Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Town Hall + MLP History

Changing the Objective Function

Self Test:

True or False: If we change the cost function, $J(\mathbf{W})$, we only need to update the final layer sensitivity calculation, $\mathbf{V}^{(2)}$, of the back propagation steps. The remainder of the algorithm is unchanged.

- A. True
- B. False

MSE

MSE

Negative of MLE: Binary Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{speeds up}$$
initial training

Neural Networks and Deep Learning, Michael Nielson, 2015

Negative of MLE: Binary Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)} \ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)}) \ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \quad \text{speeds up}$$
initial training

Neural Networks and Deep Learning, Michael Nielson, 2015

Negative of MLE: Binary Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)}\ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)})\ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right]$$

speeds up initial training

$$\left[\frac{\partial J(\mathbf{W})}{\mathbf{z}^{(L)}}\right]^{(i)}$$

$$V^{(2)} = -2(Y - A^{(3)}) * A^{(3)} * (1 - A^{(3)})$$
 old update

Back to our old friend: Cross entropy

$$J(\mathbf{W}) = -\left[\mathbf{y}^{(i)}\ln([\mathbf{a}^{(L+1)}]^{(i)}) + (1 - \mathbf{y}^{(i)})\ln(1 - [\mathbf{a}^{(L+1)}]^{(i)})\right] \qquad \text{speeds up}$$
initial training

$$\left[\frac{\partial J(\mathbf{W})}{\mathbf{z}^{(L)}}\right]^{(i)} = ([\mathbf{a}^{(L+1)}]^{(i)} - \mathbf{y}^{(i)})$$

$$\left[\frac{\partial J(\mathbf{W})}{\mathbf{z}^{(2)}}\right]^{(i)} = ([\mathbf{a}^{(3)}]^{(i)} - \mathbf{y}^{(i)})$$

$$\mathbf{V}^{(2)} = \mathbf{A}^{(3)} - \mathbf{Y}$$
new update

$$\mathbf{V}^{(2)} = -2(\mathbf{Y} - \mathbf{A}^{(3)}) * \mathbf{A}^{(3)} * (1 - \mathbf{A}^{(3)})$$
 old update

bp-5

08. Practical_NeuralNets.ipynb

Demo

cross entropy

Gradient when using cosine annealing with warm restarts learning rate scheduler

Formative Self Test

- for adding Gaussian distributions, variances add together $a^{(L+1)} {=} \varphi(W^{(L)}a^{(L)}) \text{ assume each element of } a \text{ is Gaussian}$
- If you initialized the weights, **W**, with too large variance, you would expect the output of the neuron, $\mathbf{a}^{(L+1)}$, to be:
 - A. saturated to "1"
 - B. saturated to "0"
 - C. could either be saturated to "0" or "1"
 - D. would not be saturated

Formative Self Test

- for adding Gaussian distributions, variances add together $a^{(L+1)} \!\!=\!\! \varphi(W^{(L)}a^{(L)}) \text{ assume each element of } a \text{ is Gaussian}$
- What is the derivative of a saturated sigmoid neuron?
 - A. zero
 - B. one
 - C. a * (1-a)
 - D. it depends

Weight initialization

try not to **saturate** your neurons right away!

$$\mathbf{a}^{(L+1)} = \mathbf{\phi}(\mathbf{z}^{(L)})$$
 $\mathbf{z}^{(L)} = \mathbf{W}^{(L)} \mathbf{a}^{(L)}$

each row is summed before sigmoid

want each $z^{(L)}$ to be between $-\varepsilon < \Sigma < \varepsilon$ for no saturation **solution**: squash initial weights magnitude

 one choice: each element of W selected from a Gaussian with zero mean and specific standard deviation

$$w_{ij}^{(L)} \leftarrow \mathcal{N}\left(0, \sqrt{\frac{1}{n^{(L)}}}\right)$$

For a sigmoid, want $-\varepsilon < z_i^{(L)} < \varepsilon$ $\varepsilon = 4$

More Weight Initialization

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot JMLR 2010 Yoshua Bengio DIRO, Université de Montréal, Montréal, Québec, Canada

Goal: We should not saturate feedforward or back propagated variance

Relate variance of current layer to variance in z, so $\sigma(z_i^{(L)})$ isn't saturated

try not to saturate z
$$z_i^{(L)} = \sum_{j=1}^{n^{(L)}} w_{ij} a_j^{(L)}$$
 break down feed forward by each multiply

$$\text{Var}[z_i^{(L)}] = \sum_{j}^{n^{(L)}} E[w_{ij}]^2 \text{Var}[a_j^{(L)}] + \text{Var}[w_{ij}] E[a_j^{(L)}]^2 + \text{Var}[w_{ij}] \text{Var}[a_j^{(L)}]$$
 assume i.i.d. expand variance calc keep $\text{Var}[] \sim 1$ 0, if uncorrelated

$$\text{Similar for back prop.} \\ \text{Var}[z_i^{(L)}] = 4 = n^{(L)} \text{Var}[w_{ij}] \text{Var}[a_j^{(L)}] \\ \text{Var}[v_i^{(L)}] = n^{(L+1)} \text{Var}[w_{ij}] \text{Var}[v_i^{(L+1)}]$$

$$w_{ij}^{(L)} \approx \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L)}}}\right) \begin{vmatrix} w_{ij}^{(L)} \approx \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L+1)}}}\right) \\ w_{ij}^{(L)} \approx \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}\right) \end{vmatrix}$$
forward
from data
$$\text{from sensitivity}$$
compromise

More Weight Initialization

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot Yoshua Bengio DIRO, Université de Montréal, Montréal, Québec, Canada

Figure 7: Back-propagated gradients normalized histograms with hyperbolic tangent activation, with standard (top) vs normalized (bottom) initialization. Top: 0-peak decreases for higher layers.

Starting gradient histograms per layer standard normalization

Starting gradient histograms per layer Glorot normalization

Glorot and He Initialization

We have solved this assuming the activation output is in the range -4 to 4 (for a sigmoid) and assuming that x is distributed Gaussian

This range, epsilon, is different depending on the activation and assuming Gaussian or Uniform

Uniform Gaussian

Tanh
$$w_{ij}^{(L)} = \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$$
 $w_{ij}^{(L)} = \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$

Sigmoid $w_{ij}^{(L)} = 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$ $w_{ij}^{(L)} = 4\sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$

ReLU $w_{ij}^{(L)} = \sqrt{2}\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$ $w_{ij}^{(L)} = \sqrt{2}\sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$

Summarized by Glorot and He

08. Practical_NeuralNets.ipynb

Demo

A new nonlinearity: recitifed linear units

it has the advantage of **large gradients** and **extremely simple** derivative

$$\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$$

08. Practical_NeuralNets.ipynb

Demo

ReLU Nonlinearities Important for deep networks

Other Activation Functions

- Sigmoid Weighted Linear Unit **SiLU**
 - also called Swish
- Mixing of sigmoid, σ , and ReLU

$$\varphi(z) = z \cdot \sigma(z)$$

Ramachandran P, Zoph B, Le QV. Swish: a Self-Gated Activation Function. arXiv preprint arXiv:1710.05941. 2017 Oct 16

Elfwing, Stefan, Eiji Uchibe, and Kenji Doya. "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning." Neural Networks (2018).

$$\frac{\partial \varphi(z)}{\partial z} = \varphi(z) + \sigma(z) [1 - \varphi(z)]$$

Figure 1: The Swish activation function.

=
$$a^{(l+1)} + \sigma(z^{(l)}) \cdot [1 - a^{(l+1)}]$$

Derivative Calculation:

$$= \sigma(x) + x \cdot \sigma(x)(1 - \sigma(x))$$

$$= \sigma(x) + x \cdot \sigma(x) - x \cdot \sigma(x)^{2}$$

$$= x \cdot \sigma(x) + \sigma(x)(1 - x \cdot \sigma(x))$$

Activations Summary

	Definition	Derivative	Weight Init (Uniform Bounds)
Sigmoid	$\phi(z) = \frac{1}{1 + e^{-z}}$	$\nabla \phi(z) = a(1 - a)$	$w_{ij}^{(L)} = 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\nabla \phi(z) = \frac{4}{(e^z + e^{-z})^2}$	$w_{ij}^{(L)} = \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
ReLU	$\phi(z) = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$w_{ij}^{(L)} = \sqrt{2}\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
SiLU	$\phi(z) = \frac{z}{1 + e^{-z}}$	$\nabla \phi(z) = a + \frac{(1-a)}{1+e^{-z}}$	$w_{ij}^{(L)} = \sqrt{2}\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$

Practical Details

 Neural networks can separate any data through multiple layers. The true realization of Rosenblatt:

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

- One nonlinear hidden layer with an output layer can perfectly train any problem with enough data, but might just be memorizing...
 - ... it might be better to have even more layers for decreased computation and generalizability

End of Session

- Next Time: Final Flipped Module!
- Then: Deep Learning in Keras

Back Up Slides