Trabajo práctico N° 2 BIS

Unidades de información

FECHA DE FINALIZACIÓN: 11 DE ABRIL

Introducción a la computación Departamento de Ingeniería de Computadoras Facultad de Informática - Universidad Nacional del Comahue

Objetivo: Comprender las diferencias y similitudes entre los sistemas de medida internacional y de prefijo binario.

Recursos web:

- Wikipedia: Prefijo binario. http://es.wikipedia.org/wiki/Prefijo_binario
- Wikipedia: *Prefijos del sistema internacional*. https://es.wikipedia.org/wiki/Prefijos_del_Sistema_Internacional
- Wikipedia: ASCII: http://es.wikipedia.org/wiki/ASCII

Lectura obligatoria:

• Apuntes de cátedra. Capitulo 2: Unidades de Información. Disponible en: https://egrosclaude.github.io/IC/IC-notes.pdf

Tabla ASCII:

Dec	Hex		Dec	He	ĸ	Dec	Hea	ζ	Dec	Hea	ζ	Dec	He	X	Dec	He	ĸ	Dec	He	ĸ	Dec	Hea	ζ
0	00	NUL	16	10	DLE	32	20		48	30	0	64	40	0	80	50	P	96	60	(112	70	р
1	01	SOH	17	11	DC1	33	21	!	49	31	1	65	41	Α	81	51	Q	97	61	a	113	71	q
2	02	STX	18	12	DC2	34	22	11	50	32	2	66	42	В	82	52	R	98	62	b	114	72	r
3	03	ETX	19	13	DC3	35	23	#	51	33	3	67	43	С	83	53	S	99	63	С	115	73	s
4	04	EOT	20	14	DC4	36	24	\$	52	34	4	68	44	D	84	54	T	100	64	d	116	74	t
5	05	ENQ	21	15	NAK	37	25	%	53	35	5	69	45	E	85	55	U	101	65	е	117	75	u
6	06	ACK	22	16	${\tt SYN}$	38	26	&	54	36	6	70	46	F	86	56	V	102	66	f	118	76	v
7	07	BEL	23	17	ETB	39	27	,	55	37	7	71	47	G	87	57	W	103	67	g	119	77	W
8	80	BS	24	18	CAN	40	28	(56	38	8	72	48	Н	88	58	X	104	68	h	120	78	х
9	09	HT	25	19	EM	41	29)	57	39	9	73	49	Ι	89	59	Y	105	69	i	121	79	У
10	OA	LF	26	1A	SUB	42	2A	*	58	ЗА	:	74	4A	J	90	5A	Z	106	6A	j	122	7A	Z
11	OB	VT	27	1B	ESC	43	2B	+	59	ЗВ	;	75	4B	K	91	5B	[107	6B	k	123	7B	{
12	OC	FF	28	1C	FS	44	2C	,	60	3C	<	76	4C	L	92	5C	\	108	6C	1	124	7C	
13	OD	CR	29	1D	GS	45	2D	-	61	3D	=	77	4D	M	93	5D]	109	6D	m	125	7D	}
14	0E	SO	30	1E	RS	46	2E		62	3E	>	78	4E	N	94	5E	^	110	6E	n	126	7E	~
15	0F	SI	31	1F	US	47	2F	/	63	3F	?	79	4F	0	95	5F	_	111	6F	0	127	7F	DEL

- 1. En un albergue para perros, se enumera a cada animal con un número identificatorio único.
 - a) Si tuviera que enumerar a cada uno sabiendo que tengo etiquetas de 7 bits de longitud, ¿a cuántos seres vivos puedo identificar?
 - b) ¿Y si la etiqueta fuera de 6 bits de longitud?
 - c) ¿Y si fuera de 8 bits de longitud?
- 2. Si tengo 456457468 granos de arena en una construcción edilicia.
 - a) ¿Cuántos bits necesito para representar ese número de granos?
 - b) ¿Cuántos bytes necesito para representar ese número de granos?
 - c) Si fueran 567356784578484 los granos de arena, ¿cuántos bits y bytes son necesarios para su representación?
- 3. ¿Cuál es el rango de representación de enteros sin signo con: 8, 12, 16 y 24 bits?
- 4. Convertir los siguientes números expresados en Código ASCII (valores en decimal) a texto plano.
 - *a*) 67 111 110 118 105 114 116 105 101 110 100 111 32 100 101 32 65 83 67 73 73 32 97 32 108 101 116 114 97 115 46 32 194 191 76 111 99 111 32 110 111 63
 - b) 89 97 32 101 110 116 105 101 110 100 111 32 99 111 109 111 32 112 97 115 97 114 32 100 101 32 36 65 83 67 73 73 36 32 97 32 35 116 101 120 116 111 32 112 108 97 110 111 35
- 5. Convertir el siguiente texto a código ASCII
 - a) **/En ASCII no hay acentos/**
 - b) (48+39)*2-1

Tabla 1: Prefijos decimales y binarios

Prefijos decimales	prefijos binarios
$kilobyte(KB) = 10^3 bytes = 1000^1 bytes$	$kibibyte(KiB) = 2^{10}bytes = 1024^{1}bytes$
$megabyte(MB) = 10^6 bytes = 1000^2 bytes$	$mebibyte(MiB) = 2^{20}bytes = 1024^2bytes$
$gigabyte(GB) = 10^9 bytes = 1000^3 bytes$	$gibibyte(GiB) = 2^{30} = 1024^3 bytes$
$terabyte(TB) = 10^{12bytes} = 1000^4 bytes$	$tebibyte(TiB) = 2^{40}bytes = 1024^4bytes$
$petabyte(PB) = 10^{15}bytes = 1000^5bytes$	$pebibyte(PiB) = 2^{50}bytes = 1024^5bytes$
$exabyte(EB) = 10^{18}bytes = 1000^6bytes$	$exbibyte(EiB) = 2^{60}bytes = 1024^6bytes$
$zettabyte(ZB) = 10^{21}bytes = 1000^7bytes$	$zebibyte(ZiB) = 2^{70}bytes = 1024^7bytes$
$yottabyte(YB) = 10^{24}bytes = 1000^8bytes$	$yobibyte(YiB) = 2^{80}bytes = 1024^8bytes$

Ejemplo:

- Un kilobyte son 1000^1 bytes.
- Un mebibyte son 2^{20} bytes.