CS-2/1, Intro to A	.l. — Quiz#3	3 — Fall	Quarter,	2011 — 20 mi	nutes	
YOUR NAME AND EM	IAIL ADDRESS	S:				
YOUR ID:	ID TO RIGHT:		ROW:	NO. FROM RIGHT:		
1. (50 pts total, 5 pts each)	Try it Yourselves	. Prove that	t the unicorn is	magical.		
If the unicorn is mythic the unicorn is either im			•		· ·	
Use these propositional var	iables:					
Y = unicorn is mY H = unicorn is Hor	R = unicorn is moRtal G = unicorn is maGical		M = unicorn is a maMmal			
1.a. Convert the English in The first one is done for yo					form (CNF).	
1.a.1. If the unicorn is mYt	hical, then it is not	t moRtal.				
S1: Implicative Y	=> ¬ R	<u>-</u>	CNF	$(\neg Y \lor \neg R)$	It is OK not	
1.a.2. If the unicorn is not mYthical, then it is moRtal. to put the parentheses						
S2: Implicative	$Y \Rightarrow R$	<u>.</u>	CNF	(Y ∨ R)	around the CNF clauses.	
1.a.3. If the unicorn is not mYthical, then it is a maMmal.						
S3: Implicative	$Y \Rightarrow M$	<u>.</u>	CNF	(Y ∨ M)	.	
1.a.4. If the unicorn is not r	moRtal, then it is F	Horned.				
S4: Implicative	R => H	<u>.</u>	CNF	(R∨H)	<u> </u>	
1.a.5. If the unicorn is a ma	Mmal, then it is H	Iorned.				
S5: Implicative M	=> H			$(\neg M \lor H)$	<u>.</u>	
1.a.6. The unicorn is maGio	cal if it is Horned.	This sent "If the un	ence means the icorn is Horne	e same as, d, then it is maGical."		

**** CONTINUE ON THE NEXT PAGE ****

S6: Implicative $\underline{H} \Rightarrow \underline{G}$. CNF $\underline{(\neg H \lor G)}$.

1.b. (25 pts total, 5 pts each) Resolution Theorem expressions from 1.a above to prove that the unicorn is	· ·
1.b.1. The negated goal is S7.	Here you will get full credit if you do
S7:	the resolution steps correctly based on your answers for the two resolved
1.b.2. Resolve S6 and S7 to give S8.	sentences (even if those sentences
S8: (¬H) .	were not correct). I.e., this question asks only that you do the resolution
1.b.3. Resolve S5 and S8 to give S9.	step correctly, regardless of content.
S9: (¬M) .	
1.b.4. Resolve S4 and S8 to give S10.	
S10: <u>(R)</u> .	
1.b.5. Resolve S3 and S9 to give S11.	
S11:	
1.b.6. Resolve S1 and S11 to give S12.	
S12: $(\neg R)$.	
1.b.7. Resolve S10 and S12 to give the empty clause,	thus proving the goal sentence is true.
S13:	
 2. (25 pts total, 5 pts each) English to logic translation No) depending on whether the logic expression correct 2a "All men are mortal." >> ∀x 	tly expresses the English. $x \text{ Man}(x) \Rightarrow \text{Mortal}(x)$
$\forall x \ Man(x) \land Mortal(x) \longrightarrow \text{``I}$	Everything is a man and is mortal."
2b. Y "For every quiz, there is a student where $\forall q \exists s \ Quiz(q) \Rightarrow [\ Student(s) \land Got10]$	
2c. N "Every student got 100 on every quize $\forall s \exists q \ Student(s) \Rightarrow [\ Quiz(q) \land Got10]$	z." \rightarrow $\forall s \forall q [Student(s) \land Quiz(q)] \Rightarrow Got100(s, q)$ "Every student got 100 on some quiz."
2d. Y "Everyone has a favorite food." $\forall x \exists y \text{ Person}(x) \Rightarrow [\text{ Food}(y) \land \text{IsFavority}]$	voriteOf(y, x)]
2e. Y "Fido has a brother who is a dog." ∃x IsBrotherOf(x, Fido) ∧ Dog(x)	

This question was supposed to be an implication, not a conjunction; but a copy-and-edit bug left the conjunction on the quiz (while still changing it to an implication on the quiz key, sigh).

2e. ____ N ___ "Fido has a brother who is a dog." → ∃x Brother(x, Fido) ∧ Dog(x) → "Something is not Fido's brother, or is a dog."

Also, in the future, if the answer is N, ask them to write a correct logical sentence to the right.