

USN:					

CS2820 - Calculus for CS B.Tech. CSE 4^{rd} Semester

Internal Assessment 2

Date: 16 April. 2024 (Tue) FN	(A)	Marks: 15	Time: 1.0hr
2 0000 10 11p111 2021 (- a.c) ·	()	1,101110, 10	

Instructions

There are 7 questions. Q#1 is for 3 marks and is **compulsory**. Answer any 3 questions from Q#2 to Q#7. Only first 15 marks worth of attempt will be considered.

Q. No.	Question	Marks	CO	Blooms Level
1	Find all the second order partial derivatives of the function $f(x,y) = x^3 + \sin^2(xy)$	3	CO5	Ap
2	Find the tangent plane to the surface $x \sin z - y \cos z = 0$ at the point $\left(\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}\right)$.	4	CO5	Ap
3	 a). A particle at time t is at position: (x, y) = (1+t², 1-t²). When is the particle stationary (or when is its velocity zero)? b). Find the distance travelled by the particle during the time interval [0,5]. 	4	CO5	Ap

Q. No.	Question	Marks	СО	Blooms Level
4	Use polar coordinates to find the volume by double integration under a paraboloid $x^2+y^2=4-z$ bounded below by the xy plane and encompassed by the planes that contain the vectors $\mathbf{u}=(\sqrt{2},\sqrt{2})$ and $\mathbf{v}=(-\sqrt{2},\sqrt{2})$ in the anticlockwise direction.	4	CO8	Ap
5	The gravitational potential of a body of some constant mass takes the form: $U(\mathbf{r}) = \frac{-k}{r}$ where k is some real constant and r is the radial coordinate in the polar coordinate system. Determine the direction from the point $(0,1)$ along which the rate of potential change is highest. What is the rate of potential change at that point?	4	CO6	Ap
6	Find the linearization of $z=1+\sin(x)+\cos(x+y)$ at the point $\left(\frac{\pi}{2},\frac{\pi}{4}\right)$ and hence calculate the linear approximation of $\left(\frac{3}{2},\frac{3}{4}\right)$	4	CO7	Ap
7	Find the critical points of $f(x,y) = x^2 - 6xy + 4y^2 + 8x + 6y + 3$ and determine for each critical point whether it is a saddle point, a maximum or a minimum.	4	CO6	Ap