RICOH

R1183Z SERIES

150mA LDO REGULATOR

NO.EA-147-070315

OUTLINE

The R1183Z Series are CMOS-based voltage regulator ICs with extremely low supply current, and low dropout voltage realized with the built-in low ON-resistance Tr.

150mA output current is guaranteed, and the supply current of IC itself is Typ. 1μA at no load.

The R1183Z series have almost same characteristics as R1180x Series. Only difference is ultra small chip size package (WLCSP4-P2: 0.79mm $\times 0.79$ mm) and built-in auto discharge function is available with D version, and output voltage accuracy improved to $\pm 1.2\%$.

Since the package for these ICs is WLCSP-4-P2, the mount area size is less than 1/4 of R1180D Series (SON1612-6).

FEATURES

• Supply CurrentTyp. 1µA(Except the current through CE pull-down circuit)
 Standby ModeTyp. 0.1μA
Dropout VoltageTyp. 0.25V (louт=150mA, Vouт=3.0V)
 Temperature-Drift Coefficient of Output Voltage Typ. ±100ppm/°C
Line RegulationTyp. 0.05%/V
Output Voltage Accuracy±1.2%
Output Voltage Range1.2V to 3.6V
Input Voltage Range1.7V to 6.0V
PackageWLCSP-4-P2
Built-in Fold Back Protection CircuitTyp. 40mA
Built-in Auto Discharge FunctionD Version
 Ceramic capacitors are recommended to be used with this IC (0.1μF or more)

APPLICATIONS

- Stable voltage reference.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

BLOCK DIAGRAMS

R1183Zxx1B V_{DD} 1 4 Vout

R1183Zxx1D V_{DD} 1 4 V_{OUT} Vref Current Limit CE 2 GND 3

SELECTION GUIDE

The output voltage, version, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below:

Code	Contents
а	Designation of Package Type : Z: WLCSP-4-P2
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 1.2V to 3.6V is possible. Exceptions: 1.25V=R1183Z121X5, 1.85V=R1183Z181X5, 2.85V=R1183Z281X5
С	Designation of Function and with/without chip enable: B: active "H" type, without the auto-discharge function C: without chip enable circuit and auto-discharge D: active "H" type, with the auto-discharge function
d	Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.)
е	Designation of composition of pin plating: -F: Lead free plating

PIN CONFIGURATION

• WLCSP-4-P2

PIN DESCRIPTIONS

• R1183Zxx1B/D

R1183Zxx1D

Pin No.	Symbol	Description	
1	V _{DD}	Input Pin	
2	CE	Chip Enable Pin	
3	GND	Ground Pin	
4	Vouт	Output Pin	

Pin No.	Symbol	Description
1	V_{DD}	Input Pin
2	NC	No Connection
3	GND	Ground Pin
4	Vouт	Output Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.5	V
Vce	Input Voltage(CE Pin)	-0.3 to 6.5	V
Vouт	Output Voltage	−0.3 to V _{IN} +0.3	V
louт	Output Current	200	mA
PD	Power Dissipation (WLCSP-4-P2) *1	530	mW
Topt	Operating Temperature Range	-40 to +85	°C
Tstg	Storage Temperature Range	−55 to +125	°C

^{*1)} For Power Dissipation, please refer to PACKAGE INFORMATION to be described.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are threshold limit values that must not be exceeded ever for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS

• R1183Zxx1B/D

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vouт	Output Voltage*1	V _{IN} =Set V _{OUT} +1V I _{OUT} =1mA	×0.988 -18mV		×1.012 +18mV	V
Іоит	Output Current	V_{IN} - V_{OUT} =1.0 V ($V_{\text{OUT}} \ge 1.5V$) If V_{OUT} <1.5 V , V_{IN} =2.4 V	150			mA
ΔVουτ/ΔΙουτ	Load Regulation	V_{IN} =Set V_{OUT} +1 V 1 μ A \leq Iou τ \leq 150mA		20	40	mV
V _{DIF}	Dropout Voltage	Refer to the ELECTRICAL CHA	ARACTE	RISTICS	by OUTP	UT
Iss	Supply Current*2	VIN=Set Vour+1V, Iour=0mA		1.0	1.5	μА
Istandby	Supply Current (Standby)	V _{IN} =Set V _{OUT} +1V V _{CE} =GND (B/D Version)		0.1	1.0	μΑ
ΔVout/ΔVin	Line Regulation	Set Vout+0.5V \leq Vin \leq 6.0V (Vout \geq 1.5V) If Vout<1.5V, 2.0V \leq Vin \leq 6.0V lout=30mA		0.05	0.20	%/V
Vin	Input Voltage		1.7		6.0	V
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	lout=30mA -40°C ≦ Topt ≦ 85°C		±100		ppm /°C
llim	Short Current Limit	Vout=0V		40		mA
l _{PD}	CE Pull-down Constant Current			0.35	0.80	μΑ
Vсен	CE Input Voltage "H"		1.2		6.0	V
VCEL	CE Input Voltage "L"		0.0		0.3	V
RLOW	ON Resistance of Nch.Tr. for Auto discharge (of D version)	VcE=0V		90		Ω

^{*1} If $V_{OUT} \le 1.5V$, then tolerance is $\pm 18mV$

^{*2} Except the pull-down constant current through CE pin.

• R1183Zxx1C

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vоит	Output Voltage*1	VIN=Set VOUT+1V	×0.988		×1.012	V
• 001	o atpar voltage	louт=1mA	-18mV		+18mV	•
Іоит	Output Current	$V_{\text{IN}}-V_{\text{OUT}}=1.0V$ $(V_{\text{OUT}} \ge 1.5V)$ If $V_{\text{OUT}}<1.5V$, $V_{\text{IN}}=2.4V$	150			mA
ΔVουτ/ΔΙουτ	Load Regulation	V_{IN} =Set V_{OUT} +1 V 1 μ A \leq I_{OUT} \leq 150mA		20	40	mV
V _{DIF}	Dropout Voltage	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE				
Iss	Supply Current*2	VIN=Set VOUT+1V, IOUT=0mA		1.0	1.5	μΑ
ΔVout/ΔVin	Line Regulation	Set Vout+0.5V \leq Vin \leq 6.0V (Vout \geq 1.5V) If Vout<1.5V, 2.0V \leq Vin \leq 6.0V Iout=30mA		0.05	0.20	%/V
Vin	Input Voltage		1.7		6.0	V
ΔV _{OUT} / ΔTopt	Output Voltage Temperature Coefficient	Ioυτ=30mA -40°C ≦ Topt ≦ 85°C		±100		ppm /°C
llim	Short Current Limit	Vout=0V		40		mΑ

^{*1} If $V_{OUT} \le 1.5V$, then tolerance is $\pm 18mV$

• ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

 $Topt \!\!=\!\! 25^{\circ}C$

Output Voltage	Dropout Voltage V _{DIF} (V)		
V оит (V)	Condition	Тур.	Max.
1.2 ≦ Vouт < 1.3		0.85	1.20
$1.3 \leq V_{\text{OUT}} < 1.4$		0.75	1.10
1.4 ≦ Vouт < 1.5	Iоит=150mA	0.65	1.00
1.5 ≦ Vouт < 1.7		0.60	0.90
1.7 ≦ Vouт < 1.9		0.50	0.75
1.9 ≦ Vouт < 2.1		0.40	0.65
2.1 ≦ Vouт < 2.8		0.35	0.55
$2.8 \leq V$ out ≤ 3.6		0.25	0.40

^{*2} Except the pull-down constant current through CE pin.

TYPICAL APPLICATION

(External Components)
Output Capacitor

Ceramic Capacitor 0.1µF murata GRM155B31C104KA87B kyocera CM05X5R104K16AB

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C₂ with good frequency characteristics and ESR (Equivalent Series Resistance). (Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $1.0\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Standard test Circuit

Supply Current Test Circuit

Ripple Rejection, Line Transient Response Test Circuit

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

2) Output Voltage vs. Input Voltage (Topt=25°C)

3) Dropout Voltage vs. Output Current R1183Z121x

4) Output Voltage vs. Temperature (Iout=30mA)

5) Supply Current vs. Input Voltage (Topt=25°C)

6) Supply Current vs. Temperature

7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)

8) Ripple Rejection vs. Frequency (C_{IN}=none) R1183Z121x

R1183Z361x VIN=4.6VDC+0.5p-p C_{OUT}=Ceramic1μF 70 60 Ripple Rejection RR[dB] 50 40 Іоит=50mА 30 20 10 Iout=30mA 0 0.1 100 Frequency f[kHz]

9) Ripple Rejection vs. Input Bias Voltage (Topt=25°C, C_{IN}=none, C_{OUT}=ceramic0.1μF) R1183Z281x (I_{OUT}=30mA)

10) Input Transient Response (C_{IN}=none, tr=tf=5μs)

R1183Z281x

R1183Z281x

R1183Z281x

11) Load Transient Response (tr=tf=0.5 μ s V_{IN}=3.8V)

12) Turn-on speed with CE pin signal R1183Z121x

R1183Z121x

R1183Z121x

R1183Z121x

R1183Z361x

13) Turn off speed with CE pin signal

R1183Z121D

R1183Z121D

R1183Z281D

R1183Z281D

ESR vs. Output Current

The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown above. The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

<Measurement conditions>

- (1) VIN=VOUT+1V
- (2) Frequency Band: 10Hz to 2MHz (BW=30Hz)
- (3) Temperature: -40°C to 85°C

R1183Z121x

R1183Z281x

• WLCSP-4-P2 Unit: mm

PACKAGE DIMENSIONS

TAPING SPECIFICATION

TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc)

(1reel=5000pcs)

(R3115Z: 1reel=3000pcs)

POWER DISSIPATION (WLCSP-4-P2)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

Measurement Conditions

	Standard Land Pattern		
Environment	Mounting on Board (Wind velocity=0m/s)		
Board Material	Glass cloth epoxy plactic (Double sided)		
Board Dimensions	40mm × 40mm × 1.6mm		
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%		
Through-hole	-		

Measurement Result

(Topt=25°C,Tjmax=125°C)

	Standard Land Pattern		
Power Dissipation	530mW		
Thermal Resistance	θja=(125–25°C)/0.53W=189°C/W		

RECOMMENDED LAND PATTERN

NSMD and **SMD** Pad Definition

Pad definition	Copper Pad	Solder Mask Opening
NSMD (Non-Solder Mask defined)	0.20mm	Min. 0.30mm
SMD (Solder Mask defined)	Min. 0.30mm	0.20mm

- Pad layout and size can be modified by customers material, equipment, method. Please adjust pad layout according to your conditions.
- Recommended Stencil Aperture Size....ø0.3mm
- Since lead free WL-CSP components are not compatible with the tin/lead solder process, you shall not mount lead free WL-CSP components using the tin/lead solder paste.

R1183Z SERIES MARK SPECIFICATION

• WLCSP-4-P2

①, ②: Lot Number

(A part number is discriminable from a lot number)