FCC PART 15 SUBPART C TEST REPORT

for

UHF RFID Reader/Writer Module

Model No.: USG-M25A

FCC ID: 2ALKVUSG-M25A

of

Applicant: SK-Electronics CO.,LTD.

Address: 436-2, Tatetomita-cho, Ichijo-agaru, Higashi Horikawa-dori
Kamigyo-ku, Kyoto 602-0955 Japan

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1, IC 5107A-1

A2LA Accredited No.: 2732.01

Report No.: W6R21703-16688-C-1

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: wts@wts-lab.com

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

TABLE OF CONTENTS

1	GENERAL INFORMATION	2
1.1	Notes	2
1.2	Testing laboratory	3
	1.2.1 Location	
	1.2.2 Details of accreditation status	3
1.3	Details of approval holder	3
1.4	Application details	4
1.5	General information of Test item	4
1.6	Test standards	5
2	TECHNICAL TEST	6
2.1	Summary of test results	6
2.2	Test environment	6
2.3	Test Equipment List	7
2.4	General Test Procedure	10
3	TEST RESULTS (ENCLOSURE)	12
3.1	Peak Output Power (transmitter)	13
3.2	RF Exposure Compliance Requirements	16
3.3	Out of Band Radiated Emissions	17
3.4	Transmitter Radiated Emissions in restricted Bands	18
3.5	Spurious emissions (tx)	19
3.6	Carrier Frequency Separation	21
3.7	Number of Hopping Frequencies	24
	3.7.1 Pseudorandom Frequency Hopping Sequence	25
	3.7.2 Coordination of hopping sequences to other transmitters	
	3.7.3 System Receiver Hopping Capabilit	
3.8	Time of Occupancy (Dwell Time)	26
3.9	20dB Bandwidth	31
3.10	Band-edge Compliance of RF Emissions	34
3.11	Radiated Emissions from Receiver Part.	37
3.12	Power Line Conducted Emission	39

FCC ID: 2ALKVUSG-M25A**1** General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems.

The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

Tester:

April 10, 2017 Leon Chueh leon Chueh

Date WTS-Lab. Name Signature

Technical responsibility for area of testing:

April 10, 2017 Kevin Wang

Date WTS Name Signature

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207,

Taiwan (R.O.C.)

3 meter semi-anechoic chamber

No.35, Aly. 21, Ln. 228, Ankang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

TEL:886-2-6613-0228 FAX:886-2-2791-5046

Company

Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1, IC 5107A-1

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd.:

Name:	./.
Accredited number:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.

1.3 Details of approval holder

Name: SK-Electronics CO.,LTD.

Street: 436-2, Tatetomita-cho, Ichijo-agaru, Higashi Horikawa-dori

Kamigyo-ku,

Town: Kyoto 602-0955

Country: Japan

Telephone: +81-75-441-2333 Fax: +81-75-441-4291

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

1.4 Application details

Date of receipt of test item(1st): May 13, 2015

Date of test(1st): from May 14, 2015 to November 03, 2015

Date of receipt of test item(2nd): March 22, 2017

Date of test(2nd): from March 23, 2017 to April 10, 2017

1.5 General information of Test item

Type of test item: UHF RFID Reader/Writer Module

Model Number: USG-M25A

Multi-listing model number: ./.

Brand name: SK-Electronics Co., LTD

Photos: see Annex

Technical data

Frequency band: 902-928 MHz
Frequency (ch A): 902.75 MHz
Frequency (ch B): 915.25 MHz
Frequency (ch C): 927.25 MHz

<u>Transmitter</u> <u>Unom</u>

Normal Mode

Power (ch 1): Conducted: 26.50 dBm Power (ch 25): Conducted: 26.16 dBm Power (ch 50): Conducted: 26.22 dBm

Power supply: 5Vdc & 3.3Vdc

6Vdc(from testing jig)

Operation modes: Half-duplex

Modulation Type: PRASK

Antenna Type: Panel Antenna (for Antenna model: ANT800-US)

Ceramic Patch Antenna (for Antenna model: PWD100)

Patch Antenna (for Antenna model: EBD-101)
Loop Antenna (for Antenna model: ANT-T035)
Loop Antenna (for Antenna model: SUOA-0116)
Loop Antenna (for Antenna model: SUOA-0132)
Loop Antenna (for Antenna model: SUOA-0216)
Loop Antenna (for Antenna model: SUOA-0232)
Loop Antenna (for Antenna model: SUOA-0316)
Loop Antenna (for Antenna model: SUOA-0332)

FCC ID: 2ALKVUSG-M25A

Antenna gain: 9.3 dBi(for Antenna model: ANT800-US)

dBi(for Antenna model: PWD100) 6.5 dBi(for Antenna model: EBD-101) -36.331 dBi(for Antenna model: ANT-T035)

dBi = -33.331 dBic -3 = -36.331 dBi-22 dBi(for Antenna model: SUOA-0116) -19 dBi(for Antenna model: SUOA-0132) -22 dBi(for Antenna model: SUOA-0216)

-18 dBi(for Antenna model: SUOA-0232) -23 dBi(for Antenna model: SUOA-0316) -18 dBi(for Antenna model: SUOA-0332)

Host device: none

Classification:

Fixed Device	
Mobile Device (Human Body distance > 20cm)	
Portable Device (Human Body distance < 20cm)	
Modular Radio Device	

Manufacturer: (if applicable)

Name: Street: Town: Country:

Additional information: ./.

1.6 **Test standards**

Technical standard: FCC RULES PART 15 SUBPART C § 15.247 (2015-10)

Special statement:

- 1. This test report is based on the original test report number: W6M21410-14528-C-1.(FCC ID: WXAUM800L)
- 2. The relevant Circuitry, PCB Layout, Inner element, Appearance and Function is exactly the same as the one in original test report. The differences are the approval holder, the manufacturer, the model number, the product name, adding antenna and adding test data of Spurious Emissions radiated. The other test result is based on the original test report no. W6M21410-14528-C-1 without re-testing.

FCC ID: 2ALKVUSG-M25A **2** Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

or

The deviations as specified in 3 were ascertained in the course of the tests \Box performed.

2.2 Test environment

Temperature: 23 °C

Relative humidity content: 20 ... 75 %

Air pressure: 86 ... 103 kPa

Details of power supply 5Vdc & 3.3Vdc

6Vdc(from testing jig)

Extreme conditions parameters: test voltage : -- extreme

min : -- V max : -- V

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

2.3 Test Equipment List

No.	Test equipment	Туре	Serial No.	Manufacturer	Cal. Date	Next Cal. Date
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2016/5/20	2017/5/19
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Functi	on Test
ETSTW-CE 008	HF-EICHLEITUNG RF STEP ATTENUATOR 139dB DPSP	334.6010.02	844581/024	R&S	Functi	on Test
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2016/7/15	2017/7/14
ETSTW-CE 016	TWO-LINE V-NETWORK	ENV216	100050	R&S	2016/9/12	2017/9/11
ETSTW-CE 028	MXE EMI Receiver	N9038A	MY53220110	Agilent	2016/8/26	2017/8/25
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2016/5/20	2017/5/19
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2016/5/25	2017/5/24
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2016/7/4	2017/7/3
ETSTW-RE 012	TUNABLE BANDREJECT FILTER	D.C 0309	146	K&L	Functi	on Test
ETSTW-RE 013	TUNABLE BANDREJECT FILTER	D.C 0336	397	K&L	Functi	on Test
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2016/6/24	2017/6/23
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	ETS-Lindgren	2016/6/29	2017/6/28
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	ETS-Lindgren	2017/3/22	2018/3/21
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2017/2/7	2018/2/6
ETSTW-RE 043	Log-Periodic Dipole Antenna	HL223	100166	R&S	2017/3/20	2018/3/19
ETSTW-RE 044	Log-Periodic Antenna	HL050	100094	R&S	2017/4/6	2018/4/5
ETSTW-RE 045	ESA-E SERIES SPECTRUM ANALYZER	E4404B	MY45111242	Agilent	Pre-te	st Use
ETSTW-RE 050	Attenuator 10dB	50HF-010-1	None	JFW	2017/3/1	2018/2/28
ETSTW-RE 051	Attenuator 6dB	50HF-006-1	None	JFW	2017/3/1	2018/2/28
ETSTW-RE 053	Attenuator 3dB	50HF-003-1	None	JFW	2017/3/1	2018/2/28
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2017/3/1	2018/2/28
ETSTW-RE 060	Attenuator 30dB	5015-30	F651012z-01	ATM	2017/3/1	2018/2/28
ETSTW-RE 062	Amplifier Module	CHC 2	None	KMIC	2017/4/6	2018/4/5
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Functi	on Test
ETSTW-RE 069	Double-Ridged Guide Horn Antenna	3117	00069377	ETS-Lindgren	Functi	on Test
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2016/9/8	2017/9/7
ETSTW-RE 088	SOLID STATE AMPLIFIER	KMA180265A01	99057	KMIC	2016/9/20	2017/9/19
ETSTW-RE 099	DC Block	50DB-007-1	None	JFW	2017/3/1	2018/2/28
ETSTW-RE 112	AC POWER SOURCE	TFC-1005	T-0A023536	T-Power	Function test	
ETSTW-RE 115	2.4GHz Notch Filter	N0124411	473874	MICROWAVE CIRCUITS	2017/1/12	2018/1/11
ETSTW-RE 120	RF Player	MP9200	MP9210-111022	ADIVIC	Functi	on test
ETSTW-RE 122	SIGNAL GENERATOR	SMF100A	102149	R&S	2016/5/23	2017/5/22

Registration number: W6R21703-16688-C-1 FCC ID: 2ALKVUSG-M25A

FCC ID: 2ALI	KVUSG-M25A					
ETSTW-RE 125	5GHz Notch filter	5NSL11- 5200/E221.3-O/O	1	K&L Microwave	2016/8/10	2017/8/9
ETSTW-RE 126	5GHz Notch filter	5NSL12- 5800/E221.3-O/O	1	K&L Microwave	2016/8/10	2017/8/9
ETSTW-RE 127	RF Switch Box	RFS-01	None	WTS	2017/3/1	2018/2/28
ETSTW-RE 128	5.3GHz Notch filter	N0153001	SN487233	Microwave Circuits	2016/8/10	2017/8/9
ETSTW-RE 129	5.5GHz Notch filter	N0555984	SN487234	Microwave Circuits	2016/8/10	2017/8/9
ETSTW-RE 130	Handheld RF Spectrum Analyzer	N9340A	CN0147000204	Agilent	Pre-te	st Use
ETSTW-RE 142	Amplifier	8447D	2805A03378	Agilent	2017/4/6	2018/4/5
ETSTW-RE 143	Humidity Temperature Meter	TES-1260	110104623	TES	2016/8/19	2017/8/18
ETSTW-RE 147	Bi-log Hybrid Antenna	MCTD 2786B	BLB16M04005	ETC	2017/3/22	2018/3/21
ETSTW-EMI 011	USB Compact Modulator	SFC-U	101689	R&S	2016/5/4	2017/5/3
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2017/2/24	2018/2/23
ETSTW-GSM 003	Radio Communication Analyzer	MT8820C	6201342073	Anritsu	2017/2/10	2018/2/9
ETSTW-GSM 004	Wideband Radio Communication Tester	CMW500	128092	R&S	2016/12/15	2017/12/14
ETSTW-GSM 019	Band Reject Filter	WRCTF824/849- 822/851-40 /12+9SS	3	WI	2017/1/12	2018/1/11
ETSTW-GSM 020	Band Reject Filter	WRCD1747/1748- 1743/1752-32/5SS	1	WI	2017/1/12	2018/1/11
ETSTW-GSM 021	Band Reject Filter	WRCD1879.5/1880.5 -1875.5/1884.5- 32/5SS	3	WI	2017/1/12	2018/1/11
ETSTW-GSM 022	Band Reject Filter	WRCT901.9/903.1- 904.25-50/8SS	1	WI	2017/1/12	2018/1/11
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2016/9/14	2017/9/13
ETSTW-Cable 010	BNC Cable	RGS-142	None	THERMAX	2016/9/12	2017/9/11
ETSTW-Cable 011	SMA to N type Cable	RGU-400	None	THERMAX	Pre-test U	Jse NCR
ETSTW-Cable 012	BNC Cable	RGS-400	None	THERMAX	2016/9/12	2017/9/11
ETSTW-Cable 016	BNC Cable	Switch Box	B Cable 1	Schwarz beck	2017/2/23	2018/2/22
ETSTW-Cable 017	BNC Cable	X Cable	B Cable 2	Schwarz beck	2017/2/23	2018/2/22
ETSTW-Cable 018	BNC Cable	Y Cable	B Cable 3	Schwarz beck	2017/2/23	2018/2/22
ETSTW-Cable 019	BNC Cable	Z Cable	B Cable 4	Schwarz beck	2017/2/23	2018/2/22
ETSTW-Cable 020	N TYPE Cable	OATS Cable 1	N30N30-L335-15M	JYE BAO CO.,LTD.	2016/4/22	2017/4/21
ETSTW-Cable 022	N TYPE Cable	5006	0002	JYE BAO CO.,LTD.	2017/4/6	2018/4/5
ETSTW-Cable 026	Microwave Cable	SUCOFLEX 104	279075	HUBER+SUHNER	2017/3/1	2018/2/28
ETSTW-Cable 027	Microwave Cable	SUCOFLEX 104	279083	HUBER+SUHNER	2016/5/13	2017/5/12
ETSTW-Cable 028	Microwave Cable	FA147A0015M2020	30064-2	UTIFLEX	2016/9/20	2017/9/19
ETSTW-Cable 029	Microwave Cable	FA147A0015M2020	30064-3	UTIFLEX	2016/9/20	2017/9/19
ETSTW-Cable 030	Microwave Cable	SUCOFLEX 104 (S_Cable 9)	279067	HUBER+SUHNER	2017/3/1	2018/2/28
ETSTW-Cable 031	Microwave Cable	SUCOFLEX 104 (S_Cable 10)	238092	HUBER+SUHNER	2017/4/6	2018/4/5
ETSTW-Cable 043	Microwave Cable	SUCOFLEX 104	317576	HUBER+SUHNER	2017/4/6	2018/4/5
ETSTW-Cable 048	Microwave Cable	SUCOFLEX 104	325519	HUBER+SUHNER	2017/4/6	2018/4/5
ETSTW-Cable 058	Microwave Cable	SUCOFLEX 104	none	HUBER+SUHNER	2017/2/20	2018/2/19

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

ETSTW-Cable 064	Microwave Cable	SUCOFLEX 104	MY28891	HUBER+SUHNER	2016/4/13	2017/4/12
ETSTW-Cable 066	SMA type cable	32022	None	ASTROLAB	2016/9/12 2017/9/11	
ETSTW-Cable 071	N TYPE CABLE	EMCCFD400-NM- NM-25000	170239	EMCI	2017/2/20 2018/2/19	
WTSTW-SW 002	EMI TEST SOFTWARE	EZ_EMC	None	Farad	Version ETS-03A1	
WTSTW-SW 006	EMI TEST SOFTWARE	e3	None	AUDIX	Version 9.161014	
WTSTW-SW 008	Signal studio	Agilent	None	AUDIX	Version 2.0.0.1	

FCC ID: 2ALKVUSG-M25A

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.10-2013 6.2 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.10-2013 6.3 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient, temperature of the UUT was 23°C with a humidity of 40 %.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS

33 $20 \text{ dB}\mu\text{V} + 10.36 \text{ dB} + 6 \text{ dB} = 36.36 \text{ dB}\mu\text{V/m} \text{ @3m}$

The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.10-2013 6.2.2. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207, Taiwan (R.O.C.). The Registration Number: **930600**.

FCC ID: 2ALKVUSG-M25A

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows:

Average = Peak + Duty Factor

Duty Factor = 20 log (dwell time/T)

T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

ANSI STANDARD C63.10-2013 B.2.7: Any measurements that utilize special test software shall be indicated and referenced in the test report. During testing, test software 'EZ EMC' was used for setting up different operation modes.

FCC ID: 2ALKVUSG-M25A

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)	×	×	
Equivalent radiated Power	15.247(b)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c)	×	×	
Spurious Emissions conducted – Transmitter operating	15.247			
Carrier Frequency Separation	15.247(a) (1)	×	×	
Number of Hopping Frequencies	15.247(a) (1)(i)	×	×	
Time of Occupancy (Dwell Time)	15.247(a) (1)(i)	×	×	
20 dB Bandwidth	15.247(a) (1)(i)	×	×	
Band-edge Compliance of RF Emission	15.247(c)	×	×	
Radiated Emission from Receiver Part	15.109	×	×	
Power Line Conducted Emission	15.207(a)			

The follows is intended to leave blank.

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

3.1 Peak Output Power (transmitter)

FCC Rule: 15.247

This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).

MAX OUTPUT POWER

Date: 3.NOV.2015 11:05:24

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

MAX OUTPUT POWER

Date: 3.NOV.2015 11:06:48

MAX OUTPUT POWER

Date: 3.NOV.2015 11:07:13

FCC ID: 2ALKVUSG-M25A

Maximum Peak Output Power

Limits:

Frequency	Number of hopping channels					
MHz	≥ 75	≥ 50	49 ≥ 25	74 ≥ 15		
902-928		30 dBm	24 dBm			
2400-2483.5 MHz	30 dBm			21 dBm		
5725-5850 MHz	30 dBm					

In case of employing transmitter antennas having antenna gain >dBi and using fixed poin-to point operation consider §15.247 (b)(4).

Test equipment used: ETSTW-RE 055, ETSTW-RE 050, ETSTW-RE 064

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

3.2 RF Exposure Compliance Requirements

According to Supplement C, Edition 01-01 to OET Bulletin 65, Edition 97-01 this spread spectrum transmitter is categorically excluded from routine environmental evaluation because of the low power level, where there is a high likelihood of compliance with RF exposure standards.

$$S = \frac{PG}{4 \pi R^2}$$

S – Power Density

P – Output power ERP

R – Distance

D – Cable Loss

AG – Antenna Gain

Item	Unit	Value	Remarks
P	mW	446.6836	Peak value
D	dB		
AG	dBi	9.3	
G		8.5114	Calculated Value
R	cm	20	Assumed value
S	mW/cm ²	0.7564	Calculated value

Limits:

Limit for General Population / Uncontrolled Exposure					
Frequency (MHz)	Power Density (mW/cm ²)				
1500 – 100.000	1.0				

FCC ID: 2ALKVUSG-M25A

3.3 Out of Band Radiated Emissions

FCC Rule: 15.247(c), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement.

For frequencies below 1GHz:

Max. reading – 20 dB

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty Cycle correction = 20 log (dwell time/100ms)
For frequencies above 1GHz (Peak measurements).
Limit = max. aver. reading-20dB +20dB(because Peak detector is used)

For frequencies above 1GHz (Average measurements). Max. reading – 20 dB - duty cycle correction:

No duty cycle correction was added to the reading

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 111, ETSTW-RE 030, ETSTW-RE 064

FCC ID: 2ALKVUSG-M25A

3.4 Transmitter Radiated Emissions in restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35

Radiated emission measurements were performed from 30 MHz to 26000 MHz.

For radiated emission tests, the analyzer setting was as followings:

RES BW VID BW

Frequency <1 GHz 100 kHz 100 kHz (Peak measurements) Frequency >1 GHz 1 MHz 1 MHz (Peak measurements)

1 MHz 1 MHz (Average measurements)

Limits:

For frequencies below 1GHz:

Frequency of Emission (MHz)	Field strength (microvolts/meter)	Field Strength (dB microvolts/meter)
30 – 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continues operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty cycle correction = $20 \log (dwell time/100ms)$

For frequencies above 1GHz (Average measurements).

Limit – duty cycle correction

No duty cycle correction was added to the reading.

 $54.0dB\mu V/m$

For frequencies above 1GHz (Peak measurements).

Limit + 20dB

 $54.0 dB \mu V/m + 20 dB = 74 dB \mu V/m$

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 111, ETSTW-RE 064

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

3.5 Spurious emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

Calculation of test results:

Modo:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits. In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Marker-Delta-Method" or the "Duty-Cycle Correction Factor".

Summary table with radiated data of the test plots

Model:	J	JSG-M25A		Date:				
Mode:				Temperature:		$^{\circ}\mathrm{C}$	Engineer:	
Polarization:	Horizontal			Humidity:		%		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
		-						

Mode.				remperature.		C	Engineer.	
Polarization:	Vertical			Humidity:		%		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
	-		-	-	-	-		

Engineer.

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty above 1GHz: 30-1000 MHz = \pm 3.30 dB, 1-18 GHz = \pm 2.28 dB, 18-40 GHz= \pm 2.19 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. See attached diagrams in appendix.

All other not noted test plots do not contain significant test results in relation to the limits.

TEST RESULT (Transmitter): The unit DOES meet the FCC requirements.

Test equipment used: ETSTW-RE 030, ETSTW-RE 062, ETSTW-RE 142,

ETSTW-RE 147, ETSTW-RE 088, ETSTW-RE 018, ETSTW-RE 064

FCC ID: 2ALKVUSG-M25A

3.6 Carrier Frequency Separation

Carrier Frequency Separation was measured with modulation (declared by manufacturer).

According to FCC rules part 15 subpart C §15.247 frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater.

FREQUENCY SEPARATION
Date: 19.MAY.2015 19:09:17

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

FREQUENCY SEPARATION
Date: 19.MAY.2015 19:13:28

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

Limits:

Frequency Range	Limits						
MHz	20 dB bandwidth < 25 kHz	20 dB bandwidth > 25 kHz					
902-928	25 kHz	20 dB bandwidth					
2400-2483.5 5725-5850.0	25 kHz	20 dB bandwidth					

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

FCC ID: 2ALKVUSG-M25A

3.7 Number of Hopping Frequencies

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping frequencies. Frequency hopping systems in 5725-5850 MHz bands shall use least 75 hopping frequencies.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20dB bandwidth of the hopping channel 250 kHz or greater, the system shall use at least 25 hopping frequencies.

NUMBER OF HOPPING
Date: 19.MAY.2015 19:15:07

Limits:

Frequency Range	Limit					
MHz	20dB Bandwidth	Number of Channels				
002 029 MH-	Bandwidth < 250 kHz	≥ 50				
902-928 MHz	Bandwidth ≥ 250 kHz	≥ 25				
2400-2483.5	not defined	15				
5725-5850.0 MHz	1 MHz	75				

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

3.7.1 Pseudorandom Frequency Hopping Sequence

Channel	MHz	Channel	MHz
Ch1	902.75	Ch26	915.25
Ch2	903.25	Ch27	915.75
Ch3	903.75	Ch28	916.25
Ch4	904.25	Ch29	916.75
Ch5	904.75	Ch30	917.25
Ch6	905.25	Ch31	917.75
Ch7	905.75	Ch32	918.25
Ch8	906.25	Ch33	918.75
Ch9	906.75	Ch34	919.25
Ch10	907.25	Ch35	919.75
Ch11	907.75	Ch36	920.25
Ch12	908.25	Ch37	920.75
Ch13	908.75	Ch38	921.25
Ch14	909.25	Ch39	921.75
Ch15	909.75	Ch40	922.25
Ch16	910.25	Ch41	922.75
Ch17	910.75	Ch42	923.25
Ch18	911.25	Ch43	923.75
Ch19	911.75	Ch44	924.25
Ch20	912.25	Ch45	924.75
Ch21	912.75	Ch46	925.25
Ch22	913.25	Ch47	925.75
Ch23	913.75	Ch48	926.25
Ch24	914.25	Ch49	926.75
Ch25	914.75	Ch50	927.25

3.7.2 Coordination of hopping sequences to other transmitters

This transmitter does not have the ability of being coordinated with other FHSS system for as soon as

the transmitter is in operation, the hopping frequency will follow the selected hopping sequence to

transmit independently and no coordination is possible. Especially, this transmitter is used as a UHF

RFID READER, so no coordination of hopping frequency is required.

FCC ID: 2ALKVUSG-M25A

3.7.3 System Receiver Hopping Capability

Due to each hopping frequency will be transmitted in accordance to the frequency tables described

above, there is no any frequency will be able to hop more times than others. Therefore each frequency

will be used equally.

3.8 Time of Occupancy (Dwell Time)

Frequency hopping systems operating in the 5725-5850 MHz band shall use an average time of occupancy on any frequency not greater than 0.4 seconds within a 30 second period.

In 2400-2483.5 MHz band the average time of occupancy on any channel shall not be greater than 0.4 seconds multiplied by the number of hopping channels employed.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 20 second period; if the 20dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

DWELL TIME

Date: 19.MAY.2015 19:19:59

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

DWELL TIME

Date: 19.MAY.2015 19:40:49

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

DWELL TIME

Date: 19.MAY.2015 19:42:49

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

DWELL TIME (5.769ms + 18 = 103.842ms)
Date: 19.MAY.2015 19:43:30

Limits and measurement periods:

Frequency MHz	Number of channels	Measurement Periode	Limit
902 – 928	≥50	20 s	0.4 s
902 – 928	49 ≥ 25	10 s	0.4 s
2400 – 2483.5	2400 – 2483.5 ≥ 15		0.4 s
5725- 5850	≥ 75	30 s	0.4s

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

FCC ID: 2ALKVUSG-M25A **3.9 20dB Bandwidth**

Frequency hopping systems operating in the 5725-5850 MHz bands shall use a maximum 20dB bandwidth of 1 MHz.

The 20dB bandwidth is measured on the lowest, middle and highest hopping channel.

For frequency hopping systems operating in the 902-928 MHz band the maximum 20dB bandwidth of the hopping channel is 500 kHz.

20DB BANDWIDTH

Date: 19.MAY.2015 18:59:02

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

20DB BANDWIDTH

Date: 19.MAY.2015 18:58:45

20DB BANDWIDTH

Date: 19.MAY.2015 18:58:16

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

Limits:

Frequency Range / MHz	Limit
902-928	≤ 500 kHz
2400-2483.5	not defined
5725-5850	≤ 1 MHz

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

FCC ID: 2ALKVUSG-M25A

3.10 Band-edge Compliance of RF Emissions

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

BANDEDGE

Date: 19.MAY.2015 19:00:22

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

Date: 19.MAY.2015 19:01:15

BANDEDGE HOPPING MODE

Date: 19.MAY.2015 19:03:07

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

BANDEDGE HOPPING MODE
Date: 19.MAY.2015 19:02:45

Limits:

Frequency Range / MHz	Limit
902 –928	
2400 – 2483.5	- 20 dB
5725 - 5850	

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

3.11 Radiated Emissions from Receiver Part

FCC Rule: 15.109

Summary table with radiated data of the test plots

Model: USG-M25A Date: --

Mode: -- °C Engineer: --

Polarization: Horizontal Humidity: -- %

o i wi i i i wi i o i i i	110112011001			110111110111	, 0			
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
							-	

				Res	sult	Li	mit			
Frequency	Read	ling	Factor	(dBu	V/m)	(dBu	ıV/m)	Margin	Table	Ant.
	(dBı	ıV)	(dB)	Pe	eak	P	eak		Degree	High
(MHz)	Peak	Ave.	Corr.	Av	e.	A.	ve.	(dB)	(Deg.)	(cm)
				1						
				1						

Polarization: Vertical Humidity: -- %

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
			-				1	

Frequency	Read	ling	Factor	Res (dBu	sult V/m)		mit ·V/m)	Margin	Table	Ant.
	(dBı	ıV)	(dB)	Pe	eak	P	eak		Degree	High
(MHz)	Peak	Ave.	Corr.	Av	/e.	A ⁻	ve.	(dB)	(Deg.)	(cm)
		1		1						

Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty above 1GHz: 0-1000 MHz = \pm 3.30 dB, 1-18 GHz = \pm 2.28 dB, 18-40 GHz= \pm 2.19 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6. See attached diagrams in appendix

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

Except for Class A digital devices, the field strength of radiated emissions from unintentional

radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission (MHz)	Field Strength (microvolts/meter)	Field Strength (dBmicrovolts/meter)
30 - 88	100	40.0
88 – 216	150	43.5
216 – 960 Above 960	200 500	46.0 54.0

Test equipment used: ETSTW-RE 030, ETSTW-RE 062, ETSTW-RE 142,

ETSTW-RE 147, ETSTW-RE 088, ETSTW-RE 018, ETSTW-RE 064

Registration number: W6R21703-16688-C-1

FCC ID: 2ALKVUSG-M25A

3.12 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Model:	USG-M25A	Date:	-	-		
Mode:		Temperature:		°C	Engineer:	
Polarization:	N	Humidity:		%		

I CIMITEMOTOTI.	- ,				, -			
Frequency	Reading		Factor	Result		Limit		Margin
	(dB	uV)	(dB)	(dB	uV)	(dB	uV)	
(MHz)	QP	Ave.	Corr.	QP	Ave.	QP	Ave.	(dB)

Polarization: Reading Result Frequency Factor Limit Margin (dBuV) (dBuV) (dB) (dBuV) OP Ave. Ave. (MHz) Corr. OP Ave. OP (dB)

Limits:

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi Peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

Note:

- 1. The formula of measured value as: Test Result = Reading + Correction Factor
- 2.The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss
- 3. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 4.All not in the table noted test results are more than 20 dB below the relevant limits.
- 5.Measurement uncertainty = ± 1.67 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.
- 6.Up Line: QP Limit Line, Down Line: Ave Limit Line.
- 7. This test is not required because there is no AC power line or signal line for this EUT.

Test equipment used: ETSTW-CE 001, ETSTW-CE 016, ETSTW-CE 028