Natural Language Processing with Deep Learning CS224N/Ling284

Matthew Lamm

Lecture 3: Word Window Classification, Neural Networks, and PyTorch

1. Course plan: coming up

Week 2: We learn neural net fundamentals

- We concentrate on understanding (deep, multi-layer) neural networks and how they can be trained (learned from data) using backpropagation (the judicious paper) application of matrix calculus)
- We'll look at an NLP classifier that adds <u>context</u> by taking in windows around a word and classifies the center word!

Week 3: We learn some natural language processing

- We learn about putting syntactic structure (dependency parses) over sentence (this is HW3!)
- We develop the notion of the probability of a sentence (a probabilistic language model) and why it is really useful

Homeworks

- HW1 was due ... a couple of minutes ago!
 - We hope you've submitted it already!
 - Try not to burn your late days on this easy first assignment!
- HW2 is now out
 - Written part: gradient derivations for word2vec (OMG ... calculus)
 - Programming part: word2vec implementation in NumPy
 - (Not an IPython notebook)
 - You should start looking at it early! Today's lecture will be helpful and Thursday will contain some more info.
 - Website has lecture notes to give more detail

Office Hours / Help sessions

- Come to office hours/help sessions!
 - Come to discuss final project ideas as well as the homeworks
 - Try to come early, often and off-cycle
- Help sessions: daily, at various times, see calendar
 - Coming up: Wed 12:30-3:20pm, Thu 6:30-9:00pm
 - Gates ART 350 (and 320-190) bring your student ID
 - No ID? Try Piazza or tailgating—hoping to get a phone in room
 - Attending in person: Just show up! Our friendly course staff will be on hand to assist you
 - SCPD/remote access: Use queuestatus
- Chris's office hours:
 - Mon 4-6 pm, Gates 248. Come along next Monday?

Lecture Plan

Lecture 3: Word Window Classification, Neural Nets, and Calculus

- 1. Course information update (5 mins)
- 2. Classification review/introduction (10 mins)
- 3. Neural networks introduction (15 mins)
- 4. Named Entity Recognition (5 mins)
- Binary true vs. corrupted word window classification (15 mins)
- 6. Implementing WW Classifier in Pytorch (30 mins)
- This will be a tough week for some!
 - Read tutorial materials given in syllabus
 - Visit office hours

2. Classification setup and notation

Generally we have a <u>training datase</u>t consisting of samples

$$\{x_i,y_i\}^N_{i=1}$$

- x_i are inputs, e.g. words (indices or vectors!), sentences, documents, etc.
 - Dimension d
- y_i are <u>labels</u> (one of C classes) we try to <u>predict</u>, for example:
 - classes: sentiment, named entities, buy/sell decision
 - other words
 - later: multi-word sequences

Classification intuition

- Training data: {x_i,y_i}^N_{i=1}
- Simple illustration case:
 - Fixed 2D word vectors to classify
 - Using softmax/logistic regression
 - Linear decision boundary

Visualizations with ConvNetJS
http://cs.stanford.edu/people/karpathy/convnetjs/demo/
http://cs.stanford.edu/people/karpathy/convnetjs/demo/
https://cs.stanford.edu/people/karpathy/convnetjs/demo/

- Traditional ML/Stats approach: assume x_i are fixed, train (i.e., set) softmax/logistic regression weights $W \in \mathbb{R}^{C \times d}$ to determine a decision boundary (hyperplane) as in the picture
- **Method**: For each *x*, predict:

$$p(y|x) = \frac{\exp(W_y.x)}{\sum_{c=1}^{C} \exp(W_c.x)}$$

Details of the softmax classifier

$$p(y|x) = \frac{\exp(W_y.x)}{\sum_{c=1}^{C} \exp(W_c.x)}$$

We can tease apart the prediction function into two steps:

1. Take the yth row of W and multiply that row with x:

$$W_{y} \cdot x = \sum_{i=1}^{d} W_{yi} x_i = f_y$$

Compute all f_c for c = 1, ..., C

Apply softmax function to get <u>normalized</u> probability:

$$p(y|x) = \frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)} = \operatorname{softmax}(f_y)$$

Training with softmax and cross-entropy loss

 For each training example (x,y), our objective is to maximize the probability of the correct class y

 This is equivalent to minimizing the <u>negative log</u> probability of that class:

$$-\log p(y|x) = -\log \left(\frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)}\right)$$

 Using log probability converts our objective function to sums, which is easier to work with on paper and in implementation.

Background: What is "cross entropy" loss/error?

- Concept of "cross entropy" is from information theory
- Let the true probability distribution be <u>p</u>
- Let our computed model probability be q
- The cross entropy is:

$$H(p,q) = -\sum_{c=1}^{C} p(c) \log q(c)$$

Assuming a ground truth (or true or gold or target)
 probability distribution that is 1 at the right class and 0
 everywhere else:

$$p = [0,...,0,1,0,...0]$$
 then:

 Because of one-hot p, the only term <u>left is the negative</u> log probability of the true class

Classification over a full dataset

 Cross entropy loss function over full dataset {x_i,y_i}^N_{i=1}

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} -\log\left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_c}}\right)$$

Instead of

$$f_y = f_y(x) = W_y \cdot x = \sum_{j=1}^d W_{yj} x_j$$

We will write *f* in matrix notation:

$$f = Wx$$

Traditional ML optimization

For general machine learning θ usually only consists of columns of W:

$$\theta = \begin{bmatrix} W_{1} \\ \vdots \\ W_{C} \end{bmatrix} = W \notin \mathbb{R}^{Cd}$$

So we only update the decision boundary via

$$abla J(heta) = egin{bmatrix}
abla W_1. \\
\vdots \\
abla W_C.
\end{bmatrix} \in \mathbb{R}^{Cd}$$
 by Karpathy

Visualizations with ConvNetJS

3. Neural Network Classifiers

- Softmax (≈ logistic regression) alone not very powerful
- Softmax gives only linear decision boundaries

Neural Nets for the Win!

 Neural networks can learn much more complex functions and nonlinear decision boundaries!

Classification difference with word vectors

- Commonly in NLP deep learning:
 - We learn both W and word vectors x
 - We learn both conventional parameters and representations
 - The word vectors re-represent one-hot vectors—move them around in an intermediate layer vector space—for easy classification with a (linear) softmax classifier via

$$\nabla_{\theta} J(\theta) = \begin{bmatrix} \nabla_{W_{\cdot d}} \\ \nabla_{W_{\cdot d}} \\ \nabla_{x_{aardvark}} \\ \vdots \\ \nabla_{x_{zebra}} \end{bmatrix}$$

Neural computation

A neuron can be a binary logistic regression unit

f = nonlinear activation fct. (e.g. sigmoid), w = weights, b = bias, h = hidden, x = inputs

$$h_{w,b}(x) = f(w^{\mathsf{T}}x + b)$$

$$f(z) = \frac{1}{1 + e^{-z}} \quad \mathbf{o}$$

b: We can have an "always on" feature, which gives a class prior, or separate it out, as a bias term

w, b are the parameters of this neuron

i.e., this logistic regression model

A neural network

= running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression functions, then we get a vector of outputs ...

But we don't have to decide ahead of time what variables these logistic regressions are trying to predict!

A neural network

= running several <u>logistic regressions at the same time</u>

... which we can feed into another logistic regression function

It is the loss function that will direct what the intermediate hidden variables should be, so as to do a good job at predicting the targets for the next layer, etc.

A neural network = running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

Matrix notation for a layer

$$A = \begin{bmatrix} W_{11} & W_{62} & W_{13} \\ W_{21} & W_{22} & W_{23} \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ Y_{3} \end{bmatrix} + \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

$$W_{31} \quad W_{32} \quad W_{33} \quad W_{33} = \begin{bmatrix} X_{1} \\ X_{2} \\ Y_{3} \end{bmatrix} + \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

We have

$$a_1 = f(W_{11}x_1 + W_{12}x_2 + W_{13}x_3 + b_1)$$

$$a_2 = f(W_{21}x_1 + W_{22}x_2 + W_{23}x_3 + b_2)$$
etc.

In matrix notation

$$z = Wx + b$$

$$a = f(z)$$

Activation f is applied element-wis

$$f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)]$$

Non-linearities (aka "f"): Why they're needed

- Example: function approximation, e.g., regression or classification
 - Without <u>non-linearities</u>, deep neural networks can't do anything more than a linear transform
 - Extra layers could just be compiled down into a single linear transform: W₁
 W₂ x = Wx
 - With more layers, they can approximate more complex functions!

4. Named Entity Recognition (NER)

The task: <u>find and classify names</u> in text, for example:

```
The European Commission [ORG] said on Thursday it disagreed with German [MISC] advice.

Only France [LOC] and Britain [LOC] backed Fischler [PER] 's proposal .

"What we have to be extremely careful of is how other countries are going to take Germany 's lead", Welsh National Farmers 'Union [ORG] (NFU [ORG]) chairman John Lloyd Jones [PER] said on BBC [ORG] radio .
```

- Possible purposes:
 - Tracking mentions of particular entities in documents
 - For question answering, <u>answers</u> are usually named entities
 - A lot of <u>wanted information</u> is really associations between named entities
 - The same techniques can be extended to other <u>slot-filling</u> classifications
- Often followed by Named Entity Linking/Canonicalization into Knowledge Base

Named Entity Recognition on word sequences

We predict entities by classifying words in context and then extracting entities as word subsequences

Why might NER be hard?

Hard to work out boundaries of entity

First National Bank Donates 2 Vans To Future School Of Fort Smith

Is the first entity "First National Bank" or "National Bank"

- Hard to know if something is an entity
 Is there a school called "Future School" or is it a future school?
- Hard to know class of unknown/novel entity:

To find out more about Zig Ziglar and read features by other Creators Syndicate writers and What class is "Zig Ziglar"? (A person.)

Entity class is <u>ambiguous</u> and <u>depends on context</u>
 "Charles Schwab" is PER
 not ORG here! where Larry Ellison and Charles

where Larry Ellison and Charles Schwab can live discreetly amongst wooded estates. And

5. Word-Window classification

- <u>Idea</u>: classify a word in its context window of <u>neighboring</u> words.
- For example, Named Entity Classification of a word in context:
 - Person, Location, Organization, None
- A simple way to classify a word in context might be to average the word vectors in a window and to classify the average vector
 - Problem: that would lose position information

Window classification: Softmax

 Train softmax classifier to classify a center word by taking concatenation of word vectors surrounding it in a window

 <u>Example</u>: Classify "Paris" in the context of this sentence with window length 2:

• Resulting vector $x_{window} = x \in \mathbb{R}^{5d}$, a column vector!

Simplest window classifier: Softmax

 With x = x_{window} we can use the same softmax classifier as before predicted model

output probability
$$\hat{y}_y = p(y|x) = \frac{\exp(W_y.x)}{\sum_{c=1}^C \exp(W_c.x)}$$

With cross entropy error as before:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} -\log\left(\frac{e^{f_{y_i}}}{\sum_{c=1}^{C} e^{f_c}}\right)$$

same

- How do you <u>update the word vectors?</u>
- Short answer: Just take <u>derivatives</u> like last week and optimize

Slightly more complex: Multilayer Perceptron

- Introduce an <u>additional layer</u> in our softmax classifier with a <u>non-linearity</u>.
- MLPs are <u>fundamental building blocks</u> of more complex neural systems!
- Assume we want to classify whether the center word is a Location
- Similar to word2vec, we will go over all positions in a corpus. But this time, it will be supervised s.t. positions that are true NER Locations should assign high probability to that class, and others should assign low probability.

Neural Network Feed-forward Computation

$$score(x) = U^T a \in \mathbb{R}$$

We compute a window's score with a 3-layer neural net:

s = score("museums in Paris are amazing")

$$s = U^T f(Wx + b) \in \mathbb{R}^{s}$$

$$x \in \mathbb{R}^{20 \times 1}, W \in \mathbb{R}^{s \times 20}, U \in \mathbb{R}^{s \times 2}$$

Main intuition for extra layer

The middle layer learns <u>non-linear interactions</u> between the input word vectors.

Example: only if "museums" is first vector should it matter that "in" is in the second position

Let's do some coding!

Alternative: Max-margin loss (no Softmax!)

- Idea for training objective: Make true window's score larger and corrupt window's score lower (until they're good enough)
- s = score(museums in Paris are amazing)
- s_c = score(Not all museums in Paris)
- Minimize smooth. J= log[H exp (HSe-S)]

$$J = \max(0, 1 - s + s_c)$$

 This is not differentiable but it is continuous → we can use SGD.

Remember: Stochastic Gradient Descent

Compute gradients of the cost function, and iteratively update parameters:

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

 α = step size or learning rate

Next Lecture: How do we compute gradients?

- By hand (using your knowledge of calculus)
- Backpropagation (algorithmic approach)
 - Think: loss.backward()