1. Let (M,d) be a metric space and C(M) the space of continuous functions $f:M\to\mathbb{R}$ with metric

$$D(f,g) = \sup_{x \in M} |f(x) - g(x)|.$$

We say that a set of functions $\mathcal{F} \subset C(M)$ is pointwise equicontinuous if for every $x \in M$ and $\varepsilon > 0$ there is a δ (depending on x and $\varepsilon > 0$) for which

$$|f(x) - f(y)| < \varepsilon$$

for all $f \in \mathcal{F}$ and y satisfying $d(x,y) < \delta$. If M is compact show that a pointwise equicontinuous family of functions is a equicontinuous.

2. Let $\{(X_i, d_i)\}_{i=1}^{\infty}$ be a sequence of metric spaces. Let $X = \prod_{i=1}^{\infty} X_i$ and for any $x = (x_i)_i, y = (y_i)_i \in X$ define,

$$d(x,y) := \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{d_j(x_j, y_j)}{1 + d_j(x_j, y_j)}.$$

- (a) Show that (X, d) is a metric space
- (b) Let $x^{(n)} \in X$ and $x \in X$. Show that $x^{(n)} \to x$ in (X, d) iff $x_i^{(n)} \to x_i$ in (X_i, d_i) for all i.
- (c) Consider the case $X_i = \mathbb{R}$ and $d_i(x,y) := |x-y|$ for all i. Then $\ell^p \subseteq X$ for all $1 \le p \le \infty$. Compare convergence in ℓ^p with convergence in (X,d).
- 3. Let $f: \mathbb{R}_{\geq} \to \mathbb{R}$ be a continuous function s.t. $\lim_{n\to\infty} f(nx) = 0$ for all $x \in \mathbb{R}$ (here $\mathbb{R}_{\geq} := \{x \in \mathbb{R} : x \geq 0\}$). Prove that $\lim_{x\to\infty} f(x) = 0$.

Hint: apply the Baire Category theorem in the following steps:

- (a) Let $\varepsilon > 0$ and define $E_k := \{x : |f(nx)| \le \varepsilon, \forall n \ge k\}$. Show that E_k is closed.
- (b) Show that $\mathbb{R}_{\geq} = \bigcup_k E_k$.
- (c) Conclude by the BCT that some E_k contains an interval (a, b).
- (d) Show that $\bigcup_{n\geq k}(na,nb)\supseteq (T,\infty)$ for some T>0.
- (e) Conclude that $\limsup_{t\to\infty} |f(t)| \le \varepsilon$ and so $\lim_{t\to\infty} f(t) = 0$
- 4. Let $S \subseteq \ell^{\infty}$ be the set of bounded sequences s.t.

$$\lim_{n\to\infty}|x_n|=0$$

if $(x_n)_n \in S$.

- (a) Prove that S is closed.
- (b) Let B be the unit ball in ℓ^{∞} . Show that $S \cap B$ is a closed and bounded set but is not compact
- (c) Fix $x \in S$. Let \mathcal{F} be the set of $y \in \ell^{\infty}$ so that $|y_n| \leq |x_n|$ for all $n \geq 0$. Show that \mathcal{F} is compact.

5. Let C([0,1]) be the set of continuous functions $f:[0,1]\to\mathbb{R}$ with

$$D(f,g) := \sup_{x \in [0,1]} |f(x) - g(x)|.$$

For any $f \in C([0,1])$ and $0 < \alpha \le 1$ define,

$$||f||_{\alpha} := \sup_{x} |f(x)| + \sup_{x,y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

Let $S := \{f : ||f||_{\alpha} \le 1\}$. Show that S is a compact set.

- 6. Let $X = [0,1]^n$ be the unit cube in \mathbb{R}^n . Show that multivariate polynomials are dense in $C_b(X)$.
- 7. Let $(b_{ij})_{i,j=1}^{\infty}$ be a doubly semi-infinite matrix so that

$$\sup_{i} \sum_{j=1}^{\infty} |b_{ij}| < \infty$$

(a) For any $x \in \ell^{\infty}$ define a sequence $F(x) = (F(x)_i)_i$ by

$$F(x)_i = \sum_j b_{ij} x_j^2$$

Show that F is a continuous mapping from ℓ^{∞} to ℓ^{∞} .

(b) Show that there is an r > 0 so that for any $a \in \ell^{\infty}$ with $||a||_{\infty} < r$ the equation

$$x = a + F(x)$$

has a unique solution $x \in \ell^{\infty}$.

8. Let $C_b(\mathbb{R})$ be the space of bounded continuous functions $f:\mathbb{R}\to\mathbb{R}$ with metric

$$D(f,g) = \sup_{|x| \in \mathbb{R}} |f(x) - g(x)|.$$

- (a) Find an equicontinuous, bounded sequence of functions of $C_b(\mathbb{R})$ that contains no subsequence that converges wrt D.
- (b) Let \mathcal{F} be an equicontinuous, uniformly bounded family of functions in $C_b(\mathbb{R})$ with the property that for all $\varepsilon > 0$ there is an N > 0 so that

$$|f(x)| \le \varepsilon$$

for all $f \in \mathcal{F}$ and |x| > N. Show that sequences of functions from \mathcal{F} have uniformly convergent subsequences.

9. Let X be a Banach space and $F: X \to X$ a contraction. Define G(x) := x - F(x). Show that G is a bijection with continuous inverse.