Задание на восьмую неделю.

- 1. Докажите формулу обращения: $(M_n(\omega))^{-1}=\frac{1}{n}M_n(\omega^{-1}).$ Вычислите также матрицу $(M_n(\omega))^4.$
- 2. Найдите произведение многочленов $A(x)=x^3+3x+2$ и $B(x)=3x^3+3x^2+2$ с помощью алгоритма быстрого преобразования Фурье. Для этого найдите рекурсивно дискретное преобразование Фурье двух массивов A=(0,0,0,0,1,0,3,2) и B=(0,0,0,0,3,3,0,2), затем вычислите ДПФ массива C и восстановите коэффициенты многочленапроизведения, используя обратное преобразование.
- 3. Даны числа x_1,\dots,x_n . Доказать, что коэффициенты многочлена $f(x)=\prod_{i=1}^n(x-x_i)$, можно найти за $O(n\log_2^2 n)$ арифметических операций.
- 4. Используя ДПФ, найдите решение системы линейных уравнений Cx=b. где C это циркулянтная матрица, порожденная вектором столбцом $(1,2,4,8)^T$, а $b^T=(16,8,4,2)$.
- 5. Обозначим для вектора \vec{x} циркулянтную матрицу с первым столбцом \vec{x} за $\mathrm{circ}(\vec{x})$. Назовём циклической свёрткой $\vec{x}*\vec{y}$ двух векторов произведение матрицы на вектор $\mathrm{circ}(\vec{x})\vec{y}$. Докажите, что $\mathrm{FFT}(\vec{x}*\vec{y})$ есть произведение векторов $\mathrm{FFT}(\vec{x})$ и $\mathrm{FFT}(\vec{y})$ по Адамару (т. е. поэлементное: i-ая компонента вектора-произведения есть произведение i-ых компонент сомножителей).
- 6. Рассмотрим циркулянтную матрицу порядка n+1, первый столбец которой равен $(c_0, c_1, \ldots, c_n)^T$, т. е. матрицу вида

$$\begin{bmatrix} c_0 & c_n & c_{n-1} & \dots & c_1 \\ c_1 & c_0 & c_n & \dots & c_2 \\ c_2 & c_1 & c_0 & \dots & c_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n-1} & c_{n-2} & \dots & c_0 \end{bmatrix}$$

Докажите, что все её собственные значения, домноженные на $\frac{1}{\sqrt{n+1}}$, могут быть найдены умножением матрицы Фурье $F_n = \frac{1}{\sqrt{n+1}} \left(\omega_n^{ij} \right)_{i,i=0}^n$

размеров $(n+1)\times (n+1)$, где $\omega_n=e^{\frac{2\pi i}{n}}$ — корень из единицы, на вектор $(c_0,c_n,c_{n-1},\ldots,c_1)^T$. Найдите с помощью алгоритма БПФ собственные значения циркулянтной матрицы, первый столбец которой имеет вид $(1,2,4,6)^T$.

- 7. Дано множество различных чисел $A \subseteq \{1, ..., m\}$. Рассмотрим множество A + A, образованное суммами элементов A. Докажите или опровергните существование процедур построения A + A, имеющих субквадратичную трудоемкость $o(m^2)$.
- 8. Прочитайте статью:
- P. Clifford, R. Clifford. Simple deterministic wildcard matching. Information Processing Letters 101 (2007) 53–54.

В этой задаче нужно обосновать некоторые утверждения из неё. Задача состоит в быстром нахождении подстроки $p_0,\dots p_{m-1}$ в строке t_0,\dots,t_{n-1} (тексте). Подстрока входит с і-ой позиции, если $p_j=t_{i+j}$ для $j=0,\dots,m-1$. Если считать буквы различными целыми числами, то вхождение подстроки с і-ой позициии эквивалентно обну-

лению суммы квадратов $B_i = \sum_{j=0}^m (p_j - t_{i+j})^2$. Нужно вычислить весь массив $\{B_i, i=0,\dots,n-m\}$.

- (i) Покажите, как построить $O(n \log n)$ -алгоритм поиска вхождения образца в текст.
- (ii) Покажите, как, используя $B\Pi\Phi$, построить $O(n\log n)$ -алгоритм поиска вхождения образца в текст с «джокерами» (идея описана в том же тексте).
- (iii) Покажите, как понизить сложность алгоритмов предыдущих двух пунктов до $O(n \log m)$.
- 9. Многочлен $A(x)=\sum_{i=0}^{n-1}\alpha_ix^i$ задан последовательностью коэффициентов. Пусть последовательность $\{y_k\}_{k=0}^{n-1}$ его ДПФ, т. е. $y_k=A\left(e^{\frac{2\pi k}{n}i}\right)$. Предложите алгоритм, вычисляющий $\sum_{k=0}^{n-1}(\text{Re }y_k+\text{Im }y_k)$ и требующий $o(n^2)$ арифметических операций.