Книжка за упражнителни задачки на Деспина

Съдържание

1	Теория	1
	1.1 Триъгълник	1
	1.2 Трапец	3
	1.3 Успоредник	4
	1.4 Вероятности - Комбинации, Вариации и Пермутации	4
	1.5 Полиномиални и дробни неравенства - теория	5
2	Неравенства - задачи	5
3	Квадратни уравнения и системи	6
4	Еднаквост и подобност на триъгълници	7
5	Тригонометрия	8
6	Задачи с текс	8
	6.1 Разни	8
	6.2 Линейни уравнения и неравенства	9
	6.3 Басейни	9
7	Системи	10
8	Ирационални уравнения	11
9	Опростяване на изрази	11

1 Теория

1.1 Триъгълник

Дефиниция 1
$$sin(\alpha)=\frac{a}{c},\,cos(\alpha)=\frac{b}{c},\,tg(\alpha)=\frac{a}{b},\,cotg(\alpha)=\frac{b}{a}$$

Да зебележим, че $sin(\beta)=cos(\alpha)=\frac{b}{c}$ и аналогично $cos(\beta)=sin(\alpha)=\frac{a}{c}$. $a^2+b^2=c^2\to (\frac{a}{c})^2+(\frac{b}{c})^2=1\to sin^2(\alpha)+cos^2(\alpha)=1$. Тригонометрични тъждества $(\alpha,\beta\in[0,90])$: $sin^2(\alpha) + cos^2(\alpha) = 1$

$$sin(\alpha) = cos(\beta) = cos$$

$$sin(\alpha) = cos(\beta) = cos(90 - \alpha)$$

$$tg(\alpha)cotg(\alpha) = 1$$

$$tg(\alpha) = \frac{a}{b} = \frac{a}{c} \cdot \frac{c}{b} = \frac{sin(\alpha)}{cos(\alpha)}, cotg(\alpha) = \frac{1}{tg(\alpha)} = \frac{cos(\alpha)}{sin(\alpha)}$$

1.2 Трапец

Лице на трапец: $S = \frac{a+b}{2}h$

1.3 Успоредник

Страните са две по две успоредни $AB||CD,\,BC||AD.$ Лице на успоредник: $S=AB\cdot DH$ (тук се разбира дължините на страните)

Коментари: $\triangle ABD \equiv \triangle BCD$, $\triangle ABC \equiv \triangle CDA$

 $\angle BAD = \angle BCD$ и $\angle ADC = \angle ABC$. $\angle ABC + \angle BAD = 180$.

Задачи - дадени са две страни на успоредник и ъгъл.

1.4 Вероятности - Комбинации, Вариации и Пермутации.

Дефиниция 2 Пермутации - начини, по които може да наредим п обекта в една линия.

Пример. Пермутация от 3 елемента са начините, по които може да наредим 3 "неща"на една линия едно до друго. Нека за определеност да са молив, химикал и флумастер. Начините, по които може да ги наредим са: ФХМ, ФМХ, МХФ, МФХ, ХМФ, ХФМ или общо 6 начина. Нека да добавим 4ти елемент ролер. За първото нареждане ФХМ, ролерът може да е на 4

позиции: РФХМ, ФРХМ, ФХРМ, ФХМР. Тогава 4те елемента може да ги наредим по 6.4=24 начина. n обекта могат да се наредят по n(n-1)...1 начина. Примерите по горе Ф, X и М могат да се наредят по 3.2.1=6 начина и Ф,X, M, P могат да се наредят по 4.3.2.1=24 начина. Дефинираме n-факториел с n!=n(n-1)...1.

Дефиниция 3 Вариация - избор на елементи к $\overline{\imath}$ дето реда има значение - Налучкване на телефонен номер. V_{10}^4 .

Дефиниция 4 Комбинации - избор на елементи където реда няма значение - начини за вземане на различни цветове топки от урна(напр. сини, червени, зелени, жълти и т.н.).

Задача 1 По колко начина може да изберем 6 молива(различни) 10 молива(различни)?(Реда няма значение).

Решение:

Първи молив избираме по 10 начина, втория - по 9, и т.н. Общо 10.9.8.7.6.5 начина.

Задача 2 Дадени са 10 молива с различни цветове. За оцветяване на картинка са необходими 6 точно определени цвята. Каква е вероятността случайно избрани 6 молива да могат да оцветят картинката?

Решение:

Вероятността първия молив да е от 6те е $\frac{6}{10}$. Вероятността втория молив да е подходящ за оцветяване е $\frac{5}{0}$ и т.н. Вероятността от 6 тегления да изтеглим моливите за оцветяване е $\frac{6.5.4.3.2.1}{10.9.8.7.6,5}=\frac{3}{10.9.7}=\frac{1}{10.3.7}=\frac{1}{210}$. За упражение: 2 молива от 3.

Задача 3 Да се намерят всичките възможни комбинации RGB цветове с интервал [0,255].

1.5 Полиномиални и дробни неравенства - теория

 $a_0x^n + a_1x^{n-1} + \dots + a_n < 0.$ $a_0(x-x_1)\dots(x-x_n) < 0$ Нека, за определеност, имаме $x_1 < x_2 < \dots < x_n.$ По подобен начин ако имаме дроби. (Да се редактира)

2 Неравенства - задачи

При умножаване на двете страни на неравенство с -1, сменяме знака на неравенството. Пример: $3 < 5 \rightarrow -3 > -5$

Квадратни или полиномиални неравенства: ДА СЕ ДОПИШАТ ПРИМЕРИ.

Квадратни уравнения и системи

- 1. системи уравнения
- 2. квадратни уравнения
- 3. неравенства (???)
- 4. други уравнения

Фромули, които се изпозлват за квадратни уравния:

Ако е дадено уравнение $ax^2 + bx + c = 0$, имаме дискриминанта $D = b^2 - 4ac$, лко с дадено уравнение $ax^* + ox + c = 0$, имаме дискриминанта $D = b^2 - 4ac$, тогава решенията се задават с $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$. Да разгледаме еднин пример. Упражение(?): $(x - \frac{-b + \sqrt{D}}{2a})(x - \frac{-b - \sqrt{D}}{2a}) = ax^2 + bx + c$ Припомняме формулите за съкратено умножение: $(a+b)^2 = a^2 + 2ab + b^2$ $(a-b)^2 = a^2 - 2ab + b^2$ $(a+b)(a-b) = a^2 - b^2$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

Упражнителни задачи, които Деспина е решавала сама:

$$x^2 - 5x + 6 = 0$$

Още примери за решаване:

1.
$$x^2 - 6x + 8 = 0$$

2.
$$x^2 - 5x + 6 = 0$$

3.
$$x^2 - 5x + 6 = 0$$

4.
$$x^2 - 5x + 6 = 0$$

5.
$$x^2 - 5x + 6 = 0$$

6.
$$x^2 - 5x + 6 = 0$$

4 Еднаквост и подобност на триъгълници

Един триъгълник се определя от "три неща три страни, две страни и ъгъл между тях, страна и два ъгъла.

Признаци за еднаквост:

- 1. две страни и ъгъл между тях = две страни и ъгъл между тях => еднакви
- 2. страна и два ъгъла = страна и два ъгъла => еднакви
- 3. три страни = три страни => еднакви

Подобните триъгълници си приличат по това, че имат една и съща форма, но единият е 10 пъти или 5 пъти(или колкото и да е пъти) "по-голям"от другия

Признаци за подобност:(Трябва да се потвърди от учебник)

- 1. две страни са 5 пъти по-малки и ъгълът между тях е равен.
- 2. една страна е 5 пъти по-малка и 2 ъгъла са равни.
- 3. трите ъгъла са равни

Коефицент на подобие k ще наричаме отношението на страните между два подобни триъгълника. Съответните височини, ългополовящи и медиани са в отнишение колкото е коефициента на подобие k. За лицата отношението е коефициента на квадрат k^2 .

Задача 4 Лицата на два подобни тригълници са 25 см 2 и 49 см 2 . Намерете коефицента на подобие.

Решение:

От услвието имаме, че
$$k^2=\frac{25}{49},$$
 тогава $k=\sqrt{\frac{25}{49}}=\frac{\sqrt{25}}{\sqrt{49}}=\frac{5}{7}$

Задача 5 Лицата на два подобни тригълници са 24 см 2 и 6 см 2 . Периметъра на първия триъгълник е 24 см. Намерете периметъра на втория.

Решение :

$$k^2 = \frac{24}{6} = 4 \rightarrow k = 2$$
. $P_1 = 24$. $P_2 = \frac{1}{2}24 = 12$ cm.

Задача 6 Страните на два равностранни триъгълника са 4 и 8см. Намерете отношението на лицата.

Задача 7 Две съответни страни в два подобни тръгълника са 8 и 12см, а сборът на лицата им е 52 см². Намерете лицата на

5 Тригонометрия

 $\mbox{\bf Задача 8}$ Да се намерят останалите тригонометрични функции, ако $\cos(\alpha)=0.3$

Решение:

$$\begin{array}{l} sin^2(\alpha) + cos^2(\alpha) = 1 \rightarrow sin^2(\alpha) = 1 - 0,09 \rightarrow sin(\alpha) = \sqrt{0,91} \\ tg(\alpha) = \frac{\sqrt{0,91}}{0,3} = \frac{10\sqrt{0,91}}{3} \\ cotg(\alpha) = \frac{0,3}{\sqrt{0.91}} = \frac{3}{10} \cdot \frac{\sqrt{0,91}}{0,91} = \frac{30\sqrt{0,91}}{91} \end{array}$$

Задача 9 Да се намерят останалите тригонометрични функции, ако $cos(\gamma) = \frac{\sqrt{2}}{2}, \ cos(\alpha) = \frac{1}{2}.$

Решение:

$$cos(\alpha) = \frac{1}{2} \to sin^{2}(\alpha) = 1 - \frac{1}{4} = \frac{3}{4} \to \sqrt{sin^{2}(\alpha)} = \sqrt{\frac{3}{4}}$$

$$sin(\alpha) = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$$

$$tg(\alpha) = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}$$

$$cotg(\alpha) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{9}} = \frac{\sqrt{3}}{3}$$

6 Задачи с текс

6.1 Разни

Задача 10 Да се намери стойността на израза:

1.
$$\sqrt{(2\sqrt{6}-5)^2}-(-\sqrt{6})^3$$

Решение:

$$\begin{array}{l} (-\sqrt{6})^3=(-\sqrt{6}).(-\sqrt{6}).(-\sqrt{6})=-6\sqrt{6}.\\ \sqrt{(2\sqrt{6}-5)^2}=|2\sqrt{6}-5|=5-2\sqrt{6}\\ \text{Отг. } 5-2\sqrt{6}-6\sqrt{6}=5-4\sqrt{6}.\\ \text{Коментар: } \sqrt{(3-4)^2}\neq 3-4=-1,\ \sqrt{(3-4)^2}=|3-4|=1\\ \text{Коментар2: Да сравним числата } 2\sqrt{6}\text{ и }5.\\ a,b>0\text{ ,то }a>b\iff a^2>b^2.\ (2\sqrt{6})^2=24,\ 5^2=25.\ \text{Тогава } 2\sqrt{6}<5. \end{array}$$

6.2Линейни уравнения и неравенства

Задача 11 Сборът на две последователни естествени числа е със 131 помалък от произведението им. Намерете числата.

Решение:

Ако първото (по-малкото от двете числа е x), второто число е x+1. Тогава от условието на задачата имаме x + x + 1 = x(x + 1) - 131

$$2x + 1 = x^2 + x - 131.$$

$$x^2 + x - 131 - 2x - 1 = 0.$$

$$x^2+x-131-2x-1=0.$$
 $x^2-x-132=0.$ $D=(-1)^2-4.(-132)=1+4.132=528+1=529.$ $x_1=\frac{1+23}{2}=12$. $x_2=\frac{1-23}{2}=-11.$ -11 не е естествено. Отг. 12 и 13.

Задача 12 В един магазин продали 488 кг портокали, лимони и маслини. Портокалите били с 40 кг повече от лимоните, а маслините - 5 пъти по-малко от портокалите. По колко килограма са продали от всеки вид?

Задача 13 През един сезон в консервната фабрика "Добруджанка" са обработили по 48 т домати на ден. След като предали 1300 т пресметнали, че това е с 524тт по-малко от цялото количество домати. Колко дни въъв фабриката са обработвани домати?

Задача 14 Обиколката на един триъгълник е 126 см. Едната му страна е с 12 см по-къса от другата, а третатат е 3/ от сбора на првите две. Да се намери най-голямата страна на този триъгълник.

Задача 15 Попитали Николай на колко е години, а той отговорил: "Мама е на 38 години. Тя е с 2 години по-млада от татко. Татко пък има два пъти повче години, отколкото аз и сестра ми заедно. Но аз със с 4 години по-малък от сестра ми. "На коолко години са Николай и сестра му?

Задача 16 Един работник може да свърши определена работа за 15 дни, а друг работник за същото време свършва само 75 % от тази работа. Отначало ддвамата работници работели заедно 6 дни, а след това вторият само довършил останалата част. За колко дни била свършена цялата работа и какъв процент от нея е изработил всеки един работник?

6.3Басейни

Задача 17 Един басейн се пълни от една тръба за 2 ч, от друга за 3ч, от трета за 4ч. За колко време се пълни от трите едновременно?

Задача 18 Един басейн се пълни от една тръба за 2 ч, от друга за 3ч. За колко време се пълни от двете едновременно? Каква част пълни всяка от $mp \sigma bume?$

Решение:

Разсъждения. За 1 час пълним $\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$. Тогава ако времето за

пълнене е x(в часове), то $\frac{x}{2}+\frac{x}{3}=1$. Тогава 3x+2x=6 и $x=\frac{6}{5}$ часа или 1ч и 12мин. Първата тръба е напълнила $\frac{1}{2}\cdot\frac{6}{5}=\frac{3}{5}=60\%$. Тогава втората е напълнила $\frac{2}{5} = 40\%$ от басейна.

(Коментар: Първия басейн пълни за минута $\frac{1}{120}$, а втория $\frac{1}{180}$. За 12 минути пълним $\frac{12}{120}+\frac{12}{180}=\frac{12.3+12.2}{360}=\frac{60}{360}\cdot\frac{1}{6}.$)

Задача 19 Един басейн се пълни от една тръба за 10ч, а от друга за 12ч. Първата тръба е пълнила 1 час, след което е спряла за 30 минути ремонт, след това е продължила да пълни. Втората тръба работи безотказно. За колко време двете тръби заедно напълват басейна.

Решение:

Нека с х означим времето за пълнене. За 1ч имаме напълнено $\frac{1}{10}+\frac{1}{12}=\frac{12}{120}+\frac{10}{120}=\frac{22}{120}$. За следващия половин час пълни само втората тръба, т.е. за времето между 1ч и 1ч и 30 минути пълним $\frac{1}{12}\frac{1}{2}=\frac{1}{24}$. Остава ни да напълним $1-\frac{22}{120}-\frac{1}{24}$. Ако означим оставащото време с y, то за y имаме $\frac{y}{10}+\frac{y}{12}=1-\frac{22}{120}-\frac{1}{24}$. Сумарното време за пълнене е $y+1+\frac{1}{2}$. Остава да намерим y.

Задача 20 Един басейн се пълни от една тръба за 10ч, а от друга за 12ч. Първата тръба е пълнила 1 час, след което е спряла за 1 ремонт, след това е продължила да пълни. Втората тръба работи след 1вия час. За колко време се напълва басейна?

Системи

Задача 21

$$\begin{cases} x - y = 7 \\ x^2 - xy - y^2 = 19 \end{cases} \qquad x = y + 7$$

Решение:

$$\begin{array}{l} x=y+7\\ (y+7)^2-(y+7)y-y^2=19\\ y^2+14y+49-y^2-7y-y^2=19\\ -y^2+7y+30=0\\ y^2-7y-30=0\rightarrow a=1,b=-7,c=-30\\ D=49+120=169,y_1=10\ ,y_2=-3\\ x_1=10+7=17,x_2=-3+7=4\\ \text{Отг. Решенията на системата са: } (17,10),(4,-3) \end{array}$$

Задача 22

$$\begin{cases} 2x - y - 1 = 0 \\ xy - 1 = 0 \end{cases}$$

Решение:

$$\begin{array}{l} y=2x-1 \\ x(2x-1)-1=0 \\ 2x^2-x-1=0 \to a=2, b=-1, c=-1 \\ D=1-4.2.(-1)=9 \ x_1=\frac{-(-1)+\sqrt{9}}{2.2}=\frac{4}{4}=1, \ x_2=\frac{-(-1)-\sqrt{9}}{2.2}=-\frac{2}{4}=-\frac{1}{2} \\ y_1=2x_1-1=2-1=1, \ y_2=2x_2-1=2(-\frac{1}{2})-1=-2 \\ \text{Oti.} \ (1,1), (-\frac{1}{2},-2) \end{array}$$

Задача 23

$$\begin{cases} x + y = -2 \\ x^2 + y^2 = 2 \end{cases}$$

Задача 24

$$\begin{cases} x - 3y + 1 = 0 \\ x^2 - 4xy + 3y^2 + x - y = 0 \end{cases}$$

8 Ирационални уравнения

Задача 25 *Решете уравнението:* $\sqrt{x-5} - \sqrt{20-x} = -1$

Решение :

$$(\sqrt{x-5}-\sqrt{20-x})(\sqrt{x-5}+\sqrt{20-x})=x+5+20-x=25 o$$
 няма решение.

Задача 26 *Решете уравнението:* $\sqrt{x-2} - \sqrt{2x-1} = 0$

Решение:

$$(\sqrt{x-2}-\sqrt{2x-1})(\sqrt{x-2}+\sqrt{2x-1})=x-2+2x-1=3x-3$$
 $3x=3 \to x=1.$ Проверка: $\sqrt{1-2}-\sqrt{2-1}=\sqrt{-1}-\sqrt{1} \neq 0 \to$ няма решение. За другия път $x-2 \geq 0$ и $2x-1 \geq 0$

9 Опростяване на изрази

Задача 27 Да се опрости изразът:

1.
$$\sqrt{0.36*49*25} = \sqrt{0.6^2*7^2*5^2} = \sqrt{0.6^2}*\sqrt{7^2}*\sqrt{5^2} = 0.6*7*5 = 35*0.6 = 21$$

2.
$$\frac{\sqrt{22.5}}{\sqrt{0.4}} = \frac{\sqrt{225}\sqrt{0.1}}{\sqrt{4}\sqrt{0.1}} = \frac{15}{2}$$

3.
$$\sqrt{60} - (\sqrt{3} + \sqrt{5})^2 = \sqrt{60} - ((\sqrt{3})^2 + 2\sqrt{3}\sqrt{5} + (\sqrt{5})^2) = \sqrt{60} - (3 + 2\sqrt{15} + 5) = \sqrt{60} - 3 - 2\sqrt{15} - 5 = \sqrt{60} - 8 - 2\sqrt{15}$$
.
 Разлагане на 60 на прости множители: $60 = 2 * 2 * 3 * 5$. Тогава $\sqrt{60} = \sqrt{2 * 2 * 3 * 5} = \sqrt{2^2 * 3 * 5} = 2\sqrt{15}$. Отг. -8

Да се направят зад 5,6,7,8,10 от картинката

$$x^2+1=0 \rightarrow x^2=-1 \rightarrow x=\pm \sqrt{-1}$$
 НЕ е реален израз $x*x=x^2 \geq 0$

 $\sqrt{x-2}$ трябва $x-2\geq 0$ или $x\geq 2$ Това го наричаме ДЕФИНИ-ЦИОННО МНОЖЕСТВО или ДЕФИНИЦИОННА ОБЛАСТ

Пример $\sqrt{x-2} < 2$ Трябва да осигурим две неща:

$$\begin{cases} x - 2 \ge 0 \\ (\sqrt{x - 2})^2 < 2^2 \end{cases}$$

$$\begin{cases} x \ge 2 \\ x - 2 < 4 \end{cases}$$

$$\begin{cases} x \ge 2 \\ x < 6 \end{cases}$$

OTF.
$$x \in [6, +\infty)$$

OTF. $x \in [2, 6]$
OTF. $x \in [2, 6)$

$$\sqrt{x-2}(x^2 - 8x + 15) < 0$$
$$(x-3)^2 + -8(x-3) + 15 = 0$$
$$x-3 = y$$
$$y^2 - 8y + 15 = 0$$