苏州大学实验报告

院、系	计算	章机科学与技术	年级 专业	软	2020 次件工程	姓名	高歌	学号	2030416018
课程名称		信息检索综合实践						成绩	
指导教师		贡正仙	同组实验	者	无		实验日期	2023	年5月3日

实验名称	实验 6 文档相似度	

一. 实验目的

了解 TF、DF、TF-IDF 等指标的意义及计算方式,学习并实现使用二值向量、TF 向量、TF-IDF 权重矩阵计算文档相似度。

二. 实验内容

针对第 4 次作业中的 10 篇文档,构建向量空间模型,返回 10 篇文档两两相似度。

- 输入:第4次作业中的10篇文档
- 输出: 10 篇文档的两两相似度,并输出与每篇文档最相似的文档号

相似度衡量方法:空间向量法的余弦相似度,即文档用词汇向量表示,相似度使用归一化的余弦相似度表示

计算余弦相似度时, 要求汇报以下三种向量表示的余弦相似度

- 用二值法表示词汇向量
- 用对数词频表示词汇向量
- 用 TF-IDF 表示词汇向量

思考

从与某篇最相似的文档角度进行分析

- 上述三种向量表示对相似度计算的影响
- 是不是 TF-IDF 向量表示是这 3 种中最好的?考虑更多的文档或者更少的文档的情况

三. 实验步骤和结果

注:代码使用 TypeScript 编写,运行时使用 ts-node。使用 Prettier 与 ESLint 作为代码格式化工具,代码风格遵从 TypeScript ESLint Recommended 标准。建立索引时使用了 JS 上的 NLP 库 compromise 进行英文分词与词性还原。

(一) 实验步骤

1. 本实验逻辑稍有些复杂,这里对目录结构做一个简单解释:

图 1 目录结构

其中,`types`目录下包含了一些必要的类型定义;

`utils`目录下包含了一些工具函数,`bitmap.ts`包含了与位图相关的函数,用来辅助集合操作如去重等,`file.ts`包含了一些与文件相关的工具函数,`log.ts`包含了一些与日志相关的工具函数,而`dataframe.ts`包含了一个用于本次实验的 DataFrame 数据类型定义(类似于 Python 中 Pandas 的 DataFrame);

而`indexer.ts`包含了构建与读取索引文件所需的相关函数,`lexical-vertor.ts`中包含本次实验中与计算词汇向量有关的几个函数;

`main.ts`则为主入口文件。

其中,`common.d.ts`、`bitmap.ts`、`file.ts`这三个文件的实现与实验 4 完全一致,而`log.ts`的实现与上一次实验(实验 5)完全一致,这里均不再赘述。`indexer.ts`在实验 4 的基础上做了一些细微的改动,会在之后说明。

接下来将一一解释剩余文件中的代码逻辑。

2. 首先解释一下`dataframe.ts`中对 DataFrame 类型的实现。这里先展示其类型定义:

```
export interface DataFrame<T> {
   readonly columns: string[];
   readonly rows: string[];

get(row: string | number, column: string | number): T;
   getRow(row: string | number): T[];
   getColumn(column: string | number): T[];

set(row: string | number, column: string | number, value: T): void;
   setRow(row: string | number, values: T[]): void;
   setColumn(column: string | number, values: T[]): void;

copy(): DataFrame<T>;
```

```
[Symbol.toStringTag]: 'DataFrame';
 toString(options?: {
   limit?: number;
   headerWidth?: number;
   columnWidth?: number;
 }): string;
 saveToFile(pathname: string): Promise<void>;
}
export interface CreateDataFrameOptions {
 columns?: string[];
 rows?: string[];
export const createDataFrame = <T>(
 matrix: T[][],
 { columns, rows }: CreateDataFrameOptions = {},
): DataFrame<T> => ...
export const readDataFrame = async <T extends number | string>(
 pathname: string,
): Promise<DataFrame<T>> => ...
```

可以看到,`dataframe.ts`导出了一个用于创建 DataFrame 的函数`createDataFrame`。和 Python 中 Pandas 的 DataFrame 类型相似,该 DataFrame 类型支持使用字符串作为行与列的索引,这有助于之后方便索引单词向量矩阵。

该 DataFrame 类型支持基本的按行、列、单元格的取值与设置值操作,并且支持一个`copy`方法,用于将当前 DataFrame 深复制并创建一个新的 DataFrame。并且其也支持`toString`方法,用于以人类友好的格式打印 DataFrame 中的内容。

并且,该 DataFrame 实现了保存与读取操作,使用`DataFrame#saveToFile`保存,并使用 `readDataFrame`函数读取。

该数据类型的具体实现比较繁琐,但并非本实验的重点,因此这里就不展示其完整代码了。

3. 本实验需要分别使用二值向量、对数词频向量与 TF-IDF 向量计算余弦相似度。其中,前两种方式不区分词的重要性,因此考虑使用**去停用词**的索引计算向量矩阵;而对于 TF-IDF 方法,由于其已经考虑了词重要性造成的影响,因此**不去除停用词**。

实验4中实现的索引算法构建的索引默认是去除停用词的,因此这里对相关函数稍作修改,使其支持建立不去停用词的索引。修改的部分已经使用不同颜色的背景标出。

```
/**
 * Get lemmatized words from a text.
 */
export const getLemmatizedWords = (
  text: string,
```

```
includeStopwords = false,
 }: {
   includeStopwords?: boolean;
} = {},
): string[] => {
 const doc = nlp(normalize(text));
 // Lemmatization
 const result = doc
   .terms()
   .not('#Value')
   .json()
   .map((t: { terms: Array<{ normal: string }> }) => t.terms[0].normal)
   .map(lemmatize)
   .filter((w: string) => /\w/.test(w));
return includeStopwords ? result : removeStopwords(result);
};
 * Generate the index from the data directory and save it to a file.
* @param dataDir The data directory.
* Oparam pathname The path to the index file.
* @returns The index map.
 */
export const generateIndex = async (
 dataDir: string,
 pathname: string,
{ includeStopwords = false }: { includeStopwords?: boolean } = {},
): Promise<IndexMap> => {
 const maxDocID = (await fs.readdir(dataDir)).reduce(
   (maxDocID, filename) => Math.max(maxDocID, getDocID(filename)),
   0,
 );
 const wordOccurs = new Map<string, Bitmap>();
 for (const filename of await fs.readdir(dataDir)) {
   const docID = getDocID(filename);
   const content = await fs.readFile(path.join(dataDir, filename),
'utf-8');
   const words = getLemmatizedWords(content, { includeStopwords });
```

. . .

可以看到,这里添加了一个可选参数`includeStopwords`,表示是否要包含停用词,默认是 false。此外,为了方便后续调用,这里还将 lemmatize 函数单独抽离出来,它接受文档内容,输出文档中所有规范化后的单词(未去重)。

4. 然后在`lexical-vector.ts`中正式开始编写本实验中与词汇向量处理相关的一些函数。首先定义一个辅助函数`indexMap2dataFrame`,用于将索引字典转换成一个空的 DataFrame。

```
/**
* Convert the document ID map to a data frame.
 * Oparam indexMap The document ID map, where the key is the term and the
value is the list of document IDs.
 * @returns
 */
const indexMap2dataFrame = (indexMap: IndexMap) => {
  const allDocIDs = getAllDocIDs(indexMap);
  const matrix: number[][] = new Array(indexMap.size)
    .fill(0)
    .map(() => new Array(allDocIDs.length).fill(0));
  return createDataFrame(matrix, {
   columns: allDocIDs.map(String),
   rows: [...indexMap.keys()],
 });
};
例如,对于以下的 indexMap:
new Map([
  ['john', [1, 3]],
  ['james', [2, 3, 4]],
  ['mary', [2, 5]],
1);
将会转换为如图所示的空 DataFrame:
```

```
0.0000
                                    0.0000
                                               0.0000
                                                          0.0000
john
                                                                     0.0000
                         0.0000
                                    0.0000
                                               0.0000
                                                          0.0000
                                                                     0.0000
james
mary
                         0.0000
                                    0.0000
                                               0.0000
                                                          0.0000
                                                                     0.0000
```

然后,编写生成<mark>二值向量</mark>矩阵的函数:

```
export const generateBinaryLexicalVectorMatrix = (indexMap: IndexMap) =>
{
  const df = indexMap2dataFrame(indexMap);

  for (const [word, docIDs] of indexMap) {
    for (const docID of docIDs) {
```

```
df.set(word, String(docID), 1);
}
return df;
};
```

该函数的原理非常简单,首先通过`indexMap2dataFrame`得到值全为 0 的空 DataFrame,然后遍历索引字典,在出现单词的位置将对应值设为 1 即可。

然后,编写生成<mark>对数词频</mark>矩阵的函数:

```
export const generateLogarithmicWordFrequencyVectorMatrix = (
 indexMap: IndexMap,
 { includeStopwords = false }: { includeStopwords?: boolean } = {},
) => {
 const df = indexMap2dataFrame(indexMap);
 for (const docID of df.columns) {
   const filename = `d${docID}.txt`;
   const content = fs.readFileSync(path.join(DATA_DIR, filename),
'utf-8'):
   const words = getLemmatizedWords(content, { includeStopwords });
   for (const word of df.rows) {
     const wordCount = words.filter((w) => w === word).length;
     df.set(
       word,
       docID,
       wordCount === 0 ? 0 : 1 + Math.log(wordCount) / Math.log(10),
     );
   }
 }
 return df;
};
```

该函数的逻辑也不复杂。首先获取一个值全为 0 的空 DataFrame,然后遍历每个文档,读取文档内容,获取文档中的所有单词。然后,对于每个文档,遍历索引字典中的每个单词,计算该单词在该文档中的出现次数,并由此计算出其对数词频保存到 DataFrame 中。

该函数默认调用时不包含停用词,但加入了一个可选参数用于控制是否包含停用词,以供下一个 计算 TF-IDF 的函数调用。

然后编写生成 TF-IDF 矩阵的函数:

```
export const generateTFIDFVectorMatrix = (indexMap: IndexMap) => {
  const df = generateLogarithmicWordFrequencyVectorMatrix(indexMap, {
    includeStopwords: true,
```

```
for (const word of df.rows) {
  const docCount = indexMap.get(word)?.length ?? 0;
  const idf = Math.log(df.columns.length / docCount) / Math.log(10);

  for (const docID of df.columns) {
    const tf = df.get(word, docID);
    df.set(word, docID, tf * idf);
  }
}

return df;
};
```

该函数接受一个索引字典(该索引字典应当包含停用词)。首先使用 `generateLogarithmicWordFrequencyVectorMatrix`函数生成包含停用词的TF矩阵,然后遍历矩阵,将每个值乘以IDF值即可。

除此之外,还有一个简单的辅助函数用于<mark>计算两个向量的余弦相似度:</mark>

```
export const calculateCosineSimilarity = (
  vector1: number[],
  vector2: number[],
) => {
  const len1 = Math.sqrt(vector1.reduce((sum, v) => sum + v ** 2, 0));
  const len2 = Math.sqrt(vector2.reduce((sum, v) => sum + v ** 2, 0));
  const dotProduct = vector1.reduce((sum, v1, i) => sum + v1 * vector2[i],
  0);
  return dotProduct / (len1 * len2);
};
```

该函数首先将两个向量归一化,然后计算它们的点积作为余弦相似度。

11. 最后在`main.ts`中编写主函数。`main.ts`中首先包含了两个辅助函数。第一个辅助函数 `calculateConsineSimilarityMatrix`接受一个 DataFrame(向量矩阵),对该矩阵中的每个文档两两比较,得到它们的余弦相似度矩阵。

```
const calculateCosineSimilarityMatrix = (df: DataFrame<number>) => {
  const matrix = new Array(df.columns.length).fill(
    new Array(df.columns.length).fill(0),
  );

const result = createDataFrame(matrix, {
    columns: df.columns,
    rows: df.columns,
  });
```

```
for (const docID1 of df.columns) {
      for (const docID2 of df.columns) {
        result.set(
          docID1,
          docID2,
          calculateCosineSimilarity(df.getColumn(docID1),
   df.getColumn(docID2)),
        );
      }
     }
     return result as DataFrame<number>;
   };
   然后第二个辅助函数`displayBestMatches`,它接受上面`calculateConsineSimilarityMatrix`函数得到
的余弦相似度矩阵,向终端打印对于每个文档相似度最高的文档。
   const displayBestMatches = (df: DataFrame<number>) => {
     const bestMatches = new Map<string, string>();
     for (const docID of df.rows) {
      const bestMatch = df
         .getColumn(docID)
         .map((value, index) => [value, index])
         .sort(([value1], [value2]) => value2 - value1)[1][1];
      bestMatches.set(docID, df.columns[bestMatch]);
     }
     for (const [docID, bestMatch] of bestMatches) {
      console.log(`Best match for ${docID} is ${bestMatch}`);
     }
   };
   然后编写主函数`main.ts`。
   export const DATA_DIR = './data';
   export const INDEX_PATHNAME = './dict.index';
   export const INDEX_PATHNAME_WITH_STOPWORDS =
   './dict.index.with-stopwords';
   const BINARY_MATRIX_PATHNAME = './output/binary.csv';
   const LOGTF_MATRIX_PATHNAME = './output/logtf.csv';
   const TFIDF_MATRIX_PATHNAME = './output/tfidf.csv';
   const BINARY_SIMILARITY_MATRIX_PATHNAME =
   './output/binary-similarity.csv';
   const LOGTF_SIMILARITY_MATRIX_PATHNAME =
   './output/logtf-similarity.csv';
```

```
const TFIDF SIMILARITY MATRIX PATHNAME =
'./output/tfidf-similarity.csv';
const loggedReadIndex = logged('Index read', readIndex);
const loggedGenerateIndex = logged('Index generated', generateIndex);
const main = async () => {
  const indexMap = (await fileExists(INDEX_PATHNAME))
    ? await loggedReadIndex(INDEX_PATHNAME)
    : await loggedGenerateIndex(DATA_DIR, INDEX_PATHNAME);
 const indexMapWithStopwords = (await fileExists(
   INDEX_PATHNAME_WITH_STOPWORDS,
 ))
    ? await loggedReadIndex(INDEX_PATHNAME_WITH_STOPWORDS)
    : await loggedGenerateIndex(DATA_DIR, INDEX_PATHNAME_WITH_STOPWORDS,
{
       includeStopwords: true,
     });
 /* Generate matrices */
 const binaryMatrix = generateBinaryLexicalVectorMatrix(indexMap);
 if (!(await fileExists(BINARY_MATRIX_PATHNAME)))
   await binaryMatrix.saveToFile(BINARY_MATRIX_PATHNAME);
  console.log('Binary Matrix (without stopwords):');
  console.log(binaryMatrix.toString({ limit: 10 }));
  console.log();
 const logtfMatrix =
generateLogarithmicWordFrequencyVectorMatrix(indexMap);
  if (!(await fileExists(LOGTF_MATRIX_PATHNAME)))
   await logtfMatrix.saveToFile(LOGTF_MATRIX_PATHNAME);
  console.log('LogTF Matrix (without stopwords):');
  console.log(logtfMatrix.toString({ limit: 10 }));
  console.log();
 const tfidfMatrix = generateTFIDFVectorMatrix(indexMapWithStopwords);
 if (!(await fileExists(TFIDF_MATRIX_PATHNAME)))
   await tfidfMatrix.saveToFile(TFIDF_MATRIX_PATHNAME);
  console.log('TF-IDF Matrix (with stopwords):');
  console.log(tfidfMatrix.toString({ limit: 10 }));
 console.log();
 /* Calculate cosine similarity */
```

```
const binaryCosineSimilarity =
calculateCosineSimilarityMatrix(binaryMatrix);
 if (!(await fileExists(BINARY_SIMILARITY_MATRIX_PATHNAME)))
   await
binaryCosineSimilarity.saveToFile(BINARY_SIMILARITY_MATRIX_PATHNAME);
  console.log('Binary Cosine Similarity Matrix:');
  console.log(binaryCosineSimilarity.toString());
  displayBestMatches(binaryCosineSimilarity);
  console.log();
 const logtfCosineSimilarity =
calculateCosineSimilarityMatrix(logtfMatrix);
 if (!(await fileExists(LOGTF_SIMILARITY_MATRIX_PATHNAME)))
   await
logtfCosineSimilarity.saveToFile(LOGTF_SIMILARITY_MATRIX_PATHNAME);
  console.log('LogTF Cosine Similarity Matrix:');
  console.log(logtfCosineSimilarity.toString());
  displayBestMatches(logtfCosineSimilarity);
  console.log();
 const tfidfCosineSimilarity =
calculateCosineSimilarityMatrix(tfidfMatrix);
 if (!(await fileExists(TFIDF_SIMILARITY_MATRIX_PATHNAME)))
   await
tfidfCosineSimilarity.saveToFile(TFIDF_SIMILARITY_MATRIX_PATHNAME);
  console.log('TF-IDF Cosine Similarity Matrix:');
  console.log(tfidfCosineSimilarity.toString());
 displayBestMatches(tfidfCosineSimilarity);
 console.log();
};
await main();
```

可以看到,主函数首先生成不包含停用词与包含停用词的两个索引,然后按三种算法生成向量矩阵,最后根据三个向量矩阵计算余弦相似度,并展示三种算法中,每个文档对应的相似度最高的文档。

(二) 实验结果

运行`npm run dev`, 使用 ts-node 执行`./src/main.ts`。下为输出结果:

```
Binary Cosine Similarity Matrix:
                                    2
                                              3
                                                       4
                                                                5
                                                                                             8
                                                                                                       9
                                                                                                                10
                                                                          6
                                                          0.1131
                      1.0000
                                0.2384
                                         0.0000
                                                  0.0465
                                                                      0.0766
                                                                               0.1209
                                                                                         0.1188
                                                                                                  0.0930
                                                                                                            0.0953
                                1.0000
                                                   0.0488
                                                            0.0791
                                                                               0.0845
                                                                                                  0.0488
                      0.2384
                                         0.0000
                                                                      0.0803
                                                                                                            0.0500
                                                                                         0.1661
                                0.0000
                                                   0.0952
                                                                      0.0000
                                                                                                  0.0000
                      0.0000
                                         1.0000
                                                            0.2315
                                                                                                            0.0976
                                                                               0.0000
                                                                                         0.0000
                                                                      0.0000
                                                                                                            0.0000
                      0.0465
                                0.0488
                                         0.0952
                                                   1.0000
                                                            0.2315
                                                                               0.0825
                                                                                         0.0810
                                                                                                  0.0000
                                                                      0.0953
                      0.1131
                                0.0791
                                         0.2315
                                                   0.2315
                                                            1.0000
                                                                               0.0668
                                                                                         0.1641
                                                                                                  0.0386
                                                                                                            0.0395
                                0.0803
                                         0.0000
                                                   0.0000
                                                            0.0953
                                                                      1.0000
                                                                               0.1018
                                                                                         0.1001
                                                                                                  0.0392
                                                                                                            0.0402
                      0.0766
                                                                                                            0.0845
                      0.1209
                                0.0845
                                         0.0000
                                                   0.0825
                                                            0.0668
                                                                      0.1018
                                                                               1.0000
                                                                                         0.3158
                                                                                                  0.0412
                                         0.0000
                                                   0.0810
                                                            0.1641
                                                                      0.1001
                                                                               0.3158
                                                                                                            0.0415
                      0.1188
                                0.1661
                                                                                         1.0000
                                                                                                  0.0405
8
                      0.0930
                                         0.0000
                                                   0.0000
                                                            0.0386
                                                                      0.0392
                                                                                         0.0405
                                                                                                  1.0000
                                                                                                            0.3416
                                0.0488
                                                                               0.0412
                      0.0953
                                0.0500
                                         0.0976
                                                   0.0000
                                                            0.0395
                                                                     0.0402
                                                                               0.0845
                                                                                         0.0415
                                                                                                  0.3416
                                                                                                            1.0000
10
Best match for 1 is 2
Best match for 2 is 1
Best match for 3 is 5
Best match for 4 is 5
Best match for 5 is 3
Best match for 6 is 7
Best match for 7 is 8
Best match for 8 is 7
Best match for 9 is 10
Best match for 10 is 9
```

图 2 二值向量计算结果

Similarity	Matrix:									
	1	2	3	4	5	6	7	8	9	10
	1.0000	0.2469	0.0000	0.0554	0.1058	0.0799	0.1085	0.1350	0.0848	0.0896
	0.2469	1.0000	0.0000	0.0452	0.0749	0.0958	0.0951	0.1856	0.0450	0.0475
	0.0000	0.0000	1.0000	0.1209	0.2378	0.0000	0.0000	0.0000	0.0000	0.0915
	0.0554	0.0452	0.1209	1.0000	0.2453	0.0000	0.0742	0.0875	0.0000	0.0000
	0.1058	0.0749	0.2378	0.2453	1,0000	0.1062	0.0614	0.1638	0.0360	0.0380
										0.0487
										0.0780
										0.0371
										0.3341
	0.0890	0.04/5	0.0915	0.0000	0.0380	0.0487	0.0780	0.03/1	0.3341	1.0000
- 4 0										
r 4 is 5										
r 5 is 4										
r 6 is 8										
r 7 is 8										
r 8 is 7										
r 10 is 9										
	or 1 is 2 or 2 is 1 or 3 is 5 or 4 is 5 or 6 is 8 or 7 is 8 or 8 is 7 or 9 is 10	1.0000 0.2469 0.0000 0.0554 0.1058 0.0799 0.1085 0.1350 0.0848 0.0896 or 1 is 2 or 2 is 1 or 3 is 5 or 4 is 5 or 5 is 4 or 6 is 8 or 7 is 8 or 7 is 8 or 8 is 7 or 9 is 10	1 2 1.0000 0.2469 0.2469 1.0000 0.0000 0.0000 0.0554 0.0452 0.1058 0.0749 0.0799 0.0958 0.1085 0.0951 0.1350 0.1856 0.0848 0.0450 0.0896 0.0475 or 1 is 2 or 2 is 1 or 3 is 5 or 4 is 5 or 5 is 4 or 6 is 8 or 7 is 8 or 8 is 7 or 9 is 10	1 2 3 1.0000 0.2469 0.0000 0.2469 1.0000 0.0000 0.0000 0.0000 1.0000 0.0554 0.0452 0.1209 0.1058 0.0749 0.2378 0.0799 0.0958 0.0000 0.1085 0.0951 0.0000 0.1350 0.1856 0.0000 0.0848 0.0450 0.0000 0.0848 0.0450 0.0000 0.0896 0.0475 0.0915 or 1 is 2 or 2 is 1 or 3 is 5 or 4 is 5 or 5 is 4 or 6 is 8 or 7 is 8 or 8 is 7 or 9 is 10	1 2 3 4 1.0000 0.2469 0.0000 0.0554 0.2469 1.0000 0.0000 0.0452 0.0000 0.0000 1.0000 0.1209 0.0554 0.0452 0.1209 1.0000 0.1058 0.0749 0.2378 0.2453 0.0799 0.0958 0.0000 0.0000 0.1085 0.0951 0.0000 0.0742 0.1350 0.1856 0.0000 0.0875 0.0848 0.0450 0.0000 0.0000 0.0896 0.0475 0.0915 0.0000 0.0896 0.0475 0.0915 0.0000	1 2 3 4 5 1.0000 0.2469 0.0000 0.0554 0.1058 0.2469 1.0000 0.0000 0.0554 0.1058 0.2469 1.0000 0.0000 0.0452 0.0749 0.0000 0.0000 1.0000 0.1209 0.2378 0.0554 0.0452 0.1209 1.0000 0.2453 0.1058 0.0749 0.2378 0.2453 1.0000 0.0799 0.0958 0.0000 0.0000 0.1062 0.1085 0.0951 0.0000 0.0000 0.1062 0.1350 0.1856 0.0000 0.0875 0.1638 0.0848 0.0450 0.0000 0.0000 0.0360 0.0896 0.0475 0.0915 0.0000 0.0380 or 1 is 2 or 2 is 1 or 3 is 5 or 4 is 5 or 5 is 4 or 6 is 8 or 7 is 8 or 8 is 7 or 9 is 10	1 2 3 4 5 6 1.0000 0.2469 0.0000 0.0554 0.1058 0.0799 0.2469 1.0000 0.0000 0.0452 0.0749 0.0958 0.0000 0.0000 1.0000 0.1209 0.2378 0.0000 0.0554 0.0452 0.1209 1.0000 0.2453 0.0000 0.1058 0.0749 0.2378 0.2453 1.0000 0.1062 0.0799 0.0958 0.0000 0.0000 0.1062 1.0000 0.1085 0.0951 0.0000 0.0000 0.1062 1.0000 0.1085 0.0951 0.0000 0.0742 0.0614 0.0998 0.1350 0.1856 0.0000 0.0875 0.1638 0.1236 0.0848 0.0450 0.0000 0.0000 0.0360 0.0461 0.0896 0.0475 0.0915 0.0000 0.0380 0.0487	1 2 3 4 5 6 7 1.0000 0.2469 0.0000 0.0554 0.1058 0.0779 0.1085 0.2469 1.0000 0.0000 0.0452 0.0749 0.0958 0.0951 0.0000 0.0000 1.0000 0.1209 0.2378 0.0000 0.0000 0.0554 0.0452 0.1209 1.0000 0.2453 0.0000 0.0000 0.1088 0.0749 0.2378 0.2453 1.0000 0.1062 0.0614 0.0799 0.0958 0.0000 0.0000 0.1062 1.0000 0.0998 0.1085 0.0951 0.0000 0.0742 0.0614 0.0998 1.0000 0.1350 0.1856 0.0000 0.0875 0.1638 0.1236 0.3667 0.0848 0.0450 0.0000 0.0000 0.0360 0.0461 0.0369 0.0896 0.0475 0.0915 0.0000 0.0380 0.0487 0.0780	1 2 3 4 5 6 7 8 1.0000 0.2469 0.0000 0.0554 0.1058 0.0799 0.1085 0.1350 0.2469 1.0000 0.0000 0.0452 0.0749 0.0958 0.0951 0.1856 0.0000 0.0000 1.0000 0.1209 0.2378 0.0000 0.0000 0.0554 0.0452 0.1209 1.0000 0.2453 0.0000 0.0742 0.0875 0.1058 0.0749 0.2378 0.2453 1.0000 0.0062 0.0614 0.1638 0.0799 0.0958 0.0000 0.0000 0.1062 1.0000 0.0998 0.1236 0.1085 0.0951 0.0000 0.0742 0.0614 0.0998 1.0000 0.3667 0.1350 0.1856 0.0000 0.0875 0.1638 0.1236 0.3667 1.0000 0.0848 0.0450 0.0000 0.0000 0.0360 0.0461 0.0369 0.0352 0.0896 0.0475 0.0915 0.0000 0.0380 0.0487 0.0780 0.0371	1 2 3 4 5 6 7 8 9 1.0000 0.2469 0.0000 0.0554 0.1058 0.0799 0.1085 0.1350 0.0848 0.2469 1.0000 0.0000 0.0452 0.0749 0.0958 0.0951 0.1856 0.0450 0.0000 0.0000 1.0000 0.1209 0.2378 0.0000 0.0000 0.0000 0.0000 0.0554 0.0452 0.1209 1.0000 0.2453 0.0000 0.0742 0.0875 0.0000 0.1058 0.0749 0.2378 0.2453 1.0000 0.1062 0.0614 0.138 0.0360 0.0799 0.0958 0.0000 0.0000 0.1062 1.0000 0.0998 0.1236 0.0461 0.1085 0.0951 0.0000 0.0742 0.0614 0.0998 1.0000 0.3667 0.0369 0.1350 0.1856 0.0000 0.0875 0.1638 0.1236 0.3667 1.0000 0.0352 0.0848 0.0450 0.0000 0.0000 0.0360 0.0461 0.0369 0.0352 0.0848 0.0450 0.0000 0.0000 0.0360 0.0461 0.0369 0.0352 1.0000 0.0896 0.0475 0.0915 0.0000 0.0380 0.0487 0.0780 0.0371 0.3341

图 3 对数词频计算结果

TF-IDF Cosine Similari	ty Matrix:									
	1	2	3	4	5	6	7	8	9	10
1	1.0000	0.1066	0.0008	0.0120	0.0382	0.0145	0.0395	0.0293	0.0169	0.0621
2	0.1066	1.0000	0.0018	0.0131	0.0136	0.0146	0.0266	0.0438	0.0283	0.0327
3	0.0008	0.0018	1.0000	0.0436	0.1214	0.0011	0.0055	0.0277	0.0056	0.0540
4	0.0120	0.0131	0.0436	1.0000	0.1383	0.0027	0.0688	0.0570	0.0068	0.0003
5	0.0382	0.0136	0.1214	0.1383	1.0000	0.0209	0.0298	0.0791	0.0212	0.0030
6	0.0145	0.0146	0.0011	0.0027	0.0209	1.0000	0.0505	0.0262	0.0028	0.0028
7	0.0395	0.0266	0.0055	0.0688	0.0298	0.0505	1.0000	0.2518	0.0060	0.0272
8	0.0293	0.0438	0.0277	0.0570	0.0791	0.0262	0.2518	1.0000	0.0135	0.0026
9	0.0169	0.0283	0.0056	0.0068	0.0212	0.0028	0.0060	0.0135	1.0000	0.1547
10	0.0621	0.0327	0.0540	0.0003	0.0030	0.0028	0.0272	0.0026	0.1547	1.0000
	0.0022	0.002,	0.00.0	0.0000	0.000	0.0020	0.02,2	0.0020	0.20	210000
Best match for 1 is 2										
Best match for 2 is 1										
Best match for 3 is 5										
Best match for 4 is 5										
Best match for 5 is 4										
Best match for 6 is 7										
Best match for 7 is 8										
Best match for 8 is 7										
Best match for 9 is 10										
Best match for 10 is 9										

图 4 TF-IDF 计算结果

四. 实验总结

- 1. 本次实验中,仿照 Python 中 Pandas 的 DataFrame 建立了一个辅助的 DataFrame 数据结构以辅助矩阵计算。
- 2. 从本次实验结果中可以看出,TF-IDF 向量表示在三种算法中取得了相对较好的结果。对于包含了大量长文档的情况,TF-IDF 应当能输出更可靠的结果。然而对于本实验中文档较少且内容较短的情况,优势似乎不够明显。并且,TF-IDF 显然具有需要更大计算量的缺点。

事实上,在本题给出的数据中,去除停用词的二值向量与对数词频算法都取得了不错的结果。而 这两种算法的时间效率都较高,尤其是二值向量法,由于其不需要遍历文档,因此效率非常高。然而, 对于文档较大的情况,二值向量法应当无法取得较好的效果,因为许多文档都可能包含相似的单词。

而对数词频法考虑到了单词在文档中出现的频率。但是,对于常见停用词,这些词语会占用较大的权重,使结果不精确,因此需要去除停用词以获得更精准的结果。相比二值向量法,对数词频法更加精确,但是即使去除了停用词也存在一定的常见词污染问题。比如文档集中的文档全部是对于某个专业领域的研究论文,那么某些专业词汇应当在大多数文档中都具有较大的权重,这会对该算法的精准度造成影响。

TF-IDF 法考虑了单词重要性,不需要去除停用词,并且事实上也具有较高的算法效率(如果存在一个良好的倒排索引)。在这三种算法中,TF-IDF 法应当是最为鲁棒的算法。

3. 通过本次实验,了解并实践了文档相似度的计算方式,为后面的实验做了铺垫。