Real Analysis Assignment 6

Joel Savitz

October 26, 2020

Problem 1:

Claim 1. The minimal subsequential limit of some bounded infinite sequence x_n can be computed by the formula $\sup_{k} (\inf_{n>k} x_n)$

Proof. Since x_n is bounded, it is bounded above. Denote the upper bound N, then $\forall n, x_n \leq N$. Define a subsequence $y_k = \inf_{n > k} x_n$. Then, y_1 is the greatest lower bound of $\{x_2, x_3, x_4, \ldots\}$. Since $\{x_3, x_4, x_5, \ldots\}$ is a subset of $\{x_2, x_3, x_4, \ldots\}$, we have that y_1 is also a lower bound of the latter set, but since $y_2 = \inf_{n > k} x_n$, we must have $y_1 \leq y_2$. For some y_k , we have y_{k-1} is a lower bound of $\{x_{k+1}, x_{k+2}, \ldots\}$, since $y_{k-1} = \inf_{n > k} x_n$, but since $y_k = \inf_{n > k} x_n$, we must have $y_k \geq y_{k-1}$. Thus $\forall k, y_k \leq y_{k+1}$, i.e. y_k is monotone increasing. Then since $\forall n > k, y_k \leq x_n$ and $\forall n, x_n \leq N$, we have by transitivity that $y_k \leq N$. Thus y_k is bounded above. Since y_k is a monotone increasing sequence bounded above, we have by the monotone convergence theorem that $\lim y_k$ exists, and it is equal to $\sup y_k$ Let $A = \lim y_k$. Since y_k has a limit A, every subsequence of y_k has the same limit A.

Now, pick some $n_1 \in \mathbb{N}$. Then $y_{n_1} = \inf\{x_{n_1}, x_{n_1+1}, x_{n_1+2}, \ldots\}$. Since y_{n_1} is the greatest lower bound of $\{x_{n_1}, x_{n_1+1}, x_{n_1+2}, \ldots\}$, we must have that $y_{n_1} + 1$ is not a lower bound of that set. Then, since $y_{n_1} + 1$ is not a lower bound, $\exists n_2 > n_1, y_{n_1} \leq x_{n_2} < y_{n_1} + 1$. Continuing in the same way, we have $y_{n_2} = \inf\{x_{n_2}, x_{n_2+1}, x_{n_2+2}, \ldots\}$, and since y_{n_2} is the greatest lower bound of the set, we have that $y_{n_2} + \frac{1}{2}$ is not a lower bound of the set, thus $\exists n_3 > n_2, y_{n_2} \leq x_{n_3} < y_{n_2} + \frac{1}{2}$. We can continue this indefinitely, such that for any n_{k-1} , we have that $y_{n_{k-1}} = \inf\{x_{n_k}, x_{n_k+1}, x_{n_k+2}, \ldots\}$, and so $y_{n_{k-1}} + \frac{1}{k-1}$ is not a lower bound of the set, and thus $\exists n_k > n_{k-1}, y_{n_{k-1}} \leq x_{n_k} < y_{n_{k-1}} + \frac{1}{k-1}$. Applying the squeze theorem and limit laws, we have:

$$\lim(y_{n_{k-1}}) \le \lim x_{n_k} < \lim(y_{n_{k-1}} + \frac{1}{k-1})$$
 (1)

$$\lim(y_{n_{k-1}}) \le \lim x_{n_k} < \lim(y_{n_{k-1}}) + \lim(\frac{1}{k-1})$$
 (2)

$$A \le \lim x_{n_k} \le A + 0 \tag{3}$$

$$\implies \lim x_{n_k} = A$$
 (4)

Thus A is a subsequential limit of x_n .

Consider some other subsequential limit of x_n , suppose $\lim x_{m_k} = B$. Then:

$$y_{m_{k-1}} = \inf\{x_{m_k}, x_{m_k+1}, x_{m_k+2}, \dots\}$$
 (5)

$$\forall m_k, y_{m_k-1} \le x_{m_k} \tag{6}$$

$$\lim y_{m_k-1} \le \lim x_{m_k} \tag{7}$$

$$A \le B \tag{8}$$

Therefore, A is the minimal subsequential limit of x_n , and it is the value of $\sup_{n>k} (\inf_{n>k} x_n)$.

Problem 2:

Claim 2. If a_n and b_n are Cauchy sequences, then a_nb_n is a Cauchy sequence.

Proof. If a sequence is Cauchy, then it is bounded, and if a sequence is bounded, then it is bounded above. Thus, $\exists A, B \in \mathbb{R}$, where $\forall n, a_n \leq A$ and $\forall n, b_n \leq B$. By the definition of a Cauchy sequence, we have that

$$\forall \epsilon > 0, \exists N_{\epsilon}, \forall n > N_{\epsilon}, m > N_{\epsilon}, |a_n - a_m| < \epsilon \tag{9}$$

and likewise

$$\forall \epsilon > 0, \exists M_{\epsilon}, \forall n > M_{\epsilon}, m > M_{\epsilon}, |b_n - b_m| < \epsilon \tag{10}$$

Let $\epsilon > 0$. Thus we have the following:

$$\exists N_{\frac{\epsilon}{2|B|}}, \forall n > N_{\frac{\epsilon}{2|B|}}, m > N_{\frac{\epsilon}{2|B|}}, |a_n - a_m| < \frac{\epsilon}{2|B|}$$
 (11)

$$\exists M_{\frac{\epsilon}{2|A|}}, \forall n > M_{\frac{\epsilon}{2|A|}}, m > M_{\frac{\epsilon}{2|A|}}, |b_n - b_m| < \frac{\epsilon}{2|A|}$$
 (12)

Let $K_{\epsilon} = \max(N_{\frac{\epsilon}{2|B|}}, M_{\frac{\epsilon}{2|A|}})$. Then, $\forall n > K_{\epsilon}, m > K_{\epsilon}$, we have:

$$|B||a_n - a_m| < \frac{\epsilon}{2} \tag{13}$$

$$|A||b_n - b_m| < \frac{\epsilon}{2} \tag{14}$$

$$\Longrightarrow |B||a_n - a_m| + |A||b_n - b_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \tag{15}$$

Since $\forall n, a_n \leq A$ and $\forall n, b_n \leq B$, we have:

$$|B||a_n - a_m| + |A||b_n + b_m| \ge |b_m||a_n - a_m| + |a_n||b_n - b_m| \tag{16}$$

$$|b_m||a_n - a_m| + |a_n||b_n - b_m| = |a_n b_n - a_n b_m| + |a_n b_m - a_m b_m|$$
(17)

And by the triangle inequality:

$$|a_n b_n - a_n b_m| + |a_n b_m - a_m b_m| \ge |a_n b_n - a_n b_m + a_n b_m - a_m b_m| \tag{18}$$

$$|a_n b_n - a_n b_m + a_n b_m - a_m b_m| = |a_n b_n - a_m b_m|$$
(19)

Therefore, by transitivity, $|a_n b_n - a_m b_m| < \epsilon$. Thus $\forall \epsilon > 0, \exists K_{\epsilon}, \forall n > K_{\epsilon}, m > 0$ $K_{\epsilon}, |a_n b_n - a_m b_m| < \epsilon$, and this is exactly the definition that $a_n b_n$ is a Cauchy sequence.

Problem 3:

Define a sequence $x_n = \sqrt{n}$.

Part (a):

Claim 3. $\lim (x_{n+2} - x_n) = 0$

Proof. Let $\epsilon > 0$. By the Archimedian property, $\exists N_{\frac{4}{\epsilon^2}} \in \mathbb{N}, N_{\frac{4}{\epsilon^2}} > \frac{4}{\epsilon^2}$. Thus, $\forall n > N_{\frac{4}{2}}, n > \frac{4}{\epsilon^2}$. Therefore:

$$\frac{4}{n} < \epsilon^2 \tag{20}$$

$$\frac{2}{\sqrt{n}} < \epsilon \tag{21}$$

$$\frac{4}{n} < \epsilon^{2} \tag{20}$$

$$\frac{2}{\sqrt{n}} < \epsilon \tag{21}$$

$$\frac{2}{\sqrt{2+n} + \sqrt{n}} < \frac{2}{\sqrt{n}} \tag{22}$$

$$\frac{2}{\sqrt{2+n} + \sqrt{n}} = \frac{n+2-n}{\sqrt{2+n} + \sqrt{n}} \tag{23}$$

$$\frac{2}{\sqrt{2+n} + \sqrt{n}} = \frac{n+2-n}{\sqrt{2+n} + \sqrt{n}} \tag{23}$$

$$=\sqrt{n+2}-\sqrt{n}\tag{24}$$

If we assume that for some natural $n, \sqrt{n+2} \le \sqrt{n}$, we see that $n+2 \le n$ and thus $2 \le 0$, which is absurd, therefore $\sqrt{n+2} > \sqrt{n}$, and so $\sqrt{n+2} - \sqrt{n} = 1$ $|\sqrt{n+2}-\sqrt{n}|$. By the transitivity of the above order relations, we then have $|\sqrt{n+2}-\sqrt{n}|=|\sqrt{n+2}-\sqrt{n}-0|<\epsilon$. Thus we have demonstrated that $\forall \epsilon > 0, \exists N_{\epsilon}, \forall n > N_{\epsilon}, |\sqrt{n+2} - \sqrt{n} - 0| < \epsilon$, which is exactly the definition that $\lim(x_{n+2} - x_n) = 0$.

Part (b):

Claim 4. $x_n = \sqrt{n}$ is not a Cauchy sequence.

Proof. Let $\epsilon = 1$ and let N be any natural number. Define $n = 4(N+1)^2$ and $m = (N+1)^2$. We see that:

$$|x_n - x_m| = |\sqrt{n} - \sqrt{m}| = |\sqrt{4(N+1)^2} - \sqrt{(N+1)^2}|$$
 (25)

$$=|2(N+1) - (N+1)| \tag{26}$$

$$=|2N+2-N-1| (27)$$

$$=|N+1|\tag{28}$$

$$=N+1\tag{29}$$

Since $N \ge 1$, we have $N+1 \ge 1+1=2 \ge 1=\epsilon$. Thus we have demonstrated that $\exists \epsilon > 0, \forall N, \exists n > N, m > N, |x_n - x_m| \geq \epsilon$, which is the negation of the definition of a Cauchy sequence, therefore $x_n = \sqrt{n}$ is not a Cauchy sequence.