wildlife Service, which made physiological examinations of fish specimens; the United States Geological Survey, which furnished maps and advance data on stream flow; the Bureau of the Census, which furnished advance data on population; the United States Bureau of Mines, which aided in the study of acid mine drainage; the Soil Conservation Service, which furnished data on the extent and severity of soil erosion; and the National Resources Planning Board, which made available the results of its studies of the Ohio River Basin. In the preparation and criticism of Industrial Waste Guides, assistance has been received from State, Federal, municipal, and industrial officials throughout the country and from consulting engineers, equipment manufacturers, trade associations, universities, and technical schools.

DESCRIPTION

The Ohio River Basin (fig. 1) includes 203,900 square miles, about 7 percent of the continental United States. It extends into 14 States. The river originates at the confluence of the Allegheny and Monongahela Rivers in Pittsburgh and flows generally southwest for a distance of 981 miles to its confluence with the Mississippi River at Cairo, Ill., It is the second largest tributary of the Mississippi but the largest contributor to its flow.

Besides the Allegheny and Monongahela Rivers, the larger tributaries are the Beaver, Muskingum, Hocking, Scioto, Little Miami, Miami, and Wabash Rivers entering from the north, and the Little Kanawha, Kanawha, Guyandot, Big Sandy, Licking, Kentucky, Salt, Green, Cumberland, and Tennessee Rivers entering from the south. The various tributary basins are outlined on figure 1 and their drainage

areas are shown in table 1.

Topography.—Three major physical divisions characterize the Ohio Basin, the Appalachian Highlands in the east, the Interior Plateau in the southwest and the Interior Plains in the northwest. The Applachian Highlands include practically all of the area draining to the Ohio above the Scioto River as well as the headwaters of the Licking, Kentucky, and Cumberland Rivers and the upper half of the Tennessee River. The land is generally hilly or mountainous with steep slopes and narrow stream valleys. The Interior Plateau includes the area south of the Ohio River and west of the mountains and small parts of southern Ohio, Indiana, and Illinois. The hills in this section are lower and less steep than in the highlands and the stream valleys generally wider. The well-known bluegrass section of Kentucky and the Nashville Basin in Tennessee are the most highly developed parts of the Interior Plateau. The Interior Plains include most of the land north of the Ohio River and west of the highlands. The land is level or gently rolling. Practically all of this section has been covered by glaciers and most of the land is fertile and well suited to agriculture. It is the principal farming section of the Ohio Basin and constitutes the eastern third of the Corn Belt.

Geology.—Limestones and shales are the most common bedrocks of the basin. The principal mineral resource is coal which underlies much of the highland section. (See fig. 3.) Coal is also mined in western Indiana, Kentucky, and in Illinois. The Ohio Basin accounts for about 80 percent of the total national coal production. Petroleum and natural gas has been developed in the Appalachian fields of New York, Pennsylvania, Ohio, West Virginia, Kentucky, and Tennessee, in western Ohio, northeastern and southwestern Indiana; and in central and southern Illinois. In recent years the development of the southern Illinois oil field has made that State the second largest oil-producing State in the country. Other minerals of commercial importance include building stone, phosphate rock, various types of clay,

sand, gravel, rock asphalt, and fluorspar.

Climate.—The climate of the basin is temperate and continental and well suited to various types of agriculture. Mean annual temperatures vary from 40°F. in the north to over 60°F. in the south. (See fig. 4.)

Extremes of -35° F. and over 100° F. have been recorded. Mean annual rainfall varies from about 36 inches in the north to 60 inches in

the southeast. (See fig. 5.)

Run-off.—On an average about one-third to one-half of the rainfall appears as stream flow but this is subject to extreme variations. The flow of the Ohio River at the mouth has varied from as little as 20,000 cubic feet per second to as much as 1,850,000 cubic feet per second, with the average being about 250,000 cubic feet per second. The winter and early spring months are usually the period of high run-off. Major Ohio River floods have almost always occurred between January and the middle of April. The streams usually fall with the advent of the growing season. May and June are usually months of moderately high flow and the low-flow season includes the months from July through October or November. The minimum flows usually occur in September or October.

The 10 years from 1930 to 1939 included a number of notably dry years. The summer and fall months of 1930, 1932, 1934, 1936, and 1939 were among the driest in various parts of the basin. During 1930 the drought was particularly severe and general. The Ohio River and most of its tributaries experienced their lowest flows of record during the late summer and early fall months of 1930. The drought continued throughout much of the winter and into the early

months of 1931.

Population.—The population of the Ohio Basin in 1940 was approximately 18,800,000, of which about 44 percent was classified as urban and 56 percent as rural. This represents a population density of more than twice the national average. The basin is somewhat less urbanized than the Nation as a whole where about 56 percent of the population is urban. Table 1 shows the distribution of population by basins and States. Figure 6 shows the increase in population for the years 1890 to 1940, and figure 7 shows the distribution of urban population for the same years. The northern and eastern parts of the basin are more densely populated and more highly urbanized than the southern and western parts but in recent years the rate of growth has been more rapid in the Southern States than in the north.

Navigation.—The Ohio River has been canalized, 46 locks and dams now providing a 9-foot channel at low water. Most of these dams are movable, that is, when not needed during periods of high flow they are dropped to the bottom of the river and boats can pass over them without going through the locks. Four of the dams are fixed and boats must use the locks at all times. These four are the Emsworth, Dashield's and Montgomery Island Dams at the upper end of the river near Pittsburgh and the Gallipolis Dam below the mouth

of the Kanawha River.

In addition to the main stream most of the larger tributaries have been canalized for varying distances. Almost 2,000 miles of the Allegheny, Monongahela, Muskingum, Little Kanawha, Kanawha, Big Sandy, and its tributaries (Tug Fork and Levisa Fork), Kentucky, Green, and its tributaries (Barren and Rough Rivers), Cumberland, and Tennessee have been improved for navigation.

The facilities on most of these streams are not extensively used but the Monongahela River is one of the most heavily traveled inland waterways in the world and the Allegheny also carries a large amount

of freight in the vicinity of Pittsburgh.

OHIO BASIN-URBAN POPULATION 1890-1940 INCORPORATED PLACES OF 2500 OR MORE

DATA: U.S. CENSUS

Flood control.—The acute need for flood control on the Ohio River and its tributaries was brought to national attention by the disastrous floods of 1936 and 1937. Prior to that time a number of flood-control projects had been initiated locally, notably those of the Miami and Muskingum Conservancy Districts. The Tennessee Valley Authority and the United States Engineer Department also had constructed some reservoirs and other works for flood control. Following the floods of 1936 and 1937 the Congress authorized the construction of a comprehensive system of reservoirs on Ohio River tributaries and numerous levees and walls for flood protection. Figure 8 shows the location of existing flood-control reservoirs, those under construction and projects being studied. Because major floods usually occur during the winter and early spring, it may be possible to use some of the storage capacity at a number of these reservoirs for low-flow regulation during the summer and early fall months.

Hydroelectric power.—The largest hydroelectric developments in the basin are on the Tennessee River and its tributaries. The Kanawha and New Rivers also are the sites of several power projects. Others are on the Ohio River at Louisville, the Clarion River, a tributary of the Allegheny, the Youghiogheny, and Cheat Rivers, tributaries of the Monongahela, Dix River, a tributary of the Kentucky and the Tippecanoe River and East Fork of White River, tributaries of the Wabash. Two large flood-control reservoirs with excellent power possibilities are under construction at present. These are the Bluestone Reservoir on the New River and the Wolf

Creek Reservoir on the Cumberland.

The power facilities of the Tennessee Valley Authority are being expanded rapidly and a number of new projects are under construction. The installed capacity of the entire system is approaching 1,500,000

kilowatts.

Low-flow control.—Pymatuning Reservoir on the Shenango River and Milton Reservoir on the Mahoning River, both tributaries of the Beaver, are the outstanding examples of projects built primarily for low-flow control. Both of these streams are used as sources of industrial water supply by the steel industry and the reservoirs were built to relieve the acute shortage which occurred almost every summer. The Tygart River Reservoir, a multiple-purpose project on a tributary of the Monongahela, was built by the United States Engineer Department to insure an adequate flow for the maintenance of navigation on the Monongahela in addition to providing flood control.

Recreation.—An increasing demand for water recreational facilities has been apparent in recent years. The extensive use of the recently completed reservoirs of the Tennessee Valley Authority and the Muskingum Conservancy District, as well as other bodies of water in the Ohio Basin indicates the need for such recreational areas. Many of the streams also are used by large numbers of people for fishing, boating, and swimming in spite of pollution which often makes

swimming unsafe.

Water supplies.—Of the 2,000 public water supplies in the basin, 634 serving more than 7,000,000 people are from surface sources. Many of these surface water supplies are from unpolluted streams or from impounding reservoirs which collect the run-off from relatively small rural areas but 294 supplies, including most of the larger ones, are from streams or reservoirs subject to some sewage pollution. These

supplies serve more than 5,800,000 people. Practically all of these supplies are filtered and chlorinated and a number of them are so highly polluted that special treatment has been found necessary in order to produce a satisfactory finished water. Even after careful and complete treatment, many of the supplies are unpalatable because of obnoxious tastes which cannot be completely removed by normal treatment processes. Table 1 shows the number of supplies and the population served and figure 9 shows the location and size of water supplies.

Industrial water demands exceed in quantity the demands for the municipal supplies. Steel, chemical, textile and paper plants, distilleries, and railroads are among the largest water users and although bacterial quality is seldom of great importance except in the preparation of food products many of the industries require water of special

and uniform chemical quality.

Sources of Pollution

SEWAGE

About 940,000,000 gallons of sewage enter the streams of the Ohio Basin each day. About one-third is treated to reduce its objectionable characteristics and the remainder is discharged untreated. Data on sewerage and sewage treatment are shown in table 1. Figure 10 shows the location of the principal sources of organic wastes including

both sewage and industrial wastes.

Techniques for the removal or oxidation of the organic matter and for the destruction of bacteria in sewage are well developed and it is possible to achieve almost any desired degree of purity of the effluent from a sewage-treatment plant. The most common yardsticks for measuring the efficiency of treatment are removal of biochemical oxygen demand and suspended solids. The most common types of sewage-treatment plants remove from 35 to 90 percent of the biochemical oxygen demand. Their efficiency in bacterial removal is of the same order of magnitude. So-called "primary" treatment plants reduce the pollution load by about 35 percent on an average. "Secondary" or "complete" treatment plants usually reduce the pollution load by about 85 percent although there are a number of plants which average from 90 to 95 percent removal of biochemical oxygen demand. Other types of plants have efficiencies between those of ordinary primary and secondary treatment. Bacterial removal can be increased most effectively and economically by chlorination of the effluent from one of the above types of treatment plants. The cost of such disinfection is relatively small as compared with other treatment costs.

It is not necessary, nor would it be economically justified, to provide complete treatment for all sewage. The capacity of streams to purify themselves is a valuable and usable asset. The necessary degree of treatment depends on the self-purification capacity of the stream or streams involved and the necessary standard of water quality to avoid undue interference with normal water uses. The effects of industrial and mining wastes often play an important part in determining the necessary degree of treatment. In some instances the problem is one of primarily local interest and importance. In other instances large streams, large areas, or large numbers of people are

involved and the problem assumes regional importance.

Figure 11 shows the progress that has been made in sewage treatment in the Ohio Basin since 1900. Prior to that time only two cities in the basin, Canton and Alliance, Ohio, had sewage-treatment plants other than a septic tank. The years from 1900 to 1920 saw the invention or introduction of the principal treatment devices in common use today. The years since 1920 have witnessed vast improvements in details and an increasing trend toward mechanization of plants. Steady progress at an almost constant rate was made in the construction of sewage-treatment works during the years prior to 1925. During the boom years in the latter part of the 1920's the rate accelerated but during the depression years from 1930 to 1934 such construction was practically at a standstill. The effect of various Federal-aid programs is shown by the greatly accelerated progress during the years from 1935 to 1940. As much progress has been made during these 6 years as had been made prior to 1935.

The cost of a suggested basin-wide program of sewage treatment is shown in table 1. The following data show the approximate number of plants that would be in operation upon completion of such a program,

their capacity, and cost:

	Primary	Secondary	Total
Number of plants	650	700	1, 350
	850	535	1, 385
	\$61,000,000	\$58,000,000	\$119, 000, 000

¹ These costs do not include interceptors.

These data indicate that the program is now about one-third complete. A continuation of the rate of progress made during the period 1935 to 1940 for 20 more years would be required to complete the suggested program. There are no technical or engineering reasons which would prevent completion of the presented program in 10 years or even less. In the few cases where research leading to the development of more efficient economical industrial waste-corrective measures has been indicated, 10 years should see substantial progress. There are legal and administrative barriers which tend to delay the program. The principal problem, however, is the financing of the program.

Upon completion of the suggested program the need for construction would be reduced but not entirely eliminated. Since the average life of treatment plants in the past has been about 20 years, many of the plants already built would need to be replaced and others would need major repairs or alterations. Eventually such work would

probably cost about \$6,000,000 per year.

INDUSTRIAL WASTES

Table 3 shows the number of plants of each of the principal types of industries discharging industrial wastes to the streams of the Ohio Basin and the estimated sewered population equivalent based on biochemical oxygen demand of the wastes from each type of industry. Although no single measure of pollution is applicable to all types of industrial wastes the biochemical exygen demand is the most nearly satisfactory. Some industrial wastes contain chemicals which are toxic to aquatic life, some increase the acidity, hardness, or

OHIO RIVER BASIN

SUGGESTED INDUSTRIAL WASTE CORRECTION

salinity of the streams, some cause tastes and odors in water supplies, some contain undesirable coloring matter. These characteristics require separate consideration in determining how and to what degree treatment of the wastes is needed.

Table 3.—Ohio River Basin: Summary showing industrial wastes not discharging to municipal treatment plants, suggested industrial waste discharges to municipal treatment plants, and total of entire industrial waste load in the basin

Municipal sewers Private outlets Private outlets Private taken Private cal oxygen demand Number of plants Private outlets Private outlets			Industri disp		At least	Estimated sewered	Suggested to municipal treatment			
Byproduct coke	Industry ¹				corrective measures	equivalent (biochemi- cal oxygen		Population equivalent (biochemi- cal oxygen demand)		
Industrial wastes to Cincinnati sewers 4	Byproduct coke Canning Chemical Distilling Meat Milk Oil refining Paper Steel Tanning Textilo Miscellaneous	23 218 65 67 173 253 47 59 174 32 122 333	2 52 10 14 76 130 4 12 15 5 57 104	21 166 55 53 97 123 43 47 159 27 65 229	17 160 36 53 115 107 44 46 71 13 10	745, 200 758, 900 1, 880, 400 1, 009, 700 385, 700 85, 100 116, 500 1, 659, 200 (2) 269, 600 335, 100 160, 300	2 64 8 20 123 167 2 5 12 13 84 89	263, 800 24, 300 310, 300 138, 000 624, 600 323, 900 15, 100 31, 500 55, 400 216, 900		
nicipal treatment 1,195,900 1,195,900	Industrial wastes to Cincinnati sewers 3. Wastes discharged to municipal treatment.	1,004	516	1,088	808	1, 108, 400 1, 195, 900	626	2, 211, 000 1, 108, 400 3, 319, 400		

¹ Industries occurring only once in a basin are included under "Miscellancous" in the basin summary but are under their proper classification in this table.

1 336,000 pounds free acid discharged daily in waste pickle liquor.

3 Industries not surveyed individually. Population equivalent based on comprehensive sewer gaging

Reduction of industrial waste pollution is generally accomplished by one or more of the following methods:

(1) Changes within the plant itself. This may involve reuse of all or part of the waste within the plant, development of byproducts, changes in plant processes, or merely greater care in plant operation to reduce the amount of material discharged as waste.

(2) Treatment with municipal sewage. Many industrial wastes can be quite effectively treated in this way. It is often necessary to pretreat the wastes at the source or to segregate certain portions of the wastes within the plant and exclude these from the municipal sewers to prevent damage to sewerage structures or sewage treatment processes.

(3) Treatment in a special industrial waste treatment plant. For many types of wastes, such plants employ essentially the same processes as sewage-treatment plants. Other types of wastes require specially developed processes. Most of the plants use the principle

of sedimentation for removal of settleable solids.

The first method is usually the most economical and is the one generally applied. It is occasionally possible to completely eliminate pollution and to recover valuable byproducts by changes within the plant but this is not the usual situation. Ordinarily some pollution

and sampling program of city.

remains and some expense is involved. The second method is the simp'est from the standpoint of the industry. It is also the most satisfactory from the standpoint of administration of pollution-abatement programs since it reduces the number of possible sources of pollution and concentrates responsibility for effective waste treatment. It is usually necessary to make special provisions in the design of a municipal sewage-treatment plant if an appreciable amount of industrial waste is to be treated. Subsequent changes in the industrial waste load sometimes cause difficulties. method is used when the first is insufficient and the second impracticable. In those cases where removal of settleable solids is sufficient the problem is not difficult but satisfactory methods for the relatively complete removal of biochemical oxygen demand are available for only a few of the more common types of wastes such as those from breweries, meat plants, milk plants, and some types of canneries and distilleries. There is a pressing need for the development of more efficient and economical methods for relatively complete treatment of other types of wastes. More complete discussions of industrial wastes and their treatment are found in the Industrial Waste Guides included as a supplement to this report.

Figure 12 shows the location of industrial plants of various types which will probably require individual remedial works and the location of industrial plants of all types which can probably be

connected to existing or proposed municipal-treatment works.

ACID MINE DRAINAGE

The problem of acid mine drainage is one of the most pressing in the Ohio River Basin. Data relative to the discharge of the present acid load of 1,800,000 tons of mine acid per year are presented and discussed in a separate section of this report and in a more detailed supplement.

WATER QUALITY

As a background for the presentation and discussion of extensive laboratory data, particularly in the individual summaries, a discussion of water quality requirements for various uses has been prepared. This is followed by a discussion of present water quality which summarizes briefly the quality of stream water in the basin as a whole. More detailed discussion and either individual or monthly average results are given in the basin summaries. A detailed outline of methods is presented in a supplement.

WATER QUALITY REQUIREMENTS

As a basis of comparing the sanitary conditions in streams of the Ohio River Basin from laboratory observations of their waters at various points, it is desirable to consider briefly the limiting characteristics of stream waters in general, when expressed in terms of laboratory data, which may serve to distinguish between suitable and unsuitable conditions for different water uses.

Of the more common water uses in the Ohio Basin, the most important one is public water supply, because a large proportion of the population resident in the basin is dependent on surface sources of

water for domestic and other essential uses. Secondary but also highly important is the growing use of natural waterways for recreation, together with the continuing need for support of fish and other higher aquatic life in streams. This latter need, though it bears a definite relation to recreational use of streams, is of much broader and more fundamental significance, as it has a direct bearing on the ability of all natural watercourses to maintain their normal capacity

for self-purification.

Among other stream uses which are affected to some extent by sanitary conditions are those which have to do with industry, agriculture, navigation and general community development. In a broad sense, industrial needs for water are fairly similar to those of domestic supply, except that in some instances they have special requirements, either more or less rigid. In the Ohio Basin, agricultural use of surface water is mainly concerned with stock raising, as a large majority of farms have their own private wells for domestic supply, and irrigation is not a general problem. Navigation is affected by acid pollution and resulting corrosiveness and hardness of stream waters for boiler use. It also is adversely affected by gross sewage pollution which may cause "nuisance" and sludge banks. Community development is hampered, sometimes very materially, by poor sanitary conditions in streams which not only may cause serious damage to riparian property values, but also may interfere with the provision of desirable water-front highways, parkways, public landings and industrial docking facilities.

In order to systematize the discussion which follows, it will be convenient to consider the requirements for stream waters in terms of each separate characteristic as determined by the usual laboratory tests. In this connection, it is assumed that the methods of conducting the laboratory tests would conform very strictly to those of the latest Standard Methods of the American Public Health Association, and the American Water Works Association, as noted elsewhere

in this report.

Coliform bacteria.—Bacteria of the coliform group are normal inhabitants of the intestinal tract of warm-blooded animals, including man, and are present in very high numbers in domestic sewage. As an index of sewage pollution, the number of coliform bacteria in a stream water is the most sensitive and reliable single determination available to the sanitarian. This number may be expressed in terms of the older "Phelps Index" or in terms of the more recent "most probable number". The latter method of enumeration has been

followed throughout the present report.

Although the coliform bacteria number is used as an index of general sanitary conditions in natural bodies of water polluted by sewage, its more important applications are in judging as to the sanitary fitness of water supplies and their sources and of bathing waters. In flowing streams, progressive changes in the density of coliform bacteria below sources of pollution afford a valuable indication of the extent and rapidity of self-purification, after making due allowance for the effects of intermediate pollution and dilution. In interpreting the results of stream observations, the location of water-supply intakes and bathing places with reference to sources of pollution is an important matter for consideration in connection with coliform data.

Water Supply: Several years ago the Public Health Service conducted an exhaustive study 2 of the limiting densities of coliform bacteria in river and lake waters subjected to various degrees of purification, having particular reference to the production of finished waters meeting the bacteriological requirements of the Public Health Services' drinking water standards as promulgated in 1925.3 The results of this study indicated that the average efficient water filtration plant, with postchlorination of the effluent included, can purify to the drinking water standards level a raw water having an average number of coliform bacteria up to 50 per milliliter (or 5,000 per 100 milliliters). Assuming that a drinking water of standard quality from this standpoint were judged on the basis of monthly average results of coliform determinations, this would imply that the raw water as delivered for treatment should not contain more than 50 per milliliter of coliform bacteria, as an average, during any month, if the limit of safe loading were not to be exceeded. This limit has been adopted by a number of States as a criterion in judging as to the fitness of sources of water supply subjected to ordinary filtration treatment for public use. Parallel studies indicate that the change from the Phelps Index to the most probable numbers has little effect on the conclusions of the original studies.

From the same study as above noted, two other coliform bacteria limits were determined which are of interest in this discussion. One was the upper limit of average coliform density, amounting to about 0.5 per milliliter (or 50 per 100 milliliters) which would permit the production of an effluent of standard quality by simple chlorination

alone.

The second was the observation that when the ordinary filtration plant is reinforced by continuous prechlorination of the raw water in addition to postchlorination, the permissible maximum limit of coliform density in the raw water may be increased to about 200 per milliliter (or 20,000 per 100 milliliters). In this latter case, however, it was observed that raw waters showing monthly average coliform densities ranging from 50 to 200 per milliliter are in general unsatisfactory as sources of purified water supplies as they are likely to exceed coliform densities of 200 with a frequency ranging from over 5 to 20 percent of the time and thus overburden even a reinforced filtration plant for a correspondingly high proportion of the time. With raw waters polluted to this extent, moreover, difficulties of delivering palatable as well as safe effluents are increased, because of the presence of tasteproducing substances originating both in sewage and in certain industrial wastes. These waters must be considered, therefore, as being of doubtful fitness as sources of water supply.

From these considerations the following general rules may be stated as to the fitness of stream waters as sources of public water supply, when related to their average coliform bacteria number during

any month:

<sup>Public Health Bulletins Nos. 172 and 193: Public Health Reports, Reprints Nos. 1114, 1170, 1392, 1434,
and 1565. U. S. Public Health Service, Washington, D. C.
Public Health Reports, April 10, 1925, pp. 699-721, (Reprint No. 1029).</sup>

Limiting average monthly coli- form number per milliliter	. Relative fitness
0 to 0.5 0.5 to 50 50 to 200	For purification by simple chlorination. For purification by filtration and postchlorination. Doubtful—unfit for ordinary filtration treatment (unsuitable if greater than 200 in more than 5 percent of samples). Unfit for treatment.

Bathing waters: Existing standards of quality for natural bathing waters, as distinguished from artificial pools, are highly variable among the different States and appear to be governed more by expediency than by any well-established observational data. The most reliable data bearing on the relation between observed quality of bathing waters and sanitary conditions affecting such waters as determined by physical surveys have come from Connecticut, where two studies of this kind have been made. Winslow and Moxon, 4 as the result of their study of bathing beaches near New Haven, recommended a standard providing an average coliform number not over 1 per milliliter and a maximum number not over 10. Scott, on the basis of a survey of beaches along the Connecticut shore of Long Island Sound, set up four classes of bathing waters, based on coliform numbers. The best class, A, showed average numbers from 0 to 0.5 per milliliter. This class Scott considered as definitely good; classes B and C, rated as doubtful, showed ranges of 0.51-5 and 5-10, respectively. Class D, judged as very poor, gave average numbers over 10. The Tri-State Pollution Commission has adopted Scott's class A as the basis of requirements for natural bathing waters in the New York area.

From the evidence above cited, it would appear that the highest standard thus far proposed as the result of actual laboratory and sanitary surveys would conform to Scott's class A, though the Winslow-Moxon criterion, which also is based on good observational data, is nearly as high in its average requirements. For inland streams, the Winslow-Moxon standard might appear more reasonable, as it permits a degree of variability which is inherent in all stream waters. Bearing in mind that the most probable number method of coliform enumeration tends to give somewhat higher results than does the Phelps index method, the Winslow-Moxon criterion, based on most probable numbers, would be sufficiently rigid to be comparable to Scott's class A requirement when expressed in terms of the Phelps index. This requirement would appear to be a reasonably safe one for bathing waters in the Ohio River Basin.

Dissolved oxygen.—In unpolluted streams, the dissolved oxygen content tends to remain at or very near the saturation level. In polluted streams, it is depressed temporarily below points at which wastes are discharged into the stream, but tends to move gradually upward toward the saturation level along the familiar oxygen sag curve. The depth of the oxygen depression below saturation at the prevailing stream temperature is an index of the intensity of pollution in that particular stream zone. In streams only slightly or moderately

Bacterial Pollution of Bathing Beach Waters in New Haven Harbor. C-E. A. Winslow and D. Moxon.
 American Journal of Hygiene, 8, 3, 299–310, May 1928.
 American Public Health Association. Reports of Joint Committee on Bathing Places.

polluted, the dissolved oxygen content usually remains above a level of 70 to 80 percent saturation. In grossly polluted streams it may reach zero saturation or total depletion, and remain thus throughout stretches of considerable length, particularly in summer low flows where underlying sludge deposits exist. Between these two extremely divergent oxygen levels are numerous intermediate ones, indicating various gradations of pollution between moderate and gross.

The minimum oxygen requirements for streams are, in general, dependent on the particular uses to which they are devoted, though 2 or 3 parts per million of oxygen in a stream usually marks the extreme minimum level. Septic conditions and general "nuisance" follow inevitably the continuance of oxygen levels at or near the

zero point.

For maintenance of native fish life Ellis ⁶ states, from studies by the Bureau of Fisheries, that an oxygen minimum of 5 parts per million is necessary. Although many fish of the more hardy varieties will survive at oxygen levels of 4 or even 3 parts per million, he shows that the metabolic processes of most common fish are hampered at levels below 5 parts per million and points out that the mere survival or tolerance level is too low to permit the breeding and self-maintenance

of the desirable forms of native fish.

Ellis' conclusions have been confirmed fully by the biological observations made in connection with the present Ohio River Pollution Survey. These observations, as described in a supplement of the present report, have indicated that in regions of heavy pollution, with dissolved oxygen below 3 parts per million, fish are mostly absent, with occasional carp, buffalo, and sunfish. In zones of intermediate pollution, with dissolved oxygen, 3 to 5 parts per million, fish are more abundant, but "showing a tendency to sickness, deformity, and parasitization." In fertile zones, with dissolved oxygen not below 5 parts per million, it has been observed that "fish are varied, plentiful, and healthy," with large numbers of market fish present. In game fish zones, where oxygen is always above 5 parts per million, and usually near saturation, the presence of bass, perches, pike, and forage fish has been noted.

The striking agreement thus shown between the findings of the present survey and those of Ellis from his previous survey would seem to leave no room for doubt as to the validity of the conclusion reached by both observers concerning the desirability of a 5 parts per million oxygen minimum in stream zones where the proper maintenance of

native fish life is an important consideration.

On the basis of stream uses and conditions, the following summary may be given of the oxygen status of streams, from present evidence:

Minimum daily average dissolved oxygen, parts per million	Stream conditions
0 to 3	Heavy pollution, probable nuisance at times, little fish life. Moderate to heavy pollution, no nuisance, fish life restricted to coarse species. Slight to moderate pollution, fish life varied, abundant, and healthy, game fish at higher minimum levels.

Detection and Measurement of Stream Pollution. M. M. Ellis, Bull. 22, U. S. Bureau of Fisheries, 1937.
 Ohio River Pollution Survey; Report of Biological Studies. Supplement F to this report.

In general, the minimum oxygen ranges above given might be considered as minimum daily averages. When expressed in terms of averages for periods of several days up to a month, it would be desirable to add about 1.5 to 2 parts per million to each daily minimum figure in order to safeguard against daily variations below the period average. Figure 12a, page 174, shows the relationship between monthly average and minimum daily dissolved oxygen results based on the results of 7,500 samples collected during the present and previous surveys of the Ohio River and its tributaries. In order to assure the maintenance of a 5 parts per million daily minimum, a period average up to a month would be set at a minimum of 6.5 or

7 parts per million.

A possible question might be raised as to whether it may be necessary or even desirable to maintain a 5 parts per million oxygen minimum in all parts of a stream, including limited zones immediately below sources of pollution. It may be argued with some reason that it is not essential to the general support of fish life in streams to maintain such life unimpaired at all points, so long as the minimum dissolved oxygen does not fall 'lelow limits of tolerance for fishes, permitting them to pass th ough certain zones in order to reach their normal breeding places. Where sources of pollution are isolated and well separated by zones of active stream recovery, it is quite possible that an oxygen minimum of 4 parts per million in limited zones immediately below each source of pollution would be permissible. Where these sources are not isolated but are located so closely together that recovery is not possible within a reasonable distance, a definite hazard to fish life then may exist, even if a 4 parts per million minimum is maintained, in preventing the free movement of fish from one recovery zone to another. In general, it may be said that a 5 parts per million minimum is desirable, except where local conditions may be favorable to allowing a 4 parts per million minimum in limited zones immediately below fairly isolated sources of pollution.

Biochemical oxygen demand.—In connection with the present survey, a marked degree of correlation has been shown between the observed 5-day biochemical oxygen demand of stream waters at points immediately below sources of pollution and known densities of pollution at these points. A similar correlation has been shown between the 5-day biochemical oxygen demand and the numbers of coliform bacteria as observed at the same sampling points. In view of these relationships, an effort has been made to ascertain, from a study of the laboratory data, the approximate ranges of biochemical oxygen demand which may serve to distinguish between stream waters of various degrees of pollution, such as heavy, moderate, and slight. A source of difficulty in this connection lies in the considerable variability with which natural purification appears to affect the observed biochemical oxygen demand in streams of different sizes. In small and shallow streams, observed biochemical oxygen demand tends to diminish very rapidly under low-flow conditions, partly because of sedimentation, but also probably because of conditions favorable to rapid oxidation by growths of bacterial flora resembling activated sludge, attached to the sides and bottom of the channel. In larger streams, this effect is generally less marked, possibly because of the lesser effect

of these bacterial growths.

In general, it has been observed that stream waters in the Ohio River Basin only slightly or very moderately polluted tend to show

day biochemical oxygen demand values averaging less than 3 parts or million, with relatively low numbers of coliform bacteria and disolved oxygen contents ranging above 5 or 6 parts per million. In modrately polluted streams the biochemical oxygen demand may range fom 3 to 5 parts per million, with correspondingly higher coliform numbers and somewhat lower dissolved oxygen levels, though in the atter case exceptions may occur when the observations are made at aints very close to sources of pollution, where the full effect of the oxygen sag curve has not yet become manifest.

The gradations in biochemical oxygen demand may, therefore, be

ummarized about as follows:

faximum monthly average 5-day bionemical oxygen dentral, parts per milion	Stream conditions
to 5	Slight to moderate pollution. Moderate to moderately heavy pollution. Heavy pollution.

A complicating element in interpreting the results of biochemical xygen demand tests is found in acid streams receiving mine wastes. Inder these conditions little, if any, direct correlation exists between se observed biochemical oxygen demand and the density of pollution. Sludge deposits.—Organic sludge deposits may be formed in streams s the result of discharging raw sewage and certain types of industrial Where present, they tend to impose an added burden on the xygen resources of a stream and also to exert a very damaging effect n fish life. When present in large amounts, sludge deposits may ing about septic conditions, with a consequent breaking down of ie self-purification capacity of the stream and depletion of the dislved oxygen supply in the overlying water. Loss of fish life is due - suffication from oxygen depletion, to toxic effects of heavy polluin, and to interference by sludge deposits with the spawning process, which depends the normal reproduction of fish. An additional ect of extensive sludge deposits is the presence of floating solids and ten obnoxious odors resulting from anaerobic decomposition of the posits.
From these considerations, it is evident that the maintenance of

sirable stream conditions necessitates the practical absence of orjie sludge deposits originating in sewage and certain types of indusat wastes. Where these deposits are localized, small in extent, and spect to frequent removal by the flushing action of increased stream was, their effects on a stream may not be very far-reaching. Neverdess, they are always a detriment and should be eliminated so far possible from streams in which it is desired to maintain healthy

iditions.

All alinity, acidity, and hydrogen ion concentration.—The normal salinity of streams in the Ohio River Basin varies widely, even ere uncomplicated by acidity from mining and steel-mill wastes. The Ohio River proper and its major tributaries at their mouths, alkalinity tends to range from about 30 to 200 parts per million, pending on the geological character of the watershed, and particulty the extent of limestone formations. In a very few streams near a head aters of some tributaries, normal alkalinities as low as 20, there was no even lower, have been recorded. Ordinarily,

the alkalinity tends to range above 30 or 40 parts per million over

large portion of the basin.

Acidity in Ohio River streams is due to the effect of mine waster and, in some local areas, of steel-mill wastes, though the former constitute by far the larger sources of acid pollution. The pH value range accordingly from as low as 2.0 or 3.0 in highly acid streams to

as high as 8.0 or more in highly alkaline streams.

In general, it is desirable to have not less than 15 or 20 parts possible million of natural alkalinity in stream waters used as sources of water supply, owing to the absorption of alkalinity by coagulants most commonly used in water purification. Acid waters can be treated by adding alkalinity in the forms of lime or soda ash, but the expens of treatment is increased accordingly, and their permanent or scale-forming hardness is also increased. Where acidity is highly variable difficulties occur in water treatment because rapid changes in the acidity, if not promptly corrected, may result immediately in in

proper coagulation, or even in nullifying it completely.

According to Ellis' findings, the water of flowing streams tends to range from pH 6.7 to pH 8.6, where unpolluted by municipal condustrial wastes. When more acid than pH 6.7, or more alkaling than pH 8.6, as the result of pollution, he states that the buffer and carbonate systems are usually so disturbed that conditions harmful to fish are generally found. This natural range is, therefore, the most desirable one for maintenance of healthy fish life in streams Ellis states further that pH 4.0 or less is definitely lethal to all fish. He points out, however, that in determining the lethality of aciwastes, the specific acid involved must be considered, as "acid wasted on not kill merely because of a particular degree of acidity." Reviewing all of the data on acid wastes, he states that the truly ac effects must be limited to those acids which kill at pH values less tha 5.0, whereas in the case of acids killing at pH values more than 5.1 lethality factors other than hydrogen ion concentration play the major part.

From these considerations, it would appear that pH 5.0 marks the lowest safe minimum value for maintenance of normal fish life streams, when expressed without reference to the particular kind acidity involved. As an upper limit of alkalinity, that which corresponds to pH 9.5 may be regarded as the maximum tolerable value. The following summary of variation limits, expressed in terms of the same transfer o

pH value, may be useful in this connection:

Average daily pH values	Stream conditions
6.5 to 8.6	Normal for unpolluted streams, favorable to fish life, suitable for water supplies. Moderate acid pollution, tolerable to fish life, suitable for water supplies prior treatment.
4.0 to 5.5	Moderately heavy acid pollution, detrimental to fish life, fairly suitable for we supplies prior to treatment. Heavy acid pollution, lethal to fish life, unfavorable for water supplies prior treatment.

Table 4, page 177, presents a condensed summary of the limital characteristics of stream waters considered, respectively, as "a sirable," "doubtful" and "unsuitable" from the standpoint of cellined water uses. For water supplies, the requirements in respect to coliform bacteria, pH, and phenols are of more importance. It fish-life maintenance, dissolved oxygen, biochemical oxygen deman pH values, and sludge deposits are especially significant.

Table 4.—Ohio Basin: Water quality requirements—Summary of limiting quality requirements for stree... waters with principal stream uses and conditions involved in each category

[These values should not be arbitrarily applied to streams other than those of the Ohio River Basin as each stream should be reviewed in the light of its own peculiar biological characteristics]

		Cital accel porce		
		Desirable	Doubtful	Unsuitable
Coliform bacteria per milliliter	Average	WATER SUPPLY—GENERAL SANITARY CONDITIONS Not over 50 in any month. (filtration treatment required if over 0.5).	50-200 in any month (unsuitable if greater than 200 in more than 5 per-	Over 200 in any month.
		BATHINGRECREATION	cent of samples).	
Coliform bacteris per milliliter	Average	Not over 1.0 Not over 10.0.	1,0-10,0	Over 10.0,
		FISH LIPE—BECREATION—CENERAL SANITARY CONDITIONS		
Dissolved oxygen parts per mil- (Minimum.	(Average	Not less than 6.5 in any month	5.0 1-6.5 in any month.	Less than 5.0 in any month. ¹ Less than 3.0 on any day.
		GENERAL SANITARY CONDITIONS-BECREATION		
5-day biochemical oxygen de-	Average	Not over 3.0 in any month.	3.0-5.0 in any month	Over 5.0 in any month.
mand pairs per minion.		WATER SUPPLY—FISH LIFE—RECREATION—NAVIGA- TION—INDUSTRY	65 5 or 8 5 to 9 5 2	Lose than 4 0 or over 952
		FISH LIFE-RECREATION-GENERAL SANITARY CONDITIONS	Suitable for water supply prior to treatment.	Unisvorable for water supply prior to treatment.
Sludge deposits	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No preventable deposits present	Slight to moderate—localized	Moderate to heavy—general.
Phenols, parts per billion.	1	Not over 1.	1-10.	Over 10.
Other conditions		WATER SUPPLY—RECREATION—FISH LIPE No toxic substances, oils, tars, or free acid at any time, no floating solids or debris, except from notinal sources no teste producing substances	Free acidity at any time, chlorides over 250 parts per million, occasional feate medicing excessional	Toxic substances, oils, or tars present at any time; free acidity present free accorder, restanced to the control of the contr
		matural sources, no take producing substances.	taste-producing substances.	present frequently.

In general, it may be said that a 5 parts per million minimum is desirable, except where local conditions may be favorable to allowing a 4 parts per million minimum in limited zones immediately below fairly isolated sources of pollution. See discussion, p. 1. S. Public Health Service drinking water standards permit pH 10.6 in "treated" water.

Discussion.—According to the evidence at hand the water characteristics designated as "desirable" and "unsuitable" in the summary table appear to fall quite definitely into these two opposite categories. The intermediate or "doubtful" group defines characteristics which may be tolerable but undesirable, or may approach unsuitability, according to their relative position in the ranges given. No hard and fast line may be drawn for this "doubtful" group, but some degree of flexibility in judgment must be exercised in individual cases.

The requirements set forth in these three categories have not been intended to constitute a formal classification of stream waters in the Ohio River Basin, so far as the present report is concerned. It is fairly evident, however, that the mere endeavor to define stream characteristics in terms of their relative suitability for various water uses involves, in effect, the principle of classification, whether or not this term be used in this connection. It also involves the idea of stream standards, which form an essential part of any system of stream classification.

The application of the tentative limiting requirements for stream water quality, as set forth in this chapter, to the estimation of corrective measures for pollution in any given stream zone, would involve four steps as follows:

(1) Determination of essential or desirable stream uses in the

particular zone concerned.

(2) Fixing of necessary requirements for stream water quality in the zone, based on "essential" or "desirable" uses as defined under (1).

(3) Determination of existing stream conditions in the zone, based primarily on systematic laboratory observations above and below known sources of pollution and at other significant points.

(4) Estimation of necessary corrective measures for pollution loading at specific points, in order to meet essential or desirable stream-quality requirements, on the basis of existing stream condi-

tions and known pollution loadings at such points.

In interpreting the results of laboratory observations, due account should be taken of flow and seasonal conditions prevailing during the periods of the observations, with special reference to those conditions which might be considered as critical for the particular water uses involved. If the results observed at any time were definitely bad or unfavorable, such a finding would be significant regardless of whether or not the flow conditions were at a "critical" level. If the results at such a time were favorable and stream conditions were not at the "critical" level, then the possibility of unfavorable findings under conditions approaching more closely the critical point would have to be considered. In this connection, it should be pointed out that "critical" stream conditions would vary to some extent according to the particular water use involved. Where recreational use, maintenance of fish life, or prevention of "nuisance" is concerned, critical stream conditions usually coincide with those of extremely low water in the mid or late summer. For water supplies, the more critical conditions often occur following major rises in streams during the winter or spring months, when the effects of sewage pollution and of scoured sludge deposits at downstream points are at a maximum.

PRESENT WATER QUALITY

As a means of indicating the effect of existing pollution in the basin on the sanitary quality of the water, the laboratory results have been grouped on the basis of concentration of coliform organisms, dissolved oxygen and biochemical oxygen demand as outlined in the section on water quality requirements.

Table 5 summarizes the results of coliform organism and biochemical oxygen demand tests. The table shows the number of stations in each basin at which the worst monthly average results were within

various ranges.

Table 5.—Ohio Basin: Number and percentage of sampling stations showing worst monthly average coliform and biochemical oxygen demand results within designated ranges

		Nu	mber	of stat	ions			Perce	entage	of sta	tions	
Basin	is	form (sms pa illilit		oxyge	chem en der parts nillion	mand per	is	orm o ins po illilit		oxyge in	chem en de parts nillion	mand per
	0-50	51- 200	Over 200	0-3	3.1- 5.0	Over 5	0-50	51- 200	Over 200	0-3	3.1- 5.0	Over 5
Allegheny: Acid streams Normal streams	73 91	4 30	2 38	59 121	16 15	4 23	92 57	5 19	3 24	75 76	20 9	5 15
Total	164	34	40	180	31	27	69	14	17	76	13	11
Monongahela: Acid streams Normal streams	48 29	7 20	10 44	45 70	2 6	18 17	74 31	11 22	15 47	69 75	3 7	28 18
Total	77	27	54	115	8	35	49	17	34	73	5	22
Muskingum: Acid streams Normal streams	2 33	2 33	1 42	5 86	0	0 13	40 31	40 31	20 38	100 80	0 8	0 12
Total	35	35	43	91	9	13	31	31	38	80	8	12
Hocking: Acid streams Normal streams	5 6	1 3	3 9	4 6	3 3	2 9	56 33	11 17	33 50	45	33 17	22 50
Total	11	4	12	10	6	11	41	15	44	37	22	41
Kanawha: Acid streams. Normal streams.	6 74	1 26	1 42	6 106	1 16	1 20	75 52	12 18	13 30	75 75	12 11	13
Total	80	27	43	112	17	21	53	18	28	75	11	14
Beaver Little Kanawha Guyandot Big Sandy Scioto Little Miami Licking Miami Kentucky Salt	21 0 16 33 32 5 24 12 32 12 31	15 5 18 15 2 7 18 20 4	29 5 7 37 38 28 3 37 29 9	35 7 17 64 37 6 19 21 52 9	13 6 10 17 11 13 29 11 6	17 2 5 14 30 18 12 29 18 10	32 0 57 38 38 14 71 18 39 48	23 50 18 20 17 6 21 27 25 16	45 50 25 42 45 80 8 55 36	54 70 81 73 44 17 43 26 64 36	20 10 21 11 20 31 30 37 14 24	26 20 18 16 36 52 27 37 22 40
Green. Wabash Cumberland Tennessee	102 45 55	1 46 27 33	14 122 39 61	36 94 73 97	62 19 17	10 114 18 36	67 38 41 37	17 24 22	31 45 35 41	78 35 66 65	23 17 11	22 42 17 24
Tributary totals	787	343	650	1,075	286	440	44	19	37	60	16	24
Ohio River and minor tributaries: Pittsburgh-Huntington Huntington-Cincinnati Cincinnati-Louisville Lousiville-Mouth	23 6 4 31	43 8 9 20	36 14 20 23	72 21 10 47	/7 4 14 11	23 3 9 14	23 22 12 42	42 28 27 27	35 50 61 31	70 75 30 66	7 14 43 15	23 11 27 19
Ohio River total	64	80	93	150	36	49	27	34	39	64	15	21

In general, the largest number and highest percentage of stations falling within the lowest range of coliform densities (0 to 50 per milliliter) and biochemical oxygen demand concentrations (0 to 3 parts per million) indicate the better sanitary quality of the waters of the basin subdivision. Conversely, the largest number of stations and highest percentages of the stations falling in the higher ranges of coliform density (over 200 per milliliter) and biochemical-oxygendemand concentration (over 5 parts per million) indicate more highly polluted conditions of the waters of the basin and less desirable water for domestic supply and other customary uses.

The tabulations of coliform organisms show clearly the effects of acidity in the tendency for higher percentages of the stations in acid streams to show coliform numbers in the lower density range as contrasted with the corresponding percentages for the normal alkaline

streams

On figures 13 to 15 the average analytical results for the entire basin have been grouped to show graphically areas of comparable sanitary quality of the streams as indicated by the particular determination used as the index.

Coliform bacteria.—Figure 13, based on the determination of coliform bacteria, shows, by the heavier shading, areas in which the highest monthly average numbers of coliform bacteria exceeded 200 per milliliter. Lighter shaded portions show areas in which the highest monthly average number of coliform organisms was between 200 and 50 per milliliter and the unshaded areas show, in general,

areas with coliforms less than 50 per milliliter.

In general, 50 coliform organisms per milliliter represent the desirable upper limit of bacterial concentration for sources of water supplies. In all areas except those included within portions of the Allegheny and Monongahela Basins, affected by acid mine drainage, the lightly shaded areas indicate stream zones in which good sanitary conditions were found, resulting largely from a relatively low degree of pollution. Except in the Muskingum, Green, and Wabash Basins, these areas are located mostly near the outer edges of each tributary basin in their headwater sections. They include several areas in which recreational use of streams either is being practiced or readily can be developed, notably in the southern portions of the basin. They also include areas offering either actual or potentially desirable sources of water supply.

Areas in which the highest average numbers of coliform organisms exceeded 200 per milliliter include the larger sources of pollution and numerous local zones of smaller streams affected by the discharge of untreated sewage. The effects of industrial wastes probably are not shown to any considerable extent on this diagram, as the coliform bacteria is definitely specific as an index of sewage pollution. It is noteworthy, however, that the general locations and extent of these areas reflect to some degree the effects of combined sewage and industrial pollution, as the larger sources of sewage tend to coincide with

those of industrial wastes.

Biochemical oxygen demand.—On figure 14 the basin has been divided into areas on the basis of biochemical oxygen demand, the darkest shading representing average amounts of the biochemical oxygen demand exceeding 5 parts per million, the next heaviest areas those in which the average ranged from 3 to 5 parts per million, and the

unshaded areas representing points where the highest average biochemical oxygen demand observed was less than 3 parts per million.

In general, the heavily shaded areas showing biochemical oxygen demand results in excess of 3 parts per million tend to coincide fairly closely with those in figure 13 showing coliform organisms over 200 per milliliter, though they are somewhat more restricted in their extent in some portions of the map. As the biochemical oxygen demand of stream waters is affected both by sewage and by certain types of industrial wastes of an organic nature, the areas indicated in figure 14 probably show most reliably the stream zones in which the effects of combined sewage and industrial pollution are most apparent. The heaviest shaded areas denote those in which the worst conditions were observed and, in general, indicate the zones of relatively high degrees of pollution. Areas in which the average biochemical oxygen demand was not greater than 3 parts per million tend to coincide with those of figure 13, though some minor differences are indicated. In general, they represent stream zones in which sanitary conditions are good and, except for acid pollution in certain limited sections, are relatively free of objectionable pollution precluding their use for normal purposes. The fair agreement between these areas tends to confirm the tentative conclusion that stream waters in good sanitary condition should ordinarily show an average biochemical oxygen demand not over 3 parts per million.

Dissolved oxygen.—Figure 15 presents the dissolved-oxygen results divided into areas in which the lowest average content of the streams was not less than 6.5 parts per million, between 5 and 6.5, between 3 and 5 parts per million, and less than 3 parts per million, the latter being indicated by the heavier shading. An average of 6.5 parts per million, assuming a 5 parts per million minimum on any 1 day, has been suggested as a safe minimum average for the maintenance of native fish life. The greater extent of these areas as compared with the others of this figure probably is due in part to the fact that a considerable number of dissolved-oxygen observations were made during the colder months, when organic decomposition in the stream was retarded and dissolved-oxygen levels were higher than they would be expected to be under summer conditions. Because of this, figure 15 probably shows a more optimistic picture in this respect than would be justified by observations carried out over the entire

basin under summer low-water conditions.

Although the heavily shaded areas are less in extent than those on figure 14, probably owing to the limitations in the proportion of summer observations previously noted, they tend to coincide with, or to be included within, the areas of relatively high biochemical oxygen demand results, thus confining within their limitations the locations of the more densely polluted streams in the basin.

LOW-FLOW REGULATION

The stream flows of the Ohio Basin vary greatly. The minimum flow of the Ohio River at its mouth is about 8 percent of the average flow and on most of the tributaries the variations are much greater. Since the amount of water available for dilution of wastes is one of the most important factors influencing the degree of pollution, any measures which increase the minimum flow of the streams also aid in

abating pollution. Reservoirs for the storage and regulated release of natural stream waters offer the only generally practical means of

low-flow regulation in this area.

Untreated municipal sewage may cause nuisance conditions even though the flow of the receiving stream is quite large because of floating solids, scum, grease, and the settling and subsequent decomposition of part of the suspended matter with accompanying odors. Hence, low-flow regulation is not a substitute for sewage treatment but an effective supplement which can be used to eliminate the need for more than primary treatment and to improve stream quality where satisfactory complete treatment methods are not available at

present.

Where reservoirs expressly for low-flow regulations are proposed to replace secondary treatment, their value can be determined by the cost of the treatment eliminated. Studies of low-flow requirements and sewage treatment cost data indicate that reservoir storage capacity must be provided for not more than \$15 per acre-foot if the substitution of low-flow control is to be economically justified. Experience in the Ohio Basin indicates that reservoir capacity seldom can be provided for this amount, particularly in the relatively small amounts usually required for pollution abatement. Therefore, as a general rule, low-flow regulation does not afford an economical substitute for secondary waste treatment.

If more than one source of pollution is benefited appreciably by the flow regulation, the justifiable expenditure may be increased. Thus, if by the construction of a reservoir for flow regulation, the need for secondary treatment at two, three, or more downstream places can be eliminated the allowable expenditure for storage may

be increased proportionately.

Low-flow regulation can be used to reduce the maximum acidity of streams affected by acid mine drainage. It would not affect the total acid load but could reduce the damage done by acid streams. Studies of the comparative cost of mine sealing and flow regulation indicate that the allowable expenditure for storage to replace mine sealing is from about \$0.50 to \$2.25 per acre-foot depending on the alkalinity of the stored water. Consequently, low-flow regulation cannot economically be substituted for mine sealing but it can effectively supplement it in many instances, particularly in reducing acid surges after the mine sealing program is completed.

Low-flow regulation may also afford an effective means of reducing organic pollution by industrial wastes which cannot at present be adequately controlled by treatment at reasonable cost. The economic feasibility of such control cannot be discussed in general terms.

In addition to its value for abatement of pollution low-flow regulation may be used to insure the adequacy of municipal and industrial water supplies, to improve the navigability of streams and to enhance their recreational value, and to increase the production of hydroelectric plants. Most of the reservoirs that have been constructed for low-flow regulation have been built primarily for one or more of these purposes rather than for pollution abatement.

It is apparent from these data that, in general, low-flow regulation by reservoirs built expressly for pollution abatement is not economically justified, although it may be in some cases. However, if the

Alkalinity assumed to vary from 10 to 40 parts per million.

supplemental low flow can be provided incidental to some other major reservoir use in a multiple-purpose reservoir, the cost of the additional flow may be small enough to warrant inclusion of provisions for low-flow regulation in the reservoir plan. The major purposes for which reservoirs are being built or proposed in the Ohio Basin are

flood control and power.

Flood-control reservoirs ordinarily remain empty or nearly so until a flood threatens and are emptied as quickly as practicable after danger has passed in order to make the storage capacity available for the next flood. Studies by the United States Engineer Department of the seasonal occurrence of Ohio River floods show that major floods occur during the late winter and early spring. The following table indicates the monthly distribution of damage from Ohio River floods at Pittsburgh.

Table 6 .- Monthly distribution of damage from Ohio River floods at Pittsburgh, Pa.

Month	Average flood dam- age as per- cent of damage in maximum month	Month	Average flood dam- age as per- cent of damage in maximum month
January February March April May June	22 32 100 12 2 2	July	1 1 6 1 2 3

The markedly seasonal character of Ohio River floods and the equally seasonal character of low-flow occurrences suggest the possibility of using a portion of the capacity of the flood-control reservoirs after the end of the flood season for storage of water to be released during the late summer and early fall months when stream flow is usually lowest. The United States Engineer Department has investigated the practicability of such operations and found that at many of the proposed and existing flood-control reservoirs in the Ohio Basin as much as one-third of the flood-storage capacity can be used for low-flow regulation from April 15 to December 1 without appreciably reducing the degree of flood protection. In reservoirs whose capacities are limited to less than the amount necessary for control of the major floods such encroachment on the flood-storage capacity is not considered feasible.

Hydroelectric reservoirs usually store water during periods of high stream flow and release it during dry periods. The amount of water released is usually dependent on the power demand. Low-flow regulation for other purposes can often be included in the program of reservoir operation without interfering greatly with power production.

The possibility of using existing or proposed reservoirs in the Ohio Basin for low-flow regulation has been considered and discussions of various projects are included in the basin summaries and in the section of the report on acid mine drainage. A number of areas have been found where low-flow regulation could be of considerable value for pollution abatement and water supply.

ADMINISTRATION OF POLLUTION ABATEMENT

Stream pollution is a problem of national concern. Responsibility for its abatement is primarily local. Power to require its abatement rests with the States, the Federal Government having little authority in this field. All of the States have adopted laws of some kind for the purpose of controlling pollution, and, in addition, the common law affords remedies to injured parties. Because the problem is technical and one requiring constant attention, the States have delegated power to administer the laws to some State agency, usually the health agency, since the protection of the public health is usually the primary purpose of pollution abatement. The progress that has been made varies from State to State. A survey of State laws, their administration, and the organization of the administrative agencies has been made to determine what effect laws and their administration have had on the progress of pollution abatement and to determine what steps might be taken to accelerate progress.

This survey indicates that more important than a stringent antipollution law is the existence of an adequately staffed agency carrying on an effective educational and promotional program. Education, with its concurrent awakening of the public consciousness to the value of clean streams and promotion of remedial works' installation are the foundations of a stream sanitation campaign. A campaign based upon these two factors will attain a substantial measure of success without the legal authority necessary to require the installation of remedial works. However, an impasse is finally reached when the

authority must be employed if the program is to proceed.

The law should centralize authority over stream pollution in one State agency, authorized and qualified to consider the effects of pollution on all water uses, and not limited to its effects on the public health. No type of wastes and no area should be excepted from the provisions of the law. The agency should be delegated power to function administratively and to enforce the law without the continual necessity of time-consuming court action. It should be given the power to define pollution and the power to seek injunctions when necessary to protect the public interest. It should be permitted to carry out fact-finding investigations relative to pollution. Findings of fact are essential in all actions, particularly in case of court review. The agency should be permitted to prepare a program for pollution abatement and should have authority to require proper operation of remedial works.

Legal restrictions on the bonding or taxing power of municipal corporations have deterred the installation of sewage-treatment works. Provisions for financing these works by revenue bonds and sewer-rental charges have aided greatly in overcoming these restrictions. The State administrative agency should be given the power to require municipalities to utilize all means at their disposal to finance the construction of treatment works that have been found by the agency to be necessary. Provision should be made for the formation of sanitary

districts to construct and operate treatment works.

In none of the States in the Ohio Basin are all of the above provisions in effect. Outstanding defects are the exemptions of acid mine drainage from control in Pennsylvania, West Virginia, and Ohio,

and the lack of authority of Ohio, Indiana, and Illinois over wastes

from Ohio River communities.

Organization.—In several of the States surveyed, more than one State agency is empowered to enforce pollution abatement laws. A comparison of the ease and efficiency of operation in these States with that in other States with centralized control clearly indicates the advisability of the latter method. In this manner, responsibility is centralized and complete coverage of the problem without duplication of effort can be assured at a minimum of expense.

There is an increasing tendency to view pollution abatement in its broad perspective; namely, as an effort to promote the full utilization of a vital natural resource. For this reason it is necessary that the administrative agency not limit its activities solely to pollution affecting the public health or interfering with fish life. It should be permitted by law and qualified technically to act against pollution affecting any phase of water use. The type of organization best

suited to do this cannot be stated categorically.

A number of States in the Ohio Basin and elsewhere have placed authority in a sanitary water board, a State water commission or some similar agency. Such a body includes representatives of all official agencies concerned with water pollution and occasionally representatives of industry and sportsmen. In this manner all interested parties are given a voice in the establishment of policies

and feelings of animosity so often present are minimized.

Another method of achieving the desired coordination is by the establishment of an advisory board. This scheme has not been adopted in any of the States in the Ohio Basin but it has been suggested by a number of authorities. Administration would be centered in one existing agency already vested with authority. This agency would be advised as to policies and procedures by a commission including officials of State agencies concerned with water problems and representatives of industry and sportsmen. The commission may be supplemented by local watershed advisory boards throughout the State consisting of representative citizens interested in local improvement and good stream sanitation.

This type of organization takes from some agencies control which they might otherwise have and substitutes merely advisory authority. Unless a high state of interest is maintained, something which is difficult of attainment in this particular field, the interest of the advisory committee is apt to lag and its influence diminish or entirely disappear. Whether or not such a scheme would be successful would depend to a very large degree upon the executive and organizing ability, personality, and farsightedness of the head of the enforcement agency.

The most common practice is to make the State health agency the administrative agency for pollution-abatement laws. The sanitary engineering divisions of these agencies are usually the ones most actively engaged in pollution-abatement work and are better qualified technically than any other one agency to carry on such activities. The protection of water supplies from pollution is of definite concern to the health department. The effects of pollution on streams used for recreation are also of interest to the health agency. In practically all States the health department has been delegated authority either to supervise pollution-abatement work or to advise cities and industries with reference to their waste-disposal problems. By virtue of their

functions and experience, State health agencies should have considerable authority in any organization for the administration of pollution abatement. In most sanitary water boards, the State sanitary engineer is executive secretary of the board and the most active individual member. Under the advisory board scheme, the health agency is usually the administrative agency. In those cases where there is no legal provision for coordination of the views of all interested agencies and parties and the health agency alone is given authority, the coordination can be achieved unofficially if the agencies and individuals concerned are not unduly jealous of their positions, prerogatives, and programs.

In short, the exact type of organization is not highly significant. It is much more important that the agency be adequately financed and properly staffed with trained men familiar with pollution problems and their relation to all phases of water use. Personality and enthusiasm are as important as technical ability. The agency must be able to carry on an effective educational and promotional program and to work without friction with municipal and industrial officials. A minority of recalcitrant individuals and officials can be dealt with by legal action but effective policing to enforce an unpopular law would require so many men that the entire scheme would be impractical.

Authority.—In some instances cooperation can be obtained only if there is some legal power or authority which might be used. In other instances actual use of authority is necessary. The State administrative agency should have the following powers:

(a) Power to define what constitutes pollution, with the definition

based on consideration of all phases of water use.

(b) Authority to investigate pollution on its own initiative. Investigation of all complaints to the agency should be mandatory.

(c) Power to review all sewerage plans and plans for new industrial waste outlets and to require suitable treatment.

(d) Power to issue orders against polluters, requiring abatement of pollution.

(e) Power to seek injunctions when necessary to protect the public interest.

(f) Control over the operation of remedial works.

All of these powers are designed to promote rapid and efficient solution of the problem with a minimum of litigation. The actions of the agency would be subject to court review as are the actions of

any other administrative agency.

The basic law may well define pollution in general terms but the agency should be given the power to define in more precise terms what will be considered actionable pollution. The definition should be broad enough to include pollution which would interfere unduly with any water use and definite enough to enable municipalities and industries to determine what may be expected of them. No exceptions should be made in the basic law as to either areas or types of wastes subject to the control of the administrative agency, but the agency should not be required to apply a uniform standard of quality to all streams in the State or to all wastes of a given type.

The agency should be permitted to make all fact-finding surveys and investigations. Findings of fact are highly important, not only to serve as a basis for recommendations and orders but also to support

the agency in possible cases of court review. These surveys and investigations should be permitted without having to wait for a complaint. The agency should be given the right of access to municipal and private property necessary to make surveys and investigations. Only in this way can a comprehensive plan and program be developed. The requirement that all complaints must be investigated and reported on is a valuable aid in securing public approval of the program.

The power of review of all plans for new work involving increases in waste discharges enables the agency to prevent any important increases in pollution while engaged in its programs of abatement of pollution from existing sources. To make this power effective, the agency should be able to make rules and regulations governing sewerage and industrial waste treatment. Most of the States with effective pollution abatement programs have given this power of review to the administrative agency.

The power to issue orders requiring the abatement of pollution has been an extremely valuable instrument in many States. The basic law should outline the procedure to be followed in issuing such orders and provide for the enforcement of them. In general, the procedure

is as follows:

(a) The agency makes an investigation to determine whether or

not actionable pollution exists.

(b) If such pollution is found to exist the offender is cited to appear before the agency for a hearing and show cause why an order should not be issued requiring the abatement of the pollution.

(c) If the offender cannot show sufficient cause, an order is entered requiring the treatment or complete elimination of the waste discharge

causing pollution.

This procedure is much more economical of time and money, and requires less litigation than if the agency were required to seek action

through other legal channels.

Occasionally, even this type of machinery is too slow to protect properly the public interest. This is particularly true in the case of seasonal industries, when ponded wastes are suddenly discharged, or when remedial devices are improperly operated. The agency should be able to take action by injunction or otherwise to prevent such pollution.

To insure the proper operation of treatment plants and other remedial works, the State administrative agency should be empowered to supervise their operation and to make the necessary rules and regulations. The agency should be adequately and properly staffed to permit it to assist municipalities and industries in the solution of oper-

ating problems.

Sanitary districts.—Legislation to allow the easy formation of sanitary districts to serve unincorporated areas or combinations of one or more municipalities and adjoining areas is necessary if one of the more troublesome and difficult to control pollution sources, the private sewer, is to be eliminated and if pollution abatement work is to be carried on most economically and effectively in metropolitan areas. Most States have made some provision for such districts but, in many instances, the formation and preliminary financing have been made so difficult that the law is seldom used. In one State, 90 percent of the property owners concerned must sign the petition for the district's formation. Illinois has used the sanitary district method with con-

siderable success. Reasonable legislation could facilitate the formation of districts and still protect against the formation of additional

unnecessary governmental units.

The administrative agency may well be given power to review plans for the formation of districts and the power to order the formation of districts where this appears to be the only feasible solution to a pollution problem, as in the case of unincorporated areas on the fringes of municipalities. Ohio's administrative agency has this authority with reference to county sewer districts and the program in the State has been materially assisted by the authority. In most other States individual prosecution, a cumbersome device at best, must be either used or threatened to accomplish district formation in such cases.

Financing.—Constitutional and statutory limitations on the bonding and taxing power of cities have hindered the installation of remedial works in many instances. If a pollution abatement program is to proceed some means must be found, consistent with sound financial policy, to overcome these difficulties. The principle of allowing municipalities to exceed these limitations upon order of the administrative agency might be applied to statutory limitations but where the limitations are imposed by the constitution, this would probably not be feasible. In some States the municipalities are forbidden to issue bonds for other purposes so long as a State order requiring the installation of pollution abatement works has not been complied with. Provision may also be made for revenue financing of sewage works, permitting the assessment of sewer service charges. This is an equitable method of financing such works and has been used in a large number of cases in recent years. A recent adverse Pennsylvania court decision in the case of Philadelphia, which is up to its debt limit, ruled against determining sewer rental charges on the basis of the assessed valuation but at the same time stated that a charge based on a proportion of the water charge was proper.

Administrative policies.—In investigating the administration of pollution abatement, a number of policies were encountered which have met with a great deal of success. In general, it was found that the agencies which have been most successful have been relatively slow to use the courts or administrative orders to force action. Much of their effort has been devoted to arousing public consciousness of the value of clean streams and securing public support for remedial measures. They try to cooperate and consult with municipalities and industries in order to work out the most satisfactory solution of

individual problems.

A practically universal policy at the present time in the Ohio Basin is that no new sewers may be installed unless treatment is provided. Some States even require that no additions may be made to existing sewer systems without provision for treatment. The Works Progress Administration has aided in effectuating such policies by refusing to approve sewerage projects without treatment except in special cases.

Another policy that has been helpful in hastening progress is that of informing injured riparian owners of their rights. The technical knowledge of the enforcement agency can be of great value to the individual owners who seldom have the means of getting the necessary information for the successful prosecution of a lawsuit.

Much of the neutine week of the State administrative

Much of the routine work of the State administrative agencies is concerned with securing proper operation of remedial works after they have been installed. The common tendency to consider the problem as solved once the treatment plant has been constructed must be combated continually. The agency must be adequately staffed to permit the frequent inspection of remedial works and to aid plant operators in solving their problems. Most States have adopted the policy of requiring submission of rather complete records of plant operation. Some States offer prizes to those operators submitting the best records.

In order to stimulate interest in the problems of plant operation and to improve the standards of operation, a number of States have conducted or sponsored short schools and conferences for operators. Most of the operators of the smaller plants have little or no technical education and these schools have been instrumental in giving such men an understanding of the scientific principles underlying efficient plant operation. In addition, such schools enable the men to meet each other, to discuss their common problems and exchange experiences.

Another step that has been taken to improve the caliber of plant operators is the licensing of operators by the State administrative agency. As a rule, the licensing plan operates similarly to licensing of stationary engineers with several grades of licenses and requirements as to education and experience, as well as an examination. Licensing has been helpful in improving the tenure of competent

operators and in attracting better trained men to such jobs.

Interstate waters.—As in the case of other water problems, the difficulty of dealing with pollution of interstate streams has cast doubts on the effectiveness of State control and brought forth demands for Federal action. Progress has been made in certain areas in the solution of some interstate pollution problems but, in general, much less has been done than where the problems were primarily intrastate and subject to the control of a single agency. The Ohio

River is a striking example of this.

Informal interstate agreements have been effective in reducing tastes and odors in Ohio River water supplies but no appreciable progress has been made in reducing sewage pollution of the river. Much of the difficulty is due to the lack of jurisdiction of the States north of the river over the stream. The Ohio River Valley Water Sanitation Compact has been drafted by compact commissioners of the States involved, approved by the Congress, and ratified by four of the State legislatures (Indiana, New York, Illinois, and Kentucky) unconditionally. The Ohio and West Virginia Legislatures have ratified the compact but their action does not become effective until the Pennsylvania Legislature also ratifies. Considerable progress has been made in Pennsylvania toward ratification of the compact, one branch of the legislature having passed ratification legislation on two occasions.

The personnel of the Ohio River Valley Compact Commission that drafted the compact is of particular interest. Represented on this commission were the administrative or technical heads of the pollution administrative agencies of the States bordering on the Ohio River. These representatives had been engaged in administering pollution-control laws for a great many years and some of the most notably successful pollution-control programs of this country have been due to their efforts. The compact, as finally approved, repre-

sents the consensus of these successful, experienced administrators in their efforts to prepare a practical workable document. An outline of the provisions of the compact is included in the summary dealing

with the main Ohio River.

Two interstate compacts dealing with water pollution have been in effect for several years. The one between New York and New Jersey dealing with the problems of the metropolitan area of New York has been fairly successful. The one between North Dakota, South Dakota, and Minnesota on the Red River of the North has accomplished little. A third, the Potomac Compact, adopted by Maryland, Virginia, West Virginia, and the District of Columbia created the Potomac Valley Conservancy District, organized formally in October 1941. Activities to date have been confined to a preliminary assembling of available data. The formation of these compacts may be taken to indicate a trend but none of them are sufficiently comparable to serve as a basis for predicting the success of this method in the Ohio Valley as a means of abating water pollution.

Progress has been made in pollution abatement in the Delaware River Basin since the establishment of the Interstate Commission on the Delaware (Incodel) in 1936. This commission derives its authority from joint legislative commissions on interstate cooperation established by the four States of the basin. No interstate compact is involved. Standards of quality for effluents discharged to various zones of the basin have been agreed upon by the four States and a general plan drawn up for treatment of municipal wastes. Progress has also been made in construction of sewage treatment works. Financial difficulties have deterred construction of such works at Philadelphia, the key to the solution of the water pollution problem

of the basin.

Most interstate compacts in the past have dealt with matters which once settled require little further attention, such as boundary disputes. Compacts have been fairly successful in settling matters of the apportionment of water in interstate streams in the section of the country where irrigation is important. The Ohio River Valley Water Sanitation Compact is the first to be negotiated dealing with a continuing and complex problem in a large area and its success or failure will probably have considerable influence on future attempts at controlling pollution of interstate waters. It is highly desirable that the compact

be ratified.

Federal interest.—The increasing activity of the Federal Government in other fields of water use and control, together with the lack of progress being made in the solution of interstate pollution problems in some areas have been responsible for a number of proposals of Federal legislation on the subject. The proposals have been of two general types; one providing for Federal technical and financial aid to States and administrative agencies and financial aid to municipalities and industries in the construction of pollution abatement works; the other providing for similar aid to municipalities and industries and, in addition, for Federal control over the pollution of interstate waters. The need for financial assistance if the work is to proceed rapidly has been shown by the effect of Federal aid on the rate of progress of sewage treatment in recent years and is generally recognized. The need for Federal exercise of police power, however, has been bitterly contested. The disagreement is not one that can be

resolved by findings of fact at the present time. It involves problems of governmental policy not within the scope of this survey. The findings of this survey do indicate a need for something more than the present degree of control over pollution of the Ohio River. The compact provides a method for this control, through the utilization of existing, experienced State agencies working together with Federal assistance. Whether or not this method is efficient and effective can be decided only after a trial.

The Federal Government can encourage such efforts by making available advisory and technical assistance. The present survey should provide the basis for a program of control when and if the

Ohio River compact becomes effective.

ACID MINE DRAINAGE STUDIES

Acid drainage from coal mines affects the streams throughout the area covered by the Ohio River Basin coal fields (see figure 3). In Pennsylvania and West Virginia, the two largest bituminous coal producing States, the problem dominates the stream sanitation picture. The present situation exists despite the fact that in these two States only 5.1 percent of the coal deposit has been mined out or lost. The present survey has conducted a study of the basic theories of acid formation in coal mines and the possibilities and experience with remedial measures. Particular attention has been directed to control measures involving mine sealing and flow regulation, particularly by multiple purpose use of flood-control and other purpose reservoirs. Studies and demonstrations by the United States Bureau of Mines of the possible accomplishments of mine sealing have shown that acid control at the mine is practical at reasonable cost, and a start, made in the form of a Works Progress Administration program (see figure 16) of sealing abandoned mines with United States Public Health Service and State cooperation, has confirmed (see figure 17) the earlier work. The present sealing program, however, is not a continuing activity, having been discontinued from time to time in some States. Provision for essential maintenance is lacking. Flow regulation by flood-control reservoirs built by the United States Engineer Department has had a beneficial effect. Aggressive prosecution of a suggested remedial program is amply justified, particularly in the Pittsburgh district where tangible monetary benefits can be shown in excess of remedial costs. Remedial measures are imperative to insure the future of the principal streams in the mining

The question of acid mine drainage has been made the subject of a detailed supplement to this report and consideration here is confined to summarized information and conclusions.

ACID LOAD REDUCTION BY SEALING

Mine acid loads in the major tributaries of the Ohio River Basin as originally measured and after present sealing and suggested sealing under 1940 restrictions are given on figure 16 and table 7.

Table 7.—Acid mine drainage. Summary by tributory drainage basins and States of original classified mine acid loads, intensity per square mile, acid removed by sealing, estimated acid economical to remove under 1940 restrictions, and residual mine acid loads.

			Original a	Original acid load as CaCO	CaCOs		Sealed mines	nines		Fconom.	Residual acid load	eid load
	Drain-		Mar-	9	Total mines	nines			Acid	ical to remove in	1940 restrictions	ctions :
Tributary drainage basin and State	area, square miles	Active mines, tons per year	ginal 1 mines, tons per year	doned mines, tons per	Tons per year	Tons per square mile per year	acid load. tons per year	Effi- clency, percent	seal.ng, tons per year	by sealing, tons per year	Tons per year	Per-
Allegheny River except Kiskiminetas Kiskiminetas River	9,838	26, 457 223, 896	6, 760	50, 244 73, 988	83, 461 321, 689	8.5	24, 040 20, 270	7.8 4.0	18, 750	32, 330 132, 630	32, 381 178, 105	39
Allegheny River total	11, 730	250, 353	30, 565	124, 232	405, 150	34.5	44, 310	29	29, 704	164,960	210, 486	52
Monongahela except Youghiogheny Youghiogheny River	5,648	438, 274 141, 735	39, 064 25, 609	223, 634 52, 340	700, 972 219, 684	124.1	380, 026 29, 270	285	251, 900 22, 742	115, 630 83, 050	333, 442	48
Monongahela River total	7,380	580,000	64, 673	275, 974	920, 656	124.7	409, 296	67	274, 642	198, 680	447, 334	49
Beaver River Little Kanawha River	3, 145	5,480	988	10,920	17,388	0.5	5,376	425	2,280	6, 500	8,608	50
Kanawha kiver. Guyandot River	12,300	9,210	995	22, 650	32, 855 20, 184	12.2	21, 157	65	13, 750	2,170	16, 935	55.7
Big Sandy Kiver Muskingum and Hocking River	9,225	37, 700	14, 600	163, 500	215, 800	23.4.2	170,000	25.5	91, 460	19,320	105, 400	46
Section Miver Little Miver Ticking River	3,670	2, 200	0 0	0 0	Slight	0	11, 020	10.1	0, 200	, 100	10, 7,0	04
Mani River Kentucky River	5,385	10, 900	3, 200	27,800	41,900	6.0	22, 865	50	11, 433	9, 520	20, 947	20
Salt River Green River	9,220	26, 500	7, 900	42, 100	76, 500	0 m	30, 230	20	15, 115	23, 140	38, 245	20
Sanile Aver Tradewater River Cumberland River	18,000	3,000 53,610 4 960	13,045	3, 400	7, 900 264, 770	14.7	105,056	50	865 68, 862 14, 200	3, 270 93, 070	3, 765	39
Wabash River	33, 100	26, 777	3, 174	79, 631	109, 582	0 00	54, 054	067	47, 040	30, 403	32, 139	20
Main Ohio River: Pennsylvania Ohio. West Virginia	1, 290 6, 450 3, 005	27, 380 21, 100 7, 579	7,400	10. 697 85, 000 18, 464	49, 397 113, 500 26, 807	38.3 17.6 9.9	14, 100 45, 820 14, 028	64	9, 030 24, 750 9, 120	15.050 40,200 1,770	25, 317 48, 550 15, 917	51 59

Kentucky. Indiana Illinois.	5, 680 3, 480 1, 645	4, 700 2, 978 356	1,300	11, 200	17, 200 13, 055 2, 571	1.6	7,854 6,964 305	50 87 70	3, 927 6, 060 214	4,900 496 1,000	8, 373 6, 499 1, 357	53
Main Ohio River total Unclassified—Virginia	21, 550	64, 093	22, 652	135, 785	222, 530 18, 750	10.3	89,071	09	53, 101	63, 416 11, 070	106, 013	48
Total Ohio River Basin	203, 900	1, 109, 731	176, 450	1, 173, 052	2, 477, 983	12.2	1, 026, 288	64	655, 150	662, 769	1, 160, 064	47
Alabama Goorga Goorga Indiana Indiana Kentueky Maryland Mississippl Moth Carolina Onoth Carolina Pennsylvana Pennsylvana Pennsylvana Furnesse Virginal (anoclassified)	6,810 11,440 11,440 11,440 11,440 11,440 11,440 11,440 11,440 13,610 12,610 13,620 13,610 14,610 17,175 17,175 18,610	29, 775 88, 900 535 88, 900 0 0 65, 000 521, 513 25, 170	1, 804 3, 238 31, 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	89, 644 1180, 604 180, 604 847 0 0 270, 000 277, 833 160, 478	2, 571 122, 637 300, 690 1, 461 0 360, 000 386, 349 196, 838 18, 750 591, 777	00 447.8. 22.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	61, 305 61, 018 129, 000 229, 600 128, 237 74, 771 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	214 53, 100 64, 500 64, 500 123, 590 1123, 590 123, 590 123, 590 59, 804 59, 804 59, 806	1, 000 30, 899 89, 509 89, 500 400 72, 440 71, 070 39, 000	1, 357 38, 638 146, 600 719 0 167, 510 447, 985 7, 680 290, 977	25.8.4.4.9.1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
Total	203, 900	1, 109, 731	176, 450	1, 173, 052	2, 477, 983	12.2	1, 026, 288	64	655, 150	662, 769	1, 160, 064	47

1 Not completely abandoned. 2 Areas connected to active ventilation systems and areas where costs exceed \$10 per ton per year not included.

Total basin acid loads from this table and the estimated load following a sealing program with 1940 restrictions modified are as follows:

	Tons per year
Original mine acid load	2, 500, 000
Reduction, to date, by sealing	700, 000
Present mine acid load	1, 800, 000
Possible further reduction by sealing under 1940 restrictions	600, 000
Load after sealing under 1940 restrictions	1, 200, 000
Possible further reduction with 1940 restrictions modified	600, 000
Estimated ultimate residual load	

The sealing program under 1940 restrictions is based on a cost limitation of \$10 per ton of acid per year and sealing only in areas not connected to active ventilation systems. Modified restrictions would permit sealing operations in worked-out sections of active mines.

The cost and benefit estimates, discussed later, apply to work necessary to complete a sealing program under 1940 restrictions and the

report discusses this completion as a first objective.

Free mineral acid from waste pickle liquor is estimated at 3.4 percent of the present total free and combined mine acid load. Acid from hydrolized iron sulfates may be minor or as high as 10 times this quantity depending on the hydrolysis equilibrium.

MINE SEALING COSTS

Mine sealing costs to date in the Ohio River Basin, as shown in table 8, have been about \$5,400,000. To complete a sealing program under 1940 restrictions will cost an estimated additional \$5,500,000. Annual charges of interest (3½ percent), amortization (0.7 percent based on 3½ percent interest and a 50-year life), inspection (2 percent) and maintenance (7 to 10 percent) are about 15 percent or \$1,635,000 on the total of these two sums of \$10,900,000. This is about 4 mills per net ton of production and confirms an estimate of the Office of Mine Sealing, United States Public Health Service. These and other estimates of future mine sealing costs are believed conservatively high as they are based primarily on past experience with Works Progress Administration programs with the dual purpose of providing relief and improving mine acid conditions.

MINE-ACID-CONTROL PROGRAM

Present information indicates that correction, in large measure, of the mine-acid-pollution problem is practical by a comprehensive control program involving the following measures:

(a) Provisions for the inspection and maintenance of present air seals and a similar provision in connection with all future mine-

sealing programs.

(b) Completion of the present limited (1940 restrictions) mine-

Sealing program.

(c) Provision of reservoir capacity, presumably in primarily flood-control reservoirs, for flow regulation for acid and organic-pollution control.

(d) Inauguration of an aggressive program of mine sealing with

present restrictions modified.

(e) Adaptation of the better mining methods to acid control.

(f) Extension of the established practice of refraining from discharging acid waters to streams previously uncontaminated.

(g) Clarification of the laws governing mine drainage to facilitate

the corrective program.

Table 8.—Acid mine drainage: Cost of Works Progress Administration program of mine sealing to date and estimated to complete restricted mine-sealing program, both State-wide and for the Ohio River Basin

Kentucky 340,000 2.66 1,200 Maryland 221,000 8.25 50 Ohlo 1,935,000 8.40 400 Pennsylvania 2,666,000 11.50 4,000 Tennesse 109,000 2.46 400 Virginia 0 1,462,000 8.00 150 Total 7,018,000 5.80 6,500 Basin Minor tributary basins Allegheny Monongahela Beaver	Estimate total to date 1 (tates	Dete program 0 \$80,00 1,200,00 0 400,00 3,100.00
Size Size	(2) ,000 \$270,00 ,000 340,00 ,000 10,00 10,00 1,940,00 10,00 1,490,00 10,00 110,00	1, 200, 00 1, 200, 00 400, 00 3, 100, 00 420, 00
Indiana	, 000 340, 00 , 000 10, 00 , 000 1, 940, 00 , 000 1, 490, 00 , 000 110, 00	1, 200, 00 1, 200, 00 400, 00 3, 100, 00 420, 00
Vinor tributary basins Allegheny Monorgahela	1, 210, 00 5, 370, 00	160, 00
Nlegheny Monorgahela Saaver	В	y basins
Muskingum and Hooking Kuyandot Big Sandy Scioto Kentucky Green Wabash Cumberland Fennessee	510, 00 1, 820, 00 60, 00 1, 450, 00 70, 00 40, 00 70, 00 100, 00 60, 00	1,460,00 1,600.00 50,00 110,00 110,00 110,00 10,00 240,00 10,00 130,00 130,00 100,0

¹ Rounded.

UPPER OHIO BASIN

For illustrative purposes and to indicate cost to benefit relationships, special studies have been made in the upper Ohio River Basin area or the area above the Ohio-West Virginia-Pennsylvania State line. Estimates have been made of accomplishments, costs, and benefits resulting from application of the first three of these items, namely, mine sealing, maintenance, and flow regulation. Any study of reservoir development should include consideration of organic-pollution control and the program studied considers both organic and acid pollution.

Damages.—Damages capable of monetary evaluation caused by acid mine drainage include neutralization and softening costs to domestic and industrial water supplies and corrosion of steamboats, barges, power plant condensers, and river and harbor structures. These damages in the area above the Ohio-West Virginia-Pennsylvania State line, totaling about \$2,000,000 per year, are shown on table 9. Equally important, but intangible or unevaluated, damages, are to

² Less than 5 000.

water supply due to manganese, to recreation through the destruction of normal aquatic life, to agricultural uses, to highway structures, to the mines themselves, and indeterminate but serious damages to the public health due to rapid fluctuations in quality as reported by water-plant operators. Mine acid is a deterrent to organic pollution abatement as incentive for abatement measures is lacking if the result is a stream suitable only for disposal of mine waters. Mine acid is not a safeguard to public water supplies as the rapid increase in flow during a freshet may bring sufficient alkalinity to neutralize the acidity and eliminate any germicidal effect there may be.

Table 9.—Acid mine drainage: Summary, as of 1940, of annual damages, capable of accurate estimation and caused by acid mine drainage above the Ohio-West

Virginia-Pennsylvania State line	
	Total annual
	damages
Domestic water supplies	\$364,000
Industrial water supplies	407, 000
pleaminous and parges	1, 140, 000
Power plants	76, 000
Power plants	76, 000
Floating plant (U. S. Engineer Department)	5, 000
- (or or ambinor a population) = = = = = = = = = = = = = = = = = = =	
Total, 1940	2, 071, 000
Future estimate (based on estimated future quality but no increase	
in use):	
1950	2, 630, 000
1960	3, 190, 000
Mine sealing.—Data on mine acid loads before and after	er various
stages of sealing, similar to that given on table 7, for the up	pper Ohio
River Basin are as follows:	
Terver David at as follows.	Tone mer were

Tons per year

Original mine acid load

Reduction, to date, by sealing	313, 000
Present mine acid load	1, 062, 000
Possible further reduction by sealing under 1940 restrictions	379, 000

Load after sealing under 1940 restrictions_____ 683,000

The completion of a mine-sealing program in this area under 1940 restrictions will cost an estimated \$3,250,000. Annual charges, including interest, amortization, inspection, and maintenance as already enumerated, are 15 percent or \$488,000 on this expenditure. Similar annual charges on existing mine seals of 15 percent of the approximately \$2,550,000 spent on mine sealing to date in this area are \$382,000 per year, making a total of \$870,000 per year. As shown on figure 17, if these existing seals are not maintained, the benefits already realized may easily be lost making it necessary to repeat the expenditure.

Flow regulation.—The application of mine scaling under 1940 restrictions will greatly reduce the maximum monthly acidity but there will still remain acid surges and months in which conditions are unsatisfactory. The acid surges, particularly during times of low flow, will be a hazard to aquatic life. A further improvement during all but the highest flow months and a measure of protection against acid surges hazardous to aquatic life are possible by the application of flow regulation from reservoir storage. The estimated reservoirs selected for acid control are the largest that can be used without storing

1 375 000

for periods greater than 1 year. Utilization of increased capacity beyond this point would be infrequent and the unit value would therefore be reduced. Reservoir capacities selected in the upper Ohio River Basin area under these conditions are as follows:

	Acre-feet
Allegheny Basin	210,000
Monongahela Basin	370,000

otal______580, 000

Organic pollution in the upper main Ohio River can be controlled satisfactorily by a partial treatment of sewage and industrial wastes plus flow control adequate to eliminate those low-flow periods when a higher degree of treatment would normally be required. A second method of control would be to allow natural flows to remain unchanged and install facilities for providing the required higher degree of treatment.

In estimating the value of flow regulation for organic pollution abatement, this value was considered as equal to the difference in cost between partial treatment and the required higher degree of treatment.

The required flow has been estimated to be 8,000 cubic feet per second during the warm summer months (25° C. or 77° F. average monthly air temperature) and progressively lesser flows as temperatures decrease. With this flow regulation, primary treatment plus equivalent treatment of industrial wastes would be adequate to maintain satisfactory stream conditions for reasonable use other than

domestic water supply immediately below Pittsburgh.

The question arises as to the justification of attempting to maintain such conditions during times of abnormally low flow such as occurred during 1930. Conditions of 1930 have occurred but once in a period of record of over 30 years and have not been approached in any other year. If 1930 is included, storage required for flow regulation is 830,000 acre-feet while during all other years storage of 430,000 acre-feet would be adequate. It is concluded that the cost of providing the higher storage capacity is greater than warranted by control of pollution during a drought occurring but once in 30 years. This does not mear that conditions would not be improved during an extreme drought. A valuable partial organic pollution control would be available during a year such as 1930.

Storage required for organic pollution abatement is 430,000 acrefect (except in 1930) while total storage selected for acid control is 580,000 acre-feet. This last storage figure of 580,000 acre-feet has

been used in estimating benefits.

Benefits and costs.—Benefits of the combined program due to acid control are due to a reduction in the damages detailed on table 9. Benefits to organic pollution control are due to a reduction in the cost of needed sewage and industrial waste treatment.

Reduction in maximum monthly acidities equitably assigned to the two items—mine sealing and flow regulation—of this program

are as follows:

	Acidity,1 par	ts per million
	Allegheny at Aspinwall	Monongahela above McKeesport
Present monthly maximum Reduction by sealing ³ Reduction by reservoirs ³	23 22 14	33 19 10
Resulting monthly maximum	(3)	4

1 To methyl red on Allegheny and methyl orange on Monongahela.
2 Equitably assigned or average improvement if remedy applied constructed first or second. As a rule, projects applied first show increased benefits at expense of later projects.
3 13 parts per million minimum alkalinity in Allegheny at Aspinwall.

The estimated monetary benefits to acid and hardness reduction in the Allegheny, Monongahela, and upper Ohio River Basin due to the suggested mine-sealing and flow-regulation programs total \$1,133,000 per year. This estimate is believed conservative as it is based on 1940 damages instead of greater possible future damages and it does not include benefits to unevaluated and intangible items. Deducting the cost of sealing of \$870,000 per year from these benefits leaves \$263,000 per year that can be spent on reservoir construction for acid and hardness reduction.

In correcting sewage and organic industrial waste pollution without flow regulation, a higher degree of treatment (estimated as effective chemical treatment) would be required to maintain equivalent stream conditions. Estimated additional annual costs of the selected chemical treatment over primary treatment is \$300,000 at Pittsburgh. Flow regulation above Pittsburgh would increase the minimum flow at Cincinnati and this increase would result in savings for similar reasons

of an additional \$300,000.

While the flow regulation is designed primarily for acid pollution control, minor adjustments in the operating schedule make it possible for the flow regulation also to serve as a valuable aid in organic pollution control. The two flow regulation objectives fit well together as acid discharges are at a minimum during dry periods when augmented flow is required for organic pollution control. An examination of flow and acidity records indicates that acid control and organic pollution abatement can both be accomplished with the exception of 1 month (also excepting 1930) in 10 years and this accomplishment has been taken as satisfactory.

Annual benefits to flow regulation include \$263,000 left after deducting mine sealing costs from acid and hardness control benefits, plus \$300,000 for organic pollution control at Pittsburgh and \$300,000 for organic pollution control benefits at Cincinnati, making a total of \$863,000 per year. For a storage of 580,000 acre-feet, the annual benefits or the amount that can be economically spent per acre-foot

per year is \$1.49.

A summary of the cost and benefit relation is as follows:

P. G. Maria	Annual benefits and costs
Benefits, acid control Cost, mine sealing to date and future	\$1, 133, 000. 00 870, 000. 00
Balance, acid control for reservoirsBenefits, organic pollution control:	263, 000. 00
Pittsburgh Cincinnati	300, 000. 00 300, 000. 00
Total available for reservoirsPer acre-foot	863, 000. 00 1. 49

Reservoir benefits are, in large measure, due to equalizing and surge reducing effects following mine scaling in order to develop full benefits from the scaling program. The balance for reservoirs indicated is, therefore, available to the extent shown only if and when the mine-scaling program is assured. Mine scaling, on the other hand, can be justified beyond reasonable doubt as a single independent remedial measure.

ent remedial measure.

Studies conducted by the Corps of Engineers disclose that storage capacity can be provided in the quantities required for low-flow control in the Allegheny-Monongahela-Upper Ohio River Basin. It is further indicated that the best development of the water resources of the basin would provide low-flow control as a function of multiple-purpose reservoir operation. Under such circumstances, the average annual benefits which could be reasonably assigned to such an improvement would be in excess of the average annual cost.

INTRODUCTION TO DRAINAGE BASIN SUMMARIES

The basic information of the Ohio River pollution survey has been presented in summaries covering the main Ohio River, minor tributary basins and the 19 major tributary basins. An effort has been made to have each summary complete in itself. Certain explanations, applicable to each, have been made in this section to avoid repetition.

Insofar as possible, information for each basin is presented in as near identical form as possible, according to the following general

outline:

Syllabus and conclusions.

Description.

Presentation of field data.

Presentation of laboratory data.

Hydrometric data.

Discussion.

Accompanying the text are a number of tables, maps, and charts. With the exception of the division on the main Ohio River, similarly numbered tables and figures cover similar material in each basin summary.

In the tabulations of costs (table 1) the annual charges are based on interest rates of 3½ percent for municipal and 5 percent for industrial construction and periods for amortization of 40 years for interceptors, 20 years for municipal treatment plants and 10 years or less for industrial corrective measures. Studies of interest rates and

life of treatment facilities have indicated that these figures represent about the average experience of municipalities and industries. Cost estimates of individual projects are not shown except in a few cases where they are based on engineering surveys. Since most of the estimates are not based on detailed studies of each situation they may be considerably in error in individual instances. Grouped for an entire basin, the probability of error is greatly reduced and it is believed that the figures shown are an accurate indication of the cost of the suggested pollution abatement program. Costs of providing lateral sewers or for the extension of sewers to areas now lacking them

are not included in the estimates.

The urgency of the individual projects for which cost estimates have been made is far from uniform. Some projects are needed to correct critical pollution conditions while in other cases the need and justification for the expenditure are less outstanding. The basin summaries place stress on the more critical and larger sources of pollution where effects are not confined to local areas. However, cost estimates presented apply not only to the urgent situations but to a complete program of pollution control such as might take place during the course of the next 10 to 20 years. In the special case of a stream highly acid from the effects of mine drainage, expenditure of public funds for acid-reducing measures should precede or at least parallel expenditures for sewage and organic pollution abatement.

Cost estimates are based on average experience from 1928 to 1940. Costs for 1942 would be considerably higher and future costs will probably be subject to further change depending upon fluctuation in

construction costs for this type of work.

Throughout the report quantities of organic industrial wastes have been expressed as "sewered population equivalent (biochemical oxygen demand)." Extensive measurements have shown that the average oxygen demand of domestic sewage is 0.168 pound (5-day, 20° C.) per capita per day and this factor has been used to convert industrial waste loads to a readily understandable basis. In the tabulations of sources of pollution (Table 3), the column "Sewered population equivalent (biochemical oxygen demand), untreated" represents the total of the population connected to sewers plus the population equivalent of industrial wastes discharged at each locality. The difference between this column and the adjacent column "Sewered population equivalent (biochemical oxygen demand), discharged" represents the reduction in the pollution load due to treatment in a municipal treatment plant.

Where accurate laboratory results of treatment plant operation were available, these were used to determine the pollution load both before and after treatment. In the absence of such records reductions of 35 percent by primary treatment and 85 percent by secondary

treatment were assumed.

No differentiation has been made in the tables, maps, or charts between industrial wastes which are discharged only seasonally and those which are discharged throughout the year. The pollution loading shown represents conditions during normal operations at the height of the season. In the case of the canning industry, this may occur only during a few weeks in the year but these few weeks are often during the late summer when the effects of organic pollution on the oxygen balance of the stream are most serious. On the other hand, the season

for distillery operations in most cases is during the winter months when

the effects of oxygen-depleting pollution are less serious.

Nowhere in the report has a quantitative statement been made as to the reduction in the industrial waste pollution load due to treatment, recovery, or other measures at the industrial plant. Such a statement would necessitate a definition of the strength of untreated industrial wastes from each type of industry. This is impracticable since the strength of the wastes depends to a large degree on plant practices which vary widely. For instance, in some meat-packing plants all blood, paunch manure, and offal are recovered and in others these materials are discharged to the plant sewers. Wastes discharged from vegetable canneries have been found to vary by as much as 400 percent due to differences in "housekeeping" methods. Wastes from papermills vary depending on the use of save-alls, recirculating systems and other pollution reduction measures. At some plants reduction in pollution is inadvertent and is brought about by the recovery of valuable byproducts or prevention of waste of raw materials. At others expense is incurred which produces nothing but a reduction in pollution discharges. Tabulations of industrial wastes (table 4) show the number of plants that have taken steps of either kind which result in some reduction in the pollution load from the plant.

MAIN OHIO RIVER

CONTENTS

	Page
Contents	205
Syllabus and conclusions	207
Description	209
Presentation of field data	210
Presentation of laboratory data	215
Hydrometric data	228
Discussion	229
LIST OF TABLES	
Oh- 1.—Cost estimates of remedial measures	209
Oh- 2.—Surface water supplies	211
Oh- 3.—Sources of pollution	212
Oh- 4.—Industrial wastes	214
Oh- 5.—Laboratory results—seasonal averages	216
Oh 5. Taboratory results seasonal averages	210
Oh-5a.—Laboratory results, number and percentage of samples within	219
various quality rangesOh-5b.—Laboratory results, average phenol results	222
On-50.—Laboratory results, average phenoi results	
Oh- 6.—Monthly mean summer flows	229
Oh- 7.—Summary of laboratory results	237
Oh-7a.—Summary of laboratory results on acid streams	256
LIST OF FIGURES	
Oh- 1.—Map—Sources of pollution (Pittsburgh to Huntington)	207
Oh- 2.—Map—Sources of pollution (Fusburgh to Tuntington) Oh- 2.—Map—Sources of pollution (Huntington to Louisville)	207
On Z.—Map—Sources of pollution (Huntington to Louisvine)	
Oh- 3.—Map—Sources of pollution (Louisville to mouth)	207
Oh- 4.—Chart—Sources of pollution and selected laboratory data (Pitts-	014
burgh to Huntington)	214
Oh- 5.—Chart—Sources of pollution and selected laboratory data (Hunt-	014
ington to Louisville) Oh- 6.—Chart—Sources of pollution and selected laboratory data (Louis-	214
Oh- 6.—Chart—Sources of pollution and selected laboratory data (Louis-	
ville to mouth)	214
Oh- 7.—Chart—Laboratory results, seasonal averages and distribution of	
results	218
Oh- 8.—Map—Coliform results (Pittsburgh to Huntington)	222
Oh- 9.—Map—Dissolved oxygen results (Pittsburgh to Huntington)	222
Oh-10.—Map—Biochemical oxygen demand results (Pittsburgh to	
Huntington)	222
Oh-11.—Chart—Laboratory results at selected stations above Huntington	222
Oh-12.—Map—Coliform results (Huntington to Louisville)	226
Oh-13.—Map—Dissolved oxygen results (Huntington to Louisville)	226
Oh-14.—Map—Biochemical oxygen demand results (Huntington to	
Louisville)	226
Oh-15.—Chart—Laboratory results at selected stations below Huntington_	226
Oh 16.—Map—Coliform results (Louisville to mouth)	228
Oh-17.—Map—Dissolved oxygen results (Louisville to mouth)	228
Oh-18.—Map—Biochemical oxygen demand results (Louisville to mouth).	228
Oh-19.—Chart—Coliform results at Cincinnati Water Works (1926-41)	230
10. Chart Comorn Teams at Cheminati Water WORS (1920-41)	200

MAIN OHIO RIVER

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Ohio River is one of the most intensively used large streams in the United States, supplying water for municipal and industrial use, furnishing a method of sewage and industrial waste disposal, providing transportation facilities and providing many sources of recreation. Pittsburgh, Cincinnati, and Louisville, the largest urban centers on the river, contribute the largest amounts of pollution and there are more than 100 smaller places discharging untreated sewage and wastes. Municipal sewage, acid mine drainage and industrial wastes, such as phenols, which impart objectionable tastes and odors to drinking water are the principal polluting substances.

The interstate character of the Ohio River is in part responsible for the lack of progress made to date in controlling the pollution of the stream. The Ohio River Valley Water Sanitation Compact, which has been approved by the Congress and ratified by four of the State legislatures, pledges the States to joint action for pollution abatement and provides for an interstate administrative agency. This compact should be ratified by the remaining State necessary to make it

Operative.

This report presents a summary of the information collected and outlines a program of sewage and industrial waste treatment for the main Ohio River. Such a program, coupled with a basin-wide program of mine sealing, low-flow augmentation and similar programs of waste treatment on certain tributary streams would provide an economical and effective method of reducing the pollution of the Ohio River.

CONCLUSIONS

(1) Thirty public water supplies serving 1,663,000 people are

taken from the Ohio River proper.

(2) Sewage from about 2,700,000 people and industrial wastes equivalent in oxygen demand to sewage from an additional 2,850,000 people enter the Ohio River and the lower stretches of tributary streams. Only about 1 percent of the sewage is treated prior to

discharge.

(3) Laboratory surveys made during 1939-41 showed notable oxygen sags below Cincinnati and Pittsburgh and heavy bacterial pollution below these points and many other cities and at a number of waterworks intakes. The main stream was found to be acid as far downstream as Marietta, Ohio, during a part of the sampling period. It is known to have been acid further downstream on other occasions.

In general, the tributaries are in as good or better sanitary condition at their mouths than the main stream and the effect of tributary

inflow is not particularly noticeable.

(4) The major pollution control measures needed on the main river are: (a) Reduction of bacterial pollution, particularly at water supply intakes; (b) reduction and prevention of the further spread downstream of acidity; (c) prevention of taste and odor troubles in public water supplies; and (d) correction of objectionable nuisance conditions due to oxygen depletion, discoloration of the stream, floating sewage and other solids and scum.

(5) Efficient primary treatment of sewage plus continuous chlorination should effectively reduce bacterial pollution. Primary treatment of sewage and organic industrial wastes should correct nuisance conditions in the stream, except below Cincinnati and Pittsburgh, when very low flows and high water temperatures prevail. Supplementary measures of low-flow augmentation or chemical treatment

would correct these conditions,

(6) Prevention of taste and odor troubles will require special industrial waste treatment at byproduct coke plants, at some chemical plants and at other establishments with similar types of wastes.

(7) Reduction in acidity can be most effectively and economically achieved by a basin-wide program of mine sealing combined with a program of low-flow augmentation. Neutralization of waste indus-

trial acids would aid in reducing acidity.

(8) The following estimates of cost of existing works and of a suggested program of sewage and industrial waste treatment is summarized from table Oh-1. The bulk of the cost for new work is at Pittsburgh, Cincinnati, and Louisville.

Treatment	Capital cost	Annual charges
Existing Suggested additional	\$1,080,000 71,030,000	\$95,000 6,710,000

The estimated additional cost over existing charges of a program involving secondary treatment at all sources of pollution on the Ohio River is—

Treatment	Capital cost	Annual charges
Primary, all places	\$71, 030, 000 86, 620, 000	\$6, 710, 000 8, 700, 000

¹ See section of report on acid mine drainage.

Table Oh-1.—Main Ohio River: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		ber of	Popula-	Capital	Aı	nnual charge	es
	Pri- mary	Second- ary	connected to sewers	invest- ment	Amortiza- tion and interest	Operation and main- tenance	Total
Existing sewage treatment	4	16	22, 500	\$1,080,000	\$65, 000	\$30,000	\$95, 000
Suggested minimum correction: Sewage treatment plants. Required interceptors Independent industrial waste correction. Total Comparative cost: Primary treatment, all waste. Secondary treatment, all waste. As suggested.	111	0	2, 018, 500	27, 560, 000 40, 350, 000 3, 120, 000 71, 030, 000 71, 030, 000 86, 620, 000 71, 030, 000	1, 940, 000 1, 890, 000 410, 000 4, 240, 000 4, 240, 000 5, 335, 000 4, 240, 000	1, 765, 000 705, 000 2, 470, 000 2, 470, 000 3, 365, 000 2, 470, 000	3, 705, 000 1, 890, 000 1, 115, 000 6, 710, 000 6, 710, 000 8, 700, 000 6, 710, 000

Note.—Costs shown above include the cost of interceptors and treatment works for city of Pittsburgh and its suburbs along the lower Allegheny and Monongahela Rivers and Chartiers Creek whose wastes would probably be treated at a plant along the Ohio River.

DESCRIPTION

The Ohio River is formed by the junction of the Allegheny and Monongahela Rivers at Pittsburgh, Pa. and flows in a generally southwesterly direction for 981 miles to its confluence with the Mississippi River. It forms the boundary between 5 States: Ohio, Indiana, and Illinois on the north and West Virginia and Kentucky on the south. The 203,900 square miles drained by the Ohio River and its tributaries comprise roughly one-fifteenth of the area of the United States and include parts of 14 States. Most of this area is drained by the 19 major tributaries which are discussed separately. About 23,780 square miles of the watershed drain directly into the Ohio River or through minor tributaries. This section of the report is concerned only with the cities and towns on the Ohio River proper or in metropolitan areas which touch the river.

The three largest cities on the Ohio River are Pittsburgh, Cincinnati, and Louisville. There are 86 incorporated municipalities of more than 2,500 population on the Ohio River and 131 additional smaller incorporated towns. The population of some of the larger

cities and of the entire area is shown below:

	Population								
	1910	1920	1930	1940					
Principal cities:	,								
Pittsburgh, Pa	533, 905	588, 343	669, 817	671, 659					
Cincinnati, Ohio	363, 591	401, 247	451, 160	455, 610					
Louisville, Ky	223, 928	234, 891	307, 745	319, 077					
Evansville, Ind	69, 647	85, 264	102, 249	97, 062					
Huntington, W. Va	31, 161	50, 177	75, 572	78, 836					
Covington, Ky.	53, 270	57, 121	65, 252	62, 018					
Wheeling, W. Va.	41,641	56, 208	61, 659	61, 099					
Entire area:									
Urban	1, 839, 366	2, 133, 585	2, 540, 749	2, 570, 592					
Rural 1	120, 993	118, 004	115, 251	127, 217					
Total	1, 960, 359	2, 251, 587	2, 656, 000	2, 697, 809					

¹ Includes only incorporated communities of less than 2,500 population on the Ohio River or in metropolitan areas along the stream.

Most of the Ohio River cities are relatively old and their rate of growth during this century has been less rapid than that of other

cities in the basin.

Steel production is the outstanding single industry in the Ohio Valley and is predominant in the section above Wheeling. Most of the Ohio River cities below the steel area are more important from the standpoint of commerce and transportation rather than as industrial centers.

Water uses.—Forty-six locks and dams provide slack-water navigation for boats at 9-foot draft for the entire length of the river. A number of additional locks and dams have been replaced by fewer structures of higher lift. In 1940 almost 30,000,000 tons of freight, the bulk of which was coal, were moved by river.

The only hydroelectric development on the Ohio River is at dam No. 41 at Louisville. Relatively small amounts of power might be

generated at some of the navigation dams.

The floods of 1936 and 1937 focused national attention on the need for flood protection along the Ohio River. Studies by the United States Engineer Department have indicated the value of reservoirs on tributaries in reducing flood damages along the main stream. Tributary reservoirs are discussed in the basin summaries of this report. A number of possible sites for high dams on the Ohio River have been studied but none have been constructed nor authorized by the Congress.

In spite of many drawbacks the Ohio River is used extensively for recreation. There are numerous boat and yacht clubs and a number of bathing beaches are well patronized. There is considerable sport fishing in some sections of the main stream but much more on minor tributaries. Commercial fishing is practically limited to the lower

half of the main stream and is not of great importance.

PRESENTATION OF FIELD DATA

Figures Oh-1, Oh-2, and Oh-3 show the location and magnitude of the more important sources of pollution along the upper, middle, and lower thirds of the main Ohio River, respectively. Figures Oh-4, Oh-5, and Oh-6 show similar data and, in addition, the location of water supply intakes and selected laboratory data on coliform organ-

isms, dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Thirty public water supplies serving 1,663,000 people are taken from the Ohio River. The three largest supplies (Cincinnati, Louisville, and Evansville) serve a total of more than 1,000,000 people. Table Oh-2 shows data on the Ohio River supplies and on three other surface supplies developed by Ohio River communities from unpolluted sources. The heavy pollution at many of the water intakes necessitates very careful and complete treatment of the water. The supplies subject to the heaviest pollution are those in the upper 100 miles of the river, and those at Ashland, Ironton, Portsmouth, Aurora, New Albany, and Henderson. The Cincinnati, Covington, and Newport supplies, which are taken from the river within 1 mile of each other, and the Lousiville supply are somewhat less seriously polluted. Several million dollars have been spent in recent years to improve water treatment plants because of heavy bacterial loadings and taste and odor difficulties.

TABLE OH-2.—Main Ohio River: Surface water supplies

Supply	State	Source	Mile	Treat- ment *	Population served	Consump tion, million gallons per day
	St	upplies Below C	omm u ni	ty Sewer	Outfalls	
Cairo Paducah	do Kentucky do Indiana Kentucky Indiana do Kentucky Indiana Kentucky Indiana Kentucky Ohio Kentucky Ohio West Virginia Ohio Go	do d	4. 5 46. 9 78 5 90. 0 137. 0 140. 7 151. 9 178. 0 189. 4 372 6 380. 5 517. 3 518. 1 518. 1 518. 2 630. 1 663. 1 663. 8 661. 1 676. 8 732. 7 887. 0 940. 8 945. 1 940. 8 945. 1 973. 4	FDD FFDD FFDD FFDD FFDD FFDD FFDD FFDD	12.000 33.800 600 1.800 3,000 3,000 3,000 35,600 14.000 25,600 350,000 1,200 56,500 56,000 55,000 18,000 25,000 18,000 25,000 18,000 26,000 18,000 18,000 27,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000 19,000 19,000 10,000 11,000	2, 50 2, 77 03 08 11, 10 2, 00 43, 72 4, 00 7, 55 61, 33 3, 66 4, 1, 66 3, 10 3, 44 1, 00 1, 34 1, 10 1, 36 1, 10 1, 36 1, 10 1, 10
		Other S	urface S	upplies		
Brooksville New Cumberland	Kentucky West Virginia	Impounded Spring-well- impounded.		FD D	500 2,000	0.02
Wellsville	Ohio	Impounded		FD	7,700	1, 18
Total: Below sewer outfa	lls				1, 663, 000	170. 88
Total surface water su	nnlies				1, 673, 200	172. 11

Location of intake in miles above mouth of Ohio River.
 F=Coagulated, settled, filtered. L=Lime-soda softened. D=Chlorinated.
 Community on minor tributary of Ohio River but water supply from main stream.

Sewerage.—Table Oh-3 shows the sewered population and the total waste load at communities on the main Ohio River. Table Oh-3 and figures Oh-1 to Oh-6 show the size and distribution of these sources of pollution. Sewage from more than 2,000,000 people is discharged at these places, only about 1 percent of which is treated. In addition, sewage from about 640,000 people enters the lower Allegheny and Monongahela in the Pittsburgh area just above the source of the Ohio River, and sewage from about 78,000 people enters the Little Miami River near its mouth, at Cincinnati. The concentrations of Population and pollution in the upper 100 miles from Pittsburgh to below Wheeling; in the area from Huntington to Portsmouth; around Cincinnati; Louisville, and Evansville, are notable.

Table Oh-3.—Main Ohio River: Sources of pollution, including industrial wastes expressed as sewered population equivalent (biochemical oxygen demand)¹

Municipality	State	River	miles	Popula- tion con- nected to	Treatment	equiva	population ent (bio- al oxygen i)
		Above mouth	Below Pitts- burgh	sewers		Un- treated	Dis- charged
Cairo	Illinois	2	979	12,000	None	12,000	12,000
Metropolis	do	37	944	4, 200	do	4, 200	4, 200
Paducah	Kentucky	46	935	29, 000	do	39, 600	39, 600
Mount Vernon	Indiana	152	829 804	4, 200 11, 000	do	6,000 14,000	6, 000 14, 000
Henderson	Kentucky Indiana	177 189	792	103, 300	Secondary2.	192, 300	191, 200
Owensboro	Kentucky	222	759	25, 600	None	64, 400	64, 400
Tell City New Albany-Silver	Indiana	254	727	3, 500	do	4, 700	4, 700
New Albany-Silver	do	372	609	18, 300	do	40, 600	40, 600
Hills. Louisville and suburbs	Kentucky	377	604	304, 300	do	906, 900	906, 900
Jeffersonville-Clarks	Indiana	378	603	12, 500	do	14, 100	14, 100
ville.							
Madison	do	423	558	7, 100	do	18, 900	18, 900 71, 900
Lawrenceburg Cincinnati and suburbs 3	Obio	488 507	493 474	2, 500 512, 000	Secondary.	74,000 1,569,400	1, 569, 400
Covington and suburbs	Ohio	510	471	77, 800	Secondary ²	145, 900	141, 600
Newport and suburbs	do	511	470	60, 800	do.2	69.400	67, 800
Maysville Portsmouth-New	do	572	409	6,000	None	13,000	13,000
Portsmouth-New	Ohio	625	356	45, 500	l'rimary 2.	60,000	59, 100
Boston.	do	653	328	12, 500	None	32, 500	32, 500
Ashland	Kentucky.	658	323	21,000	Secondary2.	46, 100	43, 100
Catlettsburg	do	663	318	3, 400	None	8, 400	8, 400
Ceredo-Kenova	West Virginia	666 672	315 309	5, 100 75, 000	do	5, 100 95, 800	5, 100 95, 800
Huntington Gallipolis	Ohio	711	270	5, 000	do	5,000	5, 000
Pomeroy-Middleport	do	729	252	6,000	do	6,000	6, 000
Parkersburg	West Virginia	796	185	36, 000	do	82,000	82,000
Marietta Moundsville	Ohio West Virginia	809 879	172 102	13, 000 16, 000	do	13, 000 16, 000	13,000 16,000
Bellaire	Ohio	886	95	13, 500	do	13, 500	13, 500
Wheeling and suburbs	Ohio West Virginia	890	91	67, 300	do	90, 100	90, 100
Bridgeport-Brookside	Ohio	891	90	5, 600	do	5, 600	5, 600
Martins Ferry	do	892	89	14, 700 5, 500	do	14, 700 6, 400	14, 700 6, 400
Wellsburg Mingo Junction	West Virginia Ohio	906 910	75 71	5, 100	do	5, 100	5, 100
Follansbee.	West Virginia	910	71	4,800	. do	36, 500	36, 800
Steubenville	Ohio	913	68	32,000	do	44,000	44,000
Weirton and suburbs	West Virginia	919	62	16, 700 7, 000	do	36, 500 13, 700	36, 500 13, 700
Toronto Wellsville	Ohio	921 933	60 48	7, 600	do	7, 600	7, 600
East Liverpool	do	937	44	21, 000	do	23,600	23, 600
East Liverpool Midland	Pennsylvania	944	37	6, 300	do	34, 300	34, 300
Beaver	do	954	27	5,600	do	5, 600	5, 600 10, 000
Rochester	do	956 956	25 25	10,000 8,000	do	10,000 8,000	8,000
MonacaFreedom	do	957	24	3, 200	do	4, 900	4, 900
Aliquippa	do	961	20	27,000	do	120,000	120.000
Ambridge	do	965	16	25, 000	do	25, 000	25,000
Sewickley	do	969 971	12 10	5, 600 10, 200	do	5, 600 10, 800	5, 600 10, 800
Coraopolis Neville Township	do	971	8	1, 500	do	24, 400	24, 400
Emsworth-Ben Avon	do	975	6	5, 200	do	5, 200	5, 200
Bellevue-Avalon	3	976	5	16, 800	do	16, 800	16, 800

^{&#}x27;Includes communities on Ohio River and other adjacent communities which probably will discharge waste directly to the river when sewage treatment facilities are provided.

* Small portion of sewage treated.

* Exclusive of wastes now entering Little Miami River.

Table Oh-3.—Main Ohio River: Sources of pollution, including industrial wastes expressed as sewered population equivalent (biochemical oxygen demand)—Con.

Municipality	State	Rive	r miles	equival	red population ivalent (bio- mical oxygen nand)				
		Above	Below Pitts- burgh	sewers		Un- treated	Dis- charged		
Phtsburghand suburub s 65 smaller sources	Pennsylvania	980	1	261, 700 72, 700	None	278, 600 78, 100	278, 600 75, 300		
Total: Illinols Indiana Kentucky Ohio Pennsylvania West Virginia				18, 500 157, 400 545, 700 719, 200 397, 300 254, 100		18,700 357,000 1,316,300 1,833,700 560,400 398,100	18, 400 353, 500 1, 307, 000 1, 832, 200 559, 200 398, 100		
Total entire stream	-			2, 092, 200		4, 484, 200	4, 468, 400		

⁴ Pollution loads from Pittsburgh and suburbs are distributed to Allegheny and Monongahela Basins and Main Ohio River as follows:

Municipality	State	Rive	r miles	Popula- tion con- nected to	Treatment	Sewered population equivalent (bio- chemical oxygen demand)				
	٠	Above mouth	Below Pitts- burgh	sewers		Un- treated	Dis- charged			
Pittsburgh and suburbs: A lleg hen y River. Monongahela River. Ohio River	Pennsylvaniado	0-8	0-4	320, 500 319, 500 261, 700 901, 700	Nonedo	597, 200 458, 500 278, 600 1, 334, 300	597, 200 458, 500 278, 600			

Exclusive of wastes now entering Allegheny and Monongahela Rivers. Secondary treatment at 3 places, primary at 3, none at others.

Industrial wastes.—The oxygen demand of industrial wastes entering the Ohio River is equivalent to that of sewage of about 2,400,000 people. Industrial wastes with an additional population equivalent of about 415,000 enter the lower Allegheny and Monongahela at Pittsburgh, and the Little Miami at Cincinnati receives industrial wastes with a population equivalent of about 50,000. Table Oh-4 summarizes the industrial waste load by type of industry and method of disposal with the exception of the industries at Cincinnati which were not surveyed individually. Distilleries, byproduct coke plants, meat-processing plants, and breweries are the largest sources of organic industrial wastes outside of Cincinnati. At Cincinnati, soap, fertilizer, glue, paper, and meat plants, tanneries, and breweries are the principal sources of industrial wastes.

More than 80 percent of the organic industrial waste load is discharged from the Cincinnati area and downstream, the largest concentrations being at Cincinnati and Louisville (see table Oh-3). The

largest sources of organic industrial wastes along the Ohio above Cincinnati are the byproduct coke plants associated with blast furnaces in the steel-producing area. All of these plants are located above the Scioto River.

The principal industry along the upper river is steel production and, although large amounts of water are used in the steel mills, deleterious wastes are practically limited to spent acids used in pickling. A total of about 120,000 pounds of acid per day are discharged from the 62 steel plants along the river and almost all of this enters the upper 100 miles of the stream which is acid for a considerable part of the time, principally because of mine drainage.

Table OH-4.—Main Ohio River: Summary of industrial wastes discharged to the stream

	Number		al waste	At least minor	Estimated sewered popula-
' Industry	of plants	Munic- ipal sewers	Private outlets	correc- tive measures taken	tion equivalent (biochemical oxygen demand)
Canning Meat Milk Brewing Distilling Tanning Textile Paper Chemical Oil refining Byproduct coke Steel Miscellaneous	13 24 3 10 6 10 12	10 32 38 13 14 2 8 2 4 2 1 1 3 3 28	10 1 1 2 4 6 10 7 59 31	32 2 2 13 11 11 3 3 7 7 11 7 15 19	42, 500 118, 200 16, 900 103, 200 588, 700 21, 600 44, 400 19, 900 46, 100 234, 000
SubtotalIndustrial wastes to Cincinnati sewers 1	314	157	157	125	1, 334, 600 1, 057, 400
Total industrial waste load, Ohio River					2, 392, 000

Industries not surveyed individually. Population equivalent based on comprehensive sewer gaging and sampling program of city.

Presentation of Laboratory Data

Laboratory data on the main Ohio River are summarized in tables as follows:

Table Oh-5.—Seasonal average results.

Table Oh-5A.—Frequency in designated ranges. Table Oh-5B.—Average phenol results.

Table Oh-7.—Monthly average results.
Table Oh-7A.—Acid stream results.

Stream samples were collected from February 1939 to March 1941 and examined at the Cincinnati laboratory, the laboratory boat Kiski, and mobile laboratory units. The following schedule shows the periods during which samples were collected on the various stream sections and the laboratories at which the samples were examined:

Pittsburgh to dam 13: October-December 1940 (Kiski laboratory); May 1940-March 1941 (mobile laboratories).

Dam 14-dam 23: May-September 1940 (Kiski laboratory); January-March 1941 (Kiski laboratory).

Point Pleasant-dam 32: June 1939-April 1940 (Kiski laboratory); April

1940 (mobile laboratories).

Dam 33-dam 39: February 1939-April 1940 (Cincinnati laboratory). Dam 39-mouth: June 1940-March 1941 (mobile laboratories).

PITTSBURGH TO HUNTINGTON

The Ohio River was at low or moderate stages during the entire period from May 1940 to March 1941. Consequently good highwater observations are not available for the section above the mouth of the Kanawha River at Point Pleasant.

Figures Oh-8, Oh-9, and Oh-10 show the most unfavorable monthly average coliform, dissolved oxygen, and biochemical oxygen demand

results respectively, as found by this survey.

Figure Oh-7 shows group distribution and seasonal averages of coliform, oxygen demand, and dissolved oxygen results at each of the Ohio River stations from Pittsburgh to the mouth for the entire Period of the survey. Table Oh-5 shows seasonal averages of laboratory results at these same stations. In figure Oh-11 variations in coliform, dissolved oxygen, and oxygen demand results during the sampling period are shown for four sampling stations between Pittsburgh and Huntington. The generally high dissolved oxygen and low oxygen demands in the river as well as the more sensitive changes in the coliform content throughout the survey period are shown by these charts. A marked dissolved oxygen depression is noted at Emsworth Dam in October.

Table OH-5.—Main Ohio River laboratory results-seasonal averages

	Coll- forms,	able able num- per per milli- liter	8
esults	ygen results, parts per million	Bio- chem- ical oxygen de- mand	oo ci
Winter high-water results	Oxygen results, parts per million	Dis- solved oxygen	12.2
 inter hig	E	pera- ture .C.	60 35
W	,	Date	February-April 1940.
	Coll- fortus,	prob- able num- ber par milli- liter	70 8887188828887 6744788887888870 154 88871888788870
sults	Oxygen results, parts per million	Bio- chemical oxygen de- mand	0 00004000000 HHHHHHHHHHHHHH
Winter low-water results	Oxygen part mil	Dis- solved oxygen	0. 0.<
inter low	E	pera- ture O.O.	ಳ ಹಾಪ್ರಪ್ಪಪ್ಪಣ್ಣ ರ ರಿಂದ್ಯಚಹನ್⊏ಹರು ರ ರಿಂದ್ಯಚಹನ್⊏ಹರು ರ ರಿಂದ್ಯಚಹನ್⊏ಹರು ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ ರ
W		Date	November and December and December and December 1940. 24 January and do. 24 January and do. 35 do. 36 do. 46 do. 36 do. 37 do. 38 do. 38 do. 38 do. 39 do. 30 November and December cember cember and December and Dec
	Coli- forms, most	prob- able num- ber per milli- liter	% % % % % % % % % % % % % % % % % % %
esults	ygen results, parts per million	Bio- chemical oxygen de- mand	.:::::::::::::::::::::::::::::::::::::
Summer low-water results	Oxygen results, parts per million	Dis- solved oxygen	න් න්න්න්න්න් ස්න්න්න්න්න් න් න්න්න්න්න් ස්න්න්න්න්න්
mmer lov	E	pera- ture ° C.	న జిజ్ఞన్షన్షన్షన్షన్షన్షన్ష
Sui		Date	July-Sep- 146. Ber 1940. do do do do do do do do do do do do do d
	Miles below Fitts- burgh		6.0 11.5 1
	5	T073880	Emsworth Dam Dashleld Dam Montgomery Dam Dam No. 8 Dam No. 10 Dam No. 10 Dam No. 11 Dam No. 12 Dam No. 14 Dam No. 15 Dam No. 15 Dam No. 16 Dam No. 16 Dam No. 16 Dam No. 17 Argand Landing Dam No. 18 Dam No. 18 Dam No. 19 Dam No. 19 Dam No. 10 Dam No. 20 Dam No. 21 Dam No. 22

83	88	8022442055	70	100	402	121	f e e e e e e e e e e e e e e e e e e e				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0
20	000 001	010000000	2.1	1.89	000	3.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		# # 1 1 1 1 1 1 1 1 1 1 1 1	5 1 2 2 2 2	1 P P P P P P P P P P P P P P P P P P P	
12.5	12.1	222221121 242221121 202221121	11.6	10.3	10.4	11.4	0 0 0 1 0 1 0	5 9 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4.	4.6.4	· · · · · · · · · · · · · · · · · · ·	4. 10	00 00 00 00	60.00	6.0	1	1 1			2 2 3 8 8 8	1	1
qo	do	000000000	do	April 1940	February and April	do		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
10	112 15 40	74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31	17 236	2,895	1,670 540 87		199	108 143 142	258	141	153	246
1.0	11.3	-4500000000	1.2	4.00	60 60 60 60	6,6,6,6		හ. ආ න	1:6	2.4	20.00	60 Cd	1.6
11.2	12:2:3	64444444 646444444		12.2	11.5	10.8 11.0 12.7		12.5	12.6 12.6 13.1	13.0	12.9	13.0	12.9
6.0	6000	ほほごごじょうぶん 305257440	7.0	2.7.	7.7	3.7.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	හ. ආ සා	1000	6,64	1.2	1.6	1.6
qo	do do	000000000	November and De-	dodo.	do	January	do	do	do do February	dodo	do	dodo	qo
12	15 337 190	216 223 223 223 148 117 117 87 87 73	400	162	13, 337	481 103 186	94	1, 260	113	3, 480	105	740	t 1 2 3 9 9
1.0	1.3	11111111111	1.4	1.7	22.03	202		2 2 2	ଟାର୍ଷ	6161	2.3	2.6	
6.3	7.7.7.8	544646656	7.5	7.7	5.2	7.7.0		9. %	60 00 00 00 00 00	00 00 00 00	9.0	9.0	
24.8	25.9 25.8	24444444444444444444444444444444444444	24.4	25.9	25.7	25.3 25.9 26.6	29.0	29.0	22.22	20 00 00 00 00 00 00 00 00 00 00 00 00 0	28.8	28.6	
-	1939. dodo			do	do	do July 1940	qo	do	do	do	qp	do	qo
279.0	301.0 312.0 316.0	320. 0 326. 0 330. 0 337. 0 339. 0 339. 0 4405. 0 434. 0	461.0	462.8	475.0	503. 0 531. 7 547. 8	559. 5	561.0	576.1 600.0 608.5	610.0	627.0	633.2	639.0
Gallipolis Dam.	Dam No. 27 Dam No. 28 Norfolk & Western	R. R. hridge. Dam No. 29 White Oak Creek. Coal Branch Light. Dam No. 30 Dam No. 31 Dam No. 32	Dam No. 36.	Stillweter Landing Louisville & Nashville	R. R. bridge. Riverside. Dam No. 37.	Dam No. 38 Dam No. 39 Notch Lick Light	Crooked Creek (upper	Clifty Creek (lower light). Lower Hanover Land-	ing. Jobson Landing Light Louisville waterworks New Albany water.	Falling Run Light Hughes Bar (upper	Steve Green Landing	Dam No. 43. Rock Baven (upper	Halling Spring (lower light).

Table On-5.—Main Ohio River laboratory results—seasonal averages—Continued

	Coli- forms,	prob- able num- ber per milli- liter	0 0 0 0		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 6 1 5 1 6	8 8 8 1 2 2 2 2 2 1		1	8 0 1 1 1 2 2 1	\$ t 2 0 0 1 1 1 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			8 8 6 1 1 1 1	1 0 1 1 1 0 0 0 0 0 1 1	3 3 2 1 1 2
esults	Oxygen results, Parts per nullion	Bio- chemical oxygon de- mand	1 1	1 1 1 1 1 1 1 1	1 2 2 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 2 5 5 5		4 1 2 2 3 5 1	6 6 6 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 4 6 2 2	1 1 2 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1		1
Winter high-water results	Oxygen parts	Dis- solved oxygen		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1	7 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 2 3 4 1	0 0 0 0 0 0 0	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	4 0 0 4 3 3 7	0 0 0 0 0 0 0 0	1 1 0 0 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
inter high		pera- ture ° C.			1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 5 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 1 1 1 1 1 1	1 1 2 3 1 1 1 1 5	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 3 3 3 3	1 1 1 1 1 1	0 0 0	1 1 1 6 1 6
M		Date		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Coli- forms,	prob- able num- ber per nulli- liter	23	96	16	14	96	23	17	16	000	A C	9)	28	00 rC		9	00	٧			0	2-	4 🚭	2	102
esults	Oxygen results, parts per million	Bio- chemical oxygen de- mand	1.8			000										N 03		250							2.0		
Winter low-water results	Oxygen part mil	Dis- solved oxygen	13.0	13.	mi e	13.1	133	<u> </u>	13.	13,	200	200	13.5			2000		13.9							13.6		
inter low	E	pera- ture ° C.	00.00	3.7	000	10,0	. 22	1.0	7	00	00 0	0.00	. c.i					0000							4.6		
W		Date	February	do	00	do	do	do	do	qo	000	do	do		do	do		do	ap	March 1941	do.	,	do	do	do	do	qo
	Coli- forms, most	prob- able num- ber per n'illi- liter	63	73	200	30.00	51	25.00	99	22	100	356	19	1	8	21		100	69	4	600	(2 4	H rc	37		680
esults	Oxygen results, parts per million	Bio- chemi- ical oxygen de- mand	2.7	611	N C	2.0	200	20.0	1.9	ci.	- 1	- 0	2:1			500		1.5							1.6		
Summer low-water results	Oxygen part mil	Dis- solved oxygen	7.5			900										9.00		300							00		
mmer lo	L Control	ture ° C.	26. 5			27.0					28.	96	23	1	24.	183		23.3							22 6		
Sur		Date	August 1940.	do	do	do	do	do	do	do	000	do do	September	1940.	do	do	,	do	do	do	do	7	do	do	do	October 1940.	qo
	Miles	Pitts- burgh	662.0	665.0	711.0	722.7	730.6		7.777	791.0	- 0	0			00	865.0	1	×70.7	891 6	902.5	918.0	0 200	927. 3	938.9	962.8	978.0	981.0
	S. S	Station			Clovernort Light	Hancock Bend Light	Troy Hill Light	Larkin Ferry Light	Dam No. 47	Evansville waterworks.	Henderson waterworks	Dam No. 48	Mount Vernon water-	works.	Dam No. 49	Greens Crossing (upper	light).	Dekoven Light	Rosiclaire	Golconda waterworks.	Old Maids Crossing	Light.	Padingsh waterworks	Dam No 52	Dam No. 53	Cairo waterworks	Cairo Foint

Table OH-5A.—Number and percentage of samples at points on main Ohio River showing coliform numbers, dissolved oxygen, and 5-day bio-chemical oxygen demand within designated ranges

1	100	ATTOO TO T	000000000000000000000000000000000000000
ind,	Over !	Percent	000000000000000000000000000000000000000
lema	-	Number	
gen cion	3.1-5	Percent	######################################
oxy	- 60	Number	
mical ts per	8-0	Percent	224242428438860 2008884488860 248848848866488888888888888888888888888
5-day blochemical oxygen demand, parts per million	0,	Number	8888888888888888888888888888888888888
5-day	-mss	Number	85988888888888888888888888888888888888
		Регесп	500000000000000000000000000000000000000
	0-40		***************************************
tion		Number	***************************************
ature	40.1-65	Percent	
nt se		Number	800000000000000000000000000000000000000
erce	65.1-85	Percent	-8880000051rvassacooss4ssass250ss21151r
en, I	65.	Number	881-380-00000000000000000000000000000000
l oxyg	r 85	Регсепт	74440000000000000000000000000000000000
Dissolved oxygen, percent saturation	Over	Number	84888284848888888888888888888888888888
Dis	-mss	Number səlq	\$\$\$\$\$\$\$\$\$\$44\$
	200	Регсепт	000000000000000000000000000000000000000
liter	Over	Number	481180188444441100001104684
milli	-	Percent	15888445881571105124453815710 0 4 2 3 8 4 8 4 4 4 8 8 8 1 5 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
per	51-200	Number	60000000000000000000000000000000000000
Coliform organisms per milliliter		Percent	\$
m orge	0-50	Number	01727271728226844467424646854468828844
Colifor		səld	888888844846655446856655666466664656
	-11105	Number	
ригвр	stiiA 1	morl seliM	6.0 13.5 13.5 13.5 14.5 14.5 14.5 15.5 16.0 1
	Station		Emsworth Dam Dashield Dam Nontgoniery Dam Dam No. 7 Dam No. 8 Dam No. 10 Dam No. 11 Dam No. 13 Dam No. 14 Dam No. 14 Dam No. 15 Dam No. 16 Dam No. 17 Argand Landing Dam No. 20 Dam No. 30 Light Dam No. 30

Table OH-5A.—Number and percentage of samples at points on main Ohio River showing coliform numbers, dissolved oxygen, and 5-day bio-

d,	er 5	Percent	500000000000000000000000000000000000000
man	Over 3	Number	00000000-0-00000
n de	3.1-5	Percent	400004-108828282801001005001
xyge	60.	Number	640740-808828-8-88890-0000-0-10-001
5-day biochemical oxygen demand, parts per million	60	Percent	28.88.88.88.88.88.88.88.88.88.88.88.88.8
bioche	0-3	Number	$\overset{\circ}{\otimes} \overset{\circ}{\circ} \overset{\circ}{\circ} \overset{\circ}{\otimes} \overset{\circ}{\circ} \overset{\circ}$
5-day	-miss	Number	1.83±688257657488889000044400000000000000000000000000
	9	Percent	000000000000000000000000000000000000000
do	0-40	Number	C0000000000000000000000000000000000000
ırati	1-65	Percent	0000000128-00000000000000000000000000000
t satu	40.1	Number	0000000055=1000000000000000000000000000
rcen	1-85	Percent	FE-0x05514252000000222224100FFE
n, pe	65.1	Number	200200240000000000000000000000000000000
oxyge	r 85	Percent	\$25.55 \$3.55
Dissolved oxygen, percent saturation	Over	Number	884889888880000000000000000000000000000
Ä	-111.82	Number 201q	
	200	Percent	64405weesignepussessessessessessessessessessessessesse
ilite	Over	Number	01-0-1000000000000000000000000000000000
min.	200	Percent	\$5022227
s per	51-	Number	012 0 00 00 00 00 00 00 00 00 00 00 00 00
ganism	20	Percent	3.6 2.3 7.7 5.9 8.3 12 1.7 0.0
Coliform organisms per milliliter	0-20	Number	## ## ## ## ## ## ## ## ## ## ## ## ##
Colif	-mss	Number	1-036688666666666666666666666666666666666
рацыр	ettia t	morl geliM	
	Station		Dam No. 31 Dam No. 32 Dam No. 35 Dam No. 35 Dam No. 35 Dam No. 36 Stillwarer Landing Louisville & Nashville Railroad bridge Louisville & Nashville Railroad bridge Dam No. 37 Dam No. 38 Dam No. 38 Dam No. 39 Dam No. 39 Dam No. 39 Dam No. 48 Dam No. 48 Louisville Warter Light) Louisville Warter Light) Louisville Warter Light) Louisville Warter Light) Rosmosdale Upper Light) Rosmosdale Lught Rosmosdale Lught Dam No. 44 Indian Hollow Light Coverport Light Dam No. 44 Indian Hollow Light Troy Hill Light Oversport Light Troy Hill Light Oversboro waterworks

000000000000000000000000000000000000000
000000000000000000000000000000000000000
11100010121212010100144
1100010110101010011
88 100 100 100 100 100 100 100 100 88 88 88 88 100 100
000000000000000000000000000000000000000
446666666666666666666666666666666666666
000000000000000000000000000000000000000
000000000000000000000000000000000000000
0000000000000000000
000000000000000000000000000000000000000
220000000000000000000000000000000000000
NN000000000000000
242000000000000000000000000000000000000
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
446666666666666666666666666666666666666
01080220000010000004
0-1004-100000-000000
2002228020000000108
80-100000000000000000000000000000000000
78 100 100 100 100 100 100 100 10
<u></u> <u> </u> <u> </u> <u> </u> <u> </u>
000000000000000000000000000000000000000
000000000000000000000000000000000000000
760.0 7777.7 7777.7 7777.7 7777.7 7777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 777.7 7
Larkin Ferry Light  Dam No. 47  Be vansville waterworks  Dutch Bend Light  Henderson waterworks.  Dam No. 49  Brown Island Light  Dam No. 40  Brown Island Light  Dem No. 50  Rosicaire waterworks  Golonda waterworks  Old Marisk Crossing Light  Ledhetter Light  Paducah waterworks  Old Marisk Crossing Light  Ledhetter Light  Paducah waterworks  Old Marisk Crossing Light  Beducah waterworks.  Dam No. 52  Dam No. 53  Cairo waterworks.

1 And Steve Green Landing.

Table Oh-5B.—Main Ohio River: Average phenol results

Sampling point	Date 1940	Number samples	Average tempera- ture ° C.	Phenol, parts per billion
Emsworth Dam	October	{ 1 7	17.8 16.2	1.6
	November	<b>5</b> 1	9. 1 9. 3	(1) 4.0
	December	2 2	4.6	4.3
Dashield Dam	September	1	3.8 17.2	(1)
Montgomery Dam	October	. 1	14. 8 14. 0	(1) (1)
Dam No. 7	September October	1 1	19. 5 13. 5	(1)
	November	1	7.0	1.0
Dam No. 8	January (1941) October	1 1	5. 0 17. 5	(1) 8.8
Dam No. 9	November December	2	6. 8 3. 0	(1)
Dam No. 10	September	1	18.5	(1)
	December	{ 5 1	4. 6 5. 7	(1)
	January (1941)	1 3	5. 7 3. 6	17. 6 12. 7
Dam No. 11	December	1	5.7	(1)
Dam No. 13	October	6 4	15. 5 7. 7	17.0
	November	1 2	8. 5 4. 7	(1)
	December	1	5, 2	12.8
Dam No. 14	May	6 4	15. 4 18. 4	8.5
	June	9	22. 5	(1)
	JulyAugust	f 10 1	24. 4 24. 3	1.6
	September	10 4	25, 2 22, 2	(1)
Dam No. 15	May	1	13.0	6.4
Dam No. 16	June	1 3	18, 2 14, 5	(1)
Argand Landing	June	1 2	19. 6 24. 5	(1)
	July	2	23.8	<u>)i)</u>
	August September	2 2	27. 0 23. 8	(1)
Dam No. 22	May	$\left\{\begin{array}{cc} 1\\1\end{array}\right\}$	11. 7 20. 2	(1) 2, 1
Dam No. 23	do	3 4	15.7	4.5
Daill No. 23	June	1 4	16. 8 19. 8	(1) (1)
Point Pleasant	February	2	2. 5 5. 0	2. 6 3. 8
	April	1	7.0	11.5
Gallipolis Dam	February	S 3	1.8	4.8
	March	3	3. 2	(1)
Dams Nos. 27 and 28 2	February	( 1	1.7	22.8
L'ams 1905, at and 20		{ 2 2 2 2	4. 0 6. 0	(1) 8.8
Dam No. 20	March February	2 2	7. 0 2. 0	(1) 3, 2
Dam No. 29	March	1	2. 0	(1)
Dams Nos. 30 and 31 2	rebruarydo	1 1	1.8	22. 4 16. 0
Dam No. 32	do	3	2.6	(1)
	March	5	4.0	(1)
	April	1	8. 0	(1)

¹ Less than 1.0.
2 Composite samples.





## RIVER LABORATORY RESULTS AT INDIVIDUAL STATIONS 0H10

EMSWORTH DAM (STA.-6.0) BELOW PITTSBURGH

DAM No.13 (STA. - 96.0) BELOW WHEELING October-1940 श ले जा

Thousand Sec. Ft. Discharge Temp. Thousand Sec. Ft. Discharge	{	}	<	)	\$	>	March-1941	
Thousand Sec.Ft. Deg. Cent.  Thousand Sec.Ft. Deg. Cent.  M. P. N. Per Mi.  M. P. Per Mi.  M. P. N. Pe	ph Ronge	3	{		Temperature	3	December-1940	
Thousand Sec.Ft. Deg. Cent. S Day B.O.D M. P. N. Per Mil. PH KANGE.	3	Coliforms	Dissolved Oxygen	B.0.D.	}	Discharge	November-1940	
Thousand Sec.Ft. Deg Cent Dis. Oxygenerat. M. P. N. perMil. PH KANGE.	3	3						
DISCHARGE TEMP OXYGN RESULTS COLIFORMS	<b>39NA9 Hq</b> 5, 8, 8,	M.P.N.perMi.	N99 nag	Dis.Oxy		Thousand Sec.Ft.		

1							
	BONAR He		N RESULTS	OXYG	TEMP.	DISCHARGE	
		있 성공전성등교육이다. Si M.19 per M.1.A			S S S S S S S S S S S S S S S S S S S	Thousand Sec. Ft.	
	الما ما		21 60	0	MINI ZI O		
	1	Coliforms	{	B.O.D.		Discharge	March-1941
	)	5	\ c	1	9.	,	February-1941
	PH Rong	2	Dis. Oxygen	1	Temperatur	<	January-1941
HT (STA185.0) RKERSBURG			(	*			September-1940
RAPPS RUN LIGHT	}	3		2	}.		August-1940
A R		Coliforms	Dissolved Oxygen	B.O.D.		Discharge	July-1940
	pH Range	M	}		Temperature	M	June-1940
	}	3	1				May-1940
	39NAR Hq	COLIFORMS M.P.N. per Mi.	N RESULTS	Dis.Ox	TEMP.	DISCHARGE Thousand Sec.Ft.	

	OLIFORMS COLIFORMS COLIFORMS	OXY'GN RESULTS	이 등 명 원 Deg. Cent. TEMP.	OISCHARGE Thousand Sec. Ft.	
	<	Dis.Oxygen	Temperature	}	March -1941
	s >	<b>\</b>			February-1941
	Coliforms	8. 0. D.		Discharge	January-1941
STA 231.5) D W. VA.	5	( )		}	September-1940
DAM No.23 (STA 231.5) MILLWOOD W. VA.	Coliforms				August-1940
	3	Dis. Oxygen	Temperature	5	July-1940
	2	B. O. D.		Discharge	June-1940
	}				.May-1940
	COLIFORMS M.P.N. permi. S. S.S.S. S.	OXYG'N RESULTS Dis. Oxygen P.P.—— 5 Doy B.O.D.——— o len lē	Deg. Cent.	DISCHARGE ThousandSec.Ft.	

OHIO RIVER POLLUTION SURVEY U.S. PUBLIC HEALTH SERVICE 1941

Acid stream conditions were observed in the river above Marietta, Ohio, during the summer and fall months when volumes of discharge were low. A summary of the acid results is included in table Oh-7A (p. 256). Acid doubtless influenced the laboratory results at times in the upper portion of the river. The effects of the highly acid Monongahela upon the Ohio immediately below its junction with the Allegheny are shown below. The extremely large decrease in coliforms and oxygen demand at Emsworth in October, as compared with November and December, when the acid concentrations were lower, suggests the effect of acid upon the bacterial concentrations in the river.

	Miles	Dischar			Qu	antity unit	ts 1	
Station	from Point Bridge, Pitts- burgh	Discharge (cubic feet per second)	pН	Tem- pera- ture	Dissolved oxygen	Biochem- ical oxy- gen de- mand	Coli- forms	Flow time (hours)
				Oct	ober 1940			
Allegheny	1.7	2, 900 2, 710	6. 2 4. 0	16. 6 18. 6	10. 72 11. 38	13. 33 5. 69	1, 690 181	
Total		5, 610			22, 10	19.02	1,871	
Emsworth	6.0	5, 460	5. 6	16.3	21.80	6.00	` 66	52. 80
Dashield	13. 5	5, 710	6. 6	16.0	44, 50	6. 30	57	39. 03
				Nove	mber 1940			
AlleghenyMonongahela	1.7	10, 600 14, 500	7. 0 5. 6	9. 6 11. 6	110.00 127.60	28. 60 36. 20	4, 820 377	
Total		25, 100			237. 60	64. 80	5, 197	
Emsworth	6.0	23, 660	6. 2	9.0	244.00	47. 30	2, 510	14. 18
Dashield	13. 5	23, 270	6.3	8.3	256.00	51, 10	2, 164	11, 96
				Dece	mber 1940			
Allegheny	1.7	31, 200 21, 800	6.7	1.3	477.00 257.00	53. 00 45. 80	1, 248 131	
		53,000			734.00	98. 80	1, 379	
Emsworth	6.0	51, 350	6, 7	4. 4	755.00	92.40	10, 680	6. 26
Dashield	13. 5	51, 070	6, 6	3, 8	705.00	102.00	5, 362	5, 83

¹ Quantity units=concentration×discharge in thousand second-feet.

The effects of phenol waste products upon the taste and odor problems of public water supplies are well known. Previous investigations have shown that tastes may be produced by phenols in excess of 1 part per billion and that waters containing more than 10 parts per billion are not suitable for public use. Also phenolic wastes, if highly concentrated, have a toxic effect upon the biological life in the stream and hence retard natural purification processes. A summary of all phenol determinations made on the main Ohio River is shown on table Oh–5B. Phenols in excess of 1 part per billion were observed

in samples below East Liverpool, Steubenville, and Wheeling in the colder months of November-December 1940 and January 1941, and at Point Pleasant and Gallipolis Dam in February, March, and April 1940. Phenols of from 2 to 8 parts per billion were observed at dams 14, 15, 22, and 23 in May 1940. The results seem to indicate intermittent discharge of phenolic wastes. There is also some indication that temperature plays an important part in the persistence of these wastes in the stream, more rapid disappearance being observed during the warmer months.

Oxygen conditions in the Pittsburgh-Huntington stretch of the Ohio River at the time of sampling were generally good, the large majority of samples having oxygen demands of less than 3 parts per million and dissolved oxygen contents of more than 6.5 parts per million. Coliform results on the other hand show a relatively high concentration, counts in excess of 200 per milliliter being recorded at times at all stations except the three just above Huntington.

The heaviest pollution occurred below Pittsburgh, Wheeling, and Parkersburg. Evidence of natural purification was observed in the 53-mile section between dams 14 and 17 and in the 70 miles between dams 23 and 27. Reductions in number of coliform bacteria and in oxygen demand were noted in these stretches during the periods of sampling. The percentage of total number of samples showing less than 50 coliforms per milliliter increased from 51 to 84 percent between dams 13 and 17 and from 81 to 96 percent between dams 23 and 27.

Seven major tributaries enter the Ohio between Pittsburgh and Huntington including the Allegheny and Monongahela Rivers which join to form the Ohio. In order, proceeding downstream, the other streams are the Beaver, Muskingum, Little Kanawha, Hocking, and Kanawha Rivers. Comparing the results at stations above and below these tributaries little, if any, effect was noted on the Ohio at the time of sampling, except as noted above at the junction of the Allegheny and the Monongahela.

The findings of the laboratory survey of this section may be sum-

marized briefly as follows:

(1) Zones of pollution were observed in the Pittsburgh-Wheeling area and below Parkersburg.

(2) Definite zones of recovery due to natural purification were ob-

served between dams 14 and 17 and dams 23 and 27.

(3) Acid conditions were found during low flows in the Ohio River as far downstream as dam 17.

(4) Because of acid concentration, the measurable effect of sewage and organic industrial pollution below Pittsburgh and Wheeling was less than otherwise would be expected, although relatively high densities of coliform bacteria were observed at some points.

(5) Relatively high concentrations of taste-producing phenols were observed at various points throughout the entire section, especially during the cooler months. Evidence of progressive diminution in

these concentrations was noted during the warmer months.

(6) With the exception of the Allegheny and Monongahela Rivers the sanitary quality of the water of the major tributary streams, at their mouths, was as good or better than that of the main stream and the inflow had little or no effect on the main stream during the time of the present investigation. The tributaries were more alkaline

than the Ohio River and tended to reduce the acidity or increase the alkalinity of the main stream.

### HUNTINGTON TO CINCINNATI

This section of the river is characterized by a succession of small cities in the 50-mile stretch from Huntington to Portsmouth and a relatively sparsely settled valley in the 100 miles between Portsmouth and Cincinnati. Three major tributaries enter the Ohio in this stretch, the Guyandot, the Big Sandy, and the Scioto. Ashland, Ironton, and Portsmouth take their water supplies from the river in the upper portion of this section and Cincinnati, Covington, and Newport from the extreme lower end. The major sanitary problem in the Huntington-Cincinnati area is one of high bacterial pollution affecting the quality of the raw water used for public supplies (see fig. Oh-7 and table Oh-5A). At dam 29 (mile 320 below Pittsburgh) 21 percent of the samples showed coliform counts in excess of 200 per milliliter and above Ironton (mile 326 below Pittsburgh) 26 percent of the samples were in this group during the sampling period of this survey. At dam 36 just above Cincinnati counts were over 200 per milliliter 6 percent of the time of sampling and were less than 50 per milliliter 77 percent of this time.

The dissolved-oxygen results were generally good in this area with saturation values of 85 percent or higher at all sampling stations during most of the period of observation. The oxygen-demand averages were low, rarely exceeding 2.0 parts per million and usually being about 1.0 part per million, except during high-water periods when some in-

creases were noted.

The most significant indication regarding the high degree of bacterial pollution in the Huntington-Portsmouth area is the evidence that the pollution is largely of local origin. High-water results with increased velocities and shorter times of flow indicate only a moderate increase in coliform organisms above Huntington which might be attributed to upstream pollution. There is a tendency for the coliform counts to level off during the high-water period in passing through this district, with the average maximum occurring at dam 32 (see fig. Oh-7 and table Oh-5). This figure also indicates the reduction in coliform bacteria between dams 31 and 36 during low-water periods. There appears to be little recovery between dams 32 and 36 during the high-water period.

Phenol determinations made during the period from February to April are summarized on table Oh-5B. Phenols in excess of 1 part per billion were present at all stations at some time during the sampling period. Maximum concentrations in excess of 20 parts per billion

were recorded at dams 27, 28, 30, and 31.

All of the important tributary streams in this section of the Ohio had relatively high coliform counts during the June to October period. The Guayandot and Big Sandy samples were undoubtedly influenced by sewage from Huntington and Catlettsburg. Inflow from the Scioto increased the alkalinity of the Ohio River markedly. Comparing the results of observations at stations immediately above and below tributary streams, there do not appear to have been any marked changes in the sanitary quality of the Ohio River due to contributions of the tributaries during the period of sampling.

The observations in the Huntington-Cincinnati section of the river

may be summarized briefly as follows:

(1) The Huntington-Cincinnati section of the main Ohio River is characterized by a considerable amount of pollution of local origin originating in the area from Huntington to Portsmouth.

(2) A zone of self-purification existed in the river from Portsmouth to dam 36 during low-flow periods, which was not apparent during

periods of high discharge.

(3) Phenols were present in the area from dam 27 to dam 32 during

the colder months of the year.

(4) Tributaries entering this section were observed to have high coliform counts during the warmer mouths with lower concentrations in the cooler months of higher stream flow. The inflow of tributaries did not appear to cause any marked changes in the sanitary quality of the main stream.

### CINCINNATI TO LOUISVILLE

This 118-mile section of the river receives a large amount of pollution at its upper end from the Cincinnati metropolitan area, and additional pollution from several minor sources between Cincinnati and Madison. In the 40-mile stretch between Madison and Louisville the

river receives little or no pollution.

Four major tributaries enter the Ohio River in this section, the Little Miami, Licking, Miami, and Kentucky Rivers. The Little Miami and Licking Rivers, receiving sewage from the Cincinnati area in their lower reaches, and the Miami River from upstream pollution, contributed appreciable pollution loads to the Ohio River. The Kentucky River appeared to be a relatively clean stream. The higher alkalinities of the Miami and Kentucky Rivers tended to increase somewhat the alkalinity of the main stream below their confluences.

More extensive laboratory observations were made in the section from Cincinnati to dam 39, particularly in the Cincinnati pool, than in the lower end of this river section where observations were confined to three series of observations by mobile laboratory units in July-August and October 1940, and January-February 1941. For this reason the laboratory findings on these two parts of the river section

are discussed separately.

The effects of pollution from the Cincinnati area on the upper por-

tion of this section of the river are indicated as follows:

(1) Increases in maximum averages of coliform organisms ranging from about 2,000 to 60,000 per milliliter at times of low flows and from

100 to 400 per milliliter at times of high water.

(2) Decreases in dissolved oxygen below the city to minimum monthly average values of 3.8 to 5.4 parts per million with individual samples approaching total depletion in September 1939. During the months of low water temperatures and in the summer months when river flows were high and open channel conditions existed, dissolved oxygen results in the Cincinnati area were satisfactory.

(3) Oxygen demand averages usually less than 3 parts per million with some individual results above 6 parts per million. A shore line survey by the city of Cincinnati close to the many sewer outlets showed very high oxygen demand values in the immediate vicinity of

these sources of pollution.

(Face p. 226)



# OHIO RIVER LABORATORY RESULTS AT INDIVIDUAL STATIONS

Deg. Cent. Deg. Co. P. N. Per. M. Per. Thousand Second Ft.

DISCHARGE IM. P. N. per.Mi 226 DAM No. 28 (STA. - 312) BELOW HUNTINGTON ପ୍ରପ୍ରକ ଅପ୍ରଥମ ଅପ୍ରଥମ ଧାର TEMP. OXYGEN RESULTS

Deg. Cent. SDayB.O.D. ----Thousand Second Ft. DISCHARGE





COLIFORMS M.P.N. Pel Mis M.P

0 0 0 0

TEMP. OXYG'N RESULTS
Deg. Cent. 5Day 8.0.0.

DHIO RIVER POLLUTION SURVEY U.S. PUBLIC HEALTH SERVICE 1941

Thousand Second Ft.

DISCHARGE

(4) Increases in dissolved oxygen to approximately 85 percent saturation and decreases in oxygen demand to between 2 and 3 parts per million occurred below dam 37 with natural purification much more marked in the summer low-flow period than during high water—low temperature conditions. During high flows coliform organisms reached their maximum at dam 38, moving upstream to Riverside below Mill Creek with higher water temperatures and lower flows. The following tabulation indicates the effect of stream flow and water temperatures on the location of the maximum concentration of coliform organisms below Cincinnati:

Number of second back and	Average discharge range,	Percent of ti		n average coli ed at—	form counts			
Number of months observed	thousand second-feet	Riverside (475)	Dam 37 (483)	Dam 38 (503)	Dam 39 (532)			
2	Under 15	100. 0 33. 3 66. 7 16. 7	66. 7 33. 3	67. 3	16. 7			
	Average temperature	Percent o	of time maximum average coliforn appeared at—					
	range ° C.	Riverside	Dam 37	Dam 38	Dam 39			
8	Under 15° C 15° C., and over	25. 0 66. 7	12. 5 33. 3	50.0	12. 5			

¹ Pool stage ceases and open-channel conditions obtain at flows over approximately 60,000 cubic feet per second.

In the section below dam 39 an increase in coliform concentration is indicated immediately below Madison, especially marked during the July and August study but less marked in October and January. Dissolved oxygen saturation increased from dam 39 to Louisville in July with a slight depression at Madison and fairly high dissolved oxygen saturations were observed in October and January. Oxygen demand results varied from about 2 to 3.5 parts per million, being in excess of 3 parts per million more frequently in the cooler months. Nearly 60 percent of the samples at the Louisville waterworks intake had coliform counts in excess of 50 per milliliter.

### LOUISVILLE TO MOUTH

The heaviest zones of pollution in the lower river were found immediately below Louisville and in the Evansville-Henderson district with smaller sources of pollution at Owensboro, Paducah, and Cairo. Five major tributaries enter the Ohio River in this section, the Salt,

Green, Wabash, Cumberland, and Tennessee.

At the time of sampling, oxygen conditions throughout the section were good, even below the larger communities. Some depression in dissolved oxygen was noted in August and October 1940 below Louisville with recovery at dam 43, about 25 miles downstream. This depression was not noted in February 1941 despite a sharp increase in oxygen demand below Louisville which was probably due to the rapid rise in the river at this time (fig. Oh-7, Oh-15 and table

Oh-5). The dissolved oxygen remained near or above saturation

throughout the remainder of the section.

Oxygen demands were, for the most part, below 3 parts per million, even below Louisville, except during the period of observation in January, February, and March 1941 when disturbed flow conditions apparently brought about erratic results with averages approaching 5 parts per million. The coliform results reached their highest averages in the 10-mile stretch below Louisville in October 1940. Sharp increases also appeared below Owensboro in October, below Evansville in August and October, and below Cairo in all three observational periods. Figure Oh-7 and table Oh-5 show the relatively cleaner waters existing in the lower reaches of the river. All tributaries entering the section are in good sanitary condition at their mouths.

Marked evidence of self-purification is indicated in the long, relatively unpolluted stretch between Louisville and Evansville, as measured both by oxygen demand and by coliform reductions. In the extreme lower portion of the river little evidence was observed of the heavy pollution loads placed upon the stream between Pittsburgh and points within 200 miles of the mouth of the Ohio, thus showing the ability of the stream to cleanse itself by natural means of the successive loads of untreated wastes discharged to it. Except for the two areas below Louisville and Evansville, this section of the Ohio River was found to be relatively clean at the time of sampling.

Biological summary.—The results of the bilogical survey of the

Ohio River indicated—

(1) The plankton population of the Ohio River was characteristically different from that of the tributaries. The Ohio supports large numbers of diatoms of genera not prominent in the tributaries. Modifying these conditions was the acidity of the upper river which resulted in closteriopsis, a form dominating the acid waters of the Monongahela River, which extended its range downstream in the

acid waters to Marietta, Ohio.

(2) The plankton population of the main Ohio River was generally lower than that of the tributaries with the exception of the Green and Cumberland Rivers. Acid conditions in the upper river reduced the volume of plankton considerably as far downstream as Marietta during the period of observation. A tendency toward a gradual increase in plankton was observed downstream from Marietta, with a slight peak below Cincinnati and indications of a peak below Louisville due to the increase in fertility below these cities.

### HYDROMETRIC DATA

Although continuous, long-term records of gage heights are available at many points along the Ohio River, reliable flow records are lacking. This is especially true of low flow data which are of particular interest in this survey. At Pittsburgh since 1923, at Huntington since 1934, and at Louisville since 1928 low flow records are fairly accurate. Prior to those dates the records are less trustworthy. Flows during 1930 were by far the lowest of dependable record at Pittsburgh and Louisville and 1939 was the second driest year, based on minimum monthly average flows. Table Oh-6 shows the flow at three stations during the driest summer months of record.





Table On-6.—Main Ohio River: Monthly mean summer flows for years in which low summer flows have occurred

Location	Pittsburgh, Pa.	Hunting- ton, W. Va.	Louisville,
River miles above mouth of Ohio	981 19, 100 1923–40	674 55, 200 1934–40	374 91, 200 1928–40
Year:	1930	1939	1930
June	10, 000 3, 300 1, 300 1, 400	39, 800 39, 600 20, 400 7, 840	25, 300 8, 000 4, 900 6, 000
Year:	1939	1936	1939
June cubic feet per second	15, 500 13, 400 6, 100 3, 040	15, 100 16, 300 15, 600 11, 500	68, 920 70, 440 33, 180 8, 590
Year:	1929	1934	1932
June	14,000 12,000 4,000 4,000	34, 900 12, 700	33, 500 99, 800 27, 200 8, 650

A study of gage heights, precipitation records and tributary stream flow indicates that the 1930 flows were probably the lowest experienced

in the Ohio River since about 1860.

Low-flow regulation.—Reservoir sites on tributaries of the Ohio River have been studied by the United States Engineer Department in connection with the authorized program for flood control in the Ohio Basin. The possible use of these reservoirs for low-flow regulation has been considered and is discussed in reports on the various tributaries. The reservoirs on the Allegheny and Monongahela Rivers and their tributaries above Pittsburgh would be of particular value to pollution abatement if operated for low-flow control. These reservoirs could aid in control of acid pollution as pointed out in the section of the report on acid mine drainage.

### Discussion

From the data presented it is apparent that the most important effect of pollution reaching the Ohio River is the unduly heavy bacterial loadings placed on many of the 30 water purification plants along the stream. Effects of somewhat lesser importance are the taste and odor difficulties at the water plants, the general loss of recreational values, the occasional destruction of fish life and the nuisance conditions due to occasional oxygen depletion below the largest cities, and to scum, floating solids, and discoloration of the stream at these and many smaller places.

Comparison of results of various surveys.—No previous surveys of Ohio River tributaries comparable to the present one have been made. No laboratory data therefore are available from which to determine

pollution trends for any considerable portion of the watershed outside the main Ohio River.

Investigations of limited portions of the main river were made in 1914-15, and in 1929-30 prior to the present study. Previous surveys covered longer periods of time but the main river sections studied were relatively short and represented only a small percentage of the 981 miles of river. The present survey has been more extensive in its scope, covering the entire watershed, but the analytical data collected at any one particular station have of necessity been limited.

Lack of comparable data is therefore the greatest factor in preventing studies of past and present conditions along the river. Of considerable importance also is the difference in laboratory technique between the first and last survey, which to a considerable extent prevents comparisons between the oxygen demand results, indicative of the organic pollution load on the stream. Complicating the laboratory procedures, both chemical and bacteriological, for examinations of water in the upper Ohio, are the presence and variation in concentration of acid. In many instances comparable sampling points are lacking.

During the summer periods of pool stage with the navigation dams in operation, measurements of stream discharge are less accurate and the pools, acting as sedimentation basins, remove by deposition varying amounts of suspended matter, depending on the amount of flow through and the distribution of velocities in the pools. Many of these dams have been constructed since the earlier surveys and some in existence in 1914–15 have since been replaced, further complicating the comparison of the results of the various surveys.

The most striking change in the river since the original survey, and one about which there can be no doubt, has been the increase in acid concentration in the upper Ohio River. Acid mine drainage, and to a lesser degree spent acid liquors from manufacturing processes, now affect the river as far down stream as the mouth of the Kanawha River (mile 266)². On numerous occasions the water supply of Pomeroy, Ohio (mile 248)², has been affected by acid in the river water. Water plants in the acid zone have experienced definite increases, not only in acid concentration but in the duration of the acid periods. During the 1914 survey, acid conditions were occasionally observed as far downstream as Wheeling, W. Va. (mile 90)². If the increasing acid trend continues without abatement, it is believed the main river as far downstream as the Scioto River (mile 356)² may become acid occasionally.

The records of raw water coliform examinations at some of the Ohio River water plants constitute the only continuous long-time records of the quality of Ohio River water. Changes in location of intakes and in laboratory methods make comparisons at some of the

plants impossible.

Monthly average raw water coliform results at the Cincinnati water plant from 1926 to 1941 are shown in figure Oh-19. These data are expressed in terms of the Phelps Index rather than as Most Probable Numbers (M. P. N.), since the early results were available only in this form. These data show that during every year since 1935 the annual average coliform counts have exceeded the safe

² River miles below Pittsburgh,

## COLIFORM RESULTS - OHIO RIVER AT CINCINNATI WATER WORKS

1926-1941



-----Indicates Average Yearly Coliform Results.

____Limiting Monthly Average Coliform Number For Satisfactory Treatment by ordinary Filtration Process. average for treatment by ordinary filtration and chlorination. Additional treatment and careful operation have made possible the production of drinking water of satisfactory bacterial quality, but the water is often unpalatable. A number of other water supplies from

the river are much more heavily polluted.

During the 25 years since the first survey of the pollution of the Ohio River the population of the basin, as a whole, has increased by about 22 percent and the population adjacent to the Ohio River by about 24 percent. A larger proportion of the population is served by sewers now than was in 1915, but progress in sewage treatment has been marked. Because the recently completed survey of sewered communities was more complete than that of the earlier survey, the figures shown below are not strictly comparable, but they probably represent the changes that have occurred within about 5 percent.

Population	1914–15	Present	Percent
	survey	survey	increase
Entire Ohio Basin: Total Urban Served by sewers To treatment plants Untreated Ohio River and minor tributaries: Total Urban Served by sewers To treatment plants Untreated Untreated Untreated	15, 381, 000 5, 694, 600 4, 106, 600 483, 900 3, 622, 700 2, 062, 900 1, 680, 500 27, 700 1, 652, 800	18, 824, 000 8, 222, 300 8, 561, 200 2, 913, 000 5, 618, 200 4, 091, 100 2, 709, 100 1 2, 822, 200 1 133, 000	22 44 108 502 55 24 31 68 380 63

¹ These figures cover an area comparable with that of the 1914-15 survey which differs slightly from similarly named areas considered in this report.

From these data it can be seen that the amount of waste material of human origin reaching the Ohio River and its tributaries has increased by 20 to 60 percent during the past 25 years. No comparable

figures for changes in the industrial waste load are available.

The factor that has probably been most influential in focusing attention on the pollution problem of the Ohio River Basin is the periodic taste in municipal water supplies. This is caused in part by certain microscopic organisms whose presence cannot be definitely attributed to pollution but which thrive best in water recovering from pollution and in part by chemical compounds discharged by such industries as byproduct coke plants, some chemical manufacturing plants, oil refineries, and wood-preserving plants. Although these industries existed in 1914, all of them have grown rapidly during the past 25 years and, in spite of recovery and treatment measures aimed at reducing or eliminating the discharge of taste-producing wastes conditions in general are probably worse today than in 1914. No analytical data are available to substantiate this, however. increasing public consciousness of tastes and the increasing public demand for more palatable water add to the seriousness of the problem. Improvement in water treatment processes has done much toward overcoming tastes, but practical considerations demand that further improvements be made at the sources of the trouble.

The increase in acidity and in taste troubles in public water supplies have been the most perceptible changes in the quality of the Ohio

River during the past 25 years. Increased sewage and organic industrial waste pollution has been less noticeable, due largely to the fact that the flow in the Ohio is sufficient to prevent grossly offensive

conditions during a large part of the time.

Ohio River Valley Water Sanitation Compact.—One of the major factors hindering the progress of pollution abatement along the Ohio River is the lack of any governmental agency with adequate statutory power to carry on an effective program with respect to the stream. This is due largely to its interstate character. Except for its upper 40 miles, which are in Pennsylvania, the river forms State boundaries. West Virginia and Kentucky, a part of the original Thirteen States, claimed ownership of the river and as a result the State boundary is at the low water line on the right bank of the river. Thus Ohio, Indiana, and Illinois have no jurisdiction over the stream.

Efforts at joint action by the agencies of the various States engaged in pollution abatement work in the Ohio Basin date from 1924 when a conference of State health commissioners was held to consider methods of eliminating or satisfactorily treating phenolic wastes which were causing tastes and odors in public water supplies. In that same year a cooperative agreement was entered into by the varous State health departments and through their concerted effort considerable progress was made in controlling phenolic waste. The agreement had no legal status and no progress was made in controlling sewage pollution or

that resulting from other types of industrial wastes.

In 1936 the Congress authorized 3 the negotiation of an interstate compact between the States of the Ohio River Basin. The compact was drafted, approved by the Congress, and ratified by the Statelegis-latures of Illinois, Indiana, Kentucky, New York, Ohio (whose rati-fication becomes effective when New York, Pennsylvania, and West Virginia enter into the compact) and West Virginia (whose ratification becomes effective when New York, Ohio, Pennsylvania, and Virginia enter into the compact). It becomes effective upon ratification by five States and consequently requires either ratification by Pennsylvania or removal of the qualifications placed on their ratifications by Ohio and West Virginia.

The principal provisions of the compact ⁵ are—

Article 1: Each signatory State pledges cooperation in controlling and abating pollution and agrees to enact any necessary legislation.

Article 2: Creates "Ohio River Valley Water Sanitation District"

comprising all of the Ohio River Basin within the signatory States. Article 3: Creates "Ohio River Valley Water Sanitation Com-

Article 4: Commission to consist of three members from each State

and three representing the Federal Government.

Article 5: Commission to elect officers, may hire and discharge employees, establish offices, etc. Shall report annually to various State Governors on activities.

Article 6:

It is recognized by the signatory States that no single standard for the treatment of sewage or industrial wastes is applicable in all parts of the District due to such variable factors as size, flow, location, character, self-purification, and usage

Public Res. No. 104, 74th Cong., approved June 8, 1936.
 Public, No. 739, 76th Cong., approved July 11, 1940.
 Signed by compact commissioners for Illinois, Indiana, Kentucky, New York, Ohio, Pennsylvania, Tennessee, and West Virginia.

of waters within the District. The guiding principle of this compact shall be that pollution by sewage or industrial wastes originating within a signatory State shall not injuriously affect the various uses of the interstate waters as hereinbefore defined.

All sewage from municipalities or other political subdivisions, public or private nstitutions, or corporations, discharged or permitted to flow into these portions of the Ohio River and its tributary waters which form boundaries between, or are contiguous to, two or more signatory States, or which flow from one signatory State into another signatory State, shall be so treated, within a time reasonable for the construction of the necessary works, as to provide for substantially complete removal of settleable solids, and the removal of not less than 45 percent of the total suspended solids: Provided, That in order to protect the public health or to preserve the waters for other legitimate purposes, including those specified in article 1, in specific instances such higher degree of treatment shall be used as may be determined to be necessary by the Commission after investigation, due notice, and hearing.

All industrial wastes discharged or permitted to flow into the aforesaid waters shall be modified or treated, within a time reasonable for the construction of the necessary works, in order to protect the public health or to preserve the waters for other legitimate purposes, including those specified in article 1, to such degree as may be determined to be necessary by the Commission after investigation, due

notice, and hearing.

All sewage or industrial wastes discharged or permitted to flow into tributaries of the aforesaid waters situated wholly within one State shall be treated to that extent, if any, which may be necessary to maintain such waters in a sanitary and satisfactory condition at least equal to the condition of the waters of the interstate stream immediately above the confluence.

The Commission is hereby authorized to adopt, prescribe, and promulgate rules, regulations, and standards for administering and enforcing the provisions of this

article.

Article 7: Compact does not limit power of States to require higher

degrees of treatment.

Article 8: Commission shall conduct a survey of the district and make a comprehensive report; shall draft and recommend legislation to State Governors; shall consult with States, municipalities, industries, etc., on pollution problems.

Article 9:

The Commission may from time to time, after investigation and after a hearing, issue an order or orders upon any municipality, corporation, person, or other entity discharging sewage or industrial waste into the Ohio River or any other river, stream, or water, any part of which constitutes any part of the boundary line between any two or more of the signatory States, or into any stream any part of which flows from any portion of one signatory State through any portion of another signatory State. Any such order or orders may prescribe the date on or before which such discharge shall be wholly or partially discontinued, modified or treated, or otherwise disposed of. The Commission shall give reasonable notice of the time and place of the hearing to the municipality, corporation, or other entity against which such order is proposed. No such order shall go into effect unless and until it receives the assent of at least a majority of the commissioners from each of not less than a majority of the signatory States; and no such order upon a municipality, corporation, person, or entity in any State shall go into effect unless and until it receives the assent of not less than a majority of the commissioners from such State.

It shall be the duty of the municipality, corporation, person, or other entity to comply with any such order issued against it or him by the commission, and any court of general jurisdiction or any United States district court in any of the signatory States shall have the jurisdiction, by mandamus, injunction, specific performance, or other form of remedy, to enforce any such order against any municipality, corporation, or other entity domiciled or located within such State or whose discharge of the waste takes place within or adjoining such State, or against any employee, department, or subdivision of such municipality, corporation, person, or other entity: Provided, however, Such court may review the order and affirm, reverse, or modify the same upon any of the grounds customarily applicable in proceedings for court review of administrative decisions. The

Commission or, at its request, the Attorney General or other law-enforcing official, shall have power to institute in such court any action for the enforcement of such

Article 10: States agree to appropriate their proportion of Commission budget prorated one-half in proportion to population and one-half in proportion to land area within the district.

Article 11: Compact to become effective when ratified by legis-

latures of majority of States and approved by Congress.

Desirable degree of treatment. —General application of the compact minimum requirement of substantially complete removal of all settleable solids and removal of at least 45 percent of the suspended solids from all sewage and industrial wastes discharged directly to the Ohio River should be ample to prevent serious oxygen depletion at any place on the Ohio River except Cincinnati under present conditions of waste loads and stream flow. Even in the Cincinnati area conditions would be satisfactory except during periods of extremely low flow. A marked reduction in the acidity of the Ohio River at Pittsburgh would greatly increase the effects of organic pollution and necessitate a higher degree of treatment unless the stream flow during the warm weather months was increased appreciably. At these two places designs for the larger plants should include provisions for more than primary treatment, probably by the addition of coagulants. At all of the larger municipalities and at any of the smaller ones whose sewage would appreciably affect downstream water intakes, continuous chlorination of the treatment plant effluents should be provided for the reduction of bacterial pollution. At places where wastes are being discharged to tributary streams near their junction with the Ohio River, more complete treatment may be necessary to correct local conditions unless the outfalls are extended to the Ohio River.

Low-flow control by means of flood control and multiple-purpose reservoirs in the area above Pittsburgh and Cincinnati might eliminate the need for more than primary treatment of sewage and equivalent treatment of organic industrial wastes at these places. The flow required at Pittsburgh to accomplish this (assuming an effective acidcontrol program) has been estimated at 8,000 cubic feet per second during the warm summer months (25° C. or 77° F. average monthly air temperature) and progressively lesser flows as temperatures de-The savings in costs resulting from the use of primary treatment rather than the higher degree of treatment using chemical coagulants is estimated at \$300,000 per year at Pittsburgh and an

additional \$300,000 per year at Cincinnati.
Studies by the United States Engineer Department indicate that such flows could be maintained except during such an extremely dry year as 1930 by using existing reservoirs and additional ones above Pittsburgh authorized by the Congress for low-flow control in conjunction with their major purpose of flood control. At Cincinnati, a considerably smaller increase in flow would insure satisfactory conditions with only primary treatment. Existing reservoirs, together with those above Pittsburgh, could provide this increased flow.

The bulk of the organic industrial wastes should be treated at municipal plants. In general, removal of settleable solids as required by article 6 of the compact should assure adequate industrial waste treatment except at oil refineries, byproduct coke plants, and a few

other plants where particular attention should be given to those components likely to cause tastes and odors in public water supplies. At plants such as steel mills, acid wastes should be neutralized during periods when their contribution to the acid load on the stream is significant. However, as mine drainage contributes by far the greater acid load, acid mine control by sealing should be well advanced before even part-time neutralization of pickle liquor is justified.

The larger cities along the Ohio River are aware of the necessity of sewage treatment and many of them have made studies to determine how they can most economically collect and treat their wastes. Consulting engineers have recently prepared preliminary plans and estimates for Cincinnati and Louisville. Pittsburgh, Evansville, Wheeling, and Huntington had previously studied their sewerage

problems.

Pittsburgh.—The problem of waste treatment in the Pittsburgh district is highly complicated and cannot be effectively solved by the city alone. Some kind of authority or sanitary district comprising the greater part of Allegheny County is almost essential to an economical and thorough pollution abatement program in this area. The county contains 125 cities, boroughs, and townships, many of which necessarily use joint sewers. The intensive development of the narrow stream valleys limits the number of available sites for sewage treatment plants. The report of the General Committee on Sewage of the Municipalities of Allegheny County, prepared in 1939, outlines a plan for 19 treatment plants on the lower Allegheny and Monongahela Rivers, the Ohio River and two smaller streams, Turtle Creek and Chartiers Creek. Much more detailed investigation of alternate plans is necessary before any final decision can be made as to the best plan. The largest plant in any case will almost certainly be at a site on Brunots Island where most or all of the sewage from the city of Pittsburgh, as well as from a number of adjoining boroughs and town-ships, would be treated. Interceptor costs will be high since most construction will be in rock and a considerable part of it will be in tunnel. The estimated cost of interceptors and 19 primary treatment plants in the committee report is \$35,900,000. These would serve most of Allegheny County. Costs as summarized in table Oh-1 include only those plants on the Ohio River in the Pittsburgh area. The costs of other plants in the metropolitan area are included in summaries of costs in the Allegheny and Monongahela Basins.

Cincinnati.—Comprehensive studies of the pollution problem of Cincinnati and its suburbs in Ohio have been made and preliminary plans and estimates have been prepared. Cincinnati has made more progress toward solution of its pollution problem than any other large Ohio River city. Plans call for the ultimate construction of 4 plants which would treat the wastes of the city and 17 incorporated suburbs as well as a large unincorporated area in Hamilton County. The first plant to be constructed would treat the wastes now entering the Little Miami near its mouth and the Ohio in the upper part of the city. These wastes may affect the water supplies of Cincinnati, Covington, and Newport which are taken from the Ohio within a mile upstream from the mouth of the Little Miami. Interceptors for this plant are almost complete. The proposed plant will have a capacity of about 25 million gallons per day and will

provide primary treatment and chlorination with provisions for later additions to increase its capacity and to provide more complete

treatment.

The largest plant of the four would be located in Mill Creek Valley a short distance from the Ohio River. Its capacity would be about 108 million gallons per day. It would treat most of the sewage from Cincinnati and its suburbs and, in addition, large amounts of industrial wastes which make the combined wastes about twice as strong as normal municipal sewage. The plant as planned would provide primary treatment and chlorination with provisions for increases in capacity and in degree of treatment.

The other two plants would be much smaller with a total capacity of about 5 million gallons per day. They would serve the lower end of the city and adjoining areas in the county. They would provide the same degree of treatment as the larger plants and their construction would be deferred until the larger plants were completed.

The total capital cost of the entire program is estimated at about

\$19,000,000.

Little progress has been made toward pollution abatement in the Kentucky communities across the river from Cincinnati. A number of the smaller communities which drain to small wet-weather streams have installed treatment plants, but the bulk of wastes still enters the Ohio and Licking Rivers untreated. Cooperative effort seems necessary to any economical program of waste treatment, but numerous

attempts to form special districts for such work have failed.

Louisville.—The recently completed consulting engineers' report on sewage treatment for Louisville proposes a single primary treatment plant to serve the city and some of its suburbs. A large industrial waste load would be treated with the domestic sewage. The plant would have a capacity of about 73 million gallons per day. The estimated capital cost for interceptors and treatment is about \$6,000,000. The report suggests operation only during low-flow periods. No provision is made for chlorination of the effluent. Because of the short sedimentation period provided (1 hour at average design flow) and part-time operation, such a plant would not meet the minimum requirements in article 6 of the compact, nor would it provide adequate protection to the New Albany, Ind., water supply. If provisions for chlorination were added and the plant operated continuously it should effectively reduce bacterial pollution below Louisville.

These three large metropolitan areas are the key ones in a program for abatement of pollution in the Ohio River. Although the need for sewage treatment is equally acute at many other communities along the upper Ohio, at Huntington, Ashland, and other places where bacterial pollution is affecting downstream public water supplies.

it is proper for the larger places to take the lead.

Cost.—The cost of a suggested program providing for primary treatment of all wastes entering the Ohio is summarized in table Oh-1. This suggested program is based on the assumption that low-flow control will make more complete treatment at Pittsburgh and Cincinnati unnecessary. An estimate of the comparative cost of a program for complete treatment of all wastes is included in table Oh-1.

TABLE OH-7.—Main Ohio River: Ohio River pollution survey laboratory data—Summary of averages

		(	H	10	RI	VE:	R P	LLI	UTI	ON	1 (	COI	T	RO	L						4	23'
	Hardness, parts per million			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				3 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Alkalin- ity, parts per million	10	15	13	00	13	11 28	98	÷ 00	15	CT CO	6	14	12	2	14	12	G	6	14	13	
	Turbid- ity, parts per million	ap	16	- 26	2	18	125	107	100	16	32	9	19	90	4	22	20	31	60	17	288	
	Нq	50°.00	6.2	6.1	6.6	6.3	80 B	6.0	5.6	6.2	6.0	5.7	6.3	6.5	5.6	6.2	6.4	6.0	5, 5	6.2	6.4	
	Coliforms most probable number, per milliliter	13	901	208	10	93	105	141	200	820	43	27	47	103	47	43	88	89	31	200	98	
	5-day bio- chemical ovygen demand, parts per million	1.1	200	0000	11.1	12.2	0000	00 t	, i	1.6.	00	1.0	1.5		11.0	1.6	22.	2.4		1.7	200	
	Dissolved oxygen, parts per million	4.0	10.3	14.7	200	11.0	25.02.00 00.00	11.0	0 00	11.0	13.00	10.0	12.2	14.1	8.6	11.8	13.8	13.7	9.7	11.6	13.7	
0	rempera-	16.3	9.0	4,00	16.0	00	00 00 00 00 00 00	00°		00 0	2,5,	16.0	00 00	က်	15.8	တိ	80	5.7	15.3	ගෙ	3,7	
	Average discharge, cubic feet per second	5, 460	23, 660	51,350	6,710	23, 270	51, 070 47, 140 633	1, 797	6, 100	24,990	53, 510	6,110	24, 330	61,900	6, 530	24, 580	64, 610	53, 320	6,510	24, 430	64,650	
	Number of samples	111	6	11 7	11	8	171	90		00	7.0	11	6	10	12	6	6	9	12	8	10	
	Period	October 1940.	November1940.	December 1940.	October 1940	November1940	March 1941	November 1940	October 1940	November 1940	March 1941	October 1940	November1940.	December1940.	October 1940.	November1940.	December 1940.	March 1941	October 1940	November 1940.	December 1940.	
	Mileage from Pittsburgh	lo 6.	qo	do do	0 13.5	do	do 0 254 (14 miles above		0 31.7	-do	do.	0 36.5	do	do	0 46.4	do		- op	0 56.1		do	
	Sampling point	Ohto River, Emsworth  0 6	D0-	Do	Dashield lock and dam	Do	Do. Do. Beaver Bluer mouth	Do	Montgomery Dam	Do	D0	Lock and dam No. 7	Do.	Do	Lock and dam No. 8	Do	Do.	Do	Lock and dam No. 9.	Do	Do	Seeded and neutralized.

Only 2 results.

TABLE OH-7. Main Ohio River: Chio River pollution survey laboratory data. Summary of aper

n- Hardness, per parts per million	6	14	100	2	13	112	2	12	12	9	14	115	8	16	13	3	15	12	20 0	18	13	9	13
Alkalin- ity, parts per million																		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Turbid- ity, parts per million	4	14	47	23	91	51	9	16	47	9	17	50	202	202	13	7	39	39	53	49	39	7	39
Turbid- Alk r, pH parts per parts million mi	5.4		6.4	5.3	6.2	6.4		6.3	6.4	5.3		6.4				4.6	6.9					4.7	6.4
Coliforms most probable unnber, per	30	,	97			76			94			207				©	33				88	© 	17
5-day bio- chemical oxygen demand, parts per million	11.5	1.8	1.9	12.8	122.0	1.22	11.3	1220	ici,	1.5	1.5	9121	i		0.1	000	2.0	2.0	1.0	6.	1.0		1.8
Dissolved oxygen, parts per million	9.4	11.5	13.5	80.30	11.4	13.5	8.6	11.3	13.1	8.9	11.2	13.0	ရုံ တ	× × ×	7.4	8.6	13.4	13.4	000	ා හා ල් ශර්	7.7	8.8	13.8
Tempera-	16.3			16.3	9.3	4.2	15.7	9.3	4.7	15.6	8.9	8.6	15.9	24. 4	25.1	21.7	2.2	100	15.5	24.7	25.1	21.8	20.3
Average discharge, cuoic feet per second	6, 500	23, 160	59, 430 54, 080	6,480	22, 920	60, 160	6,540	22, 680	60,910	6,450	22, 490	61, 520	39, 050	19, 630	10,450	9,740	51, 780	55, 860	40, 400	20, 210	11,000	9,700	55,000
Number of samples	12	10	12 6	12	10	12 6	12	10	12	12	10	12	12	10	11	2	96	10	12	10	11	20	9
Period	October 1940.	November 1940	December 1940 March 1941	October 1940.	November1940	December 1940.	October 1940.	November1940.	December 1940.	October 1940.	November 1940.	December 1940.	May 1940	July 1940	- August 1940	September 1940	- January 1941 -	March 1941	May 1940	July 1940	August 1940	September 1940.	January 1941.
Milcage from Pittsburgh Period Samples per second million parts per million parts per million million millilite millilite millilite millilite millilite millilite millilite millilite millililite millilite mi	O 66.	do	do	0 77	do	do	0 87.5	-do		96 0	do	-do	0 114	do-	do	do	do.	op-	0 129	do ob	dodo	dod	do
Sampling point Mile	Lock and dam No. 10.	Do	Do.	Lock and dam No. 11	Do	Do.	Lock and dam No. 12.	Do.	Do	Lock and dam No. 13	Do	Do.	Lock and dam No. 14	Do	Do	Do	Do	Do	Lock and dam No. 15.	Do	Do	Do	Do

		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 6 1
118	4 5411 - 52 3	9 5 4 1 1 5 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 100 100 100 100 100 100 100 100	8944884484448	64 60 1-62 64
26.32.42.26.25.25.25.25.25.25.25.25.25.25.25.25.25.	6 524 822 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	333 x 66 4 46 66 66 66 66 66 66 66 66 66 66 6	240 650 650 650 860 860 860 860 860 860 860 860 860 86	13.7 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	22.84 88.
ලබාවල්ල ල ලබාවල්ල ල	4 兔兒兔兒兒子 G 80 464200 2	10 00 00 K. 11 00 10 4 10	511101111110 000114000	11110010010100 10110010010100	6.8 7.0 6.9 ess than 1.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 122 125 25 26 26 26 26 26 26 26 26 26 26 26 26 26	2 co	156 28 13 107 107 122 49 14	2442 2442 2442 2442 2442 2442 2442 244	23 31 20 3 Less
11.000000000000000000000000000000000000	. L. H.	000000	0.000000000000000000000000000000000000	11111111111111111111111111111111111111	1000 P
2.00.00.00. F.	တွေ ထိုင်းလို့ထွေထွဲထွဲ ငုံ	8 3.5.0.0. 8 8 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	လွတ္⊢ုတ္ နြည်သို့သွာ စေတကလေးကစစ	& & t-t & & 数 数 は & & & t- & &	0.85.55 0.85.44
25.2 25.2 25.2 25.2 25.2	21.0.021.0.02.0.02.0.02.0.02.0.02.0.02.	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	200.22 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 200.25 20	2222211221222222 222211221222222	3, 400 1. 6 5, 400 2. 4 Only 2 results.
28, 950 67, 960 41, 930 45, 060 20, 880 11, 640	9, 660 27, 600 60, 070 42, 240 45, 880 21, 890 12, 800	11, 200 53, 460 29, 440 61, 480 9, 784	11. 982 5, 689 2, 050 3, 360 8, 620 10, 510 7, 996 43, 610	64,300 31,440 16,230 65,400 65,400 65,400 67,500 11,500 16,280	63, 400 42, 800 65, 400
100 100 110 110 110 110 110 110 110 110	6 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	120027	110 111 55 77 10	110 100 100 6 6 6 6 6 100 100 100 100 10	⊕ ⇔ ∞
February 1941 March 1941 May 1940 July 1940 August 1940	September 1940. January 1941. February 1941. March 1941. May 1990. June 1940. July 1940. August 1940.	September 1940. January 1941. February 1941. March 1941	June 1940 July 1949 August 1940 September 1940 January 1941 February 1941 March 1941	June 1940 July 1940 July 1940 September 1940 January 1941 March 1941 May 1940 July 1940 July 1940 September 1940	January 1941. February 1941. March 1941.
0 146.5- 0 146.5- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do do 0 167.5 0 167.5 do do	do do 0 1722 (0.2 mile above mouth of Muskingum	Miver).  Modo  do  do  do  do  do  do  do  do	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	do do. 1 Seeded and neutralized.
170- Do. Lock and dam No. 16- Do. Do. Do. Do.	OO	Do D	Do   Do   Do   Do   Do   Do   Do   Do	Rivers.  100 100 100 100 100 100 100 100 100 1	D0. D0. D0.

Table OH-7.—Main Ohio River: Ohio River pollution survey laboratory data—Summary of averages—Continued

Hardness, parts per million		t t t t t t t t t t t t t t t t t t t
Alkalin- ity, parts per million	5 85.888 85.88 86.88 86.88 86.88 86.88 8	22
Turbid- ity. part: per million	a 22642 5282 825725937248 488458657 E	25
Нq		6,00 6,00
Coliforms meet probable number, per milliliter	**************************************	26.
5-day bio- cleenical ovysen demand, parts per million		40.
Dissolved oxygen, parts per million		00 €
Tempera-		C 04
Average clischarge, cubic reet per second	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	68, 680
Number of samples	- AAA - AAA	- 1 00
Period	May 1940  June 1940  July 1940  Augh 1940  July 1940  Seep to mbeer 1941  June 1940  July 1940  March 1941  March 1941  May 1940  July 1940  July 1940  July 1940  Seep te mbeer 1940  July 1940  Seep te mbeer 1940  July 1940  Seep te mbeer 1941  July 1940  July 1940  July 1940  Seep te mbeer 1941  July 1940  Seep te mbeer 1941	February 1941.
Mileage from Pittsburgh	0 183.   0   0   0   0   0   0   0   0   0	dodo.
Sampling point	Congress Landing, above Parkersburg, W. Va., and Little Kanawha River.  Do D	100

			OLLIO MITTE	1. TOTHOTTO	II COLITICOL		211
	3   1   1   1   1   1   1   1   1   1					\$   0   0   0   0   0   0   0   0   0	
18	46 20 80 40 80 40 40 80 40 40 80 40 40 40 40 40 40 40 40 40 40 40 40 40	23822	922743888	24 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	252 252 252 252 252 252 252 252 252 252	82 32 10 10 45 45	<b>88 888</b>
12	120 98 89 20 20	40 145 69 61 15	25.25.25.25.25.25.25.25.25.25.25.25.25.2	28 29 28 28 28 28 28 28 28 28 28 28 28 28 28	24 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	64 663 683 4	88 88
7.2			37.007.7.7.0 807.7.1.00	80000000000000000000000000000000000000	8 5 1- 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	801-8 10 801-8 10	40 010
24	133	25 120 62 62 210 15	8844 1188 124 124 128 138 138 138 138 138 138 138 138 138 13	88 28 111 1115 29 29 17	35 22 22 102 24 22 15	30 119 138 27 9	25.22
1.0/		80F-09	84444444444444444444444444444444444444	00 400 41 41 11 11 11 11 11 11 11 11 11 11 11	9948456		77.0 0.8
8.9	1:1:1:00 0:0:0:0	20.00 P.00 00 00 P.00 00 00 P.00	0.000000000000000000000000000000000000	113.5. 123.5. 123.5. 125. 125. 125. 125. 125. 125. 125. 1	64.5.5.0.0.7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	6.6.22	# 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
18.4	23. 4 25. 7 20. 8	22.2.2 24.8 26.0 21.9	212121222 2002212222 2002202	20.00 20.00 20.00 20.00 20.00 20.00	981-81441 981-81441	24 12 12 12 12 12 12 12 12 12 12 12 12 12	F.F. 4:014 -100 0:104
) 119	1, 214 496 632 1, 474	43, 130 71, 580 34, 270 18, 530 18, 360	75, 380 47, 030 71, 380 43, 150 71, 760 34, 600 19, 650 19, 650	73, 560 48, 290 70, 650 43, 140 72, 020 32, 970 20, 300 19, 780	75, 310 47, 460 70, 460 72, 200 34, 960 21, 350 20, 620	72. 690 45. 860 71. 000 12, 600 4, 600	11, 100 11, 000 22, 900 9, 430 109, 200
4	4040	100 100 112 112 6	98-00-00	000000000000000000000000000000000000000	0 1 1 2 0 0 0 0 0 0	1 60000 m	000 200
May 1940	June 1940 July 1940 August 1940 September	May 1940 June 1940 July 1940 August 1940 September	1940. January 1941. February 1941. March 1941. May 1940. July 1940. A Ugust, 1940. Septem ber	1940. January 1941. Rebrary 1941. March 1941. May 1940. July 1940. Septem ber	1940. January 1941. March 1941. May 1940. June 1940. July 1940. July 1940. September	January 1941. February 1941. March 1941. August 1939	October 1939 November 1939 1939 December 1939 January 1940 February 1940
O 199.3 (0.1 mile above		0 202.5 do do do	do do do O 2145 do do do	do do 0 221 0 221 do do do	do do 0 231.5 do do do	do do O 265 do.	do. do. do.
r, mouth, /	Hockingport. 100 100 100 100 100 100 100 100 100 10	ook and dam No. 20	Do D	Do.	Do D	Pleasant, W. Va., Kanawha River.	Do. Do. Do.
PHI			-	H	-	Seed	

Table OH-7.—Main Ohio River: Ohio River pollution survey laboratory data—Summary of averages—Continued

Hardness, parts per million	
Alkalin- it y, parts per million	8 元器 247442884824848484888888888888888888888
Turbid- ity, parts per million	124   0   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124   124
Hď	ರ ಜನ ಸೂದೀದರುವರುವರುವರುವರುವರುವರುವರುವರುವರುವರುವರುವರುವರ
Coliforms most probable number, per milliliter	8 4c Hoodingtood 2021224 84-04-02888
5-day bio- chemical oxygen demand, parts per million	4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4
Dissolved oxygen, parts per million	は ひら あてぬらみおよりようなできるようよ ほぶいて てんてんしょうけいいいき ちょう まうちょうけいけん いいい こうさい さいきゅうきょうしょう
Tempera-	ය ශ්‍රී ජූට්රුවට පුතුකුනීතීම්ව්ටිනව පුරුද් දී ජීවීම්ව වෙල් පුරු හ ගන පටවටට අවශ්‍ර ජීවීම්වේට පටව පරවිධ පටවටට අවශ්
Average discharge, cubic feet per second	99, 484 100, 48
Number of samples	r 40 rearrantisorru4040 rörerenar
Period	March 1940  April 1940  August 1938  Cetcher 1839  Cetcher 1839  November 1839  January 1940  April 1940  April 1940  April 1940  April 1940  April 1940  July 1939  Cetober 1939  April 1939  Cetober 1839
Mileage from Pittsburgh	0 265.  do d
Sampling point	Point Pleasant, W. Va., above Kanawha River.  Do

8 888888875578 488498888888 488 8 2 6 888	198012842
288 288 115 115 115 115 115 115 115 115 115 1	11.88 17.88 17.88 17.88
	000000 0000000000000000000000000000000
6. 6.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	222222222222222222222222222222222222222
	99851213 94151240
	2001 2404 2404 2404 2404
1, 010 1, 4, 45 1, 4, 55 1, 101 1, 4, 55 1, 107 1, 107	104 104 104 133 104 17, 806 17, 806
	21404404
June 1939  July 1939  Aurents 1939  Aurents 1939  November 1939  April 1940  June 1939  Aurent 1939  Aurent 1939  Aurent 1939  June 1939  April 1940  June 1939  June 1939  June 1939  April 1940  June 1939  April 1940  June 1939  June 1939  April 1940  April 19	October 1939. November 1939. January 1940. February 1940. March 1940
Guyandot Guyandot	
O 305.2 (0.1  River). of the control	00000000000000000000000000000000000000
Cabell County highway bridge.  Cabell County highway bridge.  Do D	

Table OH-7. -- Main Ohio River: Ohio River pollution survey laboratory data-Summary of averages-Continued

	CITIO MIVEL TODACTION CONTROL
Hardness, parts per million	
Alkalin- ity, parts per million	8 8 8 8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Turbid- ity. parts per million	139 69 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9
Пq	で てでてているもののできます。 でき ひじららさ まちらてきるもののできます。 ようらしきのうちらのちられるする ちょ 0 多りきてき 2
Coliforms most probable number, per milliliter	240 280 280 281 281 283 386 283 386 193 386 193 386 193 386 193 386 193 193 193 193 193 193 193 193 193 193
5-day bio- chemical oxygen demand, parts per million	
Dissolved. oxygen, parts per million	で できて & : 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
rempera-	ర బ్రాథికింద్రు ఆశాగా బిల్లో బెల్లు అశాభికి ప్రాథికి ప్రాథా అ గ్రాథికింద్రు ఆశాగా చేస్తున్న ఇద్దా అ గా రంశాగా బెల్లు అంటా అంటా అంటా అంటా అంటా అంటా అంటా అంటా
Average discharge, cubic feet per second	41, 500 21, 900 21, 900 116, 200 116, 200 117, 100 141, 100 21, 300 121, 300 121, 300 121, 300 121, 300 122, 300 133, 700 133, 700 134, 400 125, 400 127, 300 128, 300 129, 300 120, 30
Number of samples	1 011011 004 001 01 10 01 00 00 00 10 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 00
Period	June 1939  July 1939  August 1939  September 1939  November 1939  November 1939  June 1939  June 1939  August 1939  November 1939  November 1939  November 1939  November 1939  November 1939  June 1939  June 1939  November 1939  November 1939  June 1939  June 1939  June 1939  August 1939  November 1939  June 1939
Mileage from Pittsburgh	O 320 C 20 C 20 C 30 C 30
Sampling point	Lock and dam No. 29, below  Big Sandy River.  Do.  Do.  Do.  Do.  Do.  Do.  Do.  D

			1 1		t			# # # # # # # # # # # # # # # # # # #	f 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				*			
23	32	33 46 46 46 46 46 46 46 46 46 46 46 46 46	40	29	27	24	32	83	40	29	25 30 18 18	173	145 : 155 996	184 194 222	267	229	27.1
260	67	132	90	6	21	155	130	c2 00	00 00	14	24 186 148			28	24	10	10
6.7	7.1	1-1-1-1 00 00 44	7.5	7.1	6.8			1010	7.7.	7.1	6.6.0	7.7		8.7.7.80	7.9	7.8	7.6
34	225	215	55	54	27 50	35	278	352	28	61	59 41 34	333	129 84 96	£ 00 00 00 00 00 00 00 00 00 00 00 00 00	6.0	2	6
2.6	2.7	1.4	1.0	1.1	1.0			1:1	1.1	1.2	1.5 2.5 1.9			3.03	1.8	1.9	3.7
12.8		1-1-1- - wro	8.8	12.3	13.9	12.4	7.7	12.10	8.8	12.2	13.8 12.8 11.0			7.2	8.2	10.2	10.4
8.14		26.1 24.3	18.1	5.4	2.2	7.6	27. 1	25.8	18.3	5.5	1.514.30 0.084			24.3	15.4	6.2	3.
133, 900	273, 900 41, 300	43, 100 21, 900 8, 300	13, 800	30,000	38,000	132, 400 276, 000	41, 200	21, 900 8, 300	13, 800	30,000	39, 600 132, 800 147, 500 258, 900	5, 037	12, 043 2, 858	8, 390 3, 092 458	349	610	405
11	11	122	111	10	m m	10	210	-10	00	7	w 4 ∞ m	20 1-0	2 ~ 10	Φυνυ	40	ಣ	-
February 1940.	April 1940	July 1939 August 1939 September	October 1939. November 1939	December	January 1940. February 1940.	March 1940	June 1939	August 1939 September	October 1939 November	December	January 1940. February 1940. March 1940	February 1939.	April 1939	June 1989 July 1939 September	October 1939 - November	December	January 1940.
do	O 337	do ob	do	do	dodo	do.		do	dodo.	qo	00 00 00 00	mouth of Scioto River).	900	dododo	dodo		do
Do	Coal Branch Light, below	Do Do Do	Do.	Do		1 1	n No. 30	Do	Do	Do		bridge,	Do	Do Do Do	Do.	Do	D0.4

Table OH-7.—Main Ohio River: Ohio River pollution survey laboratory data—Summary of averages—Continued

±(	,	OHIO RIVER POLLUTION CONTROL
	Hardness, parts per million	
	Alkalin- ity, parts per million	34 34 30 36 8 8 8 8 8 9 7 4 4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Turbid- ity, parts per million	257 288 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Hď.	法 表示表 法法 医乳络核抗抗毒素 元化 法 经实践经验证法法证证 化本 毒苦色 伯王 王 医王曼梅毒毒毒毒 医王 亚 计自身格别多异子毒毒的 易
	Coliforms most probable number, per milliliter	27 28 28 29 27 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20
	5-day bio- chemical oxygen demand, paris per million	4 44. 44 4 44444444 44 4 4444444444 4 6 6 4 4 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Dissolved oxygen, parts per million	6 KKK 61 3 833116KKK 61 1 8311531154KKK 8
	Tempera-	ర్ బ్రోబ్లో 1700 గు . ''441-'డోబోబ్లో గ్రాథ 14 . 'బిశాభాభిగాలాడోటోడో ఇ దా బ్రోబ్లో 1700 గు . ''441-'డోబోబోడ్ గ్రాథ 14 . 'బిశాభాభిగాలాడోటోడే ఇ దా తాగాం 410 14 గాతాబకాగుతున్న 800 రా గుడ్—పెరుగుతున్నకు 4
	Average discharge, euric feet per second	25, 500 25, 500 26, 500 27, 500 28, 300 13, 100 14, 100 14, 100 15, 100 16, 100 17, 100 18, 100 18, 100 18, 100 19, 100 11,
	Number of samples	ರ ನಡಿಸಲವುಗಳಲು ನಿಜ್ಞಾಗ ರಾ ಕರ್ಷ -16-11ರಣ್ಣಗಳು ರಾ ಕರ್ಷ ರಾಧ್ಯ್ರ್ಣರು
	Period	June 1939  Tuly 1939  Se pt te m be r 1939; No ve m be r 1939; No ve m be r 1939; No ve m be r 1939; January 1940  Rebriary 1940  Rebriary 1939  Rebriary 1939  Rebriary 1939  Rebriary 1939  Reprin 1939  August 1939  August 1939  No ve m be r 1939  No ve m be r 1939  No ve m be r 1939  August 1939
	Mileage from Pittsburgh	0 356  0 40  0 40  0 50  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 60  0 7  0 7
	Sampling point	Look and dam No. 31, below Scioto River.  D0.

5 2 3 3 3 3 6 3 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		E (	1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 2 2 3 4 6 6 6				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			\$ 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P   P   P   P   P   P   P   P   P   P		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 9 1 0 0 0 1 1 1	
38	34	80	000	31	27	27	35	34	40	200	47	7 1	40	RC	00	09	42		27		36	30	222	000	200	17	700	00	100	000	000	000	90	46	OF.	40	70	63	44	1	35	4	30	450	. 17
10	П	oc	260	186	187	257	231	172	21	0.00	170	710	113	11		1g	12		13		16	245	941	006	0000	057	107	202	7700	214	021	100	100	207	003	13	01	-	00	2	20	100	237	200	781
60	7.			7.2												9.7			7.3		7.2	7.1	1	1:	10.1	-1-	1:00	100	1:00	1:0	-1-	1:	1:	- 0 - 1	1:	1:	1.,		7.4		7.3			200	
14	29	0	40	71	38	26	41	98	10	45	1001	111	111	1	8.	0	7		49		11	52	25	50	1 0	100	000	000	190	100	c cr	2 16	N N	000	44	+ 1		60	7		55	00 +	155	450	700
1.4	1.2	6.	64	ର ।	1.0	400	2. 7	I. 9	1.7	2 6	- 1	101		0.		1.0			o ·		90	2.4	66	ic	ic	10	ic	1 0	90	000	10	2 5	000	- i		000		.7.	1.1		1.2			001	
11.3	11.9	13,7	12.7	12.3	11.1	12.0	11.4	10.5	9.5	1-1	20	1	10	0.,		0		1	11.9		13, 4	12.4	11.9	10.01	11.0	11.4	10.1	000	10.01	11.5	10.6	0.0	1 10	7:0	21.0	- oc	1.0		11.3		12.2			10.8	
0.0	7.2	0	2.5	क्षं व	× × ×	0.4	. o.	တ်	17.6	25.3	98 9	0 10	92.7	70.		10.0	00.00		0000		0	2.2	4 ()	7	0 01	200	000	15.4	H OF	0 00	0 00	17.4	24.4	95.0	0.76	93.9	2		8.7		5.2			100	
15,800	26,000	91,800	0 T T T T T T T T T T T T T T T T T T T	131,800	240, 300	305, 600	219, 900	238, 300	34,800	44 400	43,400	91,000	6 600	0,000	10 000	10,000	15,800		26,000		32, 500		133 500	238 600	207 500	991 700	930,000	25, 200	300,000	999 900	930, 500	35, 700	49,400	43, 400	10 400	7,000	1,000	10, 500	15,800		26, 100	000	158,800	258 ann	400° 000
A	63	-	12	410	200	9;	II	6	6	4	00	14	- or	0	a	0 1	4	-	ro'			2	4	cc	1	-11	101	21.	- 06	11	ot ot	100	-	10	10	10	>	111	10		10	L	00	107	
November	December	lanuary 1940	February 1940_	March 1940	A pril 1940	February 1939.	March 1939	April 1939	May 1939	fune 1939	July 1939	4 montet 1020	Sontombor	1030	Josephon 1090	Octobel 1999.	vovember	1939.	December	1939.	January 1940.	February 1940	March 1940	April 1940	Fohmer 1030	March 1939	A raril 1030	May 1939	Fohrnary 1030	March 1939	A nril 1939	May 1939	June 1939	July 1939	A 11g/15t 1939	September	1939.	October 1939	November	1939.	December	1939.	March 1040	A nril 1940	200000000000000000000000000000000000000
1 Commence of the commence of		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do		0	0 434	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				(10		do do		200	3	T0D	,	do			I I		op op			O C							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		do do	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		do.		do		do		
Do	Do	Do	Do.	Do	1 4 2 2 4 6 5	dain No. 34	100	Do	Do	Do	Do	Do	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Do	100	D0	-	Do		Do	Do	Do	1)0	Lock and dam No 35	1	130	100	d dam No. 36	1 2 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Do	Do	Do	Do	1)0	Do		Do	Do		Do	or.	Do	Do	

Table OH-7.—Main Ohio River: Ohio River pollution survey laboratory data—Summary of averages—Continued

10	,	OHIO MITEL TODDOTTON CONTINOL
	Hardness, parts per million	
	Alkalin- ity, parts per million	118
	Turbid- ity, parts per million	170
	Hď	7777777
	Coliforms most probable number, per milliliter	288 88 88 88 88 88 88 88 88 88 88 88 88
	5-day bio- chemical oxygen demand, parts per million	0 000111 11 1 00 1104546517460100 101111 1 00001 04 4 11 00000001000000000 0000FF
	Dissolved oxygen, parts per million	11 9//// 9 92 1 11 11 11 12 12 (C) 11 9//// 9 11 11 11 11 11 11 11 11 11 11 11 11 1
	Tempera- ture ° C.	ర విశ్వద్ధ నురు ఉ అరు ఉప్పుకోషాల్లు ఆగ్రామంలో ముద్ది దేశాలు ఈ విశ్వద్ధ కృత్తు ఉ అరు ఉప్పుకోషాలులో అంటే చేశాలు ఈ మార్జులు ఈ ఆగ్రామంలో అరుకుండు అంటే ఆగ్రామంలో
	Average discharge, cubic feet per second	239, 600 42, 240 42, 240 42, 240 7, 100 11, 440 7, 100 11, 300 15, 800 8, 000 8, 000 1, 240 1, 240 1, 240 7, 000 43, 800 7, 300 43, 800 1, 240 7, 300 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240 1, 240
4	Number of samples	4 45%50% Lp r 40 446400000014444r4% 005586
	Period	April 1939  May 1939  June 1939  August 1939  Septem ber 1939  1939  Novem ber 1939  April 1939  April 1939  March 1939  July 1939  July 1939  April 1939  July 1939  July 1939  July 1939  April 1939
	Mileage from Pittsburgh	0 462.8  do d
	Sampling point	Stillwater Boat Harbor, above Little Miami River, Do.

46				33.88 90.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
929		1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		333 325 194 21 98	23.5 23.5 23.5 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0
	27.7.7.	7.6		17.7.7.7.7	いいていていいいい
4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	285 285 285	285 150 150 167 555 56	2, 530 1, 850 1, 850 25, 140 32, 600 60, 800 1, 490	402 944 1,630 1,040 1,040	12, 000 1, 700 1, 980 1, 980 11, 980 110
		2.1.3	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$		id : : : : : : : : : : : : : : : : : : :
0.11111 0.00 0.00 0.00 0.00 0.00 0.00		6.4 11.7 10.6 11.1	7.000000000000000000000000000000000000	4.0.01 4.0.01 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.0.00 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.0	3.00.00.11.01.00 3.400.00.44.74
2000 00 4000 00 00 00 00 00 00 00 00 00 0	21 12 12 0 12 15 15 15 15 15 15 15 15 15 15 15 15 15	ည်းက လော့တွာ တော့တာလော	9.9.9.9.9.9.1 6.4.7.0.0.4.0.0.70 0.0.0.0.4.0.0	က်လေးသင်း လေးလုံလုံလုံ လုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလုံလ	0.000000000000000000000000000000000000
10, 500 16, 000 16, 000 26, 200 2, 630 2, 020 2, 020 800 800		2, 600 7, 370 22, 630 14, 270 265, 000	38, 400 45, 200 50, 700 7, 700 10, 500 16, 100 26, 400	277, 500 265, 300 349, 200 245, 600 265, 300 38, 400 45, 200	20, 700 10, 500 16, 100 26, 400 143, 900 151, 100 369, 200
8080 H 2000	व्यवस्थलक क्ष	Ø≒ 4r04	466 E E E E E E E E E E E E E E E E E E	4 2 8 10 0 0 0 0	211111
October 1939. November 1939 December 1938 April 1940. June 1939. July 1939. August 1938. September 1938	November 1939 December 1939 January 1940 Hebruary 1940 April 1939	June 1939 February 1939. March 1939 April 1939	May 1939 June 1939 August 1939 September 1939 October 1939 November 1939 December 1939	April 1990	August 1939 September 1939 November 1939 December 1939. February 1940 Agreh 1940
do d	do do do do O 470.2 (3.3 miles above mouth of Licking Kiver).	0 470.2 (0.2 mile above mouth of Licking River).  do do do do 472.3	0 475. 2. (10 (10 (10 (10 (10 (10 (10 (10 (10 (10	0 477. 5 0 483. 0 483. 0 40 0 40 0 40	000 000 000 000 000 000 000
Do. Do. Do. Do. Licking River, 0.8 miles above mouth of Banklick Creek. Do. Do. Do. Do. Do. Do. Do.	Do Do Do Do Do Licking River, Louisville & Nashville bridge near Latonia, Ky.	Licking River, mouth	Riverside. 150 150 150 150 150 150 150 150 150 150	Anderson's Ferry Lock and dam No. 37 Do	Do Do Do Do Do Not run.

Table OH-7.—Main Ohio River: Ohio River pollution survey laboratory data—Summary of averages—Continued

Hardness, parts per million	
Alkalin- ity, parts per million	2
Turbid- ity, parts per million	88 990-1028 1128 128 128 128 128 128 128 128 128
Hď	み みみないないできょうこうこうできませる な なままままままままままままままままままままままままままままままままま
Coliforms most probable number, per milliliter	265 1, 680 1, 680 1, 376 1, 200 190 190 190 1, 200 1, 200
5-day bio- chemical oxygen demand, parts per million	4 ひょうようようろうようこうごうごうじょ ひ うこうううこうこう ち ちょうこうこうこうじょう ひょうこうじょうしょうしょうしょうしょうしょう で でうりのうてんけしょ
Dissolved oxygen, parts per million	
rempera-	ಥ ಪ್ರತಿಸ್ಥೆಸ್ವಸ್ಥೆಯೂ ವೃದ್ಧಗ್ರಪ್ಪನ್ನೆಪ್ಪನ್ನ ಈ ವಿಕಡಕೊಡ್ಗುಬ್ಬೆನೆ ಈ ವಜಾತನಾತ್ರವಾಗಿ ತಿರ್ಮಾತ್ರವಾಗಿ ಈ ವಿಕಡಕೊಡ್ಗುಬ್ಬೆನೆ ಈ ವಜಾತನಾತ್ರವಾಗಿ ತಿರ್ಮಾತ್ರವಾಗಿ ಕಾಲ್ಕೆ ತಿರ್ಮಿಸಿಕ್ಕಾಗಿ ತಿರ್ಮ
Average discharge, cubic feet per second	10, 600 10, 600 11, 800 12, 800 13, 800 14, 800 15, 800 16, 800 17, 800 18, 800 18, 800 18, 800 19, 800 10,
Number of samples	4 646666666666666666666666666666666666
Period	March 1939 — April 1939 — April 1939 — June 1939 — June 1939 — June 1939 — Angust 1936 Angust 1939 Coctober 1939 December 1939 December 1939 Depril 1940 April 1939 April 1939 April 1939 April 1939 June 1939 June 1939 June 1939 June 1939 April 1940 April 1939 March 1939 June 1939 August 1939
Mileage from Pittsburgh	0 491.1 (4.2 miles above mouth of Miami River).  do d
Sampling point	Miami River, mouth, west  Or Cleves.  Do.  Do.  Do.  Do.  Do.  Do.  Do.  D

	0 8 1 1 1 1 1 1 1 1 1 1	1 1 0 1 0	0 \$ 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5			P			0 2 1 1 2 1 5 2 6 1 7 2 8 1 8 1 8 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110		6 1 2 1 1 1		6 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
50	82	45	322	86228		20 00 10 10	3 3 %	8	102	100	76	54	61	55 54 54	50	555	525	51	55	49	52	55
13	18	22	167	17 10 393		218	187 565 201	133	15	17	159	310	45	88	15	82	545	100	13	II	12	95
2.00	7.2	7.3		7.00 F. F.			1. 1. 1. 20 to 10		7,7,	7.0	7.6	2,7,	9.7.	. 00 . 01 . 01 . 01	200	1,00	1-1	00	7.5	1 000	000	7.0%
73	13	520	200	358 35		800	S 22 53	4	୧୯ ୧୯	16	242	\$ 8	202	186	2000	1, 260	199	17	113	60 301	007	1.43
2.4	550	2.4		~ 67 P-10			999		1.0	1.4	4.5	400	91.0	200	50 CO	01-	1 4th C	ici	0 01 0 01	2,00	1000	1.62
8.6	10.5	11.4		122.		4.00:	6.7.0	7.4	භ ට ජ ග්	10.7	12.8	10.3	12.8	11.8	2,00	17.0	100	11.4	0.00	10.1	40.00	12.6
24.6	18.3	5.0	4000	20 to 10 to			2 18 19 20 19 00 00 00 00		19.1	5.2	6.9	13.0	17.0	26.6	28.0	26.1	20.4	19.4	27.3	0000	29.5	2.6
8, 100	12,400	27, 400	142, 000 300, 100	27, 800 27, 600		18,800	18,800	1,000	700	800	10,000	3,500	1, 700	13, 800	35, 100	40, 100	89, 200	11, 700	37,600	89 200	36, 200	128, 100
20	410	4	10 64	4 C3 C3 EA		co ≠ ≥	044	10	410	4	44 10	ㅋ 작	61 m	46	60 67	20	1000	1010	J 4	C4 00	- 0 C	. O. C.
September (	October 1939.	December	March 1940	July 1940. October 1940. January 1941.		April 1939	July 1939 August 1939	September 1939	October 1939 November 1939.	December	February 1940.	April 1940	January 1941.	July 1910 October 1940	January 1941	July 1940 October 1940	January 1941.	October 1940.	July 1940	January 1940	August 1940	Jan. 31-Feb. 5, 1941.
do	do	do	do	(0.2 1	mouth of Kentucky kiver).	op	op op	dodb	do.	do	do ob	do	22	O 547.8	0 559.5	O 561	ქი O 562.6	do	0 576.1	000	0 597.9	0,000
Do	Do	Do	Do	Toollucky River, mouth,	Carrollton, Ky.	1)0	Do	D0.	Do	Do	Do	100	Do	Do	Crooked Creek Upper Light	Clifty Creek Lower Light	Lower Hanover Landing	Do-	Johson Landing	Do	Six Mile Island Light	Do

Table OH-7. - Main Ohio River: Ohio River pollution survey laboratory data-Summary of averages-Continued

	Hardness, parts per million	124 111 186 116
	Alkalin- ity, parts per million	######################################
	Turbid- ity, parts per million	558841855084500468 F41104 4 48883888888888888888888888888888888
•	Ħď	TO DOUBLE OF THE PROPOSE THE P
	Coliforms most probable number, per milliliter	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8
	5-day bio- chemical oxygen demand, parts per ruillion	$\sum_{\mathbf{q}} \sum_{\mathbf{q}} \mathbf{Z}$
	Dissolved oxygen, parts per millión	\ \text{N} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Tempera-	688179881788517885178851788817888877888877888877888877888877888877878
	Average discharge, cubic feet per second	26. 290 13. 380 101. 280 101. 280
	Number of samples	ままこうはこう ようこう ちょうようりょう からまる まんしょう はんこう かん
	Period	August 1940. August 1940. Rebruary 1941. August 1940. October 1940. August 1940. August 1940. August 1940. August 1940. August 1940. Cetober 1940. August 1941. August 1941. August 1940. February 1941. August 1940.
	Mileage from Pittsburgh	0 602.5 0 608.5 do do do 0 610 do 614 do 627.9 627.9 627.9 627.9 do 0 627.9 do 0 633.2 do 0 633.2 do 0 639.1 do 0 639.1 do 0 639.1 do 0 639.0 do do do do do do do do do do
	Sampling point	Louisville highway bridge.  New Albany waterworks.  Do Do Do Hught.  Do D

196	202	16	08.1		3.3	14.2	2.0	6,080	7	February 1941.	op	Do
150	213	19	00	41	2.7	10.1	14.0	3,010	67	November 1940	cr).	Done
170	198	16	4.00	28 28	66	13.6	22.4	31, 400	63 44	February 1941. September 1940.	O 848.0 (0.1 mile above mouth of Wabash Riv-	Do. Wabash River, mouth
	09	13	7.00	82	23	9.6	15.3	47,000	63	November 1940	dod	Do
	78	119	7.5	29	1.7	13.6	24.0	31, 400	CJ 41	February 1941.	do 0 845	Do. Lock and dam No. 49
1	61	13	7.00	142	63	9.8	15.3	47,000	63	November 1940	op	Do
	70	26	7.9	24	2.1	13.3	23.2	48, 700	61 41	February 1941.	do O 829.1	Mount Vernon water works.
1	99	13	00,	258	20.00	9.5	17.6	14, 200	64	Oct. 29-Nov.	dodb	Do
9	70	386	7.4	356	1.1	13.4	26.4	48, 700 62, 100	614	February 1941.	op. 0	Do. Lock and dam No. 48
1	64	12	00	142	2.8	9.4	17.7	14, 200	64	Oct. 29-Nov.	dodo	Do
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72	35	7.4	199	113	13.4	26.5	48, 700 62, 100	C1 41	February 1941. Aug. 27-Sept.	do 803	Henderson water works in-
	64	13	8.1	350	2.4	9.1	17.5	14, 200	C)	6, 1940. Oct. 29-Nov.	op	Do
	65	33	4.7.	16	piri piri	13.4	26.5	71, 100 62, 100	C4 4t	February 1941. Aug. 27-Sept.	do 797.7	Dotch Bend Light
1	64	12	8.0	24	2.1	9.3	17.7	15,800	C1	5, 1940. October-No-	do	take. Do
125	126 91 57	13 58 28	8.7.8	22 2 2		12.5	17.5	3, 250 57, 100	01010	October 1940 February 1941 Aug. 27-Sept.	do do O 791	Evansville water works in-
102	63 60 104	233	7.73	16	1.2	13.4	16.8	9, 700	0000	October 1940 February 1941. Aug. 28-Sept.	do do O 784.2 (8.6 miles above	Do. Green River, Spottsville
1 0 1 6 0 1 1 0 1 1 0 1 1 1 1 2 1 1 3 1 1 4 0 1 1 0 1 1 0 1	55 63 6	32 20	0 m 0	16	11.2	0. E. 0. 0. 4. 4.	25.8	71, 500	2010	February 1941. Aug. 26-Sept.	do O 777.7	Doek and dam No. 47
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53	10 29	4.0.7	35	12.23	9.4	27.2	18, 100	H 10	Aug. 26-Sept.	0 757	Larkin Ferry Light

Table OH-7.- Main Ohio River: Ohio River pollution survey laboratory data-Summary of averages-Continued

Hardness parts per million	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F 7	2 2 1 1 1 1 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 P	2 2 3 4 1 1	9 7 9 1 9 1 9 1 9 1 9 1 9 1 1 1 1 1	f	82	96	112
Alkaliu- ity, parts per million	72	63	88	89	102	64	92	64	86	92	86	75	-1.88	17	88 20 20 20 20 20 20 20 20 20 20 20 20 20 2	88	98
Turbid- ity, parts per million	17	7	16	13	16	14	<u>™</u>	13	17	19	17	19	120	19	19	32	22
Hq	8.0	7.7	7.6	7.8	8.1	7.8	7.6	7.8	0.00	00	8.3	ග	2.00 0.00 0.00	80.2	5.7. 8.80	7.4	7.6
Coliforms most probable number, per	19	20	11.8	26	10 10	19	<b>Ф</b> 60	6	62	ಬ	<b>61</b> 44	ಣ	<b>⇔</b> ≈	1	-01	20	64
5-day bio- chemical oxygen demand, parts per million	2.0	2.4	०० ०	2.0	4.5.	1.9	2.7	2.0	2.0	3.4	<b>%</b> ∞	3.4	61:	60.	1.5	1.2	1.5
Dissolved ovygen, parts per million	9.5	9.7	13.9	9.6	13.1	9.8	13.9	10.0	13.8	13.2	13.00	13.4	20°00 00°00 00°00	13.0	00 00 00 00	9.9	13.0
Fempera-	24.1	15.8	23.50	15.0	23.3	14.9	1.8	14.8	1.8	90	21.5	00	2.7	30 30	21.8	0.0	5.0
Average discharge, cubic fet per second	19, 700	50,000	38, 700	46,400	37, 600 23, 700	46,800	38, 100 23, 800	47,000	37,600	38, 900	27, 700	38, 900	28, 400	41, 200	1,530	2,650	7, 197
Number of samples	4	5	614	ಣ	CJ 44	ಣ	0.4	ಣ	0.4	2	62 4	23	60 4	2	60 4	41	co
Period	September	November	February 1941. September	November 1040	February 1941. September	November	February 1941 September	November	February 1941 Sept. 20-Oct.	November	March 1941 Sept. 20 Oct.	November	March 1941 Sept. 20 Oct.	November	March 1941 Sept. 20-Oct. 1, 1940.	November	March 1941
Mileage from Pittsburgh	0 852.3	do	O.864.8	op	do.	op	do	do	do	do	do O 902.5	do	do	do	O 920.4 (2.8 miles above mouth of Cumberland	River)	qo
Sampling point	Browns Light	Do	Greens Crossing, Upper	Do	De Koven Light	Do	Lock and dam No. 50	Do	No Rosiclaire.	Do	Do. Golconda water works	Do	Do Old Maids Crossing Light	Do	Cumberland River, above mouth.	Do	D0

2 6 6 1 1 2 3 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		72	54	98.	2 2 3 1 1 1 1 1	3 2 7 5 8 6 9 6 9 8 9 8 2 8 1 8 1	1 2 4 1 1 1 1 1		6	143	146	120	1
11		99	62	74	51	68	65	82	69	83 74 70	74 91 117	163	146	80	98
12	18	18	24	<b>1</b> 90	37	38	24	28	25	122	678	343	157	258	62
800	80.5	7.6	7.8	5.7.	7.2	7.6	7.9	8.0	8.0	7.00%	7.6	9.7.		7.7	7.7
63	-	H 4	00	co -1	All	110	20	37	7	111	89	102 434	262	13	20
1.8	3.2	2.1	5.1	 	. 7	1.6	1.9	1.6	2.1	2.1.0	얼마리	4-1 20	65 H	2.6	2.0
9.3	13.0	13.7	11.7	5.2	10.2	13.1	12.0	6,00 4,7-	12.8	13.6 9.4 11.6	12.8 8.9 11.4	8.0	8.0	11.4	12.8
21.7	8.9	3.2	11.0	6.3	6.0	6.5	10.7	4.8	10.1	4.6 19.8 9.3	19.6 8.3	18.6		9.3	4.6
30, 400	45, 900	28,000	41,800		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54, 600	74, 500	54, 600	74,500	52, 400 86, 700	52, 400 86, 700		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 8 8 9 7 7	-
4	7	w 4	63	६० य	4	60'-44	73	60.44	63	ଲ ମ ବା 	900	ମେମ ମ	01.00	64	61
Sept. 20-Oct.	November 1040	March 1941 September	November	March 1941 Sept. 21-Oct. 1, 1940.	November	March 1941	November 1010	March 1941 September	November	March 1941 October 1940 November	March 1941 October 1940	March 1941 October 1940 November	1940. March 1941 October 1940	November 1940.	March 1941
O 927.3	op op	do O 934.3	-do	O 934.5 (5.3 miles above mouth of Tennessee		do	do	do O 962.6	do	do 0 978 0 do	0 981 do	qo			
Ledbetter Light	Do	O Paducah water works	0Q	Tennessee River, Norton's	Do	Do Lock and dam No. 52	Do	Do Lock and dam No. 53	Do	Do	Cairo Point	Do Mississippi River, Cairo high- way bridge. Do.	Mississippi River below mouth of Ohio River,	м іскінте, <b>Ку.</b> Do	Do

Table Oh-7A .- Main Ohio River: Laboratory data-acid stream results

		Num-		Acid	lity, part million	s per	Iron, parts per million	
Sampling point	Month, 1940	ber sam- ples	pН	Methyl			Fer-	Total
				red	Hot	Cold	rous	2 0000
Emsworth Dam, mile 6	September	1 11	5. 4 5. 6	1 3.5(2)	12	7 11		0.4
Dashield Dam, mile 13.5	November September October	9 1 11	6. 2 4. 7 5. 6	5 (1) 10 3 (1)	23 11(1)	12(2) 17 10		3. 0 . 4 1. 2(4)
Montgomery Dam, mile 31.7	November September October	9 2 11	6. 2 4. 7(1) 5. 4(7)	6 (1) 4. 5(2)	12(2) 18(1) 17(2)	13(1)		.3
Dam No. 7, mile 36.5	November September October	9 2 11	5. 9(1) 4. 8(1) 5. 4(7)	7 (1) 6 (2)	18(1) 18(2)	12(1) 15(1) 11(7)		1.0(1)
Dam No. 8, mile 46.4	November October November	9 12 9	5. 7(2) 5. 4(6) 5. 7(2)	4.2(3)	18(2)	10(2) 11(6) 10(2)	0.6(1)	5. 0 1. 5 3. 0
Dam No. 9, mile 56.1	October November	12 9	5. 1 5. 7(2)	5. 3(3)	16(2)	9(6) 10(2)		1.3
Dam No. 10, mile 66	November	12 10	5.9(7) 4.9(2)	4.0(5)	14(2)	10(7)	.2(1)	.7(6)
Dam No. 11, mile 77	November	12 10 12	5. 0(9) 5. 0(2) 5. 0(9)	6. 3(6) 5. 0(1) 3. 4(7)	20(2)	13(9) 14(2) 12(9)	4/1	2. 2(6)
Dam No. 13, mile 96	November	10	5. 3(2) 5. 0(9)	3. 0(1) 4. 3(7)	(2)	11(2)	. 4(1)	2.0
Dam No. 14, mile 114	November August	10 11	5. 5(2) 4. 6(9)	7 (9)	12(6)	10(2)	. 0(2)	2.8(2)
Dam No. 15, mile 129	September August	5 11	4.6 4.8(7)	2 (4)	12 12(7)	10 7(7)		.3
Dam No. 16, mile 146.5	September September	5 11 5	4. 7 5. 0 4. 8	3 (3) 3 (4)	13 10(6)	9 7(6)		.7
Dam No. 17, mile 167.5	August September	11 5	4.8 5.5 4.9(4)	3 (4) 2 (1) 3 (3)	12 10 10(4)	8 7(4)		.2 .2 .3

Note. - Figures in parentheses indicate number acid samples used in computing averages as shown.

# MINOR TRIBUTARY BASINS



# CONTENTS

	Page
Contents	259
Syllabus and conclusions	261
Description	262
Presentation of field data	263
Presentation of laboratory data	266
Hydrometric data	268
Discussion.	268
	200
LIST OF TABLES	
M-1.—Cost estimates of remedial measures	262
M-2.—Surface water supplies	264
M-3.—Sources of pollution	265
M-4.—Industrial wastes	265
M-5 -Selected laboratory data	267
M-6.—Monthly mean summer flows	268
M-7.—Summary of laboratory results	270
M-7a.—Summary of laboratory results on acid streams	299
Duminary or laboratory results off acid streams	200

## LIST OF FIGURES

(Note.—For maps of minor tributary basins see main Ohio River summary.)

259



## MINOR TRIBUTARY BASINS 1

## SYLLABUS AND CONCLUSIONS

#### SYLLABUS

Minor tributaries of the Ohio drain 23,780 square miles (about one-ninth of the entire Ohio Basin) in the 6 States bordering the main stream. Less than 10 percent of the 1,400,000 population in the area are in urban communities. Agriculture is the predominant occupation. Coal mining is important in the upper portion of the basin above Marietta, Ohio, and the Saline and Tradewater Basins in Illinois and Kentucky.

Most of the larger communities have sewage-treatment plants and there is little organic industrial waste. Acid mine drainage causes the most serious pollution. (See separate section of report on

acid mine drainage.)

#### CONCLUSIONS

(1) Forty-four of the ninety-four public water supplies in the area drained by minor tributaries of the Ohio River are from surface sources. Nine of these, serving 24,600 people, are from streams subject to pollution.

(2) Sewage from 173,500 people and industrial wastes equivalent in oxygen demand to sewage from an additional 31,200 people are discharged to minor tributaries of the Ohio. About two-thirds of

the sewage receives treatment.

(3) Laboratory data indicate many instances of heavy local pollution, particularly on very small streams. At the time of sampling the streams generally were in good sanitary condition at their confluence with the Ohio River except where they were influenced by wastes from Ohio River communities. Many of the tributaries in the upper part of the basin, and several small streams in the Saline and Tradewater Basins, were found to be heavily polluted by acid mine drainage.

(4) Abatement of pollution due to sewage and organic industrial wastes will require secondary treatment in most instances because the receiving streams are generally small and subject to extremely low

flows.

(5) Reduction in acidity in the minor tributaries can best be accomplished in connection with a program of mine sealing covering the entire Ohio Basin.²

(6) One of the proposed tributary reservoirs authorized by the Congress and studied by the United States Engineer Department

For maps of this area, see main Ohio River.
 See section of report on acid mine drainage.

for Ohio River flood control is on a minor tributary. Low-flow regulation by this reservoir would have no appreciable tangible value for pollution abatement.

(7) The following cost estimates of measures for abatement of pollution due to sewage and industrial wastes are summarized from

table M-1:

Treatment	Capital cost	Annual charges
Existing Suggested additional	\$3,800,000 2,590,000	\$330,000 285,000

Estimated additional costs over existing charges of programs involving uniform treatment throughout the basin area:

Treatment	Capital cost	Annual charges
Primary, all places. Secondary, all places.	\$2, 220, 000 3, 010, 000	\$250,000 335,000

Table M-1.—Minor tributary basins: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		ber of nts	Popula-	G	Aı	nual charg	ges
	Pri- mary	Sec- ond- ary	tion con- nected to sewers	Capital invest- ment	Amorti- zation and in- terest	Opera- tion and mainte- nance	Total
Existing sewage treatment	12	30	110, 300	\$3, 800, 000	\$225, 000	\$105,000	\$330,000
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste	17	23	96, 400	1, 420, 000 890, 000	100, 000 40, 000	70, 000	170, 00 40, 00
correction				280, 000	35, 000	40, 000	75, 00
Total				2, 590, 000	175, 000	110,000	285, 00
Comparative cost: Primary treatment all waste Secondary treatment all				2, 220, 000	160, 000	90, 000	250, 00
wasteAs suggested				3, 010, 000 2, 590, 000	210, 000 175, 000	125, 000 110, 000	335, 00 285, 00

#### DESCRIPTION

Small tributaries of the Ohio River not considered in separate sections of this report drain a total of about 23,780 square miles (slightly less than 12 percent of the entire basin) in the six States which border the Ohio River. The area drained in each State and the drainage areas of some of the larger streams are shown below:

State	Area (square miles)	State '	Area (square miles)
Illinois Indiana Kentucky	2, 880 3, 480 6, 675	Ohio Pennsylvania. West Virginia	6, 450 1, 290

Tributary	Right or left bank	Miles above mouth of Ohio River	Drainage area (square miles)
Cache River Tradewater River Saline River Blue River Brush Creek Little Sandy River Twelvepole Creek Raccoon Creek Middle Island Creek Little Beaver River	Left Right do do Left do Right Left Left	6.3 107.6 113.7 318.1 593.0 644.6 667.7 704.9 827.0	720 995 1, 235 466 435 780 441 684 685 510

Most of the area drained by the minor tributaries of the Ohio is hilly. Portions of the area in Illinois and Indiana are less rugged

and better suited to agriculture than the land farther east.

The following tabulation of population of some of the larger communities and of the entire area, shows the relatively sparse population and the lack of urbanization. There are only 16 urban communities in the 23,780 square miles and most of these are in the upper part of the basin. The larger communities are in coal-producing sections.

		Popul	ation	
	1910	1920	1930	1940
Larger cities: Washington, Pa. Canonsburg, Pa. Salem, Ohio Harrisburg, Ill Wellston, Ohio East Palestine, Ohio Barnesville, Ohio	18, 778 3, 891 8, 943 6, 309 6, 875 3, 537 4, 233	21, 480 10, 632 10, 305 7, 125 6, 687 5, 750 4, 863	24, 545 12, 558 10, 622 11, 625 5, 319 5, 215 4, 602	26, 166 12, 599 12, 301 11, 453 5, 537 5, 123 5, 002
Entire basin: Urban	79, 125 1, 148, 878	109, 613 1, 123, 996	116, 468 1, 144, 622	130, 344 1, 254, 858
Total	1, 228, 003	1, 233, 609	1, 261, 090	1, 385, 202

Agriculture is the predominant occupation in the area as a whole but there are also important coal-mining areas in Pennsylvania, the panhandle of West Virginia and adjacent parts of Ohio in the upper portion of the basin and in the Saline and Tradewater River Basins in the lower portion of the basin.

Water uses.—None of the minor tributaries have been developed for navigation. There are no hydroelectric developments. Many of the streams, particularly the less polluted ones which are readily accessible to residents of the larger Ohio River cities, are used ex-

tensively for recreation.

## PRESENTATION OF FIELD DATA

Figures Oh-1, Oh-2, and Oh-3 show the location and magnitude of the more important sources of pollution along minor tributaries in the upper, middle, and lower thirds of the Ohio River, respectively.

Public water supplies.—Ninety-four communities and sizable institutions on minor tributaries of the Ohio have water supply systems which serve about 213,700 people. Forty-four of the supplies are

from surface sources of which 9 are from streams subject to sewage pollution above the water intake. The remaining 35 supplies are from streams draining unsewered areas. Table M-2 shows data on the 9 surface water supplies which are most subject to pollution.

Table M-2.—Minor tributary basins: Surface water supplies

			Mil	eage	Treat-	Popu-	Consump-
Supply	State	Source	(1)	(2)	ment (3)	lation served	millions of gallons per day
		Supplies below community	y sew	er out	falls		
Osgood Georgetown Wellston	KentuckydodolllinoisIndianadododododododo	Tradewater River	7 41 35 34 37 8 55	108 108 114 482 482 557 705 827 906	LD FD FD FD FD FD	3, 100 4, 300 8, 000 500 1, 000 1, 500 4, 700	0. 06 . 25 . 53 . 02 . 08 . 04 . 30
						24, 600 108, 000	1.39 8.06
Total surfa	ce water supplies				******	132, 600	9. 45

Miles above confluence of minor tributary with Ohio River.
 Miles from mouth of Ohio River to mouth of minor tributary.
 F=coagulated, settled, filtered; L=lime-soda softened; D=chlorinated.

Sewerage.—Table M-3 shows the sewered population and the total waste load at the larger sources of pollution on minor tributaries of the Ohio River. Sewage from 167,800 people enters the streams, about two-thirds of which is treated in 12 primary and 30 secondary treatment plants. Most of the larger sources of pollution are in the upper part of the area. Minor tributaries entering the Ohio above Huntington drain about one-third of the area but they receive about twothirds of all the sewage.

Table M-3.—Minor tributary basins: Sources of pollution including industrial wastes expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	State	Receiving stream			Population connected to sew-	Treatment	Sewered popu- lation equiva- lent (biochem- ical oxygen demand)	
			(1)	(2)	ers		Un- treated	Dis- charged
Mounds Previdence Dawson Springs Harrisburg Eldorado Morganfield Fort Branch Boonville Marengo Central Barren Sunman Olive Hill	Illinois Kentucky do Illinois do Kentucky Indiana do do do Kentucky Kentucky	Trinity Slough Owens Creek Tradewater River Pankey Branch Eldorado Ditch Lost Creek Pigeon Creek Cypress Creek Whiskey Run Sinkhole North Hogan Creek Tygar Creek	3 43 87 35 39 11 44 13 27 28 22 52	108 108 114 114 138 188 205 318 323	3, 800 1, 300 8, 000 3, 000 2, 000 100 3, 000 100	do	1,300 8,000 3,000 2,000 11,100 3,000 9,800	2, 000 1, 900 1, 300 1, 200 3, 000 2, 000 11, 100 3, 000 9, 800 4, 000 3, 600 1, 000

Miles above confluence of minor tributary with Ohio River.
 Miles above mouth of Ohio River to mouth of minor tributary.
 Septic tank ineffective.

Table M-3.—Minor tributary basins: Sources of pollution including industrial wastes expressed as sewered population equivalent (biochemical oxygen demand)—Continued

Municipality	State	Receiving stream		ile- ge	Population connected to sew-	Treatment	Sewered population equivalent (biochemical oxygen demand)	
					ers	• • •	Un- treated	Dis- charged
Burgettstown Oak daile McDonald Bridgeville Canonsburg Houston Washington 65 smaller sources.  Total: Illinois Indiana Kentuck Ohio Pennsyl West Vi	do	do_ Chartiers Creek		978 978	1, 000 1, 000 2, 200 1, 600 1, 500 3, 400 12, 000 1, 600 1, 600 1, 600 13, 000 14, 600 28, 000 65, 300 20, 500 47, 300 7, 800	do do Secondary (4)	58, 200 7, 900	1, 600 1, 000 1, 000 1, 400 1, 600 1, 500 3, 400 1, 500 3, 100 4, 200 24, 200 24, 000 8, 300 10, 700 17, 000 30, 900 7, 700

^{4 9} places, primary treatment; 28 places, secondary treatment; remaining 28 places, no treatment.

Industrial wastes.—Relatively little organic industrial waste enters the minor tributaries. Table M-4 shows the industrial wastes to be equivalent in oxygen demand to sewage from 31,200 people, almost all of which comes from canneries and meat-packing plants. Most of these are located on small streams in Indiana.

Table M-4.—Minor tributary basins: Summary of industrial wastes not discharged to municipal treatment plants with total industrial waste load in the basin

	Number		al-waste posal	At least minor	Estimated sewered population
Industry	of plants	Municipal sewers	Private outlets	corrective measures taken	equivalent (biochemical oxygen demand)
Canning	8 7 2 4 5		6 7 2 4 4	8 7 1 2 1	13, 300 16, 700 300
Wastes unconnected municipal treatment. Wastes discharged to municipal treatment.	24	1	23	16	<b>30</b> , 300 900
Total industrial waste load, minor tri	butaries		******	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	31, 200

Acid mine drainage.—Probably the most damaging pollution to which the minor tributaries of the Ohio are subjected is from acid mine drainage which affects streams in the upper part of the basin, particularly above Marietta, Ohio, and in the lower part of the basin where the Saline and Tradewater Rivers are the largest acid streams. The total acid load in the entire area before mine scaling is estimated at about 230,000 tons per year. Some 53,000 tons have been removed by scaling. More than 80 percent of the acid is from the area above Huntington. This problem is discussed in a section of the report on acid mine drainage.

## PRESENTATION OF LABORATORY DATA

The maps which show coliform, dissolved oxygen, and biochemical oxygen demand results on the main Ohio River also show similar data on its minor tributaries. Summaries of laboratory results are shown on table M-7 (p. 270). Sampling of these areas was done concurrently with work on the adjacent sections of the Ohio River but was generally less intensive than on the main stream or the larger tributaries.

#### PITTSBURGH TO HUNTINGTON

In general, coliform counts were high along the minor tributaries in this section. A number of the streams were heavily acid. Acid data are summarized in table M-7A. Oxygen conditions were generally rather good except on Chartiers Creek below Washington and Canonsburg, Pa., and on some of the very small tributaries.

#### HUNTINGTON TO CINCINNATI

None of the minor tributaries on this section were found to be heavily polluted although a number of them showed moderately high coliform counts below some of the small sources of pollution. Oxygen results were good, with biochemical oxygen demands generally below 3 parts per million and dissolved oxygen over 6.5 parts per million.

## CINCINNATI TO LOUISVILLE

The tributaries in this section also were found to be in generally good condition. Local pollution was evidenced on Laughery Creek at Batesville, Ind., Hogan Creek at Aurora, Ind., Harrods Creek at La Grange, Ky., and Goose Creek at Anchorage, Ky.

#### LOUISVILLE TO MOUTH

This section includes the two largest of the Ohio River's minor tributaries, the Saline and Tradewater Rivers which enter the main stream about 110 miles above its mouth. Several of the tributaries of the Saline were found to be acid. Low dissolved oxygen, high biochemical oxygen demands, and high coliform counts were found below Eldorado and Harrisburg, Ill. In the Tradewater Basin local pollution was found at Dawson Springs, Sturgis, and Providence, Ky., and acid was found at Earlington and Providence. Both the Tradewater and Saline were in good sanitary condition at their

mouths during the sampling period. Acid results on these streams are summarized below:

		Num-		Average	acidity, p	oarts per	Average parts per	
Station	Month 1940	ber of samples	рĦ	Methyl	Phenolp	hthalein	T	Total
				red	Hot	Cold	Ferrous	Total
Saline River: Eldorado	Augustdodododododo	1 3 3 3 1 1	2.8 4.2 3.1 4.3 3.3 3.6 5.7	1, 228 405 548 103 241 98	2, 505 940 1, 340 445 1, 024 169 76	2, 404 536 774 202 891 157 64	500 1 8 2 6 2 12 456 2 5	750 1 50 2 145 2 103 475 12 10

^{1 1} sample only. 2 Average 2 samples only.

Other places where more or less heavy pollution was found were on Cypress Creek below Boonville, Ind., Indian Creek below Corydon, Ind., Beargrass Creek at Louisville, Ky., Lost Creek below Morganfield, Ky., and Crooked Creek below Marion, Ky.

Table M-5.—Minor tributary basins; selected laboratory data

P							
River	Chartiers Creek	Chartiers Creek	Chartiers Creek	Fork Little	Middle Fork Short	North Fork Cedar	Goose Creek
Location	Below Washing- ton, Pa.	Below Canons- burg, Pa.	Above Carnegie, Pa.	Beaver Below Salem, Ohio	Creek Below Cadiz, Ohio	Creek Below Kentucky State prison	Below Anchor- age, Ky.
River miles above— Confluence with Ohio Mouth of Ohio 1 Period, 1940	978	23 978 October	8.5 978 October	37 942 June– July	25 900 October	9 385 July- August	4 384 July- August
Number of samplesFow in cubic feet per second: Sampling days		3	. 4	3	2	3	(2)
Minimum month	14. 7 4, 800	14. 3 587	11. 0 6	21. 5 102	10. 0 5, 960	27. 8 9, 510	24. 2 114, 000
Dissolved oxygen, parts per million	0.5	1.6	5. 3	5.8	5.4	1.9	0
5-day, parts per million		8.3	8.0	2.6	9.3	28.2	52.0
River	Beargrass Creek Near mouth	Indian Creek Below Corydon, Ind.	Cypress Creek Below Boon- ville, Ind.	Lost Creek Below Morgan- field, Ky.		Fork Below	Crooked Creek Below Marion, Ky.
River miles above— Confluence with Ohio Mouth of Ohio Period, 1940	379	16 323 August	1 205 October	7 138 October- Novem- ber	38 114 August	· 34 114 August	10 103 October- Novem- ber
Number of samples.	2	3	3	3	3	3	3
Flow in cubic feet per second: Sampling days Water temperature °C Coliforms per milliliter	17.5	26. 5 23, 800	14.8 11,200	1 13. 7 4, 730	32. 5 15, 600	26. 2 16	(2) 16. 2 3, 000
Dissolved oxygen parts per mil- lion.	0	4.7	1 0	6. 5	0	1.8	3.7
Biochemical oxygen demand, 5-day, parts per million	51.2	6.9	35.6	7.2	31.8	10.4	16.3

¹ Miles from mouth of Ohio to mouth of tributary. ² Less than one.

## HYDROMETRIC DATA

Sixteen stream-gaging stations have been maintained at various times on minor tributaries of the Ohio. Five of these stations are currently in operation. Table M-6 shows data on low summer flows at a few of the stations.

Table M-6.—Minor tributory basins: Monthly mean summer flows for years in which low summer flows have occurred

River  Location  River miles above— Confluence with Ohio Mouth of Ohio 1 Drainage area Period of record.	Chartiers Creek Carnegie, Pa. 8 978 264 1919–33	Little Beaver East Liver- pool, Ohio 4 942 505 1915-40	Middle Island Creek Little, W. Va. 25 827 458 1915-20, 1925-40	Raccoon Creek Adams- ville, Ohio 25 705 587 1915–35, 1938–40
Year  June	1927 325 135 62	1932 76 131 26	1930 11 2 0	1930 29 11 14
September do Year	1929	1930	1932	1922
June	155 96 44 26	102 30 22 28	51 255 166 2	548 72 7 152
Year	1932	1939	1936	1932
Junecubic feet per seconddo	60 67 30 26	359 226 103 29	108 34 6	57 255 25 11

¹ Miles above mouth of Ohio at mouth of tributary stream.

A large part of the flow of Chartiers Creek is mine drainage. Other

minor tributaries are subject to extremely low flows.

Proposed flow regulation.—One of the reservoir sites studied by the United States Engineer Department for Ohio River flood control is located on Twelvepole Creek, a minor tributary which enters the Ohio River near Huntington, W. Va. This is a relatively clean stream receiving a small amount of sewage from one rural community. Low-flow regulation by the proposed reservoir would have no appreciable tangible value for pollution abatement.

## Discussion

Pollution problems on the minor tributaries of the Ohio are predominantly local in nature and are concerned primarily with prevention or correction of offensive conditions in small streams subject to extremely low flows. An exception to this is the acid problem which must be attacked on a more or less basin-wide scale, at least in the upper third of the Ohio Basin. None of the nine surface water supplies shown in table M-2 is subject to heavy sewage pollution and although adequate bacteriological data are not available, it is probable that the water-treatment plants are not overloaded. Several of the

water supplies are affected by acid mine drainage, notably the Harris-

burg, Ill., supply.

Recreational use of these minor tributaries is extensive, particularly in the neighborhood of the large Ohio River cities. The small tributaries are usually the cleanest streams for water sports and the rugged terrain through which most of them run is attractive for summer cottages. Even in the upper part of the basin, where mine acid has damaged many of the streams, there are some which are notable for their recreational value.

The low flows to which most of the streams are subject make rather complete treatment of wastes necessary for the prevention of local nuisance conditions. Each stream, however, presents more of an individual problem than is the case in the larger tributary basins

where the effects of pollution may be felt more generally.

Most of the sewage is already being treated. Some of the existing plants appear to be inadequate. Estimated costs of a suggested program for abatement of sewage and industrial waste pollution are summarized in table M-1. Reduction in the mine acid load is badly needed. The cost of work to accomplish this is shown in the section on acid mine drainage.

Table N-7.— Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results

		Hardness, parts per million		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							*		1	F F F F F F F F F F F F F F F F F F F	3
	4 Healte	a prompt	108	152	149	98 129 146	15	19	132	107	135	138	110	911	7	1	49	95	118
	Didary	ity, parts per million	5	222	700 5	71, 20	115	145	26	3.6	88.88	06	9,48	100	0 38 0 38	93	89	£ 33	30
annua fo		h	6.8			9999	7.3 20		7.1			6.00 0.00	∞ .c ∵ ∵ ∵	5.7.5	5.6	6.0	9 9	6 6 7 7 8	6.9
	Coli- forms,	most probable number per milli- liter	46	000	323	23 46 1, 100	11,000	2,300	9,300	2,300	11,000	110,000	4, 600	2,2,3	*, 000 *, 39	93	286		2, 400
	5-day bio-	oxygen demand, parts per million	1.3	1.0	i - i - i	34.00			13.5			40.6	12.0		100	11.0	0.0 0.0	4.	
6	1 oxygen	Percent satura- tion	85.4	59.3	79.8	86.2	14.8	0	47.2	4.80		00	15.5	63.8	25.9	0;	29. 9	76. 6	67.0
6	Dissolved oxygen	Parts per million	8.2	9000		11.5	1.5	0	6.5			00		φ Q = 0		0.	9.00	10.9	 
	,	Temper-	18.0	14.0	94,4	20.0	15.0	0.6	80, 4; 70:70					0.00					9.0
	Average	discharge, cubic feet per second	1	6 1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	126	12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 24	22			24	31		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36	35.58	40
		Date	Oct. 7, 1940	Oct. 23, 1940	Nov. 25, 1940 Dec. 5, 1940	Dec. 17, 1940 Dec. 27, 1940 Oct. 7, 1940	Oct. 15, 1940	Oct. 23, 1940	Nov. 12, 1940 Nov. 25, 1940	Dec. 5, 1940 Dec. 17, 1940	Dec. 27, 1940 Oct. 7, 1940	Oct. 15, 1940 Oct. 23, 1940	Nov. 12, 1940 Nov. 25, 1940	1011	Oct. 7, 1940	15,	12,		Dec. 17, 1940 Dec. 27, 1940
	•	Mileage from mouth	OCh 37	do.	do do	do do OCh 34	do		do	do	OCh 29	do.	do	do	OCh 26	-do	do	do	dodo
		Sampling point	Chartiers Creek above city limits,	Do.	Do	Do Do Chartiers Creek, 2 miles below sew-	age treatment plant, Washington, Pa. Do.	Do	Do	100	Chartiers Creek, 0.1 mile below	1)0	Do	100 Do	Chartiers Creek, below Houston, Pa.	Do	100	100	Do.

	6 7 8 6 7 1 9 8 1 1 9 9 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 1 1 2 2 3	6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 2 1 1 1 1 1 8 1 8 1 1 1 1				1	# I I I I I I I I I I I I I I I I I I I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		E E E E E E E E E E E E E E E E E E E			
	11 9 80	36 22 98	10	13	2000	136				. 15	00	100	12	0 0 0		0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00	11	86	24	
23 83	22.23	833	108	115	35	\$ g :	16	38	49	79	120	95	150	9	18	12	15	94	110	80	220	
	, 0000 0400					0-1-0			3.0	4.5		, ô, ô,		3.0	3.0	2.8	3.1	5.3		6.6 8.8		
1,100	230 230	4,600 11,000 460	4,600	910	93	240	0	0	0	0	0	110	0	0 {	0	0	0	111	0	110	23	n one.
117.8	120.5	0.0.0.4 0.0.0.1	7.1	15.6	7.3	ಲು ಸ್ತು ನ 44 ಸ್ತು ∠	0.1.	6.4	12.5	2.0	20,00	000	1.2	1.3	7.0	11.9	12.6	12.0	10.3		4.00	FLess than
19.8	24.1.2	0.08 0.09 0.09 0.09 0.09	23. 1	13.6	55.6	7.8.2	80.0	94. 2	83. 4	800		93.3	81.5	80.7	84.8	88.2	80.9	84.6		92.3		
4 0	, ware	20.0	2.4	1.6	12.1	8 - 6		12. 4	9.4	10.1	12.5	12. 4	10.6	9.4	9.1	11.7	9.3	9.8	12.2	12.8	10.0	
19.0		18.0 18.0	13.0	7.0	1.0	2.0.0	12.0	4.0	10.0	9.5		0 0 0 0 0	4.5	13.0	12.5	3.0	10.0	0.6		00 00 00		
9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35	51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	42	45	52	1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 4 5 0 0	1 1 1 1 1 1	3 S S S S S S S S S S S S S S S S S S S	2	04	63	8 2 2 3 3 3 4 7	1 1 2 1 1 1 1 2	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00	ec 00	2	
7, 1940	क्ष्यं क्ष	27, 1940 7, 1940 7, 1940	15, 1940	12,33	25,	27, 1940 27, 1940	-î 00°	. 17, 1940	. 24, 1940	7. 5, 1940	18,	. 29, 1940	. 23, 1940	1,1940	8, 1940	17, 1940	. 24, 1940	r. 5, 1940	Nov. 18, 1940	. 29, 1940	. 23, 1940	ralized.
Oct.	Nov.	Dec.	Oct.	Nov.	Nov.	Dec.	Oct.	Oct.	Oct.	Nov	Nov.	Nov.	Dec.	Oct.	Oct.	Oet.	Oct.	Nov.	Nov	Nov.	Dec.	Seeded and neutralized
och 23.	op op op	do do OCh 21	do	do	dodo	do do	dodo	ор	do	do	do	do	do	OChM 15.5	do	do	do	do	dp	do.	do	1 Seeded
Chartiers Creek, ½ mile below Can- nonsburg, Pa.	90035	Do Do Do Charles Creek, I mile below Mor-		Do Do	<b>6</b> -	Do.	Miller Kun, ½ mile above Cecii, Fa.	Do.	Do	Do	Do	Do	Do.	Miller Run, ¾ mile below Cecil, Pa.	Do	Do	Do	Do	Do	Do	Do	

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per nillion			\$ 1 2 1 3 1 3 1 0 1 1 1 0 1 2 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 4	6, 6 6 6 6 6 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	8 0 1 1 2 3 3	1 1 1			1	:			# # # # # # # # # # # # # # # # # # #
11011	Aikann- ity, parts per million	237	259	244	220	203	FOT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 3 3 3 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50	00	5	23	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	;	1		1	9
	ity, parts  Per  million	45	00 0	120	X 5	15	90	28	31	42	38	39	40	85	90	37	32	28	17	200	06	170	100
	Hď					0000		3.2	3, 1	2.9	3.2	4.	4.4	4.6	6.1	2.9	2.8	2.4	2.8	3, 5	60	4.0	4.5
Coli- forms,	most probable number per milli liter	110	93	1, 100	48	15	23	(2)	£			(3)	(2)	©	24	0	0	0	0	(2)	(2)	(2)	(£)
5-day bio-	oxygen demand, parts per million	1.6	1.2	7.6	1.0		0.0	11.2		1.5	1-1-	11.0	11.8	8.1.1	10	1.1.1	1.1.0	4.7-	12.53	8.1.	1.8.1	11.8	3.0
1	Percent satura- tion	74.4	57.2	77.9	82.8	85.0	2.70	88. 2	84.9	87.9	0.68	89.7	94. 2	92. 4	88. 1	96. 4	76.3	74.3	86.6	88. 5	91.9	102.4	91.5
Dissolved oxygen	Parts per million	00.1		) 6N	10.6	12.6	10.9	8.8	10.5	11.1	10.6	11.5	12.2	13.0	11.1	10.4	00 4.	9.5	10.4	11.5	11.8	14.6	11.3
	rure ° C.	12.0	6.0	000	5.0	0.0	0.0	11.0	6.5	5.5	8.0	5.0	4.5	1.5	5.5	12.0	6.5	5.0	7.5	4.5	5.0	1.0	6.5
Average	discharge, cubic feet per second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	⊕ €	000	(F)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	-	2	9=4	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 6 9 6 1 1 3 5	2	2	41	C)
	Date	Oct. 2, 1940	10.	Oct. 21, 1940 Oct. 28, 1940	1-8	9 00 9	15,	Oet. 2, 1940	Oct. 10, 1940	Oct. 21, 1949	Oct. 28, 1940	Nov. 7, 1940	Nov. 20, 1940	Dec. 3, 1940	Dec. 13, 1940	Oct. 2, 1940	Oct. 10, 1940	Oct. 21, 1940	Oct. 28, 1940	Nov. 7, 1940	Nov. 20, 1940	Dec. 3, 1940	Dec, 13, 1940
	Mileage from mouth	OChR 22.5	op	do	do	op op		OChR 21.5	db	qo	op	do	do	do	qo	OChR 19	do	do	op	do	do	dodo	do
	Sampling point	Robinson Run, above Midway, Pa	Do	Do	Do	100		Robinson Run, below Midway, Pa	Do	Do	Do	До	Do	Do	Do	Robinson Run, 14 mile above Mc-	Do	Do	Do	Do	Do	Do	Do

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 8 6 1 1 1 1	6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		* * * * * * * * * * * * * * * * * * * *		E 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					;					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 9 0 0 0 0 0 0 0 0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	
0 6 6 0 0	5 3 5 6 6 0	1 0 0 1 2	; ; ;			NO.	00				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		) ; ; ; ;	:			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 0 0 0 0 0 1 1 0 0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6			
162	138	225	195	20	7.5	150	110	4	4	ক	4	11	9.5	82	85	99	19	17	24	52	48	110	902	130	120	
60	2.9	2.4	3.1	44.	63	4.3	4.5	2.8	2.9	2.6	2.9	60,	3.3	9.5	00	2.8	2.9	3.0		3.1	90	3.7	4.4	ගෙ	∞ ∞	
€	(3)		(2)	7	310	41	0	0	0	0	0	0	(2)	П	0	0	0	0	0 .	0	63	24	0	(3)	5	one.
1.71	00 1-	16.1	1.5.7	F 9, 4	14.4	4.4	2.5	11.4	11.8	11.3	11.7	11.5	1.9	1-8.	1.0	11.2	12.4	6.9	16.0	5.3.3	5. 5. 5. 4.	15.0	12.0	10.0	2.3.3	Less than
78.9	81.2	81.2	94.9	84.0	93.7	96.3	88.7	97.8	8.99	91.6	89.8	93.9	82. 5	98. 5	95.1	94.0	95.3	81.3	68.5	8.8	90.0	85.0	97.3	92.0 {	91.9	00
69 66	10.0	10.3	11.0	11.0	12.0	14.1	10.8	10.7	7.2	12.0	10.2	10.8	11.9	12.9	12.8	12.2	10.3	0.6	0.6	9.2	10.1	12.3	12.9	12.4	12.2	
14.0	6.8	5.6	0.0	4.0	6.0	0	7.0	11.6	12.5	4.0	10.0	9.6	10	4.0	3.0	4.5	12.0	11.0	4.0	10.0	10.5	10	3.5	3.0	9,01	
1 0 0 0 0 0	1			63	2	10	60		1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60	17	9,	60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1 0 0 0 0		1	4	24	00	-di	
2, 1940	10, 1940	21, 1940	28, 1940	7, 1940	20, 1940	3, 1940	13, 1940	1, 1940	8, 1940	17, 1940	24, 1940	5, 1940	18, 1940	29, 1940	11, 1940	23, 1940	1, 1940	8, 1940	17, 1940	24, 1940	5, 1940	18, 1940	29, 1940	11, 1940	23, 1940	ized,
oct,	Oct.	Oct. 2	Oct.	Nov.	Nov.	Dec.	Dec.	Oct.	Oct.	Oct.	Oet.	Nov.	Nov.	Nov.	Dec. 1	Dec. 2	Oct.	Oct.	Oct. 1	Oct. 2	Nov.	Nov.	Nov.	Dec. 1	Dec. 2	i neutral
OChR 17.5	do.	do	do	do.	do	-do	do	OChRNf 15.5	qp	-do	do	do		do	do	do.	OChR 15.5	do	do	do	do	do	do.	-do	do	1 Seeded and neutralized
Robinson Run, 1/2 mile below	Do.	Do	Do	Do	Do	Do	Do	North Fork Robinson Run, 1/2 mile	Do.	Do	Do	Do	Do	Do	Do.	Do-	Robinson Run, upper limits, Oak-	Do.	D0	Do	Do	Do	Do	Do	200000000000000000000000000000000000000	

Temper ture c. C. Parts per saturation filon fil	Dissolved oxygen   Dissolved oxygen   Coli- forms,   Therete   The	· ·		verage		Dissolved oxygen	loxygen	5-day bio-	Coli- forms,		1	A III-CITE	
12.0 9.5 87.  11.5 6.9 6.2  10.0 7.7 6.8  10.5 10.2 7.6  10.5 12.9 94.  11.0 13.3 91.  12.5 6.9 94.  11.0 4.1 386.  11.0 8.1 7.3  12.0 6.2 6.0  12.0 6.2 6.0  12.0 6.2 6.0  12.0 6.2 6.0  12.0 6.2 6.0	Mileage from mouth	from	Date	discharge, cubic feet per second	ature ° C.	Parts per million	Percent satura- tion		most probable number per milli- liter	Hď	ity, parts per million	Alkann- ity, parts per million	Hardness, parts per million
8, 1940     11.5     6.9     62       24, 1940     10.0     7.7     68       24, 1940     10.0     7.7     68       29, 1940     42     1.6     10.1     89       29, 1940     42     1.6     14.0     99       11, 1940     7     4.0     12.5     94       23, 1940     7     4.0     12.5     94       11, 1940     7     4.0     12.5     94       17, 1940     7     4.0     12.5     94       24, 1940     13.5     4.2     4.2     4.7       11, 1940     13.5     4.2     4.7     88       11, 1940     13.6     11.0     4.1     88       24, 1940     13.6     11.0     4.1     88       25, 1940     13.6     11.7     8.1     11.7       28, 1940     81     4.5     10.3     8.3       11, 1940     81     4.5     10.3     8.3       11, 1940     82     1.1     8.1     7.7       88, 1940     81     4.5     10.3     8.3       11, 1940     82     1.1     8.3     11.0       11, 1940     82     1.5     10.3     8.3	OChR 14.5	1		940				12.2	0 {	6.2 80	17		# # # # # # # # # # # # # # # # # # #
24,1940         3.5         10.2         7.7         68           5,1940         8         .0         13.3         91.1           18,1940         8         .0         13.3         91.1           29,1940         42         1.6         12.9         94.2           23,1940         7         4.0         13.3         91.1           23,1940         7         4.0         12.5         95.2           11,1940         7         4.0         12.5         95.2           13,1940         13.5         4.2         40.6         47.1           18,1940         78         2.0         10.7         77.7           23,1940         13.4         11.0         8.1         77.7           28,1940         13.4         10.7         77.7         77.7           28,1940         13.4         11.0         8.1         77.7           28,1940         14.5         10.3         7.9         6.2           8,1940         14.5         10.3         7.9         6.2           8,1940         14.5         10.3         7.9         6.2           8,1940         14.5         10.3         7.9	-do	0		940				13.3	0	3.0	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 0 0 0 0 0 0
24,1940         10.0         7.7         68           5,1940         8         .0         18.3         91.1           29,1940         42         1.6         14.0         99.1           11,1940         7         4.0         12.5         94.2           23,1940         7         4.0         12.5         95.2           11,1940         14         2.5         12.0         94.2           17,1940         17         13.5         4.2         40.0           17,1940         11.0         4.1         36.0         47.7           18,1940         78         2.0         10.7         77.7           28,1940         13.4         11.0         8.1         73.8           28,1940         13.4         10.7         77.7         77.7           28,1940         13.4         15.0         6.2         60.2           8,1940         13.5         11.0         8.1         79.1           1,1940         13.5         1.6         6.2         60.2           28,1940         14.5         6.2         60.2         60.2           8,1940         14.5         6.2         60.2         60.2	-do	0		040			76.8	13.0	0	12.	11	1	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5,1940         8         10.5         10.1         89           29,1940         42         1.5         14.0         99           23,1940         7         4.0         12.5         94           11,1940         7         4.0         12.5         95           1,1940         7         4.0         12.5         95           11,1940         7         4.0         12.5         95           13,1940         13.5         4.2         40         47           24,1940         11.0         4.1         88         47           28,1940         78         2.0         10.7         77           20,1940         13.4         1.6         11.7         88           21,1940         13.4         1.6         10.7         77           20,1940         13.4         1.6         10.7         77           21,1940         13.6         1.1         88         11.0           23,1940         14.5         6.2         60           8,1940         14.5         6.2         60           8,1940         14.5         6.2         60           8,1940         14.5         6.2 </td <td>do</td> <td>0</td> <td></td> <td>0161</td> <td></td> <td></td> <td></td> <td>13.0</td> <td>0</td> <td>3.1</td> <td>14</td> <td>-</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	do	0		0161				13.0	0	3.1	14	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18,1940         8         .0         13.3         91.           29,1940         42         1.5         14.0         99.           11,1940         7         4.0         12.9         94.           23,1940         7         4.0         12.5         95.           1,1940         14.0         12.5         95.         96.           1,1940         13.5         4.2         40.         47.           24,1940         13.5         6.0         47.         47.           25,1940         11.0         4.1         38.         47.           28,1940         13.4         1.5         11.7         88.           29,1940         13.4         1.5         11.7         88.           20,1940         13.4         1.5         11.7         88.           21,1940         13.4         1.5         11.7         88.           23,1940         8.1         1.5         11.0         88.           23,1940         1.1         5.0         6.2         60.           8,1940         1.1         5.0         6.2         60.           8,1940         1.1         5.0         6.0         6.0	-do	Z		1940				14.6	23	5	32	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
29, 1940         42         1.5         14.0         99.           11, 1940         7         4.0         12.5         94.           23, 1940         7         4.0         12.5         95.           1, 1940         13.5         4.2         40.         67.           8, 1940         13.5         6.5         6.0         47.           24, 1940         11.0         4.1         86.         47.           28, 1940         13.6         11.0         4.1         88.           28, 1940         13.4         1.5         11.7         77.           28, 1940         81         4.5         10.7         77.           28, 1940         81         4.5         10.3         79.           3, 1940         81         4.5         10.3         79.           4, 1940         81         4.5         10.3         79.           8, 1940         81         4.5         10.3         79.           8, 1940         81         5         6.2         60.           8, 1940         82         6.2         60.         67.           8, 1940         86         6.2         60.         67. <td>do</td> <td>7</td> <td>ov. 18,</td> <td></td> <td>•</td> <td></td> <td></td> <td>1 2.3</td> <td>4</td> <td>3.5</td> <td>75</td> <td></td> <td>1</td>	do	7	ov. 18,		•			1 2.3	4	3.5	75		1
13,1940         14         2.5         12.9         94           28,1940         7         4.0         12.5         95.           1,1940         13.5         4.2         40.         67.           17,1940         13.5         4.2         40.         47.           24,1940         5.5         6.0         47.         47.           18,1940         78         2.0         10.7         77.           11,1940         134         1.5         11.7         83.           23,1940         81         4.5         10.3         83.           1,1940         81         4.5         10.3         83.           8,1940         81         4.5         10.3         83.           8,1940         11,5         6.2         60.         67.           8,1940         12.0         6.2         60.         67.           8,1940         12.0         6.2         60.         67.           8,1940         13.0         6.2         60.         67.           8,1940         14.5         6.0         6.0         67.           8,1940         10.0         6.0         6.0         67. <td>-do</td> <td>4</td> <td>ov. 29,</td> <td></td> <td></td> <td>14.0</td> <td></td> <td>11.3</td> <td>1</td> <td>3.9</td> <td>90</td> <td></td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	-do	4	ov. 29,			14.0		11.3	1	3.9	90		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23, 1940         7         4.0         12.5         95           1, 1940         7.0         67.0         67.1         67.1           17, 1940         5.5         6.0         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.1         47.	-do	I			~i			12.3	1,100	3.1	06		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1, 1940     13.5     4.2     40.0       8, 1940     5.5     6.0     47.       24, 1940     6.5     6.0     47.       18, 1940     78     2.0     10.7     77.       18, 1940     78     2.0     10.7     77.       11, 1940     81     3.5     11.0     83.3       11, 1940     81     4.5     11.0     83.3       11, 1940     81     4.5     11.0     83.3       11, 1940     81     4.5     10.3     79.3       8, 1940     15.0     6.2     60.2     60.2       8, 1940     7.5     6.9     57.       12, 0     6.6     6.1     61.	-do	I			4.	12.5		12.1	0	3.0	110	1	
8, 1940         13.5         4.2         40           24, 1940         5.5         6.0         4.7           24, 1940         11.0         4.1         88.1           5, 1940         78         2.0         10.7         77           20, 1940         134         1.5         11.7         83.3           20, 1940         81         4.5         10.7         77           20, 1940         81         4.5         10.3         83.3           1, 1940         14.5         6.2         60.2         60.2           8, 1940         15.0         6.2         60.2         60.2           8, 1940         12.0         5.6         61.         61.           17, 1940         12.0         5.6         61.         61.	OCh 8.5	0		0161				2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	63.69	25	1	1 0 0 1 1 1
17, 1940         6.5         6.0         47.           24, 1940         11.0         4.1         38.           5, 1940         11.0         4.1         73.           18, 1940         134         1.5         11.7         77.           18, 1940         134         1.5         11.7         83.           18, 1940         81         4.5         10.3         79.           1, 1940         14.5         6.2         60.         60.           8, 1940         15.0         6.2         60.         67.           17, 1940         7.5         6.9         67.           24, 1940         7.5         6.9         67.           24, 1940         6.2         6.0         61.           25, 1940         6.2         6.0         66.	do	0	00	1940				20 00 00 00 00 00 00 00 00 00 00 00 00 0	0	60 44	17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24,1940         11.0         4.1         38.           5,1940         11.0         8.1         73.           18,1940         78         2.0         10.7         77.           29,1940         134         1.5         11.7         77.           28,1940         3.5         11.7         83.         78.           28,1940         14.5         10.3         83.         79.         83.           8,1940         15.0         6.2         60.         67.         67.         75.         6.9         67.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74.         74. <td>.do</td> <td>0</td> <td></td> <td>1940</td> <td></td> <td></td> <td>47.6</td> <td>113.1</td> <td>69</td> <td>4</td> <td>14</td> <td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td># E E E E E E E E E E E E E E E E E E E</td>	.do	0		1940			47.6	113.1	69	4	14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# E E E E E E E E E E E E E E E E E E E
18,1940         78         2.0         10.7         77.           18,1940         78         2.0         10.7         77.           11,1940         134         1.5         11.0         83.           23,1940         81         4.5         11.0         83.           1,1940         14.5         6.2         60.         60.           8,1940         15.0         6.2         60.         67.           17,1940         7.5         6.9         67.           24,1940         12.0         6.6         61.         61.	-do	0		1940	11.0		86.9	1 28.4	0	60	11	0 0 0	8 8 8 0 6 9 1 2
18,1940         78         2.0         10.7         77.7           29,1940         134         1.6         11.7         88           25,1940         81         4.5         11.0         83           1,1940         14.5         6.2         60         6.2         60           8,1940         15.0         6.2         60         57.         6.9         57.           28,1940         12.0         6.6         6.1         6.1         6.1         6.1         6.1         6.1	do	2		940	11.0		73.3	118.5	11	80°	06	11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20,1940     134     1.5     11.7     83.5       23,1940     93     3.5     11.0     83.5       1,1940     4.5     10.3     79.       5,1940     15.0     6.2     60.       17,1940     7.5     6.9     57.       24,1940     12.0     6.6     57.	do	Z			64	10.7	77.1	17.0	63	5.1	95	. 00	0° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2, 1940 81 4.5 10.3 79.2 1.1940 81 1.15 6.2 60.1 17, 1940 7.5 6.9 57. 24, 1940 7.5 6.9 57. 24, 1940 7.5 6.9 57.	do	2.5			-ic	111.7	2000 2000 2000 2000	25.0	110	6,3	125	120	
1,1940     11.5     6.2     60.       8,1940     15.0     6.2     60.       17,1940     7.5     6.9     57.       24,1940     12.0     6.6     51.	do	10		_	o 4i	10.3	79.4	) (cc)	88	900	120	25	F F 1 1 0 0 3 1 0 0 7 0 7 0 7 0 8 7 1 2
8, 1910 15.0 6.2 60. 17, 1940 7.5 6.9 57. 24, 1940 12.0 5.6 61.	OCh 6.5	0		940				17.9	9	3.2	35		
24, 1940       24, 1940	do	0		910	15.0			13.5	46	4.0	3	1	9 9 9 9 9 1 1
24, 1940	do	0		940				121.9	14	60	28	1 1 7 7 1 1	
	do	0		940	- 12.0			117.8	4	3.5	64	1	

	4						ענט	IR	UN.	U	NU	711	الد	PUI	K .	V E	KI	10	UH							
	7	00	11	I	9	20	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9		3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			11	24	12	7
	22	22	23	9	9	60	180	200	120	148	30	45	44	33	130	230	170	108	112	162	63	80	110	066	130	111
		6.7		4.9	6.1	4.9	61	4	භ	3.4	2.9	5.0	53	64	5.0	A4 10	3.4	3.0	2.9	2.5	5.00	2.9		6.0		0.0
. опо	(3)	(2)	7	@	0	(2)	0	63	1	90	0	0	0	3	C9	0	F	64	0	0	0	0	4	23	110	6
2 Less than	12.2		00 m	3 2 2	9	19.0	11.6	14.0	13.0	13.5	13.4	12.0	14.0	19.07	13.0	1-0	7.5.	12.4.2	4.6	0.00	. 20 A	100.0	100.3	100 A	1 20 9	80.00
	90.3	93.9	93.6	88.0	91.2	91.6	94.7	8.06	88.1	87.6	82.7	78.4	64.9	92.7	83.6	87.4	87.2	89.2	106.3	80.3	79.4	85.7	84.1	83.6		74.5
	12.0		12.6	11.1	12.0	11.2	11.7	13.3	11.1	11.1	9.6	8.7	7.7	10.2	10.4	12. 4	10.5	10.9	11.5	9.3	9.0	9.1	10.8	11.6	9.3	8.2
		5.0	3.0		4.0	7.0	6.5	0.	0.0	10	9.0	6.5	8.0	11.5	6.0	1.0	7.5	7.0	12.0	Q.	10.0	13.0	5.0	4.0	2.0	11.0
	65	71	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29	29	1 5 6 6 5 1 1	10	17	9	2	1 0 0 1 1 0 0	1 1 5 1 1 1 1 1 1	1 1 1 1 1 0 0 0	5 5 8 8 8 8 8 8 8	10	13	4	10		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 0 0 0 0 0 0	06	178	98	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
tralized.	e. 23, 1940	s. 17, 1940	e. 11, 1940	v. 25, 1940	v. 15, 1940	v. 7, 1940	3. 13, 1940	3, 1940	v. 20, 1940	v. 7, 1940	. 28, 1940	21, 1940	. 10, 1940	2, 1940	c. 13, 1940	c. 3, 1940	Nov. 20, 1940	Nov. 7,1940	t. 28, 1940	t. 21, 1940	t. 10, 1940	t. 2, 1940		v. 29, 1940 c. 11, 1940		v. 5, 1940
Seeded and neutralized	Dec.	Dec.	Dec.	Nov.	Nov.	Nov.	Dec.	Dec.	Nov.	Nov.	Oct.	Oct.	Oct.	Oct.	Dec.	Dec.	No No	No	Oct.	Oct.	Oct.	Oct.	Dec.	Nov. Dec.	Nov.	Nov.
1 Seed	qo	do	do	do	do	ORa 0.5	qo	do	do	do	do	do	do	ORa 31.5	do	op	do	qo	qo	do	do	ORa 32.5	qo	dodo	do	- op
	Do.	Do	Do	Do	Do	scoon Creek, at mouth	Do	Do	Do	Do	Do	Do	Do	coon Creek, 1/2 mile below Bur-	Do.	Do	Do	Do	D0	Do	Doggester Care	coon Creek, 1/4 mile above Bur-	Do	Do.	Do	D0.

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Hardness,	million	5 6 6 6 8	140	202	, 4	194 214	. 0	8	T 6 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Alkalin- ity, parts	per million	135	132	120	107	109	120 128 131 147	115 80 84 103 103	131 136 136 137	116 77 77 883 90
Turbid-	per million	13	7	15		18	00 00 00 00 00		1128	00 to 10 H
Hď	4	8.0	2.007.	7.7.7	42.9	F.F.F. 4400		\$\$\$\$\ \$\$\$\$ \$\$\$ \$\$\$		00 € € 00 € 00 € 00 € 00 € 00 € 00 € 0
Coli- forms, most probable	number per milli- liter	43	23 240 91	240	308	16 .	\$4 2.II.8	2, 400 2, 400	460 930 430 240	0.000 4 0.000 4 0.000 4
5-day blo- chemical oxygen	demand, parts per million	1.9	6.6.4	12.0		9	200k-	0000000		
l oxygen	Fercent satura- tion	100. 5	61.7 30.2 60.3	66.2 49.0 85.2	92. 8 66. 2 64. 4	80 52 88 80 50 89 80 50 80		97.7 98.6 97.6 86.4	7.4.7 67.7 7.6.0 7.6.0	90.00 90.00 90.00 90.00 90.00
Dissolved oxygen	Parts per million	9.5	400	€.4.00 0.1.00	တယ် တ တ	00 ro co	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	00 00 00 00 00 00 00 00 00 00 00 00 00	0.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
Temper-	ature ° C.	100.00	22.0 24.0 19.0	21.5 25.0 13.5	18.5 20.5 17.0	19.5 21.0 16.5	11.00.00.4	10.0 5.0 19.0	11.0	10.00 mm. 00.00
A verage discharge,		(3)	(3)	32 3		4 62 88	25	37 20 25 60	33	26 26
Date		June 28, 1940	July 10, 1940 July 29, 1940 June 28, 1910	July 10, 1940 July 29, 1940 June 26, 1940	June 28, 1940 July 10, 1940 June 26, 1940	June 28, 1940 July 10, 1940 June 26, 1940	Sept. 26, 1940 Oct. 3, 1940 Oct. 22, 1940 Oct. 31, 1940 Nov. 8, 1940	26, 16, 4, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26	Sept. 26, 1940 Oct. 3, 1940 Oct. 22, 1940 Oct. 31, 1940 Nov. 8, 1940	22 26, 1-6, 1-6, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28
Mileage from	mouth	OLbMf 37	do do OLbMf 32.	do OLb Mf 35.5	do do OLbMf 33.5	do OLbMf 25	00 00 00 00 00 00 00 00 00 00 00 00 00	do do do OL do OL DMI 22	do do do	do do do OLbL 17.5
Sampling point	Anna Sundanna	Middle Fork Little Beaver River, 1	Middle Fork Little Beaver River,	4 miles below Salem, Onio. Do. Do. Middle Fork, Little Beaver, 1 mile	above Leetonia, Onio. Do. Middle Fork, Little Beaver, 1 mile	Middle Fork, Little Beaver, % mile	Brooke Listoria, Olivo. Do. Do. Do. Do.	Do Do Do Middle Fork, Little Beaver, 2 miles	below Lisbon, Onto. Do. Do. Do. Do. Do. Do. Do. Do.	Do D

180	0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		f 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E E I I I I I I I I I I I I I I I I I I	
127	96	- 000 46	586	28.3	54	45.	45	67	55	44	e i	101	101	355	84	18	93	67	54	- 19	200	61	41	39	09	24	333	97	80		69	20	35	45 .	- 09	0 24	2 4	59	45	38.0	000	
40	16	Q 14	2 00	000	P. C	000	t-	00 1	1	oc :	0	¢ 00	2 10	15	L.	10	9	10 30	201	77	10	93	130	17	12	00	90 1	-	QI	0 00	- 01	0	130	15	9	o	100	2	9	130	07	
7.9	01																																6.8		6.3					00 CE		
430	43		00	40 0	46	46	6	6	<b>.</b>		di C	 n d	000	24	63	0		110	36	J (	011	2000	1	0	43	46	<b>a</b>	<b>D</b>	-	460	30	46	43	23	93	076	4	24	23	240	047	
2.8	T											3.0	i 00		90	1.0	6.	, N	1.5	-i -	1.0	1:00	9 6	00	6.		-	B.		) c		1-	1.4	00.	1.2		6	00	1.0	1.7		
95.9	98.0		95.7																														97.6							99.2		
9.4			9.6																														11.6							11.00		
16.5	13.5	14.0	15.5	16.0	12.0	13.0	12.5	0.6	12.0	101	0.11	0.0	9	5.0	3, 5	1.0	5.0	2.0	10.	٠	9.0	9.4	4	1.0	3.0	:0 :0	410	2.5	e e	900	11:0	2.0	8.0	5.5	4.0					000		
10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	0 1 2 0 1 2 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	B 1 B 2 B 3 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4 B 4	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5 4 2 5 6 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 2 2 6 6 6 6	2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 3 3 4	8 8 8 1 6 1 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 - 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6	40	9	00	6 6 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			000	7	WH WH		
ф	26, 1940		4, 1940								30	-i 10	5 1-	13,	15,1	19,1	25,1			_	- F	12, 1940	4 2-	d hard	-	31, 1940		. 22, 1940	21	610	22,	4	16,1	26,	22, 1	10	j ox	22,		16,	- 0#81 '07	
	Sept	- Sept	Oct.	Oct.	- Oct.	Oct.	Oct.	Det.	Oct.	Oct.	Uer.	Nov.	Z	Nov.	Nov	Nov	Nov	Nov	NOV	Dec.	Dec.	Dec.	Dec	Dec.	Dec.	Dec.	Jan.	. Oct.	Oot	NO.	707	Dec.	Dec.	Dec.	Oct.	100	- Cor.	Nov	Dec.	Dec.	Dec.	
OLbL 14.5	0.2	0	do	0		10	0	0	0	op	0	30	do	0	0	0	0	0	0	0	0	10	0	0	0	00	do			0		0	do	0	23.5	(	0	0	do	0	01	
OLb	OLP 0.	0	q	P		9	g	Dd	D	D	0	0	370	P	pd	d d	p d	D	pd	D	D	D	7	P	7	p	11	OY 2	~		7	P	þ		OY 2		D	D	pq	D	0	
slie Run, 2 miles below East	t mouth															1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ellow Creek, 14 mile above Am-				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ellow Creek, 1 mile below Amster-							
die Run, 2 mües	tle Beaver River, at mouth		Do	1 1 2 2 4 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 7 9 1 1 2 3 4 0	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	reek, 14 mi	, Ohio.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	reek, 1 mile	hio.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 Less than one.
slie Rt	ttle Bea	Do	Do	Do	T. O. T.	Do	Do	Do	Do	Do	100	D0	100	Do	Do	Do	Do	Do	Do	Do	Do	D0	Too	Do	Do	Do	Do	ellow (	sterdam, Ohio.	Tool T	100	1)0	Do	Do	ellow C	dam, Ohio.	Do	Do	Do	Doc.	DO	1 Les

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

OHIO RIVER FOLLUTION CONTROL		
	Hardness, parts per million	
	Alkalin- ity, parts per million	8 419888834 444488889 6556888888 95568888888 95568888888888
	Turbid- ity, parts per million	8 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Hď	で しゅうしゅうきょう しゅうしゅう にゅうかい しゅうしょ こうかい しゅうしゅう にゅうかい こうしゅう いっぱい しゅうしゅう にゅうかい しゅうしゅう しゅう
	Colliforms, most probable number per millifiter	(e) 6 6 74 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	5-day bio- chemical oxygen demand, parts per million	
		8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
	Dissolved oxygen Parts per satura- million.	1 6212121 6 6112121 6 6112121 6 6112121 6 6112121 6 6112121 6 6112121 6 6112121 6 6112121 6 6112121 6 6112121 6 6112121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 61121 6 6112
	Temper- ature ° C.	0 41.04544.45
	Average- discharge, cubic feet per second	100 00 00 00 00 00 00 00 00 00 00 00 00
	Date	Sept. 26, 1940 Oct. 31, 1940 Oct. 31, 1940 Oct. 32, 1940 Nov. 28, 1940 Oct. 31, 1940 Dec. 26, 1940 Oct. 32, 1940 Oct. 32, 1940 Oct. 32, 1940 Oct. 31, 1940 Oct. 32, 1940 Oct. 31, 1940 Oct. 32, 1940 Oct. 34, 1940 Oct. 34, 1940 Oct. 36, 1940 Oct. 37, 1940 O
	Mileage from mouth	OYR 13.  60. 60. 60. 60. 60. 60. 60. 60. 60. 6
	Sampling point	Riley Run, 34 mile above Saline- ville, Ohio.  Do  Do  Do  Do  Do  Do  Do  Do  Do

1 Less than one.

		1	E 4 E 7 E 7 E 8 E 8 E 8 E 8 E 8 E 8 E 8 E 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
6244888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			95	54 79 69 69 43 113	888 1001 997 999 988 105 141	135 88 88 40 124 124 131 131	198 193 183 160 160 140 148
210 223 233 199	15	55	09	13	170 822 83 83 83	2000 44 4 8 000 4 4 8 000 4 0 8	122550	2001138000
877779 V 810-19 F	6 6	6, 6, 80 00		6.7	0.00.00.00.00.00.00.00.00.00.00.00.00.0	64.0000ch	00000000	က်-ကြဲလာလာတွ <b>်တွင်</b> တက္ကတာလူတွင်း
42 0 0 0 0 0	(2)	24	0	6	240 9 4 110	240 0 1,100 1,23 93	1,100 1,100	11,000 4,600 2,300 930 150 43
.2	119.6	132.24.27	112.0	119.1	30400	0F0F089		16.00.40.11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1
80 99 99 99 90 90 90 90 90 90 90 90 90 90	97.4	86.4	91.1	99. 2	92.4 97.9 97.4 98.0 100.1	89.7 96.6 98.9 97.6 99.5 100.1	100.9 95.2 96.9 99.6 100.3 99.2 91.9	28. 66.8. 68.0. 77.7.5. 99.2.6 6.1.6
23883 F	9.2	9. 9		13.0	12.0	2.00.00.00.00.00.00.00.00.00.00.00.00.00	4.22.80.0.1.4.0.0.1.4.0.0.1.4.0.0.1.4.0.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.4.0.1.0.1	10.77.728 10.08868 10.0888888
3.5.0 0.0 0.0 19.0	18.5	12.0		15.0	00000	9994460 000000	10.00	10.00
30 153 72 359 359	50	70 70 70	8 4 8	38	134 50 37 18	116 116 220 220 177 226	160 160 70	বিপ্রভব্দপ্র
Nov. 14, 1940 Nov. 27, 1940 Dec. 9, 1940 Dec. 19, 1940 Jan. 2, 1941 Nov. 12, 1940	Nov. 18, 1940 Nov. 26, 1940	Dec. 2, 1940		Dec. 26, 1940 Nov. 14, 1940	Nov. 27, 1940 Dec. 9, 1940 Dec. 19, 1940 Jan. 2, 1941 Nov. 12, 1946	Nov. 18, 1940 Nov. 26, 1940 Dec. 2, 1940 Dec. 10, 1940 Dec. 18, 1940 Dec. 26, 1940 Nov. 14, 1940	Nov. 22, 1940 Nov. 28, 1940 Dec. 6, 1940 Dec. 12, 1940 Dec. 20, 1940 Dec. 24, 1940 Sept. 27, 1940	Oct. 25, 1940 Oct. 25, 1940 Nov. 1, 1940 Nov. 6, 1940 Dec. 2, 1940 Dec. 12, 1940
OY 0.2 do do Do do do Do OH 0.2	do		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OCr 0.2	do do Ja	do d	do BanMí 25.3 Se	00 00 00 00 00 00 00 00 00 00 00 00 00
uth.	gina Route No. 2.  Do	Do	Do	Cross Creek, mouth, Ohio Route O	11114	uth 0.8, West 0	11110	Do.

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, purts per million		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1	ity, parts per million	110286	200
7	ity, parts per million	2. 660 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1
	Hd	ಡ ೧೯೨೨ರಾವಿ ಸಾಧ್ಯದ ಕ್ಷಣ್ಣ ಕ್ಷಣಣ್ಣ ಕ್ಷಣ್ಣ ಕ್ಷಣ್ಣ ಕ್ಷಣ್ಣ ಕ್ಷಣಣಣಣಣಣಣ ಕ್ಷಣಣಣಣಣಣಣಣ ಕ್ಷಣಣಣಣಣಣಣಣಣಣ	
Coli-	most probable number per milli- liter	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	23
5-day bio-	oxygen demiand, parts per millien	8 0000000000	00
	Percent satura- tion	11 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Dissolved oxygen	Parts per million	2 H 0 0 1 4 4 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10.5
	Temper- ature ° C.	0. 0.00000000 0.0000000000000000000000	9.0
Average	discharge, cubic feet per second	04.00.00.00.00.00.00.00.00.00.00.00.00.0	
	Date	Sept. 27, 1940 Oct. 25, 1940 Oct. 25, 1940 Nov. 1, 1940 Nov. 19, 1940 Dec. 12, 1940 Oct. 26, 1940 Oct. 26, 1940 Oct. 26, 1940 Oct. 26, 1940 Nov. 19, 1940 Dec. 12, 1940 Dec. 13, 1940 Dec. 18, 1940 Dec. 26, 1940	Τ,
	Mileaze from mouth	OSh 17.3  do d	qp
	Sampling point	Short Creek, upper limits, Adena, Ohio. Do. Do. Do. Do. Do. Do. Do. Do. Do. D	Do

					380	
38 6674 370 370 370	57	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83.0 89.99 80.0 80.0 80.0 80.0 80.0 80.0 8	88 88 88 84 22 86 48 88	35	111 922 928 1119 930 1139 77
228242	25 86 58	100 100 100 100 100 100 100 100 100 100	84 88848	83.12	60 83 55	0.44 0.44 0.05 0.05 0.05 0.05 0.05 0.05
0.90.00.00.00.00.00.00.00.00.00.00.00.00		C C C C C C C C C C C C C C C C C C C			6.6.6.6.9	QQQQQQQQQ QU4QQUF4Q
(2) 9 (1) 11 1,100	460	8888888888	240 11, 100 1, 100 1, 100 2, 400	4, 600 430 4 430	(S)	(3) 24 (2) 28 (3) 111 (4) 24
7.00000	6.3	1991 H91.		8100 o	∞ ro ro	7730000000
89.9 95.0 96.0 97.0 99.7		67.38.88.94.88.85.75.87.75.75.88.89.89.89.89.89.89.89.89.89.89.89.89.			92.6 82.7 79.6 43.9	2000 88 88 88 88 88 88 88 88 88 88 88 88
111.11.11.11.11.11.11.11.11.11.11.11.11		8.00.01.11.00 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.11.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0.00.01.10 0			0.9 7.47.	222.2.96 23.4.96 23.4.96
6.5 2.0 5.0 13.5	11.0	C-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	10.0 10.0 10.0 10.5 10.5 10.5		17.0 11.5 17.0 13.5	7.97.91.09.44 07000 200
0 10 4 O 4	1	0 0 0 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	330 203 184 450 175	281	H ∞	117 115 115 115
6, 1940 7, 19, 1940 1, 1940 1, 12, 1940 1, 27, 1940	25,1	6, 1940 2, 1940 12, 1940 12, 1940 24, 1940 27, 1940 27, 1940 19, 1940	22,24, 0,4,2,8,0	10,220,13	7 15, 1940 7 13, 1940 7 13, 1940 15, 1940 15, 30, 1940	29, 1940 7, 13, 1940 7, 13, 1940 7, 13, 1940 7, 13, 1940 6, 1940 1, 18, 1940 1, 30, 1940 1, 31, 1940 1, 31, 1940
Nov Nov Dec. Dec. Dec. Sept.	Oct.	Nove con Nov	Jan. Nov. Nov. Nov. Dec.	Dec. Dec. May	May May Sept.	DE PER STORY
do do do do OShPi 11.3.	do.	00000000000000000000000000000000000000	OW h 0.1 do do do do OW h 0.1	do- do- OWh 24.7	OWh 23.7	00000000000000000000000000000000000000
Do. Do. Do. Do. Do. Obis Fork Creek, below Finey Fork,	Do.	Do Do Do Short Creek, mouth, Ohio, route, No. 7. Do Do	Creek, mouth, West Vir- ute No. 2.	1 1 1 1	Wheeling Creek, 134 miles below Laferty, Ohio. Do. Do. Wheeling Creek, 134 miles above Fairmont, Ohio.	Do Do Do Do Do Do Do Do Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

02	OHIO RIVER POLLOTION CONTROL
Hardness, parts per million	
Alkalin- ity, parts	21 158 82 828 828 828 828 828 828 828 828 82
Turbid- ity, parts per million	6 128 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Hď	G GGGGGGGGGGG GGGCCCGCCGCGGG G G GCCCGCCC元 4 G GGGCGGGGGGGGGG
Coli- forms, most probable number per milli-	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
5-day bio- chemical oxygen deniand, parts per million	は 34
Dissolved oxygen arts per satura- million tion	(2) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8
1 4	c       40001111010101010       40000000       1       0       1100101010       0         c       400000000       400000000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
Temper-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
A verage discharge, cubic feet per second	(e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f
Date	Sept. 30, 1940 Oct. 18, 1940 Oct. 29, 1940 Nov. 18, 1940 Nov. 28, 1940 Dec. 18, 1940 Dec. 18, 1940 Oct. 29, 1940 Oct. 28, 1940
Mileage from mouth	OWh 18.2.  do d
Sampling point	Wheeling Creek, ½ mile below Fair- point, Ohio. Do. Do. Do. Do. Do. Do. Do. Do. Do. D

			0 b b 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	196	1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
242 282 284 886 886 886 886 886	70 100 109 110 210	200 1190 1186 1193 1181 1181 1181 1181 1181 1181 1181	79 105 106 106 139	101	61	76.8.7.8.7.7.8.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
001 001 001 001 001 001 001 001 001 001	250 95 70 70 6	22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20	2888	4001	420	24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
0000000000 000000000000000000000000000	00.004	\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.6.7.6.7. 0.8.0.80		× × × × × × × × × × × × × × × × × × ×	にに Q Q Q C C C C C C C C C C C C C C C C	
22 4.4.8.8.8.4.4.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	910 230 43 93 110, 000	6411489444 000000000000000000000000000000000	240 9 460 240	<del>2</del> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 100	150 123 110 110 91 24 24 150 430	
1. 1	2	11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.11.00.	6		11 14 00 4	.4.4	
98.77.89.95.6 9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	97.7 96.0 94.3 96.7	7.40.40.81.8888 8.01.40.81.0888	99555 9955 9955 9955 9955 9955		148. 2 128. 6 92. 6	109.7 103.9 103.9 108.7 106.7 106.7 106.7 107.9 97.9	
11.2.1.1.2.1.1.2.2.1.2.2.2.2.2.2.2.2.2.	12.8 13.4 11.9 10.2	64.6.7.8.00 4.1.7.8.00 6.01 6.01 6.01	12.7		4 6 9	00.00.00.00.00.00.00.00.00.00.00.00.00.	
**************************************	4,0 1.0 14.5 14.5	0.111 0.111 0.12,8,4,7,7,7,7,4,0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.0		17.0	22.22.22.22.22.22.22.22.22.22.22.22.22.	
838 838 838 838 838 838 838 838 838 838	145 68 40 267	(2) (2) (3) (4) (5)	167 83 55 224	200	1 2 2 2 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0		
4, 1940 13, 1940 26, 1940 6, 1940 18, 1940 31, 1940 31, 1940	. 27, 1940 9, 1940 19, 1940 2, 1941 30, 1940	29, 1940 13, 1940 26, 1940 26, 1940 18, 1940 18, 1940 30, 1940 31, 1940	27, 1940 9, 1940 19, 1940 2, 1941 10, 1940	15,	15, 1940 15, 1940 24, 1940	4, 1940 21, 1940 11, 1940 11, 1940 26, 1940 5, 1940 113, 1940 21, 1940 21, 1940 29, 1940	
NN NO OV	Nov. Dec. Jan. Sept.	NDDDDNNNOO SEE SEE SEE SEE SEE SEE SEE SEE SEE S	Dec. Dec. Jan. May	May May May	May May	June June June July July Aug. Aug.	
do do do do do OWh 0.2	do do do OMCL,mA 10,7	do do do do do do do do do do do do do d	do do do OCpNf 31.0	do do OCpB 27.0	do do OSf 22.9	00000000000000000000000000000000000000	
, Ohio Route	Tahon below	newtile, Onio	Creek, 21/2	reek, 3 miles	miles above		
Do. Do. Do. Do. Do. Do. Do. Nheeling Creek, mouth, Ohio Rout	NO. 6. Do	And II sewage, St. Canterlie, Other Do. Creek, mouth, Ohio McMahon Creek, mouth, Ohio	Koule No. 7.  Do  Do  Do  North Fork, Capting Creek, miles below Remessed Oreek	Do Do Berbesda, Obio.	Creek, 1.1		2 Less than one.
Do D	Do	McMahon	Do	Do Do Bend Fo	Do Sunfish Woodsfi	CACACACACACACACACACACACACACACACACACACA	2 L

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	n- Hardness, rts parts per million	£ 846 &846826288882283888828838628	08
	Alkalin- ity, parts per million	C OAL CALANTONIA CONTRACTOR OF SECTION SERVICES	30 00
	Turbid- ity, parts per million	4 95-8 2 88 88 25 2 8 8 8 8 8 8 8 8 8 8 8 8 8	450
	Hď	め ておよ ななななななななななななななななななななななななななななななななななな	
Coli-	most probable number per milli- liter	e 488 288 0 0 288 0 0 288 44 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	290
5-day bio-	chemical oxygen demand, parts per million	4	1.9
Dissolved oxygen	Percent satura- tion	0	79.2
Dissolved	Parts per million	ಳ ಲೃತ್ತ ಬೈಜ್ವಾಬಲ್ಲಕ್ಷಡ್ಡಿಯಬೈಜ್ವತ್ತ ಹತಕ್ಷಗಳವುಬುಂಡುಬ್ಬಡುಬ್ಬಡುಬ್ಬಡು ೬ ರಾಗರ ಅತ್ಯವಾಗಗಳು ತ್ರಗತ್ತಿಯ ಪ್ರತ್ಯಾಗಿ ಪ್ರತ್ಯಾತಿಯ ಪ್ರತ್ಯ	
	Temper- ature o C.	88 本:81 りぬなには対象なみにははよるな。 86 27 27 14 15 15 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	24.0
Average	discharge, cubic feet per second		
	Date	· 6 6 8 4 4 4 4 4 4 6 8 8 8 8 8 4 8 9 6 8 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8	June 6, 1940 June 10, 1940
	Mileage from mouth	OSf 22.9.  do d	do
AABLE ALT. MEROLO	Sampling point	Sunfish Creek, 1.1 miles above Woodsfield, Ohio. Do Sunfish Creek, 1.5 miles below Woodsfield, Ohio. Do	Do Do

				1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 1 2 2 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	* * * * * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# 6 1 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2.5	513	639	69	33	95	10 3	59	16	22	250	116	12.3	110	26	10	07	04.	er er	20	(99	12		17		1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00	10.	30	10	9		11	14.		833	800	88	4.5	46	65	80	82	55	64	45	48	
1 800	385	1 600	026	200	48	31	550	1-1	50	2.)	15	13	370	235	0.6	2000	007	י מכ	15	355	12	14	32		7		7	11	1,650	52	12	10	}	12	00	) 1	000	35	4 4	120	9	25	12	-1	140	52	130	1 00	
7.3	7:00	1:0	1	7.0	-1	2.3	7.3	7.5	7.0	7.4	7.6	7.8	7.4	7.0	0.9	100	70	0.0	7.4	7.0	7.1	6.5	6.1		00		5.4					10		5.6	4.5												101		
160		1,100	430	16	0	23	460	0	12	6	67	6	460	6	4	40	OF C	7 2	7.4	110	0	2	11		0		E	2	460	0	G	15		63	-	7	7 :	11	46	7	- 4	93	4	<b>©</b>	G	G,	≪ €	20	one.
90	4.0	5 6	1.2	1.0	6	6.	23	1.0	1.5	1.6	1.0	1.4	2.5	1.5		0	000	7:	1.4	1.6	1.3	1.0	1.0	1	. 60		11.0	20	3.0	12	60	9:	1.1.	1.9	1.0	0.L 1	0.5		10.1	00	000	9.	1.6	4.	2.0	6.	-i	0.	1 Less than
80.4											89.8									73.1	0.06	00,20	87.2		97.1	-	102, 2	95.6	69.7	8.9	95.6	97.5	٠	97.7	101.0		0.45.0	04.0	97.7								95.0		
7 39	. 7.5	7.0	7	00	7.0	% 9.%	00	60,	00°	00	7.6	6.7	5.9	7.2	11	0	000	0.1	7.4	6.1	7. 2	7.1	7.1		00					90		aci cci		G G	9.3		10.0	10.4	200	13.0	13.0	13.4	13.4	13.4	13.4	13.7	12.00	13.2	
90.5	22.5	22.0	20.0	23.0	22.0	23.0	17.0	23.53	24.0	24.0	24.5	27.5	26.5	28.0	0.06	27.0	0.10	0.17	20.5	25.5	27.5	27.0	26. 5	1 0	25.0					23.0		22, 5		20. 5	20.0		0.4		. 2	2.5	10	1.5	10	1.5	10	1.0	2.0	1.0	
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 0 2 0 0 0 1	0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 1 1 3 5 5 5 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100000000000000000000000000000000000000	5 5 5 6 6 1 1 1 1	E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4   1   1   1   1   1   1   1   1   1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 0 5 0 0 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1		
	4	000	20,	24.	38	Si.	3	10,	12,	16,	18, 1940	22,	24.	28	30	5 -	î N	ر ا ا	7,	သ်	13, 1	15.1			. 21, 1940			27.	29	4, 1940	. 6	10.		12, 1940	16. 1940	2 4 4											12, 1941		neutralized.
Time	June	June	June	June	June	June	July	Vinly	July	July	Yinly	July	July	July.	Inly	A 1307	A sage	Aug.	- Aug	Aug.	Aug	Aug	Aug	0	Sny	,	Aug.	Ang	Ang	Sept	Sept	Sept	4	Sept.	Sept.	4	Ten.	Ton	Jan	Jan.	Tan	Jan.	Feb.	Feb.	Mar.	Mar	Mar.	TRIMI	and
do	d6	- Op	do	op	do	do	do	do	do	do	do	do	do	do	do	do	do	00	op	do	ob	do	do		do		do	do	do	.do	do	do-		do	do		do	do	do	do	do	do	do	do	do	do		an	1 Seeded
					5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_												1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1										1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
00	0(	00	00	00	Do.	00	00	)0	00	Do	Do	00	Do	00	00	00	, , , , , , , ,	00	10	00	Do	I)0.	Do		Do		100	)0	1)0	ο(]	Do	100		Do	Do			00	100			1)0	100	Do	Do	Do	Do	DO	
-			7		-	-								-	1 2	1	13	7 1		-			7-00	. )			-																						

Seeded and neutralized.

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Alkalin- ity, parts per million	**************************************	201
	ity, parts per million	に	340
	Hď	A RECENT RESERVED SECULAR RECENTRES CONTRACTOR CONTRACT	6.7
Coli-	most probable number per milli- liter	(E) 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0 1, 100 0	240
5-day bio-	oxygen demand, parts per million	4 11 .0110111100 10110110000001101 .0111	2.0
	Percent satura- tion	జిళ్లిని జిళ్	87.8
Dissolved oxygen	Parts per million	ಹವಿವವರು ಇಂದಾಯಕ್ಕರ್ಯವರ್ಷ ಗರ್ವಯಕ್ಕರ್ಯವಯ್ಯ ಪ್ರಮುಖಗಳ ಗರ್ವಯಕ್ಕರ್ಯವರ್ಷ ಪರ್ವಯಕ್ಕರ್ಯವಯ್ಯ ಪ್ರಮುಖಗಳ ಗರ್ವಯಕ್ಕರ್ಯ ಗರ್ವಯಕ್ಕರ್ಯವಯ್ಯ ಪ್ರಮುಖಗಳ ಗರ್ವಯಕ್ಕರ್ಯ	
	Temper.		15,5
Average	discharge, cubic feet per second		1 4 5 1 6 0 2 6 0 0 0 0 0 0 1 0 1 0
	Date	Mar. 18, 1941 Mar. 29, 1941 Mar. 29, 1941 Mar. 29, 1941 May 24, 1940 May 27, 1940 May 27, 1940 May 77, 1940 M	May 31, 1940
33.5000 49.500	Mileage from mouth	000 37.1 000 37.1 000 37.1 000 34.6 000 34.6	do
	Sampling point	Lite! Muskingum River at mouth Do.	Do

45.55.55.55.55.55.55.55.55.55.55.55.55.5
1.1. 1. 2.005
いいいい かいいい かいいい かいいい かいいいい かいいいいいいいいいいい
\$6.88
\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
象子也不免不不不免不不免不免未免不免未不免债而点罪 氤 负而负不负债 ⑷ 為拉洛洛洛洛路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路
648. 1481. 94. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 1888. 188
4, 4, 1940 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
June June June June June June June June
දිලිදිදිලිදිලිදිලිදිලිදිලිදිලිදිලිදිලිද
00000000000000000000000000000000000000

TABLE M-7.-Minor tributary basins: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Hardness, parts per million	88	54
	Alkalin- ity, parts per million	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	688
	Turbid- ity, parts per million	22.7 15.1 15.2 2.3 3.3 3.3 3.3 3.0 4.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	275
	Ed .	ではないないになっています。 は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、	6.2
Coli-	most probable number per milli- liter	24422222222222222222222222222222222222	1,500
5-day bio-	onygen dervand, parts per million		4.1.
oxygen	Percent satura- tion	00000000000000000000000000000000000000	86.5
Dissolved oxygen	Parts per million	48899448888448888444886 6 11 0 014 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.9
	Temper- ature ° C.	1.000000000000000000000000000000000000	9.5
Average	discharge, cubic feet per second	142 399 155 142 185 64 188 70 64	181
	Date	Mar. 20, 1941  Mar. 24, 1941  Mar. 28, 1941  Mar. 28, 1941  Mar. 28, 1941  June 28, 1941  June 11, 1941  June 12, 1941  July 29, 1941  Aug. 20, 1941  Aug. 20, 1941  Aug. 20, 1941  Aug. 19, 1940  Apr. 19, 1940  Apr. 19, 1940  Apr. 17, 1940  Apr. 19, 1940  Apr. 17, 1940  Apr. 17, 1940  Apr. 19, 1940  Apr. 17, 1940  Apr. 19, 1940  Apr. 17, 1940  Apr. 19, 1940  Apr. 19, 1940  Apr. 19, 1940  Apr. 19, 1940  Apr. 17, 1940	Apr. 19, 1940 Apr. 22, 1940
	Mileage from mouth	do do do do do do do do do do do do do d	do
	Sampling point	Duck Creek, mouth  10.  10.  10.  10.  10.  10.  10.  10	Do

	1 6 6 1 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6	* 1			T t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	
1		25 112 123 123 123 123 123 123 123 123 123	9 645588	. 88 8 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	39 21 51	9 88 9	1
1	9	183750	1, 400	80 10 12 12 17 17 17	75 25 170	175	2
1	6.6		0 600000	111111111 00000000			7.5
co	22 28444	110 750 150 150 443 443 443 443 443 443 443 443 443 44	17 G S S S S S S S S S S S S S S S S S S	420 44 44 0 24 0 24 0 24 0 24 0 24 0 24		011 088 45 5 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28.89.99.99
3.	1 .1	0.1.			0.1.		1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
83.9	85.4 94.9 93.7 93.6 67.7			63.77.7.22.03 6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	6.99.99.05. 6.3.9.9.05. 6.8.1.0.7.	83.6 6.8.2 6.4.2 6.4.2 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4.6 6.4 6.4	99.5.88 8.4. 99.5.89 9.0.0
12.3	21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	,	F. 6. 6. 6. 4. F. 6. 8. F. 9. 4. 9. 7. 0. 1. 8.	10.6 11.0 11.1 13.0 11.1 11.1 11.1
0	000%4:1.6	0 0 0 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0 i 0		16.5 11.0 11.0 12.7 12.0 13.0 13.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15		22.7.2.2.2.1.10.5.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	00000H4F
			1		525	224 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22.17.94 4 4 8 35 55 55 55 55 55 55 55 55 55 55 55 55
. 15, 1939	19, 1940 2, 1940 16, 1940 17, 23, 1940 17, 29, 1940 17, 15, 1940	29, 13, 16, 19, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	8, 4,8, 1,8, 8,	t. 22, 1939 6, 1939 7, 20, 1939 7, 17, 1939 1, 17, 1939 2, 22, 1939	30,1,00, 4	28, 1939 11, 1939 12, 1939 1, 22, 1939 20, 1939 3, 1939	7,-18,2,00,-18,
. Dec.	Feb. Feb. Feb. Nar.	Feb. Feb. Mar.	July July Aug. Aug.	NOOGE TO DESCRIPTION OF THE PROPERTY OF THE PR	Feb.	Sept.	Peh Teh Ma
ÓTw 25.0.	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OLS 32.1. do do do do do	£ 9 5 5 5 5 9	do do OL/s 27.6	5000000000	00000000000000000000000000000000000000
nfle above		rate munt,	niles above		mile below		
eek. 0.7 n	Wayne, W. Va. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do	Theory opporate Inni below Wayne, W. Va. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do	Little Sandy River, 4.1 miles abov Grayson, Ky. Do. Do. Do. Do. Do.		Do D	\$ 1	
venole Cr	8yne, W. V Do Do Do Do Do Do Do	weivepole Creek, corp below Wayne, W. Va. Do. Do. Do. Do. Do.	Grayson, Ky. Do Do Do Do Do		Do D		D0
TWE	X X	be de la	Lit.	HHHHHH	Little		

TABLE M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Hardness, parts per million	
Alkalin- ity, parts Ha per million n	本 に2012 20 20 20 20 20 20 20 20 20 20 20 20 20
Turbid- ity parts ii per million	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Hď	は でくていいいい できょうしょうりょうしょ かりょうりょうしょうじょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょ
Coli- forms, most popular number per milli- liter	\$ \$5\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
5-day bio- chemical oxygen demand, parts per	.
Dissolved oxygen  Percent satura- tion	<ul><li>(2) であるのではなるは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は</li></ul>
Dissolve  Parts per million	は はみずらないのはははにはたいなけてでははははままだされたただれただれる。 うちてきはいりょうこうしょう こうしゅうしゅう こうじゅうしょ しゅうしょう いいき かいい いいい いいい いいい いいいい いいいい いいいい いいい
Tem-	2
Average discharge, cubic feet per second	96 115 115 115 116 116 1173 1173 1173 1173 1173 1173 1
Date	Aug. 11, 1938 Sept. 2, 1939 Sept. 2, 1939 Sept. 2, 1939 Sept. 2, 1939 Nov. 17, 1939 Nov. 17, 1939 Dec. 2, 1939 Dec. 2, 1939 Dec. 1, 1939 Dec. 1, 1939 Dec. 2, 1939 Dune 2, 1939 June 2, 193
Mileage from mouth	OLS 26.2.  40 40 40 40 40 40 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60
Sampling point	Little Sandy River, 1.8 mile below Grayson, Ky.  Do. Do. Do. Do. Do. Do. Do. Do. Do. D

			1 64	0.4 6	12:		7	4 400	4 4	40	1	-
			000	0 70	0.0		7	1,100	* 1	07	74	
			2112	24.0	0,0		L. 0	16	9.1	022	30	
			01/	14.0	1.7		100	83	5.3	20	49	
			27.2	23.5	7.7		1.3	93	7.4	088	29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			111	23.0	7.3		8.	460	7.4	250	29	
			82	. 24.0	7.2		1.0	210	7.6	06	33	
			71	94 0	7		100	0	7 4	22.2	20.00	
			6.7	9.4 5	1.5		i -	150	40	0.00	000	
			2000	0 7 7 0	0.0		- i-	007	1:0	6 6	99	
			200	0.47	0.0		1.0	4.5	1.4	8	4-1	5 1 6 1 5 1 7 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			087	24.0	7.1		1.0	833	7.3	10	42	
			250	24.0	6.7		1.2		7.00	12	46	
			236	25.0	7.4		1.0	230	7.33	1	48	
			206	95 5	2		-	300	1	- 2	N N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			0776	0.00	- 0			000	1:	00	0 1	
			200	0.47	3:1		1.1	7.50	6.4	00	10	
			361	22.0	7.0		2.	150	7.2	9	46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			186	21.5	7.6		1.2	930	7.5	12	48	
			186	21.5	7 9		00	930	7 8	9	40	
			120	500	1			200	1:	2	P C	
67 160 0 (242 55 55 55 55 55 55 55 55 55 55 55 55 55	۰		100	27.0	0:0		0 .	047	0 !	0	500	
			108	18.0	0.00		1.0	430	7.7		54	
			06	19.0	8.0		00	230	7.6	20	47	
			77	200	40		7	93	1 1	Of	20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			1	2000	1:1:			7007	1 -	0 4	004	1 1 1 1 1 1
			7 7	60.07	1.1		8.	430	0.7	C1	7.0	
			67	18.0	7.9		6.	230	0.7	6	47	
			088	15.55	0 6		0	930	2	o	43	9
			63	15.0	0 0			000	3		D P A	
			300	10.0	0.0		a.	04-7		77	40	
			00	10.0	o. 50		00	150	9.2	14	44	
			31	15.5	8,6		6.	230	7.5	1	41	
			29	17.0	7.9		1.0	460	12	10	46	
			111	110	ot		o ot	01	1	1 1	62	
			111	10.0	000			10	1:	10	000	
				10.0	0.0		4	2	4:1	77	99	
			19	0.7	9.6		1. 2	24	7.2	oc	71	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			73	7.0	8.8		1.0	15	7.2	12	67	
			7.5	6.5	6.6		10	9.4	7 4	10	71	
			30	10.2	10.01		-	3	10.1	101	1 2 0	
			200	110.00	20.0		H <	100	- 1	01	00	
			300	11.0	10.0		T. 0	80	4.1	13	59	
			18	0.0	10.1		D.T	460	7.1	14	999	
			6.2	7.0 -	10.6		1.2	93	7.2	oc	44	
			- 18	50.02	10.4		90	240	7.0	13	49	-
			201	6.0	10.6		1.0	93	-1	10	49	
			1. I.	10	10 9		-	940	1	13	40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			1.	200	11.2		-	43		0	CA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			0.0	5 2	11.0		4 7	25	17	0 0	74	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			To I	0.0	11.2		4.1		7.1	13	45	1
			9 9	4.5	11.4		2.	23	7.3	0	52	
			70,00	8.5	11.2		6	240		00	40	
			00	40	11.6		o or	0 2 2		o	H 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			0.0	N C	10.0					3 0	7 1	
			76	0.0	12.0		0.	30		2	55	
			64	I. 5	12.6		1.1	21		00	46	
			820	2	12.5		1.0	15		27	54	
00	Jan.	17, 1940	324	5.	13.5	93.8	1.1	8	90	06	40	
			3 150	60	11		-	7		200	93	
			6) 100		-		2	4			77	* * * * * * * * * * * * * * * * * * * *
1 000												

TABLE M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	
Alkalin-	ity, parts per million	######################################
Turbid-	ity parts per million	88455 66 9 1 1 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Ηď	ひにもはいてものははなななななななな。 たれたたれたたれれれれれれれれれれれれれ
Coll- forms,	most popular number per milli- liter	44001-00-15047555005 8885807044440044904
5-day bio-	chemical oxygen demand, parts per million	1
	Percent satura- tion	#\$7.5-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2
Dissolved oxygen	Parts per million	######################################
	Tem-	48.5.5.448.5.5.1.1.1.4.4.8.5.5.1.1.1.1.4.4.8.5.5.5.4.4.8.8.8.8.8.8.8.8.8.8.8.8
Average	discharge, cubic feet per second	1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	Date	Feb. 26, 1240 Nar. 5, 1940 Nar. 6, 1940 Nar. 11, 1940 Nar. 11, 1940 Nar. 12, 1940 Nar. 12, 1940 Nar. 12, 1940 Nar. 21, 1940
	Mileage from mouth	075-066666666666666666666666666666666666
	Sampling point	Little Sandy River, mouth  100 100 100 100 100 100 100 100 100 1

© 3 8 8 8 8 8 8 4 4 8 4 4 4 8 4 7 4 4 8 4 7 4 4 8 4 7 4 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
250 250 250 250 250 250 250 250 250 250					
V. C.		8.0	7.9	2.7.7.	4.6.6.0
E - 101-10004444841-08	1, 100 1, 100 230 240 83	39 1,500 240 24 9	4 3 1 1 2 4	6110	25.05.0 0.05.1 4
HHHHHH 'HH 'H 'H	. 'ಈ .ಸುಸ್ ಈಯ ಈಯ ಈಸುಸು	400041	<u> </u>	11.11.	म् .म् .ग्युः अञ्चलक्ष्यक्ष
1758.988.888.889.889.889.889.899.899.899.8		104. 956. 900. 900. 95. 95.	88888888888888888888888888888888888888	86. 99.99. 70.996. 70.25. 70.89.	77.4 70.5 61.1 105.1 146.5 106.5
@%@@@@################################		4.01. 12.21. 13.2.2. 13.2.8. 1.8.0.8.	7.0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	7.5 11.9 13.2 13.2 6.0	66 70 70 70 70 70 70 70 70 70 70 70 70 70
ಸ್ತಾಣ್ಕಳು .ಜೀಬ್4ಇಇ4ನುಗ್ಗ ಕಾರಣಾರಣರಣಗಾರರಣರರಣ		25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24.5 17.0 6.0 5.0 24.0	23.5 17.5 6.6 6.6 24.5	24.0 20.1.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0
		1 1 4 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
28, 1939 112, 1939 113, 1939 26, 1939 26, 1939 115, 1940 27, 1940 28, 1940	တွေ့တွေ့တွေ့တွေတွေ့တွ	5, 1939 13, 1939 12, 1940 8, 1939 1, 1939	8, 1939 5, 1939 2, 1939 13, 1939 12, 1940 1, 1939	8, 1939 5, 1939 2, 1939 13, 1939 12, 1940 14, 1939	26, 1939 10, 1939 23, 1939 20, 1939 15, 1939 27, 1939
Nov. Dec. Dec. Dec. Dec. Dec. Tan. Feb. Feb. Feb. Feb. Mar. Mar.	Apr. Sept. Oct. Nov. Jan. Sept.	Oct. Nov. Dec. Sept. Aug.	Sept. Oct. Nov. Dec. Jan.	Sept. Oct. Nov. Dec. Jan.	Aug. Aug. Sept. Sept. Nov. Dec.
<del>6</del> 999999999999	OBris 15	000 000 000 000 000 000 000 000	do do do OW o 10	do do do OT do	00 00 00 00 00 00
	Lick Creek, above West Union, Ohio. Do. Do. Do. Do. Do. Do. Do. Do. Do. D	Do. Do. Do. Do. Do. White Oak West Union, Ohio. Lown Ohio	Do. Do. Do. Do. While Oak Creek, below George-	k, above Lawrence-	one.
<u>A</u> AAAAAAAAAAAAAAA	Lick ('reek, abo Do Do Do Do Do Do Do	Do Do Do Do Frush Fork, W Vhite Oak C	Do Do Do Do Vhite Oak C	Do. Do. Do. Do. Tanners Creek,	Do. Do. Do. Do. Do. Do. Do.
	H 10		-		

TABLE M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results -Continued

Hardness, parts per million		
Alkalin- ity, parts per million		
Turbid- ity parts per million		
Hď	はななな なない	
Coli- forms, most popular number per milli- liter	11 10000 12 24 24 25 25 24 4 4 10 10 25 25 25 25 25 25 25 25 25 25 25 25 25	1
5-day bio- chemical oxygen demand, parts per million	4. 0.684.14 6. 0.687.584.18	10.7
Dissolved oxygen  Percent satura- tion		19.6
Dissolved Parts per million		1.6
Tem-	8	25.0
Average discharge, cubic feet per second		
Date	4 %0%8%2%4 %0%8%2%4 %0%%%%2%4%2%2%2%4 %	Aug. 10, 1939
Mileage from mouth	OTa 60	0 Q O
Sampling point	Tanners Creek, below Lawrence- burg, Ind. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do	Do

		10 10 100		100 1 100 100 1		
		136	140	148	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1180
1		116 116 120 120 118	27 451 174 451 175 175 175 175 175 175 175 175 175 175	202 204 108 108 66 66 112 120	F628788888888888888888888888888888888888	130 1118 106 182 224
4 8 8 8	20	35 12 12 16 16 17 16 17 16 15	33 33 100 100	70 72 72 72 73 73 75 75 75 75 75 75 75 75 75 75 75 75 75	128 22 23 33 44 44 44 44 44 44 44 44 44 44 44 44	35 13 80 83 83 83 83 83 83 83 83 83 83 83 83 83
1	7.2	-01-00-10		######################################	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	11111111111111111111111111111111111111
2,400	24. 00 42 24 4 4 4 5 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4, 230 230 230 88 88 88	23 23 4 24 9 11,000	240,000 83,000 2,400 2,400 93 88	24, 000 24, 000 24, 000 11, 000	9,300 775,000 46,000
5.1	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38.6 20.4 1.9 1.1.3 1.1.1	59. 1. 2.9.		444-181-1828 	28.2 12.0 44.0 58.4 4.4
129.3	122. 101. 104. 104. 104. 104. 104. 104. 104	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96.8 97.9 93.3 95.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0000
10.2	10 00 00 00 00 00 00 00 00 00 00 00 00 0		42.25.25.0 42.25.25.0 7	00%%%%% 000-04	10.14 11.1.1 12.3.3 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 00i00
28.0	8 15 8 15 15 15 15 15 15 15 15 15 15 15 15 15	28.0 28.0 27.0 27.0 16.0		22.25.0 22.25.0 22.25.0 25.0 25.0 25.0 2	ನ 4 ಪ ಪ ಪ ಪ ಪ ಪ ಪ ಪ ೨೦೦೯ ಕಾರ್ ೧೦೯೦	28.0 25.5 27.0 17.0
	(3)	66	(6)	(2)(2)	(3) (4)	
14, 1939	26, 1939 114, 1939 26, 1939 10, 1939 10, 1939 26, 1939 26, 1939 29, 1940	31, 1940 2, 1940 1, 1940 3, 1940 7, 1940 9, 1940 25, 1940			227, 1941 28, 1941 33, 1941 31, 1940 1, 1940	3, 1940 7, 1940 9, 1940 25, 1940
July	July July July July July July Aug.				Jan. Jan. Jan. July Aug.	Aug. Aug. Oct.
OLa 39.7	dodododododododo.	- do - do - Ha 0.0 - do - do - do	do do do Odo 3.9	do 0 Go 0.0 0 do do do	000 000 000 000 000 000 000 000	00 00 00 00 00 00 00
Laughery Creek, below Batesville,   0	Do. Laughery Creek, above Osgood, Ind. Do. Laughery Creek, below Osgood, Ind. Do. Do. Do. North Fork Cedar Creek, prison O	farm, Louisville, Ky. Do Do Do Harrods Creek, mouth Do Do Do Do Do	Do Do Do Do Do Goose Creek, 1 mile below Anchor-	Do. Googe Creek, mouth Do. Do. Do. Do. Do. Do.	Do D	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

1	ess, per		189	1 10	121	1 1	197	164	1 1			132	208	1 1		115	1 1	174	099	
	Hardness, parts per million		1	1 1	-	1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1	1		-			# # # # # # # # # # # # # # # # # # #	
1111111	Alkalin- ity, parts per million	175	184	196 203	224	203	206	172	135	156	161	142	176	242	08	655	159	246	275 199	
	ity parts per per million	30	41 25	105	3 63 K	) 00 o	0000	125	22.8	5 65	308	30	99	122	220	8 2	22.	10	30.0	
	pH	7.7		91.1.1							7:12		21.5			1-1-			4.7.	
Coli- forms,	most popular number per milli- liter	430		1, 500	0-10	000	240	28.53	75	43	4, 600	46,000	21, 000	93	8 5	946	4	360	9,300	
5-day l io-	chemical oxygen demand, parts per million	0.1	ග ග	4.0.0	1 00 1	0.0	1	0000	1	1.5	-1-		4. 2.			) es e		23.0	15.0	
loxygen	Percent satura- tion	77.2	88.0						9.00.00		71.4		68.7			86.6			00	
Dissolved oxygen	Parts per million	8.8		011.0							7.2		24 12			0000			00	
	Tem- perature	0.	0 00	4 4 5	16.0	14.0	16.0	23.0	19.0	27.0	28.0		13.0	16.0	27.0	25.0	i ro .	13.05	18.0	
Average	discharge, cubic feet per second	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50	3				(2)	22				1		
	Date	n. 27, 1941	28,	n. 30, 1941 n. 31, 1941	2,5	32.5	150	Aug. 5, 1941	10, –		Aug. 9, 1941 Aug. 1, 1941	Aug. 7, 1941	1g. 9, 1941 2t. 23, 1941			20,00	id:		t. 25, 1940 st. 30, 1940	
		Jan.	Jan.	Jan.	000	Oct.	Oet.	7.7	Oct.	Al	77	- At	Aug	Oct	7.7	Aug	Feb.	Oet.	Oct.	
	Mileage from mouth	OBg 0.0	do do	do do	do do	op	do OOe 3.4	op	00c 0.0 OBi 19	do	do OBi 17		OBBINf 59	ob	OBBI 0.1	900	do	OCy 1.0	dodo	
	Sampling point	Bear Grass Ceerk, mouth, Highway	Do	Do	Otter Creek near Fort Know intake	Do	Do Otter Creek, Tin Ton Kv	Do	Otter Creek, just above mouth.	intake, Corydon, Ind.	Big Indian Creek, below sewage	Dio	North Fork Blue River, 2% miles	Do	Big Blue River, mouth	Do	Do	Cypress Creek, I mile below Boone-	Do	

	640	E C 1 0 0 0 0 1 0 0 1	1,765	192	40	137	68	149	42	96		1	7, 200
258	256 234 256	444	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35	37 35 40	883 832 833 833 833 833 833 833 833 833	9 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	955	50 46 182	114	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
220	70 75 125	550	0.000	10	10 15 320	190 120 5 5	10 55 47 18	25555	12 25	15 25 140	80 60 10	10	10
7.5	6.7.6	17:01:00 4:00 O	8.00 8. 80 4.	994	4000	7.1		00 F-1		80 80 70 80 70 70	9.69.7	3.4	e3 52
7, 500	2,400 4,300 23,000	24,000	(3)	(2) (2) 43	(1) 4 240	88 1. 28	40000	, 000040	43.23	(2) 93, 000	75, 000 240, 000 (2)	© 	(a)
10.0	13.2	40.0	22.2	3.2	15.5			1110110		235.0	95.0	17.7	113.2
64.5	59.7 62.7 0	86.3	91.7	28.2	90.7			105.0 85.0 83.0		25.0 19.1 0	0 0	84.6	82.3
6.3	7.0	0 1.8	6.00	51.12	0007.			වා ලෝ යා ලෝ යා ගේ ගේ ගේ දු		ଜାରୀ ଠ ଜାରୀ ଠ	0 0 7.	10.7	9.3
17.0	8.5 15.5 32.0	33.0 None 21.0	23.0	30.0 26.0 25.5	26.0 25.0 25.0	26. 5 24. 0 26. 0	22.22	22.5 15.5 13.5 13.5	19.5	15.5	15.5	5.5	10.5
(2)	(3)	(3)		pu pu pu	F = 6	01 4	CM		(2)	<b>2</b> 88	. T	3	(2)
28, 1940	31, 1940 5, 1940 23, 1940	26, 1940 27, 1940 22, 1940	23, 1940 26, 1940 23, 1940	26, 1940 27, 1940 23, 1940	26, 1940 27, 1940 22, 1940	88888	12,0,2,6	. 18, 1940 . 5, 1940 . 8, 1940	£ % %	. 1, 1940 6, 1940 29, 1940	. 1, 1940 6, 1940 . 12, 1940	Nov. 14, 1940	Nov. 18, 1940
Oet.	Nov. Aug.	Aug.	Aug.	Aug.	Aug.	Aug.	Sept. Sept. Sept. Sept.	NNZ SON SON SON SON SON SON SON SON SON SON	Feb.	Nov.	Nov.	Nov	Nov
OL 9.8	do do OSa	do do OSaMfT	do do OSaMf	do do OsaNíf	do do OSaSí	do OSa do	do OSa 0.1 do	000 000 000	do OTr 87.5	do do OTr 86	do do OTrCIGr 63	op	op
Lost Creek, below sewage outfall,													1

Less than one.

Table M-7.—Minor tributary basins: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million		102	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	820	# # # # # # # # # # # # # # # # # # #	770	134	85	148	135	88	640 170 127
A 11 11-	Alkalin- ity, parts per million	88	200	000	16	312	240 62 84	88 88	8228	8858	98 84 85 88 84 88	158 62 72	256 170 120
	ity, parts per million	20	30	130	130	220	240 170 5	15	223	20000	N ST COL	260	35.5
	Пd	7.1	7.1		. 7.	7.4	4.9.7.				0000		7.7.
Coli-	most probable number per milli-	C.1	61 63	1 0 000	23 23	4,300	24,000	0 4 0	440	1001	4.300		2, 400
5-day bio-	oxygen demand, parts per million	1.7	6,6,	10.28	16.0	99.0	34.0 12.9 1.1	22.1	11.11	1000	23.1.0	14.4 11.6 14.2	25.8
	Percent satura- tion	75.6	63.8	93.5		0	43.8 48.6				94.6		18.6
Dissolved oxygen	Parts per million	6.5	7.6	7.9		0	04.4.	444	± 00 00 0	9000	13.9	1.8	5.0
	Temper- ature ° C.	23. 5	15.0	24. 5	12.5	18.0	15.5	16.5	22.5	14.0	21.25	11.5 15.5 19.5	11.5 16.5 20.0
Average		(2)	<b>©</b> ©	63	0 0	(2)	(3)	60 4 0	sed ped re	·	151	200	(2) 1 2
	Date	Oct. 28, 1940	Oct. 31, 1940 Nov. 5, 1940	Oct. 28, 1940		Oct. 28, 1940	Oct. 31, 1940 Nov. 5, 1940 Oct. 28, 1940	Oct. 31, 1940 Nov. 5, 1940 Sept. 10, 1940	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	j vo 1 − 0	Feb. 26, 1941 Feb. 28, 1941 Oct. 28, 1940	28,5	Oct. 31, 1940 Nov. 5, 1940 Aug. 22, 1940
	Mileage from mouth	OTr 41	do	OTrO 43	do	OTrCy 8	do OTr 6	do OTr 0.2	do do	do	40 do do	do do OCrT 9.8	do do OLCa 40
	Sampling point	Tradewater River, water works,	Do.	Owens Creek, helow sewage plant, Providence, Ky.	Do	Cypress Creek, below sewage plant,	Tradewater River, waterworks in-	Tradewster River mouth	Do Do	Do	Do Do Crook below symeter	Marion, Ky. 100 100 Town Branch, below sewage, Marion,	Ky. Do Do Little Cache River, 1 mile below Anna, Ill.

3 Less than one.

1 Seeded and neutralized

Table M-7A.—Minor tributary basins: Laboratory data—Acid stream results

					Acidity	Acidity, parts per million	illion	Iron, parts	Iron, parts per million
Stream	Sampling point	Month, 1940	Number of samples	Hd	Methyl	Phenolphthalein	ıthalein	ß	1000
					red	Hot	Cold	rerrous	Togg
Chartiers Creek, mile 3 below Pitts- burgh.	Below Washington, Pa., mile 34 Below Houston, Pa., mile 26 Below Canonsburg, Pa., mile 23	October do do do November	က က ကု ဇ	0.04.0	33(1) 127(2)	1	461(2) 57(1) 283(2)	16. 0(2) 40. 0(2) 17. 5(1)	280. 0 90. 0 131. 0(2) 55. 0
Miller Run (tributary of Chartiers	Below Morganza, Pa., mile 21 Above Cecil, Pa., mile 16.5	October November October	100 01 41	, e,	622	1,206(1)	321(1)	7. 0(1) 12. 5(1) 380. 0	40.0 31.0 1,190.0
Creek),	Below Ceeil, Pa., mile 15.5	November December October November	ა ლ∥ 4 დ	4000	624 624 25(2)	1,022(1)	1, 621 1, 621 675	16.0(1) 183.0 290, 0(2)	384. 0
Robinson Run (tributary of Chartiers Creek).	Below Midway, Pa., mile 21.5	December October November	· 어 푹 이 이	6.4. 1.5. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0. 1.0	222 68 32(1)	333(1)	316(1) 275 104 60(1)	80.0(1)	91. 0 67. 0 13. 0 9. 0(1)
	Above McDonald, Pa., mile 19	October	400	C. 60	689	833(1)	870	82.0 84.0	135.0
	Below McDonald, Pa., mile 17.5	December October November	5) 4 ()1	4 24 4	115 412 186	652(1)	614	22.5.9.0	129.0
	Above Oakdale, Pa., mile 15.5.	December October November	8N 44 00	ಈ ○ ೧ ಈ ಌ ಌ	114 429 153	538(1)	156 544 205	20.00	90.00
	Below Oakdale, Pa., mile 14.5	December October November	0.4%	00 00 00 00 00 00	127 410 171	559(1)	195 504 222		68.0 68.0 68.0
North Robinson Run (tributary of Chartiers Creek).	Above Oakldale, Pa., mile 15.5	Detober November	0.40	⊶ ග හ ා ශ් ශ් හ් ා	206 449 195	584(1)	584 534 238	10.0 5.2 6.0	51.0 79.0 45.0
Chartiers Creek, mile 3 below Pitts- burgh.	Above Carnegie, Pa., mile 8.5	Detember October November	0140	2, 25, 75, 20, 75, 75	283 192 17(2)	258(1)	369 312 158(2)	255. 2002 2002	151.0
	Below Carnegie, Pa., mile 6.5	December	24 4 69 64	Ç 69 10 16 - 10 4 10	30(2)	316(1)	314 110(2) 58(1)	6.51 F.	177. 69.0 0.0 0.0

TALE N.-7A.-Minor tributary basins: Laboratory data-Acid stream results-Continued

Sampling point   Month, 1940   Number of Samples   Methyl   Phenolphthalein   Iron, parts per million   Iron, parts per million   Number of Samples   Methyl   Methyl   Phenolphthalein   Ferrous   Total   Samples			-							
town, Pa, mile Ostober  Town, Pa, Mile Pa,						Acidity	', parts per n	ıillion	Iron, parts	per million
town, Pa, mile October 2 8.7 879 1,984(1) 1,985 town bereaucher 2 8.7 14(1) 1,985 town bereaucher 2 8.4 2 16(4) 1,985 town bereaucher 2 8.4 3 160 town bereaucher 2 8.8 4 9(2) 1,981 1,031 1,031 town bereaucher 3 8.8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,8 2,	Sampling point			Number of samples	Hď	Methyl	Phenolpl	thalein	F	E
town, Pa, mile Oatober 2 8.7 311 1,986 1,904(1) 1,986 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004 1,004						red	Hot	Cold	retrous	1 ocar
	Above Burgettstown, 32.5. Below Burgettstown, 33.5. Mouth, mile 0.5. Mouth, West Virginia nile 0.2. Below Pincy Fork, Ohio, mil Below Barton, Ohio, mil Below Barton, Ohio, mil Mouth, mile 0.1.	ile ile		4664666666666666	ಯಣ್ಣಭವ್ವಕ್ಕಣ್ಪವಕ ವಕ್ಷಪ್ಪವ ೧೯೭೯ ಕಟ್ಟಾಯ ಅಥಾ ಕ್ರಕ್ತಪಡ 83 – 360	879 311 174(1) 640 221 160 16(2) 16(3) 16(3) 16(4) 16(4) 16(4) 16(4)	11,984(1) 918(1) 186 186 19(3) 9(3)	1, 985 818 205 1, 203 558 248 248 248 410 107 107 107 107 107 107 107 107 107 1		280.0 280.0 280.0 280.0 280.0 280.0 280.0 280.0 4.0 56.0(1)

NOTE.—Figures in parentheses indicate number acid samples used in computing averages as shown.

# ALLEGHENY RIVER BASIN

301



# CONTENTS

	Page
Contents	303
Syllabus and conclusions	305
Description	307
Presentation of field data	309
Presentation of laboratory data	313
Hydrometric data	317
Discussion	321
LIST OF TABLES	
A-1.—Cost estimates of remedial measures	307
A-2.—Surface water supplies	309
A-3.—Sources of pollution	310
A-4.—Industrial wastes	312
A-5.—Selected laboratory data	314
A-5a.—Selected laboratory data (chemical results)	316
A-6.—Monthly mean summer flows	319
A-7.—Summary of laboratory results	324
A-7a.—Summary of laboratory results on acid streams	350
LIST OF FIGURES	
A-1. Map—Sources of pollution	305
A-2. Chart—Sources of pollution and selected laboratory data	312
A-3. Map—Coliform results	316
A-4. Map—Dissolved oxygen results	316
A-5. Map—Biochemical oxygen demand results	316
A-5a. Map-Biochemical oxygen demand results (southern portion of	
basin)	316
A-5b. Map—pH results	316
A-6. Chart—Summer low flow frequency curve	318
303	



(Face p. 305)

## ALLEGHENY RIVER BASIN

## SYLLABUS AND CONCLUSIONS

### SYLLABUS

The Alleghenv River drains 11,730 square miles in western Pennsylvania and New York and joins the Monongahela River at Pittsburgh to form the Ohio River. The southern part of the basin is an important coal-mining area and the streams there are polluted by acid mine drainage. The Kiskiminetas is the most strongly acid large stream in the Ohio Basin. A major portion of the sewage and industrial wastes in the basin enters the Allegheny in the vicinity of Pitts-The Clarion River is grossly polluted by industrial wastes and greatly improved treatment techniques will be required to abate The larger communities depend generally on surface the pollution. water for municipal supplies and a number of these, particularly in the vicinity of Pittsburgh, are seriously affected by acid mine drainage, untreated sewage, and industrial wastes. Considerable progress has been made toward pollution abatement in streams not subject to acid pollution and, in general, these streams are relatively clean.

A program of municipal and industrial waste treatment is outlined which, together with a basin-wide program of mine sealing supplemented by low-flow regulation incidental to flood-control operations at reservoirs already built or authorized by the Congress, seems to

offer the most practicable method of pollution abatement.

### CONCLUSIONS

(1) Of 225 public water supplies, 91, including those serving most

of the larger communities, are from surface sources.

(2) Sewage from about 920,000 people, industrial wastes equivalent in oxygen demand to sewage from an additional 680,000 people, and about 375,000 tons of mine acid per year enter the streams of the basin. About 18 percent of the sewage is treated.

(3) Laboratory data indicate that the major pollution problems are due to acid rather than to organic wastes although organic wastes cause gross pollution in a number of streams not affected by acid.

- (4) Mine sealing has reduced the original acid load by about 8 percent from 405,000 to 375,000 tons (to phenolphthalein—hot) per year, and although the present load throughout the Allegheny Basin is only about 32 tons per square mile per year, the tributary Kiskiminetas Basin receives 164 tons of acid per square mile per year, or an intensity greater than the Monongahela or Youghiogheny, the next most strongly acid streams.
- (5) A program for acid control including mine scaling supplemented by flow regulation is outlined in the section of the report on Acid Mine

Drainage. Expenditures to date for mine sealing in the basin are estimated at \$510,000. The next step in the mine sealing program is completion of sealing of mining areas not connected to active ventilation systems at mines where sealing costs will not exceed \$10 per ton of acid sealed per year. The total estimated cost of this program in the Allegheny River Basin is \$1,460,000.

(6) Acid conditions can be further improved and mine sealing supplemented by flow regulation from storage of at least 210,000 acre-feet in the Allegheny River Basin. This storage could be provided incidental to or in conjunction with flood control in reservoirs already built or

authorized by the Congress.

(7) The problem of municipal sewage treatment at Pittsburgh is discussed in the section of the report on the main Ohio River. Lowflow regulation from reservoirs in the Allegheny River Basin will be of value in reducing treatment costs, notably at Pittsburgh and Cincinnati.

(8) Primary sewage treatment should be adequate at cities on the Allegheny River with the exception of Olean, N. Y. (which now has primary treatment), and Coudersport, Pa. Effluents from existing and suggested plants near water intakes, notably those on the lower 30 miles of the Allegheny, should be chlorinated to reduce bacterial

loadings on the water plants.

(9) Justification for treatment and the degree of treatment of sewage and organic industrial wastes in many cases is dependent upon the status of mine-acid reduction measures. The situation varies with the degree of acidity of the stream and the amount of organic pollution discharged. At some places the need for waste treatment is urgent at present, and at others the first expenditures of public funds can be made to best advantage toward furthering the acid-reduction program. In general, cost estimates presented apply to a comprehensive program that will be justified in parallel with extensive acid-control measures.

(10) Secondary treatment is indicated at six communities in addition to Coudersport, the largest ones being Bradford and Du Bois. All of these communities are located on alkaline streams subject to ex-

tremely low flows.

(11) Additions or improvements to existing sewage-treatment plants are indicated at seven places, the largest ones being Jamestown and Olean, N. Y. At Jamestown the necessary degree of treatment depends to some extent on the method of operation of the dam at the outlet at Lake Chautauqua.

(12) Industrial-waste pollution is particularly severe along the Clarion River. Any major improvement in conditions there will require the development of better waste-treatment techniques if plant

operations continue at the present level.

(13) Cost estimates of a suggested program of sewage and industrial waste treatment are summarized from table A-1 as follows:

Treatment	Capital cost	Annual cost
Existing Suggested additional	\$5, 460, 000 10, 680, 000	\$410, 000 1, 155, 000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual cost
Primary, all places. Secondary, all places.		\$1, 065, 000 1, 545, 000

Table A-1.—Allegheny River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

	Number of plants				Annual charges				
	Pri- mary	Second- ary	tion con- nected to sewers	tion con- nected to	tion con- nected to	Capital invest- ment	Amorti- zation and interest	Opera- tion and mainte- nance	Total
Existing sewage treatment	22	19	164, 300	\$5, 460, 000	\$310,000	\$100,000	\$110,000		
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste correction	86	7	712, 200	6, 350, 000 3, 670, 000 -660, 000	450, 000 170, 000 90, 000	305, 000	755, 000 170, 000 230, 000		
Total Comparative cost: Primary treatment, all waste Secondary treatment, all waste. As suggested.				10, 680, 000 10, 010, 000 13, 880, 000 10, 680, 000	710, 000 660, 000 930, 000 710, 000	445, 000 405, 000 615, 000 445, 000	1, 155, 000 1, 065, 000 1, 545, 000 1, 155, 000		

Note.—Costs shown above do not include the cost of interceptors or treatment works for the city of Pittsburgh or its suburbs whose wastes would probably be treated at a plant along the Ohio River.

#### DESCRIPTION

The Allegheny River drains 11,730 square miles, of which 9,775 are in western Pennsylvania and 1,955 are in southwestern New York. The area is, for the most part, hilly or mountainous with steep slopes rising several hundred feet above the narrow stream valleys. In the northern and western portions of the basin, which have been glaciated, the topography is less rugged. The main stream rises in Potter County, Pa., and flows in a northwesterly direction into New York, where after flowing west for about 30 miles, it turns southwest and flows back into Pennsylvania. The Allegheny River, about 325 miles long, joins the Monongahela River at Pittsburgh, Pa., to form the Ohio River.

The principal tributaries of the Allegheny River are:

Tributary stream	Miles above mouth	Drainage area (square miles)
Kiskiminetas River. Mahoning Creek. Red Bank Creek. Clarion River. French Creek Oil Creek Tionesta Creek. Conewango Creek	30. 2 56. 2 64. 9 86. 1 128. 6 134. 1 154. 2 192. 0	1, 89; 417 58; 1, 23; 1, 24; 34( 48); 898

The Kiskiminetas Basin is an important bituminous coal mining area and smaller amounts are mined in the Crooked Creek, Cowanshannock Creek, Mahoning Creek, Red Bank Creek, and Clarion River Basins. Although coal underlies much of the area farther north, it is not of great economic importance. Oil is found in the northern part of the basin. Production in the Oil Creek area, the first developed oil field in the country, is decreasing and most of the oil comes from the newer fields to the east. Although almost all of the virgin forests which originally covered about 90 percent of the basin are gone, a large part of the basin is covered with second-growth timber. The more level lands in the glaciated portion of the basin support a stable and prosperous agriculture.

The steel industry in the basin is concentrated around Pittsburgh and at Johnstown, which is also the center of the coal producing area of the Kiskiminetas Basin. The greatest concentrations of population are at these two places. The populations of the basin and its larger cities, excluding the city of Pittsburgh, are shown below:

	Populations						
	1910	1920	1930	1940			
Principal cities: Johnstown, Pa. Jamestown, N. Y. New Kensington, Pa. Olean, N. Y. Oil City, Pa. Meadville, Pa. Bradford, Pa.	55, 482 31, 297 7, 707 14, 743 15, 657 12, 780 14, 544	67, 327 38, 917 11, 987 20, 506 21, 274 14, 568 15, 525	66, 993 45, 155 16, 762 21, 790 22, 075 16, 698 19, 306	66, 668 42, 638 24, 055 21, 506 20, 379 18, 919 17, 691			
Entire basin: Rural Urban	654, 456 365, 270	659, 607 471, 689	666, 109 527, 388	713, 148 523, 546			
Total	1, 019, 726	1, 131, 296	1, 193, 497	1, 236, 694			

Water uses.—The lower 70 miles of the Allegheny River have been improved for navigation by eight low-lift locks and dams which, with backwater from the Emsworth Dam on the Ohio River, provide a navigable depth of 9 feet. A considerable amount of coal, coke, sand, gravel, and limestone moves on this waterway. One hydroelectric project has been built by private interests, the Piney project, on the Clarion River

Construction of four flood-control reservoirs has been virtually completed by the Corps of Engineers. These are on Tionesta Creek, Mahoning Creek, Crooked Creek, and Loyalhanna Creek and are part of a system of reservoirs on the Allegheny and Monongahela Rivers and their tributaries intended primarily for the protection of the Pittsburgh metropolitan area. In addition to serving this purpose, it would be physically possible to utilize a portion of their capacity to increase stream flow in the Allegheny and in the tributary streams below the reservoirs during low-flow periods. Four additional reservoirs have been authorized by the Congress for flood control. The largest one would be on the Allegheny River above Warren, Pa., and has been planned to include storage for low-flow regulation.

The cleaner streams in the rather sparsely populated mountainous section north of the mining area are used extensively for recreation. A considerable part of the land in this section is in State forests.

Chautaugua Lake, Conneaut Lake, and other smaller lakes in the basin also are widely used for recreation,

## PRESENTATION OF FIELD DATA

Figure A-1 shows the location and magnitude of the more important sources of pollution in the basin. Figure A-2 shows similar data and, in addition, the location of water supply intakes from polluted streams and laboratory data on coliform organisms, dissolved oxygen,

and biochemical oxygen demand.

Public water supplies.—Of the 225 public water supplies in the Allegheny River Basin, which serve about 1,545,000 people, 1 91 are from surface sources. Only 21 of these are from polluted streams, the other 70 being from impounding reservoirs or small streams draining rural areas, but the 21 supplies include most of the largest ones. Table A-2 shows data on the surface water supplies of the basin.

Table A-2.—Allegheny River Basin: Surface water supplies

Supply	Source	Mile 1	Treat- ment 3 3	Population served 4	Consump- tion, million gallons per day
	Supplies belov	v commu	inity sewer	outfalls	
Fox Chapel Oakmont New Kensington Tarentum Brackenridge Natrons Freeport Carlogan Kirtanning Furnace Run No. 1 Parker City Emlenton Saltsburg Indiana Hooversville New Bethlehem Franklin	Allegheny River	10. 0 12. 8 21. 0 21. 7 22. 5 24. 6 29. 3 38. 5 45. 6 46. 5 84. 0 91. 6 57. 5 93. 0 131. 0 88. 5 128. 5	FD FD FD FD FD FD FD FD FD FD FD FD FD F	4 600,000 4 167,200 3,500 14,500 35,000 13,000 6,300 7,500 600 900 1,000 1,000 1,000 1,000 1,400 2,000 14,000	80. 30 11. 00 11. 00 12. 50 3. 60 90 80 47 35 04 11. 25 02 08 07 10 65 03 20 2. 20
New York: Olean	Olean Creek	260. 0	FD	24, 000	2. 50
Total below sewer outfall 70 other surface supplies	8			920, 100 345, 400	107. 60 31. 78
Total surface water suppl	ies			1, 265, 500	139. 38

3 Slow sand filters.

The chemical quality of surface waters in this area is generally excellent except as it is modified by mine drainage, brines, or other pollutants. The alkalinity and hardness are low, particularly in the mountainous area. In the glaciated portion of the basin the water is somewhat harder and more alkaline and the taste, odor, and color

¹ Miles above mouth of Allegheny River.
² F=Coagulated, settled, filtered; L=Lime-soda softened; D=Chlorinated.

⁴ Part of population served is outside Allegheny River Basin.

¹ Includes entire population served by Pittsburgh municipal supply and Pennsylvania Water Co., taken from Allegheny River. Part of population served is in Monongahela Basin and along the Ohio River.

troubles are often experienced due to algae growths and decomposition of organic matter in the numerous swamp areas and lakes. The alkalinity of the streams in this area, while considerably higher than Monongahela Basin upland streams, is still quite low and makes the effects of acid-mine drainage more serious than in other streams such as the Muskingum, Kentucky, and Big Sandy where alkalinities are higher.

Sewerage.—About 920,000 people in the basin are served by sewers. Only about 18 percent of the sewage is treated. Table A-3 shows data on sources of pollution and sewage treatment. More than half of the sewage is discharged untreated to the lower Allegheny in the vicinity of Pittsburgh and the Conemaugh and its tributaries in the

vicinity of Johnstown, Pa.

Table A-3.—Allegheny River Basin: Sources of significant pollution, including industrial wastes expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	State	, Receiving stream	Miles above mouth of Alle-	Population connected	Sewage treatment	Sewered popula- tion equivalent (biochemical oxy- gen demand)		
			gheny	sewers		Un- treated	Dis- charged	
Pittsburgh and sub- urbs.1	Pennsyl-	Allegheny River	0 to 8	320, 500	None	597, 200	597, 200	
Verona Oakmont Springdale Arnold New Kensington Tarentum Brackenridge Natrona Freeport Shenley Logansport Ford City Kittanning Franklin Oil City West Hickory Warren Salumanea	do	do d	12 17 19 20 22 22 23 29 30 38 42 46 125	3, 500 6, 200 5, 000 10, 900 20, 700 16, 300 5, 000 2, 700 5, 900 7, 500 13, 000 20, 000 15, 000 20, 000 20, 000 24, 000 23, 000 24, 000 23, 000 24, 000 20, 0	None None None None None None None None	3, 500 7, 400 5, 000 10, 900 21, 100 6, 900 5, 000 2, 700 14, 000 2, 800 5, 900 7, 500 24, 000 21, 400 12, 000 18, 400 17, 000 28, 500 27, 000 20, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000 21, 000	3, 500 7, 400 5, 000 10, 900 21, 100 6, 900 2, 700 14, 000 5, 900 7, 500 21, 400 12, 000 18, 400 17, 500 18, 400 17, 500 21, 400 22, 400 18, 400 19, 900 2, 600	
Coudersport	vania.	do	302	2, 200	do	5, 800	5, 800	

¹ Pollution loads from Pittsburgh and suburbs are distributed to Allegheny and Monongahela Basins and main Ohio River as follows:

Municipality	State			Popu- lation con- nected	Sewage treat- ment	Sewered popula- tion equivalent (biochemical oxy- gen demand)	
			of Alle- gheny	to sewers	шен	Un- treated	Dis- charged
Pittsburgh and sub- urbs.	Pennsyl- vania.	Allegheny River	0-8	320, 500	None .	597, 200	597, 200
	do	Monongahela River.	0-10	319, 500	do	458, 500	458, 500
	do	Ohio River	• 0-4	261, 700	do	278, 600	278, 600
Total	do			901, 700		1, 334, 300	1, 334, 300

a Below.

Table A-3.—Allegheny River Basin: Sources of significant pollution, including industrial wastes expressed as sewered population equivalent (biochemical oxygen demand) -- Continued

Municipality	State	Receiving stream	Miles above mouth of Alle-	Population connected	Sewage treatment	Sewered popula- tion equivalent (biochemical oxy- gen demand)		
			gheny	to sewers	,	Un- treated	Dis- charged	
Leechburg	Pennsyl-	Kiskiminetas River	35	4, 300	None	4, 300	4, 30	
Vandergrift	do.	do	40	11, 400	do	11, 400	11, 40	
A pollo	do	do	44	3, 200	do	3, 200	3, 20	
Latrobe	do	Loyalhanna Creek	80	8, 400	do	12, 700	12, 70	
Blairsville	00	Conemaugh River	77	5,000	do	5,000	5,00	
Johnstown and sub-	do	do	109	70, 700	do	160, 600	160, 60	
urbs.		35 0 0	0-	0.000	C	0.000	0.00	
Derry	do	McGee Run	85	3,000	Section 2	3, 000 4, 200	3, 00 4, 20	
Westmont	do	Stony Creek	110	4, 200 2, 700	Nonedo	2, 700	2, 70	
Windber-Paint	do	Paint Creek	115 122	10, 700	do	10, 700	10, 70	
East Conemaugh	do	Little Conemaugh	112	4, 800	do	4, 800	4, 80	
some Continuition	(10	River.	112	6,000		1,000	1,00	
Portage	do	do	130	3,000	do	3, 100	3. 10	
Cresson	do	Mahoning Creek	140	2, 500	do	2, 500	2, 50	
Punxsutawney			110	8, 600	do	13.800	13, 80	
Brookville	do	Red Bank Creek	113	4, 300	do	4, 400	4, 40	
Reynoldsville	do	Sandy Lick Creek	130	3, 600	do	3,600	3. 60 13. 80	
Du Bois	do	Clarion River	146 181	12,000 6,300	do	13, 800 25, 300	25, 30	
Ridgway	(10	ciarion River	189	4, 600	do	96, 600	96, 60	
St. Marys	do	Elk Creek	191	7, 800	do	16,000	16,00	
Wilcox		West branch Clar- ion River.	194			3, 500	3, 50	
Meadville	do	French Creek	156	20,000	Secondary .	29, 800	12, 80	
Cambridge Springs	do	do	174	2, 200	Primary	3, 300	2, 50	
Rouseville	do	Oil Creek	138	1,000	None	5, 800	5, 80	
Titusville		do	150	8, 100	do	11, 100	11, 10	
Mayburg	do	Tionesta Creek East branch Tio-	175 210	6, 300	None.	9,600	9, 60	
Kane	do	nesta Creek-Hu-	210	0,000	1,0116	0, 300	! 0,50	
Ludlow	do	bert Run. Two Mile Run	200	500	do	4,700	4, 70	
Corry	do	Hare Creek	207	7,000	do	7, 200	7, 20	
Corry Jamestown	New York	Cassadago Creek	216	42, 500	Primary	67, 800	52, 40	
Falconer	do	do	217	1, 200	do	28, 200	27.80	
Chautauqua		Chautauqua Lake	236	15,000	Septic tank.	15,000	15,00	
South Dayton	do	North branch Cone-	237	200	None	8, 600	8, 60	
Mount Jewett		wango. Kinzua Creek	235	1, 400	do	7,000	7,00	
Bradford	vania,	m.,	010	18,000	do	20,900	20, 90	
122 smaller sources.	ao	Tunungwant Creek	252	118, 200	(3)	130, 600	94, 40	
Total:								
New York				110, 500		186, 700	155, 60	
				809, 300		1, 411, 500	1, 358, 80	
				010 000			1 814 40	
Total, entire b	08sin			919, 800		1, 598, 200	1, 514, 40	

Industrial wastes.—Table A-4 summarizes data on sources of industrial wastes by type of industry and method of disposal. These wastes are equivalent in oxygen demand to sewage from about 680,000 people. A small amount of industrial waste is treated in municipal plants. municipal plants.

² Treatment plant ineffective. ³ 18 primary and 17 secondary sewage treatment plants.

Table A-4.—Allegheny River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	N		waste dis-	At least minor cor-	Estimated sewered population
Industry	Number of plants	Municipal sewers	Private outlets	rective measures taken	equivalent (biochemi- cal oxygen demand)
Brewing Byproduct coke Canning Chemical Distilling Meat Milk Oil Paper Steel Tanning Textile Miscellaneous		7 0 0 0 0 10 14 0 6 6 2 12	0 2 3 7 3 5 30 25 3 21 11 6 29	5 2 2 6 3 11 13 23 2 11 6 4 5	53, 800 84, 000 57, 900 9, 600 19, 600 90, 600 17, 900 35, 900 94, 400 124, 300 21, 500
Waste not connected municipal treatment.	196	- 51	145	93	673, 200
Waste discharged to municipal treatment					5, 200
Total industrial waste in the basin					678, 400
By States: New York Pennsylvania					76, 200 602, 200

No single industry is responsible for a major part of this pollution. Textile, pulp and paper, meat, byproduct coke plants, tanneries, canneries, and breweries all are large contributors to the industrial waste load. About 40 percent of the wastes are discharged to the Allegheny in the 30-mile stretch below the mouth of the Kiskiminetas. The byproduct coke plants are at Johnstown, much of the textile industry is around Jamestown, oil refineries are scattered, but the greater number are around Oil Creek. The upper Clarion River and its tributaries receive a large part of the pulp, paper and tannery wastes.

The significance of the steel industry as a source of pollution is due almost entirely to the discharge of spent acids, acid salts, and rinse waters from pickling operations. About 27,000 pounds of free acid per day are discharged by steel mills in the basin. These mills are located along the lower Allegheny and Kiskiminetas Rivers. The acids from pickling operations represent only a small portion of the total acid load including that from mine drainage which affects these streams.

Acid mine drainage.—The Kiskiminetas River is the most heavily acid large stream in the Ohio Basin. Smaller amounts of mine drainage enter other tributaries of the Allegheny River north of the Kiskiminetas. The estimated acid load in the Allegheny River Basin, as presented in the section of the Ohio River Pollution Survey Report on Acid Mine Drainage, is shown below:



Drainage basin	Allegheny River ex- cept Kiski- minetas	Kiskimine- tas River	Total Allegueny River
		ons per year hthalein, hot	
Original acid load: Active mines Marginal mines Abandoned mines	26, 457 6, 760 50, 244	223, 896 23, 805 73, 988	250, 353 30, 565 124, 232
Total Per square mile Sealed mines Removed by sealing Present load Per 8 quare mile	24, 040 18, 750 64, 711 6. 6	321, 689 170, 0 20, 270 10, 954 310, 735 164, 2	405, 150 34, 5 44, 310 29, 704 375, 446 32, 0
Additional removal i. Future residual 2. Per square mile.	32, 330 32, 381 3. 3	132, 630 178, 105 94, 1	164, 960 210, 486 17. 9

¹ Economical to remove in addition by sealing under 1940 restrictions with a cost limitation of \$10 per ton of acid per year and sealing only in areas not connected to active ventilation systems.

² Capable of further reduction (possibly an additional 50 percent) by extended program.

## PRESENTATION OF LABORATORY DATA

Laboratory results indicate that the most serious pollution is caused by acid mine drainage which affects tributaries throughout most of the southern part of the basin and the Allegheny River below the mouth of the Kiskiminetas. Industrial wastes discharged to the upper Clarion River and untreated sewage and industrial wastes from the Pittsburgh area near the mouth of the river also cause serious pollution. The greater part of the main stream and most of the tributaries not affected by acid were found to be in good sanitary condition.

A summary of laboratory results is shown in table A-7, acid results are in table A-7A, and selected data are in tables A-5 and A-5A. Observations in the Allegheny River Basin were made by mobile laboratory units during the period from August to December 1940. In general, observations in the southern part of the basin were more extensive than in the northern part. Figures A-3, A-4, A-5, A-5a, and A-5b show graphically the coliform, dissolved oxygen, oxygen demand, and pH results. Oxygen demand results in the portion of the basin south of Mahoning Creek are shown on an enlarged map (fig. A-5a) because of the large number of stations and the acid conditions in this area. These maps show average results at stations observed for periods of less than one month and most unfavorable monthly averages at stations observed over periods of more than one month. Stream flows at the time of sampling were generally representative of normal low-water conditions.

Table A-5.—Allegheny River Basin: Selected laboratory data

River miles above mouth of Allegheny. Period, 1940	Allegheny Above Olean, N. Y. 261	Allegheny Below Olean, N. Y. 256.5	Alle- gheny Above Warren, Pa. 194 Septem- ber	Allegheny Below Warren, Pa. 184 5 September	Allegheny At Oil City Pa. 134.2 October	Allegheny Below Oil City, Pa. 132 October	Allegheny Above Franklin, Pa. 127 October
Number of samples Flow in cubic feet per second: Sampling days Water temperature ° C Coliforms per milliliter Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million pH	3 109 18.8 7 6.8 2.1 7.1	3 124 18.7 92 4.0 4.5 7.2	3 658 16. 2 2 8. 5	3 1, 250 15. 7 86 8. 8 2. 1 7. 4	3 1, 270 12. 2 5 10. 1 1. 0 7. 4	3 1, 350 11. 5 31 10. 1 1. 4 7. 4	954 11.8 61 9.3 1.2 7.3
River miles above mouth of Allegheny. Period, 1940	Allegheny Below Franklin 124.5 October	Allegheny Lock No. 8, Templeton 52.6	Allegheny Lock No. 5, Freeport 30.4 September	Allegheny Lock No. 4, Bracken- ridge 24.2 Septem- ber	Allegheny Lock No. 3, Spring- dale 17 Septem- ber	Allegheny Lock No. 2, Pitts-burgh 6.7 September	Allegheny Near mouth  1.7  September
Number of samples. Flow in cubic feet per second: Sampling days Water temperature °C Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million. pH	3 1,502 11.5 39 9.2 1.7 7.4	3, 100 19. 3 3. 1 8. 8	3,350 19 8 37 7.8	3,760 19.8 8 8.1	4, 400 22. 5 258 8. 4 .9 6. 8	3, 510 21. 3 357 8. 5 1. 5 6. 7	3, 240 20, 8 1, 420 3, 9 4, 4 6, 8
River	Bradford	Tunung- want Creek Below Bradford	Hubert Run Below Kane 27 229 Septem- ber	West Run Below Kane	Lake Chautau- qua Above James- town 31 223 Septem- ber	Chada- koin  At Fal- coner  26 218 Septem- ber	Cassa- dago Creek Below James- town 23.5 215.5 Septem- ber
Number of samples Flow in cubic feet per second: Sampling days. Water temperature ° C Coliforms per milliliter. Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million. pH	3 4 14.2 16 9.2 1.3 7.2	33 15.7 2,340 2.0 6.0 7.1	3 3 13.7 120,300 1.9 69.4 7.0	3 4 12.0 99 7.5 3.4 6.8	3 16.8 24 9.8 2.3 8.2	3 265 16 2 197 8. 5 2. 9 7. 4	3 297 17.0 191 7.6 4.2 7.5

River	Hare Creek	Oil Creek	Oil Creek	French Creek	French Creek	Sandy Lick Creek	McGee Run
Location	Below Corry	Above Titusville	Below Titusville	Above Mead- ville	Below Mead- ville	Below DuBois	Below Derry
River miles above— Confluence with Allegheny. Mouth of Allegheny. Period, 1940.	22 206 Se; tem- ber	19 153 October	15 149 October	35 161.5 October	26 152.5 October	73.5 138.5 Septem- ber- October	54 84 October
Number of samples	3	3	3	3	3	3	1
Samyling days Water temy erature ° C Coliforms per milliliter	11 14. 0 38, 200	11. 0 4	10 10. 8 42	122 13. 1 5	164 13. 6 523	19 9. 5 31, 300	15. 0 24, 000
Dissolved oxygen, parts per million	.2	10.7	10.3	9.5	3.7	6. 6	4. :
5-day, parts per million pH	16. 6 7. 1	1. 4 7. 5	1. 5 7. 5	3. 2 7. 5	4. 2 7. 2	37.9	33. 1
River	Clarion	Clarion	Clarion	Clarion	Clarion	Elk	Crooked
Location	In John- sonburg	Above Ridgway	Below Ridgway	At Cooks- burg	At St. Peters- burg	Creek Below St. Marys	Creek Reservoir
River miles above— Confluence with Allegheny Mouth of Allegheny Period, 1940	101 187 Septem- ber- October	96.5 182.5 Septem- ber- October	93 179 Septem- ber- October	51 137 October	4.5 90.5 October	104 190 Septem- ber- October	8.5 49 Novem- ber
Number of samplesFlow in cubic feet per second:	6	6	6	5	3	3	
Sampling days	60 19. 4 3, 910	82 9. 5 <b>3,</b> 950	104 10. 1 2, 580	219 11. 6 32	271 11. 3 2	10. 3 4, 830	9. (
Biochemical oxygen demand,	. 0	2.8	3.8	7.4	9.9	6. 6	9.
5-day, parts per million	190 7. 2	35. 8 7. 1	40. 3 6. 4	12. 1	1.2	40. 2	1. 3
200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -				7.1	7.2	6. 3	~ 0.1
River				7.1	7.2	6. 3	~ 0.1
Location	Maho- ning Creek Below Punxsu-	Stony Creek Above Johns-	Little Cone- maugh Above	Cone- maugh Below Johns-	Loyal- hanna Creek Above	Loyal- hanna Creek Below	Kiski- minetas Near
River miles above—	ning Creek	Above Johns- town	Little Cone- maugh Above Johns- town	Cone- maugh Below Johns- town	Loyal- hanna Creek Above Latrobe	Loyal- hanna Creek	Kiski- minetas Near Mouth
	ning Creek Below Punxsu-	Above Johns-	Little Cone- maugh Above Johns-	Cone- maugh Below Johns-	Loyal- hanna Creek Above	Loyal- hanna Creek Below	Kiski- minetas Near
River miles above— Confluence with Allegheny. Mouth of Allegheny. Period, 1940.	ning Creek Below Punxsu- tawney	Above Johnstown 83. 5 113. 5 July-	Little Cone- maugh Above Johns- town	Cone-maugh Below Johns-town 78 108 July-	Loyal-hanna Creek Above Latrobe	Loyal- hanna Creek Below Latrobe	Kiski- minetas Near Mouth  0.8 31 September
River miles above— Confluence with Allegheny. Mouth of Allegheny. Period, 1940.  Number of samples Flow in cubic feet per second: Sampling days Water temperature ° C. Coliforms per milliliter.	ning Creek Below Punxsu- tawney 53 109 October	Above Johnstown  83.5 113.5 July August	Little Cone- maugh Above Johns- town 83 113 July- August	Cone-maugh Below Johns-town 78 108 July-August	Loyal- hanna Creek Above Latrobe	Loyal- hanna Creek Below Latrobe	Kiski-minetas Near Mouth  0.8 31 Septem-ber
River miles above— Confluence with Allegheny. Mouth of Allegheny. Period, 1940.  Number of samples. Flow in cubic feet per second: Sampling days. Water temperature ° C. Coliforms per milliliter. Dissolved oxygen, parts per million.	ning Creek Below Punxsu- tawney 53 109 October	Creek Above Johnstown 83.5 113.5 July August 3 248 20.8	Little Cone-maugh Above Johnstown 83 113 July-August 3	Cone-maugh Below Johns-town 78 108 July-August 3 460 29.3	Loyal-hanna Creek Above Latrobe  52. 5 82. 5 October	Loyal-harma Creek Below Latrobe  48 78 October	Kiski-minetas Near Mouth  0.8 31 September  690 19.6
River miles above— Confluence with Allegheny. Mouth of Allegheny. Period, 1940.  Number of samples Flow in cubic feet per second: Sampling days. Water temperature ° C Coliforms per milliliter. Dissolved oxygen, parts per	ning Creek Below Punxsu- tawney 53 109 October	Above Johnstown 83.5 July-August 3 248 20.8 37	Little Cone-maugh Above Johnstown 113 July-August 3	Cone-maugh Below Johns-town 78 108 July-August 3 460 29.3 39	Loyal-hanna Creek Above Latrobe 62.5 82.5 October	Loyal-hanna Creek Below Latrobe  48 78 October	Minetas Near Mouth  0.8 31 September 33 690 19.5

¹ Less than one.

Table A-5A.—Allegheny River Basin: Selected laboratory chemical data

River  River miles above:	Alle- gheny River Mouth, Pitts- burgh	Allegheny River Lock and Dam No. 3	Allegheny River Lock and Dam No. 4	Kiski- minetas Mouth	Loyal- hanna Mouth	Crabtree Creek Mouth	Cone- maugh Mouth
Confluence with Allegheny Mouth of Allegheny Period, 1940	1.7 Oct. 9	17 Oct. 21	24.2 October	1 31 October	28 58 Oct. 14	42 72 Oct. 29	28 58 Oct. 14
Number of samples	1	1	2	5	1	1	1
Flow in cubic feet per second: Sampling days Minimum month	2, 760	2, 750	2, 560	419 90	36 16	13	275
pHAcidity, parts per million:	4.7	5. 7	5. 6	2.9	2.6	3. 1	2.8
Methyl red.  Phenolphthalein (hot)  Iron, total parts per million	10 2. 4	3 10 .7	5 13 7. 5	200 282 9. 8	494 608 79	1, 910 2, 930 494	176 242 26
River	Blacklick Creek	Blacklick Creek	Stony Creek	Cowan- shannock Creek	Mahon- ing Creek	Clarion	Toby Creek
Location	Below Blacklick	South Branch Mouth	Johns- town	Creek	Punxsu- tawney	Portland Mills	Portland Mills
River miles above: Confluence with Allegheny. Mouth of Allegheny. Period, 1940.	51 81 Oct. 14	76 106 August	79.5 109.5 July	11.5 60 Oct. 24	52.8 109 Oct. 2	86.9 173 Oct. 9	85.9 172 Oct. 9
Number of samples	1	2	2	1	1	1	1
Flow in cubic feet per second: Sampling days	40	16	430	. 2	36	135	26
Minimum month pH Acidity, parts per million:	2. 4	2.6	3.0	2.9	5. 2	4.7	3.0
Methyl red Phenolphthalein (hot) Iron, total parts per million	612 788 98	1 811 1 1, 047 222	78 114 66	248 398 75	34 4	32 56 4	244 284 6

¹ 1 sample.

Bacteriological data indicate the effect of acid in reducing coliform densities. Approximately one-third of the sampling stations were on acid streams and 92 percent of these stations had average coliform counts of less than 50 per milliliter. Less than 3 percent showed counts greater than 200 per milliliter. On the normal streams only 57 percent of the stations averaged less than 50 coliform organisms per milliliter and 24 percent averaged more than 200 per milliliter. Data in table A-7 on the lower Allegheny, which was affected by acid during part of the sampling period, also indicate the effect of acid on coliform counts.

Eighty-two percent of the stations on normal streams and 85 percent of those on acid streams showed average dissolved oxygen contents of more than 6.5 parts per million. About 11 percent of the normal stream stations and 5 percent of the acid stations had average dissolved oxygen contents of less than 5.0 parts per million. Zero dissolved oxygen was not found consistently at any station although it was approached below Corry, Johnsonburg, Kane, Bradford, and Latrobe. Relatively low temperatures prevailed during much of the sampling period, so the dissolved oxygen results show more favorable conditions than would have been found during the warmer months.



(Face p. 316) No. 2 6PO - 43 0 - 90035



GPO - 43 0 - 90035 (Face p. 316) No. 3



(Face p. 316) No. 5 GPO - 43 O - 90035

Because of the effect of acid on normal biochemical oxidation, the biochemical oxygen demand tests on acid stream samples were carried out in duplicate; one portion being incubated in the acid state as collected and the other being incubated after neutralization with sodium hydroxide and seeding with filtered sewage. In general, the results of the two portions were either of the same order of magnitude or the acid portion showed a higher biochemical oxygen demand than the neutralized portion.

Approximately 75 percent of the stations on both normal and acid streams had average oxygen demands of less than 3.0 parts per million. About 15 percent of the stations on normal streams and 5 percent of those on acid streams showed average demands over 5.0 parts per million. The worst conditions were found on tributaries below Kane,

St. Marys, Johnsonburg, DuBois, Derry, and Ridgway.

Considerable self-purification was indicated by laboratory results on the normal tributaries. Most of these streams were in good sanitary condition at their confluence with the Allegheny River.

Biological summary.—The plankton population of the Allegheny was found to be around 2,000 parts per million, and the stream supports a good fish population. The Kiskiminetas was too acid to support fish life or much plankton. The Clarion River, contaminated by industrial wastes, contained a good plankton and fish population but the fish are said to be unsuitable for food due to the taste of the flesh.

## HYDROMETRIC DATA

Eighteen stream gaging stations are now in operation in the Allegheny River Basin. Several of the stations have records of 30 years or more. Table A-6 shows mean monthly flows at 16 stations during the dryest summers of record. Figure A-6 indicates the frequency with which minimum monthly mean summer flows have occurred at 2 stations with long records.

Station	Minimum monthly mean summer flows in cub feet per second that may be expected once in-						
	2 years	5 years	10 years	Minimum			
Allegheny River at Kittanning, Pa	2, 200 550	1, 450 320	1, 200 230	930			



Table A-6.—Allegheny River Basin: Monthly mean summer flows for years in which lowest summer flows have occurred

River Location	Allegheny Larabee, Pa.  276 541 1925-39	Allegheny Red House, N. Y.	Allegheny Franklin, Pa.  126 5,982 1918-39	Allegheny Kittanning, Pa.  46 9,010 1904-28	Chadakoin Falconer, N. Y. 25 217 194 1935-39
Year	1930	1932	1930	1909	1936
June. cubic feet per second Julydo Augustdo Septemberdo	265 64 21 24	809 553 178 118	3, 030 1, 140 414 435	12, 014 3, 234 1, 421 934	54 38 32 23
Year	1932	1930	1932	1908	1939
June cubic feet per second July do August do September do	304 122 35 23	1,030 337 119 122	2, 510 2, 080 754 531	9, 522 9, 105 2, 743 996	35 42 46 29
Year	1934	1934	1934	1923	1935
June cubic feet per second July do do August do September do	99 34 45 83	299 150 144 233	1, 106 555 639 821	3, 640 1, 600 1, 400 1, 190	119 124 199 43

River	Brokenstraw Creek	Oil Creek	French Creek	Clarion	Redbank Creek
Location	Youngsville,	Rouseville,	Saegers- town, Pa.	Piney, Pa.	St. Charles,
River miles above: Confinence with Allegheny. Mouth of Allegheny. Drainage areasquare miles. Period of record.	188 304 1909–39	3 137 300 1909–39 ¹	36 163 629 1921–39	28 112 980 1924–39	15 80 528 1909–39
Year	1934	1930	1934	1925	1918
June_cubic feet per second_ July do	62 38 32 32	130 71 31 34	85 48 39 36	601 559 178 81	1, 234 122 15
Year	1936	1934	1930	1930	1930
June cubic feet per second_ Julydo Augustdo Septemberdo		75 38 39 34	295 115 41 70	471 245 88 87	176 265 34 46
year	1930	1932	1936	1832	1932
June cubic feet per second July do do August do September do	313 57 50 32	117 112 45 35	136 79 60 48	432 431 118 88	247 310 94 45

¹ From 1909 to 1931 station located 2 miles downstream, drainage area, 330 square miles.

Table A-6 .-- Allegheny River Basin: Monthly means summer flows for years in which lowest summer flows have occurred—Continued

River	Mahoning Creek Dayton, Pa.	Crooked Creek Ford City,	Stony Creek Johnstown,	Loyalhanna Creek New Alex-	Kiskimin- etas Avonniore.
River miles above:	Dayton, ra.	Pa.	Pa.	andria, Pa.	Pa.
Confluence with Allegheny	28 84	5 46	81 111	40 70	22 52
Drainage areasquare miles_ Period of record	321 1916–39	280 1909-39	467 1914–35	265 1919–39	1,723 1907–37
remod of record	1910-09	1809-38	1914-00	1919-09	1007-37
Year	1930	- 1930	1922	1932	1908
June cubic feet per second July do do	113 54	91 20	210 170	80 43	1, 134 608
Augustdo Septemberdo	18 23	2. 7 4. 0	62 30	26 16	358 90
Year	1939	1932	1925	1939	1910
June_cubic feet per second Julydo	194 171	45 72	221 232	122 127	<b>2</b> , 825
Augustdo	56 27	8.3	90 32	33 22	192 693
Septemberdo		3. 2			
Year	1925	1925	1914	1930	1909
June cubic feet per second July do do	137 157	32 153	446 230	489 50	2, 494 431
Augustdodo	70 29	26 6. 3	66	24 37	397 217

Flow regulation. - The following reservoirs in the Allegheny River Basin are a part of the authorized program for flood control primerily for the protection of Pittsburgh. Each of the reservoirs is named for the stream on which it is located.

Reservoir	Mile 1	Status	Net capacity	Flow available with regulation?
Crooked Creek	47 155 78 62 65 201 93 171	Completeddododododododo	Acre-feet 89, 509 127, 600 69, 500 93, 500 270, 000 1, 105, 000 139, 000 117, 000	Cubic feet per second 97 188 107 146 (3) 1, 927 226 230

Location of dam in river miles above mouth of Allegheny River.
 Maximum dependable flow at dam site during drought period July to November 1939 under one possible plan of reservoir operation. With the exception of the Allegheny River reservoir, present plans contemplate operations for flood control only.
 Natural flow.

Studies in progress indicate the desirability of substituting a system of small reservoirs for the large French Creek Reservoir. Among the projects receiving consideration in this connection are reservoirs on Sugar Creek (mile 138²), Lake Creek (mile 140²) and Sandy Creek (mile 134²). The first two are tributaries of French Creek, the last is a tributary of the Allegheny about 10 miles downstream from French Creek. Studies have indicated the economic feasibility of a multiplepurpose reservoir project on the Clarion River at the Mill Creek site, 121 river miles above Pittsburgh, Pa. The flows shown in the above table are those which could be maintained below the dam sites during the period July to November 1930 the lowest flow period of record at

Location of dam in river miles above mouth of Allegheny River.

Pittsburgh, by using a portion of the flood control storage for flow regulation after the end of the flood season, except in the cases of the Conemaugh River and Allegheny River Reservoirs. At the Conemaugh River site the storage capacity would be limited by physical considerations so that it is undesirable to use any of it for low-flow regulation even during the normally dry season. At the Allegheny River site ample storage capacity would be available and it is proposed to provide 195,000 acre-feet of storage expressly for low-flow regulation in addition to capacity which would be available seasonally as an incidental feature of flood-control operations.

In addition to these large projects a smaller one has been studied by the United States Engineer Department primarily for local protection at Jamestown, N. Y. The project involves improvements to the channel of the Chadakoin River (the outlet of Lake Chautauqua) and a better scheme of operation of the existing dam which regulates the outflow from Lake Chautauqua. The proposed operating scheme would limit the outflow to about 5 cubic feet per second during the

summer months.

## DISCUSSION

The major pollution problems in the Allegheny River Basin are: (1) control of acid mine drainage; (2) abatement of industrial wastes, particularly in the Clarion Basin; and (3) treatment of domestic sewage, particularly in the vicinity of Pittsburgh. In addition, there

are a number of other problems of a more local nature.

Control of acidity can best be accomplished by a program of mine scaling supplemented by flow regulation. This matter is more fully discussed in a separate section of this report on "Acid Mine Drainage." It is estimated that reservoir capacity of at least 210,000 acre-feet in this basin will be required for low-flow regulation. Of this, a portion could be made available at the four reservoirs already completed. The entire amount could also be provided in the proposed Allegheny River reservoir where the water quality would be good. One of the completed reservoirs, Lovalhanna Creek, is on a stream so heavily polluted with acid mine drainage that low-flow regulation by it might have a deleterious effect on the water quality of the Allegheny River. Although Mahoning Creek and Crooked Creek, on which two of the other completed reservoirs are located, also receive some acid mine drainage, they are less acid than Loyalhanna Creek and low-flow regulation by these two reservoirs would be beneficial.

Pittsburgh and ricinity.—More than 400,000 people discharge untreated sewage to the Allegheny River in the lower 30 miles below the mouth of the Kiskiminetas. Industrial wastes add a population equivalent of about 280,000. Most of this pollution enters the lower eight miles below the nine public water supply intakes on the Allegheny, but sewage from about 80,000 people enters the stream above the intakes of the two largest water supplies in the basin. Primary treatment and chlorination of all municipal sewage in this area seems justified. All or most of the wastes entering the lower eight miles of the Allegheny probably could be most economically treated, with wastes from other parts of Pittsburgh, at a large plant on the Ohio

River.

The problem of the city of Pittsburgh is discussed and cost esti-

mates are included in the report on the main Ohio River.

Kiskiminetas River.—This stream is the most highly acid large stream in the entire Ohio River Basin. While great improvement is possible, a comprehensive program of mine sealing could probably not restore it nor many of its tributaries to an alkaline condition until concentrated active mining moves, at least in part, to other areas. Sewage from about 185,000 people and industrial wastes equivalent in oxygen demand to sewage from an additional 95,000 enter the streams. in this area. The largest city is Johnstown, located at the junction of the Little Conemaugh River and Stony Creek, about 70 miles above the mouth of the Kiskiminetas. Almost all of the industrial waste load and about 45 percent of the sewage enters the streams in Johnstown and vicinity. Justification of organic pollution abatement at most of the communities on highly acid streams is doubtful in the absence of effective acid control and, in general, the present need for sewage treatment at such places is not urgent. The immediate need is for a program to reduce the acidity of the streams. In conjunction with such a program, in some instances primary, and in other instances secondary treatment of sewage and organic industrial wastes will be necessary depending on the particular situation and on the degree of acid reduction attained. At Derry, located on a small stream not affected by acid, secondary treatment is indicated.

Allegheny River above Kiskiminetas.—This section of the Allegheny River is relatively clean and always alkaline. The largest cities on the stream are Olean, N. Y., and Oil City, Warren, and Franklin, Pa. Olean and Franklin have recently completed primary sewage treatment plants and the remaining large communities have taken steps toward treatment. Warren, Oil City, Ford City, and Kittanning, Pa., are building or have completed interceptors and a number of smaller

municipalities have made similar progress.

Laboratory data indicate the need for more complete treatment at Olean if the stream is to be maintained in good condition at all times. At Coudersport, Pa., near the source of the Allegheny, secondary treatment is indicated. Primary treatment of sewage and organic industrial wastes should be adequate at other sources of pollution on

this stretch of the Allegheny.

Clarion River.— This stream and its tributaries receive wastes with a population equivalent of 147,000, of which more than 80 percent is from a pulp and paper mill and several tanneries located in the upper part of the drainage area. In the past, downstream water plants on the Allegheny have experienced taste, odor, and color troubles, apparently due to these industrial wastes, at times when a rapid draw-down at Piney Reservoir coincided with a low-flow period on the Allegheny. An understanding with the power company which operates the Piney project, regarding rapid release of water, together with improvements in waste disposal methods at the industrial plants, have improved conditions at downstream water plants in recent years.

The Clarion River itself is still grossly polluted, however. Local oxygen depletion is common during the warm months as far downstream as Piney Dam. Although the stream was found to have a good plankton and fish population at the time of the laboratory survey, the fish are said to be inedible because of the obnoxious taste of the

flesh.

All of the industries have taken steps to reduce pollution and the pulp and paper plant has spent large sums on treatment of its wastes. Continued intensive research leading to the development of better methods of disposal is not only amply justified but essential if the

Clarion River is to be restored.

From the standpoint of its effect on the quality of the water in the Allegheny, the proposed flood-control and power project on the Clarion, which has been studied by the United States Engineer Department, does not seem desirable as an initial development. Although low-flow regulation by the reservoir would be valuable for neutralization of acidity in the lower Alleghenv and upper Ohio Rivers, the possible deleterious effects of the polluted water at times of low flow in the Allegheny would more than outweigh the beneficial effects. Further reduction in the pollution of the Clarion River and low-flow regulation by other reservoirs which would reduce the proportion of the Allegheny flow contributed by the Clarion would make the proposed reservoir more desirable.

Other tributaries. - Most of these streams are relatively clean. Mahoning Creek, Crooked Creek, and Cowanshannock Creek are affected by acid mine drainage. Considerable progress has been made toward pollution abatement in streams not affected by acid. A program for the treatment of all wastes discharged to French Creek and its tributaries is nearing completion. Serious local nuisances still occur below Bradford, Corry, Du Bois, Kane, and a few other communities. Secondary treatment is indicated at these places. Primary treatment should be sufficient at a number of other communities where

pollution is less severe.

At Jamestown and Falconer, N. Y., the Chadakoin River and Cassadago Creek are rather heavily polluted by textile wastes and municipal sewage. The cities have constructed primary treatment plants but most of the industrial wastes are discharged directly to the Chadakoin River. Either secondary waste treatment or low-flow regulation from storage in Lake Chautauqua is indicated to improve

Cost.—Estimates of the cost of existing sewage-treatment facilities and of a suggested pollution-abatement program are shown in table A-1.

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results

	Hardness, parts per million		1	44 8 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44	54	24.2	99	272	256	284	268 299
A 0 MMA	Alkalin- ity, parts per million	35	35	24	26	29	39	300	120		114	5
	Turbid- ity, parts per million	1 2 2 3 4 4 4 1 4	1 3 1 1 1 1 2 4 3 1 1 1 4 4 1 1 7 1 4 4 3 1 7 1 1 1 1	15	1 4 1 1 1 1 2 1 2 2 3 2 4 9 1 1 1 9	10	400	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	eo 20	01	n n
	Hq	7.0	7.0	7.20	7.1	7.0	1.7.7.7.7.7.1.0.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	7.7.7.	7.7.7	1.1.1. 4.4.0	1040	1. 1. 00 00
Coli-	most probable number per milli-	4	2,400	2, 400 36 150	93	240 240 23	1,100 240 240 83	150 240	240 460 24	# S # S	480	240
5-day bio-	chemical oxygen demand, parts per million	1.0	2.3	04.1	1.3	1.4	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1.4	8.5.9	1.5	1.1	1:3
	Percent satura- tion	72.5	79. 2 86. 1 52. 1	78.8 8.4.0 8.7.4	83.7	88.3 69.2 61.4	6.05.05 6.05.05 6.43.08 6.43.08	71.1	75.7 66.8 73.1	71.2	83.0 83.0 55.3	75.3
Dissolved oxygen	Parts per million	7.3	0 8 8 9	# 13 F # 25 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	∞.∞ 1.1	6.0	800000 81-814	4.8.0	01-4	12 - 1 - 01 12 - 1 - 01	00 00 vi	7.6
	Temper- ture ° C.	15.5	15.0	14.5 17.0 14.0	17.5	14.0 17.5 16.5	14.5 17.5 15.0 16.0	13.5	13.5 15.6	12.0 15.0 14.5	12.0 15.0	12.5
Averson	discharge, cubic feet per second	111	82 30 18	106	1-9	17.825	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34 179 44	287	(1) 1	HHM	01 03
	Date	Aug. 23, 1940	Aug. 28, 1940 Aug. 30, 1940 Aug. 23, 1940	Aug. 28, 1940 Aug. 30, 1540 Aug. 28, 1940	Aug. 30, 1940 Aug. 23, 1940	Aug. 28, 1940 Aug. 30, 1940 Aug. 23, 1940	Aug. 28, 1940 Aug. 30, 1940 Aug. 30, 1940 Aug. 23, 1940	Aug. 27, 1940 Aug. 29, 1940 Aug. 23, 1940	Aug. 27, 1940 Aug. 29, 1940 Aug. 23, 1940	Aug. 27, 1940 Aug. 29, 1940 Aug. 23, 1940	Aug. 27, 1940 Aug. 29, 1940 Aug. 23, 1940	Aug. 27, 1940 Aug. 29, 1940
	Mileage from mouth	A 285.5	do A 285.5	do do ApoM 289.8	APo 291	do do APo 286.	do do A Po 279 do A 276	do. A 269.5	do	do do	do. AKn 274.5	do
	Sampling point	Allegheny River, at city limits, Port	Allegheny, River, 114 miles below	Marvia Creek, west city limits,	Potato Creek, 1% miles above Smeth-	Potato Creek, 2 miles below Smeth-	Potato Creek, I mile above mouth Do Do Do Allepheny River, 3 miles above El-	dred, Fa. Do. Allogheny River, 11,2 miles below El-	Tram Hollow Run, 12 mile above	Duke Center, Fa.  Do Oo Knapp Creek, 12 mile above Duke	Knapp Creek, below Duke Center,	Ta. Do

					-									020
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56		192	190 188 58			96	6 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	114	118	104 108 102	88	8.8
	33	44	99	99	80	40	41	43	131	107	131	98	12	
	1	10	1 b 1 1 2 1 3 1 3 1 4 1 5 1 1 1 1 2 1 1 1 1	9	404	1		2			90 m	10 10 14	16	
	7.0	7.2	7.1	7.7.0	2.2.2	7.1	7.0	7.2	7.2	7.6	44446		4431	7.0
	24	110	460	46	240 23 4	23	46	93	28 8 4	24	38222	1,100	24,	240
	0.1	2.5	1.2	1.0	1.2	1.7	2.1.3	2.1	1.5	, <del>-1</del> 4, 2 00 51	847.60		6.1.1.4. 1.0.0.8.	4.8
	29.6	78.7	83.1	64. 5 85. 4 59. 9	57.7 66.0 82.1	78.4	67. 6 69. 4 65. 9	65.4 70.0 69.8	66.2 81.6 79.5	77.4	7.27.7.2.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2	641.0 10.21.0 10.51.0 10.51.0	73.3 96.4 91.6 23.9	88.8
	7. 23	001-	7.7	0.8.0	8,6,6	7.2	6.0	0.7.0	6.1	%. 7.7.4	2000c		000000	1.0
	20.5	13.5	13.0	12.0 16.5 16.0	13.0 18.5 14.0	20.0	19.5 12.5 20.0	20.0 13.0 20.0	20.0 16.5 10.0	11.5	12.5		19. 5 18. 0 18. 0 19. 0	20.0
1	13	16 28	24	~~~	26	51	94 97	104	105 122 12	12 88 15	912916	39 948	36 62 55 113	118
	19, 1940	26, 1940 19, 1940	26, 1940 21, 1940	26, 1940 4, 1940 21, 1940	26, 1940 4, 1940 26, 1940	16, 1940	19, 1940 27, 1940 16, 1940	19, 1940 27, 1940 16, 1940	19, 1940 21, 1940 21, 1940	26, 1940 4, 1940 21, 1940	26, 1940 4, 1940 21, 1940 26, 1940 4 1940	26, 4, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	19, 1940 3, 1940 4, 1940 16, 1940	19, 1940
	Aug.	Aug.	Aug.	Aug.	Aug. Sept. Aug.	Aug.	Aug. Aug.	Aug. Aug.	Aug. Aug.	Aug. Sept.	Aug. Aug. Aug. Sent	Aug. Sept.	Aug. Sept. Aug.	Aug.
(	A Os 276	A Os 271.5	do A OsG 278	do do A OsG 273.5	do do A Os 266.	A 265	do	dodo	do do AO1I 282	do do AO11 280	AO10	A 010 272	do do do A 256.5	dodo
	Oswago Creek, 1 mile above Shingle-house, Pa.	Jswago Creek, 2 miles below Shingle-	Genessee Creek, 12 mile above Bolivar N V	100 100 Genesee Creek, 3 miles below Boli-	Do Downsto Creek Bridge on Route 16,	Alleghent River, 15 mile above Ports-	Do Do Dorferillo River 2 miles below	Do Do Nicer, 3 miles above Olean,	Do Do Service Stank Stank Singillo N. V. Sank	Do Do Creek, 15 mile below Frank-	Do Do Creek, ½ mile above Cuba, N. Y Do Do Do	Oil Creek, 2 miles below Cuba, N. Y. Do. Do. Do. Olean Creek, Olean Waterworks,	Do D	1 Less than 1,

Table A-7 .-- Allegheny River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Hardness, p.c.s per million	2 2 5 6 6 1 1 1 1	28	98	312	254 304 254	260 244 144	192			35	98
	Alkalin-	72	69	42	53		30	74	11	82	1	
	Turbid- ity, purts per million	1 1 2 2 3 8 8 4 8		60	20	21-12	13 11 220	7	1 1 7 1 1 1 1 1 1			1
	ЬН	7.1	7.7.7.	7.17	77.7.	222	7.2	7.0	1,1,1,1,1 010100	20.57	11111	7.2
Coll- forms.	probable number per milli-	43	23 15 93	159	24	240 93 4, 600	930 1, 500 2, 400	240	460	22 s. 22	2, 400	4
	onveen demand, parts per million	4.1	6; 6; 6; 4 % 10	6101 800	2.2	22.4	10.6	≒.e.i e.o. 44	69 -1	1111		1.0
	Percent satura- tion		49. 4 48. 6 50. 6	40.4	85.4 90.9 84.8	8 8 7 6 76 7 8 8 8 8	46.7	24.7	73.9 71.0 89.5	89. 5 76. 0 93. 6	85.6 85.7 89.7	8.69.8
Dissolved oxygen	Parts per million	2.6	0.04	00 4 00 00 4	0.00.00	00,00 1~10 →	1.4.4. \$3.0	40.0	- x & x	001.00	20 00 20 20 400	ගි
	Temper-ature ° C.	1	16.0 14.5 19.5	17.0 15.0 14.0	15.0	13.0 16.0 15.0	15.0	16.5	17.5	17.0 16.5 15.5	15.5 16.5 16.5	16.0
Average	discharge, T cubic feet per second	130	143	166	CN 00 00	8 24 21	28 101	317	991	00 00 00	1×1	29
	Date	Aug. 16, 1940	Aug. 20, 1940 Aug. 22, 1940 Aug. 16, 1940	Aug. 20, 1940 Aug. 22, 1940 do	Aug. 27, 1940 Aug. 29, 1940 Aug. 22, 1940	Aug. 27, 1940 Aug. 29, 1940 Aug. 22, 1940	Aug. 27, 1940 Aug. 29, 1940 Aug. 28, 1940	Aug. 30, 1940 Aug. 20, 1940	Aug. 29, 1940 Sept. 3, 1940 Aug. 20, 1940	Sept. 3, 1940 Sept. 4, 1940 Aug. 20, 1940	Sept. 3, 1940 Sept. 4, 1940 Sept. 3, 1940	qo
	Mileage from mouth	A 254.5	do	do A Tu 254.5	do ATuEb 255	do ATu 249.5	do ATu 246.	doA 235.5	do do AGV 249.	do A Q v 245.5	do do AGV 243	AGv 241
	Sampling point	Allegheny River, 1/2 mile above Allegany N V	Allebay River, ½ mile below Alle-	Tunnigant Creek, 1 mile above	Tunungwant Creek,	Tunnewant Creek, 1½ miles below	Do Do Do Tunugwant Creek, 2 miles above	Allegheny River, 1 mile above Sala-manca. N. Y.	Do Do Great Valley Creek, 2 miles above Ellicotryille, N. V.	Do Do Do Great Valley Creek, 2½ miles below	Great Valley Creek, I mile above	Great Valley Creek, 2 miles below Great Valley, N. Y.

96	08	83	84 60	100 62	40	62	92	120	76	38	40		700	84
82	200	72		33	27	17.	34	6	56	31	45	72	75	
	3	(0)	80	19	62	100	co	23	25.5	<u>∞</u> ∞	2	2 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	18
7.4	466	1.7.7.	1.1.1. 884	400	7.2	7.2	6.9		0.000		7.0	400	2.2.2	7.2
6	443	44 43	9 8 460	43 15	9 460	2, 400	<b>24</b> 460	43	11,000	240, 000	-14	1 - 4	43 23 23	39
1.6	1.9	1.1.3	1.1.3	1.2.1	2.0	19.6	2.2	1.0	38.3	1.1	1.3	2.3	1.1.1	4.1.
96.3	80.0 94.1 96.4	68.5 94.7 92.1	84.3 92.8 55.8	68. 1 69. 9 94. 4	95.2	91.5	91.5		0000 0000 0000 0000		103.7	88.2	76. 5 72. 1 71. 0	75.6
9.7	9.9.9	9.7.5	9999	6.8	@. % @. %	9.4	9.00	9.3			10.2	0,00,00	24.70	7.1
15.5	12.0	11.5 17.5 16.0	11.0 14.7 16.5	17.0	13.0	17.0	14.5		12.0		16.5	15.0 16.0 12.5	12.5	13.0
7	30	(3)	365	1,140	10	64 00	111	3 1 8	<b>600</b>	46	755	670 550 40	6424 6324	37
Aug. 20, 1940	Aug. 22, 1940 Sept. 3, 1940 Aug. 20, 1940	Aug. 22, 1940 Sept. 3, 1940 Aug. 20, 1940	Aug. 22, 1940 Sept. 3, 1940 Aug. 20, 1940	Aug. 29, 1940 Sept. 3, 1940 Sept. 17, 1940	Sept. 23, 1940 Sept. 17, 1940	Sept. 23, 1940 Aug. 28, 1940	Aug. 30, 1940 Aug. 28, 1940	Aug. 30, 1940 Sept. 9 1940 Sept. 12, 1940	Sept. 19, 1940 Sept. 12, 1940	15.0	Sept. 19, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 11, 1940	Sept. 17. 1940 Sept. 23, 1940 Sept. 11, 1940	Sept. 17, 1940 Sept. 23, 1940
A Gv 238	do ALv 243.5.	do ALv 210	do	do A CoS 226	A CoS 223.5.	do. AKi 236	do	do AKill 231.5	AKIII 229	A Ki 203	A 194	do ACoLe 225	do A CoLe 223	do
Great Valley Creek, 21/2 miles above Salamanca. N. V.	Do Do Do Do Dittle Valley Creek, 2 miles above Little Valley N V	Do Do Little Valley Creek, 2 miles below	Do Do Alleghouy River, 3 miles below Salarmonn N von	Do Do Cool Spring Creek, 2 miles above Steamburg N V	Cool Spring Creek, 115 miles below	Kinzua Creek, 1 mile above Mount	Kinzua Creek, 3 miles below Mount	Hubert Run, I mile above Kane, Pa	Hubert Run, ½ mile below Kane, Pa	Kinzua Creek, bridge on Route 219, at mouth.	Allegheny River, bridge on U. S. 6,	Do. Do. Little Conewango Creek, bridge, Ronfe 17, shows Randolph	Do. Do. Little Conewango Creek, 1½ miles helow Randolph N V	Do. Do Less than 1.

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, purts per million	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	58	54	\$ 1 2 9 1 0 9 1 0 9 1 0 1 1 0 1 1 0 1 1 0 1 1 0	52 52 52 52	27.7.2	76	1000 1000
	Alkalin- ity, parts por million	49		46	72	57	1 1	42	53	98
E. Harrie	ity, parts par par million		00	co co	101	8 5 5 6 8 8 8 8 8 1 8 8 8 1 8 8 8 8 8 8 8 8 8	8-4	47-00	101-	14 14 15
	Hd	7.2	30000	7,00,00	7,7,7	2000	1,1,1, 00 4,0,	1111		111111111111111111111111111111111111111
Coli- forms,	most probable number per milli- liter	110	404	43 24 110	240 240 9	240	93	23 460 150	93 15 94 94	2. 1-310 2. 1-31 2. 1-31 4. 309 110, 000
5-day bio-	oxygen demant, parts per million	2.5	200	ಚಟ್ ಕಾಗಳ	122.2	5.5	2000	22.0		22.7.7.90.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.
1	Percent satura- tion	72.8	96.8	108.1 112.2 78.8	91.9	76.4	84.4 83.8 74.2	73.8	79.8 107.2 88.3 83.2	24.67.42.00 24.0000
Dissolved oxygen	Parts per million	7.2	00 00 00 00 00 00	10.5	1,00,00	7.8	4.0%	F. 00, F. 4. 70 60	11.1 9.9.6 8.9	, w , v , 00 000000
	Temper- ature ° C.	16.0	16.5	16.0 19.0 15.5	16.0 17.0 15.5	14.5 17.0 16.5	16.0 18.5 16.5	15.5	12.0	2.2.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Average	discharge, cubic feet per second		1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	164	332	2008	364 326 600	610 400 1,340	1,320	-0000000
	Date	Sept. 11, 1940	Sept. 17, 1940 Sept. 23, 1940 Sept. 11, 1940	Sept. 17, 1940 Sept. 23, 1940 Sept. 11, 1940	Sept. 17, 1940 Sept. 23, 1940 Sept. 11, 1940	Sept. 17, 1940 Sept. 23, 1940 Sept. 11, 1949	Sept. 17, 1940 Sept. 23, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 13, 1940 Sept. 18, 1940	12,52,22,50,21, 15,50,21,50,21,
	Mileage from mouth	ACoChLe 225	do A CoChLe 223	do ACoCh 218	do A CoCa 217	doA CoCa 215.5	doACo 193	doA 184.5	ABrH 210	ABrH 208 do do ABr 1 206 do
	Sampling point	Lake Chautauqua, Celeron Park,	Do. Do. Lake Chautauqua, city limits, Tamestown N V	Do Do Do Chadakain River off Route 17, Fai-	Cassadasa Creek bridge on Route 17,	Do Do Cassadaga Creek, south of Route 17,	Do Coneway Creek, Fifth Street Reiden Warran Do	1)0 Alleghory River, 4 miles below	Hare Creek, 14 mile above Corry, Pa	Haro Creek, 1 mile below Corry, Pa Do Do Hare Creek, 3 miles below Corry, Pa Do

40	34	89	1 2 1 1 2 3 1 1 1 1 1 1 1 1 1	76	50	34	36 40 76	32	128	24 30	73	
33		68	29	35	20	19	88	21	22	47		
4	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	524	122	16	7 4 11	60	53	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6,8	7.7.7	4.1.00.7.	4.7.7.		1001000		7.1	7.1	7.0	7.0	45.7.	7.6
4	4624	408	24.20	13 0 4	240 443 15 46	9 4 240	1,100	4, 600	240	1, 100	044	(1)
00	1.8	1.3	11.2	i.c.; i. 4.00 € 0		1.6	080	6661	1.0	2.1	524	0 % 0 %
95.1	95.1	83.7 113.9 99.6	70.7 115.8 95.6	83.3 116.0 87.6 87.0		92.4 94.0 86.8	81.6 82.1 82.9	95.4 87.7 75.4	83.8	93.4 83.3 91.9	91.0 96.4 102.7	87.4
9.8	6.6.6.	8.7 11.6 9.8	11.6	00 T 00 C		10.6	9.0.00	10.0	80.00	9.8.9	9.5	9.5
16.0	14.0 14.0 16.5	14.0 15.0 16.5	14.5	15.0	11.0	10.5	10.0	13.5 14.0 15.6	14.0 14.0 15.0	14.0	13.5	8.0
\$	112	128 82 120	132	134	6 4 8 11	1 00 00	10 8	12 65	26 25 108	44 37 1,550	1,160	00 CD
Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 9, 1940	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sept. 12, 1940 Sept. 19, 1940 Sept. 9, 1940	Sept. 12, 1940 Sept. 19, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Sept. 10, 1940	Sept. 16, 1940 Sept. 20, 1940 Oct. 3, 1940	Oct. 15, 1940 Oct. 24, 1940 Oct. 3, 1940	Oct. 15,1940 Oct. 24,1940
ABrM 188.5	doABr 189	do. ABr 187.5	doABr 184	do do ATIEbW 207	ATIEDW 205.	do do ATIT 198.5	do do ATIT 194	do do ATi 194	do ATi 192.5	do do A 134.2	do do AOi 153	doob
Mathews Run, 2 miles above Youngs-	Brokenstraw Creek, 1 mile above	From Property Creek bridge on Route	o, roungsvine, ra. Do Do Brokenstraw Creek bridge on U S 6,	West Run, city limits, Kane, Pa.	West Run, 2 miles below Kane, Pa. Do Do Two Mile Run, 1½ miles above	Ludlow, Pa. Do. Two Mile Run, 1 mile below Ludlow,	Two Mile Run, at mouth, Sheffield,	Tionesta Creek, 1 mile above Shef-	Tionesta Creek 1½ miles below Shef-	Allegheny River, State Street Bridge,	Oil Creek, 1 mile above Titusville,	Ta. Do. 1 Less than 1.

Less than 1.

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	_												
		Hardness, parts per million	78	# # # # # # # # # # # # # # # # # # #	I	102	100	74	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	888	1 9df 1 000	885
	2 0 0	Alkain- ity, parts per million	1 1 1	445	73	71	47	29	68	92	28	85	T 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Turbia- lity, parts per million	1 1 1 2 2 2 3	8 B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	£30 ∞	2020	1 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	C1 00	13	23
		ЬН	8	7.7.7	5.7.7.	2.7.7.	2.6.7.	5.7.7.	7.7.7	4.7.7.	27.77	4.00	44
The same of the sa	Coli-	most probable number per milli- liter	43	(1)	412	460	240	44 46	288	930	230 430 2	400	2, 400
	5-day bio-	oxygen demand, parts per million	1.1	80.	2.1.8.	က်လုံလုံ ကလုံလုံ	41.1	1111	.4.6	1.1	6:59	4.0.1	1.9
-	loxygen	Percent satura- tion	106.9	80.4 91.1 99.2	55.2 82.7	68.9 69.9 53.1	30.5 38.8 94.1	88.3 93.1 89.7	79.3 87.9 86.6	84.0 80.9 85.5	83.3 63.9 85.9	91.3	91.9
	Dissolved oxygen	Parts per million	11.3	10.8	80 0. 80 80 4	5.0	69.4.0. -1.4.00	9.4	10.5	8.8.6.	8.0.8 8.0.8	989	9.0
		Temper- ature ° C.	13.0	11.5 8.0 13.0	13.0 9.0 15.0	14.5	15.0 10.0 14.0	13.0	9.5	13.5 16.5 13.5	14.0	15.5	18.5
	Average	discharge, cubic feet per second	00	12 10 20 20 20 20 20 20 20 20 20 20 20 20 20	12.83	74 80 59	76 82 1,610	1, 240 1, 200 1, 350	1,340 1,270 26	18 16 34	21 16 129	75 75 170	300
		Date .	Oct. 3, 1940	Oct. 24, 1940 Oct. 24, 1940 Oct. 3, 1940	Oct. 15, 1940 Oct. 24, 1940 Oct. 3, 1940	Oct. 15,1940 Oct. 24,1940 Oct. 3,1940	Oct. 15, 1910 Oct. 24, 1940 Oct. 3, 1940	Oct. 15, 1940 Oct. 24, 1940 Oct. 7, 1940	Oct. 16, 1940 Oct. 25, 1940 Sept. 13, 1940	Sept. 18, 1940 Sept. 24, 1940 Sept. 13, 1940	Sept. 18, 1940 Sept. 24, 1940 Sept. 13, 1940	Sept. 18, 1940 Sept. 24, 1940 Sept. 13, 1940	Sept. 18, 1940 Sept. 24, 1940
		Mileage from mouth	AOi 149.	do A O i 139	do do AOi 138	do A O1 135	do do A 132	do do A 127	do do AFrSb 197	do do AFrsb 195	do do A Frsb 174	do do AFrsb 172	op op
		Sampling point	Oil Creek, 1/4 mile below Titusville,	Pa. Do. Oil Creek, ½ mile above Rouseville.	Pa. Do Do Oil Creek, ¼ mile below Rouseville,	ra. Do Do Oil Creek, bridge, Seneca Ave., Oil	Allegheny River, 2 miles below Oil	Allegheny River, 1 mile above Frank-	Int, Fa. Do Do French Creek above town of Union	French Creek, 1½ miles below Union	French Creek, bridge on US 6, Cam-	bridge Springs, Fa. Do To To The Creek, 3 miles below Cam-	Do D

				OIL	O YELV	1216	1011	10110	TA	CONTRO	u			00
88	08 "	98	102 96 100	84 74 60	72 90 170	6 6 1 1 1	244	292 324		104	28	64		# # # # # # # # # # # # # # # # # # #
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	81	884	99	130	264	210	782	85	7.7.	22	55	99	1 0 0 0 0 1 1 1 2
14	64	14	15	00 10	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45	4		0	22	10	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
7.2	2.5	440	77.77	8-7-7- 41-4-4-	7.7.7	7.5	26.60	7.5	7.4	044000		7:1:1. 61:0:00	4.7.	7.4
=	m 7	(1) 9	1, 100	110	23 4 4	93	46,000	1,500	12	1 1 150 4	1000	<b>293</b>	p=1 00	64
1.0	ci ∞	27.5	4.6.4.	1.4	2.0	2.6	1.2	H. 03 00	1.2	HIHHHH HO4000		€ 44 -1 7- € 5 C 2	5.7.	1.4
67.4	106.3	44.6	16.7 44.0 92.4	88.85.2 85.2.2	80.88 96.58	87.8	93.8 53.8 53.8	80.4 70.9 100.8	74.6	100.9 95.2 95.5 91.8	96.8	93.6 87.6 89.0	97.4	98.0
7.3	10.7	4 8 4	1.7	0.20	9.4	9.1	11.6	9.8 8.3 10.1	7.6	1.0.1.0.1		11.2	9.5	11.9
12.0	10.0	12.5	14 0 11.0 17.0	9.0	5.5	14.0	15.0	10.00	15.0	15.00 15.00 15.00 15.00		11.0	7.0	7.0
125	36	128	171 165 202	211 235 1,550	1,550	3	888	HHD	13	100000	G 4	1,740	1,760	1, 790
15, 1940	24, 1940 3, 1940	15, 1940 24, 1940 3, 1940	15, 1940 24, 1940 7, 1940	16, 1940 25, 1940 7, 1940	16, 1940 25, 1940 16, 1940	7, 1940	16, 1940 25, 1940 7, 1940	16, 1940 25, 1940 7, 1940	7, 1940	16, 1940 16, 1940 25, 1940 16, 1940		16. 1940 25, 1940 10, 1940	23, 1940 10, 1940	23, 1940
Oct.	Oct.	Oct.	Oct.	Oct.	Oet.	Oct.	Oct.	Oet.	Oct.	000000	Oct.	00ct.	Oct.	Oet.
AFrC 158.5	AFr 161.5	dodo	do. AFr 128	do. AFr 124.5	do do ALO 125.5.	ASaS 135	do ASaS 134.5	do do ASa 133.5	ASa 132	do do ASa 123.5 ASa 121	do ASal. 123,5	do do A 91.6	do. A 87.8	
Cussewago Creek, 3 miles above	French Creek, 3 miles above Mead-	French Creek, 2 miles below Mead-	Do Do French Creek, Thirteenth Street	Brugge, Franklin, Fa. Do. Allegheny River, I mile below Frank-	Lower Two Wile Run, 15 mile above	Sulfar Run, bridge on route 62,	Sulfur Run, bridge near railroad	Sandy, Creek, bridge on route 62,	Sandy Lake, Pa.	Lake, Fra. Do Sandy Creek, off route 62, Folk, Pa. Do Sandy Creek, ½ mile below Polk, Pa	Do Little Sandy Creek, bridge on route	Do. Do. Do. Alletiny River, bridge on route 38, R. Prolanton Do.	Allegheny River, 3 miles below	Do

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

Hardness.	parts per million		80	98 24-	98	909	946				
Alkalin-	ity, parts per million	22	24	. 31	( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39	122		74	52	
Turbid-	per million KKKKK		35	101-4	co	2	9	1		1	
	рН	7.0	77.7	1.1.1.	80.07.1		0.000.00	21.30.7.		6.7.2	7.0
Coli- forms,	probable number per milli- liter	240	9 6 240	150 93 110	460	240	93 4 4 210	11,000 2,400 2,240 6,700 930	430 11,000 2,400 5,850	9, 800 2, 400 460	4,300
5-day bio-	demand, parts per million	1.7	3.5	2.5	0,00,-;- ∞0,40		1.7 3.1 159	292 268 128 77. 5	17.5 74.4 117 48.5	35.2 85.7 16.5	99.8
l oxygen	Percent satura- tion	94.3	97.7	96.3 91.4 92.5	8 6 1 5 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	98.1	76.8 105.7 95.0	00000	63.5	17.2	51.2
Dissolved oxygen	Parts per million	9.5	11.0	10.4	80 HIII 80 4 12 86	11.6	8.1 12.4 11.8	0000	6.1	1.9	3.
Tompor	ure ° C.	15.5	11.5	12.0 12.5 11.0	20.00	30.5	13.0 8.5 6.0 21.0	27.0 20.0 15.8 17.0	14.0 14.0 10.0 10.0	10.3	8.0
Average discharge,	eubic feet per second	26	12 10 59	26 19 21	23222	40	36 29 61 61	622.53	650 65	85.45	74
	Date	Sept. 9, 1940	Sept. 12, 1940 Sept. 19, 1940 Sept. 9, 1940	Sept. 12, 1940 Sept. 19, 1940 Sept. 30, 1940	Oct. 28, 1940 Oct. 28, 1940 Oct. 28, 1940 Oct. 30, 1940	30,	Oct. 8, 1940 Oct. 18, 1940 Oct. 28, 1940 Sept. 30, 1940	28, 28, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32		Oct. 30, 1940 Oct. 31, 1940 Sept. 30, 1940	Oct. 8, 1940 Oct. 18, 1940
Wilesoe from	mouth	ACIWb 194.5	ACIWb 193.	do ACIW b 188.	do do	do. ACIEb 188	do. ACI 187	do. do. do.	do do do	do do ACI 182.5	do
	Sampling point	West Branch Clarion River, ½ mile	Do. Do. West Branch Clarion River, 1 mile below Wilson Pa	Do Do West Branch Clarion River, bridge on route 319 Johnsonhure Pa	Do D	East Branch Clarion River, First A yenue Bridge, Johnsonburg, Pa.	Do Do Do. Clarion River bridge in town, John-		Claron Kiver, 1 mile below John- sonburg, Pa. 100 100	Do Clarion River, city limits, Ridgway,	Do.

																		,	
190	450	104	36	488	350	324	32	214	260	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	228	124	156	130	158	134		
	6 1 5 6 1 1 1	14	4	29	) [ ]		10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1	190	16 16	18	48	2	oo	15	00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ಣ	25	00	35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
5.7.7. W.		6.1	0.000			× 1-1-1				3.4	3.0	3.1	3.2	3.0				7.1	
2, 400 930 4, 600	2 5	4,600	2, 400 7, 500 240 240	1,100	1, 500	3, 500 8, 500 9, 500	4 41	Ξ Ξ 	ε	24	(c) {	€ (E)	E	£	£	12.	\$ 45	24	
61.00.00. 8.461.7.4.	2.5.5	17.9	30.1 72.6 1.1	13.0	8.0	7, Q, 4j = 1 € 4 €	- ini-	23.0	18.1	21.1	3.9	1.2	1.2	21.1	7.7.	12.2	200	6.1	
		85.4	54. 4 37. 9 90. 6 87. 3	80.5 93.5 63.9	60.8	× 28 64 8	90.4	89.7	94.7	88. 1	81.5	76.5	95.2	93.9	106.8	48.4	97.0	47.2	
		9.6	5.7 4.6 10.3 9.4	9.9 11.5 6.6	 	-i wi 4:0	9.6	10.5		10.6	9.7	9.4	10.6	11.4	12.8	5.1	0.7	; © 00	
10.00		10.5	13.5 7.0 10.0 12.5	6.5	14.0	7.50	13.0	1. 1.	5.5	7.5	8.0	6.5	11.0	7.0	7.5	13.0	9.0	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	
24.00 00 24.00 00	0) 0	। বা	24 2 2 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	74 24 112	86 8	1110	-10	24	20	30	22	22	26	26	25	142	165	185	
28, 1940 30, 1940 31, 1940 . 27, 1940	8, 1940		8, 1940 18, 1940 . 30, 1940 8, 1940	30,00	00 00 0	28, 1940 30, 1940 31, 1940	်တ ကိ	9, 1940		. 27, 1940	8, 1940	17, 1940	30, 1940	9, 1940		. 30,		29, 1940 31, 1940	
Oct. Oct. Sept	Oct.	Sept	Oet. Sept Oct.	Oet. Oet.	Oct.	Set:	oct.	Sept Oct.	Oet.	Sept.	Oct.	Oct.	Sept.	Oct.	Oct.	Sept	Oct.	Oct.	
do do ACIE 193.5.	do	ACIE 190	do ACIE 181	doACI 179	do	do do		ACITOI, 184.5	qo	ACIToL 182.5	do	do	ACITo 174	do	ор	ACI 173	dod	do	
Do. Do. Elk Creek, bridge off route 120, St.	D0.	Elk Creek, 1/2 mile below St. Marys,	ra. Do. Do. Elk Creek at mouth, Ridgway, Pa. Do.	Do. Clarion River, 1 mile below Ridg-	way, Fa. Do. Do.	Do Do Do Will Cool	Do	Little Toby Creek, 1 mile above Brockway, Pa.	Do	Little Toby Creek, city limits,	Do Do	Do	Toby Creek, bridge on Route 949, at	Do	Do	Clarion River, above Portland Mills.	Do	Do	1 Less than 1. 8 Seeded and neutralized.

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

0 1			·				7 3		-				. 0.	. ,		-			-					
		Hardness, parts per million	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 3 4 5 4 1	1 B 0 2 E E E E E E E E E E E E E E E E E E			2 1 1 1 1 1 1	6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1	82	1 1 1 1 1 1 1 1 1 1 1	2 4 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9/	218	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	86	200
		Alkalin- ity, parts per million	27		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29				31			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		39	29	35	1
	:	Turbid- ity, parts per million	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0			1 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1	-	1 1 1 1 1 2 4	4	15
		Hd	6.8			7.0			0.00								7.0	0.7	7.1	101	7.2	7.0	6.6	6.6
-	Coli-	most probable number per milli- liter	15	240	1, 160 83	24	93	0;	15	46	240	200	240	30	43	253	199	04	200	4	43	24	4	41
	5-day bio-	ovygen demand, parts per million	6.6	24.1	0 x	31.4	23.2	48.4	18.4	0.8			1301		25.3	7.7	100	0.7	N. 3	oc r		3.0	2.0	3.0
	l oxygen	Percent satura- tion	56.9	42.4	48.0	60.6			67.9		50.1	57.0	69.2	07.5	55. 2	2000	70.2	41.4	07.0	62.9		71.0	15.4	20.7
	Dissolved oxygen	Parts per million	6.3		4. Q.				- 00° - 00°				000				00 o		o 0	64 3 96 96		7.4	1.5	2.1
		Temper- ature ° C.	11.0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		11.5	0.6	9.6	12.0	11.5	∞. 4 ∞. c	9,0	0.61	12.0	0.4	6.0		19. 9	5.5		13.5	16.5	16.0
	Average		175	157	1.50 80 80 80 80 80 80 80 80 80 80 80 80 80	215	160	150	245	247	181	18.5	27.8	007	190	147	298	000	130	310		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
		Date	Oct. 1,1940		29.	Oct. 31, 1940 Oct. 1, 1940	6	Oct. 17, 1940	200	Oct. 1, 1940	9,1	Oct. 17, 1940		f -	0,1	Oct. 29, 1940	. 17	004	5	Oct. 29, 1946 Nov 1 1940	-	do	do	Oct. 9, 1940
		Mileage from mouth	AC1168	do	) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACI 150	1 1 2 2 3 4 4 5 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6	do		AC1144.5 (	4 8 6 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	do.				(do		1		ž	123	AC1 122	AC1Tob 118	AC1 112
		Sampling point	Clarion River, bridge in town,	Do-	DO	Claries River, bridge on Route 368.	Do.	Do	00	Clarington Pa	Do-	Do	Olarian Divor bridge on Boule 36	Cooksburg, Pa.	Do	Do	Olarion River 1 mile above Cooks.	burg, Pa.	Hill, Pa.	100	Mill Creek, Piney Reservoir, Mill	Clarion River, Piney Reservoir, Mill	Toby Creek, bridge off Route 966,	Clarion River, bridge on Route 966, Clarion, Pa.

8 E 0 0 0 0	78	06.88		50 1 160	64	24	32	520	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	98	72	889	88	1 ( 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t t t t t t t t t t t t t t t t t t t
33	88	32	42	08	17	20			26	21	12	90	25	22	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	00	122	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6		20	-	4	1 1 1 1 1 1	69	9	10	10	63	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
77	7.1	227	44	1,00¢		6.9	6.9	-	6.5	6.5	6.0	7.00	200	04.7.	7.7.
60	~0	(3)	12		24, 000 46, 000 4	64 44	110	£	8	15	8 (1)	-4	2,400	430	64.41
1.0	1.9	-644	1.6	1.3		1.0		25-48		12.00	100	90.8	895.8	82.1 125.7 93.6	86.5
84.3	75.5	86.9 90.8 91.4	92.6	100.7	4.7.9 98.9 4.8.9	88. 5 100. 6	84.8		68.4	70.9	59.3	86.2	1.1	2.6	1.0
9.0	90.00	10.8	11.3	10.7		10.5	10.1		7.7	7.00	9.5	10.0	10.2	15.3	13.5
15.5	15.5	10.5 8.0 11.0	7.0	00 00 00 00 10 10 10 10		8.0	0 00		10.5	10.5	8.0	9.5	12.0	8.5 7.0 10.0	9.0
263	233	248 274 2,020	2, 070	2, 180 24 14 25	16	10	9 €	3	23	19 24	300	35	46	31 255	50
1, 1940	23, 1940	10, 1940 23, 1940 10, 1940	23, 1940 10, 1940	23, 1940 27, 1940 11, 1940 27, 1940	2,2,2	11, 1940 27, 1940	11, 1940		2, 1940	2, 1940	11, 1940 4, 1940	14, 1940 4, 1940	14, 1940	14, 1940 22, 1940 4, 1940	14, 1940 22, 1940
Oct.	Oct.	Oct.	Oct.	Sept.	Oct. Sept.	Oct. Sept.	Oet.	Oct.	Cet.	Cet.	Oct.	Oet.	Oet.	Cett.	Oct.
AC1 101	ACI 90.5	do do A 85	do A 70.7	do ARES 141.5.	do do AResF 139	ARcSF 138	do.	qo	AReS 131.5	AReS 130.	do 115.5	do AReNf 113.5	do. ARe 112	do ARe 103	do
Clarion River, bridge on Route 378,	Clarion River, bridge south of St.	rectsouts, 1 a. 100 Allegheny River, bridge on Route 68,	Alleghen, Bridge on Route 68,	Sandy Lick Creek above DuBois, Pa Do Sandy Lick Creek above DuBois, Pa Sandy Lick Creek, below Dubois, Pa	Do Do Falls Creek, 1 mile above Falls Creek,	Do Boll Bridge on Route 830,	Soldiers Run. % mile above Revn-	oldsville, Pa.	Sandy Lick Creek, bridge on Route	Sandy Lick Creek, city limits, Reynoldsville, Pa	Sandy Lick Creek, city limits, Brook-	North Fork Red Bank Creek, bridge	Red Bank Creek, city limits, Brook-	Red Bank Creek, ½ mile above	Do. Do. 1 Less than 1.

1 Less than 1.
2 Seeded and neutralized.

90035—44—pt. 2——13

TABLE A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	74	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.89	88.0 77.8 80.23	368	30000	260	420	184	38	520	270	114	190
A 11. O.II.A	ity, parts per million	23	99	64	21	49			2 2 2 3 3 3 4 1 1	21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	333	4 4 1 8 8 8 8 8	1 5 2 7 1 1 1 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
E. S.	ity, parts per million	14		0 1 0 1 0 1 0 1 0 3 0 3 0 3 0 3					1	150	38	7	58	6 6 8 8 8 1 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1
	Hd	7.2	7.1	7.1	6.9	6.9		6. 9			6.6		3.2	4.5	GO Ni	5.5
Coli- forms,	most probable number per milli- liter	23	46 240 1	93	88	8 3 3	£ :	E E	3	€ :	3 3	.2	(E)	1	0	3
5-day bio-	oxygen demand, parts per million	98.5	87.2 110.5 90.4	100.0	ed .	41.0	1 0 C	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	6.2	0	24.0	7.1.	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2, <u>1,</u> 2, 20, 20, 20, 20, 20, 20, 20, 20, 20,	400	1.7
	Percent satura- tion	9.	2.7	1.4	98.9 103.9	99.1 106.3 89.3		47.8			97.1	91.0	0.96	94.1	97.6	102.8
Dissolved oxygen	Parts per million	11.0	10.2	13.0	12.8	10.9		න ග			5.8		11.0	10.4	10.2	12.5
	Temper- ature ° C.	10.5	10.0	4.5	11.0	11.5 8.0 16.0	10.0	7.0			6.0		9.5	11.0	13.5	7.0
Average	cubic feet per second	55	25.2	200	<b>62</b>	2, 150	-	es es	20	GO I	7 00	-	6	33	44	27
	Date	Oct. 4, 1940	Oct. 14, 1940 Oct. 22, 1940 Oct. 14, 1946	Oct. 22, 1940 Oct. 14, 1940	Oct. 22, 1940 Oct. 10, 1940	Oct. 14, 1940 Oct. 23, 1940 Oct. 10, 1940		Oct. 21, 1940	Oet. 21,1940		Oct. 11, 1940		do	op	Oct. 10, 1940	Oct. 22, 1940
	Mileage from mouth	ARe 101.5	do do ARe 87.5	doARe 86.5	do	do do A 62.2	AMaSts 127.5	AMaSt 127.5	do	AMaSt 126	do	AMaSt 125	AMaSt 124	AMa 113	do	do
	Sampling point	Red Bank Creek, city limits,	Pour Per Per Per Per Per Per Per Per Per Pe	Red Bank Creek, 15 mile below New	Bed Bank Creek, 3 miles south of	Do. Do. Allegheny River, lock No. 9	Sugar Camp Run, off route 119, Sykesville, Pa.	Stump Creek, Sykesville, Pa	Do	Stump Creek, 1 mile below Sykes-ville, Pa.	Do	Stump Creek, bridge off route 951, Svkesville, Pa.	Stump Creek, 3 miles below Sykes-	Mahoning Creek, 1 mile above Punx-	Do.	Do

230	178	20	:::	111		1 1 1	019	625	938	1	;	:	365	524	320		: :	: :	: :	1
84	11		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3 1 6 3 1 5 2 1 1 2 1 3 1 2 1 1 1 1	[9]	9	39			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8	35	č	1		1 1 1 1 1 1 1 1 1 1		t 1 1 1 1 1 1 1
0 0 1 0 0 0 0		55 55 55	50 50 50	44 44 76 30 30 30	90 09	20 00 00 20 00 00 20 00 00	7.3	1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1		51	52	45	Q 4 4 4	Q.
34	15	23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1	202	9	200		1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89	09	22	0 0 0 0	1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.2	6.69	0440						ଖ	60	2.8	2.8	63.	3.2	2.0	10				445	
3	£ 22	(3)	*   -   0	D C/1 44 C	4 to 41	24 15 46	3 100	3	Θ	3	3	3	3	Ξ	4	41	বা বা		2 2	
21.6	 		91.91	*00*	11:1	, ii ii ii	9.1.80	क नं	-i wi	८१ या	100	4	- 01	014	20°.7	1.1	1.8	00:	200	
10	2000	0.00	001-11	0 tr 10 0	1001	m 41-(	77 00	~~ 6			0.		2	-	8		000	n 30	 	
94	102. 98.	94.	92.00	99.50	104	103 105.	26.	64.	80.	69.	79.	.06	56.	200	900	93	95.	90.	97.	
10.5	12.0	4-6						7.4	9.3	6.9	00 00	11.7	5.4	6.4	10.9				ත් ලා ල	
11.0	13.5	16.0 25.5 21.5	15.6	14.5	9.0	4.00	15.0	10.0	9.0	16.5	11.0	4.5	17.5	11.5	0.01	25.0			16,0	
36	57 31 49	1, 950 4, 950	2,2,2,4,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	2,170	7,200	11,000	(1)	(3)	9	ಣ	-	6	10	53	16	1,750			2,2,2,5,5,5,6,5,6,5,6,5,6,5,6,5,6,5,6,5,	
2, 1940	10, 1940 22, 1940 22, 1940	20 1940 28, 1940	23, 1940			22, 1940 25, 1940 6, 1940	10, 1940	24, 1940	Nov. 14, 1940	0, 1940	24, 1940	Nov. 14, 1940	Sept. 10, 1940	24, 1940		20, 1940	2, 1940	23, 1940	7, 1940 16, 1940	
Oct.	Oct.	Oct. 1 Aug. Aug.					Sept. 1	Oct. 2	Nov. 1	Sept. 10, 1940	Oct.	Nov.	Sept.	Oct.		Aug.	Aug.		000	
AMfa 109	do AMa 63	A Ma 56.5 A 52.6	900	do	op	do.	A Co C 62.5	do	do	ACo 63	dodo	do	A Co 60	do		A 45.7	dodo	do	do do	
Mahoning Creek, bridge route 119,	Do. Mahoning Creek, 7 miles above	Mahoning Creek at mouth Allegheny River, lock and dam No. 8. 100.	Do	Do Do	D0.	Do Do	Craig Run at mouth, Rural Valley,	Do	Do.	Cowanshannock Creek, upper edge Rural Valley, Pa.	Do	Do	Cowanshannock Creek ½ mile below Yatesboro, Pa.	Do	Do	Allegheny River, lock and dam, No. 7. Kittanning, Pa.	Do	DO	1)0	1 Less than 1.

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	145	316	152	198	140	100	ant	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6 6			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.00	Alkalin- ity, parts per million	488	59 48 37	2 23 23	0 0 0 0	0 0 0 0 1 0	0 0 0 0 0 0 0 0	1 1 1 0 1 2 5	3 5 0 0 0 0	0 0 0 0 0 0 0	Q.	18	00 5	35	52	45	23 2	323	45	60	000
	ity, parts per million				0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45	14	9	ď	15	C		0 0 1 0 1 0 0 0 0 0		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 3 1 6 0 6 0 6 0 6 0 6 0 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Ηď	7.2		6.23	ଖ	2.9	4.0	69	. 3.6	9		2.0			7.2	 	1.1 20 K	7-1	2.50	7.7	1.7.
Coli-	most probable number per milli- liter	1	404	110	22	£	3	011 {	3	3	6	3 -41	6 8	4	22	2,83	25.52	000	0,0	110	250
5-day bio-	oxygen demand, parts per million	1.3		440	1.4	"i.	1:02	2.3	4.9	2.5		I.0			6.		1.2	1.6	000	1.4	irir
Dissolved oxygen	Percent satura- tion	93. 5	95.1 100.8 102.7	102.3 101.7 99.8	74.3	86.4	90.3	76.0	64.7	00		82. 4	3 0 3 0 0 0 0	86.4	20.00	79.4	95.0	93.2	00 00	91.8	96.4
Dissolved	Parts per million	10.4	11.2	14.9	7.0	9.9	11.6	7.4	7.	11.2		9.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.2	200	× 1	2.0	0.00	9.4	10.2	12.7
	Temper- ature ° C.	11.0	დ ව 4. ව ට ට	10.0	19.0	9.5	5.0	17.0	10.0	50.00		00	0 0 0 1 0 0 0 0 0	26.0	21.5	19.5	20.0	16.5	12.0	11.0	4.4
Average		2,080	2,350 7,500 11,200	12, 600 11, 900 28, 300	က	F	57	41	=======================================	ю			N NO	1,830	2, 120	3,020	2, 120	3,010	2,200	2,450	11,200
	Date .	Oct. 21, 1940	Oct. 31, 1940 Nov. 5, 1940 Nov. 22, 1940	Nov. 25, 1940 Dec. 6, 1940 Dec. 11, 1940	Sept. 10, 1940	Oct. 24, 1940	Nov. 14, 1940	Sept. 10, 1940	Oct. 24, 1940	Nov. 14, 1940	Nov 7 1940	do	Oct. 24, 1940	Aug. 20, 1940	Aug. 28, 1940	20,2	Sept. 23, 1910 Oot 3 1910	2,73	21,	Oet. 31, 1940	22,
	Mileage from mouth	A 45.7	do do	op Op	ACrPINb 78	do	do	ACrPINb 77	qp	do	A C'y 40	do	ACr 49	A 30.4	do	do	do	do	do	do do	do
	Sampling point	Allegheny River, lock and dam, No.	Do Do	Do	North Branch Plum Creek, upper	Do	Do	North Branch Plum Creek, 34 mile	Do	Do	Crooked Creek, Crooked Creek Reservoir, above dam:	35-foot depth	Crooked Creek Reservoir, above dam.	Allegheny River lock and dam No. 5,	Freeport, Fa.	1)0	00	100	100	100.	1)0

						(	HO	10	RI	VE:	R :	POI	LL	JTI	ON	C	ON	TR	OI	A					33
0 0 0 0 0 0 1 0 0	\$ 1 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 3 3 4 6 8		5 9 8 3 9 9 1 1 1 1		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	8 8 8 8 8	# 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53	507	10	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	
32	69	86	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 0 5 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	09	59	105	200	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	† 1 1 1 1 1 1 1	-
	† 3 2 1 5 5 0 2 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	3 3 1 1 1 1 2 3 4 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	12	4	32	54	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1	4	≪ft OI	0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6.3		7.7.		3.4	4.1	69.7	3.1	80°	3.1	2.9	3.0	2.6	2.7	2.7	3.2	2.9	3.0	7.0		7.7.	1.1	2.7	3.1	2.9	
110	75	460	£	15	6	6	-1	4	ε	ε	3	3	3	3	6	3		93	240	24,000	400	(E) {	7	3	
0.0		7.64			60 60	-i 6	900	લંલ				-:-		0,0	21.0		6.2	6.8		51.4		\$ 100 m	90	8 2	
98.8		72.5		60.4	56.5	92.0	80.8	70.7	94.3	89.7	91.0	83.9	89.1	86.7	91.4	86.2	87.0	74.2	77.5	45.2	193. 5	83.8	83.3	80.1	
14.4	- 00	7.1		5.6	5.0	8.6	7.6	6.1	8.6	90	8.0	7.8	8.0	7.1	8.5	8.1	7.7			10.5	8,0	7.8	7.3	7.3	
0	15.0	16.5		19.0	21.5	19.0	18.5	23.5	20.0	18.5	22. 5	19.0	21.0	26.5	19.5	18.5	22.0	17.0		19.0	24.0		22.5	20.5	
30,700	3	£	=	1	1	41	က	63	12	П	10	2	=	-	14	12	13	2	20	24 120	212	3 88	26	33	
6, 1940	19, 1940	31, 1940 8, 1940	19, 1940	31, 1940	8, 1940	19, 1940	31, 1940	8, 1940	19, 1940	31, 1940	8, 1940	July 19, 1940	31, 1940	8, 1940	19, 1940	31, 1940	8, 1940	19, 1940		8, 1940	31, 1940	22, 1940	30, 1940	7, 1940	
Dec.	July	July Aug.	July	July	- Aug.	July	July -	- Aug.	July	- July	- Aug.	July	- July	- Aug.	- July	July	Aug.	July -	July	July	July	July	- July	- Aug.	
do.	A KiCo 141	do	AKICo 136.5	qo	qo	AKiCo 135.5	dp	do	AKiCo 131	do	do	AKiCoT 129	do	do	AKICo 128.5	op-	do	A KiCoNf 137.5	- do	A KICONÍ 127	do	AKiCo 123	do	do	
Do.	Conemaugh River, below all sewage,	Do	Conemaugh River, upper edge of	Dones and a second a second and	Do	Conemaugh River, 1/2 mile below all	Do	Do	Conemaugh River, upper edge of	Do	Do	Trout Run, at mouth, Portage, Pa	00.000000000000000000000000000000000000	Do	Conemaugh River, below town,	Domester and the contract of t	Do	North Fork Conemangh River, 100	Donney or a second of the seco	North Fork Conemangh River at	Do.	Conemangh River, above South	Dormanasanasanasanasanasanasanasanasanasana	Down	1 Less than 1.

Less than I.
Seeded and neutralized.

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Protect   Turnol		,		Average		Dissolved oxygen	-	5-day bio-	Coli-		\$		
AKICOSES 122. July 22,1940 75 22.0 7.8 88.6 4.1.9 (1) 2.9 2.9 4.0 4.0 4.0 4.1.9 30,1940 60 21.5 6.8 76.3 4.1.9 (1) 2.5 6.9 4.0 4.0 4.0 4.1.9 22,1940 6 18.5 7.7 81.1 4.0 4.0 4.0 4.0 4.1.9 20,1940 71.1 4.2 5 7.4 88.0 4.0 4.0 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature C.	Parts per million	-	ovygen demand, parts per million	most probable number per milli- liter	Ild	ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per million
do         Trily 30, 1940         60         21.5         6.8         76.3         1.4         1         2.5           do.         Aug. 7, 1940         82         21.0         7.3         80.9         1.7         9         6.9           do.         July 22, 1940         8         1.8.5         8.4         8.4         2.5         6.9           do.         July 22, 1940         8         1.8.5         7.7         80.1         6.6         8.9           do.         July 22, 1940         8         1.8.5         7.7         80.1         6.6         8.9         6.9           do.         July 22, 1940         24         24.5         7.7         88.4         2.5         4.1         8.9         6.7         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9 <td< td=""><td>Conemangh River, below South</td><td>A KICo 122</td><td></td><td>75</td><td></td><td>00</td><td></td><td>1.5</td><td>3</td><td></td><td></td><td>1 1 1</td><td>6 6</td></td<>	Conemangh River, below South	A KICo 122		75		00		1.5	3			1 1 1	6 6
AKICOSE 129.  July 22, 1940  S 18.5 S.6 91.6 (1.6)  AKICOSE 129.  July 22, 1940  S 18.5 S.6 91.6 (1.6)  AKICOSE 123.  July 29, 1940	Fork Creek, below South Fork, Fa.	do.		09			76.3	4.00			1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AKICOSU 129 July 22, 1940 8 16.5 N. U 91.0 1 2.6 N. U 2.7 N. U 2.0	Do	do		52	21.0	t- co :	6.08	1.0.1			1 3 5 2 1 1 4 4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	South Fork Creek, above town, Beaversdale, Pa.	A KiCosi 129		00	16. 5		9.1.6	2.	c)	ි ග ග	0 t 1 f 6 1	14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AKICOSI 124. July 22, 1946	Do	do		99	24.0 15.0		98.1	4.0	C) 63			15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
do.         July 30,1940         24         24.5         7.5         88.4         2.4         9.4         9.7         88         88.4         2.1         9         1         88         88.5         7.9         2.1         9         1         4.9         9         9         4         4         9         9         4         4         9         9         4         4         4         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9         9 </td <td>South Fork Creek, above town,</td> <td>AKiCoSf 124</td> <td>55</td> <td>633</td> <td></td> <td></td> <td>81.1</td> <td>6.6</td> <td>£</td> <td></td> <td>19</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	South Fork Creek, above town,	AKiCoSf 124	55	633			81.1	6.6	£		19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AKICOSIS 134. July 18, 1940 6 15.5 8.8 87.9 2.6 21.9 (1) 2.7 80	Do.	do		24			88.4	2.4	3		88	1 1 1	
AKICOSIS 134. July 18, 1940 6 15.5 8.8 87.9 87.9 21.6 1 4.9  do	Do	do		19			52.5	21.9	ε		80	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Shade Creek, below town, Central	A KiCosts 134		9			87.9	21.6	-		1		
AKICOSIS 132. July 18, 1940 21 10.0 8.8 83.7 2 2 2 3 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.7 4 4.0 2.0 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Do-	do		14			86.0	910	24		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AKICOSES 192. July 18,1940 21 16.0 8.8 88.7 { 2.5 7.9 00.4 } 2.7	Do	do		60	17.0		83.7	4.52	7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Shade Creek, below town, Reitz, Pa	A KiCosts 132		21			188		€		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1
A Ki Cost S 123 July 18,1940 38 20.0 8.9 97.1 $\left\{ \begin{array}{c} 1.5 \\ 2.1 \\ 3.1 \\ 3.4 \end{array} \right\}$ (1) 2.8 5.7 (2.1 d) 2.9 1940 38 20.0 8.9 97.1 $\left\{ \begin{array}{c} 2.1 \\ 3.1 \\ 3.1 \\ 3.4 \end{array} \right\}$ 21 2.8 5.4 42 3.4 42 3.4 42 3.4 42 3.4 43 5.1 34 44 42 3.4 43 5.1 34 44 42 3.4 43 5.1 34 44 42 3.4 43 5.1 34 44 42 3.4 43 5.1 34 44 42 3.4 43 5.1 34 44 42 3.4 43 5.1 34 44 42 3.4 44 42 3.4 44 42 3.4 44 42 3.4 44 44 44 44 44 44 44 44 44 44 44 44 4	Do	do		199				41-	ε -	3.0	1 1 2 2 3 3 1 1	1 8 9 1 4 6	
A KICOSUS 123. July 18, 1940 38, 20.0 8.9 97.1 { 1.4 } 1 2.8 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Do	do		6			85.7		3			1	1 1 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Shade Creek at mouth, Seanor, Pa	AKICostS 123		38			97.1				10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
A KitCost 185.5. July 17, 1940 65 17.0 9.0 9.2 6 7.7 88.5 1.0 1,100 6.7 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Do	do		140				r.6.	21		45	1	
A Kit $^{\circ}$ 6× $^{\circ}$ 135.5 July 17, 1940 65 17.0 9.0 92.6 .7 43 6.9		do		81			90.1	10.00	3		20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 1 1 1 1 1 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Stoney Creek Bridge on Route 30,	A KiCost 135, 5		65			92.6	1-	43			17	1
do	Do	do		101	22. 5		000		1, 100		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Do.	do	Aug. 12, 1940	13	19.0		89.2		£			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

							OF	по	R.	IVE	R	P	OLLI	UT.	ION	1 (	CON	TR	OL	1					34	ł1
	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 9 2 9 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1	92	106	2 2 3 6 1 8 8 8 8	1	0 0 0 0 0 0 1 1 1 1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 4 9 1 1 5 6	3 6 3 3 6 6 6 7	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
) 1 1 1 1 1 1	15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 9 4 7 1	1		0 0 0 0 0 0	1 1 2 0 0 1 1	8 8 8 8 8 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3%	435	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	:			1 1 1 1 1 1	1		1				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 3 2 4 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 6 6 6 8		1 2 3 0 0 0 0	4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	55	13			1	2	27	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1	30	40	31	
C3 1/3		80°	5.0	4.2	69	4 1	3.0	2.9	4.8	3.0	2.9	6.6	8.00	4.4	4.1	60	7.4	4.2	3.4	3.0	3.4	3.6	2.9	2.8	2.9	
110	93	€	60	21	=	24	6	(3)	15	6	£	93	88 0	27	46	©	4	23	727	Θ	7	Ξ	. 1	1	3	ized.
9.0	i i i		9.6		63.63	64	01	6 50	2 6.0	4.	2 10	1.2	00 1~	10 °C	200	60.4	4 4	4.0	2,50	4.00	60.4	60.4	0000	00 61	4.62	
93.8	88.2	\$7.3	94.5	87.6	91.5	86.3	82.0	80.7	85.8	81.4	62.8	66.2	82.8	94.9	89.1	8.06	91.1	89.3	90.4	8.8.1	\$5.5	87.5	91.4	87.8	90.5	s Seeded a
9.0	7.7	8.1	8.9	7.5	8.2	90	7.2	1.	ගේ	7.1	5.7	6.3	7.0	8.8	7.5	8.1	00	7. \$	7.9	61.0	7.6	90,	00,	8.0	8.5	
18.0	22. 5	19. 5	18.5	23. 5	21.0	17.5	22.0	20.0	17.5	22. 5	20.5	18.0	24. 5	19.0	24. 5	21.5	19. 5	25.5	25. 5	19.5	21.5	18.0	19. 5	20.5	18.5	
1 0 0 0 0 0 0	147	13	80	152	13	50	20	18	46	22	17	න		16	154	13	93	160	13	rO.	-éi	H	11	17	1	
July 17, 1940	26, 1940	12, 1940	17, 1940	26, 1940	12, 1940	17, 1940	26, 1940	12, 1940	17, 1940	26, 1940	12, 1940	17, 1940	26, 1940 12, 1940	17, 1940	26, 1940	12, 1940	17, 1940	26, 1940	12, 1940	18, 1940	29, 1940	9, 1940	18, 1940	29, 1940	9, 1940	
July	July	Aug.	July	July	Atig.	July	July	Aug.	July	July	Aug.	July	July Aug.	July	July	Aug.	July	July	Aug.	July	July	Aug.	July	July	Aug.	1.
AKiCoSt 131.5	do	do	AKiCoSt 129.5	do	do	AKiCoStQ 133	do	do	AKiCoStQ 132	do	do	AKiCoStQ 125	do	AKiCoSt 124	qo	do	AKiCoSt 123	do	do	AKiCoStP 125	do	do	AKICoStP 119	do	do.	1 Less than 1
Stoney Creek, upper edge of Hoovers-	Vinc, ra. Do	Do	Stoney Creek, bridge 1/2 mile below	Do	Do	Quemahoning Creek, upper edge of	Boswell, Fa.	Do	Quemahoning Creek, 1/5 mile below	Do.	Do	Quemahoning Creek at mouth, Holl-	soppie, Fa. Do. Do.	Stoney Creek, upper edge of Holl-	sopple, Fa.	Do	Stoney Creek, 1/2 mile below Holl-	Do-	Do	Paint Creek, above town, Windber,	Do.	Do	Paint Creek at mouth, Scalp Level,	Do. menerone and an analysis of the contract o	Do	

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Sampling point   Mileage from   Date   Accorage   Continued   Disabled coygen   Cold   Cold					-	-								
AKICO 108   Date   Control of C				Average		Dissolved	l oxygen	5-day bio-	Coli- forms,		T C			
AKICOST 119         July 29, 1940         97         20.5         8.6         94.7         2.6         2.40         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9         3.9	Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion		most probable number per milli- liter	Hq.	ity, parts per million	ity, parts per million	Hardness, parts per million	
AKICO 101	Freek above mouth of Paint	AKICoSt 119		26				60.00	3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
AKICOST 118.5 July 29, 1940	Scalp Level, Pa.	qo		254		7.4	84.9	6.5	240		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*	do		40	23.0		91.4		3		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 3 3 4 5 6 6 7 7 7	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Creek above Ferndale and	AKiCoSt 113.5		1:09	22.0				011		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0WD, F8.	dodo		0C 0C			90. 5	3 . 6	©		1 0 6 0 0 0 0	2 2 3 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
AKICOSt 109.5         July 29, 1940         170         22.5         8.9         102.2         17.7         24         2.8          do	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	qo		52	21.0		87.2	s 0 4			14.	5 I I I I I I I I I I I I I I I I I I I	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
AKIC   10   10   20, 1940   689   23.5   4.9   57.4   22.3   (1)   2.9	Preek at mouth, Johnstown,	AKiCoSt 109.5		170			102.2	1.2	34		280	9 9 8 9 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-
AKICO 113		do		689			57.4	3.2.3			00	1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
AKICO 113 July 22, 1940 60 25.0 7.0 83.8 \$\begin{pmatrix} \begin{pmatrix}		qo		96	21.0		61.1	F- 00	;		,			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	igh River, upper edge of	AKICo 113		09	25.0		83.8	10 10	ε			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 9 9 0 1 1 0	
AKICO 110 ——————————————————————————————————	JWn, Fa.	do		75	23.5		77.2	6 2 4	ε		0 0 0 0 0 0	0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
AKICO 110 July 22, 1940 237 34.5 3.6 51.1 21.1 4 4.3		op		20	22.0	7.3	83.0	61-	£		6 5 0 2 6 6 6	0 0 0 0 0 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
AKICO 108 July 30, 1940 208 33.5 3.8 53.5 22.4 4 4.0 4.0 4.1	igh River above mouth of	AKiCo 110		237	34.5		51.1	2.6	4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1	8 0 0 0 0 0 0	
AKICO 108 Aug.; 7,1940 183 32.0 3.1 42.0 3.7 4.6 4.5 4.6 4.5 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6	CICCK.	do		208			53. 5	22.24	4	4.0	0 0 0 0 0	1 1 2 3 0 0 1	8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_
AKICO 108 July 22, 1940 415 31.0 4.5 59.7   23.7   4 4.6   4.6   do		do	Aug. 7, 1940	183	32.0		42.0	21.7	e 	4.1	1 1 6 6 9 1 2 1 2	8 9 9 9 1 1	9 2 3 5 0 0	
Aug. 7, 1940 275 25.5 6.8 81.3 (1) 8.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	ugh River, railroad bridge	AKICo 108		415	31.0			22.2	4	4.5	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
AKICO 101 Aug. 7,1940 275 25.5 6.8 81.3 2.6 1 3.7	JOHNSTOWN, F.B.	do	do	646	29.0		70. 5	11.4	011		105	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AKiCo 101 July 23, 1940 275 25.5 6.8 81.3 \( \begin{pmatrix} \	0 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ф		320	28.0	4.0	50.5	8. 8.4.	4		175	1		
dodo	ugh River, bridge above	A KiCo 101		360	27.5	4.0	50.1	60 67	ε {		2 1 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	100 L	do	Aug. 1, 1940	275	25. 5		81.3	900	1			E E E E E E E E E E E E E E E E E E E	2 1	

3.6	3.7	3.5	3.3	3.1	3.5	4.6	1.60	3.5	4.6	6.9	7.2 33 72 115	7.2 15 87 100	2.7	3.0	3.0	2.6	2.6	2.6	2.4	2.6	2.6	2.6	2.8	2.7
( ) .1 } (i)	6 6 9.	( 1.9 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	(5)	0.000	(E)	\$2.0 2.8	22.2	1.0	{ *1.5 } 3.6 }	.3	2.3	33.1 24,000		(a) { (b) { (c) {(c) {	3.6	{ 21.4 } (t)	{ 3,5 } (t)	\$ 1.2 CO	{ a1.4 }	E		31.7	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	(1) (1)
72.7	87.7	87.5	8.06	86.0	81.6	86.0	82.3	83.6	86.4	90.1	87.5	41.4	67.1	134. 4	72.9	65.7	64.8	67.7	89.7	0.06	87.9	82.3	87.5	85.3
0 6.0	5 7.0	5 7.1	0 7.5	5 8.1	0 8.3	5 11.2	5 7.8	5 8.4	5 11.2	0 9.6	5 9.3	0 4.2	5 5.8	0 14.2	0 7.6	5 6.0	0 6.3	5 6.4	5 7.8	0 8.6	5 8.1	5 7.3	5.30	5 8.0
2 26.0	27.	26.	26.	18.	15.	4	00	15.	4;	13.	1 17.	2 15.0	22.	2 13.	2 14.	26 20.	21 17.	22 18.	27 22.	20 18.	13 19.	18 21.	11 18.	10 18.
0 282	0 220	0 436	0 370	0 383	0 243	0 550	.0 388	0 245	0 550	(3)	£		64		0									
g. 5, 1940	y 23, 1940	g. 1, 1940	g. 5, 1940	g. 26, 1940	t. 14, 1940	Nov. 19, 1940	g. 26, 1940	t. 14, 1940	v. 19. 1940	ot. 8, 1940	t. 9, 1940 ot. 9, 1940	t. 15, 1940		g. 1, 1940	lg. 5, 1940	ly 23, 1940	ig. 1, 1940	lg. 5, 1940	ly 23, 1940	lg. 1, 1940	g. 5, 1940	ly 23, 1940	g. 1, 1940	.g. 5, 1940
do Aug.	AKiCo 87 July	do Aug.	do Aug.	AKiCo 79 Aug.	do Oct.	No	AKiCo 76 Aug.	do Oct.	do	AKiCoM 87 Sept.	AKICOM 84 Sept.	do Oct.	AKiCoBISb 113 July	dodo	dodo Aug.	AKiCoBlSb 110 July	dodo	dodo Aug.	AKICoBISb 106 July	do Aug.	do Aug.	AKiCoBl 104 July	dodo Aug.	Aug.
Do	Conemaugh River, bridge on route	Do.	Do	Conemaugh River, upper edge of	Do	Do	Conemaugh River, 500 yds. below	Do Do	Do	McGee Run, upper edge of Derry,	McGee Run, 14 mile below Derry,	Pa. Do	South Branch Blacklick Creek, 12	To The above regally Glo, Fa.	Do	South Branch Blacklick Creek, 11/2	Do-	Do	South Branch Blacklick Creek, above	Downers I a.	Do	North Branch, Blacklick Creek,	Joseph of Automote, La.	Do

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

		Hardness, parts per million		0 0 0 1 0 0	139			408	258	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	73	63 77 158	287	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 8 9	0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Allcolls	ity, parts per million		1 3 8 0 0 5 0	37	69	0 0 0	1 6 6 9 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	69	88 46	50 79 79	93	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0	1 1 2 2 3 3 0 0
	E. Harr	ity, parts per million	18	15	27		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	135-7	<b>₽</b> -00	5 0 0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 0 0 0 0	1	3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Hd	2.5	ro ed	2.6	2.7		63	4.3	7.1	7.73	7.0	7.7.	1 %	9, 7	00	8.0	00	ගෙ
	Coli- forms,	most probable number per milli- liter	€	3	(1)	430	46	~	2	240	150	460	36	© {	€	£	63	63	340
	5-day bio-	oxygen demand, parts per million	1.8	6.2	*	1 i	\$ 5.4	2.8	1.9	ক	6.1.1.8	4:::: 80 52 80		001	11.05	100	11.3	1.0	113
	loxygen	Percent satura- tion	79.5	87.0	79.1	73.2		74. 4	89.0	70.2	57.2 74.0 80.3	66. 5 77. 7 65. 0	57.5	90.4	84.7	92.7	86.2	82. 5	75.2
	Dissolved oxygen	Parts per million	7.0	00°	7.4	11.0	g 1	8.4	11.2	. 7.9	6000 727	10.0	& & & &	9.3	6.6	11.7	rri co	00	00
		Temper-	22. 0	19. 5	19.0	10.5		10.0	5.5	10.5	12.0	12.50	, co, co	15.0	ගේ	6.0	19.0	13.0	12.5
	Average	discharge, cubic feet per second	45	31	31	3	10	-	10	3	<b>583</b>	<b>6</b> 88	93	19	10	31	æ	14	99
		Date	July 23, 1940	Aug. 1, 1940	Aug. 5, 1940 Sept. 10, 1940	Oct. 24, 1940 Nov. 14, 1940	Sept. 10, 1940	Oct. 24, 1940	Nov. 14, 1940	Sept. 11, 1940	Oct. 25, 1940 Nov. 14, 1940 Sept. 11, 1940	Oct. 25, 1940 Nov. 14, 1940 Sept. 11, 1940	Oct. 25, 1940 Nov. 14, 1940	Sept. 11, 1940	Oct. 25, 1940	Nov. 14, 1940	Sept. 11, 1940	Oct. 25, 1940	Nov. 14, 1940
		Mileage from mouth	AKiCoBl 104	do.	A KICOBIT D	105.5. dodo	AKICOBITD	do	do	AKICoBIW 95	do AKICoBIW 95	do AKiCoBl 92	dodo	AKICOBIT 88	do	do	AKICOBIT 87	dodb	do
The second secon		Sampling point	Blacklick Creek, below Vintondale,	1)0	Dixon Run, ½ mile below Dixonville,	Pa, Do Do	Dixon Run at mouth, Clymer, Pa	Do	Do	Marsh Run, at upper edge of Indiana,	Do. White Run, upper edge of Indiana,	Marsh Run below mouth of White	1)0.	Two Lick Creek 14 mile above Homer	Do	Do	Two Lick Creek 14 mile below Homer	Do	Do

						Ì	-		202	,							-	1 2 20							O I
240	278	252	330	483	307	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		426	462	246	356	374	166	295	374		8 6 8 9 7		232					
1 1 0 0 0 1 0 0	1 1 0 0 0 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27	41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	6		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
22	6	16	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*	41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	6	120	20	9	99	00	10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 6 8 2 9 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1	1	
69	60.	9. 7	3.1	2.9	3.4	2.6	2.6	69	2.7	2.4	63	2.9	62	3.8	2.9	2.9	7.3	7.3	4.7	69	6.1	4.5	4.0	3.0	
Θ	64	1	3	ε	3	3	3	3	3	ε	3	ε	3	3	6	ε	460	41	6	63	69	3	00	60	ized.
00 00	000	1.1	1.4	21.0	2.9	00 00	0.4.0	1.0	1.1	4.00	1.6	101	00 00	00 00	9.6	11.6	00	90		122		417	9.2	2.1.2	Seeded and neutralized.
86.4	79.7	90.0	88.0	83.3	80.4	89.6	84.9	86.7	90.4	89.0	91.2	89.1	87.2	88.9	83. 6	77.8	93.1	79.3	73.8	43.9	89.7	89.2	88.6	83.1	Seeded a
8.9	6.1	90	9.0	9.3	10.8	op 00	9.1	12.4	8.0	9.6	13.0	90	0.6	12.0	7.9	0.1	6.00	90°	6.9	4.5	00 10	9.0	200	90,00	
27.6	29. 5	18.5	17.0	10.5	7.8	16.5	12.5	9.	16.5	12.5	1.0	18. 5	14.5	3.0	18.6	14.0	18.0	13.5	19.0	14.5	18.5	15.0	16.5	14.5	-
13	9	14	30	19	47	121	40	155	124	40	160	202	275	740	12	co	26	က	41	90	230	14	-	Н	
Sept. 11, 1940	25, 1940	Nov. 14, 1940	11, 1940	25, 1940	Nov. 14, 1940	26, 1940	14, 1940	Nov. 19, 1940	26, 1940	14, 1940	Nov. 19, 1940	26, 1940	14, 1940	19, 1940	9, 1940	15, 1940	9, 1940	15, 1940	9, 1940	15, 1940	9, 1940	15, 1940	9, 1940	Oct. 15, 1940	
Sept	Oct.	Nov.	Sept.	Oet.	Nov	Aug.	Oct.	NOV	Aug.	Oct.	Nov.	Aug.	Oct.	Nov.	Sept.	Oet.	Sept.	Oct.	Sept.	Oct.	Sept.	Oct.	Sept.	Oct.	-1
AKICOBIY 88	do	do	AKiCoBIT 83	do	do	AKiCoBl 81	do	qo	AKiCoBl 81	do	do	AKiCo 58	do	do	AKiLoM 91	do	AKiLo 91.5	AKiLo 91.5	AKiLo 89.5	do	AKiLo 82.5	do	AKILOS 86	do	1 Less than 1
Yellow Creek water plant below dam,	Do	D0	Two Lick Creek at mouth, Josephine,	Do.	D0, 440000000000000000000000000000000000	Blacklick Creek, upper edge of Black-	Do.	Do.	Blacklick Creek, ½ mile below Black-	Do.	D0	Conemaugh River water plant intake	Do.	Do.	Mill Creek, at mouth, Ligonier, Pa	Do	Loyalhanna Creek, above all camps,	Loyalhanna Creek, above Ligonier, Pa.	Loysihanna Creek, % mile below	Do.	Loyalbanna Creek, 1 mile above Latrobe, Pa.	D0	Saxman Run, upper edge of Braden-	Do and the same an	

Table A-7.—Allegheny River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

			A	rerage		Dissolved oxygen	loxygen	5-day bio-	Coli- forms,		Trambil	Allegies	
Sampling point	Mileage from mouth	Date		discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion	oxygen demand, parts per million	most probable number per milli- liter	ъщ	ity, parts per million	ity, parts per million	Hardness, parts per million
Saxman Run, 1/2 mile below Braden-	AKiLoS 84	Sept. 9	9, 1940	-	16.5	t~ 00	88.4	67	6	4.2	18	0 8 8 8 8 8 8 8	246
ville, Fa.	dp	Oct. 15	15, 1940	1	14.5	90	82. 7	00 10	63	9	00	1 1 1 1 0 1 1	302
Loyslhanns Creek, below Saxman	AKiLo 78	Sept. 9	9, 1940	234	, 18.5	5.3	56.4	20.00	011 {	69	. 100	8 8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Kun, below Latrobe. Do	do	Oct. 15	15, 1940	15	15.0	00	17.7	30:00	3	0.1	12	0 8 8 8 8 8 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Crabtree Creek, upper edge of Crab-	AKILOC 73	Sept. 18	18, 1940	3	12.6	9.5	80.00	6.70	3	4.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
uree, Fa.	do	Oct. 29	29, 1940	ε	8.0	10.1	85.0	21.2	63	4.	0 0 0 0 0		
Crabtree Creek, 1/2 mile below Crab-	AKiLoC 72	Sept. 18	18, 1940	12	14.5	9.4	91.3	5.6	3	2.6	135	0 0 0 0 0 0 0 0	1, 264
Uree, FB.	dp	Oct. 29	29, 1940	13	11.5	5.4	49.3	25.1	£	0.1	16	1 1 0 0 0 0 0	1, 174
Loyalhanna Creek, at mouth, Salts-	AKiLo 58	Aug. 26	26, 1940	19	17.0	oc oó	89.8	1.0	3	2.6	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	649
Do	do	Oct. 14	14, 1940	36	12.5	0.0	91.4	2.6.	3	2.6	2	2 8 5 2 6 6 6	258
Do	-do	Nov. 19	19, 1940	120	10	13.1	90.7	3,6	ε	69	125	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	275
Kiskiminetas River, 100 yards below	AKi 56.5	Aug. 26	26, 1940	260	18.5	00°	89.4	4:70	3	2.9	4	4 5 5 0 0 0	355
Do.	op	Oct. 14	14, 1940	311	14.5	ග	86.9	1 4.6	©	23	10	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	401
Do	op	Nov. 19	19, 1940	860	1.0	13.0	91.0	3.3	£	63	40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	203
Harper Run, below Iselin, Pa	AKiBIH 61	Aug. 26	26, 1940	1	14.5	9.5	89. 5	***	24	4,	150	0 0 0 0 0 0	192
Do	do	Oct. 14	14, 1940	3	9.0	10.3	0.00	13.2	© 	2.9	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	634
Do	do	Nov. 19	19, 1940	1	9.0	12.0	80.4	4:0	3	4.0	75	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	422
Kiskiminetas River, highway bridge	AKi 52.5.	Aug. 29	29, 1940	1, 160	21.0	0.0	89.3	4.4.	3	3. 2	\$ 8 8 8 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
вроуе а уолшоге, г.в.	op	Sept. 30	30, 1940	402	13.6	0.0	86.0	3.6	3	3.0	1 5 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 9 9 1 1 1
Do	do	Nov. 29, 1940	1940	1.620	10	14.3	0 80	1.1	_	0			

						6	UH.	10	KI	VE:	16 J	POI	اللا	11	UN	C	)IN	TR	ענ						04
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 3 2 8 3 1 7		5 9 1 2 3 3 6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E : : : : : : : : : : : : : : : : : : :		B 6 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	349	360	170	2 5 0 0 0 0 0 0	2 0 4 4 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88	324	270	301	329	356	315	
	3 3 1 2 2 4 4 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 9 9 0 0 0 0 0 0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1		1	1	1	1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 0 6	45		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	† † † † † † † † † † † † † † † † † † †	1 1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	1	
1	1 2 2 1 0 3 2 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1	13	10	38		1 5 0 1 5 8 8	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10	10	5	2	9	5	70	
3.0	8 6	3.5	3.0	2.9	9.7	2.9	2.9	3.7	2.9	20.00	3.7	3.0	2.9	4.1	3.1	3.0	3.9	7.4	2.9	2.9	2.9	2.8	3.0	2.9	
9	3	4	3	3	4	3	3	4	3	(C)	21	E	©	41	£		00	co	(E)	(C)	(C)	3	① 	3	
2,1,2	, s. s.	2.0,	4.2.	4.2.1	21.1	8, 1	6,1	2,6	00 00	2.6	41.6	4.0	2.6	4.60	2.5	2000	3.6	1.6	1.8	21.1	2.5	200	0.5	6.0	,
85.2	86.5	89. 9	86.5	87.9	93. 4	88. 2	87.8	97.3	81.1	88.9	99. 5	78.7	85.3	96.4	90.5	86.0	97.9	89.0	76.5	82. 2	80.2	81.7	84.2	89.3	
2.	9.0	12.6	7.7	0.0	13.1	7.9	9.0	13.7	7.2	9.1	14.0	7.0	8.6	13.7	7.9	000	13.7	7.5	7.3	8.0	7.4	7.3	00	4.0	
21.0	14.0	1.5	21. 6	14.5	1.5	21.5	14.5	1.5	22.0	14.5	1.5	22.0	15.5	1.0	22. 5	15.0	1.5	25.0	19.5	17.0	20.0	21.5	16.0	18.5	
1, 180	403	1,680	1,170	403	1,700	1, 180	423	1,910	1,280	425	2,090	1,310	438	2,210	1,300	435	2,170	465	1,470	1,180	450	440	403	367	
Aug. 29, 1940	Sept. 30, 1940	Nov. 29, 1940	Aug. 29, 1940	Sept. 30, 1940	Nov. 29, 1940	Aug. 29, 1940	Sept. 30, 1940	Nov. 29, 1940	Aug. 29, 1940	Sept. 30, 1940	Nov. 29, 1940	Aug. 29, 1940	Sept. 30, 1940	Nov. 29, 1940	Aug. 29, 1940	Sept. 30, 1940	Nov. 29, 1940	Aug. 20, 1940	Aug. 28, 1940	Sept. 12, 1940.	Sept. 20, 1940	Sept. 23, 1940	Oct. 3, 1940	Oct. 7, 1940	
A Ki 50	S	do	A Ki 49	g	do	A Ki 45 A	gdo	do	AKi 40.5 A	g g	N op	AKi 36.5	g	ddo	A Ki 34.5 A	S	do	A Ki 31	Ado	do	Sdo	S	0op	0	
Kiskiminetas River, above Salina, Pa.	Do	Do.	Kiskinninetas River, ½ mile below	Do.	Do.	Kiskiminetas River, above Apollo,	Fa. Do	Do	Kiskiminetas River, above Vander-	Do.	Do	Kiskiminetas River, near Brady	Do.	Do	Kiskiminetas River, near Hyde	Do	Do	Kiskiminetas River, at mouth, Free- port. Pa.	Do	Do	Do	Do	Do	Do	¹ Less than 1.

1 Less than I.
2 Seeded and neutralized.

TABLE A-7 - Alleaheny River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Hardness, parts per million	386 403 226 282 176 196
ontinue	Alkalin- ity, parts per million	00 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
suus—s	Turbid- ity, parts per million	
ranai re	Hď	盆 盆 筏 泵 泵 泵 泵 泵 ★ ★ 低低低低低 玩 保存的不不低 ★ ★ 低谷 8 8 9 3 3 3 3 3 1 4 4 8 1 8 8 8 1 4 4 8 1 8 8 8 8 8 8 1 8 8 8 8
o) man	Coll- forms, most probable number per milli- liter	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ummary	5-day bio- chemical oxygen demand, parts per million	
aara	Dissolved oxygen arts per Percent satura-	8 8 8 9 9 8 8 9 9 9 8 9 9 9 9 9 9 9 9 9
coordiory	Dissolved	4 0 11 0 0 0 0 0 12 12 12 12 13 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
sarvey to	Temper-	0 4 7 7 0 0 0 4 8 2 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ottation	Average discharge, cubic feet per second	385 385 382 1, 400 1, 150 2, 000 3, 480 3, 480 3, 480 3, 480 3, 480 3, 480 3, 480 3, 480 4, 170 5, 560 5, 560 6, 000 6, 000
nto niver p	Date	Oct. 16, 1940 Oct. 21, 1940 Oct. 21, 1940 Nov. 5, 1940 Nov. 25, 1940 Nov. 25, 1940 Dec. 11, 1940 Aug. 20, 1940 Aug. 28, 1940 Oct. 12, 1940 Oct. 16, 1940 Oct. 21, 1940 Oct. 21, 1940 Oct. 26, 1940 Oct. 26, 1940 Nov. 22, 1940 Nov. 22, 1940 Nov. 28, 1940
iy niver basin:	Mileage from mouth	A K i 31
ABLE A-1.—Augheny niver basin. Onto niver pottation survey taootatory add—Bummary of individual results—Continued	Sanipling point	Kiskiminetas River, at mouth, Free- port, Pa. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do

1110001111	76
825285 4882890 5472885544888888 24 7 488825	22
100 20 1 100 100 100 100 100 100 100 100	06
අතුවුවුවුවු දැ වෙවුවුට්ටුවට 4 වෙවුවුවුවුවුවුවුවුවුවුවට පව 4 ව ව ********************************	
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43
88.82.83.44.8 8 8.82.02.02.02.62 4 4 8.82.02.02.02.02 4 4 8.82.02.02.02.02 6 4 4 8.82.02.02.02.02 6 4 6 8.82.02.02.02 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1.5% 2.5% 4.6% 4.6% 4.6% 4.6% 4.6% 4.6% 4.6% 4.6	
전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	
Sept. 12, 1940  Oct. 21, 1940  Aug. 26, 1940  Aug. 26, 1940  Oct. 28, 1940	10,
A 1.72200 0 05055555555555555555555555555555	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do   Do   Do   Do   Do   Do   Do   Do	Do

¹ Less than 1. ² Seeded and neutralized.

Table A-7A.—Allegheny River Basin: Laboratory data—Acid stream results

111 135 240 32 32 32 30 120	1537 253 1637 253 1637 260 1637 260 163	— మాట్లు లేది ఆడారు లేది అడారావర	്യായ വിധാനത്തില് വിധാനത്തില്	23 111 15 66 15 66 15 66	50 125 43 68
2 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 22.4 665. 8 17 17 4.4 4.6			2.2. 1.1.00	1.12.6
28 28 28 28 28 28 28 28 28 28 28 28 28 2	282 282 282 282 282 280 171 171 290	25123.83.82.25.25.25.25.25.25.25.25.25.25.25.25.25	22,700 21,200 22,500 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20	. 2866 2866 2866 1242 140	167 302 362 98 98
108 67 178 314 855 855 411	347 650 22 248	85 11 85 85 85 85 85 85 85 85 85 85 85 85 85	88 88 11 19 19 75 75	340 50 114	375
145 26 112 199 541 202	230 406 9	600	14 00 1- 44	222 31 35 78	243
44000000000000000000000000000000000000	0,0,0,0,0,4,4,0 0,0,0,0,4,0	<ul><li>○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</li></ul>	ಲೈ ಟೈ ಟೈ ಈ ಟೈ ಈ ಟೈ ಟೈ ಧಾರಾ ಲಾ ಬ ಲ ಈ ಈ ಎ	യു ഗൂ ഗൂ ഗൂ ഗൂ ഗൂ ധ ഗ വ എ ഗ റെ എ ഗാ	0,0,0,44 0,∞∞0,44
0-0-0-0-0-0		0	H-03 03 03	- O - O - O - O	-0-0-
July August July July August July August August July July August July August July July July July July July July July	August July August August July August August	August August July August July July July	August July July August July July July July July July	August July July July August July July	August Inly August July August
nile 136.5 nile 135.5 ", mile 131 ", mile 131 ", mile 131	, Pa., mile 122. , Pa., mile 124. y, Pa., mile 134	a, mile 123 file 135.5 fle, Pa., mile fle, Pa., mile	, mile 132 Pa., mile 124. Pa., mile 123 a., mile 125	el, Pa., mile 119 rt Creek, Scalp 119. ohnstown, Pa., , Pa., mile 109.5	Pa., mile 113.
Above Lilly, Pa., mile 136.5 Below Lilly, Pa., mile 135.5 Above Portage, Pa., mile 131 Mouth, Portage, Pa., mile 129 Above Fortage, Pa., mile 131 Above South Fork, Pa., mile 123	Below South Fork, Pa., mile 122.  Above South Fork, Pa., mile 124.  Below Central City, Pa., mile 134  Pelow Ritz, Pa., mile 132.	Mouth, Seanor, Pa., mile 123 Stovestown, Pa., mile 135.5 Above Hooversville, Pa., 131.5. Below Hooversville, Pa., 120.5. Above Boswell, Pa., mile 133	Below Boswell, Pa., mile 132 Above Holsopple, Pa., mile 123 Below Holsopple, Pa., mile 123 Above Windber, Pa., mile 125	Mouth, Scalp Level, Pa., mile 119 Above mouth Paint Creek, Scalp Level, Pa., mile 119. Above Ferndale, Johnstown, Pa., mile 119. Mouth, Johnstown, Pa., mile 109.5	Above Johnstown, Pa., mile 113 Above mouth Stony Creek, mi 110.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Conemangh River, mile 57  Trout Run, mile 130	South Fork Creek, mile 122. Shade Creek, mile 122	Stony Creek, mile 109.5Quemahoning Creek, mile 125	Stony Creek, mile 109.5 Paint Creek, mile 119	Stony Creek, mile 109,5	Conemaugh River, mile 57.0
Conemangi Trout Run,	South Fork Creek, mil Shade Creek, mile 122.	Stony Creel	Stony Creek, mile 109 Paint Creek, mile 119.	Stony Cree	Conemaugh I

90035-44-pt. 2-14

Table A-7A.—Allegheny River Basin: Laboratory data-Acid stream results-Continued

					Acidity	Acidity, parts per million	nillion	Iron, parts	Iron, parts per million
Stream	Sampling point	Month 1940	Number samples	Hď	Methyl	Phenolp	Phenolphthalein	F	E
					par	Hot	Cold	Ferrous	Total
Conemaugh River, mile 57.0	Below Johnstown, Pa., mile 108	July	- 5		31	64	929		888
	Above Seward, Pa., mile 101	July	10		82	163	127	4000	320
	Bolivar, Pa., mile 87.	July	3		022	120	96		e oi
	Above Blairsville, Pa., mile 79	August	N m r		64	116	288	1.3	<del>d</del> i 00 0
		November	1 = 1		70	717	2 00	7.8	12.0
	Below Blairsville, Pa., mile 76	August			<b>6</b> 3	114	72	140	8.8
South Branch Blacklick Creek,	Above Nanty Glo, Pa., mile 113	July			920	765	652	10.5	122
mile 105.	Below Nanty Glo, Pa., mile 110	August	c1 ←		11,400	13,410	3, 295	1, 275	<u>-</u>
	Above Vintondale, Pa., mile 106	August July	01 m		1746	11,012	1,001	38 17.5	
North Branch Blacklick Creek,	Above Vintondale, Pa., mile 105	August	2		1810	11,047	1,017	21.7	
mile 105. Blacklick Creek, mile 73.5	Below Vintondale, Pa., mile 104	August	N PM		202	916	418 806	14.7	
Dixon Run, mile 102	Mouth, Clymer, Pa., mile 102	August September	N 1		1. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	1 602	604	o ⊕ €	
Two Lick Creek, mile 83	Above Homer City, Pa., mile 88	November September	-iii		112	148	175	14. 5	48 -
	F 12	October November			88	197	127	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ယတေ၊
	below Homer City, Fa., mile 8/	October			100	144	128	D E C C C C C C C C C C C C C C C C C C	10
Yellow Creek, mile 88	Water plant, Homer City, Pa., mile 88.	September October			102	125	114	4	~ II m
Two Lick Creek, mile 83	Mouth, Josephine, Pa., mile 83	September October			141	195	162		258
Blacklick Creek, mile 73.5.	Above Blacklick, Pa., mile 82	November		4000	395	559	101 468 703	പ പ് യ യ യ	110 110 93
		November	7		0 0 0 0 0 0		100	7.4	23

200	o q	9 6	00			22 87 4	5	255			15.2	6.4	960				, , , , , , , , , , , , , , , , , , ,
733	174 205 205	101	1.6		1 60 0	118	276	3,010	612	18	11.00	2 H H	194	18.	20.20	156	178 157 184 84
788	219	124	148	14.2	42	128	328	3,110		225	44	171	173	172 240	167 226	173	203
612	146	87	800	288	19	94	223	2,340	, 506 494	143	16	100	1119	118	119	126	127
	: N (5) (6) (6)						100				1 00 4 0						7.00.24
red pred p				1 500 500 7			ml pml pr	<b>→</b>		pol pol p			·	===	pri pri pri		
# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1	1 1	1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L	1 0 0 1 0 0 1 0 0 1 0 0 1 0 0	L	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 8 8 1 4 8 8 1 4 8 8 1 4 8 8 1 7 8 8 1 1 8 8 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		T		
August	August October	September October	September	October. September	September	September	September	September	August	November August	November	November. August	August September	November. August September	November. August September	November. August September.	November August September November
He 81	Pa., mile	He 91	e 89.5	e 82.5	mile 84	3 78	le 73	le 72	nile 58	le 56.5	1	nile 52.5	50	19	45	mile 40.5.	ady Run,
Below Blacklick, Pa., mile 81	Saltsburg,	ier, Pa., m	r, Pa., mil	Latrobe, Pa., mile 82.5 Bradenville, Pa., mile 85	ville, Pa.,	e, Pa., mile	ee, Pa., mi	e, Pa., mil	urg, Pa., r	rg, Pa., mile 56.5	Pa., mile 6	10re, Pa., D	Pa., mile	Pa., mile 49	Pa., mile	grift, Pa.,	., near Bre
ow Blackli	Water plant, Saltsburg, Pa., mile 58.	Mouth, Ligonier, Pa., mile 91	Below Ligonier, Pa., mile 89.5.	Above Latrobe, Pa., mile 82.5 Above Bradenville, Pa., mile 85	Below Bradenville, Pa., mile 84	Below Latrobe, Pa., mile 78.	Above Crabtree, Pa., mile 73	Below Crabtree, Pa., mile 72	Mouth, Saltsburg, Pa., mile 58	Below Saltsburg,	Below Iselin, Pa., mile 61	Above Avonmore, Pa., mile 52.	Above Salina, Pa., mile	Below Salina,	Above Apollo, Pa., mile 45	Above Vandergrift, Pa., mile 40.5	Leechburg, Pa., near Brady Run, mile 36.5.
Bel	Wat	Mo	Bel	About	Bel	Bel	A b	Bel	Mo	Bel	Bel	A P	Ab	Bel	Ab	A.b.	Lee
	He 57.0	3 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ile 57	0 0 0 0 0		ile 57	17		lle 57	nile 30.2	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nile 30.2					
	Conemaugh River, mile	Mill Creek, mile 90	Loyalhanna Creek, mile	Saxman Run, mile 82.		Loyalhanna Creek, mile	Crabtree Creek, mile 71.		Loyalhanna Creek, mile	Kiskiminetas River, mile	Harper Run, mile 59	Kiskiminetas River, mile 30.2					
	grad	. Nd	20	2		2	(7)		~	43	E	4					

1 1 sample.

TABLE A-7A - Alleghenn River Basin: Laboratory data - Acid stream results - Continued

Iron, parts per million	The state of the s		221 2223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 20223 202
Iron, par		retrons	대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대
nillion	nthalein	Cold	176 160 160 194 128 278 104 105 105 105 105 105 105 105 105 105 105
Acidity, parts per million	Phenolphthalein	- Hot	190 190 190 190 190 190 190 190 190 190
Acidity	Methyl	red	122 122 123 142 143 141 160 160 160 160 160 160 160 160 160 16
	Hd		ಬ್ಬೆ ಬೈ
	Number		
	Month 1940		August Septomber November August Septomber October August August October August October August October August October
	Sampling point		West Leechburg, Pa., Hyde Park, mile 34.5.  Mouth, Freeport, Pa., mile 31  Lock and dam No. 4, mile 24.2  Lock and dam No. 3, mile 17  Lock and dam No. 2, mile 6.7  Mouth, Pittsburgh, Pa., mile 1.7.
	Stream		Kiskiminetas River, mile 30.2Allegheny River

1 1 sample.

# MONONGAHELA RIVER BASIN



# CONTENTS

	Page
ContentsSyllabus and conclusions	357
Description	361
Presentation of field dataPresentation of laboratory data	362 366
Hydrometric data	369
Discussion	372
LIST OF TABLES	
Mo-1.—Cost estimates of remedial measures  Mo-2.—Surface water supplies  Mo-3.—Sources of pollution  Mo-4.—Industrial wastes.  Mo-5.—Selected laboratory data  Mo-5a.—Selected laboratory data (chemical results)  Mo-6.—Monthly mean summer flows  Mo-7.—Summary of laboratory results on acid streams	361 363 364 365 366 376 375 402
LIST OF FIGURES	
Mo-1. Map—Sources of pollution	359 364 368 368 368 368

357

(Face p. 359)

### MONONGAHELA RIVER BASIN

## SYLLABUS AND CONCLUSIONS

#### SYLLABUS

The Monongahela River drains about 7,380 square miles in Pennsylvania, West Virginia, and a small section of Maryland. The area is rugged and includes a number of large cities and an important coal mining industry. The main stream is extensively used for navigation. Flood-control reservoirs on Tygart (operated since 1938) and Youghiogheny (under construction) Rivers are used also to increase minimum flows. The distinguishing characteristic of this basin is the high acidity of the streams due to coal mine drainage. Almost half of the basin's total organic pollution load enters in the lower 15.6 miles. Surface water is used as a source of all major water supplies. The high acidity of the stream has served as a deterrent to the abatement of organic and bacterial pollution and the amount of sewage treated is negligible. With sewage treatment and no acid control, the streams would be suitable for only limited use. , Damage caused by mine drainage is substantial and the demonstrated success of acid control at the mine by sealing has indicated a promising line of attack. Flow regulation is a valuable supplementary control measure. A mine sealingflow regulation acid control program for the area above the Ohio-West Virginia-Pennsylvania line is summarized in the acid mine drainage section of the report.

#### CONCLUSIONS

(1) Of 153 water supplies, 98, including all of the larger supplies, are from surface sources. Acidity from coal mine drainage presents corrosion and water treatment problems at the major supplies.

(2) Sewage from 862,000 people, industrial waste equal to the sewage from an additional 426,000 people and 646,000 tons of mine acid per year or about 1,770 tons per day enter the streams of the basin. Of the combined organic pollution load, 49 percent enters the stream in the lower 15.6 miles below the Youghiogheny River. Municipal sewage treatment reduces the total pollution load from 1,288,500 to 1,254,700, about 2.6 percent.

(3) Laboratory data indicate that the major problem is one of acid mine drainage rather than one of organic pollution. However, at the time of sampling, organic pollution appeared to be a factor at Clarksburg and Weston, W. Va., and Mt. Pleasant, Waynesburg, Jeannette (industrial waste) and Greensburg (one outlet), Pa.

(4) The original acid load from mine drainage is estimated at 920,000 tons per year (to phenolphthalein hot) of which 274,000 tons per year or nearly 30 percent has been removed by sealing, leaving 646,000 tons per year. The acid concentration of 87.5 tons per square mile per year in this basin is greater than in any other major Ohio River tributary basin.

359

(5) A program for acid reduction involving mine sealing supplemented by flow regulation is outlined in the section of the report on Acid Mine Drainage. Expenditures to date for mine sealing in this basin are estimated at \$1,820,000. The next step in the mine sealing program is completion of sealing of mining areas not connected to active ventilation systems at mines where sealing costs will not exceed \$10 per ton of acid sealed per year. Estimated costs of this program total \$1,600,000.

(6) Acid conditions can be further improved and mine sealing supplemented by flow regulation from a storage of 370,000 acre-feet

in the Monongahela Basin.

(7) The free acid from waste pickle liquor from the steel industry exclusive of acid iron salts totals 28 tons per day or only 1.6 percent of the mine acid load. Iron salts increase the acid effect to some extent. Cost estimates include part-time treatment of these wastes and this expenditure will be justified after success is attained in reducing mine acid.

(8) The problem of municipal sewage treatment at Pittsburgh is discussed in the section of the report on the main Ohio River. Lowflow regulation from reservoirs in the Monongahela River Basin will be of value in reducing treatment costs, notably at Pittsburgh and

Cincinnati.

(9) Justification for treatment and the degree of treatment of sewage and organic industrial waste in many cases is dependent upon the status of mine acid reduction measures. The situation varies with the degree of acidity of the stream and the amount of organic pollution discharged. At some places the need for waste treatment is urgent and at others the first expenditures of public funds can be made to best advantage toward furthering the acid reduction program. In general, cost estimates apply to a comprehensive program that will be justified in parallel with extensive acid control measures.

(10) In conjunction with an effective acid control program, primary treatment is indicated at the cities along the Monongahela River to improve conditions at the sewer outfalls by eliminating floating matter and preventing sludge deposits, and to protect the many downstream public water supplies. In some instances the

need is urgent regardless of acid control.

(11) At Elkins, Clarksburg, and Weston, W. Va., acidity is low and secondary treatment appears justified regardless of the status of an acid control program. At Greensburg, Uniontown, and a number of additional smaller communities on highly acid streams, secondary treatment will ultimately be required but primary treatment, now installed at Uniontown, is all that is justified in the absence of acid control.

(12) Cost estimates of remedial measures, exclusive of mine sealing and reservoir construction and exclusive of the Pittsburgh district are given in table Mo-1. These costs are based on treatment justified with a parallel program of acid control. Lack of an acid control program will greatly limit possible stream restoration. Table Mo-1

is summarized as follows:

Treatment	Capital cost	Annual cost
Existing. Suggested additional Suggested additional	\$1,500,000 13,250,000	\$115,000 1,455,000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin, are:

Treatment	Capital cost	Annual cost
Primary, all places	\$12, 710, 000 15, 950, 000	\$1, 385, 000 1, 785, 000

Table Mo-1.—Monongahela River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

	Number of plants		Popula-		Annual charges			
	Pri- mary	Sec- ondary	tion con- nected to sewers		Capital investment	Amortiza- tion and interest	Opera- tion and main- tenance	Total
Existing sewage treatment	13	7	66, 100	\$1, 500, 000	\$90,000	\$25,000	\$115,000	
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial Waste correction	66	16 6	776, 200	6, 270, 000 5, 870, 000 1, 110, 000	440, 000 275, 000 150, 000	270, 000 320, 000	710, 000 275, 000 470, 000	
Total				13, 250, 000 12, 710, 000	865, 000 830, 000	590, 000 555, 000	1, 455, 000 1, 385, 000	
Secondary treatment, all waste  As suggested	~ ~ ~ ~ ~ ~ ~			15, 950, 000 13, 250, 000	1, 055, 000 865, 000	730, 000 590, 000	1, 785, 000 1, 455, 000	

NOTE.—Costs shown above do not include the cost of interceptors or treatment works for the city of Pitts-burgh or its suburbs whose wastes would probably be treated at a plant along the Ohio River,

#### DESCRIPTION

The Monongahela River originates in northern West Virginia at the confluence of the Tygart and West Fork Rivers, and flows in a northerly direction to Pittsburgh, Pa., where it joins the Allegheny River to form the Ohio River. The drainage basin comprises a total of 7,380 square miles, of which 57 percent is in West Virginia, 38 percent is in Pennsylvania, and 5 percent is in Maryland. The basin lies entirely in the Appalachian Plateau region and is characterized by rugged topography with narrow stream valleys several hundred feet below the level of the uplands. Most of the cities are in the valleys. Populations exclusive of Pittsburgh proper but including the Monongahela Basin portion of Allegheny County are as follows:

			P	opul	lations, 19	40
		Uı	ban		Rural	Total
State: West Virginia Pennsylvania Maryland					241, 028 423, 869 14, 646	348, 182 901, 846 14, 646
			P	opu	lations	
	191	0	192	0	1930	1940
Larger cities: Clarksburg, W. Va. Fairmont, W. Va. Duquesne, Pa. McKeesport, Pa. Wilkinsburg, Pa. Uniontown, Pa. Monessen, Pa. Pittsburgh, Pa. Total basin:		694 924 344	27. 17. 19. 46, 24, 15, (1)	351 011 781 403 692	28, 866 23, 159 21, 396 54, 632 29, 639 19, 544 20, 268 (¹)	23, 105 20, 693 55, 355 29, 853 21, 819
Urban Rural	346, 8 564, 9		479, 9 614,		578, 209 646, 575	585, 131 679, 543
Total	911,	776	1, 094,	340	1, 224, 784	1, 264, 674
Major tributaries					River mile	Drainage area (square miles)
Youghiogheny River Cheat River. Tygart River. West Fork River.					15. 6 89. 1 128. 1 128. 1	1, 768 1, 424 1, 369 882

¹ Not included.

Resources.—Natural resources of the basin consist of tillable land, coal deposits, and water power.

Industries.—Most important of the industries is the mining of coal, followed by the production of steel. Other industries include breweries

distilleries, meat and dairy plants, and chemical works.

Water uses.—The Monongahela is canalized for its entire length by 14 low-lift locks and dams which provide navigable depths of 8 feet throughout the lower 90 miles and 7 feet for the remaining 38 miles. This river is one of the most intensively used inland waterways in the world. Three artificial reservoirs are intensively used for recreation as are many clean streams in the eastern part of the basin. Two large hydroelectric projects, on tributary streams, have been constructed by private interests.

### PRESENTATION OF FIELD DATA

Figure Mo-2 shows graphically the main stream and tributaries, waterworks intakes, dams, all major sources of organic pollution, their magnitude and reduction by present treatment, and other pertinent information. This figure does not show pollution of inorganic origin

such as acid mine drainage, pickle liquor, or chemical wastes. Selected laboratory data on the main Monongahela and West Fork

Rivers also are shown.

Public water supplies. - Of 153 public water supplies, 5 are in Maryland, 90 in Pennsylvania, and 58 in West Virginia. Table Mo-2 shows a total of 98 surface supplies serving 811,200 persons, 37 in Pennsylvania and 20 in West Virginia from streams below community sewer outfalls. There are 55 ground-water supplies serving 67,000 persons, indicating that surface sources are used as major supplies. The acidity of surface waters presents unusual problems in treatment and corrosiveness. On the main stream 20 surface supplies have an average pH of 4.0 to 5.0 in the raw water.

Table Mo-2.—Monongahela River Basin: Surface water supplies

Supply	State	Source	Mile 1	Treat- ment 2	Popula- tion served	Consumption, million gallons per day
		Supplies below comm	unity se	wer outfall	s	
South Pittsburgh Water	Pennsylvania	Monongahela River	4.0	LD	250,000	18.00
Braddock	do	Monongahela and Youghiogheny Rivers.	10. 5 16. 6	LD	18, 300 64, 000	1.30 6.00
Elizabeth Charleroi Trotter Water Co. "C"	do	do	42. 5 77. 1	FD	40,000 15,000	2. 60 1. 51 1. 60
MorgantownUniontown	·	pounded. Youghiogheny and	103. 0 61. 5	FZD	,	
Trotter Water Co. "A". Connellsville		impounded. Youghiogheny Youghiogheny and creeks.	62. 0 62. 1	<b>F</b> D	12,000 16,000	2. 00 2. 00
Fairmont Grafton Elkins	do	Tygart River	150.0	FD FD	4,000	2. 29 1. 50 1. 14
Clarksburg  28 smaller supplies  Total:	Pennsylvania West Virginia	West Fork River	160.0	Variousdo	35, 000 81, 000 20, 800	2. 90 3. 46 1. 23
Below sewer or					684, 300 126, 900	50. 38 9. 04
Total surface water	r supplies				811, 200	59. 42

Sewerage.—Of the 145 sewered communities in the basin, 13 have primary and 7 secondary treatment for their domestic sewage. Treatment serves only about 8 percent of the total sewered population and reduces the total organic pollution load about 2.6 percent. Mo-3 summarizes the sources of significant organic pollution including industrial wastes expressed as equivalent sewered population.

Miles above mouth of Monongahela River.
 F=Coagulated, settled, filtered; L=Lime-soda softened; Z=Zeolite softened; D=Chlorinated.

Table Mo-3.—Monongahela River Basin: Sources of significant pollution, including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	State			Popula- tion con- nected	Treat- ment	Sewered popula- tion equivalent (biochemical oxy- gen demand)		
			nonga- hela	sewers		Un- treated	Dis- charged	
Pittsburgh 12	Pennsylvania.	Monongahela River.	0-10	319, 500	None	458, 500	458, 500	
Braddock 3	do	do	10.5	32,600	do	32,600	32, 600	
Duquesne 2	do	do	12.0	21, 100	do	21, 100	21, 100	
McKeesport	do	do	14. 2	55,000	do	61, 700	61,700	
Glassport	do	do	18	8,700	do	8,700	8,700	
Clairton	do	do	20 31. 9	16,000	do	156, 000	156, 000	
Monongahela City.	do	do	36. 4	7, 800 13, 000	do	7,800	7,800	
Donora Monessen	Q0	do	40.0	18,000	do	13,000 18,000	13, 000 18, 000	
Monessen Charleroi	do	do	42	10, 500	do	10, 500	10, 500	
Brownsville	do	do	56	7,000	do	7,000	7, 000	
Masontown	do	do	79. 1	3,000	do	3,000	3,000	
Masontown	West Virginia	do	100.9	16, 100	do	16, 100	16, 100	
Fairmont	do	do	126.7	20,000	do	27, 500	27, 500	
East Pittsburgh	Pennsylvania.	Turtle Creek	12.0	17, 300	do	17, 300	17, 300	
Turtle Creek	do	Turtle Creekdo	12. 5	9,600	do	9,600	9,600	
Wilmerding	do	do	12. U	5, 500	do	5, 500	5, 500	
Pitcairn	do	do	15. 5 16. 5	6, 100 3, 600	do	6, 100	6, 100	
Trafford	do	do	24. 0	3, 400	do	3, 600	3,600	
Irwin	do	d0	29	14, 500	Secondary	3, 400 14, 500	3, 400 2, 200	
Jeannette Port Vue		River.	16. 6	3, 600	None	3, 600	3, 600	
Connellsville	do	do	60	12,900	do	14, 300	14, 300	
Ruffsdale	do	Sewickley Creek	49	0	do	3, 100	3, 100	
Southwest Greens- burg.			55 56	3,000	do	3,000	3,000	
Greensburg Scottdale	do	Jacobs Creek	54	6, 300	do	16, 400 6, 300	16, 400 6, 300	
Mount Pleasant	do	Jacons Creek	60	5,000	do	5, 600	5, 600	
Somerset.	do	Casselman River.	118	5, 400	Primary _	11, 100	9, 400	
Large.	do	Peters Creek	23. 5	0	None	90,000	90,000	
Uniontown	do	Redstone Creek	73	25,000	Primary.	27,000	17, 500	
Waynesburg	do	Ten Mile Creek	85	4, 500	.do	4, 500	2,900	
Parsons	West Virginia	Cheat River	167. 5	2,000	None	12, 900	12, 900	
Mannington	do	Buffalo Creek	142	3, 100	do	3, 100	3, 100	
Graffon	do	Tygart River	150 209	3,800	do	3, 800	3, 800	
Elkins	do	Buckhannon	205	8, 100 4, 300	do	23, 100	23, 100	
Buckhannon		River.			do	4, 300	4, 300	
Clarksburg	do	West Fork River	158.8 194	29,000	do	29,000	29, 000	
Weston			194	5, 000 116, 900	do	5,000	5, 000	
Smaller sources   (108)3.				110, 800	Various.	120, 900	93, 000	
Total.				707 000		1 100 000		
Pennsylva	nia	A		727, 800		1, 120, 300	1,089,900	
West Virg	ınıa			3,000		165, 200 3, 000	161, 800	
							3,000	
Total basin		*****		862, 200		1, 288, 500	1, 254, 70	

¹ Pollution loads from Pittsburgh and suburbs are distributed to Allegheny and Monongahela Basins and Main Ohio River as follows:

Municipality	State	Receiving stream	of Mo-	above mouth of Mo-		Sewered tion equ (biochem gen der	ical oxy-
		nonga- hela	sewers		Un- treated	Dis- charged	
*	(Pennsyl-	Allegheny River.	0-8	320, 500	None	597, 200	597, 200
Pittsburgh and	vania.	Monongahela	0-10	319, 500	do	458, 500	458, 500
suburbs.	River. Ohio River	0-4 (below)	261, 700	do	278, 600	278, 600	
Total				901, 700		1, 334, 300	1, 334, 300

Includes waste from adjoining communities that reaches same outfall sewers.
 Excluding places of under 500 population or equivalent.



Industrial wastes.—Table Mo-4 summarizes pertinent information on waste-producing industries in the basin. The coke byproduct industry produces by far the largest organic pollution load. Distilling and brewing also produce significant organic waste loads. About one-third of the industries discharge all or part of their industrial waste to city sewer systems. Only one industrial waste receives treatment at a municipal treatment plant. I wenty-six industrial plants have taken at least minor corrective measures to reduce pollution, 20 of these being of an important and effective nature.

Table Mo-4.—Monongahela River Basin: Summary of industrial wastes not discharging to municipal treatment plants with total of entire industrial waste load in the basin

	Number		al waste	At least minor cor-	Estimated sewered population
Industry	of plants	Munic- ipal sewers	Private outlet	rective measures taken	equivalent (biochemi- cal oxygen demand
Brewing Byproduct coke. Chemical. Distilling. Meat Milk Steel. Tanning. Textile. Miscellaneous.	3 6 5 26 2	4 0 0 0 4 3 4 0 0	1 3 3 3 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2	0 2 0 2 4 2 12 2 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2	49, 100 240, 000 94, 000 6, 100 3, 300 25, 000 1, 000 5, 800
Wastes unconnected municipal treatment Waste discharged to municipal treatment		.21	65	26	<b>424</b> , 300 2, 000
Total industrial waste in the basin					426, 300
By States: MarylandPennsylvaniaWest Virginia					392, 500 33, 800

Metal industries are important chiefly because of pickle liquor discharges. In the Monongahela River Basin, free acid discharge from this source is estimated at 57,000 pounds or over 28 tons per day. This is only 1.6 percent of the mine acid load. Acid iron salts, having an acid effect, are not included in this figure and the comparison, although the best that can be made from the data available, involves acid figures which are not strictly comparable. However, it is apparent that acid mine drainage is by far the more important problem.

Mine drainage.—Acid mine drainage discharge in this basin has the greatest intensity in annual tons per square mile of all the major tributary basins of the Ohio River. Estimated acid loads as presented in the acid mine drainage section of the Ohio River Pollution Survey

Report are as follows:

Description	Monongahela River except Youghiogheny	Youghiogheny River only	Total, Monon- gahela River				
	Tons per year (to phenolphthalein—hot)						
Original acid load: Active mines Marginal mines Abandoned mines	438, 274	141, 735	580, 009				
	39, 064	25, 609	64, 673				
	223, 634	52, 340	275, 974				
Total Per square mile. Sealed mines. Removed by sealing	700, 972	219, 684	920, 656				
	124, 1	126. 8	124, 7				
	380, 026	29, 270	409, 296				
	251, 900	22, 742	274, 642				
Present load	449, 072	196, 942	646, 014				
Per square mile	79. 5	113. 7	87. 5				
Additional removal ¹	115, 630	83, 050	198, 680				
Future residual ² Per square mile	333, 442	113, 892	447, 334				
	59. 0	65. 8	60. 6				

Economical to remove in addition by scaling under 1940 restrictions with a cost limitation of \$10 per ton of acid per year and scaling only in areas not connected to active ventilation systems.
 Capable of further reduction (possibly an additional 50 percent) by extended program.

### PRESENTATION OF LABORATORY DATA

Complete summaries of routine laboratory results for the Monongahela River Basin are presented in table Mo-7 (p. 375). Summaries of special acid and chemical determinations are shown in table Mo-7A. (p. 402). These data were obtained in part from operations of mobile laboratories connected with the present survey and in part from the West Virginia State Water Commission. Observations were carried out during the period May to December 1940.

Selected average analytical results at some of the principal points in the basin are tabulated with stream flows on sampling days and with the minimum flows of record in table Mo-5. Selected results have been chosen for low dissolved oxygen, high coliform or low pH findings and, in general, represent the most unfavorable conditions during the sampling period. Selected average acid and chemical results are presented in table Mo-5A.

Table Mo-5.—Monongahela River Basin: Selected Laboratory Data

River miles above mouth of Monongahela. Period, 1940	Monon-gahela Mouth, Pitts- burgh 0.05 Septem- ber	Monon- gahela Dam No. 2, Pitts- burgh 11.2 August	Monon-gahela Above Youghiog-heny 16.4 August-Septem- ber	Monon-gahela Dam No. 3, McKees- port 23.8 Septem- ber	Monon-gahela Dam No. 4, Char- leroi 41.5	Monon-gahela Dam No. 5, Browns-ville 56.5 August	Monon-gahela Dam No. 6 68.3 September
Number of samples Flow in cubic feet per second: Sampling days	2, 140	3, 200	1, 600 249	1 2, 100	2 1, 340	2 1, 170	4 1, 570
Minimum month Water temperature °C Coliforms per milliliter Dissolved oxygen, parts per	398 22 27	22 23	23.8	(1) 22	24. 2 1	24.3	21. 1 (¹)
million  Biochemical oxygen demand,	3.0	5. 7	5. 0	8. 1	7.8	7.6	8.0
5-day, parts per millionpH	2. 1 4. 7	3.9	4.0	3.7	3. 3	3.6	. 8 3. 6

Table Mo-5.—Monongahela River Basin: Selected Laboratory Data—Continued

River	Monon-	Monon-	Monon-	Monon-	Monon-	Monon-	Monon-
	gahela	gahela	gahela	gahela	gahela	gahela	gahela
Location	Dam	Dam	Star	Morgan-	Lock	Below	Fair-
	No. 7	No. 8,	City	town,	No. 11,	Fair-	mont
		Port Marion		W. Va.	Morgan- town	mont	
River miles above mouth of	84.8	90	97.7	100.9	104.1	124.2	126.7
Monongahela.	02.0	00	01.1	100.0	102.1	121.2	120.1
Period, 1940	Septem-	May	June	June	June	June	June
, , , , , , , , , , , , , , , , , , , ,	ber						
Number of samples	4	1	4	4	4	3	
Flow in cubic feet per second:	*		2	4	- 2	9	
Sampling days	1,090	38,000	6, 750	6, 700	6, 600	4, 230	1, 78
Minimum month					43		
Water temperature °C	21.6	16.0	22.7	22. 5	22.7	23.0	23.
Coliforms per milliliter	(1)	8	25	6	10	34	3
Dissolved oxygen, parts per	8.2	9.6	8.0	70	8.0	7.0	7
million	0.4	8.0	0.0	7.8	8.0	7.0	7.
5-day, parts per million	1.0	.8	.2	1.2	.8	. 4	
pH	3. 4	5.0	4.4	4. 9	4.8	4.5	4. (
River	Youghiog-	Youghiog-	Youghiog-	Youghiog-	Cassel-	Cassel-	Cheat
	heny	heny	heny	heny	man	man	Near
Location		Below	Below	Below	Near	Above	mouth
	mouth	Connells-		Oakland	mouth	Meyers-	
Di		ville	ence			dale	
River miles above— Confluence with Monon-	0.7	21.4	000	111.0	P71 4	100.4	0.0
gahela.	0.7	31.4	68.9	111.9	71.4	100.4	0.9
Mouth of Monongahela	16.3	57	84.5	127.5	87	116	90
Period, 1940		August	July	June	July	July	June
Number of samples	2	1	3	3	3	3	
Flow in cubic feet per second:	2	_	0	0		0	
Sampling days	1,810	2, 490	640	299	219	72	13, 40
Minimum month Water temperature °C	113						
Water temperature °C	21.8	19. 5	23.8	18.0	22. 2	20.5	19.
Coliforms per milliliter	5	2, 400	21	48	4	38	1
Dissolved oxygen, parts per	0.77	0.4	7.0	0.0	0.0	H C	0
million Biochemical oxygen demand,	6. 7	8. 4	7.9	8. 2	8. 2	7.6	8.
5-day, parts per million	1.2	2.0	.6	.7	. 5	1.3	1.0
pH		6. 7	5. 1	5.0	3.8	3. 6	5.
			1			1	
	Cheat					West Fork	
River	Below	Tygart	Tygart	Tygart			
Location			Below	Below	Near	Below	Above
	Meadows	Mouth	Grafton	Elkins	mouth	Clarks-	Weston
River miles above—						burg	
Confluence with Monon-	PO A	2.0	10.0	P717 A	0.9	29.9	66.9
gahela Mouth of Monongahela	76.4 165.5	3.9 132	18.6 146.7	77.4 205.5	129	158	195
Period, 1940	June	June	June	July	June	June	June
20104) 2020	0 (2110	- CILO	o tillo	0 (4.7)		vano	o dillo
Number of camples	3		3	4	3	9	
Number of samples	3	3	0	4	3	3	
Sampling days	2,890	5, 220	5, 210	472	979	1,057	11
Sampling days Water temperature °C	16.7	19. 8	19. 5	18.8	24. 0	23. 0	21.
Coliforms per milliliter	20	23	30	825	12	881	4
Dissolved oxygen parts per							
million	8.6	9.0	9.6	7.3	6. 9	6.9	7.
Biochemical oxygen demand,							
5-day parts per million	.5	. 5	. 6	1.6	.7	4.4	
pH	6.8	6. 7	6. 7	6. 9	3.8	6. 7	7.

Less than 1.

Table Mo-5A.—Monongahela River Basin: Selected laboratory chemical data

River miles above mouth of Monongahela. Period, 1940	Monon-gahela Mouth 0.05 October	Monon-gahela Above Youghio-gheny 16. 4 August- Septem- ber	Monon-gahela Lock No. 4 41. 5	Monon-gahela Lock No. 6 68. 3 Septem- ber	Monon-gahela Lock No. 8 90. 6 Novem- ber	Monon-gahela Lock No. 11 104. 1 June	Monon-gahela Below Fair- mont 124. 2 June
Number of samples	4	4	5	4	4	4	3
Flow in cubic feet per second: Sampling days Minimum month	398	1,600 249	1, 920	1, 570	3, 070	6, 660 43	4, 230
pHAcidity, parts per million:	1(1270) 3. 7	1(899) <b>4.0</b>	3.6	3. 4	4.3	1(713) 4.8	4.5
Methyl red  Phenolphthalein (hot)  Iron, total, parts per million	43	16 37 3. 2	22 35 1. 5	34 45 1. 5	7 15 1.7	9 19 1. 3	14 20 1.6
Control of the Contro							
RiverLocation	Youghio- gheny Mouth	Youghio- gheny Below Oakland,	Cassel- man Mouth	Cheat Mouth	Black- water Mouth	West Fork Mouth	West Fork Above Zeising.
River miles above— Mouth of Monongahela Confluence with Monongahela.	16.3 .7	Md. 127.5 111.9	87 71.4	90	172 82.9	129 .9	W. Va. 149.8 21. 7
Period, 1940	October	June	July	June	June	June	July
Number of samples	4	2	2	2	2	3	2
Flow in cubic feet per second: Sampling days	627	382	385	2, 475	625	936	469
Minimum month	113 3. 6	5. 3	3. 9	5.0	4.8	3. 9	5. 2
Acidity, parts per million: Methyl red Phenolphthalein (hot) Iron, total, parts per million	45 76 6.0	14 4. 3	15 28 1, 2	16 32 1. 7	11 22 3. 9	25 46 1, 4	17 41 3, 7

¹ After Tygart Dam installed.

Figures Mo-3, Mo-4, Mo-5, and Mo-5A show graphically the concentration of coliform organisms, dissolved oxygen, oxygen demand, and pH, respectively, at various sampling points throughout the watershed. These data are presented as averages of all the results where the sampling period was less than a month and as the most unfavorable monthly averages where observations extended over more than 1 month.

Stream discharges on the Monongahela varied from 62,000 second-feet in May to 830 second-feet in August at mile 85. During the May-July period, flows in the West Fork River at Clarksburg were 800 to 1,000 second-feet and the Tygart River discharges during the sampling period in June at Grafton were about 5,000 second-feet. Discharges from August to December were generally in the normal

low-water ranges.

It appears, from an examination of the laboratory data, that the main problem in the Monongahela Basin is one of acid mine drainage rather than one of organic pollution. Organic pollution appeared to be a factor at Jeannette, Greensburg, Mount Pleasant, and Waynesburg, Pa., and East Salem, Clarksburg and Weston, W. Va. Of these, Waynesburg has a sewage-treatment plant under construction. The Cheat and Tygart Rivers were in generally good sanitary condition during the sampling period.



(Face p. 368)

No. 1

0 - 90035

(Face p. 368) No. 2 600-41 0-90035



(Face p. 368)

GPO - 43 0 - 90035



As indicated by bacteriological findings, about 71 percent of the sampling stations above towns on normal streams (85 percent on acid streams) showed coliform organism concentrations of less than 200 per milliliter. The effect of acid stream conditions, as compared to normal stream conditions was, in general, to reduce the coliform counts.

The dissolved oxygen results show quite general average concentrations of 6.5 parts per million or more and 78 percent of all stations in the basin fall into this group. Oxygen depletion was observed only below Jeannette, Pa., in October and near depletion below Waynesburg, Pa., in August. pH values were above 7.0 at both points.

burg, Pa., in August. pH values were above 7.0 at both points.

Over 70 percent of all stations had average oxygen demands of less than 3.0 parts per million under the most unfavorable conditions observed. About 25 percent of all stations sampled had oxygen demands in excess of 5.0 parts per million. Because of the effect of acid on normal biochemical oxidation, the biochemical oxygen demand tests on acid stream samples were carried out in duplicate; one portion being incubated in the acid state as collected and the other being incubated after neutralization with sodium hydroxide and seeding with filtered sewage. In general, the results of the two portions were either of the same order of magnitude or the acid portion showed a higher biochemical oxygen demand, in a few cases a great deal higher, than the neutralized portion. Ferrous iron may exert a chemical demand to further complicate interpretation.

The results of acid stream examinations on table Mo-7A show pH values ranging from 2.8 to 6.9, acidities from nearly zero to about 5,000 parts per million, and total iron from less than 1.0 parts per

million to over 2,000 parts per million.

The presence of acid wastes makes the interpretation of much of the sanitary data gathered along the Monongahela Basin somewhat difficult and complicates the evaluation of the effects of the self-purification process. There was a general tendency for the acidity to decrease with increased stream discharge. This appeared to be the case both on the larger and the smaller streams. Increased stream discharges also tended to increase the coliform and dissolved oxygen concentrations and to decrease the oxygen demands in the smaller streams but apparently had little effect, so far as these factors are concerned, on the larger streams in the discharge ranges observed.

Biological Summary.—The acid condition of the main stream of the Monongahela renders it nearly devoid of plankton or fish life, except where clean tributaries join the main stream. The tributaries, Ten Mile Creek and Pigeon Creek, support a fair plankton and fish popu-

lation.

### HYDROMETRIC DATA

Twenty-two stream gaging stations with records of consequence have been maintained in the Monongahela River Basin at various times, of which 19 are currently in operation. Table Mo-6 shows monthly mean summer flows at 8 stations for 3 dry summers during the period of record. Flows on the Monongahela River and the lower Tygart River have been affected by Tygart Reservoir, completed in 1938. Figure Mo-6 indicates that the frequency with which minimum monthly mean summer flows have occurred and would have occurred with regulation by Tygart and Youghiogheny Reservoirs are as follows:

9

Regulation status	Minimum monthly mean summer flows in cubic feet per second that may be expected once in—			
	2 years 5 years	10 years	Minimum	
Youghiogheny River at Connellsville, Pa.: Unregulated. Regulated by Youghiogheny Dam. Monongahela River at Charleroi, Pa.: Unregulated. Regulated by Tygart Dam.	480 1, 340 3, 150 3, 550	270 990 1,300 1,550	180 800 <b>750</b> 950	85 600 250 400

Table Mo-6.—Monongahela River Basin: Monthly mean summer flows for years in which low summer flows have occurred

River Location	Monon- gahela Charleroi, Pa.	Turtle Creek Trafford, Pa.	Youghio- gheny Connells- ville, Pa.	Cheat Parsons, W. Va.
River miles above— Confluence with Monongahela. Mouth of Monongahela. Drainage area, square miles Period of record.	42 5,213 1933–39	5.5 16.5 54.8 1916-39	44.4 60 1,326 1909–39	<b>78.4</b> 167.5 719 1913–39
Year	1936	1932	1939	1930
June	1, 345 1, 337 2, 172 911	3. 59 2. 37 . 96 1. 56	1, 974 1, 571 285 1 85. 2	573 89. 3 84. 9 1 23. 3
Year	1934	1930	1910	1932
June         cubic feet per second           July         do           August         do           September         do	1, 009 4, 296 1, 501 1 475	48. 9 4. 37 . 95 1. 22	5, 229 575 100 218	496 1, 560 376 87. 9
Year	1939 2	1922	1914	1936
June	7, 488 7, 471 2, 280	25. 3 58. 8 2. 49	1, 230 536 323	305 1, 340 475
River	Cheat Pisgah, W. Va.	West Fork Enterprise, W. Va.	West Fork Clarksburg, W. Va.	Tygart Belington, W. Va.
River miles above— Confluence with Monongahela	18 107.1 1,360 1928-39	13.0 141.1 759 1907–16 1933–39	30.7 158.8 384 1923-39	61.9 190 408 1907-39
Year	1930	1908	1930	1930
June         cubic feet per second	1, 440 251 74. 4 1 43. 4	157 162 103 1 19. 8	15. 6 5. 24 4. 95 4. 35	151 21 2. 5 1. 65
Year	1932	1910	1932	1932
June         cubic feet per second           July         do           August         do           September         do	665 1, 960 544 115	798 342 25. 4 454	16. 9 176 57. 8 1 3. 89	205 812 160 12. 9
Year	1936	1936	1936	1908
Junecubic feet per second	484 1, 930	30. 7 254	7. 48 73. 5	388 391

¹ Minimum month. ² Regulated by Tygart Reservoir.



Low-flow regulation.—There are two private reservoirs of consequence on the basin used for power. Lake Lynn on the Cheat River below the proposed Cheat River Reservoir has a capacity of 72,300 acre-feet. Deep Creek Reservoir on a headwater stream of the Youghiogheny River has a capacity of 106,000 acre-feet. Both of these reservoirs are operated to produce peak-load power and are of limited benefit to the pollution problem. The normal fluctuating flows below peak-power reservoirs are undesirable from a standpoint of pollution abatement.

The following reservoirs in the basin have been built, are under construction, or have been studied by the United States Engineer Department in connection with the authorized program for Ohio

River flood control:

Reservoir	Stream	Status	Storage (acre- feet)
Tygart River Youghiogheny Cheat River West Fork above— Clarksburg. Brownsville Elk Creek	Tygart River	Completed Under construction Proposed  do do do do	278, 800 249, 000 890, 000 61, 200 101, 500 114, 500

The Tygart Reservoir is being operated to provide low-flow control and the Youghiogheny Reservoir will be so operated. The major value to pollution abatement of these reservoirs and of the proposed reservoirs is in supplementing mine sealing for the control of acidity. The value of such flow regulation is discussed in the section of the report on Acid Mine Drainage. In addition, they could aid in abating pollution in the Ohio River below Pittsburgh due to sewage and other organic wastes. Except for the reservoirs on the West Fork and Elk Creek above Clarksburg, flow augmentation by the proposed projects would have no appreciable tangible value for the abatement of organic pollution within the Monongahela River Basin. The West Fork Reservoir could also be of value in insuring the adequacy of Clarksburg's public water supply, which suffered a serious shortage in 1930.

## DISCUSSION

The major problem in this basin is the control of acidity from acid mine drainage which enters the streams. The demonstrated success of acid control at the mine by sealing has indicated a promising line of attack on the mine-acid problem. In addition, flow regulation is a valuable supplementary control measure. A discussion of this problem, concluding with the presentation of a mine sealing—flow regulation acid control program for the area above the Ohio-West Virginia-Pennsylvania line, will be found in the acid mine drainage section of the report.

Stream restoration requires control of all types of pollution and up to the present time uncorrected acid mine pollution has served as a deterrent to organic pollution abatement. The germicidal and chemical coagulating action of the acid and iron salts may greatly reduce acute odor and nuisance conditions during normal times, and this

point has been the subject of considerable discussion. However, sludge deposits, visual nuisance from floating sewage materials, and odors are present at and below sewer outlets. Water supplies from the river below have no dependable safeguard because of fluctuations in acidity and the possible sudden elimination of nearly all acid during high flows. Damages from acid conditions in the upper Ohio Basin are estimated at over \$2,000,000 per year, excluding unevaluated and intangible damages believed at least to equal the tangible damages.

In considering stream restoration in mine acid areas, mine acid control and organic pollution abatement should be carried on as parallel programs. Both measures are necessary if complete restoration is to be obtained. A single measure may be amply justified in individual cases but maximum benefits are possible only when the two programs are carried on in parallel. The suggested program of sewage and industrial waste treatment outlined herein will be fully justified only in

conjunction with a comprehensive acid-reduction program.

### PITTSBURGH AND VICINITY

At present, nearly all of the sanitary sewage and industrial wastes from Pittsburgh and vicinity are discharged directly into the creeks and rivers, causing unsightly and malodorous conditions along all water fronts. This area receives the largest pollution load in the basin, aggregating a total of about 460,000 sewered population equivalent. The Pittsburgh problem is discussed and cost estimates are included under the main Ohio River. Effective chemical treatment at a site or sites, chiefly on the Ohio River, appears feasible, or primary treatment, plus maintenance of increased summer flow below Pittsburgh, offers a promising alternate solution.

#### YOUGHIOGHENY RIVER

This stream receives a total pollution load of 106,000 sewered population equivalent. Of the five treatment plants, the largest is at Somerset, Pa., and serves 5,400 persons. Laboratory findings show low coliform, biochemical oxygen demand, and pH results while the dissolved oxygen results are fairly high. The largest sources of pollution are at Greensburg, Connellsville, and Somerset, Pa.

Primary treatment should be adequate at Greensburg and at other communities on highly acid streams, pending rather complete acid control. With such control, secondary treatment will be required at Greensburg and at smaller communities located on headwater streams,

subject to zero or near-zero flow.

### MAIN MONONGAHELA RIVER (EXCEPT PITTSBURGH)

McKeesport, Clairton, Belle Vernon, Charleroi, Morgantown, and Fairmont are the more important cities located on the main stream. None of these places have waste-treatment plants. Industrial wastes are of minor importance except at Clairton and vicinity where there is an industrial waste concentration.

Uniontown, located on Redstone Creek, has primary treatment of domestic sewage for 25,000 persons and for equivalent industrial waste of 2,000. This is the largest treatment plant in the basin. The treatment is adequate at the present time but, should acid in Redstone

Creek be controlled, supplementary secondary treatment facilities

would be required.

Jeannette, Pa., on Turtle Creek, has secondary treatment which has been unable to handle all industrial wastes. Pretreatment of these wastes with discharge to the municipal treatment plant is re-

quired if full corrective benefits are to be obtained.

Although the laboratory findings indicated generally acceptable conditions at the time of sampling, except for acidity on the main Monongahela River, sewage treatment should be installed to improve conditions at the sewer outfalls, eliminate floating materials, prevent sludge deposits and protect the many water plants located short distances downstream. Primary treatment should be adequate. Although there has already been considerable activity toward correcting industrial waste pollution in the Clairton area, certain minor additional steps are indicated and continued effort toward reducing this pollution is justified.

#### CHEAT RIVER

This stream is generally in good sanitary condition and shows little acidity. Recreational use of the stream is important. The largest source of pollution is found at Parsons, W. Va., on the headwaters and is principally due to industrial waste. In view of the present condition of the stream, primary treatment of waste seems justified to remove settleable solids and floating material to prevent local nuisances.

### TYGART RIVER

Sanitary conditions are generally good in this stream and acidity is not now a problem, largely because of past mine scaling activities. This stream is used extensively as a source of water supply. Elkins, W. Va., with a sewered population of 8,100 and industrial waste equivalent of 15,000 additional, is the largest source of pollution on this stream. The domestic sewage is untreated but the industrial waste at Elkins is so treated that a reported reduction of 90 percent in settleable solids is obtained and oxygen conditions are generally improved. A high degree of treatment is justified in this area, not only to improve the stream locally but also to protect the waters of Tygart Reservoir.

### WEST FORK RIVER

Clarksburg, W. Va., with a sewered population equivalent of 29,000, is by far the largest source of pollution on this stream and its effect is clearly evident in the laboratory findings. The dissolved oxygen is reduced and the biochemical oxygen demand and coliform organisms are increased.

In general, the main stream is not highly acid except near the mouth where many tributary creeks with low pH values discharge acid mine drainage. Two sewage treatment plants are located on this stream.

Secondary treatment of sewage at Clarksburg appears advisable to reduce oxygen demand and coliform counts. At least primary treatment is necessary at all other communities. Weston will require secondary treatment to reduce bacterial pollution.

A summary of costs of the remedial program discussed is shown on

table Mo-1.

Table Mo-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results

	Hardness, parts per million	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		47	44 42 42	37	35	1 1 1	† † † † † † † † † † † † † † † † † † †	45	44
	Alkalin- ity, parts per million	36	88 88	29 47 42 47	52	35	50	48	41	39	54
e e	Turbid- ity, parts per million	1 1 2 3 4 5 6 7	1 J S S S S S S S S S S S S S S S S S S	09	45 24 90	488	190	92		47	76
	Hd	7.0	7.0	800000 800000	7.0	7.0	7.0	6.9	7.7.7	7.7.7	7.1
Coli-	most probable number per milli- liter	15	93	2, 400 2, 400 2, 400 930	1, 100 2, 400 230	240 98 460	1,100 460 43	460	23 240 43	64 4 4 60 60 60	933
5-day bio-	oxygen demand, parts per million	0.7	666		20.4.		51.	9		1.0	4,00
1	Percent satura- tion	90.2	83.6 85.8 80.2	777.6 777.6 820.0 820.0 44.8	58. 5 74. 5 66. 4	81.0 81.5 74.0	73.7	71.1	77.6 81.3 79.4	88.5.2 8.5.2 2.2.2	81.6
Dissolved oxygen	Parts per million	7.3	7.7	でいらいでき ののとめた4	5.7.5	7.6	7.1	6.6.0	7.0	7.8	7.7
	Temper-	27.0	19. 5 18. 5 26. 0	18.55 23.55 20.55 19.05 26.55	18.5 18.0 27.0	18.5 17.5 26.5	17.5 19.0 28.0	20.0 20.0 22.5	20.5 19.5 22.5	21.0 20.0 23.5	20.5
Average	discharge, cubic feet per second	1 1 1 6 0	125	127 109 119 130 110	19	57	190	197 195 220	210 359 244	224 415 268	238
	Date	June 14, 1940	June 26, 1940 July 2, 1940 June 14, 1940	June 26, 1940 July 2, 1940 June 17, 1940 June 26, 1940 July 2, 1940 July 2, 1940	June 26, 1940 July 2, 1940 June 14, 1940	June 26, 1940 July 2, 1940 June 14, 1940	June 26, 1940 July 2, 1940 June 14, 1940	June 26, 1940 July 2, 1940 June 17, 1940	June 27, 1940 July 3, 1940 June 17, 1940	June 27, 1940 July 3, 1940 June 17, 1940	June 27, 1940 July 3, 1940
	Mileage from mouth	MoWf 195	do MoWf 193.5	do do MoWf 183.2 do MoW fP 193.5	do MoWfS 194	do do MoWf 192.	do do MoWf 189	do MoWf 180.3	do do MoWf 174	do do Mowf 167	dodo
	Sampling point	West Fork River above Weston, W.	V a. Do West Fork River, Weston water	rk River, above Polk Creek	Stone Creek at mouth, Weston,	Do Do West Fork River, below Stone Coal	Orek, below Weston, W. va. Do West Fork River, below Jackson	Do Do Myer Fork River, below Hackers	Do West Fork River, West Millord,	West Fork River, Nutter Fort, W.	Do.

Table Mo-7.-Monongahela River Basin: Ohio River pollution survey laboratory data-summary of individual results-Continued

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# C # C # C # C # C # C # C # C # C # C	6 0 6 0 6 0 6 0 6 0 6 0 6 0 7 1	0 0		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	# 2 3 4 5 7	1 1 2 6 1 0 2		1 0 0 2 0 1 1 0	1 2 2 3 4 1 1		\$ 8 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 1 2 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 2 0 5	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 2 P P P P P P P P P P P P P P P P P P		
5	20	16	22	18	24	12		1	8	18		16	34	12	16	18	18	20	24	19	26	16	18	61	14	124.2	
	6 6 6 6 6 6 6	1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1	1 1 1 1 1 1	8 8 9 6 2 9	8 9 6 9 1	5 8 9 9 9 9 9 9	1 0 1 1 1 2 1 1			1 1 1 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 6 6 1 1 1 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E S E E E E E E E E E E E E E E E E E E	2 9 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 8 2 5 1 2 2 4 8 8	0 2 2 7 1 0 6 1 0 2 0 7 2 0 0 3 0 0 3 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 5 0 0 5 0 0 0 0	
A4 80	6.2	6.0			6.6	5.2	4.	44	4.7	6.1	4.6	5.6	6.1	6.7	6.1	6.7		8.7	6.0	6.6	6.3	6.4	6.2			9 6 6	
730	1,100	150	(2) {	210	230	360	8	6	15	240	2	21	4	21	240	93	150	2,400	240	2,300	240	6	460	240	750	2,300	
	12.2	. e @ 67 c	15:00	12,4	15.0	00 00 01 01 00 00	4.6.4	8.8	25.0		0.4.2.	11.6	14.4.	1.2		.00	1 20 00				11.0					2.1	
63.9	56.7	85.6 88.1			1 3 5 4 8 1 1 2	16.4	100.1	99.1	91.4	89.0	89.0	89.0	63.2	87.7	80.1	8.98	80.6	72.5		72.5	63.2	85.6				83.8 44.3 8.3 8.3	
5.6	5.2	0.40				1.4	8.0	8.6	7.8	8.0	8.0	8.0	5.8			7.4										4.00	
23.0	20.0	18.0			1 1 2 2 2 0 4 3 1	24.0	21.0	23.0	24.0	21.0	21.0	21.0	20.0	19.0	17.0	24.0	23.0	22.0	22.0	24.0	20.0	19.0				22.0	
1	174	235	370	73	283	24	13	11	06	21	70	18	895	1,200	315	765	2, 100	306	858	1 1 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	895	1,200	315	765	306	828	
July 10, 1940	7 20, 1940	30, 1940	20.		2, 1940	10, 1940	28, 1940	6, 1940	13, 1940	19, 1940	27, 1940	1, 1940	20, 1940	27, 1940	30, 1940	14, 1940	20, 1940	28,		10, 1940	20, 1940	27, 1940	30, 1940		28.	2, 1940	
July	May	May May	June	June	July	July	May	June June	June	June	June	July	May	May	May	June	June	June	- July	July	May	May	May	June Tune	June	July July	
MoWfE 159	MoWfE 158	do do	do	-do	do	do	MoWfL 157	do	do	do	do	do	MoWf 158	do	do	op	do	do	do	op	MoWf 155	do	do	do	do	dodo	
Elk Creek West Pike St. Bridge,	Elk Creek at mouth, Clarksburg,	Do Do	Do	Do.	Do	Down	Limestone Run at mouth, Clarks-	Do.	Do	Do	Do	Do	West Fork River, Adamston Bridge,	Do	Do	Do	Do	Do	Do	Do	West Fork River, Perry Mine, below	Do	DO.	Do	Do	Do. Do.	¹ Seeded and neutralized. ² Less than 1.

Table Mo-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

	S parts per million						1		1 1 1 1 1 1	2 0 0 0 0 0 0 0 1 1 3 0 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# # # # # # # # # # # # # # # # # # #		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1
	Alkalin- ity, parts per million	9	16	118	20	1 1 1 1			1 1 1	1 1 1 1			1 2 2 1 1	1 1 2 2 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 0
	Turbid- ity, parts per million	1		6 6 9	14			1	3 6 6 6 6 7 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 3 6 3 6
	Hď	5.4	5.2	<b>က</b> ့တွေတွ 4ကေတ		2.9	2.8	3.2	3. 2	ci oo	8.	3.1	2.0	3.4	3.5	2.9	3.4
Coli-	다 ~ 다	© ~	(2)	- 0° 42		©		1	31	(2)	011 {	(E)		61	54	1	011 {
5-day bio-	chemical oxygen demand, parts per million	2.6	.2.8	ස් .	1.0	1,4:2	4.60	33.53	11.3	0.1.	11.8	4.00	12:0	20.1	11.3	2.00	1,20
Dissolved oxygen	Percent satura- tion	0.69	85.6	76.0 77.0 69.1	69.3	94.5	101.9	92.7	84.0	81.8	76.0	98. 5	101.9	6.22	84.5	89.8	73.9
Dissolve	Parts per million	6.2	0.8.0	න ව ව ව	4 00	9.2	9.0	8.5	7.7	7.8	7.4	9.4	8.0	7.0	7.6	8.4	7.2
	Temper- tture ° C.	21.0	19.0	000	21.0	17.0	22.0	20.0	20.0	18.0	17.0	18.0	22.0	21.0	21.0	19.0	17.0
Average	discharge, cubic feet per second	006	1,210	2, 100	858	138	65	425	125	22	384	88	68	420	125	22	384
	Date	May 20, 1940	30,	June 14, 1940 June 20, 1940 June 28, 1940	10,	May 28, 1940	June 6,1940	June 13, 1940	June 19, 1040	June 27, 1940	July 1, 1940	May 28, 1940	June 6, 1940	June 13, 1940	June 19, 1940	June 27, 1940	July 1, 1940
	Mileage from mouth	MoWf 149.8	do	do do	dodo	MoWfS 162	dodo	do	-do	do	do	MoWfS 156	do	-do	do	do	dodo
	Sampling point	West Fork River, above Zeising,	Do	Do	Do	Simpson Creek, above Bridgeport,	W. Va.	Do-	Do	Do	Do	Simpson Creek bridge, below Bridge-	Do.	Do	Do	Do	Do

						0	HI(	) ]	RIVE	R	POL	LUI	OIC	N	CO:	NT	RO	L				37
130	35	7.2	24	24	42	62	92	32	88	90	21	30	6		2	81	20		0 0 0 2 2 2 1 3 4 1	8 9 4 9 1 1 1 2 2 3 7		1
1			- 1	12	-				1 1	;	11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	;		1		1-1	1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	6	0	-	0	9	6	7	0	4.00	0	6	7	9	00	2	5	1 6	2	4	7	2	4
6. 6.	6.	7	6.	7.	.6	69	6.	7.	œ. v.	6.	ගිනි	6.6.		4	6.		9.00		က်	4,	က်	41
210 430 150	-	83	930	210	29	24	240	360	1,100	1	24	460	(2)	(6)	63	24	93	€	150	43	24	340
10.4	1,000	14.4	9 4	7.50	2.5.5.	44.44	2000	19.4	100	2.7	1.2	2.00	12.0	1000	14.0	1.3	6	1 . 2 . 2 . 2 . 2 . 2		11.12		1,1.6
28.4	64. 5	3 3 1 1 1 1	68.4	80.1	56.3	23.9	66.7	46.7	70.6	77.0	83.6	81.5		82.1	70.2	83.4	79.0		79.5	77.4	83.8	75.5
3.0	5.8	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.4	7.8	8.	2.0	0.9	4.2	8. 9. 6. 9.		0.00	5.00		7.0	6.2		7.1		6.9	7.1	7.4	7.3
24.0	21.0	21.0	19.0	17.0	24.0	25.0	21.0	21.0	19.0	19.0	23.0	22.0		24.0	22.0	19.0	22.0		23.0	20.0	22.0	18.0
111 9	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	12	10	74	18		10 200	43	581	611	570	47	581	92	61	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	610	1, 430	525	4,370
28, 1940 6, 1940 13, 1940	19, 1940	27, 1940	1, 1940	28, 1940	6, 1940	13, 1940	19, 1940	27, 1940	1, 1940 29, 1940	7, 1940	18, 1940 21, 1940	29, 2940	29, 1940	7, 1940	18, 1940	21, 1940	29, 1940	7, 1940	18, 1940	21, 1940	29, 1940	3, 1940
June June	June -	June	July	May	June	June	June	June	July	June	June	June	May	June .	June	June	July	June	June	June	June .	July
MoWfTSa 168.5.		do	do	MoWfTSa 167.5	do	do	do	do	MoWfT 148	do	MoWfT 148	do	MoWfT 146.5	-do	op	do	do	MoWf 145.5.	do	dodo	do	do
Salem Fork, East Salem, W. Va Do.	Do	Do	Do	Salem Fork, below East Salem, W.	Va. Do	Do	Do	Do	Ten Mile Creek, above Lumberport, Laura Lee, W. Va.	Do	Do Ten Mile Creek, above Lumberport,	bo Do Do	Ten Mile Creek, at mouth, below	Lumberport, w. va.	Do	Do	Do	West Fork River Bridge, below Ten Mile Creek, below Lumberport,	W. Va.	Do	D0-	Do

TABLE MO-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

DONIUM OF THE PROPERTY OF THE	-											
			Average		Dissolved oxygen	l oxygen	5-day bio-	Colf-			:	
Mileage from mouth	А	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion	oxygen demand, parts per million	most probable number per milli- liter	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per million
MoWf 143.5	May	29, 1940	700	19.0	00	94.1		6	ස <u>ම</u> අව	1 0 0 0	6 6 8 8 9 2	9 0 0
	June	7, 1940	370	25.0	6.2	74.0	1.6	6) {	3.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8
1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	June	18, 1940	710	23.0	6.4	73.7	11.3	88	3.4	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 2 8 8 9 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	June	21, 1940	1,320	20.0	7.4	80.7	0.8.	43	<b>4</b> i ∞		0 0 0	1
0 0 0 0 0 0 0 0 0	June	29, 1940	525	22.0	7.2	81.5	11.2	43	4.6		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	July	3, 1940	4,370	19.0	7.4	79.1	13.3		4.6		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 1 1 1
MoWf 138	May	21, 1940	4,950	19.0	7.6	81.3	1.2	9	5.7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0	June	12, 1940	780	27.0	7.6	94. 2	11.4	8	69	1	1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
8 6 6 6 6 8 8	June .	26, 1940	755	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2	88	00 m		1	0 0 0 0 1 1
MoWf 132.5	. May	21, 1940	5, 130	19.0	7.4	79.1	12.0	43	6.0		12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0	May.	24, 1940	0009	20.0	7.2	78. 5	11.8	24	3.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	June	4, 1940	1,250		7.6	81.3		61	co esi	0 0 0 0	-	
	June	12, 1940	800	27.0	6.6	81.8	1 2 2 2	24	3,5			0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	June	26, 1940	759		-1	1		24	90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0
MoWf 129	May	21, 1940	5, 250	19.0	7.2	77.0	4.00	20	5.4	0 0 0	10	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	May	24, 1940	640	21.0	5.2	87.8	4.00	63	4.4	9 9 9 9	Ca	0 0 0 0 0 0
	Јипе	4, 1940	1,300	19.0	8.0	85.6		63	4.0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 2 6 6 7 9	June	12, 1940	820	28.0	00.00	73.2	11.4	C9	3.6	1 1 0 0 0 0 0 0		
1	June	26, 1940	788	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	800	22	69	0 0 0 0 0 0 0 0	2 2 2 0 0 1 0	
MoTy 211	June	13, 1940	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18, 5	7.9	83.7	000	1,100	6.9	1 2 2 0 2 0 5 5	30	9 6 8 9 9 9 9 6 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	July	21, 1940	388	16.5	00,00,0	86.1	00 1-00	M CA	0.7.1	1	900	t 0 d 1 d 2 e 3 f 3 f 3 f 6 g 6 g 6 g 6
0 0 1 1 1 1 2 2 2 2 2 2	come.	Osar fa	OAT	21.0		99.0	20	007	6.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * * * * * * * * * * * * * *

					OH	IO R	VER	POLLU	JTION	CONTROL			381
		0 1 0 0 0 1 0 0 1 0		5 6 6 8 8 8	30	30	12 12	20	2002	21	52	35	70
	28	31	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27	30	25	13	19	23	23 23 23 24 27 27 27 27 27 27 27 27 27 27 27 27 27	16	20	0 0 0 0 0 0 0 0 0 0 0
		10	1 1 2 4 1 8	1 6 7 8 1 8	113	18 22 7	89	35	13 28 500	48.83	2	83	oo o
	6.8	8000 B	7.1	6.9	7.0	က်က်က္ ထေသတ	6,6,6	666	6.6.7		5. 5. 5. 6.	6.6	
	2, 400	210 460 230 (3)	150	2,400	930 110 1,100	240	46	43 150	43 93 210	4 14 00 00 00 4 60 00 4 60 00 00 00 00 00 00 00 00 00 00 00 00	45 25	240	2
	2.0	11.0	1.6	2.	0.01.0	5.7.53	440	· 4.4.	1.0	HHH	1.7.		
	81.9	82.4 78.2 67.5 82.6	76.8	85.3	85.3 81.8 80.8 93.6	87.5 86.3 95.7	90.3 88.9 87.0	87.6 87.1 84.0	84.5 84.2 87.0	89.22.29.99.25.22.20.09.99.25.20.11.11.11.11.11.12.20.20.20.20.20.20.20.20.20.20.20.20.20		93.7	
	7. 2	86.78	7.0	7.5	00000	0,00,00 046	0.00.L. 10.00.4	,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00 ,4.00	7.80%		 	60 0	
	22.0	16.0 17.5 20.0 16.0	20.0	22.0	16.0 18.0 21.5 23.5	14.5	13.5	15.5 17.0 26.6	16.0 18.0 25.5	19.0 21.0 27.0 18.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27		16.0	
		790 410 215	226	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	950 490 238	1,100	250	350	550	1, 450 366 4, 500 8, 000 1, 000 8, 400		432	2
	June 13, 1940	e 21, 1940 y 1, 1940 y 9, 1940 do	do	e 13, 1940	e 21, 1940 y 1, 1940 y 9, 1940 e 13, 1940	e 21, 1940 y 1, 1940 e 13, 1940	e 21, 1940 y 1, 1940 e 13, 1940	e 21, 1940 y 1, 1940 e 13, 1940	e 21, 1940 y 1, 1940 e 12, 1940	20, 1940 e 28, 1940 e 20, 1940 e 20, 1940 e 28, 1940 e 28, 1940 e 28, 1940 e 12, 1940 e 12, 1940	12,	ie 20, 1940	
4	Jun	June July July	-	June	June July July June	June July June	June July June	June July June	June June June	June June June June June June June June	June	June	
	MoTy 205.5	do do MoTyG 202	MoTy 201.5	MoTy 201.3.	do do MoTy 192	do MoTyMf 198	do MoTyBu 206	do MoTyBu 201.5	do	do. MoTy 174.5 do. MoTy 166.5 MoTy 160.0 MoTy 160.0 do.	MoTyTf 149.5	do	0
	Tygart River, 4 miles below Elkins,	Do Do Orassy Run, at mouth, Norton, W.	Tygart River, 7 miles below Elkins,	Type of the control o	Tygart River bridge, lower edge of	Do Middle Fork River, Burnt Bridge,	Buckhamon River, above Buckham	Hon, W. Va. Do Do Buckhannon River, below Buckhan-	Do. Do. Buckhannon River, Carroliton, W.	Tygart River, arden, W. Va.  Do. Tygart River, Arden, W. Va. Do. Do. Tygart River, steel bridge above Grafton, W. Va.	Three Forks Creek, 1/2 mile above	Do	1 Seeded and neueralized.

Table Mo-7 .- Monongakela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

	Hardness, parts per million			30	26	17.				3 8 8 9 7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #	8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Alkalin- ity, parts per million	15	16	17	19	10	4	12	4	32	20	788	26	32	26	28	26	28	26
	Turbid- it y, parts per million		1 0 0 0 0 0 0	14	27	07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 6 6 7 8 8 8	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 2 2 2 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	Ħq	6.7	6.6		0.0		4	400			7.0	6.3	ග ග	6.5	7.0	6.3	6.9	6.8	8.3
Coli-	most probable number per milli- liter	23	43	23.53	23	§ ©	00	93	21	150	24	63	93	200	(3)	930	210	750	240
5-day bio-	chemical ovygen demand, parts per million	4.	1-4	0.4	9.	0.1	22.6	F 17	1.4		4.1	0.00		5.4	12.6	12:0	oc oc	13.2	1.0
	Percent satura- tion	105.6	103.3	101.3	98.0		92. 2	7.73	0.0	72.7	85.9	4:	72.0	855.6 80.7	62. 1	72.6	81.8	68.0	83.9
Dissolved oxygen	Parts per million	9.5	10.1		0.0		00	00 9			7. 2	9.0	(C)	0. 4. 0. 4.	5.2	6.3	7.8	6.0	8.0
	Temper-	21.0	17.0	22. 5	16.5	18.0	18.0	19.0		19.0	25.0	22.0	23.0	20.0	25.0	23.0	18.0	22.0	18.0
Average		1	8,800	2,000	8, 500	6,520	2,420	7,540	2, 420	30	22	32	322	115	45	118	75	62	1 66
	Date	June 12, 1940	June 20, 1940	12,	June 20, 1940	21,	May 24, 1940	June 4, 1940 June 12, 1940	June 26, 1940	May 29, 1940	June 7, 1940	June 18, 1940	June 29, 1940	May 29, 1940	June 7, 1940	June 18, 1940	June 21, 1940	June 29, 1940	July 3, 1940
	Mileage from mouth	MoTy 146.7	1 1 1	132	do	.1.	do	do J		MoBe 145	do	J do	1	MoBe 140.7	Jdo	do	Jdodo	do Ji	do
	Sampling point	Tygart River bridge on Route 50, below Grafton W Va	1)0. TO	Tygart River, 3 miles above mouth, Benton Ferry, W. Va.	Do	Monongahela River bighway bridge Fairmont, W. Va.	Do	Do.	Do	Buffalo Creek bridge above Man- nington, W. Va.	Do	Do	Do	Buffalo Creek foot bridge, below	Do	Do	Do	Do	Do

THE PROPERTY OF THE PARTY OF TH				_		_					
Do.	do	- May 24, 1940		21.	7.2	80.1	0.00	110	6.2	12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Do-	do	June 4, 1940	0 150	20.0	8.0	87.2		43		10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Do		June 12, 1940	0 98	26.0	7.2	87.6	8 0	4	7.0	400	1
Do	qo	June 26, 1940	0 76	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.6		00 00	75	6.9	- 64	
Monongahela River railroad bridge, below Fairmont, W. Va.	Mo 124.2	May 21, 1940	0 2,100	19.0	80.7	87.7	11.2	(E)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	1
Do		May 24, 1940		18.		90.1	1.6	2	6.6	00	
Monongahela River railroad bridge, below Fairmont, W. Va.	Mo 124.2		0 2,700		8.4	8.68		0	5.2	12	0 C 0 0 0 0 0 0 0 0
Do	do	June 12, 1940	2, 500	27.0	6.6	81.8	2.4	#	3.9	6 6 6 6 7 8	
Do	do	June 26, 1940	0 2,500		7. 4		900	93	4.5	41	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Monongahela River, lock No. 11, above Morgantown, W. Va.	Mo 104.1	May 16, 1940	0 1,030	16.0	00 00	88.4	7	<b>©</b>	53.55	- 20	
Do	do	May 23, 1940	0 3,200	20.0	8.6	93.8	11.8	€	4.5	00	1 2 3 1 5 1 1
Do	dodo	June 3, 1940	0 11,300	19.0	62	87.7	1.6	0	5.2	41	
Do	do	June 11, 1940	3,000	26.0	7.00	94.9	4.0	p-4	4.0	1	
Do.	qo	June 17, 1940	3,000	23.0	0.0	92.2	000	C3	4.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Do	qo	June 25, 1940	0 9,350	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.1	-	100	4	5.1	9	
Deckers Creek Bridge, above Sabra-	MoDe 104	June 3, 1940	0 50	15.0	9.6	94.6	11.8	(3)	5.4	-dh	
Do.	qo	June 11, 1940	0 15	25.0	7.6	90.7	12.0	2	4.5	0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do		June 17, 1940	0 45	23.0	7.6	87.6	1.4	2	3.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8
Do	фф	June 25, 1940	0 49	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.9		2.5		4.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Deckers Creek, shirt factory bridge,	MoDe 103	May 16, 1940	0 10	16.0	oc oc	88.4		4.3	4.1	9	1
До	do	May 23, 1940	_	19.0	0.0	96, 3	2.0	Н	5.1	9	1
Do	-do	June 3, 1940	0 55	15.0	9.4	92.6	11.2	1	5.2	4	
Do	dod	June 11, 1940	.0 . 20	25.0	7.4	88.3	1.6	15	4.5	1 2 6 0 1 1 2 2 3	0 0 0
Do	do	June 17, 1940	0 30	23.0	00	89.9	0.0.1	24	3.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Do	do	June 25, 1940	0 54		0.8		9.	0	4.6	63	8

TABLE MO-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

ate discharge, Temper attributed by the discharge attributed by the discharge attributed by the discharge attributed by the demand, probable attributed by the demand attributed by the demand, probable attributed by the demand attributed by the de													
Second   S				Average		Dissolved	1	obernical	Coli- forms,		Marshin	A Traction	
25     20.0     8.0     87.2     1.14     150     4.5       60     16.0     9.4     94.5     13.4     16.0     4.5       25     25.0     7.4     88.3     13.6     24     4.6       25     25.0     7.4     88.3     13.6     24     4.6       35     23.0     6.8     7.8     12.6     15.0     15.4       1,050     16.0     8.8     96.0     11.4     1.4     4.4       11,400     19.0     8.8     96.0     11.6     4.4     4.4       3,050     25.5     7.8     94.0     1.6     4.4     4.4       1,070     17.0     8.8     90.3     1.6     4.4     4.4       1,070     17.0     8.8     90.3     1.6     9.4     9.4       11,400     19.0     8.8     90.3     1.6     9.4     9.5     4.4       1,070     17.0     8.8     90.3     1.6     9.4     9.5     4.3       11,400     19.0     8.8     90.4     1.6     9.4     9.4     9.4       1,000     8.8     90.4     1.2     9.4     4.4     4.4       3,000     20.0     8.8 <t< th=""><th>Mileage from Date mouth</th><th>Da</th><th></th><th>discharge, cubic feet per second</th><th>Temper- ature ° C.</th><th></th><th>Percent satura- tion</th><th></th><th>most probable number per milli- liter</th><th>Hd</th><th>ity, parts per million</th><th>ity, parts per million</th><th>Hardness parts per million</th></t<>	Mileage from Date mouth	Da		discharge, cubic feet per second	Temper- ature ° C.		Percent satura- tion		most probable number per milli- liter	Hd	ity, parts per million	ity, parts per million	Hardness parts per million
25 20.0 8.0 87.2   12.0   15.0   4.9   15.0   4.9   15.0   4.9   15.0   4.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   15.0   1	MoDe 101 May 16, 1940	May 1	6, 1940	15		8.0			110		8 8		
60 16.0 9.4 94.5   13.4   7 5.2   25 25.0 7.4 88.3   14.0   1,050 16.0 8.2 87.7   12.0   3,250 20.0 8.8 96.0   11.8   3,050 25.5 7.8 94.0   11,400 19.0 8.2 87.7   1.8   11,400 19.0 8.2 89.4   11,400 19.0 8.8 90.3   2,050 26.0 7.8 94.9   11,400 19.0 8.8 89.9   11,400 19.0 8.8 89.9   11,400 23.0 7.8 89.9   11,400 23.0 7.8 89.9   11,400 23.0 7.8 89.9   11,500 23.0 7.8 89.9   11,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8 89.9   10,600 23.0 7.8	do	May 2	23, 1940	25	20.0	8.0		12.0	150			9	
25     26.0     7.4     88.3     4.6     4.6       35     23.0     6.8     78.3     4.6     4.6       1,050     16.0     8.0     80.4     12.6     15.0       1,050     16.0     8.8     96.0     12.6     14.0       11,400     19.0     8.2     87.7     12.6     4     4.4       3,050     25.5     7.8     94.0     1.6     4     4.4       1,070     17.0     8.8     90.3     1.6     4     4.4       1,070     17.0     8.8     90.3     1.6     4     4.4       11,400     19.0     8.8     90.3     1.6     4     4.4       3,000     20.0     8.8     90.3     1.2     3.5     4.3       11,400     19.0     8.8     90.3     1.2     3.5     4.4       3,000     20.0     8.8     90.3     1.2     3.5     4.4       3,000     23.0     7.8     80.9     1.2     3.0     4.4       4,400     1.2     1.2     3.0     4.4     4.4       1,000     1.2     1.2     1.2     4.4       3,000     20.0     7.8     80.9     1.0     3	June		3, 1940	09	16.0	9.4		13.4	2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
35 23.0 6.8 78.3 { 6.0 } 15.6 } 15 4.5	June 1.	June 1	1, 1940	25	25.0	7.4	80	13.8	24	4.6	1		
54     7.8       1,056     16.0     8.0     8.0     11.4     11.4       11,400     19.0     8.8     96.0     11.4     1     4.4       11,400     19.0     8.2     87.7     11.8     1     4.4     4.4       3,050     25.5     7.8     84.0     11.6     4     4.4       9,400     7.0     8.8     90.3     1.6     1.2     9     5.4       1,070     17.0     8.8     90.3     1.4     1.2     9     5.4       11,400     19.0     8.8     94.1     1.2     3.5     4.3       11,400     19.0     8.8     94.1     1.2     3.5     4.3       11,400     19.0     8.8     94.1     1.2     3.5     4.4       11,400     19.0     8.8     94.1     1.2     3.0     4.4       3,000     23.0     7.8     89.9     10.2     3.4     4.4       9,450     23.0     7.6     8.8     9.4     4.4       10.0     8.8     9.9     10.2     3.0     4.4       10.0     8.8     9.9     10.2     3.0     4.4       10.450     1.2     3.0     4.4	dodo		17, 1940	35		6.8	78.3	12.6	15		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1,056     16.0     8.0     80.4     11.4       3,256     20.0     8.8     96.0     11.4       11,400     19.0     8.2     87.7     12.0       3,050     25.5     7.8     94.0     11.6       3,000     23.0     7.4     85.3     1.6       1,070     17.0     8.8     90.3     11.4       1,400     19.0     8.2     89.4     11.4       11,400     19.0     8.8     94.1     1.2       3,000     26.0     7.8     94.9     1.2       3,000     23.0     7.8     89.9     1.0       3,000     23.0     7.8     89.9     1.0       1,2     1.2     1.2     2     4.4       4,40     1.0     1.2     3       5,00     20.0     8.2     89.4     1.1.4       11,400     19.0     8.8     94.1     1.2       3,000     23.0     7.8     89.9     10       1,2     3,000     23.0     7.6     4.6	dodo	June 2	25, 1940	20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.00	0 0 0 0 0 0	2.6	930		1	10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3,256     20.0     8.8     96.0     1.14     1     4.4       11,400     19.0     8.2     87.7     1.20     4     4.4       3,056     25.5     7.8     94.0     1.16     4     4.4       3,000     23.0     7.4     86.3     1.6     9     5.4       1,070     17.0     8.8     90.3     1.2     9     5.4       11,400     19.0     8.8     94.1     1.2     8     4.3       3,000     26.0     7.8     94.9     1.2     2     4.3       3,000     28.0     7.8     89.9     10     3     4.4       4,400     19.0     8.8     94.1     1.2     3     4       11,400     19.0     8.8     94.1     1.2     3     4     4       3,000     28.0     7.8     89.9     10     3     4     4       9,450     1.2     3     4     4     4       1,6     10     8.8     89.9     10     10     8     4     4       1,6     10     8.8     89.9     10     10     8     4     4       1,6     10     10     10     10	Mo 100.9 May 10	May 1	16, 1940	1,050		8.0	80.4		<b>©</b>		6 6 6 6 1	34	9 0 0 1 1 2 5 6
11,400     19.0     8.2     87.7     12.8     4     4.4       3,050     25.5     7.8     94.0     11.6     4     4.4       3,000     23.0     7.4     85.3     1.6     4     4.8       9,400      8.0     90.3     1.2     9     5.4       1,070     17.0     8.8     90.3     1.6     9     5.4       11,400     19.0     8.8     94.1     1.0     8     4.3       3,000     26.0     7.8     94.9     1.2     2     4.4       3,000     23.0     7.8     89.9     1.0     3     4.6       9,450      7.6     1.6     3     4.6	do   May 23	May 23	, 1940	3, 250	20.0		96.0	12.4	1,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	1
3,050 23.0 7.8 94.0 11.0 4 4.8 4.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	dododo		3, 1940	11,400	19.0		87.7	1.80	*	5.0		9	
3,000 23.0 7.4 85.3 1.6 4 4.8 1.7 1.7 17.0 8.8 90.3 1.6 1.8 3.5 1.7 1.0 8.8 94.1 1.0 13.0 26.0 7.8 89.9 1.0 3,000 23.0 7.8 89.9 1.0 3,000 23.0 7.8 89.9 1.0 3.0 94.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	June 1	June 1	1, 1940	3,050	25. 5	7.00	94.0		4			1 1 1 2 8 9 4 4 1 2	
9,400     8.8     8.0     1,8     9.0.3     1,8     9.0.3     5.4       1,070     17.0     8.8     80.4     11.4     1     5.2     3.5       11,400     19.0     8.8     94.1     1.2     2     4.3       3,050     26.0     7.8     94.9     1.2     2     4.2       3,000     23.0     7.8     89.9     1.0     3     4.4       9,450     7.6     1.6     3     3     4.6	dodo		7, 1940	3,000	23.0	7.4	60 10 00		**			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 3 0 1 5 8
1,070 17.0 8.8 90.3 (4) 3.5 11,400 19.0 8.2 89.4 11,0 8.8 94.1 1.0 8.8 94.9 1.2 8.0 8.9 89.9 1.2 8.0 8.0 8.9 89.9 1.2 89.9 1.2 89.9 1.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	dodo June 25		, 1940	9, 400	, 1 1 1 1 0 0	8,0	0 0 0 0 0 0	1.2	6			9	
3,300 20.0 8.2 89.4 11.4 15.2 1.3 3,000 20.0 8.8 94.1 1.3 3,000 28.0 7.8 89.9 1.0 3,000 23.0 7.8 89.9 1.0 3,000 23.0 7.6 20.0 7.6 20.0 1.5 2 2.3 4.6	Mo 97.7 May 16,		1940	1,070	17.0				<b>©</b>			36	8 8 8 8 8 9
11,400 19.0 8.8 94.1 1.0 2 4.3 2 4.2 3,000 23.0 7.8 89.9 1.0 1.5 93 93 4.6 94.4 94.60 23.0 7.6 23.0 7.6 23.0 23.0 7.7 6 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	dodododo	May 23	, 1940	3, 300	20.0		89. 4	11.0	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	
3,050 28.0 7.8 94.9 1.2 2 4.4 2 3,000 23.0 7.8 89.9 1.1 2 2 4.4 1.2 3,000 23.0 7.8 89.9 1.1 3 93 4.6	June 3		, 1940	11, 400	19.0		94.1	20.1	CR		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 1 1 6 6 6
3,000 23.0 7.8 89.9 11 2 4.4 9,460 7.6 1.8 93 4.6	do		, 1940	3,050	26.0	7.8	94.9	25.25	C9	4. 2	9 9 4 8 9 9		
9,450	June June 1	June 1	17, 1940	3,000	23.0	2,00	89.8	101	6.9	4.4			
	dodo		5, 1940	9, 450	0 0 0 0 0 0 0	7.6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.3	88	4.6		63	

						,			YFI	A 171		OL		11.	OTA		) <u> </u>	T T C (	714					و
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 1	E Call Inc.	. 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 1 1 1 1 6		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		9 0 0 1 1 1	\$ 8 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 6 6 8 9 6	23	25	74	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	G 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
66	15	4		1	. !	1	1 2 2 1 5 5 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22	31	22	30	9 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0	1 1 2 0 0 0 0	1 1 1	2 0 2 0 0 0 0	2 1 2 1 1 1 1 1 1	1	0 0 0 0 0 0 0 0 0 0	1	1	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 1 0	2 9 9 9 1 9	27	41	20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 3 0 0 0 0 0 0 0 0
0 %	ත	5.1	රට	3.5	3.5	69	4	69	4.3	ගෙ	10	1/3	3.7	4.6	4.1	4	4.2	4.1	4.1	6.6		0.00	6.0	
00	00	72	0	3	0	0	3	3	4	E	6	6	(6)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	3	63	1	(2)	6	15	150	120	
00	11.0	0 4.	2.00	7-4	1.1.	5.0	1.00	1.1	9.1.	200	1.0	1.2	1.8	1.1	0.1	1.2	9.2.	9.8	00 10	1.2	631	1.6	90	Less than 1.
96.5	84.5	87.7	90.0	94.9	91.3	93.1	92.6	87.0	94.5	94.1	92.3	91.5	W5.1	103.3	98.8	95.9	101.9	99.0	96.4	86.0		8.1.2	00.00	
9.6	7.6	00	7.3	00	7.8	00 44	9,	2,00	9.5	9.1	9.2	9.7	10.0	11.1	10.8	11.5	12.2	13.1	12.7	9.6		300 300 300	40	
16.0	21.0	19.0	26.5	23. 5	23.5	21.0	20. 5	21.5	17.0	17.5	16.0	13.0	13.5	12.5	11.5	7.6	7.5	4.0	4.0	15. 6		18.0	16.5	
38, 000	3, 250	6, 790	450	450	1,010	845	845	340	1,770	1, 370	630	630	1,050	4, 140	1,830	2, 110	4, 190	4,000	4, 500	2,800	430	000	135	070
May 31, 1940	10, 1940	22, 1940	19, 1940	27, 1940	4, 1940	13, 1940	17, 1940	24, 1940	2, 1940	8, 1940	17, 1940	22, 1940	30, 1940	4, 1940	Nov. 12, 1940	20, 1940	26, 1940	5, 1940	9, 1940	19, 1940	25,	5, 1940	25, 1940	ralized.
May	June	June	Aug.	Aug.	Sept.	Sept.	Sept.	Sept.	Oct.	Oct.	Oct.	Oct.	Oct.	Nov.	Nov	Nov.	Nov.	Dec.	Dec.	June	June	July	June	d neut
Mo 90	-do	-do	qo	-do	do	do	qp	do	do	do	qp	qo	do	do	qo	dp	qp	do	do	MoChS 168	-do	MoChDfBl-186	q	1 Seeded and neutralized
Monongahela River, dam No. 8,	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do-	Do	Do	Do	Do	Do	Do	Do	Do	Shaver Fork, 31/2 miles above Par-	sons, Forterwood, w. va.	Blackwater River, above falls in	State park, Davis, W. Va.	

			Average		Dissolved oxygen		5-day bio-	Coli-		:		
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion	oxygen demand, parts per million	most probable number per milli- liter	Вď	ity, parts per million	Alkalm- ity, parts per million	Hardness, parts per million
North Fork, Blackwater River bridge,	MoChNBI 152	June 19, 1940	64	17.0	6.7	68.6	7.1	43	5.6		17	
Do-	do	June 25, 1940	29	16.5	7.6	77.0	2.4	4	5.5	1 0 1 2 1 0 1	20	1
Do	do	July 5, 1940	37	14.5	7.5	72.9	10.	23	30,52	2 1 9 5 3 5		1
North Fork, Blackwater River bridge, below Thomas, W. Va.	MoChNbL-1805.	June 19, 1940	64	17.5	8.1	84.0	1.3	93	6.3	23	25	44
Do	do	June 25, 1940	29	18.0	8.0	83.0	1.5	6	4.7	20	26	88
D0	do	July 5, 1940	38	15.5	80.52	84.6	1.55	4	ĸ,	25		
Blackwater River bridge, at mouth, Hendrick, W. Va.	MoChDfBl-172	July 19, 1940	1,000	18.5	80.00	88.2	11.2	46	, v.	35	18	26
Do	do	July 25, 1940	250	16.5	00	88.6	1.5	43	4.4	34	21	39
Do	do	July 5, 1940	520	14.0	9.2	88. 4	100	6	4.6	28	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dry Fork River, Hendrick, W. Va.	MoChDf 172	June 25, 1940	1,800		0.00	91.0		23		8	37	1 1 1
Dry Fork River bridge, above Par-	MoChDf 168	19,5	530	15.0	0000	91.6		3 00 00	6.00	36	00	76
sons, W. Va.	\ 'T	0			j t	1	7.7	24	3	60	9	6
Cheat River, 2 miles below Parsons,	do do MoCh 165.6	July 5, 1940 June 19, 1940	1, 100 5, 600	14.5	8.7	89.0 89.0	4 10 00	23.023	တ် လုံ လုံ လုံ လုံ လုံ	122	88	2000
Do D	do	25,	1,350	17.5	& & & & & & & & & & & & & & & & & & &	86.7	9.00	15	6.8	16	33	27
St. George, W. Va.	Moch 158	jo	4,000	20.5			20.	68		22	26	4.5
Do Chest River, foot bridge below	do	June 24, 1940 July 8, 1949 June 18, 1940	1,500	21.0	00 00 00 00 00 00	89.7	641	46	0.00	17	23	33
Rowlesburg, W. Va.	do.	24,					63	23			\$ 8	E
Cheat River, I mile east of King-	MoCh 120.5	Juny 8, 1940 June 18, 1940	4, 600	21.0	r- m 00 00	92.7	00.00	53	ල ල ගෙන	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23	
Do	do	June 24, 1940	1,600	20. 5	80.3	91.6	60	0	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28	

.2	- 47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 9 9 6 6 6 7 7	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 4 1 6 0 1 1 2	† † † † † † † † † † † † † † † † † † †	e e e e e e e e e e e e e e e e e e e	8 3 4 9 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 0 1 0 1 1	6 9 8 0 6 0 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1 0 1	6 6 6 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0 0	8 0 0 0 0 0 0 0		80	10	010	0 0 0 0 0 0	00 00	1 1 1	7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ \$ \$ \$ \$ \$ \$ \$	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	6 6 5 9 8	9 6 6 6 1 1	3 9 9 6 2 1	1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2	€2 A		
.02	13	100	1		D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	1 6 0 0 0 1 0 1 0 0 0 0 1 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 6 4 2	1 3 3 3 8 6 5	1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 2 2 8 1 6	1 1 1 2 0 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 8 6 8 9 9 9	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 1 2 3 5 4 1 0 4 5 1 1 4 5	1	
9	10	69	6.5	6.1	0.0 24	3.0	5.1	3.9	5.3	4,	3.2	00	3.6	3	10	4.3	60	3.7	3.7	69	4.7	6.5	4.4	
011	4	3	15	7.2	121	6	24	24	24	3	©	(3)	3	<b>©</b>	<b>©</b>	63	CA	<b>©</b>	3	3	41	88	1	n 1.
80.4	4	2.5	1.6	12.0	4.00	11.0	000	1.4	1.6	1.6	1.2	0.1	1.0	1.5	200	1.6	1.7	1.0	1.4	12.6	11.4	00 1~	20 xx	Less than
91.6	90.1	93.6	96.2	82.3	98.5	95.7	82.3	82.3	88.1	91.5	97.1	24.7	87.6	91.4	92.1	98.2	93.8	92.7	95.0	8.96	99.7	101.1	99.4	
60	60	0.6		7.4	4.00	8.6	4.0	7.4	00,	7.5	80.00	60	8.0	60	60	0.7	9.1	9.3	10.1	10.3	10.8	11.2	12.2	
20.0	19. 5	17.5	13.0	21.0	20.0	21.0	21.0	21.0	18.0	26.0	22.0	22. 5	20.5	20.5	21. 5	16.5	17.0	15.5	13.0	13.0	12.0	11.0	6.5	
19	හ	10	32,000	2, 400	1, 220 35, 300	3, 730	1, 220 61, 900	4,060	9, 230	640	1,020	1,480	1,020	1,020	830	1,940	1,480	1,240	1, 240	1, 480	5,740	2,020	6,740	
June 18, 1940	June 24, 1940	July 8, 1940	May 31, 1940	June 10, 1940	June 22, 1940 May 31, 1940	June 10, 1940	June 22, 1940 May 31, 1940	June 10, 1940	June 22, 1940	Aug. 19, 1940	Aug. 27, 1940	Sept. 4, 1940	Sept. 13, 1940	Sept. 17, 1940	Sept. 24, 1940	Oct. 2,9940	Oct. 8, 1940	Oct. 17, 1940	Oct. 22, 1940	Oct. 30, 1940	Nov. 4, 1940	Nov. 12, 1940 Nov. 20, 1940	Nov. 26, 1940	neutralized.
MoChGr 118.5	do	do	MoCh 100.6	do	Moch 90	do	do	do	do	do		do	do	do	do	do	do	qp	dodo	qo	do	do	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 Seeded and neutralized
Green Run Creek, between King- wood and Allbright, W. Va.	D0	Do	Cheat Lake bridge at Ices Ferry	Do	Do. Cheat River bridge, at mouth, Point Marlon, Pa.	Do	Monongahela River lock and dam No. 7, Greensboro, Pa.	Do-	Do	Do.	Do	Do	Do-	Do	Do	Do	Do	Do	Do	Do	Do	Do-	D0	

Table Mo-7.—Monongakela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

	Hardness, parts per million		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		* 6 7 6 7 6 8 7 6 8 8 8 8 8 8 8 8 8 8 8 8	124	164	83	42	74	144	267	88	562	429	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	63	1, 420	!	1,360
	Alkalın- ity, parts per million		f f g g g g g g g g g g g g g g g g g g	50	16	0 0 0 0 0 0 0	4	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34	36			7 5 6 1 1 1 2 1 1	22	1	42	46		1 0 0 1 1 1 1	2 9 8 9 3 0 1 1
	Turbid- ity, parts per million	9 9 6 4 6	1 1 2 0 0 0 0 0 0	d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	co	04	60	2	10	200	6	1 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	180	17	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	47
	Hď	4.2	4.1		9.00	3.0	5.3	5.3	7.2	6.3	3.6	4.2	5.6	6.9	4.2	7.1	7.1	2.5	2.5	2.9
Coli-	most probable number per milli- liter	2	60	8 5	75	41	© ~	94	23	2.400	1	1	*	46	6	83	240	€	€	36
5-day bio-	oxygen demand, parts per million	3.5	2.00		1 .00 :		6.1	9.1	1.7	4.63	1.4	4.1.	1.9	12.4	1.00	1.6	1.2	1.6	14.2	13.5
Dissolved oxygen	Percent satura- tion	100.6			91.6	94. 5	89.2	88.0	6.06	84.2	73.1	78.1	83.3	87.5	85.5	69. 5	73.9	83, 4	96.3	100.6
Dissolve	Parts per million	13.2		x c	11.7	оо Оо	10.2	11.6	00 00	9.6	7.0	9.1	12.9	9.5	8.9	6.8	12.5	8.0	10.8	14.7
	Temper- ature ° C.	4.0			5.0	18.5	9. 5	4.0	17.0	9.0	18.0	9.0	0	12.0	14.0	16.5	0.0	18.0	10.5	0
Average	discharge, cubic feet per second	4,060	5, 300	© 8		Н	-	8	0	ㅁ 작	1	1	10	63	63	3	<b>E</b> E	1	174	1
	Date	Dec. 5, 1940	6	Aug. 22, 1940	15,		Oct. 10, 1940	Nov. 15, 1940	Aug. 22, 1940	Oct. 10.1940 Nov. 15, 1940	Aug. 23, 1940	Oct. 11, 1940	Dec. 3, 1940	Oct. 2, 1940	Oct. 8, 1940	Aug. 23, 1940	Oct. 11, 1940 Dec. 3, 1940	Aug. 23, 1940	Oct. 11, 1940	Dec. 3, 1940
	Mileage from mouth	Mo 84.8.	dodo	do	-do	MoGeMu 95	qo	do	MoGe 94.6	op	MoGe 91.5	do	do	MoJa 84	do	MoCa 83	do	MoCa 81	do	dp
	Sampling point	Monongahela River, lock and dam	Myddy Caroli warm of the free	chance, W. Va.	Do	Muddy Creek, below Fairchance, W. Va.	Do	Do	Georges Creek, below mouth of Muddy Run.	Do	Georges Creek, 1/2 mile below Smith-	Do	Do	Jacobs Creek, Greensboro, Pa	Dosessin	Cats Creek, upper edge of Mason-	Do	Cats Creek 1/2 mile below Mason-	Do	Do

165 203				8 8 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
184 251 181				2	117 88 88 128	94 72 108 131 118
258 10 5				2		
7.7.7. 89 89 50 60 80 80		යා යා යා යා 44 සා න න	ස ස ස	4 6 4 4	R 4 7 77.7. R 8 8 8 8 8 4	111 111 111 1111
1,100 4,600 930 4	€ €	3 3 3	6 6	S S S	(3) 1 93 46 110, 000	9, 400 9, 300 150 4
# 4. 6. 4				111111111111111111111111111111111111111		800 HH
30.6 44.5 76.8 88.2 88.3		90.0	90.4	93.8	96.0 95.0 65.7 87.8 5.0	2000 2000 2000 2000 2000 2000 2000 200
10.9		8 0 6 6		9.9 10.7 11.4	12.5 6.0 6.0 11.1 4.	10.8 6.7 6.7 11.2
16.5 2.5.5 22.5 5.5		20.0	12.5	13.0 10.5 7.0		13. 5 6. 5 6. 5 7. 0 5. 0
(3) (2) 1 670 1, 280	2, 610	1, 300 860 2, 340 1, 800	1, 200	7, 560 2, 400 3, 240 8, 610		85.4 85.8 87.8 87.8 87.8 87.8 87.8 87.8 87.8
23, 1940 11, 1940 3, 1940 1, 19, 1940	t. 4, 1940 t. 13, 1940	2, 1940 2, 1940 2, 1940 8, 1940	17, 22, 30,	. 4, 1940 . 12, 1940 . 20, 1940 . 26, 1940		. 27, 1940 . 21, 1940 . 27, 1940 . 8, 1940
Aug. Aug.	Sept.	Sept. Sept. Oct.	Oct.	Nov.	Dec. Aug. Sept. Nov.	Sept. Nov. Aug. Sept. Nov.
MoBi 78.5 do do Mo 68.3	op		op	dodododo	do do do MOTESÍ 85.5	do d
Big Run at mouth, Masontown, Pa Do Do Monongahela River dam No. 6, Rice Landing, Pa	Do.	Do.  Do.  Do.	Do	Do	Do	below Waynesburg, Pa. Do. Do. Mariama, Pa. Do. Do. Mariama, Pa. Do. Do. Do. Do. Seeded and neutralized.

Table Mo-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

	Hardness, parts per million	144	150		6 6 1 1 2 2 2 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 1 1 5 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 1 1 1	2 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #			
	Alkalin- ity, parts per million	114	132		2 2 2 6 6 6 8 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 8 9 6 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 0 2	1 1 1 1 1 1 1 1 1	1 0 0 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
	Turbid- ity, parts per million	27	14	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 9 6 8 8 8	1 3 5 2 6 6 6	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 9 1 2 1 1	1 3 2 3 0 6 8 7	1 1 2 2 2 4 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1			
	Hď	7.5	7.6	3.7	89 20	5.0	4.1	4.0	3.6	4.4	ග	3.9	8000	sc 60	1- 1-	8 10	4.3	5.7	6.2
Coli-	most probable number per milli- liter	1, 100	2, 400	22	4	4	(2)	22	€	53	(2)	1	3	67	(3)	23	(3)	3	1
6-day bio-	oxygen demand, parts per million	3.0	250	10:10	10.01	9.00	1.2	12.7	1.7	1.7	1.1	1.0	20.17	11.5	11.6	122	00 00	0.4	9.
	Percent satura- tion	73.3	86.3	88.8	89.1	90.8	91.4	90.1	90.2	91.2	85.9	86.1	89.6	95.3	93.0	95.0	94.6	96.1	91.8
Dissolved oxygen	Parts per million	6.7	9.4	7.3	7.8	8.0	80	တိ	8.1	8	တ်	8.7	9.7	10.2	10.0	10.8	11.5	12.5	12, 2
	Temper- ature ° C.	20.5	12.0	26.0	22.5	22.0	20.5	20.0	21.0	17.5	14.5	15.0	12.0	12.5	12.5	10.0	0.2	4.5	3.5
Average	discharge, cubic feet per second	2	38	730	1,600	2,820	1,700	1, 590	1, 590	2, 570	2, 210	1,150	1,600	2, 100	9, 760	2,980	9, 300	5, 550	5, 980
	Date	Aug. 21, 1940	Sept. 27, 1940 Nov. 8, 1940	Aug. 19, 1940	Aug. 27, 1940	Sept. 4, 1940	Sept. 13, 1940	Sept. 17, 1940	Sept. 24, 1940	Oct. 2, 1940	Oct. 8, 1940	Oct. 17, 1940	Oct. 22, 1940	Oct. 30, 1940	Nov. 4, 1940	Nov. 12, 1940 Nov. 20, 1940	Nov. 26, 1940	Dec. 5, 1940	Dec. 9, 1940
	Mileage from mouth	MoTe 74	do	Mo 56.5	do	do	do	do	qo	ф	qo		qo	do	do	dodo-	-do	do	
	Sampling point	Ten Mile Creek, 1/2 mile below	Do.	Monongahela River dam No. 5,	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do

648	740	804	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 180	972	977	195	148		1	85	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			8 6 8 8	168	08	92	81	
22	20	103	55	103	10	21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 4 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 6 9 8 8	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	202	80		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		3 3 3 1 0 1 0	
170	160	200		100			1 1 1 1 1			130	155	180	F-00	10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	20	9	00	90	7	10	9	10	
6.6	7.0	ල ල ව	6.2			6.0		3.2	60	63.1	63		7.6				6.3		3.7	3.7	80	3.6	69	3.5	3.5	
43	*	240	36	43	60	2 2	©	6	(2)	© {	© {	1	4,600		1	53	75	5	(3)	24	-	69	63	63	4	
1.0		8.70		(c) -	000		12.3	4 4	14.9	16.6	14.4	23.9	17.5	000	20 40	1.4	1.4	201.00	. 1.	oo 10	1.1.0	rie'	00,00	11.0	C.j ⊶,	
47.0	69.0	78.2	39.9	62.8		88.4	38.0	63.8	66.8	99.3	64.0	66.1	36.2			96.5	92.1	93.2	91.1	87.3	93.3	91.2	92.1	93. 5	77.2	
4.6	7.1	10.1	4.3	8.2	00	10.0	3.9	7.2	7.9	9.9	6.7	7.9	7.8	9 10	7.2	80	8.2		4.00	7.9	9.0	00	9.4	10.2	4.	
17.0	14.5	17.0	12.5	4.0		, co		10.0	8.0	16.0	6.5	7.5	15.0		26.0	22. 5	21.5	20.0	19.5	21.0	17.5	17.2	15.0	11.5	12.0	
60	CS	E= 00	10	26	23		4	9	15	00	00	25		-31	760	1,910	2,900	1,680	1,380	006	2, 550	2, 220	1,010	1,650	2, 150	
23, 1940	11, 1940	3, 1940	11, 1940	8, 1940	22, 1940	16, 1940	22, 1940	10, 1940	15, 1940	22, 1940	10, 1940	15, 1940	22, 1940	15,	19, 1940	27, 1940	4, 1940	13, 1940	17, 1940	24, 1940	2, 1940	8, 1940	17, 1940	22, 1940	30, 1940	•
Aug.	Oct.	Dec.	Oct.	Dec.	Aug.	Nov.	- Aug.	Oct.	Nov.	Aug.	Oct.	Nov	Aug.	Nov.	Aug.	Aug.	Sept.	Sept.	Sept.	Sept.	0ct.	Oct.	Oct.	Oct.	Oct.	
MoDu 67	-do	do MoDu 65	-do	do	MoRe 76	do	MoRe 73	dod	ф	MoRe 71	-do	do	MoReC 72.5	qo	Mo 41.5	do	dodo	do	do	do	do	ф	do	ф	qo	
Dunlap Creek, 15 mile below mine,	Do	Duniap Creek, ½ mile below Repub-	Do.	Do	Redstone Creek, below Brownfield	Do	Redstone Creek above Treatment	plant, Unlontown, Fa.	Do	Redstone Creek below treatment	plant, Uniontown, Pa.	Do	Cove Run, at mouth, Uniontown, Pa.	Do	Monongahela River dam No. 4,	Do Do	Do	D0	Do	Do	Do	Do	Do	Do	Do-	1 Seeded and neutralized.

Seeded and neutralized.
* Less than 1

Table Mo-7.-Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

			Average		Dissolved oxygen	loxygen	5-day bio-	Coli- forms,		Turbid-	Alkalin-	T. Constitution
Sampling point	Mileage from mouth	Date	discharge, cubic a second	Temper- ature ° C.	million	Percent	oxygen demand, million	most probable per milli- liter	pH	ity, parts		parts per million
Monongahela River dam No. 4	Mo 41.5	Nov. 4, 1940	11,600	12.5	10.0	93, 7	11.2	(6)	4.6	4	3 1 0 0 0 0 0 0	29
Do	dodo	Nov. 12, 9140 Nov. 20, 1940	2, 570	10.0	10.7	94.2	1.1.	(3)	4.3	00 10	4	£ 8
Do.	do	Nov. 26, 1940	10, 600	7.0	11.2	92.2	11.2	4	4, 1	16	1	28
Do	-do	Dec. 5, 1940	5,910	4.5	12.5	96.3	1.4	(2)	5.7	10	1	72
Do	MoPi 43.5	Dec. 9, 1940 Aug. 21, 1940	6,040	4.0	12.1	91.9	2.0	240	4.6	00	141	88
Do Do Pigeon Creek, upper edge of Ells-	do MoPi 42.5	Sept. 27, 1940 Nov. 8, 1940 Aug. 21, 1940	100	9.5	10.5	92.0 91.6 46.3	1.40	93	7.7.7	J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	137	1 T 2 1 0 2 1 1 1 1 1 7 1 1 7 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2
worth, Fa. Do Do Po	do MoPi 42	Sept. 27, 1940 Nov. 8, 1940 Aug. 21, 1940	101000	9.5	8.8 10.4 8.4	76.7 82.0 86.6	2000	1,100	7.7.7	3	125 122 125	P
Ville, Fa. Do Pigeon Creek below last sewer, Bent-	do MoPi 37.5	Sept. 27, 1940 Nov. 8, 1940 Aug. 21, 1940	12 00 to	15.55	10.9	81.6 86.2 86.3	1.23	240 460 240	646	00	150 126 114	231
John North Forty Pigeon Creek at mouth,	do do MoPiNf 40	Sept. 27, 1940 Nov. 8, 1940 Aug. 21, 1940	(3)	9.0 5.0 15.0	11.3	85.1 88.0 77.2	9.69	1, 100	0.1.0	17 37 76	11.8	202 178 250
Do.	do	Sept. 27, 1940 Nov. 8, 1940	3 1	80, 4; 30, 70	8.1	93.3	12.7.1	6 (2)	4.6	120	139	954
Monongahela River dam No. 3, Mc- Keesport, Pa.	Mo 23.8	Sept. 25, 1940	2, 100	22.0		91.7	0.00	€	60	3 8 8 8 8 9 9	1 1 3 3 9 0 0 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	do		2, 200	17.5		88.9	11:20	41		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 0 1 1 1 1 1 1 1	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Do	op	Oct. 9, 1940	2, 230	17.0	න භ	80.00	11.1	-	e. 10			

								UH	10	R.	LVE	R	PO	ىلىل	UTI	ION		UN	TR	ОL						0,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	***************************************	0 4 7 7 9 9 8 9 9 9 9 9	:					6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	31	33	TE .	36	1	8 5 7 6 8 9		9 1 9 8 0 0 1 1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 1 2 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 6 8 9	0 0 1 1 1 1 1 1		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 4 4 9 7	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1 6 7 1 1 2	6 0 0 0 0 0 0	3 4 6 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	20	16	17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 2 3 8 9 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	1 e s e e e e e	9 9 9 1 9		1 1 2 0 0 0 1 1		1 0 1 0 1 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22	22	* es	14	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$ 1 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
60	3.5	80,		4.6	5.5	6.2	5.5	3.9	3.7	4.5	3.0	5.5	6.1		5.0	4.	5.1	5.6	4.6	69	4.5	3.1	3.0	3.6	3.1	
© 	©	(e) }	2	(e) {	00	48		(3)	63	63	(3)	1,100	240	88	43	8	(3)	1	15	(e) {	110	41	.00	3 46	*	,
11.1	11.1	11.9	100	0.8.	800	6.	11.6	1.00	2.4	929	11.1	1.5	20.4	1.05	412	010	00.4	2.1.	£.1.	1.1.	4.1	1.9	1.0	11.6	2-12	?
89.3	83.4	92.8	89.6	90.2	91.6	92.0	96.2	29.0	39. 5	82. 4	79.2	003.1	85.8	82.4	86.1	87.8	92.3	91.7	86.9	86.2	83.4	81.6	89.8	83.2	8.06	
9.1	8.9	80.00	0.7	10.2	11.2	12, 4	12.3	2.3	4.	7.2	7.2	7.00	000	7.6	8.2	8.7	90	2002	7.3	90	7.4	7.3	80.6	7.4	00.	
15.0	12.5	13.0	12.0	10.0	7.0	3.0	5.0	28.0	23.5	23.0	20. 5	19.0	17.5	20.0	18.0	16.0	20.5	24.0	25.0	18.5	21.5	21.5	18.0	21.5	20.0	
1,900	1,900	8,360	8, 200	3, 250	22, 600	13,600	21, 100	780	1,960	2,950	720	86	18	374	390	133	378	258	291	61	122	33	73	125	35	
Oct. 18, 1940	Oct. 23, 1940	1, 1940	6, 1940	13, 1940	27, 1940	4, 1940	10, 1940	19, 1940	27, 1940	5, 1940	Sept. 16, 1940	18, 1940	24, 1940	18, 1940	24, 1940	8, 1940	16, 1940	25, 1940	6, 1940	15, 1940	24, 1940	24, 1940	15, 1940	24, 1940	2, 1940	
-  Oct.	Toet.	Nov.	Nov.	Nov.	Nov.	Dec.	Dec.	Aug.	Aug.	Sept.	Sept.	June	June	June	June	July	July	July	Aug.	July	July	July	July	July	Aug.	-
op	dodb.	do.	do	do	do	do	do	Mo 16.4	dodb	do	do	MoYoS 135	do	MoYo 127.5.	do	do	MoYo 88	do	фф	MoYoCa 116	do	op	MoYoCa 113	do	do	
;	Do	Do	Do	Downersensessessessessessessessessessessessess	Do	Do	Do	Monongahela River bridge above	mouth of roughlogneny kiver.	Do.	Do.	Snowy Creek, Corinth, W. Va.	Do	Youghlogheny River bridge at lower	edge of Oakland, Md.	Do	Youghiogheny River above Conflu-	once, F8. Do	Do	Casselman River bridge above town,	Myersdale, Fa.	Do	Casselman River 1/2 mile below Mey-	ersuale, Fa.	Do	1 Seeded and neutralized.

Table Mo-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

	Hardness, parts per million		1	t t t t t t t t t t t t t t t t t t t	f		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 9 9 8 6 4 9 8	1	1	71	22		89	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A 11-038	ity, parts per million	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							1 1 1			1	8 8 8 8	26	35	44	00	23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E STATE OF THE STA	ity, parts per million		1 1 0 5 2 0 0 0	1 1	14	4	53	10	10	4	8 8 8 9 8 9	8 8 8 8 8 8 8 1 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18	135	09	10	4
	Hď	900	4.69	3.0	50.	4.1	80	3.2	3.5	3.0	60,	9.0	2.9		0.1.0	4.00		6.8	3.6
Coli-	most probable number per milli- liter	© {	46	4	240	75	83	(e) {	011	4	6	€	(g)	150	23 23 91	2, 400	23	93	46
5-day bio-		4.1.	11.4	44	1.1.	11.2	4.1.	7.00.	11.3	4.1.	1.5	1.1	10.01	00 =	# t - co	9.7.4	0.8	, 22	0.1.
loxygen	Percent satura- tion	88.0	82.3	84.0	92. 2	92.1	92. 5	6.06	86.9	90.6	2.06	89.3	91.2	69.2	107.9	20.5	94.2	94.3	85.1
Dissolved oxygen	Parts per million	00 C1	7.3	7.6	0.6	8.2	00	8. 4	7.6	90.2	4.00	7.0	7.9	6.4	10.0	8.1		00.1	7.6
	Temper- ature ° C.	19.0	21.5	20.5	17.0	21.5	17.5	19.5	22. 5	20.5	19.5	25.0	23.0	19.5	20.5	23.5	19.0	23. 5	21.5
Average		82	140	300	13	13	9	96	150	44	250	142	40	0	» ~ ∞	10	93	32	Ai
	Date	July 15, 1940	July 24, 1940	Aug. 2, 1940	July 15, 1940	July 24, 1940	Aug. 2, 1940	July 15, 1940	July 24, 1940	Aug. 2, 1940	July 16, 1940	July 25, 1940	Aug. 6, 1940	July 15, 1940.	Aug. 2, 1949 July 15, 1910	July 24, 1940	16,	July 25, 1940	Aug. 6, 1940
	Mileage from mouth	MoYoCa III	do	do	MoYoCaB-111	do	do	MoYoCa 109	do	do	MoYoCa 105.5	do	do	MoYoCaC-114	MoYoCaC-111	do	MoYoCaC 104.5.	do	dp
	Sampling point	Casselman River, above Garrett, Pa	Do	Do	Buffalo Creek, at mouth, Garrett, Pa-	Do	Do	Casselman River, 2 miles below Gar-	Do.	Do	Casselman River, above Rockwood,	Do-	Do	Coxes Creek, above treatment plant	Do Coxes Creek, below treatment plant,	Somerset, Pa, Do	Coxes Creek, at mouth, Rockwood,	ra. Do	Do

	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			•	# 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6	31	28 31	* * * * * * * * * * * * * * * * * * * *		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		124	129 80 32	24	8 8 9 6 0 0		2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	224	294 267 230	
0 0 0 0 1 1 1 1	7 1 2 7 7 9 8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23	17	7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00	88.5	24 32 12	12 168	928	1	144	74	46 86 115	
1 1 2 2 1 1 1 1		63	2	60	හ	20	41-	90	41	5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	16	400	1			20 20	4.004	
3.6	00	2.9	3.8	3.9	3.7	7.0	7.0	5.1	5.6	4.7	6.8	6.9	7.3	0.0	7.0	4.6		7.6	4.0.0	
24	46	(3)	6	63	(3)	460	41 41	46	41	101	24	(3)	43 460 2,400	36 1,100 9	240	23	2,400	2, 400	36 460 1,100	
1.0	1.25	2.0	1.4	200	20 -	12.	60.63	1.5	1/80	9.8	. 8	1.5	22.0	1.6				1.0	4.2.9	
93.2	93.9	93.8	93.8	92.6	91.5	93.4	95.8	93.0	94.3	88.3	93.8	89.8 95.1 93.4	92.0 93.3 90.5	91. 4 95. 2 94. 2	93.7	85.5		92.1	986. 5 93. 6 59. 5	
8.6	7.9	8.1	8.6	8.0	7.9	00.7	7.00	8,4	7.9		ගේ	8.22	13.3	13.2	8.7		13.3	8.5	13.0	
20.0	25.0	23. 5	20.0	23.0	23. 5	19.0	23.5	21.0	25.0	25. 5	19.0	13.0 20.5	12.0 1.0 19.5	13.0 2.0 1.5	19.5			19.5	11.5	
343	174	45	322	248	87	230	32	930	189	410	2, 470	308 1,005	2,490	1,020	14	(3)	(2)	22	(2)	
16, 1940	25, 1940	6, 1940	16, 1940	25, 1940	6, 1940	16, 1940	25, 1940 6, 1940	16, 1940	25, 1940	6, 1940	30, 1940	1, 1940 18, 1940 30, 1940	1, 1940 18, 1940 30, 1940	1, 1940 18, 1940 3, 1940	30, 1940		18,	30, 1940	1, 1940 18, 1940 3, 1940	
July	July	Aug.	July	July	Aug.	July	July Aug.	July	July	Aug.	Aug.	Oct. Nov.	Oct. Nov.	Oct. Nov. Dec.	Aug.	Oct.	Nov.	Aug.	Oct. Nov.	
MoYoCa 104	do	do	MoYoCa 87	do	do	MoYoLa 86.5	op	MoYo 84.5	do	do	MoYo 59	do do MoYoM 58	do do MoYo 57.	do MoYoD 53.5.	MoYoD 53	do	do	MoYoD 52	dodo.	
Casselman River Bridge, below	Do-	Do	Casselman River at mouth, Confiu-	Do	Do	Laurel Hill Creek at mouth, Conflu-	Do Do	Youghiogheny River, 12 mile below	Do-	Do	Youghlogheny River water plant in-	Mounts Creek, at mouth, Connells-	Youghiogheny River, ½ mile below	Dickerson, Run, ¼ mile above	Vanuerollt, Fa. Dickerson Run, upper edge of Vanderbilt, Pa.	Do	Dickerson Run. West Branch, upner	edge of Vanderbilt, Pa. Dickerson Run, 1 mile below town,	Vanderbut, Fa. Do. Do. Do.	¹ Seeded and neutralized. ² Less than 1.

Table Mo-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

)(	,		,	) A L L (	, ,	CT A TO 1		יונו	, 11	OT	, ,	001	ATI	LEO	11						
		Hardness, parts per million	8 6 6 0 0 0 0	# 4 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2	268	273	286	265	8 6 2 0 5 1 1 1	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	84	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 5 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11	51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2, 400	2,820	296	2, 260
	A 111!	ity, parts per million	22	. 230	0 0 0 0 0 0	342	104	169	16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	8 9 5 0 0 4 4	13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92	1 0 0 1 1 1	0 0 0 0	0 0 0 0 0 0 0 1 0	5 3 8 0 0 0 0	51	
	E Contraction of the Contraction	ity, parts per million		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27	17	170	116	8 8 8 6 9 1	14.	14		1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9	44	1 0 0 1 1 1 1	0 0 0	220	180	950	180
		Hď	7.5	7.7.		6.00	1.5.	6.3	6.0	5.4	6.4		6.6	4.5	7.1	2.7	5.8	89		6, 3	10°
	Coli-	most probable number per milli- liter	240	23.4	2	2, 400	1,100	46,000	93	4	75	ε.	24	111	46	© {	€	36	36	240,000	23
	5-day bio-	oxygen demand, parts per million	1.3	1:0	1.1		2.8	62.4	1.9	1.0	2.1	4.00	20 9 i	1.05.0	1.9	00°	17.4	22.0	140.0	161.0	148.4
	loxygen	Percent satura- tion	75.4	61.8	79.7	61.6 72.4 55.5	74.8	38.3	79.1	50.2	74.3	84.9	91.9	85.7	89.1	224.6	52.0	127.3	49. 5	0	83.1
	Dissolved oxygen	Parts per million	6.9	9.00		9.5	8.0	6.6	00	4	8.0	00 9	12.6		10.7	22.4	6.1	12.8	6.3	0	9.3
		Temper-	20.0	12.0	20.5	12.5 4.0 19.5	10.5	11.0	12.5	18.5	12.0		2.5		2.5	16.0	90°	10° CF	12.5	13.5	11.0
	Average	discharge, cubic feet per second	3	<b>©</b> ®	(3)	3		13	31	17	37	845	5,720	845	3,150	9	0	10	0 0 0 1 1 1 0 0	10	10
	West Service and Control	Date	Aug. 30, 1940	Oct. 1, 1940 Nov. 18, 1940	30,	Oct. 1, 1940 Nov. 18, 1940 Sept. 3, 1940	Sept. 26, 1940 Sept. 3, 1940	Sept. 26, 1940 Sept. 3, 1940	Sept. 26, 1940	Sept. 3, 1940	Sept. 26, 1940		Dec. 2, 1940	19,	Nov. 7, 1940 Dec. 2, 1940	Sept. 18, 1940	Oct. 29, 1940	Oct. 15, 1940	Oct. 25, 1940	Nov. 1, 1940	Nov. 7, 1940
		Mileage from mouth	MoYoW 51	do	MoYoW 49.5	do do MoYoJaS 62	MoYoJaS 60	MoYoJa 55.5	do	MoYoJa 53	do	MoYo 35	do	MoYo 33	op	MoYoSJ 58	qo	MoYoSJ 53.5	do	do	do
		Sampling point	Washington Run, 14 mile above	Do Do	Washington Kun, 1,5 mile below Star Junction, Pa.	Shuttes Run, upper edge of town,	Shutes Run, 4 mile below last sewer,	Jacob Creek, upper edge of Scottdale,	Pa. Do	Jacob Creek, 1/2 mile below Scottdale, Pa.	Do	West Newton, Pa.	Do	voughlogneny kiver, 23 mile below West Newton, Pa.	Do	Jacks Run, upper edge of Greens-	Donner or a constant of the co	Jacks Run, above mouth Slate Creek,	Do	D0.	Do

						) III.		LUL V	1316	T	UI.	20	110	7.4		747	100	1.4					0
2,510	2,380	1,540	1,670	96	136	88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	798	384	1,810	2,040	852			316	472		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1	
	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 9	107	59	22.20	27 46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		70	19	co	12				∞ ⊃	1 1 1 2 8 6	rC 00	
190	150	70	110	80 70	10	22 22 24 24	320	125	1, 500	08	72	145	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88	125	190	200	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3.5	10 60	4.4	7.2			7.0		3,57	7. 4	က	60	9.3	6.3	6.0	6.4	6.0	60	00 7	86 86	7.0		6.2	
7	61	360	23		4, 480	4, 600	1, 000	7	2, 400	(3)	4	4	36	76	1,500	93	(3)	(2)		16	61	24	
			112.8		6.8	8.4.7	4.6	0.1.0	184.6	4 100.4	2.4.7	33.2	12.9	9 80	13.1			900		; H	1.6	1.8	
125.6 '{	130.0	62.8	83.6	21.2	20.00 20.00 20.00 20.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	64.1	64.3	0	62.9	109.9	50.4	× × ×		9.6	79.1	77.3	84.7	81.8	86.4	80.5	88.1	
14.4	13.2	7.7	10.6			11.8		6.6	0	7.1	10.6	5.6	6.	8,6	1.0	0.6	2000	9.6	7.00	10.6	7.6	10.4	
9.5	15.0	6.5	5.5			2.8.2		14.5	19.0	10.5	17.5	11.0	16.5	10.0	16.5	10.0	15.5	10.0	18.0	1.5	18.5	2.0	
6	0	19	18	9		23.0	П	1	2	00	-1	4	13	16	15	17	58	36	865	3, 210	865	3, 210	
Nov. 15, 1940	Nov. 22, 1940	Nov. 28, 1940	Dec. 2, 1940 Oct. 15, 1940	1,25	15,7	Nov. 22, 1940 Nov. 28, 1940 Dec. 2, 1940	Sept. 18, 1940	Sept. 24, 1940	Sept. 24, 1940	Sept. 27, 1940	Sept. 27, 1940	Oct. 29, 1940	Sept. 3, 1940	Sept. 26, 1940	Sept. 3, 1940	Sept. 26, 1940	Sept. 3, 1940	Sept. 26, 1940	Sept. 19, 1940	Nov. 7, 1940 Dec. 2, 1940	Sept. 19, 1940	Nov. 7, 1940 Dec. 2, 1940	
do1	do	qp	MoYoSJS 54.5		do	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MoYoSJ 53	qo	do	qo	qp	qo	MoYoSF 52.5	do	MoYoSJ 51	do	MoYoS 51	qo	MoYo 20	op	MoYo 18	dodo	
Do	Do	Do	Blate Creek, at mouth, Greensburg,	Pa, Do Do	Do	D0 D0 D0	Jacks Run, below Slate Run, below	Oreensburg, Fa.	Do	Do	Do	Do	Jacks Run, upper edge of Young-	Do	Jacks Run, below last sewer, Young-wood, Pa.	Do	Sewickley Creek, above mouth Jacks	Do Do	Youghiogheny River, bridge above	Do. Do. Do.	Youghiogheny River, 1 mile below	versallies, Fa. Do. Do.	1 Sooded and nontralined

Seeded and neutralized.

Table Mo-7.—Monongahela River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

			Average		Dissolved oxygen	l oxygen	5-day bio-	Coli-			:	
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion	oxygen demand, parts per million	most probable number per milli- liter	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness parts per million
Youghlogheny River, at mouth Me-	MoYo 16.3	Aug. 19, 1940	425	25.0	6.2	73.7	1.4	7	3.5	17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
heesport, l'a.	-do	Aug. 27, 1940	3, 200	18.5	7.2	76.1	1.0	00	3.00	75	1	1
Do	-do	Sept. 5, 1940	1,050	21.0	4.	81.8	2.1.	52	4.1	18		
Do	dodb	Sept. 16, 1940	0 875	18.0	7.6	79.1	11.4	011 {	4.0	14		
Do	-do	Sept. 25, 1940	0 480	17.0	7.2	74.0	11.0	2	3.4	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	Oct. 4, 1940	883	15.0	8.6	84. 5	1.1	7	3,1	20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 8 8 8 9 9 9
Do	do	Oct. 9,1940	019 010	14.5	00	81.5	1.1	© {	63	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	220
Do	op	Oct. 18, 1940	0 230	11.0	8.6	77.7	11.2	24	3.6	140		
Do	do	Oct. 23, 1940	0 485	9.5	10.1	88. 2	1.4	© _	4.0	14		186
Do	do	Nov. 1, 1940	0 2,550	10.5	9.7	86.9	11.8	4	4.6	18	5 5 5 7 7 7	94
Do	do	Nov. 6, 1940	0 2,800	9.0	10.6	91.7	1:0	63	6.9	14	9	99
Do	do	Nov. 13, 1940	0 1,480		9.5	79.3	1.00	57	4.5	. 14	1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	157
Do Do Do	dodo	Nov. 27, 1940 Dec. 4, 1940 Dec. 10, 1940	3,420	900	10.6	91.6	4.1.	15	999	105	13	118
Brush Creek, upper edge of Jeanette,	MoTuB 31				9.5	97.3	00	15		3	44	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Brush Creek, above treatment plant,	MoTuB 28	Oct. 29, 1940	(2) 2	16.5	10.3	87.9	85.8	24, 000.	7.3	95	58	111
Brush Creek, 200 feet below treat-	MoTuB 27.5	Sept. 18, 1940	2	22.0	1.0	11.1	53.3	46,000	7.1	41	141	110
ment plant, Jeanette, ra.	-do	Oct. 29, 1940	5	13.5	0	0	50.7	110,000	7.3	1	182	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Brush Creek, above Irvin, Pa	MoTuB 25	Sept. 19, 1940	13	18.0	7.9	82.6	6.00	(2)	3.2			

					(	)H	10	RI	VE	R	P	)LiI	JU	TI	NC	(	COL	VT.	RC	L						อ
	222	704	382		f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	472	599				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	451	478	199		E E E E E E E E E E E E E E E E E E E		:
	1	-		1 1 1 1 0 2 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		-	-	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	1	1	1-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 3 1 1 1		
	225	190	150	2 2 2 4 1 1	1 2 3 3 4 5 1	87	16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					1	0 0 0	1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47	65	65	00	ಣ	90	
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9	3.6	3. 4	90	oc ci	3.1	2.9	3, 1	2.9	3.2	0.9	3.3	3, 52	6.0	60.	3.2	6.1	2.9	2.9	6.2	2.9	5.2	6.2	50.01	63	3.9	-
24	53	00	240	(2)	(2)	(2)	(2)	(2)	0	4	240	150	430	(3)	(2)	91	(2)	(3)	1, 100	4	2	36	1	97	4	
2.8.6.0	4.8.2	15.4	1.3.9	11.0 €	12.5	2.5	11.6	1.6	9.11	1 00	16.9	17.0	1.9	17.4	10.1	1.2	0.00	10.8	2.1	15.0	127	 	9.2.	12.10	1.3	
87.9	78.4	85.8	87.7	67.7	71.8	74.8	83.4	92.3	94.5	90.6	44.3	74.4	91.4	58.5	76.0 {	89.1	44.2	84.9	0.06	33. 2	51.9	85.7	57.5	70.01	84.7	,
11.8	7.7	10.2	11.4	6.4	8.4	8	9.7	8. 2	11.1	12.5	4.0	60	12.6	5.4	000	12.2	4.1	9.7	12.3	2.8	5.5	11.6	5.4	6.0	7.3	
2, 5, 5	16.5	8.0	4.5	18.5	30	14.0	9.0	21.5	8,5	2.0	21.0	10.5	2.0	20.0		25.57		9 5	2.5	24.0	13.0	3.0	19.0	24.0	23, 5	
12   30	12	18	38		(2)	4	63	10	9	165	12	9	170	38	153	300	53	31	314	99	34	321	1,200	5, 200	4,060	
7, 1940	19, 1940	7, 1940	2, 1940	18, 1940	29, 1940	18, 1940	29, 1910	6, 1940	28, 1940	28, 1940	6, 1940	28, 1940	28, 1940	6, 1940	28, 1940	28, 1940	6 1940	28, 1940	28, 1940	6, 1940	28, 1940	28, 1940	19, 1940	27, 1940	5, 1940	
Nov.	Sept.	Nov.	Dec.	Sept.	Oet.	Sept.	Oet.	Sept.	Oct.	Nov.	Sept.	Oct.	Nov.	Sept.	Oet.	Nov.	- Sept.	oct.	Nov.	Sept.	Oct.	Nov.	Aug.	Aug.	Sept.	
do	Morful 23	do	do	MoTu 28	do	MoTu 25.5.	do	MoTu 18.5	do	do	MoTu 17.5_	do.	do	MoTu 16	do	do	MoTu 14.5	do	do	MoTu 12	do	do.	Mo 11.2.	op	-do	
Do	Brush Creek, ½ mile below Irvin, Pa.	Do	Do	Turtle Creek, upper edge of Export,	100 - 2	Turtle Creek, 34 mile below Export,	La. Do.	Turtle Creek, above all sewage above	Do-	Do	Turtle Creek, above mouth Brush	Creek, below Trafford, Fa.	1)0	Turtle Creek, upper edge of Pitcairn,	Fa. Do	Do	Turtle Creek, upper edge of Turtle	Do Do	Do	Turtle Creek, 12 mile above mouth,	Do.	Do	Monongahela River dam No. 2,	Putsburgh, Pa.	Do-	1 Seeded and neutralized.

Seeded and neutralize Less than 1.

Table Mo-7.—Nononguhela River Basin: Ohio River pollution surrey laboratory data—summary of individual results—Continued

	Hardness, parts per million	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	159		1					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		176	178		137		
	Alkalin- ity, parts per million		1 1 4 9 8 9 1 0	9 9 9 9 0 0 6 5	5 5 0 5 0 0 0 0 0		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		10	103	125	26	58	29	0 6 6 6 8 8 8	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Turbid- ity, parts per million		0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 4 5 1 3 3 2 2 2 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 3 0 4 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 4 2 2		1		10	15	1 1 1 0 0 0 1 0 1	92	8	14
	Hď	6.6	4.0	63	00	00	63	3, 4	6.7	4.2	5.3		1-1	1-12		9.6	9.4	5.5	80.00	3.7
Coll.	most probable number per milli- liter	6	8	22	63	67	© 	24		14	41	40	1, 100	250	41	91	1,100	43	11	#
5-day blo-	enemical exygen demand, parts per million	11.4	11.5	11.4	1.4	122	000	25.	1,1	11.00	11:2	> ~ 00	1.4	1.5	444	1.8.4	17.2	0.1-	30.00	1.4
-	Percent satura- tion	79. 3	69. 5	78. 4	66.5	67.9	72.1	86.5	88.0	81.4	86.9	90.2	82.4	69.7	61.7	43.0	65.8	49.0	15.7	20.00
Dissolved oxygen	Parts per million	7.1	6.0	7.3	6.1	6.4	7.6	9.1	9.4	9, 1	10.7	12.0	8.0	7.8	6.0	७० चर्न	7.5	4.6	F. 3	5.2
	Temper- ature ° C.	21.0	23.0	19.0	20.0	18.5	13.5	13.5	12.5	10.7	6, 5	60 rQ	17.0	12.0	17.0	11.0	9, 52	20.0	24.0	19.5
Average	discharge, cubic feet per second	1,650	2, 620	3,090	2,840	2, 450	2, 450	12,400	11, 130	4,800	29, 500	17, 600		2 - 2	. ==	=	2	1,650	2,620	3,090
	Date	Sept. 16, 1940	Sept. 25, 1940	Oct. 4, 1940	Oct. 9, 1940	Oct. 18, 1940	Oct. 23, 1940	Nov. 1, 1940	Nov. 6, 1940	Nov. 13, 1940	Nov. 27, 1940	Dec. 4, 1946	Sept. 6, 1940	Oct. 28, 1940 Nov. 28, 1940	Sept. 6, 1940	Oct. 28, 1940	Nov. 28, 1940	Sept. 16, 1940	Sept. 25, 1940	Oct. 4, 1940
	Mileage from mouth	Mo 11.2	do	do	do	qo	do	do	do	do	do	do	MoNi 10.	do	MoNi 6.5	do	do	Mo 0.05	op	
	Sampling point	Monongabela River dam No. 2, Fittsburgh, Pa.	Do	Do	Do	Do	100	Do	D0	1)0	Do	D0.	Nine Mile Run, upper edge of Wil-kinsburg, Pa.	Do	Nine Mile Run, 4 miles below Wil-kinsburg. Pa.	Do	Do	Monongahela River, at mouth, Pitts-	100.	Do

143	14	84	142	78	100	103	82	
1	-	-	;	20	:	000	100	
			1		5			
12	12	491	4	4	81	16	. 20	-
				•••	~~			_
egi Tu	3	69	65	6.6	4	6.1	6.	
								_
240	23	4	न्तुन	0	46	46	7	
					^_			
1.6	2.5	. 00	0.00	.3	5.2	0.4	00	-
-		-	-		-			
3	9	00	6	6	0	000	-	-
14	38.	30.	77.	83.	71.	79.0	86.	
								_
60	3.6	3.9	7.9	10.1	1,	9.6	11.3	
19.5	18.5	7.0	15.0	2.5	2.0	4.0	4.0	-
1	11	T	==	11	15		4.	
- 01	450	450	100	130	2	200	0	_
2,840	2, 4.	2,4		11, 18	4,800	29, 50	25, 90	
_				_	-		_	_
, 1940		, 1940	1, 1940	, 1940	, 1941)	1940		
6	. 18.	. 23,			v. 12,	v. 27,		
Oct.	Oct	Oct	Z	S.	Z.	Nov.	Dec	
	-	-	-	1 1	-			
1		1	1	1 1 5	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0	do	do	do	do	10.	do	do	
op	D d	p	d	р	, C	D	p	
-	1		- 1			1	1 1	
	1		1 2 0	1 1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 0 1	1		1 1			1 1 1 1 1 1 1 1 1	
1	1 1	-	0 0	1 1 1	8 8	1	1 1	
1	1 1 1	1 2 3	8 8	1	5 5	1	1 1	
	1 1 1	1 1 2	0 0	1 1 2	8 8	-	1 1	
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Do		Do	
Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do	

¹ Seeded and neutralized.
² Less than 1.

Table Mo-7A.—Monongahela River Basin: Laboratory data—Acid stream results

Iron, parts per million		Total	75	3	1.2	114	000	5. 5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	15.0	12	13.0	000,702	\$ 88 88 88 88 88 88 88 88 88 88 88 88 88	40	11.6	17.0
Iron, mi	ŗ	Ferrous	15.0						-		1 1 1 0 0 1 1 1 2 0 1 1 0 1 1 1 1 1 1 1 1			1	1 1 8 1 1 8	
er million	Phenolphthalein	Cold	324	111	25.4	108 107	1225	12.5.6	32.5	1552	- 03 03 0	252 252 319	144	40.00	7 00 00 0 L	୍ ଖୋ ଅନ୍ତର୍ଶ
Acidity, parts per million		Hot	406	1 1 0	3 1 9 1 2 1 8 1 6 2 1 1 5 1 6 2	2 151	1 1	10 00	1 83		1 10	305		1	1	
Acidit	Methyl	red	252	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 106	1 1		3 17	11		1	188	- 1	1	\$ \$10 \$2.70\$ \$ \$10 \$1 \$1 \$ \$1 \$0 \$0 \$1 \$ \$1 \$1 \$1 \$ \$1 \$1 \$1 \$1 \$ \$1 \$1 \$1 \$ \$1 \$1 \$ \$1 \$1 \$ \$1 \$1 \$ \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$
	Hd		0100	တ် တိ	\$ 60 C	4.3.6.4	0 4 0 0 8 0 0 1 4	ာ် က်တ် တ်	040	10 00 C	6,0,0	10000 10000		00 12 a	0.001-0 0.400	(A) (A)
Num-	sam-		1.2	m m	- o o			20100	= 4	ou pr	, c-3 c-3		1 m m m		r	·
	Month, 1940		June	May	May	July. May June	July July May	July May June	July. May. June	July	July. May.	July May June	July May June	July	July May	July May June
	Sampling point		Mouth, Two Lick, W. Va., mile 166.	Above Clarksburg, W. Va., mile 160	Above Nutter Fort, W. Va., mile 167	Below Anmore, W. Va., mile 165	West Pike St. Branch, Clarksburg, W. Va., mile 159	Adamston Branch, Clarksburg, W. Va., mile 158	Below milk plant, Clarksburg, W. Va., mile 157	Perry Mines, W. Va., mile 155.	Above Zeising, W. Va., mile 150	Above Bridgeport, W. Va., mile 162	Below Bridgeport, W. Va., mile 156	Below Salem, W. Va., mile 168.5.	Below East Salem, W. Va., mile 167.5	Above Lumberport, W. Va., mile 148
	Stream		Brown Creek	West Fork River	Elk Creek	Anmore Creek	Elk Creek	West Fork River	Limestone Run	West Fork River		Simpson Creek.		Ten Mile Creek		

TABLE Mo-7A.-Monongahela River Basin: Laboratory data-Acid stream results-Continued

Iron, parts per	mark.	1.0081	4.0	0 0	1.7	14.0	. i . i . 4.0	9:0	i : 00,	4 ,	0.4	22 397 367	245	-i-i		7.6	401-	24.6	26	425 361	310	258
Iron, parts	E.	refroms	0.30		8 8 9 8 10 10 10 10 10 10 10 10 10 10 10 10 10					6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		108	8	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P B B B B B B B B B B B B B B B B B B B	1		12	12	162	286	164
Acidity, parts per million	Phenolphthalein	Cold	45.88	04	20 EZ 20	100	31.91	0.60	15	1961	16	9, 510 2, 374	2, 004 54 49	127	40	389	15	337	06	1,416	1, 180	640
, parts pe		Hot	52	2 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0	1 32	1 35	282	1 20	28 48	75	70	75 296 <b>2, 734</b>	60	288	115	e4 2 63 6	222	140	717	1,016	759	786
Acidity	Methyl	red	34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	116	120	1252	16	128	45	R	1,978 1,870	43	82	25	181	450	0	7	1,076	308	855 55 55 55 55 55 55 55 55 55 55 55 55
	Пф			0 0 0 0		- <del></del> - c	ා ගට ගට ශ් ගේ ගේ	4.4.	0000	က်က် ကေတင်	4.00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	vi co; co; 20 co 40	6. 4 6. 60	4.9	940	24.50 20.50			0 00		
Num	ber of sam- plus		23=	-01	-0-	-616	1410	00	) prof prof			01-1-1	-01-4			1 41 1	O 64 F	4 204 20				
	Month, 1940		June	May June	June	June.	September	November.	August	November	December	October August October	August September	October.	December	September.	November.	October	December.	August October	November	November
	Sampling point		Between Kingwood and Albright, W. Va., mile 118,5	lees Ferry, W. Va., mile 100.5	Took and dam No 7 mile 84 2.	TOOK GLU UGHI 140, 1, MING GRO			Above Fairchance, Pa., mile 96.0	Below Smithfield, Pa., mile 91.5		Grensboro, Pa. mile 84  Below Masontown, Pa, mile 81	Lock and dam No. 6, mile 68.3.		I not ond dom No 8 mile 88 E	LUCK and dath and by this observances of the servances		Below New Salem, Pa., mile 67.	Delow nepublic, 1 a., mile of	Above Uniontown, Pa., mile 74.	Below Uniontown, Pa., mile 73	:
	Stream		Green Run Creek	Cheat River, mile 89.1	Monongehole Direc	ALOHOUS BUILD IN THE COLUMN TO			Muddy Creek	Georges Creek		Jacobs Creek Cats Creek	Monongahela River					Dunlop Creek, mile 56.		Redstone Creek, mile 55		

							•	OL	r Te.	74		•	.01	<i>J</i>			1.0	, V ,L	A.t.	110	OI							
	25.02	476	0.48	193	2, 406	500	4.6	6.6	100		i (3)	4.0	0 22	a, 00	4 60	4.6	3.7	128	26	27.3	∺ 		- <del></del> 0	o, 44, 0 4, 00 +	i.9	159	1.5	4.0
	55	452	808	105	2, 247	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.8		1 1 1	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2	1 1 2 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2	1,1	11.9	1.68	5.7	6.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 5 5 5 5 6 7 6 7 8 7 8	0 1 0 3 0 3 0 1 0 1 1 1 1 1 1 2	1.8		158		0 0 0 0 0 0
	163	1, 659	1,772	3, 492	8, 420	r- 0	18	30	56	9 6	35	119	32.0	43	700	200	200	67	78	103	17	130	27	000	27	467	22:	55
	143	1,737	1,966	3,710	8, 720	22	20	34	80	00	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000	12		65	89	40	80	-16	1 110	6	14	1 00 5	3 :4	588	435	10 00	69
		183	795	850	4,990	co =	2	co	388	6 6 2 5 1 6	-	1 02	20	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	36	42	20	52	909	1 63	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	220	100	100	65	23 00	43
2 samples.	900	1000																									6.4. 6.6.	
60	4 =====================================	101	10 -	100			prod :		t prot p	N =			- 2		-61:	101	- 01	- 63	-163	- 01	-61	2.	101-	00	4 70 0		1000	
	September	September	November	October	do	do	September.	August	October	Amenict	August	August	August	July	July	July	July	July	August	Angust	uly do	do	September	December	October	September.	October	August
	Sel	Sep	2°C	Oct	1 1		Sel-	Au	Oct	lul	Au	Au	Au	Jul	Jul	Jul	Jul	Jul	Jul Jul	Jul	July dede	opdo	Ser	Dec	Ö	Ser	ÖŽ	Au Spr
3 3 samples	Above Youngwood, Pa., mile 52.5. Below Youngwood, Pa., mile 51.	Below mouth Slates Creek, mile 53		Above month Slates Creek Greenshire Pa mile 53.5	Above Greensburg, Pa., mile 58	Above West Newton, Pa., m. 35.	Below Scottdale, Pa., mile 53	Below Star Junetion, Pa., mile 49.5	Upper edge, Vanderbilt, Pa., mile 53.5	Below Confluence, Pa., mile 84.5.	474 CANAL CANAL CANAL A UNIT ALANC CO secono consecuence and c	The state of the s	Below Rockwood, Ps. mile 104.	Mouth, Rockwood, Pa., mile 104.5	Above Rockwood, Pa., mile 105.5.	Below Garrett, Pa., mile 109	Mouth, Garrett, Pa., mile III.	Above Garrett, Pa., mile 111.	Below Meyersdale, Pa., mile 113	Above Meyersdale, Pa., mile 116.	Above Confluence, Pa., mile 86	Cofrinta, W. va., mile 135 Below Oakland, Md., mile 128	Above mouth 1 oughnogheny, mile 10.	4 f	LUCK MING WAMI AND, OF MIND AND CONCESSOR OF THE PROPERTY.	Mouth, Bentleyville, Pa., mile 40		Lock and dam No. 4, mile 41.5.
11sample.					Jacks Run.	Youghiogheny River	Jacob Creek, mile 42	West branch Dickerson Kun.	Dickerson Run	Youghiogheny River			Casselman River, mile 85.5	Coxes Creek		Casselman River	Buffalo Creek			Casselman River		Youghiogheny River	On company of the control of the con		AND CALCAS BALICAG AND YOU ASSESSED AS A CALCAST AND A CAL	North Fork Piegon Creek		Monongahela River

Table Mo-7A, - Monongahela River Basin: Laboratory data-Acid stream results-Continued

			Num		Acidity	Acidity, parts per million	r million	Iron, pi	Iron, parts per million
Stream	Sampling point	Month, 1940	ber of sam-	PH	Methyl	Phenolphthalein	nthalein		
					per	Hot	Cold	Ferrous	Total
Sewickley Creek, mile 33.1. Youghiogheny River, mile 15.6	A bove mouth Jacks Run, Youngwood, Pa., mile 51.	September.	-12	10 00	190	300	344	56	143
	Below Versailles, Pa., mile 18 Mouth. McKeesport. Pa., mile 15.6	August	100	00 kg	10.00	20 E	28 18	11.8	7.00
		September	(C) <del>√</del>	တင	22.54	40	25.5	24.8	8 8
Runch Crost (Thirth Crost)	Above Irwin Pa mile 25	November	107	44 00	45.0	24	515	15.2	16
Time of the order)	ANDONO ALWAND A MAIN MONTH AND	October		100	245	359	312	1.6	127
	Rolour Irurin Do mile 92	November	proj pr	00 co	150	228	183	4.77	151
	DOION ALWAN & dry Ashab was accommon ac	October	4	9 00	261	488	438	7.5	118
Piretle Creek mile 11 0	Above Rynart De mile 28	November		က်င	150	302	300	88	100
The coop will be the coop of t	AND TO LANGUE U. A CO. MARKO MO. TO THE CO.	October		300	066	1,660	1, 249	24	374
	Below Export, Pa., mile 25.5.	September	-1-	on ,	650	890	840	15	88
	Above Trafford, Pa. mile 18.5	September	<b>-</b>	- 0 10 00	139	1,350	159	00	175
*	00000000000000000000000000000000000000	October	-	8	213	300	248	9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24
	Below Trafford, Pa., mile 17.5	September	-	က် က	151	142	135	1-10	122
	Above Pitcairn, Pa., mile 16	September		o co	239	313	294	50.00	907
	A hours Mussello Charle Do mile 14 K	October		00 c	365	623	498	100 c	130
	Above I utule Oteek, ran mile 14:0	October		000	300	422	367	28.0	200
	Below Turtle Creek, Pa., mile 12	September		000	157	234	223	13	37
Monoporabolo Dirror	Took and dom No 9 mile 11 9	A righter		70 C	3.4	365	3100	54	72
Atononganela Myel	ACCE CALL GAVE MANAGE Abella coccoccoccoccoccoccoccoccoccoccoccoccoc	September	100	900	15	200	25		- co
		October	40	3.7	26	43	33	oc. 1.	101
	Traith mile 005	Santamber	20	4.4	200	17	21		0.0
	Mount mile o'co	October	14	4.0	100	35	30	1.0.5	4100
		November	63	3.6	17	34	31		5.0

1 sample.

## BEAVER RIVER BASIN



## CONTENTS

Contents	Page 409 411 413 414 417 421 424
LIST OF TABLES	
B-1.—Cost estimates of remedial measures B-2.—Surface water supplies B-3.—Sources of pollution B-4.—Industrial wastes B-5.—Selected laboratory results B-5a.—Laboratory results of taste and odor survey B-6.—Monthly mean summer flows B-7.—Summary of laboratory data	412 414 415 417 418 419 421 427
LIST OF FIGURES	
B-1.—Map—Sources of pollution	411 416 420 420 420 422
409	



### BEAVER RIVER BASIN

## SYLLABUS AND CONCLUSIONS

#### SYLLABUS

The Beaver River drains 3,145 square miles in Ohio and Pennsylvania. The population of the area is 728,000, roughly 230 per square mile, of which almost two-thirds are in urban communities. The largest city, Youngstown, Ohio (167,720), is the center of the third largest steel-producing area in the country. The streams and reservoirs of the basin are intensively used as sources of municipal and industrial water supply and for recreation. About 42 percent of the sewage is treated and more than 95 percent of the untreated wastes enter the Mahoning River in the Youngstown district (Warren to Lowellville). Except for the Beaver and sections of the Mahoning and Shenango Rivers, the streams of the basin are relatively clean. Abatement of pollution in the Youngstown district can be most economically effected by a combination of waste treatment and streamflow regulation. Reservoir sites have been investigated by the United States Engineer Department with a view toward providing needed additional flow for both pollution abatement and industrial water supply. Further industrial development in the Youngstown district should be predicated on obtaining additional water from sources not now considered.

#### CONCLUSIONS

(1) Eighteen of the fifty public water supplies in the basin are from surface sources. Twelve of these, serving 430,000 people are from

streams or reservoirs subject to pollution.

(2) Sewage from 515,000 people, industrial wastes equivalent to sewage from an additional 165,000 people and about 32 tons of acid per day enter the streams of the basin. Thirty-six plants treat about 42 percent of the sewage and several of the industrial plants have installed waste treatment facilities.

(3) Laboratory data show the Mahoning River, particularly in the Youngstown district, to be grossly polluted. The Beaver River is moderately polluted and the Shenango is in fairly satisfactory sanitary condition. Smaller tributary streams are relatively clean.

(4) The major pollution problem of the basin is in the Youngstown district. More than 95 percent of the untreated wastes in the entire basin enter the Mahoning River in the 25 miles from Warren to Lowell-

ville.

(5) Industrial water use in this stretch, principally for cooling purposes, is about 20 times the minimum stream flow. The resulting high-water temperatures intensify the effects of pollution and increase industrial costs.

(6) Chemical treatment of sewage plus low-flow control by reservoirs offers the most economical method of organic pollution abatement in the Youngstown district. Low-flow augmentation alone, or without a parallel program of sewage treatment, will actually have a detrimental effect on the Beaver River because of decreased time of flow. Local conditions and river temperature will, of course,

be improved.

(7) Primary treatment, the minimum that can be considered satisfactory under the most favorable circumstances, is indicated at four other communities where stream flows are adequate including Newton Falls, Ohio, and New Brighton, Pa. The latter city, being near the mouth, is primarily an Ohio River problem. Secondary treatment is indicated at five small towns in Ohio located on streams subject to very low flows. Additions or improvements to treatment facilities are needed at eight places and progress is being made toward completion of the improvements in most of these cases.

(8) Industrial treatment is needed principally to reduce phenol discharges at byproduct coke plants and to reduce the acid load on the stream. This can be accomplished by methods now in use at other

plants.

(9) A summary of cost estimates of remedial measures from table B-1 follows:

Treatment .	Capital cost	Annual
Existing Suggested additional	\$4,760,000 6,000,000	\$415, 000 865, 000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual charges
Primary, all places Secondary, all places	\$5, 830, 000 10, 680, 000	

Table B-1.—Beaver River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

	Number of plants		of plants		Capital	Annual charges		
	Pri- ma- ry	Sec- ond- ary	tion con- nected to sewers	nected to	invoct.	Amortization and interest	Opera- tion and mainte- nance	Total
Existing sewage treatment	17	18	218, 400	\$4, 760, 000	\$300,000	\$115,000	\$415,000	
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste correction	14	5	297, 100	2, 970, 000 1, 990, 000 1, 040, 000	210, 000 95, 000 135, 000	190,000	400, 000 95, 000	
Total		4000000		6,000 000	440,000	235, 000 425, 000	370, 000 865, 000	
Comparative cost: Primary treatment all waste Secondary treatment all waste As suggested				5, 830, 000 10, 680, 000 6, 000, 000	425, 000 710, 000 440, 000	420,000 555,000 425,000	845, 000 1, 265, 000 865, 000	

#### DESCRIPTION

The Beaver River is formed by the confluence of the Mahoning and Shenango Rivers near New Castle, Pa., and flows southward for 20 miles to its junction with the Ohio River 25 miles below Pittsburgh. It drains an area of 3,145 square miles, of which 1,360 are in Ohio and 1,785 in Pennsylvania. Much of the land is flat, particularly in the northern half of the basin but the southeastern portion is quite hilly. The principal tributaries of the Beaver River are:

Tributary	Distance above mouth of Beaver	Drainage area, square miles
Connoquenessing Creek Mahoning River Shenango River	12. 4 20. 7 20. 7	830 1, 100 1, 080

The basin is densely populated (230 per square mile) and about two-thirds of the population is in the 22 urban communities. The populations of some of the larger cities and of the basin as a whole are shown below:

	Population				
	1910	1920	1930	1940	
Principal cities:					
Youngstown, Ohio. New Castle, Pa Warren, Ohio Sharon, Pa Butler, Pa Alliance, Ohio Beaver Falls, Pa Niles, Ohio Farrell, Pa Campbell, Ohio Ellwood City, Pa Struthers, Ohio.	79, 066 36, 250 11, 081 15, 270 20, 728 15, 083 12, 191 8, 361 10, 190 4, 972 3, 902 3, 370	132, 358 44, 938 27, 050 21, 747 23, 778 21, 603 12, 84,2 13, 080 15, 586 11, 237 8, 958 5, 847	169, 912 48, 674 41, 062 25, 908 23, 568 23, 047 17, 147 16, 314 14, 359 14, 673 12, 323 11, 249	167, 720 47, 638 42, 837 25, 652 24, 477 22, 405 17, 098 16, 273 13, 785 12, 329 11, 739	
Entire basin: Rural Urban	178, 013 251, 086	189, 950 389, 343	220, 208 480, 079	251, 101 477, 267	
Total	429, 099	589, 293	700, 287	728, 368	

Almost all of the cities experienced a period of rapid population increase during the first 30 years of this century which saw the region develop into a major center of steel production.

This period of rapid growth ended in 1930 and most of the cities lost population during the next 10 years. The rural population con-

tinued to increase, however.

Water uses.—None of the streams are navigable at present except for the lower mile of the Beaver which is affected by backwater from the Ohio River. A proposal to connect the Ohio River and Lake Erie by a canal using the Beaver, Mahoning, and Grand Rivers has been studied by the United States Engineer Department and considered by the Congress a number of times but has not been authorized.

There are no hydroelectric power storage reservoirs and no sites where the development of hydroelectric energy appears to be economically feasible at the present time. No flood-control reservoirs, as such, have been built but a number of reservoirs built for other purposes have undoubtedly aided in reducing flood heights. The largest of these are the Pymatuning Reservoir, Lake Milton, and Meander Reservoir. Pymatuning Reservoir on the upper Shenango has a capacity of 192,000 acre-feet and a surface area of 17,880 acres. was built by Pennsylvania primarily to regulate stream flow to insure an adequate supply of water for downstream cities and industries. Lake Milton on the Mahoning River above Warren was built by the city of Youngstown and private interests to increase the flow of the stream during dry weather. It has been useful in this respect but its small capacity of 28,100 acre-feet has limited its utility. Both Pymatuning Reservoir and Lake Milton are used extensively for recreation. Meander Reservoir on Meander Creek was built by the Mahoning Valley Sanitary District to provide public water supplies for Youngstown and Niles. Its capacity is 32,400 acre-feet. Fifteen other reservoirs with capacities of from 100 to 4,600 acre-feet have been built for water supply, recreation, or flow regulation.

The Berlin Reservoir on the Mahoning above Lake Milton is now (1942) under construction by the United States Engineer Department in connection with the authorized program for Ohio River flood control. In addition to controlling floods, the reservoir will provide

storage for low-flow control.

### PRESENTATION OF FIELD DATA

Figure B-1 shows the location and magnitude of the more important sources of pollution in the basin. Figure B-2 shows similar data and, in addition, the location of public water supply intakes from polluted streams and selected laboratory data on coliform organisms,

dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Fifty public water supplies in the basin served 554,100 people. Eighteen supplies serving almost 500,000 people are from surface sources and 12 of these are from streams or reservoirs subject to sewage pollution. Table B-2 shows data on the surface water supplies of the basin. The supplies from the Beaver River are the most seriously polluted and the most complete treatment of these supplies often fails to produce a palatable water.

Table B-2.—Beaver River Basin: Surface water supplies

Municipality	State .	Source	Mile 1	Treat- ment 2	Popu- lation served	Con- sump- tion, million gallons per day				
		Supplies below community sewer outfalls								
New Brighton Beaver Falls West Pittsburgh New Castle Sharon Warren Alliance Sebring	Pennsylvaniadodododododo.	Beaver Riverdododododododododododododo	3. 6 5. 3 18. 0 25. 8 47. 5 56. 5 101	FD FD FD FD FD FD FD	22, 500 25, 000 400 58, 000 50, 000 42, 800 22, 400 3, 900	1. 75 2. 30 . 07 4. 25 3. 80 3. 98 3. 50				

¹ Miles above mouth of Beaver River.
2 L=Lime-soda softened; D=Chlorinated; F=Coagulated, settled, filtered.

Table B-2.—Beaver River Basin: Surface water supplies—Continued

Municipality	State	Source	Mile	Treat-	Popu- lation served	Con- sump- tion, million gallons per day
		Supplies below comm	unity sev	ver outfal	lls	
Ellwood City Mercer Youngstown	Ohio	Otter Creek	21. 5 48. 5 52. 5	FD FD LD	12, 000 2, 200 175, 000 16, 200	2. 00 . 12 10. 70 2. 60
		Other surface s	supplies			
Zelionople	Pennsylvania	Impounded, Scholar		FD	2, 000	0. 18
EvansburgButler	do	Wells, Likens Run	61	F FD	1, 600 30, 000	. 12 3. 30
Greenville	do	Impounded, tribu- tary of Little She-		FD	8, 500	. 50
Struthers	Ohio			FD	13, 000	. 65
Campbell	do	Creek.		FD	13, 700	. 56
					430, 400 68, 800	35. 57 5. 31
Total surface wate	r supplies				499, 200	40, 88

Sewerage.—Sewage from 515,700 people is discharged to the streams of the Beaver Basin. About 42 percent of this waste is treated. In the Pennsylvania section of the basin practically all sewage is treated, the principal exception, New Brighton, discharging only about 1 mile from the mouth and being primarily an Ohio River problem. On the other hand, in the Ohio section of the basin, 285,800 out of 321,500 discharge sewage without treatment. Almost all of this waste enters the Mahoning River in the 25-mile stretch from Warren to Lowellville.

There are 35 sewage-treatment plants in the basin, 17 of which provide primary treatment and 18 of which provide secondary treatment. Twenty-six of the plants are in Pennsylvania and only nine are in Ohio.

Table B-3.—Beaver River Basin: Source of significant pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality State	State	State Receiving stream		Popula- tion connected	Treatment	Sewered tion equi (bioche oxygen d	ivalent mical
				to sewers		Un- treated	Dis- charged
New Brighton  Beaver Falls Farrell Sharpsville Greenville	Pennsylvania. dodododododododo	Beaver River do Shenango River do do do	3 4 44 45 49 69	9,000 19,000 14,000 27,000 5,000 8,500	PrimarydodoSecondary.	14, 000 27, 000 5, 000	9,000 12,400 9,100 17,500 700 5,600

¹ Miles above mouth of Beaver River.

^{90035—44—}pt. 2——18

Table B-3.—Beaver River Basin: Source of significant pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand) - Continued

Municipality	State	Receiving stream	Mile	Popula- tion connected	tion Treatment		Sewered popula- tion equivalent (blochemical oxygen demand)	
				to sewers		Un- treated	Dis- charged	
New Castle	Pennsyl- vania	Mahoning River_	22	50,000	Primary; chlori- nation.	57, 500	37, 500	
Youngstown Girard Niles Warren Newton Falls Alliance Ellwood City	do d	dodododododododo.	34 35 36 40 44 50 56 76 101 14	11, 700 4, 000 13, 700 178, 700 9, 700 16, 200 42, 800 3, 100 22, 000 10, 500	Nonedododododododo	11, 700 , 4, 000 13, 700 260, 500 64, 700 16, 200 56, 800 3, 100 22, 000 10, 500	11, 700 4, 000 13, 700 260, 500 64, 700 16, 200 56, 860 3, 100 2, 200 6, 800	
Butler Grove City Mercer Hubbard		Wolf Creek Neshannock Creek Little Yankee Creek	57 41 48 48	27, 000 7, 000 2, 500 4, 100	Secondary. do Primary do	31, 100 7, 000 2, 500 4, 100	4,700 1,000 1,600 2,700	
Sebring 33 smaller sources		Fish Creek	107	3, 500 26, 700	Secondary.	3, 500 28, 500	500 16, 400	
Total: Ohio Pennsylvania.	~			321, 500 194, 200		472, 800 207, 300	444, 300 114, 100	
Total				515, 700		680, 100	558, 400	

² County sewer district. ³ 10 primary and 11 secondary treatment plants.

Industrial wastes.—Table B-4 summarizes data on the sources of industrial wastes by type of industry and method of disposal. The population equivalent of these wastes does not reflect the magnitude of the industrial-waste problem since the steel-mill wastes have no significant biochemical oxygen demand. The disposal of waste pickle liquor from steel mills in the basin is summarized as follows:

Free acid 1 in waste pickle liquor [Pounds per day]

State	Total	Neutralized	Discharged without neutralization
OhioPennsulyania	63, 000 18, 600	3, 000 14, 800	60, 000 3, 800
Total	81,600	17, 800	63, 800

¹ Exclusive of FeSO4 which exerts some acid effect.



Table B-4.—Beaver River Basin; Summary of industrial wastes not discharged to municipal treatment plants, with total of entire industrial waste load in the basin

	Number		ial waste osal	At least minor	Estimated sewered population
Industry	of plants	Munici- pal sewers	Private outlets	corrective measures taken	equivalent (biochemical oxygen demand)
Brewing Byproduct coke Chemical Meat Milk Steel mill Miscellaneous	39	1 2 1; 1;	1 4 3 3 - 38 19	2 3 2 2 2 2 24 10	5, 300 80, 400 7, 200 3, 400 56, 300
Waste unconnected to municipal treatment Waste connected to municipal treatment	76	9	67	45	152, 60 <b>0</b> 11, 800
Total industrial waste in basin					164, 400

As in the case of domestic sewage, the bulk of the organic industrial wastes and of the acid is discharged to the Mahoning River in the

Youngstown area.

Industrial water supply.—About 780 million gallons per day of water are used by the various industries in the basin and about 630 million gallons per day of this are drawn from the Mahoning River in the 25-mile stretch from Warren to Lowellville. Relatively small amounts of this industrial water supply are used as boiler feed and in manufacturing processes. Almost all of it is used as cooling water and is returned to the streams unchanged except for its increased temperature. Since this water demand exceeds even the average flow of the stream, the water must be reused and the temperature increases tend to pyramid. During periods of low stream flow the water temperature below Youngstown has risen often to over 110° F.

## PRESENTATION OF LABORATORY DATA

Table B-7 (p. 427) summarizes laboratory data on the Beaver River. Table B-5 shows selected data at some of the more important points. Except for the observations at the mouth of the Beaver, all the results were obtained by a mobile laboratory during June, July, and August, 1940. The mouth of the Beaver was sampled in October, November, and December, 1940 by the laboratory boat Kiski.

In cooperation with the State health departments of Ohio and Pennsylvania, taste and odor problems in the Beaver Basin were studied in November and December 1940 and January 1941. Laboratory facilities at Mineral Ridge, Ohio, were made available through the courtesy of the Mahoning Valley sanitary district. Results of this

work are summarized in table B-5A.

Table B-5.—Beaver River Basin; Selected laboratory data

River	Mahon-	Mahon-	Mahon-	Mahon-	Mahon-	Mahon-	Mahon-
Location	Above Alliance	Below Alliance	ing Water- works,	ing Below Warren	ing Above Niles	ing McD. via Niles	ing Libert St.,
River miles above—	83	76	Warren 35. 5	34	30. 2	20.0	Girard 24.8
Confluence with Shenango. Mouth of Beaver	104	97	56. 5	55	51. 2	29. 2 50. 2	45.8
Period, 1940	July	July	July- August	July- August	July- August	July- August	July
Number of samplesFlow in cubic feet per second,	2	2	. 2	5	5	5	4
sampling days Water temperature, °C	26.5	20 26. 0	235 23. 9	237 25. 8	243 25. 4	290 24. 6	355 24. 1
Coliforms per milliliter	25	83	16	7, 100	86	2, 400	341
Dissolved oxygen, parts per million  Biochemical oxygen demand,	4.8	4.5	7.7	2.5	2. 0	1.4	5.3
5-day, parts per million	2:2	3. 4	2, 6	5. 7	2. 4	2.0	2. 2
River	Mahon-	Mahon-	Mahon-	Mahon-	Mahon-	Mahon-	Mahon-
Location	Division	ing Center	ing Sheet	ing Bridge,	ing Bridge,	ing Bridge,	ing Near
	St.,. Youngs-	St., Youngs-	& Tube, Camp-	Lowell- ville	Edin- burg	Mahon- ing town	Mouth
River miles above:	town 22	town	bell 15	10 "			0."
Mouth of Beaver	43	16 37	36	10. 5 31. 5	5. 5 26. 5	1. 5 22. 5	0. 5 21. 5
Period, 1940	July- August	July- August	July- August	July- August	July- August	July- August	July- August
Number of samples	8	. 8	8	8	8	7	4
Flow in cubic feet per second, sampling days Water temperature, °C.	294	260 29. 6	280	291	307	367	214
Coliforms per milliliter Dissolved oxygen, parts per	27. 2 450	29. 6 11, 400	30. 0 6, 100	29. 2 186	26. 1 62	25. 9 71	23. 9
million Biochemical oxygen demand,	4.0	1.6	0.7	1.6	3. 1	3.7	4.3
5-day, parts per million	1.8	10.0	12. 4	3. 7	2.6	2.6	2. 6
River	Shenango		Shenango	Shenango	Shenango	Shenange	Shenango
Location	Riverside Hotel,	Below Green-	Mercer St.,	Clark St.,	Below Sharon-	Above New	Below New
River miles above:	Green- ville	ville	Sharps- ville	Sharps- ville	Farrell	Castle	Castle
Confluence with Mahoning	48	46. 5 65. 5	31 52 July-	29.3	21	6. 5	0.5
Mouth of Beaver Period, 1940	July-	July-	July-	29. 3 50. 3 July- August	42 July-	27. 5 July-	21. 5 July-
	August	August	August	August	August	August	August
Number of samples	5	5	5	5	5	6	5
sampling days Water tamperature, °C Coliforms per milliliter	122 20. 8	133 - 21. 3	226 22. 4	262 22, 6	268 23. 7	274 22. 7	325 21. 4
Coliforms per milliliter Dissolved oxygen, parts per	41	280	233	22	1,800	98	58
million  Biochemical oxygen demand,	7. 6	6.6	7.8	6. 9	4.4	5.9	6.8
5-day, parts per million	3. 6	4.1	3.4	3.3	5. 0	6.9	6. 4
River	Beaver	Beaver	Beaver	Neshan	Conno-	Conno-	Conno-
		1		Creek	queness-	queness-	queness-
Location	Below	Eastvale,	Near	Below	Creek At	Creek Below	Creek
	New Castle	Beaver Falls	mouth	Mercer	Butler	Butler	Renfrew
River miles above mouth of Beaver.	15. 5	5, 5	1.4	46. 5	57. 5	54. 0	49
Period, 1940	July- August	July- August	October	August	July	July	July
Number of samples	6	6	11	2	. 2	2	2
sampling days. Water temperature, °C.	502	750	633 15. 2	11 20. 2	10 24. 5	20 26. 0	30 25. 5
Coliforms per milliliter	24 437	23. 8 10	802	330	24.5	, 13	25. 5
Dissolved oxygen, parts per million	3. 5	6.8	8.3	5. 0	5. 0	3.4	6. 6
Biochemical oxygen demand, 5-day, parts per million	8.8	4. 0	2. 6	2.3	1.1	6. 1	3. 6

Table B-5A.—Beaver River Basin: Laboratory results of taste and odor survey of Mahoning and Beaver Rivers from Warren, Ohio, to mouth

Iron-	per		8 77 11 10 10 10 10 10 10 10 10 10 10 10 10
	Hd		400 0000 0100 400 4000 0100
lor	Aver- age		000 8 8 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Threshold odor	Mini- mum		গ্ৰেক্তৰ ৰূপৰাই ক্তিপ্ৰধ্ৰ
Thr	Maxi- mum	er second	16 16 16 16 16 16 16 16 16 16 16 16 16 1
n	Aver- age	ie feet p	0.2 156 141 164 164 180 777 502 156 0
Phenol—parts per billion	Mini- mum	2,036 cul	000 88000 0000 00000 00000 00000 00000 00000 0000
Pho	Maxi- mum	er Falls	250 220 220 140 320 240 1,600 1,600 800 2
Tem.	pera- ture °C.	r at Bear	64.0 1.9.04 000 0000 10004
Num- ber of	samp-	ver Rive	040000000000000000000000000000000000000
River	mile i	arge Bea	44.60. 84.60.88.88.89.89.89.89.89.89.89.89.89.89.89.
T condition of narrowalton material	רסנמפוסו סו פמווו לחוואל ליחווי	Period of self-purification (Nov. 7-Dec. 3, 1940)—Average discharge Beaver River at Beaver Falls 2,636 cubic feet per second	Above Warren Above Niles Below Niles Below Niles Youngstown: Youngstown: Youngstown: Center St Campbell at Youngstown Sheet and Tube Bridge Lowellyllis Bridge Lowellyllis Bridge Above Vaste Vieldet Above Beaver Falls
6	John		Mahoning Do Do Do Do Do Do Do Do Bo Do Bo Bo Shenango

Period of phenolic contamination (Dec. 4, 1940-Jan. 10, 1941)—Average discharge Beaver River at Beaver Falls, 6,330 cubic feet per second

Above Warren.  Above Warren.  Above Niles  A
Warren.  Nilos
Warren.         64.5         13         2.1         2         0.15         8           Niles         Niles         4.0         60.0         141         16         161         16         161         16         161         16         160         161         16         160         161         16         160         161         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         17         18         16         16         17         18         16         16         17         18         16         16         16         16         16         18         16         16         18         16         16         18         <
Warren.         64.5         13         2.1         2         0.15           Niles.         13         4.0         600         0.15         141           Stown.         4.0         13         4.0         600         0.15           Stown.         48.0         13         4.3         120         0         141           Ariston Sk.         13         4.3         120         0         10         223           Alboning Ave.         80         13         5.6         9         400         30         159           Arie Stricke.         13         6.9         400         30         370         9         150           Aleckson Highway Bridge.         31.5         11         8.5         2.000         90         929           Astle Skinge.         22.5         11         8.3         1,800         60         824           Astle Skinge.         22.5         11         8.3         1,800         60         824           Beaver Falls.         36         35         108         35         108         35         108
Warren.  Nilos Nil
Warren.  Niles Nil
Warren.  Niles Niles Niles Niles Niles Niles Stown: Vision St. Vis
Warren.  Nilos Nil
Warren.  Niles Niles Niles Niles Stown: Vision St. Habring Ave Hab
Warren.  Nilos  Nilos  Nilos  Stown:  Vision St.  Vision St.  Annoning Ave.  Her St.  An Honing Ave.  Be Bridge.  An Her St.
Warren. Niles Niles Stown: Vision St Months Ave. Her St. Her S
Mahoning

1,821 . 8321. 832. 93.99 4.8

1 Miles above mouth of Beaver River.

Figures B-3, B-4, and B-5 show graphically the coliform, dissolved oxygen, and biochemical oxygen demand results. These

results represent the most unfavorable monthly averages.

The laboratory data indicate clearly the grossly polluted condition of the Mahoning River in its lower 25 miles. The Beaver River is also polluted and the Shenango is in somewhat better sanitary condition. Considering the high degree of industrial development, the large urban population, and the low stream flows, the situation might well be worse.

With the exception of the small community of Linesville (which has passed a bond issue for sewage treatment), all of the towns in the Shenango Valley have sewage treatment. The most unfavorable results in this valley were obtained below Sharon where about half of the sewage was being bypassed at the time samples were collected during remodeling activities at the sewage treatment plant. The area flooded by Pymatuning Reservoir was formerly a large swamp and the unstable organic matter in the swamp imparts an appreciable

biochemical oxygen demand to the impounded water.

In the Mahoning Valley, the addition of iron coagulants in the form of waste pickle liquors probably tends to coagulate and settle pollution in the river. In addition, multiple industrial reuse of the river water, causing higher water temperatures and increased time of flow, affords excellent conditions for self-purification. During periods of increased flow and lower temperature, much higher coliform counts and somewhat higher biochemical oxygen demands than those observed would probably be found in the Mahoning and the Beaver. In fact, some of the highest coliform counts were the fall and winter observations made at the mouth of the Beaver.

In spite of the amount of pickle liquor discharged in the district, very few pH values found in the district were below 6.0. Only two pH values below 6.0 were observed in the June, July, August period of observation and two more below 6.0 were observed in the November, December, January period when the taste and odor study was being

made. In all cases these pH values were well above 5.0.

Hardness in streams of the Shenango Basin and in the eastern tributaries of the Beaver was generally of the order of magnitude of 100 parts per million. In the Mahoning Valley hardness values up

to 350 parts per million were observed.

Taste and odor survey.—The data (table B-5A) have been divided into two sections on the basis of the appearance of phenol in the Beaver at Beaver Falls. During the first period, phenol was present in the Mahoning River in the Youngstown area but self-purification had removed this pollution before the stream reached Beaver Falls. During the second period, due to lower temperatures and shorter times of flow, self-purification failed to remove the phenol from the river before it reached Beaver Falls, where it caused great difficulty in the production of a palatable water.

The laboratory determinations show that large quantities of phenol were entering the Mahoning River in four different sections where

byproduct coke plants are located.







(Face p. 420) No. 3

GPO-43 0-90035

Fig. B-5

#### HYDROMETRIC DATA

Twenty-one stream gaging stations have been maintained in the Beaver River Basin at various times and 14 are currently in operation. Table B-6 shows monthly mean summer flows at 8 stations for the 3 driest summers of record. Stream flow at Sharon and Wampum have been affected by the Pymatuning Reservoir since 1933 so the records shown in table B-6 for these stations do not represent conditions likely to recur. Figure B-6 shows the effect of the reservoir on the flow at Sharon. It also shows the flow in the Mahoning at Youngstown based on 18 years of record and the flow as it would be regulated by the proposed Berlin Reservoir. Figure B-6 indicates that the frequency with which minimum monthly mean summer flows have occurred is as follows:

inoming at Youngstown (regulated by Berlin Reservoir) 183 1 165 1 162 i				
	2 years	5 years	10 years	Mini- mum
Mahoning at Youngstown Mahoning at Youngstown (regulated by Berlin Reservoir) Shenango at Sharon (unregulated at Pymatuning)	183	165		47 160 7

Table B-6.—Beaver River Basin—Monthly mean summer flows for years in which low summer flows have occurred

River	Mahon-	Mahon-	Shenango	Shenango
Location	warren,	Youngs-	Sharon,	New Cas-
	Ohio	town, Ohio	Pa.	tle,Pa.
River miles above mouth of Beaver	56.5	41.8	45.5	24.3
Drainage area (square miles) Period of record		899 1921-39	608 1909–38	792 1910-34
Year	1930	1930	1916	1933
June	124	177	128	207
July do do do August do	80	104	18	40 18
Septemberdo	87	56	9	26
Year	1934	1934	1930	1930
June aubic foot per second	44	66	99	142
July	43 83	66 198	53	67 25
August do September do	195	274	18	30
Year	1933	1933	1932	1923
June out foot per second	179	280	70	102
July	59 55	82 86	120 27	31 26
August do September do do	44	71	17	36



Table B-6.—Beaver River Basin—Monthly mean summer flows for years in which low summer flows have occurred—Continued

River	Beaver	Mosquito Creek	Conno- quenes- sing Creek	Slippery Rock Creek
Location	Wampum, Pa.	Niles, Ohio	Hazen Pa.	Wurtem- burg, Pa.
River miles above mouth of Beaver Drainage area, square miles Period of record	2, 235	51 139 1929-39	23 356 1920–39	18. 5 406 1912–39
Year	1916	1933	1930	1930
June     cubic feet per second       July     do       August     do       September     do	1, 884 559 167 153	11. 5 2. 3 . 1 . 2	254 26 11 11	233 66 35 40
Year	1933	1934	1939	1914
June     cubic feet per second       July     do       August     do       September     do	203 156	0. 3 . 2 23. 6 6. 1	290 139 54 17	184 67 38 48
Year	1934	1930	1923	1932
June     cubic feet per second       July     do       August     do       September     do		6. 2 1. 4 . 2 . 2	234 40 20 21	84 127 49 42

Proposed stream control.—The Corps of Engineers has determined four sites to be most nearly satisfactory for flood-control and allied reservoir development in connection with the program for Ohio River flood control as follows:

Reservoir	Stream	River-miles above mouth of Beaver River	Storage	Supple- mental flow made available	Approxi- mate minimum regulated summer dis- charge at project sites
Shenango Berlin ² Eagle Creek Mosquito Creek	Shenango River	54 94 65 59	Acre-feet 127, 000 71, 000 48, 100 50, 000	Cubic feet per second 100 113 31 34	Cubic feet per second 1 300 2 160 43 35

¹ Includes effect of Pymatuning.

It is assured that low-flow control will be made available in the near future by the Berlin Reservoir project, and, during the present national emergency, it is proposed to operate the reservoir primarily for low-flow control with flood control as an incidental feature. Plans for ultimate operation contemplate its use for flood control, with secondary low-water regulation. The Berlin project, operated in conjunction with existing Milton Reservoir several miles downstream, will permit sustaining a minimum flow of about 250 second-feet in the Mahoning River at Youngstown, Ohio, during the national emergency period, and about 160 second-feet under the ultimate plan of operation. The Eagle and Mosquito Creek projects would be

Under construction, 1942.
 Ultimate at Youngstown.

capable of further augmenting discharge in the main river as well as increasing minimum flows in their respective tributary channels.

The Shenango project, if provided, would be operated with due regard for flow regulation originating in the Pymatuning Reservoir, which is situated farther upstream. Proposed operations contemplate increasing the regulated flow of the Shenango River by 100 second-feet during the months of June to September, inclusive. Minimum regulated discharge at Sharon, Pa., which would reflect operation of both reservoirs, would approximate 300 second-feet during these months.

DISCUSSION

Youngstown district.—The Mahoning and Beaver Rivers are among the most grossly polluted streams in the Ohio Basin, if not in the entire country. In the 25-mile stretch of the Mahoning from Warren to Lowellville, untreated sewage from 280,000 people, industrial wastes equivalent to sewage from an additional 150,000 people and about 32 tons of sulfuric acid per day are discharged to the river whose flow has fallen to less than 50 cubic feet per second. A total of about 630 million gallons per day (about 980 cubic feet per second) is used by the industries, principally for cooling water, in this same stretch of river with the result that the temperature rises to 30°-40° F. above normal during low-flow periods. These increased temperatures hinder production and increase costs. At certain times steel production has had to be reduced because of low-stream flows. Increased temperatures also accelerate the decomposition of the organic matter present in the sewage and industrial wastes and reduce the amount of dissolved oxygen which the water can contain. Both of these effects tend to aggravate nuisance conditions in the stream. Complete depletion of the dissolved oxygen in the Mahoning was found at several points during the survey.

Three public water supplies from the Beaver River are affected by all the wastes entering the Mahoning as well as the treated wastes which are discharged to the Shenango River. Taste and odor problems are particularly acute at these places and even after very complete and careful treatment the finished water is often malodorous

and unpalatable.

Survey information on taste and odor determinations on the Mahoning River were released to the State of Ohio and served as a basis for phenol-control discussion with the industries. As a result, it is reported that the efficiency of phenol-removal measures has been

greatly increased.

Sewage and industrial waste treatment is obviously necessary both to improve conditions locally along the Mahoning and to relieve the heavy pollution of the Beaver River water supplies. The intensive development of the river valley in the Youngstown area where industrial plants and railroads occupy almost all of the available space will complicate the sewage-treatment problem. Complete treatment would be much more expensive than usual because of the difficulty of acquiring suitable sites. There seems to be no economic justification for attempting to maintain a dissolved oxygen level suitable for fish propagation in this stretch of the river. The high temperature of the river water would make the stream unsuitable for any fish native to

this area and the highly industrialized nature of the valley makes the

stream unattractive for recreational use.

Chemical treatment of sewage and such industrial wastes as can be effectively treated in the municipal plants together with a maximum of recovery and reuse of wastes at the byproduct coke plants (with particular attention to phenol removal), neutralization, or other treatment of acid wastes are essential elements in a practicable program

for pollution abatement in the Mahoning Valley.

Low-flow augmentation by reservoirs seems to be another essential part of any practicable program for improving the stream quality. Such low-flow control would reduce stream temperatures and benefit industrial water users and would reduce the hardness of the water as well as supplement sewage treatment and industrial waste corrective measures in the abatement of pollution from organic wastes. The benefits from low-flow control by the Berlin Reservoir now (1942) under construction are estimated at \$251,000 annually, provided the entire capacity is used for flow regulation as is planned for the period of the national emergency. The approximate distribution of the annual benefits is as follows:

Organic pollution abatement	\$133,000
Industrial water supply—temperature reduction and increased industrial activity made possible————————————————————————————————————	112 000
Total	251, 000

Under the ultimate plan of operation, or after the national emergency, the reservoir will be used primarily for flood control. One-third of the reservoir capacity will be used during the off-flood season for flow regulation. Annual flow regulation benefits will then be

reduced to \$111,000.

Additional flow regulation by Eagle Creek and Mosquito Creek Reservoirs would have additional benefits. However, sewage treatment is necessary if full benefits are to be realized. Low-flow augmentation alone, or without the parallel program of sewage treatment. will actually have a detrimental effect on pollution conditions in the Beaver River because of decreased time of flow. This is particurlarly true as regards bacterial and taste and odor conditions.

No amount of flow regulation will entirely supplant sewage or industrial waste treatment measures but will supplement them. In the case of the most troublesome type of industrial waste, phenols, flow regulation by the proposed reservoirs would have no appreciable

effect.

The Mahoning River presents a most promising situation for the advantageous use of low-flow augmentation. Monetary benefits are substantial, and intangible values connected with any program of pollution control furnish additional incentive. However, due in part to the comparatively high storage costs experienced in this locality, even the Berlin Reservoir cannot be shown to be economically feasible for low-flow control alone. A multiple-purpose project has been shown to be economically feasible.

Treatment methods as outlined and maximum emergency period low-flow control by the Berlin Reservoir, together, would still not insure the continuous maintenance of 3.0 parts per million of oxygen in the Mahoning which is regarded as a minimum necessary to prevent

nuisance conditions. However, such conditions would prevail only for a short distance and at infrequent intervals. The quality of the water at downstream water intakes would be greatly improved.

Shenango River.—There are no serious pollution problems along this stream. All of the wastes entering the river are treated and flow regulation by Pymatuning Reservoir aids further in improving the water quality. Additional regulation by the proposed Shenango Reservoir would be of value, particularly in improving the quality of water in the Beaver River but the monetary benefit would be relatively minor.

Other streams.—On the whole, the smaller tributary streams of the Beaver Basin are not heavily polluted. Almost all of the towns have sewage treatment facilities although a number of them are inadequate. In general, secondary treatment is indicated at these places. At Newton Falls and Craig Beach on the Mahoning between the proposed Berlin Reservoir and Warren and at New Brighton, the only sizable Pennsylvania town without sewage treatment, primary treatment is indicated.

Costs.—The estimated cost of the suggested program of sewage and industrial waste treatment, together with estimates of the cost of existing works and of possible programs for primary or for secondary treatment of all wastes are shown in table B-1.

Table B-7.—Beaver River Basin: Ohio River pollution survey laboratory data—summary of individual results

	Hardness, parts per million	252	260 220	174	194	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		*	126	138	144
	Alkalin- ity, parts per mil- lion	101	117	136	53	67	288	94	75		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ity, parts per mil- lion	26	288	37	8383	[			27	100	12
	hq	7.2	7.6	77.73	66.4	 	C. C	10000 T	1.7. 00 4	440	7.7
Coli-	most probable number per milli- liter	91	43	46	558 4	23222	240 480 93 36	@ 21 Kl	36	93 46 22	23
5-day	chemical oxygen demand, parts per million	1.9	1.2.1	33.3	6,6,2,		പ്രുയുച്പ് ജെഗ്രാവയ	1.6	°6i	1.4.9	1.6
loxygen	Percent satura- tion	55.1	38.3 81.1	69.2 45.5	49.8 59.2 84.7	101.0 94.0 87.5 88.1 72.4	88.25.89 7.77.67.70 9.80.40 9.80.40 9.80.40 9.80.40	4.4.00.7.8 4.4.00.7.8 4.4.00.00.00.00.00.00.00.00.00.00.00.00.	106.1	78.0 77.3 85.0	80.2
Dissolved oxygen	Parts per	5,0	7.3.5.	5.00	44 44 00 C1 00 to	8.1.1.1.1.000049	7.0.0.0.r. 7.0.0.0.v.	9,6,6,6	80, 80 CD PU	7.0	6.5
	Tem- perature	20.0	24. 0 26. 0 20. 5	24.0 27.0 21.0	24.0 27.0 16.5	22. 0 25. 0 27. 5 25. 0 16. 0	25.25 25.60 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	27.5 26.5 24.5 14.5	25.0	21.0 24.0 23.0	26.5
Average	discharge, cubic feet per second	-	36	2000	9347	132 130 88 88 86	147 167 90 90 147	213	H	<b>.</b> .	03
	Date	June 28, 1940	July 10, 1940 July 29, 1940 June 28, 1940	July 10, 1940 July 29, 1940 June 28, 1940	July 10, 1940 July 29, 1940 July 1, 1940	July 22, 1940 July 22, 1940 July 30, 1940 Aug. 5, 1940 July 1, 1940	July 15, 1940 July 22, 1940 July 30, 1940 Aug. 5, 1940 July 1, 1940	July 22, 1940 July 30, 1940 Aug. 5, 1940 June 27, 1940	July 29, 1940 June 27, 1940	July 11, 1940 July 29, 1940 July 11, 1940	July 29, 1940
	Mileage from mouth	BMaF 104	do do BMa 104	do	do BMa 79	-do -do -do -BMa 76	do do do BMa 72	do. do. BMa£S 82	BMaE 82	do do BMaE 78	0p
	Sampling point	Fish Run, 3 miles below Sebring,	Do. Do. Mahoning River, 1 mile east of Alli-	ance, Onto. Do. Mahoning River, 5 miles below Alli-	ance, Otho. Do. Do. Mahouing River, 3 miles above New-	ton Falls, Onio.  Do.  Do.  Do.  Do.  Do.  Mahoning River, lower edge of New-	bo. Do. Do. Do. Do. Do. Do. Do. Mahoning River, 4 miles below New-	ton rails, Onto. Do. Do. Do. Silver Creek, 2 miles above Garretts-	Eagle Creek, 2 miles above Garretts-	Fagile Creek, 2 miles below Garretts-	Do

Table B-7.—Beaver River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

	Hardness, parts pe million	116 196 116 162 180 180 180 78	
	Alkalin- ity, parts per mil- lion	55 126 50 87	
	Turbid- ity, parts per mil- lion	23 23 10 10 10 10 14 14	
	Ħď	て スプススス スプススス みにたいな みはななれ ほから 本名ものの もちもの 女本のよの 十五日日 の	
:	Colli- forms, most probable number per milli- liter	0.00 44 56 44 42 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ann is
	5-day bio- chemical oxygen demand, parts per mullion		
	Percent satura-	88 .48888 498888 498888 4988 498 111.008 88.1 88.2 88.0 49.8 87.1 88.2 88.2 88.2 88.2 88.2 88.2 88.2 88	
	Parts per Satura-	8 みててて めてこてる よっ, 。 る よるり 。 ままりり ほよら ち ちらちてて まちてまま ちちをもる るり まら りの 1 およ	
	Tem- perature	1. 1.87.47. 1.87.7.7.1 1.87.8.48. 4.8.8.7.3. 1.88.8.3. 1.4.8.4.8. 4.8.8.7.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.8.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3.3. 1.8.3	
	Average discharge, cubic feet per second	2048 206 206 206 206 206 206 206 206 206 206	
	Date	July 1, 1940 July 22, 1940 July 22, 1940 July 22, 1940 July 15, 1940 July 22, 1940 July 22, 1940 July 15, 1940 July 22, 1940	
	Mileage from mouth	BMa (4.5.  do d	
	Sampling poir <b>t</b>	Mahoning River bridge, north of Leavittsburg, Ohio.  Do.  Do.  Do.  Do.  Malten, Ohio.  Do.  Do.  Do.  Do.  Do.  Do.  Do.	

Allege   Control, 1 miles show Core   BYRAN (i.g.   June 27, 1900   23   18.5   6.4   66.9   1.5   23   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.										
BARAM 64.0   June 27.1910   (3) 2.22.0   3.4   64.9   1.5   2.2   2.3   2.2   3.4   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5   4.5	P 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	170	116 148 256	184 220	136	190		180	214	204
BALAN 64.0	78	108	6 7 1 0 3 5 1 1 1 5 1 1 7 6 5 1 1 7 1 9 3 7 1 7 8	43	37	46	260	176	44	
BMraMf 64.0   June 27, 1940   23   18.5   6.4   64.9   1.5   23   27   28   28   27   28   28   28   28		34	34 28 12	00 01	37	34		1	255	7- 00
BMaN 64.0   June 27, 1940   23   16.5   6.4   64.9   1.5     BMaN 65.0   June 27, 1940   3   22.0   3.4   38.8   1.0     BMaN 65.0   June 27, 1940   3   22.5   3   3   3   3   3   1.0     BMaN 65.0   June 27, 1940   3   22.5   3   3   3   3   3   3   3   3     BMAN 65.0   June 27, 1940   3   22.5   3   3   3   3   3   3   3   3   3	7.1									
BMAM 64.0   June 27, 1940   23   16.5   6.4   64.9   1.1	23	2000	460 4 36	9 1 430			91 240 210 430 240 150 150			
BMaM 64.0   June 27, 1940   23   16.5   6.4   64.	1.5						119, W111 60000004			
BMaM 64.0   June 27, 1940   23   16.5   6.5     BAlaM 58.0   July 11, 1940   32   22.0   5.5     BAlaM 58.0   July 11, 1940   32   18.0   5.5     BAlaM 68.0   July 21, 1940   19   22.5   5.5     BAlaM 68.0   July 21, 1940   19   22.5   5.5     BAlaM 6.2   July 22, 1940   (1)   22.5   5.5     BAlaM 6.2   July 22, 1940   (1)   22.5   5.5     BAlaM 6.2   July 22, 1940   (1)   22.5   6.5     BAla 4.8.   July 22, 1940   (1)   23.0   0.5     BAla 4.8.   July 22, 1940   (1)   23.0   0.5     BAla 4.8.   July 22, 1940   (1)   23.0   0.5     BAla 4.8.   July 23, 1940   1,210   23.0   0.5     BAla 4.8.   July 23, 1940   1,210   23.0   0.5     BAla 4.8.   July 23, 1940   1,210   13.0   23.0     BAla 4.8.   July 23, 1940   1,210   13.0     BAla 4.8.   July 21, 1940   1,210   1,210     BAla 4.8.   July 21, 1940     BAla 4.8.   July 21, 1940     BAla 4.8.   July 21, 1940     BAla 4.8.										
BMaM 64.0   June 27, 1940   23   16   16   16   16   17   17   1940   32   22   18   18   18   18   18   18   1										
BMaM 64.0   June 27, 1940   George   June 28, 1940   George   June 28		- 2								
BMaM 64.0   June	23	0.5		(E) 705	205 111 149 579	251 170 120 1,210	256 139 133 132 120 115	121	15	1, 290 178 140 187 187 134
BMaM 64.0  do  do  do  do  do  do  do  do  do  d		27.55			15, 1940 22, 1540 30, 1940 6, 1940 2, 1940		16, 1940 31, 1940 6, 1940 9, 1940 13, 1940 14, 1940 26, 1940	28, 1940 10, 1940 26, 1940	28. 1940 10, 1940 25, 1940	2, 1940 16, 1840 31, 1940 6, 1940 9, 1940 13, 1940
### 19 PM   19	June	July Aug. June	July Aug. July	July Aug. July	July July July July	July July July July	July July July Aug. Aug. Aug. June	June July June	June July June	July July July Aug. Aug.
Mosquite Creek, 4 miles above Cort- June, 100 June, 100 June, 2 miles below Cort- June, 100 June	-	doBMaMI	do	do. βλία (θ.2	7	do do BMa 43	do do do do do do do do MaMi 57.	do do Ma Mi 55.	doBMa 40.2	00000000000000000000000000000000000000
	Mosquito Creek, 4 miles above Cort-	land, Otio. Do. Do. Mosquito Creek, 2 miles I clow Cort-	land, Ohio.  Juo Du Saw Mill Creek bridge on county.	road, Canfield, Ohio. Do Do Do Nahaning River, Niles Medichild	vigilizet, felew Nies, Onio. Do. Do. Do. Do. Do. Do. Talenting Kiver, Liberty Street	Dridge, Cirard, Onio.  10  10  10  10  10  10  10  10  10  1	Herque, y outsiestown, Offio. 100 100 100 100 100 100 100 100 100 10	Ohio.  J.o. Do Mill Creek, 1 mile below Columbiana,	Olino. Do Usbening River, Spring Common	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100

Table B-7.—Beaver River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

Hardness parts per million	28 28 28 28 28 28 28 28 28 28 28 28 28 2
Alkalin- ity, parts per mil- lion	690 213 54
Turbid- ity, parts per mil- lion	21 83222222
Hd	ದ ದಿನದಿದ್ದಿದ್ದ ದದ್ದಿದ್ದಿದ್ದರು ಇತ್ತುತ್ತವೆತ್ತುತ್ತದೆ ಜಹತ್ತಿಕ್ಕಾರಿಕ್ಕೆ ಜನ್ನಿಕ್ಕಾರ್ಣ ದಿನದಿದ್ದಿದ್ದರು ಇತ್ತುತ್ತವೆ ಪ್ರಕ್ಷಣಗಳು ಜನ್ನಿಕ್ಕಾರ್ಣಕ್ಕೆ ಪ್ರಕ್ಷಣಗಳು ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಹಿಕ್ಕೆ ಬಿದ್ದಾರೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರಿಕ್ಕೆ ಬಿದ್ದಾರಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರಕ್ಕೆ ಬಿದ್ದಾರಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಹಿಕ್ಕೆ ಬಿದ್ದಾರೆ ಬಿದ್ದಾರೆ ಬಿದ್ದಾರಿಕ್ಕೆ ಬಿದ್ದಾರ್ಥಿಕ್ಕೆ ಬಿದ್ದಾರ್ಹಿಕ್ಕೆ ಬಿದ್ದಾರೆ
Coli- forms, most probable number per milli-	24, 000 24, 000 246, 000 246, 000 246, 000 256, 000
5-day bio- chemical oxygen demand, parts per	
l oxygen Percent satura- tion	29 57 4 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7
Dissolved oxygen Parts per satura- million tion	は 下送されるでは 0000000 以に上、心にあれば 500 00000000 以に上 50でのは 20 20で000000 以 50で00000000 以 50 20 20 20 20 20 20 20 20 20 20 20 20 20
Tem- perature	高 8.8.8.8.8.8.8.4.8.8 8.8.8.8.8.8.8.8.8.8
A verage discharge, cubic feet per second	(-) (-) (-) (-) (-) (-) (-) (-)
Date	July 2, 1940 July 23, 1940 July 24, 1940 July 26, 1940 July 26, 1940 July 26, 1940 July 26, 1940 July 27, 1940 July 28, 1940
Mileage from mouth	BMaC 41  do d
Sampling point	Crab Creek, Applegate Road, Youngstown, Ohio.  Do D

			OLLIO	YAT A 1		2 011.		2014	0011							.1.0
146		\$ 0 8 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		8 8 8 9 9 6			112	156	244	124	212	252	256		
P.O.		14	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	292	1	40			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	on c	54	53
46	1		1	1	5 8 9 9 9 9 9	5		8 10	2 2 2	27	47	20	135	000	380	12
	3 0 0 0 0 0 5 0 0 4 4 -					0.7.6. 0.0.8									6.00	
1,200	9, 300 15, 800 4, 300 4, 800 930	460	85 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	40	93	36	150	46 9 93 93	4-1	23.	460	50	200	0007	46	46
16.6	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	5. 10 m	သလ က ေ က်က်က်က်	2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	, x	4; -; 5; 30 30;				55 is	3. FO	କ ମ ମ ମ		 Ni (Ni (Ni	160 E	00.7
55.1	00000	59.3	4.0.0 6.0 6.0	11.4	49.7	2.5.4 2.0.0 3.4.5 3.0.0	30.7 22.9 36.6	32.7 55.8 7-8	49.0						57.2	
1000	00000		1,00 € 1,00 €	00.		က က ယ် ကဲ ကဲ									0.00.00	
19.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25. 5	30.00			27.0 27.0 27.0									16.5	
1,050	161 135 139 134	1,090	2002 200	145 140 140		1, 130 216 273	154	155	289	220	1, 260	240	211	140	395	925
6,00	23, 1940 31, 1940 7, 1940 9, 1940 13, 1940		17, 1940 23, 1940 31, 1940 7, 1940		25, 1940	3, 1940 17, 1940 23, 1940	31, 1940 7, 1940 9, 1940	13, 1940 14, 1940 5, 1940	133.	25,	10,0	31,	9, 1940	4.		28, 1940
July	July July Aug. Aug.	June	July July Aug.	Aug.	June	July July July	Aug.	Aug.	July	June June	July	July Aug.	Aug.	Aug.	Z C C C	Nov.
do	000 000 000 000 000	BMa 31.5	do do	op qo qo	BMa 26.5	do. do	do do	do do BMs 21.5	do.	doBMa 22.5	do	do	do	dodo	do-	
ra, Ohio.	2 0 1 1 0 5 0 0 0 2 7 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lowel-		1 1 1 6 6 6 6 8 8 6 8 8 6 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. S. 224,	, 1 1 , 7 0 , 8 0 , 9 0 ,		a hove		PA 108,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Youngstor		Bridge in			ridge on U			mila 7		pridge on	1 0.			3		
& Tube Bridge, Youngstown, Ohio.	D0 D0 D0 D0	Mahoning River Bridge in Lower ville, Obio.	Do	Do Do	Mahoning River Bridge on U	Do	Do	Do Biver	1 1	Mahoning River bridge on PA 108	Do.	1)0	1)0.	Do	Do	Do
5 4		TO TO			Bh			G	1	S	-					

Table B-7.—Beaver River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

	Hardness, parts per million							78	, 78
	Alkaim- ity, parts per mil- lion	20	88 88	99	88	22	10	99	2 5 5 9 6 6 7 2 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6
F	ity, parts per mil- lion	23	25.25		f 1 1 0 0 2 5 6 9 9 1 4 5 9 0 1 5 9 0 1 5 9 0 1 5 9 0 1 7 9 9 0 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			NQ .	30
	Вd	6.4	6.63	44004	711717	15.15.15.15.15 81.44.10.10.10.10.10.10.10.10.10.10.10.10.10.	V.V.V.V.V. W4444	1.7.1. 4004	400
Coli-	most probable number per milli- liter	460	230	01 22 4 25	240 240 460 390 15	1,100 23 44 23 23	22 23 24 24 24 25	4 4 8	43
5-day bio-	chemical oxygen demand, parts per million	5.0	1.6.7	40 - 88	8.00.00.1. 8.1.00.1.	20,500	10000 10000	1112	rt- riri
l oxygen	Percent satura- tion	71.6	884.1 865.6	28.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	76.3 80.5 68.1 70.3 102.0	87.5 92.2 84.6 87.1	44.77. 7.4.6 1.3.0 1.2.0 1.4.9	73.9 64.7 104.0	79.4
Dissolved oxygen	Parts per million	8.0	8.01	000000	0.00.00 0.00.00	1-00-00 00 0-1-0-1-00	\$0.0000 41400	9.50	7.2
	Tem- perature	10.5	10.0	21. 0 25. 0 20. 5 20. 5 18. 0	21.5 26.0 21.0 21.0	20.00 20.00 20.00 20.00	24. 0 26. 0 20. 5 20. 5	20.5 23.0 19.0	20.5
Average	discrarge, cubic fect per second	1,025	1, 505 2, 910 75	145 126 130 134 91	149 138 135 135 293	313 183 197 143 325	352 186 200 148 19	30,676	900
	Date	Dec. 10, 1940	Dec. 20, 1940 Jan. 3, 1941 July 4, 1940	July 18, 1940 Aug. 24, 1940 Aug. 1, 1940 Aug. 8, 1940 July 4, 1940	July 18, 1940 July 24, 1940 Avg. 1, 1940 July 4, 1940	July 18, 1940 Aug. 1, 1940 Aug. 8, 1940 July 4, 1940	July 18, 1940 Aug. 24, 1940 Aug. 8, 1940 June 27, 1940	July 11, 1940 Aug. 5, 1940 June 27, 1940	July 11, 1940 Aug. 5, 1940
	Mileage from mouth	BMa 22.5	do do BSh 69	dododododoBSh 65.5.	do do do BSh 52.0	dododododododod	do do do BShL 50	do do BSbL 47.0	do
	Sampling point	Mahoning River bridge on PA 108,	Shenango River Bridge at Riverside	Do. Do. Do. Do. Shenango River, 3 miles below Green-	Vine, ra. Do. Do. Do. Do. Do. Shrango, River, Mercer Street	Direge, Sharpwine, Fa. Do. Do. Do. Do. Do. Shenango River, Clark Street Bridge,	Strattywing, Fa. Do Do Do Do Little Yanker Creek, 1½ miles above	Little Yankee Creek, 4 miles below	Do

72	78262	¥87#	1112		104	11. 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
48	69	25	89	99	i i i	103	8 8 44 8	AZ.
1-	08 8 8 E E	31 30 30 25 25	20	100	18	∞1-∞0 to 4 to to €	22 6	17
7.	NH: IFI	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	<b>にいいてい</b> の 4 H の H の	V.V.V.V.V. Ø4044	20220	1,000,000,000,000,000,000,000,000,000,0		o o
63	240 93 240 150	240 1, 500 4, 600 2, 400	24 23 24 23 2 4 2 2 2 2 2 2 2 2 2 2 2 2	240 160 160 240 240	930 430 430 230 4	(i)	240 43 93 93	790
4.4	91.480	44044 120-00	12.7. 11.0 1.0 1.0 1.0 1.0	01-64-6	40000		. vi	
0.66	84. 52.9 62.1 73.5.6 73.5.6	34.8 34.8 36.5 52.5 53.5	63. 2 71. 0 61. 5 80. 5 87. 2	24.7.7.7.88 83.00.7.7.6.15	55.5 56.1 56.1 56.3 56.3 56.3	214975.8.8.8 84896877		. c . + 6
9.00	7.4.0.0.0 8.4.0.0	0 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	まらさけばら 400年日の4	\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	04.00.00 01014	% % % & & O O O O		12.0
19.0	23.5 25.0 21.0 21.5 19.5	25.0 28.0 22.0 16.0	24.0 26.0 22.5 22.0 25.5 17.5	20.0 24.5 20.3 21.0 18.0	20.0 20.0 20.0 15.5	23.0 23.0 10.7.2 10.0 10.0		0 °
28	(3)	376 190 202 154 101	367 236 215 267 159 45	230	35 12 12 149	# 8 # # # # # # # # # # # # # # # # # #	95 260 278 396	719
4, 1940	18, 1940 24, 1940 1, 1940 8, 1940 4, 1940	18, 1940 24, 1940 1, 1940 8, 1940 5, 1940	25, 1940 22, 1940 2, 1940 7, 1940 12, 1940 4, 1940	18, 1940 24, 1940 1, 1940 8, 1940 4, 1940	18, 1940 24, 1940 1, 1940 8, 1940 5, 1940	19, 1940 24, 1940 19, 1940 1, 1940 4, 1940 16, 1940 30, 1940	5,8,5,8, 0	
dnf	July July Aug.	July July Aug. Aug.	July Aug. Aug.	July July Aug.	July July Aug.	July July July Aug. Aug. Oet.	Nov Dec.	dall.
BShY 44.5.	do do do BSh 42	do do do do BSh 27.5	do do do BShN 47.5	do do do BShN 46.5.	do do do BSbN 24.5	000000000000000000000000000000000000000	do do do	
Yankee Run Bridge on U S 62, at	100 Do Do Do Sherango River, 4 miles below Sha-	Do D	Do D	Do. Do. Do. Do. Do. Do. Do. Moreor Pa. Mercer Pa. Mercer Pa. Mercer Pa.	Do. Do. Do. Neshannoek Creek, at mouth, upper	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Do Do Noshamoek Creek, mouth, New- Castle, Pa.	Less than I.

Table B-7.—Beaver River Basin: Ohio River pollution survey laboratory data—summary of individual results—Continued

TO	Ť			OLL	O I	II A ELI	FU	LLU	110	) TA	COI	V.T.I	LUL						
		Hardness, parts per million		t t t t t t t t t t t t t t t t t t t			8 8 9	111	128		1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	98	1 0	124		7 1
muea		Alkalin- ity, parts per mil- lion		252	333	2 2 3 3	5 6 8 1 1 1		7,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45	2162	512	85 85 85 85 85 85 85 85 85 85 85 85 85 85 8	0 0 0 0 0 0	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51	
s—continuae		Turbid- ity, parts per mil- lion		0001	30 25	22-22	27	2222	77	1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1		00 :	200	25.25	55 155 135	0 0 0 0	20.	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
are result		Hď	7.9			0.0.0.7. 0.0.0.7.		17171							4.0.7	4.		7.3	7.1
sammenty of entiretature results	Coli-	most probable number per milli- liter	150	25 8 8 8	460	£ 2 2 4	93	75	1001	930	983	26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	182	4,600	435 635 6	41 <	r ==4	24	00 44
fo 6 man	6-day	chemical oxygen demand, parts per million	4.0			2000		4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4							m 1 − 01	1.0	000	<u></u>	1.2
	oxygen	Percent satura- tion	93. 5	91.7 79.6 81.0	4.08	- 8 8 1 - 6 8 8 1 - 6 8 8 1 -		15. 25. 25 50. 61 -		27.5	20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	51.6	52.5		9 % S.	30.1		86.6	67.9
aroi g ar	Dissolved oxygen	Parts per million	00	च क ४. कॉ ४ट व्हें	12.1	12.55		01.04							2. 1. 00 2. 1. 00 2. 00 00	80		8.2	5,52
potentions agreed throughout y and		Tem-	19.5			3,5 0,6 0,0 0,0	24.0	12, 8, 8 0 10 10 10	0.00	26.0	22.22	17.5	13.50	00 00 00 00 00 00 00 00 00 00 00 00 00	5.0	24.0		18. 51	21.5
ne gragaria	Average	discharge, cubic feet per second	258		12.0	1, 085	453 2957	255 195 195		672	2005 2005 2005	000	11.5	7. 820 19. 158	5, 925 88 88	39	1	24	111
oute trees por		Date		Oct. 4, 1946 Oct. 16, 1946 Oct. 30, 1940	Nov. 15, 1940 Nov. 25, 1940	Dec. 20, 1940 Jan. 3, 1941 July 5, 1940		್ಟ್ ನ		July 17, 1940 July 25, 1940				Nev. 25, 1910 Dec. 10, 1910	Jan. 3, 1940 July 5, 1940	July 19, 1940	19.	July 5, 1940	July 19, 1940 July 26, 1940
Albert Lucius.		Mileage from mouth	Bsh 23.0	do	dodo	90 do do BSh 21.5	do.	do do 15.5	,	do	op Op	do	do	do	do BCosl 42	do	BCoS1 42	BCoslW 47.5	dodo
TYPE TO CO TOTAL		Sampling point	Shenango River, Cherry Street Bridge, New Castle, Pa.	100 100 100	100	Do Do Shenango River, 1½ miles below	New Castle, Pa. Do	Do Do Rivor & miles below Chan-	ton Wampum Bridge, New Castle,	1)0 [)0	100	100.	100	1)0	Branch Slippery Rock Creek, 1½	Do-	Slippery Rock Creek, 3 miles south of Slippery Rock, Pa.	Wolf Creek Branch, upper edge of Grove City, Pa.	Do.

				OIII	J 161 4	EIL FO.	LLUIIU	IN COIN	INOL			400
82	108 114 94	96 128	6 J 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1 1 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1	1	06	112 124 140	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112	112
99	29	30	25	34	999	63	64	71	80	37	37	0 B B B B B B B B B B B B B B B B B B B
13	14	17				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	12	33.38	f	19	300
7.4	7.7.8	6.50	0.0 0.8 4	000 000	6.9	たい. いいよい いいまつ	1.1.1.1. 10.00400	7.7.7. 4.4.6.7.	411.6	7.7.2	5.4.0	7.7.
6	61 55 41	23	38	23	88.89	4,600 11,000 1,100 1,100	24,000 110	43 7 2,400	4, 300 4, 300 4, 36	H48	93	42
2.0	1.7	1.14	1.5	10.7	4.6.1.	1004.01 1000		000000 1041	15.0			4.0
92. 5	105.0 84.5 102.8	108.6 102.8 80.2	75.0	19.9	71.2 87.3 113.5	55.7 12.9 49.1 105.6	87.2 84.0 82.7 122.6	73. 5 67.3 89.7	82.1 49.2 0 91.9	100.7 89.1 86.5	89.9 94.9 105.1	107.1
80	9.7.9	0.1.1.	6,4,6	6.1.0	6.8	4-4-6-			0.4:000 1-10 04	2007	9.7.3	යා භා ගේ ගේ
17.5	22. 0 22. 0 22. 0	23. 5 20. 0 20. 5	20.0 29.0 22.0	22.0 30.0 21.5	22. 0 29. 0 21. 5	23.5 23.0 21.0	22. 5 19. 5 22. 5 23. 0	25. 5 21. 0 22. 5 23. 0	26.5 20.5 23.0 21.5		21.5 29.5 23.0	25. 5
31	318	142 66 10	35	22 18 62	39	& & EE	(1) 1 24	(1) 31	(1)	82 32 149	93 33 210	123
5, 1940	26, 1940 26, 1940 24, 1940	9, 1940 26, 1940 24, 1910	9, 1940 26, 1940 24, 1940	9, 1940 26, 1940 24, 1940	9. 1940 26, 1940 8, 1940	25, 1940 2, 1940 12, 1940 8, 1940	25, 1940 2, 1940 12, 1940 8, 1940	25, 1940 2, 1940 12, 1940 8, 1940	25, 1940 2, 1940 12, 1940 24, 1940	9, 1940 26, 1940 24, 1940	9, 1940 26, 1940 24, 1940	9, 1940 26, 1940
- July	July July June	July July June	July July June	July July June	July July July	July Aug. Aug. July	July Aug. Aug. July	July Aug. July	July Aug. June	July July June	July July June	July
BCoSIW 45.5	do the BCoSI 17.5	do BCo 57.5	do do BCo 54.0	do BCo 49.0	do BCoB 46	do do BCoB 41.5	do do BCoB 41.	do do BCoB 39.0	do do BCo 36.0.	do. BCo 31.5	do do BCo 17.0	do
Wolf Creek, 2 miles below Grove	Slippary, Rock Creek, above Ell-	Wood City, Fd. Do Do Connequenessing Creek Bridge, U	S 424, Buttef, r a. 100 Connoquenessing Creek, 2 miles be-	Low Souther, fra Do	Brakneck Creek, 14 mile above	Alexandra (1900)  100  100  100  100  100  100  100	Brekneck Creek, southeast corner	Organization of the control of the c	Do Do Do Do Connoguenessing Creek, U S route	Connequenessing Creek, 2 miles be-	low Zellohopie, Fa. Do Do Connoquenessing Creek, 1½ miles	above Liwoth City, Fa. Do Do I Less than 1. Seeded and neutralized,

Table B-7-Beaver River Basin: Ohio River pollution survey laboratory data-summary of innividual results-Continued

							3					-
			Average		Dissolved oxygen	охувец	bio-	forms,	,	Mushid	Allealin	
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Tem.	Parts per million	Percent satura- tion	chemical oxygen demand, parts per million	most probable number per milli- liter	Hd	ity, parts per mil- lion	Tarret Married	Hardness, parts per million
Beaver River, Eastwale bridge,	B 5.5	July 8, 1940	1,050	25. 5	9.0	108.7	4.4	8	7.6		19	
Do.	do.		880	22.0		83.9		6		18		150
Do	do	July 25, 1940	069	25.0	0,0	70.9	100	3 7	17:	13		154
Do	do		640 800	23.0		90.00		24		15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	140
Do	1 1	12,	570	24.0		86.0		is refer		91		162
Beaver River, at mouth	B 1.4	Oct. 2, 1940	620	18.0		00 0		1, 100		=======================================	34	
100	do	ef oc	640	18.0		80.0		930		20	24	
1)0	do	10,1	040	17.0		86.9		480		10	14	7 8 1 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	do		640	17.0		27.70		150		00	747	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	000		620	16.5		7.7.0		460		22	450	
Do	do	22,	099	12.0		80.1		930		13 13	27	
Do.	do		040	12.0		000		2,400		11	21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1)6	do	200	575	12.0		004.0		230		12	558	* * * * * * * * * * * * * * * * * * * *
100	do		010	13.0		04.6		070		37	3,0	
Do	do	110	1,320	12.5		91.8		43		22	2004	0 1
Do.	dodo.	7,1	1,150	10.0		90.3		22		42	43	
Do	do	13,1	2, 130	0.0		94.5		110		24	47	
Do	900	Nov. 10, 1940	1,090	> C		0 %		150		90	35	* * * * * * * * * * * * * * * * * * * *
1)0	(0)	25,	1,340	000		92.5		75		25	38	
Do	do	27.1	2, 650	7.0		92.3		460		30	35	# 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	23	3,830	0.0		100.9		16		35	350	
100	dodo	Dec. 3, 1940	4,000	000		95.4		460		50	332	8 7 6 8 9 1
1)0	do	50	4, 700	4 4		1001		150		30	200	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	11,	3,050	5.0		95.4		240		23	28.0	
Do	do	13,1	6, 200	6.5		97. 5		93		20	30	
1)0	do	17,	10, 200	6.0		97.5		1, 100		110	28	
Do	do		5, 930	9.4		98.1		430		200	20	
100	do		2, 730	7.0		97.3		1 100		23	33.0	•
1)0	do	31.	19,500	5.0		90.2		150		170	33	2 0 2 0 1
Do	do		15,800	5.5		99.4		210		20	28	
1 Less than 1.		\$ Seeded	Seeded and neutralized.	ized.		The second secon	The same of the sa				-	

# MUSKINGUM RIVER BASIN



# CONTENTS

Contents Syllabus and conclusions Description Presentation of field data Presentation of laboratory data Hydrometric data Discussion	- 441 - 442 - 444 - 446 - 448
LIST OF TABLES	
Mu-1.—Cost estimates of remedial measures	- 444 - 445 - 446 - 447 - 449
LIST OF FIGURES	
Mu-1.—Map—Sources of pollution Mu-2.—Chart—Sources of pollution and selected laboratory data (Muskingum River) Mu-2a.—Chart—Sources of pollution and selected laboratory data (Tuscarawas River) Mu-3.—Map—Coliform results Mu-4.—Map—Dissolved oxygen results Mu-5.—Map—Biochemical oxygen demand results Mu-6.—Chart—Summer low-flow frequency curve	444 446 446 446
439	



(Face p. 441)

GPO - 43 0 - 90035

### MUSKINGUM RIVER BASIN

SYLLABUS AND CONCLUSIONS

### SYLLABUS

More than 800,000 people live in the 8,040 square miles in eastern Ohio drained by the Muskingum River. About 400,000 are in urban communities. Forty-six percent of the urban population is in the heavily industralized portion of the basin drained by the upper Tuscarawas River and Sandy Creek. In spite of the extensive efforts made to abate pollution throughout the basin, a problem remains on the upper Tuscarawas and some of its tributaries.

The lower Muskingum River and certain tributaries are considered excellent fishing streams. Natural lakes and the conservation pools at the recently completed flood-control reservoirs afford unusually good facilities for recreation. One of these, the Senecaville Reservoir, might be used to augment low flows for pollution abatement below

The larger streams, except the upper Tuscarawas, can be restored to or maintained in excellent condition at a reasonable cost. Further limited improvements in the quality of the more heavily polluted Tuscarawas and some of its tributaries seem economically justified.

### CONCLUSIONS

(1) All but nine of the 94 public water supplies in the basin are derived entirely from underground sources. Only four of the surface

supplies are from streams subject to pollution.

(2) Sewage from 422,600 people and industrial wastes with a sewered population equivalent (biochemical oxygen demand) of about 321,000 enter the streams of the basin. About two-thirds of the sewage is treated, most of it receiving secondary treatment and 56 of 84 industrial plants have taken some step to reduce pollution from industrial wastes.

(3) Laboratory studies indicate that the most heavily polluted streams are in the northeastern part of the basin in the vicinity of

Canton, Massillon, and Barberton.

(4) Primary treatment of domestic sewage and removal of settleable solids from industrial wastes should suffice to maintain satisfactory stream conditions below 8 of the 10 urban communities now discharging untreated sewage. At Newark and Cambridge secondary treatment is indicated.

(5) Primary treatment seems justified at 16 and secondary treatment at 18 smaller rural communities now without sewage treatment

facilities.

(6) Improvements or additions to existing sewage treatment plants are indicated at Canton, Mansfield, and seven other communities.

(7) If the Senecaville Reservoir can be used for low-flow control, primary treatment may suffice at Cambridge.

# (8) The following summary of cost estimates are from table Mu-1.

Treatment	Capital cost	Annual charges
Existing Suggested additional	\$4, 550, 000 5, 180, 000	\$440,000 535,000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual charges
Primary, all places	\$4, 370, 000	\$450,000
Secondary, all places	6, 200, 000	660,000

Table Mv-1.—Muskingum River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

	Numb		Popula-	0. 11.	Ar	nual charg	88
t	Pri- mary	Second- ary	tion con- nected to/ sewers	Capital investment		Operation and main- tenance	Total
Existing sewage treatment	13	18	285, 600	\$4, 550, 000	\$287,000	\$153,000	\$440,000
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste correction	23	20	136, 600	2, 650, 000 2, 220, 000 310, 000	185, 000 105, 000 40, 000	105, 000	290, 000 105, 000 140, 000
Total				5, 180, 000 4, 370, 000 6, 200, 000 5, 180, 000	330, 000 270, 000 400, 000 330, 000	205, 000   180, 000 260, 000 205, 000	535, 000 450, 000 660, 000 535, 000

### DESCRIPTION

The Muskingum River Basin comprises 8,040 square miles of eastern Ohio. The main stream is formed by the junction of its two principal tributaries, the Tuscarawas and Walhonding Rivers at Coshocton in about the center of the basin and flows south for 110 miles to its junction with the Ohio River at Marietta. The larger tributaries are:

Tributaries	Distance above mouth of Muskingum River (miles)	Drainage area (square miles)
Licking River Wills Creek Walhonding River Tuscarawas River	75 99 110 110	790 850 2, 250 2, 590

There are 25 urban communities in the basin and the population density is slightly more than 100 per square mile. The populations of the larger cities and of the basin as a whole for the past 30 years are tabulated below.

	Populations			
	1910	1920	1930	1940
Larger cities: Canton Zanesville. Avansfield. Newark Massillon. Barberton.	50, 217 28, 026 20, 768 25, 404 13, 879 9, 410	87, 091 29, 569 27, 824 26, 718 17, 428 18, 811	104, 906 36, 440 33, 525 30, 596 26, 400 23, 934	108, 401 37, 500 37, 154 31, 487 26, 644 24, 028
Entire basin: Rural Urban	381, 840 239, 011	384, 460 317, 620	387, 879 389, 687	413, 578 398, 450
Total	620, 851	702, 080	777, 566	812, 028

Much of the basin, particularly in the northern and western parts, is fertile agricultural country. The eastern and southern portions of the area are more hilly and agriculture is less prosperous. Coal mining is important in these sections although production is generally on the decline. The principal manufactured products are steel and other metals, metal products, machinery, and clay products.

Water uses.—The Muskingum has been canalized by the construction of 11 locks and dams which maintain a navigable depth of 5 feet for 91 miles from Marietta to Dresden. The facilities are not used extensively. There are no important hydroelectric developments in

the basin.

A system of 14 reservoirs, primarily for flood control, constructed by the United States Engineer Department for the Muskingum Conservancy District at a cost of \$45,000,000 was completed in 1938. It has since been taken over by the Federal Government and will be operated as part of the system of reservoirs for flood control on the Ohio River and its tributaries. Eleven of the reservoirs have permanent pools. These pools and adjoining land have been leased to the Ohio Division of Conservation for development as fishing and recreational areas. Data on the capacity of the reservoirs and the area of the conservation pools are tabulated below.

				Storage (acre-feet)			
No.	Reservoir	Stream	Total	Conserva- tion	servation (pool-acres)		
1 2 3 4 5 6 7 8 9 10 11 12 13	Atwood Beach City Bolivar Charles Mills Clendening Dover Leswille Mohawk Mohicanville Piedmont Pleasant Hill Senceaville Tuppan Wills Creek	Brush Fork Tuscarawas River McGuire Creek Walhonding River Lake Fork Stillwater Creek Clear Fork	49, 700 71, 700 149, 600 88, 000 54, 000 203, 000 37, 400 285, 000 102, 000 65, 000 87, 700 88, 500 61, 600 196, 000	23, 600 1, 700 0 7, 400 27, 900 1, 000 19, 500 0 33, 600 43, 500 43, 500 35, 100 6, 000	1, 54 428 1, 35 1, 80 35 1, 00 2, 27 85 3, 55 2, 35 2, 35		

These conservation pools, together with Buckeye Lake in the southwestern part of the basin and the numerous lakes in the vicinity of Akron, furnish the area with unusually good water recreation facilities. Some of the streams also are used extensively for recreation. The lower Muskingum and Wakatomica Creek are considered outstanding fishing streams.

### PRESENTATION OF FIELD DATA

Figure Mu-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figures Mu-2 and Mu-2A show similar data and, in addition, the location of water supply intakes subject to pollution and laboratory data on coliform organisms.

dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Eighty-five of the 94 public water supplies in the basin are from underground sources. These supply almost 75 percent of the total population of 471,200 served by water supplies. The underground water is generally satisfactory in quality although it is usually hard and sometimes must be treated to remove iron. Of the nine surface water supplies, only four are from streams subject to pollution. Table Mu-2 shows data on the surface water supplies of the basin.

Table Mu-2.—Muskingum River Basin: Surface water supplies

Municipality	Source	Mile 1	Treat- ment 2	Popula- tion served	Con- sumption (million gallons per day)
	Supplies below communi	ty sewer	outfalls		
Newark Cambridge Dennison Marietta	North Fork Licking River	107 155 160 2	LD FD FD LD	35, 000 15, 000 10, 000 14, 500	3. 20 1. 25 2. 00 1. 60
	Other surface s	upplies			
Ashland Crooksville New Concord Massillon Barberton	Jerome Creek, Long Creek		F 3 FD D ILD FD	12,000 2,300 1,000 26,600 24,000	0. 75 .10 .08 1. 50 1. 50
	ewer outfalls			74, 500 65, 900	8. 05 3. 93
Total surfac	e water supplies			140, 400	11.98

¹ Miles above mouth of Muskingum River.
2 I- Iron removal, L-Lime, soda softened; F=Coagulated, settled, filtered; D=Chlorinated.
3 Softening plant under construction.

4 Infiltration gallery.

A number of the communities which now use underground water exclusively are having difficulty in securing adequate supplies. Outstanding among these are Canton and Mansfield. In both instances heavy industrial drafts on the underground supply complicate the problem. Both of these cities may be forced to develop water supplies from surface sources.





Sewerage.—Table Mu-3 shows the sewered population at each of the more important sources of pollution in the basin. About two-thirds of the total sewered population of 422,600 are served by sewage treatment plants. Thirteen primary treatment plants serve 78,700 people and 18 secondary treatment plants serve 206,900 people. The largest communities without sewage treatment are Zanesville, Newark, Cambridge, New Philadelphia, and Coshocton.

Table Mu-3.—Muskingum River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream	Stream Miles above tion lation con-		Treatment	Sewered popula- tion equivalent (biochemical oxygen demand)	
		ingum River	to sewers		Un- treated	Dis- charged
Zanesville. Dresden Coshocton Newcomerstown New Philadelphia Dover Massillon Barberton Newark Granville Cambridge Wooster Mount Vernon Ashland Mansfield Shelby Dennison Uhrichsville Canton Louisville Minerva Marshallville Rittman Wadsworth Orrville Chippewa Lake	Crooked Creek. Killbuck Creek. Kokosing River. Jerome Fork Rocky Fork. Black Fork Little Stillwater Creek. Stillwater Creek. Nimishillen Creek. East Branch Nimishillen Creek. Sandy Creek. Red Run River Styx. Blockers Creek. Little Chippewa Creek	105 113 154 169 160 183 187 225 159 160 203 211 209 220 221 224 224 232	1, 700 30, 000 4, 000 4, 000 11, 000 9, 000 22, 000 22, 000 12, 000 10, 200 6, 000 4, 300 6, 200 111, 000 2, 700 6, 200 4, 300 6, 200 12, 000 6, 200 13, 300 6, 200 13, 300	None	36, 300 31, 000 128, 100 4, 000 14, 400 11, 000 30, 500 42, 000 12, 100 10, 200 12, 100 6, 000 4, 300 3, 300 2, 700 6, 000 18, 000	3, 400 36, 300 81, 000 128, 100 129, 100 11, 000 123, 200 11, 000 42, 000 4, 000 12, 000 4, 900 4, 900 4, 900 6, 200 26, 500 4, 900 1, 000 1, 000 1, 000 1, 000 30, 800
Total	***************************************		422, 600		743, 200	492, 200

¹⁸ places have primary treatment and 8 have secondary treatment plants.

Industrial wastes.—Four strawboard and paperboard plants account for almost 75 percent of the total population equivalent of 280,500 of all the industrial wastes in the basin not treated at municipal plants. The larger steel plants, concentrated in the northeastern part of the basin around Canton and Massillon have taken steps to dispose of waste pickling liquors. An alkali plant at Barberton discharges large quantities of inorganic salts which greatly increase the hardness of the Tuscarawas River. Table Mu-4 shows data on the industrial waste producing plants.

Table Mu-4.—Muskingum River Basin: Summary of industrial wastes not discharged to municipal treatment plants with total of entire industrial waste load in the basin

	Number	Industrial waste disposal		At least minor	Estimated sewered population
Industry	of plants	Munici- pal sewers	Private outlet	tive measures taken	equivalent (biochemi- cal oxygen demand)
Brewing Byproduct coke. Meat Milk Oil refining Paper Steel Miscellaneous	3 2 8 28 2 4 11 26	1 1 1 10	2 7 28 2 4 10 16	3 2 7 24 2 2 5	7, 100 14, 200 17, 500 6, 300 11, 400 210, 000
Wastes unconnected municipal treatment Wastes connected to municipal treatment		15	69	56	280, 500 40, 100
Total industrial waste in basin					320, 600

Acid mine drainage.—Moxahala Creek is the largest acid stream in the basin. Some of the small streams in the eastern part of the basin also are acid. The mine-sealing program has reduced the amount of acid entering the streams of the Muskingum and Hocking Basins from about 215,000 tons per year to about 125,000 tons per year. Most of the abandoned mines have been sealed.

### PRESENTATION OF LABORATORY DATA

The results of the dissolved oxygen and biochemical oxygen demand tests in the Muskingum River Basin showed generally good conditions at the time of sampling. Average dissolved-oxygen contents were usually over 6.5 parts per million and 5-day biochemical oxygen demand generally less than 3.0 parts per million. Coliform organisms were high, averaging over 100 per milliliter throughout most of the basin.

Summaries of the laboratory data are presented in table Mu-7 (p. 454) and selected data on the main stream and its tributaries are shown in table Mu-5. Observations were made at the mobile laboratory during April, May, and June, 1940, supplemented by observations from the laboratory boat *Kiski* in May to September, 1940 in the lower end of the basin. Figures Mu-3, Mu-4, and Mu-5 show the average coliform, dissolved oxygen, and biochemical oxygen demand results at various stations. Where observations at any point extended over more than 30 days, the most unfavorable monthly average is shown.

(Face p. 446) No. 1 8PO - 43 0 - 90035

(Face p. 446) No. 2 6PO-43 0.50035

(Face p. 448) No. 3 8PO.43 0.80038

Table Mu-5.—Muskingum River Basin: Selected labroatory data

River	Muskin-			Muskin-		Tusca-	Tusca-
	gum	gum	gum	gum	gum	rawas	rawas
Location	At Mari-	Below	Below	Below	Below	At Co-	Below
	etta	McCon- nells-	Zanes- ville	Dresden	Coshoc-	shocton	New-
		ville	VIIIe		ton		comers
River miles above mouth of	0.2	47	71	86.5	107	110	128.5
Muskingum.	0.2	-		00.0	10,	220	120.0
Period, 1940	August	August	May	April-	May	May	May
,				May			
T 1		1			/ 0		
Number of samples	11	4	3	3	′ 2	3	
Flow in cubic feet per second:	2,050	3, 140	6, 117	17, 433	3, 215	1, 520	1, 4
Sampling days	2,000	494	0, 111	483	0, 210	1,020	1, 2
Water temperature °C	26.4	24. 9	15.0	12. 5	17.3	16.7	17
Hardness, parts per million				104	256	350	2
Coliforms per milliliter	13	85	89	16	43	43	
Dissolved oxygen, parts per							
million	7.5	7.5	9. 5	9.8	8.8	8.4	8
Biochemical oxygen demand,							
5-day, parts per million	2.0	2.6	2. 2	1.8	2.1	6. 1	1
	1						
River	Tusca-	Tusca-	Tusca-	Tusca-	Tusca-	Tusca-	Tusca
	rawas	rawas	rawas	rawas	rawas	rawas	rawas
Location	Below	Above	Above	Above	Above	Below	Abov
	New	New	Dover	Navarre	Massillon	Barber-	Barbe
	Phila- delphia	Phila-				ton	ton
River miles above mouth of	159	delphia 166	170	191	202.5	217	223
Muskingum,	100	100	110	101	202.0	216	440
Period, 1940	May-	May-	May-	May-	May-	May-	May-
3 01104, 1010	June	June	June	June	June	June	June
			9 (1110			V CLAS	
Number of samples	3	3	3	3	3	3	•
Flow in cubic feet per second:	3	3	3	3	3	3	•
Flow in cubic feet per second:			3 2, 073				•
Flow in cubic feet per second: Sampling days Minimum month	3 2, 395	3 2, 395	3 2, 073 181	3 618	<b>3</b> 569	<b>3</b> 259	2
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C	3 2, 395 18. 8	3	3 2, 073	3	3	3 259 24.3	2
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million	3 2, 395 18. 8 275	3 2, 395 19. 2	3 2, 073 181 18. 3	3 618 18. 8	3 569 17. 7	3 259 24.3 1,450	22
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million	3 2, 395 18. 8	3 2, 395	3 2, 073 181	3 618	<b>3</b> 569	3 259 24.3	22
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per	3 2, 395 18. 8 275 191	3 2,395 19.2	3 2, 073 181 18. 3	3 618 18. 8	3 569 17. 7 4, 050	259 24.3 1,450 889	222
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million	3 2, 395 18. 8 275	3 2, 395 19. 2	3 2, 073 181 18. 3	3 618 18. 8	3 569 17. 7	3 259 24.3 1,450	222
Flow in cubic feet per second: Sampling days Minimum month. Water temperature °C. Hardness, parts per million. Coliforms per milliliter. Dissolved oxygen, parts per million. Biochemical oxygen demand,	3 2, 395 18. 8 275 191	3 2, 395 19. 2 389 9. 1	3 2, 073 181 18. 3	3 618 18. 8 1, 480 6. 1	3 569 17. 7 4, 050 4. 0	3 259 24.3 1,450 889 4.1	222
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million	3 2, 395 18. 8 275 191 8. 5	3 2,395 19.2	3 2, 073 181 18.3 114 8, 2	3 618 18. 8	3 569 17. 7 4, 050	259 24.3 1,450 889	222
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2,395 18.8 275 191 8.5 1.9	3 2, 395 19, 2 389 9, 1 2, 2	3 2, 073 181 18. 3 114 8, 2 1, 9	3 618 18.8 1,480 6.1 2.6	3 569 17. 7 4, 050 4. 0 2. 3	3 259 24 ¹ 3 1,450 889 4.1 6.2	22
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2, 395 18. 8 275 191 8. 5	3 2, 395 19. 2 389 9. 1 2. 2	3 2, 073 181 18.3 114 8, 2 1, 9	3 618 18.8 1,480 6.1 2.6	3 569 17. 7 4, 050 4. 0 2. 3	3 259 24.3 1,450 889 4.1 6.2	22 Rock
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2,395 18.8 275 191 8.5 1.9	3 2,395 19.2 389 9.1 2.2 Chippe-wa	3 2, 073 181 18.3 114 8, 2 1, 9 Lower Chippe-	3 618 18.8 1,480 6.1 2.6	3 569 17. 7 4, 050 4. 0 2. 3	3 259 24.3 1,450 889 4.1 6.2	22 22 8 8
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2,395 18.8 275 191 8.5 1.9	3 2, 395 19. 2 389 9. 1 2. 2	3 2,073 181 18.3 114 8,2 1,9 Lower Chippe- wa	3 618 18.8 1,480 6.1 2.6	3 569 17. 7 4, 050 4. 0 2. 3	3 259 24.3 1,450 889 4.1 6.2	22 22 8 8
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2, 395 18. 8 275 191 8. 5 1. 9	3 2, 395 19, 2 389 9, 1 2, 2 Chippe-wa Creek	3 2, 073 181 18.3 114 8.2 1.9 Lower Chippewa Creek	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek	3 569 17. 7 4, 050 4. 0 2. 3 Still-water Creek	3 259 24/3 1,450 889 4.1 6.2 Still-water Creek	22 Rocky Fork
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2,395 18.8 275 191 8.5 1.9 Styx	3 2,395 19.2 389 9.1 2.2 Chippe- wa Creek Below	2. 073 181 18. 3 114 8. 2 1. 9 Lower Chippe- wa Creek Below	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek	3 569 17. 7 4, 050 4. 0 2. 3 Still- water Creek Above	3 259 24.3 1, 450 889 4.1 6.2 Still- water Creek Below	22 Rocky Fork
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2, 395 18.8 275 191 8.5 1.9 Styx	3 2, 395 19, 2 389 9, 1 2, 2 Chippe-wa Creek	3 2, 073 181 18.3 114 8.2 1.9 Lower Chippewa Creek	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek	3 569 17. 7 4, 050 4. 0 2. 3 Still-water Creek	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-	Rock; Fork
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 2, 395 18. 8 275 191 8. 5 1. 9 Styx Below Wadsworth	3 2, 395 19, 2 389 9, 1 2, 2 Chippe- wa Creek Below Rittman	2,073 181 18.3 114 8.2 1.9 Lower Chippe- wa Creek Below Orrville	3 618 18.8 1,480 6.1 2.6  Nimishil len Creek Below Canton	3 569 17.7 4,050 4.0 2.3  Still-water Creek Above Dennison	3 259 24.3 1, 450 889 4.1 6.2 Still- water Creek Below Uhrichs- ville	Rocky Fork Below Mans field
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million River	3 2, 395 18.8 275 191 8.5 1.9 Styx	3 2,395 19.2 389 9.1 2.2 Chippe- wa Creek Below	2. 073 181 18. 3 114 8. 2 1. 9 Lower Chippe- wa Creek Below	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek	3 569 17. 7 4, 050 4. 0 2. 3 Still- water Creek Above	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-	Rock; Fork
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million River  Location  River miles above mouth of Muskingum.	3 2, 395 18. 8 275 191 8. 5 1. 9 Styx Below Wadsworth	3 2, 395 19, 2 389 9, 1 2, 2 Chippe- wa Creek Below Rittman	2,073 181 18.3 114 8,2 1,9 Lower Chippewa Creek Below Orrville 229.5 May-	3 618 18.8 1,480 6.1 2.6  Nimishil len Creek Below Canton	3 569 17.7 4,050 4.0 2.3  Still-water Creek Above Dennison	3 259 24.3 1, 450 889 4.1 6.2 Still- water Creek Below Uhrichs- ville	Rocky Fork Below Mans field
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million River  Location  River miles above mouth of Muskingum.	3 2, 395 18.8 275 191 8.5 1.9 Styx Below Wads-worth 221	3 2, 395 19, 2 389 9, 1 2, 2 Chippe- wa Creek Below Rittman 217.5	2,073 181 18.3 114 8.2 1.9 Lower Chippe- wa Creek Below Orrville 229.5	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193	3 569 17. 7 4, 050 4. 0 2. 3 Still-water Creek Above Dennison	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-ville 156.5	Rocky Fork Belov Mans field 184
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million River  Location  River miles above mouth of Muskingum.	3 2, 395 18.8 275 191 8.5 1.9 Styx Below Wads-worth 221	3 2,395 19.2 389 9.1 2.2 Chippe- wa Creek Below Rittman 217.5 May-	2,073 181 18.3 114 8,2 1,9 Lower Chippewa Creek Below Orrville 229.5 May-	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-	3 569 17. 7 4, 050 4. 0 2. 3 Still-water Creek Above Dennison 165 May-	3 259 24.3 1,450 889 4.1 6.2 Still- water Creek Below Uhrichs- ville 156.5 May-	Rocky Fork Below Mans field 184
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million Blochemical oxygen demand, 5-day, parts per million River Location River miles above mouth of Muskingum. Period, 1940	3 2,395 18.8 275 191 8.5 1.9 Styx Below Wads-worth 221 July	3 2,395 19.2 389 9.1 2.2 Chippewa Creek Below Rittman 217.5 May-June	2,073 181 18.3 114 8,2 1,9 Lower Chippe- wa Creek Below Orrville 229.5 May- June	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-June	3 569 17. 7 4, 050 4. 0 2. 3  Still-water Creek Above Dennison 165 May-June	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-ville 156.5 May-June	Rocky Fork Below Mans field 184
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million River Location River miles above mouth of Muskingum. Period, 1940	3 2, 395 18.8 275 191 8.5 1.9 Styx Below Wads-worth 221	3 2,395 19.2 389 9.1 2.2 Chippe- wa Creek Below Rittman 217.5 May-	2,073 181 18.3 114 8,2 1,9 Lower Chippewa Creek Below Orrville 229.5 May-	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-	3 569 17. 7 4, 050 4. 0 2. 3 Still-water Creek Above Dennison 165 May-	3 259 24.3 1,450 889 4.1 6.2 Still- water Creek Below Uhrichs- ville 156.5 May-	Rocky Fork Below Mans field 184
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C. Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million Blochemical oxygen demand, 5-day, parts per million River Location River Location River miles above mouth of Muskingum. Period, 1940 Number of samples Flow in cubic feet per second:	3 2, 395 18.8 275 191 8.5 1.9 Styx Below Wadsworth 221 July	2, 395 19. 2 389 9. 1 2. 2 Chippewa Creek Below Rittman 217.5 May-June	2,073 181 18.3 114 8,2 1,9 Lower Chippe- wa Creek Below Orrville 229.5 May- June	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-June	3 569 17.7 4,050 4.0 2.3 Still-water Creek Above Dennison 165 May-June 3	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-ville 156.5 May-June	Rocky Fork Below Mans field 184
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C. Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million.  River.  Location.  River miles above mouth of Muskingum. Period, 1940.  Number of samples Flow in cubic feet per second: Sampling days. Minimum month.	3 2,395 18.8 275 191 8.5 1.9 Styx Below Wads-worth 221 July	3 2,395 19.2 389 9.1 2.2 Chippewa Creek Below Rittman 217.5 May-June	3 2,073 181 18.3 114 8.2 1.9 Lower Chippewa Creek Below Orrville 229.5 May-June 3 2 2	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-June 3 129 27.4	3 569 17. 7 4, 050 4. 0 2. 3  Still-water Creek Above Dennison 165 May-June	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-ville 156.5 May-June	Rocky Fork Below Mans field 184
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C. Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million.  River.  Location.  River miles above mouth of Muskingum. Period, 1940.  Number of samples Flow in cubic feet per second: Sampling days. Minimum month.	3 2, 395 18.8 275 191 8.5 1.9 Styx Below Wadsworth 221 July	2, 395 19. 2 389 9. 1 2. 2 Chippewa Creek Below Rittman 217.5 May-June	20.73 181 18.3 114 8.2 1.9 Lower Chippe- wa Creek Below Orrville 229.5 May- June	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-June 3 129 27.4 20.2	3 569 17.7 4,050 4.0 2.3 Still-water Creek Above Dennison 165 May-June 3	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-ville 156.5 May-June	Rocky Fork Below Mans field 184 June
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million River  Location  River miles above mouth of Muskingum. Period, 1940  Number of samples Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Coliforms per milliliter	3 2, 395 18. 8 275 191 8. 5 1. 9 Stýx Below Wads- worth 221 July	3 2,395 19.2 389 9.1 2.2 Chippe-wa Creek Below Rittman 217.5 May-June 3 29	3 2,073 181 18.3 114 8.2 1.9 Lower Chippewa Creek Below Orrville 229.5 May-June 3 2 2	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-June	3 569 17.7 4,050 4.0 2.3 Still-water Creek Above Dennison 165 May-June 3 657	3 259 24.3 1, 450 889 4.1 6.2 Still- water Creek Below Uhrichs- ville 156.5 May- June	Rocky Fork Below Mans field 184 June
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million Blochemical oxygen demand, 5-day, parts per million  River  Location  River  Number of samples Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Coliforms per milliiter Coliforms per milliiter Dissolved oxygen, parts per	3 2,395 18.8 275 191 8.5 1.9 Styx Below Wadsworth 221 July 1 31 18.0 240	3 2, 395 19. 2 389 9. 1 2. 2 Chippewa Creek Below Rittman 217.5 May-June 3 29 20. 8 8, 220	20.2 8,970	3 618 18.8 1,480 6.1 2.6  Nimishil len Creek Below Canton 193 May-June 3 129 27.4 20.2 6,650	3 569 17. 7 4,050 4. 0 2. 3 Still-water Creek Above Dennison 165 May-June 3 657 19. 5 96	3 259 24.3 1, 450 889 4.1 6.2  Still-water Creek Below Uhrichs-ville 156.5 May-June 3 894 90 19.5 70	Rocky Fork Below Mans field 184 June
Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million Blochemical oxygen demand, 5-day, parts per million River  Location River  River miles above mouth of Muskingum Period, 1940  Number of samples Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Coliforms per milliliter Dissolved oxygen, parts per million	3 2,395 18.8 275 191 8.5 1.9 Styx Below Wads-worth 221 July 1 31 18.0	3 2, 395 19. 2 389 9. 1 2. 2 Chippewa Creek Below Rittman 217.5 May-June 3 29 20. 8	20.73 181 18.3 114 8.2 1.9 Lower Chippe- wa Creek Below Orrville 229.5 May- June	3 618 18.8 1,480 6.1 2.6 Nimishil len Creek Below Canton 193 May-June 3 129 27.4 20.2	3 569 17. 7 4, 050 4. 0 2. 3 Still-water Creek Above Dennison 165 May-June 3 657 19. 5	3 259 24.3 1,450 889 4.1 6.2 Still-water Creek Below Uhrichs-ville 156.5 May-June 3 894 0 19.5	Rocky Fork Below Mans field 184 June
Flow in cubic feet per second: Sampling days Minimum month Mater temperature °C. Hardness, parts per million Coliforms per milliiter Dissolved oxygen, parts per million Blochemical oxygen demand, 5-day, parts per million  River  Location  River  Location  River miles above mouth of Muskingum. Period, 1940  Number of samples Flow in cubic feet per second: Sampling days  Minimum month Water temperature °C  Coliforms per milliliter Coliforms per milliliter  Coliforms per milliliter  Dissolved oxygen, parts per	3 2,395 18.8 275 191 8.5 1.9 Styx Below Wadsworth 221 July 1 31 18.0 240	3 2, 395 19. 2 389 9. 1 2. 2 Chippewa Creek Below Rittman 217.5 May-June 3 29 20. 8 8, 220	20.2 8,970	3 618 18.8 1,480 6.1 2.6  Nimishil len Creek Below Canton 193 May-June 3 129 27.4 20.2 6,650	3 569 17. 7 4,050 4. 0 2. 3 Still-water Creek Above Dennison 165 May-June 3 657 19. 5 96	3 259 24.3 1, 450 889 4.1 6.2  Still-water Creek Below Uhrichs-ville 156.5 May-June 3 894 90 19.5 70	Rocky Fork Below Mans field 184

Table Mu-5 .- Muskingum River Basin: Selected laboratory data-Continued

River	Jerome Fork Below Ashland 180.5 June	Below Mount Vernon 155.5 June	Killbuck Creek Below Wooster 165 May- June	Wills Creek Above Cam- bridge 156.5 May	Wills Creek Below Cam- bridge 149 May	North Fork Licking Above Newark 107.5 April- May	Below Newark 101 April- May
Number of samples Flow in cubic feet per second: Same ling days. Minimum menth Water temperature °C. Coliforns per milliliter. Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	2 54 19. 5 161 4. 2 1. 4	3 628 20.8 337 7.2 2.2	3 390 18. 8 853 6. 3 2. 4	3 387 15. 3 103 7. 5 2. 3	473 19 1 16.0 551 6.4	2 38 13.5 4 10.6 2.3	3 373 11.0 313 9.2 2.1

Average dissolved oxygen results of 5.0 parts per million or less were found only below Canton and Mansfield and along the Tuscarawas River from Barberton to Massillon. High biochemical oxygen demands were observed below Barberton, Rittman, Canton, East Sparta, and Mansfield. Coliform averages of over 100 per milliliter prevailed throughout the basin at the time of sampling except along the main extremities of the Licking River and Wills Creek.

Moxahala Creek was found to be acid with pH values of 2.5 to 4.0 and phenolphthalein acidities as high as 290 parts per million.

Throughout most of the basin the alkalinity of the stream waters averaged between 100 and 200 parts per million, and the hardness was generally in the same range although below Barberton hardnesses of several thousand parts per million were found.

Stream flows were generally high during the time of the laboratory survey except in August and September. These stream-flow conditions undoubtedly tend to make the dissolved oxygen and biochemical oxygen demand results appear more favorable and the coliform results more unfavorable than would have been the case had the laboratory observations been made during the lew-flow and high-temperature months.

Brological summary.—The plankton volume of the entire watershed is fairly high, ranging from 1,000 to 10,000 parts per million in the main stream to somewhat less in the principal tributaries. The streams support a good mixed-fish population.

## HYDROMETRIC DATA

Forty stream-gaging stations have been maintained in the Muskingum River Basin for varying lengths of time and 34 of them are currently in operation. Many of these have been established recently in connection with the activities of the Muskingum Conservancy District. Table Mu-6 shows mean monthly summer flows during some of the low-flow years at eight selected stations.

Table Mu-6.—Muskingum River Basin: Monthly mean summer flows for years in which low summer flows have occurred

River	Tuscara-	Muskin-	Nimishil-	Stillwater
Location	was Near Dover	At Dres-	len Creek At North	Creek At Ubriehs
		den 91	Industry 199	ville
River miles above mouth of Muskingum Drainage area, square miles	1,398	5,982	175	160 367
Period of record	1924-39	1922 - 39	1922-39	1922-39
Year.	1932	1930	1932	1930
Junecubic feet per second	357	1, 330	44. 9	14.
July	486	717	52.0	4.
August do	258 188	483 544	28. 0 30. 0	
Year	1930	1932	1930	1939
Juneeubic feet per second	409	1, 180	55. 8	27
July, do	251	1,600	31. 4	15
August do September do	204	776 550	37. 5 33. 7	69. 5.
Beptember			00.1	0.
Year	1939	1939	1934	1932
Junecubic feet per second	789	3, 581	63. 5	31.
July do	374	2, 876 1, 622	40. 5 68. 3	42. 20.
Septemberdo	232	682	90. 9	. 5.
River	Kokosing	Killbuck	Wills Creek	Licking
1	At Mill-	Creek		
Location	wood	At Kill- buck	At Birds Run	At Toboso
River miles above mouth of Muskingum	143 472	141	127	93
Drainage area, square milesPeriod of record	1922-39	466 1 1924–39	730 1928–38	672 1922-39
Year	1930	1932	1930	1930
Junecubic feet per second	102	79 1	27 1	08
Junecubic feet per second	102 57. 7	79. 1 108	27. 1 9. 9	59.
June	102 57. 7 46. 4 58. 9			96. 59. 51. 53.
Junecubic feet per second_ Julydo Augustdo Septemberdo	102 57. 7 46. 4 58. 9	108 34. 7	9. 9 55. 5	59. 51.
July do August do September do June cubic feet per second	57. 7 46. 4 58. 9 1932	108 34.7 34.8 1930	9. 9 55. 5 9. 8	59. 51. 53.
July do August do September do June cubic feet per second July do	57. 7 46. 4 58. 9 1932 99. 0 82. 5	108 34. 7 34. 8 1930	9. 9 55. 5 9. 8 1932 55. 4 142	59. 51. 53. 1932
July	57. 7 46. 4 58. 9 1932 99. 0 82. 5 48. 9	108 34.7 34.8 1930	9. 9 55. 5 9. 8 1932	59. 51. 53.
July do August do September do July do September do Septe	57. 7 46. 4 58. 9 1932 99. 0 82. 5 48. 9	108 34. 7 34. 8 1930 106 52. 8 35. 6	9. 9 55. 5 9. 8 1932 55. 4 142 75. 7	59. 51. 53. 1932
July do August do September do June cubic feet per second July do August do September do Septemb	57. 7 46. 4 58. 9 1932 99. 0 82. 5 48. 9 46. 9	108 34.7 34.8 1930 106 52.8 35.6 39.1	9. 9 55. 5 9. 8 1932 55. 4 142 75. 7 24. 2	59. 51. 53. 1932 1932 170. 62.
July do August do September do July do September do Septe	57. 7 46. 4 58. 9 1932 99. 0 82. 5 48. 9 46. 9	108 34.7 34.8 1930 106 52.8 35.6 39.1	9. 9 55. 5 9. 8 1932 55. 4 142 75. 7 24. 2	59. 51. 53. 1932

¹ From 1924 to 1930 station was at Layland, ⁷ miles downstream, drainage area, 507 square miles.



Proposed stream control.—Three reservoir sites, in addition to the 14 already used, have been studied by the United States Engineer Department in connection with the authorized program for flood control on the Ohio River and its tributaries. These sites are on Killbuck Creek, Wakatomika Creek, and the Licking River. The existing reservoirs are not being used at present for low-flow regulation. At those reservoirs with conservation pools, regulation is limited to the maintenance of conditions approximating those that prevailed before the construction of the dams. At those without conservation pools passage of low flows is unimpeded. The reservoirs could be used for low-flow regulation but the feasibility of such use is doubtful in view of existing recreational facilities which might be damaged by attendant fluctuations in reservoir levels.

### DISCUSSION

In general, the streams of the basin, except some of those in the densely populated northeastern part of the basin and a few receiving acid mine drainage, can be restored to relatively high standards of water quality with available treatment methods at a cost which seems justified by the prospective benefits. In the northeastern section of the basin high standards of water quality cannot be achieved generally at economically justified costs with available methods of treatment. Lower standards of quality adequate to prevent serious nuisance seem practicable. Completion of the mine-sealing program will effect further reductions in the acidity of the streams. The bulk of the acid load is from active mines which would not be affected until sealing activities are modified to bring acid from worked-out sections of active mines under control.

Primary treatment is indicated at 23 places and secondary treatment at 20 places as well as improvements or additions to 10 existing

plants.

Tuscarawas River.—The greatest concentration of population and industry and the most heavily polluted streams are in the northeastern part of the basin where Canton, Massillon, and Barberton are located. The larger communities in this area have sewage-treatment plants but the residual pollution after treatment, together with the industrial waste load, grossly pollutes the rather small streams that drain the area. The alkali plant at Barberton has the most far-reaching pollutional effect of any industry in the basin. The waste salts discharged increase the hardness of the Tuscarawas River to several thousand parts per million in its upper reaches and make the river throughout its length so saline as to render it undesirable as a source of water supply.

A paper plant manufacturing paperboard is located at Rittman where the receiving stream is very small. In spite of intensive efforts to reduce pollution which have resulted in recirculation of over 80 percent of the wastes and almost 90 percent reduction in the biochemical oxygen demand loading, the receiving stream is still heavily polluted. Steps should be taken to reduce the waste load further, after which continued effort to develop more efficient pollution-control

measures is amply justified.

The Barberton and Massillon sewage treatment plants provide only partial treatment and although the quality of the Tuscarawas River could be improved by more refined treatment, the additional expenditure does not seem economically justified until effective steps are taken to abate industrial pollution. Present water uses along the upper Tuscarawas do not demand very high standards of water quality.

At Canton the sewage-treatment plant, though probably adequate to treat the municipal wastes, is bypassed frequently because of breakdowns in the long trunk sewer leading to the plant. Methods of insuring the continuous flow of wastes to the plant are being studied and corrective measures should be undertaken quickly. It may be found desirable to construct a new plant nearer the city.

At New Philadelphia, Dover, Dennison, and Uhrichsville stream flows are higher and primary treatment of sewage and removal of settleable solids from industrial wastes should suffice to maintain

satisfactory stream conditions.

Muskingum River.—At the communities along the Muskingum, where sewage is being discharged untreated, stream flows are large enough to permit the disposal of wastes with only primary treatment. At Zanesville, Dresden, and Coshocton primary treatment of sewage and removal of settleable solids from industrial wastes should be adequate.

Three of the four paper plants, which account for two-thirds of the oxygen demand load from industrial wastes, manufacture strawboard and are located on the Muskingum River at Coshocton and Dresden where stream flows are relatively large. Recirculation systems or other measures to eliminate the discharge of settleable solids should be sufficient to maintain a satisfactory standard of water quality.

Miscellaneous pollution.—In spite of the relatively new and complete sewage-treatment plant at Mansfield, the receiving stream, Rocky Fork, a tributary of the Mohican River, is heavily polluted. General plans for the correction of the situation have been prepared

involving additional sewers and increased plant capacity.

At Newark, on the Licking River, and Cambridge, on Wills Creek, secondary treatment is indicated. Plans and estimates have been prepared for a complete treatment plant at Newark. Secondary treatment is also indicated at certain small communities where wastes are discharged to streams which are practically dry during a considerable part of the year.

A large number of small cheese plants are located in the area drained by Sugar Creek and Killbuck Creek. Only a few of these are accessible to municipal sewers and a number of small industrial-treatment

plants will be required.

Low-flow regulation.—Cambridge, on Wills Creek, is the only community requiring secondary treatment located below one of the existing or proposed flood-control reservoirs. The Senecaville Reservoir, about 30 miles above Cambridge, has the largest conservation pool of any of the Muskingum conservancy district reservoirs. If the entire conservation capacity were used for low-flow control, it could provide a flow of 100 cubic feet per second at the reservoir and somewhat more than that at Cambridge (see table Mu-6) during the dryest year of record. Use of the entire conservation pool for flow regulation does not seem feasible in view of the recreational and other

development which has taken place at the reservoir. These developments require a reasonably constant reservoir level during the summer season and operation for flow regulation would conflict with this requirement. The determination of how much, if any, of the conservation storage might justifiably be used for flow regulation will require an appraisal of the damages which would be caused by fluctuating the reservoir level during the low-flow season.

Table Mu-1 shows the estimated cost of the suggested pollutionabatement program, of the work done to date, and of programs for

primary and for complete treatment of all wastes.

Table Mv-7.—Muskingum River Basin: Ohio River pollution survey laboratory data—Summary of individual results

	Hardness, parts per million	# 2 # 1   1   1   4   1   1   4   1   1   1   1   1   1   1   1   1   1   1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	180 164 176 290	220	204	310	200 196 256	184		1, 160 620 1, 900
	Alkalin- ity, parts per million	153	174	168	127	160	182	1 1	240	440	122
	Turbid- ity, parts per million		15	27. 553 17.	23	22	32	SE 85 38	25	20	4 65 28 28
	Hď	1.1.1.1. 1.01410	7.9	7.7.7.	7.5	101000	7.7	7,7,7	7.000	7.6	27.70
Coli-	norms, most probable number per milli-	46 240 240	<del>\$</del>	1, 100	240	250	93 24, 000	230 430 11,000	15,000	36	24 460 240
5-day bio-	chemical oxygen demand, parts per million	3.0 1.0 1.4	3.7	.4774	1.7	30.00	24.7	15.0	7.27.	12.7	21.2
i oxygen	Percent Satura-	97.5 74.6 68.3 75.0	119.0	76.8 71.7 80.9 132.1	90.5	95.8 80.7 112.0	74.7	59.4	74. 1 25. 5 65. 1	88.8	78.1
Dissolved oxygen	Parts per million	%7.9; 640-1	10.6	6.4	80.00	10.2	7.4	10 4.10 0 & 80	96.44	රාග්ස	27.00
	Temper- ature ° C.	22. 0 16. 0 22. 5 18. 5	21.5	16.5 21.5 18.0 21.0	16.5	22.5 25.5 20.5	16.0	16.0 23.0 18.0	23. 5 19. 0 22. 0	21.0 25.5 32.0	25.0
A CONCORD	discharge, cubic feet per second	133	41	13 27 31 4	15	41 22 7	26	26	1 4 9	206 521 25	92%
	Date	3, 1940 16 3, 1940 16 10, 1940 y 12, 1940	ty 22, 1940	3, 1940 1e 10, 1940 y 12, 1940 sy 22, 1940	3y 28, 1940	ne 5, 1940 ne 10, 1940 1y 22, 1910	ne 3, 1940 1y 22, 1940	ne 3, 1940 ne 10, 1940 ny 28, 1940	ne 5, 1940 no 10, 1940 ay 22, 1940	16 3, 1940 16 10, 1940 1y 22, 1940	ne 3, 1940   ne 10, 1940   y 12, 1940
		May June July	- May	June June July May	- May	June June May	June	June June May	June June May	June June May	June July
	Mileage from mouth	MuTStx 224	MuTStx 221	do do do Mu/FStx 220.5.	MuTCh 223.5	do MuTCh 220.5.	MuTCh 217.5	do do MuT Chi 229.5	do do MuT 223	do NuTWo 219	do do do
	Sampling point	River Styx, above Wadsworth, Ohio Do Do River Styx, 2½ miles west of Wadsworth, Ohio	River Wads-	Do., Do., Do., Richard Styx, 15 mile above Rittman,	Chippens Creek, 2 miles below	Chippewa Creek, 18 mile south of	Chippewa Creek, 2 miles below Ritt-	Do Do Little ('Hippewa Creek, ½ mile below Orreille ('Dia)	Do Do Tuscarawas River, 1½ miles above	Molf Creek, 200 feet above mouth, balance Berbarean Ohio.	D0.

2,250		1, 800	D 7 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		, , , , , , , , , , , , , , , , , , ,	330	1, 470	164 322 72	120	108		156	9644.99
340	<b>F9</b>	156	126	156	158	136	121	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	71	280	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87	
	101	33 42 21	12		27.5		7	250 250 35	53	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45	222
	00 17 130 00 17 130	8555 0544	6:1.7.	7.1.7. rerere	12,12,12 10,10,10	7.1.7. £ 60.60	5.7.7.	101111		7.7	7.2	50	500000 50000
	2, 400	36 2,400 930 930	230 3840 1,500	1,500 11,000	280 280 280	240 230 930	2, 400	240 750 43	240		<b>8</b> 8	4,600	9,300
	5.3	1.4.0 0.00 0.00	610160 610160	400 400	1.01.01 10.00	2.1.8	1.3.9	61.60		1.0	8.6	50.	80.1.1.1. 10.0.0.4
	50,5 15,5 42,9	60.0 41.9 5.3 29.1	47.4 36.9 20.4	24.5 41.8 37.5	37.4 61.7	109.9	89.7 46.9 75.1	113.8 46.3 90.6		90.0	89.5	74.4	90.9 96.0 74.3
		හ. ප්රාද වෙනවන	क्षे छ छ। का छ छ।	64.44 81-0	4.60.00 00 20.00	10.4.2	80 00 00 00 00 00 00 00 00 00 00 00 00 0	3.8		7.9	80.00	7.3	89899 1-004
	25.5 23.5 27.5	20.0 25.5 23.0 14.0	19.0 21.0 12.5	18.5 21.5 12.5	19.0 21.5 11.5	19.5 22.5 12.0	19.0 25.5 13.0	19.0 25.5 25.0		17.5	17.0	16.5	23.5.5.0
50	69 60 20	206 521 69 139	131 1, 220 139	1,220	1,400 1,400 173	1,520 1,520 173	1,520 1,520 173	1, 520 37	50	33.72	30.00	39	1837
May 22, 1940 June 3, 1940	25.20	June 3, 1940 June 10, 1940 July 12, 1940 May 17, 1940	May 20, 1940 Jene 13, 1940 May 17, 1940	May 20, 1940 June 13, 1940 May 17, 1940	May 20, 1940 June 13, 1940 May 17, 1940	May 20, 1940 June 13, 1940 May 17, 1940	May 20, 1940 June 12, 1940 May 17, 1940	May 20, 1940 June 12, 1940 June 11, 1940	2.1,	May 29, 1940 June 6, 1940	June 11, 1940 May 29, 1940	May 24, 1940	May 29, 1940 June 6, 1840 June 11, 1940
MuT 218.5	17.	do 60	do	do do MuT 202.5	do do MuT 197	do do	do	do	MuTSaC1309.8	MuTSaS 211	MuTsas 210	MuTSa 208	do do do Xu T Sa 205.5
Thsearawas River, 15 mile above sewage plant, Barberton, Ohio.	Do Do Tuccarawas River, I mile below sew-	age pant, respection, onto.  Do  Do  Do  Tryscarawis River, 1 mile above	Caral Fullon, Onio.  100 100 100 100 100 100 100 100 100 1	Tusentwas River, 3 miles above	Tuserraws River & mile above sew-	Tuscarnas River, city limits above	Tuscarine, Onio.  Tuscarine River, 2 miles below	Clear Fork of Sandy, Creek, 1 mile	Clear Fork of Sandy Creek, 1/5 mile above Minerva, Ohio.	Still Fork of Sandy Creek, 2 miles above Minerya, Ohio.	Still Fork of Sandy Creek, 1 mile	Sandy Chinarya Ohio below disposal	Sandy Creek, 1½ miles above Mai-

Table Mv-7,-- Muskingum River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

			Average		Dissolved oxygen		6-day bio-	Coli-		7,4	A STOOL	
Mileage from Date mouth	Date		discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion	oxygen demand, parts per million	most probable number per milli- liter	Hd	ity, parts per million	* ped	Hardness, parts per million
MuTSaP 205.5 May 24, 1940	May 24, 194	0	11	16.0	7.	75.6	2,7	240	7.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41	T S S S S S S S S S S S S S S S S S S S
MuTSa 201 May 24, 1940	June 11, 19, May 24, 19	99	101	23.0	7.6	78.3	1.6	988	7.2	23	08	200
do June 11, 1940	June 11, 19 May 24, 19	99	133	24.5	7.5	80.6	1.7	150	7.2	52	105	74
MuffSa 197dodo.	do	1	364	14.5	00	81.0	1.7	43	6.9	37	48	232
iE 211.5 May 21,	21,	0	1	19.0	9.6	102.6	लं	93			152	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
dodo	20,20	000	136	23.0 18.0	11.2	104.5	4.0.0		1111	22	116	400
do do May 29, 1940 do MuTNIM 206.5 May 21, 1940	21, 28,	000	16 13 13	17.5 23.5 18.5	10.2	53.5 119.2 107.9	i	110	9.7.8	200	169	330 280 330
	29,	000	196	16.5 24.0 15.5	80 80 C	89.4 114.3 89.9	1.0	. 93 83 93	87.7.	^{शि} ळ ग्र	130	280 270 340
do d	29, 29, 29, 29,	1940 1940 1940 1940	20 12 32 32 32 32	16.0 24.0 20.0	0.00	99.6 123.0 76.2 60.7	14.7	0000	7.5 0.7.7 0.7.0	42 150	196	310 250 450 440
i 193 May	21,	90		23.5		71.4	. 21.0	4, 600	6.7.	. 18	5 1 0 2 5	340
do	12°0,20	999	171 125 13	16.0 22.0 15.5	\$0 ii \$0	52.2 14.0 82.7	නු ඇ 44 ගෙන ලා	360 15,000 240	7.2	14	80	340
dodo June 7,1940	June 7, 19 June 11, 19	940	126	22.0	84.	116.7	က်ကဲ	200	0.7.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

				OHI	O RIV	ER	POLI	1011	ON C	ONTR	OTI		
112	76	270	664	112	740	96	116	108	96	75.	200	188	
57	118	128	128	131	55	-24	49	37	80 82	114	118	688	
160	14	06	2	75	310	14	10 22 22	29	32	ES 20		143	
7.1	3.7.7.	7.7.7.	8.7.0	7.1	00000	4.0	7.5	7.5	6.7.7	40.07	2.7.7.	7.2	7.1
2, 400	36 430 93	230 24 24	460	240	4, 600	75	430	91 240	43 243	43 150 (c)	110	240	1, 100
14.9	1.7	1.6	1.19.	27-	1.2.1	1.2	10.00	3.7	. 64.H.	1.0	7.4.1	E 4.63	1.5
62.8	78.4 99.0	80.8 79.6 93.2	106.0 51.7 126.0	84.5	123. 5 44. 7 96. 7	97.5	115.2	95.3	99.6 89.0 93.3	93. 1 91. 9 82. 8	83.0 75.9 83.4	83.0 76.5 116.8	96.8
6.3	10.9	10.4	10.1	10.01	3.5	8.8	10.5	⊕ ⊕ ∞ ∞	9.7.9	80,17.00	00 00 00 10 00 11	7.0	8.80
15.5	25.5 22.5 19.0	14.0 22.0 10.5	18.0	20.5	18, 5 28, 0 15, 0	20.5	20.5	21.0	21.5 25.5 16.5	22.0 25.0 17.5	14.5 21.0 17.0	14.5 20.5 20.0	14.5
20	8 18 440	. 4,620 1,160	362	36	362	7 5 7	-10	11.2	12	111 16	801 116 46	801 116 486	5,420
24, 1940	7, 1940 11, 1940 23, 1940	31, 1940 7, 1940 17, 1940	20, 1940 13, 1940 20, 1940	13, 1940	20, 1940 13, 1940 27, 1940	4, 1940 27, 1940	4. 1940 27, 1940	4, 1940	4, 1940 12, 1940 27, 1940	<b>4, 1940</b> 12, 1940 23, 1940	31, 1940 7, 1940 23, 1940	31, 1940 7, 1940 23, 1940	31, 1940 7, 1940
May	June June May	May June May	May June May	June	May June May	June	June	June	June June May	June June May	May May	May June May	May
MuTCol 195	do do MuT 170	do Mut'su 185	do	do MuTSu 183	do do MuT'susW 190	MuTSuSG 190	do do Muffsws W 187.5.	MuTSuS 191.5	do MuT'SuS 171.5	do do MuT'Su 174.5	do do Mut'Su 171.5	do do MuT 166	dodo
Indian Fork Creek, I mile below	Tusenawas River, 2 miles above	Do. Sugar Creek, 1 mile above Brewster,	Elm Run, # mile above Brewster,	Stagar Creek, 1 mile below Brewster,	Wahut Creek, 24 mile south of Wal-	Goose Creek, 22 mile north of Walnut	Walnut Creek, 2½ miles below Wal-	South Fork Sugar Creek, 1 mile above	South Fork Sugar Creek, 3 miles be-	Sugar (Prok. ) mile above Stras-	Sugar Creek, 134 miles below Stras-	Durk, Ohio. Do. Tuscarawas River, city limits above	To This delibration of the control o

TABLE MU-7.—Muskingum River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

J	)		(	OHIO	EUT A TELL	n Pol	LUIIC	M CO	MINC	,11		
		Hardness, parts per million	328	236 260 100	96	112	132 98	220	508	8 8 9 5 0 9 5 0 9 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000	156
	11-31:	Alkalin- ity, parts por million	110	1 1 44 6 1 4 6 1 6 6 1 7 7 1 1	9 1 74	9	73	92		72	188	122
	7	ity, parts	12	110	29	98	28	10	12	33	22	
		Hd	7.5	27.7.	1.7.7.	7.7.7. 04.03	7.67.	1.1.1. 10.4.0	F. F. F.	2.4.7.	27.7.5	2,5;5; 20,10;10
	Coli-	most probable number per milli- liter	240	93	110	240 43 23	88.87	400	2884	446	<del>2</del>	460
	5-day bio-	oxygen demand, parts per million	1.8	12.00	-iai-i		1.0	<u> </u>	11-16 7-4-63	040	400	∞ ± ° ∺
	Dissolved oxygen	Percent satura- tion	96.1	84.0 90.9 101.5	88.3 0.0 88.3 0.0 0.0	80.7 85.8 87.0	79.8 76.9 88.9	99.5 85.1 90.1	87.5	100.7 86.2 85.9	978.3	80.9 76.9 82.1
	Dissolve	Parts per million	0.0	%.7.0 7.0 4.0	00 F- 00 4 70 C	4.62.00	00,00,00 €1 60 41	©; ∞; ∞; ← ∞ +υ	9.00.00 H 00.44	සා ගේ ශේ පා ගේ ශේ	တ်တဲ့တဲ့	227
		Temper- ature ° C.	19.5	14.0 23.0 19.5	14.0 24.0 19.5	14. 0 25. 0 20. 5	14. 23. 5. 5. 5. 5.	20.0 14.0 18.5	20.0 15.0 18.5	20.0 14.5 17.5	19.5 13.0 24.0	21. 5 16. 0 22. 5
	Average	discharge, cubic feet per second	486	5, 420 1, 280 274	138 297 261	1,330 380 535	1,470	1, 320	1, 320 1, 200 1, 840	1,370 1,250 1,880	1, 400 1, 280	400
		Date	May 23, 1940	May 31, 1940 June 7, 1940 May 23, 1940	May 31, 1940 June 7, 1940 May 23, 1940	May 31, 1940 June 7, 1940 May 23, 1910	May 31, 1940 June 7, 1940 May 8, 1940	May 14, 1940 May 16, 1940 May 8, 1940	May 14, 1940 May 16, 1940 May 8, 1940	May 14, 1940 May 16, 1940 May 8, 1940	May 14, 1940 May 16, 1940 June 18, 1940	June 19, 1940 June 20, 1940 June 18, 1940
		Mileage from mouth	MuT 159	do Mul'LSti 163	do MuTBSt 165	do MuTBSt 156.5	do do MuT 131	do do MuT 128.5	do do MuT 120.	do MuT 110	do. MuWaMoBl 296.	do MuWaMoBl 202.5
		Sampling point	Tuscarawas River, 31/2 miles below	Do Do Little Stillwater (reek, 3 miles above Domical Ober 1	Do D	Do.	Do D	Do. Tuserawas River, ½ mile below	Do	Do. Tussaras River, 500 feet above con-	, y	ork, 1 mile below Shelby,

120	180	196	124	152	164 142 128	f   f   f   f   f   f   f   f   f   f	152	188	224 176		180	116	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	152	172	111	108	118	126	125		124	. 190	162	168	
390	53	233	2,200	155	143 75 87		350	17	12		13	30	1 d 3 d 6 d 0
7.1	5.4	7.7.7	7.7.	7.7.7	7.7.7.	7.5	77.7.	7.7.6	6.6	7.00	1.1.1. 00:10:00	27.7.	12.00
2,400	4, 800	460 480 430	46,000	460 460 430	430 430 120	1, 100	9 460 150	48 460 230	91	44	24 240 93	2, 400 23	240
3.1	1.6	11.2	30.7 3.1 2.6	1000 1000 1000 1000 1000 1000 1000 100	200	4.00-1	. <b>64</b> 62 70 0	1:0 1:3	4.0.1	10		0.1. 0.0.	, si .
59.7	65.5	7.0.7.	34.4 77 6 69.3	65.3 68.4 68.5	67.5 68.1 88.8	86.4 79.3 84.3	84.9 76.6	81.6	28.6	90.0	86.0	82.8 76.6 83.6	90.0
5.4	. 6.6	5.7	0.7.0	6.6.4	0.9.7.	2,7,7, 0,4,0	7.00.7	00 in in in	8.4.	8, 2	7.00.7.	4.7.	0.00
20.5	15.5	22.0 21.0 19.5	22. 5 20. 5 23. 5	21.5 19.0 21.5	21.5 19.0 21.5	21.0	20.0	21.5 16.0 22.0	17.0	20.5	21.0	21.0	18.5
12	17	23 66	33 95 471	426 459 471	426 459 145	131 366 145	131 366 78	33 31 56	130	55	178	140 178 650	825
June 19, 1910	June 20, 1940 June 17, 1940	June 18, 1940 June 19, 1940 June 17, 1940	June 18, 1940 June 19, 1940 June 14, 1940	June 17, 1940 June 20, 1910 June 14, 1940	June 17, 1940 June 20, 1940 June 14, 1940	June 17, 1940 June 19, 1940 June 14, 1940	June 17, 1940 June 19, 1940 June 14, 1940	June 18, 1940 June 20, 1940 June 18, 1940	June 20, 1940 June 14, 1940	17,	June 18, 1940 June 19, 1940 June 17, 1940	June 18, 1040 June 19, 1940 June 18, 1940	June 19, 1940   June 20, 1940
MuWaMoB1201.	MuWaMoBIR 190	do MuWaMoBIR 184	do MuWaMoBi 163.	do MuWaMoBl 161.	do. MuWaMoCl 180.	do MuWaMoCl 174.5	do MuwaMoJe 183.	do do MuWaMoJe 180.5.	MuWaMoJe 175	MuWaKoN 161.5.	do do MuWakoN 166. 5.	do MuWaKo 161.5	do
Black Fork, 21/2 miles below Shelby,	Rocky Fork, 1½ miles above Mans-	Do Do Do Chief Specky Fork, 2½ miles below Mans-	Do Do Do Nest Fork, west edge of Loudenville,	Ollo. Do. Do. Do. Black Fork, 1¼ miles below Louden-	Do. Do. Do. Clear of the limits Belleville. Onto the Chart.	Do D	Do, Do Terone Fork, 1½ miles above Ash- land Ohio,	Do Do Do Jerome Fork, 2 miles east of Ashland,	Jeonie Fork, 4 miles below Ashland,	North Branch, Kokosing River, 15 mile above Frederickstown, Ohio.	North Branch Kokesing River, 1	Notes of River, northwest city limits	100 Do

Table Mu-7.--Muskingum River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Hardness, parts per million	180	160	140	116 96 148	140	250	204 124 148		156	200	240
	Alkalin- ity, parts per million	157	109	116	115	201	205	126	112	113	123	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ity, parts per million	32	210 42	9	60 % A	32	65	77	28	25	10	æ
	Hď	7.8	0.0.4	5.20	0.7.7.	7.7.7.	6.7.7.7.	540	7.5	0830	2,000	2.0
Coli- forms,	most probable number per milli- liter	430	430 150 24	46	24 24 430	1,200	110 93	1, 100 240	230 430	230	000	43
5-day bio-	oxygen demand, parts per million	2.8	1.81	1.3	. H. c.	1:0:0	1.1	1.2	1.9	00 00	& e.j −; 4 e.g /~	2.5
Dissolved oxygen	Percent satura- tion	76.5	80.6 83.4 87.5	90.6	104.2 90.2 73.0	62.9 65.0 99.1	95.6 55.8 109.2	95.4 79.7 83.3	83.5	7.86 66.7 4.2 2.2	108.4 89.7 85.1	95.6
Dissolve	Parts per million	6.8	27.00	10.4	4.0.4.	80 80 90 80 80 90	8.8 10.5	9.1 7.1 8.0	7.0	7.10.0 9.00	0000	98.
	Temper.	21.5	21. 5 19. 5 15. 0	22.0	22.5	20.0 21.5 17.0	19.5 22.0 17.5	18.0 21.5 17.5	20.5	20.5 24.5 17.0	20.0 14.0 15.5	19.0
А тегаде	discharge, cubic feet per second	650	825 408 103	00 4H	111	120 890 4	108	30 484	348	2,070 1,750	1, 490 1, 260 3, 620	2,810
	Date	June 18, 1940	June 19, 1940 June 20, 1940 May 28, 1940	June 5, 1940 May 28, 1940	June 5, 1940 June 12, 1940 May 28, 1940	June 12, 1940 June 12, 1940 May 28, 1940	June 5, 1940 June 12, 1940 May 28 1940	June 5, 1940 June 12, 1940 May 27, 1940	June 4, 1940 May 27, 1940	June 4, 1940 June 12, 1940 May 8, 1940	May 14, 1940 May 16, 1940 May 8, 1940	May 14, 1940
	Mileage from mouth	MuWako 155.5	до Ми Wa Ki 169	MuWaKiL 171	do MuWaKi 165	do Muwakish 163	do do MuWaKiSh 161.5	do do MuWaKi 153	MuWaKi 146	do MuWa 113	do Mu 107	do
	Sampling point	Kokosing River, 2 miles below Mount Vernon. Obio.	Do Do Killbuck Creek, 1 mile above Wooster, Obio	Do Little Apple Creek, 34 mile above Wooster. Ohio.	Do. Killbuck Creek, 2½ miles below Wooster, Ohio.	Do. Do. Shreve Creek, city limits above	Do. Do. Shreve Creek, ½ mile below Shreve, Obio.	To To Killbuck Creek, 3½ miles above Mil- lershurg. Ohio.	Do Killbuck Creek, 2 miles below Millers-burg. Ohio.	Do. Do. Walhending River, 4 miles above Coshocton. Ohio.	Do Do Muskingum River, 1 mile below Coshocton. Ohio.	Do.

	OHIO	RIVER	POLLUTI	ON CO	NTROL		
132	176	192	148 140 152 140	96 170	140 108	230	# E E E E E E E E E E E E E E E E E E E
88 85 95 115	108	104	114	54	23	113	
62 12 23 24 24 25 24 24 24 24 24 24 24 24 24 24 24 24 24	27 750 35	22 17	13 20 45	550	11.5 88	4	
00 ROW NOW	100 mmm	1.1.1. 1.1 0.00 10.4	:: 1:::: 1043		1616 1616 1992 999		7. T. 80 10.
(E) 2	240 46 240 23 23	£ 4 60 00 00 00 00 00 00 00 00 00 00 00 00	93 460	1, 100	4 42 40	4 421	61-44
1 . 1 H988	1.00 811. 416 000		13.9	2.0	40% 520		2.1.
8. 311 8. 31. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	2,4% 26,0% 2,4% 2,4% 2,4% 2,5%		20. 20. 24. 20. 20. 24. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	50.03	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		94. 2
0 8000 F000 0 8001 600	ಯದ್ದರು ಹಿಳ್ಳ ಸಹದ ಆಯದ		%		තින සිට වෙන්න් නිට්	က ကလေတ တံ က်းတံတ်	10.9
6. 0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	15.5 16.0 16.0 13.5		15 5 174 0 174 0 175 0		44. 85. 85. 85. 85. 85. 85. 85. 85. 85. 85		7.0
108	867 120 625 415 25	218 m	150 4 80 4 W		19, 400 13, 000 19, 900 19, 400 13, 000		98
7, 1940 13, 1940 7, 1940 10, 1940 10, 1940	13, 1940 14, 1940 9, 1940 15, 1940 16, 1940 7, 1940	0,01- 0,	9, 1940 8, 1940 9, 1940 13, 1940 9, 1940	15, 16. 30,	1, 1940 3, 1940 30, 1940 1, 1940 3, 1940	9, 14, 30, 30,	3, 1940
May May May May May May	May May May May May May	May May May	May May May May May	May May Apr.	May Alt.	May May May Apr.	May May
MaWis 181.5  do  MaWi 166.5  do  do  MaWi 162	do do MuWi 156.5. do MuWiL 162.	do MuWiCr 165	do do MuWi Cr 162 do do MuWi 149	do	do	Mu 83.9 do do MuLN 120.5	do
Senera Fork, Wills Creek, Senera- ville Dans. Do Wills Creek, Manile above Byes- ville, Otio. Do Wills Creek, I mile below Byes- ville.	Ohio. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Cambridee, Ohio. Do. Crooked Creek waterworks intake above New Concord, Ohio. Do.	Crooked Creek, 14 mile below New Concord, Ohio. Do. Do. Wills Creek, 15 mile below Cam-	hridge, Ohio. Do. Tho. Muskingum River. 1 mile east of Dreeden. Ohio.	Do Do Muskineum River, 5 miles below Dresden, Obio.	Muskingum River, t'. S. Toek No. 11, above Zanesville, Ohio. 10, 10, 10, 10, 10, North Fork Lieking River, 115 miles	above Utica, Ohio. Do Do I Less than one.
Seneca For Ville Da Do	Ohio. Po. Wills Creek. Pridge, Ohio. Do. Loatherwood	Crooked C above Ne	Crooked Concord Do.	heidee, Ohio. Do. Nuskingum Riv. Dreeden. Ohio.	Muskingum Riv Dresden, Obio.	Muskingu 11, abov Do Do	Do

TABLE MU-7,- Muskingum River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

			Average		Dissolved oxygen	oxygen	5-day bio-	Coli-		-	4	
Sampling point	Mileage from mouth	Date	discharge, cubic feet lier second	Temper-	Parts per million	Percent satura- tion	chemical ovygen demand, parts per million	most probable number per milli- liter	Hď	ity, parts per million	Alkain- ity, parts per million	Hardness, parts per million
North Fork, Licking River, above	Mul.N 119	Apr. 30, 1940	44	14.5	9.5	92. 6	1.4	15	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	173	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
North Fork Licking River, 2 miles	Mul.N 117	May 2, 1940 Apr. 30, 1940	39	9.5	10.7	93.4	1.0	110	11:10	10	174	224
North Fork Licking River, water	do MuLN 107.5	May 2, 1940 May 3, 1940	888	97.00	10.5 11.4 10.6	89.3 95.2 91.0	9:10	460 280 8	666	6 4 1 4 8 7 8 8 1 8 8 1	1	8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 9 0 0 1 0 0
Raccoon Creek, 1½ miles above	Mul.Ra 126	May 6, 1940 Apr. 30, 1940	80 44 44	18.0	10.5	110.5	41. 8181	6	7.7		172	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Do D	do MuLRa 122.5	May 6, 1940 May 6, 1940 Apr. 30, 1940	404	12.5 15.5	10.7	100.2 105.8 92.4	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	404	27.7		183	
John Cheek, Mile above Gran-	do Julka 114.5	May 6, 1940 Apr. 30, 1940	4.0103	12.5 16.5 14.0	10. 9.8 8.6	99.4	11.0	, 0H4	7.7		061	
Raccoon Creek, 3 miles below Gran-	do- do- MuLRa 109	May 1, 1940 May 6, 1940 Apr. 30, 1940	2000	13.0	9.1	85.6 103.7 89.5	1212	150	2:1:7:	50 10	190	190
ville, Onio. Do. South Fork Licking River, ½ mile	do do Mul.s 107	May 1, 1940 May 6, 1940 May 2, 1940	20 133	14.0 17.0 10.5	10.1	97.4 116.2 83.9	ન-જ <b>લં</b> જલં	<b>8</b> 8 4	1.001.	1	178	204
arove Newark, Onio. Do. Licking River, I mile below Newark,	Mul. 101	May 3, 1940 May 1, 1940	380	00.4. 10.10.	10.1	86.0	<b>୦</b> ର <b>ର୍</b> ଜ	240	7.7.	27		0 1 0 1 0 1 0 1 0 1 0 1 0 1
F Do Licking River, 3½ miles below	do	May 2, 1940 May 3, 1980 May 1, 1940	380 330 530	9.0	10.1	86.8 87.2 79.0	22.23	210 460 240	5.55	18	191	190
Licking River, 232 miles above Zanes-	do do Mul 79.5	May 2,1940 May 3,1910 May 7,1910	510 500 650	11,900	90.00	. 79.4 87.1 100.8	8. H	240 460 1	1:1:1: 0 x x,	19	187 13 168	280
VIIIC, Onito, 100 100	do do	May 9, 1940	520	14.0	9.0	92,2	20 44	75	20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	4

0 0 0 1 2	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1		:		:		1	:	:		4	98		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:		:			:		:	
0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		;	,		1		,		;	:		1			,	:		:	,		
0 0 2 0 0	1		:	23	105	35				1	:	320		10	:		1	252	10	45	11	9	-1	:		
4.6	00.		3.0	03 69 60	3.3	3.1	2.8	2.30	2.9	2.7	01	00:	2.5	60,	4.4	4.4	3.03	000			3.0	os oi	2.8	2.9	61	
£	2	ε		1	11	£	;		Ξ ====================================	(a)	0	29 :	(c) {	0	12	43	es	-1	(1)	£	- 67	~		2		ralized.
23.0	6 4.5			1.1	23.0	, c1,	2.5	2.3	21.5	.2.	2 1.5	20:0:4	2 1.1	1.1	- 61	22.0	2 2 3 3 1	1.3	1.6	21.6	21.0	100	1.0	21.9	21.4	Seeded and neutralized
95.1	90.1	90.1	90.3	98.4	88.6	93.7	90.0	89.6	91.0	81.6	91. 5	87.9	99.9	97. 2	9.6.9	91.9	93.8	82.5		79.9	87.9	92.5	85.1	82.2	75.4	1 Seeded
10.8	80.00	10.7		0.08		9.0	8.0	7.5	7.00	7.1	9.1	7.9	9.4	13.4	10.7	8.8	11.0	000	7.6	7.2	00°	7.8	6.8	7.1	6.5	
10.0	12.0	8.0	16.0	20.0		17.5	21.5	25.0	23. 5	23.0	16.0	21.0	18.5	2.0	11.0	12.5	10 00	16.0		21.0	17.6	25.0	27.5	23. 5	23.0	
322	581	167	67	49	51	26	ε	63	4	4	2	521	9	:	347	626	180	25	629	22	29	3	63	4	13	-
Apr. 16, 1940	18, 1940	24, 1940	27, 1940	5, 1940	24,	2, 1940	19, 1940	29, 1940	6, 1940	14, 1940	22, 1940	30, 1940	9, 1940	21, 1941	16, 1940	18, 1940	24, 1940	2		24, 1940	2, 1940	19, 1940	29, 1940	6, 1940	14, 1940	
. Apr.	Apr.	Apr.	May	June	June	July	July	July	Aug.	Aug.	Aug.	Aug.	Sept.	Jan.	Apr.	Apr.	Apr.	May	June	June	July	July  -	July	Aug.	Aug.	опе.
MuMx 87.5	do	do.	MuMx 88.0	do.	do	do	do	-do		do	op	фо	do	do	MuMx 85	-do	do	do	do	do	do	-do	-do	do	ф	1 Less than one
Moxahala Creek, 14 mile above	Do-	D0	Moxahala Creek, 1 mile above	Crooksville, Onio.		oQ pt.	Do-	Do.	Do	Do	Do	Do	Do	Do-	1 mile below	Crooksville, Ohio.	Do	Do	Do	Do	Do	Do	Do	Do	Do	

Table Mu-7.—Muskingum River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

demand, probable
parts per number million liter
1.8
.2 \ 460
7 60
Ξ
4
- 1
€ 
£
= {
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
€
160
23
0 {
6
0

150		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 7 8 9 9 9 9 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		300	176	288	93	87	172	1 1 2 1 4 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	02	689	67	
91 25 18	24	14	7	1	17	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	650	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	145	32	14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88.88	30	2 Amma A 4 Amma A 5 A	125	300	250	
4 000		2.9	2.00	00	3.0	00 6i	2.7	60	2.5	60	3.0	4.6	4.3	7.4	4.0.0	7.7.7		7.50	400		
₩ 4	£	63		© {	1	3		325	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	61	=	ε	ε	4	24 240 9	24 46 24 43	46	4.53	110	1,100	lized.
4.6.	2.1.0	i H	21.3	21.9	-i 27	22.5	2.3	23.0	00.4	1.6	1.1	-i-i	1.1.2	ici	1.22.1	. ci ci co ci co			20.5		Seeded and neutralized
91.3 82.5 84.0		87.5	74.8	74.3	79.4	75.0	67.1	81.8	78.0	100.1	88.1	86.6	93.8	97.9	94.5 88.5 88.4 88.4	95.3	99.5	96.4	94.1		\$ Seeded
10.2		00	6.5	6.0	6.8	6.4	6.4	4.4	7.3	13.5	8.4	0.6		00.00	0 0 0 0 0	9.6		9.5	2001-0		
10.5	22.0	18.5	22. 5	26.5	24.0	24.0	18.0	21.0	19.5	3.0	18.0	14.0	18.5	15.5	15.5 14.0 16.0	15.5	11.0	16.5	19.5		
209 83	64	33	(3)	00	4	9	63	672	00	1	278	215	195	7,150	6,000 5,200 7,150	6, 000 25, 200 25, 200	24, 800		10,600		
24, 1940 27, 1940 5, 1940	24,	2, 1940	19, 1940	29, 1940	6, 1940	14, 1940	22, 1940	30, 1940	9, 1940	21, 1941	7, 1940	9, 1940	14, 1940	7, 1940	8, 1940 9, 1940 7, 1940	8, 1940 9, 1940 16, 1940	18, 1940	27,	5, 1940	19,0,4	
May June	June June	July	July	July	- Aug.	Aug.	Aug.	- Aug.	Sept.	Jan.	May.	May.	May	May	May May May	May Apr.	Apr.	May	June June	July	опе.
do do do	op	do	do	op	do	op	do	do	do	- qo	, MuMx 73.5	do	ф.	Mu 71	do do Mu 67	do do Mu 49	do	Mu 48.5	do	do	1 Less than one.
Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Moxahala Creek, ½ mile above mouth	Do	Do	Muskingum River, 4 miles below	Do. Muskingum River, 7 miles below	Do Do Muskingum River, city limits above	McConnelsville, Ohio.	Muskingum River, ½ mile above	Do	Do	

Table Mu-7.-- Muskingum River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

U			
		Hardness, parts per million	111.
	Alkalin-	ity, parts per million	67 0121 62 02121 63 02121 64 02 02121 65 0
	Turbid.	ity, parts per million	88 251 155 160 170 180 180 180 180 180 180 180 180 180 18
	,	Ħq	ないいいいいい いいい いいいいいい いいいいいいいいいいいいいいいいいいい
	Coli- forms,	most probable number per milli- liter	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	5-day bio-	oxygen demand, parts per million	る ひなひみないひ ないみ するしみみみみみないさ せいしょうじょうしょしょう ひょう まちゅうきょうしょまさら うりめてりょうりょう
	Dissolved oxygen	Percent satura- tion	9.001 4.009 4.
	Dissolve	Parts per million	r. ფოფიკიქქე ფიკაფაფაკი ტემაფიციებაბი u იაცათათოთ დან მაფავიციებაბი u იაცათათოთ დანი მაფავიციებაბი
		Temper- ature ° C.	88 128 10 10 10 10 10 10 10 10 10 10 10 10 10
	Average	discharge, cubic feet per second	6. 6. 4. 4. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
		Date	July 29, 1940 Aug. 14, 1940 Aug. 22, 1940 Sept. 2, 1940 Sept. 2, 1940 Apr. 18, 1940 Apr. 24, 1940 Apr. 27, 1940 June 24, 1940 June 24, 1940 June 22, 1940 Aug. 36, 1940 Aug. 36, 1940 Aug. 36, 1940 Aug. 37, 1940 May 7, 1940 May 7, 1940 May 7, 1940 May 27, 1940 May 27, 1940 May 27, 1940 May 31, 1940
		Mileage from mouth	Mu 48.5 do d
		Sampling point	Muskingum River, ½ mile above MicConnelsville, Ohio. Do Do Do Do Muskingum River, lock wall at dam below McConnelsville, Ohio. Do Do Do Do Do Do Do Do Do

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																		4.			* * * * * * * * * * * * * * * * * * * *			
88	99	75	× 000	000	0.3	1.00	70	400	85	110	107	100	110	110	116	93	100	100	00	20/	200	105	100	201	124	131	134	197	00	00	69	20	28	88	104	98	10	18	26	85	Se Se	7.3	70	1 -	11	73	98	20	1	- 1	07	14	74	121	CO	0.0
750	420	370	077	1000	1001	240	0.10	00.	17	12	15	10	70	77	23	16	-1	- 0	77	133	12	19	200	01	74	×	100	14	\$ T	200	9/	55	28	31	42	06	07	200	07	35	65	55	96	3	40	35	35	110	1	27	45	35	35	25	1.40	14
- I-																																																								
1, 100	36	240	30	-0	n C	110	011	3	4	7	2		1 6	83	36		V	PF C	77 1	2	46	C	0	77	674	4	2	4	40,4	40	53	6	24	4	000	110	070	047	210	46	75	91	345	Or F	001	83	23	OFG	000	(%)	43	24	6	24	3	4
12.6	2.2	1.6		7.7	1.2	1:1			1.7	2.1	1.7	0 1	40	6.5	1.8	2.3	0	40	2.3	2.0	2.1	1 6	10	0.7	1.6	1.5	2.1	2	0.0	5.5	1.3	1.3	1.5	1.0	1	1 4	-	100	1.	1.2	1.8	1 4	100		1.3	6.	1.2	0.6	- 1	0.7	1.2	1.1	1.0	1.2	30	7.1
97.2	98.4	95.2	96.1	7.00.0	0.00	00.4	20.00	88.8	97.6	98.3	97.4	0 20	80.00	88.0	88. 5	6.66	2 00	99. 6	99. 0	0.58	92.6	02 4	1 .00	770	0.78	86.7	89. 9	00 3	0000	80.3	97.4	96.0	90.08	89.1	91 4	00 8	100.0	100.2	100.1	100.5	102.0	100 6	1000	100.3	20.7	80.8	88.8	8 00	0000	0.00	100.6	95.1	98, 4	97.3	0000	2.86
ာ က င် တင်																																																								
24.0	24.0	24.0	0.53	0.77	0.17	20.00	20.0	23. 5	24.0	24. 5	24. 5	0.40	0000	28. €	28. 5	29. 5	000	0.00	6.12	27.5	27. 5	0 26	20.00	21.0	21.5	25.0	25.0	2 16	20.00	23.0	22.0	22. 5	22. 5	20.5	000	10	-10	0,0	1.5	1.5	1.5	r		1.0	0.	2.0	10	٠ د		200	7. 5	0	1.0	4.5	O A	5.5
16, 100	18, 200	10,800	11,700	0,000	0,000	10,000	10, 100	0,3/0	4, 170	4,490	3, 730	000	0000	2, 500	5, 030	6, 450	0000	0,000	2, 080	1,620	1.950	1,470	1, 210	1,3/0	1, 220	2, 320	1,950	1 200	2,400	0, 490	6,890	3,640	2, 210	2 270	1 700	6 090	0.020	0,070	9.060	7,740	10,800	10 500	0,000	000 %	11, 700	9, 320	12,500	7 110	1, 110	000	9, 190	8,810	6.900	5, 710	2,47	5.550
12, 1940	,									,		, -	-, ,			-			٠,																					_	-			7	-	_						_	_	-	7 7	_
June	June	June	June	June	June	Julie	July	Sing	July	July	July	Testing	July	ann	July	VIII.	A state	trug.	Aug.	Aug.	A 11G.	4 130	-1112.	Aug.	Aug.	Aug.	Aug.	A TICK	Aug.	Aug.	Sept.	Sept.	Sent.	Nort	Cont	Ton	J'dil.	Jan.	Jan.	Jan.	Jan.	Ton	Ton.	Jan.	Feb.	Feb.	Mar.	Yfor	12014	A Lat.	Mar.	Mar.	Mar.	Mar.	TOTAT.	Mar
do	-do	do	op	do	00			do	do	do	070		00		do	مأن		an	do	do	do	do		- do	do	do	000	000	3.	ao	do	do	do -	90	000		do	op	do	do	do		do	an	op	do	do				do	do	do	do		do
												0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											· · · · · · · · · · · · · · · · · · ·								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Muschingmy Direct of dom No 1	dill faiver, U.z. dam avo. 1-							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
00	0	0	00	Do	00	000	10	-00	00.	Do	Do	1	D0	D0	00	00		000	Do	1)0	Do	Thomas	170.	170	00	Do	00	00	20	0	Do	Do	Do	Do	000	- interest	SHIP.	70.	100.	10.	00	00	000	70	100	00	00	100		10-	00.	Do	Do.	Do		00

HOCKING RIVER BASIN 469

CONTENTS

	Page
Contents	471 473 474 475 476 478 478
LIST OF TABLES	
H-1.—Cost estimates of remedial measures H-2.—Surface water supplies H-3.—Sources of pollution H-4.—Industrial wastes (omitted) H-5.—Selected laboratory data H-6.—Monthly mean summer flows H-7.—Summary of laboratory data	474 475 476 $\bar{477}$ 478 480
LIST OF FIGURES	
H-2.—Chart—Sources of pollution and selected laboratory data	476
(Note.—For maps of this basin see Muskingum River Basin.)	

471

HOCKING RIVER BASIN 1

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Hocking River Basin (area 1,185 square miles) lies in the hilly country of southeastern Ohio. Of the total population of 113,000 about 40 percent is in urban communities. Coal mining and agriculture are the principal industries. None of the 16 public water supplies are taken from polluted streams. Some 48,000 people are served by sewers and about half of the sewage is treated. A number of the tributary streams are strongly acid from mine drainage. Although mine sealing has reduced the acidity, a high degree of restoration of these streams may be delayed until mine-sealing activities are modified to bring worked-out sections of active mines under control.

The remaining pollution problems of the area can be effectively dealt with by known methods of waste treatment. Flow regulation by proposed flood-control reservoirs, while desirable, would not produce

appreciable tangible benefits.

CONCLUSIONS

 All public water supplies are from underground or upland impounded sources and are not important factors in pollution problems.

(2) Sewage from 48,400 people and industrial wastes with a population equivalent of 8,600 are discharged to sewers. About half of the sewage is treated. The industrial wastes can be treated in municipal treatment plants.

(3) Laboratory results indicate stream conditions to be generally good in this basin. Pollution problems occur below Lancaster, Logan,

and Athens.

(4) Primary treatment of all wastes now discharged untreated to the main stream should be sufficient to maintain satisfactory stream conditions. Pending further control of acid mine drainage, primary treatment is probably the limit now justified on certain acid tributaries.

(5) Secondary treatment will be required to prevent local nuisances below significant sources of pollution on the remaining minor tribu-

taries.

(6) The mine-sealing program should be revived and continued as far as practicable. Drainage from active mines constitutes an important source of acid.

¹ For maps of this basin see Muskingum River Basin.

(7) The estimated comparative costs of pollution-abatement programs, as summarized from table H-1, follow:

Treatment	Capital cost	Annual charges
Existing Suggested additional	\$840,000 620,000	\$70, 000 55, 000

Estimated additional costs over existing charges of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual charges
Primary, all places	590, 000	50, 000
Secondary, all places	760, 000	75, 000

Table H-1.—Hocking River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

	Num	ber of	D1-	G24-1	Annua	l charges (dollars)
	Pri- mary	Sec- ondary	Popula- tion connected to sewers	Capital invest- ment, dollars	Amortization and interest	Opera- tion and mainte- nance	Total
Existing sewage treatment	2	2	24, 000	840, 000	50, 000	20, 000	70, 000
Suggested minimum correction: Sewage treatment plants	5	2	23, 400	380, 000 240, 000	27, 000 11, 000	17, 000	44,000
Total Comparative cost: Primary treatment all waste Secondary treatment all waste As suggested				620, 000 590, 000 760, 000 620, 000	35, 000 35, 000 50, 000 38, 000	17, 000 15, 000 25, 000 17, 000	55, 000 50, 000 75, 000 55, 000

DESCRIPTION

The Hocking River drains 1,185 square miles of hilly country in southeastern Ohio and joins the Ohio River 15 miles below Parkersburg, W. Va. The populations of the urban communities and of the basin are shown below.

		Popula	tions	
/	1910	1920	1930	1940
Urban communities: Lancaster Athons Logan Nelsonville New Lexington Glouster	13, 093 5, 463 4, 850 6, 082 2, 559 2, 527	14, 706 6, 418 5, 493 6, 440 3, 157 3, 140	18, 716 7, 252 6, 080 5, 322 3, 901 2, 903	21, 940 7, 696 6, 177 5, 368 4, 049 2, 903
Total basin: Rural Urban	74, 729 34, 574	74, 512 39, 354	63, 188 44, 174	65, 422 48, 133

The population has not increased appreciably during the past 30 years although the urban communities have grown.

Agriculture and coal mining are the principal occupations. The coal fields in this area were developed early and production has been

declining for some time.

Water uses.—The Hocking is not considered a navigable stream. There are no hydroelectric developments. Three small dams at Coolville, Guysville, and Athens furnish power for small mills. The upper part of the basin is one of Ohio's noteworthy recreational areas but it depends more on its scenic caves and forests than on its streams for its popularity. A few tributaries not affected by mine drainage and parts of the main river are considered fairly good fishing streams.

Two flood-control reservoirs have been studied by the United States Engineer Department in connection with the authorized program for Ohio River flood control. These are near the mouth of the East Branch of Sunday Creek and of Clear Creek. Both would be relatively small since the drainage areas above them are only 32 and 84 square miles respectively.

PRESENTATION OF FIELD DATA

Figure Mu-1 shows the location and magnitude of each of the more important sources of pollution in the basin. Figure H-2 shows similar data and, in addition, laboratory data on coliform organisms, dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Fifty-one thousand people are served by the 16 public water supplies. All but two of these are from underground sources and neither of the two surface supplies is subject to pollution.

Table H-2 shows data on these surface supplies.

Table H-2.—Hocking River Basin: Surface water supplies

Municipality	Source	Mile 1	Treat- ment 2	Population served	Consumption, million gallons per day
Corning	Impounded and wells Impounded	62 110	FD FD	600 3, 200	0.02

Miles above mouth of Hocking River.

² FD = Coagulated, settled, filtered, chlorinated. ³ Neither of these supplies is below community sewer outfalls.

Sewerage.—Table H-3 shows the sewered population at each of the more important sources of pollution. About 48,400 people are connected to sewers and about half of the sewage is treated before being discharged to the streams.

Table H-3.—Hocking River Basin: Sources of significant pollution, including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Receiving stream	Miles above mouth of	Popula- tion con- nected	Treatment	tion equ (bioch	popula- nivalent emical lemand)
		Hocking River	to sewers		Un- treated	Dis- charged
Athens Athens State Hospital Nelsonville Logan Laneaster ¹ Glouster Boys Industrial School Bremen Somerset New Lexington 9 smaller sources	Hocking Riverdododododododo	35 35 53 67 89 56 95 96 112	7, 000 2, 000 4, 300 5, 660 20, 000 2, 000 1, 100 1, 300 1, 100 2, 700 1, 300	NonedodoSecondaryNonedoSecondaryNonedoSecondary(3)	11, 200 2, 000 4, 300 21, 400 21, 400 2, 000 1, 100 2, 700 1, 100 2, 700 1, 300	11, 200 2, 000 4, 300 7, 200 3, 200 2, 000 700 2, 700 1, 100 400 1, 200
Total			48, 400		57, 000	36, 000

Sewage treatment plant under construction at time of laboratory survey.
 Also drains to Jonathan Creek, tributary of Muskingum River.
 1 primary plant. No treatment at 8 other places.

Industrial wastes.—Two meat-packing houses, a brewery, a cheese factory, and a milk-receiving station are the only sources of industrial wastes in the basin. The brewery wastes are discharged to a municipal treatment plant and wastes from the milk-receiving station are treated on a trickling filter. The other wastes are discharged

untreated.

Acid mine drainage damages many of the tributaries of the Hocking but does not affect the main stream. Most of the abandoned mines have been sealed to prevent further formation of acid. Figures are not available for the total acid load and the reduction through sealing, but the figures for the Muskingum and Hocking Basins together are shown in the Muskingum report.

PRESENTATION OF LABORATORY DATA

Analyses of water from the Hocking River and its tributaries were made at a trailer laboratory in October 1939 and April 1940, and at the Kiski laboratory during the period April-September 1940. Summaries of laboratory findings are presented in table H-7 (p. 480) and selected data are shown in table H-5. Coliform, dissolvedoxygen, and oxygen-demand results are shown in figures Mu-3. Mu-4, and Mu-5 (p. 446) on the basis of the most unfavorable monthly average where observations were for long periods and averages of one to three samples where sampling was for periods of less than a month.

U.S. PUBLIC HEALTH SERVICE 1941 (Face p. 476) GPO - 43 0 - 90035

OHIO RIVER POLLUTION SURVEY

Table H-5.—Hocking River Basin: Selected laboratory data

RiverLocation		Ab	eking ove caster	В	eking elow neaster	A	ocking bove logan	Be	eking elow egan	Hocking Above Helson- ville	Hocking Below Nelson- ville
River miles above mouth of Heing.	ock-	9(0.5	8	37.5		70.5	(87	57	51.5
Period, 1939		Oct	ober	Oc	tober	0	ctober	Oct	ober	October	October
Number of samplesFlow in cubic feet per second:			5		3		3		3	3	3
Sampling days			12.2		12. 2		52		52	65	65
Water temperature, °C			9.8		11.2		9. 3		8.8	9.5	9. 5
Coliforms per milliliter Dissolved oxygen, parts per mil	lion.		84 11.1	4	41,600 3.7		45 10. 5		960 7. 0	9. 1	377 8. 6
Biochemical oxygen demand, 5-c			4.6		55.9		3. 2		4.4	2. 5	3. 1
River	Hoo	eking	Hocl	king	Hock	ing	Little Rush		Little Rush	Little Rush	Little Rush
Location		pove Beleathens Athe			At Ho		Above New Lexing		Creek Below New Lexing-	Creek Above Bremen	Creek Below Bremen
River miles above mouth of Hocking.		37	34	.5	0.1		ton 110.5		ton 108.8	97	95
Period		gust 940	Aug 194		Augu 1940		Octobe 1939	r	October 1939	October 1939	October 1939
Number of samplesFlow in cubic feet per second:		2		2		4		3	3	. 3	3
Sampling days		320 36, 1		320	1	195	2	5	25	45	45
Minimum month		22. 8		36. 1 23. 3 , 850		5. 4 127	6.	7	7. 3 113	10. 5 24	10. 3 530
million		7.8		6.7		7.6	11.	4	11.2	8.5	6.7
Biochemical oxygen demand, 5-day, parts per million		1.7		3. 9	1	2.1	3.	3	7.0	2.1	47
										1	

The laboratory observations indicate that the major pollution problems in this basin occur below Lancaster, Logan, and Athens, with acid wastes complicating the problem below New Lexington and on Sunday and Monday Creeks. The dissolved oxygen in the streams at the times of sampling generally averaged over 6.5 parts per million at most of the points. The lowest observed dissolved oxygen was 1.2 parts per million below Corning and averages of 3.5 to 4.5 parts per million were observed at Murray City and Lancaster. The coliform observations generally revealed more unfavorable pollutional conditions than did the dissolved-oxygen results. The results on Sunday and Monday Creeks are influenced by the acid conditions of these waters.

The biochemical-oxygen-demand results were generally below 3.0 parts per million. Even below sources of pollution it did not exceed 5.0 parts per million except in a few instances. The highest average was 56 parts per million below Lancaster. The oxygen-demand samples from those areas affected by acid drainage were neutralized and seeded to obtain an indication of the behavior of the oxygen demand under more normal conditions. These results are shown in table H-7 along with the other data. The oxygen demand of these acid waters was usually quite low and both the neutralized and unneutralized samples gave results of the same order of magnitude, as a rule. Where this was not so, the unneutralized samples usually gave the higher results, as might be expected where ferrous iron may

be present. Acid conditions were found at New Lexington on Little Rush Creek, Shawnee, New Straitsville, and Murray City on Monday Creek, and Corning, Glouster, and Jacksonville on Sunday Creek. pH values as low as 2.5 were found and phenolphthalein acidities as high as 1,400 parts per million. The pH values were within a range of 7.0 to 8.0 except where acid wastes were present. Alkalinity and hardness values in the normal streams were in the range of 100 to 200 parts per million.

Coliform counts observed above most communities were reasonably low, except above Lancaster, Haydenville, Corning, and Athens, There is some evidence of self-purification in the reduction of coliforms from Lancaster to Logan, from Haydenville to Nelsonville and from Nelsonville to Athens along the main stream, although in the last-mentioned stretch it is not as well marked as in the other two.

Biological summary.—The flora and fauna of the Hocking were found to be comparatively low. The plankton volume was not more than 5,000 parts per million and the fish population consisted of only a few species and numbers. Sunday and Monday Creeks were found to be too acid to support aquatic life.

HYDROMETRIC DATA

Three stream gaging stations have been maintained on the Hocking River, two of which are currently in operation. Table H-6 shows monthly mean summer flows during the driest years of record at all three of the stations:

Table H-6.—Hocking River Basin: Monthly mean summer flows for years in which low summer flows have occurred

RiverLocation	Hocking	Hocking	Hocking
	Lancaster,	Enterprise,	Athens,
	Ohio	Ohio	Ohio
River miles above mouth of Hocking River	89	72	35
	92.8	460	944
	1923-32	1931–40	1915–40
Year	1930	1936	1930
June cubic feet per second July do August do September do	19. 8	68. 1	77. 8
	12. 5	88. 7	52. 2
	12. 2	98. 1	39. 6
	15. 9	36. 3	44. 8
Year.	1925	1932	1925
June cubic feet per second July do August do September do	26. 6	112	128
	29. 8	256	314
	50. 3	39. 9	191
	12. 3	57. 2	51.6
Year	. 1932	1939	1936
June cubic feet per second July do August do September do	45. 9	322	110
	85. 8	183	109
	17. 3	140	116
	15. 1	40. 3	58

DISCUSSION

The Hocking River is not heavily polluted. The largest sources of untreated organic wastes, Athens, Logan, and Nelsonville, are on the main stream where stream flows are generally sufficient to prevent gross nuisances from their discharge. Primary treatment should be

sufficient to maintain good stream conditions at these points at all times. At Glouster the receiving stream is acid and, although discharges become very low, the provision of secondary treatment does not seem justified. At Bremen and Somerset, secondary treatment probably will be necessary because of the small size of the receiving streams. The treatment plant at the State Industrial School for Boys is inadequately designed and should be rebuilt. Industrial wastes can be treated at the municipal plants.

Further reduction in acid mine drainage can be effected by a renewal of the mine-sealing program. A high degree of restoration of acid streams may be delayed until mine-sealing activities are modified to bring worked-out sections of active mines under control.

Increased low flows from the proposed flood-control reservoirs would be desirable but would have no appreciable tangible benefits. The estimated cost of the suggested pollution abatement program is summarized in table H-1.

Table H-7.—Hocking River Basin: Ohio River pollution survey laboratory data—Summary of individual results

	Hardness, parts per million	231	165	175	344 445	375		130	423	407	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Alkalin- ity, parts per million	206	240 243 243 243 200	288	D 4 1 0 2 0 D 3 B D 1 4 D 1 5 D 1 5	54	22	255	173	180 91 208	210 136
	Turbid- ity, parts per million	55	. 93 70 39 109	18 21 10	සේ ග ගු	46	5 5 5 6 6 6 6 8 7 6 8 6 5 9 2 8 1 1 2 8 1 7 8 4 8	10	38	32 32 56 26	10
	Hd	90.2	00-00	2.7.7	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	433	4.7.7.	7.7.	7.7.7	4.7.	7.5
Coli-	forms, most probable number per milli- liter	46	46 110 110 110 43,000	39, 000 43, 000 (²)	(2) 240	93	24.00	24 24	23 46 930	230 430 15	011
-	chemical chemical oxygen demand, parts per million	69	6.2 2.2 130.0	11.8 26.0 5.8	21.17	9.40	1.1	2.5	9.2.5	2.3	999
loxygen	Percent Satura- tion	114.8	96.9 86.0 93.0 16.3	60.3 47.6 75.2	96.8 99.0 98.7	93.0 84.1 105.4	97. 2 110. 0 117. 4	103.3 112.1 71.0	75.7 79.8 46.0	65.1 66.6 98.0	94.0
Dissolved oxygen	1 4	13.3	9.2 11.4 10.4 1.7	7.7	12.6 14.1 10.0	11.6 12.0 12.5	12.0 11.3 14.1	11.9	7.9	6.9 8.2 11.4	10.4
٠	Temper- ature ° C.	9.0	12.5 10.5 13.0	9.0 11.5 14.5	4.5 1.0 15.0	0.0	6.5 14.5 7.5	7.5 13.0 11.0	13.5	13.0	11.0
	Average discharge, cubic feet per second	9	1118	11 9	60 60 60	200	H L 61	12	98 21 15	98 21 45	. 44
	Date	Oct. 18, 1940	Oct. 23, 1940 Oct. 25, 1940 Oct. 30, 1940 Oct. 31, 1940 Oct. 25, 1940	Oct. 30, 1940 Oct. 31, 1940 Oct. 20, 1940	Oct. 30, 1940 Nov. 3, 1940 Oct. 20, 1940	Oct. 30, 1940 Nov. 3, 1940 May 2, 1940	May 3, 1940 May 6, 1940 May 2, 1940	May 6, 1940 May 6, 1940 Oct. 25, 1939	Oct. 27, 1929 Oct. 31, 1939 Oct. 25, 1939	Oct. 27, 1939 Oct. 31, 1939 Oct. 18, 1939	Oct. 23, 1939 Oct. 31, 1939
	Mileage from mouth	Но 90.5	do do Ho 87.5	do do HoLr 110.5	do do HoLr 108.8	do do HoR 110	do HoR 109	do do HoLR 97	do do HoLR 95	do do Ho 70.5	do
	Sampling point	Hocking River, 1 mile above Lan-	Do.	Caster, Onio. Do Little Rush Creek, 1/8 mile above	Little Rush Creek, 11% miles below	Rush Creek Bridge, U S 22, Somer-	Bush Creek, side road 1 mile below	eek, 1 mile above	eek, 1 mile below	Hocking River, 1½ miles west of	Do.

201		1 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			F 7 4 b 2 1 1 1 6 1 1 7 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1	1		2		165	169
213	205 125 64	96 98 111	128 103 108 141	142 180 162 102 103 114	884	91 107 111	108 95 105 140 142	156 106 139 107	200	200	224
24	10	30	17 155 102 85	15 19 490 110 101	110	25	260 122 101 58	98 98 12	25	. 00 rc	711
7.6	6.7.6	4.00	1.1.1. 1010010	1.001.11.11.11 1.001.04=10		4.7.7.	1.1.1.1.1.1 1.04101-0			7.7.	1:1:
2,400	240 240 93	240 93 110	43 430 230	240 240 240 230 230	110	230 36 110	1, 100 460 140 140 140	240 240 460 460 930	24	160	430
3.9	44.9 68.3	2.1	1.38	100000iii		6.1.6	.2.1. 7-4.0001	44441 41080	Ci i c	o a a i mi o i	61 00 61 00
60.6	49.7 70.4 85.8	85.1 86.1 93.4	88.2 88.2	87.9 108.4 97.0 67.5 67.5 84.5	92.9	85.9 87.3 94.3	88.87.88.87.0 0.7.37.44.44.44.44.44.44.44.44.44.44.44.44.44	91.0 67.0 82.8 79.6	92.1 82.8 86.0	7.8.77	68.2
7.2	1 00000 0400	9.9.5	00 17 17.00 00 00 00 11		120.0	1-96	5,5,00,00 0,00,00 0,00,00			1 00 1 ~ 00 00	4.00
8.0	10.5 9.5 0.5	10.0	23. 0 23. 5 19. 0 20. 0	22.22.00 22.22.00 20.00		10.0 11.5 17.0	23.0 19.0 19.0 21.0			0.01	12.0
45	44 68 2, 180	1,060 854 475	316 502 258 167	100	2, 180	1,060 854 475	316 502 258 167 102	181	45	103	103
18, 1939	23, 1939 31, 1939 23, 1940	25, 1940 26, 1940 29, 1940	7, 1940 18, 1940 26, 1940 5, 1940	23, 1940 31, 1940 8, 1940 8, 1940 3, 1940 3, 1940		25, 1940 26, 1940 29, 1940	7, 1940 18, 1940 26, 1940 5, 1940 15, 1940	26, 1940 26, 1940 3, 1940 11, 1940	24, 1941 20, 1939 25, 1030	20, 1939 20, 1939	25, 1939 30, 1939
Oet.	Oct. Oct. Apr.	Apr. Apr. May	June June July	July July July Aug. Aug. Sept.	Jan. Apr.	Apr. Apr. May	June June July July	Aug. Aug. Sept. Sept.	Jan. Oct.	Oct.	Oct.
Но 67.0	do do Ho 62.0	do	do do Ho 62.0	000000	do Ho 61.8	do Ho 61.0	000 000 000 000 000	00000000000000000000000000000000000000	Ho 57.0	do Ho 51.5	do
Hocking River, 11/2 miles below 1	Do Do Hocking River, 1,000 feet above	Hocking River, M mile above Hay-	denvine, Onio. Do. Do. Do. Do. Hocking River, ¼ mile above Hay-	Mark Mark Control of the Control of	below sewers, Hay-	dearyline, Onlo. Do Do Hocking River, 1 mile below Hay-	Do D	DAPO DAPO DAPO DAPO DAPO DAPO DAPO DAPO	Do. Hocking River, 1½ miles above Nel- 1 sonville, Ohio.	iver, 1 mile below Nelson-	Do

¹ Seeded and neutralized.
² Less than 1.

Table H-7.—Hocking River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

					Dissolved oxygen	охудел	5-day bio-	Coli-				
Sampling point	Mileage from mouth	Date	discharge, cubic a feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion		nost probable number per milli- liter	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per inillion
Shawnee Creek, 3 miles above Shaw-	HoMnSh 72.5	May 28, 1940	2	18.0	9.1	95.6	.3	1	6.	2		
Do.			8	17.0			60 60	£				1
D0	do		67	17.5	5-	79.9	101	EI.		29		
Do-	do	June 25, 1940	N	17.0	9.1	93.0	5.7.	701	3.5	_	1	
Do	do	July 3, 1940	-	17.0	9.4	96.8	4.1.	€	3.4		-	1 1 1 1 1 1
Do	do	July 12, 1940	-	17.0	ගේ	90.1	11.4	(3)	6,	6	1	,
Do	Ф	July 22, 1940	3	23.0	8.0	91.8	2.1.	©	3.5	9	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	-do	July 30, 1940	(2)	22.0	7.3	82. 5	1.5	€	3.5	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	do	Aug. 7, 1940	-	20.5	00	90.8	80.67	3	60,	3 3 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	:
Do	do	Aug. 15, 1940	(2)	22.0	7.4	83.4	9.	10	3,5	1		1
Do	do	Aug. 23, 1940		17.5	7.8	80.4	1.8	69	3.3	01		1
Do-	do	Sept. 10, 1940	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.0	7.1	74.0	L- 00	11	60	9		:
Do	op	Jan. 23, 1941	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.0	11.4	89.2	1.9	€ €	4.0	9	4	1
Shawnee Creek, 1/4 mile above Shaw-	HoMnSh 70	Apr. 25, 1940	CS	9.5	10.2	89.3	12.7	240	wi.		1	1
Do.	Ф	Apr. 26, 1940	-	9.5	10.2	80	9::0	4,600	4.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Do	do	Apr. 29, 1940	1	8.0	10.0	84.5	11.4	36	4.1		1 2 4 6 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shawnee Creek, 14 mile below	HoMnSh 68.	Apr. 25, 1940	7	10.5	10.1	89.8	1.7	63	4.6	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,460
Do-	do	Apr. 26, 1940		11.5	10.3	93.6	4.	4	9.4	15.0		1,470
Shawnee Creek, 9 miles below	do	500	7.07	19.0	100	0 C3	1.5	24		12		1, 000
Do.	op	June 6, 1940		19. 5	0.0	86.4	9.	12	4.3	60	,	

,		:	1	2		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				*		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 1 1 1	1 0 0 1 1 0 0 1 0 1	8 2 4 6 6 1	6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		;	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	-	4		-	1 1 1 1	0 6 6 1 2 0 0	:		!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1	6 9 9 9 9 1	-	6 8 1 6 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 2 3 5 5	0 0 0 0 0 0 0 0 0 0	1 1		1	
65	00	200	18	11	0	-1	1-	-1	10	40	1 1 0 1		1 1 1	1	471	20	9	10	8	00	. 11	9	61	19	9	5	٠
35	4.4	6.4	5.3	6.2	5.9	6.1	6.1	5.6	4.4	1-	3.4	3.5	99.	60.00	3.6	-1	3.6	69.7	3.4	3.7	3.7	63	3.7	3.5	භ	-1	
21		1,100	230	930	230	1,100	280	93	43	4	(3)	(2)	(2)	5	4	110	1	12	46	23	46	4	00	46	46	150	
04 20 20 44	12.0	1.6	1.9		11.0	11.5	LII	11.0	1.0		11.8	4.00	1.5 6.1	4.	101	1.3	.00	11.3	11.4		1.0.1	12.4	1.7	2 4	7.1	0.1	
92.0	95.7	98.7	94.1	96.9	2.78	91.6	30 30 30 30	88.8	80.8	96.1	89.4	86.4	100.7	117.3	98. 5	103.3	108.6	95.0	94.1	93.2	90.9	98.0	80.8	95.7	83.0 {	92.0	
IC တိ	ගර ගර්	9.7	9.2		7.9	. 5 . 5	8.0	ගේ	7.7	12.3	10, 2	9.9	11.3	11.0	30.00	9.5	9.5	8,9	00 1	7.7	7.6	ග්	7.9	9.1	8.0	11.5	
19. 5	20.0	16.5	17.0	22. 5	21.0	19.5	21.0	16.5	18.0	5.0	9.5	9.5	10.5	19.0	25.0	20.0	22.5	19.0	19. 5	26.0	25.0	20. 5	22.0	18.0	17.5	6.0	
61	C)	1		0	(3)	1	(2)	1	1 1 1 1 1 1 1 1		4	63	2	23		p=4	-	(3)	1	(2)	0	3	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
June 17, 1940	e 25, 1940	7 3, 1940	7 12, 1940	7 22, 1940	7 30, 1940	2, 1940	6. 15, 1910	. 23, 1940	t. 10, 1940	23, 1941	. 23, 1940	. 25, 1940	. 26, 1940	y 28, 1940	e 6, 1940	e 17, 1940	e 25, 1940	7 3, 1940	7 12, 1940	7 22, 1940	7 30, 1940	7, 1940	15, 1940	. 23, 1940	t. 10, 1940	. 23, 1941	
and	June	July -	July	July	July	Aug.	Aug.	Aug.	sept.	Jan.	Apr.	Apr.	Apr.	May	June	June	June	July	July	July	July	Aug.	Aug.	Aug.	Sept.	Jan.	
do	-do	do	do	do	-do	do	do	op-	do	-do	HoMnSu 67.5	do	do	-do	do	do	do	do	do	qo	-do	-do	ор	-do	-do	do	
Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Sugar Creek, 14 mile above New	Do	Do	Sugar Creek, 3 miles above New	Do.	000	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do.	

¹ Seeded and neutralized.
² Less than 1.

Table H-7 .- Hocking River Basin: Ohio River pollution survey laboratory data-Summary of individual results- Continued

			Average		Dissolved oxygen	-	5-day bio-	Coli- forms,		7	A 115-212	
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion		rnost probable number per milli-	Hd	ity, parts per million	Aikaini- ity, parts per million	Hardness, parts per million
Sugar Creek, city limits below New	HoMnSu 65.5	Apr. 23, 1940	41	10.0	10.2	89.7		4	89	22		1, 390
Битансуще, Опіо.	do	Apr. 25, 1940	2	10.0	10.1	88.9	1.3	(2)	4.00	90	- 1	650
Do	do	Apr. 26, 1940	2	10.0	11.2	98. 7		(2)	53	10	:	002
t, 1 mile below	HoMnsu 64.5	May 28, 1940	2	19.5	8.1	82.1.8		(3)	2.9	1-	1	2 2 3 4
Do.	do	June 6, 1940	-	21.5	00.7	98.1	1.2	0	3.2	24	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	; ; ; ; ; ; ;
D0	do	June 17, 1940	-	20.0	9.4	103.0	13.9	11	63.4	62	1 1 1 1 1	7 1 1 1 2 0 0 0
Do	do	June 25, 1940	H	23.0	9.6	113.7	11.0		63	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 1 1 0
Do	do	July 3, 1940	ව	20.0	000	97.4	125.1	0	69	7	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	do	July 12, 1940		19. 5	9.1	98. 4	14.	11	2.9	9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 1 5 1 6 1 1 8
Do	do	July 22, 1940	3	27.5	8.9	111.3	-i -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	63	41	1 6 5 0 0 1 2 2	2 1 1 3 5 5 6 6 6
Do	db	July 30, 1940	(3)	26.0	90.4	101.5	7	-	භේ	က	3 3 8 2 2 7	1 1 2 3 3 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	фф	Aug. 7, 1940	0	22. 5	000	91.2	.1-,	63	3,0	ଟ୍ୟ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	qo	Aug. 15, 1940	@	24.0	8,1	95.0		63	60	ಣ		1
Sugar Creek, I mile below New	HoMnSu 64.5.	Aug. 23, 1940	:	18.0	9.8	102.6	1.6	2	3. 4			1
Do		Sept. 10, 1940		19.0	8.3	88.98	1.1	11	3.0	4		
Do	qo	Jan. 23, 1941	1 1 1 0 1 0 1 0	4.0	12.3	93. 5	11.0	€	3.4	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0
Red Fork Creek, 1 mile above Mur-	HoMnRf 57.5	Apr. 23, 1940	37	6.5	11.2	91.0	11.0	(2)	3.5			
Do-	ob .	Apr. 25, 1940	21	30, 57	9.2	20 20 20	6.0	(2)	64			570
Do	do	Apr. 26, 1940	17	7.5	11.3	94.2	1.5	(2)	3.5	335		

556	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	480				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 9 8 8 8 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 3 6 6	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0	E : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		:			1 0 0 6 2 1 5 8	3 0 7 7 1 5 5	1	1 2 0 1 2 1 2 0 1	1 1 2 0 0 0 0 0 0	1	1 1 1 1 1 1 1 1 1 1	1	3 3 3 3 2 2 2 2 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1		0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1	2 2 3 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	20		10	13	85	28	87	20	E-o	10		4	1	41	22	24	12	12	10	10	FQ.	9	co	2	2	
33	3.5	3.0	3.0	3.1	3.0	2.9	ପଠ	2,5	64	60	2.9	2.9	2.6	2.0	4.4	2.8	2.9	2,0	63	2.7	20	2.7	3.0	2.9	2.8	
4	© {	(2)		:	(2)	© {		:	1	1		:	:		0	+	:	:	63		©					
11.6					1.2	11.30	61-1	1.2	1.0	1.4.1	4.1	00 4	00 00		(Q)	1.0								1.5		
7.16	77.7	91.6	36.4	111.6	101.5	102.9	88.2	87.7	90.4	91.7	98.4	92.1	98. 5	89.1	99.6	58.3	114.1	97.4	102.4	92.2	83.3	81.5	88.7	86.7	78.2	
10.9	00 00	10.6	33	10.3	9.8	9.6	900	4.0	00	4.00	0.6	00 70	9.4	90	12.9	5.7	10.2	8.8	0.6	8.4	7.6	7.1	7.3	7.5	6.7	
8.0	10.0	9.0	17.5	19.5	17.5	19.0	17.0	18.0	20.5	22.0	20.0	21.5	18.0	18.0	4.5	17.0	21.5	20.0	22.0	20.5	20.0	22.5	26.0	23.5	23.5	•
37	21	17	10	12	6	00	7	9	3	=	63	=		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10	12	6	00	2	9	(2)	1	63	-	
23, 1940	25, 1940	26, 1940	28, 1940	6, 1940	17, 1940	25, 1940	3, 1940	12, 1940	22, 1940	30, 1940	7, 1940	15, 1940	23, 1940	10, 1940	23, 1941	28, 1940	6, 1940	17, 1940	25, 1940	3, 1940	12, 1940	22, 1940	30, 1940	7, 1940	15, 1940	
Apr.	Apr.	Apr.	May	June	June	June	July	July	July	July	Aug.	Aug.	Aug.	Sept.	Jan.	May	June	June	June	July	July	July	July	Aug.	Aug.	
HoMnRf 55.0	do	do.	HoMnSw 56.5	do	do	do	-do	do	qo	do	-do	do	do	qo	do	HoMnSw 54.	do	do	do	do	op	do	do	-do	op-a-	
Red Fork Creek, city limits below	Do	Do	Snow Creek, 2 miles above Murray	Do.	Downstrance	D0.	Do	Do	Do	Do-	D0-	Do.	Do	Do	Do	Snow Creek, I mile below Murray	Do	Do	Do.	Do	Do	1)0	Do	Do	D0-	1 Seeded and neutralized.

eeded and neutralized.

Table H-7.- Hocking River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Alkalin- Hardness, ity, parts parts per per nullion				2 5 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	196	9 410	0.00	65	74 61	7.5	7.1	65	445		:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Turbid- ity, parts i per million	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	30			42	222		32	350	25.2	12	27	24	25	83	09	17	16
	Hq	2.6	2.5	3.6	6.0	7.1	6.1	7.5.6		7.4							3,7	3.6	9.9	e3 52
Coli-	most probable number per milli- liter		1	24	(2)	· 4. C1	46	54 2		460		1 1	1.100				46	86	0	6
5-day bio-	chemical oxygen demand, parts per million	1.5	11.2	2.0	12:00	1.1	11.2	0.1.0	4	1.3	2,6	1.5	200	20.0	0.00	1.0	2.5	7.9	7.2	7.1
l oxygen	Percent satura- tion	78.6	94.0	95.1	92. 2	90.08	87.1	98.0 98.0 98.0	94.3	90.0	820.00	7.6.7	8 8 8 8 8 8	7.70	97.8	11.9	92.3	69. 1	93.3	74.3
Dissolved oxygen	Parts per million	7.4	8.6	12.5	10.8	10.2	10.6	11.2	00	တ် တဲ	7.62	00 in	7. 4. 8. 4.	က င	13.4	1.2	90	6.4	9.1	4.
	Temper- ature ° C.	19.0	20.0	4.0	8.5	13.0	7.0	13.5	20.0	21.0	19.5	24.5	20.5	10.5	2.5	14.0	18.0	19.5	17.0	16.0
Average	discharge, cubic feet per second		1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	38	88	38	69 20 60 60	00	920		DD	(2)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9	90	9	10	64
	Date	Aug. 23, 1940	Sept. 10, 1940	Jan. 23, 1941	Apr. 16, 1940	Apr. 18, 1940 Apr. 24, 1940	Apr. 16, 1940	Apr. 18, 1940 Apr. 24, 1940 May 28, 1940	June 6, 1940	25,	27,00	38,	15,1		रेश्व	May 28, 1940	June 6, 1940	June 17, 1940	June 25, 1940	July 3, 1940
	Mileage from mouth	HoMnSw 54	qo	do	HoSnTn 65	do	НоЅпТп 63	do do HoSn 65	do	do	dodo	do	do	do	dodo	HoSn 63	do	op .	do	do
	Sampling point	Snow Creek, 1 mile below Murray	Do.	Do	Town Creek, city limits above Corn-	Do Do	Town Creek, city limits below Corn-	Sunday Creek, 0.4 mile above Corn-	ing, Ohio.	1)0. D0.	1)0	Do	D0	DO. 7 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	Do	Sunday Creek, 1.5 miles below Corn-	Do	Do	Do	Do

;			:	:			1 1	414	111		838	163	1		, ,				:		1 1 1 1	1 1		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	167			139	104	
2 E E E E E E E E E E E E E E E E E E E			,	;	0 0 0 0 0 0 0 0	- 97	77	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		:		172	167	00		32	52	99	43		88	202		110	99	- 29	157	168	- - - - - - - - - - - - - - - - - - -	20	1	
18	40	41	22	18	2 0	20 1	12	99 8	17	69	08.8	00	98:	17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		36	21	160	39	on ;	7 00	17	14	24	40	21	00 (245	375	corr	
3.7	3.0	3.0		- o			n on d o i	2.3			9,1									၈ တ တွင်း										10° 4		
24		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0		©	(2)	(3)	4	10	46	₹4	6	6	240	43	4 4	40	460	230	m	0.5	25	120	460	15	1, 100	1,500	1, 500	240	99	
			1,000						16.3		2.2		2.9	200	N 10	1.6	153	- 00	1-1	201	1.3	 	2.0	 	4.0	100	4.9		10 0 10 10	00 % i ci	٥	
80.3	48.9	44.1		4.2		0.10	112.9		73.4	88. 4	74.1	0.79								87. 5										89.6		
70.72	4.3	4.0	5.1	7.1			12.2	11.5	n o		10.4		900	00 0 00 0	0 100	9.8	C '4	-10	0.0	o o	OC :	6.6	6.90	1 00	0.00	13.1		3.9	10.0	9.6	10.0	
19.0	22.0	20.5		18.0			12.5		11.5	14.5	5.5	G . O	13.0	0.00	11.0	11.5	24.1	23.0	23.0	20.0	22.0	28.0	23. 5	22.0	17.0	4.0	0.6			11.5		
241	(2)	3	3	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		13	10	13 00	10	JO 3	49	102		6,310			571	1, 110	252	148	103	320	172	157	2, 460		55	142	6,310	6, 400	
12, 1940	22, 1940	30, 1940	7,		3 5	0,	23, 1941	26,	20, 1939	26.	3, 1989	ó	8	31,	100	23,	29,	1 -	200	5, 1940	15,	25 E	000	26,0	10,	24,		53	31	18, 1940	7	
July	July	July	Aug	Aug.	Aug	Sept.	Jan. Oct.	Oct.	Oct.	Oet.	Nov.	Oct.	Oet.	Oct.	Apr.	Apr.	Apr.	June	June	July	July	July	Aug.	Aug.	Sept	Jan.	Oct.	Oct.	Oet.	Apr.	Apr	
-do	do	qp		.do.	do	do	Hosn 58	op	HoSn 52.5	do		Ho 37	do	do	do	.do	do	do	do.	do	do	do	do	do	dodo		Ho 34.5	do	do	do	do	
Do	Do	Do	Do	Do	Do	D0-	Do Sunday Creek, I mile above Glouster.	Unio.	Sunday Creek, ½ mile below Jack.	sonville, Ohio.	Do	Hoeking River, above city limits, Athens, Ohio.			1)0		Do			Do					Do.	Do	Hocking River, city limits, below	Do.	Do	Do	D0	1 Seeded and neutralized.

Table H-7.—Hocking River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

			Average		Dissolved oxygen		5-day bio-	Coli-		1		
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion	ovygen demand, parts per million	D H C	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness parts per million
Hocking River, city limits, below -	-do	Apr. 29, 1940	1,000	14.0	9.6	92. 6	1.4	R	7.1	110	32	230
Do Dieno.	do	May 99 1940	600	0 21		P 60	0	710		C	C a	
D0.	od	-1	571	23.5		90.84	0.1	240		122	57	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	130	1,110	23.0	7.6	88.1	1.6	930		180	62	
	do	June 26, 1940	421	20.0		86.5	9.	430		26	76	
70	do	ر ا ا	202	19.5		2000	30	200		23	29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	92,	103	27.0		86.23	7 3	750		10	104	1 1 1 1 1 1 1
	do	5 00	114	57.0		67.4	1.0	1 500		000	107	1 1 1 1 1
	do	oć	320	25.0		X 200	25.2	2, 400		12	100	# # # # # # # # # # # # # # # # # # #
000	do	26,	172	21.5	6.0	67.4	5.0	9,300		375	96	
00	do	Sept. 3, 1940	431	20.5		t → 9 36 5	0.1	360		40	54	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		21,	2 460	20.00		91.0	2.0	240		010	167	1 1 1 1 1 1 1 1 1
ver, Hockingport, Ohio	Ho 0.1	16,	515	16.5	9.7	98. 5	7.1	46	. 1-	900	95	
D0	do	20.	510	19.5		93. 4	6.	Iõ		10	87	
Do	do	May 22, 1940	1 010	20.		91.4	1.0	0.0		23	98	1 1 1 1 1 1 1 1
	do	i uc	1,000	99		25.0	1.1	77		77	45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	5 25	1,830	95		100	11.	01.0		500	200	
	do	19,	1,540	24		27.1	- 00	240		195	71	1 1 1 1 1
	do	27,	466	22		1-188	6.	1		23	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	July 3, 1940	460	22.		87.9	6.	230		800	9	1 1
	ф.	-	207	26.		112.4	2.1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		12	117	
	сф.	1	169	24		96, 4	1.4	6		17	50	
	do	25,	1,470	27.		80.8	2.9	93		290	100	
Do	op	31,	143	5.		33.00	1.1	0		75	689	
170	op	Aug. 8, 1940	400	26.		79.8	2.5	24		83	73	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	14,	20 00	86, 8		91.0	00	8		17	139	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	do	77.	001	23.		112. 3	2.2	77		12	85	
	do		1,940	24.		1 00	0.I	460		255	93	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	Zept. 11, 1940	9 610	.12		2000	0.0	252		27	29	1
	ON	. 11,	~, O10	-CO-		80.0	7.0	7-8-		×	99	

1 Seeded and neutralized.
7 Less than 1.

KANAWHA RIVER BASIN

489

CONTENTS

ContentsSyllabus and conclusions	493 495 496 499 502
LIST OF TABLES	
K-1. Cost estimates of remedial measures K-2. Surface water supplies K-3. Sources of pollution K-4. Industrial wastes K-5. Selected laboratory data K-6. Monthly mean summer flows K-7. Summary of laboratory data	496 498 499 500 504
LIST OF FIGURES	
K-1. Map—Sources of pollution_ K-2. Chart—Sources of pollution and selected laboratory data_ K-3. Map—Coliform results K-4. Map—Dissolved oxygen results K-5. Map—Biochemical oxygen demand results K-6. Chart—Summer low-flow frequency curve	498 500 500 500
4	91

KANAWHA RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Kanawha River drains 12,300 square miles of mountainous country in West Virginia, Virginia, and North Carolina. The area is rather sparsely settled except in the rapidly developing industrial area along the Kanawha River in the vicinity of Charleston, W Va. About 20 percent of the total basin population of 835,000 is urban and about one-sixth of the total population is in the metropolitan area of Charleston. Chemical plants in this section are the principal sources of pollution. Wastes from these and other industries and the untreated domestic sewage from Charleston and its satellites account for more than 90 percent of the pollution load in the basin. As a result, in part, of the Ohio River pollution survey, working in cooperation with the State water commission and the State health department, studies are being made by the industries to determine the most practicable methods for abating this pollution and limited corrective measures have already been taken. Acid mine drainage damages a number of the tributary streams in West Virginia, particularly those south of the Kanawha and New Rivers.

Most of the streams outside the Charleston area are relatively clean and, except in a few places, can be maintained in excellent condition by the adoption of available methods of waste treatment. This is particularly desirable because of the extensive use of the streams for recreation. Low-flow augmentation by reservoirs above Charleston would be a valuable supplement to waste treatment and recovery practices in correcting the organic constituents of the heavy industrial pollution in the Charleston area. Taste and odor characteristics will be improved to a lesser extent. Increased flow in the Elk River is desirable to insure the adequacy of Charleston's water supply.

The pollution abatement program in the Charleston area will involve sewage treatment and industrial waste correction. Because of the technical and often secret nature of the industrial processes involved, industrial pollution corrective measures are squarely up to

the industries themselves.

CONCLUSIONS

(1) Sixty-five of the 180 public water supplies in the basin are from surface sources. Thirty-three of these, serving more than 150,000 people, are from streams subject to pollution.

(2) Sewage from more than 225,000 people and industrial wastes equivalent to sewage from an additional 1,490,000 enter the streams of the basin. Less than 25 percent of the municipal sewage is treated

prior to its discharge.

(3) Laboratory studies indicate that except for the Kanawha in and below the Charleston area the larger streams are relatively clean. Several bad local situations were found on small tributaries.

(4) The major pollution problem in the basin, the reduction of industrial pollution in the Charleston area, is being studied by the industries and limited indicated corrective measures have already been taken. For several of the larger industries, this is a recent development resulting in part from studies by the Ohio River pollution survey working in conjunction with the State of West Virginia.

(5) Primary treatment of domestic sewage will be sufficient to maintain satisfactory conditions on the larger streams except in the Charleston area. More refined treatment cannot be justified in this

area.

(6) Secondary treatment is justified at a number of the communities on small streams such as Princeton, Richwood, Pulaski, Wytheville, and White Sulphur Springs. The streams at these places are subject to extremely low flows.

(7) Low-flow augmentation by proposed flood-control reservoirs would improve conditions in the Charleston area. The Bluestone Reservoir, now under construction, will be particularly valuable

because of the large increase in flow which it could provide.

(8) Because of the uncertainties in regard to details of reducing industrial pollution in the Charleston area, estimates of the cost of pollution abatement may be subject to correction. The following summary from table K-1 includes \$1,270,000 for the capital cost and \$240,000 for annual operation costs of industrial waste control, the bulk of which would be taken by the chemical plants around Charleston.

Treatmen	t	Capital cost	Annual charges
	and the second s	01 000	
ExistingSuggested additional		\$1,300,000 6,270,000	\$115,000 815,000
		-, 0, 000	0.0,000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are:

Treatment .	Capital cost	Annual charges
Primary, all places	\$5, 890, 000	\$770,000
Secondary, all places	7, 190, 000	890, 000
	.,,	

Table K-1.—Kanawha River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		ber of nts	Popula-	Control	An	nual charg	es
	Pri- mary	Second- ary	nected	Capital invest- ment	Amor- tization and interest	Opera- tion and main- tenance	Total
Existing sewage treatment	6	6	49, 500	\$1, 500, 000	\$80,000	\$35,000	\$115,000
Suggested minimum correction: Sewage-treatment plants Required interceptors Independent industrial waste	35	16	164, 400	2, 470, 000 2, 530, 000	175, 000 120, 000	115, 000	290, 000 120, 000
correction				1, 270, 000	165, 000	240, 000	405, 000
Total				6, 270, 000	460, 000	355, 000	815, 000
Primary treatment all waste Secondary treatment all waste As suggested				5, 890, 000 7, 190, 000 6, 270, 000	430, 000 520, 000 460, 000	340, 000 370, 000 355, 000	770, 000 890, 000 815, 000

DESCRIPTION

The Kanawha River is formed by the confluence of the New and Gauley Rivers at Gauley Bridge, W. Va., and flows in a northwesterly direction 97 miles to its junction with the Ohio at Point Pleasant, W. Va. It drains 12,300 square miles of mountainous country, of which 8,450 are in West Virginia, 3,080 in Virginia, and 770 in North Carolina. The principal tributaries are:

Tributary	Distance above mouth of Kanawha	Drainage area, square miles
Elk River Gauley River New River Greenbrier River 1	58 97 97 161	1, 540 1, 440 6, 920 1, 500

¹ Tributary of New River.

Seventeen municipalities in the basin have more than 2,500 population. Eleven are in West Virginia and the other 6 in Virginia. The populations of the larger communities and of the entire basin are shown below:

		Popula	tion	
_	1910	1920	1930	1940
Principal cities:				
Charleston, W. Va	22, 996	39, 608	60, 408	67, 914
Bluefield, W. Va.	11, 188	15, 282	19, 339	20, 641
Beckley, W. Va.	2, 161	4, 149	9, 357	12, 852
South Charleston, W. Va		3, 650	5, 904	10, 377
Pulaski, Va	5, 317	5, 282	7, 168	8,792
Princeton, W. Va	3, 027	6, 224	6, 955	7, 426
Radford, Va		4, 627	6, 227	6, 990
Hinton, W. Va		3, 912	6, 654	5, 815
Richwood, W. Va.	3, 061	4, 331	4, 189 5, 720	5, 266 5, 051
Entire basin:				
Rural	468, 296	515, 079	580, 191	659, 327
Urban	56, 501	98, 180	147, 858	175, 518
Total	524, 797	613, 259	728, 049	834, 845

The biggest concentration of population is in the Kanawha Valley in the vicinity of Charleston, W. Va. Three of the above communities (Charleston, South Charleston, and Dunbar) are in this area which has developed recently as a major organic chemical manufacturing center. Coal mining is an important industry, the most important coal fields being south of the Kanawha and New Rivers in West Virginia adjacent to the Guyandot and Big Sandy Basins. In the western part of the basin, oil, gas, and salt brines are produced. Agriculture is handicapped by the lack of level land except in the stream valleys. Forestry, formerly an important occupation, has decreased in importance due to the lack of forest conservation practices. Reforestation is now in progress on some of the timberland.

Water uses.—The lower 91 miles of the Kanawha have been made navigable for boats of 9-foot draft by the construction of three locks and dams. In 1939 about 4,000,000 tons of freight moved on the

river. Traffic has increased steadily since the completion of the 9-foot

project in 1935.

There are 10 hydroelectric developments on the Kanawha and New Rivers, the most important ones being near Byllesby, Va. (mile 295), Radford, Va., and Gauley Bridge, W. Va. There are also some small water-power developments on tributaries. The Kanawha and New Rivers are among the best power streams in the Ohio Basin.

A number of reservoirs have been studied by the United States Engineer Department in connection with the authorized program for Ohio River flood control and one project, the Bluestone Reservoir, is under construction. This reservoir, on the New River above Hinton, would aid in flood control in the Kanawha Valley and, in addition, could provide a considerable amount of power and an increase in flow of more than 600 cubic feet per second during low-flow periods.

A large part of the basin is well suited for recreational uses. The New and most of its tributaries, in Virginia and North Carolina; the Greenbrier, the Gauley, the Elk and the Coal in West Virginia are all used extensively for fishing, swimming, and boating. There are a number of excellent trout streams. Use of the lower Kanawha River is limited almost entirely to boating because of gross pollution in the

vicinity of Charleston.

PRESENTATION OF FIELD DATA

Figure K-1 shows the location and magnitude of the more important sources of pollution in the basin. Figure K-2 shows similar data and, in addition, the location of water supply intakes from polluted streams and laboratory data on coliform organisms, dissolved oxygen

and biochemical oxygen demand.

Public water supplies.—There are 180 public water supplies in the basin which serve more than 325,000 people. Sixty-five of these are from surface sources and about half of these are from streams subject to pollution. Table K-2 shows data on the surface supplies of the basin. Four of these supplies, those at Charleston, Belle, St. Albans, and Nitro, are owned by one company and are interconnected. They serve almost all of the communities in the most densely populated portion of the basin.

Table K-2.—Kanawha River Basin: Surface water supplies

Supply	State	Source	Mile	Treat- ment 2	Popu- lation served	Consumption, million gallons per day
		Supplies below commi	unity sev	ver outfa	lls	
Winfield Nitro Belle Chelyan Cabin Creek Cedar Grove Pratt Handley Montgomery Harewood Alloy	do do do do do	Kanawha River	32. 3 44. 2 69. 6 73. 6 74. 5 77. 5 81. 0 83. 3 85. 4 88. 0 89. 7	FD FDD FDD FDD FDD FDD FDD FDD FDD FDD	300 11, 500 9, 000 800 100 1, 600 500 3, 200 1, 000 1, 600	0. 01 1. 50 . 30 . 02 . 01 . 05 . 02 . 02 . 20

Miles from mouth of Kanawha River.
 F=coagulated, settled, filtered, D=chlorinated.

Table K-2.—Kanawha River Basin: Surface water supplies—Continued

Supply	State	Source	Mile	Treat- ment	Popu- lation served	Consumption, million gallons per day				
	Supplies below community sewer outfalls									
Charlton Heights	West Virginia	Kanawha, small	93. 0	FD 3	100	0.01				
Glen Ferris	do	Kanawha River	. 95. 6	FD ·	400	.06				
Brooklyn		New River	116.0	D	500	.01				
Rush Run	do	do	119.0	D	200	.01				
Radford		do	244. 0	FD	7,000	. 38				
Austinville	do	Coal River	286. 0 46. 4	FD FD	400	. 03				
St. Albans Whitesville	West Virginia	coar River	102. 0	D	5 , 500	. 25				
Madison		Pond Fork Coal River	92. 1	FD	2, 200	. 03				
Charleston		Elk River-Kanawha	61.4	FD	85, 000	7, 00				
Charleston		River.	01. 1	L'D	00,000	1.00				
Clendenin	do	Elk River	79. 2	FD	1, 300	. 09				
Clay		do	110. 5	FD	600	. 05				
Dundon			110.5	FD	100	. 02				
Gassaway			152.0	FD	1,400	. 06				
Sutton	do		158. 0	FD	1,300	. 08				
Addison	do	Elk River, small	197. 5	FD	1, 300	. 05				
Hinton	do	Greenbrier-New River	161. 5	FD	7,000	. 25				
Alderson (Federal insti- tution)	do:	Greenbrier River	187. 0	FD	700	. 10				
	do	do	190.0	FD	1,700	. 10				
Ronceverte	do	do	204.0	FD	2, 300	. 14				
Lewisburg	do	do	208.0	FD	1,800	. 15				
Nemours	do	Bluestone River	225. 5	FD	100	. 01				
Total:										
Below sewer or					151, 700 49, 800	11. 33 3. 76				
Total surface water	supplies				201, 500	15.09				

Filtered, no coagulants.

The drought of 1930 caused serious damage to the quality of the Charleston water supply. An epidemic of approximately 9,000 cases of acute gastroenteritis occurred. During this time, septic conditions prevailed in the Elk River near the waterworks intake due to decomposing garbage and sewage. Bacteriological examinations of the filter plant effluent at the time showed the supply to be meeting the United States Treasury Department drinking-water standards. Charleston supply has an emergency intake in the Kanawha River which was installed at that time and has not been used since.

The St. Albans supply from Coal River is affected at times by backwater from the Kanawha. The chemical quality of the surface water supplies of the basin is generally good. In addition to serving as a source of municipal water, the Kanawha River furnishes more than 800 million gallons per day for industrial uses.

Sewerage.—Slightly more than 225,000 people in the Kanawha Basin are served by sewers, almost 200,000 of whom are in West About one-half of all the sewage comes from towns along the Kanawha River. Less than one-quarter of the sewage receives treatment prior to discharge. Two of the larger communities, Bluefield and Beckley, have recently installed sewage-treatment plants.

Table K-3.—Kanawha River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	State	Receiving stream	Mile 1	Population con-	Treat- ment	Sewered popula- tion equivalent (biochemical oxy- gen demand)		
				to sewers		Um- treated	Dis- charged	
Nitro	West Virginia	Kanawha River	43	4, 000	None	334, 000	334, 000	
St. Albans		Kanawha River-Coal River.	46		do	4, 000		
Dunbar	do	Kanawha River	52		do	5, 200	5, 200	
South Charleston	do	do	54		do	787, 000	787, 000	
Charleston	do	Kanawha River-Elk River.	58	70, 000	do	70, 000	70, 000	
Belle	do	Kanawha River	70		do	338, 400	338, 400	
Montgomery	do	do	85	3, 200	do	3, 200	3, 200	
Hinton	do	New River-Greenbrier River.	159	6, 700	do	6, 700	6, 700	
Narrows	Virginia	New River-Wolf Creek.	197	300	do	2, 900	2, 900	
Pearisburg	do	New River	203	400	do	7,000	7,000	
Radford	do	do	242		do	3, 800	3, 800	
Boone	North Caro-	Winkler Creek	412	2, 200	do	3, 100	3, 100	
Falling Rock	lina. West Virginia	Elk River	75			2, 700	2, 700	
Richwood	do	Cherry River	168	4, 200	None	4, 200	4, 200	
Beckley	do	Piney Creek-Little Whitestick Creek.	146	14, 500	Primary.	14, 600	9, 500	
White Sulphur	do	Howards Creek	215	2, 800	do	2,800	1,800	
Springs.	do	Greenbrier River	268	1 600	None	7, 500	7, 500	
Marlinton Durbin	do	do	311	500	do	6, 700	6, 700	
Princeton	do	Brush Creek	190		do	6,600	6, 600	
Bluefield		Bluestone River	234	19, 500	Second-	26, 000	2, 200	
1714011014	and Vir-				ary			
Bluefield	ginia. West Virginia.	Grassy Branch of East River.	213	3, 000	do	7, 500	400	
Blacksburg	Virginia	Strubles Creek	243	4, 400	do	4, 400	2,000	
Pulaski	(10)	Peak Creek	253		None	8, 600	8, 600	
Galax	do	Chestnut Creek	311		do	3,800	3, 800	
95 smaller sources				53, 600		56, 000	53, 800	
Total:								
West Virg	ginia					1, 671, 700	1, 633, 600	
Virginia					6, 100	35, 700 5, 800		
North Ca	rolina							
				000 500		11 718 700	1, 675, 100	

¹ Miles above mouth of Kanawha River.

Industrial wastes.—Table K-4 summarizes data on the sources of industrial wastes by type of industry and method of disposal. The population equivalent of the industrial wastes amounts to more than six times that of the sewage and all but about 3 percent of this load is discharged to the Kanawha River in the 25-mile stretch from Belle to Nitro (the Charleston metropolitan area).

In addition to these industries, there are 24 coal washeries, most of which have recirculating systems but from which varying amounts of fine coal particles escape causing turbidity and culm deposits in

the streams.

Table K-4.—Kanawha River Basin: Summary of industrial wastes not discharged to municipal treatment plants, with total of entire industrial waste load in the basin.

	3.7	Industri disp	al waste osal	At least	Estimated sewered population	
Industry	Number of plants	Munici- pal sew- ers	Private outlets	corrective measures taken	equivalent (biochem- ical oxygen demand)	
Canning Chemical Milk Oil refining Tanning Textile Miscellaneous	2 11 2 2 3 9	3 0	2 8 2 2 3 6	1 4 2 2 3 2 17	1, 600 1, 378, 000 200 3, 600 18, 700 8, 300 68, 700	
Wastes unconnected municipal treatment	65	6	59	31	1, 479, 100 11, 100	
Total industrial waste in basin					1, 490, 200	

Acid mine drainage.—Prior to the mine-sealing program some 33,000 tons of acid were discharged each year from about 950 mines. Mines producing about two-thirds of this acid have been sealed and the total acid load has been reduced by more than 40 percent. The acid from unsealed mines comes largely from active mines which discharge more than 9,000 tons per year. Most of the acid-producing mines are in the area drained by the Bluestone and along the small tributaries of the Kanawha and New Rivers in West Virginia.

PRESENTATION OF LABORATORY DATA

Table K-7 (p. 508) summarizes the results of the laboratory observations in the Kanawha Basin. Table K-5 shows selected laboratory data on the main stream and tributaries. All samples from the Kanawha Basin were collected and analyzed by a mobile laboratory unit except for those samples at the mouth, which were collected and analyzed at the *Kiski* Laboratory at Ashland. The various sampling periods involved in studying this basin were as follows:

Area	Period /	Labora- tory unit
Mouth Gauley Bridge to mouth New, Gauley and Greenbrier Taste and odors—Charleston Do	August 1939 to April 1940. December 1939 to March 1940 April to June 1940 December 1939 to January 1940 December 1940 to February 1941	Kiski. Trailer. Do. Do. Do.

Table K-5.—Kanawha River Basin: Selected laboratory data

River miles above mouth of Kanawha.		Near mouth 0.6 Decem-		Uni Sta loc Win 31	ted tes ek, field . 1	ted Bridge St. Alk, bans field 45.6		Kanawha Patrick St. Bridge, Charleston 56. 3 December 1939		Kanawha Kanawha City Bridge, Charleston 60.9 February 1941		Kanawha United States lock, Belle 67.7 December 1939
Flow in cubic feet per second, sampling days Water temperature °C		6.9		8.7 124 3.0 4.1		7. 7 257 4. 6 3. 9		6.3 577 9.0 2.8		0.8 29 12.6 3.2	8.3 72 10.2 4.1	
River	United States lock, London		Kanawha Below Gauley Bridge		Ab mo	ove outh	New Bridge at Hinton 159 May-		New Below Narrows		New Above Pearis- burg 204 April	New Below bridge, Radford 247
Flow in cubic feet per second: Sampling days. Minimum month. Water temperature °C. Coliforms per milliliter. Dissolved oxygen, parts per	6.0		1	2 1, 130 4. 0 7		2 1,090 5.5 2			11	3	3, 260 11. 8	3, 170 940 9. 7
Biochemical oxygen demand, 5-day, parts per million	Pe Cr Ab	1.6 eak eek ove aski,	Pe Cr Be Puli	eak eek low	Stro Cr Ab Bla	ubles eek ove	Cr Bel Bla	ubles eek low	Brus Cree Abov Princ	h k	Brush Creek Below Prince-	Bluestone Below Blue- field.
River miles above: Confluence with New River. Mouth of Kanawha. Period, 1940.	23	3. 5 68 pril	260	22 6. 5 oril	1 2	1 44 oril	24	42 oril	27 191. 4 A pri	ay	W. Va. 24. 5 189 April and May	Va. 69.5 215 May
Number of samples. Flow in cubic feet per second: Sampling days. Minimum month. Water temperature °C. Coliforms per milliliter. Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million.		9. 0 16		68 1) 10. 3 26 8. 1		3 1) ~ 12,8	4	3 13. 2 , 740 7. 4	. 9	3 88 88 4	13. 7 970 5. 5 2. 4	30 13.5 11 9.0 3.0
	River miles above mouth of nawha. Period Number of samples Flow in cubic feet per second, spling days Water temperature °C Coliforms per milliliter. Dissolved oxygen, parts per million. River Location. River miles above mouth of Kanawha. Period Number of samples. Flow in cubic feet per second: Sampling days Minimum month. Water temperature °C Coliforms per milliliter. Dissolved oxygen parts per million. River Location. River Location. River miles above mouth of Kanawha. Period, 1940. River Location. River miles above: Confluence with New River. Mouth of Kanawha. Period, 1940. Number of samples. Flow in cubic feet per second: Sampling days. Minimum month. Water temperature °C Coliforms per millitier Dissolved oxygen, parts per million Blochemical oxygen demand,	River miles above mouth of Kanawha. Period Number of samples Flow in cubic feet per second, sampling days Water temperature °C. Coliforms per milliliter. Dissolved oxygen, parts per million. River	River miles above mouth of Kanawha. Period Deeper Second, sampling days Water temperature °C Coliforms per milliliter. Location Water miles above mouth of Kanawha. Period States lock, London 82.8 River miles above mouth of Kanawha. Period Deeper million. River Miles above mouth of Kanawha. Period States lock, London 82.8 Flow in cubic feet per second: Sampling days Minimum month Sampling days Minimum month Second Secon	River miles above mouth of Kanawha. Period December 1939 Number of samples 7, Flow in cubic feet per second, sampling days 3, 260 Water temperature °C 5.0 Coliforms per milliliter 6.9 Biochemical oxygen demand, 5-day, parts per million 82.8 River miles above mouth of Kanawha. Period December 1939 Number of samples 6.9 River miles above mouth of Kanawha. Period December 1939 Number of samples 8.7 Flow in cubic feet per second: Sampling days Minimum month 11.9 Biochemical oxygen demand, 5-day, parts per million 11.9	River miles above mouth of Kanawha. Period December 1939 Number of samples 7 Flow in cubic feet per second, sampling days 7 River miles above mouth of Kanawha 7 River miles above mouth of Kanawha 8 Period States 10ck, London 82.8 River miles above mouth of Kanawha 8 Period December 1939 River Miles above mouth of Kanawha 95 River miles above mouth of Kanawha 95 Number of samples 95 Flow in cubic feet per second: Sampling days Minimum month 11.9 River Miles above mouth of Kanawha 11.9 River Minimum numb 11.9 River Miles above mouth of Kanawha 11.9 River Miles above 2 River Miles above 11.93 Number of samples 95 River Minimum numb 11.9 River Miles above 2 River Miles above 2 River Miles above 2 River Miles above 3 River Miles above 3 River Mouth of Kanawha 2 River Mouth of Kanawha 2 River Mouth of Kanawha 2 River miles above: 23.5 River Mouth of Kanawha 268 Relow Pulaski, Va. River miles above: 23.5 River Mouth of Kanawha 268 Relow Pulaski, Va. River miles above: 23.5 River miles above: 25.6 River Mouth of Kanawha 268 Relow Pulaski, Va. River miles above: 23.5 River miles above: 25.5 River Mouth of Kanawha 268 Relow Pulaski, Va. River miles above: 20.5 River mil	Location Near mouth of Kanawha. Period December 1939 Number of samples 7 3 3 1.1 Period December 1939 Number of samples 7 3 3 260 3.1 Number of samples 7 5.0 Coliforms per milliliter 6.9 River miles above mouth of Kanawha Location 82.8 Period December 1939 Number of samples 7 8 8.7 Coliforms per milliliter 6.9 River miles above mouth of Kanawha Period 9.5 Number of samples 8.8 Period December 1939 Number of samples 9.9 Number of samples 1939 River 1939 Number of samples 1939 Number of samples 1939 Number of samples 1939 Number of samples 1939 River 1939 Number of samples 1939	Location Near mouth States lock, Winfield States lock, London	River miles above mouth of Kanawha. December 1939 Decemb	Near mouth States St. Al- Bridge, mouth States Ock, winfield Ock, winfield States Ock, winfield Ock,	Normal	New miles above mouth of Kanawha was pling days New Location December 1939 December 19	Number of samples Near million Near million States flock, when the mouth of the mean of the mouth of the mean of the mouth of the mean of the

Table K-5.—Kanawha River Basin: Selected laboratory data—Continued

River miles above: Confluence with New River Mouth of Kanawha Period	Green- brier Above Marlin- ton, W. Va. 106.5 267.5 May and June 1940	Green- brier Below Marlin- ton, W. Va. 103 264 May and June 1940	Piney Creek Above Beckley, W. Va.	Piney Creek Below Beckley, W. Va.	Cherry Above Rich- wood, W. Va. 70 167 January and Feb- ruary 1940	Cherry Below Rich- wood, W. Va. 69 166 January and Feb- ruary 1940	Elk Below Falling Rock, W. Va. 16 74 December 1939
Number of samples	3,800 10 15.5 9 9.0	3,800 10 16.0 125 9.1	17. 0 20 8. 6	18 16.3 392 8.5	(1) 330 (1) 0 1 13.4 1.8	(1) 0 23 , 13.0 1,2	6.0 67 10.8 1.8

¹ Less than 1.
2 Acid sample—seeded and neutralized.

From one to four stream samples were collected and analyzed from each sampling point reached by a trailer unit and from four to nine samples monthly were obtained at the mouth during the 9-month period of sampling from the Kiski. Discharges were generally low during the periods from August 1939 to February 1940 and from December 1940 to February 1941. Medium high to high discharges prevailed from March to May 1940.

Figures K-3, K-4, and K-5 show graphically the coliform dissolved oxygen, and oxygen demand results. In the vicinity of Charleston and at the mouth, where the results were obtained over a period of months, the results shown on these spot maps represent the most unfavorable monthly averages. All other results represent the averages of the series of one to four samples collected at each point by a

mobile unit over periods of less than 1 month.

From these results it appears that the larger streams of the Kanawha Basin are not seriously polluted except in the 40-mile stretch below Charleston. Bad localized conditions exist on the tributaries of the New River below Boone, West Jefferson, Wytheville, Pulaski, Christiansburg, Blacksburg, Bluefield, Pocahontas, and Beckley. The Greenbrier, Gauley, and Elk Rivers above Charleston are in relatively good sanitary condition. Gas, oil, and refinery wastes produce taste and odor problems along the Elk River.

Acid stream conditions were observed in the vicinity of Pulaski, Va., on Peak Creek and along Piney and Beaver Creeks near Beckley, W. Va., and along Dunloup Creek at Mount Hope. At Pulaski the acidity is due to wastes from a chemical plant while at the other points it is caused by mine drainage. The pHs of these streams ranged from 3.0 to 5.9 and phenolphthalein acidities from about 10

to more than 125 parts per million. In collaboration with the West Virginia Department of Health and the State water commission, a survey of taste and odor problems along

the Kanawha and Elk Rivers, with particular reference to the problems existing in the Charleston area, was carried out in the winter of 1939–40 and again in 1940–41. Threshold odor examinations were made of the river waters at stations above, in, and below Charleston and of certain industrial wastes. These results show a marked increase in the threshold odor numbers of Kanawha River water in the vicinity of the Marmet Locks and Dam. Values of 300 to 400 were observed at various times at Marmet, Charleston, and South Charleston. On the Elk River the threshold odor numbers were generally below 50.

Odor determinations are at best rather crude criteria and are largely dependent upon the observer's ability at detection. too, high intensity transient odors may mask more persistent but less intense troublesome odors. Odor determinations, both before and after storage under standard conditions, have been suggested as a means of eliminating transient odors. The results as a whole indicate that the odors tend to diminish progressively downstream from Charleston on the Kanawha and that odors along the Elk River tend to diminish from Clendenin to the Charleston intake. Threshold odor determinations made on the effluent from several industrial plants in the vicinity of Charleston and on the Elk River gave results ranging from about 500 to 1,000,000 or more. The odor determinations in themselves should serve more as a guide and should be supplemented with other chemical data before drawing too many conclusions from the results. Further treatment of industrial wastes probably will contribute to overcoming the taste and odor problem in this region.

Biological summary.—The flora and fauna of the Kanawha were found to be less than 1,000 parts per million, which may be due in part to the clean nature of the upper reaches and also the industrial

wastes near Charleston and along the Elk River.

HYDROMETRIC DATA

More than 50 stream-gaging stations have been maintained in the Kanawha Basin at various times and 25 are currently in operation. Table K-6 shows monthly mean summer flows at 8 stations for the 3 driest summers of record at each station. Practically continuous discharge records are available on the Kanawha River at Kanawha Falls (mile 95) for the period since 1877, one of the longest periods of record in the Ohio Basin. Figure K-6 is a low-flow frequency curve for this stream based on the 4 summer months (June-September, inclusive). A second curve, plotted to the same scale, shows similar information for flows regulated by Bluestone Reservoir. It indicates that the frequencies with which various minimum monthly mean summer flows may be expected, both with and without Bluestone Dam regulation, are as follows:

Kanawha River at Kanawha Falls	Minimum cubic fee once in—	t per second	nean summel that may	er flows in be expected
	2 years	5 years	10 years	Minimum
Unregulated Regulated by Bluestone Reservoir	3, 400 4, 100	2, 320 3, 120	2, 140 2, 670	1, 290 2, 000

Table K-6.—Kanawha River Basin—monthly mean summer flows for years in which low summer flows have occurred

RiverLocation	New At Eggles- ton, Va.	Kanawha, Kanawha Fails,	Peak Creek At Pulaski, Va.	Bluestone, Lilly, W. Va.
River miles above mouth of Kanawha	217	W. Va. 95 8,367 1877-1940	253 68 1927–33	168 438 1908-16 1920-40
Year	1925	1930	1930	1930
Junecubic feet per second_ Julydo Augustdo_ Septemberdo	1, 320 812	2, 550 1, 290 1, 520 1, 310	0.8	36. 27. 26. 7.
Year	1930	1925	1932	1939
June cubic feet per second July do August do September do	1,710 999 1,250 1,070	3, 370 2, 660 1, 390 1, 340	14. 1 2. 7 2. 3 1. 6	319 182 90. 26.
Year	1932	1932	1929	1911
June cubic feet per second July do August do September do	2, 660 1, 500 1, 230 1, 020	7, 160 11, 300 2, 910 1, 340	221 19. 2 8. 2 5. 6	88. 132 34. 40.
River Location River miles above mouth of Kanawha Drainage area (square miles) Period of record	Greenbrier Buckeye, W. Va. 263 540 1929-40	Gauley Summers- ville, W. Va. 142 680 1908-16 1929-40	Elk Queen Shoals, W. Va. 84 1,145 1929–40	Coal Ashford, W. Va. 72 393 1930-40
Year	1930	1930	1930	1930
Junecubic feet per seconddo	21.5	108 13. 3 23. 5 7. 7	128 17. 1 13. 1 7. 2	23. 6. 13.
Year	1932	1939	1932	1939
June cubic feet per second July do August do September do	264 896 75. 1 35. 0	403 1, 330 464 38. 7	7, 280 570 52. 7	196 121 32. 8.
Year	1934	1936	1939	1936
Junecubic feet per second Julydo Augustdo	149 40. 6 56. 5 234	90. 4 57. 4 78. 0 56. 1	543 1, 650 586 39, 4	19. 29. 36. 45.

Proposed stream control.—The following proposed reservoirs in the Kanawha Basin have been studied by the United States Engineer Department in connection with the authorized program for Ohio River flood control:

Reservoir	Stream	Maximum storage, acre- feet	Supplemental flow made available, cubic feet per second
Poca. Clendenin Birch Summersville Big Bend Moores Ferry.	Pocatalico River	202, 000 108, 000 43, 600 315, 000 108, 500 1, 010, 000	8 70 29 134 74 Unknown

The supplemental flows shown are those that could be made available by use of a portion of the flood-control storage capacity after the end of the flood season. Low-flow regulation by the Moores Ferry Reservoir would depend largely on possible power operations. Consideration is being given to such operation of the reservoirs.

DISCUSSION

The major pollution problems of the Kanawha Basin are in the main Kanawha Valley in the vicinity of Charleston. Problems of lesser importance exist on the Elk River below oil and gas plants and on other streams below moderate sized and small municipalities.

Charleston and vicinity.—In the vicinity of Charleston the chemical industry discharges large volumes of wastes which constitute a drain on the oxygen resources of the river and cause objectionable tastes and odors in downstream water supplies. In addition to the industrial wastes, sewage from Charleston and other cities along the river is

discharged untreated.

Laboratory results during the low-flow period in December 1939 showed a dissolved oxygen content of 3 parts per million in the Kanawha at the Winfield locks (mile 31.1). This represents a deficiency below saturation of about 8.7 parts per million. Such a deficiency during the summer would result in the complete exhaustion of all the oxygen in the stream with attendant nuisance conditions

and destruction of aquatic life.

Because of the unique character of many of the chemical plants, their rapid growth, and the constant changes in processes and products, methods of accomplishing reduction in the strength or quantity of the wastes must be based on a rather complete study of each plant. Because of the technical and often secret nature of the industrial processes involved, pollution corrective measures are squarely up to the industries themselves. Outside assistance must be confined to determining which effluents are damaging and measuring accomplishments after corrective measures have been taken. The Ohio River pollution survey working with the State of West Virginia, has already located the damaging effluents. Several of the plants have undertaken studies and have instituted new practices, designed particularly to reduce the discharge of wastes causing tastes and odors in the water supplies taken from the Kanawha River. Intensified efforts on the part of the industrial research technicians as well as the State enforcement agency are necessary to prevent a steady deterioration in the quality of the lower Kanawha River because of the phenomenal growth of the chemical industry.

The capital cost of remedial or pollution control measures at the large industrial plants is estimated very approximately to be \$1,000,000 and the annual operating cost to be \$160,000. This estimate is much smaller than the cost of correcting an equivalent amount of organic pollution in the form of domestic sewage, and is more in line with the experience of a limited number of large industries confronted with organic and taste and odor pollution problems. The estimate may be subject to reduction with the development of efficient recovery practices.

Preliminary survey information on pollution loadings in the South Charleston area and river and industrial effluent quality were released to the State and served as a basis for pollution abatement discussion with the industries. As a result, a start toward pollution control has been, and is being, made by the industries. The program is in its early stages and, although a resurvey was made, no improvement of consequence was noted. This is not an adverse result as industrial activity had increased during the period between surveys and greater

pollution might have been expected.

Although industrial pollution overshadows sewage pollution in importance on the Kanawha, the municipal wastes from Charleston and vicinity cause heavy bacterial loadings on downstream water supplies. Primary treatment and chlorination at these places seems justified to prevent sludge deposits and to reduce bacterial loadings.

Augmentation of low flows in the Kanawha by operation of the proposed flood-control reservoirs would be a distinct help in correcting conditions in the lower Kanawha. Such help would reduce, but would not eliminate, the need for sewage treatment and industrial waste remedial measures. There are probably limits to the effectiveness of industrial waste remedial measures which will necessitate the discharge of large amounts of polluting material even after a maximum of practicable treatment and recovery. Even with a reduction comparable to that effected by a secondary sewage treatment plant, the industrial wastes in the Charleston area would have a population equivalent of more than 200,000. Since continued growth is to be expected, conditions will become worse. The national-defense program is causing great increases in production at the chemical plants, both of war materials and of chemicals for synthetic fibers. The increased production will tend to aggravate stream conditions.

The Bluestone Reservoir, now being constructed by the United States Engineer Department, will increase the flow of the Kanawha by more than 600 cubic feet per second, or about 50 percent of the lowest summer monthly flow of record. Other reservoirs would supply less additional flow and their value for pollution control would be in proportion to the supplemental flow which they could provide. The Poca Reservoir, being downstream from Charleston, would have little value for pollution control. Augmentation of low flows by the Clendenin and Birch Reservoirs would insure the adequacy of Charleston's Elk River water supply and obviate the necessity of using the more heavily polluted Kanawha River water during extremely dry

years.

Increased low flow is practically always a benefit to organic pollution abatement. However, in the case of bacterial and taste and odor pollution, benefits are offset, in part, by the decreased time of flow which reduces the time natural purification agencies have to act.

Miscellaneous pollution.—At other communities along the Kanawha and New Rivers, primary treatment will be sufficient to maintain excellent stream conditions. Secondary treatment is indicated at such places as Richwood and Princeton, W. Va., and Pulaski and Galax, Va., where stream flows often become very low. At Richwood pollution from a pulp mill has, until recently, caused serious pollution for some distance downstream in the Cherry River. The industry has now moved and with the treatment of Richwood's wastes the stream can be again made suitable for fish life.

Tastes and odors caused by wastes from the gas and petroleum industry in the Elk Basin give trouble at the Charleston water intake. Studies are being made to determine the best method of solving this

problem.

Except for the Kanawha River in the Charleston area, and a few of the smaller tributaries, the streams of the Kanawha Basin can be maintained in good condition by the use of available waste treatment methods. The widespread use of the streams as sources of public water supplies and for recreational purposes justifies relatively high standards of water quality.

The estimated cost of the suggested pollution abatement program is summarized in table K-1 together with estimates of the cost of existing sewage treatment plants and of programs for primary and

for secondary treatment of all wastes.

TABLE K-7.—Kanawha River Basin: Ohio River pollution survey laboratory data—Summary of individual results

	Hardness, parts per million	35 35 39 51	2 1 6 1 7 2 5 4 6 5 7 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		93	53 50	9 t c OG	200 1 1		# P P P P P P P P P P P P P P P P P P P		
	Alkalin- ity, parts per million	28	20	10	30	31	120	101	13	16	18	16
	Turbid- ity, parts per million	600 11 8 8 650	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		525	10	9 0 0 1 1 MG			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Hď.	7.0	6.9	7.1	7.1	6.9	7.1	6.9	6.9	6.9		6.9
Coli-		2, 9, 4, 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	983	2, 400	1, 500 1, 100	2, 400	460	1, 100	. 240	93	222	240
5-day bio-	cnemical ovygen demand, parts per million	0000000	0.0000	6.9	6 0 − 6	6.00	1.050	30 O O	.1.9	1.9	2-00	8 0.0
	Percent satura- tion	7.88 F. 86 4.1.4. 17.00 1.00 F. 00	88.55.0 87.7.7	89.1 65.0	80.9	7.9. 86.3. 86.33	0 00 00 0 00 00 0 00 00 0 00 00	86.9 86.9	88.5.7.8 8.5.7.8.9	92.5	87.1	
Dissolved oxygen	Parts per million	2.0.0.00 0.4.0 0.00	10.0	7.0	9.0	0,0000 0 % 40	0.00	10.3	10.4	10.7	10.5	
	Temper- ature ° C.	12.00.00 00.00 00.00		12.5	12.5	12.0	,	0 0 00 0 0 10	න ග්රේ	000	0.00	
Average	discharge, cubic feet per second	145 69 87 41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	16	63 41 63	N400	, OG & &		2, 300		105	107
	Date	Apr. 19, 1940 Apr. 23, 1940 Apr. 25, 1940 Apr. 19, 1940 Apr. 23, 1940	25,	25,	Apr. 23, 1940 Apr. 25, 1940 Apr. 19, 1940	23. 25.	Apr. 25, 1940 Apr. 19, 1940 Apr. 23, 1940	25.55	24.22.6	Apr. 26, 1940 Apr. 22, 1940	Apr. 24, 1940 Apr. 26, 1940	
	Mileage from mouth	KNrEf 412	KNrW 411	NNTNIL 375	do do KNrNfL 374	do do KNTLrB 336	KNrLrB 335	do KNr 199-	do KNr 197.5	KNrC 306	do do	dodo
	Sampling point	East Fork, below Boone, N. C. Do Do Do Boone Creek, below Boone, N. C. Do	Winkler Creek, below Boone, N. C.	Do. Little Buffalo Creek, above West Jefferson, W. Va.	Do Little Buffalo Creek, below West Jofferson W. Va. Va.	Do Do Bledsoe Creek, above Sparta, N. C.	Do Do Do	New River, above Fries, Va.	Do New River, below Fries, Va Do	Chestnut Creek, waterworks intake,	Do. 100	Cheshuit Creek, below milk plant, Galax, Va. Do. Do.

				OLL		LUA Y AM.		0 444		2021		021.							000
10	37 64	43	29 29 29		\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		148	140	103	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 7 2 6 6 0 2	5 5 6 5 7 7	65	53	t p p q q q q q q q q	1	* * * * * * * * * * * * * * * * * * *
16	18 16 16	19	24	77	271	238	888	40		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1	1 5 6 1 1 0 1	0 1 1 1 1 2 2 2	36	44	229	238	
14	29	150	35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		12	7 4	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	8 8 8 1	0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 10	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
6.9	6.9	7.0	6.9	7.8	7.6	00		7.00	er.		3.0	8 8 8 8	2,00	3.0	7.4	8.1	7.00		
460	24 24 24 46	43	4 20	12	24,000	46,000 46,000 1,100		46	2 2	00	46	1	(2)	3	es	10,	15 240	230	11,000
5.1	HHH:	0.00	91.10	61 00		297 176	2.5	1.00.00	(115.7)	- 12 S	13.00	12.5	11.1	12.0]	1.4	4	6.1	5.3	10 7
92.8	86.6 87.2 89.2 99.2		89.2 89.8 89.9	1 .	94.9	27.4	102.2	95.7 95.7	90.0	75.2	6.99	86.7	77.2	69. 2			88.2 139.6	33.3	3.2
10.8	10.2		10.3		3.2	3.0		10.1			7.2	9.5	9.1	7.4			10.4	3.6	6.9
9.0	10000 d		10.5	0.00		12.0		10.5			12.5	13.0	80	12.5			10.0	11.5	13.5
159	107 105 5, 360 3, 410		3, 410 3, 460 87	86 126 93	126	93 88 126	83	25 42 25 25 44 25	28	61	200	84	61	58		2,300		හ	75
22, 1940	24, 1940 26, 1940 22, 1940 24, 1940	22, 1940	24, 1940 26, 1940 24, 1940	26, 1940 11, 1940 15, 1940		15, 1940 16, 1940 11, 1940		16, 1940 11, 1940 15, 1940		15, 1940	16, 1940	11, 1940	15, 1940	16, 1940		16, 1940		12, 1940	17, 1940
Apr.	Apr. Apr. Apr.	Apr.	Apr. Apr. Apr.	Apr.	Apr.	Apr.	A pr.	Apr.	Apr.		Apr.	Apr.	Apr.	Apr.	Apr.	Apr.	Apr. Apr.	Apr.	Apr.
KNrC 304	do KNr 286	KNr 282	do KNICI 300.5	KNrRe 298	do KNrRe 297	do do KNRRe 296	do	KNYP 268	do do Na	dodo	dodo	KNrP 267	do	do	KNr 248	do KNr 247	do KNrCr 253.5	KNrCr 252.5	op
Chestnut Creek, below all sewage,	New River, above Austinville, Va.	New River, bridge on Route 52,	Crooked Treek at mouth, Wood-	Do. Reed Creek above Wytheville, Va.	Reed Creek, below last sewer, Wythe-	Ville, Va. To Do To Creek 2 miles below Wethe-	ville, Va.	Peak Creek, above Pulaski, Va	Door Coote Polow Jeet course	Pulaski, Va.	Do	Peak Creek, below Chemical Co.,	Do	D0-	New River, above Radford, Va.	New River, below Radford, Va	Do. To Creek, above Christiansburg,	Va. Crab Creek, at creamery, Christians-	burg, Va.

1 Seeded and neutralized.

Table K-7.—Kanawha River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million		270	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	# # P P P P P P P P P P P P P P P P P P	136		26	109 106	162 113 136 118	115	52 63
	Alkalin- ity, parts per million	238	229	205	261	88	47	120	105	112	116	52
	Turbid- ity, parts per million		20	2 4 5 2 5 5 1 1 2 3 2 3 2 5 5 6 5 5 1 9 9 2 7 9 2 7 9 2 8 1 9	7 2 1 8 5 3 8 7 7 8 8 7 9 6 5 9 7 1 1 9 7 7 1 9 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	04		040	13 65	230 125 97	21 6 14	13.22
	Hď	00	0.0	7.9	7.	7.4	1 1 1 1 1 1	7.4	7.9	7.9	7.5	\$ 1 \$ 2 \$ 4 \$ 1 \$ 1 \$ 1 \$ 1 \$ 1 \$ 2 \$ 3 \$ 4 \$ 4 \$ 5 \$ 4 \$ 5 \$ 5 \$ 5 \$ 6 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7 \$ 7
Coli-	forms, most probable number per milli- liter	4,600	750 210 9	930	11,000 2,300 1,100	23	4	0.00	150 9 4	360 230 230 230	240	910
1	chemical oxygen demand, parts per million	4.2	चं छ छ ७० ७ छ।	00 00 00 0 4 4	22.0	1.60	1.2	∞ - 	3.5.1	20.5	0.00	. 9
Dissolved oxygen	Percent satura- tion	90.5	82. 2 84. 7 87. 0	89.6 107.8 82.9	46.4 79.9 101.3	95.1 108.5 94.0	85.6	904.4	94.9 90.6 97.4	78. 7 78. 8 67. 5 95. 6	87.4 89.7 92.6	87.4
Dissolve	Parts per million	9.0	0000	9.6 11.1 9.0	8.9 11.6	10.4 11.4 10.9	90.6		4.00 4.4.8.8		10.01	9.7
	Temper- ature ° C.	16.0	10.5	12.5 14.5 12.0	13.0 14.5 9.5	11.5 13.5 9.0	9.5	14.0 8.0 10.0	11.5	22.22.11.		11.0
	Average discharge, cubic feet per second	41	CO 60 CO	CO PO CO	10 mm	17 13 2,320	3, 570	2,950 3,800	6. 8840	T T 50	62 41 3, 450	5, 220 4, 180
	Date	. 10, 1940	. 12, 1940 . 17, 1940 . 10, 1940	: 12, 1940 : 17, 1940 : 10, 1940	. 12, 1940 . 17, 1940 . 10, 1940	. 12, 1940 . 17, 1940 . 10, 1940	r. 12, 1940	12,	18,000	6 cir-6	29,12	y 2, 1940 y 7, 1940
		Apr.	Apr. Apr. Apr.	Apr. Apr.	Apr. Apr.	Apr. Apr. Apr.	Apr.	Apr.	Apr. May May	Apr. May May Apr.	May May Apr.	May
	Mileage from mouth	KNrCr 252	do KNrSt 244	do KNrST 242	do KNrSt 235.5	do KNr 206	KNr 204	KNr 199	KNrRi 195	do do KNrEr 189	do	dodo
	Sampling point	Crab Creek, below treatment plant	Do Do Do Stroubles Creek, above sewage plant,	Do Do Stroubles Creek, below sewage plant,	Do Do Stroubles Creek, 130 yards above	Do Do New River, 4.2 miles above Pearis-	New River, 2 miles above Pearisburg,	New River, below Narrows, Va	Rich Creek, below Peterstown, Va. Do Do	Grassy Branch, below railroad yards drain, Bluefield, W. Va. 100 East River, at mouth, Glenlyn, Va	Do. Do. New River, bridge below Glenlyn,	Do

		# E E E E E E E E E E E E E E E E E E E	000	143	110	1	120	127	1	161	168	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	146
102	109	107	108	151	122	28 88	26 28	288	69	72	145	68	102 78 90
-			0 1 M	2 001	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2	22	1 2 4 2 2 8 0 8 7 2 3 9 2 3 9 1 3 4 1 1 1 1 1 1 1 1	32	888	1 1 2 1 5 6 9 6 9 5 6 9 1 8 6 1 6 9	1272
7.8		7.9				7.3	6.8	7.7	7.4	7.9	7.6	7.5	7.6
15	93	43	240	930	4.65	23 110	460 23 4, 600	2,400 11,000 43	43 240	460 91 93	75 93 110	39 460 210	2, 400 2, 400 23 83
10	.9	8.	400			460	6.3	10.6 10.0 1.5	1.1	0.1.3	1.0	5.8.6	1.8.1.9.
93.4	103.4		88.4			76.3 90.3 95.1	91. 1 100. 0 75. 5	72.0 63.8 87.9	83.6 94.9 82.4	79.0 81.6 91.4	83.0 90.6 83.7	84.2 85.5 82.6	88.38 88.08 89.09 91.6
9.9	10.7		10.7			9.7.6	11.0	30.10.30 4.1-30	œ. œ. œ. & 4. 4.	9.7.6	10.0	10.0	9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
13.0	14.0		15.5			7.0 22.5 14.0	7.5 20.0 16.0	8.5 21.0 17.0	11. 0 22. 0 15. 0	19.5	7.5 17.0 10.5	8.0 13.5 11.0	8.5 11.5 10.0 16.5
36	926	26	2020	ာ ကာတ	26 27 74	33.0	© 400	œ 4 cz	66 41 87	20 20	111	113	2002 2003 2114 2008
1,1940	6, 1940		6, 1940			3, 1940 8, 1940 30, 1940	3, 1940 8, 1940 30, 1940	3, 1940 8, 1940 30, 1940	3, 1940 8, 1940 30, 1940	3, 1940 8, 1940 30, 1940	3, 1940 8, 1940 1, 1940	6, 1940 9, 1940 1, 1940	6, 1940 9, 1940 1, 1940 6, 1940 9, 1940
May	May	May	May	May May	May May Apr.	May May Apr.	May May Apr.	May May Apr.	May May Apr.	May May Apr.	May May May	May May May	May May May May
KNrBl 218	do.	KNrBl 216.5	do	017	do do NrBi	do KNrBlL 211	do KNrBlL 209.5	do WNrBl 208	do KNrBl 207	do do KNrBIC 203	do do KNrBIW 205.5	do do KNrBIW 204	do KNrBIW 201.5 do
Bluestone River, water plant intake,	Bluefield, W. Va.	B	Pond Creek, Bluencia.	field, W. Va.	a m	W. Va. Do. Laurel Creek, above Pocahontas,	N. v.a. D. Do. Laurel Creek, below Pocahontas,	W. Va. Do. Do. Bluestone River, above Bramwell,	River, below Simmons,	W. Va. Do. Crane Creek, at mouth Montcalm,	W. Va. Do. Wide Mouth Creek, above Matoka,	Wide Mouth Creek, below Matoka,	11111

Table K-7.--Kanawha River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

,	Hardness, parts per million	120	1	48 54 56 62 62 61	66		18 23 23 23		
Albalin-	ity, parts	71 80 27	37	46 49 49 30	45	17	20	19 20 20 20	21
Turbid.	ity, parts per million	14		19 11 12 22 17	e 472 80 472		27 4 12		
	Вď	7.6	7.0	7.3	7.5	8 6 6 8	7.7.7	6.7.7.6.7.7.0.0	7.0
Coli-	most probable number per milli- liter	240 240 23 150	21 93 360	2, 400 1, 100 1, 100 11, 000	8 6 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	24	044	400004	15
5-day bio-	oxygen demand, parts per million	1.6	2.3	1.4.0.0.0.	400000		1.3	11.08.07.	410
d oxygen	Percent satura- tion	88.88.88 88.33.88 89.80.00	81.4 94.3 78.6	57.6 18.4 96.6 91.2 78.3 97.5	96.0 92.0 86.8 94.8	93. 2 100. 5 88. 8	94.7	93. 5 90. 2 90. 2 90. 2 87. 8 87. 8	91.2
Dissolved oxygen	Parts per million	9.9.8.3	0,0,0,0	6.6 10.77 10.44 10.88 10.88	9.9.5 10.1 10.0	9.8	9.9.9	8.0.0.0.0.0 8.0.4.7.4.0	0.00
	Temper- ature "C.	14.0 8.0 18.5 15.0	10.0	17.55	15.5 14.0 9.0 19.0	12.5	13.5 16.5 13.5	13.5 11.0 12.0 14.0 14.0 14.0	13.0
Average	discharge, cubic feet per second	208 167 102 26	22 13 26	22 2000 24	22 370 303 178 772	990 319 772	990 319 1, 390	2,800 1,390 2,800 3,415 3,470	6, 010
	Date	Apr. 30, 1940 May 3, 1940 May 8, 1940 Apr. 29, 1940	May 2, 1940 May 7, 1940 Apr. 29, 1940	May 2, 1940 Nay 7, 1940 Apr. 29, 1940 May 2, 1940 May 7, 1940 Apr. 29, 1940	May 7, 1940 Apr. 30, 1940 May 3, 1940 May 8, 1940 May 27, 1940	May 31, 1940 June 5, 1940 May 27, 1940	May 31, 1940 June 5, 1940 May 27, 1940	May 31, 1940 May 27, 1940 May 27, 1940 May 31, 1940 June 5, 1940 May 27, 1940	May 31, 1940 June 5, 1940
	Mileage from mouth	KNrBl 193dodo	do do KNrBlBr 189	do KNrBiLa 185 do do KNrBiBr 182	do do KNrGrEf 300	do	do KNrGr 295	do KNrGr 291. do KNrGr 267.5	do
	Sampling point	Bluestone River, Kegley, W. Va. Do. Do. Rrush Creek, above Princeton, W.	Va. Do Do Brush Creek, below Princeton, W.	Va. 100 Laurel Creek, below Athens, W. Va. Do. Brussi Creek, at mouth, Speedway,	W. Va Do Bluestone River, at mouth. Do Do Do Do East Fork Greenbrier River, above	Durbin, W. Va. Do. Do. Do. East Fork Greenbrier River, below	Durbin, W. Va. Do. Oroca Disconnection of the Company of the Compa	Va. Do. Greenbrier River below Cass, W. Va. Do. Do. Do. Greenbrier River, above Marlington,	M. Va. Do. Do.

			OHIO	RIVE	in Pu	ווטעם	ION CC	MINU	L		
	45	49	333	104	109		38	94 4 4 5 1 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 ×	782	64	29
28 28 43	43	38	37	33	118	37	49	55	120	11	2 3 3 1 0 1
0	42	448	170	52	18		122	2488	5년 4. 8	45	10
1 182	7.2	7.2	7.7.7	क्ट्रांट्र क्ट्रक	F. F. F.	7.3	7.3		0.00 W	4.2	3.7
93 240 4	23 4 62	844	43	93	£ 23 &	15.69	240	110	24	460	23
6 7.9%	4-100	400	r.r.o.	04.00	7.1.0	64.0	4.0.04.	4000-	0.000	12.1	1.0
94.8 90.7 89.2 91.0	& & & & & & & & & & & & & & & & & & &	91.8	90.6	99.6 103.3 84.3	90.6 86.7 89.6	95.6 89.2 97.9		\$ 9 8 8 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		87.9	86.6
ලා පැගුලා 4 බ ා ව ව	ල ග ග ග	0,00,00	0000 0000	6.00 6.00	ကေသတ တော်တံတော်	0.00		ကတတ — —		80	8.6
16.0 13.0 19.0	15.5 18.0 12.5	16.0	13.5 23.5 17.0	19.0 23.0 12.5	14.5 15.0 16.0	18.0 21.0 15.0		18.0 18.0 19.0 19.0 19.0		16.0	16.0
3, 470 6, 010 1, 930 81	52 58 121	77 88 2, 320	10,400	1, 910 1, 200 1,63	121 76 2, 580	1, 200 1, 200 2, 580	1, 200 6, 900 5, 300	8888	44 8	10	0
May 27, 1940 May 31, 1940 June 5, 1940 May 29, 1940	June 4, 1940 June 6, 1940 May 29, 1940	June 4, 1940 June 6, 1940 May 27, 1940	May 31, 1940 June 5, 1940 May 28, 1940	June 3, 1940 June 6, 1940 May 28, 1940	June 3, 1940 June 6, 1940 May 28, 1940	June 3, 1940 June 6, 1940 May 28, 1940		May 28, 1940 June 8, 1940 June 6, 1940 May 15, 1940	23,2		May 23, 1940
KNrGr 264 N do do do HNrGrH 213.5 N	do J. KNIGIH 208.5	do Ji KNrGr 208.5	do J. K. NrGr 203	do TNrGrF 194	do J KNrGr 188.	do J. J. KNrdr 187	161.5	KNr 159		do	Jdo
Greenbrier River, below Marlington, W. Va. Do. Do. Howard Creek, below White Sulphur	Springs, W. Va. Do Do It ward Creek, at mouth Caldwell,	Do D	Greenbrier River, Ronceverte, W.	ror Spring Creek, Fort Spring, W.	Va., 100 Greenbrier River, waterworks in-	take, Alderson, w. va.	Wo'd. Do Greenbrier River, Hinton, W. Va.	New Biver, Hinton, W. Va.	Big Beaver Creek, at mouth Beekley.	W. Va.	Do.

1 Seeded and neutralized;

Table K-7.—Kanawha River Basin: Ohio River pollution survey laboratory data— Summary of individual results—Continued

						Dissolved oxygen	doxygen	1	Coli-				
Z	Mileage from mouth	Ã	Date	Average discharge, cubic feet per second	Temper- ature ° C.	Pi T	Percent satura- tion	chemical oxygen demand, parts per million	forms, most probable number per milli	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per million
Ž	KNrPi 143.5	May 1	May 15, 1940	23	17.0	8.8	91.2	11.0	4	5.3		111	1
	-do	May 2	20, 1940	16	17.0	8.2	84.6	11.1	97	4.5	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10	# # # # # # # # # # # # # # # # # # #
do.	0	May 2	23, 1940	16	17.0	00 00	89.8		6	8.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Z	KNrPi 143	May 1	15, 1940	83	16.0	8.6	86.7	, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	210	5.5		10	
op-	0	May 2	20, 1940	16	17.0	98.73	84.7	11.8	930	4.9		13	
0	-do	May 2	23, 1940	16	16.0	8.6	86.5	6.11	36	200	1	1	1
Z	KNrPiL 141	May 1	13, 1940	က	14.0	9.6	92.1	1.5	1,100	0.0	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	135	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Nrp	do KNrPiL 139	May May May	16, 1940 21, 1940 13, 1940	ကကက	12.0	0; 0; 4; 0; 0; 0; 0;	88.2	.9	43 43 24, 000	5.7.7.	06	62 62 179	126
1	do		16, 1940 21, 1940	ကက	13.5	75.00.1	70.4	ග යා	4,300	7.7.	14	76	160
7.	rP1M 147	May	15, 1940		16.0	, 00 rc	82.9		£3 4		12	36	209
Z	KNrPi 142.	May	13, 1940	27	17.5		89. 4	01-	4		00	15	72
1	do		16, 1940	19 73	15.5	-1 -1 00 00	4.00	4.0	24	0.00	27	15	77
Z	KNrPiW 143.5			9 4	100.4		93.2	1.6		2.5	401	300	262
101	do	May	23, 1940) 4H	15.5		82.6	4.6	430	7.3	12	00	109
Z	KNrPiB 147	May	15, 1940	11	14.5	8.1	79.2	1.55	© {	3.9			
	-do	May	20, 1940	6	14.5	00.1	78.6	8.1.	22	3.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 8 3 5 5 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	do	May	23, 1940	00	15.5	7.9	79.0	222	3	2.2			
KN	KNrPi 134	May	15, 1940	29	17.5	0.6	93.8	6.	4	7.0	23	19	114
	do	May	20, 1940	42	16.5	× × ×	81.8	3.9	110	8.50	175	22	83

						OH	110	RIV	ER I	OLLU	TION	CONT	TROL			Э.
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*	D 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	234	236 117 123	124 84	26	22.28	49 229 97 55	47	43	19
1	1		1 1 1 1 1	1 1 1 1 1 1	989	280	110	44	20	211	70	21	240 65 65 65 65	200	10 W	00
	;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23	18 17 15	13.00	4	n II o	es 00 00 to 10	15	© 00	17
53	3.5	3. 1	3.7	3.6	6, 0		1-1-		1,0,00,	2:1:00	6.9	ი, ი, ი, თ ი 4	8,4,6,6 1084100	5.9	5.9	8.
end	1	4		හ	1 100		460	38	43 23 1, 100	2,400	404	L 22 44	2234-194	4-	43	4
9.	.5.				1.0	* 65 %	0.4	m. w.	0.4.0	%. €.	ထယ္ထ	8208	F. 00 70 Cd 4	3.1	10.00	9.
89.2	89.3	86.5	82.7	77.4	85.0		90.0		94. 3 92. 7 89. 7	90 2 83.6 87.2	97.7 89.6 87.9	92.7	94.8 94.5 97.0 91.0	91.5	91.3	89.0
2.6	9.8	9.2	8.2	80	9 20		0000		တက္ တ	9.8.2	0.00	9.8	10.3 9.4 12.0 13.3	13.4	13.4	13.0
12.0	11.5	13.0	16.0	12.5	15.0	13.5	16.0		14.0 15.5 16.0	17.5	15.0	13.0	13.0	00	00	0
t	9	NO.	-1	9	22	-	180	14 26	18	ಹಿಬಹ	44	9	1,580 1,910 1,710	1,020	225 435	225
May 15, 1940	17, 1940	22, 1940	14, 1940	17, 1940	22, 1940	17,	14, 1940	2,4,	17, 1940 22, 1940 14, 1040	22, 1940 22, 1940 14, 1940	17, 1940 22, 1940 14, 1940	17, 1940 22, 1940 14, 1940	17, 1940 22, 1910 5, 1939 7, 1939 15, 1940	9, 1940 15, 1940	9, 1940 15, 1940	9, 1940
May	May	May	May	May	May	May	May	May	May May May	May May May	May May May	May May May	May Nay Dec. Dec. Jan.	Feb. Jan.	Feb.	Feb.
KNrD 132	do	do	KNrD 130.5	-do	do	1	KNrD 125.5	do KNrD 122. 5	do KNTAF 123	do do KNrW o 110	do do KNrW o 109.5	do KNrWo 109	do KNr 97 G do KGa 157.5	do KGaC 167	do KGaC 166	dodo
Dunloup Creek, above Mount Hope, W. Va.	Do	Do	Dunloup Creek, below Mount Hope,	Do	Dunloun Creek below Searbro	W. Va.	Dunfoup Creek, below Harvey, W. Va	Dunloup Creek at mouth, Thur-	Arbuckle Creek, below Minden,	Wolf Creek above Fayetteville,	Branch Laurel Creek, below Fayette-	Wolfe Creek, below Fayetteville,		Cherry River at water intake above	Do. Cherry River, below Richwood,	Do.

1 Seeded and neutralized.
3 Less than 1.

TABLE K-7.—Kanawha River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	10 26 10 40 40	49	55	100	19	116	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	113	6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Alkalin- ity, parts per million	21 21	21	25 17 25 25	21	23 15 14 10	14	23	138	16	31	930	9909
	Turbid- ity, parts per million	36 12 13	10	20 14	24	171 133 155 88	==	ගහ	37	15	77	18	202
Coli-	Hď	6.8	6.2	6.7	6.7	6.00	7.3	7.5	6.9	7.1	7. 14	6.9	7.7.
	most probable number per milli- liter	40000	240	93	460	2,400 430 1,100 93 15	00	(3) 4	(2) 46	233	110	150	23
5-day bio-	oxygen demand, parts per million	4.0000	4.0	٢٠٠٥٥٠	1.0		2.0	. H.	1.9.	1.0	1.3	00 00	00:00
l oxygen	Percent satura- tion	95.0 96.8 90.2	91.5	98.88 98.88 7.88		87.2 84.4 93.1 94.0	96.1	91. 5	92.0	102.6	94.9	100.5	93.8
Dissolved oxygen	Parts per million	10.0	13.4	00 10 00 00 00 00 00 00 00 00 00 00 00 0		8. 4.1.2.2. 1.2.2. 5.2.	12.6	12.0	11.5	12.8	13.1	13.2	11.7
	Temper-	13.5 17.5 20.0 0	14.5	17.0 21.5 15.5 17.0	15.0	18.0 22.4.4.8.0 5.5.0 5.5.0	4.0	4.0	9.6.0	0.00	2.0	6.5	0.00
Average	discharge, cubic feet per second	60£ 593 294 1,680	1, 480	(2) 1 56 43 28	116	89 57 62 198 16, 700	18,300	2, 110	16, 700	18, 300 5, 930	16, 700	18,300	2, 140
	Date	May 29, 1940 June 4, 1940 June 7, 1940 Jan. 15, 1940	Feb. 9, 1940 May 29, 1940	June 4. 1940 June 7. 1940 May 29, 1940 June 4, 1940		June 4, 1940 June 7, 1940 Dec. 5, 1939 Dec. 7, 1939 Feb. 14, 1940	Feb. 20, 1940 Dec. 5, 1939	Dec. 7, 1939 Feb. 14, 1940	Feb. 20, 1940 Feb. 14, 1940	Feb. 20, 1940 Mar. 12, 1940	Feb. 14, 1940	Feb. 20, 1940 Dec. 5, 1939	Dec. 7, 1939 Dec. 14, 1939
	Mileage from mouth	KGaC 164do	KGaA 143.5	do GaMS 157	KGaMS 155.5	do do KGa 97 K 95.6	dodo	ф. до-	ф. 20.	do	K 85.6	do	do
	Sampling point	Cherry River, below Fenwich, W. Va Do Do Gauley River, 15 mile below mouth Cherry River	Arbuckle Creek, below Summerville,	Do. Do. Sewell Creek, above Rainelle, W. Va. Do.	Sewell Creek, below East Rainelle,	Do. Gauley River, at mouth. 100. Kanawha River, water intake, Glen Forris. W. Va.	Kanawha River, 2 miles below	Mountain Stream, Charleston Height W. Va.	Kanawha River, water intake, Al-	Kanawha River, lower edge Hare-	Kanawha River, waterwoks intake, Montgomery, W. Va.	Kanawha River, United States lock	Do

				,	ULL	110	7.61	r A Trail	16 3	. 01	111	, 11	LOI	, N	C) I/I	TI	OL					e	1 0
		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B 1 6 0 5 6 7 0 6 3 7 3 7 3	1 0 0 1 1 1 1 1 1	8 8 8 9 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 1 1		t 0 1 2 1 1 1 6 3 0 5 0 5 0 1 1 1 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		22	23	14	11	
23.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	24	33	78	9 8	51	48	00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 3 3 1 1	73	53	52	23	53		33	37	23	44	25	10	10	17	
100000	4	120	13	12	00 7	14	18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 8 8 8 8	17	16	22	22	58		15	22	70	45	64	29	42	53	
**************************************	7.1		6.9	4.00		5.70		7.6		7.4	7.2						7.2	7.4	7.3	6.6	6.7	6,4	6.1	•
\$078	240	15	49	150	907	24	15	£ 4.	1 83	1,100	240	1,100	930	240	210	16	11,000	24,000	24,000	110	G	23	3	,
**************************************	1.2	2.0		2,50				696		3.2	63 -					4,	16.9	43.7	44.7	2.3	1.0	9.	1.0	
93.6 102.0 101.1 100.7	93.1	92.8	82.7			93.1		90.2		70.3	817.8						0.06	84.8	88.8	91.5	94.8	97.9	91.2	
13.7	12.2	13.2	12.7			12.9		13.0		8.6				11.6			11.9	10.6	11.7	13.4	13.1	13.4	13.3	
0 444	4.0	1.0	9.0	7 00		2.0		1.5	2.0	7.0	4	1.2	1.5	0 0 0	0	4.0	4.0	6.0	4.0	0	2.0	2.5	0	
1,340 1,840 4,850 6,650	36		18, 500	2,090		4, 930		6,300		2, 250	2,970			2, 230			7,850	7,850	7,850	524	654	654	524	
4, 1940 10, 1940 18, 1940 12, 1940	. 12, 1940	14,	5, 1939	7, 1939	4 +	10, 1940	31, 1940 24, 1941	28, 1941	28	8, 1939	14, 1939			24,	283	. 12,	do		op	Jan. 15, 1940	9,1940	do	Jan. 15, 1940	
Jan. Jan. Jan. Mar.	Mar.	Feb.	Feb. Dec.	Dec.	Jan.	Jan.	Jan. Feb.	Feb.	Feb.	Dec.	Dec.	Jan.	Jan.	Feb.	Feb.	Mar))	Jan.	Feb.		Jan.	
do do K 77.5	K 74.4	K 73.7	do K 67.7	do	do	do	IXdo	do		K 56.3	do	do-	do	do	1 1	K	do	-do	qo	KEI 198.	KEl 198.5	KEI 196.5	KEI 197	
Do	Cabin Creek, at mouth, Chelyan,	Kanawha River, water intake, Chelyan, W. Vs.	Kanawha River, United States lock,	Do.	Do	Do	Kanawha River, Kanawha city	Do Kanawha River. C. & O. bridge.	Charleston, W. Va.	Kanawha River, Patrick St. bridge,	Do	Do	Do	100	Do	Kanawha River, below capitol build-	Kanawha River, above Bratfore St.,	Kanawha River, foot of Capitol St.,	Kanawha River, below Truslow St.,	Elk River, waterworks intake, Web-	Elk River, 12 mile above waterworks,	Webster Springs, W. Va. Elk River, railroad bridge, 100 yards below forks, Webster Springs,	Elk River, 1/2 mile below Webster	3 Less than 1

Table K-7.—Kanawha River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	111	12	13	12 24	72	70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		53	62	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9	Aikain- ity, parts per million	10	15	128	25	21 27	25 26	26	16		34	32 23	16	17	13
	ity, parts per million	57	45	52	49	20.8	11 8	9 10	1-1-1		10 01	0 -1 (6	12	00
	Hď	6.3	6.0 8.8	6.9		999		6.0	0000 0000				6.7		က % က တ်တ်တ်
Coli.	DHD	63	4.3	75	43	1,100	110	4.3	000	4.2	1, 100	460	110	93	448 448 -
5-day bio-	oxygen demand, parts per million	4.	1.6	10 4	.2.	. co :	2.1	1.4	00 1-10	401	41-		1.3	1.0	1.6
	Percent satura- tion	93. 5	96.8	97.7	102.0	91.6	85.5	88.7	95.3 91.9	102.4	82.9		97.0	92. 5	91.7
Dissolved oxygen	Parts per million	13.5	13.4	13.3	13.1	11.6	10.9	10.8	13.9	4.4.0	10.5		13.8	13.5	13.9
	, Temperature & C.	10	2.0	3.0		10 co		3.0	000	0.4.0			1.0	00	3000
Average	discharge cubic feet per second	1,150	1,300	1,300	1,300	138	100	1,080	250 200	1 12	1186	1,590	250	200	1, 590
	Date	Jan. 15, 1940	Feb. 9,1940 Jan. 15,1940	Feb. 9,1940 Jan. 15,1940	0,4,	ô.4;	Dec. 6, 1939	Dec. 6, 1939 Dec. 14, 1939	Jan. 14, 1940 Jan. 10, 1940 Jan. 18, 1940	28,	Dec. 6, 1939 Dec. 6, 1939	12,5	Jan. 4, 1939	18,	Feb. 24, 1941 Feb. 28, 1941 Mar. 12, 1941
	Mileage from mouth	KEl 159	do	do KEI 152	KEL	KEL	KE1	do	do do	op op	doKEl 71	op	KE1 60	do	do KEI 58
	Sampling point	Elk River, waterworks intake, Sut-	Elk River, ½ mile below Sutton,	Elk River, 34 mile below Gassaway,	r, above Clendenin, W.Va.	below Clendenin, W.Va.	Elk River, I mile below refining com-	Elk River, bridge at Big Chimney,	w. va. Do Do		Charleston, W. Va. Charleston, W. Va. Do E!k River, filter plant. Charleston.	W. Va. Do Blk River, Coon Skin intake, Charles-	Elk River, Virginia St. Bridge,	одалеми, м. уа. Do	Do Do Blk River, Washington St. Bridge, Charleston, W. Va.

			01110	,		00110	1, 00			O	
	204	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 140	1 00	87	43	48	85	88	0 6 0 0 0 0 0 1 1 1 1 1 1 0 1	
21	46	44 45 47 47 47	33 33 36 31 36	37	39	828	217	65 118 18 18 18	5821 51 51 54	48 21 95	
110	==	112 118 27 112 112 113	120 18 18 18	9	82	00	ଟାରଉ	200000	1255	18 85 50	
6.9	7.1	4000000	7.4.0.0.0.1. 1.4.0.1.0	7.6.7.	7.3	6.9	7.7.	7.6.6.6. 8.0.6.9.∺	10.6.9	6.9	
430	15	210 132 93 60 240 240 240	150 150 93 775 23	23 43	150	9 4 E	240 93 4	468 4 98	1-4448	43 93 4,600	
2.2	6.6	ひまなできてよらりもののですり	1.0,0,0,0	1.1	101-4	10 या या	r.r.00	H 4. 40040	4446	6.8	
90.5	82.4 39.8	41.00.057.48 41.00.057.44	90.00 90.00 90.00 90.00 90.00 90.00	100.1 91.2 97.1	101.1 93,6 96.3	95.0	103.3	88 93.4 4.76 96.4 4.5.4	38.5 93.1 96.9 79.2	80.1 91.0 3.7	
11.2	11.4	10.55	13.2	10.0	9.8	0000	10.0	40224	12.6 12.7 12.4 11.6	11.1	
6.5	9.0	000000	13.14.4.5	16.0 15.0 14.0	15.5	17.0 22.0 15.0	17.5 20.5 6.0	40407	7.8.4.7.0 0000	000	
340	1,820	2, 250 1, 370 2, 800 2, 800 2, 800 2, 800 2, 800	2, 770 12, 700 8, 050	100	10 115	94 107 115	94 107 31	28 656 910 420 31	28 656 910 420 1,830	2, 550 26, 900 (²)	
4, 1941	12, 1941 6, 1939	8, 1939 14, 1939 10, 1940 18, 1940 29, 1940 31, 1940	13, 1940 28, 1940 14, 1940 28, 1941 13, 1941	16, 1941 21, 1941 13, 1941	16, 1941 21, 1941 13, 1941	16, 1941 21, 1941 13, 1941	16, 1941 21, 1941 6, 1939	8, 1939 13, 1940 28, 1940 14, 1940 6, 1939	8, 1939 13, 1939 28, 1939 14, 1939 29, 1939	31, 1939 20, 1939 29, 1939	
Mar.	Mar. Dec.	Dec. Jen. Jan. Jan. Jan. Jan. Jan.	Feb. Nar. Feb. May	May May May	May May	May May	May May Dec.	Feb. Feb. Mar.	Feb. Feb. Mar.	Jan.	
KTw 55	do. K 45.6	do. do. do. K 45.6	do do KBi 97	do do KBi 96.	do do KBiLi 82.6	do do KBiLi 80	do do KBi 49	do do do KBi 46	do do do K 43.6	do. KAr 44.5	
Two Mile Creek, at mouth Charles-	Kanawha River, toll bridge, St.	Albalis, W. Vas. Do. Do. Do. Do. Do. Do. Do. Do. Co. Do. Manawha River, toll bridge, St	A DO	Big Coal River, 1 mile below White-	Dong Ny va.	Do Little Coal River, 34 mile below	Do. Coal River, 3½ miles above St.	Do. Do. Do. Do. Do. Coal River, waterworks intake, St.	Albais, W. Va. Do. Do. Do. Do. Do. Kanawha River, waterworks intake,	Armour Creek, 15 mile above mouth,	Tore than 1

Table K-7.—Kanawha River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	88	
	Alkalin- ity, parts per million	6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20
	Turbid- ity, parts per million	011 0 4 6 80801723222324 442388451877777744408867889	41
	Ηď	は に ためためたたなめの ほうさいさいさいだいにいいいいこれに の は こ こののりののののので もこののはいさます 44年ののおけらららすすっても4年	
Coli-	probable number per milli- liter	004 005 005 005 005 005 005 005 005 005	4
5-day bio-	chemical oxygen demand, parts per million	й п п питаваничем врадительной водоворого по	
1 oxygen	Percent satura-	0	10.01
Dissolved oxygen	Parts per million	に 弘 品 の名のたれればははは ないちょよんなみなんななななななないだけがははには ないちょよんなななななななななななななななななななななない。 3 0 4 0 4 0 4 0 0 10 4 10 4 0 0 10 0 10	1.1
	Temper- ature ° C.	R O O O O C O C O C O C O C O C O C O C	10.01
A	discharge, cubic feet per second	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1, 010 1
	Date	Feb. 20, 1939 Jan. 29, 1939 Dec. 6, 1939 Dec. 14, 1939 Dec. 14, 1939 Jan. 18, 1940 Jan. 18, 1940 Mar. 14, 1940 Mar. 14, 1940 Mar. 14, 1940 Mar. 15, 1940 Aug. 23, 1940 Aug. 23, 1940 Aug. 23, 1940 Sept. 14, 1940 Sept. 14, 1940 Cor. 12, 1940 Oct. 13, 1940 Oct. 14, 1940 Oct. 15, 1940 Oct. 15, 1940 Oct. 15, 1940 Oct. 15, 1940	14
	Mileage from mouth	KAr 43.6 K 88.2 K 81.1 G0 G0 G0 G0 G0 G0 G0 G0 G0 G	an
	Sampling point	Armour Creek, sewage outfall, Nitro, W. Va. W. Va. Kanawha River, 5 miles below Nitro, W. Va. Kanawha River, United States lock, Windeld, W. Va. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do	Donosassassassassassassassassassassassassas

444 566 577 577 601 611 611	**************************************	28 22 28 28 28 28 28 28 28 28 28 28 28 2
440557r0r000	2000 2000 2000 2000 2000 2000 2000 200	88 20 20 88
まてててててててているのうない。	00000000000000000000000000000000000000	
₹ 4 H W H W W D H W	E E E C C C C C C C C C C C C C C C C C	23 23 23
F. 00 00 00 F. 00 - 00 00 00		
\$6.000 000 000 000 000 000 000 000 000 00	88 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
60000000000000000000000000000000000000	0.000000000000000000000000000000000000	4.00.00
17. 13.00 11	るない ひらまえんえん まんえん えんらん 本ちらてちゃららちょうしゅうしょう しゅうちょう しゅうしょう しゅうしょう しゅうしょう	10.0
2, 1, 2, 2, 2, 1, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	44444444444444444444444444444444444444	
26, 1940 30, 1940 1, 1940 7, 1940 13, 1940 15, 1940 21, 1940 27, 1940 29, 1940 5, 1939	7, 1939 1939 1939 1949 1949 1949 1940 1940 1940 1940 194	1,6,6,1
DZZZZZZZZZO 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Dec. Dec. Dec. Dec. Dec. Dec. Dec. Dec.	Apr
do do do do do do do do do	\$66500000000000000000000000000000000000	do do do
DD. 20. 20. 20. 20. 20. 20. 20. 20. 20. 2		00.
Kans		

1 Seeded and neutralized.
2 Less than 1.

LITTLE KANAWHA RIVER BASIN

CONTENTS

	Page
Contents_ Syllabus and conclusions_ Description_ Presentation of field data_ Presentation of laboratory data_ Hydrometric data_	525 527 528 528 530 531
LIST OF TABLES	
Lk-1.—Cost estimates of remedial measures Lk-2.—Surface-water supplies Lk-3.—Sources of pollution Lk-4.—Industrial wastes (omitted; not significant). Lk-5.—Selected laboratory data Lk-6.—Monthly mean summer flows Lk-7.—Summary of laboratory data	528 529 529 530 531 532
LIST OF FIGURES	
Lk-2. Chart—Sources of pollution and selected laboratory data	528

LITTLE KANAWHA RIVER BASIN 1

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Little Kanawha Basin comprises 2,320 square miles of mountainous country in west central West Virginia. The total population is about 90,000 and there are no communities with as many as 2,500 people. The two largest communities have sewage-treatment plants. There are no pollution problems that cannot be solved by available methods of waste treatment.

CONCLUSIONS

(1) Sewage from 10,200 is discharged to the Little Kanawha River and its tributaries. About 45 percent of the sewage is treated. No industrial wastes enter the stream.

(2) Three public water supplies are taken from streams below

sources of pollution.

(3) Primary treatment of sewage now discharged without treatment should be sufficient to maintain good oxygen conditions in the streams.

(4) A summary of cost estimates of remedial measures from table Lk-1 follows:

Treatment	Capital cost	Annual charges
Existing	\$190,000 210,000	\$15, 000 20, 000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual charges
Primary, all places	\$210,000	\$20,000
Secondary, all places	290,000	25,000

¹ For maps of this basin, see Kanawha River Basin.

Table Lk-1.—Little Kanawha River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes with comparative costs for primary and secondary treatment.

		ber of	Popula-	Capital	Anr	ual charges	3
	Pri- mary	Second- ary	nected to	invest- ment	Amortiza- tion and interest	Operation and main- tenance	Total
Existing sewage treatment	1	1	4, 800	\$190,000	\$12,000	\$3,000	\$15,000
Suggested minimum treatment: Sewage treatment plants Required interceptors Independent industrial waste correction	6	0	5, 309	90, 000 120, 000	10, 000 5, 000	5,000	15, 000 5, 000
Total Comparative cost: Primary treatment all waste Secondary treatment all waste As suggested				210, 000 210, 000 290, 000 210, 000	15,000 15,000 18,000 15,000	5,000 5,000 7,000 5,000	20, 000 20, 000 25, 000 20, 000

DESCRIPTION

The Little Kanawha River drains 2,320 square miles of mountainous country in the west central part of West Virginia and joins the Ohio River at Parkersburg, W. Va. Most of the area is covered with second-growth timber. A little coal is mined in the eastern part of the basin, and some oil and gas is produced but production is declining. Farming is the principal occupation. The area is sparsely populated and the population has not changed greatly during the past 40 years.

Year	Popula- tion	Year	Popula- tion
1910.	90, 441	1930	86, 133
1920.	86, 797		92, 35 5

All of the population is classed as rural, the largest community, Spencer, having a population of 2,497 in 1940. There are 7 other communities with more than 500 people.

The principal tributary is Hughes River, which joins the Little

Kanawha at mile 19 and drains 530 square miles.

Water uses.—Five locks and dams maintain a navigable channel for boats of 4-foot draft as far as Creston, 48 miles above the mouth. The facilities are not used extensively. The Little Kanawha from Creston to Falls Mills and both forks of Hughes River are considered good bass fishing streams and are extensively used for sport fishing. The State of West Virginia maintains a bass hatchery at Palestine.

PRESENTATION OF FIELD DATA

Figure K-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure Lk-2 shows similar data and, in addition, the location of water-supply intakes from streams below sources of pollution and laboratory data on coliform organisms, dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Of the 8 public water supplies in the basin, 5 are from surface sources. These serve 6,600 people, about twothirds of the total population served by water supplies. Three of the surface supplies are from streams subject to pollution. Table Lk-2 shows data on the surface supplies.

Table Lk-2.—Little Kanawha River Basin: Surface water supplies

Supply	State	Source	Mile ¹	Treat- ment *	Popula- tion served	Consumption, million gallons per day
		Supplies below community s	ewer or	ıtfalls		
Grantsville	West Vir-	Little Kanawha River	78	FD	1,000	0.04
Glenville Cairo	ginia. do	North Fork, Hughes River	103 39. 5	FD CD	1, 400 500	.05
		Other surface supplie	s			
Burnsville	West Vir-	North Fork, Hughes River	122. 5	D	400	0.02
Spencer	ginia.	Impounded and Spring Creek	59	FD	3, 500	. 13
Total: Below Other		ls			2, 900 3, 700	0. 13 . 15
To	tal surface wa	ter supplies			6, 600	. 28

Sewerage.—Table Lk-3 shows the sewered population at each source of pollution. Of the 10,200 people connected to sewers, 4,800 are served by the two sewage-treatment plants.

Industrial wastes.—There are no sources of industrial wastes in the basin except at Parkersburg, at the mouth. The problem of these

wastes is considered with other Ohio River problems.

Table Lk-3.—Little Kanawha River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalents (biochemical oxygen demand)

Munici- pality	State	Receiving stream	Mile 1	Population connected to sewers	Treatment	Sewered popu- lation equiva- lent (bio- chemical oxygen demand)		
						Un- treated	Dis- charged	
Grantsville_Glenville_Burnsville_Cairo_Harrisville_Pennsboro_Reedy_Spencer_Total_	West Virginia	Little Kanawha Riverdododododododo	27 78 103 122 39 48 55 44 58	1, 300 1, 300 300 500 1, 300 1, 400 1, 400 3, 400	Nonedo dodo do do Primary None Secondary ²	1, 300 1, 300 300 500 1, 300 1, 400 100 3, 400	1, 300 1, 300 300 500 1, 300 900 100 500	

Miles above mouth of Little Kanawha River.
 F=Coagulated, settled, filtered; D=Chlorinated; C=Coagulated, settled.

Miles above mouth of Little Kanawha River.
 Treatment plant under construction at time of laboratory survey.

PRESENTATION OF LABORATORY DATA

Laboratory results for the Little Kanawha River Basin are summarized in table Lk-7 (p. 532). Selected data are shown in table Lk-5. All observations were made by the laboratory boat *Kiski* during the 5-month period from May to September 1940. Ten points were sampled from one to four times monthly. Maps showing the most unfavorable monthly averages of the coliform, dissolved oxygen and oxygen demand results are shown on figures K-3, K-4, and K-5 (p. 500.)

Table Lk-5.—Little Kanawha River Basin: Selected laboratory data, main stream and tributaries

	1	1			
River	Little Kanawha At mouth 0.1 August	Little Kanawha Above Parkers- burg 3.5 August	Little Kanawha Above Eliza- beth 27 Septem- ber	Little Kanawha Below Eliza- beth 25 Septem- ber	Bunnell Run Below Penns- boro 63 July
Number of samples	25. 7 2, 720 2. 2	1, 449 26. 8 117 6. 0 2. 0	3 45 22.0 12 7.2 1.6	3 45 22.5 28 7.0 3.4	3 1 21.5 7,130 3.7 15.8
Location River miles above mouth of Little Kanawha Period, 1940	North Fork Hughes Above Harris- ville 49 August	North Fork Hughes Below Harris- ville 47 August	North Fork Hughes Water intake Cairo 40.5 August	Spring Creek Above Spencer	Spring Creek Below Spencer 56. 5 August
Number of samples. Flow in cubic feet per second: Sampling days. Water temperature °C Coliforms per milliliter. Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million.	24 23. 1 154 6. 2 1. 3	24 23. 0 70 5. 9 1. 3	4 39 23. 6 218 6. 0 1. 3	23 22.8 116 4.0 1.8	23 22.8 3,350 1.7 5,4

The results for May to July are representative of moderately high discharges and those of August and September are representative of moderately low discharge conditions in the basin. High coliform counts were observed at all stations for at least 1 month. The highest counts were observed below Spencer and Pennsboro and at The latter station showed the influence of Parkersburg's the mouth. sewage. The dissolved oxygen results were generally better than 6.0 parts per million except below Spencer and Pennsboro and at Parkersburg where low monthly averages of about 2.0 parts per million were observed at times. Oxygen-demand observations were generally less than 2.0 parts per million and rarely exceeded 3.0 parts per million except below Pennsboro and Spencer where highs of about 16 parts per million and 5.0 parts per million respectively were observed. Except for more or less uniformly high coliform counts, the Little Kanawha Basin does not appear to have any extensive pollution problem.

Biological summary.—The plankton population of the Little Kanawha is quite variable with a tendency to low values. Pollution near the mouth depletes the dissolved oxygen and as a result no fish life

exists in this section.

HYDROMETRIC DATA

Six stream-gaging stations are currently in operation in the Little Kanawha Basin. Table Lk-6 shows monthly mean summer flows for 3 of the driest years of record at four of these stations.

Table Lk-6.—Little Kanawha River Basin: Monthly mean summer flows for years in which lowest summer flows have occurred

River Location River miles above mouth of Little Kanawha Drainage area square miles Period of record	Little Kanawha, Glenville, W. Va. 103 386 1929-40	Little Kanawha, Grantsville, W. Va. 80 913 1929-40	Little Kanawha, Palestine, W. Va. 31 1,513	Hughes Clsko, W. Va. 28 453 1915-31 1939-40
Year	1930	1930	1925	1930
Junecubic feet per second July	23. 9 5. 92 1. 75 0. 01	34. 1 7. 22 5. 18 0. 21	1, 170 2, 520 318 0	5.72 1.01 .12 .01
Year	1932	1932	1930	1939
June cubic feet per second July do August do September do	43. 4 337 27. 8 5. 5	130 1, 150 52. 4 12. 9	8 7 7	235 377 88. 3 6. 99
Year	1939	1939	1937	1925
Junecubic feet per second	55. 5 197 83. 9 11. 6	152 434 188 16. 9	7 7 117 11	84 205 26 14

¹ Accuracy of record fair to poor 1912-37; fair 1938-40.

Proposed stream control.—The United States Engineer Department has determined three reservoir sites to be most nearly satisfactory for flood control storage development; Burnsville on the Little Kanawha River at mile 122.6,¹ Steer Creek on Steer Creek at mile 85.3,¹ and West Fork on West Fork at mile 50.1.¹ Under the proposed plans of operation, the minimum seasonal flows which could be maintained are 10 cubic feet per second, 7 cubic feet per second, and 10 cubic feet per second, respectively. Although increased stream discharge will be beneficial, it is not sufficient to cause any reduction in the sewage treatment required. Hence, the low-flow control which could be provided by the projected reservoirs would have slight tangible value.

The Little Kanawha River is only moderately polluted. The largest community, Spencer, has recently installed a secondary sewage treatment plant, and the second largest one, Pennsboro, has a primary treatment plant which needs some improvements. Primary treatment should be sufficient to maintain good stream conditions at the remaining sources of pollution, except during such an extremely dry year as 1930. Provision against such a remote contingency does not seem justified. Low-flow augmentation by the proposed flood control reser-

voirs would have no appreciable tangible value.

The estimated cost of the suggested pollution abatement program is summarized on table Lk-1, together with the estimated cost of existing works and of a program for secondary treatment of all wastes.

River miles above mouth of Little Kanawha River.

Table Lk-7—Little Kanawha River Basin: Ohio River Pollution Survey laboratory data—Summary of individual results

	Hardness, parts per million	
	Alkalin- ity, parts per million	84 82888824218882448 84 8288888888
	Turbid- ity, parts per million	25 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Hď	まりできょう とかかかいとないないのの のもようとうとないのの あっていい でっていい できょうしょうしょう とうないいょくしょく おもん いいょう こうしょう こうしょう しょうしょう しゅうしょう しゅうしょうしゅう
Coli-	forms, most probable number per milli- liter	2,400 2,400
5-day bio-	chemical oxygen demand, parts per million	1 0
loxygen	Percent satura-	10 10 10 10 10 10 10 10
Dissolved oxygen	Parts per million	は てもならままままははない。 まってままま・・・・は・・ままみ てらななててていり 136208280m4222 974900mm747628 666m4800m
	Temper- ature ° C.	4 8
	Average discharge, cubic feet per second	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Date	June 2, 1940 June 20, 1940 June 20, 1940 July 17, 1940 July 2, 1940 July 2, 1940 July 2, 1940 July 2, 1940 July 17, 1940 June 20, 1940 July 17, 1940 July 17
	Mileage from mouth	148 58.5. 148 68.5. 150 60 60 60 60 60 60 60 60 60 60 60 60 60
	Sampling point	Spring Creek, above Spencer, W. Va., Dritige on route No. 36. Do D

111111	1111111	111111	1111111	111111		1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
24 88 88 88 88 88 88 88 88 88 88 88 88 88	3311335	848 886 897 897 897	76 40 77 77 89 86 86 101	115 69 75 81 136 21	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	45
					0 0 1 1	
81 81 46 40 40 17	950 172 16 8 8 460 255 255 255	33 34 4 50 8	11 11 11 175 175 180	475 56 10 14 115	014 008 000 000 000 000 000 000 000 000 00	14
4-1000	10212014	P 0 0 0 0 0	90400HH	110011	4-10000-100000	_
7.6.6.7.7.7			ואואטאואו		************	
240 8 4 5 3 4 4 5 4 0 4 4 5 4 0 4 6 9	240 433 150 150 150	443 146 110	25000000000000000000000000000000000000	900 000 440 000 000	011 0000000000000000000000000000000000	41
			HH 0,4,	11, 46, 24,		
400048	54894720		1			- xo
			60	Ç4		
275.984.79 84.747.89 99.84.84	91.4 990.3 995.9 95.9 95.9 95.9 95.9 95.9 95.9 9		53.0 53.0 53.0 53.0 53.0 53.0		8837.739 80.7288.73.739 80.7288.7388 80.7388.7388 80.7388.7388	
6.77.7.7.8	C.00,00,00,00,00,00,00,00,00,00,00,00,00,		0.00.00.40.00.00.40 40000 0004		807776956966676 808476011941	
25. 6 25. 0 25. 0 25. 0 19. 0 18. 0	00000000000000000000000000000000000000		26.0 20.0 20.0 20.5 20.5 20.5		10111111111111111111111111111111111111	
	1, 620 2, 790 1, 280 1, 280 1, 280		EE 33	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0
	1940 1940 1940 1940 1940 1940 1940		1940 1940 1940 1940 1940		1940 1940 1940 1940 1940 1940 1940 1940	
Aug. 20, Aug. 28, Sept. 5, Sept. 13, Sept. 17, Iune 3,	June 28,0 June 28,0 July 17,7 July 25,4 Aug. 25,2 Aug. 12,2		Tune 10, fune 19, fune 27, fuly 8, fuly 16, fuly 24, fuly 24,		Tune 10, 10 to 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	
Yes See	RESERVA -	N.S.S.S.A.	during 4	M&SAP	SALA SALA SALA SALA SALA SALA SALA SALA	200
		TB 83		ſf 49.		0 0
do d	00000000000000000000000000000000000000	S C C C C C C C C C C C C C C C C C C C	9999999	Hade de d	000000000000000000000000000000000000000	00
H H			1 1 1 1 1 1 1	i i i i e		
м дал		limit		bridg		
, belo		below city lim		Siver,		
Liver, W.		low		hes I.		
rha F		De De		Hug		han I
anaw		Run,		Fork, Harr		1 Tage than
Do. Do. Do. Do. Little Kanawha River, below di No. 3, Elizabeth, W. Va.			AAAAAAA	Do Do Do North Fork, Hughes River, brit above Harrisville, W. Va.		11
rit Cit		Bu		Z		

Table Lk-7-Little Kanawha River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

O.	I		OHIO RIVER FOLEOTION CONTROL	
		Hardness, parts per million		
	4.11-2.12	Alkann- ity, parts per million	T	
	E Company	ity, parts per million	0.00 (1.00 (
		Hd	りょうかすにそので くらきたのありらられるないでしょうしょうというないことというないことというないことというないことといいないにいいないない。 かいいいい ちゅうしょう ちゅうしょう しゅうしゅう しょうしゅうしょう しょうしょうしょう しょうしょう しょうしゅう しょうしゅう しょうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅう しゅう	
	Coli-	most probable number per milli- liter	4 0144444444444444444444444444444444444	
	6-day bio-	oxygen demand, parts per million	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	l oxygen	Percent satura- tion	9 48886888888888888888888888888888888888	
	Dissolved oxygen	Parts per million	ひ ふここいもみらららいここひ なこここでらまんのうごらは ここころのこころ あっこうじゅう りきょうきょうりょうしょ おりきてらららすのしょ おりきてららもりょ	
		Temper- ature ° C.	4	
	Average	discharge, cubic feet per second	2382 8882 8882 1,100 1,000 1,2	
		Date	May 31, 1940 June 10, 1940 July 16, 1940 June 19, 1940 June 19, 1940 June 19, 1940 June 19, 1940 June 20, 1940	
		Mileage from mouth	LKHN147. do. do. do. do. do. do. do. do. do. d	
		Sampling point	North Fork, Hughes River, ¼ mile below Harrisville. Do.	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9 & 1 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	0 0 0 1 1 1 1 1 1	2 2 0 1 0 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 · · · · · · · · · · · · · · · · · · ·				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 9 1 1 1 1 0 0	3 8 7 2 2 1 1	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 6 7 2 1 1 1 1 1	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	0 1 2 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 0 0 0 0	8 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			6 6 6 8 9 9		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38	900	38	10	23	85	17.	776	25	29	28	119	20	88	30	220	177	000	98	200	27	34	33	29	30	83	000	000	25	26	33	28	31	7.0	200	30	070	240	20	325	37	26	23
395	800	50	34	18	00;	11	10	1	30	17	170	65	53	470	480	990	200	160	208	165	85	18	15	15	Ç] ;	15	200	175	108	69	62	30 1	40	00	RC V	20	100	360	150	88	25	30
			6.6		6.7																																					
460	40	* 4	230	460	240	950	430	11,000		0	1, 100	1, 100	2, 400	430	450	940	150	4. 600	2,300	4,300	230	430	1, 100	930	830	230	1 100	930	2, 400	430	2, 400	930	180	Z40	#, 000 010	0 300	4,300	4 300	930	430	460	240
00 0					00 C																																					
64.2					77.4																																		52.9			
44.11					7.9																																.0		4.6			
25.0					15.0																																					
2, 590	22	2 4	1,080	202	009	200	200	897	1,080	3, 140	4, 170	2, 270	1,080	2, 180	0, 790	17,700	4,050	2, 760	3,020	2,060	1, 220	357	200	200	675	0 570	1 930	2, 920	1,610	403	228	167	000	10	PG	181	2. 590	2,190	560	202	1,000	1,260
28, 1940	2,0	17,1	ed,	00	10, 1940	14,	20, 1	22, 1	24, 1	28,	3,	رن سرا	1,1	10,1	10,	10,1	23	25.	27.]	1,1	රට	11	10.	17,	18,	25,	500	31.	2	6,1	රේ	1,2	10,	000	900	96	28,	30,	i co	E,	14,1	16,1
- Aug.	Sont	Sent	May	May	May	Mor	May	May	May	May.	June -	June	June	June -	- June	Tune	Tune	June	June	July	July	- July	Jaly	July	- July	Tuly	Injo	July	Aug.	Aug.	- Aug.	- Aug.	- Aug.	Aug	- Aug.	A 116	Ang	AIID	Sept	Sept	Jan.	Jan.
do	do	do	Lk 0.1	do.	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	dodo	do	do	do	do.	do	do	do	do	do do	do	do	do	do	do	do	do	do
Do	20	Do	Little Kanawha River, Baltimore	Do	D0.	Do	Do	Do	Do	Do	Do.	Do	D0.	Do	Do	Do	Do	Do	Do	Do	Do-	Do-maranananananananananananananananananana	D0	Do.	Do-	Do	The state of the s		Do	Do	Do	Do	Do	Do	Da	Do	Do		Do	Do	Do	Do

Table LR-7—Little Kanawha River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

1	per on	
	Hardness parts per million	
	Alkalin- ity, parts per million	22
:	Turbid- ity, parts per million	8 8255888888888888888888888888888888888
	pH	, andanan,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Coli-	most probable number per milli- liter	8
5-day bio-	oxygen demand, parts per million	u duuququququqqqqqqqqqqqqqqqqqqqqqqqqqq
Dissolved oxygen	Percent satura- tion	2 2242342842842824 2 27463438438243 8 081801083463848
Dissolve	Parts per million	######################################
	Temper- ature ° C.	i qwqqiqqqqiiqqq
Average	discharge, subje feet per second	1, 700 1, 5, 120 1, 5, 120 1, 1, 120 1, 1, 190 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	Date	Jan. 20, 1941 Jan. 28, 1991 Jan. 28, 1991 Jan. 30, 1991 Feb. 3, 1941 Feb. 7, 1991 Mar. 11, 1991 Mar. 12, 1991 Mar. 12, 1991 Mar. 12, 1991 Mar. 12, 1991 Mar. 21, 1991
	Mileage from mouth	DK 0.1
	Sampling point	Little Kanawha River, Baltimore & Ohio Railroad bridge. Do

1 Less than 1.

BIG SANDY RIVER BASIN

CONTENTS

	Page
Contents	539 541 542
Presentation of field data	543 545 547 548
LIST OF TABLES	
Bs-1.—Cost estimates of remedial measures Bs-2.—Surface water supplies Bs-3.—Sources of pollution Bs-4.—Industrial wastes (omitted, not significant) Bs-5.—Selected laboratory data Bs-6.—Monthly mean summer flows Bs-7.—Summary of laboratory data	542 544 544 545 547 550
LIST OF FIGURES	
Bs-1. Map—Sources of pollution	541 544 546 546 546
539	

BIG SANDY RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Big Sandy Basin occupies 4,280 square miles in the mountainous section of eastern Kentucky, southern West Virginia, and western Virginia. Coal mining is the only important industry. Less than 8 percent of the 410,000 people in the area are in urban communities. Many of the people in rural areas live in mining camps and are served by water supplies. Poor sanitary conditions are found at many places. Sewage causes local nuisances and affects public water supplies. Acid mine drainage damages some small tributaries and coal washeries cause local blackening of several streams. Little progress has been made toward pollution control and there has been slight demand for stream improvement. Techniques are available for abatement of the pollution, but the needs of the people in other directions limit present justifiable corrections to the more acute situations affecting larger population groups.

CONCLUSIONS

(1) Fifteen surface water supplies are taken from streams below community sewer outfalls. Some of these supplies are seriously polluted by sewage from the community using the water.

(2) Only about 55,000 people are served by sewers and only 3 communities have sewage treatment facilities. Other than acid mine drainage and coal washery wastes there is no industrial pollution

of consequence.

(3) Laboratory studies indicate that high coliform counts are a characteristic at most points. Dissolved oxygen is uniformly high and oxygen demand results were quite generally less than 3.0 parts per million. Acid conditions were found on two small tributaries but not on any of the larger streams. A greater pollution problem is indicated on Tug Fork than on Levisa Fork.

(4) Flow regulations by proposed flood-control reservoirs studied by the United States Engineer Department would have no appre-

ciable effect on the pollution problem.

(5) The two main streams of the Big Sandy Basin, Levisa Fork and Tug Fork, are not heavily polluted. Primary treatment of wastes discharged to these streams should be sufficient to maintain good oxygen conditions at all points except below Grundy on upper Levisa Fork and Welch, W. Va., on Tug Fork.

(6) Local nuisance conditions are caused by the discharge of untreated sewage to a number of tributary streams. Secondary treatment will be required to prevent such nuisances. Considering the present financial condition of most of the towns, justification for the expenditures beyond partial treatment is questionable.

(7) The wastes from coal washeries can be removed by available methods, and the acid mine drainage load can be further reduced by

mine sealing.

(8) In view of the normal uses of the streams involved, refined treatment at certain sources of pollution would serve no purpose commensurate with the expenditure. In these instances lesser treatment appears justified. A summary of cost estimates of remedial measures from table Bs-1 follows:

Treatment	Capital cost	Annual charges
Existing. Suggested additional.	\$70,000 1,240,000	\$10,000 110,000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are—

Treatment	Capital cost	Annual charges
Primary, all places Secondary, all places	\$1, 190, 000 1, 560, 000	\$105, 000 150, 000

Table Bs-1.—Big Sandy River Basin: Estimated cost of existing and suggested corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

	Number of plants		Popula-		Ann	ual charge	es
_	Pri- mary	Second- ary	tion con- nected to sewers	Capital invest- ment	Amortization- and interest	Opera- tion and main- tenance	Total
Existing sewage treatment	0	3	2, 600	\$70,000	\$6,000	\$4,000	\$10,000
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste correction	20	2	43, 600	740, 000 500, 000	50, 000 25, 000	35, 000	85, 000 25, 000
Total Comparative cost: Primary treatment all waste Secondary treatment all waste As suggested				1, 240, 000 1, 190, 000 1, 560, 000 1, 240, 000	75, 000 70, 000 100, 000 75, 000	35, 000 35, 000 50, 000 35, 000	110, 000 105, 000 150, 000 110, 000

DESCRIPTION

The Big Sandy River, only 27 miles long, is formed by the confluence of Tug Fork and Levisa Fork and joins the Ohio River at Catlettsburg, Ky. It drains 4,280 square miles, of which 2,280 are in eastern Kentucky, 1,015 in western Virginia, and 985 in southern West Virginia. The area is mountainous and most of it is covered with second growth timber. Farming is largely of the subsistence type. Coal mining is the most important industry, and this basin includes a large part of the southern Appalachian coal field.

	Distance above mouth of Big Sandy	Drainage area (square miles)
Major tributaries: Blaine Creek Tug Fork Levisa Fork Russell Fork	19. 9 27. 2 27. 2 127. 1	260 1,550 2,330 680

Populations					
1910	1920	1930	1940		
	4, 707	8, 465	9, 428		
			8, 366		
			6, 264		
			4, 185		
2,047	1,839	1,897	2, 942		
400 044		018 100			
			380, 720		
3, 561	14, 758	20, 627	31, 185		
201, 871	270, 868	343, 793	411, 905		
	3, 561 1, 526 1, 280 2, 047 198, 310 3, 561	1910 1920 4,707 3,561 6,819 1,526 3,232 1,220 2,110 2,047 1,839 198,310 256,110 3,561 14,758	1910 1920 1930		

Less than 8 percent of the population lives in urban communities. A large part of the rural population lives in villages and mining camps. The area drained by Tug Fork is the most densely populated part of the basin.

Water uses.—The Big Sandy throughout its length, the lower 12 miles of Tug Fork and the lower 18 miles of Levisa Fork, have been made navigable for boats of 6-foot draft by the construction of five locks and dams. The facilities are little used except near the mouth

of the Big Sandy.

The streams are used extensively for recreation by local residents but there are no recreational developments in the area. Some consideration has been given to development of a public park in the scenic area along Russell Fork where it breaks through Pine Mountain at the Virginia-Kentucky border.

PRESENTATION OF FIELD DATA

Figure Bs-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure Bs-2 shows similar data and, in addition, the location of water supply intakes from streams below sources of pollution and laboratory data on coliform organisms,

dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Of the 120 public water supplies in the basin 18 are wholly or in part from surface sources. These 18 serve 53,800 people, or about 40 percent of the population served by water supplies. Fifteen of the surface supplies come from streams subject to pollution. Table Bs-2 shows data on the surface water supplies. The underground water is limited in quantity and generally of poor quality, hard and often containing objectionable quantities of hydrogen sulfide. A number of the communities use mine drainage as a source of water.

Table Bs.-2—Big Sandy River Basin Surface Water Supplies

Supply	State	Source	Mile 1	Treat- ment 3	Popu- lation served	:Consum- tion, million gallons per day
		ıtfalls				
Vulcan	do West Virginia do do do	Big Sandy River	1. 0 27. 5 65. 9 82. 5 115. 7 27. 3 62. 8 78. 4 85. 4 98. 4 107. 0 161. 0 164. 5 153. 0 139. 0	FD F	10, 100 1, 600 4, 000 2, 500 800 200 10, 000 500 300 6, 500 2, 000 1, 000 500	0.50 .05 .17 .09 .33 .02 .02 .01 .55 .03 .05 .37 .36 .03
	,	Other surface s	supplies			`
FreeburnJenkins	Kentuckydo	Peters Creek, mine. Impounded, spring, wells, mine. Impounded.	106.0	FD	500 8, 500 500	0.02 .35 .01
Total: Below se Other					44, 300 9, 500	2. 61 . 38
Total surface	water supplies	***************************************			53, 800	2. 99

Sewerage.—Table Bs-3 shows the sewered population at each of the more important sources of pollution in the basin. Of the 55,000 people connected to sewers, only 2,600 are connected to the three sewage-treatment plants in the basin. All of these plants provide secondary treatment.

Table Bs-3.—Big Sandy River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	State	Receiving stream	Mile 1	Popula- tion con- nected to	Treatment	tion equ	popula- nivalent nical oxy- mand)	
		sewers			sewers		Un- treated	Dis- charged
Louisa	Kentucky	Levisa Fork, Big	27	1, 600	None	1, 600	1,600	
Prestonburg	do	do	82	1,900	do	1,900	1,900	
Pikesville	do	do	114	2, 900	do	2, 900	2, 900	
Grundy	Virginia	do	168	1, 100	do	1, 100	1,100	
Williamson	West Virginia.	Tug Fork	84	8,000	do	8,000	8,000	
Welch	do	Tug Fork, Elk-	160	5, 900	do	5, 900	5, 900	
Paintsville	Kentucky	Paint Creek	66	2,900	do	3,300	3, 300	
Wheelwright	do	Otter Creek	116	2,000	Secondary.	2,000	300	
Jenkins	do	Elkhorn Creek	159	2, 100	None	2, 100	2, 100	
Bartley No. 1	West Virginia.	Dry Fork	153	1,500	do	1,500	1,500	
War	do	do	158	1, 100	do	1, 100	1,100	

¹ Miles above mouth of Big Sandy River.

¹ Miles above mouth of Big Sandy River.
2 F=coagulated, settled, filtered; L=lime-soda softened; D=chlorinated.

Table Bs-3.—Big Sandy River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)—Continued.

Municipality	State	Receiving stream	Mile	Popula- tion con- nected to sewers	Treatment	tion equ	popula- livelent emical demand)
						Un- treated	Dis- charged
Caretta Coalwood Kimball Keystone 54 smaller sources		Barrenshe Creek Clear Fork Elkhorn Creek do	160 149 169 175	2, 700 3, 000 1, 000 2, 900 14, 400	Nonedododo(2)	2, 700 3, 000 1, 000 2, 900 14, 400	2, 700 3, 000 1, 000 2, 900 14, 400
Total: Virginia Kentucky West Virg				2, 600 15, 900 36, 500		2, 600 16, 300 36, 500	2, 300 14, 600 36, 400
Total				55, 000		55, 400	53, 300

² towns have septic tanks and subsurface filters. Other places, no treatment.

Industrial wastes.—The only plant in the basin discharging organic industrial wastes is a small meat-packing plant at Paintsville. In addition, there are 26 coal-washing plants which discharge varying amounts of fine coal particles. All but one of these are in the area drained by Tug Fork. Seventeen of the washeries recirculate wash water and recover the fines removed by washing. In almost every case black turbidity and deposits on the stream bottom were found below the plants.

PRESENTATION OF LABORATORY DATA

The laboratory data for the Big Sandy Basin are summarized in table Bs-7 (p. 550). Selected data on the main stream and on the tributaries are shown in table Bs-5.

Table Bs-5.—Big Sandy River Basin: Selected laboratory data—Main stream and tributaries

River miles above mouth of Big Sandy.	Big Sandy Near Mouth	Tug Fork Above William- son, W. Va. 85.7	Tug Fork Intake William- son, W. Va. 84.7	Tug Fork Below William- son, W. Va. 84	Levisa Fork Above Pikes- ville, Ky. 115	Levisa Fork Intake Pikes- ville, Ky. 114	Levisa Fork Below Pikes- ville, Ky. 113
Number of samples	9 104 12.6 54 6.1 2.1	3 42 5.3 81 12.1 1.4	2 40 4.5 350 8.0 2.9	40 4.5 142 10.3 2.6	3 16 5.8 1 11.2 0.9	2 15 4.3 242 11.4 3.3	15 5.3 6,700 8.6 13.2

Table Bs-5.—Big Sandy River Basin: Selected laboratory data—Main stream and tributaries—Continued

River miles above mouth of Big Sandy.	Tug Fork Above Welch, W. Va.	Tug Fork Below Welch, W. Va.	Elkhorn Creek Below Jenkins, Ky.	Paint Creek Below Paints- ville, Ky. 66	Elkhorn Creek Below Kimball, W. Va.	Clear Creek Below Coal- wood, W. Va. 149	Dry Fork Below War, W. Va.
Number of samples Flow in cubic feet per second: Sampling days. Water temperature °C Coliforms per milliliter. Dissolved oxygen parts per million. Biochemical oxygen demand, 5-day, parts per million.	3 9 6.0 71 13.7 2.6	3 4.0 607 10.0 7.5	(1) 6. 3 2, 400 7. 2 6. 2	4 2 4.4 3,100 5.0 12.8	3 2.0 3,860 10.0	(1) 6. 3 2, 330 7. 6 34. 2	3 7 7.3 763 10.2 6.9

¹ Less than 1.

This basin was covered largely by a mobile laboratory unit operating during the period of October to December, 1939. Samples in the vicinity of Louisa and at the mouth were analyzed at the laboratory boat *Kiski* at Ashland during an 11-month period from June 1939 to April 1940. The stream flow during the period of operation of the mobile laboratory was low but both high and low discharges were observed during the sampling period covered by the *Kiski*.

Figures Bs-3, Bs-4, and Bs-5 show the location of the sampling points and the coliform, dissolved oxygen, and oxygen-demand observations. The results thus expressed represent the averages of from one to three individual samples where observations were made by a mobile laboratory unit over short periods of less than 1 month at each sampling station and represent the most unfavorable monthly

average where observations extended over several months.

Rather high coliform counts seem to be characteristic of the streams at most of the sampling points. Nearly half of all stations showed counts of more than 200 per milliliter and nearly 65 percent of all stations had counts of over 50 per milliliter. About half of the samples from above towns had coliform counts of over 50 per milliliter.

The dissolved oxygen was uniformly high, being above 6.5 parts per million except at six stations and the oxygen-demand results were

quite generally less than 3.0 parts per million.

Acid stream conditions were observed in Muddy Creek, a tributary of Levisa Fork near Paintsville and along Mate Creek, a tributary of Tug Fork. pH values ranged from 3.9 to 4.8 and phenolphthalein acidities from 39 to 164 parts per million. None of the larger streams was found to be acid.

Except along Elkhorn Creek above Welch there was considerable evidence of self-purification taking place below sources of pollution. Laboratory determinations show marked reductions of coliform organisms and of oxygen demand in the stretches between sources of pollution. Coliform reductions are less marked during times of high discharge.

Laboratory data indicate a greater pollution problem on Tug Fork, particularly in the area above Iaeger, than on Levisa Fork. Self-purification forces appeared to bring about a reasonable clearance of

the streams below sources of pollution during the time of this survey so that the acute pollutional problems in this basin tended to be

largely local in their effects.

Biological summary.—Aquatic life is scarce in the Big Sandy for the entire length of the stream. The acid condition of some of the small headwater tributaries is detrimental to the aquatic life in these tributaries and portions of the main stream. Coal washeries have some local damaging effect on plankton. The average plankton volume is less than 1,000 parts per million. The small towns along the stream do not add sufficient sewage to fertilize the water and the rapid current is not suitable for the development of plankton. Fish are found at the mouth, probably having migrated from the Ohio, but the flesh is contaminated from industrial waste.

HYDROMETRIC DATA

Five stream-gaging stations are currently in operation in the Big Sandy Basin and two others have been discontinued. Table Bs-6 shows monthly mean flows during some of the driest periods.

Table Bs-6.—Big Sandy River Basin: Monthly mean summer flows for years in which low summer flows have occurred

River	Levisa Fork Paints- Ky. 66 2, 150 1929-40	Tug Fork Kermit, W. Va. 63 1, 185 1930-40
Year	1930	1930
June cubic feet per second July do August do September do	137 26. 5 145 33. 2	114 44.5 78.7 29.4
Year	1932	1932
June cubic feet per second July do August do September do	748 1, 076 119 30. 4	685 794 177 40. 1
Year	1939	1939
Junecubic feet per second July	1, 010 1, 540 345 54. 7	612 1,090 280 60.6

Low-flow regulation.—There are no flood-control or hydroclectric reservoirs in the basin although a number of sites on Levisa Fork and its tributaries have been studied by the United States Engineer Department.

The locations of some of the possible reservoirs which might also

be used for low-flow regulation are shown below:

Name	Stream	Miles above mouth of Big Sandy	area (square
FishtrapPound Haysi	Levisa Fork	130 150 153 121 52	395 222 155 67 207

The Dewey and Fishtrap projects have been found to be most feasible. Under the proposed plan of operation the minimum seasonal flows could be increased by 2 cubic feet per second from Dewey and about 100 cubic feet per second from Fishtrap. This added flow would benefit stream reaches below the dam sites but is not sufficient to allow a reduction in the amount of treatment required. Hence, low-flow control originating at these projects would have little tangible value.

DISCUSSION

Because of the extensive use of Tug Fork and Levisa Fork as sources of water supply the need for sewage treatment to reduce bacterial pollution is greater than in many other parts of the Ohio Basin. A number of the water supplies, outstanding among which are Williamson and Pikeville, are subject to pollution from the town's

own sewage.

The pollution-control problem is particularly difficult because of the many mining camps which are only partly sewered and for which the provision of interceptors and treatment plants would be quite expensive. The lack of other community facilities, the high indebtedness, and the lack of permanence of many of the communities are factors to be considered. Although there is ample apparent justification for an adequate pollution-control program, the difficulty of financing remedial works necessitates careful examination of the relative benefits and costs of each project.

At the communities along Levisa Fork below Russell Fork primary treatment of all sewage should be sufficient to maintain excellent dissolved oxygen conditions in the stream. This applies also to Paintsville which would, presumably, intercept the wastes now discharged to Paint Creek and discharge them, after treatment, to Levisa Fork. At Williamson and at the smaller communities along Tug Fork below Welch primary treatment should be sufficient.

Tug Fork below Welch primary treatment should be sufficient.

At Grundy on upper Levisa Fork and at Welch on Tug Fork at the confluence of Elkhorn Creek, as well as at the numerous towns on tributaries of the two main streams, secondary treatment will be necessary if nuisance conditions are to be eliminated during the dry summer months. The receiving streams at all of these places are subject to flows approaching zero. At the two larger communities, Grundy and Welch, the problem involves a larger population and is more acute. As a logical starting point, installation of secondary treatment is suggested at these two points. As far as the balance of the pollution is concerned, it is suggested that a partial treatment be installed at all places where as many as 500 people are discharging sewage. Such treatment should do much toward reducing the effects of the sewage on downstream water intakes. Secondary treatment facilities can be added at these places as community finances permit.

The practice of disposing of garbage and other refuse by dumping it along the stream banks or into the streams is common in this area. Unless this practice is changed, even the provision of sewage treatment will not maintain the streams in good condition. There are also many privies built over the streams or along stream banks where their contents can easily enter the streams. Much progress has been made with Work Projects Administration assistance in building sani-

tary privies, but the program is not complete.

The elimination of pollution by coal-washery wastes presents no particular technical problems. Methods now in use in other places permit the recovery of virtually all of the fine material now entering the streams. At the time a demand develops for control of this largely visual pollution, proper corrective measures should be taken.

Acid mine drainage does not affect any of the larger streams. Completion of the program of sealing abandoned mines will help to

improve conditions in those tributaries which are still acid.

Flow regulation by the proposed flood-control reservoirs would have no appreciable effect on the need for the suggested pollution-abatement program. The estimated cost of the suggested pollution-abatement works for the Big Sandy Basin has already been presented in table Bs-1.

Table Bs-7.—Big Sandy River Basin: Ohio River pollution survey laboratory duta—Summary of individual results

			Average		Dissolved oxygen	oxygen	5-day bio-	Coli-				
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent satura- tion	onygen demand, parts per million	most probable number per milli- liter	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per million
Tug Fork, below Jenkinjones, W. Va. Tug Fork, below Gary, W. Va. Do.		0,4,0,4		0.600.00	10.3	84.4 80.9 97.2 78.5	13.8	2, 400 21, 000 240 240	9897	140 32 32 32	101 118 139 121	1,062
Tug Fork, above Welch, W. Va. Do. Do. Elkhorn Creek, below North Fork,	BST 161.	Nov. 9, 1939 Nov. 14, 1939 Nov. 17, 1939 Nov. 9, 1939	7 5 4 1 4 6 5 5 5 7 6 6 1 7 6 6 1 8 7 6 1 8 7 6 1 8 7 7 1 8 7 8 1 7 8 8		14.8 11.9 11.8		11.0	2, 400		65877		494
Do. Do. Bikhorn Creek, below Keystone, W.	do do BSTE 175	Nov. 14, 1939 Nov. 17, 1939 Nov. 9, 1939		1.5	11.7	86.9 73.3	13.7	2, 500 2, 400	00,00,00 € 21.44	105 65 260	291 302 291	910
V 6. Do. Do. V. Vo.	do do RSTE 168.6	Nov. 14, 1939 Nov. 17, 1939 Nov. 9, 1939	1 1 1 0 1 7 0 1 7 0 1 7 1 1 2 1 1 2 1 1 1 1 1 1 1	23.5	9.9	68.9 70.4	14.3 14.1 10.0	3, 600 2, 400 4, 400	00.00.00 60.44.00	280 35 500	287 325 301	894
Do Do Bikhorn Creek, above Welch, W. Va.	do BSTE 161	Nov. 14, 1939 Nov. 17, 1939 Nov. 9, 1939 Nov. 14, 1939		10,010	10.0	71.3 76.1 83.6 85.4	9.9.9	4, 600 240 430	क्ष क ल व	430 185 93	317 326 295 307	818
Tug Fork, below Welch, W. Va.	do BsT 159	17,9,4			11.7	85.4	11.5.6 4.8.4	390	: n :	6588	225 275 337	1,020
Do Clear Fork, below Coslwood, W. Va.	BST Cf 149	Nov. 17, 1939 Nov. 10, 1939 Nov. 15, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10.5	19.7	63.03	4,300		888	279 275 25	395
Clear Fork, at mouth. Tug Fork, above Iaeger, W. Va	BST CI 141 BST 137 do	1	1	1.999.	10.03.4	90.8 113.1 88.8	4.02.00 20.00	(E) (E) (S)	⊬. 1.∞. 1.∞. 1.∞. 1.∞. 1.∞. 1.∞. 1.∞. 1.	2700	133 133 240 284	235
Dry Fork, above War, W. Va.	BsTDf 159	Nov. 20, 1939 Nov. 10, 1939 Nov. 15, 1939	1		12.3	98.2	24:1.0	4.65 4.0		2 20	245 127 165	195
Dry Fork, below War, W. Va Do. Do.	BSTDf 157	20,15,0	1		10.7	83.8	14.70.11	930 480 930		co 10-4 c	138 152 152 152	295

218 316 316 316 246 780 780 780 190 160 190	230
222 222 222 222 222 222 222 222 222 22	158 158 158 159 159 150 150
2011 11 12 12 12 12 12 12 12 12 12 12 12 1	מטיסיסיטי טיי א
OCでで&QQQQQQQQQQQCでなみままででで、 ひて で&でで ででける ででけるでき る QCでまりのよしのもちらら 88 8094 498988 4 100	
4 4 4 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1, 100 1, 100 36 110
毒仍尽强低毒品生品或强品生品或品品工钱 让我 北江岛北 说正说'让' 说 改造了印度货币的货币的企业的企业等的分 俗名 下下口的 印书工器单位 母 本母母	
6.5.5.5.5.4.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8	
######################################	10.8 10.8 11.0 11.0 11.0 11.0 11.0 11.0
ಪ್ರವಾಧವಲ್ಲಿ ಪ್ರವಾಧವಾದ ಪ್ರವಾದ ಪ್ರವಾಧವಾದ ಪ್ರವಾದ ಪ್ರವಾಧವಾದ ಪ	
5.000000000000000000000000000000000000	
NZNZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	DZZAZZ ZA
BSTD/154. do d	BsT 83. BsT 63. do. do. BsT 61.
Dry Fork, above Bartley, W. Va. Do. Dry Fork below Rayssal, W. Va. Do. Dry Fork, above laeger, W. Va. Tug Fork, below laeger, W. Va. Do. Do. Mate Creek, above Matewan, W. Va. Do. Do. Tug Fork, below Matewan, W. Va. Do. Tug Fork, below Matewan, W. Va. Do. Tug Fork, below Matewan, W. Va. Do. Pond Creek, is mile below McVeigh, Ky. Do. Pond Creek, is mile below McVeigh, Fork, McAndrew, Ky. Do. Pond Creek, 100 yards above mouth, Williamson, W. Va. Do. Tug Fork, dove Williamson, W. Va. Do. Tug Fork, upper edge of Williamson, W. Va. Tug Fork, upper edge of Williamson, W. Va. Tug Fork, waterworks intake, Williamson, W. Va. Tug Fork below Williamson, W. Va. Do. Do. Tug Fork below Williamson, W. Va.	Tug Fork, I mile below sewago, Wii Jianson, W. Va. Tug Fork, above Kermit, W. Va. Do. Tug Fork, below Kermit, W. Va. Do.

Table Bs-7.—Big Sandy River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	9 1 2	et pa
	Alkalin- ity, parts per million	28 18 1 1 1 1 1 1 1 1 1	200
	ity, parts per million	260 280 360 360 37 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8	,
	Hď	で で で で で で で か で で で で で で で で で で で で	
Coli- forms,	most probable number per milli- liter	(f)	
5-day bio-	ovygen demand, parts per million	0. :	
Dissolved oxygen	Percent satura- tion	80088888888888888888888888888888888888	
Dissolve	Parts per million	045557777777777777777777777777777777777	
	Temper-	スパスペルスペースのよようななよれる などがれるがいいい まっしゅうちゅうしょう ちょうしゅう きょうしゅう ちょうしゅう ちょうしゅう ちょうしゅう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう ちょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょうしょう しょうしょう しょうしょう しょうしょうしょう しょうしょうしょう しょうしょう しょう	
Average	discharge, cubic feet per second		
	Date	June 23, 1939 Aug. 4, 1939 Sept. 15, 1939 Sept. 15, 1939 Oct. 27, 1939 Oct. 27, 1939 Nov. 24, 1939 Dec. 28, 1939 July 7, 1939 July 1, 1939	
	Mileage from mouth	BST 30.3 do d	
	Sampling point	Tug Fork, station 3.8 dam No. 1. Do. Do. Do. Do. Do. Do. Do. Do. Do. D	Fremont, Va.

				OI.	110	TOT A TO	116 10	LLU	1101	1 00	14.1100	111				000
0 4 9 4 5 4 6 1 2 6 6 6 8 1 9	180	203	173	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	132	127	0 0 5 0 4 0 0 0 7 0 0 1 0 0 1 0 1 1 1 9 9 0 1 1 1	284	204	166	126	15	171	8 9 9 9 9 9	131	
207	207	198 178 424	. 255	69	92	90	307 269 258	264	139	108	823	42	47	63	68 67 66	69
10	18	13	155 550 8	65	27	13	107	10.00	NO 00	00 41	18	484	*	18	24	18
7.80	7.7	ren ririri	were tititi	6.9	9.00	7.7.	2000	2.0	7.3	7.7	7.7.7	7.0	7.2	7.3	4.6.6.	7.3
150	2,400	430 430 240, 000	1, 100, 000	43	240	2,400	2,400	888	4.3	93	210	91	63	4	(3)	460
1.3	1.1	5.4	150	10	1.0	1.4	455	63 00	ं लं	4.00	1.0	2-9	1.8	9.	F:10	2.6
95.7	91.8	68.0	12.5	73.0	58.3 85.5	89.5	53.2 56.0 153.8	77.8	99.4	91.4	90.6 87.5 89.2	988.0	87.6	88.0	96.6 84.7 85.6	88.0
11.9	10.9	8.00	1.4	8.7	7.3	4.7.	6.6 7.6 17.6	9.8	13.1	11.1	11.3	12.5	11.4	11.3	11.3	11.5
5.0	0 10	8.0 10.5	10.0 9.0 1.5	8.0	6.0	10.0	9999	12.03	6.0	3.0	9999		4.5	2.0	8.4.4.	70.
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 t 2 t 6 t 0 t 0 t 1 t 1 t 1 t 2 t 1 t 2 t 1 t 2 t 1 t 2 t 1 t 2 t 1	0 0 1 3 0 1 5 0 1 6 0 6 9 0 1 6 0 4 9 0 1 6 0 4 9 0 2	0 0 1 0 1 0 0 1 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ 1 2 6 6 1 9 9 6 1 9 9 6 1 9 7	j I 1 I 8 I 0 6 4 I 1 0 I E I I 0 I I I 0 I	0 0 a a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 0 a	0 4 0 5 0 6 0 1 2 8 0 1 0 1 0 1 0 2 0 1 0 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 F P P P P P P P P P P P P P P P P P P	5 0 5 9 0 5 6 1 - 9 0 9 6 1 1 0 6 1 0 6 1 0 0 1 0 6 1 0 0 1	E 1 8 7 8 8 0 8 0 9 0 9 0 1 0 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	\$ 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
v. 7, 1939	v. 10, 1939 v. 7, 1939	v. 10, 1939 v. 16, 1939 v. 7, 1939	r. 10, 1939 r. 16, 1939 do.	7, 1939	v. 10, 1939 v. 6, 1939	r. 13, 1939 r. 7, 1939	v. 10, 1939 v. 16, 1939 v. 7, 1939	7. 10, 1939 7. 6, 1939	v. 13, 1939 v. 6, 1939	Nov. 13, 1939	v. 6, 1939 v. 13, 1939 v. 9, 1939	v. 14, 1939 v. 6, 1939	v. 13, 1939	v. 9, 1939	v. 14, 1939 v. 15, 1939 v. 14, 1939	Nov. 15, 1939
Nov.	Nov.	Nov.	Nov.	Nov.	Nov.	Nov.	Nov.	Nov.	Nov.	No	NOV.	Nov.	Nov.	Nov.	Nov.	No.
BSLRMe 159	do BsLRMc152	do BSLRPCH 162	do do Bslrpch 159	BsLRP 171.3	do BsLR 140	do BSLRE 158	do BSLRE 156	do BSLRE 140	do BsJ.R 138	do Bsl.RM 134	BsLR 128 do BsLSL 132	do BSLSL 121	do	BsL 115	do do BsL 114	do
McClure River, below Fremont, Va.	McClure River, lower edge of	int-	, 3 miles below Clint.	Pound River, % mile below Pound,	Russell Fork, above Elkhorn City,	Do Elkhorn Creek, 1 mile below Jenkins,	Elkhorn Creek, 3 miles below Jen-	Elkhorn Creek, at mouth above Elk-	Russell Fork, below Elkhorn City,	Marrowbone Creek, at mouth Mar-	Russell Fork, above Millard, Ky. Long Fork, 200 yards above mouth,	Shelby Creek, at mouth Shelbiana,	Do.	Levisa Fork, 1/2 mile above Pike-	Leviss Fork, wsterworks intake,	Do trace then 1

Table Bs-7.—Big Sandy River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million		140 140 153	161	2 2 2 3 4 5 8	183	467	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 1 9 1 2 2 0 2 2 3 2 4 9 4 9 4 9 1	B 2 3 1 8 2 5 2 9 1 2 1 2 1 2 2 1 2 1	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 1 1 6 1 9 1 1 7 1 1 7 1 1 1
Albolin	1904	65	757	88	288	268	202	94	37	545	700	69	81 95 87	88.88.88
Tuebid	ity, parts per million	12	20 20	35	9	14	28.83	2024	35	32	40	18	22 14 17	17
	Hd	7.2	7.7.7	7.1	8.0	00.1.	27.72	41.	600	1.7. 00.00	7.3	7.7.	1.7.7.7. 8741	6401
Coli- forms,	most probable number per milli- liter	1,100	930 1,100 2,400	11,000	6	110	240 460	9 460	2,400	1, 100	460	23	1, 100 240 240 240 240	47.53
5-day bio-		3.6	6.3	16.0		1.9	7.7.	1.00	0.80	ස ට ් ශ්	2.2	2.3	1.3	22.2
	Percent satura- tion	72.6	96.1 72.9 62.0	74.2	102.0	104.8	994. 5	95.0	78.2	00 00 00 00 00 40	77.7	77.4	74.3 82.4 85.1 94.1	88.7 97.0 101.0
Dissolved oxygen	Parts per million	8.6	8.8 8.0 8.0	9.3	13.9	14.3	11.3	11.1	4.6	10.4	8.4	०८ हर ०० ००	9.6	10.8
	Temper- ature ° C.	8.0	10.5	6.0	2.5	39.00	3.5	60 00	. 00 50 50 50 50 50	9.0	8.0	10.0	9.5 11.5 11.0 8.5	0.00.00
Average		1 1 1 1 1 0 1 1		19	1 1 1 1 1 1 1 1	D () 1 1 1 1 1 1 1 1 1 1	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 2 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Date	Nov. 9,1939	Nov. 14, 1939 Nov. 15, 1939 Nov. 14, 1939	Nov. 15, 1939 Nov. 9, 1939	qo	Nov. 14, 1939 Nov. 9, 1939	Nov. 14, 1939 Oct. 30, 1939	Nov. 1,1939 Oct. 30,1939	Nov. 1, 1939 Oct. 30, 1939	Nov. 1, 1939 Oct. 30, 1939	Nov. 1, 1939 Oct. 30, 1939	Nov. 1, 1939 Oct. 30, 1939	Nov. 1, 1939 Oct. 30, 1939 Nov. 1, 1939 Ncv. 21, 1939	Nov. 24, 1939 Nov. 28, 1939 Dec 1, 1939
	Mileage from mouth	BsL 113	dodo	do	BsLBLf 102.5	do BsLBLf116	do BsLBLf96.5	do BsLBRf113	BsLBRf110.7	do BsLBRf110	do BsI,B 96.8	do d	do 92.2. do BSL B 92.2. BSL 83.	do do
	Sampling point	Levisa Fork, lower edge of Pikeville,	Do Do Fork, 100 feet below main.	Levisa Fork, under bridge below	Left Fork My. Left Fork Johnson Creek, lower edge	Do Do Left Fork Beaver Creek, lower edge	Do. Left Fork Beaver Creek, 100 yards	Right Fork Beaver Creek, lower edge	Right Fork Beaver Creek, 1/4 mile	Bight Fork Beaver Creek, lower	Beaver Creek, 14 mile above Martin,	Beaver Creek, lower edge of Martin,	Beaver Creek, at mouth Allen, Ky Do Levisa Fork, water plant, Prestons-	Do.

			O	1110 1111	Trie E	OLLUT	LOTA	CONT	поп			و
156	143	\$ 8 1 1 1 2 1 2 1 4 1 7 1 7 1 7	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	153	202	254	0 0 0 1 1 1 1	164	158			
90	88 84 84 1189 1127 1101	121	218 202 87	22 02 02 02 02 02 44 02 02 02	98 06 06 06	93 86 102	104	101 101 99	88	86 87 89 89 90	106	
17	272 272 41	13	113	11 20 2 8	17.00	25 20 37 37	30	25 21 32 7	13	83088	10	
7.0	12.7.7.7.7.	7.4	7.7.7.	F. F. F. F. F. & 4 60 60 60	7.7.2	7.7.1	7.0	7.07.0	44.1.	,,,,,,, wwgww	7.8	
1, 100	150 23 93	15	2144	(1)	462	4,600	2,300	4, 600 4, 600 930 1	460	1, 100 93 240 (1)	4	
3 3 5 5 6 6	6017 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0	0.0111111111111111111111111111111111111	2.0	H 00 00	10.9	7.8 15.7 17.0 1.6	1.2	10000H	2.0	
89.2	937.2 937.3 935.8 925.8	19.9	84.9 87.8 86.4	0.0000000000000000000000000000000000000	86.6 81.5 80.2	63.9 78.7 83.7 20.1	14.3	40.3 47.4 50.7 90.1	91.3 90.5 86.1	88.22.9 88.5.9 94.5.8	86.5	
10.5	10.6 12.6 10.2 11.3	9.5	10.6	12.0 11.9 12.0 10.6	10.4	8.0 10.0 10.7 2.3	1.7	6.7 6.6 11.0	13.2	11.0 11.1 9.8 11.5 12.9	10.4	
8.03	000000		6.0	8.4.4.8.8. 80000	9.0	9.5.5.0	2.0	7.41.0	, r0, 00, r0 cm	4.6.8.4.9.00.00.00.00.00.00.00.00.00.00.00.00.0	7.0	
1 1 2 0 2 4 3 8		t b c c c c c c c c c c c c c c c c c c	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	5 1 1 0 1 0 5 1 1 1 5 0 1 1 1 1 1 1 1 1 1 1 1 1		1 0 1 0 0 0 0 0 1 7	
7. 21, 1939	*******		24, 1939 22, 1939	29, 1939 28, 1939 30, 1939 1, 1939	. 22, 1939 . 29, 1939 . 20, 1939	. 24, 1939 . 27, 1939 . 1, 1939 . 20, 1939	. 24, 1939	. 27, 1939 . 29, 1939 . 1, 1939 . 22, 1939	7. 29, 1939 7. 30, 1939 7. 21, 1939	28, 1939 1, 1939 22, 1939 30, 1939	. 22, 1939	
Nov.	ZZZZZZ	Nov	Nov.	NN OV NOV NOV	N N O V.	NOOV.	Nov	NO OV OV	Nov.	NOW.	Nov.	
BsL 82	do do BsLJ 74 do do	do BsI.M 68.9	do do BsL 68	do do BSL 67.5 do do BSL 67.2	do BsLP 67.5 BsLP 67	do do BSLP 66.5	BsLP 66	do do BsLM 65	do. BsL 64.5	do do BsL 64 do BsL8 40	BsL 39.5	
Levisa Fork, below all sewage, Pres-	John Creek, at mouth, Auxier, Ky-	Miller Creek, at mouth, Van Lear,	Levisa Fork, 1½ miles below Van	Levisa Fork, above Paintsville, Ky. Do Do Levisa Fork, above water plant,	Paint Creek, above Paintsville, Ky Paint Creek, upper edge of Paints-	Ville, K.y. Do. Do. Do. Paint Creek, 100 yards above mouth,	Paintsville, R.Y. Paintsville,	Do Do Muddy Branch, at mouth, Paints	Levisa Fork, below mouth, Paint	Levis Fork, below Paintsville, Ky. Do Levisa Fork, below Paintsville, Ky. Do Shannon Branch, 2 miles below	mouth Georges Creek. Levisa Fork, 2½ miles below Georges Creek.	¹ Less than 1.

Less than 1.

Table Bs-7.—Big Sandy River Basin: Ohio River pollution survey laboratory data.—Summary of individual results—Continued

JUC	,			
D.		Hardness, parts per million		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-Continued		Alkalin- ity, parts per million	8 28 28 28 28 28 28 28 28 28 28 28 28 28	(·
		Turbid- ity, parts per million	1, 900 1, 900 1, 000 1, 000 1, 100 1, 100 1, 100 1, 100 1, 100	
vianai re		Hď	77	
anne fo h	Colf-	most probable number per milli- liter	240 250 250 250 250 250 250 250 250 250 25	
o umman	6-day blo-	chemical oxygen demand, parts per million		•
nana		Percent satura- tion		
anonaron	Dissolved oxygen	Parts per million	後は、ほなててなる以外内が洗出にはあるれなけてててなるなよれる洗出にはなる おもでめる ちゃうとてこれものものできるとしてこれをもらるのとのとしてするという。	
sarrey o		Temper-		
potention	Average	discharge, cubic feet per second	3, 930 1, 200 1, 590 1, 590	6
Onto Arver		Date	Aug. 4, 1988 Aug. 4, 1988 Aug. 1, 1988 Sept. 1, 1988 Sept. 15, 1988 Sept. 29, 1988 Oct. 27, 1988 Nov. 24, 1988 Dec. 28, 1988 July 21, 1988 Aug. 4, 1989 Aug. 4, 1989 Oct. 1, 1989 Aug. 2, 1988 July 21, 1989 Aug. 4, 1989 Aug. 4, 1989 Aug. 4, 1989 Aug. 5, 1988 Aug. 6, 1989 Aug. 7, 1988 Aug. 1, 1988 Aug. 1, 1988 Aug. 1, 1988 Aug. 1, 1988 Aug. 28, 1989 Aug. 4, 1989 Aug. 4, 1989 Aug. 4, 1989	ř
nay aiver Basin. Onto aiver pottution survey tavoratory auta—Bummary of inavitanal results		Mileage from mouth	BSL 35. BSL 36. d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d	
TABLE DS-1:—Dig Dan		Sampling point	Levisa Fork, station 8.2, dam No. 1. Levisa Fork, station 2.7, Walbridge Do.	

	0 5 6 8 1 1 1 1 1 1 1 1 1
- 12886272886488888888888888888888888888888	67 67
2000 2000	14 55 27 10
ではいまないにはいいなられるというできませるとのできませるというというというというというというというというというというというというというと	
88884888 8888888 888888888888888888888	\$2 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
444 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	o
6238888899889888888888888888888888888888	73.2
あたためのはははははない てからのももできるがですのはないではられてになるのでであるのではないにはないできるのでになるのではないではられてはられるのもでもものでするです。 もますちゅうもうものものもの しょり ロースクースクロースクー・スクロースクー・スクー・スクー・スクー・スクー・スクー・スクー・スクー・スクー・スクー	-4.0.0 -0.0.4

4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	2333
1, 1, 1939 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	-, 0, 0, U
Aug. Aug. Aug. Aug. Aug. Aug.	Sept
\$6666666666666666666666666666666666666	op op
Po. 100 100 100 100 100 100 100 1	17 aes than 1

1 Less than 1.

Table Bs-7.—Big Sandy River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million		6 6 6 8 8 8 8 8	† 1 6 1 1 3 1 6 1 1 1 1 1 1 1 1	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		*		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			E 1 1 4 6 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Alkalib- ity, parts per million	74	12	73	8 2	300	Z X	00	0 0 0	03	96	15	94	96	104	88	95	2000	103	980	103	101	100	000	68	101	06.0	S 35 35
277	ity, parts per million	10	7	10	10	12	200	12	L- 01	300	OO 14	26	21	12	10	00	-	120	00 0	20 ==	17	001	P- 0	0 %	20	00 1	Ø 80	00 15
	Hď	7.6																										2.5
Coli-	most probable number per milli- liter	91	230	75	240	36	23	110	03 73	68	0 43	240	240	43	93	43	4 24	24	93	20 00	43	240	200	93	23	£ 4	43	110
5-day bio-	oxygen demand, parts per million	1.2		;;;																								1.3
1	Percent satura- tion	77.3	72.9	60.7	75.0	68.7	67.7	000	20.00	68.2	75.7	69.8	52.1	54.2	60.9	62.6	72.0	55.0	28.0	71.6	88	000000000000000000000000000000000000000	200	64.7	68.9	69.1	71.6	92.2
Dissolved oxygen	Parts per million	6.2	6.1	0 100	6.2	6.1	6.1	1.0	0.00	9:0	6.5	6.4	10	9 20	6.4		0.10	7.0	9.6	- 00	90	2.0	7.5	7:31	100	00 C	တ် တဲ	13.3
	Temper- ature ° C.	27.5	25.5	24.0	26.0	21.5	21.0	24.5	19.0	17.0	10.01	20.0	17.5	11.5	13.5	14.0	12.5	14.0	10.0	10.0	10.0	10.5	10.5	10.5	10.5	10.0	7:0	3.0
Average	discharge, cubic feet per second	198	134	134	134	110	110	110	108	88	93	27	130	118	112	10	95	9.5	5.0	79	95	90	95	7.9	103	999	277	483
	Date	Sept. 14, 1939		Sept. 22, 1939	28,1	Oct. 2, 1939	(0)		16,1			26, 1	wed pro		7,1		Pi prompij	17,1	Nov 26, 1939	1,1	10	Dec. 1, 1939	13, 1	15,	Dec. 19, 1939	21, 12	183	Jan. 2, 1940 Jan. 12, 1940
	Mileage from mouth	Bs 0.8-	do	do	do	do.	(do	dodo	do	do.	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do
	Sampling point	Big Sandy River, station 0.3, dam No. 1.	Do	Do	000	000000000000000000000000000000000000000	Do	Do o o o o o o o o o o o o o o o o o o	000000000000000000000000000000000000000	Do	Dorac of the state	Donner and a consequence of the	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do		Do	Do		Do	Do

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P		B
40 23 25	10 10 28 28 28	22.22	128838	87288888
80 150 250	81 89 89 80 80 80	350 170 52 34	124.88	18 34 5 5 1 5 8 1
6.9	997.6	1. 1. 0. 0 0 0 0 0	 & & & & & & & & & & & &	0000000 000000000000000000000000000000
23 43 43	150	1444 1444 1444 1444 1444 1444 1444 144	93.7.8	110 43 43 43
11.12	1.0	1: :1:		1 11
	91.5 94.4 99.3			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12.9	11.9	11.15	11.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
25.52	0 10 10 10 0 10 10 10	300 12° 60° 49° 30° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	000000	12.5 13.0 11.5 11.5
884 4. 470 6, 400	2, 5, 900 2, 2, 6, 900 3,000 3,000 3,000	10,300 6,750 1,830	1,720 4,730 5,630	15, 860 15, 730 15, 730 1, 730 3, 730 3, 720 3, 620
16,	22,23	4.0,00,0	4,8,8,8,8	28, 1840 1, 1840 3, 1940 5, 1940 9, 1940 11, 1940
Feb.	Teb.	Mar Mar Mar Mar	Mar Mar Mar	Mar Apr. Apr. Apr. Apr.
do.	40 40 40	00000000000000000000000000000000000000	40. 40. 40.	000 000 000 000 000
0	000	0000	000000000000000000000000000000000000000	0000

1 Less than 1.

GUYANDOT RIVER BASIN

CONTENTS

	Fage
Contents	563
Syllabus and conclusions	565
Description	566
Presentation of field data	567 569
Presentation of laboratory data	570
Hydrometric data Discussion	571
DISCUSSION	9/1
LIST OF TABLES	
Gy-1,—Cost estimates of remedial measures	566
Gy-2,—Surface water supplies	567
Gy-3.—Sources of pollution	568
Gy-4.—Industrial wastes (omitted; not significant).	
Gy-5.—Selected laboratory data	569
Gy-6.—Monthly mean summer flows	570
Gy-7.—Summary of laboratory data	572
LIST OF FIGURES	
Cw 9 Chart Courses of pollution and colored laboratory data	568
Gy-2. Chart—Sources of pollution and selected laboratory data	508
(Nore.—For maps of this basin see Big Sandy River Basin)	
563	

GUYANDOT RIVER BASIN¹

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Guyandot Basin, comprising 1,670 square miles in the mountains of southern West Virginia, is an important coal mining area and is similar to the Big Sandy River Basin to the west. Only about 5 percent of the total population of 148,000 is urban. Sanitary conditions are poor. Pollution is uncontrolled, causes local damage, and affects public water supplies. Acid mine drainage and coal washery wastes damage tributary streams. Techniques are available for abatement of the pollution but the needs of the people in other directions limit present justifiable correction to partial treatment.

CONCLUSIONS

(1) There are 17 public water supplies taken from surface sources, of which 5 are from streams receiving sewage from one or more communities above the water intake. At the largest of these, Logan, local

sewage affects the water supply.

(2) Sewage from a population of 23,900 is discharged without treatment. The Guyandot River is not heavily polluted. The largest sources of pollution are at Logan and Mullens. There are no organic industrial wastes of consequence, although coal washery wastes and acid mine drainage damage a few tributary streams. About half of the acid mine drainage load has been removed by sealing abandoned mines.

(3) Laboratory studies show that the effects of pollution are primarily local and that the Guyandot River at Logan and above presents the major pollution problem. The streams recover rather quickly from the effects of pollution and are in relatively good con-

dition at short distances below the sources of pollution.

(4) Low-flow argumentation by flood-control reservoirs would not

have any appreciable value for pollution abatement.

(5) Primary treatment of all sewage would be sufficient to maintain good stream conditions at most places. At some communities, where stream flows approach zero, secondary treatment would be required to prevent local nuisances. Considering the present financial condition of the towns, justification for the expenditure beyond partial treatment is questionable.

¹ For maps of this basin, see Big Sandy River Basin.

(6) A summary of cost estimates of remedial measures from table Gy-1 follows:

Treatment	Capital cost	Annual charges
Existing Suggested additional	\$530, 000	\$45,000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are—

Treatment	Capital cost	Annual charges
Primary, all places. Secondary, all places.	\$530, 000 730, 000	\$45, 000 70, 000

Table Gy-1.—Guyandot River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

	Number of plants		Popula- tion con-	Capital	Annual charges			
	Pri- mary	Second- ary	nected to sewers	invest- ment		Operation and main- tenance	Total	
Existing sewage treatment				0	0	0	0	
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste correction	13	0	19, 700	\$300,000 230,000	\$20,000 10,000	\$15,000	\$35, 000 10, 000	
TotalComparative cost:		~~~~		530, 000	30, 000	15, 000	45, 000	
Primary treatment all waste Secondary treatment all waste As suggested				530, 000 730, 000 530, 000	30, 000 47, 000 30, 000	15, 000 23, 000 15, 000	45, 000 70, 000 45, 000	

DESCRIPTION

The Guyandot River drains 1,670 square miles of mountainous country in southern West. Virginia and joins the Ohio River at Huntington, W. Va. Its only important tributary is the Mud River which drains 358 square miles and joins the Guyandot 7 miles above its mouth. With the development of coal mining the population of the basin has increased as shown below:

	1910	1920	1930	1940	
Rural Urban	61, 630	89, 900 2, 998	117, 233 4, 39 _b	140, 065 8, 192	
Total	61, 630	92, 898	121, 629	148, 257	

The only towns of urban size are Logan (population 5,166) and Mullens (population 3,026). Much of the rural population is in mining camps which are concentrated in the vicinity of Logan and in the extreme southeastern part of the basin.

Water uses .- The Guyandot is not navigable except near its mouth where it is affected by backwater from the Ohio. There are no hydroelectric power developments nor are there any proposed. No floodcontrol projects have been built but a reservoir above Milton on Mud River has been considered by the United States Engineer Department in connection with the authorized program for Ohio River flood control. The Guyandot and some of its tributaries are considered fairly good bass fishing streams and are extensively used by local residents, but there are no developed recreation areas.

PRESENTATION OF FIELD DATA

Figure Bs-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure Gy-2 shows similar data and, in addition, the location of water-supply intakes below sources of pollution and laboratory data on coliform organisms,

dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Eighty-nine public water supplies in the basin serve 61,500 people. Only 17 of these are from surface sources and only 5 of the surface supplies come from streams subject to pollution. Table Gy-2 shows data on the surface supplies. The underground water is usually quite hard and is limited in quantity. A number of the communities use mine drainage as a source of water.

TABLE GY-2.—Guyandot River Basin: Surface water supplies

Supply	State	Source	Mile 1	Treat- ment 3	Popula- tion served	Con- sumption, million gallons per day		
	Supplies below community sewer outfalls							
Logan	West Vir-	Guyandot River	82	FD	9,000	0. 50		
Man Milton Monaville Amherstdale	do	do Mud River Island Creek, Mill Creek Mine, Buffalo Creek	93 24 84 99	FD FD ILD D	1, 000 1, 400 800 700	. 04 . 06 . 04 . 03		
	Other surface supplies							
Whitman	West Virginia.	Mine, Whitman Creek	84	FD	1, 500	0.06		
Earling Amherstdale (Becco) Covel	do d	Well, Mud Fork. Well, Pine Creek. Well, Little Creek. do. do. Rum Creek, well. Mine, small stream. do. do. Small stream. Small stream.	94 92 92 92 94	(4)	600 500 2,000 200 1,500 400 700 800 300 100	. 04 . 06 . 18 . 02 . 08 . 03 . 02 . 02 . 04 . 01		
					12, 900 9, 300	0.67		
Total surface wa	ter supplies				22, 200	1. 2		

¹ Miles above mouth of Guyandot River.

File accompliant of Gayandre Fiver.

Fig. Coagulated, settled, filtered, I—Iron removal, L—Lime, soda softened, D—Chlorinated.

These three towns have separate systems and wells for use during summer. During the winter they are all served by supply from Little Creek above Stirrat.

Filtered, no coagulants.

Sewerage.—Table Gy-3 shows the sewered population at each of the more important sources of pollution in the basin. Less than half of the people served by water supplies are connected to sewers. None of the sewage is treated. In addition to this sewage, a considerable amount of polluting matter reaches the stream from insanitary privies overhanging the streams or on the stream banks. Garbage and other refuse is commonly dumped into the streams.

Table Gy-3.—Guyandot River Basin: Sources of significant pollution including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Receiving stream	Miles above mouth of Guy-	Popula- tion con- nected	Treat-	Sewered (equivalent oxygen der	population biochemical nand)
		andot River	to sewers		Untreated	Discharged
Merrill	Guyandot River	77	500	None	500	500
West Logan	do	78	900	do	900	900
Peach Creek	Guyandot River-Peach Creek.	78	500	do	500	500
Logan 1	Guyandot River-Island Creek.	81	5, 900	do	5, 900	5, 900
Stollings-McConnell	Guyandot River	83	600	do	600	600
Man	Guyandot River-Buffalo Creek.	94	1, 100	do	1, 100	1, 100
Pineville	Guyandot River	143	700	do	700	700
Mullens	Guyandot River-Slab	156	2, 300	do	2, 300	2, 300
Barboursville	Mud River	8	1,400	do	1,400	1,400
Milton	do	24	600	do	800	800
	do	44	900	do	900	900
Holden	Copperas Mine Fork	84	1,000	do	1,000	1,000
Holden Mine No. 22	Pine Creek	94	500	do	500	500
Omar	Island Creek-Pine Creek	89	1,600	do	1,600	1,600
Helen	Winding Gulf Creek- Berry Branch.	165	1, 200	do	1, 200	1, 200
21 smaller sources	***************************************		4, 200	do	4, 200	4, 200
Total			23, 900		24, 100	24, 100

¹ Including some adjoining communities.

Industrial wastes.—The only industry in the basin discharging organic wastes is a small cannery at Milton. Most of the 25 coal washeries in the basin cause some pollution by the discharge of fine coal particles which make the streams turbid and blanket the bottom. The steam-electric power plant at Logan dumps ashes from about 900 tons of coal per day into the Guyandot River.

Acid mine drainage causes damage to some of the tributary streams but has no great effect on the main stream. Island Creek receives most of the acid drainage. The original acid load has been reduced by about 46 percent by the mine-sealing program formerly in operation in the area. Most of the remaining acid comes from active mines.

SOURCES OF POLLUTION

SELECTED LABORATORY DATA
OHIO RIVER POLLUTION SURVEY
U. S. PUBLIC HEALTH SERVICE

(Face p. 568) GPO - 43 O - 90035

PRESENTATION OF LABORATORY DATA

A tabulated summary of the laboratory results is presented in table Gy-7 (p. 572). Selected data are in table Gy-5.

Table Gy-5.—Guyandot River Basin: Selected laboratory data—main stream and tributaries

-							
RiverLocation	Guyan- dot Above	Guyan- dot Below	Guyan- dot Above	Guyan- dot Below	Guyan- dot Above	Guyan- dot Below	Guyan- dot Above
River miles above mouth of Guyandot. Period, 1939	Mullens 156.5	Mullens 155.5	Pineville 143.5	Pineville 142.5	Man 94.5	Man 93.5	Logan 82
Number of samples	2	2	2	2	3	2	3
Sampling days Water temperature, °C Coliforms per milliliter	1. 5 46	1. 5 66	2. 5	2. 3 330	28 5. 7 2	30 5. 5 242	5. 7
Dissolved oxygen parts per million	13	9. 6	13.0	11.9	12. 5	13. 5	13. 2
Biochemical oxygen demand, 5- day, parts per million	1.6	4. 2	1.6	2. 5	2. 6	4.0	3. 6
River	Guyan- dot	Guyan- dot	Guyan- dot	Guyan- dot	Winding Gulf Creek	Island Creek	Copperas Mine Fork
Location	Water intake, Logan	Below Logan	Below Chap- mans-	Below Bar- bours-	Below Helen	Below Omar	Below Holden
River miles above mouth of Guyandot. Period, 1939	81.5	80	ville 77	ville 7.5	164.5	88.5	84
Number of samples	3	3	2	1	2	2	2
Flow in cubic feet per second: Sampling days. Water temperature, °C. Coliforms per milliliter.	5. 0 64	37 10. 3 118	37 6. 5 13	1.5	3. 5 1, 750	5. 8 1, 670	7.3
Dissolved oxygen, parts per million	13. 3	7.7	11.4	13. 6	9. 6	8. 4	8.9
Biochemical oxygen demand, 5-day, parts per million	2.8	3. 1	1. 6	.6	26. 4	21. 2	13. 2

¹ Less than 1.

Laboratory observations in the Guyandot Basin were carried out largely by a mobile laboratory unit during November and December 1939. Observations at the mouth were made from two to four times monthly during the 10-month period from June 1939 to April 1940 by the laboratory boat *Kiski* from Ashland. The *Kiski* also made observations at Barboursville and along the Mud River.

Figures Bs-3, Bs-4, and Bs-5 present graphically on spot symbol maps the results of the coliform, dissolved oxygen, and oxygen demand determinations at the several sampling points. The results thus presented are averages of from one to three determinations from those points sampled during a period of less than 1 month and represent the most unfavorable monthly average where observations were

made over a period of several months.

The Guyandot River above Logan presents the major pollution problem in the basin. Points below Logan and on the Mud River show little pollution except at the mouth where the results are affected

by Huntington's sewage. The coliform and oxygen-demand results are in good agreement as to the major sources of pollution—Helen, Mullens, Man, Omar, Holden, and Logan being the more marked sources of pollution. The dissolved oxygen results presented a

uniformly good picture.

The stream recovered sufficiently between one source of pollution and the next to produce relatively good conditions at those stations above town. Considerable coliforms and oxygen-demand reduction is apparent in these stretches despite the rather cool weather. Stream flows in general were low during the sampling period except in the area sampled from the *Kiski*.

Acid stream conditions were found along Island Creek and its tributary Copperas Mine Fork, pH values ranged from 4.5 to 5.2 and phenolphthalein acidities from about 20 to more than 200 parts

per million.

The laboratory results indicate that the effects of pollution on the Guyandot were primarily local under the low stream flow conditions

existing at most stations during the time of this survey.

Biological summary.—The Guyandot is heavily polluted in the upper reaches by mine drainage, which renders that portion of the stream unsuitable for aquatic life. The plankton volume of less than 500 parts per million indicates that the entire stream is comparatively free from organic pollution.

HYDROMETRIC DATA

Four stream-gaging stations have been maintained in the Guyandot Basin at various times and two are currently operated. Table Gy-6 shows mean monthly flows during the summer months at these two stations for some of the dryer years of record.

Table Gy-6.—Guyandot River Basin: Monthly mean summer flows for years in which lowest summer flows have occurred

River Location River miles above mouth of Guyandot Drainage area (square miles) Period of record	Guyandot Man 94 762 1929–40	Guyandot Branchland 34 1, 226 1929–40
Year	1930	1930
June. cubic feet per second. July. do. August. do. September do.	53. 5 12. 3 42. 1 9. 5	79. 8 15. 1 48. 4 21. 8
Year	1932	1932
June cubic feet per second July do August do September do	923 956 186 31. 4	1, 460 2, 090 245 42. 4
Year	1939	1939
June cubic feet per second July do August do September do	730 690 152 37	, 833 1, 010 254 50. 5

Low-flow regulation.—There are no flood-control or hydro-electric reservoirs in the basin at present. One reservoir has been authorized by the Congress as part of the comprehensive program for Ohio River flood control. This is on the Mud River above Milton and could be operated to increase the minimum flow below the reservoir by about 22 cubic feet per second. However, this additional flow would not reduce the degree of treatment required at down-stream communities and the benefits would be largely intangible.

DISCUSSION

The pollution problems of the Guyandot are primarily local ones. At most of the communities primary treatment of all sewage would be sufficient to maintain good oxygen conditions. At some of the towns on tributaries, stream flows become so low that secondary treatment probably would be needed to prevent local nuisances.

At Logan, sewage from the adjoining communities should be intercepted and treated with Logan's wastes. This is particularly desirable in the case of Stollings and McConnell whose sewage enters the

Guyandot above Logan's water intake.

Because of the local nature of the pollution problems of the basin and the character of the communities it is suggested that partial treatment of all sewage be provided. Secondary treatment can be added as

community finances permit.

Most of the coal washeries are equipped to recover the fine particles which now enter the streams at some of the plants. Those washeries not now equipped to recover the sludge should be so equipped and greater care in operation should be practiced to prevent the discharge of coal dust to the streams.

The estimated cost of the suggested pollution abatement program is

summarized in table Gy-1.

Table GY-7.—Guyandot River Basin: Ohio River pollution survey laboratory data—Summary of individual results

	Hardness, parts per million		305	295	195	215	175	401	117	320		120	180	
4.11-12	Alkalın- ity, parts per million	173	211	189	148	134	128	106	125 101 103	24.00	151	95	99 106 89	95
E C	ity, parts per million	20	110	15	12	60 63	00 00	60 10	098	80000	30	000	1220	0001
	Hd.	7.9	7.7	7.9	7.6	7.7	00 00	7.7		10.400		7.7.7	7.7.	7.6
Coli- forms,	most probable number per milli- liter	46	1, 100	2,400	93	39	(1)	(1)	230	460	23	460	(J) 24 93	23
5-day bio-	oxygen demand, parts per million	1.7	80 00 80 00 80 00	14.2	F 00	3.4	10.0	1.6	400.1	10 0 4 c	25.	0.42.00	3.0	3.8
1	Percent safura- tion	98.8	84.1	96.9	92. 6	68.2	76.1	98.7	90.2 105.3	988.6	101.0	113.1	102.1 113.6 104.6	97.4
Dissolved oxygen	Parts per million	12.8	12.0	8.5	13.55	10.0	11.0	14.0	12.8	11.9	12.8	14.3	12.6	12.6
	Temper-	4.5	1.0	990	3.0	50	4.0	3.5	6.0	10 00 m	9, 10,	6.6.5	0.4.0	44 44
Average	discharge, cubic feet per second			\$ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 3 5 5 0 4 0 6 1 7 1 8 4 9 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1	000	27.2	33		
	Date	Nov. 13, 1939	Nov. 16, 1939 Nov. 13, 1939	Nov. 16, 1939 Nov. 13, 1939	Nov. 16, 1939 Nov. 13, 1939	Nov. 16, 1939 Nov. 13, 1939	Nov. 16, 1939 Nov. 13, 1939	Nov. 16, 1939 Nov. 13, 1939	16,1	30,1	Nov. 30, 1939	Dec. 5, 1939 Nov. 27, 1939 Nov. 27, 1939	Nov. 30, 1939 Dec. 5, 1939 Nov. 27, 1939	Nov. 30, 1939 Dec. 5, 1939
	Mileage from mouth	GyWg 165.5	GyWg 164.5	dy 156.5	dy 155.5	dy 152.5	do 143.5	do 142.6	Gy 94.5	GyB 94.6	Gy 93.5	dy 82	do do Gy 81.5	dodo
	Sampling point	Winding Gulf Creek, above Helen,	Winding Gulf Creek, below Helen,	W. Va. Do Guyandot River, above Mullens,	W. Va. Do. Guyandot River, below Mullens,	Do. Guyandot River, below mouth	Barkers Creek. Do. Guyandot River, above Pineville,	Do. Guyandot River, below Pineville,	Guyandot River, above Man, W. Va.	Buffalo Creek, above Man, W. Va.	Guyandot River, near sewer, below	Guyandot River, below Man, W. Va. Guyandot River, above Logan,	W. Va. Do. Guyandot River waterworks intake	above Logan, W. Va. Do. Do.

1 Less than one.

Table Gy-7.—Guyandot River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	140	2,070	900	250	240	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 6 1 0 1 2 0 1 3 0 1 7	1	1	
	Alkalin- ity, parts per million	116	105 75 26 26		12	75 45 69	74.00	09		1 1 3 6 1 8 1 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	27	21
	Turbid- ity, parts per million	18	18 18 20 87 80 80 80 80	395	220 165 520 20	32338	12	10	2	5 5 1 1 1 1 1 6 1 6 1 6 1 6 1 6 1 6 1 6	00	90
	Hq	7.1	17.00.00		るるでする	7.1	5.7.	7.4	6.8		6.0	6.9
Coli-	most probable number per milli- liter	2, 400	930 81 86 (1) 4	39	230	240 23 43	23.33	80	3 11	23 0 15 23	15	38
5-day bio-	oxygen demand, parts per million	19.8	22.2.4.	15.5	00 00 00 H	2.7.2.	1.6	1.6	0.9.9	वंशक्ष	ಅಭ	10
oxygen	Percent satura- tion	56.2	6.2.4.2.88 6.2.4.2.88	76.6	72.3 67.6 78.4 70.0	65.5	92.0	92.4	70.6	91.9	90.6	89.1
Dissolved oxygen	Parts per million	6.7	10.0	9.8	20.00.00.00	7,80,6	6.6	13.2	10.0	15.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	ස ය ක් යා	0.6
	rure ° C.	8.0	20.7.7.0		9,0	13.0	11.5	1.00		100 0 00 1 100 0 00 00 00 00 00 00 00 00 00 00 00 0	14.5	15.5
Average	discharge, cubic feet per second	6 6			63 63 63 63 63 63 63 63 63 63 63 63 63 6	34 35 35	354	34			2 4 0 7 1 8 0 8 0 8 6 6 6 6 6 7	0 0 0 0 0 0 0
	Date	Nov. 30, 1939	Dec. 5, 1939 Nov. 27, 1939 Nov. 28, 1939 Dec. 1, 1939	28, 1	800-18	Dec. 1, 1939 Dec. 6, 1939 Nov. 28, 1939	Dec. 1, 1930 Nov. 28, 1939	Dec. 1, 1939 Dec. 15, 1939	Jan. 19, 1940 Feb. 2, 1940 Feb. 16, 1940	35.84.8	Apr. 4,1940 Mar. 29,1940	Apr. 4, 1940
	Mileage from mouth	GyI 88.5	do GyI 88.0 GyI 85.0	GylCm 84.	GyI 81. do. Gy 80.	do Gy 79	dy 77	do do	do do	do do GyM 45	GyM 43	qo
	Sampling point	Island Creek, near sewer, Omar,	Island Creek, below Omar, W. Va. Island Creek, below Monitor, W. Va. Do.	Copperas Mine Fork, below Holden, W. Va.	Island Creek at mouth Do Do Guyandot River, below Logan,	W. Va. Do. Do. Guyandot River, bridge at Henlaw-	18-	Guyandot River, 2 miles above Bar-	Do D	Do. Do. Do. Mud River, 0.1 mile above Hamlin,	W. Va., Route No. 3. Do. Mud River, 1.1 mile below Hamlin,	Do

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 6 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9	0 0 0 1 1 1 6 1 7 7 1 6 1 0 1 1 0 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 2 2 3 3 1 0 5 1 5 3 7 3 7 4 8 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	25 60	39 144 150 20 20 30	33.55	16	30	200	444	46	60	44	533	45	42	31	49	50 65	9	0.4	17	16	19	21	19	16	:
1	00	33	12 60 70 24 24	110	000	380	100	210	18	82	30	2000	22 0	17	25 00	17	24	00	300	06	42	25	80	4	15	2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.7	6.8	000000 000000	7.00		17.																				
43	15	43	110	240	11,000	460	460	390			2, 400				988		1,000		150	11	460	28	75	15	93	3
65	ಯಗು	1.0	41.0100	. 4.6		.1.	1.1	11.	100	2.5	4.0	2.1	4.4	7.6	0.7	17.0	5.00	00	0.0	000	1.5	5.0	000	4	9.1	:
86.9	88.3 95.6	88.3	96.3 93.7.4 93.6	84.0	77.1	087.00	000 00 00 00 00 00	24.00	86.2	48.50	79.4	68.2	59.1	44.3	92.3	84.7	79.3	79.3	0000 00000 00000	93.1	93.00	91.0	96.0	96.0	00.00	0 ***
11.1	9.2	13.6	7.48.827 7.48.827	6.00	7.4.	7.6	100 00 - 60 00	0 - 0	0.4.	6.0	6.9	6.4	4; ro	4.5	4 t	8.6	10.01	10.3	10.3	11.9	12.6	19.3	11.1	11.7	10.3	3
9.5	13.5	14.0	1 14600 000000		25.0																					
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			3, 475		674	515	96	124	53	00 5	38	CC 1	9 23	47	3 2	36	117						2, 594	
28, 1940	4, 1940 28, 1940	4, 1940	19, 1940 2, 1940 16, 1940 23, 1940 15, 1940	34.8	7, 1939	21.12	10,1	18,1	-	14,1	20, 1	500		24,	m 0	17,1	5.1	15,1	21.7	21,1	27, 1	× 0	20, 1	28, 1	-	77, 2020
Mar.	Apr.	Apr. Dec.	Jan. Feb. Feb. Nar.	Apr. June	June	July	Aug.	Aug.	Sept	Sept.	Sept.	Oet.	000	Oct.	からべ	NOV	Dec.	Dec.	Dec.	Feb.	Feb.	Mar.	Mar.	Mar.	Apr.	. 7/4 . 7
GyM 25	dyM 23	do 7.5	000000000000000000000000000000000000000	Gy 0.1	do	do	do	do	do	do	do	do	op	do.	do	-do	do	do	do	do	do	90	do	do.	dodo	
Mud River, 0.1 mile above Milton,	Mud River, 1.1 mile below Milton,	Guyandot River, below corporation,	100 100 100 100 100 100 100	Guyandot River, Cabell County Highway Bridge.	Do	Do	Do	Do	Do	Do	Do		Do	Do	Do	Do	100	Do	Do	100	1)00	Do	Doc	Do	Do	

Less than on

SCIOTO RIVER BASIN

575

CONTENTS

Contents	Fage 577 579 581 582 583 586 588
LIST OF TABLES	
Sc-1.—Cost estimates of remedial measures Sc-2.—Surface water supplies Sc-3.—Sources of pollution Sc-4.—Industrial wastes Sc-5.—Selected laboratory data Sc-6.—Mean monthly summer flows Sc-7.—Summary of laboratory data	580 582 582 583 584 586 582
LIST OF FIGURES	
Sc-1. Map.—Sources of pollution————————————————————————————————————	579 582 584 584 584 587
577	

.(Face p. 579) 6r0-41 0-80015

SCIOTO RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Scioto River Basin lies wholly in Ohio and comprises 6,510 square miles, including the Columbus metropolitan area and 10 other cities of from 5,000 to 30,000 population. Most of the basin is a highly developed agricultural area. The total population is about 740,000, of which 60 percent is urban. More than half of the population is in Franklin County (Columbus). Commendable progress has already been made toward pollution abatement. The present lack of practical methods of industrial waste treatment deters further progress in certain sections. Pollution control by increasing low-water flow offers possibilities in further improving conditions below Columbus.

CONCLUSIONS

(1) Most of the municipalities in the basin have developed underground water supplies which appear to be adequate. In general, pollution is not seriously affecting public water supplies. There is an increasing demand for cleaner streams for recreational use, particularly in the vicinity of Columbus.

(2) Sewage from a population of about 412,000 and industrial wastes with a sewered population equivalent of 426,000 are discharged to sewers. More than 95 percent of the sewage is treated. This treatment, plus treatment of industrial wastes in municipal treatment plants, reduces the total population equivalent of the wastes from

838,000 to 251,000.

(3) The laboratory results indicate that the Scioto River, Paint Creek, and sections of certain other tributaries south of the latitude of Columbus would, at the present time, be unfit as sources of water supply because of the high bacterial content. Above Columbus, except in local zones, the situation appears much better. As regards other uses, the situation is similar to the above but less critical.

(4) The Scioto River below Columbus carries considerable residual pollution from the city. The Columbus sewage treatment works is designed to maintain not less than 3 parts per million dissolved oxygen below Columbus at all times. This should be possible except at times of local rains. On account of these local rains oxygen conditions suitable to maintain fish life below Columbus require an estimated minimum flow of 75 cubic feet per second in addition to the sewage effluent from Columbus.

(5) As the 75 cubic feet per second minimum flow is required only for a matter of hours during local flash floods, a suggested solution involves use of limited storage as at Whittier Street Dam at Columbus. A draw-down of 0.85 feet, to which there appears to be no objection, would supply the necessary flow for 12 hours. A trifling capital cost

and no additional annual maintenance would be required in provid-

ing this flow.

(6) An estimated 22 cubic feet per second can be maintained by the proposed Delaware flood-control reservoir. This sustained flow would improve the stream to a limited extent and would replace water stored above Whittier following use during local flash floods.

(7) Several sections of tributary streams are grossly polluted. These are primarily local problems and the tributaries, with the exception of Paint Creek, are in suitable condition for all normal uses

at their confluence with the Scioto.

(8) In view of the normal uses of the streams involved, refined treatment at certain sources of pollution would serve no purpose commensurate with the expenditure. In these instances, lesser treatment appears justified. A summary of comparative cost estimates of remedial measures from table Sc-1 follows:

Treatment	Capital cost	Annual
Existing	\$12, 890, 000 1, 300, 000	\$1,090,000· 180,000·

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are—

Treatment	Capital cost	Annual charges
Primary, ill places. Secondary, all places.	\$1,060,000 1,700,000	\$150,000 225,000

Table Sc-1.—Scioto River Basin: Estimated cost of existing and suggested minimum corrective measures for municipal and industrial wastes, with comparative costs for primary and secondary treatment

		ber of ints	Popula-	Capital	A	nnual char	ges
	Pri- mary	Second- ary	tion con- nected to	invest- ment	invest- ment Amorti- zation and interest Operation and mainte- nance		Total
Existing sewage treatment	15	18	401, 500	\$12, 890, 000	\$740,000	\$350,000	\$1,090,000
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste	18	4	11, 100	670, 000 260, 000	50, 000 10, 000	30, 000	80, 000 10, 000
correction				370,000	50, 000	40,000	90,000
Total				1, 300, 000	110,000	70,000	180,000
Comparative cost: Primary treatment all waste				1,060,000	90, 000	60,000	150,000
Secondary treatment all waste As suggested				1, 700, 000 1, 300, 000	140, 000 110, 000	85, 000 70, 000	225, 000 180, 000

DESCRIPTION

The Scioto River Basin, 6,510 square miles in area, occupies the central and south central portion of Ohio. The river rises in the flat Till Plains near Marion and flows in a generally southerly direction to its confluence with the Ohio River at Portsmouth.

	Miles above mouth of Scioto River	Drainage area, square miles
Major tributaries; Salt Creek Paint Creek Deer Creek Darby Creek Little Walnut Creek Big Walnut Creek Olentangy River	51 63 85 100 108 117 132	553 1, 143 408 557 281 557 536

		Popula	tions	
	1910	1920	1930	1940
Larger cities: Columbus Marion Chillicothe	181, 511 18, 232 14, 508	237, 031 27, 891 15, 831	290, 564 31, 084 18, 340	306, 087 30, 817 20, 129
Total basin: Rural Urban	274, 691 272, 845	268, 896 341, 841	269, 434 420, 506	291, 761 447, 790
Total	547, 536	610, 737	689, 940	739, 551

Industries.—While the Scioto River Basin is primarily an agricultural area, there are important industries, of which paper mills and canneries predominate. Other industries of lesser importance include

meat, milk, metal, chemical, and rendering plants.

Water uses.—The city of Columbus secures its water supply from two reservoirs; total capacity 6,000,000,000 gallons, on the upper Scioto River. Flood-protection works, required primarily to reduce flood damages at Columbus and downstream, have been studied by local conservancy districts and the United States Engineer Department.

The Scioto River is not navigable and has no water-power developments. Columbus reservoirs are the only ones of appreciable size in the basin. Restricted recreational developments are present on

the Scioto River below Columbus.

PRESENTATION OF FIELD DATA

Figure Sc-1 shows the location and magnitude of all sources of organic pollution of consequence in the Scioto River Basin. Figure Sc-2 shows similar data and, in addition, location of water supply intakes from streams below sources of pollution and laboratory data on coliform organisms, dissolved oxygen and biochemical oxygen

Public water supplies.—Forty-four public water supplies in the basin serve a total of about 480,000 people. Five of these supplies, as shown in table Sc-2, are from surface sources.

Table Sc-2.—Scioto River Basin: Surface water supplies

City	Source	Treatment 2	Population served	Consumption, million gallons per day							
	Supplies below o	ommuni	ty sewer	outfalls							
Columbus_ Delaware Westerville	Scioto River Olentangy River Alum Creek	LD LD LD	332, 000 10, 000 3, 500	31. 40 . 75 . 19							
	Other surface supplies										
Sunbury Marysville	Impounded-Wells Mill Creek-well		LD LD	700 4, 000	0.02						
Total: Below sewer outfall: Other	3			345, 500 4, 700	32. 34 . 32						
Total, surface water sup	plies			350, 200	32. 66						

Above the Columbus supply, most upstream pollution is treated. Storage provides an additional safeguard and the bacterial quality of the raw water is good.

Delaware suffered a serious water shortage in 1930 which might be overcome by supplementary low flow from the proposed Delaware Reservoir. There are no important sources of pollution immediately above Delaware and, in general, remote pollution of consequence receives treatment.

Sewerage. - Table Sc-3 shows data on the more important sources of sewage pollution. All but one of the towns of any size have sewage treatment facilities, although not all are adequately equipped or properly operated. More than 95 percent of the sewage is treated.

Table Sc-3.—Scioto River Basin: Sources of significant pollution including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream	Miles above mouth of Scioto	Popula- tion con- nected to	Treat- ment	(biochen	l popula- uivalent nical oxy- mand)
		River	sewers		Un- treated	Dis- charged
Kenton Jackson Chillieothe ¹ Frankfort Hillsboro ⁴ Greenfield Washington C. H Mt. Sterling	Scioto River	132 209. 2	16, 000 3, 600 4, 900 300, 000 5, 100 4, 500 4, 500 3, 000 3, 400 7, 000 800	Primary do	21, 500 3, 600 90, 700 543, 800 5, 200 5, 600 47, 600 3, 400 3, 100 5, 700 10, 300 3, 000	10,000 3,200 76,100 48,800 5,200 4,000 47,600 3,300 5,900 5,900 5,900

Municipal waste to Scioto River; most industrial wastes to Paint Creek.

¹ Miles above mouth of Scioto River.
2 L=Lime-soda softened; D=Chlorinated.

² Strawboard plant wastes. 3 Treatment plant equipped with storm-water holding tanks. 4 Recent treatment plant. Not in operation in 1939.

Table Sc-3.—Scioto River Basin: Sources of significant pollution including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)—Continued

Municipality	Stream	Miles above mouth of Scioto	Popula- tion con- nected to	Treat- ment	Sewered popula tion equivalent (biochemical oxy gen demand)			
		River	sewers		Un- treated	Dis- charged		
Baltimore Westerville Delaware Galion		150. 9 110 130 141 152 158 216 173 186	500 900 900 1,000 600 3,000 8,000 4,200 24,000 12,000		5, 600 3, 200 2, 800 5, 800 5, 100 8, 300 6, 000	2, 800 3, 200 2, 900 2, 500 5, 800 900 900 1, 000 4, 500 16, 700		
Total			412, 600		838, 500	251, 400		

Industrial waste.—Data on 48 industrial plants, wholly or partly unconnected to municipal treatment, are summarized on table Sc-4. However, by far the greatest industrial waste load is tributary to present municipal treatment. The Columbus and Circleville treatment plants both handle heavy industrial waste loads.

Table Sc-4.—Scioto River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	Number		al waste	At least minor	Estimated population equivalent	
Industry	of plants	Munici- pal sewers	Private outlets	corrective measures taken	(biochemi- cal oxygen demand)	
Canning Chemical Meat Metal Milk Paper Miscellaneous	. 11 4 8 7 7 3 8	1 0 4 3 3 0 2	10 4 4 4 4 3 6	9 3 5 4 4 3 5	32, 200 2, 700 700 39, 200 2, 500	
Waste unconnected to municipal treatment. Waste connected to municipal treatment.	48	13	35	33	77, 300 348, 600	
Total industrial waste in basin					425, 900	

PRESENTATION OF LABORATORY DATA

Summaries of laboratory results for the Scioto River Basin are presented in table Sc-7. These data have been obtained in part from the operations of three laboratory units connected with the present survey, and in part from the results of a previous survey carried out by the Public Health Service along the main Scioto River below Columbus during the years 1937–39 (these results have been transcribed as monthly averages for the period January–July 1939). The data

for the upper Paint Creek watershed are based on continuing observations from the Cincinnati laboratory in 1939 and early 1940. For the remainder of the basin, the observations were made by mobile laboratories, covering shorter periods of time during September and October 1939.

Selected average monthly laboratory results at some of the principal points in the basin are tabulated with flows on sampling days and the minimum month on table Sc-5. In general, the results selected represent the lowest flow conditions during the sampling period.

Table Sc-5.—Scioto River Basin: Selected laboratory data

River Location	Scioto Above Kenton	Scioto Below Kenton	Scioto Upper end res-	Scioto Above Colum-	Scioto Shade- ville	Scioto South Bloom-	Scioto Above Circle-
River miles above mouth of	210	207	sevoir 153	bus 129.0	119.8	field 109.0	ville 99.5
Period, 1939	October	October	October	June	June	June	June
Number of samplesFlow in cubic feet per second:	. 3	8	1	17	17	17	1
Sampling days Minimum month Water temperature, °C	2. 2	2. 2		2, 680	2,800 60	3, 370	4, 36
collorms per milliliter	15. 5 24	16. 8 7, 400	20. 5	23. 7 977	23. 1 5, 390	24. 0 838	23. 34
Dissolved oxygen, parts per million. Biochemical oxygen demand,	8.6	1.7	6. 9	7. 1	3. 0	3.9	4.
5-day, parts per million	2.0	7. 5	2.6	3.4	4.6	3.3	2.
River	Scioto Pennsyl- vania	Scioto Kellen- berger	Scioto Chilli- cothe	Scioto Kilgore Bridge	Scioto Higby	Scioto Waverly	Scioto Mouth Lucas-
	R. R. bridge	Bridge					ville
River miles above mouth of Scioto.	95.5	86.2	70.0	64.3 June	55.7	38.7	15.0
Period, 1939	June	June	June	2000	June	June	June
Number of samples	17	11	9	9	9	9	
Sampling days Minimum month Water temperature, °C	4, 360	3, 170	6, 160 210	6, 190	6, 970 263	7, 820	8, 39
Coliforms per milliliter Dissolved oxygen, parts per	24. 0 948	24. 2 372	24. 6 198	244	24. 5 429	24. 4 136	24 . 6
million Biochemical oxygen demand,	4.6	4. 1	5. 9	6. 2	5. 3	5.8	6.
5-day, parts per million	4.6	3. 3	2.9	2.8	2.8	2. 5	2,
River	Little	Little Scioto	Olen- tangy	Olen- tangy	Little Walnut	Little Walnut	Rocky
Location	Scioto Above Marion	Below Marion	Above Dela- ware	Below Dela- ware	Above Balti- more	Below Balti- more	Above Hills- boro
River miles above: Confluence with Scioto Mouth of Scioto Period, 1939.	9 186 October	9 180 October	28 160 October	24 156 October	36 142 October	33 139 October	57 120 October
	. 3	3	2	2	3	3	
Number of samples Flow in cubic feet per second: Sampling days	1. 2	1. 2	11.8	11.8	2. 2	2. 2	
Sampling days Minimum month Water temperature, °C Coliforms per milliliter	16.0	15.7	17. 5 12	18. 5 26	0 8. 2 18	9.8	0 16.
Dissolved oxygen, parts per	26 10. 0	38, 300 1. 8	8, 5	10.8	7, 4	2, 730	7.
million Biochemical oxygen demand,	10.0	1.0	0.0			.0	

0 - 90035 QPO - 43 No. 1 (Face p. 584)

OHIO RIVER POLLUTION SURVEY U.S. PUBLIC HEALTH SERVICE 1941

SCIOTO BASIN

DISSOLVED OXYGEN RESULTS.

00 00 50

OHIO RIVER POLLUTION SURVEY
U.S. PUBLIC HEALTH SERVICE
1941

(Face p. 584) No. 2 600-43 0-9035

Fig. Sc-5

BIOCHEMICAL OXYGEN DEMAND

OMIO RIVER POLLUTION SURVEY U. S. PUBLIC MEALTH SERVICE 1941

GPO - 43 0 - 90035 No. 3 (Face p. 584)

TABLE Sc-5 .- Scioto River Basin: Selected laboratory data-Continued

River	Rocky	Paint Creek	Paint Creek	Paint Creek	Paint Creek	Paint Creek	Paint Creek
Location	Below Hills- boro	Above Wash- ington Court House	No. 1 Below Wash- ington Court House	Above Green- field	Below Green- field	Opposite Chilli- cothe	Mouth Chilli- cothe
River miles above: Confluence with Scioto Mouth of Scioto Period, 1939		67 130 Septem- ber	65 128 Septem- ber	49 112 October	47 110 October	3.4 66.6 July	1.3 64.5 July
Number of samplesFlow in cubic feet per second:	1	1	1	1	1	5	5
Sampling days	0	3.0	3.0	2.0	2.0	330	330 10, 3
Water temperature, C°Coliforms per milliliter	17. 5 4, 600	20. 0 150, 000	19. 0 240, 000	17. 0 23	17. 0 24, 000	23. 0	24. 0 156
Dissolved oxygen, parts per million	4.2	.4	0	4.6	0	7.3	5. 7
Biochemical oxygen demand, 5-day, parts per million	2.3	7.8	153	2. 5	19. 5	1.1	13. 3

Figures Sc-3, Sc-4, and Sc-5 show, by spot-map symbols, the distribution of average monthly coliform results, dissolved oxygen content and 5-day oxygen demand, respectively, at the various sampling points throughout the basin, as based on the most unfavorable month of observations at each point. In general, the lower dissolved oxygen results coincided with lower river stages and high temperatures, whereas the higher coliform results tended to occur during months of high stages and low temperature. Along the main Scioto River, the dominant part played by the wastes of Columbus is apparent. In the tributary areas, the worst conditions were observed in the upper Paint Creek watershed, notably below Washington Court House. The section of the basin lying north of Columbus is shown to be relatively clear of heavy pollution, except in local stream zones immediately below the larger towns.

Figure Se-2 shows the coliform bacteria and dissolved oxygen results as observed in the main Scioto River below Columbus during a typical high water month (March 1939) and a low-water month (June 1939). The low water dissolved oxygen content of the river below Columbus is shown to have followed a fairly typical "sag" curve, with a first minimum point at about 3 parts per million and a secondary minimum of 4 parts per million below Circleville. In Paint Creek below Washington Court House, the minimum reached zero oxygen for a distance of about 3 miles in October 1939. In contrast were the higher oxygen levels in both streams during the high-water months of March 1939 and 1940, though a tendency toward a delayed oxygen "sag" was shown under those conditions. In general, the observed numbers of coliform bacteria tended to follow a course directly opposite to that of the dissolved oxygen content, being highest at points near the minimum point of the oxygen sag curve.

The laboratory results for the basin as a whole indicate that the Scioto River, Paint Creek, and sections of certain other tributaries south of the latitude of Columbus would be unfit as sources of water supply unless extensive sewage chlorination measures were carried out over most of this area. Above Columbus, except in local zones, the situation appears much better in this respect. So far as other

stream uses are concerned, the situation indicated by the results is roughly parallel to that above described, except that conditions are shown to be somewhat less critical in portions of the area south of Columbus, as is indicated by comparing figures Sc-3 and Sc-4.

HYDROMETRIC DATA

Twenty-two stream gaging stations have been maintained on the Scioto River Basin for varying periods, 15 stations of which are in operation at the present time. Eight stations of importance from the pollution standpoint have been selected and the monthly mean summer flows for 3 years in which low summer flows have occurred are presented in table Sc-6.

Table Sc-6.—Scioto River Basin: Monthly mean summer flows for years in which low summer flows have occurred

River	Scioto At Larue 192 255 1925-40	Sciote At Colum- bus 132 1,624 1921-40	Scioto At Chilli- cothe 69. 6 3, 847 1921-40	Scioto At Higby 55. 7 5, 129 1930-40
Year	1930	1921	1930	1932
Junecubic feet per second	36 9 6 17	283 86 96 67	470 303 1 214 233	1, 980 8, 180 561 406
Year	1932	1924	1932	1934
June cubic feet per second July do August do September do	38 23 1 4. 0 7	3, 780 874 98 66	976 1,710 328 252	718 868 960 387
Year	1934	1930	1934	1939
Junecubic feet per second	41 7 12 6	178 125 82 68	435 549 565 245	5, 450 2, 230 822 1 337
River	Little Scioto Near Marion 6 183 81. 2 1924–40	Olentangy Near Delaware 26 158 387 1922–34	Paint Creek Near Greenfield 48 111. 2 251 1927–36	Paint Creek Near Bourneville 19. 5 82. 7 808 1924-40
Year	1930	1930	1930	1930
June cubic feet per second July do August do September do	26 3. 6 1. 2 2. 8	71 10 1.8 11	8 1.5 .7	42 20 1 11 27
Year	1933	1933	1932	1936
June cubic feet per second July do August do September do	10 7 2. 1 2. 2	26 29 3. 5 26	223 295 6 1.4	70 29 30 22
Year	1934	1934	1934	1939
June cubic feet per second July do August do September do	1.6 1.2 1.3	22 6 . 9 1 . 5	7 38 33 10	441 249 128 15

¹ Minimum month.

Figure Sc-6 presents a flow duration curve for the average monthly flows from June to September, inclusive, for the period from 1921 to 1939, for the Scioto River at Columbus below the Columbus sewer outfall so that the flows include the sewage flow (average 70 cubic feet per second). This curve indicates that average summer monthly flows of 190 cubic feet per second or less have occurred every year. Flows of 115 cubic feet per second may be expected every 2 years, 80 cubic feet per second every 5 years, and only the sewage flow of 71 cubic feet per second every 10 years. The minimum average monthly summer flow was 66 cubic feet per second. The low average monthly flow of 60 cubic feet per second shown on table Sc-5 occurred

during the winter.

Low-flow regulation.—The United States Engineer Department has determined three reservoir sites to be most nearly satisfactory for flood control and allied purposes—Delaware, Paint Creek, and Rocky Fork. The Delaware Reservoir on Olentangy River above Columbus could be of value for flood control, water supply for the city of Delaware, and for pollution abatement, and would be capable of maintaining a minimum flow of 22 cubic feet per second at the dam site. Under present plans, the Paint Creek and Rocky Fork Reservoirs are to be used solely for flood control. Seasonal low-flow control operations, if conducted at the Paint Creek and Rocky Fork Reservoirs in conjunction with flood-control operations, would result in minimum discharges of 51 cubic feet per second and 13 cubic feet per second, respectively, at the dam sites.

DISCUSSION

Pollution problems of more than local significance exist on the main Scioto River below Columbus, on Paint Creek from Washington Courthouse to the confluence with the Scioto River at Chillicothe, and below Kenton on the upper Scioto, the only community of appreciable size without treatment facilities. Minor pollution problems, of local significance only, exist at various points below a number of moderate sized and small municipalities. Corrective measures at these points are included in the cost estimates, but discussion has been omitted.

MAIN SCIOTO RIVER BELOW COLUMBUS

The 132 miles of Scioto River between its mouth and the Olentangy River at Columbus receives wastes with a population equivalent of about 111,100. A large part of this is a residual pollution following treatment. Columbus, Circleville, and Chillicothe contribute more than 95 percent of this pollution load. With the exception of Paint Creek, the six tributaries of appreciable size entering this section of the main stream are generally less polluted at their mouths than the main stream at the confluence.

Columbus.—The recently completed activated sludge plant at Columbus treats practically all of the sewage and industrial wastes from the city and its suburbs. This plant, designed to maintain a minimum of 3 parts per million of dissolved oxygen in the river below Columbus, provides also for the treatment of storm water by diversion to storage tanks until treatment is possible during a subsequent period of lower sewage flow. Such a refinement in pollution

abatement is rarely applied in the United States, and Columbus has

the only large installation of its kind in the Ohio Basin.

Despite this refinement, surface wash is of marked consequence. During the critical season, local showers may cause pollution from surface wash and overflow of storm water from certain combined sewers with little corresponding increase in dilution flow from above Columbus. The oxygen demand of this flush water may be sufficient, according to data of the Ohio Department of Health, to reduce the dissolved oxygen in the stream below the critical point.

During January 15, 1937, to August 15, 1939, the Scioto River below Columbus was studied by the Stream Pollution Investigations Station of the United States Public Health Service, to determine the effects on the stream of the completed sewage-treatment plant at Columbus. Because of delays in placing the plant in full operation, this investigation was suspended and only limited data are available to indicate the effectiveness of treatment in improving river water

quality during a critical low-flow period.

Stream discharge below Columbus includes the city sewage flow which amounts at present to about 70 cubic feet per second. Discharge records are available for the years 1921 to 1939 during which the city built a large water supply reservoir above Columbus which also influences the low flow of the Scioto. The flow data presented, therefore, are not strictly applicable to present conditions. They do indicate, however, that the treated sewage of Columbus is at times the only flow in the stream and that in most years there is at least 1 month when the dilution available is less than one volume. At Chillicothe and Higby the flow of the stream is much greater.

The selected laboratory results presented indicate conditions before the Columbus plant was in full operation and during a period of rather high flow. The minimum flow above Columbus during period of observations was 2,800 cubic feet per second, whereas in September 1939 the flow was only 86 cubic feet per second. The results show that the stream was rather heavily polluted in spite of the high flows.

The city of Columbus has certainly taken every reasonable step possible toward the correction of its pollution problem. With initial operating difficulties overcome, it is probable that the accomplishment for which the works were designed, namely, an absolute minimum of 3 parts per million dissolved oxygen in the Scioto River below the plant, will be attained a very high percentage of the time. Possible exceptions will be at times of local rains.

Largely because of the effect of local rains, oxygen conditions below Columbus suitable to maintain fish life are possible only with an estimated minimum flow, in addition to the sewage effluent of 75 cubic feet per second. An estimated 22 cubic feet per second can be maintained by the proposed Delaware flood-control reservoir on the Olentangy River above Columbus, but this is not sufficient to accomplish

the desired result.

As the problem is one resulting from local rain, supplemental low flow is required for only a short period, possibly a matter of hours, but should be available on very short notice. This suggests less storage located near Columbus. The Whittier Street Dam forming the pool opposite Columbus might be used for this purpose. In case the storage is used in a matter of hours at the time of a local rain, the water could be replaced over a period of several days, if necessary,

from the available 22 cubic feet per second from the proposed Delaware Reservoir.

The present construction of the Whittier Street Dam includes four 4-foot square outlets through the dam. Supplemental flow of 75 cubic feet per second for a period of 12 hours may be obtained from the pool above the Whittier Street Dam by a draw-down of about 0.85 feet. There have been no great objections to past temporary lowering of this pool. A light lifting device for removing the stop

logs will be necessary at an estimated cost of \$50.

Circleville.—Circleville has recently completed a chemical precipitation treatment plant that can, if desired, be divided into two parts, one to treat wastes from a large strawboard plant and the other to treat city sewage and all other industrial wastes. The Circleville plant was not in full operation during the period from January to July 1939 when laboratory examinations of stream samples were being made. Principal pollution is from the strawboard wastes. Treatment of these wastes by chemical precipitation removes practically all of the settleable solids and a portion of the finer suspended solids. Elimination of shoals and sludge banks, therefore, may be expected. Oxygen demand reduction, however, is of minor consequence. Methods of correcting strawboard waste pollution are now being studied at several places. However, at the present time, the Circleville plant represents the only installation where even partial treatment is actually practiced. Lagooning has been temporarily effective at certain plants in the past.

Further treatment of sewage and wastes at Circleville appears desirable. However, secondary treatment of sewage would have but a very minor effect and no practical method for additional treatment has been developed for strawboard wastes. Further study of

the strawboard waste problem appears indicated.

Despite limited treatment of waste and sewage at Circleville, quality of water below the city, because of higher flow, is superior to that

below Columbus.

Chillicothe.—Chillicothe has a primary treatment plant for all of its sewage. Certain industrial wastes, principally from paper plants, are discharged to Paint Creek. In the paper mills, recirculation is practiced to a limited extent and save-alls have been installed, both desirable pollution correction measures. The Federal Reformatory just

north of Chillicothe has a primary treatment plant.

The sewage treatment plant effluents from Chillicothe and the Federal Reformatory above the city, plus industrial wastes which enter through Paint Creek, have some slight deleterious effect on the Scioto River. However, here again, because of higher flow, the quality of Scioto River water below the city is superior to that below Columbus. The slight effect on the Scioto as shown by the laboratory results would not justify further treatment.

Industrial pollution in Paint Creek between Chillicothe and the confluence with the Scioto River creates a serious condition. This pollution could be largely and justifiably corrected by discharging all but the paper mill wastes to public sewers for treatment in the municipal plant. The paper mill wastes are of such a volume that separate treatment is indicated. There are possibilities of further reduction of the paper mill wastes by recovery of byproducts and reuse of water. Remaining wastes are capable of treatment by chemical precipitation.

PAINT CREEK

Wastes with a population equivalent of 18,900 enter Paint Creek and its tributaries above Chillicothe. The worst stream conditions, as shown by the laboratory results, are in the vicinity of Washington Court House and Greenfield, where zero oxygen conditions prevailed.

Paint Creek and its tributaries are important streams in a thriving agricultural district. Despite their condition, these streams are used for swimming and other recreational purposes. There appears ample justification for secondary treatment of sewage and wastes and this fact is generally recognized. Present primary treatment plants were installed as temporary expedients to be supplemented within a reasonable time with secondary treatment facilities.

KENTON

This is the only urban community in the Scioto River Basin without sewage treatment facilities. Its location above Columbus water supply reservoirs makes the provision of such facilities of more than local importance. Gross nuisance conditions prevail below the sewer outfalls during the summer months and laboratory results during September and October 1939 showed only 1.7 parts per million of dissolved oxygen in the Scioto below town. Complete recovery was not apparent even 30 miles downstream. Secondary treatment appears justified for improvement of local conditions and protection of Columbus' water supply.

MISCELLANEOUS POLLUTION

A number of other sources of wastes on the Scioto River and its tributaries cause serious pollution of primarily local significance. Remedial measures appear justified at Jackson, West Jefferson, Ashville, and Baltimore. Some industrial wastes correction is needed at most of these places, particularly along Little Walnut Creek.

Cost estimates for remedial measures for pollution abatement suggested, as justified by the stream uses, are summarized in table Sc-1.

Table Sc-7.—Scioto River Basin: Ohio River pollution survey laboratory data—Summary of averages

Hardness, parts per million	225	369	150	185	0 0 0 2 0 0 0	9 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9	129	9 8 0 6 0 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	125	136	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 8 6 0 6 0 7 0 7 0 8 0 8 0 8 0	8 8 8 1 5 8	137	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 8 1 1	6- 6- 8- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
Alkalinity, parts per million	236	315	143	274	258	200	233	192	214	26	199	235	288	231	183	204	308	201
Furbidity, Parts per million	47	8000	- 90	25	œ	32	26	988	15	43	14	15	13	18	16	16	15	10.
Ħd	8.0	7.7	00	7.5	7.9	ල ග ග් ශ්	7.00	7.9	7.7.	7.6	7.8	7.7	20 00	□ 06	0.0	7.9	0.0	8.0
Coliforms, most number probable per mile	24	7,410	26	38, 600	R	110	0	7,250	15	15	69	O.	43	235	12	24	0	75
5-day bio- chemical oxygen demand, parts per million	2.0	7.4	3,7	13.5	4.7	11.3	6.6	3.0	.6.8	15.7	100	1.9	1.0	6.7	3,0	1.7	1.6	4.
Dissolved oxygen, parts per million	8.6	5.3	10.0	1.8	6.7	10.4	4.6	5.4.	6.0	7.00	6.5	7.0	ග ග	60.00	8G 8G	9.0	9.5	60
Temper- ature	15.5	16.8	16.0	15.7	17.0	17.0	19. 5	15.1	19.0	11.5	10.3	18.5	19.0	14.5	17.5	13.6	14.5	15.0
A verage discharge cubic feet persecond	64	64	=	=			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 9 0 0 5 0 5 0 0 0 0 0 0	1 0 1 5 1 1 1 0 2 0 3 1 0 1 3 1 1 1	-	-	Ξ	88	Ğ.	12	90	00	00
A verage discharge of samples cubic feet per second	63	∞ ∺	00	ന	-	7ml 9ml	yes	च च		63	63	-	63	C4	23	1	-	-
Period	September and	op op	do	qo	qo	op qo	do	dodo-	dodo	ор	do	do	do	do	do	do	do	qo
Mileage from mouth	Se 209.5	Sc 208 Sc 179.5	ScLs 184.5	ScLs 179	Sc 175.5	Sc 172.	Sc 156	ScM 172 ScM 166	ScM 156 Sc 151.5	SeO 213	ScO 211	SeO 174	SeO 173 ScOW 187	SeOW 185	SeO 159.	ScO 158	Sco 158	ScO 158.
Sampling point	Scioto River, above Kenton, Obio	Scioto River, below Kenton, Ohio Scioto River, above Greencamp,	Little Scioto River, above Marion,	Little Scioto River, below Marion, Ohio.	Scioto River, 1 mile below Green-	Scioto River, above Prospect, Ohio Scioto River, 1 mile below Prospect,	Scioto River, above mouth Mill Creek, Bellnoint Obio	Mill Creek, above Marysville, Ohio Mill Creek, below Marysville,	Mill Creek, at mouth Scioto River, upper end Columbus Reservoir	Olentangy River, 1 mile above Galion, Ohio.	Olentangy River, 1½ miles below Galion, Ohio.	Olentangy River, above Waldo,	Olentangy River, below Waldo, Ohio. Whetstone Creek, above Mt. Gilead, Ohio.	Whetstone Creek, below Mt. Gilead,	Olentangy River, above Delaware, Ohio.	Olentangy River, Central St. Bridge, Delaware, Ohio.	Olentangy River, Winter St. Bridge, Delaware, Ohio	Olentangy River, Williams St. Bridge, Delaware, Ohio,

OHIO RIVER POLLUTION CONTROL	3
153	£
202 1104 1104 1105 1105 1105 1105 1105 1105	5333
ω 0 m	22
4 いいいいい はいいいい はいいいい はいいいいい はいいいいい はいいいいい はいいいいい いいいいいい	7. 33
28 82 1115 620 1, 240 652 652 860 660 672 673 873 873 873 873 873 873 873 873 873 8	483
4 1 ಇವಳವಣ್ಣಗುವ ದಂಭಕ್ಷಕ್ಷವುಗ ಜ 'ಪಗಗ 'ಪ ಕ್ಷಕ್ಷಕ್ಷವವಗ ದಂಭವಕ್ಷವವು ' ಸ್ಥ 8 7 ಕಗಡಿಂತಿರು ಬಿಡಿಂದರಿಗೆ ಈ ದಿಗಾದಿಯು ಖಂಡಿಗವಣ್ಣ ಗಡಿರುವವಾಗಿ ' 7	17.4
0 3 88449666 841588467 8 8511556 8594888 85948867	1.5
	20.
2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 2 0 6 6 8 2 1
2 8 811121138 81123121 + 448418 81123138 8 6	4
do. January 1939. February 1939. April 1939. June 1939. June 1939. June 1939. June 1939. April 1939. April 1939. June 1939. June 1939. June 1939. June 1939. June 1939. April 1939. April 1939. April 1939. April 1939. January 1939. April 1939. April 1939. April 1939. June 193	
Sec 129.3 Se 129.3 do d	TATAL TATAL
Olentangy River, below Delaware, Ohio. Dus, Ohio. Scioto River, station 127.5, Columbus, Ohio. Do. Do. Do. Do. Do. Do. Do.	Paw Paw Creek, below Basil, Ohio, 1 Less than 1.
N N N N N N N N N N N N N N N N N N N	

Table Sc-7.--Sciolo River Basin: Ohio River pollution survey laboratory data---Summary of averages---Continued

Hardness, parts per million	377	610	758	8 8 8 1 9 9	630	626	439	443	\$ 1 1 8 8 7 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	127	133	151	153	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Alkalinity, parts per million	283	238	223	307	. 259	285	270	280	206	134 133 137 208 165	244	250	49	53	254	202	244	141
Turbidity, parts per million	13	34	29	00	88	22	30	29		1 8 8 8 2 9 8 9 9 9 3 9 9 9 6 8 8 8 1 8 8 9 1 1 8 9 8 1 1 9 9 8 1 1 9 9 8 1 1 9 9 8 1 1 1 1 8 9	41	6	10	13	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 B B B B B B B B B B B B B B B B B B B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hď	7.5	7.7	7.6	7.9	7.6	7.6	7.7	7.6	7.6	27.7.7.	.00	7.8	7.9	7.9	2.5	000	, co	7.6
Coliforms, most probable number per mile	6	9	182	4	90	283	10	101	219	820 720 498 164 592	35	142	31	277	31	75	215	504
5-day bio- chemical oxygen demand, parts per	4.4	1.6	00	භ	80	00.5	2.1	2.9	4.0	ಕೃಣ್ಯಣ್ಣ ಅತ್ತ ತುಂಬ		3.1	1.5	00		m m m		2.6
Dissolved, oxygen, parts per million	5.1	9.3	6.8	00	10.0	9.1	7.4	0.7	80.1	11.01.09.0.4.09.09.09.09.09.09.09.09.09.09.09.09.09.	0.00 4.1	6.5	9.2	9.8	13.1	10.6	9.1	12.2
Temper- ature	7.5	11.3	12.0	14.0	10.0	11.3	10.2	10.5	4.5	4.0 9.9 1.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	12.0	11.8	11.5	11.8	e 60 60 €	10.8	13.0	4.
Average discharge cubic feet per second		2	2	0	20	17	40	40	957	6, 534 6, 583 8, 584 3, 7,744 144 144	1, 492	00	(1)	(1)	1 0 1 3 1 0 1 0 1 0 1 0 1 0 1 0		1, 133	6,962
Average Number discharge of samples cubic feet per second	63	63	ಣ	1	7	63	3	ಣ	16	112	22	2	C1	2	44	O 4.	16	16
Period	October and November	1939.	do	do	do	qo	do	do	January 1939	February 1939 March 1939 April 1939 May 1939	September and	do-	September and October 1939	do	January 1939 February 1939	April 1939	January 1939	February 1939.
Mileage from mouth	ScW 134	ScWSy 139	SeWSy 137	SeW 130.5	ScW 130.1	ScW 129.5	SeW 110.5	ScW 109	Sc 101.8	000000000000000000000000000000000000000	ScD 161	ScD 150	SeD1 174	ScD1 172	ScD 100.5	do	Sc 99.5	do
Sampling point	Little Wahut Creek, ½ mile northwest Lockville, Ohio,	Sycamore Creek, 114 miles above	Sycamore Creek, 34 mile below	Little Walnut Creek, 15 mile above Canal, Winchester, Ohio.	Little Wahut Creek, 16 mile above Canal, Winchester, Obio.	Little Walnut Creek, 15 mile below Canal, Winchester, Obio	Little Walnut Creek, I mile above	Little Walnut Creek, 1 mile below	Scioto River, station 100.5, Red Bridge.	Do. Do. Do. Do. Do.	Big Darby Creek, above Plain City,	Big Darby Creek, below Plain City,	Little Darby Creek, above Mechan- icsburg. Ohio.	Little Darby Creek, below Mechan- icsburg, Ohio.	Darby Creek, at mouth.	DO O	Scioto River, station 99.5, Circle-	Do.

25.00 12.00
8000000 0000 0000 000000 0000000000000
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
みびよびたは なよみちょよよ よみろようさほびようけんごうけん まましたし ましょしょう きょうしょう ひょうしょう しょうり しょう ちゅうこうしゅう ちゅうこうよう りゅうこう さいき ちゅうこうし
00004400 H00004444800000000000 8H00 8H00
ほよびはみょ よてではみみょ ちていはみみんじょうののによこのな ほもひした ひまらるのけ コキャグロウ しゅうしゅう しゅうしょう ちょうのうり しょうしょう ちょうのうち しゅう
7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
######################################
April 1939 May 1939 May 1939 June 1939 June 1939 June 1939 March 1939 March 1939 May 1939 June 1939 June 1939 November 1939 October 1939 May 1940 September 1939 December 1939 May 1939 May 1939
do d
Scioto River, station 95.5, Fennsylvania R. R. Bridge. Do D

Table Sc.-7 .-- Scioto River Basin: Ohio River pollution survey laboratory data -- Summary of averages -- Continued

Hardness parts per million	
Alkalinity parts per million	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Turbidity, parts per million	
Hd	ひひひひびははなびはなるなな はなはなない ななは な なななけるない はな するすうきょうきょう ひょう ひょう ちょうしゅ みょうしゅ ちゅうしょう ひょう ひょうしょう ひょうしょう しょう しょうしょう しょう
Coliforms, most probable number per mile	1, 756 237 237 237 252 252 252 252 254 256 267 267 267 267 267 267 267 267 267 26
5-day bio- chemical oxygen demand, parts per million	4%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Dissolved oxygen, parts per million	დ Н ე დ დ დ დ დ დ დ დ დ დ დ დ დ დ დ დ დ
Temper- ature	4ないこによるなよいこによるな のこらりしょうぶ はここころ 6400ではある 0400 00000 05000 05000 05000 550000 550000 550000 550000 55000 55000 55000 55000 55000 55000 55000 55000 55000 55000 550000 550000 550000 5500000 55000000
Average discharge cubic feet per second	125 9220 15 9220 15 9220 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Number discharge of samples cubic feet per second	
Period	January 1939. Ratch 1939. April 1939. April 1939. June 1939. June 1939. June 1939. March 1939. March 1939. March 1939. September 1939. July 1939. September 1939. October 1939. Cottober 1939. Cottober 1939. Cottober 1939. Cottober 1939. December 1939. Cottober 1939. January 1940. September 1939. October 1939. January 1940. September 1939. October 1939. October 1939. October 1939. Cottober 1939. October 1939. Cottober 1939. October 1939.
Mileage from mouth	So 70 So 40 Go
Sampling point	Scioto River, Chillicothe, Ohio. Do. Do. Do. Do. Do. Do. Do.

0 20 20 20 20 20 20 20 20 20 20 20 20 20	
6.5	23, 400 11, 000 1, 100 580
© ಜಿ.+ಸಿ.4 ರೀಡಬೇವವುವ ವ ಜೀರ ಇಂದಿರಿಜಿವವು-ವವುದವರ್ಗಿಂಬಲ್ಲವು-ವವ-ಗ್ರತಿ ನಿರ್ವಹಿಗೆ ಗುಡಬೇವವು ವ ಜೀರ ಅಂದಿರಿಜಿವವು-ವವಿಗಿ ಕೊಂಡು ಕೊಡೆದ ಕೊಡೆ	
0 000 000 000 000 000 000 000 000 000	
20.00	27.00.00.00.00.00.00.00.00.00.00.00.00.00
0 0100 01000411	
September 1839. October 1939. December 1939. January 1940. September 1939. October 1939. January 1940. March 1940. April 1940. April 1940. September 1939. August 1939. October 1939. October 1939. October 1939. November 1939. January 1940. March 1940. December 1939. October 1939. October 1939. October 1939. January 1940. March 1940. September 1939. October 1939. January 1940. March 1940. September 1939. October 1939. January 1940. March 1940. September 1939. Cotober 1939. January 1940. March 1940.	October 1939. January 1940. July 1939. July 1939. Cetcher 1939. October 1939. December 1939.
Sep 123.5 do Sep 147 Sep 147 Go do	ScP IN W 136
Paint Creek, point No. 4, below Washington Court House, Ohio. Do.	Wilson Creek, below Sabina, Ohio Do Do Do Do Less than 1.

Table Sc-7.—Scioto River Basin: Ohio River pollution survey laboratory data-Summary of averages-Continued

Hardness, parts per million	
Parbidity, Alkalinity, Hardness, paris per paris per million million	207 202 202 203 201 201 201 214 214 214 214
Turbidity, parts per million	
Hq	は、 見らりのもり おおめのいちののののないできょう でしつり りゅうとしょう ないないい でいくさいいんじょうじょうじょう できる おもっちょう あんしょう ちゅうしょう ちゅうしょう しょうしょう しゅうしょうしょう しょうしょう しょうしょう しゅうしょう しゅうしょう しゅうしょう しょうしょう しょうしゅう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしゅう しょうしゅう しゅうしゅう しょうしゅう しょうしょう しょうしゅう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しゅうしゅう しゅうしゅう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しゅうしょう しょうしょう しょう
Coliforms, most probable number per mile	46 100 110 110 110 110 110 110 11
5-day bio- chemical oxygen demand, parts per million	0 .44 4444
Dissolved oxygen, parts per million	•
Temper- ature	7. 25元4-1-0名
A verage discharge cubic feet per second	3
A verage Number discharge of samples cubic feet	
Period	August 1939 Cotober 1939 Cotober 1939 December 1939 December 1939 December 1939 Cotober 1939 Cotober 1939 Daniary 1940 August 1939 Cotober 1939 Cotober 1939 December 1939 Daniary 1940 April 1939 Daniary 1940 April 1939 March 1939 March 1939 March 1939 March 1939 Duly 1939 March 1939 March 1939 Duly 1939
Mileage from mouth	Sep Ro 122. do d
Sampling point	Rocky Fork Creek, above Hillsboro, Olito. Do. Do. Do. Do. Do. Do. Do. Do. Do. D

28 25 28 25 25 25 25 25 25 25 25 25 25 25 25 25
288 10 10
ではなななななななななななななななななななななななななななななななななななな
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ಗಳಇವಿವಿವಿವಿವಿವಿ ಚಿ. ಚಿ. ಟಿ. ≒ಗಳು ಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ್ರಪ
03100000044 r. e. e. 31110000111000000000110000000000000000
での第二に444 でのでいるでは444 にのたりでは448年に11742648年に11742648 11742648 1
2. 11. 12. 12. 12. 12. 12. 12. 12. 12. 1
@rownond d d d nondal-wordononorororonand-
January 1939. Alari 1938. Alari 1938. April 1939. July 1939. April 1939. April 1939. April 1939. April 1939. April 1939. April 1939. March 1939. March 1939. March 1939. March 1939. March 1939. January 1939. April 1939. July 1939. July 1939. July 1939. March 1939. July 1939. July 1939. July 1939. March 1939. July 1939. October 1939. November 1939. Doctober 1939. January 1939.
86 55.7 60 00 60 00 60 00 60 00 80 SL 76 80 SL 76 80 SL 74 80 SL 72 80 SL 72
Scioto River, Higby, Ohio Do Do Do Do Do Do Do Do Little Salt Creek, 1 mile above Jackson, Ohio Little Salt Creek, lower end of Jackson, Ohio Little Salt Creek, 124 miles below son, Ohio Little Salt Creek, 214 miles below Son, Ohio Little Salt Creek, 214 miles below Do Do Do Do Do Scioto River, Waverly, Ohio Do Do Do Do Do Do Do Do Do

I am than 1

MIAMI RIVER BASIN

CONTENTS

	7	Page
Contents		603
Syllabus and conclusions		605
Description Presentation of field data		607
Presentation of laboratory data		610
Hydrometric data		612
Discussion		615
LIST OF TABLES		
Mi-1.—Cost estimates of remedial measures		606
Mi-2.—Surface water supplies		608
Mi-3.—Sources of pollution		608
Mi-4.—Industrial wastes		609
Mi-5.—Selected laboratory dataMi-6.—Mean monthly summer flows		610
Mi-7.—Summary of laboratory data		618
LIST OF FIGURES		
Mi-1. Map—Sources of pollution		605
Mi-2. Chart—Sources of pollution and selected laboratory data		608
Mi-3. Map—Coliform results		610
Mi-4. Map—Dissolved oxygen results Mi-5. Map—Biochemical oxygen demand results		610
Mi-6. Chart—Summer low-flow frequency curve		613
ATAL UP VALUE V NAMAMANA AVII AVII AVII AVII AVII AVII AVII A	603	0.20
	000	

(Face p. 605) 6PO - 43

MIAMI RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Miami Basin comprises 3,950 square miles in southwestern Ohio and 1,435 square miles in southeastern Indiana and has a population of about 800,000, of which more than 60 percent is urban. The valley of the Miami River is one of the most densely populated and highly industrialized areas in the Ohio Basin and the pollution load is heavy. Progress has been made toward pollution abatement, treatment being practiced at municipalities representing about 75 percent of the sewered population. Industrial wastes are important, and limitations in practical known methods of industrial waste treatment are controlling factors in certain cases. Pollution control by increasing low flow does not appear promising. Present minimum flows are relatively high, and significant increases in these flows would require large storage.

CONCLUSIONS

(1) The abundance of satisfactory underground water has reduced the need for clean streams as sources of water supply, but it seems probable that surface sources will be used more extensively in the The upper Mad River and the Whitewater River are especially valuable as recreational streams and the increasing demand for recreational facilities warrants the maintenance of high standards of water quality in these streams.

(2) Sewage from 550,500 people in 64 communities and industrial wastes equivalent to sewage from an additional 401,500 people are discharged to sewers. Thirty-one communities have installed sewage-treatment plants which treat the sewage from about 75 percent of this population and 40 percent of the industrial waste population equivalent, reducing the total pollution load of 952,000 to a sewered population equivalent of about 482,700, of which nearly 80 percent

enters the Miami River directly.

(3) The general picture presented by the laboratory results indicates (a) a relatively clean area in the Whitewater River Basin and on certain smaller tributaries; (b) considerably more pollution of the upper Miami Basin above Dayton, but partial recovery of the streams before receiving successive pollution loads; and (c) generally unsatisfactory conditions for most uses in the Mad River below Springfield and in the Miami River from below Dayton to near the mouth.

(4) The principal pollution problem is on the main Miami River from below Dayton to a point near the mouth. Residual pollution following sewage treatment, plus industrial wastes for which only limited methods of treatment are available, prevent a high degree of restoration of the river. Suggested sewage treatment plus the possible industrial waste correction should restore the stream for reasonable use other than domestic water supply except during times of

abnormally low flow.

(5) Low-flow regulation by proposed reservoirs on the Whitewater River would have largely intangible value. The existing Miami Conservancy District reservoirs have unregulated outlets and hence have no effect on low flows.

(6) Piqua obtains part of its water supply from the main Miami River 13 miles below Sidney. A high degree of sewage treatment

appears justified at Sidney to protect this supply.

(7) A few sections of tributary streams receive pollution in excess of a reasonable limit. These are primarily local problems and the tributaries are of equal or better quality than the Miami River at

the point of confluence.

(8) In view of the uses of the streams involved, refined treatment at certain sources of pollution would serve no purpose commensurate with the expenditure. In these instances, lesser treatment appears justified. In other cases, limitations in practical known methods of industrial waste treatment is a governing factor. In such cases refined methods of sewage treatment would cause no valuable improvement and lesser treatment appears justified. A summary of comparative costs of remedial measures from table Mi-1 follows:

Treatment	Capital cost	Annual charges
Existing Suggested additional	\$9, 380, 000 4 , 860, 000	\$745, 000 660, 000

Estimated additional costs over existing charges of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual charges
Primary, all places	\$4, 070, 000 5, 450, 000	\$570, 000 730, 000

Table Mi-1.—Miami River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		Number of plants Popula-		Capital	Annual charges			
	Pri- mary	Second- ary	nected to	invest- ment		Amortiza- tion and interest	Operation and main- tenance	Total
Existing sewage treatment	10	21	422, 400	\$9, 380, 000	\$555,000	\$190,000	\$745,000	
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste	7	18	127, 200	2, 120, 000 1, 560, 000	150, 000 75, 000	95, 000	245, 000 75, 000	
correction				1, 180, 000	155, 000	185, 000	340, 000	
Total Comparative cost:				4, 860, 000	380, 000	280, 000	660, 000	
Primary treatment all waste				4, 070, 000	320, 000	250, 000	570, 000	
Secondary treatment all waste As suggested				5, 450, 000 4, 860, 000	415, 000 380, 000	315, 000 280, 000	730, 000 660, 000	

DESCRIPTION

The Miami River Basin has a total area of 5,385 square miles, of which 3,950 square miles are in southwestern Ohio and the balance in southeastern Indiana. The river rises in Logan County, Ohio, and flows in a generally southwesterly direction to join the Ohio River at the Ohio-Indiana State Line.

		Miles abo mouth o Miami Ri	I Dr	Drainage area, square mile	
Major tributaries: Whitewater River Fourmile Creek Twin Creek Mad River Stillwater River Loramie Creek			5 38 60 85 86 126	1, 590 320 320 660 670 260	
		Popul	ations		
	1910	1920	1930	1940	
Larger cities: Dayton, Ohio Springfield, Ohio Hamilton, Ohio Richmond, Ind	116, 577 46, 921 35, 279 22, 324	152, 559 60, 840 39, 675 26, 765	200, 983 68, 743 52, 176 32, 493	70, 662 50, 592	

Although agriculture in the Miami Basin is important, industrial activities predominate. The most important of these are the metal and paper industries. Other industries of lesser importance include canning, milk, and textiles.

283, 598 300, 439

584, 037

290, 054 378, 913

668, 967

299, 370 480, 484

779,854

328, 377 502, 104

830, 481

Water uses.—Five communities with a total population of about 100,000, secure their water supply from surface streams. Only one, Piqua, uses the main Miami River. The Whitewater and Mad Rivers are used extensively for recreational purposes. Flood control works of the Miami Conservancy District include five retarding dams which are not operable to augment low flows.

PRESENTATION OF FIELD DATA

Figure Mi-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure Mi-2 shows similar data, and, in addition, the location of water supply intakes from streams below sources of pollution and laboratory data on coliform organisms, dissolved oxygen, and biological oxygen demand.

Public water supplies.—Ground water of generally good chemical quality appears to be plentiful in most sections of the basin. four public water supply systems serve about 600,000 people. Fiftynine of these supplies, which serve about 500,000 people, are from underground sources. The other 5 supplies, taken wholly or in part from surface sources, are listed in table Mi-2. All of these are

Total basin:

in Ohio. The Springfield supply, although taken from an infiltration gallery, is considered by the State health department to be a surface supply. The city has experienced considerable difficulty in developing an adequate and safe supply from underground sources and may be forced to use one of the nearby streams or to construct an impounding reservoir.

Table Mi-2.—Miami River Basin: Surface water supplies

Municipality	Source	Mile 1	Treat- ment 2	Population served	Con- sumption, million gallons per day
	Supplies below co	ommunity	sewer out	falls	
GreenvillePiqua	Greenville Creek, well Miami River, impounded	139 122	LD LD	7, 500 17, 000	0. 50 1. 75
	Other s	urface sup	plies		
EatonCentervilleSpringfield	Fourmile CreekLakeBuck Creek (infiltration gallery)	67 82 111	FD LD D	3, 500 300 73, 000	0. 25 . 01 10. 00
0.1	ıtfalls			24, 500 76, 800	2. 25 10. 26
Total surface water	r supplies			101, 300	12. 51

Sewerage.—Public sewerage systems serve 64 municipalities with a combined population of about 550,000, of which 390,000 or about 70 percent, reside in the area from Hamilton to Dayton (mile 33 to 85). Twenty-seven pollutional sources of consequence are shown in table Mi-3. Secondary treatment of waste is provided at 21 communities serving 333,000 or about 60 percent of the total sewered population. Primary treatment is provided at 10 municipalities serving 89,000 population.

TABLE MI-3. - Miami River Basin: Sources of significant pollution including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream	Miles above mouth of Miami	Popula- tion con- nected to		tion eq (bioch	popula- uivalent emical demand)
		River	sewers		Un- treated	Dis- charged
Hooven Hamilton Middletown Franklin Miamisburg West Carrollton Moraine City Dayton Tipp City		8 35 53.6 61.3 68.6 72 76.4 82.4 104.5	54, 600 35, 000 4, 000 5, 300 1, 800 3, 000 250, 000 2, 500	NonedoSecondary NonedoSecondary doSecondarydododododododo	12, 700 86, 500 69, 900 56, 800 6, 600 29, 300 3, 000 375, 500 27, 100	12, 700 86, 500 69, 900 1 53, 400 6, 600 29, 300 40, 500 1 22, 900

¹ Sewage-treatment plant, under construction at time of laboratory survey (1939), now completed.

¹ Miles above mouth of Miami River.
2 L=Lime-soda softened; D=chlorinated; F=coagulated, settled, filtered.

(Face p. 608) GPO · 43 O · 90035

Table Mi-3.—Miami River Basin: Sources of significant pollution including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)—Continued

Municipality	Stream	Miles above mouth of	Popula- tion con- nected	Treatment	Sewered popula- tion equivalent (biochemical oxygen demand)	
		Miami River	to sewers		Un- treated	Dis- charged
Sidney. New Carlisle. DeGraff. Bellefontaine. Connersville. Richmond. New Madison Oxford. Eaton Springfield. Urbana Covington Bradford. Greenville. Ansonis. Union City. Small sources (in 44 towns).	Buckingahelas Creek. Possum Run West Fork Whitewater River. East Fork Whitewater River. do. Fourmile Creek Sevenmile Creek Mad River. Dugan Run Stillwater River. Ballinger Run. Greenville Creek. Stillwater River. Dismal Creek	152 165 59 65 81 55 67 111 126 119 125 139 147 154	9, 800 15, 800 9, 500 1, 000 9, 800 28, 000 6, 500 3, 200 6, 500 7, 100 300 1, 400 300 1, 100 26, 000	Chemical precipitation. do	9, 800 28, 000 3, 300 6, 500 3, 200 59, 000 23, 700 3, 000 3, 400 11, 000 2, 800 4, 700 39, 100	1 18, 800 11, 900 5, 800 1, 400 9, 800 1, 200 38, 000 19, 000 2 3, 000 2, 200 2, 800 27, 200

¹ Sewage-treatment plant, under construction at time of laboratory survey (1939), now completed. 2 Sewage-treatment plant, under construction (1941).

Industrial waste.—Eighty-six industrial plants, wholly or partly unconnected to municipal treatment, are summarized in table Mi-4. Numerous waste producing industrial plants discharge to municipal treatment facilities, particularly at Dayton, Ohio, where an industrial load of about 120,000 reaches the treatment plant. The industrial waste load in the basin, as biological oxygen demand, totals about 401,000 population equivalent.

Table Mi-4.—Miami River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	Number	Industri disp	al waste	At least minor	Estimated sewered population
Industry .	of plants	Munic- ipal sewers	Private outlets	correc- tive measures taken	equivalent (biochem- ical oxygen demand)
Ohio: Canning	10 6 8 14 21 10 69 4 11 2	2 2 4 7 5 6 26 0 8 1	8 4 4 7 7 16 4 43 4 3 1	4 2 3 3 17 4 33 2 5	22, 700 3, 200 1, 500 167, 000 36, 800 231, 200 4, 100
Total	17	9	8	7	4, 100
Waste unconnected municipal treatment Waste connected to municipal treatment	86	35	51	40	235, 300 166, 200
Total industrial waste in basin					401, 500

PRESENTATION OF LABORATORY DATA

Laboratory data for the Miami River Basin are presented in table Mi-7 (p. 618). All samples on the Whitewater River and along the Miami River from Miamisburg to the mouth were analyzed at the Cincinnati laboratory from one to three times monthly during the period February 1939 to April 1940. Six stations immediately above Dayton and six stations below Dayton's sewage treatment plant were sampled from three to five times monthly and analyzed by personnel of the Dayton plant during the period June to December, 1939. All remaining points were sampled from one to three times by a mobile laboratory unit in September 1939.

Selected monthly average results at some of the principal points in the basin are tabulated with flows on sampling days and during the minimum month of record in table Mi-5. In general, the results selected represent the lowest flow conditions during the sampling

period.

Table Mi-5.—Miami River Basin: Selected laboratory data

n :	251	251	7.61	3.02	7.51	7.51	
River	Miami	Miami	Miami at Day-	Miami at Day-	Miami at Day-	Miami	Miami
			ton	ton	ton		
Location	Above	Below	Above	One-half mile	5 miles	Above	Below
	Sidney	Sidney	Outfall	below	below	Miamis- burg	Miamis
River miles above mouth of	136	134	83	82	77.5	71.6	burg 66. 5
Miami.	100	101		02	71.0	71.0	00.0
Period, 1939	Septem-	Septem-	Septem-	Septem-	Septem-	October	October
	ber	ber	ber	ber	ber		
Number of samples	3	2	4	4	4	2	
Flow in cubic feet per second:	٥	2	- 4	2	2	26	
Sampling days	72	66	313			540	54
Minimum month		22	226				
Water temperature, °C	17.7	17. 5	24. 4	24. 2	23. 3	17.8	17.
Coliforms per milliliter	26	6, 650				680	68
Dissolved oxygen, parts per	8.3	7.5	6. 5	7.2	4.8	0.0	
millionBiological oxygen demand, 5-	0.0	7.0	0. 5	1.2	2.0	6. 9	5.
day, parts per million.	3, 3	7.6	5. 4	10.0	5.8	3.2	4.
			1				1
River	Miami	Miami	Miami	Miami	Miami	Miami	Miami
Location	Above	Below	Above	Below	Above	Below	Cleves
	Franklin	Franklin	Middle-	Middle-	Hamil-	Hamil-	Bridge
Disco miles chare mouth of			town	town	ton	ton	
River miles above mouth of	62.8	59.6	57	50.8	35.9	30.4	4.2
			October	October	Septem-	Septem-	Septem
Period 1939	October						
Period, 1939	October	October	October	October	ber	ber	ber
Period, 1939	October	October	- Cotober				ber
	October	October	2	2			ber
Number of samplesFlow in cubic feet per second:	2	2	2	2	ber 3	ber 3	
Number of samples Flow in cubic feet per second: Sampling days					ber 3 747	3 747	
Number of samples	2 555	2 555	2 560	2 560	ber 3 747 286	747 286	69
Number of samples Flow in cubic feet per second: Sampling days Minimum month Water temperature, °C	2 555	2 555	2 560 15. 5	2 560	ber 747 286 24. 2	747 286 23. 5	66
Number of samples	2 555	2 555	2 560	2 560	ber 3 747 286	747 286	66
Number of samples	2 555	2 555	2 560 15. 5	2 560	ber 747 286 24. 2	747 286 23. 5	21.
Minimum month Water temperature, °C Coliforms per milliliter Dissolved oxygen, parts per	2 555 17. 3 190	555 17. 3 24, 800	2 560 15. 5 126	2 560 18.0 660	3 747 286 24. 2 140	747 286 23. 5 5, 200	21.

(Face p. 610) No. 1 6PO - 43 0 - 90035

GPO - 43 0 - 90035 No. 2 (Face p. 610)

Table MI-5. - Miami River Basin: Selected laboratory data - Continued

The same of the sa							
River Location River miles above:	Still- water Above Coving- ton	Still- water Below Coving- ton	Still- water Mouth	Mad Above Urbana	Mad Below Urbana	Mad Above Spring- field	Mad Below Spring- field
Confluence with Miami	24 120 Septem- ber	32 118 Septem- ber	0 86 Septem- ber	42 127 Septem- ber	40 125 Septem- ber	27 112 Septem- ber	26 111 Septem- ber
Number of samples	2	2	4	2	2	3	2
Flow in cubic feet per second: Sampling days	12	12		65	65	185	199
Minimum month Water temperature, °C	19.0	20.0	21.7	16. 8	40 17. 5	114 14.8	114 17. 3
Coliforms per milliliter Dissolved oxygen, parts per	13	1, 900	178	15	219	152	235
millionBiological oxygen demand, 5-	6.0	4.0	7.3	8.7	8.3	8. 2	5.7
day, parts per million	2. 2	2. 4	2.3	1.4	2.3	2.1	4. 2
Phone						1	
River Location	West fork White- water Above Conners- ville	West fork White- water Below Conners- ville	East fork White- water Above Rich- mond	East fork White- water Below Rich- mond	White- water at Brook- ville West fork above	White- water at Brook- ville East fork above	White- water at Brook- ville Below
Confluence with Miami Mouth of Miami	57 62	56 61	61 66	60 65	28 33	28 33	26 31
Period, 1939	Septem- ber	Septem- ber	October	October	Septem- ber	Septem- ber	Septem- ber
Number of samples	1	1	1	1	1	1	1
Flow in cubic feet per second: Sampling days	69	69	37	37			140
Minimum month Water temperature, °C	47. 1 16. 5	47. 1 19. 0	23. 0	22.0	17. 5	18. 5	95. 5 18. 0
Coliforms per milliliter	4	460	240	240	4	24	240
million. Biological oxygen demand, 5-	8. 2	7. 2	5. 0	5.7	8.2	8.0	8. 2

Stream-flow conditions varied from high discharges in the spring and early summer of 1939 and the early spring of 1940 to moderately low discharges in the late summer and winter of 1939-40. Bad ice

conditions were present in January 1940.

Spot symbol maps showing the average coliform, dissolved oxygen, and oxygen demand results are shown in figures Mi-3, Mi-4, and Mi-5, respectively. The results represent the most unfavorable monthly averages observed at each station sampled over a period of several months and the average of all samples at each station sampled for less than 1 month.

In the basin as a whole, 55 percent of all stations had an average coliform count of more than 200 per milliliter for at least 1 month during the period of observation; 26 percent of all stations had most unfavorable average counts of from 50 to 200 per milliliter; and 19 percent of all stations had coliform averages of less than 50 per milliliter for the most unfavorable monthly average condition during the period of observation. The highest counts were observed below Bellefontaine. High coliform counts also were observed below Piqua,

Greenville, and Springfield and along the main stream from Dayton to below Hamilton. Moderately high counts were found below Richmond, Connersville, and Brookville on the Whitewater River. Coliform counts are omitted from the results of those samples examined at the Dayton sewage-treatment plant as these results were expressed in the Phelps' index instead of most probable number as were all other results. Coliform counts at stations immediately above sources of pollution were lowest during the period September 1939 to January 1940, coinciding with the fall and winter low-flow period. The coliform counts at stations immediately below sources of pollution were more erratic in this respect.

The dissolved oxygen results, considering the basin as a whole, were fairly good. Minimum monthly averages were generally in excess of 6.5 parts per million. Except at Bellefontaine, where zero dissolved oxygen was found, the lowest averages observed were over 3.0 parts per million. The lowest values were found during the months of June to October, when temperatures and oxygen-demand values were highest. The most consistently low values were found in the stretch

from Dayton to below Hamilton on the main river.

The highest monthly average biochemical oxygen demand results at 36 percent of the stations were in excess of 5.0 parts per million. At 38 percent of the stations the most unfavorable monthly average was between 3.1 and 5.0 parts per million and at 26 percent of the stations it was 3.0 or less. The station immediately below Bellefontaine had the highest biochemical oxygen demand observed in the basin, 36.6 parts per million. The station below Piqua was next, with 15.6 parts per million. Oxygen demands of from 4 to 6 parts per million were general throughout the period of observation in the Miami River from Dayton to the mouth. On the Whitewater River results were generally less than 3.0 parts per million and often less than 1.0 part per million. The highest values observed at Richmond, Connersville, and Brookville followed the ice conditions of January 1940.

Biological summary.—The flora and fauna of the Miami River were found to be abundant in species and number, especially in the stretch below Dayton. This is due to the population concentration in the cities along the stream. The average volume of plankton at the various stations along the main stream ranged from 3,000 to 8,000 parts per million, a high concentration of plankton. The plankton volume of the tributaries—the Whitewater, Stillwater, and Mad Rivers—was found to be less than 3,000 parts per million.

HYDROMETRIC DATA

Twenty-six stream-gaging stations have been maintained on the Miami River Basin for varying periods, 14 of which are in operation at the present time. Two active stations are in Indiana and all other stations, active and inactive, are in Ohio. Eight stations of importance from the pollution standpoint have been selected and the monthly mean summer flows for 3 years in which the low summer flows have occurred are presented in table Mi-6.

Figure Mi-6 presents summer low-flow frequency curves from June to September, inclusive, for the Miami River at Dayton and Hamilton, Ohio. These curves indicate that the frequency with which various minimum monthly mean flows may be expected is as follows:

Location			ean summer		
	1 year	2 years	5 years	10 years	Minimum
Dayton, Ohio Hamilton, Ohio	1,770 2,800	450 740	320 490	280 410	240 340

Table Mi-6.—Miami River Basin: Monthly mean summer flows for years in which low summer flows have occurred

River Location	Miami Hamilton	Miami Dayton	Miami Taylors- ville	Miami Sidney
River miles above mouth of Miami Drainage area, square miles Period of record	35 3,639 1910–40	82 2,510 1915–40	94 1,160 1922–40	135 545 1914–40
Year	1930	1932	1932	1932
June cubic feet per second July do August do September do	845 492 458 589	1, 220 1, 120 323 311	430 371 84 80	22 11 3 3
Year	1934	1934	1934	1934
June cubic, feet per second July do August do September do	445 482 582 357	336 263 399 1 240	146 101 175 73	5 1 2 3 2
Year	1936	1936	1936	1936
Junecubic feet per second_ Julydo Augustdo Septemberdo	620 1 335 391 516	430 254 255 326	125 1 71 73 97	6 4 3 3
River Location River miles above: Confluence with Miami Mouth of Miami Drainage area, square miles Period of record	White- water Brook- ville 27 32 1, 190 1928-40	Twin Creek German- town 7 67 275 1914–40	Mad River Spring- field 26 111 485 1914-40	Stillwater Pleasant Hill 28 115 502 1916-26, 1935-40
Year	1930	1928	1923	1924
June cubic feet per second July do August do Septomber do	257 141 102 201	522 216 30 12	276 196 210 171	2, 12 13 3
Year	1934	1930	1934	1935
June cubic feet per second July do Auzust do September do	161 136 164 1111	25 9 16 15	130 115 150 1114	23 10 3 3
Year	1936	1936	1936	1936
Junecubic feet per second	226 139 163 509	23 12 27 89	192 137 137 201	4 2 1 2 2

¹ Minimum month.

Proposed stream control.—A study to determine the feasibility of adapting the five existing Miami Conservancy District flood-control reservoirs in the comprehensive flood-control plan for the Ohio River is being made in connection with a survey report being prepared by the United States Engineer Department. A study also is being made to determine the feasibility of constructing two or more reservoirs on the Whitewater River watershed in this same survey report. Consideration is being given in these studies to the operation of the reservoirs for pollution abatement. The Whitewater River reservoirs would have little value for pollution abatement since the unregulated flow below them is large enough to eliminate the need for more than primary treatment. The need for flow regulation on the lower Miami is discussed in the following section of this report.

DISCUSSION

The principal pollution problem in the Miami River Basin is on the Miami River from Dayton to a point near the mouth. A lesser pollution problem exists on the upper Miami River below Sidney where pollution affects the water supply of Piqua. Minor pollution problems, of primarily local significance, exist at various points below 14 moderate-sized and small municipalities. Corrective measures at these points are included in the cost estimates, but discussion is not included.

MAIN MIAMI RIVER BELOW DAYTON

Between Dayton and Hamilton, the most seriously polluted section, the Miami River receives wastes from a sewered population equivalent of about 300,000. Two large tributaries, Twin Creek and Fourmile Creek, enter the river in this section with beneficial effects on the quality of the water of the main stream. Pollution is due almost entirely to the discharge of sewage and industrial wastes at Dayton, West Carrollton, Miamisburg, Franklin, Middletown, and Hamilton. Dayton, and more recently Franklin, have constructed plants for the secondary treatment of sewage. The other cities have no sewage-treatment plants at the present time. At Franklin a considerable amount of industrial wastes enters the Miami directly without treatment.

During the low-water month of September 1939 the Miami River above Dayton had a high biochemical oxygen demand (5.4 parts per million), but the dissolved oxygen was satisfactory for all uses. Pollution appeared to be assimilated without serious nuisance in the stream with the small dilution available, due probably to oxygen demand reduction by sedimentation behind dams, reacration over the six dams and because of the distance between points of waste discharge (8 to 12 miles) permitting partial recovery between sources of pollution. Despite the absence of gross nuisances from pollution, the dissolved oxygen fell to 5.0 parts per million or less below every city of consequence in this stretch of the river. The minimum was 4.0 parts per million below Hamilton.

A number of factors make it extremely difficult, for the present at least, to secure a high degree of restoration of the Miami River from below Dayton to the mouth. These factors include the residual pollution load represented by the treatment plant effluent at Dayton,

which cannot be appreciably reduced except at excessive cost: the presence of sewage from other communities from which there will always be some residual pollution even following treatment; and the discharge of industrial wastes for which only limited methods of

treatment are now available.

The paper pulp and paper industry is an important contributor of organic pollution in this area. Considerable progress has already been made toward controlling this pollution. In certain cases further corrective steps can be taken such as the use of closed water systems, the installation of save-alls and waste treatment. Consideration of the paper and other types of industry in this area, and the experience in treating similar wastes elsewhere, leads to the conclusion that treatment may reduce the industrial pollution load possibly 30 percent by proven methods, or from 157,100 to 111,000, based on oxygen demand sewered population equivalent. Reduction in suspended solids might be greater. As part of the present industrial pollution load represents a residual after treatment, such loads cannot readily be further reduced at a reasonable cost.

Lower flows than those which occurred in September 1939 occur frequently at Dayton. Normal population and industrial growth in

the future will increase the pollution load in this area.

The addition of secondary treatment at Dayton in 1939 went far in correcting pollution in the Miami River below this community. Even with complete treatment, the river below Dayton will have to be relied upon to supplement artificial purification by natural processes, so that a section of varying length below this community is still, and probably will continue to be, a critical section as regards oxygen balance. Above Miamisburg, about 11 miles below the Dayton sewer outfall, natural recovery raises the dissolved oxygen temporarily to a satisfactory level (6.9 parts per million). In the low-flow month of September 1939 pollution below this point reduced the dissolved oxygen successively to 5.0, 4.3, 4.2, and 4.0 parts per million with satisfactory dissolved oxygen recovery below each successive entrance of pollution. This pollution is capable of considerable reduction by known economical methods.

In view of the above facts, it appears impractical to attempt further improvement of the stream immediately below Dayton. However, improvement of the river below Miamisburg and lower points appears

possible and justified.

Primary treatment of sewage at Hamilton, Middletown, Miamisburg, and West Carrollton, in addition to certain treatment and other corrective measures for industrial wastes should greatly improve the lower river. Except during abnormally dry years, this improvement should be sufficient for all present and reasonable future uses of the stream including the support of all but the highest type of fish.

While secondary treatment of sewage would further reduce the pollution, it is doubtful, due to the present limitations in possible economical methods for treatment of industrial wastes, if any useful purpose or valuable improvement commensurate with the cost of

such treatment would result.

Primary-treatment works, built with a view to addition of secondary treatment facilities at a later date, are amply warranted. Research should be applied to the development of more efficient methods of

industrial-waste treatment. Should such methods be developed,

secondary treatment of sewage might well be justified.

The possibility of low-flow regulation as a means of improving conditions in this area has been considered. Reservoir sites of the size necessary to afford much regulation of value to the lower Miami are practically limited to the ones already constructed by the Miami Conservancy District. These flood-control reservoirs have no permanent pools and unregulated outlets. The United States Engineer Department is now studying the feasibility of providing outlet control works at these dams.

If, by using these reservoirs for low-flow regulation, flows ranging from about 400 cubic feet per second at Dayton to about 700 cubic feet per second at Hamilton could be provided during the summer months, stream conditions could be greatly improved. The program of sewage and industrial-waste treatment outlined above would still be necessary, but the need for more complete treatment would be deferred or possibly eliminated. Relatively large storage capacities would be required to provide the necessary supplemental low flow.

SIDNEY

One of the few surface-water supplies on the Miami River Basin is at Piqua. Water is taken from the main Miami River about 13 miles below Sidney. A high standard of water quality should be maintained to safeguard this water supply. Under the circumstances, secondary treatment of all wastes at Sidney as justified to take the place of the present discharge of untreated sewage.

MISCELLANEOUS POLLUTION

A number of minor sources of wastes on the Miami River and its tributaries cause serious pollution of primarily local significance. Remedial measures appear justified at Connersville and New Madison in the Whitewater River Basin, Springfield and Urbana in the Mad River Basin, and Bradford and Ansonia in the Stillwater River Basin. Some industrial-waste correction is needed at most of these places.

Cost estimates for remedial measures for pollution abatement suggested, as justified by the stream uses are summarized on table

Mi-1.

Table MI-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results

					Dissolved oxygen	oxygen	5 dow his	Coli-				
Sampling point	Mileage from mouth	Date	Average discharge, cubic feet per second	Temper-	Parts per million	Percent satura- tion	chemical oxygen demand, parts per million	forms, most probable number per milli- liter	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per million
Miami River, above Degraff, Ohio Jacket Creek, bridge on US 33, above	Mi 163.	Sept. 21, 1939 Sept. 13, 1939	62 24	17.5	7.1	73.5	19.5	23 15,000	8.2	100	156	\$ 6 6 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Jacket Creek, 14 mile southwest of Bellefontsine, Ohio.	MiBuJ 170	qo		20.0	0	0	25.0	. 110,000	7.5	10	400	8
Buckongahelas Creek, above De-	MiBu 153	Sept. 19, 1939 Sept. 21, 1939		15.0	4.4	43.3	36.2	240,000	7.8	41	284	1
Miami River below Degraff, Obio	Mi 151 Mi 150 Mi 136	do	62	17.5		77.3		93		102 98	162 200 270	
Miami River, 1 mile south on U.S.	Mi	Sept. 19, 1939 Sept. 22, 1939 Sept. 13, 1939		19.0 15.0 20.0	7.7.0	77.9	တတ ာ ကြေးက်တော်	46 24 11, 000	ं व्यं व्यं व्यं न व्यं का न्य	25 25 25	238	1 9 2 8 0 1 1 5 0 2 1 1 1 1 1 1 2 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0
Miami River, ½ mile above Piqua,	do Mi 122	Sept. 22, 1939 Sept. 19, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.0	9.6	75.8	ණ ය ග ග	2,300	∞; ∞; ⊷ ⊘;	83	1 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	5 3 5 1 2 5 4 1 5 8 9 9 6 8 9 9 6 8
Do Do Miami River, bridge, U.S. Route 25,	do Nfi 121.5	Sept. 21, 1939 Sept. 25, 1939 Sept. 13, 1939	74	20.0 20.0 21.0	10.00.01	101.2 90.6 120.1	ର ଓ ଲ	23 240 93	භා භා භා භා භා භා	44 85 35	245 235 257	
Miami River, lower city limits, Pique, Ohio.	Mi 120	do	74	21.0	7.6	84.6	7.6	2, 400	00	25	260	
Miami River, I mile below city limits, Piqua, Ohio.	Mi 119	19,		21.5	10 03	58.9	11.8	24,000	7.8	64	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Do Miami River, above Troy, Obio	do Mi 113.5	Sept. 21, 1939 Sept. 25, 1939 Sept. 14, 1939	1	20.0 21.0 27.0	10.7	49.0 67.5 132.2		9,300		155 65 35	150 200 254	0 i
Mismi River, bridge on Route 70,	do do Mi 113	Sept. 18, 1939 Sept. 22, 1939 Sept. 14, 1939	80	20.5	9.8	87.7 108.4 88.7	R) 4; K) 4, 80 60	110	00 00 00 00 00 00	25.4.55 25.4.55		
Miami River, 1/4 mile below Troy,	Mi 112.8	Sept. 22, 1939	102	19.0	8.1	86.4	5.2	88	8.4	54	1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$ 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Mismi River, ½ mile below Troy,	Mi 112. 5	Sept. 18, 1939	100	21. 5	11. 4	127.6	00 44	240	ගේ	88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Miami River, upper edge, Tippe-	Mi 105.	Sept. 15, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22. 5	6.0	68.1	5.4	83	7.9	48	255	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	do	Sept. 18, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19.5	10.5	113.6	8	5	0	CF		

01	U
180 180 180 180 180 180 180 180 180 180	
25	
7. 400 001 000 000 000 000 000 000 000 000	
© T	
4 乾೮ 1 104411561446166616466161616161616161616161	
4 4 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
4	
2 01 82888484848651564474465644646 831388834884446156867446444 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
15, 1939 16, 1939 17, 1939 18, 1939 18, 1939 18, 1939 19, 1939	
Sept. 15, 1939 July 16, 1939 Sept. 21, 1939 Sept. 21, 1939 Sept. 21, 1939 Sept. 21, 1939 July 16, 1939 July 18, 1939 July 16, 19	
	plant.
	sewage treatment plant
5 65 6566666666666666666666666666666666	se trea
Needmore Road sayton, Ohio. New Troy Pik sayton, Ohio.	ayton
Foundation of the control of the con	by L
	mittec
River, , above i , above i , above i,	ts sup
Miami River, bridge, Route below Tippesance City, Ohio. July Bridge, above Dayton, Ohio. July Do.	Results submitted by Dayton
Miaria de la companya	

Table MI-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

0			7222	24212		, 220 1	1011	0111	2101		
	Hardness, parts per million	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	264	P	8 8 T 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	2	
11.1	Arkann- ity, parts per million	280	300 280 292	236	402 379 282	269	270	243	255	280	4881444588
	ity, parts per million	10	25	100	8 12 37	49 28 25	49 37 28	33	588	15	8688888888
	Hď		8.0	7.8	01-0	67 00 00 06 t-	1, 1, 1, 00 00 00	0.0%	1.00	7.9	
Coli-	most probable number per milli- liter	23	230	24	11,000 46,000 15	23 43 11,000	2,300	910	46	93	08888808888
5-day bio-	oxygen demand, parts per million	3.7	थं . थं	1.34	13.2	440	2007	3.0	3.0	2.1.2	Loss 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-	Percent satura- tion		63.2	63.5	9.3	67.6 98.9 41.8	36.4 64.3 37.2	49. 7 93. 1	75.4	82. 2	889.7 891.6 89.7 100.1 100.2 891.5 87.4 87.4
Dissolved oxygen	Parts per million	11.7	12.8	6.0 4.0	1.6	9.9.6.	12 00 41 13 10 10 10	4,00	6.9	7.5	C. C
	Temper- ature ° C.	2.0	23.0	15.0	20.5 24.0 19.5	15.0 19.0 20.0	15.5 20.5 23.0	17.0	18.5	19.5	41145844484844 4114844484444444444444444
Average	discharge, cubic feet per second	1	1 1 3 1 4 5 4 1 1 3 5 2 3 1 1 9 1 1 9 1 4 6 1 4 7 9	2	==			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Date	Dec. 14, 1939	Dec. 21, 1939 Dec. 28, 1939 Sept. 15, 1939	Sept. 20, 1939 Aug. 15, 1939	Aug. 22, 1939 Aug. 29, 1939 Sept. 13, 1939	Sept. 20, 1939 Sept. 25, 1939 Sept. 13, 1939	Sept. 20, 1939 Sept. 25, 1939 Sept. 15, 1939	Sept. 20, 1939 Sept. 15, 1939	Sept. 20, 1939 Sept. 15, 1939	Sept. 20, 1939 July 6, 1939	July 13, 1839 July 19, 1939 July 28, 1989 Aug. 3, 1989 Aug. 17, 1989 Aug. 31, 1989 Seph. 7, 1989 Seph. 7, 1989
	Mileage from mouth	Mi 87.	do do Mist 120	MistgD 154	do MistG 140	do MistG 138	do do Mist 118	do Mist 104	Mist 103	Mist 89.5	00000000000000000000000000000000000000
	Sampling point	Miami River, New Troy Pike	Brillwater River, M mile above Cov-	Dismal Creek, below sewage, below	Do Do Greenville Creek, 1 mile west of	Orenville Creek, 14 miles east, bridge IT 3.46 Greenville Orenville Orion	Stillwater River, 1 mile below Cov-	r, ½ mile above West	Stillwater River, 34 mile below West	Do Stillwater River, Siebenthaler Bridge,	Do 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

270 270 280 280 280 280 280 280 280 280 280 28	250 250 250 260 260 260 260 260 260 260 250 260	908488888888888888888888888888888888888	248 299 303 248 248	
155 100 100 100 155 150 150 150 150 150	110 110 125 125 125 125 125 125 125 125 125 125	2200220022 2200220022 2200220022	255	
			5 56 88 05	
8 00800808088808	& # # # # # # # # # # # # # # # # # # #	80000000000000000000000000000000000000	23 15 15 430 210 210 36	
84 .400000010111 .1 8400000010111 .1	U 1986. 814999	0,00,00,01111141 0,000011000111141	74 40 64 60	
83.0	6.6.4.6.8.8.8.8.8.8.2.2.2.2.2.2.2.2.2.2.2.2.2	25.05.7	80.7 89.0 89.0 81.9 87.8 77.0	
7.7.0000000000000000000000000000000000	のことののでででいい。らつの4%を4%を1%	100 800 100 100 100 100 100 100 100 100	ස්තු නැදැ නුනු නුනු ටව බව බස ට4	
4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.1.2.8.2.8.2.9.2.2.2.2.2.2.2.2.2.2.2.2.2.2	12 2 4 1 5 2 2 2 4 2 2 3 4 1 1 2 2 3 4 2 3 3 4 1 1 2 3 3 4 2 3 3 3 4 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20.0 21.3.5 21.5 13.5 14.0 12.0	
22, 1939 12, 1939 12, 1939 26, 1939 26, 1939 27, 1939 24, 1939 27, 1939 27, 1939 27, 1939 28, 1939 6, 1939 6, 1939	13, 1939 38, 1939 38, 1939 9, 1939 17, 1939 11, 1939 14, 1939 21, 1939	28, 1939 112, 1939 16, 1939 20, 1939 115, 1939 224, 1939 27, 1939 14, 1939 14, 1939 21, 1939	28, 1939 14, 1939 14, 1939 14, 1939 12, 1939 22, 1939	
Sept. Oct. Oct. Oct. Nov. Nov. Nov. Dec. Dec.	July July July Aug. Aug. Aug. Aug. Sept. Sept. Sept.	DE S.	Sept.	ıt.
do do do do do do do do do do do do do d	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	දි	do MIM 125 MIM 125 do MIM 112	sewage treatment plan
Do.	D D O O O O O O O O O O O O O O O O O O		Mad River, bridge, U. S. 36, above Urbana, Ohio. Mad River, M mile from Route O-55, below Urbana, Ohio. Do Mad River, bridge, Route 70, above Springfield, Ohio. Do Do.	1 Results submitted by Dayton sev

Table MI-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					8 1 8 1 1 1 1 1 1 1 1 1				2 5 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Alkalin- ity, parts per million	289	293	287	270	300	260	290	300	290	370	300	300 380 380	280	300	310	310	980	310	300	310	290	nez	260	240
	Turbid- ity, parts per million	30	43	10	100	06	10	100 3	25.8	188	32	15	25.0	20	0 0	10	0	10	22	10	200	25	PT	125	98
	Hď	7.8	7.8	7.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 0 0 0 1 5 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Coli-	most probable number per milli- liter	240	1, 100	460	230	230	230	523	250	88	230	0 8	22.53	183	23	000	28	3 23	0	230	230	2,300 -	>	• 83	230
5-day bio-	chemical oxygen demand, parts per million	4.1	4.00	2.4	5.3		oc no			000	2.50	ed -	-i -i		T 001	2.0	-i-	- 00	2.4	1.0 0.0	0 63 ii	4.0	4	1.2	
l oxygen	Percent satura- tion	8.19	53.1	84.2		70.2	104.5	75.3	106.8	99.5	118.2	104.3	92.7		E	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6 6 7 8 8 7	1 1	1 1 1		75.4	
Dissolved oxygen	Parts per million	6.1	10, 10, 20, 20	∞; ₹*	6.6	6.3	× 50	ရောင် (၁) (၁)	. 0	1.6	10. 9	00 -	6 6 6	ගේ	13.0	10.4	101	11.6	9.6	10.00	12.3	11.8	3	6.6	
	Temperature C.	18.5	16.0	16.0		21.1	22. 2	23.3	22.8	20.0	22.2	21.1	16.1	15.0	12.0	7.0	5.0	9 9	6.0	4.0	3.0	2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.0	23.3
Average	discharge, cubic feet per second	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	199	190	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7 E E E E E E E E E E E E E E E E E E E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	1 t t t t t t t t t t t t t t t t t t t	6 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Date	Sept. 12, 1939	Sept. 18, 1939 Sept. 12, 1939	Sept. 12, 1939	July 6, 1939		38		-13	24,	-1,	Sept. 14, 1939		12.	Oct. 19, 1939 Oct. 26, 1939	(cr)	Nov. 9, 1939	24,	30,	Dec. 7, 1939	21,	Dec. 28, 1939	5 (July 13, 1939 July 19, 1939	28,
	Mileage from mouth	MiM III	doMiM 110.5	MiM 110	MiM 85	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	Miw 85	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	op
	Sampling point	Mad River, 14 mile south, off Route	Mad River, 1 mile south off Route 40,	Mad River, bridge on Route 40, below Springfield. Ohio.	Mad River, Harshmanville Bridge,	Do-	100	Do	Do	Do	Do	Do	1)0	Do	100	Do	Do	000000000000000000000000000000000000000	Do	Do	Do	Wolf Creek, Gettyshurg Bridge, Dav.	ton, Ohio,1	Do	Do

190 190 190 190 190 190 190 190	
88888686868686868	
<u>କ୍ଷିଷ୍ଟ୍ରିକ୍ଟ୍ରିକ୍ଟ୍ରିକ୍ଟ୍ରିକ୍ଟ୍ର</u> ୍ୟୁ ପ୍ରଥମ୍ପ ପ୍ରଥମ ବ୍ରଥମ ବ୍ୟଥମ ବ୍ୟଥ	
48941 ಇಗಳ . ಗಳಗ . ಇಳಗ . ಇ ಶಗ್ರಾಡಿತರ್ಗಳಹಳಿಗಳನ್ನಿತ್ತಿತ್ತಿತ್ತಿತ್ತಿತ್ತಿತ್ತಿತ್ತಿತ್ತಿತ್ತಿ	
\$254.8854. \$254.803.454. \$1-\$8000880	
体化性のこれではは後端はは1つはいないはは よてでであててもほけはほけんをはいればいればいいないにははいないにははいませる としてではままま できょうしょう アクトリーグ アクト・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジャー・ジェング・ジェー・ジェング・ジェー・ジェング・ジェー・ジェング・ジェー・ジェー・ジェー・ジェー・ジェー・ジェー・ジェー・ジェー・ジェー・ジェー	
2.2.2.2.1.1.2.2.1.2.2.4.3.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
1, 340 1, 340 1, 250 1, 250 1, 400 1,	
3, 1939 10, 1939 11,	
A Aug	نب
	sewage treament plan
<u> </u>	sewage tr
7.9. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	Results submitted by Dayton s
Mind of the control o	1 Res

90035—44—pt. 2——31

Table MI-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Hardness, parts per million	
Alkalin- ity, parts per million	823 8310 8310 8310 8310 8310 8310 8310 831
Turbid- ity, parts per million	
Hď	
Colf- forms, most probable number per milli- liter	
6-day bio- chemical oxygen derwand, parts per million	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 10	
Dissolved oxygen Parts per satura- million tion	た てててよららてらららなててよららみらめるみはよりまなて、
Temper-	8. 4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8
A verage discharge, cubic feet per second	
Date	June 14, 1939 July 5, 1939 July 12, 1939 July 12, 1939 July 12, 1939 Aug. 4, 1939 Aug. 16, 1939 Aug. 16, 1939 Aug. 16, 1939 Sept. 27, 1939 Oct. 11, 1939 Oct. 11, 1939 Oct. 17, 1939 Oct. 18, 1939 July 20, 1939 June 28, 1939 July 20, 1939
Mileage from mouth	Mi 82 640 640 640 640 640 640 640 640
Sampling point	Miami River, ½ mile below sewer, Dayton, Ohio.¹ Do

28 28 28 28 28 28 28 28 28 28 28 28 28 2	23.00 25	337 320 250
		1 1 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
(a) (a) (b) (c) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	ಇಳಾಹಾಣ್ಯ/ದೃಷ್ಟ್ಯಪ್ಪಪ್ಪತ್ತಇಳಾಹಾಣ್ಯ/ ಪ್ರತಿ ಪ್ರಿ ಪ್ರತಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರತಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರತಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರತಿ ಪ್ರವಿ ಪ್ರವಿ ಪ್ರವಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿ ಪ್ರವಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರತಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರತಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ತಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪ್ರಕ್ಷಿಸಿ ಪಿಸಿ ಪ್ರ	9.00 to to
		3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		6.00
88888888888888888888888888888888888888	48881 8884888888898999999999999999999999	42.23.23 4.23.23 1.12
		0 4 5 0 0 2 0 0 2 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
30, 1938 6, 1938 20, 1938 27, 1938 4, 1938 4, 1938 118, 1938 1, 1938 1		28, 1939 5, 1939 12, 1939 20, 1939
Aug. Sept. S		June July July July
		t plan
2,2 2,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	do do do
Mirana Mirana	Dayton, Ohio.1 Do. Do. Do. Do. Do. Do. Do.	

Table MI-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

					Average			Dissolved oxygen	5-day bio-	Coll- forms,		Turbid.	Alkalin-	Hondanga
Sampling point	Mileage from mouth	from	Q	Date	cubic get feet per second	ature C.	Parts per million	Percent satura-	oxygen demand, parts per million	probable number per milli- liter	ЪЩ	ity, parts	ity, parts	parts per million
Miami River, 6 miles below sewer,	Mi 76.5		July	26, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5.7		3.0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	270	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do		A 110	4 1939		93.3	9							
	do	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Aug.	10, 1939		23.9	9					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	260	\$ 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Aug.	16, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25.6	10° 6		400	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	280	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90	2 2 4 4 4 4 1	Aug.	30 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26.1	j vi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	260	* 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do		Sept.	6, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26.1	100						250	5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do		Sept.	13, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.3	uri -			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	260	1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do	1 1 1 1 1 1 1	Sept.	20, 1939	1 1 1 1 1 1	23.3	9.			1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		280	1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do			27, 1939		20.6	9.0	1		1 1 6 7 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	270	
	do	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4, 1939		17.2	9	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	250	f
	40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11, 1939		ZI. 1	ri a			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	020	
	(10		Oct.	18, 1959 97, 1030	1 1 1 1 1 1 1 1 1	10.01	ć «	1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	940	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	1 1 1 1 1 1 1 1 1		1 1030	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	026	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do		7.07	8, 1939	1	4.6	o oci				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	280	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do			16, 1939		8.9	111.			1	1		280	
	do		Nov.	22, 1939	1 1 1 1 1 1	8.9	∞ċ	1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	260	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	do	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		29, 1939		6.7	10.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	260	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do			6, 1939		6.1	10.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		260	
	op	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		13, 1939		000	9,0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			260	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Miami River, 7½ miles below Day-	Mi 75	1 1	June June	14, 1939		17.8	7.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.0	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	067	* *
ollton, Ohio.1	do		.Inne	28, 1939		25.6			52		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		288	
:	do		July			23.3			13.5	8 8 1 6 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	320	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do		July	12, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.3			5.0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	270	
	do		July	20, 1939		21.1			7.0	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		250	
	do	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	July	26, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.9			2.7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		280	8 2 2 1 1 1 1
	do		Aug.	4, 1939	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23. 3			5.3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	210	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do		Aug.	10, 1939	1 1 1 1 1	24. 4			000				280	
	do		Aug.	16, 1939		25.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00				2220	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do		Aug.	23, 1939		23.3		-	3.1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			098	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do		Aug.	30, 1939	0 0 0 0	20.1			000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		000	
	do		Sept.	0, 1959		92.2	900		9,6	4 2 5 7 1 6	1		280	
	do	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sont.	90, 1999		23.3			100	1	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	280	
	MO		2000	1000		20.00						* 1 4 1 1 1 1 1 1 1		

		021
266 286 286 286 286 286 286 286 286 286		
	0000000 000000 00000 00000 00000 000000	
0830	2, 483 2, 483 2, 483 1, 100 1, 100	1,100 460 1,100 1,100 460
್ಯ ಈ ಈ ಪ್ರಚಿತ್ರಕ್ಕು ಕ್ರಪ್ಪನ್ ೧೯೮೯ ರಾಗ್ ೧೯೮೯ ರಾಗಿ		ಬಳ44ಚಳಗಳಳಳಳ ≻ಆದಾರಾಯ≎೦೦≻
87.0		200839999889 27,838,44,4089 27,08,604,44,008 27,08,004,008
7,4,9,6,9,8,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1		1,90.57
22.7.2 2.88.9 2.88.9 2.88.9 2.88.9 2.88.9 3.9 3		112.00000000000000000000000000000000000
	410	
4, 1939 11, 1939 18, 1939 27, 1839 1, 1939 16, 1939 22, 1939 22, 1939 20, 1939 20, 1939 20, 1939	21.2% 2.1.2% 2.2% 2.2% 2.2% 2.2% 2.2% 2.	3, 1939 10, 1939 13, 1938 15, 1938 20, 1938 27, 1939 31, 1939
Oct. Oct. NNOVV	June July July Aug, Aug, Aug, Aug, Aug, July July July July July July July July	
60 60 60 60 60 60 60 60 60 60 60 60 60 6	00000000000000000000000000000000000000	do d
Wigner Speed	W .	d d d d d d d d
Do.	Office. Office. Do. Do. Do. Do. Do. Do. Do. D	s submitted by Dayton
M	M	

Table Mi-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Albolin	arts ity, parts parts per per per million	
		pH lty, parts per per million	た に は は な な な な な な な な な な な な な な な な な
Coll- forms, most probable number r per milli- liter			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	5-day bic chemica oxygen demand parts pe million		ち ちろりのりらして124004950704 22200000 493011 4 1 乗さまる ひまこまる ちゅうけん ない ままま かまま なまる はら ない はい
5	Dissolved oxygen	Percent satura-	4 4/08144021044000440100044 007741070804004040040 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	Disso	C. Parts per million	0.000000000000000000000000000000000000
age rge, Temp eer ature		rge, Temperic ature o C.	0 0200000000000000000000000000000000000
_	A verage discharge, cubic feet per second		
Mileage from Date		Date	Apr. 4, 1939 Apr. 10, 1939 Apr. 10, 1939 Apr. 10, 1939 Apr. 20, 1939 Apr. 28, 1939 May 4, 1939 May 4, 1939 May 42, 1939 May 22, 1939 June 7, 1939 June 7, 1939 June 27, 1939
		Mileage from mouth	Mi 69.0 60 60 60 60 60 60 60 60 60 6
ADDID INT 1. INCOME		Sampling point	Miami River, bridge in town, Miamisburg, Ohio. Do. Do. Do. Do. Do. Do. Do.

	1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	* 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			© 0 4 3 6 6 9 7 1 7 9 9 9 9 9 9 0 0 9 9 9 0 0 9 9 9 0 0 9 9 8 0 0 9 9 9 8 0 0 9 9 9 8	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				1	0 4 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			0 0 1 1 5 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7	
0 0 0 0 0 0								1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0	80.		×7.7.7.	7.8	0.000.01	7.7.7.	00 % % C C % C % C % C % C % C % C % C %		7. 7. 0.0
2,400	082 082 083 083 083 083 083 083 083 083 083 083	2, 400	230 250 250 250 250 250 250 250 250 250 25	2, 400	1,2, 1,1,000	8, 6, 4, 4, 6, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,	2, 4, 600 930 150 240 930 930 930 930 930 930	4.64.06	4.2.2.00
3.9	4.01.02.0	4 4 60 4 1 P	9 09 44 09 4	400400 600000	က က တ တ တ တ က က က က တ တ	, 00 , 00, 00, 00, 00, 00, 00, 00, 00, 00,	######################################		
80.9	0.000	88.0	73.8	88.8 88.4 91.7 77.7 89.6 91.9	67.75.9 67.75.9 72.25	64.2 64.2 64.2 127.2 93.9	20000000000000000000000000000000000000		95.000
8.0	0.7.7.7	12040	000000	12.83.12.9.7.0.7.0.7.0.7.0.7.0.7.0.7.0.7.0.7.0.7	000°00°	4.4.7.00.7.8.1.1.4.4.7.00.00.00.00.00.00.00.00.00.00.00.00.0	12.00 11.00 10.20 10.20 10.20 10.20 10.20		12.8.8.1.4.1.0.4.1.0.0.1.1.0.0.1.1.0.0.1.1.0.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.0.1.1.0.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.0.1.1.0.1.1.0.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.1.0.1.0.1.1.0.1.0.1.1.0.1.0.1.1.0.
22. 5	22.23.24	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16.00	23.5	20000000000000000000000000000000000000	116. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	0.00.00.00.00.00.00.00.00.00.00.00.00.0		15.0
	1 9 8 1 6 1 1 7 8 1 8 8 1 8 8 1 9 1 2 9 1 4 1 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	420	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		420	24	28 24	288
20, 1939	27, 1939 111, 1939 20, 1939 3, 1939	17, 1939 31, 1939 14, 1939	26, 1939 9, 1939 6, 1939	20, 1939 20, 1939 23, 1940 111, 1939 20, 1939	3, 1939 31, 1939 14, 1939 28, 1939	26, 1939 9, 1939 6, 1939 20, 1939 17, 1940	26, 1940 17, 1940 17, 1940 13, 1940 20, 1940 28, 1940 31, 1939		28, 1939 26, 1939 6, 1939 5, 1940
- June	July July July Ang	Aug.	Noor et	Jan. July July	Aug. Aug. Sept.	La Sa Contra Con	Feb. Mar. Mar. Mar. Mar. Mar. Mar. Mar. Mar	Sept. Oct. Dec. Jan. Aug.	Sept. Oct. Jan.
Mi 61.3	Mi 62.8	do	000	40 40 Mi 59.6	000000000000000000000000000000000000000	00000000	do do do do do do MIT 68	do do do MiT 65.5.	dododododododo
Mismi River bridge in Franklin, Obio.	Do Miami River, above Franklin, Ohio Do Do.			Do. Do. Do. Miani River, below Franklin, Ohio. Do.			eek, above Germantown,	Dono Do Do Twin Creek, below Germantown,	
Mismi F	Miami Riv Do	2000	AAAA	Mismi Ri	AAAAA	RAAAAAA	Twin Creek,	Twin Cr	AAAA

Table MI-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Salar and the sa	Hardness, parts per million	
	Alkalin- ity, parts per million	27.6
	Turbid- ity, parts per million	
	Hd	1000 00 00 00 00 00 00
Coll-	most probable number per milli-	4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
5-day bio-	chornical oxygen demand, parts per million	ಲ್ಲಿ , , , , ಭ ಅವವವವವು ಈ ಸಂಪುವವಹಣವು ಪ್ರತ್ಯ ಅಭ್ಯತ್ತ ಕೆಗೆ ನಿವಿಷ್ಣ ಕೆಗೆ ನಿವಿಷ್ಣ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿಸಿದೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿಸಿದೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿಸಿದೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿಸಿದೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿವಿಷಣೆ ಕೆಗೆ ನಿಸ
loxygen	Percent satura- tion	98899999999999988889999999999999999999
Dissolved oxygen	Parts per million	88888121211 8814148814814814 88141481 881418181 881418181 881418181 881418181 881418181 881418181 881418181 881418181 881418181 881418181 88141818181 881418181 88141818181 88141818181 881418181818
	Temperature ° C.	ಹೆಸ್ತಿಹಿದ್ದೂ ಇಂದಿನ ಪ್ರವಾಪ್ತವೆ ಪ್ರವಾಪತೆ ಪ್ರತಾಪ್ತತೆ ಪ್ರತಾಪ್ತ ಪ್ರತಾಪ್ತತೆ ಪ್ರವಾಪ್ತ ಪ್ರತಾಪ್ತತೆ ಪ್ರವಾಪ್ತ ಪ್ರತಾಪ್ತ ಪ್ರತಾಪ್ತ ಪ್ರತಾಪ್ತ ಪ್ರತಾಪ್ತ ಪ್ರತಾಪ್ತ ಪ್ರವಾಪ್ತ ಪ್ರವಾಪ್ತ ಪ್ರವಾಪ್ತ ಪ್ರವಾಪ್ತ ಪ್ರವಾಪ್ತ ಪ್ರವಾಪ್ತ ಪ್ರವಾಪ್ತ ಪ್ರವಾಸ್ತ ಪ್ರವಾಸ್ ಪ್ರವಾಸ್ತ ಪ್ರ
A VYONO GO	discharge, cubic feet per second	221
	Date	Sept. 28, 1988 Oct. 12, 1988 Noc. 26, 1988 Noc. 26, 1988 June 26, 1988 June 27, 1988 June 28, 1988 Noc. 11, 1988 Noc. 12, 1988 Noc. 16, 1988
	Mileage from mouth	MIT 59.9 do do do do do do MI 57. do
	Sampling point	Twin Creek, at mouth Do Do Do Do Do Do Do Do Do D

	244	
	242 47272 4 47472 4 600 600 600 600 600 600 600 600 600 6	
1,500 2880 2880 2880 2880 2880 2880 1,180 2880 2880 2880 2880 2880 2880 2880 2	775 786 787 788 788 788 788 788 788	4, 600
ない よう ふょうろ よろ ひょうよう ららら ひきょう ひょう ない しょう ひゅう りゅう しょう ひ しゅ ちょし きゅ エア ちゅ	本ののようななみならなのなでいりのなみなでのなみなられるというななるならいのののなまででもものもののですままままる。	6.00
6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	77427777777777777777777777777777777777	94.4
# O 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\\ \phi \\ \p	8.01
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 28 28 28 28 28 28 28 28 28 28 28 28 2	
	907	
27, 1939 3, 1, 1939 4, 1, 1939 10, 1939 10, 1939 20, 1939 28, 1939 28, 1939 11, 1939 11, 1939 21, 1939 22, 1939 22, 1939 21, 1939 21, 1939 21, 1939 21, 1939	5, 1939 13, 1939 19, 1939 19, 1939 26, 1939 27, 1939 28, 1939 21, 1939 29, 1939 29, 1939 27, 1939 28, 1940 28,	5,1
	9939 9939 9939 9939 9939 9939 9940 9940	5,1
72 E 4 F 0 2 F 7 6 8 8 4 4 8 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5, 1939 13, 1939 19, 1939 19, 1939 26, 1939 27, 1939 28, 1939 21, 1939 29, 1939 29, 1939 27, 1939 28, 1940 28,	Mar. 28, 1
Mar. 37, Niar. 31, Apr. 76, Apr. 76, Apr. 120, Apr. 170,	June 5, 1939 June 6, 1939 June 7, 1939 June 13, 1939 June	do Abr. 28, Apr. 26, Apr. 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,

Table Mi-7.—Miani River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Hardness, parts per million	
Alkalin- ity, parts per million	
Turbid- ity, parts per million	
Hď	でない とないとないはないないないないないないないないない でんし としょう 8081881881881881881881881881881881881881
Coli- forms, most probable number per milli- liter	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5-day bio- chemical oxygen demand, parts per million	
l oxygen Percent Satura- tion	\$
Dissolved oxygen Parts per Satura-	0.00 0.00
Temper-	27:10:00%
A verage discharge, cubic feet per second	
Date	Aug. 24, 1939 Sept. 21, 1939 Nov. 16, 1939 Nov. 16, 1939 Jan. 24, 1939 Oct. 19, 1939 Oct. 19, 1939 Nov. 16, 1939 Dec. 28, 1939 Nov. 16, 1939 Dec. 28, 1939 Nov. 16, 1939 Dec. 28, 1939 Nov. 16, 1939 Jan. 26, 1940 Nov. 16, 1939 Jan. 26, 1940 Nov. 16, 1939 Nov. 17, 1939
Mileage from mouth	Mis 67. do d
Sampling point	7 Mile Creek, above Eston, Ohio. Do. Do. Do. Do. Do. Do. Do. Do. Do. D

0 b p 1 s s s s s s s s s s s s s s s s s s	6 7 1 6 1 6 9	, , , , , , , , , , , , , , , , , , ,	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 0 1 1 0 1		9 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 1 0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				B 1 L D 0 0 0 0 0 0 0 0 0	8 2 6 6 6 6 6 6 6 6			
0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 1 2 2 3 3 0 0 1	5 0 6 5 7 6 9 9 9 9	6 0 0 1 7 1 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1		9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	0 0 0 0	0 0 0	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 9 8 1 6 9	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 4 2 2 3 4 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1	4 4 4 4 5 1 1 1		5 5 6 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				260		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	b 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 5 E E E E E E E E E E E E E E E E E E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 1 0 6 0 6 0 6 0		2 3 3 3 3 0 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4 0 0 0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6	1 1 0 0 0 0 0 0	t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1	6 6 6 6 7 6 7		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 0 1	* * * * * * * * * * * * * * * * * * * *		
0 0	3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 3 0 5 1 0 1 0 1 0 1 0 1 1 1 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 0 5 0 5 0 5 0 7 1 9 0 1 1 0 1			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 9 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1		1		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		0 0 0 1 1 2 2	7 8		4 4	1	7.0	2.0	200	9.7	9.7	7.5		7.6			7.9	
1,100	240	240	150	1,100	460	460	088	230	2, 400		430	73	43	43	43	460	83	23	1,100	150	240	-	460	750	240	070		1 7	9 400	-	0007 6		430	73	150	700	040	040	93	7.30	460	1, 500	430	39	150	1.100	
460	चां ट	94	C4 =	000	0 10	62	000	9	4.0	43	4.5	5.0	0.5	4.7	-di	0.0	4.3	5.1	4,1	2.7	භ	(9	Durchen 4	Droken		2 2 2 2	10.0	7.5	30	4	000	900	- C	9 6	10	000	4.0	1.0	್ಷ ಕ	9:0	0.0	4.2	9.6	4.8	13.9	
86.7	85.8	92.3	8.68	200.1	000	200	0 0	83.6	89. 5	97.9	75.4	89.0	85.0	76.3	62. 4	59.7	76.0	79.8	76.5	70.7	102.5		97.6	3000	93.2	0000	1000	000	100	70.0	125	78.0	80.00	86.2	76.0	1 1	000	20.00	55.3	41.9	80.00	1.00	65.6	49.3	84. 4	72.4	
10.7	11.2	11.2	11.2	10.4	11.1	00	000	9	0.1	9.1	7.3	00	7.8	6.4	5.4	4-9	6.5	6.4	7.2	6.0	13.3	1	00 7	17.4	11.0	11.0	11.0	10.1	10.1	90	9.0	300	000	7. C	, c	900	000	000	200	200	න්	2000	00°	7.0	12.3	10.3	
11.0	101	7.0	10.5	3 %	0.5	18.5	17.0	14.5	15.0	19.5	17.0	17.0	21.5	24.5	23.5	26.0	23. 5	27.0	19.0	24.5	4.5		0.4	000	1 8	0 10	000	0 - I	23.0	3.50	22.00	93.0	92.5	97.0	0.76	0.25.0	20.0	22.0	17.5	18.0	10.0	7.0	0.9	1.0	0	1.0	
	3 3 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 3 3 9 9 3 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	3 3 6 2 2 2 3 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1) 2 3 1 3 3 1 1	1 3 0 1 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 5 0 0 2 6 0	1 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 9 9 0 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	p 0 1 0 p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 9 9 9 9 9		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 0 1 0 1 0 1 0 1	0 1 1 0 0 0 0	089	138	919	435	1,030	710	-
23, 1939	31, 1	4.7.	10,1	17,	20.1	28,	200		7	00	12.	16, 1	19,1	22.	24.	2,1	5,1	7,1	13,1	16,1	27,		3, 1939		12,	15,	20,00	38	30	200	g w	23,	A.	i of	5-	1 1	100	623	13,	17	10,	60	21,	00	23	2	î
Mar	Mar	Apr.	- Apr.	A pr.	Apr	Apr	Apr	May	May	May	May	May	May	May	May	June	June -	June	June	June -	- Feb.	-	Mar.	- INIAL	Mar.	- Mar	AKOW	- INIGH	Torno	Tumo	Traite	Tulo	A 110	Aug -	Cont	- Cont	Idae -	rdac -	- Oct.	- Oct.	AON -	- Dec.	- Dec.	Jan.	Jan.	Feb.	
do	0	0	0	0	0	0	0	0	0	10	0	0	0	C	0	0	10	lo	lo	10	5.9		do	10	10	10	10	30	30	do de la companya de	30	200	10	30	10	30	10	10	10	10	10.	1001	10	io	10.	0	1000000000000
			0			1			1)						0)	01111))	Mi 3			1 1 1 1	-	-	20075	1 1 1 1		-	1 1 1	-	0 0 0	1 1	1 1 1	-)))		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 3 6 9 6 6 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9						6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6						iami River, Black St. Highway	Hamilton, Ohio.				4 4 6 6 5 5 6 6 6 5 6 6 6 6 6 6 6 6 6 6					000000000000000000000000000000000000000			Do				9 9 8 8 8 9 9 9 8 8 8 8 9 9 9 8 8 8 8 9 9 9 8 8 8 8 9 9 9 9 8 8 8 8 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9								
																								1		DO				1001		DO											7				

Table Mi-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	ts parts per million	24 → 00.00.00 144
	Aikann- ity, parts per million	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2	ity, parts per million	882 883 146 190
	Hd	
Coli-	most probable number per milli- liter	111,030 111,030 111,030 111,030 12,030 12,030 13,030 13,030 14,000 1,1
5-day bio-	oxygen demand, parts per million	る みららよぶたよのらいいいけらてていらいていらら みょうするまるようする
Dissolved oxygen	Percent satura- tion	8 66.6888888888888888888888888888888888
Dissolve	Parts per million	0 848968888888888888888888888888888888888
	Temper- sture ° C.	は、改計は記れているののころでですらいではらいでは、 なまらなではでいる あっしょうろうしゅう ちょうらいらら ちょうちゅう
Average	discharge, cubic feet per second	670 6116 6116 6116 6116 6116 6116 6116 6
	Date	July 21, 1939 Aug. 18, 1939 Sept. 1939 Sept. 15, 1939 Sept. 29, 1939 Oct. 77, 1939 Nov. 10, 1939 Dec. 71, 1939 July 17, 1940 Man. 21, 1940 Man. 31, 1940
	Mileage from mouth	Mi 20,4
	Sampling point	Miami River Bridge near Venice, below Hamilton, Ohio. Do. Do. Do. Do. Do. Do. Do. Do. Do. D

								, , , , , , , ,		
C 6 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 1 9 9 1 0 7 9 2 1 0 9 3 1 0 1 1 1 0 1 1 0 1 1 1 0 1	# 2 # 1 9 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	4 h © D 1 2 2 0 1 1 2 2 2 3 2 0 2 4 0 2 2 5 0 2 3 2 0 2 3 3 2 0 1 2 5 0 1 3 2 0 1 3 0 1	# 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 B I 1 1 1 1 1 2 1 1 5 1			4	1 () 2 1 0 5 1 0 1 0 6 1 0 0 0 7 1 0 0 1 7 1 0 0 1 1 1 0 0 1 1 1 1 1	
226 107 162	238	244	240	244	2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
029 650 180	38	10	នន	38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	8.0	00 00		7.9	1	2.7.7.8	8.7.7. 9.98.0	7.7.0	0.00	2000
210 460 460	150	25° %	240 150 460 230	2,400 240 240 2,400	1,500	48827	24 4 4 8	110 110 43 23 93	110 110 75 43 93	44 44 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 4
				်တ်တ်က်လံ ကောက်လောင်း ကောက်လောင်း		7.7.9.5	2.1.0.08.	7.4.1.00.0	.∺ ∞⊣⇔∞⇔	0404
93.4	90.1	0.00 0.00 0.00 0.00 0.00 0.00 0.00	100.1	72.6	78.1	92.888.67 7.888.00 7.888.00	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	86.8 76.0 77.0 93.4	115.2 105.6 93.2 94.9 131.5	101. 6 90. 5 91. 0 92. 4
						10.62	0.00.111.00	7.8 7.2 8.9 11.2 10.3	10.1 9.7 11.5 12.0 11.5	9.0 8.3 11.1 11.5
10.00	14.0	17.5	22,23,22	26.5 24.5 23.5 23.5	23.5		20.00	21. 0 18. 5 9. 0 7. 5 22. 0	22.5 20.0 22.5 22.5 5	22.0
3 0 0 3 0 0 4 0 0 5 0 5 0 0 2 0 0 4 3 0 5 0 6 0 0 7 0 0	1	1 2 2 2 3 5 3 5 5 5 5 7 1 5 7 1 7 8 1 8 8	1 1 5 1 1 7 5 9 1 4 6 8 1 5 7 7 1 6 8 8 1 7 7 1 8 7 7 1 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			81	54.44	72 34 45
12, 17, 20, 36,	100 m 4	0,5,50,00	12 4 cm	7, 1939 13, 1939 16, 1939	5,1	8,0,0,0	8, 1939 10, 1939 17, 1939 18, 1939	8, 1939 10, 1939 7, 1939 18, 1939 12, 1939	8, 1939 10, 1939 7, 1939 18, 1939 12, 1939	8, 1939 10, 1939 7, 1939 18, 1939
Apr.	Apr. May	May May May	May May June	June June June	July	Aug. Oct. Nov Dec.	Aug. Oct. Nov. Dec.	Aug. Oct. Nov. Dec. July	Aug. Oct. Nov. Dec. July	Aug. Oct. Nov. Dec.
do do do	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	do do do	Miw 80	do do do do Miw w	do do iWw	do do MIW w 73.	do do do do MiWw 72	do
D0.	Do. Do. Do.	Do. Do.	Do D	30°0°	West Fork Whitewater River, above	Do Do Do Do Do Notfle Crock shove Haccestown Ind	Do Do Do Do West Fork Whitewater River, below	Angerstown, Ind. 10. 10. 10. 10. 10. 10. 10. 1	Do.	Domestony. Do

100 TI 1010 TO
Feb. 28, 1940 3.6 12.3 992.3 3.6 110 7.
2000 0000 0000 0000 0000 0000 0000 0000 0000
Kon Jildali XX
100 10, 1940 5, 111 2 20, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0
Reb. 15, 1940 2.0 12.3 96.0 3.3 240 7.
Feb. 7, 1940
Jan. 30, 1940
Jan. 30, 940 Jan. 30, 940 Feb. 7, 1940 Feb. 7, 1940 Feb. 7, 1940 Jan. 30, 940 Feb. 7, 1940 Jan. 30, 940 Feb. 7, 1940 Jan. 30, 940 Jan. 30, 940 Ja
Jan. 19, 1946 0 13.3 90.8 1.9 240 7.8 Jan. 30, 1940 0 13.1 240 7.8 Feb. 7, 1940 0 12.1 83.0 6.4 460 7.8 Feb. 7, 1940 0 13.1 83.0 6.4 460 7.8 Feb. 16, 940 0 2.6 11.8 2.6 7.8 2.0 7.8
Dec. 26, 1938 2.0 14, 0 101, 2 3.0 530 7.8 15 15 15 15 15 15 15 1
Dec. 26, 1939 2.0 14, 0 101.2 3.0 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 1.9 2.40 7.8 2.40 2.4
Nov 14, 1939 85 6.0 11.0 88.1 1.0 240 7.7
Nov 14, 1939 85 6.0 11.0 88.1 1.0 240 7.8 1.0 240 7.8 1.0 240 1.0 240 7.8 1.0 240 1.0 240 7.8 1.0 240
Nov. 14, 1939 64 11.0 8.5 176.5 1.4 2430 7.8 Nov. 14, 1939 85 6.0 11.0 88.1 1.0 240 7.8 Jan. 19, 1940 0 13.3 90.8 1.9 240 7.8 Jan. 30, 1940 0 13.1 83.0 6.4 460 7.8 Feb. 7, 1940 0 12.1 83.0 6.4 460 7.8 Feb. 7, 1940 0 12.1 83.0 6.4 6.4 Feb. 7, 1940 0 0 0 0 0 Feb. 7, 1940 0 0 0 0 0 Feb. 8, 1940 0 0 0 0 0 Feb. 9, 1940 0 0 0 0 0 0 Feb. 1940 0 0 0 0 0 0 0 Feb. 1940 0 0 0 0 0 0 0 0 Feb. 1940 0 0 0 0 0 0 0 0 0
Nov. 14, 1939 64 11.0 8.5 76.5 1.4 430 7.8
Sept. 19,939 69 16.0 7.2 77.3 2.0 460 7.8 0 0.0 1.1 1.4 430 7.8 1.0 1.0 1.1 1.4 430 7.8 1.0 1.0 1.1 1.4 430 7.8 1.0 1.0 1.1 1.0 240 7.8 1.0 1.3 1.0 1.0 1.0 1.0 1.1 1.0 240 7.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sept. 19, 1939 69 19, 0 7, 2 77, 3 2, 0 460 7, 9 70 11, 0 19, 1939 64 11, 0 8, 5 77, 3 2, 0 460 7, 9 70, 14, 1939 85 11, 0 240 7, 8 11, 0 240 7, 8 11, 0 240 7, 8 11, 0 240 7, 8 11, 0 240 7, 8 11, 0 240 7, 8 11, 0 240 7, 8 11, 0 240 7, 8 11, 0 240 7, 1940 0 13, 2 90, 1 1, 1 240 7, 1940 0 13, 1 83, 0 84, 0 12, 1 84, 0 12, 1 84, 0 12, 1 84, 0 13, 1 84, 0 14, 1 84, 0 14, 1 84, 0 14, 1 84, 0 14, 1 84, 1
Aug. 22, 1938 69 19, 5 7, 5 80.8 1, 4 830 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.
Aug. 22, 1939 69 10. 5 7. 7 73 2. 0 460 8. 0 60 11. 0 5 77. 3 2. 0 460 8. 0 7. 2 77. 3 2. 0 460 8. 0 7. 9 77. 3 2. 0 460 7. 9 8. 0 7. 2 77. 3 2. 0 460 7. 9 8. 0 7. 9 77. 3 2. 0 460 7. 9 8. 0 7. 9 77. 3 2. 0 460 7. 9 8. 0 7. 9 7. 9 7. 9 7. 9 7. 9 7. 9 7. 9 7
Aug. 22, 1939 Aug. 23, 1939 Aug. 23, 1939 Aug. 24, 11, 12, 24, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Aug. 22, 1939 1939 1939 1936 1930 1930 1930 1930 1930 1930 1930 1930
Aug. 2, 1939 Aug. 2, 1939 Aug. 2, 1939 Aug. 2, 1939 Sept. 19, 1939 Get 11, 0, 7, 5 Nov. 14, 1939 Nov. 15, 1940 Nov. 15, 1940 Nov. 19
Aug. 25, 1939 Aug. 29, 1939 Aug. 22, 1939 Aug. 23, 1939 Aug. 24, 11, 1939 Aug. 24, 11, 1939 Aug. 24, 11, 1939 Aug. 24, 11, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Aug. 26, 1938 23.5 7.8 91.0 2.8 240
Aug. 22, 1939 Aug. 23, 1939 Aug. 23, 1939 Aug. 23, 1939 Aug. 24, 11, 1939 Aug. 24, 11, 1939 Aug. 24, 11, 1934 Aug. 24, 1939 Aug. 25, 1939 Aug. 25, 1939 Aug. 26, 1939 Aug. 27, 1939 Aug.
Aug. 25, 1939 Aug. 22, 1939 Both 19, 1940 Bo
do July 25, 1939 23.5 7.7 81.6 1.6 240 7.0 81.6 1.6 450 8.0 1.4 240 6.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.1 450 8.0 1.2 450 8.0 1.2 450 8.0 1.2 450 8.0 1.2 450 1.8 1.0 240 7.8 1.6 1.8 1.0 240 7.8 1.6 1.0 1.2 1.0
War Milly will be shown War Milly 14, 145, 1959 War Milly 25, 1959
MINW 61
W MIWW 61 July 18,1839 24.0 7.9 92.5 2.5 460 do July 25,1839 24.0 7.0 92.5 2.5 460 do Aug. 9,189 24.0 7.0 81.5 1.6 450 do Aug. 2,189 18.5 7.6 81.5 1.4 430 do Cort. 17,189 64 11.0 8.5 7.6 1.4 430 do Nov. 14,1839 66 11.0 8.5 7.8 7.8 do Doc. 26,189 6.0 11.0 8.5 7.8 7.8 do Doc. 26,189 6.0 11.0 8.5 7.8 7.8 do Doc. 26,189 6.0 11.0 8.6 7.8 7.8 do Doc. 17,189 6.9 10.0 13.3 90.8 1.9 7.8 do Jan. 19,180 6.0 13.3 90.1 1.1 240 7.8 do
w MINW 601 Apr. 1 1940 11.2 11.4 105.3 1.3 (3) 7.9
w MIWW 61 Apr. 1, 1940 12.0 11.4 106.3 1.3 (9) 7.9 w MIWW 61 July 18, 1839 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 23.5 7.8 91.0 2.8 2.4 7.9 2.5 460 7.9 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.9 7.9 7.9
Mair 22, 1940
Mar. 22 1940 12.4 94.1 6
Main 22, 1990 4.0 12.4 94.1 . 6
Mark 10, 1940
Column C
Mar. 15 1940 2.5 12.1 88.6 .5 9 8.1
Mar 16, 1940 2,5 12.4 94.1 .6 .7 .9 .8 .7 .9 .8 .7 .9 .8 .7 .9 .8 .7 .9 .8 .8 .8 .8 .8 .8 .8
Mair 16, 1940 2.6 12.4 88.6 5.6 460 7.9 83.0 60 60 60 60 60 60 60
Mar. 15 1940 2.5 11.9 88.6 4.0
do
Mar. 11, 1940
Mar. 11, 1940 4,5 11.9 91.8 6.5 4.6 6.5
Mar. 11, 1940 4,5 11,9 91.8 4,6 11,0 92.6 4,6 12,1 94.0 12,1 9
Mair 15 1940 4.5 11.2 91.8 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4
Mar. 16, 1940 4, 0 11.2 91.8 1.4 46 7.7
Mar. 15 1940 4.0 1.2 0 91.8 1.4 46 7.7
Qo Mar. 15 1940 4.6 11.2 91.8 1.4 46 7.7 Qo Mar. 25 1940 2.5 11.2 91.8 1.5 4 8.7 Qo Mar. 25 1940 2.4 11.2 94.1 1.6 9.8 1.6 Qo Mar. 25 1940 12.4 94.1 1.6 9.2 9.2 9.2 9.2 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 2.5 460 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 0.5 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 24 1.1 9.8 Qo Aug. 25 1940 9.8 Qo Aug. 25
Qo Mar 5 1940 4 5 12 9 13 4 46 7 7 Qo Mar 15 1940 4 5 12 19 9 18 4 4 4 5 7 Qo Mar 15 1940 2 5 12 9 9 1 6 4 6 7 9 Mar 15 1940 2 2 12 4 10 3 1 1 3 Mar 15 1940 2 2 2 4 1 1 3 Mar 15 1940 2 2 2 2 4 1 1 3 Mar 15 1940 2 2 2 3 3 3 Mar 15 1940 2 2 2 3 3 Mar 15 1940 2 2 2 3 Mar 15 1940 2 2 2 3 Mar 15 1940 2 2 2 Mar 16 1940 2 2 2 Mar 16 1940 2 2 Mar 17 1940 2 2 Mar 18 1940 2 2 Mar 19 1940 2 2 Mar 19 1940 2 Mar 19 1940 2 Mar 19 1940 2 Mar 18 1940 2 Mar 18 1940 2 Mar 19
Mar. 15 1940 4.6 11.2 9 11.4 446 7.7
Mar. 15 1940 4.6 11.2 9 11.4 446 7.7
Mar. 5 940 4.6 112 0 91.8 1.4 46 7.7
Mar. 5 940 4.6 112 0 91.8 1.4 46 7.7
Mar. 5 940 4.6 112 0 91.8 1.4 46 7.7
Mar. 15 1940 4.6 11.2 9 11.4 446 7.7
Mar. 15 1940 4.6 11.2 9 11.4 446 7.7
Qo Mar. 15 1940 4.6 11.2 91.8 1.4 46 7.7 Qo Mar. 25 1940 2.5 11.2 91.8 1.5 4 8.7 Qo Mar. 25 1940 2.4 11.2 94.1 1.6 9.8 1.6 Qo Mar. 25 1940 12.4 94.1 1.6 9.2 9.2 9.2 9.2 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 2.5 460 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 0.5 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 24 1.1 9.8 Qo Aug. 25 1940 9.8 Qo Aug. 25
Qo Mar. 15 1940 4.6 11.2 91.8 1.4 46 7.7 Qo Mar. 25 1940 2.5 11.2 91.8 1.5 4 8.7 Qo Mar. 25 1940 2.4 11.2 94.1 1.6 9.8 1.6 Qo Mar. 25 1940 12.4 94.1 1.6 9.2 9.2 9.2 9.2 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 2.5 460 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 0.5 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 24 1.1 9.8 Qo Aug. 25 1940 9.8 Qo Aug. 25
Qo Mar. 15 1940 4.6 11.2 91.8 1.4 46 7.7 Qo Mar. 25 1940 2.5 11.2 91.8 1.5 4 8.7 Qo Mar. 25 1940 2.4 11.2 94.1 1.6 9.8 1.6 Qo Mar. 25 1940 12.4 94.1 1.6 9.2 9.2 9.2 9.2 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 2.5 460 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 0.5 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 24 1.1 9.8 Qo Aug. 25 1940 9.8 Qo Aug. 25
Qo Mar. 15 1940 4.6 11.2 91.8 1.4 46 7.7 Qo Mar. 25 1940 2.5 11.2 91.8 1.5 4 8.7 Qo Mar. 25 1940 2.4 11.2 94.1 1.6 9.8 1.6 Qo Mar. 25 1940 12.4 94.1 1.6 9.2 9.2 9.2 9.2 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 2.5 460 Qo Aug. 22 1940 2.4 0.7 9.2 9.2 0.5 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 9.8 9.8 Qo Aug. 22 1940 9.8 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 22 1940 9.8 Qo Aug. 24 1.1 9.8 Qo Aug. 25 1940 9.8 Qo Aug. 25
Mar. 15 1940 4.0 1.2 0 91.8 1.4 46 7.7
Mar. 16 1940 4.0 11.2 91.8 1.4 46 7.7
Mair 15 1940 4.5 11.2 91.8 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4.0 1.5 4.0 4
Mar. 11, 1940 4,5 11,9 91.8 4,6 11,0 92.6 4,6 12,1 94.0 12,1 9
Mar 11, 1940
Mar. 11, 1940
do
Mar. 15 1940 2.6 11.9 98.6 4.6 10.0 4.0 10.0 4.0 10.0 4.0 10.0 4.0 10.0 4.0 10.0 4.0 10.0 4.0 10.0 4.0 10.0 10.0 10.0 4.0 10.0 1
Mair 16, 1940
Mar. 16, 1940 2.6 12.1 98.6 1.6
Mar 16, 1940 2,5 12.4 94.1 .6 .7 .9 .8 .7 .9 .8 .7 .9 .8 .7 .9 .8 .7 .9 .8 .8 .8 .8 .8 .8 .8
Mar. 15 (940 2.5 12.1 88.6 .5 9 8.1 Mar. 22 (1940 12.0 11.4 94.1 .5 9 Mar. 22 (1940 12.0 11.4 94.1 .5 9 Mar. 22 (1940 12.0 11.4 94.1 .5 9 Mar. 22 (1940 12.0 11.4 92.5 2.5 460 .7 May. 22 (1940 23.5 7.8 91.0 2.8 2.4 May. 22 (1940 23.5 7.8 91.0 2.8 May. 22 (1940 19.0 23.5 1.4 43.0 May. 22 (1940 11.0 23.0 24.0 7.8 May. 24 (1940 11.0 2.4 2.4 May. 25 (1940 11.0 2.4 2.4 May. 26 (1940 12.1 2.4 2.4 May. 27 (1940 12.1 2.4 2.4 May. 27 (1940 12.1 2.4 2.4 May. 28 (1940 12.1 2.4 2.4 May. 29 (1940 2.4 2.4 2.4 2.4 2.4 May. 29 (1940 2.4 2.4 2.4 2.4 2.4 2.4 May. 29 (1940 2.4 2.4 2.4 2.4 2.4 2.4 2.4 May. 29 (1940 2.4
Quantity
Mar. 15, 1940 Apr. 1, 1940 Apr
Main 22, 1990 4.0 12.4 94.1 . 6
Mair 22, 1940 12.4 94.1 1.6 1.3 1.6 1.4 105.3 1.6 1.6 1.2 1.6 1.2 1.6 1.5 1.
Mar. 22 1940 12.4 94.1 .6 .7 .9 .2 .2 .2 .2 .2 .2 .2
Mar. 22 940 12.4 94.1 6
Mar. 22 1940 12.4 94.1 6
Mar. 22 1940 12.4 94.1 6
Column
Column
Mair 22, 1940
Main 22, 1940
Main Ze 1940
w MIWW 61 Apr. 1, 1940 1.2 4.0 11.4 105.3 1.3 (4) 7.9 do. Aug. 8, 1839 24.0 7.9 92.5 2.6 460 7.9 do. Aug. 8, 1839 24.0 7.0 81.5 1.6 480 8.0 do. Aug. 8, 1839 24.0 7.6 81.5 1.6 480 8.0 do. Aug. 8, 1839 85 10.0 7.6 80.8 1.4 430 7.8 do. Oo. 17.1 1839 66 11.0 88.1 1.4 430 7.8 do. Do. 11.0 8.2 11.4 430 7.8 1.4 10.0 7.8 1.4 10.0 1.8 1.0 2.40 7.8 1.4 1.0 1.4 430 7.8 1.4 1.0 1.4 430 7.8 1.4 1.0 1.4 1.0 1.8 1.0 1.4 1.0 1.8
w MIWW 61 Apr. 1, 1940 1.2 4.0 11.4 105.3 1.3 (4) 7.9 do. Aug. 8, 1839 24.0 7.9 92.5 2.6 460 7.9 do. Aug. 8, 1839 24.0 7.0 81.5 1.6 480 8.0 do. Aug. 8, 1839 24.0 7.6 81.5 1.6 480 8.0 do. Aug. 8, 1839 85 10.0 7.6 80.8 1.4 430 7.8 do. Oo. 17.1 1839 66 11.0 88.1 1.4 430 7.8 do. Do. 11.0 8.2 11.4 430 7.8 1.4 10.0 7.8 1.4 10.0 1.8 1.0 2.40 7.8 1.4 1.0 1.4 430 7.8 1.4 1.0 1.4 430 7.8 1.4 1.0 1.4 1.0 1.8 1.0 1.4 1.0 1.8
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.3 1.3 (*) 7.9 do. Aug. 8, 1899 24.0 7.9 92.5 2.6 460 7.9 do. Aug. 8, 1899 24.0 7.9 92.5 2.6 460 7.9 do. Aug. 8, 1899 24.0 7.0 81.5 1.6 430 8.0 do. Aug. 8, 1899 24.0 7.0 81.5 1.6 430 8.0 do. Opt. 19, 1899 69 10.0 7.2 76.5 1.4 430 7.8 do. Nov. 14, 1839 85 6.0 11.0 88.1 1.9 7.8 do. Dan. 19, 1999 90 1.1 3.0 90.1 1.1 240 7.8 do. Dan. 19, 1999 90 1.1 2.0 1.4 430 7.8 do. Dan. 19, 1990 0 1.3 2.0 6.4 460 7.8
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.1 1.3 (*) 7.9 do Aug. 25, 1939 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 24.0 7.0 81.5 1.6 460 7.9 do Aug. 22, 1939 24.0 7.7 81.5 1.6 430 do Aug. 22, 1939 69 19.0 7.6 81.5 1.4 430 do Opt. 19, 1939 69 11.0 8.5 1.4 430 7.8 do Nov. 14, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.2 1.4 430 7.8 do Dan. 19, 1940 0 18.3 90.1 1.1 240 7.8 do Feb. 7, 1940
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.1 1.3 (*) 7.9 do Aug. 25, 1939 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 24.0 7.0 81.5 1.6 460 7.9 do Aug. 22, 1939 24.0 7.7 81.5 1.6 430 do Aug. 22, 1939 69 19.0 7.6 81.5 1.4 430 do Opt. 19, 1939 69 11.0 8.5 1.4 430 7.8 do Nov. 14, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.2 1.4 430 7.8 do Dan. 19, 1940 0 18.3 90.1 1.1 240 7.8 do Feb. 78, 1940 <td< td=""></td<>
MINVW 61 April 2, 1940 12.0 11.4 105.1 1.3 (4) 7.9 (40 1.9 1.2 1.4 105.1 1.3 (4) 7.9 (40 1.9 1.3 1.3 (4) 7.9 (40 1.3 1.3 1.3 (4) 7.9 (40 1.3 1.3 1.3 (4) 7.9 (40 1.3 1.3 1.3 (4) 7.9 (40 1.3 1.3 1.3 (4) 7.9 (4) (
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.1 1.3 (*) 7.9 do Aug. 25, 1939 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 24.0 7.0 81.5 1.6 460 7.9 do Aug. 22, 1939 24.0 7.7 81.5 1.6 430 do Aug. 22, 1939 69 19.0 7.6 81.5 1.4 430 do Opt. 19, 1939 69 11.0 8.5 1.4 430 7.8 do Nov. 14, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.2 1.4 430 7.8 do Dan. 19, 1940 0 18.3 90.1 1.1 240 7.8 do Feb. 78, 1940 <td< td=""></td<>
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.1 1.3 (*) 7.9 do Aug. 25, 1939 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 24.0 7.0 81.5 1.6 460 7.9 do Aug. 22, 1939 24.0 7.7 81.5 1.6 430 do Aug. 22, 1939 69 19.0 7.6 81.5 1.4 430 do Opt. 19, 1939 69 11.0 8.5 1.4 430 7.8 do Nov. 14, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.2 1.4 430 7.8 do Dan. 19, 1940 0 18.3 90.1 1.1 240 7.8 do Feb. 78, 1940 <td< td=""></td<>
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.1 1.3 (*) 7.9 do Aug. 25, 1939 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 24.0 7.0 81.5 1.6 460 7.9 do Aug. 22, 1939 24.0 7.7 81.5 1.6 430 do Aug. 22, 1939 69 19.0 7.6 81.5 1.4 430 do Opt. 19, 1939 69 11.0 8.5 1.4 430 7.8 do Nov. 14, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.2 1.4 430 7.8 do Dan. 19, 1940 0 18.3 90.1 1.1 240 7.8 do Feb. 78, 1940 <td< td=""></td<>
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.1 1.3 (*) 7.9 do Aug. 25, 1939 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 24.0 7.0 81.5 1.6 460 7.9 do Aug. 22, 1939 24.0 7.7 81.5 1.6 430 do Aug. 22, 1939 69 19.0 7.6 81.5 1.4 430 do Opt. 19, 1939 69 11.0 8.5 1.4 430 7.8 do Nov. 14, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.2 1.4 430 7.8 do Dan. 19, 1940 0 18.3 90.1 1.1 240 7.8 do Feb. 78, 1940 <td< td=""></td<>
w MIWW 61 Apr. 1, 1940 12.0 11.4 105.1 1.3 (*) 7.9 do Aug. 25, 1939 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 24.0 7.0 81.5 1.6 460 7.9 do Aug. 22, 1939 24.0 7.7 81.5 1.6 430 do Aug. 22, 1939 69 19.0 7.6 81.5 1.4 430 do Opt. 19, 1939 69 11.0 8.5 1.4 430 7.8 do Nov. 14, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.5 1.4 430 7.8 do Dan. 19, 1939 64 11.0 8.2 1.4 430 7.8 do Dan. 19, 1940 0 18.3 90.1 1.1 240 7.8 do Feb. 78, 1940 <td< td=""></td<>
w MIWW 61 Apr. 1, 1940 12.0 11.4 106.3 1.3 (9) 7.9 w MIWW 61 July 18, 1839 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 23.5 7.8 91.0 2.8 2.4 7.9 2.5 460 7.9 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.9 7.9 7.9
w MIWW 61 Apr. 1, 1940 12.0 11.4 106.3 1.3 (9) 7.9 w MIWW 61 July 18, 1839 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 23.5 7.8 91.0 2.8 2.4 7.9 2.5 460 7.9 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.9 7.9 7.9
w MIWW 61 Apr. 1 1940 12.0 11.4 106.3 1.3 (9) 7.9 do July 18, 1839 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1939 23.5 7.8 91.0 2.8 240 do Aug. 22, 1939 24.0 7.0 81.6 1.6 430 do Sept. 1939 69 16.0 7.7 80.8 1.4 430 do Opt. 19, 1939 64 11.0 8.6 11.4 430 7.8 do Dov. 14, 1939 64 11.0 8.6 11.0 3.0 90.8 7.8 do Dov. 14, 1939 64 11.0 8.6 11.0 3.0 7.8 do Dov. 14, 1939 64 11.0 13.2 90.1 1.9 2.40 7.8 do Dov. 14, 1939 64 10.0 13.2 90.1 1.9 2.40 7.8
w MIWW 61 Apr. 1 1940 12.0 11.4 106.3 1.3 (9) 7.9 do July 18, 1838 24.0 7.9 92.5 2.5 460 7.9 do Aug. 22, 1839 23.6 7.8 91.0 2.8 24.0 do Aug. 22, 1839 24.0 7.0 81.5 1.4 430 do Sept. 18, 1839 64 11.0 8.6 1.4 430 7.8 do Nov. 18, 1839 64 11.0 8.6 7.6 1.4 430 7.8 do Dos. 17, 1839 64 11.0 8.6 11.0 3.0 90.8 7.8 do Dos. 18, 1839 64 11.0 8.6 11.0 3.0 90.8 7.8 do Dos. 18, 1839 64 11.0 18.3 90.1 1.9 2.40 7.8 do Dos. 18, 1840 0 18.3 90.1 1.1 2.40 7.8
w MINWW 61 Apr. 1 1940 12.0 11.4 106.3 1.3 (*) 7.9 w MINWW 61 July 18,1839 24.0 7.9 22.5 7.8 91.0 2.8 460 7.9 do Aug. 25,1839 23.5 7.8 91.0 2.8 240 240 240 240 240 240 240 240 240 240 240 240 240 7.8 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 230 8.0 1.4 430 7.8 1.4 430 7.8 1.0 1.4 430 7.8 1.0 1.2 1.4 240 7.8 1.0 1.2 1.3 1.4 1.0 1.8 1.0
do. Apr. 1, 1940 11.2 11.4 105.3 1.3 7.9 mw MiWw 61 July 18, 1839 24.0 7.9 22.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 25.0 24.0 25.0 24.0 25.0 24.0 25.0 25.0 24.0 7.9 25.0
do. Apr. 1, 1940 11.2 11.4 105.3 1.3 7.9 mw MiWw 61 July 18, 1839 24.0 7.9 22.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 7.9 25.5 24.0 25.0 24.0 25.0 24.0 25.0 24.0 25.0 25.0 24.0 7.9 25.0
Mode Apr. 1, 1940 11.2 11.4 105.3 1.3 (4) 7.9 Mode July 13, 1939 24.0 7.7 92.5 2.5 460 7.9 do July 25, 1939 23.6 7.7 81.6 1.6 430 do Aug. 22, 1939 23.6 7.2 77.3 24.0 8.0 do Sept. 18, 1839 64 11.0 7.2 77.3 2.0 460 8.0 do Nov. 4, 1839 86 6.0 11.0 8.5 1.4 430 7.8 do Dos. 18, 1839 86 6.0 11.0 8.5 1.4 430 7.8 do Dos. 24, 1839 86 6.0 11.0 8.5 1.9 90.1 1.9 7.8 do Dos. 24, 1839 86 6.0 11.0 8.0 1.9 240 7.8 do Dos. 24, 1839 86 8.0 12.0 240 7.8 <
w MINW 601 Apr. 1 1940 11.2 11.4 105.3 1.3 (3) 7.9
Main of the color of the colo
Matrix Ma
Matrix Ma
Marka Milly Milly 18,1939 24, 0 7.9 105.3 1.3 460 7.9 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10
w MINWW 611 Apr. 4, 1940 11.3 10.0.5 1.5 40 7.9 92.5 2.6 40 7.9 460 7.9 460 7.9 460 7.9 460 7.9 460 7.9 460 7.9 460 7.9 7.0 8.5 7.6 8.0 9.0
W MIWW 61 July 18,1839 24.0 7.9 92.5 2.5 460 do July 25,1839 24.0 7.0 92.5 2.5 460 do Aug. 9,189 24.0 7.0 81.5 1.6 450 do Aug. 2,189 18.5 7.6 81.5 1.4 430 do Cort. 17,189 64 11.0 8.5 7.6 1.4 430 do Nov. 14,1839 66 11.0 8.5 7.8 7.8 do Doc. 26,189 6.0 11.0 8.5 7.8 7.8 do Doc. 26,189 6.0 11.0 8.5 7.8 7.8 do Doc. 26,189 6.0 11.0 8.6 7.8 7.8 do Doc. 17,189 6.9 10.0 13.3 90.8 1.9 7.8 do Jan. 19,180 6.0 13.3 90.1 1.1 240 7.8 do
W MIWW 61 July 18,1836 24.0 7.9 92.5 2.5 460 do. Aug. 22, 1939 24.0 7.6 81.5 1.6 430 do. Aug. 22, 1939 18.5 7.6 80.8 1.4 230 do. Aug. 22, 1939 64 11.0 7.5 80.8 1.4 230 do. Nov. 17, 1939 64 11.0 8.5 76.5 1.4 430 7.8 do. Nov. 14, 1938 86 6.0 11.0 8.6 11.0 240 7.8 do. 13n. 13n. 13n. 1.4 130 7.8 do. 13n. 13n. 1.0 2.0 13.2 30.0 7.8 do. 13n. 13n. 1.0 0.0 1.1 240 7.8 do. 13n. 1.0 1.0 1.0 1.2 1.0 2.0 1.2 do. 18n. 1.0 1.0
Main Main Ma
MATIWW 61
War Milwweil July 18, 1938 24.0 7.9 92.5 2.5 460 4
Main Main Main Main
Mark
Column C
do July 25, 1939 23.5 7.7 81.6 1.6 240 7.0 81.6 1.6 450 8.0 1.4 240 6.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.6 450 8.0 1.1 450 8.0 1.2 450 8.0 1.2 450 8.0 1.2 450 8.0 1.2 450 1.8 1.0 240 7.8 1.6 1.8 1.0 240 7.8 1.6 1.0 1.2 1.0
do. July 25, 1939 23.5 7.8 91.0 2.8 24.0 7.0 81.5 1.6 450 80.6 1.4 24.0 7.0 81.5 1.4 230 8.0 1.4 24.0 7.0 81.5 1.4 450 8.0 1.4 450 8.0 1.4 450 8.0 1.4 450 8.0 1.4 450 8.0 1.4 450 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.9 8.0 7.8 8.0 7.9 8.0 7.8 8.0 7.8 8.0 7.8 8.0 7.8 8.0 7.8 8.0 7.8 8.0 9.0 1.1 2.0 1.0 1.0
Aug. 8, 1939 Aug. 23, 5 Aug. 8, 1939 Aug. 22, 1939 Sept. 19, 1939 Get. 17, 1939 Get. 17, 1939 Get. 17, 1939 Get. 11, 0 Sept. 19, 1939 Sept. 19, 1940 Sept.
Aug. 25, 1939 Aug. 22, 1939 Both 19, 1940 Bo
Aug. 25, 1939 Aug. 22, 1939 Bell 10, 1939 Bell 11, 10, 1939 Bell 11, 10, 1939 Bell 12, 1939 Bell 13, 1939 Bell 13, 1939 Bell 13, 1940 Bell 13, 1940 Bell 14, 1940 Bell 15, 1940 Bell 15, 1940 Bell 15, 1940 Bell 16, 1940 Bell 17, 1940 Bell 17, 1940 Bell 18, 1940 Bell 18, 1940 Bell 19, 1940 Bell 1940 Be
Aug. 22, 1939 Aug. 23, 1939 Aug. 23, 1939 Aug. 23, 1939 Aug. 24, 11, 1939 Aug. 24, 11, 1939 Aug. 24, 11, 1934 Aug. 24, 1939 Aug. 25, 1939 Aug. 25, 1939 Aug. 26, 1939 Aug. 27, 1939 Aug.
Aug. 2, 1939 Aug. 3, 1940 Aug. 2, 1940 Aug.
Aug. 25, 1939 23.5 7.8 91.0 2.8 240
Aug. 25, 1939 Aug. 29, 1939 Aug. 20, 1939 Aug. 2
Aug. 29, 1939 Aug. 29, 1939 Aug. 29, 1939 Aug. 22, 1939 Sept. 11, 1939 Sept. 11, 1939 Sept. 12, 1939 Sept. 13, 1939 Sept. 13, 1939 Sept. 14, 1939 Sept. 16, 11, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
Aug. 6, 1939 Aug. 6, 1939 Aug. 8, 1939 Aug. 8, 1939 Sept. 19, 1939 Get. 17, 1939 Get. 17, 1939 Nov. 14, 1939 Nov. 14, 1939 Dec. 26, 1939 Jan. 19, 1940 Jan. 19, 1940 Peb. 7, 1
Aug. 8, 1939 Aug. 22, 1939 Cot. 17, 1939 Cot
Aug. 2, 1939 Aug. 2, 1939 Aug. 2, 1939 Aug. 2, 1939 Bell 19, 1939 Gell 11, 1939 Gell 12, 1939 Gell 13, 1939 Gell 14, 1939 Gell 14, 1939 Gell 14, 1939 Gell 15, 1939 Gell 15, 1939 Gell 16, 1939 Gell 17, 1939 Gell 1
Aug. 22, 1939 24.0 7.0 81.5 1.6 430 88.0 8.0 8 1.4 5480 80.8 1.4 230 88.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8
Aug. 22, 1939 24,0 7,0 81,5 1.6 430 8.0 6.0 6.4 430 8.0 6.0 6.4 430 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
Aug. 22, 988 1939 24.0 7.0 81.6 1.6 460 8.0 6.9 6.9 19.0 8.0 6.9 19.0 8.0 6.9 19.0 8.0 6.9 19.0 8.0 6.9 19.0 8.0 6.9 19.0 8.5 77.7 3 2.0 460 8.0 7.8 11.0 8.5 77.7 3 2.0 460 7.8 11.0 8.5 77.7 19.0 9.0 11.0 24.0 7.8 11.0 24.0 7.8 11.0 19.0 9.0 11.0 24.0 7.8 11.0 19.0 9.0 11.0 24.0 7.8 11.0 19.0 9.0 19.0 9.0 11.0 24.0 7.8 19.0 9.0 9.0 19.0 9.0 9.0 19.0 9.0 9.0 19.
Aug. 22, 1989 69 19.0 7.0 80.8 1.1 6 230 8.0 0
Aug. 22, 1939 Aug. 23, 1939 Aug. 23, 1939 Aug. 24, 11, 12, 24, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Aug. 22, 1939 Sept. 19, 1939 Sept. 1
Aug. 22, 988
Aug. 25.9886 69 19.5 7.5 80.8 1.4 230 8.0 Cop. 17.1 14.1 14.1 18.1 19.8 19.8 19.0 Cop. 17.1 18.2 20 Cop. 17.1 19.8 19.0 Cop. 17.1 19.8
Aug. 22, 1939 69 19, 0 7, 0 8, 0 7, 3 2, 0 8, 0 7, 0 8, 0 7, 3 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1
Sept. 19, 1939 Sept. 19, 1939 Oct. 17, 1939 Nov. 14, 1939 Nov. 14, 1939 Sept. 19, 1939 S
Sept. 19,939 69 19,0 7, 2 77,3 2,0 460 8,0 10,0 17,2 77,3 2,0 460 10,0 10,0 11,0 11,0 11,4 430 7,8 10,0 11,0 11,0 11,0 11,0 11,0 11,0 11
Sept. 11, 1989 64 11, 0 8.5 7.6 1.4 430 7.8 1.0 1.0 1.1 1.0 1.4 430 7.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Nov. 17, 1989 64 11.0 8.5 76.5 1.4 430 7.8
Oct. 14, 1939 64 11.0 8.5 76.5 1.4 430 7.9

01000000000000000000000000000000000000	0,	0.0000 000000 000000 000000 00000000 00000
Q 000 0 4 4 4 4 0 0 4 0 0 0 0 0 0 0 0 0	2240 2240 2240 2240 2240 2240 2240 2240	220 220 220 220 220 220 220 220 220 220
. HHH	::::::::::::::::::::::::::::::::::::::	244410000000000000000000000000000000000
110.1 9.0 8.8 8.8 8.9 6.0 1 10.2 1 0 0 2.2 1 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	4.1.73.7.4.9.9.9.9.0.1.9.7.4.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	4.04.27.59.00.00.00.00.00.00.00.00.00.00.00.00.00
0. % % % % % % % % % % % % % % % % % % %	40000000000000000000000000000000000000	6460683566446666 460688566446666
4. 8888 9.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28.21 4.82.17.83.4.44.84.8.32.83 000000000000000000000000000000000000	ಜಿಚಿನ್ನೂರಾಭವಣ್ಣ 4 4 ಭವನಾ ದ ೧೦೦೫ ೦೦೦೦೫೦೦೫೦೦ ೫
68	94 49 89	9784
13, 1989 9, 1989 9, 1989 1, 19	8, 1939 10, 1939 7, 1939 21, 1940 21, 1940 28, 1940 11, 1940 11, 1940 12, 1939	8, 1938 10, 1939 18, 1039 19, 1940 30, 1940 7, 1940 22, 1940 15, 1940 15, 1940 1, 1940 1, 1940 1, 1940
July Aug. Sept. Occ. Jan. Jan. Jan. Jan. Mar. Mar. Mar. Mar. Mar. Apr. Apr. Apr. Apr. Apr. Apr. Apr. Ap	Aug. Oct. Nov. 19c. Feb. Mar. Mar. Mar. Mar.	Aug. Nov. Nov. Jan. Jan. Feb. Feb. Feb. Mar. Mar.
MIWw 33 do d	do do do do do do do do do do do	00000000000000000000000000000000000000
West Fork, Whitewater River, above Brookville, Ind. Do	Richmond, Ind. Do. Do. Do. Do. Do. Do. Do. D	Atletamond, Ind Do Do Do Do Do Do Do Do Do D

Table Mi-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Hardness, parts per million	
Alkalin- ity, parts per million	
Turbid- ity, parts per million	16
Hq	000000000000000 0000000000000000000000
Coli- forms, most probable number per milli- liter	(c) (c) (d) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e
5-day bio- chemical oxygen demand, parts per million	
l oxygen Percent satura- tion	9.50 1 105.6 9 10.0 10.6 9 10.0 10.6 9 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10
Dissolved oxygen Parts per satura- million tion	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6
Temper- ature ° C.	8 444 6 6 6 4 4 6 6 6 4 6 6 6 6 6 6 6 6
Average discharge, cubic feet per second	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Date	July 13, 1938 Aug. 25, 1938 Aug. 25, 1938 Aug. 25, 1938 Sept. 19, 1938 Sept. 19, 1938 Nov. 14, 1939 Jan. 19, 1940 Feb. 28, 1940 Aug. 25, 1940 Aug. 25, 1940 Nov. 14, 1939 Oct. 17, 1938 Oct.
Mileage from mouth	MiWe 33 do d
sampling point	East Fork Whitewater River, above Brookville, Ind. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do

15	23 1 4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28 28 28 28 24 4 4 4 4 4 4 4 4 4 4 4 4 4
6.	540-4540	
-	4waoo= 64	#N-@#C4-4+- 000040000000000000000000000000000000
91.	93. 88. 104. 94.	88888888888888888888888888888888888888
7.8	80.7.7.0.0.4.1.1 61844004110	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
24.0	0.00.55555 0.00.555555	4 R C R C C R L L L R Z Q Q R L L L L L R Z Q Q R L L L L L R Z Q Q R L L L L L L R Z Q Q R L L L L L L L L L L L L L L L L L
1	2, 910	1, 470
13, 1939	25, 1939 9, 1939 22, 1939 19, 1939 17, 1939 14, 1939 26, 1939 21, 1939	27, 1939 15, 1939 26, 1939 27, 1939 27, 1939 27, 1939 27, 1939 28, 1939
July 1	July Aug. Aug. Sept. Oct. Dec. Feb.	Feb. Mar. Mar. Mar. Mar. Mar. Mar. Mar. Ma
MiW 14	do	888888888888888888888888888888888888888
Whitewater River, above Harrison,	Ind. Do Do Do Do Do Do Do No	D D D D D D D D D D D D D D D D D D D

90035-44-pt. 2-32

Table MI-7.—Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

LU			,	JIIIO	1.6	TAT	116	1	,141	40	TI	OI	, ,		TN .	r Tr	וויט								
		Hardness, parts per million		7	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 8 1 3 2 3 1 8 2 9 0 9 0 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 8 1 9 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				* 0 0 0 0 0 1 0 0 0 1 0 0 0			
		try, parts per million		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	244	244	236	252	238	243	126	225	100	228	163	151	230	199	212
	To the second	ity, parts per million		P-10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	85	88	67	28	10	70	470	100	3, 100	57	525	008	202	240	3
		Hď	8.0	8.0		20000				9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						000									
	Coli- forms,	most probable number per milli- liter	8	140	93	46	15		240	120	240	2,52	460	11	460	150	1, 100	CO 4	2, 400	230	1,500	4, 600	230	930	acce
	5-day bio-	oxygen demand, parts per million	1.4	. · · ·	000	0.1	20	1.0	1.0	3.0	4.	4.63	4.0	7:3	4, 4	00 c	9 4	200	4:0	4.6	4 03	40	0 C1	4.0	3
	1	Percent satura- tion	83. 4	98.3	98 2	100.2	96.3	89.6	93.7	92.5	94.2	85.1	86.6	108.3	101.9	98:0	80.0	20 00 00 00 00 00	79.3	117.2	102.8	62.8	93.4	93.9	
	Dissolved oxygen	Parts per million	7.7	12.3	Lost 12.7	12.2	11.7	11.8	12.3	12.0	11.2	9.9	∞; c	000	0,00	1 00 0	. 60		4.0	10.0	00 00 00 00 00 00	10, 00 44 00	000	- K	
		Temper-	19.5	12.0	0 4	8.5	7.0	14.0	4.0	7.0	0.0	9.0	17.0	20.0	19.0	23.5	25.0	25.0	27.0	24.0	25. 5	23.5	25.0	26.0	
	Average	discharge, cubic feet per second	190	170 210		t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16,860	35, 100	5,600	6, 400	8, 450	3, 690	3,040	2, 150	21, 700	3,730			1,660				
		Date	Sept. 19, 1939	Oct. 17, 1939 Nov. 14, 1939 Dec. 26, 1939	19,		11, 1				21, 1	10, 1	26, 1	00	May 16, 1939 May 22, 1939	12,50	19,1	28,1	1,5,1	17,	July 19, 1939 July 25, 1939	31, 1	00	Aug. 14, 1939 Aug. 16, 1939	
		Mileage from mouth	MiW 13	do do do	do	do	do	do	Mi 4.2	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	
		Sampling point	Whitewater River, below Harrison, Ind.	Do Do Do	Do	Do.	Do	Do	Miami River, Cleves Bridge	Do	Do	Do	Do	Do	Do	Do	Do	Po	Do	Do	Do	Do	Do	Do	

218 1	019	000	777	677	913	938	939	234	228	232	2927	245	248	250	219	229	243	253	243	242	264	248	250	245	249	250	257	289	161	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOT TOTAL	104	214	105	210	216	225	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	236	230	225	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	777
60	0 0	3.0	100	79 6	001	CV.	25	000	10	30	200	90	12	15	35	35	15		25	17	6	NC.	18	1	10	7	10	3	380		ORO	48	22	200	67	9	22	25	33	25	80	900	140
					10																																				7.9		
000	200	900	200	200	425	42	910	24	122	46	22	48	43	24	16	240	460	150	23	24	. 240	83	88	83	15	93	160	43	460	2000	290	480	240	30	1, 100	11,000	430	930	240	83	150	1, 100	460
																																									41		
0 00	1100.4	100	118.6	90.50	03.0	000	04.0	05.7	92.4	80.0	000	100	94.5	82.1	71.7	76.0	700	81.6	76.1	80.9	77.3	76.8	76.8	76.2	81.7	72.7	81.3	85.0	93.7	2000	1000	200	27.5	80.3	90	800	84.9	69.5	87.7	7.92	87.9	79.6	0 0 0 0 0
7 4		0.01	70.0	60	r c	o c	0 00	o oc	9.6	00	7	9.2	9.9	00	000	9.3	9.4	6.6	0.6	00.00	6.6	9.6	9.6	9.3	9.7	9.3	11.1	12.1	10.3	# 0 0 0 0	10.0	19.5	-	11.4	11.4	11.3	10.1	9.1	11.0	0.6	9.5	N. 1	0 0 0 0 0 0
0 76	925.0	3.5.	3.5	25.0	23.5	92.20	21.0	20.08	15.0	22. 5	19. 5	12, 5	13, 5	16.0	10.5	7.0	7.5	7.0	8.0	7.0	2.0	6.0	6.0	7.0	8.0	5,0	10 01 0	0	0.1.0	2.0	9 6	36	iei	0.0	5.0	5.0	8.0	4.0	6.0	00	12.0	2.5	14.0
	1, 240				050	088	810	830	830	830	200	710	720					860						006	880	880	800														4, 210		
20	900	20.	, co.	110	13	10.	25.	27.	3	9.1	11.	17.	23.	25, 1	31, 1	6, 1	80	14, 1	20, 1	22, 1	28. 1	4.]	8,1	12.	00	20,	8	200	2,0	100	101	28,	28	. 5.	. 11.	. 13, 1	. 19, 1	. 25, 1	. 27.	0	r. 8, 1940	10,00	30,1
ATTO	A	Aug	Con	Con	Sen	Co.	Sen	Sen	Oct	Oct	Oet	Oet	Oct	Oct	Oct	Nov	Nov	Non	Non	Non	Non	Dec	Dec	Dec	Dec	Dec	Dec	Jan	Jan	E C	Rob	For	Feb	Ma	Ma	Ma	Ma	Ma	Ma	Apr	A pr.	Apr	Apr
200	do.	000	do	do	do	00	00	00	do-	do	do	do	dodo	-do	do	do	do	do	do	do	do	do	do	-do	do	do	op	op	do	dodo.	900	do	do	do	do	-do	-do	do	do	do	do	do	
The Table	0	0	200	Do	Do		00	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	Do	D0	Do	Do.	100	100		00	Do	Do.	Do	Do.	Do.	Do	Do	Do	D0.	D0

LITTLE MIAMI RIVER BASIN

CONTENTS

	Page
Contents	645
Syllabus and conclusions	647
Description	648
Presentation of field data	649
Presentation of laboratory data	651
Hydrometric data	653
Discussion	654
LIST OF TABLES	
Lm-1.—Cost estimates of remedial measures Lm-2.—Surface water supplies Lm-3.—Sources of pollution Lm-4.—Industrial wastes Lm-5.—Selected laboratory data Lm-6.—Hydrometric data Lm-7.—Summary of laboratory results	648 650 650 651 651 653 655
LIST OF FIGURES	
Lm-2.—Chart—Sources of pollution and selected laboratory data	650
(Note.—For maps of this basin see Miami River Basin.)	
GAE	

LITTLE MIAMI RIVER BASIN 1

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Little Miami Drainage Basin, occupying 1,755 square miles wholly within the State of Ohio, is principally an agricultural region with only minor industrial development. Exclusive of the Cincinnati metropolitan area, the population of the basin totals about 135,000, of which 35 percent reside in 41 incorporated communities. Primary water uses of major streams are recreational and agricultural. Recreational development is notable in the lower reaches. In terms of expenditures, existing waste treatment facilities represent about 50 percent of total suggested treatment. Remaining water pollution problems are not critical, are of local significance, and can be solved by practical methods of waste treatment.

CONCLUSIONS

(1) Of 21 public water supplies in the basin only 4 use surface sources, 2 of which are on tributaries affected by sewage pollution. An increasing need for surface waters for water supply purposes is noted in the basin as well as demands for improved recreational areas, the latter especially in the lower reaches near Cincinnati.

(2) Outside the Cincinnati area, sewage from 31,700 people and industrial wastes with a population equivalent of 9,700 enter the

streams. More than 75 percent of the sewage is treated.

(3) Laboratory observations show several bad areas below sources of pollution but indicate rather rapid stream recovery after short periods of flow. Coliform results averaging over 200 per milliliter during the worst month were found over most of the basin.

(4) Minimum monthly summer flows in the lower reach have varied from 70 to 85 cubic feet per second for several years within the period of record. Flows on East Fork often reach zero for extended

periods.

(5) The Little Miami River below mile 5 receives pollution aggregating about 129,000 equivalent population from a portion of metropolitan Cincinnati. Interceptor sewers are under construction to divert this waste to a point of treatment with subsequent discharge direct to the Ohio River.

(6) Sections of several tributaries are polluted due to improper waste treatment. Practical treatment of sewage and industrial waste will control pollution and adequately protect surface streams for all normal uses except in certain sections of tributaries where near-zero summer flows occur in the vicinity of outfalls.

(7) Low-flow regulation by the proposed East Fork flood-control reservoir would eliminate the need for more than primary sewage treatment at Batavia, would ensure the adequacy of the community's

¹ For maps of this basin, see Miami River Basin.

public water supply, and would enhance the recreational value of the

(8) In view of the normal uses of the streams involved, refined treatment at a few sources of pollution would serve no purpose commensurate with the expenditure. In these instances, lesser treatment appears justified and has been suggested. Summary of comparative cost of remedial measures from table Lm-1 follows:

Treatment	Capital cost	Annual charges
Existing	\$530, 000 580, 000	\$55, 000 60, 000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are—

Treatment	Capital cost	Annual charges
Primary, all places. Secondary, all places.	\$420,000 620,000	\$45, 000 65, 000

Table Lm-1.—Little Miami River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		ber of	Popula-	Capital	Annual charges					
	Pri- mary	Second-	nected to	invest- ment		Operation and main- tenance	Total			
Existing sewage treatment	3	8	24, 600	\$530,000	\$35,000	\$20,000	\$55,000			
Suggested minimum correction: Sewage treatment plants	8	. 8	7, 100 6, 700	410, 000 120, 000 50, 000	29, 000 5, 000 6, 000	16,000	45, 000 5, 000			
Total Comparative cost: Primary treatment, all waste Secondary treatment, all waste As suggested				580. 000 420, 000 620. 000 580, 000	40,000 30,000 45,000 40,000	20, 000 15, 000 20, 000 20, 000	60, 000 45, 000 65, 000 60, 000			

DESCRIPTION

The Little Miami River, draining 1,755 square miles in southwestern Ohio, rises in Clark County and flows southwesterly for about 100 miles to join the Ohio River near the eastern city limits of Cincinnati. The generally uniform stream bed, free from significant rapids, is 1,150 feet above mean sea level near headwaters and has a uniform gradient of about 6.5 feet per mile.

	River mile	Drainage area (square miles)
Major tributaries: East Fork. Todd Fork. Caesar Creek.	12 39 51	501 261 239

		Popul	ations	
	1910	1920	1930	1940
Larger cities: Xenia Wilmington Lebanon	8, 708 4, 491 2, 698	9, 110 5, 037 3, 396	10, 507 5, 332 3, 222	10, 633 5, 971 3, 890
Total basin: Rural Urban	97, 144 21, 088	93, 867 17, 543	99, 991 19, 061	111, 470 24, 004
Total	118, 232	111, 410	119, 052	135, 474

Industries.—Municipalities in the basin are essentially trading and distributing centers. Agriculture is the chief basin occupation and corn and garden truck are principal crops. Cattle, sheep, and hogs are raised in large numbers. Waste byproducts from vegetable canneries is of special stream-pollution significance and operating seasons coincide with critical stream conditions.

Water uses.—Three communities on East Fork with a combined population of 1,700 and one on Todd Fork with a population of 1,500 use surface streams as a source of water supply. Stock watering from

surface streams is common throughout the basin.

Recreation, including fishing, summer cottages, and boating, is observed in the basin with special concentration in the lower reach

near metropolitan Cincinnati.

Navigation improvements are not considered on this stream. Flood-control reservoirs at five sites on the Little Miami River and its tributaries have been studied by the United States Engineer Department.

PRESENTATION OF FIELD DATA

Figure Mi-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure Lm-2 shows similar data and, in addition, the location of water-supply intakes from streams below source of pollution and laboratory data on coliform organisms, dissolved oxygen, and biochemical oxygen demand.

Water supply.—In the basin, 21 public water-supply systems serve 39,100 people. Supplies shown in table Lm-2 are from surface streams. Greater future use of surface waters is indicated. Ground water is limited in many sections and is generally hard with high iron.

content.

Table LM-2.—Little Miami River Basin: Surface water supplies

Municipality	Source	Mile 1	Treat- ment ³	Popula- tion served	Consump- tion, million gallons per day
	outfalls				
Batavia Williamsburg	East Forkdo	23 45	FD FD	1, 100 400	0.07
	Other	surface s	upplies		
St. MartinBlanchester	Impoundeddo		FD FD	200 1, 500	0.01
0.41				1, 500 1, 700	. 10
Total surface water supplies.				3, 200	. 16

¹ Miles above mouth of Little Miami River.
2 F=coagulated, settled, filtered; D=chlorinated.

Sewage.—Table Lm-3 shows the population served by sewers at each of the more important sources of pollution in the basin. Cincinnati and its suburbs are the largest contributors of wastes. Interceptor construction now in progress will remove these wastes from the Little Miami. After treatment they will be discharged to the Ohio River. Sewage from 31,700 people in other communities enters the streams of the basin and of these 24,600 are served by the 11 sewage treatment plants.

Table Lm-3.—Little Miami River Basin: Sources of significant pollution including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	River	Miles above mouth of Little	Popula- tion con- nected to	Treatment	Sewered popula- tion equivalent (biochemical oxy- gen demand)		
		Miami River	sewers		Un- treated	Dis- charged	
Cincinnati and suburbs	do d	60 84 90 40 50 63	78,000 1,500 500 1,000 400 8,100 1,200 5,000	None	1, 500 2, 000 1, 500 1, 000 1, 400 5, 300 2, 000 6, 110	129, 000 1, 500 1, 600 1, 500 100 1, 400 2, 600 2, 000 1, 800	
Xenia Orphans Home Wilberforce 11 smaller sources	Shawnee Creekdo	80 82 82	11,000 1,000 1,000 5,100	do do Various	11,000 1,000 1,000	1, 600 100 100 5, 100	

¹ Recent treatment plant. Not in operation in 1939.

Industrial wastes.—The only industries discharging wastes of consequence other than to municipal treatment plants and outside the Cincinnati area are eight vegetable canneries. In addition, two vegetable canneries discharge wastes to municipal treatment works. Four others have taken steps to reduce the strength of the wastes before they leave the plant. Table Lm-4 shows data on the industrial waste load in the basin.

Table I.M-4.—Little Miami River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

			ial waste	At least minor	Estimated sewered population
Industry	Number of plants	Municipal sewers	Private outlets	corrective measures taken	equivalent (biochemical oxygen demand)
Canneries	8	1	7	4	6, 900
Waste unconnected, municipal treatment	8	1	7	4	6, 900
Industrial waste to Cincinnati sewers ¹ . Waste discharged to municipal treatme	nt				51, 000 2, 800
Total industrial wastes in the bas	in				60, 700

¹ Industries not surveyed individually. Population equivalent based on comprehensive sewer gaging and sampling program of city.

PRESENTATION OF LABORATORY DATA

The laboratory data for the Little Miami River Basin are summarized in table Lm-7 (p. 655). Selected results of the analytical observations are shown in table Lm-5 to depict typical low flow conditions at major points on the Little Miami River and major tributaries. Spot symbol maps showing the most unfavorable monthly average coliform, dissolved oxygen and biochemical oxygen demand results are presented in figures Mi-3, Mi-4, and Mi-5 (p. 610), respectively.

Table Lm-5.—Little Miami River; Selected laboratory data—Main stream and tributaries

River miles above mouth of Little Miami. Period, 1939	Little Miami Above Yellow Springs 85.5 July- Septem- ber	Little Miami Below Yellow Springs 84 July- Septem- ber	Little Miami Above Turtle Creek 33.8	Little Miami Below Turtle Creek 31.2 August	Little Miami Above Milford 14.2 August	Little Miami Below Milford 13.3 August	Little Miami Beech- mont Bridge 4.3 Septem- ber- October
Number of samples. Flow in cubic feet per second: Sampling days Minimum month Water temperature °C Coliforms per milliliter. Dissolved oxygen, parts per million. Biochemical oxygen demand, 5-day, parts per million.	3 64 19.8 31 7.6 0.9	3 64 18. 5 21 8. 2	3 1.0 22.8 47 7.8 1.3	23.5 18 8.3 1.5	1 105 57. 5 23. 5 4 7. 9 2. 7	1 105 57. 5 23. 5 23 9	125 72 17.6 4,580 2.8 6.5

Table Lm-5.—Little Miami River; Selected laboratory data—Main stream and tributaries—Continued

RiverLocation	Shawnee Creek Below Xenia	Todd Fork Above Wilming- ton	Todd Fork Below Wilming- ton	East Fork Above Lynch- burg	East Fork Below Lynch- burg	East Fork Above Batavia	East Fork Below Baatvia
River miles above: Confluence with Little Miami.	1	27. 5	20. 5	78	68	13	8
Mouth of Little Miami Period, 1939	76. 1 August	66. 5 October	59. 5 October	October 85	October 80	Septem- ber	Septem- ber
Number of samplesFlow in cubic feet per second:	2	2	2	1	1	1	1
Sampling days	1.0	1.0	1.0	1.0	1.0	1. 5	1.5 1.3
Water temperature, °C	20. 5 23, 500	12. 0 1, 275	10. 8 2, 765	20. 0 23	21. 0 4	19. 0 64	19.0
million. Biochemical oxygen demand.	5. 2	2.7	1.6	2. 5	5. 6	6. 2	4, 4
5-day, parts per million	6.7	4.6	16. 2	3. 5	3. 2	2. 5	8,8

At most stations in the basin, monthly average coliform results exceeding 200 per milliliter were observed during at least 1 month. High results were obtained from April to August 1939 and low results from September 1939 to April 1940. The most rapid coliform reduction in the stretches below sources of pollution occurred during the period August 1939 through January 1940, when discharges were low.

The dissolved oxygen results were generally more favorable than the coliform results. While complete oxygen depletion was observed below Lebanon and Bethel and monthly averages of less than 3.0 parts per million were observed below Wilmington, Jamestown, Xenia, Lynchburg, and at Beechmont, reaeration appears to bring about a recovery in dissolved oxygen within comparatively short

distances below sources of pollution.

Maximum monthly average biochemical oxygen demand results of more than 5.0 parts per million were found at 49 percent of the stations in the basin. At 30 percent of the stations the highest monthly average was from 3.1 to 5.0 parts per million, and at 21 percent of the stations it was less than 3.0 parts per million. The highest results, 93, 46, and 43 parts per million, were observed below Wilmington, Lebanon, and Bethel, respectively. However, except below a few sources of pollution, such as Xenia and the above three municipalities, few results were in excess of 3.0 parts per million, so the picture as presented by the most unfavorable monthly average is somewhat darker than was actually the case over much of the sampling period.

Samples from Beechmont were influenced by sewage from the Cincinnati area. Results obtained during January 1940 over the entire basin were influenced by the extremely cold weather and by ice

in the streams.

Biological summary.—The plankton of the Little Miami River were found to be abundant in species and numbers. The main stream is well supplied with fertilizer by the several small towns along its banks and average plankton volumes at the various sampling stations ranged from 2,000 to 6,000 parts per million. The plankton in the

tributaries was somewhat less except in Turtle Creek at South Lebanon where the population rose to 77,000 parts per million on 1 day.

HYDROMETRIC DATA

Of the three gaging stations in the basin, two are on the Little Miami at Milford and Spring Valley and one on East Fork at Perintown. Springs in headwaters influence critical low flows in the Little Miami, but flows in East Fork are extremely erratic, with long periods of near zero discharge.

Table Lm-6.—Little Miami River Basin; Monthly mean summer flows cubic feet per second at gaging stations for years in which low summer flows have occurred

River Location River miles above: Confluence with Little Miami Mouth of Little Miami Drainage area, square miles Period of record	Fork at Milford	Little Miami Near town Spring Valley 63 361 1925–36	East Fork Near town Perin- town 6 18 477 1924-39
Year	1930	1930	1930
Junecubic feet per second	150 78 78 78 123	84 53 44 44	4.3 11.3 1.8 14
Year	1936	1932	1936
Junecubic feet per second_ Julydo Augustdo Septemberdo		419 350 61 49	12 4.4 19 64
Year	1939	1934	1939
Junecubic feet per second	1, 240 936 191 1 70	44 69 231 1 35	157 124 41 1 1. 3

¹ Minimum flow.

Proposed stream control.—Five proposed flood-control reservoirs on the Little Miami River and its tributaries have been studied by the United States Engineer Department as follows:

Reservoir	Stream	Miles above mouth of Little Miami River
Washington Mills Caesar Creek Morrow Todd Fork East Fork	Little Miami Caesar Creek Little Miami Todd Fork East Fork	68 53 40 43 44

Increased low flow from these reservoirs would be beneficial to the extensive recreational uses of the Little Miami River and its tributaries. However, only the East Fork Reservoir would create tangible monetary benefits to pollution abatement by reducing the extent of treatment needed for pollution control.

Discussion

Pollution problems in the basin are minor and of local significance and can be solved by practical treatment methods. Industrial waste is limited to eight relatively small seasonal canneries and the waste problem can be corrected by chemical treatment or ponding with controlled diversion. All industrial waste is discharged to tributary

Little Miami River below East Fork.—This section is the most highly polluted in the basin. Below mile 5 the Cincinnati metropolitan district contributes a population load of 129,000. Cincinnati is constructing intercepting sewers to divert this waste to a point of treatment with subsequent discharge direct to the Ohio River.

East Fork.—With extended periods of near zero flow on the East Fork (table Lm-6) the sources of pollution, although minor, will require fairly complete treatment to control local nuisance conditions during summer droughts. Normal stream uses are restricted to stock watering and limited recreation. Low stream discharges limit the value of the stream for recreation. At Batavia secondary treatment is needed and appears justified by stream uses below the outfall.

Primary treatment would be sufficient at Batavia if the proposed East Fork reservoir is operated for low-flow control incidental to flood control. Such operation would require no additional cost in reservoir construction and would ensure the adequacy of Batavia's public water supply taken from the East Fork. Intangible benefits would be substantial. The flows would provide dilution for residual pollution and would increase the recreational value of the lower East Fork and Little Miami Rivers.

Little Miami above East Fork.—Minor pollution problems exist due to inadequate waste treatment below Blanchester, Lebanon, Wilmington, and Xenia. These problems are purely local and can be corrected by secondary treatment at Blanchester and additions or

improvements to existing facilities at the other three places.

Cost estimates for remedial measures are summarized in table Lm-1.

Table I.M-7.-- Little Miami River Basin: Ohio River pollution survey laboratory data-Summary of individual results

	Hardness, parts per million	
A Ikalin.	educt.	
Turbid.	ity, parts per million	
	Hď	C FORONIN ORONIN OFFICE
Coli- forms,	most probable number per milli- liter	086 68 68 68 68 68 68 68 68 68 68 68 68 6
5-day bio-	oxygen demand, parts per million	4 044 .4 6004
	Percent of satura-tion	4 7 7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dissolved oxygen	Parts per million	4 55588 0 05455 0555 888058488598440511 0 108060 0 11481 148108 888058488589440511
	Temper- ature ° C.	8. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
Average	discharge, cubic feet per second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Date	Sept. 7, 1938 Nov. 12, 1938 Nov. 12, 1938 Dec. 12, 1939 Oct. 4, 1939 Oct. 4, 1939 Oct. 20, 1939 Oct. 20, 1939 Nov. 17, 1939 Oct. 20, 1939 Oct. 20, 1939 Nov. 17, 1939 Oct. 20, 1939 Oct. 20, 1939 Nov. 17, 1939 June 22, 1939 Oct. 20, 1939
	Mileage from mouth	Lm 90.5. do d
	Sampling point	Little Miami River, above South Charleston, Ohio. Do Do Do Do Do Little Miami River, below South Do Do Do Do Little Miami River, above Yellow Springs, Ohio. Do Do Do Little Miami River, above Yellow Springs, Ohio. Do

TABLE IM-7.—Little Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	
A The Hea	ity, parts per million	
Tourstid	ity, parts	
	Вď	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
Coli- forms,	most probable number per milli- liter	4,000 1,1
5-day bio-	oxygen demand, parts per million	ゆ ないようなようなであるならなる。 ままれ 、 、 、 、
	Percent satura- tion	67.97.75.85.85.85.85.85.85.75.45.45.85.85.85.95.95.95.95.95.95.95.95.95.95.95.95.95
Dissolved oxygen	Parts per raillíon	ゆたれめよるようできななるのようで、 はののはははのはなるなといるのますするものでするののでは、 ままます おきます おきます おきます おきます おきます おきゅう アック・リース アンシャック・リース アンシャック・アン・ファック・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・
	Temper-	429444114441444444444444444444444444444
Average	discharge, cubic feet per second	000
. ,	Date	June 22, 1939 June 29, 1939 July 17, 1938 July 28, 1939 Aug. 16, 1938 Aug. 22, 1938 Over, 27, 1938 Over, 28, 1939 June 29, 1939 June 29, 1939 July 28, 1939 Aug. 14, 1939 Aug. 14, 1939 Nov 17, 1939 Aug. 28, 1939
	Mileage from mouth	Lms 78.1 do 00
	Sampling point	Shawnee Creek, below Xenia, Ohio. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1

				00.
		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
17.7.00.7.7.7.00.00 10.7.7.00.00	27.7.7.7.	7.	7.7.7.3.8	6.7.7
1,100 240 230 230 230 240 240 240 240 1,100	36 43 (1) 9 460	230 4,600 230 23 23 23 23 23 24 20 2,400	2, 230 2, 230 2, 400 150 2, 400 150 2, 936 2, 936	1, 500 38 430 88 88 88 88 4, 600 110, 000 11, 100
84 .044444 .448 0084404840021	0.44-1-10 -0.0000	ಸ್ಟ್ಪಪ್ಪ-ಸ್ಥ ಐಜಿಎ4ಅ	11-1333343333 5048957-153	6-14-16 80 6 8 6 18 7-44 8 14 0 8 18 8 8 9
88.88.88.88.89.00.00.00.00.00.00.00.00.00.00.00.00.00	35.8 29.1 25.2 65.2 11.6	88.50.0 4.0.0 4.0.0 6.00 6.00 6.00 6.00 6.00	91. 705.22 705.22 705.23 705.2	22.5.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
4 78 72 72 72 72 72 72 72 72 72 72 72 72 72	6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	1.00.00.00.00.00.00.00.00.00.00.00.00.00	೧೦೦೦ 4 , ಅ೦೦೦ 4 7	60.000
8,00111878411888.5189 00700411888.5189	18.0 15.0 20.0 20.0 5.0	17.0 12.0 5.0 1.5	22.45.25.25.05.05.05.05.05.05.05.05.05.05.05.05.05	6. 71 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1			111100
14, 1939 18, 1940 31, 1940 31, 1940 23, 1940 29, 1940 12, 1940 18, 1940 26, 1940 31, 1940 31, 1940 31, 1940 31, 1940	25, 1939 4, 1939 1, 1939 12, 1930 11, 1940 14, 1939	25, 1939 4, 1939 1, 1939 112, 1939 111, 1940 21, 1939	29, 1939 17, 1939 27, 1939 16, 1939 5, 1939 30, 1939 8, 1938 9, 1940 21, 1939	29, 1939 27, 1939 27, 1939 16, 1939 2, 1939 30, 1939 9, 1939 9, 1939 22, 1939 28, 1939
June Jan. Jan. Feb. Feb. Mar. Mar. Mar. Mar. Apr.	Aug. Oct. Nov. Dec. Jan. Aug.	Aug. Oct. Nov. Dec. Jan.	June July July Aug. Sept. Oct. Dec. Jan.	Juny July July Aug. Sept. Oct. Dec. Jan. Feb. Feb.
do d	do- do- do- LmC 81.5.	dodododododododo.	do do do do do do do do do do do do do	do do do do do do do LMT 54
Do.	Do. Do. Do. Do. Do. South Caesar Creek, below James- town, Ohio.	Creek, above Wilmington,	Do. Do. Do. Do. Do. Do. Lyttle Creek, below Wilmington,	Do.
Do.	Do. Do. Do. Do. South (Lyttle C		Todds F

TABLE LM-7.—Little Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	
	Alkalin- ity, parts per million	
	Turbid- ity, parts per million	
	Hd	8.88.9.9.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
Coli-	forms, most probable number per milli-	24.288.45.75.00.00.00.00.00.00.00.00.00.00.00.00.00
5-day bio.		, 400 . ч ч ч. ч. ч. ч. ч. ч. ч. ч. ч.
	Percent satura- tion	\$\$\$\$\\\ \alpha\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Dissolved oxygen	Parts per infilion	######################################
	Temper- sture ° C.	4.6.1.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.
	Average discharge, cubic feet per second	
	Date	Mar. 8, 1938 Mar. 24, 1938 Mar. 24, 1938 Mar. 24, 1938 Apr. 18, 1938 Apr. 18, 1938 Apr. 18, 1938 May 11, 1938 May 23, 1938 May 11, 1938 May 23, 1938 June 24, 1939 June 25, 1938 Aug. 10, 1938 Aug. 10, 1938 Aug. 20, 1938 Aug. 10, 1938 Aug. 10, 1938 Aug. 10, 1938 Aug. 10, 1938 Aug. 20, 1938 Aug. 21, 1938 Aug. 22, 1938
	Mileage from mouth	LmT 64.00 do
	Sempling point	Todds Fork, Clarksville, Ohio. Do. Do. Do. Do. Do. Do. Do.

		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 7 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		B 0 2 0 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				0 0 0 0 0 0 1 1 1 2 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 6 1 4 6 6 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 1 5 6 6 1 1 1	1 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 9 9 9 9 9 9 7	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 9 9 1 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 1 1		1 1 1 1 1 1 1	6 6 8 1 1 1 1 1 1	1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 1 0 1 0 1	5 0 0 0 1 1 1	1 1 1 6 1 1 1 6 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 1 1 1	2 1 2 4 4 1 1 ,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 0 0 0	0 0 0 0 0 0 0 0 0 0	2 0 6 1 6 6 6 7 1 1		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		: : : : : : : : : : : : : : : : : : :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7.5					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 6 5 2 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	8 8 8 8 8 9 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1		0 0 0 0 0	0 0 0 0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			3 3 6 6 6 6 6 6 6 6		3 2 3 3 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			1.5					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	0 1 0 5 1 1 1				2.0			
36	10	430	430	11,000	93,000	43,000	360	24,000	91	B	240	460	1, 100	93	93	2,400	460	16	93	1,100	240	930	2,400	030	2,400	11,000	11,000	750	38	750	2 400	4, 600	240,000	150,000	240,000	93,000	15,000	9 300	11,000	930	030	930	150	ner	000	-	\$7	27	7.4	7	1, 100
1.7	9 0	9.6	1	5.9	30, 3	18.3	70	45.0	0.0	001	25.	200	200	I. 0	200	7.7	5.6	1.	1.4	2.9	1.2	2.6	2.6	100	7.5	4 4	7:2	4	. 6	10	ic	300	11.	70.3	46.0	38.0	15.7	20.20	90.00	7.07	9.0	900	2.6	7 0	-10	0.4	4.0	70	3.0	2	13.1
82.2	70 K	79.4	33 6	27.2	0	0	32.4	00	50.6	41.8	88.0	91.7	92.4	97.8	87.5	80.3	97.0	96.2	98.6	91.2	86.7	115.6	70.0	84 6	60.09	1 99	31.7	76.97	24.00	2000	59.7	40.7	10.5	20.0			0	90.0	46.0	0.00	200.00	10.0	7 :00	200.1	1.87	63.2	67.0	65.6	69.8	69.1	57.6
7.3	9	200	4 7 5	2.4	0	0	4	64	7.4	00	10.4	12.4	11.0	11.9	10.9	90	12.0	11.3	12.3	10.8	00	11.9	7.1	01	1000	200	0.0	11	1 1	310	200	- 0	000				0 -	10	9 0	40.1	9 2	3.0	1:1		7.1	20.00	6.6	7.0	9.0	10.1	8.4
21.5	9 A C	20.00	22. 5	21.5	20.0	17.0	13.0	7.0	0	000	000	0.0	000	7.0	0.0	13.0	6.5	000	6.0	8.0	15.0	14.5	15.0	100	25.0	20.16	94.5	17:0	95.0	95.50	51.0	91.0	90.5	10.0	17.0	12.6	10.0			9 10	2 4.0	20.0	21.0	22.0	20.5	19. 2	16.5	13.0	4.5	0 \	0
1 1 1 2 0 0		6 0 0 0 0 0 0 0 0 0	1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 0 0 0 0 0 0	4 1 1 1 3 3 9 6 9		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	0 0 0 0 0 0 0	1 1 2 1 0 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33	0 00	0 64	000	10	¥ =	-	4 -	4	46	1	,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)))) ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	f p t p p p p p p p p p p p p p p p p p
23, 1939	E	10	20	11,	30	. 27, 1939	25,	22,	4	14	20,	33	28,	00	16,	24,	28,	8	13,	19.	25.	5	1	25	23,	8	300	10	32,	1	10,	10,	1,-	30,	97,	950	99,	1 4	0,4	92,	3,5	10,	TA,	'Y'	1,5	30,	.77	25,	22,	A,	24,
June	Tulto	Tulo	Allo	Ang	AUE	Sept.	Oct.	NOA	Jan.	Jan.	Feb.	Feb.	Feb.	Mar	Mar	Mar	Mar	Apr.	Apr.	ADr.	ADE.	Mar	Mar	1101	MIST	Mar	Tung	Inne	TITTLE	Tilly	Tuly	A 110	Ang	A 110	2000	Opt	Non-	Ton	- John	- Jahr.	Tulky	Tank	July -	Aug	- Aug	Aug	Sept	Oct.	NOV	Jan.	Jan.
LmTu 39.6	30	CC	do	do	do	-do		op	do	00	LmT u 37.8	qo	qo	dp	op	do	op	do	do	-do	do	do	do.	do.	Q	do	do	00	do		90	do	do	do	do	do	do	900	do do	T.m.T.1 34 9	do original	do	do	do	00	dp	do	do	op	do	dodo
Turtle Creek, above sewage, Leba-	Onio.						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1		Turtle Creek, below Lebanon, Ohio.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			8 6 6 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8															00 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Turtle	non,	100	Do	Do	Do.	Do.	Ô	Do.	Do	D0:	Turtle	000	000	000	D0.	Do.	Do	Do.	Do.	Do	Do.	Do	Do	J.	Do	70	Dog	200	200	A C	J.C.	36	200	200	100	200		100	100	T	100	J. C.	100	D0.	D0.	00	Do.	Ö,	Pool	Do.	Do

TABLE LM-7.—Little Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	
0	Alkalin- ity, parts per million	
	ity, parts per million	
	Вd	0000 000000000000000000000000000000000
Coll-	most probable number per milli- liter	05. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
5-day blo-	oxygen demand, parts per million	0
l oxygen	Percent satura- tion	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Dissolved oxygen	Parts per million	### ##################################
	Temper-	22 82142835500000000000000000000000000000000000
А Уегара	discharge, cubic feet per second	
1	Date	June 23, 1939 June 23, 1939 Aug. 21, 1939 Aug. 21, 1939 Aug. 21, 1939 Aug. 21, 1939 Nov. 22, 1939 Nov. 22, 1939 Nov. 22, 1939 Nov. 22, 1939 Nov. 23, 1939 Apr. 24, 1939 Apr. 26, 1939 Mar. 24, 1939 May 23, 1939 May 23, 1939 June 14, 1939 June 15, 1940 Reb. 23, 1940 Feb. 23, 1940 Feb. 23, 1940 Feb. 23, 1940 May 29, 1940 May 20, 1940 May 20, 1940 May 13, 1940
	Mileage from mouth	T. E.
	Sampling point	Little Miami River, Kings Mills, Ohio. Do. Do. Do. Do. Do. Do. Do.

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
			5 5 1 2 4 6 1 6 1 1 7 1 7 1 8 1 1 1 1 9 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1	202 204 204 176 176 176 177 231 231 231 231 231 231 231 231 231 231
			1	63 60 60 70 120 200 200 200 35 450 450 450 950
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80000	\$	2.00.00 0.00.00	30 30 30 52 52 30 30 52 30 52 30 50 50 50 50 50 50 50 50 50 50 50 50 50
2, 400	1, 100 2, 100 2, 100 36 5 8 9 1 1 1, 100 4, 600	36 22 22 24 1,100 1,100 1,100 36	24427	1.4, 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
4.1	994-14-19 .4 86-16-28-08-8	H. H	90.1.09.09.09.09.09.09.09.09.09.09.09.09.09.	
82.8	84. 125.8 125.8 102.7 102.7 105.8 105.8	90.6 105.0 895.0 102.9 83.4 82.3 127.7	92. 2 88. 7 97. 3 105. 8 89. 1	862.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7.1	7. 01 6.7. 09.44 12.22 15.5 5	7.9 9.7.9 11.9 1.5.0 1.7.7.7 1.0.7 7.9	8.00.11.00. 4.0.00.10.00.00.00.00.00.00.00.00.00.00.0	Broken Br
24.0	8.4.8.8.9.1.0.0.4.0.4.0.0.4.0.0.4.0.0.4.0.0.4.0.4	4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	12.50	00 00 00 00 00 00 00 00 00 00 00 00 00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,455	889 883 933 1,455	12, 100	1, 700 1, 100 1, 100
0 22, 1939	29, 1939 7, 17, 1939 7, 28, 1939 1, 28, 1939 1, 29, 1939 1, 20, 1939 1, 28, 1939	28, 1939 27, 29, 1939 27, 20, 1939 27, 20, 1940 28, 1940 29, 1940 29, 1940 20, 1940 20, 1940 20, 1940 20, 1940	t. 26, 1939 v. 23, 1939 v. 20, 1939 c. 20, 1939	5, 23, 1939 5, 23, 1939 1, 28, 1939 1, 28, 1939 1, 28, 1939 1, 28, 1939 1, 193
June	June July July Sept. Oct. Nov. Jan.	Aug. Sept. Nov. Jan. Jan. June June Juny Aug.	Sept. Nov. Jan. Feb.	Feb. Mar. Mar. Mar. Mar. Mar. Apr. Apr. Apr. Apr. May. May. May. May. May. May. May. May
24.6	do do do do do do do do do do do do do d	do do do do do do do do do 14.2	do do do 13.5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Lm	- Filling	Ling	111111111111111111111111111111111111111	
Little Miami River, above Love-	Jan. 1 Jan. 2 Ja	Do D	Onto Do	Do.
Little	Do		Do	

Table IM-7.—Little Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	
Albolin	ity, parts per million	
Sidan	ity, parts per million	
	Hď	1000 000 000 000 000 000 000 000 000 00
Coli- forms,	most probable number per milli- liter	88 Exc 888 & Book 4044 688 68 68 68 68 68 68 68 68 68 68 68 68
5-day bio-		i
	Percent satura- tion	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
Dissolved oxygen	Parts per million	7. 0212555555755555555555555555555555555555
	Temper-	8 00HHHMMMCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
Average	discharge, cubic feet per second	165 1131 1131 11490 2,440 2,000 2,000 2,000 115 115 1171 1 1
	Date	Aug. 15, 1939 Jan. 18, 1940 Feb. 28, 1940 Feb. 28, 1940 Mer. 28, 1940 Mar. 18, 1940 Mar. 28, 1980 Sept. 28, 1980 Sept. 28, 1980 Nov. 20, 1989 Dec. 15, 1989 Dec. 15, 1989 Dec. 15, 1989 Jun. 25, 1940 Oct. 28, 1980 Nov. 6, 1988 Dec. 15, 1989 Jun. 25, 1940 Jun. 25, 1940
	Mileage from mouth	Lm 13.5. do d
	Sampling point	Little Miami River, below Millord, Dolio. Do. Do. Do. Do. Do. Do. Do. Do. Do.

CCCCC CCCCC CCCCCC CCCCCC CCCCCC CCCCCC	000000 000000
で 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
• ಇಳ್ಳಳುಗೆ ಗಣ್ಣಗಳಿತ್ತಗಳಿತ್ತು ನಡಗಗಗನ್ನಿತಗಳ ಗತ್ತನಾನ ೧೯೩೭ನಿಕ್ಕಾರ ೧೯೩೭ನಿಕ್ಕಾರ	പ്പർത്ത്യില്പ് വിശിർവിപ്പ് പ്രാരാതരക്ഷര്ച്ച വിശാവാഗ്രമ്മ
46.34.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	14.0000000 88.288.10.000000000000000000000000000000
ほみみはぶま てもてもほうならぶましまった まこみでよけられる	で 4 に 4 改 4 込 1 6 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	64 64 64 64 64 64 64 64 64 64 64 64 64 6
4601-	100
29, 1939 21, 1839 3, 1940 3, 1940 3, 1940 3, 1940 3, 1939 31, 1939 26, 1939 26, 1939 27, 1939 31, 1939 31, 1939 31, 1939 31, 1939 31, 1939 31, 1939 31, 1939 31, 1939 31, 1939 32, 1939 33, 1939 34, 1939 36, 1939 37, 1939 38, 1939 38, 1939 39, 1939 31, 1939 31, 1939 31, 1939 32, 1939 33, 1939 34, 1939 36, 1939 37, 1939 38, 1939 38, 1939 38, 1939 39, 1939 31, 1939 31, 1939 31, 1939 31, 1939 32, 1939 33, 1939 34, 1939 36, 1939 37, 1939 38, 1939 38, 1939 38, 1939 39, 1939 31, 1939	31, 1359 15, 1938 26, 1938 27, 1939 21, 1939 31, 1939 30, 1938 31, 1939 32, 1938 32, 1938 33, 1938 36, 1938 36, 1938 37, 1938 38, 1938 38, 1938 39, 1938
Aug. Sept. June June June June June June June June	July Aug. Aug. Sept. Oct. Nov. Jan. June May May May June June June June June June June June
100-100-100-100-100-100-100-100-100-100	12.7
C	65555555 <u>9</u> 5365559
Do D	Batavia, Olno. Do Do Do Do Do Do Do Do Do

Table LM-7.—Little Miami River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

Hardness, parts per million	
Alkalin- lty, parts per million	230 153 123 216 197 197 146
Turbid- ity, parts per million	8888888
Ħď	ひててていてていていていていいない。 はらははなるない はられるのでもできます あっちょう いうさん いっぱん いっぱん いうきょうし
Coli- forms, most probable number per milli- liter	た
5-day bio- chemical oxygen demand, parts per million	ң ಕೃಷ್ಣವಣ್ಯಪ್ರಕೃಷ್ಣವಣ್ಣ
l oxygen Percent satura- tion	8 4 28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Dissolved oxygen Parts per satura- million tion	By Control of the con
Temper-	
Average discharge, cubic feet per second	. 41 . 41 . 41 . 42 . 43 . 44 . 44 . 44 . 44 . 44 . 44
Date	July 15, 1939 July 15, 1939 Aug. 29, 1939 Sept. 29, 1939 Sept. 29, 1939 Jan. 19, 1999 Jan. 29, 1999 Jan. 29, 1999 Jan. 29, 1999 Jan. 20, 1999
Mileage from mouth	LMEf 12.7 do d
Sampling point	Bast Fork Little Miami River at mouth. Do. Do. Do. Do. Do. Do. Do. D

		85 85 87 109 109 122 127 127 220 220 220 220 220 220 220 220 220 2
	170	320 270 270 140 100 100 160 160 160 160 160 160 160 16
		00000011000010000000000000000000000000
44 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6	7,4,600 11,7000 12,7000 11,000 10,000	1,100 93 93 93 93 93 1,100 1,100 2,400 4,600
408084888888888888484448	11.000 11.100 10.0	1440, 14401 14404 14404 14404 14404 14404
888896666664666664986 64466866666446666666 648846666666666		0.000 0.000
- ప్రభాస్త్రాల్లు - ప్రభాస్త్రాల్లు - ప్రభాస్త్రాల్లు - ప్రభాస్త్రాల్లు - ప్రభాస్త్రాల్లు - ప్రభాస్త్రాల్లు - ప్రభాస్త్రాల్లు - ప్రభాస్త్రాలు - ప్రశాస్త్రాలు - ప్రశాస్త్రాల - ప్రశాస్త్రాల - ప్రశాస్త్రాల - ప్రశాస్త్రాల - ప్రశాస్త్రాల - ప్రశాస్త్రాల - ప్రశాస్త్రాల - ప్	1220.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	00111000
#04488848484848888888888888888888888888		4 4 4 4 5 7 7 8 8 8 5 5 5 8 8 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2, 060 1, 050 1,	788 1142 1142 1142 1142 1142 1142 1142 11	8,1750 7740 8,844 8,849 1,849
## ## ## ## ## ## ## ## ## ## ## ## ##		90 0 1 1 1 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Appr. Appr. May	Nover the Parish of French Parish French Par	Feb. Minn. Minn. Minn. Appr. Appr. Appr. Appr. Appr. Minn.
\$		
<u> </u>	ಕ್ಷಕ್ಷಕ್ಷ ಪ್ರಕೃತ ಪ ಪ್ರಕೃತ ಪ್ರಕೃತ	<u> </u>
600000000000000000000000000000000000000		000000000000000000000000000000000000000

KENTUCKY RIVER BASIN

CONTENTS

ContentsSyllabus and conclusions Description	Page 669 671 672
Presentation of field data Presentation of laboratory data Hydrometric data Discussion	673 676 677 678
LIST OF TABLES	
Ky-1.—Cost estimates of remedial measures Ky-2.—Surface-water supplies Ky-3.—Sources of pollution Ky-4.—Industrial wastes Ky-5.—Selected laboratory data Ky-6.—Monthly mean summer flows Ky-7.—Summary of laboratory data	672 674 674 675 676 678 680
LIST OF FIGURES	
Ky-1.—Map—Sources of pollution————————————————————————————————————	671 674 676 676 676
660	

(Face p. 671)

KENTUCKY RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Kentucky River Basin (drainage area 6,940 square miles) comprises parts of the mountains of eastern Kentucky and of the Bluegrass area in the central part of the State. Agriculture and coal mining are the principal industries and the area is predominantly rural. Of the total population of 480,000, only 20 percent is urban. The pollution problems are primarily of local interest and much has been done already toward pollution abatement. About two-thirds of the population of 105,000 served by sewers are connected to treatment plants. The principal waste-producing industry, whisky distilling, accounts for almost 90 percent of the industrial waste load discharged to the streams. All of the distilleries have adopted corrective measures of one kind or another to reduce pollution. Acid mine drainage damages a number of the creeks in the mountainous area, but none of the large streams are acid. Abatement of pollution can be effected by known methods of treatment.

CONCLUSIONS

(1) Although 10 public water supplies are taken from streams below sources of pollution, at only one of them, Irvine, is pollution serious. Correction of this situation will probably require changes in the water system in addition to waste treatment.

(2) A total of 105,000 people are connected to sewers, of which about 65 percent are tributary to treatment plants. Industrial wastes, chiefly from distilleries, have a sewered population equivalent of about 130,000, of which about one-third is connected to municipal

treatment.

(3) The laboratory observations indicate that, except below Irvine and Frankfort, the main Kentucky River is not seriously polluted. Gross pollution followed by rapid recovery is indicated below communities on tributaries. Distilleries were not all in operation at the time of sampling. Acid mine drainage was encountered on certain headwater streams.

(4) Minimum monthly flows of 91.3 and 15.8 cubic feet per second were experienced in 1930 on the main Kentucky River at Frankfort and near Winchester, respectively. Eliminating 1930, the low flows

are 350 and 55 cubic feet per second respectively.

(5) Proposed flood-control reservoir sites studied by the United States Engineer Department are so located as to be of little tangible benefit to pollution control.

(6) Most of the sources of pollution are on tributary streams which are subject to extremely low flows. Secondary treatment of wastes is necessary at these places and has already been installed at many of them. In general, primary treatment will be adequate on the main

(7) The principal sources of industrial wastes are the whisky distilleries. Most of these operate only during the winter months when temperatures are low and stream flows high. Those which operate throughout the year cause the most serious pollution. Rather complete treatment is needed at these plants.

(8) A summary of cost estimates of remedial measures from table Kv-1 follows:

Treatment	Capital cost	Annual cost
Existing Suggested additional Suggested additional	\$1, 370, 000 1, 490, 000	\$155, 000 160, 000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin, are—

Treatment	Capital cost	Annual cost
Primary, all places	\$1, 300, 000 1, 600, 000	\$135, 000 170, 000

Table Ky-1.—Kentucky River Basin: Estimated cost of existing and suggested minimum corrective measures for municipal and industrial wastes, with comparative costs for primary and secondary treatment

	Number of plants				Annual charges		
	Pri- mary	Second- ary	nected to	invest- ment		Operation and main- tenance	Total
Existing sewage treatment	3	10	69, 400	\$1,370,000	\$95,000	\$60,000	\$155,000
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste	3	7	35, 700	670, 000 460, 000	45, 000 25, 000	30,000	75, 000 25, 000
correction				360, 000	55, 000	5,000	60,000
Total				1, 490, 000 1, 300, 000 1, 600, 000 1, 490, 000	125, 000 110, 000 130, 000 125, 000	35, 000 25, 000 40, 000 35, 000	160, 000 135, 000 170, 000 160, 000

DESCRIPTION

The Kentucky River, the largest stream lying wholly within the State of Kentucky, rises in the mountains near the Virginia border, flows in a general northwesterly direction across the State, and enters the Ohio River at Carrollton, Ky. It drains an area of approximately 6,940 square miles.

	Distance above mouth	Drainage area (square miles)
Major tributaries: Eagle Creek Elkhorn Creek Dix River Red River. South Fork Middle Fork North Fork	11. 0 52. 2 118. 1 190. 3 254. 8 258. 6 258. 6	500 440 460 480 736 545 1, 305

	Populations					
	1910	1920	1930	1940		
Larger cities: Lexington	35, 099 10, 465 537 5, 340 5, 420	41, 534 9, 805 4, 348 5, 622 5, 099	45, 736 11, 626 7, 021 6, 495 6, 729	49, 304 11, 492 7, 397 7, 335 6, 734		
Entire basin: Rural Urban	293, 650 63, 792	317, 234 75, 802	341, 608 88, 604	385, 916 96, 053		
Total	357, 442	393, 036	430, 212	481, 969		

The upper half of the basin is mountainous and covered with second growth timber. Coal is mined extensively along the North Fork. Much of this mountain section is isolated and sparsely settled. Hazard is the only urban community in this area.

In contrast, the lower half of the basin includes a large part of the famous Bluegrass section of Kentucky, a very fertile agricultural area. The primary crops are tobacco, corn, and livestock. The distilling

industry is important.

Water uses.—Although the main stream has been canalized for 260 miles by the construction of 14 locks and dams, the navigation facilities are relatively little used. The hydroelectric development on Dix River near its mouth is the only one of any size in the Kentucky Basin. The storage reservoir, known as Lake Herrington, provides Danville with a dependable source of water supply and is widely used for boating and fishing. The Kentucky River and many of its tributaries are used extensively for swimming, boating, and fishing.

PRESENTATION OF FIELD DATA

Figure Ky-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure Ky-2 shows similar data and, in addition, the location of water-supply intakes from streams below sources of pollution and laboratory data on coliform organisms, dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Of the 38 public water supplies in the basin, 19 are from underground sources and 19 are wholly or in part from surface sources. The 19 underground supplies serve only about 18,200 people, whereas the surface supplies serve 132,800 people. Underground water is generally available in very limited quantities and the chemical quality is usually poor although in the Bluegrass section there are a number of springs which yield moderately large

quantities of water of satisfactory chemical quality. Table Ky-2 shows data on the surface supplies of the basin. In addition to these supplies, Winchester, Ky., in the Licking Basin, maintains an emergency intake in the Kentucky River.

Table Ky-2.—Kentucky River Basin: Surface water supplies

Municipality	Source	Mile 1	Treat- ment 3	Popula- tion served	Con- sumption (million gallons per day)
	Supplies below con	nmunity	sewer out	falls	
Frankfort Versailles Lexington Irvine Pryse Beattyville Jackson Hazard Stamping Ground Danville	Kentucky River Spring-well—Kentucky River s Impounded—Kentucky River s Kentucky River do do North Fork Kentucky River do North Fork Kentucky River Total	67. 5 89 167 218. 6 226. 8 255 305. 5 361 86 149	FD FD CD CD FD FD FD	12, 700 2, 200 66, 500 3, 800 100 600 1, 000 400 10, 000	1. 51 0. 15 5. 60 0. 17 0. 01 0. 02 0. 05 0. 80 0. 01 0. 60
	Other sur	rface sup	plies		
Stanford		87 311	FD FD FD FD FD FD FD FD	400 600 1,000 800 1,400 1,700 1,300 3,700 8,600	0. 01 0. 02 0. 03 0. 05 0. 05 0. 06 0. 06 0. 27 0. 80
	s			113, 300 19, 500	8. 92 1. 35
Total surface water sur	oplies			132, 800	10. 27

Miles above mouth of Kentucky River.
 F = Coagulated, settled, filtered; D = Chlorinated; C = Coagulated, settled.
 Emergency intakes in Kentucky River.

Sewerage.—Table Ky-3 shows the sewered population at each of the more important sources of pollution in the basin. Of the 105,300 people connected to sewers, about two-thirds are connected to sewage treatment plants. Ten secondary treatment plants serve 68,200 people, while the three primary treatment plants serve 1,200 people.

Table Ky-3.—Kentucky River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream	Miles above mouth of Ken-	Popula- tion con- nected to	Treatment	Sewered popula tion equivalent (biochemical oxy gen demand)	
		tucky River	sewers		Un- treated	Dis- charged
Frankfort	Kentucky Riverdodo dodoNorth fork of Kentucky	66 84 218 227 305	3, 300 100 1, 300	Nonedodo.	30, 600 4, 700 3, 300 1, 800 1, 300	30, 600 4, 700 3, 300 1, 800 1, 300
Hazard Whitesburg	River. do	360 404	6, 700 1, 700	do	6, 700 1, 700	6, 700 1, 700

Table Ky-3.—Kentucky River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)—Continued.

Municipality	Stream	Miles above mouth of Ken-	Popula- tion con- nected	Treatment	Sewered popula- tion equivalent (biochemical oxygen demand)	
		tucky River	to sewers		Un- treated	Dis- charged
Owenton 1 Forks of Elkhorn	Stephens Creek	47	800	Primary	1,000 4,900	4, 900
Stamping Ground	Locust Fork	86			11, 500	11, 500
Georgetown	North Elkhorn Creek	104	4,800	None	10, 300	10, 300
Midway 1	Lees Branch-South Elkhorn Creek.	87	600	Secondary	4, 200	3, 700
Lexington	Town Branch of South Elk- horn Creek.	113	46, 200	do	90, 600	23, 800
Millville	Glenns Creek	72		None	30, 300	30, 300
Versailles	do	84	2, 100	Secondary	2, 100	300
Lawrenceburg	Bailey's Run	87			2,900	2, 900
Burgin	Dowling Branch	128			2, 500	2, 500
Danville 1	Clarks Run	155	5, 100		5, 300	1,000
Lancaster	Dix River tributary	166	1,300	do	1,300	200
Stanford 1	St. Asaph Creek	175	1, 200	do	1,500	200
Nicholasville 1	Town branch of Jessamine Creek.	141	2,000	do	2, 900	1, 200
Berea 1	Brush Fork of Silver Creek	189	3, 300	do	3, 400	500
Richmond	Dreaming Creek	190	5, 700	do	6, 300	1,400
McRoberts	Wrights Fork	423	2,000	None	2,000	2,000
7 smaller sources			3,600	Various	3, 600	2, 900
Total			105, 300		236, 700	150, 400

¹ Treatment plant under construction at time of laboratory survey.

Industrial wastes.—Of the 23 industrial plants which are not connected to municipal treatment plants, 9 distilleries account for almost 90 percent of the total waste load. Table Ky-4 shows data on industrial waste-producing plants. All but 500 of the 32,900 population equivalent discharged to municipal treatment plants is at Lexington.

Table Ky-4.—Kentucky River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	Number	Industrial pos		At least minor	Estimated sewered population
Industry	of plants	Municipal sewers	Private outlets	corrective measures taken	equivalent (biochemical oxygen demand)
Canning. Distilling. Meat. Milk Milk Miscellaneous.	3 9 6 3 2	2 0 1 1 0	1 9 5 2 2	2 9 2 1 1	6, 300 86, 200 1, 100 1, 000 3, 900
Waste unconnected, municipal treatment. Waste connected to municipal treatment	23	4	19	15	98, 500 32, 900
Total industrial waste in basin					131, 400

All of the distilleries have taken steps of one sort or another to reduce the pollutional significance of their wastes. The measures range from cattle-feeding, ponding, and broad irrigation to evaporation of the distillery slop. The fact that most of the companies operate only during the winter months when temperatures are low and stream flows usually high helps to reduce the seriousness of pollution from these sources.

Acid mine drainage causes problems of primarily local importance in the area drained by the North Fork. Records compiled while the mine-scaling program was active in Kentucky indicate 177 active, 62 marginal, and 416 abandoned coal mines in seven counties. One hundred and thirty-seven abandoned mines have been scaled. Mine scaling records indicate that water containing a total of 80 tons of mine acid daily flows into tributary streams in this mining area. Some progress has been made in reducing acid mine drainage through scaling 137 abandoned coal mines. The relatively high natural alkalinity of the natural run-off helps to reduce the damage by mine drainage.

PRESENTATION OF LABORATORY DATA

The laboratory observations for the Kentucky River Basin are summarized in table Ky-7. Selected data on the main stream and tributaries are in table Ky-5. Except for the observations at Gratz and Carrollton, all of the results were obtained by a mobile laboratory unit operating in the basin during September, October, and November 1939 and are representative of the low-flow conditions which prevailed in the basin at that time. The Gratz and Carrollton samples were collected over a period of several months.

Table Ky-5.—Kentucky River Basin: Selected laboratory data

River	Ken-	Ken-	Ken-	Ken-	Ken-	Ken-	Ken-
	tucky	tucky	tucky	tucky	tucky	tucky	tucky
Location	Above	Below	Below	Above	Below	At	Mouth,
	Beatty-	Beatty-	Irvine	Frank-	Frank-	Gratz	Carroll-
River miles above mouth of	ville 255	ville 254.3	216.5	fort 67	fort 62	29	ton 0.2
Kentucky.	200	202.0	210.0	01	02	20	0.2
Period, 1939	Sept. 29	Sept. 29	Oct. 3	Sept. 27	Sept. 27	June 1-15	Aug. 4-24
	and			and	and		
	Oct. 3			Oct. 5	Oct. 5		
Number of samples Flow in cubic feet per second:	2	1	1	2	2	3	4
Sampling days.	148	148	206	443	443	2, 500	2, 875
Minimum month	9	9	15	91	91		
Water temperature, ° C	22. 5	24. 5	21.5	22. 0	22. 0	24.0	25. 9
Coliforms, per milliliter	125	9	2, 400	23	167	19	2
Dissolved oxygen, parts per	0.0	. 0 14	F 0	7.7	9.0	P P	0.5
million. Biochemical oxygen demand,	6. 9	6. 7	5.8	7.7	3.8	7.7	6. 3
5-day, parts per million	1.8	2. 2	1.6	1.9	2.2	1.5	1. (
o day, paras por milionalizada	2.0		2.0	2.0		1	2.1
				1	1	1	
River	North	North	Walnut.	Clark	Town	North	North
	Fork	Fork	Meadow		Branch	Fork,	Fork,
M		- 1	Branch		-	Elkhorn	Elkhorn
Location	Above	Below	Below	Below	Below Lexing-	Above George-	Below
	Hazard	Hazard	Berea	Danvile	ton.	town	George- town
River miles above-					6011	TOWIL	TOWII
Confluence with Kentucky	105	104	42	36	61	40	38
Mouth of Kentucky	360.5	359.5	188.5	154	113	92	90
Period, 1939	October	Oct. 26	Sept. 29-	Sept. 28-	Sept. 25-	Sept. 26	Oct. 13-
			Oct. 10	Oct. 9	Oct. 10	and	
						Oct. 5	
Number of samples	3	1	3	3	3	2	
Flow in cubic feet per second:							
Sampling days	3.0	4.9					
Water temperature, ° C	18.7	23. 5	20	20. 9	21.8	18. 5	14.
		110,000	36, 800	60, 000	4, 500	25	24, 000
Coliforms, per milliliter	110	220,000					
Coliforms, per milliliter Dissolved oxygen, parts per			0.0	0.4	1 2	7.0	0
Coliforms, per milliliter Dissolved oxygen, parts per million	9.1	0	0.6	0. 4	4.3	7. 2	0
Coliforms, per milliliter Dissolved oxygen, parts per			0. 6 85. 2	0. 4	4.3	7. 2	0 28.

Figures Ky-3, Ky-4, and Ky-5 show by means of symbols the results of the coliform, dissolved oxygen, and oxygen demand determinations at the various sampling points in the basin. In each case the results shown for Gratz and Carrollton represent the most unfavorable monthly averages of the observations at these points made over the several-month sampling period. At all other points the results represent the averages of from one to three samples collected over short periods of less than 1 month by the mobile laboratory unit. The full effects of distillery wastes on the streams in this basin were not observed at the time of this survey as not all of the plants were in operation.

The results of these laboratory observations indicate that except for two stretches below Irvine and Frankfort the main Kentucky River is not seriously polluted. Gross pollution, however, seems to be the rule below most of the communities investigated along the tributaries. The coliform observations, in general, corroborate the dissolved oxygen and oxygen demand results except on the North Fork above Hazard where the coliforms tend to show the worst conditions. A tendency toward fairly rapid recovery below the zones of pollution is indicated by well-marked coliform and oxygen

demand reductions and by dissolved oxygen recoveries.

Acid mine wastes were encountered in the area above Hazard. Irishman Creek, Millstone Creek, Thornton Creek, and Yellow Creek were found to be acid, with pH values ranging from 2.8 to 4.9 and phenolphthalein acidities from 18 to over 900 parts per million.

Biological summary.—The flora and fauna of the Kentucky River are low; less than 2,000 parts per million except when a "bloom" of Pandorina appeared at Carrollton. The low plankton volume is indication of a clean stream. Good fishing is reported from Carrollton to Gratz.

HYDROMETRIC DATA

Sixteen stream gaging stations have been operated in the basin at various times, only four of which are currently in operation. These four are all on the Kentucky River. All of the tributary streams are subject to extremely low flows, although discharge records are too short to indicate probable low flows with any degree of certainty. Table Ky-6 shows monthly mean flows during some of the low-flow years.

Table Ky-6.—Kentucky River Basin: Monthly mean summer flows for years in which low summer flows have occurred

River	Kentucky At Frank- fort ¹ 65 5, 400 1925-40	Kentucky Near Win- chester 176 3, 990 1909-40
Year	1930	1930
June	226 121 149 2 91. 3	234 48. 8 34. 2 2 15. 8
Year	1936	1932
June cubic feet per second July do August do September do	544 524 350 576	1, 060 3, 690 1, 490 55. 2
Year	1929	1936
Junecubic feet per second Julydo Augustdo Septemberdo	2, 460 3, 890 478 1, 040	116 138 80. 3 246

¹ The accuracy of low-flow records at this station is poor.

² Minimum month.

Low-flow regulation.—A number of possible reservoir sites on the Kentucky River and its tributaries have been surveyed by the United States Engineer Department. These studies indicate that the Jessamine Reservoir on the main stream and the Booneville Reservoir on the South Fork are the most nearly satisfactory for flood control and allied development. Low-flow regulation by these reservoirs would benefit the lower 12 miles of the South Fork and the entire Kentucky River.

Such low-flow regulation would have little tangible value since it would not eliminate the need for primary treatment at the communities along the streams affected and primary treatment is considered

adequate under present uncontrolled flow conditions.

DISCUSSION

The rapidity with which the streams of the Kentucky Basin recover from the effects of pollution and the lack of intensive urban and industrial development make the pollution problems of the Kentucky Basin largely a series of local problems. Most of the worst conditions

have been dealt with.

Of the cities without treatment plants, Frankfort is the largest. The Kentucky River at this point has a drainage area of 5,400 square miles, and flows of less than 100 cubic feet per second have been recorded. No public water supplies are taken from the Kentucky below Frankfort, and the lower part of the river, at some distance below Frankfort, is regarded as a good fishing stream. Primary treatment of the sewage and industrial wastes (except distillery wastes) should be sufficient. More complete treatment of the distillery waste is needed. This can be effected by evaporation of the slop plus lesser improvement at small plants.

At Irvine and Ravenna the public water supply is taken from the Kentucky River below the point of entrance of Ravenna's sewage. The water is not filtered. Primary treatment of the sewage from these places should be sufficient to maintain an excellent oxygen balance in the stream. Changes in the water supply intake location or improved methods of treatment, or both, will be necessary to protect the water supply.

At Hazard, Georgetown, Whitesburg, McRoberts, and Jackson complete treatment appears justified because of the extremely low

flows in the receiving streams.

The cost of these remedial measures and of other necessary pollution abatement measures is summarized in table Ky-1.

Table Ky-7.—Kentucky River Basin: Ohio River pollution survey laboratory data—Summary of individual results

)(,		(HIL	, T/	IVER	FOLLUI	1014	COL	NIN	71.1			
		Hardness, parts per million		0 2 0 3 0 2 6 0 7 1 1 1 1 1 1 1 1 1 1 1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	260	236	5 0 3 1 7 1 6 4 8 3 9 1 9 1 1 0 1 0	0 d 1 l 0 E 5 l 6 l 6 l 7 l 8 l 8 l 1 l 8 l 1 l	354	328	9 9 9 8 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	349	316
The second secon	A Health	ity, parts per million	527	540	441	465 453 484	484 490 57 73 269	379	359	196 256	231	186	196 152 191	203
	T. C.	ity, parts per million	ന	00 41	4	60 00 to	20 4 8 4 T	0-1	₩ 4n	0	10	80	404	P-10
		Hq	7.8	v.∞ ∞ w	8. 4	00,00,00, 4,00,4,	88,17,17, 40040	€. 00.00	00.1.	2.50	3.6	7.9	2000	7.2
	Colf-	most probable number per milli- liter	4	36	240	1, 100 240 240	2, 400 430 240 460 240	150	460	240	(1)	6 (1)	240 43 460	24,000
-	5-day blo-	oxygen dernand, parts per million	00	1.2	1.3	4.08	447080	 	1.2	1.0	1.1	3.9	1.2	800
		Percent satura- tion	47.4	47.4	91.5	87.4 85.8 91.5	87.7 82.7 82.2 76.7	40.4	68. 5 96. 6	82.5	79.6	86.8	63.0 92.1 45.8	71.4
	Dissolved oxygen	Parts per million	6.0	, es 1. 75	10.1	9.0	8.0.0.8.8 0.7.4.4.8	10.7	7.1	8.1	7.8	₩ 00 00 05	6.3	8.08.
		Temper-	13.5	12.5	11.0	14.5 10.0 9.5	15.0 9.5 14.5 12.0	13.5	14.0	16.5	16.5	16.0	16.0	16.5
	Average	discharge, cubic feet per second		1 1	**	4 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	(1)	233	88
		Date	. 18, 1939	. 25, 1939	. 18, 1939	. 25, 1939 . 31, 1939 . 18, 1939	. 25, 1939 . 31, 1939 . 18, 1939 . 25, 1939 . 18, 1939	. 25, 1939	. 25, 1939	. 26, 1939	. 26, 1939	. 26, 1939	. 26, 1939 7. 2, 1939 . 19, 1939	. 26, 1939
			Oct.	Oet.	Ort.	Oct.	00000	Oet.	Oet.	Oet.	Oet.	Oct.	Not.	Nov.
		Mileage from mouth	KyNfBW 424	Kynfbw 423	KyNfBW 422	do do Kynib W 421	do do Kyniby 420 Kynib 419.8	do KyníBP 419	Kynf 416	KyNf 415	KynfT 414	do. Kynf 405	do Kyní 404	do
		Sampling point	Wright Fork, above water plant,	McRoberts, Ay. Do Wright Fork, at water plant, McRob-	wright Fork, above Shea Fork,	McKoberts, K.y. Do Wright Fork, upper edge Fleming,	Po Do Yonts Fork, above Neon, Ky Do Gore, above Potters Fork,	Neon, Ky. Do. Potters Fork, mouth, Neon Junc-	tion, Ky. Do North Fork Kentucky River, above	Boone Fork, Kona, Ky. Do North Fork Kentucky River, above	Thornton Creek, Thornton, ky. Do Thornton Creek, mouth, Thornton,	North Fork Kentucky River, upper	edge Whitesburg, k.y. Do Do North Fork Kentucky River, lower	edge Whitesburg, Ky. Do

			OHI	O RIVE	R POL	LUT	ION	CON	TROL	1		
	498	3	115		929	197	9 6 8 2 9 9 1 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 6 0 1 0 2 0 9 0 9 0 9 1 1 1 0 1 0	195	† 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 2 2 1 1 1	296
13	20 68 69 123 123	126 50 52 75	87 67 15	11	14 17 96	75	74	88 88	88 88 88	128 246	26	237
60	047800	02 4 8 8 8	145 8 4	∞000°	8444	27	35	15	15 15 17	80	13	110
6.8	807177	7.7.7.7.	7.3	044444 10880		8.1	7.6	7.6	9.7.	7.4	7.3	7.4
46	240 240 43 240 240 240	460	240 240	555	(E)	43	93	9	240 43 150	24,000	4,600	110,000
9.		.121.	1.9	Lost 6.8	Lost 1.4	1.9	1.5	2.2	11.20	87.0	00 00	106
115.0	888.1 889.7 102.3	84. 3 80. 7 63. 1 58. 9	40.9 69.2 91.2		106.5 90.2 65.2 89.9	86.9	85.0	89.2	103.6 87.0 68.8	44.4	28. 2	0
11.1	8.4 10.1 8.1 11.6 10.4	6.5.8.7	3.9 8.9 10.7	12.1 11.8 5.5 5.1	14.2 10.1 6.2 7.5	7.0	5.6	9.0	7.8.9.	0.0	63	0
17.5	19.0 14.5 20.0 4.5 15.0	20.0 11.5 19.5 10.5	18.0 5.0 8.5	22.1.5	10.55	15.5	20.0	21.0	19.0	10.0	80	23.5
	4	444	6 1 0 3 4 0 8 1 1 4 1 3 6 2 4 6 1 5 6 1 5 6 1 7 6 1 7 7 8 1 8 8 1 8 8	(5 5 5 6 1 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ග හ	00 00 00	ကက	4	IQ
20, 1939	26, 1939 20, 1939 27, 1939 20, 1939	27, 1939 20, 1939 27, 1939 20, 1939	27, 1939 2, 1939 31, 1939	37,28	20, 1939 27, 1939 27, 1939 25, 1939	31, 1939 26, 1939	31, 1939 23, 1939	27, 1939 16, 1939	23, 1939 25, 1939 16, 1930	23, 1939 23, 1939	16, 1939	26, 1939
Oct.	O'N'O O'E	Oct.	Nov.	COOONE	Nov.	Oet.	Oet.	Oct.	Oct.	Oct.	Oct.	Oct.
Kynis 402	do Kynír 390. do Kyní 388	do Kynil 380.5 do Kynil 379	do. Kyníci 384.	do RyNfCY 380	do KynfC 368. do Kynf 363.	do KyNf 362	do KyNf 361	do KyNf 360.5	do do Kynf 360.2	do KyNf 360	KyNf 359.8	KyNf 359.5.
Sandlick Creek, 100 yards above	Rockhouse Creek, at mouth Do Do North Fork Kentucky River, above	Dine Fork Creek, mouth, Uvah, Ky. Big Leatherwood Creek, at mouth,	Cornettsville, K.y. Do Do Trishman Creek, 4½ miles above	Sassairas, K.y. Do Do Yellow Creek, mouth, Sassafras, K.y. Do	Do Car Fork, mouth, Jeff, Ky Do North Fork, Kentucky River, above	North Fork Kentucky River, at	North Fork Kentucky River, in pool	North Fork Kentucky River, above	North Fork Kentucky River, mid-	North Fork Kentucky River, below	North Fork Kentucky River, 100 yards below last sewage, Hazard,	North Fork Kentucky River, 712 feet below last sewage, Hazard, Ky.

Table Kr-7.—Kentucky River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	245	6 6 0 1 1 1 1 1 1 7 1 1 1 1 1 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1	180	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	116	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	183	2 0 5 1 8 0 5 9 3 1 4 1 4 2 7 1	2	1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
A 11-0-11-0-11-0-11-0-11-0-11-0-11-0-11-	ity, parts per million	202	60 78 82 82	90	46	53 201 79	7.1	129	134	32	63	45	56 187 193	76	7.0
- Control of the cont	ity, parts per million	5	173	14	14	18	16	35	40	6	28 13	27	12	70	2
	Hď	7.9	2.7.7.	4.5.	2.7.	1.7.7.	7.5	7.6	7.8	7:1	7.7.	7.7.	7.1	7.2	7.3
Coli- forms,	most probable number per milli- liter	240	1,100	O 41	240	23 110	6	4	41-	240	6 (1)	8	110 43 240	88	15
5-day blo-	oxygen demand, parts per million	2.1	2.0	1.0	1.8	1.9	1.5	3.2	ස ස ය	2. 1	1.5	1.7	63	1.9	5.7
l oxygen	Percent satura- tion	81.1	78.2 100.7 112.5	99.3	79.3 88.9	79.3 101.4 84.1	94.3	72.7	88.8	82.0 89.0	69.7	77.9	53.1	39.0	44.4
Dissolved oxygen	Parts per million	9.2	7.4 12.4 11.0	9.5	00 00	9.0.6	10.3	0.0	9.2	20.00	4.80	8.0	81 O 80	4.5	4.9
	Temper- ature, ° C.	10.0	18.5 6.5 17.0	18.0	11.5	11.0 9.5 12.5	11.5	11.5	13.5	14.0	20.0	14.5	10.00	9.0	11.5
Average	discharge, cubic feet per second	1-	011	9	2 1 6 1 7 1 9 2 1 1 1 1 1 1	4	15	15	MC 1	148	148		6 5 3 6 1 6 6 1 7 9 1 6 0 1 6 0 1 8 0 0 1 8 0 0 1 8 0 0 2 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f 1 2 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	Date	Oct. 23, 1939	Oct. 27, 1939 Nov. 2, 1939 Oct. 17, 1939	Oct. 24, 1939 Oct. 17, 1939	Oct. 24, 1939 Oct. 17, 1939	Oct. 24, 1939 Nov. 3, 1939 Oct. 24, 1939	Oct. 17, 1939	Oct. 17, 1939	Oct. 24, 1939 Oct. 16, 1939	Oct. 23, 1939 Sept. 29, 1939	Oct. 3, 1939 Oct. 16, 1939	Oct. 23, 1939 Oct. 16, 1939	Oct. 23, 1939 Nov. 3, 1939 Nov. 3, 1939	Oct. 16, 1939	Oct. 23, 1939
	Mileage from mouth	KyNfLe 358	do do Kynf 338.	KyNfT 316	do KynfQ 310	do do KyNf 306	KyNf 305.5	KyNf 304.7	do KyMf 328.	do Ky 255	do. KysfR	do All S	do do KySfG 310.8	KySfG 310.6.	do
	Sampling point	Lott Creek, mouth, 3 miles below	North Fork Kentucky River, bridge	Troublesome Creek, mouth, Haddix,	Quicksand Creek, mouth, Quick-	sand, ky. Do Do North Fork, Kentucky River, 1 mile	Shove Jackson, Ky. North Fork, Kentucky, River upper	North Fork, Kentucky River, M mile helow last sewage. Jackson. Kv	Middle Fork, Kentucky River, be-	Kentucky River, upper edge, Beatty-	Red Bird Creek, bridge, Big Creek,	Goose Creek, 14 mile above Man-	Goose Creek, 50 yards below last	Goose Creek, 100 yards below last	Sewer, manchester.

					,	OFFI		ILL V	LI	FU	LLUIIC)IN CC	MINC	111			UOE
126	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	118	B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	113	120	110		6 9 9 1 1 1	202	197	95 104 151	168	119	283	226 212	174	
22	28	61	43	52	85.55	29	24	145	154	163	60 61 272 272	202 252 86	333	343 378 192	195	150	
16	0 0 0 0 0 0 0	15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11	117	10		1	8	25	10 10	143 67 12	15	15	10000	1.04	
7.3	7.2	7.2	7.2	7.0	7.0		7.2	7.6	7.5	5.7.	4.2.7.7.	7.7.	1.0.7.	7.7.7.	7.7.7.	0.00	•
23	6	16	6	4.01	240 43 430	2, 400	G	150	240	93	(1) 240 110, 000	360 150 4	(1) 1 81	2, 400	443	15	-
1.6	2.2	1.0	4.6	4.0.	20.2		1.9	6.8	5.0	1.1	0 1.7 3.8 151	93 11.5 1.8	71.9	10.4	1000 1000	1.5	-
78.5	79.4	69.4	8.08	52.4	57.8		68.1	8.69	54. 6	38.3	74. 9 74. 5 49. 8	18.1	91.7	63.23	53.9 28.1 62.6	90.3 79.2 1.22.1	-
7.0	6.7	6.1	7.7	7.4	10 10 10 10 10 10		6.7	6.6	6.3	60 00 60 00	1.7. 6.4. 0	1.7	00 00 H	6.120	00 00 00 00 00	9.7.6	-
21.5	24.5	22. 5	24. 5	21.5	20.5		25.0	18.5	9.5	18.5	18. 5 21. 0 20. 0 22. 5	18. 5 19. 0 23. 0	19. 5 22. 0 18. 5	12.5 18.0 17.5	18.5	13.0 18.0 22.0	-
148	148	148	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. I	206	208	1 0 1 5 0 7 8		1 1 1 1 1 2 1 2 3 3	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	208	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1	8 1 1 5 6 8 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
12, 1939	. 29, 1939	3, 1939	. 29, 1939	3, 1939	3, 1939 12, 1939 12, 1939		. 29, 1939	. 25, 1939	2, 1939	10, 1939	2, 1939 10, 1939 10, 1939 . 29, 1939	2, 1939 10, 1939 28, 1939	4, 1939 9, 1939 25, 1939	4, 1939 9, 1939 . 25, 1939	4, 1939 9, 1939 . 28, 1939	4, 1939 9, 1939 28, 1939	
Oct.	Sept	Oct.	Sept.	Oct. Sept	Coet	Oct.	Sept.	Sept.	Oct.	Oct. Sept.	Oct. Oct. Sept	Oct. Sept.	Oct. Sept.	Oct. Sept.	Oct. Sept	Oct. Sept	
Ky 254.7	Ky 254.3	Ky 253.8	Ку 227	do Ky 222	do do Kv 217	Ky 216.5	Ky 208	KyOD 190	KyOD 189.5	do Ky 170	do kysi 189 KyPW 188.5	do Ky 138	do KyJT 141	do do KyJT 138	do. KyJ 134	do do KyDLS 174	
Kentucky River, 300 feet below last	Sewer, Beautyvine. Kentucky River, ½ mile below last	Kenticky River, 1 mile below	Entucky River, % mile above Pryse,	e Cow Creek,	BOOVE REVENUE, K.Y. DO DO NO Kentucky River 50 vards below	last sewage, Irvine, Ky. Kentucky River, 100 yards below new	Kentucky River, 10 miles below	Dreaming Creek, 1/8 mile below	Dreaming Creek, 1 mile below Rich-	Rentucky River Bridge, at Clay	Ferry, K.y. Do. Silver Creek, below Berea, K.y. Walnut Meadow Branch, 34 mile be-	low outlet of Berea Coulege. Do. Kentucky River Bridge, on Route	No. Zi, Camp Netson, Ky, Do. Tewn Branch, ½ , mile below	ille, Ky. ch, 3 miles below Nicholas-	John John John John John John John John	more, k.y. Do. St. Asaph Creek, ½ mile below last	sewer, Stanford, Ky. 1 Less than 1.

1 Less than 1.

TABLE KY-7.-Kentucky River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Hardness, parts per million	232	281	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	241	248	8 8 8 1 1 1 1 1	209	23.4	127	131	130	259 406	128	206 268 268
	Alkalin- ity, parts per million	230	359	178	167	199	318	256 374	307 335 86	91	104	238	246 311 86	80	192
	Turbid- ity, parts per million	16	13	10	0	10	88	121	68 270 15	323	845 113	360	230 185 18	25	14
	Hd	7.6	7.6	7.5	7.6	7.0	7.6	7.7.7	1.1.% 1.0.%	7.9	1,1,1,	7.6	7.0	4.00	80 F. 0 80
Coli-	most probable number per milli- liter	460	83	240	43	1, 100	24,000	110,000 46,000 2,400	2, 400 11, 000 43	40	240 93 240	460	240,000 240,000	240	46 24,000
5-day bio-	chemical oxygen demand, parts per million	3.6	4.8	60,	1.4	6.2	30.8	26.1 15.0 34.2	17.8	63.7	श.च.ध. धाळच	107.4	183.0 389.0 2.6	0.5	60 60 60 60 60 60
1 oxygen	Percent satura- tion	37.5	15.0	64.8	64.2	42.0	0	12.8 35.6	48.2 17.4 102.5	73.4	68.0 66.5 76.3	56.9	39.4	46.5	80° 0
Dissolved oxygen	Parts per million	4.0	1.4	5.1	6.7	4.0	0	0-16	4:0:0	7.8	වෙනව වෙනව	20° C	0 0%	4.00	0.0
	Temper- ature,° C.	13.0	17.5	19.0	13.5	17.5	22.5	17.5 22.0 24.5	24.0	23.0	19.0 15.0 23.5	20.0	20.0 16.5 23.5	19.0	18.0
Average	discharge, cubic feet per second	0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	1 1 3 6 1 2 8 9 8 9 9 8 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	331	396	331	396	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Date	Oct. 4, 1939	Oct. 9, 1939	Sept. 28, 1939	Oct. 4, 1939	Oct. 9, 1939	Sept. 28, 1939	Oct. 4, 1939 Oct. 9, 1939 Sept. 28, 1939	Oct. 4, 1939 Oct. 9, 1939 Sept. 27, 1939	Oct. 5, 1939 Sept. 27, 1939	Oct. 5, 1939 Oct. 13, 1939 Sept. 27, 1939	Oct. 5, 1939 Sept. 27, 1939	Oct. 5, 1939 Oct. 13, 1939 Sept. 27, 1939	Oct. 5, 1939 Sept. 26, 1939	Oct. 5, 1939 Oct. 13, 1939
	Mileage from mouth	KyDLS 174	KyDLS 173	KyDT 162	KyDT 161.5	KyDT 161	KyDCr 154	do do KyDT 154	do- Ky 67-	do. КуВ 68.	do TXy 65.	KyP 65.	do. Ky 62.	KyEINf 92	KyElNf 90
	Sampling point	St. Asaph Creek, 1/2 mile below dis-	St. Asaph Creek, 1 mile below Stan-	Town Branch Creek, below Lan-	Town Branch, ½ mile below Lan-	Town Franch, I mile below Lan-	Clark Run, 1 mile below Danville, Kv.	Do. Town Branch, 1 mile below Danville, K.v.	Do- Neutucky River, 1 mile above Frank- fort. Ky	Do. Benson Creek, I mile above Frank-fort. Ky	Do Do Kentucky River, Lock No. 4, Frank- fort. Key	Do. Penitentiary Run, at Kentucky River below Frankforf, K.v.	Do Nentucky River, 4 miles below Frankfort K.	Do Sorth Elkhorn Creek, corporation	Nor'h Elkhom Creek, 100 yards be'ow last sewage outlet, George- lown, Ky.

				OIIIO	TOTAT	are T	OL.	LUL	.101	, ,	OTA	TIL	OL					000
	239	184 209	188	152	213	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	199	2 8 4 5 9 3 9 3 9 1 1 1 1 1 1 1 1	0 1 0 1 0 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			9 5 1 1 1 E 1 1 1 E 1 1 E 1 E 1 E 1 E 1 E			8 6 6 6 1 1 1
250	254	140	147 205 98	70 98 157 180	149	205	213	57	71	£ 4.0	87.8	286	1.1.	831	69	48	63	69
13	47	12	110	8 28 162	8 8 8	1-4	16	2000	140	95	45	285	102	15	320	350	280	750
7.8	7.7	7.4	996	7:77			00		12.7.1								1.00 00 L	
73	23	4,300	4,600	460 240 11, 000 460	98 240	153	%	\$ 5% Q	110	28	13 Ann	200		(1)	00	93.5	23	463
7.1	26.9	20.3	3.50	2.0.0 4.4.0 0.0		60 60 1 - 10	e i i i	i . L	1001-	91.	о— о 	- 01 -	1.5	1.3	1.2	0i ii ii 1- 4 4	1.26	€ €3
19.8	50.5	107. 2	70.2	47. 0 24. 0 43. 6 56. 6												86.7 95.4 94.8	92.4	
90	44	2.0	6.6	4.1.4.4		9.3	12.3	6.1.1 1-4×	11.4	12.2	000	n 1 − 1 − c co 1 −	8.7.	13.3	12.6	10.6	10.8	
19.5	19.0	20.5	18.4 22.5 29.5	24.5 27.5 20.5 24.0												0.00		
2 6 8 8 8 8 8 7 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			[1			1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	4 1 1 1 1 1 1 2 1 3 4 7 4 7 4 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	62, 700		
Sept. 26, 1939	5, 1939 t. 26, 1939	5, 1939	2, 1939 10, 1939 1, 26, 1939	2, 1939 10, 1939 13, 1939 t. 28, 1939	. 26,	26,	1000		29,	24,1		26, 1	19,1	13.05	20.1	8, 1940 8, 1940		31,
Sep	Oct.	Oet. Sept	Oct. Sept	Oct. Oct. Sept	Oct. Sept	Oet. Sept	Mai	Mar.	Mar Apr.	Apr	May	Mai	June	Feb	Feb.	Mar	Mar.	Mia
KyElNf 89	KyEINIL 75	RyElsfTb 113.	do do KyElSf 95	do do KyElSíTb 95	RyEISTL 82	KyElSf 67	do Ky 29		do	do do	do	do	do	do	do	do do	5 i	op.
North Elkhorn Creek, 1 mile below	Doeust Creek, 15 mile below Stamp-	ine Ground. Do Town Branch Creek, 1 mile below	Lewington, K.Y. Jo. Dio. South Fork, Elkhorn Creek, 14 mile Pelow Narcotte Farm disposal,	Levington, K.y. Do Do Do Town Branch Creek, 1 mile below	Versailles, Ky. 100 Lee Branch, 200 feet below disposal rolant, Midway, Ky.		Do Kentucky River, Gratz, Ky	Do	Do	Do	Do	Do	Do	Do	100	Do Do Kentinety Bluer of month Correll.	ton, Ky,	Do

Table Kr-7.—Kentucky River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

36			OHIO RIVER POLLUTION CONTROL
		Hardness, parts per million	
	A Tholim.	ity, parts per million	# 12825 # 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Thumbid	ity, parts per million	\$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
-		Hď	は できょうけいけい できょうけいけいけい さいじょ いいじょ しょうしょ ちゅうりゅう ちょう ちょう まんしょう ちょう しょうきん しょうきょう しょうしゅう しゅうしゅう しゅう
	Coli- forms,	most probable number per milli- liter	E € € € € € € € € € € € € € € € € € € €
	5-day bio-	oxygen demand, parts per million	
	1 oxygen	Percent satura- tion	88 40.29 80.17.78.88.84.78.85.85.85.74.85.85.75.75.88.88.88.88.85.74.85.75.75.88.88.88.88.88.89.89.75.75.88.88.88.88.88.89.89.75.75.78.88.88.88.88.88.89.75.75.78.88.88.88.88.88.89.75.75.78.88.88.88.88.88.89.75.75.78.88.88.88.88.88.88.88.88.88.89.75.75.78.88.88.88.88.88.88.88.88.88.88.88.88.
	Dissolved oxygen	Parts per million	
		Temper-	
	Average	discharge, cubic feet per second	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
		Date	Apr. 14, 1939 Apr. 14, 1939 Apr. 14, 1939 Apr. 14, 1939 May 10, 1939 May 10, 1939 May 2, 1939 June 2, 1939 June 2, 1939 June 2, 1939 July 27, 1939
		Mileage from mouth	a දියලදයියියිස් සිට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්
	,	Sampling point	Kentucky, River, at mouth, Carroll- ton. Ky. Lo. Do. Do. Do. Do. Do. Do. Do. Do. Do. D

120	C28		SS0	559	838	S(6)	929	33	39	81 110	200
380	_	~	_								
10000	-1-1	-1-1	1-1-	1-1-	riri	1-1-	1:1	7	- 1-	-3	7.
2.0 1.0 1.9 43									-		_
102.8											
13.00	26.	<u> </u>		10.	6.7	r-i-	1.1	1	12.5	12.	12.
800 1 5.5 700 4.5	2000	200	150	200 13.	340 27.	25.	340 27.	18.	140 17.	5.	580 4.
13, 1940 12, 8 20, 1910 20, 1	1940	1940	1940	1940	1940	1940	1940	1940	1940	1941	1941
Feb.	Mar.	Mar.	Mar.	Apr. July	July	July	July Tuly	Oct.	Jan	Jan.	Jan.
op do	do	do	do	do	do	do	do	do	- do	do	do
										1	

1 Less than 1.

LICKING RIVER BASIN

CONTENTS

Contents	691 693 694 695 696 698
LIST OF TABLES	
I_1.—Cost estimates of remedial measures I_2.—Surface-water supplies	694 695 696 696 697 698 700
LIST OF FIGURES	
I-2. Chart—Sources of pollution and selected laboratory data	696

LICKING RIVER BASIN 1

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Licking River drains 3,670 square miles in northeastern Kentucky, part of which is mountainous but most of which is in the fertile Bluegrass section. The basin is primarily an agricultural area; there are no large cities and most of the population is rural. The two largest towns have installed sewage-treatment plants. The remaining sources of pollution, all of them small, present no particularly difficult problems. Flow regulation by use of proposed flood control reservoirs will have no important effect on the pollution problem.

CONCLUSIONS

(1) Thirteen of the seventeen public water supplies in the basin come from surface sources. Two of these are seriously affected by

sewage pollution.

(2) A total of 25,200 people are connected to sewers and 11,200 to the two sewage-treatment plants in the basin. Industrial wastes from seven small plants have a population equivalent of 3,300. The population equivalent of all sewage and industrial wastes as discharged is 18,900.

(3) Laboratory data indicate rather rapid recovery of the streams from the effects of pollution. A number of the smaller tributaries

are grossly polluted in the vicinity of the sewer outfalls.

(4) Available waste treatment methods can restore the streams of

the basin to satisfactory conditions.

(5) A summary of cost estimates of remedial measures from table L-1 follows:

Treatment	Capital cost	Annual cost
ExistingSuggested additional	\$290, 000 710, 000	\$30, 000 70, 000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are:

	Treatment	Capital cost	Annual cost
Primary, all places	, ,	\$500,000	\$45,000
Secondary, all places	, ; 	 740,000	\$45,000 75,000

¹ For maps of this basin, see Kentucky River Basin.

Table I-1.—Licking River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative cost for primary and secondary treatment

	Number of plants		Popu- lation	Capital	Annual charges		
	Pri- mary	Second- ary	nected to sewers	invest- ment		Operation and main- tenance	Total
Existing sewage treatment	0	2	11, 200	\$290,000	\$20,000	\$10,000	\$30,000
Suggested minimum correction: Sewage-treatment plants. Required interceptors Independent industrial waste cor-	2	11	14, 000	520. 000 180, 000	36, 000 8, 000	24,000	60, 000
rection				10,000	1,000	1,000	2,000
Total Comparative cost: Primary treatment all waste Secondary treatment all waste As suggested				710, 000 500, 000 740, 000 710, 000	45, 000 30, 000 50, 000 45, 000	25, 000 15, 000 25, 000 25, 000	70, 000 45, 000 75, 000 70, 000

DESCRIFTION

The Licking Basin comprises 3,670 square miles of northeastern Kentucky immediately to the north and east of the Kentucky Basin which it resembles topographically and culturally. The headwaters are in a mountainous area and the western and northern portions of the basin are in the Bluegrass section. Agriculture is the principal industry. There are only four urban communities in the basin outside of Campbell and Kenton Counties at the mouth of the river. These counties are in the Cincinnati metropolitan area and their population is omitted from the following summary.

	Populations				
	1910	1920	1930	1940	
Urban communities: Winchester Puris Cynthiana Mount Sterling	7, 156 5, 859 3, 603 3, 932	8, 333 6, 310 3, 857 3, 995	8, 233 6, 204 4, 386 4, 350	8, 594 6, 697 4, 840 4, 782	
Basin: Rural Urban	149, 724 20, 550	144, 209 22, 495	138, 639 23, 173	145, 230 24, 913	
Total	170, 274	166, 703	159, 812	170, 143	

The only important tributary is the South Fork, which drains about 950 square miles of the Bluegrass section and joins the main stream at Falmouth (mile 51). All four of the urban communities are in the area drained by the South Fork.

Water uses.—The Licking River is not considered a navigable stream. There are no flood-control or hydroelectric reservoirs in the basin. Most of the streams of the basin are used for fishing and

bathing by local residents, but there are no outstanding recreational developments.

PRESENTATION OF FIELD DATA

Figure Ky-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure L-2 shows similar data and, in addition, the location of water-supply intakes from streams below sources of pollution and laboratory data on coliform organisms,

dissolved oxygen, and biochemical oxygen demand.

Public water supplies.—Thirteen of the seventeen communities with public water supplies depend on surface sources. The 4 underground supplies serve 1,700 people and the 13 surface supplies serve 36,200. Five of the surface supplies are from streams below sources of pollution, while the other 8 are from small impounding reservoirs or from creeks above the entrance of any sewage. Table L-2 shows data on the surface-water supplies of the basin.

Table L-2.—Licking River Basin: Surface water supplies

Supply	Source	Mile 1	Treat- ment 3	Population served	Consumption, million gallons per day
	Supplies below	commun	ity sewe	r outfalls	
Falmouth Cynthiana Millersburg Paris Winchester	South Fork Licking River——— Hinkston Creek———————————————————————————————————	100	FD FD CD FD FD	2, 100 4, 500 900 6, 500 9, 000	0. 30 . 45 . 02 . 80 . 45
	Other si	ırface su	pplies		
Carlisle Flemingsburg	Triplett Creek	175 179	FD FD	500 4, 800 3, 000 700 1, 200 1, 800 900 300	. 02 . 23 . 18 . 03 . 04 . 04 . 02 . 01
Total: Below sewer outfa	ills			23, 000 13, 200	2. 02
Total, surface water s	upplies			36, 200	2. 56

4 Under construction (1941).

Sewerage.—Table L-3 shows the sewered population at each of the more important sources of pollution. Of the 25,200 people connected to sewers, about 45 percent are connected to the two sewage treatment plants in the basin.

Miles above mouth of Licking River.
 F=Coagulated, settled, filtered; D=Chlorinated; C=Coagulated, settled.
 Emergency intake in Kentucky River (mile 180).

Table I.-3.—Licking River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream .	Miles above mouth of Licking	Popula- tion con- nected	Treat- ment	equival	population lent (bio- al oxygen d)
		River	to sewers		Un- treated	Dis- charged
Falmouth	Licking River	51	1,000	None	1, 100	1, 100
Salyersville	South Fork Licking	274 82	500	do	500	500
Cynthiana	River.	82	4, 300	uo	4, 700	4, 700
Lair	do	88			1,800	1,800
Paris 1	do	100	4, 900	Secondary_	4, 900	700
Walton Millersburg	Cruise Creek Hinkston Creek	35 100	200 500	None	900 500	900 500
Mount Sterling	do do	125	3, 300	do	3, 500	3, 500
Winchester	Strode's Creek	120	6, 300	Secondary	6, 400	1,000
Flemingsburg	Town Branch Fleming Creek.	129	500	None	500	500
Morehead	Triplett Creek	179	2, 300	do	2, 300	2, 300
Small sources (5 towns).			1, 400	do	1, 400	1, 400
Total			25, 200		28, 500	18, 900

¹ Treatment plant under construction at time of laboratory survey.

Industrial wastes.—There are seven small sources of industrial wastes in the basin outside the Cincinnati metropolitan area near the mouth of the Licking River. Table L-4 shows information on the waste-disposal practices of these plants.

Table L-4.—Licking River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	Number	Industri disp		At least minor	Estimated sewered population
Industry	of plants	Municipal sewers	Private outlets	corrective measures taken	(biochemical oxygen demand)
Meat	2 2 3	1 1 1	1 1 2	2 2 1	400 300 2, 600
Waste unconnected municipal treatment Waste connected to municipal treatment	7	3	4	5	3, 300
Total industrial waste in basin		******			3, 300

PRESENTATION OF LABORATORY DATA

The laboratory data are summarized in table L-7 (p. 700). Selected laboratory data at some of the more important points are shown in table L-5. Samples were collected over a period of several months at Newport, Latonia, Butler, Falmouth, and Cynthiana and analyzed at the Cincinnati laboratory. All other points shown were sampled from a mobile laboratory unit during the low-flow period from September to December 1939.

Table L-5.—Licking River Basin: Selected laboratory data

River Location River miles above mouth of Licking. Period, 1939	Licking Above Salyers- ville 273 Nov. 27, 30	Licking Below Salyers- ville 272 Nov. 30	Licking Bridge Farmers 171 Sept. 19, 21	Licking Above Fal- mouth 51.5 July 10, 24	Licking Below Fal- mouth 49.4 July 10, 24	Licking Below Fal- mouth 49.4 Oct. 16	Licking Above Latonia 5.5 Oct. 9, 16
Number of samples Flow in cubic feet per second: Sampling days Minimum month Water temperature, °C Coliforms per milliter. Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	2 5 2.3 4 12.4	.5 23 8.9 1.7	2 30 2.2 20.5 6 6.8	2 12, 115 5. 5 25. 5 263 6. 4 2. 5	2 12, 400 5, 5 25, 3 285 6, 8 2, 1	50 5.5 11.5 1,100 9.9 1.5	2 63 15.8 3 8.0 1.5
River Location		Hinkston Creek Below Mount Sterling 73 124 September	Strodes Creek Below Win- chester 68 119 Septem- ber	Stoner Creek Above Paris 49 100 September	Stoner Creek Below Paris 47.5 98.5 September	South Fork Above Cyn- thiana 30.5 81.5 Sept. 13, Oct. 11	South Fork Below Cyn- thiana 29 80 October
Number of samples Flow in cubic feet per second: Sampling days Water temperature, °C Coliforns per milliliter Dissolved oxygen, parts per million Biochemical oxygen demand, 5-day, parts per million	3 1 20. 3 528 2. 5	20. 2 84, 400 0 31. 6	18. 9 41, 660 1. 0 20. 7	22. 5 5 6. 7 1. 7	23. 3 46, 000 0 44. 9	2 5 20.8 35 4.3 2.2	1 5 20. 5 930 1. 6 24. 5

Figures Ky-3, Ky-4, and Ky-5 (p. 676) show by means of symbols the coliform, dissolved oxygen and biochemical oxygen demand results at the various stations. The results thus shown are the averages of from one to three samples collected over short periods of less than 1 month at each of the mobile laboratory sampling points and indicate the most unfavorable monthly average at each of the points sampled from Cincinnati, where observations extended over a period of several months.

The laboratory observations show the worst conditions along the main Licking River occurring below Blue Lick Springs, Falmouth, and Butler. On the South Fork bad conditions were found below Winchester, Paris, and Cynthiana and below Mount Sterling and Millersburg on Hinkston Creek. Complete absence of dissolved oxygen was observed at Mount Sterling and Paris and averages of 1.2 and 1.0 parts per million were observed below Millersburg and Winchester. Less than 3.0 parts per million were found at Carlisle and Morehead. The coliform observations are in general agreement with the dissolved oxygen and oxygen demand results as indicators of the major sources of pollution. There is a tendency for the coliforms to indicate a somewhat heavier degree of pollution than the dissolved oxygen at some stations as is shown by the results at Flemingsburg, Morehead, Blue Lick Springs, and Falmouth.

The 5-day biochemical oxygen demand results for the most part lie within a range of from about 1 to 3 parts per million except immedi-

ately below sources of pollution and here the average values did not generally tend to exceed 5 or 6 parts per million, except below Mount Sterling with 31.6 parts per million, Carlisle with 16.5 parts per million, Winchester with 20.7 parts per million, Paris with 44.9 parts per million, Cynthiana with 24.5 parts per million, and Newport with 12.1 parts per million in January 1940. The pH ranged generally between about 7.0 to 8.0. The alkalinities varied from about 50 to 300 parts per million and the hardness ranged from 100 to 200 parts per million where these determinations were made.

Where samples were taken over a period of months the indications were that the coliforms and the oxygen demand reached their lowest concentrations during the low-water months from September through December 1939. This is true above Falmouth and Latonia and is indicative of the effects of long flow times upon the natural purifica-

tion phenomenon.

The laboratory observations indicate that the natural recovering processes clear the stream in this basin within relatively short distances below sources of pollution at times of low flows. Such indications are not shown in those stretches at which increased flows were

also observed.

Biological summary.—The plankton population of the Licking, as a whole, is not high, usually less than 1,000 parts per million except below Paris and Cynthiana, where the effects of pollution are indicated by an increase in total plankton.

HYDROMETRIC DATA

Seven stream gaging stations have been maintained on the Licking and the South Fork for various periods, only one of which is in operation at the present time. Table L-6 shows monthly mean summer flows during some of the low-flow years.

Table L-6.—Licking River Basin: Monthly mean summer flows for years in which low summer flows have occurred

River	Licking At Catawba.	South Fork, Licking At Haves,
	Ky.	Ky.
River miles above— Confluence with Licking River. Mouth of Licking River Drainage area (square miles) Period of record	48 3,300 1928–40	3 55 922 1928-31
Year	1930	1930
June cubic feet per second_ July do August do September do	94. 1 17. 0 13. 7 11. 6	14. 5
Year	1936	1931
June cubic feet per second	95. 3 29. 5 198 440	56. 1 271 124 68. 1
Year	1937	1929
June cubic feet per second July do do do do	1, 505 626 343 87. 4	398 1, 200 81. 6 570

Low-flow regulation.—A study of a proposed flood-control program, involving reservoirs on the main Licking River at Falmouth and Cave Run, has been made by the United States Engineer Department and consideration has been given to pollution control through

multipurpose use of these reservoirs.

Although seasonal low-flow control incidental to reservoir operations conducted primarily for other purposes is both beneficial and desirable, studies indicate that no reduction in the degree of treatment required under present conditions will be possible. Hence, little tangible value can be assigned to this added stream discharge.

DISCUSSION

The pollution problems of the Licking River Basin are largely local ones and are concentrated in the area drained by the South Fork. Because of the low flows to which the streams are subject, secondary treatment will be required at most of the communities except Falmouth and Butler, where primary treatment will be suficient. The water supplies at Millersburg and at Cynthiana are subject to rather heavy pollution. At Millersburg better water treatment facilities are needed and the water intake is subject to pollution by drainage from the town itself. Improvements and enlargements are needed at the Winchester sewage treatment plant.

The estimated cost of the suggested pollution abatement program is shown in table I-1 (p. 694), together with estimates of the cost of treatment works already constructed and for comparative programs of primary treatment everywhere and of secondary treatment every-

where.

TABLE I.-7.—Licking River Basin: Ohio River pollution survey laboratory data-Summary of individual results

		Hardness, parts per million		92	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	148	107		. 26		123	218	6 ¶	# # # # # # # # # # # # # # # # # # #	
-		Arkann- lty, parts F per million	888	44	43	43	45	45	244	448	588	69 70 149	150 201 80	80	98	84
	Tressbidd		20	6	7	0.	0	18	20 15 8	22	1281	25 12 36	32 27 32	37	54	51
		Hd	7.0	7.0	8	6.9	7.0	6.8	6.9	7.0	6.9	7.0	7.7.7	5.7.	7.9	7.9
	Coli- forms,	most probable number per milli- liter	63	83.4	83	83	SE	41	⊢ 44	48	* 0 8	1,100	. 240	240	46	46
	5-day bio-	oxygen demand, parts per million	0.7	Lost	1.7	4.0	Lost	Lost	4.1.4	2.5 Lost		တတ္ထ	ರಾ	1.3	1.7	1.3
	loxygen	Percent satura- tion	90.9	89.1	68.9	76.2	71.6	66.4	81.6 79.7	86.0	27.5	25.83.29	84.3 77.0 68.8	70.8	103.2	106.3
	Dissolved oxygen	Parts per million	13.1	8.0	6.0	11.0	00 00	7.9	9.4	11.3	2002	- 00 000	2.5.10 840	6.3	80	9.1
		Temper-	0.6	9.0	4.5	10	9.0	8.0	.4; vi	8.0	20.5	21.0	20.5	23.5	26.0	24.0
	Average	discharge, cubic feet per second	5	1010	5	5	ů,	27	27.27	27	30		1 1 8	48	73	73
		Date	Nov. 27, 1939	Nov. 30, 1939 Nov. 20, 1939	Nov. 30, 1939	Nov. 27, 1939	Nov. 20, 1939	Nov. 20, 1939	Nov. 27, 1939 Nov. 30, 1939 Nov. 27, 1939	Nov. 30, 1939 Nov. 20, 1939	Sept. 19, 1939 Sept. 21, 1939 Sept. 19, 1939	Sept. 21, 1939 Oct. 11, 1939 Sept. 19, 1939	Sept. 22, 1939 Oct. 11, 1939 Sept. 18, 1939	Sept. 20, 1939 Sept. 18, 1939	Sept. 18, 1939	Sept. 20, 1939
		Mileage from mouth	Li 273	doLi 272.5	Li 272	Li 271.8	Li 271	Li 232	do do Li 321.5	do Li 231	Li 171 LiT 178	do do LiFt 129	do Li 99	J.i 98	Li 82	do
		Sampling point	Licking River, above all sewage,	Licking River, upper edge of Salyers-	Licking River, 200 feet below last	Licking River, M. mile below Salyers-	Licking River, 1 mile below Salyers-	Licking River, above West Liberty,	Licking River, lower edge of West	Licking River, 1/2 mile below West	Liberty, ky. Licking River, bridge, Farmers, Ky. 100 Triplett Creek, 1 mile below More-	nead, Ky. Do Do Town Branch, Fleming Creek 1 mile	Deflow Flemingsburg, K.y. Do. Licking River, upper edge Blue Lick	Licking River, upper edge Blue Lick	Lichings. Liching River, bridge above Clays-	VIIIe, Ky. Do

	* E	# P P 2 P P P P P P P P P P P P P P P P		500	196	- 6 1 1 1 0 0		8 6 6 1 1 1 1	1 5 1 1 1 1	172	1	B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
144	323	329 339 272 322 261	242	154	172	143	147 148 152 212	181	142	161	147	370	364	325 110 285 311 211	218
80	. 32	30 15 15 28 28 26	47	55 51 43	6	20	15 13 22 137	92	87	50	27	20	35	23 110 17 25 20	22
7.9	7.7	111111	1000,71	9.7.7		7.6	5.4.4.C	00 4	20	7.6	7.6	7.6	7.7	25.7.7.7. 84.80 80	7.6
36	46,000	110, 000 46, 000 110, 000 110, 000	36	110 24 240	1,100	240	£4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	12	110	23	15	36	24,000	24,300 110,000 46,000 36	4
5.4	34.3	43.6 18.0 21.0 41.1 7.3	29.5	मं मं मं		3.0	16.2.25	16.2	63	85 H	2.6	3.0	4,30	14.4.6.19.20 10.20 10.20 10.20 10.20	63
100.2	52.6	34.0	28.2 176.9	66.9 118.1 23.9		43.5	31.6 22.0 32.0	38.7	74.3	50.7	37.5	41.3	30.7	80000000000000000000000000000000000000	36.4
9.1	0.0	0000%	14.7	10.2		3.9	2000	3.4	6.8	7.4	6, r.c. 61 44	4.1	6j 63		3.6
20.8	24.0	26.0 19.5 19.0 15.5	15.5	22.0 23.5 19.5		21. 5	24.5 20.5 21.5 27.0	21.5	20.5	17.0	24.5	16.0	22.0 19.5	21. 5 20. 0 19. 5 14. 0 19. 0	17.0
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) [] [] [] [] [] [] [] [] [] [; ; ; ; ; ;	5	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Sept. 12, 1939	Sept. 14, 1939 Sept. 12, 1939	Sept. 14, 1939 Sept. 19, 1939 Sept. 21, 1939 Sept. 22, 1939 Sept. 21, 1939	Sept. 22, 1939 Sept. 15, 1939	Sept. 18, 1939 Sept. 20, 1939 Oct. 11, 1939		Sept. 13, 1939	Sept. 15, 1939 Sept. 18, 1939 Sept. 20, 1939 Sept. 13, 1939	Sept. 15, 1939	Sept. 19, 1939	Oct. 11, 1939 Sept. 13, 1939	Sept. 15, 1939 Sept. 14, 1939	Sept. 12, 1939	Sept. 14, 1939 Sept. 12, 1939	Sept. 14, 1939 Sept. 19, 1939 Sept. 21, 1939 Sept. 22, 1939 Sept. 21, 1939	Sept. 22, 1939
LIFH 126 Se	do Se LisfH 124	do do Se LISTH 122	LiSrH 101	100	88	98	do 66 Se Lista 108 Se	LISTBS 109 Se	ListB 107 Se	do do LisrB 106	Lisrs 111	Lists 121 86	do do Se	do do do do do Dissipation	do
Hinkston Creek, 32 mile above Life	-	miles below	k, 1 mile above Mil-	Lersnurg, A.y. Do. Do. Hinkston Creek, upper edge Millers- Lisff	Hinkston Creek, 300 feet below last Liss sewage outlet, Millersburg, Ky.	Hinkston Creek, 1 mile below Millers- LisfH	1 5		Brush Fork Creek, 1/2 mile below Lis			Strodes edge of town, above Lis	ζ, 1 mile below Win-	Strodes Creek, 4 miles below Win- Lis	chester, ky.

Table I.-7. .- Licking River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

Hardnoss		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	# 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 1 1 1 1 1 2 2 3	\$ 6 1 1 1 6 0 1 5 2 1 7 1 8 1 7 1 7	0 1 0 0 1 1 1 1 3 0 1 0	B 6 T B 1 1 B	210	150	# 1 1 1 0 1 0 1 1 1 1 1 1 1	# 1 0 2 0 1 7 1 0 1 7 2 0 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Alkalin-	ity, parts per million	165	162 165 234	240 238 191	187	154	154	154 155 155	161 158 165	182	143 158 168	150	\$ 1 ' \$ 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Turbid-	ity, parts per million	12	25.52	96 51 30	102	97	76	99.68	4 558	333	248	37	\$ 1 1 2 \$ 1 1 2 \$ 1 1 3 \$ 1 1 3 \$ 1 1 3 \$ 1 1 1 \$ 1 1 1 \$ 1 1 1
THE SECTION TO AND THE SECTION ASSESSMENT AS	Hd	7.8	2004 2004	10 4 30	7.7	7.8	9.7.	1,1,30 0000	6:1:12	3,50	8,1,39	7.9	
Coli- forms,	probable number per milli- liter	4	46,000	46, 000	24	4	a e	15.00	448	46	930	240	8 12 22 44 8 10 10 10 10 10 10 10 10 10 10 10 10 10
5-day bio- chemical	onygen demand, parts per million	1.5	1.03.15 4.4.4	42.2 41.2 5.3	41.	2,2	 	@1-31 HGISI	च्चां नां चां चां नां	8. 4. 8. 4.	24.5	1.6	1.03.19.1
1	Percent satura- tion	81.3	76.0	55.7	36.9	61.1	67.4	74.6 65.6 87.6	83.8 6.6.8 0.0.0	47.8	152.1 17.1 108.8	94.5	95. 4 85.0 80.0 80.4
Dissolved oxygen	Farts per million	6.9	1.00	000	85 H 82 A	5.4	10 CO 1-	6,10,14 40.00	10.64	4,2,4,5,	12.7	6.1	4.0.1 8.9.3 1.01
	ture C.	24.5	20.0	23.5	22.0	21.5	24.0	28.0	24.5 21.0 22.0	19.5	25.3 20.5 24.0	21.5	4 e. c.
Average	cubic feet per second	1 2 2 3 4 4 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	1010	10 110	ED 131 ED	200	्र । ।	4	4 1 4 1 2 1 1 7 8 4 1 8 6 1 1 8 7 1 1 8 8 7 1 1 8 8 7 1 1 8 8 7 7 7 8 1 7 7 7 8 1 7 7 7 8 1 7 7 7 8 1 7 7 8
	Date	Sept. 12, 1939	Sept. 14, 1939 Sept. 19, 1939 Sept. 20, 1939	Sept. 21, 1939 Sept. 22, 1939 Sept. 12, 1939	Sept. 14, 1939 Sept. 19, 1939	Sept. 13, 1939	Sept. 15, 1939 Sept. 13, 1939	Sept. 15, 1939 Sept. 18, 1939 Sept. 15, 1939	Sept. 18, 1939 Sept. 20, 1939 Sept. 13, 1939	Oct. 11, 1939 Sept. 13, 1939	Sept. 15, 1939 Oct. 11, 1939 Sept. 18, 1939	Sept. 20, 1939 Feb. 17, 1939	Feb. 24, 1939 Mar. 1, 1939 Mar. 6, 1939 Mar. 14, 1939
	Mileage from mouth	LisfSt 100	do Lisist 98.5	do Lisfst 98.2	do Lisfst 97.5	Lisf 89.	do List 88	do do Lisí s2	do	do. List 80	do. LiSf 79.5	do Lisf 81	do do do
	Sampling point	Stoner Creek Power Plant, above	John Creek, 200 yards below sewage,	Stoner Creek, ½ mile below sewage,	Stoner Creek, 1 mile below sewage,	South Fork, Licking River, at lower bridge, above Lair, Kv.	South Fork, Lieking River, 1 mile	Do. Do. South Ferk, Licking River, 1 mile	Do Do Tr. Licking River, upper	South Fork, Licking River, 1 mile	South Fork, Licking River 1½ miles	South Fork, Licking River, bridge in	Do D

900
L-622 084 424 425 08 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ಗಣ್ಟಾಗ, ,ಗಣ್ಯವವನ್ನುವುದು ಜ. ಗಗವವು ,ಜಾಗಗಗಗಗವುದುವವುಗಗಗಗಗಗ ,ಜಾಗಧಗವಗಗಳ , ಆಹುತ್ತದ , ,ಗಣ್ಯವವನ್ನುವುದು ಜ. ಗಗವವು ,ಜಾಗಗಗಗಗಳ , ,
4.00 4.00
852
Mar. 22, 1989 Mar. 31, 1889 Mar. 31, 1889 May 3, 1989 Mar. 11, 1989 Mar. 12, 1989 Mar. 12, 1989 Mar. 13, 1989 Mar. 13, 1989 Mar. 14, 1989 Mar. 15, 1989 Mar. 16, 1989 Mar. 16, 1989 Mar. 17, 1989 Mar. 18, 1989
Mar Apr. Apr. Apr. Apr. Apr. Apr. Apr. Apr.
69996899999999999999999999999999999999
Po- Do- Do- Smith Fork, Licking River, Borry, Co- South Fork, Licking River, Borry, Co- Do- Do- Do- Do- Do- Do- Do-
90035—44—pt. 2——36

Table L-7.—Licking River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

1	
Hardness, parts per million	
Alkalin- ity, parts per million	
Turbid- ity, parts per million	
Hd	C 00 00 00 00 00 00 00 00 00 00 00 00 00
Coll- forms, most probable number per milli-	4 18 4888888600 888 2440 644 4 6 6 6 4 4 6 6 6 6 6 6 6 6 6 6
5-day bio- chemical ovygen demand, parts per million	0 .4 44%4 .44 .44444444 4444444444
l oxygen Percent satura- tion	000 000 000 000 000 000 000 000 000 00
Dissolved oxygen Parts per satura- million tion	21 111 12 12 12 12 12 12 12 12 12 12 12
Temper- ature ° C.	0 00 40 40 40 40 40 40 40 40 40 40 40 40
Average discharge, cubic feet per second	1,080 1,080 56 51 51
Date	Mar. 21. 1940 Feb. 74. 1989 Mar. 11. 1989 Mar. 11. 1989 Mar. 16. 1988 Mar. 16. 1988 Mar. 16. 1988 Mar. 25. 1989 Mar. 27. 1989 Mar. 27. 1989 May 28. 1989 May 29. 1989 June 6. 1989 June 6. 1989 June 7. 1989 May 29. 1989
Mileage from mouth	List 52 List 62 List 64 List 6
Sampling point	South Fork, Licking River, bridge on US 27, above Falmouth, Ky. US 27, above Falmouth, Ky. Route No. 22 above Falmouth, Ky. Do. Do. Do. Do. Do. Do. Do. D

88.5.7.7.8.88 8.5.7.7.8.88
88.00 8 4 4 5 7 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
\$2222222 22222 222 222 222 222 222 222
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
20.00
21176677688118881
AG11-888888891-000
24
14 194 194 194 194 194 194 194 194 194 1
Mar. Mar. Mar. Mar. July July July July July July July July
11 454 60 00 00 00 00 00 00 00 00 00 00 00 00
Do Do Do Do Do Do Do Do
Liefing

Table 1-7. - Licking River Basin: Ohio River pollution survey laboratory data-Sum

			Average		Dissolved	oxygen	5-day bio-	Coli-			-	
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent of satura- tion	ovyean demand, parts per million	D H D	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per million
Licking River, above Banklick Creek above Latonia, Kv	Li 5.5.	June 26, 1939	2, 630	None	6.8		2.0	460	7.8	550	94	
100	do	10	96 800	0.40	rt.	640		031				
Do	do	July 24, 1939	1.3%	24.0	- 0 0 0 1 0 1	20.00	, - L	007	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
1)0	do	1-	1,620	23.5	6.7	70.7		46	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-
1)0	do	21,	2, 410	24.0	6.2	72.7		4.00	7.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
700	do		1	21.5	6.5	73.0		1-			1 1	
100	do	o, o	109	0.00	6.6	75.8		2	-1 00 -1	1		
100	do	20,0	702	19.0	000	න වූ දි		24	7.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
130	900	Nov 6 1020	000	12.5	0000	74.4		ro .	7.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
130	de de	2,0	761	0.0	21.3	80.5		4.	7.7	E : : : : : : : : : : : : : : : : : : :	1	
1)0	do	, N	66	5.0	000	0000		4	7.5	1 1 1	1 1 1 1 1 1 1 1 1	1
1)0	9	10,00	127	o i	12.3	50.3		6	9.7	1 1 1 1 1 1 1 1	3 2 1 1 1 1 1	
	do	18,	4 050	C.10	12.2	35. c		50,	9:1	1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1
Do	do	900	4, 200		1.0.1	2000		110	- 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	
	GO CO	50	4 200		10.01	300		7 3	01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1
T)0-	do	Feb 14 1940	7 150	9.0	10.01	000		04.7	010	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
1)0	op	20,	000 500	110	19.1	01.0		970	0 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	do	-	54,900	o c	101	2.4.0		0.3	-1: -1:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
I)0-	do	00	9,530	7.0	11.3	000		93	-1-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	
100	do	Mar. 14, 1940	2, 500	00	12.2	95.50		10	4:5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	
1)0	do	21,	3, 150	7.5	11.2	93.5		4	7.5	1	1 1 1 1 1 1 1	1 1 1 1 1 1
Do	do	Mar. 29, 1940	1,480	10.5	11.3	101.1		4 4	7:0	1 1 2 5 1 2 5 1 2 5 1 1 1	4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1
Licking River, mouth, Newport, Ky	Li 0.4	24,	7,370	6.0	11.7	9.3. 5		150		;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Do.	do		18,900	7.0	11.6	91.9	2 2	88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Do	do	6,	52, 300	. oc.	10.6	90.0		240		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Do	do	14,	22, 5410	12.0	10.0	92.7		653		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1)0	do	Nar. 30, 1939	15,000	9.5	10.4	91.2		240			1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Do	do	16,	4,950	0	12.9	88.2		460		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1
D0	do	29,	460	0	13.0	88.9		240			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1)0	do	6,	4, 200	2.0	11.4	82.2		1, 109			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1)0	do	14	7, 150	4.5	12.2	91.4		240			1	
1)0	do	8	29, 200	5.5	12.1	100.3		240				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
150	do	Feb. 27, 1940	3, 370	5.0	12. 7	90 %		460				
1,00	do	4,	54, 900	0.00	8.6	82.9		66		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
170	op	oc'	9,550	0.6	11.1	95.9		1, 160	7.5	2 2 3 3 1 1 2		
100	40	Mar. 14, 1940	2,500	5.0	12.2	95. 1	. 5	1, 100		1	1	
170	do	Mar. 21, 1940	3, 140	11.0	11.0	99. 2		240		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,
TO TO	000	1 9 79 1940	CXV	1.4	0	100	6 6	010				

SALT RIVER BASIN

707

CONTENTS

Contents_ Syllabus and conclusions_ Description Presentation of field data	709 711 712 713
Presentation of laboratory data	715 716 717
LIST OF TABLES	
St-1.—Cost estimates of remedial measures	712 713 714 714 715 717 718
LIST OF FIGURES	
St-2.—Chart—Sources of pollution and selected laboratory data(Note.—For maps of this basin see Kentucky River Basin.)	714
709	

SALT RIVER BASIN 1

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Salt River Basin comprises 2,890 square miles of the Bluegrass section in the north central part of Kentucky. The population of nearly 140,000 is predominantly rural, only 16,000 people living in the 4 towns of more than 2,500 population. All but one of the larger communities have sewage treatment plants. The most serious pollution problems are caused by wastes from the 24 distilleries. Although all of these have taken some steps to reduce the quantity and strength of their wastes, further corrective measures appear justified for the protection of aquatic life.

CONCLUSIONS

(1) Of 17 public water supplies, 15, serving 26,500 people, are from surface sources. Pollution is a minor problem in connection with these supplies.

(2) Sewage from about 20,300 people is discharged to the streams of the basin. About 85 percent of sewage is treated prior to discharge. Industrial wastes with a population equivalent of about 99,000 also reach the streams. Almost all of this waste is from distilleries.

(3) Laboratory observations show that the Salt River and its principal tributaries are not scriously polluted except immediately below the larger sources of pollution. The streams seem to recover rather quickly from the pollutional loads placed on them. Practically no distillery wastes were being discharged at the time of sampling.

(4) The limited records available indicate the following minimum

	Cubic feet
Salt River at Shepherdsville	oer second 0. 4
Rolling Fork at Boston	16. 0
Beech Fork at Fredericktown	None

(5) Very little of the waste enters the larger streams directly. Most of the communities and industries are located on small tributaries which afford practically no dilution.

(6) All but one of the sewage treatment plants in the basin provide secondary treatment. Such treatment everywhere is indicated

because of the lack of appreciable dilution.

(7) Treatment of distillery wastes by evaporation of the slop and ponding or broad irrigation of other wastes is needed at the larger plants. At others, improved ponding or irrigation facilities probably will suffice.

(8) The estimated cost of remedial measures as summarized from

table St-1 follows:

Treatment	Capital cost	Annual cost
Existing Suggested additional	\$670, 000 460, 000	\$80, 000 70, 000

¹ For maps of this basin, see Kentucky River Basin.

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual cost
Primary, all places	\$380, 000	\$60,000
Secondary, all places	460, 000	70,000

Table St-1.—Salt River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

·	Number of plants		Donula		Annual charges			
	Pri- mary	Second-	Popula- tion con- nected to sewers	Capital invest- ment	Amortization and interest	Opera- tion and main- tenance	Total	
Existing sewage treatment	1	7	17, 100	\$670,000	\$48, 000	\$32,000	\$80,000	
Suggested minimum correction: Sewage treatment plants Required interceptors Independent industrial waste	0	7	3, 200	200, 000 10, 000	14, 000 1, 000	10, 000	24, 000 1, 000	
correction				250, 000	41,000	4, 000	45, 000	
Total				460, 000	56, 000	14, 000	70, 000	
Comparative cost: Primary treatment all waste Secondary treatment all waste As suggested:				380, 000 460, 000 460, 000	50, 000 56, 000 56, 000	10, 000 14, 000 14, 000	60, 000 70, 000 70, 000	

DESCRIPTION

The Salt River Basin comprises 2,890 square miles of rolling land in north central Kentucky, most of which is the fertile agricultural land of the Bluegrass section. The Salt River joins the Ohio at West Point, Ky., about 25 miles below Louisville.

	Distance above mouth	Drainage area, square miles
Major tributaries: Rolling Fork (including Beech Fork) Beech Fork Floyds Fork	12 29 24	1, 470 776 262

	Populations				
	1910	1920	1930	1940	
Urban communities: Harrodsburg. Shelbyville Lebanon. Bardstown.	3, 147 3, 412 3, 077 2, 126	3, 765 3, 760 3, 239 1, 717	4, 029 4, 033 3, 248 1, 767	4, 673 4, 392 3, 786 3, 152	
Entire basin: Urban Rural	9, 636 118, 059	10, 764 121, 268	11, 310 114, 852	16, 003 123, 865	
Total	127, 695	132, 032	126, 162	139, 868	

Agriculture and whisky distilling are the principal industries of the area. Most of the 24 distilleries are small and are located in rural areas.

Water uses.—The Salt River is not navigable except near the mouth where it is influenced by backwater from the Ohio River. There are no flood-control or hydroelectric reservoirs in the basin. The lack of important towns along the larger streams lessens the need for flood control, and no reservoirs have been authorized. Many of the streams are used by local residents for fishing and bathing but the streams are not particularly attractive for recreation because of the extreme low flows which usually prevail during the summer.

PRESENTATION OF FIELD DATA

Figure Ky-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure St-2 shows similar data and, in addition, the location of water supply intakes from streams below sources of pollution and laboratory data on coliform organisms, dissolved oxygen and biochemical oxygen demand.

Public water supplies.—All but 2 of the 17 public water supplies in the basin come from surface sources. The 2 underground supplies serve only 600 people while the surface supplies serve 26,500. Five of the surface supplies are from streams below sources of pollution while the other 10 are from small impounding reservoirs or from streams above the point of entrance of any sewage. Table St-2 shows data on the surface water supplies of the basin.

Table St-2.—Salt River Basin: Surface water supplies

Supply	Source	Mile 1	Treat- ment	Population served	Consump- tion, mil- lion gallons per day
	Supplies below	commun	ity sewer o	outfalls	
Shepherdsville Taylorsville Lawrenceburg Lebanon Junction New Haven	doRolling Fork		FD FD FD FD	500 900 2, 100 500 300	0. 0 . 0 . 2 . 0
	Other	surface	supplies		
Lebanon Bradfordville	Rolling Fork North Fork Rolling Fork (infil-	87 95	FD None	3, 500 200	0.1
Springfield Lincoln Institute Nazareth College St. Catherines Academy	Mill Creek-Otter Creek	15 122	FD FD FD FD FD FD		.2 .7 .1 .2 .0 .0
	falls			4, 300 22, 200	0. 3 1. 7
Total surface water s	upplies			26, 500	, 2.0

For inferior purposes only.

¹ Miles above mouth of Salt River. ² F=coagulated, settled, filtered; D=chlorinated.

Severage.—Table St-3 shows the sewered population at each of the more important sources of pollution. All but 3,200 of the 20,300 people connected to sewers are served by sewage treatment plants.

Table St-3.—Salt River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream	mouth c	Population connected	Treatment	Sewered population equivalent (biochemi- cal oxygen demand)		
		of Salt River	to sewers		Untreated	Discharged	
Valley Station Fort Knox Lebanon Junction Atherton ville Bardstown Lebanon Springfield Gethsemane	Pond Creek Mill Creek Rolling Fork tributary Knob Creek Beech Fork Hardins Creek Road Run Pottinger Creek	4 12 23 46 54 81 80 50	1,500 3,500 1,100	Secondary_ None Secondarydo	1, 700 5, 000 12, 000 14, 000 14, 800 8, 000 1, 500 3, 500	1, 790 800 12, 000 14, 000 14, 800 4, 700 600 3, 500	
Dant	Pottinger Creek, South Fork. Hardins Creek, West Fork Prathers Creek.	55 70			1, 500	1, 500	
Clermont Deatsville. Nazareth College Fairfield Taylorsville. Shelbyville Lawrenceburg Hurrodsburg 6 smaller sources.	Low-lick Creek Cane Run. Cox's Creek, East Fork. Brashears Creek. Clear Creek Hammond Creek. Town Branch of Salt River.	26 47 53 49 57 88 96 123	800 3, 200 1, 500 1, 700	Secondary None Secondary do Primary Various	20,000 16,000 2,590 1,900 1,100 3,200 7,700 1,800	20, 000 16, 000 2, 200 1, 900 1, 100 500 6, 400 1, 200	
Total			20, 300		119, 200	105, 300	

Conditions at time of survey in 1940. Population has since increased.
 Corrective measures being taken 1941. Figure represents conditions at time of survey.

Industrial wastes.—All of the 29 waste producing industrial plants in the basin have taken some steps to reduce the strength or amount of their wastes. Table St-4 shows data on the various sources of industrial wastes.

Table St-4.—Salt River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	Number	Industria dispe		At least minor	Estimated sewered population
Industry	of plants	Municipal sewers	Private outlets	corrective measures taken	equivalent (biochemi- cal oxygen demand)
Milk Distilleries Miscellaneous	2 24 1	1	1 24 1	2 24 1	700 97, 500
Waste, unconnected municipal treat- ment. Waste connected to municipal treatment	27	1	26	27	98, 200 700
Total industrial waste in basin		***********			98, 900

None of the distilleries operates throughout the year. Most of them commence operation in October or November and continue thoughout winter and spring. Since these are the months during which temperatures are low and stream flows high, the waste from the distilleries does not cause as serious pollution as if they operated throughout the summer months. Nevertheless they present the outstanding pollution problem of the basin.

PRESENTATION OF LABORATORY DATA

The laboratory results for the Salt River are presented in table St-7 (p. 718). Selected data on the main stream and on tributaries are shown in table St-5. The coliform, dissolved oxygen and oxygen demand results are shown graphically on the spot symbol maps in figures Ky-3, Ky-4, and Ky-5 (p. 676), respectively. These represent averages of from one to three samples taken over short periods and represent the most unfavorable picture from a series of several such observations at the mouth.

Table St-5.—Salt River Basin: Selected laboratory data

Location	ver miles above mouth of Salt River, riod, 1940	Above Harrods-burg h of 123.5 August	Above Law- renceburg	Below Taylors- ville 56 July-	Below Shep- herds- ville 22.5	Above Mill Creek	At Mouth	Town Branch Below Bridge Harrods- burg 122
Number of samples 3 3 3 2 3 3 4 4 4 4 4 4 4 4	Salt River, riod, 1940	August		July-				
Period, 1940 August August July-August October August August	mber of samples		August		July-	Octobor		
Flow in cubic feet per second: Sampling days. (1) (1) 15 15 23 246 Minimum month 0, 4 Water temperature °C 24.3 23.7 30.00 27.7 15.5 27.7	ow in cubic feet per second: Sampling days.	3			August	October	August	August
Sampling days. (1) (1) 15 15 23 246 Minimum month 0.4 4 Water temperature °C 24.3 23.7 30.00 27.7 15.5 27.7	Sampling days	J.	3	3	3	2	3	3
Water temperature °C 24.3 23.7 30.00 27.7 15.5 27.7		(1)	(1)	15		23	246	1
Dissolved oxygen, parts per	ater temperature °C	24. 3			27.7			23. 5 45, 000
	million	6.6	4.3	7.5	9. 9	4.0	3. 5	0.0
	day, parts per million	3. 6	2.8	5. 6	3.1	3.4	2.0	19.0
		1	1		t.			
	ver	mond						Mill Creek
Law- nonWater- Spring- Bards- Leba- For	cation	Law-	nonWater-		Spring-	Bards-	Leba-	Below Fort Knox
River miles above:	ver miles above:						HOL -	
Confluence with Salt River	Confluence with Salt River	River.	73.5		12	, 21		5 11
	riod, 1940	August	August			August		August
Number of samples 3 3 3 3 3	imber of samples		3	3	3	3	3	3
Flow in cubic feet per second: Sampling days (1) 2 87 (1) 25 (1)	ow in cubic feet per second: Sampling days	ond: (1)	2		(1)	25	(1)	1
Water temperature °C 21.3 22.0 24.0 25.5 23.8 20.7	ater temperature °C	21.3			25. 5	23.8	20.7	24. 5
Coliforms per milliliter 365 43 14 58,600 422 10,900	liforms per milliliter	365	43	14	58, 600	422	10, 900	151
Dissolved oxygen, parts per million 2.6 5.0 6.3 0 5.8 2.6 Blochemical oxygen demand,	million	2.6	5.0	6.3	0	5.8	2.6	2.8
5- day, parts per million 7.9 1.6 1.9 104.0 2.2 13.0	day, parts per million	7.9	1.6	1.9	104.0	2. 2	13.0	9. 0

Less than 1 cubic foot per second.
 Miles above confluence with Beech Fork.
 Miles above confluence with Rolling Fork.

All observations in the Salt River Basin, except at the mouth, were made by a mobile laboratory unit during July and August 1940. Additional samples at the mouth and in the vicinity of Fort Knox were taken by a mobile unit in August and October of 1940 and February of 1941. At the time of this survey, there were practically no distillery wastes entering the streams, and stream flows were quite low.

From these laboratory data, it appears that the Salt River or its major tributaries are not seriously polluted except immediately below the larger sources of pollution. Lawrenceburg, Harrodsburg, Taylorsville, and Shelbyville appear to be the worst points affecting the main

stem.

Springfield, Lebanon, and Bardstown on Beech Fork and its tributaries show bad local conditions below the towns. The Bardstown outfall sewer permits the discharged wastes to spread over the ground so that considerable recovery in dissolved oxygen and coliform reduction is probably achieved before the stream is reached.

High average coliform count of over 800 per milliliter and an average dissolved oxygen content of about three parts per million was found at the mouth of Salt River in August 1940. The effect of Fort Knox sewage is shown by the results at the mouth of Mill Creek.

The Salt River and its main tributaries seem to recover rather quickly from the pollutional loads placed upon them. The data show generally good coliform counts of 25 per milliliter or less above most towns on the larger streams, in contrast with fairly high counts below the towns next upstream. The dissolved oxygen generally is good with average values of 5 parts per million or more except immediately below sources of pollution. The average 5-day biochemical oxygen demand is generally less than 3 parts per million at the above stations and represents a considerable improvement over the values below the next upstream town.

HYDROMETRIC DATA

The only discharge record available in the basin prior to the beginning of this survey was on Beech Fork at Fredericktown, drainage area 530 square miles (11 miles above Bardstown), where a station was maintained from October 1930 to March 1932. During the first part of the record, zero flow prevailed and during the summer of 1931 the flow was less than 5 cubic feet per second for a considerable period. During 1940 and 1941 two stream-gaging stations have been maintained in connection with this survey, one on the Salt River at Shepherdsville (drainage area, 1,210 square miles) and one on Rolling Fork at Boston (drainage area, 1,300 square miles). During October 1940 the flow at Shepherdsville averaged 0.4 cubic feet per second and at Boston 16.0 cubic feet per second. As it is very brief, the entire record is presented on table St-6.

Table St-6.—Salt River Basin: Monthly mean flows at gaging stations for years of record

River Location River miles above— Confluence with Salt River Mouth of Salt River Drainage area (square miles)	25	Rolling Fork At Boston 18 31 1,300	Beech Fork At Fred- ericktown 35 65 530
Year	275 72 28 .4 34 409	1940 496 79 40 16 168 719	1930 0' . 1 3. 2
Year January cubic feet per second February do March do April do May do June do do July do do September do do October do do November do do December do do		1941 1,088 335 330	1931 114 2, 360 4, 820 4, 820 4, 820 325 920 510 2, 090 2, 360 2, 730 4, 300 15, 300
Year			1932 17, 900 6, 280 13, 100

DISCUSSION

Sewage pollution in the Salt Basin is not a serious problem. Bardstown is the only urban community without a sewage-treatment plant, but local nuisances still exist at a few places. Three smaller communities and three small institutions either have no plants or very inadequate ones. At Harrodsburg the primary sewage-treatment plant appears inadequate. Enlargement and addition of secondary treatment devices are indicated. At the smaller places secondary

treatment may be needed to prevent local nuisances.

The milk plants can all be connected to municipal treatment plants. The distilleries, however, are not readily accessible to city sewers, or discharge such large quantities of wastes that connection to municipal treatment plants is infeasible. Treatment facilities at a few of the distilleries are adequate at present, but at most of them some additional corrective measures appear justified. These would include evaporation of all objectionable wastes at the larger plants and improved broad irrigation at smaller plants. Disposal of slop to farmers and to cattle feed may be satisfactory at small plants and at normal times, but supplementary broad irrigation is needed for handling dilute wastes and emergency discharges. Broad irrigation must be located in rural areas and be carefully done to be reasonably effective. Ponding has not proved satisfactory even at small distilleries because of inadequate design and resulting overflows and breaks in dams, especially at times of heavy rains, and also because of the local nuisance created.

The estimated cost of these suggested remedial measures is sum-

marized in table St-1.

Table St-7.—Salt River Basin: Ohio River pollution survey laboratory data—Summary of individual results

	Hardness, parts per million	94	114	1	128	128	140	168	148	180
	Alkalin- ity, parts per million	110 110 224	228 1124 124 228	240 224 137	120 128 113	152 120 123	124 144 151	148 160 132	148	150
	Turbid- ity, parts per million	15 20 10 20 20	222350 222350 22250 2250 2050 2	25.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0	45.54	93.00	2007	65 50 50	77.50	500
	Hď	00 1-1-10 00 1-1-10	Piritini www.ream	440	2007	1111	7.7.7	61.0 61.0	1-01-	1-100
Coli-	forms, most probable number per milli- liter	46, 000	43, 000 43, 000 2 2 21, 010	93	4 6 4	46 36 36	11,000	91 240 240	150 93 36	93
5-day bio-	chemical oxygen demand, parts per million	15.0	11.8.00.00.00.00.00.00.00.00.00.00.00.00.0	က်ရောက် ကြောက်	က တ က တ က တ က	11.4	2.6.2	11.0	4,1-4, 30 57 44	3.6
	Percent satura- tion	98.7 69.6 64.1	22.7.7 23.0 23.0 23.0 23.0	37.78 83.8-7	99. 6 90. 6 34. 3	34.0 69.6 0	90.2 45.5 114.5	61. 1 59. 3 107. 9	91.3	73.6
Dissolved oxygen	Parts per miliion	సుబుబు అయిక	004.00.00 0000	0,0,4 සබව	1.1.1.0	0.010	1-00 to	44.00	6.9	7-15. 10.00
	Temper- ature °C.	25.0 27.0 21.0 25.0	25.5 21.0 25.5 25.0 23.0 23.0 23.0 23.0 23.0	23.0 18.0 30.0	31.0 28.5 30.0	26.0 26.0 30.0	28.0	30.0 28.0 32.0	30.5 27.5 29.0	27.0
	Average discharge, cubic feet per second	555	£ 222 £	33	3 4 (1)	333	33	24 4	0.00	41.04
	Date	Aug. 13, 1940 Aug. 16, 1940 Aug. 20, 1940 Aug. 13, 1940	Aug. 16, 1940 Aug. 20, 1940 Aug. 13, 1940 Aug. 16, 1940 Aug. 20, 1940 Aug. 13, 1940	Aug. 16, 1940 Aug. 20, 1940 July 29, 1940	July 31, 1940 Aug. 2, 1940 July 29, 1940	July 31, 1940 Aug. 2, 1940 July 29, 1940	July 31, 1940 Aug. 2, 1940 July 29, 1940	July 31, 1940 Aug. 2, 1940 July 29, 1940	July 31, 1940 Aug. 2, 1940 July 30, 1940	Aug. 1, 1940 Aug. 5, 1940
	Mileage from mouth	St 123.5 do do StTb 122	do do do do (lo St H 95	do do St 58.	do do StBC 89.5	stBC 84	do do StB 58.5	do do st 56.	do	do
	Sampling point	Salt River, above Harrodsburg, Ky. Do Do Town Banch, 100 yards below sewer	Salt River, above Lawrenceburg, Ky Do Do Do Hamonds Creek, below Lawrence-burner K burner K e	Salt River, above waterworks, Taylors lorsville. Ky	Do Do Clear Creek waterworks intake, above Shelbyville, K.y.	Do Do Clear Creek, disposal plant, Shelby-ville, K.y. below.	Do Do Brashers Creek, mouth, Taylors- ville, Kv.	Salt Rice, 1/2 miles below Taylors.	Do. Do. Floyds ('reek, mouth, near Shep- hardsville K'v	Do Do

	116	130	116	142	86	110	188	124	116	220
112	108 116 120	106 112 94	102 104 118	108 120 172	188 212 100	114	120 120 234 294 294 134	144 152 120	130 134 120	124 136 153 150 210 220 264 258
10	1000	30 15 120	35 45 70	35 200	120	34.85	8888 2000 1500 1500 1500 1500 1500 1500 1500	10 5 105	110	252 881 80 95 94 84 85 94 94 94 85 94 85 94 94 94 85 94 94 94 94 94 94 94 94 94 94 94 94 94
7.2	0.7.00	27.77	27.7.	23.77	F.F.00 60 61 41	00 00 00 4 - 03	ド::::::::::::::::::::::::::::::::::::	00,00,1°	1.7.7.	2777777
0	46	240	36 446 43	2, 400 23 110, 000	43,000 23,000 46	040	24, 600 24, 000 4, 300 4, 300	20.03	1, 100	(1) 9 120 93 240
2.0	44400	2000	4.2.8	1.4	80.6 112 6.5	6.6.4	######################################	0 i i i ii	91-193 04-20	47.84.77. 84.77.
129.1	144.5	114.7 98.3 50.6	63.4 53.4 76.1	69.2	0 0 126.5	142.6 98.4 89.0	87.7 70.3 56.2 0 32.2 118.8	130.6 11.9 84.2	67.7 52.2 77.1	70.8 38.8 38.8 45.0 21.1 34.9
9.8	11.2	4-00	70.4.0 7.01	0.00	10.3	10.9	0,0,4,0 k, Q,	00.00.00	80°C	00000000000000000000000000000000000000
30.0	29.0 28.0 31.0	26.0 26.0 25.0	21.0 20.0 27.5	23.5 17.0 26.5	29.0	30.0 22.5 27.0	30.0 23.0 24.5 20.0 20.0 25.5 5	23.0	25.5 18.5 27.5	24.5 15.5 15.5 24.0 24.0 25.0 25.0 25.0
24	15 24	100	2017	188 (1)	33	EE 81	5555	(1)	15 6 171	283
30, 1940	1, 1940 5, 1940 30, 1940	1, 1940 5, 1940 14, 1940	19, 1940 21, 1940 12, 1940	15, 1940 22, 1940 13, 1940	16, 1940 20, 1940 13, 1940	16, 1940 20, 1940 13, 1940	16, 1940 20, 1940 14, 1940 19, 1940 21, 1940 13, 1940	16, 1940 20, 1940 12, 1940	15, 1940 22, 1940 12, 1940	22, 1940 25, 1940 25, 1940 26, 1940 1, 1940 5, 1940 6, 1940
July	Aug.	Aug. Aug.	Aug.	Aug.	Aug.	Aug.	Aug. Aug. Aug. Aug.	Aug.	Aug. Aug.	Aug. Oct. Aug. Aug. Aug.
St 25.5	do do St 22.5	do do StRI 87.5	do do StRf 45.5	do do StRfBfC 80.	do do StRfBfC 75	do. StRfBfC 68.	do CLRIBIH 78.5 do StRIBIM 60	do StRfBf 52	do do StRf 30.5	dodost 6.0 St 6.0 St M 11.0 dodo
	1		1 1	Haven, Ky. Do Do Road Run of Beech Fork, below	Springuetd, K.y. Do Do Cartwrights Creek bridge, Route No.	1 1	11111	1 1	1 1	

Less than 1.

TABLE ST-7.—Salt River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	128	6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 4 1 2 4 1 1 2 4	119	130		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	124			-	114	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	186		f f 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Albolin		173	71	289	118	120	148	130	140	86.7	7.1	38 S	29	163	170	174	175
Muchid	ity, parts per million	242	15	22	212	940	12	15	65	25.00	15	20 00	282	18	12	10	12
	Hď	21.17															
Coli-	most probable number per milli- liter	460 1, 100 9	110	23.	O 44	44	46	2.400		15	24	43	6	38	20 0	0.00	93
5-day bio-	oxygen demand, parts per million																1.0
	Percent of saturation	107.5 65.6 108.8	88.7	300	98.5	85.1	87.0	86.7	49.9	00 00 00 00 00 00	81.4	27.7	87.2	96.9	80.8	93.2	90.6
Dissolved oxygen	Parts per million	00,10,00 4 L F	ග ු	0000	11.8	11.8	12:7	12.7	000	n so	00	4 00	000	12.7	12.6	12.7	12.9
	Temper- ature ° C.	28.5	16.0	14.5	3.5	0.20	00	28.5	28.52	26.0	15.5	15.0	16.0	4.0	27	25.0	1.0
Average	lischarge, cubic feet per second	2 1 5 0 9 6 0 1 6 1 1 6 2 1 8 0 1 8 0 1 8 0 1 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66	421	212	22	22	24	949	178	614	573
	Date	Aug. 6, 1940 Aug. 8, 1940 Aug. 12, 1940	19,	23,75	6,4	1,0	10,	11,	200	12,	21,	3,5	24,	9	-0	10,0	11,
	Mileage from mouth	StP 1.0	StP 1	dodo	do	do	do	do	op op	do	do	do	do	op	do	do	-do
	Sampling point	sk, above mouth.	Pond Creek, above mouth	Do	Do	100	100.	Salt River at mouth	100	100	Do	1)0	100	100	1)0	100	130

WABASH RIVER BASIN

CONTENTS

	Page
Contents	723 725 726 727 731 734 737
LIST OF TABLES	
W-1. Cost estimates of remedial measures W-2. Surface water supplies W-3. Sources of pollution W-4. Industrial wastes W-5. Selected laboratory data W-6. Monthly mean summer flows W-7. Summary of laboratory data	726 728 729 730 732 734 740
LIST OF FIGURES	
W-1. Map—Sources of pollution	725 730
W-2b. Chart—Sources of pollution and selected laboratory data (upper Wabash)	730
W-2c. Chart—Sources of pollution and selected laboratory data (West Fork White)	730
W-2d, Chart-Sources of pollution and selected laboratory data (East	730
W-3. Map—Coliform results	732
W-4. Map—Dissolved oxygen results	732
W-5. Map—Biochemical oxygen demand results	732
W-6. Chart—Summer low-flow frequency curve	736

WABASH RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Wabash River drains 33,100 square miles, almost one-sixth of the entire Ohio Basin. A little less than half of the 2,500,000 people in the basin are in urban communities. Indianapolis (386,972) and Terre Haute (62,693) are the largest cities. Agriculture is the predominant occupation and the principal industries are concerned with the processing of agricultural products. Coal, oil, and limestone are important mineral products.

Progress has been made toward the abatement of pollution and the sewage of almost three-quarters of the sewered population receives treatment. In spite of substantial progress toward the abatement of industrial pollution, these wastes cause the most serious problems at

present.

CONCLUSIONS

(1) Forty-six of the 275 public water supplies in the basin are from surface sources. Thirty of these, serving 687,000 people, are from

streams subject to pollution.

(2) About 1,120,000 persons are connected to sewers. The sewage of 73 percent receives treatment. Industrial wastes have a population equivalent of 1,772,000, of which 547,500 is discharged to municipal treatment plants.

(3) Laboratory studies indicate that the worst pollution problems are on the Wabash below Terre Haute, the West Fork of the White River below Indianapolis and the lower Muscatatuck River. In ad-

dition, many smaller streams are grossly polluted.

(4) The largest cities discharging untreated sewage are on the Wabash River. Partial treatment should be sufficient to maintain satisfactory conditions below Terre Haute and at other places on the

Wabash from Logansport to the mouth.

(5) Secondary treatment will be required at most of the other communities such as Bedford, Columbus, and Shelbyville. Additional treatment facilities and interceptors are needed at Indianapolis and improvements or additions to existing plants are indicated for Danville, Ill., Franklin and Tipton, Ind. and other places.

(6) Canneries are the principal waste-producing industries. Most

of these will require relatively complete treatment.

(7) Low-flow augmentation by proposed flood-control reservoirs on Raccoon Creek and on the Embarrass River would be of minor value in abating pollution at Terre Haute and Lawrenceville, respectively.

(8) A summary of cost estimates of remedial measures from table

W-1 follows:

	Treatment	Capital cost	Annual charges
Existing Suggested additional	1	\$16, 640, 000 14, 520, 000	\$1,600,000 1,655,000

Estimated additional costs over existing charges of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual charges
Primary, all places	\$11, 050, 000 15, 720, 000	\$1, 285, 000 1, 815, 000

Table W-1.—Wabash River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		ber of ints	Popula-		Annual charges			
	Pri- mary	Second-	connected	Capital invest- ment	Amortiza- tion and interest	Operation and main- tenance	Total	
Existing sewage treatment	10	74	822, 000	\$16, 640, 000	\$1,020,000	\$580,000	\$1,600,000	
Suggested minimum correction: Sewage-treatment plants Required interceptors Independent industrial waste correction	30	132	292, 600	8, 870, 000 3, 960, 000 1, 690, 000	625, 000 185, 000 220, 000	375, 000 250, 000	1, 000, 000 185, 000 470, 000	
Total Comparative cost: Primary treatment, all waste. Secondary treatment, all waste. As suggested.			/	14, 520, 000 11, 050, 000 15, 720, 000 14, 520, 000	1,030,000 785,000 1,115,000 1,030,000	625, 000 500, 000 700, 000 625, 000	1, 655, 000 1, 285, 000 1, 815, 000 1, 655, 000	

DESCRIPTION

The Wabash River drains 33,100 square miles in Illinois, Indiana, and Ohio. Almost three-quarters of the area is in Indiana, about one-quarter in Illinois, and less than 1 percent in Ohio. The northern and central parts of the area are flat or gently rolling but in the southern portion the land is quite hilly. The principal tributaries of the Wabash are:

Tributary	Distance above mouth of Wabash	Drainage area square miles	Tributary	Distance above mouth of Wabash	Drainage area square miles	
Little Wabash River_ Patoka River_ White River_ East Fork_ West Fork_ Embarrass River	95 96	3, 380 850 11, 290 5, 680 5, 430 2, 350	Sugar Creek	245 257 317 322 354 375	840 1, 520 800 1, 920 850 890	

The following tabulation of the population of some of the larger cities and of the entire basin shows the steady growth of most of the cities and the slow decrease in rural population until 1930. During the past 10 years the urban growth has been much slower and rural population has increased.

	Populations					
	1910	1920	1930	1940		
Larger cities: Indianapolis, Ind Terre Haute, Ind Muncie, Ind Anderson, Ind Champaign-Urbana, Ill Danville, Ill Kokomo, Ind Lafayette, Ind Marion, Ind Bloomington, Ind Logansport, Ind Vincennes, Ind New Castle, Ind Matton, Ill	24, 005 22, 476 20, 666 27, 871 17, 010 20, 081 19, 359 8, 838 19, 050 14, 895	314, 194 66, 083 86, 524 29, 767 26, 117 33, 776 30, 067 22, 486 23, 747 11, 595 21, 626 17, 160 14, 458 13, 552	364, 161 62, 810 46, 548 39, 804 33, 408 36, 765 32, 843 26, 240 24, 496 18, 227 18, 508 17, 564 14, 027 14, 631	386, 972 62, 693 49, 720 41, 572 37, 366 36, 919 33, 795 28, 798 26, 767 20, 177 18, 228 16, 620 15, 827		
Entire basin: Rural Urban	1, 419, 832 811, 935	1, 311, 126 1, 006, 267	1, 254, 967 1, 117, 322	1, 310, 468 1, 198, 130		
Total	2, 231, 767	2, 317, 393	2, 372, 289	2, 508, 598		

The Wabash Basin is primarily an agricultural area and the principal industries are engaged in processing agricultural products (canneries, milk-processing plants, meat-packing plants, strawboard mills). There are an increasing number of machinery and metal products plants in the northern half of the basin. Coal is mined in the western part of the area in both Indiana and Illinois but production has been decreasing for some time. There are active oil fields in southern Illinois and in southwestern Indiana. The limestone quarries in the neighborhood of Bedford, Ind., furnish most of the fine-grained building and ornamental limestone in the country.

Water uses.—The Wabash River and its tributaries are not navigable for boats and barges of the size commonly used on the Ohio and its navigable tributaries. There are four hydroelectric power developments in the basin with an aggregate capacity of about 21,000 kilowatts. The two largest ones are on the Tippecanoe River, one near the mouth and the other a short distance above Monticello. The other developments, on the East Fork of White River at Williams and on the West Fork of White River at Noblesville, have capacities of about 3,200 and 500 kilowatts respectively. There are four known potential power sites, all of which would have small capacities totaling about 15,000 kilowatts.

The natural lakes in the northern part of the basin are used extensively for recreation as are the artificial lakes, particularly those at the power dams on the Tippecanoe River. There has been little commercial recreational development along the streams although they are used by local residents for fishing and swimming. There is some commercial fishing along the Wabash below New Harmony.

PRESENTATION OF FIELD DATA

Figure W-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figures W-2a, W-2b, W-2c, and W-2d show similar data for four sections of the basin and, in addition, the location of water supply intakes from polluted streams and laboratory data on coliform organisms, dissolved oxygen, and biochemical oxygen demand. The pollution loadings shown represent the total of all sewage and industrial wastes in given communities.

Public water supplies.—Only 46 of the 275 public water supplies in the basin are taken from surface sources, but these serve more than 750,000 of the 1,300,000 served by all of the supplies. The underground water is generally hard and often contains objectionable amounts of iron but is usually of good enough quality to make it cheaper to use than surface water. Underground water is not generally available in large enough quantities to satisfy the needs of the

larger cities.

Thirty of the surface-water supplies serving 687,500 people are from streams subject to pollution. Table W-2 shows data on these supplies. The Indianapolis supply, taken largely from the West Fork of White River, has until recently been polluted by untreated sewage from Muncie, Anderson, Elwood and a number of smaller towns. The recently installed sewage treatment plants at the three larger cities should do much to improve the quality of the raw water at Indianapolis. Princeton, Ind., is being forced to abandon its surface water supply from Patoka River on account of gross pollution by oil-field brines and acid mine drainage.

TABLE W-2.-Wabash River Basin: Surface water supplies

TABLE W	1-2 11 (1)	vasa river dasin: k	sarjace a	outer sup	pites	
Supply	State	Source	Mile 1	Treat- ment ²	Popula- tion served	Consumption, million gallons per day
		Supplies below co	mmunity s	ewer outfa	lls	
Mount Carmel	Illinois	Wabash River	95	FD	7, 200	1.00
Vincennes.	Indiana	do		FD	15, 000	1. 44
Terre Haute	do	do	215	FD	55, 800	5.00
Carmi			43	FD	3, 400	. 20
Fairfield	do	do	90	FD	2, 800	. 31
Flora	do	do	148	FD	4,000	. 35
Louisville			160	FD	400	. 03
Effingham	do		196	FD	5,000	1.00
Mattoon	do	impounded. Little Wabash (impounded), wells.	226	LD	16,000	1. 50
Princeton	Indiana	Patoka River	111	LD	7, 700	. 90
Winslow			144	FD	1, 100	. 07
Hazelton			113	None	300	. 01
Petersburg	do	do	143	FD	3,000	. 44
Bedford	do	East Fork White River.	241	FD	13,000	1.00
Mitchell			250	FD	2, 400	. 20
Seymour	do	do	315	FD	8,000	. 82
Columbus	do	do	338	FD	6,000	2, 20
West Baden	do	Lost River	215	FD	2, 400	. 24
Austin	do	Muscatatuck River	305	FD	1, 500	2.00
North Vernon	do	North Fork Vernon	340	FD	3, 200	. 51
Washington	do	Fork. Wells, West Fork	161	FD	8, 800	1.00
Indianapolis	0 -	White River.	340	FD 3	375,000	33, 00
Indianapolis	do	West Fork White River, Fall Creek, wells.	340	E1)	370,000	63.00
Anderson	do	West Fork White	390	FD	38, 000	4.80
Muncie	do	West Fork White River, wells.	412	FD	43, 000	3. 80
Pendleton Reformatory	do	Fall Creek	367	FD	2,000	. 60
Newton	Illinois	Embarrass River	188. 5	FD	2, 300	. 24
Charleston	do	do	235	FD	8,000	1, 70
Danville	do	North Fork Vermil-	278	FD	32, 000	4. 34
Logansport	Indiana	lion River.	355	FD	19,000	3. 25
Montpelier	do	Salamonie River	437. 5	FD	1, 200	. 07
Total:						
	ntfalls				687, 500	72.02
					65, 100	5. 37
					752, 600	77. 39
Total sirrace water s	uppnes				702, 000	11.39

2 2 filter plants, one with slow sand filters.

¹ Miles above mouth of Wabash River.
2 F=coagulated, settled, filtered: L=lime-soda softened; D=chlorinated.

Sewerage. - Table W-3 shows the sewered population at some of the larger sources of pollution. About 73 percent of the sewered population of 1,119,700 is served by the 85 treatment plants in the basin. Secondary treatment predominates. The sewage from only 39,100 receives primary treatment, while that from 782,900 receives secondary treatment.

Table W-3.—Wabash River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	State Receiving stream		Miles above mouth of Wabash	Popula- tion connect- ed to	Treatment		popula- nivalent nical oxy- mand) &
			River	sewers		Untreat- ed	Dis- charged
Mount Carmel	Illinois	Wabash River	95	6,000	None	65, 000	65, 000
Vincennes	Indiana	do	127	14, 500	do	168, 400	168, 400
Towns Illoseto	00	(I)	215	26,000	do	373, 400	168, 400 373, 400
Clinton	do		232	6,000	do	8, 500 5, 500	8, 500
Attica	do	do	287	2, 500	do	5, 500	5, 500
West Lafayetto	do	do do do do do East Fork White Riv-	312 312	13,000	do	13,000	13,000
Lalayette.		do	353	16 000	do	32, 400 19, 700	32, 400 19, 700
Wobash	do	do	388	6 500	do	19, 500	19, 500
Soumour	do	East Fork White Riv-	315	6, 000	do	16, 400	16, 400
DOJ MOUL							
Columbus	do	do	338	9,000	do	32, 600	32, 600
EdinburgShelbyville	do	Blue River, Lewis	353		Secondary.		15, 300
Shelbyville	do	Blue River, Lewis	373	7,000	None	40, 400	40, 400
Carthage	1 40	Creek. Blue River	399	300	do	92, 800	92, 800
Knightstown	do	do	405		do		4,000
Martinsville	do	West Fork White	290	3, 200	do	8, 700	8, 700
		do West Fork White River.					
Indianapolis	do	do	332	370,000	Secondary.		179, 600
Noblesville	do	do	362	3, 900	None Secondary_	4,000	4,000
Anderson	do	do	387	37, 500	Secondary_	45, 500	4, 600 10, 700
Muneie	Tilimaia	Daybarrage River	406 131	40,000	None	46, 000 15, 000	15, 000
Danville	do.	Vermillion River	275	2, 000 28, 000	Chemical.		9, 800
North Manchester	Indiana	do Embarrass River Vermillion River Eel River	400	3, 100	None	34, 200 3, 900 5 400	3, 900
South Whitley	do	do Mississinewa River	413	900	do		5, 400
Marion	do	Mississinewa River	408	19, 500	Secondary.	53,000	5, 300
Gas City	do	. do	415	3,000	None	4,800	4,800
Portland Mattoon 1	Tilinoin	Salamonie River- Little Wabash River-	465 227	5, 300 14, 500	Secondary	5, 400 17, 300	5, 400 10, 800
Martoon	minois	Kickapoo Creek- Riley Creek.	221				10,000
Huntingburg	Indiana.	Hunley Creek	180	3,000	None	3, 700	3,700
Jasper French Lick-West	do	Patoka River	180	4,000	do	4,000	4,000
French Lick-West Baden. Bedford	do	Leatherwood Creek	215		do	13, 200 11, 300	13, 200 11, 300
Austin	do	Ditch to Muscatatuck	305	300	do	100, 300	100, 300
***************************************		River.	000	500		200, 000	
Scottsburg 1	do	Stucker Fork	309		Primary	45, 000	44, 300
Brownstown		Ditch to East Fork White River.	300	300	None		23, 100
Waldron	00	Conns Creek	374 409	400	None	8, 600 18, 700	8, 600 18, 700
Shirley	do	Youngs Creek	366	4,000	None Secondary_	41,000	16, 700
Franklin Washington	do	Hawkins Creek	163	6, 500			12, 700
Plainville	do	Smothers Creek.	185			33,000	33,000
Plainville	do	Pleasant Run	324	1,500	None	19, 500	19, 500
Tipton Elwood ² Alexandria Robinson ²	do	Cicero Creek	385	4,000	Secondary_	18, 500	10,600
Elwood 2	do	Duck Creek	385	8,500	None	61, 300	11, 700
Robinson *	Tillingia	Sugar Crock	395 170	3, 400 3, 000	None Secondary.	25, 900 7,000	25, 900
Kirklin	Indiana	Pipe Creek Sugar Creek Ditch to Sugar Creek	319	200	None	7,000 7,700	4, 500 7, 700
Kirklin Champalgn	Illinois	West Branch Salt Fork.	332	43, 000	Secondary	43, 000	4, 400
Fowler	Indiana.	Mud Pine Creek	317	1, 200	Nonedo	5, 300	5, 300
Klondike	do	Indian Creek	310		do	6,000	6,000
Kempton	(10	Swamp Creek	367 371	21 500	Secondary. Primary	7, 500 32, 800	7, 500 6, 000
Rochester	do	Wildeat Creek Mill Creek	410	3,000	Primary.	9, 500	
		IVIII OICON	210	5,000	2 1111101 y	0,000	0,000

Part of sewage treated.
 Plant not in operation at time of laboratory survey.

Table W-3.—Wabash River Basin: Sources of pollution, including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)—Continued

, Municipality	State	Receiving stream	Miles above mouth	Popula- tion connect-	Treatment	Sewered popula- tion equivalent (biochemical oxy gen demand)			
			Wabash River	ed to sewers		Untreat- ed	Dis- charged		
WarsawColumbia City Fowlerton243 other sources		Walnut Creek Blue River Ditch to Barren Creek_	442 426 423		Nonedo	7, 400 8, 500 12, 000 446, 800	8, 500 12, 000		
Total: Illinois Indiana Ohio		•		164, 000 949, 300 6, 400		253, 500 2, 608, 500 29, 700			
Total entire b	asin		1, 119, 700		2, 891, 700	1, 818, 900			

Industrial wastes.—This type of pollution exceeds that from domestic sewage. Two hundred and fifty industrial plants, not connected to municipal treatment plants, discharge wastes with a sewered population equivalent of 1,224,500. About half of these plants are canneries. The canneries and the 12 paper plants (predominantly straw-board or straw-paper plants) account for about 80 percent of the industrial waste load not discharged to municipal treatment plants. Table W-4 summarizes data on industrial wastes by type of industry. Most of the industries make some attempt to reduce pollution but in the majority of instances additional treatment or recovery is needed.

Table W-4.—Wabash River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	Number		al waste	At least minor	Estimated sewered population	
Industry	of plants	Munic- ipal sewers	Private outlet	corrective measures taken	biochem- ical oxygen demand	
Breweries Canneries Distilleries Meat. Milk Oil refineries Paper Steel Textiles Miscellaneous	3 123 2 31 45 2 12 4 4 3 25	2 26 6 25 2 3	1 97 2 25 20 9 4 1	3 121 2 30 34 2 11 2	42, 000 530, 000 121, 000 36, 100 11, 900 17, 000 444, 300 8, 200 14, 000	
Waste unconnected municipal treatment Waste discharged to municipal treatment	250	81	169	217	1, 224, 500 547, 500	
Total industrial waste in basin By States: Illinois Indiana Ohio					1, 772, 000 89, 500 1, 659, 200 23, 300	

No differentiation has been made in the tables, maps, or charts between wastes which are discharged only seasonally and those which are discharged throughout the year. The pollution loadings shown represent conditions at the time of maximum seasonal operations. In the case of the canning industry this may occur only during a few weeks in the year but these few weeks are often during the late summer when the effects of organic pollution on the oxygen balance of the streams are most serious.

Acid mine drainage.—Mine waste has caused the greatest damage in the area drained by Patoka River. Prior to the inauguration of the mine-scaling program, about 110,000 tons of acid were discharged throughout the basin each year. The mine-scaling program has re-

duced this to about 63,000 tons per year.

Many of the mines in this area are strip mines. These have been sealed by damning the drainage outlet and flooding the acid-producing strata. A number of the lakes thus formed have been successfully stocked with fish and add to the recreational resources of the area.

Oil fields.—Wastes from oil fields do not at present cause a major pollution problem. Production in the older fields in both Illinois and Indiana is so small that even with relatively high brine-oil ratios the brine causes no particular problem in the larger streams. New activity in the old fields in Indiana has seriously affected the Patoka River and Princeton, Ind., is being forced to abandon its water supply from that stream. The new fields in both States have been developed since 1937 and new drilling is going on continuously. Most of the production is in the area drained by the Little Wabash River but there is considerable activity in fields near the Wabash and drained directly by it or by small tributaries. Brine production is small at present and none of the water supplies from the Little Wabash has as yet been damaged. The State Health Department of Illinois is taking steps to prevent the development of a serious problem. Where brine production is small, ponding with subsequent release during high water is practiced. Where there are appreciable quantities of brine it is being reinjected into subsurface formations which are unsuitable for use as sources of potable water.

PRESENTATION OF LABORATORY DATA

Laboratory results indicate that the major pollution problem in the basin is in the stretch of about 60 miles of the Wabash below Terre Haute. Poor sanitary conditions were also observed along the upper Wabash from Fort Recovery to below Bluffton, along the White River below Indianapolis, and along the Muscatatuck River. More or less localized pollution problems were found at Hartford City, Pertland, Gas City, Columbia City, Warsaw, Kokomo, Frankfort, Rantoul, Danville, Mattoon, Flora, Albion, Muncie, Elwood, Franklin, and West Baden, with the worst conditions below Warsaw, Portland, Muncie, Hartford City, and West Baden. In general, the White River was found to be more heavily polluted than the Wabash but natural purification was more rapid along the White than along the Wabash.

Summaries of laboratory results are shown in table W-7 (p.740). Selected data appear in table W-5. The observations in this basin

were carried out by mobile laboratory units during the period July-November 1940, and during February 1941. From 1 to 12 samples were collected at each sampling point. Figures W-3, W-4, and W-5 show graphically the coliform, dissolved oxygen, and oxygen demand results, respectively. The data thus shown represent the average of all samples where observations were made for a period of less than 1 month. Where observations extended over several months the results shown are the most unfavorable monthly averages.

Table W-5.-Wabash River Basin: Selected Laboratory data

						-	
RiverLocation	Wabash Above Fort Re- covery, Ohio	Wabash Below Fort Re- covery, Ohio	Wabash Above Logans- port	Wabash Below Logans- port	Wabash Above Lafay- ette	Wabash Below Lafay- ette	Wabash Above Terre Haute
River miles above mouth of	479	478	357	354	313.5	303	215
Wabash. Period, 1940	August	August	Septem- ber- October	Septem- ber- October	October	October	Septem- ber- October
Number of samples	1	3	5	5	4	4	5
Flow in cubic feet per second:	1	(1)	185	340	1, 118	1, 144	1, 224
Water temperature. ° C	23. 5	23. 0	14. 1	203 15. 4 354	518 15. 8	15. 3	970 16. 3
Coliforms per milliliter Dissolved oxygen, parts per	5. 1	20,000	10. 5	9. 3	128	1, 330	8.3
million. Biochemical oxygen demand, 5-day, parts per million	3, 2	17. 4	7.1	3. 9	4.2	3.3	2.3
o day, parto per amore							
River	Wabash Above Terre Haute 210	Wabash Below Terre Haute 199	Wabash Above Vin- cennes 152	Wabash Below Vin- cennes 126	Wabash Above Mount Carmel 97	Wabash Below Mount Carmel 93	Wabash At mouth
Wabash. Period, 1940	Septem- ber- October	Septem- ber- October	Septem- ber	Septem- ber	Septem- ber	Septem- ber	Septem- ber
Number of samples	5	. 5	4	4	. 4	4	4
Flow in cubic feet per second: Sampling days	1, 220	1, 230	1,600 1,303	1, 600	1,680	2, 680	3, 000
Minimum month Water temperature, ° C Coliforms per milliliter	15. 3 34, 000	16. 8 2, 400	22. 0	22. 1 2, 160	22. 7 19	2, 330 22. 7 130	22. 4 2
Dissolved oxygen, parts per million	3. 6	2.6	8.4	7.0	8. 2	7.6	8.4
Biochemical oxygen demand, 5-day, parts per million	12.1	5. 4	4. 5	7. 0	4.9	4.7	2. 5
						1	
River	Sala- monie	Sala- monie	Little Lick	Thorn Creek	Thorn Creek	Walnut Creek	Walnut Creek
Location	Above	Below	Creek Below Hartford	Above Colum-	Below Colum-	Above Warsaw	Below Warsaw
River miles above mouth of	466	462	City 437	bia City 427	bia City 425	444	443
Wabash. Period, 1940	August	August	August- Septem- ber	July- August	July- August	July- August	July- August
Number of samples	3	3	3	3	3	3	3
Flow in cubic feet per second: Sampling days	(1) 22. 5 46	22. 3 67, 300	22. 8 16, 600	7 21. 7 691	7 22. 8 46, 200	2 26. 5 26	24. 3 283, 000
Coliforms per milliliter Dissolved oxygen, parts per	6. 2	07,500	0	4.7	.5	11.1	203,000
million. Biochemical oxygen demand, 5-day, parts per million	2.3	9.8	29. 6	2.7	41.9	1.9	45. 2
						1	

¹ Less than 1.

Table W-5 .- Wabash River Basin: Selected Laboratory data-Continued

Creek Kokomo Above Below Kokomo Rantoul Below Rantoul Below Rantoul Above Danville Below Rantoul Above Danville Da								
Creek Rokomo Rantoul Below Rantoul Bel	River	Wildcat	Wildcat	Prairie	Salt Fork	Salt Fork	Vermil-	Vermil-
River miles above mouth of Wabash. Period, 1940. July July July October July					42			
River miles above mouth of Wabash. Period, 1940	Location							
Wabash Period, 1940 July July October July August	Diver miles shows mouth of			fort				
Number of samples		010	011	0.30	209	900	211	210
Number of samples	Period, 1940	July	July	October				
Flow in cubic feet per second: Sampling days					August	August	August	August
Flow in cubic feet per second: Sampling days	Number of annulus	9	2	0	0	9	9	9
Sampling days		ő		5	ō	ō	8	3
Water temperature, °C	Sampling days	7	9	3	(1)	2	50	32
Dissolved oxygen parts per million	Water temperature, ° C	23. 0	23.8	14.8	23. 3	23. 6	31. 3	12. 8 28. 8
Biochemical oxygen demand,	Coliforms per milliliter	14	4, 680	88, 100	148	2, 340	18	39, 400
River	Dissolved oxygen parts per	4.3	1.0	2.4	7.6	2.3	7.7	2.7
River	Biochemical oxygen demand,							
Creek Below Mattoon Below Mattoon Below Mattoon Below Mattoon Below Muncie Below Below Muncie Below Muncie Below Muncie Below Muncie Below Below Below Muncie Below Below Muncie Below Muncie Below Below Below Muncie Below	5-day, parts per million	4.6	3. 9	22. 2	1.4	12. 5	2.1	13. 4
Creek Below Mattoon Below Mattoon Below Mattoon Below Mattoon Below Muncie Below Below Muncie Below Muncie Below Muncie Below Bel		1	1		1	1	1	
River miles above mouth of Wabash. Period, 1940 Municiples Above Wabash. Period, 1940 August Sampling days August Sampling days August Septem million August Septem mouth August Sampling days August Septem mouth August Septem ser million August Septem ser m	River							Youngs
River miles above mouth of Wabash. Period, 1940 August August September Septem		Creek	White				Creek	Creek
River miles above mouth of Wabash. Period, 1940 August August September Septem	Location		Above	Below	Above	Below		
River miles above mouth of Wabash Wabash Period, 1940 August Septem Ber Septem Septem Ber Septem Septem Ber Septem Ber Septem Ber Septem Ber Septem Ber Septem Ber Septem Septem Ber Septem Septe		Mattoon	Muncie	Muncie			Elwood	Franklin
Number of samples		244	412	405	349		382	364
Number of samples	Wabash.	Amonst	August-	August-	Sentem-	Sentem-	August-	Septem-
Number of samples	- 110049 10100000000000000000000000000000	2208000	Septem-	Septem-			Septem-	ber
Sampling days			ber	ber			ber	
Sampling days	NT11	0	2	9				-
Sampling days	Flow in cubic feet per second:	8	0	0	0	0	5	3
Second column Second colum	Sampling days	1		9	69		3	2
Second column Second colum	Water temperature, ° C	22.8		20.0	18.7		19.8	17. 0
Second column Second colum	Coliforms per milliliter	30,000	55	673, 000	18	23, 200		28, 300
Biochemical oxygen demand, 6-day, parts per million	Eissolved oxygen parts per		8.7	0	8.7	2.9	. 8	.2
River	Blochemical oxygen demand,							
Location	5-day, parts per million	25. 0	2. 5	41. 2	5. 7	9.1	40. 3	113
Location	-						1	
River miles above mouth of Wabash River mouth River miles River mouth River	River				Lost	Lost		
Vernon Mouth Flora Baden Baden Baden 120 August Septem Ber Number of samples Septem S					Above	Below		
River miles above mouth of Wabash 297 282 217 216 August Septem ber	200ation		Vernon		West	West		Albion
Number of samples. 3 6 3 3 8 5 6 6 7 7 19.5 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 7 19.5 19.5 7 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	River miles shows mouth of We	hash		282			120	81
Number of samples 3 6 3 3 8 Flow in cubic feet per second: Sampling days 5 6 6 7 (i) Water temperature. C 12.8 15.3 13.7 15.0 19.5 19.	Period, 1940	DSSII					August-	August-
Number of samples. 3 6 3 3 8 Flow in cubic feet per second: Sampling days. 5 6 6 7 (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4)							Septem-	Septem-
Flow in cubic feet per second: Sampling days. Water temperature. ° C							Del	Det
Flow in cubic feet per second: Sampling days. Water temperature. ° C	Number of semples		3	6	3	3	2	3
Water temperature. ° C. 12.8 15.8 18.7 15.0 19.5 19.5 Coliforms per milliliter. 720 1 7 12,500 8,230 3,01 Dissolved oxygen parts per million. 0 2.2 5.8 0 2.6 5.	Flow in cubic feet per second:	Sampling			_			
Dissolved oxygen parts per million 0 2.2 5.8 0 2.6 5. Biochemical oxygen demand, 5-day, parts	Water towns on turn 9 C						(1)	(1)
Dissolved oxygen parts per million 0 2.2 5.8 0 2.6 5. Biochemical oxygen demand, 5-day, parts	Coliforms per milliliter		720	1	7	12, 500	8, 230	3, 070
per million 186.0 4.4 1.5 10.0 15.0 18.	Dissolved oxygen parts per milli	on	0	2. 2	5.8	0	2. 6	5. 2
	per million	lay, parts	186.0	4.4	1.5	10.0	15.0	18.0

¹ Less than 1.

Stream flows were generally among the lowest of record during the period covered by this survey. In many instances, on the smaller streams, zero discharges made observations above towns impossible and minimum stages made general sample collections somewhat difficult.

Average coliform densities in excess of 400 per milliliter were observed in the Wabash for nearly 60 miles below Terre Haute in November 1940. Oxygen demands in excess of 12 parts per million and dissolved oxygen concentrations of less than 3 parts per million

were observed below the city. Reductions in oxygen demand appeared to be relatively rapid during the summer months but somewhat

slower during cooler weather.

Coliform results on the Wabash showed slightly worse pollution than did the oxygen demand results but, in the main, were in close agreement as to the location of poor sanitary conditions. Little, if any, correlation appeared to exist between the dissolved oxygen results and the other observations, except in a few grossly polluted areas. This may have been due to photosynthesis or to low water temperatures. Considerable natural purification appears to have been effected at fairly rapid rates below sources of pollution.

A few acid stream samples were taken in the Patoka River area along the South Fork ditch and in the vicinity of Patoka. pH values ranged from 3.4 to 4.7 and phenolphthalein acidities of over 500 parts

per million were found.

At its mouth the Wabash River was found to be in good sanitary

condition.

Biological summary.—The plankton population of the Wabash and the larger tributaries is the highest in the entire Ohio Pasin—the total volumes often reaching 12,000 to 14,000 parts per million and in a few cases as high as 75,000 parts per million. These high values are due to the increase in the available plant food as a result of the decomposition of the sewage from the heavily populated centers. The fertility of the stream is also reflected in the large mixed fish population.

HYDROMETRIC DATA

Forty-eight stream-gaging stations have been maintained in the basin for various periods and 35 stations are currently in operation. Table W-6 shows mean monthly flows at 24 of these stations during some of the driest summers of record.

Table W-6.—Wabash River Busin: Monthly mean summer flows for years in which lowest summer flows have occurred

River	Wabash	Wabash	Wabash	Wabash	Wabash	Missis- sinewa	Eel
Location	Bluffton, Ind.	Wabash, Ind.	Logans- port, Ind.	Terre Haute, Ind.	Mount Carmel, Ill.	Marion, Ind.	North Man- chester, Ind.
River miles above— Confluence with Wabash_ Mouth of Wabash_ Drainage area (square miles) Period of record	421.8 470 1923-40	387.7 1,670 1923–40	353.9 3,760 1903–06 1923–40	214.4 12,200 1905-06 1928-40	91.5 28,600 1928-40	33 408 740 1924–40	46 400 429 1924–40
Year	1936	1940	1940	1936	1936	1940	1928
June_cubic feet per second Julydo Augustdo Septemberdo	23. 9 39. 0 9. 09 8. 63	856 164 57. 1 44. 0	1,810 511 241 203	2, 960 970 1, 240 2, 640	5, 760 3, 220 2, 330 3, 810	279 56. 3 25. 0 21. 0	195 229 61. 8 37. 9
Year	1935	1932	1939	1940	1940	1928	1940
June_cubic feet per second_ Julydo Augustdo Septemberdo	78. 5 131 47. 7 9. 03	363 327 45. 9 291	1, 450 1, 156 699 233	8, 154 2, 444 1, 183 1, 062	15, 115 5, 570 2, 890 2, 450	1, 170 316 50. 5 24. 8	229 89. 6 44. 4 50. 6
Year	1939	1934	1936	1934	1930	1936	1930
June_cubic feet per second Julydo Augustdo Septemberdo	172 100 46. 4 9. 62	128 55. 4 207 132	595 269 374 525	1, 440 1, 380 3, 140 3, 450	6, 050 4, 110 3, 280 3, 670	65 32. 6 31. 7 43. 4	87. 9 45 130 61. 7

Table W-6.—Wabash River Basin: Monthly mean summer flows for years which lowest summer flows have occurred—Continued

River	Tippe- cance	Vermil- lion	Embar- rass	Patoka	Little Wabash	West	West Fork
Location	Monti- cello, Ind.	Danville,	Ste. Marie, Ill.	Patoka, Ind.	Wilcox,	White Muncie, Ind.	White Ander- son, Ind.
River miles above— Confluence with Wabash Mouth of Wabash Drainage area (square miles) Period of record	28 350 1,740 1924–40 (¹)	19 276 1,280 1015–21 1928–39	53 175 1,540 1910–12 1914–39	12 107 843 1935–40	119 134 1,130 1914–39	316 ' 412 259 1924-29 1931-40	294 390 412 1925-27 1932-40
Year	1934	1920	1914	1936	1930	1940	1940
June_cubic feet per second Julydo Augustdo Septemberdo	303 180 489 1,007	252 54. 0 54. 2 14. 4	13. 5	7. 93 18. 9 3. 58 9. 90	20. 6 9. 75 4. 26 372	117 16. 7 4. 8 3. 2	226 51.3 5.1 20.9
Year	1940	1930	1922	1940	1936	1932	1936
June_cubic feet per second Julydo Augustdo Septemberdo	1, 027 429 237 240	165 67. 9 17. 9 35. 7	364 257 52. 2 26. 3	146 71. 4 11. 3 24. 4	19. 0 30. 0 4. 44 7. 26	109 30. 9 7. 18 94. 5	76. 6 37. 9 34. 8 33. 8
Year	1936	1919	1930	1939	1922	1939	1934
June.cubic feet per second. Julydo Augustdo Septemberdo	624 246 298 406	576 130 43.8 20.7	155 80. 3 27. 9 137	571 223 318 20. 1	100 121 12. 4 5. 37	92. 8 53. 6 27. 9 9. 34	93. 4 50. 8 37. 3 44. 0
River	ville,	West Fork White Indian- apolis,	Fall Creek Millers- ville,	East Fork White Seymour Ind.	East Fork White Shoals, Ind.	Flat Rock Creek St. Paul, Ind.	Musca- tatuck Austin, Ind.
River miles above— Confluence with Wabash Mouth of Wabash Drainage area, square miles Period of record	370	236 332 1,620 1904–06 1925–40	247 343 327 1925–26 1930–40	218 314 2,340 1923–40	107 203 4,940 1903–05 1908–16 1923–40	275 371 303 1925, 1931–40	212 308 368 1932–40
Year	1940	1940	1940	1925	1911	1934	1936
June_cubic feet per second_ Julydo Augustdo Septemberdo	366 104 69. 5 58. 7	752 160 71. 1 58. 9	117 36. 8 19. 7 17. 0	827 867 282 122	228 117 95.8 1,640	19. 7 13. 1 6. 75 4. 92	6. 90 3. 30 1. 40
Year	1936	1936	1936	1927	1936	1936	1940
June_cubic feet per second_ Julydo Augustdo Septemberdo	65. 8	302 90. 3 79. 4 105	72. 2 29. 1 19. 6 22. 3	826 149 157 135	696 489 265 379	29. 4 9. 28 14. 6 84. 3	155 14.6 2.1 2.6
Year	1932	1939	1934	1936	1940	1940	1933
June_cubic feet per second_ Julydo Augustdo Septemberdo	380 190 89. 2 265	651 683 413 124	42. 2 38. 4 25. 1 34. 7	448 231 169 227	2, 079 763 373 311	208 31. 5 12. 2 9. 8	47. 6 7. 8 23. 7 42. 6

 $^{^1}$ From 1924-31 the station was at Pulaski, 32 miles upstream, drainage area 1,110 square miles. None of the flows at this station were as low as those at Monticello from 1932-40.

Proposed stream control.—Five flood-control reservoir sites have been studied by the United States Engineer Department for construction under the authorized program for Ohio River flood control. Data on these reservoirs are tabulated below:

Reservoir	Stream	Miles above mouth of Wabash River
Mansfield	Raccoon Creek Embarrass River Mill Creek West Fork White East Fork White	259 190 285 265 208

There are no large sources of pollution along the streams below the latter three of these reservoirs with the exception of Mount Carmel on the Wabash. Although there are no important sources of pollution on Raccoon Creek, below the Mansfield Reservoir site, any additional flow made available by the reservoir by using a portion of the flood-control capacity for low-flow regulation after the end of the flood season would be of value for pollution abatement at Terre Haute. Wastes from Lawrenceville are discharged to the Embarrass River below the Wolf Creek site and additional flow from the reservoir would be of value at that point. The value to pollution abatement of low-flow regulation from these reservoirs would not be great enough to warrant provision of additional storage capacity expressly for this purpose.

DISCUSSION

While commendable progress, in general, has been made in sewage treatment, untreated sewage from a number of cities and towns seriously affects the water supplies of downstream communities. The heaviest remaining pollution results from the discharge of untreated

or inadequately treated industrial wastes.

At Terre Haute, the largest source of pollution in the basin, industrial wastes have a population equivalent of more than 12 times the sewered population. At some of the other communities where large canneries are located the ratio is even higher. A number of sewage-treatment plants are successfully treating industrial waste loads that are considerably greater than the strictly domestic sewage load.

Wabash River.—The four largest cities without sewage treatment works (Terre Haute, Vincennes, La Fayette, and Logansport) are all on the Wabash River. The flow in the river at these and at other communities on the main stream below Logansport is ample to permit the satisfactory disposal of sewage and most industrial wastes with only

partial treatment.

The major part of the waste load at Terre Haute comes from straw-board plants and distilleries. Canneries, packing houses, and a few other industries add to the industrial waste load. Although the city has a population of 62,000 only about 26,000 are served by the municipal sewerage system. Much of the industrial waste can be treated effectively at a municipal plant. Pretreatment at the industrial plant before discharge to city sewers is indicated in a few cases. The strawboard wastes here and also at Vincennes probably will require separate treatment.

Secondary sewage treatment is indicated at Wabash, the only town of appreciable size on the Wabash River above Logansport not now

having such facilities.

East Fork of White River.—Untreated sewage from a number of communities along the East Fork and its tributaries causes damage of more than local importance. The larger communities are Bedford, Columbus, Shelbyville, and Seymour. Secondary treatment is indicated at the first three. Primary treatment should be sufficient at Seymour. Large amounts of untreated or inadequately treated industrial wastes, principally from canneries and a strawboard plant, contribute a much larger oxygen demand than the domestic sewage.

Four public water supplies are taken from the East Fork (see table W-2) and the untreated water at all of these has been found occasionally to be rather heavily polluted, although at the time of the laboratory survey the bacterial counts were not unduly high. Evidence of the need for improved waste treatment in this area is shown by the epidemics of gastroenteritis, evidently water-borne, which occurred early in February 1940, in the towns using the East Fork as a source of public water supply. Seymour was particularly hard hit, about one-quarter of the people using the public supply being affected. Those not using the public supply were not affected nor did communities using other sources of supply experience any similar outbreaks. The epidemics occurred with a rise in the river following a continued period of low flow during which the stream was covered with ice. These factors all indicate that the probable cause of the disorders was undue pollution of the stream by sewage and industrial wastes at a time when natural purification processes were least rapid.

Two large canneries, at Scottsburg and Austin, cause serious oxygen depletion of the Muscatatuck River for more than 25 miles. At the time of the laboratory survey the average dissolved oxygen content was found to be only 2.2 parts per million at the mouth of the stream and at other times the entire Muscatatuck River has been septic due to these wastes. The communities at which these canneries are located are small and the industrial wastes will need to be treated

separately. Relatively complete treatment is indicated.

West Fork of White River.—At Indianapolis the sewage flow is approaching the design capacity of the treatment plant built in 1925. Expansion of some of the units is necessary if the plant is to produce a satisfactory effluent. A number of the existing interceptors flow almost full during dry weather and even light rains cause overflows of untreated wastes into Fall Creek and the West Fork with attendant nuisance conditions. Larger or additional interceptors are indicated.

The larger cities and industries above Indianapolis water supply intake on the West Fork have taken steps to abate pollution. Sewage from Noblesville, however, still enters the stream without treatment. The provision of at least primary treatment and chlorination is indicated for the further protection of Indianapolis' water supply. Secondary treatment of sewage and industrial wastes at Alexandria is indicated. These wastes cause a serious local nuisance in Pipe Creek which enters the West Fork above Indianapolis. Complete treatment of sewage and cannery wastes at Pendleton and improvements to the existing treatment plant at the Pendleton Reformatory are needed to protect the quality of Fall Creek which is also used by Indianapolis as a source of public water supply.

Other sources of pollution.—Existing sewage-treatment plants at a number of cities need improvements or additions; among these are Danville, Ill., Sullivan, Franklin, Tipton, and Greencastle, Ind. The majority of the communities now discharging untreated sewage are on small streams subject to extremely low flows. Secondary treatment is essential at these places to prevent local nuisances; Warsaw, Columbia City, Gas City, Huntingburg, Jasper, Portland, and Washington, Ind., are examples of such communities.

A large part of the industrial waste load can be most easily and satisfactorily handled at municipal treatment plants. Wastes from many of the canneries and some of the other industries will require separate treatment. Small and moderate-sized canneries which operate only seasonally can often dispose of their wastes without nuisance to lagoons or by broad irrigation if care is taken to prevent accidental discharges of wastes to the streams. Detailed study of some plants will be necessary to determine the most practicable method of handling the wastes. Several sewage-treatment plants, notably those at Muncie, Crawfordsville, and New Castle, Ind., have experienced operating difficulties because of acid pickle liquors discharged to the municipal sewers by metal-processing plants. Either separate treatment or pretreatment of such wastes at the industrial plant seems necessary to prevent interference of these wastes with treatment processes.

Continuation of the work of the Illinois State Health Department on disposal of oil field wastes appears necessary. As the field becomes older and brine production increases, the water supplies taken from the Little Wabash River would be affected if present rigid methods of disposal were not continued. Resumption of the mine-sealing pro-

gram is desirable, particularly in Indiana.

Flow regulation by the proposed flood-control reservois on Raccoon Creek and the Embarrass River could be of value in abating pollution at Terre Haute and Lawrenceville. In neither case would the value to pollution abatement be large enough to have any appreciable influence on the economic justification of the project, nor would the Provision of additional storage capacity solely for the purpose of pollution abatement be economically justified.

Estimated costs of existing treatment and of the suggested program of municipal and industrial waste treatment facilities are

summarized in table W-1.

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results

	Hardness, parts per million		380	130	190	440	88		296	0 0 0 0 1 1 0 0 1 2 0 0 1 1 0 0 1 1 0 0 1 0 0 1	204	6 6 6 9 9 6 6 9 0 6 6 6 6 6 9 6 6 6 9 6 1 6 9 8 1 6 9 9 1 6 9 9 1 7 9 9	0
A 1111-	Arkanu- ity, parts per million	180	278	208 216 90 82	108	97 112 279	279 301 182 208	228 144 144	207	214 227 227	282	264	272
E Company	ity, parts per million	09	30	00 4 50 130 00 130 00 100 00 100 1	110	25.55	27.08.35	150	110	8425	110	222	10
	Ħď	7.8	7.7	% 1. 1. 0. 00 1. 00 4.		7.7	57.7.98 67.90 67.0			00000			
Coli-	most probable number per milli- liter	21	4,600	46, 000 9, 300 4	838	1, 100 2, 400 240		5888		4844	· 55 41 -	460	0,
5-day bio-	oxygen demand, parts per million	9.2	12.7	26.7 12.9 7.5		०० न न	00004x	34.00 F.	1.9				
	Percent satura- tion	59.2	9. 5	91.6 83.9	82.8 29.0	22.6 10.3 37.7	24.3 17.8 79.3	51.0		85.5 100.5 91.5	69.0	72.0	104. 5
Dissolved oxygen	Parts per million	5.1	60	7.7.8		00%	2,-i,0,4;-			113.0	0000	000	13.4
	Temper- ature ° C.	23. 5	27. 5	25.50 to 50		23.5	28.0 28.0 28.0 28.0			21.00 4.00 00 0 5.00	22.0	22.00	0.0
Average	discharge, cubic feet per second		ε	5	108	(3)	EE 818	32128	8 28	8 9 8 5 7 5 6 8 8	CSI -	* Lo 8	NO N
	Date	Aug. 29, 1940	Aug. 15, 1940	Aug. 22, 1940 Aug. 29, 1940 Aug. 15, 1940 Aug. 22, 1940	15,	Aug. 22, 1940 Aug. 29, 1940 Aug. 15, 1940	Aug. 22, 1940 Aug. 29, 1940 July 19, 1940 July 29, 1940 Aug. 6, 1940	J 1 8 0	26, 13,55	Nov. 5, 1940 Nov. 12, 1940 Nov. 18, 1940 Nov. 25, 1940	30,00	12,00	
	Mileage from mouth	W 479	W 478	do do W Be 474	W Be 473	do do WBeHe 476	do		W 410	do do	W.Lr 409	do.	do
	Sampling point	Wabash River, above Fort Recovery,	Wabash River, below Fort Recovery,	Do. Beaver Creek, above Celina, Ohio	Beaver Creek, 1/2 mile below Celina,	Do- Do- Werden Creek, ½ mile below Cold-	Wabash River, above Bluffton, Ind	Wabash River, below Bluffton, Ind. Do. Do.	Wabash River, above Huntington, Ind. Do	D0- D0- D0- D0-	Little River, above Huntington, Ind.	Do	Do

384	220	344	348	204	188	272	288		
270 277 288 231	22328	214 241 374	367 359 409	302 365 131	216 258 133	212 2342 236 206 206 210	238 238 238	266 271 272 273 273 273 274 274 274 274 274 274 274	2
10 60	80 20 20 50 112 112	120 120 30	1383	55 30 450	45 50 550	000 110 95 95	410 60 510 010	130 120 120 120 120 120 120 120 120 120 12	
0,00,00 00,4∞0	0000000 000000	2.8.1	 	4.7.7.	7.88.2	0000000		00000000000000000000000000000000000000	
11,000 240 1,100 240	2,400 1,100 1,100 1,100 4,100	24,000 24,000	9, 300 24, 000 46, 000	46,000 110,000 240	93	1, 100 1, 15 46 46	1, 100 23 46	000000000000000000000000000000000000000	A STATE OF THE STA
6,4,4,0, 6,0000	るるらよご! ?! 50004-17-11	46.62	10.8 10.0 11.8	17.2 16.3 5.6	4.6	6,0,0,0,4 6,000		なな!4:14332mg348122105	
48.2 144.3 64.4	68.99.78.49.99 68.99.78.49.99 68.00.00.00.00.00.00.00.00.00.00.00.00.00	76.8 67.1 0	0001	00046.5	97. 1 74. 0 46. 9	33.7 395.0 395.0 825.7 825.7		79.9 82.6 91.6 107.6 100.8 7.9.2 7.8.3 8.7.3 87.3 87.3	
12.0	74400811 10008040	0.5.8	00.	0 0 4	6.0	6.6.7.6.6.		7.7.9.0.1.1.3.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	
25.5	22.7.4.4.2.5.0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	19.0 23.5 25.0	19.5 23.5 25.0	19. 0 23. 0 23. 5	26.5 26.5 23.5	25.5 24.0 26.5 26.5		12.22.22.24.22.22.22.22.22.22.22.22.22.22	
23.02	102 28	E 1	04 63 63	4010	1348	20000	37	86888888888	222
6, 1940 9, 1940 26, 1940	5, 1940 13, 1940 5, 1940 12, 1940 18, 1910 25, 1940	23, 1940 30, 1940 16, 1940	23, 1940 30, 1940 16, 1940	23, 1940 30, 1940 19, 1940	29, 1940 6, 1940 19, 1940	29, 1940 6, 1940 19, 1940 29, 1940 6, 1940	29, 6, 19,	26, 1940 3, 1940 5, 1940 112, 1940 25, 1940 25, 1940 2, 1940 2, 1940 12, 1940 12, 1940 12, 1940	14,
Aug.	Aug. Nov. Nov. Nov.	Aug.	Aug.	Aug.	July Aug. July	July Aug. July July Aug.	July July Aug.	Aug. Nov. Nov. July Aug. Aug.	YACA
W.Lr 407. do. do. W 406.	dodododododododo.	do do W Sa 464	do do WSa 462	do do W Sa 438	do do W.Sa 437	do do M Sa 424 do do	W Sa 423 do do W Sa 394	do do do do do do do do do do do do do d	NO.
Little River, below Huntington, Ind. 100 100 Wahash River, below Huntington,	And. Do. Do. Do. Do. Do. Do. Do. Do. Salimenie River, 1½ miles above	Sallmonie River, I mile below Port-	Salimonia River, 3 miles below Port-	Salimenie, River, 0.7 mile below	Montpener, 1nd. 100 Salimonic River, below Montpelier,	Ind. Do. Salmonie River, above Warren, Ind. Do.	Salimonie River, below Warren, Ind. Do. Do. Salimonie River, at mouth, Lagro,	Ind Do Do Do Do Do Wabash River, above Wabash, Ind Do Do Do Do Do Do	Do-

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	3.16 2.32 2.32 2.34 2.34 2.34 3.36 3.38	4 P e t t e e e e e e e e e e e e e e e e
ontinae	Alkalin- ity, parts per million	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	240 235
	Turbid- ity, parts per million	**************************************	100
nauat res	Hd	◎によれていることできます。 会でる めるめ ないめめてめ めさいできる しょうけいてきありてするこの ます4 まま4 まりまるの まめめてる	2.7.
of individual	Coli- forms, most probable number per milli- liter	24, 600 25, 600 26, 600 27, 600 28, 600 29, 600 20,	1,100
summary	5-day bio- chemical oxygen demand, parts per million	ಇನ್ನಳ ಇವರು ನಿವರ್ಣ ನಿವರ್ಣ ನಡೆಗೆ ನಿವರಣ ನಿವ	2.1
aara	Percent of satura-	\$\frac{44}{24}\frac{14}{26}\frac{16}{26}\fra	76.7
looratory	Dissolved Parts per	44%,55%,46%,65%, 60%, 66%, 66%,66%,66%,66%,66%,66%,66%,66%,	7.0
pollullon survey laboratory adia Summary	Temper- ature ° C.		18.5
nonning	Average discharge, eubic feet per second	900048848848000000000000000000000000000	33
Onto Arver 7	Date	Aug. 2, 1940 Aug. 12, 1940 Nov. 15, 1940 Nov. 15, 1940 Nov. 18, 1940 Nov. 18, 1940 Aug. 2, 1940 Aug. 22, 1940 Aug. 22, 1940 Aug. 22, 1940 Aug. 23, 1940	Aug. 26, 1940 Sept. 3, 1940
n never Dasen.	Mileage from mouth	W 387. do do do do do do do WMILM 478. WMILM 478. WMI 448. WMI 488. do d	dodo
TABLE W-1 VY GOGS	Sampling point	Wabash River, below Wabash, Ind. Do Do Do Wabash River, above Peru, Ind. Do Do Do Do Do Do Do Do Do D	Do.

288	392	273	280	248	317	332	260	888
234	334 353 474	254 257 261	254 267 259	229	380 288 288 288 288 288	243 272 252	272 292 201	212 226 224 244 244 264 264 264 264 264 26
46	25 40 100	20 30 170	120 110 45	35	55 40 40 30 190	110	13	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
7.9	7.7.	7.7.8	8.0	7.3	0,0,0,0,0 0,000,000,00	7.9 7.8 8.7	7.8.7.	
2, 400	15,000 24,000 46,000	1,500 2,300 43	15	2, 400	4430 240 443 443 463	93 460	0000	(1) (2) (3) (4) (4) (5) (6) (7) (8) (9) (9) (10)
7.0	15.4 33.9 65.0	10.2 13.6 4.8	8.4.4. 8.1.1	19.3	9.0.0.0.0.0	7.00.07	लं लं म्लं ७ ०० ल	4ಪಟಪಟ್ಷಗಳಪಟಪಡಪಪಪ
71.7	000	70.3	55.3 60.6 46.0	15.0	30.9 33.5 74.7 35.2 37.0	85.9 50.7 25.5	46.9 34.9 45.5	81.9 87.8 87.8 87.8 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10
6.3	000	0009	40.4	1.4	11.0000000 00000000	84.6	4.9.9.	844,000 844
22.0	23.5	24. 0 20. 0 22. 5	28.0 23.5 19.0	19.5	21. 5 16. 5 20. 0 25. 5 21. 0	28.0 23.5 27.5	24. 0 27. 0 26. 5	4887 7577 7578 7578 7578 7578 7578 7578
41	NHN	20	19	63	800000	23 54	46 36 62	42 50 50 50 50 50 14 14 14 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17
19, 1940	26. 1940 3, 1940 19, 1940	26, 1940 3, 1940 18, 1940	26, 1940 5, 1940 19, 1940	19, 1940	26, 1940 3, 1940 18, 1940 26, 1940 5, 1940 18, 1940	26, 1940 5, 1940 26, 1940	5, 1940 13, 1940 24, 1940	1. 1940 6. 11940 6. 11940 7. 1940 7. 1940 7. 1940 7. 1940 7. 1940 7. 1940 7. 1940 8. 1940 8. 1940 8. 1940 8. 1940 8. 1940 8. 1940
Aug.	Sept.	Sept.	July Aug.	Aug.	Sept. Sept. July July Aug.	July Aug.	Ang	Aug. Noov Noov Noov Noov Noov Noov Noov Noo
WAIIL! 436	do do WMILIL 437	do do WMi 414	do do WMiB 419	WMIB 419	do. do. WMiB 415. do. do.	do do WMi 403	do	do do do do do do do do do do do do do d
Big Lick Creek, below Hartford	Little Trick Creek, below Hartford	Lify, 1Hd. 100 Mississinewa River, above Gas City,	Ind. Do. Do. Rack Creek, ¾ mile below Fairmont,	Ind. Back Creek, 1 mile below Fairmont,	Ind. Do. Back Creek, above Jonesboro, Ind. Do. Mississnewa River, above Marion,	Ind. 100 Do. Mississinewa River, below Marion,	Ind. Do. Mississinewa River, at mouth, Peru,	Ind. 104. 105. 106. 107. 108. 109.

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

			TILO	IttvEt	. I	OLLO	11014	COL	1110	, 1.3		
	Hardness, parts per million		136	240	244	264	252	296	212	220	568	
A 11-035	ity, parts per million	215	251	510 499 308 264 264	261	298 320 217	361 394 214	3229 260 260 260 329 4	313	226 299 281	204 277 263 260	2216 2216 270 270 276
7	ity, parts per million	65	210	282	100	12 12 330	160	285	25.55	355	110 80 17 18	33228
	Hd	7.00	7.3	F. 60 00 10 1		27.7.		20000		00000		00000
Coli-	most probable number per milli- liter	43	46,000	24, 000 4, 300 21, 300	1, 100	930	24,000 110,000 2,400	2,400	344	210	240 240 240	\$ 50 a 4 5
5-day bio-	oxygen demand, parts per million	2.7	20.2	13.6		10 ⊕ CN CO i → CO	36.6 80.8 7.6	⊣ယတ က်ယ်က်က	100	((())) ())	लं चं लं नं च च ल च	20004H
loxygen	Percent of satura-tion	104. 5	94.0	24.2 24.2 24.2 24.2	40.2	39.7 76.6 19.3		4 0 0 0		61.2	61.8 115.6 105.4 97.4	85.5 80.14 4.16 4.16 4.16
Dissolved oxygen	Parts per million	13.2	13.0	, qqqq	4 69	25.7.1. 10.0.0	00%	4.03.00 0.400		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10.00	10,00,00,00,00,00,00,00,00,00,00,00,00,0
	Temper- ature ° C.	5.5	26.5	22,17.0	23.5	22. 5 19. 0 24. 5	24.0			27.5	25.0 24.0 15.5 15.0	11.00
Average	discharge, cubic feet per second	213	(1)	55	-1 2-0	7.07	25-100	888	30	311	73 105 100	167
	Date	Nov. 19, 1940	Nov. 26, 1940 July 23, 1940	ಇಂಪ್ರಪ್ಪ	July 23, 1940	July 31, 1940 Aug. 8, 1940 July 23, 1940	July 31, 1940 Aug. 8, 1940 July 23, 1940		300,00	July 31, 1940 Aug. 8, 1940 July 23, 1940	20,00,4	Oct. 11, 1940 Oct. 11, 1940 Nov. 6, 1940 Nov. 13, 1940
	Mileage from mouth	W 357	WEeTb 443	dodo	WEeTh 427	do	do WEe 413	WEe 412	do W Ee 400	do	do WEe 357	op op op
	Sampling point	Wabash River, above Logansport,	Town Branch Eel River, below	Eel River, below Churubusco, Ind.	Thorn Creek, above Columbia City,	Do Do Thorn Creek, below Columbia City, Ind	Do Do Eel River, above South Whitley, Ind	Eel River, below South Whitley, Ind.	Do. Eel River, above North Manchester,	Do. Do. Fel River, below North Manchester,	Do. Do. Eel River, above Logansport, Ind.	Do Do Do Do

264		264	238	256	252	275
217 276 252	222 230 276 290 225	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2212 2202 202 198 198 198 198 198	2212 2250 246 246 2218 1872 1872 1832 1832	200 200 213 218 218 227 227 262 191	204 204 100 100 101 96
35	20 445 77 120	2000 2000 2000 2000 2000 2000 2000 200	**88*85158	850 30 70 70 112 50 90 1,200 3	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	60 50 50 50
0. ± ∞ 0. ± ∞			00000000000000000000000000000000000000	00000000000000000000000000000000000000	∞∞∞∞∞ 0-15-44 0-15-0-10 0-15-	1.1.00.00.00 1.1.1.1.4
110	350 350 460 303 305	1, 100 1,100 1,43 1,42 1,95	1, 100 1, 100 1, 240 480 93	2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	120 44 46 240,000 460,000 150,000	53 53 11 12 9
20.03	00000000000000000000000000000000000000	0000 4 4 00 00 0000 4 00	ಬ಼ಟ಼ಬ಼ಟ್ಕಟ್ಟೆ ಒ4ಟಯ≣ಯಒ೦	なみな in な すまさななまられるのこの 100000000000000000000000000000000000	400004404 4000044004	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
104.2 97.5 122.0	105.5 69.5 94.0	74.1 92.6 81.8 84.1 113.1 72.8	92. 6 102. 6 117. 9 86. 2 86. 2	96.5 99.5 108.4 151.5 77.0 96.8 82.8	88.28 1339.86 131.1 000 65.0	47.2 37.8 108.8 107.4 92.6
13.3	10.3			0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	6.0.1.1.0.8 1.0.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	00 m 00
4.0	17.0	11.00.00 11.00.00 12.00.00 12.00.00 12.00.00	24.00.00.00.00.00.00.00.00.00.00.00.00.00	0.000 84.00 0.000 84.00 0.000 94.00 0.000 94.00 0.000 94.00	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	27.0 23.0 27.5 30.5
186 178 220	300 500 1, 330 320	350 447 447 310 310 520	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	1,0458 4,0458 4,0455 4,045 4,74 3,382 3,82	81.0000040	- B B B B B
26,30,	4,0,0,0,1,	5 5 8 8 4 0 6	15. 00 % I W W W W W W W W W W W W W W W W W W	7, 1940 10, 1940 120, 1940 26, 1940 1, 1940 8, 1940 9, 1940 15, 1940 22, 1940	30, 1940 7, 1940 22, 1940 30, 1940 7, 1940 30, 1940 7, 1940 22, 1940 22, 1940	30, 1940 7, 1940 22, 1940 30, 1940 7, 1940
Nov Sept.	ooxxoo	OOOONNO GERGGGE	S S S S S S S S S S S S S S S S S S S	July 1	Aug July July July July July July	July Aug. July July Aug.
do do W 354	000 000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00 00 00 00 00 00 00 00 00 00 00 00 0	do do do W 330. W 11 443	do WTiWe 444 do WTiWe 448 do WTi 442	do do WTiWeWI 444 do do
niiles below	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	own, Ind	elphi, Ind	elphi, Ind	arsaw, Ind usaw, Ind	arsaw, Ind
Do Do Wabash River, 114 miles belov Logansport, Ind.		Do Do Wabash River, Georgetown, Ind Do Do	Do. Do. Do. Wabash River, above Delphi, Ind Do. Do. Do.	Do Do Do Wabash River, below Delphi, Ind. Do Tippecanoe River, above Warsaw Ind.	Do D	Do Do Winona Lake Outlet, Warsaw, Ind Do
Do Do Wabash I		Wabash R. Do	Wabash Ri	Wabash Ri Do Wabash Ri Do Do Pippecanoe	Walnut Cr Do Do Walnut Cr Do Do Tippecano Ind.	Winons I

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	244	230	264	508	236	146	4 6 9 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	236	224	240	* f * g * g * g * g * g * g * g * g * g * g
	Alkalin- ity, parts per million	207	191 210 216	208 220 214	213 226 156	200 200 203 217 207	213 220 122	115 122 122	223	200 198 223	202 195 181	198
	Turbid- ity, parts per million	10	10 7 9	400	3000	- m m m e4 m	0000	ಐರಾಣ	63	0000	123	17
	Hď	7.9	0000	8000		1111111	20000	00.00.00 4.1.00	00.1	95.79	00.7.00	7.9
Coli-	most probable number per milli-	23	23	840	93-74	930 430 430 93 93	88 88 4	(3)	4	048	43 15	40
6-day bio-	chemical oxygen demand, parts per million	4.4	0.2.1.4.	2.1.2		- - - - - - - - - - - - - - - - - - -	1.5	12.50	1.6		1.9	1.4
	Percent of satura- tion	59.2	60.3 67.4 43.6	63.8 68.6 72.4	64.6	22.4 25.1 31.3 53.7	51.3 61.7 77.9	79. 5 62. 4 95. 8	8.08	86.3 82.6 87.3	81.6 79.3 91.5	81.1
Dissolved oxygen	Parts per million	4.9	4.7.5. 8.2.8.	5.5.5. -10.80	ಸ್. ಪ್ರಣ್ಯ ೯- 4000	340004 000000	4,70,00 00,00	7,50	9.3	88.0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	7.3
	Temper-	26.0	27.5 23.5 26.5	27. 5 23. 5 27. 0	22.0	25.0 25.0 25.0 25.0	19.0 21.5 26.5	25.5	15.0	16.0	15.5	17.0
Average	discharge, cubic feet per second	75	70 82 82	74 50 116	96004	41118	107		100	96 128 100	96 128 193	195
	Date	22, 1940	30, 1940 7, 1940 22, 1940	30, 1940 7, 1940 24, 1940		24, 24, 24, 24, 24, 24, 24, 24, 24, 24,	1,1940 22,1940	7, 1940 7, 1940 22, 1940	t. 30, 1940	4, 1940 11, 1940 . 30, 1940	4, 1940 11, 1940 30, 1940	4, 1940
		July	July Aug. July	July Aug. July	Aug. July	Aug. Aug. July	Aug. Aug. July	July Aug. July	Sept.	Oct. Sept.	Oct. Oct. Sept.	Oct.
	Mileage from mouth	WTi 432	do W Ti 422	do W Ti 410.	do WT!Mc411	W TiMc 409 do W Ti 408	dodo	dodo	WTi 377	do	do do WTi 349	do
	Sampling point	Tippecanoe River, above Bourbon,	Do Thpecanoe River, below Bourbon,	Thippecanoe River, above Rochester,	Do. Do. Mill Creek, above Rochester, Ind	Do Mill Creek, below Rochester, Ind Do Do Tippecanoe River, below Rochester,	Do Do Do Do Carle Maxinkuckee, 100 feet below	Do Do Lake Maxinkuckee, 900 feet below	Tippecanoe River, above Winamac,	Typecanoe River, below Winamac,	Tippecanoe River, above Montivello,	100

236	228		272	588	225 312 284	300	252	
201	171 193 182	186 175 197 197 191	255 256 256 254	272 252 264 264	2305 282 2905 2906 2906 2906 2906 2906 2906 2906 2906	264 264 250 250 206	2841282 28428282 2842828 28428	187 199 2214 2228 2335 234 234 216
12	15	5550000	02 02 04 04 04 04 04 04 04 04 04 04 04 04 04	8 8 0 0 0 E	2000212	328828	1, 500 500 7 7 110 127	180 180 180 18 18 122 122
00	က က က တံတာ်တံ	क्ष क्ष क्ष क्ष क्ष क्ष					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\omega \omega \
4	24	#4K#444	4 444	23.44.00	640	240, 000 15, 000 9, 300 2, 400		150 77 210 460 43 9
3.0	1.6	00000000		811516 811516	4000400	411464	21. H. 900	90000000000000000000000000000000000000
115.6	86.3 95.0 116.7	100.888.898.99 100.87.60.09	35.4 46.0 49.3 61.0		87.00 19.00 3.00	139.9 8.1.0 8.1.0 8.1.0 8.1.0 8.1.0	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	95.4 90.6 109.1 94.4 91.5 106.1
10.7	9.3	000000000000000000000000000000000000000		027-04	45.4	-တက္ က်က်က်တဲ့ က်က်က်တဲ့	9.70 9.12 9.12 9.12 9.12 9.12 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
19.6	17.0 17.0 18.0	7.7.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.				0.44.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	12.00.7.00.1.1.00.1.00.1.00.1.00.1.00.1.	114.5
193	195 375 224	425 268 257 395 410	4 616160	70000	1001	24404	400 400 400 1088 1088 603	1, 040 1, 880 1, 030 1, 760 1, 030 1, 030
Sept. 30, 1940	4. 1940 11, 1940 1, 1940	8, 1940 9, 1940 16, 1940 7, 1940 20, 1940 26, 1940		2,2,0,5,0	1,20,50,50,50,50,50,50,50,50,50,50,50,50,50	-, ∞, , , , ∞, c	15, 1940 16, 1940 7, 1940 14, 1940 26, 1940 3, 1940	10, 1940 15, 1940 17, 1940 7, 1940 14, 1940 22, 1940
Sept	Oet.	ZZZZOCE Z	- Aug. - Aug. - July	Aug.	July July July	######################################	ONZZZZO ST. TO OZZZZZE	NNN Set.
WTI 347	do WTI 325	00000000000000000000000000000000000000	WW 6 382. do WW 6 381.	do W W c 373.	W Wek 373. W We 371.	W W c 219	do do do do do do W 313.5	00000000000000000000000000000000000000
Tippecanoe River, below Monticello,	Tippecanoe River, 3 miles above	Do. Do. Do. Do. Do. Do.	Wildeat Creek, above Greentown, Ind. Do. Wildeat Greek, below Greentown,	Mildest Creek, above Kokomo, Ind	Kokom Creek, above Kokomo, Ind. Wildeat Creek, below Kokomo, Ind. Do	Frame Creek, below Frankfort, Ind. Do. Wildeat Creek, 2½ miles above mouth. Do.	Do Do Do Do Do Do Wabash River, aboye West Lafayette,	170. D0. D0. D0. D0. D0.

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Hardness, parts per million	256	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	256	2	9 B 8 16 1 5 7 1 16 2 7 1 17 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1	797	707	007
	Alkalin- ity, parts per million	210	192 208 182	225 225 225 225 225 225	185 152 179	235 236 229 227	211 184 185 208 177	1179 1179 1179 1179 123 123 123 123 123 123 123 123 123 123	170 233 233 233 230
	Turbid- ity, parts per million	17	240 85 85	122035	35 600 110	8684	1230	12283322	280 280 23 40 70 15
	Hd	8.1		0.000					
Coli-	most probable number per milli- liter	029	1, 280	1, 100 210 780	3, 050 1, 250	240 93 240	4, 460 483 240	0888128848	1,750 195 93 93
5-day bio-	oxygen demand, parts per million	, c,		00-00 00-00 00-00				444466444 \$\$4066689	
Dissolved oxygen	Percent of satura- tion	95.0		94.1 96.0 87.8	73.3	95.7 97.2 97.2	71.0 68.9 82.0 72.8	26 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	72.8 82.8 104.1 102.5 91.6
Dissolve	Parts per million	9.2	6.7	10.2 10.2 44.8	4.00.00	12.9	7.7.7.1	5.5.8.5.9.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	8.9 11.8 13.3 10.6
	Temper- ature ° C.	17.0		17.8	15.5	000000	18.5 14.0 17.0 17.0	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
Average	discharge, cubic feet per second	809	1,040	1,040	1,040	1, 014 1, 040 1, 040 1, 040	1, 040 1, 220 1, 220 644	1, 050 1, 050 1, 240 2, 000 1, 080 644	940 771 2,000 1,090
	Date	Oct. 3, 1940	17,	Nov. 14, 1940 Nov. 20, 1940 Nov. 22, 1940 Oct. 3, 1940	10,		10,1	Oct. 7, 1940 Oct. 10, 1940 Oct. 14, 1940 Oct. 17, 1940 Nov. 8, 1940 Nov. 22, 1940 Oct. 2, 1940	Oct. 7, 1940 Oct. 14, 1940 Nov. 8, 1940 Nov. 15, 1940 Nov. 22, 1940
	Mileage from mouth	W 310	do do do	do do W 303	do do	do do do W 294	do do do do W 288	do	00000000000000000000000000000000000000
	Sampling point	Wabash River, below West La- fayette, Ind.	Do Do Do	Do D	Do. Do. Do.	Do. Do. Wabash River, Independence, Ind.	Do Do Do. Wabash River, above Attica, Ind	100 100 100 100 100 100 100 100 100 100	Ind. Do. Do. Do. Do. Do.

252	252	227	165	123	183	170	191		127
182	176 250 186	180 200 210 211 150	233 232 232 441 4418 287 287 287	192 184 162 258	262 299 326 314 305 313 313 378	372	366 372 198	209	300
40	390	290 50 115 400 400	200 77 77 77 77 430	10 10 25 57	170 333 53 54 54 54 54 54 54 54 54 54 54 54 54 54	10 5 71	200	104	10
99.1	5.00.00		00000000000000000000000000000000000000		P. P. P. P. Q.	7.7.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.88.1	8.0
13	443	670 132 23 9 240 93	24, 200 24, 300 24, 300 24, 300 24, 300 24, 300	110	4, 4, 4, 4, 4, 4, 4, 4, 600 000 000 000 000 000 000 000 000 00	2,300	086	43 93 2,300	2,400
3.1	80 0 8 80 8	4. ನಟ್ಟ ಪ್ರ ಅರ್ಷ ನಿರಾಜ	24.1.1.2.4.2.4.1.1.2.2.3.4.1.1.2.3.4.1.2.3.4.1.1.2.3.4.1.1.2.3.4.1.1.2.3.4.1.1.2.3.4.1.1.2.3.4.1.1.2.3.4.1.1.2.3.4.1.1.2.3.4.1.2.3.4.1.1.2.3.4.1.2.3.4.1.1.2.3.4.1.2.3.4.1.1.2.3.4.1.2.3.4.1.1.2.3.4.2.3.4.1.2.3.4.2.2.3.4.2.2.3.4.2.2.3.4.2.2.2.2	1.7	11.000 % 1.45.0 67.000 000000	45.2 27.3 6.0	19.0	10.2.8	8.7
100.0	75.9 94.4 99.9		00000000000000000000000000000000000000		81.4.7.0 1.4.7.0 1.15.2.3 1.10.8 1.10.8	44.1 39.9 63.3	61.2 71.0 132.4	71.3	113.0
10.8	10.2		1011000000 101100000000000000000000000		######################################	88 89 89 89 80	4.9.9	10,10,1°,	0,80
14.8	17.6		\$ 9.000000000000000000000000000000000000		22.00 22.00 22.00 22.00 22.00 22.00 25.00 25.00	20.5	27. 0 21. 5 32. 5	30.5 26.0 27.5	24.0
679	994 842 679	994 740 680 994	888 888 888	_ ===	H H CO			121	112
2, 1940	7, 1940 14, 1940 2, 1940	r,4,8,0,r,0	22, 1940 22, 1940 29, 1940 29, 1940 29, 1940	2 8 · · · · · · · · · · · · · · · · · ·	30, 1940 25, 1940 30, 1940 30, 1940 25, 1940 30, 1940 25, 1940 25, 1940	30, 1940 2, 1940 25, 1940	30, 1940 2, 1940 25, 1940	30, 1940 2, 1940 25, 1940	30, 1940 2, 1940
Oct.	Oct.	Sept.	Nov. July July July July	July Aug. July	July July July Aug. July Aug. July	July Aug. July	July Aug. July	July Aug. July	July Aug.
W 271	do do W 270	do. W 264 W 264 do. do.		do do WVM1 339	40 40 40 40 40 40 40 40 40 40	do WVStTb 337	do WVStWb 333	do WVStWb 330	-do
Wabash River, above Covington,	Do. Wahash River, bolow Covington,	Do. Nabasa River, Perrysville, Ind. Do. Do. Do.	Do. Clein Creek, below Paxton, III Do. Do. Do. Do. Do. Do. Do.	Middle Fork Vermilion River, be- low Paxton, III. Do. Do. Salf Fork Vermilion River, above	Salt Fork, below Rantoul, Ill. Do. Salt Fork, below Rantoul, Ill. Do. Salt Fork, 3 miles below Rantoul, Ill. Do. Do. Town Branch, Salt Fork, below	Chautte Flett. Do Do Town Branch, 3 miles below Channute Fletd.	Do. Do. West Branch Salt Fork, above Chambaign and Urbana.	Do. Do. West Branch Salt Fork, below	Do Do

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

			A Verson		Dissolved oxygen	oxygen	5-day bio-	Coli-			A 11-01	
Sampling point	Mileage from mouth	Date	discharge, cubic feet per second	Temper-	Parts per million	Percent of satura- tion	oxygen demand, parts per million	most probable number per milli- liter	Hd	ity, parts per million	ity, parts per million	Hardness parts per, million
West Br. Salt Fork, 5 miles below	WVStWb 324	July 25, 1940	12	35.0	15.4	219.4	6.1	7	8.4	ů	349	149
Channelin & Urbana. Do. Salt Fork, above Danville, Ill.	do do WVSt 277.	July 30, 1940 Aug. 2, 1940 July 26, 1940	122	33.5 28.5 34.0	20.02	283. 6 260. 8 104. 8	10000	24 24 36	0,00,00,00 0,00,00,00	10	330 323 235 235 235	123
Do. North Fork Vermilion River, above	W VNf 311	2,2,5	404	28.0	5.7	73.5		23.0		97	232	3 E E E E E E E E E E E E E E E E E E E
Hoopeston, Ill. Do North Fork Vernilion River, below	do do WVNf 305	July 29, 1940 Aug. 1, 1940 July 24, 1940	ಬ್ರ44	27.5 23.5 30.5	44400	59.1 54.9 109.4	0,000 0140	88.3	7.9	86 100 48	231 213 261	159
Hoopeston, III. Do. Do. North Fork Vernilion River, below	do do WVNf 301	July 29, 1940 Aug. 1, 1940 July 24, 1940	4410	26.0	10,4;00, 10,00 1≁	66.7 55.2 114.4	සා සා ල සා සා ල	240 240 23	00 00 00 H O 25	440 440	290 260 267	152
Rossville, Ill. Do. Do. North Fork Vernilion River, above	do do WVNf 278	July 29, 1940 Aug. 1, 1940 July 26, 1940	কা কা	26.0 22.5 32.0	70.70.00 1-4-00	61.8 62.1 120.3	लं तं तं १	43	8,00,00	437	276 275 191	102
Danville, Ill. Do. Vermillon River I mile below Dan-	do do W 273	July 29, 1940 Aug. 1, 1940 July 26, 1940	142	32.5 26.0 31.5	7.6	104. 4 80. 0 54. 4	11.3	2 21 46,000	00 00 00	10	186 197 245	181
ville, fill. Do Do Grape Creek, ½ mile below Danville,	do	July 31, 1940 Aug. 5, 1910 July 26, 1940	36 (1)	28.0 27.0 30.5	0.4.8	0 50.2 115.9	22.6 8.2 .8	93,000	8.20	36	248 219 155	117
III. One Do Do Danville, III. Orape Creek, below Danville, III. Orape Do Greek, below Westville, III.	WV Qr 274 WV Qr 273	July 31, 1940 July 26, 1940 July 26, 1940 July 26, 1940 Tuly 31, 1940	€	22.22.25 22.25.55 25.55 55.55	8,1-9,00 -4000	103.2	1. 41-1-1 28844	0 4 8 1 1 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$2000 \$2000 \$2000	O waren	105 109 135 407 406	151
Uo Vermilion River, 4½ miles below	do WV 268	26,	200	20.0		73.0		433		0.0	408	152
Danville, III. Do. Do.	do.	July 31, 1940 Aug. 6, 1940	50	27.0	6.2	76.7	00 eq	460	7.9	10 10	233	

164	999	280	1118	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	243
227 236 1.67 264 225 202 202 212 212 213 232	2224 2224 2328 2524 2527 2536 2666 2666 2666 2666 2666 2666 2666	312 208 250	200 200 200 200 222 242 244 244 250 198	213 202 237 219 240 225	233 210 200 216 227 227 199 182 182
250 200 200 200 200 200 200 200 200 200	400 04 400 000	35	30 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15 15 55 65 65 20 10	10055500
0-0-1-1-00 0-0-1-1-00	000 ===================================		60000000000000000000000000000000000000	00 00 00 00 00 F	
2, 46 2, 400 93 93 1, 100 4	46 93 23 23 460 150	46 23 150	2, 400 11, 000 24 24 93 7 7 24 24	240 240 233 443	45862864
0;0;0;0;4;0;1;0;1; 1,2;4,3;1,0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0	800 000 000 000 000 000 000 000 000 000		101:44	41.89.2.1.1	୦-୨®-୨®୬ 'ଜାଜାଜାଜାଜାଜା
0.05.0 0.	61.7 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7		28.8.29.0 29.0.0 20.0.0 20.0.0 104.0 808.0 808.0	104. 9 84. 3 105. 9 100. 7 95. 5 81. 6	88.77 73.77 105.3 87.1 105.3 89.6
, 20 20 20 20 20 20 20 20 20 20 20 20 20	000 LOLDO		8.5.0 9.0.0 9.0.0 1.3.8 1.3.8 4.1.4	10.2 12.9 11.5 8.0 8.0	9. F. 90. G. 9. G.
2.5.5 2.5.0 2.5.0 2.5.0 2.5.0 1.5.0 2.7.2 2.7.2 3.7.2	225.0 225.0		11.5.0 17.2.0 1.0.0 1.0.0 1.0.0 1.0.0	17.0 18.0 17.0 15.0	2,7,2,7,7,2,2 8,7,8,8,7,7,7,2,2 8,00,00,00,00
822 / 822 / 1000 890 831 / 120 840 7665 11,120	ana annu	D 10000	0.788888888	1,130	28 28 28 870 891 1,910 1,910
Sopt. 25, 1940 Oct. 2, 1940 Oct. 2, 1940 Nov. 8, 1940 Nov. 15, 1940 Sopt. 25, 1940 Oct. 2, 1940 Oct. 7, 1940 July 26, 1940 July 26, 1940	July 31, 1940 Aug. 5, 1940 July 26, 1940 July 31, 1940 Aug. 5, 1940 Sept. 12, 1940 Sept. 12, 1940 Sept. 16, 1940 Sept. 16, 1940 Sept. 16, 1940	1,500	Oct. 8, 1940 Oct. 16, 1940 Sept. 25, 1940 Oct. 7, 1940 Nov. 15, 1940 Nov. 22, 1940 Sept. 26, 1940	Oct. 2, 1940 Oct. 7, 1940 Nov. 8, 1940 Nov. 15, 1940 Nov. 22, 1940 Sept. 25, 1940	Oct. 2, 1940 Oct. 2, 1940 Oct. 2, 1940 Oct. 2, 1940 Oct. 2, 1940 Oct. 2, 1940 Oct. 7, 1940
W 256 do do do do do do do do do do	do do WSuPr 313 WSuPr 313		do WSU 246 MO 40 do do do do do WZ 240	do do do W Ra 239	do do W 229 W 229 W 229 do do do do do
Vermilion River, 15 mileabovemouth. Do. Do. Do. Do. Co. Do. Do. Co. Wabash River, Cayaga, Ind. Do. Do. Do. Do. Do. Do. Tittle Vermilion River, above	deorgetown, III. Do D	Ind. Do. Sugar Creek, below Crawfordsville,	Ind. Do. Sugar Creek, 1¼ miles above mouth. Do. Do. Do. Do. Do. Do. Do. Do. Do. Do	Do Do Do Do Do Do Raccoon Creek, 1½ miles above	Wabsak River, above Clinton, Ind. Do. Wabsak River, below Clinton, Ind. Do. Wabsak River, below Clinton, Ind. Do. Do.

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

_							OHLO	22021	00111110	Ad	
		Hardness, parts per million	66	93	0 2 1 5 9 4 4 4	197	0 1 1 1	169	212	136	168
	111	Alkain- ity, parts per million	242	196	206	215 205 170 162 217	225 226 204 204	210 210 173 167	188 188	294 270 280 306 170 207	224 216 177 188 215 218
	E	ity, parts per million	140	43	10	230 230 15	12.83	10 25 160	15 90 10 10	0000000	20 20 15 20 20 85
		Hď	7.7	7.7	8.1	00 00 to to 00 00			1-10000 00000	440040	8.7.7.7.8.8.
	Coli-	most probable number per milli-	36	36	23	240 240 210 210 210	242	240	443 240 2, 400	2, 400 9, 300 7, 500 2, 400 96, 000	27, 200 33, 970 4, 030 8, 650 8, 650
	5-day bio-	oxygen demand, parts per million	6.0	3.1	3.1	0-00F		40000	11.25	13.6 20.2 14.2 12.3 10.6	12.3 12.9 13.6 11.0 16.4
	l oxygen	Percent of satura-	26. 5	28.0	81.6	2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2			88.7.7.8.00 88.7.7.9.00 88.6.4.00	32.8 38.7 29.0 17.4 14.7	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
	Dissolved oxygen	Parts per million	2.2	2.3	ග	0.0000000000000000000000000000000000000		600000	112.9	0.00.01.1. 0.4004	100.46.4
		Temper- ature ° C.	25. 5	26.0	15.0	16.55			23.50 23.50 23.50	24. 0 20. 0 24. 5 25. 0 19. 0	16.0 16.5 11.5 13.0 6.0
	Average	. ^	ε	ε	699	1, 530 1, 640 1, 830 1, 870	1,540	1, 530 1, 530 1, 530	1, 5,0 1, 620 1, 540 1, 250	111111111111111111111111111111111111111	1, 540 1, 540 1, 540 1, 370 1, 620
		Date	July 26, 1940	July 26, 1940	Sept. 26, 1940	Oct. 3,1940 Oct. 8,1940 Oct. 10,1940 Oct. 16,1940 Nov. 5,1940 Nov. 12,1940	25,1	Oct. 3, 1940 Oct. 8, 1940 Oct. 10, 1940 Oct. 16, 1940	125,25,	Aug. 15, 1940 Aug. 20, 1940 Aug. 12, 1940 Aug. 15, 1940 Aug. 20, 1940 Sept. 26, 1940	Oct. 3,1940 Oct. 8,1940 Oct. 10,1940 Oct. 16,1940 Nov. 5,1940 Nov. 12,1940
		Mileage from mouth	WBrNb 254	WBrNb 253	W 218	000000000000000000000000000000000000000	do W 215.	მი მი მი მი	do do do W.Se 232	W.Sc 231	00000000000000000000000000000000000000
		Sampling point	North Branch Brouillet's Creek,	North Branch Brouillet's Creek, below Chrisman, III.	Wabash River, above Terre Haute, Ind.	D0 D0 D0 D0 D0	Do	Do Do Do Do	Do. Do. Do. Sugar Creek, 100 yards below Paris,	100 100 100 100 Wabasa River, 2½ miles below Terre	100 100 100 100 100 100

167	222	186	167	164	196
227 231 210 227 214	192 221 231 235 235 212	189 194 194 215 227 239 251 251	278 254 252 228 228 215 215 715 712	222 223 233 223 220 231 231 230 231 230	223 223 223 223 223 223 223 233 233 233
100 100	2022333	8±8380°°	10 10 10 10 10 10 10 10 10 10 10 10 10 1	O C 10 10 10 10 10 10 10 10 10 10 10 10 10	00000000000000000000000000000000000000
				400000000000000000000000000000000000000	
	4, 900 1, 22, 300 1, 30	2, 300 1, 660 1, 840 240, 000	24,000 15,000 15,000 290 2,400 2,400 2,400	25.0 24.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	1,4, 0001982 2,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
	388991111111111111111111111111111111111	:0.1.0.0.1.6. :0.0.1.6.6. :0.0.0.1.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	Ö. Ü. Ü. Á. Ü. Ü. Á. Ü. □ O Ø O Ø Æ Ü Ü	ಕೃಷ್ಟ್ರಪ್ಪತ್ರವಣ್ಣಪತ್ತ ೧೦೮೮೦	ಭನ್ನು 4 (ಧನ್ನ ನ್ಯನ್ನ 4 - 14 (4 (4) 4 (5) 6 (6) 7 (6)
	27.03.03.03.03.03.03.03.03.03.03.03.03.03.	22.27 27.17.7.89 27.48 89.89 14.6	43.4 43.4 44.0 45.5 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	2,85,57,62,42,44,62,62,62,62,62,62,63,63,63,63,63,63,63,63,63,63,63,63,63,	######################################
	လက်လုံးလည်းတက် အချ ရက်လုံးလည်းတက် အချ	99859999999999999999999999999999999999	まなさなななます。 6098500000000000000000000000000000000000	a 単式 ag 4g 4g 4g 4g 4g 4g 4g c cg 6g 6g 4g 4g 4g 6g 4g c cg 6g 6g 4g 4g 4g 6g 6g 4g	
	114.000 00000000000000000000000000000000	0.0347.8.00	2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 2.5.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	22,000 25,000 25,000 25,000 26,000 26,000 26,000 26,000 26,000 26,000	11.0 6.0 6.0 11.7 12.0 13.0 10.0 10.0
	, 1, 550 1, 640 1, 620 1, 620 1, 620 1, 320 1, 520 1, 520 1, 520	1, 460 1, 460 1, 660 1, 370	. 1,1,1,060 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1, 590 1, 705 1, 705 1, 750 1, 750 1, 750
26,18	50,00,00,00,00,00,00,00,00,00,00,00,00,0	<u></u>	5,8,2,4,0,1,7,0,0	8 12, 1940 8 12, 1940 8 12, 1940 8 12, 1940 14, 27, 1940 15, 4, 1940 11, 1940 11, 1940	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Nov. Nov. Sept.	Nov. Nov. Nov. Sept.	OOZZZZZ	X 0000 00 00 00 00 00 00 00 00 00 00 00	A A A B B B B B B B B B B B B B B B B B	NNNN OOOGE
do.	400 400 1990 400 400	do d	20000000000000000000000000000000000000	00000000000000000000000000000000000000	820000 00000000000000000000000000000000
re W	M.	<u> </u>	*		
Do. Do. Wabash River, 7 miles below Terr Haute, Ind. Do. Do. Do. Do.	er, 12 miles below Ten	Do Do Do Do Do Big Creek, below Marshall, III	Do Wabash River, Darwin's Ferry Do Do Do Do Do Do	Do. Do. Do. Nabash River, Riverview Ferry. Do. Do.	Do. Do. Do. Do. Nabash River, Hutsonville Ferry. Do. Do. Do. Do. Do. These than I.
Wal	W.al	Big	Wa	Wa]	Wal

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	231 208 208 167 167 187 172
	Alkalin- ity, parts per million	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
	Turbid- ity, parts per million	######################################
	Вd	
Coli-	most probable number per milli- liter	240,000 240,00
5-day bio-	chemical oxygen demand, parts per million	ಕ್ಷಕ್ಷಣ್ಣ ಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ್ಷಕ
l oxygen	Percent of satura- tion	68 88 88 88 88 88 88 98 99 99 99 99 99 99
Dissolved oxygen	Parts per million	858125614655114685004 60000000000000000000000000000000000
	Temper- ature ° C.	1.004777888889469999999999999999999999999999
Average	discharge, cubic feet per second	11.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	Date	Nov. 6, 1940 Nov. 13, 1940 Nov. 13, 1940 Oct. 17, 1940 Oct. 17, 1940 Oct. 17, 1940 Nov. 18, 1940 Nov. 18, 1940 Nov. 18, 1940 Sept. 19, 1940 Sept. 10, 1940 S
	Mileage from mouth	do d
	Sampling point	Wabash River, Hutsonville Ferry Do Do Do Do Do Do Do Do Do D

<u>&</u> : : : : : · · ·	136 140 140	143	1111	98
207 205 201 221 221 248 483	483 330 350 350 350 350 199 201 201 201 201 301 201 201 201 201 201 201 201 201 201 2	263 257 258 264 168	160 160 189 204 206	218 106 225 226 208 138 85 85 85
\$11 \$0.00 \$1	004000000000000000000000000000000000000	10 20 11 20 70 70	255 95 10 10	110 110 10 25 20 20
00000000000000000000000000000000000000	ト 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00 00 00 00 00 00 E	×1.4 0000	00 00 00 00 00 00 00 00 00 00 00 00 00
3, 760 3, 300 3, 300 817 543 304 46, 000	221,000 240,000 240,000 23,000 93,000 23,000 23,000 23,000 23,000 24,77,73 25,000 27,000 28,000 27,000 28,000 27,000 28,000 27,000 28,000 28,000 28,000 29,000 20,0	4488 984	240 240 15 15 23	240 46,000 24,000 460,000 11,000
20000000000000000000000000000000000000	4.0.00 4.		47.00 BO4	6.7 2.5.0 110.8 113.0 30.1
2.05.0 2.05.0 2.05.0 2.05.0 2.05.0 2.05.0 2.05.0	23. 2 115.9 1128.0 1128.0 1128.0 1128.0 113.0 102.6		83.5 83.5 83.5 121.2	125.6 58.5 128.5 12.3 28.6 53.6
7:000000000 44100000000000000000000000000	01-15-94-46-00-1-8 0-1-1-1-8 0-1-1-1-8 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		001. 61.0	9.70.1.1.9.9.7. 9.40.00.7.
23.75 20.00 20.00 21.00 6.00 22.00	47-14-28-28-28-28-28-28-28-28-28-28-28-28-28-		20.0 20.0 30.0 30.0	22.55.0 22.00 22.00 23.00 13.0
1, 640 1, 580 1, 580 1, 580 2, 280 (1) 220 (1)	££	222 222 222	33 31 39 (1)	e eeeee
4, 1940 16, 1940 16, 1940 18, 1940 7, 1940 14, 1940 20, 1940 9, 1940 9, 1940	14, 1940 19, 1940	13, 3, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	3, 1940 3, 1940 9, 1940 12, 1940	15, 1940 20, 1940 12, 1940 15, 1940 20, 1940 9, 1940 13, 1940
Sept. Sept. Sept. Nov. Nov. Nov. Aug.	Aug. Aug. Aug. Aug. Aug. Aug.	Aug. Aug. Aug. Sept.	Sept. Sept. Sept. Sept. Aug.	Aug. Aug. Aug. Sept. Sept.
W 126 do do do do do do do do MEMSTWD 197	do WEMR 246 do do WEMRCeTb 239 do do WEMR 244 do WEMR 244 do do do WEMR 244 do do do do do do do do do do do do do	do W.Em 210 do do W.Em 189	WEM 187 do do WEMNI 206	do W EmN(Tb 208 do W EmD 160
Wabash River, below Vincennes, Ind Do Do Do Do Do Do Do Do Nex branch Scattering Fork below	Riley Creek, helow Mattoon, Ill Do Town Branch, helow Charleston, Ill Do Cossell's Creek, below Charleston, Ill. Do Cossell's Creek, below Charleston, Ill. Do Cossell's Creek, below Mattoon, Ill. Do Enough Charleston, Ill. Do Embarrass River, above Greenup, Ill. Do Embarrass River, above Greenup,	Do. Embarrass River, below Greenup, III. Do. Do. Embarrass River, above Newton, III.	Embarrass River, below Newton, III. Do. Do. North Fork Embarrass River, below	Do Do Town Branch, below Casey, III Do Dogwood Creek, below Oblong, III

Table W-7,-Wabash River Basin: Ohio River pollution survey laboratory data-Summary of individual results-Continued

	Hardness, parts per million	116	129	308	136	236	236	
10	Alkenn- ity, parts per million	110	173 190 106	164 186 629 578 647	170 181 215 215 111 183 120 120	184 201 192 185 206 236 185 185 185 185 185 185 185 185 185 185	179 205 183 183 201 201 214 206	212
27	Turbid- ity, parts per million	99	66 25 130	134	230 155 155 155 155 155 155 155 155 155 15	22 55 50 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	255 10 10 10 10 10 10 10 10 10 10 10 10 10	92
	Hq	00	000 000 000	FF.000000	2001-100-0 001-100-0	00 00 00 00 00 00 00 00 00 00 00 00 00		7.00
Coli- forms,	most probable number per milli- liter	23	. 9	230 4480 230 150 460	2000 2000 2000 2000 2000 2000 2000 200	191 181 181 210 210 218 218 112	222 22 38 88 11 18 18 18 8	15
5-day bio-	oxygen demand, parts per million	6.1	30.4	19.3 11.0 11.0 17.8 17.7 17.7	4400 - 640 000 - 640	0.000 4011110 1110000000		121
Dissolved oxygen	Percent of satura-tion	156.6	103.1 113.0 91.6	29.9 45.8 121.9 114.6 103.2	52.0 62.8 15.3 67.3 65.1 87.4 116.8	97.3 1037.1 1037.4 105.6 90.5 105.7		40.6
Dissolved	Parts per million	13.4	10.2	ಬಕ್ಕಪತ್ತಾಹ್ ಜವರಾಹ್ಮ	407-9000	8 28 8 1111 6 8 7 4 9 1 8 9		99
	Temper- tture ° C.	24.0	25.0 25.0	29.0 26.5 25.0 19.5 26.0	25.0 20.0 11.0 5.0 6.0 26.0	22.22 22.12 22.11 23.00 6.00 6.00		22. 5
Average	discharge, cubic feet per second	64	882	200	68 68 35 374 1,710	1, 680 1, 660 1, 940 1, 940 2, 500 2, 200 2, 770	2, 1, 2, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	
	Date	Sept. 3, 1940	Sept. 9, 1940 Sept. 13, 1940 Sept. 3, 1940	Sept. 9, 1940 Sept. 13. 1940 Sept. 4, 1940 Sept. 9, 1940 Sept. 13, 1940 Sept. 14, 1940	Sept. 9, 1940 Sept. 13, 1940 Nov. 7, 1940 Nov. 14, 1940 Nov. 27, 1940 Nov. 20, 1940 Sept. 4, 1940	Sept. 10, 1940 Sept. 16, 1940 Nov. 7, 1940 Nov. 14, 1940 Nov. 27, 1940 Nov. 27, 1940 Sept. 5, 1940	1,5,0,0,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	Aug. 29, 1940
	Mileage from mouth	WEm 134	do WEm 130	do W Em le 132 do W Em 124	do do do do W 115	do do do do do W 97.	dodododododododo.	op
	Sampling point	Embarrass River, above Lawrence-	Fin barrass River, below Lawrence-	VIII. VIII. Do. Indian Creek, below Bridgeport, III. Do. Do. Embarcass River, 1½ miles above	Incorum. Do. Do. Do. Do. Do. Do. Do. Do. St. Francisville Ferry, Wabash	Wabash River, above Mount Car-	mei, iii. Do. Do. Do. Do. Do. Do. Do. Do. West Fork White River, above Winchester, Ind.	1

				OHIO	Trivi	IL FO	LHU	1101	V CO.	NIRU	,11		
344	284	376	368	320	284	292	376	268	244	264	192	286	
310	309 246 239	255 251 112	225 271 236	264 312 264	251 266 280	279 292 284	312 401 284	455 255 255 255	336	273 316 289	167 416 196	380 415 347 208 335	
20	17 35 65	40 45 70	35 95 65	130	35 25	30 30 3	3022	12001	200	15.50	55 120 150	90 775 112 112	
7.00	0000	0.00.00	7.7.3		% % 0 0 0	7.1.1.1 0000r				7.7.7	7.0.7. www	7.7.7.7	
4,600	46, 000 24, 000 46	43 75 1, 100, 000	3, 600 240, 000 460, 000	1, 100, 000 460, 000 460	43 93 390	2, 400 2, 400 15	11,000	4.4.000		24, 460 460 24, 000	24,000 240,000 1,100	110,000 46,000 240 2,400	
6.1	8,000	59.6	14.0	00 K 70 F 4 4 00	7.6.4 0.04	4000				0 0 0 0 0 0	93.0	24.4.0.0 0.0.4.0.0	
23.5	30.7 8.5 100.6	86.2 110.1	000	107.9	75.7 83.5 59.5	27.3 50.0 80.8				39.7 41.2 23.5	46.2	45.6 40.8 40.8	
1.0	9.0	0.03.7	000	0000	က် <u>က်ကဲ့</u> ကေတယ	0441-10 04104				ယ္.ယ. <u>န</u> ေတလ	004	004;0;0; 01=00	
26.0	18.0 22.5 21.0	25.0 22.0 19.5	24.0 21.0 17.5	23.0	23.5 26.5 21.5	25.0 19.5 24.0	19.5	24.0	19.5	23.0 18.5 17.5	22.0	23.5 19.0 19.0 19.0	
63	10	122	7 7 7	62	62	54 4 20	7-010	- - 4	0101	000	10 m	04004	
Aug. 15, 1940	Aug. 22, 1940 Aug. 29, 1940 Aug. 21, 1940	Aug. 28, 1940 Sept. 5, 1940 Aug. 21, 1940	Aug. 28, 1940 Sept. 5, 1940 Aug. 20, 1940 Aug. 27, 1940	4,0%	4,8,7	4,8	Aug. 27, 1940 Sept. 4, 1940 Aug. 20, 1940	Aug. 27, 1940 Sept. 4, 1940 Aug. 20, 1940	Aug. 27, 1940 Sept. 4, 1940 Aug. 20, 1940 Aug. 27, 1940 Sept. 4, 1940				
WWbWf 437	do WWhWf412	do Wwhwf 408	do WWhWf 405	do WWhWf 391	do WWhW 387	do WWhWfPi 397	WWhWfPiMu400.	WWhWrPi 388	W WhWfPi 388	WWhWfDu 382	do WWhWfDu 379	WWhWfDu 373do	
West Fork, White River, below Win-	Do Do West Fork, White River, above Mun-	Do Do Do West Fork, White River, below Mun-	Do. Do. West Perk, White River, 3½ miles below	Do West Fork, White River, above Ander-	Do. Do. West Fork, White River, below Ander- son Inc.	Do Do Pipe Creek, above Alexandria, Ind Do	Mud Creek, below Summitville, Ind.	Do Creek, below Alexandria, Ind	Do. Pipe Creek, 3½ miles below Alexandrie, Ind.	Duck Creek, 1 mile below Elwood,	Duck Creek, 4½ miles below Elwood,	Do. Do. Do. Do. Do.	I Less than 1.

Table W-7.—Wabash River Basin. Ohio River pollution surrey laboratory data -Summary of individual results--Continued

	Hardness, parts per million	296	248 340	288	260	508	284	280	280	276	
	Alkaint- ity, parts per million	266	256 226 347 489	424 373 263	276 248 228	231 246 246 250 218	221 217 196 212 310	318 318 238 270	253 311 266	250 270 264	260 268 248
3	ity, parts per million	23	355	12 30 23	35 45	## 4 % % % % % % % % % % % % % % % % % %	25 25 10 12 15	m ~1 00 m	00 0C P	22.2	18 17 15
	рН	80	00 00 00 00 00 00 00 00	00 00 00 00 00 00	0 % 0	00000 00000 00000	1111111				
Coli- forms,	most. probable number per milli- liter	23	110 21 21 21 21	930 24,000 460	93	045 400 400 400 400	4 15 46 4 11,000	11,000	1, 100	24	23 46 88
5-day bio-	oxygen demand, parts per million	5.7	で の - 62 4	7.9 15.4 8.0	5.7.5	00000000000000000000000000000000000000	% 99.1.1.4.				
l oxygen	Percent of satura- tion	123.0	121.5 134.4 65.5 141.9	137.1 162.1 91.9	101.4 98.9 70.2	124.0 1111.2 74.1 78.6 41.8	86.89.0 89.0 3.35.7 26.1 26.1	20.7 13.8 130.6 127.8	135.9 83.5 91.3	7.1.8	66.4 73.2 79.4
Dissolved oxygen	Parts per million	11.6	11.5 11.9 6.5 13.4	13.1	6.89	0.010.00.4.00.4.00.4.00.4.00.4.00.4.00.	& 1/4 (4) (4) 40 0 0 0 0 0				
	Temper- ature ° C.	18.5	18. 5 22. 0 16. 0 18. 5	18.0 20.5 19.0	18. 5 22. 0 22. 0	17.6 19.5 22.0 12.5 18.0	19.0 21.5 22.5 16.5				
Average	discharge, cubic feet per second	50	(3)	1-5	822	66.7.35 68.70 68.70	27.7.2.8.8	2000	10	15	44.8
	Date	Sept. 12, 1940	Sept. 16, 1940 Sept. 23, 1940 Sept. 12, 1940 Sept. 12, 1940	Sept. 16, 1940 Sept. 23, 1940 Sept. 12, 1940	Sept. 16, 1940 Sept. 23, 1940 Sept. 9, 1940	Sept. 17, 1940 Sept. 20, 1940 Sept. 24, 1940 Sept. 27, 1940 Sept. 13, 1940	22,72,	15,25,5	Sept. 23, 1940 Sept. 12, 1940 Sept. 16, 1940	Sept. 23, 1940 Sept. 9, 1940 Sept. 17, 1940	27.
	Mileage from mouth	WWhWf 363	do WWhWfCi 396 WWhWfCi 383	do	do WWhWf 349	do do do WWbWfC 337	do do WwhwfF 370.	do WWhWfF 368	WWhWIF 367	WWhWrF 350	dodo
	Sampling point	West Fork, White River above	Do Do Fiero Creek, below Sheridan, Ind Cirero Creek, 1½ miles below (Tipton,	Do Do West Fork, White River, below	Do West Pork, White River, above In-	unanapous, ind. Do. Do. Do. Do. Do. Do. Local Do. Local Do. Local Canal, waterworks,	Indake, Indianapous. Do. Do. Do. Do. Do. Do. Established to the state of the state	Fall Creek, above Pendleton, Ind	Do Fall Creek, below Pendleton, Ind	Pall Creek, above Indianapolis, Ind	

264	312	25.25	256		280	27.2	173
243 255 255 274 274	259 294 326 300 300	265 305 346 346 284 284	268 256 301 311 311	257 270 270 260	258 258 258 258 258 258 260 265 265	259 259 259 265 265 265 265 265 265 265 265 265 265	255
20 E 35 E 3	001-1-4×	ಜ-ಶಿಏಹ ರ	\$ 60 m m m m m m	889 F	00 00000	80 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
5.5.35.35.5 0.0-10-10	7.7.7.7.	1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			- ಇ ಣಾವವವ	ळ ळ ळ ळ ळ ळ ४ च ०४ ४ च च	00 00 00 00
2, 400 93, 400 240 1, 100	2, 400 110, 000 2, 400 2, 400	23, 400 24, 000 1, 100	22 22 23 15 15	93 6 7	2, 400 2, 400 2, 400	2, 300 930 460 24, 000 15	460
4.0.0.0.4.0. 0.0.0.0.8.0	801-301-10 801-9041-	301-301-10 101-8040			ತ್ತ ಪ್ರಪ್ರಜ್ಞ ತ್ರಮ ಪ್ರಜ್ಞಾನ	5.50 5.50 5.40 3×5	
71.1 66.7 92.2 78.1 80.0	75.2 5.1 27.2 33.2	71. 2 39. 5 81. 9			82.3 111.8 117.5 109.1 103.6 111.1	121.1 97.0 109.1 115.8 101.1	102.7
ಡಡಿತ್ತಾರೆ. ಬಹಕಾತಾಹಕ	©01 .0101 20 € 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	တ္က တ္ ကတ် တွေက်တော်တွေ ရ			,01 01 x 0 0 0 2 x 0 0 0 x 0 0 0 0 0 0 0 0 0 0	0.000 0000 0000 0000	10.2
22.5 17.5 20.5 14.0	25. 0 27. 0 22. 5 26. 0	24. 5 26. 0 20. 0 15. 0	23.0		21.0 21.0 21.0 17.5 21.5	21.5 18.5 21.5 19.0	
16 16 16 136 136	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	133 139 129 129 (1)	140 146 143 2	অসক ক	155 155 157 150 150	156 158 158 158 160 160	181
Sept. 9, 1940 Sept. 17, 1940 Sept. 20, 1940 Sept. 24, 1940 Sept. 27, 1940 Sept. 9, 1940	Sept. 17, 1940 Sept. 20, 1940 Sept. 24, 1940 Sept. 27, 1940 Sept. 9, 1940	Sept. 17, 1940 Sept. 20, 1940 Sept. 24, 1940 Sept. 27, 1940 Sept. 13, 1940	27, 24, 27,	9, 17,	Sept. 24, 1940 Sept. 10, 1940 Sept. 20, 1940 Sept. 25, 1940 Sept. 27, 1940 Sept. 10, 1940	Sept. 18, 1940 Sept. 25, 1940 Sept. 10, 1940 Sept. 18, 1940 Sept. 25, 1940 Sept. 25, 1940	30,
WWbWfF 336 do do do WWhWf 325	dodododododododo.	do do WWhWFPI 325	do do do do WWhWfWI 311	do WWhWfWI 306	WWhW1 292 do do do do do WWhWI 285	do do do do WWhW 262	dodb
Do.	Detow indianapous. Do Do Do Do West Fork White River, 6 miles be-	low Industriations, Ind. Do Do Do Do Do Pleasant Run, 3½ miles below Greenwood, Ind.	low Indianapolis. Do distribution of the control of	White Lick Creek, below Moores- ville, Ind.	West Fork White River, above Martinsville, Ind. Do. Do. Do. Do. Do. Do. Do. West Fork White River, below	Marchisvine, Ind. Do. Do. West Fork White River, 4½ miles below Martinsville, Ind. Do. West Fork White River, above Spen.	cer, Ind. Do. U.s.s. than 1.

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

246	208	356	344	344	320	292	316	288	268	5 B 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
196 1152 233 210 210 2174 223	215 225 220	217 220 331	335 341 290	194 300 281	280 263 281	289 275 271	282 289 284 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	292 273 267	266 261 265	274
010000000000000000000000000000000000000	250 20	15	65 55	110 45 10	CO 100 100	C1 69 FD	83.50	10 17 40	18 23 15	15
	∞°∞°∞	8.8%	22.2	6.8	×,7,% 1,00,01	8.7.7	080881	8.7.9	7.7	7.6
7274	240	430	46 110 1, 100	23 240 43	23 1, 100	1, 100 1, 100 1, 100	390 240 93 240 460 460	9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2,400	36
######################################	00,00,4; 00,000	1.57.9	5.00	9000 A	4.1.4	1,7,1	1.0.4.0.0.0.0 0.1.0.000	7:2:00	1.9 9.4	10.9
72.7 91.5 111.1 80.0 77.3 107.3	94.3 93.4 101.6	95.6 94.6 104.8	89.6 94.9 20.5	0 19.7 118.8	124. 8 93. 4 112. 3	111.1 68.8 89.1	75.8 62.1 62.1 50.5 74.4	72.8 69.2 69.1	78.0 68.5 39.8	28.9
\$ \$0.00000 #4000000	6000	9.9	8000	11.9	10.0	10.8	5.5.0.4.0.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	7.0	3.6	00 00 00 00
20.00	19.0	19.0 16.0 16.0	19.5 17.0 18.0	21.0 24.0 15.5	12.5	18.5 11.5 16.0	17.5 16.0 19.0 16.0	17.5 12.5 19.5	17.0 16.5 20.5	18.0
000000000000000000000000000000000000000	320 324 330	326	440	14 22 22	222	22.22	222222	22.22	22 26 25	23
Sept. 24, 1940 Oct. 1, 1940 Oct. 23, 1940 Oct. 28, 1940 Oct. 28, 1940 Oct. 23, 1940	Oct. 28, 1940 Oct. 31, 1940 Oct. 23, 1940	Oct. 28, 1940 Oct. 31, 1940 Aug. 21, 1940	Aug. 28, 1940 Sept. 5, 1940 Aug. 21 1940	Aug 26, 1940 Sept. 5, 1940 Sept. 11, 1940	Sept. 19, 1940 Sept. 26, 1940 Sept. 11, 1940	Sept. 19, 1940 Sept. 26, 1940 Sept. 11, 1940	Sept. 19, 1940 Sept. 26, 1940 Sept. 11, 1940 Sept. 19, 1940 Sept. 26, 1940 Sept. 11, 1940	Sept. 19, 1940 Sept. 26, 1940 Sept. 10, 1940	Sept. 18, 1940 Sept. 25, 1940 Sept. 10, 1940	Sept. 18, 1940 Sept. 25, 1940
WWhWTBI 196.	do WWhWf 160	do do WWhEfDwB1420	do WWhEfDwB1 415	do do W WhEfDw B1-406	do do WhEfDwB1-403	do WhEfDwB1-399		do do WWhEfDwB1-	WWhEfDwBI-	do
Black Creek, above Marco, Ind Do Do Indian Creek, below Bicknell, Ind Do West Fork White River above	hite River, below	6	Do. Big Blue River, below New Castle, V	n',	Do. Big Blue River, below Knightstown, W. Ind.	Do Do Big Blue River, above Carthage, W	ne River, below Carthage, Ind. V	lle,	o 3lue River, below Shelbyville,	Do

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	272	300	296	260	352	232	252	280	268	236		:
12.4	Aikaim- ity, parts per million	275	290 274 264	270 249 268	252 272 256 256 256 256 256 256 256 256 256 25	242 226 536	257	236	255	276 279 454	264	200 184 221	253
1	rurbid- ity, parts per million	15	10 00 00	DO 00 01	51 to 30 t	2002	23 23 17 17 17	122	-101-	0.86	30 30 Q	555-2	10
	рН	8.1	%.7.% 0.00	7.7	20 K- 20 C		- 10 01 - 01 - 00 x			301-30 030-	×; 1-; ×; 0 2 1 -	201515 4 2010	5.5.
Coli- forms,	most probable number permilli- liter	1,100	1, 100 240	1,100	884	15,000	24,000	240	43.4	24 CV 44	مار مار مار	1,100	1,100
5-day bio-	oxygen demand, parts per million	4.9	61.44.69 8 20 23	25.5	0 15 T	1.2	165	101-10	1.5	20 4 30	× × 0	1. 85. 4. 2. 70. 70	1-44
Dissolved oxygen	Percent of satura-tion	90. 5	92. 1 72. 9 65. 2	66.0 36.4 86.9	72.4	112.3	93.0	2.2.2.	58.7	83.9 71.9 109.6	97.5 84.6 84.9	71. 4	22. 2 18. 3
Dissolve	Parts per million	00.	6.7.5	က် လုတ် အစက	0, 1, 0, 0 4, 0, 10, 11	11.3 0 8 9		∞ 1 − 00 ∞ 1 − 00		2,7,5 2,8,5 5,8,6	ර න ප ජාන්න්	10.10.09 8 9 8	1.8
	Temper- ature ° C.	17.5	19.5 14.5 20.0	18.0 16.0 11.5	4.0.00	0 10 20 2	20.0 19.0	16.0	16.0	15.0 13.0 13.5	0.6.0 0.80	19.5 15.0 16.5	20.5
Average	discharge, cubic feet per second	C1	26	277	55.5	25010	12017	92 82 83	:87:	95. 98. 92. 92.	36 P. 54	20 20 20	20,20
	Date	Sept. 11, 1940	Sept. 19, 1940 Sept. 26, 1940 Sept. 10, 1940	Sept. 18, 1940 Sept. 25, 1940 Oct. 21, 1940	Oct. 24, 1940 Oct. 29, 1940 Sept. 10, 1940	Sept. 25, 1940 Sept. 10, 1940 Sept. 10, 1940	Sept. 25, 1940 Sept. 10, 1940 Sept. 18, 1940	25,		Oct. 24, 1940 Oct. 29, 1940 Oct. 21, 1940	Oct. 24, 1940 Oct. 29, 1940 Sept. 11, 1940	Sept. 19, 1940 Sept. 26, 1940 Sept. 11, 1940	Sept. 19, 1940 Sept. 26, 1940
	Mileage from mouth	WWhEIDwBIBw-	WWhEIDWB1-	wwhefilwB1-	wwhEfDws-357.	WWhEfDwSy-364	WWhEIDWS 356	WWhEfDws 352	W WhEfDw 350	do WWhEfDw 339	wwhEfDwFi	dodoWWhEfflwF1-	do
	Sampling point	Brandywine Creek, below Greenfield,	Do. Do. Big Blue River, 5 miles below Shelby-	Do Do Big Blue River, 3 miles above mouth,	Sugar Creek, above Young's Creek	Youngs Creek, below Franklin, Ind	Sugar Creek, above Youngs Creek, Ind.	Do Sugar Creek, above Edinburg, Ind.	Driftwood River, below Edinburg,	Driftwood River, above Columbus,	Flat Rock River, above Rushville,	Flat Rock River, below Rushville,	Do

268	27.6	272	216	252	252	156	156	180	256	, , , , , , , , , , , , , , , , , , ,
264	266 264 256	264 48	262 204 204 204 286 286 286	260 258 259	257 254 259	253 255 168 167 158 276	302 316 174	184 182 207 214 220 220 265	266 257 259	250
60	1323	12 10 17	\$23000	572	ಜನಾಬ	220 220 220 220 220 220 220 220 220 220	880	23 25 15 10	000	00 00
7.7	1.1.1. 1.1.00	1.1.7.	5000-000 5000-000	% % % 0 0 1	1.88.7.	8000000 0000000	7.1	2777777	86.6	0.00
701	3,400	430 11,000 2,400	230 230 24 24 43 9	43 93	240 460 1, 100	1, 100 11, 000 4 1 1, 500	230 430 15	(3) 4 4 23 23 23	65 4 4	(1) 4
1.1	6.9	6.7.6	9111199 974400	2.1.2	440.	22.2.2.2.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2.2.2.1.2	1954	02-18-3	1.6	1.2
88.6	81.6 73.2 90.7	85.3 75.3 87.1	81.4 69.2 68.2 64.7 110.9	100.2 87.0 125.9	109.4 97.5 88.6	74.1 55.2 59.2 4.84.4	0002	63.4 229.7 329.7 88.1.9	71.9 85.2 86.8	83.7
9.3	0. 1-0. 6. 4.60	0€ 1 Q. 4 €	6,0,1,0,4,T	12.4	10.3	17.10.00.00 - 00.40.00	00%	တွင်း ကိုက်တွဲလော့	9.80	00,00 10.44
13.5	15.0	16.5	16.5 16.5 17.0 15.0	17.5	15.5	18.0 15.5 15.0 11.5	14.0	14. 5 15. 5 16. 5 16. 5	17.0	18.0
24	25 25 118	115 124 143	(1) 150 1 1 1 170	176 170 175	178	1885 (E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	1010-1	1199	2300	231
21, 1940	24, 1940 29, 1940 21, 1940	24, 1940 29, 1940 21, 1940	24, 1940 22, 1940 22, 1940 22, 1940	25, 1940 30, 1940 22, 1940	. 25, 1940 . 30, 1940 . 22, 1940	25, 1940 23, 1940 23, 1940 28, 1940 31, 1940 23, 1940	28, 1940 31, 1940 23, 1940	28, 1940 23, 1940 23, 1940 28, 1940 31, 1940 23, 1940	28, 1940 31, 1940 22, 1940	25, 1940
1 Oct.	00ct.	Oct.	200000	004.	000	00000	Oct.	00000	Oct.	- 0et.
WWhEIDWF1	do do WWhEff)w-338	do do W.WhEfDw-326	do do WWhEfsa-370 do. do. WWhEf-314	do do WWhEf 307	do do WWhEf-296	do WWhEfMuV-333 do WWhEfMu-297	do do WWhEfMuVSd- 295	do do do do WWhEfMu-282 do WWhEf 272	do do WWhEf 251	op
Flat Rock River, above Columbus, Ind.	Do. Do. Driftwood River, below Columbus, Ind	Do. Do. Driftwood River, 10 miles below Columbus, Ind.	Sand Creek, below Greensburg, Ind Do. Bast fork White River above Sey- mont. Ind.	Po Do East fork White River below Sey- mont. Ind	Do Do East fork White River, 13 miles be- low Seymour. Ind.	Vernon fork, bolow Vernon, Ind Do Do Misseatatuck River, below Vernon	Do. Do. Smart Ditch, Vernon fork	Do. Museatatuck River above mouth. Do. So. Bast fork White River below Musea-	Do. Do. East fork White River above Guthrle, Ind.	130.

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	184	156	240	210	225 221 221 222 222 230 230
;	Alkalm- ity, parts per million	183	136 200 170	156 160 256	249 250 214 221 221 207	25.59 25.50
:	ity, parts per million	7	210	1033	100 100 100	286888 E855555555555555555555555555555555
	Hď		7.1.1.	1-1-00 0000	20000000000000000000000000000000000000	及及でででではこれではなる数 多なででかるなることできます。 10000011
Coli-	most probable number per milli- liter	11,000	2, 400 46, 000 240	1,500 1,500	20mm20	(f) 4,4,0, 1,8718,4,6,000,000,000,000,000,000,000,000,000
5-day bio-	oxygen demand, parts per million	11.1	23.4 2.5	2:1:2	889800 HHMMH	11469614466144144
loxygen	Percent of satura.		22. 8 26. 6 27. 5	31.3 17.1 85.4	86.4 711.4 103.7 108.9 89.5	0084222666000000000000000000000000000000
Dissolved oxygen	Parts per million		2000	9.1.9	20.7.2 20.2 20.2 20.2 10.2	0.0044041000000000000000000000000000000
	Temper- ature ° C.		13.0	15.0	15.5 16.0 19.0 17.0 16.0	0.0026.116.21.22.22.22.22.22.22.22.22.22.22.22.22.
Average	discharge, cubic feet per second	eo -	क ८० व	262	262 262 202 284 284 207	2890 2800 2800 2800 2800 2800 2800 2800
	Date	22,	Oct. 22, 1940 Oct. 30, 1943 Oct. 22, 1940	Oct. 25, 1940 Oct. 30, 1940 Oct. 22, 1940	Oct. 25, 1940 Oct. 21, 1940 Oct. 24, 1940 Oct. 29, 1940 Oct. 29, 1940	00ct. 24, 1940 00ct. 29, 1940 00ct. 29, 1940 00ct. 24, 1940 00ct. 24, 1940 00ct. 24, 1940 00ct. 24, 1940 00ct. 29, 1940 00ct. 29, 1940 00ct. 29, 1940 00ct. 22, 1940 00ct. 28, 1940
	Mileage from mouth	WWhEfseC1-274.	WWbEfSe-244	do do WWhEf 238	do. do. WW.hEf 207 do. WW.hEf 189	do WWhEff-oLi-231 do WWhEff-oLi-231 do WWhEff-o-217 do WWhEff 148 do WWh 143 do do do do do do do do do d
	Sampling point	Clear Creek, below Bloomington, Ind.	Salt Creek at mouth, above New	East fork White River, below Bed-	Do. Do. White River, above shoals. Do. Do. White River, above shoals. Do. Do. East, fork White River, Hindustan	rails. Do Lick Creek, below Paoli, Ind. Do Lost River, above West Baden, Ind Do Lost River, below West Baden, Ind Do Bast fork White River at mouth Do White River, 3½ miles below east and west fork junction. Do Prides Creek, below Petersburg, Ind Do

207	83	436	146	193	436
188 228 228 228 228 2177 2177 228 88 88 88	109 1117 44 44 520 520		180 81 255 179	44 176 185 196 196	2007 2007 2007 2007 2007 2007 2007 2007
888888888888888888888888888888888888888	10 10 10 10 10 10 10	10 5 5	135.55	20 SO	22868252
00 00 00 00 00 00 00 00 00 00 00 00 00	1-బేబేబేబి జు ⊶లచచచచ 4 4				××××××××××××××××××××××××××××××××××××××
34 106 31112	(1) (1) (2) (3) (4) (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	€ € €	(1) D (2) 4 4 4	316	22 88 240 240 240 240
4 4 4 6 6 6 6 6 6 4 4 6 6 6 6 6 6 6 6 6	4.0.1.0.0.1.0.0.0	20011190	221. 1211111		11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90.5 92.1 98.7.7 98.3 115.9 26.2 26.2 26.2 11.7 30.2	30.6 73.6 73.6 77.1 39.5 76.4	68.6		87. 88. 35. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36	88.88 108.7.2 108.68 11.7.44 17.7.4
809881155504416 844615148446	0.00 € 6	8.7. 8.2			7.7.6. 1.2.5. 1.2.7.7. 1.1.7.7.
6.000048.92.00000000000000000000000000000000000	15.0 16.0 13.0 16.0 12.0				2000 2000 2000 2000 2000 2000 2000 200
1,000 650 634 604 720 1,090 (;)	000011 1	েব ক কা	33.4		1,4,6,4,6, 93,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
17, 1940 23, 1940 25, 1940 30, 1940 8, 1940 28, 1940 22, 1940 29, 1940 29, 1940 21, 1940	24, 1940 22, 1940 22, 1940 25, 1940 30, 1940 22, 1940	30, 1940 23, 1940 25, 1940	30, 11, 19, 8,	28, 12, 11, 11, 17, 17, 17, 17, 17, 17, 17, 17	19, 1940 8, 1940 12, 1940 22, 1940 23, 1940 25, 1940 30, 1940
Sept.	0 000000	Oct.	Sept. Sept. Sept. Nov.	Nov. Sept.	oo SZZZZGG ott
dodododododododo.	do. WPk 144 do. do. WPkSf-137	do	dodododododododo.	do W 93 do	dodododododododo.
Do.	Ind. Do. Pateka Kiver, above Winslow, Ind. Do. Do. South Fork Ditch, above Oakland City.	Do	Patoka River at mouth	Do. Wabash River, below Mt. Carmel, III. Do.	Do. Do. Do. Do. McCarty Ditch, below Princeton, Ind Do. Do. I Less than 1.

¹ Less than 1. ² Neutralized and seeded.

Table W-7.—Wabash River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	1688 1688 1139 1147 1132 1000 1000	
	Alkalin- ity, parts per million	1755 1755 1755 1755 1755 1755 1755 1755	
	Turbid- ity, parts per million	1112 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Provid paint Country	みみみみみ みみみみみみない ててみみみできてはできていていていていていていた。 ひょうりょう りょうしょうえんち きててりのみよける ちょうしょう しょうしょうしょう	
Coli-	most probable number per milli- liter	6, 6, 8, 11, 2, 2, 1, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	
6-day bio-	oxygen demand, parts per million	44 64 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
oxygen	Percent of Satura- tion	87.87.3 87.88.89.95.8 86.8.5.8.5.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	
Dissolved oxygen	Parts per million	てててては、てみてみびればし、 なるみでおようごのはままられるようによらのさらり りしょうあるので よもこのものののしてありのことがあらりとある。	
	Temper-	######################################	
Average	discharge, cubic feet per second	633 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	Date	Sept. 5, 1940 Sept. 6, 1940 Sept. 12, 1940 Sept. 13, 1940 Sept. 6, 1940 Sept. 19, 1940 Sept. 19, 1940 Nov. 28, 1940 Nov. 28, 1940 Aug. 19, 194	
	Mileage from mouth	W 62 40 40 40 40 40 40 40 40 40 4	
	Sampling point	Wabash River, Hovey Ferry, Ind. Do Nabash River, below New Harmony, Ind. Do	

147	107	150
347 407 411 175	188 186 167	183 97 191 209 198 198 207 203 203 202
NO NO NO	100	20 20 20 12 12 12 12
111111 111111	67.1.90	12 12 00 00 00 00 00 00 00 00 00 00 00 00 00
2, 300 2, 300 4, 600 120	430	2, 400 2, 202 2, 202 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
22.2	9.22.0	50000000000000000000000000000000000000
50.9 53.7 60.4 66.6	56.8 83.0 89.2	888.2 880.3 880.3 100.6 997.3 996.3
44.6.0.	4.6.1. 8.8.0	461.0000000044 000000000000000000000000000
22. 5 20. 5 14. 0 24. 0	24.5	22,25,0 22,25,0 22,25,0 23,25,0 3,25,0 3,55,
(3)	35	28.00.00.00.00.00.00.00.00.00.00.00.00.00
Aug. 30, 1940 Sept. 6, 1940 Sept. 12, 1940 Aug. 23, 1940	Aug. 26, 1940 Aug. 27, 1940 Aug. 23, 1940	Aug. 26, 1940 Aug. 27, 940 Sept. 1, 1940 Sept. 13, 1940 Sept. 13, 1940 Sept. 17, 1940 Nov. 6, 1940 Feb. 25, 1941 Feb. 27, 1941
WLwBu 81dododowLw 43	do	do do do do do do do do do do
Butler Creek, below Albion, III. 100 100 100 Little Wabash River, above Carmi,	Do Do Little Wabash River, below Carmi,	Do D

90035-44-pt. 2-40

I Toce thon 1

CUMBERLAND RIVER BASIN 769

CONTENTS

Contents Syllabus and conclusions Description Presentation of field data	Page 771 773 774 775 778
Presentation of laboratory data Hydrometric data Discussion	781 783
LIST OF TABLES	
C-1. Cost estimates of remedial measures C-2. Surface water supplies C-3. Sources of pollution C-4. Industrial wastes C-5. Selected laboratory data C-6. Monthly mean summer flows C-7. Summary of laboratory data	774 776 776 777 778 781 785
LIST OF FIGURES	
C-1. Map—Sources of Pollution	773 776 780 780 780 782

771

CUMBERLAND RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Cumberland River drains about 18,000 square miles in the States of Kentucky and Tennessee. The area is predominantly rural with a scattering of industries in the larger towns. One large city, Nashville, located on the main Cumberland River, contributes 55 percent of the total pollution load. An increasing number of water supplies is being taken from surface sources because of the inadequacy and undesirable characteristics of certain ground-water sources. About one-third of the domestic sewage is treated, which reflects some progress toward pollution abatement. The installation of proven methods of treatment should permit more extensive use of the stream for recreation and water supply. Wolf Creek Reservoir, now under construction, will benefit the main Cumberland River and reduce the treatment requirements at Nashville.

CONCLUSIONS

(1) Nearly twice as many communities are served by ground water as by surface supplies although the actual population served by the latter exceeds the former. Ground-water supplies are limited and are not of the best chemical quality. As a consequence, many have been abandoned for surface-water supplies. In general, surface supplies are not seriously affected by pollution.

(2) The sewered population of the basin is about 273,000 and the sewered-population equivalent of industrial wastes is 258,000. About one-third of the sewered communities have sewage-treatment facilities and about one-third of the waste-producing industries have taken at least minor steps to reduce the amount of pollution discharged. Existing treatment works reduce the total pollutional load by approxi-

mately 13 percent.

(3) Laboratory studies indicate the pollution problem to be acute below Nashville, Tenn., on the main stream, and below Princeton, Hopkinsville, Middlesboro and Corbin, Ky., on tributary streams. Tennessee State Health Department stream-sampling results have shown low dissolved oxygen below the following additional Tennessee communities: Gallatin, Lebanon, Murfreesboro, Franklin, and Dickson.

(4) The major sources of pollution, both domestic and industrial, are at Nashville on the main river. A few sections of tributary streams are grossly polluted and create problems that are primarily

of local concern.

(5) With the expected increase in low-water flow from the Wolf Creek Reservoir, now under construction, the sewage treatment required at Nashville will consist of sedimentation, to reduce scum and sludge deposits. The minimum tangible monetary benefit of this flow regulation, computed as equivalent to savings in treatment cost in the Nashville area, amounts to about \$50,000 annually. In addition, this increase in flow is desirable for aquatic life.

(6) In view of the normal uses of the streams involved, refined treatment at certain sources of pollution would serve no purpose commensurate with the expenditure. In these instances, lesser treatment appears justified. A summary of cost estimates of remedial

measures from table C-1 follows:

Treatment	Capital cost	
Existing	\$1,660,000 7,140,000	\$165,000 565,000

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are—

Treatment	Capital cost	Annual charges
Primary, all places	\$6, 750, 000 10, 160, 000	\$515, 000 805, 000

Table C-1.—Cumberland River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		ber of	Popu-		An	nual char	ges
	Pri- mary	Sec- ondary	lation con- nected to sewers	Capital invest- ment	Amor- tization and interest	Opera- tion and mainte- nance	Total
Existing sewage treatment	7	10	64,300	\$1,660,000	\$105,000		\$165,000
Suggested minimum correction: Sewage-treatment plants Required interceptors Independent industrial waste correction	13	18	172, 000	\$2, 330, 000 4, 540, 000 270, 000	\$165, 000 215, 000 35, 000	\$135, 000 15, 000	\$300,000 215,000 50,000
Total				7, 140, 000 6, 750, 000 10, 160, 000 7, 140, 000	385, 000 625, 000 415, 000	150, 000 130, 000 180, 000 150, 000	565, 000 515, 000 805, 000 565, 000

DESCRIPTION

The Cumberland River Basin has a total drainage area of about 18,000 square miles, of which 40 percent lies in Kentucky and 60 percent in Tennessee. The Cumberland River, formed in southeastern Kentucky by the confluence of Poor and Clover Forks, flows westerly and southwesterly into Tennessee, then northwesterly across

Kentucky to its confluence with the Ohio River. The topography is mountainous to hilly in the upper reaches, gradually changing to a rolling terrain in the center of the basin, which continues as such to the mouth.

Major Tributaries	Distance above mouth	Drainage area, square miles	Major Tributarles	Distance above mouth	Drainage area, square miles
Little River Red River Harpeth River Stone River Caney Fork River	59 126 153 206 309	582 1, 405 895 924 2, 620	Obey River Big South Fork River Rockcastle River Laurel River	382 516 541 546	920 1, 370 772 282

	Populations				
	1910	1920	1930	1940	
Larger cities: Nashville, Tenn. Clarksville, Tenn. Middlesboro, Ky. Hopkinsville, Ky. Murfreesboro, Tenn.	110, 364 8, 548 7, 305 9, 419 4, 679	118, 342 8, 110 8, 041 9, 696 5, 367	153, 866 9, 242 10, 350 10, 746 7, 993	167, 402 11, 831 11, 777 11, 724 9, 495	
Total basin: Urban Rural	156, 993 701, 603	183, 516 730, 492	245, 348 758, 436	277, 724 851, 278	
Total	858, 596	914, 008	1, 003, 784	1, 129, 002	

Resources.—Natural resources of the basin consist of tillable land, forests, coal, zinc, fluorite, iron ore, phosphate rock, limestone, oil, sand, and gravel. There are large potential water-power developments.

Industries.—Agriculture and its allied branches, milk and meat products, are important industries. Lumbering and wood product plants are common and in the upper reaches of the basin extensive mining operations are carried on. There is some manufacturing of cement, rayon, paper, textiles, and shoes. Oil is refined at three

small plants.

Water uses.—Extensive use is made of the streams for recreational purposes, including fishing, bathing, and boating. The rivers and streams serve for the disposal of sewage and industrial waste. A series of low dams allows commercial navigation to move upstream about 330 miles from the mouth of the river. The use of surface water for domestic supplies is increasing. One hydroelectric reservoir on Caney Fork River has been built by private interests and is now a part of the system of the Tennessee Valley Authority. Three additional reservoirs for flood control and power are now being constructed by the United States Engineer Department.

PRESENTATION OF FIELD DATA

Figure C-2 shows graphically the main stream and tributaries, water-works intakes, dams, all major sources of pollution, their magnitude and reduction by present methods of treatment and other pertinent information. Laboratory data, indicating the most unfavorable pollution conditions, are shown graphically for certain sections of the main stream.

Table C-2.—Cumberland River Basin: Surface water supplies

Supply	State	Source	Mile 1	Treat- ment 3	Population served	Consump- tion million gallons per day
		Supplies below e	ommuni	ty sewer	outfalls	
State Penitentiary Eddyville Clarksville State Penitentiary Nashville Madison Old Hickory Gallatin Lebanon Burkesville Williamsburg State Home for Feeble Minded, Burnside Harlan Cumberland Evarts	do	do	43. 6 43. 6 126. 9 182. 4 194. 0 200. 4 218. 3 239. 5 264. 0 427. 0 579. 5 212. 0 516. 1 669. 7 690. 3 678. 6	CD FD FD CD: FD FD FD FD FD FD FD FD FD FD FD FD FD	1, 600 1, 100 9, 500 2, 100 185, 000 5, 400 10, 500 4, 000 7, 000 7, 000 7, 500 2, 500 1, 500 1, 500	0. 23 . 49 . 84 . 40 18. 90 . 40 1. 05 . 17 . 62 . 02 . 11 . 12 . 03
Total: Below sewer or 14 other surface					239, 400 51, 400	23. 80 3. 88
Total surface water	r supplies				290, 800	27. 68

1 Miles above mouth of Cumberland River.
2 F=Coagulated, settled, filtered; C=Coagulated, settled; D=Chlorinated.

8 Not used for drinking.

Public water supplies.—Of 92 public water supplies, serving 368,000 persons, 16, indicated in table C-2, are from streams below community sewer outfalls. Of the remaining supplies, 60 percent are disinfected and many in addition have filtration. A number of ground water sources are inadequate or unsatisfactory, containing hydrogen sulfide or undesirable minerals, or showing increases in turbidity and bacterial counts after rains. Below Nashville for 65 miles to Clarksville, no large towns use the Cumberland River as a source of supply.

Sewerage.—Of 56 sewered communities in the basin, 7 have primary treatment and 10 secondary treatment. About 27 percent of the domestic sewage in the basin is treated in these 17 plants. Table C-3 shows data on the larger sources of pollution including industrial

wastes.

Table C-3.—Cumberland River Basin: Sources of significant pollution including industrial waste expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream	Miles above mouth of Cum- berland	Popula- tion con- nected to sewers	Treatment	Sewere lation of lent (bi cal or dem:	equiva- ochemi- cygen
State Penitentiary, Ky	Cumberland Riverdododododododo	43. 7 126. 8 182. 4 193. 7 219. 5 636. 2 63	1, 600 7, 100 2, 100 117, 000 8, 500 2, 700 4, 200	None	1, 600 7, 200 2, 500 274, 500 80, 500 2, 760 4, 500	1, 600 7, 200 2, 500 274, 500 73, 300 2, 700 2, 900

Table C-3.—Cumberland River Basin: Sources of significant pollution including industrial waste expressed as sewered population equivalent (biochemical ovygen demand—Continued.

Municipality	Stream	Miles above con- mouth of Cumberland consewers		Treatment	tion equation (bioch oxygen of Un-	Dis-
					treated	charged
Western State Hospital,	South Fork Little River	106	2, 100	Tank	2, 100	2, 100
Ky. Hopkinsville, Ky. Springfield, Tenn Franklin, Tenn Central State Hospital,	North Fork Little River_ Sulfur Fork_ Harpeth River_ Mill Creek_	106. 5 160 221. 5 203	10, 300 3, 300 2, 700 2, 000	Secondary Tank Secondary	11, 000 5, 700 3, 000 2, 200	2, 000 2, 800 3, 000 500
Tenn. Murfreesboro, Tenn Gallatin, Tenn Lebanon, Tenn Cookeville, Tenn McMinnville, Tenn Somerset. Ky. Corbin. Ky. Middlesboro, Ky. Lynch, Ky. Harlan, Ky. Small sources (37).	West Fork Stones River_ East Fork Town Creek_ Sinking Creek_ Short Creek_ Barren Fork Creek_ Sinking Creek_ Lynn Camp Creek_ Lynn Camp Creek_ Yellow Creek_ Cooney Creek_ Martins Fork_	358 392 522. 5 562. 2 653. 5 694. 3 670. 5	6,000 2,000 4,900 3,700 1,200 4,000 7,500 9,000 8,000 5,000 22,400	do d	1,700 4,500 7,800	2, 100 400 4, 300 3, 700 1, 700 1, 100 7, 800 4, 400 8, 000 700 21, 400
Total: Kentucky Tennessee		1	65, 500 171, 800	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	82, 500 413, 300	43, 800 386, 900
Total, basin			237, 300		495, 800	430, 700

Industrial wastes.—Table C-4 summarizes pertinent information on 86 waste-producing industries in the basin. The manufacture of paper results in the greatest industrial waste pollution, followed in their order of importance by the manufacture of rayon and cellophane, meat packing, textile processing, and milk products. Included in the summary table, but with no attempt at evaluation, are certain wastes of an inert or chemical nature such as sand, gravel and coal washing, fertilizer wastes, etc. Approximately half of the industrial wastes are discharged into municipal sewerage systems, the remainder reachthe watercourses through private outlets. Thirty-one plants have taken steps to reduce pollution.

Table C-4.—Cumberland River Basin: Summary of industrial wastes not discharging to municipal treatment plants, with total of entire industrial waste load in the basin.

	Number		al waste osal	At least minor	Estimated sewered population
Industry	of plants	Munici- pal sewers	Private outlet	corrective measures taken	equivalent (biochemical oxygen demand)
Canning Chemical Meat Milk Oil refining Textile Miscellaneous		4 0 2 18 0 4 5	3 2 3 7 3 4 13	4 0 3 9 3 0 4	2, 100 72, 000 37, 500 9, 600 1, 200 9, 000 109, 200
Wastes unconnected municipal treat- ment	68	33	35	23	240, 600 17, 900
Total industrial waste in the basin					258, 500
By States: Kentucky Tennessee					17, ()00 24 1, 500

PRESENTATION OF LABORATORY DATA

Summaries of U.S. Public Health Service laboratory results for the Cumberland River Basin are presented in table C-7 p. 785. These data were obtained from operations of mobile laboratories connected with the present survey. Data for the Nashville area were collected by the Tennessee State Health Department in 1938-39. Mobile laboratories obtained data on other parts of the basin during the fall of 1940 and spring of 1941.

Selected average monthly analytical results at some of the principal points in the basin are tabulated with stream flows on sampling days and with the minimum flows of record in table C-5. Selected results have been chosen for low dissolved oxygen or high coli findings and, in general, represent the most unfavorable conditions during

the sampling period.

Table C-5.—Cumberland River Basin: Selected laboratory data

River	Cumber-	Cumber-	Cumber-	Cumber-	Cumber-	Cumber-	Cumber-
Location	Mouth	At Can- ton, Ky.	Above Clarks-	Below Richland	Above Richland	Below Nashville	Above
River miles above mouth of	2.8	63	ville 127	Creek 158.1	Creek 182.7	188.5	193.6
Period, 1940	Septem- ber	Novem- ber	Novem- ber	1938-39	1938-39	1938-39	1938-39
Number of samples	4	3	3	25	18	14	17
Flow in cubic feet per second: Sampling days Minimum month	1, 530	3, 997	3, 020 1, 100	1 515	1 648	1 575	1 643 766
Water temperature, °C	21.8	2. 8 19	5.8	3 19. 5 3 127	² 26 ³ 974	2 23. 9	2 25. 5
Dissolved oxygen, parts per million. Biochemical oxygen demand.	7.8	10. 2	8.1	41.7	4 3. 1	4 0. 1	4 5. 6
5-day, parts per million	1.5	1.2	2. 5	8 5. 6	8 5. 4	8 6. 2	\$ 5.0
River	G 1.	G 1.	0 1	Cumber-	Cumber-	C	
River	Cumber-	Cumber-	Cumber-				
	land	land	land	land	land	Cumber- land	Cumber- land
Location	Above	Above	land Rowena	land Above	land Above	land Above	land Below
Location	Above Stones	Above duPont	land	land Above Burn-	land Above Cumber-	land Above Williams-	land Below
River miles above mouth of Cumberland.	Above	Above	land Rowena	land Above	land Above	land Above Williams-	land Below
River miles above mouth of	Above Stones River	Above duPont Plants	land Rowena Ferry	land Above Burn- side	land Above Cumber- land Falls	land Above Williams- burg	land Below Pineville
River miles above mouth of Cumberland. Period, 1940.	Above Stones River 206	Above duPont Plants 217.9	land Rowena Ferry 464 Septem-	land Above Burnside 517	land Above Cumber- land Falls 554 Septem-	land Above Williams- burg 579 Septem-	land Below Pineville 636 Septem- ber
River miles above mouth of Cumberland. Period, 1940	Above Stones River 206 1938-39	Above duPont Plants 217.9 1938-39	land Rowena Ferry 464 September	land Above Burn- side 517 Septem- ber	land Above Cumber- land Falls 554 Septem- ber	land Above Williams- burg 579 Septem- ber	land Below Pineville 636 September
River miles above mouth of Cumberland. Period, 1940	Above Stones River 206	Above duPont Plants 217.9	land Rowena Ferry 464 September	land Above Burn- side 517 Septem- ber	land Above Cumber- land Falls 554 Septem- ber	land Above Williams- burg 579 Septem- ber	land Below Pineville 636 September 3
River miles above mouth of Cumberland. Period, 1940	Above Stones River 206 1938-39	Above duPont Plants 217.9 1938-39 13	land Rowena Ferry 464 September	land Above Burn- side 517 Septem- ber	land Above Cumber- land Falls 554 Septem- ber 3	land Above Williams- burg 579 Septem- ber	land Below Pineville 636 September 3 170 12 24. 2
River miles above mouth of Cumberland. Period, 1940	Above Stones River 206 1938-39 * 14	Above du Pont Plants 217.9 1938-39 13 1 515 903 2 25	land Rowena Ferry 464 September 3 397	land Above Burn- side 517 Septem- ber 3 227 84 13.7	land Above Cumber- land Falls 554 Septem- ber 3 107 23 16.5	land Above Williams- burg 579 Septem- ber 3 88	land Below Pineville 636 September

*Data from Tennessee Department of Health.

¹ Minimum day.

A verage.A verage summer.

⁴ Minimum. Maximum.

Table C-5.—Cumberland River Basin: Selected laboratory data—Continued

River	Little	North fork, Little Above	Sulfur Creek Below	Harpeth	Mill Creek Below	West Fork, Stone Below	Barton Creek Below
River miles above—	Hopkins- ville, Ky.	Hopkins- ville, Ky.	Spring- field, Tenn.	Frank- lin, Tenn.	State Hospital	Murfrees- boro	Lebanon
Confluence with Cumber-	40	49	35	68	3	42	7
Mouth of Cumberland.	98 November 1940	November 1940	161 Novem- ber 1940	221 January 1941	197 January 1941	248 January 1941	259 January 1941
Number of samplesFlow in cubic feet per second:	3	3	3	4	4	4	4
Sampling days	7 4.3 377	2 4. 8 236	14 1. 7 2, 270	107 6. 8 675	21 `6. 5 783	136 7. 4 31	75 8. 1 349
million. Biochemical oxygen demand.	7.8	3.7	9. 2	11.6	12. 4	12. 2	8.5
5-day, parts per million	3.6	5. 9	5. 7	4.4	2. 8	3. 4	8.4
River	Barton	Barren	Barren Fork	Yellow Creek	Poor Fork	Poor Fork	Poor Fork
Location	Above	Above	Below McMinn- ville, Tenn.	Below	Above	Below Cumber- land, Ky.	Above Harlan, Ky.
River miles above— Confluence with Cumber- land.	9	84	83	11	22	19	1
Mouth of Cumberland		393 Febru- ary 1941	392 Febru- ary 1941	652 Septem- ber 1940	691 Septem- ber 1940	688 Septem- ber 1940	670 Septem- ber 1940
Number of samples	4	3	3	3	3	- 3	3
Flow in cubic feet per second: Sampling days. Water temperature, °C	24 10. 3 285	3 12 6. 5	3 111 6. 7 33	3 9 21. 5 17, 000	3 21 20. 3 209	33 20.8 1,030	3 59 22. 3 14
Flow in cubic feet per second: Sampling days	24 10. 3 285	12 6. 5	111 6.7	9 21. 5	21 20. 3	33 20. 8	59 22. 3

⁶ Less than 1.

Figures C-3, C-4, and C-5 show graphically, by spot map symbols, the concentration of coliform organisms, dissolved oxygen and oxygen demand, respectively, at various sampling points throughout the watershed. These data are presented as averages of all the results where the sampling period was less than a month. At points sampled by the Tennessee State Department of Health, where sampling extended over longer periods, data are presented as the most unfavorable averages during periods of minimum stream flow.

Stream flows during the period of mobile laboratory observations were generally in the lower discharge ranges, except in eastern Kentucky where local rains influenced the discharges and analytical results during the latter part of August 1940. Data furnished by the Tennessee State Health Department were collected over a 12-month

period and a wide variety of flows was encountered.

As indicated by bacteriological findings, about 76 percent of the sampling stations not immediately below sources of pollution showed maximum coliform organism concentrations of less than 200 per milliliter. In general, conditions were worse on the tributary streams than on the main river.

Dissolved oxygen results show the main river to be in good sanitary condition except below Old Hickory and Nashville. The average dissolved oxygen below Nashville reached a minimum of 2.1 parts per million and did not recover to a value of 5.0 parts per million or better within a 30-mile zone. The dissolved oxygen along the remaining portions of the main river and on many of the tributaries was in excess of 6.5 parts per million. The worst conditions along the tributary streams occurred below London, Ky., and Oneida, Tenn., where total oxygen depletion was observed. Dissolved oxygen values of less than 3.0 parts per million were also observed below Corbin, Middlesboro.

Mount Vernon, Hopkinsville, and Princeton, Ky.

Stream sampling reported by the Tennessee State Department of Public Health, but not detailed in the present report, have shown dissolved oxygen results of 2.0 parts per million or less below the following Tennessee towns: Gallatin, Lebanon, Murfreesboro, Franklin, and Dickson. The oxygen demand results were generally in agreement with the dissolved oxygen findings in revealing points of pollution. High average demands of between 75 and 205 part per million were recorded at Jellico and Oneida, Tenn., and at London, Corbin, Mount Vernon, and Princeton, Ky. Average demands of 10 to 20 parts per million were observed at Lynch, Ky., and Dickson and Gallatin, Tenn., and averages of 5 to 10 parts per million were found at Middlesboro, Guthrie, and Hopkinsville, Ky., and at Cookeville, Springfield, Woodbury, and Lebanon, Tenn.

Coal washing operations produced a bad appearance in the waters of Fugitt Creek, Clover Fork, Clear Fork, and Hickory Creek. No acid stream conditions were observed on any of the streams in the coal-mining areas of eastern Kentucky at the time of this survey.

Evidence of active self-purification in the streams was shown by reduction in coliform counts and in oxygen demand values along some of the tributaries and along the main stream below Nashville. The water quality on Poor Fork above Harlan was good despite considerable pollution from mining camps upstream. Results at the mouths of streams as compared with the results below sources of pollution farther upstream in general indicated betterment in water quality. The results at Nashville tended to show that the coliform counts do not diminish rapidly under high discharge conditions and lower temperatures and persist for longer distances downstream below sources of pollution.

Biological summary.—The Cumberland has a low plankton volume of less than 2,000 parts per million except below Nashville, where the fertilizing effect of its sewage increases the plankton volume to 8,000 parts per million. This stream shows very nicely the effect of domestic pollution on plankton. Fish collecting was difficult and

generally small catches were obtained.

(Face p.

Fig

HYDROMETRIC DATA

Forty-eight stream-gaging stations have been maintained on the Cumberland River Basin for varying periods, 25 of which are active at the present time. Eight stations of importance from a pollution standpoint have been selected and the monthly mean summer flows for the 3 years in which the lowest summer flows have occurred are presented in table C-6.

Table C-6.—Cumberland River Basin: Monthly mean summer flows for years in which lowest summer flows have occurred

River	Cumber- land Clarks- ville, Tenn. 126.5 14,370 1922-40	Cumber- land Nash- ville, Tenn.	Cumber- land Old Hickory, Tenn. 218.2 11,610 1931-40	Obey Byrds- town, Tenn. 45.2 426.1 425 1919-40
Year	1925	1899	1932	1925
June cubic feet per second July do August do September do	4, 640 4, 490 1, 510 1, 100	4, 640 3, 640 3, 350 1, 180	4, 850 16, 300 2, 510 1, 910	86 45 20 64
Year	1936	1913	1936	1930
June cubic feet per second July do August do September do	2, 119 6, 979 2, 012 1, 375	8, 650 2, 350 2, 000 905	1, 086 2, 835 924 903	67 30 30 -22
Year.	1939	1925	1939	1936
Junecubic feet per second	10, 670 8, 764 5, 635 1, 099	3, 820 3, 570 1, 200 1 796	7, 193 7, 263 3, 748 1 889	37 31 19 33
River	Caney Fork	Stone	Harpeth	Red
Location	Silver Point, Tenn.	Smyrna, Tenn.	Kingston Springs, Tenn.	Adams, Tenn.
River miles above— Confluence with Cumberland. Mouth of Cumberland. Drainage area (square miles) Period of record.	41.6 350.8 2,130 1923-40	25 231 550 1925-40	32.4 185.3 695 1925–40	32.9 158.4 690 1920-40
Year	1924	1925	1931	1925
June cubic feet per second July do August do September do	2, 057 1, 082 528 361	20 1 8	96 122 74 32	370 172 83 61
Year	1925	1930	1935	1936
June cubic feet per second. July do. August do. September do.	920 627 528 1 289	124 32 36 33	264 358 113 45	115 315 165 78
Yeur	1936	1935	1936	1939
June cubic feet per second July do August do September do	339 1, 677 366 352	406 183 134 25	61 349 69 31	409 205 265 65

¹ Minimum montin.

Figure C-6 presents a low-flow frequency curve of the minimum monthly mean flows from June to September, inclusive, for the Cumberland River at Nashville. This curve is based, necessarily, upon past records and will not reflect conditions that may be expected when low-flow control works, now under construction, are completed. The curve indicates that the expectancy of low monthly mean summer flows is as follows:

Location	Minimum monthly mean summer flows in cubic feet per second that may be expected once in—						
	2 years	5 years	10 years	Minimum			
Nashville	2, 800	1,700	1, 300	750			

Low-flow regulation.—The Wolf Creek Reservoir in the Cumberland Basin is being constructed by the United States Engineer Department in connection with the authorized program for Ohio River flood control. The reservoir will have a maximum storage capacity of more than 5,000,000 acre-feet and will provide a minimum flow of 4,800 cubic feet per second at Nashville. Two additional flood-control and power reservoirs, Dale Hollow on Obey River and Center Hill on Caney Fork River, are also under construction. These should increase further the minimum flow at Nashville.

A proposed reservoir on the Poor Fork River, a headwater tributary of the Cumberland, might be expected to benefit the water and sewerage works of the town of Cumberland, Ky. A minimum flow of 10 to 15 cubic feet per second would be available from this reservoir.

DISCUSSION

The only pollution problem of serious consequence found in the Cumberland River Basin is in the Nashville area. Minor pollution of local significance occurs at a number of smaller communities on minor streams. Corrective measures at these points are included in the cost estimates but discussion has been omitted.

The Tennessee State Health Department has made detailed studies of the Cumberland River in the vicinity of Nashville and is preparing a report thereon. The results of their observations have been available for this report and have been freely used. Grateful appreciation is

expressed for this courtesy.

NASHVILLE AND VICINITY

The 40 miles of the Cumberland River from Old Hickory to below Nashville, Tenn., receives waste from an equivalent sewered population of 353,000, about 80 percent of the basin's total pollution load. The only effective sewage treatment in this area is at Old Hickory where the domestic sewage receives secondary treatment.

As a consequence of this pollution, conditions in the river below Nashville are definitely bad during periods of low flow. Bacteriological studies show the water to be unsuitable as a source of raw water for a public supply from Nashville downstream to Clarksville, a

distance of sixty-odd miles, and the river water in this area does not meet the swimming water standard (0.5 per milliliter) recommended

by the Tennessee Public Health Council.

Analytical studies of oxygen conditions below Nashville show dissolved oxygen values as low as 0.1 parts per million and oxygen demands as high as 6.6 parts per million. Scum and floating material are observed on the water, which detracts from riparian values. Sludge blankets the stream bed for a distance of 18 miles below Nashville, preventing the propagation of fish and increasing the oxygen depletion.

At Nashville, monthly mean summer flows (June to November) have been less than 2,000 cubic feet per second during 23 of the 44 years of record and less than 1,000 cubic feet per second during 10 of these years. With primary treatment of the present wastes discharged to the river in the vicinity of Nashville, a minimum flow of 1,500 to 2,000 cubic feet per second is desirable for dilution, the quantity depending in part on the effect of upstream pollution. Lacking this quantity of dilution water, more refined methods of

waste treatment would be necessary.

The Wolf Creek Reservoir, now under construction on the Cumberland River at mile 460.9, will furnish minimum summer flows at Nashville of an estimated 4,800 cubic feet per second as ultimately developed. Under these circumstances, primary treatment of sewage and equivalent treatment of industrial wastes at Nashville and Old Hickory will be adequate. The minimum tangible monetary benefit of the increase in low flow, computed as equivalent to savings in treatment cost in the Nashville area, amounts to \$50,000 annually. Other benefits, that are highly desirable but incapable of invoice in dollars, are:

(1) Higher dissolved oxygen residuals in the vicinity of Nashville,

improving the stream as a habitat for aquatic life.

(2) Dilution for potential increases in pollution loads.

Cost estimates for remedial measures for pollution abatement suggested, as justified by the stream uses, are summarized on table C-1.

Table C-7.—Cumberland River Basin: Ohio River pollution survey laboratory data—Summary of individual results

		Hardness, parts per million	26	26	252	99	30	23 188 123 144	9 1 188 1
	Alkalin- ity, parts per million		80 8 80 8 80 8	02. 02. 03.88	152 242 236	156 182 104	104	2888844 211 28884 211 211 211 211 211 211 211 211 211 21	36 104 106 96 106
	There's a	ity, parts per million	1-00 to 1-0	10 80 15	25 50 10	90	ಭಾರ್ಣ		
	DH		17.7.7.	7.5	5.1.∞ ∞ ∞ ⊔	27.7.	4.0.7.	ていていていていていていているののできるののでしたのののでし	1.0.7.7.
	Coli-	most probable number per milli- liter	7.5 93 460 460	1, 100	4,600	930 910 240	2, 400 9	223 23 25 25 25 25 25 25 25 25 25 25 25 25 25	43 150 240 93 1,100
	5-day bio-	oxygen demand, parts per million	0.1.6.	1.8	20.1 19.8 4.3	6.2	1.8.1		7.02.2.
	Dissolved oxygen	Percent satura- tion	71.3	95.9	79.6 57.0 93.4	96.5 75.8 88.0	86.8 71.7 101.0	\$	88.6 80.0 100.6 108.2 85.4
		Parts per million	\$ 12 60 00 00 00 00	0.00.4.	15,10,00, 00 to 44	9.4	8.6.8	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	80 80 80 80 80 80 80 80 80 80 80 80 80 8
		Temper-	22. 0 18.5 20.5 20.5	16.5 19.0 20.0	17.0 19.5 21.0	17.0 19.5 22.5	19. 5 20. 5 26. 0	23.38.1.38.1.00.1.00.1.00.1.00.1.00.1.00.	19.0 13.5 13.5
	Average	discharge, cubic feet per second	2222	10 A A	1000	11	112	37. 01. 01. 12. 22. 14. 14. 18.	25 4 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		Date	Aug. 28, 1940 Sept. 4, 1940 Sept. 10, 1940 Aug. 28, 1940	Sept. 4, 1940 Sept. 10, 1940 Aug. 28, 1940	Sept. 4, 1940 Sept. 10, 1940 Aug. 28, 1940	Sept. 4, 1940 Sept. 10, 1940 Aug. 28, 1940	Sept. 4, 1940 Sept. 10, 1940 Aug. 27, 1940	Sept. 3.1940 Aug. 29.1940 Aug. 29.1940 Sept. 1.1940 Aug. 29.1940 Sept. 11.1940 Sept. 11.1940 Sept. 11.1940 Sept. 11.1940 Aug. 29.1940 Aug. 29.1940 Aug. 29.1940	Sept. 5, 1940 Sept. 11, 1940 Aug. 29, 1940 Sept. 5, 1940 Sept. 11, 1940
		Mileage from mouth	CPf 691	do CPfL 694	do CPfL 691	do CPf 688	do CPI 670	do do COLIF 688. COLIF 687. do do do do COLIF 687. COLIF 687.	do do do do
		Sampling point	Poor Fork, above Cumberland, Ky. Do. Do. Do. To. To. To. To. To. To. To. To. To. T	Do. Do. Looney Creek, below city limits,	Do. Do. Looney Creek, mouth Cumberland,	Do. Poor Fork, 1 mile below Cumber-land Kv.	Do. Poor Fork, water plant intake above Harlan. K.v.	Do Do Clover Fork, above Closplint, Ky Do Do Do Fugit Creek, at mouth Do Do Clover Fork, below Louellen, Ky Do Do Clover Fork, M mile above Evarts, Ky.	Do Do Yocum Creek, at mouth. Do

Table C-7.—Cumberland River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	ur. Hardness, arts parts per million	44	338 34 50 50 44 44 68	50 70 68 46	48 62 58 46	70 90 104	92 46 42	60 64 148	58 56 100 100	88 94 36 40	46
	Alkalin- s ity, parts per million		ದರ್ಪಾದರು	0.001~	113	202	ಕ್ರಾಂತ್ರ ಎಂ	15			15
	ity, parts per million	10			===	15 10 10 45			20 10 355	65 65 8	
	Hd	7.5	4.60.6.6.6.6	0.1.7.	4.65.4	7.7.7	7.7.	7.7.	4.7.7.	2.7.7.	7.7
Coli- forms.	2-6	930	45 93 9 9 9 44 9 9 9 9 9 9 9 9 9 9 9 9 9 9	36 43 75	43 93 460	240 93 1,100	23 23	23 15 43	1, 100 23 46, 000	4,300	41.04
5-day bio-	chemical oxygen demand, parts per million	1.1	21.3		4.8.4.	1.08	1.28	7.94	9.01	2.9.	10.4
Dissolved oxygen	Percent of satura-tion	98. 5	99.088.09.09.09.09.09.09.09.09.09.09.09.09.09.	90.1 82.1 86.6	83.4 60.4 70.9	72.1	75.7 75.1 97.6	81. 1 78. 2 73. 4	86.9 71.4 4.6	8.3 17.8 95.0	83.0
Dissolve	Parts per million	8.8	600000000000000000000000000000000000000	27.7.00	9.55.0 9.50 8.60	5.1.0	7.3	7.7.	7.7.	1.7	4.5.
	Temper- ature ° C.	23.0	20.5 14.0 24.5 20.0 19.0 25.0	20.0 19.0 26.5	18.0 19.5 26.5	18.0 19.5 25.5	17.5 19.0 29.0	18.5 19.0 21.0	, 22.0 19.0 23.0	22. 5 19. 0 26. 5	24.0
Average	discharge, cubic feet per second	22	23 24 24 10 11 12	30 111 106	30	8	154	219 67 2	15 2 8	14 174	181
	Date	Aug. 29, 1940	Sept. 5, 1940 Sept. 11, 1940 Aug. 28, 1940 Sept. 3, 1940 Sept. 9, 1940 Aug. 28, 1940	Sept. 3, 1940 Sept. 9, 1940 Aug. 27, 1940	Sept. 3, 1940 Sept. 9, 1940 Aug. 27, 1940	Sept. 3, 1940 Sept. 9, 1940 Aug. 27, 1940	Sept. 3, 1940 Sept. 9, 1940 Aug. 27, 1940	Sept. 3, 1940 Sept. 9, 1940 Aug. 27, 1940	Aug. 80, 1940 Sept. 6, 1940 Aug. 27, 1940	Aug. 30, 1940 Sept. 6, 1940 Aug. 26, 1940	Aug. 30, 1940 Sept. 6, 1940
	Mileage from mouth	CCIf 677	do do CCII 672 do CCIIM 672	do do O	do- do- C 654	do CP 654	do- do- C 653	do CY 655	do CY 652	do do do	do
	Sampling point	Clover Fork, 14 mile below Evarts,	Clover Fork, above Harlan, Ky Do Martin's Fork, mouth above city	limits, Harlan, Ky. Do. Do. Cumberland River, ½ mile below	Harlan, Ky. Do. Do. Cumberland River, below Loyall,	Ky. Do. Puckett Creek, mouth, railroad	bridge, Cardinal, Ky. Do Do Cumberland River, bridge on Route	No. 72, Cardinal, Ky. Do Do Sellow Creek, bridge above lake,	Middlesboro, Ky. Do Do Yellow Creek, railroad bridge, 1 mile	below Middlesboro. Do Do Cumberland River, ¼ mile above	Pineville, Ky. Do. Do.

		OH	HO RIVER PO	LLUTION	CONTRO	OL		181
20 1 100	100	120	178	110	72	52	48	
402 924 927	50 44 42 42	0494098 0584098	405534584	50 1168 1220 180 180	192 222 58 58	94 92 82 84 90 90 90 90 90 90 90 90 90 90 90 90 90	62	25.0
50 TO TO CO	2002	122.0.55	8 7 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 115 10 10	10 10 12 15 15	13 7 8 8 10	E 10 00	₹0.00
	22.17	77.7.6.7.7.	でいていていていてい	277777		21. 2.1.1. 21. 21.1.1.	647.	2.6
25.44 % 88.88 % 88.88 %	43 43	39 460 460 8	240 240 115 23 23 23 23 46 46	4, 300	930 4 4	04 04 C	240 150 1	C/ 4t
0000	41010	402007	047.010444.	.1.7.1.1.7. 88.09404	16.4		2.0 1.6 1.6	1.8
100.4 88.2 77.1 97.1	88.88 85.4 87.3	82.2 72.9 72.9 85.8 85.8	21.00.00 20.00.00 20.00.00 20.	79. 4 62.3 62.3 35.1 18.8		78.6 97.7 102.0 90.6	96.3 78.1 83.0	76.7
8,7,7,7, 8,4,4,8,	7.7.7	41.0.00.0.	000000000000000000000000000000000000000	100000 00 00 00 00 00 00 00 00 00 00 00		0.00 0.00	\$\circ	7.6
28.5 20.0 20.0 26.5	24.5 21.5 25.5	7.84.7.84 2000000	27.0 25.5 12.0 14.0 11.5 11.5 11.5	16.0 113.5 14.0 14.0 14.0 15.0		21.5 18.5 23.0 24.0 18.0	22. 5 22. 5 14. 5	19.0
13	194 141 242	(1) 165 (1) 3	168 164 (1) 1 (2) 2 (3) 4	(3)	£ 7 4	130 83 52 130	83 52 130	100
Aug. 26, 1940 Aug. 30, 1940 Sept. 6, 1940 Aug. 26, 1940	Aug. 30, 1940 Sept. 6, 1940 Aug. 26, 1940	Aug. 30, 1940 Sept. 6, 1940 Aug. 26, 1940 Aug. 30, 1940 Sept. 6, 1940 Aug. 26, 1940	Aug. 30, 1940 Sept. 6, 1940 Sept. 13, 1940 Sept. 18, 1940 Sept. 23, 1940 Sept. 13, 1940 Sept. 23, 1940 Sept. 23, 1940	Sept. 18, 1940 Sept. 23, 1940 Sept. 13, 1940 Sept. 18, 1940 Sept. 23, 1940 Sept. 13, 1940	23,53, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	Sept. 23, 1940 Sept. 13, 1940 Sept. 18, 1940 Sept. 23, 1940 Sept. 13, 1940	Sept. 18, 1940 Sept. 23, 1940 Sept. 17, 1940	Sept. 20, 1940 Sept. 25, 1940
CB 637do	do C 625	do CB 626 do C 620	do CCT 605 do CCTH 604 CCTH 604 do CCT 602	do CCIE 598 do CCIE 597	do CCf 582	do do C 579	do do C 554	neutralized.
Straight Creek, 14 mile above mouth. Do. Cumberland River, below Pineville, K.v.	Do. Cumberland River, above Barbours-	ville, Ky. Do. Brush Creek, above mouth. Do. Cumberland River, below mouth,	Richland Creek. Do Clear Fork, below Anthras, Tenn Do Hickory Creek, below Morley, Tenn Do Clear Fork, 5 miles south of Jellico,	Tenn. Do. Blk Creek, above Jellico City, Tenn. Do. Blk Creek, ¼ mile below Jollico City,	Tenn. Do Clear Fork, above mouth, Williams-	Cumberland River water plant in- take above Williamsburg, Ky. Do. Cumberland River, ¼ mile below	Williamsburg, Ky. Do. Do. Cumborland River, above Cumber-	land raus, r.y. Do. 1 Less than 1. * Seeded and

Table C-7.—Cumberland River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

0 0	Mileage from mouth		000000)	5-day bio-	forme				
		Date	discharge, cubic feet per second	Temper- ature ° C.	Parts per million	Percent of satura- tion	chemical oxygen demand, parts per million	most probable number per milli-	Hď	Turbid- ity, parts per million	Alkalin- ity, parts per million	Hardness, parts per million
	552	Sept. 17, 1940	130	14.0	8.6	83.2	1.4	6	7.6	20	48	25
	do CLLiK 577	Sept. 20, 1940 Sept. 25, 1940 Sept. 16, 1940	(1)	20.0 15.5 20.0	0.78	89.4 74.9 0	1.0	460,000	7.7.7.	140	48 568 568	78
Laurel River, below	do do CLLiT 576	Sept. 19, 1940 Sept. 24, 1940 Sept. 16, 1940	888	26.5 26.0 21.0	000	000	737. 0 186. 0 783. 0	93,000 240,000 240,000	7.7.7	210 180 130	550 442 552	85
Do Do Do Little Laucel River, 4 miles below CL	do CLLi 572	Sept. 19, 1940 Sept. 24, 1940 Sept. 16, 1940	5 55	26.5 25.0 21.0	0 0 9	0 0 71.2	404.0	23,000 230,000 93	7.1	260	558 496 40	30
1 (do CLLc 563	Sept. 19, 1940 Sept. 24, 1940 Sept. 17, 1940	233	27.0	00 t € 00 € 00 € 00 € 00 € 00 € 00 € 00	72.2 67.7 41.7	906	15 150 9	7.1	50 35 75	3442	30
ip Creek, below Corbin,	do CLLc 562	Sept. 20, 1940 Sept. 25, 1940 Sept. 17, 1940	33	16.0 16.5 17.0	440	39.9 49.5 0	20.03	240 230,000	7.7.6	70 65 65	30 32 252	72
iver, Barton's Mills, Ky.	do CL 556 do CRRCF 594	Sept. 20, 1940 Sept. 25, 1940 Sept. 17, 1940 Sept. 20, 1940 Sept. 25, 1940 Sept. 25, 1940	£ 11114	15.5 19.0 17.0 17.0 16.0	0477.89	0 12.1 6.9.8 7.4.6 68.2 90.4	155.0 53.2 1.5 1.1 2.4	240, 000 23, 000 46 46	1.0,1,1,1,0	280 250 10 15 15 15	240 88 44 44 102 102	30
anch, below Mount Vernon,	do CRRcTb 691	Sept. 19, 1940 Sept. 24, 1940 Sept. 16, 1940	233	18.0 21.5 15.0	C4 00 00 ලෝ ලෝ ලෝ	96.9 110.0 37.7	29.5	15,000	00 00 F.	15 20 20	110	180
Creek, below Withers,	do CRo 584	Sept. 19, 1940 Sept. 24, 1940 Sept. 16, 1940	£	17.5 21.5 15.0	21:15	29.0 12.2 77.2	71.7	23,000 75,000 23	7.7.0	113	228	700
Do.	do.	Sept. 19, 1940 Sept. 24, 1940	41 03	18.0	6.0	82.6	2.0	949	7.7	10	114	# 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

			OHIO RIVER FORECITOR CONTROL	10
74	80	760	28 88 88 88 88 88 88 88 88 88 88 88 88 8	
78	784	882388	22488288888888888888888888888888888888	25
80	15	300000000000000000000000000000000000000	නගතිපුවලින් සැක්කය කත්වය කත්වයට කත්තය සැපිටිම වේදීම් සැක්කය සැපිසින් කත්වයට කත්තය සැපිසිටිම්	101
7.5	7.7	21,1,1,1,1	てないてもちものと1008488000 トニウ ももりててもないにていないごともももものと100488000	
4	844	00 to 40 4	11, 483, 3000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	N
1.2	1.6	1, 11, 2	H 1591. 1591	20
79.2	865.9 91.5 90.9	88887.09.09.09.09.09.09.09.09.09.09.09.09.09.	88.82000005888888600000588888860000058888888600000588888888	
20.	2.7.30	00000000000000000000000000000000000000	 	
16.5	20.6 19.6	25.0 25.0 7.5 11.0 12.0	21.21.20.100.000.000.000.000.000.000.000	
16	248	20 20 20 5 5 190	0.000000000000000000000000000000000000	340
. 16, 1940	. 19, 1940 . 24, 1940 . 16, 1940	. 19, 1940 . 24, 1940 . 27, 1940 . 1, 1940 3, 1940 . 26, 1940	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	ó
Sept.	Sept. Sept.	Sept. Sept. Oct. Sept.	Sept.	Oct.
CR 578	do do CR 566	do CB 548 do C 517	do do CBF 516 CSI 553 CSI 553 CSI 553 CSI 553 GO CSI 557 GO CSI 517 GO CSI 516 CD CS 516 CD CS 516 CD C	000
Rockcastle River, below Livingston,	Do. Do. Rockesstle River, bridge on London	Do. Buck Creek, Bast Somerset, Ky Do. Cumberland River, above Burnsides,	Pine Creek, above Oneida, Tenn. Do. Pine Creek, above Oneida, Tenn. Do. South Fork, at Yamacraw Do. South Fork, mouth, Burnsides, Ky. Do. South Fork, mouth, Burnsides, Ky. Do. Sinking Creek, above Somerset, Ky. Do. Sinking Creek, below Somerset, at Ferguson. Do. Cumberland River, below mouth of Pittman Creek, Burnsides, Ky. Do. Cumberland River, below mouth of Pittman Creek, Burnsides, Ky. Do. Elst Creek, above Monticello, Ky. Do. Elst Creek, below Monticello, Ky. Do. Elst Creek, below Monticello, Ky. Do. Cumberland River, Rowena Ferry. Do. Cumberland River, Rowena Ferry.	1 Less than 1.

Table C-7.—Cumberland River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardness, parts per million	54	24	71	99	20	# 100 # 100 # 1	1 1 1 3 5 6 5 1 1 3 7 7 8 4 1 1 6 1 1 6 1 1 1 1 1	81	1770
A 11- olisa	ity, parts per million	56	920	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	77.0888.89	89 92 76	114 94 109	120 103 122	112	118 105 188 185 200 200 194
7	ity, parts per million	10	13	100000	10201	10 5 10	10	10	10 10	10 200 200 5 5
	Hd	7.6	7.7.7		C.C.C.C. C.C.C.C.4	F.F.F. 10.410	64.7.	1117	4.10	566666 1004040
Coli- forms.	most probable number per milli- liter	poid	(3)	e ee	930 930 930 930	(1)	143	(1) 230	150	930 150 23 23 23
5-day bio-	oxygen demand, parts per million	6.	85.5	3.9	35.1.1.2	0.000	1.20	1.0	12.5	
loxygen	Percent of satura-	88.7	83.0 70.9 87.2		95.4 91.7 94.7 92.9 88.4	94.8 89.6 95.6	99.0 89.2 89.8	93.7	61.7	89.6 773.8 777.0 775.3
Dissolved oxygen	Parts per million	6.3	∞ ∞ ∞ ∞ ∞ ∞		11.9 11.2 11.2 11.6 10.8	11.5	11.8	11.4	7.4	10.01
	Temper-	19.0	13.5 8.0 18.0		00000	7.07.0	7.00.0	3.0	7.5	1.8.7. 1.8.0.0 1.0.0.0
Average	discharge, cubic feet per second	258	187 200 258	187 200 158 134	128 160 143 100 84	169 81 83	169 81 25	26 21 7	38	£ 2 4 C 3 00 4
	Date	Oct. 7, 1940	Oct. 11, 1940 Oct. 17, 1940 Oct. 7, 1940		Feb. 10, 1941 Feb. 4, 1941 Feb. 6, 1941 Feb. 10, 1941 Feb. 3, 1941	Feb. 5, 1941 Feb. 7, 1941 Feb. 3, 1941	Feb. 5, 1941 Feb. 7, 1941 Feb. 4, 1941	Feb. 6, 1941 Feb. 10, 1941 Feb. 6, 1941	Feb. 10, 1941 Feb. 4, 1941	Feb. 6, 1941 Feb. 10, 1941 Jan. 22, 1941 Jan. 28, 1941 Jan. 30, 1941
	Mileage from mouth	C 428	do do C 426	do CCfCa 396.	do CCICa 394 do do CCIBaf 393	do do CCfBaf 392	do CCIFW 358.	do. CCIFWP 362	CCfFw 356	do CB 261 do do
	Sampling point	Cumberland River, above Burkes-	Ville, A.y. Do Do Cumberland River, below Burkes-	vile, K.y. Do. Calfkiller River, above Sparta, Tenn.	Do Calfuller River, below Sparta, Tenn Do Do Do Barren Fork River, water works	above McMinnville. Do. Do. Barren Fork River, dam below Mc-	Minnville, Tenn. Do. Falling Water River, above Cooke-	ville, Tenn. Do Do Pigeon Roost Creek, below Cooke-	Falling Water River, below Cooke-	ville, Tenn. Do Barton Creek, above Lebanon, Tenn. Do Do Do

			Oll	10 101	A TOTA	ODLOI	1011 00	14111012		
151	P 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	134	140	125	129	149	131	131	105	
204 119 203 194 228	74	165	139	160 158 166	152 180 189 164	168 177 183 155	200 214 216 161	160 179 168 168	158 180 177 139	986
550 550 15	10	15	63	10	40 20 20 5	4040	<u> </u>	45 20 10 5	41 10 10 45	990
5.5.5.5. 84004	7.3	7.7	7.7.7	4.0.7.	1,00,1, 1,100	7.8.7.	000000	7.39	2,7,7,7, 80,80,0	2.7.7.
(1) 430 930 36 1,500	930	4 23	93.0.12	2,400	22222	110 9 460	1, 500 1, 240 1	24 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	430 930 240 46, 000	24, 000 24, 000 930
16.2 16.2 3.3.7.4	12.8	00.00	5.22	00 F; 60 40 00	4.ಬ.ಬ.4. ೯-೩೦೦	00000 00000	01194	4.8.7.0	ಬಳ.ಗಳು ಸಾಹಬಹ	7.4
100. 62.0 59.0 65.7 7.2 2.2	88.0 91.7	90.4	105.5 97.3 91.8	96.7 87.4 106.5	90.9 100.9 105.2	105.4 93.9 101.0 100.6	94.8 98.2 107.4 101.1	91. 2 93. 1 101. 2 95. 9	90.5 93.2 97.4 61.3	80.4 76.7 75.5
11.6 7.7.3 8.0 7.4	10.4	11.3	12.5	11.5	10.3 11.6 12.5 12.6	11.9	11.5	10.8	10.7	0.00
9.0 10.0 6.5 7.0	7.0	7.0	000	9.7.00	10.0	0.000	0.4.00	845.00 0000	% 4.00	000
258 18 10	10	10	16	16 14 22	220 160 90 27	250 170 54 6	30 75 75 75 75	158 101 57 27	206 199 81	436
22, 1941 24, 1941 28, 1941 30, 1941 22, 1941	24, 1941 28, 1941	30, 1941 3, 1941	5, 1941 7, 1941 3, 1941	5, 1941 7, 1941 22, 1941	24, 1941 28, 1941 30, 1941 22, 1941	24, 1941 28, 1941 30, 1941 23, 1941	27, 1941 29, 1941 31, 1941 23, 1941	27, 1941 29, 1941 31, 1941 23, 1941	27, 1941 29, 1941 31, 1941 23, 1941	27, 1941 29, 1941 31, 1941
Jan. Jan. Jan. Jan.	Jan. Jan.	Jan. Feb.	Feb. Feb.	Feb. Feb.	Jan. Jan. Jan.	Jan. Jan. Jan.	Jan. Jan. Jan. Jan.	Jan. Jan. Jan.	Jan. Jan. Jan.	Jan. Jan. Jan.
CB 259 do do do CSeN 1240	CSeNf 240	CStWf 271	do CStWf 269	do CStWf 252	do do CStWf 248	do do CM 197	do do CHr 223	do do do CHr 221	do do CHrT 177	do
Barton Creek, below Lebanon, Tenn. Do. Do. Do. North Fork Station, Camp Creek	North Fork Station, Camp Creek, below Gallatin, Tenn.	West Fork, Stone River, above Woodbury, Tenn.	Do	Do	Do Do Do West Fork, Stone River, below Murifieschen Tenn	Do Do Do Mil Creek, ½ mile below Nashville, State Hospital	Harpeth River, above Franklin,	Harpeth River, below Franklin,	Harper Creek, 1 mile below Diek-	Soll, refile. Do. Do. Do. Less than 1.

Table C-7.—Cumberland River Basin: Ohio River pollution survey laboratory data—Summary of individual results—Continued

	Hardnes, parts per million	78	78	130	134	136	222	0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	80	90	138
Allealte	ity, parts per million	20	74 80 24	582	118 122 128	106 134 146	118 82 82 82 82 82 82 82 83 83 83 83 84 85 85 85 85 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	118 76 84	76	44 42 102	130
To the second	ity, parts per million	10	140 40 10	160 35 10	130 95 10	20001	010000000000000000000000000000000000000	210 110 40	10 20 430	410 360 35	10
4	Hď	6.9	7.1	1.7.7.	7,7,7	47.7	4000-1		6.9	6.9	8.7.
Coli-	most probable number per milli-	3	110 39 9	150 43	110	93	1, 500 1, 500 23 23 9	110 150	9 4 240	460	230
5-day bio-	ovygen demand, parts per million	2.3	1.2.2	1.2	1119	8.1.9	ಬ್ರಾಕ್ಕಿಡ್ಡ- ಅವರಾಜನ		4.6.6.	4.0.6.	9.6
l oxygen	Percent of satura-tion	72.4	67.0 55.4 72.2	72.3 63.6 76.0	74.2	81.3 85.7 54.1	2.5.0 2.6.0 2.0.0 2.0.0 2.0.0	77.33	76.2	32.8	60.0
Dissolved oxygen	Parts per million	7.9	00 00 00 41 mm mm	99.3	10.1	10.4	911.69.11	10.8	10.4	6.7	2,00
	Temper- ature ° C.	11.5	6.0	3.0	2,5	9.5	2.04.0.1.0 2.00.1.0	1.00	9.4.v. 0.00	8.0.4 2.0.7	6969
Average	discharge, cubic feet per second	1,180	5, 290 2, 590 1, 180	2, 590	429 167 8	2220	220103	256 7,360	2, 370 2, 260 2		21
	Date	Nov. 8, 1940	Nov. 13, 1940 Nov. 15, 1940 Nov. 8, 1940	Nov. 13, 1940 Nov. 15, 1940 Nov. 8, 1940	Nov. 13, 1940 Nov. 15, 1940 Nov. 8, 1940	Nov. 13, 1940 Nov. 15, 1940 Nov. 8, 1940	Nov. 13, 1940 Nov. 15, 1940 Nov. 8, 1940 Nov. 13, 1940 Nov. 15, 1940 Nov. 15, 1940	25,5,5	Nov. 14, 1940 Nov. 18, 1940 Nov. 12, 1940	Nov. 14, 1940 Nov. 18, 1940 Nov. 12, 1940	Nov. 14, 1940 Nov. 18, 1940
	Mileage from mouth	C 127	do C 126	do CR 148	do do CRSu 163	do CRSu 161	do 00 CRWfSp 139 do 07 CR 198	do do C 63	do do CLrNf 107	do do CLrNf 104	dodo
	Sampling point	Cumberland River, above Clarks-	Cumberland River, below Clarks-	Red River, near Adams, south of	Sulphur Creek, above Springfield,	Sulphur Creek, below Springfield,	Spring Creek, below Guthrie, Ky Do Do Do Bo River above month Clerkes	Ville, Ten, and the light of th	North Fork, Little River, above	Hopkinsville, Ky. Do. North, Fork, Little River, below	доркіцьущі, к.у. Do

					OII	10	WI	A TO 1	(b 1	01	J3.1 C	, 11	OIA		OI	11	M
P	172	132	1 10		170	1 1 1	174	72		08	000	1 1		96		112	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
276	286	124	120	134	200	226	8,02,88	164	82	2000	77	77	20000	888	850	388	86
25.	25.25	50	021	240	20	10 10	95	18	15	13	881	88	8 4	14.8	18	88	88
			0.2.7				0.00										
930	1, 100	g o	48	286	R en	64.0	240,000		(E)	21	41-1	1Q	3	C1 00	000		©
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.00	90%		ц у.	1.0	187.0	17.1	i î	1.0	000	0.5	4.4	1100	1000	11:0	1.1
	7.1		62.4			105.3	15.0		85.2								
	6.9		3.80			00 00 FD 60	1.6	0.0	44	ලා දර ශ් ශ්	2.8	1.7	000	4 0	10.5	12.0	13.0
	7.5.	3.0	4000	3 4; kg	19.0	16.0	18.5	19.5	16.5	18.0	24.5	21.0	21.0	0.07	10.0	0.0	0.0
t=1 p		च ८०	34.00	186	8=	e-1		830	1, 150		1,370		2,200				
12,	. 18, 1940 . 12, 1940	14,1	12, 1940	12,1	28,00	1,1	29, 1940	29,1	1,1	29, 1	20,1	25, 1	4,4	15,1	18,	-, 4,	5, 1
Now	ZZZ	Nov	Noz	ZZZ	Nov Oct.	Nov	Not.	Nov Oct.	No.X	Oct.	Nov	Sept	Noct	No.ZZ	Non	Mar	Mar
CLrsf 104	do CLr 98	do	CLr 72.	CLr 71	CEdSp 65		CEd 63	C 44	do	C 41	G 2.8	do	do	do	do.	do	-do
South Fork, Little River, Hopkins-	Little River, 413 miles below Hop-	кизуще, му. Do	Little River, above Cadiz, Ky.	Little River, below Cadiz, Ky.	Spring, Eddy Creek, above Prince-	D0.	Eddy Creek, below Princeton, Ky.	Cumberland River, Eddoville Ferry	Do	Cumberland River, Kuttawa Ferry.	Do Cumberland River at month	Do	Do	Do	00	Do	Donner

Less than 1.

GREEN RIVER BASIN

CONTENTS

Syllab Descri Presen Presen Hydro	us and conclusions ption ption tation of field data tation of laboratory data metric data sion	P
	LIST OF TABLES	
Gr-2. Gr-3. Gr-4. Gr-5. Gr-6.	Cost estimates of remedial measures Surface water supplies Sources of pollution Industrial wastes Selected laboratory data Monthly mean summer flows Summary of laboratory data	
	LIST OF FIGURES	
Gr-2.	Chart—Sources of pollution and selected laboratory data	
(Note	For mans of this basin see Cumberland River Basin.)	

797

GREEN RIVER BASIN 1

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Green River drains 9,220 square miles of rolling and hilly land largely in west central Kentucky but extending to northern Tennessee. Although predominantly an agricultural area, coal is mined extensively in the western part of the basin. About 10 percent of the total population of 440,000 is urban. Sewage from nearly 75 percent of the sewered population is treated and there are no industrial wastes of importance. Acid mine drainage damages a number of the small tributaries but has no noticeable effect on the larger streams. Pollution problems are local in character and abatement can be effected by known methods of treatment.

CONCLUSIONS

(1) Nine of the 39 public water supplies are taken from streams below sources of pollution, but none of the supplies is seriously polluted.

(2) Of the 45,000 sewered population, the sewage from 34,300 is treated. Industrial wastes from 13 small plants have a total popula-

tion equivalent of 3,800.

(3) Laboratory data show the larger streams of the basin to be in good sanitary condition, and many of the small streams to be grossly polluted by untreated or inadequately treated sewage. Acid mine drainage was found in only one stream during the laboratory survey.

(4) The minimum monthly mean summer flows of record on the Green River at lock No. 6 and the Barren River at lock No. 1 are 230 cubic feet per second and 162 cubic feet per second, respectively.

(5) Proposed flood-control reservoirs studied by the United States Engineer Department are so located as to be of little benefit to pollu-

tion abatement.

(6) Sewage, although receiving primary treatment, affects the smaller tributaries having extremely low flows. Secondary treatment seems justified at these places. Primary treatment should be adequate for towns on the main stream and on its larger tributaries.

(7) Most of the industrial wastes can be effectively treated at the

municipal treatment plants.

(8) Estimated costs of the suggested pollution-abatement program for the basin and of the work already done from table Gr-1 are summarized below:

	Treatment	Capital	Annual charges
ExistingSuggested additional		\$450, 00 780, 00	

¹ For maps of this basin, see Cumberland River Basin.

Estimated additional costs, over existing charges, of programs involving uniform treatment throughout the basin are

Treatment	Capital cost	Annual charges
Primary, all places	\$550,000	\$50,000
Secondary, all places	960,000	100,000

Table Gr-1.—Green River Basin: Estimated cost of existing and suggested minimum corrective measures for sewage and industrial wastes, with comparative costs for primary and secondary treatment

		ber of	Popula-	Capital	Aı	nnual charge	28
	Pri- mary	Sec- ondary	tion con- nected to sewers	invest- ment		Operation and main- tenance	Total
Existing sewage treatment	8	3	34, 300	\$450,000	\$30,000	\$25,000	\$55, 000
Suggested minimum correction: Sewage-treatment plants	9	7	10, 900	600, 000 180, 000	40, 000 10, 000	30, 000	70, 000 10, 000
Total				780, 000 550, 000 960, 000 780, 000	50, 000 34, 000 64, 000 50, 000	30, 000 16, 000 36, 000 30, 000	80, 000 50, 000 100, 000 80, 000

DESCRIPTION

The Green River drains an area of 9,220 square miles in west central Kentucky. About 380 square miles of the basin are in Tennessee. Larger tributaries are—

Tributaries	Distance above mouth of Green River	Drainage area, square miles	Tributaries	Distance above mouth of Green River	Drainage area, square miles
Pond River Rough River Mud River	55 71 109	756 1,025 430	Barren River Nolin River	150 184	2, 132 750

Population of urban communities and of the basin as a whole, for the past 30 years, are tabulated below.

		Popul	ations	
	1910	1920	1930	1940
Urban communities: Bowling Green. Madisonville. Glasgow. Central City. Russellville. Franklin Elizabethtown Entire basin: Rural. Urban. Total	9, 173 4, 966 2, 316 2, 545 3, 111 3, 063 1, 970 401, 233 22, 858 424, 091	9, 638 5, 030 2, 559 3, 108 3, 124 3, 154 2, 530 398, 307 29, 143 427, 450	12, 438 6, 908 5, 042 4, 321 3, 297 3, 056 2, 590 377, 209 87, 652 414, 861	14, 585 8, 209 5, 815 4, 199 3, 983 3, 940 3, 667 399, 994 44, 398

None of the urban communities and only about 8 percent of the

rural population is in the Tennessee portion of the basin.

Agriculture is the principal occupation, although a large part of the area is too hilly for cultivation. Coal is mined extensively in the western part of the basin. Cavernous limestone underlies much of the region and considerable areas have no well-defined watercourses. Drainage collects in shallow depressions and "sinks" and is either evaporated or disappears into the limestone caves. Mammoth Cave is in this basin.

Water uses.—Six locks and dams on the Green River and one each on the Barren and Rough Rivers, provide a 4- to 5½-foot navigation channel as far as Mammoth Cave on the Green River, Bowling Green on the Barren, and Hartford on the Rough. Less than 200,000 tons of freight are carried annually, the principal commodity being asphalt. The Green and most of its tributaries are considered good fishing streams and are extensively used for recreation by local residents.

PRESENTATION OF FIELD DATA

Figure C-1 shows the location and magnitude of each source of pollution of consequence in the basin. Figure Gr-2 shows similar data and, in addition, the location of water intakes from streams below sources of pollution and laboratory data on coliform organisms, dissolved oxygen and biochemical oxygen demand.

Public water supplies.—Of the 39 public water supplies in the basin, 21 are from surface sources and 18 are from wells and springs. About 20,000 people use underground supplies and 50,000 use surface supplies. Table Gr-2 shows data on the surface water supplies of the

basin

TABLE GR-2.—Green River Basin: Surface Water Supplies

Supply	Source	Mile 1	Treat- ment ²	Popula- tion served	Consumption, million gallons per day						
	Supplies below	Supplies below community sewer outfalls									
Central City Rockport Morgantown Brownsville Munfordville	do	71. 3 86 95. 0 143. 3 180. 5 213 260	FD. FD. SD. FD. FD. FD. FD. FD.	1, 200 1, 200 3, 800 400 800 300 500 800 15, 000	0. 04 06 36 01 06 02 02 02 04 1. 20						
	Ot	her surface	supplies								
Hartford Franklin Glaspow Tompkinsville Hodgenville	Drakes Creek (impounded) Beaver Creek Mill Creek (impounded) North fork Nolin River	101 230 250 270	FDFD	1, 200 3, 300 4, 000 600	. 07 . 20 . 21 . 04						
Campbellsville	Pittman Creek (im-	269 270	FD	1, 200 2, 600	.06						
Columbia Liberty Madisonville Mortons Gap Graham Greenville	pounded) Russell Creek Green River Impounded do	326	D	1,000 600 8,500 500 1,000 2,400	. 04 . 02 . 50 . 01 . 02 . 10						
	alls				1. 81						
Total surface water su	applies			50, 300	3. 17						

¹ Miles above mouth of Green River.
2 F=Coagulated, settled, filtered; C=Coagulated, settled; S=Settled; D=Chlorinated.

Sewerage.—Table Gr-3 shows the sewered population at each of the more important sources of pollution in the basin, all in Kentucky. Sewage from 34,300 persons, of the 45,000 to whom sewerage is available, is treated; that from 29,300 by primary and that from 5,000 in secondary treatment works.

Table Gr-3.—Green River Basin: Sources of pollution including industrial wastes, expressed as sewered population equivalent (biochemical oxygen demand)

Municipality	Stream	Miles above mouth of	Popula- tion con- nected to	Treatment	Sewered population equivalent (bio- chemical oxygen demand)		
		Green River	sewers		Un- treated	Dis- charged	
Central City Madisonville Beaver Dam Hartford Greenville Russellville Bowling Green Franklin Scottsville	Cypress Creek Flat Creek Muddy Creek Rough River Pond Creek Town Branch Barren River Drakes Creek South Bays Fork	100 117 157 176 280 226	3,000 7,600 600 1,100 900 3,000 13,000 2,600 600	Nonedo	3, 000 7, 700 600 1, 300 900 3, 200 15, 200 2, 600 600	3, 000 5, 000 400 1, 300 900 2, 100 10, 600 2, 600 400	
Glasgow Elizabethtown Hodgonville Cave City Campbellsville Columbia It smaller sources Total	South fork Beaver Creek. Valley Creek. North fork Nolln River. Sinkholes. Buckhorn Creek. Russell Creek.	250 261 269 200 270 294	3, 900 2, 600 900 500 1, 500 600 2, 600	Secondarydo None Secondary. None (2)	4, 400 2, 800 900 500 1, 700 600 2, 800	2, 900 400 100 500 300 600 2, 700 33, 800	

^{1 1} small Imhoff tank receives about 8 percent of sewage.
2 1 primary plant; no treatment at 10 other places.

Industrial wastes.—Thirteen small plants in the basin discharge wastes of significance. Wastes from seven of these are treated at municipal sewage treatment plants. Table Gr-4 shows data on the remaining six plants, four of which discharge wastes to caverns.

Table Gr-4.—Green River Basin: Summary of industrial wastes not discharged to municipal treatment plants with total of entire industrial waste load in the Basin.

	Number of plants	Industri disp	al waste	At least minor corrective measures taken	Estimated sewered population
Industry		Municipal sewers	Private outlet		equivalent (biochemical oxygen demand)
Milk Meat. Miscellaneous	2 3 1	0 0	2 3 1	2 3	400 1,800 200
Waste unconnected municipal treatment Waste connected to municipal treatment Total industrial waste in basin	6	0	6	5	2, 400 1, 400 3, 800

Acid mine drainage.—Prior to the mine sealing program some 76,500 tons of acid entered the streams each year from the coal mines in the western part of the basin. This has been reduced by about 20 percent by sealing some of the largest acid-producing mines. A considerable

amount of work remains to be done. The relatively high natural alkalinity of the normal stream waters tends to localize the effects of mine acid discharges.

PRESENTATION OF LABORATORY DATA

The laboratory survey of this basin, especially the lower section, was made during a very dry season. Below sewer outlets on small tributaries, sewage comprised from 65 to 75 percent of the total stream flow. Because of ponding, seepage and evaporation streams were usually dry a few miles below town. Observations were made during August, October, and November 1940 and February 1941 by trailer units.

General summaries of Green River data are shown in table Gr-7 (p. 806) and selected data are tabulated in table Gr-5. Figures C-3, C-4, and C-5 (p. 780) show the results of the coliform, dissolved oxygen and biochemical oxygen demand determinations at the various sampling points in diagrammatic form. The averages are from three samples collected during a period of less than a month, except at the mouth, where they indicate the most unfavorable monthly average obtained during three months.

Table Gr-5.—Green River Basin: Selected laboratory data

River	Green	Green	Green	Buckhorn Creek	Nolin	Valley Creek	South Beaver Creek
Location	Below Munford- ville		At Spotts- ville	Below Camp- bellsville	Below Hodgen- ville	Below Eliza- bethtown	Below
River miles above— Confluence with Green Mouth of Green Period, 1940	212.5 October	103 October- Novem- ber	8.6 October	20 268 August	83.5 267 August	80 263.5 August	90.5 240 October
Number of samplesFlow in cubic feet per second:	3	3	2	3	3	3	3
Sampling days	103	737	558	(1)	1	3	1
Water temperature, °C	13. 3	9. 5 5	17.5	22. 2 1, 680	21. 8 210	21. 8 1, 190	13. 8 467, 000
million Biochemical oxygen demand,	9. 2	7. 6	8. 3	5. 4	5. 0	2.1	3. 1
5-day, parts per million	0.6	1.6	0.5	8.7	3. 0	8.0	313
River	Bavs	Town	Muddy	Barren	Barren	Flat	Cypress
Location	Fork Below	Branch	Creek	Above	Below	Creek	Creek Below
LUCATIVII	Scotts- ville	Franklin	Beaver	Bowling	Bowling	Madison-	
			Dam				City
River miles above— Confluence with Green Mouth of Green Period, 1940	74.5 224	80.5 228 October	Dam 33 104 October	Green 38 187.5 October	Green 26.5 176 October	ville 25 80 October- Novem- ber	City 27 82 October- Novem- ber
Confluence with Green	74.5 224	228	33 104	38 187.5	Green 26.5	ville 25 80 October- Novem-	27 82 October- Novem-
Confluence with Green	74.5 224 October	228 October	33 104 October	Green 38 187.5 October	Green 26.5 176 October	ville 25 80 October- Novem- ber	27 82 October- Novem- ber
Confluence with Green	74.5 224 October 3 (1) 13.3	228 October 3 (1) 9.8	33 104 October 3 (1) 10.2	38 187.5 October 3 3 95 15.7	3 97 18.7	ville 25 80 October- November 3 1 19.2	27 82 October- Novem- ber

¹ Less than 1.

Laboratory data show no particular pollution problem on the Green River itself, there being no communities of consequence discharging sewage into the main stream. The major pollution problems result from local nuisances below towns on the smaller streams with the worst conditions prevailing below Beaver Dam, Central City, Elizabethtown, Franklin, Glasgow, Madisonville, Russellville, and Scottsville.

Pond River drains a large coal-mining area but at the time of the survey mines were mostly shut down and those working were pumping mine water intermittently. With low flows and ponding, wastes were not reaching the streams except at Nortonville where acid stream

conditions were observed on Drakes Creek.

Biological summary.—The plankton population of the Green is extremely low, usually less than 2,000 parts per million. These low values are due to the fact that the stream flows through a region of poor soil, low in organic matter, and there are no important sources of pollution along the stream.

HYDROMETRIC DATA

Eleven stream gaging stations have been maintained in the Green Basin at various times, six of which are currently in operation. Table Gr-6 shows mean monthly flows at representative stations during some low-flow years.

Table Gr-6.—Green River Basin: Monthly mean summer flows for years in which low summer flows have occurred

RiverLocation	Green Munford- ville, Ky.	Green Livermore, Ky.	Rough Dundee, Ky.	Barren Green- castle, Ky.
River miles above— Confluence with Green. Mouth of Green. Drainage area (square miles) Period of record.	213 1,790 { 1915-22 1927-40	70 7,580 } 1930–40	57 128 764 1930–40	15 164 1,950 1925–31
Year	1930	1930	1931	1930
June cubic feet per second_ July do August do September do	226 182 108 200	1, 160 706 482 524	27 67 280 155	563 368 178 162
Year	1939	1939	1935	1925
Junecubic feet per second_ Julydodododo	1, 692 1, 000 810 143	7, 778 3, 183 2, 438 530	1,790 670 150 28	534 401 166 162
Year	1919	1940	1936	1927
June	1, 100 437 898 147	2, 480 1, 597 1, 210 740	28 64 31 205	3, 470 902 675 251

Low-flow regulation.—Sites for possible flood-control reservoirs in the basin have been studied by the United States Engineer Department in connection with the authorized program for flood control on the Ohio River and its tributaries. These reservoirs would be located on the Green, Barren, Rough, and Nolin Rivers. The largest, on the Green River below the mouth of Mud River, would have a capacity in excess of 3,000,000 acre-feet. Consideration has been given to the operation of the proposed reservoirs to augment stream flows during the summer months.

Discussion

Of the 15 sources of pollution listed in table Gr-3, none is on the Green River itself and 2, Bowling Green and Hartford, are on tributary streams with an appreciable reliable flow during the summer. As noted in the discussion of the laboratory studies, most of the receiving streams contained a high percentage of sewage. Secondary treatment appears justified at places such as Madisonville, Russellville, Glasgow, Central City, and Franklin. At Bowling Green and Hartford and at the communities along the Green River primary treatment combined with dilution should be sufficient to maintain satisfactory stream conditions. At Cave City where there are no surface streams and all wastes enter the caverns beneath the town, primary treatment and continuous chlorination should be adequate to prevent pollution of the underground water. Industrial wastes present no particular problems. All of the plants are small, and the wastes can be treated at municipal treatment plants with the sewage.

Further reductions in the acidity of the streams in the western part of the basin can be effected by a renewal of the mine-sealing program.

A large part of the acid load comes from active mines.

Low-flow augmentation by the proposed flood-control reservoirs would be beneficial but would have no tangible monetary value to pollution abatement, since primary treatment will be sufficient for wastes discharged to the streams which might be affected by the increased flows.

The estimated cost of the suggested pollution-abatement program and of programs for primary and for secondary treatment of all wastes

is shown in table Gr-1.

Table Gr-7.—Green River Basin: Ohio River Pollution Survey Laboratory data—Summary of individual results

,			7.110	Ter A 171	e I OI	ALO III)14 1110	723			
	Hardness, parts per million	64	1 000	98	782	200	106	110	128		164	1
A SI CALL	ity, parts per per million	64	64 94	968888888888888888888888888888888888888	98	88 88 170	162 164 120	132 128 92	116 138 80	108 140 150	158 164 192	178
7,1,5,1	ity, parts per million	45	40	10	35	10	20°5	10 8 225	35 320	75 40 15	15	100
	Hď	7.4	4.0.7.	7777	4:1:1.	7.7.7	1111	5.5.5	4.1.7.	4.7.7.	2.5.5.	7.7.
Coli- forms,	most probable number per milli- liter	00	0.44	390	930 1,500 46	43	360	(3)	240	150 240 930	4,600	2,400
5-day bio-	oxygen denand, parts per million	1.5	2.5	ର ବୌ ର ପ୍ରତ୍ୟ ର	3.2.0	2.1	9.1		2.1	2.5	9.1	3.3
Dissolved oxygen	Percent satura- tion	74.3	65.5 79.0 78.6	65.3 86.6	71.0 84.6 86.6	77.7	61.9 72.9 80.3	92. 5 89. 6 47. 1	41.5	56.5 56.6 43.8	30.1	38.7
Dissolve	Parts per million	6.2	6.7.6	7.3	7.2	3.7.2	44 00 00 44 00 00	တတ်က တတ်က်	ध्यं म् ७८४	4.0.0.	1.5	4.6.
	Temper-	25.5	23.5 21.0 26.0	23.5 21.0 27.0	24.0 21.0 25.5	20.02	22.5 19.5 11.5	15.5 13.0 27.5	22. 5 17. 0 26. 0	22.5 17.0 27.5	28.0	22.0
Average	discharge, cubic feet per second	41	14	4 4 00	6 (:)	233	(3)	100	££	93	£	c) c)
	Date	Aug. 14, 1940	Aug. 19, 1940 Aug. 21, 1940 Aug. 14, 1940	Aug. 19, 1940 Aug. 21, 1940 Aug. 14, 1940	Aug. 19, 1940 Aug. 21, 1940 Aug. 14, 1940	Aug. 19, 1940 Aug. 21, 1940 Aug. 14, 1940	Aug. 19, 1940 Aug. 21, 1940 Oct. 8, 1940	Oct. 14, 1940 Oct. 18, 1940 Aug. 12, 1940	Aug. 15, 1940 Aug. 22, 1940 Aug. 12, 1940	Aug. 15, 1940 Aug. 22, 1940 Aug. 12, 1940	Aug. 15, 1940 Aug. 22, 1940 Aug. 12, 1940	Aug. 15, 1940 Aug. 22, 1940
	Mileage from mouth	Gr 281	do GrR 296	do GrR 290	do GrP 270	do do GrPB 268	dr 212.5	do do Grnnf 272	do do Grnnf 267	do do GrNV 267	do do GrNV 263.5	op
	Sampling point	Green River, bridge on Route 55,	Campoons inc, A.y. Do Do Russell Creek, water plant intake,	Columbia, Ky. Do Do Do Russell Creek, below septic tank,	Common, A.y. Do Do Do Esst Fork Pittman Creek, above	Campbensvine, Ay. Do Do Buckborn Creek, below Campbells-	Oreen River, below Munfordville,	Ay. Do Do North Nolin River, above Hod-	Bon Vine, R.y. Do Do North Fork Nolin River, below	Do Do Do Starbethtown,	A Do Do Blizabethtown,	Ab. Do

128	108	111111111111111111111111111111111111111	142	96	1 181	142	136	122	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
134 134 134 120	130 130 117	122 116 114 118 126 102	102 118 118 164 176 170 130	298 228 84	104 100 186 202 202 186	148 162 142 222 222 223 250	146 164 144	145 144 122	126
13 10 8	~ ~ ~	10000	115 113 20 130	375 150 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1	236616	no 00 00 00	10	10
0.0011	1111	500000 1000000	51.21.11.1 81.81.60	1.7.7.7.7.7.7		5.5.6.0.0 6.5.000 6.5000 8.5000		1.6.1.	7.7
4-80	999	E 22 - 44 23	1 9 4 4 240, 000	930,000	11, 000 15, 000 2, 300	24, 000 93, 000 93, 000		H 03 44	39
11	-8-	041044	1.1 1.2 1.6 1.6 2.0 103.0	633.0 202.0		196.0 101.0		6.1.0	1.5
77. 0 91. 6 85. 9 74. 9	82.8 83.3 83.3	91.08 88.08 89.08 89.08 89.08 89.08	72.8 76.0 76.2 864.2 30.5	28.5 81.9	88.4.8 66.74.8 8.6.1.1.8	,	68.8	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	91.6
& &	21.00,00	0000110011 10010000	6:7.7.7.7.69 44.7.7.7.00	0 60 60	1.001.11	00000000000000000000000000000000000000	9.7.	15.00.00 15.00.00	00.00 00.44
12.0 17.5 13.0 15.0	16.0 11.0 18.5	21.5 17.5 18.5 22.0 17.5 16.0	14.0 17.0 14.0 11.0	14.5 9.5 15.0		0.0000000000000000000000000000000000000		14.0 18.5 16.0	13.5
75 72 66 210	195 180 210	195 (1) (1) (1) (1) (2) (3)	2000	EE 28	£65 50 50 50 50	€£€	9 9 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5	27 52 8	93
8, 1940 14, 1940 18, 1940 8, 1940	14, 1940 18, 1940 8, 1940	14, 1940 18, 1940 8, 1940 14, 1940 18, 1940 9, 1940	21, 1940 21, 1940 7, 1940 11, 1940 17, 1940 7, 1940	11, 1940 17, 1940 10, 1940		10, 1940 16, 1940 10, 1940 16, 1940 16, 1940		16, 1940 22, 1940 7, 1940	11, 1940 17, 1940
00et.	000 et :: :	5 55555	000000	O o o o o o o o o o o o o o o o o o o o	00000	######################################	000	0 0 ct.	Oct.
Gr 150	do. Gr 189	do do GrBr 169 do do Gr 150	do do GrB Be 252. do do GrB SBe 240.	do GrB 220	do do GrB Bi 224 do	GrBDWf 231	GrBDWf 226dodoGrBD 193.	do GrB 187.5	-dodo-
Nolin River, below Kyrock, Ky Do. Orgen, River, above lock and dam	No. 0. Do. Green River, above lock and dam	No. 5. Do. Do. Do. Do. Do. Do. Do. Green River, above lock and dam	No. 4. Do. Beaver Creek, above Glasgow, Ky Do. South Fork, Beaver Creek, below	Do. Barren River, bridge on Route No.	la, scottsville, K.y. Do. Do. Bays Fork, below Scottsville, K.y. Do.	Drake Creek, above Franklin, Ky.— Do.— Town Branch, below Franklin, Ky.— Do.— Do.—	Town Branch, mouth below Frank- lin, Ky. Do. Do. Drake Creek, mouth, Bowling	Green, Ky. Do. Barren River, above Bowling Green,	ky. Do.

Table Gr-7.—Green River Basin: Ohio River Pollution Survey Laboratory data—Summary of individual results—Continued

	Hardness, parts per million	130	122	120	122	6 2 6 5 8 8 6 0 1 6 0 1 6 0 1 7 1 1 8 7 7 9 8 8 9 8 8 9 8 8 9 9 9 9	96	120	102
100	Arkann- ity, parts per million	106	132 164 128	162 132 116	126 112 118	122 126 94	126	4110 4110 422 422 422 422 622 623 623 623 623 623 623 623 623 6	98 98 98 98 98 98 98
E	ity,parts per million	110	202	10	12 82 12	20 102	10 10	2000 mm	00 m m 2
	Hq	7.1	7.5	7.7	7.7.7.	444	7.7.7	ででなされためので らて4116000	90190
Coli-	most probable number per milli- liter	2, 400	2, 300 2, 100 2, 100	1,500	3 2	877	£3.43 Oz	88.88 89.000 90.000 94.44.4	04044
5-day bio-	ovygen demand, parts per million	97.2	59.8	6141	1.5	888	.1.9 0.4.0	0.052 0.053 0.053 0.054 0.000 0.000 0.000 0.000 0.000	46044
l oxygen	Percent of satura- tion	23.4	19. 6 20. 5 88. 8	89.1 79.9 69.6	97.4 81.6 72.6	77.5 83.8 71.7	7272	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69.8 61.8 77.4 75.7
Dissolved oxygen	Parts per million	64	1.54 % 4.0 %	872	00 titi 60 00 44	1.00 t.	2000	800001:841: 80 8688	20000000000000000000000000000000000000
	Temperature ° C.	17.0	20.0 17.0 18.5	20.0	24.0 18.0 15.0	16.0	13.6	11.5 10.0 10.0 11.5 11.5 11.5 11.5	21 4 4 4 6 0 5 5 5 5 5 0
Average	discharge, cubic feet per second	1	98	99 95 100	100	110	110	340	1, 100 320 1, 1850
	Date	Oct. 7, 1940	Oct. 11, 1940 Oct. 17, 1940 Oct. 7, 1940	Oct. 11, 1940 Oct. 17, 1940 Oct. 8, 1940	Oct. 14, 1940 Oct. 18, 1940 Oct. 9, 1940	Oct. 15, 1940 Oct. 21, 1940 Oct. 9, 1940	Oct. 15, 1940 Oct. 21, 1940 Oct. 9, 1940	Oct. 21, 1940 Oct. 21, 1940 Oct. 10, 1940 Oct. 22, 1940 Oct. 22, 1940 Oct. 30, 1940 Nov. 4, 1940 Oct. 30, 1940	Nov. 4, 1940 Nov. 7, 1940 Oct. 30, 1940 Nov. 4, 1940 Nov. 7, 1940
	Mileage from mouth	GrB 178	do GrB 176	do do GrB 165	do GrBG 159	do do GrB 150	do Gr 141	do do do do do do do do	do do do do
	Sampling point	Pet Milk plant effluent, Bowling	Oren, A.y. Do Do Barren River, below Bowling Green,	Do. Do. Barren River, above lock and dam	Do Creek, mouth, Bowling	Oren, A.y. Do Do Barren River, mouth, Woodbury,	Green River, below Morgantown,	Mud River, below Russellville, Ky. Do. Mud River, mouth, Rochester, Ky. Do. Do. Do. O.	No. 3. Do. Do. Green River, above Central City, Ky. Do. Do.

		01.	10 10	V ALIE	. 10	DL	JIIOI	CONT	IIOD		
86 86		08	104	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	880		124		114		
901102 12021 4984 4984 4984	456 460 82	102	114 96 26	38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		264 304 134 130	164	200 52 230 052 154 106	108	
88484891	130	45 55	15	10	kg 00	10	320 230 120 40	888	200000000000000000000000000000000000000	114	
	5.7.7.	7.6.7.	6.7.7	6.0			97.97.	7.3	1,1,1,1,0,1	7.6	
460 460 240, 000	430,000 230,000 4	38	23 12 23	60 64	11 1		93,000 1,100,000 43,000 93,000	9, 100 24, 000 4	222222		
11.1441.148	142 132 2.3	1.3	9.00	000	30 m	- 00 C	325.0 325.0 19.1	20.2	4000m0	.:	
57.1 59.3 52.6 64.6 0	50.5	46.4 78.1	75. 5 66. 5 64. 3	45.6	90.9		39.7	0 13.1 77.5	6.08.09.08.09.09.09.09.09.09.09.09.09.09.09.09.09.	75.1	
ರೈಪ್ರೊಪ್ಪ್ ಪ್ರ ಈ ಎ ೦ ಐ ಸ್ ಣ	0 0 4.	4:0.1%	4:00	5.3	4 0		0040	1.6	8099777	7.4	
8.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	13.0	15.5 10.5 16.0	16.5 10.5 20.0	16.5	19.5		24.0 19.0 14.5 14.0	11.5	15.0 20.0 12.0 16.5	19.0	
£ 28 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	£E	348	1,210	33	3	©	3	€€	(1)	1,000	
9, 1940 21, 1940 21, 1940 9, 1940 21, 1940 9, 1940 9, 1940	15, 1940 21, 1940 30, 1940	4, 1940 7, 1940 30, 1940	4, 1940 7, 1940 29, 1940	1, 1940 6, 1940	29, 1940	6, 1940	28, 1940 31, 1940 5, 1940 30, 1940	4, 1940 7, 1940 30, 1940	4, 1940 30, 1940 4, 1940 7, 1940 30, 1940	4, 1940 7, 1940	
*********	oet.	Nov.	Nov.	Nov.	Nov.	Nov.	Not.	Nov. Nov.	ONNORW OR OCT	Nov.	
GrRo 102 do. GrRo 99 GrRo Mu 104	do GrRo 79	do Gr 63	do GrPo 89	do	GrPoD 87.8.	ďo	GrPoF 80 do GrPoC 82	do GrPo 57	do GrPa 30 do do Gr 9	do	
Rough River, above Harfford, Ky Do Rough River, below Harfford, Ky Do Do Muddy Creek, below Beaver Dam,	Rough River, above lock and dam	Oren River, above lock and dam	Pond Biver, bridge on Route No. 62,	Do.	Drake Creek, bridge on route 62, Nortonville, Ky.	Do	Flat Creek, below Madisonville, Ky. Do. Cypress Creek, below Central City,	Pond River, below mouth, Rumsey,	Po. Pauther Creek, at mouth Do. Do. Green River, above look and dam	No. 1. Do.	¹ Less than 1. ³ Seeded and neutralized.

Table Gr-7.—Green River Basin: Ohio River Pollution Survey Laboratory data—Summary of individual results—Continued

. (,			THO MINE
		Hardness, parts per million		102
		Alkalm- ity,parts per million	104	105 103 126 126 126 90 91
		iturbid. Ity, parts per million	22	255
		Hq	7.7	1111111
	Coli- forms.	most probable number per milli- liter	Ξ	3
	5-day bio-	ovygen demand, parts per million	1.2	7.1. 4.1. 6.0.1.
	Dissolved oxygen	Percent of satura- tion	89.7	99.7.888.6.4.4.0.9.0.7.4.4.0.0.0.0.4.4.1.0.0.0.0.0.0.0.0.0.0.0
	Dissolve	Parts per million	7.2	F. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
		Temper- ature ° C.	27.0	26.5 2.6.5 118.0 17.0 1.4.0
	Average	discharge, cubic feet per second	510	1,270 1,510 667 667 3,350 3,350
		Date	Aug. 28, 1940	Aug. 31, 1940 Sept. 4, 1940 Oct. 30, 1940 Oct. 31, 1940 Feb. 19, 1941 Feb. 20, 1941
		Mileage from mouth	Gr 8.6.	do do do do
		Sampling point	een River, bridge at Spottsville,	00000000000000000000000000000000000000

1 Less than 1.

TENNESSEE RIVER BASIN 811

CONTENTS

α4	L_	Page
Conten Syllabu	ts and conclusions	813 815
Descrip	otion	816
Present	tation of field datatation of laboratory data	818 822
Hydron	metric data	826
Discuss	sion	829
	LIST OF TABLES	
	-Cost estimates of remedial measuresSurface water supplies	816 818
T-3	-Sources of pollution	820
T-4	-Industrial wastes -Selected laboratory data	822 823
T-6	-Monthly mean summer flows	828
T-7	-Summary of laboratory data	834
T-7a	-Summary of laboratory data (Tennessee Valley Authority results)	844
	LIST OF FIGURES	
T-1. T-2a.	Map—Sources of pollution and selected laboratory data (Ten-	815
	nessee River)	818
	Chart—Sources of pollution and selected laboratory data (upper tributaries)	818
	tributaries) Map—Coliform results	822
T-4.	Map—Dissolved oxygen results	822
T-5.	Map—Biochemical oxygen demand results	
1-0.	Chart—Summer low-flow frequency curve	827
	813	

TENNESSEE RIVER BASIN

SYLLABUS AND CONCLUSIONS

SYLLABUS

The Tennessee River Basin drains portions of seven southern States comprising a total area of 40,600 square miles. The larger cities located in the basin are Chattanooga and Knoxville, Tenn., and Asheville, N. C. The area is predominantly rural, with a few highly developed industrial areas. The abundance of good water supplies and natural resources has been influential in the industrial development. Scant progress has been made toward pollution abatement. Known methods of treatment, if applied, would greatly reduce the pollutional load carried by the stream. Additional effort is needed to develop methods of industrial waste treatment for certain major sources of industrial pollution.

CONCLUSIONS

(1) Most of the water supplies in this basin are adequate and dependable. Small supplies are, in general, taken from ground water sources while the larger supplies are from surface waters. In general, water supplies are not seriously affected by pollution, except at Knoxville where industrial wastes from upstream plants have damaged

the supply.

(2) Sewage from a population of about 592,000 and industria wastes with a population equivalent of 1,306,000 are produced in this area. Only 20 percent of the domestic sewage receives any treatment and one-third of this treatment is in obsolete and ineffective plants. Existing municipal sewage treatment reduces the combined pollutional load of 1,897,000 to a pollutional equivalent of about 1,833,000 or about 3 percent. In addition, about 20 percent of the waste-producing industries have taken at least minor steps to reduce pollution either by treatment or alteration within the plant.

(3) The more important points where high bacterial pollution was observed were below Asheville and Canton, N. C., and Kingsport, Knoxville, Chattanooga, and Columbia, Tenn. Poor oxygen conditions were found on the Tennessee River below Knoxville and Chattanooga, and on the tributaries the more important points were below Bristol, Copperhill, Cleveland, Kingsport, and Tullahoma,

Tenn., and Canton, N. C.

(4) The major sources of pollution are found in the upper half of the basin, principally in Tennessee and North Carolina. A number of sections of tributary streams are grossly polluted, which creates problems that are primarily of a local nature. Conditions on the main river are good except in the vicinity of Knoxville and Chattanooga.

(5) The expected increase of low-water flow by the Tennessee Valley Authority's stream-control program will improve stream conditions in the main river. Benefits that accrue to stream improve-

ment will largely be intangible but nonetheless desirable.1

(6) In view of the normal uses of the streams involved, refined treatment at certain sources of pollution would serve no purpose commensurate with the expenditure. In these instances primary treatment appears justified. A summary of comparative costs of remedial measures from table T-1 follows:

Treatment	Capital cost	Annual charges
Existing Suggested additional	\$2,750,000 24,480,000	

Estimated additional costs over existing charges of programs involving uniform treatment throughout the basin are:

Treatment	Capital cost	Annual charges
Primary, all places	\$23, 440, 000	\$1, 865, 000
Secondary, all places	28, 840, 000	2, 495, 000

Table T-1.—Tennessee River Basin: Estimated cost of existing and suggested minimum corrective measures for municipal and industrial wastes, with comparative costs for primary and secondary treatment

	Number of plants		Popula-		Annual charges			
	Pri- mary	Second- ary	tion con- nected to	Capital investment	Amortization and interest	Operation and maintenance	Total	
Existing sewage treatment	26	18	98, 400	\$2, 750, 000	\$170,000	\$80,000	\$250,000	
Suggested minimum correction: Sewage-treatment plants Required interceptors Independent industrial waste correction	64	37	489, 400	7, 420, 000 15, 450, 000 1, 610, 000	520, 000 725, 000 205, 000	395, 000	915, 000 725, 000 395, 000	
Total Comparative cost: Primary treatment, all waste Secondary treatment, all waste As suggested				23, 440, 000 28, 840, 000	1, 450, 000 1, 385, 000 1, 755, 000 1, 450, 000	585, 000 480, 000 740, 000 585, 000	2, 035, 000 1, 865, 000 2, 495, 000 2, 035, 000	

DESCRIPTION

The Tennessee River is formed by the confluence, in east central Tennessee, of the Holston and French Broad Rivers, whose headwaters are in western Virginia and North Carolina. From this confluence the river flows southwesterly to Guntersville, Ala., thence northwesterly to the northeast corner of Mississippi and finally northward through Tennessee and Kentucky to its confluence with the Ohio River at Paducah. The basin is roughly crescent in shape, somewhat constricted at its center where the river cuts through the

¹ Some of the reservoirs being constructed in connection with the defense program may have an appreciable effect on pollution. Data are not yet available which would permit an evaluation of these effects.

Cumberland Plateau in the vicinity of Chattanooga. The two areas thus formed are approximately equal in size but are dissimilar in physical characteristics. The upper area is mountainous with swift flowing streams and narrow valleys while the lower area is rolling with broad flood plains and sluggish streams.

The drainage area of 40,600 square miles and the 1940 population

of 2,941,298 are divided among 7 States as follows:

94-4-		Drainage area,		Population, 1940				
State	square miles		Urb	an	Rural	390, 049 64, 909 47, 438 15, 055 318, 959 1, 419, 787 235, 101		
Alabama. Georgia. Kentucky. Mississippi. North Carolina. Tennessee. Virginia.	2	1, 490 1, 055 385 5, 490 22, 290		9, 464 3, 538 3, 773 0 7, 729 5, 337 2, 100	310, 585 61, 371 43, 665 15, 055 251, 230 974, 450 203, 001			
Total	40, 600		631, 941		1, 859, 357	2, 491, 298		
			Populations					
	19	1910		20	1930	1940		
Larger cities: Chattanooga, Tenn Knoxville, Tenn Asbeville, N. C. Johnson City, Tenn.		36, 346 18, 762		7, 895 119, 798 7, 818 105, 802 8, 504 50, 193 2, 442 25, 080		128, 163 111, 580 51, 310 25, 332		
Total basin: Urban Rural	1, 57	2, 110 9, 533	1, 624		549, 125 1, 667, 953 2, 217, 078	631, 941 1, 859, 357		
Total	1, 79	1, 743	1, 978	5, 040	2, 491, 298			
Major tributaries	River mile	an sq:	inage rea, uare iles	States				
Duck River Elk River Hiwassee River	110. 7 285. 1 499. 5		3, 560 Tennessee. 2, 330 Tennessee, Alabama. 2, 660 Tennessee, North Caroli			ma. h Carolina,		
Clinch RiverLittle Tennessee River	567. 7 601. 3		4, 400 2, 650	Georgia. 4, 400 Tennessee, Virginia. 2, 650 Tennessee, North Carolin				
		1	5, 140 Georgia. Tennessee, North Carolina. 3, 810 Tennessee, Virginia.					

Resources.—The basin is rich in natural resources; tillable land, forest, and water power are abundant. Coal, asphalt, clay, sand and gravel, limestone, phosphate rock, iron, zinc, and copper ore

are found in important quantities.

Industries.—While primarily a rural area, over 1,000 industrial plants are found in the basin. Extensive agricultural activity is found, although, in general, it is on a small scale. Practically every type of industry is represented, wood products and textile manufacturing plants predominating. With the advent of cheap power developed by the Tennessee Valley Authority, an increase in industrial developments is anticipated, particularly in the metallurgical field. Dairying shows a significant increase in middle Tennessee.

Water uses.—Climate, character of population, and adequate water supply have been influential in the development of this area. Surface

waters supply the major demands of both industry and domestic Ground water supplies are generally used for smaller instal-The Tennessee Valley Authority's development of the river. when complete, will provide for power development, flood protection, and a 9-foot navigation channel from the Ohio River to Knoxville, Recreational facilities are being developed and extensively enjoyed.

PRESENTATION OF FIELD DATA

Figures T-2A and T-2B show all sources of pollution of consequence on the Tennessee River and its tributaries. The location, magnitude, and reduction by present treatment of each source of pollution are indicated as well as the location of tributaries, water supply intakes, and other pertinent information. Laboratory data during the months of lowest oxygen concentration, found while sampling, are plotted for four sections of the main stream so that the effect of the indicated sources of pollution may be observed.

Public water supplies.—Of the 244 public water supplies in the basin serving some 871,000 people, 76 are wholly or in part from surface sources; 42 of these are from impounding reservoirs and 11 more are from streams not subject to pollution. The remaining 23 supplies, serving 394,700 people, are from streams subject to varying amounts of pollution. Table T-2 shows data on these supplies.

Table T-2.—Tennessee Basin: Surface water supplies

Supply	State	Source	Mile 1	Treat- ment 3	Popu- lation served	Con- sumption (million gallons per day)			
		Supplies below community sewer outfalls							
Kentucky Dam	Alabama	Tennessee River 3	22 254	FD FD	800 14, 400	0. 11 . 75			
Wilson Dam No. 2.	do	do	256. 5 304. 5	FD FD	3, 500 16, 200	1. 30 1. 00			
Bridgeport	do	do.*	357. 5 415	FD FD	3, 500 2, 100	. 27			
South Pittsburg	Tennessee	do.3	418 431. 2	FD	2,700 100	. 14			
Chattanooga Lenoir City	do	Tennessee River, Little	466 601. 3	FD FD	152, 000 4, 500	19.03			
Knoxville	do	Tennessee River. Tennessee River. Duck River.	648 243	FD	120,000	10.00			
helbyville		doHiwassee River	332 575	FD FD	12,000 7,400 200	. 74			
Tiwassee Dam	Tennessee	Emory River	584 589	FD	5, 900	.4'			
Dakdale St. Paul		Clinch River	823 888	FD	700	. 0:			
ohn Sevier	Tennessee do	Holston River Spring, well, Holston	660	FD	200 8, 500	.0.7			
	do	River. ³ South Fork, Holston	799	FD	17, 600	1. 3			
Bristol		River.8	850	FD	13,000	. 9			
Freenville	do	Nolichucky River 8		FD	6, 800	. 58			
Total: 23 Below sewer outfalls 53 Other surface supplies					394, 700 213, 800	38. 68 21. 32			
Total curface	water supplies				608, 500	59.9			

Miles above mouth of Tennessee River.
 F=Coagulated, settled, filtered; D=Chlorinated.
 A part of supply is from ground water sources.

In general, the water supplies are adequate and have been an important factor in recent industrial growth. The character of supplies obtained from the main river may be expected to change due to transition from river to lake conditions. There will be a tendency for algae to increase and chemical quality to become more uniform. Turbidities will decrease.

Taste and odor troubles have been experienced at Knoxville

attributed to industrial wastes.

Sewerage.—There are 170 sewered municipalities in the basin, 44 of which have sewage-treatment plants, other than septic tanks. In general, treatment is found only in the smaller communities that are located on tributaries. Table T-3 summarizes the sewered population together with industrial wastes.

Table T-3.—Tennessee River Basin: Sources of significant pollution including industrial wastes expressed as sewered population equivalent (biochemical oxygen demand)

ewered population equivalent (bio- chemical oxygen de- mand)	Discharged	7,1,2,1,1,2,5,000 (2.5,000) (2.5,000
Sewered equiva chemics mand)	Un. treated	7. 200
Treatment		None Trank Trank None To do Tank Primary None Trank One Primary Trank do Primary None Primary Trank do Primary None
Popula- tion con- nected to	sewers	19 19 19 19 19 19 19 19
age from	Tribu- tary	201.14 442 482 482 482 482 482 482 482 482 48
River mileage from mouth of—	Tennessee River	255 256 266 267 267 267 267 267 267 267 267 26
Receiving stream		Tennessee River. do. do. do. do. do. do. do. do. do. d
Tributary		Tennessee River. do Clark Run Big Sandy River do do do do do do Clark River do do do Shaal Creek Elk River do
Municipality		Sheffield, Ala Florence, Ala Wilson Dan, Ala Decatur, Ala Guntersville, Ala Chattanooga, Tenn Dayton, Tenn Loudon, Tenn Loudon, Tenn Loudon, Tenn Murray, Ky Paris, Tenn Murray, Ky Wrigley, Tenn Columbia, Tenn Lawvenceburg, Tenn Lawvenceburg, Tenn Lawvenceburg, Tenn Tulahoma, Tenn Athers, Ala Rossville, Ga Fort Oglethorpe, Ga Athers, Tenn Athers, Tenn Runtsville, Ala Rossville, Tenn Runtsville, Ala Rossville, Tenn Anthers, Tenn Anthers, Tenn Reckwood, Tenn Harriman, Tenn

1, 23, 600 (19, 19, 19, 19, 19, 19, 19, 19, 19, 19,	
98,000 98,000	
do None Secondary Primary Primary None Go do do do do do do do do do do do do do	
44, 44, 44, 40, 40, 40, 40, 40, 40, 40,	
183 193 193 193 193 193 193 193 19	_
839 604 604 648.5 648.6 648.8 833.0 648.8 883.8 8 883.8 8 8 8	
Sweetwater Greek Scott Creek A do Mossy Creek Turkey Creek South Hoiston River Brush Creek Watanga River Beaver Creek Mouth of Hoiston River Little Pigeon River Richland Creek North Indian Creek North Indian Creek Pigeon River Cod Multiple River Richland Creek North Indian Creek North Indian Creek Tench Broad River do French Broad River do do do Davidson River Davidson River	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sweetwater Creek Little River Joint River do inoiston River do Watanga River do South Holston River do Little Pigeon River Nolichucky River Nolichucky River od French Broad River do French Broad River do	
Appalachia, Va Sweetwader, Tenn Syra, N. C Syra, N. C Syra, N. C Syray N. C Marristown, Tenn Dinnson City, Tenn Elizabethion, Tenn Bristol, Va Marrion, Va Sweitwrille, Tenn Greeneville, Tenn Newport, N. C Canton, N. C Rossman, N. C Hondersonville, N. C Rossman, N. C Hendersonville, N. C Rossman, N. C	LOCAL

1 2 small secondary-treatment plants serve 1,900 population.

Industrial wastes.—Data on 227 waste-producing industrial plants are summarized in table T-4. Pulp and paper industries and chemical plants are the largest producers of industrial pollution. These two types of industry account for over half of the basin's pollution load and constitute the major problem of pollution control. The sewered population equivalent of industrial waste discharged to municipal sewers is 123,500 or about 10 percent of the total industrial waste.

Table T-4.—Tennessee River Basin: Summary of Industrial Wastes not Discharging to municipal treatment plants, with total of entire industrial waste load in the basin

	Number	Industri disp		At least minor	Estimated sewered population	
Industry	of plants	Munici- pal sewers	Private outlet	corrective measures taken	equivalent (biochemical oxygen de- mand)	
Cannery Chemical Meat Milk Pulp and paper Tannery Textiles Miscellaneous	24 21 19 26 9 9 80 39	6 2 11 17 2 2 37 4	18 19 8 9 7 7 43 35	2 11 2 2 8 8 2 1 13	38, 400 353, 200 40, 200 9, 500 584, 400 79, 900 138, 700 56, 300	
Waste unconnected municipal treat- ment. Wastes discharged to municipal treatment.	227	81	146	41	1, 300, 600 5, 400	
Total industrial waste in the basin By States: Alabama Georgia Kentucky Mississippi. North Carolina Tennessee Virginia					9,400 57,000 300 0 508,500 712,500	

PRESENTATION OF LABORATORY DATA

Complete summaries of laboratory results for the Tennessee River Basin are presented in tables T-7 and T-7A (pp. 834 and 844). A part of the laboratory observations for the Tennessee Basin was carried out by two mobile laboratory units during November 1940, and January, February, and March 1941.

Since 1936 extensive stream pollution studies of the Tennessee River Basin have been carried on by the Tennessee Valley Authority in cooperation with the several States that make up this area. A report titled "Studies of the Pollution of the Tennessee River System," was published in February 1941, and it is anticipated that subsequent

reports will be made.

From March 1939 to February 1941, the Ohio River pollution survey actively cooperated with the Tennessee Valley Authority in their pollution studies. Data collected prior to 1939 have been made available to the Ohio River pollution survey and have been freely used in this report. Included with these data were chemical results on Duck River samples analyzed by the Tennessee Department of Health.

(Face p. 822)

(Face p. 822)

(Face p. 822) No. 3 8F0 - 43 0 - 100

Selected monthly average laboratory results at some of the principal points in the basin are tabulated with flows on sampling days and the minimum monthly flows of record in table T-5. Selected results have been chosen for low dissolved oxygen or high coliform findings and, in general, represent the most unfavorable conditions during sampling.

Table T-5.— Tennessee River Basin: Selected laboratory data

MAIN RIVER—MOST UNFAVORABLE DISSOLVED OXYGEN RESULTS

River	Tennes-	Tennes-	Tennes-	Tennes-	Tennes-	Tennes-	Tennes-
Location	Above Knox-	At	Below Knox-	Below	Above	Below Chatta-	Below
	ville,	Knox- ville,	ville,	Knox- ville, Tenn.	Chatta- nooga,	nooga,	Chatta- nooga,
River miles above mouth of		Tenn.			Tenn.	Tenn.	Tenn.
Tennessee Period, 1936	650.5 August	645.5 August	638.9 August	625.1 August	472.1 July	460.8 July 1	452.2 July
Number of samples Flow in cubic feet per second:	3	3	3	3	4	4	4
Sampling days	4, 500 1, 830	4, 500 1, 830	4, 300 1, 830	4, 600 1, 830	15, 800	16, 200	16, 500
Water temperature, °C Coliforms, per milliliter	28.3	29. 2 650	29. 3 900	29. 0 75	28. 4 23	28. ⁴ 4 700	28. 4 42.
Dissolved oxygen, parts per							
million	5.72	5. 14	4. 39	4. 95	5. 91	6. 03	5. 56
5-day, parts per million	1.12	1.57	1.32	1.20	1. 24	1.04	1. 29
River			m		m	m	m
	Tennes- see	Tennes- see	Tennes-	Tennes- see	Tennes- see	Tennes- see	Tennes-
Location	Above Decatur 1	Below Decatur 1	Below Decatur 1	Above	Below Tuscum-	Below Tuscum-	Below
	Decount	20 Octobras	Doodout	1 10101100	bia	bia	Bluff Bridge
River miles above mouth of Tennessee Period, 1937	307.6 June ¹	302.5 June ¹	296.0 June ¹	256.6 August	251.8 August	241.5 August	5.3 Septem- ber 1940
Number of samples	5	5	5	3	4	3	
Flow in cubic feet per second:					_		20.00
Sampling days. Minimum month.	23, 400	23, 400	23, 400	25, 200 3, 760	26, 400	25, 200	26, 300 5, 070
Vater temperature, °C Coliforms, per milliliter	27. 7 22	28. 0 38	28. 0 26	28.8	28. 9 27	28. 7 7. 7	(2)
Dissolved oxygen, parts per	6, 91	6, 78	6. 97	7. 43	7.08	6.78	8.
million Biochemical oxygen demand,	0.01						

MAIN RIVER-MOST UNFAVORABLE COLIFORM RESULTS

RiverLocation	Tennes- see Above Knoxville	Tennes- see At Knox- ville		Tennes- see Below Knoxville	Tennes- see Below Loudon	Tennes- see Above Chatta- nooga	Tennes- see Below Chatta- nooga
River miles above mouth of TennesseePeriod	650.5 October 1936	645.5 June 1936	638.9 Septem- ber 1936	625.1 July 1936	591 February 1941	472.1 January 1937	457.1 Septem- ber 1936
Number of samples	4	4	4	3	3	2	2
Sampling days. Minimum month Water temperature C. Coliforms, per milliliser.	15, 100 1, 830 17. 6 170	5, 200 1, 830 27. 0 1, 800	4, 200 1, 830 26. 6 2, 000	6, 700 1, 830 26. 7 325	9, 080 2, 860 5. 0 11	121, 000 3, 990 12. 0 100	14, 200 3, 990 26. 0 2, 200
Dissolved oxygen, parts per	7. 51	6. 34	4. 42	5. 84	11.0	9. 57	6. 25
Biochemical oxygen demand, 5-day, parts per million	2. 69	1.68	1.88	1.10	3. 5	1. 42	. 82

¹ Also worst coliform month.

² Less than one.

Table T-5.—Tennessee River Basin: Selected laboratory data—Continued MAIN RIVER—MOST UNFAVORABLE DISSOLVED OXYGEN RESULTS—continued

River Location	Tennes- see Below Chatta- nooga	Tennes- see South Pittsburg	Tennes- see Bridge- port	Tennes- see Above Florence	Tennesse Below Tu		Tennes- see Nortons Bluff Bridge
River miles above mouth of Tennessee	452.2 September 1936	418 February 1941	414 February 1941	256.6 May 1937	251.8 June 1937	241.5 June 1937	5.3 November 1940
Number of samplesFlow in cubic feet per second:	2	3	3	4	4	4	4
Sampling days	14, 200 3, 990	13, 100	13, 100	63, 000 3, 760	22, 400	22, 400	24, 200 5, 070
Water temperature, °C	26. 5 2, 400	6. 5 16	6. 3 20	20. 8 5. 8	26. 1 8. 5	25. 9 120	18.9
million	6. 24	10.8	10.8	9. 52	8. 31	7. 97	10. 2
Biochemical oxygen demand, 5-day, parts per million	1.0	1.7	2.1	1. 25	1.34	1. 20	.7

TRIBUTARIES

River miles above—	Powell Below Big Stone Gap	South Holston Below Bristol	North Holston At Kings- port	Watauga Below Eliza- bethton	Watauga Below John- son City	South Holston Below Kings- port	Holston At mouth
Confluence with Tennessee River Mouth of Tennessee Period, 1937	163 815 March 1941	168 820 August	142 794. 5 August	188 840 March 1941	177 829 August	143 795 August	0. 1 652. 2 January
Number of samples	3	3	3	3	3	3	3
Flow in cubic feet per second: Sampling days Minimum month	211	940	600	1,398	970	2, 360	19, 500 795
Water temperature, °C	3. 8 280	24. 2 250	23 23	6. 3 357	25. 5 240	26. 3 950	10.8
million	12.8	6.7	7.5	6.3	6.4	4.6	9.85
Biochemical oxygen demand, 5-day, parts per million	3.0	1.5	.9	9. 9	1.4	6.8	2. 58
6	1				1		
River	French	French	French	Pigeon	Pigeon	Pigeon	Pistol
Location	French Broad At mouth	Broad	French Broad Below Asheville	Pigeon Above Canton	Pigeon Below Canton	Pigeon At New- port	Pistol Creek Below Alcoa
Location	Broad	Broad Above	Broad Below	Above	Below	At New-	Creek Below
Location River miles above— Confluence with Tennessee River	Broad At mouth	Broad Above Asheville	Broad Below Asheville	Above Canton	Below Canton	At New- port	Creek Below Alcoa
Location	Broad At mouth	Broad Above Asheville	Broad Below Asheville	Above Canton	Below Canton	At New- port	Creek Below Alcoa
River miles above— Confluence with Tennessee River Mouth of Tennessee Period Nunber of samples	Broad At mouth 0.4 652.5 October	Broad Above Asheville 152 804 March	Broad Below Asheville 133 785 March	Above Canton 139 791 March	Below Canton 137 789. 5 March	At New- port 81 733 August	Creek Below Alcoa 12 647 February
River miles above— Confluence with Tennessee River Mouth of Tennessee. Period Nunber of samples Flow in cubic feet per second: Sampling days.	Broad At mouth 0.4 652.5 October 1936 3 11,000	Broad Above Asheville 152 804 March 1941	Broad Below Asheville 133 785 March 1941 3 1,017	Above Canton 139 791 March 1941	Below Canton 137 789. 5 March 1941	At New-port 81 733 August 1937 3 580	Creek Below Alcoa 12 647 February 1941
Location River miles above— Confluence with Tennessee River Mouth of Tennessee. Period. Nunber of samples. Flow in cubic feet per second: Sampling days Minimum month Water temperature, °C	Broad At mouth 0.4 652.5 October 1936 3 11,000 1,125 17.1	Broad Above Asheville 152 804 March 1941 1 903	Broad Below Asheville 133 785 March 1941 3 1,017 328 3.2	Above Canton 139 791 March 1941 3 128	Below Canton 137 789.5 March 1941 3 128	At New-port 81 733 August 1937 3 580 158 23.7	Creek Below Alcoa 12 647 February 1941 3 28 7 7.8
River miles above— Confluence with Tennessee River Mouth of Tennessee. Period. Nunber of samples Flow in cubic feet per second: Sampling days. Minimum month Water temperature, °C Coliforms, per milli/liter Dissolved oxygen, parks per	Broad At mouth 0. 4 652. 5 October 1936 3 11,000 1,125 17.1 375	Broad Above Asheville 152 804 March 1941 1 903	Broad Below Asheville 133 785 March 1941 3 1, 017 328 3. 2 438	Above Canton 139 791 March 1941 3 128 1.2 14	Below Canton 137 789.5 March 1941 3 128 4.3 1,040	At New-port 81 733 August 1937 3 580 158	Creek Below Alcoa 12 647 February 1941 3 28 7 7.8 1,420
River miles above— Confluence with Tennessee River Mouth of Tennessee. Period Nunber of samples Flow in cubic feet per second: Sampling days Minimum month Water temperature, °C Coliforns, per milliliter	Broad At mouth 0.4 652.5 October 1936 3 11,000 1,125 17.1	Broad Above Asheville 152 804 March 1941 1 903	Broad Below Asheville 133 785 March 1941 3 1,017 328 3.2	Above Canton 139 791 March 1941 3 128	Below Canton 137 789.5 March 1941 3 128	At New-port 81 733 August 1937 3 580 158 23.7	Creek Below Alcoa 12 647 February 1941 3 28 7 7.8
River miles above— Confluence with Tennessee River Mouth of Tennessee. Period Nunber of samples Flow in cubic feet per second: Sampling days Minimum month Water temperature, °C Coliforms, per millifter Dissolved oxygen, parts per million	Broad At mouth 0. 4 652. 5 October 1936 3 11,000 1,125 17.1 375	Broad Above Asheville 152 804 March 1941 1 903	Broad Below Asheville 133 785 March 1941 3 1, 017 328 3. 2 438	Above Canton 139 791 March 1941 3 128 1.2 14	Below Canton 137 789.5 March 1941 3 128 4.3 1,040	81 733 August 1937 3 580 158 23.7 1,600	Creek Below Alcoa 12 647 February 1941 3 28 7 7.8 1,420

Table T-5.—Tennessee River Basin: Selected laboratory data—Continued
TRIBUTARIES—Continued

River	Clinch	Hiwassee		Ocoee	Sequat-	Rose- berry Creek	Spring Creek
Location	At mouth	At Charles- ton	Below Copper- hill	At mouth	At mouth.	Below Scotts- boro	3 miles below Hunts- ville
River miles above— Confluence with Tennessee	1	15	68	35		1	16
River. Mouth of Tennessee	569	515	568	535	423	383	337
Period, 1941	August		February				January
	1937						
Number of samplesFlow in cubic feet per second:	. 2	3	3	3	3	3	3
Sampling days Minimum month	2, 080 400	1,600	169	602	430	8	54
Water temperature, °C	22	3.0	5. 0	4, 5	6.8	5.0	8. 5 363
Dissolved oxygen, parts per	350	1	(2)	1	(3)	1, 980	303
million	6.02	11.9	6.4	11.6	11.4	8.4	8. 2
Biochemical oxygen demand, 5-day, parts per million	3, 49	0. 7	16.0	0.6	0.7	45	2.2
	0. 10						
				1			
River	Swan	Richland	Rock	Rock	Elk	Duck	Duck
Location	Below	Below	Below	Below	Below	Below	Below
	Athens,	Pulaski	Tulla-	Lewis-	Fayette-	Shelby-	Colum-
River miles above—	Ala.		homa	burg	ville	ville	bia
Confluence with Tennessee River.	11	66	172	196	88	216	130
Mouth of Tennessee	311	351	457	306.5	373	326	240
Period	January 1941	January 1941	February 1941	January 1941	August 1938	July 1938	August 1938
Number of samples	3	3	3	3	2	2	5
Flow in cubic feet per second: Sampling days	90	501	5	67	819	318	1, 180
Minimum month		30			115	83	39
Water temperature, °C Coliforms, per milliliter	8.5	8.8	5. 0	8.5	26 31	26. 5 300	28. 4 600
Dissolved oxygen, parts per	817	337	7, 030	410	51	300	000
million	9. 6	10.8	6.9	10. 2	6.9	6.2	5. 7
Biochemical oxygen demand, 5-day, parts per million	3.0	3.8	34. 2	2.9	1.3	1.2	1.7
	1	1					

¹ Seeded and neutralized.

Figures T-3 and T-4 show the distribution of coliform bacteria and dissolved oxygen, respectively, at the various sampling points throughout the basin, as based on average results during the most unfavorable month of observations at each point. In general, the higher coliform results tended to occur during months of high stages, whereas the lower dissolved oxygen results coincided with lower stream flows and high temperatures.

As indicated by bacteriological findings, over 90 percent of the sampling stations not immediately below sources of pollution showed coliform organism concentrations of less than 200 per milliliter. The more important points where high coliform results were found are below Asheville and Canton, N. C., and Kingsport, Knoxville,

Chattanooga, and Columbia, Tenn.

Poor oxygen conditions were found on the Tennessee River below Knoxville and Chattanooga and on the tributaries below Bristol, Canton, Copperhill, Cleveland, Tullahoma, Harriman, Kingsport, and Sylva. The low oxygen results found below Bristol, Copperhill, Canton, Harriman, Kingsport, and Sylva are largely due to industrial wastes.

² Less than 1.

Acid stream conditions were observed in the vicinity of Copperhill

on the Ocoee River.

Figure T-2 shows dissolved oxygen, 5-day biochemical oxygen demand, and coliform results for sections of the main river at Knox-ville, Chattanooga, Decatur, and Florence. These data were chosen for the month showing the most unfavorable dissolved oxygen conditions. These results are typical of a stream receiving pollution and show the effect of natural stream recovery.

Figure T-5 shows the results of biochemical oxygen demand analyses at the various sampling stations throughout the basin, and reflects the quantity of unstable organic material that must be oxidized.

HYDROMETRIC DATA

Two hundred and thirty stream gaging stations have been maintained on the Tennessee River Basin for varying periods, 158 stations of which are active at the present time. Eight stations of importance from the pollution standpoint have been selected and the monthly mean summer flows for the 3 years in which the lowest summer flows have occurred are presented in table T-6.

Figure T-6 presents low-flow frequency curves of the minimum monthly mean flows from June to September, inclusive, for the French Broad River at Dandridge and for the Pigeon River at Newport. These curves indicate that the expectancy of low monthly

mean summer flows is as follows:

Location	Minimum monthly mean summer flows in cubic feet per second that may be expected once in—					
	2 years	5 years	10 years	Minimum		
Newport, Tenn Dandridge, Tenn	500 3, 280	360 2, 320	320 2, 000	158 973		

With the completion of the proposed dams in the Tennessee River Basin, the Tennessee Valley Authority estimates the expected minimum weekly average controlled flows (May through September) to be as follows: ²

Location	Miles	Flow in cubic feet per second		
Location	above mouth	Typical dry year	Typical wet year	
Knoxville Fort Loudon Dam Watts Bar Dam Chickamauga Dam Chattanooga Hales Bar Dam Guntersville Dam Wheeler Dam Wilson Dam Pickwick Dam	648 591 530 471 461 431 349 275 259 207	4, 750 11, 600 14, 900 15, 500 16, 400 17, 700 18, 300 19, 900	5, 250 17, 250 19, 850 20, 700 25, 200 27, 800 28, 400 30, 400	

² Additional reservoirs now under construction in connection with the defense program will further increase these flows.

Table T-6.—Tennessee River Basin; Monthly mean summer flows for years in which low summer flows have occurred

River	Tennessee	Tennessee	Tennessee	South Fork,
Location	At Knox-	At Chat-	At John-	Holston At Kings-
River miles above—	ville	tanooga	sonville	port
Confluence with Tennessee. Mouth of Tennessee	648	468	100	148 800
Drainage area (square miles)	8,934	21,400	38,520	1,931
Period of record.	1900-40	1874-40	1890-40	1925-40
Year	1904	1881	1897	1930
Junecubic feet per second	6, 660	19, 600	26, 400	911
Julydo	5, 980	12, 400	32, 200 24, 100	662
August do September do	6. 460 3, 290	8, 080 14, 500	24, 100 11, 500	1,050
Year	1925	1883	1903	1932
Junecubic feet per second	4, 790	25, 300	66, 800	1,710
Julydo	3, 960	15, 700	26, 900	1, 330
July do August do September do	1 1, 830 1, 850	10, 500 7, 610	20, 700 11, 200	900 1 630
Year	1932	1925	1925	1939
Junecubic feet per seconddo	8, 240 7, 550	10, 800 9, 370	14, 600 13, 600	1, 409 1, 842
Augustdo	5, 200	4, 760	8. 130	1, 342
Septemberdo	3, 130	1 3, 990	1 4, 780	634
***	Dimon	Franch	T :441-	
River	Pigeon	French Broad	Little Tennessee	Emory
Location River miles above—	Newport	Dandridge	At McGee	Oakdale
Confluence with Tennessee	6	45	19	21
Mouth of Tennessee Drainage area (square miles)	732 655	697 4,446	620 2,443	589 758
Period of record	1903-29	1919-40	1905-40	1930-40
Year	1914	, 1919	1914	1930
	000	F 000	0.000	
Junecubic feet per second Julydo	603 461	5, 820 4, 740	2, 660 2, 680	64
August do September do do	534 308	3, 310	2, 260	1
Septemberdo	908	1,770	1, 620	13
Year	1919	1925	1919	1935
Junecubic feet per second	843	2, 240	4, 720	386
Julydo	927	2,030	3, 610	10
Augustdo Septemberdo	643 313	981	2, 720 1, 420	100
	1925	1932	1925	1936
Year				
Year	3 > 20	4 000	0 100	1
Tune cubic feet per second	457 328	4, 670 3, 750	2, 400 1, 850	
		4, 670 3, 750 3, 010 1, 770	2, 400 1, 850 1, 140 609	10 45 30 2

¹ Minimum month.

DISCUSSION

Due to the rural character of the Tennessee River Basin, there are large areas where problems of pollution are of a minor nature. In many sections of the basin, high-stream flows lessen the effects of

pollution

There are a few highly developed industrial areas and pollution problems of consequence are primarily the result of industrial wastes. Only at Chattanooga and Knoxville, Tenn., and at Asheville and vicinity in North Carolina does sewage account for an appreciable portion of pollution problems of more than local significance. Even at these places, industrial wastes are at least equally important with sewage and at Chattanooga, industrial waste dominates the situation.

Pollution problems of consequence, due almost entirely to industrial wastes, exist at and below Harriman and Kingsport, Tenn., and on the Pigeon River in North Carolina and below in Tennessee.

Minor pollution problems, of local significance only, exist at a number of moderate sized and small communities on minor streams. Corrective measures at these points are included in the cost estimates but discussion has been omitted.

TENNESSEE RIVER

The nine dams located on the main stream make the river essentially a chain of lakes. These dams have reduced the river velocity, resulting in the settling out of solids and a decrease in turbidity. The consequent increase in light penetration has stimulated biological activity and this phenomenon has been charged with bringing taste and odor troubles to water plants. The pooling of the river has undoubtedly caused an increased formation of sludge banks in the

vicinity of sewer outfalls.

Chattanooga—The metropolitan area is the most highly industrialized area of the basin. A pollutional load of 373,000 population equivalent is discharged to the stream, of which 268,000 is contributed by industry. Chattanooga Creek which receives waste from Rossville, Ga., and the southern part of Chattanooga (population equivalent 228,000) is probably the most highly polluted stream in the basin. Floating oil, scum, color, and septic conditions have made the stream a disgrace. Offensive odors are prevalent and cause local nuisances. The water of Chattanooga Creek is unfit for domestic purposes and most industrial uses and, in addition, pollutes the main river for a considerable distance downstream promoting conditions adverse to further industrial development.

Laboratory findings show dissolved oxygen in the stream falls to 5.5 parts per million and it is indicated that values less than this will be found with lower flows. Below the city, coliform organisms in the main river were found to be in excess of 200 per milliliter for 50 percent

of the months sampled.

Little effort is being made to treat wastes in this area and existing works are either overloaded or not in operation. Unsightly conditions exist near all sewer outlets; discoloration and floating materials are common. The water supply intake is located above nearly all of the local pollution. Difficulties experienced in water treatment have been caused by pollution originating as far upstream as Saltville, Va.

Primary treatment works are amply warranted for the prevention of sludge banks and the elimination of floating material. Some benefit to pollution abatement may accrue from the control of low water

flow by upstream reservoirs.

Knoxville.—This city's wastes have a population equivalent of 171,000, of which 81,000 is attributed to industrial waste. There is no treatment of wastes either domestic or industrial. pollution taxes the river's capacity for recovery and records show dissolved oxygen falling to 4.0 parts per million. Below the city coliform organisms have averaged 650 per milliliter during the summer months. Unsightly floating material is found below the city and septic conditions with resultant odor nuisances may be expected with minimum flows. In view of the present conditions and future possibilities, primary treatment of all wastes should be installed.

The water supply for the city of Knoxville is at times damaged by industrial wastes from upstream plants. This is the most serious condition in the entire basin. During low flows these industrial wastes give the water a high color, create excessive chlorine demands, and cause taste and odor troubles. Low flows are usually encountered

during the fall and early winter.

FRENCH BROAD RIVER

This stream and its tributaries drain 13 percent of the total basin. receive 34 percent of the industrial pollution load and 29 percent of the total pollution load. Practically all of the pollution on this watershed arises in North Carolina. No treatment of domestic sewage is practiced and only isolated instances of industrial waste treatment are found. Water supplies, in general, are obtained from the headwaters of the streams so there is little damage to the supplies from wastes. However, the main stream is rendered unsuitable for either

domestic or many industrial uses.

Pigeon River.—This stream is the principal waste-carrying tributary, receiving a pollutional load of 309,000 population equivalent. of which 298,000 is from industrial wastes. For almost its entire length this stream is grossly polluted from paper mills, tanneries, and canneries. In color the stream is inky black with quantities of yellowish brown foam on its surface. At times the dissolved oxygen approaches zero and the chlorine demand is high. The effect of wastes discharged to this stream has caused trouble at the Knoxville water plant. During low flows a high color carried over to the filters and the chlorine demand taxed equipment capacity. In addition, realestate values of riparian property have been damaged by the appearance of the stream. One tannery gives preliminary treatment to its industrial waste by sedimentation which greatly reduces its load on the stream. A further reduction of the polluting materials discharged to the Pigeon River is imperative. The problem is difficult of solution because of paper mill waste. A preliminary step that should be taken and one which will probably be included in the ultimate solution of the problem is sedimentation of all wastes from the paper mills, tanneries, and canneries. Increased research in treatment processes with a view of possible recovery of valuable byproducts is amply justified.

Asheville, N. C., and vicinity.—Buncombe County, of which Asheville is the county seat, is located along the French Broad River and contributes a pollutional load of 150,000 sewered population equivalent. This county is extensively sewered and practically all wastes not originating on the river banks are discharged to public sewers. Industrial wastes are contributed by rayon, textile, and meat-packing establishments. None of the wastes are treated and the condition of the stream is such that it is not used for either water supply or recreation. Primary treatment of all wastes to remove color, floating material, and solids is indicated.

Brevard, N. C.—Pollution of the French Broad is most serious in this vicinity where industrial wastes from the manufacture of paper, tannic acid, and leather have discolored the stream for many miles. Treatment to remove this color is desirable from an aesthetic standpoint and to make the stream usable for water supply and recreation. One tannery in this vicinity uses sedimentation to reduce the strength

of its industrial waste.

HOLSTON RIVER

This stream and its tributaries receive a pollutional load of 316,000 population equivalent of which 247,000 is contributed by industrial wastes. Major water supplies are obtained from the river, many of them downstream from large sources of pollution. Recovery of the stream due to natural purification leaves the water at the mouth generally suitable for domestic and most industrial water supplies. Hardness, added by industrial wastes, causes damage for some distance but becomes less objectionable with increased flow in the lower reaches of the river. Nuisance conditions exist in the immediate vicinity of the larger towns.

Kingsport, Tenn.—In and below this city is found the most grossly polluted section of the Holston River. Here it receives the industrial wastes from a rayon and wood products plant, a paper mill and other miscellaneous establishments, in addition to untreated domestic sewage. The river in this section contains considerable floating and suspended matter and presents an unsightly appearance. One large water supply for a paper mill is taken from this polluted section. Remedial measures should be taken to reduce the pollutional load. Primary treatment of domestic sewage by tried methods is indicated. Industrial waste treatment would probably involve segregation of wastes, chemical precipitation and evaporation of strong wastes.

Elizabethton, Tenn.—At this city all wastes are discharged directly to the Watauga River, a tributary of the Holston River. Industrial wastes from the manufacture of rayon contribute a population equivalent of 47,000. By a revision of plant operation and the installation of copper recovery apparatus, one plant has reduced the amount of iron being discharged to the stream with a subsequent improvement in appearance. Viscose rayon waste is passed through basins to neutralize and settle out fiber. There is no treatment of domestic waste and odor nuisances exist in the vicinity of outfalls. Primary treatment of domestic waste and further treatment of the viscose rayon waste is indicated.

The mining and washing of manganese ore has discolored the Watauga River. This situation could be remedied by settling and

recirculation of wash waters.

Saltville, Va.—Industrial wastes of a chemical nature are discharged and add hardness to the North Fork of the Holston River. Treatment by settling removes quantities of solids and under usual conditions dilution is sufficient to care for the effluent. However, on at least two occasions retaining walls have broken, releasing accumulated sludge. This material, high in chlorides, killed fish and caused difficulties with the operation of downstream water supplies. The recurrence of these conditions should be guarded against by proper construction of treatment works.

LITTLE TENNESSEE RIVER

The only major problem on this tributary is found at Sylva, N. C., where the untreated wastes from a paper mill, a tannery, and a tannicacid plant grossly pollute the stream. Conditions encountered are typical, brown or black color, foam, high organic and low oxygen content, and the usual odors. Physical conditions are favorable for natural purification of the stream but are not sufficient to eliminate the nuisance conditions that prevail for many miles downstream. Plant operations should be revised to permit a minimum of pollutional matter to reach the stream.

CLINCH RIVER

This river drains a rural area and, in general, the pollution problems are of minor importance and of local interest only. Harriman, Tenn., on the Emory River, a tributary of the Clinch, presents the only major problem. Industrial wastes from textile plants and a paper mill have a population equivalent of 79,000 and tax the recovery capacity of the river. During low flows, the river is highly colored and septic conditions exist. There is no treatment of wastes. Conditions may be aggravated when backwater from Watts Bar Dam reduces the velocity of the river so that pollution is not rapidly carried downstream. A reduction of the pollutional load is warranted. This could be accomplished by treating textile and domestic wastes by proven methods and a revision of paper-mill operation so that a minimum of waste is discharged.

HIWASSEE RIVER

The mining of copper and iron and the manufacture of sulfuric acid near Copperhill, Tenn., release large amounts of inorganic and chemical substances to the river. A load of 136 tons of suspended solids is discharged daily. Many of the solids discharged come from the settling ponds that receive the tailings from the flotation process. The manufacturer is attempting to neutralize the acidity of the waste by the addition of lime so that the stream is not corrosive to metallic structures downstream. The large amount of suspended solids has colored the stream a reddish brown with a floc-like precipitate apparent just below the surface. On reaching Parksville Reservoir, the

solids settle out and are gradually filling up the lake. Conditions are aggravated during rains due to excess erosion of the denuded soil. As the stream leaves the Parksville Dam, it has practically recovered from the effects of organic pollution. It is suggested that neutralization of waste be continued and additional efforts made to keep solids out of the river.

ELK RIVER

None of the larger communities on this watershed employs sewage treatment and consequently local nuisance conditions exist below some outfall sewers. There is a history of fish being killed by spills,

presumably accidental, of strong waste.

Camp Forrest, Tenn.—This new military camp has taken measures to insure against causing nuisance conditions. Secondary treatment of sewage with provision for chlorination of the effluent has been provided. Despite these precautions, some trouble has been experienced primarily because of a growth to a full load that was not anticipated.

Estimates of cost of suggested remedial measures have been

presented in table T-1.

Table T-7.—Tennessee River Basin: Ohio River pollution survey laboratory data

SUMMARY OF INDIVIDUAL RESULTS

	Hardness, parts per million	72	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Alkalin- ity, parts per million	8 9240 E248 1248 81228 2548 1246 8	45
	Turbid- ity, parts per million	1,700 1,700	48
	Hd	ス ていら スこら ススス ススス スススののののののの ススス スコス ち ものら りの1 女子の 女子で もちろうりものでもち ちろち ち	
	Colli- forms, most probable number per milli- liter	(1) 8 4 4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	430
	6-day blo- chemical oxygen deroand, parts per million	다 ಚಿಸ್ತಕ ಗಡದ ಕಡದ ನೀಡದ ಚಿತ್ರಗಳಗಳಗಳಲ್ಲದ ಚಡಿಸ ನೀಡ ಈ ಚಿತ್ರ ರಾಜ್ಯ ರಾಜ್ಯ ಕಡಗಳಗಳಗಳಗಳ ಅವರ ಕಾಣಿಕೆ	
ULTS	l oxygen Percent safura- tion	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
SUMMARY OF INDIVIDUAL RESULTS	Dissolved oxygen Parts per satura- million tion	8. 9. 8. 9. 8.<	12.4
INDIVID	Temper- ature ° C.	は 金原本 本意な なない なない なみ 、名本 、名本 、名名 名称名 あるの ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
ARY OF	Average discharge, cubic feet per second	1, 148 1, 148 1, 640 1,	131
SUMM	Date	Feb. 28, 1941 Mar. 12, 1941 Mar. 12, 1941 Mar. 12, 1941 Mar. 7, 1941 Mar. 7, 1941 Mar. 7, 1941 Mar. 13, 1941 Mar. 13, 1941 Mar. 13, 1941 Mar. 13, 1941 Mar. 12, 1941 Mar. 12, 1941 Mar. 12, 1941 Feb. 28, 1941 Mar. 6, 1941 Mar. 6, 1941 Mar. 12, 1941 Feb. 28, 1941 Mar. 12, 1941 Feb. 28, 1941 Mar. 12, 1941 Mar. 12, 1941 Feb. 28, 1941 Mar. 6, 1941	Mar. 12, 1941
	Mileage from mouth	TeHoNI 880 do	op
	Sampling point	North Fork, Holston River, 1 mile above Saliville, Va. Do. Little Moccasin Creek corporate limits above Gate City, Va. Do. Little Moccasin Creek corporate limits above Gate City, Va. Do. Little Moccasin Creek corporate limits below Gate City, Va. Do. Little Moccasin Creek corporate limits below Gate City, Va. Do. Lord Moccasin Creek corporate limits below Gate City, Va. Do. Larel Creek, Boton River, 3 miles north of Kingsport, Tenn. Do. Larel Creek, above Damascus, Va. Do. Baver Creek, below Damascus, Va. Do. Baver Creek, below Damascus, Va. Do. Baver Creek, below Damascus, Va. Do. Middle Fork Holston River, 2 miles east of Marion, Va. Do. Middle Fork Holston River, west corporate limits, Marion, Va.	Downstan

139	92	154	184	34	1 24	162	150	187	192	176	176	12	
202	168	212	191 189 290	159 203 54	311	62 37 111	215	227 135 233	32 22 22 22 22 22 22 22 22 22 22 22 22 2	222 239	233	235	10
101	2000	200	360 46 310	900	32 65	25.	170	230 2	10	10 10 10	10	00000	~100
7.6	7.7.7	8.1	2,7,00	7.5.10	4.2.0	21.10	4.5	9.7.7.	7.9	7.7.7	97.7.	000	6.9
\$	230	g eq	93 8 15,000	4,300	210	430 430 (1)	4,600	2,400 930 9	11 81	430 230 2	425	750 930 4	
64	6,4j 	1.6	4.0 8.4 137	55.6 3.0	12.0	10.5	6.4	20.00	5.5	1.3.2	11.0	4.00.70	
86. €	90.9	90.4	91.8 93.0 47.2	51. 1 70. 9 96. 2	99.4 91.7 86.9	89.8 86.8 78.8	82.6	81.0 84.1 95.6	94.5 93.6 66.6	72.6 84.4 83.1	88.3 89.0 89.0	95.3 96.8 91.0	92.0
11.3	11.3	11.3	11.5	6.2	12.7 11.4 10.6	11.5	10.4	11.4	11.5	8.8 10.0 9.0	9.6	10.8	12.1
4.0	6.76	6.0	6.0	5.0	7.0	5.0	5.0	7.0	0.50	7.0	12.0	10.0	4j 00 0 10
16	15 36 682	3,460	45 40 17	69 63 883	1, 190 2, 120 883	1, 190	10, 200	H10H	3 8 18	8100	13	20 16 111	154
28, 1941	6, 1941 12, 1941 5, 1941	11, 1941 3, 1941	7, 1941 13, 1941 3, 1941	7, 1941 13, 1941 27, 1941	5, 1941 11, 1941 27, 1941	5, 1941 11, 1941 5, 1941	11, 1941 27, 1941	5, 1941 11, 1941 13, 1941	17, 1941 19, 1941 13, 1941	17, 1941 19, 1941 13, 1941	17, 1941 19, 1941 13, 1941	17, 1941 19, 1941 24, 1941	4, 1941
Feb.	Mar. Mar.	Mar.	Mar.	Mar. Mar. Feb.	Mar Mar Feb.	Mar. Mar. Mar.	Mar. Feb.	Mar. Feb.	Feb. Feb.	Feb.	Feb. Feb.	Feb. Feb.	Feb.
TeHoSfW 863	do Tellosf 824	TeHoSfBe 834	do do TeHosfBe 832	do do TeHosfWt 842	do do TeHosfWt 840	do do TeHo	TeHoCr	do do TeHoT 732	do do TeHoT 730	do do ТеНоМ 702	do do TeHoM 700	do do TeF 860	do
Wolf Creek sewage disposal plant,	Do. Do. South Fork, Holston River, near	Beaver Creek, above paper plant,	Beaver Creek city limits, below	Do	Tenn. Do. Na fauga River, I mile below rayon	Holston River, near Rogersville,	Croquette Creek, below Rogersville,	Turkey Creek, above Morristown,	Turkey Creek, below Morristown,	Mossy Creek, above Jefferson City,	Mossy Creek, below Jefferson City,	French Broad River, ½ mile above	Do

Table T-7.—Tennessee River Basin: Ohio River pollution survey laboratory data—Continued

p
nne
onti
0
TS
UL
ES
. 7
AI
00
VII
IDI
H
OF
×
RR
IA
MIN
SUL
-

	Hardness, parts per million	14	111	38	10	12	15	1 0 1 0 1 0 1 1 0 1 1 0 1 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0	15		19	
	Alkalin- ity, parts per million	16	133	113	40 21 15	12 20 20	14	13 15 14	158	16	63	∞ ±0
	Turbid- ity, parts per million	15	15 20 20	10 9	220 500 25	12 25 20	25 20	15 65 15	30	30	10	20
	Hd	6.9	8,0,0 8,0,0	0.00	6.9	0.00	6.9	6.9	9,6	6.6	6.8	တ် ထ <u>ိ</u>
;	Coli- forms, most probable number per milli- liter	16	93	43 43	23 44	46 110 4,600	36 2,400 2,400	230 43 24	4 110	460	46	240
	5-day bio- chemical oxygen dernand, parts per million	3.1	1:34	. 1. 85. A	22.0	2.0	4.8.1.	1.95	{ 142.1 16.6 27.0	16.9	5.00	1.6
	Percent of satura-tion	87.4	88.77 80.02 80.03 80.03	83.4 85.1 74.8	71.4	90.8 94.3 86.7	92.0 88.1 91.0	87.0 90.3 77.2	76.8	75.5	77.6	80.8
	Dissolved oxygen Parts per of of million tion	12.8	11.4	11.1 9.8	9.4	11. 6 10. 8 12. 0	11.8 9.9 12.6	11.1	9.7	10.3	10.6	10.8
	Temper- ature ° C.	0	4.80	ట.లు బాబాబ	0.60	2.0	10.5	5.0 10.5 1.0		2.5		10 to
	Average discharge, cubic feet per second	111	126 154 307	280 353 54	201 34	27 36 70	68 75 112	112 154 903	23 83	33	892	810
	Date	Feb. 24, 1941	Feb. 27, 1941 Mar. 4, 1941 Feb. 24, 1941	Feb. 27, 1941 Mar. 4, 1941 Feb. 24, 1941	Feb. 27, 1941 Mar. 4, 1941 Feb. 24, 1941	Feb. 27, 1941 Mar. 4, 1941 Feb. 24, 1941	Feb. 27, 1941 Mar. 4, 1941 Feb. 24, 1941	Feb. 27, 1941 Mar. 4, 1941 Mar. 6, 1941		Mar. 5, 1941 Mar. 6, 1941	Feb. 26, 1941	Mar. 3, 1941 Mar. 6, 1941
	Mileage from mouth	TeF 858	do TeF 841	dodo	doTeFM 830	do TeFM 829	do do TeFM 828	dodo.	TefH.	TeFH	TeF	do
	Sampling point	French Broad River, below Rosman,	N. C. Do French Broad River, at Brevard,	Do. Do. Davidson River, near Brevard, N. C.	Do. Do Creek, 1/2 mile above Hender-	Mud Creek, M mile below Hender-	Souville, N. C. Do Do Mud Creek, 2 miles below Hender-	Sourche, IN. C. Do Do Do Prench Broad River, above Hominy Creach phore Asherville	Hominy Creek, outfall rayon plant, Enka, N. C.	Do Hominy Creek, at mouth	French Broad River, 1 mile above	Do Do

				01110	TOT A	EIL J	COL		TION	002	N I KOI	_		(Je
12	14		II	229		148		17	58	30	7	7	93	E B B B B B B B B B B B B B B B B B B B	
13	15 18 17	12 19 16	20 20 8	138	215	199	96	13	14 13 39 36	47	24 13	111	155	156	
12	255	30	10	10 8 8	320	160	120	22	100000000000000000000000000000000000000	300	160	5 01	32	100	
7.0	6.9	6.9	99%	තිර ර		8.9	00 00	6.9	6,6,6,6		6.7	6.5		7.5	
75	93 460 210	1,500 230 140	1, 100	248		460		36	245	1,500	1,600	150	1, 100	2, 400	
2.4	4 2 4	0000 h	2.83.1	2 289	313 264		2 230	2.4	22. 82. 23. 82. 13. 82. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	2.0	1.4	1.3	10.6	69 70 70 80	
83. 4	86.9 83.2	88 -77 88 83 :33 :33	88.8 71.6 92.0	86.8	20.7	0 0	0	89.0	982.2 98.0 98.7		93.2 94.0	95.8		74.4	
11.1	11.4	11.4	11.2	12.7	20 0	0 0	0	11.8	12.0 12.5 13.3		12.6 11.5 12.3	12.6		8 8 8	
30.00	4.01.02 0.70.70	4 . 6.	3. 55	0.5		3.5	1.5	3.5	.00°.00°.00°.00°.00°.00°.00°.00°.00°.00	6.0	000	4.0		9.0	
1,000	952 1,100 1,000	1, 100 1, 000	1, 100 1, 126	110	110	126	149	55	31008	286	53 286 27	45	, ww.	33	
26, 1941	3, 1941 6, 1941 26, 1941	3, 1941 6, 1941 26, 1941	3, 1941 6, 1941 25, 1941	28, 1941 5, 1941 25, 1941		25, 1941	5, 1941	25, 1941	28, 1941 5, 1941 27, 1941 5, 1941		5, 1941 11, 1941 13, 1941	13, 1941		17, 1941 19, 1941	
Feb.	Mar. Mar. Feb.	Mar. Mar. Feb.	Mar. Mar. Feb.	Feb. Mar.	Feb.	Feb.	Mar.	Feb.	Feb. Mar. Feb. Mar.	Feb.	Mar. Mar. Feb.	Feb.	Feb. Feb.	Feb.	
TeF.	do do TeF	do	do do TeFP 791	dodo	do do	TeFP 784do	do	TeFPR 771	do do TeFNI do	TeFNI	do do TeFLpWf	Tef LpWf	do Telp 650	dodo	
French Broad River, below indus-	trial plants, Asheville. Do. Do. French Broad River, M. mile below	2 0	1 1	Do	plant, Canton, N. C. Do.	Pigeon River, Clyde, N. C., 4 miles below Canton, N. C.	Do	Richland Creek, near mouth,	n ayues nile, N. C. Do. Do. Indian Creek, above Erwin, Tenn	Do Leek, at Clinchfield railroad	Shops, Erwin, 1enn. Do Do West Fork Little Pigeon River,	above Callifolds, 1 cold. West Fork Little Pigeon River, be- low Gatlinburg, Tenn. Pistol Creek cornorate limit above	Maryville, Tenn. Do. Pistol Creek, above Maryville, Tenn. Pistol Creek, below sewage plant,	Alcoa, Tenn. Do. Do.	s Seeded and neutralized.

TABLE T-7.—Tennessee River Basin: Ohio River pollution survey, laboratory data—Continued

T
9
12
E
+
E
Continued
ب
J
D)
Ë
TUSS
-
U,
区
RR
ير
_
_
戸
\sim
Ξ
5
Ε
'n
Z
-
F
F
Ċ
P
RV
-
-
⋈
-
2
h
SUMMA
Total Contract

A Ilradin.		114 114	134 143 1111	145	50 70 70 23 26 26			15 15 34	115 64	36.63.368 36.93.368	
Purbid	ity, parts	88	5 27 27	4 45 25 3 15	22 10 20 10 10 148			0 280 1 25 1 15	2 5 32 5 5	108 00 00 00 00 00 00 00 00 00 00 00 00 0	
	Hd e	7.	1111	7.7.7	7.7.99	999	0.00	7.66	7.66	6.6.7	00 1
-	most probable number per milli- liter	23	24 2 9,300	12,000 9,300 9	16 16 46 46	24.	િલ્ફ	36	240 430 240	460 93 240 1, 100 240	
5-day bio-		4.1	11.1	22.5 17.0 4.5	2002	10,0,0		24.1.5	9.99		ශ 4
Dissolved oxygen	Percent of satura-tion	75.4	102.0 103.1 66.6	53.5 64.1 86.8	85.2 85.7 86.5 5	27.88	79.	84.3	89.2 89.5 106.2	91. 2 96. 2 101. 6 93. 1 97. 6	107.
Dissolv	Parts per million	8.7	12.3	6.2	10.9	9.9	11.7	12.0 12.2 10.1	12.2	11.7 12.8 13.7 11.6	
	Temper- ature ° C.	9.0	6.5	5.0	2000			1.0	5.0.0	, w w w w w	
Average	discharge, cubic feet per second	2	0 0 0	9,080	9,080 9,080 6	883	(E)	00 4 H	20 144 38	132 165 177 777	54
	Date	- Feb. 14, 1941	Feb. 18, 1941 Feb. 20, 1941 Feb. 14, 1941	Feb. 18, 1941 Feb. 20, 1941 Feb. 14, 1941	Feb. 18, 1941 Feb. 20, 1941 Feb. 26, 1941 Mar. 4, 1941	26,4	26,10,	Mar. 4, 1941 Mar. 10, 1941 Feb. 26, 1941	Mar. 10, 1941 Nar. 10, 1941 Feb. 26, 1941	Mar. 4, 1941 Mar. 10, 1941 Feb. 26, 1941 Mar. 4, 1941 Mar. 10, 1941	26,
	Mileage from mouth	TeT	do do TeT	do do Tre 591	do TeClG 834	TeCIG 832	Tec	do do TeClGGI	do do TeClPNf 817	1 1 1 1 1	TeCIP 815do
	Sampling point	Jown Creek, above Lenoir City,	Town Creek, below Lenoir City,	Tennessee River, below Louden,	Tenn. Do Guest River, above Norton, Va	Guest River, below Norton, Va	Do. Gladly Creek, corporate limit, above	Wise, va. Do Do Madily Creek, rear of school, below	North Fork, Powell River, above	Lig Stone (4sp, Va. Do. Do. Do. Do. Do. Do.	Powell River, below Big Stone Gap, Va.

			2017220 2	O ADAD C	,	221 01	J. 1 Z. Z				000
108	125	63	181	271	1	1, 249	100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
148	127 104 168	137 116 100 57 40 223 229 214 13	2643 2643 2667 118			2 2 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 10 9 133	134 133	
10	650 15 5	850 10 20 25 115 25 25 25	7088810 m	110	70	130	175	4	∞ rv € ∞ ∞	00 00	
7.8	7.7.7.	てててててている。	\$0000000000000000000000000000000000000		69	10 10 10 10	3.7		7 7 6 6 6 7 7 7 7 6 6 6 7 7 7 7 6 6 6 6	7.3	
15	240 24 930	1, 4400 2, 400 4, 200 4, 300 4, 300 4, 300	(1) (24,000 (24,000 (24,000 (1) (1)	ε ε	© {	4 4	E	£	£ ££	240	
1.5		24.12,1.1.4.65.7.7.7.7.7.7.7.8.5.7.7.8.5.7.7.8.5.7.7.8.5.7.7.7.8.5.7.7.7.8.5.7.7.7.8.5.7.7.7.8.5.7.7.7.8.5.7.7.7.7	.1.6.475 .0.0.075 	25.6 11.4 11.4	1-4	59. 23.	286.2	2.1.9	2000000	200	
82.7	87.1 89.6 73.6	67.7 104.5 104.2 104.2 104.1 104.4 104.4 104.4 108.5 108.5	9 8 8 6 6 9 8 9 8 9 9 8 9 9 9 9 9 9 9 9		41.2	14.7	90.2		47.3 86.0 88.4 92.8	76.2	
10.1	10.3	800 000 000 000 000 000 000 000 000 000	12.0 10.9 10.9 11.7 11.6		5.7	1.8	12.0		6.6 11.9 11.2 10.3	10.6	
7.0	7.8%	95,05,59,00 02000000	11,997,441 20202220		2.0	6.0	3.5		9.49.99 is	0.00	
63	21 15 2	26 20 390 1,300 1,000	1, 650 1, 650 1 1 177 177 173	177	157	-1 00	80 200	224	204 1,420 211 16	15	
3, 1941	7, 1941 13, 1941 3, 1941	7, 1941 13, 1941 3, 1941 7, 1941 14, 1941 18, 1941 20, 1941 4, 1941	10, 1941 13, 1941 10, 1941 13, 1941 7, 1941 12, 1941	3, 1941	12, 1941	3, 1941	12, 1941	7, 1941	12, 1941 4, 1941 10, 1941 13, 1941 4, 1941	10, 1941	
Mar.	Mar. Mar.	Mar. Mar. Mar. Mar. Feb. Feb. Feb.	HEGO.	Feb.	Feb.	Feb.	Feb.	Feb.	Feb. Feb. Feb. Feb.	Feb.	
TeClPK	do do TecCIPK	40. 40. 40. Te Mi 557. 40. 40. Te H 536.	40 ToHC ToHC TeHO 570	ТеНО 568	dodo	ТеноР	dodo		40 TellO 535 TellO 535 TellOs 549	dodo.	
King Creek, 1 mile above Penning-	King Creek, below Pennington Gap,	Van 100 100 100 100 100 100 100 100 100 10	Ativer, south of wetmore, Tenn. 10. 10. Cane Creek, below Etowah, Tenn. 10. Ocore River, above Copper Hill, Tenn. 10. 10.	Ococe River, below Copper Hill, Tenn.	Do	Potato Creek, below copper plant, near Ducktown, Tenn.	Do	Do.	Ocoge River, at mouth. 10. Oostanania, River, 14 mile above	Do.	1 Less than 1. Seeded and neutralized.

Table T-7.-Tennessee River Basin: Ohio River pollution survey, laboratory data-Continued

SUMMARY OF INDIVIDUAL RESULTS-Continued

		Hardness, parts per million	122	89	104	135	156	721	148	143	108	
	Allealte	ity, parts per million	138	139	138	117 158 163	167 170 181	177	181 165 152	146 175 144	148 181 110	121
	774	ity, parts per million	15	1220	*82	170 210 10	2027	t-1-00	15	45 15	20.02	83
		ьн	7.8	5.5.5.1 6.4.4.6	8,7.5	7.50	2777	4:2:2	1.1.1.1.1 4.0.4.	555	2111	77.
	Coli- forms,	most probable number per milli- liter	4,600	2,400	(1) 4	1, 100 230 11, 000	7, 500 9, 300 24, 000	9,300	2, 400 930 150	24,000	360	98
per	5-day bio-	oxygen demand, parts per million	7.00	0 4 4 4	. L. S.	36.9 84.1 14.9	13.0	14.6	5.4	4:2:25	80 50 30 80 50 30	1.2
3-Continu		Percent of satura-	63. 4	65.2	95.3 69.1	33.8 64.2 69.4	63.8 74.9	70.9 65.0 75.0	37.5 63.8 85.6	75.2 87.2 69.5	76.3 90.9 88.3	92.8
RESULTS	Dissolved oxygen	Parts per million	80,	9.0	11.9	45.00	9.23	00 00 00 00 00 00	11.5	9.3	9.4	10.8
IDUAL		Temper- ature C.	3.55	0000	9.6.9	7.5	6.5	6.0	7.0	80 0 00 00 00	6.9	6.0
F INDIV	Average		16		1,861	10	00 1	FFE	⊕∞ ⊶	pd po pd	1 267	222 193
SUMMARY OF INDIVIDUAL RESULTS-Continued		Date	Feb. 4, 1941	Feb. 10, 1941 Feb. 13, 1941 Feb. 4, 1941	J. E. W.	Feb. 7, 1941 Feb. 12, 1914 Feb. 3, 1941	Feb. 7, 1941 Feb. 12, 1941 Feb. 3, 1941	Feb. 7, 1941 Feb. 12, 1941 Feb. 3, 1941	Feb. 7, 1941 Feb. 12, 1941 Feb. 6, 1941	Feb. 14, 1941 Feb. 18, 1941 Feb. 6, 1941	Feb. 14, 1941 Feb. 18, 1941 Feb. 6, 1941	Feb. 14, 1941 Feb. 18, 1941
SC		a	F	FEE	NEE NEE	ÄÄÄ	FFF	FEE	FEE	E E E	EEE	MM
		Mileage from mouth	TeHOs 547	do do TeH 515	do do TeHSm 532	do do TeHSm 530	do do TeHSmT 530	do do TeHSm 527.	do TeChSp	do do TeChSp	do do TeCk 473	do
		Sampling point	Oostanaula River, 14 mile below	Charleston, Tenn	South Mouse Creek, below Woolen	South Mouse Creek, below sewage	Town Branch, below sewage plant,	South Mouse Creek, below junction	ol town oranch, Cleveland, Tenn. Do Do Spring Creek, M mile above sewage	plant, Fort Oglebnorpe, Ca. Do Do Creek, 100 yards below sew-	age plant, Fort Ogietnorpe. Do Do Chickamanga Creek, mouth, Chatta-	nooga, Tenn. Do.

					OLI	LIO ALI	A 1216	LOLL	011014	CONTINO	П			OII
88	* * * * * * * * * * * * * * * * * * * *	\$ 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65	29	19	125	122	124	112	28	27	31		
171	163	196	64	772	51 51 48	49 53 132	144 145 122	126 126 131	93 101 110	1113 128 283 111 283 111 283	12 19 31	48	772	
45	140	250	QD.	900	15	18	202	1632	25.004	15.82.98	80%	2000	31	
9.6	8.9		7.2	7.3	7.1	7.7.7. HLA	47.77	2.7.7.	4.5.7.	7.7.0.0.0.0 5.0.0.0.0 5.0.0.0.0	6.01	6.9	6.9	
240	2,400	4, 600	4	(3)	2582	17 24 4, 600	910	24, 000	360	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	36	7,500	4, 300 9, 300	
3 274	1158		9.	80.5.00	11.5	9896	9.75	1.0	32.2	2	4 .	6,0,0°	28.8	
20. ₩	2.7	10	91.1	94.1 94.4 85.6	84.9 91.2 87.0	81.8 92.2 69.6	56.2 72.4 95.4	85.8 81.0 75.3	88.2 85.1 61.0	74.77 772.74 998.19 99.19 65.5	83.4 92.1 82.9	86.4 81.4 55.1	61.3	
23	63	6.0	11.1	11.7	10.6	10.6 10.9 8.9	9.00.00	9.1	10.6	88.0 10.0 11.2 12.1 8.0	10.2	11.2	000	
10.0	7.5		7.0	6.0	6.6	4.8.7. 0.0	2.0 8.0 16.0	13.0 11.0 15.5	7.5	2.5.0 11.0 14.0 14.0	0.24.70	4,7,7,7	5.0	
40	20	24	585	389 319 14, 300	13, 600 11, 500 14, 300	13,600 11,500	3 9 9 5	67 48 37	73	54 85 85 85 85 85 85 85 85 85 85 85 85 85	163	89 4 C	44	
6, 1941	14, 1941	18, 1941	5, 1941	11, 1941 17, 1941 5, 1941	11, 1941 17, 1941 5, 1941	11, 1941 17, 1941 5, 1941	11, 1941 17, 1941 23, 1941	27, 1941 29, 1941 23, 1941	27, 1941 29, 1941 23, 1941	27, 1941 29, 1941 23, 1941 27, 1941 29, 1941 23, 1941	27, 1941 29, 1941 3, 1941	5, 1941 7, 1941 3, 1941	5, 1941 7, 1941	
Feb.	Feb.	Feb.	Feb.	Feb. Feb.	Feb.	Feb. Feb.	Feb. Feb.	Jan. Jan.	Jan. Jan.	Jan. Jan. Jan. Jan.	Jan. Jan. Feb.	Feb. Feb.	Feb.	
TeCh 460	do	do	TeS	do Te do	do Te 414	do- TeR 383	do Tesp	do	do- Tesp-	do TeSw 316 do do TeSw 311	do TeEIRc 459	do do TeEIRc 457	- do	
Chattanooga Creek, mouth, Chatta-	поода, тепп.	Do	Big Sequatchie River, mouth, Jasper,	Tenn. Do. Tennessee River, ferry, South Pitts.	burg, Tenn. Do. Tennessee River, ferry, Bridgeport,	Ads. Do. Do. Roseberry Creek, 2 miles below	Spring Creek, waterworks, above	Huntsville, Ala. Do Do Spring Creek, below sewer, below	Huntsville, Ala. Do. Do. Spring Creek, 3 miles below Hunts-	Validi, Ala. Do. Swan Creek, above Athens, Ala. Do. Swan Creek, below sewer, Athens.	Ala. Do Do Rock Creek, above Tullahoma,	Tenn. Do. Dock Creek, below Tullahoma,	Jenn. Do Do	¹ Less than 1. ³ Seeded and neutralized.

Table T-7.—Tennessee River Basin: Ohio River pollution survey, laboratory data-Continued

SUMMARY OF INDIVIDUAL RESULTS-Continued

		Hardness, parts per million	117	138	122	16	69	99	162	
	A II a SI A	ity, parts per million	72	58 120	95 96 119	102 95 79	0.55.8	655	252 1488 1786 1180 1116 1116 1152 1152 1152 1163 1164 1164 1164 1164 1164 1164 1164	
	7,1=0,0	ity, parts	150	2893	25	250	1, 200	200	120 10 10 350 300 1, 200 10 10 10	
		pH	6.8	6.0	7.7.7.	4.7.1.	0,7.7. 00.4	807.F.	しいようないないない でっぱい	
	Coli-	most probable number per milli- liter	4	000	110	91	2,400	2,400	11, 000 3, 900 1, 100 1, 100 1, 100 230 230 230 230 230 230	
per	5-day bio-	oxygen demand, parts per million	1.4	F-00.00	0,0;4; 0,00	2	9.00	70° . 41 ≃ 00°	. 15.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	
S—Continued	-	Percent of satura- tion	103.8	94.6 91.6 104.0	92.8	91. 2 87. 6 102. 4	92.9 87.8 97.1	82.3 83.7 102.6	88.87.97.00.00.00.00.00.00.00.00.00.00.00.00.00	
RESULL	Dissolved oxygen	Parts per million	11.2	11.6	10.1	10.0	9.8 10.6 10.8	8.9 10.9 12.0	10.5 11.5 11.6 12.6 13.8 10.7 10.7 10.7 10.7	
VIDUAL		Temper-	12.0	90 77.09 Croro	11.0	11.5 5.0 13.0	13.0	12.0	0.00.00.00.00.00.00.00.00.00.00.00.00.0	
OF INDI	Average	discharge, cubic feet per second	11	71 34 132	470 900 132	470 900 38	3822	60 51 212	355 46 146 146 86 3 3 8	
SUMMARY OF INDIVIDUAL RESULTS		Date .	Jan. 23, 1941	Jan. 27, 1941 Jan. 29, 1941 Jan. 22, 1941	Jan. 24, 1941 Jan. 28, 1941 Jan. 22, 1941	Jan. 24, 1941 Jan. 28, 1941 Jan. 29, 1941				
		Mileage from mouth	TeEIRP.	do do Teelr 352	do TeElR 351	do Tesh 324	do do TeSh 322	do Tesh 275	do Tel M 293 Tel M 300 Tel M 300 Tel M 300 Tel M 307 do	
		Sampling point	Pigeon Roos Creek, below phosphate	Richland Creek, above Pulaski,	Tenn. Do. Richland Creek, below Pulaski,	Shoal Creek, above Lawrenceburg,	Shoal Creek, below Lawrenceburg,	Shoal Creek, bridge, Iron City,	Pion. 10. Mud (Teek, below Russeliville, Ala.) Rock Creek, above Lewisburg, Tenn. Do. Rock Creek, below Lewisburg, Tenn. Do. Ploey Creek, 11½ miles below Dickreson, Tenn. Do. Ploey Creek, 11½ miles below Dickreson, Tenn. Do. Do. Do. Do. Do. Do. Do.	

72	150 88
24	6.6.5.2.2.2.3.3
10	010088888889
7.7	77777777777
	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
6.	0.00 L L L 0.00 C 10 4
99.0	90.1 882.8 885.8 886.8 896.8 105.6 105.6
8.2	0.04 p. 0.4 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
25. 5	120.00 12
22, 600	25.800 20.500 20.500 20.500 20.500 20.500 20.500 20.500 20.500 20.500 20.500 20.500
Sept. 21, 1940	Sept. 25, 1940 Sept. 26, 1940 Nov. 14, 1940 Nov. 15, 1940 Nov. 16, 1940 Nov. 16, 1940 Mar. 4, 1941 Mar. 4, 1941 Mar. 5, 1941
Te 5.3	00000000000000000000000000000000000000
River, Norton's Bluff	
messee River,	136 D0- D0- D0- D0- D0- D0- D0- D0- D0- D0-

1 Less than 1.

Table T-7-a.—Tennessee River Basin: Ohio River pollution survey laboratory data

SUMMARY OF AVERAGES [By Tennessee Valley Authority]

Sampling point				romes for	see valley	Dy remesses vamey Authority							
Tehost 794.5. May to October 8.6 11.2 190 7.8 77 77 77 9.5 190 7.8 77 77 9.5 190 7.8 11.2 190 7.8 77 190 7.8 11.2 190 7.8 190 7.9 190 7.8 190 7.9 190 7.8 190 7.8 190 7.8 190 7.8 190 7.8 190	ampling point	Mileage from mouth	Period, 1937–38		Average discharge, cubic feet per second	Temper- ature, ° C.		5-day bio- chemical oxygen demand, parts per million	Coli- forms, most probable number per per	Hď	Tur- bidity, parts per million		Hard- ness, parts per million
TeHOST 725. May to October 1937 to 1,010 8.8 11.2 .9 20 7.8 85 77 8 85	North Fork, Holston River, mouth,	TeHoNf 794.5.	May to October	1 0 1 1 0 0 1	800				190	7.00	4 6 9 8 8 8	77	378
Tehost 725. May to October 1, 1210 21.2 8.2 1.0 230 7.8 84 Tehost 825. May to October 1, 240 9.8 11.3 7.7 13 7.8 84 Tehost 825. May to October 1, 420 22.7 7.7 10.2 3.0 7.8 172 Tehost 825. May to October 1, 420 22.7 7.7 2.1 11.4 1.0 28 7.9 7.7 7.7 4.0 87 Tehost 829. May to October 20.8 7.4 3.3 3.50 7.7 7.7 7.7 7.1 11.8 8.0 7.7 7.7 7.7 7.7 8.1 1.2 8.1 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	Do.	do	November 1937 to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,010		11.2	6.	20			20	303
do. April 1938. 1, 240 9.8 11.3 .7 13 7.8 84 TeHoSfB 825. May 10 October 1937 to April 1938. 180 20.8 7.4 3.7 1,500 7.8 172 do. April 1938. 180 20.8 7.4 3.7 7.8 172 do. April 1938. 1,420 21.5 8.2 1.3 375 7.9 97 TeHoSf 820. May 10 October 1937 to April 1938. 1,120 8.3 10.7 1.1 10 28 7.7 40 do. November 1937 to April 1938. 890 21.0 7.7 2.1 110 7.7 47 do. November 1937 to October 1937 to April 1938. 2.30 21.7 7.4 3.3 350 7.7 47 do. April 1938. 2.30 21.0 7.7 2.1 11.7 7.7 47 do. April 1938. 2.30 21.0 7.4 3.3 3.5 7.7	South Fork, Holston River, above	TeHoSf 725	May to October	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1, 210			1.0	230	7.8		85	16
TeHoSfB 825. May 10 October 180 20.8 7.4 3.7 1,500 7.8 172 do	reek.	do	November 1937 to	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1, 240		11.3	to.	13			84	91
do May to October 1,420 10.7 10.2 3.0 375 7.8 173 TeHoSf 820. May to October 1,420 21.5 8.2 1.3 375 7.9 97 do. November 1937 to October 1,420 10.1 11.4 1.0 28 7.9 97 TeHoSfW 831. May to October 870 20.7 7.8 1.3 80 7.7 45 TeHoSfW 829. May to October 880 21.0 7.7 2.1 110 7.7 47 do. November 1937 to October 1,130 9.4 10.7 1.4 17 7.7 47 TeHoSf 810. May to October 2,330 21.7 7.4 3.3 350 7.7 76 April 1938. 2,510 22.6 6.1 5.9 475 7.7 77 do. November 1937 to October 2,510 22.6 6.1 7.7 7.7 7.7 do. <t< td=""><td>Beaver Creek, mouth, near Bristol,</td><td>TeHoSfB 825</td><td>April 1938. May to October</td><td>6 9 9 2 2 0 9 0</td><td>180</td><td></td><td>7.4</td><td></td><td>1, 500</td><td>7.8</td><td>3 3 1 3 5 2</td><td>172</td><td>185</td></t<>	Beaver Creek, mouth, near Bristol,	TeHoSfB 825	April 1938. May to October	6 9 9 2 2 0 9 0	180		7.4		1, 500	7.8	3 3 1 3 5 2	172	185
TeHoSf 820. Napht 1835. TeHoSf 820. November 1937 to October 1, 420 10.1 11.4 1.0 28 7.9 97 TeHoSf 821. May to October 1937 to October 1, 120 9.4 10.7 1.4 1.0 28 7.7 4.9 97 TeHoSf 822. November 1937 to October 1, 120 9.4 10.7 1.4 1.7 7.7 4.9 40 TeHoSf 822. May to October 1, 130 9.4 10.7 1.4 1.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	do	November 1937 to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	160	10.7	10.2		375	7.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	173	185
do Lybert Light 1,420 10.1 11.4 1.0 28 7.9 97 TeHoSfW 831 May to October 870 20.7 7.8 1.3 80 7.7 46 do April 1938. 870 20.7 7.8 1.3 80 7.7 40 do April 1938. 880 21.0 7.7 2.1 110 7.7 41 do November 1937 to October 2,330 21.7 7.4 3.3 350 7.7 77 TeHoSf 795. May to October 2,510 20.0 10.9 1.2 21 7.7 76 April 1938. April 1938. 2,510 2.6 6.1 5.9 475 7.7 76 April 1938. 7.7 7.7 7.7 82 7.7 82 7.7 do May to October 2,510 2.2 6.1 5.9 475 7.7 82 do April 1938.	, Holston River, below	TeHoSf 820	May to October	1	1, 420			1.3	375	7.8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87	102
TeHoSfW 831 May to October 1,120 8.7 7.8 1.3 80 7.7 46 40 40 8.3 10.7 1.2 8 7.7 40 40 40 8.3 10.7 1.2 8 7.7 4.8 43 40 40 8.4 10.7 1.4 1.7 7.7 8.3 1.0 7.7 4.8 43 40 40 8.4 10.7 1.4 1.7 7.7 8.3 1.0 7.7 8.1 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	reek, above watauga.	ф	November 1937 to	1	1, 420	10.1	11.4	1.0	88	7.9	1	26	103
do Ligor 9.3 10.7 1.2 8 7.7 40 TeHoSfW 829. May 10 October 890 21.0 7.7 2.1 110 7.7 47 do 1937. 1.130 9.4 10.7 1.4 17 7.7 47 April 1938. April 1938. 2,330 21.7 7.4 3.3 350 7.7 77 do November 1937 to April 1938. 2,510 10.0 10.9 1.2 21 7.7 76 April 1938. 2,510 22.6 6.1 5.9 475 7.5 81 do May to October 3,030 9.7 10.2 3.0 34 7.7 76 do Movember 1937 to April 1938. 3,340 22.7 7.0 2.0 10.2 3.0 3.7 7.7 do Movember 1937 to October 3,340 22.7 7.0 2.0 170 7.7 84 do Movember 1937 to	iver, below Elizabeth-	TeHoSfW 831	May to October		870	20.7		1.3	80	7.7	1 9 9 9 9 9 1 1 1	45	52
TeHoSfW 829. Mapril 1938. 880 21.0 7.7 2.1 110 7.7 47 do. April 1938. 1,130 9.4 10.7 1.4 17 7.7 43 TeHoSf 810. November 1937 to April 1938. 2,380 21.7 7.4 3.3 350 7.7 77 do. November 1937 to April 1938. 2,510 22.6 6.1 5.9 475 7.5 81 TeHoSf 795. May to October 3,030 9.7 10.2 3.0 34 7.7 82 April 1938. 3,340 22.7 7.0 2.0 170 7.6 81 do. November 1937 to April 1938. 3,340 22.7 7.0 2.0 170 7.7 82 do. November 1937 to April 1938. 3,40 22.7 7.0 2.0 170 7.7 82 do. November 1937 to April 1938. 4,160 9.4 10.3 1.4 27 7.7 84 <	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do	November 1937 to	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1, 120		10.7		90	7.7		40	45
do. do. Lybor. April 1938. 1,130 9.4 10.7 1.4 17 7.7 43 TeHoSI 810. May to October 1937 to April 1938. 2,130 21.7 7.4 3.3 350 7.7 77 TeHoSI 795. November 1937 to October 1937 to October 1937 to April 1938. 2,510 22.6 6.1 5.9 475 7.5 81 TeHoSI 795. November 1937 to October 1937 to April 1938. 3,340 22.7 7.0 2.0 170 7.6 82 TeHo 784. November 1937 to April 1938. 3,340 22.7 7.0 2.0 170 7.6 81 TeHo 784. November 1937 to April 1938. 3,40 22.7 7.0 2.0 170 7.7 82	River, below Johnson	TeHoSfW 829.	May to October	1	880	21.0	7.7	2.1	110	7.7		47	54
TeHoSf 810 May to October May to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	do	November 1937 to	1	1, 130		10.7	1.4	17	7.7	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	43	48
do. November 1937 to November 1937	South Fork, Holston River, below	TeHoSf 810	May to October	1 1 5 2 1 6 5 1 8	2, 330	21.7	7.4		350	7.7	1 1 2 3 5 1 1 9	22	87
TeHoSf 795 May to October 2,510 22.6 6.1 5.9 475 7.5 81 81 82 82 84 7.7 82 84 8.7 84 82 82 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	Kiver.	do	November 1937 to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,610	10.0	10.9		21	7.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94	84
do November 1937 to 3,030 9.7 10.2 3.0 3.4 7.7 82 TeHo 784 Nayr to October 3,340 22.7 7.0 2.0 170 7.6 81 Horst loss 4,160 9.4 10.3 1.4 27 7.7 84	South Fork, Holston River, below	TeHoSf 795	May to October	1	2, 510		6. 1		475	7.5	8 8 8	881	86
TeHo 784. May to October 3,340 22.7 7.0 2.0 170 7.6 81 81 4,160 9.4 10.3 1.4 27 7.7 84	, Tenn.	do	November 1937 to	1	3,030				34	7.7	0 0 0 0 0 0 0	82	93
do	er, below North Fork,	ТеНо 784	May to October	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3, 340		7.0		170	7.6	1 2 2 3 4 6 6	00	155
	CIVET.	do	November 1937 to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4, 160		10.3	1.4	27	7.7	1 1 1	25	138

Princip Broad River, above Pigeon TePB 730. May 10 October Section S								01.		200			10	2424	0 2.	. 01		0111	100						OI
TeFB 730.5. May to October S. 669 21.3 7.5 11 400 1.00	16	15	29	47	52	46	46	49	00	95	95	16	13	27	18	62	99	200	- 6 f	1			:	1	1
TeFB 730.5. May to October S. 669 21.3 7.5 11 400 1.00																	1			0 0				-	0 0 0
TeFB 730.5. May to October S. 669 21.3 7.5 11 400 1.00	16	15	47	35	42	34	45	47	6	93	000	10	2	25	14	73	69	93	11	0		1	:		2 0
Tefb 730.6. May to October 187 to 2.990 8.5 10.8 1.0 130 7.6 10.8 10.0 27 7.6 10.8 10.0 27 7.6 10.0 20.0 20.5 5.0 20.5 10.0 27 7.6 10.0 20.0 20.5 5.0 20.5 10.0 27 7.6 10.0 20.0 20.5 20.0 20.5 20.0 27 7.6 10.0 20.0 20.0 20.0 20.1 20.0 20.0 20.1 20.0 20.0						25													1 1	6.	-		1	1 0	5 6 6
Tefb 730.6. May to October 187 to 2.990 8.5 10.8 1.0 130 7.6 10.8 10.0 27 7.6 10.8 10.0 27 7.6 10.0 20.0 20.5 5.0 20.5 10.0 27 7.6 10.0 20.0 20.5 5.0 20.5 10.0 27 7.6 10.0 20.0 20.5 20.0 20.5 20.0 27 7.6 10.0 20.0 20.0 20.0 20.1 20.0 20.0 20.1 20.0 20.0	-	- 1	1	-	1	1	-		0	200	2000	- 1	. 1	1		1	1	20	t t t	1 1		1	1		
Tefb 730.5. May to October May 10 October May 10 October May 10 October May 12 1937 3.60 2.1 S 1.1 Mole May 10 Mole May 10 October May 10 October May 12 1937 3.80 2.9 S 5.0 S 9.2 Mole May 10 Mole May 10 October May 10 October May 10 October May 12 1937 1.330 2.1 S 8.7 S 1.0 Mole May 12 1937 1.1 Mole May 12 1937 </td <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>W.3</td> <td>101</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>60 80</td> <td>0 0</td> <td>0</td> <td>-</td> <td></td> <td>1</td> <td></td> <td>0 0</td>	-	-					-	-	W.3	101			-			-		60 80	0 0	0	-		1		0 0
Tefb 730.5. May to October May 10 October May 10 October May 10 October May 12 1937 3.60 2.1 S 1.1 Mole May 10 Mole May 10 October May 10 October May 12 1937 3.80 2.9 S 5.0 S 9.2 Mole May 10 Mole May 10 October May 10 October May 10 October May 12 1937 1.330 2.1 S 8.7 S 1.0 Mole May 12 1937 1.1 Mole May 12 1937 </td <td>-</td> <td>1</td> <td>1</td> <td>.:</td> <td>-</td> <td>~</td> <td></td> <td>-</td> <td>-</td> <td>P- (1</td> <td>2 ~ "</td> <td>-</td> <td>1</td> <td></td> <td>1</td> <td>2</td> <td></td> <td>=10</td> <td></td> <td>~</td> <td>**</td> <td>-</td> <td></td> <td></td> <td></td>	-	1	1	.:	-	~		-	-	P- (1	2 ~ "	-	1		1	2		=10		~	**	-			
TeFB 730.5. May to October 1837 to 11 1 1830		-				7.	7.4	7.4														7.		7.	7.8
TeFB 730.5. May to October 1837 to 11 1 1830	1	-							- 1								-					-			_
Tefb 730.5. May to October do not be seed to not not be seed to not be seed to not be seed to not be seed to not not be seed to not not not not not not not not not	400	130	180	27	650	99	160	19		100	110	45	10	700	85	120	27			450	250		80	240	160
Tefb 730.5. May to October do. 2, 990 8.5 10.8 Tefb 730.5. May to October 1937 to October 1938 TeC 627. May 12, 1937 TeC 627. May 12, 1937 TeC 630. May 10, 1937 TeC 630. May 10, 1937 TeC 850. May 10, 1938 TeC 1481 TeC 1481 TeC 1481 TeC 1481 TeC 1482 TeC 1481 TeC 1481 TeC 1482 TeC 1481 TeC 1481 TeC 1482 TeC 1481 TeC 1482 TeC 1481 TeC 1481 TeC 1482 TeC 1481 T									-																
Teff 730.5. May to October 2,990 9.5 10.8	1.1	1.0		10.0			1.1	90	4.	90 -	1:5	. 70	2.	7.7	3,3	1.4	1.0	30.0	0.9.	6.	.7	1.1	6.	6.	0.
Tefb 730.6. May to October 1937 to April 1938. 3,650 21.3 7. -do. April 1938. 890 20.5 5. -do. April 1938. 890 20.5 5. -do. November 1937 to October 1938. 4,840 23.9 9.4 4. -do. May 12, 1937. 1,420 9.4 10. 2.0.6 7. -do. May 12, 1937. 1,420 9.4 10. 2.0.6 7. -do. May 12, 1937. 1,420 9.4 10. 2.0.6 7. -do. May 12, 1937. 1,420 9.4 10. 7. -do. May 12, 1937. 1,270 22.0 7. 7. -do. May 10, 1938. 1,270 23.5 4. 4. 10. 20.0 7. -do. May 10, 1938. 1,270 23.5 11. 20.0 10.2 20.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																									
Tefb 730.5 May to October 1937 to April 1938. 3,660 21.3 -do. November 1937 to April 1938. 2,990 9.5 -do. April 1938. 890 20.5 -do. November 1937 to April 1938. 1,330 9.2 -do. April 1938. 4,840 22.9 -do. April 1938. 4,840 23.9 -do. April 1937. 1,420 9.3 -do. May 12, 1837 23.6 22.1 -do. May 12, 1837 1,180 9.3 -do. May 19, 1837 1,180 9.3 -do. April 1938. 1,240 10.2 -do. April 1938. 1,240 10.2 -do. April 1938. 1,240 10.2 -do.	7.5	0.8			4.6			9.0	1				1.0				0.0						7.5	7.7	8.1
Tefb 730.6. May to October 1937 to do. 3,650 2.1. -do. April 1938. 890 20. -do. April 1938. 890 20. -do. November 1937 to do. 1,330 9. -do. April 1938. 890 20. -do. April 1938. 890 20. -do. April 1938. 4,840 23. -do. April 1938. 4,840 23. -do. April 1938. 4,840 23. -do. May 12, 1937. 1420 9. -do. May 12, 1937. 1420 23. -do. May 12, 1937. 1420 23. -do. May 12, 1937. 1430 23. -do. May 12, 1937. 1430 23. -do. May 10, 1938. 1, 270 23. -do. April 1938. 4, 840 23. -do. April 1938. 4, 840 23. -do. April 1938. 4,		1						1	-				1				1								
Tefb 730.5. May to October 3,680 -do. November 1937 to 2,990 -do. April 1938. 890 -do. April 1938. 890 -do. November 1937 to 1,330 -do. November 1937 to 1,330 -do. April 1938. 4,840 -do. April 1938. 1,130 -do. April 1938. 1,130 -do. April 1938. 1,190 -do. April 1938. 5,20 -do. April 1938. 5,20 -do. April 1938. 5,20 -do. April 1938. 5							9.			00	0 000) H													
Tefb 730.5. May to October 2, 2, 4, 4, 1937. -do. April 1938. Tefb 732. May to October 1837 to 1937. -do. May to October 1837 to 1937. Tefb 732. May to October 1837 to 4, 4, 1937. Tef 632. May 12, 1837. Tef 632. May 19, 1837. Tef 632. May 10, 1938. Tef 633. May to October 11, 1938. Tef 1451. May to November 1837 to April 1938. Tef 1451. May to November 1837 to April 1938. Tef 1451. May to November 1837 to October 1837. Tef 1451. May to November 1837. Tef 1451. May to November 1837. Tef 1451. May to November 1837. Tef 1432. May to November 1837. Tef 1433. May to November 1837.	21	O.	8	8	28	03	21	5	23	21	125	127	В	23	10	18	=	16	18	18	16	8	20	21	22
Tefb 730.5. May to October 2, 2, 4, 4, 1937. -do. April 1938. Tefb 732. May to October 1837 to 1937. -do. May to October 1837 to 1937. Tefb 732. May to October 1837 to 4, 4, 1937. Tef 632. May 12, 1837. Tef 632. May 19, 1837. Tef 632. May 10, 1938. Tef 633. May to October 11, 1938. Tef 1451. May to November 1837 to April 1938. Tef 1451. May to November 1837 to April 1938. Tef 1451. May to November 1837 to October 1837. Tef 1451. May to November 1837. Tef 1451. May to November 1837. Tef 1451. May to November 1837. Tef 1432. May to November 1837. Tef 1433. May to November 1837.	000	000	06	08	06	08	01	8	01	32	252	38	98	02	04	8	01	2 %	90.00	88	36	90	000	22	
Tefb 730.5 do Tefb 732 do Teffb 732 do TeC 625 TeC 626 TeC 636 TeC 579 TeC 569 TeC 569 TeC 461 TeE 1431 TeE 1432 TeE 1433 TeE 1373 TeE 1373	3,6	2,9	90	1,3	00	1,3	8	1,4	4, 80		9 == 0	1,1	1,1	1, 2	1,2	5, 2	5,7	-24	, eq.		5		7	ão	ò
Tefb 730.5 do Tefb 732 do Teffb 732 do TeC 625 TeC 626 TeC 636 TeC 579 TeC 569 TeC 569 TeC 461 TeE 1431 TeE 1432 TeE 1433 TeE 1373 TeE 1373	1	1	1	1	1 1	1	1	1	1	1	1 1	1 1	*	3 9	1	-	-	; ;	11	2 0	1	1	:	1	- '
Tefb 730.5 do Tefb 732 do Teffb 732 do TeC 625 TeC 626 TeC 636 TeC 569 TeC 569 TeC 461 TeE 1431 TeE 1432 TeE 1433 TeE 1373 TeE 1373	9 9 9	1				1					1 6	1 8 2 9 1 9 1 9	9 0	-	-	1	-					-			
Tefb 730.5 do Tefb 732 do Teffb 732 do TeC 625 TeC 626 TeC 636 TeC 569 TeC 569 TeC 461 TeE 1431 TeE 1432 TeE 1433 TeE 1373 TeE 1373	-	-	1	-	-	+	1	1	1	-	1 6	11	1	1	1	1	-			1	1	-	3 6	-	
Tefb 730.5 do Tefb 732 do Teffb 732 do TeC 625 TeC 626 TeC 636 TeC 569 TeC 569 TeC 461 TeE 1431 TeE 1432 TeE 1433 TeE 1373 TeE 1373	tober	37 to	tober	137 to	tober	37 to	tober	137 to	-			tober	137 to	tober	37 to	tober	137 to	vem-		8	-				1
Tefb 730.5 do Tefb 732 do Teffb 732 do TeC 625 TeC 626 TeC 636 TeC 569 TeC 569 TeC 461 TeE 1431 TeE 1432 TeE 1433 TeE 1373 TeE 1373	00	gr 16	1938.	er 19	1938. Oc	er 19	1938. Oc	er 19	1937	1937	1937	120	er 16	1938.	er 19	1938.	er 19	1937 No	2/.	-	-	1			
Tefb 730.5 do Tefb 732 do Teffb 732 do TeC 625 TeC 626 TeC 636 TeC 569 TeC 569 TeC 461 TeE 1431 TeE 1432 TeE 1433 TeE 1373 TeE 1373	17 to	vem	y to	vemi	by to	vem!	y to	veml	gust	y 12,	17 12,	y to	veml	y to	veml	y to	vemi	tober to	do-do-	do.	-op-	do-	do-	do-	-do-
	Ma	Z	Ma	Z	Ma	No	Ma	No	Au	Ma	Ma	Ma	No	Ma	No	Ma	No	Ma			1	-	-	1	
	0		3	-			90	1							-		1		2	1		7	-		
	730.		P 73		P 73		Z		e 668	327	525	590		579		699		461.	3e 44	3 435	432.	M 38	385	373.	334
	eFB	dc	eFB	dc	eFB	dc	eFB	dc	PLT	Dec.	eC (PCE	p	PecE	dc	00	dc	eEl	eEll	eEll	eEl	eEII	eEl	eEl	eEl
French Broad River, above Pigeon River. Do. Tenn. Do. Dittle Chon, Dan. Clinch River, below Green ville, Tenn. Do. Do. Clinch River, above Clinton, Tenn. Clinch River, below Green Do. Do. Clinch River, below Harriman Do. Clinch River, below Winchester River, below Estill Sprin Do. Clinch River, below Estill Sprin Barring Creek, mouth Do. Clinch River, below Winchester Tenn. Bir River, below Winchester Tenn. Clinch River, below Unichester Tenn. Bir River, below Lynchburg Tenn. Clinch River, below Lynchburg Tenn. Elik River, below Fayetteville	_	-		- 1		1	_	1					1		1		1	-						_	
French Broad River, above Deliver. Do. Pigeon River, below Nergeon River, below Nergeon River, below Nergeon River, below Nergeon Do. Little Tenn. Little Tenn. Cheoh Dam. Cheoh Dam. Cheoh Dam. Cheoh Dam. Cheoh River, below Clinton, Do. Do. Emory River, below Clinton, Do. Collinch River, below Estill frem. Do. Clinch River, below Farill frem. Do. Clinch River, below Estill frem. Cheok Creek, mouth. Do. Cheok Creek, below Farill frem. Elk River, below Farill frem. Elk River, below Lynel Cheok. Mulbery Creek, below I blank. Tenn. Elk River, below Lynel Elk River, below Lynel Elk River, below I blank. Tenn. Elk River, below Lynel Elk River, below I blank. Tenn. Elk River, below Fayett Fenn.	Pigeo	1	Wpor		wpor		Greek	1	belov	Ten	Ten	0	-	rimar				Sprin	home	Wir	nester	ynck	ppnr	eville	enn-
French Broad River, above River. Do. Pigeon River, above Tenn. Do. Little Tennessee Riv Cheoh Dam. Clinch River, below Tenn. Do. Clinch River, below Clinch River, below Tenn. Do. Clinch River, below Esi Emory River, below Esi Emory River, below Esi Elk River, below Vanuberry Creek, beloester, Tenn. Elk River, below Fi Tenn. Elk River, below I Tenn.	ove I	1 2 2	Ne	3 3 3	Ne) WO		er,	ton,	ton,	Ten	-	Нагл		1	-	nout	rulla	elow	Vinel	I M	ynel	ayett	zi, T
French Broad River River. Do. Pigeon River, be Tenn. Do. Little Tennessee Cheob Dam. Cheob Dam. Cheob Dam. Cheob Dam. Cheob Dam. Clinch River, below Do. Broar River, below Do. Emory River, below Do. Clinch River, below Do. Clinch River, below Do. Emory River, below Do. Clinch River, below Do. Cheok, mouth Break, mouth Break, renu. Do. Cheok, below Boar River, below Rock Creek, below Bam. Cheok, below Rock Creek, below Rock Creek, below Bam. Bir River, below Reck, Tenn. Elk River, below Tenn.	r, ab	f	ovoc	1	Mole		bel		Riv	e Clin	Clin	dale,	1	No	4 4 4	th		, at 1 Est	W	k, b	A A	belo	W	7 F	ulasi
French Broad River. Do. Pigeon River Tenn. Do. Nollohueky F ville, Tenn. Do. Little Tenne Cheoh Dam Clinch River, Do. Do. Clinch River, Tenn. Do. Clinch River, Tenn. Do. Clinch River, Tenn. Do. Clinch River, Tenn. Do. Clinch River, Do. Clinch River, Tenn. Blk River, Tenn. Tenn. Mulberry Creek, Tenn. Flex River, Tenn. Rock Creek, Tenn. Elk River, Creek, Tenn. Flex River, Tenn. Linch River, Tenn. Elk River, Creek, Tenn. Flex River, Tenn. Elk River, Tenn.	Rive	0 0	, al	1 1 0 0	, be	0 0	liver	-	ssee	BDOV	pelor	Oak	1	be.		mou		Creek	noutl	Cree	n. belor	eek,	belo	belov	ove F
French B River. Do. Pigeon J Pigeon J Poly Do. Little T Cheoh Ri Do. Clinch Ri Do. Emory I Tenn. Do. Clinch Ri Bik Rive Cre Elk Rive Cre Tenn. Roke Cre Elk Rive Cre Tenn. Rolling F Chattano Boling F Chent. Aulberry Rive Tenn. Aulberry Rive File Rive Tenn. Aulberry Rive File Rive	road	8 8 8	River	1 1 1 1	River	1 1	ry H	enn.	еппе	Ver,	ver,	iver,	-	River		iver,	-	oga (er, b	ek, n	Pork	Ten,	Cr	enn.	er,	, abc
Present and presen	ch B	30	nu l	Jo	on 1	Jo	shuck	Je, T.	T	sh Ri	ch Ri	ry R	Do	ry I	Jo	ch Ri	Do	Rive	Cre Cre	nn.	ester, Riv	nn.	Riv. I	Riv	nn. River
	Fren	I	Pige	Te	Pige	Te	Noli	IIA	Littl	Clin	Clin	Emo		Emo	1.6	Clin		Char	Roel	Boili	Elk	Mul	Elk	Elk	EIK

Table T-7-a.—Tennessee River Basin: Ohio River pollution survey laboratory data—Continued

SUMMARY OF AVERAGES-Continued

[By Tennessee Valley Authority]

Hard- ness, parts per million		96	82			120			194	***************************************	E E E E E E E E E E E E E E E E E E E	E E E E E E E E E E E E E E E E E E E
Alka- linity, parts per million		90	80	86	95	120	120	122	191	115	107	106
Tur- bidity, parts per million		100 5	45	55	388	140	160	190	010	220	220	140 40
Hď	7.4	40	7,5	7.5	7.8	7.7	7.6	9.7	7.6	7.6	7.6	7.6
Coli- forms, most probable number per milliliter	130	19	34	155	24	80	480	350	190	120	170	100 95 52
5-day bio- chemical oxygen demand, parts per million	1.2	5. 1	1.0	1.0	1.9	1.6	1.8	1.6	7 2	1.6	1.4	4.1.
Dissolved oxygen, parts per million		ස්ගේ ර		8.1	8.7	8.7			9 0		8.4	ယာ ယာ လ တင် တင် တင်
Temper- ature, ° C.	22.7	17.7	18.7	19.2	19.8	17.4	17.3		10.1	17.2	20.2	18. 5 20. 1 20. 4
Average discharge, cubic feet per second	711	1,082	372	429	378	1, 575	1,579	1,782	1 080	2, 273	1,959	202 2,470 985
Number of samples						1		t t t t t t t t t t t t t t t t t t t				E C C C C C C C C C C C C C C C C C C C
Period, 1937-38		February to No- vember 1938.	dodo	March to Novem-	do- February to No-	February 1937 to	op	qo	1938.	February 1938.	February to No-	do-
Mileage from mouth	TeElR 330	Teb 380	TeD 336	YeD 317	TeD 297	TeD 247	TeD 241	TeD 233	TeDBB 216	TeD 193	Тер 175	TeD 143
Sampling point	Richland Creek, near mouth, Pulaski, Tenn.	Elk River, below Pulaski, Tenn Duck Creek, above Manchester, Tenn.!	Tenn. Tenn. Duck River, above Shelbyville,	Duck River, below Shelbyville,	Duck River, above Rock Creek 1. Big Rock Creek, mouth, near	Duck River, above Columbia,	Duck River, below Columbia, Tenn.	Duck River, below Greenlick Creek.	Big Bigby Creek, below Mount Pleasant, Tenn.	Oreck. Duck River, above Centerville,	Duck River, below Centerville,	A rent. Piney River, below Wrigley, Tenn. Duck River, below Piney River Buffalo River, below all wastes

Duck River results made available through the joint cooperation of the State of Tennessee and the Tennessee Valley Authority.

NLM 00076812 8