Contents

1	\mathbf{Use}	er guide to SMI 2.0
	1.1	List of functions in SMI 2.0
	1.2	Function descriptions
		cestac
		cestbd
		cestx
		chebest
		chebsim
		cordom
		cordpi
		cordpo
		css2th
		cth2ss
		destac
		destbd
		destk
		destx
		dfunlin
		dfunwie
		dmoesp
		dordeiv
		dordom
		dordpi
		dordpo
		dordrs
		drpi
		drpo
		drslslin
		dslslin
		dslswie
		dss2th
		dth2ss
		kronekf

CONTENTS

ncdestbd .																43
ncdlsim .																45
orderselect																47
$prbn \dots$																48
shave																49
tlsim																50
vaf																51

Chapter 1

User guide to SMI 2.0

1.1 List of functions in SMI 2.0

The following table gives an overview of the functions in the SMI toolbox. Some function are new to this toolbox. Others appeared in the previous version of the toolbox under an other name. These names have been changed to prevent conflicts with other toolboxes and to provide a more consistent naming. This makes the functions easier to recognize and remember.

1.1. LIST OF FUNCTIONS IN SMI 2.0

function	description	old name									
	Discrete time moesp	I									
dordom	Ordinary moesp preprocessor	dordom									
dordpi	Ppast input moesp preprocessor	dordpi									
dordpo	Past output moesp preprocessor	dordpo									
dordeiv	Eiv moesp preprocessor	-									
dordrs	Reconstructed state moesp preprocessor	dordrs									
destac	Estimate A,C	dmodpi,dmodpo									
destbd	Estimate B,D	dac2bd,destb									
destk	Estimate Kalman gain	dmodpo									
destx	Estimate initial state	dinit									
dmoesp											
Continuous time moesp											
cordom	Ordinary moesp preprocessor	-									
cordpi	Past input moesp preprocessor	-									
cordpo	Past output moesp preprocessor	-									
cestac	Estimate A,C	-									
cestbd	Estimate B,D	-									
cestx	Estimate initial state	-									
Recursive moesp											
drpi	Recursive PI moesp	-									
drpo	Recursive PO moesp	-									
SLS optimization											
dss2th	Parameterization of state space system	ss2thon									
dth2ss	Reconstruction of state space system	th2sson									
dslslin	Optimize DT linear model using SLS	gnlisls									
dslswie	Optimize DT wiener model using SLS	gnwisls									
dfunlin	Cost-function for dslslin	-									
dfunwie	Cost-function for dslswie	-									
drslslin	Recursive optimization of DT model using SLS	-									
clslin	Optimize CT linear model using SLS	-									
cfunlin	Cost-function for dslslin	-									
crslslin	Recursive optimization of CT model using SLS	-									
	Non causal models										
ncdlsim	Simulate non causal model	-									
ncdestac	Estimate A and C for non-causal model	-									
ncdestbd	Estimate B and D for non-causal model Calculate Kronecker canonical form	-									
kroneckf	-										
Nonlinear models											
chebest	Estimate MIMO nonlinear model	tchebest									
chebsim	Simulate MIMO nonlinear model	tchebest									
	Miscellaneous										
prbn	Pseudo random binary sequence	prbn									
vaf	Variance accounted for	vaf									
shave	Remove peaks and outliers	shave									

1.2 Function descriptions

cestac

Purpose

Estimates the matrices A and C of a LTI state space model using the result of the preprocessor routines \mathtt{cordxx} (\mathtt{cordom} , \mathtt{cordpo} , $\mathtt{etc.}$). General model structure:

$$\dot{x}(t) \quad = \quad Ax(t) + Bu(t) + w(t)$$

$$y(t) = Cx(t) + Du(t) + v(t)$$

For more information about the disturbance properties see the help pages for the preprocessor cordxx functions.

Syntax

[A,C]=cestac(R,n);

Inputs

R Data structure obtained from cordxx, containing the tri-

angular factor and additional information (such as i/o di-

mension etc.).

Order of system to be estimated.

Outputs

A,C Estimated system matrices.

See also

cordom, cordpi, cordpo, cestbd

cestbd

Purpose

Estimates the matrices B and D of the state space model

$$\dot{x}(t) = Ax(t) + Bu(t) + w(t)$$

 $y(t) = Cx(t) + Du(t) + v(t)$
 $x(0) = x_0$

using the knowledge of the pair A, C. This function can concatenate different input-output data batches, through the matrix R and Rold). B and D and x_0 are calculated by solving a linear least squares problem.

Syntax

```
[B,D,x0,R]=cestbd(u,y,A,C,[fB fD fx],Rold);
[B,D]=cestbd(u,y,A,C);
```

Inputs

The input and output data of the system to be identified. The estimated system matrices A and C.

Three element flag vector $\begin{bmatrix} fB & fD & fx \end{bmatrix}$ indicating whether B, D and x_0 should be estimated. The default value is $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$. The matrix B or D can be assumed zero by setting B or B or B to zero. The calculation of B can be omitted by setting B to zero. However B0 will not be assumed zero then. It's influence will still be taken into account for the computation of B and D.

Rold R matrix obtained from previous data batch. This variable can be used to process data in batches, or to combine

able can be used to process data in batches

data from different experiments.

Outputs

B,D The estimated system matrices B and D.
x0 The estimated initial state of the system.
R Compressed data matrix, storing information on the cal-

culation of the matrices B and D in following cestbd.

Used when analyzing multiple input-output data sequences.

See also

cordxx, cestac, cestx

cestx

Purpose

Estimate the initial state, given the estimated system matrices and a set of input/output data.

Syntax

x0=cestx(u,y,Ts,A,B,C,D);

Inputs

u,y The input and output data of the system to be identified.

Ts Sampling period of the measured data.

A,B,C,D System matrices.

Outputs

x0 Estimated initial state.

See also

cestbd

chebest

Purpose

This function estimates a MIMO static nonlinear function between the signals y and z. The function is estimated on the basis of Chebychev polynomials. Before estimating the coefficients of the polynomials the input signal is shifted and scaled to fall within the region [-1,1]. The shifting and scaling factors are included in the parameter vector.

Syntax

```
[thl,ze,Phi]=chebest(y,z,nn);
```

Inputs

y,z Input and output of the nonlinearity.

nn Order of the Chebychev polynomials in the nonlinear func-

tion.

Outputs

thl Vector with the parameters of the static nonlinearity.

ze Estimated output, on basis of the model that is obtained.

Phi matrix with the Chebychev functions of y, such that

 $ze = Phi \times thl.$

See also

chebsim, dslswie

chebsim

Purpose

Simulates a static nonlinear function on the basis of Chebychev polynomials with input y. The coefficients of the Chebychev polynomials are given with the vector thl, and commonly estimated with either dslswie or chebest.

Syntax

[ze,Phi]=chebsim(y,thl)

Inputs

y The input to the nonlinearity.

thl Parameter matrix, with coefficients of the nonlinear func-

tion.

Outputs

ze Estimated output.

Phi matrix with the Chebychev functions of y, such that

 $ze = Phi \times thl.$

See also

chebest, dslswie