CHM 151: VB THEORY 11 & MO

Sp HUBRIO DRISTALS:

ALKENE

THE POUBLLE BOUND

IN ETHYLENE IS MADE.

UP OF A C BOND

Sp2-Sp2. HEAD-ON OVERLAP

A TI BOND

: P-P SIDE-ON OVERCAP

BONDING IN ETHYLENE

H BONDING

5 BONDING

SP HUBRIO BONOING

106 PM 180°

H - C = C - H

2×TT BONDING

& BONDING

TRENDS IN C-C BOND STRENGTH & LENGTH

H-C=C-H

BOND STRENGTH

CH3·CH3 | CH2CH2 |

LJ. 1 C · C | 376 154 728 134 965 120 1pm

BOND STRENGTH

BOND LENGTH

BOND LENGTH

BOND STRENGTH

BOND STRENGTH

HYBRIDIZATION DE METERDATOMS

I KEEP TEACH OF LONE PAIRS

EXAMPLE

METHYLAMINE

E ORMALDEHY DE

METHANOL

4 108.5° CH3

# 00	BROUPS AROUND ATOM	# ORBITALS USED	TYPE OF HYBRID DEB
4		٩	· sp3
S	•	3	th 5
Ş		2	Jp Jp
2			/

MOLECULAR ORBITAL THEORY

MATHEMATICAL COMBINATION OF ATOMIC ORBITALS.

ON PIETERENT ATOMS GIVES RISE TO MOLECULAR ORBITALS

NOT THE SAME AS VB THEORY

U. CONCEPT OF ANTIBONDING ORBITALS
ORIGINATES FROM MOTHEORY

2. MO THEORY IS ABLE TO PESCHISE BONDING
THAT IS NOT WELL PEDICTED BY A SINGLE
LINE STRUCTURE.

EXAMPLE

-> MORE ON BONDING AFTER DISCUSSING ALKANES AND CYCCOALICANES

DRAWING CHEMICAL STRUCTURES

n-butane:

CH3CH2 CH2 CH3