

# Rossmann Store Sales Prediction





#### **CONTEXT**

Rossmann, Business Problem, Business Understanding 01

#### **CHALLENGES**

Main Problem, Possible Causes, Solutions 02

#### **METHODOLOGY**

Data Description, Hypothesis Creation, Exploratory Data Analysis, ML models 03

04

**CONCLUSION** 

Business Performance, Machine Learning Model Performance

05

**DEMONSTRATION** 

Model Deployment through Heroku, Telegram Bot

06

**NEXT STEPS** 

Further actions to improve project



### CONTEXT

### **R®SSMANN**

drugstore chain with more than

3.000 stores

located in Europe

#### **BUSINESS PROBLEM**



Rossmann store managers are tasked with **predicting their daily sales** for up to **six weeks in advance** 

#### **BUSINESS UNDERSTANDING**



CFO wants to **invest individually in each store**, according to their incomes





### CHALLENGES

budget definition for individual investment of stores

**PROBLEM** 

Inaccuracy of general sales prediction due to divergence between stores

All sales prediction is manually made by each Rossmann store

Only possible to check prediction results through a computer



Use of a Machine Learning method to make all stores sales predictions



Make prediction results available through a smartphone





### **METHODOLOGY**



### Data Description

Sales data for 1.115 Rossmann stores

#### **Number of Columns: 18**



#### DATE



Date of sales, holidays

#### **STORE**



Type, assortment

#### **CUSTOMER**



Quantity

#### **PROMOTIONS**



Period, consecutive promo

#### COMPETITION



Distance, open since



# Descriptive Statistics



|                              | mean        | median | std          | min    | max      | range    | skew      | kurtosis   |
|------------------------------|-------------|--------|--------------|--------|----------|----------|-----------|------------|
| store                        | 558.429727  | 558.0  | 321.908651   | 1.0    | 1115.0   | 1114.0   | -0.000955 | -1.200524  |
| day_of_week                  | 3.998341    | 4.0    | 1.997391     | 1.0    | 7.0      | 6.0      | 0.001593  | -1.246873  |
| sales                        | 5773.818972 | 5744.0 | 3849.926175  | 0.0    | 41551.0  | 41551.0  | 0.641460  | 1.778375   |
| customers                    | 633.145946  | 609.0  | 464.411734   | 0.0    | 7388.0   | 7388.0   | 1.598650  | 7.091773   |
| open                         | 0.830107    | 1.0    | 0.375539     | 0.0    | 1.0      | 1.0      | -1.758045 | 1.090723   |
| promo                        | 0.381515    | 0.0    | 0.485759     | 0.0    | 1.0      | 1.0      | 0.487838  | -1.762018  |
| school_holiday               | 0.178647    | 0.0    | 0.383056     | 0.0    | 1.0      | 1.0      | 1.677842  | 0.815154   |
| competition_distance         | 5935.442677 | 2330.0 | 12547.652996 | 20.0   | 200000.0 | 199980.0 | 10.242344 | 147.789712 |
| competition_open_since_month | 6.786849    | 7.0    | 3.311087     | 1.0    | 12.0     | 11.0     | -0.042076 | -1.232607  |
| competition_open_since_year  | 2010.324840 | 2012.0 | 5.515593     | 1900.0 | 2015.0   | 115.0    | -7.235657 | 124.071304 |
| promo2                       | 0.500564    | 1.0    | 0.500000     | 0.0    | 1.0      | 1.0      | -0.002255 | -1.999999  |
| promo2_since_week            | 23.619033   | 22.0   | 14.310064    | 1.0    | 52.0     | 51.0     | 0.178723  | -1.184046  |
| promo2_since_year            | 2012.793297 | 2013.0 | 1.662658     | 2009.0 | 2015.0   | 6.0      | -0.784436 | -0.210075  |
| is_promo                     | 0.165966    | 0.0    | 0.372050     | 0.0    | 1.0      | 1.0      | 1.795644  | 1.224338   |



Hypothesis MindMap

### Hypothesis Creation











### Hypothesis Creation

- 1. Stores with more diversified products should sell more
- 2. Stores with closer competitors should sell less
- 3. Stores with longer active promotions should sell more
- 4. Stores with more consecutive promotions should sell more
- 5. Stores, during school holidays, should sell more
- **6.** Stores, **in Christmas period**, should sell **more** than during other holidays
- 7. Stores, during weekends, should sell less
- 8. At the first half of the month, stores should sell more
- 9. In the first semester of the year, stores should sell less
- 10. Throughout the years, stores should sell more











# Exploratory Data Analysis







200000

100000

# Exploratory Data Analysis











-0.037







Mean of sales does not vary much: in fact, the highest mean value is found for higher distances.

Not a strong correlation (heat map).





-0.35

-0.35





This hypothesis turned to be TRUE.

> The linear regression slope exhibits well this tendency.







This hypothesis turned to be **FALSE**.

 Even though data of 2015 is incomplete (until July), it was considered to observe the tendency of sales reduction throughout years.



# Hypothesis Final Table

| Hypothesis                                                                    | Conclusion | Relevance |
|-------------------------------------------------------------------------------|------------|-----------|
| H1 - Stores with more diversified products should sell more                   | TRUE       | Medium    |
| H2 - Stores with closer competitors should sell less                          | FALSE      | Low       |
| H3 - Stores with longer active promotions should sell more                    | TRUE       | Medium    |
| H4 - Stores with more consecutive promotions should sell more                 | FALSE      | Low       |
| H5 – Stores, during school holidays, should sell more                         | TRUE       | Low       |
| H6 – Stores, in Christmas period, should sell more than during other holidays | FALSE      | Medium    |
| H7 - Stores, during weekends, should sell less                                | TRUE       | High      |
| H8 - At the first half of the month, stores should sell more                  | TRUE       | High      |
| H9 - In the first semester of the year, stores should sell less               | TRUE       | High      |
| H10 - Throughout the years, stores should sell more                           | FALSE      | High      |
|                                                                               |            |           |



# Exploratory Data Analysis

# Numerical Attributes

Multivariate Analysis

| store                        | 1        | -8.5e-06  | 0.0051  | 0.024     | -4.7e-05 | 5.8e-05  | 0.00064     | -0.014     | -0.033    | 0.00046    | 0.0085   | 0.005      | 0.014      | 0.0049   |
|------------------------------|----------|-----------|---------|-----------|----------|----------|-------------|------------|-----------|------------|----------|------------|------------|----------|
| day_of_week                  | -8.5e-06 | 1         | -0.46   | -0.39     | -0.53    | -0.39    | -0.21       | -4.5e-06   | -0.0017   | 6.5e-05    | 0.00017  | -0.002     | 0.00035    | -0.0045  |
| sales                        | 0.0051   | -0.46     | 1       | 0.89      | 0.68     | 0.45     | 0.085       | -0.025     | -0.0022   | 0.01       | -0.091   | 0.056      | 0.052      | -0.042   |
| customers                    | 0.024    | -0.39     | 0.89    | 1         | 0.62     | 0.32     | 0.072       | -0.078     | -0.0074   | 0.0068     | -0.15    | 0.04       | 0.11       | -0.067   |
| open                         | -4.7e-05 | -0.53     | 0.68    |           | 1        | 0.3      | 0.086       | 0.0046     | 0.00033   | 0.0025     | -0.0083  | 0.0015     | 0.0062     | 0.00013  |
| promo                        | 5.8e-05  | -0.39     | 0.45    | 0.32      | 0.3      | 1        | 0.067       | 2.3e-05    | -0.0038   | 0.0012     | -0.00098 | 0.0007     | 0.0061     | 0.0042   |
| school_holiday               | 0.00064  | -0.21     | 0.085   | 0.072     | 0.086    | 0.067    | 1           | -0.0029    | 0.035     | 0.00028    | -0.0069  | 0.033      | -0.0051    | 0.021    |
| competition_distance         | -0.014   | -4.5e-06  | -0.025  | -0.078    | 0.0046   | 2.3e-05  | -0.0029     | 1          | -0.038    | 0.038      | -0.1     | -0.025     | 0.05       | -0.046   |
| competition_open_since_month | -0.033   | -0.0017   | -0.0022 | -0.0074   | 0.00033  | -0.0038  | 0.035       | -0.038     | 1         | -0.14      | -0.032   | 0.11       | 0.028      | -0.037   |
| competition_open_since_year  | 0.00046  | 6.5e-05   | 0.01    | 0.0068    | 0.0025   | 0.0012   | 0.00028     | 0.038      | -0.14     | 1          | -0.015   | -0.011     | 0.0035     | -0.0094  |
| promo2                       | 0.0085   | 0.00017   | -0.091  | -0.15     | -0.0083  | -0.00098 | -0.0069     | -0.1       | -0.032    | -0.015     | 1        | -0.024     | -0.63      | 0.45     |
| promo2_since_week            | 0.005    | -0.002    | 0.056   | 0.04      | 0.0015   | 0.0007   | 0.033       | -0.025     | 0.11      | -0.011     | -0.024   | 1          | -0.16      | -0.011   |
| promo2_since_year            | 0.014    | 0.00035   | 0.052   | 0.11      | 0.0062   | 0.0061   | -0.0051     | 0.05       | 0.028     | 0.0035     | -0.63    | -0.16      | 1          | -0.28    |
| is_promo                     | 0.0049   | -0.0045   | -0.042  | -0.067    | 0.00013  | 0.0042   | 0.021       | -0.046     | -0.037    | -0.0094    | 0.45     | -0.011     | -0.28      | 1        |
|                              | store    | y_of_week | sales   | customers | oben     | ргото    | ool_holiday | n_distance | nce_month | since_year | promo2   | since_week | since_year | is_promo |



# Exploratory Data Analysis



Categorical Attributes





# Machine Learning Modelling



### Model's Performance

| Model Name        | MAE CV             | MAPE CV       | RMSE CV            |
|-------------------|--------------------|---------------|--------------------|
| Linear Regression | 2081.73 +/- 295.63 | 0.3 +/- 0.02  | 2952.52 +/- 468.37 |
| Lasso             | 2116.38 +/- 341.5  | 0.29 +/- 0.01 | 3057.75 +/- 504.26 |
| RF Regressor      | 837.68 +/- 219.1   | 0.12 +/- 0.02 | 1256.08 +/- 320.36 |
| XGBoost Regressor | 1030.28 +/- 167.19 | 0.14 +/- 0.02 | 1478.26 +/- 229.79 |

### MODEL'S CHOICE



#### **XGBoost Regressor**

Lighter than RF
 Regressor, with not
 much difference in error



3.5



### Business Performance

285,860,497.77\$

Total Stores Sales Prediction for the next 6 weeks

± 745,482.07 \$

Margin of error (Worst/Best Scenario)

< 10 %

Average percentage error of the stores sales



### Business Performance





### Machine Learning Performance













### **DEMONSTRATION**

Model Deployment - Heroku

Telegram Bot





# 6. Next Steps

- Improve Model's performance;
- Test usability of deployment;
- Check for other ML models that could fit well into this study case.





# THANKS!

### Any questions?

You can find me at:

- LinkedIn: Diandra Melo
- GitHub: @diandramelo
- Gmail: dcxsmelo@gmail.com





I would like to give an special thanks to **Meigarom Lopes** for providing the orientation needed for me to achieve these results, as well as for improving my Data Science knowledge throughout the course **Data Science in Production**.

- Forecast sales competition Rossmann Store Sales from <u>kaggle.com</u>
- Presentation template by <u>SlidesCarnival</u>

