

1 GGC GTAA TCT GCT GCT TGCA AAC AAAA A AA CCAC CGCT AC CAG CGGT GGGT
51 TTG TTTGCCG GAT CAAG AGCC TACCA ACTCT TTTTCCGAAG GAA CTGGCTT
101 CAG CAG AGCG CAG ATACCA AA ATACT GTCC TCT AGTG TAG CCGTAG TTG
151 GCC ACCA CCTT CAAG AACTCT GTAG CACC GC CTAC ATAC CT CGCT CTGCTA
201 ATCC TGT TAC CAG TGGCT GC TGCC AGT GG C GATA AGTC GT GTCTT ACC CGG
251 GTT GGACTCA AGAC GATA GT TAC CGG ATAA GG CGC AGCGG TCGGGCTGAA
301 CGGGGGGTT TC GTG CAC ACAG CCC AGCT TG AGC GAC AC CTAC ACC GAA
351 CTGAG ATACC TAC AGCGT GA GCT ATG AGAA AGC GGC ACAGC TTCC CGA AGG
401 GAG AAAGG CG GAC AGGT ATC CGG TAAG CGG CAG GGTC CGG A ACAGG AGAGC
451 GCAC GAGG GA GCT TCC AGGG GGAA AC GCCT GGT ATCT TT A TAGT CCT GT C
501 GGG TTT CGCC ACCT CTG ACT TGAG CGT CGA TTTT GTG AT GCT CGT CAGG
551 GGG GCG GAGC CT ATG GAAA A CGCC AGC AA CGCC GATT A CGCG GTCTT
601 TCT CAAC GT A AC ACT TT A CA GCG GCG CGTC ATT TGA TAT G ATG CGC CCCC G
651 CTT CCC GATA AGGG AGC AGG CCAG TAA AAG CATT ACC CGT GGTGGGTT C
701 CCG AGCG GGC AAAG GGAG CA GACT CTAA AT CTG CGT CAT CG ACTT CGAA
751 GGTT CGA ATC CTT CCCCC AC CAC CAT CACT TT CAA AAG TC CG AA AGA ATC
801 TGCT CCT CGC TT GT GT GT TG GAGG TG CGT AG TACT CGC GAG TAA AATT
851 TAAG CTAC AA CAAG GCA AGG CTT GAC CGAC AATT GCA TGA AGA ATCT GCT
901 TAGGG TAGG CG TTT CGC QC TG TT CGC GA TG TAC GGG CC AGA TATA CGC
951 GTT GAC AT TG ATT ATT GACT AGT TATT AA AT GTA AT CA AT TAC GGG GTCA
1001 TTAG TT CATA GCC CAT AT AT GGAG TT CGC GT TAC ATA AC TTAC GG TAA
1051 TGG CCG CGC CT GGCT GAC CGC CCA AC GAC CC CG CCG CATT G ACG TCA ATAA
1101 TGAC GT AT GT TCC CAT AGTA ACG CCA AT AG GGACTT CCA TTGAC GTCAA
1151 TGG GT GG ACT ATT AC GG TA AACT GCC AC TTGG CAGT AC ATCA AGT GT A
1201 TCAT ATGCCA AGT AC GCCCC CT ATT GAC GT CA AT GAC CGT AA ATGG CCG
1251 CCTGG CATT A TGCC CAGT AC ATGAC CT TAT GGGACTT CC TACT TGG CAG
1301 TAC ATCT AC G TATT AGT C AT CGC TATT ACC ATGG TGA TGC GGT TGG C
1351 GTAC AT CA AT GGG CGT GG AT AGCG GTT TGA CTCAC GGG A TTT CCA AGTC
1401 TCCAC CCA T TGAC GT CA AT GGG AGT TT GT TTT GG CAC CA AA AT CA AC GG
1451 GACT TT CCAA AAT GT CGT AA CAA CT CGC CC AT TGA CGC AA ATGG CGG
1501 AAT TCC TGG G CGGG ACT GGG GAGT GG CGAG CC CT CAG AT G CT GCA TATA
1551 GCAG CT QCTT TT GCG CT GT A CTGG GT CT CT GGTT AGAC CAG AT CT GAG
1601 CCTGG GAG CT CT GG CTA A CTAG AGA ACC CACT GCT TAA GC CT CA ATAA
1651 AGCT TCT AGA GAT CCCT CGA CCT CGAG GGA TCTT CCAT AC CT ACC AGT TC

FIG. 1-1

G E N E T I C S

1701 TGCGCCTGCA GGTGGCGGCC GCGACTCTAG AGGATCTTG TGAAGGAACC
1751 TTACTTCTGT GGTGTGACAT AATTGGACAA ACTACCTACA GAGATTTAAA
1801 GCTCTAAGGT AAATATAAAA TTTTAAGTG TATAATGTGT TAAACTACTG
1851 ATTCTAATTG TTTGTGTATT TTAGATTCCA ACCTATGGAA CTGATGAATG
1901 GGAGCAGTGG TGGAAATGCCT TTAATGAGGA AAACCTGTT TGCTCAGAAG
1951 AAATGCCATC TAGTGATGAT GAGGCTACTG CTGACTCTCA ACATTCTACT
2001 CCTCCAAAAAA AGAAGAGAAA GGTAGAAGAC CCCAAGGACT TTCCCTTCAGA
2051 ATTGCTAAGT TTTTGAGTC ATGCTGTGTT TAGTAATAGA ACTCTTGCTT
2101 GCTTTGCTAT TTACACCACA AAGGAAAAAG CTGCACTGCT ATACAAGAAA
2151 ATTATGGAAA AATATTCTGT AACCTTTATA AGTAGGCATA ACAGTTATAA
2201 TCATAAACATA CTGTTTTTC TTACTCCACA CAGGCATAGA GTGCTGCTA
2251 TTAATAACTA TGCTCAAAAA TTGTGTACCT TTAGCTTTT AATTGTAAA
2301 GGGGTTAATA AGGAATATTG GATGTATACT GCCTTACTA GAGATCATAA
2351 TCAGCCATAC CACATTGTGTA GAGGTTTTAC TTGCTTTAAA AAACCTCCC
2401 CACCTCCCCC TGAACCTGAA ACATAAAATG AATGCAATTG TTGTTGTTAA
2451 CTTGTTTATT GCAGCTTATA ATGGTTACAA ATAAAGCAAT AGCATCACAA
2501 ATTTCACAAA TAAAGCATTT TTTTCACTGC ATTCTAGTTG TGGTTGTCC
2551 AAACTCATCA ATGTATCTTA TCATGTCTGG ATCCGTGGA ATGTGTGTC
2601 GTTAGGGTGT GGAAAGTCCC CAGGCTCCCC AGCAGGCAGA AGTATGCAA
2651 GCATGCATCT CAATFAGTCA GCAACCAGGT GTGAAAGTC CCCAGGCTCC
2701 CCAGCAGGCA GAAGTATGCA AAGCATGCAT CTCATTAGT CAGCAACCAT
2751 AGTCCCGCCC CTAACCTCCGC CCATCCCGCC CCTAACTCCG CCCAGTCCG
2801 CCCATTCTCC GCCCCATGGC TGACTAATTG TTTTATTAA TGCAAGGGCC
2851 GAGGCCGCGCT CGGCCCTCTGA GCTATTCCAG AAGTAGTGAG GAGGCTTTT
2901 TGGAGGCCTA GGCTTTGCA AAAAGCTAAT TC

FIG. 1-2

CCTAAGATGAGCTTCCATGTAAATTGTAGGCCAGCTTCCTTCTGATTTCAATGTTCT
 METSERPHEPROCYSLYSpheVALALASERPHELEUILEPHEASNVALSER (60)
 TCCAAAGCTGCAGTCTCCAAGAGAGATTACGAATGCCCTGGAAACCTGGGGTCCCTGGGT
 SERLYSGLYALAVALSERLYSGLUILETHRASNALALEUGLUTHTRPGLYALALEUGLY (120)
 CAGGACATCAGACTGGACATTCTAGTTTCAATGAGTGTGATATTGACGATAAAA
 20 GLNAsPileASNLeuAsPilePROSERPheGLNMetSERAsPAsPileAsPAsPileLYS (180)
 TGGGAAAAAACCTCAGACAAGAAAAAGATTGCACAAATTCAAGAAAAGAGAAGAGACTTC
 40 TRPGLULYSThrSERAsPlySLySileALAGLNpheARGLYSGLUlySGLUlHRPhe (240)
 AAGGAAAAAGATAACATAAGCTATTAAAGAAATGGAACCTGTGAAATTAAAGCATCTGAAG
 60 LYSGLULYSAsPThRThRLySleuPheLYSAsNGLYThRLySileLYSHISLeuLYS (300)
 ACCGATGATCAGGATATCTACAAGGTATCATAATGATACAAAGGAAAGAAATGTGTTG
 80 THRAsPAsPGLNAsPileTyRLySVALSERILETYRAsPThRLySGLyLYSAValEU (360)
 GAAAAAAATAATTGATTGAAGATTCAAGAGGGTCTCAAACCAAAGAATCTCCTGGACT
 100 GLULYSilePheAsPleuLySileGLNGLuArgVALSERLYSProlYsileSerTrpThR (420)
 TGATCAACACAACCCCTGACCTGTGAGGTATGAATGGAACCTGACCCCGAAATTAAACCTG
 120 CYSileASNThrThRLeUThRCysGLuVALMetAsNGLYThRAsPProGLuLeuAsNLeu (480)
 TATCAAGATGGAAACATCTAAACATTCTCAGAGGGTCATCACACACAAGTGACCAC
 140 TYRGLNAsPGLyLYSHISLeuLYSleuSERGLNArgVALILEThRHISLYSTRpThRThR (540)
 AGCCTGAGTGCaaaATTCAAGTGCACAGCAGGGAAACAAAGTCAGCAAGGAATCCAGTGT
 160 SERLeUSERAlaLYSPheLYSCysThRALaGLYAsNLYSVALSERLYSGluSERSERVAL (600)
 GAGCCTGTCAGCTGTCCAGAGAAAGGTCTGGACATCTATCTCATCTGGCATATGTGG
 180 GLuProVALSERcysProGLULySGLyLeuAsPileTyRLeUileLEGlyilecysGLy (660)
 GGAGGCAGCCCTTGATGGCTTGTGGACTGCTCGTTCTATATCACCAAAAGGAA
 200 GLyGLySERLeuLeuMetVALPheVALALALEuLeuVALPheTyRIleThRLySArgLYS (720)
 AAACAGAGGAGTCGGAGAAATGATGAGGAGCTGGAGACAAGAGGCCACAGTAGCTACT
 220 LYSGLNArgSERArgArgAsnAsPGLuGLuLeuGLuLHRArgLaHISArgVALAlaTHR (780)
 GAAGAAAGGGCCGGAAGCCCAACAAATTCCAGCTCAACCCCTCAGAACCTG
 240 GLuGLuArgGLyArgLYSProGLuNileProAlaSerThrProGLuNAsnProAlaTHR (840)
 TCCCAACATCTCCTCCACACCTGGTCATCCTCCCAGGCACCTAGTCATCGTCCCCG
 260 SERGLNHISProProProProGLyHisArgSERGLNAlaProSerHisArgProPro (900)
 CCTCCTGGAACCGTGTTCAGCACCAGCTCAGAAGAGGCTCCTGTCCTGCCCCAC
 280 ProProGLyHisArgVALGLNHisGLNProGLuNlysArgProProAlaProSerGLyThR (960)

FIG. 2-1

300 CAAGTTACCCAGCAGAAAGGCCGCCCCCTCCCCAGACCTCGAGTTCAAGC
GLNVALHISGLNGLNLYSGLYPROROLEUPROARGPROARGVALGLNPROLYSPROPRO
(1020)
320 CATGGGGCAAGCAGAAAATCTTGTCCCCCTCCTCTAATTAAAAAGATAGAAACTGTCT
HISGLYALAALAGLUASNSERLEUSERPROSERSERASNEND
(1080)
TTTCATAAAAGCACTGTGGATTTCTGCCTCCTGATGTGCATATCCGTACTTCCATG
(1140)
AGGTGTTTCTGTGTGCAGAACATTGTCACTCTCCTGAGGCTGTGGGCCACAGCCACCTCT
(1200)
GCATCTTCGAACTCAGCCAATGGTCAACATCTGGAGTTTGCTCTCTCAGAGAGCTC
(1260)
CATCACACCAGTAAGGAGAAGCAATATAAGTGTGATTGCAGAATGGTAGAGGACCGAGC
(1320)
ACAGAAATCTTAGAGATTTCTGTCCCCCTCTCAGGTATGTGTAGATGCAGATAATCAAG
(1380)
TGATTGGTGCTGCCTGGGTCTCACTACAAGCAGCCTATCTGCTTAAGAGACTCTGGAGTT
(1440)
CTTATGTGCCCTGGTGGACACTTGCCCACCATCCTGTGAAGTAAAGTGAATAAAAGCTT
(1500)
TGAC (1504)

FIG. 2-2

卷之三

FIG. 4A

FIG. 4B

FIG. 3

FIG. 5

1 GGC GTAATCT GCTGTTGCA AACAAAAAA CCACCGCTAC CAGCGGTGGT
51 TTGTTTGCCG GATCAAGAGC TACCAACTCT TTTCCGAAG GTAACTGGCT
101 TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGTA GCCGTAGTTA
151 GGCCACCACT TCAAGAACTC TGAGCACCG CCTACATACC TCGCTCTGCT
201 AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG
251 GGTTGGACTC AAGACGATAG TTACCGGATA AGGCGCAGCG GTCGGGCTGA
301 ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA CCTACACCGA
351 ACTGAGATAAC CTACAGCGTG AGCATTGAGA AAGCGCCACG CTTCCGAAG
401 GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG
451 CGCACCGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCCTGT
501 CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTGTA TGCTCGTCAG
551 GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCAAGCTA GCTTCTAGCT
601 AGAAATTGTA AACGTTAATA TTTTGTAAA ATTGCGTTA AATTTTGTT
651 AAACTAGCTC ATTTTTAAC CAATAGGCCG AAATCGCAA AATCCCTTAT
701 AAATCAAAAG AATAGCCGA GATAGGGTTG AGTGGTGTTC CAGTTGGAA
751 CAAGAGTCCA CTATTAAGA ACGTGGACTC CAACGTCAA GGGCGAAAAAA
801 CCGTCTATCA GGGCGATGGC CGCCCACATAC GTGAACCATC ACCCAAATCA
851 AGTTTTTG GGTGAGGTG CCGTAAAGCA CTAATCGGA ACCCTAAAGG
901 GAGCCCCCGA TTAGAGCTT GACGGGGAAA GCCGGCGAAC GTGGCGAGAA
951 AGGAAGGGAA GAAAGCGAAA GGAGCGGGCG CTAGGGCGCT GGCAAGTGTA
1001 GCGGTACQC TGCGCGTAAC CACCAACCCC GCCGCGCTTA ATGCGCCGCT
1051 ACAGGGCGCG TACTATGGTT GCTTTGACGA GCACGTATAA CGTGCCTTCC

FIG. 6-1

1101 TCGTTGGAAT CAGAGCGGGA GCTAACACGG AGGCCGATT AAGGGATTT
1151 AGACAGGAAC GGTACGCCAG CTGGATCACC GCGGTCTTC TCAACGTAAC
1201 ACTTTACAGC GGCGCGTCAT TTGATATGAT GCGCCCCGCT TCCCGATAAG
1251 GGAGCAGGCC AGTAAAAGCA TTACCCGTGG TGGGTTCCC GAGCGGCCAA
1301 AGGGAGCAGA CTCTAAATCT GCCGTATCG ACTTCAAGG TTCGAATCCT
1351 TCCCCCACCA CCATCACTTT CAAAAGTCCG AAAGAATCTG CTCCCTGCTT
1401 GTGTGTTGGA GGTGCGTGTAG TAGTGCCTGA GTAAAATTAA AGCTACAACA
1451 AGGCAAGGCT TGACCGACAA TTGCATGAAG AATCTGCTTA GGGTTAGGCG
1501 TTTTGCCTG CTTCGCGATG TACGGGCCAG ATATAACGCGT TGACATTGAT
1551 TATTGACTAG TTATTAATAG TAATCAATTAA CGGGGTCATT AGTTCATAGC
1601 CCATATATGG AGTCCCGGT TACATAACTT ACGGTAATG GCCCGCCTGG
1651 CTGACCGCCC AACGACCCCCC GCCCATTGAC GTCAATAATG ACGTATGTT
1701 CCATAGTAAC GCCAATAGGG ACTTTCCATT GACGTCAATG GGTGGACTAT
1751 TTACGGTAACTGCTGCTT GGCAGTACAT CAAGTGTATC ATATGCCAAG
1801 TACGCCCCCT ATTGACGTCA ATGACGGTAA ATGGCCGCC TGGCATTATG
1851 CCCAGTACAT GACCTTATGG GACTTCTTA CTTGGCAGTA CATCTACGTA
1901 TTAGTCATCG CTATTACCAT GGTGATGCCG TTTTGGCAGT ACATCAATGG
1951 GCGTGGATAG CGGTTTGACT CACGGGGATT TCCAAGTCTC CACCCCATGG
2001 ACGTCAATGG GAGTTTGTAA TGGCACCAAA ATCAACGGGA CTTTCCAAAA
2051 TGTGCTAACAA ACTCCGCCCC ATTGACGCCAA ATGGCCGAA TTCTGGCG
2101 GGACTGGGGA GTGGCGAGCC CTCAGATGCT GCATATAAGC AGCTGCTTT
2151 TGCCTGTACT GGGTCTCTCT GTTAGACCA GATCTGAGCC TGGGAGCTCT
2201 CTGGCTAACT AGAGAACCCA CTGCTTAAGC CTCATAAAAG CTTCTAGAGA
2251 TCCCTCGACC TCGAGATCCA TTGTGCTGGC GCGGATTCTT TATCACTGAT

FIG. 6-2

2301 AAGTTGGTGG ACATATTATG TTTATCAGTG ATAAAGTGTCA AAGCATGACA
2351 AAGTTGCAGC CGAATACAGT GATCCGTGCC GCCCTAGACC TGTTGAACGA
2401 GGTCGGCGTA GACGGTCTGA CGACACGCAA ACTGGCGGAA CGGTTGGGG
2451 TTCAGCAGCC GGCGCTTAC TGGCACTTCA GGAACAAGCG GGCGCTGCTC
2501 GACGCACTGG CCGAAGCCAT GCTGGCGGAG AATCATAGCA CTTCGGTGCC
2551 GAGAGCCGAC GACGACTGGC GCTCATTCT GACTGGGAAT GCCCGCAGCT
2601 TCAGGCAGGC GCTGCTCGCC TACCGCCAGC ACAATGGATC TCGAGGGATC
2651 TTCCATAACCT ACCAGTTCTG CGCCTGCAGG TCGCGGCCGC GACTCTAGAG
2701 GATCTTG TG AAGGAACCTT ACTTCTGTGG TGTGACATAA TTGGACAAAC
2751 TACCTACAGA GATTAAAGC TCTAAGGTAA ATATAAAATT TTAAAGTGTAA
2801 TAATGTGTTA AACTACTGAT TCTAATTGTT TGTGATTAG ATTCCAAC
2851 CTATGGAAC-T-GATGAATGGG AGCAGTGGTG GAATGCCTT AATGAGGAAA
2901 ACCTGTTTG CTCAGAAGAA ATGCCATCTA GTGATGATGA GGCTACTGCT
2951 GACTCTCAAC ATTCTACTCC TCCAAAAAG AAGAGAAAGG TAGAAGACCC
3001 CAAGGACTTT CCTTCAGAAT TGCTAAGTTT TTTGAGTCAT GCTGTGTTA
3051 GTAATAGAAC TCTTGCTTGC TTTGCTATT ACACCACAAA GGAAAAAGCT
3101 GCACTGCTAT ACAAGAAAAT TATGGAAAAA TATTCTGTAA CCTTATAAG
3151 TAGGCATAAC AGTTATAATC ATAACACTACT GTTTTTCTT ACTCCACACA
3201 GGCATAGAGT GTCTGCTATT AATAACTATG CTCAAAATT GTGTACCTT
3251 AGCTTTTAA TTTGTAAGG GGTTAATAAG GAATATTGA TGTATAGTGC
3301 CTTGACTAGA GATCATAATC AGCCATAACCA CATTGTAGA GGTTTTACTT
3351 GCTTTAAAAA ACCTCCCACA CCTCCCCCTG AACCTGAAAC ATAAAATGAA
3401 TGCAATTGTT GTTGTAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT
3451 AAAGCAATAG CATCACAAAT TTCACAAATA AAGCATTGTTT TTCACTGCAT

FIG. 6-3

3501 TCTAGTTGTG GTTGTCCAA ACTCATCAAT GTATCTTATC ATGTCTGGAT
3551 CCTGTGGAAT GTGTGTCAGT TAGGGTGTGG AAAGTCCCCA GGCTCCCCAG
3601 CAGGCAGAAG TATGCAAAGC ATGCATCTCA ATTAGTCAGC AACCAAGGTGT
3651 GGAAAGTCCC CAGGCTCCCC AGCAGGCAGA AGTATGAAA GCATGCATCT
3701 CAATTAGTCA GCAACCATAG TCCCGCCCT AACTCCGCC ATCCCGCCCC
3751 TAACTCCGCC CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTITTT
3801 TTTATTATG CAGAGGCCGA GGCGCCTCG GCCTCTGAGC TATTCAGAA
3851 GTAGTGAGGA GGCTTTTTG GAGGCCTAGG CTTTGAAA AAGCTAATT

FIG. 6-4

AGACTCTCA~~G~~GCCTGGCA~~G~~TGCGTCTT~~T~~CAGTTCCC~~T~~CACACTTCGG~~G~~TCTCGG~~G~~ (60)
 GAGGAGGG~~G~~TGGAACC~~T~~~~A~~GCCATCGT~~C~~AGGACAAAG~~A~~TGCTCAGG~~T~~GCTCTTG~~G~~
 METLEUARGLEULEU~~E~~ALA
 -18
 CTC~~A~~ACTT~~A~~T~~T~~CC~~T~~CA~~A~~T~~T~~CA~~G~~TA~~A~~C~~A~~GGAA~~A~~AA~~A~~AG~~A~~T~~T~~TG~~G~~GA~~A~~GG~~A~~CTCGCC~~C~~ (180)
 LEUASNLEUPHEPROSERILEGLNVALTHRGLYASNLYS~~I~~LEU~~E~~VALLYSGLN~~S~~ER~~P~~RO
 +1
 ATGCTTGT~~A~~CGTACGACA~~A~~T~~G~~CGGTCAA~~C~~TTAGCTGC~~A~~AGTATT~~C~~CT~~A~~ATCTCT~~C~~ (240)
 METLEU~~V~~ALALA~~T~~YRASPASN~~A~~LAV~~A~~LSN~~L~~ELSER~~C~~YS~~L~~STYR~~S~~ERTYRASNLEUPHE
 ---CHO---
 TCAAGGGAG~~G~~T~~C~~CGGCAT~~C~~C~~T~~TCACAAAGGACTGG~~A~~T~~A~~GTGCTG~~G~~GA~~A~~GTCTG~~G~~
 SERARGGLU~~P~~HEARGALASER~~L~~E~~H~~ISL~~S~~GLY~~L~~LEU~~A~~SPSER~~A~~LAV~~A~~VALGLU~~V~~ALCYS~~V~~AL (300)
 GTATATGG~~G~~AATTACTCCC~~A~~GC~~G~~GCTTCAGG~~T~~TTACTCA~~A~~AAAACGGGG~~T~~CAACTGTGA~~T~~ (360)
 VALTYRGLYASNTYR~~S~~ERGLNGLNLEU~~G~~LNVALTYR~~S~~ERTYR~~S~~LYSTH~~R~~GLY~~P~~HEASNCYS~~A~~SP
 ---CHO---
 70 GGGAAATTGGGCAATGAAT~~C~~AGTGACATT~~C~~AC~~T~~CCAGA~~A~~TTTG~~T~~ATG~~T~~TAACCAAC~~A~~ (420)
 GLY~~L~~YSLEUGLYASNL~~U~~SER~~V~~ALTHR~~P~~HE~~T~~YR~~L~~EUGLN~~N~~LEU~~T~~YR~~V~~ALASNL~~N~~THR
 ---CHO---
 90 GATA~~T~~TACT~~T~~CTG~~C~~AAAATTGAAGTTAT~~G~~TATCCTCCT~~C~~TTAC~~T~~CTAG~~A~~CAATGAGAAG (480)
 ASP~~I~~LETYR~~P~~HE~~C~~YS~~L~~SY~~I~~LEG~~L~~U~~V~~ALMET~~T~~YR~~P~~RO~~P~~RO~~P~~RO~~T~~YR~~L~~E~~U~~ASP~~A~~NS~~N~~GLULYS
 ---CHO---
 110 AGCAATGGA~~A~~CCATTATCC~~A~~T~~G~~TGAAAGG~~G~~AAACAC~~C~~TT~~T~~GTCCAAG~~T~~GTCC~~C~~CTATT~~T~~CC~~C~~ (540)
 SERASNQLYTHRILEI~~L~~E~~H~~ISV~~A~~LLYSGLYLYSHISLEUCYS~~P~~ROSER~~P~~RO~~L~~EUPHE~~P~~RO
 ---CHO---
 130 GGAC~~C~~TTCTAAGCC~~T~~TT~~T~~GGT~~G~~CTGGT~~G~~GTGGT~~G~~GGAGT~~C~~CTGG~~C~~TTG~~C~~TATAG~~C~~ (600)
 GLY~~P~~ROSER~~L~~YS~~P~~RO~~H~~ETRP~~V~~ALLEU~~V~~ALVALVALGLYGLY~~V~~ALLEU~~A~~CYS~~T~~YR~~S~~ER
 ---TM---
 150 TTGCTAGTA~~A~~CA~~G~~TGGC~~C~~TTTATTAT~~T~~TTCTGGGTGAGGAGTAAGAGGAGCAGGCTC~~T~~G~~G~~ (660)
 LEU~~E~~LEU~~V~~ALTHR~~V~~ALALA~~P~~HE~~I~~LE~~L~~E~~P~~HE~~T~~RP~~V~~ALARGSER~~L~~YSARGSER~~A~~RGLEU~~E~~LEU

 170 CACAGTGACTACATGAACATGACTCCCCGCC~~C~~GGG~~C~~CCACCCCA~~A~~GGCATTACCA~~G~~ (720)
 HIS~~S~~ER~~A~~SP~~T~~YR~~M~~ET~~A~~SN~~M~~ET~~H~~RP~~O~~RG~~A~~RG~~P~~RO~~G~~LY~~P~~RO~~T~~HR~~A~~RG~~L~~YS~~H~~IS~~T~~YR~~G~~LN

 190 CCCTATGCC~~C~~ACCAC~~G~~CG~~A~~CTTC~~G~~CAGC~~T~~ATCGCT~~C~~T~~G~~ACACGGAC~~G~~CCTATCCAG~~A~~ (780)
 PRO~~T~~YR~~A~~LA~~P~~RO~~P~~RO~~A~~RG~~A~~SP~~P~~HE~~A~~LA~~A~~LA~~T~~YR~~A~~RG~~S~~ER~~E~~ND
 202
 AGCCAGCC~~G~~CTGGCAGCC~~C~~CATCTG~~C~~TA~~A~~AT~~A~~CTACT~~G~~CT~~G~~CTGGATA~~G~~AA~~A~~ATGACC~~G~~ (840)
 CCATCTCC~~A~~GCCGCCACCT~~C~~AG~~C~~CC~~C~~TG~~T~~GGGCCACC~~A~~ATGCCAATT~~T~~CT~~T~~CTCGAGT~~G~~ (900)
 ACTAGACCA~~A~~ATCAAGA~~T~~CATTGAG~~A~~CTCTGA~~A~~AT~~G~~AA~~G~~TAAAGA~~G~~AT~~T~~CCTG~~T~~ (960)
 GACAGGCCA~~A~~GTCTTACAG~~T~~GCCATGGCC~~C~~ACATTCCA~~A~~CTTACCATGT~~A~~CTTAGTGACT~~T~~ (1020)
 TGACTGAGA~~A~~GTAGGGTA~~A~~AAAACAAAAAGGGAGTGGATTCTGGAGC~~C~~TCTCC~~C~~TT~~T~~ (1080)

FIG. 7-1

CTCACTCACCTGCACATCTCAGTCAAGCAAAAGTGTGGTATTCCACAGACAATTAGTTGC
GAAGAAAGGCTAGGAAATCAATTCCCTTTGGTTAAATGGGTGTTAACATTCTTTGGTTAGTG
GGTTAAACGGGGTAAGTTAAGTAGGGGGAGGGATAGGAAGACATATTAAAAACCATT
AAACACTGTCCTCCACTCATGAAATGAGCCACGTAGTTCTATTAAATGCTGTTTCCTT
TAGTTAGAAATACATAGAACATTGTCTTTATGAATTCTGATCATATTAGTCATTGG
CCAAATGAGGGATTGGTCAAATGAGGGATTCCCTCAAAGCAATATCAGGAAACCAAGT
TGCTTTCCCTCACTCCCTGTCAAGTGTAAATGTTACAATAACTTCGAA
GAATAAAATAGTTC (1514)

FIG. 7-2

TAGACCCAGAGGAGCTCAGCTGCACTCGCCCCGGCTGGAGAGCTGGGTGAGGGAACATG (60)
 MET
 GCCGGGGCTCCGAGGCTCCCTGCTGCTGCCCTGCTTCTGGCGCTGGCTCGGGCTGCCT (120)
 ALA GLY PRO PRO ARG LEU LEU LEU PRO LEU LEU LEU ALA ARG GLY LEU PRO
 GGGGCCCTGGCTGCCAAGGTAAGAGCTTCCAGGCTCTCCATGGCACAGCTCCGGAGC (180)
 GLY ALA LEU ALA ALA GLN /
 TCTCCCTGCCCATGAGCTAGAGCCCCAGTCTGAGCCACAGCACAGCCCCAGGAAGC (240)
 GGGTGGGGTGCTGAGCGGCCCTCCAGTGTCTGAGGACTCATTTAAGAGAAGGAAAAGGT (300)
 GGACCCGGTGGGAGTGGCCGGGCTGTCAGGCAGGGCGCTGCTTGGGAGGAAGAAG (360)
 CCCACAGTCTCGAACACAGAACGACCTCCCCAACACCACAGCCGTGCCAGATC (420)
 TGCTCCATGCCCGTAAGGACCGTGTCTTGGCAGACATGTCAGCCCTGGCTGTCTCA (480)
 GGCCCCACCACTCCCCACCACTGTCCCTGCAAGGGAGGACATTCTGTCTTCTGGCAAG (540)
 ACTGATGGTACAGCCCAGGTCTCTCCAGAGGTGCAGCAGTCTCCACTGCACGACTGT (600)
 GLU VAL GLN GLN SER PRO HIS CYS THR THR VA
 CCCCCGTGGGAGCCTCCGTCAACATCACCTGCTCCACCAAGCGGGGGCTGCGTGGGATCTA (660)
 L PRO VAL GLY ALA SER VAL ASN ILE THR CYSSER THR SER GLY GLY LEU ARG GLY ILE TY
 ---CHO---
 CCTGAGGCAAGCTGGGCCACAGCCCCAACAGAACATCATTTAACAGGAGACGGGTGGTGC (720)
 C R LEU ARG GLN LEU GLY PRO GLN PRO GLN ASP ILE ILE TYR TYR GLU ASP GLY VAL VAL PR
 CACTACGGACAGACGGTTCGGGGCCGCACTGACTTCTCAAGGTCCCAGGACAACCTGA (780)
 C O THR THR ASP ARG PHE ARG GLY ARG ILE ASP PHE SER GLY SER GLN ASP N LEU TH
 ---CHO---
 TATCACCATGCAACGCCCTGCAAGCTGCGAACACTGGCACCTACACCTGCCAGGCCATCAC (840)
 R I L E T H M E T H I S A R G L E U G L N L E U S E R A S P T H R G L Y T H R T Y R T H R C Y S G L N A L A I L E T H
 GGAGGTCAAATGCTACGGCTCCGGCACCCCTGGCTCTGGTCAAGAGGAAAGTCCCAAGG (900)
 R GLU VAL ALA N V A L T Y R G L Y S E R G L Y T H R L E U V A L E U V A L T H R G L U G L U G L N S E R G L N G L
 ATGGCACAGATGCTCGGACGCCAACCAAGGGCTCTGCCCTCCCTGCCAACCGACAGG (960)
 Y T R P H I S A R G C Y S S E R A S P A L A P R O P R O A R G A L A S E R A L A L E U P R O A L A P R O P R O T H R G L
 CTCCGCCCTCCCTGACCCAGACAGCCTCTGCCCTCCCTGACCCGCCAGCAGCTCTG (1020)
 Y S E R A L A L E U P R O A S P P R O G L N T H R A L A S E R A L A L E U P R O A S P P R O P R O A L A A L A S E R A L
 CCTCCCTGCAGCCCTGGCGGTGATCTCTCCCTCCCTGGGCTGGGCTGGGGTGGCGT (1080)
 A L E U P R O A L A A L A L E U A L A V A L I L E S E R P H E L E U L E U G L Y L E U G L Y L E U G L Y V A L A L A C Y
 ---TM--- * *

FIG. 8-1

DNA SEQUENCING

TGTGCTGGCGAGGACACAGATAAAGAAACTGTGCTGTGGCGGGATAAGAATTGGCGGC
SVALLEUALAARGTHRGLNILELYSLEUCYSSETRPARGASPLYSASN SERALAAL (1140)

ATGTGTGGTGTACGAGGACATGTGCCAACAGCCGCTGCAAACAGCTGTCCCTCCCCAACCA
ACYSVALVALTYRGLUASPMEETSERHISSEARCGCYSASNTHRLEUSERSERProASNGL (1200)

GTACCACTGACCCAGTGGGCCCTGCACGTCGGCCTGTGGTCCCCCAAGCACCTTCCCT
NTYRGLNEND (1260)

GCCGCCACCATGCCACACCCCTCACCTGCTGCTCTCCACGGCTGCA
G (1320)
CAGAGTTGAGGGCCCAGCGTGCCAGCTCCAAGCAGACACACAGGCAGTGGCCAGGC (1380)
CCACCGGTGCTTCAGTGGACAATGATGCTCTCCCTGGGAAGCCTCCCTGCCAGCC (1440)
ACGCCGCCAACGGGAGGAAGCTGACTGTCTTGGCTGCACTCTCCGAACATGGCCAAG (1500)
GAGGGCTTCTGTGGATGGCCTGGCAAGCGGCCCTCTCTGTCACTGCCAGGCCAC (1560)
CACCAGCAGGCCCAACCCAGGCAGCCAGGGAGGAGGGAGGAGACAGTCCCC (1620)
ACCCAGCCGATACCAGAAATAAAGGCTCTGTGCTCAAAAAAAAA (1665)

FIG. 8-2

CCCAAATGTCTCAGAATGTATGTCCCAGAACCTGTGGTGCTTCAACCATTGACAGTT
 METSERGLNASNVALCYS PROARGASNLEUTRPLEULEUGLNPROLEUTHRVALL
 -29-
 TGCTGCTGCTGGCTCTGCAGACAGTCAGAACGCTGCCAGCTCCCCAAAGGCTGTGCTGAAAC
 EULEU EULEU ALASERALAASP SERGLN ALA ALA ALA PRO ProLYS ALA VALLEULYSL
 -1 +1-
 TTGAGCCCCCGTGGATCAA CGT GCT CCAG GAG GACT CTG TGA C TGT GAC A T G C C A G G G G
 EU GLU PRO PRO TRP ILE ASN VAL LEU GLU ASP SER VAL THR LEU THR CYS GLN GLY A
 *
 10 CTCGCAGCCCTGAGAGCGA C T C C A T T C A G T G G T T C C A C A A T G G G A A T C T C A T T C C C A C C
 30 LA ARG SER PRO GLU SER ASP SER ILE GLN TRP PHE HIS ASN GLY ASN LEU ILE PRO THR H
 ACACGCAGC C CAG CTAC AGG TT CA AGG C C A A C A A C A A T G A C A G C G G G A C T A C A C G T G C C
 50 I S T H R Q L N P R O S E R T Y R A R G P H E L Y S A L A A S N A S N A S P S E R G L Y G L U T Y R T H R C Y S G
 ---CHO--- *
 70 AGACTGCCAGCACCAGCCTCAGCGACCTCTGCATCTGACTGTGCTTCCGAATGGCTG
 LN THRG LY GLN THR SER LEU SER ASP Pro Val HIS LEU THR VAL LEU SER GLU TRP LEU
 90 TGCTCCAGAACCCCTCACCTGGAGTTCCAGGAGGGAGAAA C C A T C A T G C T G A G G T G C C A C A
 ALLEU GLN THR Pro HIS LEU GLU PHE GLN GLU GLY GLU THR ILE MET LEU ARG CYSHISS
 *
 110 GCTGGAAAGGACAAGCTCTGGTCAAGGTCA C A T T C T C C A G A A T G G A A A T C C C A G A A A T
 ER TRP LYS A S P L Y S P R O L E U V A L L Y S V A L T H R P H E G L N A S N G L Y L Y S S E R G L N L Y S P
 TCTCCCGTTGGATCCCACCTTCTCCATCCACAAGCAA ACCACAGTCAGTGGTGATT
 130 H E S E R A R G L E U A S P P R O T H R P H E S E R I L E P R O G L N A L A A S N H I S S E R H I S S E R G L Y A S P T
 ---CHO---
 150 ACCACTGCA CAGGAAACATAGGCTACACGCTGTCTCATCCAAGCCTGTGACCATCACTG
 Y R H I S C Y S T H R G L Y A S N I L E Q L Y T Y R T H R L E U P H E S E R S E R L Y S P r o V A L T H R I L E T H R V
 *
 170 TCCAAGTGC C C A G C A T G G G C A G C T C T C A C C A T G G G A T C A T T G T G G C T G T G G T C A T T G
 A L G L N V A L P R O S E R M E T G L Y S E R S E R S E R P R O M E T G L Y I L E I L E V A L A L A V A L V A L I L E A
 C G A C T G C T G T A G C C A G C C A T T G T G C T G C T G T A G T G G C C T T G A T C T A C T G C A G G A A A A A G C
 190 L A T H R A L A V A L A A L A I L E V A L A A L A V A L V A L A L E U I L E T Y R C Y S A R G L Y S L Y S A
 ---TM--- *
 210 GGATTTCAGCCAATCCACTGATCCTGTGAAGGCTGCCAATTGAGCCACCTGGACGT
 RG I L E S E R A L A A S N S E R T H R A S P P R O V A L L Y S A L A A L A G L N P H E G L U P R O P R O G L Y A R G G
 AAATGATTGCCATCAGAACAGACAACTTGAAGAACCAACAATGACTATGAAACAGCTG
 230 L N M E T I L E A L A I L E A R G L Y S A R G G L N L E U G L U G L U T H R A S N A S P T Y R G L U T H R A L A A
 ACGGGGGCTACATGACTCTGAACCCAGGGCACCTACTGACGATGATAA A A C A T C T A C C
 250 SPGLY GLY TYR M E T T H R L E U A S N P R O A R G A L A P R O T H R A S P A S P L Y S A S N I L E T Y R L

FIG. 9-1

270 TGACTCTCCACGACCAGTCAACAGTAATAACTAAAGAGTAACGTTATGCCATG (960)
 EUTHRLEU²⁸² PROPROASNAPS HIS VAL ASN SER ASN ASN NEND
 TGGTCATACTCTCAGCTTGCTGAGTGGATGACA²⁸² AAAAGAAGGGATTGTAAAGGAAAAT (1020)
 TTAAATGGAAGACTGAAAAATCCTGAGCAACAAACCA²⁸² CCTGGCCCTTAGAAATAGCTT (1080)
 TAACTTTGCTTAAACTACAACACAAAGCAAAACTTCACGGGGTCAACTACATACAAGCA (1140)
 TAAGCAAAACTTAACCTGGATCATTTCTG²⁸² TAAATGCTTATGTTAGAAATAGACAACCC (1200)
 CAGCCAATCACAAGCAGC²⁸² TACTAACATATAATTAGGTGACTAGGGACTTCTAAGAAGA (1260)
 TACCTACCC²⁸² CAAAAAACAAATTATGTAATTGAAACCAA²⁸² CGATTGCCTTATTTGCTT (1320)
 CCACATTTCCAATAAAATAC²⁸² TTGCCTGTGACATTTCG²⁸² ACTGGAACAC²⁸² TAAACTTCAT (1380)
 GAATTGCC²⁸² CTCA²⁸² GATTTTCC²⁸² TAAACATC²⁸² TTTT²⁸² TTTGACAGAGTCTCAATCTG (1440)
 TTACCCAGG²⁸² CTGGAGTGCAGTGGTGTATCTGGCTCACTGCAAACCCG²⁸² CCTCCAGGT (1500)
 TAAGCGATTCTCATGCCTCAGCCTCCCAGTAGCTGGATTAGAGGCATG²⁸² GCCATCATAAC (1560)
 CCAGCTAATTTGTTATTTTATTTTTTTAGTAGAGACAGGGT²⁸² TCGCAATGTT (1620)
 GGCCAGGCC²⁸² GATCTCGAACCTCTGGCTCTAGCGATCTG²⁸² CCCGCCCTGG²⁸² CCTCCAAAGT (1680)
 GCTGGGATGACCAGCATCA²⁸² CCCCAATGT²⁸² CAGCCTCTTAAACATCTC²⁸² TTTCTATGCC (1740)
 CTCTCTGTGGATCCCTACTGCTGGTTCTGCCCTCTCA²⁸² GCTGAGAAC²⁸² AAAATCACCTA (1800)
 TTCACTGCTTATGCA²⁸² GTCGGAAGCTCCAGAGAACAAGAGGCCAATTA²⁸² CAGAACACAC (1860)
 TTAAGTCTC²⁸² ATTGTTTG²⁸² CTTGGATTGAGAAGAGAATTAGAGAGGT²⁸² GAGGATCTGG (1920)
 TATTTCTG²⁸² GACTAAATTCC²⁸² CCTGGGAAGACGAAGGGATGCTGCAGT²⁸² CAAAAGAGA (1980)
 AGGACTCT²⁸² CAGAGTCAT²⁸² ACCTGAGT²⁸² CCAAAGCTC²⁸² ETGTCTGA²⁸² AGCCACAGAC (2040)
 AATATGGTC²⁸² CCAAATGACTGACTGCACCT²⁸² TGTGCTCAGCCGTTCTG²⁸² GACATCAAGA (2100)
 TCTTCTGTT²⁸² CACATCCACACAGCCAATA²⁸² ATTGTC²⁸² AACCACTGTT²⁸² ATTAAACAGATG (2160)
 TAGCAACATGAGAAACGCTTATGTTACAG²⁸² TTACATGAGAGCAATCATG²⁸² AA²⁸² GCTATA²⁸² T (2220)
 GACTTCAGAA²⁸² ATGTTAAAATAGACTAACCT²⁸² TAACAACA²⁸² ATTAAAAGT²⁸² GATTGTTCA²⁸² A (2280)
 GGTGAAAAAA²⁸² (2290)

FIG. 9-2

FIG. 10A-1

1 AAAGACAAACTGCACTGAACCTCCGCAGCTAGCATAATCAGCCCTTAGGCTTGGAGACTCAGGAGTTTGAGATTTCAGGCCCTGGAGACTCAGGAGTTTGAGAGCC
91 AAAATGACAACACCCAGAAATTCAAGTAATGGGACTTTCCCGGCAGAGCCAAATGAAAGGCCCTATTGGCTATGCAAATCTGGTCCAAACCA
1 Met Thr Thr Pro Arg Asn Ser Val Iasn Gly Thr Phe Pro Ala Glu Prom Met Lys Ser Gly Pro Leu Met Gln Ser Gly Pro Lys Pro Ser
---CHO---

181 CTCTTCAGGAGATGTCTCACTGGCTGGGGCTCTTGATGAGCTTCCAGCAQGGATCTATGCACCCATCTGTGTGACTGTGTGGTACCCCTCTCTGG
30 Leu Phe Arg Arg Met Ser Ser Leu Val Igl Y Pro Thr Gln Ser Phe Met Arg Glu Ser Lys Thr Leu Glu Igl Y Ala Val Gln Ile Met Asn
=====

271 GGCTCTCCACATTGCCCTGGGGCTCTTGATGAGCTTCCAGCAQGGATCTATGCACCCATCTGTGTGACTGTGTGGTACCCCTCTCTGG
60 Gly Leu Phe His Ile Met Ile Phe Leu Met Ile Phe Leu Gly Gly Ile Tyr Ala Pro Ile Tyr Ala Pro Ile Tyr Val Trp Pro Leu Tyr Pro Leu Trp
=====

361 GGAGGCATTATGTTATTTCGGGATCACTCCGGAAACGGAGAAAAACTCAGGAAGTGGTTGGTCAAAGGAAAATGATAATG
90 Gly Gly Ile Met Tyr Ile Ser Gly Ser Gly Ser Arg Lys Asn Ser Arg Lys Asn Ser Arg Lys Asn Ser Arg Lys Met Ile Met
=====

451 ATTTCATTGAGCCCTTGGCATTTCGGAATGATTCTGGCATTTCGATTAATCATGGACATACTTAAATTTCCATTAAATTTAAATG
120 Asn Ser Leu Ser Leu Phe Ala Ala Ile Ser Gly Met Ile Leu Ser Ile Met Asp Ile Met Asp Ile Met Asp Ile Met His Phe Leu Lys Met
=====

541 GAGAGTCTGAATTATTAGAGCTCACACACCATAATAACATATAACGCTAATCCCTCTGTGAACCACTGGAAACTCCCCATCT
150 Glu Ser Leu Asn Phe Ile Arg Ala His Thr Pro Tyr Ile Asn Ile Tyr Asn Cys Glu Pro Ala Asn Pro Ser Val Ile Phe Ala Phe Phe Ala
=====

631 ACCCAATACTGTTACAGCATAACATCTCTGGCATTTCAGTGAATGCTGATCTTTGCCCTCTGGAAACTTGTAAATAGCT
180 Thr Gln Tyr Cys Tyr Ser Ile Gln Ser Leu Phe Leu Ile Ser Val Ile Met Leu Ile Phe Ala Phe Phe Ala
=====

FIG. 10A-1

721 GGCATCGTTGAGAATGAAATGGAAAAGAACGCTGCCAGACCCAAATCTAACATAGTTCTCAGCAGAAAGAAAAAGAACAGACT
210 GlyIleValGluAsnGluTrpLysArgThrCysSerArgProLysSerAsnIleValLeuSerAlaGluGluLysGluGlnThr

811 ATTGAATAAAAGAAGAAAGTGGTTGGCTTAAC TGAAAGACATTCCAATCCAAGAA
240 IleGluIleLysGluGluValGlyLeuThrGluThrSerSerGlnProLysAsnProGlnAspSerSerProEnd 297
---CHO---

901 GAGGAAGAACAGAGACGAACTTCCAGAACCTCCCCAAGATCAGGAATCCTCACCAATAGAAATGACAGCTCTCCTTAAGTG
270 GluGluGluGluGluThrGluThrAsnPheProGluProGlnAspGlnGluSerSerProIleGluAsnAspSerSerProEnd 297
---CHO---

991 ATTTCTTCTGTTCCTTAAACATTAGTGTTCATAGCTTCCAAGAGACATGCTGACTTTCTTCTGAGGTACTCTGCA
*
1081 CATACGCCACCACATCTCTATCTGGCTTGCATGGAGTGACCATAGCTCCTTCTTACATTGAATGTTAGAGAATGTAGCCATTGTAG

1171 CAGCTTGTGTGTCAAGCTTCTTGTGAGCAAACCTTCTTACACTGAAGAAAGGCAGAAATGAGTGTGCTTCAGAATGTTGATTCTACTAA
1261 CCTGTTCCCTGGATAGGCTTTTAGTATAGTATTCTTCTTGTCAATTCTCCATCAGCAACCAGGGAGACTGCACCTGATGGAAAAGAT

1351 ATATGACTGCTTCATGACATTCTAAACTATCTTTTTTATTCCACATCTACGTTTTTGTGGAGTCCTTTTATCATCCTTAAACAA
1441 ATGATGCAAAGGGCTTTAGAGCACAAATGGATCT 1474

FIG. 10A-2

FIG. 10B

T D I C T F H D M H S S E E E S O

1	CTAGCCTCGCTATGGCTCCAGCCCCGGCTGCCGCACCTCCCTGGCTCGGGCCTCTGTTCCCCA Met Ala Pro Ser Ser Pro Arg Pro Ala Leu Pro Ala Leu Val Leu Gly Ala Leu Phe Pro
	(-26)
	GGACCTGGCAATGGCCAGACATCTGGTCCCCCTCAAAAGTC Gly Pro Gly Asn Ala Glu Val Thr Ser Val Ser Pro Ser Lys Val
	(+1)
121	ATCCTGCCCGGGAGGCTCCGTGCTGGTGACATGGCAGCACCTCCCTGTAAGCTCCAGGGCATAGAGACC Ile Leu Pro Arg Gly Gly Ser Val Leu Val Thr Cys Ser Thr Ser Cys Asp Glu Pro Lys Leu Leu Gly Ile Glu Thr
	(+11)
	CCGTTGCCCTAAAAGGACTTGTGCAAGAACATAGCCAAACCAATGTGCTTCAAACTGCCCTGATGGCAGTCACAA Pro Leu Pro Lys Glu Leu Leu Pro Gly Asn Asn Arg
	(+61)
241	AAGGTGTATGAACATGAGCAATGTGCAAGAACATAGCCAAACCAATGTGCTTCAAACTGCCCTGATGGCAGTCACAA Lys Val Ile Tyr Glu Leu Ser Asn Val Glu Asp Ser Glu Asp Pro Met Cys Tyr Ser Asn Cys Pro Asp Glu Gly Glu Val Ser Thr
	(+61)
	GCTAAACACTTCCCTACCGGTACTGGACTCCAGAACGGGTG Ala Lys Thr Phe Leu Thr Val Ile Tyr Trp Pro Glu Arg Val
	(+91)
361	GAACCTGGCACCCCTCCCTGGCAGGCCAGTGGCAAGAACCTTACCCCTACGCTGCCAGGTGGAGGGTGGGGCACCC Glu Leu Ala Pro Leu Pro Ser Trp Glu Pro Val Ile Asn Leu Thr Leu Arg Cys Glu Val Glu Gly Ile Val Ala Pro
	(+131)
	CGGGCCAACCTCACCGTGGTGGCTGGCTCCGGAGGGAG Arg Ala Asn Leu Thr Val Val Leu Leu Arg Glu Gly Glu
	(+131)
481	CTGAAACGGGAGGCCAGCTGTGGGGAGCCCCCTGAGGTGAGGAGATCACCATGGAGCC Leu Lys Arg Glu Pro Ala Val Ile Gly Glu Pro Ala Pro Val Ile Val Thr Thr Val Ile Val Arg Arg Asp His Glu Ala
	(+131)
	ATTTCCTCGTGGCACTGGAACCTGGACCTGGGGCCCCAAGGG Asn Phe Ser Cys Arg Thr Glu Leu Asp Leu Arg Pro Glu Gly
	(+171)
	--CHO---
601	CTGGAGCTGTTGAGAACACCTCGGGCCCTTACCAAGCTCCAGGCAGACCTTGTCTGCCAGGACTCCACAAACTTGTG Leu Glu Ile Phe Glu Asn Thr Ser Ala Pro Val Ile Val Thr Phe Val Leu Val Leu Pro Ala Thr Pro Glu Val Leu Val
	(+211)
	--CHO---
	AGCCCCGGGTCTTAGGGTGGACACCGCAGGGGACCCGGTGGTC Ser Pro Arg Val Ile Glu Val Asp Thr Glu Val Ile Val Val Val
	(+211)

FIG. 11-1

- 721 TGTTCCCTGGACGGGCTGTCCCCAGGTCTCGGACCTGGCAACTGGGGACCCAGAGGTTGAACCCACA
CysSerLeuAspGlyLeuPheProValSerGluAlaGlnValIleValHisLeuAlaLeuGlyAspGlnArgLeuAsnProThr
GTCACCTATGCCAACCGACTCTTCTGGCCAAGGCCAGTC
ValIleThrTyrGlyAsnAspSerPheSerAlaLysAlaSerVal
---CHO---
(+251)
- 841 AGTGTGACCGAGAGGACGGCACCCAGCGGCTGACGTGTGCAGTAATACTGGGAACCCAGAGGCCAGGAGACACTG
SerValIleThrAlaGluAspGlyGlyThrGlnArgLeuThrCysAlaValIleLeuGlyAsnGlnSerGlnGluThrLeu
---CHO---
(+291)
- 961 CTGACGAAGCCAGAGGTCTCAGAAGGGACCCAGGGTGAAGTGTGAGGCCAACCCTAGAGCCAAGGGTGAAGCCTG
LeuThrLysProGluValSerGluGlyThrGluValThrValLysCysGluAlaHisProArgAlaLysValIleThrLeu
AATGGGGTCCAGCCCAGGCCACTGGGCCAGGGCCCCAGCTC
AsnGlyValProAlaGlnProLeuGlyProArgAlaGlnLeu
(+331)
- 1081 CTGCTGAAGGCCACCCAGGGACAACTGGGCGCAGGCTCTGCTCTGCAACCCCTGGAGGTGCCAGGCTTATA
LeuLeuLysAlaThrProGluAspAsnGlyArgSerPheSerCysSerAlaThrLeuGluValAlaGlyGinLeuIle
CACAAAGAACGACCCCCAGGGACAACTGGGACAAACTGGGCGCAGGCTCTGCTCTGCAACCCCTGGAGGTGCCAGGCTTATA
HisLysAsnGlnThrArgGluLeuArgValLeuThrGlyPro
---CHO---
(+371)
- 1201 CGACTGGACGAGAGGGATTGTCCGGAAACTGGGACCTGGGACGACTCCAAATGTGCCAGGCTTGG
ArgLeuAspGluArgAspCysProGlyAsnTrpThrTrpProGluAsnSerGlnGlnThrProMetCysGlnAlaTrp
---CHO---
GGAAACCCATTGCCGGAGCTCAAGTGTCCTAAAGGATGGCACT
GlyAsnProLeuProGluLeuLysCysLeuLysAspGlyThr
(+411)
- 1321 TTCCCCACTGCCCATCGGGGAATCAGTGACTGTCACCTCGAGATCTTGAGGGCACCTACCTCTGTCGGGCCAGGAGCACT
PheProLeuProIleGlyGluSerValIleValIleArgAspLeuGluGlyThrTyrLeuCysArgAlaArgSerThr
CAAGGGGAGGTCAACCGCCGAGGTGACCGTGAATGTGCTCTCC
GlnGlyGluValIleArgGluValIleValAsnValLeuSer
(+451)

FIG. 11-2

ProArgTyrGluIleValIleThrValAlaAlaValAla

1441 CCCCGGTATGAGATTGTCACTCATCACTGGTAGCAGCCAGTCATAATGGCAGTGCACGCCCTCAGCACGTACCTC
ProArgTyrGluIleValIleThrValAlaAlaValAlaValAla

TATAACC GCCAGGGAAAGATCAAAGAAATACAGACTACAACAG
TyrAsnArgGlnArgLysIleLysTyrArgLeuGlnGln
(+491)

1561 GCCCCAAAAGGGACCCCCATGAAACACACAAGCCACGCCCTCCCTGAACCTATCCC GGACAGGGCCTCTTCCT
AlaGlnLysGlyThrProMetLysProAsnThrProlaThrProPro
(+507)
GGGCTTCCATATTGGTAGTGGTGCCACACTGAACAGA

1681 GTGGAAGACATATGCCATGCGACTACACCTACGGGACGCCCTGGGACGCCATTGTCCCTCAGTCAGATA
1801 GGCACACGCATCTGATCTGTAGTCACATGACTAAGCCAAGAGGAAAGG
AACAGCATTGGGGCATGGTACCTGCACACCTAAACACTA

FIG. 11-3

1 ..GGAGAGTC TGACCACCAT GCCACCTCCT CGCCTCCCT TCTTCCTCCT
51 CTTCCCTCACCC CATGGAAG TCAGGCCGA GGAACCTCTA GTGGTGAAGG
101 TGGAAAGAGGG AGATAACGCT GTGCTGCAGT GCCTCAAGGG GACCTCAGAT
151 GGCCCCACTC AGCAGCTGAC CTGGTCTCGG GAGTCCCCGC TTAAACCCCT
201 CTTAAAACCTC AGCCTGGGGC TGCCAGGCCT GGGAAATCCAC ATGAGGCCCC
251 TGGCCATCTG GCTTTTCATC TTCAACGTCT CTCAACAGAT GGGGGCTTC
301 TACCTGTGCC AGCCGGGGCC CCCCTCTGAG AAGGCCTGGC AGCCTGGCTG
351 GACAGTCAAT GTGGAGGGCA GCGGGGAGCT GTTCCGGTGG AATGTTTCGG
401 ACCTAGGTGG CCTGGGCTGT GGCCTGAAGA ACAGGTCTC AGAGGGCCCC
451 AGCTCCCCTT CCGGGAAGCT CATGAGCCCC AAGCTGTATG TGTGGGCCAA
501 AGACCGCCCT GAGATCTGGG AGGGAGAGCC TCCGTGTGTC CCACCGAGGG
551 ACAGCCTGAA CAGAGCCTC AGCCAGGACC TCACCATGGC CCCTGGCTCC
601 ACACCTCTGGC TGTCCGTGG GGTACCCCT GACTCTGTGT CCAGGGGCC
651 CCTCTCCTGG ACCCATGTGC ACCCCAAGGG GCCTAAGTCA TTGCTGAGCC
701 TAGAGCTGAA GGACGATCGC CCGGCCAGAG ATATGTGGGT AATGGAGACG
751 GGTCTGTTGT TGCCCCGGGC CACAGCTCAA GACGCTGGAA AGTATTATTG
801 TCACCGTGGC AACCTGACCA TGTCAATTCCA CCTGGAGATC ACTGCTCGGC
851 CAGTACTATG GCACTGGCTG CTGAGGACTG GTGGCTGGAA GGTCTCAGCT
901 GTGACTTTGG CTTATCTGAT CTTCTGCCTG TGTTCCCTTG TGGCATTCT
951 TCATCTTCAA AGAGCCCTGG TCCTGAGGAG GAAAAGAAAG CGAATGACTG
1001 ACCCCACCAG GAGATTCTTC AAAGTGACGC CTCCCCCAGG AAGGGGGCCC
1051 CAGAACCACT ACGGGAACGT GCTGTCTCTC CCCACACCCA CCTCAGGCCT
1101 CGGACGCGCC CAGCGTTGGG CCGCAGGCCT GGGGGGCACT GCCCCGTCTT
1151 ATGGAAACCC GAGCAGCGAC GTCCAGGCCGG ATGGAGCCTT GGGGTCCCGG

FIG. 12-1

1201 AGCCGCCGGG AGTGGGCCA GAAGAAGAGG AAGGGGAGGG CTATGAGGA
1251 CCTGACAGTG AGGAGGACTC CGAGTTCTAT GAGAACGACT CCAACCTTGG
1301 GCAGGACCAG CTCTCCCAGG ATGGCAGCGG CTACGAGAAC CCTGAGGATG
1351 AGCCCCCTGGG TCCTGAGGAT GAAGACTCCT TCTCCAACGC TGAGTCTTAT
1401 GAGAACGAGG ATGAAGAGCT GACCCAGCCG GTCGCCAGGA CAATGGACTT
1451 CCTGAGCCCT CATGGGTCAAG CCTGGGACCC CAGCCGGAA GCAACCTCCC
1501 TGGGGTCCCA GTCTATGAG GATATGAGAG GAATCCTGTA TGCAGCCCCC
1551 CAGCTCCGCT CCATTGGGG CCAGCCTGGA CCCAATCATG AGGAAGATGC
1601 AGACTCTTAT GAGAACATGG ATAATCCGA TGGGCCAGAC CCAGCCTGGG
1651 GAGGAGGGGG CCGCATGGC ACCTGGAGCA CCAGGTGATC CTCAGGTGGC
1701 CAGCCTGGAT CTCTCAAGT CCCCAGATT CACACCTGAC TCTGAAATCT
1751 GAAGACCTCG AGCAGATGAT GCCAACCTCT GGAGCAATGT TGCTTAGGAT
1801 GTGTGCATGT GTGTAAGTGT GTGTGTGTGT GTGTGTGTGT GTGTGTGT
1851 ATACATGCCA GTGACACTTC CAGTCCCTT TGTATTCCCTT AAATAAACTC
1901 AATGAGCTCT TCCAAAAAAA AAAA

FIG. 12-2

1 ACAAAAGACAA ACTGCACCCA CTGAACCTCG CAGCTAGCAT CCAAATCAGC
51 CCTTGAGATT TGAGGCCTTG GAGACTCAGG AGTTTGAGA GCAAAATGAC
101 AACACCCAGA AATTCAAGTAA ATGGGACTTT CCCGGCAGAG CCAATGAAAG
151 GCCCTATTGC TATGCAATCT GGTCCAAAAC CACTCTTCAG GAGGATGTCT
201 TCACTGGTGG GCCCCACGCA AAGCTTCTTC ATGAGGAAAT CTAAGACTTT
251 GGGGGCTGTC CAGATTATGA ATGGGCTCTT CCACATTGCC CTGGGGGGTC
301 TTCTGATGAT CCCACCGAGG ATCTATGCAC CCATCTGTGT GACTGTGTGG
351 TACCCCTCTCT GGGGAGGCAT TATGTATAATT ATTCGGAT CACTCCTGGC
401 AGCAACGGAG AAAAACTCCA QGAAGTGTTC GGTCAAAGGA AAAATGATAA
451 TGAATTCAATT GAGCCTCTTT GCTGCCATTCTGGATGAT TCTTTCAATC
501 ATGGACATACTTAATATTAA AATTCCCATT TTTTTAAAAA TGAGAGTCT
551 GAATTTTATT AGAGCTACA CACCATATAT TAACATATAC AACTGTGAAC
601 CAGCTAATCC CTCTGAGAAA AACTCCCCAT CTACCCAATA CTGTTACAGC
651 ATACAATCTC TGTTCTGGG CATTGGTCA GTGATGCTGA TCTTGCCTT
701 CTTCCAGGAA CTTGTAATAG CTGGCATCGT TGAGAATGAA TGAAAAGAA
751 CGTGCTCCAG ACCCAAATCT AACATAGTTC TCCTGTCAGC ACAAGAAAAA
801 AAAGAACAGA CTATTGAAAT AAAAGAAGAA GTGGTTGGGC TAACTGAAAC
851 ATCTTCCCAA CCAAAGAATG AAGAAGACAT TGAAATTATT CCAATCCAAG
901 AAGAGGAAGA AGAAGAAACA GAGACGAAC TTCCAGAACCC TCCCCAAGAT
951 CAGGAATCCT CACCAATAGA AAATGACAGC TCTCCTTAAG TGATTTCTTC
1001 TGTTTCTGT TTCTTTTTT AAACATTAGT GTTCATAGCT TCCAAGAGAC
1051 ATGCTGACTT TCATTTCTTG AGGTACTCTG CACATACGCA CCACATCTCT

FIG. 13-1

1101 ATCTGGCCTT TGCATGGAGT GACCATAAGCT CCTTCTCTCT TACATTGAAT
1151 GTAGAGAATG TAGCCATTGT AGCAGCTTGT GTTGTACGC TTCTTCTTTT
1201 GAGCAACTTT CTTACACTGA AGAAAGGCAG AATGAGTGCT TCAGAATGTG
1251 ATTTCCCTACT AACCTGTTCC TTGGATAGGC TTTTTAGTAT AGTATTTTTT
1301 TTTGTCATT TCTCCATCAG CAACCAGGGA GACTGCACCT GATGGAAAAG
1351 ATATATGACT GCTTCATGAC ATTCCCTAAC TATCTTTTTT TTATTCCACA
1401 TCTACGTTTT TGTTGGAGTC CCTTTTATC ATCCTAAAA CAATGATGCA
1451 AAAGGGCTTT AGAGCACAAT GGATCT

FIG. 13-2

1 CCCAAATGTC TCAGAATGTA TGTCCCAGAA ACCTGTGGCT GCTTCAACCA
51 TTGACAGTT TGCTGCTGCT GGCTTCTGCA GACAGTCAAG CTGCAGCTCC
101 CCCAAAGGCT GTGCTGAAAC TTGAGCCCCC GTGGATCAAC GTGCTCCAGG
151 AGGACTCTGT GACTCTGACA TGCCAGGGGG CTCGCAGCCC TGAGAGGCAC
201 TCCATTCACT GTTCCACAA TGGGAATCTC ATTCCCACCC ACACGCAGCC
251 CAGCTACAGG TTCAAGGCCA ACAACAATGA CAGCGGGGAG TACACGTGCC
301 AGACTGGCCA GACCAGCCTC AGCGACCTG TGCACTTGAC TGTGCTTCC
351 GAATGGCTGG TGCTCCAGAC CCCTCACCTG GAGTTCCAGG AGGGAGAAC
401 CATCATGCTG AGGTGCCACA GCTGGAAGGA CAAGCCTCTG GTCAAGGTCA
451 CATTCTCCA GAATGGAAAA TCCCAGAAAT TCTCCCGTTT GGATCCCACC
501 TTCTCCATCC CACAAGCAA CCACAGTCAC AGTGGTGATT ACCACTGCAC
551 AGGAAACATA GGCTACACGC TGTTCTCATC CAAGCCTGTG ACCATCACTG
601 TCCAAGTGCC CACCATGGGC AGCTCTTCAC CAATGGGAT CATTGTGGCT
651 GTGGTCATTG CGACTGCTGT AGCAGCCATT GTTGTGCTG TAGTGGCCTT
701 GATCTACTGC AGGAAAAGC GGATTCAGC CAATTCCACT GATCCTGTGA
751 AGGCTGCCA ATTGAGCCA CCTGGACGTC AAATGATTGC CATCAGAAAG
801 AGACAACCTG AAGAAACCAA CAATGACTAT GAAACAGCTG ACGGCGGCTA
851 CATGACTCTG AACCCCCAGGG CACCTACTGA CGATGATAAA AACATCTACC
901 TGACTCTTCC TCCCACGAC CATGTCACA GTAATAACTA AAGAGTAACG
951 TTATGCCATG TGGTCATACT CTCAGCTTGC TGAGTGGATG ACAAAAAGAG
1001 GGGATTGTT AAAGGAAAAT TAAATGGAG ACTGGAAAAA TCCTGAGCAA
1051 ACAAAACAC CTGGCCCTTA GAAATAGCTT TAACCTTGCT TAAACTACAA
1101 ACACAAGCAA AACTTCACGG GGTCTACTA CATACAAGCA TAAGCAAAC
1151 TTAACCTGGA TCATTTCTGG TAAATGCTTA TGTTAGAAAT AAGACAACCC
1201 CAGCCAATCA CAAGCAGCCT ACTAACATAT AATTAGGTGA CTAGGGACTT
1251 TCTAAGAAGA TACCTACCCCC CAAAAAACAA TTATGTAATT GAAAACCAAC
1301 CGATTGCCCTT TATTTGCTT CCACATTTTC CCAATAAATA CTTGCCTGTG
1351 ACATTTGCC ACTGGAACAC TAAACTTCAT GAATTGCGCC TCAGATTTT
1401 CCTTTAACAT CTTTTTTTTT TTTGACAGAG TCTCAATCTG TTACCCAGGC
1451 TGGAGTGCAG TGGTGTATC TTGGCTCACT GCAAACCCGC CTCCCAGGTT
1501 TAAGCGATT TCATGCCTCA GCCTCCCAGT AGCTGGGATT AGAGGCATGT
1551 GCCATCATAC CCAGCTAATT TTTGTATTTT TTATTTTTT TTTTAGTAG
1601 AGACAGGGTT TCGCAATGTT GGCCAGGCCG ATCTCGAACT TCTGGCCTCT
1651 AGCGATCTGC CCGCCTCGGC CTCCCAAAGT GCTGGGATGA CCAGCATCAG

FIG. 15-1

1701 CCCCAATGTC CAGCCTCTT AACATCTCT TTCCATGCC CTCTCTGTGG
1751 ATCCCTACTG CTGGTTCTG CCTTCTCCAT GCTGAGAACAAATCACCTA
1801 TTCACTGCTT ATGCAGTCGG AAGCTCCAGA AGAACAAAGA GCCCAATTAC
1851 CAGAACACACA TTAAGTCTCC ATTGTTTGCTTGGGATTT GAGAAGAGAA
1901 TTAGAGAGGT GAGGATCTGG TATTCCTGG ACTAAATTCC CCTTGGGAA
1951 GACGAAGGGA TGCTGCAGTT CCAAAAGAGA AGGACTCTTC CAGAGTCATC
2001 TACCTGAGTC CCAAAGCTCC CTGTCTGAA AGCCACAGAC AATATGGTCC
2051 CAAATGACTG ACTGCACCTT CTGTGCCTCA GCCGTTCTTG ACATCAAGAA
2101 TCTTCTGTTT CACATCCACA CAGCCAATAC AATTAGTCAA ACCACTGTTA
2151 TTAACAGATG TAGAACATG AGAAACGCTT ATGTTACAGG TTACATGAGA
2201 GCAATCATGT AAGTCTATAT GACTTCAGAA ATGTTAAAAT AGACTAACCT
2251 CTAACAAACAA ATTAAAAGTG ATTGTTCAA GGTGAAAAAA

FIG. 15-2

1 GCTGTGACTG CTGTGCTCTG GGCGCCACTC GCTCCAGGGA GTGATGGAA
51 TCCTGTCATT CTTACCTGTC CTTGCCACTG AGAGTGACTG GGCTGAcTGC
101 AAGTCCCCCCC AGCCTGGGG TCATATGCTT CTGTGGACAG CTGTGCTATC
151 CCTGGCTCCT GTTGCTGGGA CACCTGCAGC TCCCCCAAAG GCTGTGCTGA
201 AACTCGAGCC CCAGTGGATC AACGTGCTCC AGGAGGACTC TGTGACTCTG
251 ACATGCCGGG GGACTCACAG CCCTGAGAGC GACTCATTG AGTGGTTCCA
301 CAATGGGAAT CTCATTCCTA CCCACACGCA GCCCAGCTAC AGGTTCAAGG
351 CCAACAACAA TGACAGCGGG GAGTACACGT GCCAGACTGG CCAGACCAGC
401 CTCAGCGACC CTGTGATCT GACTGTGCTT TCTGGTCAGT GGAGGAAGGC
451 CCCAGGGTGG ACCTGGGAGG GCCAGGACGG ATGAATCTG CTTTCAGGCA
501 GAGGTTTGC A GGAAAGGGGG GTGGCTGCT TACTGGGAAG TATCGCTGTG
551 AGTTGCCTCA GCACATATCA GTGGTTGTT TTGCCTCAGT TCTGATTGAA
601 CAGAAGAAGG TTTCAAGGCC AAAAACAGGC AGCCAAGTGT GAGAGAAGCA
651 GAAGGAAATC CCTACTGCAT AAAACCCATT TCCATTAA TGGCAGAATT
701 GAAAAGCACA GACCACAATC GAATCCTAGC CCTGGAAATG ACTCACTATA
751 CAACATGATG ATTCAATTAA ACCCTTGAGT TTCCATTCT TCACCTGCTC
801 CGTGGGGCAG TAACGCCCTC CTCAGAGGCT TCTGGTGAGA ATCAGTGT
851 CCCTGCCCTC GCCCCGCCCT CCATGCCCT TCTCCACGTT CTCACGTGC
901 TAGGTGCTCT TCTCTGTCTT TCTCTTCCAC CAGCCTGTGG GAAACCTGAG
951 ATGAAAGTCG TGTCTTACCC ATCTTGTAT TTCCAGCATC TGAAACTGGG
1001 CAGAGCTTAA TAAATATTTT GCTGGAGAGG TTGATGATCT TACAAAGCTC
1051 CCATTGAAAG GTGGCTCTCT GTAAAGCAA GTTACAATGA GATTGTGATG
1101 AACATTGTCC TTGTGGCTTT TCACTTAGTC CCCTCCCTTC ACCTGAAGAG
1151 CAAATTTCC TCAAAAGTAC ACAGCAAACG AATGACCCAC TGGTGACACT
1201 GTTGCTTTA GACCCTGCTG GAAAGAAGCT CCACATTAT TAACATTCCC
1251 GAACTAAATT TATCAGGTAG CATTGATCAG GTAACATTG TTGCACATT
1301 ATGACTTTTC TACTGTCCAC AAAGGCATAT GTCTTATCA TATGCGGACT
1351 CCTCGGTAC ACTGGATTCT TCTTCCCTC CTCGACATGG AAGAGATGGC
1401 ATCTTAGGGT CTCTTGTGTT CTTCTGCAG AGGCCTGTG GGCAGGAAAA
1451 GGCTGCAGCT GCCTTCTGG GAGAAGGAGG AGATGAGTGT ATCCTGAACA
1501 CCTATTATGT GCTAGGGCT ATTGTAGATA CATGACACTA TCATGCTCAT
1551 TTTCACGAAT GAGGAAACTG AGGCTCAGAA GACTAAATT ATTTGCCAA
1601 GAGTTATAAA TGACAGAGCC AGCATTAGAG TCCAGGACTG TCTGATTCA
1651 GACCTAAGCT GTTCCCTCTG CACATCGTGT CCCACCAAGTA AGGAAGATCT

FIG. 16-1

1701 GGGTCTCAGA GCTGAGCCAA GACCTCCCGG GTCCCTTGCG GTTTTTGTG
1751 TCTTTCAGAG TGGCTGGTGC TCCAGACCCC TCACCTGGAG TTCCAGGAGG
1801 GAGAAACCAT CGTGCTGAGG TGCCACAGCT GGAAGGACAA GCCTCTGGTC
1851 AAGGTACAT TCTTCCAGAA TGAAAATCC AAGAAATTTC CCCGTTCGGA
1901 TCCCAACTTC TCCATCCCAC AAGCAAACCA CAGTCACAGT GGTGATTACC
1951 ACTGCACAGG AAACATAGGC TACACGCTGT ACTCATCCAA GCCTGTGACC
2001 ATCACTGTCC AAAGCTCCAG CTCTTCACCG ATGGGGATCA TTGTGGCTGT
2051 GGTCACTGGG ATTGCTGTAG CGGCCATTGT TGCTGCTGTA GTGGCCTTGA
2101 TCTACTGCAG GAAAAAGCGG ATTTCAGGTT TGTAGCTCCT CCCGGTCCCT
2151 TTTGTTATCA GTTTCCACTT T

FIG. 16-2

1 GCCTCGCTCG GGCGCCCAAGT GGTCTGCCG CCTGGTCTCA CCTCGCCATG
51 GTTCGTCTGC CTCTGCAGTG CGTCCTCTGG GGCTGCTTGC TGACCGCTGT
101 CCATCCAGAA CCACCCACTG CATGCAGAGA AAAACAGTAC CTAATAACA
151 GTCACTGCTG TTCTTTGTGC CAGCCAGGAC AGAAAATGGT GAGTGACTGC
201 ACAGAGTTCA CTGAAACGGA ATGCCTTCCT TGCGGTGAAA GCGAATTCTT
251 AGACACCTGG AACAGAGAGA CACACTGCCA CCAGCACAAA TACTGCCACC
301 CCAACCTAGG GCTTCGGGTC CAGCAGAAGG GCACCTCAGA AACAGACACC
351 ATCTGCACCT GTGAAGAAGG CTGGCACTGT ACGAGTGAGG CCTGTGAGAG
401 CTGTGTCTG CACCGCTCAT GCTGCCCGG CTTTGGGTC AAGCAGATTG
451 CTACAGGGGT TTCTGATACC ATCTGCGAGC CCTGCCCAAGT CGGCTTCTTC
501 TCCAATGTGT CATCTGCTTT CGAAAAATGT CACCCCTGGA CAAGCTGTGA
551 GACCAAAGAC CTGGTTGTGC AACAGGCAGGC ACAAAACAAGA CTGATGTTGT
601 CTGTGGTCCC CAGGATCGGC TGAGAGCCCT GGTGGTGATC CCCATCATCT
651 TCGGGATCCT GTTGGCCATC CTCTTGGTGC TGGTCTTAT CAAAAAGGTG
701 GCCAAGAACG CAACCAATAA GGCCCCCAC CCCAAGCAGG AACCCCAGGA
751 GATCAATTTT CCCGACGATC TTCCTGGCTC CAACACTGCT GCTCCAGTGC
801 AGGAGACTTT ACATGGATGC CAACCGGTCA CCCAGGAGGA TGGCAAAGAG
851 AGTCGCATCT CAGTGCAGGA GAGACAGTGA GGCTGCACCC ACCCAGGAGT
901 GTGGCCACGT GGGCAAACAG GCAGTTGGCC AGAGAGCCTG GTGCTGCTGC
951 TGCAGGGGTG CAGGCAGAAG CGGGGAGCTA TGCCCAGTCA GTGCCAGCCC
CTC

FIG. 17