# Mathématiques – Première technologique

### Corrigés des exercices

## Table des matières

| 1 | Proportionnalité             | 2 |
|---|------------------------------|---|
| 2 | Droites et suites de nombres | 4 |
| 3 | Études de fonctions          | 9 |

### 1 Proportionnalité

Exercice 1 1. On complète un tableau de proportionnalité :

| Élèves      | 40  | ?  |
|-------------|-----|----|
| Pourcentage | 100 | 70 |

Il y a  $40 \times 70 \div 100 = 28$  garçons dans la classe.

2. On complète un tableau de proportionnalité:

| Marins      | 1760 | 1 046 |
|-------------|------|-------|
| Pourcentage | 100  | ?     |

 $1046 \times 100 \div 1760 \approx 59,43$ , donc environ 59,43 % des marins sont tombés malades.

**N.B.** On fait le calcul et, seulement après, on écrit la réponse avec le symbole %. Rappelons à cette occasion la signification de 59,43 % :

$$59,43\% = \frac{59,43}{100} = 0,5943.$$

Donc dire que 59,43 % des marins sont tombés malades, c'est dire que la proportion de malades est  $\frac{59,43}{100}$ 

3. Le fait que la bouteille soit titrée à 12 % vol. signifie qu'elle contient 12 % d'alcool pur. On complète donc un tableau de proportionnalité :

| Volume (en mL) | 500 | ?  |
|----------------|-----|----|
| Pourcentage    | 100 | 12 |

La bouteille contient  $500 \times 12 \div 100 = 60$  mL d'alcool pur.

4. Sur 100 personnes de l'entreprise, il y a 56 hommes.

25 % d'entre eux fument, ce qui représente

$$25 \times 56 \div 100 = 14$$
 personnes

(on peut bien sûr faire un tableau de proportionnalité pour obtenir cette réponse).

Conclusion: les hommes fumeurs représentent 14 % du personnel de l'entreprise.

Exercice 2 1.

| Nombre de personnes | 4   | 6 |
|---------------------|-----|---|
| Farine (en g)       | 250 | ? |
| Lait (en mL)        | 500 | ? |
| Œufs                | 4   | 6 |

Pour 6 personnes, il faut  $250 \times 6 \div 4 = 375$  g de farine,  $500 \times 6 \div 4 = 750$  mL de lait et, bien sûr, 6 œufs.

2. Les 6 yaourts pèsent  $6 \times 125 = 750$  g.

| masse (en g) | 1000 | 750 |
|--------------|------|-----|
| prix (en €)  | 2    | ?   |

Je payerai  $750 \times 2 \div 1000 = 1,5 €$ .

Exercice 3 L'énoncé donne les informations recensées dans le tableau ci-dessous et demande de compléter la case (1).

| Florins  | 7 | ? | 1  |
|----------|---|---|----|
| Pistoles | 6 | 4 | 2  |
| Deniers  | ? | 5 | 30 |

On complète d'abord la case (2) : en échange de 30 deniers, on a  $4 \times 30 \div 5 = 24$  pistoles :

| Florins  | 7 | ? | 1  |
|----------|---|---|----|
| Pistoles | 6 | 4 | 24 |
| Deniers  | ? | 5 | 30 |

On peut alors compléter la case (1): en échange de 30 deniers, on a  $7 \times 24 \div 6 = 28$  florins.

**Exercice 4** 1. Généralement, dans ce type de question, il vaut mieux convertir en minutes <sup>1</sup>.

| temps (en min)   | 60 | ?  |
|------------------|----|----|
| distance (en km) | 20 | 45 |

On mettra  $60 \times 45 \div 20 = 135$  min, soit 2 h 15 min (puisque 135 = 120 + 15).

- 2. On peut se passer d'un tableau de proportionnalité : 1 h = 60 min, donc  $0,6 h = 0,6 \times 60 min = 36 min$ .
- 3. (a) On complète deux tableaux de proportionnalité (on travaille en min et en km) :

| temps (en min)   | 60 | ?   |
|------------------|----|-----|
| distance (en km) | 3  | 0,5 |

| temps (en min)   | 60 | ? |
|------------------|----|---|
| distance (en km) | 15 | 5 |

Stéphane nage  $60 \times 0.5 \div 3 = 10$  min, puis il court  $60 \times 5 \div 15 = 20$  min.

(b) Stéphane a parcouru un total de 5+0.5=5.5 km, en 10+20=30 min.

| temps (en min)   | 30  | 60 |
|------------------|-----|----|
| distance (en km) | 5,5 | ?  |

La vitesse moyenne de Stéphane sur l'ensemble de son parcours est donc  $60 \times 5, 5 \div 30 = 11$  km/h.

**Exercice 5** Avant de commencer, il est utile de se rappeler que 10 cm=1 dm; et que 1  $\ell$  = 1 dm<sup>3</sup>. Autrement dit, un litre est le volume d'un cube qui mesure 1 dm sur 1 dm, ou encore 10 cm sur 10 cm sur 10 cm (la figure ci-dessous n'est bien sûr pas à l'échelle).



On remplit d'eau un aquarium rectangulaire dont la largeur est 80 cm, la profondeur 30 cm et la hauteur 40 cm. On dispose d'un robinet dont le débit est de 6 litres par minute.

1.



2. Les dimensions de l'aquarium sont :

donc son volume est

$$8 \times 3 \times 4 = 96 \ell$$
.

- 3. On peut se passer d'un tableau de proportionnalité : le débit du robinet est de 6  $\ell$ /min, donc il faut 96 ÷ 6 = 16 min pour remplir les 96  $\ell$  de l'aquarium.
- 1. Les calculs ne sont pas toujours plus faciles en minutes qu'en heures, mais c'est généralement le cas.

#### 2 Droites et suites de nombres

**Exercice 6** Le tableau suivant donne l'évolution du tirage journalier (en millions d'exemplaires) de la presse quotidienne d'information générale et politique en France.

| Année                      | 2010 | 2011 | 2012 | 2013 | 2014 |
|----------------------------|------|------|------|------|------|
| Numéro<br>année : <i>n</i> | 0    | 1    | 2    | 3    | 4    |
| Tirage : $u_n$             | 1,80 | 1,73 | 1,60 | 1,47 | 1,36 |

Source: INSEE

On note  $u_n$  le tirage journalier en millions d'exemplaires pour l'année numéro n. On a donc :

- $u_0$  = tirage journalier l'année 0 = 1,80;
- $u_1$  = tirage journalier l'année 1 = 1,73 ;
- $u_4$  = tirage journalier l'année 4 = 1,36.

**Exercice 7** *u* est la suite des multiples de 4, en partant de  $u_0 = 4 \times 0 = 0$ .

- 1.  $u_1 = 4 \times 1 = 4$ ;
  - $u_2 = 4 \times 2 = 8$ ;
  - $u_3 = 4 \times 3 = 12$ .
- 2.  $u_{20} = 4 \times 20 = 80$ .

**Exercice 8** u est une suite telle que :

- $u_0 = 2$ ,
- tout terme de la suite se déduit du précédent en ajoutant 3.
- 1.  $u_1 = 3 + 2 = 5$ ;
  - $u_2 = 5 + 3 = 8$ ;
  - $u_3 = 8 + 3 = 11$ ;
  - $u_4 = 11 + 3 = 14$ .
- 2. Pour obtenir le tableau avec un tableur, on entre la formule

=B1+1

dans la cellule C1, et la formule

=B2+3

dans la cellule C2. Ensuite on étire vers la droite.

|   | A     | В | С     | D   | Е   | F   |
|---|-------|---|-------|-----|-----|-----|
| 1 | n     | 0 | =B1+1 | ••• | ••• | ••• |
| 2 | $u_n$ | 2 | =B2+3 | ••• | ••• | ••• |

Exercice 9 Notre objet tombe de:

- 5 m pendant la 1<sup>re</sup> seconde;
- 15 m pendant la 2e seconde;
- 25 m pendant la 3e seconde;
- 35 m pendant la 4e seconde;
- 45 m pendant la 5e seconde.

Conclusion : pendant les 5 premières secondes, l'objet est tombé de

$$5 + 15 + 25 + 35 + 45 = 125 \text{ m}.$$

**Remarque :** Les informations de l'énoncé sont imprécises : si l'on néglige la résistance de l'air (frottements), un objet soumis à son propre poids tombe de 4,9 m pendant la  $1^{re}$  seconde,  $4,9 \times 3 = 14,7$  m pendant la  $2^e$ ,  $4,9 \times 5 = 24,5$  m pendant la  $3^e$ , etc. Dans l'exercice, nous avons remplacé 4,9 par 5 pour simplifier les calculs.

Notons par ailleurs que ces résultats doivent être fortement corrigés si l'on veut tenir compte de la résistance de l'air. Par exemple, un adulte en chute libre qui parvient à se mettre « à plat » devrait arrêter d'accélérer après une dizaine de secondes de chute environ, sans dépasser 60 m/s; tandis qu'un chat ne dépassera pas les 20 m/s et pourra survivre à une chute d'une hauteur importante. La vidéo KEZAKO: chute libre explique ce problème en détail.

**Exercice 10** On trace les droites  $D_1: y = x - 4$ ,  $D_2: y = 2x$ ,  $D_3: y = -2x + 3$  et  $D_4: y = -2$  à partir de quatre tableaux de valeurs :

Tracé de  $D_1$ .

| х | 0  | 2  |
|---|----|----|
| у | -4 | -2 |

0-4=-42-4=-2

Tracé de  $D_2$ .

| x | 0 | 2 |
|---|---|---|
| y | 0 | 4 |

 $2 \times 0 = 2$  $2 \times 2 = 4$ 

Tracé de  $D_3$ .

| х | 0 | 2  |
|---|---|----|
| у | 3 | -1 |

 $-2 \times 0 + 3 = 3$  $-2 \times 2 + 3 = -3$  Tracé de  $D_4$ .

| х | 0  | 2  |
|---|----|----|
| y | -2 | -2 |

On place à chaque fois les deux points en gris, puis on trace les droites en couleur :



 $\textbf{Remarque:} \ \text{La droite} \ D_4 \ \text{est horizontale.} \ \text{C'était prévisible, puis que la valeur de } y \ \ (-2) \ \text{est indépendante de } x.$ 

Exercice 11 On lit graphiquement les ordonnées à l'origine et les coefficients directeurs des droites :





Exercice 12 Le graphique suivant donne le prix payé dans une pompe à essence en fonction de la quantité de gazole achetée.



Il y a deux méthodes possibles pour répondre à la question :

- **Pointillés rouges :** 4 litres de gazole coûtent  $6 \in$ , donc le litre coûte  $6 \div 4 = 1, 5 \in$ .
- Flèches violettes : chaque litre coûte 1,5  $\in$ .

**Exercice 13** Dans chaque question, u est une suite arithmétique de raison r.

1. 
$$u_0 = 2$$
 et  $r = 4$ .

$$u_1 = 2 + 4 = 6$$

$$u_2 = 6 + 4 = 10$$

$$u_3 = 10 + 4 = 14$$
.

2.  $u_0 = 5$  et r = -2.

$$u_1 = 5 - 2 = 3$$

$$u_2 = 3 - 2 = 1$$

$$u_3 = 1 - 2 = -1$$
.

3.  $u_0 = 10$  et r = 1, 5.

Pour obtenir  $u_6$ , on part de  $u_0 = 10$  et on rajoute 6 fois 1,5. Donc

$$u_6 = 10 + 6 \times 1, 5 = 10 + 9 = 19.$$

4.  $u_0 = 4$  et  $u_2 = 10$ .



D'après le schéma ci-dessus :

$$r = (10 - 4) \div 2 = 6 \div 2 = 3.$$

On obtient donc le schéma complété:



(On peut aussi obtenir  $u_4$  avec le calcul :  $u_4 = 4 + 4 \times 3 = 4 + 12 = 16$ .)

5.



D'après le schéma ci-dessus :

$$r = (12, 5 - 5) \div 3 = 7, 5 \div 3 = 2, 5.$$

**Exercice 14** Le 01/01/2019, on dépose  $300 \in \text{sur un compte en banque}$ . Tous les mois à partir de cette date, on déposera  $75 \in \text{sur ce compte}$ .

On note  $u_n$  la somme sur le compte après n mois – on a donc en particulier  $u_0$  = 300.

1.  $u_1 = 300 + 75 = 375$ ,  $u_2 = 375 + 75 = 450$ .

On aura 375 € le 1<sup>er</sup> février et 450 € le 1<sup>er</sup> mars.

- 2. La suite u est arithmétique de raison r = 75.
- 3. La formule à entrer dans la cellule C2 est

=B2+75

4.



5. L'équation de la droite qui passe par tous les points est

$$y = 75x + 300$$

(75 correspond à r, et 300 à  $u_0$ ).

6. Le 01/01/2020 (donc au bout de 12 mois), on aura

$$75 \times 12 + 300 = 1200$$
 €.

La réponse est confirmée par la construction en pointillés rouges du graphique.

**Exercice 15** 1. 
$$u_1 = 600 - 50 = 550$$
,  $u_2 = 550 - 50 = 500$ .

- 2. La suite u est arithmétique de raison r = -50.
- 3.



4. L'équation de la droite qui passe par tous les points est

$$y = -50x + 600$$

 $(-50 \text{ correspond à } r, \text{ et } 600 \text{ à } u_0).$ 

5. Le quota de pêche en 2025 (donc au bout de 10 ans) est

$$-50 \times 10 + 600 = 100$$
 Tonnes.

La réponse est confirmée par la construction en pointillés rouges du graphique.

**Exercice 16** On note *S* la somme à calculer, que l'on écrit à l'endroit, puis à l'envers :

$$S = 1$$
 +2 +3 +...+98+99+100  
 $S = 100+99+98+...+3+2+1$ 

On ajoute membre à membre les deux lignes. On remarque que la somme de chaque couple d'une même couleur vaut toujours 101 :

$$S + S = \underbrace{101 + 101 + 101 + \dots + 101 + 101 + 101}_{100 \text{ termes}}.$$

On a donc

$$2S = 100 \times 101$$
  $S = \frac{100 \times 101}{2} = 5050.$ 

**Exercice 17** On construit une pyramide en superposant des carrés : tout en haut, on a  $u_0 = 1$  carré, en dessous  $u_1 = 3$  carrés, etc.



- 1. À chaque étage de la pyramide, on ajoute deux carrés, donc u est arithmétique de raison r = 2.
- 2. Le nombre de carrés de la  $1^{re}$  rangée est  $u_0 = 1$ .
  - Le nombre de carrés de la  $2^e$  rangée est  $u_1 = 3$ .
  - Le nombre de carrés de la  $3^e$  rangée est  $u_2 = 5$ .
  - ..
  - Le nombre de carrés de la  $100^{\circ}$  rangée est  $u_{99} = 1 + 99 \times 2 = 199$ .

 $\Lambda$ Il y a un décalage : le nombre de carrés de la 100e rangée est  $u_{99}$ .

3. Le nombre total de carrés de la 1re à la 100e rangée est

$$1 + 3 + 5 + \cdots + 199$$
.

On calcule cette somme comme dans l'exercice précédent : on note

$$S = 1 + 3 + 5 + \dots + 195 + 197 + 199$$

et on écrit S à l'endroit et à l'envers :

$$S = 1$$
 +3 +5 +...+195 +197 +199  
 $S = 199 + 197 + 195 +...+5$  +3 +1

La somme des termes d'une même couleur est toujours égale à 200 et il y a 100 termes (autant que le nombre de rangées). On a donc :

$$2S = 100 \times 200$$
  $S = \frac{100 \times 200}{2} = 10000.$ 

#### 3 Études de fonctions

**Exercice 18** Un voyageur de commerce (= un représentant) fait une note de frais pour chaque jour de travail où il utilise sa voiture. Il reçoit une part fixe de  $30 \in$ , et une indemnité de  $0.5 \in$ /km.

**Remarque :** On peut penser que l'indemnité kilométrique sert à rembourser les frais de déplacement (par exemple si le représentant utilise sa propre voiture); et que la part fixe sert à payer les repas.

1. S'il fait 120 km dans la journée, le montant de la note de frais est de

$$30 + 120 \times 0, 5 = 30 + 60 = 90 \in$$
.

2. On note x le nombre de km parcourus par le voyageur de commerce, et f(x) le montant de la note de frais. On a alors

$$f(x) = 30 + x \times 0, 5 = 0, 5x + 30.$$

3. La fonction f est affine, puisque f(x) = 0.5x + 30 (c'est bien une fonction de la forme f(x) = ax + b, avec a = 0.5 et b = 30). Sa courbe représentative est donc une droite, que l'on trace à partir d'un tableau de valeurs avec deux valeurs; par exemple :

| х    | 0  | 120 |
|------|----|-----|
| f(x) | 30 | 90  |

$$f(0) = 0,5 \times 0 + 30 = 30$$
$$f(120) = 0,5 \times 120 + 30 = 90$$

On place les points de coordonnées (0;30) et (120;90), puis on trace la droite – en réalité un segment, puisqu'on va de 0 à 200 en abscisse.

**Remarque :** On a choisi les valeurs 0 et 120, mais on peut prendre n'importe quelles valeurs – l'avantage de 0, c'est que le calcul est facile; et l'avantage de 120, c'est qu'on a déjà fait le calcul dans la question 1.



- 4. Le voyageur de commerce a une note de frais de 75 €. Pour déterminer le nombre de km parcourus dans la journée, il y a deux méthodes :
  - **Graphiquement.** On voit qu'il a parcouru 90 km (pointillés rouges) <sup>2</sup>.
  - Par le calcul. On retire les frais fixes : 75 30 = 45 € d'indemnité kilométrique. Puis, comme chaque km compte pour 0,5 €, on divise : 45 ÷ 0,5 = 45 × 2 = 90 km. <sup>3</sup>

Exercice 19 1. • Lorsqu'on télécharge 50 Mo, on paye 3 €.

- Lorsqu'on télécharge 150 Mo, les 100 premiers coûtent 3 €; et les 50 suivants coûtent 50 × 0,04 = 2 €. On paye donc au total 3 + 2 = 5 €.
- 2. On complète le tableau de valeurs :

| Nombre de Mo | 0 | 50 | 100 | 150 | 200 |
|--------------|---|----|-----|-----|-----|
| Prix à payer | 3 | 3  | 3   | 5   | 7   |

**Remarque :** jusqu'à 100 Mo, on paye 3 €. Ensuite, chaque nouvelle tranche de 50 Mo est facturée 2 €.

- 3. On construit la courbe qui donne le prix payé en fonction du nombre de Mo téléchargés. Elle est constante sur l'intervalle [0; 100], puis affine sur l'intervalle [100; 200]. Il faut donc utiliser une règle pour effectuer le tracé <sup>4</sup>.
- 2. La méthode graphique est simple, mais la réponse pourrait être imprécise.
- 3. On peut aussi résoudre l'équation 0,5x + 30 = 75.
- 4. On parle de fonction « affine par morceaux ».



- 4. Il y a deux méthodes:
  - Graphiquement. On voit qu'on a téléchargé 140 Mo (pointillés rouges).
  - **Par le calcul.** J'ai payé 4,60 €, donc 3 + 1,60 €. J'ai donc téléchargé 1,60 ÷ 0,04 = 40 Mo au-delà du 100°. Autrement dit, j'ai téléchargé 140 Mo.

Exercice 20 Pour louer une voiture je dois payer :

- une part fixe de 20 €.
- 0,6 € par km parcouru.
- 1. Pour 100 km, je payerai

$$P(100) = 20 + 100 \times 0, 6 = 80 \in$$
;

et pour 50 km, je payerai

$$P(50) = 20 + 50 \times 0, 6 = 50$$
 €.

2. D'une manière générale, pour x km parcourus je payerai

$$20 + x \times 0,6$$
 €.

Avec les notations de l'énoncé, cela donne

$$P(x) = 0.6x + 20.$$

Exercice 21 1. Comme  $120 = 60 + 60 = 60 + 6 \times 10$ , le coût pour 120 minutes de location est

$$15 + 6 \times 5 = 45$$
 €.

2. On complète le tableau de valeurs :

| Durée | 0  | 20 | 40 | 60 | 80 | 100 | 120 |
|-------|----|----|----|----|----|-----|-----|
| Prix  | 15 | 15 | 15 | 15 | 25 | 35  | 45  |

3. On construit le graphique :



**Exercice 22** Les gares de Calais et de Boulogne-sur-mer sont distantes de 30 km. Un train part à 12 h de Boulogne-sur-mer en direction de Calais et roule à la vitesse de 40 km/h. Un train part de Calais à 12 h 15 et fait route en sens inverse à la vitesse de 60 km/h.

1. Le train qui part à 12 h de Boulogne-sur-mer roule à la vitesse de 40 km/h, donc il parcourt 40 km en 60 min. Pour savoir quand il arrive à Calais, on complète un tableau de proportionnalité :

| temps (en min)   | 60 | ?  |
|------------------|----|----|
| distance (en km) | 40 | 30 |

Le train mettra  $\frac{60 \times 30}{40} = \frac{1800}{40} = 45$  min pour arriver à Calais, donc il y sera à 12 h 45.

Pour le train qui part de Calais, le calcul est plus facile : il roule à 60 km/h, donc parcourt 60 km en 60 min; et ainsi 30 km en 30 min. Comme il part à 12 h 15, il arrive à 12 h 45 lui aussi.

On peut ainsi représenter la marche des deux trains :



2. Nous allons déterminer l'heure de croisement des trains par le calcul. Graphiquement, cela correspond à l'abscisse du point d'intersection des courbes.

À 12h15, le train qui part de Boulogne-sur-mer a parcouru 10 km (facile à vérifier), il est donc à 20 km de Calais. C'est l'heure à laquelle le deuxième train part. Comme l'un roule à 40 km/h et l'autre à 60 km/h, tout se passe comme si un seul train devait parcourir 20 km à la vitesse de 40 + 60 = 100 km/h. On complète un tableau de proportionnalité :

| temps (en min)   | 60  | ?  |
|------------------|-----|----|
| distance (en km) | 100 | 20 |

 $\frac{60\times20}{100} = \frac{1200}{100} = 12$ , donc il faudrait 12 min à ce train pour parcourir 20 km. Ainsi, les deux trains se croiseront-ils à

12 h 15 min + 12 min = 12 h 27 min.

#### **Exercice 23**



- 1. L'image de 3 par f est 0,5 (pointillés verts).
- 2. Les solutions de l'équation f(x) = 1 sont -2; 4 et 6 (pointillés rouges).

3. Tableau de signe de f:

| x    | -2 |   | -1 |   | 2 |   | 6 |
|------|----|---|----|---|---|---|---|
| f(x) |    | + | 0  | _ | 0 | + |   |

- 4. Le maximum de f est 3, son minimum est -1 (points bleus).
- 5. Tableau de variations de  $f\,:\,$

| x    | -2 | 0  | 5 | 6 |
|------|----|----|---|---|
| f(x) | 1  | -1 | 3 | 1 |

**Exercice 24** La fonction f est définie sur l'intervalle [1;5] par  $f(x) = 2x + \frac{8}{x} - 10$ .

1.

|   | х    | 1 | 1,5   | 2  | 2,5  | 3     | 3,5   | 4 | 4,5  | 5   |
|---|------|---|-------|----|------|-------|-------|---|------|-----|
| Ī | f(x) | 0 | -1,67 | -2 | -1,8 | -1,33 | -0,71 | 0 | 0,78 | 1,6 |

Détail de deux calculs :

$$f(1) = 2 \times 1 + \frac{8}{1} - 10 = 2 + 8 - 10 = 0$$
$$f(4) = 2 \times 4 + \frac{8}{4} - 10 = 8 + 2 - 10 = 0.$$

2. Courbe représentative :



- 3. Les antécédents de -1 par f sont 1,25 et 3,25 environ (pointillés rouges).
- 4. Tableau de variations:

| x    | 1 | 2  | 5   |
|------|---|----|-----|
| f(x) | 0 | -2 | 1.6 |

5. Tableau de signe :

| x    | 1 |   | 4 |   | 5 |
|------|---|---|---|---|---|
| f(x) | 0 | _ | 0 | + |   |

**Exercice 25** On suppose que le pourcentage de femmes fumant du tabac quotidiennement en fonction de l'âge x (en années), depuis 15 ans jusqu'à 40 ans, est le nombre f(x) donné par la formule suivante :

$$f(x) = -0.05x^2 + 3x - 10.$$

1.

| X    | 15    | 20 | 25    | 30 | 35    | 40 |
|------|-------|----|-------|----|-------|----|
| f(x) | 23,75 | 30 | 33,75 | 35 | 33,75 | 30 |

Détail de deux calculs :

$$f(15) = -0.05 \times 15^2 + 3 \times 15 - 10 = 23.75$$

$$f(40) = -0.05 \times 40^2 + 3 \times 40 - 10 = 30.$$

2.



#### 3. Tableau de variations:



- 4. Le pourcentage de fumeuses est maximal à 30 ans (pointillés verts).
- 5. C'est à partir de 20 ans que plus de 30 % des femmes fument quotidiennement (pointillés rouges).

**Exercice 26** Sur route sèche, la distance d'arrêt en mètres d'un véhicule roulant à x km/h est modélisée par la fonction f définie sur [0;120] par

$$f(x) = 0,005x(x+56).$$

1.  $f(100) = 0.005 \times 100(100 + 56) = 78$ . Cela signifie que la distance d'arrêt d'un véhicule roulant à 100 km/h est 78 m.

2.

| x    | 0 | 20  | 40   | 60   | 80   | 100 | 120   |
|------|---|-----|------|------|------|-----|-------|
| f(x) | 0 | 7,6 | 19,2 | 34,8 | 54,4 | 78  | 105,6 |

3.



4. f(90) = 65,7 et f(80) = 54,4 donc le fait de baisser la vitesse sur les routes de 90 km/h à 80 km/h permet de diminuer la distance d'arrêt de

$$65, 7 - 54 = 11, 7 \text{ m}.$$

L'information de la sécurité routière est donc imprécise selon les données de l'exercice <sup>5</sup>.

**Exercice 27** Le taux d'anticorps (en g/l) présents dans le sang d'un nourrisson en fonction de l'âge (en mois), depuis la naissance jusqu'à l'âge de 12 mois, est donné par la formule suivante :

$$f(x) = 0, 1x^2 - 1, 6x + 12.$$

1. On fait un tableau de valeurs pour f sur [0;12] avec un pas de 2:

| х    | 0  | 2   | 4   | 6 | 8   | 10 | 12  |
|------|----|-----|-----|---|-----|----|-----|
| f(x) | 12 | 9,2 | 7,2 | 6 | 5,6 | 6  | 7,2 |

Détail de deux calculs :

- $f(0) = 0, 1 \times 0^2 1, 6 \times 0 + 12 = 12.$
- $f(12) = 0, 1 \times 12^2 1, 6 \times 12 + 12 = 7, 2.$

2.

<sup>5.</sup> Il est illusoire de penser que tous les conducteurs ont le même temps de réaction et toutes les voitures le même comportement en termes de freinage. Les formules concernant les distances d'arrêt que l'on doit apprendre par cœur au moment de passer le code de la route ne peuvent donc donner que des ordres de grandeur; et la réponse attendue « 13 mètres » est en réalité très proche de la réponse « 11,7 mètres » obtenue avec notre calcul.



- 3. Le taux d'anticorps à la naissance est de 12 g/ $\ell$ .
- 4. Tableau de variations :



Le taux d'anticorps est minimal à l'âge de 8 mois.

5. D'après le graphique, le taux d'anticorps est inférieur à 6,5 g/ $\ell$  pendant 6 mois (du 5 $^{\rm e}$  au 11 $^{\rm e}$  mois).