

2019

RNAi Plasmid Construction using pFGC5941 👄

Yaowu Yuan¹

¹University of Connecticut

dx.doi.org/10.17504/protocols.io.2w2gfge

Mimulus

🔔 Andrea Sweigart 🕢

EXTERNAL LINK

http://mimubase.org/FTP/Protocols/Plasmid_Construction/RNAi%20plasmid%20construction%20using%20pFGC5941.pdf

GUIDELINES

This protocol is based on the vector pFGC5941 (ABRC Stock CD3-447).

To avoid off-target effect, make sure no other regions in the interested genome perfectly match the RNAi fragment (150-500 bp) for a contiguous block longer than 16 bp. Also, make sure there are no restriction sites for the enzymes Ncol, Ascl, BamHI, or Xbal within the RNAi fragment.

When designing primers to amplify the RNAi fragment. Add "GTTCTAGACCATGG" at the 5' end of the Forward primer and add "GTGGATCCGGCGCCC" at the 5' end of the Reverse primer.

Make sure you have digested the pFGC5941 vector using Ncol/Ascl before the first ligation.

Primer sequences:

pFGC5941_2372F: CTTCATCGAAAGGACAGTAGAA pFGC5941_3082R: CCAAACAGGCTCATAGATACT pFGC5941_3930F: TGTACATCAGAATGTTTCTGAC pFGC5941_4430R: CGCTCTATCATAGATGTCGCTA

SAFETY WARNINGS

For Safety Warnings and Hazard Information please refer to the SDS (Satety Data Sheet).

Amplifying insert from cDNA or gDNA using Phusion PCR

1 Amplify insert from cDNA or gDNA (if the fragment contains no intron) using Phusion PCR

Make TWO □20 µI reactions of the following in separate tubes:

Amount (µL)	Reagent
4 μL	5x Phusion Buffer
0.5 μL	10 mM dNTPs
0.6 µL	DMSO
1.0 µL	Template
0.2 μΙ	Phusion enzyme
11.0 µL	dH2O
1.5 µL	5 μM Forward Primer
1.5 µL	5 μM Reverse Primer
20 μL	Total

2 Run Phusion PCR program:

Cycle	Repeats	Temperature	Time
Cycle 1		98°C	0:30
Cycle 2	(32x)	98°C	0:10
		58°C (or the ideal annealing temperature)	0:20
		72°C	0:30
Cycle 3		72°C	5:00
Cycle 4		12°C	for eve

Digestion

3 Digest one insert with Ncol/Ascl and the other one insert BamHI/Xbal.

See step 12 for BamHI/Xbal digestion.

Amount (µL)	Reagent
2.5 µL	10x CutSmart Buffer
4.5 μL	dH2O
1.5 µL	Ncol
1.5 µL	Ascl
15 μL	PCR Product
25 μL	Total

- 3.1 Incubate samples for \bigcirc 01:00:00 at \emptyset 37 °C.
- 3.2 Gel purify digests and save the BamHI/Xbal digested insert for the second ligation.

First ligation

4 First Ligation (Would like insert to vector molar ratio to 2:1 to 6:1)

Amount (µL)	Component
2 μL	Linearized pFGC5941 digested with AscI/Ncol. (~175ng; adjust volume as needed)
4 μL	Insert (digested with AscI/NcoI) (~15-30ng)
2 μL	T4 Ligase Buffer
1 μL	T4 Ligase
11 μL	dH2O
20 μL	Total

- 4.1 Incubate at § Room temperature for © 00:30:00.
- 4.2 Transform 10 μl into *E. coli* competent cells (homemade) and plate on Kan plates.

Colony PCR to check for first insert

5 Colony PCR to check for first insert

Amount (µL)	Component
8.0 µL	dH2O
1.0 μL	10x buffer
0.125 μL	dNTPs
0.5 μL	pFGC5941 2372 F
0.5 μL	pFGC5941 3082 R
0.05 μL	Taq
10 μL	Total

5.1 Run Colony PCR

Cycle	Repeats	Temperature	Time
Cycle 1		95°C	3:00
Cycle 2	32x	95°C	0:15
		55°C	0:15
		72°C	1:00
Cycle 3		72°C	7:00
Cycle 4		12°C	forever

- 6 Circle the biggest colonies on your plate and label them 1-8.
- 7 Make a replica plate for your colonies.
- 8 PCR across the first insert using primers on the vector to check for an insert: An empty vector will give a band of 700bp

Picking Colonies and Plasmid Prep

- 9 Pick two correct colonies and inoculate into 3 ml LB+Kan broth.
- 10 Incubate in § 37 °C shaker overnight.
- 11 The next day, do a plasmid prep (mini-prep kit) with 1 of the colonies that grew well.

Digest Plasmid with BamHI/Xbal

12

Amount	Component
5 μΙ	10x CutSmart Buffer
12 μΙ	dH2O
1.5 µl	Xbal
1.5 µl	BamHI
30 μl	Plasmid*
50 μΙ	Total

^{*} adjust volume based on concentration; you want 2000-5000 ng of plasmid

- 12.1 § 37 °C for (>01:00:00.
- 12.2 Gel purify digest.

Ligation #2

Amount	Component
4 µl	insert digested with BamHI/Xbal (done in step 3) (want ~15-30 ng)
2 μΙ	T4 ligase buffer
1 μΙ	T4 ligase
11 μΙ	dH2O
20 μΙ	Total

- 13.1 Incubate for © 00:30:00 at & Room temperature.
- 13.2 Transform $\frac{10}{2}$ μ l into *E. coli* competent cells (homemade) and plate on Kan plates.

Colony PCR to check for second insert

14 pFGC5941 3930 F & pFGC5941 4430 R

Vector without insert will give a band of 500bp

\(\text{protocols.io} \) 96/12/2019

Pick two correct colonies and inoculate into 3 ml LB+Kan broth.

15.1 Incubate in § 37 °C shaker overnight.

15.2 Plasmid prep (mini-prep kit)

Check plasmid for inserts

PCR to check for both inserts: 2372F/3082R or RNAi_R (insert specific) 3930F/4430R or RNAi_F (insert specific)

Sequence to verify

17 Use 4 primers: 2372F, 3082R, 3930F, 4430R

Note: in the sequencing reaction, add DMSO to aid in the sequencing across the restriction enzyme digest sites (the chromatogram peaks usually drop off dramatically right after the digest sites; an alternative strategy is to PCR the final plasmid with 2372F&3082R for the left insert and 3930F&4430R for the right insert and then sequence the PCR product)

18 Transform into agrobacterium for infiltration.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited