

TFG del Grado en Ingeniería Informática

Estudio de métodos de selección de instancias en aprendizaje Semi-Supervisado y aplicación web de MLaaS Documentación Técnica

Presentado por Daniel Puente Ramírez en Universidad de Burgos — 1 de mayo de 2022

Tutor: Dr. Álvar Arnaiz González

Índice general

Indice general	i
Índice de figuras	iii
Índice de tablas	v
Apéndice A Plan de Proyecto Software	1
A.1. Introducción	1
A.2. Usuarios Participantes	2
A.3. Planificación temporal	2
A.4. Estudio de viabilidad	34
Apéndice B Especificación de Requisitos	41
B.1. Introducción	41
B.2. Objetivos generales	42
B.3. Usuarios del software	43
B.4. Factores de riesgo	44
B.5. Catálogo de requisitos	45
B.6. Especificación de requisitos	50
Apéndice C Especificación de diseño	63
C.1. Introducción	63
C.2. UBUMLaaS	63
C.3. IS-SSL	73
Apéndice D Documentación técnica de programación	7 5
D.1. Introducción	75

II	Índice general

D.2. UBUMLaaS	
Apéndice E Documentación de usuario	97
E.1. Introducción	97
E.2. UBUMLaaS	97
E.3. IS-SSL	119
Bibliografía	125

Índice de figuras

A.1.	Metodología scrum	3
		8
	Burndown Chart Sprint 2	0
	Burndown Chart Sprint 3	1
	Burndown Chart Sprint 4	3
	Burndown Chart Sprint 5	4
	Burndown Chart Sprint 6	6
	Burndown Chart Sprint 7	7
	Burndown Chart Sprint 8	8
	Burndown Chart Sprint 9	0
	Burndown Chart Sprint 10	2
	Burndown Chart Sprint 11	4
A.13	Burndown Chart Sprint 12	5
A.14	Burndown Chart Sprint 13	7
A.15	Burndown Chart Sprint 14	8
A.16	Burndown Chart Sprint 15	9
A.17	Burndown Chart Sprint 16	1
B.1.	Diagrama de casos de uso	0
C.1.	Diagrama entidad relación	5
C.2.	Diagrama entidad relación 60	6
C.3.	Diagrama de secuencia de la monitorización en tiempo real 69	9
C.4.	Diagrama de secuencia de las estadísticas generales de la aplicación. 69	9
C.5.	Diagrama de secuencia de la creación de un nuevo experimento	_
α	por parte del usuario	
	Diagrama de secuencia de la ejecución de un nuevo experimento. 7	
C.7.	Arquitectura cliente-servidor	2

D.1. Codacy			83
D.2. SonarCloud			84
D.3. Travis-CI			85
D.4. Codacy			95
D.5. SonarCloud			96
E.1. Página de inicio			99
E.2. Página de registro			99
E.3. Página de inicio de sesión			101
E.4. Página de recuperar contraseña			101
E.5. Índice principal de UBUMLaaS			102
E.6. Vista de crear experimento			103
E.7. Formulario de crear experimento relleno			105
E.8. Perfil de el usuario			106
E.9. Visualización de resultados			107
E.10. Vista de antes de predecir			108
E.11. Vista después de predecir			109
E.12. Estadísticas de usuario			110
E.13. Formulario de edición de los datos de un usuario			112
E.14. Formulario para cambiar la contraseña de un usuario			113
E.15. Vista de índice de administrador			114
E.16. Vista de <i>Analytics Dashboard</i>			115
E.17. Vista de administración de usuarios			117
E.18. Vista de <i>Live System Monitor</i>			118
E.19. Vista de la biblioteca de algoritmos de selección de instancias			
PyPI			120
E.20. Vista de la biblioteca de algoritmos de aprendizaje semi-superv	isa	do	
en PyPI			120
E.21.Instalación de la biblioteca de selección de instancias			121
E.22. Instalación de la biblioteca de semi-supervisado.			121

Índice de tablas

A.1.	Costes de <i>hardware</i>	35
	Costes de software.	35
A.3.	Costes de personal	36
	Otros costes.	37
A.5.	Otros costes.	37
A.6.	Opciones para obtener beneficio con UBUMLaaS	38
A.7.	Simulación para recuperar la inversión con UBUMLaaS	38
B.1.	CU-1 Consultar Experimentos	51
	CU-1.1 Consultar Experimento	52
	CU-1.1.1 Predecir Nuevas Instancias.	53
	CU-1.1.2 Reutilizar Experimento.	54
	CU-1.2 Consultar Registros en la Base de Datos.	55
	CU-2 Crear Experimento.	56
	CU-3 Modificar Usuario	57
	CU-4 Registro de Usuario	58
	CU-5 Administrar Usuarios	59
B.10	.CU-6 Consultar Analíticas de Uso.	60
B.11	.CU-7 Monitorización del Sistema en Tiempo Real	61
B.12	.CU-7.1 Monitor del Sistema	61
D.1.	Bibliotecas utilizadas y sus versiones	78
	Bibliotecas utilizadas y sus versiones.	

Apéndice A

Plan de Proyecto Software

A.1. Introducción

En este anexo se tratará el plan de proyecto, es la base sobre la que se crea el proyecto. Desde el punto de vista de la temporalidad y la viabilidad. Es una parte fundamental del ya que permitirá visualizar el escenario en el que se desarrollará el proyecto, permitiendo hacer una alineación estratégica de todos los elementos que se deben completar para finalizar correctamente el proyecto.

Desde el punto de vista de la planificación temporal, el proyecto sigue la metodología ágil *Scrum*. Permitiendo definir cada uno de los objetivos que se desean alcanzar, los elementos que los componen y su respectiva prioridad.

Scrum, de manera muy resumida, trabaja con u product backlog, es una lista de prioridades en función del valor de cada tarea. Cuando comienza un sprint, se empieza a trabajar en las tareas que se encuentren en el sprint backlog, estas han sido extraídas del product backlog. En el caso de este proyecto se realiza una reunión de planificación, sprint planning, cada dos semanas aproximadamente.

Para el control y seguimiento se utiliza una herramienta externa, Zenhub, la cual permite la definición de las tareas, el seguimiento de cada una de ellas en función de la planificación póker, seguimiento de cada sprint, el versionado, etc.

Seguidamente se realizará un estudio de la viabilidad del proyecto, tanto a nivel económico como legal.

A.2. Usuarios Participantes

En la fase de análisis han participado diversos usuarios, entre los que se han repartido los principales «papeles».

- Dr. Álvar Arnaiz González, tutor del proyecto, ha sido partícipe de multiples papeles a lo largo de esta fase:
 - Cliente. Descripción de las funcionalidades deseadas de la aplicación y el comportamiento que debe de tener.
 - Técnico. Aportando conocimientos acerca de las técnicas de selección de instancias y su relación con la minería de datos. Junto con ello ha compartido sus conocimientos en el uso de librerías tales como Weka, Scikit-Learn, o el lenguaje de marcas LATEX. Así como el aporte de grandes cantidades de documentación en forma de papers o documentación web.
- Multitud de compañeros del grado han aportado sus experiencias a la hora de tratar con aplicaciones de este tipo, comentando sus principales dificultades que encuentran habitualmente y lo que esperarían encontrarse en una nueva aplicación. Lo que permite hacer un diseño de la interfaz más intuitivo en función de lo que el usuario espera encontrar sin perder funcionalidades.
- Analista. El alumno ha realizado el análisis (valga la redundancia) y descripción del problema planteado por el cliente y realización del diseño de la solución propuesta.

A.3. Planificación temporal

SCRUM

Scrum es un marco de trabajo que permite el trabajo colaborativo en equipos. Permite que los equipos que trabajan en proyectos con esta metodología se organicen por sí mismos, siendo ellos los que deciden cómo afrontar los problemas que van surgiendo.

Según [13], el modelo *Scrum* se basa en tres componentes principales: roles, procesos y artefactos. El *Scrum Master* es el puesto asumido por el director o gerente del proyecto, o en algunos casos el líder del equipo. Esta figura representa los valores y principios por los que se rige la metodología de *scrum*, manteniendo los valores y buenas prácticas, así como resolviendo

Figura A.1: Metodología scrum.

los impedimentos que vayan surgiendo a lo largo del desarrollo del proyecto. Habitualmente los equipos están compuestos por entre cinco y diez personas que trabajan en el proyecto a tiempo completo. Siendo este equipo independiente y flexible en cuanto a jerarquía interna, no siendo representado el papel del "jefe" dentro de este por la misma persona siempre. Esto genera que el papel cambie en función de las necesidades del propio proyecto, la configuración del equipo cambia únicamente entre iteraciones, o *sprints*, no dentro de los mismos.

Sprints

Los sprints son periodos breves de **tiempo fijo** en el que el equipo trabaja para completar una cantidad de trabajo pre-establecida. Si bien muchas guías asocian los sprints a la metodología ágil, asociando la metodología ágil y la metodología seguida en scrum como si fueran lo mismo, cuando no lo son. La metodología ágil constituye una serie de principios, y la metodología scrum es un marco de trabajo con la única finalidad de conseguir resultados.

A pesar de las similitudes los *sprints* poseen un objetivo subyacente, entregar con frecuencia *software* de trabajo.

Sprint meetings

Dentro de la metodología *scrum* existen diferentes reuniones que favorecen la agilidad del proyecto y que todo el mundo sepa lo que tiene que hacer en cada momento.

- Sprint planning meeting. Esta reunión puede tener una duración de hasta de un día completo de trabajo. En ella deben de estar presentes todas las partes del proyecto, i.e. el Scrum Master, el equipo de desarrollo, y el product owner. Poseen dos partes, en la primera de ellas se define el product backlog, requerimientos del proyecto y se definen los objetivos para el sprint que comienza, i.e. lo que se espera "construir" o completar en el sprint. En la segunda parte de la reunión se trabaja en el sprint backlog, las tareas que se van a seguir en el sprint para completar el objetivo de éste.
- Daily meeting. Debido a que los requerimientos del proyecto no se pueden variar durante la vida de un sprint, existen las reuniones diarias que son organizadas por el Scrum Master en las que se comenta el trabajo del día previo, lo que se espera de ese día y qué está retrasando o impidiendo a un individuo el proseguir con sus tareas, esta reunión no debe tener una duración de más de quince minutos y se debe realizar "de pie". No es una reunión para ver quién retrasa el proyecto sino para ayudar a quién lo necesite entre todos los miembros del equipo y permitir esa agilidad.
- Sprint review meeting. Reunión fijada al final de cada sprint en la cual se hace una puesta en conocimiento de lo que se ha realizado en ese sprint, siempre que se pueda se hará una demostración funcional en lugar de una presentación al product owner. Esta reunión tiene un carácter informal.

Artifacts

Uno de los componentes más importantes de cara a la metodología scrum son los artefactos, o artifacts por su nombre en inglés. Éstos incluyen el product backlog, el sprint backlog y los burn down charts.

■ **Product backlog.** Lista de trabajo ordenada por las prioridades para el equipo de desarrollo. Es generada a partir de las reuniones de planificación de los *sprints*, contiene los requisitos. Se encuentra actualizado y clasificado en función de la periodicidad asignada a las

tareas, pudiendo ser de corto o largo plazo. Aquellas tareas que se deban resolver a corto plazo deberán estar perfectaemnte descritas antes de asignarlas esta periodicidad, implienddo que se han diseñado las historias de usuario completas así como el equipo de desarrollo ha establecido las estimaciones correspondientes. Los elementos a largo plazo pueden ser abstractos u opacos, conviene que estén estimados en la medida de lo posible para poder tener en cuenta el tiempo que llevará desarrollarla.

Los propietarios del producto dictan la prioridad de los elementos de trabajo en el *product backlog*, mientras que el equipo de desarrollo dicta la velocidad a la que se trabaja en *backlog* [26].

La estimación es una parte muy importante ya que es lo que permitirá al equipo de desarrollo mantener el ánimo y el trabajo al ritmo deseado. La estimación es realizada en la *sprint planning meeting*, en la que se estima para cada tarea/producto del *product backlog*. No se busca tener un resultado exacto del tiempo que va a llevar al equipo completar esa tarea, sino es una previsión. Para realizar correctamente la estimación se debe tener en cuenta el tamaño y la categoría de la tarea, los puntos de historia que se le van a asignar, así como el número de horas y días que van a ser necesarias para completar la tarea.

• Sprint backlog. Lista de tareas extraídas del product backlog que se han acordado desarrollarse a lo largo de un sprint. Este backlog es seleccionado por el propio equipo de desarrollo, para ello seleccionan una tarea del product backlog y se divide en tareas de menor tamaño y abordables. Aquellas tareas de menor tamaño que el equipo no haya sido capaz de desarrollar previo a la finalización del sprint quedarán almacenadas para próximos sprints en el sprint backlog.

Actores, roles y responsabilidades

Dentro de un equipo que sigue la metodología *scrum* encontramos diferentes actores, como ya se ha comentado el equipo de desarrollo suele estar compuesto por entre cinco y diez personas, además del *Scrum Master* y el *Product Owner* [27].

■ **Product Owner.** Encargado de optimizar y maximizar el valor del producto, es la persona encargada de gestionar las prioridades del product backlog. Una de sus principales tareas es la de intermediario con los stakeholders, partes interesadas, del proyecto; junto con recoger

los requerimientos de los clientes. Es habitual que esta figura sea representante del negocio, con lo que aumenta su valor.

Para cada *sprint* debe de marcar el objetivo de éste de manera clara y acordada con el equipo de desarrollo, lo cual hará que el producto vaya incrementando constantemente su valor. Para que todo fluya como debe, esta figura tiene que tener el "poder" de tomar decisiones que afecten al producto.

- Scrum Master. Figura con dos responsabilidades, gestionar el proceso scrum y ayudar a eliminar impedimentos que puedan afectar a la entrega del producto.
 - 1. Gestionar el proceso *scrum*. Su función es asegurarse de que el proceso se lleva a cabo correctamente, facilitando la ejecución de éste y sus mecánicas. Consiguiendo que la metodología sea una fuente de generación de valor.
 - 2. Eliminar impedimentos. Eliminar los problemas que vayan surgiendo a lo largo de los *sprints* con el fin de mantener el ritmo de trabajo dentro de los equipos de desarrollo para poder entregar valor, manteniendo la integridad de la metodología.
- Equipo de desarrollo. Formado por entre cinco y diez personas encargados del desarrollo del producto, organizados de forma autónoma para conseguir entregar las tareas del product backlog asignadas al sprint correspondiente. Para que funcione correctamente la metodología todos los integrantes deben de conocer su rol dentro del equipo, internamente se pueden gestionar como el equipo considere, pero de cara "hacia fuera" son un equipo con una responsabilidad.

Planificación por sprints

La organización temporal del proyecto se ha organizado siguiendo los estándares de la metodología *scrum*, *i.e.* usando *sprints*.

Inicialmente la *sprint planning meeting* es realizada cada dos semanas, debido a una falta de costumbre de trabajo con esta metodología se combina junto con la *sprint review meeting*, de forma que en una sola reunión se comenta tanto lo que se ha hecho como lo que está por realizarse en el siguiente *sprint*.

La velocidad de desarrollo del proyecto es una incógnita, debido a la no existencia de referencias previas del equipo de desarrollo del proyecto, en proyectos de ésta índole. Por lo tanto, la duración de los *sprints* puede que se vea ajustada a lo largo de la vida del proyecto.

No se utilizan daily meetings puesto que a pesar de que se invierte una media de tres a cinco horas diarias en el desarrollo, no es considerada necesaria. Si bien en caso de problemas se acuerda una reunión para el día siguiente con el fin de mantener la agilidad y no retrasar el proyecto.

Sprint 0: Lights out and away we go!

El *sprint* con el que comienza el desarrollo de este proyecto no ha seguido la metodología *scrum*, puesto que se formuló desde un punto de vista de toma de contacto inicial con el trabajo de investigación y todo lo que ello conlleva.

Los objetivos definidos han sido:

1. Lectura de papers relacionados con el ámbito de la inteligencia artificial. En concreto SSL density peaks [29], Co-Training [11], Tri-Training [32] y Democratic Co-Learning [31].

El tiempo empleado en la lectura y asimilación de estos conceptos ha sido de catorce horas, es la primera vez que se leen *papers* o artículos científicos completos procurando asimilar todos los conceptos de éstos. Se ha desarrollado entre el veintisiete de octubre y el cinco de noviembre, de dos mil veintiuno.

Sprint 1: Chad

• Planning meeting

Figura A.2: Burndown Chart Sprint 1.

Objetivos del primer *sprint*:

- 1. Lectura del API de *scikit-learn*. Comprensión del funcionamiento de los transformadores y estimadores enfocado desde el punto de su programación.
- 2. Lectura de los papers On issues instance selection [24], Comparison of instances seletion algorithms I. algorithms survey [21] y Comparison of instance selection algorithms II. Results and comments [16].
- 3. Implementación de las técnicas de reducción del conjunto de entrenamiento, basados en k-NN.
- Marcas temporales El *sprint* se desarrolla entre el ocho y el diecinueve de noviembre de dos mil veintiuno. Han sido dedicadas al desarrollo del proyecto treinta horas.
- Burndown chart Durante este sprint el trabajo inicial comenzó ligeramente retrasado, motivos en el apartado sprint review meeting, por lo tanto podemos observar en la Figura A.2 como el trabajo completado dista del ideal o proyectado para este sprint.

En el *sprint backlog* habían sido incluidos todos los algoritmos a programar, es por ello que indica que se ha completado aproximadamente la mitad del trabajo.

■ Sprint review meeting El trabajo en este primer sprint ha salido adelante correctamente. Al ser el primer sprint ha habido un pequeño error de configuración del repositorio junto con la herramienta ZenHub, de ahí que en el burndown chart de esta semana, Figura A.2, aparezca como que la primera semana del sprint no ha habido trabajo completado.

La adaptación a la metodología ágil ha resultado un poco compleja.

Sprint 2: Holleyman

• Planning meeting

Objetivos del segundo sprint:

- 1. Finalizar implementación de los algoritmos basados en técnicas de reducción del conjunto de entrenamiento.
- 2. Añadir la documentación correspondiente a los algoritmos implementados.
- 3. Comprobar el rendimiento de los algoritmos implementados respecto a los resultados de una ejecución similar con el software Weka.

El *sprint* se desarrolla entre el veintidós de noviembre y el tres de diciembre de dos mil veintiuno. Han sido dedicadas al desarrollo del proyecto treinta y ocho horas.

■ Burndown chart

El trabajo realizado a lo largo de este *sprint* ya ha sido adecuado a la metodología *scrum*, obteniendo un *burndown chart*, Figura A.3, con más sentido que la que se había obtenido en el *Sprint* 1.

El equipo de desarrollo se sigue habituando poco a poco a la metodología de trabajo y en este *sprint* se ha trabajo por debajo del "ideal" para el proyecto.

• Sprint review meeting

A lo largo de este *sprint* se descubrió un problema en la forma de identificar los k-NN en el algoritmo *Condensed Nearest Neighbor*, *CNN* [17], retrasando el trabajo cuatro horas, entre identificación y re-programación. Este error se descubrió mientras se investigaba otro error, en este caso el algoritmo *Iterative Case Filtering*, *ICF* [12] terminaba en error buscando los k-NN de las últimas instancias.

Figura A.3: Burndown Chart Sprint 2.

La implementación de los algoritmos *Reduced Nearest Neighbor*, *RNN* [15] y *Modified Selective Subset*, *MSS* [10] ha sido relativamente asequible una vez se comprendía el algoritmo en cuestión así como su funcionamiento (entradas, procesado, salidas...).

Sprint 3: Manion

• Planning meeting

Objetivos del tercer *sprint*:

- 1. Comenzar la documentación del proyecto.
 - Comenzar la memoria por el marco teórico.
 - Comenzar los anexos por la planificación temporal.

Se va a realizar en LATEX.

- 2. Aprender lo básico de LATEX lo más rápido posible para poder trabajar con él.
- 3. Buscar la precisión de los algoritmos implementados con conjuntos etiquetados de $[1\,\%, 5\,\%, 10\,\%, 20\,\%, 40\,\%, 60\,\%, 80\,\%, 100\,\%]$ del conjunto total. En búsqueda de las asíntotas donde ya no mejora la clasificación.
- 4. Validación de los algoritmos de selección de instancias con Weka y KNN.

Figura A.4: Burndown Chart Sprint 3.

Marcas temporales

El *sprint* se desarrolla entre el seis y el diecisiete de diciembre de dos mil veintiuno. Han sido dedicadas al desarrollo del proyecto 45 horas.

■ Burndown chart

El trabajo realizado en este tercer *sprint* ha sido realizado a un ritmo constante y con una dedicación en número de horas un poco mayor a los anteriores, como se puede ver en el *Burndown report*, ver figura A.4, el número de *story points* de este *sprint* era de 39 y a pesar de que algunas tareas llevaron más tiempo del inicialmente planificado, otras resultaron ser totalmente lo contrario, mucho más rápidas de realizar.

• Sprint review meeting

Este sprint ha sido un poco más grande en cuanto a horas de trabajo invertidas ya que el tiempo del equipo de desarrollo así lo ha permitido. A su vez se han detectado bugs en la codificación de algoritmos como ICF (se arreglará en el siguiente sprint) el cual después de comparar sus resultados contra los expresados por Weka con 9 conjuntos de datos no considerados como de juguete, la codificación del proyecto obtiene soluciones $20\,\%$ inferiores; el resto de los algoritmos implementados están en el rango de $\pm 2\,\%$. A su vez también se han descubierto limitaciones de otros algoritmos como es el caso de ENN cuando tiene pocas muestras y un número elevado de clases diferentes.

Se ha proseguido con la redacción de la memoria del trabajo, finalizando la primera parte de conceptos teóricos y comenzando la explicación teórica de los algoritmos que

Sprint 4: The Seven

• Planning meeting

Objetivos del cuarto sprint

- 1. Revisar y corregir la codificación del algoritmo *Iterative Case Filtering*, *ICF*.
- 2. Formatear las métricas de rendimiento recogidas durante el *sprint* anterior.

Marcas temporales

El *sprint* se desarrolla entre el dieciocho y el veintitrés de diciembre de dos mil veintiuno. Han sido dedicadas al desarrollo del proyecto 21 horas. Este *sprint* posee una duración más corta con el fin de ajustar las reuniones a las festividades propias de la Navidad.

■ Burndown chart

En el *Burndown report* asociado a este *sprint*, ver figura A.5, se aprecia como el trabajo ha sido finalizado en unas marcas temporales muy por delante de lo «ideal». Esto se debe a que el equipo de desarrolló comenzó a realizar el trabajo el sábado 18 de diciembre, en lugar de esperar al lunes 20, bajo la presunción de que el trabajo asignado iba a ser mayor.

■ Sprint review meeting Ha pesar de la corta duración del sprint para poder organizar el siguiente sprint antes de las festividades navideñas, el trabajo realizado ha sido correcto e importante, debido a que para poder seguir trabajando en otros algoritmos de selección de instancias o de aprendizaje semi-supervisado, lo anterior debe de quedar correctamente hecho. Es por ello, que prácticamente se le ha dedicado un sprint entero a arreglar el algoritmo Iterative Case Filtering, ICF, ya que con él y a falta de implementar DROP3, ya tendríamos todos los algoritmos de selección de instancias correctamente implementados.

Figura A.5: Burndown Chart Sprint 4.

Sprint 5: Murph

• Planning meeting

Objetivos del quinto sprint:

- 1. Codificación de los algoritmos de aprendizaje semi-supervisado: Co-Training [11], Tri-Training [32], Democratic Co-Learning [31] Y del algoritmo de selección de instancias DROP3 [28].
- 2. Implementar los algoritmos anteriores como clases para poder ser utilizados con métodos fit y predict.
- 3. Escribir la documentación de la memoria referente a los anteriores algoritmos.
- 4. Escribir la planificación temporal relativa a los sprints 4 y 5.
- 5. Añadir leyenda a la figuras generadas con self-training en función de un % de datos etiquetados.

Se espera que sea un *sprint* muy productivo debido a las fechas en las que se realiza y la mayor disponibilidad del equipo de desarrollo.

Marcas temporales

Este *sprint* se desarrolla entre el veinticuatro de diciembre de dos mil veintiuno y el diez de enero de dos mil veintidós. Tiene una duración igual a las festividades navideñas.

Figura A.6: Burndown Chart Sprint 5.

■ Burndown chart

En este *sprint*, y como vemos en la figura A.6, referente al correspondiente *Burndown report*; se ha realizado una gran cantidad de trabajo, habiendo siendo completados 77 puntos de historia, una cantidad muy superior a anteriores *sprints*, esto es debido en gran parte a las fechas en las que nos encontramos, ya que el número de horas que se han podido invertir en el desarrollo del proyecto ha sido muy superior a lo que venían siendo habituales. En total han sido utilizadas cerca de 110 horas de trabajo, siendo repartidas en los 17 días que ha durado el *sprint* y con una media de horas de trabajo de 6.5 horas diarias.

• Sprint review meeting

Todo el trabajo que se ha realizado en este *sprint* podría haber sido realizado seguramente en tres cuartas partes del tiempo real invertido, pero debido al tiempo de lectura de los artículos de donde se extraían los algoritmos, así como su correcta comprensión, codificación y posterior resolución de problemas asociados a *bugs* que se van descubriendo «sobre la marcha», ha sido un *sprint* largo y en algunos momentos agotador.

A falta de realizar las correspondientes pruebas de validación de los algoritmos implementados, para comprobar que son correctas las implementaciones, ya se encontrarían finalizados todos los algoritmos de selección de instancias.

Sprint 6: Bert

• Planning meeting

Objetivos del sexto sprint:

- 1. Verificación de la correcta implementación del algoritmo de selección de instancias DROP3. Se realizará como se ha venido trabajando anteriormente, contra los resultados propuestos para la misma parametrización, por Weka.
- 2. Verificación de la correcta implementación de los algoritmos de aprendizaje semi-supervisado: Co-Training, Tri-Training y Democratic Co-Learning.
- 3. Comenzar a escribir las secciones de «Técnicas y herramientas» y «Trabajos relacionados».

Marcas temporales

Este es un *sprint* relativamente corto, puesto que es de verificación de que el trabajo realizado hasta el momento es correcto, antes de pasar a otro «bloque» de trabajo. Comienza el martes once de enero de dos mil veintidós, y finaliza el lunes diecisiete de enero de dos mil veintidós.

■ Burndown chart

Tal y como se aprecia en la Figura A.7 referente al sexto *sprint*, el ritmo de trabajo ha sido constante a lo largo de la primera semana, torciéndose al final del *sprint* debido a la complejidad sobrellevada de aprender la librería *Flask* y sus dependencias. Es por ello que dos *issues* se cerraron un día más tarde de la planificación. El número de horas aproximado que se han invertido han sido de 50h, permitido en gran medida con que todavía no hay clases del segundo cuatrimestre.

• Sprint review meeting

El trabajo realizado en este *sprint* ha ido de acuerdo a lo que se comentó en la anterior reunión. Si bien ha sido un *sprint* más enfocado a «cerrar» una parte de trabajo que se llevaba realizada para poder comenzar con el mejor pie posible la segunda etapa.

Un punto de inflexión realizado en este *sprint* ha sido la refactorización de gran parte del repositorio, dejándolo en un formato de paquetes.

Figura A.7: Burndown Chart Sprint 6.

Sprint 7: Felix The Cat

• Planning meeting

Objetivos del séptimo sprint:

- 1. Modificar el algoritmo ENN para poder utilizarlo con Semi-Supervisado según el método de borrado de instancias.
- 2. Preparar scripts para la experimentación y posterior visualización de hipótesis.
- 3. Modificar la memoria en función de los comentarios de Alvar.
- 4. Añadir a los trabajos relacionados UBUMLaaS. Aunque es parte del propio Trabajo de Fin de Grado, no deja de ser una herramienta de MLaaS.
- 5. Añadir Self Training a UBUMLaaS.

Marcas temporales

Este *sprint* se desarrolla entre el veinticinco de enero de dos mil veintidós y el dos de febrero de dos mil veintidós. Es un *sprint* muy rápido de preparación para poder comenzar con la parte de UBUMLaaS.

■ Burndown chart

Figura A.8: Burndown Chart Sprint 7.

El Burndown de este sprint representa un ritmo de trabajo «adelantado» a la velocidad óptima, esto se debe a que como en el sprint anterior no se cerraron todas las issues previa la finalización del mismo, pero sí fueron cerradas previo el inicio de este nuevo sprint, el gráfico queda por debajo siempre. El número de horas invertido ha rondado las 35h. Un sprint de menor tamaño.

• Sprint review meeting

Este *sprint* si bien es como el anterior muy corto, y se ajusta a la temporarización del proyecto, ha tenido una carga de trabajo un poco más alta de lo esperado, esto se debe a que la integración de nuevos algoritmos a UBUMLaaS parecía en un primer momento muy directo, pero se han requerido hacer modificaciones con las que no se contaba en un primer momento.

Sprint 8: Jason

• Planning meeting

Objetivos del octavo sprint:

- 1. Crear una nueva selección en «Nuevo Experimento» en UBUM-LaaS para los algoritmos de aprendizaje Semi-Supervisado.
- 2. Integrar los algoritmos implementados de Semi-Supervisado en la plataforma UBUMLaaS.

Figura A.9: Burndown Chart Sprint 8.

- 3. Comenzar a traducir parte de la interfaz como parte de un trabajo paralelo. (Puede que la versión final soporte varios idiomas, decisión de diseño aún por tomar.)
- 4. Crear los rankings con Python de las experimentaciones realizadas, principalmente de 3-NN sin borrado.
- 5. Hacer un *refactor* general al proyecto. Inicialmente tenía una estructura de carpetas, se desea una estructura de paquetes.
- 6. Hacer el proyecto accesible desde PIP¹.

Marcas temporales

Este *sprint* se desarrolla entre el tres de febrero de dos mil veintidós y el ocho de febrero de dos mil veintidós. Nos encontramos ante otro *sprint* ya con la nueva dinámica de trabajo, de duración aproximada a una semana.

■ Burndown chart

Tal y como se aprecia en la Figura A.9 se aprecia que el ritmo de trabajo en este *sprint* ha sido muy escalonado, el número de *issues* no ha sido muy elevado, pero la complejidad de estas sí que lo ha sido, es por ello que se planificó 90 puntos de historia. Seguidamente podemos

¹Sistema de gestión de paquetes utilizado para instalar y administrar paquetes de *software* escritos en Python.

apreciar como entre el cuatro y el siete de febrero, coincidiendo con el fin de semana, no ha habido trabajo finalizado, se debe a unas mini-vacaciones que se tomó el equipo de desarrollo.

■ Sprint review meeting Con el sprint finalizado se ha visto como lo que parecía una planificación para una o dos semanas, ha quedado resuelta dentro del propio sprint. El equipo de desarrollo comienza a familiarizarse con el backend de UBUMLaaS propiciando un desarrollo más eficaz de las tareas que se van encomiando.

Destacar que no se finalizan todas las tareas en tiempo, sino que se finaliza una en la noche del martes ocho, ya casi de madrugada, entrando técnicamente en el siguiente *sprint*.

Sprint 9: Lumberjack 20

• Planning meeting

Objetivos del noveno *sprint*:

- Continuar con la traducción del frontend en los «tiempos muertos», aún no se ha decidido si finalmente pasará a producción o no.
- 2. Crear un nuevo conjunto de gráficas y relanzar experimentaciones con SVC como referencia. El método de eliminación de instancias con etiqueta conocida queda descartado, únicamente se trabajará para la experimentación con la aproximación que no las elimina.
- 3. Crear los nuevos rankings basados en la precisión.
- 4. Comprobar la implementación de los algoritmos *Co-Training*, *Tri-Training* y *Democratic Co-Learning* contra los implementados por Jose Luis Garrido Labrador (Investigador del grupo ADMIRABLE).
- 5. Añadir a UBUMLaaS los filtros implementados en los anteriores *sprints*.

Marcas temporales

Este *sprint* se desarrolla entre el nueve de febrero de dos mil veintidós y el dieciséis de febrero de dos mil veintidós.

■ Burndown chart

Este *sprint* tiene una duración de una semana, tal y como se desea (aproximadamente) que sean a partir de febrero. A este *sprint* se le

Figura A.10: Burndown Chart Sprint 9.

asignó una gran carga en cuanto a puntos de historia se refiere con un total de 102, las horas invertidas por el equipo de desarrollo no han llegado a las 55, hay una desviación de los puntos de historia y las horas invertidas, se comentará más adelante.

Quedando el trabajo finalizado un par de días antes de la fecha de finalización del *sprint*, dando al equipo de desarrollo tiempo para planear futuras tareas y aproximaciones a problemas conocidos.

• Sprint review meeting

En este sprint se planificó «tirando a lo alto» en los puntos de historia, se debe a que se requería comprobar la implementación de los tres algoritmos de aprendizaje Semi-Supervisado, y en caso de que alguno (o todos) tuviera una implementación incorrecta, realizar los ajustes pertinentes para que fuera correcta. Debido a la experiencia del equipo de desarrollo un mes atrás con el filtro ICF, el cual tuvo que ser re-programado y revisado en más de una ocasión debido a su inconsistencia, se aventuró un futuro similar con éstos algoritmos ya que son más grandes y con una complejidad superior. La realidad en este caso superó las expectativas del equipo de desarrollo, cuando los tres algoritmos tuvieron una desviación menor al 1% en comparación con los de Jose Luis. (En futuros sprints se ha propuesto ser más críticos con la asignación de puntos de historia para no tener diferencias de este calibre).

Con todo y con ello, la implementación de los filtros en UBUMLaaS incurrió en múltiples modificaciones a la estructura base de la propia plataforma, pero con un resultado satisfactorio.

Los rankings creados no han convencido en estructura y formato, es por ello que en siguiente *sprint* tendrán que ser repetidos.

Sprint 10: Jerry

■ Planning meeting Objetivos del décimo sprint:

- 1. Rehacer las gráficas de rankings en la experimentación.
- 2. Comenzar con la parte de administración de UBUMLaaS.
 - a) Crear una nueva interfaz que de soporte a esta nueva funcionalidad que va a poseer la aplicación.
 - b) Integrar nuevos campos en el registro de usuarios, tales como su país de origen y el uso deseado que se le va a dar a aplicación.
 - c) Crear una interfaz de administración de usuarios (añadir usuarios, activarlos, hacerlos administradores o eliminarlos).
 - d) Crear una primera interfaz básica de dashboard analytics del sistema.

Marcas temporales

Este *sprint* se desarrolla entre el dieciséis de febrero de dos mil veintidós y el veintiuno de febrero de dos mil veintidós.

■ Burndown chart

Este *sprint* ha sido más ajustado el número de horas invertidas en el desarrollo de las tareas marcadas en comparación los puntos de historia. Se han marcado un total de 46 puntos de historia y se han invertido 35 horas de trabajo. Siguiendo un poco más la tónica de otros *sprints*. En los primeros días, tal y como se aprecia en la Figura A.11, sí que hubo *commits* pero no se cerraron tareas debido a que se trabajó en «paralelo» sobre varias *issues* a la vez, ya que toda la parte de crear la interfaz de administración y las páginas que la iban a comenzar a formar parte de la misma, se encuentran fuertemente inter-relacionadas.

• Sprint review meeting

El trabajo realizado durante este *sprint* ha sido más duro que el de *sprints* anteriores. Esto se debe a la poca experiencia del equipo de

Figura A.11: Burndown Chart Sprint 10.

desarrollo con aplicaciones que poseen un *frontend*, el uso de JavaScript, jQuery, AJAX,...es algo que hasta la fecha no se había utilizado en gran medida y ahora es con lo que más se está trabajando, entonces ha requerido de un esfuerzo extra.

La parte de administración de UBUMLaaS ha sido creada con una base más moderna, sencilla y clara. Siguiendo el esquema de colores de la Universidad de Burgos. Es por ello que ahora mismo parecen dos aplicaciones diferentes, (la parte de administración en comparación con la parte de funcionalidad de MLaaS propiamente dicha).

Durante la realización del *sprint* fueron surgiendo pequeños *bugs* en la interfaz gráfica que se fueron solventando, todos ellos originados por descuidos (debido a la falta de experiencia) del propio equipo de desarrollo con el uso de las nuevas librarías.

Sprint 11: Nutts

• Planning meeting

Objetivos del undécimo *sprint*:

1. Con [23] se desea comprobar con 16 de los 18 conjuntos de datos utilizados en sus experimentos los resultados esperados para comprobar si merece la pena continuar la línea de investigación con el enfoque inicial.

- 2. Montar un servidor con Jenkins, se desea incorporar a UBUMLaaS y a la librería IS_SSL dentro de CI/CD ²
- 3. Añadir al dashboard analytics gráficos de carta con el número de experimentos de cada tipo que se han ejecutado. Así como los tiempos de uso de cada algoritmo.
- 4. Crear una pantalla de carga para el *dashboard* de forma que la recuperación de datos sea asíncrona.
- 5. Permitir al usuario añadir más datos personales dentro de su perfil (Institución, RRSS, ...)
- 6. Realizar una nueva página de usuarios con la nueva distribución.
- 7. Permitir al usuario ver sus propias estadísticas de uso.
- 8. Pantalla tipo dashboard con el estado en directo del sistema.

Marcas temporales

Este *sprint* se desarrolla entre el veintidós de febrero de dos mil veintidós y el uno de marzo de dos mil veintidós.

■ Burndown chart

Con una duración de algo más de una semana, se han planificado un total de 58 puntos de historia para estos días. Las horas de trabajo han sido cercanas a las 45. La sensación del equipo de desarrollo después de haber finalizado el *sprint* es de un trabajo a ritmo constante finalizando tarea tras tarea, esta sensación se puede comprobar como en efecto ha sido así en la Figura A.12.

• Sprint review meeting

En este *sprint* no se han podido terminar todas las tareas, si bien en el servidor local en el que corre UBUMLaaS se ha podido desplegar Jenkins, el *pipeline* para que funcione correctamente no se ha podido terminar. Igual se buscan otras alternativas que además den soporte a elementos como las *badges* de GitHub y visualización de si pasan o no los tests en los propios *commits*.

Las principales pantallas de administración van quedando mejor con cada *sprint*, más retoques se las van haciendo y el equipo de desarrollo

²Método de distribución de aplicaciones a los clientes con una cierta frecuencia mediante el uso de la automatización en las etapas del desarrollo de aplicaciones. Se trata de una solución para los problemas que se pueden generar en la integración del código nuevo en producción.

Figura A.12: Burndown Chart Sprint 11.

poco a poco comienza a sentirse más cómodo trabajando con lenguajes de marcas como es HTML, o de programación como JavaScript.

El número de horas invertidas en las que no se está programando como tal, sino que se requieren de aprendizaje previo a poder escribir código y hacer la tarea X que toque, sigue siendo alto en esta parte del proyecto.

Sprint 12: DVB

■ Planning meeting

Objetivos del duodécimo *sprint*:

- 1. Se ha decidido dejar «en pausa» la traducción de UBUMLaaS a idiomas como el castellano o el francés. No se descarta retomarlo en un futuro o que sean líneas de trabajo futuro.
- 2. Con la parte de administración ya más avanzada y con una cohesión mayor, se ha tomado la decisión de dar un «lavado de cara» a toda la aplicación, esto implica rehacer **todas** las páginas del *frontend* con el fin de que se adapten a la nueva guía de estilo de la aplicación.
- 3. Realizar pequeños ajustes a ejes de gráficos.

Figura A.13: Burndown Chart Sprint 12.

- 4. Decidir e implementar una forma de toma de datos en tiempo real del sistema anfitrión para en posteriores *sprints* visualizar esa información.
- 5. Implementación del algoritmo de aprendizaje Semi-Supervisado basado en picos de densidad, ver [30].

Marcas temporales

Este *sprint* se desarrolla entre el uno de marzo de dos mil veintidós y el ocho de marzo de dos mil veintidós.

■ Burndown chart

El trabajo realizado en este *sprint* tal y como en la Figura A.13 se aprecia, ha sido superior a los anteriores, con un total de 83 puntos de historia y cerca de 45 horas invertidas. En esta ocasión el trabajo ha vuelto ha ser planificado «por lo alto» debido a la suposición de complejidad de implementación del algoritmo de aprendizaje Semi-Supervisado.

■ Sprint review meeting En este sprint el equipo de desarrollo ha tenido la sensación que no «llegaba» a todo lo planificado, las reuniones llegan a un punto en el cuál se comenta trabajo, queda apuntado, y se intenta meter todo en tiempo y forma. Generando un cierto agobio en algunas situaciones que han impedido continuar con el trabajo al ritmo deseado.

En líneas generales se puede afirmar que el *frontend* ha sido rehecho entero, se han reutilizado formatos o formularios existentes por facilidad de uso a todos aquellos usuarios que ya la conocieran, pero a nivel de código prácticamente es nueva. Con un estilo mucho más moderno, fino y elegante.

La integración de CI/CD finalmente ha quedado hecha con elementos cloud, entre ellos se encuentran Travis-CI, Codebeat, SonarCloud y Codacy. Debido a que se ha rehecho toda la interfaz web de la aplicación, los tests existentes no pasan, es por ello que se tendrán que rehacer poco a poco, aunque no es uno de los elementos de mayor prioridad por el momento.

Sprint 13: Kutschbach

■ Planning meeting

Objetivos del decimotercero *sprint*:

- 1. Implementación del algoritmo de aprendizaje Semi-Supervisado basado en picos de densidad con filtrado, ver [23].
- 2. Mejora inicial de la calidad del código.
- 3. Panel dashboard de visualización de estado del sistema en tiempo real.
- 4. Dar soporte a que el usuario pueda cambiar su foto de perfil.
- 5. Realizar algunas pruebas de estrés para detectar puntos de rotura de la interfaz.
- 6. Comenzar a escribir los Requisitos.
- 7. Comenzar a escribir dentro del Diseño, el diagrama de casos de uso.
- 8. Añadir a los aspectos relevantes los métodos que se están haciendo a sí como los cambios en la interfaz.
- 9. Revisar comentarios hechos por Alvar en la memoria.

Marcas temporales

Este *sprint* se desarrolla entre el ocho de marzo de dos mil veintidós y el quince de marzo de dos mil veintidós.

■ Burndown chart

Figura A.14: Burndown Chart Sprint 13.

Tal y como se aprecia en la Figura A.14, en este *sprint* el ritmo de trabajo ha sido muy constante, algunas tareas fueron asignadas con puntos de historia más bajos de lo que deberían de haber sido y así quedan reflejados en los días diez y once. El total de puntos de historia ha sido de 48 con un total de 30 horas invertidas.

■ Sprint review meeting

El trabajo realizado en este *sprint* ha sido satisfactorio a pesar de que no se han podido terminar todas las tareas abiertas a tiempo, esto ha sido debido a un pequeño bajón en la motivación del equipo de desarrollo junto con otras actividades de la vida universitaria.

En lo referido al provecto, han surgido múltiples reconsideraciones del

En lo referido al proyecto, han surgido múltiples reconsideraciones del diseño de la interfaz según se iban recuperando datos y diseñando, por lo que el proceso de trabajo ha tenido un componente creativo en muchas ocasiones, no siendo el principal fuerte del equipo de desarrollo.

Sprint 14: T.U.P.

• Planning meeting

Objetivos del decimocuarto sprint:

- 1. Ultimar detalles de los casos de uso.
- 2. Hacer diagramas de secuencia de «Nuevo Experimento», «Consultar Analíticas de Uso» y «Monitorización en tiempo real».

Figura A.15: Burndown Chart Sprint 14.

- 3. Realizar la experimentación con picos de densidad y ruido.
- 4. Implementación de los algoritmos LSSm y LSBo, ver [22].

Marcas temporales

Este *sprint* se desarrolla entre el quince de marzo de dos mil veintidós y el veintidós de marzo de dos mil veintidós.

■ Burndown chart

En este *sprint* se han invertido cerca de 38h, el equipo de desarrollo cada vez se encuentra más cómodo trabajando en las diferentes tareas que se asignan, y aunque el número de puntos de historia es relativamente elevado, 60, esto es debido al histórico de dificultad de programar determinados algoritmos.

• Sprint review meeting

Junto con lo expuesto anteriormente, se ha comprobado en este *sprint* la implementación de los algoritmos basados en picos de densidad, con la corazonada de que no habría algún fallo en su implementación. Para sorpresa del equipo de desarrollo no han sido necesarios cambios a mayores de un par de «fallos de dedo» a la hora de programarlos, lo cual ha permitido una mayor agilidad a la hora de trabajar y reducir el número de horas invertidas.

Figura A.16: Burndown Chart Sprint 15.

Sprint 15: Robbie

• **Planning meeting** Objetivos del decimoquinto sprint:

- 1. Toma de decisión del formato del diagrama de secuencia «Nuevo Experimento».
- 2. Introducir en Trabajos Relacionados, una disyunción entre UBUMLaaS y los el aprendizaje semi-supervisado seguro.
- 3. Comenzar con la primera etapa de experimentación «seria» que se va a realizar.
- 4. Segundo

Marcas temporales

Este *sprint* se desarrolla entre el veintidós de marzo de dos mil veintidós y el veintinueve de marzo de dos mil veintidós.

■ Burndown chart

Lo primero a destacar de este *sprint* y tal cual lo refleja la Figura A.16, correspondiente al *Burndown report*; no se han terminado todas las tareas a tiempo. Esto ha sido debido a que faltaba por cerrar un *pull request* el cual estaba pasando una serie de tests.

El número total de puntos de historia asignados al *sprint* ha sido de 45, y se han invertido aproximadamente 35 horas, en esta ocasión el trabajo ha ido acorde a los puntos de historia asignados.

• Sprint review meeting

Con la experimentación lanzada y pudiendo haberse hecho entera, únicamente un sexto de lo que se espera que sea al final, los resultados no parecen ser muy prometedores, pero aún es pronto para saber lo que finalmente va a ser.

Los diagramas de secuencia han llevado mucho más tiempo del inicialmente esperado, esto se debe a la poca experiencia realizando este tipo de actividades y que no son el principal atractivo, por lo que el trabajo en esas partes se ha visto ralentizado.

En general todas las tareas relacionadas con la memoria están requiriendo más tiempo del que *a priori* parece que va a ser necesario. Pero para conseguir un producto de calidad, es lo que se debe hacer.

Sprint 16: Matt 16

• Planning meeting

Objetivos del dieciseisavo sprint:

- 1. Mejora de la calidad del código de los algoritmos de la biblioteca IS-SSL.
- 2. Remates de los diagramas de secuencia.
- 3. Añadir *Self-Training* basado en picos de densidad a los Conceptos Teóricos.
- 4. Escribir el Manual del Programador.
- 5. Crear ficheros de configuración de entorno para Conda y Pyenv.

Marcas temporales

Este *sprint* se desarrolla entre el veintinueve de marzo de dos mil veintidós y el ocho de abril de dos mil veintidós.

■ Burndown chart

En este *sprint* se ha trabajado principalmente en la memoria y en retoques de código, es por ello que se ha dado una cifra superior de puntos de historia de la media, y con lo visto en el *sprint* anterior, estas tareas están comenzando a llevar más tiempo de que inicialmente se piensa. Se han invertido aproximadamente 37 horas. Los tiempos de trabajo empiezan a ser correctos de forma reiterada con lo planificado.

Figura A.17: Burndown Chart Sprint 16.

• Sprint review meeting

Con la experimentación a tres sextos realizada, todavía no se ha encontrado un nexo común que nos permita crear hipótesis, por lo que se aprovecharán las vacaciones de Semana Santa para dejar más experimentos en ejecución y rehacer las *scripts* de análisis de resultados.

UBUMLaaS parece que está correcto en todas sus funcionalidades, por lo que ya se podría afirmar que la parte «grande» de modificación está terminada.

Sprint 17: Dae Han

• Planning meeting

Objetivos del decimoséptimo sprint:

- 1. Modificar las tablas de versiones con una descripción.
- 2. Realizar una encuesta para utilizar agentes externos como beta testers para UBUMLaaS.
- 3. Cambiar las *Long Table* de los casos de uso por tablas normales de L^AT_EX.
- 4. Escribir el anexo de la documentación técnica del programador.
- 5. Realizar los diagramas de relación.
- 6. Modificar los algoritmos de visualización de los resultados de la experimentación.

Marcas temporales

Este *sprint* se desarrolla entre el ocho de abril de dos mil veinte y el ocho de abril de dos mil veintidós. Englobando las vacaciones de Semana Santa.

- Burndown chart
- lacksquare Sprint review meeting

33

Sprint n: Name

- Planning meeting Objetivos del n sprint:
 - 1. Primero
 - 2. Segundo
- Marcas temporales
- Burndown chart
- Sprint review meeting

A.4. Estudio de viabilidad

En esta sección se va a desarrollar el estudio de la viabilidad del proyecto, permitiendo tener una visión global de los beneficios en contraposición al coste que supone el desarrollo del proyecto.

El desarrollo de cualquier producto *software* conlleva una serie de riesgos, entre los que destacan la experiencia del equipo de desarrollo, el tamaño del proyecto, el tiempo del que se dispone para conseguirlo,... Influyendo todos ellos en el resultado final.

Viabilidad económica

Lo primero de todo que se va a calcular es la viabilidad económica del proyecto, reportando y analizando los costes/beneficios que habría supuesto el desarrollo del proyecto en el sector empresarial, en España³.

Costes

La realización de un proyecto de esta envergadura lleva asociados una serie de costes fijos y variables, a continuación se desglosan agrupados en hardware, software, personal, otros.

Costes hardware

Para el desarrollo del proyecto es necesario más de un equipo hardware, lo primero de todo es un equipo de tipo portátil. Se utilizará un MacBook Pro, con un procesador Inter Core i7 de 4 núcleos a 2.3 GHz, con 16 GB de memoria RAM, atendiendo a un precio de mercado de 2249 €, se tiene en cuenta que la vida útil del equipo se encuentra en torno a los seis años, por lo que para los cálculos se usa la vida media del inmovilizado, es decir, 3 años.

A su vez se necesita un servidor para desplegar la aplicación y trabajar sobre esta, ya que el despliegue local no se considera una forma de trabajo óptima. Es por ello que se hace uso de un equipo con un AMD FX(tm)-4130 Quad-Core a 4.5 GHz, con 64 GB de memoria RAM. El coste aproximado del equipo es de 1500 €. La vida útil estimada es de seis ocho años, se utilizará igual que con el equipo portatil, su vida media de inmovilizado, 4 años.

³Se hace referencia al lugar de desarrollo puesto que se van a hacer referencias económicas en la moneda del país, así como uso de legislación vigente, la cuál varía en función del país en el que se encuentre asentada la empresa desarrolladora.

La amortización para cada equipo es diferente, pero el tiempo de uso es el mismo, de noviembre de dos mil veintiuno a junio de dos mil veintidós, ambos incluidos, luego en total ocho meses. Se detallan todos los costes hardware en la Tabla A.1.

Concepto	Coste	Coste Amortizado
Macbook Pro Servidor	2.249 € 1.500 €	$499,78 \in 250 \in$
Total	3.049 €	749,78 €

Tabla A.1: Costes de hardware.

Costes software

Para el desarrollo del proyecto y uso del *software* necesario, es necesaria la adquisición de una serie de licencias, todas ellas se encuentran detalladas con su amortización en la Tabla A.2. Todas las licencias tienen un periodo de validez de un año.

Concepto	Coste	Coste Amortizado
Codacy	170,76 €	113,84 €
FileZilla	0 €	0 €
GitKraken	59,4 €	36,27 €
Codacy	170,76 €	113,84 €
Linux Mint 20.3	0 €	0 €
MacOs Monterey	0 €	0 €
PyCharm	240,79 €	160,53 €
Selenium	0 €	0 €
SonarCloud	120 €	80 €
$T_EXMaker$	0 €	0 €
Travis-CI	719,86 €	479,81 €
Visual Paradigm	93,89 €	62,59 €
Visual Studio Code	0 €	0 €
Total	1.399,70 €	933,13 €

Tabla A.2: Costes de software.

Coste de personal El desarrollo del proyecto ha sido llevado a cabo por un desarrollador y el tutor del proyecto.

- El salario del desarrollador se calcula según [6], siendo el salario medio anal del 20.123 €brutos al año.
- El salario del tutor se calcula según [5], siendo el salario medio anual de 22.784 €brutos al año. Con una carga de trabajo de dos horas semanales.

La duración total del proyecto es de 31 semanas, por lo tanto, el tutor trabajará un total de 62 horas. Frente a las XXX del desarrollador.

El IRPF es del XX % y la retribución a la Seguridad Social, calculada tal cual se plantea en [14] por el Ministerio de Empleo y Seguridad Social, se contribuye con un XX % en total. Estando dividido en:

- XX % de contingencias comunes.
- XX % por desempleo de tipo general.
- XX % destinado al Fondo de Garantía Salarial.
- XX % de formación profesional.

Concepto	Desarrollador	Tutor
Salario total neto	XX €	XX €
Retención IRPF	XX €	XX €
Seguridad Social	XX €	XX €
Total salario bruto	XX €	XX €

Tabla A.3: Costes de personal.

En la Tabla A.3 se desglosan punto por punto los costes de personal, resultando en:

$$XX \in \text{/desarrollador} + XX \in \text{/tutor} = XX \in$$

Siendo el coste total en personal de XX \in .

Otros costes

Costes no agrupables en los anteriores apartados pero a tener en cuenta, Tabla A.4.

Concepto	Coste
Dominio despliegue	32 €
Logos	45 €
Memoria impresa	250 €
Alquiler oficina	1600 €
Internet	136 €
Electricidad	140 €
Agua	51 €
Calefacción	230 €
Total	2484 €

Tabla A.4: Otros costes.

Total de costes

En la Tabla A.5 se puede ver un resumen de todos los costes comentados. Dejando el coste base total del proyecto en $XX \in$.

Categoría	Coste
Hardware	3.049 €
Software	1.399,70 €
Personal	XX €
Otros	2484 €
Total	6.932,7+XX €

Tabla A.5: Costes totales.

Beneficios El proyecto está compuesto de dos partes, las cuáles se pueden comercializar de forma independiente.

- IS-SSL. Las bibliotecas de algoritmos son distribuidas de forma pública, gratuita y sin publicidad, con el fin de aportar un «granito de arena» a la investigación en aprendizaje semi-supervisado y selección de instancias.
- **UBUMLaaS.** En el diseño existente no está planteada su monetización. Si se quisiera obtener un rédito económico de este MLaaS, se podría fácilmente crear niveles de usuarios para acceso, número de

experimentos máximos a lanzar. También se podría plantear como servicio de suscripción. En la Tabla A.6 se plantean algunas posibilidades de comercialización con sus posibles respectivos costes para los usuarios, todas las licencias son anuales, en caso de un usuario quedarse sin tiempo podría comprar más horas de ejecución.

Tipo	Experimentos	Precio	Tiempo (h)	EUR/h
Trial	5	0 €	3	X
Estudiante	25	10 €	20	X
Investigador	120	40 €	250	0.4 €/h
Equipo	300	150 €	1000	0.4 €/h
Empresa	Ilimitados	2000 €	5000	0.25 €/h
Otros	Contactar con so	porte para	obtener presupuesto	

Tabla A.6: Opciones para obtener beneficio con UBUMLaaS.

Teniendo en cuenta los anteriores valores, y que la aplicación no tiene «fronteras» ya que el inglés es el idioma oficial de la investigación y la ciencia, se pueden alcanzar usuarios de todo el mundo. En la Tabla A.7 se presenta un ejemplo real y viable de alcanzar la cuál permitiría recuperar la inversión del proyecto en el primer año.

Tipo	Número de cuentas	Beneficios
Trial	Ilimitadas	0 €
Estudiante	4	40 €
Investigador	15	600 €
Equipo	40	6.000 €
Empresa	15	30.000 €
Otros	No computado	lo
Total		36.640 €

Tabla A.7: Simulación para recuperar la inversión con UBUMLaaS.

Debido a las funcionalidades ofrecidas y al precio competitivo de la plataforma, no sería difícil encontrar organizaciones que incorporen UBUMLaaS en su repertorio de herramientas, maximizando beneficios.

39

Conclusiones

Analizando los beneficios reportados en contraposción a los costes del desarrollo del proyecto, queda más que demostrada la viabilidad de desarrollo del proyecto. Se tiene en cuenta además que el proyecto una vez desarrollado no tiene necesidad de ser mantenido más allá de añadir nuevos algoritmos. Teniendo como costes fijos el mantenimiento de el(los) servidor(es) en donde esté desplegado.

Viabilidad legal

Apéndice B

Especificación de Requisitos

B.1. Introducción

Este anexo recoge las necesidades funcionales que deberán ser soportadas por el sistema que va a ser desarrollado. Con el fin de obtener una buena documentación se deben identificar y describir los requisitos que debe el sistema satisfacer, pero sin entrar en cómo los va a resolver.

A día de hoy, no existe una autoridad que indique cómo se deben de realizar las especificaciones de requisitos software, SRS. La comunidad se encuentra dividida entre «la vieja escuela» siguiendo guías de buenas prácticas (IEEE 830-1998 [18] ó 12207-2-2020 [19]), en contraposición con el Agile Manifiesto, donde no se hace una especificación formal de toda la aplicación sino que cada 2-4 semanas se revisa y «rehace» en función de las necesidades del cliente.

Se va a realizar una combinación de ambos, por un lado se trabaja a lo largo del proyecto con una planificación ágil, y por otro se va a tener como referencia una especificación de requisitos que va a seguir la guía de buenas prácticas IEEE 830-1998. Ésta última recoge los siguientes puntos como referencias a una buena especificación de requisitos software [20].

- Correcto. Será correcto si, y sólo si, cada requisito declarado se encuentra en el *software* entregado.
- Inequívoco. Será inequívoco si, y solo si, cada requisitos declarado tiene sólo una interpretación. Cada característica de la última versión del producto se deberá describir con un único término.

- Completo. Será completo si, y sólo si, incluye:
 - Los requisitos están relacionados a la funcionalidad, el desarrollo, las restricciones del diseño, los atributos y las interfaces externas. En particular debe reconocerse cualquier requisito externo impuesta por una especificación del sistema y debe tratarse.
 - 2. La definición de las respuestas del *software* a todos los posibles datos de la entrada del sistema y a toda clase de situaciones.
 - 3. Tener todas las etiquetas llenas y referencias a todas las figuras, tablas, diagramas en el SRS y definición de todas las condiciones y unidades de medida.
- Consistente. Si un SRS «choca» con algún documento de nivel superior (*i.e.* una especificación de requisitos de sistema), entonces no será consistente.
- Comprobable. Será comprobable si, y sólo si, cada requisito declarado es comprobable. A su vez un requisito será comprobable si, y sólo si, allí existe un proceso rentable finito con que una persona o la máquina puede verificar que el producto del *software* reúne el requisito. Cualquier requisito ambiguo no es comprobable.
- Modificable. Será modificable si, y sólo si, su estructura y estilo son tales que puede hacerse cualquier cambio a los requisitos fácilmente, completamente y de forma consistente mientras conserva la estructura y estilo.
- Identificable. Será identificable si el origen de cada uno de los requisitos está claro y facilita de igual manera las referencias de cada requisito de desarrollo futuro o documentación del mismo.

B.2. Objetivos generales

Los objetivos del proyecto se pueden separar en dos ramas.

1. Realización de un estudio de los métodos de selección de instancias más relevantes en la literatura y su aportación en problemas de aprendizaje Semi-Supervisado. Como producto final se desean tener dos bibliotecas con los principales algoritmos de selección de instancias y una de los principales algoritmos de aprendizaje Semi-Supervisado.

- 2. Integración de las librerías anteriormente expuestas en la plataforma de MLaaS de la Universidad de Burgos (UBUMLaaS).
- 3. Rediseño completo de UBUMLaaS, modernización de la interfaz gráfica, de forma que sea más intuitivo su uso.
- 4. Nuevas funcionalidades para el usuario.
- 5. Administración integral del sistema a cargo del nuevo rol de administrador.

En la biblioteca referida a los algoritmos de filtrado más comunes se implementarán algoritmos clásicos de la literatura como son CNN, RNN, ICF, ... Mientras que la biblioteca de algoritmos clásicos de Semi Supervisado contendrá *Co-Training*, *Tri-Training*,... Estando estructuradas en forma de clases accesibles mediante importación clásica de paquetes. Deben de ser fácilmente escalables, posterior a la finalización del proyecto deben poder ampliarse sin añadir complejidad.

Las interfaces a diseñar se requieren que sean intuitivas, fáciles de entender y utilizar. Deberán de ser transparentes al usuario, impidiendo que este conozca la lógica de diseño de la aplicación, así como los posibles fallos internos que se puedan producir por acciones del sistema, del usuario, o de terceros.

B.3. Usuarios del software

Cualquier persona podrá hacer uso de la aplicación UBUMLaaS, siendo únicamente necesarios una serie de datos básicos para su registro dentro de ella.

Dentro de la aplicación se encuentra el usuario base y una generalización del mismo en forma de administrador.

- Usuario. El usuario será el modelo base, en la forma de una persona la cual tendrá las capacidades de: crear experimentos y todas las funcionalidades asociadas con los mismos. Así como editar sus datos personales, añadir nuevos, quitar,... Y conocer sus estadísticas de uso de la última semana.
- Administrador. Actor generalizado de usuario. Tiene todas las funcionalidades propias del usuario, pero además posee acceso a toda la

parte de administración de la aplicación. En esta nueva parte posee acceso a la monitorización del sistema en tiempo real, a las estadísticas del mismo en cuanto a uso respecta, administración de todos los usuarios, etc.

Un usuario es creado por una persona ajena que quiere registrarse en la aplicación, o por un administrador. Pero un administrador sólo puede ser «creado» (elevación de usuario a administrador) por otro administrador, y lo mismo para el caso contrario, pasar de administrador a usuario.

B.4. Factores de riesgo

En esta sección se va a realizar un análisis de las 'principales dificultades que se pueden encontrar a lo largo del desarrollo del proyecto *software*. Mediante una identificación preventiva se podrá poner remedio a éstas de una manera más eficiente e impedir «que vayan a más».

Se identifican los siguientes factores de riesgo:

- 1. **Desconocimiento teórico.** Se posee una cantidad muy limitada de conocimiento en la materia en la que el proyecto transcurre. El proyecto tiene un enfoque fuertemente relacionado con la minería de datos, un área hasta ahora inexplorada. El proyecto ya en su base más pura va a suponer un reto en el día a día.
- 2. **Documentación a utilizar.** Hasta ahora nunca se ha tratado con papers o artículos científicos, mucho menos su lectura y comprensión, análisis y posterior implementación de los algoritmos propuestos. Puede suponer retrasos sin previo aviso un paper con una alta complejidad, bien por la condensación de información, bien por la encapsulación de información, o simplemente por los conocimientos que se requieren para entender el documento.
- 3. Experiencia modificando un proyecto software. La experiencia personal dictamina que la modificación de proyectos que han sido iniciados por terceros (como se trabaja en la industria) conlleva una etapa de adaptación la cual no suele ser linear, sino exponencial, en función de la complejidad de la aplicación que se desea asimilar.
- 4. Mínima experiencia con algunos lenguajes/bibliotecas. El proyecto requiere del uso del lenguajes de programación como JavaScript,

- o lenguajes de marcas como son HTML, CSS, LATEX... o librerías como Flask o Vue. Con las que no se tiene prácticamente experiencia real de uso. Supondrá un esfuerzo extra e impedirá que determinadas tareas sean tan cortas como deberían serlo.
- 5. Existencia del usuario final. Se desconoce el usuario final de la aplicación, por lo que no se podrán realizar talleres, esto motivará a que el proyecto se creará como se cree que el usuario lo esperaría, pero sin su aprobación.
- 6. Motivación del equipo de desarrollo. En un proyecto nuevo y de este tipo, la experiencia personal es que antes o después habrá una pérdida de motivación para mantener un ritmo de trabajo óptimo.
- 7. Compaginación con los estudios académicos. (Factor Tiempo). El proyecto se desarrolla paralelamente al último curso de los estudios universitarios, debiendo ser correctamente compaginado para que «nada pise a nada» y no produzca retrasos. La escasez de tiempo puede suponer un problema en caso de que en los primeros sprints de trabajo no se alcance un ritmo de desarrollo adecuado, la fecha límite es conocida desde el inicio del proyecto y se debe de tener en cuenta.
- 8. Corrupción del alcance. En caso de que los objetivos del proyecto no estén claramente definidos. Una correcta hoja de ruta permitirá a todos los involucrados a conocer la parametrización deseada. Estando muy relacionado con la motivación (no «ver el final» del proyecto nunca) y por consecuencia con el ritmo de trabajo.
- 9. Coste de la infraestructura. Se debe tener en cuenta que se va a desarrollar una aplicación web, pero por su naturaleza necesitará un servidor (distribuido o no) para su ejecución. A baja escala puede no ser un riesgo, pero se debe vigilar en caso de despliegue en las principales cloud.
- 10. **Falta de claridad.** La comunicación entre todas las partes implicadas debe de ser lo más fluida y natural posible, permitiendo minimizar los retrasos por tener que rehacer algo que se había especificado de una forma y no se había entendido correctamente (Inequívoco).

B.5. Catálogo de requisitos

En esta sección se van a definir de forma clara, completa, precisa y verificable todas las funcionalidades y restricciones del sistema.

A pesar de que el proyecto tiene dos «enfoques», la parte de UBUMLaaS y la parte de bibliotecas, los requisitos funcionales y no funcionales se van a desglosar juntos, siguiendo el orden en el que aparecen en este texto.

Requisitos funcionales

- RF-1 Uso de algoritmos de aprendizaje automático. La aplicación debe de ser capaz de entrenar un modelo entrenado con un algoritmo elegido por el usuario y posteriormente utilizar dicho modelo para predecir sobre un conjunto de datos.
 - RF-1.1 Entrenar el modelo. El usuario debe de poder entrenar un modelo nuevo en cada experimento.
 - RF-1.1.1 Elección del algoritmo. El usuario debe de ser capaz de elegir el algoritmo que considere oportuno de entre todos los posibles.
 - RF-1.1.2 Parametrización del algoritmo. El usuario debe poder parametrizar el algoritmo cómo considere oportuno para su problema.
 - RF-1.1.3 Conjuntos de datos especiales. El usuario en caso de realizar experimentos de Semi-Supervisado tendrá que utilizar conjuntos de datos preparados para ello.
 - RF-1.2 Descarga del modelo. El usuario debe de ser capaz de descargar el modelo para poder usarlo en otros sistemas.
 - RF-1.3 Reutilización del modelo. El usuario debe de ser capaz de crear un modelo utilizando una parametrización base de otro modelo existente en el sistema.
 - RF-1.4 Predicción de nuevos prototipos. El usuario debe de ser capaz de utilizar un modelo ya entrenado para predecir nuevos conjuntos de datos que posean la misma relación de atributos.
 - RF-1.5 Estadísticas del entrenamiento. El usuario debe de ser capaz de visualizar las estadísticas del experimento ejecutado, independientemente de si el entrenamiento ha sido mediante validación cruzada o con partición mediante porcentajes para entrenamiento y pruebas.
 - RF-1.6 Consulta de experimentos. El usuario debe de poder consultar aquellos experimentos que ha lanzado.
- RF-2 Uso de algoritmos de selección de instancias. El usuario deberá poder elegir si usar o no, para cualquier experimento independientemente de su naturaleza, los algoritmos de selección de instancias codificados.

• RF-2.1 Parametrización del algoritmo. El usuario debe poder parametrizar el algoritmo cómo considere oportuno para su problema.

■ RF-3 Administración de usuarios.

- RF-3.1 Dar de alta nuevos usuarios. El administrador debe poder crear un nuevo usuario con la información básica.
 - RF-3.1.1 Activación del usuario. El sistema debe mandar el correspondiente correo de activación al nuevo usuario.
 - RF-3.1.2 Contraseña del usuario. Se generará una contraseña complaciente con la política de seguridad de la plataforma. En ningún momento dicha contraseña podrá ser conocida por ningún administrador o miembro del sistema. El usuario deberá de restaurar la contraseña antes de iniciar sesión por primera vez.
- RF-3.2 Activación de usuarios. El administrador debe de poder activar o desactivar a un usuario en concreto.
- RF-3.3 Hacer administrador a un usuario. El administrador debe de poder hacer nuevos usuarios administradores.
- RF-3.4 Eliminar a un usuario. El administrador debe de poder eliminar a un usuario cualquiera del sistema, independientemente de si este usuario es administrador o no.
- RF-3.5 Auto-Modificación del administrador. El administrador no debe de poder desactivarse, quitarse de administrador o eliminarse a sí mismo.

RF-4 Modificación de datos del usuario.

- RF-4.1 Datos básicos. El usuario debe de poder modificar sus datos básicos, pero nunca pudiendo dejarlos «en blanco».
- RF-4.2 Datos adicionales. El usuario debe de poder añadir, modificar o eliminar, una serie de datos adicionales.
- RF.4.3 Imagen de perfil. El usuario debe de poder actualizar su foto de perfil, cumpliendo con una serie de requisitos de tamaño v formato.
- RF-4.4 Actualización de contraseña. El usuario deberá de poder actualizar su contraseña en caso de considerarlo necesario.

• RF-5 Administración del sistema en tiempo real.

- RF-5.1 Información de red. El administrador debe de poder visualizar la configuración actual de red en la que la plataforma está desplegada.
- RF-5.2 Información de carga. El administrador debe de poder visualizar la carga del actual del sistema en términos de uso de procesador y memoria.
- RF-5.3 Información adicional. El administrador debe de poder visualizar datos adicionales como el uso de red, almacenamiento disponible, . . .

■ RF-6 Estadísticas de uso.

- RF-6.1 Estadísticas de uso para usuarios.
 - RF-6.1.1 Uso últimos 7 días. El usuario debe de poder visualizar unas estadísticas generales de su uso particular en los últimos 7 días naturales.
 - RF-6.1.2 Uso de cada tipo de algoritmo. El usuario debe de poder visualizar qué y cuántos algoritmos de cada tipo ha ejecutado. Además del tiempo de ejecución global de cada tipo.
 - RF-6.1.3 Estadísticas generales. El usuario debe de poder conocer cuántos experimentos ha ejecutado en total y cuántos conjuntos de datos tiene alojados en el sistema.

• RF-6.2 Estadísticas de uso para administradores.

- RF-6.2.1 Estadísticas generales. El administrador debe de poder de un vistazo conocer el uso general que se le está dando al sistema. (Número de experimentos, número de usuarios, tipo de experimentos,...)
- RF-6.2.2 Uso últimos 7 días. El administrador debe de poder conocer el número de experimentos que se han ejecutado cada día de los últimos 7 días naturales.
- RF-6.2.3 Distribución de los usuarios. El administrador debe de poder conocer las estadísticas generales de uso y países de origen de los usuarios del sistema.

Requisitos no funcionales

- RNF-1 Usabilidad. La plataforma debe de ser fácil tanto de aprender a utilizar como clara a la hora de reportar los errores que se puedan cometer. La interfaz debe ser intuitiva.
- RNF-2 Rendimiento. La interfaz web no se puede quedar «colgada», además debe de tener unos tiempos de carga razonables.
- RNF-3 Escalabilidad. La plataforma debe soportar que se le añadan nuevas funcionalidades con relativa facilidad.
- RNF-4 Disponibilidad. La plataforma debe de ser accesible a través de Internet sin importar la geolocalización del cliente.
- RNF-5 Fiabilidad. La plataforma debe de garantizar que los modelos calculados son precisos. Además de en caso de pérdidas de conexión, que no ocurran peérdidas de datos.
- RNF-6 Seguridad. La plataforma debe gestionar correctamente *tokens*, contraseñas, así como el control de administradores o no.
- RNF-7 Mantenibilidad. La plataforma debe cumplir los estándares de código de cada uno de los lenguajes en los que se desarrolla.
- RNF-8 Soporte. La plataforma debe dar soporte a ficheros CSV y ARFF como mínimo. Así como ser compatible con HTML5.
- RNF-9 Monitorización. La plataforma debe ser fácilmente monitorizable por un administrador.
- RNF-10 Internacionalización. La plataforma debe de estar desarrollada en un inglés sencillo y fácil de comprender por todo tipo de usuarios no nativos.
- RNF-11 Respuesta autónoma. En caso de inicio o reinicio, el tiempo empleado por la plataforma hasta estar al 100 % de operatibilidad de nuevo debe ser inferior a los 3 minutos.

B.6. Especificación de requisitos

Dentro de esta sección se desarrolla el Diagrama de Casos de Uso, ver Figura B.1, y la explicación correspondiente de cada uno de ellos.

Figura B.1: Diagrama de casos de uso.

Actores

Actuarán dos actores con el sistema, un usuario (el actor general) y un administrador (actor especializado heredado del usuario).

Casos de uso

A continuación se detallan las tablas correspondientes a los casos de uso anteriormente planteados, en orden.

CU-1	Consultar Experimentos
Versión	1.0
Autor	Daniel Puente Ramírez
Requisitos	RF-1.3, RF-1.5, RF-1.6
asociados	
Descripción	Permite al usuario consultar sus experimentos y reuti-
	lizarlos.
Precondición	El sistema de colas se encuentra en ejecución.
Acciones	
	 El usuario entra en la plataforma. Hace click en «Mis Experimentos». Por cada experimento lanzado se da la opción de ver detalle, reutilizar o eliminar.
Postcondición	El número de experimentos mostrados al usuario es igual al número de experimentos asociados con ese ID en la base de datos.
Excepciones	No existen excepciones posibles.
Importancia	Alta

Tabla B.1: CU-1 Consultar Experimentos.

CU-1.1	Consultar Experimento
Versión	1.0
Autor	Daniel Puente Ramírez
Requisitos	RF-1.2, RF-1.3, RF-1.4, RF-1.5
asociados	
Descripción	Permite al usuario consultar un experimento en concre-
	to, si ha finalizado, junto con las métricas reportadas.
Precondiciones	
	■ El experimento existe.
	■ En caso de haber finalizado y tener métricas de
	rendimiento, se cargan.
	a a a a a a a a a a a a a a a a a a a
Acciones	
	 El usuario entra en la plataforma. Hace click en «Mis Experimentos». Por cada experimento lanzado se da la opción de ver detalle, reutilizar o eliminar. Dentro de ver en detalle puede predecir nuevas instancias o descargar el modelo, así como consultar las métricas resultantes. En caso de haber fallado se muestra el motivo del fallo.
Postcondición Excepciones Importancia	El identificador del experimento no varía independien- temente de lo que el usuario haga con él. No existen excepciones posibles. Media

Tabla B.2: CU-1.1 Consultar Experimento.

CU-1.1.1	Predecir Nuevas Instancias
Versión	1.0
Autor	Daniel Puente Ramírez
Requisitos	RF-1.4
asociados	
Descripción	Permite al usuario predecir nuevas instancias en fun-
	ción a un modelo previamente entrenado.
Precondiciones	
	 El experimento existe y ha finalizado. Las nuevas instancias a predecir tienen los mismos atributos que con las que se entrenó el modelo.
Acciones	
	 El usuario entra en la plataforma. Hace click en «Mis Experimentos». Por cada experimento lanzado se da la opción de ver detalle, reutilizar o eliminar. Dentro de ver en detalle hace click en «Predict». Sube el conjunto de datos a predecir. Se le muestra al usuario el resultado de la predicción.
Postcondición	El modelo no se ha visto afectado por el proceso de predicción.
Excepciones	El conjunto de datos pasado no cumple con los requisitos para el modelo.
Importancia	Alta

Tabla B.3: CU-1.1.1 Predecir Nuevas Instancias.

CU-1.1.2	Reutilizar Experimento	
Versión	1.0	
Autor	Daniel Puente Ramírez	
Requisitos	RF-1, RF-1.1, RF-1.1.1, RF-1.1.2, RF-1.1.3, RF-1.3	
asociados		
Descripción	Permite al usuario reutilizar el experimento que ya	
	había creado.	
Precondición	El experimento base existe.	
Acciones		
	 El usuario entra en la plataforma. Hace click en «Mis Experimentos». Busca el experimento del que desea obtener la parametrización para uno nuevo. Hace click en «Reuse». 	
Postcondicione	es e	
	 El modelo base no se ha visto afectado. El usuario se encuentra en la pantalla «Nuevo Experimento» con la configuración «nueva». 	
Excepciones		
	 Algún parámetro interno ha cambiado y ya no se puede reutilizar el experimento. Solo se puede recuperar parte de la configuración. 	
Importancia	Media	

Tabla B.4: CU-1.1.2 Reutilizar Experimento.

CU-1.2	Consultar Registros en la Base de Datos		
Versión	1.0		
Autor	Daniel Puente Ramírez		
Requisitos	RF-1, RF-2, RF-3, RF-4, RF-5, RF-6		
asociados			
Descripción	Recuperación de los registros necesarios de la base de		
	datos.		
Precondición	Existen los registros.		
Acciones			
	 El usuario entra en la plataforma. Realiza alguna acción relacionada con la base de 		
	datos. 3. Se le devuelven los datos solicitados, y/o 4. Se almacenan los nuevos datos.		
Postcondición	La integridad de la base de datos no se ha visto afectada.		
Excepciones	Intento de escritura simultánea por parte de dos usua-		
	rios.		
Importancia	Alta		

Tabla B.5: CU-1.2 Consultar Registros en la Base de Datos.

CU-2	Crear Experimento				
Versión	1.0				
Autor	Daniel Puente Ramírez				
Requisitos	RF-1, RF-1.1, RF-1.1.1, RF-1.1.2, RF-1.1.3, RF-2, RF-				
asociados	2.1				
Descripción	Permite al usuario crear un nuevo experimento.				
Precondición	La parametrización es correcta.				
Acciones					
	 El usuario entra en la plataforma. Hace click en «Nuevo Experimento». 				
	3. Rellena el formulario en función de un conjunto				
	de datos y una técnica de aprendizaje automáti-				
	co. 4. Hace <i>click</i> en «Crear».				
	4. nace cncκ en «Crear».				
Postcondicione	es				
	 El experimento ha sido añadido a las colas de ejecución. 				
	2. El usuario recibe un correo electrónico con la				
	finalización del experimento.				
	manager der emperimente.				
Excepciones	El experimento ha sido incorrectamente parametrizado				
-	y se ha levantado una excepción al intentar ejecutarlo.				
Importancia	Alta				

Tabla B.6: CU-2 Crear Experimento.

CU-3	Modificar Usuario		
Versión	1.0		
Autor	Daniel Puente Ramírez		
Requisitos	RF-4, RF-4.1, RF-4.2, RF-4.3, RF-4.4		
asociados			
Descripción	Permite al usuario modificar sus datos personales den-		
	tro de la plataforma.		
Precondición	Los datos del usuarios son recuperados de la base de		
	datos.		
Acciones			
	 El usuario entra en la plataforma. Hace click en «Mis Experimentos». Hace click en «Editar Perfil». Modifica los datos como considere oportuno. Hace click en «Guardar». 		
Postcondicione	es ·		
	 Todos los campos son validados de forma que individualmente cumplan sus respectivas restricciones de formato. Para aquellos campos que deben ser únicos, se garantiza su unicidad. Los datos actualizados son visibles desde el momento en el que se actualiza la página para el usuario. 		
Excepciones	Modificación concurrente de la base de datos.		
Importancia	Baja		

Tabla B.7: CU-3 Modificar Usuario.

CU-4	Registro de Usuario			
Versión	1.0			
Autor	Daniel Puente Ramírez			
Requisitos	RF-3, RF-3.1, RF-3.1.1, RF-3.1.2			
asociados				
Descripción	Permite al administrador crear un nuevo usuario, o a			
	un cliente registrarse en la plataforma y convertirse			
	en administrador.			
	No existen precondiciones.			
Acciones				
	 El administrador entra en la plataforma. Hace click en «Usuarios» en el panel lateral de administración. Hace click en «Nuevo Usuario». Introduce los datos del nuevo usuario. Hace click en «Guardar». 			
Postcondiciones	S			
	 Todos los campos son validados de forma que individualmente cumplan sus respectivas restricciones de formato. Para aquellos campos que deben ser únicos, se garantiza su unicidad. El nuevo usuario recibe un correo electrónico con el token de activación de la cuenta. 			
Excepciones Importancia	Modificación concurrente en la base de datos. Baja			

Tabla B.8: CU-4 Registro de Usuario.

CU-5	Administrar Usuarios			
Versión	1.0			
Autor	Daniel Puente Ramírez			
Requisitos	RF-3, RF-3.1, RF-3.1.1, RF-3.1.2, RF-3.2, RF-3.3, RF-			
asociados	3.4, RF-3.5			
Descripción	Permite al administrador crear, (de)activar, hacer (o			
	quitar de) administrador, o eliminar a un usuario.			
Precondición	El usuario a modificar no es el mismo usuario que está			
	modificando.			
Acciones				
	 El administrador entra en la plataforma. Hace click en «Usuarios» en el panel lateral de administración. Puede buscar si así lo desea al usuario en cuestión. Realiza las modificaciones pertinentes. 			
Postcondición Excepciones Importancia	La modificación ha sido correcta. Modificación concurrente en la base de datos. Media			

Tabla B.9: CU-5 Administrar Usuarios.

CU-6	Consultar Analíticas de Uso			
Versión	1.0			
Autor	Daniel Puente Ramírez			
Requisitos	RF-6, RF-6.1, RF-6.1.1, RF-6.1.2, RF-6.1.3, RF-6.2,			
asociados	RF-6.2.1, RF-6.2.2, RF-6.2.3			
Descripción	Permite a un usuario comprobar sus estadísticas de			
	uso. Y si es administrador, las del la plataforma.			
Precondición	Existen estadísticas que mostrar.			
Acciones (para				
el usuario)	1. El usuario entra en la plataforma.			
	2. Hace <i>click</i> en «Mis Experimentos».			
	3. Hace <i>click</i> en «Estadísticas».			
	4. Puede visualizar las estadísticas generales de la			
	plataforma.			
Acciones (para el administrador)	 El administrador entra en la plataforma. Hace click en «Dashboard» en el panel lateral de administración. Puede visualizar las estadísticas generales de la plataforma. 			
Postcondicione	${f s}$ No existen postcondiciones.			
Excepciones	No existen excepciones.			
Importancia	Alta			

Tabla B.10: CU-6 Consultar Analíticas de Uso.

CU-7	Monitorización del Sistema en Tiempo Real		
Versión	1.0		
Autor	Daniel Puente Ramírez		
Requisitos	RF-5, RF-5.1, RF-5.2, RF-5.3		
asociados			
Descripción	Permite al administrador comprobar el estado de carga		
	actual del sistema.		
Precondición	Existen registros de datos para calcular las estadísticas		
	que mostrar.		
Acciones			
	1. El administrador entra en la plataforma.		
	2. Hace <i>click</i> en <i>«Live Monitor»</i> en el panel lateral		
	de administración.		
	3. Puede visualizar las estadísticas generales de la		
	plataforma.		
	•		
Postcondiciones No existen postcondiciones.			
Excepción	En caso de que no existan datos aún.		
Importancia	Alta		

Tabla B.11: CU-7 Monitorización del Sistema en Tiempo Real.

CU-7.1	Monitor del Sistema	
Versión	1.0	
Autor	Daniel Puente Ramírez	
Requisitos	RF-5.1, RF-5.2, RF-5.3	
asociados		
Descripción	Proceso de recolección de información de uso del siste-	
	ma.	
Precondición	Glances está instalado en el sistema.	
Acciones	Ninguna, ejecución en paralelo en el sistema.	
Postcondiciones No existen postcondiciones.		
Excepción	No existen excepciones.	
Importancia	Alta	

Tabla B.12: CU-7.1 Monitor del Sistema.

Apéndice C

Especificación de diseño

C.1. Introducción

En este anexo se va a exponer cómo se han resuelto los objetivos anteriormente comentados. Así como la definición de datos que se utilizan en la aplicación, procedimientos, etc.

C.2. UBUMLaaS

Diseño de datos

La aplicación cuenta con las siguientes entidades:

- Usuarios (Users). Posee toda la información relacionada con los usuarios. Almacenando su identificador único en el sistema, su correo electrónico, usuario, contraseña hasheada, país y uso que ha indicado que va a dar a ala aplicación, además de si se encuentra activo o no, o del tipo de usuario que es (administrador o usuario normal).
 - Como campos adicionales puede almacenar la página web del usuario, algunas redes sociales como son Twitter, LinkedIn, GitHub. Junto con la institución a la que pertenece y su Google Scholar.
- Algoritmos (Algorithms). Guarda la información relacionada con cada algoritmo que se puede utilizar, teniendo un identificador único, un nombre de algoritmo para uso interno, el nombre que se mostrará en la web, así como los parámetros de configuración y a qué librería pertenece.

- Filtros (Filters). Guarda la información relacionada con cada filtro que se puede utilizar, teniendo un identificador único, un nombre de filtro para uso interno, el nombre que se mostrará en la web, así como los parámetros de configuración y a qué librería pertenece.
- Experimentos (Experiments). Almacena toda la información de un experimento lanzado. Posee un identificador de experimento único, el identificador del usuario que lo lanzó, el nombre (interno) del algoritmo en cuestión, junto con la configuración de este, y forma homónima para los filtros (en caso de utilizar un filtro). Referencia a los datos de entrenamiento, y en caso de haber terminado, los resultados del experimento.

Posee dos *timestamps* representando la hora de inicio y fin del entrenamiento, un campo adicional representa el estado que tiene. Junto con todos estos datos se almacena la configuración del experimento.

■ Países (Countries). Recoge toda la información que puede ser útil a la hora de trabajar con países. Posee el nombre oficial del país en cuestión, así como la representación en Alpha 2¹ y 3, el número de identificación único de cada país, además, la longitud y latitud de la capital del país.

¹Los códigos alfa-2 son códigos de dos letras definidos en la norma ISO 3166-1, utilizados para designar países territorios independientes y zonas geográficas especiales. Son utilizados principalmente en los dominios geográficos de primer nivel en Internet, además de direcciones postales.

Diagrama E/R

Figura C.1: Diagrama entidad relación

Diagrama Relacional

Figura C.2: Diagrama entidad relación

C.2. UBUMLaaS 67

Diseño procedimental

En esta sección interna se recogen los detalles más relevantes en cuanto a los procedimientos llevados a cabo por la plataforma en función de las acciones del usuario.

A continuación se explican los diagramas de secuencia (DS):

■ DS para la monitorización del sistema en tiempo real. Figura C.3. Muestra el proceso seguido por el sistema en el momento en el que solicita la vista correspondiente. Es el único diagrama en el que se muestra la comprobación de si es administrador o no, por brevedad en el resto se indica en forma de texto nada más.

Cuando el sistema recoge la solicitud de visualización busca los datos necesarios en la base de datos, y en el caso de no haber pasado todavía 10 minutos (valor umbral) del inicio del sistema, buscará un fichero de histórico en el que se guardan los últimos 6 meses de datos como máximo. Se procesan los datos ya que existen muchos más de los que el sistema mostrará y se devolverá la página HTML.

■ DS para las estadísticas generales (System Analytics). Figura C.4. Necesita privilegios de administrador, omitido en el diagrama por claridad. Debido a la multitud de operaciones que debe se deben realizar, posee una pantalla de carga que se muestra al usuario en lo que es sistema prepara la visualización.

Internamente se recorre prácticamente la base de datos en su totalidad y se obtienen las estadísticas correspondientes. En el momento en el que se tienen todos los valores calculados se guardarán en ficheros temporales que se leerán y al poco tiempo un recolector de basura los eliminará.

■ DS para crear un experimento. Figura C.5. Cuando un usuario accede a la vista de crear un nuevo experimento, prácticamente cada botón y desplegable tienen repercusión directa en el sistema.

En la elección/subida de un conjunto de datos, se harán operaciones de lectura/escritura respectivamente sobre un directorio específico en el que se encuentran almacenados.

Para la selección de algoritmos y filtros, una vez se selecciona el tipo de algoritmo a utilizar, se leen de la base de datos aquellos algoritmos y filtros compatibles y se muestran al usuario para su elección. Una vez

seleccionados se renderizan los parámetros de configuración particulares de cada uno de ellos.

Finalmente el usuario mandará crear el experimento, pasando al lado del servidor la ejecución de este, ver Figura C.6.

■ DS para la ejecución de un experimento. Figura C.6. En el momento en el que el usuario manda crear el experimento, se le muestra la pantalla en la cuál aparecerán los resultados pero con un GIF indicando que aún no ha terminado la ejecución.

El servidor recoge la configuración indicada por el usuario para realizar el experimento y lo encola en las colas de ejecución high-ubumlaas, en las que cuándo estén disponibles, realizarán el experimento según la configuración recibida.

En el momento en el que el experimento finalice, la cola pasará a ejecutar el siguiente experimento (de existir), y se le devolverá el control al sistema, este último se encargará de almacenar los resultados en la entrada correspondiente al experimento en la base de datos, de tal manera que cuando el usuario proceda a ver los resultados pueda visualizarlos. Finalmente mandará un correo electrónico al usuario «dueño» del experimento indicando que ha finalizado.

C.2. UBUMLaaS 69

Figura C.3: Diagrama de secuencia de la monitorización en tiempo real.

Figura C.4: Diagrama de secuencia de las estadísticas generales de la aplicación.

Figura C.5: Diagrama de secuencia de la creación de un nuevo experimento por parte del usuario.

Figura C.6: Diagrama de secuencia de la ejecución de un nuevo experimento.

Figura C.7: Arquitectura cliente-servidor.

Diseño arquitectónico

La aplicación con el fin de cumplir con todos los requerimientos funcionales así como objetivos principales, y por ende, conseguir un bajo acoplamiento y una alta cohesión. Sigue una arquitectura de cliente servidor.

En la Figura C.7 se aprecia un modelo simplificado de la arquitectura seguida, en la cuál los procesos se van a dividir en dos grupos.

- Servidor. Implementa el servicio de UBUMLaaS.
- Cliente. Solicitará los servicios de proporcionados por el servidor.

Arquitectura de tres capas

La aplicación sigue una arquitectura de tres capas (multicapa), siguiendo esta arquitectura el cliente implementa la lógica de presentación (es un cliente ligero); el servidor de aplicación implementa la lógica de negocio, y los datos residen en una base de datos de SQLite, por definición de la arquitectura de tres capas sería necesario que hubiera un servidor dedicado a la comunicación con la base de datos, pero ahí es donde reside una de las cualidades de SQLite, es serverless, permitiendo una auto-gestión y soportando múltiples clientes realizando tareas en paralelo.

UBUMLaaS sigue esta arquitectura por las siguientes razones:

C.3. IS-SSL 73

 Desacoplamiento, cambios en la interfaz de usuario o en la lógica de la aplicación son independientes entre sí, favoreciendo la evolución de la aplicación hacia nuevos requerimientos.

- Se minimizan los cuellos de botella de la red, la información transmitida es únicamente la solicitada.
- El cliente está separado (aislado) de la base de datos, pudiendo acceder de manera sencilla a los recursos sin necesidad de conocer la ubicación de los datos.

C.3. IS-SSL

Diseño de datos

En esta sección se van a seleccionar las representaciones lógicas de los datos, las estructuras de datos utilizadas.

Los algoritmos implementados se encuentran divididos en dos bibliotecas, la separación se realiza en base al criterio lógico de qué hacen los algoritmos de cada una de ellas. Por un lado están los algoritmos de selección de instancias, y por el otro, los algoritmos de aprendizaje semi-supervisado.

Todos los algoritmos utilizan la clase auxiliar *NearestNeighbors* de Scikit-Learn [7] para el cálculo de los vecinos cercanos. Teniendo en cuenta que la distancia a sí misma es cero, se han codificado los algoritmos para evitar que un prototipo posea como vecino más cercano a sí mismo.

Diseño procedimental

A continuación se recogen los detalles para poder hacer uso de los algoritmos.

Todos los algoritmos se pueden utilizar de la misma manera que se esperaría al utilizar los propios de la biblioteca de Scikit-Learn. Por lo tanto, una vez están importados los correspondientes se utilizarán:

- Algoritmos de selección de instancias.
 - 1. Instanciar el objeto a utilizar, pasando los parámetros de configuración deseados.
 - 2. Pasar el conjunto de datos al método filter del modelo.

- 3. Recoger los resultados.
- Algoritmos de aprendizaje semi-supervisado.
 - 1. Instanciar el objeto a utilizar, pasando los parámetros de configuración, así como referencias a algoritmos de clasificación si no se quieren utilizar los proporcionados «por defecto».
 - 2. Pasar al método fit el conjunto de datos, indicando aquellas instancias para las que no se conoce la clase, con su clase a -1.
 - 3. Pasar al método predict el conjunto de datos a predecir. Obteniendo las etiquetas para el conjunto de datos pasado.

NOTA. Todas las entradas son objetos de tipo DataFrame de la biblioteca Pandas. Las salidas cuándo son vectores de una dimensión, son *arrays* de NumPy, si son de más de una dimensión, DataFrames.

Diseño arquitectónico

Debido a que se trata de una serie de bibliotecas de algoritmos, no son lo suficientemente grandes como para aplicar patrones de diseño los cuales proporcionen algún tipo de ventaja significativa.

Diseño en paquetes

Para la organización de los diferentes archivos que componen las bibliotecas se ha seguido la estrategia de *package per feature approach* (paquete por característica).

Esta estrategia permite agrupar todos los archivos en función de la funcionalidad que aportan, aumentando la legibilidad del árbol de paquetes, su modularización, así como su desarrollo desarrollo continuo y ampliación de algoritmos soportados.

Ambas bibliotecas incluyen el directorio interno de utils. El cual proporciona clases y métodos necesarios, comunes a varios algoritmos de la biblioteca principal.

Apéndice D

Documentación técnica de programación

D.1. Introducción

En este anexo se va a describir con detalle la documentación técnica de programación. Se describirá la estructura de directorios que posee, la instalación del propio entorno de desarrollo, cómo llevar a cabo su compilación, instalación y ejecución; además de las pruebas que se han realizado.

Se debe recordar que el proyecto se encuentra dividido en dos repositorios diferenciados, UBUMLaaS e IS-SSL¹; es por ello que, se dividirá en dos secciones respectivamente, y tantas subsecciones como son necesarias para cada uno de ellos.

D.2. UBUMLaaS

Estructura de directorios

La estructura del repositorio es la siguiente:

/: raíz del proyecto, aquí se encuentra el README, la licencia, los ficheros de configuración de las pruebas de integración y despliegue continuo (CI-CD), junto con los ficheros de requisitos para conda y pyenv.

¹Biblioteca de algoritmos de selección de instancias y aprendizaje semi-supervisado programado.

- /lib/: librerías utilizadas por el sistema.
- /lib/is_ssl: librería propia de métodos de selección de instancias y aprendizaje semi-supervisado.
- /lib/scikit_ml_learn_data/meka/meka-release-1.9.2/: librería Meka en su versión 1.9.2.
- /lib/skmultilearn/: librería scikit-multilearn.
- /lib/unofficial_weka_packages/: algoritmos de ADMIRABLE.
- /lib/wekafiles/: algoritmos concretos de weka.
- /test/*: ficheros de prueba CI-CD.
- /ubumlaas/: directorio principal de la plataforma.
- /ubumlaas/admin/: contiene toda la parte de backend de administración.
- /ubumlaas/core/: contiene el backend de las vistas de índice y acerca de.
- /ubumlaas/default_datasets/: conjuntos de datos por defecto que se añaden a los nuevos usuarios.
- /ubumlaas/error pages/: contiene el backend de las vistas de error.
- 'ubumlaas/experiments/: contiene el backend para la realización de experimentos.
- /ubumlaas/experiments/algorithm/: contiene las métricas para el análisis del modelo entrenado.
- /ubumlaas/experiments/execute_algorithm/: contiene opciones de ejecución para cada librería.
- /ubumlaas/experiments/views/: control de las vistas relacionadas con los experimentos.
- /ubumlaas/jobs/: descripción de RQ Worker Builder.
- /ubumlaas/static/: contiene los ficheros estáticos de la plataforma.
- /ubumlaas/static/avatars/: contiene las imágenes de perfil de cada usuario.
- /ubumlaas/static/css/: contiene el código CSS del frontend.
- /ubumlaas/static/img/: contiene las imágenes que aparecen en la pltaforma.
- /ubumlaas/static/js/: contiene el código JavaScript del frontend.
- /ubumlaas/templates/: ficheros HTML.
- /ubumlaas/templates/admin/: ficheros web de administración.
- /ubumlaas/templates/blocks/: ficheros web de bloques que se añaden sobre otros documentos web.
- /ubumlaas/templates/error_pages/: ficheros web de errores (403, 404,...)
- /ubumlaas/templates/modals/: ficheros para la representación de modales.

D.2. UBUMLaaS 77

 /ubumlaas/users/: contiene el backend de las actividades relacionadas con el usuario.

/ubumlaas/weka/: contiene los ficheros de configuración de Weka y su
 VM

Manual del programador

En esta subsección se describen todos aquellos recursos utilizados por el equipo de desarrollo para, valga la redundancia, desarrollar el proyecto. De tal forma que un futuro desarrollador/mantenedor del proyecto no tenga inconvenientes a la hora de retomar el proyecto y conocerlo.

Entorno de desarrollo

Para poder continuar con el desarrollo del proyecto, se requiere tener instalado el siguiente *software* en el equipo:

- Python 3.7+.
- Bibliotecas Python.
- Git
- VSCode

En los siguientes apartados se detalla la instalación de cada uno de los componentes anteriormente citados.

Python 3.7+

Al comienzo del proyecto, muchas de sus funcionalidades eran compatibles con Python 2, pero el nuevo desarrollo ha utilizado indistintamente métodos existentes en versiones anteriores de Python y algunos que se han introducido a partir de la version 3.7, disponible desde [2]. Es importante que los binarios se encuentren en el path del sistema para que no de problemas de ejecución.

Bibliotecas Python

A continuación (ver Tabla D.1), se van a detallar uno de los puntos más importantes para poder «hacer funcionar» el proyecto, puesto que se van a necesitar versiones concretas de determinadas librerías para que todo se integre correctamente con todo y se pueda ver y utilizar como un sistema homogéneo.

Biblioteca	Versión	Descripción
email-validator	1.1.1	Validar direcciones de correo electrónico.
flask	1.1.1	Web framework.
flask-login	0.4.1	Control usuarios y sesiones en Flask.
flask-mail	0.9.1	Envío de <i>emails</i> con Flask.
flask-migrate	2.5.2	Migrar SQLAchemy DB a Flask.
flask-redis	0.4.0	Soporte a Redis en Flask.
flask-sqlalchemy	2.4.0	Soporte a SQLAchemy en Flask.
flask-wtf	0.14.2	Render, validar y CSRF formularios.
future	0.16.0	Soporte a Python 2 y 3.
geopy	2.2.0	Geocodificación.
glances	3.2.4.2	Monitorización del sistema.
imbalanced-learn	0.5.0	ML con datos desbalanceados.
itsdangerous	1.1.0	Paso de datos en entornos no seguros.
liac-arff	2.2.1	Escritura y lectura de ficheros ARFF.
numpy	1.22.3	Computación de arrays.
pandas	0.25.1	Estructuras de datos.
psutil	5.9.0	Procesar y monitorizar sistemas.
pycountry	22.3.5	Datos de países.
pytest	5.2.1	Pruebas en Python.
python-weka-wrapper3	0.1.7	Wrapper para Weka.
requests	2.22.0	Requests para humanos.
rq	1.1.0	Crear y procesar trabajos «de fondo».
scikit-learn	0.24	Módulos de minería de datos y ML.
selenium	3.141.0	Auto interacción con navegador web.
urllib3	1.25.6	Conexiones HTTP seguras.
werkzeug	0.15.6	Biblioteca de aplicaciones web WSGI. ²
whichcraft	0.4.1	Funcionalidad shutil.which.

Tabla D.1: Bibliotecas utilizadas y sus versiones.

D.2. UBUMLaaS 79

Las versiones indicadas en la tabla D.1 son las que se han utilizado para el desarrollo del proyecto, se pueden actualizar a versiones futuras, siempre y cuando sean compatibles entre sí.

Compilación, instalación y ejecución del proyecto

En esta subsección se va a detallar el proceso a seguir para poder hacer uso del proyecto en local, modificarlo y/o utilizarlo. La forma de desarrollo del proyecto no ha sido estrictamente en local, sino que el proyecto se encontraba alojado en un equipo servidor y mediante SSH³ se realizaba la conexión y posterior edición de los ficheros.

Adquisición del código fuente

Lo primero que se necesita es obtener el código en el equipo, para ello podemos seguir una de las siguientes aproximaciones:

- Mediante el uso de la terminal.
 - 1. Apertura de la terminal.
 - 2. Desplazarse al directorio en donde se desee clonar el repositorio (usando cd en Unix o dir en Windows).
 - 3. Hacer uso del siguiente comando: git clone https://github.com/dpr1005/UBUMLaaS.git
 - 4. Se dispone de una copia idéntica a la alojada en el repositorio de GitHub.
- Descarga desde el navegador.
 - Apertura del navegador preferido.
 - Introducir en la barra de búsqueda la siguiente dirección: https://github.com/dpr1005/UBUMLaaS/archive/refs/ heads/master.zip
 - Aceptar la descarga en caso de tener habilitada la comprobación.
 - Navegar con el Explorador de archivos del sistema hasta el directorio de descarga.
- Uso de GitKraken.
 - Apertura de la aplicación.

³ Suite de protocolos los cuales especifican estándares para operar los servicios de red de forma segura entre anfitriones para los que no existe una relación de confianza a través de redes no seguras. Las comunicaciones entre pares se encuentran encriptadas.

- Hacer click en Clone a repo.
- En Repository Management \rightarrow Clone \rightarrow Clone with URL:
 - Indicar la ruta local en la que nos interesa que se clone el repositorio.
 - En URL introducir:
 git clone https://github.com/dpr1005/UBUMLaaS.git
- Hacer click en Clone the repo!.

Importar el proyecto en Visual Studio Code

Se diferencian dos aproximaciones, local o como se ha operado, conexión mediante SSH.

- Importar el proyecto en la propia máquina donde se va a desplegar y será en ella en la que se edite.
 - 1. Apertura de Visual Studio Code.
 - 2. Hacer *click* en Abrir.
 - 3. Seleccionar el directorio raíz donde lo hayamos alojado.
- Importar el proyecto en una máquina y editarlo desde otra.
 - 1. Seguir los pasos de la adquisición del código en la máquina en la que se va a alojar el código. En el equipo local no va a estar.
 - 2. Apertura de Visual Studio Code
 - 3. Navegar a las Extensiones e instalar Remote SSH, disponible desde [4].
 - 4. Instalar un cliente SSH compatible con OpenSSH. Ver guía [25].
 - 5. Con todo instalado, se realiza la conexión a la máquina remota.
 - a) Presionar F1 y correr el comando: Remote-SSH: Open SSH Host...
 - b) Introducir el usuario y el host/IP en el formato: user@host-o-ip ó user@domain@host-o-ip
 - c) En caso de que se solicite, introducir la contraseña, pero se recomienda configurar el uso de llaves SSH, ver guía [25].
 - d) Después de la conexión usar Archivo \to Abrir carpeta, para abrir el directorio donde se encuentra el proyecto en la máquina remota.

D.2. UBUMLaaS 81

6. Todos los cambios que se realicen, se harán sobre el código en la máquina remota, la máquina local no hará más que el efecto de editor.

Crear entorno virtual de trabajo

Para poder trabajar con este proyecto (independientemente de si es para desarrollo o producción) hacen falta una serie de bibliotecas concretas de Python, las cuales, como es lógico, deben estar en la máquina en la que se va a ejecutar; dicho con otras palabras, en la que está el código. El proyecto está preparado para crear un entorno de Conda propio, de forma que no interfiera con otros proyectos y sea más sencillo de mantener y actualizar.

Se recomienda que los binarios de anaconda o miniconda estén configurados en el path del sistema para poder utilizar el comando conda desde la línea de comandos.

El proceso de creación del entrono virtual con Conda es el siguiente:

- 1. Apertura de la terminal.
- 2. Navegar hasta la raíz del proyecto.
- 3. Crear el entorno con:
 - conda env create -f UBUMLaaS env.yml
- 4. Cuando se desee utilizar se debe activar: conda activate UBUMLaaS

También se puede utilizar el procedimiento habitual para importar las bibliotecas al actual venv de la sesión de la terminal, pero se desaconseja su uso ya que un entorno «genérico» antes o después se actualizará por otros proyectos, pudiendo generar incompatibilidades con el proyecto UBUMLaaS.

Instalación en Linux

Con los anteriores pasos realizados, la importación del proyecto y la activación del entorno virtual, se deben modificar una serie de ficheros con el fin de habilitar todas las funcionalidades que ofrece el proyecto.

Se deben seguir los siguientes pasos:

1. Modificar env_variables.sh con los valores correctos para cada uno de los campos:

```
export SECRET_KEY=<app secret key>
export EMAIL_AC=<email>
export EMAIL_PASS=<email-password>
export EMAIL_URL=<email-url>
export FLASK_ENV=development #development or production
LIBFOLDER=/absolute/path/to/UBUMLaaS
```

2. Dentro del entorno virtual de UBUMLaaS en Conda, se debe ejecutar el siguiente comando para permitir la importación de las variables anteriormente declaradas al entorno virtual.

```
source env_vars_to_conda.sh
```

3. Creación de la base de datos.

```
mv data_base.sqlite ubumlaas/data.sqlite
```

- * En caso de poseer una base de datos con la configuración correcta, se puede poner en ./ubumlaas/ bajo el nombre de data.sqlite.
- 4. En caso de no tener instalado y configurado Redis-Server, ejecutar:

```
sudo apt install redis-server
sudo service redis-server start
sudo systemctl enable redis-server
```

Uso del proyecto

Lo primero de todo para poder tener el producto trabajando, es desplegarlo, para ello es requisito haber completado todos los pasos previos de esta sección. Activar el entorno virtual de Conda, ejecutar el lanzador, y ya está en ejecución.

```
conda activate UBUMLaaS ./run.sh
```

Nota. Es importante asegurarnos que todos los ficheros de las librerías y el lanzador del proyecto poseen permisos de ejecución necesarios (en instalaciones «por defecto» de Debian, CentOS, SUSE, no debería de ser necesario más que dar permisos de ejecución al lanzador).

El usuario administrador por defecto es Admin@AdminUBUMLaaS.es y su contraseña es admin4123!UBUMLaaS.

D.2. UBUMLaaS 83

Integración Continua

Con el objetivo de obtener como producto final un *software* de calidad, se han desarrollado una serie de pruebas de integración continua, las cuales se comprueban y analiza su resultado en cada *commit* y/o *pull request*.

Se han utilizado principalmente tres herramientas *cloud* para medir los principios de calidad del *software*.

Codacy

Herramienta la cual proporciona soporte a análisis automático del código fuente e identifica los problemas a medida que avanza. Su versatilidad permite desarrollar *software* de manera eficiente, reduciendo el número de *bugs* que se «dejan para resolver».

A través del análisis de código estático, notifica problemas de seguridad, cobertura del código, así como la duplicación y la complejidad de cada fichero en cada *commit* y *pull request*.

Figura D.1: Codacy.

Sonar Cloud

Herramienta open source la cual permite hacer un análisis estático del código de un proyecto, entre sus fortalezas destaca su potente capacidad de ser parametrizada, entre las acciones que realiza por defecto encontramos la detección de malas prácticas, errores de código, así como problemas de seguridad que en el pasado se han visto relacionadas con alguna CVE⁴.

A pesar de que sea un proyecto *open source* no es gratuita, y como todas las herramientas de estas características incluye una versión *community* (gratuita) para aquellos proyectos que sean *open source*.

 $^{^4\,}Common\,$ Vulnerabilities and Exposures, lista de fallos software (y hardware) que en el pasado se han utilizado para ganar ventaja de alguna manera.

Figura D.2: SonarCloud.

Travis-CI

Herramienta cloud desarrollada para la realización de pruebas de integración continua sobre proyectos alojados en GitHub (con soporte beta para BitBucket, Gitlab y Assembla). Permite realizar un build del proyecto y ejecutar sobre ella una batería de pruebas de manera automática cada vez que se realiza un commit y/o pull request, permitiendo pruebas concurrentes, incluso sobre diferentes sistemas operativos (Linux, Windows, macOS y FreeBSD).

Con el proyecto configurado en Travis-CI se debe configurar un fichero YAML y debe de estar en el directorio raíz, será a partir del cual se ejecuten las pruebas.

El fichero se encuentra dividido en:

- os: sistema/s operativo/s sobre el cuál se va/n a realizar las pruebas.
- dist: distribución a utilizar.
- language: lenguaje de programación del proyecto.
- python: especificación de la versión de Python que necesita.
- node js: especificación de la versión de Node JS que necesita.
- jdk: especificación de la versión de JDK necesaria.
- jobs: parametrización de los trabajos que se van a ejecutar.
- git: profundidad del árbol de git que deseamos utilizar.

D.2. UBUMLaaS 85

- addons: software «extra» que se necesiten para las pruebas.
- services: especificación de los servicios que se van a utilizar.
- before_install: definición de comandos a ejecutar antes de los incluidos en la sección install.
- install: definición de comandos de instalación de dependencias.
- before_script: configuración de dependencias antes de ejecutar la sección script.
- script: pruebas a realizar.

Los logs son públicos y consultables desde [8].

Figura D.3: Travis-CI.

Pruebas del sistema

Intro

(En desarrollo) Tal y como se ha descrito, UBUMLaaS es un software que ha sufrido un cambio de diseño de grandes dimensiones, por lo que las pruebas de integración continua previas que existían han dejado de ser funcionales,

debido a que únicamente comprobaban la interacción del usuario con la plataforma a través de un navegador.

D.3. IS-SSL 87

D.3. IS-SSL

Estructura de directorios

La estructura del repositorio es la siguiente:

- /: raíz del proyecto, aquí se encuentra el README, la licencia, los ficheros de configuración de PIP, los ficheros de configuración de las pruebas de integración y despliegue continuo (CI-CD); y, el fichero de requisitos.
- /datasets/*: conjuntos de datasets en formatos csv y arff, normalizados y no normalizados.
- /docs/: documentación del proyecto.
- /docs/img/: imágenes utilizadas en la documentación.
- /docs/img/anexos/*: imágenes utilizadas en los anexos.
- /docs/img/draws/: diagramas en su formato original.
- /docs/img/memoria/*: imágenes utilizadas en la memoria.
- /hypothesis/*: primera aproximación a la investigación realizada.
- /implementation_tests/: conjunto de pruebas de validación sobre los algoritmos implementados.
- /instance_selection/: algoritmos implementados de selección de instancias.
- /instance_selection/utils/: métodos de apoyo comunes a los algoritmos de selección de instancias.
- /misc/: contiene archivos varios de formato para el repositorio (cabeceras, logos, etc.).
- /semisupervised/: algoritmos implementados de aprendizaje semisupervisado.
- /semisupervised/utils/: métodos de apoyo comunes a los algoritmos de aprendizaje semi-supervisado.
- /utils/: diferentes clases y métodos de apoyo comunes tanto a selección de instancias como a semi-supervisado.

Manual del programador

En esta subsección se describen todos aquellos métodos seguidos por el equipo de desarrollo para, valga la redundancia, desarrollar el proyecto. De tal forma que un futuro desarrollador no tenga inconvenientes a la hora de retomar el proyecto.

Entorno de desarrollo

Para poder continuar con el desarrollo del proyecto, se requiere tener instalado el siguiente *software* en el equipo:

- Python 3.7+.
- Bibliotecas Python.
- Git
- VSCode/PyCharm/....

En los siguientes apartados se detalla la instalación de cada uno de los componentes anteriormente citados.

Python 3.7+

El desarrollo se ha realizado siguiendo las últimas formas de programación disponibles a partir de la versión 3.7 de Python. El desarrollo se comenzó después de que se dejara de mantener Python 2, por lo que se trabajó desde el inicio con versiones de Python 3. Se puede obtener la última versión disponible de Python desde [2]. Es importante que el desarrollador se asegure que los binarios han sido añadidos al path del sistema que esté utilizando.

Bibliotecas Python

Esta sección es la más importante de todas junto con la anterior, debido a que el proyecto depende de (está construido utilizando) bibliotecas de 3^{os}. Y en especial, determinadas versiones de las mismas.

En la Tabla D.2 se detallan las bibliotecas necesarias para utilizar el proyecto tal y como se encuentra en el repositorio. Para el uso en exclusiva de las librerías de IS-SSL se deben utilizar aquellas que se encuentran en negrita.

Se recomienda el uso de un entorno de desarrollo de Conda, se facilitan ficheros de configuración tanto para Conda como para instalación con PIP.

D.3. IS-SSL 89

Biblioteca	Versión	Descripción
matplotlib	3.4.3	Representación gráfica.
numpy	1.20.3	Computación de arrays.
pandas	1.3.4	Estructuras de datos
scikit-learn	0.24.2	Módulos de minería de datos y ML.
scipy	1.7.1	Módulos científicos.
yagmail	0.15.277	Cliente de GMAIL.

Tabla D.2: Bibliotecas utilizadas y sus versiones.

Git

Para poder utilizar el repositorio ha de utilizarse el gestor de versiones Git. Se recomienda utilizar GUI con soporte a VC tales que no requieran de una interfaz de comandos para su utilización, pero eso se deja a decisión del futuro desarrollador.

VSCode/Pycharm/...

El desarrollo propio del producto puede ser realizado en cualquier editor de textos, incluso en Vi si así se desea. La ventaja de herramientas como Visual Studio Code o PyCharm, es que permiten el uso de *plugins* añadidos a los complementos del propio IDE, lo cual permite la generación de código un proceso mucho más sencillo y directo, reduciendo el número de errores ocasionados y permitiendo una depuración o refactorización del código fuente mucho más eficiente y sencilla.

Se puede obtener cada una de las herramientas desde $[9,\,1]$, respectivamente.

Compilación, instalación y ejecución del proyecto

En esta subsección se va a detallar el proceso a seguir para poder hacer uso del proyecto en local, modificarlo y/o utilizarlo.

Adquisición del código fuente

Lo primero que se necesita es obtener el código en el equipo, para ello podemos seguir una de las siguientes aproximaciones:

• Mediante el uso de la terminal.

- 1. Apertura de la terminal.
- 2. Desplazarse al directorio en donde se desee clonar el repositorio (usando cd en Unix o dir en Windows).
- 3. Hacer uso del siguiente comando: git clone https://github.com/dpr1005/ Semisupervised-learning-and-instance-selectionmethods.git
- 4. Se dispone de una copia idéntica a la alojada en el repositorio de GitHub.
- Descarga desde el navegador.
 - Apertura del navegador preferido.
 - Introducir en la barra de búsqueda la siguiente dirección: https://github.com/dpr1005/
 Semisupervised-learning-and-instance-selection-methods/archive/refs/heads/main.zip
 - Aceptar la descarga en caso de tener habilitada la comprobación.
 - Navegar con el Explorador de archivos del sistema hasta el directorio de descarga.
- Uso de GitKraken.
 - Apertura de la aplicación.
 - Hacer click en Clone a repo.
 - En Repository Management \rightarrow Clone \rightarrow Clone with URL:
 - Indicar la ruta local en la que nos interesa que se clone el repositorio.
 - En URL introducir: git clone https://github.com/dpr1005/ Semisupervised-learning-and-instance-selectionmethods.git
 - Hacer click en Clone the repo!.

Importar el proyecto en PyCharm

Importar un proyecto en PyCharm es tan sencillo como:

- 1. Apertura de PyCharm.
- 2. Hacer *click* en *Open*. (Notar que también podríamos clonar el proyecto en este momento haciendo *click* en *Get from VCS*).
- 3. Seleccionar la ruta en el equipo dónde se encuentra el directorio raíz del proyecto.

D.3. IS-SSL 91

Crear entorno virtual de trabajo

Como se ha comentado previamente, para poder trabajar con este proyecto se requieren de una serie de bibliotecas de Python. El proyecto está preparado para crear un entorno de Conda propio, de forma que no interfiera con otros proyectos y sea más sencillo de mantener y actualizar.

Se recomienda que los binarios de anaconda o miniconda estén configurados en el path del sistema para poder utilizar el comando conda desde la línea de comandos.

El proceso de creación del entrono virtual con Conda es el siguiente:

- 1. Apertura de la terminal.
- 2. Navegar hasta la raíz del proyecto.
- 3. Crear el entorno con: conda env create -f is-ssl.yml
- 4. Cuando se desee utilizar se debe activar: conda activate is-ssl

En caso de que se desee añadir al entorno (venv) actual en el que se encuentre el usuario:

- 1. Apertura de la terminal.
- 2. Navegar hasta la raíz del proyecto.
- 3. Instalar los requerimientos del proyecto con: pip install -r requeriments.txt

Uso del proyecto

La forma de usar la biblioteca es muy sencilla, todo IS-SSL ha sido codificado siguiendo la misma guía de estilo (PEP 8), de forma que cualquier programador habituado con el uso de bibliotecas en Python lo encuentre intuitivo y sencillo.

Todos los métodos de selección de instancias y algoritmos de aprendizaje semi-supervisado son clases de Python, de manera que para utilizarlo hay que hacer una importación del paquete y de la clase.

Un ejemplo del uso completo de este *software* es lo encontramos en Listing D.1, donde se detallan los tipos de datos de entrada.

Según la codificación realizada, todos los métodos accesibles de las clases esperan la entrada de objetos de tipo DataFrame de la librería de Pandas.

Internamente en función de las operaciones que tenga que realizar, serán convertidos estos objetos a listas de Python o arreglos de NumPy. Independientemente de las operaciones internas, siempre la salida producida (en caso de tenerla) serán objetos de Pandas, no teniendo que ser necesariamente el mismo objeto de entrada modificado, en la mayor parte de las ocasiones serán objetos nuevos.

```
from SemiSupervisedLearningDNX import TriTraining
from InstanceSelectionDNX import ENN
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
if __name__ == "__main__":
  model = TriTraining(
     random_state = 42,
     c1 = GaussianNB, c1 params = None,
     c2 = KNeighborsClassifier, c2_params = {n_neighbors: 2},
     c3 = DecisionTreeClassifier, c3_params = None
  filter_model = ENN(nearest_neighbors = 5, power_parameter = 2)
  iris = load_iris()
  X = iris['data']
  y = iris['target']
  X = pd.DataFrame(X)
  y = pd.DataFrame(y)
  X, y = filter_model.filter(X, y)
  val = [True if i % 2 == 0 else False for i in range(len(y))]
  y[val] = -1
  X, X_test, y, y_test = train_test_split(X.to_numpy(),
      y.to_numpy())
  X = pd.DataFrame(X)
  y = pd.DataFrame(y)
  model.fit(X, y)
  y_pred = model.predict(X_test)
  print(accuracy_score(y_true=y_test, y_pred=y_pred))
```

D.3. IS-SSL 93

Listing D.1: Ejemplo de uso de IS-SSL

Integración Continua

Con el objetivo de diseñar un *software* lo más robusto posible, la biblioteca cuenta con una serie de pruebas de integración continua, permitiendo que todos los cambios que se vayan realizando mantengan la biblioteca en un estado correcto, indicando tempranamente aquellos posibles problemas que puedan surgir.

Este proceso se ha divido en dos etapas, una más «adelantada» y otra más «tardía», la principal diferencia es el objetivo perseguido con cada una de las pruebas.

- Inicial. Se configuró la segunda semana de febrero, con el objetivo de comenzar a tener una visión más amplia y razonada de la calidad del código, debido a que todavía no estaban desarrollados al 100 % todos los algoritmos y aún eran susceptibles de sufrir modificaciones en tanto en cuanto a sus entradas/salidas/optimización.
- Posterior. Se configuró en Semana Santa, (segunda semana de abril), en esta fase se implementaron una batería de pruebas la cual cubre prácticamente la totalidad de IS-SSL, permitiendo obtener una base para futuras modificaciones que puedan ser necesarias realizar, asegurando que todo sigue funcionando como debería.

A pesar de que se han utilizado diferentes herramientas que se podría decir que cubren los mismos tópicos, cada una implementa las diferentes métricas de análisis de forma diferente, y por lo tanto se puede ganar en este proceso. El código cubierto no se ha configurado en cada herramienta por simplicidad, ya que ahí no hay «medias tintas» es un informe el que se genera y las herramientas lo único que proporcionan es un visor de ese fichero.

Los recursos utilizados para la integración continua se detallan a continuación.

Codacy

Herramienta la cual proporciona soporte a análisis automático del código fuente e identifica los problemas a medida que avanza. Su versatilidad permite desarrollar *software* de manera eficiente, reduciendo el número de *bugs* que se «dejan para resolver».

D.3. IS-SSL 95

A través del análisis estático de código estático, notifica problemas de seguridad, cobertura del código, así como la duplicación y la complejidad de cada fichero en cada *commit* y *pull request*.

La integración es muy sencilla, basta con crearse una cuenta asociada con la de GitHub, y una vez que se ha verificado se añade la organización a la que se pertenece y el repositorio (público) que se desea comenzar a analizar. En caso de que el repositorio sea privado, pasados los 14 días de prueba se deberá actualizar la licencia de uso a una superior.

Figura D.4: Codacy.

En la Figura D.4 se aprecia uno de los gráficos que muestra Codacy, en este caso referido al número de *issues* detectados en el código analizado. Tal y como se muestra, se ha realizado un trabajo a lo largo del mes de febrero y marzo para obtener una librería sin fallos aumentando su mantenibiliad.

Sonar Cloud

Herramienta open source la cual permite hacer un análisis estático del código de un proyecto, entre sus fortalezas destaca su potente capacidad de ser parametrizada, entre las acciones que realiza por defecto encontramos la detección de malas prácticas, errores de código, así como problemas de seguridad que en el pasado se han visto relacionadas con alguna CVE⁵.

A pesar de que sea un proyecto *open source* no es gratuita, y como todas las herramientas de estas características incluye una versión *community* (gratuita) para aquellos proyectos que sean *open source*.

El proceso de integración es sencillo, una vez registrados y asociada la cuenta con una de GitHub, se selecciona sobre qué proyecto se desea comenzar a analizar el código. El siguiente paso es definir un conjunto de

 $^{^5\,}Common\,$ Vulnerabilities and Exposures, lista de fallos software (y hardware) que en el pasado se han utilizado para ganar ventaja de alguna manera.

reglas (si no se quiere utilizar el que se proporciona por defecto), y en cada *pull request* que se realice al repositorio, Sonar Cloud analizará todos los cambios y emitirá un informe consultable desde la web así como un comentario en la propia *pull request* con los resultados encontrados.

Figura D.5: SonarCloud.

Pruebas del sistema

Apéndice E

Documentación de usuario

E.1. Introducción

En esta sección se detallan los requerimientos de la aplicación, su instalación y despliegue (en el caso de UBUMLaaS) y se acompañan de una serie de indicaciones y consejos para su correcto uso.

De igual manera que en el Manual del Programador cada parte del proyecto, IS-SSL y UBUMLaaS, se describirá por su propio lado, de tal manera que aunque haya aspectos comunes, cada una su propia documentación de usuario.

E.2. UBUMLaaS

Requisitos de usuarios

Los requisitos mínimos para poder hacer uso de UBUMLaaS son:

- Disponer de una conexión a Internet.
- Hacer uso de navegador web con soporte a HTML5.
- Tener habilitado JavaScript en el navegador.
- Tener una cuenta en la plataforma.

Instalación

Al tratarse de un producto web no se requiere de ningún tipo de instalación. Los navegadores Google Chrome, Mozilla Firefox, Safari y Microsfot Edge son soportados¹, siempre y cuando se encuentren en versiones compatibles con HTML5 y tengan activado el uso de JavaScript.

Independientemente del dispositivo de uso (ordenador de sobremesa, portátil, tableta o móvil), se requiere de conexión a Internet como es lógico. Pero no necesita de permisos adicionales, ha sido desarrollada de tal manera que utiliza la sesión local del navegador sin necesidad del uso de *cookies*.

Aunque se hizo un intento de traducción a los lenguajes más comunes, finalmente se encuentra en inglés de forma única.

Manual del usuario

En esta sección se describe como un usuario nuevo puede registrarse en la aplicación desarrollada, iniciar sesión, crear sus propios experimentos, así como predecir nuevas etiquetas con modelos ya entrenados.

Registro

Lo primero de todo una vez se conozca la URL en la que se encuentra desplegada la aplicación, es acceder a la misma, y se llegará a una página web similar a la Figura E.1, pudiendo variar en función de la resolución del dispositivo (dispositivos móviles no son recomendados pero si tabletas).

Seguidamente se procederá a hacer *click* en cualquiera de los dos botones *Register* disponibles, en el centro de la pantalla o arriba a la derecha. Ambos redireccionarán al usuario a la página de registro, la cuál será igual a la Figura E.2.

Una vez el futuro usuario de la aplicación se encuentra en frente al formulario de registro deberá de cumplimentarlo teniendo en cuenta las siguientes restricciones:

 La dirección de correo electrónico será única en el sistema, además deberá de ser real y accesible pues a la que se mandará el correo electrónico de verificación de la cuenta.

¹Todos ellos han sido probados por el equipo de desarrollo y usuarios encuestados a los que se les proporcionó un documento de uso básico y lo usaron en sus dispositivos cotidianos.

Figura E.1: Página de inicio

Figura E.2: Página de registro

- El usuario deberá ser único en el sistema, en caso de ya existir, se le notificará cuando se registre, use su creatividad.
- La contraseña deberá tener una longitud mínima de 8 caracteres, debiendo incluir al menos una letra mayúscula, una letra minúscula, un número y un carácter especial.
- La confirmación de la contraseña implica que se debe repetir la contraseña ingresada anteriormente.
- El país deberá ser seleccionado de la lista de países disponibles, encontrándose todos ellos en inglés, la búsqueda por teclado es soportada.
- Se deberá indicar el uso que se le va a dar a la plataforma.

Finalmente una vez se pulse el botón Register el cliente recibirá un correo electrónico (revisar la carpeta de correo no deseado o SPAM) con el enlace de verificación de la cuenta que acaba de crear.

Es importante tener en cuenta que mientras la cuenta no se encuentre verificada, permanecerá inactiva. En caso de tener algún problema con la activación, se recomienda contactar con soporte desde el mismo correo electrónico con el que se registró para solucionar los problemas que hayan podido surgir.

Iniciar sesión

El proceso de inicio de sesión es tan directo como hacer *click* en cualquiera de los botones dedicados a ello en el índice principal, ver Figura E.1, y será redireccionado a la página de inicio de sesión, siendo esta última igual a la Figura E.3. Seguidamente se deberán introducir las credenciales con las que el usuario se registró y tendrá acceso al sistema.

Recuperar contraseña

En caso de que el usuario necesite recuperar su contraseña, en la página de inicio de sesión, Figura E.3, puede hacer *click* en *Forgot your password?*, en donde se redirigirá a la página de recuperación de contraseña, igual a la Figura E.4.

Introduciendo el correo electrónico y se le enviará un enlace al mismo para reestablecerla.

Figura E.3: Página de inicio de sesión

Figura E.4: Página de recuperar contraseña

Figura E.5: Índice principal de UBUMLaaS

Crear un nuevo experimento

La funcionalidad principal proporcionada por UBUMLaaS es la de crear experimentos de ML, para ello una vez se inicia sesión se llega al índice de la plataforma, tal y como aparece en la Figura E.5. Para llegar a la vista de crear un nuevo experimento se debe de hacer *click* o en el botón en mitad de la pantalla que indica *Create a new experiment*, o en la parte superior derecha, en el botón *New Experiment*. Cualquiera de los dos botones redirigirá al usuario a la vista deseada.

Llegando a una página similar a la Figura E.6 (la figura se encuentra con zoom al 90 % para poder visualizar toda la página).

En este momento el usuario podrá rellenar todos los campos del formulario para crear su experimento deseado. Se recomienda rellenar los campos en el siguiente orden:

1. Seleccionar le conjunto de datos a utilizar, pudiendo en este momento subir uno propio a la plataforma. Los nombres de los conjuntos de datos no son modificables luego asegúrese de que es correcto. En caso de subir uno propio la página se auto-actualizará en el momento en el que la carga haya sido satisfactoria. En caso de una visualización incompleta (diferente a la mostrada en la Figura E.7) se recomienda encarecidamente volver a acceder a la página y seleccionar el nuevo

Figura E.6: Vista de crear experimento

conjunto de datos desde la parte de conjuntos de datos existentes y disponibles, no siendo necesario volver a subirlo.

- 2. Seleccionar el tipo de algoritmo que se desea utilizar, disponiendo entre Clasificación, Regresión, Clasificación Semi-Supervisada, Multi-Clasificación, Clustering, o Mixed (Algoritmos compatibles con clasificación y regresión).
- 3. Seleccionar el algoritmo en concreto que desea utilizar.
- 4. Parametrizar el algoritmo tal y como se considere apropiado para el problema.
- 5. Seleccionar un filtro en caso de desear utilizarlo. Siendo estos filtros de selección de instancias.
- 6. Indicar una semilla en caso de considerarla necesaria su uso por motivos de reproducibilidad.
- 7. Indicar si se desea utilizar validación cruzada o partición en entrenamiento y pruebas. E indicación del número de *folds* o los porcentajes de partición, respectivamente.
- 8. Con todos los campos rellenos. Se puede lanzar el experimento.

El resultado debería ser similar a el representado por la Figura E.7, en el que se aprecia un experimento de clasificación con el conjunto de datos iris. Este experimento puede ser lanzado por un usuario según llega a la aplicación, puesto que todo lo que necesita se encuentra desde el minuto uno disponible.

Visualización de resultados

Llegado el momento como el lógico se querrá comprobar qué tan bien un modelo ha sido entrenado, y qué tal ha aproximado los resultados. Se disponen de dos formas de acceder a los resultados de un experimento en concreto

- Desde el perfil del propio usuario, tal y como se aprecia en la Figura E.8.
 Pulsando sobre el botón See.
- Desde el enlace recibido en un correo electrónico una vez que el experimento finalice.

Siguiendo con el experimento mostrado en la Figura E.7, en la Figura E.9 se pueden apreciar los resultados mostrados por la experimentación. Al haber sido un experimento sin validación cruzada, el sistema lo considera como si fuera una única fold, de ahí el k0, en caso de usarse validación cruzada se tendrían kn en función de la n seleccionada.

- La matriz de confusión para cada una de las posibles etiquetas.
- El auc score.
- El F1 score.
- El *kappa score*.
- El accuracy score.

Se deja como trabajo del usuario el análisis de los diferentes valores y si tienen sentido para el problema que se plantea, no siendo representado su adecuación.

			Configure E	Experiment		
		Algorith	m Type			
			Algorithm Type Classification			
			Classification			
	Lipland Dataset		Browse		Select Dataset	
	Upload Dataset			iris-classification.csv		•
		Upload				
Normal	Reduced	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Class
U	Jse	Copal Isligat (cm)	copai main (om)	potationgal (cm)	potal main (only	
Та	rget		O		()D	
		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Class
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
1	47	6.5	3.0	5.2	2.0	Iris-virginica
1	48	6.2	3.4	5.4	2.3	Iris-virginica
1	49	5.9	3.0	5.1	1.8	Iris-virginica
			Experiment rand 0 Train - Test C	0		
		Train/Te	est partition			
				•		
	Train: 70 % Test: 30 %					
			Algorithm	n Name		
IBk -						
		Knn(3)	Knn(3)			
		Weight Inverse(false)			~	
		Weight S	Weight Subtraction(false)			
			Select	Filter		

Figura E.7: Formulario de crear experimento relleno

Figura E.8: Perfil de el usuario

Predecir la clase correspondiente

Una vez que se posee un modelo entrenado, desde la página de visualización de los resultados del experimentos, Figura E.9, se puede hacer *click* sobre el botón *Predict*, siendo inmediatamente redirigidos a la página de predicción de etiquetas.

Para poder predecir se deberá subir un conjunto de datos, el cual debe poseer las mismas columnas (atributos), con exactamente los mismos nombres, un ejemplo está en la Figura E.10, siguiendo el ejemplo con el que se viene trabajando.

Y posterior a la predicción se mostrarán los resultados tal y como cabría esperar, en la Figura E.11 se muestra el ejemplo, en caso de considerar que la predicción es correcta, se mostrará en verde, en este caso todas son rojas puesto que no se garantiza su corrección.

Estadísticas de uso

Si se desean visualizar las estadísticas personales de uso de la aplicación, se debe acudir al perfil del usuario, el cuál es compartido con la lista de experimentos, desde la pantalla principal, Figura E.5, (o desde cualquier otra) se deberá pulsar en la parte superior derecha sobre el botón *Launched Experiments*, y se redirigirá al perfil.

Figura E.9: Visualización de resultados

En el perfil, Figura E.8, se pulsará sobre el botón verde debajo de la foto de perfil del usuario en el lado izquierdo, el botón muestra una cadena de texto en la que se indica *Statistics*. Seguidamente se abrirá una nueva card a la derecha, encima de todo lo que aparece, con las estadísticas del usuario. Para cerrar la vista basta con hacer *click* de nuevo sobre el botón verde o sobre la cabecera de la cart.

En la Figura E.12 se muestra un ejemplo de las estadísticas de un usuario, las comentamos al detalle a continuación:

■ Las cartas superiores son dos contadores, indican los experimentos existentes en la base de datos de la aplicación con identificador de usuario igual al usuario en cuestión. Y la segunda indica el número de conjunto de datos que el usuario posee en total, incluyendo los añadidos por defecto.

Figura E.10: Vista de antes de predecir

E.2. UBUMLaaS 109

Figura E.11: Vista después de predecir

Figura E.12: Estadísticas de usuario

- El gráfico titulado Experiments performed in the last 7 days, tal y como la traducción referencia, muestra un gráfico con el número de experimentos que se han ejecutado por parte del usuario en los últimos 7 días, siendo el valor más a la derecha el día actual.
- El gráfico de tipo *pie* muestra el número de experimentos de cada tipo que el usuario ha ejecutado.
- El gráfico de barras permite conocer el tiempo en total que los experimentos de un usuario han estado en ejecución en el sistema, estando agrupados por tipos de algoritmos. Se puede cambiar la escala de tiempo para una mayor comodidad de interpretación.

E.2. UBUMLaaS 111

Modificación de datos del usuario y actualizar contraseña

Todo usuario puede modificar sus datos personales, así como añadir una serie de datos que no son obligatorios. Para modificar los datos se realizará desde el perfil del usuario, haciendo *click* en el botón amarillo en la parte inferior izquierda, con la cadena de caracteres *Edit profile*.

En este momento se lanzará un modal el cual posee dos partes diferencias, modificación de datos personales, y en la parte inferior modificación de la contraseña.

Cuando se decida qué se quiere modificar, se deberá hacer *click* en el *checkbox* que se encuentra en la parte superior de cada formulario, lo cual habilitará la edición del mismo. Los formularios se encuentran en las Figuras E.13 y E.14, respectivamente.

Edit your data, Puente R	×
Update user data	☑
Username	Puente R
Email	p@p.es
Country	Monaco ~
Desired use	Research v
Personal Website	www.example.com
Twitter username	@example
GitHub username	example
Institution	Universidad de Burgos
LinkedIn username	example98
Google Scholar URL	https://scholar.google.com/
Keep in mind that submiting this fewith the data on each field.	orm will update ALL your data Update my data

Figura E.13: Formulario de edición de los datos de un usuario $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

E.2. UBUMLaaS 113

Figura E.14: Formulario para cambiar la contraseña de un usuario

Manual del administrador

A continuación se detallan todas las funcionalidades añadidas que posee un administrador. Un administrador es un usuario en su base, por lo tanto, todas las funcionalidades descritas en la sección anterior también hacen referencia al administrador.

NavBar de administración

Tal y como se aprecia en la Figura E.15, el administrador posee una barra de navegación lateral en toda la aplicación, permitiendo acceder a esas funcionalidades en cualquier momento desde cualquier lugar. A su vez, en la parte superior derecha posee un acceso directo a la parte de administración, el botón Administration.

En caso de querer ocultar la barra lateral de administración, ya que no se va utilizar en ese momento, en la parte superior izquierda aparece una X, haciendo *click* en ella se ocultará la barra lateral.

En las siguientes secciones se comentarán cada una de las opciones disponibles para los administradores.

Figura E.15: Vista de índice de administrador

Analytics Dashboard

Accediendo a través del botón *Dashboard* en el menú lateral, se accede a la vista de analíticas del sistema, en la que aparecen tanto estadísticas de los últimos 7 días, como globales del sistema, se puede apreciar en la Figura E.16.

Se dispone de la siguiente información:

Cartas superiores

- Número total de experimentos (los modelos) que se encuentran almacenados en el sistema.
- Número total de conjuntos de datos distintos almacenados en el sistema.
- Número de usuarios registrados en el sistema.
- Número total del países de los cuáles los usuarios han dicho ser.
- Experiments performed in the last 7 days. Igual que para el usuario, pero con las estadísticas de todos los usuarios.
- Algorithm Type Usage Distribution. Estadísticas globales del número de experimentos de cada tipo que se han ejecutado.

Figura E.16: Vista de $Analytics\ Dashboard$

- Algorithm Type Time Used. Distribución del tiempo de uso (ejecución) de los diferentes tipos de algoritmos.
- Desired Use. Estadísticas del uso que los usuarios han indicado que le van a dar primordialmente a la aplicación.
- Country Distribution. Representación de la ubicación geográfica de los usuarios. Siendo representado cada país por un único punto.
- Latests Experiments. Últimos 10 experimentos lanzados, pueden estar In Progress, o terminados, ya sea Finalized o bien Error. Mostrando la información mínima necesaria así como el usuario dueño del experimento.
- All Time Datasets Run. Comparativa del tiempo de ejecución de algunos conjuntos de datos en comparación con el número de veces que han sido ejecutados. Se puede modificar la escala de tiempo.

Users

Se accede a la página de administración de usuarios a través del botón *Users* en la barra lateral. En este panel se pueden crear, (de)activar, dar/quitar privilegios de administración, o eliminar un usuario.

Tal y como se puede ver en la Figura E.17, se soporta la búsqueda por cualquiera de los campos que se visualizan, permitiendo encontrar a aquellos usuarios que interese en «un click».

Un usuario no puede quitarse a sí mismo privilegios de administrador, ni deactivarse la cuenta, o eliminarla, teniendo que ser otro administrador el que lo haga; de esta manera el sistema siempre tendrá como mínimo un administrador.

A su vez se soporta crear un usuario haciendo *click* en el botón verde *New user*. Desplegándose un formulario y se deberán de rellenar los campos de correo electrónico, nombre de usuario, país y uso que se va a hacer; las restricciones de los campos existentes deben de seguir cumpliéndose. Al usuario se le generará una contraseña y al correo electrónico llega un correo, valga la redundancia, de activación de la cuenta, pero deberá de re-establecer la contraseña como si la hubiera olvidado antes de poder iniciar sesión por primera vez.

Figura E.17: Vista de administración de usuarios

Live System Monitor

A la monitorización del sistema en tiempo real se accede a través del botón *Live System Monitor* en la barra lateral. Cuando se hace *click* se redirecciona a una vista similar a la que aparece en la Figura E.18. En la parte superior derecha de la página a la que se llega hay un botón para activar si se quiere que la página se auto-recargue cada 60 segundos, desde el momento en el que se hace *click*.

NOTA. Es importante tener en cuenta que esta pantalla se ha diseñado para monitores de más de 23 pulgadas, por lo que su visualización en monitores de menor tamaño puede no ser óptima o encontrar ciertos solapamientos. En la Figura E.18 se aprecia la disposición correcta de todos los componentes.

La información que se muestra es la siguiente (todas las unidades que se muestran son calculadas dinámicamente, seleccionando la mayor disponible):

- Las cartas superiores muestran, de izquierda a derecha:
 - CPU Load. La carga de la CPU porcentualmente.
 - CPU Cores. El número total de núcleos del sistema.
 - Memory Load. EL uso total de la memoria en forma de gráfico.
 - Used Memory. El valor total de memoria en uso en el sistema.

Figura E.18: Vista de Live System Monitor

- Storage in use. Almacenamiento total del sistema en vista de gráfico.
- Storaged Used. El valor total de almacenamiento en uso.
- System Load 1/5/15. Cada gráfico representa la carga media del sistema en los últimos 1, 5 y 15 minutos, respectivamente.
- I/O Usage. Interrupciones de tipo Input/Output de la CPU y del disco.
- Network Usage. Tamaño total de información transmitida y recibida en el periodo de tiempo.
- Las cartas inferiores muestran, de izquierda a derecha:
 - *Uptime*. Tiempo total desde que el sistema se inició. Formato: días:horas:minutos:segundos.
 - IP Address. Dirección IP del equipo/servidor donde se encuentra la plataforma desplegada.
 - IP Public Address. Dirección IP pública del sistema.
 - IP Mask CIDR. Máscara de subred en formato CIDR.
 - *Total Processes*. Número total de procesos que existen en el sistema en ejecución.
 - Total Threads. Número total de hilos en el sistema.

E.3. IS-SSL 119

E.3. IS-SSL

Requisitos de usuarios

Los requisitos mínimos para poder hacer uso de IS-SSL son:

- Tener instalado Python 3.7+.
- Tener instalado y configurado PIP o Conda.
- Disponer de un editor de textos.
- Tener instaladas las bibliotecas necesarias para su correcto funcionamiento.

Instalación

Por comodidad para el usuario, IS-SSL se ha dividido en dos bibliotecas, una formada por los algoritmos de selección de instancias, y una segunda por aquellos algoritmos de aprendizaje semi-supervisado.

El proceso de instalación de cualquiera de las dos bibliotecas es muy sencillo, siendo integrable en cualquier fichero de requerimientos, ya sea para PIP o Conda.

Las dos bibliotecas se encuentran publicadas en PyPI² desde su versión 1.0, la cual fue una primea versión alpha estable con los primeros algoritmos publicados. La versión 3.0 es la versión estable (la final) que se ha publicado.

Para realizar la instalación se deben seguir los siguientes pasos para cualquier LIB, LIB \in { IS-DNX, SSL-DNX}.

- 1. Acceder a PyPi, desde [3].
- 2. Introducir en el campo de búsqueda «LIB».
- 3. Seleccionar la biblioteca correspondiente de entre la lista mostrada.
- 4. Copiar el comando de instalación.
- 5. Abrir una terminal con soporte a Python y PIP.
- 6. Introducir el comando copiado.

 $^{^2}Python\ Package\ Index$ es un repositorio de software para el lenguaje de programación de Python.

Figura E.19: Vista de la biblioteca de algoritmos de selección de instancias en PyPI.

Figura E.20: Vista de la biblioteca de algoritmos de aprendizaje semisupervisado en PyPI.

- 7. En caso de que se nos pregunte si se quiere proceder con la descarga, indicar que sí con una S en caso de que esté en español, o con Y en el caso inglés/internacional.
- 8. Cuando finaliza la instalación, la biblioteca se encontrará lista para su uso.

Manual del usuario

A continuación se documentan las funcionalidades de las bibliotecas, desde su importación, a uso y especificación de los diferentes parámetros de entrada y salida esperados. A modo de resumen se puede destacar que E.3. IS-SSL 121

```
(base) → ~ pip install IS-DNX
Collecting IS-DNX
  Downloading IS_DNX-0.1.3-py3-none-any.whl (2.3 kB)
Installing collected packages: IS-DNX
Successfully installed IS-DNX-0.1.3
```

Figura E.21: Instalación de la biblioteca de selección de instancias.

```
(base) → ~ pip install SSL-DNX
Collecting SSL-DNX
   Downloading SSL_DNX-0.1.3-py3-none-any.whl (2.2 kB)
Installing collected packages: SSL-DNX
Successfully installed SSL-DNX-0.1.3
```

Figura E.22: Instalación de la biblioteca de semi-supervisado.

todos los algoritmos siguen la misma estructura interna luego el aprendizaje y familizarización es relativamente rápido.

Biblioteca de algoritmos de selección de instancias

Importar

Para poder trabajar con los algoritmos de selección de instancias se deben de importar en el fichero en el que se quieran utilizar. Para ello se importan como cualquier otro paquete de Python, supongamos que queremos utilizar el algoritmo ENN, lo importaremos de la siguiente manera:

```
from InstanceSelectionDNX import ENN
```

De esta forma podemos sustituir ENN por el algoritmo que deseemos de entre los disponibles y tenerlo a nuestra disposición para su uso.

Todos los algoritmos están codificados como class por lo tanto se debe de instanciar antes de poder hacer uso del mismo.

Uso

Como se ha comentado al comienzo, todos los algoritmos poseen la misma estructura. Todos ellos poseen el método filter de tal manera que una vez se haya instanciado se podrá llamar al método y se obtendrá como resultado el conjunto de datos reducido.

Todos los algoritmos en su instanciación reciben aquellos parámetros que son necesarios para la configuración y su uso posterior, mientras que cuando se realiza el filtrado únicamente reciben el conjunto de datos dividido, por un lado los atributos y por otro lado la clase.

Tanto las entradas como las salidas deben ser objetos de tipo DataFrame de Pandas.

Listing E.1: Ejemplo de uso de ENN

Biblioteca de algoritmos de aprendizaje semi-supervisado

Importar

De manera análoga a la otra biblioteca, importaremos el paquete y seleccionaremos cuál es el algoritmo que se desea utilizar, por ejemplo:

```
from SemiSupervisedLearningDNX import TriTraining
```

Pudiendo sustituir TriTraining por el algoritmo deseado.

Todos los algoritmos están codificados como class por lo tanto se debe de instanciar antes de poder hacer uso del mismo.

Uso

Los algoritmos siguen la misma estructura interna que los propios de Scikit-Learn, por lo que una vez instanciados (con sus respectivos parámetros de configuración) bastará con llamar al método fit de cada uno de ellos, así como para predecir al método correspondiente, denominado predict.

E.3. IS-SSL 123

• Fit: recibe como argumentos dos parámetros, las instancias y las etiquetas o clases, siendo -1 aquellas que se desconozcan y se quieran utilizar para entrenar el algoritmo.

• **Predict:** recibe únicamente las instancias que se quieren etiquetar. Devuelve estas instancias etiquetadas.

Todas las entradas como las salidas deben ser objetos de tipo DataFrame de Pandas.

```
from SemiSupervisedLearningDNX import TriTraining
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
model = TriTraining(
  random_state = 42,
  c1 = GaussianNB, c1_params = None,
  c2 = KNeighborsClassifier, c2_params = {n_neighbors: 2}
iris = load_iris()
X = iris['data']
y = iris['target']
X = pd.DataFrame(X), y = pd.DataFrame(y)
val = [True if i % 2 == 0 else False for i in range(len(y))]
y.loc[val] = -1
X, X_test, y, y_test = train_test_split(X.to_numpy(),
   y.to_numpy())
X = pd.DataFrame(X), y = pd.DataFrame(y)
model.fit(X, y)
y_pred = model.predict(X_test)
```

Listing E.2: Ejemplo de uso de IS-SSL

Bibliografía

- [1] Pycharm. https://www.jetbrains.com/pycharm/.
- [2] Python download. https://www.python.org/getit/.
- [3] Python package index. https://pypi.org/.
- [4] Remote ssh. https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh.
- [5] Salario medio investigador españa. https://es.indeed.com/career/investigador/salaries.
- [6] Salario medio programador junior españa. https://es.indeed.com/career/programador-junior/salaries.
- [7] Scikit-learn nearest neighbors. sklearn.neighbors.NearestNeighbors.
- [8] Travis-ci ubumlaas. https://app.travis-ci.com/github/dpr1005/UBUMLaaS.
- [9] Visual studio code. https://code.visualstudio.com/.
- [10] Ricardo Barandela, Francesc J Ferri, and J Salvador Sánchez. Decision boundary preserving prototype selection for nearest neighbor classification. *International Journal of Pattern Recognition and Artificial Intelligence*, 19(06):787–806, 2005.
- [11] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In *Proceedings of the eleventh annual conference on Computational learning theory*, pages 92–100, 1998.

126 Bibliografía

[12] Henry Brighton and Chris Mellish. Advances in instance selection for instance-based learning algorithms. *Data mining and knowledge discovery*, 6(2):153–172, 2002.

- [13] H Frank Cervone. Understanding agile project management methods using scrum. OCLC Systems & Services: International digital library perspectives, 2011.
- [14] Ministerio de Empleo y Seguridad Social. Bases y tipos de cotización 2022.
- [15] Geoffrey Gates. The reduced nearest neighbor rule (corresp.). *IEEE transactions on information theory*, 18(3):431–433, 1972.
- [16] Marek Grochowski and Norbert Jankowski. Comparison of instance selection algorithms ii. results and comments. In *International Conference on Artificial Intelligence and Soft Computing*, pages 580–585. Springer, 2004.
- [17] Peter Hart. The condensed nearest neighbor rule (corresp.). *IEEE transactions on information theory*, 14(3):515–516, 1968.
- [18] IEEE. Ieee recommended practice for software requirements specifications. *IEEE Std 830-1998*, pages 1–40, 1998.
- [19] IEEE. Systems and software engineering—software life cycle processes—part 2: Relation and mapping between iso/iec/ieee 12207:2017 and iso/iec 12207:2008. *IEEE Std 12207-2-2020*, 2020.
- [20] ISTR Ingeniería Software y Tiempo Real. Ieee830-esp ctr.unican.es, 2020.
- [21] Norbert Jankowski and Marek Grochowski. Comparison of instances seletion algorithms i. algorithms survey. In *International conference on artificial intelligence and soft computing*, pages 598–603. Springer, 2004.
- [22] Enrique Leyva, Antonio González, and Raúl Pérez. Three new instance selection methods based on local sets: A comparative study with several approaches from a bi-objective perspective. *Pattern Recognition*, 48(4):1523–1537, 2015.
- [23] Junnan Li, Qingsheng Zhu, and Quanwang Wu. A self-training method based on density peaks and an extended parameter-free local noise filter for k nearest neighbor. *Knowledge-Based Systems*, 184:104895, 2019.

Bibliografía 127

[24] Huan Liu and Hiroshi Motoda. On issues of instance selection. *Data Mining and Knowledge Discovery*, 6(2):115, 2002.

- [25] Microsoft. Remote development tips and tricks, 2022.
- [26] Dan Radigan. El backlog del producto: la lista de tareas pendientes definitiva, 2021.
- [27] Julio Roche. Scrum: roles y responsabilidades, 2020.
- [28] D Randall Wilson and Tony R Martinez. Reduction techniques for instance-based learning algorithms. *Machine learning*, 38(3):257–286, 2000.
- [29] Di Wu, Mingsheng Shang, Xin Luo, Ji Xu, Huyong Yan, Weihui Deng, and Guoyin Wang. Self-training semi-supervised classification based on density peaks of data. *Neurocomputing*, 275:180–191, 2018.
- [30] Di Wu, Mingsheng Shang, Xin Luo, Ji Xu, Huyong Yan, Weihui Deng, and Guoyin Wang. Self-training semi-supervised classification based on density peaks of data. *Neurocomputing*, 275:180–191, 2018.
- [31] Yan Zhou and Sally Goldman. Democratic co-learning. In 16th IEEE International Conference on Tools with Artificial Intelligence, pages 594–602. IEEE, 2004.
- [32] Zhi-Hua Zhou and Ming Li. Tri-training: Exploiting unlabeled data using three classifiers. *IEEE Transactions on knowledge and Data Engineering*, 17(11):1529–1541, 2005.