Competishun

52/6, Opposite Metro Mas Hospital, Shipra Path, Mansarovar

Date: 25/11/2024

Time: 3 hours Max. Marks: 300

UTS-1_MT-4 (24-25)

Physics

Single Choice Question

Figure shows a system of three concentric metal shells A, B and C with radii a, 2a and 3a respectively.

Shell B is earthed and shell C is given a charge Q. Now if shell C is connected to shell A, then the final charge on the shell B, is equal to:

a)
$$-\frac{4Q}{13}$$

$$-\frac{8\zeta}{11}$$

$$-\frac{5Q}{3}$$

$$-\frac{3Q}{7}$$

A parallel plate capacitor has plates of area A separated by distance 'd' between them. Q2 It is filled with a dielectric which has a dielectric constant that varies as k(x) = K(1 + x) αx) where 'x' is the distance measured from one of the plates. If $(\alpha d) \ll 1$, the total capacitance of the system is best given by the expression

- a) $rac{AKarepsilon_0}{d}(1+lpha d)$ b) $rac{Aarepsilon_0K}{d}(1+rac{lpha^2d^2}{2})$
- c) $\frac{AK\varepsilon_0}{d}(1+\frac{lpha d}{2})$

- d) $rac{Aarepsilon_0 K}{d} \left(1+\left(rac{lpha d}{2}
 ight)^2
 ight)$
- The magnetic field of a plane electromagnetic wave is given by Q3 $ec{B}-=2 imes 10^{-8} \sin(0.5 imes 10^3 x + 1.5 imes 10^{11} t) \hat{j} T$

The amplitude of the electric field would be

- a) $6 \text{ Vm}^{-1} \text{ along x-axis}$ b) $3 \text{ Vm}^{-1} \text{ along x-axis}$ c) $6 \text{ Vm}^{-1} \text{ along z-axis}$

- d) $2 \times 10^{-8} \text{ Vm}^{-1}$ along z-axis
- Visible light of wavelength 6000×10^{-8} cm falls normally on a single slit and produces a diffraction pattern. It is found that the second diffraction minimum is at **Q4** 60° from the central maximum. If the first minimum is produced at θ_1 , then θ_1 is close to
 - a) 25°

b) 30°

c) 35°

d) 45°

In the given circuit, value of Y is Q5

- a) Toggles between 0 and 1
- **b)** 0
- **c)** 1
- d) Will not execute
- Consider a mixture of n moles of helium gas and 2n moles of oxygen gas (molecules Q6 taken to be rigid) as an ideal gas. Its $C_p/\tilde{C_v}$ value will be
 - a) 40/27

b) 19/13

c) 67/45

d) 23/15

As shown in the figure, a battery of emf E is connected to an inductor L and resistance **Q7** R in series. The switch is closed at t = 0. The total charge that flows from the battery, between t = 0 and $t = t_C$ (t_C is the time constant of the circuit) is :

- b) $\frac{EL}{eL^2}$
- c) $\frac{EL}{R^2} \left(1 \frac{1}{e}\right)$

(1) 1

(2) 2

- Velocity (in m/s) of a particle moving in a straight line is given by $V = (t^2 2t + 1)$: **Q8** List-I List-II
 - (P) Velocity (in m/s) of particle at t = 3sec is
 - (Q) Acceleration (in m/s^2) of particle at t = 2 is
 - (R) Time when particle is at rest is
 - (3) 3(S) Magnitude of average acceleration of particle in (4) 4 first one second is
 - **a)** $P \to 3; Q \to 2; R \to 4; S \to 1$ **b)** $P \to 4; Q \to 3; R \to 2; S \to 1$ **c)** $P \to 4; Q \to 2; R \to 1; S \to 1$

- d) $P \rightarrow 1: O \rightarrow 4: R \rightarrow 3: S \rightarrow 2$
- A thin circular dise of radius R is uniformly charged with density $\sigma > 0$ per unit area. **Q9** The disc rotates about its axis with a uniform angular speed ω . The magnetic moment of the disc is
 - $\pi R^4 \sigma \omega$
- b) $\frac{\pi R^4}{2} \sigma \omega$ c) $\frac{\pi R^4}{4} \sigma \omega$
- d) $2\pi R^4 \sigma \omega$
- O10 In a series LCR resonance circuit, if we change the resistance only, from a lower to higher value
 - a) The quality factor and the resonance frequency will remain constant
 - **b)** The resonance frequency will increase
 - The bandwidth of resonance circuit will increase
 - d) The quality factor will increase

Q11 The current flowing in the loop is shown in figure. Then the magnetic field at point O (centre) is:

a) $\frac{3\mu_0 n}{8r}$

- **b**) $\frac{5\mu_0 i}{8r}$
- c) $\frac{\mu_0 i}{8r}$
- d) None of these
- Ge and Si diodes start conducting at 0.3 V and 0.7 V respectively. In the following figure if Ge diode connection are reversed, the value of V_0 changes by: (assume that the Ge diode has large breakdown voltage)

a) 0.8 V

b) 0.6 V

c) 0.2 V

d) 0.4 V

Q13 The total current supplied to the circuit by the battery is -

a) 1A

b) 2A

c) 4A

- **d)** 6A
- In a Young's double slit experiment, the slits are placed 0.320 mm apart. Light of wavelength $\lambda = 500$ nm is incident on the slits. The total number of bright fringes that are observed in the angular range
 - $-30^{\circ} \le \theta \le 30^{\circ} \text{ is:}$
 - a) 640

b) 320

c) 321

d) 641

Q15 Choose the correct P-V graph of ideal gas for given V-T graph.

b)

d)

Q16 A screw gauge advances by 3mm in 6 rotations. There are 50 divisions on circular scale. Find least count of screw gauge?

- a) 0.002 cm
- **b)** 0.001 cm
- c) 0.01 cm
- **d)** 0.02 cm

Q17 Three blocks A, B and C are in equilibrium. If string is cut between block A and B then calculate acceleration of block 'B' just after cutting the string.

- a)
- **b)** $15 \text{ m/s}^2 \text{ upward}$ **c)** $15 \text{ m/s}^2 \text{ downward}$ **d)** $30 \text{ m/s}^2 \text{ upward}$

Q18 In the following diagram if $V_2 > V_1$ then -

- a) $\lambda_1=\sqrt{\lambda_2}$
- b) $\lambda_1 < \lambda_2$
- c) $\lambda_1 = \lambda_2$
- d) $\lambda_1 > \lambda_2$

Q19 The block of mass M moving on the frictionless horizontal surface collides with the spring of spring constant K and compresses it by length L. The maximum momentum of the block after collision is -

a) $\sqrt{MK}L$

 $b) \quad \underline{KL^2} \\ 2M$

c) zero

d) $\frac{ML^2}{K}$

A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of the same length and radius 2R will be -

a) $\frac{F}{2}$

b) 2F

c) 4F

d) $\frac{F}{4}$

Numerical

A quarter cylinder of radius R and refractive index 1.5 is placed on a table. A point Object P is kept at a distance mR from it. Find the value of 100 × m for which a ray from P will emerge parallel to the table as shown in figure

Q22 Four balls A, B, C and D are placed on a smooth horizontal surface. Ball B collides with ball C with an initial velocity u as shown in figure. If all collisions are elastic, find the total number of collisions between the balls.

- In Bohr's model, if B and 'a' denote the magnetic field at centre and centripetal acceleration, where electron is in nth orbit, then it is found that $\frac{a}{B} \propto \frac{n^{\alpha}}{z^{\beta}}$, where z = atomic number, find value of $(\alpha + \beta)$.
- There is no friction between surface and block. If system is slightly displaced and released, it executes S.H.M., spring constant of the spring is K and co-efficient of friction between the blocks is μ . Maximum amplitude of oscillation so that upper block does not slip on the lower block is $\alpha \frac{\mu mg}{K}$ then α is

Q25 Consider a ring of mass m and radius R with four light spokes. A point mass m is placed on one horizontal spoke. (see the figure)

If the shown system is at rest then minimum value of coefficient of friction is given by $\frac{3}{n}$. Find the value of n.

Chemistry

Single Choice Question

Q26 5.1 g NH₄SH is introduced in 3.0 L evacuated flask at 327°C. 30% of the solid NH₄SH decomposed to NH₃ and H₂S as gases. The K_p of the reaction at 327°C is $(R = 0.082 \text{ L} \text{ atm mol}^{-1} \text{K}^{-1}$, Molar mass of $S = 32 \text{ g mol}^{-1}$, molar mass of $N = 14 \text{ g mol}^{-1}$) **a)** $4.9 \times 10^{-3} \text{ atm}^2$ **b)** 0.242 atm^2 **c)** $1 \times 10^{-4} \text{ atm}^2$ **d)** $0.242 \times 10^{-4} \text{ atm}^2$

Q27 Two pi and half sigma bonds are present in

a) O_2^+

c) N_2^+

d) N_2

Q28 When a certain metal was irradiated with light of frequency $3.2\times10^{16}\,Hz$, photo electrons emitted had twice the kinetic energy as did photoelectrons emitted when same metal was irradiated with light at frequency $2.0 \times 10^{16} \, \mathrm{Hz}$. The work function of metal will be-

a) $4.2 \times 10^{20} \text{ J}$

- **b)** $3.1 \times 10^{19} \,\mathrm{J}$ **c)** $5.3 \times 10^{-18} \,\mathrm{J}$ **d)** $2.2 \times 10^{20} \,\mathrm{J}$

Q29 Which is a true statement?

- a) Larger is the value of ionisation energy easier is the formation of cation.
- b) Larger is the value of electron affinity easier is the formation of anion.
- c) Larger is the value of ionisation energy as well as electron affinity the smaller is the electronegativity of atom.
- d) Larger is the $Z_{\rm eff}$ larger is the size of atom

O30 Select the incorrect statement?

- a) In graphite, carbon is sp² hybridised while in diamond, is carbon is sp³ hybridised
- b) CO is toxic because it forms a complex with haemoglobin in the blood
- c) Graphite is anisotropic in nature with respect to conductivity
- d) COCl₂ is called phosphine gas

Q31 Select the correct order for the given properties—

(I) Thermal Stability : $BaSO_4 > SrSO_4 > CaSO_4 > MgSO_4$

(II) Basic Nature : ZnO > BeO > MgO > CaO

(III) Solubility in water : LiOH > NaOH > KOH > RbOH

(IV) Melting point : NaCl > KCl > RbCl > LiCl

a) I. IV

b) I, II and IV

c) II, III

d) All are correct

Q32 Given below are two statements:

Statements-I: In Hofmann degradation reaction, the migration of only an alkyl group takes place from carbonyl carbon of the amide to the nitrogen atom.

Statement-II: The group is migrated in Hofmann degradation reaction to electron deficient atom. In the light of the above statement, choose the most appropriate answer from the options given below:

- a) Both Statement-I and Statement-II are correct
- **b)** Both Statement-I and Statement-II are incorrect
- Statement-I is correct but Statement-II is incorrect
- d) Statement-I is incorrect but Statement-II is correct
- Q33 In a Cu-voltameter, mass deposited in 30s is m gm. If the time-current graph is shown in the following figure

What is the electrochemical equivalent of Cu?

a) m/2

b) m/3

c) m/4

Which of the following pairs of structures do not represent resonating structures?

 $CH_3 - C - CH_3$

c)

 $^{\oplus}$ OH OH | CH₃ - C - CH₃ ; CH₃ - C - CH₃

- Q35 Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Cis form of alkene is found to be more polar than the trans form Reason (R): Dipole moment of trans isomer of 2-butene is zero.

In the light of the above statements, choose the correct answer from the options given below:

- a) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- **b)** (A) is true but (R) is false
- c) Both (A) and (R) are true and (R) is the correct explanation of (A)
- d) (A) is false but (R) is true

Q36
$$\longrightarrow$$
 O + CH₃MgBr $\xrightarrow{H_3O^+}$ A $\xrightarrow{Conc.}$ $\xrightarrow{H_2SO_4}$ B $\xrightarrow{O_3/H_2O/Zn}$ C

A, B and C are -

a)
$$A \rightarrow CH_3$$
 $C \rightarrow CH_3$ $C \rightarrow CH_3$ $C \rightarrow CH_3$

b)
$$A \rightarrow \begin{array}{c} CH_3 \\ A \rightarrow \end{array} \begin{array}{c} CH_2 \\ C \rightarrow \end{array} \begin{array}{c} O \\ \\ \end{array}$$
 HCHO

c)
$$HO$$
 CH_3 CH_3 CH_3 CHO CHO

d)
$$A \rightarrow CH_3$$
 $C \rightarrow CH_3$ $C \rightarrow COOH$

Q37
$$\longrightarrow$$
 \longrightarrow \longrightarrow \longrightarrow \longrightarrow product \longrightarrow

a)
$$CH_2$$

- d) none of the above
- Q38 Which of the following hydrides of the oxygen family shows the lowest boiling point?
 - a) H_2O

 H_2S

c) H_2Se

d) H_2 Te

Q39 The major product in the reaction

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

- a) t-Butyl ethyl ether
- **b)** 2,2-Dimethyl butane
- c) 2-Methyl pent-1-ene

d) 2-Methyl prop-1-ene

A
$$\xrightarrow{OH^-}$$
 C₉H₁₀O₃ $\xrightarrow{KMnO_4}$ C₉H₁₀O₄
(It gives intense colour with FeCl₃ and Positive Tollen's test)

3,4-dihydroxy $\xleftarrow{Conc. HI}$
Benzoic acid

Starting substrate 'A' is -

a) OH OH
$$H_3C$$
 CH_3

Q41 The correct IUPAC name of the following compound is:

$$O_2N$$

- a) 4-methyl-2-nitro-5-oxohept-3-enal
- **b)** 4-methyl-5-oxo-2-nitrohept-3-enal
- c) 4-methyl-6-nitro-3-oxohept-4-enal
- d) 6-formyl-4-methyl-2-nitrohex-3-enal
- Q42 In which of the following hexose C-4 epimer of D-glucose is
 - a) D-Altrose
- **b)** D-mannose
- c) D-Galactose
- d) D-fructose
- Match the complexes given in column I with the oxidation states of central metal atoms given in column II and mark the appropriate choice.

Column I

(Complex)

(a) $K_3 \left[Co(C_2O_4)_2 Cl_2 \right]$

(b)
$$\left[\text{Pt} \left(\text{C}_2 \text{H}_4 \right) \text{Cl}_3 \right]^{-1}$$

(c)
$$\left[\text{Fe}(\text{H}_2\text{O})_5 \text{ NO} \right] \text{SO}_4$$

(d)
$$\left[Ni(CO)_4 \right]$$

Column II

(Oxidation state of central atom)

- a) (a) (ii), (B) (i), (C) (iv), (D) (iii)
- c) (a) (iii), (B) (iv), (C) (ii), (D) (i)
- **b)** (a) (iv), (B) (ii), (C) (i), (D) (iii)
- **d)** (a) (i), (B) (ii), (C) (iii), (D) (iv)

- The IUPAC name of the complex [Pt(NH₃)₂ Cl(NH₂CH₃)]Cl is:
 - a) Diamminechlorido(methanamine)platinum (II) chloride
 - b) Diammine(methanamine)chloridoplatinum (II) Chloride
 - c) Bisammine(methanamine)chloridoplatinum (II) chloride
 - d) Diamminechlorido(aminomethane)platinum (IV) chloride
- Arrange the following elements in the increasing order of number of unpaired electrons in it.
 - (A) Sc
- (B) **Cr**
- (C) **V**
- (D) Ti
- (E) Mn

Choose the correct answer from the options given below:

a) (C) < (E) < (B) < (A) < (D)

b) (B) < (C) < (D) < (E) < (A)

c) (A) < (D) < (C) < (B) < (E)

d) (A) < (D) < (C) < (E) < (B)

Numerical

The following results were obtained during kinetic studies of the reaction; 2 A + B

→ Products

Experiment	[A] (in mol L ⁻¹)	[B] (in mol L ⁻¹)	Initial Rate of reaction (in mol L ⁻¹ min ⁻¹)			
1	0.10	0.20	6.93 × 10 ⁻³			
II	0.10	0.25	6.93 × 10 ⁻³			
Ш	0.20	0.30	1.386 × 10 ⁻²			

The time (in minutes) required to consume half of A is

- 20 ml of 0.1 M H_2 SO₄ solution is added to 30 Ml of 0.2 M NH_4 OH solution. The pH of the resultant mixture is : [pK_b of NH_4 OH = 4.7]
- A solution of sodium sulfate contains 92 g of Na+ ions per kilogram of water. The molality of Na+ ions in that solution in mol kg⁻¹ is:
- **Q49** A process had $\Delta H = 200 \text{ Jmol}^{-1}$ and $\Delta S = 40 \text{ JK}^{-1} \text{ mol}^{-1}$. The minimum temperature (in K) above which the process will be spontaneous.
- Relative decrease in vapour pressure is 0.4 for a solution containing 1 mole AB in 3 mol H₂O, therefore AB is ionised at the extent of X% then the value of $\frac{X}{20}$ is :

Mathematics

Single Choice Question

- $96\cos\frac{\pi}{33}\cos\frac{2\pi}{33}\cos\frac{4\pi}{33}\cos\frac{8\pi}{33}\cos\frac{16\pi}{33}$ is equal to
 - **a**) 1

b) 4

c) 3

- **d**) 2
- **Q52** If α , β and γ are non zero rational numbers, and S is the set of possible values of $\frac{|\alpha|}{\alpha} + \frac{|\beta|}{\beta} + \frac{|\gamma|}{\gamma}$ then S is
- **b**) {-3.1.-1}
- c) {3,-3,0,1,-1}
- d) {3,-3,1,-1}
- **Q53** Let $\cos^2 a + p$ and $\sin^2 a + p$ are the roots of the equation $x^2 + 4x + \frac{61}{16} = 0$. Then the equation whose roots are tan² a and cot² a is a) $x^2 - 4x + 1 = 0$ b) $x^2 - 10x + 1 = 0$ c) $x^2 + 10x + 1 = 0$ d) $x^2 - 14x + 1 = 0$

- **Q54** Let for $A = \begin{bmatrix} 1 & 2 & 3 \\ \alpha & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$, |A| = 2. If $|2adj(2adj(2A))| = 32^n$, then $3n + \alpha$ is equal
 - to -
 - **a)** 10

b) 12

c) 11

d) 16

- If the domain of the function $f(x) = \log_e (4x^2 + 11x + 6) + \sin^{-1} (4x^2 + 11x + 6)$
 - $(4x+3)+cos^{-1}\bigg(\frac{10x+6}{3}\bigg)$ is $(\alpha,\,\beta],$ Then 36 $|\alpha+\beta|$ is equal to -
 - a) 63

b) 45

- **d)** 54
- **Q56** If $a, b, c \in R$ satisfy the equations $a + [b] + \{c\} = 3.1, \{a\} + b + [c] = 4.3$ and $[a]+\{b\}+c=5.4$ (where [.] denotes the greatest integer function and $\{.\}$ is fractional part), then 6a+b-3c is
 - a) 0

b) 2

c) 4

- **d)** 6.3
- If $xf(x) + \int_0^x f(t)dt = \frac{3x^2}{2}$ and f(1) = 1, then f(3) is equal to
 - **a**) 1

c) 9

d) 28

Q58

The value of definite integral $\frac{2^{2010} \int_0^1 t^{1004} (1-t)^{1004} dt}{\int_0^1 t^{1004} \left(1-t^{2010}\right)^{1004} dt} \text{ is}$

a) 4000

b) 40021

c) 4020

d) 4021

Q59

Consider the function $f(x) = \begin{cases} \frac{g(x)}{x-2}; & x \neq 2 \\ 7; & x = 2 \end{cases}$ where g(x) is polynomial function

such that g'''(x) is identically equal to zero and g(3) = 9. If f(x) is continuous at x = 2, then g(x) is

- a) $2x^2 + x + 6$
- **b)** $2x^2 x 6$
- c) $x^2 + 3$
- d) $x^2 x + 7$

Q60

The centre of an ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is C and PN is any ordinate & A, A' are the end

points of major axis, then the value of $\frac{PN^2}{ANA'N}$ is

a) 9

d) 41

Q61 The set of all $a \in \mathbb{R}$ for which the equation x | x - 1| + | x + 2 | + a = 0 has exactly one real root is:

- a) (-6, -3)
- b) $(-\infty, \infty)$
- c) $(-6, \infty)$

Q62 The area of the region $\{(x, y) : x^2 \le y \le |x^2 - 4|, y \ge 1\}$ is

- a) $\frac{3}{4}(4\sqrt{2}-1)$ b) $\frac{4}{2}(4\sqrt{2}-1)$ c) $\frac{4}{3}(4\sqrt{2}+1)$
- d) $\frac{3}{4}(4\sqrt{2}+1)$

Q63

Let $I(x) = \int \frac{x^2 \left(x \sec^2 x + \tan x\right)}{\left(x \tan x + 1\right)^2} dx$. If I(0) = 0 the $I\left(\frac{\pi}{4}\right)$ is equal to

- a) $\log_e \frac{(\pi+4)^2}{16} \frac{\pi^2}{4(\pi+4)}$ b) $\log_e \frac{(\pi+4)^2}{16} + \frac{\pi^2}{4(\pi+4)}$ c) $\log_e \frac{(\pi+4)^2}{32} \frac{\pi^2}{4(\pi+4)}$
- d) $\log_e \frac{(\pi+4)^2}{32} + \frac{\pi^2}{4(\pi+4)}$

Let two non-collinear vectors \vec{a} and \vec{b} inclined at an angle $\frac{2\pi}{3}$ be such that $|\vec{a}|=3$ and $|\vec{b}|=4$. A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given as $\overrightarrow{OP}=(\mathrm{e^t}+\mathrm{e^{-t}})\,\vec{a}+(\mathrm{e^t}-\mathrm{e^{-t}})\vec{b}$. If the least distance of P from origin is $\sqrt{2}\sqrt{\sqrt{a}-b}$ where a, $b\in N$ then find the value of (a+b).

a) 165

b) 488

c) 485

d) 450

If the points with vectors $\alpha \hat{i} + 10\hat{j} + 13\hat{k}$, $6\hat{i} + 11\hat{j} + 11\hat{k}$, $\frac{9}{2}\hat{i} + \beta\hat{j} - 8\hat{k}$ are collinear, then $(19\alpha - 6\beta)^2$ is equal to

a) 36

b) 16

c) 25

d) 49

If $\lim_{x\to 0} \frac{e^{ax} - \cos(bx) - \frac{cxe^{-cx}}{2}}{1 - \cos(2x)} = 17$, then $5a^2 + b^2$ is equal to _____.

a) 72

b) 76

68

d) 64

Q67 Let $R = \{a, b, c, d, e\}$ and $S = \{1, 2, 3, 4\}$. Total number of onto function $f: R \to S$ such that $f(a) \neq 1$, is equal to _____.

a) 175

b) 185

c) 172

d) 180

If in the expansion of $\left(x^3 - \frac{2}{\sqrt{x}}\right)^n$ a term like x^2 exists and 'n' is a double digit number, then least value of 'n' is -

a) 10

b) 11

c) 12

d) 13

Q69 If the system of linear equations $2x-3y=\gamma+5$, $\alpha x+5y=\beta+1$, where α , β , $\gamma\in\mathbf{R}$ has infinitely many solutions, then the value of $|9\alpha+3\beta+5\gamma|$ is equal to

a) 50

b) 52

c) 54

d) 5

Q70 A running track of 440 ft. is to be laid out enclosing a football field, the shape of which is a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum then the lengths of its sides are -

- a) 110, 70
- **b)** 130, 50
- c) 120, 60
- d) None

Numerical

Q71 The number of terms common to the two A.P.'s 3, 7, 11,......407 and 2, 9,16,......709 is

If $\left(\frac{1+i}{1-i}\right)^{m/2}=\left(\frac{1+i}{i-1}\right)^{n/3}=1, (m,n\in N)$ Then the greatest common divisor of the least values of m and n is _____.

- Q73 The probability of a man hitting a target is 1/10. The least number of shots required, so that the probability of his hitting the target at least once is greater than 1/4, is
- A circle passing through the point $P(\alpha, \beta)$ in the first quadrant touches the two coordinate axes at the points A and B. The point P is above the line AB. The point Q on the line segment AB is the foot of perpendicular from P on AB. If PQ is equal to 11 units, then the value of $\left(\frac{\alpha\beta-1}{2}\right)$ is _____.
- Q75 Let the solution curve x = x(y), $0 < y < \frac{\pi}{2}$, of the differential equation $(\log_e(\cos y))^2 \cos y dx (1 + 3x \log_e(\cos y)) \sin y dy = 0$ satisfy $x\left(\frac{\pi}{3}\right) = \frac{1}{2\log_e 2}$. If $x\left(\frac{\pi}{6}\right) = \frac{1}{\log_e m \log_e n}$, where m and n are co-prime, then mn is equal to

Answer Key

	,									
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	С	С	Α	В	В	D	С	С	С
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	С	D	С	D	Α	В	С	D	Α	С
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	133	3	1	7	20	В	С	С	В	D
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	Α	D	В	Α	С	Α	С	В	D	В
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	С	С	С	Α	D	5	9	4	5	5
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	С	D	D	С	В	С	В	С	В	В
Que.	61	62	63	64	65	66	67	68	69	70
Ans.	В	В	С	В	Α	С	D	Α	D	Α
Que.	71	72	73	74	75					
Ans.	14	4	3	60	12					