Problem 6

Ha Vu Anh

Denote the circumcenter of ω as W, Let M be the midpoint of arc BC of Ω not containing A, J be the A-excenter of ABC, I' be the reflection of I through W, S be the pole of AD^* wrt ω . The problem is equivalent to proving S lies on the radical axis of ω and Ω .

We have $WI'^2 = WI^2 = WD^* \cdot WD$ therefore $(DD^*, II') = -1$ and S lies on the polar of D^* wrt ω which is BC.

Let JI' cut BC at T, WM cut BC at G.

We have:

$$-1 = D(JI, GA) = D(JI', TA) = A(JI', TD)$$
 and $A(II', D^*D) = -1 = A(II', TD)$

therefore A, D^*, T are collinear and since $AD* \perp WS$ we get $TD* \perp WS$. Let IG cut I'J at R then since M, W are the midpoints of IJ, II' respectively, G is the midpoint of IR. Combine this with -1 = T(DD*, II') = T(GD*, IR) we get $TD* \parallel IG$ and therefore $IG \perp WS$ therefore I is the orthocenter of WSG therefore $SI \perp WM$. Combine this with the fact that M is the center of (BIC) we get SI is the radical axis of ω and (BIC) therefore the power of S to ω equal to the power of S to (BIC) equal to the power of S to Ω therefore S also lies on the radical axis ω and Ω .

Hence the problem is done.