Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group: NOIDEA

10 Network Flow

- Homework assignment published on Monday 2018-05-07
- Submit questions and first solution by Sunday, 2018-05-13, 12:00
- Submit final solution by Sunday, 2018-05-20.

Exercise 10.1. [From the video lecture] Recall the definition of the value of a flow: $\operatorname{val}(f) = \sum_{v \in V} f(s, v)$. Let $S \subseteq V$ be a set of vertices that contains s but not t. Show that

$$val(f) = \sum_{u \in S, v \in V \setminus S} f(u, v)$$
.

That is, the total amount of flow leaving s equals the total amount of flow going from S to $V \setminus S$. **Remark.** It sounds obvious. However, find a formal proof that works with the axiomatic definition of flows.

Proof. By flow conservation, $\sum_{w} f(v, w) = 0$, for all $v \in V \setminus \{s, t\}$. Also by definition of the value of a flow, we have:

$$val(f) = \sum_{w \in V} f(s, w)$$

$$= \sum_{u \in S, w \in V} f(u, w)$$

$$= \sum_{u \in S} (\sum_{w_1 \in S} f(u, w_1) + \sum_{w_2 \in V \setminus S} f(u, w_2))$$

$$= \sum_{u \in S, w_1 \in S} f(u, w_1) + \sum_{u \in S, w_2 \in V \setminus S} f(u, w_2)$$

$$= \sum_{u \in S, v \in V \setminus S} f(u, v) + \sum_{u \in S, w_1 \in S} f(u, w_1)$$

Recall the skew-symmetry that f(u,v) = -f(v,u), we have:

$$\sum_{u \in S, w_1 \in S} f(u, w_1) = \sum_{w_1 \in S, u \in S} -f(w_1, u) = -\sum_{u \in S, w_1 \in S} f(u, w_1) = 0$$
 (1)

In conclusion, val
$$(f) = \sum_{u \in S, v \in V \setminus S} f(u, v)$$
.

Exercise 10.2. Let G = (V, E, c) be a flow network. Prove that flow is "transitive" in the following sense: If there is a flow from s to r of value k, and a flow from r to t of value k, then there is a flow from s to t of value k. **Hint.** The solution is extremely short. If you are trying something that needs more than 3 lines to write, you are on the wrong track.

Proof. Suppose there is no flow from s to t of value k. Then there is a s-t cut $s \in S, t \in V \setminus S$ such that $c(S, V \setminus S) < k$. If $r \in S$, then there is a r-t cut $(S, V \setminus S)$ such that the capacity is less than k, so there's no flow of value k from r to t. Else if $r \in V \setminus S$, then there is a s-r cut $(S, V \setminus S)$, whose capacity is less than k and no flow value of k exists. In either of these cases, we reach a contradiction, so flow must be transitive.

10.1 An Algorithm for Maximum Flow

Recall the algorithm for Maximum Flow presented in the video. It is usually called the Ford-Fulkerson method.

We proved in the lecture that f is a maximum flow and S is a minimum cut, by showing that upon termination of the while-loop, val(f) = cap(S).

Algorithm 1 Ford-Fulkerson Method

```
1: procedure FF(G = (V, E), s, t, c)
 2:
        Initialize f to be the all-0-flow.
        while there is a path p form s to t in the residual network G_f do
 3:
            c_{\min} := \min\{c_f(e) \mid e \in p\}
 4:
           let f_p be the flow in G_f that routes c_{\min} flow along p
 5:
            f := f + f_p
 6:
        end while
 7:
        // now f is a maximum flow
 8:
        S := \{ v \in V \mid G_f \text{ contains a path from } s \text{ to } v \}
 9:
        //S is a minimum cut
10:
        return (f, S)
11:
12: end procedure
```

The problem is that the while-loop might not terminate. In fact, there is an example with capacities in \mathbb{R} for which the while loop does not terminate, and the value of f does not even converge to the value of a maximum flow. As indicated in the video, a little twist fixes this:

Edmonds-Karp Algorithm: Execute the above Ford-Fulkerson Method, but in every iteration choose p to be a shortest s-t-path in G_f . Here, "shortest" means minimum number of edges.

In a series of exercises, you will now show that this algorithm always terminates after at most $n \cdot m$ iterations of the while loop (here n = |V| and m = |E|).

Definition 10.3. Let (G, s, t, c) be a flow network and $k \in \mathbb{N}_0$. A k-layering is a partition of $V = V_0 \cup \cdots \cup V_k$ such that (1) $s \in V_0$, (2) $t \in V_k$, (3) for every edge $(u, v) \in E$ the following holds: suppose $u \in V_i$ and $v \in V_j$. Then $j \leq i+1$. In words, point (3) states that every edge moves at most one level forward.

The figure below illustrates this concept: for one network we show two possible layerings and something that looks like a layering but is not:

Exercise 10.4. Suppose the network (G, s, t, c) has a k-layering. Show that $dist(s, t) \ge k$. That is, every s-t-path in G has at least k edges.

Proof. Prove by contradiction:

Suppose that there is a s-t-path, say $s-v_1-\ldots-v_n-t$, in G that has less than k edges (n+1 < k). By definition, $s \in V_0$ and $t \in V_k$ and every edge moves at most one level forward. Hence, for the s-t-path, $s-v_1-\ldots-v_n-t$, we have:

$$s \in V_0$$

 $v_1 \in V_{a_1}, a_1 \le 1$
 $v_2 \in V_{a_2}, a_2 \le a_1 + 1 \le 2$
 $\dots v_n \in V_{a_n}, a_n \le a_{n-1} + 1 \le n$
 $t \in V_{a_{n+1}}, a_{n+1} \le a_n + 1 \le n + 1 < k$

However, $t \in V_k$, a contradiction.

Exercise 10.5. Conversely, suppose dist(s,t) = k. Show that (G, s, t, c) has a k-layering.

Proof. Prove by construction:

 $\operatorname{dist}(s,t)=k$, suppose the shortest path between s and t are s- v_1 -...- v_{k-1} -t. Construction steps are as follows:

- First, add s to V_0 , v_1 to V_1 , ..., v_{k-1} to V_{k-1} , t to V_k .
- Consider the vertices that are directly connected with vertices that are already in the partitions, iteratively add them to any partitions as long as the adding satisfies $POINT\ 3$ above.

• Recursively do step 2 above until no vertices left (since a flow network is a connected component as a whole).

Let (G, s, t, c) be a flow network and V_0, \ldots, V_k a k-layering. We call this layering optimal if $\operatorname{dist}_G(s,t)=k$. Here, $\operatorname{dist}_G(u,v)$ is the shortest-path distance from s to t (measured by number of edges). If there is no path from s to t, we set $\operatorname{dist}_G(s,t)=\infty$. In this case, no layering is optimal. For example, the 3-layering in the above figure is optimal, but the 1-layering in the middle of the above figure is not. Let us explore how layerings and the Ford-Fulkerson Method interact.

Exercise 10.6. Let (G, s, t, c) be a flow network and V_0, V_1, \ldots, V_k be an optimal layering (that is, $k = \operatorname{dist}_G(s, t)$. Let p be a path from s to t of length k. Suppose we route some flow f along p (of some value $c_{\min} > 0$) and let (G_f, s, t, c_f) be the residual network. Show that V_0, V_1, \ldots, V_k is a layering of (G_f, s, t, c_f) , too. Obviously, condition (1) and (2) in the definition of k-layerings still hold, so you only have to check condition (3).

Proof. Consider the route operation, changes made on original edges in G are only limited on the capacity value and the added new edges each has a corresponding reversely directed edge in G, which is to say, that if any edge in G satisfied POINT 3, then any edge in G_f will not violate POINT 3. \square

Exercise 10.7. Show that every network (G, s, t, c) has an optimal layering, provided there is a path from s to t.

Proof. Since there is a path from s to t, there is a shortest path, say the dist(s,t) = k. According to **Exercise 10.5**, G has a k-layering, which is the optimal layering by definition.

Exercise 10.8. Imagine we are in some iteration of the while-loop of the Ford-Fulkerson method. Let V_0, \ldots, V_k be an optimal layering of (G, s, t, c). Show that after at most m iterations of the while-loop, V_0, \ldots, V_k ceases to be an optimal layering. **Remark.** Note that it is the *network* that changes from iteration to iteration of the while-loop, not the partition V_0, \ldots, V_k . We consider the partition V_0, \ldots, V_k to be fixed in this exercise.

Proof. Derived from the difinition of the layering. any flow f can not pass the partition forwarding, which means that flow go from V_i to V_j (j > i + 1)

directly is not permitted. Because there is at most m edges from V_i to V_{i+1} , after at most m iterations, if more flows want to pass the partition, they need to go back from V_{i+1} to V_i , making dist(s,t) > k and V_0, \ldots, V_k no longer the optimal layering.

Exercise 10.9. Show that the Edmonds-Karp algorithm terminates after $n \cdot m$ iterations of the while-loop. **Hint.** Initially, compute an optimal k-layering (which?). Then keep this layering as long as its optimal. Once it ceases to be optimal, compute a new optimal layering. Note that the Edmonds-Karp algorithm does not actually need to compute any layering. It's us who compute it to show that $n \cdot m$ bound on the number of iterations.

Proof. For the Edmonds-Karp algorithm is a special cases of the Ford-Fulkerson algorithm, when using Edmonds-Karp algorithm, after at most m iterations of the while-loop, V_0, \ldots, V_k will cease to be an optimal layering. That is, dist(s,t) is no longer k.

Because the Edmonds-Karp always choose the short path from s to t as p, then dist(s,t)=k' is now at least k+1. And we have $1 \le k \le n$, we can find a new optimal layering at most n times.

Hence the Edmonds-Karp algorithm terminates after $n \cdot m$ iterations of the while-loop.

Exercise 10.10. Show that every network has a maximum flow f. That is, a flow f such that $val(f) \ge val(f')$ for every flow f'. **Remark.** This sounds obvious but it is not. In fact, there might be an infinite sequence of flows f_1, f_2, f_3, \ldots of increasing value that does not reach any maximum. Use the previous exercises!

Proof. Using the Edmonds-Karp algorithm, the iteration with be terminated in at most $n \cdot m$ iterations, thus will never producing a infinite sequence. That is, the Edmonds-Karp algorithm will find a maximum flow f.