

Mini Projet : Analyse de Données

Filière : Cycle d'Ingénieure en Génie Informatique s1

Présenté par :

- AOUJIL NOURA
- BELKHIRI YOUSSEF
- EZ-ZINE HAMZA
- HDIDOU OUSSAMA
- HAMDAOUI ALAOUI EL HASSANE

Resp.: BOUARAFA SALEH

Faculté des sciences et techniques d'Errachidia

Université Moulay Ismaïl

2022/2023

1. Description :

2.ACP

• • • •

3. Analyse Discriminante:

Nous intéressons à la relation entre un groupe de variables indépendantes et une variable catégorielle. En utilisant cette relation, nous pouvons prédire une classification basée sur les variables indépendantes ou évaluer dans quelle mesure les variables indépendantes séparent les catégories dans la classification.

On prend la variable « plage » comme une variable catégorielle metrique qui contient 2 valeurs :

> 0 : La ville n'a pas une plage

➤ 1 : La ville a une plage

Et on prend les variables suivantes : Temperature maximale, temperature minimale, humidite et pluviométrie comme des variables indépendantes.

1^{er} Etape: On verifie l'existence la difference entre les groupes

Nous utilisons trois indicateurs pour déterminer si les groupes sont statistiquement différents les uns des autres : la mesure de tendance centrale (moyenne ou variance), le test de F de Fisher et le coefficient de Wilks Lambda.

Cette première etape permet de déterminer les variables les plus discriminantes entre les groupes.

➤ La moyen / l'ecart type :

Statistiques de groupe							
		N va		N valide	ilide (liste)		
plage		Moyenne	Ecart type	Non pondérées	Pondérées		
non	TEMP_MAX	21.2917	11.13034	168	168.000		
	TEMP_MIN	12.3393	9.10539	168	168.000		
	HUMIDITE	73.3274	20.27727	168	168.000		
	PLUVIOMETRIE	87.7976	79.32919	168	168.000		
oui	TEMP_MAX	23.0985	7.17407	132	132.000		
	TEMP_MIN	17.3598	7.37939	132	132.000		
	HUMIDITE	83.5379	55.19174	132	132.000		
	PLUVIOMETRIE	124.0833	98.09117	132	132.000		
Total	TEMP_MAX	22.0867	9.62026	300	300.000		
	TEMP_MIN	14.5483	8.74051	300	300.000		
	HUMIDITE	77.8200	39.87498	300	300.000		
	PLUVIOMETRIE	103.7633	89.75523	300	300.000		

Le test de F et lambda de Wilkes :

Tests d'égalité des moyennes de groupes						
	Lambda de Wilks	F	F ddl1		Sig.	
TEMP_MAX	.991	2.622	1	298	.106	
TEMP_MIN	.918	26.466	1	298	.000	
HUMIDITE	.984	4.910	1	298	.027	
PLUVIOMETRIE	.960	12.548	1	298	.000	

L'application du test de F dans notre cas indique que la variable "TEMP_MIN" est la plus influence pour discriminer les groupes, étant donné que le F est élevé (26.46) et Sig est très proche de 0,00.

De plus lambde de Wilks des variables "TEMP_MIN" est la plus petite que les autres (0.918)

2^{eme} Etape : On vérifier la validité de l'étude

Cette etape contient aussi 3 indicateurs :

Le test M de Box :

Test	le Box	77.872
	Approx.	12.834
	ddl1	6
	ddl2	554526.987
	Sig.	.000

La significativité du test de F doit tendre vers 0. S'il est supérieur à 0,05, l'analyse n'est pas valide. Dans ce cas le modèle est valide car Sig de f est 0.00 (inférieur a 0,05)

> La Corrélation globale :

Fonction	Valeur propre	% de la variance	% cumulé	Corrélation canonique
1	.679ª	100.0	100.0	.636

Plus la correlation globale est proche de 1,plus le modele est meilleur, Et dans notre cas on a dans la corrélation canonique est proche de 1 d'un montant de 0,636.

➤ Le Lambda de Wilkes:

Lambda de Wilks						
Test de la ou des fonctions	Lambda de Wilks	Khi-carré	ddl	Sig.		
1	.596	153.575	3	.000		

Plus la valeur de Wilks est faible et sa significative tend vers 0, plus le modèle est bon. On a Sig. = 0.00 donc il est tend vers 0.

Le Lambda de Wilkes:

3eme Etape: On Vérifie la pouvoir discriminant des axes

Ce tableau permet d'obtenir la fonction discriminante, dans notre cas la fonction est :

$$Y = -3.858 \times (TEMP_MAX) + 4.12 \times (TEMP_MIN) + 0$$

 $\times (HUMIDITE) - 0.206 \times (PLUVIOMETRIE)$

Matrice de structure		
	Fonction	
	1	
TEMP_MIN	.362	
PLUVIOMETRIE	.249	
HUMIDITE ^a	.167	
TEMP_MAX	.114	
entre les variable discriminantes et variables des fon canoniques stan sont ordonnées	les ctions dardisées	
absolue des corr l'intérieur de la foi	nction.	

La table «Matrice de structure» verifie aussi que «TEMP_MIN» se sont les variables qui separent le mieux entre les groupes.

4^{eme} Etape : La qualité de la représentation du modèle

		Appartenance au groupe prévu			
		plage	non	oui	Total
Original	Effectif	non	130	38	168
		oui	32	100	132
	%	non	77.4	22.6	100.0
		oui	24.2	75.8	100.0
Validé-croisé ^b	Effectif	non	130	38	168
		oui	32	100	132
	%	non	77.4	22.6	100.0
		oui	24.2	75.8	100.0

Ce tableau est utilisé pour évaluer dans quelle mesure la fonction discriminante fonctionne et si elle fonctionne aussi bien pour chaque groupe de la variable dépendante. Ici, il classe pour le groupe 1 (les villes qui n'ont pas la plage) 130 ville ont été bien reclassées (77,4%) grâce a la fonction discriminante et 38 villes on été mal reclassées (22.6%).

Et pour le groupe 2 (les villes qui ont la plage) on observe 32 villes ont été mal reclassées (24.2%) et 100 villes ont été bien reclassées (75.8).