热学练习题

一、判断题

1、()	9气体处十半衡态时,	容器中各处的温度相等
-------	------------	------------

- 2、()在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关。
- 3、()传递热量都可以改变物体的内能,做功不能改变物体的内能。
- 4、()气体处于平衡态时,气体中每个分子的动能都相等。
- 5、()每一个分子都具有质量、速度、压强和温度。
- 6、()热力学系统吸收热量,其内能一定增加。
- 7、() 在绝热过程中,系统与外界没有热量传递,系统的温度是不变化的
- 8、()某种气体分子的自由度为i,则该气体每个分子的动能都应该是 $\frac{i}{2}kT$ 。
- 9、() 热学中的一切可逆过程都必须满足能量守恒定律。
- 10、()系统经过一正循环后,系统和外界都没有变化。

二、选择题

- 1、一定量的理想气体若从同一状态分别经绝热、等温和等压过程,膨胀了相同的体积,在这三个过程中理想气体对外所作的功分别为 A_a 、 A_T 和 A_p ,则有[
- (A) $A_T > A_a > A_p$; (B) $A_p > A_a > A_T$; (C) $A_T > A_p > A_a$; (D) $A_p > A_T > A_a$
- 2、当温度升高 1K 时, 0.5 mol 二氧化碳气体内能增加了[]
- (A) 6.3 焦耳; (B) 12.5 焦耳; (C) 20.8 焦耳; (D) 24.9 焦耳。
- 3、在一密闭容器内,储有 A 、B 、C 三种理想气体,A 气体的分子数密度为 n_1 ,它产生的压强为 p_1 ,B 气体的分子数密度为 $2n_1$,C 气体的分子数密度为 $3n_1$,则混合气体的压强为
- (A)3 p_1 (B) 4 p_1 (C)5 p_1 (D)6 p_1
- 4、处于平衡态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[]
 - A. 温度、压强均不相同 B. 温度相同,但氦气压强大于氮气压强
 - C. 温度、压强都相同 D. 温度相同, 但氦气压强小于氮气压强
- 5、两个相同的刚性容器,一个盛有氢气,一个盛有氦气(均视为刚性分子理想气体)。开始时它们的温度和压强都相等,先将 3J 热量传给氦气,使之升高到一定温度。若使氢气也升高同样的温度,则应向氢气传递热量[
 - A. 3J B. 5J C. 6J D. 10J

(A)kT	(B) $\frac{3kT}{2}$	(C) $2kT$.	(D) $\frac{kT}{2}$	
7、一恒温容器内储有某种	理想气体,若容器	 房 发生缓慢漏气,	容器内气体分子的	的平均平动动
能 []				
(A) 变大 (E 8、下列各式中哪一式表示				, m 为气体分
子质量, N 为气体分子总数	tel, n 为气体分子	子数密度, N_A 为 $ $	阿伏加得罗常量)	[]
(A) $\frac{3m}{2M}pV$.	(B) $\frac{3M}{2M_{\text{mol}}} pV$			
(C) $\frac{3}{2}npV$.	(D) $\frac{3M_{\text{mol}}}{2M}N_A p V$	7		
三、填空题				
1、室内生起炉子后,温度	从 15℃ 上升到 27	7℃,设升温过程	是中,室内的气压(保持不变,问
升温后室内分子数减少了_	(填写百分	比)		
2、氢气的自由度是3、如图所示,体系由 <i>A</i> 态绘	经 ABC 过程到达	C态,吸收的热	量为 350J,同时对	外做功 126J。
系统内能的增量是 D E_{CA} =	; 如果沿 4	DC 进行,系统》	付外做功为 42J, [则系统吸收的
热量 Q=	;	P	D C	
如果系统由 C 出发沿 CA 曲	日线返回 A ,			
外界对系统做功为 84J,则	系统吸热		$A \longrightarrow B$	
Q=。		0	· <i>V</i>	
4、设低温热源热力学温度是	是高温热源的热力	学温度的 $\frac{1}{n}$ 倍,	则理想气体在一次	(卡诺循环中,
传给低温热源的热量是从高	高温热源吸收热量	的倍。		
5、1mol 某种刚性双原子分	子理想气体,在等	等压过程中温度升	十高 1k, 内能增加	了 20.78J,则
气体对外作的功为	,气体吸收热	·量为	(R=8.31J/	mol.K)
6、一卡诺热机的低温热源 源的温度提高了		率为 40%, 若将	其效率提高到50	%,则高温热

、温度为T的刚性双原子理想气体平均平动动能为 []

四、计算题:

1、1mol 双原子分子理想气体,做如图所示的循环,图中 *bc* 代表绝热过程。试求:

- (2) 一次循环过程中,系统向外界放出的热量;
- (3)循环的效率。

解: a-b 过程吸热:
$$Q_1=C_v\Delta T=C_v(T_b-T_a)=2C_vT_a=2\times\frac{5}{2}RP_aV_a=500J$$
 c-a 过程放热: $Q_2=C_p\Delta T=C_p(T_c-T_a)=C_pT_a=\frac{7}{2}RP_aV_a=350J$ 循环的效率: $\eta=1-\frac{Q_2}{Q_1}=1-\frac{C_pT_a}{2C_vT_a}=30\%$ (双原子分子理想气体 $C_p=\frac{7}{2}R,C_v=\frac{5}{2}R$)

- 2、将 400J 的热量传给标准状况下的 2mol 氢气,求:
- (1) 若温度不变, 氢气的压强、体积各变为多少?
- (2) 若压强不变, 氢气的体积、温度各变为多少?
- (3) 若体积不变, 氢气的压强、温度各变为多少?

解: (标准状态是 0 摄氏度, 1 标准大气压, 即 273K, 101000Pa, 22.4L)

(1)
$$Q = W = vRT \ln \frac{V_2}{V_1} = 2 \times 8.31 \times 273 \times \ln \frac{V_2}{V_1} = 400J$$

 $V_2 = 24.46 \times 10^{-3} \, m^3$, $P_2 = \frac{V_1}{V_2} P_1 = 9.25 \times 10^4 \, Pa$

(2)
$$Q = vC_p \Delta T = 2 \times 3.5 \times 8.31 \times (T_2 - 273) = 400J$$

 $T_2 = 279.9 \text{K}$, $V_2 = \frac{V_1}{T_1} T_2 = 22.96 \times 10^{-3} \, \text{m}^3$

(3)
$$Q = \nu C_V \Delta T = 2 \times 2.5 \times 8.31 \times (T_2 - 273) = 400J$$

 $T_2 = 282.6 \text{K}, \quad P_2 = \frac{T_2}{T_2} P_1 = 1.05 \times 10^5 Pa$

3、1mol 的氧气,温度由 300K 升到 350K,若温度的升高是在下列三种不同情况下发生的: (1)体积不变,(2)压强不变,(3)绝热,问它们的内能各增加了多少?系统各吸收了多少热量?

解: (1)
$$Q = \Delta E = \nu C_v \Delta T = 1 \times 2.5 \times 8.31 \times (350 - 300) = 1038.75J$$

(2)
$$\Delta E = \nu C_V \Delta T = 1 \times 2.5 \times 8.31 \times (350 - 300) = 1038.75J$$

$$Q = \nu C_P \Delta T = 1 \times 3.5 \times 8.31 \times (350 - 300) = 1454.25J$$

(3)
$$\Delta E = \nu C_V \Delta T = 1 \times 2.5 \times 8.31 \times (350 - 300) = 1038.75J$$

$$Q = 0J$$

4、假定室外温度为310K,室内温度为300K,没开空调时,每天由室外传向室内的热量为 $2.51 \times 10^8 J$ 。为使室内温度维持 300K,则所使用的空调机(致冷机)每天耗电多少焦耳? 空调机的功率要多大? (假定空调机的致冷系数为卡诺致冷机的致冷系数的 60%)

解: 卡诺致冷机的致冷系数:
$$e = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2} = \frac{300}{310 - 300} = 30$$

空调机的致冷系数:
$$e = \frac{Q_2}{W} = 30 \times 60\% = 18$$

空调机(致冷机)每天耗电:
$$W = \frac{Q_2}{18} = \frac{2.51 \times 10^8}{18} = 1.39 \times 10^7 J$$

空调机的功率:
$$\frac{W}{t} = \frac{1.39 \times 10^7}{24 \times 60 \times 60} = 1.61 \times 10^2 w$$

- 5、一定量的单原子分子理想气体,从初态A出发, 经历如图循环过程, 求:
- (1) AB, BC, CA 各过程中系统对外作的功、内能 的变化和吸收的热量.
- (2) 该循环的效率

解: (1) AB 过程:

$$W = \frac{1}{2}\Delta P\Delta V + P_1\Delta V (接面积计算)$$

$$= \frac{1}{2} \times 2 \times 10^5 \times 1 \times 10^{-3} + 1 \times 10^5 \times 1 \times 10^{-3}$$

$$= 200J$$

$$m \qquad m \qquad 3$$

$$Q = W + \Delta E = 950J$$

BC 过程

$$W = 0J$$

$$\Delta E = \frac{m}{M} C_V (T_C - T_B) = \frac{m}{M} \frac{3}{2} R(T_C - T_B) = -\frac{3}{2} (P_B V_B - P_C V_C) = -600J$$

$$Q = W + \Delta E = -600J$$

CA 过程

$$\Delta E = \frac{m}{M} C_V (T_A - T_C) = \frac{m}{M} \frac{3}{2} R(T_A - T_C) = \frac{3}{2} (P_A V_A - P_C V_C) = -150J$$

$$W = -P\Delta V$$
(按面积计算)

$$=-1\times10^{5}\times1\times10^{-3}$$

$$=-100J$$

$$Q = W + \Delta E = -250J$$

(2) 整个过程:
$$Q_1 = 950J$$
, $Q_2 = 850J$

该循环的效率
$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{850}{950} = 10.5\%$$