Lecture #2

MA 511, Introduction to Analysis

May 25, 2021

The Axiom of Completeness

■ \mathbb{Q} is an **ordered field**. The natural order < is such that for rationals r and s exactly one of the following to be true: r < s, r = s, or r > s.

Definition

A **field** is any set where addition and multiplication are well-defined operations that are commutative, associative, and obey the distributive property a(b+c)=ab+ac. There must be an additive identity and a multiplicative identity. All elements must have an additive inverse and all nonzero elements must have a multiplicative inverse.

 \blacksquare R should be an ordered field, which contains and extends \mathbb{Q} , but what exactly is a real number and how can we "plug the gaps" in \mathbb{Q} ?

Axiom of Completeness

Every nonempty set of real numbers that is bounded above has a least upper bound.

Least Upper Bounds and Greatest Lower Bounds

Definition

A real number $s = \sup A$ is the **least upper bound** (or **supremum**) for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- \mathbf{I} s is an upper bound for A
- iii if b is any upper bound for A then $s \leq b$

If $s \in A$ it is called the **maximum** of A.

Definition

A real number $i = \inf A$ is the **greatest lower bound** (or **infimum**) for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- i is an lower bound for A
- ii if b is any lower bound for A then $i \ge b$

If $i \in A$ it is called the **minimum** of A.

■ If they exist, are sup A and inf A unique?

Consequences of Completeness

■ The first result that we can prove perhaps better expresses that \mathbb{R} contains no "gaps."

Theorem (Nested Interval Property)

For each $n \in \mathbb{N}$, assume we are given a closed interval:

$$I_n = [a_b, b_n] = \{x \in \mathbb{R} : a_n \le x \le b_n\}$$

Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals:

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$$

has a nonempty intersection, i.e. $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

■ We will see later that the Nested Interval Property could have been our fundamental axiom of the real numbers (provided that we also assumed the Archimedean Property).

Density of $\mathbb Q$ in $\mathbb R$

 \blacksquare $\mathbb R$ is an extension of $\mathbb Q,$ which is an extension of $\mathbb N,$ but how do $\mathbb N$ and $\mathbb Q$ sit inside $\mathbb R?$

Theorem (Archimedean Property)

- **i** Given any number $x \in \mathbb{R}$ there exists an $n \in \mathbb{N}$ satisfying n > x.
- **ii** Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying $\frac{1}{n} < y$.

Theorem (Density of \mathbb{Q} in \mathbb{R})

For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

Corollary

Given any two real numbers a and b, there exists an irrational number t satisfying a < t < b.

The Existence of Square Roots

Theorem

There exists a real number $\alpha \in \mathbb{R}$ satisfying $\alpha^2 = 2$.

- Similarly, we can show \sqrt{x} exists for any $x \ge 0$.
- Using the binomial theorem to expand:

$$\left(\alpha + \frac{1}{n}\right)^m = \sum_{k=0}^m \binom{m}{k} \frac{\alpha^{m-k}}{n^k} = \alpha^m + m \frac{\alpha^{m-1}}{n} + \dots + \frac{1}{n^m}$$

we can also show that $\sqrt[m]{x}$ exists for arbitrary values of $m \in \mathbb{N}$.

- \blacksquare Are the rationals $\mathbb Q$ and the irrationals $\mathbb I$ each closed under addition and multiplication?
- If $r \in \mathbb{Q}$ and $t \in \mathbb{I}$, what can we say about a + t and at (assuming $a \neq 0$)?
- What are the "proportions" of \mathbb{Q} and \mathbb{I} in \mathbb{R} ?

Cardinality

■ What is the "size" of Q anyway?

Definition

A function $f:A\to B$ is **one-to-one** (1-1) if $a_1\neq a_2$ in A implies that $f(a_1)\neq f(a_2)$ in B. The function f is **onto** if, given any $b\in B$, it is possible to find an element of $a\in A$ for which f(a)=b. A function that is both one-to-one and onto is called a **one-to-one correspondence**.

Definition

The **cardinality** of a set refers is a measure of its size. The set A has the same cardinality as B if there exists a one-to-one correspondence $f:A\to B$. In this case, we write $A\sim B$.

<u>Example:</u> If E is the set of even natural numbers, then $E \sim \mathbb{N} \sim \mathbb{Z}$. If (a,b) is any interval of real numbers, then $(a,b) \sim \mathbb{R}$.