Función de Pérdida

Nicolás Kossacoff

Noviembre 2024

1. Introducción

Una función de pérdida mide que tan buena es la predicción de nuestro modelo, \hat{y}_i , con respecto al verdadero valor (ground-truth), y_i . Por ejemplo, en un problema de clasificación, la función de pérdida compara las probabilidades estimadas por el modelo con el ground-truth. En ese caso toma valores altos si el modelo le da más probabilidad a una clase que no es la correcta y toma valores chicos si el modelo le da más probabilidad a la clase correcta.

Cuando entrenamos una red neuronal, buscamos encontrar los parámetros que minimicen la función de pérdida. Esos parámetros nos devuelven el modelo que mejor ajusta a los datos.

2. Máxima Verosimilitud

Supongamos que queremos que nuestro modelo estime la **distribución condicional** de y_i dado x_i , como en la figura 1. Para lograr esto primero definimos una distribución paramétrica, $Pr(y|\theta)$, la cual elegimos en base al dominio de y (e.g., si $y \in \mathbb{R}$, entonces podríamos elegir una distribución Gaussiana), y luego adaptamos nuestro modelo para que compute uno o más parámetros de esa distribución (e.g., en el caso de la distribución Gaussiana, tendríamos una red neuronal con dos neuronas de salida, una para la media y otra para la varianza).

Ahora para cada observación x_i tenemos una distribución con parámetros θ_i . Cada observación de y_i tiene que tener una probabilidad alta bajo esta distribución estimada. Dicho esto, elegimos los parámetros de nuestro modelo tal que maximicen la probabilidad conjunta de nuestros datos¹, es decir, que hagan más probable observar y_i dado que observamos x_i (mirar figura 2). A la probabilidad conjunta se la conoce

¹Acá estamos, implícitamente, haciendo dos supuestos: (i) asumimos que todas las observaciones siguen la misma distribución conjunta, y (ii) asumimos que las distribuciones son independientes.

Figura 1: Izquierda. Estimación de la distribución condicional de y_i dada la observación x_i en un contexto de regresión. Derecha. Estimación de la distribución condicional en un contexto de clasificación. **Source:** Price, S. (2024). Understanding Deep Learning [Figura 5.1, p. 57]

como función de verosimilitud.

$$\hat{W} = \arg \max_{W} \prod_{i=1}^{n} Pr(y_i|x_i)$$

$$= \arg \max_{W} \prod_{i=1}^{n} Pr(y_i|\theta_i)$$

$$= \arg \max_{W} \prod_{i=1}^{n} Pr(y_i|f(x_i, W))$$

Aplicamos un logaritmo para obtener la función de log-verosimilitud:

$$L(W) = \sum_{i=1}^{n} \log \left(Pr\left(y_i | f(x_i, W) \right) \right)$$

Dado que el logaritmo es una función monótona creciente (i.e., si z > z' entonces $\log(z) > \log(z')$, y viceversa), entonces el máximo es el mismo para ambas funciones. Esto quiere decir que si encontramos los parámetros que maximizan la log-verosimilitud, implícitamente vamos a encontrar los parámetros que maximizan la verosimilitud.

Como se suele minimizar la función de pérdida, y no maximizar, agregamos un menos adelante:

$$L(W) = \sum_{i=1}^{n} \log (Pr(y_i|f(x_i, W)))$$
 (1)

Figura 2: Izquierda. En la figura a) tenemos un modelo que ajusta bien a los datos. Lo que ocurre es que la probabilidad de observar y_i (punto rojo) dada la distribución Gaussiana estimada por nuestro modelo es alta (figura c). Derecha. En la figura b) tenemos el caso contrario en donde el modelo no ajusta bien a los datos. Lo que ocurre es que la probabilidad de observar y_i dada la distribución estimada por el modelo es baja. Source: Price, S. (2024). Understanding Deep Learning [Figura 5.4, p. 63]

2.1. Inferencia

Muchas veces necesitamos una estimación puntual de y y no su distribución. Se puede reportar el máximo valor de y_i para la distribución estimada:

$$\hat{y} = \arg\max_{y} Pr(y|f(x_i, \hat{W}))$$

Por ejemplo, en un caso de clasificación binaria, donde $y \in \{0, 1\}$, la distribución estimada tiene solo dos posibles valores: $P(y_i = 1|x_i) = \lambda$ y $P(y_i = 0|x_i) = 1 - \lambda$. Si $\lambda > 1 - \lambda$, entonces reportamos $y_i = 1$, y reportamos $y_i = 0$ en caso contrario.

2.2. Criterio de Máxima Verosimilitud

El criterio de máxima verosimilitud nos permite construir funciones de pérdida que se ajusten al problema que queremos resolver. Los pasos a seguir son:

1. Definir una distribución paramétrica, $Pr(y|\theta)$, según el dominio de la predicción y.

- 2. Definir nuestra red neuronal para que estime los parámetros de la distribución, θ .
- 3. Entrenamos el modelo buscando los parámetros W que minimicen la función de pérdida, es decir, la función de log-verosimilitud para todos nuestros datos:

$$\hat{W} = \arg \max_{W} - \sum_{i=1}^{n} \log \left(Pr\left(y_i | f(x_i, W) \right) \right)$$

4. Para realizar inferencia con nuevas observaciones devolvemos la distribución estimada o una estimación puntual, que es equivalente al valor de y con mayor probabilidad.

2.2.1. Ejemplo: regresión

En este caso queremos predecir una variable $y \in \mathbb{R}$ usando un modelo f(x, W). Primero definimos la distribución en base al dominio de y. Dado que $y \in \mathbb{R}$, elegimos una distribución Gaussiana:

$$Pr(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Definimos nuestro modelo f(x, W) para que estime uno o más parámetros de la distribución. Por ejemplo, podemos definir nuestra red neuronal tal que solo estime la media de la distribución, $\mu = f(x, W)$ (asumimos que σ^2 es una constante):

$$Pr\left(y|f(x,W),\sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-f(x,W))^2}{2\sigma^2}\right)$$

Ahora, si tomamos la función pérdida en (1) y reemplazamos $Pr(y_i|\theta)$ por la distribución Gaussiana obtenemos el **error cuadrático medio**, una función de pérdida muy utilizada para problemas de regresión:

$$L(W) = -\sum_{i=1}^{n} \log \left(Pr\left(y_i | f(x_i, W), \sigma^2 \right) \right)$$

$$= -\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y_i - f(x_i, W))^2}{2\sigma^2} \right) \right)$$

$$= -\sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) \left(-\frac{(y_i - f(x_i, W))^2}{2\sigma^2} \right)$$

$$= -\sum_{i=1}^{n} \left(y_i - f(x_i, W)^2 \right)$$

Por último, minimizamos la función de pérdida para encontrar los parámetros óptimos:

$$\hat{W} = \arg\min_{W} L(W) = \arg\min_{W} - \sum_{i=1}^{n} (y_i - f(x_i, W)^2)$$

2.2.2. Ejemplo: clasificación binaria

En este caso la variable y puede tomar dos posibles valores $\{0,1\}$, a los cuales llamamos etiquetas. Buscamos que nuestro modelo f(x,W) clasifique las observaciones x bajo alguna de estas etiquetas.

Para este problema elegimos es la distribución Bernoulli, que se encuentra definida para el dominio $\{0,1\}$. Esta distribución tiene un único parámetro, λ , el cual representa la probabilidad de que y=1.

$$Pr(y|x) = Pr(y = 0|x)^{1-y} \cdot Pr(y = 1|x)^y = (1 - \lambda)^{1-y} \cdot \lambda^y$$

Como λ es una probabilidad, su valor está entre [0,1]. Necesitamos entonces que nuestro modelo devuelva un valor entre [0,1] como estimación. Para eso, utilizamos como función de activación de nuestra neurona de salida a la función Sigmoidea:

$$z_i(x_i, W) = \frac{1}{1 + \exp(-f(x_i, W))}$$

Si reemplazamos esto en la ecuación (1) obtenemos la **entropía cruzada binaria**, una función de pérdida muy utilizada para problemas de clasificación binaria:

$$L(W) = -\log ([1 - z_i(x_i, W)]^{1-y_i} \cdot z_i(x_i, W)^{y_i})$$

$$L(W) = -\log ([1 - z_i(x_i, W)]^{1-y_i}) - \log (z_i(x_i, W)^{y_i})$$

Por último, minimizamos la función de pérdida para encontrar los parámetros óptimos:

$$\hat{W} = \arg\min_{W} - \log([1 - z_i(x_i, W)]^{1 - y_i}) - \log(z_i(x_i, W)^{y_i})$$

2.2.3. Ejemplo: clasificación con múltiples clases

En este caso la variable y puede tomar K valores (etiquetas). Buscamos que nuestro modelo pueda asignarle una de estas K etiquetas a cada observación x.

Elegimos la distribución categórica, que se encuentra definida para este dominio. Esta distribución tiene K parámetros, donde cada uno de los parámetros define la probabilidad de cada etiqueta para la observación x, $Pr(y = k|x) = \lambda_k$. Nuestra red neuronal va a tener K neuronas de salida, una para cada parámetro.

Al igual que antes, necesitamos asegurarnos que todo λ_k sea una probabilidad. Esto no solo quiere decir que λ_k tome valores en [0,1], sino también que $\sum_k \lambda_k = 1$. Para que los valores de salida de nuestra red neuronal cumplan con estas condiciones, utilizamos una función de activación Softmax. Esta función toma el vector de resultados de nuestra red y devuelve un vector de la misma dimensión, pero en el que todos sus elementos toman valores en [0,1] y la suma es igual a 1.

Matemáticamente, al aplicar la función Softmax sobre el vector de valores de salida, f_y , obtenemos:

$$z_y = softmax(f_y) = \frac{\exp(f_y)}{\sum_{k=1}^{K} \exp(f_k)}$$

donde la función exponencial nos asegura que los resultados sean positivos y el denominador nos asegura que los K valores de salida sumen 1.

Reemplazamos en la ecuación (1) y obtenemos la **entropía cruzada multi-clase**, una función de pérdida muy utilizada para problemas de clasificación con más de dos clases:

$$L(W) = -\sum_{i=1}^{n} \log (z_i(x, W))$$

$$L(W) = -\sum_{i=1}^{n} \log (softmax[f_y(x_i, W)])$$

$$L(W) = -\sum_{i=1}^{n} \log \left(\frac{\exp (f_{y_i}(x_i, W))}{\sum_{k=1}^{K} \exp (f_k(x_i, W))} \right)$$

$$L(W) = -\sum_{i=1}^{n} \left[(f_{y_i}(x_i, W)) - \log \left(\sum_{k=1}^{K} \exp (f_k(x_i, W)) \right) \right]$$

Por último, minimizamos la función de pérdida para encontrar los parámetros óptimos:

$$\hat{W} = \arg\min_{W} - \sum_{i=1}^{n} \left[\left(f_{y_i}(x_i, W) \right) - \log \left(\sum_{k=1}^{K} \exp\left(f_k(x_i, W) \right) \right) \right]$$