浙江大学控制科学与工程学学院 College of Control Science & Engineering Zhejiang University

第五章 PLC

- 一、系统的组成与结构
- 二、硬件配置与扩展

一、系统的组成与结构

1、S7 系列PLC简介

S7-400系列: 大型PLC系统, 适用于中高性能、复杂任 务要求

S7-300系列:中型PLC系统,满足大/中/小规模的性能要求;功能强大、性价比高,应用十分灵活广泛

S7-200/CN: 小型、 紧凑模块化控制器 编程风格与主品有 所不同

S-1500 系列: 新推出的模块化PLC系统, S7-300/400的"升级版" 尤其是通信功能Profibus→ProfiNet

\$7-1200:新小型、紧凑型模块化控制器,编程风格与300/400相同

控制柜

PLC系统

2、S7-1500 PLC硬件组成

常用部件

安装导轨

电源模块PM、PS

中央处理单元CPU

通讯接口扩展模块CP、CM

分布式IO接口模块: ET200

信号模块SM: AI/AQ/DI/DQ

工艺模块TM: 高速计数等某块

存储卡

S7-1500使用存储卡作为 程序、DB数据块存储器

导轨

(1) CPU模块

类型	CPU	PROFIBUS- DP接口	PROFINET IO RT/IRT接 口	PROFINET IO RT接口	基本 PROFINET 功能	
又/丰平	CPU 1511C-1 PN	-	S- IO RT/IRT接 PROFINE PROFINE	-		
紧凑型	CPU 1512C-1 PN	-	1	ı	-	
	CPU 1511-1 PN	PROFIBUS-DP接口	1	ı	-	
	CPU 1513-1PN	-	1	1	-	
	CPU 1515-2PN	PROFIBUS DP接口				
 标准型 CPU 1515-2PN - 1 CPU 1516-3PN/DP 1 1 CPU 1517-3PN/DP 1 1 CPU 1518-4PN/DP 1 1 CPU 1518-4PN/DP MFP 1 1 	1	-				
	CPU 1517-3PN/DP	1	1	1	-	
	CPU 1518-4PN/DP	1	1	1	1	
	CPU 1518-4PN/DP MFP	1	1	1	1	
冗余型	CPU 1513R-1PN	-	1	-	-	
	CPU 1515R-2PN	-	1	-	1	
九宗空 	CPU 1517H-3PN	-	1	-	1 - 1 - 1 1 1 1 1 - - 1	
	CPU 1518HF-4PN	-	1	-	2	
	CPU 1511T-1 PN	-	1	-	-	
运动控制型						
	CPU 1518T-4 PN/DP	1	1	1	1	
北空宁人刑	CPU 1511F-1 PN	-	1	-	-	
故障安全型	CPU 1511TF-1 PN	-	1	-	-	

****-1PN: 带1个Profinet通信接口

****-3PN/DP: 带2个Profinet

1个DP通信接口)

1500 CPU不支持MPI接口

Profibus vs ProfiNet

DP总线连接器

- ◆ 基于RS485网络的现场总线协议
- ◆ Profibus电缆通过Profibus总线连接器与PLC上的Profibus 总线接口相连
- ◆ Profibus网络的通讯波特率为9.6Kbit/s~12Mbit/s, 长距离通信可使用中继器,最多可挂127个站点

- ◆ 基于工业以太网的现场总线协议
- ◆ 使用RJ45以太网接口,通讯波特率达100Mbit/s, 电缆长度可达100米,最多可挂512个站点
- ◆ 有三种不同类型的地址: IP地址、MAC地址、设备名称,配置网络时,主要关注设备名称和IP地址

(2) 电源模块 两种: 负载电源(PM)、系统电源(PS)

◆ 负载电源 (PM)

- 为各种模块、其他负载提供外接 24V电源
- 为部分PS模块提供24V电源

◆ 系统电源 (PS)

- 通过背板总线为模块提供内部所需的电源(外部负载回路还需由 PM接线来供电)
- 只能为CPU和本机加模块供电

思考题: PS供电模式可以有PM替代, 为什么绝大多数系统还是希望配置PS电源?

(3) 模拟量输入模块

模拟量读取:

如0-200kPa的压 力变送器信号

//从端口地址(如256)读入转换结 👢 %IW 256:P //存入临时变量Dec_in,#abc表示临时变量,变量名abc #Dec_in

CALL "SCALE"

: =# Dec_in/ IN

LO LIM :=0.000000e+000

BIPOLAR : =FALSE

RET VAL: =#ret

OUT : =#In_result

//直接调用系统函数,以下是输入输出参数

/入口参数:十进制转换结果

HI_LIM :=2.000000e+002 //入口参数:工程量上限200(PLC本身没有单位概念)

//入口参数:工程量下限0

//入口参数:TRUE为双极性,FALSE为单极性

//出口参数:返回值(准确一0,错误一其它值)

//出口参数:工程量转换结果

模拟量读取:如0-200kPa的压力变送器信号

```
L %IW 256:P //从端口地址(如256)读入转换结果
  #Dec_in //存入临时变量Dec_in, #abc表示临时变量,变量名abc
               //直接调用系统函数,以下是输入输出参数
CALL "SCALE"
IN : =# Dec_in/ /入口参数: 十进制转换结果
 HI_LIM :=2.000000e+002 //入口参数:工程量上限200,kPa(本身没有单位概念)
LO_LIM:=0.000000e+000 //入口参数:工程量下限0
BIPOLAR:=FALSE //入口参数:TRUE为双极性,FALSE为单极性
 RET_VAL:=#ret //出口参数:返回值(准确一0,错误一其它值)
OUT :=#In_result //出口参数:工程量转换结果
   150.0kPa 16 mA 20736
```

思考: 为什么是27648而不是32768 (215)

SM531 AI模块的软件设置

· 二线制电流输入 关键:模块带24V配电并接收4~20mA电流,1路信号占1个通道

· 四线制电流输入 关键: 模块不给变送器供电,1路信号占1个通道

问: 两线制变送器与四线制电流输入(C)端口怎么连接?

可以,需外置电源 顺带思考几个问题,究竟怎么接?

AI输入需要注意的几个现场问题:

多通道AI模块(无配电),多台二线制变送器,一台24VDC电源

① 若AI接口接收4~20mA电流输入,如何连接?

需要注意的现场问题:多通道AI模块(无配电),多台二线制变送器,一台24VDC电源

① 若AI接口接收4~20mA电流输入,如何连接?

需要注意的现场问题:多通道AI模块(无配电),多台二线制变送器,一台24VDC电源

③ 若AI接口接收1~5VDC电压输入,如何连接?

④ 若变送器需要现场接地,连接时应注意什么?

• 电压输入 1路信号占用1个通道

毫伏输入 1路信号占用1个通道

(4) 模拟量输出模块 (SM532)

CALL "UNSCALE"

IN :=#Out

HI_LIM :=1.000000e+002

LO_LIM :=0.000000e+000

BIPOLAR :=FALSE

RET VAL :=#Err

OUT :=#Out_result

L #Out_result

T %QW416:P

//直接调用系统提供的转换函数,以下是输入输出参数

//入口参数:阀位值0~100%浮点数

//入口参数:阀位上限100 //入口参数:阀位下限0

//入口参数: TRUE为双极性输出, FALSE单极性输出

//出口参数:返回值

//出口参数: 十进制转换结果存入临时变量

//十进制转换结果输出到过程输出缓冲区,如416

SM532 AQ模块的软件设置

电压信号输出

电压输出(4线)

电压输出(2线)

电流信号输出

(5) 开关量输入模块 (SM521)

订货号	6ES7521-1BH00- 0AB0	6ES7521-1BL00- 0AB0	6ES7521-1BH50- 0AA0	6ES7521-1FH00- 0AA0		
简介	DI 16x24VDC HF	DI 32x24VDC HF	DI 16x24VDC SRC BA	DI 16x230VAC BA		
输入数量	16	32	16	16		
通道间的电气隔离	-	\checkmark	-			
电势组数	1	2	1	4		
额定输入电压	24 V DC	24 V DC	24 V DC	120/230 V AC		
诊断错误中断		\checkmark	-	-		
硬件中断		\checkmark	-	-		
支持等时同步操作		\checkmark	-	-		
输入延时	0.05 ms 到 20 ms	0.05 ms 到 20 ms	3 ms	25 ms		

HF: High feature BA: Basic

SRC: Source Input, 源型输入(共+, 电流从输入端流出)

未标识: Sinking Input, 为漏型输入 (共工, 电流从输入端流入)

DI回路的端口耗电很小

DI输入有源型和漏型之分,开关信号还分为NPN和PNP两种

SIEMENS DI模块通常默认为漏型

思考题:

1. 如果传感器输出的开关量信号与DI不匹配怎么办?

2. 如何在同一块DI模块上接入不同类型的开关量输入信号?如直流电压、交流电压、无源触点

SM521 DI模块的软件设置

(6) 开关量输出模块 (SM522)

数字量输出模块	DQ16×DC 24V/ 0.5A ST	DQ32×DC 24V/ 0.5A ST	DQ8×DC 24V/ 2A HF	DQ8×AC230V/ 5AST	DQ8×AC230V/ 2A ST				
订货号	6ES7522-1BH00- 0AB0	6ES7522-1BL00- 0AB0	6ES7522-1BF00- 0AB0	6ES7522-5HF00- 0AB0	6ES7522-5FF00-0AB0				
输出点数	16DO,2个电势组	32DO,4个电势组	8DO,2个电势组	8DO,8个电势组	8DO,8个电势组				
输出类型		 晶体管		继电器	晶闸管				
通道间电气隔离		×	√						
额定输出电流	0.	5A	2A	5A	2A				
继电器线圈电压		-	DC 24V	-					
额定输出电压		DC.24V	AC230V						
支持时钟同步		V	×	×	×				
诊断中断		√		×					
通道诊断LED指示		×	√ (红色LED指示灯)	×					
模块诊断LED指示	√ (红色LED指示灯)								
替换值输出	\checkmark								

提别提醒:DQ输出通常直接驱动负载,每个通道负载电流可能会比较大,应关注通道的额定输出电流

SM522 DQ模块的设置

二、硬件配置与扩展

根据自动化系统的实际规模和要求配置PLC硬件系统,问题:

- (1) 构成一个控制系统需要哪些、多少数量的模块?
 - □ S7系列PLC采用模块化结构,可根据系统规模选择不同型号、不同数量的模块
- (2) 这些模块怎么安装?
 - □ 这些模块安装在一个或多个机架上
 - □ 每一个机架最多可安装的模块是有限的
- (3) 多个机架怎么连在一起形成系统?
 - □ 通过通信接口模块把各机架连载一起
 - □ PLC系统的最大配置能力(包括I/O点数、机架数等)与CPU型号相关

1、系统配置

- 每个机架安装模块时从左到右有逻辑插槽的限制(只是左右顺序要求,位置不固定)
- 0号插槽可配置系统电源PS或者负载电源模块PM (PM通过外接线供电,也可以不进行硬件配置)
- CPU占用1号插槽
- 中央机架中最多可放入32个模块(含电源和CPU模块,一般不会配那么多模块,太长了!)
- 如IO模块很多,可通过ET200模块安装到IO扩展机架上,不同型号ET200最多可支持的IO模块数不同

_/								_									
0	1	2	3	4	5	6	7	15		24	25	26	27	28	29	30	31
	BRINISS																
								8	16								
								1	1					导轨			
	_				П			15	23								
	8																
				2 1	=												

2、系统的扩展

(1) 在机架空槽位上增加模块 (适用于少量扩展)

(2) 通过IM155增加新机架(适用于较大规模扩展)

3、其他设备的集成

(1) 通过ProfiNet网络集成(其他设备和系统也支持ProfiNet通信协议)

(2) 通过PROFIBUS DP网络集成

4、其他控制系统的集成

(1) 两个不同的S7-1500系统,可通过PN/PN Coupler实现两个不同以 太网子网进行数据交换

(2) ProfiNet控制系统与Profibus控制系统之间,可通过IE/PB LINK 网关两种网络类型的系统,实现二者的数据交换。

- (3) 两个不同的Profibus系统之间,可通过DP/DP Coupler连接,实现二者的数据交换。
- (4) 通过DP-AS-I网关可以连接带有as-interface通信芯片的智能传感器/执行器。

5、系统的冗余设计简介

(1) 单元的可靠度

单元设备在规定的环境温度、湿度、振动和使用方法及维护措施等条件下,在规定的工作期限内,设备无故障地发挥规定功能的概率。

(2) 系统的可靠性

除了与构成系统的子系统或元器件的可靠度有关,还与系统构成方式有关

并联连接可以提高系统可靠性! 【冗余】

为了保险起见,采取两套同样独立配置的硬件、软件或设计等,保证在其中一套系统出现故障时,另一套系统能立即启动,代替工作。

一套单独的系统也许运行的故障率很高,但采取冗余措施后,在不改变内部设计的情况下,这套系统的可靠性立即可以大幅度提高。

(3) 系统的安全性

- □ 冗余设计的几种结构形式:
 - ◆ 1oo1 ("oo" —out of) : 将1个信号连接到模块的一个通道 (非冗余)
 - ◆ 1oo2 (二取一): 设计双机,能够切换运行(单机保证安全,双机保证可靠) 冗余方式:冷冗余,热冗余,温冗余......
 - ◆ 2002 (二取二):由两个功能完全相同的单元构成,且仅当两个单元取得一致时才能执行规定的功能,否则导向安全状态,以避免风险,典型的最基本的安全性基本冗余结构。如I/O
 - ◆ 2003 (3取二)
- □ 可靠度: 1002>2003>2002
- □ 安全度: 2002>2003>1002

(4) 控制系统的冗余设计

CPU冗余 电源冗余 I/O模块冗余 通信网络冗余 现场设备冗余

• • • •

(5) 西门子PLC系统的冗余设计

部分S7-400CPU、1500CPU支持冗余设计,如S7-400H,I/O可实现2oo2冗余

□ CPU的冗余配置方式

口 I/O的冗余配置方式

口 I/O的冗余连接

➤ 冗余的数字量输入 (DI)

> 冗余的数字量输出 (DO)

使用外部二极管进行互连

通过并联两个DO模块的两个输出(2选1组态),系统自检查DO模块通道是否出现异常和不一致,从而可以实现最终控制元件的容错控制

不使用外部二极管进行互连

> 冗余的模拟量输入 (AI)

> 冗余的模拟量输出 (AO)

通过并联两个AO信号,实现最终控制元件的容错控制 (2选1结构)

输出值除以2,两个模块各输出一半值。

如果其中一个模块出现故障,则故障会被检测出来,另一个模块就会输出完整的值。这样,因错误而在输出模块上引起的电涌不会太高。

拓展作业(可做可不做,建议做):

请分析以下两个系统的可靠度(各单元为断路失效,各单元可靠度R=0.8)。

