1 - Lineare Gleichungssysteme und Matrizen

Addition und Subtraktion

Dimensionen beider Matrizen identisch sind.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}$$

$$5 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 & 5 \cdot 2 \\ 5 \cdot 3 & 5 \cdot 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}$$

Skalare Multiplikation

Multiplikation eines Skalars mit einer Matrix.

$$5 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 & 5 \cdot 2 \\ 5 \cdot 3 & 5 \cdot 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix}$$

Transponierte einer Matrix

$$\begin{pmatrix} #1 \rightarrow \\ #2 \rightarrow \\ #3 \rightarrow \end{pmatrix}^T = \begin{pmatrix} #1 & #2 & #3 \\ \downarrow & \downarrow & \downarrow \end{pmatrix}$$

$$\begin{pmatrix} 1 & 11 \\ 2 & 12 \\ 3 & 13 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 & 3 \\ 11 & 12 & 13 \end{pmatrix}$$

Multiplikation

- Bedingungen für $A \cdot B$ $A_{clm-count} = B_{row-count}$
- Resultat von $A \cdot B$ $A_{clm-count} \times B_{row-count}$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \\ 0.5 & 0.6 \end{pmatrix} = \begin{pmatrix} 2.2 & 2.8 \\ 4.9 & 6.4 \end{pmatrix}$$

Zeilenstufenform (Gauss)

- Nullzeilen stehen zuunterst
- 2. Die erste Zahl $\neq 0$ ist eine führende Eins
- 3. Führende Einsen, die weiter unten stehen → nach rechts versetzt

Reduzierte Zeilenstufenform (Gauss-Jordan)

Spalten mit *führender Eins* enthalten sonst nur Nullen

Rang einer Matrix

Rang rg(A) einer Matrix A (Zeilenstufenform) mit n = Anzahl Spalten.

$$rg(A) = Anzahl Zeilen - Anzahl Nullzeilen$$

- $rg(A) = rg(A|\vec{c})$ Lösbar
- Genau eine Lösung rg(A) = n
- rg(A) < nUnendlich viele Lösungen

Bestimmung der Lösungen aus der reduzierten Zeilenstufenform

- Führende Unbekannte Spalte mit führender Eins
- Freie Unbekannte Spalte ohne führende Eins

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ \begin{pmatrix} 1 & -2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix}$$

Auflösen nach der führenden Unbekannten

0.2

- $1x_1 2x_2 + 0x_3 + 3x_4 = 5$ $x_2 = \lambda$ $x_1 = 5 + 2 \cdot \lambda 3 \cdot \mu$ $0x_1 + 0x_2 + 1x_3 + 1x_4 = 3$ $x_4 = \mu$ $x_3 = 3 \mu$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 + 2 \cdot \lambda - 3 \cdot \mu \\ \lambda \\ 3 - \mu \\ \mu \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

2 - Vektorgeometrie

Ein Vektor ist ein Objekt, das ein Betrag und eine Richtung hat.

• $\vec{0} = Nullvektor$

Vektor mit dem Betrag 0

 $\vec{e} = Einheitsvektor$

Vektor mit Betrag 1

 $-\vec{a} = Gegenvektor von \vec{a}$

Orthogonale Projektion von \vec{b} auf \vec{a} $\left(0 \le \varphi \le \frac{\pi}{2}\right)$

$$\vec{a} \cdot \vec{b} = 0 \rightarrow orthogonal$$

Orthogonale Projektion $\overrightarrow{b_a}$ eines Vektors \overrightarrow{b} auf einen Vektor \overrightarrow{a}

$$\overrightarrow{b_a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2} \cdot \overrightarrow{a}, \qquad |\overrightarrow{b_a}| = \frac{|\overrightarrow{a} \cdot \overrightarrow{b}|}{|\overrightarrow{a}|}$$

Einheitsvektor

Gegeben ist ein Vektor mit Betrag $a = |\vec{a}|$.

$$\vec{a} \cdot \frac{1}{|\vec{a}|} = \overrightarrow{e_a}$$

Räumliches Koordinatensystem

 $\mathbb{R}^3 = R$ äumliches Koordinatensystem

- 0 = Ursprung
- $\overrightarrow{e_1}$ = Einheitsvektor
- $\overrightarrow{e_2}$ = Einheitsvektor um 90° gedreht
- $\overrightarrow{e_3}$ = Einheitsvektor
 - o Orthogonal zu $\overrightarrow{e_1}$ und $\overrightarrow{e_2}$
 - \circ Rechtwinklig zu $\overrightarrow{e_1}$ und $\overrightarrow{e_2}$

Addition

Skalare Multiplikation

$$\lambda \cdot \vec{a} = \begin{pmatrix} \lambda \cdot a_x \\ \lambda \cdot a_y \end{pmatrix}$$

Gegenvektor

$$-\vec{a} = \begin{pmatrix} -a_x \\ -a_y \end{pmatrix}$$

Betrag eines Vektors

$$\vec{a} + \vec{b} = \begin{pmatrix} a_x + b_x \\ a_y + b_y \end{pmatrix} \qquad \lambda \cdot \vec{a} = \begin{pmatrix} \lambda \cdot a_x \\ \lambda \cdot a_y \end{pmatrix} \qquad -\vec{a} = \begin{pmatrix} -a_x \\ -a_y \end{pmatrix} \qquad |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Skalarprodukt

$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$

Winkelberechnung

$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z \qquad \cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

Vektorprodukt

- $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\varphi)$
- $\vec{a} \times \vec{b}$ ist orthogonal zu \vec{a} und zu \vec{b}
- $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$

$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y \cdot b_z - a_z \cdot b_y \\ a_z \cdot b_x - a_x \cdot b_z \\ a_z \cdot b_z - a_z \cdot b_z \end{pmatrix}$

Fläche des aufgespannten Parallelogramms

- $h = |\vec{b}| \cdot \sin(\varphi)$
- $A = |\vec{a}| \cdot h = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\varphi) = |\vec{a} \times \vec{b}|$

Kollinear (Parallel)

Sind zwei Vektoren kollinear, so ist ein Vektor an Vielfaches des anderen.

Komplanar (Auf gleicher Ebene)

Drei Vektoren sind komplanar, wenn sie auf der gleichen Ebene sind.

Gerade in der Ebene und im Raum

- $\vec{r}(A) = \vec{r}(P) + \lambda \cdot \overrightarrow{PQ}$
- $g: \vec{r}(P) + \lambda \cdot \vec{a}$

Der Punkte P heisst Aufpunkt, der Richtungs-Vektor $\vec{a} = \overrightarrow{PQ}$ von g.

Eine **Ebene** kann durch drei Punkte festgelegt werden

- Die Vektoren \overrightarrow{PA} , \overrightarrow{PR} , \overrightarrow{PQ} gilt, sie sind komplanar
- $\overrightarrow{PA} = \lambda \cdot \overrightarrow{PR} + \mu \cdot \overrightarrow{PQ}$

Abstand Punkt-Gerade

1.
$$\overrightarrow{BA} = \overrightarrow{r}(A) - \overrightarrow{r}(B)$$

2.
$$0 = \overrightarrow{BA} \cdot \overrightarrow{a}$$

3. Lenght =
$$|\overrightarrow{BA}|$$

$$l = \frac{|\overrightarrow{PA} \times \overrightarrow{a}|}{|\overrightarrow{a}|}$$

Abstand Punkt-Ebene

$$A=(x_A;y_A;z_A)$$

$$E: ax + by + cz + d = 0$$

$$l = \frac{|ax_A + by_A + cz_A + d|}{|\vec{n}|}$$

Parameterdarstellung der Ebene

$$E: \vec{r}(P) + \lambda \cdot \vec{a} + \mu \cdot \vec{b}$$

$$E: \vec{n} = \vec{a} \times \vec{b}$$

$$E: 2x + 7y - 4z + 1 = 0$$

Punkte einsetzen (1; 0; z), (0; 1; z), (0; 0; z)

$$E: 2 \cdot 0 + 7 \cdot 0 - 4 \cdot z + 1 = 0 \rightarrow P = (0; 0; 1/4)$$

$$E: 2 \cdot 1 + 7 \cdot 0 - 4 \cdot z + 1 = 0 \rightarrow P = (1; 0; 3/4)$$

$$E: 2 \cdot 0 + 7 \cdot 1 - 4 \cdot z + 1 = 0 \rightarrow P = (0; 1; 2)$$

$$E: \begin{pmatrix} 0 \\ 0 \\ 1/4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ 2/4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ 7/4 \end{pmatrix}$$

Koordinatendarstellung der Ebene

$$E: ax + by + cz + d = 0$$

$$\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \qquad \vec{n} \perp \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0$$

$$E: \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2\\2\\-4 \end{pmatrix}$$

$$\vec{n} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix} = \begin{pmatrix} -12 - 2 \\ 2 + 4 \\ 2 - 6 \end{pmatrix} = \begin{pmatrix} -14 \\ 6 \\ -4 \end{pmatrix}$$

$$E: -14x + 6y - 4z + d = 0$$

Aufpunkt einsetzen: $-14 \cdot 2 + 6 \cdot 4 - 4 \cdot 1 + d = 0 \rightarrow d = 8$

Abstand Punkt-Gerade

$$g: \begin{pmatrix} 1\\13 \end{pmatrix} + \lambda \begin{pmatrix} 3\\5 \end{pmatrix}, \qquad A = (3; -1)$$

1.
$$\overrightarrow{BA} = \overrightarrow{r} \begin{pmatrix} 3 \\ -1 \end{pmatrix} - \overrightarrow{r} \begin{pmatrix} 1+3\lambda \\ 13+5\lambda \end{pmatrix}$$

2.
$$0 = \begin{pmatrix} 3 - 1 - 3\lambda \\ -1 - 13 - 5\lambda \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 5 \end{pmatrix} \rightarrow \lambda = x$$

3. Lenght =
$$\begin{vmatrix} 2 - 3 \cdot x \\ -14 - 5 \cdot x \end{vmatrix}$$

Lage von Geraden im Raum

- 1. Sind die Richtungsvektoren kollinear?
- 2. Gibt es einen gemeinsamen Punkt?

Kollinear / Paralle
Nicht kollinear

Gemeinsame Punkte

Ja	Nein
Identisch	Echt parallel
Schneidend	Windschief

3 – Quadratische Matrizen

Inverse einer Quadratischen Matrix A

$$A \cdot A^{-1} = A^{-1} \cdot A = E$$

$$A \cdot \vec{x} = \vec{b}$$

$$A^{-1} \cdot A \cdot \vec{x} = A^{-1} \cdot \vec{b}$$

Beispiel

$$\underbrace{\begin{pmatrix} 1/2 & 0 \\ 0 & 1/3 \end{pmatrix}}_{A^{-1}} \cdot \underbrace{\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{\vec{x}} = \underbrace{\begin{pmatrix} 1/2 & 0 \\ 0 & 1/3 \end{pmatrix}}_{A^{-1}} \cdot \underbrace{\begin{pmatrix} 4 \\ 5 \end{pmatrix}}_{\vec{b}}$$

Inverse einer 2x2

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Invertierbar falls $ad - bc \neq 0$!

Inverse einer Quadratischen Matrix A

$$A \cdot A^{-1} = E$$

$$\underbrace{\begin{pmatrix} 4 & -1 & 0 \\ 0 & 2 & 1 \\ 3 & -5 & -2 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}}_{A^{-1}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{E} \to \begin{pmatrix} 4 & -1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 3 & -5 & -2 & 0 & 0 & 1 \end{pmatrix}$$

Zeilenstufenform (linke Seite)

$$\begin{pmatrix} 1 & -1/4 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & -6 & 17 & 8 \end{pmatrix}$$

Reduzierte Zeilenstufenform (linke Seite)

$$\begin{pmatrix} 1 & 0 & 0 & 1 & -2 & -1 \\ 0 & 1 & 0 & 3 & -8 & -4 \\ 0 & 0 & 1 & -6 & 17 & 8 \end{pmatrix} \rightarrow A^{-1} = \begin{pmatrix} 1 & -2 & -1 \\ 3 & -8 & -4 \\ -6 & 17 & 8 \end{pmatrix}$$

Matrizen umformen

Bestimmen Sie die Matrix X

$$A \cdot X + B = 2X$$

- 1. $A \cdot X = 2 \cdot X B$
- $2. \quad A \cdot X 2 \cdot X = -B$
- 3. $(A 2E) \cdot X = -B$
- 4. $(A-2E) \cdot (A-2E)^{-1} \cdot X = (A-2E)^{-1} \cdot -B$
- 5. $X = (A 2E)^{-1} \cdot -B$

Linear unabhängig

Die Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, \dots, \overrightarrow{a_k}$ sind *linear unabhängig*, wenn gilt:

- $0 \cdot \overrightarrow{a_1} + 0 \cdot \overrightarrow{a_2} + \cdots + 0 \cdot \overrightarrow{a_k}$ ist die einzige Linearkombination, die $\overrightarrow{0}$ ergibt
- $\lambda_1 \cdot \overrightarrow{a_1} + \lambda_2 \cdot \overrightarrow{a_2} + \dots + \lambda_k \cdot \overrightarrow{a_k} \neq \overrightarrow{0} \ (\lambda > 0 \land \lambda \in \mathbb{R})$

Die folgenden Aussagen sind äquivalent:

- $det(A) \neq 0$
- Spalten von A sind linear unabhängig
- Zeilen von A sind linear unabhängig
- rg(A) = n
- *A* ist invertierbar
- Das LGS $A \cdot \vec{x} = \vec{c}$ hat eine eindeutige Lösung

Determinante

- $det(A) = det(A^T)$
- $det(AB) = det(A) \cdot det(B)$
- $\bullet \quad \det(A^{-1}) \quad = \frac{1}{\det(A)}$
- $\det(E)$ = $\det(A \cdot A^{-1}) = \det(A) \cdot \det(A^{-1}) = 1$
- $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

Determinante einer 2×2 – Matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$\det(A) = |A| = a \cdot d - b \cdot c$$

Determinante einer 3×3 — Matrix $A = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$

$$\det(A) = |A| = x_1 \cdot y_2 \cdot z_3 + y_1 \cdot z_2 \cdot x_3 + z_1 \cdot x_2 \cdot y_3 - z_1 \cdot y_2 \cdot x_3 - x_1 \cdot z_2 \cdot y_3 - y_1 \cdot x_2 \cdot z_3$$

Geometrische Interpretation der Determinante

Der Betrag einer Determinante entspricht ... beschrieben wird.

- dem *Flächeninhalt*, der durch eine 2x2-Matrix
- dem *Volumen*, das durch eine 3x3-Matrix

$$A = |\vec{a} \times \vec{b}| = \left| \det \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \right| \quad \vec{b}$$

Determinante $n \times n$ — Matrix

Um die Determinante einer $n \times n$ -Matrix zu berechnen, wählen wir i= Zeilen, j= Spalten

Entwicklung nach der i —ten Zeile

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij})$$

Tipp: Entwickeln nach Spalte / Zeile mit vielen Nullen!

Entwickeln nach Zeile / Spalte

$$\begin{pmatrix} 1^{+} & 5 & 9 & 13 \\ 2^{-} & 6 & 10 & 14 \\ 3^{+} & 7 & 11 & 15 \\ 4^{-} & 8 & 12 & 16 \end{pmatrix} = 1 \begin{pmatrix} 6 & 10 & 14 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} - 2 \begin{pmatrix} 5 & 9 & 13 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} + 3 \begin{pmatrix} 5 & 9 & 13 \\ 6 & 10 & 14 \\ 8 & 12 & 16 \end{pmatrix} - 4 \begin{pmatrix} 5 & 9 & 13 \\ 6 & 10 & 14 \\ 7 & 11 & 15 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 10 & 14 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} = +6 \cdot \begin{pmatrix} 11 & 15 \\ 12 & 16 \end{pmatrix} - 7 \cdot \begin{pmatrix} 10 & 14 \\ 12 & 16 \end{pmatrix} + 8 \cdot \begin{pmatrix} 10 & 14 \\ 11 & 15 \end{pmatrix} = 6 \cdot -4 - 7 \cdot -8 + 8 \cdot -4 = 0$$

$$\begin{pmatrix} 5 & 9 & 13 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} = +5 \cdot \begin{pmatrix} 11 & 15 \\ 12 & 16 \end{pmatrix} - 7 \cdot \begin{pmatrix} 9 & 13 \\ 12 & 16 \end{pmatrix} + 8 \cdot \begin{pmatrix} 9 & 13 \\ 11 & 15 \end{pmatrix} = \cdots$$

$$\begin{pmatrix} 5 & 9 & 13 \\ 6 & 10 & 14 \\ 7 & 11 & 15 \end{pmatrix} = +5 \cdot \begin{pmatrix} 10 & 14 \\ 11 & 15 \end{pmatrix} - 6 \cdot \begin{pmatrix} 9 & 13 \\ 11 & 15 \end{pmatrix} + 7 \cdot \begin{pmatrix} 9 & 13 \\ 10 & 14 \end{pmatrix} = \cdots$$

4 - Vektorräume

Reeller Vektorraum

Ein reeller Vektorraum ist eine Menge $V \neq \emptyset$ mit zwei Verknüpfungen:

- $+: V \times V \to V: (\vec{a}; \vec{b}) \mapsto \vec{a} + \vec{b}$ Addition
- $\cdot : \mathbb{R} \times V \to V : (\lambda; \vec{b}) \mapsto \lambda \cdot \vec{b}$ Skalare Multiplikation
- Der Nullpunkt muss zwingend enthalten sein!

Linearer Spann

Menge aller Linearkombinationen der Vektoren $\overrightarrow{b_1}, \overrightarrow{b_2}, \dots, \overrightarrow{b_n}$ in einem reellen Vektorraum V.

$$span(\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}) = \{\lambda_1 \cdot \overrightarrow{b_1} + \lambda_2 \cdot \overrightarrow{b_2} + \lambda_n \cdot \overrightarrow{b_n} \mid \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}\}$$

Schreibt man die Vektoren $\overrightarrow{b_k} \in \mathbb{R}^m$ nebeneinander so entsteht die $m \times n$ – Matrix B.

Folgende Aussagen sind dann äquivalent:

- 1. Die Vektoren $\overrightarrow{b_1}$, $\overrightarrow{b_2}$, ..., $\overrightarrow{b_n}$ sind *linear unabhängig*
- 2. Das LGS $B \cdot \vec{x} = \vec{0}$ hat nur eine Lösung nämlich $\vec{x} = \vec{0}$
- 3. Es gilt rg(B) = n

Eine Teilmenge U eine Vektorraums V heisst Unterraum von V, wenn U selbst auch ein Vektorraum ist.

U

Unterraumkriterien

- 1. Für beliebige Elemente $\vec{a}, \vec{b} \in U$ ist $\vec{a} + \vec{b} \in U$
- 2. Für jeden Skalar $\lambda \in \mathbb{R}$ und jeden Vektor $\vec{a} \in U$ ist $\lambda \cdot \vec{a} \in \mathbb{R}$

Erzeugendensystem

Eine Menge $\{\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}\}$ von Vektoren $\overrightarrow{b_k}$ im Vektorraum V heisst *Erzeugendensystem* von V, wenn gilt:

$$V = span(\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n})$$

Schreibt man die Vektoren $\overrightarrow{b_k} \in \mathbb{R}^m$ nebeneinander so entsteht die $m \times n$ – Matrix B.

Folgende Aussagen sind dann äquivalent:

- 1. Die Vektoren $\overrightarrow{b_k}$ bilden ein *Erzeugendensystem* \mathbb{R}^m
- 2. Das LGS $B \cdot \vec{x} = \vec{a}$ ist für jedes $\vec{a} \in \mathbb{R}^m$ lösbar
- 3. Es gilt rg(B) = m

Dimensionen

Für jeden reellen Vektorraum V gilt: Jede Basis von V hat gleich viele Elemente.

Die Anzahl Vektoren, die eine Basis von V bilden, heisst Dimension von $V = \dim(V)$.

• Eine Basis von \mathbb{R}^n hat n Elemente $\to \dim(\mathbb{R}^n) = n$

Basis

Eine Menge $B = \{\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}\}$ von Vektoren \overrightarrow{b}_k im Vektorraum V heisst Basis von V, wenn

- 1. $B = \{\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}\}$ ist ein Erzeugendensystem von V
- 2. Die Vektoren $\overrightarrow{b_1}, \overrightarrow{b_2}, \dots, \overrightarrow{b_n}$ sind linear unabhängig

Folgende Aussagen sind dann äquivalent:

- 1. Die Vektoren $\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n}$ bilden eine **Basis** von \mathbb{R}^n
- 2. rg(B) = n
- 3. $det(B) \neq 0$
- 4. B ist invertierbar
- 5. Das LGS $B \cdot \vec{x} = \vec{c}$ hat eine eindeutige Lösung

Beliebige Basis $B \rightarrow \text{Standard-Basis } S$

$$B = \left\{ \begin{pmatrix} x_1 \\ y_1 \\ \vdots \\ z_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \\ \vdots \\ z_2 \end{pmatrix}, \quad \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_B$$

$$\vec{a} = a_1 \cdot \overrightarrow{b_1} + a_2 \cdot \overrightarrow{b_2} + \dots + a_n \cdot \overrightarrow{b_n}$$

$$B = \left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix}_S; \begin{pmatrix} -1 \\ 0 \end{pmatrix}_S \right\}, \qquad \vec{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}_B$$

$$\vec{a} = 2 \cdot {3 \choose 1} + 3 \cdot {-1 \choose 0} = {3 \choose 2}_{S}$$

Standard-Basis $S \rightarrow$ Beliebige Basis B

$$B = \left\{ \begin{pmatrix} x_1 \\ y_1 \\ \vdots \\ z_1 \end{pmatrix}_{S}; \begin{pmatrix} x_2 \\ y_2 \\ \vdots \\ z_2 \end{pmatrix}_{S} \right\}, \qquad \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_{S}$$

$$B \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_B = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_S$$

$$B \cdot B^{-1} \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_B = B^{-1} \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_S$$

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_B = B^{-1} \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_S$$

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{S}; \begin{pmatrix} -1 \\ 0 \end{pmatrix}_{S} \right\}, \qquad \vec{a} = \begin{pmatrix} -7 \\ -4 \end{pmatrix}_{S}$$

$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}_B = \begin{pmatrix} -7 \\ -4 \end{pmatrix}_S$$

$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}_B = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} -7 \\ -4 \end{pmatrix}_S$$

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}_B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -7 \\ -4 \end{pmatrix}_S$$

$$\binom{-4}{3}_B = \binom{0 \cdot -7 + 1 \cdot -4}{-1 \cdot -7 + 1 \cdot -4}$$

5 – Lineare Abbildungen

Gegeben sind zwei Vektorräume V und W. Eine Abbildung $f: V \to W$ heisst lineare Abbildung, wenn für alle Vektoren $\vec{x}, \vec{y} \in V$ und jeden Skalar $\lambda \in \mathbb{R}$ gilt

- 1. $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$
- 2. $f(\vec{x} \cdot \vec{y}) = f(\vec{x}) \cdot f(\vec{y})$

Erlaubte Operationen

• $\lambda \cdot x_i$

- \bullet $x_i + x_i$

Verbotene Operationen

- $x_i + c$ • $(x_i)^n$
- $\bullet \quad \chi_i \cdot \chi_i$ • $\cos(x_i)$

Das **Bild** im(A) einer $m \times n$ -Matrix A, ist der Unterraum des m-dimensionalen Vektorraum W, der von den Spalten $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$ der Matrix aufgespannt wird:

$$im(A) = span(\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}) = \{\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} + \cdots + \lambda_n \overrightarrow{a_n} \mid \lambda_1 \in \mathbb{R}\}$$

$$A = \begin{pmatrix} -1 & 0 & 2 \\ 1 & 6 & 4 \\ 3 & 3 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 2 & 0 \\ 1 & 6 & 4 & 0 \\ 3 & 3 & -3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$im(A) = \left(\vec{x} \in \mathbb{R}^3 \middle| \vec{x} = \mu \begin{pmatrix} -1\\1\\3 \end{pmatrix} + \nu \begin{pmatrix} 0\\6\\3 \end{pmatrix}, \ \mu, \nu \in \mathbb{R} \right)$$

Für jede $m \times n$ – Matrix A gilt:

$$\dim(im(A)) = rg(A)$$
 und $\dim(\ker(A)) + \dim(im(A)) = n$

Der *Kern* einer $m \times n$ -Matrix A ist die Lösungsmenge des homogenen LGS $A \cdot \vec{x} = \vec{0}$. Der *Kern* ker (A) ist der folgende Unterraum von V

$$\ker(A) = \{ \vec{x} \in V | A \cdot \vec{x} = \vec{0} \}$$

$$A = \begin{pmatrix} -1 & 0 & 2 \\ 1 & 6 & 4 \\ 3 & 3 & -3 \end{pmatrix} \rightarrow A = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 1 & 6 & 4 & 0 \\ 3 & 3 & -3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$x_1 = 2\lambda, x_2 = -\lambda, x_3 = \lambda$$

$$\ker(A) = {\vec{x} \in \mathbb{R}^3 | \vec{x} = \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}}$$

Überprüfung der Linearität

$$f: \mathbb{R} \to \mathbb{R}: f(x) = {x_1 \choose x_2} \to {x_1 + 2x_2 \choose x_2}$$

•
$$f\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}$$
 = $\begin{pmatrix} x_1 + y_1 + 2 \cdot (x_2 + y_2) \\ x_2 + y_2 \end{pmatrix}$

•
$$f\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 + 2 \cdot (x_2 + y_2) \\ x_2 + y_2 \end{pmatrix}$$

• $f\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + f\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 + 2x_2 + 2y_2 \\ x_2 + y_2 \end{pmatrix} \to OK$

•
$$f\left(\lambda \cdot {x_1 \choose x_2}\right)$$
 = $\begin{pmatrix} \lambda \cdot x_1 + 2 \cdot (\lambda \cdot x_2) \\ \lambda \cdot x_2 \end{pmatrix}$

•
$$\lambda \cdot f \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda(x_1 + 2x_2) \\ \lambda \cdot x_2 \end{pmatrix} \to OK$$

Die Abbildung ist linear.

Wir betrachten zwei lineare Abbildungen

- $f: U \to V$ mit Abbildungsmatrix A
- $g: V \to W$ mit Abbildungsmatrix B

Die Verknüpfung $g \circ f$ ist wieder eine lineare Abbildung mit der Abbildungsmatrix $B \cdot A$.

Abbildungsmatrix

Vektorräume \mathbb{R}^m und \mathbb{R}^n , mit der jeweiligen Standardbasis. Dann lässt sich jede lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m$ durch eine $m \times n$ – Matrix A darstellen

$$f(\vec{x}) = A \cdot \vec{x}$$

Die Spalten der Matrix A sind die Bilder der Standardbasisvektoren von \mathbb{R}^n :

$$A = \begin{pmatrix} f(\overrightarrow{e_1}) & f(\overrightarrow{e_2}) & \dots & f(\overrightarrow{e_n}) \end{pmatrix} = \begin{pmatrix} f\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} & f\begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix} & \dots & f\begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} \end{pmatrix}$$

Beispiel

$$f: \mathbb{R}^2 \to \mathbb{R}^3: {x_1 \choose x_2} \to {x_1 - x_2 \choose 3x_2 \choose -4x_1} = {1x_1 - 1x_2 \choose 0x_1 + 3x_2 \choose -4x_1 + 0x_2} \to A = {1 - 1 \choose 0 \quad 3 \choose -4 \quad 0}$$

Wir betrachten zwei endliche Vektorräume

$$V$$
 mit Basis $B = \{\overrightarrow{b_1}; \overrightarrow{b_2}; ...; \overrightarrow{b_n}\}, W$ mit Basis $C = \{\overrightarrow{c_1}; \overrightarrow{c_2}; ...; \overrightarrow{c_n}\}$

Jede *lineare Abbildung* $f: V \to W$ durch eine $m \times n$ – Matrix ${}_{C}A_{B}$ darstellen

$$(f(\vec{x}))_C = {}_C A_B \cdot \vec{x}_B$$

Die Spalten der Matrix ${}_{C}A_{B}$ sind die Bilder der Elemente von B in der Komponentendarstellung bezüglich der Basis C:

$${}_{C}A_{B} = \left(\left(f(\overrightarrow{b_{1}}) \right)_{C} \quad \left(f(\overrightarrow{b_{2}}) \right)_{C} \quad \dots \quad \left(f(\overrightarrow{b_{n}}) \right)_{C} \right)_{B}$$

Beispiel (Kann mittels Inverser oder Gauss berechnet werden)

$$f: \mathbb{R}^2 \to \mathbb{R}^3: \binom{x_1}{x_2} \to \binom{-x_2}{2x_1},$$

$$B = \left\{ \binom{2}{5}_s; \binom{-1}{3}_s \right\}, \qquad C = \left\{ \binom{1}{0}_1; \binom{0}{2}_1; \binom{1}{-4}_s \right\}$$

$$cA_B = \left(\left(f \binom{2}{5} \right)_c \left(f \binom{-1}{3} \right)_c \right)_B$$

$$\left(f \binom{2}{5} \right)_c = \left(\binom{-5}{4}_3 \right)_c = \begin{pmatrix} 1 & 0 & 1 & -5\\ 0 & 2 & -4\\ 1 & 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -11\\ 0 & 1 & 0 & 14\\ 0 & 0 & 1 & 6 \end{pmatrix}$$

$$\left(f \binom{-1}{3} \right)_c = \left(\binom{-3}{-2}_4 \right)_c = \begin{pmatrix} 1 & 0 & 1 & -3\\ 0 & 2 & -4 & -2\\ 1 & 1 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & -11\\ 0 & 1 & 0 & 15\\ 0 & 0 & 1 & 8 \end{pmatrix}$$

$$cA_B = \begin{pmatrix} -11 & -11\\ 14 & 15\\ 6 & 8 \end{pmatrix}_B$$

Die Abbildungsmatrix ${}_BT_S$ für den **Basiswechsel** von S nach B

• Die Matrix ${}_BT_S$ ist die Inverse von ${}_ST_B: {}_BT_S = \left({}_ST_B \right)^{-1}$

$$\mathbb{R}^{2} \xrightarrow{\text{lineare Abbildung } f} \mathbb{R}^{2}$$

$$\vec{x} \xrightarrow{\mathcal{S}^{A_{\mathcal{S}}}} f(\vec{x})$$

$$\downarrow^{\mathcal{S}^{T_{\mathcal{S}}}} \downarrow \qquad \qquad \uparrow^{\mathcal{S}^{T_{\mathcal{S}}}} f(\vec{x})$$

$$\vec{x} \xrightarrow{\mathcal{B}^{A_{\mathcal{B}}}} f(\vec{x})$$

Streckung **Orthogonale Projektion** Rotation Scherung Spiegelung • x-Richtung λ_1 • Gerade q: ax + by = 0• Geraden a: ax + by = 0 Um den Ursprung • In x-Richtung • Mit $a^2 + b^2 = 1$ • y-Richtung λ_2 • Mit $a^2 + b^2 = 1$ Mit Faktor m • Um den Winkel φ $\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$ $\begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix}$ $(\cos(\varphi) - \sin(\varphi))$ $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ $\langle \sin(\varphi) \cos(\varphi) \rangle$ • Gerade g: 2x - y = 0• *x*-Richtung 3 • Geraden g: x + 7y = 0• In x-Richtung • ν -Richtung -1• Normiert $g: \frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}y = 0$ Mit Faktor 3 • Normiert $g: \frac{1}{\sqrt{50}}x + \frac{7}{\sqrt{50}}y = 0$ $\frac{1}{50} \cdot \begin{pmatrix} 48 & -14 \\ -14 & -49 \end{pmatrix}$ $\frac{1}{5} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$

Zentrische Streckung

• Faktor λ

$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

Orthogonale Projektion auf die Ebene

•
$$E: ax + by + cz = 0$$

•
$$a^2 + b^2 + c^2 = 1$$

$$P = \begin{pmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix}$$

$$P = E - \vec{n} \cdot \vec{n}^T$$

Spiegelung an der Ebene

•
$$E: ax + by + cz = 0$$

•
$$a^2 + b^2 + c^2 = 1$$

$$P = \begin{pmatrix} 1 - a^2 & -ab & -ac \\ -ab & 1 - b^2 & -bc \\ -ac & -bc & 1 - c^2 \end{pmatrix}$$

$$P = E - \vec{n} \cdot \vec{n}^T$$

$$S = \begin{pmatrix} 1 - 2a^2 & -2ab & -2ac \\ -2ab & 1 - 2b^2 & -2bc \\ -2ac & -2bc & 1 - 2c^2 \end{pmatrix}$$

$$S = E - 2\vec{n} \cdot \vec{n}^T$$

$$V - Achse: \begin{pmatrix} \cos(\varphi) & \cos(\varphi) \\ \cos(\varphi) & \cos(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Rotation um den Winkel φ um die Achse durch den Ursprung, deren Richtung durch den normierten Vektor \vec{a} festgelegt ist.

$$x - Achse: \begin{pmatrix} \cos(\varphi) + a_1^2(1 - \cos(\varphi)) & a_1a_2(1 - \cos(\varphi)) - a_3\sin(\varphi) & a_1a_3(1 - \cos(\varphi)) - a_2\sin(\varphi) \\ a_1a_2(1 - \cos(\varphi)) + a_3\sin(\varphi) & \cos(\varphi) + a_2^2(1 - \cos(\varphi)) & a_2a_3(1 - \cos(\varphi)) - a_1\sin(\varphi) \\ a_1a_3(1 - \cos(\varphi)) - a_2\sin(\varphi) & a_2a_3(1 - \cos(\varphi)) + a_1\sin(\varphi) & \cos(\varphi) + a_3^2(1 - \cos(\varphi)) \end{pmatrix}$$

Rotation um den Winkel φ

$$x - Achse: \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

$$y - Achse: \begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$$

$$z - Achse: \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$