INDIAN INSTITUTE OF SPACE SCIENCE AND TECHNOLOGY THIRUVANANTHAPURAM

Assignment #1

Due on 02-02-2015

Akhil P M (SC14M044)

CONTENTS

Contents

Metric Space, Normed Space, Vector Space	3
1. Show that the set X of all integers with metric defined by $d(m,n) = m-n $ is a complete metric space.	3
2. Show that $d(x,y) = \sqrt{ x-y }$ defines a metric on the set of all real numbers	3
3. Show that the closure \overline{Y} of a subspace Y of a normed space X is again a vector space	3
4. Show that in an inner product space, $\mathbf{x} \perp \mathbf{y}$ iff $ x + \alpha y \ge x \forall \alpha \in \mathbb{R}$	4
5. Find (u, v) , where $\mathbf{v} = (1 + 2i, 3 - i)^T$, $u = (-2 + i, 4)^T$	4
6. Which of the following subsets of \mathbb{R}^3 constitute a subspace of \mathbb{R}^3 ? $[\mathbf{x}=(\eta_1,\eta_2,\eta_3)^T]$	4
7. Show that the norm $ x $ is the distance from x to 0	5
8. If in an inner product space $\langle x, u \rangle = \langle x, v \rangle$ for all x, show that u=v	5
9. Prove that $ T_1T_2 \le T_1 * T_2 ; T^n \le T ^n \dots \dots$	5
10. For a real inner product space prove that $\langle x, y \rangle = \frac{1}{4}(x+y ^2 - x-y ^2) \dots \dots \dots \dots \dots$	6
11. Define T: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by T(x,y)=(x,0). Is T a linear operator?	6
12. Show that a discrete metric space is complete.	6
13. Descibe Weistrass appoximation theorem.	7

Metric Space, Normed Space, Vector Space

1. Show that the set X of all integers with metric defined by d(m,n) = |m-n| is a complete metric space.

A sequence $x_1, x_2, x_3...$ is called a Caushy's sequence if

 $\forall \epsilon > 0$ $\exists N | \forall m, n > N \ d(x_m, x_n) < \epsilon$

Take $\epsilon = \frac{1}{2}$.

Then $\exists N : \forall m, n > N \ d(x_m, x_n) < \frac{1}{2}$

Since X is the set of integers and the difference cannot exceed $\frac{1}{2}$, then it should be 0; ie if a metric d is defined then $d(x_m, x_n)$ should be zero if $\epsilon = \frac{1}{2}$.

$$\Longrightarrow d(x_m,x_n)=|m-n|=0$$

$$\implies x_m = x_n \, \forall \, m, n > N$$

Thus the sequence $\{x_n\} \longrightarrow 0$ when n>N. Hence all cauchy's sequences converges, so (X,d) is a complete metric space.

2. Show that $d(x,y) = \sqrt{|x-y|}$ defines a metric on the set of all real numbers

$$d(x, y) = \sqrt{|x - y|} \forall x, y \in \mathbb{R}$$

To check that whether d is a metric, we need to verify all the axioms of a metric.

a. Since $|x-y| > 0 \ \forall x, y \in \mathbb{R} \ d(x,y) > 0$ always.

and d(x,y)=0 only when $|x-y|=0 \Longrightarrow x=y$.

b.

$$\forall x, y \in \mathbb{R}|x - y| = |y - x|$$

$$\implies d(x, y) = \sqrt{|x - y|} = \sqrt{|y - x|} = d(y, x)$$

c.Triangular inequality

it states that $\forall x, y, z \in \mathbb{R}$

$$\sqrt{|x-z|} \le \sqrt{|x-y|} + \sqrt{|y-z|}$$

we know that.

$$|x-z| = |x-y+y-z| \le |x-y| + |y-z|$$

Thus it follows from the properties of square roots and the above inequality

$$\sqrt{|x-z|} \leq \sqrt{|x-y|} + \sqrt{|y-z|}$$

Hence all the axioms are satisfied. So $d(x,y) = \sqrt{|x-y|}$ is a metric in \mathbb{R} .

3. Show that the closure \overline{Y} of a subspace Y of a normed space X is again a vector space.

Inorder to prove that \overline{Y} is a vector space it is sufficient to establish that

$$\alpha x + \beta y \in \overline{Y} \forall x, y \in \overline{Y}$$

and $\alpha \& \beta$ are from the underlying field *F*.

We know that $0 \in \overline{Y}$ since $Y \subset \overline{Y}$. Since $x,y \in \overline{Y}$ there exists $x_i, y_i \in X$ such that $x_i \longrightarrow x$ and $y_i \longrightarrow y$. Since multiplication and addition are continuous,

$$\alpha x_i + \beta y_i \longrightarrow \alpha x + \beta y$$

Therefore, $\alpha x + \beta y \in \overline{Y}$

4. Show that in an inner product space, $\mathbf{x} \perp \mathbf{y}$ iff $||x + \alpha y|| \ge ||x|| \forall \alpha \in \mathbb{R}$

we know that,

$$||x + \alpha y||^2 = \langle x + \alpha y, x + \alpha y \rangle$$
$$= \langle x, x \rangle + \alpha \langle x, y \rangle + \alpha \langle y, x \rangle + \alpha^2 \langle y, y \rangle$$

Assuming the underlying field to be \mathbb{R} , the inner product becomes symmetric, and we obtain

$$||x + \alpha y||^2 = \langle x, x \rangle + 2 * \alpha \langle x, y \rangle + \alpha^2 \langle y, y \rangle$$

If $x \perp y$ then $\langle x, y \rangle = 0$. Thus

$$||x + \alpha y||^2 = ||x||^2 + \alpha^2 ||y||^2$$

$$\implies ||x + \alpha y||^2 \ge ||x||^2$$

$$\implies ||x + \alpha y|| \ge ||x||$$

since, $\alpha^2 ||y||^2$ is always a positive value. This will violate only when the following two conditions occur simultaneously.

I) x is not perpendicular to y

II)
$$2 * \alpha \langle x, y \rangle \ge -\alpha^2 ||y||^2$$

Thus only if part is also verified.

5. Find
$$\langle u, v \rangle$$
, where $\mathbf{v} = (1 + 2i, 3 - i)^T$, $u = (-2 + i, 4)^T$

$$\langle u, v \rangle = \langle (-2+i, 4), (1+2i, 3-i) \rangle$$

for complex numbers $\langle (x1, x2)(y1, y2) \rangle = x1 * \overline{y1} + x2 * \overline{y2}$

$$= (-2+i)(1-2i) + 4(3+i)$$

$$= -2+4i+i+2+12+4i$$

$$= 9i+12$$

6. Which of the following subsets of \mathbb{R}^3 constitute a subspace of \mathbb{R}^3 ? $[\mathbf{x}=(\eta_1,\eta_2,\eta_3)^T]$

- (a) All x with $\eta_1 = \eta_2$ and $\eta_3 = 0$.
- (b) **All x with** $\eta_1 = \eta_2 + 1$

a)

Let $Z=\{All\ x\ with\ \eta_1=\eta_2\ and\ \eta_3=0\}.$

Consider $X=(x, x, 0), Y=(y, y, 0) \in Z$

$$X + Y = (x + y, x + y, 0) \in Z$$
$$\alpha X = (\alpha x, \alpha x, 0) \in Z$$

Thus Z is closed under addition and scalar multiplication, hence it is a subspace of \mathbb{R}^3 .

b)

Let $Z = \{All \ x \ with \ \eta_1 = \eta_2 + 1\}.$

Consider $X=(x+1, x, p), Y=(y+1, y, q) \in Z$ where $p,q \in \mathbb{R}$.

$$X + Y = (x + y + 2, x + y, p + q) \notin Z$$

because $\eta_1 \neq \eta_2 + 1$ is violated here. Hence Z is not closed under addition. So it is not a subspace of \mathbb{R}^3 .

7. Show that the norm ||x|| is the distance from x to 0

Every normed space is a metric space or norm induces a metric on a vector space. Thus in a metric space with an induced norm

$$d(x, y) = ||x - y||$$

We know that d(x,y) is,

$$d: X * X \longrightarrow \mathbb{K}$$

and norm is,

$$||\cdot||: X \longrightarrow \mathbb{K}$$

where \mathbb{K} is the underlying field.

if ||x|| is a metric in a metric space then we have,

$$d(x,y) = ||x||$$

$$\implies y = 0$$

It implies that we are calculating the distance from origin. Hence ||x|| is the distance from 0.

8. If in an inner product space $\langle x, u \rangle = \langle x, v \rangle$ for all x, show that u=v.

Since
$$\langle x, u \rangle = \langle x, v \rangle$$
,

$$\langle x, u \rangle - \langle x, v \rangle = \langle x, u - v \rangle = 0$$

But we know that inner product is zero only when one of the two vectors is zero. (orthogonality case can be avoided, since x is neither orthogonal to u, nor to v, hence it cannot be orthogonal to a linear combination of u & v.) Here x cannot be zero \forall x.

$$\implies u - v = 0$$

$$\Longrightarrow u = v$$

9. Prove that $||T_1T_2|| \le ||T_1|| * ||T_2||; ||T^n|| \le ||T||^n$

This property is called submultiplicative property and is only valid for matrix norms. An induced matrix norm ||T|| is defined as

 $||T|| = \max_{x \neq 0} \frac{||Tx||}{||x||}$

Thus $||T_1T_2||$ is

$$\begin{aligned} ||T_1 T_2|| &= \max_{x \neq 0} \frac{||T_1 T_2 x||}{||x||} \\ &= \max_{x \neq 0} \frac{||T_1 T_2 x||}{||T_2 x||} \frac{||T_2 x||}{||x||} \end{aligned}$$

Putting $T_2x = y$ in the first part

$$\leq \max_{y \neq 0} \frac{||T_1 y||}{||y||} * \max_{x \neq 0} \frac{||T_2 x||}{||x||}$$
$$\leq ||T_1|| * ||T_2||$$

b)

$$\begin{split} ||T^{n}|| &\leq ||T|| * ||T \dots T|| \\ &\leq ||T|| * ||T|| * ||T \dots T|| \\ &\leq ||T|| * ||T|| * \dots * ||T|| \\ &\leq ||T||^{n} \end{split}$$

10. For a real inner product space prove that $\langle x, y \rangle = \frac{1}{4}(||x+y||^2 - ||x-y||^2)$

We know that,

$$||x + y||^2 = \langle x + y, x + y \rangle$$
$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

but for real IPS $\langle x, y \rangle = \langle y, x \rangle$.also $\langle x, x \rangle = ||x||^2$, Then,

$$||x + y||^2 = ||x||^2 + 2 * \langle x, y \rangle + ||y||^2$$

Similarly,

$$||x - y||^2 = ||x||^2 - 2 * \langle x, y \rangle + ||y||^2$$

 $||x + y||^2 - ||x - y||^2 = 4 * \langle x, y \rangle$

Thus,

$$\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$$

11. Define T: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by T(x,y)=(x,0). Is T a linear operator?

An operator is said to be linear if

a)D(T) and R(T) are vector spaces over the same field \mathbb{K} .

$$b)T(x+y) = T(x)+T(y)$$

$$T(\alpha x) = \alpha T(x)$$

In this case, $D(T) = \mathbb{R}^2$ is a vector space.

R(T) = (x,0) where $x \in \mathbb{R}$ is also a vector space. Let $X,Y \in \mathbb{R}^2$

$$T(X + Y) = T((x_1, x_2) + (y_1, y_2))$$

$$= T(x_1 + y_1, x_2 + y_2)$$

$$= (x_1 + y_1, 0) = (x_1, 0) + (y_1, 0)$$

$$= T(X) + T(Y)$$

Checking for the other condition,

$$T(\alpha X) = T(\alpha x_1, \alpha x_2)$$
$$= (\alpha x_1, 0) = \alpha(x_1, 0)$$
$$= \alpha T(X)$$

All the conditions are satisfied. Hence T is a linear operator.

12. Show that a discrete metric space is complete.

Discrete metric ρ on a set X is defined by,

$$\rho(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

for any $x,y \in X$. Here (X, ρ) is a disrete metric space.

A sequence $x_1, x_2, x_3...$ is called a Caushy's sequence if

$$\forall \epsilon > 0$$
 $\exists N | \forall m, n > N \ d(x_m, x_n) < \epsilon$

Take $\epsilon = \frac{1}{2}$.

Then $\exists N : \forall m, n > N \ d(x_m, x_n) < \frac{1}{2}$

But possible values of d are $\{0,1\}$. Since distance cannot exceed $\frac{1}{2}$, $d(x_m, x_n)$ should be zero.

$$\implies d(x_m, x_n) = 0 \,\forall \, m, n > N$$

$$\implies x_n = x_m$$

Thus $\{x_n\} \longrightarrow x \ \forall n > N$. This means every Caushy's sequence converges in X. So discrete metric space is complete.

13. Descibe Weistrass appoximation theorem.

Theorem: if f is a continuous real valued function on [a,b] and if any $\epsilon > 0$ is given, then there exists a polynomial p on [a,b] such that

$$|f(x) - p(x)| < \epsilon$$

for all x in [a,b]. In words, any continuous function on a closed and bounded interval can be uniformly approximated on that interval by polynomials to any degree of accuracy[1].

Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation[2]. As a consequence of the Weierstrass approximation theorem, one can show that the space C[a, b] is separable: the polynomial functions are dense, and each polynomial function can be uniformly approximated by one with rational coefficients; there are only countably many polynomials with rational coefficients.

References

- [1] Weisstein, Eric W. "Weierstrass Approximation Theorem." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/WeierstrassApproximationTheorem.html
- [2] Stone-Weierstrass theorem, http://en.wikipedia.org/wiki/Stone-Weierstrass_theorem