Formalization of some central theorems in combinatorics of finite sets Short Presentations (LPAR-21)

Abhishek Kr Singh

School of Technology and Computer Science Tata Institute of Fundamental Research, Mumbai.

International Conference on Logic for Programming, Artificial Intelligence and Reasoning, 2017

Overview.

- Theorems and the connection between them
 - Dilworth's Decomposition Theorem
 - Mirsky's Theorem
 - Hall's Marriage theorem
 - ► Erdős-Szekeres Theorem
- The Cog Formalization of these theorems
 - Formal statement of these theorems
 - The proof ideas.
- Scope for Future Work

Overview.

- Theorems and the connection between them
 - Dilworth's Decomposition Theorem
 - Mirsky's Theorem
 - Hall's Marriage theorem
 - ► Erdős-Szekeres Theorem
- The Coq Formalization of these theorems
 - Formal statement of these theorems
 - ► The proof ideas.
- Scope for Future Work

Overview.

- Theorems and the connection between them
 - Dilworth's Decomposition Theorem
 - Mirsky's Theorem
 - Hall's Marriage theorem
 - Erdős-Szekeres Theorem
- The Cog Formalization of these theorems
 - Formal statement of these theorems
 - ► The proof ideas.
- Scope for Future Work

Theorems and the connection between them

Theorems and the connection between them

Theorem

- Partially Ordered Set (P,<).
- Chain
- Antichain.
- Chain cover.
- Antichain cover.
- Height.
- Width.

Theorem

- Partially Ordered Set (P,<).
- Chain.
- Antichain.
- Chain cover.
- Antichain cover.
- Height.
- Width.

Theorem

- Partially Ordered Set (P,<).
- Chain
- Antichain.
- Chain cover.
- Antichain cover.
- Height.
- Width.

Theorem

- Partially Ordered Set (P,<).
- Chain
- Antichain.
- Chain cover.
- Antichain cover.
- Height.
- Width.

Theorem

- Partially Ordered Set (P,<).
- Chain
- Antichain.
- Chain cover.
- Antichain cover.
- Height.
- Width.

Formal Statement in Coq

Theorem

In any finite partially ordered set (poset), the size of a smallest chain cover and a largest antichain are the same.

- let m be the size of a largest antichain (i.e., width of a poset).
- let n be the number of chains in a smallest chain cover.
- then m=n.

```
\forall (P: FPO U)(m n: nat), (Is_width P m) \rightarrow (\exists C, (Is_a smallest_chain_cover P C) \land (cardinal C n)) \rightarrow m=n.
```

Formal Statement in Coq

Theorem

In any finite partially ordered set (poset), the size of a smallest chain cover and a largest antichain are the same.

- let m be the size of a largest antichain (i.e., width of a poset).
- let n be the number of chains in a smallest chain cover.
- then m=n.

```
\forall (P: FPO U)(m n: nat), (Is_width P m) \rightarrow (\exists C, (Is_a smallest_chain_cover P C) \land (cardinal C n)) \rightarrow m=n.
```

Formal Statement in Coq

Theorem

In any finite partially ordered set (poset), the size of a smallest chain cover and a largest antichain are the same.

- let m be the size of a largest antichain (i.e., width of a poset).
- let n be the number of chains in a smallest chain cover.
- then m=n.

```
\forall (P: FPO U)(m n: nat), (Is_width P m) \rightarrow (\exists C, (Is_a smallest_chain_cover P C) \land (cardinal C n)) \rightarrow m=n.
```

Formal Statement in Coq

Theorem

In any finite partially ordered set (poset), the size of a smallest chain cover and a largest antichain are the same.

- let m be the size of a largest antichain (i.e., width of a poset).
- let n be the number of chains in a smallest chain cover.
- then m=n.

```
\forall (P: FPO U)(m n: nat), (Is_width P m) \rightarrow (\exists C, (Is_a_smallest_chain_cover P C) \land (cardinal C n)) \rightarrow m=n.
```

Mirsky's Theorem Dual-Dilworth's Theorem

Theorem

In any finite partially ordered set (poset), the size of a smallest antichain cover and a largest chain are the same.

- let m be the size of largest chain (i.e., height of a poset).
- let n be the number of antichains in a smallest antichain cover.
- then m=n.

Theorem (Dual_Dilworth: Formal statement)

```
\forall (P: FPO U)(m n: nat), (ls_height P m) \rightarrow (\exists C, (ls_a_smallest_antichain_cover P C) \land (cardinal C n)) \rightarrow m=n.
```

Mirsky's Theorem

Proof Idea: Induction on the size of largest chain

If m is the size of a largest chain, then there cannot be an antichain cover of size less than m. Therefore it is sufficient to prove:

Lemma (Mirsky:)

If m is the size of a largest chain then there exists an antichain cover of size m.

Mirsky's Theorem

Proof Idea: Induction on the size of largest chain

If m is the size of a largest chain, then there cannot be an antichain cover of size less than m. Therefore it is sufficient to prove:

Lemma (Mirsky:)

If m is the size of a largest chain then there exists an antichain cover of size m.

Mirsky's and Dilworth's Theorem

Proof Idea for Mirky's and Dilworth's Theorem

The key idea in the proof of Mirsky's theorem[5] is the following lemma

Lemma (Pre_Mirsky:)

There exists an antichain which intersects with every largest chain in the poset.

However, it is not easy to prove a similar lemma for Dilworth's theorem[2].

Lemma (Pre_Dilworth:)

There exists a chain which intersects with every largest antichain in the poset.

Mirsky's and Dilworth's Theorem

Proof Idea for Mirky's and Dilworth's Theorem

The key idea in the proof of Mirsky's theorem[5] is the following lemma

Lemma (Pre_Mirsky:)

There exists an antichain which intersects with every largest chain in the poset.

However, it is not easy to prove a similar lemma for Dilworth's theorem[2].

Lemma (Pre_Dilworth:)

There exists a chain which intersects with every largest antichain in the poset.

Dilworth's Theorem

Proof by Perles: Induction on the size of poset

Dilworth's Theorem: Other Variants

Disjoint Chain cover

Lemma (exists_disjoint_cover:)

If $\mathscr{C}_{\mathscr{V}}$ is a smallest chain cover of size m for P, then there also exists a disjoint chain cover $\mathscr{C}_{\mathscr{V}}'$ of size m for P.

This lemma can be used to obtain the following variant of Dilworth's theorem:

Theorem (Dilworth Disj:)

In any poset if m is the size of a largest antichain then there exists a disjoint chain cover of size m.

Dilworth's Theorem: Other Variants

Disjoint Chain cover

Lemma (exists_disjoint_cover:)

If $\mathscr{C}_{\mathscr{V}}$ is a smallest chain cover of size m for P, then there also exists a disjoint chain cover $\mathscr{C}_{\mathscr{V}}$ of size m for P.

This lemma can be used to obtain the following variant of Dilworth's theorem:

Theorem (Dilworth Disj:)

In any poset if m is the size of a largest antichain then there exists a disjoint chain cover of size m.

Left Perfect matching in a Bipartite Graph

Theorem (Hall's Marriage Theorem [4]:)

- Matching.
- L-perfect matching.
- N(S) neighbour of a set S.

Left Perfect matching in a Bipartite Graph

Theorem (Hall's Marriage Theorem [4]:)

- Matching.
- L-perfect matching.
- N(S) neighbour of a set S.

Left Perfect matching in a Bipartite Graph

Theorem (Hall's Marriage Theorem [4]:)

- Matching.
- L-perfect matching.
- N(S) neighbour of a set S.

Left Perfect matching in a Bipartite Graph

Theorem (Hall's Marriage Theorem [4]:)

- Matching.
- L-perfect matching.
- N(S) neighbour of a set S.

Formal Statement in Coq

Theorem

For any Bipartite graph $G = (L, R, E), \forall S \subset L, |N(S)| \ge |S|$ if and only if \exists an L-perfect matching.

Theorem (Halls_Thm: Formal statement)

 $(\forall \textit{S, Included S L} \rightarrow (\forall \textit{ m n, (cardinal S m} \land \textit{cardinal (N S) n}) \rightarrow \textit{m} <= \textit{n} \\)) \leftrightarrow (\exists \textit{ R:Relation U, Included_in_Edge R} \land \textit{Is_L_Perfect R}).$

- We only need to prove the forward direction.
- We create a poset by giving directions to the edges. The set of Left and Right vertices becomes antichains in the poset.

Formal Statement in Coq

Theorem

For any Bipartite graph $G = (L, R, E), \forall S \subset L, |N(S)| \ge |S|$ if and only if \exists an L-perfect matching.

Theorem (Halls_Thm: Formal statement)

 $(\forall \textit{S, Included S L} \rightarrow (\forall \textit{ m n, (cardinal S m} \land \textit{cardinal (N S) n}) \rightarrow \textit{m} <= \textit{n} \\)) \leftrightarrow (\exists \textit{ R:Relation U, Included_in_Edge R} \land \textit{Is_L_Perfect R}).$

- We only need to prove the forward direction.
- We create a poset by giving directions to the edges. The set of Left and Right vertices becomes antichains in the poset.

Disjoint Chain cover as an L-perfect matching

- Set of left (L) and right (R) vertices becomes minimal and maximal elements respectively.
- An L-perfect matching for the graph can be obtained from a disjoint chain cover for the poset.

Disjoint Chain cover as an L-perfect matching

- Set of left (L) and right (R) vertices becomes minimal and maximal elements respectively.
- An L-perfect matching for the graph can be obtained from a disjoint chain cover for the poset.

Proof Idea: Bipartite graph as a poset

Theorem

- Assuming $\forall S \subset L, |N(S)| \ge |S|$ one can prove that R is the largest antichain in the poset.
- If m is the size of R then there exists a disjoint chain cover of size m for the poset.
- This disjoint chain cover for poset gives us an L-perfect matching for the Bipartite graph.

Theorem

- Assuming $\forall S \subset L, |N(S)| \ge |S|$ one can prove that R is the largest antichain in the poset.
- If m is the size of R then there exists a disjoint chain cover of size m for the poset.
- This disjoint chain cover for poset gives us an L-perfect matching for the Bipartite graph.

Proof Idea: Bipartite graph as a poset

Theorem

- Assuming $\forall S \subset L, |N(S)| \ge |S|$ one can prove that R is the largest antichain in the poset.
- If m is the size of R then there exists a disjoint chain cover of size m for the poset.
- This disjoint chain cover for poset gives us an L-perfect matching for the Bipartite graph.

Integer Sequences and Subsequences

Theorem (The Erdős-Szekeres Theorem [3]:)

Every sequence of m.n+1 distinct integers contains an increasing subsequence of length m+1 or a decreasing subsequence of length n+1.

- increasing subsequence 9, 16, 19, 28.
- increasing subsequence 7, 8, 19, 28.
- decreasing subsequence 24, 21, 16, 7, 1.

Integer Sequences and Subsequences

Theorem (The Erdős-Szekeres Theorem [3]:)

Every sequence of m.n+1 distinct integers contains an increasing subsequence of length m+1 or a decreasing subsequence of length n+1.

- increasing subsequence 9, 16, 19, 28.
- increasing subsequence 7, 8, 19, 28.
- decreasing subsequence 24, 21, 16, 7, 1.

Integer Sequences and Subsequences

Theorem

Every sequence of m.n+1 distinct integers contains an increasing subsequence of length m+1 or a decreasing subsequence of length n+1.

Theorem (Erdos_Szeker: Formal statement)

 \forall (s: Int_seq) m n, cardinal s (m*n+1) \rightarrow ((\exists s1: Int_seq, sub_seq s1 s \land Is_increasing s1 \land cardinal s1 (m+1)) \lor (\exists s2: Int_seq, sub_seq s2 s \land Is_decreasing s2 \land cardinal s2 (n+1))).

- We construct a poset (s, \leq) where, for any two $x, y \in s$, $x \leq y$ iff x comes before y in the sequence s and x is less than y as numbers.
- A chain in this partial order (s, \leq) is a monotonically increasing subsequence of the sequence s.
- An antichain in (s, \leq) is a monotonically decreasing subsequence of the sequence s.

- We construct a poset (s, \leq) where, for any two $x, y \in s$, $x \leq y$ iff x comes before y in the sequence s and x is less than y as numbers.
- A chain in this partial order (s, \leq) is a monotonically increasing subsequence of the sequence s.
- An antichain in (s, \leq) is a monotonically decreasing subsequence of the sequence s.

- We construct a poset (s, \leq) where, for any two $x, y \in s$, $x \leq y$ iff x comes before y in the sequence s and x is less than y as numbers.
- A chain in this partial order (s, \leq) is a monotonically increasing subsequence of the sequence s.
- An antichain in (s, \leq) is a monotonically decreasing subsequence of the sequence s.

- We construct a poset (s, \leq) where, for any two $x, y \in s$, $x \leq y$ iff x comes before y in the sequence s and x is less than y as numbers.
- A chain in this partial order (s, \leq) is a monotonically increasing subsequence of the sequence s.
- An antichain in (s, \leq) is a monotonically decreasing subsequence of the sequence s.

Proof Idea: Posets out of Integer Sequences

Now, we can complete the proof of Erdős-Szekeres theorem by proving the following result on general posets,

Lemma (Pre_ES:)

If P is a poset with m.n+1 elements, then it has a chain of size at least m+1 or an antichain of size at least n+1.

• We prove this lemma using Dilworth's Decomposition theorem.

Future Work

- Removal of Excluded Middle (EM) and Choice axioms from the proofs.
 - Since all the structures involved are finite we can use decidable predicates.
 - Instead of using Ensemble Module of the Standard Library [1] one can use the Finite type and Finite set formalism of the Ssreflect library. It can be helpful in eliminating the use of EM and Choice Axioms.
- Mechanize other related results such as
 - Weak Perfect Graph Theorem and
 - Different forms of Konig's theorem on edge and vertex colouring of a Bipartite graph.

Future Work

- Removal of Excluded Middle (EM) and Choice axioms from the proofs.
 - Since all the structures involved are finite we can use decidable predicates.
 - Instead of using Ensemble Module of the Standard Library [1] one can use the Finite type and Finite set formalism of the Ssreflect library. It can be helpful in eliminating the use of EM and Choice Axioms.
- Mechanize other related results such as
 - Weak Perfect Graph Theorem and
 - Different forms of Konig's theorem on edge and vertex colouring of a Bipartite graph.

References

The Coq Standard Library.
https://coq.inria.fr/library/.

R. P. Dilworth.

A decomposition theorem for partially ordered sets. In *Annals of Mathematics*, volume 51, pages 161–166, 1951.

P. Erdős and G. Szekeres.

A combinatorial problem in geometry.

In Compositio Mathematica, volume 2, pages 463-470, 1935.

Philip Hall.

On representations of subsets.

In J. London Math. Soc., volume 10, pages 28-30, 1935.

Leon Mirsky.

A dual of Dilworth's decomposition theorem.

In American Mathematical Monthly, volume 78, pages 876-877, 1971.

Thank You