Wyszukiwanie Binarne i Koszt Zamortyzowany

Autor: Franciszek Pietrusiak

Wyszukiwanie Binarne elementu w ciągu

Mając **uporządkowany monotonicznie** ciąg n elementów jesteśmy w stanie w czasie $O(\log n)$ odpowiadać na zapytania czy dany element należy do ciągu.

Kod:

lower_bound, upper_bound

Używając vector 'ów w C++ możemy skorzystać z wbudowanych funkcji w STL'u i nie pisać swojego binsearcha.

```
vector<int> v;
int x; \\ liczba której szukamy
auto lower = lower_bound(v.begin(), v.end(), x);
auto upper = upper_bound(v.begin(), v.end(), x);
```

lower_bound(iterator first, iterator last, const val) zwraca iterator do pierwszego elementu w przedziale [first, last) którego wartość jest nie mniejsza niż val.

upper_bound(iterator first, iterator last, const val) zwraca iterator do pierwszego elementu w przedziale [first, last) którego wartość jest większa niż val.

Zadanie Test na Inteligencje

Skrót Treści

Dostajemy ciąg A liczb całkowitych w przedziale $[1,10^6]$. Ciąg A może być długości do 10^6 . Mamy odpowiedzieć na dużo zapytań, czy pewien inny ciąg B jest **podciągiem** ciągu A. To znaczy, że jesteśmy w stanie usunąć niektóre elementy z ciągu A (ale nie zmieniać ich kolejności) i otrzymać ciąg B.

✓ Rozwiązanie

Wystarczy dla każdej liczby z ciągu A zapamiętać wszystkie jej indeksy w ciągu posortowane rosnąco. Teraz dla każdego ciągu B idziemy wyraz po wyrazie. Załóżmy, że natrafiamy na liczbę x. Teraz szukamy takiego indeksu liczby x w ciągu A, który jest: 1) większy niż ostatni wzięty przez nas indeks (początkowo jest to 0), 2) najmniejszy możliwy. Jeśli w pewnym momencie okaże się, że nie istnieje taki indeks to B nie jest podciągiem A.

Wyszukiwanie Binarne po wyniku

Zadanie Sieć Wifi

Skrót Treści

Jest m sal ustawionych wzdłuż jednego długiego korytarza. Te sale są od siebie oddalone o pewne odległości. Mając do dyspozycji n access pointów mamy tak je ustawić, aby w każdej sali był możliwie najlepszy zasięg. Należy wypisać jedną liczbę rzeczywistą - największą odległość pomiędzy salą, a access pointem znajdującym się najbliżej tej klasy.

✓ Rozwiązanie

Zadanie Krążki

Skrót Treści

Dostajemy pewną nietypowo wyciętą rurkę oraz ileś krążków. Następnie wrzucamy te krążki w pewnej ustalonej kolejności. Jako odpowiedź mamy podać głębokość na jakiej zatrzyma się ostatni wrzucony do rurki krążek.

\checkmark Rozwiązanie w złożoności $O(n + m \log n)$

Zauważmy dwa ważne fakty:

- 1. jeśli wrzuciliśmy do rurki krążek, który zatrzymał się na pewnej głębokości d, to teraz każdy z kolejnych krążków jakie wrzucimy do rurki zatrzyma się na **głębokości mniejszej** niż d.
- 2. jeśli rurka ma na pewnej głębokości d szerokość x to żaden z krążków o szerokości większej niż x nie może znaleźć się na głębokości większej niż d.

A zatem z perspektywy wrzucania krążków rurkę podaną w zadaniu możemy zastąpić równoważną rurką, w której szerokość coraz głębszych poziomów jest nierosnąca.

Dzięki temu, że teraz szerokość rurki jest posortowana, to w prosty sposób jesteśmy w stanie binsearchować głębokość na której zatrzyma się wrzucony do rurki krążek. Gdy tego dokonamy to na mocy faktu 1) możemy ograniczyć przeszukiwanie do poziomu na którym zatrzymał się krążek.

\checkmark Rozwiązanie w złożoności O(n+m)

Podobnie jak wcześniej zastępujemy rurkę podaną na wejściu przez "zwężającą się" rurkę. Jednak tym razem rurkę przechodzić będziemy od dna do góry nie korzystając z wyszukiwania binarnego. Dla każdego krążka będziemy liniowo szukać poziomu na który może on opaść. Zauważmy, że każdy z poziomów rozpatrywać będziemy **co najwyżej jeden raz**, ponieważ krążek może zatrzymać się na nim lub powyżej tego poziomu. Teraz wrzucając kolejne krążki z faktu 1) możemy "zapomnieć" o poziomach które już przeglądaliśmy. Zatem nasz algorytm z krokiem którego pesymistyczna złożoność to O(n) okazał się o bardzo szybki. Jego **całkowita** złożoność jest znacznie lepsza niż iloczyn pesymistycznej złożoności jednego kroku i liczby wszystkich kroków. Jest to przykład **Kosztu Zamortyzowanego**.

Koszt Zamortyzowany

Analiza kosztu zamortyzowanego skupia się na oszacowaniu czasu niezbędnego do wykonania **ciągu** operacji, a nie pojedynczej operacji. Program może wykonywać się znacznie szybciej niż iloczyn pesymistycznego czasu operacji i ilości operacji do wykonania, ponieważ tylko niektóre ciągi operacji są możliwe.