实验六 利用 MSI 设计组合逻辑电路 实验报告

16337233 王凯祺 2017 年 4 月 26 日

1 实验目的

- 1. 熟悉编码器、译码器、数据选择器等组合逻辑功能模块的功能与使用方法
- 2. 掌握用 MSI 设计的组合逻辑电路的方法

2 实验仪器

数字电路实验箱、数字万用表、示波器

3 实验内容

3.1 用 74LS138 实现数据分配器

3.1.1 真值表

A	В	C	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7
0	0	0	\overline{D}	1	1	1	1	1	1	1
0	0	1	1	\overline{D}	1	1	1	1	1	1
0	1	0	1	1	\overline{D}	1	1	1	1	1
0	1	1	1	1	1	\overline{D}	1	1	1	1
1	0	0	1	1	1	1	\overline{D}	1	1	1
1	0	1	1	1	1	1	1	\overline{D}	1	1
1	1	0	1	1	1	1	1	1	\overline{D}	1
1	1	1	1	1	1	1	1	1	1	\overline{D}

3.1.2 实现

将 74LS138 的控制端 G1 作为数据输入端, $S_2S_1S_0$ 作为地址输入端,输出即为数据分配器的输出。为了方便查看波形,G1 接高电位。

3.1.3 静态测试

将 $S_2S_1S_0$ 接开关,使用 LED 灯查看输出

3.1.4 动态测试

将 S₂S₁S₀ 接八进制计数器,使用逻辑分析仪查看波形

其中, D_0 表示时钟信号, D_1,D_2,D_3 表示 S_0,S_1,S_2 , $D_4\cdots D_{11}$ 表示 $F_0\cdots F_7$

3.2 逻辑单元设计

3.2.1 真值表

S_1	S_0	A	В	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

3.2.2 表达式

$$Y = \overline{S_1} \cdot \overline{S_0} A B + \overline{S_1} S_0 \overline{A} B + \overline{S_1} S_0 A \overline{B} + \overline{S_1} S_0 A B + S_1 \overline{S_0} \cdot \overline{A} B + S_1 \overline{S_0} A \overline{B} + S_1 S_0 \overline{A} \cdot \overline{B} + S_1 S_0 \overline{A} B$$

$$Y = (\overline{S_1} \cdot \overline{S_0} A) B + (\overline{S_1} S_0 \overline{A}) B + (\overline{S_1} S_0 A) \cdot 1 + (S_1 \overline{S_0} \cdot \overline{A}) B + (S_1 \overline{S_0} A) \overline{B} + (S_1 S_0 \overline{A}) \cdot 1$$

3.2.3 电路图

3.2.4 逻辑分析仪

3.3 静态测试

将输入接到01开关,输出接到01显示器。

3.4 动态测试

3.5 算术单元设计

3.5.1 真值表

S	A	В	sum	cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

3.5.2 表达式

$$sum = \overline{S} \cdot \overline{A}B + \overline{S}A\overline{B} + S\overline{A}B + SA\overline{B}$$

$$cout = \overline{S}AB + S\overline{A}B$$

3.5.3 电路图

3.5.4 逻辑分析仪

3.6 静态测试

将输入接到01开关,输出接到01显示器。

3.7 动态测试

3.8 算术逻辑单元设计

3.8.1 电路图

3.8.2 逻辑分析仪

