

Hotel booking demand

By shykah alrushud

In this project we will build a model based on our dataset "Hotel Booking demand" to predict the probability of the customer to cancel the booking or not.

This data set contains booking information for the hotel type, and includes information such as when the booking was made, length of stay, the number of adults, children, and/or babies, and the number of available parking spaces, etc.

This dataset contains: 119390 reservations 32 features

you can find it at Kaggle in this link:

Hotel booking demand dataset | Kaggle

	hotel	is_canceled	lead_time	arrival_date_year	arrival_date_month	arrival_date_week_number	arrival_date_day_of_month	stays_in_weeke
0	Resort Hotel	0	342	2015	July	27	1	
1	Resort Hotel	0	737	2015	July	27	1	
2	Resort Hotel	0	7	2015	July	27	1	
3	Resort Hotel	0	13	2015	July	27	1	
4	Resort Hotel	0	14	2015	July	27	1	
119385	City Hotel	0	23	2017	August	35	30	
119386	City Hotel	0	102	2017	August	35	31	
119387	City Hotel	0	34	2017	August	35	31	
	City Hotel	0	109	2017	August	35	31	

Data Cleaning:

- Drop the duplicate rows.
- Drop the rows with column "*adult*=0 "
- Converting the datatype of *children* and *agent* from float to integer.
- Remove column company, days_in_waiting_list, arrival_date_year, assigned_room_type, booking_changes,reservation_status, days_in_waiting_list.
- Replace null values with 0 in agent feature.
- Replace NULL with "unknown" in column country.
- Fill NULL value in *adr* with "mean".

• From this dataset I was curious to find answers for some questions next pages.

what is the hotel types and which one is more demand?

Which type of hotel has the highest number of cancellations?

So, as you seen Resort Hotel

has highest no. of cancellations

What is the percentage of repeat customers?

Percentage of repeated guests = 7.936507936507937 %

Its just a little..

what is the busy month?

		month	no of guests
	0	November	111
	1	May	18
	2	August	13
	3	October	10
	4	January	10
	5	December	5
	6	March	5
	7	July	5
	8	September	5
	9	June	4
1	0	February	2
1	1	April	1

How many guest from each country?

• As you seen Portuguese have the most no. of guest.

	Country	No.of Guests
0	PRT	77
1	AUT	23
2	FRA	20
3	GBR	19
4	ITA	15
5	ESP	8
6	DEU	7
7	CZE	4
8	BEL	3
9	MEX	2
10	CHN	2
11	NLD	2
12	USA	2
13	CHE	1
14	AUS	1
15	BGR	1
16	ROU	1

Building Machine Learning Models

Find out the highest relative correlated parameter for use as input for training ..

-0.019	-0.022	-0.018	-0.049	-0.056	-0.1	-0.12
-0.14	-0.023	-0.1	-0.23	0.17	-0.063	0.054
-0.36	-0.19	-0.21	0.12	-0.34	0.068	-0.23
-0.35	-0.18	-0.21	0.1	-0.33	0.067	-0.2
0.16	0.18	0.12	-0.21	0.23	-0.035	0.36
-0.034	-0.022	0.014	-0.053	-0.18	0.14	0.022
-0.16	-0.07	-0.033	0.12	-0.32	0.13	-0.12
-0.088	-0.059	-0.06	-0.24	0.37	-0.1	0.074
0.11	-0.012	0.21	-0.086	0.41	-0.057	0.082
1	-0.021	0.7	0.047	0.0058	-0.033	0.26
-0.021	1	0.17	0.022	-0.021	-0.024	0.099
0.7	0.17	1	-0.068	-0.11	-0.074	0.31
0.047	0.022	-0.068	1	-0.4	0.1	-0.33
0.0058	-0.021	-0.11	-0.4	1	-0.085	0.38
-0.033	-0.024	-0.074	0.1	-0.085	1	-0.068
0.26	0.099	0.31	-0.33	0.38	-0.068	1
est	SU	eq	ant	ğ	S G	sts

Modeling

I used the following *linear & classification algorithms*:

Random Forest Classifier, Decision Tree Classifier, Logistic Regression

• These are the Report scores of all the models I did:

Logistic Regression:

	precision	recall	f1-score
0	0.95	1.00	0.97
1	0.00	0.00	0.00
accuracy			0.95

Decision Tree Classifier

р	recision	recall	f1-score
0	0.96	0.91	0.93
1	0.17	0.33	0.22
accuracy			0.88

Random Forest Classifier

	precision	recall	f1-score
0 1	0.96 1.00	1.00	0.98 0.50
accuracy			0.96

Modeling

These are the comparison for accuracy test scores of all the models:

	Model	Score
2	Random Forest Classifier	0.964912
0	Logistic Regression	0.947368
1	Decision Tree Classifier	0.859649

The best Model to predict the target: Its the Random Forest Classifier with accuracy test score 96% in simple train and test techniques.

visualize the accuracy comparison between models

Thank you I hope you like my work And enjoying this presentation

