CS 235: Artificial Intelligence

Week 3

Heuristic (Informed) Search

Dr. Moumita Roy CSE Dept., IIITG

Reference: http://ai.stanford.edu/~latombe/cs121/2011/schedule.htm

Recall that the ordering of FRINGE defines the search strategy

Search Algorithm #2

SEARCH#2

- 1. INSERT(initial-node,FRINGE)
- 2. Repeat:
 - a. If empty(FRINGE) then return failure
 - b. N ← REMOVE(FRINGE):
 - c. $s \leftarrow STATE(N)$
- d. If GOAL?(s) then return path or goal state
 - e. For every state s' in SUCCESSORS(s)
 - i. Create a node N' as a successor of N
 - ii. INSERT(N',FRINGE)

Best-First Search

- It exploits state description to estimate how "good" each search node is
- An evaluation function f maps each node N of the search tree to a real number f(N) ≥ 0 [Traditionally, f(N) is an estimated cost; so, the smaller f(N), the more promising N]
- Best-first search sorts the FRINGE in increasing f
 [Arbitrary order is assumed among nodes with equal f]
- The strategy is identical to that for uniform cost search; except the use of f instead of g to order the priority queue.

How to construct f?

- Typically, f(N) estimates:
 - either the cost of a solution path through N Then f(N) = g(N) + h(N), where
 - g(N) is the cost of the path from the initial node to N
 - h(N) is an estimate of the cost of a path from N to a goal node
 - · or the cost of a path from N to a goal node

Then f(N) = h(N)

A* search algorithm

Greedy best first search

Heuristic function

 But there are no limitations on f. Any function of your choice is acceptable.

But will it help the search algorithm?

Heuristic Function

• The heuristic function h(N) ≥ 0 estimates the cost to go from STATE(N) to a goal state Its value is independent of the current search tree; it depends only on STATE(N) and the goal test GOAL?

Example:

5		8
4	2	1
7	3	6

STATE(N)

1	2	3
4	5	6
7	8	

Goal state

 $h_1(N)$ = number of misplaced numbered tiles = 6

Other Examples

5		8
4	2	1
7	3	6

STATE(N)

1	2	3
4	5	6
7	8	

Goal state

- $h_1(N)$ = number of misplaced numbered tiles = 6
- $h_2(N)$ = sum of the (Manhattan) distance of every numbered tile to its goal position = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

8-Puzzle

f(N) = h(N) = number of misplaced numbered tiles

8-Puzzle

f(N) = g(N) + h(N)with h(N) = number of misplaced numbered tiles

Heuristic Function

Heuristic

- Use our domain knowledge about the problem to choose some (not all) successors of the current state
- To speed up the searching process
- Heuristic function takes up a state and return the assessment of that state
- Finding right function is not always easy

Heuristic Function and AI search

- Heuristic function estimates how close a state is to the goal state
- It is just an estimation of path cost from a state to goal state (not actual value)
- In state space search, heuristic function helps to reduce the number of nodes expanded during search

Problem relaxation

 Standard approach to create a heuristic is problem relaxation

 Add some new actions for the problem so that search is not required to find the solution cost in the relaxed problem

Problem relaxation with example

5		8
4	2	1
7	3	6

STATE(N)

Goal state

- A problem with fewer restriction on action is called relaxed problem
- One way: pick up any misplaced tiles and place it in the appropriate position (tiles can move anywhere)
- Another way: relaxation on moving tiles along the x-axis and y-axis (tiles can move adjacent squares)

Problem relaxation with example

5		8
4	2	1
7	3	6

1	2	თ
4	5	6
7	8	

STATE(N) Goal state

- $h_1(N)$ = number of misplaced numbered tiles = 6
- $h_2(N)$ = sum of the (Manhattan) distance of every numbered tile to its goal position = 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

Cost of optimal solution to the relaxed problem is an admissible heuristic for the original problem (h₁ and h₂ both are admissible heuristic)

Admissible Heuristic

- It never overestimates the cost for reaching goal node from any node
- Let h*(N) be the cost of the optimal path from N to a goal node
- The heuristic function h(N) is admissible if for all N:

$$0 \le h(N) \le h^*(N)$$

 $h(N) < h^*(N)$ [underestimated]; $h(N) > h^*(N)$ [overestimated]

• An admissible heuristic function is always optimistic!

G is a goal node
$$\rightarrow$$
 h(G) = 0

Admissible vs. Non-admissible heuristic

Non-admissible heuristic:

- > Pessimistic heuristic because they overestimate the cost
- Breaking optimality by trapping good plan in fringe

Admissible heuristic:

- > Optimistic heuristic they can only underestimate the cost
- ➤ Can only slow down the search by assigning lower cost to a bad plan so that it will explored first; but it will find the optimal path gradually.

$$7(N) = 3(N) + 7(N)$$

1. $01 = \frac{2}{3} \cdot \frac{8}{3}$
 $01 = \frac{2}{3} \cdot \frac{8}{3}$
 $01 = \frac{2}{3} \cdot \frac{8}{3} \cdot \frac{8}{3}$
 $01 = \frac{2}{3} \cdot \frac{8}{3} \cdot \frac{8}{3$

Admissible

1.
$$01 = \{5^3\}$$
 $C1 = \{5^3\}$

2. $01 = \{A^4\}$ $B^5\}$
 $C1 = \{5^3\}$

3. $01 = \{8^5\}$ $G^6\}$
 $C1 = \{5^3\}$ $A^4\}$

4. $01 = \{6^6\}$ $A^5\}$
 $C1 = \{5^3\}$ $A^4\}$

Unne cersony expansion and a point and optimal so this gradually

Dominance

For two admissible heuristics h₁ and h₂

If $h_2(n) >= h_1(n)$ for all n, then h_2 dominates h_1 h_2 is more informed that h_1 . h_2 is better for search.

[Better heuristic means we have to explore fewer node before find the solution]

Composite Heuristic

- maximum of two admissible heuristics is also admissible
- Suppose, we have designed two or more heuristics and unsure about that any of them dominates all others
- We can use maximum of them as composite heuristic

$$h(n) = \max\{h_1(n), ..., h_m(n)\}$$

Consistent Heuristic

A heuristic h is consistent (or monotone) if

1) for each node N and each successor N' of

N:

$$h(N) \le w(N,N') + h(N')$$

2) for each goal node G:

$$h(G) = 0$$

A consistent heuristic is also admissible; but opposite may or may not hold

Consistent Heuristic

- > It will be stricter than the admissible one.
- > one consequence, f-value never decreases along the path

```
f(N')=g(N')+h(N')
=g(N)+w(N,N')+h(N')
>=g(N)+h(N)
=f(N)
f(N')>=f(N)
```

→ Intuition: a consistent heuristic becomes more precise as we get deeper in the search tree

Consistency Violation

If h tells that N is 100 units from the goal, then moving from N along an arc costing 10 units should not lead to a node N' that h estimates to be 10 units away from the

mistent and admissible

Best First Search

- It is a way to combining the advantage of both breadth first search and depth first search
- DFS is good if it allows a solution to be found without all competing branches having to be expanded
- BFS is good as it does not trap into a dead end
- Combining by following a single path at a time but switch the path whenever a competing path looks more promising than the current one

Example of Best First Search

Greedy best-first search

- Evaluation function f(n)=h(n), estimated cost from n to goal
- In route finding problem, h_{SLD}(n)=straight line distance/air distance from a node n to destination city
- Heuristic can't be computed from the problem description itself
- In addition, the problem specific domain knowledge is required to understand the correlation between the actual road distance and straight line distance
- The strategy expands the node that appears to be closest to goal (completely heuristic dependant)
- It may lead to the dead end in case of route finding problem

Rowte Finding problem from I to F start goal node node Straight line
distance
distance
setween
two cities (4 120 two ci-90 1.0L= \(\frac{1}{2}\) \(\frac{2}{3}\) CL= 2 3 2. OL = {N90, V190} 3. OL={V190, ±2263 CL = 2 I 226 3 N903) Infinite loop (4 allon revisit) CL= { I 226, Otherwise dead end h -> entimated

Evaluation

- If the state space is infinite, in general the search is not complete
- If the state space is finite and we do not discard nodes that revisit states, in general the search is not complete
- If the state space is finite and we discard nodes that revisit states, the search is complete, but in general is not optimal
- The worst case time and space complexity is O(b^m), m is maximum depth of search space
- However, the complexity can be reduced substantially with good heuristic.

A* Search (most popular algorithm in AI)

- 1) f(N) = g(N) + h(N), where:
 - g(N) = cost of best path found so far to N
 - h(N) = heuristic function
- 2) for all arcs: $w(N,N') \ge \varepsilon > 0$
- → Best-first search is then called A* search

Search algorithm (A^*)

- 1. Initialize: Set OPEN = $\{s\}$, CLOSED = $\{\}$ Set g(s) = 0 and f(s)=h(s)
- 2. Fail: If OPEN = { }, Terminate & fail
- 3. Select:

Select the minimum cost state, n, from OPEN and save n in CLOSED

4. Terminate:

If $n \in G$, terminate with success

Search algorithm (A*)

5. Expand:

Generate the successors of n using successor function.

```
For each successor, m:

If m \notin [OPEN \cup CLOSED]

Set g(m) = g(n) + w(n,m)

Set f(m)=g(m)+h(m)

and insert m in OPEN
```

```
If m \in [OPEN \cup CLOSED]
Set g(m) = min \{g(m), g(n) + w(n,m)\}
Set f(m)=g(m)+h(m)
If f(m) has decreased and m \in CLOSED, move it to OPEN
```

Evaluation

- A* search is not optimal if the heuristic is overestimated (break optimality)
- A* search is optimal with admissible heuristic if node reopening is allowed.
- Node reopening leads to the unnecessary node expansion (re-visit)
- A* search is optimal with consistent heuristic; In this case, node reopening is not needed (always expand node with optimal path)

Adminible heuristic

n(n) < h*(n)

1.
$$0L = \begin{cases} 5 \\ 5 \end{cases}$$
 ($L = \begin{cases} 3 \\ 3 \end{cases}$ due to accomplete to (14) (14)

1.
$$OL = \begin{cases} 5 \\ 5 \end{cases}$$
 $CL = \begin{cases} 3 \\ 4 \end{cases}$ $CL = \begin{cases} 5 \\ 5 \end{cases}$ $CL = \begin{cases} 5 \\ 6 \end{cases}$ C

$$3.01 = \{3^{28}, 0\}$$

$$OL = \frac{2}{3}B^{28}$$
, D
 $CL = \frac{3}{3}S^{15}$
 A^{14}
 B
 A^{14}
 A^{14}

4.
$$OL = \{3^{28}, E^{34}\}$$
 $CL = \{3^{5}, A^{14}, D^{23}\}$

$$OL = 28^{28}$$
, E^{34} move from classed to oper $CL = 25^{15}$, A^{14} , D^{23} A^{14} when we have

4.
$$OL = \frac{2}{3}B^{26}$$
, E^{34} , D^{23} $\frac{3}{3}$ $\frac{3}{3}$

6.
$$OL = 2E$$
 $CL = 25^{15}, A^{14}, B^{28}$
 $CL = 25^{15}, A^{14}, B^{28}$
 $Congression Tea$
 $CL = 25^{15}, A^{14}, B^{28}$
 $Congression Tea$
 $CL = 25^{15}, A^{14}, B^{28}, D^{19}, E^{30}$

6.
$$0L = 2L$$
 $CL = \frac{3}{5} \frac{5}{5}, A^{14}, B^{28}, D^{19}, A^{14}, B^{28}, D^{19}, E^{30}$
 $CL = \frac{3}{5} \frac{5}{5}, A^{14}, B^{28}, D^{19}, E^{30}, E^{30}$
 $CL = \frac{3}{5} \frac{5}{5}, A^{14}, B^{28}, D^{19}, E^{30}, E^{30}$

Consistent heuristic 4(n) < W(n,n')+4(n')

2.6L=
$$\frac{2}{3}A^{14}$$
, B^{17}

2.6L=
$$\frac{2}{5}$$
 | 3 $\frac{2}{3}$ | no mode-reopening is needed 3.6L= $\frac{2}{5}$ | $\frac{8}{7}$ | $\frac{14}{5}$

3.
$$GL = \{B^{17}, D^{27}\}$$

 $CL = \{S^{13}, A^{14}\}$

5.
$$OL = 2E^{30}$$

 $CL = 2S^{13}, A^{14}, B^{17}, D^{19}$ in went step
 $C. OL = 2G^{30}$ 3
 $C. OL = 2G^{30}$ 3

C.
$$OL = 2 G230 3$$

 $CL = 2513, A4, B17, D13, E303$

Completeness

• A* expands all nodes with f(n)<C* (C* is the cost of optimal solution path)

• It may expand some nodes with $f(n)=C^*$

 A* search is complete if there is finitely many nodes with cost less than or equal to C* (additionally step cost exceeds some finite value and b is finite)

Complexity

- Time/space complexity is exponential
- With good heuristic, it can reduce significantly
- Main problem is storage; need to store all generated nodes

A* Search (optimally efficient)

- A* search is optimally efficient for any given consistent heuristic
- No other optimal algorithm is guaranteed to expand fewer nodes than A*
- Any algorithm that does not expand all node with f(n)<C* runs the risk of missing the optimal solution.

Conclusion

- Design good heuristic for A* search
- Use different variants of A* (if possible some bound on memory requirement)

We can think about a solution (not necessarily optimal) for large-scale AI problem.

Move to the local search algorithm

Local Search

- Light-memory search method
- No search tree; only the current state is represented!
- Only applicable to problems where the path is irrelevant (e.g., 8-queen)
- Many similarities with optimization techniques

