Example: California Cities

Recall that in "Customizing Plot Legends" on page 249, we demonstrated the use of size and color in a scatter plot to convey information about the location, size, and population of California cities. Here, we'll create this plot again, but using Basemap to put the data in context.

We start with loading the data, as we did before:

```
In[10]: import pandas as pd
    cities = pd.read_csv('data/california_cities.csv')

# Extract the data we're interested in
    lat = cities['latd'].values
    lon = cities['longd'].values
    population = cities['population_total'].values
    area = cities['area_total_km2'].values
```

Next, we set up the map projection, scatter the data, and then create a colorbar and legend (Figure 4-109):

```
In[11]: # 1. Draw the map background
        fig = plt.figure(figsize=(8, 8))
        m = Basemap(projection='lcc', resolution='h',
                    lat_0=37.5, lon_0=-119,
                    width=1E6, height=1.2E6)
        m.shadedrelief()
        m.drawcoastlines(color='gray')
        m.drawcountries(color='gray')
        m.drawstates(color='gray')
        # 2. scatter city data, with color reflecting population
        # and size reflecting area
        m.scatter(lon, lat, latlon=True,
                  c=np.log10(population), s=area,
                  cmap='Reds', alpha=0.5)
        # 3. create colorbar and legend
        plt.colorbar(label=r'$\log {10}({\rm population})$')
        plt.clim(3, 7)
        # make legend with dummy points
        for a in [100, 300, 500]:
            plt.scatter([], [], c='k', alpha=0.5, s=a,
                        label=str(a) + \frac{km}^2;
        plt.legend(scatterpoints=1, frameon=False,
                   labelspacing=1, loc='lower left');
```


Figure 4-109. Scatter plot over a map background

This shows us roughly where larger populations of people have settled in California: they are clustered near the coast in the Los Angeles and San Francisco areas, stretched along the highways in the flat central valley, and avoiding almost completely the mountainous regions along the borders of the state.

Example: Surface Temperature Data

As an example of visualizing some more continuous geographic data, let's consider the "polar vortex" that hit the eastern half of the United States in January 2014. A great source for any sort of climatic data is NASA's Goddard Institute for Space Studies. Here we'll use the GIS 250 temperature data, which we can download using shell commands (these commands may have to be modified on Windows machines). The data used here was downloaded on 6/12/2016, and the file size is approximately 9 MB:

The data comes in NetCDF format, which can be read in Python by the netCDF4 library. You can install this library as shown here:

\$ conda install netcdf4