Lecture 21 Representation & Description (chapter 11)

Yuyao Zhang, Xiran Cai PhD

zhangyy8@shanghaitech.edu.cn caixr@shanghaitech.edu.cn

SIST Building 2 302-F/302-C

Course piazza link: piazza.com/shanghaitech.edu.cn/spring2021/cs270spring2021

Image analysis fundamental steps

Boundary and region description.

Normally, after segmentation one needs the representation of the objects to describe them

- External (boundary):
 - Representation: Polygon of the boundary
 - Description: The circumference
- Internal (regional)
 - Representation: Pixels inside the object
 - Description: The average color

Outline

This lecture will cover:

- Boundary and region description.
- Topology (Euler number).
- Skeleton.
- Statistic on histogram of intensity.
- Gray-level co-occurrence matrix (GLCM).

External Descriptor

Boundary representation: Chain code

Boundary representation = 0766666453321212

Original boundary

Sub-sampled boundary

Chain code of boundary

Chain code for 4-neighborhood

Chain code for 8-neighborhood

Chain code: example

8-directional chain code

→ 000060666666666444444242222202202

Starting point normalized chain code → 00006066666664444444242222202202

Rotation normalized chain code

→ 0006200000006000006260000620626

Shape number: A boundary descriptor

Order 6

Chain code: 0 3 2 1

0 0 3 2 2 1

Difference: 3 3 3 3

3 0 3 3 0 3

Shape no.: 3 3 3 3

0 3 3 0 3 3

Chain code: 0 0 3 3 2 2 1 1

0 3 0 3 2 2 1 1

0 0 0 3 2 2 2 1

Difference: 3 0 3 0 3 0 3 0 3 3 1 3 3 0 3 0

3 0 0 3 3 0 0 3

Shape no.: 0 3 0 3 0 3 0 3 0 3 0 3 3 1 3 3

0 0 3 3 0 0 3 3

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

Simple Boundary Descriptors

- Perimeter (周长)
- Area (面积)
- Bounding Box.
- Diameter (直径): longest path between two edge pixels.
- Compactness: $\frac{(Perimeter)^2}{(area)}$
- Circularity: $\frac{4\pi(area)}{(Perimeter)^2}$
- Centroid (形心): $c(x,y) = \frac{1}{k} \sum_{p \in Object} p(x,y)$
- Major Axis(长轴),Minor Axis(短轴)
- Eccentricity (偏心率).

Topological Descriptors (拓扑描绘子)

- \triangleright Euler Number (欧拉数): E = C H
- C stands for # of components and H stands for # of Holes.

Fourier Descriptors (傅里叶描绘子)

Represent the boundary by a sequence of points (assume clockwise order)

$$\{(x_0, y_0), (x_1, y_1), \cdots, (x_N, y_N)\}$$

• Write each point (x_n, y_n) as a complex number

$$s(n) = x(n) + jy(n)$$

• Take 1D Fourier series of s(n) to get coefficient a(u)

$$a(u) = \sum_{n=1}^{N} s(n)e^{-j2\pi un/N}$$

- Fourier descriptors are a concise description of (object) contours
- Can be used for
 - Contour processing (filtering, interpolation, morphing)
 - Image analysis (characterizing and recognizing shapes)

Fourier Descriptors (傅里叶描绘子)

• We have Fourier transform coefficients a(u)

$$a(u) = \sum_{n=1}^{N} s(n)e^{-j2\pi un/N}$$
 What is $a(0)$?

Given coefficients, we can reconstruct boundary

$$s(n) = \frac{1}{N} \sum_{u=1}^{N} a(u)e^{j2\pi u n/N}$$

- Higher order coefficients can be truncated for a more concise representation (e.g. low pass filter)
- Other filters: Sharpening, edge extraction.....

Boundary Reconstruction using Fourier Descriptors

Fourier Descriptors

Transformation	Boundary	Fourier Descriptor
Identity	s(k)	a(u)
Rotation	$s_r(k) = s(k)e^{j\theta}$	$a_r(u) = a(u)e^{j\theta}$
Translation	$s_t(k) = s(k) + \Delta_{xy}$	$a_t(u) = a(u) + \Delta_{xy}\delta(u)$
Scaling	$s_s(k) = \alpha s(k)$	$a_s(u) = \alpha a(u)$
Starting point	$s_p(k) = s(k - k_0)$	$a_p(u) = a(u)e^{-j2\pi k_0 u/K}$

Skeletons (骨架)

> Estimation:

- Successive erosions
- Distance transform
- Points that have more than one nearest neighbor.
- ➤ Bw = bwmorph(im,'skel',Inf);

Internal Descriptor

Statistic on histogram of intensity in a region

- There is also underlying intensities/ colors inside each region we found.
- > Texture can also be filtered.
 - Flat
 - Noisy
 - Stripy

Statistic on histogram of intensity in a region

- > Statistics on histogram of intensity in the region:
 - Mean & variance (contrast)
 - Flat -- var=0; Noisy -- var = high;
 - Skewness (locally bright or dark)
 - Entropy (how random)

Intensity histogram says nothing about the spatial distribution of the pixel intensities

Gray-level co-occurence matrix (GLCM)

- ➤ How pixels intensity correlate to each other.
- \triangleright 1) Specify an operation Q (spatial relationship between 2 pixels).
 - e.g. Q ="1 pixel to the right".
 - If N gray levels, this makes NxN matrix.
- \triangleright 2) $P((x_0, y_0), (x_1, y_1)) = [intensity1, intsnsity2]$, the pair of $(x_0, y_0), (x_1, y_1)$ depends on the operation Q.
 - Where P stands for possibility. e.g. How often do I see (1,1) in the given pixel pairs.
 - Matlab commend: graycomatrix ()
- > 3) In practice, # of gray levels is quantized, the quantization depends on the area of the region of interest. (e.g. 8 or 16)

Gray-level co-occurence matrix (GLCM)

- ➤ 1) Specify an operation Q (spatial relationship between 2 pixels).
 - e.g. Q ="1 pixel to the right".
 - If N gray levels, this makes NxN matrix.
- $ightharpoonup 2) P((x_0, y_0), (x_1, y_1)) =$ [intensity1, intsnsity2], the pair of $(x_0, y_0), (x_1, y_1)$ depends on the operation Q.

Gray-level co-occurence matrix (GLCM)

TABLE 12.4
Descriptors evaluated using the co-occurrence matrices displayed as images in Fig. 12.32.

Normalized Maximum Correlation Homogeneity Co-occurrence Uniformity Entropy Contrast Probability Matrix 0.00006 0.0366 15.75 -0.000510838 0.00002 G_1/n_1 06.43 0.9650 00570 0.0824 0.01500 0.01230 G_2/n_2 0.06860 0.8798 01356 0.2048 13.58 0.00480 G_3/n_3

FIGURE 11.31 256×256 co-occurrence matrices, G_1 , G_2 , and G_3 , corresponding from left to right to the images in Fig. 11.30.

Take home message

• The Representation of the Object

An encoding of the object

Truthful but possible approximation

A Descriptor of the Object:

Only an aspect of the object

Suitable for classification

Consider invariance to e.g. noise, translation

