Automorphism Groups and Cosets - Lecture 10/03

Automorphism Groups and Cosets - Lecture 10/03

Group of Automorphisms

Quotient & Product of Groups

Cosets

Corollary

Example

Prop

Index

Ex.

Lagrange Theorem

Prop

Group of Automorphisms

- Aut(G) is the group of automorphisms of G.
- $\bullet \ \ \mathsf{Fix} \ g \in G, \ \mathsf{define} \ \phi_g : G \to G. \ \phi_q(x) = gxg^{-1}$ We've verified $\phi_q \in Aut(G)$. Each ϕ_q is called an <u>inner automorphism</u>.

$$egin{array}{ll} ullet \ \Phi: \ G \
ightarrow \ Aut(G) \ & g \ \mapsto \ \phi_q \end{array}$$

- $Inn(G) = \{ \phi_q \in Aut(G) \mid g \in G \} = Im(\Phi)$
- We know: the image of a homomorphism is a subgroup of the codomain group.
 - \circ Φ is a homomorphism: $\frac{1}{5} = \frac{1}{9} \frac{1}{9} =$ $= \cancel{p}_{g} \cdot \cancel{p}_{g}$ = 9, (9, ~9=) 5, = D(91)-D(92) $= \oint_{\mathfrak{J}_1} (\oint_{\mathfrak{J}_2} (\infty)) = \oint_{\mathfrak{J}_2} \oint_{\mathfrak{J}_2} (\times)$ • So Inn(G) is a subgroup of Aut(G)
- Furthermore, Inn(G) is a normal subgroup of Aut(G)
 - $\quad \circ \quad \forall \phi_g \in Inn(G), \forall f \in Aut(G) \text{ need to check}: f \circ \phi_g \circ f^{-1} \in Inn(G)$

$$\begin{array}{l} \circ \ \, \forall x \in G, \; f \circ \phi_g \circ f^{-1}(x) = f(\phi_g(f^{-1}(x))) \\ \\ = f(gf^{-1}(x)g^{-1}) = f(g)f(f^{-1}(x))f(g^{-1}) = f(g)xf(g)^{-1} = \phi_{f(g)}(x) \end{array}$$

$$\circ \ \operatorname{So} f \circ \phi_g \circ f^{-1} = \phi_{f(g)} \in Inn(G)$$

$$\begin{array}{ccc} \bullet & \Phi: \ G \ \rightarrow \ Aut(G) \\ & g \ \mapsto \ \phi_g \end{array}$$

Sometimes, different g may lead to same ϕ_g .

For example, if G is abelian

$$\phi_g(x) = gxg^{-1} = x$$
 $\phi_g = id_G, \ Inn(G) = \{id\}$

• Φ will be injective iff $Z(G) = \{1\}$

o Q When will
$$\Phi$$
 be injective ? (i.e., $g_1 \neq g_2 \Rightarrow g_1 \neq g_2$).

 $g \in \ker(\Phi) \iff \Phi(g) = g' = id_G \iff \forall \kappa \in G . g'(\kappa) = \kappa \iff \forall \kappa \in G . g'(\kappa) = \kappa \iff g \times g' = \kappa \iff g \times g' = \kappa \iff g \times g = \kappa g \iff g \in Z(G).$
 Φ will be injective iff $Z(G) = \{1\}$. $\Leftrightarrow g \in Z(G)$.

• E.g. $Z(S_3) = \{id\}$, so we have an injective homomorphism:

$$egin{aligned} \Phi:S_3 &
ightarrow Aut(S_3)\ \Rightarrow |Aut(S_3)| \geq |S_3| \end{aligned}$$

Quotient & Product of Groups

Cosets

G is a group, H is a subgroup of G.

Define a relation on G by $a\sim b$ if a=bh ($b^{-1}a=h$) for some $h\in H$

This is an equivalence relation:

Under this equivalence relation, an equivalence class is:

$$[g]=\{x\in G|x\sim g\}=\{x\in G|x=gh \text{ for some }h\in H\}=\{gh\in G|h\in H\}=gH$$

Such an equivalence class is called a <u>left coset</u> of H in G.

Corollary

Two left cosets of H in G are either disjoint or conincide. And G is a partition of its distinct left cosets.

Example

Example O. (Z,+). H=3Z.

$$0 + 3\mathbb{Z} = \{0, \pm 3, \pm 6, \dots \}$$

(2).
$$G = S_3$$
. $H = \langle (1 2) \rangle$.
 $1H = \langle (12)H = \{id, \langle (12) \}, \langle (13)H = \{(13), (123)\} = (123)H$.
 $(23)H = \{(23), (132)\} = (132)H$.

Prop

H is a subgroup of G. $a,b\in G$. Then the following are equivalent:

$$1. aH = bH$$

2.
$$a=bh$$
 for some $h\in H$

3.
$$b^{-1}a\in H$$

4.
$$a \in bH$$

Remark. We can also construct right cosets in a similar way:

Hg = {hg e G | h e H} (start from defining and if a = hb

for some,

he H)

But in general, gH and Hg may be different sets.

Index

H is a subgroup of G.

Define the number of distinct left cosets of H in G to be the <u>index</u> of H in G.

Denoted by [G:H].

Ex.

1.
$$(\mathbb{Z},+),\ H=3\mathbb{Z}.$$
 We see $[\mathbb{Z}:3\mathbb{Z}]=3$

2.
$$S_3,\ H=<(1\ 2)>$$
. We see $[S_3:H]=3$

- Lagrange Theorem

If G is a finite group of H is a subgroup of G, then

$$[G:H] = \frac{|G|}{|H|}$$

Proof:

If we know G is the disjoint union of distinct left cosets of H in G, and there're [G:H] left cosets.

For each coset gH, it has some number of elements as that of H. since we can construct a bijection

$$\begin{array}{c}
H \longrightarrow gH \\
h \longmapsto gh
\end{array}$$

50 $|G| = (\# \text{ left cosets}) \times (\# \text{ elements in each coset})$ = $[G: H] \cdot |H|$.

Remark:

Pemark () When IGI=00. We can understand [G/=[G:H].IH] as at least one of [G:H] and IH| is shifting.

(2) When IGI and IHI are infinite, it's possible [G:H] <00.

For example. G=(Z,+). H=3Z.

Cor. If H is a subgroup of a finite group G, then |H| divides |G|.

e.g. $G = K_{4}^{2}$. Find all subgroups of K_{4} . $|K_{4}| = 4$. H is a subgroup of K_{4} . |H| = 1, 2, 4. |H| = 1: |H| = 2: |H| = 4: |H| = 4: |H| = 4. |H| = 2: |H| = 2: |H| = 4: |H|

Cor If $x \in G$, G is a fluite group. then $[x \mid divides \mid G]$. Pf. $|x| = |\langle x \rangle|$. by the above Cor., it divides |G|.

- Prop

If G is a group, |G| is prime, then G is a cyclic group

Prop. If G is a group. |G| is prime, then G is a cyclic group.

Pf. $|G| \neq 1$. So $\exists g \in G$. $g \neq 1$. $|g| \neq 1$. |g| |G| = P, a prime. So $|g| = |I| \Rightarrow P$. $\Rightarrow |g| = P$.

(hypossible)

Then $|\langle g \rangle| = |g| = P = |G|$. $\Rightarrow G = \langle g \rangle$.

Remark () If IGEP is prime, then any non-identity element of G can be the generator of G.

2). If $|G| \neq 1$ or prime. then we can find hon-cyclic group G.

For example. |G| = 4. K_4 is hon-cyclic. |G| = 6. S_3 is hon-cyclic.