Eine Woche, ein Beispiel 10.5 cohomology of Ag and Mg

This document aims at a collection of the known results. As usual, I'm not an expert, but often I need to make these documents to clear my brain.

Ref:

[vdG11] Van Der Geer, Gerard. "The Cohomology of the Moduli Space of Abelian Varieties." arXiv:1112.2294. Preprint, arXiv, December 10, 2011. https://doi.org/10.48550/arXiv.1112.2294.

Tautological ring Ri

		0	2	4	6	8	10	12	14	• • •		
	R,	Q p	$Q_{_{1}}$									
	Rz	Q	Q	Q ₂	Q 2+1							
	R ₃	Ø	Q	Q	Q 3	Q 3+1	Q 3+2	3+3+1				
	R4	Q	Q	Ø	Q	Q^{r}_{ψ}	Q 4+1	Q2 4+2	Q 4+3 4+2+1	4+3+1	Q 4+3+2	Q 4+3+2+1
	:	:	:	÷	:	:	;	÷	÷	٠.		
A000009 Jumber of Listinct partitions	R _∞	Q ø	Q 1	2	Q ² 3 2:+1	€ 2 4 3 † 1	Q ³ 5 4+1 3+2	6 5-+1 4+2 3+2+1	7 6+1 5+2 4+3 4+2+1			

$$\begin{array}{ll} \text{Rmk. 1.} & R_i \not= \mathbb{Q}\left[\lambda_1,\ldots,\lambda_i\right]/(\lambda_1^2,\ldots,\lambda_i^2) \\ & \text{but} \\ & \text{Gr } R_i \cong \mathbb{Q}\left[\lambda_1,\ldots,\lambda_i\right]/(\lambda_1^2,\ldots,\lambda_i^2) \\ & \text{In fact,} \\ & R_i \cong \mathbb{Q}\left[\lambda_1,\ldots,\lambda_i\right]/((1+\lambda_1+\cdots+\lambda_i)(1-\lambda_1+\cdots+(-1)^2)-1) \end{array}$$

2. In geometry, $\lambda_i = C_i(IE) \qquad i=1,...,g \qquad \qquad |E| \quad T_o^*A$ is the Chern class of the Hodge bundle IE. Ag [A]

When we view $R_{g-1} \subset CH_{\varnothing}(A_g)$, A_g vanishes; when we view $R_g \subset CH_{\varnothing}(A_g^{tor})$, A_g does not vanish.

toroidal compactification in Faltings - Chai