AC to DC Converters

Diego Trapero

Table of contents

1	\mathbf{AC}	to DC	Converters, Rectifiers	2
	1.1	Monoj	phasic Rectifiers	2
		1.1.1	Half Wave Rectifier	3
		1.1.2	Full Wave Rectifier	4
	1.2	Tripha	asic Rectifiers	6
		1.2.1	Half Wave Triphasic Rectifier	6
		1.2.2	Full Wave Triphasic Rectifier	6
	D - f			,
4	Rei	erence		C

1 AC to DC Converters, Rectifiers

1 Monophasic Rectifiers

Uncontrolled rectifiers use diodes as switching devices. They don't need a control circuit.

- Half Wave Rectifier
- Full Wave Rectifier

Diodes

Common Cathode Diodes If two or more diodes are connected with a common cathode, the closed diode is the one with the most positive anode voltage. The rest of the diodes are open.

Common Anode Diodes If two or more diodes are connected with a common anode, the closed diode is the one with the most negative anode voltage. The rest of the diodes are open.

Configuration	Circuit diagram	Conducting Diode
Common Cathode		The diode with the most positive anode voltage
Common Anode		The diode with the most negative cathode voltage

General rule: The most polarized diode is the one conducting. The one with the biggest v_{AK}

1 Half Wave Rectifier

• $v_i > 0$: D ON, i > 0• $v_i < 0$: D OFF, i = 0

$v_i > 0$ (D ON) equivalent circuit

$v_i < 0$ (D OFF) equivalent circuit

 v_o

1 Full Wave Rectifier

Full Wave Rectifier Symbol

Diode table

	D1	D2	D3	D4
$v_i > 0$	ON	OFF	OFF	ON
$v_i < 0$	OFF	ON	ON	OFF

$v_i > 0$ equivalent circuit: D1, D4 are ON

 $v_i < 0$ equivalent circuit: D2, D3 are ON

 v_o

Filtering output voltage

R load:

RC Load

RLC Load

What	D lood	DC load	DI C loo d
wnat	R load	RC load	RLC load

Circuit Diagram		
$v_g ext{ vs } i_g$	RC	RLC

Flyback Diode

- 1 Triphasic Rectifiers
- 1 Half Wave Triphasic Rectifier
- 1 Full Wave Triphasic Rectifier

2 Reference

asdasd

wave: