USTHB - FEI - Département d'Informatique

LMD Master 2 "Systèmes Informatiques Intelligents" 2016/2017

Module "Programmation Par Contraintes"

Travaux Dirigés

Série numéro 5 : CSP continus

Exercice 1 : On considère le problème d'ordonnancement de type job shop donné par la table cidessous, qui consiste en deux jobs J1 et J2 devant passer chacun par deux machines M1 et M2 :

	1 ^{ère} tâche : <machine, durée=""></machine,>	2 ^{ème} tâche : <machine, durée=""></machine,>
Job J1	<m1,2></m1,2>	<m2,2></m2,2>
Job J2	<m2,3></m2,3>	<m1,1></m1,1>

- Toutes les tâches sont non-préemptives
- La date de début au plus tôt est t_d=1 et la date de fin au plus tard est t_f=10

On s'intéresse à la recherche d'une solution réalisable, c'est-à-dire satisfaisant toutes les contraintes mais ne donnant pas forcément l'optimum du problème.

- 1. Modéliser le problème à l'aide d'un TCSP P=(X,C)
- 2. Donner la représentation graphique de P
- 3. Comment peut-on modifier l'algorithme Look_Ahead de telle sorte qu'il fournisse, pour un TCSP modélisant un problème d'ordonnancement, une solution réalisant l'optimum ?

Exercice 2 : Calculer la complexité du pire cas de l'algorithme de consistance de chemin PC2 appliqué à un CSP qualitatif de directions cardinales.

Exercice 3 : Montrer que l'algorithme de consistance de chemin PC2 détecte l'inconsistance du CSP qualitatif de directions cardinales suivant :

- Béjaia est à l'est d'Alger
- Oran est à l'ouest d'Alger
- Le bâteau est au nord-ouest d'Alger
 - o satellite 1 à l'instant t
- Le bâteau est au nord-est de Béjaia
 - o satellite 2 au même instant t