

Design goals for Gurobi LP and MIP Algorithms

- Leading optimization performance
 - Particularly fast for large or difficult models
- Make the most of the latest CPUs
 - All licenses use all processor cores
 - Built with latest CPU instruction sets
- Interfaces that are lightweight
 - Model initialization uses little memory & CPU
 - Unified interface to access model elements

What's Inside Gurobi Optimizer

- Automatic presolve
 - For both LP and MIP
- Algorithms for continuous optimization
 - Simplex
 - Barrier
- Algorithms for discrete optimization
 - Branch-and-bound
- Programming interfaces
 - ∘ C, C++, Java, .NET, Python, MATLAB, R
- Full-featured interactive shell

Linear Programming

A *linear program* (LP) is an optimization problem of the form

minimize
$$\sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} A_{ij} x_j = b_i, \quad i = 1, \dots, m,$$

$$\ell_j \le x_j \le u_j, \quad j = 1, \dots, n,$$

Presolve

LP Presolve

- Goal
 - Reduce the problem size
- Example

$$x + y + z \le 5 \tag{1}$$

$$u - x - z = 0 \tag{2}$$

.

$$0 \le x, y, z \le 1$$
 (3)

- Reductions
 - Redundant constraint
 - (3) $-> x + y + z \le 3$, so (1) is redundant
 - Substitution
 - (2) and (4) -> u can be substituted with x + z

Simplex and Barrier

Simplex and Barrier

Simplex and Barrier

- Primal & dual simplex method
 - Numerically stable (most challenging part)
- Parallel barrier method with crossover
 - Can effectively exploit multiple cores
- Concurrent optimization
 - Run both simplex and barrier simultaneously
 - Solution is reported by first one to finish
 - Great use of multiple CPU cores
 - Best mix of speed and robustness
 - Distributed concurrent:
 - Run simplex and barrier on different machines

Karush-Kuhn-Tucker Conditions (LP)

Conditions for LP optimality:

• Primal feasibility: Ax = b $(x \ge 0)$

• Dual feasibility: A'y + z = c $(z \ge 0)$

• Complementarity: x'z = 0

Primal simplex Dual simplex Barrier Primal feas Maintain Goal Goal Dual feas
Goal
Maintain
Goal

<u>Complementarity</u> Maintain

Maintain

Goal

Simplex

Primal feasibility constraints

$$Ax = b$$

Partition into basic and nonbasic variables

$$Bx_B + Nx_N = b$$

Solve for basic variables

$$x_B = B^{-1} \left(b - N x_N \right)$$

Solved by maintaining B=LU

Pricing

Dual variables

$$y = B^{-T} c_B$$

Reduced costs

$$z = c - A^T y$$

- Reduced costs give pricing information
 - Change in objective per unit change in variable value

Pivot

$$x_B = B^{-1} \left(b - N x_N \right)$$

- Simplex pivot:
 - Choose a non-basic variable to enter the basis
 - Pick one with a negative reduced cost
 - Push one variable out of the basis
 - Update primal variables, dual variables, reduced costs, basis, basis factors, etc.
 - Continue

Simplex Example

Min
$$z = 9 - 2x_3 - x_4 + 3s_1 + 4s_2$$

 $x_1 = 3 - 8x_3 + x_4 + 2s_1 + 3s_2$
 $x_2 = 2 + 6x_3 + 2x_4 + 3s_1 + 4s_2$
Where x_1 , x_2 are basic, x_i , $s_i \ge 0$

- Pricing strategies to select entering variable
 - Both x_3 and x_4 have negative reduced costs
 - $rc(x_3) = -2 < -1 = rc(x_4)$, x_3 seems to be better, but
 - onorm(x_3) = sqrt(8*8+6*6) = 10
 - $rc(x_3) / norm(x_3) > rc(x_4) / norm(x_4)$
 - x₄ is better based on the steepest edge algorithm
- Steepest edge algorithm (scaling by norm)
 - Crucial for simplex performance and robustness
 - Gurobi parameters: SimplexPricing, NormAdjust

Interior-Point Method

- Basic algorithm (Karmarkar, Fiacco & McCormick, Dikin):
 - Modify KKT conditions:
 - Ax = b
 - A'y + z = c
 - $Xz = \mu e$
- Linearize complementarity condition
- Iterate, reducing μ in each iteration
- Provable convergence

Reduces to a linear solve

Linearize and simplify:

- $\theta_{j} = z_{j}/x_{j}$
- $x_j * z_j = 0$ at optimality, so $\theta_j \rightarrow 0$ or ∞
- Further simplification:

$$A \theta^{-1} A' dy = b$$
 (normal equations)

Computational Steps

- In each iteration:
 - Form $A \theta^{-1} A'$
 - Factor $A \theta^{-1} A' = L D L'$ (Cholesky fact.)
 - Solve LDL'x = b
 - A few Ax and A'x computations
 - A bunch of vector operations

Additional Steps

- Setup steps:
 - Presolve (same for simplex)
 - Compute fill-reducing ordering
- Post-processing steps:
 - Perform crossover to a basic solution

Essential Differences

Simplex:

- Thousand/millions of iterations on extremely sparse matrices
- Each iteration extremely cheap
- Few opportunities to exploit parallelism

Barrier:

- Dozens of expensive iterations
- Much denser matrices
- Lots of opportunities to exploit parallelism

Performance Trends

CPU performance from 2001 to today:

LP Performance

- Performance results:
 - Gurobi 6.0, quad-core Xeon E3-1240
 - Dual simplex on 1 core, barrier on 4 cores
 - Models that take >1s

	<u>GeoMean</u>
Dual simplex	2.50
Primal simplex	5.27
Barrier	1.28
Concurrent	1.00
Det. concurrent	1.10

QP Performance

For QP models, choice is much clearer:

	<u>Geol/Iean</u>
Dual simplex	50
Barrier	1

QCP Performance

- No simplex method for QCP
- Barrier is the only option

Performance on LP with Piecewise Objective

- Primal and dual simplex in Gurobi 6.0
- No Barrier method, only possible on converted model

Warm Start

- Warm start
 - Solve an LP and get optimal solution and basis
 - Change it slightly
 - Resolve it from previous solution or basis
- Simplex can warm start well
- Barrier cannot
- Warm start is crucial for MIP

Thank You