CS528 Cilk

Slides are adopted from

http://supertech.csail.mit.edu/cilk/

Charles E. Leiserson

A Sahu

Dept of CSE, IIT Guwahati

Cilk

- Developed by Leiserson at CSAIL, MIT
 - Chapter 27, Multithreaded Algorithm,
 Introduction to Algorithm, Coreman, Leiserson and Rivest
- Initiated a startup: Cilk Plus
 - Added Cilk_for_Keyword, Cilk Reduction features
 - Acquired by Intel, Intel uses Cilk Scheduler
- Addition of 6 keywords to standard C
 - Easy to install in linux system
 - With gcc and pthread

Algorithmic Complexity Measures

 T_P = execution time on P processors

 $T_1 = work$

Algorithmic Complexity Measures

 T_P = execution time on P processors

$$T_1 = work$$

$$T_{\infty} = span^*$$

* Also called *critical-path length* or *computational depth*.

Algorithmic Complexity Measures

 T_P = execution time on P processors

$$T_1 = work$$

$$T_{\infty} = span^*$$

LOWER BOUNDS

$$\bullet T_P \ge T_1/P$$

•
$$T_p \ge T_{\infty}$$

*Also called *critical-path length* or *computational depth*.

Speedup

Definition: $T_1/T_p = speedup$ on P processors.

```
If T_1/T_P = \Theta(P) < P, we have linear speedup;
= P, we have perfect linear speedup;
> P, we have superlinear speedup,
which is not possible in our model, because
of the lower bound T_P \ge T_1/P.
```

Parallelism

Because we have the lower bound $T_P \ge T_{\infty}$, the maximum possible speedup given T_1 and T_{∞} is

 $T_1/T_{\infty} = parallelism$

= the average amount of work per step along the span.

CILK Example: Fib(4)

Assume for simplicity that each Cilk thread in **fib()** takes unit time to execute.

Work: $T_1 = 17$

Span: $T_{\infty} = 8$

Parallelism: $T_1/T_{\infty} = 2.125$

Using many more than 2 processors makes little sense.

Ref1:The Cilk System for Parallel Multithreaded Computing, MIN 256 Miesis Ref2:The Implementation of the Cilk-5 Multithreaded Language, 1998 ACM SIGPUAN

Scheduling

 Cilk allows the programmer to express potential parallelism in an application.

The Cilk scheduler maps Cilk threads onto processors dynamically at runtime.

 Since on-line schedulers are complicated, we'll illustrate the ideas with an off-line scheduler.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A thread is **ready** if all its predecessors have **executed**.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A thread is **ready** if all its predecessors have

Transcorpicacessors

executed.

Complete step

- ≥ P threads ready.
- Run any P.

Greedy Scheduling

IDEA: Do as much as possible on every step.

Definition: A thread is ready

if all its predecessors have

executed.

Complete step

- ≥ P threads ready.
- Run any P.

Incomplete step

- < P threads ready.</p>
- Run all of them.

Greedy-Scheduling Theorem

Theorem [Graham '68 & Brent '75].

Any greedy scheduler achieves

 $T_P \leq T_1/P + T_{\infty}$.

Proof.

 # complete steps ≤ T₁/P, since each complete step performs P work.

incomplete steps ≤ T_∞, since each incomplete step reduces the span of the unexecuted dag by 1.

Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \ge \max\{T_1/P, T_\infty\}$ (lower bounds), we have

$$T_{P} \leq T_{1}/P + T_{\infty}$$

$$\leq 2 \max\{T_{1}/P, T_{\infty}\}$$

$$\leq 2T_{P}^{*}. \blacksquare$$

Linear Speedup

Corollary. Any greedy scheduler achieves nearperfect linear speedup whenever $T_1/T_{\infty} >> P$

Proof. Since $T_1/T_{\infty} >> P \rightarrow T_{\infty} << T_1/P$, the Greedy Scheduling Theorem gives us

$$T_{P} \leq T_{1}/P + T_{\infty}$$

$$\approx T_{1}/P.$$

Thus, the speedup is $T_1/T_P \approx P$.

Definition. The quantity $(T_1/T_\infty)/P$ is called the *parallel slackness*.

Cilk Performance

- Cilk's "work-stealing" scheduler achieves
 - $T_P = T_1/P + O(T_{\infty})$ expected time (provably);
 - $T_P \approx T_1/P + T_{\infty}$ time (empirically).
- Near-perfect linear speedup if $P << T_1/T_{\infty}$.
- Instrumentation in Cilk allows the user to determine accurate measures of T_1 and T_{∞} .
- The average cost of a spawn in Cilk-5 is only 2–6 times the cost of an ordinary C function call, depending on the platform.

```
void vadd(float *A, float *B, int N)
    int i; for (i=0; i<n; i++) A[i]+=B[i];
}</pre>
```

Parallelization strategy:

1. Convert loops to recursion.

```
void vadd(float *A, float *B, int N)
int i; for (i=0; i<n; i++) A[i]+=B[i];
}</pre>
```

```
void vadd(float *A, float *B, int N) {

if (n<=BASE) {
  int i; for (i=0; i<n; i++) A[i]+=B[i];
} else {
  vadd (A, B, n/2);
  vadd (A+n/2, B+n/2, n/2);
}</pre>
```

Parallelization strategy:

- 1. Convert loops to recursion.
- 2. Insert Cilk keywords.

```
void vadd(float *A, float *B, int N)
         int i; for (i=0; i<n; i++) A[i]+=B[i];</pre>
     cilk void vadd(float *A, float *B, int N) {
Cilk
       if (n<=BASE) {</pre>
         int i; for (i=0; i<n; i++) A[i]+=B[i];</pre>
       } else {
              spawn vadd (A, B, n/2);
              spawn vadd (A+n/2, B+n/2, n/2);
              sync;
```

Parallelization strategy:

- 1. Convert loops to recursion.
- 2. Insert Cilk keywords.

```
void vadd(float *A, float *B, int N)
    int i; for (i=0; i<n; i++) A[i]+=B[i];
}

cilk void vadd(float *A, float *B, int N) {

if (n<=BASE) {
    int i; for (i=0; i<n; i++) A[i]+=B[i];
    } else {
        spawn vadd (A, B, n/2);
        spawn vadd (A+n/2, B+n/2, n/2);
        sync;
}</pre>
```

Parallelization strategy:

- 1. Convert loops to recursion.
- 2. Insert Cilk keywords.

Side benefit:

D&C is generally good for caches!

Vector Addition Analysis

To add two vectors of length n, where BASE = $\Theta(1)$:

Work: $T_1 = ? \Theta(n)$

Span: $T_{\infty} = ?$ $\Theta(\lg n)$

Parallelism: $T_1/T_{\infty} = ?$ $\Theta(n/\lg n)$

Square-Matrix Multiplication

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix}$$

Assume for simplicity that $n = 2^k$.

Recursive Matrix Multiplication

Divide and conquer —

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} \\ A_{21}B_{11} & A_{21}B_{12} \end{bmatrix} + \begin{bmatrix} A_{12}B_{21} & A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{bmatrix}$$

8 multiplications of $(n/2) \times (n/2)$ matrices. 1 addition of $n \times n$ matrices.

Matrix Multiply in Pseudo-Cilk

```
cilk void Mult (*C, *A, *B, n) {
  float *T = Cilk_alloca(n*n*sizeof(float));
  h base case & partition matrices i
  spawn Mult (C11, A11, B11, n/2);
  spawn Mult (C12, A11, B12 /2);
  spawn Mult (C22, A21, B12, 2);
  spawn Mult (C21, A21, B11, | R);
  spawn Mult (T11, A12, B21, n
  spawn Mult (T12, A12, B22, n)
  spawn Mult (T22, A22, B22, n)
  spawn Mult (T21, A22, B21, n/
  sync;
  spawn Add(C,T,n);
  sync;
  return;
```

C = A X B

Absence of type declarations.

Matrix Multiply in Pseudo-Cilk

```
cilk void Mult (*C, *A, *B, n) {
  float *T = Cilk_alloca(n*n*sizeof(float));
  h base case & partition matrices i
  spawn Mult (C11, A11, B11, n/2);
  spawn M lt (C12, A11, B12, n/2);
  spawn Mul (C22, A21, B12, n/2);
  spawn Mult (21, A21, B11, n/2);
  spawn Mult(T. A12, B21, n/2);
  spawn Mult (T12, 2, B22, n/2);
  spawn Mult (T22, N B22, n/2);
  spawn Mult (T21, A2. 11, n/2);
  sync;
  spawn Add(C,T,n);
  sync;
  return;
```

C = AXB

Coarsen base cases for efficiency.

Matrix Multiply in Pseudo-Cilk

```
cilk void Mult(*C, *A, *B, n) {
  float *T = Cilk_alloca(n*n*izeof(float));
  h base case & partition matrices i
  spawn Mult (C11, A11, B11, n/2);
  spawn Mult (C12, A1) B12, n/2 Also need a row-
  spawn Mult (C22, A21, 12, n/2)
                               size argument for
  spawn Mult (C21, A21, B) n/2
  spawn Mult (T11, A12, B2)
                               array indexing.
  spawn Mult (T12, A12, B22)
  spawn Mult (T22, A22, B22, N
  spawn Mult (T21, A22, B21, n)
  sync;
  spawn Add(C,T,n);
                           Submatrices are
  sync;
  return;
                           produced by pointer
```

C = A X B

calculation, not copying of elements.

Work of Matrix Addition

```
cilk void Add(*C, *T, n) {
  h base case & partition matrices i
    spawn Add(C11, T11, n/2);
    spawn Add(C12, T12, n/2);
    spawn Add(C21, T21, n/2);
    spawn Add(C22, T22, n/2);
    spawn Add(C22, T22, n/2);
    sync;
    return;
}
```

Work:
$$A_1(n) = 4 A_1(n/2) + \Theta(1)$$

= $\Theta(n^2)$

$$n^{\log_b a} = n^{\log_2 4} = n^2 \text{ Vs } \Theta(1).$$

Span of Matrix Addition

```
cilk void Add(*C, *T, n) {
   h base case & partition matrices i

maximum

spawn Add(C22, T22, n/2);
sync;
return;
}
```

Span:
$$A_{\infty}(n)=?$$
 $A_{\infty}(n/2) + \Theta(1)$
= $\Theta(\lg n)$

$$n^{\log_b a} = n^{\log_2 1} = 1$$
) $f(n) = \Theta(n^{\log_b a} | g^0 n)$.

Work of Matrix Multiplication

```
cilk void Mult(*C, *A, *B, n) {
   float *T = Cilk_alloca(n*n*sizeof(float));
   h base case & partition matrices i
   spawn Mult(C11, A11, B11, n/2);
   spawn Mult(C12, A11, B12, n/2);
   i:
    spawn Mult(T21, A22, B21, n/2);
   sync;
   spawn Add(C, T, n);
   sync;
   return;
}
```

Work:
$$M_1(n) = 8 M_1(n/2) + A_1(n) + \Theta(1)$$

 $= 8 M_1(n/2) + \Theta(n^2)$
 $= \Theta(n^3)$
 $n^{\log_b a} = n^{\log_2 8} = n^3 \text{ Vs } \Theta(n^2)$.

Span of Matrix Multiplication

```
cilk void Mult(*C, *A, *B, n) {
   float *T = Cilk_alloca(n*n*sizeof(float));
   h base case & partition matrices i

   spawn Mult(T21, A22, B21, n/2);
   sync;
   spawn Add(C,T,n);
   sync;
   return;
}
```

Span:
$$M_{\infty}(n) = ?$$
 $M_{\infty}(n/2) + A_{\infty}(n) + \Theta(1)$
 $= M_{\infty}(n/2) + \Theta(\lg n)$
 $= \Theta(\lg^2 n)$
 $n^{\log_b a} = n^{\log_2 1} = 1$) $f(n) = \Theta(n^{\log_b a} \lg^1 n)$.

Parallelism of Matrix Multiply

Work:
$$M_1(n) = \Theta(n^3)$$

Span:
$$M_{\infty}(n) = \Theta(\lg^2 n)$$

Parallelism:
$$\frac{M_1(n)}{M_{\infty}(n)} = \Theta(n^3/\lg^2 n)$$

For 1000 X 1000 matrices, parallelism = $(10^3)^3/10^2 = 10^7$.

Stack Temporaries

```
cilk void Mult(*C, *A, *B, n) {
   float *T = Cilk_alloca(n*n*sizeof(float));
   h base case & partition matrices i
   spawn Mult(C11, A11, B11, n/2);
   spawn Mult(C12, A11, B12, n/2);
   i
   spawn Mult(T21, A22, B21, n/2);
   sync;
   spawn Add(C, T, n);
   sync;
   return;
}
```

In hierarchical-memory machines (especially chip multiprocessors), memory accesses are so expensive that minimizing storage often yields higher performance.

IDEA: Trade off parallelism for less storage.

No-Temp Matrix Multiplication

```
cilk void MultA(*C, *A, *B, n) {
  // C = C + A * B
  h base case & partition matrices i
  spawn MultA(C11, A11, B11, n/2);
  spawn MultA(C12, A11, B12, n/2);
  spawn MultA(C22, A21, B12, n/2);
  spawn MultA(C21, A21, B11, n/2);
  sync;
  spawn MultA(C21, A22, B21, n/2);
  spawn MultA(C22, A22, B22, n/2);
  spawn MultA(C12, A12, B22, n/2);
  spawn MultA(C11, A12, B21, n/2);
  sync;
  return;
```

Saves space, but at what expense?

Work of No-Temp Multiply

```
cilk void MultA(*C, *A, *B, n) {
  // C = C + A * B
  h base case & partition matrices i
  spawn MultA(C11, A11, B11, n/2);
  spawn MultA(C12, A11, B12, n/2);
  spawn MultA(C22, A21, B12, n/2);
  spawn MultA(C21, A21, B11, n/2);
  sync;
  spawn MultA(C21, A22, B21, n/2);
  spawn MultA(C22, A22, B22, n/2);
  spawn MultA(C12, A12, B22, n/2);
  spawn MultA(C11, A12, B21, n/2);
  sync;
  return;
```

Work:
$$M_1(n) = 8 M_1(n/2) + \Theta(1)$$

= $\Theta(n^3)$

Span of No-Temp Multiply

```
cilk void MultA(*C, *A, *B, n) {
   // C = C + A * B
  h base case & partition matrices i
          Mulia (211, 211, 811, 872) ;
               lta (C12, A11, B12, n / 2) ;
Lta (C22, A21, B12, n / 2) ;
           MultA(C21, A21, B11, n/2);
            tu 168 (c21, a22, 821, a / 2)
           Multa (622, A22, B22, n / 2)
Multa (612, A12, B22, n / 2)
          Multa(C11, A12, B21, n/2);
  sync;
  return;
```

Span:
$$M_{\infty}(n) = ? 2 M_{\infty}(n/2) + \Theta(1)$$

= $\Theta(n)$

Parallelism of No-Temp Multiply

Work:
$$M_1(n) = \Theta(n^3)$$

Span:
$$M_{\infty}(n) = \Theta(n)$$

Parallelism:
$$\frac{M_1(n)}{M_{\infty}(n)} = \Theta(n^2)$$

For 1000 X 1000 matrices, Parallelism = $(10^3)^3/10^3 = 10^6$.

Faster in practice!

Tableau Construction

Problem: Fill in an $n \times n$ tableau A, where A[i,j] = f(A[i,j-1], A[i-1,j], A[i-1,j-1]).

00	01	02	03	04	05	06	07
10	11	12	13	14	15	16	17
20	21	22	23	24	25	26	27
30	31	32	33	34	35	36	37
40	41	42	43	44	45	46	47
50	51	52	53	54	55	56	57
60	61	62	63	64	65	66	67
70	71	72	73	74	75	76	77

Dynamic programming

- Longest common subsequence
- Edit distance
- Time warping

Work: $\Theta(n^2)$.

Recursive Construction

Cilk code

```
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
sync;
```

Recursive Construction

Cilk code

```
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
sync;
```

Work:
$$T_1(n) = 4T_1(n/2) + \Theta(1)$$

= $\Theta(n^2)$

Recursive Construction

Cilk code

```
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
sync;
```

Span:
$$T_{\infty}(n) = ? 3T_{\infty}(n/2) + \Theta(1)$$

= $\Theta(n^{\lg 3})$

Analysis of Tableau Construction

Work:
$$T_1(n) = \Theta(n^2)$$

Span:
$$T_{\infty}(n) = \Theta(n^{\lg 3})$$

= $\Theta(n^{1.58})$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^{0.42})$$

A More-Parallel Construction


```
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
spawn V;
spawn VI
sync;
spawn VII;
spawn VIII;
sync;
spawn IX;
sync;
```

A More-Parallel Construction


```
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
spawn V;
spawn VI
sync;
spawn VII;
spawn VIII;
sync;
spawn IX;
sync;
```

Work:
$$T_1(n) = ?$$
 $9T_1(n/3) + \Theta(1)$
= $\Theta(n^2)$

A More-Parallel Construction


```
spawn I;
sync;
spawn II;
spawn III;
sync;
spawn IV;
spawn V;
spawn VI
sync;
spawn VII;
spawn VIII;
sync;
spawn IX;
sync;
```

Span:
$$T_{\infty}(n) = ?$$
 $5T_{\infty}(n/3) + \Theta(1)$
= $\Theta(n^{\log_3 5})$

Analysis of Revised Construction

Work:
$$T_1(n) = \Theta(n^2)$$

Span:
$$T_{\infty}(n) = \Theta(n^{\log_3 5})$$
$$= \Theta(n^{1.46})$$

Parallelism:
$$\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^{0.54})$$

More parallel by a factor of

$$\Theta(n^{0.54})/\Theta(n^{0.42}) = \Theta(n^{0.12}).$$