Support Vector Machine

2-D space (2 independent variables)

The objective of the support vector machine algorithm is to find a hyperplane in an N-dimensional space (N — the number of independent variables) that distinctly classifies the data points.

In other words, find the best line that separates the 2 classes.

To separate the two classes of data points, there are many possible hyperplanes that could be chosen. Our objective is to find a plane that has the maximum margin, i.e the maximum distance between data points of both classes.

Which hyperplane to pick?

- Which points should influence optimality?
- only points close to decision boundary
- Support vectors are the elements of the training set that would change the position of the dividing hyperplane if removed.
- Support vectors are the critical elements of the training set
- The problem of finding the optimal hyper plane is an optimization problem and can be solved by optimization techniques

<u>Input</u>: set of (input, output) training pair samples; call the input sample features x_1 , $x_2...x_n$, and the output result y. Typically, there can be lots of input features x_i .

<u>Output</u>: set of weights \mathbf{w} (or w_i), one for each feature, whose linear combination predicts the value of y

Definitions

H₀

d+

 H_2

Define the hyperplanes H such that:

$$w \cdot x_i + b \ge +1$$
 when $y_i = +1$

$$w \cdot x_i + b \le -1 \text{ when } y_i = -1$$

 H_1 and H_2 are the planes:

$$H_1$$
: $w \cdot x_i + b = +1$

$$H_2$$
: $w \cdot x_i + b = -1$

The points on the planes H_1 and H_2 are the tips of the <u>Support Vectors</u>

The plane H_0 is the median in between, where $w \cdot x_i + b = 0$

d- = the shortest distance to the closest negative point

The margin (gutter) of a separating hyperplane is d++d-.

- w is a weight vector
- x is input vector
- b is bias

Maximizing the margin (aka street width)

We want a classifier (linear separator) with as big a margin as possible.

Recall the distance from a point(x_0, y_0) to a line: Ax+By+c = 0 is: $|Ax_0 + By_0 + c|/sqrt(A^2+B^2)$, so, The distance between H_0 and H_1 is then: $|w \cdot x + b|/||w|| = 1/||w||$, so

The total distance between H_1 and H_2 is thus: 2/||w||

In order to <u>maximize</u> the margin, we thus need to <u>minimize</u> ||w||. With the condition that there are no datapoints between H₁ and H₂:

$$\mathbf{x}_i \bullet \mathbf{w} + \mathbf{b} \ge +1$$
 when $\mathbf{y}_i = +1$
 $\mathbf{x}_i \bullet \mathbf{w} + \mathbf{b} \le -1$ when $\mathbf{y}_i = -1$

 $\mathbf{x}_i \cdot \mathbf{w} + \mathbf{b} \le -1$ when $\mathbf{y}_i = -1$ Can be combined into: $\mathbf{y}_i(\mathbf{x}_i \cdot \mathbf{w}) \ge 1$

Define classes:

If $x_i * w + b \le -1$ assign to class green If $x_i * w + b \ge 1$ assign to class red

Multi-Class Classification

'red' 'blue' and 'green'

One-Vs-Rest

- **Binary Classification Problem 1**: red vs [blue, green]
- **Binary Classification Problem 2**: blue vs [red, green]
- **Binary Classification Problem 3**: green vs [red, blue]

One-Vs-One

- Binary Classification Problem 1: red vs. blue
- Binary Classification Problem 2: red vs. green
- Binary Classification Problem 3: blue vs. green

More than 2 independent variables

A hyperplane in \mathbb{R}^2 is a line

The dimension of the hyperplane depends upon the number of independent variables (predictors). If the number of inputs IV is 2, then the hyperplane is just a line. If the number of inputs IV is 3, then the hyperplane becomes a two-dimensional plane. It becomes difficult to imagine when the number of features exceeds 3.

References:

https://www.kaggle.com/faressayah/support-vector-machine-pca-tutorial-for-beginner

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/