

Error propagation to the CFFs

Liliet Calero Diaz

September 29, 2020

Use 5% variance in F and look at the resulting standard deviation in each of the CFFs one at a time, fixing the other two.

 \blacksquare 5K F values were generated at each of the 36 angles of ϕ from 0 to 2π for given CFFs that had no errors.

Figure: F distribution example (left) and generated F fixed variance for every ϕ angle (right) at the 5th kinematic setting.

2 For every F value, compute $\Re e\mathcal{H}$, fixing $\Re e\mathcal{E}$ and $\Re e\mathcal{H}$ to the values used in step 1, using the following equations:

$$\begin{split} F &= F_{BH} + F_{dvcs} + \overbrace{F_{I}} \\ &\frac{\Gamma}{Q^{2}|t|} \Big[A^{I}_{UU} \big(F_{1} \Re e \mathcal{H} + \tau F_{2} \Re e \mathcal{E} \big) + B^{I}_{UU} G_{M} \big(\Re e \mathcal{H} + \Re e \mathcal{E} \big) + C^{I}_{UU} G_{M} \Re e \widetilde{\mathcal{H}} \Big] \\ \Re e \mathcal{H} &= \frac{Q^{2}|t|/\Gamma \big(F - F_{BH} - F_{dvcs} \big) - \big(A^{I}_{UU} \tau F_{2} + B^{I}_{UU} G_{M} \big) \Re e \mathcal{E} - C^{I}_{UU} G_{M} \Re e \widetilde{\mathcal{H}}}{A^{I}_{UU} F_{1} + B^{I}_{UU} G_{M}} \end{split}$$

Figure: $\Re e \mathcal{H}$ distribution example for two different angles at the 5th kinematic setting.

- \blacksquare Analogous to step 2, solve the above equations for $\Re e\mathcal{E}$ and $\Re e\mathcal{H}$ respectively for every F value.
- ${\color{blue} {\tt I}}$ Obtain σ from the CFFs distribution at the different angles for each kinematic setting.

Figure: $\Re e\mathcal{H}$ standard deviation for the 5th set obtained one at a time, fixing σF to 5%.

- Strong dependence of the CFFs variation with ϕ , increasing asymptotically at the singularities $\phi_g = 90^\circ$ and $\phi_g = 270^\circ$.
- If the variation of F is 5%, for the analyzed kinematics, the standard deviation of $\Re e\mathcal{H}$ and $\Re e\mathcal{E}$ satisfies:

$$|\phi-\phi_{\rm g}|\geqslant 10^\circ \implies \sigma {\it CFFs}\leqslant 20\%$$

Variations smaller than the 5% set for F can be achieved for $\Re e \mathcal{H}$ and $\Re e \mathcal{E}$ at around $|\phi - \phi_g| \geqslant 40^\circ$.

Figure: $\Re e \mathcal{H}$ (left) and $\Re e \mathcal{E}$ (right) standard deviation for the 5^{th} set obtained one at a time, fixing σF to 5%.

There is a large propagated error to $\Re e\widetilde{\mathcal{H}}$, resulting in a variation always greater than about 30% with:

$$|\phi - \phi_g| \geqslant 40^\circ \implies 30\% \leqslant \sigma CFFs \leqslant 200\%$$

Figure: $\Re e\widetilde{\mathcal{H}}$ standard deviation for the 5th set obtained one at a time, fixing σF to 5%.

- The figure bellow reflects the obtained results, where the deviation from the CFFs values used to to generate F (expected values) is consistently large for $\Re e\widetilde{\mathcal{H}}$ when compared to $\Re e\mathcal{H}$ and $\Re e\mathcal{E}$; given by the spreading of the standard deviation of $\Re e\widetilde{\mathcal{H}}$.
- $\Re e \mathcal{H}$ and $\Re e \mathcal{E}$ deviation from the expected value are comparable, falling within 0.3% for $|\phi \phi_g| \geqslant 20^\circ$. Set 5: k = 5.75, QQ = 2.18, xB = 0.39, t = -0.28
- $ightharpoonup \Re e \mathcal{H}$ and $\Re e \mathcal{E}$ deviation flips around the expected value, while the mean of $\Re e \widetilde{\mathcal{H}}$ distribution in ϕ is always greater than the expected value.

This results are valid for all kinematic settings.

Figure: Deviation from the CFFs values used to generate F for the 5^{th} set.