Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algori

Invariants of

Conclusion

Reference

Appendia

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants

Bibek Kabi¹ Eric Goubault¹ Antoine Miné² Sylvie Putot¹

¹LIX, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, France

²Sorbonne Université, CNRS, Laboratoire d'Informatique de Paris 6, France

NSV 2020

13th International Workshop on Numerical Software Verification 20-21 July 2020 Los Angeles, CA, USA

https://nsv2020.github.io/

Introduction

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants

Bibek Kabi, Eric Goubault. Antoine Miné. Sylvie Putot

Objective

To verify if programs satisfy safety properties

Example

$$x, y := \text{input } [0.9, 1.1]$$
 while true do

xnew :=
$$\frac{2x}{0.2+x^2+y^2+1.53*x^2*y^2}$$

ynew := $\frac{2y}{0.2+x^2+y^2+1.53*x^2*y^2}$
x := xnew y := ynew

done

What is an invariant?

An invariable property even after operations or transformations applied

Have they already been computed? and how?

Fixed-point computation [Cousot and Cousot (1977); Bradley (2011)]; Constraint-based techniques [Colón et al. (2003); Gulwani and Tiwari (2008)1:

Introduction

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive

Bibek Kabi, Eri Goubault, Antoine Miné, Sylvie Putot

Motivating example

example

Invariants of

C----1----

Reference

nnendiv

Overview

- Motivating example
- Search algorithm
- Invariants of programs
- Conclusion

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Soarch algorithm

Invariants of

Conclusion

Reference

Appendia

Motivating example: verification of safety property of a computer program

Motivating example: finding an invariant

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants

Bibek Kabi, Eric Goubault. Antoine Miné. Sylvie Putot

Motivating example

Corner example [Martin (2014); Miné et al. (2016)]

$$x := \text{input } [0.9, 1.1]$$

 $y := \text{input } [0.9, 1.1]$
while true do

$$xnew := \frac{2x}{0.2+x^2+y^2+1.53*x^2*y^2}$$

$$ynew := \frac{2y}{0.2+x^2+y^2+1.53*x^2*y^2}$$

$$x := xnew \quad y := ynew$$

done

- initial values of (x, y) or entry states: $I \stackrel{\text{def}}{=} [0.9, 1.1] \times [0.9, 1.1]$
- loop effect on (x, y):

$$F: \mathcal{P}(\mathbb{R}^2) \to \mathcal{P}(\mathbb{R}^2) F(X) \stackrel{\text{def}}{=} \{ (\frac{2x}{0.2+x^2+y^2+1.53*x^2*y^2}, \frac{2y}{0.2+x^2+y^2+1.53*x^2*y^2}) | (x, y) \in X \}$$

Invariants and inductive invariants

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of

Conclusio

Reference

Appendix

Method

To prove an invariant, look for an inductive invariant

Why is it so?

Given:

- the entry states, $I \subseteq \mathbb{R}^n$
- the transfer function, $F: \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$

Then:

- $G \subseteq \mathbb{R}^n$ is an inductive invariant if $I \subseteq G \land F(G) \subseteq G$
- Ifp, F being the smallest one (Tarski's theorem ensures the existence of a least fixpoint)

 ${\rm lfp}_1 F$ is the least fixpoint of a functional F over a (sufficiently structured) partially-ordered domain of program states, defining the program semantics

• any $G \supseteq \mathrm{lfp}_{I}F$ is an invariant

Motivational example: absence of an inductive invariant

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

programs

Conclusio

Reference

Corner example [Martin (2014); Miné et al. (2016)]

Lack of an inductive invariant

- $G = [-2.1, 2.1] \times [-2.1, 2.1]$ is an invariant all executions satisfy $(x,y) \in G$ at loop head, i.e., $\bigcup_{n \in \mathbb{N}} F^n(l) \subseteq G$
- $G = [-2.1, 2.1] \times [-2.1, 2.1]$ is not an inductive invariant

 $F(G) \not\subseteq G$, the problem!

Motivational example: the solution

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

programs

Conclusio

Reference

Corner example [Martin (2014); Miné et al. (2016)]

```
 \begin{array}{lll} 1 & x = [0.9, 1.1]; \\ y = [0.9, 1.1]; \\ \text{while (True) } \{ \\ 4 & xnew = 2x/(0.2 + x^2 2 + \\ 5 & y^2 + 1.53x^2y^2); \\ 6 & ynew = 2y/(0.2 + x^2 2 + \\ 7 & y^2 + 1.53x^2y^2); \\ 8 & x = xnew; y = ynew; \} \end{array}
```


The solution

- search for a disjunction of boxes which is inductive
- search algorithm inspired by constraint programming

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorithm

programs

Conclusion

Reference

Appendix

Search algorithm

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorithm

Invariants of

Conclusio

Reference

Appendix

Search algorithm

Developed by Miné et al. (2016) and inspired by continuous constraint solving [Rueher (2005); Pelleau et al. (2013)] it infers inductive invariants of numeric programs

Aim

To find a collection of abstract elements $S = \{S_1, \dots, S_n\}$ such that

- $1 \subseteq \bigcup_i S_i$
- $\forall k : F^{\sharp}(S_k) \subseteq \bigcup S_i$
- $\forall i: S_i \subseteq T$, where T is target invariant or G^{\sharp}
- $\implies \bigcup_i S_i$ is an inductive invariant

Search algorithm: prior work and current work?

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorithm

Invariants of programs

Conclusion

Reference

Appendix

Prior work

Already combined with interval and octagon abstraction

Current work

- we want to adapt the combination of constraint solving with abstract interpretation for abstract domains which are not complete lattices
- here we deal with affine forms (zonotopes)
 - very good balance between complexity and precision
 - very interesting combinatorial structure that we will exploit
- operations we will revisit:
 - splitting (tiling)
 - inclusion test (improved the complexity)
 - meet (a geometrical meet taking into account all the faces at once)

Implementation

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorithm

Invariants of

Conclusio

Reference

Appendix

Prior work

- prototype analyzer
 - front end is the OCaml code implementing the algorithm
 - core mathematical functions are computed in Apron

Current work

- Implemented the operations in Taylor1+ [Ghorbal et al. (2009)]
 zonotope abstract domain in the APRON library
 https://github.com/bibekkabi/taylor1plus
- Implemented the OCaml binding for the splitting operator in Apron
- Adapted the prototype analyzer extending it to zonotope abstract domain and also to polyhedra

https:

//github.com/bibekkabi/Prototype_analyzerwithApron

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorithm

Invariants of programs

Conclusion

Reference:

Invariants of programs

Invariants in Programs

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algo

Invariants of programs

Conclusio

Referenc

Filter

$$x := \text{input } [-0.1, 0.1]$$

 $y := \text{input } [-0.1, 0.1]$

while true do

$$r := 1.5x - 0.7y + [-0.1, 0.1]$$

$$y := x \quad x := r$$

done

- 238 boxes 1310 iterations, 0.1029 s
- 74 octagons, 736 iterations, 0.2105 s
- 42 polyhedra, 312 iterations, 0.2554 s
- 38 zonotopes, 222 iterations, 0.5020 s

Inductive invariant obtained for goal x, y = [-4, 4]

Invariants in Programs

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive

Invariants Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Invariants of programs

Conclusion

Reference

Sine

x := input

[-1.57079632679, 1.57079632679]

y := input [0, 0]

while true do

$$y := x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040}$$

- 240 boxes 1448 iterations, 0.4395 s
- 154 octagons, 348 iterations, 0.1102 s
- 136 polyhedra, 286 iterations, 1.1145 s
- 21 zonotopes, 33 iterations, 0.0547 s

Inductive invariant obtained for goal x = [-2, 2], y = [-1.05, 1.05]

Invariants in Programs

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivatin example

Invariants of

programs

Conclusio

Referen

Benchmarks

Program	Boxes			Octagons			Zonotopes			Polyhedras		
	#elems.	#iters.	time(s)	#elems.	#iters.	time(s)	#elems.	#iters.	time(s)	#elems.	#iters.	time(s)
Octagon	752	2621	0.1042	752	2756	0.6115	1	1	0.0001	1	1	0.0001
Filter	238	1310	0.1029	74	736	0.2105	38	222	0.5020	42	312	0.2554
Arrow-Hurwicz	1784	1643	0.4033	369	931	0.5147	15	38	0.0235	134	484	1.0059
Filter2	14	58	0.0034	7	13	0.0013	8	16	0.0045	1	1	0.0009
Harm	87	438	0.0112	88	448	0.0647	60	254	0.5143	53	243	0.2442
Harm-reset	87	438	0.0204	88	446	0.1478	60	268	0.9717	53	253	0.3867
Harm-saturated	23	15	0.0011	24	16	0.0112	9	14	0.0157	5	9	0.0124
Lead-lag	-	-	-	-	-	-	-	-	-	-	-	-
Lead-lag-reset	-	-	-	-	-	-	-	-	-	-	-	-
Lead-lag-saturated	-	-	-	-	-	-	-	-	-	-	-	-
Sine	240	1448	0.4395	154	348	0.1102	21	33	0.0547	136	286	1.1145
Square root	7	10	0.0005	4	4	0.0016	1	1	0.0001	4	4	0.0066
Newton	200	102	0.1097	158	76	0.1785	11	17	0.0197	64	26	2.0660
Newton2	1806	499	6.6861	709	430	2.2207	8	6	0.0193	12	12	2.7498
Corner	129781	1847	646.8494	129767	1847	8850.8766	488	999	35.6245	2368	4248	126,7980

- zonotopes provide a good trade off in particular on non-linear programs
- they remain the most effective in showing that the initial invariant is correct

Conclusion

Conclusion

Conclusion

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of

Conclusion

Reference

Appendix

- Explored in detail the CP based AI approaches
- Extended an existing CP framework using zonotopes
- Tested it on non-linear programs

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of programs

Conclusion

Reference

Appendix

Thank you!

References I

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eri Goubault, Antoine Miné, Sylvie Putot

example

Search algorithm

Invariants of

Conclusion

References

Append

- Althoff, M. and Krogh, B. H. (2011). Zonotope bundles for the efficient computation of reachable sets. In 2011 50th IEEE conference on decision and control and European control conference, pages 6814–6821. IEEE.
- Bradley, A. R. (2011). Sat-based model checking without unrolling. In *International Workshop on Verification, Model Checking, and Abstract Interpretation*, pages 70–87. Springer.
- Colón, M. A., Sankaranarayanan, S., and Sipma, H. B. (2003). Linear invariant generation using non-linear constraint solving. In *Proceedings of CAV*, pages 420–432. Springer.
- Cousot, P. and Cousot, R. (1977). Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In *Proceedings of POPL*, pages 238–252. ACM.

References II

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants o

Conclusio

References

Appendi

- Ferrez, J.-A., Fukuda, K., and Liebling, T. M. (2005). Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. *European Journal of Operational Research*, 166(1):35–50.
- Ghorbal, K., Goubault, E., and Putot, S. (2009). The zonotope abstract domain taylor1+. In *International Conference on Computer Aided Verification*, pages 627–633. Springer.
- Ghorbal, K., Goubault, E., and Putot, S. (2010). A logical product approach to zonotope intersection. In *Proceedings of CAV*, pages 212–226.
- Girard, A. and Le Guernic, C. (2008). Zonotope/hyperplane intersection for hybrid systems reachability analysis. In *International Workshop on Hybrid Systems: Computation and Control*, pages 215–228. Springer.

References III

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

programs Conclusio

References

Reference

Goubault, E. and Putot, S. (2015). A zonotopic framework for functional abstractions. *Formal Methods in System Design*, 47(3):302–360.

Guibas, L. J., Nguyen, A., and Zhang, L. (2003). Zonotopes as bounding volumes. In *Proceedings of the ACM-SIAM symposium on Discrete algorithms*, pages 803–812.

Gulwani, S. and Tiwari, A. (2008). Constraint-based approach for analysis of hybrid systems. In *International Conference on Computer Aided Verification*, pages 190–203. Springer.

Martin, B. (2014). Rigorous algorithms for nonlinear biobjective optimization. PhD thesis, Université de Nantes.

Miné, A., Breck, J., and Reps, T. (2016). An algorithm inspired by constraint solvers to infer inductive invariants in numeric programs. In *Proceedings of ESOP*, pages 560–588.

References IV

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

example

Search algorith

program

Conclusio

References

Appendi

- Pelleau, M., Miné, A., Truchet, C., and Benhamou, F. (2013). A constraint solver based on abstract domains. In *International Workshop on Verification, Model Checking, and Abstract Interpretation*, pages 434–454. Springer.
- Richter-Gebert, J. and Ziegler, G. M. (1994). Zonotopal tilings and the bohne-dress theorem. *Contemporary Mathematics*, 178:211–211.
- Rueher, M. (2005). Solving continuous constraint systems. In *International Conference on Computer Graphics and Artificial Intelligence*, volume 1, pages 2–2.
- Ziegler, G. M. and Richter-Gebert, J. (2017). 6: Oriented matroids. In *Handbook of Discrete and Computational Geometry, Third Edition*, pages 159–184. Chapman and Hall/CRC.

Appendix

Appendix

Appendix

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eri Goubault, Antoine Miné, Sylvie Putot

Motivating example

ехапіріє

Invariants of

Conclusio

Reference Appendix

3-dimensional parallelotopic tiles

Affine forms to zonotopes

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algor

Invariants of programs

Conclusion

Appendix

Example:

$$\hat{x} = 20 - 3\varepsilon_1 + \frac{5}{2}\varepsilon_2 + \frac{2}{2}\varepsilon_3 + 1\varepsilon_4 + 3\varepsilon_5$$

$$\hat{v} = 10 - 4\varepsilon_1 + \frac{2}{2}\varepsilon_2 + 1\varepsilon_4 + 5\varepsilon_5$$

$$A^{T} = \begin{pmatrix} 20 & -3 & 5 & 2 & 1 & 3 \\ 10 & -4 & 2 & 0 & 1 & 5 \end{pmatrix}, n = 5, p = 2$$

Geometric concretisation: zonotope

$$\gamma(A) = \left\{A^{T}inom{1}{arepsilon} | arepsilon \in \left[-1,1
ight]^{n}
ight\} \subseteq \mathbb{R}^{p}, A \in \mathcal{M}(n+1,p)$$

Zonotope tiling: a vertex enumeration problem

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating

Search algorith

Invariants of

Conclusion

Referen

Appendix

Motivation: can project 2^n vertices of n-hypercube with generator matrix

Non-extremal projections become the vertices of the tiles

Challenge

Tiling problem: to find sufficiently many of these not existant vertices

Zonotope: test for inclusion

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

programs

Appendix

State-of-the-art (Lemma 4 of Goubault and Putot (2015))

Let two matrices $X \in \mathcal{M}(n_X + 1, p)$ and $Y \in \mathcal{M}(n_Y + 1, p)$, then $\gamma(X) \subseteq \gamma(Y)$ if and only if for all $u \in \mathbb{R}^p$

$$\left| \sum_{i=1}^{r} (y_{(0,i)} - x_{(0,i)}) u_i \right| \leq ||Y_+ u||_1 - ||X_+ u||_1$$

Can this be improved? Yes! Complexity can be reduced to $2\binom{n}{p-1} \times \mathcal{O}(np)$

Lemma

For two zonotopes given by matrices $X \in \mathcal{M}(n_X+1,p)$ and $Y \in \mathcal{M}(n_Y+1,p)$, let $u = \{u_1, \cdots, u_k\}$ be vectors in \mathbb{R}^p such that each face in $\gamma(Y)$ has a vector in u that is normal to it. Then $\gamma(X) \subseteq \gamma(Y)$ if and only if

$$|\langle u_i, c_x - c_y \rangle| \le ||Y_+ u_i||_1 - ||X_+ u_i||_1, \forall i = 1, \dots, k$$

where c_x , c_y are the centers of the zonotopes $\gamma(X)$, $\gamma(Y)$ respectively

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorithm

programs

Conclusio

Reference

Appendix

State-of-the-art

- Sequence of meet of the zonotope with the faces of the other.
 - meet of a zonotope and a linear space geometrically [Girard and Le Guernic (2008)]
 - functional interpretation of the meet of a zonotope with a guard [Ghorbal et al. (2010)]
- Zonotope bundles can be expensive [Althoff and Krogh (2011)]

Solution

- a geometrical meet taking into account all the faces at once
- $\bullet \ \, \mathfrak{Z}_{1} \cap \mathfrak{Z}_{2} \subseteq \left\{ \alpha \mathit{M}_{1}^{\mathrm{T}} \left(\begin{array}{c} 1 \\ e \end{array} \right) + (1-\alpha) \mathit{M}_{2}^{\mathrm{T}} \left(\begin{array}{c} 1 \\ e' \end{array} \right), ||e||_{\infty} \leq 1, ||e'||_{\infty} \leq 1 \right\}$

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of programs

Conclusion

Referenc

Appendix

Example

$$S_0 = [2\varepsilon_1, 2\varepsilon_2]^{\mathrm{T}}$$
 and $F^{\sharp}(S_0) = [1.4(\varepsilon_1 + \varepsilon_2), 1.4(\varepsilon_1 - \varepsilon_2)]^{\mathrm{T}}$, $S_0 \cap F^{\sharp}(S_0)$:

Sequential computation of meet of the zonotope and the half-spaces

Abstract domain

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

programs

Conclusion

Appendix

Bottleneck

Computing in $\mathcal{P}(\mathbb{R}^n)$ can be undecidable

Solution

Numerical abstract domain (approximation): : $\mathcal{D}^{\sharp} \subseteq \mathcal{P}(\mathbb{R}^n)$

- $\bullet~\mathcal{D}^{\sharp}$ is a subset of properties of interest with a computer representation
- $F^{\sharp}: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ over-approximates the effect of $F: \mathcal{P}(\mathbb{R}^n) \to \mathcal{P}(\mathbb{R}^n)$

Numerical abstract domains

- Intervals/Boxes: $x \in [a, b]$
- Polytopes: H-representation (constraints) & V-representation (vertices)
- Octagons: $\pm x \pm y \le a$
- Affine sets (zonotopes-center symmetric polytopes)

Abstract Interpretation [Cousot and Cousot (1977)]

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

programs

Conclusio

Referenc

Appendix

Traditional Abstract Interpretation Approach

- to look for an abstract post-fixpoint of $F^{\sharp}: F^{\sharp}(X^{\sharp}) \subseteq {}^{\sharp}X^{\sharp}, I^{\sharp} \subseteq {}^{\sharp}X^{\sharp}$
- by iterating $F^{\sharp}: X^{0} = I, \forall k.X^{k+1} = X^{k} \cup^{\sharp} F^{\sharp}(X^{k})$ (Kleene iteration)

Disjunctive completion

- ullet use $\mathcal{P}(\mathcal{D}^{\sharp})$ instead of \mathcal{D}^{\sharp}
- synthesize finite collections $G^{\sharp} \subseteq \mathcal{D}^{\sharp}$ of abstract elements, $G^{\sharp} = \{S_1, \dots, S_n\}$ that satisfies:

$$I \subseteq \bigcup_i S_i$$

$$\forall k: F^{\sharp}(S_k) \subseteq \bigcup_i S_i$$

$$\mathop{\cup}_{i} \mathcal{S}_{i} \subseteq \mathcal{T}$$

Search algorithm: overview

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants

Bibek Kabi, Eric Goubault.

Appendix

Given F^{\sharp} , I^{\sharp} , G^{\sharp} such that $I^{\sharp} \subseteq G^{\sharp}$

Algorithm [Miné et al. (2016)]

- begin with $S \stackrel{\text{def}}{=} \{G^{\sharp}\}$
- while $\exists k : F^{\sharp}(S_k) \not\subseteq \cup_i S_i$ either keep S_k , split S_k or discard S_k
- always, $I^{\sharp} \subset \cup_{i} S_{i}$
- stopping criteria: $\forall k : F^{\sharp}(S_k) \subseteq \cup_i S_i$

Search algorithm: classification of abstract elements

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

programs

Conclusio

Reference

Doomed

- $\bullet \ F^{\sharp}(S_k) \cap (\cup_i S_i) = \emptyset$
- such an abstract element is always discarded
- ullet deciding whether S_k is doomed requires an intersection test

Such an element will always prevent inductiveness

Search algorithm: classification of abstract elements

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorit

programs

Conclusion

Reference Appendix Necessary

- $S_k \cap I \neq \emptyset$
- ullet deciding whether S_k is necessary requires an intersection test

Such an element keeps ensuring that $I \subseteq \bigcup_i S_i$ always holds

Search algorithm: classification of abstract elements

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorit

programs

Conclusion

Reference

Appendix

Benign

- $F^{\sharp}(S_k) \subseteq \bigcup_i S_i$
- ullet deciding whether S_k is benign requires an inclusion checking

Such an element does not prevent inductiveness

Search algorithm: classification of abstract elements

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algoriti

programs

Conclusio

Reference

Useful

- $S_k \cap (\bigcup_i F^\sharp(S_i)) \neq \emptyset$, i.e., an element of G^\sharp relies on S_k to be benign
- \bullet deciding whether S_k is useful requires an intersection test

Search algorithm: Coverage

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorit

Invariants o programs

Conclusio

Reference

Coverage

• pick the S_k with the least coverage

$$\operatorname{coverage}(S_k) := \frac{\sum_i \operatorname{vol}(F^{\sharp}(S_k) \cap S_i)}{\operatorname{vol}(F^{\sharp}(S_k))}$$

• ultimate aim is to have $\forall k$: coverage(S_k)= 1

•
$$\forall k$$
: coverage $(S_k)=1 \iff F^{\sharp}(S_k)\subseteq \bigcup_i S_i$

• Note: S_i do not overlap

Search algorithm: prior work and current work?

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of

Conclusion

Reference

Appendix

New operations defined for zonotopes

- splitting
- meet

Operations improved for zonotopes

inclusion test

Operations improved for all domains

coverage metric

Zonotope: split

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive

Invariants
Bibek Kabi, Er
Goubault,
Antoine Miné
Sylvie Putot

Motivating example

Search algorit

programs

Conclusion

Reference

Appendix

Splitting a zonotope

• by splitting the box which the zonotope is a projection of

by tiling

Zonotope: splitting with overlap

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorit

Invariants of programs

Conclusio

Reference

Appendix

Motivation

• splitting the j^{th} generator such that $\mathfrak{Z}_1 \cup \mathfrak{Z}_2 = \mathfrak{Z}$:

$$3_1 = (c - \frac{g_j}{2}, \langle g_1, \dots, \frac{g_j}{2}, \dots, g_k \rangle),
3_2 = (c + \frac{g_j}{2}, \langle g_1, \dots, \frac{g_j}{2}, \dots, g_k \rangle)$$

Pros

- simple, close to that on boxes
- keeps the same kind of shape
- keeps the direction of the faces fixed

Cons

- produces overlapping zonotopes
 - Note: the data structure of the algorithm requires that the S_i must not overlap
 - Note: needs a minor change in the algorithm; experimented it but not so efficient

Zonotope: polar dual of hyperplane arrangement [Ziegler and Richter-Gebert (2017); Richter-Gebert and Ziegler (1994)]

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Sparch ale

Invariants o programs

Conclusio

Reference

Any hyperplane partitions the space \mathbb{R}^p into three sets: $h^+ = \{x \mid y^T x > h\}$ $h^0 = \{x \mid y^T y = h\}$ and $h^- = \{y \mid y^T y = h\}$

$$h_j^+ = \{x \mid v_j^{\mathrm{T}} x > b_j\}, \ h_j^0 = \{x \mid v_j^{\mathrm{T}} x = b_j\} \text{ and } h_j^- = \{x \mid v_j^{\mathrm{T}} x < b_j\}$$

Characterizing a tile

The zero entries of the sign vectors (p generators) characterize the shape The non-zero entries (n-p generators) will decide the position

Zonotope: fixing generator

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive

Invariants Bibek Kabi, Eric Goubault.

Appendix

Definition

Let $\{+,-,0\}^n$ be a collection of sign vectors. A (single-element) fixing defines a sub-zonotope

$$\mathfrak{Z}(V \setminus j^{\{+,-\}}) := \sum_{i \in \{0\}^{(n-1)}} [-v_i, +v_i] + \sum_{i \in \{+,-\}} v_i - \sum_{i \in \{+,-\}} v_i$$

Fixing the first generator to '+'

Zonotope: sign vector enumeration

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of

Conclusio

Reference

Appendix

Reverse search algorithm [Ferrez et al. (2005)]

- A local search (f) to map any cell to an adjacent cell
- An Adjacency oracle (Adj) to return the set of neighbor cells of any given cell
- Visit all members by tracing the tree from the root
- Time complexity of $\mathcal{O}(n \ p \ LP(n, p) \ |\Sigma|)$ to compute $\Sigma = \Sigma(V)$

Zonotope: Tiling algorithm

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of

Conclusio

Reference

Appendix

Algorithm

• While no. of generators is not equal to 2

Keep fixing the sign of first generator

• Then finding all the adjacent p-parallelotopic tiles

Zonotope: Tiling algorithm

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of

programs

Reference

Appendix

Algorithm

- While no. of generators is not equal to 2
 - Keep fixing the sign of first generator

Then finding all the adjacent p-parallelotopic tiles

Heuristic measure for coverage

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorithm

Conclusio

D. C.

Appendix

Partitioning data structure

Perform updates efficiently without scanning G^{\sharp} entirely after each operation

$$\operatorname{coverage}(S_k) := \frac{\#\{P|\operatorname{cnt}(P) \neq \emptyset, P \in \operatorname{post}(S_k)\}}{\#\{P|P \in \operatorname{post}(S_k)\}}$$

 S_k is benign $\iff \forall P \in \text{post}(S_k) : \text{cnt}(P) \neq \emptyset \land F^{\sharp}(S_k) \subseteq T$

Constraint programming

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating

cxampic

Invariants o

programs

D . C

Appendix

Constraint programming

a method to solve Constraint Satisfaction Problems

CSP

- ullet a set of variables $\mathcal{V}\stackrel{ ext{def}}{=} ig\{ v_1, \dots, v_n ig\}$
- a set of initial domains $\mathcal{D} \stackrel{\text{def}}{=} \{D_1, \dots, D_n\}$ $\forall i : D_i \in \mathbb{R} \text{ or } \forall i : D_i \in \mathbb{Z}$
- ullet and a set of constraints $\mathcal{C}\stackrel{\mathsf{def}}{=} \left\{ \mathit{C}_{1}, \ldots, \mathit{C}_{\mathit{p}} \right\}$ on \mathcal{V}

Solution to CSP

$$\mathcal{S} \stackrel{\text{def}}{=} \{ x \in \mathcal{D} \mid \forall i : x \models \mathcal{C}_i \}$$

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Search algorith

Invariants of

Conclusio

Reference

Definition

The volume of a zonotope $\mathfrak{Z}(V)$ defined by a set of n vectors $V = \{v_1, \ldots, v_n\}$ in p-dimension is given by $2^p \cdot \sum |\det(v_{i_1}, \ldots, v_{i_p})|$

Example

Consider a zonotope with the set of vectors

$$V = ((-3,4), (5,2), (2,0), (1,1), (3,5)).$$

$$vol(3(V)) = \det\begin{pmatrix} -3 & 5 \\ -4 & 2 \end{pmatrix} + \det\begin{pmatrix} -3 & 2 \\ -4 & 0 \end{pmatrix} + \det\begin{pmatrix} -3 & 1 \\ -4 & 1 \end{pmatrix} + \det\begin{pmatrix} -3 & 3 \\ -4 & 5 \end{pmatrix} + \det\begin{pmatrix} 5 & 2 \\ 2 & 0 \end{pmatrix} + \det\begin{pmatrix} 5 & 1 \\ 2 & 1 \end{pmatrix} + \det\begin{pmatrix} 5 & 3 \\ 2 & 5 \end{pmatrix} + \det\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} + \det\begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix} + \det\begin{pmatrix} 1 & 3 \\ 1 & 5 \end{pmatrix}$$

Problem

Calculating the coverage by computing the volume can be fairly expensive

Zonotope: Tiling algorithm performance analysis

Combining
Zonotope
Abstraction and
Constraint
Programming for
Synthesizing
Inductive
Invariants

Bibek Kabi, Eric Goubault, Antoine Miné, Sylvie Putot

Motivating example

Invariants of

Conclusion

Referenc

Appendix

Time complexity

$$\mathcal{O}(n \ p \ LP(n,p) \ |\Sigma|) + (n-2) \left[\mathcal{O}(p) + \mathcal{O}\left(2\binom{n}{p-1}\right) \right] + (n-2) \left[\binom{n}{p-1}\left\{\mathcal{O}\left(2\binom{n}{p-1}\right) + \mathcal{O}(p)\right\}\right]$$

 Finding the sign vectors of the original zonotope to be tiled using the reverse search

$$\mathcal{O}(n \ p \ LP(n,p) \ |\Sigma|)$$

- Fixing the sign of the generators until the parallelotopic tile
 - We compute the sign vectors of each sub-zonotope and their centers

•
$$(n-2)$$
 $\left[\mathcal{O}(p)+\mathcal{O}\left(2\binom{n}{p-1}\right)\right]$

• Computing the parallelotopic tiles for each sub-zonotope

$$(n-2)\left[\binom{n}{p-1}\left\{\mathcal{O}\left(2\binom{n}{p-1}\right)+\mathcal{O}(p)\right\}\right]$$

Zonotope: test for intersection

Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive

Invariants
Bibek Kabi, Eric
Goubault,
Antoine Miné,
Sylvie Putot

Motivating example

Search algorith

Invariants of programs

Conclusion

Reference

Appendix

Test

- $\mathfrak{Z}_1 \cap \mathfrak{Z}_2 \neq \emptyset$ iff $c_1 c_2 \in (0, \langle g_1, \cdots, g_k, h_1, \cdots, h_m \rangle)$ [Guibas et al. (2003)]
- Finding the values of the noise symbols by

