

10001010100010101

Ekspresi, Tipe Data dan Operator

Dasar Pemrograman
Program Studi S1 Informatika
Universitas Diponegoro
Semester Gasal 2020/2021

Outline

Paradigma Fungsional

- Didasari oleh konsep pemetaaan dan fungsi pada matematika.
- Fungsi dapat berbentuk: fungsi "primitif" atau komposisi.
- Setiap fungsi adalah "kotak hitam", yang menjadi perhatiannya hanya keadaan awal dan akhir.
- Paradigma ini tidak mempermasalahkan memorisasi dan struktur data.
 - Tidak ada pemisahan antara data dan program.
 - Tidak ada istilah "variabel".

Fungsi dalam Matematika

 Fungsi merupakan pemetaan sebuah anggota dari sebuah himpunan A (disebut sebagai domain) ke anggota himpunan B (disebut sebagai range), yang dapat dinotasikan dengan:

$$f: A \rightarrow B$$

$$f(x)$$

- x mewakili sebuah anggota dari himpunan A (domain) → independent variable.
- f disebut sebagai nama fungsi.
- f(x) adalah hasil pemetaan fungsi dari himpunan B (range)

Fun onse

Fungsi dalam Matematika (lanj.)

- Setiap anggota di domain dipetakan tepat satu ke anggota di range.
- Beberapa anggota dapat memiliki pasangan yang sama di range.

Fun ouse

Domain Fungsi

- Saat menspesifikasikan sebuah fungsi, kita juga harus menyebutkan domain untuk fungsi tersebut.
- Sebagai contoh sebuah fungsi:

$$f(x) = x^2 - 1$$

mempunyai domain {-1, 0, 1, 2, 3}, maka range-nya adalah {1, 2, 5, 10}.

 Dalam fungsi matematika, jika domain tidak dinyatakan secara eksplisit, maka diasumsikan bahwa domain berasal dari bilangan himpunan bilangan real yang sangat besar → natural domain dengan syarat tidak menyebabkan pembagian dengan 0 dan akar dari bilangan negatif.

Domain Fungsi

Contoh:

- fungsi f(x) = 1 / (x-3) mempunyai domain {x : x ≠ 3}.
- Fungsi $g(t) = \sqrt{9-t^2}$ mempunyai domain dalam interval (-3,3) atau dapat dituliskan dengan $\{t: -3 < t < 3\}$.

Kesimpulan: kita harus menyatakan domain yang sah (valid) untuk sebuah fungsi.

FUD P onse

Fungsi dalam Pemrograman

- Fungsi dalam pemrograman digunakan untuk menyelesaikan persoalan tertentu.
- Fungsi menerima masukan, kemudian akan menerapkan serangkaian proses terhadap masukan tersebut agar dapat menghasilkan keluaran sesuai dengan yang diharapkan.
- Fungsi dapat menerima sebuah masukan maupun lebih dari satu masukan.
- Setiap masukan dapat memiliki domain masing-masing.

Fun onse

Fungsi dalam Pemrograman

Fungsi dengan 1 parameter input

- x : input argument / parameter
- f(x): output fungsi
- A: domain untuk x
- B: range untuk f(x)

Domain menunjukkan himpunan nilai yang diijinkan untuk x.

Range menunjukkan himpunan nilai dari output fungsi f(x)

Fungsi dalam Pemrograman

Fungsi dengan 2 parameter input.

$$f(x,y)$$

$$f: \langle A,B \rangle \rightarrow C$$

- x,y: input argument / parameter
- f(x,y) : output fungsi
- A: domain untuk x
- B: domain untuk y
- C : range untuk f(x,y)

Domain dan range dalam pemrograman dinyatakan dengan tipe data (dan batasan khusus dalam tipe data tersebut).

Operat 50 ata

Tipe Data

Tipe data digunakan untuk menyatakan tipe dari sebuah nilai (*value*).

Dalam pemrograman tipe data tidak terbatas pada nilai numerik saja, tapi dapat berupa:

- Tipe data dasar (primitive data type):
 - integer
 - real
 - boolean
 - character
 - string
- Tipe data komposisi/ bentukan

1. Tipe data integer

- Tipe data integer berupa bilangan bulat.
- Contoh: -24, -12, 0, 34, 54546
- Meskipun bilangan bulat dapat memiliki nilai dari negatif tak hingga sampai positif tak hingga, implementasi bilangan integer dalam program dapat memiliki batasan.
- Batasan ini tergantung pada implementasi bahasa pemrograman.

2. Tipe data real

- Tipe data real berupa bilangan rasional (memiliki angka desimal).
- Contoh: -24.002, -12.01, 0.3, 34.5665
- Meskipun antara 1 dan -1 terdapat tak hingga bilangan rasional, implementasi bilangan real dalam program dapat memiliki batasan.
- Batasan ini tergantung pada implementasi bahasa pemrograman.

3. Tipe data boolean

- Digunakan untuk merepresentasikan nilai kebenaran (truth value).
- Nilai kebenaran dapat berupa True atau False.
- Sebuah fungsi yang menghasilkan keluaran bertipe boolean disebut sebagai **predikat**.

4. Tipe data character

- Tipe data character berupa satu karakter tunggal.
- Penulisan character diapik dengan tanda petik tunggal (single quote), yaitu ".
- Contoh:
 - 'A'
 - 'a'
 - '8' berbeda dengan 8
- Tipe data character dapat juga dikenakan operator perbandingan, misalnya:
 - 'A' < 'a' jika dievaluasi menghasilkan True
 - 'A' = 'a' jika dievaluasi menghasilkan False
 - 'b' < 'a' jika dievaluasi menghasilkan False

ata

5. Tipe data string

- Tipe data string terdiri atas kumpulan karakter.
- Penulisan character diapik dengan tanda petik ganda (double quotes), yaitu ".
- Contoh:
 - "mahasiswa"
 - "AIK123"
 - "23"
- Tipe string dapat juga dikenakan operator perbandingan, misalnya:
 - "Anak" = "anak" jika dievaluasi menghasilkan False.
 - "Anak" ≠ "anak" jika dievaluasi menghasilkan True.

Operator

- Operator digunakan untuk mentransformasikan satu atau beberapa nilai untuk menghasilkan sebuah nilai yang baru.
- Operator yang diterapkan pada sebuah nilai bergantung pada tipe datanya.
- Contoh:
 - Operator aritmatika dapat diterapkan pada nilai numerik (integer atau real), namun tidak dapat diterapkan pada nilai bertipe character atau string.

Operator Dasar

- Operator dasar (primitive operator) adalah operator yang paling sederhana yang telah disediakan oleh pemroses bahasa.
- Fungsi yang paling dasar dalam program fungsional disebut juga sebagai operator.
- Operator dasar terdiri atas:
 - 1. Operator aritmatika
 - 2. Operator perbandingan/ relasional
 - 3. Operator boolean

1. Operator aritmatika

Operator	Keterangan	Contoh
+	Penjumlahan	2 + 4 = 6
-	Pengurangan	5 - 1 = 4
*	Perkalian	3 * 2 = 6
/	Pembagian	5 / 4 = 1.25
٨	Pemangkatan	2^4 = 16
div	Pembagian bilangan bulat	5 div 3 = 1
mod	Sisa pembagian bilangan bulat	$5 \mod 3 = 2$

- Semua operator tersebut merupakan binary operator.
- Operator dapat pula menjadi unary operator, misanya:
 -4 (menandakan bilangan negatif).

Precedence

Urutan operator precedence dari tinggi ke rendah:

```
    exponentiation
    / div mod the 'multiplying' operators
    the 'addition' operators
```

- Contoh:
 - 3² * 5 = ...
 - 2 + 5 * 2 = ...
 - $4-2*2^2=...$
- Gunakan tanda kurung () untuk mengubah precedence.

Order of Association

- Urutan asosiasi untuk operator yang memiliki precedence sama adalah dari kiri ke kanan, kecuali untuk pangkat adalah kanan ke kiri.
- Contoh:
 - 5 2 3 artinya adalah (5 2) 3
 - 2³4 artinya adalah 2⁽³4)

div & mod

(x div y) dan (x mod y dapat didefinisikan sbb:

$$x = q \times y + r$$
 and $0 \le r < y$

- x adalah bilangan integer positif atau negatif.
- y adalah bilangan integer positif.
- q adalah hasil div, berupa bilangan integer positif atau negatif.
- r adalah hasil mod, berupa bilangan integer positif.

Aritmati Operator

div & mod

- Contoh:
 - 7 div 3 = ...
 - (-7) div 3 = ...
 - $7 \mod 3 = ...$
 - $(-7) \mod 3 = \dots$

oerator

2. Operator Relasional

 Nilai boolean dapat dihasilkan dari operator perbandingan/ relasional berikut:

- = equals
- \neq not equals
- < less than
- > greater than
- \leq less than or equals
- ≥ greater than or equals
- Contoh:
 - 2 < 7
 - 3.14 = 3.142
 - True = False
 - True = (5 < 11)

Equality on Real Number

- Bilangan real memiliki batasan pada memori komputer. Batasan ini bervariasi tergantung pada implementasi bahasa pemrograman.
- Hati-hati saat menyamakan 2 bilangan real.
- Contoh:

3.142857 = 3.1428571 akan menghasilkan nilai False.

Alternatif $|3.142857 - 3.1428571| \le 0.00001$

oerato

3. Operator boolean

 Nilai boolean dapat dikombinasikan dengan operator berikut:

Simbol	Keterangan	Contoh
<u>and</u>	Konjungsi	True and $(3 = 7)$
<u>or</u>	Disjungsi	(7 > 9) or $(0 = 0.1)$
not	Negasi	not True

Α	В	A <u>and</u> B	A <u>or</u> B
<u>False</u>	False	False	False
<u>False</u>	True	False	True
<u>True</u>	False	False	True
<u>True</u>	True	True	True

Ekspresi

- Ekspresi digunakan untuk mendeskripsikan sebuah nilai (value).
- Sebuah eskpresi dapat tersusun dari nama, simbol, operator, fungsi, () yang dapat menghasilkan suatu nilai berkat evaluasi dari ekspresi tersebut.
- Ekspresi dalam paradigma fungsional terdiri atas
 3 jenis, yaitu:
 - ekspresi dasar (menerapkan operator dasar)
 - ekspresi kondisional
 - ekspresi rekursif

Ekspresi

Penulisan Ekspresi

Jenis	Ekspresi Aritmatika	Ekspresi Boolean
Infix	(3 + 6) * 2	6 > 9
Prefix	(* (+ 3 6) 2)	> 6 9
Postfix	(3 6 +) 2 *	6 9 >

- Ekspresi dalam notasi fungsional maupun bahasa Python dituliskan dalam bentuk infix.
- Evaluasi ekspresi bergantung pada presedensi.

Konstruksi Program Fungsional

Tahapan	Deskripsi	
Definisi	 Menentukan identitas fungsi, yaitu nama, domain dan range. Contoh: membuat fungsi pangkat tiga dari sebuah bilangan integer. Pangkat3: integer → integer 	
Spesifikasi	 Menentukan apa yang dilakukan oleh fungsi. Contoh: Fungsi bernama Pangkat3(x) artinya menghitung pangkat tiga dari x. 	

Konstruksi Program Fungsional (lanj.)

Tahapan	Deskripsi	
Realisasi	 Menentukan bagaimana fungsi melakukan komputasi, yaitu mengasosiasikan pada nama fungsi, sebuah ekspresi fungsional dengan parameter formal yang cocok. Contoh: mengasosiasikan pada Pangkat3: x*x*x dengan x adalah nama parameter formal. Parameter formal adalah nama yang dipilih untuk mengasosiasikan domain dan range. 	
Aplikasi	 Fungsi untuk memakainya dalam suatu ekspresi, yaitu dengan menggantikan semua nama parameter normal dengan nilai. 	

Notasi Fungsional

- Notasi yang dipakai di kuliah ini untuk menuliskan program fungsional.
- Notasi ini tidak mempunyai eksekutor, sehingga harus ditranslasikan ke dalam bahasa pemrograman tertentu untuk mengeksekusinya.
- Translasi ke bahasa program dipelajari pada saat praktikum.
- Bahasa program yang digunakan untuk praktikum adalah bahasa Python.

Notasi Fungsional

- Kurung kurawal {} digunakan untuk menuliskan komentar.
- Komentar tidak dieksekusi oleh pemroses bahasa, hanya digunakan untuk memberikan penjelasan.

Notasi Fungsional

Tahapan	Deskripsi
Header	Berisi judul fungsi, nama dan parameter formalnya.
Definisi dan Speisifkasi	 Berisi identitas fungsi (nama, domain, range) dan deskripsi apa yang dilakukan oleh fungsi.
Realisasi	 Berisi realisasi fungsi, yaitu ekspresi fungsional yang ditulis untuk mencapai spesifikasi yang dimaksudkan. Sebuah definisi dan spesifikasi yang sama dapat direalisasikan dalam beberapa ekspresi. Pada bagian ini nama fungsi dituliskan beserta ekspresinya.
Aplikasi	 Contoh aplikasi fungsi dapat disertai pula dengan hasil aplikasinya. Bagian ini merupakan interaksi langsung dengan pemakai dalam konteks eksekusi.

Notasi Fungsional Fungsi Pangkat Dua

	PANGKAT2	FX2(x)	
1	DEFINISI DAN SPESIFIKASI		
1	FX2: integer → integer (EV2 (x) manghitung pangkat dua dari x, sahuah bil	angan intagan l	
Ì,	{FX2 (x) menghitung pangkat dua dari x, sebuah bila REALISASI	angan integer _}	
1	FX2 (x) : x * x		k
0	APLIKASI		
1	$\Rightarrow FX2(1)$ $\Rightarrow FX2(0)$		
× 1	⇒ FX2(-1)		

