MATH 330 – HW #21

Cristobal Forno

November 12, 2017

Let A be a subset of \mathbb{R} . We define $-A = \{-a : a \in A\}$.

Question Let A be bounded subset of \mathbb{R} . Prove that

(1) $\inf(-A) = -\sup(A)$

Proof: We want to prove $\inf(-A) \le -\sup(A)$ (a) and $\inf(-A) \ge -\sup(A)$ (b) then it implies that $\inf(-A) = -\sup(A)$.

- (a) We know the $\inf(-A) \leq \text{for all } -a \in -A$. Therefore, $-\inf(-A) \geq a$. In other words, $-\inf(-A)$ is an upper bound for A. Hence, $\sup(A) \leq -\inf(-A)$, which is equivalent to, $\inf(-A) \leq -\sup(A)$.
- (b) Since A is bounded above, then $a \leq \sup(A)$. We can compute that, $-a \geq -\sup(A)$. Therefore, $-\sup(A)$ is a lower bound for -A which implies that $\inf(-A) \geq -\sup(A)$.

Finally, since $\inf(-A) \leq -\sup(A)$ and $\inf(-A) \geq -\sup(A)$ implies that $\inf(-A) = -\sup(A)$. \square

 $(2) \sup(-A) = -\inf(A)$

Proof: We want to prove $\sup(-A) \leq -\inf(A)$ (a) and $\sup(-A) \geq -\inf(A)$ (b) then it implies that $\inf(-A) = -\sup(A)$.

- (a) We know the $\sup(-A) \ge \text{for all } -a \in -A$. Therefore, $-\sup(-A) \le a$. In other words, $-\sup(-A)$ is a lower bound for A. Hence, $-\sup(-A) \le \inf(A)$, which is equivalent to, $\sup(-A) \le -\inf(A)$.
- (b) Since A is bounded below, then $\inf(A) \leq \text{for all } a \in A$. We can compute that, $-\inf(A) \geq -a$. Therefore, $-\inf(A)$ is an upperbound for -A which implies that $\sup(-A) \geq -\inf(A)$.

Finally, since (a) and (b) hold, then both statements imply that $\sup(-A) = -\inf(A)$. \square