C.P. No. 1375

PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Influence of Prior Heat and Creep on Fatigue in Structural Elements of DTD 5014 (RR58) Aluminium Alloy

Ьy

F. E. Kiddle

Structures Dept., R.A.E., Farnborough Hants.

LONDON: HER MAJESTY'S STATIONERY OFFICE

1977

MY OD NET

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPRODUCED FROM BEST AVAILABLE COPY

UDC 539.388.1 : 539.219.2 : 539.377 : 539.376 : 669.715 : 620.178.38

INFLUENCE OF PRIOR HEAT AND CREEP ON FATIGUE IN STRUCTURAL ELEMENTS OF

DTD 5014 (RR58) ALUMINIUM ALLOY

by

F. E./Kiddle

SUMMARY

Effects of heat on fatigue have been studied by fatigue tests at ambient temperature on specimens first subjected to a single period of heating with and without steady load applied. The tests employed constant amplitude loading on various structural elements in DTD 5014 (RR58) aluminium alloy material. Heating was applied at temperatures in the range 100°C to 170°C for times ranging from 1h to 20000h.

The initiation of fatigue cracks was significantly affected by heating, particularly at temperatures of 110°C and higher when the effects occurred comparatively rapidly. The two mechanisms of importance were changes in microstructure at the machined surface which encouraged initiation, and changes in residual stress by creep which encouraged or discouraged initiation according to the creep being compressive or tensile.

* Replaces RAE Technical Report 76094 - ARC 37042.

) 11 1

CONTENTS

	Page
INTRODUCTION	3
2 MATERIAL AND SPECIMENS	3
3 EXPERIMENTAL PROCEDURE	4
4 DISCUSSION	5
4.1 Effect of temperature and duration of heating period	5
4.2 Effect of steady load during heating	7
4.3 Effect of prior heating with zero load on S-N performance	9
4.4 Effect of prior heating with steady load on S-N performance	11
5 CONCLUSIONS	12
Tables 1 to 14	13
References	35
Illustrations Figures	1-24

Conversions: $1000 \text{ lbf/in}^2 = 6.894 \text{MN m}^{-2} = 0.689 \text{hbar}$

1 INTRODUCTION

The work reported is part of a programme of basic research into the influence of heat on fatigue in aircraft structure, some parts of which have already been published 1,2,3. It is concerned with the effect of applying a single period of heat prior to fatigue tests at ambient temperature on notched and lug specimens of DTD 5014 (RR58) aluminium alloy. The general pattern of fatigue behaviour at room temperature against which the effects of heat are assessed was established in an earlier report 4.

It is shown that there are two mechanisms by which application of heat can significantly modify fatigue crack initiation - microstructural changes in machined surfaces and creep redistribution of stress concentration.

2 MATERIAL AND SPECIMENS

The specimens were manufactured from DTD 5014 material produced commercially from one melt and nominally fully hardened by precipitation for 17h at 200° C. Table 1(a) and (b) gives the chemical composition and static tensile properties respectively. The effect on tensile strength of further heating at 200° C (the precipitation heat treatment temperature) and 150° C (the temperature most commonly used in the investigation) is seen in Figs.1 and 2. At both temperatures there is a progressive rise and fall in strength with time at temperature suggesting the as-received material was in a slightly underaged state.

The material was produced in 12ft (3.7m) lengths of extruded bar of rectangular section from which nineteen fatigue specimens could be extracted. Each specimen was identified by a five digit number, the first three digits being the bar identification number and the last two defining the position of the specimen in the bar relative to the leading end of the bar during extrusion. Three types of fatigue specimen were used: two forms of notched specimen, and a lug.

The two types of notched specimen are shown in Fig.3a and b and have theoretical stress concentrations of 2.3 and 3.4 times the average stress on the net section; for brevity they will be referred to as the 2.3 notch and the 3.4 notch. These specimens were loaded axially through lug ends by round pins on which flats were machined with the object of preventing premature failure by improving the fatigue performance of the lug. No lug failures occurred.

The lug specimen in Fig. 4 has two identical test sections. It was loaded axially by round pins of clearance fit and has a theoretical stress concentration

of approximately 3.1. Sideplates were fitted so that the specimen could be removed from a creep machine to the fatigue machine with minimum disturbance to the seating of the pin in the lug. The pins were interconnected by two spring steel strips which were slightly longer than the pin centre distance and were bowed elastically on assembly to apply a tensile load of about 40 lb to the specimen. By this arrangement, when the specimen was not in a loading machine, the springs prevented rotation of the pins and held them in contact with the lugs in the normal loaded position. The sideplates were separated from the faces of the lug by PTFE washers. Steel shim washers were used to take up any clearance which would allow movement of the pin in a direction parallel to the bore. In fatigue testing the outer ends of the sideplates were pin jointed to end fittings.

All specimen components were thoroughly degreased with an organic solvent before assembly and all test sections were dry during testing.

3 EXPERIMENTAL PROCEDURE

The general principle of investigation was to establish a datum fatigue performance by means of continuous fatigue tests to failure at ambient temperature as described in a previous report 4, and then to carry out comparative tests on specimens which had been first subjected to a period of heating whilst under steady tensile, zero or compressive load. The data on endurance were supplemented by fractographic and metallurgical observations on changes in the surface condition of the material and in the mode of crack initiation.

All fatigue testing was at ambient temperature in fluctuating tension (0 < R < 1) of constant amplitude applied at 33Hz. Mean stress was kept constant for each particular type of specimen and was selected to give endurances in the range 10^5 to 10^7 cycles. All stresses quoted are based on the net crosssectional area, i.e. the region of fatigue failure.

The specimens for the programme were extracted from 63 bars of material and, to minimise uncertainties in the results arising from variation in material properties between bars and along the length of each bar, specimens were selected for test in the following way. From any bar five specimens were selected at about equal spacing along the length for fatigue testing without heating. The logarithm of endurance was plotted against position in the bar and the variation of endurance along the bar was assumed to be given by a straight line, fitted by the method of least squares – a typical example is

shown in Fig.5. This straight line defines the nominal endurance for specimens at each position in the bar. Specimens were then selected from those remaining for tests with heating; those tested at the same heating condition were widely spaced along the bar. Specimens were heated, with or without applied load, at temperatures in the range 100°C to 170°C for times from 1h to 20000h. Heating was either in a forced convection oven or, when steady load was applied, in a creep machine. When compressive load was required specimens were encased in special end fittings (see Fig.6) designed such that a tensile load on the fitting produced a compressive load on the specimen. In all cases temperatures were maintained to within ±1%. After heating specimens were left unloaded for at least one week to ensure that specimens did not differ appreciably in the amount of creep recovery which occurred at room temperature. The specimens were then fatigue tested to failure at room temperature.

The fracture surfaces of the failed specimens were examined for two features - the number of discrete positions on the surface from which fatigue cracks emanated (damage nuclei) and the areas of the fatigue crack surfaces as illustrated in Fig.7. Observations were also made of the surface condition of the material by examining the microstructure and micro-hardness of the surface layers in the bore of holes before and after heating.

Finally, for lug specimens, the end which did not fail in the fatigue test was broken statically for examination of the fatigue crack surface and for determination of residual static strength. The results of this work are reported elsewhere and it suffices to say that heating did not significantly affect the relationship between residual static strength and crack area.

4 DISCUSSION

4.1 Effect of temperature and duration of heating period

To investigate the influence of the temperature and duration of a heating period applied prior to the fatigue test, 2.3 and 3.4 notch specimens were fatigue tested both unheated and after heating at various temperatures in the range 100°C to 170°C for times between 1h and 20000h with no load applied to the specimen. The results of the fatigue tests in terms of endurance, number of damage nuclei and fatigue crack areas are given in Tables 2 to 5 - Tables 2 and 3 give results for the 2.3 notch without heat and with heat respectively and Tables 4 and 5 give corresponding results for the 3.4 notch. These results are shown graphically in Fig.8 for the 2.3 notch and in Fig.9 for the 3.4 notch by plotting endurance against the temperature of the heating period and showing the

duration of heating in parenthesis. In these figures the ordinate is endurance expressed as a percentage of the nominal endurance in the tests without heat, as defined in section 3. For each notch it is seen that in relation to the results without heat which are plotted at 20°C, heating at 110°C and higher reduced the mean endurance by a constant amount; there is no correlation between endurance and duration of heating within the scatter bands. The lack of sensitivity of endurance to the values of exposure time and temperature above 110°C suggests that the reduction in endurance after heating represents a limiting effect which is established by quite short exposure times, although doubtless the magnitude of the reduction is particular to the type of specimen and the fatigue loading employed.

Previous work showed that when heating was applied at different stages of a fatigue test, the greatest reduction in endurance was obtained when heat was applied prior to the fatigue test. The inference was that heat affected the initiation of fatigue cracks, and this is supported by the trend observed in Figs. 10 and 11 for the number of damage nuclei to be increased markedly by an application of heat. To pursue the apparent connection between the reduction in endurance and the changes in the pattern of crack initiation, metallurgical and fractographic studies were conducted in the region of the specimen surface. It was found that the manufacturing process of drilling and reaming the hole left a work affected zone to a depth of about 40µm in which the hardness was significantly higher than that of the interior of the material; on unheated specimens cracks had initiated just below this hard surface film. For specimens which had been heated a number of differences were observed; the workaffected surface layer now contained a coarse secondary precipitate, its hardness was reduced to a value comparable with that of the interior, and fatigue cracks had initiated at the surface. It is deduced from this that the effect of heat was to modify the work-hardened surface layer such that its resistance to fatigue crack initiation was lowered. As a consequence the development of damage nuclei now took place right at the surface of the material and was more rapid and more uniformly distributed, causing reduction in fatigue endurance.

Returning to Figs. 8 and 9, the constant reduction in endurance at temperatures above about 110°C represents the complete loss of the beneficial influence of the work-hardened surface on crack initiation. For both notches the reduction in mean endurance after heating at 100°C is considerably less than the limiting value despite the inclusion for the 3.4 notch of exposures in excess of 5000h.

This suggests that the mechanism by which heat modifies the surface layer weakens considerably as temperature is reduced from 110°C and that the limiting reduction in endurance may not be realized by heating at 100°C however long the exposure.

To summarise this section, it has been shown that exposure to heat modified the microstructure of the machined surface of a specimen, and thus increased its susceptibility to fatigue crack initiation. At temperatures of 110°C and greater the benefit of the machined surface was rapidly lost during heating and the fatigue endurance of notched specimens was reduced to a limiting value which was independent of temperature. Below 110°C the action of heat was considerably weaker.

4.2 Effect of steady load during heating

We will now consider how the effect of heat on endurance was modified by the application of steady load during the heating period. 2.3 notch specimens were heated for 3h at 150°C with various applied stresses in the range -18000 lb/in to +42800 lb/in prior to fatigue testing to failure. Results are given in Table 6 for tests without heat and in Table 7 for tests with heat. Fig. 12 shows graphically how the endurance, expressed as a percentage of nominal endurance, varies with the magnitude of the stress applied during heating and Fig. 13 illustrates the corresponding variation in the number of damage nuclei. It is seen that endurance increased continuously as the stress during heating was varied through the range from compression to tension. This result suggests that load during the heating causes a significant redistribution of stress across the net section by creep, thus changing the local mean stress in the region of the notch surface during the subsequent fatigue loading. From studies of cumulative damage 8,9 it is known that residual stress due to local yielding under the applied fatigue loads has a significant influence on the initiation and early propagation of fatigue cracks and it has been suggested 10,11 that the modification of residual stress by creep during a heating period may therefore give a significant interaction. However, the modification of residual stress by creep will be effective only if it remains unaltered by the subsequent fatigue loading. Let us look in detail at what happens to the local stresses at the notch surfaces under typical loadings.

Fig.14a, b and c shows diagrammatically the variation of local stress at a stress concentration of 2.3 for specimens which are exposed to heat at nominal stresses for 0, +36 and -18ksi respectively and are then loaded to the

nominal mean stress of 13ksi followed by fatigue cycling at 18 ± 14ksi. It is assumed that the material behaves perfectly elastically below its yield stress and perfectly plastically above it, that the stress-strain characteristics of the material are initially similar in tension and compression, and that the period of creep is effective in fully redistributing stress across the net section. In Fig. 14a heat is applied at zero load at A and, after cooling, the specimen is loaded to a nominal peak fatigue stress of 32ksi which takes the notch stress through yield to B. Subsequent fatigue loading will alternate between B and C with a local mean stress at D. In Fig. 14b the specimen is initially loaded to a nominal 36ksi which takes the notch stress past yield to E and is then heated for a period during which creep redistribution reduces the notch stress from E to F, the average stress on the net section. On unloading, the stress reduces to G with some compressive yielding and the application of a nominal peak fatigue stress of 32ksi then takes the stress to 'I vithout turther yielding. Subsequent fatigue loading will now alternate between H and I with a local mean stress at J. In Fig. 14c the specimen is loaded to a nominal -18ksi taking the notch stress to K. During heating compressive creep relaxes the stress to L and on unloading, the stress rises to M. Application of a nominal peak fatigue stress of 32ksi further increases the notch stress through tensile yield to N. Fatigue loading will then alternate between N and O with a local mean stress at P. It is clearly seen from Fig. 14a and b that the local mean stresses under fatigue loading are significantly different, whereas a comparison of Fig. 14a and c shows that the local mean stresses are the same.

Taking the 0.1% proof stress of the material given in Table 1 as the yield stress, the local mean stress under fatigue loading can be evaluated for each value of creep stress applied in the tests described earlier.

Nominal stress applied during heating period ksi	Local mean stress under fatigue loading ksi
-18	22.8
0	22.8
18	18
· 32	-0.2
42	-13.6

This information is presented graphically in Fig.15: local mean stress has been plotted as an inverse factor on the assumption that endurance varies approximately as the inverse of the local mean stress. It is seen that this diagram resembles the shape of the curve in Fig.12, the achieved results of creep on endurance. There are however two areas of disagreement:-

- (1) At the lower end of the curve when creep stress is in the range -18ksi to +14ksi, residual stress theory predicts no effect and the continuing trend of reducing endurance with reducing creep stress observed in Fig.12 cannot be explained. This trend has been observed generally by the author in similar work³ on other aluminium-copper alloys.
- (2) At the upper end of the endurance-creep stress curve, the rate of increase in endurance falls off at about 30ksi compared to a 43ksi level prediction by residual stress theory. This is probably due to the occurrence of creep damage which offsets the beneficial effect of creep redistribution.

A further insight into the variation of endurance with creep stress can be obtained by studying the number of damage nuclei on the fracture surfaces. Fig.13 shows that at creep stresses of -18ksi and 0 ksi, the number of damage nuclei is much higher than the mean number for cold control specimens. It has been shown by the author that an increase in the number of nuclei implies that nuclei are developing with increasing rapidity and with a corresponding shortening of the nucleation phase which contributes to the reduction in endurance. The number of nuclei for a creep stress of -18ksi suggests that the notch surface is even more susceptible to cracking than when the work-hardened layer is modified by heat at 0 ksi.

It is seen from the foregoing discussion that redistribution of stress by creep interacts significantly with fatigue and that tensile creep can give large improvements in endurance in relation to specimens subjected to heat without load.

4.3 Effect of prior heating with zero load on S-N performance

The effects of prior heating on the S-N performance of the two notched specimens and the lug specimen were established by heating specimens for 1000h at 150°C without applied load and then fatigue testing them at ambient temperature to obtain mean S-N curves for comparison with those for unheated specimens. For these tests, specimens were selected from many different bars of material and specimens from each bar were distributed over the stress range investigated.

Individual test results are given in Tables 8, 9 and 11 to 14 together with estimates of standard deviation for each test condition. Where necessary unbroken specimens were accounted for by Lariviere's method 12.

Curves of mean endurance against stress are given in Figs.16 to 18 for the three specimens tested and it is seen that heating significantly reduced endurance at all fatigue stress levels for the 2.3 notch and the 3.4 notch, but had little effect on the endurance of lug specimens. The general reduction in the S-N performance of notched specimens is in line with the findings of section 4.1 where it was shown that exposure to heat modified the microstructure of the machined surface of a specimen and thus increased its susceptibility to fatigue crack initiation. For the lug specimen, the initiation phase of the life is comparatively short due to fretting between the pin and the bore of the lug and it is not surprising therefore that heating had little effect on endurance.

Further evidence that the reduction in life is associated with a reduced initiation phase is apparent when the S-N performances for specimens with and without prior heating are compared on the basis of S-N curves drawn through the lowest endurance observed at each stress level. The significance of a curve through the lower boundary of S-N data was discussed in a previous report on the performance of the present specimens in fatigue tests without heating. It was shown that the endurance of the notched specimens tended to have an extreme value distribution resulting in a fairly definite lower limit on the endurance at each stress level. Fig.19 presents lower boundary S-N curves for the 2.3 notch showing an appreciable effect from prior heating at zero load. It is emphasized that the curve for unheated specimens passes quite smoothly through points representing the lowest values of endurance from samples ranging in size from 2 to 67 tests so it can be accepted that the curve represents an effective lower limit on endurance for tests without heating. The curve for tests with heating at zero load, for which the maximum sample size is eight tests, shows a substantial reduction in the lower limit of endurance indicating a reduction in the crack initiation phase of the life. The effect of heating on the lower limit for the 3.4 notch (see Fig. 20) is smaller than for the 2.3 notch, probably because the initiation phase is shorter 4. Fig. 21 presents comparable curves for the lug specimen and it is seen that the lower limit is unaffected by heating because the initiation phase of the life is comparatively short due to fretting.

It is generally accepted that scatter is associated with the early stages of the fatigue life leading to the initiation of cracks near the surface, rather than with the later stages of the life during which the crack propagates through the cross section 13. As heating appears to reduce the initiation phase of the life of specimens it could therefore be expected that there would be a corresponding reduction of scatter in endurance. Information on the variation of scatter in endurance with heating is presented in Figs.22 and 23 for the three specimens tested. Fig.22 is a striking demonstration of reduction in scatter for the 2.3 notch, but surprisingly no significant effect is observed for the 3.4 notch in Fig.23. For the lug specimen, also in Fig.23, again there is no significant effect but this would be expected as heating has no effect on the mean or lower limit S-N performance.

4.4 Effect of prior heating with steady load on S-N performance

In section 4.2 it was shown that the application of steady load during heating caused creep redistribution at the stress concentration and modified the endurance in relation to that obtained after heating without load. We will now consider the effect of applying a tensile stress during heating on the S-N performance of the 2.3 notch.

The prior heating exposure was 1000h at 150°C with an applied stress equal to the subsequent fatigue mean stress (18000 lb/in²); on average the overall creep strains measured were 0.014%. The results of these tests are given in Table 10 and are plotted as a mean S-N curve in Fig.16 which shows that prior creep had a beneficial effect on endurance by comparison with the effect of prior heat; increase in life ranged from a factor of 1.25 at high alternating stresses to a factor of 15 at a low alternating stress (8000 lb/in²). Although the longer lives after creep were a consequence of the reduced local mean stress, the specimens without the benefit of creep redistribution also experienced a reduction in local mean stress when the peak stress of the fatigue loading caused local yielding. Thus with increasing alternating stress the benefit of creep diminished and was superseded by the effect of yielding where the two curves converge.

The diminishing benefit from creep with increasing alternating stress is re-presented in Fig. 24 as the ratio of the endurances after creep and after heat, and is seen to have an approximately linear relationship with alternating stress. Consideration of the stress-strain behaviour at the root of the notch,

as already demonstrated in Fig.14, shows that the local mean stress in the heated specimens reduces linearly with increasing alternating stress. It follows that the linear fall off in creep benefit in Fig.24 would be expected if there was an approximately inverse linear relationship between log endurance and mean stress.

Prior creep is seen to affect also the lower limit of endurance for the 2.3 notch in Fig. 19. The significant increase in the lower limit over most of the stress range is indicative of a lengthened initiation phase, compatible with the increase in mean life already discussed. The increase in scatter from prior creep in Fig. 22 is also as expected.

5 CONCLUSIONS

Fatigue tests under constant amplitude loading were conducted on simple structural specimens in DTD 5014 (RR58) aluminium alloy material, and the effect of applying heat, with or without a steady load, prior to the tests was determined. The following conclusions were drawn:

- (a) Heating caused microstructural changes in the machined surface of the material which increased its susceptibility to fatigue crack initiation. The result was a significant reduction in the fatigue endurance of notched specimens, but for lug specimens the reduction was comparatively small because the influence of the machined surface on crack initiation was short lived under the action of fretting.
- (b) Heating at temperatures of 110°C and greater reduced the fatigue endurance rapidly with time of exposure, to a limiting value which was independent of temperature. Below 110°C the action of heat was considerably weaker.
- (c) Steady load during heating caused stress redistribution by creep. The resulting change in local stress in the region of crack initiation was beneficial or detrimental to fatigue performance according to the creep being tensile or compressive.

Table !

(a) Chemical composition

Element	7 by weight
Cu	2.33
Mg	1.64
Si	0.15
Fe	1.07
Mn	0.08
Zn	0.09
Ni	1.28
Ti	0.03
A1	Remainder

Material was solution treated for 8 hours at 530°C and artificially aged for 17 hours at 200°C

(b) Static tensile properties

No. of specimens tested	Mean	Estimated stan-	Me an	Estimated stan-
	0.1% PS	dard deviation	UTS	dard deviation
	1b/in ²	of 0.1% PS	lb/in ²	of UTS
84	55350	1160	62830	827

Table 2

FATIGUE TESTS WITHOUT HEAT - NOTCH Kt = 2.3

FATIGUE STRESS - 18000 ± 14000 1b/in² - CONTROL SPECIMENS FOR PRIOR HEAT TESTS

	Nominal	Achieved	Achieved	Major fatigu	e crack	Minor fatigu	e crack
Specimen No.	endurance	endurance	andurance Z nominal	Area I net section	Number of damage nucleis	Area I net section	Number of damage nucleis
12301	0.683	0.705	103	35	le	8	2c
12305	0.688	0.728	106	50	1c + 2	23	3
12310	0.694	0.600	87	41	2 c	٥	0
12315	0.700	0.094	99	65	2c + 1	1	1c
12319	0.705	0.754	107	52	1 c	17	2c
13701	0.690	0.701	102	43	1 e	11	2c
1 370 5	0.673	0.676	1 0 0	35	2c	6	2c
13710	0.654	0.671	103	42	1 c	22	2c
13715	0.634	0.549	87	36	2c	1	2c
13719	0.619	0.683	110	59	2 c	47	2c + 1
14301	0.799	0.720	90	39	1c + 3	22	2
14305	0.737	0.817	111	45	2 c	25	2 c
14310	0.665	0.809	122	43	2c	9	2c
14315	0.601	0.427	71	41	lc + 2	4	2c + 3
14319	0.554	0.640	116	42	1c + 4	2	1c + 1
14601	0.626	0.651	104	37	2c	8	lc
14605	0.641	0.503	79	48	2c	14	1c + 4
14609	0.656	0.823	126	38	2c	o	0
14615	0.680	0.751	110	45	2c	14	l c
14619	0.696	0.614	88	32	2c	3	1 c
15101	0.587	0.621	106	74	2c	2	1 c
15105	0.590	0.619	105	38	l c	3	l c
15110	0.594	0.491	83	58	1c + 1	1	1 c
15115	0.598	0.604	101	42	1c	1	1 c
15119	0.602	0.650	108	44	1c	1	1 c
19201	0.685	0.733	107	20	1c + 1	1	2
19205	0.652	0.594	91	22	ic + 1	3	2
19210	0.613	0.639	104	26	1c + 2	24	1 c
19215	0.576	0.534	93	23	1c + 4	17	1c + 2
19219	0.548	0.580	106	22	2c + 8	12	8

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three elong the bore.

Table 3

FATIGUE TESTS WITH PRIOR HEAT - NOTCH Kt = 2.3

FATIGUE STRESS = 18000 ± 14000 1b/in²

	Temperature	Duration	Nominal	Achieved	Achieved	Major fatig	ue creck	Minor fatig	us creck
Specimen No.	of heating period OC	of heating period	endurance	endurance	endurance I nominal	Area I net section	Number of demage nuclei	Area I net section	Number of demage nuclei
14309	100	3	0.679	0.743	109	46	2¢	,	1c
14317		"	0.577	0.752	130	49	2c + 1	25	2e
14617	, ,,	•	0,688	0.708	103	59	2c • 3	11	1c + 1
14306	110		0.722	0.689	95	59	20 0 1	11	1c
14312	*	۳	0.639	0.560	58	48	2c	8	1c
14608	••	н	0.652	0.639	98	41	10	33	2c
13702	**	1406	0,686	0.470	69	49	10 . 1	3	2c + 3
13704	**	"	0,678	0.362	53	48	Ic + 16	28	le + 13
13717	"	, n	0.627	0.434	69	58	2c • 4	16	10 + 5
14308	120	3	0.693	0,807	117	59	1c + 3	36	2
14314	••		0,613	0.601	98	51	2c • 3	42	2c + 4
14614		**	0,675	0.600	89	34	2c	20	le le
13706	н	371	0,669	0.476	71	50	16 + 4	34	le + 3
13707			0,665	0.520	78	60	2c + 6	43	20 + 4
13712	•		0.646	0.543	84	42	10 • 3	26	1c + 7
14316	1 130	3	0.589	0.467	79	42	2c • 2	37	ŀ
14613	"	ı.	0,626	0.441	70		2c + 5	8	le + 3
1461#	н	н	0,692	0,621		56	20 + 1	31	2c + 4
13704		105	0,658	0.568	90	40	10 - 5	22	2c
13718	,,	105	0.623	0.455	86 73	64		33	1c + 1
14118	1.60	. 3	0.565	0.624	110	53	20 + 2	19	1c + 6
14606	"	1 1	0.644	0.607	(46	1	7	lc
146 : 1	.,		0.664	0.695	94	40	20 • 4	30	1c + 1
13708		31.5	0,661	0.491	105	42	1		1c
13714	, n	31.5	0,638		74	56	16 - 6	27	2c + 4
12307	150	31.3	0.691	0.548	86	54	2c • 5	49	1c + 5
12312	1	, ,	0.697	0.499	72	62	1, • '	36	2c + 6
14303			0.767	0.523	75	72	16 4 8	44	2c + 9
14311	ļ <u>"</u>		0.752	0.455	59	59	1c • 6	30	2c + 6
14603			0.633	0.619	62	50	2c · 2	39	2c + 3
15107	1.	,н		0.758	120	43	• •	32	1c + 3
15112			0.592 0.596	0,277	47	50	16 * 7	45	1c + 17
13703	,,	10		0.474	80	56	1. 4	34	1c + 3
13:13		10	0.682 0.650	0.550	81	40	16.4	37	1c + 7
19203	1 "	1000		0.547	84	55	16 + 6	9	1c + 5
19203		1000	0.668	0.572	86	35	12	19	1c + 9
14604	160	3	0.605	0.508	84	25	/c · 18	14	12
14612	1		0.637	0.469	74	54	2c + 2	27	•
	160		0.668	0.613	92	64	2c • 4	55	1c + 3
14602	170	"	0.629	0.575	91	51	2c + 6	35	2c + 3
14607		" "	0.648	0.517	80	47	2	14	2c + 2
14613	. "	"	0.671	0.629	94	56	20 + 5	8	2c + 4

^{.*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore

FATIGUE TESTS WITHOUT HEAT - NOTCH Kt = 3.4

FATIGUE STRESS - 18000 ± 8000 1b/in² - CONTROL SPECIMENS FOR PRIOR HEAT TESTS

				Hajor fatigu	e crack	Minor fatig	e crack
Specimen No.	Nominal endurance 10 ⁵ cycles	Achieved endurance 10 ⁵ cycles	Achieved endurance	Area I net section	Number of demage nucleis	Area % net section	Number of damage nucleis
10201	0.823	0.945	115	63	1c + 5	5	1c + 10
10205	0.858	0.782	91	52	1c + 4	37	5
10210	0.903	0.735	81	55	4	31	2
10215	0.951	1.12	118	59	6	25	lc + 10
10219	0.991	0.987	100	61	1c + 4	25	1c + 3
11301	1.30	1.22	93	54	2c + 3	38	2c + 6
11305	1.27	1.27	100	71	2c + 3	24	1c + 9
11310	1.24	1.36	110	48	2c + 6	39	2c + 10
11315	1.20	1.34	112	70	2c + 3	2	1c + 5
11319	1.17	1.03	88	43	1c	37	2c + 2
13301	1.36	1.18	86	62	4	41	1c + 7
13305	1.29	1.35	105	46	1c + 3	5	1c + 3
13310	1.20	1.46	122	39	2	9	1
13315	1.12	1.19	106	40	lc + 2	30	2c + 4
13319	1.06	0.911	86	49	1c + 5	5	2c + 6
15001	1.47	1.74	119	41	2	21	1c
15005	1.34	1.17	87	44	1c + 1	19	1c + 5
15011	1.17	1.01	86	49	1c + 2	32	1
15015	1.07	1.06	99	55	2c + 2	2	8
15018	1.00	1.14	114	33	2c	27	lc + 2
15901	1.10	1.12	102	43	1 c	36	2 c
15905	1.09	1.08	99	59	2c	21	1 c
15910	1.09	1.06	98	45	1 c	31	1 c
15915	1.08	1.08	100	75	2c + 3	6	1c + i
15919	1.08	1.10	102	42	1c	9	2
16501	0.838	0.760	91	54	19	21	16
16505	0.889	1.09	122	42	1	25	ic + 5
16510	0.957	0.849	89	63	12	30	1c + 9
16515	1.03	1.03	100	61	2c + 8	54	12
16519	1.09	1.11	102	60	2c + 9	1	1c + 2
16901	0.855	0.935	109	36	1c + 9	30	1c + 6
16905	0.867	0.904	104	61	1c + 4	33	lc + 3
16910	0.882	0.773	88	46	5	16	ic + 15
16915	0.897	0.695	78	59	10	44	1c + 8
16919	0.910	1.18	129	73	2c + 7	16	9
17201	1.20	1.24	103	61	2c + 6	49	2c + 5
17205	1.20	1.07	89	43	2c	31	lc + 1
17210	1,20	1,46	121	63	1c + 2	2	10
17215	1.20	1.03	86	43	3	30	2
17219	1.21	1.27	105	40	1 a	39	1c

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

Table 5

FATIGUE TESTS WITH PRIOR HEAT - NOTCH Kt = 3.4 FATIGUE STRESS - 18000 ± 8000 lb/in²

Specimen	Temperature of heating	Duration of heating	Hominal	Achiaved	Achieved	Major fatigu	•	Minor fatign	
Bo.	period °C	period	endurance iO cycles	endurance 10 ⁵ cycles	endurance I nominal	Area X met section	Number of demage nuclei*	Area I net section	Number denage nuclei
		 					 -	ļ	Bucies
10206	100	54.5	0.866	0.748	86	47	4	₩	10 + 5
11314	-	-	1.21	0.782	65	73	2c + 12	22	2e + 1
15907] "		1.09	0.990	91	51	2c • 1	23	
17204	"		1.20	1.04	4 7	39	1c + 1	29	le le
17212		. "	1.20	0.822	68	56	1c + 4	52	2e • 5
10211		545	0.912	0.720	79	64	1c • 8	34	10 + 1
11307	-		1.26	0.865	69	66	1c + 10	44	20 + 6
11318	-	•	3.18	0.771	65	58	1c • 6	29	10 + 6
15912	•		1.09	0.753	69	73	10 * 6	33	16 + 1
17202	•	•	1,20	0.791	.i6	45	lc + 7	34	2c + 1
10213	"	5450	0.931	1.02	109	56	,	34	4
10218	i -	*	0.981	0.825	84	45	3	45	3
11312	-		1.22	1.18	97	63	1c + 7	61	6
15909	! "	•	1.09	1,04	95	75	1c + 8	21	2c + 5
17216	"	•	1.20	1.14	95	63	1c + 8	57	10 + 1
10208	110	13.5	0.885	0.504	57	52	1c • 5	37	,
11304	-	i -	1.28	0.918	72	49	16 + 5	25	2c +
15914	-	-	1.09	0.811	75	55	2c + 4	9	le •
17217	-	٠,	1.21	0.819	68	48	16 • •	42	lc +
10217	,	134	0.971	0.665	69	61		44	16 +
113/11	-		1,22	0.690	57	52	2c + 13	48	,
15903	-	-	1.10	0.647	59	59	2c • 9	20	2c •
15918			1.08	0.588	3.	61	20 • 11	57	20 0
17209	}	i -	1.20	0.737	61	33	20 . 4	43	16 •
10203	l	1340	0.840	0.646	;;	33	16.9	42	7
10217	I .	',~	0.922	0.666	12		1		16 .
11308	i .	1 .	1.25	0.931	74	1	1c + 8	41	1 '
15913			1.09	0.594	1	60	1c + 8	53	2c + '
17211	l	,	1	1	55	61	12	59	13
10204	120	1	0.849	0.658	55	49	9	45	9
	120	3.5	1	0.685	81	63	lc • 8	18	16 +
11317		_	1.19	0.943	80	53	1c + 4	42	2c +
		-	1,09	0.710	65	51	10 + 11	50	2c +
17293			1.20	0.906	75	4>	2c + 3	26	2c +
10209		35.5	0.894	0.699	76	38	2c • 7	55	2c +
11306	"	"	1.27	0.707	56	52	2c • 6	38	lc +
15916	"	"	1.08	0.642	59	46	6	44	lc +
1 / 207	"	1 "	1.20	0.887	74	54	•	44	16 +
10216	"	354	0.961	0.683	71	53	8	39	le +
11311	"	"	1,23	0.742	60	53	10	47	7
15904	"	1 "	1.09	0.634	58	66	1c + 11	50	le •
17218	"		1.21	0.650	54	64	1c + 13	62	16
16503	, H	20000	0.863	0.640	74	60	10 + 14	31	10
16511	· •	20000	0.972	0.678	70	47		32	10 +
10207	130	1 1	0.875	0.859	98	75	1c + 7	38	lc +
11303	-	"	1.29	1.05	81	53	1c + 2	51	2 0 +
15917	"	"	1.08	0.815	75	54	ic + 5	36	10 -
17208		"	1.20	0.965	80	53	10 + 3	45	1c +
10214		10	0.941	0.588	63	72	2c + 10	49	10 •
11316		"	1.19	0.688	58	65	1c + 10	39	1c +
15902			1.10	0.580	53	55		34	10
17204	n n		1.20	0.601	50	43	10 + 5	42	16.4
10202		100	0.831	0.594	72	44	10 + 5	39	""
11309		н	1.24	0.902	73	52	2c + 3	42	2c +
15911	,,,	n n	1.09	0.641	39	50	16 + 9	45	le •
17214	, ,,	н	1.20	0.679	56	66	16 + 9	63	16 +
13307	150	1000	1.25	0.879	65	55		46	1
	130	1000	1.41	1			14	37	11
15003	ļ		1	0.819	36	51	ļ		
15013	! "		1.12	0.857	"	36	6	35	11
16918	j "		0.907	0.513	68	55	1 4	29	10 +

^{*} for example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three slong the bore

Table 6

FATIGUE STRESS - 18000 ± 14000 1b/in2 - CONTROL SPECIMENS FOR PRIOR CREEP TECTS

٦						_	-										-
ie crack	Number of damage nuclei*	2c	e e	0]c	2c	<u>2</u>	2	10	10	ا ا	-	1c + 1	1c + 1)c	2c + 3	
Minor fatigue crack	Area % net section	8	23	0	~	17	2	3	1	-		-	12	13	6	32	
ue crack	Number of damage nuclei*	lc	1c + 2	2c	2c + 1	J.c	2c	10	1c + 1	1c	1c	1c + 2	1c + 1	m	P4	1c + 4	_
Major fatigue crack	Area % net section	35	50	41	65	52	74	38	58	42	77	57	98	09	40	65	_
	Achleved endurance % nominal	103	901	87	66	167	106	105	83	101	108	93	109	93	120	88	
	Achleved endurance 10 ⁵ cycles	0.705	0.728	0.600	0.694	0.754	0.621	0.619	0.491	0.604	0.650	0.644	0.734	0.613	0.770	0.552	
	Nominal endurance 10 cycles	0.683	0.688	0.694	0.700	0.705	0.587	0.590	0.594	0.598	0.602	0.691	0.676	0.658	0.640	0.627	_
	Specimen No.	12301	12305	12310	12315	12319	15101	15105	15110	15115	15119	19001	19005	19010	19015	19019	_

* For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

Table 7

FATIGUE STRESS - 18000 ± 14000 1b/in² - HEATING PERIOD = 3 HOURS AT 150°C

	Annlied creen	Nominal	Achioved	Achionod	Major fatigue crack	ue crack	Minor fatigue crack	ue crack
Specimen No.	stress	endurance	endurance	endurance	Area	Number of	Area	Number of
	lb/in	10 ⁵ cycles	10 ⁵ cycles	Z nominal	% net section	nuclei*	% net section	nuclei*
12304	- 18000	0.687	0.305	77	61	17	52	11
12317	:	0.703	0.335	87	62	10 + 9	53	2c + 14
15104	:	0.589	0.350	59	54	81	65	2c + 23
15117	:	0.600	0.359	09	20	1c + 17	45	1c + 17
12307	0	0.691	0.499	72	62	1c + 7	36	2c + :
12312	:	0.697	0.523	75	72	1c + 8	77	2c + 9
15107	=	0.592	0.277	47	45	-	_	Ic
15112	=	0.596	0.474	8	26	1c + 4	34	1c + 3
12309	18000	0.693	0.662	96	61	2c + 1	11	10
12316	•	0.701	0.708	101	7.4	2c + 1	4	Ic + 3
15109	=	0.593	0.547	92	55	1c	5	2c
15116	=	0.599	799.0	109	20	10	70	2c
12308	32000	0.692	0.951	137	77	2c	2	1c + 2
12314	:	0.699	1.19	170	59	_	_	2
15108	=	0.593	0.984	166	07	10	7	10
15114	:	0.597	0.857	144	45	2c	22]c
19014	=	0.644	1.18	183	75	1c + 1	7)c
12303	42800	0.686	0.892	130	20	9	29	9
12311	=	0.695	0.995	143	65	1c + 2	12	1c + 4
15103	:	0.589	1.19	201	45	10	28	Ic + 1

* For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

Table 8

FATIGUE TESTS WITHOUT HEAT - NOTCH Kt = 2.3

			Major fatig	ue creck	Minor fatig	ne czack	Estimated
Average stress on net area lb/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Area on helf the net section X	Number of Camage nuclei*	Area on half the net section.X	Number of demage nuclei*	standard deviation of log ₁₀
18000 ± 16000	16601	0.398	15	1c + 2	13	1c + 2	0.105
10	16605	0.581	15	2 c	3	2c	
*1	16610	0.300	26	1 1	1	2c + 1	
I I	16615	0.497	25	2c + 3	16	5	
11	16619	0.377	29	1c + 2	9	2c	
H .	18201	0.357	17	9	13	2c + 11	
11	18215	0.307	68	9	2	2c + 14	
18000 ± 15000	18216	0.296	52	2c + 12	17	1c	
18000 ± 14000	11701	0.701	36	2c + 1	17	1c	0.083
••	11705	0.552	34	2c	1	lc	
"	11710	0.649	40	1c + 1	1	le	ĺ
11	11715	0.664	37	1 c	16	1e	İ
11	11719	0.432	31	1 c	1	1c + 1	
••	12301	0.705	35	l c	8	2c	
II .	12305	0.728	50	1c + 2	23	3	
11	12310	0.600	41	2c	0	0	
II .	12315	0.694	65	2c + 1	1	1c	
11	12319	0.754	52	1 c	17	2c	
11	13701	0.701	43	l c	11	2 c	
11	13705	0.676	J5	2c	6	2c	
ti	13710	0.671	42	le	22	2c	
11	13715	0.549	36	2 c	1	2c	
**	13719	0.683	59	2c	47	2c + 1	
TI TI	14301	0.720	39	1c + 3	22	2	
u	14305	0.817	45	2 c	25	2c	
H	14310	0.809	43	2c	9	2c	
11	14315	0.427	41	1c + 2	4	2c + 3	
**	14319	0.640	42	1c + 4	2	1c + 1	
ft	14601	0.651	37	2c	8	le	
"	14605	0.503	48	2c	14	1c + 4	
•	14609	0.823	38	2 c	0	0	
••	14615	0.751	45	2c	14	10	}
#I	14619	0.614	32	2c	3	1c	
**	15101	0.621	74	2 c	2	1c	
**	15105	0.619	38	1 c	3	1c	
41	15110	0.491	58	1c + 1	1	1c	1
11	15115	U.604	42	le	1	1c	
••	15119	0.650	44	1 c	1	le le	
11	15401	0.813	32	1 c	5	1c	,
11	15405	0.712	56	2c	8	2 c	
11	15409	0.680	60	1 c	5	2c	

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

		Padures as	Major fatige	ue crack	Minor fatige	ue crack	Estimated
Average stress on net area lb/in	Specimen No.	Endurance (N) 10 ⁵ cycles	Area on helf the net section %	Number of damage nuclei#	Area on half the net section I	Number of damage nuclei*	standard deviation of log 10
18000 ± 14000	15415	0.758	52	le	0	0	
"	15419	0.701	41	2c	14	2 c	
••	17101	0.644	61	2c + 1	21	1c + 1	
•	17105	0.524	42	2c + 1	ı	lc + 1	
11	17110	0.603	43	2c + 2	10	lc	ļ
O C	17116	0.424	48	3	,	2 c	
**	17119	0.706	65	lc + 1	ı	lc + 2	
**	17402	0.865	48	lc + 1	0	٥	
••	17406	0.406	45	1c	1	lc	1
**	17410	0.891	57	lc	28	1c	1
*1	17415	0.804	46	2c	2	2c	İ
	17419	0.918	59	2c + 1	9	2c	
*11	17901	0.604	35	2c + 1	35	1 c	1
	17905	0.625	51	1 c	10	2c	
**	17910	0.698	49	2 c	42	2c	
11	17915	U.400	48	2c + 1	1	2c	
**	17919	0.567	40	2 c	12	2c	
	18202	0.859	17	1c + 1	3	1c + 1	
**	18205	0.900	52	2c + 1	35	lc + 1	1
••	18701	0.536	15	1 c	8	3	
•	18705	0.586	29	3	8	1c	
	18710	0.539	27	1c + 1	20	1	
41	18715	0.570	22	lc + 1	14	3	
"	18719	0.601	26	1c + 2	1	l c	
0	19001	0.644	57	lc + 2	1	1	
14	19005	0.734	56	1c + 1	12	lc + l	
*1	19010	0.613	60	3	13	1c + 1	Į.
17	19015	0.770	40	1	9	1c	
	19019	0.552	65	lc + 4	32	2c + 3	}
"	19201	0.733	20	1c + 1	1	2	
81	19205	0.594	22	1c + 1	3	2	
**	19210	0.639	26	1c + 2	24	10	
11	19215	0.534	23	1c + 4	17	1c + 2	
	19219	0.580	22	2c + .8	12	8	1
18000 ± 13000	18208	0.722	66	lc + 3	19	2c + 1	
18000 ± 12000	12313	1.10	56	2c	0	0	0.297
••	15106	0.887	47	1 c	12	2 c	
	16206	4.63	60	1	0	0	
	18203	1.21	19	10	8	1	
11	18218	0.622	36	1 c	5	1c + 2	
11	19002	1.29	48	1	0	0	
18000 ± 11000	18212	0.974	40	ic + 2	39	1c	
18000 ± 10000	12302	1.45	48	1c	0	0	0.23
"	i5118	0.941	57	10	1 0	0	1

^{*} For example, 2c * 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

]	Hajor fatig	ue creck	Minor fatig	ue creck	Ketimated
Average stress on net area lb/in ²	Spacimen No.	Endurance (N) 10 cycles	Area on half the net section I	Number of damage nuclei*	Area on half the net section %	Number of damage nuclei*	standard deviation of log ₁₀
18000 ± 10000	16218	1.51	43	l c	0	0	
	17118	1.30	48	le	1	l c	İ
н	18206	2.35	48	le	15	le	1
н	18209	4.47	32	1 c	0	0	
18000 ± 9000	10601	61.5 UB	-	-	-	-	0.11944
	10602	1.90	37	l c	1	le	
H	10605	1.81	40	le .	0	0	
*1	10610	1.82	33	le	0	0	
**	10615	1.63	39	le	0	0	}
	10618	1.85	34	2c	0	0	
и	11201	1.36	38	1c	1	1c	1
n	11205	2.34	44	lc	0	0	
11	11207	2.04	39	le	0	0	
	11210	3.59	38	10	2	l c	
**	11211	1.49	44	lc	5	0	
**	11215	2.11	37	le	0	0	
11	11219	1.18	36	le	2	Ic	
	13201	2.03	37	10		0	
	13205	1.64	42	le le	0		
11	13210	1.95	35	10	1	1c	
n	13215	1.70	47	l c		0	
	13219	2.34	42	i c			
u	16201	1.75	48	2c	0		
н	16205	2.08	39	le	1	le	
		1		ł	,	0	
	16210	1.95	38	le 1-	0	0	
,,	16215	2.31	37	1c	1	1	
н	16219	1.66	55	le 2-	10	le o	
0	16701	1.55	43	2c	0	0	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	16705	2.26	43	le	1	l c	
	16710	1.28	45	1 c	0	C	
	16715	1.74	40	1 c	1	l c	
,,,	16718	2.13	38	l c	14	l c	
" "	16719	28.4 UB		-		_	
"	17001	2.34	34	l c	0))	
"	17006	2.07	39	le	0	0	1
"	17010	2.14	37	l c	0	0	
" "	17015	2.28	40	l c	0	0	
i	17019	1.34	35	2c	0	U	
	18207	3.00	29	1 c	0	0	
"	18211	3.41	35	1 c	0	0	
"	18219	2.19	43	l c	0	0	
18000 ± 8000	12306	1.62	38	lc	0	0	0.893**
"	15113	1.64	46	1 c	0	0	
"	15402	1.80	45	l c) 0	ه ۱	1

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

^{**} Standard deviation adjusted by Lariviers's method 12 for unbroken specimens.

UB = unbroken.

Table 8 (concluded)

			Major fatig	ue creck	Minor fatig	ue crack	Estimated
Average stress on net area	Specimen No.	Endurance (N) 10 ⁵ cycles	Area on helf the net section %	Number of damage nuclei*	Area on half the net section X	Number of damage nuclei*	standard deviation of log 10
18000 ± 8000	17106	2.08	41	le	0	0	
11	18204	207 UB	_	-	-	-	
11	18213	65.9	35	1 c	0	0	
18000 2 7000	12318	3.73	62	le	0	0	
a	16202	5.78	44	1 c	0	0	
H	17902	2.61	41	1 c	25	le	
41	17906	3.19	47	1c	36	2 c	
u	18210	205 UB	-	-	-	-	
*1	19006	143 UB	-	-	-	-	
18000 ± 6500	17913	4.01	50	lc	1	le	
18000 ± 6000	17102	5.89	50	1c	0	0	
H	17918	3.54	49	1 c	0	0	

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three slong the bore.

UB = unbroken,

FATIGUE TESTS WITH PRIOR APPLICATION OF HEAT - NOTCH Kt = 2.3 1000h AT 150°C AT ZERO APPLIED STRESS

			Hajor fatig	ue crack	Minor fatig	ue crack	Estimated
Average atress on net area lb/in ²	Specimen No.	Endurance (N) 10 ⁵ cycles	Arem on helf the net section %	Number of damage nuclei*	Area on helf the net section %	Number of damage nuclei*	standard deviation of log 10
18000 ± 16000	16007	0.241	70	8	27	16	
18000 ± 14000	15802	0.664	04	2	26	2	0.112
II .	15814	0.440	43	1c + 4	27	6	
11	15816	0.389	45	1c + 5	12	1c + 7	1
01	19203	0.572	35	12	19	1c + 9	1
et .	16006	0.360	46	5	1	4	1
u	19211	0.508	25	2c + 18	14	12	
11	16016	0.453	63	7	24	8]
*1	16613	0.298	47	1c + 6	2	5	
18000 ± 12000	15807	0.728	46	1c + 1	2	1 c	0.121
*1	15817	0.674	62	1	1	lc + 1	
11	16003	0.619	62	1	4	2	
II .	16009	0.477	68	1c + 5	ı	1c + 1	
U	16602	0.391	39	1c + 1	1	2	
"	16612	0.822	52	1c + 2	8	2c + 1	
19000 ± 10000	15806	1.22	62	lc	0	0	0.093
"	16004	1.33	63	1	2	le	
n	16013	1.20	51	lc + 1	2	2c	
TI .	16014	1.48	43	1 c	0	0	1
11	16608	0.867	61	5	28	1c + 2	ļ
"	16614	0.900	56	1c + 1	34	lc + 2	<u> </u>
18000 ± 9000	11203	1.36	50	1c + 2	4	1	
"	11218	1.28	39	l c	24	lc + 2	
18000 ± 8000	15811	2.27	48	1c	14	1c	0.107
	16017	2.06	53	1c	1	1 c	
15	16018	1.82	52	lc	0	0	
н	16603	1.38	42	1 c	3	1	
П	16611	1.91	44	1 c	1	l c	
"	16616	1.20	47	2	1	1	
18000 ± 7000	15812	2.63	67	ic	1	1	0.077
11	15813	2.98	43	1 c	1	1	
11	16002	204 UB	-	-	-	-	
11	16012	3.52	43	1 c	0	0	
0	16609	3.45	45	1 c	0	0	
	16617	2.64	51	1c	1	1 c	1 <u>i </u>
18000 ± 6000	15803	204 UB	-	T	-	-	
u	15808	211 UB	-	-	-	•	
11	16011	180	59	1	0	0	
11	16606	2.96	51	1 c	0	0	
11	16607	208 UB	-	~	-	-	
11	16618	2.67	55	1c + 1	0	0	

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

^{**} Standard deviation adjusted by Leriviere's method 12 for unbroken specimens.

UB = unbroken.

FATIGUE TESTS WITH PRIOR APPLICATION OF HEAT - NOTCH Kt = 2.3

1000h AT 150°C WITH 18000 1b/in² APPLIED STRESS

Table 10

Average stress	0.0.4	Endurance	Major fatig	ue crack	Minor fatig	ue crack	Letimated
on net area	Specimen No.	(N) 10 ⁵ cycles	Area on half the net section %	Number of demage nuclei*	Area on half the net section X	Number of damage nuclei*	standard deviation of log 10
18000 ± 14000	17505	0.369	71	1c + 4	2	1	0.109
11	17511	0.573	57	2	12	1c + 1	
O	18702	0.540	50	1	24	4	
u	17513	0.542	58	1c + 5	1	5	
	18707	0.485	47	1c + 6	0	v	}
u	19602	0.652	46	1c + 3	22	1c + 4	
**	19607	0.386	49	1c + 8	1	1c + 1	
u	19610	0.784	45	2c + 1	1	10	
18000 ± 12000	17507	3.70	43	lc	υ	o	0.215
11	17512	2.08	50	1c + 1	0	U	
н	17516	1.50	47	1	U	o	
n	19601	1.24	41	1 c	د	1 c	1
u	19606	0.979	55	4	51	4	
	19609	2.61	38	l c	0	υ	
18000 + 10000	17509	6.79	44	1c	0	0	0.400
**	17514	3.67	55	l c	O	o	
H	17517	49.1	62	1	o	ں	İ
n	19603	3.99	43	1	39	l c	
**	19615	4.61	39	le	a	o	
н	19617	4.47	38	l c	U	О	
18000 ± 9000	10603	2.28	38	lc	0	0	-
"	10611	3,15	37	1 c	0	0	
18000 1 8000	17503	220 UB	-	-	_	-	-
и	17506	241 UB	-	-	_	-	
	17510	251 UB	-	-	-	-	
ti	19604	3.38	52	2c	0	0	
P	19612	2.88	46	1 c	0	0	
	19616	10.3	40	1 c	0	0	
18000 : 7000	17501	86.4 UB	-	-	-	-	
•1	17515	306 UB	-	-	-	-	
	17518	213 UB	-	1 -	-	-	
•1	17519	213 UB	-	-	-	- '	
**	19614	4.34	46	lc lc	0	0	
	19618	6.65	34	1	0	0	

^{*} For example, 2c + 3 means that there were five nucles, one at each corner of the hole and three along the bore.

UB = unbroken.

Table 11

FATIGUE TESTS WITHOUT HEAT - NOTCH Kt = 3.4

Average stress	Sacai	Endurance	Major fatigo	e crack	Minor fatig	ue crack	Estimated
on net area	- Specimen No.	(N)	Area on half the net section %	Number of demage nuclei*	Ares on half the net section %	Number of damage nuclei*	standard deviation of log ₁₀ N
18000 ± 10000	17302	0,492	52	1c + 15	42	lc + 9	0.0533
10	17310	0.431	62	2c + 30	49	2c + 27	
11	17315	0.515	49	lc + 12	4,8	17	
17	18302	0.378	43	1c + 15	38	1c + 12	
•	19118	0.430	65	1c + 12	54	1c + 11	
18000 ± 9000	11901	0.537	57	1c + 8	47	8	0.0675
11	11905	0.481	40	1c + 6	16	1c + 9	ļ
••	11910	0.583	48	2c + 6	34	1c + 4	ł
**	11915	0.571	58	lc + 7	44	1c + 9	
er e	11919	0.464	50	11	27	8	
	12203	0.662	50	5	37	5	
u	12207	0.621	41	4	18	5	1
u	12801	0.619	58	8	34	2c + 8	
ч	12805	0.501	52	lc + 11	38	2c + 8	
п	12810	0.535	50	lc + 12	45	2c + 13	
n .	12815	0.483	46	2c + 11	37	1c + 14	
п	12819	0.492	41	2c + 13	35	2c + 11	}
11	14201	0.628	59	1c + 10	38	1c + 6	
a a	14205	0.554	41	2c + 13	40	6	
п	1/	0.464	41	16	17	9	
11	142.5	0.563	52	12	29	1c + 7	
11	14219	0.614	48	5	33	1c + 3	
**	17301	0.866	40	1c + 7	35	1c + 7	
18000 ± 8000	10201	0,945	63	1c + 5	5	Ic + 10	0.0898
11	10205	0.782	52	1c + 4	37	5	Ì
11	10210	0.735	55	4	31	2	
11	10215	1.12	59		25	10 + 10	ļ
11	10219	0.987	61	1c + 4	25	1c + 3	
11	10801	1.18	45	1c + 7	8	9]
u ·	10805	1,11	37	1c + 3	36	3	
**	10810	1,10	33	1c + 3	30	ic + 1	
11	10815	1.44	40	1e	11	9	
ti.	10819	1.24	44	1c + 2	24	lc + 3]
	11301	1.22	54	2c + 3	38	2c + 6	
**	11305	1.27	71	2c + 3	24	1c + 9	
u	11310	1.36	48	2c + 6	39	2c + 10	
	11315	1.34	70	2c + 3	2	1c + 5	
11	11319	1.03	43	lc lc	37	2c + 2	
9 1	12204	1.45	41	1c + 1	29	1c + 4	
#1	12219	1.11	44	1	29	10 + 1	
n	13301	1.18	62	4	41	16 + 7	
O.	13305	1.35	46	1c + 3	5	1c + 3	
n.	13310	i i	1	10 + 3	9	16 4 3	1
11	1	1.46	39	†	i	2c + 4	İ
**	13315	1.19	40	1c + 2	30	20 T 4	1

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bors.

Average strass		Endurance	Major fatig	ue creck	Minor fatig	ue crack	Estimated
on net aras	Specimen No,	(N)	Area on half the net section %	Number of damage nuclei*	Area on half the net saction %	Number of demage nuclei*	standard deviation of log 10
18000 ± 8000	13319	0.911	49	1c + 5	5	2c + 6	
**	15001	1.74	41	2	21	1c	
*1	15005	1.17	44	1c + 1	19	1c + 5	
n	15011	1,01	49	1c + 2	32	1	
0	15015	1.06	55	2c + 2	2	8	
n	15018	1.14	33	2c	27	1c + 2	ļ
tt	15901	1.12	43	lc	36	2 c	İ
n	15905	1.08	59	2c	21	l c	İ
n	15910	1.06	45	le	31	l c]
n	15915	1,08	75	2c + 3	6	1c + 1	
9 †	15919	1.10	42	1c	9	2	
••	16501	0.760	54	19	21	16	
11	16505	1,09	42	1	25	1c + 5	
u .	16510	0,849	63	12	30	1c + 9	
44	16515	1,03	61	2c + 8	54	12	
11	16519	1,11	60	2c + 9	1 1	1c + 2	}
**	16801	1.28	54	1c + 4	19	1c + 6	1
11	16805	1.78	38	2c	14	2c + 6	}
**	16810	1.58	63	1c + 2	56	6	}
41	16815	1.37	48	1c + 1	30	2c + 4	
	16819	1.33	39	1c	39	3	1
ч	16901	0.935	36	lc + 9	30	1c + 6	ļ
n	16905	0.904	61	1c + 4	33	1c + 3	
	16910	0.773	46	5	16	1c + 15	İ
41	16915	0.695	59	10	44	1c + 8	
11	16919	L.	73	2c + 7	l	9	
11		1,18	1	2c + 6	16	1	
	17201	1.24	61	_	49	2c + 5	ļ
11	17205	1.07	43	2c	31	1c + 1	
11	17210	1.46	63	1c + 2	2	10	
	17215	1.03	43	3	30	2	
11	17219	1,27	·-	l c	39	1	
	17303	1,19	32	1c + 1	23	1c + 1	İ
	18301	1.72	39	1 c	38	1	İ
	18305	1,28	41	l c	33	l c	İ
"	18310	1.25	47	2 c	44	2	ł
"	18315	1,27	46	1c + 1	12	10	1
	18319	1.24	45	5	11	1c + 1	
"	19101	1.00	63	2c + 6	48	2c + 9	
	19105	0.995	39	1c + 3	' 33	2c + 9	
"	19110	0.979	53	1c + 3	28	1c + 2	
.,	19115	0.878	47	1c + 2	34	1c + 3	1
**	19119	1,13	66	lc + 8	24	1c + 5	
"	19501	0.647	70	1c + 11	20	16	}
"	19505	1.09	72	lc + 7	i	4	İ
"	19510	0.950	46	9	42	1c + 12	

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

Average stress	6 _6_4=	Endurance	Hajor fatig	ue crack	Minor fatig	ue creck	Estimated
on net area	Specimen No.	(N)	Area on half the net section %	Number of damage nuclei*	Area on helf the net section %	Number of damage nuclei*	standard deviation of log 10
18000 ± 8000	19515	0,992	53	2c + 12	19	6	
11	19519	1.11	55	10	9	7	
18000 ± 7000	12217	1.90	63	1c + 1	0	0	0.0642
11	12218	1.55	44	1	2	2	
н	17304	2.17	44	2 c	o	0	
n	18318	1,56	45	lc	38	1c	
11	19102	1.93	50	1c + 6	46	1c + 3	
11	19113	2.14	41	1c + 1	2	3	
18000 ± 6000	12205	3,16	40	1c	0	0	0,225
"	12212	3.25	50	1c	6	1	
n	17305	9.00	55	1c	3	1	
•	17311	2.44	41	le	39	,	
••	18313	2.03	49	10	41	10	
	19106	2.99	44	le	17	1c	
18000 ± 5500	17306	2.96	43	1c	1	1c + 2	
	 	ļ		 			
18000 ± 5000	14701	4,87	45	l c	2	3	0.340**
••	14705	3,80	38	1 c	31	lc .	
11	14711	4.38	52	1 c	47	1 c	
"	14715	5.52	55	1 c	1	4	
*1	14718	5.31	47	1c	3	3	
ti .	15501	17.5	44	l c	1	2	
11	15502	4,73	45	l c	1	1c + 2	ļ
11	1 15505	8.81	42	l c	1	1c + 1	
11	15507	4.42	42	l c	29	• ic	1
•11	15510	11.2	49	1 c	1	1c + 2	Ī
"	15014	4,34	52	l c	1	1c + 2	
11	15519	4.20	42	10	36	1c	
11	17312	4.74	81	2c	0	0	
**	17313	4.81	55	l c	16	1c + 3	
	17801	7.63	59	l c	0	٥	
	17802	28.2	19	l c	1	1c + 4	
	17805	4,58	42	10	0	0	
"	1780h	5.24	52	l c	1	1c + 2	
	17810	6,13	47	ic	38	1c	
"	7811	212 UB	-	-	_	•	
	7815	28,1	46	1 c	1	1c + 1	
	17818	68.5	46	1 c	1	2	
n	17819	10.3	46	10	0	0	
"	18601	4.23	44	1	1	ic	
"	18605	4.94	43	10	1	10	
ii	18610	5.54	51	10	6	1	
"	18615	6.07	43	10	1	1c + 2	}
H	18618	5.51	57	1 c	3	ic + 2	I

^{*} For example, 42 + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

^{**} Standard deviation adjusted by Lariviers's method 12 for unbroken specimens.

UB = unbroken.

Table | 1 (concluded)

Average stress	Specimen	Endurance	Major fatig	ue creck	Minor fatig	ue creck	Estimated
on net area	on net area No.	(N)	Ares on helf the net section X	Number of damage nuclei*	Area on helf the net section X	Number of damage nuclei*	standard daviation of log N
18000 ± 5000	18619	102 UB		_	-	-	
"	19401	11.2	48	l c	1	4	
11	19405	5.12	50	lc .	1	1	
н	19410	3.77	49	le	29	1c	
н	19415	4.26	49	ic	16	1c	ļ
н	19419	3,33	49	le	34	1c	
18000 ± 4000	15002	228 VB	-	-	-	-	-
rt	15007	9.95	50	1 c	0	0	
н	17307	8.73	59	1 c	ı	1c + 1	
**	18306	168	46	1c	1	1	ł
11	18607	235 UB	-	-	-	-	ļ
*1	18613	206 UB	-	-	-	-	
18000 + 3500	11913	210 UB	-	-	-	-	-
18000 t 3000	17308	200 UB	-	-	-	-	T -

^{*} For example, 2c + 3 means that there were five nucles, one at each corner of the hole and three along the bore.

^{**} Standard deviation adjusted by Lariviers's method 12 for unbroken specimens.

UB = unbroken

FATIGUE TESTS WITH PRIOR APPLICATION OF HEAT - NOTCH Kt = 3.4

1000h AT 150°C AT ZERO APPLIED STRESS

Table 12

Average	strens	e	Endurance	Major fatig	ue crack	Minor fatig	ue creck	Estimated
on net	ATG &	Specimen No.	(N) 10 ⁵ cycles	Area on haif the net section I	Number of damage nuclei*	Area on half the net section %	Number of damage nuclei*	standard deviation of log ₁₀
18000 ±	10000	10818	0.436	67	17	66	18	0.0718
		13313	0.457	65	13	65	12	
"		16408	0.298	64	1c + 10	54	15	
11		16409	0.335	68	10	45	11	
11		10419	0.415	60	14	54	1c + 13	l
u		19518	0.398	58	13	54	15	
18000 ±	9000	10813	0.478	48	16	38	19	0.0639
		11903	0.566	56	20	42	14	1
"		14702	0.559	62	12	59	1c + 11	•
••		11911	0.526	50	12	48	17	
11		16402	0.385	57	18	52	2c + 20]
11		16415	0.394	56	17	52	1c + 12	1
,,		16802	0.509	49	9	35	1c + 9	
		19513	U. 488	51	1c + 7	36	6	
18000 ±	8000	13307	0.810	55	18	46	11	0.084
"		14218	0.877	49	1c + 10	49	1c + 10	
		15003	0,819	51	10	37	6	1
11		16403	0.502	48	7	40	6	Ì
91		15013	0.857	36	6	35	11	
••		16417	0.736	50	13	44	8	
		16918	0.615	55	4	29	1c + 6	1
		19418	0.788	64	,	36	4	
18000 ±	7000	10802	2.27	52	2c + 3	9	2c + 10	0.172
"		14707	1.87	50	,	19	1c + 7	
		16404	1.13	45	1c + 2	36	1c + 6	
41		16410	0.684	37	1c + 8	12	2c + 6	1
11		16913	0.858	54	le : 4	33	2c + 3	
		19506	1.31	71	3]]	2	
18000 ±	6000	13318	1.87	45	1	38	1c + 2	0.101
"		14207	3,20	43	le	3	1c + 5	0
**		16401	1.87	58	10 + 2	2	2c + 5	1
"		16405	1,63	49	1c + 6	13	1c + 2	
		16412	2.01	61	10 + 4	40	1c + 1	
		10813	2.13	50	1c + 2	19	2c + 2	
18000 ±	5000	10807	4.79	51	1 c	9	lc + 3	0.486
10000 1		14213	40.11	53	16	2	2	7.400
		16406	4.15	60	le le	4	1c + 2	
11		16413	1.55	57	1	12		
"		16418	4.79	67	1c + 1	11	1 c	Ì
0		16902	4.41	41	lc lc	40	le	1
		17804	4,72	47	l c	14	1 c	1

A For example, 2c + 3 means that there were five nuclai, one at each corner of the hole and three along the bore.

Average stress		Endurance	Major fatig	ue crack	Minor fatig	ue crack	Estimated
on net area	Specimen No.	(N)	Ares on half the nat section X	Humber of demage nuclei*	Area on helf the net section X	Humber of damage nuclei*	standard deviation of log 10 N
18000 ± 5000	17808	26.3	54	le	i	3	
*1	17812	3,62	44	1c	0	0	
19	17813	46.6	56	1 c	21	1	
ti	17817	4.54	52	lc .	23	1c + 2	}
Ħ	18603	3.12	60	1c + 1	13	2c	
н	18611	4.90	55	lc	52	le	
18000 ± 4000	16407	104	54	1c + 3	. 40	l c	0.464
**	16411	7.83	52	le	40	1c	
н	16416	11.2	72	1 c	15	1c	
lt .	16807	43.1	52	l c	8	5	
M	16907	9.48	54	1c	1	1	ļ
t t	19502	8.57	59	1 c	31	le	

^{*} For example, 2c + 3 means that there were five nuclei, one at each corner of the hole and three along the bore.

Table 13

FATIGUE TESTS WITHOUT HEAT - LUG SPECIMEN

Average stress	Specimen	Endurance	Major fatigo	ue crack	Minor fatig	us crack	Estimated
on net area	Specimen No.	(N) 10 ⁵ cycles	Area on half the net section X	Number of demage nucleis	Area on half the net section X	Number of damage nuclei*	standard deviation of log N
15000 ± 6150	50501	0.967	86	6	62	7	0,083
n	50505	0.765	78	8	44.	6	
tt	50510	0.871	74	1c + 7	74	10 + 7	1
**	50515	0.796	83	2c + 5	65	1c + 5	I
W	50519	0.804	78	le + 5	71	3	1
tt	52001	0.564	79	16	60	10	i
*1	52005	0.580	80	1c + 6	58	9	ļ
u	52010	0.509	73	1c + 7	41	6	
11	52015	0.599	76	1c + 6	54	lc + 6	
et .	52019	0.638	79	8	57	7	
*1	53101	0.811	73	6	63	6	
Ħ	53105	0.727	80	12	55	1c + 6	
•	53110	0.754	82	8	59	1c + 9	
н	53115	0.673	80	8	62	9	ŀ
u .	53119	0.779	76	1a + 4	45	2	ļ
It	53803	0.817	78	6	53	7	
u	53815	0.561	70	16	64	ic + 14	
ri .	58401	0.624	80	7	70	2	İ
u	58405	0.554	77	10	66	1c + 8	1
11	58410	0.532	82	1c + 9	62	21	
n	58415	0.556	78	6	70	5	1
11	58419	0.516	76	6	70	12	
15000 ± 5110	53804	1.02	79	1c + 5	53	2c + 4	
11	53817	0.943	74	1c + 6	68	5	}
15000 ± 5000	50402	1.14	83	3	54	1c + 7	0.029
п	50411	0.980	76	1c + 6	67	1c + 6	
п	50416	1.08	78	5	75	5	
"	53102	1.12	7C	1c + 3	68	1c + 7	
15000 ± 4090	53805	2,88	78	4	62	1c + 1	
н	53818	9.54	80	1c + 5	60	2c	
15000 ± 4000	50403	2.37	80	4	62	4	0.066
u	50418	1.71	78	1c + 1	65	6	Ĭ
н	53107	1.92	75	2	68	1c + 4	
a .	53113	1.72	82	1c + 2	34	1c + 1	İ
15000 ± 3075	53801	9,06	84	1	21	2	Ţ
15000 ± 3000	50405	4,86	79	3	44	2	0,071
11	50409	4.52	78	3	69	2	
.,	50412	3.86	79	2	42	10+1	
u	50507	3.45	76	1	68	2	1
n	51513	5.10	81	2	58	2	

^{*} For example, 2c + 1 means that there were three suclai, one at each corner of the hole and one along the bore.

Table 13 (concluded)

Average stress		Endurance	Major fatig	ue creck	Minor fatig	ue crack	Estimated
on net area	Specimen No.	(N)	Ares on helf the net section X	Number of damage nuclei*	Area on helf the net section %	Number of damage nuclei*	standard deviation of log N
15000 ± 2045	50518	20.0	82	1	58	1c	0.157
	51502	21.6	81	l c	32	lc + 1	
n n	51505	23.3	83	4	44	lc + 3	
"	51510	19.4	79	4	53	4	
**	51515	18.7	85	2	5	1 c	
"	51518	20.2	85	2	25	5	
"	32901	16.3	83	lc + l	36	1c + 1	
11	52905	14.8	82	1c ·	36	1 1	
P1	52910	11.1	79	1	17	1c + 3	
"	52915	24.6	86	ic + i	49	1c + 1	
**	52919	25.0	77	lc + 1	34	1c + 2	
n	53807	49.1	A7	2	49	2	
11	53808	31.1	82	1c + 2	18	ic + 2	
"	53816	24.3	74	ء ا	39	l c	
"	55201	16.7	80	lc	55	1	
	55205	16.5	81	1	33	1c + 2	
.,	55210	13.5	76	1c	25	1c + 6	
	55215	11.8	76	le le	35	lc	
	55219	15.1	81	i	48	1	
i "	55601	12.4	79	1c + 5	16	1c + 1	
"	55605	7.67	83	1	1	3	
	55610	14.5	80	1c + 2	67	,	
"	55615	14.4	80	1c + 2	40	3	
•	55619	15.9	82	1c + 1	45	6]
"	58101	11.2	83		34	2c	
u	58105	15.4	76	2	33	lc + 2	
u u	58110	16.2	76	1c + 1	65	2	
"	58115	14.4	73	1	40	1	
a	58119	12.1	80	lc + 1	10	1c	1
18000 ± 2000	51819	16.6	83	1c + 3	20	1	
18000 ± 1708	53806	38.9	84	1c + 1	5	1 c	
18000 ± 1500	50406	64.4	84	1c + 1	5	1c + 2	0.128
11	50408	31.1	84	lc + 1	8	1c	
11	50414	30.0	83	1	1	4	
"	50513	31.2	79	1	68	2	
"	51507	36.4	85	l c	4	1c + 1	
"	52902	31.2	83	2	1	2 c	

^{*} For example, 2c + 1 means that there were three nuclei, one at each corner of the hole and one along the bore.

Table 14

FATIGUE TESTS WITH PRIOR APPLICATION OF HEAT - LUG SPECIMEN

1000h AT 150°C AT ZERO APPLIED STRESS

1

Major fatigue crack Minor fatigue crack Endurance Estimated Average stress Specimen (N) a t and ard on net area Number of Area on half Area on half Number of No. deviation the net damaga the net danage of log N lb/in² 10⁵ cycles section X nuclei* section X nuclei* 2 18000 ± 7000 50410 0.590 62 37 1c + 2 0.777 5 83 43 5 15000 ± 6150 50503 78 1c + 3 7 50511 0,638 82 0.773 87 0.030 15000 ± 6000 51809 1c + 2 65 1 0.698 77 1c + 2 51813 1 36 0.750 68 2 51814 1c + 1 64 52907 0.739 82 le 64 2c + 357713 0.695 74 1c + 4 42 2c + 2 58402 0.836 81 4 50 1c + 4 15000 z 5000 51801 1.09 76 2c + 1 74 2 0.048 1.26 79 2 50 3 51803 18 1.00 51807 72 2 71 1c + 1 52018 0.968 79 2c + 1 48 1c + 1 58406 1.03 83 1c + 1 37 1c + 2 1.23 81 1c + 1 58813 63 1 c 51805 1.92 3 44 15000 ± 4000 82 2 0.063 u 51815 1.49 83) c 5 2 11 51816 1.96 78 ì 56 3 52007 1.43 84 1c + 2 24 lc 55602 1.66 78 lc 54 1c + 1 11 58418 1.98 82 1c + 2 79 2c + 1 15000 ± 3000 50404 3.18 73 2 64 lc 0.090 50417 2.52 85 1 2 1c + 1 51806 4.58 80 49 1 c 1 c 51808 3.13 86 22 1 c lс 52913 3.96 82 ì ٥ 0 55606 3.40 80 1c 5 1c + 1 18.8 15000 ± 2045 52903 82 5 20 3 52911 17.7 78 4 71 1 50419 15000 ± 2000 7.85 82 1 0.173 6 51810 19.0 84 10 2 1 c 11.4 51818 82 3 2 1 c 52002 15.4 79 1c + 1 35 ١c 52918 17.6 82 1c + 1 0 0 58413 24.0 88 1 10 2c 5Ô 0.209 15000 ± 1500 50407 61.9 82 ìс 2 37.2 50413 84 1 0 0 .. 23.0 51802 84 1 c 1 1 85.2 1c + 1 51811 85 ٥ 0 51812 30.6 1c + 1 0 ٥ 86 52013 34.9 87 0 ٥

^{*} For example, 2c + 1 means that there were three nuclei, one at each corner of the hole and one along the bore.

REFERENCES

No.	Author	Title, etc.
1	J.R. Heath-Smith	Influence of ageing and creep on fatigue of
	F.E. Kiddle	structural elements in an Al 6% Cu alloy.
		In Thermal and High Strain Fatigue, the Metals and
		Metallurgy Trust, pp.391-415 (1967)
2	J.R. Heath-Smith	The effect of an application of heat on the fatigue
	Judy E. Aplin	performance under random loading of a notched
		specimen of DTD 5014 (RR58) material.
		ARC Current Paper No.1221, HMSO (1972)
3	J.R. Heath-Smith	Effect of interrupting fatigue by periods of heat
	F.E. Kiddle	for aluminium alloy structural elements.
		In Fatigue at Elevated Temperatures, A.E. Carden,
		A.J. McEvily and C.H. Wells, eds.
		ASTM STP 520 pp.500-511 (1973)
4	F.E. Kiddle	Fatigue endurance, crack sensitivity and nucleation
		characteristics of structural elements in four
		aluminium-copper alloys.
		ARC Current Paper No.1259, HMSO (1974)
5	F.E. Kiddle	The residual static strength of fatigue cracked lug
		specimens of four aluminium-copper alloys.
		RAE Technical Report 73084 (1974)
6	P.J.E. Forsyth	The microstructural changes that drilling and ream-
		ing can cause in the bore of holes in DTD 5014
		(RR58 extrusions) and the effects of subsequent
		heating.
		In Aircraft Engineering, pp.20-23, November 1972
7	-	Comparison of samples.
		Royal Aeronautical Society, Engineering Sciences
		Data, Fatigue sub-series. Item 68016 (1968)
8	P.R. Edwards	Cumulative demage in fatigue with particular refer-
		ence to the effects of residual stresses.
		RAE Technical Report 69237 (1969)

REFERENCES (concluded)

No.	Author	Title, etc.
9	P.R. Edwards	An experimental study of the stress histories at
		stress concentrations in aluminium alloy speci-
		mens under variable amplitude loading sequences.
		RAE Technical Report 70004 (1970)
10	E. Maurin	Effect of frequency and test temperature on the
	W. Barrois	fatigue life of A-U29N-T6 sheet specimens and
		assemblies (in French).
		In Meeting of International Committee on Aeronauti-
		cal Fatigue, Stockholm, May 1969.
11	L.A. Imig	Effect of initial loads and of moderately elevated
		temperature on the room-temperature fatigue life of
		Ti-8Al-1Mo-1V titanium alloy sheet.
		NASA Technical Note D-4061 (1967)
12	J.S. Lariviere	Calculation of the operating life of helicopter
		blades.
		Note STA/VT No.165.
13	M.S. Hunter	Fatigue crack propagation in aluminium alloys
	W.G. Fricke	Proc. ASTM, Vol.56, 1038-1050 (1956)

Variation of tensile properties with additional heating at 200°C Fig.1

Variation of tensile properties with additional heating at 150°C Fig.2

a Notch $K_t = 2.3$

Overall width 0.25 in consisting of two 0.0625 in dia drilled & reamed holes connected by a spark eroded slot

b Notch $K_t = 3.4$

Surface finish:- 8 to 16 micro inches
Edges of holes at test section sharp and free from burrs

Fig.3a&b Notched specimens

Surface finish 8 to 16 micro-inches

Section AA

Fig.4 Lug specimen

Typical example of variation in fatigue endurance along bars of material Fig. 5

Fig.6 Compressive creep fittings

Fig.7 Appearance of fracture surfaces showing positions of damage nuclei

specimen 2.3 notch prior heating endurance of temperature of Effect on Fig. 8

「大きなない」というできます。 「おきないというない」は、「おきない」は、「おきない」というない。 「おきない」というない。 「おきない」というというない。 「おきない」というない。 「またない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。 「おきない」というない。」 「おきない」というない。」 「おきない」」 「まない」」 「まないるい」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まない」」 「まないるいっない」」 「まない」」 「まない」」 「まないるいっない。」 「まない」」 「まないまないまない。」 「

prior heating - 3.4 notch of Effect on endurance of temperature

Specimen: 2.3 notch

. ... Fatigue: 18 000 ±14 000 lb/in2

Fig. 10 Variation in number of damage nuclei with temperature of prior heating — 2.3 notch

Fatigue: 18000 ± 8000 1b/in2 Specimen: 3.4 notch

nuclei with temperature 3.4 notch Variation in number of damage prior heating ō Fig. 11

Fig. 12 Effect of creep stress on fatigue endurance - heating 3h at 150°C prior to fatigue

Fig.13 Variation in number of damage nuclei with creep stress — 2.3 notch

a Heated at zero load (point A)

Heated in tension (E+F)

c Heated in compression (K+L)

Local strain

Fig.14a-c Variation of local stress at the notch due to heating
(a) At zero load,(b) in tension, and (c) in compression,
followed by the application of fatigue mean stress
and alternating stress

Fig. 15 Variation of local mean stress at notch with applied creep stress

of 2.3 notch specimens on fatigue endurance Fig. 16 Effect of prior heat or creep

是一种,我们是一种,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人, 第一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个

on endurance of 3.4 notch specimens Fig.17 Effect of prior heat

specimens durance of log prior heat on fatigue o Effect Fig. 18

Marketon Company of the Contract of

į

S-N data for 2.3 notch specimen boundary of Effect of heat on lower Fig. 19

Effect of heat on lower boundary of S-N data for 3.4 notch specimen Fig. 20

on lower boundary of S-N data for lug specimen Effect of heat Fig. 21

のでは、100mmのでは

Variation in standard deviation with fatigue alternating stress, with or without specimen prior heating - 2.3Kt notch Fig. 22

Variation in standard deviation with fatigue alternating stress, with or without prior heating $-3.4\,\mathrm{K}_1$ notch and lug specimens Fig. 23

and prior heat Variation of difference in endurance between prior creep stress level with alternating tests Fig. 24

ARC CP No. 1375	July 1976

539,388.1: 539,219.2: 539,377: 539,376:

ARCCP No 1375 July 1775

Kidde . I F

620.178.38 669.715

EMELTING OF FRIOR HEAT AND CREEP ON EAHGUE. IN SERUCTURAL FLIMENTS OF DED SOL4 (RRS8).

ALUAINIUM ALLOY.

Kiddle, F.E.

というないというないというないからればずいとうない

539.219.2 539.377 : 539.376 : 669.715 :

INFLUENCE OF PRIOR HEAT AND CREEP ON FATIGUE IN STRUCTURAL ELEMENTS OF DTD 5014 (RR58) ALUMINIUM ALLOY

Effects of heat on fatigue have been studied by fatigue tests at ambient temperature on specimens first subjected to a single period of heating with and without steady load applied. The tests employed constant amplitude loading on various structural elements in DTD 5014 (RRSS) aluminium alloy material. Heating was applied at temperatures in the range 100° C to 170° C for times ranging from 1 to 20000h.

Effects of heat on fatigue have been stadied by fatigue tests at ambient temperature on specimens first subjected to a single period of heating with and without steady load applie I. The tests employed constant amplitude loading on various structural elements in DTO 5014 (RRSS) aluminium alloy material. Heating was applied at temperatures in the range 100 °C to 170 °C for times ranging from 1 to 20000h.

The two mechanisms of emportance were changes in microstructure at the machined surface which encouraged initiation, and changes in residual stress by creep which encouraged initiation according to the creep being compressive or tensile.

The initiation of fatgue cracks was significantly affected by heating, particularly at temperatures of 110 C and higher when the effects occurred comparatively rapidly.

The initiation of fatigue cracks was significantly affected by heating, particularly at temperatures of 110°C and higher when the effects occurred comparatively rapidly. The two mechanisms of importance were changes in microstructure at the machined surface which encouraged initiation, and changes in residual stress by creep which encouraged or discouraged initiation according to the creep being compressive or tensule.

ARCCP No. 1375	539.388.1
July 1976	539.219.2
	539.377
Kiddle, F.E.	539.376
	669.715
MAINFLUENCE OF PRIOR HEAT AND CREEP ON FAIIGUE	620,178,38
IN STRUCTURAL ELEMENTS OF DID 5014 (RR58)	
ALUMINIUM ALLOY	

Effects of heat on fatigue have been studied by fatigue tests at ambient temperature on specimens first subjected to a single period of heating with and without steady load applied. The tests employed constant amplitude loading on various structural elements in DTO 5014 (RRSS) aluminium alloy material. Heating was applied at temperatures in the range 100°C to 170°C for times ranging from 10 to 20000h.

The initiation of fatigue cracks was significantly affected by heating, particularly at temperatures of 110°C and higher when the effects occurred comparatively rapidly. The two mechanisms of importance were changes in microstructure at the machined surface which encouraged initiation, and changes in residual stress by creep which encouraged or discouraged unitiation according to the creep being compressive or tensile.

ARC CP No.1375	539.388
July 1976	539.219
	539.377
Kiddle, F.E.	539.376
	669.715
INFLUENCE OF PRIOR HEAT AND CREEP ON FATIGUE	
IN STRUCTURAL ELEMENTS OF DTD 5014 (RR58)	
ALUMINIUM ALLOY	

Effects of heat on fatigue have been studied by fatigue tests at ambient temperature on specimens first subjected to a single period of heating with and without steady load applied. The tests employed constant amplitude loading on various structural elements in DID 5014 (RR58) aluminium alloy material. Heating was applied at temperatures in the range 100°C to 170°C for times ranging from 1h to 20000h.

The initiation of fatigue cracks was significantly affected by heating, particularly at temperatures of 110°C and higher when the effects occurred comparatively rapidly. The two mechanisms of importance were changes in microstructure at the machined surface which encouraged initiation, and changes in residual stress by creep which encouraged or discouraged initiation according to the creep being compressive or tensile.

DETACHABLE ABSTRACT CARDS

Crown copyright

1977

Published by
HER MAJESTY'S STATIONERY OFFICE

Government Bookshops

49 High Holborn, London WC1V 6HB

13a Castle Street, Edinburgh EH2 3AR

41 The Hayes, Cardiff CF1 1JW

Brazennose Street, Manchester M60 8AS

Southey House, Wine Street, Bristol BS1 2BQ

258 Broad Street, Birmingham B1 2HE

80 Chichester Street, Belfast BT1 4JY

Government Publications are also available through booksellers

C.P. No. 1375