Advanced Algorithm

Geometric Algorithms

Topics to be covered

- What is Computation Geometry?
- Applications of Geometric Algorithm
- Properties of Line Segment
- Closest Pair of points (Brute-Force Approach)
- Intersection of Two Line Segments
- Finding Convex Hull using Graham Scan

What is Geometric Algorithm?

- Computational geometry is the branch of computer science that studies algorithms for solving geometric problems.
- The input to a computational-geometry problem is typically a
 description of a set of geometric objects, such as a set of
 points, a set of line segments, or the vertices of a polygon in
 counterclockwise order.
- Each input object is represented as a set of points $\{p_i\}$, where each $p_i = (x_i, y_i)$ and $x_i, y_i \in \mathbf{R}$.

What is Geometric Algorithm?

- For example, an n-vertex polygon P is represented by a sequence $p_0, p_1, p_2, \ldots, p_{n-1}$ of its vertices in order of their appearance on the boundary of P.
- The output is often a response to a query about the objects, such as whether any of the lines intersect, or perhaps a new geometric object, such as the convex hull of set of points

What is Geometric Algorithm?

 Computational geometry can also be performed in three dimensions, and even in higher- dimensional spaces, but such problems and their solutions can be very difficult to visualize.

Applications of Geometric Algorithm

- Data Mining
- Image Processing
- · Computer Graphics, Games, Virtual Reality
- Fractal Geometry
- Animation
- VLSI Design
- Computer Aided Design (Civil Drawings)
- Architecture (3D Building Drawings)
- Mechanical Engineering (2D/3D Machine Design)
- Statistics
- Global Positioning System
- · Robotics (Finding Paths etc.)
- · Airflow around an aircraft wing
- · Air traffic Control

Properties of Line Segments

- A **convex combination** of two distinct points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ is any point $p_3 = (x_3, y_3)$ such that for some a in the range $0 \le a \le 1$, we have $x_3 = ax_1 + (1 a)x_2$ and $y_3 = ay_1 + (1 a)y_2$. We also write that $p_3 = a p_1 + (1 a)p_2$.
- Intuitively, p_3 is any point that is on the line passing through p_1 and p_2 and is on or between p_1 and p_2 on the line.

Properties of Line Segments

- Given two distinct points p_1 and p_2 , the *line* segment $\overline{p_1p_2}$ is the set of convex combinations of p_1 and p_2 . We call p_1 and p_2 the endpoints of segment $\overline{p_1p_2}$
- Sometimes the ordering of p_1 and p_2 matters, and we speak of the **directed segment** p_1p_2
- If p_1 is the **origin** (0, 0), then we can treat the directed segment $\overrightarrow{p_1p_2}$ as the **vector** p_2 .

Computing Cross Product

If $p_1 \times p_2$ is positive, then p_1 is clockwise from p_2 with respect to the origin (0, 0); if this cross product is negative, then p_1 is counterclockwise from p_2 .

A boundary condition arises if the cross product is zero; in this case, the vectors are *collinear*, pointing in either the same or opposite directions.

Example -I

$$P_{1}(2,8)$$
 clockwise Direction

 $P_{1}(8,2)$
 $P_{1}(8,2)$
 $P_{1} \times P_{2} = \begin{vmatrix} 2 & 2 \\ 4 & 4 \end{vmatrix} = \begin{vmatrix} 8 & 2 \\ 2 & 8 \end{vmatrix} = 64 - 4 = 60 > 0$
 $P_{0} P_{1}$ is clockwise from $P_{0} P_{1}$

Computing Cross Product

- To determine whether directed segment p0p1 is clockwise from directed segment $\overrightarrow{p0p2}$ with respect to their common point p0, we translate to use p0 as the origin.
- That is, we let p_1 p_0 denote the vector p'_1 = (x'_1, y'_1) , where x'_1 = x_1 x_0 and y'_1 = y_1 y_0 , and we define p_2 p_0 similarly.
- We then compute the cross product
 (p₁ p₀) x (p₂ p₀) = (x₁ x₀) (y₂ y₀) (x₂ x₀) (y₁ y₀).

If cross product is positive then, $\overline{p0p1}$ is clockwise from $\overline{p0p2}$

Determining whether consecutive segments turn left or right

We then compute the cross product

$$(p_2 - p_0) \times (p_1 - p_0) = (x_2 - x_0) (y_1 - y_0) - (x_1 - x_0) (y_2 - y_0).$$

Closest Pair of Points (Brute-Force Approach)

Euclidean distance $d(P_i, P_j) = \sqrt{[(x_i - x_j)^2 + (y_i - y_j)^2]}$

Find the minimal distance between a pairs in a set of points

Closest Pair of Points (Brute-Force Approach)

Algorithm BruteForceClosestPoints(
$$P$$
)

// P is list of points

 $dmin \leftarrow \infty$

for $i \leftarrow 1$ to n -1 do

for $j \leftarrow i+1$ to n do

 $d \leftarrow \operatorname{sqrt}((x_i - x_j)^2 + (y_i - y_j)^2)$

if $d < dmin$ then

 $dmin \leftarrow d$; $index1 \leftarrow i$; $index2 \leftarrow j$

return $index1$, $index2$

Ē	ڬ	dmin	ᆁ	92
1	2	2.78	1	2
2	3	2.74	l	2
2	3	2.	2	3

Closest Pair of Points (Brute-Force Approach)

$$C(n) = \sum_{j=1}^{m-1} \sum_{j=1+1}^{n} \cdot C = C \sum_{j=1+1}^{m-1} \sum_{j=1+1}^{n} 1$$

$$i=1=$$
) $\sum_{j=2}^{M} 1=N-1$
 $i=2=$) $\sum_{j=3}^{m} 1=N-2$
 $i=3=$) $\sum_{j=3}^{m} 1=N-2$