CSci 4270 and 6270 Computational Vision, Spring Semester, 2025 Lecture 03 Practice Exercises

Overview

Please see the lecture 01 and 02 practice problems for an overview.

Problems

1. For unit vectors \hat{x} and \hat{y} in N dimensional space, the square Euclidean distance between the vectors is $\|\hat{x} - \hat{y}\|^2$ while the cosine distance is $\cos \theta = \hat{x} \cdot \hat{y}$. Give a derivation showing that

$$\|\hat{x} - \hat{y}\|^2 = 2(1 - \cos \theta).$$

2. If $\hat{\mathbf{x}}$ is a unit vector and \mathbf{y} is any vector, show that

$$(\mathbf{y} \cdot \hat{\mathbf{x}})\hat{\mathbf{x}}$$
 and $\mathbf{y} - (\mathbf{y} \cdot \hat{\mathbf{x}})\hat{\mathbf{x}}$

are orthogonal.

- 3. Given a set of points \mathbf{x}_i in N dimensions, how do we know that the direction of maximum and minimum variation in the data are orthogonal to each other?
- 4. Under what conditions are the spectral decomposition of a matrix and the singular value decomposition of a matrix equal?
- 5. Suppose you are given set of N vectors stored in a two dimensional NumPy array. In particular, each column should be thought of as a different vector, so that M, the number of rows, is the length of each vector. Write code to normalize the array so that each column is a unit vector. No for loops are necessary.