

$$X[K] = \frac{4}{8} \times [n] e^{-j(\frac{2\pi}{5}) Kn}$$

$$\frac{\times \{0\}}{\sum_{n=0}^{4} \times \{n\}} = \frac{4}{\sum_{n=0}^{4} \times \{n\}} = \frac{4}{\sum_{n=0}$$

$$X[k] = \sum_{n=0}^{4} e^{-j\left(\frac{2\pi}{5}\right)kn}$$

$$= \frac{1 - e^{-j(\frac{2\pi}{5})kn \times 5}}{1 - e^{-j(\frac{2\pi}{5})kn}} = \frac{1 - e^{-j(\frac{2\pi}{5})kn}}{1 - e^{-j(\frac{2\pi}{5})kn}}$$

$$= 0 \qquad \text{(when } k \neq 0 \text{)}$$

Co periodic with 5

$$X[k] = \sum_{n=0}^{\infty} x[n] e^{-j(\frac{n\pi}{2n})kn}$$

$$= \sum_{n=0}^{\infty} x[n] e^{-j(\frac{n\pi}$$

7	* For is full nank, cathogonal, unita							
	onthogonality:							
		$W = e^{-\frac{1}{3}\left(\frac{2\pi}{N}\right)}$						
	Clearly in column vector is:	1 w(i-1) w ² (i-1)						
		w-1)(i-1)						
	For complex exponentials, orthogonality condition =) $C_i(C_j)^* = 0$							
	$e^{-j(\frac{2\pi}{3}) \times (i-j) \times e^{-j(i-j)2\pi}} = e^{-j(i-j)2\pi} = 1$ $\Rightarrow c_i(i-j)^* = 0 \qquad (as i \neq j)$							
The state of the s	Henre it is overlagenal.							

Date_ Page_

Full mank matrix

We can say that In is full nank as:

it is an onthogonal matrix. (Thus the columns are independent of each other). Thus, the matrix is invertible.

Unitary matrix

merse of matrix: complex conjugate vanspose

7	A(A*)	·I				Symmetric,
5	1	1	1			[
1	,	w	w	WN-1	1	1 W-1 W-2 W-(N-1)
M	1	w ²			TN	
)					1
		WN-1		WW-12		1 wh-1) w-(N-1)
				1		

$$\frac{P_{1}}{1+w^{-1}+...+w^{-(N-1)}} = \frac{1-1}{1-w^{-1}} = 0$$

Similarly, $1 + w^2 + ... + w^{2(N-1)}$ $\frac{1 - w^2 - 1 - w^2}{1 - w^2} = 0$

Similarly, all the other 0's were obtained.

As the invesse of FN is equal to its conjugate transpose, FN is an unitary matrix.