

Olympic Birds Problemas da Semana 12 Física

1 Questão Curta: Escada Infinita

Escrito por Raul Saraiva

Uma escada infinita com coeficiente de atrito μ possui bolinhas idênticas nas pontas de cada degrau. Sabendo que a altura do primeiro degrau ao segundo é h_0 , de tal forma que a altura entre dois degraus consecutivos também forma uma progressão geométrica (P.G) de razão q < 1. A bolinha do primeiro degrau é lançada com velocidade horizontal V_0 em direção ao degrau seguinte. Sabe-se que a distância entre o ponto de queda de uma bolinha e outra na ponta do degrau forma uma P.G de razão q com d_0 como termo inicial. Sabe-se também que após a queda de cada bolinha do seu degrau, ela não quica. Qual a velocidade, imediatamente após a colisão, da bolinha que sofreu a n-ésima colisão, em função de q, d_0 , h_0 , q, V_0 e μ ?

Conside<mark>re t</mark>odas as colisões elásticas e que $2\mu\sqrt{2gh_0} \ll V_0$.

2 Questão Média: O Experimento de Ximemes

Escrito por Daniela Emilia

Ximemes concluiu um teste de física e correu para um laboratório de física. O que ela mais gosta é um localizado em Tarija, Bolívia. Lá, praticou um experimento físico de eletromagnetismo, configurado em duas etapas consecutivas.

Inicialmente, um canhão de elétrons, cuja massa é M, é posto para oscilar harmonicamente na vertical do plano xy, disparando horizontalmente, a todo instante, elétrons com velocidade u_x . Logo em seguida, o elétron de massa m, cujos efeitos gravitacionais são desprezados, é acelerado por um campo elétrico vertical $\vec{E} = (0, +E, 0)$.

Assim, após passar por uma diferença de potencial V, o elétron é submetido unicamente a um campo magnético $\vec{B} = (-B, 0, 0)$. Determine o maior raio de curvatura possível realizado pelo elétron de carga -q.

3 Questão Longa: A Bolinha, o Bloco e a Porta

Escrito por Maria Beatriz

PARTE A

Emalha dá um pequeno cutucão em uma bolinha de massa m, que adquire uma velocidade inicial v_0 para a direita. Considerando que a bolinha está entre um bloco estacionário de massa M e uma porta trancada, que estão separados por uma distância L, que a colisão da bola é instantânea e elástica, e que o coeficiente de atrito entre o bloco e o chão é μ (mas não há atrito entre a bolinha e o piso), e que $M \gg m$, além de L ser grande o suficiente para que o bloco pare entre uma colisão e outra, encontre:

- (a) Velocidade da bolinha após a enésima colisão com o bloco.
- (b) Quão longe o bloco se move.
- (c) Quanto tempo o bloco passa se movendo.

PARTE B

Em seguida, Emalha se entedia, lubrifica o piso de modo que não há mais coeficiente de atrito com o bloco nem com a bolinha, e realoca os itens de forma que, dessa vez, o bloco de massa M fique à direita da bolinha de massa m. O pequeno cutucão é dado para a esquerda, fazendo o bloco se mover com velocidade V_0 em direção à bolinha, que estava parada.

- (d) Assumindo que todas as colisões são elásticas, encontre a distância mínima entre o bloco e a parede analisando explicitamente cada colisão.
- (e) Aproximadamente quantas colisões ocorrem antes que o bloco alcance essa distância mínima.
- (f) O índice γ é definido de forma que PV^{γ} seja conservado durante o processo adiabático. Em uma dimensão, o volume V é simplesmente o comprimento, e P é a força média. Usando o teorema adiabático, descubra o valor de γ para um gás monoatômico.