Home Credit Default Risk

Dan Powell, Matt Johnescu, Melissa Messervy

Problem Statement

Model Performance

Limitations

Future Considerations

Prol	hlc	m	Sta	tam	ant
		7111 '	Ola	LCIII	

Model Performance

Limitations

Future Considerations

Problem Statement

- **Home Credit's Mission:** Targeting underserved populations People with insufficient or no credit history.
- Problem: Difficulty obtaining loans or exposure to untrustworthy lenders.
- **Solution**: Using alternative data to improve financial inclusion and provide a safe, positive loan experience.

Problem Statement

Model Performance

Limitations

Future Considerations

Support Vector Machine (SVM)

Models Tested:

- Linear Model (without SMOTE)
- Linear Model (with SMOTE)
- Radial Model (with SMOTE)

• Key Terms:

- **SMOTE**: Synthetic Minority Oversampling Technique
- Linear Model: Divides classes linearly
- Radial Model: Divides classes non-linearly

• Performance Metrics:

- Accuracy: Frequency of correct predictions
- **F1 Score**: Measure of model's ability to classify positive cases

SVM Modeling Process and Results

Model	Accuracy	F1 Score
Linear SVM (No Adjustments)	91.93%	N/A
Linear SVM (with Adjustments)	33.75%	0.1719
Radial SVM (with adjustments and optimization)	63.96%	0.175

Linear Regression

Low R-squared values: LM (0.06) and Rpart (0.02)

High RMSE & Relative Absolute Error

5-fold Cross
Validation was
performed with
minimal change in
RMSE and RAE

Model Performances

Model	Kaggle Score
SVM	0.58357
Linear Regression for Classification	0.73867
LightGBM Model	0.74085

LightGBM Model Overview

Tree based based classification with gradient boosted learning

Tree Construction

Gradient Boosting

Optimization and Prediction

Low Memory Consumption

Model Implementation

Feature Engineering

Cross Validation

Early Stopping

Class Imbalance

Problem Statement

Model Performance

Limitations

Future Considerations

Target Variable Imbalance

Loan Default Distribution

Model Limitations

Problem Statement

Model Performance

Limitations

Future Considerations

Future Considerations & Implications

Real-time Data
Cleaning: Analyze
customer loan default
probability

Auto Hyperparameter Tuning: Enhance model performance

Problem Statement

Model Performance

Limitations

Future Considerations

Business Implications

TO IMPROVE LOAN
DEFAULT
DECISIONS

CUSTOMER DATA IN REAL TIME

FINANCIAL INCLUSION

SMARTER LENDING PRACTICES

Questions?

Appendix

Variables of Interest

Variables of Interest

Categorical Variables of interest:

- Custom Variables:
 - IsMarried
 - SecondaryEducation
 - isCashLoan
- Demographic and financial information

Binary Variables of interest

• Document flags, having a work phone, etc

Age Groups from DAYS_BIRTH

Correlation with age and target

Numerical variables of interest

- Region rating
- Days employed

EDA – Pre-Modeling Data Cleaning

- Binary Columns
 - Created 4 new factor columns:
 - isMarried, isCashLoan, morethanSecondaryEd, DAY_EMPLOYED_ANOM
- Numerical Columns
 - Transform days into years for years old
- Factor Columns
 - Transform Years old into buckets by every 10 years
 - Replace missing values with a "missing" level

Pre-Modeling Transformations - SVM

- Extract top 20 features most correlated with the target
- Missing values
 - Median impute numerical values with NAs
 - Add "missing" category to age_group NAs
- One-Hot Encode Categorical Variables
- Scale Data around mean of 0 for numerical (non-binary) columns
- Randomly sampled 5000 observations from training data for performance

```
"TARGET"
                               "DAYS BIRTH"
"YearsOld"
                               "REGION RATING CLIENT W CITY"
"REGION RATING CLIENT"
                               "morethanSecondaryEd"
"SecondaryorLowerEd"
                               "DAYS ID PUBLISH"
"REG CITY NOT WORK CITY"
                               "DAY_EMPLOYED_ANOM"
"FLAG EMP PHONE"
                               "REG CITY NOT LIVE CITY"
"FLAG DOCUMENT 3"
                               "DAYS REGISTRATION"
"REGION POPULATION RELATIVE"
                               "LIVE_CITY_NOT_WORK_CITY"
"isCashLoan"
                               "AMT CREDIT"
"FLAG DOCUMENT 6"
                               "FLAG WORK PHONE"
"HOUR APPR PROCESS START"
                               "FLAG PHONE"
                               "isMarried"
"CNT CHILDREN"
"FLAG DOCUMENT 16"
                               "FLAG_DOCUMENT_13"
"DAYS LAST PHONE CHANGE"
                               "AMT ANNUITY"
"AMT GOODS PRICE"
                               "age group 20 30"
"age group 30 40"
                               "age group 40 50"
'age group 50 60"
                               "age group.age group missing"
```

Linear Model without SMOTE - SVM

F1 Score: N/A

• Accuracy: 91.93%

- All predictions for No Class
 - Caused by class imbalance
- Model is essentially useless

	Reference		
uc		N	Υ
Prediction	N	56537	4965
Pre	Υ	0	0

Confusion Matrix for Linear Model

Linear Model With SMOTE

- Applying SMOTE:
 - Creates synthetic observations of the minority class
- Trained the same model but on SMOTE Data
- Model output:
 - F1 Score: 0.1719
 - Accuracy: 0.3375
- Less accurate but better at catching actual positives

	Reference		
uc		N	Υ
rediction	N	16525	736
Pre	Υ	40012	4229

Confusion Matrix for Linear Model with SMOTE

Radial Model with SMOTE (Best Performing)

- Now use Radial Model with SMOTE, weights and optimized threshold
 - Can adjust for non-linear classification tasks
- Model Results on Test Data
 - Accuracy: 0.6396
 - F1 Score: 0.175
- Much better at picking true positives than prior models, but still has room for improvement for both false and true positives.
- Best Performing SVM Model

	Reference			
uc		N	Υ	
Prediction	N	36984	2614	
Pre	Υ	19553	2351	

Confusion Matrix for Radial Model