1074 Fourier–Motzkin Elimination Method

Fourier-Motzkin Elimination Method

LEONID KHACHIYAN
Department Computer Sci., Rutgers University,
Piscataway, USA

MSC2000: 52B12, 68Q25

Article Outline

Keywords
Solution of Systems of Linear Inequalities
and Linear Programming Problems
Complexity of the Fourier–Motzkin Method
See also
References

Keywords

Fourier–Motzkin elimination; Linear inequalities; Linear programming; First order theory of real addition with order; Semilinear set; Projection; Output-polynomial

Consider a system of *m* linear inequalities in *n* real variables

$$Ax \le b, \tag{1}$$

where $x = (x_1, ..., x_n)^\mathsf{T} \in \mathbf{R}^n$ is the vector of unknowns and A, b are a given real matrix and vector. Let $X = \{x \in \mathbf{R}^n : Ax \le b\}$ be the solution set of the system, and let $X^{[k]}$ denote the projection of X onto the linear space spanned by the last n - k coordinates:

$$X^{[k]} = \{(x_{k+1}, \dots, x_n) \in \mathbb{R}^{n-k} : \exists (x_1, \dots, x_k) \in \mathbb{R}^k$$

s.t. $(x_1, \dots, x_n) \in X\}.$

The Fourier–Motzkin method [3,4,5,8,10,12,14,15] successively eliminates variables x_1, \ldots, x_{n-1} from (1) and computes matrices $A^{[k]}$ and vectors $b^{[k]}$ such that

$$X^{[k]} = \left\{ x^{[k]} \in \mathbb{R}^{n-k} \colon A^{[k]} x^{[k]} \le b^{[k]} \right\},$$
$$k = 1, \dots, n-1,$$

where $x^{[k]} = (x_{k+1}, ..., x_n)^{\mathsf{T}}$.

In order to eliminate variable x_1 , we first multiply each of the m inequalities of (1) by an appropriate positive scalar to make each entry in the first column of A equal to ± 1 or 0. We can thus assume without loss of generality that the original system of inequalities has the form

$$+1 \cdot x_1 + \alpha_i(x^{[1]}) \le 0, \quad i \in M_+,$$

$$-1 \cdot x_1 + \alpha_i(x^{[1]}) \le 0, \quad i \in M_-,$$

$$0 \cdot x_1 + \alpha_i(x^{[1]}) \le 0, \quad i \in M_0,$$

where $\alpha_i(x^{[1]}) = \alpha_{i2}x_2 + \cdots + \alpha_{in}x_n + \beta_i$ are given affine forms of $x^{[1]} = (x_2, \dots, x_n)^{\mathsf{T}} \in \mathbf{R}^{n-1}$ and M_+, M_-, M_0 are disjoint sets of (indices of) inequalities partitioning the entire set of inequalities in (1):

$$M_+ \cup M_- \cup M_0 = \{1, \ldots, m\}.$$

It is easy to see that for each fixed $x^{[1]}$, the inequalities with indices $i \in M_+ \cup M_-$ can be satisfied by some real x_1 if and only if each upper bound $-\alpha_i(x^{[1]})$, $i \in M_+$ on x_1 exceeds each lower bound $\alpha_j(x^{[1]})$, $j \in M_-$ on the same variable, i. e., $-\alpha_i(x^{[1]}) \ge \alpha_j(x^{[1]})$ for all $i \in M_+$ and $j \in M_-$. Combining these $|M_+| |M_-|$ inequalities with the remaining $|M_0|$ inequalities of (1) that do not depend on x_1 , we arrive at the system of $|M_+| |M_-| + |M_0|$ linear inequalities

$$\alpha_i(x^{[1]}) + \alpha_j(x^{[1]}) \le 0, \quad (i, j) \in M_+ \times M_-,$$

 $\alpha_i(x^{[1]}) \le 0, \quad i \in M_0,$

whose solutions set is $X^{[1]}$. The above system can be written as $A^{[1]}x^{[1]} \leq b^{[1]}$ with appropriate matrix $A^{[1]}$ and vector $b^{[1]}$. This gives $X^{[1]} = \{x^{[1]} \in \mathbf{R}^{n-1} : A^{[1]}x^{[1]} \leq b^{[1]}\}$. Eliminating variable x_2 from $A^{[1]}x^{[1]} \leq b^{[1]}$ we obtain a similar description $X^{[2]} = \{x^{[2]} \in \mathbf{R}^{n-2} : A^{[2]}x^{[2]} \leq b^{[2]}\}$ for the second projection and so on. After n-1 steps of the above procedure we have n-1 matrices $A^{[k]}$ and vectors $b^{[k]}$ such that $X^{[k]} = \{x^{[k]} \in \mathbf{R}^{n-k} : A^{[k]}x^{[k]} \leq b^{[k]}\}$, $k=1,\ldots,n-1$.

Solution of Systems of Linear Inequalities and Linear Programming Problems

If the solution set $X = \{x \in \mathbf{R}^n : Ax \le b\}$ is nonempty, then so are all the projections $X^{[k]} \subseteq \mathbf{R}^{n-k}$, k = 1, ..., n-1, and vice versa. In particular, if $Ax \le b$ is feasible, then

$$X^{[n-1]} = \left\{ x^{[n-1]} \in \mathbb{R} \colon A^{[n-1]} x^{[n-1]} \le b^{[n-1]} \right\}$$

Fourier–Motzkin Elimination Method 1075

is a nonempty interval on the scalar variable $x^{[n-1]} = x_n$. Given $A^{[n-1]}$ and $b^{[n-1]}$, we can easily find a point $\overline{x}_n \in X^{[n-1]}$. Then, substituting $x_n = \overline{x}_n$ into $A^{[n-2]}x^{[n-2]} \leq b^{[n-2]}$, we obtain a new feasible system of linear inequalities whose solution set is the interval $\{x_{n-2} \in \mathbb{R}: (x_{n-1}, \overline{x}_n) \in X^{[n-2]}\}$. Solving this onevariable system yields a point $\overline{x}^{[n-2]} = (\overline{x}_{n-1}, \overline{x}_n) \in X^{[n-2]}$, which can be substituted in $A^{[n-3]}x^{[x-3]} \leq b^{[n-3]}$ etc. By repeating such backward substitutions, the Fourier–Motzkin method can compute a solution $(\overline{x}_1, \dots, \overline{x}_n)$ to any feasible system of linear inequalities $Ax \leq b$. 'Historically, it is the 'pre-linear programming' method to solve linear inequalities' [14].

Now suppose that the input system is infeasible, i. e. $X = \{x \in \mathbb{R}^n : Ax \le b = \emptyset\}$. As was pointed out in [10], the Fourier–Motzkin method can then find nonnegative real multipliers p_1, \ldots, p_m such that

$$pA = 0$$
, $pb = -1$, $p = (p_1, ..., p_m) \ge 0$. (2)

To see this, observe that each inequality in $A^{[1]}x^{[1]} \le$ $b^{[1]}$ is a positive combination of at most two inequalities of the original system. Since a nonnegative combination of nonnegative combinations of some inequalities is a nonnegative combination of the same inequalities, we conclude that each inequality in each system $A^{[k]}x^{[k]}$ $< b^{[k]}, k = 1, ..., n - 1$, is a nonnegative combination of the input inequalities. Considering that $A^{[n-1]}x^{[n-1]}$ $\leq b^{[n-1]}$ is an infeasible system of linear inequalities in one variable, $A^{[n-1]}x^{[n-1]} < b^{[n-1]}$ is easily seen to contain one or two inequalities whose positive combination yields the infeasible inequality $0 \cdot x_n \leq -1$. This is equivalent to (2). In particular, the Fourier-Motzkin method provides a simple algorithmic proof of the Farkas lemma (cf. ▶ Farkas lemma; ▶ Farkas lemma: Generalizations): (1) is feasible if and only if (2) is infeasible.

The Fourier–Motzkin method can also be used to solve the general linear programming problem

$$\xi^* = \max \left\{ c^\top x \colon Ax \le b, \ x \in \mathbb{R}^n \right\}. \tag{3}$$

For instance, we can eliminate n variables $x = (x_1, ..., x_n)$ from $Ax \le b$, $x_{n+1} - c^{\mathsf{T}}x \le 0$ to determine the interval $X^{[n]} = \{x_{n+1} : x_{n+1} \le \xi^*\}$. Then, letting $x_{n+1} = \xi^*$ and solving the resulting system yields an optimal solution.

It should be mentioned that there are far more efficient linear programming algorithms. Note, however,

that (3) calls for projecting $X = \{x \in \mathbb{R}^n : Ax \le b\}$ on a one-dimensional subspace. After an appropriate linear transformation, the Fourier–Motzkin method can project $X = \{x \in \mathbb{R}^n : Ax \le b\}$ on any given subspace in \mathbb{R}^n .

Complexity of the Fourier-Motzkin Method

Let m_k denote the number of inequalities in the kth system $A^{[k]}x^{[k]} \leq b^{[k]}$ generated by the Fourier–Motzkin method. Since $m_1 = |M_+| |M_-| + |M_0| \leq m^2$, we have $m_k \leq m_{k-1}^2$ for all k. So the number of inequalities is at most squared at each step of the method, which implies that m_k is bounded by a doubly exponential function in k, say $m_k \leq m^{2^k}$. The following example shows that with sufficiently many variables, the kth step of the method can produce

$$m_k = m^{2^{k(1-o(1))}}$$

inequalities.

Example 1 [14] Let $n = 2^k + k + 2$ and consider a system of linear inequalities $Ax \le b$ which contains as left-hand sides $m = 8\binom{n}{3}$ linear forms $\pm x_{i_1} \pm x_{i_2} \pm x_{i_3}$ for all $1 \le i_1 < i_2 < i_3 \le n$. By induction on $j = 1, \ldots, k$ it is easy to show that after eliminating the first j variables, the resulting system includes among its left-hand sides all the forms $\pm x_{i_1} \pm \cdots \pm x_{i_s}$ with $k + 1 \le i_1 < \cdots < i_s \le n$ and $s = 2^j + 2$. In particular, for j = k we have at least $2^{2^k + 2} = m^{2^{k(1 - o(1))}}$ inequalities in $A^{[k]}x^{[k]} \le b^{[k]}$.

Let us now return to the first step of the algorithm where we replace $Ax \leq b$ by the $|M_+| |M_-| + |M_0|$ new inequalities $A^{[1]}x^{[1]} \leq b^{[1]}$. As was pointed out already by J.B.J. Fourier, 'it nearly always happens that a rather large number of these new inequalities are redundant' and 'their removal greatly simplifies the problem' [8]. If the redundant inequalities are systematically removed at each step of the algorithm, the number m_k of inequalities generated by kth step of the Fourier–Motzkin method is bounded by an exponential function in k. Assume without loss of generality that $X = \{x \in \mathbb{R}^n : Ax \leq b\}$ is full-dimensional, then each projection $X^{[k]}$ is also full-dimensional and m_k is the number of facets of $X^{[k]}$. Therefore m_k is bounded by the total number of i-faces of X for $i \geq n-k-1$. Hence

$$m_k \le \sum_{i=1}^{k+1} {m \choose i} \sim \frac{m^{k+1}}{(k+1)!} \quad \text{for } m \to \infty.$$

1076 Fourier–Motzkin Elimination Method

(This rough estimate can be improved by using the upper bound theorem [11]; in particular, m_k cannot grow faster than $m^{\lfloor n/2 \rfloor}$.) In the example below, $X^{[k]}$ has

$$m_k \ge \frac{m^{k+1}}{(k+1)^{k+1}}$$

facets.

Example 2 Let $s \ge 2$ be a natural number. Consider the system of m = (k+1) s linear inequalities

$$y_{ij} \ge x_i, \quad i = 1, ..., k, \quad j = 1, ..., s,$$

 $x_1 + \cdots + x_k \ge z_l, \quad l = 1, ..., s,$

where x_i , y_{ij} , and z_l are real variables. The elimination of $x_1, ..., x_k$ results in $s^{k+1} = (m/(k+1))^{k+1}$ inequalities

$$y_{1f(1)} + \cdots + y_{kf(k)} \ge z_l, \quad l = 1, \dots, s,$$

where f ranges over the set of all s^k mappings from $\{1, \ldots, k\}$ to $\{1, \ldots, s\}$. None of the inequalities above is redundant. For instance,

$$y_{11} + \cdots + y_{k1} \ge z_1$$

is violated by $y_{11} = \cdots = y_{k1} = 0$ and $z_1 = \cdots = z_s = 1$, whereas all the other inequalities can be satisfied by giving the remaining variables y_{ij} a high value.

Since detecting the redundancy of an inequality can be done via linear programming (or by maintaining a list of vertices and extreme directions of $X^{[k]}$ with the double description method [4,13], see also [9,15] and references herein), the Fourier-Motzkin method runs in exponential space and time. It is natural to ask whether given $X = \{x \in \mathbb{R}^n : Ax \le b\}$ and a number $k \in \{1, ..., n\}$ -1}, an irredundant description for $X^{[k]} = \{x^{[k]} \in \mathbf{R}^{n-k}:$ $A^{[k]}x^{[k]} \leq b^{[k]}$ can be computed in *output-polynomial* time, i. e. by an algorithm that runs in time polynomial in the total input and output size. This question is open even in the bit model of computation for rational A and b, when redundant inequalities can be detected in polynomial time. A related problem is the generation of all vertices for $X = \{x \in \mathbb{R}^n : Ax < b\}$. The vertex generation problem (or its dual, the convex hull problem) can also be solved by the double description method, see e.g. [1], but the question as to whether there is an outputpolynomial vertex generation algorithm remains open.

Finally, we mention that the Fourier–Motzkin method can be modified to a quantifier-elimination method for arbitrary *semilinear sets*

$$\chi^{[k]} = \{ (x_{k+1}, \dots, x_n) \in \mathbb{R}^{n-k} :$$

$$(Q_1 x_1 \in \mathbb{R}) \cdots (Q_k x_k \in \mathbb{R})$$

$$\mathcal{F}(x_1, \dots, x_n) \text{ true} \}, \quad (4)$$

where $Q_1, ..., Q_k \in \{\exists, \forall\}$ are existential and/or universal quantifiers and $\mathcal{F}(x_1, ..., x_n)$ is a given Boolean function of m threshold predicates

$$\mathcal{F}_i(x) = \begin{cases} \text{true} & \text{if } a_i^\top x \le b_i, \\ \text{false} & \text{otherwise,} \end{cases}$$

with given coefficients $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$, i = 1, ..., m. In particular, if Q_1, \ldots, Q_k are all existential quantifies and $\mathcal{F} = \mathcal{F}_1 \wedge \cdots \wedge \mathcal{F}_m$, we obtain the previously considered problem of projecting the polyhedral set $X = \{x\}$ $\in \mathbf{R}^n$: $a_i^{\top} x \leq b_i$, i = 1, ..., m} onto the space spanned by the last n - k coordinates. In general, (4) can be transformed into an equivalent quantifier-free representation $X^{[k]} = \{(x_{k+1}, ..., x_n) : \mathcal{G}(x_{k+1}, ..., x_n) \text{ true}\},\$ where \mathcal{G} is some Boolean formula whose atoms are new threshold predicates of $(x_{k+1},...,x_n) \in \mathbb{R}^{n-k}$. This can be done, for instance, as follows [6,7]. To eliminate the rightmost quantifier $Q_k x_k \in \mathbf{R}$, write each threshold inequality involving x_k in the form $x_k \le \alpha_i(x^{(k)})$ or $x_k \ge$ $\alpha_i(x^{(k)})$, where the $\alpha_i{'}$ are given affine forms of the remaining variables $x^{(k)} = (x_1, ..., x_{k-1}, x_{k+1}, ..., x_n)$. Replace the infinite range $x_k \in \mathbf{R}$ by the finite set *S* of sample points $x_k = (\alpha_i(x^{(k)}) + \alpha_i(x^{(k)}))/2$ and $x_k = \pm \infty$. Now it is easy to see that the expression $(\exists x_k \in \mathbf{R}) \mathcal{F}(x_1, \mathbf{r})$ \dots, x_n) is equivalent to the quantifier-free disjunction $\forall x_k \in S \ \mathcal{F}(x_1, \dots, x_n)$ and that $(\forall x_k \in \mathbf{R}) \mathcal{F}(x_1, \dots, x_n)$ can be replaced by the equivalent conjunction $\wedge_{x_k \in S} \mathcal{F}(x_1,$..., x_n). Quantifies $Q_{k-1}x_{k-1}$, ..., Q_1x_1 can be eliminated in the same way. For a discussion of faster algorithms that eliminate blocks of consecutive identically quantified variables see [2].

See also

► Linear Programming

References

1. Avis D, Bremner B, Seidel R (1997) How good are convex hull algorithms. Comput Geom Th Appl 7:265–302

Fractional Combinatorial Optimization 1077

- Basu S (1997) An improved algorithm for quantifier elimination over real closed fields. In: Proc. 38th IEEE Symp. Foundations of Computer Sci., pp 56–65
- 3. Chvátal V (1983) Linear programming. Freeman, New York
- 4. Dantzig GB, Eaves BC (1975) Fourier–Motzkin elimination and its dual. J Combin Th A 14:288–297
- Dines LL (1918/9) Systems of linear inequalities. Ann of Math 2(20):191–199
- Eaves BC, Rothblum UG (1992) Dines–Fourier–Motzkin quantifier-elimination and applications of corresponding transfer principles over ordered fields. Math Program 53:307–321
- Ferrante J, Rackoff C (1975) A decision procedure for the first order theory of real addition with order. SIAM J Comput 1:69–76
- Fourier JBJ (1973) Analyse de travaux de l'Académie Royale de Sci., pendant l'anné 1824. In: Kohler DA (ed) Oper Res, 10, pp 38–42, Transl. of a Report by Fouries on his work on linear inequalities.
- Fukuda K, Prodon A (1996) Double description method revisited. Lecture Notes Computer Sci 1120:91–111
- Kuhn HW (1956) Solvability and consistency for linear equations and inequalities. Amer Math Monthly 63:217– 232
- 11. McMullen P (1970) The maximal number of faces of a convex polytope. Mathematika 17:179–184
- Motzkin TS (1936) Beiträge zur Theorie der linearen Ungleichungen. Doktorarbeit, Univ. Basel. Transl. in Cantor D, Gordon B, Rothschild B (eds) (1983): Contribution to the theory of linear inequalities: Selected papers. Birkhäuser, pp 81–103
- 13. Motzkin TS, Raifa H, Thompson GL, Thrall RM (1953) The double description method. In: Kuhn HW, Tucker AW (eds) Contributions to the Theory of Games, vol II. Ann Math Stud. 28 Princeton Univ. Press, Princeton, pp 81–103
- Schrijver A (1986) Theory of linear and integer programming. Wiley/Interscience, New York
- 15. Ziegler GM (1994) Lectures on polytopes. Springer, Berlin

Fractional Combinatorial Optimization *FCO*

TOMASZ RADZIK King's College London, London, UK

MSC2000: 90-08, 90C27, 90C32, 68Q25, 68R05

Article Outline

Keywords The Binary Search Method (BSM) The Newton Method (NM)
Megiddo's parametric search (MPS)
See also
References

Keywords

Fractional optimization; Cost-to-time ratio; Newton method; Dinkelbach method; Megiddo parametric search

A fractional combinatorial optimization problem (FCOP) is a combinatorial optimization problem with an objective function which is a ratio of two (nontrivial) functions. Instances of a FCOP can be expressed in the general form:

$$\begin{cases} \max & \frac{f(\mathbf{x})}{g(\mathbf{x})}, \\ \text{for } & \mathbf{x} \in \mathcal{X}, \end{cases}$$
 (1)

where $X \subseteq \{0, 1\}^p$ is a set of (vectors representing) certain combinatorial structures, and f and g are realvalued functions defined on X. Numbers $f(\mathbf{x})$, $g(\mathbf{x})$, and $f(\mathbf{x})/g(\mathbf{x})$ are usually called the *cost*, the *weight*, and the mean-weight cost of structure x. A minimization FCOP is equivalent to the corresponding maximization problem, if the cost function f can be replaced with function -f. The FCOPs which appear in the literature on combinatorial optimization include: the minimum ratio spanning-tree problem [2,13,14]; the maximum profit-to-time ratio cycle problem and the equivalent minimum cost-to-time ratio cycle problem [1,3,6,11,12,13,14]; the *minimum mean cycle* problem [1,10,11]; the maximum mean-weight cut problem [16]; the maximum mean cut problem [5,9]; and the *fractional 0–1 knapsack* problem [7,8].

Consider, as an example, the minimum cost-to-time ratio cycle problem (MRCP). An instance of this problem consists of a directed graph G = (V, E), where $E = \{e_1, \ldots, e_m\}$ is the set of edges, and numbers c_i and t_i associated with each edge e_i , for $i = 1, \ldots, m$. The objective is to find a simple cycle Γ in G which minimizes the ratio of $\sum \{c_i : e_i \in \Gamma\}$ to $\sum \{t_i : e_i \in \Gamma\}$. To express this instance of the MRCP in the form (1), let $\mathcal{X} \subseteq \{0, 1\}^m$ be the set of the characteristic vectors of the simple cycles in G, and for $\mathbf{x} = (x_1, \ldots, x_m) \in \{0, 1\}^m$, let $f(\mathbf{x}) = -(c_1x_1 + \cdots + c_mx_m)$ and $g(\mathbf{x}) = t_1x_1 + \cdots + t_mx_m$. The MRCP models the following *tramp steamer*