

Fig.1

Fig.3

Fig.6a N1

S1

D

145.042 mm

x

Fig.6e

IPE	\													
PADEMARKS	REFL	REFL	KEFL REFL	REFL	l İ) Y ²⁰	<i>a</i> ~	-1.61832E-24 0.00000E+00	7.46570E-26 0.00000E+00	-5.98614E-23 0.00000E+00	2.36533E-26 0.00000E+00	1.13331E-21 0.00000E+00	2.82784E-27 0.00000E+00	Reference wavelength = 13.4 nm Imaging scale [reduction ratio] = 0.25 Image-side aperture = 0.25
iter	86 40	47	90	96 173	20	(J) + 14 (G) Y + 16 (H) Y + 18 (J	υŦ	6.93597E-20 0.00000E+00	-3.52050E-21 0.00000E+00	8.46286E-19 0.00000E+00	-5.36969E-22 0.00000E+00	-5.07132E-18 0.00000E+00	1.29123E-21 0.00000E+00	Reference Imaging sc Image-side
Diameter	210.8986 Im 177.1640	177.3847	426.0706	310.6813	70.5007	$Y^{8}_{+}(D) Y^{10}_{+}(E) Y^{12}_{+}(F)$	8 9	-4.47710E-15 0.00000E+00	-3.63055E-16 0.00000E+00	-2.92857E-15 0.00000E+00	7.43877E-17 0.00000E+00	1.45719E-13 0.00000E+00	3.06114E-16 0.00000E+00	
Table 1 Thickness	743.3276 -557.1863 aperture diaphragm	0.0000 702.9968 221.1310	787.9929	480.7697		- + (A) Y 4 (B) Y 6 (C)	ΑIL	5.4896E-10 0.00000E+00	-4.50667E-11 0.00000E+00	-3.98337E-10 0.00000E+00	-3.55491E-12 0.00000E+00	5.44569E-09 0.00000E+00	6.69863E-11 0.00000E+00	Fig. 11
Radius	INF A(1)	A(2) A(3)	A(4) A(5)	A(6)	INF	$\frac{(\text{CURV}) \ Y^2}{1 + (1 - (1 + K) (\text{CURV})^2 \ Y^2)^{1/2}} + (A) \ Y^4 + (B) \ Y^6 + (C) \ Y^8 + (D) \ Y^{10} + (E) \ Y^{12} + (F) \ Y^{14} + (G) \ Y^{16} + (H) \ Y^{18} + (J) \ Y^{20}$	ЖĦ	0.00000 1.87256E-29	0.000000 -7.88639E-30	0.000000 1.64447E-27	0.000000 -1.71616E-31	0.00000 -9.96256E-26	0.000000 4.44608E-32	
Element Number	Object 1	C/ E	4 4	9	lmage	asperic constants $Z = \frac{1}{1 + 1}$	CURV	0.00006144	0.00092955	0.00284106	0.00193867	0.00179551	0.00186905	
						asber	asperic profile	A(1)	A(2)	A(3)	A(4)	A(5)	A(6)	

OIPE	<u>)</u>															
SEP 0 9 2004	101 = 101															χ.
PADEMARK.	REFL	REFL	REFL	REFL	REFL	KEFL		>-	<i>a</i> >	-1.24487E-24 0.00000E+00	-3.30260E-25 0.00000E+00	1.20451E-22 0.00000E+00	2.50132E-25 0.00000E+00	7.00685E-22 0.00000E+00	1.39691E-27 0.00000E+00	Reference wavelength = 13.4 nm Imaging scale [reduction ratio] = 0.25 Image-side aperture = 0.25
							14 16 18	+(G) + \(\text{(H)} + \(\text{(5)}\)	OΞ	4.65491E-20 0.00000E+00	-7.41356E-21 0.00000E+00	-1.55198E-18 0.00000E+00	-3.64542E-20 0.00000E+00	-2.78314E-18 0.00000E+00	1.34385E-21 0.00000E+00	Reference I Imaging sc Image-side
Diameter	217.5892 157.2988	157.6458	186.9465	464.9979	110.6968	70.8868	21, 7, 01,	· (U) Y + (E) Y + (F) Y	<i>B</i> 0	-3.59798E-15 0.00000E+00	-8.21885E-16 0.00000E+00	1.08088E-14 0.00000E+00	-1.14820E-15 0.00000E+00	1.32507E-13 0.00000E+00	3.06141E-16 0.00000E+00	
Table 2 Thickness	763.1539 -508.8959 aperture diaphragm	0.0000 592.9977	-263.0251	857.5155	-43/.1833 481.2681	1007:101	8, 6, 6, 8	+(A) Y +(B) Y +(C) Y +	Απ	5.02048E-10 0.00000E+00	-8.64008E-11 0.00000E+00	-8.95729E-10 0.00000E+00	-6.05769E-10 0.00000E+00	5.28849E-09 0.00000E+00	6.68738E-11 0.00000E+00	Fig. 12
Radius	INF A(1)	A(2)	A(3)	A(4) A(5)	A(6)	INF	(CURV) Y ²	$\frac{1+(1-(1+K)(CURV)^2 Y^2)^{1/2}}{1+(1-(1+K)(CURV)^2 Y^2)^{1/2}} + \frac{1}{(A)}Y + \frac{1}{(B)}Y + \frac{1}{(C)}Y + $	ЖШ	0.000000 3.09845E-29	-0.00000 0.00000e+00	0.000000 -3.93860E-27	0.799352 -1.67295E-30	0.00000 -8.77929E-26	0.000000 5.80814E-32	
Element Number	Object 1	2	<i>c</i> o ,	4 u	n v o	Image		-1)+1	CURV	-0.00009342	0.00094495	0.00281349	0.00176899	0.00182078	0.00186581	
							asperic		asperic profile	A(1)	A(2)	A(3)	A(4)	A(5)	A(6) ·	

	OIPEUC
Artical Artica	SEP 0 9 2004 U
E.	PADEMARK CE

	PADE	AARK															
Туре	REFL	REFL	REFL	REFL	KEFL	KEFL	.20	_	0 >	-1.42715E-24 0.00000E+00	7.46570E-26 0.00000E+00	-3.92007E-23 0.00000E+00	1.33054E-25 0.00000E+00	1.16863E-21 0.00000E+00	1.07497E-27 0.00000E+00	Reference wavelength = 13.4 nm Imaging scale [reduction ratio] = 0.25 Image-side aperture = 0.25	
							16 18	$+(A) Y^{4} + (B) Y^{6} + (C) Y^{8} + (D) Y^{10} + (E) Y^{12} + (F) Y^{14} + (G) Y^{16} + (H) Y^{18} + (J) Y^{20}$		6.16577E-20 0.00000E+00	-3.52050E-21 0.00000E+00	5.33788E-19 0.00000E+00	-9.93523E-21 0.00000E+00	-5.20812E-18 0.00000E+00	1.29774E-21 0.00000E+00	Reference w Imaging sca Image-side a	
Diameter	216.0671 173.9832	174.2476	188.2262	428.4537	110.3233	70.4765	10, 7, 12, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	+(U) Y +(E) Y +(F) Y	ВЭ	4.28505E-15 0.00000E+00	-3.63055E-16 0.00000E+00	-7.02528E-16 0.00000E+00	5.06179E-16 0.00000E+00	1.54832E-13 0.00000E+00	2.99098E-16 0.00000E+00		
Table 3Thickness	767.2557 -555.7033 aperture diaphragm	0.0000 682.2766	-233.6859	794.6148	480.820		8,10,6,10,4	+(A) r +(B) r +(C) r	Ач	5.67634E-10 0.00000E+00	-4.50667E-11 0.00000E+00	-3.26329E-10 0.00000E+00	-9.51406E-12 0.00000E+00	5.15785E-09 0.00000E+00	6.62264E-11 0.00000E+00	Fig. 13	
Radius	INF A(1)	A(2)	A(3)	A(4) A(5)	A(6)	INF	(CURV) Y ²	$1 + (1 - (1 + K) (CURV)^2 Y^2)^{1/2}$	Ε×	0.00000 2.03931E-29	0.000000 -7.88639E-30	0.000000 1.08438E-27	0.00000 -6.94542E-31	0.000000 -1.05073E-25	0.000000 6.23447E-32		
Element Number	Object 1	2	· ·	4 %	9	Image	•	()+1	CURV	0.0000000	0.00092352	0.00277871	0.00188296	0.00185628	0.00186897		
							asperic		asperic profile	A(1)	A(2)	A(3)	A(4)	A(5)	A(6)		

/	OIPE
PATE	SEP 0 9 2004
B	P TRADEMARK CH

	KA II	MOEMAS	W.C.E.										
Туре	REFL	REFL	REFL RFFI	REFL	REFL	20	, A (Q >	8.54337E-24 0.000000F+00	-7.83597E-27 0.00000E+00	-1.79843E-23 0.00000E+00	-2.15921E-21 0.00000F+00	5.66305E-26 0.00000E+00
<i>ler</i>	91	77	99 16	30	12	14 16 18	Y + (G) Y + (H) Y + (J	UI	-7.73130E-20 0.00000E+00	-3.05582E-21 0.00000E+00	1.65053E-19 0.00000E+00	6.16162E-18 0.00000E+00	3.64734E-21 0.00000E+00
Diameter	188.6091 m 219.3872	219.1277	1/9./699 577.446	109.4460	273.6442 71.0012	8, 51, 10, 112, 12	r +(U) r +(E) r +(F)	B 9	1.86189E-15 0.00000E+00	-3.80687E-16 0.00000E+00	2.76322E-15 0.00000E+00	6.30201E-15 0.00000E+00	8.32770E-16 0.00000E+00
Table 4 Thickness	739.9848 -659.9848 aperture diaphragm	0.0000 709.9848	492.0904 1094.5501	-412.2537	452.2537	10, 9 v la, 4 v lv, i	+(A) 1 +(B) 1 +(C)	ΑĀ	-7.36323E-11 0.00000E+00	-5.11521E-11 0.00000E+00	5.01337E-10 0.00000E+00	6.42053E-09 0.00000E+00	1.40503E-10 0.00000E+00
Radius	INF A(1)	A(2)	847.3874 CC	A(4)	A(5) INF	(CURV) Y ²	$1 + (1 - (1 + K)(CURV)^2 Y^2)^{1/2} + (H) Y + (B) Y + (C) Y + (D) Y + (E) Y + (F) Y + (G) Y + (H) Y + (J) Y$	EX	0.000000 -3.23697E-28	-0.000000 0.00000E+00	0.000301 7.76365E-28	0.000000 2.29050E-25	0.00000 0.00000E+00
Element Number	Object 1	~ ~) 4 (5	6 Image		+1 -7	CURV	0.00046523	0.00092527	0.00241893	0.00112101	0.00192607
						asperi		asperic profile	A(1)	A(2)	A(3)	A(4)	A(5)

Fig. 14

Reference wavelength = 13.4 nm Imaging scale [reduction ratio] = 0.25 Image-side aperture = 0.23