Cross-validation STAT 4710

Where we are

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Model complexity

Lecture 2: Bias-variance trade-off

Lecture 3: Cross-validation

Lecture 4: Classification

Lecture 5: Unit review and quiz in class

Estimate test error for each model complexity

More samples for training \rightarrow better fitted model; More samples for testing \rightarrow better estimate of test error.

More samples for training \rightarrow better fitted model; More samples for testing \rightarrow better estimate of test error.

Drawback: Inefficient use of training samples, e.g. small validation set may lead to poor model selection.

Cross-validation (summary)

Choosing the number of folds

- More folds means more computation
- Fewer folds means the training sets used for model selection are much smaller than the actual training set
- In practice, K = 5 or K = 10 are common choices

Cross-validation standard error

degrees of freedom

$$\operatorname{se}_2$$
 se_3 se_4 se_5 $\operatorname{se}_{\operatorname{df}} = \frac{1}{\sqrt{K}} \times \operatorname{s.d.}(\operatorname{Err}_{1,\operatorname{df}},...,\operatorname{Err}_{K,\operatorname{df}})$

One standard error rule

Occam's razor:

Select the smallest model for which the CV error is within one standard error of the lowest point on the curve.

One standard error rule

Occam's razor:

Select the smallest model for which the CV error is within one standard error of the lowest point on the curve.

Often used instead of choosing the minimum of CV curve.

