Data Wrangling with tidyr & dplyr

2020/03/24

Overview

Reference

- R for Data Science: http://r4ds.had.co.nz/
- Data wrangling with R: http://goo.gl/cJJY47

Getting your hands dirty with data!!

http://www.datascience.university/getting-your-hands-dirty-with-data-science/

Two packages to help you work with the structure of data.

Data Wrangling with dplyr and tidyr Cheat Sheet

Syntax - Helpful conventions for wrangling

dplyr::tbl_df(iris)

Converts data to tbl class. tbl's are easier to examine than data frames. R displays only the data that fits onscreen:

Source:	local data f	frame [150 x	5]
	l.Length Sepa		al.Length
	5.1	3.5	1.4
2	4.9	3.0	1.4
3	4.7	3.2	1.3
4	4.6	3.1	1.5
5	5.0	3.6	1.4
	• • •		
		Petal.Widt	h (dbl),
	Sepa 1 2 3 4 5 Variable	Sepal.Length Sepa 1 5.1 2 4.9 3 4.7 4 4.6 5 5.0	2 4.9 3.0 3 4.7 3.2 4 4.6 3.1 5 5.0 3.6 Variables not shown: Petal.Widt

dplyr::glimpse(iris)

Information dense summary of tbl data.

utils::View(iris)

View data set in spreadsheet-like display (note capital V).

	iris x				
ф	O D VE	ter		(Q,	
	Sepal.Length	Sepal.Width	PetalLength ⁵	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
	5.0	3.4	1.5	0.2	setosa

dplyr::%>%

Passes object on left hand side as first argument (or . argument) of function on righthand side.

$$x \sim f(y)$$
 is the same as $f(x, y)$
 $y \sim f(x, ., z)$ is the same as $f(x, y, z)$

"Piping" with %>% makes code more readable, e.g.

```
iris %>%
  group_by(Species) %>%
  summarise(avg = mean(Sepal.Width)) %>%
  arrange(avg)
```

Tidy Data - A foundation for wrangling in R

In a tidy data set:

Tidy data complements R's **vectorized operations**. R will automatically preserve
observations as you manipulate variables.
No other format works as intuitively with R.

Reshaping Data - Change the layout of a data set

dyr::gather(cases, "year", "n", 2:4)

idyr::separate(storms, date, c("y", "m", "d"))
Separate one column into several.

tidyr::spread(pollution, size, amount)
Spread rows into columns.

Unite several columns into one.

dplyr::data_frame(a = 1:3, b = 4:6)
 Combine vectors into data frame
 (optimized).

dplyr::arrange(mtcars, mpg)
Order rows by values of a column (low to high).

dplyr::arrange(.mtcars, desc(mpg))
Order rows by values of a column (high to low).

dplyr::rename(tb, y = year)

Rename the columns of a data frame.

Subset Observations (Rows)

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)
Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)
Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows. dplyr::slice(iris, 10:15)

Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

Logic in R - ?Comparison, ?base::Logic			
<	Less than	!=	Not equal to
>	Greater than	%in%	Group membership
==	Equal to	is.na	Is NA
<=	Less than or equal to	!is.na	Is not NA
>=	Greater than or equal to	&, ,!,xor,any,all	Boolean operators

Subset Variables (Columns)

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Helper functions for select - ?select select(iris, contains("."))

Select columns whose name contains a character string. select(iris, ends_with("Length"))

Select columns whose name ends with a character string. select(iris, everything())

select(iris, matches(".t."))

Select every column.

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))
Select columns named x1, x2, x3, x4, x5.
select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal"))
Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)
Select all columns between Sepal.Length and Petal.Width (inclusive).

select(iris, -Species)

Select all columns except Species.

RStudio* is a trademark of RStudio, Inc. • All rights reserved • info@rstudio.com • 844-448-1212 • rstudio.com

devtools::install_github("rstudio/EDAWR") for data sets

Learn more with browseVignettes(package = c("dplyr", "tidyr")) • dplyr 0.4.0• tidyr 0.2.0 • Updated: 1/15

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - > arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - group_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example

 - clean.data %>%
 group_by() %>%
 summarise()

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - group_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example

 - clean.data %>%
 group_by() %>%
 summarise()

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - group_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example
 - - clean.data %>%
 group_by() %>%
 summarise()

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - group_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example
 - - clean.data %>%
 group_by() %>%
 summarise()

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several

• dplyr: transform data

- filter() observations in rows
- > select() variables in columns
- arrange() observations in rows
- > mutate() from old var. to new one
- > summarise() the data by column
- group_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example

 - clean.data %>%
 group_by() %>%
 summarise()

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - > arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - proup_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example
 - clean.data <- raw.data %>%
 mutate() %>%
 select() %>%
 distinct() %>%
 spread() %>%
 filter()
 - clean.data %>%
 group_by() %>%
 summarise()

The pipe % >

```
library(dplyr)

select(tb, child:elderly)

tb %>% select(child:elderly)
```


Shortcut to type %>%

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - > arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - proup_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example
 - clean.data <- raw.data %>%
 mutate() %>%
 select() %>%
 distinct() %>%
 spread() %>%
 filter()
 - clean.data %>%
 group_by() %>%
 summarise()

Examine any data set with the View() command (Capital V)

View(iris)
View(mtcars)
View(pressure)

EDAWR

An R package with all of the data sets that we will use today.

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21
	11045654050	110 1007 45 1009 65 1005 40 1013 50 1010

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

wind pressure date 1007 2000-08-12 110 1998-07-30 45 1009 1995-06-04 65 1005 1013 1997-07-01 40 1010 1999-06-13 50 45 1010 1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

Storm name

Alberto 10 1007 2000-08-12 Aex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlane 50 1010 1999-06-13 Alvur 75 1010 1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

cases

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

Country

cases

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year

cases

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

cases

pollution

particle size	amount (µg/m³)
large	23
small	14
large	22
small	16
large	121
small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

• City

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

- City
- Amount of large particles

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

- City
- Amount of large particles
- Amount of small particles

cases\$country
names(cases)[-1]
unlist(cases[1:3, 2:4])

pollution

pollution\$city[1,3,5] pollution\$amount[1,3,5] pollution\$amount[2,4,6]

storms nd pressure

Tidy data

- Each variable is saved in its own column.
- Each **observation** is saved in its own **row**.
- Each "type" of observation stored in a **single table** (here, storms).

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - group_by() certain categories

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example
 - - clean.data %>%
 group_by() %>%
 summarise()

tidyr

A package that reshapes the layout of tables.

Two main functions: gather() and spread()

```
# install.packages("tidyr")
library(tidyr)
?gather
?spread
```

Your Turn

Imagine how this data would look if it were tidy with three variables: *country, year, n*

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

gather(cases, "year", "n", 2:4)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Countr	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

gather(cases, "year", "n", 2:4)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

key (former column names)

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

gather(cases, "year", "n", 2:4)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

key value (former cells)

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

```
gather (cases, "year", "n", 2:4)
```

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

```
gather (cases, "year", "n", 2:4)
```

data frame to reshape

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

```
gather (cases, "year", "n", 2:4)
```

data frame to reshape name of the new key column (a character string)

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

gather (cases, "year", "n", 2:4)

data frame to reshape name of the new key column (a character string)

name of the new value column (a character string)

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

gather (cases, "year", "n", 2:4)

data frame to reshape name of the new key column (a character string)

name of the new value column (a character string)

names or numeric indexes of columns to collapse


```
##
                                                 country year
                                                                     \mathbf{n}
##
                      2012
                            2013
     country
               2011
                                           ## 1
                                                       FR 2011
                                                                  7000
                            7000
## 1
                      6900
               7000
           FR
                                           ##
                                              2
                                                                  5800
                                                       DE 2011
##
               5800
                      6000
                             6200
           DE
           US 15000 14000 13000
                                           ## 3
                                                       US 2011
                                                                15000
                                           ##
                                              4
                                                       FR 2012
                                                                  6900
                                           ##
                                                       DE 2012
                                                                  6000
                                           ##
                                              6
                                                       US 2012
                                                                14000
                                           ##
                                                       FR 2013
                                                                  7000
                                           ##
                                              8
                                                       DE 2013
                                                                  6200
                                           ##
                                                       US 2013 13000
```

gather (cases, "year", "n", 2:4)

Your Turn

Imagine how the pollution data set would look tidy with three variables: *city, large, small* pollution

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city large small

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

spread (pollution, size, amount)

key (new column names)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

spread (pollution, size, amount)

key value (new cells)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

spread (pollution, size, amount)

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

```
spread (pollution, size, amount)
```

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

```
spread(pollution, size, amount)
```

data frame to reshape

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

spread (pollution, size, amount)

data frame to reshape

column to use for keys (new columns names)

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns


```
city size amount
                                 ##
##
                                         city large small
                                      Beijing
                    23
## 1 New York large
                                 ## 1
                                               121
                    14
  2 New York small
                                 ## 2
                                     London 22
  3 London large
                    22
                                   3 New York 23
                 16
##
   4 London small
  5 Beijing large 121
  6 Beijing small
                     56
```

spread(pollution, size, amount)

56

16

14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

unite() and separate()

There are three more variables hidden in storms:

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

- Year
- Month
- Day

separate()

Separate splits a column by a character string separator.

separate(storms, date, c("year", "month", "day"), sep = "-")

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

unite()

Unite unites columns into a single column.

unite(storms2, "date", year, month, day, sep = "-")

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

Recap: tidyr

A package that reshapes the layout of data sets.

Make observations from variables with gather ()

Make variables from observations with spread()

Split and merge columns with unite() and separate()

Outline

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - filter() observations in rows
 - > select() variables in columns
 - arrange() observations in rows
 - > mutate() from old var. to new one
 - summarise() the data by column
 - group_by() certain categories

Real Data

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example

 - clean.data %>%
 group_by() %>%
 summarise()

dplyr

A package that helps transform tabular data.

```
# install.packages("dplyr")
```

library (dplyr)

?select ?mutate

?filter ?summarise

?arrange ?group by

Ways to access information

Extract existing variables.

select()

Extract existing observations.

filter()

Derive new variables (from existing variables)

mutate()

Change the unit of analysis

summarise()

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

select(storms, storm, pressure)

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

```
select(storms, -storm)
```

see ?select for more

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

select(storms, wind:date)

see ?select for more

Useful select functions

* Blue functions come in dplyr

_	Select everything but
•	Select range
contains()	Select columns whose name contains a character string
ends_with()	Select columns whose name ends with a string
everything()	Select every column
matches()	Select columns whose name matches a regular expression
num_range()	Select columns named x1, x2, x3, x4, x5
one_of()	Select columns whose names are in a group of names
starts_with()	Select columns whose name starts with a character string

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

filter(storms, wind >= 50)

filter()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04

```
filter(storms, wind >= 50,
   storm %in% c("Alberto", "Alex", "Allison"))
```

logical tests in R

?Comparison

<	Less than
>	Greater than
==	Equal to
<=	Less than or equal to
>=	Greater than or equal to
!=	Not equal to
%in%	Group membership
is.na	Is NA
!is.na	Is not NA

?base::Logic

&	boolean and
	boolean or
xor	exactly or
!	not
any	any true
all	all true

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange (storms, wind)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	
Ana	40	1013	1997-07-01	
Alex	45	1009	1998-07-30	
Arthur	45	1010	1996-06-21	
Arlene	50	1010	1999-06-13	
Allison	65	1005	1995-06-04	
Alberto	110	1007	2000-08-12	

arrange (storms, wind)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	
Alberto	110	1007	2000-08-12	
Allison	65	1005	1995-06-04	
Arlene	50	1010	1999-06-13	
Arthur	45	1010	1996-06-21	
Alex	45	1009	1998-07-30	
Ana	40	1013	1997-07-01	

arrange(storms, desc(wind))

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	
Ana	40	1013	1997-07-01	
Alex	45	1009	1998-07-30	
Arthur	45	1010	1996-06-21	
Arlene	50	1010	1999-06-13	
Allison	65	1005	1995-06-04	
Alberto	110	1007	2000-08-12	

arrange (storms, wind)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	
Ana	40	1013	1997-07-01	
Arthur	45	1010	1996-06-21	
Alex	45	1009	1998-07-30	
Arlene	50	1010	1999-06-13	
Allison	65	1005	1995-06-04	
Alberto	110	1007	2000-08-12	

arrange (storms, wind, date)

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	ratio
Alberto	110	1007	2000-08-12	9.15
Alex	45	1009	1998-07-30	22.42
Allison	65	1005	1995-06-04	15.46
Ana	40	1013	1997-07-01	25.32
Arlene	50	1010	1999-06-13	20.20
Arthur	45	1010	1996-06-21	22.44

mutate(storms, ratio = pressure / wind)

mutate()

storm	wind	pressure	date	
Alberto	110	1007	2000-08-12	
Alex	45	1009	1998-07-30	
Allison	65	1005	1995-06-04	
Ana	40	1013	1997-07-01	
Arlene	50	1010	1999-06-13	
Arthur	45	1010	1996-06-21	

storm	wind	pressure	date	ratio	inverse
Alberto	110	1007	2000-08-12	9.15	0.11
Alex	45	1009	1998-07-30	22.42	0.04
Allison	65	1005	1995-06-04	15.46	0.06
Ana	40	1013	1997-07-01	25.32	0.04
Arlene	50	1010	1999-06-13	20.20	0.05
Arthur	45	1010	1996-06-21	22.44	0.04

mutate(storms, ratio = pressure / wind, inverse = ratio $^-1$)

Useful mutate functions

* All take a vector of values and return a vector of values

** Blue functions come in dplyr

pmin(), pmax()	Element-wise min and max
cummin(), cummax()	Cumulative min and max
cumsum(), cumprod()	Cumulative sum and product
between()	Are values between a and b?
cume_dist()	Cumulative distribution of values
cumall(), cumany()	Cumulative all and any
cummean()	Cumulative mean
lead(), lag()	Copy with values one position
ntile()	Bin vector into n buckets
<pre>dense_rank(), min_rank(), percent_rank(), row_number()</pre>	Various ranking methods

"Window" functions

* All take a vector of values and return a vector of values

summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

median	variance
22.5	1731.6

pollution %>% summarise (median = median (amount), variance = var (amount))

summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

mean	sum	n
42	252	6

pollution %>% summarise (mean = mean (amount), sum = sum (amount), n = n())

Useful summary functions

* All take a vector of values and return a single value

** Blue functions come in dplyr

min(), max()	Minimum and maximum values
mean()	Mean value
median()	Median value
sum()	Sum of values
var, sd()	Variance and standard deviation of a vector
first()	First value in a vector
last()	Last value in a vector
nth()	Nth value in a vector
n()	The number of values in a vector
n_distinct()	The number of distinct values in a vector

"Summary" functions

* All take a vector of values and return a single value

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Allison	1005
Arlene	1010

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms %>%

mutate(ratio = pressure / wind) %>%
select(storm, ratio)

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	ratio
Alberto	9.15
Alex	22.42
Allison	15.46
Ana	25.32
Arlene	20.20
Arthur	22.44

storms %>%

mutate(ratio = pressure / wind) %>%
select(storm, ratio)

Unit of analysis

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56
, ,		

mean	sum	n
42	252	6

group_by() + summarise()

group_by()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pollution %>% group_by(city)

```
pollution %>% group by (city)
## Source: local data frame [6 x 3]
## Groups: city
##
       city size amount
                   23
## 1 New York large
## 2 New York small 14
                       22
## 3 London large
## 4 London small
                       16
## 5 Beijing large
                      121
## 6 Beijing small
                       56
```


group_by() + summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

```
pollution %>% group_by(city) %>%
  summarise(mean = mean(amount), sum = sum(amount), n = n())
```


city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

city	mean	sum	n
New York	18.5	37	2

London	large	22
London	small	16

London	19.0	38	2

Beijing	large	121
Beijing	small	56

Beijing	88.5	177	2
---------	------	-----	---

pollution %>% group_by(city) %>%

summarise(mean = mean(amount), sum = sum(amount), n = n())

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

London	large	22
London	small	16

Beijing	large	121
Beijing	small	56

city	mean	sum	n
New York	18.5	37	2
London	19.0	38	2
Beijing	88.5	177	2

pollution %>% group_by(city) %>%
 summarise(mean = mean(amount), sum = sum(amount), n = n())

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

London	large	22
London	small	16

Beijing	large	121
Beijing	small	56

city	mean	sum	n
New York	18.5	37	2
London	19.0	38	2
Beijing	88.5	177	2

pollution %>% group_by(city) %>%
 summarise(mean = mean(amount), sum = sum(amount), n = n())

amount

23

14

22

16

121

56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pollution %>% group by(city) %>% summarise(mean = mean(amount))

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

size	mean
large	55.3
small	28.6

pollution %>% group_by(size) %>% summarise(mean = mean(amount))

ungroup()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pollution %>% ungroup()

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

tb

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	cases
Afghanistan	1999	2
Afghanistan	2000	2
Brazil	1999	4
Brazil	2000	4
China	1999	6
China	1999	6

country	Vear	sex	cases
Country	year	36X	Cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	sex	cases
Afghanistan	1999	female	1
	1999	male	1
Afghanistan			
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	cases
Afghanistan	1999	2
Afghanistan	2000	2
Brazil	1999	4
Brazil	2000	4
China	1999	6
China	1999	6

group_by(country, year) %>%
summarise(cases = sum(cases)) %>%
summarise(cases = sum(cases))

Hierarchy of information

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	cases
Afghanistan	1999	2
Afghanistan	2000	2
Brazil	1999	4
Brazil	2000	4
China	1999	6
China	2000	6

country	cases
Afghanistan	4
Brazil	8
China	12

cases 24

Larger units of analysis

Recap: Information

Extract variables and observations with select() and filter()

Arrange observations, with arrange().

Make new variables, with mutate().

Make groupies observations with group_by() and summarise().

Recap: Best format for analysis

Variables in columns

Observations in rows

Separate all variables implied by law, formula or goal

Unit of analysis matches the unit of analysis implied by law, formula or goal

Single table

Outline

Toy Example

- Tidy data? View() & glimpse()
- tidyr: reshape data
 - > gather() columns into rows
 - > spread() rows into columns
 - > unite() several columns into one
 - > separate() one column into several
- dplyr: transform data
 - > filter() observations in rows
 - > select() variables in columns
 - arrange() observations in rows
 - > mutate() from old var. to new one
 - > summarise() the data by column
 - group_by() certain categories

Real Data

- Weather Forecasting Data
 - 1. Tidy data?
 - Variables are stored in both rows and columns
 - Duplicate observations
 - 2. tidyr & dplyr example
 - clean.data <- raw.data %>%
 mutate() %>%
 select() %>%
 distinct() %>%
 spread() %>% ...
 - clean.data %>%
 filter() %>%
 group_by() %>%
 summarise()