A piece of paper is wrapped around a globe of the Earth to form a cylinder as shown. O is the center of the Earth and a point P of the globe is projected along \overrightarrow{OP} to a point P' of the cylinder.

- 16. Describe the image of the globe's equator.
- 17. Is the image of the Arctic Circle congruent to the image of the equator?
- **18.** Are distances near the equator distorted more than or less than distances near the Arctic Circle?
- 19. Does the North Pole (point N) have an image?
- **20.** Consider the mapping $S: (x, y) \rightarrow (x, 0)$.
 - a. Plot the points P(4, 5), Q(-3, 2), and R(-3, -1) and their images.
 - **b.** Does S appear to be an isometry? Explain.
 - c. Is S a transformation? Explain.
- 21. Mapping M maps points A and B to the same image point. Explain why the mapping M does not preserve distance.
- 22. Fold a piece of paper. Cut a design connecting the top and bottom point of the fold, as shown. Unfold the shape. Consider a mapping M of the points in the gray region to the corresponding points in the red region.
 - **a.** Does *M* appear to be an isometry?
 - **b.** If a point P is on line k, what is the image of P?
 - c. If a point Q is not on line k, and M(Q) = Q', what is the relationship between line k and $\overline{QQ'}$?

- **C** 23. a. Plot the points A(6, 1), B(3, 4), and C(1, -3) and their images A', B', and C' under the transformation $R:(x, y) \to (-x, y)$.
 - **b.** Prove that R is an isometry. (Hint: Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be any two points. Find P' and Q', and use the distance formula to show that PQ = P'Q'.)

Explorations

These exploratory exercises can be done using a computer with a program that draws and measures geometric figures.

As you will learn in the next lesson, a *reflection* is a mapping in the plane across a mirror line, just as your reflection in a mirror is a mapping in space across a mirror plane.

Draw any $\triangle ABC$. Reflect C in \overrightarrow{AB} to locate point D. Draw \overrightarrow{AD} and \overrightarrow{BD} . What do you notice about $\triangle ABC$ and $\triangle ABD$?

Draw \overline{CD} . Label the intersection of \overline{AB} and \overline{CD} as E. Compare CE and DE. What do you notice? Measure the angles with vertex E. What do you notice?

Repeat the construction with other types of triangles.

