МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе № 2.2.3 "Определение теплопроводности газов при атмосферном давлении"

Выполнил: Студент гр. Б01-305 Миннахметов Артур

1 Введение

Цель работы: определение коэффициента теплопроводности воздуха или углекислого газа при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

В работе используются: прибор для определения теплопроводности газов; форвакуумный насос; газгольдер с углекислым газом; манометр; магазин сопротивлений; эталонное сопротивление 10 Ом; цифровой вольтметр В7-38; источник питания.

1.1 Теоритические сведения

Основные сведения о теплопроводности газов содержатся в описании к предыдущей работе. Разрешая $T_1-T_2=\frac{Q}{2\pi L \varkappa}\ln\frac{r_2}{r_1}$ относительно \varkappa , получим

$$\varkappa = \frac{Q}{2\pi L (T_1 - T_2)} \ln \frac{r_2}{r_1}$$
 (1)

где r_1 — радиус нити, r_2 — радиус внешнего цилиндра, Q — тепловой поток, T_1 — темперкатура нити, T_2 — температура цилиндра, \varkappa — коэффициент теплопроводности воздуха, L — длина цилиндра и нити.

Предлагаемый в работе метод измерения теплопроводности газов основан на применении формулы (1).

1.2 Эксперементальная установка

Схема установки изображена на рисунке 1. Тонкая нить (никелевая или вольфрамовая проволока) натянута по оси длинной вертикально стоящей медной трубки. Через штуцер трубка заполняется исследуемым газом. Нить нагревается электрическим током, ее температура T_1 определяется по изменению электрического сопротивления. Трубка находится в кожухе, через который пропускается вода из термостата. Температура воды T_2 измеряется термометром, помещенным в термостат. Количество теплоты, протекающей через газ, равно (если пренебречь утечками тепла через торцы) количеству теплоты, выделяемому током в нити, и может быть найдено по закону Джоуля—Ленца. При этом ток в нити определяется по напряжению на включенном последовательно с ней эталонном сопротивлении 10 Ом. Таким образом, все величины, входящие в правую часть формулы (1), поддаются непосредственному измерению.

Электрическая часть схемы состоит из источника питания и подключенных к нему последовательно соединенных нити, эталонного сопротивления 10 Ом и магазина сопротивлений $R_{\rm M}$, служащего для точной установки тока через нить. Цифровой вольтметр может подключаться как к нити, так и к эталонному сопротивлению, измеряя таким образом напряжение на нити и ток через нее.

Опыты проводят с воздухом или с углекислым газом (по указанию преподавателя) при атмосферном давлении. Предварительно — для удаления примесей — трубку несколько раз откачивают форвакуумным насосом и промывают исследуемым газом.

При определенной температуре термостата снимается зависимость напряжения на нити от тока, проходящего через нее. Затем по полученным данным строится график зависимости рас-

Рис. 1: Схема установки для определения теплопроводности газов

сеиваемой мощности от сопротивления нити, по которому можно определить сопротивление нити при нулевом токе, то есть при температуре термостата. Это сопротивление затруднительно измерить непосредственно из-за термоэлектрических явлений, заметно искажающих результаты при малых токах, большие же токи существенно изменяют температуру нити. Повторив эти измерения при различных температурах термостата, можно определить температурную зависимость сопротивления нити. Коэффициент теплопроводности определяется затем по зависимости выделяемой мощности от разности температур с помощью формулы (1). При небольших значениях разности температур эта зависимость хорошо аппроксимируется прямой.

При измерении теплопроводности газов необходимо иметь в виду, что целый ряд факторов может повлиять на результат опыта. Мы уже говорили о конвективном переносе тепла. Часть тепловой энергии передается от нити к стенке через излучение. Формула (1) не учитывает также потерь тепла через концы проволоки. Как показывают расчеты, при наших условиях опыта они вносят наиболее существенную погрешность (порядка нескольких процентов).

2 Ход работы

2.1 Измерения

1. Некоторые данныеиз справочных материалов:

$$2r_1=50\pm 3$$
 мкм, — диаметр нити;
$$2r_0=7,0\pm 0,1$$
 мм, — диаметр колбы;
$$\ln\frac{r_0}{r_1}=5$$
 $L=400\pm 2$ мм, — длина нити;
$$R_{\rm H}\sim 20$$
 Ом, — сопротивление нити;
$$\varepsilon_{\rm VCT}=3,2$$
 В, — напряжение на источнике питания.

І, мА	U, B	Q, мВт	R, Ом
15.4	0.314	4.836	20.39
43.87	0.901	39.527	20.538
57.81	1.195	69.083	20.671
67.74	1.412	95.649	20.844
75.27	1.579	118.851	20.978
81.45	1.716	139.768	21.068
86.77	1.838	159.483	21.182
91.36	1.945	177.695	21.289
95.2	2.032	193.446	21.345
98.98	2.122	210.036	21.439
102.31	2.201	225.184	21.513
І, мА	U, B	Q, мВт	R, Ом
15.2	0.333	5.062	21.908
42.61	0.941	40.096	22.084
55.89	1.243	69.471	22.24
65.55	1.466	96.096	22.365
72.75	1.636	119.019	22.488
78.5	1.773	139.181	22.586
83.48	1.893	158.028	22.676
87.66	1.995	174.882	22.758
91.2	2.083	189.97	22.84
		204 421	20.044
94.6	2.161	204.431	22.844
94.6	2.161 2.246	219.457	22.844

І, мА	U, B	Q, мВт	R, Ом
15.23	0.323	4.919	21.208
42.99	0.919	13.996	21.377
56.56	1.217	18.535	21.517
66.45	1.44	21.931	21.67
73.82	1.609	24.505	21.796
79.69	1.745	26.576	21.897
84.85	1.867	28.434	22.004
89.15	1.969	29.988	22.086
93.03	2.061	31.389	22.154
96.38	2.144	32.653	22.245
99.71	2.224	33.872	22.305
І, мА	U, B	Q, мВт	R, Ом
15.12	0.342	5.17104	22.619
42.21	0.962	40.606	22.7908
55.21	1.266	69.8959	22.9306
64.63	1.491	96.3633	23.0698
71.65	1.66	118.939	23.1682
77.19	1.796	138.633	23.2673
81.96	1.914	156.871	23.3529
85.98	2.015	173.25	23.4357
89.41	2.101	187.85	23.4985
92.67	2.185	202.484	23.5783
95.67	2.262	216.406	23.6438
95.07	2.202	210.400	25.0458

І, мА	U, B	Q, мВт	R, Ом
15.07	0.352	5.30464	23.3577
41.78	0.982	41.028	23.5041
54.51	1.288	70.2089	23.6287
63.68	1.513	96.3478	23.7594
70.45	1.681	118.426	23.8609
75.87	1.817	137.856	23.9489
80.54	1.936	155.925	24.0377
84.45	2.037	172.025	24.1208
87.83	2.125	186.639	24.1945
91.01	2.206	200.768	24.2391
93.71	2.278	213.471	24.309

 $2.\ \mathrm{B}$ целях безопасности посчитаны максимальные мощность, сила тока и напряжение для нити:

$$Q_{max} = 3770 \ \mathrm{MBt},$$

$$U_{max} = 8,7 \ \mathrm{B},$$

$$I_{max} = 433 \ \mathrm{mA}.$$

3. Для разных температур измерены напряжение и сила тока на нити представлены в таблицах 1-4

2.2 Обработка

4. По таблицам строим графики R(Q).

5. По грфикам определим R_0 для каждой температуры:

$$R_{0(T=23^{\circ}C)} = 20.3 \pm 0.5 \text{ Om},$$

$$R_{0(T=35^{\circ}C)} = 21.2 \pm 0.5 \text{ Om},$$

$$R_{0(T=45^{\circ}C)} = 21.9 \pm 0.6 \text{ Om},$$

$$R_{0(T=55^{\circ}C)} = 22.6 \pm 0.8 \text{ Om},$$

$$R_{0(T=65^{\circ}C)} = 23.3 \pm 0.6 \text{ Om},$$

6. Зависимость $R_0(T)$

Получились результаты:
$$\frac{dR_0}{dT}=0.071\pm0.004$$
 $\frac{\mathrm{Om}}{\mathrm{K}},~\alpha=\frac{1}{R_{273}}\frac{dR_0}{dT}=(3.8\pm0.3)\cdot10^{-3}$ K^{-1}

- 7. Получим зависимость $\frac{dQ}{d(\Delta T)}=\frac{dR}{dT}/\frac{dR}{dQ}$ для каждого случая
- 8. Построим график $\ln \kappa (\ln T)$. Получилось $\beta = 0.9 \pm 0.3$.

$T, \circ C$	$\frac{dQ}{d(\Delta T)}$, $10^{-2} \frac{B_T}{K}$	κ , $10^{-3} \frac{\mathrm{Br}}{K \cdot \mathrm{M}}$
23	1.36	27.1
35	1.39	27.7
45	1.44	28.6
55	1.48	29.4
65	1.54	30.6

3 Выводы

Зависимость $\kappa \sim T^\beta$ получилась с $\beta=0.9\pm0.3$, что не сходится с теоритиечскими сведениями $\beta=\frac{1}{2}$. Для определения коэффициента теплопроводности этот способ подходит, потому что резуьтаты получились похожие на теоритические.

