Definitions

First-order differential equation. A first-order differential equation in the unknown f(x) is an equation that can be written in the form

$$f'(x) = F(x, f(x)) \tag{*}$$

where F(x, f(x)) denotes an arbitrary expression involving x and f(x). Equivalently, a first-order differential equation is an equation that can be written in the form

$$G(x, f'(x), f(x)) = 0,$$

where G(x, f(x), f'(x)) denotes an arbitrary expression involving x, f(x), and f'(x).

A solution to a differential equation is any function f(x) that satisfies this equation. The **general solution** to a differential equation is a formula, possibly containing undetermined constants, describing all solutions to the differential equation.

Separable first-order differential equation. A separable differential equation in the unknown f(x) is a differential equation that can be written in the form

$$f'(x) = g(x)h(f(x))$$
, or equivalently, $\frac{dy}{dx} = g(x)h(y)$,

where y = f(x).

Exponential growth and decay. Suppose the function f(x) satisfies the equation

$$f'(x) = k f(x),$$

where k is a fixed constant.

If k > 0 then f(x) is said to undergo **exponential growth**.

If k < 0 then f(x) is said to undergo **exponential decay**.

Procedures

Separation of variables (prime form). To solve a separable differential equation of the form

$$f'(x) = g(x)h(f(x))$$

proceed as follows:

1. Separation. Write the equation as

$$\frac{f'(x)}{h(f(x))} = g(x).$$

and take take the indefinite integral of both sides.

$$\int \frac{f'(x)}{h(f(x))} dx = \int g(x) dx.$$

2. Substitution. Use the substitution u = f(x) to rewrite this equality as

$$\int \frac{1}{h(u)} du = \int g(x) dx,$$

and attempt to find an antiderivative F(u) of 1/h(u) and an antiderivative G(x) for g(x).

3. Algebra. Attempt to solve the resulting general equation

$$F(u) = G(x) + C$$

for u = f(x).

Separation of variables (algebraic form). To solve a separable differential equation of the form

$$\frac{dy}{dx} = g(x)h(y)$$

proceed as follows:

1. Separation. Write the equation as

$$\frac{1}{h(y)} \, dy = g(x) \, dx$$

and take take the indefinite integral of both sides.

$$\int \frac{1}{h(y)} \, dy = \int g(x) \, dx.$$

- 2. Integration. Attempt to find an antiderivative F(y) of 1/h(y) and an antiderivative G(x) for g(x).
- 3. Algebra. Attempt to solve the resulting general equation

$$F(y) = G(x) + C$$

for y in terms of x.

Examples

- 1. Suppose a hot object cools in a room kept at constant temperature of T_0 (in celcius). Newton's law of cooling states that the rate at which the object cools (with respect to time) is proportional to the difference between its current temperature and the room temperature T_0 .
 - (a) Write a differential equation that describes Newton's law of cooling in this setting.
 - (b) Find the general solution to this differential equation.
 - (c) Find a the particular solution to the situation where $T_0 = 15^{\circ}\text{C}$, the object's initial temperature is 100°C , and after 5 minutes the object's temperature is 80°C .
- 2. Solve the following differential equations using separation of variables. If an initial condition is given, provide the corresponding particular solution. Otherwise, give the general solution.
 - (a) f'(x) = xf(x) + x
 - (b) $\frac{dy}{dx} = \frac{x^3}{y^2}$
 - (c) $\cot x f'(x) + f(x) = 2$, f(0) = 0.