

Neural Video Depth Stabilizer

Yiran Wang¹ Min Shi¹ Jiaqi Li¹ Zihao Huang¹

Zhiguo Cao¹ Jianming Zhang² Ke Xian³ Guosheng Lin³

¹Huazhong University of Science and Technology ²Adobe Research ³Nanyang Technological University

Problem Statements

Goal: Monocular video depth estimation is a prerequisite for various video applications, e.g., bokeh rendering 2D-to-3D video conversion, and novel view synthesis. An ideal video depth model should output depth results with both spatial accuracy and temporal consistency.

Motivation:

- The prevailing video depth approaches require testtime training (TTT) with pose estimations, leading to limited robustness and heavy computation overhead.
- Learning-based paradigm requires proper model design and sufficient data. Previous learning-based methods show worse performance than TTT-based ones.
- Video depth data is also limited in scale and diversity.

Key Contributions

- A plug-and-play and bidirectional learning-based framework termed Neural Video Depth Stabilizer (NVDS), which can be directly adapted to different single-image depth predictors to remove flickers.
- A large-scale dataset, Video Depth in the Wild (VDW), which is currently the largest natural-scene video depth dataset with the most diverse scenes.

Neural Video Depth Stabilizer (NVDS)

The Depth Predictor can be any single-image depth model which produces initial flickering disparity maps.

The Stabilization Network refines the flickering disparity maps into temporally consistent ones. It functions in a sliding window manner: the frame to be predicted fetches information from adjacent frames for stabilization.

Plug-and-play Manner: During inference, our Neural Video Depth Stabilizer (NVDS) can be directly adapted to any off-the-shelf single-image depth predictors in a plug-and-play manner without extra effort.

Bidirectional Inference: We also devise bidirectional inference to further improve temporal consistency.

Video Depth in the Wild (VDW) Dataset

To compensate for data shortage and boost performance of learning-based video depth models, we elaborate the currently largest natural-scene VDW dataset with the most diverse video scenes. We collect videos from four data sources: movies, animations, documentaries, and web videos. VDW contains 14,203 videos with 2,237,320 frames.

Type	Dataset	Videos	Frames(k)	Indoor	Ourdoor	Dynamic	Resolution
	NYUDV2	464	407	V	X	X	640×480
C1 1	KITTI	156	94	X	~	✓	1224×370
Closed	TUM	80	128	/	X	✓	640×480
Domains	IRS	76	103	/	X	X	960×540
	ScanNet	1,513	2,500	✓	×	X	640×480
	Sintel	23	1	V	V	V	1024×436
Natural	TartanAir	1,037	1,000	~	/	X	640×480
Scenes	WSVD	553	1,500	~	~	✓	$\sim 720p$
	Ours	14,203	2,237	/	V	V	1880×800

Experiments

Comparisons with the state-of-the-art approaches:

Type	Method	Time(s)	VDW				Sintel			NYUDV2		
- J PC	TVICTIOG		$\delta_1 \uparrow$	$Rel \downarrow$	$OPW \downarrow$	$\delta_1\uparrow$	$Rel \downarrow$	$OPW \downarrow$	$\delta_1\uparrow$	$Rel \downarrow$	$OPW \downarrow$	
Single	Midas	0.76	0.644	0.347	0.647	0.485	0.410	0.843	0.910	0.095	0.862	
Image	DPT	0.97	0.724	0.266	0.461	0.597	0.339	0.612	0.928	0.084	0.811	
Tost time	CVD	352.58		_	_	0.518	0.406	0.497		_		
Test-time Training	Robust-CVD	270.28	0.658	0.334	0.251	0.521	0.422	0.475	0.886	0.103	0.394	
	Zhang et al.	464.83	_	_	_	0.522	0.342	0.481	_	_	_	
	ST-CLSTM	0.58	0.461	0.589	0.455	0.351	0.517	0.585	0.833	0.131	0.645	
Learning Based	Cao et al.			_	_			_	0.835	0.131		
	FMNet	3.87	0.465	0.584	0.388	0.357	0.513	0.521	0.832	0.134	0.387	
	DeepV2D	68.71	0.522	0.628	0.425	0.486	0.526	0.534	0.924	0.082	0.402	
	WSVD	4.25	0.621	0.379	0.437	0.501	0.439	0.577	0.768	0.164	0.683	
	Ours(Midas)	1.55	0.694	0.286	0.164	0.532	0.374	0.469	0.941	0.076	0.373	
	Ours(DPT)	1.73	0.731	0.259	0.138	0.591	0.335	0.424	0.950	0.072	0.364	

Qualitative comparisons:

Plug-and-play manner:

	Initial				Ours			
	$\delta_1 \uparrow$	$Rel \downarrow$	$OPW \downarrow$	•	$\delta_1 \uparrow$	$Rel \downarrow$	$OPW \downarrow$	
Midas	0.910	0.095	0.862		0.941	0.076	0.373	
DPT	0.928	0.084	0.811		0.950	0.072	0.364	
NeWCRFs	0.937	0.072	0.645		0.957	0.068	0.326	

Influence of different training data:

	Dataset	$\delta_1 \uparrow$	$OPW \downarrow$	Setting	$\delta_1 \uparrow$	OPW
	NYUDV2	0.527	0.435	Scratch(DPT)	0.931	0.372
	IRS+TartanAir	0.542	0.489	Pretrain(Midas)	0.941	0.373
i	VDW(Ours)	0.591	0.424	Pretrain(DPT)	0.950	0.364

FIOPs and model parameters:

FLOPs (G) 1011.32 550.47 415.24 254.53 Params (M) 341.26 270.33 104.18 88.31		DPT-L	NeWCRFs	Midas-v2	Stabilization Network
Params (M) 341.26 270.33 104.18 88.31	FLOPs (G)	1011.32	550.47	415.24	254.53
	Params (M)	341.26	270.33	104.18	88.31

Github Repo: https://github.com/RaymondWang987/NVDS

NVDS Project Page: https://raymondwang987.github.io/NVDS/

VDW Dataset: https://raymondwang987.github.io/VDW/ Contact: wangyiran@hust.edu.cn