Spettri beta da reattore in JUNO-TAO: ciclo di incontri...

- venerdì 21 maggio - ore 16-17

Spettri di antineutrini da rettore (Fabio Mantovani)

- giovedì 27 maggio - ore 16-17

Probabilità di oscillazione in JUNO (Eligio Lisi)

- giovedì 3 giugno - ore 16-17

Struttura fine dello spettro visibile in TAO (Eligio Lisi)

Spettri di antineutrini da rettore Fabio Mantovani mantovani@fe.infn.it

Orientiamoci...

Google Earth

Reactor antineutrino signal calculation

The reactor antineutrino signal evaluation requires several ingredients for modeling the three antineutrino life stages:

- ✓ production at reactor cores
- ✓ propagation to the detector site
- ✓ detection in liquid scintillation detectors

- ε = 100% efficiency
- * $\epsilon = 100\%$ efficiency * $\tau = 1$ year * $N_p = 10^{32}$ free protons (~ 1kton liquid scintillate (~ 1kton liquid scintillator mass)

Pee - v_e probability

• $\sigma_{IBD}(E) = IBD \text{ cross section}$ • $\overline{V}_e + p \rightarrow e^+ + n$ ($E_{th} = 1.806 \text{ MeV}$) $P_{ee} = v_e$ oscillation survival probability

$$N_{TOT} = \varepsilon N_p \tau \sum_{k=1}^{N_{reactor}} \frac{P_k}{4\pi d_k^2} \langle LF_k \rangle \int dE_\nu \sum_{i=1}^4 \frac{p_i}{Q_i} \lambda_i(E_\nu) P_{ee}(E_\nu, d_k) \sigma_{IBD}(E_\nu)$$

$$INU = 1 \text{ event } / 10^{32} \text{ free protons / year}$$

$$i = {}^{235}U, {}^{238}U, {}^{239}Pu, {}^{241}Pu$$

[1 TNU = 1 event / 10^{32} free protons /year]

•
$$d_k$$
 = reactor distance
• P_k = thermal power
• LF = Load Factor
• p_i = power fraction

- p_i = power fraction

- Q_i = energy released per fission
- λ_i = reactor antineutrino spectrum

Reattori nel mondo: fonti utili...

2003	2004	2005	2006			
Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map			
2007	2008	2009	2010			
Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map			
2011	2012	2013	2014			
Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map			
2015	2016	2017 *	2018			
Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map	Input database Numerical map Map			
2019						
Input database Numerical map Map						

- ✓ Global: performance data of all reactors in the world
- ✓ Monthly Load Factors (%)
- ✓ Public, official and free
- ✓ Latitude and longitude of reactors
- ✓ Multitemporal: time lapse of 18 years (2003 2021)
- ✓ Direct implementation thanks to standard file (ASCII, Excel)

https://www.fe.infn.it/radioactivity/antineutrino/

Taishan – Yangjiang – Operational 31 dec 2019

Country	Reactor	Туре	Model	Capa	Capacity (MW)		Operator	NSSS	Construction	Grid	Commercial
	Code Name			Thermal	Gross	Net		supplier	start	connection	operation
CHINA	CN -6 LING AO-1	PWR		2905	990	950	DNMC	FRAM	1997-5	2002-2	2002-5
	CN -7 LING AO-2		M310	2905	990	950	DNMC	FRAM	1997-11	2002-9	2003-1
	CN -12 LING AO-3	PWR	CPR-1000	2905	1086	1007	DNMC	DEC	2005-12	2010-7	2010-9
	CN -13 LING AO-4	PWR	CPR-1000	2905	1086	1007	DNMC	DEC	2006-6	2011-5	2011-8
	CN -18 NINGDE-1	PWR	CPR-1000	2905	1089	1018	NDNP	DEC	2008-2	2012-12	2013-4
	CN -19 NINGDE-2		CPR-1000	2905	1089	1018	NDNP	SHE	2008-11	2014-1	2014-5
	CN -34 NINGDE-3	PWR	CPR-1000	2905	1089	1018	NDNP	CFHI	2010-1	2015-3	2015-6
	CN -35 NINGDE-4	PWR	CPR-1000	2905	1089	1018	NDNP	CFHI	2010-9	2016-3	2016-7
	CN -4 QINSHAN 2-1	PWR	CNP-600	1930	650	610	NPQJVC	CNNC	1996-6	2002-2	2002-4
	CN -5 QINSHAN 2-2		CNP-600	1930	650		NPQJVC	CNNC	1997-4	2004-3	2004-5
	CN -14 QINSHAN 2-3	PWR	CNP-600	1930	660	619	NPQJVC	CNNC	2006-4	2010-8	2010-10
	CN -15 QINSHAN 2-4	PWR	CNP-600	1930	660		NPQJVC	CNNC	2007-1	2011-11	2011-12
	CN -8 QINSHAN 3-1	PHWR	CANDU 6	2064	728	677	TQNPC	AECL	1998-6	2002-11	2002-12
	CN -9 QINSHAN 3-2	PHWR	CANDU 6	2064	728	677	TQNPC	AECL	1998-9	2003-6	2003-7
	CN -1 QINSHAN-1	PWR	CNP-300	966	330	298	CNNO	CNNC	1985-3	1991-12	1994-4
	CN -28 SANMEN-1	PWR	AP-1000	3400	1251	1157	SMNPC	WH/MHI	2009-4	2018-6	2018-9
	CN -29 SANMEN-2		AP-1000	3400	1251	1157	SMNPC	WH/MHI	2009-12	2018-8	2018-11
	CN -32 TAISHAN-1		EPR-1750	4590	1750	1660	TNPJVC	AREVA	2009-11	2018-6	2018-12
	CN -33 TAISHAN-2		EPR-1750	4590	1750	1660	TNPJVC	AREVA	2010-4	2019-6	_
	CN -10 TIANWAN-1		VVER V-428	3000	1060	990	JNPC	ΙZ	1999-10	2006-5	2007-5
	CN -11 TIANWAN-2		VVER V-428	3000	1060	990	JNPC	ΙZ	2000-9	2007-5	2007-8
	CN -45 TIANWAN-3		VVER V-428M	3000	1126	1045	JNPC	ΙZ	2012-12	2017-12	2018-2
	CN -46 TIANWAN-4	PWR	VVER V-428M	3000	1126	1045	JNPC	ΙZ	2013-9	2018-10	2018-12
	CN -22 YANGJIANG-1	PWR	CPR-1000	2905	1086	1000	YJNPC	CFHI	2008-12	2013-12	2014-3
	CN -23 YANGJIANG-2	PWR	CPR-1000	2905	1086	1000		CFHI	2009-6	2015-3	2015-6
	CN -40 YANGJIANG-3		CPR-1000	2905	1086	1000	YJNPC	CFHI	2010-11	2015-10	2016-1
	CN -41 YANGJIANG-4	PWR	CPR-1000	2905	1086	1000	YJNPC	CFHI	2012-11	2017-1	2017-3
	CN -47 YANGJIANG-5		ACPR-1000	2905	1086	1000	YJNPC	CFHI	2013-9	2018-5	2018-7
	CN -48 YANGJIANG-6	PWR	ACPR-1000	2905	1086	1000	YJNPC	CFHI	2013-12	2019-6	2019-7

- EPR: European Pressurized Reactor III gen. pressurised water reactor design – Framatome (Areva)
- CPR: Chinese Pressurized Reactor Gen. II+ pressurized water reactor
- ACPR: Advanced Chinese Pressurised Reactor Gen. II+ pressurized water reactor

BWR and **PWR**

BWR Boiling Water Reactor

PWR
Pressurized Water
Reactor

Number of Reactors in Operation (as of 1 January 2020)

Reactor antineutrino signal: evolution over time

Nuclear physics in a reactor: few numbers

- Luminosity: ~2 10^{20} anti-v / s per 1 GW_{Th}
- <E> ~ 200 MeV/fission
- N_{neutron} ~ 3 #/fission
- N_{antin v} ~ 6 #/fission
- Rate = ? Fission/s per 1 GW_{Th}

Nuclear reactor: some details...

The moderator

- Thermal reactors need a "moderator", a component where neutrons are slowed down thus avoiding (or minimizing) losses due to capture in ²³⁸U.
- The ideal moder has to be:
 - light (atomic mass comparable to neutron mass, for efficient slowing down)
 - Not neutron thirsty (i.e. does not capture neutrons)
 - cheap
 - not inflammable
- In practice, a compromise has to be obtained.
- Most common used materials are
 - light water (H₂0)
 - heavy water (D₂O)
 - graphite

	H ₂ 0	D ₂ O	graphite
M _a /M _n	Ok	Ok	Accept.
σ_{n}	Accept.	small	small
Fire danger	NO	NO	YES
cost	cheap	Expens.	cheap

Andiamo a vedere da vicino YANGJIANG...

CN-22 YANGJIANG-1 **CHINA**

Status at end of year : Operational

Operator : YJNPC (Yangjiang Nuclear Power Company) Owner : YJNPC (Yangjiang Nuclear Power Company)

Reactor Supplier : CFHI (China First Heavy Industries) Turbine Supplier : SEG (Shanghai Electric Group)

Reactor Unit Details

Reactor type and model PWR / CPR-1000 Thermal power 2905 MWth Gross electrical power 1086 MWe Reference unit power (net) 1000 MWe

Key Dates

Construction Date 2008-12-16 Grid Date 2013-12-31 Commercial Date 2014-03-25 Age at end of year 6 years

Design Characteristics

Primary Systems			Operating coolant pressure [MPa]	:	15.5
Reactor vessel centreline orientation	:	Vertical	Reactor outlet temperature [°C]	:	328.4
Fuel material	:	UO2	Number of SG	:	3
Refuelling type	:	OFF-line	Containment type	:	Single
Moderator material	:	H2O	Containment design pressure [MPa]	:	0.52
Average fuel enrichment [% of U235]	:	4.45	Secondary systems		
Refuelling frequency [month]	:	18	Number of turbine-generators per unit/reactor	:	1
Part of the core refuelled [%]	:	4.45	Turbine speed [rpm]	:	1500
Average discharge burnup [MWd/t]	:	44000	Number of LP cylinders per turbine	:	2
Active core diameter [m]	:	3.04	HP cylinder inlet steam pressure [MPa]	:	6.43
Active core height/length [m]	:	3.66	Output voltage [kV]	:	24
Number of fissile fuel assemblies/bundles	:	157	Primary means of condenser cooling	:	Sea (once-through)
Fuel linear heat generation rate [kW/m]	:	18.6	Number of main condensate pumps	:	3
Number of control rod assemblies	:	61	Number of FW pumps for full power operation	:	2
Number of external reactor coolant loops	:	3	Number of on-site safety related diesel generators	:	3
Coolant type	:	H2O	Non-electrical applications	:	none

Load factor

$$N_{TOT} = \varepsilon N_p \tau \sum_{k=1}^{N_{reactor}} \frac{P_k}{4\pi d_k^2} \langle LF_k \rangle \int dE_\nu \sum_{i=1}^4 \frac{p_i}{Q_i} \lambda_i(E_\nu) \, P_{ee}(E_\nu, d_k) \sigma_{IBD}(E_\nu)$$
 [1 TNU = 1 event / 10³² free protons /year]
$$i = {}^{235}U, {}^{238}U, {}^{239}Pu, {}^{241}Pu$$

• d_k = reactor distance
• P_k = thermal power
• LF = Load Factor d_k = reactor distance

 p_i = power fraction

The load factor LF is the percentage quantity expressing the effective working condition of a core in a specific period of the operating cycle and is defined as the ratio:

$$LF = 100 \times \frac{EG}{REG}$$

where EG is the net electrical energy produced during the reference period as measured at the unit outlet terminals, i.e., after subtracting the electrical energy taken by auxiliary units, while REG is the net electrical energy that would have been supplied to the grid if the unit were operated continuously at the reference power unit during the whole reference period.

Load factor, reactor power and antineutrinos

Fission fragments and (unpleasant) fruit salad

Thermal Neutron Fission of U-235

Spectrum of reactor antineutrinos

The reactor antineutrino signal evaluation requires several ingredients for modeling the three antineutrino life stages:

- ✓ production at reactor cores
- ✓ propagation to the detector site
- ✓ detection in liquid scintillation detectors

$$N_{TOT} = \varepsilon N_p \tau \sum_{k=1}^{N_{reactor}} \frac{P_k}{4\pi d_k^2} \langle LF_k \rangle \int dE_{\nu} \sum_{i=1}^4 \frac{p_i}{Q_i} \lambda_i(E_{\nu}) P_{ee}(E_{\nu}, d_k) \sigma_{IBD}(E_{\nu})$$

[1 TNU = 1 event / 10^{32} free protons /year]

The spectrum of reactor antineutrinos emitted by a reactor core having a thermal power P_{th} and operating with a load factor LF can be evaluated according to:

$$S(E_{\nu}) = P_{th} LF \sum_{i=1}^{4} \frac{p_i}{Q_i} \lambda(E_{\nu})$$

where p_i is power fraction, Q_i (i = 235 U, 238 U, 239 Pu, 241 Pu) is the energy released per fission and λ_i is reactor antineutrino spectrum.

Energy released per fission and plutonium generation

TABLE II. Energy released per fission Q_i for ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu taken from Ma *et al.* [38].

Fissile isotope	Q_i (MeV)
²³⁵ U	202.36 ± 0.26
^{238}U	205.99 ± 0.52
²³⁹ Pu	211.12 ± 0.34
²⁴¹ Pu	214.26 ± 0.33

Fresh fuel contains only U isotopes. The Pu isotopes are gradually generated through neutron captures on 238 U and β decays of its successor isotopes.

Fission fractions and power fractions collection

$$p_i = \frac{f_i Q_i}{\sum_{i=1}^{4} f_i Q_i}$$

 $p_i = \frac{f_i Q_i}{\sum_{i=1}^4 f_i Q_i}$ p_i is the fraction of P_{th} produced by the fission of the *ith* isotope

$$\frac{dN_i^{fiss}}{dt} = LF \cdot P_{th} \frac{p_i}{Q_i}$$

Extensive collection of different sets of fission/power fractions from literature

Reactor Classes	Fractions	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	Reference
		0.538	0.328	0.078	0.056	
		0.614	0.274	0.074	0.038	
		0.620	0.274	0.074	0.042	
		0.584	0.298	0.068	0.050	
		0.543	0.329	0.070	0.058	G. Mention et al. (2011)
		0.607	0.277	0.074	0.042	G. Mention et al. (2011)
		0.603	0.276	0.076	0.045	
		0.606	0.277	0.074	0.043	
		0.557	0.313	0.076	0.054	
PWR		0.606	0.274	0.074	0.046	
BWR	fi	0.488	0.359	0.087	0.067	Y. Abe et al. (2012)
LWGR		0.580	0.292	0.074	0.054	
GCR		0.544	0.318	0.075	0.063	Z. Djurcic et al. (2009)
		0.577	0.292	0.074	0.057	
		0.590	0.290	0.070	0.050	V. I. Kopeikin et al. (2004)
		0.570	0.295	0.078	0.057	S. Abe et al. (2008)
		0.568	0.297	0.078	0.057	K. Eguchi et al. (2003)
		0.563	0.301	0.079	0.057	T. Araki et al. (2005)
		0.650	0.240	0.070	0.040	
		0.560	0.310	0.070	0.060	V. I. Kopeikin (2012)
		0.480	0.370	0.070	0.080	
	p i	0.560	0.300	0.060	0.080	G. Bellini et al. (2010)
МОХ	p i	0.000	0.708	0.080	0.212	G. Bellini et al. (2010)
PHWR	p i	0.543	0.411	0.024	0.022	G. Bellini et al. (2013)

Enriched Uranium

Mixed Oxide Fuel Natural Uranium

Time variation of fission fractions

In reactors, electron antineutrinos are emitted primarily from the fissions of **four isotopes**: ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu. Fissions of **other isotopes** contribute **less than 0.3**%.

Since U isotopes are burnt in fission or spent to generate Pu isotopes (that subsequently fission again), fuel composition is not constant. As a result, **fission fractions** and the consequent antineutrino luminosity **change in time**.

^{*}data from F. P. An et al., 2017

Facciamolo con le mani... ©

The spectrum of reactor antineutrinos emitted by a reactor core having a thermal power P_{th} and operating with a load factor LF can thus be evaluated according to:

$$S(E_{\nu}) = P_{th} LF \sum_{i=1}^{4} \frac{p_i}{Q_i} \lambda(E_{\nu})$$

Power fraction

$$^{235}U = 55 \%$$

$$^{238}U = 10 \%$$

239
Pu = 30 %

241
Pu = 5 %

Fissile isotope	Q_i [MeV/fission]
²³⁵ U	202.36 ± 0.26
²³⁸ U	205.99 ± 0.52
²³⁹ Pu	211.12 ± 0.34
²⁴¹ Pu	214.26 ± 0.33

Building reactor antineutrino spectrum

We can adopt as reference model the one published by Mueller et al., in which the spectra of all four contributing isotopes are consistently given in terms of the exponential of a polynomial of order 5, as stated in Eq. (8). Mueller et al. derive the ²³⁵U, ²³⁹Pu, and ²⁴¹Pu spectra based on a mixed approach that combines the accurate reference of the ILL electron spectra with the physical distribution of beta branches provided by the nuclear databases and calculates the ²³⁸U spectrum via a pure summation method:

$$\lambda_i(E_{\bar{\nu}}) = \exp\left(\sum_{p=1}^6 a_p^i E_{\bar{\nu}}^{p-1}\right)$$

TABLE III. Coefficients of the polynomial of order 5 used as argument of the exponential function for the analytical expression of the antineutrino spectra for ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu, taken from Mueller *et al.* [43].

Fissile isotope	a_1	a_2	a_3	a_4	a_5	a_6
²³⁵ U	3.217	-3.111	1.395	$-3.690(10^{-1})$	$4.445(10^{-2})$	$-2.053(10^{-3})$
^{238}U	$4.833(10^{-1})$	$1.927(10^{-1})$	$-1.283(10^{-1})$	$-6.762(10^{-3})$	$2.233(10^{-3})$	$-1.536(10^{-4})$
²³⁹ Pu	6.413	-7.432	3.535	$-8.820(10^{-1})$	$1.025(10^{-1})$	$-4.550(10^{-3})$
²⁴¹ Pu	3.251	-3.204	1.428	$-3.675(10^{-1})$	$4.254(10^{-2})$	$-1.896(10^{-3})$

Reactor antineutrino spectra

Kim Y., Detection of Antineutrinos for Reactor Monitoring - Nuclear Engineering and Technology - 2016

Fission products

...hai voglia a costruir spettri!

Figure 1-3: Calculated antineutrino energy spectra from many fission products in a commercial reactor. Figure is taken from Ref. [27].

TAO Conceptual Design Report

Long Lived Isotopes (LLI)

Fission fragments produced by spent fuel have widespread half-lives (from fraction of seconds up to 10¹⁸ years).

Among these fission fragments, the β -decaying long-lived isotopes ($\tau_{1/2} > 10h$) can produce spectral distortion in the resulting antineutrino spectrum (E < 4 MeV).

P	τ _{1/2} P	$E^{max\ P}_{\overline{ u}_e}$ [MeV]	D	τ _{1/2} D	$E^{max\;D}_{\overline{ u}_e}$ [MeV]	Y ₂₃₅ [%]	Y ₂₃₉ [%]
93Υ	10.18 h	2.895	⁹³ Zr	1.61·10 ⁶ yr	0.091	6.35	3.79
⁹⁷ Zr	16.75 h	1.916	⁹⁷ Nb	72.1 m	1.277	5.92	5.27
¹¹² Pd	21.03 h	0.27	¹¹² Ag	3.13 h	3.956	0.013	0.13
^{131m} Te	33.25 h	/	¹³¹ Te	25.0 m	2.085	0.09	0.20
¹³² Te	3.204 d	0.24	132	2.295 h	2.141	4.31	5.39
¹⁴⁰ Ba	12.753 d	1.02	¹⁴⁰ La	1.679 d	3.762	6.22	5.36
¹⁴⁴ Ce	284.9 d	0.319	¹⁴⁴ Pr	17.28 m	2.998	4.58	3.11
¹⁰⁶ Ru	371.8 d	0.039	¹⁰⁶ Rh	30.07 s	3.541	0.30	3.24
⁹⁰ Sr	28.79 yr	0.546	90 Y	64.0 h	2.280	0.27	0.10

Per chi vuole approfondire...

Reevaluating reactor antineutrino spectra with new measurements of the ratio between $^{235}\mathrm{U}$ and $^{239}\mathrm{Pu}$ β spectra

V. Kopeikin, M. Skorokhvatov, 1, 2 and O. Titov 1, *

¹National Research Centre Kurchatov Institute, 123182, Moscow, Russia ²National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia (Dated: March 3, 2021)

We report a reanalysis of the reactor antineutrino energy spectra based on the new relative measurements of the ratio $R = {}^e S_5/{}^e S_9$ between cumulative β spectra from ${}^{235}\text{U}$ and ${}^{239}\text{Pu}$, performed at a research reactor in National Research Centre Kurchatov Institute (KI). A discrepancy with the β spectra measured at Institut Laue-Langevin (ILL) was observed, indicating a steady excess of the ILL ratio by the factor of 1.054 ± 0.002 . We find a value of the ratio between inverse beta decay cross section per fission for ${}^{235}\text{U}$ and ${}^{239}\text{Pu}$: $({}^5\sigma_f/{}^9\sigma_f)_{KI} = 1.45 \pm 0.03$, and then we reevaluate the converted antineutrino spectra for ${}^{235}\text{U}$ and ${}^{238}\text{U}$. We conclude that the new predictions are consistent with the results of Daya Bay and STEREO experiments.

Morale della storia...

$$N_{TOT} = \varepsilon N_p \tau \sum_{k=1}^{N_{reactor}} \frac{P_k}{4\pi d_k^2} \langle LF_k \rangle \int dE_\nu \sum_{i=1}^4 \frac{p_i}{Q_i} \lambda_i(E_\nu) \, P_{ee}(E_\nu, d_k) \sigma_{IBD}(E_\nu)$$
 [1 TNU = 1 event / 10³² free protons /year]
$$i = {}^{235}U, {}^{238}U, {}^{239}Pu, {}^{241}Pu$$

Figure 2-1: Antineutrino energy spectrum per fission in a commercial reactor weighted by the inverse beta decay cross section, from Ref. [9].

Ecco cosa succede nel tempo...

Ecco perchè (ma non solo) è stato proposto TAO...

Ci vediamo giovedì prossimo!

The reactor antineutrino signal evaluation requires several ingredients for modeling the three antineutrino life stages:

- ✓ production at reactor cores
- ✓ propagation to the detector site
- ✓ detection in liquid scintillation detectors

The spectrum of reactor antineutrinos emitted by a reactor core having a thermal power P_{th} and operating with a load factor LF can thus be evaluated according to:

$$S(E_{\nu}) = P_{th} LF \sum_{i=1}^{4} \frac{p_i}{Q_i} \lambda(E_{\nu})$$

Signal increase due to the Spent Nuclear Fuels (SNFs)

- A maintenance is typically scheduled once
 a year to substitute 1/3 of the burnt fuel
- SNFs are typically stored for 10 years in water pools close to the reactor for cooling and shielding
- On the base of 235 U e 239 Pu normalized yields the mean life of SNFs is τ_{SNF} = 2.8 yr
- Assuming that all SNF is accumulated for 10 years in the water pool close to each core the enhancement of the antineutrino event rate is 2.4% in the LER

