- 1、上周讲解了开行方案的相关概念,主要从内容上和输出结果两个方面,并且结合中国高铁的车次,讲解了什么是开行方案,如果还有不清楚的,可以提问。现在从输入和数据结构的角度去讲解开行方案的求解模型。当然,这里面我有很多还是不理解的,希望有人给指点指点。
- 2、开行方案是根据路网的 OD 需求,求解出应该开行哪些列车,在哪里停站,将这些 OD 的人带上。同时,运营的成本最小化。这是一个简单的理解。因此,输入的数据需要好几个方面,一点一点的拆开分析,并结合数据结构一起讲解。
- 3、首先需要路网的数据,还有 OD 的数据。这两个数据是固定的,针对你要研究的对象,不管是一根线,还是带分支的一根线(树形结构),或者是一个路网。因此,输入数据必须有两个固定的,OD matrix (OD 矩阵)和 net matrix (铁路网的矩阵)。4、OD 矩阵的数据表达分两种:一种是对称的,一种是非对称的。就是各个站点之间的数据往来,比如北京到南昌和南昌到北京的一天的客流量。如果从现实的角度来说,应该是非对称的。我们看看论文案例,有哪些对称的,哪些非对称的。非对称的比较少,如:
- [1] 查伟雄, 符卓. 直通旅客列车开行方案优化方法的研究[J]. 铁道学报, 2000, 22(5): 1-5. 看网络图和 OD 数据:

图 1 路网结构示意图

表 1 各点对之间的旅客 O-D流量

O-D	1	2	3	4	5	6	7	8	9	10	11	12	13
1		214	153	316	342	295	388	901	243	763	79	41	794
2	108		69	29	193	74	211	156	32	321	67	33	14
3	153	47		52	67	127	39	124	18	36	53	41	29
4	241	113	67		71	54	47	33	167	42	61	35	313
5	317	153	46	19		48	193	42	73	210	97	37	33
6	235	61	117	67	34		72	236	13	34	29	37	15
7	346	262	94	39	143	61		49	62	112	16	57	66
8	693	67	276	57	93	140	58		37	135	42	65	391
9	217	46	28	153	76	49	32	64		77	58	24	146
10	611	246	73	49	168	57	125	520	28		267	238	423
11	32	69	56	65	39	27	53	102	59	127		106	237
12	46	41	23	62	96	73	25	80	61	158	214		119
13	742	27	59	127	28	41	20	77	163	957	238	142	

对称的 OD 数据,看例子:

[1] 贾晓秋, 关晓宇. 客运专线网络列车开行方案模型与算法研究[J]. 系统工程学报, 2011, 26(2): 216-221.

Fig. 1 Structure of railway network

表 1 车站之间OD客流表(单位:人) Table 1 OD passenger flow between stations

	2	3	4	5	6	7	8
1	1 000	500	1 100	900	425	800	400
2		450	1 800	2 450	500	1 900	350
3			950	1 150	350	750	550
4				1 700	600	2 500	250
5					500	2 050	450
6						925	475
7							575

这篇论文的例子就十分明显,铁路网络是对称的, OD 数据也是对称的。

5、有了这两个基础数据,那么还需要什么呢?其实还需要高铁的车次数据表达,怎么说,就是停靠站的数据表达,用什么表达?一般用什么表达有多少趟车呢,或者说我们所求的停靠站方案?用矩阵,如果是有 20 个方案,有 30 个站点,那么就是 20*30 的矩阵。但是,问题来了,我们所求的开行方案到底是怎么个针对性的方案呢,用这些表达,能够真实的还原我们的高铁网络吗? 6、看例子,怎么表达开行方案的停靠站。

Wang L, Jia L-m, Qin Y, Xu J, Mo W-t. A two-layer optimization model for high-speed railway line planning[J]. Journal of Zhejiang University SCIENCE A, 2011,12(12): 902-912.

在这篇浙大英文版的论文中,应该是说的最清楚的一个表达停靠站方案的文章。为什么呢?因为他图形化了表达方式。看图:

	Frequency				Stop-schedules								
String 1	String 2	String U		Station 1	Station 2	Station 3	Station 4	Station 5		Station N- 1	Station N	Stations	
3	4	5		1	0	0	0	0		0	1	Schedule 1	
5	6	1		1	0	0	1	0		0	0	Schedule 2	
0	3	2		1	0	1	0	1		0	1	Schedule 3	
ŧ	:	:						:					
2	1	7		0	0	0	1	1		1	1	Schedule M	

Fig. 2 Representation of stop-schedules

我们可以看到,stop-schedule就是停靠站方案。图中表达了是有M个停靠站方案:在那个站点停靠,就用1表示;不停靠,就用0表示。我们看看论文中的模型表述是怎么样的,看图:

 y_j : If train j exists in the line plan, then $y_j = 1$; otherwise, $y_j = 0$.

 $x_{j,i}$: If train j stops at station i in the line plan, then $x_{j,i}=1$; otherwise, $x_{j,i}=0$.

 $o_{j,i}$: If the start station of train j is station i, then $o_{j,i}=1$; otherwise, $o_{j,i}=0$.

可以看到, $X_{j,i}$ 表示的就是整个停靠站方案,总共有 j 个方案,i 代表的是 stops(station)。换句话说,如果有 30 个站点,有 20 个方案,那么 j=20,i=30。

继续,看其他的案例,看图:

Chang Y H YCH, Shen C C. A multiobjective model for passenger train services planning application to Taiwan's high-speed rail line[J]. Transportation Research Part B Methodological, 2000,34(2): 91-106.

On a passenger train service line with a set of N stations $\Omega = \{1, 2, ..., N\}$, train trips are to be provided by a fleet of n trains which are operated according to a set of R stop-schedules within a planning horizon T. There are a set of shunting stations Φ ($\Phi \in \Omega$), including stations I and I0, which can be used as a start or end station from which a train trip starts or ends. The running time between any two stations is fixed. The fixed overhead cost C_1 (per train-day) and the variable operating cost C_2 (per train-km) are given, and are independent of the mode of operation.

在这篇论文里面,说明了 train lines 是用的 R stop-schedules 表达的,整个路网的 stations 有 N 个,因此使用的 R*N 矩阵表达。但是,这里提到了 a fleet of n trains,这个没有看懂(希望大家把那个我解决一下)。还有一个比较有用的信息是 shunting station。按照我的理解,应该是中转站,或者是网络图中的节点(Vertex),这些站点是可以用来作为起始站或者终点站的。怎么解释呢?我们具体话来说一下:

论文中,总共有 7 个站点,是不是没有站点都能作为起始和终点站点呢?答案是否定的,我们再看看结果图:

Table 3 Optimal train service plan for the 7-station case

r	Minimizing operating co	st (Z_1)	Minimizing travel time le	oss (Z_2)	Minimizing Z_1 and Z_2		
	Stop-schedule	$f_{ m tr}$	Stop-schedule	$f_{ m tr}$	Stop-schedule	$f_{ m tr}$	
1	1 – 7	3	1 – 7	2	1 – 7	2	
2	1 - 3 - 4	1	1 - 4	3	1 - 6 - 7	1	
3	1 - 4 - 5 - 7	2	1 - 2 - 6 - 7	2	1 - 3 - 4	1	
4	1 - 2 - 4 - 6 - 7	3	1 - 2 - 4 - 5 - 7	1	1 - 4 - 5 - 7	2	
5	1 - 2 - 3 - 5 - 6 - 7	1	1 - 2 - 3 - 5 - 6 - 7	1	1 - 2 - 3 - 5 - 6 - 7	1	
6			1 - 3 - 5 - 6 - 7	2	1 - 2 - 4 - 6 - 7	3	
n	42		44		43		
Z_1 (NT\$)	14314 613		15000 705		14515 965		
Z_2 (h)	9068.00		3708.20		8058.04		

r: stop-schedule type; f_{tr} : service frequency; n: fleet size.

从图中,可以看到,其实站点就是 1,终点站是 4 或者 7。这么说 1,4,7 都可以作为起始站和终点站?看论文中的说明:

Table 1 Input parameters of the model

input parameters of the moder	
Parameter	Value (NT\$: New Taiwan Dollar) (US\$1 \approx NT\$32)
Set of stations (Ω)	{1,2,3,4,5,6,7}
Set of shunting or terminal stations (Φ)	{1,4,7}
Operating hours (H_t)	1 h
Terminal time required (G_r)	45 min/train (round trip)
Train seating capacity (Q_{tr})	800 seats/train
Service line and station capacity (E)	15 trains/h
Extra time required for stops at stations (W_i)	3 min/station
Fixed overhead cost (C_1)	NT\$201353/train-day
Variable operating cost (C_2)	NT\$91459/train-km

但是,结果是4没有作为起点(往7方向的)。但是,在

Wang L, Jia L-m, Qin Y, Xu J, Mo W-t. A two-layer optimization model for high-speed railway line planning[J]. Journal of Zhejiang University SCIENCE A, 2011,12(12): 902-912.

论文中,我们可以看到,4是可以作为起点到7点的。

Fig. 5 Optimal line plan of the Taiwan High-Speed Railway (HSR)

7、停靠站方案,除了要表示停靠站,还要确定哪些是起讫点。因此,我们再来细化起讫点的问题,就是说如何确定起讫点,是认为的,还是通过模型和算法确定的呢?先看:

Wang L, Jia L-m, Qin Y, Xu J, Mo W-t. A two-layer optimization model for high-speed railway line planning[J]. Journal of Zhejiang University SCIENCE A, 2011,12(12): 902-912.

这篇论文中,除了台湾的一根线,还说了北京到上海的京沪 线,我们可以看看实际的网络图:

这个是实际的图,再来看看论文中的图:

Fig. 6 Railway network around the Beijing-Shanghai High-Speed Railway (HSR)

为了好对比,缩小两个图,放在一张图上:

在论文中,只用了几个站点(北京、天津、济南、南京和上海)做起讫点:

Fig. 8 Optimal line plan of the Beijing-Shanghai High-Speed Railway (HSR)

Stations 1, 3, 6, 14, and 20 are the major stations which can be used as a start or an end station. Lines with points (stops) and arrows denote different stop-schedules with the figures on the left of the lines meaning the service frequencies of the stop-schedules

为什么只选定这么几个点,不是很清楚,没有数据的依据。这个是针对一根线路的开行方案的优化,我们再来看看网络图中

的开行方案的优化。

8、网络开行方案优化,首选的还是

贾晓秋, 关晓宇. 客运专线网络列车开行方案模型与算法研究[J]. 系统工程学报, 2011, 26(2): 216-221.

这篇论文中,是忽略了中间站点的,网络图中的站点都可以作为起讫点来看待的。看图:

表 3 开行方案表 Table 3 Table of train line planning

		_							_
	<u> </u>	2	3	4	5	6	7	8	9
列车等级OD/等级	1-2/C	1-3/C	1-4/C	1-7/C	1-8/C	2-3/C	2-4/C	2-4/B	2-5/C
停站方案	1-2	1-3	1-4	1-4-7	1-4-7-8	2-3	2-3-4	2-1-4	2-5
频率/对	2	1	2	1	1	1	2	2	1
列车等级OD/等级	2-5/B	2-7/C	2-7/B	2-7/A	3-4/C	4-5/C	4-5/B	4-6/C	4-7/C
停站方案	2-5	2-1-4-7	2-3-6-7	2-3-6-7	3-4	2-5	4-1-2-5	4-7-6	4-7
频率/对	7	2	1	2	1	2	1	1	1
列车等级OD/等级	4-7/B	5-6/C	5-7/C	5-7/B	5-8/C	6-8/C	7-8/C		
停站方案	4-7	5-6	5-6-7	5-6-7	5-8	6-8	7-8		
频率/对	2	1	2	2	1	1	1		

注: 表中"列车等级OD / 等级"为 1 - 2/C, "停站方案"为 1 - 2, "频率/对"为 2表示在车站 1 和 2 之间开行C类频率为2的列车.

每个点都作为了始发站(除了8点),但是这个是可以反向的, 所以都可以作为始发站点。而且根据结果,可以看出,这种开 行方案是"站站停"的开行方案(可能站点都是大站,必须 停),这样就简化了模型。

那么,有没有相同的网络图,但是优化后,不是每个站点都挺的方案?有,我们看一下:

查伟雄, 符卓. 直通旅客列车开行方案优化方法的研究[J]. 铁道学报, 2000, 22(5): 1-5. 我们看看案例的网络图:

图 1 路网结构示意图

网络中的中间站点也是省略掉的,但是根据OD流量,得到只有几个站点才可以作为起讫点,看结果:

计算得最优的开行方案: +> 10, 10> 1, +> 13, 13 -> 1, +> 8, 8> 1, 13> 10, 10> 13

这几个站点是1、8、10、13,就通过这几个站点之间开车,就可以把所有站点的旅客捎带上(问查老师^_^)? 当然,论文中提及的是开不开的方案,没有具体涉及到停靠站的方案和频率的方案。从这角度上,我觉得我可以根据这个模型或者算法,自动的得到网络图中哪些站点对之间应该开行,然后再具体怎么开行(这个是后话,应该可以写一篇论文,把查老师的这个模型从另外一个角度修改优化一下的话)。

9、那还有没有其他的案例。继续:

陈路锋, 宋瑞, 何世伟, 等. 基于双层规划模型的高速铁路列车开行方案优化研究[1]. 铁道运输

图 2 算例铁路网示意图

树形的网络结构,总共11个站点,看优化结果:

开行线路	列车种类	列车开行频率
0—1—3—5—6—8	A	18
2—1—3—5—6—8—9	A	3
0—1—3—4	A	4
2—1—3—5—6—7	A	3
7—6—8—9	В	2
6—10	A	2
6—7	В	2
8—9	A	25
4—3—5—6—8	В	2
10—6	В	18

表 3 列车开行方案

起讫点包括: 0、2、7、6、8、4、10。有8的存在,说明中间站 点也可以作为起讫点的。这个案例的方案优化,是没有指明, 各个站点之间的区别,或者说是站点的级别问题,有的论文是 直接给出了站点的级别,顺便将这些站点做为起讫点(比如以前讲的英文版本的论文);有的论文是没有给出来的,直接通过优化模型和算法来进行判断的(比如这篇文章)。

10、通过前面的论述,我们知道了开行方案的数据结构表达, 就是用matrix来表示。那么问题继续来了,因为给了网络图,我 们可以确定有多少个站点,也就是说,有多少列(i, i)我可以 确定,但是有多少行(方案)怎么确定呢?三种方法:要么就 按查老师的,直接算出来,就可以知道有几个方案(其实还是 不能确定有几个方案,只能知道从哪里O要开到哪里D去),因 为停站方案还是没有给出来的;要么就是按贾晓秋的方法,直 接生成开行方案(其实,我没有看懂他是怎么生成的。大概看 了一下,其实也是先随机的先生成一个line sets集合,那么这个 line sets集合就非常的大因为总共有8个stations,因此应该有8*7 个OD对,然后每个OD对之间还可能有不通的停靠站方案集,当 然,确定了是站站停靠的,所以应该是不通的路径集合,其实 每个OD对之间最多也就是4条路径集合而已,那就是56*4=224 个line sets,不知道分析的对不对); 要么就是按"wang L, Jia L-m, Qin Y, Xu J, Mo W-t. A two-layer optimization model for high-speed railway line planning[J]. Journal of Zhejiang University SCIENCE A, 2011,12(12): 902-912."中的方法,将所有可能的方 案集合列出来(也是优化过后的),然后求解,这种方法的所有 方案集合其实并没有那么多的,起讫点已经优化了的,只有5 个,然后根据停靠站的类别,总共有67个方案(line sets),也 就是说在这67个方案中进行优化,最终优化得到32个方案。

11、如果按照上面的过程,我们可以得知初始的开行方案,用一个matrix得到初始的line sets,得到这个line sets 后,就可以得到基于line sets 的网络图(这个开行方案的网络图有点转不过弯来),好像OD的配流就是基于这个网络图(文献中都称这个网络为换乘网络一不解),