データサイエンス実習 最終課題 発表

三宅研 M2 高林 秀

1. 問題設定

- 選択した問題:選択肢① プロ野球Freakから、ホームゲームの観客数を予測する回帰モデルを作る 【問題条件】
- 予測するチーム:横浜DeNAベイスターズ
- 目的変数:ホームゲームの観客数
- 説明変数
 - 試合日程(年,月,日)
- 勝敗
- スコア
- 対戦相手
- 先発投手

4. 使用したモデル

- 標準化と交差検証により適切なハイパーパラメータの探索を行い、精度向上を狙った。
 - 交差検証: GridSearchCV(..., cv=10, scoring='r2', n_jobs=-1)
- 学習後に、学習過程を可視化して確認することで、過学習の有無を確認した。

2. データの概要:データ概要

今回使用するデータセットのデータ数については下記のような分布になっている。

内容

- 1. 問題設定
- 2. データの概要
- 3. 整形と前処理
- 4. 使用したモデル
- 5. モデルの分析
- 6. まとめ

1. 問題設定

- 選択した問題:選択肢① プロ野球Freakから、ホームゲームの観客数を予測する回帰モデルを作る 【問題条件】
- 予測するチーム:**横浜DeNAベイスターズ**
- 目的変数:ホームゲームの観客数
- 説明変数
 - 試合日程(年,月,日)
 - 勝敗
 - スコア
 - 対戦相手
 - 先発投手

日付	観客数	勝敗	スコア	対戦相手	先発投手	試合時間	球場
4月7日(火)	20,168 人		<u>1 - 5</u>	巨人	寺原	3:45	横浜
4月8日(水)	16,361 人	• 6	1 - 12	巨人	工藤	3:10	横浜
4月9日(木)	16,691 人	•	2-9	巨人	ウォーランド	3:15	横浜
4月10日(金)	12,791 人	0	<u>9 - 1</u>	ヤクルト	三浦	2:46	横浜
4月11日(土)	17,817 人	•	0-3	ヤクルト	グリン	3:23	横浜
4月12日(日)	17,972 人	0	<u>5 - 3</u>	ヤクルト	小林	3:13	横浜
4月17日(金)	12,250 人	•	1-5	阪神	三浦	2:56	横浜
4月18日(土)	25,773 人	•	<u>4 - 9</u>	阪神	グリン	4:02	横浜
4月19日(日)	24,491 人	0	4-2	阪神	小林	3:20	横浜
4月21日(火)		-	中止	広島			横浜
4月22日(水)	16,948 人	•	<u>4 - 5</u>	広島	寺原	3:19	横浜
4月23日(木)	16,772 人	•	0-2	広島	ウォーランド	2:43	横浜
5月2日(土)	21,080 人	0	<u>6 - 1</u>	中日	三浦	2:36	横浜
5月3日(日)	23,920 人	•	0-2	中日	グリン	3:14	横浜
5月4日(月)	22,529 人	•	2-4	中日	小林	3:18	横浜

2. データの概要:データの取り込み

- Pandasの`read_html`関数により、Web上からダウンロードした。
- 年ごとにURLが異なるため、繰り返し処理で年度を変えて取得、その後一元化した。

```
data_year_range: const[tuple] = (9, 23)
  team: const[str] = "baystars"
  base_url: const[str] = "https://baseball-freak.com/audience/"
  # 指定範囲年のデータのインポート
  datas: list[pd.DataFrame] = []
  for year in tqdm(range(data_year_range[0], data_year_range[1]+1), desc="Fetching Data...."):
      if(year == 20):
          continue
      else:
          url = f"{base url}{year:02}/{team}.html"
          dfs = pd.read html(url)
          datas.append(dfs[2])
  else:
      print("Done")
√ 4.2s
Fetching Data...: 100%
                                 | 15/15 [00:04<00:00, 3.56it/s]
```

```
# 年数のカラムを追加し、DataFrameを1つにまとめる。
 for df, year in zip(datas, np.arange(data_year_range[0], data_year_range[1]+1).tolist()):
    df['年'] = year
 dataset = pd.concat(datas, ignore index=True)
 dataset
✓ 0.0s
              観客数 勝敗 スコア 対戦相手
                                       先発投手 試合時間 球場
                                                              日付.1 年
 0 4月7日(火) 20,168 人
                                                  3:45 横浜 4月7日(火) 9
                                巨人
                                          丁藤
  1 4月8日(水) 16,361 人
                     • 1 - 12
                                                  3:10 横浜 4月8日(水) 9
  2 4月9日(木) 16,691 人
                     • 2-9
                                巨人 ウォーランド
                                                  3:15 横浜 4月9日(木) 9
```

2. データの概要:データ概要

今回使用するデータセットのデータ数については下記のような分布になっている。

2. データの概要:訓練・テスト別

• 訓練用データとテストデータの分割割合は、8:2として分割した。

TrainData Size (801, 95) TestData Size (201, 95)

3. 整形と前処理

- 中止ゲームについては、そのままでは欠損値として自動処理できなかったので、以下の修正を行った。
 - 勝敗 :'-'という値を、欠損値として扱い、np.nan代入
 - スコア:'中止'という値を、〃
- 観客数のデータから、単位(人)を除去
- スコアを自軍スコアと相手スコアに分ける
- 勝ち (○) = true, 負け (●) = falseとしてエンコーディングする
- 対戦相手と先発投手をone-hotエンコーディングする
- 年、月、日、曜日、四半期のカラムを追加

	観客 数	自軍ス コア	相手ス コア 勝利	対戦相手_オ リックス	対戦相手_ソフ トバンク	対戦相手_ヤ クルト	対戦相手_ ロッテ	対戦相手_ 中日	対戦相手_ 巨人 ["]	先発投手_ ·· 阿斗里	先発投手_ 須田	先発投手_ 飯塚	先発投手_ 高崎	先発投手_ 高橋	年	月日	曜日	四半期
0	20168	1	5 False	False	False	False	False	False	True .	False	False	False	False	False	2009	4 7	1	2
1	16361	1	12 False	False	False	False	False	False	True .	False	False	False	False	False	2009	4 8	2	2
2	16691	2	9 False	False	False	False	False	False	True .	False	False	False	False	False	2009	4 9	3	2
3	12791	9	1 True	False	False	True	False	False	False .	False	False	False	False	False	2009	4 10	4	2
4	17817	0	3 False	False	False	True	False	False	False .	False	False	False	False	False	2009	4 11	5	2
1066	33271	1	0 True	False	False	False	False	False	True .	False	False	False	False	False	2022	9 25	6	3
1067	33262	1	0 True	False	False	False	False	False	True .	False	False	False	False	False	2022	9 26	0	3
1068	33254	3	11 False	False	False	True	False	False	False .	False	False	False	False	False	2022	9 27	1	3
1069	33267	5	3 True	False	False	False	False	False	False .	False	False	False	False	False	2022	9 29	3	3
1070	32782	4	0 True	False	False	False	False	True	False .	False	False	False	False	False	2022	10 1	5	4

4. 使用したモデル

- 決定木: DecisionTreeRegressor
- 標準化と交差検証により適切なハイパーパラメータの探索を行い、精度向上を狙った。
 - 交差検証: GridSearchCV(..., cv=10, scoring='r2', n_jobs=-1)
 - 標準化 : StandardScaler
- 学習後に、学習過程を可視化して確認することで、過学習の有無を確認した。


```
grid_params = {
    'regressor__max_depth': [2, 4, 6, 8, 10, 12],
    'regressor__min_samples_split': [2, 5, 10],
    'regressor__min_samples_leaf': [1, 2, 4, 6, 8, 10, 12],
}
```

5. モデルの分析

今回のモデルのパラメータは以下のようになった。

```
model param: {
'regressor__max_depth': 6,
'regressor__min_samples_leaf': 8,
'regressor__min_samples_split': 2
}
```

- また、R2スコアは以下の通り
 - 訓練時:0.74
 - テスト時:0.77

- 特徴重要度をプロットした結果
- コロナの関係か、年数がかなり影響している
- 次いで、曜日の重要度が高い。

6. まとめ

- 横浜ベイスターズの2009年~2023年のホームゲームの観客数を予測する回帰モデルを作成した。
- 決定木ベースのモデルを採用
- 標準化と交差検証、グリッドサーチによるハイパーパラメータ探索で可能な限り精度向上に努めた。
- 結果、訓練時よりも、テスト時のR2スコアの方を高くすることができ、一定の精度を確保できた。
- 特徴重要度の計算から、年数と曜日が結果に影響を与えていると推測。

【感想】

- データのサンプリングを行えば、もう少し精度を出せたかもチーム別 × 観客数をプロットし、偏りを確認すべき?
- 生データ整形に時間がかかり、もっと適切な精度向上のため の前処理を組めたかもしれない。。。

