Exercise sheet 4

Descriptive Set Theory

Academic year 2023-24

1. Prove that for any Polish space X and $x \in X$, the singleton $\{x\}$ is Π_1^0 -complete if and only if x is not isolated in X. Conclude that the set

$$C_1 = \{ x \in 2^{\omega} \mid \exists n (x(n) = 0) \}$$

from Proposition 2.1.31 of the notes is Σ_1^0 -complete.

- 2. Prove that for any Polish space and $A \subseteq X$, if A is not open then it is Π_1^0 -hard. Conclude that a set A is truly closed (i.e. closed but not open) if and only if it is Π_1^0 -complete, and similarly for Σ_1^0 .
- 3. Prove that the sets

$$C_0 = c_0 \cap [0; 1]^{\omega} = \{ (x_n)_{n \in \omega} \in [0; 1]^{\omega} \mid x_n \to 0 \}$$

$$C = \{ (x_n)_{n \in \omega} \in [0; 1]^{\omega} \mid (x_n)_{n \in \omega} \text{ converges} \}$$

are both Π_3^0 -complete.

[Hint. For the hardness part, compare these sets with the Π_3^0 -complete set C_3 from Exercise 2.1.27 in the notes.]

4. Prove that for any 0 the set

$$\ell_p \cap [0;1]^{\omega} = \left\{ (x_n)_{n \in \omega} \in [0;1]^{\omega} \mid ||x||_p = \left(\sum_{n=0}^{\infty} |x_n|^p \right)^{\frac{1}{p}} < \infty \right\}$$

is Σ_2^0 -complete.

[Hint. Recall that a positive terms series converges if and only if the sequence of partial sums is bounded from above. For the hardness part, compare this sets with the Σ_2^0 -complete set Q_2 from the notes.]

5. Show that the collection of all sequences $(x_n)_{n\in\omega}\in[0;1]^{\omega}$ having an irrational accumulation point is analytic.