Estimación de parámetros para AR(3)

Joel Alejandro Zavala Prieto

Contents

Información de contacto	2
AR(3)	3
Descripción	3
Visualización	3
\mathbf{ACF}	4
PACF	5
Estimando parámetros	6
Estimando la varianza	6
Comparando parámetros por linea de comando	7

Información de contacto

Mail: alejandro.zavala 1001@gmail.com

 ${\it Facebook:}\ https://www.facebook.com/AlejandroZavala 1001$

 $Git:\ https://github.com/AlejandroZavala98$

AR(3)

Descripción

Vamos a estimar los parámetros de una simulación para un AR(3) de 9000 observaciones. El modelo a simular es:

$$x_{t} = \phi_{1}x_{t-1} + \phi_{2}x_{t-2} + \phi_{3}x_{t-3} + Z_{t}$$

$$\phi_{1} = -\frac{1}{7}$$

$$\phi_{2} = \frac{1}{2}$$

$$\phi_{3} = \frac{1}{9}$$

$$Z_{t} \sim N(0, 12)$$

$$t = 1, 2, ..., 8000$$

Visualización

Simulando el proceso anterior AR(3), viendo el gráfico correspondiente (últimas 200 observaciones) y mostrando las primeras 20 observaciones

```
12.047150 -26.391970
         21.208009
                    -7.291541
##
    [7] -15.649191 -15.855697
                               -2.227896 -19.340788 -17.878337
                                                                  5.178570
##
   [13]
          2.612553
                    13.951557
                               -9.692816
                                          17.213257
                                                     -5.581159
## [19]
         -5.842364
                     1.973626
```

Ar(3) simulado

ACF

Autocorrelation Function

##												
##	Autocorrelations of series 'ar3.process', by lag											
##												
##	0	1	2	3	4	5	6	7	8	9	10	
##	1.000	-0.171	0.497	-0.046	0.244	-0.004	0.117	0.009	0.056	0.001	0.025	
##	11	12	13	14	15	16	17	18	19	20	21	
##	0.002	0.005	0.016	-0.013	0.020	-0.009	0.021	0.006	0.000	0.008	0.003	
##	22	23	24	25	26	27	28	29	30	31	32	
##	0.005	0.003	-0.010	0.017	-0.013	0.015	-0.012	0.009	-0.006	0.008	-0.014	
##	33	34	35	36	37	38	39					
##	0 009	-0 002	-0 007	0.015	0 000	0 035	0.010					

PACF

Partial Autocorrelation Function


```
##
## Partial autocorrelations of series 'ar3.process', by lag
##
               2
                              4
                                                    7
                      3
                                     5
                                            6
                                                           8
                                                                         10
        1
                                                                                11
## -0.171
           0.482 0.108
                          0.016
                                 0.002 -0.006
                                               0.000 -0.001 -0.012 -0.006
                                                                             0.004
##
                                                                 20
                                                                         21
                                                                                22
       12
              13
                     14
                             15
                                    16
                                           17
                                                   18
                                                          19
                                 0.008
                                                                     0.008
   -0.006
           0.017 -0.012
                          0.003
                                        0.012
                                               0.017 -0.018 -0.007
##
       23
              24
                     25
                             26
                                    27
                                           28
                                                   29
                                                          30
                                                                 31
                                                                         32
                                 0.002 -0.004 -0.004 0.001 0.007 -0.013 -0.002
##
    0.000 -0.019
                  0.014
                          0.002
              35
                     36
                             37
                                    38
                                           39
##
       34
    0.014 -0.013 0.014 0.017
                                0.030 0.018
```

Estimando parámetros

Para estimar los parámetros $\hat{\phi}_i$ para i=1,2,3 se debe resolver el sistema:

$$b = R\hat{\phi}$$

Equivalente a:

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} 1 & r_1 & r_2 \\ r_1 & 1 & r_1 \\ r_2 & r_1 & 1 \end{bmatrix} = \begin{bmatrix} \hat{\phi_1} \\ \hat{\phi_2} \\ \hat{\phi_3} \end{bmatrix}$$

Donde b es igual a:

```
## [,1]
## [1,] -0.17066480
## [2,] 0.49676043
## [3,] -0.04593968
```

Donde nuestra matriz R es:

```
## [,1] [,2] [,3]
## [1,] 1.0000000 -0.1706648 0.4967604
## [2,] -0.1706648 1.0000000 -0.1706648
## [3,] 0.4967604 -0.1706648 1.0000000
```

De tal modo resolviendo se tiene que:

```
## [1] -0.1402744 0.4911789 0.1075700
```

Estimando la varianza

Estimando la varianza del modelo AR(3) simulado es:

```
## [1] 145.7183
```

Cuya desviación del modelo AR(3) simulado es:

Comparando parámetros por linea de comando

```
##
## Call:
## arima(x = ar3.process, order = c(3, 0, 0), include.mean = FALSE)
##
## Coefficients:
## ar1 ar2 ar3
## -0.1402 0.4913 0.1075
## s.e. 0.0105 0.0092 0.0105
##
## sigma^2 estimated as 145.7: log likelihood = -35187.57, aic = 70383.15
```