

Force reconstruction

A Bayesian perspective

Mathieu AUCEJO

Thursday 13th October 2022

Who am 1?

- Associate professor
- @ Le Cnam

le cnam

Who am I?

- Associate professor
- @ Le Cnam
- @ LMSSC

™ mathieu.aucejo@lecnam.net

Outline

- **1** Generalities
- State of the art
- **3** Bayesian Force regularization
- **6** Extensions

Outline

- **1** Generalities
- 2 State of the art
- **3** Bayesian Force regularization
- **4** Extensions

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

Types of problems

1. Localization

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

- 1. Localization
- 2. Quantification

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

- 1. Localization
- 2. Quantification
- 3. Reconstruction

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

- 1. Localization
- 2. Quantification
- 3. Reconstruction
- 4. Separation / Classification

Force identification is an inverse problem aiming at characterizing some features of the sources exciting a mechanical structure

- 1. Localization
- 2. Quantification
- 3. Reconstruction
- 4. Separation / Classification

Restriction

In this lecture, we restrict ourselves to reconstruction problems expressed as a linear system

$$X = HF + N$$

- ullet **X** is the measured vibration field
- $oldsymbol{H}$ describes the dynamic behavior of the structure (LTI assumption)
- $oldsymbol{\cdot}$ **F** is the excitation field to reconstruct
- $oldsymbol{\cdot}$ $oldsymbol{N}$ is the noise corrupting the vibration data
- This talk will not cover methods such as Kalman Filters, Neural Networks, Virtual Fields, ...

Outline

- **1** Generalities
- State of the art
- **3** Bayesian Force regularization
- **4** Extensions

Leading example Free-free steel beam in the frequency domain

- Unit harmonic point force @ 350 Hz
- Measurement noise level 20 dB
- Data generation ⚠ Inverse crime
 - \mathbf{X} Modal expansion (8 modes, $f_8 \approx 992 \text{ Hz}$)
 - **H** FEM (20 beam elements)
 - Colocated reconstruction configuration
 - Equal-determined inverse problem

Main objective

Naive reconstruction

$$\widehat{\mathbf{F}} = \mathbf{H}^{-1} \mathbf{X}$$

What's wrong?

• Formally, one has:

$$\widehat{\mathbf{F}} = \sum_{i=1}^{21} rac{\mathbf{v}_i \mathbf{u}_i^H \mathbf{X}}{\sigma_i}$$

Naive reconstruction

$$\widehat{\mathbf{F}} = \mathbf{H}^{-1} \mathbf{X}$$

What's wrong?

• Formally, one has:

$$\widehat{\mathbf{F}} = \mathbf{F}_{ ext{true}} + \sum_{i=1}^{21} rac{\mathbf{v}_i \mathbf{u}_i^H \mathbf{N}}{\sigma_i}$$

- But ${f H}$ is ill-conditioned $\kappa({f H}) pprox 1300$ Here $\sigma_{21} pprox 2.5 \cdot 10^{-2}$
- → The noise is amplified by the smallest singular values
- → Ill-posed inverse problems in Hadamard sense

Ordinary Least Squares (OLS)

$oxed{ldea}$ Find \widehat{F} minimizing the sum of the squared errors

$$\widehat{\mathbf{F}} = \mathop{\mathrm{argmin}}_{\mathbf{F}} \ \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2$$

What's wrong?

• Formally, one has:

$$\widehat{\mathbf{F}} = (\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H \mathbf{X}$$

• But using the SVD

$$\widehat{\mathbf{F}} = \sum_{i=1}^{21} rac{\mathbf{v}_i \mathbf{u}_i^H \mathbf{X}}{\sigma_i}$$

- ⇒ Same as the naive approach! (equal-det. problems)
- → Useful for over/under-determined problems

Truncated SVD

ldea Filter the smallest singular values of ${f H}$

In practice Retain the first ${f M}$ singular values $({f M}<{f 21})$ such that

$$\widehat{\mathbf{F}} = \sum_{i=1}^{oldsymbol{M}} rac{\mathbf{v}_i \mathbf{u}_i^H \mathbf{X}}{\sigma_i}$$

How to select M?

One possible solution L-curve principle

$$L_c(M) = \left(\left\| \mathbf{X} - \mathbf{H}(M) \widehat{\mathbf{F}}
ight\|_2, \ \left\| \widehat{\mathbf{F}}
ight\|_2
ight) ext{ with } \mathbf{H}(M) = \sum_{i=1}^M \sigma_i \mathbf{u}_i \mathbf{v}_i^H$$

One possible solution L-curve principle

$$\widehat{M} = \mathop{\mathrm{argmax}}_{M} \; K[L(M)]$$

Application

- Low pass filtering effect ⇒ Smooth solution
- → Not adapted to sparse sources

What to do?

Constrain the space of admissible solutions!

ℓ_2 -regularization Tikhonov regularization

$$\widehat{\mathbf{F}} = \mathop{\mathrm{argmin}}_{\mathbf{F}} \ \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 \ \ \mathsf{subject to} \ \ \|\mathbf{F}\|_2^2 \leq au$$

ℓ_2 -regularization Tikhonov regularization

$$\widehat{\mathbf{F}} = \mathop{\mathrm{argmin}}_{\mathbf{F}} \ \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 + \lambda \|\mathbf{F}\|_2^2$$

How to select λ ?

In practice Many methods are available

- Morozov's discrepancy principle
- Generalized Cross Validation (GCV)
- Reginska's method
- Bayesian Estimator
- L-curve principle
-

ℓ_2 -regularization Tikhonov regularization

$$\widehat{\mathbf{F}} = \mathop{\mathrm{argmin}}_{\mathbf{F}} \ \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 + \lambda \|\mathbf{F}\|_2^2$$

How to select λ ?

In practice Many methods are available

- Morozov's discrepancy principle
- Generalized Cross Validation (GCV)
- Reginska's method
- Bayesian Estimator
- L-curve principle
-

ℓ_2 -regularization Application

$$\widehat{\mathbf{F}} = (\mathbf{H}^H\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^H\mathbf{X}$$

ℓ_2 -regularization Application

$$\widehat{\mathbf{F}} = (\mathbf{H}^H\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^H\mathbf{X}$$

- Low pass filtering effect ⇒ Smooth solution
- → Not adapted to sparse sources

How to explain this result?

Filter factors Basics

$$\widehat{\mathbf{F}} = \sum_{i=1}^{21} f_i rac{\mathbf{v}_i \mathbf{u}_i^H \mathbf{X}}{\sigma_i}$$

where f_i is the filter factor defined such that

TSVD

$$f_i = egin{cases} 1 & ext{for } i \leq M \ 0 & ext{otherwise} \end{cases}$$

 ℓ_2 -regularization

$$f_i = rac{\sigma_i^2}{\sigma_i^2 + \lambda}$$

Filter factors In action

ℓ_q -regularization Generalities

$$\widehat{\mathbf{F}} = \mathop{\mathrm{argmin}}_{\mathbf{F}} \ \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 + \lambda \|\mathbf{F}\|_q^q$$

- ullet The smaller q is, the larger is the weight on small values of ${f F}$
- ullet For large values of $oldsymbol{F}$, the smaller q is, the smaller is the weight on these values
- $ightharpoonup q \geq 2$ Smooth solution
- $ightharpoonup q \leq 1$ Sparse solution
- riangle Non-convex minimization problem when q < 1

ℓ_q -regularization Numerical resolution

The first-order optimality condition for the ℓ_q -regularization leads to

$$\widehat{\mathbf{F}} = \left(\mathbf{H}^H\mathbf{H} + \lambda \mathbf{W}(\widehat{\mathbf{F}})
ight)^{-1}\mathbf{H}^H\mathbf{X} \;\; ext{with} \;\; w_{ii} = rac{q}{2}ig|\widehat{F}_iig|^{q-2}$$

→ Implementation of an iterative process

$$\widehat{\mathbf{F}}^{(k)} = \left(\mathbf{H}^H\mathbf{H} + \lambda^{(k)}\mathbf{W}ig(\widehat{\mathbf{F}}^{(k-1)}ig)
ight)^{-1}\mathbf{H}^H\mathbf{X}$$

ℓ_q -regularization Numerical resolution

The first-order optimality condition for the ℓ_q -regularization leads to

$$\widehat{\mathbf{F}} = \left(\mathbf{H}^H\mathbf{H} + \lambda \mathbf{W}(\widehat{\mathbf{F}})
ight)^{-1}\mathbf{H}^H\mathbf{X} \;\; ext{with} \;\; w_{ii} = rac{q}{2}ig|\widehat{F}_iig|^{q-2}$$

→ Implementation of an iterative process

$$\widehat{\mathbf{F}}^{(k)} = \mathop{\mathrm{argmin}}_{\mathbf{F}} \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 + \lambda^{(k)} \|\mathbf{L}\mathbf{F}\|_2^2 \;\; \mathsf{with} \;\; \mathbf{W}\Big(\widehat{\mathbf{F}}^{(k-1)}\Big) = \mathbf{L}^H \mathbf{L}$$

where $\lambda^{(k)}$ is selected from the following L-curve

$$L_cig(\lambda^{(k)}ig) = ig(\|\mathbf{X} - \mathbf{H}\mathbf{F}(\lambda^{(k)}ig)\|_2, \|\mathbf{L}\mathbf{F}(\lambda^{(k)})\|_2ig)$$

When the iterative process has converged, one has

$$\|\mathbf{L}\widehat{\mathbf{F}}\|_2^2 pprox \|\widehat{\mathbf{F}}\|_q^q$$

ℓ_q -regularization Practical implementation

Matlab

```
function [F, lamb] = lp_reg(H, X, q, tol)
% Initialization
N = size(H, 2)
Hh = H'*\dot{H}; \% for speed
Hx = H'*X;
L = eye(N)
lamb = lcurve(H, L, X);
F = (Hh + lamb*L) \setminus (Hx);
FO = F; % For convergence monitoring
% Iteration
crit = 1; % Convergence criterion
while crit > tol
         W = weight(F, q);
L = sqrt(W) % W = L'*L;
         lamb = lcurve(H, L, X);
         F = (Hh + lamb*W) \setminus Hx;
         % Convergence monitoring
         crit = norm(F - F0, 1)/norm(F0, 1);
         F0 = F;
end
```

Python

```
def lp_reg(H, X, q, tol):
        # Initialization
        N = H.shape[1]
        Hh = H.T.conj() @ H # For speed Hx = H.T.conj() @ X
        L = np.eye(N)
        lamb = lcurve(H, L, X)
        F = spl.solve(Hh + lamb*L, Hx)
        FO = F # For convergence monitoring
        # Iteration
        crit = 1 # Convergence criterion
        while crit > tol:
                W = weight(F, q)
L = np.sqrt(W) # W = L.T.conj()*L;
                 lamb = lcurve(H, L, X)
                 F = spl.solve(Hh + lamb*W, Hx)
                 # Convergence monitoring
                 crit = spl.norm(F - F0, 1)/spl.norm(F0, 1)
                F0 = F
        return F, lamb
```


ℓ_q -regularization Sparse regularization

Filter factor analysis

Summary of regularization strategies

- ✓ Efficient approaches
- ✓ Easy implementation of resolution algorithms

But...

- ~ Require external procedures to determine the regularization parameter
- ~ Provide only point estimate ⇒ No uncertainty quantification of identified solutions

Possible solution?

Summary of regularization strategies

- ✓ Efficient approaches
- ✓ Easy implementation of resolution algorithms

But...

- ~ Require external procedures to determine the regularization parameter
- ~ Provide only point estimate ⇒ No uncertainty quantification of identified solutions

Exploit the Bayesian paradigm!

Outline

- **1** Generalities
- 2 State of the art
- **3** Bayesian Force regularization
- **4** Extensions

For two events A and B

$$p(A|B) \propto p(B|A) \ p(A)$$

- ullet p(A|B) Posterior probability distribution probability of A given a realization of B
- ullet p(B|A) Likelihood function probability of B given a realization of A
- p(A) Prior probability distribution probability of A without any given conditions

The Bayes' rule updates our prior belief in ${\cal A}$ considering new information brought by an event ${\cal B}$

Minimal formulation Basics

When choosing $A={f F}$ and $B={f X}$

$$p(\mathbf{F}|\mathbf{X}) \propto p(\mathbf{X}|\mathbf{F}) \; p(\mathbf{F})$$

How to choose $p(\mathbf{X}|\mathbf{F})$ and $p(\mathbf{F})$?

Minimal formulation Likelihood function

The likelihood function describes the probability of the observed data as a function of the parameters of the chosen statistical model. Given our linear model $\mathbf{X} = \mathbf{HF} + \mathbf{N}$, it reflects the uncertainty related to vibration measurements, i.e. related to measurement noise

Main assumption

The noise is due to multiple independent causes ⇒ Gaussian white noise

$$p(\mathbf{X}|\mathbf{F}, au_n) = \mathcal{N}_c(\mathbf{X}|\mathbf{HF}, au_n^{-1}\,\mathbf{I})$$

Minimal formulation Likelihood function

The likelihood function describes the probability of the observed data as a function of the parameters of the chosen statistical model. Given our linear model $\mathbf{X} = \mathbf{HF} + \mathbf{N}$, it reflects the uncertainty related to vibration measurements, i.e. related to measurement noise

Main assumption

The noise is due to multiple independent causes ⇒ Gaussian white noise

$$p(\mathbf{X}|\mathbf{F}, au_n) = \left(rac{ au_n}{\pi}
ight)^N \exp\left(- au_n\|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2
ight)$$

- au_n Noise precision ($au_n>0$)
- ullet N Number of measurement points

Minimal formulation Prior probability distribution

The prior probability distribution reflects the uncertainty related to ${f F}$ and can be seen as a measure of our prior knowledge on the sources to identify

Main assumption

 ${f F}$ is a real random vector, whose components are i.i.d. random variables following a Generalized Gaussian distribution

$$p(\mathbf{F}| au_f,q) = \prod_{i=1}^M \mathcal{N}_g(F_i| au_f,q)$$

Minimal formulation Prior probability distribution

The prior probability distribution reflects the uncertainty related to ${f F}$ and can be seen as a measure of our prior knowledge on the sources to identify

Main assumption

 ${f F}$ is a real random vector, whose components are i.i.d. random variables following a Generalized Gaussian distribution

$$p(\mathbf{F}| au_f,q) = \left(rac{q}{2\Gamma(1/q)}
ight)^M au_f^{rac{M}{q}} \exp\left(- au_f \|\mathbf{F}\|_q^q
ight)$$

- ullet q Shape parameter of the distribution (q>0)
- au_f Scale parameter of the distribution ($au_f>0$)
- $\Gamma(x)$ Gamma function
- ullet M Number of reconstruction points

Minimal formulation Overview

$$p(\mathbf{F}|\mathbf{X}, au_n, au_f,q) \propto p(\mathbf{X}|\mathbf{F}, au_n)\,p(\mathbf{F}| au_f,q)$$

Possible exploitations

- MAP estimation Optimization
- Uncertainty quantification Sampling

The MAP estimation consists in finding the most probable excitation field ${f F}$ given the available data ${f X}$ and for known precision parameters (au_n, au_f) and shape parameter q

$$\widehat{\mathbf{F}} = rgmax_{\mathbf{F}} p(\mathbf{F}|\mathbf{X}, au_n, au_f,q)$$

The MAP estimation consists in finding the most probable excitation field ${f F}$ given the available data ${f X}$ and for known precision parameters (au_n, au_f) and shape parameter q

$$\widehat{\mathbf{F}} = rgmax_{\mathbf{F}} p(\mathbf{X}|\mathbf{F}, au_n) \, p(\mathbf{F}| au_f,q)$$

The MAP estimation consists in finding the most probable excitation field ${f F}$ given the available data ${f X}$ and for known precision parameters (au_n, au_f) and shape parameter q

$$\widehat{\mathbf{F}} = \operatorname*{argmin}_{\mathbf{F}} \ -\logig[p(\mathbf{X}|\mathbf{F}, au_n)ig] - \logig[p(\mathbf{F}| au_f,q)ig]$$

The MAP estimation consists in finding the most probable excitation field ${f F}$ given the available data ${f X}$ and for known precision parameters (au_n, au_f) and shape parameter q

$$\widehat{\mathbf{F}} = \mathop{\mathrm{argmin}}_{\mathbf{F}} \ \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 + \lambda \|\mathbf{F}\|_q^q \ \ \mathsf{with} \ \ \lambda = rac{ au_f}{ au_n}$$

MAP estimation $\equiv \ell_q$ -regularization!

Minimal formulation Uncertainty quantification

Idea for posterior sampling Transform the Generalized Gaussian into a multivariate Gaussian distribution

$$p(\mathbf{F}| au_f,q) \propto \expig(- au_f \|\mathbf{L}\mathbf{F}\|_2^2ig)$$

where $\mathbf{L}^H\mathbf{L}=\mathbf{W}$ is a weigthing depending on \mathbf{F} and q

In doing so, one has

$$p(\mathbf{F}|\mathbf{X}) \propto \expig(- au_n \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 - au_f \|\mathbf{L}\mathbf{F}\|_2^2ig) \ \propto \mathcal{N}_c(\mathbf{F}|oldsymbol{\mu_F}, oldsymbol{\Sigma_F})$$

where
$$m{\mu_F}= au_nm{\Sigma_F}\mathbf{H}^H\mathbf{X}$$
 and $m{\Sigma_F}=ig(au_n\mathbf{H}^H\mathbf{H}+ au_f\mathbf{W}ig)^{-1}$

Drawing samples

$$\mathbf{F}^{(k)} = m{\mu_F} + \mathbf{S}\,\mathbf{z}^{(k)}$$
 with $\mathbf{SS}^H = m{\Sigma_F}$ and $\mathbf{z}^{(k)} \sim \mathcal{N}_c(\mathbf{z}^{(k)}|\mathbf{0},\mathbf{I})$

Properties of Gaussian distributions

Minimal formulation Uncertainty quantification

Estimation of $oldsymbol{ au}_n$ and $oldsymbol{ au}_f$

 $\mu_{\mathbf{F}}$ is the solution of the ℓ_q -regularization \Rightarrow After convergence of the iterative process, one obtains $\mu_{\mathbf{F}}$, \mathbf{W} and λ

From these quantities, the most probable values of au_n and au_f given the data are computed such that

$$(\widehat{ au}_n,\widehat{ au}_f) = rgmax_{(au_n, au_f)} p(au_n, au_f|\mathbf{X})$$

Minimal formulation Uncertainty quantification

Estimation of $oldsymbol{ au}_n$ and $oldsymbol{ au}_f$

 $\mu_{\mathbf{F}}$ is the solution of the ℓ_q -regularization \Rightarrow After convergence of the iterative process, one obtains $\mu_{\mathbf{F}}$, \mathbf{W} and λ

From these quantities, the most probable values of au_n and au_f given the data are computed such that

$$\widehat{ au}_f = rac{N}{\mathbf{X}^H ig(\mathbf{H}\mathbf{W}^{-1}\mathbf{H}^H + \lambda \mathbf{I}ig)^{-1}\mathbf{X}} \;\; \mathsf{and} \;\; \widehat{ au}_n = rac{\widehat{ au}_f}{\lambda}$$

Minimal formulation Application

Minimal formulation Summary

- ✓ MAP is equivalent to ℓ_q -regularization
- ✓ Easy implementation of uncertainty quantification

Provided that...

- \sim External procedures is implemented to estimate the precision parameters au_n and au_f
- \sim The shape parameter q is known a priori

Need for a more comprehensive formulation

Complete formulation Basics

Choosing a priori relevant values for τ_n , τ_f and q is far from an easy task for non-experienced users \Rightarrow Infer them!

Main assumption au_n , au_f and q are independent random variables

$$p(\mathbf{F}, au_n, au_f,q|\mathbf{X}) \propto p(\mathbf{X}|\mathbf{F}, au_n)\,p(\mathbf{F}| au_f,q)\,p(au_n)\,p(au_f)\,p(q)$$

- ullet p(au) Prior distrubution on the precision parameter au
- ullet p(q) Prior distribution on the shape parameter q

How to choose $p(\tau)$ and p(q)?

Complete formulation $\,$ Prior distribution p(au) - Gamma distribution

$$p(au|lpha,eta) = \mathcal{G}(au|lpha,eta) = rac{eta^lpha}{\Gamma(lpha)} au^{lpha-1} ext{exp}(-eta au) \;\; ext{with}\;\;lpha>0,\;eta>0$$

- ullet lpha Scale parameter
- β Shape parameter

This choice is made for mathematical convenience (conjugate prior), but it does not reflect any real prior information on the precision parameters, except their positiveness

ightharpoonup Prior distribution on au should be as minimally informative as possible (flat prior). For this reason, lpha=1 and $eta=10^{-18}$

Complete formulation $\,$ Prior distribution p(q) - $\,$ Truncated $\,$ Gamma $\,$ distribution $\,$

$$p(q|lpha_q,eta_q,l_b,u_b) = rac{\Gamma(lpha_q)}{\gamma(lpha_q,eta_qu_b)-\gamma(lpha_q,eta_ql_b)} \mathcal{G}(q|lpha_q,eta_q) \mathbb{I}_{[l_b,u_b]}(q)$$

ullet $\mathbb{I}_{[l_b,u_b]}(q)$ - Truncation function, defined such that

$$\mathbb{I}_{[l_b,u_b]}(q) = egin{cases} 1 & ext{if } q \in [l_b,u_b] \ 0 & ext{otherwise} \end{cases}$$

ullet $\gamma(s,x)$ - Lower incomplete Gamma function

Requirements

- ullet Expert knowledge $ullet l_b = 0.05$ and $u_b = 2.05$
- ullet Weakly informative distribution ullet $lpha_q=1$ and $eta_q=10^{-18}$

Complete formulation Overview

$$p(\mathbf{F}, au_n, au_f, q | \mathbf{X}) \propto
onumber \ p(\mathbf{X} | \mathbf{F}, au_n) \, p(\mathbf{F} | au_f, q) \, p(au_n | lpha_n, eta_n) \, p(au_f | lpha_f, eta_f) \, p(q | lpha_q, eta_q)$$

Possible exploitations

- MAP estimation Optimization
- Uncertainty quantification Sampling

Complete formulation MAP estimation

The MAP estimate of the complete formulation is given by

$$egin{aligned} \left(\widehat{\mathbf{F}},\widehat{ au}_n,\widehat{ au}_n,\widehat{q}
ight) = rgmax_{\mathbf{F}, au_n, au_f,q} p(\mathbf{F}, au_n, au_f,q|\mathbf{X}) \end{aligned}$$

The solution of the previous problem can be found by applying the first-order optimality condition to the dual minimization problem. An alternative, but equivalent, way of solving this problem consists in maximizing the full conditional probability distributions associated to each parameter

$$egin{aligned} \widehat{q} &= rgmax \ p(q|\mathbf{X}, \mathbf{F}, au_n, au_f) \ \widehat{ au}_f &= rgmax \ p(au_f|\mathbf{X}, \mathbf{F}, au_n, q) \ \widehat{ au}_n &= rgmax \ p(au_n|\mathbf{X}, \mathbf{F}, au_f, q) \ \widehat{\mathbf{F}} &= rgmax \ p(\mathbf{F}|\mathbf{X}, au_n, au_f, q) \end{aligned}$$

Complete formulation MAP estimation

The MAP estimate of the complete formulation is given by

$$egin{aligned} \left(\widehat{\mathbf{F}},\widehat{ au}_n,\widehat{ au}_n,\widehat{q}
ight) = rgmax_{\mathbf{F}, au_n, au_f,q} p(\mathbf{F}, au_n, au_f,q|\mathbf{X}) \end{aligned}$$

The solution of the previous problem can be found by applying the first-order optimality condition to the dual minimization problem. An alternative, but equivalent, way of solving this problem consists in maximizing the full conditional probability distributions associated to each parameter

$$egin{aligned} \hat{q} &= rgmin_q f(q|\widehat{\mathbf{F}},\widehat{ au}_f) \ \widehat{ au}_f &= rac{M + \hat{q}(lpha_f - 1)}{\hat{q}(eta_f + \|\widehat{\mathbf{F}}\|_{\hat{q}}^{\hat{q}})} \ \widehat{ au}_n &= rac{N + lpha_n - 1}{eta_n + \|\mathbf{X} - \mathbf{H}\widehat{\mathbf{F}}\|_2^2} \ \widehat{\mathbf{F}} &= rgmin_{\mathbf{F}} \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_2^2 + \lambda \|\mathbf{F}\|_{\hat{q}}^{\hat{q}} \end{aligned}$$

where
$$f(q|\mathbf{F}, au_f) = M\log\Gamma(1/q) - rac{M}{q}\log\widehat{ au}_f - [M+lpha_q-1]\log q + eta_q\,q + \widehat{ au}_f\|\widehat{\mathbf{F}}\|_q^q$$
 and $\lambda = \widehat{ au}_f/\widehat{ au}_n$

Complete formulation MAP estimation - Iterative resolution

Initialization $~m\ell_2$ -regularization $(\widehat{\mathbf{F}}^{(0)}, m\lambda^{(0)}, \widehat{\mathbf{q}}^{(0)} = \mathbf{2})$ + Estimation of $m au_f^{(0)}$ from $m\lambda^{(0)}$

Iteration While convergence is not reached do

$$egin{aligned} \widehat{q}^{(k)} &= rgmin_{q} \ f\left(q | \widehat{\mathbf{F}}^{(k-1)}, \widehat{ au}_{f}^{(k-1)}
ight) \ \widehat{ au}_{f}^{(k)} &= rac{M + \widehat{q}^{(k)}(lpha_{f} - 1)}{\widehat{q}^{(k)}\left(eta_{f} + \|\widehat{\mathbf{F}}^{(k-1)}\|_{\widehat{q}^{(k)}}^{\widehat{q}^{(k)}}
ight)} \ \widehat{ au}_{n}^{(k)} &= rac{N + lpha_{n} - 1}{eta_{n} + \|\mathbf{X} - \mathbf{H}\widehat{\mathbf{F}}^{(k-1)}\|_{2}^{2}} \ \widehat{\mathbf{F}}^{(k)} &= rgmin_{\mathbf{F}} \ \|\mathbf{X} - \mathbf{H}\mathbf{F}\|_{2}^{2} + \lambda^{(k)} \|\mathbf{F}\|_{\widehat{q}^{(k)}}^{\widehat{q}^{(k)}} \end{aligned}$$

Convergence monitoring $~m{\delta}=\|\widehat{\mathbf{F}}^{(\mathbf{k})}-\widehat{\mathbf{F}}^{(\mathbf{k}-1)}\|_{\mathbf{1}}/\|\widehat{\mathbf{F}}^{(\mathbf{k}-1)}\|_{\mathbf{1}}$

Complete formulation MAP estimation - Application

Complete formulation Uncertainty quantification - MCMC

Markov Chain Monte Carlo (MCMC) is a class of algorithms that produce sequences of random samples converging to a target distribution for which direct sampling is difficult

Here, because the full conditional probability distributions are available, a Gibbs sampler (particular case of MH sampler) can be implemented

$$egin{aligned} p(q|\mathbf{X},\mathbf{F}, au_n, au_f) &\propto rac{ au_f^{M/q}}{\Gamma(1/q)} q^{M+lpha_q-1} \mathrm{exp}ig(-eta_q\,q- au_f\|\mathbf{F}\|_q^qig) \mathbb{I}_{[l_b,u_b]} \ p(au_f|\mathbf{X},\mathbf{F}, au_n,q) &\propto \mathcal{G}(au_f|lpha_f+M/q,eta_f+\|\mathbf{F}\|_q^q) \ p(au_n|\mathbf{X},\mathbf{F}, au_f,q) &\propto \mathcal{G}(au_n|lpha_n+N,eta_n+\|\mathbf{X}-\mathbf{HF}\|_2^2) \ p(\mathbf{F}|\mathbf{X}, au_n, au_f,q) &\propto \mathrm{exp}ig(- au_n\|\mathbf{X}-\mathbf{HF}\|_2^2- au_f\|\mathbf{F}\|_q^qig) \end{aligned}$$

Build a markov chain for each parameter to compute statistics

Complete formulation Uncertainty quantification - Gibbs sampling

General scheme

- **1**. Set k=0 and initialize $q^{(0)}$, $au_n^{(0)}$, $au_f^{(0)}$ and $\mathbf{F}^{(0)}$
- 2. Draw N_s samples from full conditional distributions for $k=1:N_s$
 - ullet Draw $q^{(k)} \sim p\Big(q|\mathbf{X},\mathbf{F}^{(k-1)}, au_n^{(k-1)}, au_f^{(k-1)}\Big)$
 - ullet Draw $au_f^{(k)} \sim p\Big(au_f|\mathbf{X},\mathbf{F}^{(k-1)}, au_n^{(k-1)},q^{(k)}\Big)$
 - ullet Draw $au_n^{(k)} \sim p\Big(au_n|\mathbf{X},\mathbf{F}^{(k-1)}, au_f^{(k)},q^{(k)}\Big)$
 - ullet Draw $\mathbf{F}^{(k)} \sim pig(\mathbf{F}|\mathbf{X}, au_n^{(k)}, au_f^{(k)},q^{(k)}ig)$

end for

3. Monitor the convergence (stationarity) of the Markov chains

Initialization

- ullet ℓ_2 -regularization $ig(\mathbf{F}^{(0)},\lambda^{(0)},q^{(0)}ig)$ + Estimation of $au_n^{(0)}$ and $au_f^{(0)}$ from $\lambda^{(0)}$
- ullet MAP estimate $ig(\mathbf{F}^{(0)}, au_f^{(0)}, au_n^{(0)},q^{(0)}ig)$

Drawing samples

- 1. $p(q|\mathbf{X},\mathbf{F}^{(k-1)}, au_n^{(k-1)}, au_f^{(k-1)})$ Non-standard probability distribution \Rightarrow Instance of MH sampler (or HMC, ...)
- 2. $p(au_i|\mathbf{X},\mathbf{F}^{(k-1)}, au_j^{(k-1)},q^{(k)})$ Gamma distribution \Rightarrow RNG implemented in standard programming languages
- 3. $p(\mathbf{F}|\mathbf{X}, au_n^{(k)}, au_f^{(k)}, q^{(k)})$ Multivariate Gaussian-like distribution \Rightarrow Procedure defined for the min. formulation

Convergence diagnostic

- Burn-in period Number of samples to discard at the beginning of the chains (period before convergence)
- Total length Number of samples required to compute statistics
- Available diagnotics Raftery-Lewis, Geweke (one long chain), Gelman-Rubin (multiple chains) and more

	$oldsymbol{F_0}$	${m au}_{m n}$	${m au_f}$	$oldsymbol{q}$
Median	1.0481	30.50	16.12	0.240
Mean	1.0480	31.02	16.27	0.244
MAP	1.0472	29.21	16.09	0.230
95% CI	[1.0079, 1.0876]	[19.08, 45.77]	[12.66, 20.76]	[0.141, 0.368]

Complete formulation Summary

- ✓ Automatic identification of all the parameters
- ✓ Robust identification of the excitation field

Can we do better or at least different?

Yes, of course!

Outline

- **1** Generalities
- 2 State of the art
- **3** Bayesian Force regularization
- Extensions

Relevant Vector Regression Basics

RVR is a particular Bayesian approach for which the prior probability distribution over ${f F}$ is such that

$$p(\mathbf{F}) = \prod_{i=1}^M \mathcal{N}ig(F_i|0, au_{fi}^{-1}ig) \;\; ext{with} \;\; \mathcal{N}ig(F_i|0, au_{fi}^{-1}ig) = \sqrt{rac{ au_{fi}}{2\pi}} \, \expig(-rac{ au_{fi}}{2}|F_i|^2ig)$$

The corresponding Bayesian formulation is expressed as

$$p(\mathbf{F}, au_n, au_{f_i}|\mathbf{X}) \propto p(\mathbf{X}|\mathbf{F}, au_n) \prod_{i=1}^M p(F_i| au_{f_i}) \, p(au_{f_i}) \, ext{ with } \, \, p(au_{f_i}) = \mathcal{G}(au_{f_i}|lpha_{f_i},eta_{f_i})$$

Main features

- Implementation of MAP estimation and UQ via Gibbs sampling require minor changes of the algorithms described previously
- ullet More parameters needs to be infered (M+3 for CBF and 2M+1 for RVR)
- Computationally more efficient than CBF

Relevant Vector Regression Application

Relevant Vector Regression Why does it work so well?

Relevant Vector Regression Why does it work so well?

The parameters au_{fi} and q play a similar role

ightharpoonup The larger the value of au_{fi} , the closer the value of F_i is to 0

Relevant Vector Regression Why does it work so well?

Piecewise constant excitation Objective

Piecewise constant excitation Naive application

None of the strategies described previously is able to properly reconstruct the excitation field!

What to do?

Promote piecewise constant solution!

Piecewise constant excitation Intuition

The first derivative of the excitation field is sparse

ightharpoonup Promote the sparsity of $\frac{\partial \mathbf{F}(x)}{\partial x}$

Piecewise constant excitation Implementation

Using the discretized first-order derivative operator ${f D}$

$$\mathbf{D} = rac{1}{\Delta x} egin{pmatrix} 1 & -1 & & & \ & 1 & -1 & & \ & & \ddots & \ddots & \ & & & 1 & -1 \end{pmatrix}_{(M-1) imes M}$$

One has the following prior probability distributions

Complete Bayesian formulation

$$p(\mathbf{F}| au_f,q) \propto \expig(- au_f \|\mathbf{D}\mathbf{F}\|_q^qig)$$

Relevant vector regression

$$p(F_i| au_{fj}) \propto \exp\Bigl(-rac{ au_{fj}}{2}|D_{ji}F_i|^2\Bigr)$$

Piecewise constant excitation Application

Piecewise constant excitation Application

Conclusions

- The Bayesian framework provides an efficient and convenient way to combine probabilistic and mechanical data
- It allows exploiting one's prior knowledge of the sources to identify
- It includes an internal mechanism of regularization
- No external procedures are required to infer or optimize all the parameters of the model

Other applications in force reconstruction

- Group regularization e.g. Identification of external forces and BC on plates
- Mixed-norm regularization e.g. Identification of space-frequency/time features of excitation sources

Application in other fields

- Image/signal processing (e.g. denoising)
- Acoustics (e.g. fault diagnosis, source reconstruction)
- Material science, Structural mechanics (e.g. parameter estimation, OMA, cracks detection)
- Computer science (e.g. neural networks, bayesian programming)
- Thermal science, Econometrics, Epidemiology, ...

Only the sky is the limit!

Or, maybe, the quantity/quality of available data, the complexity of the problem, the computing power/resources, ...

Force reconstruction A Bayesian perspective

Well-posed problem in the sense of Hadamard (1902)

- A solution exist
- The solution is unique
- The solution changes continuously with changes in the data

Well-posed problem in the sense of Hadamard (1902)

- ✓A solution exist
- √The solution is unique
- The solution changes continuously with changes in the data
 - The problem considered in this lecture is ill-posed

ℓ_q -regularization Filter factor analysis at convergence

$$\widehat{\mathbf{F}} = \sum_{i=1}^{21} f_i rac{\mathbf{v}_i \mathbf{u}_i^H \mathbf{X}}{\sigma_i} \; \; ext{with} \; \; f_i = rac{\gamma_i^2}{\gamma_i^2 + \lambda}$$

where γ_i are the singular values of (\mathbf{H},\mathbf{L}) and σ_i are the singular values of \mathbf{H}

Generalized SVD

$$\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{Y}^H$$
 and $\mathbf{L} = \mathbf{V} \mathbf{\Omega} \mathbf{Y}^H$

Properties of GSVD

$$oldsymbol{\Sigma}^H oldsymbol{\Sigma} + oldsymbol{\Omega}^H oldsymbol{\Omega} = oldsymbol{I} \ ext{and} \ \ \gamma_i = rac{\sigma_i}{\omega_i}$$

ℓ_q -regularization Filter factor analysis at convergence

Properties of Gaussian distributions Marginal and Conditional distributions

Let's consider two random vectors, ${\boldsymbol x}$ and ${\boldsymbol y}$, such that

$$p(\mathbf{x}) = \mathcal{N}_c(\mathbf{x}|oldsymbol{\mu}_\mathbf{x}, oldsymbol{\Sigma}_\mathbf{x}) \ \ ext{and} \ \ p(\mathbf{y}|\mathbf{x}) = \mathcal{N}_c(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, oldsymbol{\Sigma}_\mathbf{y})$$

From these distributions, the marginal and conditional distributions, $p(\mathbf{y})$ and $p(\mathbf{x}|\mathbf{y})$ are given by

$$p(\mathbf{y}) = \mathcal{N}_c ig(\mathbf{y} | \mathbf{A} oldsymbol{\mu}_\mathbf{x} + \mathbf{b}, \mathbf{A} oldsymbol{\Sigma}_\mathbf{x} \mathbf{A}^H + oldsymbol{\Sigma}_\mathbf{y} ig) \ p(\mathbf{x} | \mathbf{y}) = \mathcal{N}_c ig(\mathbf{x} | oldsymbol{\Sigma} \{ \mathbf{A}^H oldsymbol{\Sigma}_\mathbf{y}^{-1} (\mathbf{y} - \mathbf{b}) + oldsymbol{\Sigma}_\mathbf{x}^{-1} oldsymbol{\mu}_\mathbf{x} \}, oldsymbol{\Sigma} ig)$$

with
$$\mathbf{\Sigma} = \left(\mathbf{A}^H \mathbf{\Sigma}_{\mathbf{y}}^{-1} \mathbf{A} + \mathbf{\Sigma}_{\mathbf{x}}^{-1} \right)^{-1}$$

Drawing samples from multivariate Gaussian distribution

Let's consider a random Gaussian vector \mathbf{x} such that

$$p(\mathbf{x}) = \mathcal{N}_c(\mathbf{x}|oldsymbol{\mu}_\mathbf{x}, oldsymbol{\Sigma}_\mathbf{x})$$

By assuming that $\mathbf{\Sigma}_{\mathbf{x}} = \mathbf{S}\mathbf{S}^H$, one has

$$\begin{aligned} \exp \left[-(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{H} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}) \right] &= \exp \left[-\{ \mathbf{S}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}) \}^{H} \{ \mathbf{S}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}) \} \right] \\ &= \exp \left[-\mathbf{z}^{H} \mathbf{z} \right] \end{aligned}$$

where $\mathbf{z} = \mathbf{S}^{-1}(\mathbf{x} - oldsymbol{\mu}_{\mathbf{x}})$ and $\mathbf{z} \sim \mathcal{N}_c(\mathbf{z}|\mathbf{0}, \mathbf{I})$

Consequently, to draw samples from a multivariate Gaussian distribution with mean μ_x and covariance matrix Σ_x , it is enough to compute

$$\mathbf{x}^{(k)} = m{\mu}_{\mathbf{x}} + \mathbf{S}\,\mathbf{z}^{(k)}$$
 with $\mathbf{S}\mathbf{S}^H = m{\Sigma}_{\mathbf{x}}$ and $\mathbf{z}^{(k)} \sim \mathcal{N}_c(\mathbf{z}^{(k)}|\mathbf{0},\mathbf{I})$

Calculation of au_n and au_f

By using the Bayes' rule, the conditional distribution $p(au_n, au_f|\mathbf{X})$ is expressed as

$$p(au_n, au_f|\mathbf{X}) \propto p(\mathbf{X}| au_n, au_f)\,p(au_n)\,p(au_f)$$

Assuming that $p(au_n) = p(au_f) \propto 1$, one has

$$p(au_n, au_f|\mathbf{X}) \propto p(\mathbf{X}| au_n, au_f) = \int_{\mathbf{F}} p(\mathbf{X}|\mathbf{F}, au_n)\,p(\mathbf{F}|\mathbf{W}, au_f)d\mathbf{F}$$

Using the fact that all the conditional distributions are Gaussian, one establishes that

$$p(au_n, au_f|\mathbf{X}) \propto \mathcal{N}_c(\mathbf{X}|\mathbf{0},\mathbf{H}\mathbf{W}^{-1}\mathbf{H}^H/ au_f + \mathbf{I}/ au_n)$$

The MAP estimate is found by solving

$$(\widehat{ au}_n,\widehat{ au}_f) = \mathop{
m argmin}_{(au_n, au_f)} - \log[p(au_n, au_f|{f X})]$$

By noting $\lambda = au_n/ au_f$, it comes

$$(\widehat{ au}_n,\widehat{ au}_f) = rgmin_{(au_n, au_f)} au_f \, \mathbf{X}^H ig(\mathbf{H}\mathbf{W}^{-1}\mathbf{H}^H + \lambda \mathbf{I}ig)^{-1}\mathbf{X} - N\log au_f + \log|\mathbf{H}\mathbf{W}^{-1}\mathbf{H}^H + \lambda \mathbf{I}|$$

By applying the first-order optimality condition, one finds

$$\widehat{ au}_f = rac{N}{\mathbf{X}^H ig(\mathbf{H}\mathbf{W}^{-1}\mathbf{H}^H + \lambda \mathbf{I}ig)^{-1}\mathbf{X}}$$