PRIME LESSONS

By the Makers of EV3Lessons

טכניקות לשיפור עקביות הרובוט

Arvind and Sanjay Seshan מאת

נושאי השיעור

- תלמדו איך להפוך את הרובוט שלכם לעקבי יותר
 - תלמדו על בעיות נפוצות
 - תלמדו על פתרונות אפשריים לבעיות הללו

למה בכלל להתעסק בעקביות הרובוט?

- בזמן העבודה על שיעור האתגרים, אתם עלולים להיתקל במקרים בהם הרובוט מתנהג בצורה שונה מהמצופה
 - אלו בעיות שנפוצות גם בתחרויות כמו FIRST LEGO League
- השיעור הזה מציג את בעיית העקביות שיש להרבה קבוצות FLL. הרבה מהנושאים יתאימו גם לקבוצות לא תחרותיות אך המושגים והשיעור כולו מתמקדים ברובוטי תחרות.

היכנסו ל FLLTutorials.com לסדרת שיעורים על עקביות הרובוט

מקורות הבעיה

השפעה	בעיה
כל הרצה היא שונה ומשימות לא תמיד עובדות	המיקום ממנו מריצים את הרובוט שונה בכל הרצה
קשה להעריך את המיקום המדויק של הרובוט	רובוטים לא נוסעים ישר לאורך זמן או מסתובבים בדיוק באותה זווית
משימות ארוכות נוהגות להיכשל. קשה לעשות משימות שרחוקות מהבית או אזור השיגור	טעויות מצטברות לאורך הנסיעה
שינויים ושיפורים שעבדו היום לא יעבדו מחר	רמת הבטרייה משפיעה על חוזק המנוע

נקודת ההתחלה באזור השיגור היא קריטית

- בFLL, קבוצות צריכות להחליט מאיזה חלק של אזור השיגור הן משגרות את הרובוט
- ממקמים: סרגל או קיר לגו שהרובוט יכול להתיישר עליו באזור המשולש האדום הוא דוגמה לממקם)
- נקודת התחלה זהה בכל פעם: בחרו נקודת התחלה אחת ושגרוממנה לכל המשימות לשיגורים פשוטים
- הקווים על אזור השיגור: השתמשו בקווים שעל אזור השיגור כדי לבחור את נקודת ההתחלה בכל הרצה
 - FIRST LEGO League מילים: באזור השיגור נמצא הלוגו של
 אתם יכולים להשתמש בו כדי ליישר את הרובוט
 - עוד אופציה היא ליישר את הרובוט בעזרת הטכניקות בשקופית 6

טעויות מצטברות לאורך זמן

- עד שהרובוט מגיע לצד הרחוק של המגרש הוא כבר לא ישר
- פתרון: חזרו על טכניקות התיישרות (שקופית 7) כמה פעמים בכל הרצה כדי שהרובוט יהיה עקבי

איפה אתם על המגרש?

- אלו הן טכניקות ההתיישרות הנפוצות:
- התיישרות על קיר: להיתקע בקיר באופן מכוון כדי ליישר את
 הרובוט
- התיישרות על קו: אם הרובוט נמצא בזווית, ניתן ליישר אותו על קו שחור בעזרת שני חיישני אור
- נסיעה עד קו: נסיעה עד שהחיישן מזהה קו שחור. נועד כדי לדעת באיזה חלק של המגרש הרובוט נמצא
- התיישרות על משימה: משימות שמחוברות למגרש יכולות לשמש כנקודת התיישרות

עוד גורמים שמשפיעים על העקביות

- חיי הסוללה
- אם תתכנתו את הרובוט כאשר הסוללה חלשה, הוא ירוץ בצורה שונה עם סוללה מלאה
 - מנועים מתנהגים שונה כשסוללה חלשה
 - אבל השימוש בחיישנים יגרום לתלות נמוכה יותר בסוללה
 - חתיכות לגו מתנתקות לאורך זמן
- הצמידו חתיכות לגו בנקודות עיקריות לפני כל הרצה הם נחלשים מה שיכול לפגום בפעילות החיישנים
 - דחפו את הכבלים אל תוך נקודות החיבור שלהם. הם נוטים לצאת!
 - מנועים וחיישנים לא תמיד תואמים
 - קבוצות מסוימות בודקות את המנועים, חיישנים וגלגלים כדי לוודא שהם מתאימים
- לעולם לא תגיעו להתאמה מושלמת אז אנחנו ממליצים להשתמש בטכניקות אחרות ולקבל את השוני ביניהם

קרדיטים

.Prime Lessons עבור Arvind and Sanjay Seshan המצגת נוצרה על ידי

'של עירוני ד FRC D-Bug #3316 של עירוני ד FLL-המצגת תורגמה לעברית ע"י

תל-אביב D++ #285 ו-DGITAL #1331

ניתן למצוא שיעורים נוספים באתר www.primelessons.org

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</u>.