2.
$$\psi^{11} + (\varepsilon - \upsilon(x))\psi = 0$$

a)
$$\int_{a}^{b} \varphi_{h} \hat{H} \varphi_{h+1} dx = \sum_{h=1}^{n} \int_{a}^{b} \psi_{h} \psi_{h+1} dx = -(1)$$

$$\int_{a}^{b} \psi_{h+1} \hat{H} \psi_{h} dx = \sum_{h=1}^{n} \int_{a}^{b} \psi_{h} \psi_{h+1} dx = -(2)$$

$$(1) - (1)$$
:

$$\int_{a}^{b} \int (\psi_{h} \hat{h} \psi_{hH} - \psi_{hH} \hat{h} \psi_{h}) dx = (\xi_{hH} - \xi_{h})^{b} \int dx \psi_{h} \psi_{hH}$$

$$\frac{a}{2} \int_{\frac{\pi}{2m}} \frac{1}{2m} \frac{1}{2m$$

$$\frac{1}{2m} \left[\frac{1}{2m} \left[\frac{1}{2m} \left(\frac{1}{2m} + \frac{1}{2m} \right) \right]_{a}^{b} = \left(\frac{1}{2m} - \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}{2m} \right) \left(\frac{1}{2m} - \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}{2m} \right) \left(\frac{1}{2m} - \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}{2m} + \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}{2m} + \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}{2m} + \frac{1}{2m} + \frac{1}{2m} + \frac{1}{2m} \right) \left(\frac{1}{2m} + \frac{1}$$

Thus shown!

b) $V_{\mu}(\alpha) > 0$; $a < \alpha < b$ Assume $V_{\mu+1}(\alpha) > 0$ for $a < \alpha < b$ culton

Then RHS of (3) > 0

The LHS is: $V_{\mu+1}V_{\mu}^{\dagger} - V_{\mu}V_{\mu+1}^{\dagger} | b$ $V_{\mu}(b) = V_{\mu}(a) = 0$

Ins is $\Psi_{h+1}(b)$ $\Psi_{h}(b) - \Psi_{h+1}(a)$ $\Psi_{h}(a)$ 70 (sma Rus 20) let's see possible values $\Psi_{h}'(a,b)$ can cortake: $\Psi_{h}(a)$ $\Psi_{h}(b)$

O O LHS zero

0 <0 THS <0

>0 LHS <0

>0 <0 THS <0

So if we assume $V_{h+1} \geq 0$ to $x \in [a,b]$, we reach a Contradiction \Rightarrow V_{h+1} must change sign accept a and b have opposite signs at a and b $V_{h+1} \leq 6$ is similarly dealt, we can multiply it by -1 and claime - V_{h+1} commot be monosigned over $x \in [a,b]$