



Systematic analysis of neural networks
performance and generalization capabilities with
application to the automatic assessment of
Lung Ultrasound data from Covid-19 patients

ZIHADUL AZAM



### Lung Ultrasound (LUS) and COVID-19

- Covid-19 virus can cause Pneumonia.
- Covid-19 Pneumonia: the lungs become filled with fluid and inflamed.
- Clinicians use LUS to assess the lungs condition by evaluating the presence of artifacts in images.





### Role of Deep Learning

- During the pandemic different DL techniques have been employed to automate the evaluation process in order to support clinicians.
- But majority of them were solutions based on novel architecture or combination of different DL techniques.
- Only few studies have been conducted on the application of the state-of-the-art networks applied on LUS data.
- For this reason, this work is focused only on state-of-the-art models.



### Goals

- How State-of-the-art CNNs perform with LUS data?
- Do they have a good generalization capability?
- Mow much data is required to build a model with compareable performance?
- Explainable AI?









#### **ICLUS-DB** Dataset



- Brescia
- © Rome
- \textsup Lucca
- Tione
- Pavia









# **Standard Acquisition Protocol**

#### 14 areas:

- 4 front
- 4 lateral
- 6 back





- G. Soldati et al, 2020



### Data labelling

### 4 level scoring system:

- Score 0
- Score 1
- Score 2
- Score 3





- G. Soldati et al, 2020

### **Dataset statistics**









# Methodologies

- 1. Frame-level scoring system
- 2. Grad-CAM algorithm
- 3. Generalization Capability across different medical centers



# 1. Frame-level scoring system





### **Model Architectures**

- 1. ResNet-18
- 2. ResNet-50
- 3. ResNet-101
- 4. DensNet-121
- 5. DensNet-201
- 6. InceptionV3





### Data splitting

Patient level





# 1. Frame-level scoring system: Results

| Methodology | Employed Model and Technique | F1-Score |
|-------------|------------------------------|----------|
|             | Reg + STN + CNN [1]          | 0.651    |
| Base line   | ResNet-18 + Annotations [2]  | 0.688    |
| Proposed    | ResNet-18                    | 0.659    |
|             | ResNet-50                    | 0.655    |
|             | ResNet-101                   | 0.651    |
|             | DensNet-121                  | 0.6513   |
|             | DesnsNet-201                 | 0.6517   |
|             | InceptionV3                  | 0.612    |
| Proposed    | ResNet-18                    | 0.645    |
| Pre-Trained |                              |          |

<sup>[1]</sup> S. Roy et al, Deep learning for classification and localization of covid-19 markers in point-of-care lung ultrasound, 2020

<sup>[2]</sup> O. Frank et al, Integrating domain knowledge into deep networks for lung ultrasound with applications to covid-19, 2021

# 2. Grad-CAM on ResNet-18 (trained from scratch)



# 3. Generalization Capability – 1





# 3. Generalization Capability – 2



# Generalization Capability: Results









#### Conclusion

- Outperforming results were achieved by using state-of-the-art CNN models.
- ResNet-18 was found to be the best-performing model with an F1-Score of 0.659.
- Grad-CAM algorithm helped to understand model behaviors.
- Pre-trained model has better generalization capabilities.
- Malf of training patients were enough to achieve comparable performance.
- Future works: transformer-based models, video-level classification.





# Thank You!

**For Your Attention** 



19 October 2022 Artificial Intelligence Systems By: Zihadul Azam