Lógica para Computação

Aula 08: Tabelas Verdades, Equivalências e Implicações (Parte IV)

Prof.º Me. Paulo César Oliveira Brito

paulocesar@servidor.uepb.edu.br

O processo de inferência automática poderia ser realizado utilizando-se tabelas-verdade, mas esta seria uma estratégia lenta e que ocuparia muito espaço para o armazenamento dos valores lógicos.

Existem certas relações que permitem deduzir fatos a partir de outros desde que estes satisfaçam formatos específicos. Estas relações são conhecidas como regras inferência.

Dizemos que P implica logicamente Q se P→Q é uma tautologia.

Notação: **P⇒Q**.

Implicações Lógicas Importantes

Eliminação

Prova por Casos

Regras de Inferência				
1.	p⇒p∨q	Lei de adição		
2.	$p \land q \Longrightarrow p$ $p \land q \Longrightarrow q$	Leis de simplificação		
3.	$(p \rightarrow q) \land p \Longrightarrow q$	Modus Ponens		
4.	$(p \rightarrow q) \land \neg q \Rightarrow \neg p$	Modus Tollens		
5.	$(p \lor q) \land \sim p \Longrightarrow q$	Silogismo disjuntivo		
6.	$(p \rightarrow q) \land (q \rightarrow r) \Longrightarrow (p \rightarrow r)$	Silogismo hipotético		

 $(p \rightarrow (q \lor r)) \land \sim q \Rightarrow (p \rightarrow r)$ $(p \rightarrow r) \land (q \rightarrow r) \Rightarrow (p \lor q) \rightarrow r$

7.

8.

Exemplos:

Se há fumaça, então há fogo.

Há fumaça.

Logo, ...

Exemplos:

Se há fumaça, então há fogo.

Há fumaça.

Logo, ... há fogo.

 $(p \rightarrow q) \land p \Rightarrow q$

Modus Ponens.

Exemplos:

Se há fumaça, então há fogo.

Não há fogo.

Logo, ...

Exemplos:

Se há fumaça, então há fogo.

Não há fogo.

Logo, ... não há fumaça.

 $(p \rightarrow q) \land \neg q \Rightarrow \neg p$ Modus Tollens.

Regra da Adição

$$p \Rightarrow p \lor q$$

p	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

p é verdadeiro; consequentemente a disjunção (p or q) é verdadeira

Regra da Simplificação

$$p \land q \Rightarrow p$$

p	q	p∧q
V	V	V
V	F	F
F	V	F
F	F	F

p e q são verdadeiros; consequentemente p é verdadeiro

Modus Ponens

$$(p \rightarrow q) \land p \Rightarrow q$$

Se chover, então fico em casa. $(p \rightarrow q)$

Chove. p

Então fico em casa. q

Se p então q;

p;

consequentemente q.

Modus Tollens

$$(p \rightarrow q) \land \neg q \Rightarrow \neg p$$

Se existe fogo aqui, então aqui também há oxigênio.

Não há oxigênio aqui.

Então aqui não há fogo.

Se p então q; não q; consequentemente não p.

Silogismo Disjuntivo

$$(p \lor q) \land \sim p \Longrightarrow q$$

Ela tem mais de 16 anos ou uma calça para uma jovem de 16 anos é mais de 300 reais;

Ela não tem mais que 16 anos;

Logo, uma calça para uma jovem de 16 anos é mais de 300 reais.

p ou q;

não p;

consequentemente q.

Silogismo Hipotético

$$(p \rightarrow q) \land (q \rightarrow r) \Rightarrow (p \rightarrow r)$$

Se eu não despertar, então não posso ir ao trabalho.

Se eu não puder ir ao trabalho, então eu não vou receber o salário;

Portanto, se eu não despertar, então eu não vou receber o salário.

Se p então q;
se q então r;
consequentemente,
se p então r.