On linear codes associated with the Desarguesian ovoids in $Q^+(7,q)$

Michael Kiermaier

Mathematisches Institut Universität Bayreuth

Finite Geometries (Irsee 6) August 30, 2022 Kloster Irsee, Germany

joint work with Tao Feng, Peixian Lin and Kai-Uwe Schmidt

Points and linear codes

- Let \mathcal{P} spanning multiset of n points in $PG(\mathbb{F}_q^k) \cong PG(k-1,q)$.
- $\blacktriangleright \text{ Write } \mathcal{P} = \{\!\!\{\langle \mathbf{v_1} \rangle, \dots, \langle \mathbf{v_n} \rangle \}\!\!\}.$
- ▶ Generator matrix $G = (v_1 \cdots v_n) \in \mathbb{F}_q^{k \times n}$ yields \mathbb{F}_q -linear $[n, k]_q$ -code C.
- C well-defined up to linear equivalence of codes.
- C full-length, i.e. no all-zero position.
- For codeword $c = x^{\top}G \neq \mathbf{0}$, define hyperplane $H = x^{\perp}$. Then $w_{\text{Ham}}(c) = n - \#\{\!\{P \in \mathcal{P} \mid P \in H\}\!\}$. (= # of points in \mathcal{P} outside of H)

Conclusion

- We get correspondence
 Spanning multisets P of points
 ←→ full-length linear codes C.
- ▶ Weights of $C \longleftrightarrow$ hyperplane intersections of \mathcal{P} .
- Corresponding notions on geometric side: arc, minihyper.
- Strong link between finite geometry and coding theory.
- First (?) published in 1964 in PhD thesis of Burton.

Plan

- Take your favorite point set P.
- Compute the hyperplane intersections.
- ► Hope for a good code!

Ovoids in $Q^+(7, q)$

- Ovoid in polar space = set of points covering every generator exactly once.
- ► Kantor (1982): two series of ovoids in $Q^+(7, q)$.
- ▶ Unitary ovoid for $q \equiv 0, 2 \mod 3$. stabilized by PGU(3, q).

Hyperplane intersections determined by Cooperstein (1995) ($q \equiv -1 \mod 6$).

 $\rightsquigarrow [q^3 + 1, 8, q^3 - q^2 - 2q]_q$ -code.

Desarguesian ovoid for q even. stabilized by $PGL(2, q^3)$.

Goal: Determine its hyperplane intersections.

$$\rightarrow [q^3 + 1, 8, q^3 - q^2 - q]_q$$
-code.

The Desarguesian ovoid

- ▶ Let $V = \mathbb{F}_q \times \mathbb{F}_{q^3} \times \mathbb{F}_{q^3} \times \mathbb{F}_q$ vector space over \mathbb{F}_q of dim. 8.
- fix nondegenerate quadratic form on V

$$Q((x, y, z, w)) = xw + Tr(yz).$$

- \rightsquigarrow polar space $Q^+(7,q)$.
- group operation of $PGL(2, q^3)$ on PG(V) induced by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \bullet (x y z w)^{\top} =$$

$$\begin{pmatrix} \mathsf{N}(d)x + \mathsf{N}(c)w + \mathsf{Tr}(cd^{q^2+q}y + dc^{q^2+q}z) \\ bd^{q^2+q}x + ac^{q^2+q}w + ad^{q^2+q}y + bd^{q^2}c^qy^q + bd^qc^{q^2}y^{q^2} + bc^{q^2+q}z + d^qac^{q^2}z^q + d^{q^2}ac^qz^{q^2} \\ db^{q^2+q}x + ca^{q^2+q}w + cb^{q^2+q}y + db^{q^2}a^qy^q + db^qa^{q^2}y^{q^2} + da^{q^2+q}z + b^qca^{q^2}z^q + b^{q^2}ca^qz^{q^2} \\ \mathsf{N}(b)x + \mathsf{N}(a)w + \mathsf{Tr}(ab^{q^2+q}y + ba^{q^2+q}z) \end{pmatrix}$$

- q even: Orbit O of ⟨(1,0,0,0)⟩ is Desarguesian ovoid.
 q odd: O complete partial ovoid in W(7, q)
 (Cossidente 2011)
- ▶ We consider *O* for all values of *q*.

Theorem

There are four orbits on PG(V), with the following properties.

orbit	size	representative v	$\#(v^{\perp}\cap {\color{red} {\cal O}})$
0	$q^{3} + 1$	$\langle (1,0,0,0) \rangle$	1
O_2	$q(q^2+q+1)(q^3+1)$	$\langle (0,0,1,0) \rangle$	$q^2 + 1$
<i>O</i> ₃	$\frac{1}{2}q^3(q^3+1)(q-1)$	$\langle (1,0,0,1)\rangle$	$q^2 + q + 1$
O_4	$\frac{1}{2}q^3(q^3-1)(q+1)$	$\langle (1,0,lpha,lpha) angle$	$q^2 - q + 1$

Where $\alpha \in \mathbb{F}_q$ such that $x^2 - x - \alpha \in \mathbb{F}_q[x]$ is irreducible.

Proof (sketch).

- ▶ Enough to compute $\#(v^{\perp} \cap O)$ for single representative v.
- ▶ Use orbit-stabilizer-theorem for (#0), #0, #03.
- Show that $PG(V) \setminus (O \cup O_2 \cup O_3)$ is a single orbit. (longest part; count solutions of certain equations in \mathbb{F}_{q^3}).
- several pages of computations.

Let C_O be the \mathbb{F}_q -linear code associated to O.

Corollary

The code C_O has the parameters $[q^3+1,8,q^3-q^2-q]_q$ and the weight enumerator

weight	multiplicity
0	1
$q(q^2-q-1)$	$\frac{1}{2}q^3(q^3+1)(q-1)^2$
$q^2(q-1)$	$q(q^6-1)$
$q(q^2-q+1)$	$\frac{1}{2}q^3(q^3-1)(q^2-1)$
q^3	$(q^3 + 1)(q - 1)$

Proof.

Correspondence "points \leftrightarrow linear codes".

Corollary

The code C_O^{\perp} has the parameters $[q^3+1,q^3-7,d]_q$ with

$$d = \begin{cases} 9 & \text{if } q = 2; \\ 6 & \text{if } q = 3; \\ 5 & \text{otherwise.} \end{cases}$$

Proof.

Apply MacWilliams to the weight enumerator of C_O .

Remark

For q = 2:

- $ightharpoonup C_O$ is the [9, 8, 2] parity check code.
- $ightharpoonup C_O^{\perp}$ is the [9, 1, 9] repetition code.

Question

How good are the codes C_O and C_O^{\perp} ?

Interlude: Optimality of linear codes

When should we call a linear code optimal?

First approach: parametric optimality

- ▶ Parameters of linear code C usually given as [n, k, d].
- ▶ We want: n small, k large, d large.
- parametric optimality: Fix two parameters.
 C optimal third parameter is best possible
- ► *C* distance-optimal (*d*-optimal) $\iff \nexists [n, k, d+1]$ -code.
- ► *C* dimension-optimal (*k*-optimal) \iff \nexists [*n*, *k* + 1, *d*]-code.
- ► *C* length-optimal (*n*-optimal) $\iff \nexists [n-1, k, d]$ -code.

Parametric optimality (continued)

- Dependencies among n-, k- and d-optimality?
- Yes!
 C n-optimal ⇒ C k-optimal and C d-optimal.
 Proof: via shortening / puncturing
- ightharpoonup
 - n-optimality: interesting!
 - d-optimality and k-optimality: pretty weak. Unfortunately: Used a lot in the literature.
- ► Flaw of concept of parametric optimality: Optimality notions depend on chosen basis (n, k, d) of the parameter space.

Second approach: wish list

What do we expect of an optimal code?

- "better than others": Cannot be constructed in an elementary way from other linear codes.
- "building blocks": Every realizable parameter set should be constructible in an elementary way from optimal codes.

Questions and potential complications

- What should be considered as an elementary construction?
- Conditions might be contradictory (circular dependencies).
- What about computability?

Compromise

- We consider the following "local" elementary constructions:
 - ► Extend by a zero position: $[n, k, d] \rightsquigarrow [n+1, k, d]$.
 - ► Shorten: $[n, k, d] \rightsquigarrow [n-1, k-1, d]$.
 - ▶ Puncture: $[n, k, d] \rightsquigarrow [n-1, k, d-1]$.
- "better than others"-property yields the following notions of optimality for [n, k, d] code C.
 - ▶ Again: C length-optimal (n-opt.) \iff #[n-1,k,d]-code.
 - ► C shortening-optimal (S-opt.) \iff $\nexists [n+1, k+1, d]$ -code.
 - ► C puncturing-optimal (*P*-opt.) $\iff \nexists [n+1,k,d+1]$ -code.
 - C strongly optimal ←⇒ n-opt. and S-opt. and P-opt.

(Dodunekov, Simonis 2000)

Remarks

- ▶ n-, S- and P-optimality are independent properties.
- strongly regular codes satisfy "building block"-property for all codes C except border cases.
 (repetition & parity-check codes, full/empty space)
- ▶ n-, S- and P-optimality are parametric optimality wrt representation of parameters as [s, k, d], where $s = n k d + 1 \ge 0$ is Singleton defect of C.

Conclusion

- d- and k-optimality are weak concepts of optimality. Forget about them!
- ▶ Instead: Think in terms of *n*-, *S* and *P*-optimality.

Back to the codes C_O and C_O^{\perp} ...

Theorem

All codes C_O and all codes C_O^{\perp} are n-optimal.

Proof.

- ► For C_O^{\perp} : sphere packing bound.
- ► For C_O: linear programming bound . . .

Proof (n-optimally of C_O via LP-bound).

- Assume there exists $[n, k, d]_q = [q^3, 8, q^3 q^2 q]_q$ code.
- Let $f(x) = (x z_1)(x z_2)(x z_3)(x n)$ where $z_1 = q^3 q^2 q$, $z_2 = q^3 q^2 + q 2$, $z_3 = q^3 q^2 + q 1$.
- ▶ Then $f(i) \le 0$ for all $i \in \{d, d+1, ..., n\}$.
- ► Krawchouk expansion of f is $f(x) = \sum_{i=0}^{4} f_i K_i(x)$ where

$$K_i = i$$
th Krawchouk polynomial $f_0 = 2/q \cdot (q-1)(q^4 - 2q^3 - q^2 + 3),$ $f_1 = 2/q^4 \cdot (q-1)(q^6 + q^5 - 10q^3 + 3q + 12),$ $f_2 = 2/q^4 \cdot (q^5 + 5q^4 - 9q^3 - 6q^2 - 18q + 36),$ $f_3 = 6/q^4 \cdot (q^3 + q^2 + 3q - 12),$ $f_4 = 24/q^4.$

- ► For q > 3: $f_i > 0$.
- ▶ LP-bound $\implies \#C \le f(0)/f_0 < q^8$. Contradiction.

Parameters for small q

C_O	[n, k, d]	<i>n</i> -opt	S-opt	P-opt	strongly opt
q=2	[9, 8, 2]	yes	(no)	yes	(no)
q = 3	[28, 8, 15]	yes	yes	yes	yes
q = 4	[65, 8, 44]	yes	yes	yes	yes
q = 5	[126, 8, 95]	yes	yes	?	?
C_O^\perp	[n, k, d]	<i>n</i> -opt	S-opt	P-opt	strongly opt
q = 2	[9, 1, 9]	yes	yes	(no)	(no)
q = 3	[28, 20, 6]	yes	?	yes	?
q = 4	[65, 57, 5]	yes	no	?	no
	[00,0.,0]	,	_		-

Optimistic conjecture

The codes C_O are strongly optimal for all $q \ge 3$.

Thank you!

Slides will be uploaded at

https://mathe2.uni-bayreuth.de/michaelk/