ΔΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Α΄ ΛΥΚΕΙΟΥ

Θ EMA A

A1.

Να δώσετε τον ορισμό της απόλυτης τιμής ενός πραγματικού αριθμού α . (Μονάδες 7)

A2.

Να αποδείξετε ότι, για οποιονδήποτε πραγματικούς αριθμούς α , β ισχύει η ανισότητα:

$$|\alpha + \beta| \le |\alpha| + |\beta|$$

(Μονάδες 8)

A3.

Να χαρακτηρίσετε τις παρακάτω προτάσεις, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη $\Sigma \omega \sigma \tau \dot{o}$, αν η πρόταση είναι σωστή, ή $\Lambda \dot{\alpha} \theta o \varsigma$ αν η πρόταση είναι λανθασμένη.

ι. Αν
$$\alpha < \beta$$
 και $x < \delta$, τότε $\alpha \cdot y < \beta \cdot \delta$ (Μονάδες 2)

ιι. Για κάθε
$$\theta \in (0, +\infty)$$
 ισχύει: $|x| < \theta \iff -\theta < x < \theta$. (Μονάδες 2)

ιιι. Η εξίσωση
$$x^3=-1$$
 είναι αδύνατη για κάθε $\alpha\in\mathbb{R}$. (Μονάδες 2)

ι. Η εξίσωση $\alpha x^2 + \beta x + \gamma = 0$ με $\alpha \neq 0, \beta, \gamma \in \mathbb{R}$ έχει πάντοτε πραγματικές λύσεις αν η διακρίνουσα είναι μη αρνητική. (Μονάδες 2)

. Ισχύει
$$|\pi - 3| = \pi - 3$$
. (Μονάδες 2)

ΘΕΜΑ Β

Δίνεται η παράσταση A=|x-1|+|y-3|, με x,y πραγματικούς αριθμούς για τους οποίους ισχύει:

$$1 < x < 4$$
 kai $2 < y < 3$

Να αποδείξετε ότι:

B1.

$$A = x - y + 2$$

(Μονάδες 12)

B2.

(Μονάδες 13)

Θ EMA Γ

 Δ ίνονται οι παραστάσεις:

$$A = \frac{2}{\sqrt{5} - \sqrt{3}} + \frac{2}{\sqrt{5} + \sqrt{3}}, \quad B = \sqrt{11 + 6\sqrt{2}} - \sqrt{11 - 6\sqrt{2}}$$

 $\Gamma 1.$

Να δείξετε ότι:

$$A=2\sqrt{5}$$

(Μονάδες 6)

 $\Gamma 2.$

Να υπολογίσετε τα αναπτύγματα:

$$(3+\sqrt{2})^2$$
, $(3-\sqrt{2})^2$

(Μονάδες 6)

 $\Gamma 3.$

Να δείξετε ότι:

$$B = 2\sqrt{2}$$

(Μονάδες 6)

 $\Gamma 4.$

Να λυθεί η εξίσωση:

$$\frac{|x-2|}{B\sqrt{2}} = \frac{|2-x|}{A\sqrt{5}} - \frac{5}{3}$$

όπου A, B οι παραπάνω παραστάσεις.

(Μονάδες 7)

Θ EMA Δ

Οι πλευρές x_1, x_2 ενός ορθογωνίου παραλληλογράμμου είναι οι ρίζες της εξίσωσης:

$$x^2 - 4\left(\lambda + \frac{1}{\lambda}\right)x + 16 = 0, \quad \mu\varepsilon \ \lambda > 0$$

 $\Delta 1.$

Να βρείτε:

- ι. Την περίμετρο Π του ορθογωνίου συναρτήσει του λ .
- ιι. Το εμβαδόν E του ορθογωνίου.

(Μονάδες 12)

 $\Delta 2$.

Να αποδείξετε ότι $\Pi \ge 16$, για κάθε $\lambda > 0$.

(Μονάδες 7)

 $\Delta 3$.

Για ποια τιμή του λ η περίμετρος Π του ορθογωνίου γίνεται ελάχιστη, δηλαδή ίση με 16° Τι μπορείτε να πείτε τότε για το ορθογώνιο (Μονάδες 6)