ННГУ им. Н. И. Лобачевского, ВШОПФ Лабораторная работа "Некоторые законы случайных событий"

Цель работы:

• Знакомство с основными законами случайных событий и некоторыми статистическими законами

Приборы и оборудование:

- доска Гальтона
- воронка
- линейка $\Delta h = 0,1$ см
- частицы (пшено)
- мостик Уитстона ±1 Ом
- резисторы в количестве 100 шт сопротивлением 470 Ом \pm 47 Ом

Теоретическая часть

Пусть X – дискретная случайная величина, $\{x_1, x_2, ..., x_n\}$ – счётное множество значений случайной величины. Тогда все свойства этой величины определяются вероятностями возможных значений:

$$P(x_1) = p_1, P(x_2) = p_2, ..., P(x_n) = p_n.$$

Запись распределения случайной величины в виде таблицы неудобна в аналитических расчётах. Удобнее использовать функции распределения. По определению интегральная функция распределения:

$$(1) F(x) = P(X < x)$$

Т.е. это вероятность того, что значение случайной величины X окажется меньшим, чем заданное x.

Из определения интегральной функции следуют следующие свойства:

1. F(x) — неубывающая функция, определённая для любых x и принимающая значения [0; 1].

2.
$$F(-\infty) = 0$$
, $F(+\infty) = 1$.

Применительно к дискретной случайной величине интегральная функция будет иметь вид:

(2)
$$F(x) = \sum_{i} p_{i} \chi(x - x_{i})$$
 , где $\chi(x) = \begin{bmatrix} 0 , x \leq 0 \\ 1 , x > 0 \end{bmatrix}$ - функция, показывающая нужно

ли суммировать і-ое значение.

Также часто используется дифференциальная функция распределения (плотность вероятностей), по определению равная:

$$(3) W(x) = \frac{dF(x)}{dx}$$

С помощью плотности вероятностей можно найти вероятность попадания случайной величины в заданный интервал [a; b):

$$(4) P(a \leq X < b) = \int_{a}^{b} W(x) dx$$

В частности отсюда следует явное выражение для интегральной функции распределения через плотность вероятностей:

(5)
$$F(x) = P(X < x) = \int_{-\infty}^{x} W(\alpha) d\alpha$$

Общие свойства плотности вероятностей:

- 1. Размерность обратна размерности случайной величины
- 2. Неотрицательна

Также можно вычислить среднее значение случайной величины, формула которой для дискретной величины имеет вид:

(6)
$$\bar{X} = \frac{1}{N} \sum_{i} X_{i} = \sum_{i} x_{i} \frac{N_{i}}{N} = \sum_{i} x_{i} p_{i}$$
, где X_{i} – исход i-ого испытания, N_{i} –

количество выпадений значения х_і, N -общее число испытаний.

Для непрерывной же случайной величины, формула математического ожидания (среднего значения) будет иметь вид:

$$(7) \ \bar{X} = \int_{-\infty}^{\infty} x W(x) dx$$

Более информативной величиной является дисперсия, по определению равная:

(8)
$$D_x = (X - \bar{X})^2$$

По смыслу математическое ожидание является постоянной состовляющей случайной величины, а дисперсия служит мерой разброса вокруг среднего. В инженерных приложениях имеет место среднеквадратичное отклонение: (9) $\sigma_{\rm x} = \sqrt{D_{\rm x}}$

Подругому эту величину называют стандартным отклонением или просто стандартом.

Случайные отклонения величины от среднего значения называются флунктуациями. Наиболее показательной является относительная флунктуация:

$$(10) \ \eta = \frac{\sigma_x}{\bar{X}}$$

В приложении к доске Гальтона

Обозначим \bar{k} - номер средней ячейки, тогда вероятность $P(\bar{k})$ оказывается максимальной. При достаточно большом числе зёрен вероятность попадания в другие ячейки выражается по формуле:

(11)
$$P(k) = P(\bar{k}) \cdot \exp\left(-\frac{(k - \bar{k})^2}{2 \sigma_x^2}\right)$$

Чтобы вычислить влияние номера ячейки, положим значения k равными $k_1 = \bar{k} + \sigma_k$ и $k_2 = \bar{k} - \sigma_k$. Тогда получим формулу:

(12)
$$P(k_1) = P(k_2) = \frac{P(\bar{k})}{\sqrt{e}}$$

Это значит, что $2\,\sigma_k = k_2 - k_1$ равняется ширине кривой вероятностей, измеренной на уровне $P(\bar k)/\sqrt e$, т.е. стандарт характеризует величину стандартных отклонений от среднего.

Также имеем:

$$(13) \ P(\bar{k}) = \frac{1}{\sqrt{2\pi}\sigma_k}$$

Отсюда стандарт характеризует не только ширину, но и высоту распределения. Если в качестве случайной величины рассматривать не номер ячейки, а её координату x, то дифференциальная функция примет вид:

(!4)
$$W(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2})$$

Практическая часть

1. Зарисовать траектории отдельных зёрен

2. Выполнить по 3 опыта с (A) 10 зёрнами, (Б) $N_0/2$ зёрнами и (В) N_0 зёрнами, а также (Г) найти отношение флунктуаций в средней ячейке в (Б) и (В).

Опыт	10 зёрен			$N_0/2$			N_0		
Замер	1	2	3	1	2	3	1	2	3
1	0	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	0	0
3	0	0	0	1	0	0	0	0	0
4	0	0	0	1	0	0	0	1	3
5	0	0	0	2	0	0	2	2	2
6	0	0	0	3	0	1	3	3	3
7	0	0	0	5	0	2	4	2	4
8	0	0	0	6	2	3	4	4	4
9	0	0	0	7	3	4	5	5	5
10	1	0	0	9	5	4	7	7	6
11	0	0	0	9	4	5	8	9	9
12	0	0	0	11	4	6	10	11	11
13	0	0	0	13	6	7	14	14	14
14	0	0	0	17	7	10	17	17	17
15	0	0	0	17	9	9	24	24	26
16	0	0	0	22	10	12	25	25	26
17	0	0	0	25	14	16	32	33	37
18	1	0	0	26	16	20	39	39	41
19	0	1	0	28	23	24	46	48	50
20	0	0	0	34	22	23	51	55	57
21	0	0	1	30	24	25	53	56	56
22	0	0	0	35	25	26	60	64	67
23	1	0	1	38	31	35	74	73	77
24	1	0	0	37	35	33	73	73	76

25	0	1	0	27	วา	20	00	0.4	01
25	0	1	0	37	33	36	80	84	81
26	0	0	1	34	39	35	94	81	83
27	0	2	1	33	36	37	91	84	83
28	0	0	1	33	37	35	93	82	80
29	1	3	0	30	34	36	81	78	81
30	0	1	1	29	32	36	80	77	78
31	0	0	1	25	33	33	76	72	70
32	1	0	0	22	32	28	69	68	66
33	0	1	1	18	29	27	69	65	63
34	1	0	0	15	26	25	55	58	53
35	0	0	0	13	25	23	52	51	50
36	0	0	0	12	21	18	37	38	38
37	1	0	0	9	17	14	36	25	32
38	0	0	1	8	14	12	32	28	28
39	0	1	1	6	12	11	26	24	23
40	1	0	0	5	10	9	29	18	18
41	0	0	0	5	8	8	17	15	14
42	0	0	0	3	7	7	15	12	11
43	0	0	0	3	6	6	12	11	9
44	0	0	0	2	6	4	9	7	8
45	0	0	0	1	4	3	6	5	5
46	0	0	0	0	4	2	4	4	5
47	0	0	0	0	2	1	3	3	3
48	0	0	0	0	1	0	2	3	2
49	1	0	0	0	0	0	1	2	2
50	0	0	0	0	0	0	0	0	3
51	0	0	0	0	0	0	0	0	1
52	0	0	0	0	0	0	0	0	0
53	0	0	0	0	0	0	0	0	0
								`	

- экспериментальыне данные, - теоретические расчёты)

Из графика видно, что распределение частиц не будет поддаваться какому-либо закон Гаусса выполняется только для большого количества исходных данных.

 \bar{k} = 26; $P(\bar{k})$ = 36; σ_k = 8,05; η_{cp} = 0,57; η_{10} = 1.49

$$\frac{\eta_{10}}{\eta_{cp}} = 2,6$$

(B) – Для N₀

 $\bar{k} = 27$; $P(\bar{k}) = 0.054$; $\sigma_k = 7.36$; $\eta_{cp} = 0.6$

(Г) – Отношение флунктуаций

$$\frac{\eta_{\scriptscriptstyle B}}{\eta_{\scriptscriptstyle B}}$$
=0,95

3. Резисторы

 Резисторы Сопротивления, 	кОм	Количество, шт
сопротивления,	454	1
	460	
	461	2
	463	
	463	4
	465	2 4 2 2 5 9 5 5
	466	2
	467	
		5
	468	9
	469	5
	470	5
	471	4
	472	8
	473	8
	474	3
	475	8 3 2 4 2 5 2 3 1
	476	4
	477	2
	478	5
	479	2
	480	3
	481	
	482	4
	483	4
	484	
	485	1
	486	1
	487	2
	488	2
	489	1
	490	1
	492	1 2 2 1 1 2 1
	497	1
I/		¥. 100

Количество измерений: 100

Наиболее вероятное сопротивление: 473 Ом

(Номинальное сопротивление: 470 Ом)

Стандарт: 8,22 Ом

(погрешность мостика Уитстона 1 Ом) Систематическая погрешность: 0,0063

Случайная погрешность: 0,0173

(номинальная погрешность 0,1 т.е. 47 Ом т.е. 10%)

Плотность вероятности (- теоритическая, - практическая):

Вывод:

Я познакомился с некоторыми законами распределения случайных событий (распределением Гаусса), научился грамотно обрабатывать результаты экспериментов, строить дифференциальную и интегральныю функции распределения, вычислять дисперсию, стандарт и математическое ожидание случайных событий.