Assignment 5

20-02-2019

- (1) Let $x, y \in \mathbb{R}$ be such that x, y > 0 and $n \in \mathbb{N}$. Show that if $x^n \leq y^n$, then $x \leq y$.
- (2) Show that if $x \in (0,1)$, then $x \notin \mathbb{Z}$.
- (3) If $r \in \mathbb{R} \setminus \mathbb{Q}$ and $x \in \mathbb{Q} \setminus \{0\}$, show that rx and r + x are elements of $\mathbb{R} \setminus \mathbb{Q}$.
- (4) Show that there is no rational number x such that $x^2 = 3$.
- (5) For all $0 < x \in \mathbb{R}$ and $m \in \mathbb{N}$, define $x^{1/m}$ to the unique real number y > 0 such that $y^m = x$. Show the following:
 - (a) For all $0 < x \in \mathbb{R}, m, n \in \mathbb{N}, (x^m)^{1/n} = (x^{1/n})^m$.
 - (b) For $m, n, l, k \in \mathbb{N}$, if m/n = l/k, then show that $(x^m)^{1/n} = (x^l)^{1/k}$.
- (6) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Find f(A) for A = (i) $\{1, 1/2, 1/3, -1/2\}$ (ii) [0, 2] (iii) [0, 2] (iv) [-2, 1) (v) [-2, -1]
- (7) Is the function $f(x) = x^2$ one-one or onto as a function from (i) \mathbb{R} to \mathbb{R} ? (ii) \mathbb{R} to $[0,\infty)$? (iii) $(0,\infty)$ to $(0,\infty)$? (iv) (0,1) to (0,1)? Can you identify properties of the graph that give the one-one or onto conditions?
- (8) Let $f: X \to Y$ and $g: Y \to Z$ be functions.
 - (a) If f and g are one-one, show that $g \circ f$ is one-one.
 - (b) Is the converse true?
 - (c) Answer (a) and (b) with "one-one" being replaced by "onto".
- (9) Find a bijection from (0,1) to A, where A =(i) (1,2) (ii) (0,2) (iii) (1,3) (iv) Can you find a bijection from (0,1) to \mathbb{R} ?
- (10) Show that A is countable, where $A = (i) \{2, 3, 4, 5, ...\}$ (ii) $\{2, 4, 6, 8, ...\}$ (iii) $\{1, 3, 5, 7, ...\}$ (iv) $2\mathbb{Z}$ (v) $2\mathbb{Z}+1$ (vi) \mathbb{Z} (vii) $\mathbb{N} \times \mathbb{N}$