Introduction to Computational Science and Engineering

<u>Help</u>

sandipan_dey ~

<u>Course</u>

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 8 Initial Value Problems, Python Class... / 8.1 Time-dependent phenomena a...

< Previous		Next >
	le: Deceleration of a car	
☐ Bookmark this pa	age	
	NUT - COT COCC - CTCCCC // L - L - A NUT - COT COC	

MO2.4

A major objective of this subject is to introduce key concepts behind computational algorithms used to simulate phenomena that depend on time. Time rates of change, not surprisingly, play an important role in modeling time-dependent phenomena.

Consider the deceleration to rest of a car that is initially moving at 90 km/hr = 25 m/s. Figure 8.1 shows an example of how the car's position x(t), velocity V(t), and acceleration a(t) might behave during the deceleration.

Figure 8.1: Position, velocity and acceleration of a vehicle braking from 25 m/s to rest. The velocity $V\left(t\right)$ is defined as the time rate of change of the position $x\left(t\right)$,

$$V = \frac{\mathrm{d}x}{\mathrm{d}t} \tag{8.1}$$

Graphically, $V\left(t\right)$ is the slope at time t of the $x\left(t\right)$ plot. And similarly, the acceleration is defined as the time rate of change of the velocity,

Discussions

All posts sorted by recent activity

[STAFF] transcript corrections exposition -> x position m_powers

 \triangle

2

© All Rights Reserved

$$a = \frac{\mathrm{d}V}{\mathrm{d}a}$$

(8.2)

edX

About motion shown in the plot is one in which the Affiniates and initially, and then increases in edwarding the middle of the deceleration, and opagain becomes small (in fact 0) at the end of the capation. As with the relationship of V to x, a(t) is the Newpe at time t of the plot of V(t).

Indeed, the notation $\frac{\mathrm{d} v}{\mathrm{d} t}$ for the derivative of v with respect to t is suggestive of a ratio of differences:

Next >

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Blog</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>