

Asynchronous Perception Machine For Efficient Test Time Training

Rajat Modi, Yogesh Singh Rawat

CRCV, University Of Central Florida

Hinton's Islands of Agreement

A Static Image is A Rather Boring Video- Forward Forward, Some Preliminary Investigations.

- Take a static image.
- Repeat it along time. It becomes a boring video.
- Give it to a video transformer (Mvitv2). Tsne on (H,W,D) -> (H,W,3)
- Backproject on RGB hypercube.
- Islands emerge using ONLY a classification objective.

Contributions

- mechanism: Folding-Unfolding.
- First implementation of GLOM.
- Asynchronous Perception Machine/s
- A new deep learning architecture that might help us move **BEYOND**:
- Data Augmentation

Parallel Perception

- Routing
- Pretext Tasks

Encoder-Decoder

Softmax

Boxes

Reformulating Feature Grids

- Layer Skipping: Take shortcut from first layer to last layer feature grid of a model.
- Location- Aware Queries: Querying a model with location-aware queries instead of predicting full grid. Memory Efficient.
- Independence of columns: Each location-query is independent of another. Allows parallelizing a single image across multiple GPUs.

Architecture For TTT

Take an input Image I.

 RGB_i

- Distill the representation from teacher's vision encoder ONCE.
- Overfit MLP for several iterations.
- Classify test sample via zero-shot textual encoder.
- Reset weights and move to next sample.

Single-Sample Overfitting

 Overfitting on a single distilled token representation leads to islands of agreement.

RGB Decoding

- APM can reconstruct RGB for any image in-the-wild.
- TTT on a single test-sample with random weights leads to semantically-aware features.
- Scales up to COCO, and yields similar features as Dinov2 in a single forward pass.

Perceptual Interpolation

• Towards validating GLOM's insight: input percept is a field.

Quantitative Results

Method	P	ImageNet Top1 acc. ↑	ImageNet-A Top1 acc. ↑	ImageNet-V2 Top1 acc. ↑	ImageNet-R Top1 acc. ↑	ImageNet-Sketch Top1 acc. ↑	Average	OOD Average
CLIP-ViT-B/16	×	66.7	47.8	60.8	73.9	46.0	59.1	57.2
Ensemble	X	68.3	49.8	61.8	77.6	48.2	61.2	59.4
TPT	X	68.9	54.7	63.4	77.0	47.9	62.4	60.8
APM (Ours)	X	68.1	52.1	67.2	76.5	49.3	62.6	61.2
CoOp	/	71.5	49.7	64.2	75.2	47.9	61.7	59.2
CoCoOp	1	71.0	50.6	64.0	76.1	48.7	62.1	59.9
TPT + CoOp	1	73.6	57.9	66.8	77.2	49.2	64.9	62.8
TPT + CoCoOp	1	71.0	58.4	64.8	78.6	48.4	64.3	62.6
CLIP VIT-L/14	X	76.2	69.6	72.1	85.9	58.8	72.5	71.6
APM (Ours)	X	77.3	71.8	72.8	87.1	62.2	74.2	73.4
OpenCLIP-VIT-H/14	X	81.6	79.1	80.7	92.9	72.8	81.4	81.3
APM (Ours)	X	84.6	84.2	83.9	94.9	77.1	84.9	85.0

	_		-														
	P	brigh	cont	defoc	elast	fog	frost	gauss	glass	impul	jpeg	motn	pixel	shot	snow	zoom	Average
Joint Train	1	62.3	4.5	26.7	39.9	25.7	30.0	5.8	16.3	5.8	45.3	30.9	45.9	7.1	25.1	31.8	24.8
Fine-Tune	1	67.5	7.8	33.9	32.4	36.4	38.2	22.0	15.7	23.9	51.2	37.4	51.9	23.7	37.6	37.1	33.7
ViT Probe	1	68.3	6.4	24.2	31.6	38.6	38.4	17.4	18.4	18.2	51.2	32.2	49.7	18.2	35.9	32.2	29.2
TTT-MAE	1	69.1	9.8	34.4	50.7	44.7	50.7	30.5	36.9	32.4	63.0	41.9	63.0	33.0	42.8	45.9	44.4
OpenCLIP VIT-L/14	X	71.9	47.0	50.3	32.7	58.3	46.9	26.0	26.5	28.1	62.7	37.7	58.3	28.2	50.4	37.9	42.1
APM (Ours)	X	77.4	51.9	56.6	37.9	64.8	53.2	28.7	31.4	33.0	68.4	44.1	64.5	33.1	56.9	43.9	50.3

Method	P	Flower102	DTD	Pets	UCF101	Caltech101	Food101	SUN397	Aircraft	EuroSAT	Average
СоОр	/	68.7	41.9	89.1	66.5	93.7	85.3	64.2	18.5	46.4	63.9
CoCoOp	1	70.9	45.5	90.5	68.4	93.8	84.0	66.9	22.3	39.2	64.6
CLIP-ViT-B/16	X	67.4	44.3	88.3	65.1	93.4	83.7	62.6	23.7	42.0	63.6
Ensemble	X	67.0	45.0	86.9	65.2	93.6	82.9	65.6	23.2	50.4	64.6
TPT	X	69.0	47.8	87.8	68.0	94.2	84.7	65.5	24.8	42.4	65.1
APM (Ours)	X	62.0	48.9	81.6	72.6	89.6	84.2	65.7	29.7	55.7	65.5

Computational Analysis

2		(CLIP '	VIT-B	/16(to	tal)
1.5	\					
1	-\					
0.5				AF	PM	
0	7	14	28	56	112	224

	t	$Params(M) \downarrow$	$M_{meas}(GB)\downarrow$	$M_i(GB)\downarrow$	$GFlops_{meas}\downarrow$	$GFlops_i\downarrow$
Swin[57]	1-20	87	1.5	1.4	353	308
ΓPT[90]	1-20	151.3	3.1	2.7	529	476
CLIP VIT-B/16	1-20	149.2	2.3	1.8	462	410
CLIP VIT-B/16(u)[90]	1	149.2	1.8	1.8	20.5	20.5
APM(s)	1	174.2(s+u)	2.7 (s+u)	1.8(u) + 0.6(s)	20.5(u)	20.5(u)
APM(s)	2	174.2(s+u)	2.7 (s+u)	1.8(u) + 0.6(s)	10(s)	10(s)
Peak Use	1-20	174.2(s+u)	2.7 (s+u)	1.8(u) + 0.6(s)	241.7 (s+u)	210.5 (s+u)