MIT Probability Course Summarized

Zaid Alyafeai

March 2018

Contents

1	Models and Axioms	2
2	Conditioning and Bays Rule	2
3	Independence	4
4	Counting	4
5	Discrete Random Variables	5
6	Continuous Random Variables	9
7	Multiple Continuous Random Variables	10
8	Derived Distributions	11
9	The Law of Iterated Expectations	12
10	Bernoulli Process	12
11	Poisson Process	13
12	Markov Chains	14
13	Bayesian Statistical Inference	16
14	Classical Inference	17
15	Hypothesis Testing	18

1 Models and Axioms

Sample Space: All possible outcomes of a certain experiment.

Event: Subset of the sample space.

Here are the axioms of probability

- 1. $P(A) \ge 0$
- 2. $P(\Omega) = 1$
- 3. Given a countable set of disjoint sequences of events $\{A\}_n$ we have

$$P(\cup A_i) = \sum P(A_i)$$

2 Conditioning and Bays Rule

We define conditional probability as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

and

$$P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$$

Note that conditional probabilities are probability distributions that follow the axioms of probability. **Exercise.** Let A be the event that there is a plane in the sky and B the event that we get an alarm from a certain radar that there is a plane. The probability that there is a plane and the radar alarms

Figure 1: Tree Diagram

$$P(A \cap B) = P(A)P(B|A) = 0.05 \times 0.99 = 0.0495$$

The probability that there is a plane and the radar doesn't work

$$P(A \cap B^c) = P(A)P(B^c|A) = 0.05 \times 0.01 = 0.0005$$

We find the total probability of B as

$$P(B) = P(A \cap B) + P(A^c \cap B)$$
$$= P(A)P(B|A) + P(A^c)P(B|A^c)$$

Figure 2: $P(B) = P(A \cap B) + P(A^c \cap B)$

Using that we have

$$P(B) = 0.05 \times 0.99 + 0.95 \times 0.10 = 0.1445$$

We can generalize the joint probability to three variables

$$P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$$

Given disjoint events A_1, A_2, A_3 then we can deduce the total probability using divide and conquer

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$$
$$= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3)$$

The final version of the Bays rule for these disjoint evidences

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum P(A_i)P(B|A_i)}$$

Figure 3: Total probability as a sum of three events

3 Independence

Two events A and B are independent if

$$P(B|A) = P(B)$$

Hence the event B doesn't change if A occurs. Note that independent events are different than disjoint events. Actually if A and B are disjoint then they must be dependent since P(B|A) = 0 but P(B) > 0 hence $P(B|A) \neq P(A)$. Also note that by the Bays rule we have

$$P(A \cap B) = P(A)P(B)$$

We define pairwise independence of a sequence of events $\{A\}_n$ as

$$P(\cap A_i) = \prod P(A_i)$$

which follows for any subset of the collection of $\{A\}$.

4 Counting

We define the number of outcomes of a multi-stage experiment with $\{a\}_n$ outcomes as $\prod a_i$. Here are some facts about counting

- 1. **Permutation** defines the number of ways of permuting n elements which equals n!.
- 2. **Subsets** the number of subsets of an n element set equals 2^n .
- 3. **Combination** choosing an ordered subset with k elements out of n set elements is defined as $n(n-1)\cdots(n-(k+1))$

- 4. Choose choosing an unordered subset of k elements out of an n element set is $\binom{n}{k}$
- 5. **Partitioning** The number of ways to partition a set of N elements into k subsets of sizes $n_1 + n_2 + \cdots + n_k = N$ is $\frac{N!}{\prod n_i}$

5 Discrete Random Variables

We define a random variable X as a function that maps from the sample space to the real numbers

$$X:\Omega\to\mathbb{R}$$

We associate with the random variable a probability mass functions defined as

$$P_X(x) = P(X = x)$$

$$= P(\{\omega \in \Omega \mid X(\omega) = x\})$$

5.1 Marginal and joint Distributions

By definition we have the joint distribution of two random variables X, Y as

$$P_{X,Y}(x,y) = P(X = x, Y = y)$$

The marginal distribution can be computed as

$$P_X(x) = \sum_y P_{X,Y}(x,y)$$

5.2 Geometric Distribution

Number of trails to get a success. Where k is the number of trails and p is the probability of success

$$P_X(k) = P(X = k) = (1 - p)^k p$$

5.3 Binomial Distribution

Total number of heads after n trials is a random variable X with probability of success p then

$$P_X(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

5.4 Expectation

The expectation of a random variable X is defined as

$$\mathbb{E}[X] = \sum_{x} x P(X = x)$$

Let g(X) be a function of the random variable then

$$\mathbb{E}[g(X)] = \sum_{x} g(x) P(X = x)$$

There are many properties

- (a) Expectation of a real number α is $\mathbb{E}[\alpha] = \alpha$
- (b) Expectation is a linear function

$$\mathbb{E}[\alpha X + \beta] = \sum_{x} (\alpha x + \beta) P_X(x)$$
$$= \alpha \sum_{x} x P_X(x) + \beta \sum_{x} P_X(x)$$
$$= \alpha \mathbb{E}[X] + \beta$$

(c) Linearity of expectation for two random variables X, Y

$$\mathbb{E}[X+Y] = \sum_{x} \sum_{y} (x+y) P_{X,Y}(x,y)$$

$$= \sum_{x} \sum_{y} x P_{X,Y}(x,y) + \sum_{x} \sum_{y} y P_{X,Y}(x,y)$$

$$= \sum_{x} x \sum_{y} P_{X,Y}(x,y) + \sum_{y} y \sum_{x} P_{X,Y}(x,y)$$

$$= \sum_{x} x P_{X}(x) + \sum_{y} y P_{Y}(y)$$

$$= \mathbb{E}[X] + \mathbb{E}[Y]$$

5.5 Variance

The variance of a random variable X is defined as the squared difference of that variable to the expectation

$$\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

This simplifies to

$$\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^{2}]$$

$$= \mathbb{E}[X^{2} - 2X \mathbb{E}[X] + \mathbb{E}[X]^{2}]$$

$$= \mathbb{E}[X^{2}] - 2\mathbb{E}[X \mathbb{E}[X]] + \mathbb{E}[X]^{2}$$

$$= \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$

5.6 Conditional Random Variables

We define a conditional PMF as

$$P_{X|A}(x) = P(X = x|A)$$

For instance we can condition on the geometric random variable as $P_{X|X>2}(x)$ to include only the successes after 2 trails.

5.7 Law of Total Expectation

Considering the collection of disjoint events $\{A\}_n$ such that $\cup A_i \cap B = B$ the by the total probability law by defining the random variable X as taking values from B

$$P_X(x) = \sum_i P(A_i)P(X = x|A_i)$$

Then multiply by x and sum

$$\mathbb{E}[X] = \sum_{i} P(A_i) \, \mathbb{E}[X|A_i]$$

5.8 Expectation and Variance of Independent Random Variables

Let X, Y be independent random variables then

$$\mathbb{E}[XY] = \sum_{x} \sum_{y} xy P_{X,Y}(x,y)$$
$$= \sum_{x} \sum_{y} (xy) P_{X}(x) P_{Y}(y)$$
$$= \mathbb{E}[X] \mathbb{E}[Y]$$

Also we have

$$\operatorname{var}(X+Y) = \mathbb{E}[(X+Y)^2] - \mathbb{E}[X+Y]^2$$

$$= \mathbb{E}[X^2] + 2\mathbb{E}[XY] + \mathbb{E}[X^2] - \mathbb{E}[X]^2 - 2\mathbb{E}[X]\mathbb{E}[Y] - \mathbb{E}[Y]^2$$

$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2 + \mathbb{E}[Y^2] - \mathbb{E}[Y]^2$$

$$= \operatorname{var}(X) + \operatorname{var}(Y)$$

5.9 Expectation of Binomial RV

Consider a binomial random variable X as a sum of n Bernoulli independent random variables $X = \sum_i X_i$ where $X_i = 1$ if it is a success experiment. Note that

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i} X_{i}\right] = \sum_{i} \mathbb{E}[X_{i}] = \sum_{i} p = np$$

Hat problem.

Consider the problem where we have n number of peoples attending a party. Every person leaves his hat before entering the party. When the party ends every person gets a random hat. What is the expected number of people to get their own hats? what is the variance?

Let X be the number of people to get their hat back. Then X can be written as a sum of Bernoulli variables $X = \sum_i X_i$

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i} X_{i}\right] = \sum_{i} \mathbb{E}[X_{i}] = \sum_{i} 1/n = n/n = 1$$

The variance is more complicated to evaluate

$$\operatorname{var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

First note that

$$\mathbb{E}[X]^2 = 1^2 = 1$$

For the the first expectation

$$\mathbb{E}[X^{2}] = \mathbb{E}\left[\left(\sum_{i} X_{i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{i} X_{i}^{2}\right] + \mathbb{E}\left[\sum_{i \neq j} X_{i} X_{j}\right]$$

$$= \sum_{i} \mathbb{E}[X_{i}^{2}] + \sum_{i \neq j} \mathbb{E}[X_{i} X_{j}]$$

$$= n/n + \sum_{i \neq j} P(X_{i} X_{j} = 1)$$

$$= 1 + \sum_{i \neq j} P(X_{i}) P(X_{j} = 1 | X_{i} = 1)$$

$$= 1 + \sum_{i \neq j} \frac{1}{n(n-1)} = 1 + \frac{n(n-1)}{n(n-1)} = 2$$

Hence

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = 2 - 1 = 1$$

6 Continuous Random Variables

We define the following

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

Where $f_X(x)$ is defined is the probability density function.

Consider the case where $\delta \rightarrow 0$ then the area under the curve can be approximated as

$$P(x \le X \le x + \delta) \approx f_X(x)\delta$$

6.1 Cumulative Distribution

The cumulative distribution is defined as

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t)dt$$

6.2 Expectation

It is defined like in the discrete case

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

6.3 Uniform Distribution

Defined as

$$T(n) = \begin{cases} \frac{1}{b-a} & a \le X \le b \\ 0 & \text{otherwise} \end{cases}$$

The expectation can be evaluated directly as the center of gravity

$$\mathbb{E}[X] = \frac{b+a}{2}$$

7 Multiple Continuous Random Variables

We define the joint distribution

$$P((X,Y) \in S) = \int \int_{S} f_{X,Y}(x,y) dx dy$$

The marginal distribution

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$

The conditional distribution

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Buffon's Needle

Given a needle with length l < d find the probability of the needle intersecting one of the lines

Figure 4: Needle problem

Note first that X, θ are uniform independent random variables with $0 \le x \le d/2$; $0 \le \theta \le \pi/2$

$$f(x,\theta) = f_X(x)f_{\theta}(\theta) = \frac{2}{d} \times \frac{2}{\pi} = \frac{4}{d\pi}$$

Note that the needle intersects one of the lines if $x \le \frac{l}{2}\sin(\theta)$ hence

$$P\left(x \le \frac{l}{2}\sin(\theta)\right) = \int_0^{\pi/2} \int_0^{l/2\sin(\theta)} \frac{4}{d\pi} dx d\theta = \frac{4}{d\pi} \int_0^{\pi/2} \int_0^{l/2\sin(\theta)} dx d\theta = \frac{2l}{\pi d}$$

8 Derived Distributions

Given the cumulative distribution we can find the marginal distribution

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

Exercise. Given $Y = X^3$ where X is uniform in the interval [0,3], find the distribution of Y? Consider the cumulative distribution then

$$F_Y(y) = P(Y \le y)$$

$$= P(X^3 \le y)$$

$$= P(X \le y^{1/3})$$

$$= \frac{1}{2}y^{1/3}$$

Then we have

$$\frac{d}{dy}F_Y(y) = \frac{1}{6y^{2/3}}$$

Exercise. Given that Y = aX + b with a > 0 then find $f_Y(y)$ using $f_X(x)$.

Note that

$$F_Y(y) = P(Y \le y)$$

$$= P(aX + b \le y)$$

$$= P(X \le (y - b)/a)$$

$$= F_X\left(\frac{y - b}{a}\right)$$

By taking the derivative with respect to *y*

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{1}{a}F_X\left(\frac{y-b}{a}\right)$$

8.1 Convolution formula

Given W = X + Y where X, Y are independent random variables then

$$P_W(w) = P(X + Y = w)$$

$$= \int_{-\infty}^{\infty} f_{X,Y}(x, w - x) dy$$

$$= \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$$

9 The Law of Iterated Expectations

$$\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$$

Consider $g(Y) = \mathbb{E}[X|Y]$ as a random variable

$$\mathbb{E}[\mathbb{E}[X|Y]] = \sum_{y} \mathbb{E}[X|Y = y]P_{Y}(y)$$

$$= \sum_{y} \sum_{x} x P_{X|Y}(X = x|Y = y)P_{Y}(y)$$

$$= \sum_{x} \sum_{y} x P_{X,Y}(X = x, Y = y)$$

$$= \sum_{x} x P_{X}(x)$$

$$= \mathbb{E}[X]$$

Student's Score Problem

Let X be the student score of a random student and Y the section number taking values in $\{0,1\}$. Given that $\mathbb{E}[X|Y=1]=90$ and $\mathbb{E}[X|Y=2]=60$, then calculate the expected quiz score of a random student. Note that by the law of iterated expectations

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]] = \sum_{y} \mathbb{E}[X|Y = y] P_{X|Y}(X|Y = y) = \frac{1}{3} \times 90 + \frac{2}{3} \times 60 = 70$$

Store Problem

Define N as the number of stores and X_i as the money spent on a store i then calculate the expected money spent in total.

Note that we need to evaluate $Y = \sum_{i=1}^{N} X_i$. Also note that by the linearity of expectations

$$\mathbb{E}[Y|N=n] = n \mathbb{E}[X]$$

Hence we have for a general N

$$\mathbb{E}[X|N] = N \mathbb{E}[X]$$

Then by the law of iterated expectations

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|N]] = \mathbb{E}[N\,\mathbb{E}[Y|N]] = \mathbb{E}[N]\,\mathbb{E}[X]$$

Where the last equality follows by independence of the store number and the money spent.

10 Bernoulli Process

A sequence of independent Bernoulli trials with $P(X_i = 1) = p$ and $P(X_i = 0) = 1 - p$. We also assume p is constant during the process.

Exercise. Find the probability of getting $X_i = 1$ for all processes.

Assume that there are N trials, then

$$P(X_1, X_2, \dots, X_N = 1) = \bigcup_{i=1}^{N} P(X_i = 1) = p^N$$

Then taking $N \to \infty$

$$P(X_1 = 1, X_2 = 1, \cdots) = \lim_{N \to \infty} p^N = 0$$

10.1 Time until *k*th Arrival

Consider $Y_k = \sum_{i=1}^k T_i$ where T_i is a geometric random variable , then we have

$$\begin{split} P(Y_k = t) &= P(k-1 \text{ arrivals in } \left[1, \cdots, t-1\right], \text{ arrival at } t) \\ &= \binom{t-1}{k-1} p^{k-1} (1-p)^{t-k} p \end{split}$$

11 Poisson Process

Define $p(k,\tau)$ as the probability of k arrivals in duration τ this is a probability distribution where $\sum_k p(k,\tau) = 1$. Disjoint intervals have independent number of arrivals with τ small then

$$p(k,\tau) = \begin{cases} 1 - \lambda \tau & k = 0 \\ \lambda \tau & k = 1 \\ 0 & k > 1 \end{cases}$$

Then we can define

 $\mathbb{E}[\text{Number of arrivals in }[0,\tau]] = \lambda \tau$

Then we can define the expected number of arrivals per unit length

$$\lambda = \lim_{\tau \to 0} \frac{P(1, \tau)}{\tau}$$

We can use the Bernoulli processes by assuming that τ is very small, then

$$P(k,\tau) = \binom{n}{k} \left(\frac{\tau\lambda}{n}\right)^k \left(1 - \frac{\lambda\tau}{n}\right)^{n-k}$$

By taking $\tau \to 0$

$$p(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}$$

12 Markov Chains

It models customer services with the following distributions

- 1. Customer arrival using a Bernoulli distribution with parameter p
- 2. Customer departure using a geometric distribution with parameter q
- 3. State X_n which measures the number of customers at step n

12.1 Markov Property

The probability of an event depends solely on the event before it

$$P(X_{n+1} = j | X_n = i) = P(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$$

We define the probability of reaching a state j from state i after n steps as

$$r_{ij}(n) = P(X_n = j | X_0 = i)$$

Note that we have $r_{ij}(0) = 1$ if i = j and $r_{ij}(0) = 0$ for $i \neq j$. Similarly we have $r_{ij}(1) = p_{ij}$

12.2 Recursive Formula

Suppose that we want to reach a state j after n steps then we calculate it for n-1 steps using $r_{ik}(n-1)$ where k is an intermediary state then we calculate the last step

From the diagram

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

Hence we can evaluate the total probability as

$$P(X_n = j) = \sum_{i=1}^{m} P(X_0 = i) r_{ij}(n)$$

Exercise. Evaluate the following probabilities of the diagram $r_{11}(0)$, $r_{11}(11)$, $r_{11}(n)$

$$0.5$$
 0.8 0.5 0.5 0.5 0.2 0.2 0.2

Note that $r_{11}(0) = 1$, $r_{11}(1) = p_{11} = 0.5$ and

$$r_{11}(n) = 0.2 \times r_{21}(n-1) + 0.5 \times r_{11}(n-1)$$

Exercise. According to the diagram

We calculate the probabilities

$$P(X_1 = 2, X_2 = 6, X_3 = 7 | X_0 = 1) = p_{12}p_{26}p_{67}$$

$$P(X_4 = 7|X_0 = 2) = p_{26}p_{67}p_{76}p_{67} + p_{26}p_{66}p_{66}p_{67} + p_{21}p_{12}p_{26}p_{67}$$

12.3 Steady State

After long time the probability of a certain state become constant regardless of the initial state i.e $r_{ij}(n) = \Pi_{ij}$ meaning that it for large n the state probability becomes constant. We define **Recurrent state** as a state that can be returned to from the initial state and **Transient state** if not recurrent. A **period** happens when there exists d > 2 groups such that if n is in the first group then n + 1 will be in the next group.

Theorem. The initial state doesn't matter if the recurrent states are in a single class and the single recurrent class is not periodic.

12.4 Balance Equations

Suppose there exits a steady state then

$$\Pi_j = \sum_{k=1}^m \Pi_k p_{kj}$$

There exits a unique solution if $\sum_{j} \Pi_{j} = 1$.

Exercise. Find the steady state probabilities of the following diagram

Then

$$\Pi_1 = 0.5 \times \Pi_1 + 0.2 \times \Pi_2$$

$$\Pi_2 = 0.5 \times \Pi_1 + 0.8 \times \Pi_2$$

We deduce then

$$0.5 \times \Pi_1 = 0.2 \times \Pi_2$$

Also we use that $\Pi_1 + \Pi_2 = 1$ to find that $\Pi_1 = 2/7$ and $\Pi_2 = 5/7$.

13 Bayesian Statistical Inference

$$\frac{\theta}{P_{\theta}(\theta)} P_{X|\theta}(x|\theta) \xrightarrow{X} \text{estimator} \frac{\hat{\theta}}{}$$

Figure 5: Bayesian Inference

This captured by the Bayes rule

$$P_{\theta|X}(\theta|X) = \frac{P_{\theta}(\theta)P_{X|\theta}(x|\theta)}{P_{X}(x)}$$

13.1 Maximum a Posteriori Probability

This defines the optimal value that optimizes the posterior probability

$$P_{\theta|X}(\theta^*|x) = \max P_{\theta|X}(\theta|x)$$

13.2 Least Minimum Squared Error

Suppose we want to estimate the best value for a random variable θ then we evaluate $\mathbb{E}[(\theta - c)^2]$

Exercise. Let $f_{\theta}(\theta) = 1/6$ be a uniform distribution in the interval $\theta \in [4, 10]$ then evaluate the optimal value for θ .

We evaluate the expectation of the difference squared

$$\mathbb{E}[(\theta - c)^2] = \mathbb{E}[\theta^2] - 2c \mathbb{E}[\theta] + c^2$$

By evaluating the derivative with respect to c

$$\frac{d\mathbb{E}[(\theta-c)^2]}{dc}=0$$

We have

$$c = \mathbb{E}[\theta] = \int_4^{10} \frac{\theta}{6} d\theta = 7$$

14 Classical Inference

We want to estimate a parameter θ of the distribution $P_X(x;\theta)$

Figure 6: Bayesian Inference

14.1 Maximum likelihood estimation

$$\hat{\theta}_{\mathrm{ML}} = \mathrm{argmax}_{\theta} P_X(x; \theta)$$

Exercise. Find the maximum likelihood estimation of the exponential distribution

Assuming that we have X_1, X_2, \dots, X_n independent random variables then

$$\hat{\theta}_{\mathrm{ML}} = \max_{\theta} \prod_{i=1}^{n} \theta e^{-\theta x}$$

It will be much easier to take the log since that doesn't change the optimization problem

$$\max_{\theta} \left(n \log \theta - \theta \sum_{i=1}^{n} x_i \right)$$

By taking the derivative and take it equal to zero

$$\theta = \frac{n}{\sum_{i=1}^n x_i}$$

Definition. We say an estimator to be unbiased if $\mathbb{E}[\hat{\theta}] = \theta$

Exercise. Find an unbiased estimator for the parameter p of a binomial distribution with n trials.

Let $X = X_1 + \cdots + X_n$ as a sequence of Bernoulli random variables. We estimate the parameter p as the average

$$\hat{p} = \frac{X_1 + \dots + X_n}{n}$$

Then this estimator is unbiased since

$$\mathbb{E}[\hat{p}] = \mathbb{E}\left[\frac{X_1 + \dots + X_n}{n}\right] = \frac{1}{n} \sum_i \mathbb{E}[X_i] = p$$

14.2 Linear Regression

Given n data points (x_i, y_i) and we want to model it as a line

$$y \approx \theta_0 + \theta_1 x$$

Then we can use the squared error to evaluate the parameters

$$\min_{\theta_0,\theta_1} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

14.3 Probabilistic Model

We can approximate the error as a normal Gaussian distribution

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i$$

where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Then we need to optimize

$$\max_{\theta_0, \theta_1} \exp \left\{ -\frac{1}{2\sigma_2} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2 \right\}$$

15 Hypothesis Testing

We define the null hypothesis

$$X \sim P_X(x:H_0)$$

and the alternative hypothesis

$$X \sim P_X(x; H_1)$$

We need a way to reject or accept H_0 .

15.1 Likelihood Ratio Test

We reject H_0 if

$$\frac{P_X(x; H_1)}{P_X(x; H_0)} > \xi$$

where ξ is a critical value.

Exercise. Given n data points that are **i.i.d** (independent and identically distributed) we define

$$H_0: X_i \sim \mathcal{N}(0,1)$$

$$H_1: X_i \sim \mathcal{N}(1,1)$$

Then the ratio

$$\frac{\exp\left\{-\frac{1}{2}\sum(x_i - 1)^2\right\}}{\exp\left\{-\frac{1}{2}\sum x_i^2\right\}} > \xi$$

After some manipulations we could reject H_0 if

$$\sum_{i=1}^{n} x_i > \xi'$$

where ξ' is a function of ξ .