Salary Prediction using Linear Regression

Aim:

To build and train a linear regression model that predicts an employee's salary based on their years of experience.

Algorithm:

- 1. Load Data: Import the salary dataset using pandas.
- 2. Clean Data: Check for missing values and remove null entries.
- 3. Split Data: Separate features (YearsExperience) and labels (Salary), then divide into training and testing sets.
- 4. Train Model: Fit a LinearRegression model using the training data.
- Evaluate Model: Calculate model accuracy using training and testing scores.
- 6. Model Parameters: Display slope (coef_) and intercept (intercept_).
- 7. Save & Load Model: Save the trained model using pickle and reload it for use.
- 8. Prediction: Take user input for years of experience and predict the corresponding salary.

Program:

```
[22]: import numpy as np
  import pandas as pd
  df=pd.read_csv("C:/Users/vijay/Downloads/Salary_data.csv")
  df
```

[22]:		YearsExperience	Salary
	0	1.1	39343
	1	1.3	46205
	2	1.5	37731
	3	2.0	43525
	4	2.2	39891
	5	2.9	56642
	6	3.0	60150
	7	3.2	54445
	8	3.2	64445

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30 entries, 0 to 29
Data columns (total 2 columns):

Column Non-Null Count Dtype

0 YearsExperience 30 non-null float64
1 Salary 30 non-null int64

dtypes: float64(1), int64(1)
memory usage: 612.0 bytes

[25]: df.describe()

[25]:		YearsExperience	Salary
	count	30.000000	30.000000
	mean	5.313333	76003.000000
	std	2.837888	27414.429785
	min	1.100000	37731.000000
	25%	3.200000	56720.750000
	50%	4.700000	65237.000000
	75%	7.700000	100544.750000
	max	10.500000	122391.000000

```
[26]: features=df.iloc[:,[0]].values
label=df.iloc[:,[1]].values
```

- from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(features,label,test_size=0.2,random_state=42)
- [28]: from sklearn.linear_model import LinearRegression model=LinearRegression()

```
29]:
     model.fit(x_train,y_train)
     model.score(x_train,y_train)
     model.score(x_test,y_test)
29]: 0.9024461774180497
30]:
     model.coef
30]: array([[9423.81532303]])
     model.intercept_
31]:
31]: array([25321.58301178])
321:
     import pickle
     pickle.dump(model,open('SalaryPred.model','wb'))
     model=pickle.load(open('SalaryPred.model','rb'))
[]: yr_of_exp=float(input("Enter Years of Experience: "))
     yr_of_exp_NP=np.array([[yr_of_exp]])
     Salary=model.predict(yr_of_exp_NP)
     Enter Years of Experience: 44
```

Result:

The trained linear regression model accurately predicts salary based on years of experience. The model is saved for future use, and upon entering a number of years, it outputs the estimated salary value.