

ELE1717 - sistemas digitais - Semana 2

(o líder é o primeiro aluno de cada grupo)

${\bf Grupo}~{\bf 01}$

Líder	Matricula	Nome
	20190154022	ARTHUR FELIPE RODRIGUES COSTA
	20200001060	LEANDRO DE SOUZA RODRIGUES
•	20200150195	LUCAS AUGUSTO MACIEL DA SILVA
	20200150210	LUIZ VITOR CLEMENTINO
	2015093037	MAURICIO ALVES DA SILVA

Grupo 02

Líder	Matricula	Nome
	20180153809	CAIO LINS MACHADO
	20200001014	ELKE SAMANTHA DA SILVA DOMINGOS
	20200001050	KAIKE CASTRO CARVALHO
•	20170040454	LUCAS DA SILVA LEONCIO
	20200150248	PAULO EDUARDO SILVA DE OLIVEIRA

Grupo 03

Líder	Matricula	Nome
•	2016017479	HILO DE OLIVEIRA GOES
	20200150201	LUCAS BARBOSA DE MEDEIROS
	20200001079	LUCAS GUALBERTO SANTOS RIBEIRO
	20200150266	SAMUEL VICTOR MACIEL DA SILVA
	20200150275	VINICIUS NASCIMENTO DE AZEVEDO

Grupo 04

Líder	Matricula	Nome
	20190154363	GABRIEL DA SILVA LIMA
	20200150239	MOHAMAD SADEQUE ABOU ALI
•	20190001909	PEDRO HENRIQUE DE OLIVEIRA FREIRE
	20180010172	RAFAEL DE MEDEIROS MARIZ CAPUANO
	20190001883	WILLIAN MOURA GONDIM DE FREITAS

${\rm Grupo}~05$

Líder	Matricula	Nome
	20190002620	ALISSON GABRIEL LUCAS DA SILVA
•	20200001023	ERIKA COSTA ALVES
	20200001088	MATEUS DE ASSIS SILVA
	20200150257	SAMARA REVOREDO DA SILVA
	20200001121	WESLEY WAGNER VARELA SOUZA

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

Disciplina:	ELE1717 - Sistemas Digitais	Período: 2020.2	
Aluno:		Problema: 01	

1- Projete um circuito integrado para um sistema digital que implementa uma secretária eletrônica, a qual pode salvar até 25 mensagens sendo que cada mensagem tem no mínimo 10 amostras do conversor A/D. O sistema digital deverá possuir aparência conforme a Figura 1 com a descrição de seus elementos apresentada na Tabela 1 e diagrama de blocos conforme a Figura 2.

Figura 1: Aparência da interface homem-máquina do sistema digital a ser projetado

Elemento	Descrição
	Display principal (exibição de valor entre 0 e 25)
(1)	Botão ON (inicializar/repouso/reset - tipo pushbutton)
(b)	Botão PLAY (reprodução/pausa - tipo pushbutton)
•	Botão BACK (navegação decremental - tipo pushbutton)
•	Botão NEXT (navegação incremental - tipo pushbutton)
	Led (O: em funcionamento; R: gravando; P: reproduzindo; F: cheio; M: tem mensagem)

Tabela 1: Elementos da interface homem-máquina do sistema digital a ser projetado

Figura 2: Diagrama de blocos simplificado da entrada e saída de dados do sistema digital

Funcionamento do sistema:

O circuito integrado deverá ser capaz de armazenar em uma memória interna até 25 mensagens com tamanho mínimo de 10 amostras do conversor A/D. Cada amostra do conversor A/D possui 8 bits e refere-se a um valor proporcional a amplitude de um sinal de tensão de um microfone que capta a voz humana. O circuito integrado também deverá ser capaz de reproduzir uma mensagem qualquer salva na memória interna. Para isso, o circuito integrado utilizará uma saída de 8 bits conectadas a um conversor D/A que transformará o sinal digital salvo em um nível de tensão a ser aplicado a um auto-falante. Além disso, o circuito integrado possui 1 display com dois digitos decimais, 4 pushbutton para garantir a interação do usuário com o circuito e 5 leds de sinalização. O usuário poderá ligar, desligar, por em repouso e resetar o circuito integrado através do pushbutton ON. Para ligar ou por em repouso o display do sistema, o usuário deverá pressionar o pushbutton ON. O sistema também entrará em repouso sempre que nenhum dos botões for pressionados por um tempo superior a 1 minuto. Para resetar o sistema o usuário deverá pressionar o pushbutton ON por 2s e para desligar o circuito integrado o usuário deverá pressionar o pushbutton ON por 5s. O usuário poderá reproduzir ou pausar a reprodução de uma mensagem através do pushbutton PLAY. O usuário poderá navegar entre as mensagens salvas na memória interna através dos pushbuttons BACK e NEXT. O display principal indicará o total de mensagens ou a mensagem selecionada pelo usuário. O led O permanecerá acionado sempre que o circuito integrado estiver ativo, ou seja, quando ele estiver preparado para gravar mensagens. O led R permanecerá acionado sempre que o circuito integrado estiver gravando uma mensagem. O led P permanecerá acionado sempre que o circuito integrado estiver reproduzindo uma mensagem. O led F permanecerá acionado sempre que a memória interna estiver cheia. Por fim, o led M permanecerá acionado sempre que existir alguma mensagem na memória interna.

Funcionamento do sistema (Repouso por inatividade):

O infográfico da Figura 3 apresenta o detalhamento do procedimento para repouso por tempo de inatividade. Estando na tela desligado (1), o usuário deverá pressionar o botão ON (2), para que os displays apresentem o valor total de mensagens na memória interna. O led O será acionado indicando que o circuito integrado está ativado. (3) após um minuto de inatividade (nenhum pushbuttons pressionado) o display é desligado.

Figura 3: Infográfico do procedimento para repouso por tempo de inatividade

Funcionamento do sistema (Gravação de mensagem):

O infográfico da Figura 4 apresenta o detalhamento do procedimento para a gravação de uma mensagem. Estando na tela de repouso (1), assim que o circuito integrado identificar que há mensagem a ser gravada (2) o mesmo acionará o led R e o manterá acionado por quanto tempo durar a mensagem. Após a gravação da mensagem o sistema retornará ao repouso.

Figura 4: Infográfico do procedimento para gravação de mensagem

Funcionamento do sistema (Reset do sistema):

O infográfico da Figura 5 apresenta o detalhamento do procedimento para reset do sistema. Estando na tela de repouso (1), o usuário deverá pressionar o botão ON (2), para que os displays apresentem o valor total de mensagens na memória interna. Para resetar o sistema o usuário deverá pressionar o pushbuttons ON por 2s (3), a confirmação do reset será através do valor 00 no display e dos leds F e M desligados.

Figura 5: Infográfico do procedimento para reset do sistema

Funcionamento do sistema (Reprodução total):

O infográfico da Figura 6 apresenta o detalhamento do procedimento para a reprodução de todas as mensagens em sequência. Estando na tela de repouso (1), o usuário deverá pressionar o botão ON (2), para que os displays apresentem o valor total de mensagens na memória interna. Para reproduzir todas as mensagens, salvas na memória, em sequência da primeira até a última, o usuário deverá pressionar o botão PLAY (2). Todas as mensagens serão reproduzidas (3-6) e, durante esse processo, o led P permanecerá acionado. Após a última mensagem ser reproduzida, o sistema retorna para a tela inicial e após um minuto de inatividade, o sistema retornará para a tela de repouso (8).

Figura 6: Infográfico do procedimento para reprodução de todas as mensagens na memória interna

4

Funcionamento do sistema (Reprodução individual):

O infográfico da Figura 7 apresenta o detalhamento do procedimento para a reprodução de uma mensagem selecionada. Estando na tela de repouso (1), o usuário deverá pressionar o botão ON (2), para que os displays apresentem o valor total de mensagens na memória interna. Para navegar até a mensagem que deseja reproduzir o usuário deverá pressionar os botões BACK ou NEXT (3-4). Escolhida a mensagem que se deseja reproduzir o usuário deverá pressionar o botão PLAY. A reprodução será apenas da mensagem escolhida (5-6). O usuário poderá navegar para outra mensagem (7), se desejar, pressionado os botões BACK ou NEXT. Para retornar a tela de repouso de qualquer outra tela, basta pressionar o botão ON não estando na tela de repouso.

Figura 7: Infográfico do procedimento para reprodução individual de mensagem na memória interna

Funcionamento do sistema (Reprodução individual com memória cheia):

O infográfico da Figura 8 apresenta o detalhamento do procedimento para a reprodução de uma mensagem selecionada. Estando na tela de repouso (1), o usuário deverá pressionar o botão ON (2), para que os displays apresentem o valor total de mensagens na memória interna. Observe que agora o led F está acionado indicando que a memória está cheia. Para navegar até a mensagem que deseja reproduzir o usuário deverá pressionar os botões BACK ou NEXT (3-4). Escolhida a mensagem que se deseja reproduzir o usuário deverá pressionar o botão PLAY. A reprodução será apenas da mensagem escolhida (5-6). O usuário poderá navegar para outra mensagem (7), se desejar, pressionado os botões BACK ou NEXT. Para retornar a tela de repouso de qualquer outra tela, basta pressionar o botão ON não estando na tela de repouso.

Figura 8: Infográfico do procedimento para reprodução individual de mensagem na memória interna quando a memória está cheia

É importante no projeto:

- Na semana de projeto é importante estudar projeto RTL, máquinas de estado (MDE) de alto nível e memórias;
- O projeto será realizado através da especificação de uma MDE de alto nível, do projeto RTL estruturado (bloco de controle com MDE de baixo nível e bloco de dados);
- Na semana de projeto não é necessário elaborar códigos fonte em VHDL;
- O relatório do projeto deverá conter todos as especificações realizadas de tal forma que permita o leitor implementar o projeto;

É importante na implementação:

- Na semana de implementação é importante estudar MDE e memórias em VHDL;
- A implementação consiste no desenvolvimento de todos os códigos fonte necessários;
- O relatório da implementação deverá conter os diagramas do projeto corrigidos, se necessário for, e as indicações de correções realizadas no projeto;
- Para comprovar o funcionamento podem ser elaboradas simulações, as quais devem estar detalhadas no relatório e em vídeo;

Referências:

1. Livros de VHDL e sistemas digitais;