1.
$$g_1(n) = 2 \frac{1}{\log 2}$$
 $g_2(n) = \frac{1}{3}$
 $g_2(n) = \log_2 2 = \log_2 2 = \log_2 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 + \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 + \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 + \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 2 = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 g_2(n) = \log_2 2 = 2$
 $\log_2 g_2(n) = \log_2 g_2(n) = \log_2 g_2(n)$
 $\log_2 g_2(n) = \log_2 g_2(n$

$$\lim_{z \to \infty} \frac{z + 3 \log^{z}}{\frac{4}{3}z} = \lim_{z \to \infty} \frac{3}{4} + \frac{9}{4z} \log^{z}z$$

$$= \frac{3}{4} < 1$$

$$S_{0}, g_{4} < g_{2} \text{ and } g_{4} > g_{1}$$

2. (a)

Three Topological orderings:

a, b, c, d, e

a, c, b, d, e

a, c, d, b, e

3. True One argument is as follows: E is the first edge.

that would be considered by Kruskal's algorithm, and so it will be included in the minimum spanning tree.

$$p_0 = 0.4$$
 Let the event $S = \frac{8}{k}$ denote the $p_2 = 0.3$ emission of symbol $\frac{8}{k}$ by the source. $p_3 = 0.2$ Hence, $I(\frac{8}{k}) = \log_2\left(\frac{1}{p_k}\right)$

8,	80	8,	82	83
& k	0.4	0.3	0,2	0.1
I(g)	1-322	1.737	2.322	3.322
bils				

5. (a)

	Tree:
Huffman	gee.
Ilalian	

Symbo!	Code	length
80	0	1
8,	01	2
82	. 11	2

(b). Average
$$ew$$
 length = 0.15 (2) $+ 0.15$ (2) $+ 0.15$ (2) $= 0.7 + 0.3 + 0.3 = 1.3$ bits/symbol $= 0.7 + 0.3 + 0.3 = 1.3$ bits/symbol

First step: Take the engle letter A. Since we have not seen A, we take A first. Sequence: A AB ABBBABAB BBABBB Take AB next Slep 2: Take ABB next Slep3: . Next the B Skp4: Take ABA next Steps: Take ABAB Next Slep6: Take BB next Slep 7: Take ABBA next Slep8: The last phrase in step 9 is a repeated one as in step 9 is a repeated one as