

Workshop: Introduction to Python

Statistics

Christian C. Luhmann Stony Brook University

- scipy
 - Distributions
 - Simple stats (e.g., t, χ^2 , z, r, 1-way ANOVA)
- statsmodels

pymc3

• bambi

- scipy
 - Distributions
 - Simple stats (e.g., t, χ^2 , z, r, 1-way ANOVA)
- statsmodels
 - More complex stats (e.g., GLM, mixed models, survival analysis)
- pymc3

• bambi

- scipy
 - Distributions
 - Simple stats (e.g., t, χ^2 , z, r, 1-way ANOVA)
- statsmodels
 - More complex stats (e.g., GLM, mixed models, survival analysis)
- pymc3
 - Full-featured Bayesian modeling (think Stan)
- bambi

- scipy
 - Distributions
 - Simple stats (e.g., t, χ^2 , z, r, 1-way ANOVA)
- statsmodels
 - More complex stats (e.g., GLM, mixed models, survival analysis)
- pymc3
 - Full-featured Bayesian modeling (think Stan)
- bambi
 - Streamlined, Bayesian GLMs built on top of pymc3 (think brms)

Statistics

Let's go do some stats!

scikit-learn

- Machine learning
 - Supervised
 - Classification (e.g., GLM, LDA, SVM, random forests)
 - Regression (e.g., ridge, lasso)
 - Unsupervised
 - Clustering (k-means)
 - Dimension reduction (e.g., PCA)

All the extras needed to fit, evaluate, and use these tools

Take-homes

• You have now seen some stats done in Python

- Seen some of the functionality that relevant packages provide
 - pandas
 - jupyter (notebook)
 - matplotlib

• What data exploration looks like and the flexibility these tools provide

Outline

- 1. Overview
- 2. Ways of using Python
- 3. Python basics
- 4. Data set overview
- 5. Data wrangling
- 6. Statistics
- 7. Plotting
- 8. Experiment creation