FICHE DE COURS 19

LENTILLES SPHÉRIQUES MINCES

Ce que je dois être capable de faire après avoir appris mon cours

Définir une lentille sphérique mince.
Distinguer pratiquement une lentille divergente d'une lentille convergente.
Modéliser graphiquement une lentille mince utilisée dans les conditions de Gauss.
Définir la distance focale et la vergence d'une lentille sphérique mince. Déterminer le caractère convergent ou divergent d'une lentille grâce à ces notions.
Dessiner les rayons de construction permettant d'obtenir la position de l'image d'un objet à travers une lentille sphérique mince.
$\label{thm:continuous} Utiliser les propriétés d'un plan focal pour déterminer la propagation d'un rayon lumineux quelconque au travers d'une lentille sphérique mince$
Établir les relations de grandissement au centre et aux foyers
Établir les relations de conjugaison de Newton et de Descartes au centre et aux foyers
Pour une conjugaison à distance finie, établir le lien entre grandissement et grossissement
Expliquer le principe de la méthode d'autocollimation pour déterminer la distance focal d'une lentille
Connaître le critère de Bessel permettant l'observation d'un objet sur un écran à l'aide d'une unique lentille convergente
Établir l'expression de la distance focale f' par la méthode de Rossel

Les relations sur lesquelles je m'appuie pour développer mes calculs

 $\hfill \Box$ Epaisseur d'une lentille mince :

$$e \ll R_1$$
 ; $e \ll R_2$; $e \ll C_1 C_2$

 \square Distance focale f' et vergence v:

$$\boxed{ f' = \overline{OF'} = -\overline{OF} } \quad \text{et} \quad \boxed{ v = \frac{1}{f'} }$$

☐ Critère mathématique pour caractériser une lentille :

 $\hfill \square$ Relations aux foyers :

 $\star \ \underline{\mathrm{Conjugaison}}:$

$$\overline{FA}.\overline{F'A'} = -f'^2$$

 \star Grandissement :

$$\gamma = \frac{f'}{\overline{FA}} = -\frac{\overline{F'A'}}{f'}$$

 $\hfill \square$ Relations au centre :

 \star Conjugaison:

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

 \star Grandissement :

$$\gamma = \frac{\overline{OA'}}{\overline{OA}}$$

 \square Relation entre grandissement γ et grossissement $\mathcal G$ à distance finie :

$$G = \frac{1}{\gamma}$$

 $\hfill \square$ Méthode de Bessel :

 \star Conditions d'obtention d'une image :

$$D \ge 4f'$$

 \star Détermination de la distance focale :

$$f' = \frac{D^2 - d^2}{4D}$$