Formelsammlung Mathematik

November 2016

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

0	0000	0 1 2 3	0
1	0001		1
2	0010		2
3	0011		3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\begin{split} &\sin(-x) = -\sin x \\ &\cos(-x) = \cos x \\ &\sin(x+y) = \sin x \cos y + \cos x \sin y \\ &\sin(x-y) = \sin x \cos y - \cos x \sin y \\ &\cos(x+y) = \cos x \cos y - \sin x \sin y \\ &\cos(x-y) = \cos x \cos y + \sin x \sin y \\ &\mathrm{e}^{\mathrm{i}\varphi} = \cos \varphi + \mathrm{i}\sin \varphi \end{split}$$

Polarkoordinaten

$$\begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \\ \varphi &\in (-\pi, \pi] \\ \det J &= r \end{aligned}$$

Zylinderkoordinaten

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Kugelkoordinaten

$$\begin{split} x &= r \sin \theta \, \cos \varphi \\ y &= r \sin \theta \, \sin \varphi \\ z &= r \cos \theta \\ \varphi &\in (-\pi, \pi], \; \theta \in [0, \pi] \\ \det J &= r^2 \sin \theta \end{split}$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Inhaltsverzeichnis

1 Grundlagen		4	2 Funktionen	8
1.1	1.1 Komplexe Zahlen		2.1 Elementare Funktionen	
	1.1.1 Rechenoperationen	4	2.1.1 Winkelfunktionen	8
	1.1.2 Betrag	4		
	1.1.3 Konjugation	4	3 Analysis	
1.2	Logik		3.1 Ableitungen	(
	1.2.1 Aussagenlogik	4	3.1.2 Ableitungsregeln	
	1.2.2 Prädikatenlogik	5	3.1.2 Abieituligsregelii	:
1.3	Mengenlehre	6	4 Anhang	1(
	1.3.1 Definitionen	6	4.1 Mathematische Konstanten	10
	1.3.2 Boolesche Algebra	6	4.2 Physikalische Konstanten	
	1.3.3 Teilmengenrelation	6	4.3 Griechisches Alphabet	10
			4.4 Frakturbuchstaben	

1 Grundlagen

1.1 Komplexe Zahlen

1.1.1 Rechenoperationen

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},$$

$$\frac{1}{z} = \frac{\overline{z}}{z \overline{z}} = \frac{\overline{z}}{|z|^2}.$$

1.1.2 Betrag

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| |z_2|,$$

 $z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},$

$$z\,\overline{z} = |z|^2$$
.

1.1.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1+z_2}=\overline{z}_1+\overline{z}_2, \qquad \overline{z_1-z_2}=\overline{z}_1-\overline{z}_2,$$

$$\overline{z_1 z_2} = \overline{z}_1 \, \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2},$$

$$\overline{\overline{z}}=z, \qquad |\overline{z}|=|z|, \qquad z\,\overline{z}=|z|^2,$$

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i},$$

$$\overline{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}),$$

$$\overline{\exp(z)} = \exp(\overline{z}).$$

1.2 Logik

1.2.1 Aussagenlogik

1.2.1.1 Boolesche Algebra

Distributivgesetze:

$$A \lor (B \land C) = (A \lor B) \land (A \lor C),$$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C).$$

1.2.1.2 Zweistellige Funktionen

Es gibt 16 zweistellige boolesche Funktionen.

$^{(1.4)}$ 1.2.1.3 Darstellung mit Negation, Konjunktion

$$A \Rightarrow B \iff \overline{A} \lor B, \tag{1.14}$$

$$(A \Leftrightarrow B) \iff (\overline{A} \wedge \overline{B}) \vee (A \wedge B), \tag{1.15}$$

$$A \oplus B \iff (\overline{A} \wedge B) \vee (A \wedge \overline{B}).$$
 (1.16)

(1.6) **1.2.1.4 Tautologien**

(1.7) Modus ponens:

(1.1)

(1.2)

(1.3)

$$(1.8) (A \Rightarrow B) \land A \implies B (1.17)$$

(1.9) Modus tollens:

$$(1.10) (A \Rightarrow B) \wedge \overline{B} \implies \overline{A} (1.18)$$

(1.11) Modus tollendo ponens:

$$(A \lor B) \land \overline{A} \implies B \tag{1.19}$$

Modus ponendo tollens:

$$\overline{A \wedge B} \wedge A \implies \overline{B} \tag{1.20}$$

Kontraposition:

$$A \Rightarrow B \iff \overline{B} \Rightarrow \overline{A}$$
 (1.21)

Beweis durch Widerspruch:

$$(\overline{A} \Rightarrow B \wedge \overline{B}) \implies A \tag{1.22}$$

(1.12) Zerlegung einer Äquivalenz:

$$(1.13) (A \Leftrightarrow B) \iff (A \Rightarrow B) \land (B \Rightarrow A) (1.23)$$

Kettenschluss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \implies (A \Rightarrow C)$$
 (1.24)

Ringschluss:

$$\begin{array}{l} (A\Rightarrow B) \wedge (B\Rightarrow C) \wedge (C\Rightarrow A) \\ \Longrightarrow (A\Leftrightarrow B) \wedge (A\Leftrightarrow C) \wedge (B\Leftrightarrow C) \end{array}$$

Ringschluss, allgemein:

$$(A_1 \Rightarrow A_2) \land \dots \land (A_{n-1} \Rightarrow A_n) \land (A_n \Rightarrow A_1)$$

$$\Rightarrow \forall i, j [A_i \Leftrightarrow A_j]$$

$$(1.26)$$

1.2. LOGIK 5

Tabelle 1.1: Rechenoperationen

Name	Operation	Polarform	kartesische Form
Identität	z	$=r\mathrm{e}^{\mathrm{i}\varphi}$	= a + bi
Addition	$z_1 + z_2$		$=(a_1+a_2)+(b_1+b_2)i$
Subtraktion	$z_1 - z_2$		$=(a_1-a_2)+(b_1-b_2)i$
Multiplikation	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Kehrwert	$\frac{1}{z}$	$= \frac{1}{r} e^{-i\varphi}$	$=\frac{\ddot{a}}{a^2+b^2}-\frac{b}{a^2+b^2}$ i
Realteil	$\operatorname{Re}(z)$	$=\cos\varphi$	=a
Imaginärteil	$\operatorname{Im}(z)$	$=\sin\varphi$	= b
Konjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi
Betrag	z	= r	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$=\varphi$	$= s(b) \arccos\left(\frac{a}{r}\right)$

$$s(b) := \begin{cases} +1 & \text{if } b \ge 0, \\ -1 & \text{if } b < 0 \end{cases}$$

Tabelle 1.2: Boolesche Algebra

Disjunktion	Konjunktion	
$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$	Idempotenzgesetze
$A \lor 0 \Leftrightarrow A$	$A \wedge 1 \Leftrightarrow A$	Neutralitätsgesetze
$A \lor 1 \Leftrightarrow 1$	$A \wedge 0 = 0$	Extremalgesetze
$A \vee \overline{A} \Leftrightarrow 1$	$A \wedge \overline{A} \Leftrightarrow 0$	Komplementärgesetze
$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$	Kommutativgesetze
	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	Assoziativgesetze
$\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$	$\overline{A \wedge B} \Leftrightarrow \overline{A} \vee \overline{B}$	De Morgansche Regeln
$A \lor (A \land B) \Leftrightarrow A$	$A \wedge (A \vee B) \Leftrightarrow A$	Absorptionsgesetze

1.2.2	Prädikatenlogik		Aquivalenzen:	
			$\forall x \forall y [P(x,y)] \iff \forall y \forall x [P(x,y)],$	(1.33)
			$\exists x \exists y [P(x,y)] \iff \exists y \exists x [P(x,y)],$	(1.34)
1.2.2.1	l Rechenregeln		$\forall x [P(x) \land Q(x)] \iff \forall x [P(x)] \land \forall x [Q(x)],$	(1.35)
			$\exists x [P(x) \lor Q(x)] \iff \forall x [P(x)] \lor \forall x [Q(x)],$	(1.36)
			$\forall x[P(x) \Rightarrow Q] \iff \exists x[P(x)] \Rightarrow Q,$	(1.37)
Vernein	ung (De Morgansche Regeln):		$\forall x[P \Rightarrow Q(x)] \iff P \Rightarrow \forall x[Q(x)],$	(1.38)
	$\overline{P(x)} \iff \exists x [\overline{P(x)}],$	(1.27)	$\exists x [P(x) \Rightarrow Q(x)] \iff \forall x [P(x)] \Rightarrow \exists x [Q(x)].$	(1.39)
	$\overline{P(x)} \iff \forall x [\overline{P(x)}].$	(1.28)	Implikationen:	
	mainarta Distributivassatza:	(1.20)	$\exists x \forall y [P(x,y)] \implies \forall y \exists x [P(x,y)],$	(1.40)

Verallgemeinerte Distributivgesetze:

Verallgemeinerte Idempotenzgesetze:

$$\exists x \in M [P] \iff (M \neq \{\}) \land P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 0 & \text{wenn } M = \{\}. \end{cases}$$

$$\forall x \in M [P] \iff (M = \{\}) \lor P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 1 & \text{wenn } M = \{\}. \end{cases}$$

(1.31)1.2.2.2 **Endliche Mengen**

(1.32) Sei
$$M = \{x_1, \dots, x_n\}$$
. Es gilt:

$$\forall x \in M [P(x)] \iff P(x_1) \land \dots \land P(x_n), \qquad (1.45)$$

$$\exists x \in M [P(x)] \iff P(x_1) \lor \dots \lor P(x_n). \qquad (1.46)$$

 $\forall x [P(x) \Leftrightarrow Q(x)] \implies (\forall x [P(x)] \Leftrightarrow \forall x [Q(x)]).$

(1.44)

1.2.2.3 Beschränkte Quantifizierung

$$\forall x \in M [P(x)] :\iff \forall x [x \notin M \lor P(x)] \\ \iff \forall x [x \in M \Rightarrow P(x)],$$
(1.47)

$$\exists x \in M [P(x)] :\iff \exists x [x \in M \land P(x)], \tag{1.48}$$

$$\forall x \in M \setminus N [P(x)] \iff \forall x [x \notin N \Rightarrow P(x)]. \quad (1.49)$$

1.2.2.4 Quantifizierung über Produktmengen

$$\forall (x,y) [P(x,y)] \iff \forall x \forall y [P(x,y)], \tag{1.50}$$

$$\exists (x,y) [P(x,y)] \iff \exists x \exists y [P(x,y)]. \tag{1.51}$$

Analog gilt

$$\forall (x, y, z) \iff \forall x \forall y \forall z, \tag{1.52}$$

$$\exists (x, y, z) \iff \exists x \exists y \exists z \tag{1.53}$$

usw.

1.2.2.5 Alternative Darstellung

Sei $P: G \to \{0,1\}$ und $M \subseteq G$. Mit P(M) ist die Bildmenge von P bezüglich M gemeint. Es gilt

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$\iff M \subseteq \{x \in G \mid P(x)\}$$
 (1.54)

und

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M) \\ \iff M \cap \{x \in G \mid P(x)\} \neq \{\}.$$
 (1.55)

1.2.2.6 Eindeutigkeit

Quantor für eindeutige Existenz:

$$\exists !x [P(x)]$$

$$:\iff \exists x \left[P(x) \land \forall y \left[P(y) \Rightarrow x = y \right] \right] \tag{1.56}$$

 $\iff \exists x [P(x)] \land \forall x \forall y [P(x) \land P(y) \Rightarrow x = y].$

1.3 Mengenlehre

1.3.1 Definitionen

Teilmengenrelation:

$$A \subseteq B :\iff \forall x [x \in A \implies x \in B].$$
 (1.57)

Gleichheit:

$$A = B :\iff \forall x [x \in A \iff x \in B]. \tag{1.58}$$

Vereinigungsmenge:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}. \tag{1.59}$$

Schnittmenge:

$$A \cap B := \{ x \mid x \in A \land x \in B \}. \tag{1.60}$$

Differenzmenge:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}. \tag{1.61}$$

Symmetrische Differenz:

$$A\triangle B := \{x \mid x \in A \oplus x \in B\}. \tag{1.62}$$

1.3.2 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B), \tag{1.63}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B). \tag{1.64}$$

1.3.3 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A. \tag{1.65}$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}.$$
(1.66)

Kontraposition:

$$A \subseteq B = \overline{B} \subseteq \overline{A}. \tag{1.67}$$

1.3.4 Induktive Mengen

Mengentheoretisches Modell der natürlichen Zahlen:

$$\begin{array}{ll} 0 := \{\}, & 1 := \{0\}, & 2 := \{0, 1\}, \\ 3 := \{0, 1, 2\}, & \text{usw.} \end{array} \tag{1.68}$$

Nachfolgerfunktion:

$$x' := x \cup \{x\}. \tag{1.69}$$

Vollständige Induktion: Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 [A(n) \Rightarrow A(n+1)]$$

$$\Rightarrow \forall n \ge n_0 [A(n)].$$
(1.70)

1.3. MENGENLEHRE

Tabelle 1.3: Boolesche Algebra

Vereinigung	Schnitt	
$A \cup A = A$	$A \cap A = A$	Idempotenzgesetze
$A \cup \{\} = A$	$A \cap G = A$	Neutralitätsgesetze
$A \cup \check{G} = G$	$A \cap \{\} = \{\}$	Extremalgesetze
$A \cup \overline{A} = G$	$A \cap \overline{A} = \{\}$	Komplementärgesetze
$A \cup B = B \cup A$	$A \cap B = B \cap A$	Kommutativgesetze
$(A \cup B) \cup C = A \cup (B \cup C)$		Assoziativgesetze
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	De Morgansche Regeln
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	Absorptionsgesetze
G: Grundmenge		

2 Funktionen

2.1 Elementare Funktionen

2.1.1 Winkelfunktionen

2.1.1.1 Additionstheoreme

Für alle $x,y\in\mathbb{C}$ gilt:

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y),$$
 (2.1)
 $\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y),$ (2.2)

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y), \qquad (2.3)$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y). \tag{2.4}$$

3 Analysis

3.1 Ableitungen

3.1.1 Differential quotient

Sei $U\subseteq\mathbb{R}$ ein offenes Intervall und sei $f\colon U\to\mathbb{R}$. Die Funktion f heißt differenzierbar an der Stelle $x_0\in U$, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3.1)

existiert. Dieser Grenzwert heißt Differentialquotient oder Ableitung von f an der Stelle x_0 . Notation:

$$f'(x_0), \qquad (Df)(x_0), \qquad \frac{\mathrm{d}f(x)}{\mathrm{d}x}\Big|_{x=x_0}.$$
 (3.2)

3.1.2 Ableitungsregeln

Sind f,g differenzierbare Funktionen und ist a eine reelle Zahl, so gilt

$$(af)' = af', (3.3)$$

$$(f+g)' = f' + g',$$
 (3.4)

$$(f - g)' = f' - g', (3.5)$$

$$(fg)' = f'g + g'f, (3.6)$$

$$\left(\frac{f}{g}\right)'(x) = \frac{(f'g - g'f)(x)}{g(x)^2}.$$
 (3.7)

3.1.2.1 Kettenregel

Ist g differenzierbar an der Stelle x_0 und f differenzierbar an der Stelle $g(x_0)$, so ist $f \circ g$ differenzierbar an der Stelle x_0 und es gilt

$$(f \circ g)'(x_0) = (f' \circ g)(x_0) g'(x_0). \tag{3.8}$$

4 Anhang

4.1 Mathematische Konstanten

- 1. Kreiszahl $\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Eulersche Zahl $e = 2.71828\ 18284\ 59045\ 23536\ 02874\ 71352\dots$
- 3. Euler-Mascheroni-Konstante $\gamma = 0.57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Goldener Schnitt, $(1+\sqrt{5})/2$ $\varphi = 1.61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante $\delta = 4.66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante $\alpha = 2.50290~78750~95892~82228~39028~73218\dots$

4.2 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum $c=299\;792\;458\;\mathrm{m/s}$
- 2. Elektrische Feldkonstante $\varepsilon_0 = 8.854\,187\,817\,620\,39\times 10^{-12}\,\mathrm{F/m}$
- 3. Magnetische Feldkonstante $\mu_0 = 4\pi \times 10^{-7} \; \mathrm{H/m}$
- 4. Elementar ladung $e = 1.602\,176\,6208(98)\times 10^{-19}\,{\rm C}$

4.3 Griechisches Alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Е О П	$ \begin{array}{c} \nu \\ \xi \\ o \\ \pi \end{array} $	Ny Xi Omikron Pi
Ε Ζ Η Θ	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{array}{c} R \\ \Sigma \\ T \\ Y \end{array}$	$egin{array}{c} arrho \ \sigma \ \ au \ \ v \end{array}$	Rho Sigma Tau Ypsilon
Ι Κ Λ Μ	$egin{array}{c} \iota & & \ \kappa & & \ \lambda & & \ \mu & & \end{array}$	Jota Kappa Lambda My	Φ Χ Ψ Ω	$egin{array}{c} arphi \ \chi \ \psi \ \omega \end{array}$	Phi Chi Psi Omega

4.4 Frakturbuchstaben

A a B b C c D d	21 a	O o	O o
	23 b	P p	P p
	C c	Q q	Q q
	D d	R r	R r
$\begin{array}{c} E \ e \\ F \ f \\ G \ g \\ H \ h \end{array}$	E e ቼ f ᡦ g ℌ h	$\begin{array}{ccc} S & s \\ T & t \\ U & u \\ V & v \end{array}$	S s T t U u V v
I i	I i	$\begin{array}{ccc} W \ w \\ X \ x \\ Y \ y \\ Z \ z \end{array}$	Ww
J j	I j		Xr
K k	K t		Yn
L l	L l		33
${ m M\ m}$ ${ m N\ n}$	M m N n		