

DS25 REV01 21/10/2024

Notas

			Utilizar tolerânci	as estabelecidas	pelo grav médio						
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS) 1. Dimensões: mm										
GRAU DE PRECISÃO	0	0	0	20	400 400	400 4000	4000	ANGULAR ±	2. IC = inspeção crítica		
GRAU DE PRECISAU	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°	3. RP = rosca parcial		
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'	4. RT = rosca total		
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'	5. BI = bicromatizado		
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°			

- 1		
1	1. Dimensões: mm	6. PL = polido
1	2. IC = inspeção crítica	7. NT = natural
1	3. RP = rosca parcial	8. ZA = zincado amarelo

8. ZA = zincado amarelo 9. ZB = zincado branco 10. ZP = zincado preto

•		7 23	GROSSO ±0,15	±0,2 ±0,5	±0,8 ±1	,2 ±2	±3 > 120 < 400 = 0° 10'	
Referência		Descrição	o	A nominal	B nominal	C nominal	Material	Tratamento
MP0049	ARRUE	LA DENTADA AÇO ATO	M8 X 15 X 0,8 MM BI	M8 (8,5)	15	0,8	AÇO ATO	C Bicromatizado
Formata	ıção da	Nome	Material	A nominal	B nominal	C nominal	Tratamento	EXEMPLO
descri	ição	ARRUELA DENTADA						ARRUELA DENTADA X X

Utilizar tolerâncias estabelecidas pelo grau médio

			TABELA DE TOLERÂN	CIA (MEDIDAS NOMIN	AIS EM MILÍMETROS)				 Dimensões: mm
								ANGULAR ±	IC = inspeção crítica
GRAU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°	RP = rosca parcial
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30°	4. RT = rosca total
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'	BI = bicromatizado
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10'	

Notas

- 6. PL = polido 7. NT = natural
- 1. Dimensões: mm 2. IC = inspeção crítica 3. RP = rosca parcial
- 4. RT = rosca total

8. ZA = zincado amarelo
9. ZB = zincado branco
10. ZP = zincado preto

MP0119 ARRUELA DE PRESSAO INOX 304 MS 14,2 X 2 MM NT M10 (1.0.6) 10,7 2.2 AQO INOX 304 Natural MP0170 ARRUELA DE PRESSAO INOX 304 MS 14,2 X 2 MM NT M10 (1.0.6) 10,7 2.2 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 20 X 2.5 MM NT M12 (13) 20 2.5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 20 X 2.5 MM NT M12 (13) 20 2.5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 38.5 X 5 MM NT M24 (25) 38.5 5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 38.5 X 5 MM NT M24 (25) 38.5 5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 38.5 X 5 MM NT M12 (13) 20 2.5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 38.5 X 5 MM NT M12 (13) 20 2.5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 38.5 X 5 MM NT M12 (13) 20 2.5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO INOX 304 M12 X 38.5 X 5 MM NT M12 (13) 20 2.5 AQO INOX 304 Natural MP0180 ARRUELA DE PRESSAO X X ARRUELA DE PRESSAO	Referência	Descrição		A nominal	B nominal	C nominal	Material	Tratamento
MP0695 ARRUELA DE PRESSÃO INOX 304 M12 X 20 X 2.5 MM NT M24 (26) 38,5 5 AÇO INOX 304 Natural Natura	MP0019	ARRUELA DE PRESSÃO INOX 304 I	M8 X 14,2 X 2 MM NT		14,2	2	AÇO INOX 30	04 Natural
MP2895 ARRUELA DE PRESSÃO INOX 304 M24 X 38,5 X 5 MM NT M24 (25) 38,5 5 AÇO INOX 304 Natural CIRCLE STATE ST	MP0176	ARRUELA DE PRESSÃO INOX 304 M	10 X 10,7 X 2,2 MM NT		10,7			
Formatação da Nome Material A nominal B nominal C nominal Tratamento EXEMPLO	MP0064					2,5		
	MP2695	ARRUELA DE PRESSÃO INOX 304 N	M24 X 38,5 X 5 MM NT	M24 (25)	38,5	5	AÇO INOX 30	04 Natural
	Formata	acão da Nome	Material	A nominal	B nominal	C nominal	Tratamento	EXEMPLO

				Utilizar tolerând	ias estabelecidas	s pelo grav médi	0				Notas
				TABELA DE TOLERÂ		1. Dimensões: mm	6. PL = polido				
									ANGULAR ±	2. IC = inspeção crítica	7. NT = natural
GH	AU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°	3. RP = rosca parcial	8. ZA = zincado amarelo
	FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'	4. RT = rosca total	9. ZB = zincado branco
	MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'	5. BI = bicromatizado	10. ZP = zincado preto
	GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10]	
_											

Referência		Descrição	o	A nominal	B nominal	C nominal	Material	Tratamento
MP0299	ARRUEL	A LISA AÇO BTC N	/4 X 9 X 0,8 ММ ВІ	M4 (4,4)	9	0,8	AÇO BTC	Bicromatizado
MP1957	ARRUEL	A LISA INOX 304 M	14 X 9 X 0,8 MM NT	M4 (4,4)	9	0,8	AÇO INOX 3	04 Natural
MP1293	ARRUEL	A LISA INOX 304 N	15 X 10 X 1 MM NT	M5 (5,4)	10	1	AÇO INOX 3	04 Natural
MP1827	ARRUELA	LISA INOX 304 M	6 X 12 X 1,6 MM NT	M6 (6,5)	12	1,6	AÇO INOX 3	04 Natural
MP0018	ARRUELA	LISA INOX 304 M	8 X 16 X 1,6 MM NT	M8 (8,5)	16	1,6	AÇO INOX 3	04 Natural
MP0224	ARRUEL	A LISA INOX 304 N	18 X 24 X 2 MM NT	M8 (8,5)	24	2	AÇO INOX 3	04 Natural
MP1730	ARRUEL	A LISA AÇO BTC M	110 X 20 X 2 MM ZB	M10 (10,6)	20	2	AÇO BTC	Zincado braco
MP0175	ARRUELA	LISA INOX 304 M1	10 X 20 X 1,5 MM NT	M10 (10,6)	20	1,5	AÇO INOX 3	04 Natural
MP0039	ARRUELA	LISA AÇO BTC M	10 X 24 X 1,5 MM BI	M10 (10,6)	24	1,5	AÇO BTC	Bicromatizado
MP2756	ARRUELA	LISA INOX 304 M1	10 X 30 X 2,5 MM NT	M10 (10,6)	30	2,5	AÇO INOX 3	04 Natural
MP1277	ARRUEL	A LISA INOX 304 1	11 X 60 X 2 MM NT	11	60	2	AÇO INOX 3	04 Natural
MP0063	ARRUELA	LISA INOX 304 M1	12 X 24 X 2,5 MM NT	M12 (13)	24	2,5	AÇO INOX 3	04 Natural
MP1723	ARRUEL	A LISA AÇO BTC M	116 X 30 X 3 MM ZB	M16 (17)	30	3	AÇO BTC	Zincado braco
MP1615	ARRUEL	A LISA INOX 316 M	16 X 30 X 3 MM NT	M16 (17)	30	3	AÇO INOX 3	16 Natural
Formata	-	Nome	Material	A nominal	B nominal	C nominal	Tratamento	EXEMPLO
descr	rição	ARRUELA LISA						ARRUELA LISA X X

eferência	Desc	rição	A nominal	B nominal	C nominal	Material	Tratamento
MP0041	ARRUELA LISA INOX 30	4 3/8" X 20,5 X 1,5 MM NT	3/8" (10,5)	21	1,5	AÇO INOX 3	Natural
MP1671	ARRUELA LISA INOX 30	ARRUELA LISA INOX 304 7/16" X 24 X 1,5 MM NT		24	1,5	AÇO INOX 3	
_							
Formata	cão da Nome	Material	A nominal	B nominal	C nominal	Tratamento	EXEMPLO
Formata descri	ção ARRUELA LIS					1	ARRUELA LISA X X

GRAU DE PRECISÃO

0 < cota ≤ 3

3 < cota ≤ 6

6 < cota ≤ 30

TABELA DE VERIFICAÇÃO DE COMPONENTES PADRÃO

Utilizar tolerâncias estabelecidas pelo grau médio Tabela de Tolerância (Medidas nominais em milímetros)

30 < cota ≤ 120

120 < cota ≤ 400

400 < cota ≤ 1000

> 1000

DS25 REV01 21/10/2024

Notas

NGULAR ±	1. D
< 10 = 1°	2. Ir
< 50 = 0° 30'	e di
< 120 = 0° 20'	3.10

1. Dimensões: mm.

2. Inspecionar laudo de composição química e dimensional de cada item.

¥					±0,05	±0,05	±0,1	±0,15	±0,2	±0,3		> 10 < 50 = 0° 30'		ıl de cada item.
			MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'	3. IC = Inspec	ção crítica.	
<u> </u>			GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10'			
Referência	t	Descrição		A r	A nominal		B nominal			Material	% (Carbono	Processo	
MM06022	BARRA CHATA 19,05	X 3,17 X 600	0 X MM ASTM A 36	19,0	05 (3/4")	3,17 (1/8")	6000		AÇO	AS	TM A 36	Laminado	
MM06023	BARRA CHATA 25,4 X 3,17 X 6000 X MM ASTM A 36		25	,4 (1")	3,17 (1/8")	6000		AÇO	AS	TM A 36	Laminado		
MM06026	BARRA CHATA 38,1 X	< 3,17 X 6000	X MM ASTM A 36	38,1	(1.1/2")	3,17 (1/8")	6000		AÇO	AS	TM A 36	Laminado	
MM06028	BARRA CHATA 50,8 X	< 3,17 X 6000	X MM ASTM A 36	50	,8 (2")	3,17 (1/8")	6000		AÇO	AS	TM A 36	Laminado	
		Tipo do f	tubo (abreviado)	Δ,	nominal	B nom	inal	C nominal		Material		FY	 EMPLO	
Format	ação da descrição			A	Iominai	D HOIL	iii idi	Chomina		Material				
,		BAR	RRA CHATA									BARRA CHA	ATA X X X MM	

DS25 REV01 21/10/2024

Notas

Utilizar tolerâncias estabelecidas pelo grau médio												
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)											
GRAU DE PRECISÃO	0 < cota < 3	3 < cota < 6	6 < cota ≤ 30	30 < cota < 120	120 < cota < 400	400 < cota < 1000	> 1000	ANGULAR ±				
GRAU DE PRECISAU	U < COLa ≤ 3	3 < 0013 ≤ 6	6 < 0013 ≤ 30	30 < 0013 ≤ 120	120 < 001a ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°				
FIN0	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'				
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'				
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°				

- 1. Dimensões: mm.
- Inspecionar laudo de composição química e dimensional de cada item.
 IC = Inspeção crítica.

Referência	ı	Descrição	A nominal	B nominal	Material	% Carbono	Processo
MM06027	BARRA RED. 6,3	35 X 6000 MM ASTM A 36	6,35 (1/4")	6000	AÇO	ASTM A 36	Laminado
MM060210	BARRA RED. 12	,7 X 6000 MM ASTM A 36	12,7 (1/2")	6000	AÇO	ASTM A 36	Laminado
MM06021	BARRA RED. 15,	88 X 6000 MM ASTM A 36	15,88 (5/8")	6000	AÇO	ASTM A 36	Laminado
MM06029	BARRA RED. 25	,4 X 6000 MM ASTM A 36	25,4 (1")	6000	AÇO	ASTM A 36	Laminado
Formata	ação da descrição	Tipo do tubo (abreviado)	A nominal	B nominal	Material	EXEMPLO	
romata	içao da descrição	BARRA RED.				BARRA RE	D. X MM

DS25 REV01 21/10/2024

Notas

	Utilizar tolerâncias estabelecidas pelo grau médio											
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)											
GRAU DE PRECISÃO	GRAU DE PRECISÃO 0 < cota ≤ 3 3 < cota ≤ 6 6 < cota ≤ 30 30 < cota ≤ 120 120 < cota ≤ 400 400 < cota ≤ 1000 > 1000											
GRAU DE PRECISAU	0 < cota ≤ 3	3 < cota ≤ 6	6 < COLA 5 30	30 < cota ≤ 120	120 < 001a ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°				
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'				
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'				
GROSSO ±0.15 ±0.2 ±0.5 ±0.8 ±1.2 ±2 ±3 > 120 < 400 = 0° 10°												

- 1. Dimensões: mm. Inspecionar laudo de composição química e dimensional de cada item.
 IC = Inspeção crítica.

Referência		Descrição	A no	ominal	B no	minal	C noi	minal	D nominal	Material	% Carbono	Processo
MM05022	CANTONEIRA 25,4 X 2	25,4 X 3,17 X 6000 X MM ASTM A 36	25,4	· (1")	25,4	(1")	3,17	(1/8")	6000	AÇO	ASTM A 36	Laminado
MM05023	CANTONEIRA 25,4 X 2	25,4 X 4,75 X 6000 X MM ASTM A 36	25,4	· (1")	25,4	(1")	4,75	(3/16")	6000	AÇO	ASTM A 36	Laminado
MM05024	CANTONEIRA 30, I A	36, 1 A 3, 17 A 0000 A MINI ASTINI A	38,1	(1.1/2")	38,1 ((1.1/2")	3,17	(1/8")	6000	AÇO	ASTM A 36	Laminado
MM05021	CANTONEIRA 50,8 X 5	0,8 X 4,75 X 6000 X MM ASTM A 36	50,8	(2")	50,8	(2")	4,75 (3/16")	6000	AÇO	ASTM A 36	Laminado
Format	tação da doscrição	Tipo do tubo (abreviado)	A nominal	B nominal	C nominal	D no	minal		Material		EXEM	PLO
Forma	Formatação da descrição		atação da descrição CANTONEIRA					CANTONEIRA	X X X X MM			

Formatação da descrição	Tipo do tubo (abreviado)	A nominal	B nominal	C nominal	D nominal	Material	EXEMPLO
i omiatagao da accongac	CANTONEIRA						CANTONEIRA X X X MM

DS25 REV01 TABELA DE VERIFICAÇÃO DE COMPONENTES PADRÃO 21/10/2024 __A <IC> Utilizar tolerâncias estabelecidas pelo grau médio Notas TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS) . Dimensões: mm. ANGULAR ± GRAU DE PRECISÃO 3 < cota < 6 6 < cota < 30 30 < cota < 120 120 < cota ≤ 400 | 400 < cota ≤ 1000 0 < cota < 3 > 1000 < 10 = 1° 2. Inspecionar laudo de composição química ±0,05 ±0,15 ±0,2 ±0,3 ±0,5 > 10 < 50 = 0° 30° e dimensional de cada item. ±0,1 ±0,1 ±0,2 ±0,3 ±0,5 ±0,8 ±1,2 > 50 < 120 = 0° 20' 3. IC = Inspeção crítica. ±0,15 ±0,2 ±0,5 ±0,8 ±1,2 ±3 > 120 < 400 = 0° 10° Referência Material % Carbono Descrição A nominal **B** nominal C nominal Processo SAE 1008/1010 OU ASTM CH. F.Q. 2 X 1200 X 3000 MM SAE 1008/1010 OU ASTM A MM01017 2 1200 3000 Chapa fina laminada a quente AÇO MM010112 CH. F.Q. 2 X 1200 X 3510 MM SAE 1008/1010 2 1200 3510 Chapa fina laminada a quente ACO SAE 1008/1010 CH. F.Q. 2,65 X 1200 X 3000 MM SAE 1008/1010 OU ASTM SAE 1008/1010 OU ASTM MM01011 2,65 1200 3000 Chapa fina laminada a quente AÇO A 36 MM01031 CH. XADREZ 3 X 1200 X 3000 MM SAE 1020 3 1200 3000 Xadrez AÇO SAE 1020 CH. F.Q. 3 X 1200 X 3000 MM SAE 1008/1010 OU ASTM A SAE 1008/1010 OU ASTM MM01018 3 1200 3000 Chapa fina laminada a quente AÇO SAE 1008/1010 OU ASTM MM01012 4,75 (3/16") 1200 3000 Chapa fina laminada a quente AÇO MM01024 6,35 (1/4") 1500 3000 Chapa grosa AÇO A 36 MM01026 CH. GR.9,53 X 1200 X 3000 MM ASTM A 36 9,53 (3/8") 1200 3000 Chapa grosa AÇO ASTM A 36 MM01027 CH. GR.12,7 X 1200 X 3000 MM ASTM A 36 12,7 (1/2") 1200 3000 Chapa grosa AÇO ASTM A 36 MM01028 CH. GR.15,8 X 1200 X 3000 MM ASTM A 36 15,8 (5/8") 1200 3000 Chapa grosa AÇO ASTM A 36 CH. GR.19,05 X 1200 X 3000 MM ASTM A 36 ASTM A 36 MM010211 19,05 (3/4") 1200 3000 Chapa grosa AÇO CH. GR.25,4 X 1200 X 3000 MM ASTM A 36 ASTM A 36 25,4 (1") 1200 3000 MM01029 Chapa grosa AÇO

DS25 REV01 21/10/2024

Utilizar tolerâncias estabelecidas pelo grau médio												
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)											
GRAU DE PRECISÃO	0 < cota < 3	3 < cota < 6	6 < cota < 30	30 < cota < 120	120 < cota < 400	400 < cota ≤ 1000	> 1000	ANGULAR ±				
GRAU DE PRECISAU	U < cota ≤ 3	3 < COTa ≤ 6	6 < cota ≤ 3U	3U < cota ≤ 12U	12U < cota ≤ 4UU	400 < cota ≤ 1000	> 1000	< 10 = 1°				
FIN0	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'				
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20°				
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°				

Dimensões: mm.
 Inspecionar laudo de composição química e dimensional de cada item.
 IC = Inspeção crítica.

Referência		Descrição	A no	minal	B no	ominal	C nor	minal	D nominal	E nominal	Material	% Carbono	Processo
MM01019	CH. EXPANDIDA 120	0 X 3000 MALHA 4,75 X 38 X 75 MM SAE 1008/1010	12	200	30	000	4,75	(3/16")	38	75	AÇO	SAE 1008/1010	Laminado
		·		-				-					
		Tipo do tubo (abreviado)	A nominal	B nominal	C nominal	D nominal	E nominal		Material	EXEMPLO			
Format	ação da descrição	CH. EXPANDIDA											IM.
		CIT. EXPANDIDA								CH. EXPANDIDA X MALHA X X MM			

descrição

PARAFUSO ALLEN

TABELA DE VERIFICAÇÃO DE COMPONENTES PADRÃO

DS25 REV01 21/10/2024

	Utilizar tolerâncias estabelecidas pelo grau médio												
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)												
RAU DE PRECISÃO	0 < cota < 3	3 < cota < 6	6 < cota < 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota < 1000	> 1000	ANGULAR ±					
CHO DE PRECIONO	0 < 000 ± 5	3 < 6018 2 0	0 < 0000 2 50	30 / 6018 3 120	120 < 0010 2 400	400 < 6018 ≥ 1000	> 1000	< 10 = 1°					
FIN0	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'					
MÉDIO	.01	.01	.0.2	.02	. O. F	.0.0	.12	- FO - 120 - 08 201					

Notas

PARAFUSO ALLEN X MM

- 1. Dimensões: mm
- 2. IC = inspeção crítica 3. RP = rosca parcial
- 4. RT = rosca total
- 5. BI = bicromatizado
- 6. PL = polido 7. NT = natural
- 8. ZA = zincado amarelo 9. ZB = zincado branco
- 10. ZP = zincado preto

		GROSSO	±0,15	±0,1	±0,2	±0,8		±1,2	±0,6	±1	3 > 120 <	400 = 0° 10'	5. BI – DICIOITIALIZAGO		To. ZP – Zilicado preto	
Referência				A nomina	al	B no	ominal		C nominal		D nomir	nal	Material	Comprimento de rosca	Tipo da cabeça	Tratamento
MP0993	PARAFUSO ALLEN REC.AÇO 12.9 ZB PARAFUSO ALLEN CH. AÇO 12.9	9 RT M8 X 1,75 X	16 MM	M8 x 1,2	5	,	16		13		8		AÇO 12.9	Total	Cilindrica	ZB
MP1821	PARAFUSO ALLEN CH. AÇO 12.9 ZA	9 RT M8 X 1,75 X :	25 MM	M8 x 1,2	5	2	25		16		5		AÇO 12.9	Total	Chata	ZA
Formata	ação da Nome	ipo da cabeça (al	oreviado	Material	1	Comp. Rosc	А	nomina	I	B nomi	nal Tr a	atamento		EXEM	IPLO	

	Utilizar tolerâncias estabelecidas pelo grau médio												
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)												
U DE PRECISÃO	0 < cota < 3	3 < cota < 6	6 < cota < 30	30 < cota < 120	120 < cota < 400	400 < cota < 1000	- 1000	ANGULAR ±					
U DE PRECISAU	U < cota ≤ 3	3 < cota ≤ 6	6 < 0013 ≤ 30	30 < 0013 ≤ 120	120 < 0013 ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°					
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'					
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'					
GROSSO	+015	+0.2	+0.5	+0.8	+12	+2	+3	> 120 < 400 = 0° 10'					

DS25 REV01 21/10/2024

Notas

- 1. Dimensões: mm
- 2. IC = inspeção crítica 3. RP = rosca parcial
- 4. RT = rosca total
- 5. BI = bicromatizado
- 6. PL = polido 7. NT = natural 8. ZA = zincado amarelo
- 9. ZB = zincado branco
- 10. ZP = zincado preto

Referência	Descr	rição	A nominal	B nomi	inal	C nominal	D nominal	Material	Comprimento de rosca	Tratamento
MP0407	PARAFUSO FENDA AÇO 5.	8 RT M5 X 0,8 X 13 MM ZP	M5 x 0,8	13		9	3	AÇO 5.8	Total	Zincado preto
MP1514	PARAFUSO FENDA AÇO 5	.8 RT M6 X 1,0 X 5 MM ZA	M6 x 1,0	5		11	3	AÇO 5.8	Total	Zincado amarelo
MP1505	PARAFUSO FENDA AÇO 5.8	3 RT M8 X 1,25 X 12 MM ZA	M8 x 1,25	12		15,5	4	AÇO 5.8	Total	Zincado amarelo
Formata		ipo da cabeça (abreviade	Material	Comp. Rose	A nomina	I B no	minal Tratame	nto	EXEM	PLO
descr		DA							PARAFUSO FE	ENDA X MM

	Utilizar tolerâncias estabelecidas pelo grau médio													
TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)														
GRAU DE PRECISÃO	0 < cota < 3	3 < cota < 6	6 < cota < 30	30 < cota ≤ 120	120 < cota < 400	400 < cota ≤ 1000	> 1000	ANGULAR ±						
GRAU DE PRECISAU	U < COLa ≤ 3	3 < 0013 ≤ 6	6 < cota ≤ 30	30 < COLA ≤ 120	120 < 0018 ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°						
FIN0	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'						
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'						
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°						

N	lotas
1. Dimensões: mm	6. PL = polido
2. IC = inspeção crítica	7. NT = natural
3. RP = rosca parcial	8. ZA = zincado amarelo
4. RT = rosca total	9. ZB = zincado branco
5. BI = bicromatizado	10. ZP = zincado preto

Referência		Descri	ção	A nominal	B nominal	C nominal		D nominal	Material	Compriment o de rosca	Modelo	Tipo da cabeça	Tratamento
MP2549	PARAFUS	O PH. PLASTIC FLANC	G. AÇO CMT RT 4 X 12 MM ZB	4	12	9,3		2	AÇO CMT	Total	Plastic	Flangeado	ZB
MP0478			G. AÇO CMT RT 4 X 35 MM ZB	4	35	9,3		2	AÇO CMT	Total	Plastic	Flangeado	ZB
MP1959			NOX 304 RT M4 X 0,7 X 25 MM	M4 x 0,7	25	7,65		3	AÇO INOX 304	Total	Máquina	Chata	Natural
MP2610	PARAFUS	O PH. AUTO-ATARR. I MM 2	FLANG. RT AÇO CMT 4,2 X 16 ZB	4,2	16	10,8		3	AÇO CMT	Total	Auto-Atarraxante	Flangeado	ZB
MP0250		<i>7</i> A	ZB AÇO 5.8 RT M5 X 0,8 X 16 MM	M5 x 0,8	15	10		4	AÇO 5.8	Total	Máquina	Panela	ZA
MP0927		ZA	AÇO 5.8 RT M5 X 0,8 X 25 MM	M5 x 0,8	25	10		4	AÇO 5.8	Total	Máquina	Panela	ZA
MP1629	PARAFUS	O PH. MÁQUINA PAN. ZA	AÇO 5.8 RT M5 X 0,8 X 35 MM	M5 x 0,8	35	10		4	AÇO 5.8	Total	Máquina	Panela	ZA
MP2611	PARAFUSO	O PH. AUTO-ATARR. P ZB	AN. AÇO CMT RT 6,3 X 19 MM	6,3	19	12,2		4	AÇO CMT	Total	Auto-Atarraxante	Panela	ZB
Formata	ação da	Nome	Modelo	ipo da cabeça (abreviado	Material	Comp. Rosca A no	minal B non	minal Traf	amento	to DESCRIÇÃO			
desc		PARAFUSO PH.	moucio	r sansya (a.a. svida		P. ROOM A HOL	2 71011	1100				PH. X MM	
						l l							

DS25 REV01 21/10/2024

	Utilizar tolerâncias estabelecidas pelo grav médio												
	1. Dimensões: mm												
00.111.05.0050103.0					400 . 400		4000	/11400C/11(<u></u>	2. IC = inspeção crítica				
GRAU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°	3. RP = rosca parcial				
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'	4. RT = rosca total				
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'	5. BI = bicromatizado				
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°					

	Notas
1. Dimensões: mm	6. PL = polido
2. IC = inspeção crítica	7. NT = natural
3. RP = rosca parcial	8. ZA = zincado

7. NT = natural
8. ZA = zincado amarelo
9. ZB = zincado branco
10. ZP = zincado preto

Referência	Descrição	A nominal	B nominal	C nominal	D nominal	Material	Comprimento de rosca	Tratamento	Ø Flangeado
MP1617	PARAFUSO SEXT. INOX 304 RT M6 X 1,0 X 16 MM NT	M6 x 1,0	16	10	4,2	AÇO INOX 304	Total	Natural	-
MP1127	PARAFUSO SEXT. INOX 304 RT M6 X 1,0 X 25 MM NT	M6 x 1,0	25	10	4,2	AÇO INOX 304	Total	Natural	-
MP1025	PARAFUSO SEXT. INOX 304 RT M6 X 1,0 X 35 MM NT	M6 x 1,0	35	10	4,2	AÇO INOX 304	Total	Natural	-
MP2041	PARAFUSO SEXT. INOX 304 RT M6 X 1,0 X 80 MM NT	M6 x 1,0	80	10	4,2	AÇO INOX 304	Total	Natural	-
MP0666	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 16 MM NT	M8 x 1,25	16	13	5,5	AÇO INOX 304	Total	Natural	-
MP0068	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 25 MM NT	M8 x 1,25	25	13	5,5	AÇO INOX 304	Total	Natural	-
MP0297	PARAFUSO SEXT. FLANGEADO AÇO 8.8 RT M8 X 1,25 X 25 MM ZA	M8 x 1,25	25	13	8	AÇO 8.8	Total	ZA	17
MP1395	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 30 MM NT	M8 x 1,25	30	13	5,5	AÇO INOX 304	Total	Natural	-
MP0053	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 40 MM NT	M8 x 1,25	40	13	5,5	AÇO INOX 304	Total	Natural	-
MP0683	PARAFUSO SEXT. FLANGEADO AÇO 8.8 RT M8 X 1,25 X 40 MM ZA	M8 x 1,25	40	13	8	AÇO 8.8	Total	ZA	17
MP1878	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 45 MM NT	M8 x 1,25	45	13	5,5	AÇO INOX 304	Total	Natural	-
MP0050	PARAFUSO SEXT. AÇO 8.8 RT M8 X 1,25 X 50 MM ZA	M8 x 1,25	50	13	5,5	AÇO 8.8	Total	ZA	-
MP0067	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 50 MM NT	M8 x 1,25	50	13	5,5	AÇO INOX 304	Total	Natural	-
MP0298	PARAFUSO SEXT. FLANGEADO AÇO 8.8 RT M8 X 1,25 X 50 MM ZA	M8 x 1,25	50	13	8	AÇO 8.8	Total	ZA	17
MP0101	PARAFUSO SEXT. AÇO 8.8 RT M8 X 1,25 X 60 MM BI	M8 x 1,25	60	13	5,5	AÇO 8.8	Total	Bicromatizado	-
MP1873	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 60 MM NT	M8 x 1,25	60	13	5,5	AÇO INOX 304	Total	Natural	-
MP0051	PARAFUSO SEXT. AÇO 8.8 RT M8 X 1,25 X 65 MM ZA	M8 x 1,25	65	13	5,5	AÇO 8.8	Total	ZA	-
MP1884	PARAFUSO SEXT. INOX 304 RT M8 X 1,25 X 75 MM NT	M8 x 1,25	75	13	5,5	AÇO INOX 304	Total	Natural	-
MP0052	PARAFUSO SEXT. AÇO 8.8 RP M8 X 1,25 X 80 MM ZA	M8 x 1,25	80	13	5,5	AÇO 8.8	22	ZA	-
MP0024	PARAFUSO SEXT. AÇO 8.8 RP M8 X 1,25 X 100 MM ZA	M8 x 1,25	100	13	5,5	AÇO 8.8	25	ZA	-
MP0025	PARAFUSO SEXT. AÇO 8.8 RP M8 X 1,25 X 110 MM ZA	M8 x 1,25	110	13	5,5	AÇO 8.8	25	ZA	-
MP0073	PARAFUSO SEXT. AÇO 8.8 RP M8 X 1,25 X 120 MM ZA	M8 x 1,25	120	13	5,5	AÇO 8.8	22	ZA	-
MP2609	PARAFUSO SEXT. AÇO 8.8 RP M8 X 1,25 X 130 MM ZB	M8 x 1,25	130	13	5,5	AÇO 8.8	22	ZB	-
MP1818	PARAFUSO SEXT. AÇO 8.8 RT M10 X 1,5 X 16 MM ZB	M10 x 1,5	16	17	6,5	AÇO 8.8	Total	ZB	-
MP1096	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 16 MM NT	M10 x 1,5	16	17	6,5	AÇO INOX 304	Total	Natural	-

Format	ação da Nome Expecíficação	Material	Comp. Rosca	A nominal B nominal	Tratamento		EXEM	PLO	
	, , , , , , , , , , , , , , , , , , , ,	,-	-	-	-	,			
MP1769	PARAFUSO SEXT. AÇO 8.8 RT M20 X 2,5 X 140 MM ZB	M20 x 2,5	140	30	13	AÇO 8.8	Total	ZB	_
MP1613	PARAFUSO SEXT. INOX 316 RT M16 X 2,0 X 45 MM NT	M16 x 2,0	45	24	10	AÇO INOX 316	Total	Natural	_
MP1725	PARAFUSO SEXT. AÇO 8.8 RT M16 X 2,0 X 45 MM ZB	M16 x 2,0	45	24	10	AÇO 8.8	Total	ZB	_
MP1443	PARAFUSO SEXT. AÇO 5.8 RT M16 X 2,0 X 20 MM NT	M16 x 2,0	20	24	10	AÇO 5.8	Total	Natural	_
MP1722	PARAFUSO SEXT. AÇO 8.8 RT M12 X 1,75 X 100 MM ZB	M12 x 1,75	100	19	7,7	AÇO 8.8	Total	ZB	_
MP2564	PARAFUSO SEXT. INOX 304 RT M12 X 1,75 X 90 MM NT	M12 x 1,75	90	19	7,7	AÇO INOX 304	Total	Natural	_
MP0060	PARAFUSO SEXT. INOX 304 RT M12 X 1,75 X 70 MM NT	M12 x 1,75	70	19	7,7	AÇO INOX 304	Total	Natural	-
MP1788	PARAFUSO SEXT. AÇO 5.8 RT M12 X 1,75 X 50 MM ZB	M12 x 1,75	50	19	7,7	AÇO 5.8	Total	ZB	
MP0440	PARAFUSO SEXT. INOX 304 RT M12 X 1,75 X 40 MM NT	M12 x 1,75	40	19	7,7	AÇO INOX 304	Total	Natural	_
MP0328	PARAFUSO SEXT. INOX 304 RT M12 X 1,75 X 30 MM NT	M12 x 1,75	30	19	7,7	AÇO INOX 304	Total	Natural	
MP0638	PARAFUSO SEXT. INOX 304 RT M12 X 1,75 X 25 MM NT	M12 x 1,75	25	19	7,7	AÇO INOX 304	Total	Natural	<u>-</u>
MP1276	PARAFUSO SEXT. INOX 304 RP M10 X 1,25 X 120 MM NT	M10 x 1,5	120	17	6,5	AÇO INOX 304	25	Natural	<u>-</u>
MP1378	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 110 MM NT	M10 x 1,5	110	17	6,5	AÇO INOX 304	Total	Natural	
MP1104	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 70 MM NT	M10 x 1,5	80	17	6,5	AÇO INOX 304	Total	Natural	_
MP0376	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 70 MM NT	M10 x 1,5	70	17	6,5	AÇO INOX 304	Total	Natural	
MP0347	PARAFUSO SEXT. AÇO 8.8 RT M10 X 1,5 X 70 MM ZA	M10 x 1,5	70	17	6,5	AÇO 8.8	Total	ZA	-
MP1379	PARAFUSO SEXT. AÇO 6.6 KT M10 X 1,5 X 50 MM 2B PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 50 MM NT	M10 x 1,5	50	17	6,5	AÇO INOX 304	Total Total	Natural	=
MP1667 MP1726	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 45 MM NT PARAFUSO SEXT. AÇO 8.8 RT M10 X 1,5 X 50 MM ZB	M10 x 1,5	50	17	6,5	AÇO INOX 304 AÇO 8.8	Total	Natural ZB	-
MP2455	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 40 MM NT	M10 x 1,5	40 45	17 17	6,5	AÇO INOX 304	Total	Natural	-
MP0375	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 30 MM NT	M10 x 1,5	30	17	6,5	AÇO INOX 304	Total	Natural	-
MP1728	PARAFUSO SEXT. AÇO 8.8 RT M10 X 1,5 X 30 MM ZB	M10 x 1,5	30	17	6,5	AÇO 8.8	Total	ZB	-
MP1347	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 25 MM NT	M10 x 1,5	25	17	6,5	AÇO INOX 304	Total	Natural	-
MP1666	PARAFUSO SEXT. INOX 304 RT M10 X 1,25 X 20 MM NT	M10 x 1,5	20	17	6,5	AÇO INOX 304	Total	Natural	-
MP1778	PARAFUSO SEXT. AÇO 8.8 RT M10 X 1,5 X 20 MM ZB	M10 x 1,5				AÇO 8.8		ZB	

descrição	PARAFUSO SEXT.			PARAFUSO SEXT. X MM

DS25 REV01 21/10/2024

D B <|C>

			Utilizar tolerânci	ias estabelecidas	pelo grav médio				
	1. Dimensões: mm								
ODALI DE DDEGIGÃO				00 400	400 400	400 . 4000	4000	ANGULAR ±	2. IC = inspeção crítica
GRAU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°	3. RP = rosca parcial
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'	4. RT = rosca total
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'	5. BI = bicromatizado
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10'	

	Notas
neõee: mm	6

 Dimensões: mm
 Control
 Dimensões: mm
 Control
 Dimensões: mm
 Dimensões: mm
 Dimensões: mm
 Dimensões: mm 6. PL = polido 7. NT = natural

3. RP = rosca parcial 8. ZA = zincado amarelo 4. RT = rosca total

9. ZB = zincado branco

10.	ZΡ	=	zincado	preto

Referência		Descrição		A nominal	B no	ominal	C no	minal	D nominal	Material	Comprimento de rosca	Tratamento	Ø Flangeado
MP1409		O SEXT. INOX 304 RT :		3/16" UNC		(12,7)		8	3	AÇO INOX 304	Total	Natural	-
MP1361		SEXT. INOX 304 RT 3		3/16" UNC		(31,75)		8	3	AÇO INOX 304	Total	Natural	-
MP1291		SEXT. INOX 304 RT 3		3/16" UNC		(44,45)		8	3	AÇO INOX 304	Total	Natural	-
MP1238	PARAFUS	O SEXT. AÇO GRAU 5 I	RP 1/2" UNF X 2" NT	1/2" UNF	2"	(50,8)	1	9	9,2	AÇO GRAU 5	31,75	Natural	-
—													
 													
F = **** = * = **	a da dasawic " -	Nome	Expecíficação	Material	Comp. Rosc	A non	ninal	B nominal	Tratamento		EXEMI	PLO	
rormatação	o da descrição	PARAFUSO SEXT.									PARAFUSO:	SEXT. X	

DS25 REV01 21/10/2024 Notas

	Utilizar tolerâncias estabelecidas pelo grau médio												
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)												
GRAU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	ANGULAR ±					
ORAU DE PRECISAU	0 < 0018 2 3	3 < 1018 5 6	6 < 0019 2 30	30 < 0018 \$ 120	120 < 0018 \$ 400	400 < 0018 \$ 1000	> 1000	< 10 = 1°					
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'					
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20°					
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°					

 Dimensões: mm.
2. Inspecionar laudo de
composição química e
dimensional de cada item

			MEDIO GROSSO	±0,1 ±0,15	±0,1 ±0,2	±0,2 ±0,5	±0,3 ±0,8	±0,5		0,8 ±2	±1,2 ±3	> 50 < 120 = 0° 20° > 120 < 400 = 0° 10°	3. IC = Inspeção	crítica.
Referência		Descrição		A no	ominal	B nom	ninal	C no	minal	D n	ominal	Material	% Carbono	Processo
MM04011	PERFIL U 75 X 40	008/1010			75	40)	4,75	(3/16")	6	0000	AÇO	SAE 1008/1010	Laminado
MM04014	PERFIL U 150 X 5	0 X 4,75 X 60 008/1010	000 X MM SAE	1	150	50)	4,75	(3/16")	6	0000	AÇO	SAE 1008/1010	Laminado
MM04015	PERFIL U 180 X 75 X) 1	180		;	8	3	e	0000	AÇO	SAE 1008/1010	Laminado
MM04016	PERFIL U 254 X 66, 1	68 X 9,53 X 6 008/1010	6000 X MM SAE	254	254 (10") 66		2.5/8")	9,53	(3/8")	6	0000	AÇO	SAE 1008/1010	Laminado
			-											
		Tipo do t	ubo (abreviado)	A nominal	B nominal	C nominal	D no	minal		Material			EXEMPLO	
Format	ação da descrição		ERFIL U									PE	RFIL U X X X X	MM

TABELA DE VERIFICAÇÃO DE COMPONENTES PADRÃO

	Utilizar tolerâncias estabelecidas pelo grau médio													
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)													
CDALL DE DDECIGÃO	RAU DE PRECISÃO 0 < cota ≤ 3 3 < cota ≤ 6 6 < cota ≤ 30 30 < cota ≤ 120 120 < cota ≤ 400 400 < cota ≤ 1000 > 1000													
GRAU DE PRECISAU	U < COLa ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < 001a ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°						
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'						
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'						
GROSS0	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°						

1	N	otas
1	1. Dimensões: mm	6. PL = polido
1	2. IC = inspeção crítica	7. NT = natural
1	3. RP = rosca parcial	8. ZA = zincado amarelo
1	4. RT = rosca total	9. ZB = zincado branco
	5. BI = bicromatizado	10. ZP = zincado preto
·		

Referência		Descrição	•	A nominal	B nominal	C nominal	Material	TRATAMENTO	Ø Flangeado
MP1334	PORCA	A SEXT. AÇO CLS 5 M6	6 X 1,0 X 6,5 MM ZB	M6 x 1,0	6,5	10	AÇO CLASSE 5	Zincado branco	-
MP1207		SEXT. AÇO CLS 5 M8		M8 x 1,25	6,5	13	AÇO CLASSE 5	Zincado branco	-
MP1964	PORCA SE	XT. FLANG. AÇO CLS 8	8 M10 X 1,5 X 10 MM ZB	M10 x 1,5	10	15	AÇO CLASSE 8	Zincado branco	22
MP0028	PORCA	A SEXT. AÇO CLS 5 M1	10 X 1,5 X 10 MM PL	M10 x 1,5	10	17	AÇO CLASSE 5	Polido	-
MP1731	PORCA	SEXT. AÇO CLS 5 M12	2 X 1,75 X 10 MM ZB	M12 x 1,75	10	19	AÇO CLASSE 5	Zincado branco	-
MP0062	PORCA	SEXT. INOX 304 M12	X 1,75 X 10 MM NT	M12 x 1,75	10	19	AÇO INOX 304	Natural	-
				_		_			
Format	ação da	Nome	Expecíficação	Material	A nominal	B nominal	Tratamento	EXE	MPLO
desc	rição	PORCA SEXT.						PORCA SE	EXT. X MM

DS25 REV01 21/10/2024

Notas

	Utilizar tolerâncias estabelecidas pelo grau médio												
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)												
GRAU DE PRECISÃO	AU DE PRECISÃO 0 < cota ≤ 3 3 < cota ≤ 6 6 < cota ≤ 30 30 < cota ≤ 120 120 < cota ≤ 400 400 < cota ≤ 1000 > 1000												
GRAU DE PRECISAU	0 < cota ≤ 3	3 < 0018 ≤ 6	6 < 0018 5 30	30 < COLA S 120	120 < 0018 ≤ 400	400 < cota ≤ 1000	> 1000	< 10 = 1°					
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'					
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20°					
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10'					

- 1		
┨	1. Dimensões: mm	6. PL = polido
┪	2. IC = inspeção crítica	7. NT = natural
┨	3. RP = rosca parcial	8. ZA = zincado amarelo
	4. RT = rosca total	9. ZB = zincado branco
\neg	1,	1

		<i></i>	MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5		±0,8	±1,2	> 50 < 120 = 0° 20'	5. BI = bicromatizado	10. ZP = zincado preto
	D_	CORTE D-D	GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2		±2	±3	> 120 < 400 = 0° 10'		,
Referência		Descrição			A nomina	ıl	B nominal		C	nominal		Material	TRATAMENTO	Ø x comp. Flangeado
MP1958	PORCA S	SEXT. AUTO TRAV. INOX 304	4 M4 X 0,7 X 5 I	MM NT	M4 x 0,7		5			7	AÇO	NOX 304	Natural	-
MP1026	PORCA S	SEXT. AUTO TRAV. INOX 304	4 M6 X 1,0 X 6 I	MM NT	M6 x 1,0		6			10	AÇ() INOX 304	Natural	-
MP0065	PORCA SE	EXT. AUTO TRAV. AÇO CLS	8 M8 X 1,75 X	9 MM BI	M8 x 1,25		9			13		CLASSE 8	Bicromatizado	-
MP0182	PORCA S	EXT. AUTO TRAV. INOX 304	M8 X 1,75 X 9	MM NT	M8 x 1,25	5	9			13	AÇ() INOX 304	Natural	-
MP1729	PORCA SE	XT. AUTO TRAV. AÇO CLS 8	3 M10 X 1,5 X 1	0 MM ZB	M10 x 1,5	5	10			17	AÇC	CLASSE 8	Zincado branco	1
MP0177	PORCA SE	EXT. AUTO TRAV. INOX 304	M10 X 1,5 X 10	MM NT	M10 x 1,5	5	10			17	AÇO) INOX 304	Natural	-
MP1727	PORCA SEX	KT. AUTO TRAV. AÇO CLS 8	M12 X 1,75 X 1	13 MM ZB	M12 x 1,7		13			19		CLASSE 8	Zincado branco	-
		XT. AUTO TRAV. INOX 304 I			M12 x 1,7		13			19) INOX 304	Natural	-
MP1724	PORCA SE	XT. AUTO TRAV. AÇO CLS 8	3 M16 X 2,0 X 1	6 MM ZB	M16 x 2,0)	16			24	AÇC	CLASSE 8	Zincado branco	-
MP1614	PORCA SE	EXT. AUTO TRAV. INOX 304	M16 X 2,0 X 16	TN MM	M16 x 2,0)	16			24	AÇ0) INOX 304	Natural	-
MP1770	PORCA SE	XT. AUTO TRAV. AÇO CLS 8	3 M20 X 2,5 X 1	9 MM ZB	M20 x 2,5	5	19			30	AÇC	CLASSE 8	Zincado branco	-
											1			
											1			<u> </u>
Format	ação da	Nome	Expecífic	ação	Material		A nominal		E	nominal	Tratamento EXEMPLO			MPLO
desc	rição	PORCA SEXT. AUTO TRAV.											PORCA SEXT. A	UTO TRAV. X MM

	Utilizar tolerâncias estabelecidas pelo grau médio													
	TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)													
GRAU DE PRECISÃO	ANU DE PRECISÃO 0 < cota ≤ 3 3 < cota ≤ 6 6 < cota ≤ 30 30 < cota ≤ 120 120 < cota ≤ 400 400 < cota ≤ 1000 > 1000													
GRAU DE PREGISAU	0 < cota ≤ 3	3 < 0013 ≤ 6	6 < COLA 5 30	30 < 0013 ≤ 120	120 < 0013 ≤ 400	400 < 0013 ≤ 1000	> 1000	< 10 = 1°						
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'						
MÉDIO	±∩1	±01	±0.2	±0.2	40.5	±0.0	±12	> 50 < 120 - 00 201						

Notas	

1. Dimensões: mm	6. PL = polido
2. IC = inspeção crítica	7. NT = natural
3. RP = rosca parcial	8. ZA = zincado amarelo
4. RT = rosca total	9. ZB = zincado branco
5. BI = bicromatizado	10. ZP = zincado preto

	CORTE D-D	GROSSO ±0,15	±0,2 ±0,5	±0,8	±1,2 ±2	±3 > 120 < 400 = 0° 10'	= 0° 10'	
Referência	Descrição			B nominal	C nominal	Material	TRATAMENTO	Ø x comp. Flangeado
MP1292	PORCA SEXT. AUTO TRAV. INOX 3		3/16" UNC	1/4"	3/8"	AÇO INOX 304	Natural	-
MP1215	PORCA SEXT. AUTO TRAV. AÇO GR	RAU 2 3/8" UNC X 3/8" ZB	3/8" UNC	3/8"	9/16"	AÇO GRAU 2	Zincado branco	-
-								
-								
+								
 								
 								
		_						
Formata	ıção da Nome	Expecíficação	Material	A nominal	B nominal	Tratamento	EXE	MPLO
desci		/					PORCA SEXT.	AUTO TRAV. X
		1		ļ		4		

A <|C> D <|C>

TABELA DE VERIFICAÇÃO DE COMPONENTES PADRÃO

DS25	REV01
21/10	0/2024

Utilizar tolerâncias estabelecidas pelo grau médio										
TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)										
GRAU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	ANGULAR ±		
GRAU DE PRECISAU								< 10 = 1°		
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'		
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20'		
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°		

Not	tas
-----	-----

- 1. Dimensões: mm.
- Inspecionar laudo de composição química e dimensional de cada item.
- 3. IC = Inspeção crítica.

Referência		Descrição	A no	minal	B no	minal	C no	minal	D nominal	Material	% Carbono	Processo	Com ou sem costura
MM03017	TUBO QUAD. 30 X 30	X 2 X 6000 MM SAE 1008/1010	3	30	3	30	:	2	6000	AÇO	SAE 1008/1010	Laminado	-
MM03014	TUBO QUAD. 40 X 40	X 2 X 6000 MM SAE 1008/1010	2	10	2	10	:	2	6000	AÇO	SAE 1008/1010	Laminado	-
MM03015	TUBO QUAD. 50 X 50	X 2 X 6000 MM SAE 1008/1010	į	50	Ę	50	:	2	6000	AÇO	SAE 1008/1010	Laminado	-
MM03013	TUBO QUAD. 50 X 50	X 3 X 6000 MM SAE 1008/1010	į	50	Ę	50	;	3	6000	AÇO	SAE 1008/1010	Laminado	-
MM03011	1	50 X 4,75 X 6000 MM SAE 008/1010	50		50		4,75 ((3/16")	6000	AÇO	SAE 1008/1010	Laminado	-
MM03012		60 X 4,75 X 6000 MM SAE 008/1010	60		60		4,75 (3/16")		6000	AÇO	SAE 1008/1010	Laminado	-
MM03016	TUBO QUAD. 100 X 10	0 X 6,35 X 6000 MM ASTM A 36	1	00	1	00	6,35	(1/4")	6000	AÇO	ASTM A 36	Laminado	-
Format	tação da descrição	Tipo do tubo (abreviado)	A nominal	B nominal	C nominal	D no	minal		Material		EXEMI		
		TUBO QUAD.									TUBO QUAD. X	X X X XMM	

DS25 REV01 21/10/2024

Notas

	Utilizar tolerâncias estabelecidas pelo grau médio											
TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)												
GRAU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	ANGULAR ±				
GRAU DE PRECISAU						400 < cota ≤ 1000	> 1000	< 10 = 1°				
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'				
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20°				
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°				

Dimensões: mm.
 Inspecionar laudo de compo: e dimensional de cada item.
 IC = Inspeção crítica.

=	Ins	necão	crítica
	1113	peçau	CHILICA

TUDO DED SIG 13 TV DE SV 1 ED V 5000 MM	Material		
MP0157 TUBO RED. S/C 12,7X 9,53 X 1,59 X 6000 MM		% Carbono	Processo
MP0157 TUBO RED. S/C 12,7 X 9,53 X 1,59 X 6000 MM 12,7 (1/2") 9,53 (3/8") 1,59 (1/16") 6000 MM07014 TUBO RED. S/C 25,4 X 24 X 1,2 X 6000 MM 25,4 (1") 24 1,2 6000 MM07011 TUBO RED. S/C 25,4 X 21,6 X 1,9 X 6000 MM 25,4 (1") 21,6 1,9 6000 MM07011 TUBO RED. S/C 25,7 X 28,75 X 1,5 X 6000 MM 31,75 (1.1/4") 28,75 1,5 6000 MM07019 TUBO RED. S/C 31,7 X 28,75 X 1,5 X 6000 MM 31,75 (1.1/4") 28,75 1,5 6000 MM07017 TUBO RED. S/C 33,4 X 26,64 X 3,38 X 6000 MM 33,4 26,64 3,38 6000 MM07020 TUBO RED. S/C 38,1 X 35,1 X 1,5 X 6000 MM 38,1 (1.1/2") 35,1 1,5 6000 MM07018 TUBO RED. S/C 42,2 X 29,5 X 6,35 X 6000 MM 42,2 29,5 6,35 (1/4") 6000 MM07016 TUBO RED. S/C 60,3 X 52,48 X 3,91 X 6000 MM 42,2 29,5 6,35 (1/4") 6000 MM07016 TUBO RED. S/C 73, X 53,94 X 9,53 X 6000 MM 60,3 52,48 3,91 6000	ALUMÍNIO	-	Trefilado
MM07014 TUBO RED. SIC 25,4 X 24 X 1,2 X 6000 MM 25,4 (1") 24 1,2 6000 MM07011 TUBO RED. SIC 25,4 X 21,6 X 1,9 X 6000 MM 25,4 (1") 21,6 1,9 6000 MM07019 TUBO RED. CIC 31,75 X 28,75 X 1,5 X 6000 MM 31,75 (1.1/4") 28,75 1,5 6000 MM07017 TUBO RED. SIC 33,4 X 26,84 X 3,38 X 6000 MM 33,4 26,64 3,38 6000 MM07020 TUBO RED. CIC 38,1 X 35,1 X 1,5 X 6000 MM 38,1 (1.1/2") 35,1 1,5 6000 MM07018 TUBO RED. SIC 42,2 X 29,5 X 6,35 X 6000 MM 42,2 29,5 6,35 (1/4") 6000 MM07016 TUBO RED. SIC 60,3 X 52,48 X 3,91 X 6000 MM 42,2 29,5 6,35 (1/4") 6000 MM07016 TUBO RED. SIC 60,3 X 52,48 X 3,91 X 6000 MM 60,3 52,48 3,91 6000 MM07016 TUBO RED. SIC 60,3 X 52,48 X 3,91 X 6000 MM 60,3 52,48 3,91 6000	ALUMÍNIO	-	Trefilado
MM07011 TUBO RED. SIC 25.4 X 21.6 X 1.9 X 6000 MM 25.4 (1") 21.6 1.9 6000 MM07019 TUBO RED. CIC 31,75 X 28,75 X 1,5 X 6000 MM 31,75 (1.1/4") 28,75 1,5 6000 MM07017 TUBO RED. SIC 33,4 X 26,64 X 3,38 X 6000 MM 33,4 26,64 3,38 6000 MM07020 TUBO RED. C/C 38,1 X 35,1 X 1,5 X 6000 MM 38,1 (1.1/2") 35,1 1,5 6000 MM07018 TUBO RED. SIC 42,2 X 29,5 X 6,35 X 6000 MM 42,2 29,5 6,35 (1/4") 6000 MM07016 TUBO RED. SIC 60,3 X 52,48 X 3,91 X 6000 MM 60,3 52,48 3,91 6000 MM07016 TUBO RED. SIC 50,3 X 52,94 X 9,53 X 6000 MM 60,3 52,48 3,91 6000	AÇO	SAE1008/1010	Laminado
MM07019 SAE1008/1010 31,75 (1.1/4*) 28,75 1,5 6000 MM07017 TUBO RED. S/C 33,4 X 26,64 X 3,38 X 6000 MM 33,4 26,64 3,38 6000 MM07020 TUBO RED. C/C 38,1 X 35,1 X 1,5 X 6000 MM 38,1 (1.1/2*) 35,1 1,5 6000 MM07018 TUBO RED. S/C 42,2 X 29,5 X 6,35 X 6000 MM 42,2 29,5 6,35 (1/4*) 6000 MM07016 TUBO RED. S/C 60,3 X 52,48 X 3,91 X 6000 MM 60,3 52,48 3,91 6000 MM07016 TUBO RED. S/C 73 X 53,94 X 9,53 X 6000 MM 73 53,94 9,53 (2/8*) 6000	AÇO	SAE1008/1010	Laminado
MM07017 TUBO RED. S/C 334 x 26,64 x 3,38 x 6000 MM 33,4 26,64 3,38 6000 MM07020 TUBO RED. C/C 38,1 x 35,1 x 1,5 x 6000 MM 38,1 (1.1/2") 35,1 1,5 6000 MM07018 TUBO RED. S/C 42,2 x 29,5 x 6,35 x 6000 MM 42,2 29,5 6,35 (1/4") 6000 MM07016 TUBO RED. S/C 60,3 x 52,48 x 3,91 x 6000 MM 60,3 52,48 3,91 6000 MM07016 TUBO RED. S/C 73 x 53,94 x 9,53 x 6000 MM 73 53,94 9,53 (3/8") 6000	AÇO	SAE1008/1010	Laminado
MM07020 TUBO RED. C/C 38,1 X 35,1 X 1,5 X 6000 MM 38,1 (1.1/2") 35,1 1,5 6000 MM07018 TUBO RED. S/C 42,2 X 29,5 X 6,35 X 6000 MM 42,2 29,5 6,35 (1/4") 6000 MM07016 TUBO RED. S/C 60,3 X 52,48 X 3,91 X 6000 MM 60,3 52,48 3,91 6000 MM07016 TUBO RED. S/C 73 X 53,94 X 9,53 X 6000 MM 73 53,94 9,53 (2/8") 6000	AÇO	SAE 1008/1010	Laminado
MM07016	AÇO	SAE 1008/1010	Laminado
MM0/016 SAE1008/1010 60,3 52,48 3,91 6000 MM 73 53,94 9,53 X 6000 MM 73 53,94 9,53 X 6000 MM 73 53,94 9,53 X 6000 MM	AÇO	SAE1008/1010	Laminado
MM07045 TUBO RED. S/C 73 X 53,94 X 9,53 X 6000 MM 73 53.94 9,53 (3/8") 6000	AÇO	SAE 1008/1010	Laminado
	AÇO	SAE1008/1010	Laminado
Formatação da descrição Tipo do tubo (abreviado) Com ou Sem costura A nominal B nominal C nominal D nominal Material		EXEM	PLO
romatação da descrição TUBO RED.		TUBO RED. X	XXXMM

sição química

Com ou sem costura

SEM COST.

SEM COST.

SEM COST.

SEM COST.

SEM COST

COM COST.

SEM COST

SEM COST.

SEM COST.

DS25 REV01 21/10/2024 Notas

	Utilizar tolerâncias estabelecidas pelo grau médio											
TABELA DE TOLERÂNCIA (MEDIDAS NOMINAIS EM MILÍMETROS)												
GRAU DE PRECISÃO	0 < cota ≤ 3	3 < cota ≤ 6	6 < cota ≤ 30	30 < cota ≤ 120	120 < cota ≤ 400	400 < cota ≤ 1000	> 1000	ANGULAR ±				
GRAU DE PRECISAU								< 10 = 1°				
FINO	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	> 10 < 50 = 0° 30'				
MÉDIO	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	> 50 < 120 = 0° 20°				
GROSSO	±0,15	±0,2	±0,5	±0,8	±1,2	±2	±3	> 120 < 400 = 0° 10°				

Dimensões: mm.
 Inspecionar laudo de composição química

e dimensional de cada item.

3. IC = In	speção crítica.
------------	-----------------

GRUSSU			±0,15 ±0,2 ±0,5 ±0,8 ±1,2 ±2					±2 ±3 >	±3 > 120 < 400 = 0° 10'					
Referência)escrição	A no	minal	B no	minal	C no	minal	D nominal	Material	% Carbono	Processo	Com ou sem costura	
MM02019	TUBO RET. 40 X 20 X	3 X 6000 MM SAE 1008/1010	4	40	2	0	;	3	6000	AÇO	SAE 1008/1010	Laminado	-	
MP0510	TUBO RET. 40 X 30	X 1,5 X 6000 MM ASTM A 36	4	40	3	0	1	5	6000	AÇO	ASTM A 36	Laminado	-	
MM02011	TUBO RET. 50 X 30 X	2 X 6000 MM SAE 1008/1010		50	3	0	:	2	6000	AÇO	SAE 1008/1010	Laminado	-	
MM02026		1,2 X 6000 MM SAE 1008/1010	(30	4	0	1	2	6000	AÇO	SAE 1008/1010	Laminado	-	
MM02016		50 X 4,75 X 6000 MM SAE 008/1010	1	30	5	0	4,75	(3/16")	6000	AÇO	SAE 1008/1010	Laminado	-	
MM02014		008/1010 50 X 4,75 X 6000 MM SAE 008/1010	1	50	5	0	4,75	(3/16")	6000	AÇO	SAE 1008/1010	Laminado	-	
MM02025		X 6,35 X 6000 MM ASTM A 36	1	80	8	0	6,35	(1/4")	6000	AÇO	ASTM A 36	Laminado	-	
MM02021	TUBO RET. 150 X 100	X 4,75 X 6000 MM ASTM A 36	1	50	10	00	4,75	(3/16")	6000	AÇO	ASTM A 36	Laminado	-	
MM02018		100 X 6,35 X 6000 MM SAE 008/1010	1	50	10	00	6,35	(1/4")	6000	AÇO	SAE 1008/1010	Laminado	-	
MM02023			1	50	12	20		3	6000	AÇO	ASTM A 36	Laminado	-	
				-										
acksquare							L							
Format	tação da descrição	Tipo do tubo (abreviado)	A nominal	B nominal	C nominal	D no	minal		Material		EXEM	PLO		
· Omia	ayao aa aooongao	TUBO RET.			,	,					TUBO RET. X X X X MM			