

Négyzetrácsos kirakó (Square Grid Puzzle)

Ebben a kirakós játékban egy 0-tól indexelt $N \times N$ -es négyzetrács alakú számtáblázatot kapunk, amelyben különböző egész számok vannak, 0-tól $N \times N-1$ -ig . A cél annak a rendezett állapotnak az elérése, ahol az i-edik sor és a j-edik oszlop metszetében lévő szám egyenlő az $i \times N+j$ értékkel, minden $0 \le i,j < N$ esetén. A cél eléréséhez kétféle lépést használhatunk:

- Lefelé mozgatás: " \mathbf{D} a[0] a[1] ... a[N-1]", ahol a[0], a[1], ... ,a[N-1] a táblázat legfelső sorában lévő számok valamilyen átrendezése. Ezzel a mozdulattal a legfelső sort eltávolítjuk, és új sort teszünk a táblázat aljára, amiben balról jobbra haladva az a[0], a[1], ... , a[N-1] számok vannak.
- Jobbra mozgatás: " \mathbf{R} b[0] b[1] ... b[N-1]", ahol b[0], b[1], ... ,b[N-1] a rács bal szélső oszlopában lévő számok valamilyen átrendezése. Ezzel a mozdulattal a bal szélső oszlopot eltávolítjuk, és új oszlopot teszünk a táblázat jobb szélére, amiben felülről lefelé haladva a b[0], b[1], ... ,b[N-1] számok vannak.

A fentiekben az átrendezés a számok sorrendjének megváltoztatását jelenti, melynek során nem lehet hozzáadni vagy eltávolítani számokat, és akár meg is őrizhetjük az eredeti sorrendet.

Például, ha az aktuális táblázat a következő:

Sor/Oszlop	0	1	2
0	2	4	6
1	8	1	5
2	7	3	0

A "D 6 2 4" lépés végrehajtásával a következő táblázatot kapjuk:

Sor/Oszlop	0	1	2
0	8	1	5
1	7	3	0
2	6	2	4

Viszont, ha ehelyett az "R 2 8 7" lépést hajtjuk végre, akkor a kapott táblázat:

Sor/Oszlop	0	1	2
0	4	6	2
1	1	5	8
2	3	0	7

N=3 esetén a célállapot így fest:

Sor/Oszlop	0	1	2
0	0	1	2
1	3	4	5
2	6	7	8

A célod, hogy kevesebb mint $3 \times N$ lépéssel elérd a kirakó célállapotát. Azonban részleges pontszámokat szerezhetsz abban az esetben is, ha több lépést használsz, vagy nem éred el a kívánt állapotot. A részleteket lásd a pontozásról szóló részben.

Bemenet

Az első sor egyetlen egész számot tartalmaz: N.

A következő N sor a kezdeti táblázatot írja le, minden sorban N számmal.

Kimenet

Az első sorban egyetlen egész szám legyen: M, a lépések száma. A következő M sor mindegyike egyetlen lépést tartalmazzon.

Pontozás

Jelöljük M-mel a megoldásodban szereplő lépések számát. Továbbá legyen $A=3 \times N$ és $B=2 \times N^2.$

Ha a kimenet érvénytelen, vagy ha M>B, akkor 0 pontot kapsz. Ellenkező esetben a pontszámod a helyes célpozícióban lévő számok mennyiségétől függ (jelöljük ezt a számot C-vel).

Ha $C < N \times N$, akkor nem érted el a célállapotot, és a tesztre járó pontok $(50 \times \frac{C}{N \times N})$ %-át kapod. Ellenkező esetben:

- ullet Ha M < A, akkor a tesztre járó pontok 100%-át megkapod.
- Ha $A \leq M \leq B$, akkor a tesztre járó pontok $(40 imes (\frac{B-M}{B-A})^2 + 50)$ %-át kapod.

Minden egyes teszt ugyanannyi pontot ér. A megoldásra kapott teljes pontszámod az egyes tesztek pontszámainak összege, és a feladatra kapott végső pontszámod az összes beadott megoldásod közül a legjobb pontszám lesz.

1. példa

Bemenet	Kimenet
3	4
1 4 2	R 3 6 1
375	D 2 3 4
680	D 5 6 7
	R 2 5 8

Ez a megoldás kevesebb, mint 9 lépéssel éri el a kívánt eredményt, így a teljes pontszámot kapja.

2. példa

Bemenet	Kimenet
2	0
21	
03	

A célt nem értük el, mivel a 4-ből csak két szám (1 és 3) van a megfelelő helyen. Ez a kimenet az adott tesztre járó pontok $50 imes \frac{2}{4} = 25$ %-át kapná.

Korlátok

• $2 \le N \le 9$

Részfeladatok

- Nincsenek részfeladatok.
- ullet Ugyanannyi teszteset van N minden értékére 2 és 9 között.