上海海栎创微电子有限公司

CST826 数据手册

高性能自电容触控芯片

Rev: V1.0

www.hynitron.com

2017/12/28

1. 概述

CST826 自电容触控芯片,采用高速 MCU 内核并内嵌 DSP 电路,结合自身的快速自电容感应技术,可广泛支持三角形在内的多种自电容图案,在其上实现单点手势和真实两点操作,实现极高灵敏度和极低待机功耗。

2. 芯片特点

- ◆ 内置快速自电容检测电路及高性能 DSP 模块
 - ◇ 支持在线编程:
 - ♦ 内置看门狗;
 - ♦ 多个按键支持;
 - ◇ 支持待机手势唤醒功能;

◆ 电容屏支持

- ◆ 最多支持28个感应通道;
- ◆ 通道悬空/下拉设计支持;
- ♦ 模组参数自动调校;

◆ 性能指标

- ◆ 刷新率 > 100Hz;
- ◆ 单点手势和真实两点操作;
- ◆ 动态模式下典型功耗 < 5.0mA;
- ◆ 监控模式下典型功耗 < 500uA;
- ◆ 待机模式下典型功耗 < 500uA;
- ◆ 睡眠模式下典型功耗 < 10uA;

◆ 通讯接口

- ◆ I2C 主/从通讯接口,速率 10Khz~1Mhz 可配置;
- ◆ 兼容 1.8V/3.3V 接口电平。

◆ 电源供电

- ◆ 单电源供电 2.7V~3.6V, 电源纹波 <= 50mv;
- ◇ 除电源旁路电容外,无需其它元器件。
- ◆ 封装类型: QFN40 4mm*4mm*0.35mm;

3. 引脚分布/说明

		RQ	SDA	SCL	NC	RST	NC	VCAP	GND	VDDA	NC		
CMOD0	$\sqrt{1}$	40	36	38	37	36	35	34	33 (32		30	CMOD1
S01L	2	•										29	S28R
S02L	3											28	S27R
S03L	4				~	7 7						27	S26R
S04L	5			(5]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	32	0			26	S25R
S05L	6				Q	FN	40-5	5*5				25	S24R
S06L	7											24	S23R
S07L	8											23	S22R
S08L	9											22	S21R
S09L	10	11	12	13	14	15	16	17	18	19	20	21	S20R
		S10L	S111	S12L	S13L	S14L	S15R	S16R	S17R	S18R	S19R		-

名称	说明	备注
S0~S29	感应通道	
VDDA	电源	2.7V~3.6V,接 2.2uF~ 10uF 电容
CMOD0/CMOD1	稳压电容	接 1nF~10nF 稳压电容
IRQ	中断输出	上升/下降沿可选
VCAP	稳压电源	接 0.1uF 电容
SCL/SDA	I2C	可选内部上拉/开漏模式

备注:

1. CMOD0/CMOD1 必须接稳压电容,大小在 1nF~10nF;

4. 功能描述

CST826 自电容触控芯片,通过其内置的快速自电容感应模块,可无需任何外接器件(电路旁路电容除外),即可在三角形等图案上实现单点手势和真实两点功能;在实现快速反应的同时,具有极其优异的抗噪、防水、低功耗表现。

4.1 工作模式

→ 动态模式

当频繁有触摸操作时,处于此模式;在此模式下,触控芯片快速对触摸屏进行自电容扫描,以及时检测触摸并上报给主机。

▶ 监控模式

当触摸屏超时无触摸动作时,芯片自动切换到监控模式;在此模式下,触控芯片以较低频率,通过自容扫描检测可能到来的触摸动作,并迅速切换到动态模式;

▶ 待机模式

当接收到待机命令后,处于此模式;在此模式下,触控芯片以较低频率对触摸屏进行扫描,匹配唤醒手势后进入动态模式,同时通过 IRO 引脚唤醒主机;也可通过唤醒命令切换到动态模式。

▶ 睡眠模式

当接收到睡眠命令后,处于此模式;在此模式下,触控芯片处于深度睡眠状态,以最大限度节省功耗,可通过唤醒命令切换到动态模式。

4.2 通道/节点配置

CST826 自电容触控芯片最多可提供 28 个感应通道,每个通道无需外接器件便可支持自电容扫描。 每通道可支持的自电容大小范围: 1pF~400pF

4.3 上电/复位

内置上电复位模块将使芯片保持在复位状态直至电压正常,当电压低于某阈值时,芯片也会被复位; 当外部复位引脚 RSTn 为低时将复位整个芯片,该引脚内置上拉电阻兼 RC 滤波,可将该引脚悬空; 芯片内置看门狗确保在异常情况发生时,芯片仍能在规定时间内回到正常工作状态。

4.5 低功耗模式

CST826 触控芯片支持以下低功耗方式:

- ☞ 睡眠模式: 主机向芯片发送睡眠命令后,芯片会立即进入深睡眠模式以实现最低功耗;接收到唤醒命令后,芯片会唤醒并进入动态工作模式;
- ☞ 监控模式: 动态工作模式下, 当超时无触摸, 芯片会自动进入监控模式; 此模式下芯片会以较低频率周期性唤醒以检测有效触摸, 若检测到触摸则立即进入动态工作模式以提供最佳性能, 否则继续睡眠并等待下一次唤醒;
- ☞ 待机模式:该模式下,芯片一直处于较低频率,作最低限度扫描以匹配预定义唤醒手势;

4.6 12C 通讯

该芯片支持标准的 I2C 通讯协议标准,可实现 10Khz~1Mhz 的可配通信速率。两个 I2C 引脚 SCL 和 SDA,除支持开漏模式外,还支持内部上拉模式,供灵活选择。

4.6 中断方式

触控芯片仅在检测到有效触摸,并需要上报给主机时,才会通过 IRQ 引脚通知主机读取有效数据,以提高效率,减轻 CPU 负担;

中断边沿可根据需要配置为上升沿或者下降沿有效;

当在待机模下匹配预定义手势时,IRQ 引脚还用作唤醒主机。

4.6 参数设置

该部分内容请参考 CST8xx 触控开发套件帮助文档.

5. 电气特性

环境温度 25 °C, VDDA=3.3V。

参数	最小值	典型值	最大值	单位
工作电压	2. 7	3. 3	3. 6	V
工作温度	-40	+25	+85	°C
存储温度	-60	-	+150	°C
工作湿度	_	-	95	%
电源纹波	_	-	50	mV
工作电流(动态模式)	_	5. 0	_	mA
工作电流(监控模式)	_	500@50Hz	_	uA
工作电流 (待机模式)	_	500@50Hz	-	uA
工作电流(睡眠模式)		10	-	uA

6. 产品封装

QFN40 外形图

Symbol	Dimensions In	Millimeters	Dimensions In Inches			
	Min.	Max.	Min.	Max.		
Α	0.500	0.600	0.020	0.024		
A1	0.000	0.050	0.000	0.002		
A3	0.152	REF.	0.006REF.			
D	4.924	5.076	0.194	0.200		
E	4.924	5.076	0.194	0.200		
D1	3.300	3.500	0.130	0.138		
E1	3.300	3.500	0.130	0.138		
b	0.150	0.250	0.006	0.010		
е	0.400	TYP.	0.016TYP.			
k	0.200	MIN.	0.008MIN.			
L	0.350	0.450	0.014	0.018		

QFN40 外形尺寸

7. 参考电路

