MACHINE LEARNING IN PHYSICS

PROJECTS

HARRISON B. PROSPER

PHY6938

Project Description

The project has 3 parts:

- 1. Use a machine-learning model to solve one of the following classes of problem: classification, regression, anomaly detection, or an ordinary differential equation.
- 2. Document the project in a short paper using the cernrep LaTeX package.
- 3. Give a 10-minute presentation of your project during the last week of the semester.

Project Description

Problem You can either choose a problem from your field or tackle one of the following problems.

- 1. Jet image classification.
- 2. Nuclear properties modeling (AME 2020).
- 3. Solve the Friedmann equation for the Λ CDM model.
- 4. Anomaly detection using density ratio.

Jet Classification

Problem: Using 2D images of jets of particles, classify them into two classes: jets initiated by gluons or by quarks.

Dataset: Images of shape (1, 16, 16), which have been divided into: ['test_x', 'test_y', 'train_x', 'train_y', 'valid_x', 'valid_y']

Filename: jets.h5

len(train_x): 50,000

len(valid_x): 5000

len(test_x): 5000

Nuclear Properties

Problem: Predict a nuclear property given N, Z, and A.

Dataset: 3,558 nuclei from the AME 2020 mass data¹.

	name	N	Z	Α	Mexcess	eMexcess	bindingE	ebindingE	betaE	ebetaE	atomicM	eatomticM
0	n	1	0	1	8.071318	4.4e-07	0.0	0.0	0.782347	4e-07	1.008665	4.7e-07
1	Н	0	1	1	7.288971	1.3e-08	0.0	0.0	-999	-999	1.007825	1.4e-08
2	Н	1	1	2	13.135723	1.5e-08	1.112283	2e-07	-999	-999	2.014102	1.5e-08
3	Н	2	1	3	14.949811	8e-08	2.827265	3e-07	0.018592	6e-08	3.016049	8e-08
4	Не	1	2	3	14.931219	6e-08	2.57268	1.5e-07	-999	-999	3.016029	6e-08
5	Li	0	3	3	-999	-999	-999	-999	-999	-999	-999	-999
6	Н	3	1	4	24.621129	0.1	1.720449	0.025	22.196213	0.1	4.026432	0.107354
7	Не	2	2	4	2.424916	1.5e-07	7.073916	2e-07	-22.9	0.212132	4.002603	1.6e-07
8	Li	1	3	4	25.32319	0.212132	1.15376	0.053033	-999	-999	4.027186	0.227733
9	Н	4	1	5	32.892447	0.089443	1.336359	0.017889	21.661213	0.091651	5.035311	0.09602

Filename: AME2020.csv

^{1.} The AME 2020 atomic mass evaluation, Chinese Phys. C **45**, 030002 (2021) and Chinese Phys. C **45**, 030003 (2021).

Nuclear Properties

Problem: Predict a nuclear property given N, Z, and A.

Dataset: 3,558 nuclei from the AME 2020 mass data¹.

Energy Variables:

Mexcess, bindingE, betaE: in MeV

atomicM: relative atomic mass

Note: entries in the CSV file with -999 implies missing data.

Friedmann Equation

Problem: Solve the Friedmann equation using a PINN.

Data set: To be generated by you!

Equation:

$$\frac{da}{dx} = a\sqrt{\Omega(a)}, \qquad x \equiv H_0 t$$

where for the Λ CDM model,

$$\Omega(a) = \frac{\Omega_M}{a^3} + \frac{(1 - \Omega_M - \Omega_{\Lambda})}{a^2} + \Omega_{\Lambda}$$

Initial condition: a(x = 0) = 0.

$$a(x=0)=0.$$

Suggested domain: $(x, \Omega_M, \Omega_\Lambda) = (0, 1.5) \otimes (0, 1) \otimes (0, 1)$ with the constraint $\Omega(a) > 0$.

Anomaly Detection

Problem: Detect an unknown signal in a dataset.

Dataset: Data comprising a mixture of mostly background plus a small signal and another containing background only.

Anomaly Detector:

$$\frac{p_{data}(x)}{p_{bkg}(x)} > t$$

where t is the threshold above which you declare x to be a signal. You can assume that

$$p_{data}(x) = \epsilon p_{sig}(x) + (1 - \epsilon)p_{bkg}(x)$$

Writeup

Your Paper, which should be at most 5 pages, excluding references, must include the following elements and sections:

- 1. A Title and an Abstract
- 2. Introduction
- 3. Dataset Description
- 4. Model Description
- 5. Experiments
- 6. Summary

Ground Rules

- 1. Thursday class will be devoted to work on your project. You're strongly advised to show up!
- 2. You are free to help each other, but your paper must be your own.
- 3. You are free to use any resources, but you must cite all of them.
- 4. You must document the data used, the architecture of your model, the training protocol and the results.