Pulse Packets & Synfire Chains (Part 2)

Alejandro F. Bujan

Bernstein Center Freiburg

Models of Neurons and Networks, November 26, 2013

Synfire chains and propagation through synchrony

Diesmann, Gewaltig & Aertsen, 1999

Synfire chains are synchrony generators

Diesmann, Gewaltig & Aertsen, 1999

Synfire chains are synchrony generators

Diesmann, Gewaltig & Aertsen, 1999

Rosembaum et al., 2011

Shared inputs

- Shared inputs
- Pooling

- Shared inputs
- Pooling
- (Resonance)

- Shared inputs
- Pooling
- (Resonance)

- Shared inputs
- Pooling
- (Resonance)

- Shared inputs
- Pooling
- (Resonance)

Input spiking correlation r_{in}

$$X = \sum_{i}^{N} x_{i}$$

$$X = \sum_{i}^{N} x_{i}$$

$$W \simeq \hat{W} = \left\langle \frac{cov[x_i, x_j]}{\sqrt{var[x_i]var[x_j]}} \right\rangle_{N(N-1)}$$

$$C = \frac{B'}{W + \frac{1}{N}(1 - W)}$$

$$=\,\frac{B'}{W}\,-\,\mathcal{O}(\frac{1}{N})$$

Bedenbaugh & Gernstein, 1997 Rosembaum et al., 2010

$$C = \frac{B'}{W} - \mathcal{O}(\frac{1}{N})$$

Bedenbaugh & Gernstein, 1997

Rosembaum et al., 2010

• Amplification: $C \ge B'$

$$C = \frac{B'}{W} - \mathcal{O}(\frac{1}{N})$$

Bedenbaugh & Gernstein, 1997

Rosembaum et al., 2010

- Amplification: $C \ge B'$
- Bound: since $C \le 1$, then $B' \le W \mathcal{O}(\frac{1}{N})$

$$C = \frac{B'}{W} - \mathcal{O}(\frac{1}{N})$$

Rosembaum et al., 2010

Generating B and W correlations

 $p_1 = B$ $p_2 = W$ B' = BW

Kuhn et al., 2003 Yim et al., 2011 Bujan et al., in prep.

Generating B and W correlations

Kuhn et al., 2003 Yim et al., 2011 Bujan et al., in prep.

$$p_1 = B$$
 $p_2 = W$
 $B' = BW$

For large N:

$$C \rightarrow B'/W = B$$

Decorrelation due to thresholding in LIF neurons

Decorrelation due to thresholding in LIF neurons

de la Rocha et al., 2007

Decorrelation due to thresholding in LIF neurons

Bujan et al., in prep.

de la Rocha et al., 2007

Correlation transfer across synfire chains

Rosembaum et al., 2011

Hahn et al., in prep.

Hahn et al., in prep.

Hahn et al., in prep.

1 - Synfire chains propagate activity by making it more synchronous.

- 1 Synfire chains propagate activity by making it more synchronous.
- 2 In classic synfire chains, synchrony arises mainly due to shared inputs and pooling.

- 1 Synfire chains propagate activity by making it more synchronous.
- 2 In classic synfire chains, synchrony arises mainly due to shared inputs and pooling.
- 3 Pooling effect is the predominance of shared fluctuations when different signals are added or pooled together.

- 1 Synfire chains propagate activity by making it more synchronous.
- 2 In classic synfire chains, synchrony arises mainly due to shared inputs and pooling.
- 3 Pooling effect is the predominance of shared fluctuations when different signals are added or pooled together.
- 4 Periodic trains of pulse packets (or oscillations) can synchronize by exploiting the resonance frequencies of excitatory-inhibitory networks. Resonance-induced synchrony can allow the propagation of pulse packets in diluted synfire chains.

Bibliography

- P Bedenbaugh and G L Gerstein. Multiunit normalized cross correlation differs from the average single-unit normalized correlation. *Neural computation*, 9(6):1265-75, August 1997.
- [2] Jaime de la Rocha, Brent Doiron, Eric Shea-Brown, Kresimir Josić, and Alex Reyes. Correlation between neural spike trains increases with firing rate. Nature, 448(7155):802–806, Aug 2007.
- [3] M. Diesmann, M. O. Gewaltig, and A. Aertsen. Stable propagation of synchronous spiking in cortical neural networks. *Nature*, 402(6761):529-533, Dec 1999.
- [4] Alexandre Kuhn, Ad Aertsen, and Stefan Rotter. Higher-order statistics of input ensembles and the response of simple model neurons. *Neural Comput*, 15(1):67–101, Jan 2003.
- [5] Alfonso Renart, Jaime de la Rocha, Peter Bartho, Liad Hollender, Néstor Parga, Alex Reyes, and Kenneth D Harris. The asynchronous state in cortical circuits. *Science*, 327(5965):587–590, Jan 2010.
- [6] Robert Rosenbaum, James Trousdale, and Krešimir Josić. The effects of pooling on spike train correlations. Front Neurosci, 5:58, 2011.
- [7] Robert J Rosenbaum, James Trousdale, and Krešimir Josić. Pooling and correlated neural activity. Frontiers in Computational Neuroscience, 4, 2010.
- [8] Man Yi Yim, Ad Aertsen, and Arvind Kumar. Significance of Input Correlations in Striatal Function. PLoS Computational Biology, 7(11):e1002254, November 2011.