

Conditions

Sources close to each other

Polarization of light

Polarizer or Poloriod is a transparent plastic sheet on which particles are deposited in a series of parallel lines. Natural crystals such as tourmaline, calcite and quartz are used as polariser

Only transverse waves can be polarised

Light Waves

Inteference of

light

Diffraction of

light

Amplitude of source same/almost

Constructive and destructive inteference

Constructive:

$$o.\,p.\,d.=m\lambda\quad m=0,1,2,3,\dots \ \phi=2m\pi\quad m=0,1,2,3,\dots$$

Destructive:

$$o.\,p.\,d. = (m\pmrac{1}{2})\lambda \quad m = 0,1,2,3,\dots \ \phi = (2m+1)\pi \quad m = 0,1,2,3,\dots$$

Young's double-slit interference

Bright fringes:

$$a\sin heta_m=m\lambda \quad m=0,1,2,3,\dots$$

Dark fringes:

$$a\sin heta_m=(m\pmrac{1}{2})\lambda\quad m=0,1,2,3,\ldots$$

$\theta \approx 0$

$$\sin heta_m pprox an heta_m$$

$$an heta_m = rac{x}{D}$$

$$y = \frac{D\lambda}{a}$$

Newton's Rings

$$rac{d^2}{d^2}=(m\pmrac{1}{2})\lambda \quad m=0,1,2,3,\dots \quad (bright)$$

$$rac{r^2}{R}=m\lambda \quad m=0,1,2,3,\dots \quad (dark)$$

Thin wedge film interference

Phase change when reflected at an optically denser medium

Case 1:

$$(n_2 > n_1 \ and \ n_2 > n_3) \ or \ (n_2 < n_1 \ and \ n_2 < n_3)$$

$$2n_2t=(m+rac{1}{2})\lambda \quad m=0,1,2,3,\dots \quad (bright)$$

$$2n_2t=m\lambda \quad m=0,1,2,3,\dots \quad (dark)$$

Case 2:

$$\left(n_{1} < n_{2} < n_{3}
ight) or \left(n_{1} > n_{2} > n_{3}
ight)$$

$$2n_2t=m\lambda \quad m=0,1,2,3,\dots \quad (bright)$$

$$2n_2t=(m+rac{1}{2})\lambda \quad m=0,1,2,3,\dots \quad (dark)$$

Single Slit Diffraction

 $a\sin\theta_0 = 0$ (Central maximum)

$$a\sin heta_m=(m+rac{1}{2})\lambda \quad m=1,2,3,\dots (maximum)$$

 $a\sin heta_m=m\lambda \quad m=1,2,3,\dots (minimum)$

Diffraction grating

Grating constant
$$d=rac{1}{N}=a+b$$

$$d\sin heta_m=m\lambda \quad m=0,1,2,3,\dots (maximum)$$

$$d\sin heta_m=(m+rac{1}{2})\lambda \quad m=1,2,3,\dots (minimum)$$

$$\sin heta_m = rac{m \lambda}{d} \leq 1$$