Lab 13

Part A – 8-Bit Array Multiplier

Description

• In this module, you will synthesize, implement, upload, and test a hardware description for an 8-bit pipelined array multiplier, adapted from 08D.

Procedure

Project Creation

- 1. Download the files below from Canvas and place them in a new folder titled lab13a.
 - lab13a.xdc
 - lab13a.vhd
 - adder_9.vhd
 - display_controller.vhd
 - full_adder.vhd
 - half_adder.vhd
 - part_prod_gen.vhd
 - sign_magnitude.vhd
- 2. Open Vivado and create a new project titled appropriately.
 - For your convenience, the board identifier is xc7a35wtcpg236-1.
 - You can also find the board with the same options as before: General Purpose,
 Artix-7, cpg236, -1.

Hardware Review, Upload, and Test - 4 Bit CLA Adder

- 3. Open lab13a.vhd in the editor, and follow along with the instructor to review the hardware description of it and the other files.
- 4. Open Elaborated Design, review the schematic alongside the instructor, and take screenshots for your report as follows:.
 - Take one screenshot of the entire multiplier.
 - Take one screenshot zoomed in to just the sign_magnitude hardware component.
- 5. Run synthesis and implementation and then generate the bitstream to program the device. Then, open the Hardware Manager.
 - Take a screenshot of the resource utilization (LUTs and FFs) to add to your report.

- 6. Before proceeding, plug the FPGA development board into your computer using the provided Micro-USB to USB-A cable.
- 7. At the top, in the green banner (or under the Open Hardware Manager dropdown) click Open Target, then Auto Connect.
- 8. Once the device is connected, select Program Device (in either of the locations where Open Target was previously).
 - See 06B-handout for troubleshooting steps, or ask the instructor or TA.
- 9. Click Program to upload the bitstream to the FPGA.
- 10. The GPIO is organized as follows:
 - The left half of the switches represent the first term (multiplicand).
 - The right half of the switches represent the second term (multiplier).
 - The 7-segment displays show the 16-bit result of the multiplication.
- 11. Make a copy of the template spreadsheet provided at the following link: https://docs.google.com/spreadsheets/d/1LUeCaYJ9kc3Up1m0VH3xfaVEhl34mjmvGhT8vcU10Sg/edit?usp=sharing
 - Test each of the inputs on the board and record your results.
 - During one of your tests, take a picture of the board.
- 12. Why is the latency different than the throughput in this implementation?

Deliverables

- Include as part of your **informal report**:
 - Screenshots of Elaborated Design schematics (Step 4)
 - Screenshot of FPGA resource utilization (Step 5)
 - A picture of the FPGA development board (Step 11)
 - Completed testing spreadsheet (you will also need Part B) (Step 11)
 - Answer to (12)

Outcomes

- Practice working with VHDL.
- Practice using Vivado for hardware synthesis and implementation.
- Practice programming and testing a hardware description on an FPGA development board.
- Understand the implementation of a pipelined array multiplier.