Chapitre 19

Éléments d'arithmétique dans \mathbb{N} .

Sommaire.

1	Divisibilité dans \mathbb{N} .	1
	1.1 Définition	1
	1.2 Division euclidienne	1
	1.3 Diviseurs communs à deux entiers naturels	2
2	Nombres premiers	2

Les propositions marquées de \star sont au programme de colles.

Ce petit exposé d'arithmétique sera suivi d'un cours plus ambitieux : $Arithmétique\ dans\ \mathbb{Z}.$

On va d'ores et déjà expliquer que tout entier naturel supérieur à 2 se décompose comme un produit de nombres premiers, mais nous attendrons le vrai cours d'arithmétique pour énoncer le théorème fondamental de l'arithmétique, qui à l'existence de cette décomposition ajoute l'unicité, à l'ordre des facteurs près.

1 Divisibilité dans \mathbb{N} .

1.1 Définition.

Définition 1

Soit $(a, b) \in \mathbb{N}^2$. On dit que b divise a (on note $b \mid a$) s'il exisite $k \in \mathbb{N}$ tel que a = kb. Si $b \mid a$, on dit encore que b est un diviseur de a ou que a est un multiple de b.

Pour un entier naturel a, on notera $\mathcal{D}(a)$ l'ensemble des diviseurs de a.

Exemple 2

- 1. 1, 2, 3, 4, 6 et 12 sont les diviseurs de 12.
- 2. 1 divise tout nombre entier : $\forall n \in \mathbb{N}, n = 1n$.
- 3. Tous les entiers sont diviseurs de $0: \forall n \in \mathbb{Z}, \ 0/n = 0.$
- 4. Pour tout entier naturel n, $4^n 1$ est multple de $3: 4^n 1 = 3\sum_{k=0}^{n-1} 4^k$.

Proposition 3

Dans \mathbb{N} , les diviseurs d'un entier naturel a non nul sont compris entre 1 et a.

Preuve:

Soit $a \in \mathbb{N}^*$ et $b \in \mathcal{D}(a)$: $\exists k \in \mathbb{N} \mid a = kb$. Si b = 0, alors a = 0: impossible donc $b \ge 1$. Si b > a, alors kb > a donc a > a: impossible donc $b \le a$.

Proposition 4

La relation | est une relation d'ordre non total sur $\mathbb{N}.$

1.2 Division euclidienne.

Théorème 5

Soit $(a, b) \in \mathbb{N} \times \mathbb{N}^*$.

$$\exists ! (q, r) \in \mathbb{N}^2 \mid a = bq + r \quad \text{et} \quad 0 \le r < b.$$

Les entiers q et r sont appelés respectivement **quotient** et **reste** de la division euclidienne de a par b.

Preuve:

Unicité. Soient $(q, r) \in \mathbb{N}^2$ et $(q', r') \in \mathbb{N}^2$ tels que a = bq + r = bq' + r' et r, r' < b. Alors b(q - q') + (r - r') = 0, or -b < r' - r < b donc -b < b(q - q') < b donc -1 < q - q' < 1 donc q = q'. Alors r - r' = 0 donc r = r' : (q, r) = (q', r').

Existence. Posons $q = \left| \frac{a}{b} \right|$ et r = a - bq. On a:

$$\left\lfloor \frac{a}{b} \right\rfloor \le \frac{a}{b} < \left\lfloor \frac{a}{b} \right\rfloor + 1 \quad \text{donc} \quad q \le \frac{a}{b} < q + 1$$

$$\text{donc} \quad bq \le a < bq + b$$

$$\text{donc} \quad 0 \le a - bq < b$$

Donc $r \in [0, b[$ et a = bq + r.

Proposition 6

Soient $(a, b) \in \mathbb{N} \times \mathbb{N}^*$.

$$b \mid a \iff \exists! q \in \mathbb{N} \mid a = bq.$$

1.3 Diviseurs communs à deux entiers naturels.

Définition 7

Soit $(a, b) \in \mathbb{N}^2 \setminus \{(0, 0)\}$. On appelle **Plus Grand Commun Diviseur** (PGCD) de a et b, et on note $a \wedge b$ le plus grand diviseur commun à a et b pour la relation \leq :

$$a \wedge b = \max(\mathcal{D}(a) \cap \mathcal{D}(b)).$$

Preuve:

- $1 \in \mathcal{D}(a)$ et $1 \in \mathcal{D}(b)$ donc $1 \in \mathcal{D}(a) \cap \mathcal{D}(b)$.
- Si $a \neq 0$ et $b \neq 0$, alors $\mathcal{D}(a) \subset [1, a]$ et $\mathcal{D}(b) \subset [1, b]$. Alors $\mathcal{D}(a) \cap \mathcal{D}(b) \subset [1, \min(a, b)]$.
- Si $a \neq 0$ et b = 0 SPDG, $\mathcal{D}(b) = \mathbb{N}$ donc $\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(a) \subset [1, a]$.

Dans tous les cas, $\mathcal{D}(a) \cap \mathcal{D}(b)$ est majoré par $\max(a, b)$, c'est une partie de \mathbb{N} non vide et majorée : le max existe.

Lemme 8

Soit $(a, b, c, q) \in \mathbb{N}^4$ tel que a = bq + c. Alors $\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(b) \cap \mathcal{D}(c)$.

Preuve:

Soit $k \in \mathcal{D}(a) \cap \mathcal{D}(b)$: $\exists a', b' \in \mathbb{N} \mid a = ka', b = kb'$. Alors ka' = kb'q + c et c = k(a' - b'q).

- Si k > 0, alors puisque $c \ge 0$, $a' b'q \ge 0$ donc $k \mid c$ et $k \mid b$.
- Si k = 0, alors a = b = 0 puis c = 0 donc $k \mid b$ et $k \mid c$.

On a bien $\mathcal{D}(a) \cap \mathcal{D}(b) \subset \mathcal{D}(b) \cap \mathcal{D}(c)$.

Soit $k \in \mathcal{D}(b) \cap \mathcal{D}(c) : \exists b', c' \in \mathbb{N} \mid b = kb' \text{ et } c = kc'.$

Alors a = bq + c = k(b'q + c) donc $k \mid a$. On a $\mathcal{D}(b) \cap \mathcal{D}(c) \subset \mathcal{D}(a) \cap \mathcal{D}(b)$.

Alors $\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(b) \cap \mathcal{D}(c)$.

Proposition 9

$$\forall (a,b) \in \mathbb{N}^2 \setminus \{(0,0)\}, \quad \mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(a \wedge b).$$

Preuve:

On suppose que $b \neq 0$. On pose $r_{-1} = a$ et $r_0 = b$.

Par itération, on définit deux suites (q_n) et (r_n) telles que pour $n \in \mathbb{N}$, si r_n est non nul, on effectue la division euclidienne de r_{n-1} par r_n en notant q_{n+1} et r_{n+1} respectivement son quotient et son reste. Ainsi, si $r_n \neq 0$, on a $r_{n+1} < r_n$. La suite (r_n) est donc strictement décroissante puis stationnaire à 0. Notons p le rang de son dernier terme non nul.

$$a = bq_1 + r_1;$$
 $r_0 = r_1q_2 + r_2;$... $; r_{p-1} = r_pq_{p+1} + 0.$

D'après le lemme précédent, on a les égalités suivantes entre ensembles de diviseurs :

$$\mathcal{D}(a) \cap \mathcal{D}(b) = \mathcal{D}(r_0) \cap \mathcal{D}(r_1) = \mathcal{D}(r_1) \cap \mathcal{D}(r_2) = \dots = \mathcal{D}(r_n) \cap \mathcal{D}(0) = \mathcal{D}(r_n).$$

Or $r_p = \max(\mathcal{D}(r_p)) = \max(\mathcal{D}(a) \cap \mathcal{D}(b)) = a \wedge b$.

Algorithme 10: Algorithme d'Euclide (écrit en Python)

def PGCD(a,b):

while b!=0:

a,b=b,a%b

return a

Exemple 11

Calculer le PGCD de 342 et 95 puis donner $\mathcal{D}(342) \cap \mathcal{D}(95)$.

Solution:

 $392 = 95 \times 3 + 57$; $95 = 57 \times 1 + 38$; $57 = 38 \times 1 + 19$; $38 = 19 \times 2 + 0$ donc PGCD(342, 95) = 19. $\mathcal{D}(342) \cap \mathcal{D}(95) = \mathcal{D}(19) = [1, 19]$.

2 Nombres premiers

Définition 12

Un entier $p \in \mathbb{N} \setminus \{0,1\}$ est dit **premier** si ses seuls diviseurs sont 1 et p.

Exemples. 2, 3, 5, 7, 11...

Proposition 13

Tout entier naturel supérieur ou égal à 2 admet un diviseur premier.

Premye

Pour $n \in \mathbb{N}$, on pose $\mathcal{P}(n)$: « n a un diviseur premier ».

Initialisation. $\mathcal{P}(2)$ est vraie car 2 est premier et $2 \mid 2$.

Hérédité. Soit $n \ge \in \mathbb{N} \mid \forall k \in [2, n], \ \mathcal{P}(k)$.

- Si n+1 est premier, alors $n+1 \mid n+1 : \mathcal{P}(n+1)$ vraie.
- Si n n'est pas premier, $\exists (q,q') \in [\![2,n]\!]^2 \mid n+1=qq'$.

Alors q a un diviseur premier par hypothèse, ce diviseur divise aussi n+1 par transitivité : $\mathcal{P}(n+1)$ vraie. Par récurrence, $\forall n \geq 2, \ \mathcal{P}(n)$ est vraie.

Proposition 14

Tout entier naturel n non premier et supérieur à 2 admet un diviseur premier inférieur à \sqrt{n} .

Preuve:

Soit $n \geq 2$ non premier : $\exists (q, q') \in [2, n-1]^2 \mid n = qq' \text{ donc } q \leq \sqrt{n} \text{ ou } q' \leq \sqrt{n}$.

En effet, si $q \ge \sqrt{n}$ et $q' \ge \sqrt{n}$, alors qq' > n : impossible.

SPDG, $q \leq \sqrt{n}$. Or $q \geq 2$ donc q a un diviseur premier p donc $p \leq q \leq \sqrt{n}$ et $p \mid n$.

Théorème 15: d'Euclide.

Il existe une infinité de nombres premiers.

Preuve:

Supposons qu'il en existe un nombre fini n de nombres premiers $p_1, p_2, ...p_n$.

On pose $N = 1 + \prod_{k=1}^{n} p_k$. Alors $\forall k \in [1, n], N > p_k$, donc N admet un diviseur premier.

Ainsi, $\exists k_0 \in [1, n]$: $p_{k_0} \mid N$ et $p_{k_0} \mid N - 1$ donc $p_{k_0} \mid N - (N - 1) = 1$, absurde.

Proposition 16: Existence d'une décomposition en facteurs premiers.

Pour tout entier $n \ge 2$, il existe un entier $r \ge 1$ et des nombres premiers $p_1, ..., p_r$ et des entiers non nuls $\alpha_1, ..., \alpha_r$ tels que

$$n = p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r}.$$

Proposition 17: Théorème de La Vallée Poussin-Hadamard.

Soit la fonction π qui à n associe le nombre de nombres premiers inférieurs ou égaux à n. Alors

$$\lim_{n \to +\infty} \frac{\pi(n) \ln(n)}{n} = 1.$$