作业三、缺陷数据集分析

MG1733018 郭肇强

1 任务描述

在软件开发时会产生很多缺陷,软件缺陷预测是一种行之有效的软件质量控制手段,通过对缺陷数据集的分析,可以提供有用的缺陷预测指标进行缺陷预测。本实验是通过编写 R 脚本分析 wmc, dit, noc, cbo, rfc 和 lcom 这 6 种度量值的缺陷预测能力。使用的数据集为 xalan2. 4: https://zenodo.org/record/268436/files/xalan-2. 4. csv。

2 实验内容

- 2.1 收集描述性统计信息最小值、25%处值、中位值、75%处值、最大值、平均值、偏度(skewness)和峰度(kurtosis)
- (1) 统计信息计算方法

平均值:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{3.1}$$

中位值:

$$Median = \begin{cases} X_{\left(\frac{n+1}{2}\right)} & \text{, } n \in odd \\ \frac{1}{2} \left[X_{\left(\frac{n}{2}\right)} + X_{\left(\frac{n}{2}+1\right)} \right] & \text{, } n \in even \end{cases}$$

$$(3.2)$$

方差:

$$S^{2} = \frac{1}{n+1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$
(3.3)

偏度:

$$skewness = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^3}{(n-1)S^3}$$
 (3.4)

峰度:

$$kurtosis = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^4}{(n-1)S^4} - 3$$
(3.5)

(2) 实现方法: calc_statis(features) features 为6类度量指标

name	min	Q1.	median	Q3.	max	mean	skewness	kurtosis
wmc	0	3	6	12.5	123	11.44952	3.478202	15.08622
dit	1	1	2	4	8	2.565698	0.656867	-0.29915
noc	0	0	0	0	29	0.608575	7.332323	63.16812
cbo	0	4	8	18	171	14.49793	3.472056	16.41106
rfc	0	8	19	41	355	30.16183	3.014723	14.6192
lcom	0	0	3	22.5	6589	130.0816	7.684377	67.13383

表 1 描述性统计信息

2. 收集度量数据与 bug 数据的相关系数及其显著性(Spearman、Pearson)

(1) **Spearman 相关系数** 在统计学中,斯皮尔曼等级相关系数用来估计两个变量 X、Y 之间的相关性,其中变量间的相关性可以使用单调函数来描述。如果两个变量取值的两个集合中均不存在相同的两个元素,那么,当其中一个变量可以表示为另一个变量的很好的单调函数时(即两个变量的变化趋势相同),两个变量之间的 ρ 可以达到+1 或-1。计算方法如(3.6)。

斯皮尔曼等级相关系数对数据条件的要求没有皮尔逊相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关系数来进行研究。

$$\rho = 1 - \frac{6\sum_{i=1}^{N} d_i^2}{N(N^2 - 1)} \tag{3.6}$$

(2) **Pearson 相关系数** 皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于 20 世纪提出的一种计算直线相关的方法。假设有两个变量 X、Y,那么两变量间的皮尔逊相关系数可通过以下公式计算(其中 E 是数学期望,cov 表示协方差):

$$\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y} = \frac{E(XY) - E(X)E(Y)}{\sqrt{E(X^2) - E^2(X)}\sqrt{E(Y^2) - E^2(Y)}}$$
(3.7)

(3) t 统计检验

$$t = \frac{r - 0}{\sqrt{\frac{1 - r^2}{n - 2}}}\tag{3.8}$$

(4) 实现方法: calc_cor(features) features 为度量数据

calc_cor(features)

#b.计算相关系数及显著性统计,输出结果"cor.csv'

(5) 输出结果 (r 为相关系数, T 为显著性结果)

表 2 相关系数及显著性水平

r.spearman	T.spearman	r.pearson	T.pearson
0.314245034	0.662027097	0.37879231	0.818584115
-0.026123016	-0.052263867	-0.00186037	-0.00372075
0.090944259	0.182645404	0.054916	0.109997988
0.217623951	0.445935783	0.22354421	0.458696293
0.356341649	0.76275371	0.45929364	1.034113835
0.259251617	0.536858525	0.30757572	0.646490996

3. 4. 使用 10 种机器学习方法建立多变量的缺陷预测模型,利用 10x10 交叉验证评价模型的分类性能(AUC)和排序性能(CE)。

```
learners <- c(
    "classif.naiveBayes", #朴素贝叶斯分类器
    "classif.svm", #支持向量机
    "classif.gbm", #梯度推进机
    "classif.lda", #线性判别分析
    "classif.mlp", #多层感知器
    "classif.randomForest", #随机森林
    "classif.rpart", #決策树
    "classif.glmnet", #GLM with Lasso or Elasticnet Regularization
    "classif.nnet", #神经网络
    "classif.multinom" #多元回归
    )
```

图 1 10 种机器学习方法

(1) 分类性能 AUC

AUC 可通过对 ROC 曲线下各部分的面积求和而得。假定 ROC 曲线是由坐标为 $\{(x_1,y_1), (x_2,y_2),...,(x_m,y_m)\}$ 的点按序连接而形成 $(x_1=0,x_m=1)$,则 AUC 可估算为

$$AUC = \frac{1}{2} \sum_{i=1}^{m-1} (x_{i+1} - x_i) \cdot (y_i + y_{i+1})$$
(3.9)

(2) 排序性能 CE

其中 $Area_{\pi}(Random)$ 是 0.5, 因此 CE 和 AUC 之间是正相关。

$$CE_{\pi}(model) = \frac{Area_{\pi}(model) - Area_{\pi}(Random)}{Area_{\pi}(optimal) - Area_{\pi}(Random)}$$
(3.10)

(3) 实现方法:make_and_evaluate_model()

make_and_evaluate_model()

#c.构建模型并评估

(4) 输出结果

图 2 算法性能

- 5. 利用 CD 图比较这 10 种模型在统计上的差别(plotCD)
- (1) 实现方法: graph_cd(graph_data)

graph_cd(graph_data)

#e.作CD图

(2) 输出结果

图 3 CD 图

6. 利用 Algorithm 图比较这 10 种模型在统计上的差别

(1) 实现方法: graph_algorithm(graph_data)

graph_algorithm(graph_data)

#f.作Algorithm图

(2) 输出结果

图 4 算法图

7. 利用 heatmap 展示 10 个模型在 100 个测试集上的结果(行为模型, 列为结果)

图 5 热力图

参考文献资料

- [1] An Introduction to R
- [2] $\underline{\text{https://mlr-org.github.io/mlr-tutorial/devel/html/index.html}}$
- [3] Statistical Comparison of Multiple Algorithms in Multiple Problems
- [4] 赵东晓 周毓明. 无监督缺陷模块序列预测模型: 一个工作量感知的评价[J]中国科技论文在线
- [5] 周志华. 机器学习[M]. 清华大学出版社