Fungal distributions

Topics (just the very basics):

- Where are fungi found and how do they get around?
- Do they have biogeographic patterns?
- Baas-Becking, moderate endemism, strong biogeography
- Dispersal vs environmental limitations
- The future of fungal distributions and why we might care

-- Baas-Becking and Beijerinck

"There are lots of cosmopolitan fungi, but plenty that have restricted geographies..."

-- Moderate endemism model

"The distributions of most fungi reflect the same major dispersal barriers (e.g. oceans and mountains) that drive vicariance events in other organisms..."

-- Strong biogeogrpahy

Which hypothesis best explains each of these maps?

Potential dispersal barriers

Mycologia, 103(6), 2011, pp. 1175–1183. DOI: 10.3852/10-388 © 2011 by The Mycological Society of America, Lawrence, KS 66044-8897

95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study

Lack of vectors (wind, water, animals, etc.) Mountain ranges Oceans Deserts

Potential dispersal helpers

Proc Natl Acad Sci U S A. 2016 Mar 15; 113(11): 2833-2838.

Published online 2016 Feb 29. doi: 10.1073/pnas.1509612113

Applied Physical Sciences, Biophysics and Computational Biology

PMCID: PMC4801285

PMID: 26929324

Mushrooms use convectively created airflows to disperse their spores

Emilie Dressaire, a Lisa Yamada, Boya Song, and Marcus Roper C,1

Insects. 2016 Jun; 7(2): 16.

Published online 2016 Apr 22. doi: 10.3390/insects7020016

PMCID: PMC4931428

PMID: 27110827

Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference to *Pseudogymnoascus destructans*

Karen J. Vanderwolf, 1,2,* David Malloch, 1 and Donald F. McAlpine 1

Wind Insects Birds Water Humans

Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic

Filipa Cox X, Kevin K. Newsham, Roland Bol, Jennifer A. J. Dungait, Clare H. Robinson

First published: 02 March 2016 | https://doi.org/10.1111/ele.12587 | Citations: 36

The spread of a wild plant pathogen is driven by the road network

Elina Numminen , Anna-Liisa Laine

Published: March 31, 2020 • https://doi.org/10.1371/journal.pcbi.1007703

Tomáš Větrovský, et al., 2019

Golan and Pringle

FIGURE 2 Sizes of fungal spores and other airborne particles. Some species are wind dispersed (e.g., *P. graminis*), while others have other means of dispersal (e.g., *Gigaspora rosea*). The smallest plant seed, *Wolffia angusta*, the pollen grains of *Hibiscus syriacus* and *T. aestivum*, and a glomerospore of the arbuscular mycorrhizal *Gigaspora rosea* are provided for comparison. Species labeled with an asterisk are not fungi.

Trait-based aerial dispersal of arbuscular mycorrhizal fungi

V. Bala Chaudhary 🗓 , Sarah Nolimal , Moisés A. Sosa-Hernández , Cameron Egan , Jude Kastens

First published: 18 May 2020 | https://doi.org/10.1111/nph.16667 | Citations: 1

(a)

Intraradical hyphae

vesicles

extraradical hyphae

At 20 m elevation, airbourne AMF spores were smaller...

... but not more melanized or ornamented

Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory

Laura Tipton^{a,1}, Geoffrey Zahn^{b,1}, Erin Datlof^c, Stephanie N. Kivlin^d, Patrick Sheridan^e, Anthony S. Amend^f, and Nicole A. Hynson^{a,2}

^aPacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822; ^bBiology Department, Utah Valley University, Orem, UT 84058; ^cDepartment of Biology, University of Hawaii at Hilo, Hilo, HI 96720; ^dDepartment of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996; ^eAerosol Group, Earth System Research Laboratory, Global Monitoring Division, National Oceanic and Atmospheric Administration, US Department of Commerce, Boulder, CO 80305; and ^fDepartment of Botany, University of Hawaii at Manoa, Honolulu, HI 96822

Backtracking fungal spores over last known land mass

We found absolutely no enrichment for size, color, shape, ornamentation, etc.

Assignments

- 1. Read Bacigalupe, et al., 2017
 - This is a look at chytrid dispersal, climate change, and amphibians
- 2. You will have a Canvas quiz on the assigned reading and will also have to participate in a Slack discussion about it.
- 3. Keep working on your lab assignments