GEOMOL

Molecular Team Lecture Series Dong-hee Shin 10.11.22

Researchers

Octavian Ganea (Farewell, Rest in Peace) ETH Zurich & MIT

x 32

3D Conformer Generation

- Molecules have potentially thousands of stable conformations

Motivation

- Faster, computationally efficient and more accurate conformer generation using MPNN
- Usable in various 3D downstream tasks
 - Protein –ligand binding
 - Molecular docking poses
 - Generating conformers inside 3D enzyme pockets
- > Intermediate representation for various property predictors

Stochastic Methods

- Distance geometry initialization + subsequent coordinate optimization
- Popular open-source method:ETKDG/RDKIT

Drawbacks

- Difficult to sample diverse and representative conformers
- Computationally expensive

> Systematic Methods

- Exhaustive search over torsion angles
- Using databases of torsion templates
- Commercial software: OMEGA

Drawbacks

- Computational prohibitive for structures with large number of rotatable bonds
- Poor generalization to unseen structures

- Fine-Tuning with Force Fields (FF)
 - Crude approximation of the true energy
 - Experimental quantum mechanics parameters
- > Drawbacks
 - Strong assumptions (Simplistic formulas)
 - Limitations in accurately capturing subtle, weak interactions in biomolecules

- ML for Conformer Generation
 - Multi-stage Models
 - Generate distance matrix, then predict coordinates, then fine-tune the conformer

> Drawbacks

- Need a Force Field or extra energy model
- No trainable end-to-end (meaning error accumulation)
- O No explicit handling of classic molecular geometry: bond angles, torsion angles
- Requires an iterative procedure to sample conformers (via Langevin dynamics)

1. Dive into GEOMOL

GEOMOL Overview

Torsion Angle

Polypeptide main chain dihedral angles: Phi (ϕ) , Psi (ψ) , and Omega (ω)

Torsion & Torque

- ▶ Torsion: a state of being twisted
- ▶ Torque: a moment that tends to twist a member about its longitudinal

axis

제발 지능로봇 들으세요 !!!

GEOMOL Contribution

- Explicit predictions of bond distances, bond angles, and torsion angles
- Trainable end-to-end & non-autoregressive: joint prediction of all atoms
 3D coordinates from the molecular graph
- □ Tetrahedral chiral centers are predicted exactly (No iterative optimization necessary as with traditional distance geometry approaches)
- Diversity of generated conformers: by using a tailored Wasserstein loss

Local Structure (LS) Prediction

For each non-terminal atom X, predict the relative 3D coordinates of all its 1-hop neighboring assuming X is placed in the origin:

$$f(\mathbf{h}_{T_1},\ldots,\mathbf{h}_{T_n};\mathbf{h}_X) = (\mathbf{p}_1,\ldots,\mathbf{p}_n) \in \mathbb{R}^{3 \times n}$$

Challenges

Equivariant prediction with respect to any permutation of neighbors

$$f(\mathbf{h}_{T_{\pi(1)}},\ldots,\mathbf{h}_{T_{\pi(n)}};\mathbf{h}_X)=(\mathbf{p}_{\pi(1)},\ldots,\mathbf{p}_{\pi(n)}), \forall \pi \in S_n$$

- - Solution: a special symmetric transformer encoder that separates distance prediction from direction prediction

Tackling Chirality

- Chiral Information
 - Bond annotations to describe
 different molecules with the same
 molecular graph, but different 3D
 structures (thus different chemical
 behaviors
 - Differentiates mirroring structures
 - Bond annotations are not fixed (multiple equivalent annotations)

Tackling Chirality Exactly

- Given a chiral center, we compute the oriented volume
- The sign of the oriented volume changes depending on chirality
- If we get the incorrect sign, we simply reflect the structure by flipping against the z-axis
- No iterative optimization is needed

$$OV(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4) \stackrel{\mathsf{def}}{=} sign \begin{pmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \end{vmatrix} \end{pmatrix}$$

Assembling LS via Torsion Angle

- > Assemble every two local neighboring structures by predicting the torsion angle
- **Challenges:**
 - Parameterize a single canonical torsion angle per rotatable bond
 - All dihedral angle (XYT, XYZ) are couped via a single canonical torsion when
 LS of X and Y are fixed
 - O Torsion angle should be predicted in a *rotation-translation and permutation invariant*
- Solution: Novel Torsion Angle Neural Network

Assembling LS via Torsion Angle

$$\Delta_{ij} \stackrel{\text{def}}{=} \angle (XYT_i, XYZ_j) \text{ and } \mathbf{s}_{ij} \stackrel{\text{def}}{=} \begin{bmatrix} \cos(\Delta_{ij}) \\ \sin(\Delta_{ij}) \end{bmatrix}.$$

$$\text{Torsion angle as } \alpha \stackrel{\text{def}}{=} atan2(\frac{\mathbf{s}}{\|\mathbf{s}\|}).$$

$$\text{satisfies both invariances}$$

Proposition 1. Given 3D coordinates of nodes X, Y, T_i, Z_j and fixed weights $c_{ij} \in \mathbb{R}$ such that $\sum_{i,j} c_{ij} \mathbf{s}_{ij} \in \mathbb{R}^2$ is not the null vector, then $\alpha \stackrel{\mathsf{def}}{=} atan2(\frac{\mathbf{s}}{\|\mathbf{s}\|})$ is unique, i.e., if we change the torsion angle of bond XY, then α will change. Formally, if we rotate the set of bonds $\{XT_i\}_i$ jointly around the line XY with the same angle γ , then α will be exactly shifted with γ .

Optimal Transport Loss

- ightharpoonup We predict a single conformer C and then calculates a loss $\mathcal{L}(\mathcal{C},\mathcal{C}^*)$
 - o matches 1,2,3-hop distances, bond and torsion angles
- \triangleright In practice, multiple ground truth conformers $\{\mathcal{C}_l^*\}_{l\in[1..L]}$ and predicted $\{\mathcal{C}_k\}_{k\in[1..K]}$
 - However, we do not know a priori the number L of true conformers or the matching between generated and true conformers
 - We wish to avoid expensive and problematic adversarial training
 - How to generate diverse conformers (to cover all modes of true distributions)

$$\mathcal{L}^{ensemble} \stackrel{\text{def}}{=} EMD_{\mathcal{L}(\cdot,\cdot)}(\{\mathcal{C}_k\}_k, \{\mathcal{C}_l^*\}_l) = \min_{\mathbf{T} \in \mathcal{Q}_{K,L}} \sum_{k,l} T_{kl} \mathcal{L}(\mathcal{C}_k, \mathcal{C}_l^*)$$

T is the *transport plan*

Total Loss

$$\mathcal{L}(\mathcal{C}, \mathcal{C}^*) \stackrel{\text{def}}{=} \xi_1 \cdot \frac{1}{\#\{(u, v) \in E\}} \sum_{\{(u, v) \in E\}} (d(u, v) - d^*(u, v))^2$$

$$+ \xi_2 \cdot \frac{1}{\#\{u, v : 2\text{-hops away}\}} \sum_{\{u, v : 2\text{-hops away}\}} (d(u, v) - d^*(u, v))^2$$

$$+ \xi_3 \cdot \frac{1}{\#\{u, v : 3\text{-hops away}\}} \sum_{\{u, v : 3\text{-hops away}\}} (d(u, v) - d^*(u, v))^2$$

$$- \xi_4 \cdot \frac{1}{\#(u, v) \in E, (v, w) \in E} \sum_{(u, v) \in E, (v, w) \in E} \cos(\angle uvw - \angle^*uvw)$$

$$- \xi_5 \cdot \frac{1}{\#(u, v), (v, w), (w, y) \in E} \sum_{(u, v), (v, w), (w, y) \in E} \cos(\angle (uvwy) - \angle^*(uvwy))$$

Assemble Full Conformer at Test Time

We can assemble any tree-like molecule using predicted local structures and torsion angles

- We correct rings by averaging over all ring spanning trees and using *Kabsch* superimposition algorithm
 - Kabsch algorithm is method for calculating the optimal rotation matrix that minimizes the RMSD between two paired sets of points (very useful method for comparing molecular/protein structures)

Results

Table 1: Results on the **GEOM-DRUGS** dataset. All models are without FF fine-tuning. "R" and "P" denote Recall and Precision. Note: OMEGA is an established commercial (C) software.

	COV - R (%) ↑		AMR - R (\mathring{A}) \downarrow		COV - P (%) ↑		AMR - P (Å) ↓	
Models	Mean	Median	Mean	Median	Mean	Median	Mean	Median
GraphDG (ML)	10.37	0.00	1.950	1.933	3.98	0.00	2.420	2.420
$\operatorname{CGCF}(ML)$	54.35	56.74	1.248	1.224	24.48	15.00	1.837	1.829
RDKit/ETKDG	68.78	76.04	1.042	0.982	71.06	88.24	1.036	0.943
OMEGA (C)	81.64	97.25	0.851	0.771	77.18	96.15	0.951	0.854
Geomol $(s = 9.5)$	86.07	98.06	0.846	0.820	71.78	83.77	1.039	0.982
Geomol $(s=5)$	82.43	95.10	0.862	0.837	78.52	94.40	0.933	0.856

Table 2: Results on the **GEOM-QM9** dataset. See caption of table 1.

	COV - R (%) ↑		\mid AMR - R (Å) \downarrow		COV - P (%) ↑		AMR - P (Å) ↓	
Models	Mean	Median	Mean	Median	Mean	Median	Mean	Median
GraphDG (ML)	74.66	100.00	0.373	0.337	63.03	77.60	0.450	0.404
$\operatorname{CGCF}(ML)$	69.47	96.15	0.425	0.374	38.20	33.33	0.711	0.695
RDKit/ETKDG	85.13	100.00	0.235	0.199	86.80	100.00	0.232	0.205
OMEGA (C)	85.51	100.00	0.177	0.126	82.86	100.00	0.224	0.186
GEOMOL $(s=5)$	91.52	100.00	0.225	0.193	86.71	100.00	0.270	0.241

Limitations

- Steric Clashes

In robotics, they check self-collision by using joint capsules

ISMB D-Day

Thank You