KTU Students

Course	Course Name	L-T-P -C	Year of
code			Introduction
EE486	SOFT COMPUTING	3-0-0-3	2016
	Prerequisite: NIL		

Course Objectives

• To provide the concepts of soft computing techniques such as neural networks, fuzzy systems, genetic algorithms

Syllabus

Introduction To Soft Computing And Neural Networks , Fuzzy Sets And Fuzzy Logic: Fuzzy Sets, Neuro-Fuzzy Modelling , Machine Learning, Machine Learning Approach to Knowledge Acquisition

Expected outcome.

The students will be able to get ideas on:

- i. Artificial Intelligence, Various types of production systems, characteristics of production systems.
- ii. Neural Networks, architecture, functions and various algorithms involved.
- iii. Fuzzy Logic, Various fuzzy systems and their functions.
- iv. Genetic algorithms, its applications and advances

Text Books:

- 1. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 1991
- 2. Jyh-Shing Roger Jang, Chuen-Tsai Sun, EijiMizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2008
- 3. S.Y Kung, Digital Neural Network, Prentice-Hall of India, 1993

References:

- 1. Amit Konar, "Artificial Intelligence and Soft Computing", First Edition, CRC Press, 2000.
- 2. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson Edn., 2006
- 3. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995
- 4. Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998
- 5. Simon Haykin, "Neural Networks: A Comprehensive Foundation", Prentice Hall

Course Plan End Sem Contents Module Hours .Exam Marks Introduction To Soft Computing And Neural Networks: Evolution of Computing - Soft Computing Constituents - From Conventional AI to 7 I 15% Computational Intelligence - Adaptive Networks - Feed forward Networks Supervised Learning Neural Networks - Radial Basis Function Networks - Reinforcement Learning – Unsupervised Learning Neural Networks – Adaptive II 7 15% Resonance architectures. Fuzzy Sets And Fuzzy Logic: Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations - Fuzzy Rules and Fuzzy Reasoning FIRST INTERNAL EXAMINATION

Ш	Fuzzy Inference Systems – Fuzzy Logic – Fuzzy Expert Systems – Fuzzy Decision Making Neuro-Fuzzy Modeling : Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification and Regression Trees	7	15%	
IV	Data Clustering Algorithms – Rulebase Structure Identification Neuro-Fuzzy Control.	7	15%	
SECOND INTERNAL EXAMINATION				
V	Machine Learning: Machine Learning Techniques – Machine Learning Using Neural Nets – Genetic Algorithms (GA)	7	20%	
VI	Applications of GA in Machine Learning - Machine Learning Approach to Knowledge Acquisition. Support Vector Machines for Learning - Linear Learning Machines - Support Vector Classification - Support Vector Regression - Applications.	7	20%	
END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3Hrs.

Part A: 8 compulsory questions.

One question from each module of Module I - IV; and two each from Module V & VI.

Student has to answer all questions. $(8 \times 5)=40$

Part B: 3 questions uniformly covering Modules I & II. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part C: 3 questions uniformly covering Modules III & IV. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

Part D: 3 questions uniformly covering Modules V & VI. Student has to answer any 2 from the 3 questions: $(2 \times 10) = 20$. Each question can have maximum of 4 sub questions (a,b,c,d), if needed.

