

EE 431: COMPUTER-AIDED DESIGN OF VLSI DEVICES

Memory Design

Nishith N. Chakraborty

November, 2024

DATA DRIVEN WORLD!

MEMORY CLASSIFICATION

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	

12/1/2024

MEMORY ARCHITECTURE: DECODERS

Intuitive architecture for N x M memory
Too many select signals:
N words == N select signals

Decoder reduces the number of select signals $K = log_{\text{\tiny 2}} N \label{eq:K}$

ARRAY-STRUCTURED MEMORY ARCHITECTURE

HIERARCHICAL MEMORY ARCHITECTURE

12/1/2024

READ-WRITE MEMORIES

☐ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast

Differential

■ DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower

Single Ended

1-TRANSISTOR DRAM CELL

Read Operation

- BL precharged to V_{DD}/2
- WL asserted (M1 turned ON)
- BL charges if C_s stores '1'
- BL discharges if C_s stores '0'

Write Operation

- BL driven to V_{DD} (for write 1) or 0 (for write 0)
- WL asserted
 - C_s is charged to V_{DD}-V_{THN} or discharged to 0

1-TRANSISTOR DRAM CELL

CHARGE SHARING DURING READ

Initial Q = $C_SV_S+C_{BL}V_{PRE}$

Final Q = $(C_S + C_{BL}) V_{FINAL}$

SENSE AMPLIFIER OPERATION

3-T DRAM CELL

Read Operation

- RBL precharged to V_{DD}
- RWL asserted (M3 turned ON)
- BL remains at V_{DD} if C_s stores
 '0' (M2 is OFF)
- BL discharges if C_s stores '1' (M2 is ON)

Write Operation

- WBL driven to V_{DD} (for write 1) or 0 (for write 0)
- WWL asserted (M1 turned ON)
- C_s is charged to V_{DD}-V_{THN} or discharged to 0

12/1/2024

3-T DRAM CELL

- Non-Destructive Read
- No Refresh
- Incomplete swing at S. (WL overdrive solves this issue)

12T SRAM CELL

- Basic building block: SRAM Cell
 - ➤ Holds one bit of information, like a latch
 - Must be read and written
- 12-transistor (12T) SRAM cell
 - ➤ Use a simple latch connected to bitline
 - \geq 46 x 75 λ unit cell

6T SRAM CELL

- Cell size accounts for most of array size
 - > Reduce cell size at expense of complexity
- 6T SRAM Cell
 - Used in most commercial chips
 - Data stored in cross-coupled inverters
- Read:
 - Precharge bit, bit b
 - Raise wordline
- Write:
 - Drive data onto bit, bit b
 - Raise wordline

SRAM READ

- Precharge both bitlines high
- Then turn on wordline
- One of the two bitlines will be pulled down by the cell
- Ex: A = 0, $A_b = 1$
 - bit discharges, bit_b stays high
 - > But A bumps up slightly
- Read stability
 - > A must not flip
 - > N1 >> N2

SRAM WRITE

- Drive one bitline high, the other low
- Then turn on wordline
- Bitlines overpower cell with new value
- Ex: A = 0, A_b = 1, bit = 1, bit_b = 0
 - Force A b low, then A rises high
- Writability
 - Must overpower feedback inverter
 - ➤ N2 >> P1

SRAM SIZING

- High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell

SRAM COLUMN EXAMPLE

Read

Write

SRAM LAYOUT

- Cell size is critical: 26 x 45 λ (even smaller in industry)
- Tile cells sharing VDD, GND, bitline contacts

DECODERS

- n:2ⁿ decoder consists of 2ⁿ n-input AND gates
 - One needed for each row of memory
 - ➤ Build AND from NAND or NOR gates

Static CMOS

Pseudo-nMOS

DECODER LAYOUT

- Decoders must be pitch-matched to SRAM cell
 - Requires very skinny gates

LARGE DECODERS

- For n > 4, NAND gates become slow
 - ➤ Break large gates into multiple smaller gates

PREDECODING

- Many of these gates are redundant
 - > Factor out common gates into predecoder
 - > Saves area
 - > Same path effort

COLUMN CIRCUITRY

- Some circuitry is required for each column
 - > Bitline conditioning
 - > Sense amplifiers
 - > Column multiplexing

BITLINE CONDITIONING

Precharge bitlines high before reads

• Equalize bitlines to minimize voltage difference when using sense amplifiers

SENSE AMPLIFIERS

- Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 256 rows x 128 cols
 - > 128 cells on each bitline
- $t_{pd} \approx (C/I) \Delta V$
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)
- Sense amplifiers are triggered on small voltage swing (reduce ΔV)

DIFFERENTIAL PAIR AMP

- Differential pair requires no clock
- But always dissipates static power

CLOCKED SENSE AMP

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- Isolation transistors cut off large bitline capacitance

COLUMM MULTIPLEXING: TREE DECODER MUX

- Column MUX can use pass transistors
 - Use NMOS only, precharge outputs
- One design is to use k series transistors for 2^k:1 MUX
 - No external decoder logic needed

SINGLE PASS-GATE MUX

Or eliminate series transistors with separate decoder

OTHER SRAM BIT-CELLS

- 5T, 8T, 10T cells single ended.
- 8T/10T decoupled read and write operation.
- No in-built process variation tolerance

VARIABILITY: SOURCES & AN EXAMPLE

- Line Edge Roughness
- Random Dopant Fluctuations
- Non-uniform Temperature

12 identical ring oscillators placed across 250 mm² chip

IMPACT OF PARAMETER VARIATION

INTER-DIE VARIATION & CELL FAILURES

IDENTIFYING THE VT CORNERS

Monitor circuit parameters, e.g. leakage current

Effect of inter-die variation can be masked by intra-die variation

SELF-REPAIR TECHNIQUE

NON-VOLATILE MEMORY TECHNOLOGIES

NON-VOLATILE MEMORY TECHNOLOGIES

12/1/2024 www.calpoly.edu 39

RESISTIVE RAM (RRAM)

N. Shukla, R. K. Ghosh, B. Grisafe and S. Datta, "Fundamental mechanism behind volatile and non-volatile switching in metallic conducting bridge RAM," 2017 IEEE International Electron Devices Meeting (IEDM), 2017.

RESISTIVE RAM (RRAM): EVALUATION

S. Yu and P. Chen, "Emerging Memory Technologies: Recent Trends and Prospects," in IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43-56, Spring 2016.

PHASE CHANGE RAM (PCRAM)

- Usually made of 'GeSbTe', or in short GST
- Changes the crystal structure from amorphous to crystalline (and vice versa) to switch resistive states

S. Yu and P. Chen, "Emerging Memory Technologies: Recent Trends and Prospects," in *IEEE Solid-State Circuits Magazine*, vol. 8, no. 2, pp. 43-56, Spring 2016.

PHASE CHANGE RAM (PCRAM): EVALUATION

Positive Features

High ON-OFF ratio

High retention

Multilevel possible

CMOS compatible

Limitations

High switching energy

Slow transitions

Resistance drift → Low retention (due to relaxation of amorphous phase)

S. Yu and P. Chen, "Emerging Memory Technologies: Recent Trends and Prospects," in IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43-56, Spring 2016.

MEMORY BENCHMARK

	MAINSTREAM MEMORIES				EMERGING MEMORIES		
			FLASH		-		
	SRAM	DRAM	NOR	NAND	STT-MRAM	PCRAM	RRAM
Cell area	>100 F ²	6 F ²	10 F ²	<4F ² (3D)	6~50F ²	4~30F ²	4~12F ²
Multibit	1	1	2	3	1	2	2
Voltage	<1 V	<1 V	>10 V	>10 V	<1.5 V	<3 V	<3 V
Read time	~1 ns	~10 ns	~50 ns	~10 µs	<10 ns	<10 ns	<10 ns
Write time	~1 ns	~10 ns	10 μs–1 ms	100 μs–1 ms	<10 ns	~50 ns	<10 ns
Retention	N/A	~64 ms	>10 y	>10 y	>10 y	>10 y	>10 y
Endurance	>1E16	>1E16	>1E5	>1E4	>1E15	>1E9	>1E6~1E12
Write energy (J/bit)	~fJ	~10fJ	~100pJ	~10fJ	~0.1pJ	~10pJ	~0.1 pJ

Notes: F: feature size of the lithography. The energy estimation is on the cell-level (not on the array-level). PCRAM and RRAM can achieve less than $4F^2$ through 3D integration. The numbers of this table are representative (not the best or the worst cases).

S. Yu and P. Chen, "Emerging Memory Technologies: Recent Trends and Prospects," in *IEEE Solid-State Circuits Magazine*, vol. 8, no. 2, pp. 43-56, Spring 2016.

STANDARD STT MRAM

STANDARD STT MRAM: CURRENT BASED WRITE

AP→P Switching

P→**AP** Switching

SPIN BASED MEMORY

 $\mathbf{V}_{\mathbf{WRITE}}$

Thank you!