Exercice 6

Considérons l'ensemble $S = \{1, 2, 3\}$ et la relation $\mathcal{R} = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 1 \rangle\}$ sur S. Cette relation est réflexive, en effet

$$\langle 2, 1 \rangle \implies \langle 2, 1 \rangle \in \mathcal{R}$$

et

$$\langle 1, 2 \rangle \implies \langle 1, 2 \rangle \in \mathcal{R}.$$

Il est également transitive car,

$$\langle 2, 1 \rangle \land \langle 1, 2 \rangle \implies \langle 2, 2 \rangle \in \mathcal{R}$$

 et

$$\langle 1, 2 \rangle \wedge \langle 2, 1 \rangle \implies \langle 1, 1 \rangle \in \mathcal{R}.$$

Et pourtant, ce n'est pas réflexive car $3 \in S \land \langle 3, 3 \rangle \notin \mathcal{R}$

Notez que si toutefois pour 3 il existait une b dans S tel que la paire $\langle 3, b \rangle$ soit aussi dans S, l'argument fonctionnerait alors car la symétrie force $\langle b, 3 \rangle$ dans S et la transitivité force $\langle 3, 3 \rangle$ dans S. Cette hypothèse supplémentaire n'est que la définition de la totalité d'une relation donc nous affirmons que l'hypothèse manquante est que \mathcal{R} soit total.

Démonstration Soit S un ensemble et $\mathcal{R} \subseteq S^2$ une relation symétrique, transitive, et totale. Nous voulons démontrer que \mathcal{R} est réflexive. Il faut montrer que $(\forall a \in S \mid a\mathcal{R}a)$. Soit $a \in S$. Comme \mathcal{R} est totale, par définition, il existe un $b \in S$ tel que

$$\langle a, b \rangle \in \mathcal{R}$$

Si a = b on a fini $\langle a, a \rangle \in \mathcal{R}$ implique que \mathcal{R} est reflexive.

Si $a \neq b$ alors, comme \mathcal{R} est symétrique on a $(\forall a, b \in S \mid \langle a, b \rangle \in \mathcal{R} \implies \langle b, a \rangle \in \mathcal{R})$ qui implique

$$\langle b, a \rangle \in \mathcal{R}$$
.

Comme \mathcal{R} est aussi transitive $(\forall a,b,c,\in S\mid \langle a,b\rangle\in\mathcal{R}\wedge\langle b,c\rangle\in\mathcal{R}\implies \langle a,c\rangle\in\mathcal{R})$. Donc, on peut deduire $\langle a,b\rangle\in\mathcal{R}\wedge\langle b,a\rangle\in\mathcal{R}$ seulement si

$$\langle a, a \rangle \in \mathcal{R}.$$

Puisque pour tout a nous pouvons toujours épuiser les cas en considérant a=b et $a\neq b$ dans nos deux cas, et dans tous les cas, nous avons montré que $(\forall a\in S\mid \langle a,a\rangle\in\mathcal{R})$. Ainsi \mathcal{R} est reflexive.