

CÂU TRÚC DỮ LIỆU & GIẢI THUẬT HOMEWORK 3

---000---

4	TT~ 1 1 1 /	4 1 · · · · ·	A	41 44	BTA 020 41 /	ch ngắn gọn.
	HOW OHO HIG	t hia / I aiia	man and	thuat cou	Non and the	oh ngan gan
	TIAV CHO DIE	4 1119 -1 / CHA	инон утат	иния хин.	TREIL VINI IIII	CII HYXII YOH.

- a. Thao tác Heapify 1 phần tử trong 1 heap có N phần tử
- b. Tìm 1 phần tử trong một mảng có N phần tử đã được sắp thứ tự giảm dần
- c. Chèn 1 phần tử vào 1 mảng có N phần tử đã sắp thứ tự tăng dần sao cho mảng vẫn có thứ tự tăng

2. Giải thuật Brute-Force

Có bao nhiều phép so sánh được thực hiện khi so khóp chuỗi P=0001 với chuỗi T=00100010010010 bằng giải thuật Brute-Force? Vẽ các bước minh hoa.

3.	Thuật toán Brute-Force có chi phí trung	g bình O(M*N)	□ Đúng	☐ Sai
----	---	---------------	--------	-------

4. Thuật toán Rabin-Karp

Sử dụng hàm băm đơn giản: hash(P) = P[0] + P[1] + ... + P[m-1]Hãy cho biết có bao nhiều lần so sánh cần thực hiện khi so khớp chuỗi P=26 với chuỗi T=231245361726842?

5. Chi phí cho bước tiền xử lý trong thuật toán Rabin-Karp là:

- (a) M
- (b) 2*M
- (c) O(N)

6. Thuật toán MP/KMP

Biết rằng:

- o T: chuỗi text, T = 01100101010101010101010100001
- o P: chuỗi mẫu cần tìm, P = 01011001011

Hãy tính giá trị bảng NEXT của P (áp dụng lần lượt giải thuật MP, KMP). So sánh 2 bảng NEXT.

7. Thuật toán MP/KMP

Biết rằng:

- o T: chuỗi text, T = bacbababababbab
- o P: chuỗi mẫu cần tìm, P = ababaca

Hãy tính giá trị bảng NEXT của P (áp dụng lần lượt giải thuật MP, KMP). So sánh 2 bảng NEXT.

8. Sử dụng thuật toán đối sánh chuỗi KMP để tìm kiếm sự tồn tại của chuỗi P trên chuỗi T. Bảng dưới đây minh họa chuỗi P và chuỗi T trong quá trình so khớp. Biết rằng 5 ký tự đầu tiên của P đã hoàn toàn trùng khớp trên T, vi trí thứ 6 (index=5) không khớp.

	S	s+1	s+2	s+3	s+4	s+5	s+6	s+7	s+8	s+9	s+10	s+11	s+12
T	a	а	b	а	a	<u>b</u>	а	b	а	a	а	а	а
P	а	а	b	а	а	<u>a</u>							
index	0	1	2	3	4	<u>5</u>							

(Giá trị s trong bảng trên là vị trí bắt đầu sự so khóp hiện hành của P trên T).

Hãy cho biết trong lần so sánh kế tiếp:

- a. Chuỗi P sẽ được dịch chuyển đến vị trí nào trên T? (Nghĩa là ký tự đầu tiên của P nằm tại vị trí nào trên T?)
- b. (Các) ký tự nào sẽ được so sánh kế tiếp? Vị trí không khớp (nếu có) là? (minh họa trạng thái của câu [a] và [b] bằng các bảng tương tự như bảng trên)

--- Hết ---