pQE-30, pQE-31, and pQE-32 Vectors

Positions of elements in bases Vector size (bp) Start of numbering at Xhol (CTCGAG) T5 promoter/lac operator element T5 transcription start 6xHis-tag coding sequence Multiple cloning site Lambda to transcriptional termination region rrnB T1 transcriptional termination region ColE1 origin of replication	pQE-30	pQE-31	pQE-32
	3461	3463	3462
	1-6	1-6	1-6
	7-87	7-87	7-87
	61	61	61
	127-144	127-144	127-144
	145-192	147-194	146-193
	208-302	210-304	209-303
	1064-1162	1066-1164	1065-1163
	1638	1640	1639
	3256-2396	3258-2398	3257-2397
β-lactamase coding sequence	3256-2390	3230-2370	3237-2077

Figure 1

4,244 base pairs GenBank Accession / X06403

FIGURE 4

FIGURE 5

First Dimension

btaA gene cDNA Sequence

•	1-57	gtgacge agttcgccct cacccacctg cccgccccgc cggttgcccg ccagatcggc
	58-117	geogeogtge accgeaegte getteteage geogaaggae tgatggageg gatgtteteg
	118-177	egeetettee aeggeetegt etateegeag atetgggagg ateeggeggt ggacatggeg
	178-237	gccctcgcca tccgcccgg ggaccggctg gtggccatcg cctcgggcgg ttgcaacgtg
	238-297	ettteetate teaegeaggg geegggeteg atectegeeg tggatetete geeegeecat
	298-357	gtggcgctgg ggcggctgaa getcgccgcc gcgcggacgc tgcccgacca tgccgccttc
	358-417	ttcgatctct tcggtcgcgc agacctgccc ggcaatgcgg ccctctacga ccgccacatc
	418-477	gcgcccgcgc tcgacggccg gagccgccgc tactgggagg cgcgcagccc cttcggccgg
	478-537	cgcatccage tgttcgageg eggettetae eggeaeggtg eceteggeeg etteategge
	538-597	geggeceata egetegegeg ggeegeggge acegacetge ggggetttet egactgtece
	598-657	gacategagg egeagegeag ettettetae geceatateg ggeegetett egaggegeee
	658-717	gtggtgcagg cgctcgcccg acggccggcc gcgctcttcg ggctggggat cccgccgcg
	718-777	caatatgege ttetggeggg agaeggegae ggegaegtge tgeeggtget gegeeagege
	778-837	ctccaccggc tgetctgtga ettccccctg cgcgagaact acttcgcctt ccaggccatc
	838-897	georgecget atecgeggee eggegaggge gegetgeege cetatetega acceaeegee
	898-957	ttcgagacgc tgcgcgagaa cgcgggccgg gtgcagatcg agaaccgcag cctgaccgag
	958-1017	gegetegegg eegaaceega ggagageate eaeggettea eeetgetega tgegeaggae
	1018-1077	tggatgacgg acgcgcagct gaccgcgctc tggcggcagg tgacgcgcac tgcagcgccg
	1078-1137	ggcgcgcggg tgatcttccg caccggcggg gcggccgacc tgctgcccggccgagtgccc
	1138-1197	gaggagatec tegggeactg gegegeegae egggeggegg gaeaggeggg ceatgeege
	1198-1252	gaccettegg egatetaegg eggetteeae etetaeegge ggagggaege eatga

btaB gene cDNA Sequence

1-60	atgaccgacg ccacccatgc ggcgctgatg gacgcgacct accgccacca gcgccggatc
61-120	tacgacgtca cgcggcggca cttcctgctc ggccgcgacc ggctgatcgc cgagctcgac
121-180	ccgcccccg gcgcccgggt gctcgagatc gcctgcggca cggggcgcaa cctcgacctg
181-240	ateggeegge getggeeegg etgeeggete teggggeteg acatetegea ggagatgetg
240-300	gcctcggccc gcgcgctct gggccggcgc gcgacgctgg cgctcggcga tgccacccgg
301-360	ttcgaggccc tgcccctctt cggcaccgac cggttcgagc ggatcgtcct ctcctacgcg
361-420	ctctcgatga tccccgactg gcgcgaggcc ctgcgtgagg cggcgcttca tctcgtgccg
421-480	ggggggcggc tgcatgtcgt cgacttcggc gatcaggcgg gcctgcccgg ctgggcccgc
481-540	geoggeetge geggetggat egggegette eacgteaege egegegaega tetgggeaeg
541-600	geaetgggeg aaacggeget egggateggg ggetatgeeg aataceggte eeteggegg
601-660	ggatatgcga ttctcggcac gctcacgcgg tgagagatcc cctgccctgc
661-720	tgtctgcccg caggcgaccg gccgcgcgac ggccggcctg cgggcgatcc ggcgcactga
721-780	aggeceggeg egtegegeg ggggaegtag eeegeagegg eaageggeeg acagageetg
781-840	acagaccett cacegetece getecegate gegtetegag cegetettec agageteage
841-900	cctcgaggga aagccctctg gcccgacggg caaattgtcc gggatctcta atcgggaaat
901-960	tggtcggage gagaggatte gaaceteega eeeeetgete eegaageagg tgegetacea
961-1020	ggetgegeta egeteegace ttggegtgeg gattataggg tegegeatee gaatgeaagg
1021-1080	gggtccgaac gcaattcgct acggagtgtc tcgcgtctcg cggcggcgca gaaggcgcgg
1081-1140	catgaggece acetegggee geaggeget etggetegee gggeggttet eegacaegtt
1141-1200	geggegegat tegeggeega egatatagag geegetegeg atgatgaeee eegeeegae
1201-1255	ccaggtccag acgtcggacc gctcgccgaa gatgagccag ccgaagatcc ctgac

btaA gene Amino Acid Sequence

1-50 MTQFALTHLP APPVARQIGA AVHRTSLLSA EGLMERMFSR LFHGLVYPQI
51-100 WEDPAVDMAA LAIRPGDRLV AIASGGCNVL SYLTQGPGSI LAVDLSPAHVAL
101-150 GRLKLAAART LPDHAAFFDL FGRADLPGNA ALYDRHIAPA LDGRSRRYWE
151-200 ARSPFGRRIQ LFERGFYRHG ALGRFIGAAH TLARAAGTDL RGFLDCPDIE
201-250 AQRSFFYAHI GPLFEAPVVQ ALARRPAALF GLGIPPAQYA LLAGDGDGDV
251-300 LPVLRQRLHR LLCDFPLREN YFAFQAIARR YPRPGEGALP PYLEPTAFET
301-350 LRENAGRVQI ENRSLTEALAA EPEESIHGFT LLDAQDWMTD AQLTALWRQV
351-400 TRTAAPGARV IFRTGGAADL LPGRVPEEIL GHWRADRAAG QAGHAADRSA

btaB gene Amino Acid Sequence

1-50 MTDATHAALM DATYRHQRRI YDVTRRHFLL GRDRLIAELD PPPGARVLEI
51-100 ACGTGRNLDL IGRRWPGCRL SGLDISQEML ASARARLGRR ATLALGDATR
101-150 FEALPLFGTD RFERIVLSYA LSMIPDWREA LREAALHLVP GGRLHVVDFG
151-200 DQAGLPGWAR AGLRGWIGRF HVTPRDDLGT ALGETALGIG GYAEYRSLGG
201-210 GYAILGTLTR

FIGURE 12

Comments for pYFS2: 5867 nucleotides

FIGURE 13

GAL I promoter: bases 1-452 T7 promoter/primitry site: bases 476-495 Multiple cloning site: bases 502-601 CYCI transoription terminator: bases 608-857 pMB1 (pLIC-derived) origin: bases 1039-1712 Ampicilia resistance gene: bases 1857-2717 UFA2 gene: bases 2735-3842 2 micron origin: bases 3840-5317 11 origin: bases 5985-5840

Mutagenesis Oligonucleotide btaA-L9I

5'-CGC CCT CAC CCA C<u>AT T</u>CC CGC CCC GC-3'

and its reverse complement:

5'-GCG GGG CGG G \underline{AA} \underline{T} GT GGG TGA GGG CG-3'

Mutagenesis Oligonucleotide btaA-A201G

5'-GAC TGT CCC GAG ATC GAG GGC CAG CGC CAG C-3'

and its reverse complement:

5'-GCT GGC GCT G<u>GC C</u>CT CGA TCT CCG GAC AGT C-3'

Mutagenesis Oligonucleotide btaA-S399T

5'-GCC GCC GAC CGT <u>ACG</u> GCG ATC TAC GG-3'

and its reverse complement:

5'-CCG TAG ATC GC<u>C GT</u>A CGG TCG GCG GC-3'

Mutagenesis Oligonucleotide btaB-T13S

5'-GCT GAT GGA CGC G<u>TC C</u>TA CCG CCA CCA G-3'

and its reverse complement:

5'-CTG GTG GCG GTA GGA CGC GTC CAT CAG C-3'

Mutagenesis Oligonucleotide btaB-I115L

5'-CGG TTC GAG CGG <u>CTC</u> GTC CTC TCC TAC GC-3'

and its reverse complement:

5'-GCG TAG GAG AGG AC<u>G AG</u>C CGC TCG AAC CG-3'

Mutagenesis Oligonucleotide btaB-G206A

5'-GGA TAT GCG ATT CTC GCC ACG CTC ACG CG-3'

and its reverse complement:

5'-CGC GTG AGC GT<u>G GC</u>G AGA ATC GCA TAT CC-3'

FIGURE 20

FIGURE 21

Ml-btaA gene sequence

269421	atgacggacgtctcctcggatctggtttttcgccgcggcaa
269461	ggaagttggaaaggccgtctaccagaaccgcgcgctttccaaagccggcatctccgagcg
269521	gctgttcgccttcctgttttccggcctcgtctatccgcagatctgggaagaccccgatgt
269581	cgacatggaggccatgcagcttggtcagggccatcgcatcgtcacaatcgcttccggcgg
269641	ctgcaacatcctcgcctacctcacccgttcgccggcacggatcgacgccgtcgacctcaa
269701	cgccgccacatcgcgctgaaccgcatgaagctggaggcggtgcgccgtctgccctcgca
269761	gggcgatctgttccgctttttcggcgccgccgacaccagccacaattcgcaagcctatga
269821	ccgctttattgcgccgcatctcgatccggtcagccgccactattgggagcgccgcaactg
269881	gcgtggtcgccggcgcatcgccgtcttcgaccgcaatttctaccagaccggcctgctcgg
269941	cetgttcategecatgggccategcacggcgaaattetteggegtcaaceeggcccacat
270001	gatggaagccaggaatatcggcgagcagcgccgcttcttcaacgaggagctggcgccggt
270061	cttcgacaagaagcttttgaaatgggcgacctcgcgtaaggcctcgctgttcggcctcgg
270121	cattccgccggcgcagtacgattccctgatcacctcaggcgacggcaccatggccagcgt
270181	tctgaaggcccggctggaaaagctcgcctgcgattttcccctggaaaacaattatttcgc
270241	ctggcaggcttttgcccgccgctatccaaatcccggtgaggccgccctgcccgcctatct
270301	ggaaaagcagaactacgaaaccatccgcggcaatatcgaccgcgtcgccatccaccatgc
270361	caatctgatcgaattcctcgccggcaaggacgcgggcaccgtcgatcgcttcatcctgct
270421	cgatgcgcaggactggatgaccgatgaccagctcaacgcgctgtggtcggaaatcagccg
270481	cacegceteegeaggegeeggteatetteegeacegeegageeeageetgetgee
270541	aggccgcgtctcgacctcgctgctcgaccagtgggactatcaggacgaggcgtcgcgcga
270601	atteteggeaeggaeegtteggeeatetatggeggetteeaeetetatgtgaagegeae
270661	ggca <u>tga</u>

FIGURE 22

Ml-btaB gene sequence

atgaccgagctgccggccagccccgaattcaaggccaatcatgccgaactg
atggacggcgtctaccactggcagcgccacatctatgacctgactcgcaaatactatctg
ctcggccgcaccggctgatcgatgggcttgaggtgccgcaaggcggcaccgtgctggaa
ctcggctgcggcaccggccgcaacatcatcctggccgccgccgctaccctgatgcccgc
ttcttcggcctggatatctcggccgagatgctggagacggccggc
gaaggcctgtccggccacgtaacgctgacacgaggcgacgccaccgatttcgacgccgcg
gcactttacggcatcgagcgcttcgaccgcgtcttcgtctcctattcgctgtcgatgatc
ccaggctgggaaaagacggtgtcggcggcactcgccgcactatcccccaacggctcgctg
cacategtegattteggeeageaggaaggeetacegggetggtteegtacettgetgege
ggttggctgaaaaaattccacgtaacgccgcgtgaatcgctgcgcgaagttctggaatcg
gaatctcggcgaaccggcgcaaccttccgtttccgcacgctttatcgcggttacgcctgg
ctggcgatgatcaagatcgccagc <u>taa</u>

FIGURE 23

Agrobacterium tumefaciens BtaA DNA

1201	1141	1081	1021	1967	£06	841	781	721	661	601	541	481	421	361	301	241	181	121	61	1
cgc	gac	gca	atg	H	gaa	cgc	gaa	gac	cgc	gac	Cac	tcg	ctg	ttc	aac	010	ctt	tcc	ctc	atg
tcg	atc	cgc	acg	tcc	aag	cgt	aag	gag	tgg	gaa	atc	gtg	gat	9 9 C	aag	tcg	9 9c	99 €	cag	acg
gcc	cgc	gtc	gat	cgc	atc	tat	Ctt	ctg	ctg	Cag	atg	ttc	gcc	cgc	ctg	Cgc	gaa	CtC	Cac	agt
att	aac	atc	gtg	aag	cgc	CCC	gcc	gca	acg	cgc	gcc	gac	acg	gcc	aag	aac	9gc	gtc	aag	909
tat	cag	ttc	cag	609	aac	gag	tgc	agc	aag	cag	cgc	agg	acc	99 C	ctc	CEg	Cac	tat	gca	gca
						CCG														
						cat														
ttc	tat	gcg	gag	99 C	909	gag	CCG	agc	agc	gac	9 90	tac	tac	agc	ttc	atc	gtc	atc	aaa	acc
H	7	S	딥	П	7	ggt	7	7	G	Ö	g	99	99	D C	O	at	2	gg	<u> </u>	gc
2	PE	E	90	2	Н	326	9	S	H	9	a	C	ධු	9	2	ţ	40	5	26	tc
						ctg														
						CCC														
						gct														
4.4	• •	.,	• •	_		tat	1 3	1)	"	П	a,	П	П	П	П	n	n	\mathbf{G}^{\prime}	KC)	Ω
9	ä	Š	ä	2	S		2	Ц	H	5	2	gt	2	gt	g	G	00	26	#	aa
	• •	• •	17	TT.	11	<u>u</u>	u	()	L		u.	n	(1	n	ΓŤ	n	U.	C	ח	0
ā	7	ğ	H	Ö	#		Ö	Ö		Ô	S	S.	d	ሽ	ű	0	G	מ	0,	D
	H	Ħ	מ	g	R	gaa	\mathcal{C}_{i}	Ö	ה ה	6	99	90	gt	2	G	7	0,0	ß	t	2
						tat														
•	gac	5	ggg	tgg	Ctg	tac	gcg	Ctg	tat	gtg	ctg	9 90	att	cat	cac	Ctd	tat	gag	ttt	tta

Agrobacterium tumefaciens BtaA protein

MTSAAPKTGFSKNTKLKSALLQHKALSKSGLSERFFGVLFSGLVYPQIWEDPEIDMEA MELGEGHRIVTIGSGGCNMLAYLSRNPASIDVVDLNPHHIALNKLKLAAFRHLPAHQD VVRHFGRAGTRSNSVGYDRFIAEHLDATTKAYWSKRTLSGRRRISVFDRNIYRTGLLG RFIGAGHIMARLHGVKLTEMAKTRTLDEQRQFFDSKVAPLFDKPVVRWLTKRKSSLFG LGIPPRQYDELASLSSDGTVASVLKERLEKLACNFPLSDNYFAWQAFARRYPEPHEGA LPAYLKPEYYEKIRNNTARVAVHHATYTELLSRKPANGVDRYILLDAQDWMTDVQLNE LWSQISRTAASGARVIFRTAAEKSVIEGRLSPDIRNQWVYLEERSNELNAMDRSAIYG GFHIYQRAMA

Agrobacterium tumefaciens BtaB DNA

```
atgaaaacca tcggcgagaa tgtcggcctt gcagacagcg cgcatgcggg cttgatggac cgcatgtatc gccaccagcg ccatatctac gatatcaccc gcaaatatta tcttctgggc 121 cgtgaccgga ccatttccgg cctcgacgtg ccaaagggcg gcacgctgct ggaaatcggc 121 tgcggcaccg gccgcaacct gctgctggcc agccgccggt ttcccgacgc caaactcttc 241 ggcctcgata tatcagccga aatgctgctg accgcctccg agaattttgc cggcaaagcg 301 gagcgaccca ttctgcgtgt cgccgatgcc accgcttcc ggtcttcgga attcggccag 361 cccgatggct tcgaccgcgt catgatcct tatgcgctgt cgatgatacc ggactgggaa 421 aaagcgatcg aacaggcgt cgcgatgcc accgctttcc ggttcgctgca tatcggcaag 421 ttcggccagc aggaacagtt gccgaagtgg ttccgcacgc ttcttcaagc ctggctaccc 121 cgcttcacg ttaccgcccg cgcaaatctc cgttacgttc tcgccaatat ggccgacgt cgcgaagtgg ttccgcacgc ttcttcaagc ctggctcacc 121 cgcttcacg ttaccgcccg cgcaaatctc cgttacgttc tcgccaatat ggccggccgt cgaaggggaa accgctggaaccgg ttgccgaagccggaaacc gcgaaggggaa acgcatggcg ggctgtcatc acgcttccgg ttgccgaagc cccgcagccg aagatccacc gcttattggc tgacgcctga
```

Agrobacterium tumefaciens BtaB protein

MTDATHAALMDATYRHQRRIYDVTRRHFLLGRDRLIAELDPPPG ARVLEIACGTGRNLDLIGRRWPGCRLSGLDISQEMLASARARLG RRATLALGDATRFEALPLFGTDRFERIVLSYALSMIPDWREALR EAALHLVPGGRLHVVDFGDQAGLPGWARAGLRGWIGRFHVTPRD DLGTALGETALGIGGYAEYRSLGGGYAILGTLTR

Sinorhizobium meliloti BtaA DNA

octo atto acco acco cood ctg aac cat cat ttc gac ctg ccg ccg ccg agc cag agc cttc tga agc cttc aaa ctgac ccc ccc cgc cct cct ccc aggac aggac ccg ggc ggc gac ctc ctc ctc ttat ctc ctc ctc ctc acc a a constant of the constant o oggc oggc atta tatt tatt cogg ccc gag ccc gag ttat ttcaa 121 121 181 181 301 4421 601 721 721 721 721 721 721 721 721

Sinorhizobium meliloti BtaA protein

MTDFAPDAGFGKKNPKLKSALLQHKALSPAGLSERLFGLLFSGLVYPQIWEDPIVDME AMQIRPGHRIVTIGSGGCNMLTYLSAEPARIDVVDLNPHHIALNRLKLSAFRHLPSHK DVVRFLAVEGTRTNGQAYDVFLAPKLDPATRAYWNGRDLTGRRRIGVFGRNVYRTGLL GRFISASHALARLHGINPEDFVKARSMREQRQFFDDKLAPLFERPVIRWITSRKSSLF GLGIPPQQFDELASLSREKSVAAVLRNRLEKLTCHFPLRDNYFAWQAFARRYPRPDEG ELPPYLQASRYEAIRDNAERVEVHHASFTELLAGKPAASVDRYVLLDAQDWMTDQQLN DLWTEITRTADAGAVVIFRTAAEASILPGRLSTTLLDQWYYDAETSMRLGAEDRSAIY GGFHIYRKKA

Sinorhizobium meliloti BtaB DNA

```
atgagcgccg tgcagaccgc gaatgaaagc cacgctcatc tgatggaccg catgtatcgc 61 taccagcggt acatctatga tttcactcgc aaatactatc tcttcggccg tgacacgctg 121 atccgtgaac tgaacccgcc gccaggcgca tcggtgctgg aagtcggctg cggcacgggc 181 cgcaatctcg ccgtgatcgg ggatctctac cccggtgcgc gcctcttcgg cctcgatatc 182 tcggccgaaa tgctggcgac cgccaaagcc aagctccggc gccaaaatcg gccggacgca 183 gtgttgcggg tcgccgacgc gacgaatttc accgccgct cattcgatca ggaaggcttc 183 gaccggatcg tcatttccta cgcctttcc atggttcccg aatgggaaaa ggcggtcgat 184 gaaggttggc cggccgct ccgcggcgc tcgctgcata tcgccgact cggccagcag 184 gaaggttggc cggccggct ccgccgcttc ctccaggcct ggctcagacg cttccacgtc 184 acgccgcgcg aaacgctttt cgatgtgatg cgcaaaagag ccgagagaaa cggagcggcg 184 acgccgcgcg aaacgctttt cgatgtgatg cgcaaaagag ccgagagaaa cggagcggcg 185 acgccggca gatcgctgag acgaggttat gcctggcttg tcgtctatcg ccgcgcgca 185 acgccgcgca gatcgctgag acgaggttat gcctggcttg tcgtctatcg ccgcgcgca 185 acgccgcgca 185 acgccgca 185 acgccgcgca 185 acgccgcgca 185 acgccgcgca 185 acgccgcgca 185 acgccgca 185 acgcc
```

Sinorhizobium meliloti BtaB protein

MSAVQTANESHAHLMDRMYRYQRYIYDFTRKYYLFGRDTLIREL NPPPGASVLEVGCGTGRNLAVIGDLYPGARLFGLDISAEMLATA KAKLRRQNRPDAVLRVADATNFTAASFDQEGFDRIVISYALSMV PEWEKAVDAAIAALKPGGSLHIADFGQQEGWPAGFRRFLQAWLR RFHVTPRETLFDVMRKRAERNGAALEVRSLRRGYAWLVVYRRAA P

Figure 32

Figure 33

Figure 34

A. Vogels (20 mM P)

B. Vogels -P +MES (0.01 mM P_i)

