Set Operations

Set Operations

Overview Sut theory

- · Jutwoduction
 - . A set is a collection of objects.
 - . 16A, 1€A
 - · A=B means (4x)(16A \rightarrow 16B)
 - · Empty set (Ø)

- · Subsiets
 - · A S B means

· For each set A,

Unions, Intersections, and Relative Complements

Definition 1 (Set Operations)

Let A and B be sets.

• The <u>union of A and B</u> (denoted $A \cup B$) is the set of all things that belong to at least one of the sets A and B; in other words,

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

• The intersection of A and B (denoted $A \cap B$) is the set of all things that belong to both of the sets A and B; in other words,

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

 The relative complement of B in A (denoted A\B) is the set of all things that belong to A but not to B; in other words,

$$A \backslash B = \{x : x \in A \text{ and } x \notin B\}.$$

Notes on Set Operations

- Short ways to read $A \cup B$, $A \cap B$, and $A \setminus B$ are "A union B," "A intersect B," and "A less B" respectively.
- $A \cup B$ should not be read "A or B." $A \cap B$ should not be read "A and B." We use the connectives "and" and "or" to connect sentences, not nouns.
- The results of set operations are another sets, so they are nouns. Hence, one must not write something like " $A \cup B$ iff $x \in A$ or $x \in B$." Instead, write " $x \in A \cup B$ iff $x \in A$ or $x \in B$."

Set Inclusion and Set Operations

Example 2

Let A and B be sets. Then:

- $\mathbf{2} \ A \cap B \subseteq A \text{ and } A \cap B \subseteq B.$

Recall $A \subseteq B$ means $(\forall z) (z \in A \Rightarrow z \in B)$.

Proof of O We will show A = AUB; B = AUB is shown similarly.

Let IEA. (WTS: LEAUB.) Then IEA or LEB.

Let & be arbitrary.

T by assumption

Assume LEA. Thus LEAUB. This shows that A = AUB. I

 $(\forall n \in IN)(p(m) \Rightarrow p(n+1))$ Let $n \in IN$. Assume p(m) is true.

Let nEIN such that Pan is true.

Set Inclusion and Set Operations (cont')

Example 3

Let A, B, and C be sets. Then:

- 2 If $C \subseteq A$ and $C \subseteq B$, then $C \subseteq A \cap B$.

Proof of a Suppose A = C and B = C. (WTS: AUB = C)

Let & E AUB. Then XEA or XEB.

In the case where XEA, we know XEC, because ASC.

In the case where LEB, we know stEC, because BCC.

Thus in either case, & EC. Hence AUB = C.

Set Inclusion and Set Operations (cont')

Example 4 (Equivalence to Set Inclusion)

- Let A and B be sets. Then:

 - 2 $A \subseteq B$ iff $A \cap B = A$. 3 $A \subseteq B$ iff $A \setminus B = \emptyset$.

$A \subseteq B \text{ Iff } A \backslash B = \emptyset$

Proof of (1)

(>>> Suppose A = B. (WTS: AUB = B). Note that B = AUB by Ex2(1).

X AUB SB

7 × B & AUB

- Now A = B by assumption and B = B by reflexivity, so
- AUB \subseteq B by $\exists x.30$. Thus AUB = B. $L \Leftarrow > Conversely$, suppose AUB = B. (WTS: A \subseteq B). Note that A \subseteq AUB by $\exists x.20$. But AUB = B by assumption. Thus A \subseteq B.