Artin: Fields

James Pagan

March 2024

Contents

1	Fields	2
2	Algebraic and Transcendental Elements	2

1 Fields

A field is a commutative division ring. If $F \subseteq K$ are a pair of fields, we say K is a field **extension** of F. This relation is denoted K/F; this is *not* a quotient! Examples of fields are as follows:

- 1. Subfields of \mathbb{C} are called **number fields**. Any subfield of \mathbb{C} contains the field \mathbb{Q} of rational numbers. The most important number systems are **algebraic number fields**, whose elements are algebraic numbers.
- 2. A **finite field** is a field that contains finitely many elements. Finite fields are gorgeous and colorful objects that obey beautiful, tight-knit properties.
- 3. Extensions of the field C(t) of rational functions are called **function fields**.

2 Algebraic and Transcendental Elements

Let K/F be a field extension and let α be an element of K. The element α is **algebraic** over \mathbf{F} if is the root of a monic polynomial with coefficients in F — say, $f(\alpha) = 0$ for

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$
 for some $a_{n-1}, \dots, a_0 \in F$,

An element is **transcendental over F** if it is not algebraic. Both of these properties depend on the field F. Every element $\alpha \in F$ is algebraic over F due to the monomial $x - \alpha$. We can elegantly describe this as a substitution homomorphism

$$\phi: F[x] \to X$$
 defined by $x \leadsto \alpha$.

An element ϕ is transcendental if ϕ is injective and algebraic otherwise.

Proposition 1. Let $\alpha \in K / F$ be an element of a field extension. The following conditions on a monic polynomial $f \in F[x]$ are equivalent:

- 1. f is the unique monic polynomial of lowest degree in F[x] with α as a root.
- 2. f is an irreducible element of F[x] with α as a root.
- 3. $f(\alpha) = 0$ and (f) is a maximal ideal.
- 4. If $q(\alpha) = 0$, then $f \mid q$.

Proof. Since F[x] is a Euclidean domain, the kernel of $\phi : F[x] \to K$ is a principal ideal generated by some polynomial f of smallest degree. f must be irreducible, or else a polynomial of smaller degree has a root at ϕ ; the other properties are easy to deduce.

This polynomial is called the **minimal polynomial** of α . Like before, the minimal polynomial depends on both F and α . The degree of the minimal polynomial of α is called the **degree** of α . There are two distinct conversations at this point:

1. The field $F(\alpha_1, \ldots, \alpha_n)$ denotes the subfield of K generated by $\alpha_1, \ldots, \alpha_n$.

$$F(\alpha_1,\ldots,\alpha_n)$$
 is the smallest subfield of K that contains F and α_1,\ldots,α_n .

2. The ring $F[\alpha_1, \ldots, \alpha_n]$ denotes the subring of K generated by $\alpha_1, \ldots, \alpha_n$. The ring $F[\alpha]$ is isomorphic to the image of the substitution homomorphism $\phi: F[x] \to K$ as defined above.

The field $F(\alpha)$ is isomorphic to the field of fractions of $F[\alpha]$. If α is transcendental, then $F[\alpha] \cong F[x]$ and $F(\alpha) \cong F(\alpha)$; otherwise,

Proposition 2. Let $\alpha \in K / F$ be an element of a field extension which is algebraic over F. Let f be the minimal polynomial of α .

- 1. The canonical map $\phi: F[x]/(f) \to F[\alpha]$ an isomorphism.
- 2. $F[\alpha]$ is a field, hence $F[\alpha] = F(\alpha)$.
- 3. More generally, $F[\alpha_1, \ldots, \alpha_n] = F(\alpha_1, \ldots, \alpha_n)$ if $\alpha_1, \ldots, \alpha_n \in K / F$ are algebraic.

Proof. Let $\phi: F[x] \to K$ be the aforementioned substitution homomorphism. Then $F[x] / \operatorname{Ker} \phi \cong K$. By Proposition 1, the kernel of ϕ is a maximal ideal generated by the minimal polynomial f, which yields (1) and (2). As per (3), an induction argument proceeds something like

$$F[\alpha_1, \dots, \alpha_n] = F[\alpha_1, \dots, \alpha_{n-1}][\alpha_n] = F(\alpha_1, \dots, \alpha_n)[a_k] = F(\alpha_1, \dots, \alpha_n).$$

The omitted details are relatively easy to verify.

The following proposition is a special case of one I omitted from Chapter 11.

Proposition 3. Let $\alpha \in K / F$ be an algebraic element of a field extension. If $\deg \alpha = n$, then $\alpha_1, \ldots, \alpha_n$ is a basis for $F(\alpha)$ as a vector space over F.

A fundamental question is: given two elements α and β — or given their minimal polynomials — when can one determine whether α and β generate equal fields? Proposition three provides a necessary non-sufficient condition: that $\deg \alpha = \deg \beta$. The following proposition answers a special case.