Лекция 5

Подпоследовательности и частичные пределы

Определение 1. Пусть задана последовательность $\{a_n\}_{n=1}^{\infty}$ и возрастающая последовательность натуральных чисел $n_1 < n_2 < n_3 < ... < n_m <$ Возьмём элементы последовательности $\{a_n\}_{n=1}^{\infty}$ с номерами $n_1 < n_2 < n_3 < ... < n_m <$ Мы снова получим последовательность $b_k = a_{n_k}$, которая называется подпоследовательностью последовательности $\{a_n\}_{n=1}^{\infty}$.

Число $a \in \mathbb{R}$ называется **частичным** пределом последовательности $\{a_n\}_{n=1}^{\infty}$, если найдётся подпоследовательность $\{a_{n_k}\}_{k=1}^{\infty}$ последовательности $\{a_n\}_{n=1}^{\infty}$, для которой число а является пределом, то есть $\lim_{k\to\infty} a_{n_k} = a$.

Обратим внимание, что подпоследовательность данной последовательности образуется, если мы берём возрастающую последовательность номеров. Например, для последовательности $a_n = 1/n$ набор

$$\{1/2, 1/5, 1/7, 1/5, ...\}$$

не может образовать подпоследовательность, так как среди значений последовательности $a_n = 1/n$ элемент 1/5 присутствует только под номером 5, а этот номер был выбран на втором шаге, поэтому дальше все элементы в любой подпоследовательности были бы с номерами, большими 5.

Можно также сказать, что частичным пределом последовательности $\{a_n\}_{n=1}^{\infty}$ называется такая точка a на вещественной оси, что для любой окрестности U(a) этой точки и любого натурального числа N найдётся хотя бы одно такое n > N, что $a_n \in U(a)$.

Отличие понятия частичного предела последовательности от понятия предела последовательности состоит в том, что в любой окрестности точки, являющейся пределом, находятся все, начиная с некоторого номера элементы последовательности, а в любой окрестности частичного предела непременно найдётся бесконечно много элементов последовательностии, но необязательно все.

Предложение 1. Если последовательность имеет предел, то любая её подпоследовательность сходится κ тому же пределу.

Доказательство. Если $\lim_{n\to\infty}a_n=A$, то по определению предела

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n > N \ |a_n - A| < \varepsilon.$$

Так как номера элементов любой подпоследовательности $\{a_{n_k}\}_{k=1}^{\infty}$ при достаточно больших k будут таковы, что $n_k > N$ и номера подпоследовательности по определению возрастают, то при всех достаточно больших k будет выполняться также и неравенство $|a_{n_k} - A| < \varepsilon$, то есть будет выполнено определение предела для любой подпоследовательности.

Таким образом, у последовательности, имеющей предел все частичные пределы совпадают с пределом.

Напомним, что в теореме Вейерштрасса речь шла об ограниченной и монотонной последовательности. Что будет, если отказаться от условия монотонности? Ответ на этот вопрос даётся в следующей теореме.

Теорема 1. (Больцано – Вейерштрасс.) Из всякой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

Доказательство. Если последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена, то

$$\exists C > 0 : \forall n \in \mathbb{N} |a_n| < C,$$

то есть все элементы последовательности содержатся в отрезке [-C,C]. Разделим этот отрезок пополам. Хотя бы в одном из получившихся отрезков содержится бесконечно много элементов последовательности. Выберем отрезок, в котором содержится бесконечно много элементов и назовём его I_1 (если бесконечно много элементов в обеих половинах, то выберем любую). Выберем какой-либо элемент $a_{n_1} \in I_1$ и положим $b_1 = a_{n_1}$. Разобьём отрезок I_1 пополам и выберем ту его половину, в которой содержится бесконечно много элементов последовательности. Назовём его I_2 и выберем $a_{n_2} \in I_2$ так, чтобы n_2 было больше n_1 , и положим $a_{n_2} = b_2$. Затем разобьём отрезок I_2 пополам, выберем ту половину I_3 , в которой содержится бесконечно много элементов последовательности, возьмём элемент $a_{n_3} \in I_3$, причём $n_3 > n_2$, и обозначим $b_3 = a_{n_3}$. Продолжая этот процесс, построим последовательность вложенных отрезков $\{I_k\}_{k=1}^{\infty}$ и последовательность $\{b_k\}_{k=1}^{\infty}$, причём $b_k \in I_k$ и $\{b_k\}_{k=1}^{\infty}$ является подпоследовательностью последовательности $\{a_n\}_{n=1}^{\infty}$.

При этом $|I_k| = \frac{2C}{2^k} \to 0$, $n \to +\infty$, поэтому последовательность отрезков $\{I_k\}_{k=1}^{\infty}$ является стягивающейся и имеет единственную общую точку b, причём для любого $\varepsilon > 0$ при всех достаточно больших k выполнены неравенства

$$|b_k - b| \le \frac{C}{2^{k-1}} < \frac{C}{2^{k-2}} < \varepsilon,$$

поэтому $\lim_{k\to\infty}b_k=b$. Таким образом, мы выбрали подпоследовательность последовательности $\{a_n\}_{n=1}^\infty$, имеющую предел.

Если последовательность ограничена, то среди её частичных пределов всегда есть наибольший и наименьший. Наибольший из частичных пределов последовательности $\{a_n\}$ называется верхним пределом этой последовательности и обозначается $\overline{\lim}_{n\to\infty} a_n$, а наименьший из её частичных пределов называется нижним пределом и обозначается $\underline{\lim}_{n\to\infty} a_n$.

В качестве дополнительного материала обоснуем существование верхнего и нижнего предела у ограниченной последовательности.

Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена. Рассмотрим последовательность

$$M_n = \sup_{k > n} a_k.$$

С увеличением n точная верхняя грань не может увеличиться, так как супремум множества $\{a_{n+1}, a_{n+2}, ...\}$, равный M_n нее меньше, чем супремум множества $\{a_{n+2}, a_{n+3}, ...\}$, который равен M_{n+1} . Таким образом, последовательность $\{M_n\}_{n=1}^{\infty}$ не возрастает. Кроме того, $M_n \geq a_k$ при всех натуральных k > n, что в силу ограниченности последовательности $\{a_n\}_{n=1}^{\infty}$ означает, что последовательность $\{M_n\}_{n=1}^{\infty}$ ограничена снизу. Следовательно по теореме Вейерштрасса последовательность $\{M_n\}_{n=1}^{\infty}$ имеет предел. Аналогично доказывается, что последовательность $m_n = \inf_{k>n} a_k$ имеет предел. Пусть $\lim_{n\to\infty} M_n = M$, а $\lim_{n\to\infty} m_n = m$.

Определение 2. Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена. Тогда число M называют верхним пределом последовательности $\{a_n\}_{n=1}^{\infty}$, а число m – нижним пределом этой последовательности. Соответствующие обозначения: $M:=\varlimsup_{n\to\infty}a_n,\ m:=\varliminf_{n\to\infty}a_n.$

Отметим, что верхний и нижний пределы последовательности совпадают в точности тогда, когда последовательность имеет предел, что мы докажем ниже.

Теорема 2. Если последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена, то $\overline{\lim}_{n\to\infty} a_n$ и $\underline{\lim}_{n\to\infty} a_n$ являются частичными пределами этой последовательности и все частичные пределы последовательности $\{a_n\}_{n=1}^{\infty}$ принадлежат отрезку $[\underline{\lim}_{n\to\infty} a_n, \overline{\lim}_{n\to\infty} a_n]$.

Доказательство. Нам необходимо построить подпоследовательность, предел которой равен $M:=\overline{\lim_{n\to\infty}} a_n$. Построим эту подпоследовательность так: на первом шаге выберем элемент a_{n_1} , удовлетворяющий условиям

$$M_1 - 1 < a_{n_1} \le M_1$$
.

Это возможно в силу определения точной верхней грани, так как M_1-1 уже не является точной верхней гранью для множества $\{a_2, a_3, ...\}$, а поэтому найдётся нужный элемент.

Элемент a_{n_2} должен быть таким элементом исходной последовательности $\{a_n\}$, что $n_2 > n_1$. Выберем его так, чтобы он удовлетворял неравенствам

$$M_{n_1} - 1/2 < a_{n_2} \le M_{n_1}$$
.

Элемент, удовлетворяющий таким условиям, найдётся снова по определению точной верхней грани, а неравенство $n_2 > n_1$ выполнено, так как согласно определению M_{n_1} элемент a_{n_2} выбирается из множества $\{a_{n_1+1}, a_{n_2+2}, ...\}$, в котором все элементы с номерами, большими n_1 .

Продолжая этот процесс, мы на m+1-м шаге получим элемент $a_{n_{m+1}}$, удовлетворяющий неравенствам

$$M_{n_m} - \frac{1}{m+1} < a_{n_{m+1}} \le M_{n_m}.$$

При этом $n_1 < n_2 < n_3 < ... < n_{m+1} < ...$ По определению верхнего предела,

$$\lim_{n \to +\infty} M_n := M,$$

а тогда и любая подпоследовательность последовательности $\{M_n\}_{n=1}^{\infty}$ сходится к тому же пределу. Таким образом имеем равенства:

$$M = \lim_{k \to +\infty} M_{n_k} = \lim_{k \to +\infty} \left(M_{n_k} - \frac{1}{k+1} \right).$$

Тогда, по лемме о зажатом пределе, $M=\lim_{k\to +\infty}a_{n_k}$, то есть верхний предел является частичным пределом последовательности. Доказательство для нижнего предела полностью аналогично.

Докажем теперь, что любой частичный предел a лежит на отрезке $\left[\underline{\lim_{n\to\infty}} a_n, \overline{\lim_{n\to\infty}} a_n\right]$. По определению найдётся подпоследовательность $\{a_{n_l}\}_{l=1}^{\infty}$, которая сходится к a. Тогда $m_{n_{l-1}} \leq a_{n_l} \leq M_{n_{l-1}}$, поэтому по теореме о предельном переходе в неравенствах будем иметь $\underline{\lim_{n\to\infty}} a_n \leq a \leq \overline{\lim_{n\to\infty}} a_n$.

Таким образом, если последовательность ограничена, то у неё есть верхний и нижний пределы, которые являются частичными пределами, то есть найдутся подпоследовательности, сходящиеся к ним. Это рассуждение может служить ещё одним доказательством теоремы Больцано – Вейерштрасса.

На этом закончим дополнительный материал.

Теорема 3. Ограниченная последовательность имеет предел тогда и только тогда, когда у неё только один частичный предел.

Доказательство. Необходимость этого условия – это предложение 2.

Докажем достаточность. Пусть a — единственный частичный предел последовательности $\{a_n\}_{n=1}^{\infty}$. Тогда, по теореме 1, $\lim_{n\to\infty} a_n = \overline{\lim_{n\to\infty}} a_n = a$. По определению верхнего и нижнего предела и теореме о зажатом пределе из неравенств $m_{n-1} \leq a_n \leq M_{n-1}$ получаем, что $\lim_{n\to\infty} a_n = a$.

Можно рассматривать не только ограниченные последовательности, и тогда верхний и нижний пределы могут принимать и бесконечные значения. Например, верхний и нижний предел последовательности $a_n = n$ равны $+\infty$, а для последовательности $a_n = -n$ они принимают значение $-\infty$. Для последовательности

$$a_n = (-1)^n n$$
 имеем $\lim_{n \to \infty} a_n = -\infty$, а $\overline{\lim}_{n \to \infty} a_n = +\infty$;

для последовательности $a_n=2^{(-1)^nn}$ имеем $\varliminf_{n\to\infty}a_n=0$ и $\varlimsup_{n\to\infty}a_n=+\infty.$

Существуют последовательности, множества частичных пределов которых – отрезки (приведите примеры). Однако, например, интервал (0,1) не может являться множеством $\sec x$ частичных пределов никакой последовательности (полезно объяснить, почему, хотя позже мы докажем теорему, из которой это будет следовать).