Translation-based Lexicalization Generation and Lexical Gap Detection:

Application to Kinship Terms

Senyu Li, Bradley Hauer, Ning Shi, Grzegorz Kondrak (senyu, bmhauer, ning.shi, gkondrak)@ualberta.ca

Task Definition: LexGen and LexGap

Lexicalization Generation (LexGen):

Given a language L and a concept s, LexGen(L, s) returns a <u>word</u> in L which lexicalizes s, or a special <u>GAP</u> token indicating that no such word exists.

Lexical Gap Detection (LexGap):

Given a language L and a concept s, LexGap(L, s) returns <u>TRUE</u> if L has no word that lexicalizes s, or <u>FALSE</u> otherwise.

LexGap returns TRUE if and only if LexGen returns a GAP.

Q You

ChatGPT

Given a word that means [father's younger brother] in Chinese is [叔叔], and a word that means [mother's brother] in Chinese is [舅舅]. Is there a word that means [elder brother] in [English]? If yes, give me that word. If no, say no.

ChatGPT

Yes, the word in English that means "elder brother" is "brother."

Google Translate

Concepts, Lexicalizations and Lexical Gaps

Concept: discrete word meaning

Kinship concepts have clear definitions and hierarchical structure

Lexicalization: a single word that can express (i.e. lexicalize) a concept. Lexical Gap: a concept that has no lexicalization in a given language.

Concepts

Lexicalizations

Concepts	En	Es	Fr	Ja	Fa	Zh	PI
1	Sibling	Ø	fratrie	Ø	Ø	同胞	Ø
2	Ø	Ø	Ø	Ø	Ø	Ø	Ø
3	Brother	hermano	frère	Ø	برادر	兄弟	brat
4	Sister	hermana	sœur	Ø	خواهر	姐妹	siostra
5	Ø	Ø	Ø	Ø	Ø	Ø	Ø
6	Ø	Ø	Ø	兄さん	Ø	哥哥	Ø
7	Ø	Ø	Ø	姉ちゃん	Ø	姐姐	Ø
8	Ø	tato	Ø	おとうと	Ø	弟弟	Ø
9	Ø	Ø	Ø	いもうと	Ø	妹妹	Ø

*Using Linguistic Typology to Enrich Multilingual Lexicons: the Case of Lexical Gaps in Kinship (Khishigsuren, 2022)

Method

for each concept s do

 $L_0(s) \leftarrow Translate(seed(s), gloss(s))$

for each concept s do

▶ Multi-Word Filter #1

 $L_1(s) \leftarrow GAP \text{ if } L_0(s) \text{ is not a word}$ **for** each triple (s_0, s_1, s_2) **do**

▶ Horizontal Filter #2

▶ Vertical Filter #4

 $L_2(s_1) \leftarrow GAP; L_2(s_2) \leftarrow GAP \text{ if } L_1(s_1) = L_1(s_2)$

for each concept s do

▷ Back-Translation Filter #3

 $L_3(s) \leftarrow GAP \text{ if } BackTrans(L_2(s), gloss(s)) \neq seed(s)$

if $L_3(s_0) = L_3(s_1)$ then

for each triple (s_0, s_1, s_2) **do**

if $L_3(s_2) = GAP$ then $L_4(s_1) \leftarrow GAP$ else $L_4(s_0) \leftarrow GAP$

Propositions and Corollary

Proposition 1

If a concept P is an exclusive disjunction of its hyponym concepts C1 and C2, expressing P and C1 with the same word w can result in a colloquial contradiction. **Proof:** C2 could be expressed by a phrase "w but not w", This phrase intuitively corresponds to a logical contradiction: $w(x) \land \neg w(x)$.

Example:

Robin is my parent but not my father => Robin es mi padre pero no mi padre **Excluded triples:** 7, 8, 10 (See figure below.)

Proposition 2

If a concept P is an exclusive disjunction of its hyponym concepts C1 and C2, expressing C1 and C2 with the same word w can result in a colloquial contradiction. **Proof:** P could be expressed by a phrase "either w or w", this phrase intuitively corresponds to a logical contradiction: $w(x) \oplus w(x)$.

Example:

Tengo una prima pero no tengo ningún primo => I have a cousin but I have no cousin

Excluded triples: 9, 10 Corollary

If a concept P is an exclusive disjunction of its hyponyms C1 and C2 then all their lexicalizations should be different.

Remaining triples: 1, 2, 3, 4, 5, 6

Experiment Setup and Results

Data: Database of Lexical Diversity in Kinship by Khishigsuren et al. (2022).

Translator: Google Translate, accessed February 15, 2024.

Metrics: Accuracy for LexGen and F1 score for LexGap.

Comparison: All-Gaps, BabelNet (v. 5.1), and ChatGPT (GPT-3.5 Turbo).

Development languages: English, Mandarin, and Persian.

Test languages: Spanish, Russian, French, German, Polish, Arabic, Italian, Mongolian, Hungarian, and Hindi.

Conclusion

- A novel translation-based method that generates concept lexicalizations and detects lexical gaps.
- Our method is grounded in formal definitions and propositions, and leverages translation and hypernym/hyponym taxonomy relations.
- Future work:
 - Apply our method to other domains
 - Employ large language models

github.com/UAlberta-NLP/KinshipAutoLex