Parametrelerin Değişimi Yöntemi

Bu bölümde

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x)$$
 (1)

denkleminin bir özel çözümü sabitlerin değişimi veya parametrelerin değişimi yöntemi yardımıyla hesaplanmaktadır; burada $a_0(x)$, $a_1(x)$, $a_2(x)$ katsayıları ve f(x) bir (a,b) da sürekli ve her $x \in (a,b)$ için $a_0(x) \neq 0$ dır. Bu yönteme göre önce karşılık gelen homogen

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0$$
 (2)

denkleminin lineer bağımsız $y_1(x)$ ve $y_2(x)$ çözümleri bulunur. Bu çözümlerin (a,b) de tanımlı oldukları açıktır. Buradan (2) nin genel çözümü

$$y_h = c_1 y_1(x) + c_2 y_2(x)$$

dir.

Şimdi (1) in (a,b) de tanımlı olan bir özel çözümü

$$y_p = c_1(x) y_1(x) + c_2(x) y_2(x)$$
 (3)

dir; burada

$$\begin{cases}
c'_1 y_1 + c'_2 y_2 = 0 \\
c'_1 y_1 + c'_2 y_2 = \frac{f(x)}{a_0(x)}
\end{cases}$$
(4)

dir. (4) den önce c'_1 ve c'_2 bulunur. Sonra integralleri alınarak c_1 (x) ve c_2 (x) elde edilir. Bunların (3) de yerlerine yazılmasıyla verilen denklemin bir özel çözümü elde edilir. Not edelim ki burada ortaya çıkan integrasyon sabitleri yerine sıfır alınmaktadır.

Örnek 1.

$$x^2y'' - 2xy' + 2y = x^{9/2}$$

denkleminin bir özel çözümünü bulunuz; burada karşılık gelen homogen denkleminin bağımsız çözümleri $y_1=x$ ve $y_2=x^2$ dir.

Çözüm

$$y_h = c_1 x + c_2 x^2$$

 $y_p = c_1(x) x + c_2(x) x^2$

olup,

$$c'_1 x + c'_2 x^2 = 0$$

$$c'_1(1) + c'_2(2x) = x^{5/2}.$$

Bu sistemden $c_1' = x^{-5/2}$ ve $c_2' = x^{3/2}$ bulunur ve integral alınırsa

$$c_1 = \frac{-2}{7}x^{7/2}$$
 ve $c_2 = \frac{2}{5}x^{5/2}$

elde edilir. Böylece verilen denklemin özel çözümü, c_1 ve c_2 nin yerlerine yazılmasıyla

$$y_p = \frac{4}{35}x^{9/2}$$

olarak bulunur.

Örnek 2.

$$x^{2} (1 - \ln x) y'' + xy' - y = \frac{(1 - \ln x)^{2}}{x}$$

denkleminin bir özel çözümünü bulunuz; burada $y_1=x$ ve $y_2=\ln x$ karşılık gelen homogen denklemin lineer bağımsız çözümleridir.

Çözüm

$$y_p = c_1(x) x + c_2(x) \ln x$$

olup, parametrelerin değişimi yönteminden

$$\begin{aligned} c_1' x + c_2' \ln x &=& 0 \\ c_1' + c_2' \frac{1}{x} &=& \frac{1 - \ln x}{x^3} \end{aligned}$$

sistemi elde edilir, buradan $c_1'=\frac{-\ln x}{x^3}$ ve $c_2'=\frac{1}{x^2}$ olup, integrallerinin alınmasıyla $c_1=\frac{\ln x}{2x^2}+\frac{1}{4x^2}$ ve $c_2=\frac{-1}{x}$ bulunur. Bu değerlerin yerlerine yazılmasıyla bir özel çözüm

$$y_p = \frac{1 - 2\ln x}{4x}$$

şeklinde elde edilir.

Euler Denklemi

 $\bf A)$ İkinci basamaktan bir Euler denklemi, $a,\ b$ ve c sabitler olmak üzere

$$ax^2y'' + bxy' + cy = 0 (1)$$

şeklinde verilir. $y=x^r$ olsun. $y'=rx^{r-1},\ y''=r\left(r-1\right)x^{r-2}$ olmak üzere bu fonksiyonlar (1) de yerlerine yazılırsa

$$p(r) = ar(r-1) + br + c$$

indisel polinomu ve

$$p(r) = 0$$

indisel denklemi elde edilir. Bu indisel denklemin köklerinin yapısına göre çözüm aşağıdaki gibi yazılır:

- (i) r_1 ve r_2 farklı ve reel sayılar ise, $y(x) = c_1 x^{r_1} + c_2 x^{r_2}$,
- (ii) $r_1 = r_2 = r$ ise, $y(x) = (c_1 + c_2 \ln x) x^r$,
- (iii) $r_{1,2} = \alpha \pm i\beta \ (\beta > 0)$ ise, $y(x) = x^{\alpha} \left[c_1 \cos(\beta \ln x) + c_2 \sin(\beta \ln x) \right]$.

Örnek 1. Aşağıdaki denklemleri çözünüz.

- a) $x^2y'' 2xy' 4y = 0$,
- b) $x^2y'' 3xy' + 4y = 0$,
- c) $x^2y'' xy' + 3y = 0$.

Cözüm

a) Verilen denkleme karşılık gelen indisel denklem $p(r)=r^2-3r-4=0$ olup, kökleri $r_1=4$ ve $r_2=-1$ dir. O halde çözüm

$$y(x) = c_1 x^4 + c_2 x^{-1}$$

şeklinde yazılır.

b) Bu denkleme karşılık gelen indisel denklem $p\left(r\right)=r^2-4r+4=0$ olup, kökleri $r_1=r_2=2$ dir. Böylece çözüm

$$y(x) = \left(c_1 + c_2 \ln x\right) x^2$$

olur.

c)
$$p\left(r\right)=r^{2}-2r+3=0$$
olup, $r_{1,2}=1\pm i\sqrt{2}$ olur ve çözüm

$$y(x) = x \left[c_1 \cos \left(\sqrt{2} \ln x \right) + c_2 \sin \left(\sqrt{2} \ln x \right) \right].$$

B) n-yinci basamaktan bir Euler diferensiyel denklemi

$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_2 x^2 y'' + a_1 x y' + a_0 y = f(x)$$
 (2)

şeklindedir, burada a_i , i=1,2,...,n reel sayılardır. (2) denklemine $x=e^t$ dönüşümü uygulanırsa $x\frac{dy}{dx}=\frac{dy}{dt}$ veya türev operatörleri cinsinden $(xD)\to D_1$, $x^2\frac{d^2y}{dx^2}=\frac{d^2y}{dt^2}$ veya $(x^2D^2)\to D_1$ (D_1-1) ve böyle devam edilerek $(x^nD^n)\to D_1$ (D_1-1) (D_1-2) ... $(D_1-(n-1))$ yazılarak, denklem değişken katsayılı halden

sabit katsayılı hale indirgenir; burada D:xe göre türev operatörü ve $D_1:t$ ye göre türev operatörüdür.

Örnek 2. $x^2y'' - 3xy' + 4y = x + x^2 \ln x$ denklemini çözünüz.

Çözüm. Denkleme $x = e^t$ dönüşümü uygulanırsa, t bağımsız değişken olmak

$$(D_1^2 - 4D_1 + 4) y = e^t + te^{2t}$$

şeklinde ikinci basamaktan sabit katsayılı,lineer, homogen olmayan bir diferensiyel denklem elde edilir. Bu denklemin çözümü

$$y(t) = (c_1 + c_2 t) e^{2t} + e^t + \frac{t^3}{6} e^{2t}$$

olup verilen Euler denkleminin çözümü

$$y(x) = (c_1 + c_2 \ln x) x^2 + x + \frac{\ln^3 x}{6} x^2$$

olur.

C) n-yinci basamaktan bir Euler diferensiyel denklemi

$$a_n (ax + b)^n y^{(n)} + a_{n-1} (ax + b)^{n-1} y^{(n-1)} + \dots + a_2 (ax + b)^2 y'' + a_1 (ax + b) y' + a_0 y = f(x)$$

şeklinde verilebilir. Bu durumda $ax + b = e^t$ dönüşümü uygulanarak,

$$(ax+b) D \rightarrow aD_1$$

$$(ax+b)^2 D^2 \rightarrow a^2 D_1 (D_1 - 1)$$

$$\vdots$$

$$(ax+b)^n D^n \rightarrow a^n D_1 (D_1 - 1) \dots (D_1 - (n-1))$$

yazılır ve denklem sabit katsayılı hale getirilir. Örnek 3. $(x+2)^2y''-y=4$ denklemini çözünüz.

Çözüm. Denklem $((x+2)^2 D^2 - 1)y = 4$ şeklinde yazılabilir. Bu denkleme $x+2=e^t$ dönüşümü uygulanırsa

$$(D_1^2 - D_1 - 1) y = 4$$

sabit katsayılı denklemi elde edilir, bu denklemin çözümü

$$y(t) = c_1 e^{\left(\frac{1+\sqrt{5}}{2}\right)t} + c_2 e^{\left(\frac{1-\sqrt{5}}{2}\right)t} - 4$$

olup, verilen denklemin çözümü

$$y(x) = c_1(x+2)^{\left(\frac{1+\sqrt{5}}{2}\right)} + c_2(x+2)^{\left(\frac{1-\sqrt{5}}{2}\right)} - 4$$

olur.