Hello World!

Prof. Naveen Kumar

March 26, 2024

Hello World! Today I am learning IATEX. IATEX is a great program for writing math. I can write in line math such as $a^2 + b^2 = c^2$. I can also give equations there own space:

$$\gamma^2 + \theta^2 = \omega^2$$

Integrals, Sums and Limits

Dr. Naveen Kumar Sharma

March 26, 2024

1 Integrals

Integral $\int_a^b x^2 dx$ inside text. The same integral on display:

$$\int_{a}^{b} x^{2} dx$$

and multiple integrals:

$$\iint_{V} \mu(u, v) \, du \, dv$$

$$\iiint_{V} \mu(u, v, w) \, du \, dv \, dw$$

$$\oint_{V} f(s) ds$$

2 Sums and products

Sum $\sum_{n=1}^{\infty} 2^{-n} = 1$ inside text. The same sum on display:

$$\sum_{n=1}^{\infty} 2^{-n} = 1$$

Product $\prod_{i=a}^{b} f(i)$ inside text. The same product on display:

$$\prod_{i=a}^b f(i)$$

3 Limits

Limit $\lim_{x\to\infty} f(x)$ inside text. The same limit on display:

$$\lim_{x \to \infty} f(x)$$

Equations

Prof. Naveen Kumar¹, Dr. Neeraj Kumar Sharma², and Sakeena Shahid³

¹Department of Computer Science, University of Delhi ²Ram Lal Anand College, University of Delhi ³SGTB Khalsa College, University of Delhi

November 15,2022

1 Maxwell's Equations

"Maxwell's equations" are named for James Clark Maxwell and are as follow:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$
 Gauss's Law (1)
 $\vec{\nabla} \cdot \vec{B} = 0$ Gauss's Law for Magnetism (2)

$$\vec{\nabla} \cdot \vec{B} = 0$$
 Gauss's Law for Magnetism (2)

$$\vec{\nabla} \times \vec{E} = -\frac{\partial B}{\partial t}$$
 Faraday's Law of Induction (3)

$$\nabla \cdot \vec{E} = \frac{\vec{r}}{\epsilon_0} \qquad \text{Gauss's Law} \qquad (1)$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \text{Gauss's Law for Magnetism} \qquad (2)$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \text{Faraday's Law of Induction} \qquad (3)$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \left(\epsilon_0 \frac{\partial \vec{E}}{\partial t} + \vec{J} \right) \qquad \text{Ampere's Circuital Law} \qquad (4)$$

Equations 1, 2, 3, and 4 are some of the most important in Physics.

$\mathbf{2}$ Matrix equation

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

List of mathematical functions:

- Trigonometric functions
 - $-\sin x$
 - $-\cos x$
 - $-\tan x$
- Special functions
 - Beta function

$$\beta(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt \mid p,q > 0$$

- Gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

- Riemann zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, s \in \mathbb{C}, n \in \mathbb{N}$$

Algorithm

```
Algorithm 1: Example code
   Input: Your Input
   Output: Your output
   Data: Testing set x
\mathbf{1} \ \textstyle\sum_{i=1}^{\infty} := 0
                                                            // this is a comment
   /* Now this is an if...else conditional loop
2 if Condition 1 then
       Do Something
                                                     // this is another comment
       \mathbf{if} \ \mathit{sub-Condition} \ \mathbf{then}
        Do a lot
6 else if Condition 2 then
       Do Otherwise
       /* Now this is a for loop
       for sequence do
        loop instructions
10 else
   Do the rest
   /* Now this is a While loop
12 while Condition do
   Do something
```

col1	col2	col3
Multiple row	cell2	cell3
	cell5	cell6
	cell8	cell9

Country List				
Country Name or Area Name	ISO ALPHA 2 Code	ISO ALPHA 3		
Afghanistan	AF	AFG		
Aland Islands	AX	ALA		
Albania	AL	ALB		
Algeria	DZ	DZA		
American Samoa	AS	ASM		
Andorra	AD	ANA		
Angola	AO	AGO		

Figure 1: This is a figure containing several subfigures in \LaTeX .

In the text, you can refer to subfigures of figure 1 as 1a, 1b, 1c and 1d and to the sub-index as (a), (b), (c) and (d).

Contents

Table of Contents	1
1 First Section	2
2 Second Section	2
List of Tables	
1 List of Countries	2
List of Figures	
1 This is a figure containing several subfigures in LATEX	2

Referencing and Citing

This document is an example of natbib package using in bibliography management. Three items are cited: *The LATEX Companion* book [2], the Einstein journal paper Einstein [1], and the Donald Knuth's website [3]. The LATEX related items are [2, 3].

References

- [1] A. Einstein. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. *Annalen der Physik*, 322(10):891–921, 1905. doi: http://dx.doi.org/10.1002/andp.19053221004.
- [2] M. Goossens, F. Mittelbach, and A. Samarin. *The LATEX Companion*. Addison-Wesley, Reading, Massachusetts, 1993.
- [3] D. Knuth. Knuth: Computers and typesetting. URL http://www-cs-faculty.stanford.edu/~uno/abcde.html.