Example

Suppose that we have the following problem

$$\max 2x + y - 5z$$
s.t. $x + y + z \le 1$

$$x + y - z \le 1$$

$$x - y + z \le 1$$

$$x - y - z \le 1$$

$$-x + y + z \le 1$$

$$-x + y - z \le 1$$

$$-x - y + z \le 1$$

$$-x - y - z \le 1$$

1

Example

Suppose that we have the following problem

$$\max 2x + y - 5z$$
s.t. $x + y + z \le 1$

$$x + y - z \le 1$$

$$x - y + z \le 1$$

$$x - y - z \le 1$$

$$-x + y + z \le 1$$

$$-x + y - z \le 1$$

$$-x - y + z \le 1$$

$$-x - y - z \le 1$$

$$-x - y - z \le 1$$

feasible region

.

• Consider the hyperplane $F = \{(x, y, z) \mid 2x + y - 5z = c_0\}$

2

- Consider the hyperplane $F = \{(x, y, z) \mid 2x + y 5z = c_0\}$
 - ▶ its normal is (2,1,-5), so it faces down

- Consider the hyperplane $F = \{(x, y, z) \mid 2x + y 5z = c_0\}$
 - ▶ its normal is (2,1,-5), so it faces down

2

- Consider the hyperplane $F = \{(x, y, z) \mid 2x + y 5z = c_0\}$
 - ightharpoonup its normal is (2,1,-5), so it faces down

• What happens if we increase c_0 ?

2

• Increasing $c_0 \Longrightarrow$ moving plane towards optimum

• Increasing $c_0 \implies$ moving plane towards optimum

• Increasing $c_0 \implies$ moving plane towards optimum

• Increasing $c_0 \implies$ moving plane towards optimum

• Increasing $c_0 \implies$ moving plane towards optimum

3

Finding a Vertex

• A vertex in \mathbb{R}^d is the intersection of d linearly independent hyperplanes

Finding a Vertex

• A vertex in \mathbb{R}^d is the intersection of d linearly independent hyperplanes

Finding a Vertex

 \bullet A vertex in \mathbb{R}^d is the intersection of d linearly independent hyperplanes

• In other words, a solution to a linear system

Example

$$x + y - z = 1$$

$$x - y + z = 1$$

Example

$$x + y + z = 1$$

$$x + y - z = 1$$

$$x - y + z = 1$$

The associated vertex is

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

The Primal Problem

 $\max_{x \in \mathbb{R}^{n \times 1}} \{ cx \mid Ax \leq b \}$

The Primal Problem

 $\max_{x \in \mathbb{R}^{n \times 1}} \{ cx \mid Ax \leq b \}$

The Dual Problem

$$\min_{\pi \in \mathbb{R}^{1 \times m}} \left\{ \, \pi b \mid \pi A = c, \pi \geq 0 \, \right\}$$

The Primal Problem

 $\max_{x \in \mathbb{R}^{n \times 1}} \{ cx \mid Ax \leq b \}$

The Dual Problem

$$\min_{\pi \in \mathbb{R}^{1 \times m}} \left\{ \pi b \mid \pi A = c, \pi \geq 0 \right\}$$

• Both problems are deeply connected

The Primal Problem

 $\max_{x \in \mathbb{R}^{n \times 1}} \{ cx \mid Ax \leq b \}$

The Dual Problem

$$\min_{\pi \in \mathbb{R}^{1 \times m}} \left\{ \, \pi \, \boldsymbol{b} \mid \pi \boldsymbol{A} = \boldsymbol{c}, \, \pi \geq \boldsymbol{0} \, \right\}$$

- Both problems are deeply connected
 - In fact, the dual provides a certificate of optimality for primal solutions

Weak Duality

Theorem (Weak Duality)

For any primal feasible x and any dual feasible π , $cx \leq \pi b$

Weak Duality

Theorem (Weak Duality)

For any primal feasible x and any dual feasible π , $cx \leq \pi b$

• Proof.
$$Ax \leq b \implies \underbrace{(\pi A)}_{c} x \leq \pi b$$
. \square

Theorem (Strong Duality)

$$\max_{\boldsymbol{x} \in \mathbb{R}^{n \times 1}} \left\{ \, c \boldsymbol{x} \mid A \boldsymbol{x} \leq \boldsymbol{b} \, \right\} = \min_{\boldsymbol{\pi} \in \mathbb{R}^{1 \times m}} \left\{ \, \boldsymbol{\pi} \boldsymbol{b} \mid \boldsymbol{\pi} \boldsymbol{A} = \boldsymbol{c}, \, \boldsymbol{\pi} \geq \boldsymbol{0} \, \right\}$$

as long as both problems are feasible

Theorem (Strong Duality)

$$\max_{\boldsymbol{x} \in \mathbb{R}^{n \times 1}} \left\{ \, c \, \boldsymbol{x} \mid A \boldsymbol{x} \leq \boldsymbol{b} \, \right\} = \min_{\boldsymbol{\pi} \in \mathbb{R}^{1 \times m}} \left\{ \, \boldsymbol{\pi} \boldsymbol{b} \mid \boldsymbol{\pi} \boldsymbol{A} = \boldsymbol{c}, \, \boldsymbol{\pi} \geq \boldsymbol{0} \, \right\}$$

as long as both problems are feasible

- Proof is a little more elaborate
 - ► Requires Farkas' Lemma

Theorem (Farkas' Lemma)

$$\exists \pi \geq 0, \pi A = c \iff \nexists x, Ax \leq 0, cx > 0$$

Theorem (Farkas' Lemma)

$$\exists \pi \geq 0, \pi A = c \iff \nexists x, Ax \leq 0, cx > 0$$

 Provides conditions under which a system of inequalities is solvable

• **Proof of Strong Duality.** Suppose the minimum of the dual problem is equal to $\delta \in \mathbb{R}$

- Proof of Strong Duality. Suppose the minimum of the dual problem is equal to $\delta \in \mathbb{R}$
- The following system is obviously infeasible for any $\varepsilon > 0$

$$\pi A = c$$

$$\pi b + s = \delta - \varepsilon$$

$$\pi \ge 0$$

$$s \ge 0$$

- **Proof of Strong Duality.** Suppose the minimum of the dual problem is equal to $\delta \in \mathbb{R}$
- The following system is obviously infeasible for any $\varepsilon > 0$

$$\pi A = c$$

$$\pi b + s = \delta - \varepsilon$$

$$\pi \geq 0$$

$$s \geq 0$$

$$(\pi, s) \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} = (c, \delta - \varepsilon)$$

$$(\pi, s) \geq 0$$

- **Proof of Strong Duality.** Suppose the minimum of the dual problem is equal to $\delta \in \mathbb{R}$
- The following system is obviously infeasible for any $\varepsilon > 0$

$$\pi A = c$$

$$\pi b + s = \delta - \varepsilon$$

$$\pi \ge 0$$

$$s \ge 0$$

$$(\pi, s) \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} = (c, \delta - \varepsilon)$$

$$(\pi, s) \ge 0$$

• As such, there is x and λ s.t.

- **Proof of Strong Duality.** Suppose the minimum of the dual problem is equal to $\delta \in \mathbb{R}$
- The following system is obviously infeasible for any $\varepsilon > 0$

$$\pi A = c$$

$$\pi b + s = \delta - \varepsilon$$

$$\pi \geq 0$$

$$s \geq 0$$

$$(\pi, s) \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} = (c, \delta - \varepsilon)$$

$$(\pi, s) \geq 0$$

• As such, there is x and λ s.t.

$$Ax + \lambda b \le 0$$

$$\lambda \le 0$$

$$cx + \lambda(\delta - \varepsilon) > 0$$

$$\begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ \lambda \end{pmatrix} \le 0$$

$$(c, \delta - \varepsilon) \begin{pmatrix} x \\ \lambda \end{pmatrix} > 0$$

• If $\lambda = 0$, then $Ax \leq 0$ and cx > 0

- If $\lambda = 0$, then $Ax \leq 0$ and cx > 0
 - ► The dual problem is infeasible. A contradiction.

- If $\lambda = 0$, then $Ax \leq 0$ and cx > 0
 - ► The dual problem is infeasible. A contradiction.
- If $\lambda < 0$, then $Ax \leq -\lambda b$ and $cx > -\lambda(\delta \varepsilon)$

- If $\lambda = 0$, then $Ax \leq 0$ and cx > 0
 - ► The dual problem is infeasible. A contradiction.
- If $\lambda < 0$, then $Ax \leq -\lambda b$ and $cx > -\lambda(\delta \varepsilon)$
 - ▶ Multiplying both sides by $-\lambda^{-1}$, we have that $A(-\lambda^{-1}x) \le b$ and $c(-\lambda^{-1}x) > \delta \varepsilon$

- If $\lambda = 0$, then $Ax \leq 0$ and cx > 0
 - ► The dual problem is infeasible. A contradiction.
- If $\lambda < 0$, then $Ax \leq -\lambda b$ and $cx > -\lambda(\delta \varepsilon)$
 - ▶ Multiplying both sides by $-\lambda^{-1}$, we have that $A(-\lambda^{-1}x) \le b$ and $c(-\lambda^{-1}x) > \delta \varepsilon$
 - ▶ Thus $y = -\lambda^{-1}x$ is a primal solution whose objective value is greater than $\delta \varepsilon$

Strong Duality

- If $\lambda = 0$, then $Ax \leq 0$ and cx > 0
 - ► The dual problem is infeasible. A contradiction.
- If $\lambda < 0$, then $Ax \leq -\lambda b$ and $cx > -\lambda(\delta \varepsilon)$
 - ▶ Multiplying both sides by $-\lambda^{-1}$, we have that $A(-\lambda^{-1}x) \le b$ and $c(-\lambda^{-1}x) > \delta \varepsilon$
 - ▶ Thus $y = -\lambda^{-1}x$ is a primal solution whose objective value is greater than $\delta \varepsilon$
- From Weak Duality, $\delta \varepsilon < cy \le \delta$

Strong Duality

- If $\lambda = 0$, then $Ax \leq 0$ and cx > 0
 - ► The dual problem is infeasible. A contradiction.
- If $\lambda < 0$, then $Ax \leq -\lambda b$ and $cx > -\lambda(\delta \varepsilon)$
 - ▶ Multiplying both sides by $-\lambda^{-1}$, we have that $A(-\lambda^{-1}x) \le b$ and $c(-\lambda^{-1}x) > \delta \varepsilon$
 - ▶ Thus $y = -\lambda^{-1}x$ is a primal solution whose objective value is greater than $\delta \varepsilon$
- From Weak Duality, $\delta \varepsilon < cy \le \delta$
- Since ε was arbitrary, and it can be as close as possible to 0, we have that $cy = \delta$. \square

Complementary Slackness

Theorem (Complementary Slackness)

$$x$$
 and π optimal $\iff \pi(b-Ax)=0$

Complementary Slackness

Theorem (Complementary Slackness)

$$x$$
 and π optimal $\iff \pi(b-Ax)=0$

• **Proof.** Note that $cx = \pi Ax \le \pi b$

Complementary Slackness

Theorem (Complementary Slackness)

$$x$$
 and π optimal $\iff \pi(b-Ax)=0$

- **Proof.** Note that $cx = \pi Ax \le \pi b$
- Besides, $cx = \pi b$ (that is, x and π are optimal) if and only if $\pi Ax = \pi b$. \square

• Suppose we want to find $\max\{cx \mid Ax \leq b\}$

- Suppose we want to find $\max\{cx \mid Ax \leq b\}$
 - We only need to check the vertices

- Suppose we want to find $\max\{cx \mid Ax \leq b\}$
 - ► We only need to check the vertices
 - ▶ In other words, choose a subsystem $A_Bx \leq b_B$ and force equality, i.e., find x s.t. $A_Bx = b$

- Suppose we want to find $\max\{cx \mid Ax \leq b\}$
 - ► We only need to check the vertices
 - ▶ In other words, choose a subsystem $A_Bx \leq b_B$ and force equality, i.e., find x s.t. $A_Bx = b$

Primal solution

$$x = A_B^{-1} b_B$$

- Suppose we want to find $\max\{cx \mid Ax \leq b\}$
 - ► We only need to check the vertices
 - ▶ In other words, choose a subsystem $A_Bx \leq b_B$ and force equality, i.e., find x s.t. $A_Bx = b$

Primal solution

$$x = A_B^{-1} b_B$$

$$(\pi_B, \pi_N) = (A_B^{-1}c, 0)$$

- Suppose we want to find $\max\{cx \mid Ax \leq b\}$
 - ► We only need to check the vertices
 - ▶ In other words, choose a subsystem $A_Bx \leq b_B$ and force equality, i.e., find x s.t. $A_Bx = b$

Primal solution

$$x = A_B^{-1} b_B$$

Dual solution

$$(\pi_B, \pi_N) = (A_B^{-1}c, 0)$$

• From Complementary Slackness, x is optimal as long as $Ax \leq b$ and $\pi \geq 0$

Example

$$\max 2x + y - 5z$$
s.t. $x + y + z \le 1$

$$x + y - z \le 1$$

$$x - y + z \le 1$$

$$x - y - z \le 1$$

$$-x + y + z \le 1$$

$$-x + y - z \le 1$$

$$-x - y + z \le 1$$

$$-x - y - z \le 1$$

$$\begin{aligned} \min \pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 + \pi_6 + \pi_7 + \pi_8 \\ \text{s.t. } \pi_1 + \pi_2 + \pi_3 + \pi_4 - \pi_5 - \pi_6 - \pi_7 - \pi_8 &= 2 \\ \pi_1 + \pi_2 - \pi_3 - \pi_4 + \pi_5 + \pi_6 - \pi_7 - \pi_8 &= 1 \\ \pi_1 - \pi_2 + \pi_3 - \pi_4 + \pi_5 - \pi_6 + \pi_7 - \pi_8 &= -5 \\ \pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6, \pi_7, \pi_8 &\geq 0 \end{aligned}$$

Example

Primal solution

$$x + y + z = 1$$

$$x + y - z = 1$$

$$x - y + z = 1$$

$$\pi_1 + \pi_2 + \pi_3 = 2$$

$$\pi_1 + \pi_2 - \pi_3 = 1$$

$$\pi_1 - \pi_2 + \pi_3 = -5$$

$$\pi_4, \dots, \pi_8 = 0$$

Geometrical Intuition

ullet x is optimal if c lies in the cone spanned by tight constraints

Geometrical Intuition

• x is optimal if c lies in the cone spanned by tight constraints

Theorem (Strong Duality)

$$\min_{x \in \mathbb{R}^{n \times 1}} \left\{ cx \mid Ax = b, x \ge 0 \right\} = \max_{\pi \in \mathbb{R}^{1 \times m}} \left\{ \pi b \mid \pi A \le c \right\}$$

as long as both problems are feasible

Theorem (Strong Duality)

$$\min_{x \in \mathbb{R}^{n \times 1}} \left\{ cx \mid Ax = b, x \ge 0 \right\} = \max_{\pi \in \mathbb{R}^{1 \times m}} \left\{ \pi b \mid \pi A \le c \right\}$$

as long as both problems are feasible

Primal solution

$$(x_B, x_N) = (A_B^{-1}b, 0)$$

Theorem (Strong Duality)

$$\min_{x \in \mathbb{R}^{n \times 1}} \left\{ cx \mid Ax = b, x \ge 0 \right\} = \max_{\pi \in \mathbb{R}^{1 \times m}} \left\{ \pi b \mid \pi A \le c \right\}$$

as long as both problems are feasible

Primal solution

$$(x_B, x_N) = (A_B^{-1}b, 0)$$

$$\pi = A_B^{-1} c_B$$

Theorem (Strong Duality)

$$\min_{x \in \mathbb{R}^{n \times 1}} \left\{ cx \mid Ax = b, x \ge 0 \right\} = \max_{\pi \in \mathbb{R}^{1 \times m}} \left\{ \pi b \mid \pi A \le c \right\}$$

as long as both problems are feasible

Primal solution

$$(x_B, x_N) = (A_B^{-1}b, 0)$$

$$\pi = A_B^{-1} c_B$$

- From Complementary Slackness, x is optimal as long as $x \ge 0$ and $\pi A < c$
 - ► The latter is equivalent to requiring positive reduced costs, that is, $\bar{c} = c \pi A = c (A_p^{-1}c_B)A \ge 0$