Hyperbolicko-eliptická soutěž

V závorkách jsou uvedeny počty bodů.

Úloha 1 (1,5). Nalezněte všechny průsečíky přímky p a hyperboly h, jestliže jejich rovnice jsou

$$p: 3x - 2y + 2 = 0$$
, $h: -(x-2)^2 + (y-5)^2 = 1$.

Úloha 2 (2). Nalezněte rovnice všech hyperbol, jejichž asymptoty mají rovnice y = 2x + 4 a y = -2x - 2 a délka hlavní poloosy je 2.

Úloha 3 (2). Elipsa má ohniska v bodech [-3;1] a [5;1], přičemž délka vedlejší poloosy je 2. Určete rovnici oné elipsy.

Úloha 4 (2). Hyperbola má ohniska v bodech [-3;1] a [5;1], přičemž délka vedlejší poloosy je 2. Určete rovnici oné hyperboly.

Úloha 5 (3). Elipsa má ohniska v bodech [-1; -2] a [-1; 4] a prochází bodem [0; 5]. Určete rovnici oné elipsy.

Úloha 6 (3). Hyperbola má ohniska v bodech [-1; -2] a [-1; 4] a prochází bodem [0; 5]. Určete rovnici oné hyperboly.

Úloha 7 (5). Nalezněte rovnice všech tečen k elipse dané rovnicí $4x^2 + y^2 = 4$ procházejících bodem [-2; 0].

Úloha 8 (4). Nalezněte rovnice všech elips, které budou současně splňovat:

- jejich osy budou rovnoběžné s osami souřadnic,
- osy souřadnic budou jejich tečny,
- střed bude ležet na přímce y = x + 1,
- délka hlavní poloosy bude 7.

Úloha 9 (4,5). Na elipse o rovnici $\frac{x^2}{9} + \frac{y^2}{4} = 1$ nalezněte bod nejblíže přímce o rovnici y = x - 6.

Úloha 10 (1,5). Určete všechny hodnoty parametru $c \in \mathbb{R}$, pro který je rovnice

$$3x^2 + 2y^2 - 6x + 8y = c$$

rovnicí nějaké elipsy v rovině.

Úloha 11 (1,5). Určete všechny hodnoty parametru $c \in \mathbb{R}$, pro který je rovnice

$$3x^2 - 2y^2 - 6x + 8y = c$$

rovnicí nějaké hyperboly v rovině.

Úloha 12 (2,5). Je dána hyperbola $\frac{x^2}{16} - \frac{(y+2)^2}{9} = 1$. Vypočítejte délku takové její tětivy, která je kolmá na osu x a prochází ohniskem hyperboly.

Úloha 13 (2). Určete odchylku asymptot hyperboly dané rovnicí $2x^2 - x - 3y^2 - 7y + 13 = 0$.

Úloha 14 (4). Množina všech bodů, jejichž vzdálenosti od bodu [5;0] a od přímky $x = \frac{16}{5}$ jsou v poměru 5 : 4, je jistá hyperbola; určete souřadnice jejího středu a délky poloos.

1.
$$[2;4]$$
 a $\left[\frac{22}{5};\frac{38}{5}\right]$

2.
$$\frac{(x+\frac{3}{2})^2}{4} - \frac{(y-1)^2}{16} = 1$$
 a $-\frac{(x+\frac{3}{2})^2}{1} + \frac{(y-1)^2}{4} = 1$

3.
$$\frac{(x-1)^2}{20} + \frac{(y-1)^2}{4} = 1$$

4.
$$\frac{(x+1)^2}{12} - \frac{(y-1)^2}{4} = 1$$

5.
$$\frac{(x+1)^2}{9} + \frac{(y-1)^2}{18} = 1$$

3.
$$\frac{(x-1)^2}{20} + \frac{(y-1)^2}{4} = 1$$
4. $\frac{(x+1)^2}{12} - \frac{(y-1)^2}{4} = 1$
5. $\frac{(x+1)^2}{9} + \frac{(y-1)^2}{18} = 1$
6. $-\frac{(x+1)^2}{1} + \frac{(y-1)^2}{8} = 1$

7.
$$y = \pm \frac{2}{\sqrt{3}}(x+2)$$

8.
$$\frac{(x-6)^2}{6^2} + \frac{(y-7)^2}{7^2} = 1$$
 a $\frac{(x+7)^2}{7^2} + \frac{(y+6)^2}{6^2} = 1$

9.
$$\left[\frac{9}{\sqrt{13}}; -\frac{4}{\sqrt{13}}\right]$$

10.
$$c > -11$$

11.
$$c \neq 5$$

12.
$$\frac{9}{2}$$

13.
$$\arccos \frac{1}{5} \doteq 78^{\circ}28'$$

$${\bf 14.}$$
střed $[0;0],$ hlavní poloosa 3, vedlejší poloosa 4