ITE3003	Para	dlel Processing L T P J C
		3 0 0 4 4
Pre-requisite	ITE2001	Syllabus version
		1.0
Course Object	ives:	
To learn	n to develop parallel algorithms	and map them with processor architectures
To under	erstand the parallelization of ba	sic mathematical and engineering algorithms
To learn	the contemporary parallel arcl	hitectures and their programming
Expected Cou	rse Outcome:	
1) Parallel	ize basic algorithms and analyz	te their speedup and efficiency.
,	and the properties of various based on performance require	interconnection networks and suggest the suitable
		d scheduling of tasks to appropriate processors fo
	fficiency	a sensualing of mains to appropriate provisions to
4) Develop	and analyze summation algori	thms for different parallel processing architectures.
5) Design	matrix multiplication algorithm	s for various SIMD and MIMD architectures.
6) Design	an efficient sorting algorithm for	or a given parallel architecture.
7) Elabora	te various searching techniques	and sorting algorithms.
8) Design	the applications for modern par	rallel architectures.
	ing Outcomes (SLO): 1, 2,	
		nathematics, science, and engineering
		et related concepts and of contemporary issues
[9] Having pro	blem-solving ability solving so	cial issues and engineering problems
N. 1.1.1 B	A.R 4/2	
	am Algorithms	9 hour
	· ·	to Flynn's Taxonomy-PRAM model of paralle
_		ing theorem -Parallel reduction – prefix sums – lis
		o sorted lists – graph coloring – reducing processor
-Brent's theore	III.	
Module:2 Pr	ocessor Networks	4 hour
Mesh Network	s – binary tree – hyper tree –	pyramid – butterfly – hypercube – cube connected
	ffle exchange networks – De B	**
Mr. J1. 2 34		
	apping and Scheduling	5 hour
iviapping data	to processors: Embedding – D	ilation – Ring to 2D mesh -2D mesh to 2Dmesh -

Binary tree to 2D mesh – Binomial tree to 2Dmesh – Embedding graphs to hypercubes – binary tree to hypercubes – Binomial tree to hypercubes – rings and mesh to hypercubes. Static scheduling on

nams scheduling algorithm.	nan Grahan	ls. Grahams list scheduling algorithm. Coffi	
5 hour		Summation Algorithms	Module:4
_		SIMD model – shuffle exchange SIMD	
- Binomial tree communicatio	roadcast -	algorithm – UMA summation model – B	
			pattern.
6 hour		Matrix Multiplication Algorithms	Module:5
orems -Hypercube SIMD model	ated theores	iplication on 2D Mesh SIMD model - Rel	Matrix mu
Block matrix multiplication	essor – B	hange SIMD model - UMA Multiproc	shuffle ex
l algorithms.	oriented al	for multicomputer – Row-column and block	Algorithms
6 hour		Sorting	Module:6
	<u> </u> _ Odd Eve	sort – Lower bounds on Parallel sorting	
*		uence – Bitonic merge on shuffle exchange	
		e network – Parallel quicksort – Recurrence	-
3 31 1	1	1	J1
7 hour		Searchiing and Graph Algorithms	
, nour		Scarening and Graph Mgoriening	Module:7
	r's algorith	ch – Ellis's algorithm – Manber and Ladne	
ithms. P- Depth Search – Breadt	_	<u> </u>	Parallel sea
ithms. P- Depth Search – Breadt h – single source shortest path	rtest path -	rch – Ellis's algorithm – Manber and Ladne	Parallel sea Depth Sear
ithms. P- Depth Search – Breadt h – single source shortest path	rtest path -	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho	Parallel sea Depth Sear
ithms. P- Depth Search – Breadt h – single source shortest path gorithm.	ortest path - skal's algori	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho ost spanning tree – Sollin's algorithm – Kru	Parallel sea Depth Sea Minimum
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour	ortest path - skal's algori	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho ost spanning tree – Sollin's algorithm – Kru Contemporary issues:	Parallel sea Depth Sea Minimum
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour	ortest path - skal's algori	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho ost spanning tree – Sollin's algorithm – Kru Contemporary issues: Total Lecture	Parallel sea Depth Sea Minimum
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour	ortest path - skal's algori	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho ost spanning tree – Sollin's algorithm – Kru Contemporary issues: Total Lecture	Parallel sea Depth Sea Minimum Module:8 Text Book
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour	ortest path - skal's algori	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho ost spanning tree – Sollin's algorithm – Kru Contemporary issues: Total Lecture I S) I J. Quinn, Parallel computing theory and	Parallel sea Depth Sea Minimum o Module:8 Text Book 1. Micha
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour 45 houre, McGraw Hill, Second Edition	nours:	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho ost spanning tree – Sollin's algorithm – Kru Contemporary issues: Total Lecture I S) I J. Quinn, Parallel computing theory and	Parallel sea Depth Sean Minimum of Module:8 Text Book 1. Micha 2012. Reference
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour 45 houre, McGraw Hill, Second Edition	nours:	ch – Ellis's algorithm – Manber and Ladne ch – Connected components –All pairs sho ost spanning tree – Sollin's algorithm – Kru Contemporary issues: Total Lecture I S) I J. Quinn, Parallel computing theory and Books	Parallel sea Depth Sean Minimum of Module:8 Text Book 1. Micha 2012. Reference 1. David
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour 45 hour e, McGraw Hill, Second Edition y Parallel Processors: A Hands-o	nours: practice, Massively P	Contemporary issues: Total Lecture I Sooks Books Kirk, Wen-mei W. Hwu, Programming N	Parallel sea Depth Sean Minimum of Module:8 Text Book 1. Micha 2012. Reference 1. David Appro
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour 45 hour 4, McGraw Hill, Second Edition y Parallel Processors: A Hands-o ting (Scientific and Engineerin	practice, Massively P	Contemporary issues: Total Lecture I Sooks B. Kirk, Wen-mei W. Hwu, Programming M. Ch, MK Publishers, 2010. Balaji, Programming Models for Parallel tation), MIT Press, 2016	Parallel sea Depth Sean Minimum of Module:8 Text Book 1. Micha 2012. Reference 1. David Appro 2. Pavan Composition
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour 45 hour 4, McGraw Hill, Second Edition y Parallel Processors: A Hands-o ting (Scientific and Engineerin	practice, Massively P	Contemporary issues: Total Lecture I Sooks B. Kirk, Wen-mei W. Hwu, Programming M. Ch, MK Publishers, 2010. Balaji, Programming Models for Parallel tation), MIT Press, 2016 Amestoy, Daniela di Serafino, Rob Bisselin	Parallel sea Depth Sean Minimum of Module:8 Text Book 1. Micha 2012. Reference 1. David Appro 2. Pavan Compt 3. Patrick
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour 45 hour 4, McGraw Hill, Second Edition y Parallel Processors: A Hands-o ting (Scientific and Engineerin	practice, Massively P	Contemporary issues: Total Lecture I Sooks B. Kirk, Wen-mei W. Hwu, Programming M. Ch, MK Publishers, 2010. Balaji, Programming Models for Parallel tation), MIT Press, 2016 Amestoy, Daniela di Serafino, Rob Bisselin cal Algorithms, Springer, 2010	Parallel sea Depth Sean Minimum of Module:8 Text Book 1. Micha 2012. Reference 1. David Appro 2. Pavan Compi 3. Patrick Numei
ithms. P- Depth Search – Breadth – single source shortest path gorithm. 3 hour 45 hour 4, McGraw Hill, Second Edition y Parallel Processors: A Hands-o ting (Scientific and Engineerin	practice, Massively P	Contemporary issues: Total Lecture I Sooks B. Kirk, Wen-mei W. Hwu, Programming M. Ch, MK Publishers, 2010. Balaji, Programming Models for Parallel tation), MIT Press, 2016 Amestoy, Daniela di Serafino, Rob Bisselin	Parallel sea Depth Sean Minimum of Module:8 Text Book 1. Micha 2012. Reference 1. David Appro 2. Pavan Composition 3. Patrick Numer Recomment