Definição de Limite

Priscila Bemm

UEM

Objetivos

- Entender o conceito de limite e limites laterais.
- Propriedades de Limites.

- As operações relacionadas à ideia de limite serão necessárias para compreensão das ideias de diferenciação e de integração, operações a serem discutidas numa parte subsequente do nosso curso.
- O conceito de limite dá sustentação a todo o cálculo.
- Abordaremos o conceito de limite através de uma abordagem intuitiva que será feita através de exemplos.

O problema da velocidade

Exemplo 1

Suponha que uma bola seja solta a partir do ponto de observação no alto da Torre CN, em Toronto, 450m acima do solo. Encontre a velocidade da bola após 5 segundos.

4 / 36

O problema da velocidade

Exemplo 1

Suponha que uma bola seja solta a partir do ponto de observação no alto da Torre CN, em Toronto, 450m acima do solo. Encontre a velocidade da bola após 5 segundos.

Se a distância percorrida após t segundos for chamada s(t) e medida em metros, então a Lei de Galileu pode ser expressa pela equação

$$s(t) = 4,9t^2$$

Sabe-se que:

• velocidade média = $\frac{\text{mudança de posição}}{\text{tempo percorrido}}$

•
$$s(t) = 4,9t^2$$

Podemos usar intervalos de tempo cada vez menores para que a velocidade média se aproxime cada vez mais da velocidade exata após 5 segundos, por exemplo, no intervalo $5 \leq t \leq 6$ temos:

$$\begin{array}{ll} \text{velocidade m\'edia} &= \frac{\text{mudança de posição}}{\text{tempo percorrido}} \\ &= \frac{s(6) - s(5)}{6 - 5} \\ &= \frac{4,9 \cdot 6^2 - 4,9 \cdot 5^2}{1} \\ &= 53.9 \end{array}$$

Observe a tabela:

Intervalo de tempo	Velocidade média (m/s)
$5 \le t \le 6$	53,9
$5 \le t \le 5,1$	49,49
$5 \le t \le 5,05$	49,245
$5 \le t \le 5.01$	49,049
$5 \le t \le 5,001$	49,0049
·	

- À medida que encurtamos o período do tempo, a velocidade média fica cada vez mais próxima de 49m/s.
- A velocidade instantânea quando é definida como o valor limite dessas velocidades médias em períodos de tempo cada vez menores, começando em t=5.

Assim a velocidade após 5 segundos é 49m/s.

Exemplo 2

Analise o comportamento da função $f(x)=\frac{x-1}{x^2-1}$ para valores de x próximos a 1.

Exemplo 2

Analise o comportamento da função $f(x)=\dfrac{x-1}{x^2-1}$ para valores de x próximos a 1.

<i>x</i> < 1	f(x)
0,5	0,666667
0,9	0,526316
0,99	0,502513
0,999	0,500250
0,9999	0,500025

x > 1	f(x)
1,5	0,400000
1,1	0,476190
1,01	0,497512
1,001	0,499750
1,0001	0,499975

Exemplo 2

Analise o comportamento da função $f(x)=\frac{x-1}{x^2-1}$ para valores de x próximos a 1.

x < 1	f(x)
0,5	0,666667
0,9	0,526316
0,99	0,502513
0,999	0,500250
0,9999	0,500025

x > 1	f(x)
1,5	0,400000
1,1	0,476190
1,01	0,497512
1,001	0,499750
1,0001	0,499975

Quando se aproxima de 1, por valores maiores ou menores que 1, $f(x) = \frac{x-1}{x^2-1}$ se aproxima de 0.5.

A análise da tabela do exercício anterior mostra que, quando x se aproxima de 1, por valores maiores ou menores que 1, f(x) se aproxima de 0,5.

A análise da tabela do exercício anterior mostra que, quando x se aproxima de 1, por valores maiores ou menores que 1, f(x) se aproxima de 0,5.

Dizemos que o limite de $f(x)=\frac{x-1}{x^2-1}$, quando tende a 1, é 0,5, e escrevemos:

A análise da tabela do exercício anterior mostra que, quando x se aproxima de 1, por valores maiores ou menores que 1, f(x) se aproxima de 0,5.

Dizemos que o limite de $f(x) = \frac{x-1}{x^2-1}$, quando tende a 1, é 0,5, e escrevemos:

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0, 5$$

Observação

Observe que a função não está definida quando x=1, mas isso não importa, pois devemos estudar o comportamento da função para valores de x que estão próximos de 1, mas não são iguais a 1.

Definição

De modo geral, se f(x) se aproxima de um número L, quando x se aproxima de um número a, tanto pela esquerda quanto pela direita, L é o limite de f(x) quando x tende a a, e escreve-se

$$\lim_{x \to a} f(x) = L$$

Vamos analisar o comportamento da função f definida por $f(x)=x^2-x+2$ para valores de x próximos de 2.

Vamos analisar o comportamento da função f definida por $f(x)=x^2-x+2$ para valores de x próximos de 2.

х	f(x)	x	f(x)
1,0	2,000000	3,0	8,000000
1,5	2,750000	2,5	5,750000
1,8	3,440000	2,2	4,640000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030100
1,995	3,985025	2,005	4,015025
1,999	3,997001	2,001	4,003001

1,0 2,000000 3, 1,5 2,750000 2, 1,8 3,440000 2,	
1,9 3,710000 2, 1,95 3,852500 2, 1,99 3,970100 2,	2 4,640000

 Vemos que quando x estiver próximo de 2 (de qualquer lado de 2), tenderá a 4.

•

X	f(x)	x	f(x)
1,0	2,000000	3.0	8,000000
1,5	2,750000	2,5	5,750000
1,8	3,440000	2,2	4,640000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030100
1,995	3,985025	2,005	4,015025
1,999	3,997001	2,001	4,003001

- Podemos tornar os valores de tão próximos de 4 quanto quisermos, ao tornar x suficientemente próximo de 2.
- Dizemos "o limite da função quando x tende a 2 é igual a 4". Notação: $\lim_{x\to 2} x^2 x + 2 = 4$

Analise o comportamento da função $f(x) = \sin \frac{\pi}{x}$ para valores de x próximos a 0.

Analise o comportamento da função $f(x) = \sin \frac{\pi}{x}$ para valores de x próximos a 0.

Observe que:
$$f(1) = \sin \frac{\pi}{1} = 0 \qquad \qquad f(1/2) = \sin \frac{\pi}{1/2} = \sin 2\pi = 0 \\ f(1/3) = \sin \frac{\pi}{1/3} = \sin 3\pi = 0 \qquad f(1/4) = \sin \frac{\pi}{1/4} = \sin 4\pi = 0$$
 Com base nesses valores,

tendemos a conjecturar que $\lim_{x\to 0} \sin \frac{\pi}{x} = 0$.

11 / 36

Definição de Limite Priscila Bemm (UEM)

Embora para todo número inteiro n, tem-se $f(\frac{1}{n}) = \sin(n\pi) = 0$, f(x) = 1 é também verdadeiro que para infinitos valores de x que tendem a 0.

Observe que os valores de y de oscilam entre -1 e 1 infinitas vezes quando x tende a 0. Uma vez que os valores de não tendem a um número fixo quando x tende a 0, $\lim_{x\to 0} \mathrm{sen}(\frac{\pi}{x})$

<ロ > < 個 > < 国 > < 重 > へき > く き > り へ ()

11 / 36

Priscila Bemm (UEM) Definição de Limite

Atenção

É fácil conjecturar um valor falso se usarmos os valores não apropriados de x, mas é difícil saber quando parar de calcular valores.

Ao longo das aulas sobre limites vamos desenvolver métodos infalíveis no cálculo de limites.

12 / 36

Exemplo 4

Considere a função
$$H(t) = \left\{ egin{array}{ll} 1 & \mbox{quando} \ t \geq 1 \\ 0 & \mbox{quando} \ t < 1 \end{array} \right.$$

Exemplo 4

Considere a função
$$H(t) = \left\{ \begin{array}{ll} 1 & \text{quando } t \geq 1 \\ 0 & \text{quando } t < 1 \end{array} \right.$$

• Quando t e aproxima de 0 por números menores que zero, isto é, pela esquerda, H(t) tende a zero.

Exemplo 4

Considere a função
$$H(t) = \left\{ \begin{array}{ll} 1 & \text{quando } t \geq 1 \\ 0 & \text{quando } t < 1 \end{array} \right.$$

- Quando t e aproxima de 0 por números menores que zero, isto é, pela esquerda, H(t) tende a zero.
- ullet Quando t tende a zero pela direita, isto é, por números maiores que zero, H(t) tende a 1.

Exemplo 4

Considere a função
$$H(t) = \left\{ \begin{array}{ll} 1 & \text{quando } t \geq 1 \\ 0 & \text{quando } t < 1 \end{array} \right.$$

- Quando t e aproxima de 0 por números menores que zero, isto é, pela esquerda, H(t) tende a zero.
- ullet Quando t tende a zero pela direita, isto é, por números maiores que zero, H(t) tende a 1.
- Não há um número número para o qual H(t) tende quando t tende a zero.

Exemplo 4

Considere a função
$$H(t) = \left\{ \begin{array}{ll} 1 & \text{quando } t \geq 1 \\ 0 & \text{quando } t < 1 \end{array} \right.$$

- Quando t e aproxima de 0 por números menores que zero, isto é, pela esquerda, H(t) tende a zero.
- ullet Quando t tende a zero pela direita, isto é, por números maiores que zero, H(t) tende a 1.
- Não há um número número para o qual H(t) tende quando t tende a zero. Portanto $\lim_{t \to 0} H(t)$ não existe.

Limites laterais

Limite lateral a esquerda

Escrevemos

$$\lim_{x \to a^{-}} f(x) = L$$

e dizemos que "o limite à esquerda de f(x) quando x tende a a é igual a L, se quando x tende a a pela esquerda", f(x) se aproxima de L.

Limites laterais

Limite lateral a direita

Escrevemos

$$\lim_{x \to a^+} f(x) = L$$

e dizemos que "o limite à direita de f(x) quando x tende a a é igual a L", se quando x tende a a pela direita, f(x) se aproxima de L.

Critério de existência de limite

Quando um limite existe?

O limite $\lim_{x \to a} f(x)$ existe e é igual a L se, e somente se, os limites laterais $\lim_{x \to a^+} f(x)$ e $\lim_{x \to a^-} f(x)$ existem e são iguais a L.

16 / 36

Exemplo 1

Determine $\lim_{x\to 1^+}f(x)$, $\lim_{x\to 1^-}f(x)$ e $\lim_{x\to 1}f(x)$, onde a figura abaixo representa o gráfico da função f

Exemplo 1

Determine $\lim_{x\to 1^+}f(x)$, $\lim_{x\to 1^-}f(x)$ e $\lim_{x\to 1}f(x)$, onde a figura abaixo representa o gráfico da função f

 $\bullet \lim_{x \to 1^+} f(x) = 0$

Exemplo 1

Determine $\lim_{x \to 1^+} f(x)$, $\lim_{x \to 1^-} f(x)$ e $\lim_{x \to 1} f(x)$, onde a figura abaixo representa o gráfico da função f

- $\begin{array}{l}
 \bullet \lim_{x \to 1^+} f(x) = 0 \\
 \bullet \lim_{x \to 1^-} f(x) = 2
 \end{array}$

Exemplo 1

Determine $\lim_{x\to 1^+}f(x)$, $\lim_{x\to 1^-}f(x)$ e $\lim_{x\to 1}f(x)$, onde a figura abaixo representa o gráfico da função f

- $\bullet \lim_{x \to 1^+} f(x) = 0$
- $\bullet \lim_{x \to 1^-} f(x) = 2$

Como os limites laterais são diferentes, então $\lim_{x\to 1}f(x)$ não existe.

Exemplos de limites laterais

Exemplo 2

Considere
$$f(x) = \left\{ \begin{array}{ll} x^2 + 1 & \operatorname{quando} x \geq 1 \\ 4x + 2 & \operatorname{quando} x < 1 \end{array} \right.$$

Determine:

- $\lim_{x \to 1^+} f(x)$
- $\lim_{x \to 1} f(x)$

Exemplos de limites laterais

Exemplo 3

$$\text{Considere } f(x) = \left\{ \begin{array}{ll} 3x & \text{ quando } x > 2 \\ x - 1 & \text{ quando } x < 2 \\ x^2 - 8 & \text{ quando } x = 2 \end{array} \right.$$

Determine:

- $\lim_{x \to 2^+} f(x)$
- $\lim_{x \to 2} f(x)$
- $\lim_{x \to 4} f(x)$

Exemplo 4

Determine $\lim_{x\to -1} f(x)$, $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$ e $\lim_{x\to 2} f(x)$, onde o gráfico da função f está representada na figura a seguir:

Exemplo 4

Determine $\lim_{x\to -1} f(x)$, $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$ e $\lim_{x\to 2} f(x)$, onde o gráfico da função f está representada na figura a seguir:

$$\bullet \lim_{x \to -1} f(x) = -1$$

Exemplo 4

Determine $\lim_{x\to -1} f(x)$, $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$ e $\lim_{x\to 2} f(x)$, onde o gráfico da função f está representada na figura a seguir:

$$\bullet \lim_{x \to -1} f(x) = -1$$

$$\bullet \lim_{x \to 0} f(x) = 0$$

Exemplo 4

Determine $\lim_{x\to -1} f(x)$, $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$ e $\lim_{x\to 2} f(x)$, onde o gráfico da função f está representada na figura a seguir:

$$\bullet \lim_{x \to -1} f(x) = -1$$

$$\bullet \lim_{x \to 0} f(x) = 0$$

$$\bullet \lim_{x \to 1} f(x) = 1$$

Exemplo 4

Determine $\lim_{x\to -1} f(x)$, $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$ e $\lim_{x\to 2} f(x)$, onde o gráfico da função f está representada na figura a seguir:

$$\bullet \lim_{x \to -1} f(x) = -1$$

$$\bullet \lim_{x \to 0} f(x) = 0$$

$$\bullet \lim_{x \to 1} f(x) = 1$$

$$\bullet \lim_{x \to 2} f(x) = 2$$

Exemplo 4

Determine $\lim_{x\to -1} f(x)$, $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$ e $\lim_{x\to 2} f(x)$, onde o gráfico da função f está representada na figura a seguir:

$$\bullet \lim_{x \to -1} f(x) = -1$$

$$\bullet \lim_{x \to 0} f(x) = 0$$

$$\bullet \lim_{x \to 1} f(x) = 1$$

$$\bullet \lim_{x \to 2} f(x) = 2$$

1. Propriedade do Limite de x

$$\lim_{x \to a} x = a$$

$$\lim_{\substack{x \to 3 \\ \lim_{x \to -7}}} x = 3$$

2. Propriedade do Limite de uma Constante

Se c é uma constante, então:

$$\lim_{x \to a} c = c$$

$$\lim_{x \to 3} 10 = 10$$

$$\lim_{x \to -7} 32 = 32$$

3. Propriedade da Soma

Sejam
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$

3. Propriedade da Soma

Sejam
$$\lim_{x \to a} f(x) = L$$
 e $\lim_{x \to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$

Exemplo

Se
$$\lim_{x \to 3} f(x) = 8$$
 e $\lim_{x \to 3} g(x) = -12$ então

$$\lim_{x \to 3} [f(x) + g(x)] = 8 + (-12) = -4$$

3. Propriedade da Soma

Sejam
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$

Exemplo

Se
$$\lim_{x \to 3} f(x) = 8$$
 e $\lim_{x \to 3} g(x) = -12$ então

$$\lim_{x \to 3} [f(x) + g(x)] = 8 + (-12) = -4$$

Se
$$\lim_{x \to 7} f(x) = 10$$
 e $\lim_{x \to 7} g(x) = 5$ então

4. Propriedade da Diferença

Sejam
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - M$$

4. Propriedade da Diferença

Sejam
$$\lim_{x\to a}f(x)=L$$
 e $\lim_{x\to a}g(x)=M$, então:

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - M$$

Exemplo

Se
$$\lim_{x \to 3} f(x) = 8$$
 e $\lim_{x \to 3} g(x) = -12$ então

$$\lim_{x \to 3} [f(x) - g(x)] = 8 - (-12) = 20$$

4. Propriedade da Diferença

Sejam
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - M$$

Exemplo

Se
$$\lim_{x \to 3} f(x) = 8$$
 e $\lim_{x \to 3} g(x) = -12$ então

$$\lim_{x \to 3} [f(x) - g(x)] = 8 - (-12) = 20$$

Se
$$\lim_{x \to 7} f(x) = 10$$
 e $\lim_{x \to 7} g(x) = 5$ então

5. Propriedade do Produto

Sejam
$$\lim_{x \to a} f(x) = L$$
 e $\lim_{x \to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M$$

5. Propriedade do Produto

Sejam
$$\lim_{x \to a} f(x) = L$$
 e $\lim_{x \to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M$$

Exemplo

Se
$$\lim_{x \to 3} f(x) = 8$$
 e $\lim_{x \to 3} g(x) = -12$ então

$$\lim_{x \to 3} [f(x) \cdot g(x)] = 8 \cdot (-12) = -96$$

5. Propriedade do Produto

Sejam
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$, então:

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M$$

Exemplo

Se
$$\lim_{x \to 3} f(x) = 8$$
 e $\lim_{x \to 3} g(x) = -12$ então

$$\lim_{x \to 3} [f(x) \cdot g(x)] = 8 \cdot (-12) = -96$$

Se
$$\lim_{x \to 7} f(x) = 10$$
 e $\lim_{x \to 7} g(x) = 5$ então

6. Propriedade do Quociente

Sejam
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$, e $M \neq 0$, então:

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$$

Exemplo

Se
$$\lim_{x \to 3} f(x) = 8$$
 e $\lim_{x \to 3} g(x) = -12$ então

$$\lim_{x \to 3} \left[\frac{f(x)}{g(x)} \right] = \frac{8}{-12} = -\frac{2}{3}$$

7. Propriedade da Constante

Se c é uma constante e $\lim_{x\to a} f(x) = L$, então:

$$\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x) = c \cdot L$$

Exemplo

Se $\lim_{x \to 3} f(x) = 8$ então

$$\lim_{x \to 3} [3 \cdot f(x)] = 3 \cdot \lim_{x \to 3} f(x) = 3 \cdot 8 = 24$$

Exemplo

Se $\lim_{x \to 5} f(x) = 10$ então

8. Propriedade da Potência

Se $\lim_{x \to L} f(x) = L$ e $n \in \mathbb{Q}$, então:

$$\lim_{x \to a} (f(x))^n = (\lim_{x \to a} f(x))^n = L^n$$

Em particular,

$$\lim_{x \to a} x^n = a^n$$

Observação

$$\lim_{x \to a} x^{\frac{1}{n}} = a^{\frac{1}{n}} = \sqrt[n]{a}$$

Se n for par, supomos que a > 0.

Exemplo 5

Determine:

a)
$$\lim_{x \to -1} (f(x) + g(x)),$$

b)
$$\lim_{x\to 0} f(x) \cdot g(x)$$
,

c)
$$\lim_{x \to 2} (x^2 \cdot f(x)),$$

d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)}$$

e)
$$\lim_{x\to 2} (2 \cdot f(x) + (g(x))^2)$$
,

onde o gráfico das funções f e g estão representadas na figura a seguir:

Propriedade de Limites

Exemplo 6

Calcule o valor de

$$\lim_{x \to 7} (x^3 + 5x^2 - x + 2)$$

Propriedade de Limites

Exemplo 6

Calcule o valor de

$$\lim_{x \to 7} (x^3 + 5x^2 - x + 2)$$

$$\lim_{x \to 7} x^3 + 5x^2 - x + 2 \stackrel{(1)e(2)}{=} \lim_{x \to 7} x^3 + \lim_{x \to 7} 5x^2 - \lim_{x \to 7} x + \lim_{x \to 7} 2$$

$$\stackrel{(3)}{=} \lim_{x \to 7} x^3 + 5\lim_{x \to 7} x^2 - \lim_{x \to 7} x + \lim_{x \to 7} 2$$

Resolução:

$$\stackrel{\text{(6)}}{=} \left[\lim_{x \to 7} x\right]^3 + 5\left[\lim_{x \to 7} x\right]^2 - \lim_{x \to 7} x + \lim_{x \to 7} 2$$

$$\stackrel{(8)}{=} 7^3 + 5 \cdot 7^2 - 7 + \lim_{x \to 7} 2$$

$$\stackrel{(7)}{=} 343 + 5 \cdot 49 - 7 + 2 \\
= 394$$

$$\lim_{y \to 4} \sqrt{y^2 + 2y} = \sqrt{\lim_{y \to 4} [y^2 + 2y]} = \sqrt[3]{4^2 + 2 \cdot 4} = \sqrt{24}$$

$$\lim_{y \to 4} \sqrt{y^2 + 2y} = \sqrt{\lim_{y \to 4} [y^2 + 2y]} = \sqrt[3]{4^2 + 2 \cdot 4} = \sqrt{24}$$

$$\lim_{x \to 27} \sqrt[3]{x - x^2} = \sqrt[3]{\lim_{x \to 27} [x - x^2]} = \sqrt[3]{27 - 27^2} = \sqrt[3]{-702} = 8,88$$

Propriedade de Limites

9. Propriedade de Substituição Direta

Se f for uma função polinomial ou racional e a estiver no domínio de f, então

$$\lim_{x \to a} f(x) = f(a)$$

Calcule o $\lim_{x\to 7} \frac{x^2-x+8}{x-8}$.

Calcule o
$$\lim_{x\to 7} \frac{x^2-x+8}{x-8}$$

Calcule o
$$\lim_{x\to 7}\frac{x^2-x+8}{x-8}$$
. Se definirmos $f(x)=\frac{x^2-x+8}{x-8}$, então $Dom(f)=\mathbb{R}-\{8\}$ e $7\in Dom(f)$.

Calcule o
$$\lim_{x\to 7} \frac{x^2-x+8}{x-8}$$

Calcule o
$$\lim_{x\to 7}\frac{x^2-x+8}{x-8}$$
. Se definirmos $f(x)=\frac{x^2-x+8}{x-8}$, então $Dom(f)=\mathbb{R}-\{8\}$ e $7\in Dom(f)$.

Assim, pela propriedade de substituição direta temos

$$\lim_{x \to 7} \frac{x^2 - x + 8}{x - 8} = \frac{7^2 - 7 + 8}{7 - 8} = -50.$$

Calcule o $\lim_{x\to 0} \frac{(x+2)^2-4}{x}$.

Calcule o
$$\lim_{x\to 0} \frac{(x+2)^2-4}{x}$$
. Seja $f(x)=\frac{(x+2)^2-4}{x}$

Seja
$$f(x) = \frac{(x+2)^2 - 4}{x}$$

Calcule o
$$\lim_{x\to 0} \frac{(x+2)^2-4}{x}$$
.

Calcule o $\lim_{x\to 0} \frac{(x+2)^2-4}{x}$. Seja $f(x)=\frac{(x+2)^2-4}{x}$ Como $0\notin Dom(f)$, então não pode-se aplicar a propriedade da substituição direta.

34 / 36

Priscila Bemm (UEM) Definição de Limite

Calcule o
$$\lim_{x\to 0} \frac{(x+2)^2-4}{x}$$
.

Calcule o
$$\lim_{x\to 0} \frac{(x+2)^2-4}{x}$$
. Seja $f(x)=\frac{(x+2)^2-4}{x}$ Como $0\notin Dom(f)$, então não pode-se aplicar a propriedade da substituição direta.

No entanto,

$$\lim_{x\to 0} \frac{(x+2)^2 - 4}{x} = \lim_{x\to 0} \frac{x^2 + 4x + 4 - 4}{x}$$

$$= \lim_{x\to 0} \frac{x^2 + 4x}{x}$$

$$= \lim_{x\to 0} x + 4$$

$$= 0 + 4 = 4 \text{ pela propriedade da substituição direta}$$

Priscila Bemm (UEM) Definição de Limite 34 / 36

Exercício 1

"agora q vc terminou a apresentação fale oq vc entendeu"

Esboce o gráfico de uma função que satisfaz os seguintes itens:

- $\lim_{x \to 2} f(x) = 2$
- $\lim_{x \to 4^-} f(x) = -1$
- $\lim_{x \to 4^+} f(x) = 3$
- f(4) = 2

Figura: Gráfico da função f