Generic course information

Introduction to Embedded System

Embedded System

An embedded system

- combination of computer hardware and software
- specifically designed for a particular function
- Applications
 - Mobile phone
 - Digital camera
 - Smart TV
 - Navigation system

Feature

- Designed to do some specific task
 - Low power
 - Small size
 - Special operating ranges
 - Low cost

Install OS ?

SOC

System On Chip

Component of embedded system

- Processor
 - ARM, X86, MIPS
- RAM
 - 8MB ~ 32 MB
- Storage
 - Nand, Nor flash
 - SD/MMC/eMMc
- System Bus
 - AMBA, AHB, APB, AXI ...

Component of embedded system

- Communication
 - I2C, I2S, USB, PCI/PCIe ...
- Media system
 - JPEG, H.264 ..
- System component
 - DMA, RTC ..

1.5GHz Cortex-A9 1.5GHz Cortex-A9 1.5GHz Cortex-A9

1.5GHz Cortex-A9

Experiment EVB

Tiny4412 | Exynos4412 ARM Cortex-A9 Board

FriendlyARM Tiny 4412 Stamp Module with 1.5 GHz Samsung Exynos4412 ARM Cortex-A9 processor.

Specification: Stamp Module

• Dimension: 74 x 55 mm

• CPU: 1.5 GHz Samsung Exynos4412 ARM Cortex-A9 (Quad-Core)

• RAM: 1 GB, 32 bit Bus

• Flash: up to 32GB eMMC Flash

• User Outputs: 4x LEDs

• Expansion headers (2.0 mm)

Power: 2-6VOS Support

Linux

Ubuntu

Android

Experiment EVB

Specification: SDK-Board

Dimension: 180 x 130 mm
 EEPROM: 256 Byte (I2C)

• Ext. Memory: SD-Card socket

• Serial Ports: DB9 connector (RS232), RS485, total: 4x serial port connectors)

USB: USB-A Host 1.1, miniUSB Slave/OTG 2.0

mini PCle

Audio: WM8960 codec

• Audio Output: 3.5 mm stereo jack, connector for a speaker (Class D Amp)

Audio Input: 3.5mm jack + Condenser microphone

Ethernet: RJ-45 10/100M (DM9000)

RTC: Real Time Clock with battery

• Beeper: PWM buzzer

G-Sensor

Camera: 20 pin (2.0 mm) Camera interface

Monitor: HDMI

LCD: 40 pin FFC and 45 pin FFC connector

• User Inputs: 8x buttons and 1x A/D pot

• Expansion: (2.0 mm)

• Power: regulated 5V

Introduction to Embedded Linux

Birth

- 1991, Linus Torvalds, Linux kernel project, a Unix-like operating system kernel.
- 2000, Linux is more and more popular on embedded systems.
- 2008, Linux is more and more popular on mobile devices
- 2010, Linux is more and more popular on phones (Android ?)

Embedded Linux?

Embedded Linux is the usage of the Linux kernel and various open-source components in embedded systems (from Free Electrons)

Advantages

- Re-use components
- Quickly design and develop complicated products
- No need to re-develop components
 - TCP/IP stack, USB stack, PCI stack ...
- Allow you modify components

Embedded Linux System Booting

Embedded Linux System Software components

- Cross-compilation toolchain
- Bootloader
- Linux Kernel
- Rootfs
- C library
- Libraries and applications
- BSP (Board Support Package)

Develop Environment

Develop Environment

- Host PC
- Toolchain
- Target EVB
- BSP

BSP

- Board Support Package
- From chip vendor
 - Bootloader
 - OS (Linux kernel)
 - Device driver
 - Shell (Android)
 - Rootfs

Cross Compilation toolchain

Embedded Processors

Application Processors

Development of the ARM Architecture

v4	v5	v6	v7
Halfword and signed halfword / byte support System mode Thumb instruction set (v4T)	Improved interworking CLZ Saturated arithmetic DSP MAC instructions Extensions: Jazelle (5TEJ)	SIMD Instructions Multi-processing v6 Memory architecture Unaligned data support Extensions:	Thumb-2 Architecture Profiles 7-A - Applications 7-R - Real-time 7-M - Microcontroller

- Note that implementations of the same architecture can be different
 - Cortex-A8 architecture v7-A, with a 13-stage pipeline
 - Cortex-A9 architecture v7-A, with an 8-stage pipeline

Just do it!

- Understand tiny-4412 EVB
- Build develop environment
 - Terminal Setting
 - Gtkterm, minicom ...
 - Prepare Tiny4412 BSP
 - U-boot, Linux kernel, RootFS
 - Setting toolchain
 - Build NFS Environment

Exercise Step

Terminal Setting

- sudo apt-get install gtkterm
- sudo gtkterm
- Connect serial port to Host PC
- Connect network line to Host PC
- Connect micro USB line to Host PC

Ethernet

EVB Setting

Serial Port

Power

Micro USB

Tiny-4412 EVB Boot Select

- Boot method
 - SD boot switch down
 - eMMC boot switch up

Power Switch

