aerofit-project

July 30, 2023

```
[29]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      df=pd.read_csv('aerofit.csv')
     0.1 Basic Analysis
[30]: df.head(5)
[30]:
        Product
                 Age
                      Gender
                              Education MaritalStatus Usage
                                                               Fitness
                                                                         Income
                                                                                 Miles
          KP281
                        Male
                                                             3
                  18
                                      14
                                                Single
                                                                          29562
                                                                                    112
      1
          KP281
                  19
                        Male
                                      15
                                                Single
                                                             2
                                                                      3
                                                                          31836
                                                                                     75
      2
          KP281
                  19
                      Female
                                      14
                                             Partnered
                                                             4
                                                                      3
                                                                          30699
                                                                                     66
          KP281
                  19
                        Male
                                      12
                                                Single
                                                             3
                                                                          32973
                                                                                    85
      3
                                                                      3
          KP281
                        Male
                                             Partnered
                                                             4
                  20
                                      13
                                                                          35247
                                                                                     47
[31]: df.shape
[31]: (180, 9)
```

[32]: df.columns

[32]: Index(['Product', 'Age', 'Gender', 'Education', 'MaritalStatus', 'Usage', 'Fitness', 'Income', 'Miles'], dtype='object')

Statistical Summary

[33]: df.describe()

[33]:		Age	Education	Usage	Fitness	Income	\
	count	180.000000	180.000000	180.000000	180.000000	180.000000	
	mean	28.788889	15.572222	3.455556	3.311111	53719.577778	
	std	6.943498	1.617055	1.084797	0.958869	16506.684226	
	min	18.000000	12.000000	2.000000	1.000000	29562.000000	
	25%	24.000000	14.000000	3.000000	3.000000	44058.750000	

```
50%
        26.000000
                    16.000000
                                  3.000000
                                              3.000000
                                                          50596.500000
75%
        33.000000
                    16.000000
                                  4.000000
                                              4.000000
                                                          58668.000000
max
        50.000000
                    21.000000
                                  7.000000
                                              5.000000
                                                         104581.000000
            Miles
       180.000000
count
       103.194444
mean
std
        51.863605
        21.000000
min
25%
        66.000000
50%
        94.000000
75%
       114.750000
       360.000000
max
```

[34]: df.describe(include=object)

[34]: Product Gender MaritalStatus 180 180 count 180 unique 3 2 2 top KP281 Male Partnered freq 80 104 107

[35]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

		- · · · · · · · · · · · · · · · · · · ·	
#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

• No null value present in given dataset

0.2 Value counts for Categorical attribute

```
[36]: print(df['Product'].value_counts())
  df['Product'].value_counts().plot(kind='pie',autopct="%.2f")

KP281    80
  KP481    60
  KP781    40
  Name: Product, dtype: int64
```

[36]: <Axes: ylabel='Product'>

[37]: []


```
[38]: df['MaritalStatus'].value_counts()
df['MaritalStatus'].value_counts().plot(kind='pie',autopct="%.2f")
```

[38]: <Axes: ylabel='MaritalStatus'>


```
[39]: df['Usage'].value_counts()
[39]: 3
           69
      4
           52
      2
           33
      5
           17
      6
            7
      Name: Usage, dtype: int64
[40]: fitness_counts = df['Fitness'].value_counts()
      fitness_counts
[40]: 3
           97
      5
           31
      2
           26
      4
           24
      Name: Fitness, dtype: int64
```

0.3 Univariate Analysis

0.3.1 Age distribution

```
[46]: plt.figure()
sns.histplot(data = df, x = 'Age', kde = True, color = 'red')
plt.plot()
```

[46]: []

- The age of most of the customer (more than 75%) lies between 20 and 30.
- Less than 5% customers has age >40

```
[42]: sns.boxplot(data = df['Age'], width = 0.5, orient = 'h', showmeans = True) plt.plot()
```

[42]: []

• There are some outliers (Age > 40)

[44]: '% of customers whose age is between 20 and 35 is 81.67%'

```
[45]: data = df['Age']
    print('Mean : ', data.mean())
    print('Median : ', data.median())
    q1 = data.quantile(0.25)
    q3 = data.quantile(0.75)
    print("1st Quartile : ", q1)
    print("3rd Quartile : ", q3)
    iqr = q3 - q1
    print('Innerquartile Range : ', iqr)
    upper = q3 + 1.5 * iqr
    lower = q1 - 1.5 * iqr
    print("Upper Bound : ", upper)
    print('Lower Bound : ', lower)
    outliers = data[(data > upper) | (data < lower)]</pre>
```

```
print("Outliers : ", sorted(outliers))
len_outliers = len((data[(data > upper) | (data < lower)]))
print('No of Outliers : ', len_outliers)</pre>
```

Median: 26.0

1st Quartile : 24.0 3rd Quartile : 33.0

Innerquartile Range: 9.0

Upper Bound : 46.5 Lower Bound : 10.5

Outliers : [47, 47, 48, 48, 50]

No of Outliers : 5

0.3.2 Income distribution

```
[52]: plt.figure(figsize = (7, 3))
sns.histplot(data = df, x = 'Income', kde = True, bins = 18, color = 'green')
plt.plot()
```

[52]: []

- 75% of customers have income < 59000
- more than 90% customer have their income between 30000 to 60000

```
[51]: plt.figure(figsize = (7, 3))
sns.boxplot(data = df, x = 'Income', width = 0.4, orient = 'h', showmeans =

∴True, fliersize = 3)
plt.plot()
```

[51]: []


```
[103]: data = df['Income']
       print('Mean : ', data.mean())
       print('Median : ', data.median())
       q1 = data.quantile(0.25)
       q3 = data.quantile(0.75)
       print("1st Quartile : ", q1)
       print("3rd Quartile : ", q3)
       iqr = q3 - q1
       print('Innerquartile Range : ', iqr)
       upper = q3 + 1.5 * iqr
       lower = q1 - 1.5 * iqr
       print("Upper Bound : ", upper)
       print('Lower Bound : ', lower)
       outliers = data[(data > upper) | (data < lower)]</pre>
       print("Outliers : ", sorted(outliers))
       len_outliers = len((data[(data > upper) | (data < lower)]))</pre>
       print('No of Outliers : ', len_outliers)
```

Mean: 53719.5777777778

Median: 50596.5

1st Quartile : 44058.75 3rd Quartile : 58668.0

Innerquartile Range : 14609.25

Upper Bound : 80581.875 Lower Bound : 22144.875

Outliers: [83416, 83416, 85906, 88396, 88396, 89641, 89641, 90886, 90886, 92131, 92131, 92131, 95508, 95866, 99601, 103336, 104581, 104581]

No of Outliers: 19

0.3.3 Fitness scale distribution

[54]: []

• More than 50% of customers have fitness scale 3

0.3.4 Education distribution

[66]: []

• Most of the customers have 16 years of education followed by 14 and 18 years.

0.3.5 Usage distribution

```
[64]: plt.figure(figsize = (6, 4))
sns.histplot(data = df, x = 'Usage', kde = True, stat = 'percent', discrete = 

→True, color = 'green')
plt.plot()
```

[64]: []

- Most of customers (almost 70%) use tredmil 3 or 4 days a week

0.3.6 Miles Distribution

```
[67]: plt.figure(figsize = (6, 4))
sns.histplot(data = df, x = 'Miles', kde = True, binwidth = 10, color = 'brown')
plt.plot()
```

[67]: []

• Most of the customers walks between 50 to 120 miles per week

0.4 Bivariate Analysis

```
[72]: plt.figure(figsize = (8, 4))
   plt.title('Count of Customers vs Fitness Scale')
   sns.countplot(data = df, x = 'Fitness', hue = 'Gender')
   plt.grid(axis = 'y')
   plt.yticks(np.arange(0, 60, 5))
   plt.ylabel('Count of Customers')
   plt.plot()
```

[72]: []

- \bullet More than half male and female has fitness level 3
- For fitness level 4 and 5 males are more than 3 times compase to female.

```
[74]: plt.figure(figsize = (8, 5))
  plt.title("Products' Count")
  sns.countplot(data = df, x = 'Product', hue = 'Gender')
  plt.grid(axis = 'y')
  plt.plot()
```

[74]: []

• For products KP281 and KP481 number of male and female customers are almost same but for KP781 number male customers are six times more than female customer.

```
[76]: # For Male, different product categories and
plt.figure(figsize = (8, 5))
plt.title("Count of Customers vs Product type")
plt.yticks(np.arange(0, 60, 5))
sns.countplot(data = df, x = 'Product', hue = 'Fitness')
plt.ylabel('Count of Customers')
plt.grid(axis = 'y')
plt.plot()
```

[76]: []

 $\bullet\,$ For product KP281 and KP481 most of customer fitness level is 3 but fro KP781 it's 5.

```
[79]: plt.figure(figsize = (10, 6))
sns.scatterplot(data = df, x= 'Age', y = 'Income', hue = 'Product', size = 'Fitness')
plt.show()
```


- Customers with high income or high fitnees are more likely to buy KP781
- Customers with low fitness or income buys other two products

```
[81]: plt.figure(figsize = (10, 6))
sns.boxplot(data = df, x = 'Product', y = 'Age', hue = 'Gender', showmeans =

→True)
plt.plot()
```

[81]: []

- Age range of male customer is more than female range for all three products.
- Age range of customers who buys KP781 is less than other two products.

```
[83]: plt.figure(figsize = (8, 5))
sns.boxplot(data = df, x = 'Product', y = 'Income', hue = 'Gender', showmeans = True, fliersize = 4)
plt.plot()
```

[83]: []

• Income range, mean, meadian is higher for customer who buys KP781

```
[84]: sns.pairplot(data = df, kind = 'reg')
plt.plot()
```

[84]: []


```
[86]: df_corr = df.corr()
df_corr
```

C:\Users\divya\AppData\Local\Temp\ipykernel_26612\1378791828.py:1:
FutureWarning: The default value of numeric_only in DataFrame.corr is
deprecated. In a future version, it will default to False. Select only valid
columns or specify the value of numeric_only to silence this warning.
 df_corr = df.corr()

[86]:		Age	Education	Usage	Fitness	Income	Miles
	Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
	Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
	Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130

```
Fitness 0.061105 0.410581 0.668606 1.000000 0.535005 0.785702 
Income 0.513414 0.625827 0.519537 0.535005 1.000000 0.543473 
Miles 0.036618 0.307284 0.759130 0.785702 0.543473 1.000000
```

[87]: []

- Customers with high fitness are likely to walk more miles per week and use tredmil more frequently in a week.
- Customers who has more education have higher income

```
[88]: print(pd.crosstab(index = df['Product'], columns = df['Gender'], margins = ___
       →True))
      print()
      print('-' * 26)
      print()
      print("Product-wise normalization : ")
      print(np.round(pd.crosstab(index = df['Product'], columns = df['Gender'],__

  onormalize = 'index') * 100, 2))

      print()
      print('-' * 23)
      print()
      print("Gender-wise normalization : ")
      print(np.round(pd.crosstab(index = df['Product'], columns = df['Gender'],__
       →normalize = 'columns') * 100, 2))
     Gender
              Female Male All
```

```
Product
KP281
            40
                 40
                      80
KP481
            29
                 31
                      60
KP781
            7
                 33
                      40
All
            76
               104 180
```

Product-wise normalization :

Female	Male
50.00	50.00
48.33	51.67
17.50	82.50
	48.33

Gender-wise normalization :

Gender Female Male
Product
KP281 52.63 38.46
KP481 38.16 29.81
KP781 9.21 31.73

- 82% of customers who baught KP781 are male.
- $\bullet~$ Females mostly buy KP281 or KP481

0.4.1 Prob of buying prodect given that customer's gender

Probability of buying 'KP281' provided the customer is Male is 38.46%

Probability of buying 'KP481' provided the customer is Male is 29.81%

Probability of buying 'KP781' provided the customer is Male is 31.73%

Probability of buying 'KP281' provided the customer is Female is 52.63%

Probability of buying 'KP481' provided the customer is Female is 38.16%

Probability of buying 'KP781' provided the customer is Female is 9.21%

0.4.2 Prob of customer belong to particular gender given that he bought some product

Probability that the customer is Male provided KP281 was bought is 50.0%

Probability that the customer is Male provided KP481 was bought is 51.67%

Probability that the customer is Male provided KP781 was bought is 82.5%

Probability that the customer is Female provided KP281 was bought is 50.0%

Probability that the customer is Female provided KP481 was bought is 48.33% Probability that the customer is Female provided KP781 was bought is 17.5%

MaritalStatus	Partnered	Single	All
Product			
KP281	48	32	80
KP481	36	24	60
KP781	23	17	40
All	107	73	180

Product-wise normalization :

MaritalStatus	Partnered	Single
Product		
KP281	60.0	40.0
KP481	60.0	40.0
KP781	57.5	42.5

Marital Status-wise normalization:
MaritalStatus Partnered Single
Product
KP281 44.86 43.84
KP481 33.64 32.88
KP781 21.50 23.29

0.4.3 Prob of buying product provided customer's maritalStatus

Probability of buying 'KP281' provided the customer is 'Single' is 43.84%

Probability of buying 'KP481' provided the customer is 'Single' is 32.88%

Probability of buying 'KP781' provided the customer is 'Single' is 23.29%

Probability of buying 'KP281' provided the customer is 'Partnered' is 44.86%

Probability of buying 'KP481' provided the customer is 'Partnered' is 33.64%

Probability of buying 'KP781' provided the customer is 'Partnered' is 21.5%

0.4.4 Prob of customer's maritalstatus provuided customer's purchase of product

Probability that the customer is 'Single' provided 'KP281' was bought is 40.0% Probability that the customer is 'Single' provided 'KP481' was bought is 40.0%

```
Probability that the customer is 'Single' provided 'KP781' was bought is 42.5%
    Probability that the customer is 'Partnered' provided 'KP281' was bought is
    60.0%
    Probability that the customer is 'Partnered' provided 'KP481' was bought is
    60.0%
    Probability that the customer is 'Partnered' provided 'KP781' was bought is
    57.5%
[94]: print(pd.crosstab(index = df['Product'], columns = df['Fitness'], margins =
     ⊶True))
     print()
     print('-' * 40)
     print()
     print("Product-wise normalization : ")
     print(np.round(pd.crosstab(index = df['Product'], columns = df['Fitness'],__
      \hookrightarrownormalize = 'index') * 100, 2))
     print()
     print('-' * 40)
     print()
     print("Fitness Scale-wise normalization : ")
     print(np.round(pd.crosstab(index = df['Product'], columns = df['Fitness'],__
      onormalize = 'columns') * 100, 2))
    Fitness 1 2 3 4 5 All
    Product
    KP281 1 14 54 9 2 80
    KP481 1 12 39 8 0 60
    KP781 0 0 4 7 29 40
    All 2 26 97 24 31 180
    -----
    Product-wise normalization :
    Fitness 1 2 3 4 5
    Product
    KP281 1.25 17.5 67.5 11.25 2.5
    KP481 1.67 20.0 65.0 13.33 0.0
    KP781 0.00 0.0 10.0 17.50 72.5
```

Fitness Scale-wise normalization :

```
Fitness 1 2 3 4 5
Product

KP281 50.0 53.85 55.67 37.50 6.45

KP481 50.0 46.15 40.21 33.33 0.00

KP781 0.0 0.00 4.12 29.17 93.55
```

0.4.5 Prob of buying product provided customer's fitness

Probability of buying 'KP281' provided the customer has the fitness scale '1' is 50.0%

Probability of buying 'KP481' provided the customer has the fitness scale '1' is 50.0%

Probability of buying 'KP781' provided the customer has the fitness scale '1' is 0.0%

Probability of buying 'KP281' provided the customer has the fitness scale '2' is 53.85%

Probability of buying 'KP481' provided the customer has the fitness scale '2' is 46.15%

Probability of buying 'KP781' provided the customer has the fitness scale '2' is 0.0%

Probability of buying 'KP281' provided the customer has the fitness scale '3' is 55.67%

Probability of buying 'KP481' provided the customer has the fitness scale '3' is 40.21%

Probability of buying 'KP781' provided the customer has the fitness scale '3' is 4.12%

Probability of buying 'KP281' provided the customer has the fitness scale '4' is 37.5%

Probability of buying 'KP481' provided the customer has the fitness scale '4' is 33.33%

Probability of buying 'KP781' provided the customer has the fitness scale '4' is 29.17%

Probability of buying 'KP281' provided the customer has the fitness scale '5' is 6.45%

Probability of buying 'KP481' provided the customer has the fitness scale '5' is 0.0%

Probability of buying 'KP781' provided the customer has the fitness scale '5' is 93.55%

0.4.6 Prob of customer's fitness provided product he/she bought

Probability that the customer has a fitness scale of '1' provided 'KP281' was bought is 1.25%

Probability that the customer has a fitness scale of '1' provided 'KP481' was bought is 1.67%

Probability that the customer has a fitness scale of '1' provided 'KP781' was bought is 0.0%

Probability that the customer has a fitness scale of '2' provided 'KP281' was bought is 17.5%

Probability that the customer has a fitness scale of '2' provided 'KP481' was bought is 20.0%

Probability that the customer has a fitness scale of '2' provided 'KP781' was bought is 0.0%

Probability that the customer has a fitness scale of '3' provided 'KP281' was bought is 67.5%

Probability that the customer has a fitness scale of '3' provided 'KP481' was bought is 65.0%

Probability that the customer has a fitness scale of '3' provided 'KP781' was bought is 10.0%

Probability that the customer has a fitness scale of '4' provided 'KP281' was bought is 11.25%

Probability that the customer has a fitness scale of '4' provided 'KP481' was bought is 13.33%

Probability that the customer has a fitness scale of '4' provided 'KP781' was bought is 17.5%

Probability that the customer has a fitness scale of '5' provided 'KP281' was bought is 2.5%

Probability that the customer has a fitness scale of '5' provided 'KP481' was bought is 0.0%

Probability that the customer has a fitness scale of '5' provided 'KP781' was bought is 72.5%

0.4.7 Relationship between Fitnees and marital status of customes

```
[97]: print(pd.crosstab(index = df['MaritalStatus'], columns = df['Fitness'], margins
      →= True))
     print()
     print('-' * 48)
     print('Marital Status wise normalization : ')
     print()
     print(np.round(pd.crosstab(index = df['MaritalStatus'], columns = u
      ⇔df['Fitness'], normalize = 'index') * 100, 2))
     print()
     print("-" * 48)
     print('Fitness levels wise normalization : ')
     print()
     print(np.round(pd.crosstab(index = df['MaritalStatus'], columns = u

df['Fitness'], normalize = 'columns') * 100, 2))
     Fitness
                          3
                                  5 All
     MaritalStatus
     Partnered
                   1 18 57 13 18 107
                   1
                      8 40 11 13
                                     73
     Single
                   2 26 97 24 31 180
     All
     -----
     Marital Status wise normalization :
     Fitness
                      1
                            2
                                   3 4
                                                5
     MaritalStatus
     Partnered
                   0.93 16.82 53.27 12.15 16.82
     Single
                   1.37 10.96 54.79 15.07 17.81
     Fitness levels wise normalization :
     Fitness
                            2
                                   3
                      1
     MaritalStatus
     Partnered
                   50.0 69.23 58.76 54.17 58.06
                   50.0 30.77 41.24 45.83 41.94
     Single
[99]: def income_partitions(x):
         if x < 45000:
             return '< 45k '
         elif 45000 <= x < 60000:
             return '45k - 60k'
         elif 60000 <= x < 80000:
             return '60k - 80k'
         else:
```

```
return '> 80k'
       df['income_bins'] = df['Income'].apply(income_partitions)
       df['income_bins'].loc[np.random.randint(0, 180, 10)]
[99]: 156
              60k - 80k
       124
              45k - 60k
       177
                 > 80k
       119
              45k - 60k
       102
                 < 45k
       88
                 < 45k
              60k - 80k
       65
       12
                 < 45k
                 < 45k
              60k - 80k
       158
       Name: income_bins, dtype: object
[100]: print(pd.crosstab(index = df['Product'], columns = df['income_bins'], margins =
       →True))
       print()
       print('-' * 54)
       print('Product wise normalization : ')
       print()
       print(np.round(pd.crosstab(index = df['Product'], columns = df['income_bins'],__
        ⊖normalize = 'index') * 100, 2))
       print()
       print("-" * 48)
       print('Income-bins wise normalization :')
       print()
       print(np.round(pd.crosstab(index = df['Product'], columns = df['income_bins'],__
        →normalize = 'columns') * 100, 2))
      income_bins 45k - 60k 60k - 80k < 45k
                                                 > 80k All
      Product
      KP281
                          40
                                      6
                                              34
                                                      0
                                                          80
      KP481
                          38
                                      7
                                              15
                                                      0
                                                          60
      KP781
                          11
                                      10
                                              0
                                                     19
                                                          40
                          89
                                     23
                                              49
      All
                                                     19 180
      Product wise normalization :
      income_bins 45k - 60k - 60k - 80k < 45k > 80k
      Product
      KP281
                       50.00
                                   7.50
                                            42.5
                                                    0.0
                       63.33
                                  11.67
                                            25.0
                                                    0.0
      KP481
      KP781
                       27.50
                                  25.00
                                            0.0
                                                   47.5
```

Income-bins wise normalization :

```
income_bins 45k - 60k 60k - 80k < 45k > 80k

Product

KP281 44.94 26.09 69.39 0.0

KP481 42.70 30.43 30.61 0.0

KP781 12.36 43.48 0.00 100.0
```

0.4.8 Prob of buying a product given the income range of customer

Probability of buying 'KP281' provided the customer has the annual income in range '45k - 60k' is 44.94%

Probability of buying 'KP481' provided the customer has the annual income in range '45k - 60k' is 42.7%

Probability of buying 'KP781' provided the customer has the annual income in range '45k - 60k' is 12.36%

Probability of buying 'KP281' provided the customer has the annual income in range '60k - 80k' is 26.09%

Probability of buying 'KP481' provided the customer has the annual income in range '60k - 80k' is 30.43%

Probability of buying 'KP781' provided the customer has the annual income in range '60k - 80k' is 43.48%

Probability of buying 'KP281' provided the customer has the annual income in range '< 45k ' is 69.39%

Probability of buying 'KP481' provided the customer has the annual income in range '< 45k ' is 30.61%

Probability of buying 'KP781' provided the customer has the annual income in range '< 45k ' is 0.0%

Probability of buying 'KP281' provided the customer has the annual income in range '> 80k' is 0.0%

Probability of buying 'KP481' provided the customer has the annual income in range '> 80k' is 0.0%

Probability of buying 'KP781' provided the customer has the annual income in range '> 80k' is 100.0%

0.4.9 Prob of income rabge provided product bought by customer

Probability that the customer's annual income lies in range '45k - 60k' provided 'KP281' was bought is 50.0%

Probability that the customer's annual income lies in range '45k - 60k' provided 'KP481' was bought is 63.33%

Probability that the customer's annual income lies in range '45k - 60k' provided 'KP781' was bought is 27.5%

Probability that the customer's annual income lies in range '60k - 80k' provided 'KP281' was bought is 7.5%

Probability that the customer's annual income lies in range '60k - 80k' provided 'KP481' was bought is 11.67%

Probability that the customer's annual income lies in range '60k - 80k' provided 'KP781' was bought is 25.0%

Probability that the customer's annual income lies in range '< 45k' provided 'KP281' was bought is 42.5%

Probability that the customer's annual income lies in range '< 45 k ' provided 'KP481' was bought is 25.0%

Probability that the customer's annual income lies in range '< 45 k ' provided 'KP781' was bought is 0.0%

Probability that the customer's annual income lies in range '> 80k' provided 'KP281' was bought is 0.0%

Probability that the customer's annual income lies in range '> 80k' provided 'KP481' was bought is 0.0%

Probability that the customer's annual income lies in range '> 80k' provided 'KP781' was bought is 47.5%

0.5 Insights

- Male customers are more compare to female. (Ratio is 60:40)
- Around 44% of customers bought KP281, 33% bought KP481 and 22% bought KP781
- Customers with high income or high finess are more likely to buy KP781
- 90% of customers who bought KP781 have fitness 4 or 5
- Prob of income > 80k is 100% given that customer bought KP781
- Five times more male customers bought KP781 compare to female
- Male customers are more likely to buy KP781
- More than 60% of customers are married
- More than 80% of customer's age is between 20 to 30
- 80% customer's income is in the range 40000 to 65000
- Most of (70%) of customers use tredmil 3 to 4 days a week
- More than 50% customers have fitness level 3
- In customers who have 4 or 5 fitness level there are more than 3 times male than female

0.6 Recomendation

- Most of the customers are in the age range of 20 to 30 so marketing strategy should be designed to attract more young people
- We can design seperate marketing strategy to sell KP781 to customers with high income or high fitness level
- We can offer discount to customer profile who are more likely to buy perticular product
- We can launch different fitness chalanges and winners can get discount

[]: