Proof. If t=0, the RHS is 1 and the result trivial. Henceforth we assume t>0. The proof splits into cases $f(\pi^{i-1})=1$ and $f(\pi^{i-1})>1$, which we consider in turn. Let [x] denote the set $\{1,2,\ldots,x\}$.

If $f(\pi^{i-1}) = 1$, s = 1 is switchable in π^{i-1} . From Lemma 10, $\pi^{i-1}(1) = 0$. Thus, let $\pi^{i-1} = 0^{s'}x$ for some $1 \le s' \le n$, $x \in \{0,1\}^{n-s'}$, and x starts with 1 or x is empty. Applying Lemma 10 for states $1, 2, \dots, s'$ + 1, we get that states $1, 2, \ldots, s'$ are switchable in π^{i-1} and s' + 1 is not switchable in π^{i-1} , if $s' + 1 \in [n]$. If $f(\pi^i) \geq t+1$, the states $1, 2, \dots, t$ are not switchable in π^i . Applying Lemma 10 for states $1, 2, \ldots, t$, we get that $\pi^i = 10^{t-1}y$ where $y \in \{0,1\}^{n-t}$. If s' = n, $t \leq n = s'$. t cannot be greater than s' if $s' + 1 \in$ [n] as that will imply $\pi^{i}(s'+1) = 0 \neq \pi^{i-1}(s'+1)$, despite s'+1 not being switchable in π^{i-1} . Hence, if t>s', $\mathbb{P}\{f(\pi^i)\geq t+1\}=0\leq \frac{1}{2^t}.$ Otherwise $t\leq s'.$ Therefore, states $1,2,\ldots,t$ are switchable in $\pi^{i-1}.$ To get to π^i from π^{i-1} , the state 1 must be switched and the states $2, 3, \dots, t$ must not be switched. As each state is switched with probability $\frac{1}{2}$ by RPI1, the probability of this event happening is exactly $\frac{1}{2^t}$.

If $f(\pi^{i-1}) = s > 1$, s is switchable in π^{i-1} and $1, 2, \ldots, s-1$ are not switchable in π^{i-1} . Applying Lemma 10 for states 1, 2, ..., s, we get $\pi^{i-1} =$ $10^{s-2}10^{s'}x$ for some $0 \le s' \le n-s, x \in \{0,1\}^{n-s-s'}$, and x starts with 1 or x is empty. Applying Lemma 10 for states $s+1, s+2, \ldots, s+s'$, we get that states $s+1, s+2, \ldots, s+s'$ are also switchable in π^{i-1} and s + s' + 1 is not switchable in π^{i-1} , if $s + s' + 1 \in [n]$. Note that since i-1 < m, $\pi^{i-1} \neq \pi^*$ and hence $s \leq n$. If $f(\pi^i) \geq s+t$, the states $1, 2, \dots, s+t-1$ are not switchable in π^i . Applying Lemma 10 for states $1, 2, \ldots, s + t - 1$, we get that $\pi^i = 10^{s+t-2}y$ where $y \in \{0,1\}^{n-s-t+1}$. If s+s'=n, $s+t-1 \le n = s+s'$. s+t-1 cannot be greater than s+s' if $s+s'+1 \in [n]$ as that will imply $\pi^{i}(s+s'+1) = 0 \neq \pi^{i-1}(s+s'+1)$, despite s+s'+1 not being switchable in π^{i-1} . Hence, if $s+t-1 > s+s', \mathbb{P}\{f(\pi^i) \ge s+t\} = 0 \le \frac{1}{2t}$. Otherwise $s+t-1 \le s+s'$. Therefore, states $s,s+1,\ldots,s+t-1$ are switchable in π^{i-1} . To get to π^i from π^{i-1} , the state s must be switched and the states $s+1, s+2, \ldots, s+t-1$ must not be switched. As each state is switched with probability $\frac{1}{2}$ by RPI1, the probability of this event happening is exactly $\frac{1}{2t}$.

Definition 14. We define $L: \Pi \to \mathbb{R}_{\geq 0}$, where $L(\pi)$ is the expected number of policies evaluated by RPI1 starting from π .

Note that even if we start from $\pi^0 = \pi^*$, we need to evaluate π^0 to know that it is optimal. Hence $L(\pi^*) = 1$.

Definition 15. We define $N:[n+1] \to \mathbb{R}_{>0}$, where

$$N(s) = \min_{\pi \in \Pi, f(\pi) = s} L(\pi).$$

It directly follows from the definition that $N(f(\pi)) \le L(\pi)$ for any $\pi \in \Pi$.

Theorem 16. For $s \in [n+1]$, $N(s) \ge n+2-s$.

Proof. If s = n+1, $f(\pi) = n+1$ is true only for $\pi = \pi^*$. Hence $N(n+1) = L(\pi^*) = 1 \ge n+2-(n+1)$.

Now, let $s \in [n]$. Let π be a policy such that $N(s) = L(\pi)$. Hence $f(\pi) = s$. Since $f(\pi^*) = n + 1$, π is not optimal. Let π' be obtained from π by an RPI1 update.

First we upper-bound the expectation of $f(\pi')$. Since $f(\pi')$ is a non-negatively valued random variable, we can use the following expression for its expectation.

$$\mathbb{E}[f(\pi')] = \sum_{n+1 \ge s' \ge 1} \mathbb{P}\{f(\pi') \ge s'\}$$

$$= \sum_{s \ge s' \ge 1} 1 + \sum_{n+1 \ge s' > s} \mathbb{P}\{f(\pi') \ge s'\}$$

$$\le s + \sum_{n+1 \ge s' > s} \frac{1}{2^{s'-s}}$$

$$\le s + \sum_{k=1}^{\infty} \frac{1}{2^k}$$

$$= s + 1$$

Now, assuming inductively that $N(s') \ge n + 2 - s'$ for $s < s' \le n + 1$, we can lower-bound $N(s) = L(\pi)$ as

$$\begin{split} N(s) &= \quad 1 + \sum_{\pi'' \in \Pi} L(\pi'') \mathbb{P} \{ \pi' = \pi'' \} \\ &\geq \quad 1 + \sum_{\pi'' \in \Pi} N(f(\pi'')) \mathbb{P} \{ \pi' = \pi'' \} \\ &= \quad 1 + \sum_{n+1 \geq s' \geq 1} \left[\sum_{\pi'' \in \Pi, f(\pi'') = s'} N(s') \mathbb{P} \{ \pi' = \pi'' \} \right] \\ &= \quad 1 + \sum_{n+1 \geq s' \geq 1} N(s') \left[\sum_{\pi'' \in \Pi, f(\pi'') = s'} \mathbb{P} \{ \pi' = \pi'' \} \right] \\ &= \quad 1 + \sum_{n+1 \geq s' \geq 1} N(s') \mathbb{P} \{ f(\pi') = s' \} \\ &= \quad 1 + \sum_{n+1 \geq s' \geq s} N(s') \mathbb{P} \{ f(\pi') = s' \}, \end{split}$$

since $\mathbb{P}\{f(\pi') < s = f(\pi)\} = 0$. We rearrange terms in