Math 307C - Spring 2011 Mid-Term Exam 2 May 18, 2011

N.T.	0. 1 . 1
Name:	Student number:

1	10	
2	8	
3	10	
4	8	
5	14	
Total	50	

- Complete all questions.
- You may use a calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator, when an algebraic method is available, you will not receive credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.

.

1. Find the general solution of:

(a)
$$4y'' - 8y' + 5y = 0. \label{eq:4.1}$$
 (5 points)

(b)
$$y'' - y' - 2y = 4e^{2t}.$$
 (5 points)

2. For the following equation, y_1 is a solution. Use the method of reduction of order to find a second solution.

$$\cos(t)y'' + 3\sin(t)y' + \cos(t)\left(1 + 3\tan^2(t)\right)y = 0, \quad -\frac{\pi}{2} < t < \frac{\pi}{2}, \qquad y_1 = \cos(t).$$

(8 points)

Hint: $\int \tan(x) dx = -\ln|\cos(x)| + c$.

- 3. An object weighing w lbs stretches a spring L feet. It is pushed up x ft and set into motion with initial downward velocity of $\sqrt{2}$ ft/sec. If the object's motion has phase $3\pi/4$ and the object reaches a maximum displacement of 1/2 ft,
 - (a) what is the frequency of motion?
 - (b) What is L?

Use g = 32 ft/sec².

(10 points)

4. Suppose a spring system is governed by the equation

$$100u'' + u' + ku = 0.$$

(a) For which spring constant k is the system critically damped? (4 points)

(b) Suppose you attach a motor to the above spring system which applies a force of $3\cos(2t)$ lbs to the object. Which of the following possible spring constants will give the steady state solution with largest amplitude, and why?

$$k = 122$$
 $k = 401$ $k = 750$

(4 points)

5. Suppose the motion of an object on spring is described by

$$u(t) = 8e^{-t/2}\sin(t/2),$$

where u(t) is the displacement (in feet) of the object from equilibrium position after t seconds.

(a) When does the object cross equilibrium position for the **fifth** time? (4 points)

(b) Find a time after which the object remains within 1/10 in of equilibrium position. (3 points)

(c)	Find the maximum distance of the object from equilibrium position. (4 points)
(d)	Find a time after which the speed of the object is less than 1/10 in/sec. (3 points)