겨울방학 Session Introduction

2022-1 ESC

겨울방학 세션 교재

봄 학기 세션 Source

The Marginal Value of Adaptive Gradient Methods in Machine Learning

Ashia C. Wilson[‡], Rebecca Roelofs[‡], Mitchell Stern[‡], Nathan Srebro[†], and Benjamin Recht[‡] {ashia, roelofs, mitchell}@berkeley.edu, nati@ttic.edu, brecht@berkeley.edu

[‡]University of California, Berkeley [†]Toyota Technological Institute at Chicago

How Does Batch Normalization Help Optimization?

Shibani Santurkar* MIT shibani@mit.edu Dimitris Tsipras* MIT

tsipras@mit.edu

Andrew Ilyas*

Aleksander Mądry MIT

ailyas@mit.edu madry@mit.edu

Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called

딥러닝구현 라이브러리

(PyTorch

Objective

겨울방학

- •딥러닝기본내용
- •Pytorch 연습

봄학기

- •Architecture 학습
- •Project 위주

과제 형식

Week 2 & 3

- 자료 조사 & 정리
- 다음 세션 시작 전, 랜덤 1명 추첨

: 세션 시작 전 발표

Week 4 & 6

- 실습 데이터 제공: 학술부에서 제공
- 복습 스터디 조 단위의 실습
- 다음 세션 시작 전, 랜덤 1조 추첨
 : 세션 시작 전 결과물 발표
- 실습 형태는 자유 (ex) 구성원 간 협동 : 모델의 각 파트를 코딩 & 병합 각자 모델 전체를 직접 구현 : 좋은 성능의 코드를 뽑아서 발표

Deep Learning

Deep Learning

Computing 기술 발전

빅데이터

알고리즘 향상

General Machine Learning vs Deep Learning

- RepresentationLearning
- End-to-end

Deep Learning

Deep Learning

Example : XOR Problem

Example: XOR Problem

BackPropagation (역전파)

Example: XOR Problem

Example: XOR Problem

Optimization

Loss Function => Optimization

Convex

Non-Convex

Convex Function & Convex Set

Convex Set

Non-Convex Set

A function f is a convex function if and only if an epigraph of a function f is a convex set.

Convex Optimization & Non-Convexity

- Convexity: locally minimal point => global minimal point
- Strict convexity => unique global minimal point

But, Deep Learning의 대부분의 Loss function은 Non-convex

⇒ Convex Optimization : Convex Relaxation

⇒ Deep Learning : 다양한 Optimization 기법 발달

(고차원에서 local minima가 거의 없을 수도 있다는 논문도 존재)

Deep Learning 발전 양상

https://paperswithcode.com/sota

4 3 4 2 4 3 2 3 4 8 Result 3×3

The value 3 is the inner product of the patch

1	1	0
1	1	1
0	1	1

and the filter

1	0	1	
0	1	0	
1	0	1	

Scale Invariance

Max Pooling

- Long-Term Dependency
- Vanishing / Exploding Gradient Problem

LSTM

GRU

Undirected Graph

Weighted Graph

Directed Graph

Complete Graph

Node Importance

Network Clustering

