Ch-22 组合计数方法

22.1 递推方程的公式解法

定义 22.2 k 阶常系数线性齐次递推方程

$$H(n) - a_1 H(n-1) - a_2 H(n-2) - \dots - a_k H(n-k) = 0$$
 (22. 1)
 $n \ge k, \ a_1, a_2, \dots, a_k \notin \emptyset, \ a_k \ne 0$

定义 22.3 方程

$$x^{k} - a_{1}x^{k-1} - a_{2}x^{k-2} - \dots - a_{k} = 0$$
 (22. 2)

称为递推方程 (22.1) 的**特征方程**,其 k 个根 q_1, q_2, \dots, q_k 称为特征方程的**特征** 根,其中 $q_i(i=1,2,\dots,k)$ 是复数。

定理 22.1 设 q 是一个非零复数,则 $H(n) = q^n$ 是递推方程 (22.1) 的一个解 当且仅当 q 是它的一个特征根。

定理 **22.2** 设 $h_1(n)$ 和 $h_2(n)$ 是递推方程 (22.1) 的两个解, c_1 和 c_2 是任意常数,则 $c_1h_1(n)+c_2h_2(n)$ 也是递推方程 (22.1) 的解。

由定理 (22.1) 和定理 (22.2) 可知,如果 q_1,q_2,\cdots,q_k 是递推方程 (22.1) 的特征根,且 c_1,c_2,\cdots,c_k 是任意常数,则

$$H(n) = c_1 q_1^n + c_2 q_2^n + \cdots + c_k q_k^n$$

是递推方程 (22.1) 的解。

定义 **22.4** 如果对于递推方程 (22.1) 的每个解 h(n) 都可以选择一组常数 c'_1, c'_2, \dots, c'_k 使得

$$h(n) = c'_1 q_1^n + c'_2 q_2^n + \cdots + c'_k q_k^n$$

成立,则称 $c_1q_1^n+c_2q_2^n+\cdots+c_kq_k^n$ 为通解,其中 c_1,c_2,\cdots,c_k 为任意常数。

定理 **22.3** 设 q_1, q_2, \dots, q_k 是递推方程 (22.1) 的不相等的特征根,则

$$H(n) = c_1 q_1^n + c_2 q_2^n + \dots + c_k q_k^n$$

是递推方程 (22.1) 的通解。

引理 1 设

$$f_0(x) = x^n - a_1 x^{n-1} - a_2 x^{n-2} - \dots - a_{k-1} x^{n-k+1} - a_k x^{n-k}$$

 $\forall i \in \mathbb{Z}^+$,令 $f_t(x) = x f'_{t-1}(x)$,其中 $f'_{t-1}(x)$ 是 $f_{t-1}(x)$ 的微商,则

$$f_t(x) = n^t x^n - a_1(n-1)^t x^{n-1} - \dots - a_k(n-k)^t x^{n-k}$$

引理 2 设 $f_t(x)$ 为引理 1 中的 n 次多项式, 若 q 是 $f_t(x)$ 的 e 重根, 则 q 是 $f_{t+1}(x)$ 的 e-1 重根。

$$H(n) - a_1 H(n-1) - a_2 H(n-2) - \dots - a_k H(n-k) = 0, \quad a_k \neq 0, \ n \geq k$$

若 q 是递推方程的 e 重特征根,则 $q^n, nq^n, n^{e-1}q^n$ 都是递推方程的线性无关的解。

定理 **22.5** 设 q_1, q_2, \dots, q_t 是递推方程

$$H(n) - a_1 H(n-1) - a_2 H(n-2) - \dots - a_k H(n-k) = 0, \quad a_k \neq 0, \ n \geq k$$

的不相等的特征根,且 q_i 的重数为 e_i , $i=1,2,\cdots,t$,令

$$H_i(n) = (c_{i1} + c_{i2}n + \cdots + c_{ie_i}n^{e_i-1})q_i^n,$$

则 $H(n) = \sum_{i=1}^t H_i(n)$ 是递推方程的通解。

对于常系数线性非齐次递推方程, 其一般形式为

$$\left\{egin{aligned} H(n) - a_1 H(n-1) - a_2 H(n-2) - \dots - a_k H(n-k) = f(n) \ n \geq k, & a_k
eq 0, & f(n)
eq 0. \end{aligned}
ight. (22.6)$$

定理 22.6 设 $\overline{H}(n)$ 是递推方程 (22.6) 所对应的常系数线性齐次递推方程

$$\begin{cases} H(n) - a_1 H(n-1) - a_2 H(n-2) - \dots - a_k H(n-k) = 0 \\ n \ge k, \quad a_k \ne 0 \end{cases} (22.7)$$

的通解, $H^*(n)$ 是递推方程 (22.6) 的一个特解,则

$$H(n)=\overline{H}(n)+H^*(n)$$

是递推方程 (22.6) 的通解。

- 若 f(n) 为 n 的 t 次多项式, 一般 H*(n) 也为 n 的 t 次多项式
 而当原递推方程中的特征根为 1 时, H*(n) 为 n 的 t + 1 次多项式
- 若 f(n) 为指数函数 $\alpha \cdot \beta^n$,若 β 不是特征根,则特解为 $H^*(n) = P\beta^n$

若 β 是 e 重特征根,则特解为 $H^*(n) = Pn^e \beta^n$

22.2 递推方程的其他解法

换元法 通过换元转化成常系数线性递推方程

迭代归纳法 迭代得到递推方程的解后用归纳法验证

• 错位排列
$$D_n = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^n \frac{1}{n!} \right]$$

差消法 将全部历史递推方程的阶数降低后求解(快速排序)

尝试法 先确定阶数后待定系数法尝试

定义 **22.5** 设 $a_0, a_1, \cdots, a_n, \cdots$ 是一个数列,做形式幂级数

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots,$$

称 A(x) 是数列 a_0, a_1, \cdots 的生成函数,将数列记作 $\{a_n\}$

定义 22.6 牛顿二项式系数 对任何实数r和整数n有

$$egin{pmatrix} r \ n \end{pmatrix} = egin{cases} 0 & n < 0 \ 1 & n = 0 \ rac{r(r-1)\cdots(r-n+1)}{n!} & n > 0 \end{cases}$$

定理 22.7 牛顿二项式定理 设 α 是一个实数,则对一切 x 和 y 满足 $\left| \frac{x}{y} \right| < 1$ 有

$$(x+y)^{lpha} = \sum_{n=0}^{\infty} \left(rac{lpha}{n}
ight) x^n y^{lpha-n}$$

- 当 $\alpha = m$, $m \in \mathbb{Z}^+$ 时, 即为二项式定理

$$\binom{\alpha}{n} = (-1)^n \binom{m+n-1}{n}$$

$$(1+x)^{-m}=rac{1}{(1+x)^m}=\sum_{n=0}^{\infty}(-1)^ninom{m+n-1}{n}x^n,\;|x|<1$$
 (22. 8)

数列
$$\left\{ \begin{pmatrix} \alpha \\ n \end{pmatrix} \right\}$$
 的生成函数是 $A(x) = \sum_{n=0}^{\infty} \begin{pmatrix} \alpha \\ n \end{pmatrix} x^n = (1+x)^{\alpha}$

数列 $\left\{ \binom{m+n-1}{n} \right\}$ 的生成函数是

$$A(x) = \sum_{n=0}^{\infty} {m+n-1 \choose n} x^n = \frac{1}{(1-x)^m}$$
 (22. 9)

•
$$\stackrel{ agenta}{=} m=1$$
 时, $A(x)=\sum_{n=0}^{\infty}x^n=rac{1}{1-x}$

•
$$\stackrel{\,\,{}_{\smile}}{=} m=2 \; \mathrm{fl} \; , \; \; A(x)=\sum_{n=0}^{\infty}(n+1)x^n=rac{1}{(1-x)^2}$$

•
$$\stackrel{\ \, }{=}\ m=3 \ {
m if} \ , \ \ A(x)=\sum_{n=0}^{\infty}rac{(n+2)(n+1)}{2}x^n=rac{1}{(1-x)^3}$$

用-x替换(22.9)式中的x得

$$\sum_{n=0}^{\infty} (-1)^n \binom{m+n-1}{n} x^n = \frac{1}{(1+x)^m}$$

•
$$\stackrel{\,\,{}_{\stackrel{\smile}{=}}}{=} m=1$$
 时, $A(x)=\sum_{n=0}^{\infty}(-1)^nx^n=rac{1}{1+x}$

1. 若
$$b_n = \alpha a_n$$
,则 $B(x) = \alpha A(x)$

2. 若
$$c_n = a_n + b_n$$
,则 $C(x) = A(x) + B(x)$

3. 若
$$c_n = \sum_{i=0}^\infty a_i b_{n-i}$$
,则 $C(x) = A(x) \cdot B(x)$

4. 若
$$b_n = \left\{egin{array}{ll} 0, & n < l, \ a_{n-l}, & n \geq l, \end{array}
ight.$$
 则 $B(x) = x^l \cdot A(X)$

5. 若
$$b_n=a_{n+l}$$
,则 $B(x)=rac{A(x)-\displaystyle\sum_{n=0}^{l-1}a_nx^n}{x^l}$

6. 若
$$b_n=\sum_{i=0}^n a_i$$
,则 $B(x)=rac{A(x)}{1-x}$

7. 若
$$b_n = \sum_{i=n}^{\infty} a_i$$
,且 $A(1) = \sum_{n=0}^{\infty} a_n$ 收敛,则

$$B(x) = \frac{A(1) - xA(x)}{1 - x}$$

8. 若
$$b_n = \alpha^n a_n$$
,则 $B(x) = A(\alpha x)$

9. 若
$$b_n = na_n$$
,则 $B(x) = xA'(x)$

10. 若
$$b_n = \frac{a_n}{n+1}$$
,则 $B(x) = \frac{1}{x} \int_0^x A(x) \, \mathrm{d}x$

22.4 生成函数与组合计数

设多重集 $S = \{\infty \cdot a_1, \infty \cdot a_2, \cdots, \infty \cdot a_k\}$,S 的 r-组合数为 a_r ,为方程 $x_1 + x_2 + \cdots + x_k = r$ 的非负整数的解的个数。令数列 $\{a_r\}$ 的生成函数为 A(y),

$$A(y)=(1+y+y^2+\cdots)^k=rac{1}{(1-y)^k}=\sum_{r=0}^{\infty}inom{k+r-1}{r}y^r$$
,得到 $a_r=inom{k+r-1}{r}.$

• 帯限制条件:
$$x_1+x_2+\cdots+x_k=r,\ l_i\leq x_i\leq n_i$$

$$G(y)=(y^{l_1}+y^{l_1+1}+\cdots+y^{n_1})(y^{l_2}+y^{l_2+1}+\cdots+y^{n_2})$$

$$\cdots (y^{l_k}+y^{l_k+1}+\cdots+y^{n_k})$$

• 帯系数:
$$p_1x_1+p_2x_2+\cdots+p_kx_k=r$$
, $x_i\in\mathbb{N}$
$$G(y)=(1+y^{p_1}+y^{2p_1}+\cdots)(1+y^{p_2}+y^{2p_2}+\cdots)\cdots (1+y^{p_k}+y^{2p_k}+\cdots)$$

正整数的拆分

	有序	无序
不允许重复	$4=4,\ 4=1+3,\ 4=3+1$	$4=4,\ 4=1+3$
允许重复	$4 = 4, \ 4 = 1 + 3, \ 4 = 3 + 1$ $4 = 2 + 2, \ 4 = 2 + 1 + 1$ $4 + 1 + 2 + 1, \ 4 = 1 + 1 + 2$ 4 = 1 + 1 + 1 + 1	$4 = 4, \ 4 = 1 + 3$ 4 = 2 + 2 4 + 1 + 2 + 1 4 = 1 + 1 + 1 + 1

无序拆分 将 N 无序拆分成正整数 a_1, a_2, \cdots, a_n , $\sum_{i=1}^n a_i x_i = N$

不允许重复: $G(y) = (1 + y^{\alpha 1})(1 + y^{\alpha 2}) \cdots (1 + y^{\alpha n})$

允许重复:
$$G(y) = \prod_{i=1}^{n} (1 + y^{\alpha i} + y^{2\alpha i} + \cdots) = \frac{1}{\prod_{i=1}^{n} (1 - y^{\alpha i})}$$

定理 22.13 把 N 有序剖分成 r 各部分且允许重复的方案数是 $\binom{N-1}{r-1}$.

• 把 N 进行任意的允许重复的有序剖分的方案数是

$$\sum_{r=1}^N \binom{N-1}{r-1} = 2^{N-1}$$

22.5 指数生成函数与多重集的排列问题

定义 22.7 设 a_0, a_1, \dots, a_n 是一个数列, 它的指数生成函数记作 $A_e(x)$

$$A_e(x) = \sum_{n=0}^\infty a_n rac{x^n}{n!}$$

定理 **22.14** 设数列 $\{a_n\}, \{b_n\}$ 的指数生成函数分别为 $A_e(x)$ 和 $B_e(x)$,则

$$A_e(x)\cdot B(x) = \sum_{n=0}^{\infty} c_n rac{x^n}{n!}$$

其中,
$$c_n = \sum_{k=0}^\infty \binom{n}{k} a_k b_{n-k}.$$

• 设
$$\{a_n\}$$
 是一个数列,如果 $b_n=\sum_{k=0}^n (-1)^k \binom{n}{k} a_k$,则 $a_n=\sum_{k=0}^n (-1)^k \binom{n}{k} b_k$

定理 22.15 设多重集 $S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k\}$. 对任意的非负整数 r ,令 a_r 为 S 的 r-排列数,设数列 $\{a_r\}$ 的指数生成函数为 $A_e(x)$,则

$$A_e(x)=f_{n_1}(x)f_{n_2}(x)\cdots f_{n_k}(x)$$

其中

$$f_{n_i}(x) = 1 + x + rac{x^2}{2!} + \cdots + rac{x^{n_i}}{n_i!}, \hspace{1cm} t = 1, 2, \cdots, k.$$

22.6 Catalan 数与 Stirling 数

Catalan 数

$$\begin{cases} h_n = \sum_{k=1}^{n-1} h_k h_{n-k} & n \ge 2 \\ h_1 = 1 \end{cases}$$
 $\text{ #7. } h_n = \frac{1}{n} \binom{2n-2}{n-1}$ (22. 16)

- 通过不在内部相交的对角线把凸 n+1 边形划分成三角形的方案数为 h_n
- 从(0,0)点到(n,n)点除端点外不接触对角线的非降路径数为 $2h_n$
- 从(0,0)点到(n,n)点不穿过对角线的非降路径数为 $2h_{n+1}$
- 由 n 个结点构成的二叉树种数为 h_{n+1}
- n 对括号的合法匹配为 h_n
- n 个元素的合法的出栈方案数为 h_n

第一类 Stirling 数

将多项式 $x(x-1)(x-2)\cdots(x-n+1)$ 展开式中的 x^r 的系数绝对值记作 $\begin{bmatrix} n \\ r \end{bmatrix}$,则展开式可写为 $\begin{bmatrix} n \\ n \end{bmatrix} x^n - \begin{bmatrix} n \\ n-1 \end{bmatrix} x^{n-1} + \begin{bmatrix} n \\ n-2 \end{bmatrix} x^{n-2} - \cdots \pm \begin{bmatrix} n \\ 0 \end{bmatrix}$. 称 $\begin{bmatrix} n \\ n-1 \end{bmatrix}$, $\begin{bmatrix} n \\ n-1 \end{bmatrix}$ 这些数为第一类 Stirling 数。具有以下性质

$$\left[egin{aligned} n \ 0 \end{array}
ight] = 0, \quad \left[egin{aligned} n \ 1 \end{array}
ight] = (n-1)!, \quad \left[egin{aligned} n \ n \end{array}
ight] = 1, \quad \left[egin{aligned} n \ n-1 \end{array}
ight] = \left(egin{aligned} n \ 2 \end{array}
ight), \quad \sum_{r=1}^n \left[egin{aligned} n \ r \end{array}
ight] = n!$$

满足递推方程:
$$\begin{bmatrix} n \\ r \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ r \end{bmatrix} + \begin{bmatrix} n-1 \\ r-1 \end{bmatrix}, \qquad n > r \geq 1.$$

设 S_n 为 n 元对称群,则 S_n 中含有 r 个不相交轮换的置换恰为 $\begin{bmatrix} n \\ r \end{bmatrix}$ 个。

第二类 Sirtling 数

把 n 个不同的球放入 r 个相同的盒子里,且没有空盒,则放球方案数记为 $\left\{ egin{align*} n \\ r \end{array} \right\}$,称为第二类 Stirling 数。

$$\left\{ n \atop 0 \right\} = 0, \quad \left\{ n \atop 1 \right\} = 1, \quad \left\{ n \atop 2 \right\} = 2^{n-1} - 1, \quad \left\{ n \atop n-1 \right\} = \left(n \atop 2 \right), \quad \left\{ n \atop n \right\} = 1$$

满足递推方程:
$$\left\{ {n \atop r} \right\} = r \left\{ {n-1 \atop r} \right\} + \left\{ {n-1 \atop r-1} \right\}, \qquad n > r \ge 1.$$

1. 把n个不同的球放入m个相同的盒子里,允许空盒,则放球方案数为

$$\left\{ egin{array}{c} n \\ 1 \end{array} \right\} + \left\{ egin{array}{c} n \\ 2 \end{array} \right\} + \cdots + \left\{ egin{array}{c} n \\ m \end{array} \right\}.$$

2. n 个不同的球恰好放入 m 个不同的盒子里,放球方案数为 m! $\binom{n}{m}$ 北大信科 郑元昊.

$$\sum_{\parallel n_1+n_2+\cdots+n_m=n} \left(egin{array}{c} n \ n_1 \ n_2 \ \cdots \ n_m \end{array}
ight) = m! \left\{egin{array}{c} n \ m \end{array}
ight\}$$

3. n个不同的球放入m个不同的盒子里,允许空盒,放球方案数为

$$m^n = \left(egin{array}{c} m \ 1 \end{array}
ight) \left\{egin{array}{c} n \ 1 \end{array}
ight\} \cdot 1! + \left(egin{array}{c} m \ 2 \end{array}
ight) \left\{egin{array}{c} n \ 2 \end{array}
ight\} \cdot 2! + \dots + \left(egin{array}{c} m \ m \end{array}
ight) \left\{egin{array}{c} n \ m \end{array}
ight\} \cdot m!$$

4.
$${n+1 \brace r} = {n \choose 0} {n \brace r-1} + {n \choose 1} {1 \brace r-1} + \dots + {n \choose n} {n \brace r-1}$$

球标号	盒标 号	空盒	放球方案数	对应的组合问题
否	否	否	$P_m(n)-P_{m-1}(n) \\$	n 无序分拆成 m 部分
否	否	是	$P_m(n)$	n 无序分拆
否	是	否	$\left(n-1\atop m-1\right)$	$x_1+x_2+\cdots+x_m=n$ 的正整数解
否	是	是	$\binom{n+m-1}{m-1}$	$x_1+x_2+\cdots+x_m=n$ 的非 负整数解
是	否	否	$\left\{ egin{array}{l} n \\ m \end{array} ight\}$	第二类 Stirling 数定义
是	否	是	$\sum_{k=1}^m \left\{ egin{array}{c} n \ k \end{array} ight\}$	第二类 Stirling 数性质
是	是	否	$m! \left\{ egin{array}{c} n \ m \end{array} ight\}$	第二类 Stirling 数性质

是 是 是
$$m^n = \sum_{k=0}^m \binom{m}{k} \begin{Bmatrix} n \\ k \end{Bmatrix} k!$$
 乘法法则

函数计数: |A| = n, |B| = m

- 1. *A* 到 *B* 的关系: 2^{mn}
- 2. A到 B的函数: m^n
- 3. A 到 B 的单射函数: P(m,n)
- 4. A 到 B 的满射函数: $m! \begin{Bmatrix} n \\ m \end{Bmatrix}$
- 5. A 到 B 的双射函数: m=n, P(n,n)=n! $\left\{ \begin{array}{c} n \\ m \end{array} \right\}=n!$
- 6. A 到 B 的等价关系: $\sum_{m=1}^{n} {n \choose m}$