Linear Map

Len Fu

11.19.24

摘要

This is the note of Linear Map, maded by Len Fu while his learning progress. The main content is from *Linear Algebra Done Right*,线性代数 北京理工大学出版社. and *Linear Algebra Allenby*

目录

1	Definition and Examples			
	1.1	Definit	ton	2
	1.2	Examp	ples	2
		1.2.1	Linear Operators from \mathbb{R}^n to \mathbb{R}^m	2
		1.2.2	Linear Transformation from V to W	3
2	The Matrix of a Linear Map			3
3	Changing coordinate systems			4
4	Conclusion			4

1 Definition and Examples

1.1 Definition

A mapping T from a vector space V to a vector space W is called a linear transformation or a linear operator if,

$$T(\alpha v_1 + \beta \ v_2) = \alpha T(v_1) + \beta T(v_2)$$

for all $v_1, v_2 \in V$ and all $\alpha, \beta \in \mathbf{F}$.

Then if T is a linear operator on V if and only T satisfies

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

and

$$T(\alpha v_1) = \alpha T(v_1)$$

. Thus T is a linear transformation mapping a vector space V to a vector space W if and only if T is a linear operator on V.

1.2 Examples

1.2.1 Linear Operators from \mathbb{R}^n to \mathbb{R}^m

In general, if A is any $m \times n$ matrix, we can define a linear operator T_A from \mathbb{R}^n to \mathbb{R}^m

$$T_A(x) = Ax$$

for all $x \in \mathbb{R}^n$. The operator T_A is linear, since

$$T_A(\alpha x + \beta y) = A(\alpha x + \beta y) \tag{1}$$

$$= \alpha Ax + \beta Ay \tag{2}$$

$$= \alpha T_A(x) + \beta T_A(y) \tag{3}$$

Thus we can think of each $m \times n$ matrix as defining a linear operator from \mathbb{R}^n to \mathbb{R}^m .

1.2.2 Linear Transformation from V to W

2 The Matrix of a Linear Map

Let $T \in \mathcal{L}(V, W)$. Suppose that $(v_1, ..., v_n)$ is a basis of V and $(w_1, ..., w_m)$ is a basis of W. For each k = 1, ..., n, we can write Tv_k uniquely as a linear combination of $w_1, ..., w_m$:

$$Tv_k = a_{1k}w_1 + \dots + a_{mk}w_m,$$

where $a_{jk} \in \mathbf{F}$ for j in 1, ..., m..

The matrix

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \cdot & & \cdot \\ \cdot & & \cdot \\ \cdot & & \cdot \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

is called the *matrix* of T with respect to the bases $(v_1, ..., v_n)$ and $(w_1, ..., w_m)$. We denote it by

$$\mathcal{M}(T,(v_1,...,v_n),(w_1,...,w_m))$$

. or we just write $\mathcal{M}(T)$. The k^{th} column consists of the scalars needed to write Tv_k as a linear combination of $w_1, ..., w_m$.

3 Changing coordinate systems

4 Conclusion

This is the conclusion section. Summarize the findings and state any implications or future work.