λ = tasa media de llegadas (número de llegadas por unidad de tiempo)

 $1/\lambda$ = tiempo medio entre llegadas

 μ = tasa media de servicio (número de unidades servidas por unidad de tiempo cuando el servidor está ocupado)

 $1/\mu = tiempo medio requerido para prestar el servicio$

ρ = factor de utilización del sistema (proporción de tiempo que el sistema está ocupado)

 $P_n =$ probabilidad de que n unidades se encuentren en el sistema

 $L_n = número medio de unidades en la cola (longitud de la cola)$

 L_s = número medio de unidades en el sistema

 $W_0 = \text{tiempo medio de espera en la cola}$

W_s = tiempo medio de espera en el sistema

 λ = Tasa promedio de llegadas de clientes dentro de las instalaciones de servicio

W_s(t) = Probabilidad de que un cliente permanezca más de t unidades de tiempo en el sistema

 $W_q(t)$ = Probabilidad de que un cliente permanezca más de t unidades de tiempo en la cola

Modelo de Colas Sencillo		
Para un sólo servidor (s = 1)	Para servidores múltiples (s >1)	
$\hat{\rho} = \lambda / \mu$	ρ = λ / (s. μ)	
$P_0 = 1 - \rho$	$P_0 = 1 / \{ [\sum_{n=0}^{s-1} (\lambda / \mu)^n / n!] + \frac{(\lambda / \mu)^s}{s!(1-\rho)} \}$	
$P_n = P_0 \rho^n$	$P_n = P_0 [(\lambda / \mu)^n / n!]$ para $0 \le n \le s$	
$\overline{\lambda} = \lambda$	$P_n = P_0 [(\lambda / \mu)^n / (s! . s^{n-s})] \text{ para } n \ge s$ $\frac{1}{\lambda} = \lambda$	
$L_q = \lambda^2 / [\mu \cdot (\mu - \lambda)] = \rho L_s$	$L_q = [P_0 . (\lambda / \mu)^s . \rho] / [s! (1 - \rho)^2]$	
$L_s = \lambda / (\mu - \lambda)$	$L_s = L_q + (\lambda / \mu)$	
$W_q = \lambda / [\mu \cdot (\mu - \lambda)] = L_q / \lambda$	$W_q = L_q / \lambda$	
$W_s = 1 / (\mu - \lambda) = L_s / \lambda$	$W_s = W_q + (1 / \mu)$	
$W_s(t) = e^{-t/Ws} \qquad (t \ge 0)$	$W_{s}(t) = e^{-\mu t} \left\{ 1 + \frac{(s.\rho)^{s} \cdot p_{0} \cdot (1 - e^{-\mu t \cdot (s - 1 - s \cdot \rho)})}{s! \cdot (1 - \rho) \cdot (s - 1 - s.\rho)} \right\}$	
$W_q(t) = \rho \cdot e^{-t/Ws}$ $(t \ge 0)$	$W_{q}(t) = \frac{(s\rho)^{s} p_{0}}{s! (1 - \rho)} \cdot e^{-s \mu t (1 - \rho)}$	

M2
M/M/M
(1 sole filo g)
alimenta multiply
canales de
servicio con
= tone de servicio)

L
24
24
24

1

n/1.

vido/

			_
Investig	ación	Operativa	

Teoría de Colas - Fórmulas

	Colo Finita (Nro. de clientes < M)	Mod. 4
Para un sólo servidor (s = 1)	Para servidores múltiples (s >1)	Frenk infinite,
$\rho = \lambda / \mu$	ρ = λ / (s. μ)	A nation servitores
$P_0 = \frac{1 - \rho}{1 - \rho^{M+1}}$ Si $\rho \neq 1$	$P_{0} = 1 / \{ [\sum_{n=0}^{s} (\lambda / \mu)^{n} / n!] + (\lambda / \mu)^{s} \sum_{n=s+1}^{M} \rho^{n} $	-s
$P_0 = \frac{1}{M+1}$ Si $\rho = 1$	Para cualquier valor de ρ	
$P_n = P_0 \rho^n$ para $0 \le n \le M$	$P_n = \frac{(\lambda / \mu)^n}{n!} P_0$ para $0 \le n \le s$	
$\overline{\lambda} = \lambda (1 - P_M)$	$P_n = \frac{(\lambda / \mu)^n}{s! \ s^{n-s}} P_0 \qquad \text{para } \mathbf{s} \le \mathbf{n} \le \mathbf{M}$	
	$P_n = 0$ para $n > M$	
	$\overline{\lambda} = \lambda (1 - P_M)$	
$L_{s} = \frac{\rho}{1 - \rho} - \frac{(M+1) \rho^{M+1}}{1 - \rho^{M+1}} \text{Si } \rho \neq 1$	$L_s = \left[\sum_{n=0}^{s-1} n P_n\right] + L_q + s \left(1 - \sum_{n=0}^{s-1} P_n\right)$	
L _S = M / 2 Si ρ = 1		_
$L_{q} = L_{s} - 1 + P_{0}$	$L_{q} = P_{0} \frac{(\lambda / \mu)^{s} \rho}{s! (1 - \rho)^{2}} [1 - \rho^{M-s} - (M - s)\rho^{M-s} (1 - \rho)^{2}]$	ρ)]
$W_s = L_s / [\lambda (1 - P_0 \rho^M)]$	$W_s = L_s / [\lambda (1 - P_0 \rho^M)]$	
$W_q = L_q / [\lambda (1 - P_0 \rho^M)]$	$W_q = L_q / [\lambda (1 - P_0 \rho^M)]$	

Modelo Básico	con una Fuen	te de Entra	da L <u>imitada</u>

de nlinita, nitada

servidor

~ ~

r de

	Investigación Operativa	Teoría de Colas - Fórmulas
M5	Para un sólo servidor (s = 1)	Para servidores múltiples (s >1)
Fugaler inita,	ρ = λ / μ	$\rho = \lambda / (s. \mu)$
,	$\hat{P}_0 = 1 / \sum_{n=0}^{M} \left[\frac{M!}{(M-n)!} \rho^n \right]$	$P_0 = 1 / \left\{ \sum_{n=0}^{s-1} \left[\frac{M! (\lambda / \mu)^n}{(M-n)! n!} \right] + \sum_{n=s}^{M} \frac{M! (\lambda / \mu)^n}{(M-n)! s! s^{n-s}} \right] \right\}$
	$P_n = \underline{M! \ \rho^n} P_0$ para $0 \le n \le M$ (M - n)!	$P_n = \frac{M! (\lambda / \mu)^n}{(M - n)! n!} P_0$ para $0 \le n \le s$
	$P_n = 0$ para $n > M$	$P_n = \frac{M! (\lambda / \mu)^n}{(M - n)! s! s^{n-s}} P_0 \text{para } s \le n \le M$
	$\lambda = \lambda (M - L_s) = \mu (1 - P_0)$	$P_n = 0$ para $n > M$ $\frac{1}{\lambda} = \lambda (M - L_s)$
	$L_{q} = M - \left[\frac{(\lambda + \mu)}{\lambda} (1 - P_{0}) \right]$	$L_{q} = \sum_{n=s}^{M} (n - s) P_{n}$
_	$L_s = L_q + 1 - P_0$	$L_{s} = \left[\sum_{n=0}^{s-1} n P_{n}\right] + L_{q} + s \left(1 - \sum_{n=0}^{s-1} P_{n}\right)$
	$W_q = L_q / [\mu (1 - P_0)]$	$W_q = L_q / [\lambda (M - L_s)]$
	$W_s = L_s / [\mu (1 - P_0)]$	$W_s = L_s / [\lambda (M - L_s)]$

Otros Modelos de Colas		
Un solo servidor (s = 1) con entrada tipo Poisson y cualquier distribución del tiempo de servicio	Un solo servidor (s = 1) con entrada tipo Poisson y tiempos de servicio constantes (⇒ varianza σ² = 0)	
ρ = λ / μ	ρ=λ/μ	
$P_0 = 1 - \rho$	$P_0 = 1 - \rho$	
$P_n = P_0 \rho^n$	$P_n = P_0 \rho^n$	
$L_{q} = \frac{\lambda^{2} \sigma^{2} + \rho^{2}}{2}$	$L_q = \rho^2$	
2 (1 - ρ)	2 (1 - ρ)	
$L_s = L_q + \rho$	$L_s = L_q + \rho$	
$W_q = L_q / \lambda$	$W_q = L_q / \lambda$	
$W_s = L_s / \lambda = W_q + 1/\mu$	$W_s = L_s / \lambda = W_o + 1/\mu$	

MG Tunk finits cola limitada Varios Servidores

*, ,