

AD-A129 838 STABILITY ANALYSIS OF THE COMPRESSIBLE ADIABATIC
SIMILAR BOUNDARY LAYER E..(U) AIR FORCE WRIGHT
AERONAUTICAL LABS WRIGHT-PATTERSON AFB OH
UNCLASSIFIED G R VERMA ET AL. MAR 83 AFWAL-TR-83-3037

1/F

F/G 20/4

NL-

END
DATE
FIRMED
B-83
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

(2)

ADA 1 29838

AFWAL-TR-83-3037

STABILITY ANALYSIS OF THE COMPRESSIBLE, ADIABATIC
SIMILAR BOUNDARY LAYER EQUATIONS (LOWER BRANCH)

G.R. Verma
S.J. Scherr
W.L. Hankey

Aerodynamics and Airframe Branch
Aeromechanics Division

March 1983

Final Report for Period May 1980 - August 1980

Approved for public release; distribution unlimited

DTIC FILE COPY

FLIGHT DYNAMICS LABORATORY
AF WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OHIO 45433

DTIC
SELECTED
S JUN 28 1983 D
E

83 06 28 053

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Wilbur L. Hankey

WILBUR L. HANKEY
Project Engineer

Lowell C. Keel

LOWELL C. KEEL, Lt Col, USAF
Chief, Aerodynamics & Airframe Branch

FOR THE COMMANDER

John R. Chevalier

JOHN R. CHEVALIER, Col, USAF
Chief, Aeromechanics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFVAL/FIMM, N-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFWAL-TR-83-3037	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) STABILITY ANALYSIS OF THE COMPRESSIBLE, ADIABATIC SIMILAR BOUNDARY LAYER EQUATIONS (LOWER BRANCH)		5. TYPE OF REPORT & PERIOD COVERED FINAL TECHNICAL REPORT May 1980-Aug 1980
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) G.R. VERMA S.J. SCHERR W.L. HANKEY		8. CONTRACT OR GRANT NUMBER(s) DF AFOSR80-0150*
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 2307N603
11. CONTROLLING OFFICE NAME AND ADDRESS Flight Dynamics Laboratory AF Wright Aeronautical Laboratories (AFSC) Wright-Patterson Air Force Base, OH 45433		12. REPORT DATE March 1983
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 53
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES * Research performed in part under AFOSR 80-0150		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Stability Compressible Eigen Values Similar Solutions		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) In a previous report the authors analyzed the stability of the lower branch solutions of the incompressible ($M_\infty = 0$) Falkner-Skan boundary layers. This report extends this work by including the effect of Mach number M_∞ on the stability of adiabatic case.		
AFWAL-TR-83-3030		

FOREWORD

This report is the result of work carried on in Computational Aerodynamics Group, Flight Dynamics Laboratory, Wright Patterson Air Force Base by Dr. G. R. Verma, Dr. W. L. Hankey and Mr. S. J. Scherr, from June 15, 1980 to August 20, 1980. During this period Dr. Verma's work was supported by a grant from Air Force Office of Scientific Research (Grant #DF AFOSR80-0150). Additional support was provided under project 2307N436. The authors would like to thank the Air Force Systems Command, Air Force Office of Scientific Research and Wright Patterson Air Force Base for providing resources for the senior author to spend the summer of 1980 at WPAFB.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A	

TABLE OF CONTENTS

<u>SECTION</u>		<u>PAGE</u>
I	INTRODUCTION	1
II	GOVERNING EQUATIONS	2
III	NUMERICAL PROCEDURE	7
IV	RESULTS	8
V	SUMMARY	21
	REFERENCES	22
	TABLES	23

LIST OF ILLUSTRATIONS

<u>FIGURE</u>		<u>PAGE</u>
1	C_i versus α for $M_\infty = 0$ and for all Values of β	9
2	C_i versus α for $\beta = -.04$ and $M_\infty = 0, 1, 2, 3$	10
3	C_i versus α for $\beta = -.08$ and $M_\infty = 0, 1, 2, 3$	11
4	C_i versus α for $\beta = -.12$ and $M_\infty = 0, 1, 2, 3, 4$	12
5	C_i versus α for $\beta = -.16$ and $M_\infty = 0, 1, 2, 3, 4$	13
6	C_i versus α for $\beta = -.19884$ and $M_\infty = 0, 1, 2, 3$	14
7	C_i versus α for $\beta = -.0001$ and $M_\infty = 0, 1$	15
8	C_i versus C_r for $\beta = -.04$ and $M_\infty = 0, 1$	16
9	C_i versus C_r for $\beta = -.08$ and $M_\infty = 0, 1, 2, 3$	17
10	C_i versus C_r for $\beta = -.12$ and $M_\infty = 0, 1, 2, 3, 4$	18
11	C_i versus C_r for $\beta = -.16$ and $M_\infty = 0, 1, 2, 3, 4$	19
12	C_i versus C_r for $\beta = -.19884$ and $M_\infty = 0, 1, 2, 3$	20

LIST OF SYMBOLS

$a^2 = \gamma RT$	square of the speed of sound
C_p	specific heat at constant pressure
C_v	specific heat at constant volume
$c = C_r + iC_i$	where C_r and C_i are real and $i = \sqrt{-1}$
C_r	propagation velocity
C_i	amplification factor
$e = C_v T + \frac{\bar{U}^2}{2}$	internal energy
$f'(\eta)$	defined by $\frac{df}{d\eta} = \frac{u}{u_e}$; dimensionless velocity ratio
$H = C_p T + \frac{1}{2} \bar{U}^2$	enthalpy
K	thermal conductivity
M	Mach number
$m = \frac{\beta}{2-\beta}$	pressure gradient parameter
$N = \left[\frac{m+1}{2} \frac{a_0}{v_0} \frac{M}{e} \right]^{\frac{1}{2}}$	y-stretching function
p	pressure
q	heat transfer rate
R	gas constant
$S = \frac{H}{H_e} - 1$	enthalpy distribution
T	temperature
u	longitudinal velocity component
v	transverse velocity component
α	wave number
β	pressure gradient parameter
δ	boundary layer thickness
δ^*	displacement thickness

ξ transformed similarity variable
 η transformed similarity variable
 $\Phi(y)$ small perturbation variable for transverse velocity
 ψ $1 + .2 M_\infty^2$
 ν kinematic viscosity
 μ viscosity
 γ ratio of specific heats
 τ stress tensor
 ρ density

SUBSCRIPTS

e external flow
 ∞ far field flow
 x partial derivative with respect to x
 y partial derivative with respect to y
 n partial derivative with respect to n
 $^{\wedge}$ small perturbation variable function of y
 $-$ mean flow quantities

SECTION I

INTRODUCTION

a priori report
In Reference 3, the authors analyzed the stability of the lower branch solutions of the incompressible ($M_\infty = 0$) Falkner-Skan boundary layers.

There a perturbation analysis to these boundary layers was performed resulting in the Rayleigh stability equation. Eigen value solutions were obtained for the Rayleigh equation for different adverse pressure gradient (β) values. All retarded flows were found to be unstable for a small range of frequencies with the amplification factor increasing as the extent of reversed flow increased.

In this report we have extended that work by including the effect of Mach number M_∞ on the stability of adiabatic ($S_w = 0$) Falker-Skan equations for $\beta = -.04, -.08, -.12, -.16$ and $-.19884$. We found out that in all these cases as the Mach number M_∞ increases the instability of flow decreases. In most of the cases the instability almost completely disappeared at $M_\infty = 3$.

SECTION II
GOVERNING EQUATIONS

In this report the stability of compressible inviscid separated flows will be analyzed.

Two dimensional Navier-Stokes equations are as follows

$$U_t + E_x + F_y = 0 \quad (1)$$

where the vectors U, E, and F are given as

$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho e \end{pmatrix}, \quad E = \begin{pmatrix} \rho u \\ \rho u^2 - \sigma_{11} \\ \rho uv - \tau_{12} \\ \rho ue - (\underline{V} \cdot \tau)_x - \dot{q}_x \end{pmatrix}$$

$$F = \begin{pmatrix} \rho u \\ \rho uv - \tau_{12} \\ \rho u - \sigma_{22} \\ \rho ve - (\underline{V} \cdot \tau)_y - \dot{q}_y \end{pmatrix} \quad (2)$$

where

$$\sigma_{11} = -p + \lambda \nabla \cdot \underline{V} + 2\mu u_x$$

$$\tau_{21} = \tau_{12} = \mu(u_y + v_x)$$

$$\sigma_{22} = -p + \lambda \nabla \cdot \underline{V} + 2\mu v_y$$

$$\dot{q}_x = KT_x; \quad \dot{q}_y = KT_y$$

$$\underline{V} = \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\text{and } \tau = \begin{pmatrix} \sigma_{11} & \tau_{12} \\ \tau_{21} & \sigma_{22} \end{pmatrix} \quad (3)$$

Two approximations to these equations are required i.e., steady boundary layer approximations and unsteady inviscid equations.

1. For steady boundary layer approximation

$$\frac{v}{t} = 0$$

$$\sigma_{11} = -\nu$$

$$\tau_{12} = \tau_{21} = \mu u_y \equiv \tau$$

$$\sigma_{22} = -p$$

$$\dot{q}_x = 0 ; \dot{q}_y = KT_y \quad (4)$$

$$(\underline{v} \cdot \underline{\tau})_x = -up$$

$$(\underline{v} \cdot \underline{\tau})_y = -vp + ut$$

$$\text{and the enthalpy } H = e + \frac{p}{\rho} = C_v T + RT + \frac{u^2}{2} = C_p T + \frac{u^2}{2}$$

Hence the Navier-Stokes equations reduce to

$$(\rho u)_x + (\rho v)_y = 0$$

$$(\rho u^2 + p)_x + (\rho uv - \tau)_y = 0$$

$$p_y = 0$$

$$(\rho uh)_x + (\rho vh - \mu H)_y = 0 \quad (5)$$

2. For unsteady inviscid equations

$$\sigma_{11} = \sigma_{22} = -p$$

$$\tau_{12} = \tau_{21} = 0$$

$$\dot{q}_x = \dot{q}_y = 0$$

(9)

$$(\underline{v} \cdot \underline{\tau})_x = -up ; (\underline{v} \cdot \underline{\tau})_y = -vp$$

$$\text{and } H = C_p T + \frac{u^2 + v^2}{2}$$

Hence u is the same as in Equation 2 and

$$E = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uh \end{pmatrix} ; \quad F = \begin{pmatrix} \rho v \\ \rho uy \\ \rho v^2 + p \\ \rho vh \end{pmatrix} \quad (10)$$

These two sets of equations are used to find two different solutions.

The boundary layer equations are solved for similar flows and the unsteady inviscid equations are used to examine perturbations of the steady boundary layer flow to investigate stability.

Transforming the

transformations [1]

$$d\xi = \frac{p_e a}{p_\infty a_\infty} dx$$

$$d\eta = N \frac{a_e \rho}{a_\infty \rho_\infty} dy; N = \left(\frac{m+1}{2} \frac{a_\infty}{v_\infty} \frac{M_e}{\xi} \right)^{1/2}$$

$$p_x = -\rho_e u_e u_{ex}$$

and letting

$$f'(\eta) = \frac{u}{u_e}$$

$$\frac{H(\eta)}{H_e} = 1 + s$$

$$M_e = C\xi^m$$

we obtain the following equations

$$f''' + ff'' = \beta (f'^2 - s - 1)$$

$$s'' + f s' = 0$$

Now let us assume small perturbations of the form

$$u = \bar{u}(y) + u'(x, y, t)$$

$$v = 0 + v'(x, y, t)$$

$$p = p_\infty + p'(x, y, t)$$

$$\rho = \bar{\rho}(y) + \rho'(x, y, t)$$

Substituting these into equations of continuity, momentum and energy;
and retaining the terms of first order only we obtain

$$\frac{\rho' t}{\bar{\rho}} + \bar{u} \frac{\rho' x}{\bar{\rho}} + \frac{\bar{\rho}_y}{\bar{\rho}} v' + u'_x + v'_y = 0 \quad (2.23)$$

$$u'_t + \bar{u} u'_x + \bar{u}_y v' + \frac{p'_x}{\bar{\rho}} = 0 \quad (2.24)$$

$$v'_t + \bar{u} v'_x + \frac{p'_y}{\bar{\rho}} = 0 \quad (2.25)$$

$$\bar{T} c_p \left[\frac{1}{p_\infty} \left(\frac{\partial p'}{\partial t} + \bar{u} \frac{\partial p'}{\partial x} \right) \right] + \bar{H}_y v' + \bar{u} \left(\frac{\partial u'}{\partial t} + \bar{u} \frac{\partial u'}{\partial x} \right) = \frac{p'_t}{\bar{\rho}} \quad (2.26)$$

By eliminating ρ' from (2.23) and (2.26) we obtain

$$\frac{1}{p_\infty} \left(\frac{\partial p'}{\partial t} + \bar{u} \frac{\partial p'}{\partial x} \right) + \gamma (u'_x + v'_y) = 0 \quad (2.27)$$

$$\text{Let } u' = \hat{u}(y) e^{i\alpha(x-ct)} \quad (2.28)$$

$$v' = \hat{v}(y) e^{i\alpha(x-ct)} \quad (2.29)$$

$$p' = \hat{p}(y) e^{i\alpha(x-ct)} \quad (2.30)$$

Then the equations (2.24), (2.25), and (2.27) reduce to

$$i\alpha(\bar{u}-c) \hat{u} + \bar{u}_y \hat{v} + i\alpha \frac{\hat{p}}{\bar{\rho}} = 0 \quad (2.31)$$

$$i\alpha(\bar{u}-c) \hat{v} + \frac{\hat{p}_y}{\bar{\rho}} = 0 \quad (2.32)$$

$$i\alpha(\bar{u}-c) \frac{\hat{p}}{\bar{\rho}} + \frac{\gamma p_\infty}{\bar{\rho}} (\hat{v}_y + i\alpha \hat{u}) = 0 \quad (2.33)$$

Let $\Phi = \hat{v}$, eliminate \hat{u} and \hat{p} from the equations (2.31), (2.32) and (2.33) and use the relation $\bar{\rho} = p_\infty / R\bar{T}$, and we get

$$\left[\frac{(\bar{u}-c) \Phi_y - \bar{u}_y \Phi}{\gamma R \bar{T} - (\bar{u}-c)^2} \right]_y = \frac{\alpha^2 (\bar{u}-c) \Phi}{\gamma R \bar{T}} \quad (2.34)$$

Now from (2.15) we can obtain a relationship for $\gamma R \bar{T}$ as a function of $S(n)$

and \bar{u} .

$$\gamma R \bar{T} = \frac{1+S - 0.2 M_o^2 \bar{u}^2}{M_o^2} \quad (2.35)$$

where

$$M_o^2 = \frac{M_\infty^2}{1+0.2 M_\infty^2} \quad (2.36)$$

Using 2.14 the equation (2.34) becomes

$$\left[\frac{(f' - \bar{c})\phi_n - f''\phi_{-n}}{gh} \right] = \frac{\alpha^2 h(f' - \bar{c})\phi}{1+S-0.2 M_o^2 f'^2} \quad (2.37)$$

where

$$g = 1 + S - 0.2 M_o^2 f'^2 - (f' - \bar{c})^2 \quad (2.38)$$

$$h = \frac{dn}{dy} = \frac{\psi^4}{N} \left[1 - \frac{\psi-1}{\psi} f'^2 \right] \quad (2.39)$$

$$\psi = 1 + 0.2 M_\infty^2 \quad (2.40)$$

$$\text{and } N = \left(\frac{m+1}{2} \frac{\alpha_o}{v_o} \frac{Me}{\xi} \right)^{1/2} \quad (2.41)$$

we solve numerically the eigen value problem given by the equation (2.37)

for $S = 0$ and the boundary conditions $\phi(0) = 0$, and $\phi(\infty) = 0$. f' and f'' are obtained from equation (2.17) with boundary conditions $f(0) = 0$, $f'(0) = 0$ and $f'(\infty) = 1$.

SECTION III
NUMERICAL PROCEDURE

Eigen values were determined by a shooting method[2]: starting with a given boundary condition, integrating over the range of n and comparing the result with the outer boundary condition, namely $\phi = 0$ at n_{\max} . The process involved minimization of the error in the outer boundary condition which was chosen to be the square of the norm of ϕ , $|\phi|^2 = \phi_R^2 + \phi_i^2$. The integration was done using a fourth order Runge-Kutta method.

The method of finding eigen values utilized the same minimization routine as in [2]. Starting from a given guess the routine searched along a constant line of C_i with increasing steps until it found a relative minimum of the error. It then used the last three calculated points to determine a parabola, with the C_r value at the vertex used as the latest approximation. Then this value of C_r was held constant and a search along a line of changing C_i was carried out. After a new minimum was found, the quadratic approximation was again used to determine a new value for C_i . The third step involved searching the line connecting the original guess and the new point. After finding a minimum and utilizing quadratic approximation, the error was checked to see if it was less than some preset limit. If not, the routine started again with the latest value used in place of the original guess.

SECTION IV

RESULTS

Several cases were computed for β values of -.0001, -.04, -.08, -.12, -.16 and -.19884; at Mach numbers M_∞ of 0, 1, 2, 3 and 4. For a wide range of α values the eigen values were ascertained. These values are tabulated on the following pages (Tables 1-a to 6-d).

The values of C_i versus α are plotted for the above mentioned values of β and that of M_∞ (Figures 1-7). The values of C_i versus C_r are also plotted for all the above mentioned values of β and for $M_\infty = 0, 1$ (Figures 8-12).

Solutions were obtained with convergence error criteria of at least 10^{-6} for all cases.

The solutions obtained for the Rayleigh instability in this report are restricted to subsonic disturbances, $C_r > 1 - M_\infty^{-1}$, that die off exponentially [3]. Instabilities for $C_r < 1 - M_\infty^{-1}$ are supersonic disturbances. Such solutions represent sound waves associated with the boundary layer and are not considered here.

Mach = 0.0 ALL β

Figure 1 C_1 versus α for $M_\infty = 0$ and for all values of β

$$\beta = -0.04$$

Figure 2 C_1 versus α for $\beta = -.04$ and $M_\infty = 0, 1, 2, 3$

Figure 3 C_1 versus α for $\beta = -.08$ and $M_\infty = 0, 1, 2, 3$

$$\beta = -0.12$$

Figure 4 C_1 versus α for $\beta = -0.12$ and $M_\infty = 0, 1, 2, 3, 4$

Figure 5 C_1 versus α for $\beta = -0.16$ and $M_{\infty} = 0, 1, 2, 3, 4$

$$\beta = -1.19884$$

Figure 6 C_l versus α for $\beta = -1.19884$ and $M_\infty = 0, 1, 2, 3$

$$\beta = -0.0001$$

Figure 7 C_1 versus α for $\beta = -0.0001$ and $M_\infty = 0, 1$

Figure 8 C_i versus C_r for $\beta = -0.04$ and $M_\infty = 0, 1$

Figure 10 C_i versus C_r for $\beta = -.12$ and $M_\infty = 0, 1, 2, 3, 4$

Figure 11 C_i versus C_r for $\beta = -.16$ and $M_\infty = 0, 1, 2, 3, 4$

Fig 12 C_l versus C_r for $\beta = -1.19884$ and $M_{\infty} = 0, 1, 2, 3$

SECTION V

SUMMARY

The stability of adiabatic compressible similar boundary layer flows (Stewartson's lower branch) has been investigated by utilizing the linearized equations resulting from a small perturbation analysis. These flows are representative of a wide class of separated boundary layers with distinct inflection points. Eigen value solutions for this equation were obtained for $\beta = -0.0001, -0.04, -0.08, -0.12, -0.16$, and -0.19884 ; for Mach number $M_\infty = 0, 1, 2, 3$ and 4 ; and for a wide range of values of α . In all these cases we found that as the Mach number increases the instability of the flow decreases. In most of the cases the instability almost completely disappeared at $M_\infty = 3$.

REFERENCES

1. Christian, J. W., Hankey, W. L., and Petty, J. S., "Similar Solutions of the Attached and Separated Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient", ARL 70-0023, Feb 1970.
2. Verma, G. R., Hankey, W. L., and Scherr, S. J., "Stability Analysis of the Lower Branch Solutions of the Falkner-Skan Equations", AFFDL-TR-79-3116, July 1979.
3. Lin, C. C., "The Theory of Hydrodynamic Stability", Cambridge University Press, 1966.

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 1-a

$\beta = -.0001$

$M_{\infty} = 0.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.878	.258
.05	.74227622339866	.33117005357051
.10	.62883283474993	.32643813990696
.15	.5760866669002	.28969457316972
.20	.55340765412227	.247903515584
.25	.54570288639066	.20695656175169
.30	.54565311752934	.16808272454592
.35	.5496397866896	.13139818720763

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 1-b

$\beta = .0001$

$M_\infty = 1.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.802	.204
.05	.73081759775908	.24695656548369
.10	.65039499406247	.2363699683213
.15	.6133256194012	.20817418970878
.20	.5972291116267	.17769992745518

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 2-a

$\beta = -.04$

$M_\infty = 0.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.43987767455304	.36885631925121
.05	.44207033341602	.36063631925125
.10	.44724820878426	.3378303798829
.15	.45401920298779	.30524424618984
.20	.46108000640763	.2675051782972
.25	.46817052480382	.22745276163212
.30	.47551265463347	.18685
.35	.48341457993034	.14668814199572
.40	.49212825362202	.10759013802
.45	.50171799368214	.069965689915
.47	.50580067135532	.055371705695
.49	.51001806425015	.041065487075231
.51	.51436529442526	.027030324511536
.53	.51883654167218	.013274339319087
.54	.52112824239891	.0064672192105841
.55	.52343768083266	.13704612334(10) ⁻¹⁰

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 2-b

$\beta = -.04$

$M_\infty = 1.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.51648881582676	.2056027813269
.05	.516763212275919	.20273
.10	.51777695111447	.19362
.15	.5200501719058	.17843699199205
.20	.52426129209281	.15782
.25	.53079481224409	.13315925675218
.30	.53991931058383	.10573513638387
.35	.55166905562652	.077245446948473
.40	.56553380221615	.049176841296
.45	.5810048195671	.022399128310204
.50	.59760335005259	.78894609315189(10) ⁻¹³

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 2-c

$\beta = -.04$

$M_\infty = 2.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.71652009701362	.012668266983099
.05	.71753501411812	.01226328176528
.10	.72066161383724	.011022841293529
.15	.72618415638285	.00869459858322
.20	.73502485926542	.004771749891212
.25	.75196718703684	.00018535327544368
.30	.76419444077515	.19202271368789(10) ⁻⁷

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 2-d

$\beta = -.04$

$M_\infty = 3.0$

<u>a</u>	<u>CREAL</u>	<u>CIM</u>
.00	.83828497991129	.0022712861124202
.05	.83832353291369	.002203142045787
.10	.83837971374505	.0020331420457871
.15	.83846438764227	.0017653324015645
.20	.83859057338825	.0014442186050454
.25	.8387492371429	.001113135795937
.30	.83893095785374	.00078786558540471
.35	.83913890358613	.0005050186776936
.40	.83936245428606	.00027361258321498
.45	.83958450670098	.00010119992619257
.50	.83694157408348	.19958331395(10) ⁻⁶

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 2-e

$\beta = -.04$

$M_\infty = 4.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.30	.89821345486853	.000021922152712024
.35	.8986111670579	.0004611158595219
.40	.89953752407322	.0028801200643778
.45	.89510209749401	.045208127853594
.50	.87404992469655	.045208127853594
.55	.86658125716397	.031823395903264
.60	.87048122749137	.022711831051369
.65	.87609006759250	.017925665965007
.70	.88688808123776	.014655665965008
.75	.88728460663517	.031233426575069
.85	.8762373558128	.021616774127454
.90	.87964029961504	.016694475973842
.95	.88385911569359	.01370968395625
1.00	.89268429567826	.012694502651197
1.05	.88972705279445	.021556311009098
1.10	.88499035977476	.017742086117608
1.15	.88669858993286	.01254227480618
1.20	.88971509780423	.0097196462037101
1.25	.89321141504163	.0075396680289642
1.30	.90053222429137	.010810059035796

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 2-f

$\beta = -.04$

$M_\infty = 5.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.25	.925709228969	.10764531469363(10) ⁻⁷
.30	.92599278831718	.00052922822359162
.35	.92662183965195	.0036208198669419
.40	.92815396787939	.044768670567448
.45	.90527927877179	.043548670567449
.50	.89973634086423	.029960914691319
.55	.90339925807196	.022265546403671
.60	.91104518004842	.016848106851863
.65	.919499823277	.03291795747694
.70	.90713307942075	.034841795747696
.75	.90287171885508	.027562290719606
.80	.90488432472496	.022291710386326
.85	.90924818100037	.019063122959966
.90	.91656201320373	.024864825434707
.95	.90980435312741	.028204726049801
1.00	.90675258382852	.024018271420318
1.05	.9080509069683	.02020342004305
1.10	.91094054585563	.017880372690646
1.15	.91619267667693	.019430372690645
1.20	.91302631906102	.022852784863159
1.25	.91094622674332	.020017881963299

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 3-a

$\beta = -.08$

$M_\infty = 0.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.32369623377884	.34699688870065
.05	.33369584191324	.34136688870062
.10	.35826638444223	.32487687953082
.15	.3871139446555	.29876721357765
.20	.41300148863976	.26621778203783
.25	.43359629937571	.23017553362009
.30	.44940833839654	.19254904411
.35	.46187743256269	.15449844555
.40	.47244512611985	.11668512889899
.45	.48225255493466	.079432215574946
.50	.49209935812562	.043039565854083
.51	.49412146647788	.035884937258694
.52	.49616827571136	.028775493482445
.53	.49824205645293	.021712720558712
.54	.5003447834241	.014698024786192
.55	.5024780843498	.007731837782228
.56	.50464325465667	.00081805807540883
.57	.50676888027108	.72384625813(10)

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 3-b

$\beta = -.08$

$M_\infty = 1.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.44717644074037	.20047
.05	.45036889272004	.19827
.10	.45922151788401	.19084
.15	.47191142328282	.17768036911841
.20	.48650885313897	.15878544735304
.25	.50145992619499	.13522670533432
.30	.51645114109554	.10840338464129
.35	.53169707037833	.079953633930761
.40	.54766418019842	.051166391960728
.45	.56449725740563	.0233006240 ₋₁₀ 1718
.50	.58199860635478	.20484929(10)

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 3-c

$\beta = -.08$

$M_\infty = 2.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.6786161709683	.022508215380253
.05	.67972441881664	.022250750848725
.10	.68303497061643	.021437835780906
.15	.68850427971181	.019955132584977
.20	.69605683760054	.017631827672087
.25	.70562456196254	.014255879594706
.30	.71733360169382	.0095062598734696
.35	.73448129706239	.00099907312154349
.40	.74207518088353	.23000236908(10)

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 3-d

$\delta = -.08$

$M_\infty = 3.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.81598597441035	.00878
.05	.81703718909398	.0083
.10	.82160858194915	.0070816257624878
.15	.82804044677527	.0061516257624876
.20	.84264511987827	.0032723347777689
.25	.84482479602233	.00024791089280703
.30	.83193057606446	.22978827129375(10) ⁻⁷

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 4-a

$\beta = -.12$

$M_\infty = 0.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.26797687730572	.31234232980631
0.5	.28102153388006	.30951232980998
.10	.31347137430098	.29945827726145
.15	.35178357956826	.2803755997
.20	.3862991794655	.25380503131086
.25	.41390661598813	.22262760308578
.30	.43484237373715	.18908568520356
.35	.45065120829171	.1545740393919
.40	.46300287320082	.11975275961889
.45	.47330865110306	.084940621696782
.50	.48266019956708	.050314757429
.51	.48449379002331	.043424498053437
.52	.48632594650336	.036546224164
.53	.48816889190114	.029686966462328
.54	.49001997676537	.022843887613529
.55	.4918859574488	.01601900202133
.56	.49377077632378	.0092141973979966
.57	.49567805823573	.002430802560521
.58	.49746498047765	.3182641603775(10) ⁻¹⁶

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 4-b

$\delta = -.12$

$M_\infty = 1.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.41167552342101	.1878
.05	.41623505215809	.18725085995722
.10	.42899625900601	.18183147831189
.15	.44724064021763	.17084403642609
.20	.46735879613637	.15384724143076
.25	.48699038772784	.13189101615667
.30	.50523940737027	.10660309868245
.35	.52236226626894	.079462427068201
.40	.53903028164075	.051725459886459
.45	.55586948135723	.024364982514944
.50	.57311212735258	.1017881651868(10) ⁻¹⁰

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 4-c

$\beta = -.12$

$M_\infty = 2.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.65839480434711	.026092947770033
.05	.65961725584558	.025915514956212
.10	.66326505733073	.02532970117879
.15	.66925926127822	.02417156096836
.20	.67741270635143	.022219596865938
.25	.68739697581636	.019268547734957
.30	.69877851277156	.015212623004071
.35	.71113049231316	.010050354226687
.40	.72400369336947	.0037646401254844
.45	.73962124009023	.16030361443544(10) ⁻⁷

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 4-d

$\delta = -.12$

$M_\infty = 3.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.799297248509	.01278
.05	.80000934947748	.01257
.10	.80229612802101	.01200
.15	.80664157054453	.01093
.20	.81359897034131	.00955
.25	.82704379652628	.0070382792707014
.30	.84460395081738	.0016267213425985
.35	.84622291302017	.0002287720441795

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 4-e

$\beta = -.12$

$M_\infty = 4.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.86616538802484	.010656348515416
.05	.86682379170628	.01047
.10	.8690306186739	.00954
.15	.87538083224061	.007504028879073
.20	.88303325738425	.0055742297728253
.25	.88430275994354	.0010375977486407
.30	.87105365170367	.14637401810687(10) ⁻⁷

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 5-a

$\beta = -.16$

$M_\infty = 0.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.23720214020418	.26932
.05	.25150053447872	.26894
.10	.28707260466672	.26456999999997
.15	.32958872723365	.25198249969844
.20	.36871548175686	.23150484603023
.25	.40070454466847	.205651692272
.30	.42549834454723	.17685525583205
.35	.44445004587741	.14661692320698
.40	.45910305834033	.11572007798677
.45	.47080262511519	.08451680241725
.47	.47490565319875	.07198605088171
.50	.48063340969634	.05314223435821
.52	.48424269601754	.040555823420234
.55	.48946530220887	.021644245566366
.57	.49287533137931	.009017444924746
.60	.49714855115073	.51051169643964(10) ⁻¹⁷

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 5-b

$\beta = -.16$

$M_\infty = 1.0$

<u>a</u>	<u>CREAL</u>	<u>CIM</u>
.00	.390132263	.17237509608007
.05	.3955289214209	.17158283047374
.10	.41073798666442	.16799041440433
.15	.43258525829471	.15921545104991
.20	.45661408648407	.14430445835654
.25	.47967243743361	.12435933593416
.30	.50047410317492	.10114810178348
.35	.51916572984406	.076171633290267
.40	.53645211078931	.050505479134
.45	.55310544219744	.024887069621686
.50	.56968563360666	.17329650192198(10) ⁻⁸

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 5-c

$\beta = -.16$

$M_\infty = 2.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.64373518113751	.028762839011559
.05	.64505248347879	.028669790868788
.10	.64899705474856	.028307094811578
.15	.65550184529697	.027456079565817
.20	.66435700576961	.025804622220761
.25	.67513011831739	.023068203047795
.30	.68719803701793	.019134401402838
.35	.69989839761269	.014121961288967
.40	.71269909323166	.0083015694599864
.45	.72552146348634	.0019185759632401
.50	.73729348133478	.63750491393051(10) ⁻⁸

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 5-d

$\beta = -.16$

$M_\infty = 3.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.78589369980286	.015792655970023
.05	.78645640558174	.01568
.10	.78823521571603	.01556
.15	.79126704068021	.01509
.20	.79572124363865	.01429
.25	.80194239191989	.01307
.30	.81073262707369	.01095
.35	.82766576449979	.0061608409763784
.40	.8365888896946	.0017379727989417
.45	.83773192014701	.00022801991722174
.50	.83836888357047	.11347246557158(10) ⁻⁷
.20	.81163121710037	.0008406355497678
.25	.81170954271209	.001381226933045
.30	.81101006265947	.0026343082299221
.35	.80923721879293	.0017541354054970
.40	.8091763273152	.00079207227331372
.45	.8093510462839	.00031490868669327
.50	.80948673733201	.000069368519808528
.51	.79552652899238	.00010239920402293

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 5-e

$\beta = -.16$

$M_\infty = 4.0$

<u>a</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.85514992665401	.013524484229505
.05	.8556345141995	.0135
.10	.8570041638137	.01312
.15	.85948150102789	.01255
.20	.86369242071952	.01117
.25	.87184997281629	.00944
.30	.8897645753521	.0065286567249117
.35	.89259101440328	.0004986820466649
.40	.87954401262373	.16539090895888(10) ⁻⁷

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 6-a

$\beta = -.19884$

$M_\infty = 0.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.21990557686348	.17479832314286
.05	.23411447299982	.17699243187839
.10	.26964387451608	.1792
.15	.31285318997176	.17524942886964
.20	.35403327790082	.16390212269174
.25	.38926523792042	.14694742534449
.30	.41811265544226	.12650017547282
.35	.44144339834897	.10405249879606
.40	.46036741581478	.080480828726484
.42	.46693462193267	.070852927473832
.45	.4758926657407	.056259433700949
.47	.48134363506319	.046443551639306
.50	.48885307203288	.031613200452065
.52	.49347468826298	.021660449955077
.55	.49992351580529	.0066340660397154
.57	.50402011674148	.27773507545248(10) ⁻¹⁶

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 6-b

$\beta = -.19884$

$M_\infty = 1.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
0.0	.37518469877919	.126987800 ⁻⁴⁵⁰⁵
.05	.38138547962337	.12705
.10	.39899115583578	.12576792558343
.15	.42447921189644	.1203251835782
.20	.45286763600263	.10930370103203
.25	.48017931115488	.09362308948887
.30	.50469584422687	.075006498685015
.35	.52629068188418	.054959221348647
.40	.5454923691014	.034350507471669
.45	.56297179234488	.013666677486108
.50	.57934578533203	.38928305239686(10) ⁻¹⁷

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 6-c

$\beta = -.9884$

$M_{\infty} = 2.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.62969487029807	.030889844737148
.05	.6311617302087	.030920641237614
.10	.63557624440788	.030936633398926
.15	.64291693941898	.030600424399213
.20	.65296076562186	.029432887092191
.25	.66512943144051	.026989425600505
.30	.67854728173942	.02309160066191
.35	.69232493104063	.017949937829179
.40	.70580292555574	.011984639078454
.45	.71860335851749	.0056504692929738
.50	.7307530289015	.9193686072086(10) ⁻⁸

EIGEN VALUES FROM STABILITY ANALYSIS FOR
ADIABATIC COMPRESSIBLE REVERSED FLOW BOUNDARY LAYERS

Table 6-d

$\beta = -.19884$

$M_\infty = 3.0$

<u>α</u>	<u>CREAL</u>	<u>CIM</u>
.00	.76882482147335	.02005818057211
.05	.76936714380275	.02008
.10	.77099503364300	.02008
.15	.77370202112201	.02008
.20	.77746621495485	.02000
.25	.78222893455565	.01962
.30	.78788619204293	.018864429978234
.35	.79428666460582	.017709024553168
.40	.80128832923942	.01607439528655
.45	.80875571423894	.013954395289655
.50	.81678746502399	.011351548861573
.55	.825557463186555	.0074586170736347
.60	.83481964201181	.0051050610659472
.65	.84925394836117	.003029645545813
.70	.86568773501342	.0089787871264246
.75	.85122932119987	.038191234101883
.70	.86060096659162	.034036401942572
.80	.84327106510608	.036561313531183
.85	.83664071110094	.030735203355245
.90	.83219222307689	.020560376004845

**DATE
TIME**