Some additional exercise questions of stochastic calculus

March 20, 2024

Throughout the exercise questions, we use $(B_t)_{t\geq 0}$ to denote a standard Brownian motion.

Week 9.

• If the process $M_t := B_t^3 - \int_0^t f(B_s) ds$ is a martingale. Write down the function form of f, and express M_t in the form of an Itô integral.

Solution: f(x) = 3x, and

$$M_t = 3 \int_0^t B_s^2 dB_s.$$

• If $f: \mathbb{R}_+ \to \mathbb{R}$ is a deterministic continuous function. Show that $\int_0^t f(s)dB_s$ follows a normal distribution, and compute its mean and variance.

Solution: Let $Z = \int_0^t f(s)dB_s$. We have $\mathbb{E}[Z] = 0$ and $\operatorname{var}(Z) = \int_0^t f^2(s)ds$. Note that

$$Z_n = \sum_{j=0}^{n-1} f(jt/n) \cdot \left\{ B_{(j+1)t/n} - B_{jt/n} \right\} \xrightarrow{\mathbb{L}^2} Z.$$

Each Z_n is zero-mean Gaussian, and their variances converges to var(Z). So we can use the fact that \mathbb{L}^2 convergence implies convergence in distribution to show that the CDF of SZ is also Gaussian.

Week 10.

• If the process $M_t := t^2 B_t^2 - \int_0^t f(s, B_s) ds$ is a martingale. Write down the function form of f, and express M_t in the form of an Itô integral.

Solution: $f(t,x) = 2tx^2 + 2t^2$, and

$$M_t = 2 \int_0^t s^2 B_s dB_s.$$

• Let $Y_t = B_t \cdot \int_0^t B_s dB_s$. Compute dY_t .

Solution: by product rule

$$dY_t = \left(\int_0^t B_s dB_s\right) \cdot dB_t + B_t \cdot B_t dB_t + d\langle B, \int_0^{\bullet} B_s dB_s \rangle_t$$
$$= \frac{1}{2} (B_t^2 - t) dB_t + B_t^2 dB_t + B_t dt.$$