Using NP-Completeness for Problem Analysis

Theja Tulabandhula Oct 7 2011

Given a new decision problem (say in NP)

Intuition is not trustworthy

- Intuition based on related problems.
- Many problems that are P time only differ slightly from NP-C counterparts.

P	NP-C
2-SAT	3-SAT
2DM	3DM
Shortest path between two vertices	Longest path between two vertices
Edge cover	Vertex cover
Transitive reduction	Minimum equivalence digraph
Intree scheduling	Outtree scheduing

Post NP-C proof: Continuing two-sided Analysis

- Investigating sub-problems of a problem.
 - Motivated by re-adding details we left out
 - Relevant cases might be P time
 - Only small set of instances may have made it NP-C.

- ▶ Map the boundary between P time and NP-C.
 - Illustration via GRAPH 3-COLORABILITY
- Special sub-problems where numbers are important:
 Pseudo-Polynomial time

Analyzing sub-problems

- ▶ $(\Pi,D,Y) = NP-C$ problem, {all instances}, {yes instances}.
- ▶ Subproblem (Π',D',Y') such that $D'\subset D$ and $Y'=Y\cap D$

Examples

- restrictions like planar, acyclic, bipartite on graphs.
- ▶ $|A| \le N$ for sets.

Pick sub-problems

- depending on application or
- if they seem natural

- \blacktriangleright Each Π ' may independently be NP-C or P or unknown.
 - Arr Example: Π = SATISFIABILITY

 - ▶ ∏" 2-SAT is P.

► Goal: Analyze sub-problems and determine their membership.

Concrete Example: Precedence constrained scheduling Next.

Scheduling equal length tasks subject to partial order.

Given

- m processors
- One overall deadline.
- Question: Is there a schedule s.t.
 - each period, at most m tasks are scheduled
 - \rightarrow if t \prec t', then schedule t before t'.

Minimal NP-C and Maximal P time

- ▶ [Def] Given C = { Π ', Π '',...} of sub-problems of an NP-C problem
 - Π' in C is a minimal NP-C subproblem if
 - ▶ it is NP-C
 - \blacktriangleright no sub-problem of Π ' also in C is known to be NP-C
 - ▶ ∏" in C is a maximal P time subproblem if
 - ▶ it is P time
 - \triangleright no problem in C containing Π " as a subproblem is known to be P
- **Example:**
 - ► $\{ \prec \text{arbitrary}, m \leq 2 \}$ is maximal P time subproblem
 - ▶ {< arbitrary, m arbitrary} is minimal NP-C subproblem

Illustration: GRAPH 3-COLORABILITY

- Given
 - ▶ G(V,E)
- Question: Is G 3-colorable?
 - does there exist an assignment of colors to all vertices
 - ▶ s.t. color(v) \neq color(u) for all vertices v,u in V.
- Related to 4-color conjecture, scheduling, partitioning
- Sub-problem of K-COLORABILITY
- NP-C (Stockmeyer '73)
- First restriction we consider: degree boundedness.

A note on Degree boundedness

Many graph problems are in P if degree bound sufficiently small (table).

	P time for d ≤	NP-C for d ≥
VERTEX COVER	2	3
HAMILTONIAN CIRCUIT	2	3
3-COLORABILITY	3	4
FEEDBACK VERTEX SET	2	3

	Prove from general
ı	problem using
>	Local Replacement
	KEY IDEA
	Vertex Substitute

- ▶ CLIQUE is in P for any fixed degree bound d.
 - For fixed d, search over all d subsets in P time.

Thm: 3-COLORABILITY with d ≤ 4 is NP-C

Proof Step 1:

NP membership follows from general problem (d arbitrary).

Proof Step 2:

- We will transform the general problem into an instance of problem with $d \le 4$.
- Let G = (V,E) be general instance.
- ▶ Construct corresponding G' = (V',E') with $d \le 4$ such that
- ▶ G' is 3-colorable if and only if G is 3-colorable.

Vertex Substitute gadget: Local replacement technique

Properties of the gadget.

Proof Step 2 (contd.)

- Properties of Vertex Substitute gadget Hk
 - \vdash H_k has k labeled outlets and 7(k-2)+1 vertices
 - \rightarrow max degree of $H_k = 4$
 - Outlet degree = 2
 - \vdash H_k is 3-colorable but NOT 2-colorable.
 - \triangleright 3-coloring of H_k : all outlets have same color.
- Let $v_1,...,v_r$ be the r vertices of G with d > 4
- ▶ Plan: Construct a sequence of graphs $G_0, G_1, ..., G_r$ such that

$$\rightarrow$$
 $G_0 = G$

$$\rightarrow$$
 $G_r = G'$

- ▶ G_i is constructed from G_{i-1}
- ▶ Let v_i in G_{i-1} have deg d
- ▶ Delete v_i and insert H_d

- For each k, G_k has r-k vertices with degree exceeding 4.
- $Arr G_k$ is 3-colorable iff G_0 (=G) is 3-colorable.

Next Restriction: Planarity

- ▶ G is Planar if it can be embedded in the plane.
- No two edges intersect except at a common endpoint.
- Example I: CLIQUE
 - ▶ A planar graph is K₅ free.
- Example 2: MAX CUT
 - Given G and positive edge weights and positive integer K
 - ▶ Question: Can we split V into V_1, V_2 such that Σ [weights of edges with one endpoint in each set] ≥ K?
 - General problem NP-C
 - Subproblem with weights all equal is NP-C
 - Subproblem with planarity is in P time!
- Usual Trick: Local Replacement OR Planarity Preserving Transform

Thm: Planar 3-COLORABILITY is NP-C

- Proof Step I: Belongs to NP
- ▶ Proof Step 2: (Design a "crossover": use in place of edge crossings)
 - ▶ Construct G' such that G' is 3-colorable iff G is.

"Crossover" graph H with "outlets" x, x', y, y' has two properties.

- ▶ Property I:Any 3-coloring of H => f(x) = f(x') AND f(y)=f(y')
- Property 2: There exist 3-colorings f and g such that

$$f(x) = f(x') = f(y) = f(y')$$

$$g(x) = g(x') \neq g(y) = g(y')$$

satisfies Property I

17 satisfies Property 2 (different colors)

satisfies Property 1 (same colors)

Construction of G' from G

- Embed G in plane, allow crossings: P time
- Pick {u,v}-line which has crossings.
- Add vertices.
- Replace each crossing with H
- Coalesce u with its nearest new point.
- Define operant edge: between v and its nearest new point.

Showing that G' is 3-colorable iff G is.

- > => (direct proof)
 - f is any 3-coloring of G'. Claim: f|V is a 3-coloring of G.
 - Case I:There is a {u,v} in G without any crossings. Then f(u) ≠ f
 (v) in both graphs.

Case 2: There is a $\{u,v\}$ in G which had crossings. Consider the corresponding $\{u,v\}$ line in G'_i .

- All new points on {u,v} line should have same color as u.
- Operant edge {w,v} end points have different color.
- ▶ Thus f|V is a 3-coloring.

Showing that G' is 3-colorable iff G is.

- > => (Contrapositive proof)
 - ▶ f is any 3-coloring of G'. Claim: f|V is a 3-coloring of G.
 - Assume otherwise. There is a $\{u,v\}$ in G such that f(u) = f(v)
 - Consider {u,v} line in G'.

- All new points on {u,v} should have same color as u.
- > => Operant edge {w,v} end points have same color.
- Thus, if f|V is not a 3-coloring of G, then f is not a 3-coloring of G'.

Showing that G' is 3-colorable iff G is.

> <=

- Let f be any 3-coloring of G. Extend to G' as follows:
- Color new points on {u,v} with f(u).

- \rightarrow => f(w) \neq f(v)
- By Property 2, this partial coloring of G' extends to
 - internal vertices
 - crossovers

Number Problems

- Analyzing subproblems critical with number problems
- Example: PARTITION
 - Given: Set A = $\{a1,a2,...,an\}$ and positive numbers $\{s(a1), s(a2),...,s\}$ and B = $\sum_i s(ai)$
 - Question: Is there a subset A' such that $\Sigma_{A'}$ s(ai) = $\Sigma_{A\setminus A'}$ s(ai)
- Eg: 4 elements: s(a1) = 1, s(a2) = 3, s(a3) = 6, s(a4) = 2. B = 12.
- ▶ Table: Assign cell (I,j) T if some subset with items $\{a \mid ,...,ai\}$ has $\sum_{k \le i} s(ak) = j$.

	(l,j)	0	I	2	3	4	5	B/2 = 6
	item l	Т	Т	F	F	F	F	F
	item 2	Т	Т	F	F	F	F	F
	item 3	Т	Т	F	Т	Т	F	Т
22	item 4	T	 T	 - T	- T	Т	T	Т

Pseudo-polynomial time

- Table method is polynomial in nB
- But instance length is O(nlogB) (conciseness of encoding)
- ▶ nB is not bounded by any polynomial of nlogB
- ▶ Thus, Table method is NOT a P time algo for PARTITION.

- We see that NP-C of PARTITION depends STRONGLY on the fact that large input numbers are allowed.
- Pseudo-polynomial time algorithms: If numbers upper bounded by O(Length[I]), then P time
- Can be useful and practical.

Summary

- Instances from your application will often satisfy special constraints affecting NP-C membership.
- We saw two restrictions of 3-COLORABILITY
- Used our "Local Replacement" technique
- Interaction between numbers and NP-C