

Kriptografi Klasik

Bahan Kuliah Keamanan Data

Sevi **Nurafni**

Fakultas Sains dan Teknologi Universitas Koperasi Indonesia 2025

Kenapa perlu belajar?

- 1. Memahami konsep dasar kriptografi
- 2. Dasar algoritma kriptografi modern
- 3. Memahami kelemahan sistem cipher

- 1. Cipher Substitusi: mengganti huruf plainteks dengan huruf chiperteks
- 2. Cipher Transposisi: mengubah susunan/posisi huruf plainteks ke posisi lainnya

Cipher Substitusi

- Contoh: Caesar Cipher
- Tiap huruf alfabet digeser 3 huruf ke kanan

 P_i : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 C_i : DEFGHIJKLMNOPQRSTUVWXYZABC

Contoh:

Plainteks: materinya banyak banget

Cipherteks: PDWHULQBD EDQBDN EDQJHW

 Supaya lebih aman, cipherteks dikelompokkan ke dalam kelompok n-huruf misalnya kelompok 4 huruf

Semula: PDWHULQBD EDQBDN EDQJHW

Menjadi: PDWH ULQB DEDQ BDNE DQJHW

Atau membuang semua spasi:

PDWHULQBDEDQBDNEDQJHW

Tujuannya agar kriptanalisis menjadi lebih sulit

• Misal kan,
$$A = 0$$
,

$$B = 1,$$

$$C = 2$$
,

$$Z = 25$$

Maka, Caesar Cipher dirumuskan secara matematis:

Enkripsi: $c = E(p) = (p + 3) \mod 26$

Dekripsi: $p = D(c) = (c - 3) \mod 26$

Plainteks: materinya banyak banget

•
$$p_1 = 'm' = 12 \rightarrow E(12) = (12 + 3) \mod 26 = 15 = 'P'$$

•
$$p_2 = 'a' = 0 \rightarrow E(0) = (0+3) \mod 26 = 3 = 'D'$$

•
$$p_3 = 't' = 19 \rightarrow E(19) = (19 + 3) \mod 26 = 22 = 'W'$$

•
$$p_4 = 'e' = 4 \rightarrow E(4) = (4+3) \mod 26 = 7 = 'H'$$

•
$$p_5 = ' r' = 17 \rightarrow E(17) = (17 + 3) \mod 26 = 20 = 'U'$$

•
$$p_6 = 'i' = 8 \rightarrow E(8) = (8+3) \mod 26 = 11 = 'L'$$

• ...

Cipherteks: PDWHULQBD EDQBDN EDQJHW

Cipherteks: PDWHULQBD EDQBDN EDQJHW

•
$$c_1 = 'P' = 15 \rightarrow D(15) = (15-3) \mod 26 = 12 = 'm'$$

•
$$c_2 = 'D' = 3 \rightarrow D(3) = (3-3) \mod 26 = 0 = 'a'$$

•
$$c_3 = 'W' = 22 \rightarrow D(22) = (22 - 3) \mod 26 = 19 = 't'$$

•
$$c_4 = 'H' = 7 \rightarrow D(7) = (7-3) \mod 26 = 4 = 'e'$$

•
$$c_5 = 'U' = 20 \rightarrow D(20) = (20 - 3) \mod 26 = 17 = 'r'$$

•
$$c_6 = ' L' = 11 \rightarrow D(11) = (11 - 3) \mod 26 = 8 = 'i'$$

•

Plainteks: materinya banyak banget

• Jika pergeseran huruf sejauh k, maka:

Enkripsi:
$$c = E(p) = (p + k) \mod 26$$

Dekripsi:
$$p = D(c) = (c - k) \mod 26$$

• Untuk 256 karakter ASCII, maka:

Enkripsi:
$$c = E(p) = (p + 3) \mod 256$$

Dekripsi:
$$p = D(c) = (c - 3) \mod 256$$

$$k = \text{kunci rahasia}$$

- Kelemahan:
- Caesar cipher mudah dipecahkan dengan exhaustive key search karena jumlah kuncinya sangat sedikit (hanya ada 26 kunci)

Contoh: kriptogram XMZVH

Tabel 1. Contoh exhaustive key search terhadap cipherteks XMZVH

Kunci (k)	'Pesan' hasil	Kunci (k)	'Pesan' hasil	Kunci (k)	'Pesan' hasil
ciphering	dekripsi	ciphering	dekripsi	ciphering	dekripsi
0	XMZVH	17	GVIEQ	8	PERNZ
25	YNAWI	16	HWJFR	7	QFSOA
24	ZOBXJ	15	IXKGS	6	RGTPB
23	APCYK	14	JYLHT	5	SHUQC
22	BQDZL	13	KZMIU	4	TIVRD
21	CREAM	12	LANJV	3	UJWSE
20	DSFBN	11	MBOKW	2	VKXTF
19	ETGCO	10	NCPLX	1	WLYUG
18	FUHDP	9	ODQMY		

Plainteks yang potensial adalah CREAM dengan k = 21. Kunci ini digunakan untuk mendekripsikan cipherteks lainnya.

- Cipherteks diperoleh dengan mengubah posisi huruf di dalam plainteks
- Nama lain untuk metode ini adalah **permutasi**, karena transpose setiap karakter di dalam teks sama dnegan mempermutasikan karakter-karakter tersebut.

Contoh:

Plainteks: hari kamis keamanan data

Enkripsi: harik

amisk

eaman

andat

aXXXX

Contoh:

Plainteks: informasi

Enkripsi: i n f o

R m a s

I x x x

Cipherteks: irinmxfaxosx

Cipherteks: irinmxfaxosx

Dekripsi: Bagi panjang dengan kunci (kolom)

(Contoh di atas, 12/4 = 3baris)

I n f o r m a s

Plainteks: informasi

Plainteks: sains data ikopin

Bagi menjadi blok-blok 8 huruf, jika<8 tambah huruf palsu

1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
S	а	i	n	S	d	а	t	а	i	k	0	р	I	n	X

1													
n	8	d	а	t	S	а	i	0	р	 n	X	а	 K

Cipherteks: nsdatsaiopinxaik

Plainteks: sains data ikopin

Bagi menjadi blok-blok 8 huruf, jika<8 tambah huruf palsu

1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
S	а	i	n	S	d	а	t	а	i	k	0	р	I	n	X

1													
n	8	d	а	t	S	а	i	0	р	 n	X	а	 K

Cipherteks: nsdatsaiopinxaik

Super-enkripsi

• Menggabungkan cipher substitusi dengan cipher transposisi.

Contoh: plainteks hello world

- Dienkripsi dengan caesar cipher menjadi KHOOR ZRUOG
- Kemudian hasil ini dienkripsi lagi dengan cipher transposisi (k-4)

KHOO

RZRU

OGZZ

• Cipherteks akhir adalah KROHZGORZOUZ

Beberapa Cipher Klasik

- Vigenere Cipher
- Playfair Cipher
- Affine Cipher
- Hill Cipher
- Enigma Cipher

- Termasuk ke dalam chiper abjad-majemuk
- Berhasil dipecahkan oleh Babbage dan Kasiski pada pertengahan abad 19
- Vigenere Chiper digunakan oleh Tentara Konfiderasi pada Perang Sipil Amerika
- Perang Sipil terjadi setelah Vigenere Cipher berhasil dipecahkan.

- Menggunakan matriks Vigenere untuk melakukan enkripsi
- Setiap baris menyatakan huruf-huruf cipherteks yang diperoleh dengan Caesar Cipher
- Artinya, setiap baris i menggunakan pergeseran huruf alfabet sejauh i ke kanan

Plainteks

Kunci

- Kunci adalah string: $k = k_1 k_2 \dots k_m$
- k_i untuk $1 \le i \le m$ menyatakan huruf-huruf alfabet
- Jika panjang kunci lebih pendek daripada panjang plainteks, maka kunci diulang secara periodik
- Misal, panjang kunci m=10, maka 10 huruf pertama plainteks dienkripsi dengan kunci K, setiap huruf ke-i menggunakan kunci k_i

Contoh: kunci = univ

Plainteks: sainsdataikopin

Kunci: univunivunivuni

Enkripsi dilakukan dengan mencari titik potong huruf plainteks dengan huruf kunci:

Plainteks. : sainsdataikopin

Kunci : univunivuni

Cipherteks: M

	A	В	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
A	A	В	C	D	E	F	G	н	I	J	K	L	M	N	0	p	Q	R	S	T	U	v	W	X	Y	Z
В	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	\mathbf{z}	A
C	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	E
D	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	(
E	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	I
F	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	1
G	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	\mathbf{B}	C	D	E	1
H	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	\mathbf{C}	D	E	F	(
1	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	F
J	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	\mathbf{z}	A	В	C	D	E	F	G	H]
K	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	,
L	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	I
VI	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	1
N	N	0	P	Q	R	S	T	U	\mathbf{v}	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	N
0	0	P	Q	R	S	T	U	\mathbf{v}	W	X	Y	\mathbf{z}	A	В	C	D	E	F	G	H	I	J	K	L	M	r
P	P	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	(
Q	Q	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	1
R	R	S	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	(
S	S	T	U	\mathbf{v}	W	X	Y	\mathbf{z}	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	H
T	T	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	О	P	Q	R	
U	U	V	W	X	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	Ą	0	P	Q	R	S	1
٧į	V	W	A	Y	L	Α	D	C		E	r	G	п	1	J	K	L	141	14	0	P	Q	R	S	T	τ
W	W		Y	Z	A	В	C	D			G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	1
X	X	Y	Z	A	В	C	D	E			H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	V
Y	Y	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	3
Z	Z	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0	P	0	R	S	T	U	V	W	X	3

• Hasil enkripsi seluruhnya:

Plainteks : sainsdataikopin

Kunci. : univunivuni

Chiperteks: MNQIMQIOUVSJJVV

• Pada dasarnya, setiap enkripsi huruf plainteks p_j adalah Caesar Cipher dengan kunci k_i yang berbedabeda:

Enkripsi: $c_j = E(p_j) = (p_j + k_i) \mod 26$

Dekripsi: $p_j = D(c_j) = (c_j - k_i) \mod 26$

 $(s + u) \mod 26 = (18+20) \mod 26 = 12 = M$

 $(a + n) \mod 26 = (0+13) \mod 26 = 13 = N$

 Huruf plainteks yang sama tidak selalu dienkripsi menjadi cipher yang sama pula, bergantung huruf kunci yang digunakan.

Contoh: huruf plainteks T dapat dienkripsi menjadi L atau H Huruf cipher V dapat merepresentasikan huruf plainteks H, I, dan X

- Hal ini merupakan karakteristik dari cipher abjad-majemuk: setiap huruf di cipherteks dapat memiliki kemungkinan banyak huruf plainteks
- Jika periode kunci diketahui dan tidak terlalu panjang, maka kunci dpat ditentukan dengan menulis program komputer untuk melakukan exhaustive key search

- Perluasan dari Caesar cipher
- Enkripsi: $C \equiv mP + b \pmod{n}$
- Dekripsi: $P \equiv m^{-1}(C b)$ (mod n)
- Kunci: $m \operatorname{dan} b$

Keterangan:

- n ukuran alfabet
- *m* bulat yang relatif prima dengan *n*
- b jumlah pergeseran
- Caesar cipher adalah khusus dari affine cipher dengan m=1
- m^{-1} adalah inversi $m \pmod{n}$, yaitu $m \cdot m^{-1} \equiv 1 \pmod{n}$

Contoh:

Plainteks: kripto (10 17 8 15 19 14)

$$n = 26, b = 10, m = 7$$
 (7 relatif prima dengan 26)

Enkripsi: $C \equiv 7P + 10 \pmod{26}$

$$p_1 = 10 \rightarrow c_1 \equiv 7 \cdot 10 + 10 \equiv 80 \equiv 2 \pmod{26}$$
 (huruf 'C')

$$p_2 = 17 \rightarrow c_2 \equiv 7 \cdot 17 + 10 \equiv 129 \equiv 25 \pmod{26} \pmod{4}$$

$$p_3 = 8 \rightarrow c_3 \equiv 7 \cdot 8 + 10 \equiv 66 \equiv 14 \pmod{26}$$
 (huruf 'O')

$$p_4 = 15 \rightarrow c_4 \equiv 7 \cdot 15 + 10 \equiv 115 \equiv 11 \pmod{26}$$
 (huruf 'L')

$$p_5 = 19 \rightarrow c_1 \equiv 7 \cdot 19 + 10 \equiv 143 \equiv 13 \pmod{26} \pmod{6}$$

$$p_6 = 14 \rightarrow c_1 \equiv 7 \cdot 14 + 10 \equiv 108 \equiv 4 \pmod{26}$$
 (huruf 'E')

Cipherteks: CZOLNE

• Dekripsi:

- O Mula-mula hitung m^{-1} yaitu 7^{-1} (mod 26) dengan memecahkan $7x \equiv 1$ (mod 26)
- ° Solusi: $x \equiv 15 \pmod{26}$ sebab $7.15 = 105 \equiv 1 \pmod{26}$
- ° Jadi, $P \equiv 15(C 10) \pmod{26}$

$$c_1 = 2 \rightarrow p_1 \equiv 15 \cdot (2 - 10) = -120 \equiv 10 \pmod{26}$$
 (huruf 'k')

$$c_2 = 25 \rightarrow p_2 \equiv 15 \cdot (25 - 10) = 225 \equiv 17 \pmod{26}$$
 (huruf 'r')

$$c_3 = 14 \rightarrow p_3 \equiv 15 \cdot (14 - 10) = 60 \equiv 8 \pmod{26}$$
 (huruf 'i')

$$c_4 = 11 \rightarrow p_4 \equiv 15 \cdot (11 - 10) = 15 \equiv 15 \pmod{26}$$
 (huruf 'p')

$$c_5 = 13 \rightarrow p_5 \equiv 15 \cdot (13 - 10) = 45 \equiv 19 \pmod{26}$$
 (huruf 't')

$$c_6 = 4 \rightarrow p_6 \equiv 15 \cdot (4 - 10) = -90 \equiv 14 \pmod{26}$$
 (huruf 'o')

Plainteks yang diungkap kembali: kripto

- Affine cipher. Tidak aman, karena kunci mudah ditemukan dengan exhaustive search,
- Sebab ada 25 pilihan b dan 12 nilai m yang relatif prima dengan 26 (yaitu1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, dan 25)
- Salah satu cara memperbesar faktor kerja untuk exhaustive key search: enkripsi tidak dilakukan terhadap individual, tetapi dalam blok huruf.
- Misal, pesan kriptografi dipecah menjadi kelompok 4-huruf:

krip togr afi

Ekuivalen dengan 10170815 19140617 000508

- Nilai terbesar yang dapat muncul untuk merepresentasikan blok: 25252525 (ZZZZ), maka 25252525 dapat digunakan sebagai modulus n.
- Nilai *m* yang relative prima dengan 25252525**?**, misal 21035433,
- B dipilih antara 1 sampai 25252525, misalnya 23210025
- Fungsi enkripsi menjadi:

$$C \equiv 21035433P + 23210025 \pmod{25252525}$$

• Fungsi dekripsi, setelah dihitung menjadi

$$P \equiv 5174971(C - 23210025) \pmod{25252525}$$

- Affine Cipher mudah diserang dengan known-plaintext attack.
- Misalkan kriptanalisis mempunyai dua buah plainteks, P_1 dan P_2 yang berkoresponden dengan cipherteks C_1 dan C_2
- Maka m dan b mudah dihitung dari kekongruenan simultan berikut ini:

$$C_1 \equiv mP_1 + b \pmod{n}$$

$$C_2 \equiv mP_2 + b \pmod{n}$$

- Contoh: Misalkan kriptanalis menemukan
 cipherteks C dan plainteks berkorepsonden K
 cipherteks E dan plainteks berkoresponden O.
- Kriptanalis m dan n dari kekongruenan berikut:

$$2 \equiv 10m + b \pmod{26}$$
 (i)

$$4 \equiv 14m + b \pmod{26}$$
 (ii)

Kurangkan (ii) dengan (i), menghasilkan

$$2 \equiv 4m \pmod{26} \tag{iii}$$

Solusi: m = 7

Substitusi m = 7 ke dalam (i),

$$2 \equiv 70 + b \pmod{26} \tag{iv}$$

Solusi: b = 10.

SELAMAT BELAJAR