Challenges of Big Data

5th ICCSNT, Changchun, China

Preliminaries

Rough Set Theory

- •Mathematical tool for both feature selection and knowledge discovery [4].
- •Derives information from data itself without requiring any preliminary or additional information about data.

U/P: Partitioning whole set of objects (universe) with respect to subset of attributes P

10th - 11th December. 2016

5th KCCSNT, Changchun, China

3

 $P, Q \subseteq A$, equivalence partitions over U, then a P positive region[12] of Q can be defined as

$$POS_{p}(Q) = \bigcup_{X \subseteq U \cup Q} \underline{PX}$$

P and Q are the equivalence partitions with respect to set of conditional attribute set P and decision attribute set Q.

The P-positive region of X contains those objects that can be certainly classified in the set X.

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Degree of Dependency

The Degree of dependency (k) of Q on P can be defined as

$$k = \gamma_{P}(Q) = \frac{\left|pos_{P}(Q)\right|}{|U|}$$

Q is totally and partially dependent on P, if k=1 and if 0 < k < 1 respectively. For k=0, Q is independent of P [12].

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Set of condition Attribute

$$P = \{b, c\}$$

Set of Objects
$$X = \{0, 1, 2, 3, 4\}$$

Partition1	Partition2	Partition3	Partition4	Partition5
0	1	2	3	5
4	6			
	7			
b = 0, c = 2	b = 1, $c = 1$	b = 0, c = 0	b = 1, c = 0	b = 2, c = 0

Equivalence Partitions of whole set of objects (U) with respect to attribute set P is $U/P = \{\{0,4\},\{1,6,7\},\{2\},\{3\},\{5\}\}\}$

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Set of decision Attribute

$$Q = \{e\}$$

Set of Objects $X = \{0, 1, 2, 3, 4\}$

Partition1	Partition2	Partition3
0	ı	2
	3	4
	6	5
		7
e = 0	e = 2	e = 1

Equivalence Partitions of whole set of objects (U) with respect to attribute set Q is $U/Q = \{\{0\}, \{2,4,5,7\}, \{1,3,6\}\}\}$

10th - 11th December, 2016

5th ICC5NT, Changchun, China

Partition of conditional attribute set is fully belongs to the partitions of decision attribute set.

$$U/P = \{\{0,4\},\{1,6,7\},\{2\},\{3\},\{5\}\}$$

$$U/Q = \{\{0\}, \{2,4,5,7\}, \{1,3,6\}\}$$

Final Positive region Set: $POSP(Q) = \{2,3,5\}$

0th - 11th December, 2016

5th ICCSNT, Changchun, China

. .

10th - 11th December, 2016

Certainty, Coverage, Strength

- An Information system J = (U, C UD)
 U = {u₁, ..., u_n} is the set of data objects,
 C = {c₁, ..., c_n} is the set of condition attributes
 and D = {d} is the one-element set with decision attribute or class label attribute.
- Certainty[4] $ccr_i(C.D) = \frac{|C(x) \cap D(x)|}{|C(x)|}$

Degree of membership x to the decision class D(x), given C.

- If $cer_x(C, D) = 1$, then will be called a certain decision rule;
- if $0 < cer_x(C, D) < 1$ the decision rule will be referred to as an uncertain decision rule [4].

th - 11th December, 2016

5th ICCSNT, Changchun, China

15

Certainty, Coverage, Strength

• Coverage[4] $cov_{\epsilon}(C,D) = \frac{C(x) \cap D(x)}{|D(x)|}$

Degree of membership of x to condition class C(x), given D.

• Support[4] $supp_1(CD) = |C(x)| \cap D(x)$

Strength[4] $\sigma_{\chi}(C,D) = \frac{supp_{\chi}(C,D)}{|U|} = \frac{Support \ for \ a \ particular \ rule}{Total \ number \ of \ objects \ in University$

10th - 11th December, 2016

Sth ICCSNT, Changchun, China

Certainty, Coverage, Strength

• Coverage[4]
$$cov_{\epsilon}(C.D) = \frac{C(x) \cap D(x)}{|D(x)|}$$

Degree of membership of x to condition class C(x), given D.

• Support[4]
$$supp_t(CD) = C(x) \cap D(x)$$

• Strength[4]
$$\sigma_{\nu}(C,D) = \frac{supp_{\nu}(C,D)}{|U|} = \frac{Support for a particular rule}{Total number of objects in Universe}$$

10th - 11th December, 2016

5th ICCSNT, Changchun, China

17

MapReduce Framework

MapReduce [2]: Framework for Parallel Processing

Proposed Method

- •Extract important features from large dataset by using multiple nodes in parallel. Eradicates uncertainty and redundant dataset by using Positive region and Degree of dependency.
- •Divide the task into Mapper, Combiner, Reducer and compute reduct.

Mapper

Step1:Distribute the data with {key, value} pair.

Step2:Compute the cardinality of {key, value} pair in parallel on different nodes.

10th - 11th December, 2016

5th ICCSNT, Changchun, China

18

Final result

Bear, 2 Gar, 3 Deer, 2 River, 2

..

			Dec	cision	Table		
	Conditional Attributes					Decision Attribute	
	xe U			de c	ď.		
	1	1	5	10	6	1	
L	2	1	5	11	6	2	
Ĺ	3	2	5	10	6	3	
	4	2	5	11	6	4	
	5	3	5	10	6	5	

5th ICCSNT, Changchun, China

Mapper

•Distribute the dataset in different nodes to run in parallel

•Consider the condition attribute $R_{mod} = \{a\}$

•Partitioning the whole objects U with respect to {a}

 $U/R_{mod} = \{\{1,2\},\{3,4\},\{5\}\}\}$ •Partitioning the whole objects U with respect to decision attribute \{\begin{align*} U/\{e\} = \{\{1\},\{2\},\{3\},\{4\},\{5\}\} \end{align*}

xe	U P	a	6	c	Bd /	
1		1	5	10	8	1
2		1	5	11	6	2
3		2	5	10	6	3
4		2	5	11	6	4
5		3	5	10	6	5

10th - 11th December, 2016

Mapper

- •Projects the {Key, Value1} pair with respect to decision attribute {e}.
- •Considered an extra value2 to compute the dependency of partitions of conditional attribute sets on partitions of decision attribute sets.
- •Initializes all the Key K with respect to Value 1 based on decision attribute.

$$R_{mod} = \{a\}$$

$$U / R_{mod} = \{\{1,2\}, \{3,4\}, \{5\}\}\}$$

$$U / \{e\} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\}$$

Key	Velue 1	Value 2
{1,2}	{1}	1
{1,2}	{2}	1
{3,4}	{3}	1
{3,4}	{4}	1
{5}	{5 }	1

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Reducer

- •Reduce the number of valid {key,value1} pair with respect to same decisions
- •Computes the final cardinalities of all the elements of the partition $U\setminus R_{mod}$ which belongs to definite decision class $U\setminus \{e\}$.
- •Discards those objects which have partial dependency.
- •Calculates the summation of all value2.

$$R_{mod} = \{a\}$$

$$U / R_{mod} = \{\{1, 2\}, \{3, 4\}, \{5\}\}$$

$$U / \{e\} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\}$$

d Key	Value 1	Value 2
{1,2}	-1	0
{3.4}	-1	0
(5)	{5}	. 1
TOTAL		1

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Compute Reduct

- Step1: Calculate the degree of dependency of each attribute in parallel based on positive region.
- Step2: Find the attribute with a minimum degree of dependency value and include that attribute in Reduct set.
- Step3: Compute the degree of dependency for all the combinations of Reduct set element with other attributes i parallel until the degree of dependency is equal to 1 and include this combination in Reduct set.

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Compute Reduct

Positive Region set: {5}

Number of objects in positive region =1

Total number of Objects=5

Degree of Dependency= 1/5

Key	Value 1	Value 2
{1,2}	-1	0
{3,4}	-1	0
{5 }	(5)	

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Compute Reduct

- Calculate Degree of dependency with respect to each conditional attribute in parallel in different nodes
- Minimum Degree of dependency for attribute a = 1/5
- First element in Reduct set is {a}

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Compute Reduct

- Combinations of Reduct set element with other conditional attributes are $\{a,b\},\{a,c\},\{a,d\}$
- •Calculate the Degree of dependency for all combinations in parallel.
- •Degree of dependency l for the combination $\{a,c\}$
- •Final Reduct set is $\{a,c\}$

10th - 11th December, 2016

5th ICCSNT, Changchun, China

Time Complexity Analysis

The complexities of each of the functions are:

Function	Time complexity
HeuristicMapper	O(C)
Sorting keys (Heuristic MapRed)	Or(U) *(C)) * log(U) *(C))
MaximizerReducer	O(U * C)
Summer Mapper	0(1)
Sorting keys (Summer MapRed)	O((U * C) * log(U * C))
Summer Reducer	0(1°)
Calculating the best x	01C()
Total per iteration	0(U)*(C *log(C + U))

Final complexity may be expressed as:

$$O(|U|*(|C|*log(|C|+|U|))*K)$$

where K = |R| is size of the reduct set

10th - 11th December, 2016

5th ICCSNT, Changchun, China

٠.

References

- [1] V. López, S. del Río, J. M. Benítez, and F. Herrera, "Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data," Fuzzy Sets and Systems, vol. 258, pp. 5-38, 2015.
- [2] A. Srinivasan, T. A. Faruquie, and S. Joshi, "Data and task parallelism in ILP using MapReduce," Machine Learning, vol. 86, pp. 141-168, 2011.
- [3] Guyon, Isabelle, and A. Elisseeff. "An Introduction to Variable and Feature Selection." Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
- [4] Z. Pawlak, "Rough sets," International Journal of Computer & Information Sciences, vol. 11, pp. 341-356, 1982.
- [5] Shang, C., Shen, Q., "Rough Feature Selection for Neural Network Based Image classification," International Journal of Image and Graphics 2, pp. 541-555, 2002.

10th - 11th December, 2016

5th ICCSNT, Changchun, China