iDMRG

David Aceituno

Contents

Hamiltonian in MPO form	2
Hamiltonian	1
Model	1
Notation	1
iDMRG on C++	1

iDMRG on C++

The code follows the steps outlined in the following paper

Kjäll, J. A., Zaletel, M. P., Mong, R. S. K., Bardarson, J. H. & Pollmann, F. Phase diagram of the anisotropic spin-2 XXZ model: Infinite-system density matrix renormalization group study. Phys. Rev. B 87, 235106 (2013).

and the file itebd.py.

Notation

Latin letters are reserved for physical indices, and greek indices for bond indices. The order of indices in all tensors is physical indices \rightarrow bond indices. In diagrammatic notation we have

$$\Lambda_{\alpha}\beta = \alpha - \Lambda - \beta = 0 - \Lambda - 1 \tag{1}$$

$$\Lambda_{\alpha}\beta = \alpha - \boxed{\Lambda} - \beta = 0 - \boxed{\Lambda} - 1$$

$$i \qquad 0 \\
\Gamma_{\alpha\beta}^{i} = \alpha - \boxed{\Gamma} - \beta = 1 - \boxed{\Gamma} - 2$$

$$\theta_{\alpha\beta}^{ij} = \alpha - \boxed{\theta} - \beta = 2 - \boxed{\theta} - 3$$
(1)
$$(2)$$

$$\theta_{\alpha\beta}^{ij} = \alpha \frac{\beta}{\theta} = 2 \frac{0}{\theta} \frac{1}{3}$$

$$(3)$$

In C++ these are explicitly objects of type Eigen::Tensor<double,rank,Eigen::ColMajor>;, which are typedef'ed into shorthand TensorR, where R is the rank (0 to 4).

Model

Hamiltonian

We study the 1D Ising model with a transverse field, given by the following Hamiltonian

$$H = \frac{1}{2} \sum_{i} \left[-J \sigma_i^z \sigma_{i+1}^z - g \sigma_i^x \right].$$

or equivalently

$$H = \frac{1}{2} \sum_{i} \left[-J \sigma_i^z \sigma_{i+1}^z - \frac{g}{2} (\sigma_i^x + \sigma_{i+1}^x) \right].$$

For two sites this can be written out explicitly

$$H = \begin{pmatrix} J & -g/2 & -g/2 & 0 \\ -g/2 & -J & 0 & -g/2 \\ -g/2 & 0 & -J & -g/2 \\ 0 & -g/2 & -g/2 & J \end{pmatrix}.$$

and is obtained by the following code:

$$C++\ code$$

Hamiltonian in MPO form

In MPO form the Hamiltonian above reads

$$H_{\text{MPO}} = \begin{pmatrix} I & 0 & 0 \\ \sigma^z & 0 & 0 \\ -g\sigma^x & -J\sigma^z & I \end{pmatrix}.$$

where each element is a 2×2 -matrix. To transform into an MPO note that this matrix is essentially an outer (3×3) matrix containing inner (2×2) matrices, or equivalently a $(2 \times 3) \times (2 \times 3)$ matrix. The goal is to obtain an MPO with dimensions (3, 3, 2, 2), depicted as

$$\begin{array}{ccc}
2_{dim=2} & a_1 \\
0_{dim=3} & \stackrel{\downarrow}{-H} & 1_{dim=3} & = b_1 & \stackrel{\downarrow}{-H} & b_2 \\
3_{dim=2} & a_2
\end{array} , \tag{4}$$

where the left figure indicates the numbering of the indices and also their dimension.

Returning to H_{MPO} , remember that it should follow column-major notation in C++, such that the left (2×3) column is counted first. Calling these indices $(a_1 \times b_1)$, we note that a_1 should "tick" before b_1 . Likewise for the (2×3) rows, denoted $(a_2 \times b_2)$, note that a_2 ticks before b_2 . Therefore to get a rank 4 MPO we should simply reshape into indices $(a_1, b_1, a_2, b_2) = (2, 3, 2, 3)$.

Next we should reorder the indices to get the right diagram above. To do this, we do a transpose, or shuffle like (1,3,0,2) to get the order of indices $(b_1,b_2,a_1,a_2)=(3,3,2,2)$. Then the first index b_1 selects the outer matrix row, and b_2 the outer matrix column, while a_1 selects inner row, and a_2 inner column.

 A^j_{α} test