A simple polynomial-time approximation algorithm for the total variation distance between two product distributions

Weiming Feng¹, Heng Guo¹, Mark Jerrum², Jiaheng Wang¹
(1) University of Edinburgh (2) Queen Mary, University of London

The total variation distance between two product distributions

Input: distributions $P_1, P_2, ..., P_n$ and $Q_1, Q_2, ..., Q_n$ over finite domain $[s] = \{0, 1, ..., s - 1\}$ specifying two **product distributions** $P = P_1 \times P_2 \times \cdots \times P_n$ and $Q = Q_1 \times Q_2 \times \cdots \times Q_n$ over $[s]^n$.

Output: the total variation distance (TV distance) between P, Q

$$d_{TV}(P,Q) = \frac{1}{2} \sum_{x \in [s]^n} |P(x) - Q(x)| = \max_{A \subseteq [s]^n} |P(A) - Q(A)|.$$

Challenge: the size of sample space of P, Q is exponentially large s^n .

Background & previous results [Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, Vinodchandran, 2022]

Hardness: the exact computation of the TV distance between two product distributions is **#P-complete**.

Approximate the TV distance: Given P, Q and an error bound $0 < \epsilon < 1$, an **FPRAS** outputs a random \hat{d} in time poly $(n, 1/\epsilon)$ such that

$$\Pr[(1-\epsilon)d_{TV}(P,Q) \le \hat{d} \le (1+\epsilon)d_{TV}(P,Q)] \ge \frac{2}{3}.$$

Algorithm: there is an FPRAS if s=2 (Boolean domain) and $\frac{1}{2} \le P_i(1) < 1$ and $0 < Q_i(1) \le P_i(1)$ for all $1 \le i \le n$.

Our results [Feng, Guo, Jerrum, Wang, SOSA 2023]

There is an FPRAS for the TV distance between two product distributions

- $O(n^2/\epsilon^2)$ -time assuming the cost of each arithmetic operation is O(1);
- each operation acts on poly(n)-bit numbers if input par. has poly(n) bits.

TV distance and coupling

A Coupling of two distribution P, Q over Ω is a pair of joint random variables

$$(X,Y) \in \Omega \times \Omega$$
 such that $X \sim P$ and $Y \sim Q$

Coupling lemma: for any coupling (X, Y) of P, Q,

$$d_{TV}(P,Q) \le \Pr_{\text{couping}}[X \ne Y],$$

and there exists an optimal coupling of P, Q such that

$$d_{TV}(P,Q) = \Pr_{\text{opt}}[X \neq Y].$$

Greedy coupling for product distributions

Product distributions: $P = P_1 \times P_2 \times \cdots \times P_n$ and $Q = Q_1 \times Q_2 \times \cdots \times Q_n$.

Greedy coupling: couple each (P_i, Q_i) optimally and independently.

Example: Boolean distributions $P, Q \in \{0,1\}^n$

- sample $r_i \in [0,1]$ uniformly and ind. for all i;
- $X_i = 0 \text{ iff } r_i \le P_i(0) \text{ and } Y_i = 0 \text{ iff } r_i \le Q_i(0);$
- $X = (X_1, X_2, ..., X_n)$ and $Y = (Y_1, Y_2, ..., Y_n)$.

Our idea: estimate the ratio

Fact: Prob. of $X \neq Y$ in greedy coupling is easy to compute

$$\Pr_{\text{greedy}}[X \neq Y] = 1 - \Pr_{\text{greedy}}[X = Y] = 1 - \prod_{i=1}^{n} (1 - d_{TV}(P_i, Q_i)).$$

Lemma: There is FPRAS for the ratio

$$R = \frac{d_{TV}(P, Q)}{\Pr_{\text{greedy}}[X \neq Y]} \ge \frac{1}{n}.$$

Estimator for the ratio *R*:

• π : distribution of X in the greedy coupling conditional on $X \neq Y$

$$\forall \sigma \in [s]^n$$
, $\pi(\sigma) = \Pr_{\text{greedy}}[X = \sigma \mid X \neq Y]$.

• f: a function $[s]^n \to \mathbb{R}_{>0}$ such that $\forall \sigma \in [s]^n$

$$f(\sigma) = \frac{\Pr[X = \sigma \land X \neq Y]}{\Pr[X = \sigma \land X \neq Y]} = \frac{\max\{0, P(\sigma) - Q(\sigma)\}}{\Pr[X = \sigma \land X \neq Y]}.$$

• Estimator: $W = f(\sigma)$ where $\sigma \sim \pi$.

Open problems

- Deterministic approximate algorithm (FPTAS)?
- FPTAS/FPRAS beyond the product distribution?

Examples of coupling

Distributions: $P(0) = P(1) = \frac{1}{2}$ and $Q(0) = \frac{1}{3}$, $Q(1) = \frac{2}{3}$. Ind. Coupling: sample $X \sim P, Y \sim Q$ independently

 $\Pr_{\text{ind}}[X \neq Y] = 1/2.$

Opt. Coupling: sample real $r \in [0,1]$ uniformly at random X = 0 iff $r \le 1/2$ and Y = 0 iff $r \le 1/3$.

$$X = 0$$

$$X = 1$$

$$Y = 0$$

$$Y = 1$$

$$Y = 1$$

$$Y = 1$$

$$X = 1$$

$$Y = 1$$

Properties of the greedy coupling

Non-optimal: Ex $P = P_1 \times P_2$ and $Q = Q_1 \times Q_2$ s.t. $\forall i$

$$P_i(0) = P_i(1) = \frac{1}{2}$$
 and $Q_i(0) = \frac{1}{2} - \delta$, $Q_i(1) = \frac{1}{2} + \delta$.
 $\Pr[X \neq Y] = \delta(2 - \delta) > \delta(1 + \delta) = d_{TV}(P, Q)$.

Poly(n)-approximation: for any product distributions,

$$d_{TV}(P,Q) \le \Pr_{\text{greedy}}[X \neq Y] \le n \cdot d_{TV}(P,Q)$$
.

Properties of the estimator

Correct expectation

$$\mathbb{E}_{\sigma \sim \pi}[f(\sigma)] = \frac{d_{TV}(P, Q)}{\Pr_{\text{greedy}}[X \neq Y]} = R \geq \frac{1}{n}.$$

Low variance

$$\operatorname{Var}_{\sigma \sim \pi}[f(\sigma)] \leq 1.$$

- Efficient computation
 - sample $\sigma \sim \pi$ in time O(n);
 - given any $\sigma \in \{0,1\}^n$, compute $f(\sigma)$ in time O(n).

Algorithm

- draw $\sigma_1, \sigma_2, ... \sigma_m \sim \pi$ for $m = (n/\epsilon^2)$;
- return the average $\hat{R} = \frac{1}{m} \sum_{i=1}^{m} f(\sigma_i)$.

Correctness: Chebyshev ineq. \clubsuit Var $[f] \le 1 \clubsuit \mathbb{E}[f] \ge \frac{1}{n}$. Efficiency: efficient computation property.