

การแข่งขันเคมีโอลิมปิกระดับชาติ ครั้งที่ 17 สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี วันอาทิตย์ที่ 19 ธันวาคม 2564 เวลา 09.00 - 14.00 น.

เฉลยข้อสอบภาคทฤษฎี

เลขประจำตัวสอบ

คำตอบข้อที่ 1 (9 คะแนน)

วิธีคิดเบื้องต้น จากข้อมูลของธาตุ **M** และ **D** แสดงว่า 2 ธาตุนี้อยู่หมู่ IIA; **D** คือ Be และจากการคำนวณจะได้ มวลอะตอมของ **M** = 87.6 ทำให้ทราบว่า **M** คือ Sr (ดูจากตารางธาตุ) จากความสัมพันธ์ของธาตุต่าง ๆ ข้างต้น สรุปธาตุที่เหลือได้ดังนี้ **R** = Al, **T** = Si, **Z** = B, **X** = Br

1.1 (2 คะแนน) สมการไอออนิกสุทธิที่ดุลพร้อมระบุสถานะหากเกิดปฏิกิริยา หรือเหตุผลหากไม่เกิดปฏิกิริยา

1.2 (2 คะแนน)

species ที่เกิดปฏิกิริยา disproportionation คือ

X₂ (Br₂)

(0.5)

สมการไอออนิกสุทธิที่ดุลพร้อมระบุสถานะ

$$X_2(l) + 2OH^-(aq) \longrightarrow X^-(aq) + XO^-(aq) + H_2O(l)$$
 (คะแนนเต็ม 1 / สมการไม่ดุล หัก 0.2 / สถานะไม่ครบ หัก 0.1)

$$\dot{\text{Ph}} E^{\circ} = +1.52$$
 V (0.5)

1.3 (1 คะแนน)

 ห
 H
 H

 รูปโครงสร้าง
 H
 T
 T
 H

 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 H
 <

1.4 (1 คะแนน)

โครงสร้าง 3 มิติ

โครงสร้าง 3 มิติ

รูปนี้ให้ไว้เป็นแนวทางเท่านั้น

หันฐาน Si จับกับ 4 O เป็นทรงสี่หน้า

O จับกับ 2 Si เป็นมุมงอ

""" รูปนี้ให้ใจว่าเป็น network covalent)

1.5 (1 คะแนน) ตัวอย่างความสัมพันธ์ตามแนวทแยงมุมระหว่างธาตุ D และ R

D คือ Be หมู่ IIA และ R คือ Al หมู่ IIIA

- (1) ออกไซด์และไฮดรอกไซด์เป็น amphoteric

 Be(OH)₂ และ Al(OH)₃ ทำปฏิกิริยาได้ทั้งกับกรดและเบส แต่ออกไซด์และไฮดรอกไซด์ของธาตุอื่น ๆ ใน
 หมู่ IIA เป็นเบส
- (2) โครงสร้าง/พันธะของสารประกอบคลอไรด์เมื่อเป็นของแข็งมีลักษณะคล้ายกัน เป็นพันธะโคเวเลนต์ มี Cl-bridge

1.6 (1 คะแนน)

การจัดเรียงอิเล็กตรอนของ **M**

[Kr] $5s^2$ หรือ $1s^2$ $2s^2$ $2p^6$ $3s^2$ $3p^6$ $3d^{10}$ $4s^2$ $4p^6$ $5s^2$

1.7 (1 คะแนน)

ลำดับค่าอิเล็กโทรเนกาติวิตี

M < D < Z < X หรือ Sr < Be < B < Br

คำตอบข้อที่ 2 (10 คะแนน)

2.1 (1.75 คะแนน) เพชรที่มีความหนาแน่นสูงสุด

วิธีคำนวณ

$$(1/2 \times 6) + (1/8 \times 8) + 4$$
 (0.25)

ความยาวของหน่วยเซลล์ =
$$3.56 \times 10^{-8}$$
 cm (0.25)

วิธีคำนวณ

Unit cell edge =
$$\sqrt[3]{\left(\frac{1 \text{ cm}^3}{3.52 \text{ g}}\right) \left(\frac{12.0 \text{ g C}}{1 \text{ mol C}}\right) \left(\frac{1 \text{ mol C}}{6.02 \times 10^{23} \text{ C atoms}}\right) \left(8 \text{ C atoms}\right)}$$

$$(0.25) \quad (0.25) \quad (0.25)$$

$$= 3.56 \times 10^{-8} \text{ cm}$$

2.2 (1.25 คะแนน) เพชรที่มีความหนาแน่นต่ำสุด

วิธีคำนวณ

C atoms/unit cell =
$$\left(\frac{(3.56 \times 10^{-8} \text{ cm})^3}{1 \text{ unit cell}}\right) \left(\frac{3.01 \text{ g C}}{1 \text{ cm}^3}\right) \left(\frac{1 \text{ mol C}}{12.0 \text{ g C}}\right) \left(\frac{6.02 \times 10^{23} \text{ C atoms}}{1 \text{ mol C}}\right)$$

 (0.25) (0.25) (0.25) (0.25)

2.3	(2 คะแนน)	ระบุตำแห	น่งที่เป็นช่อ	งเททระฮีดรัส	ลและช่องออ	ากตะฮีดรัล		
		Па	□b	□ c	□ d	□ e	☐ f	
ช่องเา	ททระฮีดรัล	□ g	□h	□i	П ј	□k	☑ m	(0.5 ต้องถูกทั้งหมด)
-		— 3 □ n		_ р	, □ r	··	t	v v
				– p	L	— 3		
		☑ a	□ b	□ c	□ d	☑ e	☐ f	
ช่องอ	อกตะฮีดรัล	□ g	□h	□i	П ј	\square k	☐ m	(0.5 ต้องถูกทั้งหมด)
		□ n		☑ p	□ r	□ s	☐ t	v
	มี K ในช่องว่า	างในหน่วยเ	ซลล์ =		12	อะตอเ	1	(0.25)
วิธีคำ	นวณ							
	0	h holes: (1	¼ × 12) +	1 = 4; td	holes: 8,	total = 12		(0.5)
	อัตราส่วนอย่ [,]	างง่ายของ k	< : C ₆₀ =	3	3:1			(0.25)
2.4	(1.5 คะแนน)						
	ความหนาแน่	นของผลึก	=	1	1.92	g/cm ³		(0.25)
				(ตอบทศนิย	<u></u> ยม 2 ตำแหเ	 ม่ง)		
วิธีคำ	วิธีคำนวณ							
d =	<u>m</u>							
	V	,	(÷ =)				(2.5)	
								>
	(240 atom	$C \times \frac{1}{6.02}$	1 mol ⊂ × 10 ²³ ato	$\frac{12.0 \text{ g}}{\text{m C}} \times \frac{12.0 \text{ g}}{1 \text{ mo}}$	$\frac{g C}{d C} + (12 a)$	atom $K \times \frac{1}{6}$	$\frac{1 \text{ mol}}{02 \times 10^{23}}$	$\frac{C}{\text{atom C}} \times \frac{39.1 \text{ g K}}{1 \text{ mol K}}$
u –				(1425.	$.3 \times 10^{-10}$ c	cm) ³		
				<	-(0.25)	>		
=	1.92 g/cm ³	i						

2.5 (2.25 คะแนน) วาดรูปแสดงตำแหน่งจุดแลตทิชของ M ที่ระยะต่าง ๆ ตามแกน z

ตอบเกินหัก 0.5/ช่อง

มี M ในหน่วยเซลล์ = 6 อะตอม (0.25)

วิธีคำนวณ

$$(\frac{1}{2} \times 6) + (\frac{1}{4} \times 12)$$
 (0.25)

2.6 (1.25 คะแนน)

วิธีคำนวณ

$$\frac{\left(2 \times \frac{4}{3}\pi \times (355 \text{ pm})^3\right) + \left(6 \times \frac{4}{3}\pi \times r^3\right)}{(1184.5 \text{ pm})^3} = \frac{83.58}{100}$$
 (1)

r = 343 pm

คำตอบข้อที่ 3 (10 คะแนน)

3.1 (3 คะแนน) สูตร ชื่อที่ระบุชนิดของไอโซเมอร์ (ถ้ามี) และรูปโครงสร้างที่เป็นไปได้ทั้งหมด

3.2 (1 คะแนน)

ใช้ L-phenylalanine 0.19 หรือ 0.186 g 450 mL × $\frac{1.25 \times 10^{-3} \text{ mol } \text{Cu}^{2+}}{1000 \text{ mL}}$ × $\frac{2 \text{ mol } a \hat{a}}{1 \text{ mol } \text{Cu}^{2+}}$ × $\frac{165.0 \text{ g } a \hat{a}}{1 \text{ mol } a \hat{a}}$ = 0.1856 g

3.3 (2 คะแนน) โครงสร้างและชนิดไอโซเมอร์ของสารเชิงซ้อนคีเลต

3.4 (2 คะแนน) เติมอิเล็กตรอน เขียนชนิดของ d-orbital และระบุรูปร่าง

เลขประจำตัวสอบ

3.5 (1 คะแนน) ใส่เลข 1 (มากที่สุด) – 4 (น้อยที่สุด) เพื่อระบุลำดับการดูดซับกรดอะมิโนของคอลัมน์

4 aspartic acid 3 serine 1 leucine 2 valine

3.6 (1 คะแนน) โครงสร้างสารเชิงซ้อนของคอปเปอร์ กับ L-phenylalanine และ D-serine

โครงสร้าง
$$\begin{array}{c} O \\ \\ N \\ \\ N \\ \end{array}$$
 $\begin{array}{c} H_2 \\ \\ N \\ \end{array}$ $\begin{array}{c} R' \\ \\ N \\ \end{array}$ $\begin{array}{c} R' \\ \\ N \\ \end{array}$

แนวคิด

- กรดแอสพาติกที่ pH 10 มีประจุ 2- มี donor atoms 3 ตัว เกิดเป็นสารประกอบจึงต้องการน้ำอีก 3 ตัว เป็น ไอโซเมอร์ชนิด fac- เพราะถูกบีบจากตำแหน่งของ donor atoms ในวงคีเลต
- amino acids มี doner atoms 2 ตัว เกิดสารประกอบแบบคีเลตกับคอปเปอร์ ต้องใช้กรดอะมิโน 2 เท่าของ

 Cu²⁺ เป็น diastereomer จึงมีไอโซเมอร์คือ cis- และ trans- ลิแกนด์เป็น L-isomer เรียงลำดับจาก N ไป C=O

 และ R แบบวนซ้าย

คำตอบข้อที่ 4 (10 คะแนน)

4.1 (2.5 คะแนน)

อันดับของปฏิกิริยาเมื่อเทียบกับ
$$[H_2O_2] = 1$$
 (0.5)

อันดับของปฏิกิริยาเมื่อเทียบกับ [
$$\Gamma$$
] = 1 (0.5)

แสดงแนวคิด ข้อสมมติ (assumption) และวิธีคำนวณ

เนื่องจาก [H₂O₂]₀
$$\ll$$
 [IT]₀ และ [H₂O₂]₀ \ll [H⁺]₀ ดังนั้นสามารถ**ถือว่า** [IT] และ [H⁺] มีค่าคงที่ (0.35) ในขณะที่ปฏิกิริยาดำเนินไป ทำให้สามารถเขียนกฎอัตราในรูป Rate = k_{obs1} [H₂O₂]^m (0.2) เมื่อพิจารณา**กราฟซึ่งพล็อตระหว่าง In**[H₂O₂] และ time จะเห็นว่า ได้**กราฟเล้นตรง** ทำให้ (0.2) สามารถสรุปได้ว่า m = 1 นั่นคือ **อันดับของปฏิกิริยาเมื่อเทียบกับ** [H₂O₂] = 1 ความชันของกราฟ (ซึ่งมีค่าเท่ากับ $-k_{\text{obs1}}$ (ไม่ใช่ $-Rate!!!$)) เปลี่ยนไปตาม [IT] \approx [IT]₀ แสดงว่า (0.55) k_{obs1} ขึ้นกับ [IT] สมมติให้ $k_{\text{obs1}} = k_{\text{obs2}}$ [IT]ⁿ (ถ้าเขียน Rate = k [IT]ⁿ ไม่ได้คะแนน) แทนค่าจากผลการทดลอง 0.1204 = k_{obs2} (0.1000)ⁿ (0.2) $0.3612 = k_{\text{obs2}}$ (0.3000)ⁿ $0.4816 = k_{\text{obs2}}$ (0.4000)ⁿ $0.4816 = k_{\text{obs2}}$ (0.4000)ⁿ $0.3612 = k_{\text{obs2}}$ (0.3000) 0.1000 $0.3612 = k_{\text{obs2}}$ (0

เพราะฉะนั้น $k_{\rm obs1} = k_{\rm obs2}[\Gamma]$ ทำให้กฎอัตราอยู่ในรูป Rate = $k_{\rm obs2}[{\rm H_2O_2}][\Gamma]$ โดย

อันดับของปฏิกิริยาเมื่อเทียบกับ $[I^-]=1$

หมายเหตุ

สำหรับโจทย์ข้อนี้ นักเรียนจะต้องหาอันดับปฏิกิริยาเมื่อเทียบกับ H_2O_2 ให้ได้ก่อน ไม่สามารถข้ามมาหาอันดับ ปฏิกิริยาเมื่อเทียบกับ Γ ก่อน (ถ้าคิดว่าทำได้ แสดงว่า ยังเข้าใจ concept ผิด) พึ่งระลึกว่า ความชั้นของกราฟ มีค่าเท่ากับ $-k_{obs1}$ ไม่ใช่อัตราการเกิดปฏิกิริยา (rate) ดังนั้นถ้านักเรียนเขียนเพียงว่า "ค่าความชั้นแปรผันตรง กับ Γ ปฏิกิริยานี้จึงเป็นปฏิกิริยาอันดับหนึ่งเมื่อเทียบกับ Γ โดยไม่แสดงให้เห็นว่า ทราบว่าความชั้น คือ $-k_{obs1}$ นักเรียนก็จะไม่ได้คะแนนในส่วนนั้น (0.55) เพราะเหตุผลไม่ถูกต้อง เป็นเพียงการเดาเท่านั้น

เลขประจำตัวสอบ	

4.2 (2 คะแนน)

(ตอบ 0.02007 M^{-1} s⁻¹ หรือ 2.007 × 10^{-2} M^{-1} s⁻¹ หรือ 72.24 M^{-1} h^{-1} ได้ 0.65 คะแนน)

วิธีคำนวณ

จากกฎอัตรา Rate =
$$k_{\rm obs2}[{\rm H_2O_2}][\Gamma]$$
 โดย $k_{\rm obs2}[\Gamma] = k_{\rm obs1}$ ดังนั้น
$$k_{\rm obs2} = \frac{k_{\rm obs1}}{[\Gamma]}$$
 (0.5)

จากชุดข้อมูลที่ 1 จะได้ว่า
$$k_{\text{obs2}} = \frac{0.1204 \text{ min}^{-1}}{0.1000 \text{ M}}$$
 $= 0.1204 \text{ M min}^{-1}$

(หากใช้ข้อมูลชุดที่ 2 หรือ 3 ก็จะได้คำตอบเดียวกัน)

หมายเหตุ หากนักเรียนนำค่า "**-ความชัน**" มาตอบเลย จะไม่ได้คะแนน เนื่องจากความชันจากการทดลองมีถึง 3 ค่าที่แตกต่างกัน ดังนั้น ย่อมไม่ใช่ค่าคงที่อัตราที่เหมาะสม และการนำค่าเหล่านั้น หรือค่าเฉลี่ย มาตอบย่อมไม่ สมควรได้คะแนนเครดิต แม้จะใช้เหตุผลว่า ข้อ 4.1 นักเรียนสรุปว่า Rate = k[H₂O₂] ก็ไม่ควรได้คะแนนข้อนี้

4.3 (3.5 คะแนน) กราฟระหว่าง –slope และ $[H^+]_0$

เลขประจำตัวสอบ

กฎอัตราคือ Rate =
$$((9.60 \text{ M}^{-2} \text{ min}^{-1})[\text{H}^+] + 0.820 \text{ M}^{-1} \text{ min}^{-1})[\text{H}_2\text{O}_2][\Gamma]$$
 (1.5)

- หน่วยผิดหักจุดละ 0.25 คะแนน
- ถ้าเขียนค่าคงที่เป็นตัวแปร และระบุค่าของตัวแปร ก็ได้คะแนนเต็มเช่นกัน เช่น Rate = $(k_3[H^+] + k_4)[H_2O_2][I^-]$ โดย $k_3 = 9.60~M^{-2}~min^{-1}$ และ $k_4 = 0.820~M^{-1}~min^{-1}$

วิธีคำนวณ

เมื่อพล็อตกราฟ	เะหว่าง –slo	pe และ [H ⁺] ₀ จะเห็นได้ว่า เป็	นกราฟเส้นตรงที่ไม่ผ่านจุดกำเนิด	(0.6)	
แสดงว่า k _{obs1} (-	slope) มีคว	ามสัมพันธ์กับ [H ⁺] ในรูป k obs:	$_1 = k_1[H^+] + k_2$		
ดังนั้น	(0.08096 n	$nin^{-1}) = k_1(0.0200 \text{ M}) + k_2$	ข้อมูลชุดที่ 4	(0.4)	
	(0.12704 n	$nin^{-1}) = k_1(0.0800 \text{ M}) + k_2$	ข้อมูลชุดที่ 5		
	(0.18848 n	$nin^{-1}) = k_1(0.1600 \text{ M}) + k_2$	ข้อมูลชุดที่ 6		
แก้สมการ 2 ตัว	เปรจากข้อมูล	ลชุดที่ 4 และ 5 (หรือชุดที่ 4 แ	ละ 6 หรือชุดที่ 5 และ 6) จะได้	(0.4)	
	k_1	= 0.768 M ⁻¹ min ⁻¹ และ k ₂	= 0.0656 min ⁻¹		
เพราะฉะนั้น จะ	ได้ว่า $k_{ m ob}$	$_{\rm os1} = (0.768 \ {\rm M}^{-1} \ {\rm min}^{-1})[{\rm H}^{+}]$	+ 0.0656 min ⁻¹		
เนื่องจาก กฎอัตราอยู่ในรูป Rate = $k_{\rm obs2}[{\rm H_2O_2}][\Gamma]$ โดยที่ $k_{\rm obs2}[\Gamma] = k_{\rm obs1}$ (0.6)					
ดังนั้น	$k_{\text{obs2}}[\Gamma] = 1$	$k_{\text{obs1}} = (0.768 \text{ M}^{-1} \text{ min}^{-1})[\text{H}^{-1}]$	⁺] + 0.0656 min ⁻¹	สูตรถูก แต่หาร	
และจะได้ว่า	k	$\frac{k_{\text{obs1}}}{[1]} = \frac{(0.768 \text{ M}^{-1} \text{ min}^{-1})}{0.08}$	$[H^+] + 0.0656 \text{ min}^{-1}$	ผิดได้ 0.3	
แขร		r 1		ถ้าตัวเลขผิดที่ขั้น	
	=	$(9.60 \text{ M}^{-2} \text{ min}^{-1})[\text{H}^{+}] + 0.82$	0 M ⁻¹ min ⁻¹	ก่อนหน้า แต่หาร	
ดังนั้น	Rate = ($((9.60 \text{ M}^{-2} \text{ min}^{-1})[\text{H}^+] + 0.82$	20 M ⁻¹ min ⁻¹)[H ₂ O ₂][I ⁻] หรือ	ขั้นนี้ถูกได้ 0.6	
	Rate = 0	$(0.820 \text{ M}^{-1} \text{ min}^{-1} + (9.60 \text{ M}^{-1}))$	$^{-2} \text{ min}^{-1})[\text{H}^+])[\text{H}_2\text{O}_2][\Gamma]$	Ü	
*** กรณีที่นักเรี	*** กรณีที่นักเรียนคำนวณคำตอบไม่ได้เลย (ทำได้เพียงพล็อตกราฟ) และสรุปกฎอัตราออกมา ได้ 0.5				
ในรูป Rate	ในรูป Rate = $(k_3[H^+] + k_4)[H_2O_2][I^-]$				

4.4 (2 คะแนน) ความหมายของกฎอัตราในข้อ 4.3 ที่สอดคล้องกับผลการทดลองทั้งหมด ในเชิงกลไกของปฏิกิริยา

- ปฏิกิริยาเกิดผ่านกลไกของปฏิกิริยาที่แตกต่างกัน	(0.75)
- กลไกที่ต่างกัน คือ กลไกหนึ่งขึ้นกับ [H ⁺] อีกกลไกหนึ่งไม่ขึ้น [H ⁺]	(0.75)
- การอธิบายความสมเหตุสมผล (เช่น กลไกหนึ่งขึ้นกับ [H ⁺] โดยดูจาก k_3 [H ⁺][H $_2$ O $_2$][Г] และอีก	(0.5)
กลไกหนึ่งไม่ขึ้นกับ [H ⁺] โดยดูจาก k_4 [H $_2$ O $_2$][Г])	
* ถ้าตอบว่า "กลไกหนึ่งเป็นแบบไม่มีตัวเร่งปฏิกิริยา และอีกกลไกหนึ่งเป็นแบบมีตัวเร่งปฏิกิริยา (ซึ่ง	
ก็คือ $H^{\scriptscriptstyle +}$)" อาจจะเป็นการสรุปเกินจริง เพราะ $H^{\scriptscriptstyle +}$ ถูกใช้ไปในการทำปฏิกิริยาจึงไม่ใช่ตัวเร่งปฏิกิริยา	ได้ 0.4
*ถ้าตอบว่า "เป็นปฏิกิริยาอันดับสอง" อย่างเดียว หรือ "เป็นปฏิกิริยาอันดับสาม" อย่างเดียว และ	
อธิบายกลไกของปฏิกิริยาได้อย่างมีเหตุผล	ได้ 0.75
หมายเหตุ : สามารถแทน k_3 และ k_4 ด้วยสัญลักษณ์อื่นได้	

ตัวอย่าง	
การที่กฎอัตราอยู่ในรูป Rate = $(k_3[H^\dagger] + k_4)[H_2O_2][\Gamma]$	
สามารถเขียนใหม่ได้เป็น Rate = $k_3[H^\dagger][H_2O_2][\Gamma] + k_4[H_2O_2][\Gamma]$	(0.75)
แสดงว่า ปฏิกิริยานี้น่าจะ เกิดขึ้นผ่าน 2 กลไก	
โดยที่ กลไกหนึ่งขึ้นกับ [H⁺] โดยดูจาก k ₃ [H ⁺][H ₂ O ₂][Г] และ อีกกลไกหนึ่งไม่ขึ้นกับ [H⁺] โดยดูจาก	(1.25)
$k_4[H_2O_2][\Gamma]$	

คำตอบข้อที่ 5 (4.5 คะแนน)

5.1 (1.5 คะแนน) เอนทัลปีของปฏิกิริยา ซึ่งคำนวณโดย

สาเหตุของความแตกต่าง

เช่น – พลังงานพันธะที่ gas phase ไม่ตรงกับสภาวะของปฏิกิริยา (0.5)

– สภาวะมาตรฐานของค่าพลังงาน standard or not?

– พลังงานพันธะ ไม่ได้บอกว่าเป็นชนิดใด U ∨s H

– พลังงานพันธะเป็นค่าเฉลี่ยจากหลาย ๆ สปีชีส์

– พลังงานไฮเดรชัน (aq) หรือ แรงยึดเหนี่ยวระหว่างโมเลกุล (l)

(ตอบด้วยเลขนัยสำคัญสูงสุดจากข้อมูล) sig fig ถูกต้องทั้งหมด (0.25)

วิธีคำนวณ

สมการสุทธิ์ : 2
$$H_2O_2(aq) \longrightarrow 2 H_2O(l) + O_2(g)$$

<u>การเปลี่ยนแปลงเอนทัลปี (∆_rH°)</u>

expression (0.25)

$$\Delta_{\rm f}H^{\circ} = 2 \times \Delta_{\rm f}H^{\circ}(H_2O, 1) + \Delta_{\rm f}H^{\circ}(O_2, g) - 2 \times \Delta_{\rm f}H^{\circ}(H_2O_2, aq)$$

$$= 2(-285.83) + 0 - 2(-191.17) = -189.32 \text{ kJ mol}^{-1}$$

<u>การเปลี่ยนแปลงเอนโทรปี (∆,S°)</u>

$$\Delta_r S^\circ = 2 \times S^\circ(H_2O, l) + S^\circ(O_2, g) - 2 \times S^\circ(H_2O_2, aq)$$

= 2(69.91) + (205.14) - 2(143.9) = +57.16 kJ mol⁻¹

<u>การคำนวณงาน (w)</u>

 $\overline{\mathbf{V}}$

 $\overline{\mathbf{V}}$

formula (0.25)

 $W = -P \Delta V = -R T \Delta n = -(8.314 \text{ J K}^{-1} \text{ mol}^{-1}) (298 \text{ K}) (+1 \text{ mol}) = -2477.6 \text{ J}$ = -2.48 kJ

<u>การเปลี่ยนแปลงพลังงานภายใน (△,*U*)</u>

formula (0.25)

 $\Delta_r U = \Delta_r H - P \Delta V = (-189.32) + (-2.48) \text{ kJ mol}^{-1} = -191.80 \text{ kJ mol}^{-1}$

5.3

5

5

(1 คะ	แนน) ทำเครื่องหมาย 🗸 เฉพาะหน้าข้อความที่สรุปได้ถูกต้อง	Tick ถูก +0.23
max :	= 1 คะแนน; min = 0 คะแนน	Tick ผิด -0.25
	ค่าคงที่สมดุล (<i>K</i>) มีค่าน้อยกว่า 1	
	ค่าคงที่สมดุล (K) มีค่าเท่ากับ 1	
$\overline{\checkmark}$	ค่าคงที่สมดุล (<i>K</i>) มีค่ามากกว่า 1	
	การสลายตัวจะเกิดได้เร็วขึ้น หากลดความดัน	
	การสลายตัวจะเกิดได้เร็วขึ้น หากเพิ่มความดัน	
	การสลายตัวจะเกิดได้เร็วขึ้น หากลดอุณหภูมิ	
	การสลายตัวจะเกิดได้เร็วขึ้น หากเพิ่มอุณหภูมิ	
\checkmark	การสลายตัวจะเกิดได้มากขึ้น หากลดความดัน	
	การสลายตัวจะเกิดได้มากขึ้น หากเพิ่มความดัน	
\checkmark	การสลายตัวจะเกิดได้มากขึ้น หากลดอุณหภูมิ	
	การสลายตัวจะเกิดได้มากขึ้น หากเพิ่มอุณหภูมิ	
\checkmark	ค่าคงที่อัตราของขั้นที่ 1 (k_1) มีค่ามากกว่าขั้นที่ 2 (k_2)	
	ค่าคงที่อัตราของขั้นที่ 1 (k_1) มีค่าน้อยกว่าขั้นที่ 2 (k_2)	
	พลังงานก่อกัมมันต์ของขั้นที่ 1 ($E_{a,1}$) สูงกว่าขั้นที่ 2 ($E_{a,2}$)	

ปฏิกิริยาการสลายตัวของ H_2O_2 โดยไม่มี I^- เป็นตัวเร่งปฏิกิริยา เกิดเองไม่ได้ที่อุณหภูมิห้อง

ปฏิกิริยาการสลายตัวของ $m H_2O_2$ โดยมี $m I^-$ เป็นตัวเร่งปฏิกิริยา เกิดเองได้ที่อุณหภูมิห้อง

ปฏิกิริยาการสลายตัวของ $\mathrm{H}_2\mathrm{O}_2$ โดยมี I^- เป็นตัวเร่งปฏิกิริยา เกิดเองไม่ได้ที่อุณหภูมิห้อง

ปฏิกิริยาการสลายตัวของ ${
m H_2O_2}$ โดยไม่มี I $^-$ เป็นตัวเร่งปฏิกิริยา เกิดเองได้ที่อุณหภูมิห้อง

พลังงานก่อกัมมันต์ของขั้นที่ 1 ($E_{a,1}$) ต่ำกว่าขั้นที่ 2 ($E_{a,2}$)

คำอธิบายเพิ่มเติม

Thermodynamics - Chemical Equilibrium

•
$$\Delta n_{\rm gas} = +1$$
 $\Delta n > 0$... rxn forward when $P \downarrow$

•
$$\Delta_r H^\circ = -189.32 \text{ kJ mol}^{-1}$$
 $\Delta_r H^\circ < 0 \dots \text{ rxn forward when } T \downarrow$

•
$$\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ = -206.4 \text{ kJ mol}^{-1}$$
 $\Delta_r G^\circ < 0 \text{ ... thermodynamically feasible}$ $K = \exp(-\Delta_r G^\circ / RT) = 1.51 \times 10^{36}$ $K > 1$

Kinetics

- รู้เพียง ขั้นแรก(เกิดซ้า) และ ขั้นสอง(เกิดเร็ว) $k_1 < k_2$ แม้ [IO¯] (intermediate) จะต่ำก็ตาม
- ไม่สามารถสรุปถึง $E_{\rm a}$ ได้ เนื่องจาก k= (collision factor) (orientation factor) (energy factor)
- ปฏิกิริยาเกิดใน solution ดังนั้น ความดันแทบจะไม่มีผลอะไร
- แม้โดยทั่วไป ปฏิกิริยาจะเกิดได้เร็วขึ้นเมื่อ \mathcal{T} แต่เนื่องจากไม่ทราบว่า activation energy จะลดลง (Arrhenius) หรือเพิ่มขึ้นกันแน่ จึงไม่อาจสรุปได้จากข้อมูลที่กำหนด

วิธีคำนวณ ข้อ 5.1

(a) การคำนวณด้วยพลังงานพันธะ – ไม่ใช่สภาวะมาตรฐาน!

(b) การคำนวณด้วยเอนทัลปีมาตรฐานการเกิด

ขึ้นที่ 1
$$\Delta H^{\circ}_{1} = [\Delta_{f}H(IO^{-}) + \Delta_{f}H(H_{2}O)] - [\Delta_{f}H(H_{2}O_{2}) + \Delta_{f}H(I^{-})]$$

$$= [(-107.5) + (-285.83)] - [(-191.17) + (-55.19)] = -146.97 \text{ kJ mol}^{-1}$$
ขึ้นที่ 2 $\Delta H^{\circ}_{2} = [\Delta_{f}H(I^{-}) + \Delta_{f}H(H_{2}O) + \Delta_{f}H(O_{2})] - [\Delta_{f}H(H_{2}O_{2}) + \Delta_{f}H(IO^{-})]$

$$= [(-55.19) + (-285.83) + (0)] - [(-191.17) + (-107.5)] = -42.35 \text{ kJ mol}^{-1}$$
รวม $\Delta_{f}H^{\circ} = \Delta H^{\circ}_{1} + \Delta H^{\circ}_{2} = (-147) + (-42) \text{ kJ mol}^{-1} = -189 \text{ kJ mol}^{-1}$

คำตอบข้อที่ 6 (10 คะแนน)

6.1 (2.25 คะแนน) ความเร็วของอิเล็กตรอนที่เลี้ยวโค้ง =
$$2.69 \times 10^7$$
 m/s (0.25)

ความยาวคลื่นของเดอบรอยล์ =
$$2.70 \times 10^{-11}$$
 m (0.25)

วิธีคำนวณ

จาก
$$E_{k, \text{เริ่มตัน}} - E_{k, \text{สุดท้าย}} = \frac{hc}{\lambda}$$
 (0.10)

จะได้

$$\frac{1}{2}(9.11\times 10^{-31}~\text{kg})(2.70\times 10^{7}~\text{m/s})^{2} - E_{k,\text{สุดห้าย}} = \frac{(6.626\times 10^{-34}~\text{kg}\cdot\text{m}^{2}\cdot\text{s}^{-1})(3.00\times 10^{8}~\text{m/s})}{(1.000\times 10^{3}\times 10^{-10}~\text{m})} \qquad \begin{array}{c} (1.00) \\ \text{**วงเล็บละ} \\ 0.20^{**} \end{array}$$

$$\frac{1}{2}$$
(9.11 × 10⁻³¹ kg){(2.70 × 10⁷ m/s)² – v^2 } = 1.99 × 10⁻¹⁸ J

$$(2.70 \times 10^7 \text{ m/s})^2 - v^2 = 4.37 \times 10^{12} \text{ m}^2 \cdot \text{s}^{-2}$$

$$v^2 = 7.25 \times 10^{14} \,\mathrm{m}^2 \cdot \mathrm{s}^{-2}$$

$$v = 2.69 \times 10^7 \,\text{m/s}$$

$$\lambda = \frac{h}{mv} \tag{0.05}$$

จะได้

$$\lambda = \frac{(6.626 \times 10^{-34} \text{ kg·m}^2 \cdot \text{s}^{-1})}{(9.11 \times 10^{-31} \text{ kg})(2.69 \times 10^7 \text{ m/s})}$$

$$= 2.70 \times 10^{-11} \text{ m}$$

$$(0.60)$$
**3\text{saturate}
0.20**

$$l = 0 (0.10)$$

$$m_l = 0 (0.10)$$

$$m_s = +\frac{1}{2}, -\frac{1}{2}$$
 (0.20)

วิธีคำนวณ

จาก
$$\frac{hc}{\lambda} = B.E. + E_{k,\text{electron}}$$
 (0.10)

จะได้

$$\frac{(6.626 \times 10^{-34} \text{ kg·m}^2 \cdot \text{s}^{-1})(3.00 \times 10^8 \text{ m/s})}{(1.000 \times 10^3 \times 10^{-10} \text{ m})} = B.E. + \frac{1}{2} (9.11 \times 10^{-31} \text{ kg})(1.73 \times 10^6 \text{ m/s})^2$$

$$\frac{(1.00)}{\text{**3 Nature}}$$

$$0.20^{**}$$

$$1.99 \times 10^{-18} \text{ J} = B.E. + 1.36 \times 10^{-17} \text{ J}$$

ดังนั้น

$$B.E. = 0.63 \times 10^{-18} \,\mathrm{J}$$
 (0.20)

หรือ

$$B.E. = 0.63 \times 10^{-18} \text{ J} \times \left(\frac{1 \text{ eV}}{1.60 \times 10^{-19} \text{ J}} \right) = 3.9 \text{ eV}$$

ให้คะแนนครึ่งหนึ่งถ้าเลือกโลหะโดยไม่มีเหตุผลหรือเดามาเขียนเลขควอนตัมต่อ

6.3 (2.45 คะแนน) ความไม่แน่นอนของตำแหน่งอิเล็กตรอน

 \geq 2.1 nm (0.1+0.25)

ความไม่แน่นอนของตำแหน่งอิเล็กตรอนคิดเป็นอย่างน้อย

เท่าของขนาดอะตอม (0.25)

ความไม่แน่นอนของการวัดความเร็วอิเล็กตรอนเป็นอย่างน้อย

214 % (0.25)

20

วิธีคำนวณ

จาก

$$(\Delta x)(\Delta p) \ge \frac{h}{4\pi}$$

จะได้

$$(\Delta x)(9.11 \times 10^{-31} kg) \left(\frac{0.10}{100} \times 2.70 \times 10^7 m \cdot s^{-1}\right) \ge \frac{6.626 \times 10^{-34} kg \cdot m^2 \cdot s^{-1}}{4\pi} \tag{0.60}$$

วงเล็บละ 0.20

$$\Delta x \ge 2.1 \times 10^{-9} \, m \ge 2.1 \, nm$$

ถ้าอะตอมไฮโดรเจนมีเส้นผ่านศูนย์กลาง 106 pm

(0.20)

ความไม่แน่นอนของตำแหน่งอิเล็กตรอนคิดเป็นอย่างน้อย $rac{2.1 imes10^{-9}\ m}{106 imes10^{-12}\ m}=20$ เท่า

ถ้าต้องการความไม่แน่นอนของตำแหน่งอิเล็กตรอนไม่เกิน 1.00 pm จะได้

(0.60)

$$(1.00 \times 10^{-12} \, m) (9.11 \times 10^{-31} kg) (\Delta v) \ge \frac{(6.626 \times 10^{-34} \, kg \cdot m^2 \cdot s^{-1})}{4\pi}$$
 วงเลียละ 0.20

 $\Delta v \geq 5.79 \times 10^7 \ m \cdot s^{-1}$

ความไม่แน่นอนของการวัดความเร็วอิเล็กตรอนจะมากกว่าหรือเท่ากับ

(0.20)

$$\frac{5.79 \times 10^7 \, m \cdot s^{-1}}{2.70 \times 10^7 \, m \cdot s^{-1}} \times 100 = 214\%$$

6.4 (4 คะแนน) แผนภาพออร์บิทัลเชิงโมเลกุล (MO diagram) ที่สอดคล้องกับผลการทดลองดังกล่าว

อันดับพันธะของ CN^- ในสถานะกระตุ้น เท่ากับ **2** (0.50)

คำตอบข้อที่ 7 (5.5 คะแนน)

$\frac{500 - 190}{337 - 250} = 3.65$ 7.1 (1 คะแนน) \square (P / MPa) = -701 + 3.65 (T / K) (0) $P_h: \frac{400 - 190}{337 - 250} = 2.41$ \square (P / MPa) = -413 + 2.41 (T / K) (0.25)2.30 + 2.41 = 2.36สมการที่<u>เหมาะสมที่สุด</u> คือ (P / MPa) = -344 + 2.36 (T / K)(0.5) $P_l: \frac{500 - 300}{337 - 250} = 2.30$ \square (P / MPa) = -275 + 2.30 (T / K) (0) $\frac{400 - 300}{337 - 250} = 1.15$ (P / MPa) = 12.6 + 1.15 (T / K)(0)

ความดัน / MPa ระบุวัฏภาคที่เสถียรด้วย "Gas", "Liquid", "Solid" และ "NEW"

 7.2 (1 คะแนน) จุดร่วมสามกับแก๊ส (T_{GS})
 146
 K
 0
 MPa
 ช่องละ (0.25)

 จุดร่วมสามกับของเหลว (T_{LS})
 429
 K
 668
 MPa
 Allowed : \pm 5 K \pm 10 MPa

 (ตอบเป็นเลขจำนวนเต็ม)

เลขประจำตัวสอบ

7.3 (2 คะแนน) การเปลี่ยนแปลงเอนโทรปี (△S)

−23 J

 $J \text{ mol}^{-1} \text{ K}^{-1}$ magnitude (2×0.25)

การเปลี่ยนแปลงเอนทัลปี (ΔH) ที่ 294 K

-6.7 kJ mol⁻¹

sign ทั้งสอง (0.25)

(ตอบด้วยเลขนัยสำคัญที่ได้จากการทดลอง) sig fig ตัวใดตัวหนึ่งผิด หัก 0.25

วิธีคำนวณ

การเปลี่ยนแปลงเอนโทรปี (ΔS) formula (0.25)

$$\Delta S = \frac{dP}{dT} \times \Delta V = (2.36 \text{ MPa K}^{-1})(-9.6 \text{ cm}^3 \text{ mol}^{-1}) = -23 \text{ J K}^{-1} \text{ mol}^{-1}$$

การเปลี่ยนแปลงเอนทัลปี (ΔH) : บนเส้นสมดุลวัฏภาค $\Delta G = 0$ formula (0.25) $\Delta H = T\Delta S = (294 \text{ K}) (-23 \text{ J K}^{-1} \text{ mol}^{-1}) = -6.7 \text{ kJ mol}^{-1}$

7.4 (1.5 คะแนน) จุดหลอมเหลว ($T_{\sf NEW
ightarrow L}$)

295

value (0.25)

เอนทัลปีการหลอมเหลว ($\Delta_{\mathsf{NFW} \longrightarrow \mathsf{I}} H$)

38.5

kJ mol⁻¹

value (0.25)

(ตอบด้วยเลขนัยสำคัญที่ได้จากการทดลอง) się fie ตัวใดตัวหนึ่งผิด หัก 0.25

Κ

วิธีคำนวณ

Thermodynamic Cycle: (0.25) $\Delta_{\text{NEW} \to S} H = +6.7 \text{ kJ mol}^{-1}$ เอนทัลปีการหลอมเหลว กฎของเฮสส์ (Hess's Law) (0.25) $\Delta_{\text{NEW} \to L} H = \Delta_{\text{NEW} \to S} H + \Delta_{\text{S} \to L} H = (+6.7 \text{ kJ mol}^{-1}) + (+31.846 \text{ kJ mol}^{-1}) = 38.5 \text{ kJ mol}^{-1}$ จุดหลอมเหลว $T_{\text{NEW} \to L} = \frac{\Delta_{\text{NEW} \to S} H - \Delta_{\text{L} \to S} H}{\Delta_{\text{NEW} \to S} H} = \frac{\text{substitution (0.25)}}{\frac{46.7 \text{ kJ mol}^{-1}}{146 \text{ k}} + \frac{431.846 \text{ kJ mol}^{-1}}{376.42 \text{ k}}} = 295 \text{ k}$ T_{GS} (0.25)

คำตอบข้อที่ 8 (10 คะแนน)

8.1 (8 points) Draw the structures of compounds A – H.

Α	В
1 คะแนน	1 คะแนน หากตอบถูกครบถ้วน
С	D
	OH OH
1 คะแนน หากตอบ Wittig product ถูกต้อง	1 คะแนน หากตอบถูกต้อง
(ไม่พิจารณาเรื่อง geometrical isomers ที่เกิดจาก	0.5 คะแนน หากได้ diol แต่ผิดตำแหน่ง
Wittig reaction)	0 คะแนน หากตอบ tetraol
ไม่มี double penalty หากเป็น product จาก B	ไม่มี double penalty หากเป็น product จาก C
E	F
1 คะแนน หากตอบถูกต้อง	S S H OH 1 คะแนน หากตอบเป็น alcohol
T HESSER WITHOUS STINON	ไ คะแนน ทุกต่อบเบน acconol (ไม่พิจารณา stereochemistry)
G H OH	H
1 คะแนน หากตอบถูกต้อง	1 คะแนน หากตอบถูกต้อง
ไม่มี double penalty หากเป็น product จาก F	ไม่มี double penalty หากเป็น product จาก G

8.2 (1 point) Place an asterisk (*) on a carbon in compounds **Y** and **Z** that is derived from the carbon marked with * in compound **X**.

8.3 (1 point) Draw an arrow starting from a potential nucleophilic site to a potential electrophilic site to show the C–C bond formation in the Michael addition step in the conversion of compound **Y** to **E**.

เลขประจำตัวสอบ

คำตอบข้อที่ 9 (10 คะแนน)

9.1 (8 points) Draw the structures of compounds $\mathbf{A} - \mathbf{J}$.

А	В	С
N CO ₂ CH ₃	$\begin{array}{c} \text{Br} & \text{N} & \text{CO}_2\text{CH}_3 \\ \text{N} & \text{NH}_2 \end{array}$	H_2N N CO_2CH_3 OCH_3
(0.5 point)	(1 point)	(1 point)
D	Е	F
H ₂ N N CONH ₂ N OCH ₃	F_N_CONH ₂ NOCH ₃	CI N CN
(1 point)	(1 point)	(1 point)
G	Н	J
N CONH ₂	O ₂ N N CONH ₂	H ₂ N N CONH ₂
(0.5 point)	(1 point)	(1 point)

9.2 (2 points) What are the reagents and/or conditions W-Z?

Reagent and/or conditions W	Reagent and/or conditions X
$HCl, NaNO_2, 0-5 ^{\circ}C$ อาจใช้กรดรูปแบบอื่น เช่น H^+, H_2SO_4	CH₃OH
(0.5 point)	(0.5 point)
Reagent and/or conditions Y	Reagent and/or conditions Z
HCl, NaNO ₂ , 0-5 °C อาจใช้กรดรูปแบบอื่น เช่น H ⁺ , H ₂ SO₄	1) HBF ₄ followed by 2) heat
(0.5 point)	(0.5 point)

คำตอบข้อที่ 10 (10 คะแนน)

10.1 (1 point) Locate the position of peptide bond(s) by drawing an arrow pointing to each.

10.2 (1 point) Determine the absolute configuration of all stereogenic center(s) by writing *R* or *S* nearby each center.

10.3 (2 points) Explain, with drawing, why the methyl group was added to only this nitrogen, but not on other nitrogen atoms.

การเลือกตำแหน่งเข้าชนที่ nitrogen ดังแสดงนั้น เกิดขึ้นจากความเป็นกรดที่มากเป็นพิเศษของ N–H ที่ตำแหน่ง ดังกล่าว นั่นคือ เมื่อเกิดเป็น N⁻ แล้ว จะสามารถ delocalize กระจายประจุไปยังพันธะคู่ด้านข้างได้ด้วย นอกเหนือจากการ delocalize ไปยัง C=O (ซึ่ง N–H อื่นก็ทำได้เช่นกัน)

- กล่าวถึง "ความเป็นกรดที่มากเป็นพิเศษ" หรือ "delocalization" หรือ แสดงด้วยการวาดโครงสร้าง resonance ที่มีการไหลของ electron ไปยังตำแหน่งข้างเคียง ได้ 1 คะแนน
- แสดงโครงสร้างการ delocalization ไปยัง benzylic position โดยจะหยุด electron ที่ตำแหน่งใดของ ระบบนี้ก็ได้ (แสดงโครงสร้างเพิ่มเติมจาก form ที่มี N อย่างน้อย 1 โครงสร้าง) ได้ 1 คะแนน

- กรณีอื่น ๆ จะ normalize ในการตรวจจริงอีกครั้ง

- **10.4 (2 points)** Explain, with drawing, why oxazolone is more likely to epimerize than normal peptide units.
- แสดง basic ของการ epimerization โดยการโชว์การดึง proton เข้าออก แล้วเปลี่ยน configuration โดย สมการจะแสดงในภาวะกรดหรือเบสก็ได้ โดยแสดงบนโครงสร้าง peptide หรือ oxazolone ก็ได้ (เลือกตรวจ อันที่ถูก) ได้ 1 คะแนน เช่น

- วาดโครงสร้างและสมการประกอบในการ epimerization ของ oxazolone ได้อย่างถูกต้อง 0.5 คะแนน
- comment ถึงความเป็น aromatic ของ enolate ที่เกิดขึ้น ได้ 0.5 คะแนน

(stable)

- กรณีอื่น ๆ จะ normalize ในการตรวจจริงอีกครั้ง

10.5 (2 points) Write a mechanism to show the formation of DKP.

- ขั้นแรก หากติด H⁺ ที่อีก oxygen (ตัวที่เชื่อมกับ bead) จะหัก 0.5 คะแนน หากไม่แสดงการติด H⁺ เลย คือ จับ nitrogen atom ชนเลย จะหัก 1 คะแนน
- หลังจากขั้นตอนการปิดวง การไม่แสดงการรับส่ง H⁺ ให้ครบจะหักจุดละ 0.25 คะแนน (แต่ไม่จำเป็นต้องระบุ
 base หรือกรดที่จำเพาะ สามารถใช้ H⁺ หรือ การหลุดออกของ H⁺ ได้เลย และสามารถแสดงการหลุดหรือเติม
 H⁺ บนลูกศรสมการดังตัวอย่างได้เลย ไม่จำเป็นต้องโยงลูกศรการไหลของ electron อย่างชัดเจน)
- กรณีพิเศษอื่น ๆ จะตรวจให้เป็นไปในแนวทางเดียวกัน

$$H_2N$$
 H_2N
 H_2N

10.6 (2 points) Rank the order of R_f values by putting in a number (1 = highest R_f value; 3 = lowest R_f value) and give a reason for your answer (in the box below).

Rank of R_f value (1 point, no partial credit)

	Tentoxin	Derivative A	Derivative B
)	2	3	1

Reason for your answer

Paper chromatography จะให้ลำดับการเคลื่อนของสารตามสภาพขั้ว โดยสารที่มีขั้วต่ำจะเคลื่อนที่ไปได้ไกลกว่า (R_f มีค่าสูงกว่า) ดังนั้น derivative B ซึ่งมี leucine แทนที่ glycine จึงเคลื่อนที่ไปได้ไกลมากที่สุด เนื่องจาก leucine มีส่วนไม่ชอบน้ำ (hydrophobic) ที่สูงขึ้นกว่าเดิมที่มี glycine ในขณะที่การเปลี่ยนเป็น glutamic (derivative A) จะทำให้สภาพขั้วของโมเลกุลเพิ่มขึ้นอย่างมาก จึงเคลื่อนไปได้น้อยที่สุด (R_f ต่ำสุด)

(1 point)

คำตอบข้อที่ 11 (10 คะแนน)

11.1 (4 คะแนน) ค่าคงที่สมดุลของปฏิกิริยา =
$$5.39 \times 10^{75}$$
 (0.5) (ตอบในรูป X.XX \times 10 n)

วิธีคำนวณ

ครึ่งปฏิกิริยารีดักชัน คือ
$$O_2(g) + 2H_2O + 4e^- \rightarrow 4OH^-$$
 (0.5)

คำนวณศักย์ไฟฟ้ามาตรฐานของครึ่งปฏิกิริยานี้ได้จาก $O_2(g)+4H^+(aq)+4e^- o 2H_2O(l)$

เขียนสมการเนินสต์ได้ว่า

$$E_{\text{cathode}}^{0} = E_{0_2/\text{H}_20}^{0} - \frac{0.0592}{4} \log \frac{1}{p_{O_2}[\text{H}^+]^4}$$
 (0.25)

เปลี่ยน [H⁺] เป็น [OH⁻] โดยใช้ $K_{\rm w}$ = [H⁺][OH⁻]

$$E_{\text{cathode}}^{0} = E_{0_2/\text{H}_20}^{0} - \frac{0.0592}{4} \log \frac{[\text{OH}^-]^4}{p_{0_2}(K_{\text{w}})^4}$$
(0.5)

แทนค่าโดยใช้ภาวะมาตรฐาน ความเข้มข้นและความดันเท่ากับ 1 M และ 1 atm

$$E_{\text{cathode}}^{\text{o}} = 1.23 - \frac{0.0592}{4} \log \frac{1}{1(1.00 \times 10^{-14})^4} = 0.40 \text{ V}$$
 (unuary 0.25)

ครึ่งปฏิกิริยาออกซิเดชัน คือ Pb + 2OH
$$^
ightarrow$$
 Pb(OH) $_2$ (s) + 2e $^-$ (0.5)

คำนวณศักย์ไฟฟ้ามาตรฐานของครึ่งปฏิกิริยานี้ได้จาก Pb ightarrow Pb $^{2+}$ (aq) + 2e $^-$

เขียนสมการเนินสต์ได้ว่า

$$E_{\text{anode}}^{0} = E_{\text{Pb}^{2+}/\text{Pb}}^{0} - \frac{0.0592}{2} \log \frac{1}{[\text{Pb}^{2+}]}$$
 (0.25)

เนื่องจาก $Pb(OH)_2$ มี $K_{sp}=[Pb^{2+}][OH^-]^2$ จึงนำไปใช้จัดรูปได้

$$E_{\text{anode}}^{\text{o}} = E_{\text{Pb}^{2+}/\text{Pb}}^{\text{o}} - \frac{0.0592}{2} \log \frac{[\text{OH}^{-}]^{2}}{K_{\text{sp}}}$$
 (0.5)

แทนค่าโดยใช้ภาวะมาตรฐาน ความเข้มข้นเท่ากับ 1 M

$$E_{\text{anode}}^{\text{o}} = -0.13 - \frac{0.0592}{2} \log \frac{1}{1.40 \times 10^{-20}} = -0.72 \text{ V}$$
 (แทนค่า 0.25)

คำนวณ
$$E_{\text{cell}}^{\text{o}} = E_{\text{cathode}}^{\text{o}} - E_{\text{anode}}^{\text{o}} = 0.40 - (-0.72) = 1.12 \text{ V}$$
 (0.25)

จาก $\Delta G^{\, \mathrm{o}} = -nFE^{\, \mathrm{o}} = -RT \ln K$

$$K = \exp\left(\frac{nFE^{\circ}}{RT}\right) = \exp\left(\frac{(4)(96485)(1.12)}{(8.314)(298.15)}\right) \tag{"unua" 0.25}$$

$$K = 5.39 \times 10^{75}$$

0.00385 ppb

(0.5) bb เลขนัยสำคัญผิดหัก 0.25

วิธีคำนวณ

สมดุลการละลายของ lead(II) phosphate คือ $Pb_3(PO_4)_2(s) \rightleftharpoons 3 Pb^{2+} + 2 PO_4^{3-}$

3s 2

จะได้ $K_{sp} = [Pb^{2+}]^3[PO_4^{3-}]^2$

(0.5)

$$K_{\rm sp} = (3s)^3 (2s)^2$$
 (0.25)

 $9.90 \times 10^{-55} = 108s^5$

$$s = 6.20 \times 10^{-12} \,\mathrm{M}$$
 (0.25)

นั้นคือ [Pb²⁺] =
$$3s = 1.86 \times 10^{-11} \text{ M}$$
 (0.25)

เปลี่ยนให้อยู่ในหน่วย ppb

= 0.00385 ppb

11.3 (0.5 คะแนน) ความเข้มข้นของ Pb²⁺ \mathbf{V} เพิ่มขึ้น \square ลดลง \square ไม่เปลี่ยนแปลง (0.5)

11.4 (0.75 คะแนน) สูตรเคมีของสารเชิงซ้อน คือ

[PbL₂]

(0.75)

ประจุผิดหัก 0.25

ไม่มี [] หัก 0.25

คำอธิบายเพิ่มเติม : รูปทรง square planar บ่งชี้ว่า coordination number = 4 แต่เป็น bidentate ligand จึง ต้องใช้ 2 โมเลกุลต่อ Pb^{2+} หนึ่งไอออน และเนื่องจากในภาวะเบส dithizone แตกตัวให้ประจุ 1– (พิจารณาจาก pK_o) จึงทำให้ประจุรวมของสารเชิงซ้อนเป็น 0

13 mL

(0.5)

เลขนัยสำคัญผิดหัก 0.25

วิธีคำนวณ

พิจารณา
$$Pb^{2+}$$
 + $2L$ \rightleftharpoons $[PbL_2]$ (0.5) เริ่มต้น (M) 10×10^{-6} \times 0 เปลี่ยนแปลง (M) -5×10^{-6} -10×10^{-6} $+5 \times 10^{-6}$ 5×10^{-6} $\times -10 \times 10^{-6}$ 5×10^{-6} (0.5 หรือแสดงใน K)

จากค่าคงที่สมดุล

$$K = \frac{[PbL_2]}{[Pb^{2+}][L]^2}$$
 (0.25)

$$7.00 \times 10^{7} = \frac{5 \times 10^{-6}}{[5 \times 10^{-6}][x - 10 \times 10^{-6}]^{2}}$$

$$x = 1.3 \times 10^{-4} \text{ M}$$
(unum'r 0.25)

ปริมาตร dithizone ที่ต้องใช้

$$= \frac{1.3 \times 10^{-4} \text{ mol dithizone}}{1 \text{ L}} \times 10 \text{ L} \times \frac{1000 \text{ mL}}{0.10 \text{ mol dithizone}}$$

$$= 13 \text{ mL}$$
(0.5)

ം ഴ പ്		
คำตอบข้อที่	12	(9 คะแนน)

12.1	(1 คะแนน)	สเปกตรัมดูดกลินของรูปกรด คือ	ШΑ	⊻ B	ШС	□D	(0.5)
		สเปกตรัมดูดกลืนของรูปเบส คือ	✓ A	□в	Пс	□D	(0.5)

12.2 (2.25 คะแนน)

рН	2.0	5.0	10.0	
ประจุของเพปไทด์ =	+1	0	-1	(3 × 0.25)
pH ที่เหมาะสมที่สุด คือ		V		(0.5) <u>ถ้าเลือกช่องอื่นด้วย 0</u>

เหตุผล

ที่ pH 5.0...

methyl orange มีสีเหลืองเพราะ pH > p K_{ind} (0.5)

พอลิเพปไทด์มี N-terminal ที่ถูก protonated ทำให้มีประจุบวก เกิดแรงดึงดูดกับ sulfonate group ที่แตกตัวและมีประจุลบ (0.5)

(ถ้าไม่ได้กล่าวถึงหมู่ฟังก์ชันที่แตกตัวเกิดประจุ จะได้ 0.25)

(กรณีที่ตอบ pH อื่น ต้องอธิบายให้สอดคล้องกับ pH ที่เลือก มิเช่นนั้นจะไม่ได้คะแนน)

เป็นปฏิกิริยา (2.75 คะแนน) 12.3

🗹 รีดักชัน 🗌 ออกซิเดชัน

(0.25)

อะตอม	ก (N)	ข (C)	ค (C)	1 (N)	จ (N)	ລ (C)	ช (C)	ଖ (S)
อะตอมที่มีสถานะ ออกซิเดชันเปลี่ยนแปลง					$\overline{\checkmark}$			
สถานะออกซิเดชัน <u>ก่อน</u>				-1	-1			
สถานะออกซิเดชัน หลัง				-3	-3			

เลือกอะตอมถูกช่องละ 0.25 <u>ถ้าเลือกเกินหักช่องละ 0.25 (ไม่ติดลบ)</u>// หาสถานะออกซิเดชันช่องละ 0.5 ไม่ดูช่องอื่นที่ตอบเกินมา

	ไระจาตวสอบ	
1 7 7 1 1	1 1 2 . 91 1 (01 1 ~ 1 0 1 1 1	
661 U U	I de u iri dei O O	

(0.5)

(ตอบทศนิยม 1 ตำแหน่ง)

วิธีคำนวณ

หาปริมาณประจุไฟฟ้าที่ใช้ในการแยกสลายด้วยไฟฟ้าจากพื้นที่ใต้กราฟ (จะใช้วิธีเฉลี่ย กระแสไฟฟ้าก็ได้)

พื้นที่ใต้กราฟ

$$Q = \left((300)(25 - 0) + \left(\frac{1}{2}\right)(300)(90 - 25) \right) \text{ mA min } \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{1 \text{ A}}{1000 \text{ mA}} \times \frac{1 \text{ C}}{1 \text{ A s}}$$

(0.5+0.5) แปลงหน่วย (0.5)

หาจำนวนโมล methyl orange ที่เกิดปฏิกิริยา

C >> mol e

=
$$1035 \text{ C} \times \frac{1 \text{ mol e}^-}{96485 \text{ C}} \times \frac{1 \text{ mol methyl orange}}{4 \text{ mol e}^-} = 2.68 \times 10^{-3} \text{ mol}$$

>> mol MO

(0.25)

(0.25)

หาจำนวนโมล methyl orange เริ่มต้น

=
$$10.0 \text{ L} \times \frac{0.797 \times 10^{-3} \text{ mol methyl orange}}{1 \text{ L}} = 7.97 \times 10^{-3} \text{ mol}$$
 (0.25)

methyl orange ที่ลดลง =
$$\frac{2.68 \times 10^{-3} \text{ mol}}{7.97 \times 10^{-3} \text{ mol}} \times 100 \%$$

(0.25)

= 33.6 %

คำตอบ	เข้อที่	13	(11	คะแนน)

13.1 (0.5 คะแนน) ค่า $R_{\rm f}$ ของสารที่ตำแหน่ง Z= **0.55** (0.5)

13.2 (0.5 คะแนน)

ค่า *R*f ของสารที่ตำแหน่ง Y จะ

 \square คงที่ \square เพิ่มขึ้น $\boxed{\square}$ ลดลง \square ทำนายไม่ได้ (0.25)

การแยกระหว่างสารที่ตำแหน่ง X และ Y จะ

☐ เหมือนเดิม
 ☐ แยกจากกันมากขึ้น
 ☑ แยกจากกันน้อยลง
 ☐ ทำนายไม่ได้
 (0.25)

13.3 (0.25 คะแนน) สารละลาย aq1 อยู่ 🔲 ชั้นบน 🔽 ชั้นล่าง (0.25)

13.4 (0.25 คะแนน) TLC <u>ไม่พบ</u>จุดสารที่ตำแหน่ง □ X □ Y ✓ Z (0.25)

13.5 (3.5 คะแนน) เลือกสารและระบุปริมาณที่ใช้

(ตอบทศนิยม 2 ตำแหน่ง)

ต้องเลือกสารถูกทั้งสองชนิด (0.5) และระบุปริมาณถูกต้อง (0.25+0.25)

วิธีคำนวณ

เตรียมสารละลายฟอสเฟตบัฟเฟอร์ pH 6.50 ใกล้เคียงกับ p K_{a2} = 7.20 (K_{a2} = 6.31 × 10⁻⁸) จึงควรเลือกสารที่จะให้ species $H_2PO_4^-$ และ HPO_4^{2-}

จาก Henderson-Hasselbach equation

$$pH = pK_{a2} - log \frac{[H_2PO_4^-]}{[HPO_4^2]} \qquad \text{NFO pH} = pK_{a2} + log \frac{[HPO_4^2^-]}{[H_2PO_4^-]}$$
 (0.25)

6.50 = 7.20 -
$$\log \frac{[H_2PO_4^-]}{[HPO_4^2]}$$
 (0.25)

$$\log \frac{[H_2PO_4^-]}{[HPO_4^2]} = 0.70$$

$$\frac{[H_2PO_4^7]}{[HPO_4^7]} = 5.01 >> [H_2PO_4^7] = 5.01 [HPO_4^7]$$
 หรือ $[H_2PO_4^7] = 5.0 [HPO_4^7]$ (0.5)

และ
$$[H_2PO_4^-] + [HPO_4^{2-}]$$
 = 0.10 M

$$6.01 \text{ [HPO}_4^{2-}]$$
 = 0.10 M หรือ $6.0 \text{ [HPO}_4^{2-}] = 0.10 \text{ M}$

จะได้ [
$$HPO_4^{2-}$$
] = 0.0166 M (0.0167 M) และ [$H_2PO_4^{-}$] = 0.0834 M (0.0833 M) (0.5)

หากต้องการเตรียม 500 mL จะใช้

$$Na_2HPO_4\cdot 7H_2O = \frac{0.0166 \text{ mol}}{1000 \text{ mL}} \times 500 \text{ mL} \times \frac{268.0 \text{ g}}{1 \text{ mol}} = 2.22 \text{ g} (2.2244 \text{ g/2.2378 g})$$
 (0.5)

$$NaH_2PO_4 \cdot H_2O = \frac{0.0834 \text{ mol}}{1000 \text{ mL}} \times 500 \text{ mL} \times \frac{138.0 \text{ g}}{1 \text{ mol}} = 5.75 \text{ g} (5.7546 \text{ g/5.7477 g})$$
 (0.5)

13.6 (1 คะแนน)

ความเข้มข้นของสารในขวด
$$B1 = 1.20 \times 10^{-2}$$
 M (0.5)
ความเข้มข้นของสารในขวด $B2 = 4.80 \times 10^{-4}$ M (0.5)

13.7 (5 คะแนน)

ปริมาณที่พบต้องถูกต้องและสอดคล้องกับชนิดสารเท่านั้น ใส่ปริมาณสลับที่กันไม่ให้คะแนน

วิธีคำนวณปริมาณ aspirin ในยา 1 เม็ด

ปริมาณ aspirin ในยา 1 เม็ด (คิดจากสารในขวด **B1**) / aspirin C₉H₈O₄ (180.0 g/mol)
$$= \frac{1.20 \times 10^{-2} \text{ mol aspirin}}{1000 \text{ mL}} \times 250.00 \text{ mL flask B1} \times \frac{180.0 \text{ g}}{1 \text{ mol aspirin}}$$

$$\times \frac{6.7600 \text{ g ยา 10 เม็ด}}{1.5022 \text{ g sample}} \times \frac{1000 \text{ mg}}{1 \text{ g}} \times \frac{\text{ยา 1 เม็ด}}{\text{ยา 10 เม็ด}}$$

$$= 243 \text{ mg } (243.0036 \text{ mg})$$

$$(0.4)$$

วิธีคำนวณปริมาณ caffeine ในยา 1 เม็ด

(0.6)

ปริมาณ caffeine ในยา 1 เม็ด (คิดจากของแข็งที่ได้จากชั้น ethyl acetate การทดลองตอน B)

= 0.1356 g ×
$$\frac{6.7600 \text{ g ยา 10 เม็ด}}{1.5022 \text{ g sample}}$$
 × $\frac{1000 \text{ mg}}{1 \text{ g}}$ × $\frac{\text{ยา 1 เม็ด}}{\text{ยา 10 เม็ด}}$ = 61.0 mg (61.0209 mg)

0 = 10 1113 (0 = 10 = 0) 1113/

วิธีคำนวณปริมาณ paracetamol ในยา 1 เม็ด

(0.6)

ปริมาณ paracetamol ในยา 1 เม็ด (คิดจากของแข็งที่ได้จากชั้น aq2 การทดลองตอน B)

= 0.5511 g ×
$$\frac{6.7600}{1.5022}$$
 g sample × $\frac{1000}{1}$ mg × $\frac{200}{1}$ er 10 เม็ด

= 248.0 mg (247.999 mg)