Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte) $2(5-\sqrt{2})=10-2\sqrt{2}$ 2p $\frac{10 - 2\sqrt{2} + 2\sqrt{2} = 10}{f(-3) = 0}$ **3p** 2p f(3) = 02p 1p f(-3) + f(3) = 0**3.** $5^{2x} = 5^2$ **2p** 3p x = 1 $20\% \cdot 100 = 20$ 2p Prețul după scumpire este 120 de lei 3p 5. $AB = \sqrt{(3-1)^2 + (1-1)^2}$ 3p 2p 6. **2p** $\cos 150^\circ = -\frac{\sqrt{3}}{2}$ 2p 1p $\cos 30^{\circ} + \cos 150^{\circ} = 0$

SUBI	ECTUL al II-lea	(30 de puncte)
1.a)	$\det A = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1 - 0 =$	3р
	=1	2 p
b)	$x = 0 \Rightarrow B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$	2 p
	$A - B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	3 p
c)	$A + B = \begin{pmatrix} 1+x & -2 \\ 0 & 1+x \end{pmatrix} \Rightarrow \det(A+B) = (1+x)^2$	3 p
	$(1+x)^2 = 0 \Leftrightarrow x = -1$	2p
2.a)	$2 \circ (-2) = 2 + (-2) + 3 =$	3p
	= 3	2p
b)	$x \circ (-3) = x + (-3) + 3 = x$, pentru orice număr real x	2p
	$(-3) \circ x = (-3) + x + 3 = x \Rightarrow x \circ (-3) = (-3) \circ x = x$, pentru orice număr real x	3 p

c)	$2013 \circ (-2013) = 3$	2p
	$3 = x \circ x \Leftrightarrow 3 = 2x + 3 \Leftrightarrow x = 0$	3 p

	$3-x\circ x \leftrightarrow 3-2x+3 \leftrightarrow x=0$) Jp
SUBII	ECTUL al III-lea	(30 de puncte)
1.a)	$\lim_{x \to +\infty} \frac{x+1}{x} = \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right) =$	3р
	=1	2p
b)	$f'(x) = -\frac{1}{x^2}$, pentru orice $x \in (0, +\infty)$	2p
	$f'(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este descrescătoare pe intervalul $(0, +\infty)$	3 p
c)	$y - f(1) = f'(1) \cdot (x - 1)$	2p
	$f'(1) = -1$, $f(1) = 2 \Rightarrow$ ecuația tangentei este $y = -x + 3$	3 p
2.a)	$\left \int_{0}^{1} f'(x) dx = f(x) \right _{0}^{1} =$	3p
	= f(1) - f(0) = 3	2p
b)	$F'(x) = (x^3 + x + 1)' = 3x^2 + 1$	3p
	$F'(x) = f(x)$, pentru orice $x \in \mathbb{R} \Rightarrow F$ este o primitivă a funcției f	2p
c)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} (3x^{2} + 1) dx =$	2p
	$=\left(x^3+x\right)\Big _0^1=2$	3p

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $2(5-\sqrt{2})+2\sqrt{2}=10$.
- **5p** 2. Calculați f(-3) + f(3) pentru funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 9$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{2x} = 25$.
- **5p 4.** Prețul unui obiect este 100 de lei. Determinați prețul obiectului după o scumpire cu 20%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1) și B(3,1). Calculați distanța de la punctul A la punctul B.
- **5p** | **6**. Calculați $\cos 30^{\circ} + \cos 150^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} x & -1 \\ 0 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Calculați det A.
- **5p b**) Pentru x = 0 arătați că $A B = I_2$.
- **5p** c) Determinați numărul real x pentru care $\det(A+B)=0$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă dată de $x \circ y = x + y + 3$.
- **5p** a) Calculați $2 \circ (-2)$.
- **5p b**) Arătați că e = -3 este elementul neutru al legii de compoziție " \circ ".
- **5p** | **c**) Determinați numărul real x pentru care $2013 \circ (-2013) = x \circ x$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+1}{x}$.
- **5p a**) Calculați $\lim_{x \to +\infty} f(x)$.
- **5p b)** Arătați că funcția f este descrescătoare pe intervalul $(0,+\infty)$.
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă $x_0 = 1$, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 1$.
- **5p** a) Calculați $\int_{0}^{1} f'(x) dx$.
- **5p b**) Arătați că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3 + x + 1$ este o primitivă a funcției f.
- **5p c**) Calculați aria suprafeței delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 0 și x = 1.

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3(2-\sqrt{2}) = 6-3\sqrt{2}$ $6-3\sqrt{2}+3\sqrt{2}=6$	2p
	$6 - 3\sqrt{2} + 3\sqrt{2} = 6$	3 p
2.	f(0) = -1 $f(2) = 1$	2p
	f(2)=1	2 p
	$f(0) \cdot f(2) = -1$	1p
3.	$5^{x-2} = 5^2$	2p
	x = 4	3 p
4.	$10\% \cdot 100 = 10$	2p
	Prețul după scumpire este 110 lei	3p
5.	$AB = \sqrt{(1-1)^2 + (3-1)^2}$	3 p
	AB = 2	2p
6.	$\cos 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\cos 135^\circ = -\frac{\sqrt{2}}{2}$	2p
		1n
	$\cos 45^\circ + \cos 135^\circ = 0$	1p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$M\left(\frac{1}{2}\right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$M\left(-\frac{1}{2}\right) = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}$	2p
	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = M(0)$	1p
b)	$\det(M(a)) = \begin{vmatrix} 2a & 0 \\ 0 & 2a \end{vmatrix} = 4a^2$	3p
	$4a^2 = 0 \Leftrightarrow a = 0$	2 p
c)	M(-2) + M(-1) + M(0) + M(1) + M(2) = (M(-2) + M(2)) + (M(-1) + M(1)) + M(0) =	2p
	$=3M\left(0\right)=\begin{pmatrix}0&0\\0&0\end{pmatrix}$	3p
2.a)	$f(1) = 1^3 - 2 \cdot 1^2 + 1 =$	3p
	=1-2+1=0	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 2

b)	Câtul este X Restul este $-X + 1$	2p 3p
c)	$x_1 + x_2 + x_3 = 2$, $x_1 x_2 + x_2 x_3 + x_3 x_1 = 0$	2p
	$x_1^2 + x_2^2 + x_3^2 = 4 - 2 \cdot 0 = 4$	3p

SUBIECTUL al III-lea		(30 de pu	ncte)	
	1.a)	$f'(x) = (\sqrt{x})' - 1' = \frac{1}{x}$ pentru orice $x \in (0, +\infty)$		

БСБТ	(50 tie pune	
1.a)	$f'(x) = (\sqrt{x})' - 1' = \frac{1}{2\sqrt{x}}$, pentru orice $x \in (0, +\infty)$	3р
	$2\sqrt{x} f'(x) = 2\sqrt{x} \cdot \frac{1}{2\sqrt{x}} = 1$, pentru orice $x \in (0, +\infty)$	2p
b)	y-f(4)=f'(4)(x-4)	2p
	$f(4)=1$, $f'(4)=\frac{1}{4}$ \Rightarrow ecuația tangentei este $y=\frac{1}{4}x$	3р
c)	$f''(x) = -\frac{1}{4x\sqrt{x}}$, pentru orice $x \in (0, +\infty)$	3 p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este concavă pe intervalul $(0, +\infty)$	2 p
2.a)	$\int_{1}^{2} \left(f(x) - \frac{1}{x} \right) dx = \int_{1}^{2} (2x+1) dx =$	2p
	$= (x^2 + x) \Big _{1}^{2} = (4+2) - (1+1) = 4$	3р
b)	$F'(x) = (x^2 + x + \ln x)' = 2x + 1 + \frac{1}{x}$	3р
	$F'(x) = f(x)$, pentru orice $x \in (0, +\infty) \Rightarrow F$ este o primitivă a funcției f	2 p
c)	$\mathcal{A} = \int_{1}^{2} f(x) dx = \int_{1}^{2} \left(2x + 1 + \frac{1}{x}\right) dx =$	2p
	$ \left = \left(x^2 + x + \ln x \right) \right _1^2 = 4 + 2 + \ln 2 - 1 - 1 - \ln 1 = 4 + \ln 2 $	3р

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $3(2-\sqrt{2})+3\sqrt{2}=6$.
- **5p** 2. Calculați $f(0) \cdot f(2)$ pentru funcția $f : \mathbb{R} \to \mathbb{R}$, f(x) = x 1.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $5^{x-2} = 25$.
- **5p** | **4.** Prețul unui obiect este 100 de lei. Determinați prețul obiectului după o scumpire cu 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,1) și B(1,3). Calculați distanța de la punctul A la punctul B.
- **5p 6**. Calculați $\cos 45^{\circ} + \cos 135^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Pentru fiecare număr real a se consideră matricea $M(a) = \begin{pmatrix} 2a & 0 \\ 0 & 2a \end{pmatrix}$.
- **5p** a) Arătați că $M\left(\frac{1}{2}\right) + M\left(-\frac{1}{2}\right) = M(0)$.
- **5p b**) Determinați numărul real a pentru care $\det(M(a)) = 0$.
- **5p** c) Determinați matricea M(-2) + M(-1) + M(0) + M(1) + M(2).
 - **2.** Se consideră polinomul $f = X^3 2X^2 + 1$.
- **5p** a) Arătați că f(1) = 0.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul $g = X^2 2X + 1$.
- **5p** c) Calculați $x_1^2 + x_2^2 + x_3^2$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:[0,+\infty) \to \mathbb{R}$, $f(x) = \sqrt{x} 1$.
- **5p** a) Arătați că $2\sqrt{x} f'(x) = 1$, pentru orice $x \in (0, +\infty)$.
- **5p b)** Verificați dacă dreapta de ecuație $y = \frac{1}{4}x$ este tangentă la graficul funcției f în punctul de abscisă $x_0 = 4$, situat pe graficul funcției f.
- **5p** c) Arătați că funcția f este concavă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 2x + 1 + \frac{1}{x}$.
- **5p a)** Calculați $\int_{1}^{2} \left(f(x) \frac{1}{x} \right) dx$.
- **5p** b) Arătați că funcția $F:(0,+\infty)\to\mathbb{R}$, $F(x)=x^2+x+\ln x$ este o primitivă a funcției f.
- **5p** c) Calculați aria suprafeței delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 1 și x = 2.

Varianta 4

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- \bullet Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	·	
1.	$2(2+\sqrt{3}) = 4 + 2\sqrt{3}$ $4 + 2\sqrt{3} - 2\sqrt{3} = 4$	2p
	$4 + 2\sqrt{3} - 2\sqrt{3} = 4$	3 p
2.	f(4)=8	2p
	$f\left(-4\right) = 0$	2p
	f(4) = 8 f(-4) = 0 f(4) + f(-4) = 8	1p
	$7^{2x} = 7^2$	2p
	x=1	3p
4.	$\frac{10}{100} \cdot 1000 = 100$	2p 3p
	Prețul după scumpire este 1100 de lei	
5.	$AB = \sqrt{(4-4)^2 + (1-3)^2}$	3p
	AB=2	2p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\sin 135^\circ = \frac{\sqrt{2}}{2}$	2p
	$\frac{\sin 133}{2}$	1
	$\sin 45^\circ - \sin 135^\circ = 0$	1p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix} = -1 - 4 =$	3p
	=-5	2p
b)	Pentru $m = -2$ avem $A + B = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ -2 & -1 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$A \cdot B = \begin{pmatrix} 2m - 1 & m + 2 \\ m + 2 & 3m + 1 \end{pmatrix}$	3p
	$ \begin{pmatrix} 2m-1 & m+2 \\ m+2 & 3m+1 \end{pmatrix} = \begin{pmatrix} 9 & 7 \\ 7 & 16 \end{pmatrix} \Leftrightarrow m=5 $	2p
2.a)	$f(-1) = (-1)^3 + 2 \cdot (-1)^2 + (-1) =$	2p
	=-1+2-1=0	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

b)	Câtul este <i>X</i> +1 Restul este 0	2p 3p
	$x_1 + x_2 + x_3 = -2$, $x_1 x_2 + x_2 x_3 + x_1 x_3 = 1$	2p
	$x_1^2 + x_2^2 + x_3^2 = (-2)^2 - 2 \cdot 1 = 2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

5022	(30 de pui	
1.a)	$f'(x) = x' + 10' - \left(\frac{11}{x}\right)' = 1 - 11 \cdot \left(-\frac{1}{x^2}\right) =$	3р
	$=1+\frac{11}{x^2}=\frac{x^2+11}{x^2}$, pentru orice $x \in (0,+\infty)$	2p
b)	$x \in (0, +\infty) \Rightarrow x^2 + 11 > 0$	3p
	$f'(x) = \frac{x^2 + 11}{x^2} \Rightarrow f'(x) > 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este crescătoare pe $(0, +\infty)$	2p
c)	$f''(x) = -\frac{22}{x^3}$, pentru orice $x \in (0, +\infty)$	2 p
	$f''(x) < 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este concavă pe intervalul $(0, +\infty)$	3 p
2.a)	$\int_{1}^{2} f'(x) dx = f(x) \Big _{1}^{2} =$	3p
	= f(2) - f(1) = 3	2p
b)	$\int_{1}^{2} \frac{f(x)}{x} dx = \int_{1}^{2} \left(x + \frac{9}{x}\right) dx =$	2p
	$= \left(\frac{x^2}{2} + 9\ln x\right) \Big _{1}^{2} = \frac{3}{2} + 9\ln 2$	3p
c)	$V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} (x^{2} + 9 - x^{2})^{2} dx =$	2p
	$=\pi \cdot 81x \Big _{0}^{1} = 81\pi$	3p

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $2(2+\sqrt{3})-2\sqrt{3}=4$.
- **5p** 2. Calculați f(4) + f(-4) pentru funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 4.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $7^{2x} = 49$.
- **5p 4.** Prețul unui obiect este 1000 de lei. Determinați prețul obiectului după o scumpire cu 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(4,3) și B(4,1). Calculați distanța de la punctul A la punctul B.
- **5p 6.** Calculați $\sin 45^{\circ} \sin 135^{\circ}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & m \\ m & m+1 \end{pmatrix}$, unde m este număr real.
- **5p** a) Calculați det A.
- **5p b**) Pentru m = -2, arătați că $A + B = O_2$.
- **5p** c) Determinați numărul real m pentru care $A \cdot B = \begin{pmatrix} 9 & 7 \\ 7 & 16 \end{pmatrix}$.
 - **2.** Se consideră polinomul $f = X^3 + 2X^2 + X$.
- **5p a)** Arătați că f(-1) = 0.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul $g = X^2 + X$.
- **5p** c) Calculați $x_1^2 + x_2^2 + x_3^2$, știind că x_1, x_2, x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x + 10 \frac{11}{x}$.
- **5p** a) Verificați dacă $f'(x) = \frac{x^2 + 11}{x^2}$, pentru orice $x \in (0, +\infty)$.
- **5p b**) Arătați că funcția f este crescătoare pe intervalul $(0, +\infty)$.
- **5p** c) Arătați că funcția f este concavă pe intervalul $(0,+\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 9$.
- **5p** a) Calculați $\int_{1}^{2} f'(x) dx$.
- **5p b)** Arătați că $\int_{1}^{2} \frac{f(x)}{x} dx = \frac{3}{2} + 9 \ln 2$.
- **5p** c) Arătați că volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}$, $g(x) = f(x) x^2$ este egal cu 81π .

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	-	
1.	$3(4-\sqrt{3}) = 12 - 3\sqrt{3}$ $12 - 3\sqrt{3} + 3\sqrt{3} = 12$	2p 3p
	$12-3\sqrt{3}+3\sqrt{3}=12$	JP
2.	$f\left(-4\right) = 0$	2p
	$f(4) = 0 \Rightarrow f(-4) + f(4) = 0$	3 p
3.	$(x-2)^2 = x^2 - 4x + 4$	2p
	x=3	3 p
4.	$\frac{30}{100} \cdot 100 = 30$	2p 3p
	Prețul după ieftinire este 70 de lei	
5.	$AB = \sqrt{(2-2)^2 + (1-4)^2}$ $AB = 3$	3p 2p
6.	$\sin^2 A + \cos^2 A = 1 \Rightarrow \cos^2 A = \frac{3}{4}$	3p
	$\cos A = \frac{\sqrt{3}}{2}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & -2 \\ 0 & 2 \end{vmatrix} = 4 - 0 =$	3p
	$\begin{vmatrix} 0 & 2 \end{vmatrix}$	2 p
b)	$A \cdot B = \begin{pmatrix} 2b & 2 - 2b \\ 0 & 2b \end{pmatrix}$	3 p
	$ \begin{pmatrix} 0 & 2b \end{pmatrix} $ $ A \cdot B = 2I_2 \Leftrightarrow b = 1 $	2p
	2	-P
c)	$A+B = \begin{pmatrix} 2+b & -1 \\ 0 & 2+b \end{pmatrix} \Rightarrow \det(A+B) = (2+b)^2$	3 p
	$(2+b)^2 = 0 \Leftrightarrow b = -2$	2 p
2.a)	$f(1) = 1^3 - 3 \cdot 1^2 + 2 \cdot 1 =$	2p
	=1-3+2=0	3 p
b)	Câtul este $X^2 - X$	2p
	Restul este 0	3 p
c)	$x_1 + x_2 + x_3 = 3$, $x_1x_2 + x_2x_3 + x_3x_1 = 2$	2 p
	$x_1^2 + x_2^2 + x_3^2 = 3^2 - 2 \cdot 2 = 5$	3p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

SUBI	SUBIECTUL al III-lea (30 de pun	
1.a)	$f'(x) = (x^3 + 6x^2 + 12x + 8)' =$	2p
	$=3x^2+12x+12$, pentru orice $x \in \mathbb{R}$	3 p
b)	$f'(x) = 3(x+2)^2$, pentru orice $x \in \mathbb{R}$	2p
	$f'(x) \ge 0$, pentru orice $x \in \mathbb{R} \Rightarrow f$ este crescătoare pe \mathbb{R}	3 p
c)	$\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{3x^2 + 12x + 12}{x^2} = \lim_{\substack{x \to +\infty \\ x \to 0}} \frac{x^2 \left(3 + \frac{12}{x} + \frac{12}{x^2}\right)}{x^2} =$	3p 2p
2.a)	$F'(x) = \left(\frac{x^3}{3} + x\right)' = x^2 + 1$	3p
	$F'(x) = f(x)$, oricare ar fi $x \in \mathbb{R} \Rightarrow F$ este o primitivă a funcției f	2p
b)	$\mathcal{A} = \int_{0}^{1} f(x) dx = \int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} = 4$	3p 2p
	$=\frac{1}{3}$	_
c)	$\int_{1}^{2} \frac{f(x)}{x} dx = \int_{1}^{2} \frac{x^{2} + 1}{x} dx = \int_{1}^{2} \left(x + \frac{1}{x}\right) dx =$	2 p
	$= \left(\frac{x^2}{2} + \ln x\right) \Big _{1}^{2} = \frac{3}{2} + \ln 2$	3р

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $3(4-\sqrt{3})+3\sqrt{3}=12$.
- **5p** 2. Calculați f(-4) + f(4) pentru funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 16$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $(x-2)^2 x^2 + 8 = 0$.
- **5p 4.** Prețul unui obiect este 100 de lei. Determinați prețul obiectului după o ieftinire cu 30%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,4) și B(2,1). Calculați distanța de la punctul A la punctul B.
- **5p 6.** Calculați $\cos A$, știind că $\sin A = \frac{1}{2}$ și unghiul A este ascuțit.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & -2 \\ 0 & 2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} b & 1 \\ 0 & b \end{pmatrix}$, unde b este număr real.
- **5p** \mid **a**) Calculați det A.
- **5p b**) Determinați numărul real *b* pentru care $A \cdot B = 2I_2$.
- **5p** c) Determinați numărul real *b* pentru care det(A+B)=0.
 - **2.** Se consideră polinomul $f = X^3 3X^2 + 2X$.
- **5p a**) Calculați f(1).
- **5p b**) Determinați câtul și restul împărțirii polinomului f la X-2.
- **5p** c) Calculați $x_1^2 + x_2^2 + x_3^2$, unde x_1, x_2, x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+2)^3$.
- **5p** a) Verificați dacă $f'(x) = 3x^2 + 12x + 12$, pentru orice $x \in \mathbb{R}$.
- **5p b**) Arătați că funcția f este crescătoare pe \mathbb{R} .
- **5p** c) Calculați $\lim_{x \to +\infty} \frac{f'(x)}{r^2}$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$.
- **5p** a) Verificați dacă funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{x^3}{3} + x$ este o primitivă a funcției f.
- **5p b)** Calculați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 0 și x = 1.
- **5p** c) Arătați că $\int_{1}^{2} \frac{f(x)}{x} dx = \frac{3}{2} + \ln 2$.

Examenul de bacalaureat național 2013

Proba E. c)

Matematică M_tehnologic

Barem de evaluare și de notare

Model

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

~ 0 2	ille i e l'action de la faire	,
1.	$9x^2 + 12x = 0$	3 p
	$x = 0$ sau $x = -\frac{4}{3}$	2p
2.	$-\frac{b}{2a} = \frac{3m}{2}$	2p
	2a - 2	
	$\frac{3m}{2} = \frac{3}{2}$	2p
		1n
	m = 1	1p
3.	$3^{2x} = 3^2$	2p
	$2x = 2 \Rightarrow x = 1$	3р
4.	$C_4^2 = 6$	2p
	$A_5^2 = 20$	2p
	$5C_4^2 - A_5^2 = 10$	1p
5.	C mijlocul lui $(AB) \Rightarrow x_C = \frac{x_A + x_B}{2}$ și $y_C = \frac{y_A + y_B}{2}$	1p
	$x_C = -2$	2 p
	$y_C = 4$	2p
6.	$m(\prec BAD) = 60^{\circ}$	2p
	$\triangle ABD$ este echilateral	1p
	BD=4	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\Delta(1) = \begin{vmatrix} -1 & 2 & 1 \\ 2 & -1 & 1 \\ 1 & 1 & 2 \end{vmatrix}$	2 p
	$\begin{vmatrix} 1 & 1 & 2 \\ \Delta(1) = 0 \end{vmatrix}$	3p
b)	$\Delta(x) = 2 + 2 \cdot x^2 + 2 \cdot x^2 + x^2 + x^2 - 8$	3 p
	Finalizare	2p
c)	$\Delta(0) = -6$	2 p
	$(A(0))^{-1} = \frac{1}{6} \cdot \begin{pmatrix} 2 & 4 & 0 \\ 4 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$	3 p
2.a)	$f(1) = 1^3 - 1^2 + a \cdot 1 + b$	3p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

	a+b=0	2p
b)	$f = X^3 - X^2 - X + 1 \Rightarrow f = (X - 1)^2 (X + 1)$	3p
	Finalizare: $x_1 = 1$, $x_2 = 1$, $x_3 = -1$	2p
c)	$f(1) = 0 \Rightarrow a + b = 0$	1p
	$f(2) = 0 \Rightarrow 2a + b = -4$	2p
	Finalizare: $a = -4$, $b = 4$	2p

SUBIECTUL al III-lea

(30 de puncte)

500	(So de puncte	,
1.a)	$f'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x}$ pentru orice $x \in (0, +\infty)$	3p
	Finalizare	2 p
b)	$f'(x) = 0 \Rightarrow x = \frac{1}{e}$	2p
	$f'(x) \ge 0$ pentru orice $x \in \left[\frac{1}{e}, +\infty\right) \Rightarrow f$ crescătoare pe intervalul $\left[\frac{1}{e}, +\infty\right)$	3 p
c)	$f'(x) \le 0$ pentru orice $x \in \left(0, \frac{1}{e}\right] \Rightarrow f$ descrescătoare pe intervalul $\left(0, \frac{1}{e}\right]$	3 p
	Din tabelul de variație al funcției obținem $f(x) \ge f\left(\frac{1}{e}\right) = -\frac{1}{e}$ pentru orice $x \in (0, +\infty)$	2p
2.a)	$F'(x) = \left(x - \frac{1}{x} + \ln x\right)' = 1 + \frac{1}{x^2} + \frac{1}{x}$	3 p
	F este derivabilă pe $(0,+\infty)$ și $F'=f$	2p
b)	$\int_{1}^{e} x \cdot f(x^{2}) dx = \frac{1}{2} \int_{1}^{e} f(x^{2}) \cdot 2x dx = \frac{1}{2} \int_{1}^{e^{2}} f(t) dt =$	3p
	$= \frac{1}{2} \left(t - \frac{1}{t} + \ln t \right) \Big _{1}^{e^{2}} = \frac{1}{2} \left(e^{2} - \frac{1}{e^{2}} + 2 \right)$	2p
c)	$\int_{1}^{a} \left(f(x) - \frac{1}{x} \right) dx = \left(x - \frac{1}{x} \right) \Big _{1}^{a} = a - \frac{1}{a}$	2p
	$a - \frac{1}{a} = \frac{3}{2} \Rightarrow a = 2 \text{ sau } a = -\frac{1}{2}$ Finalizare: $a = 2$	2p 1p

Examenul de bacalaureat național 2013

Proba E. c)

Matematică M_tehnologic

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **1.** Rezolvați în mulțimea numerelor reale ecuația $(3x+2)^2 = 4$.
- **5p 2.** Determinați numărul real m pentru care vârful parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = -x^2 + 3mx + 1$ are abscisa egală cu $\frac{3}{2}$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x} = 9$.
- **5p 4.** Calculați $5C_4^2 A_5^2$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-6,3) și B(2,5). Determinați coordonatele mijlocului segmentului (AB).
- **5p** | **6.** Calculați lungimea diagonalei *BD* a rombului *ABCD* în care AB = 4 și $m(\angle ABC) = 120^{\circ}$.

SUBIECTUL al II-lea

(30 de puncte)

1. Pentru fiecare număr real x se consideră matricea $A(x) = \begin{pmatrix} -1 & 2 & x \\ 2 & -1 & x \\ x & x & 2 \end{pmatrix}$ și se notează determinantul

ei cu $\Delta(x)$.

- **5p** a) Calculați $\Delta(1)$.
- **5p b)** Arătați că $\Delta(x) = 6(x^2 1)$, pentru orice număr real x.
- **5p** c) Determinați inversa matricei A(0).
 - **2.** În $\mathbb{R}[X]$ se consideră polinomul $f = X^3 X^2 + aX + b$.
- **5p** a) Calculați a+b, știind că f(1)=0.
- **5p b)** Pentru a = -1 și b = 1, determinați rădăcinile polinomului f.
- **5p** | **c**) Determinați numerele reale a și b, știind că $x_1 = 1$ și $x_2 = 2$ sunt rădăcini ale polinomului f.

SUBIECTUL al III-lea

(30 de puncte)

- 1. Se consideră funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=x\ln x$.
- **5p** a) Verificați dacă $f'(x) = 1 + \ln x$, oricare ar fi $x \in (0, +\infty)$.
- **5p b)** Arătați că funcția f este crescătoare pe $\left[\frac{1}{e}, +\infty\right)$.
- **5p** c) Demonstrați că $f(x) \ge -\frac{1}{a}$, oricare ar fi $x \in (0, +\infty)$.
 - 2. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x)=1+\frac{1}{x}+\frac{1}{x^2}$.
- **5p** a) Verificați dacă funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = x \frac{1}{x} + \ln x$ este o primitivă a funcției f.

1

- **5p b)** Calculați $\int_{1}^{e} x \cdot f(x^{2}) dx$.
- **5p** c) Determinați numărul real a > 1, pentru care $\int_{1}^{a} \left(f(x) \frac{1}{x} \right) dx = \frac{3}{2}$.

Barem de evaluare și de notare

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3(2+\sqrt{2}) = 6+3\sqrt{2} 6+3\sqrt{2}-3\sqrt{2} = 6$	2p
	$6+3\sqrt{2}-3\sqrt{2}=6$	3 p
2.	f(-2) = -1 $f(0) = 1$	2p
	f(0)=1	2p
	$f(-2) \cdot f(0) = -1$	1p
3.	$x^2 + 1 = 1$	2p
	x = 0	3 p
4.	$10\% \cdot 1000 = 100$	2p
	Prețul după ieftinire este 900 de lei	3p
5.	M mijlocul lui $(PR) \Rightarrow x_M = \frac{x_P + x_R}{2}$ și $y_M = \frac{y_P + y_R}{2}$	1p
	$x_M = 2$	2p
	$y_M = 2$	2p
6.	$\sin^2 B + \cos^2 B = 1 \Rightarrow \cos B = \sqrt{1 - \sin^2 B}$	3p
	$\cos B = \frac{12}{13}$	2p

	` 1	,
1.a)	$\det A = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = 0 - 1 =$	3p
	=-1	2 p
b)	$A \cdot A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow A \cdot A - xI_2 = \begin{pmatrix} 2 - x & 1 \\ 1 & 1 - x \end{pmatrix}$	3 p
	$A \cdot A - xI_2 = A \Leftrightarrow x = 1$	2p
c)	$\det(M+A) = \begin{vmatrix} m+1 & m+1 \\ m+1 & 1 \end{vmatrix} = -m^2 - m$	3p
	$m = -1$ sau $m = 0 \Rightarrow M = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ sau $M = \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}$	2p
2.a)	5*(-5) = 5+(-5)-2	3p
	=-2	2 p
b)	x * y = x + y - 2 şi $y * x = y + x - 2$, pentru orice numere reale x şi y	3p
	x * y = y * x, pentru orice numere reale $x si y$	2 p

c)	(-3)*(-2)*(-1)*0*1*2*3 = ((-3)*3)*((-2)*2)*((-1)*1)*0 =	2p
	=(-2)*(-2)*(-2)*0=-12	3 p

1.a)	$f'(x) = x'e^x + x(e^x)' = e^x + xe^x =$	3p
	$=(x+1)e^x$, pentru orice $x \in \mathbb{R}$	2p
b)	$f''(x) = (x+2)e^x$, pentru orice $x \in \mathbb{R}$	2p
	$f''(x) + f(x) = (x+2)e^x + xe^x = 2(x+1)e^x = 2f'(x)$, pentru orice $x \in \mathbb{R}$	3 p
c)	$f'(x) = 0 \Rightarrow x = -1$	2p
	$f'(-1) = 0$, $f'(x) < 0$ pentru $x \in (-\infty, -1)$ și $f'(x) > 0$ pentru $x \in (-1, +\infty) \Rightarrow$ funcția f are un punct de extrem, $x = -1$	3р
2.a)	$\int_{4}^{5} xf(x)dx = \int_{4}^{5} 1 \cdot dx =$	2p
	$=x\begin{vmatrix} 5\\4 = 1 \end{vmatrix}$	3 p
b)	$F'(x) = (4 + \ln x)' = \frac{1}{x}$, pentru orice $x \in (0, +\infty)$	3 p
	$F'(x) = f(x)$, pentru orice $x \in (0, +\infty) \Rightarrow F$ este o primitivă a funcției f	2 p
c)	$\mathcal{A} = \int_{5}^{a} \left f(x) \right dx = \int_{5}^{a} \frac{1}{x} dx =$	2p
	$= \ln a - \ln 5 = \ln 3 \Rightarrow a = 15$	3 p

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Arătați că $3(2+\sqrt{2})-3\sqrt{2}=6$.
- **5p** 2. Calculați $f(-2) \cdot f(0)$ pentru funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2+1) = \log_3 1$.
- **5p** | **4.** Prețul unui obiect este 1000 de lei. Determinați prețul obiectului după o ieftinire cu 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele P(2,1) și R(2,3). Determinați coordonatele mijlocului segmentului PR.
- **5p 6.** Calculați $\cos B$, știind că $\sin B = \frac{5}{13}$ și unghiul B este ascuțit.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
- **5p** a) Calculați det A.
- **5p b)** Determinați numărul real x pentru care $A \cdot A xI_2 = A$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Determinați matricele $M = \begin{pmatrix} m & m \\ m & 1 \end{pmatrix}$, știind că $\det(M + A) = 0$, unde m este număr real.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă dată de x * y = x + y 2.
- **5p** a) Calculați 5*(-5).
- **5p b)** Arătați că legea de compoziție "*" este comutativă.
- **5p** | **c**) Calculați (-3)*(-2)*(-1)*0*1*2*3.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p** a) Arătați că $f'(x) = (x+1)e^x$, pentru orice $x \in \mathbb{R}$.
- **5p** | **b**) Verificați dacă f''(x) + f(x) = 2f'(x), pentru orice $x \in \mathbb{R}$.
- **5p** \mid **c**) Arătați că funcția f are un punct de extrem.
 - **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x}$.
- **5p** a) Calculați $\int_{4}^{5} xf(x)dx$.
- **5p** | **b**) Arătați că funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = 4 + \ln x$ este o primitivă a funcției f.
- **5p** c) Determinați numărul real a, a > 5, pentru care aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuație x = 5 și x = a, este egală cu $\ln 3$.