

DATA

24/04/2024

(Confidencial)

Ref.: S51996-RT-5801-IAS-708

COPIA:

Alan-Guilherme Estrela Rodrigo-Cavalli Santos; Flavia-Costa Moreira

PARA:

REV.

1

HISTÓRICO DAS REVISÕES					
RADO	VERIFICADO	APROVADO			
W	NSI	CFS			
PRINCIPAIS MUDANÇAS					

Jaqueline Silva

Pág. 1/10

TÍTULO: ESTUDO DE CVD DE 1ª EXTREMIDADE DA LINHA IA NO MANIFOLD MSIAG-01

ELABORADO

DTW

ÍNDICE

Primeira Emissão

1	INTRO	ODUÇÃO
	1.1	ODUÇÃOObjetivo
	1.2	Abreviações
	1.3	Abreviações
2	PREN	MISSAS DE CÁLCULO
	2.1	Hipóteses e Metodología
	2.2	Dados de Referência
	2.3	Critério de Aceitação
3		JLTADOS
	3.1	Instalação do MCV
	3.1.1	Alinhamento e verticalização do MCV
	3.1.2	Heave up
	3.1.3	Toque da linha no solo após conexão
4		CLUSÕES
5		(O
6	RESI	

Todas as informações contidas neste documento devem ser tratadas como PRIVILEGIADAS E CONFIDENCIAIS e não podem ser divulgadas a nenhum terceiro.

(Confidencial)

Ref.: S51996-RT-5801-IAS-708

1 INTRODUÇÃO

1.1 Objetivo

O presente documento tem por objetivo realizar um estudo de CVD de primeira extremidade no manifold MSIAG-01 em uma lâmina d'água de 2240m, a ser realizada pela embarcação Skandi 300t no campo Lula, para avaliar a necessidade do uso de boias e/ou peso morto durante o procedimento de modo a verticalizar o MCV e cumprir o critério de heave up.

As análises são realizadas utilizando o programa de elementos finitos para análises de instalação, ORCAFLEX versão 11.3a.

1.2 Abreviações

Skandi 300t : Skandi Olinda e Recife
CVD : Conexão Vertical Direta
MCV : Módulo de Conexão Vertical

TDP : Touch Down Point

MBR : Minimum Bending Radius

te : Toneladas

1.3 Referências

Ref	Documento	Rev	Título
[1]	RL-3A26.09-1500-94G-R1N-007	0	DUTO DE INJEÇÃO DE ÁGUA DO POÇO LL-44 AO MSIAG-01 DO FPSO CIDADE DE ITAGUAÍ (LADO MANIFOLD) – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)
[2]	RT-2762-CVD	0	ESTUDO DE CVD DE 1a EXTREMIDADE DA LINHA IA NO MANIFOLD MSIAG-01

Pág. 2/10

Pág. 3/10

(Confidencial)

Ref.: S51996-RT-5801-IAS-708

2 PREMISSAS DE CÁLCULO

2.1 Hipóteses e Metodologia

A metodologia utilizada no estudo visa dispor o cabo ligado à manilha do MCV e o flexível de maneira que o MCV e o hub estejam alinhados, com o desvio do MCV em relação à vertical dentro da tolerância especificada, que é condição necessária para a conexão vertical.

Após o MCV ser assentado, o ponto de conexão do flexível com o navio é suspenso, inicialmente 2,5 metros em 2,15 segundos, para assegurar que não há travamento da vértebra. Caso necessário, esse deslocamento pode ser reduzido. Nesse caso o comprimento de flexível usado para verticalizar o MCV é mantido. Essa etapa é para simular um deslocamento vertical do navio logo após o MCV ser assentado no hub.

As seguintes hipóteses foram assumidas:

- A análise realizada é dinâmica, porém não são considerados efeitos de corrente, ondas e vento:
- Apenas boias encontradas a bordo são consideradas como remediação para possíveis problemas na configuração da instalação;
- O centro de empuxo é considerado na mesma posição do centro de gravidade do MCV;
- A linha é considerada cheia de água;
- Foi considerada a rigidez à flexão nas condições de temperatura e pressão da instalação e anular alagado.

2.2 Dados de Referência

Item	Descrição
Estrutura	WSI 152.2510-DR-4041-4 Rev. 1
Vértebra	CB-BR1522510-00-05 Rev. 2
Conector	CB-EF1522510-00-09 Rev. 2
MCV	P7000048060 / TechnipFMC
Lâmina d'água	2240 m

(Confidencial)

Ref.: S51996-RT-5801-IAS-708

Pág. 4/10

2.3 Critério de Aceitação

Nas configurações estudadas os parâmetros da Tabela 2.1 são avaliados em relação aos limites informados.

Tabela 2.1 - Parâmetros de aceitação da configuração

Parâmetros	Ref	Valor Limite	Unidade
Inclinação do MCV em relação à vertical		±0,50	graus
Distância mínima do flexível ao solo	[-]	0,50	m
Distância do flange do MCV ao leito marinho	[1]	3,81	m
Raio de travamento da vértebra	[1]	4,14	m
Raio de curvatura mínimo da linha	[1]	2,40	m
Momento fletor máximo na vértebra	[1]	77,00	kN.m

De acordo com o documento ET-3000.00-1500-951-PMU-001 - revisão F, algumas observações se aplicam:

- (1) No caso de estudos para MCVs de umbilicais, a aprovação da análise depende apenas dos parâmetros descritos acima, não incluindo os esforços (momento/tração/cortante) como critérios de aceitação;
- (2) No caso de linhas de fluxo, os carregamentos devem ser gerados obedecendo o mesmo sistema de referência do relatório de cargas e comparados individualmente em módulo (i.e. tração com tração, cortante com cortante e momento com momento).

Ref.: S51996-RT-5801-IAS-708

3 RESULTADOS

3.1 Instalação do MCV

Para a instalação do MCV com os flutuadores mostrados na Tabela 3.1, os resultados da análise de alinhamento e verticalização do MCV são mostrados no item 3.1.1 e o do heave up no item 3.1.2.

Tabela 3.1 - Posicionamento dos flutuadores

Empuxo	Posição em relação ao flange do MCV		
[kg]	[m]		
1213 + 100	3,00		
576 + 576	6,00		

3.1.1 Alinhamento e verticalização do MCV

Os resultados da configuração que mantém o MCV verticalizado e alinhado são mostrados na Tabela 3.2. A Figura 3.1 apresenta a configuração do CVD de 1ª extremidade.

Tabela 3.2 - Resultados estáticos para alinhamento e verticalização

Distância do flange do MCV ao solo	Distância mínima da linha ao solo	Inclinação do MCV	MBR Linha	MBR Vértebra
[m]	[m]	[graus]	[m]	[m]
3,81	0,95	0,07	5,72	11,56

Figura 3.1 – Configuração da CVD de 1ª extremidade. Comprimento do ponto no seio da configuração até ao flange do goose neck e comprimento do ponto na altura do flange do goose neck até o seio.

Pág. 6/10

(Confidencial)

Ref.: S51996-RT-5801-IAS-708

3.1.2 Heave up

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é suspenso 2,5 metros em 2,15 segundos, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados são apresentados na Tabela 3.3 e na Tabela 3.4.

Tabela 3.3 - Resultados para análise de heave up

Heave up	MBR Linha	MBR Vértebra	Momento Fletor Máx na Vértebra	
[m]	[m]	[m]	[kN.m]	
2,50	4,13	4,14*	6,71	

*Vértebra travada

Tabela 3.4 - Esforços no flange do goose neck do MCV da análise do heave up

Momento	Momento Fletor	Tração	Força Cortante
Fletor	[kN.m]	[kN]	[kN]
Máximo	41,32	-2,56	3,01
Mínimo	-11,76	5,27	-9,95

3.1.3 Toque da linha no solo após conexão

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é pago até que a linha toque no solo, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados dos esforços da interface do MCV com o duto são apresentados na

Tabela 3.5.

Tabela 3.5 - Esforços no MCV no momento em que a linha toca no solo

Momento Fletor	Tração	Força Cortante
[kN.m]	[kN]	[kN]
-4,46	3,51	-5,92

Ref.: S51996-RT-5801-IAS-708

4 CONCLUSÕES

A Tabela 4.1 sumariza os resultados da operação de conexão vertical direta de 1ª extremidade.

Conclui-se que é necessário instalar 1313kg de empuxo a 3,00m do flange e 1152kg de empuxo a 6,00m do flange, conforme Tabela 3.1, de forma a verticalizar o MCV e cumprir o critério de heave up.

O estudo apresenta travamento da vértebra, porém o momento fletor máximo na mesma não ultrapassa o admissível.

Houve redução no comprimento da vértebra para 5,639m, correspondente a um ângulo de cobertura de 72°, de acordo com a RL-3A26.09-1500-94G-R1N-007.

Foi considerada a dragagem descrita na "Figura 5.2 – Ilustração da dragagem", do "capítulo 5 – Resultados", do RL-3A26.09-1500-94G-R1N-007.

Os esforços calculados deste estudo estão aprovados a partir do ábaco (Figura 4.1)

			Poço	MSIAG-01	Parecer Final
BR PETROBRAS		Tipo de MCV	Injeção		
		RL/TQF de referência	RL-3A26.09-1500-94G-R1N-007	,	
		Data	11/04/24	aprovado	
		TAG			
	TechnipFMC	W	Execução	DTW	
			Verificação	NSI	Revisão da Planilha
	•		Aprovação	CFS	0
	Análise I	Estrutural - I	MCV P7000048060 (Manifol	ld Pré-Sal)	
Índice	Caso de Carregamento		Esforço	Valor (input)	Resultado Final
1	CVD 2ª - Topo (Caso 1)		Tração	kN	-
			Tração (Fx)	-2,56 kN	
	CVD 1ª - MCV no <i>hub</i> com linha suspensa (Caso 3i - Flutuador/peso morto)	(a)	Cortante (Fz)	3,01 kN	aprovado
2			Momento fletor (My)	41,32 kN	l.m
			Tração (Fx)	5,27 kN	
		(b)	Cortante (Fz)	-9,95 kN	aprovado
			Momento fletor (My)	-11,76 kN	l.m
			Tração (Fx)	3,51 kN	
		(a)	Cortante (Fz)	-5,92 kN	aprovado
3	CVD 1ª - MCV no hub		Momento fletor (My)	-4,46 kN	l.m
3	(Caso 3ii - Flutuador/peso morto)		Tração (Fx)	kN	
		(b)	Cortante (Fz)	kN	-
			Momento fletor (My)	kN	l.m

Figura 4.1 - Resultados do ábaco

Tabela 4.1 - Tabela de comparação entre os valores encontrados e os limites

Seção	Parâmetros	Valor encontrado	Valor Limite	Unidade
3.1.1	Inclinação em relação à vertical	0,07	±0,50	graus
3.1.1	Distância mínima do flexível ao solo	0,95	0,50	m
3.1.1	Distância do flange do MCV ao leito marinho	3,81	3,81	m
3.1.2	Raio de curvatura mínimo da linha/vértebra	4,13 / 4,14*	2,40 / 4,14	m
3.1.2	Momento fletor máximo na vértebra	6,71	77,00	kN.m

*Vértebra travada

Ref.: S51996-RT-5801-IAS-708

5 ANEXO

Esse anexo apresenta uma contingência para o caso em que o MCV se encontra acoplado no hub, porém não está travado. A ideia é, com o MCV fixo no modelo, pagar linha até que esteja um comprimento lançado no solo e então adicionar boias para a verticalização do MCV sem ação da catenária.

A primeira opção seria acrescentar até 1200kg de empuxo, afastado 9m do flange do MCV. O raio mínimo na vértebra nessa condição é de 4,14m e o da linha é de 4,13m. O momento fletor obtido nessa condição é de 39,8kN.m no flange e 6,95kN.m na vértebra. A Figura 5.1 apresenta essa configuração.

Figura 5.1 - Configuração do caso de contingência - 1ª opção

A segunda opção seria acrescentar até 1400kg de empuxo, afastado 11m do flange do MCV. O raio mínimo na vértebra nessa condição é de 4,14m e o da linha é de 4,13m. O momento fletor obtido nessa condição é de 40,89kN.m no flange e 8,89kN.m na vértebra. A Figura 5.2 apresenta essa configuração.

Figura 5.2 - Configuração do caso de contingência - 2ª opção

Ref.: S51996-RT-5801-IAS-708

6 RESUMO

CVD de primeira extremidade no manifold MSIAG-01 em uma lâmina d'água de 2240m.

Tabela 6.1 - Heave Up

Ĭ	Harris	_
	Heave up	
	[m]	
	2,5	
	· ·	

Figura 6.1 - Configuração de Verticalização

Tabela 6.2 - Configurações de Contingência

Contingância	Empuxo limite	Distância ao flange
Contingência	[kg]	[m]
1	1200	9,0
2	1400	11,0

(Confidencial)

Ref.: S51996-RT-5801-IAS-708

FIM DO DOCUMENTO

Pág. 10/10