Álgebra Linear — Aula 18

Josefran de Oliveira Bastos

Universidade Federal do Ceará

Espaço vetorial - Axiomas

Sejam \overrightarrow{t} , \overrightarrow{u} e \overrightarrow{w} vetores do espaço vetorial V e α e β escalares. A soma e produto escalar deve satisfazer os seguintes axiomas

- 1. $\overrightarrow{u} + \overrightarrow{t} \in V$;
- 2. $\overrightarrow{u} + \overrightarrow{t} = \overrightarrow{t} + \overrightarrow{u}$;
- 3. $\overrightarrow{u} + (\overrightarrow{t} + \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{t}) + \overrightarrow{w};$
- 4. Existe um elemento $\overrightarrow{0} \in V$, chamado de vetor nulo ou vetor zero, tal que $\overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$;
- 5. Para todo $\overrightarrow{u} \in V$ existe $-\overrightarrow{u} \in V$, chamado negativo de \overrightarrow{u} , tal que $(-\overrightarrow{u}) + \overrightarrow{u} = \overrightarrow{0}$;
- 6. $\alpha \overrightarrow{u} \in V$;
- 7. $\alpha(\overrightarrow{u} + \overrightarrow{t}) = \alpha \overrightarrow{u} + \alpha \overrightarrow{t}$;
- 8. $(\alpha + \beta)\overrightarrow{u} = \alpha \overrightarrow{u} + \beta \overrightarrow{u}$;
- 9. $\alpha(\beta \overrightarrow{u}) = (\alpha \beta) \overrightarrow{u}$;
- 10. $1\overrightarrow{u} = \overrightarrow{u}$.

1.
$$0\overrightarrow{u} = \overrightarrow{0}$$
;

- 1. $0\overrightarrow{u} = \overrightarrow{0}$;
- 2. $\alpha \overrightarrow{0} = \overrightarrow{0}$;

- 1. $0\overrightarrow{u} = \overrightarrow{0}$;
- 2. $\alpha \overrightarrow{0} = \overrightarrow{0}$;
- 3. $(-1)\overrightarrow{u} = -\overrightarrow{u}$;

- 1. $0\overrightarrow{u} = \overrightarrow{0}$;
- 2. $\alpha \overrightarrow{0} = \overrightarrow{0}$;
- 3. $(-1)\overrightarrow{u} = -\overrightarrow{u}$;
- 4. Se $\alpha \overrightarrow{u} = \overrightarrow{0}$, então $\alpha = 0$ ou $\overrightarrow{u} = \overrightarrow{0}$.

Subespaço (Vetorial)

Um subconjunto $W\subseteq V$ de um espaço vetorial é *subespaço* (vetorial) de V se W é um espaço vetorial.

Espaço vetorial - Axiomas

Sejam \overrightarrow{t} , \overrightarrow{u} e \overrightarrow{w} vetores do espaço vetorial V e α e β escalares. A soma e produto escalar deve satisfazer os seguintes axiomas

- 1. $\overrightarrow{u} + \overrightarrow{t} \in V$;
- 2. $\overrightarrow{u} + \overrightarrow{t} = \overrightarrow{t} + \overrightarrow{u}$;
- 3. $\overrightarrow{u} + (\overrightarrow{t} + \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{t}) + \overrightarrow{w};$
- 4. Existe um elemento $\overrightarrow{0} \in V$, chamado de vetor nulo ou vetor zero, tal que $\overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$;
- 5. Para todo $\overrightarrow{u} \in V$ existe $-\overrightarrow{u} \in V$, chamado negativo de \overrightarrow{u} , tal que $(-\overrightarrow{u}) + \overrightarrow{u} = \overrightarrow{0}$;
- 6. $\alpha \overrightarrow{u} \in V$;
- 7. $\alpha(\overrightarrow{u} + \overrightarrow{t}) = \alpha \overrightarrow{u} + \alpha \overrightarrow{t}$;
- 8. $(\alpha + \beta)\overrightarrow{u} = \alpha \overrightarrow{u} + \beta \overrightarrow{u}$;
- 9. $\alpha(\beta \overrightarrow{u}) = (\alpha \beta) \overrightarrow{u}$;
- 10. $1\overrightarrow{u} = \overrightarrow{u}$.

Espaço vetorial - Axiomas

Sejam \overrightarrow{t} , \overrightarrow{u} e \overrightarrow{w} vetores do espaço vetorial V e α e β escalares. A soma e produto escalar deve satisfazer os seguintes axiomas

1. $\overrightarrow{u} + \overrightarrow{t} \in V$;

- 4. Existe um elemento $\overrightarrow{0} \in V$, chamado de vetor nulo ou vetor zero, tal que $\overrightarrow{0} + \overrightarrow{u} = \overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$;
- 5. Para todo $\overrightarrow{u} \in V$ existe $-\overrightarrow{u} \in V$, chamado negativo de \overrightarrow{u} , tal que $(-\overrightarrow{u}) + \overrightarrow{u} = \overrightarrow{0}$;
- 6. $\alpha \overrightarrow{u} \in V$;

Seja \overrightarrow{t} um vetor não nulo de \mathbb{R}^2 . Mostre que $S=\{\alpha \overrightarrow{t}: \alpha \in \mathbb{R}\}$ é um subespaço do \mathbb{R}^2 .

Teorema 4.2.1

Se W for um conjunto de uma mais vetores no espaço vetorial V, então W é um subespaço de V se, e só se, as condições seguintes são válidas.

- 1. Se \overrightarrow{t} e \overrightarrow{u} forem vetores em W, então $\overrightarrow{t} + \overrightarrow{u}$ está em W;
- 2. Se α for um escalar qualquer e \overrightarrow{t} algum vetor de W, então $\alpha \overrightarrow{t}$ está em W.

O conjunto $\{\overrightarrow{0}\}$ é um subespaço de qualquer espaço vetorial.

Uma reta que passa pela origem é um subespaço de \mathbb{R}^n .

Para $n \geq 3$, um plano que passa pela origem é um subespaço de \mathbb{R}^n .

O conjunto das matrizes simétricas é um subespaço do espaço vetorial das matrizes $M_{m \times n}.$

O conjunto das matrizes invertíveis não é um subespaço do espaço vetorial $M_{m \times n}$.

O conjunto das funções $C(-\infty,+\infty)$ contínuas é um subespaço de $C(-\infty,+\infty).$

O conjunto das funções continuamente derivável $C^1(-\infty, +\infty)$ contínuas é um subespaço de $C(-\infty, +\infty)$ e de $F(-\infty, +\infty)$.

Para m>1, o conjunto das funções no qual a m-ésima derivada é continua $C^m(-\infty,+\infty)$ é um subespaço de $C^{m-1}(-\infty,+\infty)$.

Para todo $m\geq 0$, o conjunto das funções no qual todas as derivadas são contínuas $C^{\infty}(-\infty,+\infty)$ é um subespaço de $C^m(-\infty,+\infty)$.

O conjunto de todos os polinômios P_{∞} é um subespaço de $F(-\infty,+\infty).$

O conjunto de todos os polinômios de grau no máximo $n \geq 0$ P_n é um subespaço de $F(-\infty, +\infty)$.

O conjunto de todos os polinômios de grau exatamente n não é um subespaço de $F(-\infty,+\infty)$. .

Teorema 4.2.2

Se W_1,\ldots,W_r forem subespaços vetorial de V, então a interseção desses subespaços também será um subespaço de V.

Mostre que dado um vetor não nulo \overrightarrow{t} do \mathbb{R}^2 o conjunto $W = \{ \alpha \overrightarrow{t} : \alpha \in \mathbb{R} \}$ é o "menor" subespaço de \mathbb{R}^2 que contém \overrightarrow{t} .

Mostre que dado vetores não nulos \overrightarrow{t} e \overrightarrow{u} de \mathbb{R}^3 o conjunto

$$W = \{ \alpha \overrightarrow{t} + \beta \overrightarrow{u} : \alpha, \beta \in \mathbb{R} \}$$

é o "menor" subespaço de \mathbb{R}^3 que contém \overrightarrow{t} e \overrightarrow{u} .

Teorema 4.2.3

Seja $S=\{\overrightarrow{w}_1,\ldots,\overrightarrow{w}_r\}$ um conjunto não vazio de vetores num espaço vetorial V.

- 1. O conjunto W de todas as combinações lineares possíveis dos vetores em S é um subespaço de V.
- 2. O conjunto W acima é o "menor" subespaço de V que contém todos os vetores de S.