Appendix I. Sample Output

An as example of how you could format your output, and using Parameters: Mean (M) = 1000.0, Range (N) = 1000.0, QMax = 7, endTime = 10,000,000, your results might look like:

Production Stations:

Stage:	Work[%]	Starve[t]	Block[t]
S0	98.96%	0.00	103,601.39
S1	98.87%	94,672.64	18,409.24
S2a	72.40%	2,236,949.88	522,533.24
S2b	63.02%	2,943,353.53	754,801.25
S3	98.61%	136,951.46	2,206.19
S4a	62.96%	2,957,251.09	746,649.33
S4b	72.32%	2,226,450.41	540,988.14
S5	98.82%	118,226.16	0.00

Storage Queues:

Store	AvgTime[t]	AvgItems
Q1	3,674.47	3.12
Q2	515.32	0.40
Q3	4,085.28	3.39
Q4	414.71	0.29
Q5	4,011.52	3.31

Production Paths:

S2a -> S4a: 2,296 S2a -> S4b: 1,321 S2b -> S4a: 3,973 S2b -> S4b: 2,272

Obviously using random numbers will result in different values for you, but there is an expected range into which your results should fit; deviation from these expected ranges will result in a loss of marks.

You are not restricted to using this format, but whatever you choose to do must meet the criteria mentioned previously; the above example meets the specification.