# Minimalism

## H. Partl

## 2019年6月24日

# 目录

3

1 Start

| 2  | End                              | 3 |
|----|----------------------------------|---|
| 3  | sfs                              | 3 |
| 4  | 2.4.7                            | 3 |
| 5  | sfsaf                            | 4 |
| 6  | safsdaf                          | 4 |
| 7  | saofjsd                          | 4 |
| 8  | asfd                             | 4 |
| 9  | saf                              | 5 |
| 10 | saf                              | 5 |
| 11 | 2.11.3 Quote Quotation and Verse | 5 |

| 12 sfsf                  | 6  |
|--------------------------|----|
| 13 tabular               | 6  |
| 14 tabular               | 6  |
| 14.1 tabular             | 7  |
| 14.2 square              | 7  |
| 15 I am considerate $^1$ | 7  |
| 15.1 title               | 7  |
| 15.2 title               | 8  |
| 15.3 title               | 8  |
| 15.4 title               | 8  |
| 15.5 title               | 8  |
| 15.6 title               | 9  |
| 15.7 title               | 10 |
| 15.8 title               | 10 |
| 15.9 title               | 10 |
| 15.10 title              | 11 |
| 15.11 title              | 11 |
| 15.12 eqnarray           | 11 |
| 15.13 title              | 12 |
| 15.14 title              | 12 |
| 15.15 title              | 12 |
| 15.16 title              | 12 |
| 15.17 title              | 13 |
| 15.18 title              | 13 |

 $<sup>^{1}\</sup>mathrm{and}$  protect my footnotes

| 1 | START       | 3  |
|---|-------------|----|
|   | 15.19 title | 13 |
|   | 15.20 title | 4  |

### 1 Start

Well, and here begins my lovely article.

### 2 End

... and here it ends.

...when Einstein introduced his formula

$$e = m \cdot c^2 \,, \tag{1}$$

which is at the same time the most widely known and the least well understood physical formula. ...from which follows Kirchoff's current law:

$$\sum_{k=1}^{n} I_k = 0. (2)$$

Kirchhoff's voltage law can be derived .....which has several advantages.

$$I_D = I_F - I_R \tag{3}$$

is the core of a very different transistor model.  $\dots$ 

#### 3 sfs

不是 shelfful 而是 shelfful

#### $4 \quad 2.4.7$

Straße

5 SFSAF 4

1

ŏ

J

#### 5 sfsaf

Mr. Smith was happy to see her

cf. Fig. 5

I like BASIC. What about you?

#### 6 safsdaf

A reference to this subsection looks like: "see section 6 on page 4." Footnotes<sup>2</sup> are often used by people using LAT<sub>E</sub>X.

## 7 saofjsd

You can also emphasize text if it is set in italics, in a sans-serif font, or in typewriter style.

#### 8 asfd

- 1. You can mix the list environments to your taste:
  - o But it might start to look silly.
  - With a dash.
- 2. Therefore remember:

Stupid things will not become smart because they are in a list.

Smart things, though, can be presented beautifully in a list.

 $<sup>^{2}</sup>$ This is a footnote.

9 SAF 5

#### 9 saf

This text is

left-aligned. LaTeX is not trying to make each line the same length.

#### 10 saf

This text is right-

aligned. LaTeX is not trying to make each line the same length.

At the centre of the earth

## 11 2.11.3 Quote, Quotation, and Verse

A typographical rule of thumb for the line length is:

On average, no line should be longer than 66 characters.

This is why LaTeX pages have such large borders by default and also why multicolumn print is used in newspapers.

A typographical rule of thumb for the line length is:

On average, no line should be longer than 66 characters.

This is why LaTeX pages have such large borders by default and also why multicolumn print is used in newspapers.

I know only one English poem by heart. It is about Humpty Dumpty.

Humpty Dumpty sat on a wall: Humpty Dumpty had a great fall. All the King's horses and all the King's men Couldn't put Humpty together again. 12 SFSF 6

## 12 sfsf

The **\ldots** command  $\dots$ 

10 PRINT "HELLO WORLD "; 20 GOTO 10

 $the_{\sqcup}starred_{\sqcup}version_{\sqcup}of$   $the_{\sqcup}verbatim$   $environment_{\sqcup}emphasizes$   $the_{\sqcup}spaces_{\sqcup}in_{\sqcup}the_{\sqcup}text$ 

## 13 tabular

| 7C0         | hexadecimal |
|-------------|-------------|
| 3700        | octal       |
| 11111000000 | binary      |
| 1984        | decimal     |

Welcome to Boxy's paragraph. We sincerely hope you'll all enjoy the show.

no leading space

leading space left and right

## 14 tabular

| Pi expression   | Value   |
|-----------------|---------|
| $\pi$           | 3.1416  |
| $\pi^{\pi}$     | 36.46   |
| $(\pi^\pi)^\pi$ | 80662.7 |

#### 14.1 tabular

| Ene  |      |
|------|------|
| Mene | Muh! |

#### 14.2 square

Figure 1 is an example of Pop-Art.  $\,$ 



图 1: Five by Five in Centimetres.

## 15 I am considerate <sup>3</sup>

#### 15.1 title

Add a squared and b squared to get c squared. Or, using a more mathematical approach:  $c^2=a^2+b^2$ 

TeX is pronounced as  $\tau \epsilon \chi$ .

 $100 \text{ m}^3 \text{ of water}$ 

This comes from my  $\heartsuit$ 

 $<sup>^3{\</sup>rm and}$  protect my footnotes

#### 15.2 title

Add a squared and b squared to get c squared. Or, using a more mathematical approach:

$$c^2 = a^2 + b^2$$

And just one more line.

$$\epsilon > 0$$
 (4)

From (4), we gather ...

#### 15.3 title

$$\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6}$$

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}=\frac{\pi^2}{6}$$

#### 15.4 title

ab

a b

a

#### 15.5 title

$$\forall x \in \mathbf{R}: \qquad x^2 \ge 0 \tag{5}$$

$$x^2 \ge 0$$
 for all  $x \in \mathbf{R}$  (6)

$$x^2 \ge 0$$
 for all  $x \in \mathbb{R}$ 

$$a^x + y \neq a^{x+y} \tag{7}$$

## 15.6 title

$$a_1 x^2$$

$$e^{-\alpha t}$$

$$a_{ij}^3$$

$$e^{x^2} \neq e^{x^2}$$

$$\overline{m+n}$$
  $\underline{m+n}$ 

$$\underbrace{a+b+\cdots+z}_{26}$$

$$y = x^2 \qquad y' = 2x \qquad y'' = 2$$

$$\vec{a}$$
  $\overrightarrow{AB}$ 

$$\vec{a} \quad \overleftarrow{AB}$$

$$v = \sigma_1 \cdot \sigma_2 \tau_1 \cdot \tau_2$$

1/2

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $a \pmod{b}$ 

 $1\frac{1}{2}$  hours

$$\frac{x^2}{k+1} \qquad x^{\frac{2}{k+1}} \qquad x^{1/2}$$

$$\binom{n}{k}$$
  $x$   $y+2$ 

$$\int f_N(x) \stackrel{!}{=} 1$$

$$\sum_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{\epsilon}$$

{}

$$a,b,c \neq \{a,b,c\}$$

$$1 + \left(\frac{1}{1 - x^2}\right)^3$$

### 15.7 title

$$\left( (x+1)(x-1) \right)^2$$

$$\left( \left( \left( \left( \begin{array}{c} \\ \\ \end{array} \right) \right) \right) \right)$$

#### 15.8 title

$$x_1, \ldots, x_n$$
  $x_1 + \cdots + x_n$   $x_1 + \cdots + x_n$   $x_1 + \vdots + x_n$ 

#### 15.9 title

$$\iint_D g(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

instead of

$$\int \int_D g(x,y) \mathrm{d}x \mathrm{d}y$$

$$\iint_D \, \mathrm{d}x \, \mathrm{d}y$$

#### 15.10 title

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots \\ x_{21} & x_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$y = \begin{cases} a & \text{if } d > c \\ b + x & \text{in the morning} \\ l & \text{all day long} \end{cases}$$

#### 15.11 title

$$\left(\begin{array}{c|c} 1 & 2 \\ \hline 3 & 4 \end{array}\right)$$

#### 15.12 eqnarray

$$f(x) = \cos x \tag{8}$$

$$f'(x) = -\sin x \tag{9}$$

$$f'(x) = -\sin x \tag{9}$$

$$\int_0^x f(y)dy = \sin x \tag{10}$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 (11)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
 (12)

#### 15.13 title

$$^{12}_{\phantom{0}6}\mathrm{C} \qquad \text{versus} \qquad {}^{12}_{\phantom{0}6}\mathrm{C}$$

$$\Gamma_{ij}^{\phantom{ij}k}$$
 versus  $\Gamma_{ij}^{k}$ 

#### 15.14 title

$$2^{\text{nd}} 2^{\text{nd}}$$
 (13)

#### 15.15 title

$$corr(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2\right]^{1/2}}$$

#### 15.16 title

$$corr(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2\right]^{1/2}}$$

参考文献 13

Law 1 Don't hide in the witness box

Jury 2 (The Twelve) It could be you! So beware and see law 1

Law 3 No, No, No

#### 15.17 title

**Murphy 15.17.1** If there are two or more ways to do something, and one of those ways can result in a catastrophe, then someone will do it.<sup>10</sup>

 $\mu, M$   $\mathbf{M}$   $\mu, M$ 

15.18 title

 $\mu, M \qquad \mu, M$ 

Partl [1] has proposed that ...

#### 15.19 title

- This is the *not so* Short Introduction to  $\LaTeX 2_{\mathcal{E}}$
- This is the very Short Introduction to LATEX  $2_{\varepsilon}$

## 参考文献

[1] H. Partl:  $German T_{EX}$ , TUGboat Volume 9, Issue 1 (1988)

x x

这是 一段长为 1.5 厘米的空白。

Some text  $\dots$ 

这一行将出现在页的最后。

 $<sup>^{10}</sup>$  what the fuck

参考文献 14

fuck me from front side

s p r e a d

Guess I' m framed now!

Bummer, I am too wide

never flamlyso aead this?
slslsls

#### 15.20 title

$$a^2 + b^2 = c^2$$

Where: a, b – are adjunct to the right angle of a right-angled triangle. c – is the hypotenuse of

the triangle and feels lonely. d – finally does not show up here at all. Isn' t that puzzling?

 $\vec{e_r}$