Day 8: Binary Heaps & Disjoint-Set

Tinghai Zhang

January 8, 2025

Contents

1	Bin	Binary Heaps 1	
	1.1	Priority Queue ADT	1
	1.2	Binary Heaps	2
	1.3	Implementation	2
	1.4	Delete the Highest-Priority Item	3
1 Binary Heaps 1.1 Priority Queue ADT			
	·		
Re	equir	ements	
	There are some items with $priority$, and we need an ADT which supports:		

- The next item to access or remove is the *highest-priority* item.
- New items may be added *any time*.

One of common use cases: hospital emergency department.

Two Basic Implementation

- (Unsorted) array
 - Enqueue: add new item at the end of the array, $\mathcal{O}(1)$.
 - Dequeue: scan the array to find the highest-priority item, $\mathcal{O}(n)$.
- Sorted array
 - Enqueue: scan the array to find the right position for the new item, $\mathcal{O}(n)$.
 - Dequeue: remove the last item, $\mathcal{O}(1)$.

Entirely unsorted is too chaotic, but entirely sorted is unnecessary. A compromise is to use a heap.

1.2 Binary Heaps

Binary heaps store items partially sorted. All the items are stored in a binary tree, which satisfies:

- The tree is *complete*, i.e. nodes in it are filled left-to-right on each level (row) of the tree.
 - The tree is complete if and only if the array representation of the tree is filled from index 1 to n.
- The tree is heap-ordered, i.e. the value of each node is greater than or equal
 to the values of its children. We call the property max-heap property. The
 min-heap property is defined similarly.

Figure 1 A max-heap binary tree

1.3 Implementation

Find Parent and Child Nodes

The algorithm to find the parent and child nodes of a node at index i in the array representation of a binary heap is shown in Algorithm 1.

```
Algorithm 1: Find parent and child nodes
```

```
1: Function PARENT(i)
2: | return \lfloor i/2 \rfloor
3: end
4: Function LEFT-CHILD(i)
5: | return 2i
6: end
7: Function RIGHT-CHILD(i)
8: | return 2i+1
```

9: end

Insert a New Item

When inserting a new item into a max-heap, we add it to the end of the array and then *float* it up to keep the max-heap property. An example to insert a new item is shown in Figure 2.

Figure 2 An example of inserting a new item into a max-heap binary tree

The algorithm to insert a new item into a max-heap is shown in Algorithm 2.

1.4 Delete the Highest-Priority Item

When deleting the highest-priority item from a max-heap, we first swap the root with the last item in the array, then sink the new root down to keep the max-heap property. An example to delete the highest-priority item is shown in Figure 3.

(a) The original max-heap binary tree

(c) Delete the last item in the array

(d) Swap the new root with its largest child 45

(e) Swap 25 with its largest child 35

Figure 3 An example of deleting the highest-priority item from a max-heap binary tree

Algorithm 2: Add a new item to a max-heap

```
1: Function Insert(A, x)
        A.Push-back(x)
 2:
        A.size \leftarrow A.size + 1
 3:
       FLOAT-UP(A.size)
 4:
 5: end
 6: Function Float-Up(i)
        while i > 1 and A[i] > A[PARENT(i)] do
 7:
           Swap A[i] and A[PARENT(i)]
 8:
           i \leftarrow \text{Parent}(i)
 9:
       \quad \text{end} \quad
10:
11: end
```