Problem set 3 2024/IVK Kytölä & A Pajala

Exercise session: Wed 13.3. at 14-16 Hand-in due: Mon 18.3. at 10am

In the weekly exercise sheets there are two types of problems: problems whose solutions are to be presented in the exercise session, and hand-in problems for which written solutions are to be returned.

Exercise 1. The set $\mathbb{C}^{n\times n}$ of $n\times n$ -matrices is naturally identified with the space of linear maps $\mathbb{C}^n \to \mathbb{C}^n$, and is equipped with the operator norm: the norm of $X \in \mathbb{C}^{n \times n}$ is

 $||X||_{\text{op}} = \sup \{||Xv|| \mid v \in \mathbb{C}^n, ||v|| = 1\},$

where $\|\cdot\|$ denotes the usual norm on \mathbb{C}^n .

- (a) If $X, Y \in \mathbb{C}^{n \times n}$ are two matrices, show that $\|XY\|_{\text{op}} \leq \|X\|_{\text{op}} \|Y\|_{\text{op}}$. (b) For $X \in \mathbb{C}^{n \times n}$, show that the following series is convergent in $\mathbb{C}^{n \times n}$:

$$\exp(X) = \sum_{n=0}^{\infty} \frac{1}{n!} X^n.$$

- (c) For $t, s \in \mathbb{R}$ and $X \in \mathbb{C}^{n \times n}$, show that $\exp(sX) \exp(tX) = \exp((s+t)X)$. (d) For any matrix $Z \in \mathbb{C}^{n \times n}$ and an invertible matrix $M \in \mathbb{C}^{n \times n}$, denote by $Ad_M(Z) = MZM^{-1}$ the conjugation of Z by M. Show that

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathrm{Ad}_{\exp(tX)}(Z) = XZ - ZX.$$

Exercise 2. Let G be a connected Lie group, and $U \subset G$ an open neighborhood of the neutral element $e \in G$. Show that the elements in U generate the entire group G (i.e., that the smallest subgroup of G containing U is the entire group).

Hint: Recall that in a connected topological space, the empty set and the whole space are the only subsets which are both open and closed (i.e., complement is open).

- **Hand-in 3.** For $X \in \mathbb{C}^{n \times n}$, let $e^X = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$ and when $||X||_{\text{op}} < 1$, also $\log(\mathbb{I} + X) = -\sum_{k=1}^{\infty} \frac{1}{k} (-X)^k$.
 - (a) Let $X \in \mathbb{C}^{n \times n}$, and define

$$f(t) = \det(e^{tX}).$$

for all $t \in \mathbb{R}$. Show that f satisfies the differential equation f'(t) = c f(t), where $c = \operatorname{tr}(X)$, and the initial condition f(0) = 1. Deduce that

$$\det(e^X) = e^{\operatorname{tr}(X)}.$$

(b) Prove the Baker-Campbell-Hausdorff formula up to third order: for $X, Y \in \mathbb{C}^{n \times n}$ with $||X||_{\text{op}}, ||Y||_{\text{op}}$ sufficiently small, we have

$$\log\left(e^X e^Y\right) = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] + \frac{1}{12}[Y, [Y, X]] + \cdots,$$

where the omitted terms \cdots are $\mathcal{O}(\max(\|X\|_{\text{op}}^4, \|Y\|_{\text{op}}^4))$.

△ Hand-in 4. In this exercise we consider the symplectic group and its Lie algebra. The symplectic group is the group of linear transformations which preserves a symplectic form (just like the orthogonal group is the group of linear transformations which preserve an inner product).

Let $J \in \mathbb{R}^{2n \times 2n}$ be an antisymmetric matrix such that $J^2 = -\mathbb{I}$. Define a bilinear form $\boldsymbol{\omega}$ on \mathbb{R}^{2n} by $\boldsymbol{\omega}(v,w) = v^{\top}Jw$. Let $\operatorname{Sp}_{2n}(\mathbb{R})$ be the set of those $M \in \mathbb{R}^{2n \times 2n}$ which preserve the form $\boldsymbol{\omega}$ in the sense that for all $v,w \in \mathbb{R}^{2n}$ we have $\boldsymbol{\omega}(v,w) = \boldsymbol{\omega}(Mv,Mw)$.

- (a) Show that we have $\operatorname{Sp}_{2n}(\mathbb{R}) = \{ M \in \mathbb{R}^{2n \times 2n} \mid M^{\top}JM = J \}$, and show that $\operatorname{Sp}_{2n}(\mathbb{R}) \subset \operatorname{GL}_{2n}(\mathbb{R})$ is a closed subgroup¹.
- (b) Find a linear condition (on X), which is necessary and sufficient for a matrix $X \in \mathbb{R}^{2n \times 2n}$ to satisfy $\exp(sX) \in \operatorname{Sp}_{2n}(\mathbb{R})$ for all $s \in \mathbb{R}$. Denote the set of such X by $\mathfrak{sp}_{2n}(\mathbb{R})$. Show directly using the linear condition you found that whenever $X, Y \in \mathfrak{sp}_{2n}(\mathbb{R})$, then also $[X, Y] = XY YX \in \mathfrak{sp}_{2n}(\mathbb{R})$.
- ▶ Hand-in 5. Show that the set $SO_n = \{M \in \mathbb{R}^{n \times n} \mid M^\top M = \mathbb{I}, \det(M) = 1\}$ is path-connected², i.e., that for any $M \in SO_n$, there exists a continuous path $\gamma \colon [0,1] \to SO_n$ such that $\gamma(0) = M$ and $\gamma(1) = \mathbb{I}$.

Hint: There are many possible ways, but one concrete approach is to implement the following idea. Noting that elements of SO_n can be identified with ordered and oriented orthonormal bases v_1, \ldots, v_n in \mathbb{R}^n , it is sufficient to continuously deform a given orthonormal basis to the standard basis. To do this, it is convenient to first show that the first basis vector v_1 can be continuously rotated to the first standard basis vector. Then inductively in the dimension n, one can show that in the n-1-dimensional orthogonal complement to the first standard basis vector, one can deform the remaining basis vectors.

¹Closed subgroup means a subgroup which is a closed set, topologically. A subgroup is by definition stable under multiplication ("closed under multiplication").

²Generally in topology, path-connected is a stronger notion than connected (path-conn. \Rightarrow conn.). For manifolds, and Lie groups in particular, the two notions are nevertheless logically equivalent.