

Using automatic differentiation to reconstruct beyond the depth-of-focus ...and more!

Ming Du

Postdoctoral Appointee Argonne National Laboratory

November 4, 2019

A brief history of x-ray imaging

Crookes cathode ray tube

Transmission x-ray microscope

Air ionization x-ray tube

Hot filament x-ray tube

Penetration through several cm

Synchrotron

2D resolution < 20 nm

Ptychography and x-ray fluorescence

[1] E. Wilson, "Fifty years of synchrotrons," CERN (1996).

[2] J. Deng, D. J. Vine, S. Chen, Y. S. G. Nashed, Q. Jin, N. W. Phillips, T. Peterka, R. Ross, S. Vogt, and C. J. Jacobsen, "Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae," Proc Natl Acad Sci USA 112, 2314–2319 (2015). [3] B. Chen, B. Abbey, R. Dilanian, E. Balaur, G. V. Riessen, M. Junker, C. Q. Tran, M. W. M. Jones, I. McNulty, D. J. Vine, C. T. Putkunz, H. M. Quiney, and K. A. Nugent, "Partial Coherence: a Route to Performing Faster Coherent Diffraction Imaging," J. Phys.: Conf. Ser. 463, 012033-5 (2013).

What are left undone?

Penetration through several cm

2D resolution < 20 nm

- Better understanding of radiation dose
- Imaging beyond the field of view (FOV)
- Imaging beyond the depth of focus (DOF)

$$DOF = 5.4\delta_r^2/\lambda$$

For 100 nm resolution, 25 keV, DOF = 1 mm

Depth of focus: what is it

http://www.elementsofcinema.com/cinematography/depth-of-field.html

$$DOF = 5.4\delta_r^2/\lambda$$

In-sample diffraction must be accounted for when t > DOF

$${
m DOF}=rac{2}{0.61^2}rac{\delta_r^2}{\lambda}\simeq 5.4\delta_r\,rac{\delta_r}{\lambda}$$
 (5.2 prefactor as in Tsai et al., 2016)

[1] E. H. R. Tsai, I. Usov, A. Diaz, A. Menzel, and M. Guizar-Sicairos, "X-ray ptychography with extended depth of field," Opt Express 24, 29089–20 (2016).

Maximum likelihood

Realistic imaging is a stochastic process with photon noise following Poisson/Gaussian distribution.

$$p_i(y_i|\boldsymbol{x}) = C \exp\left\{-\frac{[y_i - \bar{y}_i(\boldsymbol{x})]^2}{2\sigma^2}\right\}$$

of pixels per view # of viewing angles
$$p(m{y}|m{x}) = \prod_i^{N_t imes N_{ heta}} p_i(y_i|m{x}_i)$$
 $L(m{x},m{y}) = -\ln p(m{y}|m{x})$ $= \sum_i^{N_t imes N_{ heta}} -\ln p_i(y_i|m{x}_i)$ $\propto \sum_i^{N_t imes N_{ heta}} [y_i - ar{y}_i(m{x})]^2$

The forward model

Fresnel (near-field) propagation

$$egin{aligned} f(oldsymbol{x}) &= ar{oldsymbol{y}}(oldsymbol{x}) \ &= oldsymbol{P}_d oldsymbol{M}_{oldsymbol{x}} oldsymbol{\psi}_0 \end{aligned}$$

(b) Far-field ptychography

$$f(x) = \bar{y}(x)$$

= $P_{\infty} M_x \psi_0$

Rotate 0° - 360°

Just something else...

$$n = 1 - \delta - i\beta$$

$$L = \frac{1}{N_{\theta}N_{p}N_{k}} \sum_{\theta,k} \left\| |f(\boldsymbol{x},\theta,k,\Delta z,d)| - \sqrt{\boldsymbol{y}_{\theta,k}} \right\|^{2} + \alpha_{\delta}|\boldsymbol{x}_{\delta}|_{1} + \alpha_{\beta}|\boldsymbol{x}_{\beta}|_{1} + \gamma \text{TV}(\boldsymbol{x}_{\delta})$$
subject to $x_{w} = 0$ for $x_{w} \notin \Theta$ and $x_{w} \geq 0$ for $x_{w} \in \Theta$.

L1 norm	Object sparsityNoise and artifact suppression
Total variation	Object gradient sparsityNoise and artifact suppression
Non- negativity	 Solution stabilization Works as long as one avoids anomalous dispersion at an absorption edge
Finite support and shrink- wrap	 For fullfield holography only Initialized by thresholding conventional reconstruction results Shrunk by taking out low-value voxels per several iterations

^[2] Horn, R. A. and Johnson, C. R. "Norms for Vectors and Matrices." Ch. 5 in Matrix Analysis. Cambridge, England: Cambridge University Press, 1990.
[3] Sidky, E. Y., & Pan, X. (2008). Physics in Medicine and Biology. 53(17), 4777–4807.

Multiscale reconstruction (frequency advancing)

It's all about gradient

$$L = \frac{1}{N_{\theta}N_{p}N_{k}} \sum_{\theta,k} \left\| |f(\boldsymbol{x},\theta,k,\Delta z,d)| - \sqrt{\boldsymbol{y}_{\theta,k}} \right\|^{2} + \alpha_{\delta}|\boldsymbol{x}_{\delta}|_{1} + \alpha_{\beta}|\boldsymbol{x}_{\beta}|_{1} + \gamma \text{TV}(\boldsymbol{x}_{\delta})$$
subject to $x_{w} = 0$ for $x_{w} \notin \Theta$ and $x_{w} \geq 0$ for $x_{w} \in \Theta$.

$$ar{m{x}} = \operatorname*{argmin}_{m{x}} \{L(m{x})\}$$

$$\nabla_{\mathbf{x}}L = ?$$

$$egin{align*} egin{align*} oldsymbol{V}_{oldsymbol{x}} oldsymbol{v}_{oldsymbol{x}} &= P_d rac{d M_{oldsymbol{x}, 0, \Delta z}}{d oldsymbol{x}} \psi_{0, k} \ oldsymbol{v}_{oldsymbol{x}, \Delta z} &= \prod_{j}^J P_{\Delta z} A_{oldsymbol{x}, \theta, j} \ &= \prod_{j}^J oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x})] \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x}) \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{x}) \ &= \sum_{j}^J igg\{ oldsymbol{P}_{\Delta z} \exp[\mathrm{diag}(oldsymbol{S}_j oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{P}_{\Delta z} oldsymbol{R}_{oldsymbol{\theta}} oldsymbol{R}_{oldsymbol{\theta}}$$

 $= f(x, \theta, k, \Delta z, d) = P_d M_{x, \theta, \Delta z} \psi_{0, k}$

$$\frac{df}{dx} = \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

$$f(x) = y_2[y_1(x)]$$
$$y_1(w) = \sin(w)$$
$$y_2(w) = \exp(w)$$

Figure WalkD [x ArcTan [
$$\sqrt{x}$$
], x]
$$\frac{d}{dx} x \tan^{-1}(\sqrt{x})$$

$$+ \tan^{-1}(\sqrt{x}) \left(\frac{d}{dx}x\right) + x \left(\frac{d}{dx} \tan^{-1}(\sqrt{x})\right)$$

$$+ \tan^{-1}(\sqrt{x}) + x \left(\frac{d}{dx} \tan^{-1}(\sqrt{x})\right)$$

$$+ \tan^{-1}(\sqrt{x}) + \frac{x \left(\frac{d}{dx} \sqrt{x}\right)}{1 + x}$$

$$+ \frac{\sqrt{x}}{2(1 + x)} + \tan^{-1}(\sqrt{x})$$
Outline $\frac{\sqrt{x}}{2(1 + x)} + \operatorname{ArcTan}[\sqrt{x}]$

$$\frac{df}{dx} = \frac{dy_2}{dy_1} \frac{dy_1}{dx}$$

^[2] D. Maclaurin, "Modeling, Inference and Optimization with Composable Differentiable Procedures," (PhD thesis), Harvard University (2014).

Divide projection data into minibatches to fit in memory

Gradient accumulation: fighting uncertainty

```
# build model
while stopping_criterion_not_met:
    for i_update_chunk = 1 ... n_chunks:
        for i_minibatch = 1 ... n_minibatches:
            accum_gradient += optimizer.compute_gradient
            optimizer.apply_gradient(accum_gradient)
```


Test case 1: a designed sample

Pixel size (nm)	1
Energy (eV)	5000
Depth of focus (nm)	21.77
Largest sample thickness (nm)	200
Sample-detector distance (nm)	1000
Object grid size	256 ³
# of projections	500
# of diffraction spots in ptychography	23×23
Depth of focus (nm) Largest sample thickness (nm) Sample-detector distance (nm) Object grid size # of projections	21.77 200 1000 256 ³ 500

Test case 1: a designed sample

Pixel size (nm)	1
Energy (eV)	5000
Depth of focus (nm)	21.77
Largest sample thickness (nm)	200
Sample-detector distance (nm)	1000
Object grid size	256 ³
# of projections	500
# of diffraction spots in ptychography	23×23
Platform	Cooley
Fullfield # of threads	4
Fullfield time	5 h
Ptychography # of threads	20
Ptychography time	45.9 h

True: simulated object

360°: full-filed reconstruction with 360° projection data **180°:** full-filed reconstruction with 180° projection data

Ptycho: ptychography reconstruction with 360° projection data **ER+FBP:** reconstruction with conventional CDI and tomography

Test case 2: a semi-experimental protein molecule

Human adhesin complex originally acquired using EM; data retrieved from EM databank.

Pixel size (nm)	0.67
Energy (eV)	800
Depth of focus (nm)	1.56
Largest sample thickness (nm)	30
Object grid size	64 ³
Num. of projections	500
# of diffraction spots in ptychography	23×23

Test case 2: a semi-experimental protein molecule XZ-cross section 1 XZ-cross section 2 XY-cross section 2

Pixel size (nm)	0.67
Energy (eV)	800
Depth of focus (nm)	1.56
Largest sample thickness (nm)	30
Object grid size	64 ³
Num. of projections	500
# of diffraction spots in ptycho.	23×23

Fullfield platform	Workstation (GPU)
Fullfield # of threads	4
Fullfield time	0.15 h
Ptychography platform	Cooley
Ptycho. # of threads	20
Ptychography time	1.45 h

Full-field reconstruction throws away halos, while ptychography preserves it.

Future perspectives

One code, two or three dimensions, and... many more things doable!

Gaussian noise model

$$L(oldsymbol{x},oldsymbol{y}) \propto \sum_i \left\|y_i - ar{y_i}
ight\|^2.$$

Poisson noise model

$$L(oldsymbol{x},oldsymbol{y}) \propto \sum_i \left[ar{y}_i - y_i \log(ar{y}_i)
ight]$$

loss = tf.reduce_mean(tf.abs(exiting_ls) ** 2 * poisson_multiplier) tf.abs(this_prj_batch[i]) ** 2 * poisson_multiplier *
 tf.log(tf.abs(exiting_ls) ** 2 * poisson_multiplier)

One code, two or three dimensions, and... many more things doable!

Jointed reconstruction with projection alignment for multi-distance holography

Acknowledgement

Advertisement

Tomosaic at 2-BM

- Large-scale tomography acquisition, stitching and reconstruction
- Supercomputer-friendly

Thank you

Q & A