Lecture 7: Convolutional Networks

Lecture Format

What is your preferred lecture format?

134 responses

- Strongly prefer remote lectures
- Slightly prefer remote lectures
- Indifferent between in-person and remote lecture
- Slightly prefer in-person lectures
- Strongly prefer in-person lectures

Lecture Format

If we were to return to in-person lectures, how would you plan to watch lectures?

134 responses

- Attend in-person
- Attend synchronously via zoom (if possible)
- Watch recorded lecture videos

Lecture Format

- We will remain remote for at least another 2-3 weeks
- Idea: book a conference room for "watch parties?"
 Or just use lecture hall
- COVID in MI have (hopefully!) peaked? If they continue to drop we will consider in-person OH in the next 1-2 weeks
- May revisit after Spring Break
- Feel free to raise hand to ask questions in Zoom!
- Midterm will be remote (but still working on exact format)

Reminder: A2

Due last Friday

Will be released tonight, covering:

- Backpropagation with modular API
- Different update rules (Momentum, RMSProp, Adam, etc)
- Batch Normalization
- Dropout
- Convolutional Networks

Last Time: Backpropagation

Represent complex expressions as **computational graphs**

Forward pass computes outputs

Backward pass computes gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients**

f(x,W) = Wx

$$f = W_2 \max(0, W_1 x)$$

Problem: So far our classifiers don't respect the spatial structure of images!

(4,)

Justin Johnson Lecture 7 - 8 January 31, 2022

f(x,W) = Wx

$$f = W_2 \max(0, W_1 x)$$

Problem: So far our classifiers don't respect the spatial structure of images!

Solution: Define new computational nodes that operate on images!

Stretch pixels into column

Justin Johnson Lecture 7 - 9 January 31, 2022

Components of a Fully-Connected Network

Fully-Connected Layers

Activation Function

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

1 number:

the result of taking a dot product between a row of W and the input (a 3072dimensional dot product)

3x32x32 image: preserve spatial structure

Justin Johnson Lecture 7 - 15 January 31, 2022

3x32x32 image

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Justin Johnson Lecture 7 - 16 January 31, 2022

Filters always extend the full depth of the input volume

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Justin Johnson Lecture 7 - 17 January 31, 2022

3x32x32 image

1 number:

the result of taking a dot product between the filter and a small 3x5x5 chunk of the image (i.e. 3*5*5 = 75-dimensional dot product + bias)

$$w^T x + b$$

Convolution Layer 1x28x28 activation map 3x32x32 image 3x5x5 filter 28 convolve (slide) over all spatial locations 32 28 32

Convolution Layer two 1x28x28 activation map Consider repeating with 3x32x32 image a second (green) filter: 3x5x5 filter 28 convolve (slide) over 32 all spatial locations 32

3x32x32 image Consider 6 filters, each 3x5x5 Convolution Layer 32 6x3x5x5 32 filters

6 activation maps, each 1x28x28

Stack activations to get a 6x28x28 output image!

3x32x32 image Also 6-dim bias vector:

6 activation maps,

each 1x28x28

Stack activations to get a 6x28x28 output image!

28x28 grid, at each point a 6-dim vector

6x28x28 output image!

Justin Johnson Lecture 7 - 23 January 31, 2022

Justin Johnson Lecture 7 - 26 January 31, 2022

N x 3 x 32 x 32

Q: What happens if we stack two convolution layers?

N x 10 x 26 x 26

Justin Johnson Lecture 7 - 27 January 31, 2022

N x 6 x 28 x 28

Q: What happens if we stack (Recall $y=W_2W_1x$ is two convolution layers?

a linear classifier)

A: We get another convolution!

Input:

N x 3 x 32 x 32

First hidden layer:

N x 6 x 28 x 28

Second hidden layer:

N x 10 x 26 x 26

Q: What happens if we stack (Recall $y=W_2W_1x$ is two convolution layers?

a linear classifier)

A: We get another convolution!

Input: N x 3 x 32 x 32 First hidden layer:

N x 6 x 28 x 28

N x 10 x 26 x 26

Second hidden layer:

Justin Johnson January 31, 2022 **Lecture 7 - 29**

Justin Johnson Lecture 7 - 30 January 31, 2022

Linear classifier: One template per class

Input: N x 3 x 32 x 32

First hidden layer:

N x 6 x 28 x 28

MLP: Bank of whole-image templates

Justin Johnson Lecture 7 - 32 January 31, 2022

Input: N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28 First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

A closer look at spatial dimensions

Input:

N x 3 x 32 x 32

First hidden layer:

N x 6 x 28 x 28

A closer look at spatial dimensions

Input: 7x7

Filter: 3x3

7

A closer look at spatial dimensions

Justin Johnson

Input: 7x7

Filter: 3x3

Lecture 7 - 36 January 31, 2022

Input: 7x7

Filter: 3x3

7

Justin Johnson

Input: 7x7

Filter: 3x3

Lecture 7 - 38 January 31, 2022

Input: 7x7

Filter: 3x3

Output: 5x5

7

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

Input: W maps "shrink"

Filter: K

Output: W - K + 1

7

with each layer!

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Problem: Feature

Input: W maps "shrink"

Filter: K with each layer!

Output: W - K + 1

Solution: padding

Add zeros around the input

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7

Filter: 3x3

Output: 5x5

In general: Very common:

Input: W Set P = (K - 1) / 2 to

Filter: K

Padding: P

same size as input!

make output have

Output: W - K + 1 + 2P

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1+L*(K-1)

Be careful – "receptive field in the input" vs "receptive field in the previous layer"

Hopefully clear from context!

Justin Johnson Lecture 7 - 44 January 31, 2022

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

for each output to "see" the whole image image

Justin Johnson January 31, 2022 **Lecture 7 - 45**

Each successive convolution adds K-1 to the receptive field size With L layers the receptive field size is 1+L*(K-1)

Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3

Stride: 2

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

Input: W

Filter: K

Padding: P

Stride: S

Output: (W - K + 2P) / S + 1

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: **760**

Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is **10** * **76** = **760**

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Number of learnable parameters: 760

Number of multiply-add operations: ?

Input volume: 3 x 32 x 32

10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Justin Johnson Lecture 7 - 56 January 31, 2022

Example: 1x1 Convolution

Example: 1x1 Convolution

Justin Johnson Lecture 7 - 58 January 31, 2022

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- **Kernel size**: K_H x K_W

Number filters: C_{out}

Padding: P

Stride: S

Weight matrix: C_{out} x C_{in} x K_H x K_W

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = (H - K + 2P) / S + 1

- W' = (W - K + 2P) / S + 1

Convolution Summary

Input: C_{in} x H x W

Hyperparameters:

- **Kernel size**: K_H x K_W
- Number filters: C_{out}
- Padding: P
- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$

giving C_{out} filters of size C_{in} x K_H x K_W

Bias vector: C_{out}

Output size: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings:

 $K_H = K_W$ (Small square filters)

P = (K - 1) / 2 ("Same" padding)

 C_{in} , C_{out} = 32, 64, 128, 256 (powers of 2)

K = 3, P = 1, S = 1 (3x3 conv)

K = 5, P = 2, S = 1 (5x5 conv)

K = 1, P = 0, S = 1 (1x1 conv)

K = 3, P = 1, S = 2 (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W

Weights: C_{out} x C_{in} x K

Justin Johnson Lecture 7 - 62 January 31, 2022

Other types of convolution

So far: 2D Convolution

Input: C_{in} x H x W Weights: C_{out} x C_{in} x K x K H W

3D Convolution

Input: $C_{in} \times H \times W \times D$

Weights: C_{out} x C_{in} x K x K x K

Justin Johnson January 31, 2022 Lecture 7 - 63

at each point

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

PyTorch Convolution Layers

Conv2d

```
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode='zeros')
```

SOURCE

Conv1d

```
CLASS torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0,
       dilation=1, groups=1, bias=True, padding_mode='zeros')
```


Conv3d

```
CLASS torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0,
       dilation=1, groups=1, bias=True, padding_mode='zeros')
```

SOURCE

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Pooling Layers: Another way to downsample

Hyperparameters:

Kernel Size
Stride
Pooling function

Max Pooling

Single depth slice

64 x 224 x 224

Max pooling with 2x2 kernel size and stride 2

6	8
3	4

Introduces **invariance** to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

-
$$H' = (H - K) / S + 1$$

-
$$W' = (W - K) / S + 1$$

Learnable parameters: None!

Common settings:

max, K = 2, S = 2

max, K = 3, S = 2 (AlexNet)

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Example: LeNet-5

Layer	Output Size	Weight Size
Input	1 x 28 x 28	

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Lecun et al, "Gradient-based learning applied to document recognition", 1998

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Some modern architectures break this trend -- stay tuned!

Problem: Deep Networks very hard to train!

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Input: $x \in \mathbb{R}^{N \times D}$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Problem: What if zero-mean, unit variance is too hard of a constraint?

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Problem: Estimates depend on minibatch; can't do this at test-time!

Input:
$$x \in \mathbb{R}^{N \times D}$$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
 Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Input:
$$x \in \mathbb{R}^{N \times D}$$

$$\gamma, \beta \in \mathbb{R}^D$$

shift parameters:

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{values seen during training}} Per-channel std, shape is D$$

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Input:
$$x \in \mathbb{R}^{N \times D}$$

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

Per-channel mean, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j^{test} = 0$$

For each training iteration:

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\mu_{j}^{test} = 0.99 \,\mu_{j}^{test} + 0.01 \,\mu_{j}$$

(Similar for σ)

Input:
$$x \in \mathbb{R}^{N \times D}$$

(Running) average of
$$\mu_j = \text{values seen during}$$
 training

Per-channel mean, shape is D

$$\gamma, \beta \in \mathbb{R}^D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{values seen during training}} \quad \begin{array}{l} \text{Per-channel std, shape is D} \end{array}$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,
Shape is N x D

Input:
$$x \in \mathbb{R}^{N \times D}$$

(Running) average of
$$\mu_j = \text{values seen during}$$
 training

Per-channel mean, shape is D

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

$$\sigma_j^2 = \frac{\text{(Running) average of}}{\text{values seen during training}}$$

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output,
Shape is N x D

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

Normalize
$$x: N \times D$$
 $\mu, \sigma: 1 \times D$
 $\gamma, \beta: 1 \times D$
 $y = \frac{(x - \mu)}{\sigma} \gamma + \beta$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

Normalize
$$x : N \times C \times H \times W$$

$$\mu, \sigma : 1 \times C \times 1 \times 1$$

$$\gamma, \beta : 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

Layer Normalization

Batch Normalization for **fully-connected** networks

Normalize Normalize
$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers

Normalize
$$y, \sigma : N \times D$$

$$\gamma, \beta : 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Instance Normalization

Batch Normalization for convolutional networks

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Instance Normalization for convolutional networks

Normalize
$$x: N \times C \times H \times W$$
 $\mu, \sigma: N \times C \times 1 \times 1$
 $\gamma, \beta: 1 \times C \times 1 \times 1$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Comparison of Normalization Layers

Wu and He, "Group Normalization", ECCV 2018

Group Normalization

Wu and He, "Group Normalization", ECCV 2018

Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Components of a Convolutional Network

Convolution Layers Most computationally expensive!

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Summary: Components of a Convolutional Network

Problem: What is the right way to combine all these components?

Justin Johnson Lecture 7 - 104 January 31, 2022

Next time: CNN Architectures