Phantom images in 2-channel audio playback versus natural hearing processes

Implications upon loudspeaker, room & recording design for "accurate" capture and reproduction of an auditory scene

Siegfried Linkwitz

Hearing happens between the ears

We use:

Intensity differences
Time differences
Frequency analysis

Stream segregation
Pattern recognition
Prioritizing
Learning

Sensing threads to life in different scenarios

Sound - Sight - Touch - Smell - Taste

Sound source

versus

- Direction
- Distance
- Size
- Reflections

Acoustic background

Drift thresholds for one and two reflections

Fig. 2.6. Drift threshold (DT) of a second reflection R_2 , continuous speech

Peter Damaske, Acoustics and Hearing, Springer 2008

Binaural recording & reproduction

Phantom images are

- inside the head when in front
- too close when on side
- behind when above
- volume dependent for distance
- turning with head
- without skin vibration

"Accurate" recording & reproduction of an auditory scene

A natural perspective for the recording

LINKWITZ LAB

A phantom image with minimal room influence

Ears

Direct signals, crosstalk, reflections

Phantom image spread & diffuseness

Room reflections & perceived frequency response

Direct & reflected sounds determine in-room response at the listener

L - R symmetry of reflections for phantom image positioning

Loudspeakers >3 feet from reflecting surfaces (>6 ms delay)

Each reflection with same spectral content as the direct sound (= delayed copies)

Listener's brain can safely blank out the room & focus on the direct sound !!!

Below 150 Hz use dipole bass A few room modes can be equalized parametrically

Acoustically hiding L & R loudspeakers

Flat on-axis response in free-field

Frequency independent polar response

Acoustically small size $(\lambda = 13 \text{ inch } @ 1 \text{kHz})$

Low cabinet edge diffraction

Low stored energy (resonances)

Low non-linear distortion (new sounds, intermodulation)

Large dynamic range, high SPL

Hide loudspeakers visually

Stereo recording & reproduction

Recording angle

Phantom image placement between loudspeakers & not L or R crowding

Ears

Imaging between L & R loudspeakers vs. sound incidence angle

Concert hall to living room mapping

Phantom images between loudspeakers

Soundfield recording for stereo

Cardioid main microphones for clarity & image placement

Omni microphones in rear for decorrelated spatial pickup

Listener's brain for assembling a believable illusion of sounds in their spatial context

Combining main & ambient microphone outputs by using a trustworthy loudspeaker/room setup

"Accurate" stereo recording & reproduction

Loudspeakers & setup for minimal room contribution

Ears

Recordings with a natural perspective

Thank you for your attention QUESTIONS?

www.linkwitzlab.com