

PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 2

Aufgabe 5

Zeigen Sie die de Morgan'sche Formeln:

$$\bigcup_{i \in I} A_i = \left(\bigcap_{i \in I} A_i^c\right)^c \quad \text{und} \quad \bigcap_{i \in I} A_i = \left(\bigcup_{i \in I} A_i^c\right)^c$$

 $L\ddot{o}sung$. Wir beweisen die Gleichheit zweier Mengen indem wir zeigen, dass ein beliebiges x genau dann ein Element der einen Menge ist, wenn es ein Element der anderen ist. Anders: Zwei Mengen sind genau dann gleich, wenn ihre Elemente übereinstimmen.

Es gilt:

$$x \in \bigcup_{i \in I} A_i \iff \exists i_0 \in I : x \in A_{i_0} \iff \exists i_0 \in I : x \notin A_{i_0}^c$$
$$\iff x \notin \bigcap_{i \in I} A_i^c \iff x \in \left(\bigcap_{i \in I} A_i^c\right)^c,$$

also sind die beiden Mengen gleich.

Ähnlich zeigen wir die Gültigkeit der zweiten Formel.

$$x \in \bigcap_{i \in I} A_i \Longleftrightarrow \forall i \in I : x \in A_i \Longleftrightarrow \forall i \in I : x \notin A_i^c$$

$$\iff x \notin \bigcup_{i \in I} A_i^c \Longleftrightarrow x \in \left(\bigcup_{i \in I} A_i^c\right)^c.$$

Aufgabe 6

(ii) Geben Sie für jede der drei Eigenschaften reflexiv, symmetisch, transitiv eine Relation auf einer Menge an, die diese Eigenschaft hat, die anderen beiden jedoch nicht.

Lösung. (ii) Zur Erinnerung: Eine Relation R auf einer Menge M ist genau dann reflexiv wenn für alle $x \in M$ gilt: $(x,x) \in R$. Sie ist symmetrisch, wenn für alle $x,y \in M$ mit $(x,y) \in R$ gilt: $(y,x) \in R$ (anders geschrieben: $\forall x,y \in M: (x,y) \in R \Longrightarrow (y,x) \in R$). R auf M ist genau dann transitiv, wenn für alle $x,y,z \in M$ mit $(x,y) \in R$ und $(y,z) \in R$ gilt: $(x,z) \in R$. Nun zu der Aufgabe:

 $R = \{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ auf $\{1,2,3\}$ ist offensichtlich reflexiv, aber nicht symmetrisch (denn $(1,2) \in S$, aber $(2,1) \notin R$) und nicht transitiv (denn $(1,2) \in R$ und $(2,3) \in R$, aber $(1,3) \notin R$).

 $S = \{(1,2),(2,1)\}$ auf $\{1,2\}$ ist symmetrisch: Für alle $x,y \in \{1,2\}$, für die $(x,y) \in S$ gilt, haben wir auch $(y,x) \in S$ (leicht zu sehen). S ist aber weder reflexiv $((1,1) \notin S)$ noch transitiv (denn $(1,2),(2,1) \in S$, aber $(1,1) \notin S$).

 $T=\{(1,2),(2,3),(1,3)\}$ auf $\{1,2,3\}$ ist transitiv: Nur für x=1,y=2,z=3 haben wir sowohl $(x,y)\in T$ als auch $(y,z)\in T$, und in dem Fall ist in der Tat auch

 $(x,z) \in T$. T ist aber weder reflexiv (denn $(1,1) \notin S$) noch symmetrisch (denn $(1,2) \in S$, aber $(2,1) \notin S$).

Aufgabe 8

Sei $n \in \mathbb{N}$ gegeben. Auf \mathbb{Z} definieren wir folgende Relation:

$$M_n := \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists c \in \mathbb{Z} : nc = b - a\}.$$

Zeigen Sie, dass es sich bei M_n um eine Äquivalenzrelation handelt und bestimmen Sie die Anzahl ihrer Äquivalenzklassen.

Lösung. Falls n=0 gilt, ist (a,b) genau dann in M_n , wenn 0=b-a, also a=b gilt. Also gilt $M_0=\{(a,a)\mid a\in\mathbb{Z}\}$. Man sieht leicht, dass M_0 reflexiv, symmetrisch und transitiv ist, also eine Äquivalenzrelation. In diesem Fall besteht jede Äquivalenzklasse aus genau einer ganzen Zahl, also hat M_0 unendlich viele Äquivalenzklassen.

Nehmen wir weiter an, n sei nicht Null. Wir müssen zeigen, dass M_n als Relation auf \mathbb{Z} reflexiv, symmetrisch und transitiv ist. Reflexivität und Symmetrie lassen sich leicht zeigen.

Um die Transitivität zu zeigen, seien (a,b) und (b,a') in M_n . Sei $c \in \mathbb{Z}$ so gewählt, dass nc = b - a, und sei $c' \in \mathbb{Z}$ so gewählt, dass nc' = a' - b. Dann gilt a' - a = a' - b + b - a = nc' + nc = n(c' + c), also gibt es eine ganze Zahl d = c' + c, so dass nd = a' - a gilt. Es folgt $(a,a') \in M_n$. Damit haben wir bewiesen, dass M_n transitiv ist.

Es lässt sich jedes $a \in \mathbb{Z}$ eindeutig schreiben als a = qn + r, wobei $r \in \{0, 1, \ldots, n-1\}$ und $q \in \mathbb{Z}$. Es gibt also für jede ganze Zahl genau ein $r \in \{0, \ldots, n-1\}$, das sich in derselben Äquivalenzklasse von M_n befindet. Folglich hat M_n genau n Äquivalenzklassen.