

Amino Acid and nucleotide sequence of the murine OKT3 heavy chain
variable region (Accession #A222621)

MERHWIFLILLSVTAGVHSQVLOQSGAEIARPGASVMSCKASYTFTRYTMHWVKORPGQGLEWIGYINPSRGYTNYNQKEFKDKATLTTDKSSSTAYMQLSSLTSEDAVYYCARYDDHYCLDYNGQGTTLTVSSAKTTAPSVYPLAPYCGDTTGSSVTLGCLVKGYFPEPYVLTWNWSGLSSGVHTFPAVLQSDLYTLSSSSTWPSQSITCNVAHPASSTKVDKKIEPRGPTIKPCPPCKCPAPNLICGPSVEIFPPKIKDVLMSLSPIVTCVVVDVSEDPPDVQISWFWNNVVEVHTAQTOFHREDYNSTLRVVSALPIQHODIMSGKEFKCKVNNKDLPAPIERTISKPKGSVRAPQVYLPPPEEEMTKKQVTLTCMVTDMPEDIVVENTNGKTELNYKNTEPVLDSDGSYFMYSKIRVEKKNWERNSSCSVVHEGLANHHTTKSFSRTPGK

ORIGIN

1	gaattccctt	ctccacagac	actgaaaact	ctgactcaac	atggaaaggc	ctggatctt
61	tctactccgt	ttgtcagtaa	ctgcaggctgt	ccactcccgt	gtccaggctgc	agcagtctgg
121	ggctgaactg	gcaagacactg	ggccctcagt	gaagatgtcc	tgcaaggctt	ctggctacac
181	ctttactagg	tacacgtatgc	actgggtaaa	acagaggctt	ggacaggctc	tggaatcgat
241	tggatacatt	aatccctagcc	gtggttatac	taattacaat	cagaagtca	aggacaaggc
301	cacattgact	acagacaaat	cctccggcac	agcctacatg	caactgagca	gcctgacatc
361	tggaggactt	gcagtcattt	actgtcaag	atattatgtat	gatcatttact	gccttgcacta
421	ctggggccaa	ggccacctc	tcacagtctc	tcacagccaa	acaacagccc	catcggtcta
481	tccactggcc	cctgtgttg	gagataacaac	tggactcctcg	gtgactcttag	gtatgcctgtt

FIG. 1A

541 caagggttat ttccctgagc cagtaccctt gaccctggAAC tctggatccc tgcAGTGG
601 tgtgcacacc ttcccAGCTG tcctcgAGTC accctctac accctcAGCA gctcaGtGAC
661 tgtaaacctcg agcacctggC ccAGCAGTC catCACCTGC aatTCAGGCC accCGGCAAG
721 cagcacaAG gtggacaAGA aaATTAGGCC cAGAGGGCC acaATCAAGC CCTGTCCTCC
781 atgcaAAatgc ccAGCACCTA acCTCTGGG tggACCATCC gtCTTCATCT tCCCTCCAAA
841 gatcaAGGAT gtACTCATGA tCTCCCTGAG CCCCATAGTC aCATGTGTGG tGGTGGATGT
901 gagcggAGAT gaccCAGATg tCCAGATCAG CTGGTTGTG aACAAACGTGG aAGTACACAC
961 agCTCAGACA cAAACCCATA gagAGGATTa CAACAGTACT CTCGGGTGG tCAGTGCCT
1021 cCCCATCAG cAccAGGACT ggtATGAGTGG caAGGAGTTC AAATGCAAGG tCAACAAACAA
1081 agACCTCCCA gCggCCATCG agAGAACCC ATCAAAACCC AAAGGGTCAG TAAGAGTC
1141 acAGGTTAT gTCTTGCTC cAccAGAAGA AGAGATGACT aAGAAACAGG TCACTCTGAC
1201 ctgcATGTC acAGACTTCa TGCCtGAAGA CATTACGT GAGTGGACCA ACAACGGAA
1261 aAcAGAGTC AACTACAAGA ACACTGAACC AGTCCCTGGAC TCTGATGGTT CTTACTCT
1321 gTACAGCAAG CTGAGAGTGG AAAAGAAAGA CTGGGTGGAA AGAAAATAGCT ACTCCTGTT
1381 agtggtcAC gAggtCTGC ACAATCACCA CACGACTAAG AGCTTCTCCC GGACTCCGGG
1441 taaATGAGCT cAGCACCCAC AAAACCTCA gTCCAAAGA GACACCCACA CTCATCT
1501 tgCTTCCTT GTATAAATAA AGCACCCAGC ATGCCtGG ACCATGTAAG AAAAaaaaAA
1561 aaAGGAATTc

FIG. 1A (Cont.)

Amino Acid and nucleotide sequence of the murine OKT3 light chain
variable region (Accession #A22259)

MDFQVQIFSLLISAVIISRGQIVLITQSPAIMSASPGEKVTMTCASSSSVSYMNWQQKSGTSPKRWYD
TSKLASGVPAHERGGSGGTYSYLITSGMEAEDAATYYCQQWSSNPFTFGSGTKLEINRADTAPTVSIFPPS
SEQLTSGGASVVCFLANNFYPKDINVWKJIDSERQNGVLNSWTDQDSKIDSTYSMSSTILTLTKEVERHNSY
TCEATHKTSTSPIVKSFNRNEC

ORIGIN

1	gaattcccaa agacaaaatg gatttcaag tgcagatttt cagttcctg
61	ctaattcagtgt cctcaggatcatatccaga ggacaaaattg ttctcaccca gtctccagca
121	atcatgtctg catctccagg ggagaaggtc accatgacacct gcagtggccag ctcagaatgtta
181	agttacatga actgttacca gicagaagtca ggcacccccc ccaaaaggatg gatttatgac
241	acatccaaac tggttctgg agtccctgtc cacttcagg ggacacctct
301	tactctcta caatcaggcatggaggct gaagatgctg ccacttatta ctgccaggcag
361	tggagtagta accattcac gttcggtctcg ggacaaaatg tgaaataaa cccggctgtat
421	actgcaccaa ctgtatccat cttccccacca tccaggatggc agttaaacatc tggagggtgcc tcagtcgtgt

FIG. 1B

481 gcttcttgaa caacttctac cccaaagaca tcaatgtcaa gtggaaaggatt
541 gatggcaagtg
541 aacgacaaaa tggcgtcctg aacaggttgga ctgatcagga cagccaagac
601 agcacctaca
601 gcatgaggag caccctcacg ttgaccaagg acgagtatga acgacataac
661 agcttacct
661 gtgaggccac tcacaagaca tcaacttcac ccatgtcaa gagcttcaac
721 aggaatggagt
721 gtttagagaca aagggtcctga gacgccccca ccagctccca gctccatcct
781 atcttccctt
781 ctaaggctt ggaggcttcc ccacaaggcgc ttaccactgt tgccgtgctc
781 taaacctcc
841 cccacccct tctccctc ctccttcc ttggctttta tcatgctaatt
841 atttgcagaa
901 atattcaat aaagtggatc ttggccttga aaaaaaaaaaaa aaa

FIG. 1B (Cont.)

P Mouse heavy chain Ig promoter
S Signal peptide sequence
I Intron

FIG. 2

OKT3 VH gene construct.

Seq. ID No 1

HindIII

Arg CTT ATG AAT ATGCCAATCCTCTGAACTACATGGTAAATAAGGTTTGCTATACGCTAACAGATGAGTCAGTCTCTAAGGTACTGAGGACAC
110
TTCTGAACTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTTATAGCTT

Nucleic Acid and amino acid sequences of murine

6/38

Ncol

AGGACCTCACCATGGGATGGGCTGTTAGCTTACAGCTTAACGGCTACAGTACGGCTTGAGGTCTGGACATATATATGGGTGACAA
220
TCCTGGAGTGGTACCTCACCTGAACTAGTAGGAGAAACCATCGTGTGATGTCATCCCCGAGTGTCACTCCAGAACCTGTATATACCCACTGTT

M G W S C I I L F L V A T A T]
Signal

Seq. ID No 2

PvuII

TGACATCCACTTGCCTTCTCCACAGGTGTCACCTCCAGGTGCAACAGTCTGGGCTGAAGTGGCTAGTGAAGATGTCTGGCAAGG
330
ACTGTAGGTGAAACGGAAGAGGGTGTCCACAGGTGACGTGTCAGCCCGACTTGAGGTTCTACAGGAGGTCACTTCTACAGGAGGTCC

G V H S I Q V Q L Q Q S G A E L A R P G A S V K M S C K
VH Signal

FIG. 3

7/38

CTCCTGGCTACAGTTACTAGGTACCGATGCCACTGGTAAAGGCTGCAAGGCTTGGATGGATTGGATGGCTGGATATACTAATTAC
 440
 GAAGAACCGATGTGCAAATGATCCATGTGACCCATTITGTCAGTGTGACCTGTTCCAAACCTTAACCTATGTAATTGGATCGGCACCTATGTTAATG
 V_H

 AATCAGAAGTCAAGGACAAGGCCACACTGACTACAGACAATCTCCAGCACAGCCTACATGGCAACTGAGGACTACCTGAGCATCTGAGGACTCCGGAGTCATTACTGTGCG
 550
 TTAGCTCTCAAGTCTCTGTCGGGTGTGACTGTGTCGTTAGAAGGTCTGTGACTGTGTCGGATGTGACTCTGTCGGACTGTGAGACTCTGAGGGCTGAGATAATGACACG
 N Q K F K D K A T L T T D K S S S T A Y M Q L S S L T S E D S A V Y Y C A
 V_H

 AAGATATATGATCATTACTGTCTCGACTACTGGGCCAAGGCCACACTTGACAGTCCTCAGGTGAGTCCTACAAACCTCTCTTCTATTTCAGCTTAATAGA
 660
 TTCTAAATACACTAGTAATGACAGGCTGATGACCCGGTCCGGTGAACACTGTCAAGGGACTCCACTCAGGATGTTGAGAGATAAGTCGAATTATCT
 R Y Y D D H Y C L D Y W G Q G T T L T V S S
 V_H

SUBSTITUTE SHEET (RULE 26)

FIG. 3 (Cont.)

8/38

TTTTACTGCATTGTTGGGGAAATGGGTATCTGGAATTCAAGTCATGAGGACTAGGGACACCTTGGGAGTGTAGAAAAGGGTCAATTGGGAGCCGGGCTGATGCG
 AAAATGACGTAACAAACCCCCCTTACACACATAGACTAAAGTCCAGTACTTCTTGATCCCTGTGGAACCCCTAAGTCTTCCAGTAACCCTGGGCGACTACGTC
 XmaI SmaI
 BamHI
 ACAGACATCCTCAAGCTCCAGACTTCATGCCAGAGATTATAGGATCC
 TGCTCTGAGGAGTCAGGGTCTGAAGTACCGGTCTCTAAATCCCTAGG 819

FIG. 3 (Cont.)

SUBSTITUTE SHEET (RULE 26)

9/38

OKT3 VL gene construct.

Nucleic acid and amino acid sequences of murine

Seq. ID No 3

Hindi

SUBSTITUTE SHEET (RULE 26)

NcoI
 +-----+
 C T G A G G C A C A C G G A C C T C A C C A T G G A G T G G C T G T A T C A T C C T C T T G G T A G C C A A C A G G T A C A G G T A A G G G C T C A C A G T A G G C A G G C T T G A G G T C T G
 +-----+
 G A C T C G T G T G T C C T G G A G T G G T A C C C T A C C T G A C C A T A G T A G G G A A G A A C C A T C G T T G C A T T C C C G A C T G T C A T C G T C C G A C T C C G A C
 +-----+
 Seq. ID No 4 M G W S C I I F L V A T A T

Seq. ID No 4 M G W S C I I L F L V A T A T
Signal

GACATATAATGGGTGAACTCATCCACTTGCCTTCTCAGGTGTCACCTCCAAATTGTTCTACCCAGTCTCAGGAATCTATGTCGAT
CTGTATATAACCTGTACTTGAGGTGAAACGGAAAGAGGTGTCACAGETGTTACAAGAAGTGGTTAACAGAAGTGGTTAACACCTA
300

Seq. ID No 30 → G V H S Q I V L T Q S P A I M S A →

BstEII	 CTCCAGGGAAAGGTACCATGACATGCACTGCAGCTCAA GTGTAAGTTACATGA CAGGTCCTTCCAGTTCTAGTGTACGTCAGTTCAATTCAAGTACTTACCA CTCCAGGGAAAGGTACCATGACATGCACTGCAGCTCAA GTGTAAGTTACATGA CAGGTCCTTCCAGTTCTAGTGTACGTCAGTTCAATTCAAGTACTTACCA
KpnI	 CTCCAGGGAAAGGTACCATGACATGCACTGCAGCTCAA GTGTAAGTTACATGA CAGGTCCTTCCAGTTCTAGTGTACGTCAGTTCAATTCAAGTACTTACCA CTCCAGGGAAAGGTACCATGACATGCACTGCAGCTCAA GTGTAAGTTACATGA CAGGTCCTTCCAGTTCTAGTGTACGTCAGTTCAATTCAAGTACTTACCA

FIG. 4

FIG. 4 (Cont.)

Schematic map of the vector Apex-1 3F4V_HHuGamma4.

FIG. 5A

Vector sequence (APEX-1 3F4V_H HuGamma4)

SUBSTITUTE SHEET (RULE 26)

FIG. 5B

Seq. ID No 31 E S R Y G P P C P hG4Hinge

SUBSTITUTE SHEET (RULE 26)

FIG. 5B (*Cont.*)

14/38

FIG. 5B (Cont.)

15/38

Schematic map of the vector Apex-1 3F4V_HHuG2/G4.

FIG. 6A

Vector Sequence (APEX-13F4V_H HuG2/G4)

SUBSTITUTE SHEET (RULE 26)

16/38

(Seq. ID No: 8) → M K W S W V I L Signal →

**CCCTCTGTCACTGCGCCGTCACACTCCCAGGTCAAGGCTCAGGTCAAGGACCTGGCAAGGCTGAGCTGGCTTCACTGAAGTTCAGTGGCTTCTGGCTAACATT 1200

F L I S V T A G V H S Q V Q V Q Q S G A E L A R P W A S V K L S C K A S G Y N F Signal → 3F4Vh

*ATGGTACTGGATGCAGTGGCTAAACAGGGCTGGCACAGGGTCTGGAATGGATTGGCTATTATCCGGAGATGGTACTAGGTACACTAGAAGTTCAAGGGCAAGGCCACA 1320

N S Y W M Q W V K Q R P G Q G L E W I G A I Y P G D G D T S Y T Q K F R G K A T Signal → 3F4Vh

*TGACTGCAGATAATCCCTCAGCACAGCCTACATGCCACTCAGGAGCTTGGCATCTGGGACTCTGGCCTATTACTGTGCAAGACCTACGGTAGGAGCTACTTTGACTCTGGCC 1440

L T A D K S S S T A V M Q L S S L A S E D S A V Y Y C A R R T V G G Y F D Y W G Signal → 3F4Vh

CAGGGCACCACCTCACAGTCTCAGCTCCACCAAGGGCCATCCGTCTCCCCCTGGCGCCCTGGCTCAGGACACTCCGAGAGCACCTGGCTGGCTGGCAGGAC 1560

Q G T T L T V S S A S T K G P S V F P P L A P C S R S T S E S T A A L G C L V K D Signal → 3F4Vh

G2G4CH1

FIG. 6B

FIG. 6B (*Cont.*)

SUBSTITUTE SHEET (RULE 26)

FIG. 6B (Cont.)

19/38

FIG. 6B (*Cont.*)

20/38

Map of the heavy chain expression vector pSVgptHuG2/G4 used in

FIG. 7

(Seq. ID No. 9)

5' untranslated
intron from
native IgG43' untranslated region
from native IgG4

Bam HI

GGATCCCTAGATTGAGCTTCTGGGGCAGGCCAGGCCTGACCTTGGCTGG
GGCAGGGAGGGGCTAAGGTGACGCAGGTGGGCCAGCCAGGTGCACACCC
AATGCCCATGAGCCCAGACACTGGACCTGCATGGACCATCGCGGATAGACA
AGAACCGAGGGCCTCTGCCCTGGGCCAGCTCTGTCCCACACCGCGGT
ACATGGCACCACTCTCTTGCAAGCCTCCACCAAGGGCCATCGTCTTCCCC
TGGGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCCTGGCTGCCT
GGTCAGGACTACTTCCCCAACCGGTGACGGTGTGTTGAACTCAGGCGCC
CTGACCAGCGGGTGCACACCTTCCCGCTGTCTACAGTCCTCAGGACTCTA
CTCCCTCAGCAGCGTGGTGACCGTGCCTCCAGCAACTCGGACCCAGACC
TACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGACA
GTTGGTGAGAGGCCAGCTCAGGGAGGGAGGGTGTGCTGGAAAGCCAGGCTC
AGCCCTCCTGCTGGACGCACCCGGCTGTGCAAGCCAGCCAGGGCAGCA
AGGCAGGCCCATCTGTCCTCACCCGGAGGCCTCTGCCGCCCCACTCATG
CTCAGGGAGAGGGTCTTCTGGCTTTTCCACCAGGCTCCAGGGAGGCACAGG
CTGGGTGCCCTACCCAGGCCCTCACACACAGGGCAGGTGCTGGCTCA
GACCTGCCAAAAGCCATATCCGGGAGGACCTGCCCTGACCTAAGCCGACC
CCAAAGGCCAAACTGTCCACTCCCTCAGCTCGGACACCTCTCCTCCAGA
TCCGAGTAACTCCCAATCTCTCTGCAAGAGCGCAAATGTTGTCAGTGC
CCACCGTGCCAGGTAAGCCAGCCCAGGCCTGCCCTCAGCTCAAGGCAGG
ACAGGTGCCCTAGAGTAGGCTGCATCCAGGGACAGGCCCCAGCTGGGTGCTG
ACACGTCCACCTCCATCTCTCTCACACACCACCTGTGGCAGGACCGTCAGTC
TTCCCTTCCCCCCTAAACCCAAGGACACCCCTCATGATCTCCGGACCCCTGA
GGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAGGTCCAGTTC
AACTGGTACGTGGATGGCGTGGAGGTGCTATAATGCCAAGACAAAGCCGCGG
GAGGAGCAGTTAACAGCACGTACCGTGTGGTCAGCGCTCTCACCGTCC
ACCAGGAAGGGCTGAACGGCAAGGAGTACAAGTGAAGGTCTCAACAAAG
GCCCTCCGTCTCCATCGAGAAAACCATCTCAAAGCCAAGGTGGGACCCA
CGGGGTGCGAGGGCACATGGACAGAGGTCAAGCTCGGCCCCACCCCTG
GGGAGTGACCGCTGTGCCAACCTCTGCCCTACAGGGCAGCCCCAGAGCCA
CAGGTGTACACCCCTGCCCTACAGGGAGATGACCAAGAACCGAGGTCA
GCCTGACCTGCTGGTCAAAGGCTCTACCCAGCGACATGCCGTGGAGTG
GGAGAGCAATGGCAGCCGGAGAACAACTACAAGACCAAGACCGCTCCGTG
GGACTCCGACGGCTCTCTCTACAGCAGGCTAACCGTGGACAAGAGC
AGGTGGCAGGAGGGGAATGTCCTCTCATGCTCCGTGATGCAAGGGCTG
ACAACCAACTACACAGAAGAGCCTCTCCCTGTCTGGTAAATGAGTGCC
AGGGCCGGCAAGCCCCGCTCCCCGGCTCTGGGTCGCGCAGGATGCTT
GGCACGTACCCGTCTACATACTTCCCAGGCACCCAGCATGAAATAAGCA
CCCACCACTGCCCTGGGCCCTGTGAGACTGTGATGGTCTTCCACGGGTCA
GGCCGAGTCTGAGGCCTGAGTGACATGAGGAAttCAGAtctGGatCC

Bgl II

FIG. 8**SUBSTITUTE SHEET (RULE 26)**

Map of the light chain expression vector pSVgptHuCK

FIG. 9

Amino Acid sequences of Delmmunised OKT3 heavy chain variable regions

		10	20	30		40	50	60	
Seq. ID No. 10}	1	Q V Q L Q Q S G A E L A R P G A S V K M S C K A S G Y T F T		O K T 3 M O V H					
Seq. ID No. 11}	1	Q V Q L V Q Q S G A E V K K P G A S V K V S C K A S G Y T A T		O K T 3 D I V H v 1					
Seq. ID No. 12}	1	Q V Q L V Q Q S G A E V K K P G A S V K V S C K A S G Y T A T		O K T 3 D I V H v 2					
Seq. ID No. 13}	1	Q V Q L V Q Q S G A E V K K P G A S V K V S C K A S G Y T A T		O K T 3 D I V H v 3					
Seq. ID No. 14}	1	Q V Q L V Q Q S G A E V K K P G A S V K V S C K A S G Y T A T		O K T 3 D I V H v 4					
Seq. ID No. 15}	1	Q V Q L V Q Q S G A E V K K P G A S V K V S C K A S G Y T F T		O K T 3 D I V H v 5					
Seq. ID No. 16}	1	Q V Q L V Q Q S G A E V K K P G A S V K V S C K A S G Y T F T		O K T 3 D I V H v 6					
Seq. ID No. 17}	1	Q V Q L V Q Q S G A E V K K P G A S V K V S C K A S G Y T F T		O K T 3 D I V H v 7					
31		R Y T M H W V K Q R P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 M O V H					
31		R Y T M H W V V R Q A P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 D I V H v 1					
31		R Y T M H W V V R Q A P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 D I V H v 2					
31		R Y T M H W V V R Q A P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 D I V H v 3					
31		R Y T M H W V V R Q A P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 D I V H v 4					
31		R Y T M H W V V R Q A P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 D I V H v 5					
31		R Y T M H W V V R Q A P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 D I V H v 6					
31		R Y T M H W V V R Q A P G Q G L E W I G Y I N P S R G Y T N Y		O K T 3 D I V H v 7					

FIG. 10

FIG. 10 (*Cont.*)

25/38

Amino Acid sequences of Delmmunised OKT3 light chain variable regions

	10	20	30	
(Seq. ID No. 18)	Q I V L T Q S P A I M S A S P G E K V T M T C S A S S S V S	OKT3 MVK		
(Seq. ID No. 19)	Q I V L T Q S P A T L S I S P G E R A T I I T C S A S S S A S	OKT3 DIVKv1		
(Seq. ID No. 20)	Q I V L T Q S P A T L S I S P G E R A T I I T C S A S S S V S	OKT3 DIVKv2		
	40	50	60	
31 Y M N W Y Q Q K S G T S P K R W I Y D T S K L A S G V P A H	OKT3 MVK			
31 Y M N W Y Q Q K P G K A P P K R W I Y D T S K L A S G V P S R	OKT3 DIVKv1			
31 Y M N W Y Q Q K P G K A P P K R W I Y D T S K L A S G V P S R	OKT3 DIVKv2			
	70	80	90	
61 F R G S G S G T S Y S L T I S G M E A E D A A T Y Y C Q Q W	OKT3 MVK			
61 F S G S G S G T D Y S L T I N S L E A E D A A T Y Y C Q Q W	OKT3 DIVKv1			
61 F S G S G S G T D Y S L T I N S L E A E D A A T Y Y C Q Q W	OKT3 DIVKv2			
	100			
91 S S N P F T F G S G T K L E I N	OKT3 MVK			
91 S S N P F T F G Q G T K V E I K	OKT3 DIVKv1			
91 S S N P F T F G Q G T K V E I K	OKT3 DIVKv2			

FIG. 11

26/38

OLIGOS FOR CONSTRUCTION OF DIVHs (SEQ ID NOS: 37-57)

KTDIVH1 GAAGTCAAGAACCTGGGCCTCAGTGAAGGTGTCCTGCAAGG
 KTDIVH2 GCCCCAGGTTCTTGACTTCAGCCCCAGACTGTACCAGCTGGACCTG
 KTDIVH3 TGGGTAAGACAGGCGCCTGGACAAGGTTGG
 KTDIVH4 GTCCAGGCGCCTGTCTTACCCAGTGCATC
 KTDIVH4A AGGCGCCTGTCTTACCCAGTGCATCGTGTACCTAGTAGCCGTGTAGCC
 KTDIVH5 CAATCAGAAGTTCAAGGACAGGGTCACAATCACTACAGACAAA
 KTDIVH5A CGCTCAGAAGTTCCAGGACAGGGTCACAATCACTACAGACAAA
 KTDIVH5B CGCTGACAGTGTCAAGGGCAGGTTACAATCACTACAGACAAA
 KTDIVH5C CAATCAGAAGGTCAAGGACAGGGTCACAATCACTACAGACAAA
 KTDIVH6 GTCCTTGAATTCTGATTGAAATTAGTATATCCACGG
 KTDIVH6A GTCCCTGGAATTCTGAGCGTAATTAGTATATCCACGG
 KTDIVH6B GCCCTTGACACTGTCAAGCGTAATTAGTATATCCACGG
 KTDIVH6C GTCCTTGACCTCTGATTGAAATTAGTATATCCACGG
 KTDIVH7 AGCCTGAAAATGAGGACACCGCAGTCTATTACTG
 KTDIVH8 GTCCCTCAGTTTCAGGCTGTTCAATTGCAAGTAGGCTGTGCT
 KTDIVH9 CCAAGGCACCACTGTGACAGTCTCCTCAGG
 KTDIVH10 CCTGAGGAGACTGTCAAGTGGTGCCTTGG
 KT3VHY GGTGTCCACTCCCAGGTCCAGCTG
 KT3VHZ CAGCTGGACCTGGGAGTGGACACCTGTGG
 VHVK1 GCATGTTGACCTGACGCAAGCTTATGAATATGCAA
 VH12 GCGATAGCTGGACTGAATGGATCCTATAAATCTCTG

OLIGOS FOR CONSTRUCTION OF DIVKs (SEQ ID NOS: 58-74)

KTDIVK1 CCCTCTCTTTCTCCAGGGGAACGCGCACCTTGACATGCAGTG
 KTDIVK2 CCTGGAGAAAGAGAGAGAGGGTTGCTGGAGACTGGGTG
 KTDIVK3 CATGAACCTGGTACCGAGCAGAACGCCGGCAAAGCTCCAAAAGATGGAT
 KTDIVK4 CGGGCTTCTGCTGGTACAGTTCATGTAACCTACACTT
 KTDIVK4A CTTCTGCTGGTACAGTTCATGTAACCTGCACTTGAGC
 KTDIVK5 GGGTCTGGGACCGATTACTCTCACCATCAATAGTCTGGAAGCTGAAG
 KTDIVK6 GTAATCGGTCCCAGACCCACTGCCACTGAAGCGAGACGGTACTCCAG
 KTDIVK7 TTACGTTGGACAAGGTACAAAGGTGAAATCAAACG
 KTDIVK8 CTTTGTACCTTGTCCGAACGTGAATGGTTACTTGACC
 KKT22 GCGGATCCAGTCGACGAAGCA
 KT3VKX CTGAATGGATCCAATCTGAGGAAGCAAAGTTAAATTCTACTCACG
 KT3VKY CAAATTGTTCTCACCCAGTCTCAGCAA
 KT3VKZ TTGCTGGAGACTGGGTGAGAACAAATTGGGAGTGGACACCTGTGG
 KT3VKZ2 TGGAGACTGGGTGAGAACAAATTGGGAGTGGACACCTGTGG
 KT3VKZ3 AGAGAGGGTTGCTGGAGACTGGGTGAGAACAAATTG
 VHVK1 GCATGTTGACCTGACGCAAGCTTATGAATATGCAA
 VK12 GCGATAGCTGGACTGAATGGATCCAATGAGGAAGC

DNA and Amino acid sequence of Delmumunised OKT3 VH version 1.

ID No 21

Hindi

AAGCTTATGAAATATGCCAATCCTGGAATCTTCACTATGGTTGTCTATAACCACAAACAGAAAACATGAGATCACTACAGTTACTGAGCACAC
TTTCGAATTACTTATACGTTAGGGAGCTAGATGCCATTATATCCAAACAGATAATGETTGTCTTGTACTCTAGTGCAAGAGATGCAATGACTCGTGTG

Ncol

M G W S C I I L F I V A T A T
Signal

Seq. ID No 22

۲۷۱

TGACATCCACTTTCCTCCAGGTCCAGCTGGCTGAAGCTGGAGCTTGCTCAGTGAAGGTGTCCTGGAACT

Seq. ID No. 75 → Signal

FIG. 13

SUBSTITUTE SHEET (RULE 26)

28/38

CCTCTGGCTAACGGTACTAGGTACACGATGCACTGGTAAGCAGGGTGGAAAGGTGGATACATTAAACCCTAGCCGTGGATACTAAATTAC
 GAAGACCGATGTGCCGATGATCCATGTGCTAACGTGACCCATTGTCCGGGACCTGTCCAAACCTAACCTAACCTATGTTATTCGGAATCGGTAAATGATG
 A S G Y T A T R Y T N H W V R Q A P G O G L E W I G Y I N P S R G Y T N Y
 OKT3 DIVHv1

 GCTCAGAAGTCCAGGACAGGGTACAATCACTACAGACAATCTTCAGCACAGCCCTACTTGCAAATGAAACAGCCTGAAACTGAGGACACCGCAGTCTATTACTGTGC
 CGAGTCITCAAGGTCTGTCCAGTGTCTGTTAGTGTATGTCGGATGAACGTTACTTGTCGGACTTTGACTCTGTGGGTCAAGATAATGACACG
 A Q K F Q D R V T I T D K S S S T A Y L Q M N S L K T E D T A V Y X C A
 OKT3 DIVHv1

SUBSTITUTE SHEET (RULE 26)

FIG. 13 (Cont.)

The diagram illustrates a DNA sequence with various restriction enzyme sites and gene structures. The sequence is represented by a horizontal line with vertical tick marks. Key features include:

- XbaI**: A site located between two SmaI sites.
- SmaI**: Two sites located on either side of the XbaI site.
- BamHI**: A site located at the far right end of the sequence.
- CDRH3**: A bracketed region indicating the CDR3 domain of a gene, positioned between the SmaI sites.
- OKT3**: A bracketed region indicating the OKT3 gene, positioned to the left of the CDRH3 region.
- DIVHv1**: A bracketed region indicating the DIVHv1 gene, positioned to the left of the OKT3 gene.
- R Y Y D D H Y C L D Y W G Q G T T V T V S S**: A sequence of amino acids or bases underlined below the main line.

FIG. 13 (Cont.)

SUBSTITUTE SHEET (RULE 26)

30/38

DNA and Amino Acid Sequence of Delimmunised OKT3 VK version 1.

Seq. ID No 23

HindIII

```

AGCTTATGAAATGGCAATTACCTCTGATCTACATGGTAATAATTAGTTTGTCTTACAGTTAACAGAAAACATGAGATCACAGTTCTCTACAGTTA
TTGAAATCTTACATGTTAGGAGACTAGTGTACCTTATATCCAAACAGATAATGGTTGTCTTGTCTTGTACTCTAGTGTCAAGAGAGATGTCAT

```

Ncol

```

CTGAGCACACGGACCTCACCCATTGGGATGGCCTGATCATCCCTTCTCTCTGTTAGCAACAGCTACAGGTAAAGGGCTCACAGTAGCAGGTGAGGTCT
GACTCGTGCTCTGTCTGGAGTGGTACCCCTGAGTGGTACCCACTAGTAGGAGAAGLACCATCCCAGTGTCAATGTCATGTCATGTCATGTCATGTCAT

```

Seq. ID No 24 M G W S C I I L F I V A T A T
Signal

```

GACATATAATGGGTGACAATGCACTTGCCTTCTCTCCACAGGTCTCTCCACTCCAAATGGTCTCTACCCAGTCTCCACCCCTCTCTCTCTCTCTCTCT
CTGTATATAACCCACTGTTACTGTAGGTGAACGGAAAGAGAGGTGTCCACAGGTAGGGTTAACAAAGCTGGGTCAAGGTGAGGTCTAGGGTCAAGGTGAGGAA

```

Seq. ID No 76 G V H S Q I V L T Q S P A T I S I
Signal OKT3 DIV/Kv1

KpnI

```

CTCCAGGGAAACGGGCCACCTTGACATGGCAGTGCAGTCAAAGTCAACTGTTACATGAACTGGTACCTGCAAGTCCAAAGCTCCAAAGCTCCAAAGATGGAT
GAGGTCCCCCTTGCGGGTGGAACTGTACGTACGGTCAGGTCACTGTTACATGTTACGTGACTGTTACGGTCAAGTCAATGTTACGTGACTGTTACGTGACTGTTAC

```

FIG. 14

S P G E R A T L T C S A S S S A S S Y M N W Y Q Q K P G K A P K R W I

OKT3 DIV/Kv1

CDRL1

CDRL2

CDRL3

TTATGACACATCAAACCTGGCTTCGGAGTACCGCTCAGTGGCACTGGGTCTGGGACCGATTACTCTCTCACAAATCAAATAGTCAGCTGGAAAGCTGAA

AATACTGTGAGTTGACCCGAAGACCTCATGGCAAGGCCAAGCTCACCGTACCCAGAACCTGGCTATGAGAGGTAGTTATCAGACCTTCGACTT

Y D T S K L A S G V P S R F S G S G T D Y S L T I N S L E A E

OKT3 DIV/Kv1

GATGCCGCAACTTAACTGCGCAGGAGTGGTCAAGTAACCTAACGTTACCGTACCGTACCGAGTCAAGTAACTGAAATCAAACGTTAGTAGAATTAAACTTG

CTACGGCGGTGAAATAATGACGGTGTGCAATGGTAAAGTGCACCTTACATGGTAAAGTGCACCTTACATGGTAAATTTGAAAC

D A A T Y Y C Q Q W S S N P F T F G Q G T K V E I K

OKT3 DIV/Kv1

CDRL1

CDRL2

CDRL3

BamHI

CTTCCTCACTGGATCC 617

GAAGGGACTCAACCTAGG

FIG. 14 (Cont.)

32/38

Murine and Chimaeric OKT3 binding to Jurkat, JRT3 and HPB-ALL

cells

Values represent the positive % of gated cells in M1

Cell Type	Passage #	Murine OKT3	Mouse Isotype Control	Chimaeric OKT3	Human Isotype Control
Jurkat	12	81.20	0.5	94.68	0.44
JRT3	14	3.45	0.26	4.56	0.43
HPB-ALL	10	99.63	0.62	99.39	0.29

FIG. 15**SUBSTITUTE SHEET (RULE 26)**

Antibody	Clone No.	% Cells in M1	
		HPB-ALL	JRT3
Chimaeric OKT3	N/A	99.74	7.74
Control no OKT3 no PE	N/A	2.22	2.3
Control no OKT3 with PE	N/A	2.3	2.21
DMEM Control	N/A	1.91	2.42
DIVH1/DIVK1	19D6	93.87	2.16
DIVH2/DIVK1	24C12	28.47	2.34
DIVH3/DIVK1	27F6	84.75	2.28
DIVH4/DIVK1	30F7	93.06	2.65
DIVH5/DIVK1	35F2	98.15	2.77
DIVH6/DIVK1	37E9	97.85	3.08
DIVH7/DIVK1	42E7	98.62	3.12

FIG. 16

Table 3:

Antibody	Clone No.	% Cells in M1	
		HPB-ALL	JRT3
Chimaeric OKT3	N/A	99.95	0.1
Control no OKT3 no PE	N/A	0.1	0.02
DIVHv1/DIVK2	48G3	20.18	0.1
DIVHv2/DIVK2	52B8	90.04	0.25
DIVHv3/DIVK2	55G5	84.73	0.14
DIVHv4/DIVK2	55B2	69.26	0.13
DIVHv6/DIVK2	66C6	98.16	0.53
DIVHv7/DIVK2	70G10	95.57	0.66

FIG. 17

Competition assay. Inhibition of binding biotinylated mouse OKT3 by chimaeric and Delmmunised OKT3 antibodies, DIVHv1/DIVKv1, DIVHv3/DIVKv1, DIVHv5/DIVKv1, DIVHv6/DIVKv1, OKT3DIVH7/DIVKv1.

FIG. 18

35/38

Competition assay. Inhibition of binding biotinylated mouse OKT3 by mouse, chimaeric and Delimmunised OKT3 antibodies DIVHv2/DIVKv1, DIVHv4/DIVKv1.

FIG. 19

Competition assay. Inhibition of binding biotinylated mouse OKT3 by mouse, chimaeric and Delimmunised OKT3 antibodies DIVHv3/DIVKv2, DIVHv7/DIVKv2.

FIG. 20

Competition assay. Inhibition of binding biotinylated mouse OKT3 by mouse, chimaeric and Delimmunised OKT3 antibodies DIVHv1/DIVKv2, DIVHv1/DIVKv1, DIVHv5/DIVKv2, DIVHv5/DIVKv1.

FIG. 21

The IC₅₀ determined from these plots are shown in Table 4.

Table 4:

ANTIBODY	IC50 (nM)
Murine OKT3 1	18
Murine OKT3 2	19
Murine OKT3 3	20
Chimeric OKT3 1	18
Chimeric OKT3 2	15
De-immunized OKT3 DIVHv1/DIVKv1	N/A
DeIm OKT3 DIVHv1/DIVKv1 2 nd prep	>2000
De-immunized OKT3 DIVHv2/DIVKv1	>3000
De-immunized OKT3 DIVHv3/DIVKv1	1250
De-immunized OKT3 DIVHv4/DIVKv1	1900
De-immunized OKT3 DIVHv5/DIVKv1	45
DeIm OKT3 DIVHv5/DIVKv1 2 nd prep	19
De-immunized OKT3 DIVHv6/DIVKv1	30
De-immunized OKT3 DIVHv7/DIVKv1	12
De-immunized OKT3 DIVHv1/DIVKv2	>2000
De-immunized OKT3 DIVHv2/DIVKv2	>3000
De-immunized OKT3 DIVHv3/DIVKv2	>4000
De-immunized OKT3 DIVHv4/DIVKv2	2100
De-immunized OKT3 DIVHv5/DIVKv2	28
De-immunized OKT3 DIVHv6/DIVKv2	18
De-immunized OKT3 DIVHv7/DIVKv2	6

FIG. 22