Decidability of Inferring Inductive Invariants

Dingchao Gao

Institute of Software Chinese Academy of Sciences

March 7, 2023

outline

- 1 Induction
 - background
 - EPR logic
- 2 Results of This Paper
 - basis of this paper
 - some proof of results
- 3 Summary

Induction •00 000

backgroud

- a system *S*
- lacksquare property ϕ
- verification: Is there a behavior of *S* that violated the property?

000

transition system

- transition system $TS = (S, S_0, R)$
- lacksquare a safe property $P \subseteq S$
- a inductive invariants I iff.
 - $S_0 \subseteq I$
 - R(I) = I
 - *I* ⊂ *P*

Induction 000 background

- Z3, CVC4, MathSAT,...
- Horn,EPR,...

effectively-propositional fragment of first-prder logic

- relation, but no function
- ∃*∀*, but no ∀*∃*
- satisfiablity:

$$\exists x, y. \forall z. r(x, z) \leftrightarrow r(z, y)$$

$$=_{\mathsf{SAT}} \forall z \cdot r(c_1, z) \leftrightarrow r(z, c_2)$$

$$=_{\mathsf{SAT}} (r(c_1, c_1) \leftrightarrow r(c_1, c_2)) \land (r(c_1, c_2) \leftrightarrow r(c_2, c_2))$$
(1)

automatic checking invariants

- input:
 - program P: Init, TR
 - alternation-Free Inductive Invariant Inv
 - \blacksquare Safety Property φ
- verification conditions generator
- : EPR SMT Solver
- output:
 - Counterexample To inductiveness
 - Proof

deduction

- Danfny
- Ivy

target

- the decidability of the problem of inferring inductive invariants in a given language
- input:
 - program
 - safe property
 - a given language

results

- decidability: $INV[\mathcal{C}_{n^{\star}}, \mathcal{L}_{\forall^{\star}}]$
- undecidability: $INV[C_{n^*}, \mathcal{L}_{A-F}], INV[C, \mathcal{L}]$

basis denfintion

for any language $L \subset 2^S$

- \blacksquare \sqsubseteq_L on $S: s_1 \sqsubseteq s_2$ iff. $\forall A \in L, s_2 \in A \rightarrow s_1 \in A$
- Avoid $_L(s) = A: \forall A' \in L, s \notin A' \rightarrow A' \subseteq A$
- L-relaxed transition: $(s, s') \in R$ iff. $(s, s') \in R$ or $s' \sqsubseteq_L s$

outline of $INV[\mathcal{C}_{n^{\star}}, \mathcal{L}_{n^{\star}}]$

- L-relaxed Trace reached bad property
- Establish WQO using Krusal's Tree theorem

some proof of results

well quasi order

- possible case:
 - no universal inductive Invariant
 - no relaxed trace reaches bad
- solution: well quasi order

Krusal's Tree theorem

- If (X, \leq) is a wqo, then so is $(\mathcal{T}(X), \leq)$.
- construct tree

extend decidability result

Corollary

Extending the vocabulary Σ by adding an arbitrary relation (i.e., with any arity) and extending L by adding to the bodies of L any number \leqslant k of occurrences of the new relation symbol, for some fixed $k \geqslant 0$, maintains the wqo and computability of AvoidL.

outline of undecidability results

- Minsky machine: $M = (Q, c_1, c_2)$
- Safe problem: *c*₃
- basic idea:
 - reduction constructs $(TS, P, L) \in (C, L)$
 - halts of M and decidability

reduction from counter Machines to INV[C, L]

- inc_i, dec_i, id_i, zero_i, init

$INV[\mathcal{C}_{n^*},\mathcal{L}_{AF}]$

- encoding
- witness formula:
 - $\forall x.n^* (h_i, x) \land n^* (h_i, x) \rightarrow i = j$
 - $\exists x_1 \dots x_{\ell_i}$ distinct $(h_i, x_1, \dots, x_{\ell_i}) \land \bigwedge_{j=1}^{\ell_i} n^* (h_i, x_j)$
 - $\forall x_0 \dots x_{\ell_i} \cdot \neg \left(\mathsf{distinct}\left(h_i, x_0, \dots, x_{\ell_i}\right) \land \bigwedge_{j=0}^{\ell_i} n^* \left(h_i, x_j\right) \right)$

Summary

- L-relaxed trace
- decidability and undecidability results

disscussion

■ BSCC in QMC

END Thank you