Lesson: Limits of Infinite Sequences

Part I: What Is a Limit?

- A **limit** describes the value that a sequence is approaching as n becomes very large.
- Notation:

 $\lim_{n\to\infty} a_n$

- This means: "What value is a_n getting closer and closer to as n gets larger?". This only has an answer if the values of a_n get arbitrarily close to a single number as n increases. We say that the sequence **converges**.
- When the values of a_n grow more and more positive without bound we say that the limit approaches ∞ .
- When the values of a_n grow more and more negative without bound we say that the limit approaches $-\infty$.
- When the values are bounded but do not converge to a single value, then we say that "the limit does not exist!" (And plan to watch *Mean Girls* again).
- If the values do not approach a finite number—either because they grow without bound or oscillate—the sequence is said to diverge.

Graphical Interpretation

- When you graph the terms of a sequence as points (n, a_n) , the **limit** is the horizontal value that the points approach as n increases.
- If the points level off and appear to settle near a specific y-value, that value is the limit.
- If the points grow without bound or bounce back and forth, the limit may not exist.

Example Graphs:

•
$$a_n = \frac{1}{n}$$

Part II: Key Ideas to Know

1. If
$$k > 0$$
, then:

$$\lim_{n \to \infty} \frac{1}{n^k} = 0$$

2. If
$$-1 < r < 1$$
, then:

$$\lim_{n \to \infty} r^n = 0$$

3. You can usually move limits inside functions:

• If
$$\lim_{n\to\infty} a_n = L$$
, then:

$$\lim_{n \to \infty} \sqrt{a_n} = \sqrt{L}, \quad \lim_{n \to \infty} \ln(a_n) = \ln(L)$$

Summary: How Sequences Shrink

- If the denominator grows faster than the numerator, the limit is usually 0.
- If you're raising a number between -1 and 1 to higher powers, it shrinks toward 0.
- You can often move limits inside functions like square roots or logarithms if the limit exists and the function is defined there.

Part III: Finding Limits of Sequences

1.
$$\lim_{n\to\infty}\frac{5}{n}$$

2.
$$\lim_{n\to\infty} \frac{2n+1}{n^2+3}$$

3.
$$\lim_{n\to\infty} \left(\frac{3}{4}\right)^n$$

4.
$$\lim_{n\to\infty} \frac{n^2+5n}{n^2-3n+1}$$

5. $\lim_{n\to\infty}\sqrt{\frac{1}{n}}$	
6. $\lim_{n\to\infty} \left[3 + \frac{6}{n^3 + 4} \right]$	
7. $\lim_{n\to\infty}\log_4\left(\frac{16n+9}{n+1}\right)$	
8. $\lim_{n\to\infty}\cos(e^{-n})$	
Find the limit of these sequences or state that the lim	it does not exist
9. 1, 4, 9, 16,	
10. 1/2, -1/4, 1/8, -1/16,	
11. $t_n = \sin(\pi \cdot n)$	
	3

Part IV: When Limits Do Not Exist A limit does not exist if: - The sequence grows without bound - The sequence oscillates Examples: 12. $\lim_{n\to\infty} n$ 13. $\lim_{n\to\infty} (-1)^n$ 14. $\lim_{n\to\infty}\cos(n)$ 15. $\lim_{n\to\infty} \frac{(-2)^n}{n}$ 16. $\lim_{n\to\infty} \ln(n)$ Summary: When Limits Break Down • A sequence does not have a limit if it: 4

Part V: Review - Multiple Choice and True/False

- 1. What is the limit of the sequence $a_n = \frac{5n+3}{n+2}$ as $n \to \infty$?
 - A) 5
 - B) 1
 - C) 0
 - D) The limit does not exist
- **2.** True or False: If $a_n = (-1)^n$, then the sequence has a limit of 0.
- **3.** Which of the following sequences has a limit of 0?
 - A) $a_n = \frac{1}{n^2}$
 - B) $a_n = 1 + \frac{1}{n}$
 - C) $a_n = (-2)^n$
 - D) $a_n = \cos(n)$
- **4.** True or False: If $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{L}$, as long as $L \ge 0$.

Part VI: Reflection

• What does it mean for a sequence to have a limit?

