Stereo vision

Javier González Jiménez

Reference material:

• Computer Vision: Algorithms and Applications. Richard Szeliski. Springer. 2010. http://szeliski.org/Book

- S. Seitz (Washinton Univ.)
- D. Murray (Oxford Univ.)

Content

- 1. Introduction
- 2. Triangulation
- 3. Constraints for correspondence
- 4. Epipolar geometry
- 5. Reconstruction from stereo

Appendix: RANSAC

- Objective: recover the 3D info from images
- 3D information: shape, size and location of objects in space
- Humans (and most animals) get 3D info through the "combination" of two images: Stereo vision
- Principle of Stereo Vision: Objects project on different locations in the two images: the closer the object the more different (separated) are their projections

Stereo vision in animals

Panoramic vision of ~300°

Only in this overlaped volumen it can do stereo (~30°)

One image does not suffice to infer depth

The ratio depth(Z)/size(X) remains constant in the image

One image does not suffice to infer depth

Total Solar Eclipse

Sun's diameter is about 400 times greater - but the **sun** is also about 400 times further

3D visual cues

Shading

3D visual cues

- Shading
- Texture

But, one image does give 3D visual cues with the help from

- Shading
- Texture
- Focus

3D visual cues

- Shading
- Texture
- Focus
- Perspective

3D visual cues

- Shading
- Texture
- Focus
- Perspective
- Motion & Optical flow

Nearer objects move faster that far away ones

3D visual cues

- Shading
- Texture
- Focus
- Perspective
- Motion & Optical flow
- Occlusion

All these techniques are called:

Shape/Depth From X [X = shading, texture, focus, motion, ...]

Holmes Stereoscope (procursor of Stereo Displays)

Designed by Oliver Wendell Holmes in 1861

Stereo displays

- The left and right images are displayed as red and blue
- Very popular in the 50's

Anaglyph Red-Cyan Glasses

Modern technology:

- Two projections of polarized movies
- Polarized glasses to see each image with an eye

Polarized Glasses (passive)

Active Shutter Glasses

Virtual reality glasses

Samsung GR VR

Scene reconstruction does not require two cameras

... but two different views of the scene

Possibilities:

StereoVision system

Two cameras
Images taken simultaneously
Relative pose of the cameras known

Structure-from-Motion (SFM)

Camera from different unknown, unordered locations (typically with large baseline) **Offline** global optimization for the relative pose and structure \rightarrow Bundle Adjustment Cameras can be different, i.e. different matriz **K**

MonoVisual SLAM (Simultaneous Localization And Mapping)
 Alike SFM but sequentially, small baseline and in real time

At first, stereo vision seems a straightforward problem: intersection of two lines

3D point

In practice, though, it's not that simple. Two main problems:

- Feature matching: Detect features (point, segments,...) in one image and their correspondences in the other
- Geometric Triangulation: Compute depth given the features in correspondence

Both issues require perfect knowledge of the relative pose between the cameras, given by the Epipolar Geometry

2. Triangulation

Ideal configuration:

$$X_l = X_r + b$$
 $Z_l = Z_r = Z$
 $Y_l = Y_r = Y$ $y_l = y_r = y$

Point in the Left camera:

$$\mathbf{X_l} = \begin{bmatrix} X_l \\ Y_l \\ Z_l \end{bmatrix} = \begin{bmatrix} X_l \\ Y \\ Z \end{bmatrix} = \frac{Z}{f} \begin{bmatrix} x_l \\ y \\ f \end{bmatrix}$$

$$X_l = \frac{Z}{f} x_l$$

$$Y = \frac{Z}{f} y$$

$$X_l = \frac{Z}{f} x_l$$

$$Y = \frac{Z}{f}y$$

Point in the **Right camera**:

$$\mathbf{X_r} = \begin{bmatrix} X_r \\ Y_r \\ Z_r \end{bmatrix} = \begin{bmatrix} X_l - b \\ Y \\ Z \end{bmatrix} = \frac{Z}{f} \begin{bmatrix} x_r \\ y \\ f \end{bmatrix} \quad X_l - b = \frac{Z}{f} x_r$$

$$X_{l} = \frac{Z}{f}x_{l}$$

$$X_{l} - b = \frac{Z}{f}x_{r}$$

$$Z = \frac{bf}{(x_{l} - x_{r})} = \frac{bf}{d}$$
disparit

Another way to solve Z in the ideal configuration:

- we can work with triangulation in a plane
- principle of similar triangles applies

Similar triangles:

$$\frac{x_{l}}{f} = \frac{X_{l}}{Z}$$

$$\frac{x_{r}}{f} = \frac{X_{r}}{Z} = \frac{X_{l} - b}{Z}$$
Disparity: $d > = 0$

$$\frac{z_{l}}{Z} = \frac{x_{r} - x_{l}}{Z} \Rightarrow Z = b \frac{f}{a}$$

Y axis:
$$\frac{y_l}{f} = \frac{y_r}{f} = \frac{Y}{Z}$$

$$\boldsymbol{X}_{l} = \begin{bmatrix} b \frac{x_{l}}{d} & b \frac{y_{l}}{d} & b \frac{f}{d} \end{bmatrix}^{T} = \frac{b}{d} \begin{bmatrix} x_{l} & y_{l} & f \end{bmatrix}^{T}$$

Ideal configuration:
$$\mathbf{X}_{l} = \begin{bmatrix} b \frac{x_{l}}{d} & b \frac{y_{l}}{d} & b \frac{f}{d} \end{bmatrix}^{T} = \frac{b}{d} \begin{bmatrix} x_{l} & y_{l} & f \end{bmatrix}^{T}$$

Disparity *d* and coordinates (x_l, y_l) are in meters (measured in the sensor)!

M

Computer image matrix (units in pixels)

Both images are related by an AFFINE transformation

Disparity in mm
$$u = xk_x + u_0 \implies x = \frac{1}{k_x}(u - u_0)$$

$$v = yk_y + v_0 \implies y = \frac{1}{k_y}(v - v_0)$$

$$v = yk_y + v_0 \implies y = \frac{1}{k_x}(v - v_0)$$

$$v = yk_y + v_0 \implies y = \frac{1}{k_x}(v - v_0)$$

$$\mathbf{X}_l = \frac{k_x b}{d_i} \begin{bmatrix} \frac{1}{k_x} (u_l - u_0) & \frac{1}{k_y} (v_l - v_0) & f \end{bmatrix}^T = \frac{b}{d_i} [(u_l - u_0) & (v_l - v_0) & kf]^T$$

2. Triangulation

What is the accuracy of the reconstructed 3D points?

$$Z = b \frac{f}{d}$$
 Error in the detection of image points \rightarrow error in disparity \rightarrow error in depth (Z)

How error in disparity propagates to Z?:

assuming same error ϵ for each image point

2. Triangulation

To increase accuracy of 3D points → separate the cameras (increase the basesline "b")

General configuration

Known: $P_{l_1} P_{r}$

Assumptions: P and x error-free

Projection lines do intersect at a 3D point

World coordinate system in the left camera **R** = **I**, **t** = **0**

A system of equations where X_l is the unknown

$$\lambda \mathbf{x}_r = \mathbf{P}_r \mathbf{X}_r$$

2. Triangulation

If cameras are not aligned \rightarrow Do a rectification of the images

Stereo rectification:

projects the images on a common plane such the epipolar lines I, I' are horizontal in both images and at the same height

Epipolar lines will be explained next!

Stereo rectification (Example):

Rectified images

We have to decide:

- Most common
- Which feature to match: all the pixels, keypoints edgels, segments, regions
- A robust descriptor to solve for matches

Cordoba city from satellite, at two different days and viewpoints

Correspondence Problem = Data Association Problem

Given a feature in the LEFT image, find its correspondence/match in the RIGHT image

If the correspondence is wrong the 3D point does not exist in the real world

Problem: Given a feature in the LEFT image find its correspondence/match in the RIGHT one

An efficient and robust solution requires Constraints

Cameras' configuration

Epipolar geometry

Constraints from the environment (proposed by Marr&Poggio, 1981):

Max-Min disparity (limits)

Continuity of the surfaces

Uniqueness

Ordering

Constraints from the environment: Max-Min disparity allowed

This is more a camera

configuration constraint!

Maximum Z

Minimum disparity

The maximum distance of the environment (e.g. a room) and the camera resolution determine the **minimum disparity.**

- Disparity = $0 \rightarrow$ point at infinity
- Disparity $(d_i) = 1 \rightarrow Z = \frac{b}{d_i} kf = bkf$

$$k_x = k_y = k \ (in \ \frac{pixels}{meters})$$

Constraints from the environment: Continuity of the surfaces

- Typically, surfaces in the real world are continuous → depth changes smoothly
- This fact is only violated at the occlusion borders (surfaces from different objects)

There is a high probability that contiguos pixels have similar depth (and therefore, disparity)

Constraints from the environment: Uniqueness

Each pixel of the image is the **projection of only one point** in 3D

A pixel will have only one pixel in correspondence in the other image

Constraints from the environment: Ordering

Points along conjugate epipolar lines (explained next) follow the same order

www.bke.org

This is not always true

Violation of the ordering constraint

Epipolar constraint

The correspondence in the right image of any point x_l must be in the projection of the line through x_l : this projection is the epipolar line of x_l

4. Epipolar Geometry

Epipolar geometry is the set of geometric contraints between 2 views of a scene, forced by the cameras' relative pose

- Given by the optical center: C_1 , C_r , and any 3D point X (or any of its projections x_1 or x_r).
- Intersects the images at the conjugate epipolar lines of the StereoVision System.

Given a two-camera configuration (represented by R,t), for each 3D point there is a unique epipolar plane and, consequently, a unique pair of epipolar lines.

Epipole:

- Projection of the optical center (focal point) of a camera on the other image plane (usually outside the boundary of the image)
- All the epipolar lines of an image intersect at the epipole

Why? Two ways of seing this:

- 1) The epipolar lines are projections of rays, in the other image, that depart from the optical center
- 2) All the epipolar planes rotate around the line \mathbf{C}_{l} - \mathbf{C}_{r} . This line is in all the epipolar planes. The epipoles are in all the epipolar planes.

• If one image plane is parallel to the line $C_{\Gamma}C_{r}$, the epipole in this plane is at infinity

Knowing where the epipoles are gives us information about the relative pose of the cameras

$$\lambda \tilde{\mathbf{e}}_r = \mathbf{t}$$
$$\lambda \tilde{\mathbf{e}}_l = -\mathbf{R}^T \mathbf{t}$$

Epipole

- If the two image planes are parallel to the line $C_1 C_r \rightarrow$ the two epipoles are at infinity
- If, besides, the epipolar lines are at the same height, we have the ideal configuration

The epipolar constraint for Calibrated camera is given by the Essential matrix

Vectors X_l , t_r^l , and $R_r^l X_r$ are coplanar \rightarrow their triple product is zero (a.[b × c]= 0)

$$\begin{aligned} \mathbf{X_l} \cdot [\mathbf{t} \times (\mathbf{R} \mathbf{X_r})] &= \mathbf{0} & & \\ & \mathbf{X_r} = \lambda_r \tilde{\mathbf{x}}_r \\ & \mathbf{X_l} = \lambda_l \tilde{\mathbf{x}}_l \end{aligned} \\ \mathbf{X_l} = \lambda_l \tilde{\mathbf{x}}_l \end{aligned} \quad \begin{aligned} \mathbf{\tilde{x}_l}^T \mathbf{E} \tilde{\mathbf{x}}_r &= \mathbf{0} & \text{with } \mathbf{E} = [\mathbf{t}]_\times \mathbf{R} \\ & \mathbf{\tilde{x}_l}^T \mathbf{E} \tilde{\mathbf{x}}_r = \mathbf{0} & \text{with } \mathbf{E} = [\mathbf{t}]_\times \mathbf{R} \end{aligned}$$

Coordinates $\tilde{\mathbf{x}}_r$, $\tilde{\mathbf{x}}_l$ are in meters (measured in the sensor)!

The camera needs to be calibrated (K known) to obtain $\tilde{\mathbf{x}}_r$, $\tilde{\mathbf{x}}_l$

The epipolar constraint for **Uncalibrated** cameras is given by the **Fundamental matrix**

Essential Matrix:
$$\tilde{\mathbf{x}}_l^{\mathsf{T}} \mathbf{E} \tilde{\mathbf{x}}_r = \mathbf{0}$$
 with $\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$

Calibrated coordinates (in meters) and uncalibrated pixels (in image coordinates) are related by the camera matrix \mathbf{K} :

$$\tilde{\mathbf{x}}_r' = \mathbf{K}\tilde{\mathbf{x}}_r$$
 assuming identical intrinsic parameters for the two cameras ($\mathbf{K_l} = \mathbf{K_r} = \mathbf{K}$)

$$\tilde{\mathbf{x}}_l^{\mathsf{T}}\mathbf{E}\tilde{\mathbf{x}}_r = \tilde{\mathbf{x}}_l^{\mathsf{T}}[\mathbf{t}]_{\times}\mathbf{R}\tilde{\mathbf{x}}_r \stackrel{\downarrow}{=} \left(\mathbf{K}^{-1}\,\tilde{\mathbf{x}}_l{}'\right)^{\mathsf{T}}\,[\mathbf{t}]_{\times}\mathbf{R}\mathbf{K}^{-1}\tilde{\mathbf{x}}_r{}' = \tilde{\mathbf{x}}_l{}'^{\mathsf{T}}\mathbf{K}^{-\mathsf{T}}[\mathbf{t}]_{\times}\mathbf{R}\mathbf{K}^{-1}\tilde{\mathbf{x}}_r{}' = \tilde{\mathbf{x}}_l{}'^{\mathsf{T}}\mathbf{F}\tilde{\mathbf{x}}_r{}' = 0$$

Fundamental Matrix:
$$\tilde{\mathbf{x}}_l^{'T}\mathbf{F}\tilde{\mathbf{x}}_r' = 0$$
 with $\mathbf{F} = \mathbf{K}^{-T}[\mathbf{t}]_{\times}\mathbf{R}\mathbf{K}^{-1} = \mathbf{K}^{-T}\mathbf{E}\mathbf{K}^{-1}$

coordinates $\mathbf{x_l}', \mathbf{x_r}'$ are in pixels (measured in the image)

We can compute \mathbf{F} from 8 pairs of points in both images (no need to know \mathbf{K})

FUNDAMENTAL MATRIX F

3x3 singular matrix (rank 2) that relates elements of both images:

Points to points: $\tilde{\mathbf{x}}_{l}^{'T}\mathbf{F}\tilde{\mathbf{x}}_{r}' = 0$

Points and epipolar lines $\mathbf{l}_l' = \mathbf{F} \tilde{\mathbf{x}}_r'$ $\mathbf{l}_r' = \mathbf{F}^T \tilde{\mathbf{x}}_l'$

Epipoles: $\mathbf{F}\tilde{\mathbf{e}}_r' = \mathbf{0}$ $\mathbf{F}^T\tilde{\mathbf{e}}_l = \mathbf{0}$

Epipolar lines of the points in the right image

- \mathbf{F} has 7 d.o.f. due to the ambiguity of scale and to its rank= 2 (det(\mathbf{F})=0)
- F can be inferred from point matches (eight-point algorithm)

Example: Ideal configuration

$$\lambda \tilde{\mathbf{x}}_{l}' = \mathbf{P}_{l} \mathbf{X}_{l} = \mathbf{K}_{l} [\mathbf{I} | \mathbf{0}] \mathbf{X}_{l} = \mathbf{K} [\mathbf{I} | \mathbf{0}] \mathbf{X}_{l}$$
$$\lambda \tilde{\mathbf{x}}_{l}' = \mathbf{P}_{r} \mathbf{X}_{r} = \mathbf{K}_{r} [\mathbf{R}_{l}^{r} | \mathbf{t}_{l}^{r}] \mathbf{X}_{l} = \mathbf{K} [\mathbf{I} | \mathbf{t}] \mathbf{X}_{l}$$

Prime vectors mean coordinates in pixel! Vectors in homogeneous coordinates!

$$\mathbf{K} = \mathbf{K}_l = \mathbf{K}_r = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{t}_l^r = \begin{bmatrix} -b \\ 0 \\ 0 \end{bmatrix}$$

Notice, according to this K the image coordinate system has the origin in image cernter, not the upper right corner!

$$[\mathbf{t}]_{\mathbf{x}} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0 \end{bmatrix}$$

$$\mathbf{F} = \mathbf{K}^{-T} [\mathbf{t}]_{\mathbf{x}} \mathbf{R} \mathbf{K}^{-1} = \begin{bmatrix} 1/f & 0 & 0 \\ 0 & 1/f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/f & 0 & 0 \\ 0 & 1/f & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & b/f \\ 0 & -b/f & 0 \end{bmatrix} = b/f \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Example: Ideal configuration

$$\mathbf{F} = \mathbf{K}^{-\mathrm{T}}[\mathbf{t}]_{\mathrm{X}}\mathbf{R}\mathbf{K}^{-1} = b/f \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Epipolar line for $[x_r, y_r]^T$

$$\mathbf{l'}_l = \mathbf{F}\tilde{\mathbf{x}}_r' = b/f \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_r \\ y_r \\ 1 \end{bmatrix} = b/f \begin{bmatrix} 0 \\ 1 \\ -y_r \end{bmatrix}$$

Line equation: Ax + By + C =
$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = l^T \tilde{p} = 0$$

Epipolar line: $\begin{bmatrix} 0 & 1 & -y_r \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$
 $y = y_r$

Epipolar line:
$$\begin{bmatrix} 0 & 1 & -y_r \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0 \implies y = y_r$$

Epipoles:

$$\mathbf{F}\mathbf{e}_r' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} e_{\chi r} \\ e_{yr} \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ w \\ -e_{yr} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies \mathbf{e}_r' = \begin{bmatrix} e_{\chi r} \\ 0 \\ 0 \end{bmatrix}$$

Direction vecto

5. Reconstruction from stereo

Dense stereo → All the pixels are tried to be matched (no need of feature detection)

→ Provides a **dense depth map**

Based on distinctive features (sparse stereo) → keypoints, segments, regions are detected and put in correspondence

→ sparse depth map

Depth available only at these features (points in this case)

5. Reconstruction from stereo

We need a similarity measure to find good matches between the images

Patch around the candidate correspondence points

Criterium 1: Minimize the **Sum of squared differences** (SSD):

$$SSD = \sum_{[i,j]\in R} (f(i,j) - g(i,j))^2 = \sum_{[i,j]\in R} f^2 + \sum_{[i,j]\in R} g^2 - 2 \sum_{[i,j]\in R} fg$$

Criterium 2: Maximize the Cross-correlation: $C_{fg} = \sum_{[i,j] \in R} f(i,j)g(i,j)$

Cross-correlation can be made invariant to contrast and brightness : NCC

Normalized cross correlation (NCC) between two images I_r and I_l :

$$NCC(I_l, I_r) = \frac{1}{K} \sum_{l} (I_l - \overline{I_l})(I_r - \overline{I_r})$$

NCC along a row of the right image I_r for different disparities τ :

$$NCC(d) = \frac{1}{K} \sum_{u_1 = -N}^{N} \sum_{v_1 = -P}^{P} \left(I_{\underline{l}}(u_1 + u_0, v_1 + v_0) - \bar{I}_{\underline{l}}(u_0, v_0) \right) \left(I_{\underline{r}}(u_1 + u_0 + d, v_1 + v_0) - \bar{I}_{\underline{r}}(u_0 + d, v_0) \right)$$
Left image window
Right image window moved τ to the right

$$K = (2P+1)(2N+1)\sigma_l(u_0,v_0)\sigma_r(u_0+d,v_0)$$
 Computed at each position on the sliding window

Mean:
$$\bar{I}_l(u_0, v_0) = \frac{1}{(2P+1)(2N+1)} \sum_{u_1=-N}^{N} \sum_{v_1=-P}^{P} I_l(u_1 + u_0, v_1 + v_0)$$

Variance:
$$\sigma^2_l(u_0, v_0) = \frac{1}{(2P+1)(2N+1)} \sum_{u_1=-N}^N \sum_{v_1=-P}^P (I_l(u_1+u_0, v_1+v_0) - \bar{I}_l(u_0, v_0))^2$$

Correlation

Small baseline between cameras \rightarrow intensity profiles/correlation windows very similar

For a good match, the disparities of the pixels in the window must be the same

Correlation Effect of the window size w on the NCC

W = 3

Small window

- Detailed 3D map
- but noisy

W = 20 Large window

- Less noisy
- Corse matches because different disparities of the pixels in the window
- Close pixels give similar disparities → Coarser 3D map

Limitations of Correlation

The image of a 3D point may have different intensity because of different view-point, then NCC does not work well

Wrong correspondences even if NCC = 1 : Same projections but corresponding to different 3D points

Correlation alone may be not enough to select the correct match

Two examples:

Texture-less surfaces

Occlusion, repetition

We need:

To apply constraints (uniqueness, continuity, ordering)
Some context information: Independent matches, without taking into account other candidate matches, do not give good results

A global optimization approach for correspondence

Idea: solve correspondence not only using NCC for the keypoints but all the pixels and applying the contraints

- Build a graph with all the posible matches between keypoints in epipolar lines of both images
- Find a minimum cost path from the upper left corner to the botton right one

Cost associated to arcs and nodes:

$$C(m_0, m_e) = \sum_{i=0}^{e} f(m_i) + \sum_{i=0}^{e-1} g(m_i, m_{i+1})$$
Cost of the node m_i Arc cost given by the NCC

The optimal path is computed by a Dijkstra's algorithm

A global optimization approach for correspondence:

Nodes:

- Nodes arise from the intersection of distintive image keypoints along conjugates epipolar lines
- Some matches are more likely than others because they entail lower cost (i.e. higher NCC)

Arcs: Not meeting the constraint increases the cost of the arcs

- Ordering: arcs in the direction south-east
- Uniqueness: neither horizontal nor vertical arcs allowed
- Completeness: the more nodes visited, the better
- Figural continuity: any path must be similar to the neighbor epipolar lines (above and below)

A global optimization approach for correspondence:

Example: Correlation + Dynamic programming

For the latest and greatest: http://vision.middlebury.edu/stereo/

A global optimization approach for correspondence:

Example:

5. Reconstruction from stereo

A solution for texture-less zones (more invasive, used in CAD)

RANSAC: Random Sample Consensus

Iterative method to estimate parameters of a mathematical model from a set of observed data which contains outliers.

EXAMPLE: Least squares fit to the red points:

Problem: squared error heavily penalizes outliers

 $X=\{x_i\}$: 2D Data points $\theta = \{\rho, \alpha\}$: Line parameters

initialise count of number of points fit

pick a subset of K points randomly (here K=2)

fit parameters to subset S

if number of inliers is larger than before, save parameters & nInliers

pick a subset of K points randomly (here K=2)

pick a subset of K points randomly (here K=2)

count number if inliers, here nInliers = 6

if number of inliers larger than best, update parameters etc.

pick a subset of K points randomly (here K=2)

fit parameters

count inliers

no need to update as not an improvement

pick a subset of K points randomly (here K=2)

fit parameters

count number of inliers

update stored parameters

RANSAC for estimating the fundamental matrix

```
F = eye(3,3)

nBest = 0

for int i = 0; i < nlterations; i++ do

P8 = SelectRandomSubset(P)

Fi = ComputeHomography(P8)

nInliers = ComputeInliers(Fi)

if nInliers > nBest then

F = Fi

nBest = nInliers

end if

end for
```