Homework 3

Jon Allen

September 19, 2014

- 2.6 F. Let a, b be positive real numbers. Set $x_0 = a$ and $x_{n+1} = (x_n^{-1} + b)^{-1}$ for $n \ge 0$.
 - (a) Prove that x_n is monotone decreasing.

proof

If x_n is monotone decreasing, then $x_n \ge x_{n+1}$ for all $n \ge 0$.

$$x_{n+1} = (x_n^{-1} + b)^{-1} = \frac{1}{\frac{1+bx_n}{x_n}} = \frac{x_n}{1+bx_n}$$

Note that if x_n and b are positive, then so is x_{n+1} . Now we are told that x_0 and b are positive, so we know that all x_n are positive. This means of course that $1+bx_n>1$ which in turn means that $x_n>\frac{x_n}{1+bx_n}=x_n+1$. Indeed it appears that not only is x_n monotone decreasing, it is strictly monotone decreasing. \square

(b) Prove that the limit exists and find it.

proof

As we noted in the previous proof, x_n is positive for all $n \geq 0$. This implies that $x_n > 0$ and is therefore bounded from below. Because x_n is monotone decreasing and bounded from below, it has a limit. \square

solution

$$L = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} (x_n^{-1} + b)^{-1} = \left(\left(\lim_{n \to \infty} x_n \right)^{-1} + b \right)^{-1} = \left(L^{-1} + b \right)^{-1}$$

$$L = \frac{1}{\frac{1}{L} + b}$$

$$1 = 1 + bL$$

$$0 = bL$$

So then $\lim_{n\to\infty} x_n = 0$.

G. Let $a_n = \left(\sum_{k=1}^n 1/k\right) - \log n$ for $n \ge 1$. **Euler's constant** is defined as $\gamma = \lim_{n \to \infty} a_n$. Show that $(a_n)_{n=1}^{\infty}$ is decreasing and bounded below by zero, and so this limit exists. HINT: Prove that $1/(n+1) \le \log(n+1) - \log n \le 1/n$

 \mathbf{proof}

$$a_{n+1} = \left(\sum_{k=1}^{n+1} \frac{1}{k}\right) - \log(n+1)$$

$$= \frac{1}{n+1} + \left(\sum_{k=1}^{n} \frac{1}{k}\right) - \log n - \log\left(1 + \frac{1}{n}\right)$$

M. Suppose that $(a_n)_{n=1}^{\infty}$ has $a_n > 0$ for all n. Show that $\limsup a_n^{-1} = (\liminf a_n)^{-1}$.

proof

Lets take some i, j such that $a_i \ge a_j$. The fact that $a_n > 0$ implies that if $a_i \ge a_j$ then $\frac{1}{a_j} \ge \frac{1}{a_i}$.