SCC-275 - Ciência de Dados

Exploração de dados

Profa. Roseli Ap. Francelin Romero – SCC

Prof. Dr. André C. P. L. F. de Carvalho Dr. Isvani Frias-Blanco ICMC-USP

Tópicos

- Dados
- Caracterização de dados
 - Objetos e atributos
 - Tipos de dados
- Exploração de dados
 - Dados univariados
 - Dados multivariados
 - Visualização

Conjuntos de dados

- Estruturados
 - Mais facilmente analisados por técnicas de MD
 - Ex.: Planilhas e tabelas atributo-valor
- Não estruturados
 - Mais facilmente analisados por seres humanos
 - Em DM são geralmente convertidos em dados estruturados
 - Ex.: Sequência de DNA, conteúdo de página na web, emails, vídeos, ...

Conjuntos de dados estruturados

Atributos de entrada (preditivos)

1	Nome	Temp.	Idade	Peso	Altura	Diagnóstico
Exemplos (objetos, instâncias)	João Maria José Sílvia Pedro	39	70 65 19 25 70	94 60 70 65 90	190 172 185 160 168	Saudável Doente Doente Saudável Doente

Atributo alvo

Tipos de atributos

- Simbólicos ou qualitativos
 - Nominal ou categórico
 - Ex.: cor, código de identificação, profissão
 - Ordinal
 - Ex.: gosto (ruim, médio, bom), dias da semana
- Numéricos, contínuos ou quantitativos
 - Intervalar
 - Ex.: data, temperatura em Celsius
 - Racional
 - Ex.: peso, tamanho, idade

Nome	Temp	Enjôo	Batimento	Dor	Salário	Diagnóstico
João		sim	baixo	sim	1000	doente
Pedro		não	normal	não	1100	saudável
Maria		sim	elevado	não	600	saudável
José		não	baixo	sim	2000	doente
Ana		não	elevado	sim	1800	saudável
Leila		não	elevado	sim	900	doente

Nominal Intervalar Ordinal

Racíonal

Tipos de atributos

- Nominal (=, ≠)
 - Valores são apenas nomes diferentes
- Ordinal (<, >)
 - Existe uma relação de ordem entre valores
- Intervalar (+, -)
 - Diferença entre valores faz sentido
- Racional (*, /)
 - Razão e diferença entre valores fazem sentido

- Definir o tipo dos seguintes atributos:
 - Número de palavras de um texto
 - Fotografia
 - Número de RG
 - Data de nascimento
 - Código de disciplina
 - Posição em uma corrida
 - Expressão de um gene em um tecido
 - Sequência de aminoácidos

Tipos de atributos

- Nominal (=, ≠)
 - Valores são apenas nomes diferentes
- Ordinal (<, >)
 - Existe uma relação de ordem entre valores
- Intervalar (+, -)
 - Diferença entre valores faz sentido
- Racional (*, /)
 - Razão e diferença entre valores fazem sentido

- Definir o tipo dos seguintes atributos:
 - Número de palavras de um texto
 - Fotografia
 - Número de RG
 - Data de nascimento
 - Código de disciplina
 - Posição em uma corrida
 - Expressão de um gene em um tecido
 - Sequência de aminoácidos

Quantidade de valores

- Atributos também se distinguem pela quantidade de valores
 - Discretos
 - Número finito ou infinito e enumerável de valores, como números naturais
 - Ex.: código postal, contagem (quantidade de algum elemento)
 - Caso especial: valores binários
 - Contínuos
 - Número infinito de valores, como números reais
 - Ex.: temperatura, peso, distância

Exploração de dados

- Exploração preliminar dos dados facilita entendimento de suas características
- Principais motivações:
 - Ajudar a selecionar a melhor técnica para pré-processamento e/ou modelagem
- Ferramentas
 - Estatística descritiva
 - Visualização

Estatística descritiva

- Descreve propriedades estatísticas de dados
- Produz valores que resumem características de um conjunto de dados
 - Na maioria das vezes por meio de cálculos muito simples

Estatística descritiva

- Pode capturar medidas de:
 - Frequência
 - Localização ou tendência central
 - Ex.: Média
 - Dispersão ou espalhamento
 - Ex.: Desvio padrão
 - Distribuição ou formato

Frequência

- Proporção de vezes que um atributo assume um dado valor
 - Em um determinado conjunto de dados
 - Muito usada para dados categóricos
 - Ex.: Em um BD de um hospital, 40% dos pacientes é maior de idade

Febre	Idade	Batimento	Dor	Diagnóstico
sim não sim sim sim não	23 9 61 32 21 48	elevado normal elevado baixo elevado elevado	sim não não sim sim	doente saudável saudável doente saudável doente

66% das medidas de batimento cardíaco encontradas em pacientes são superiores ao normal

Medidas de localidade (centralidade)

- Tendência central
- Valores quantitativos
 - Média
 - Mediana
 - Percentil
- Valores qualitativos ou quantitativos
 - Moda

Média

Pode ser calculada facilmente

$$m\acute{e}dia(x) = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Problema: sensível a *outliers*

Mediana

- Menos sensível a outliers que média
- Necessário ordenar valores

mediana (x) =
$$\widetilde{x}$$
 =
$$\begin{cases} x_{(r+1)} \text{ se n \'e impar (n = 2r + 1)} \\ \frac{1}{2} (x_r + x_{(r+1)}) \text{ se n \'e par (n = 2r)} \end{cases}$$

Média versus Mediana

- Média é uma boa medida de localização quando os valores estão distribuídos simetricamente
- Mediana indica melhor o centro
 - Se distribuição é oblíqua (assimétrica)
 - Skewed
 - Se existem *outliers*

Média Podada

- Trimmed mean
- Melhora estimativa da média descartando exemplos nos extremos
 - Define porcentagem p dos exemplos a serem eliminados
 - Ordena os dados
 - Elimina (p/2)% dos exemplos em cada extremidade

Winsorização

- Winsorization
- Semelhante à média podada
 - Valores que passam dos extremos, ao invés de eliminados, são substituídos pelos extremos permitidos
 - Percentis mínimos e máximos
 - Ex.: Winsorização de 80% para os valores

$$1, 2, 3, 4, 5, 6, 7, 8, 9, 10 =$$

- Valor mais frequente nos dados
 - Nenhuma moda: Todos os valores são iguais
 - Uma moda: Unimodal
 - Mais de uma moda: Multimodal (Bimodal, Trimodal, ...)
- Indicada quando existem poucos possíveis valores
- Para dados moderadamente assimétricos, moda pode ser estimada por média e mediana

 $moda \approx m\'edia - 3 \times (m\'edia - mediana)$

Febre	Idade	Batimento	Dor	Diagnóstico
sim	23	elevado	sim	doente
não	9	normal	não	saudável
sim	61	elevado	não	saudável
sim	32	baixo	sim	doente
sim	23	elevado	sim	saudável
não	48	elevado	sim	doente

Valor da moda para o atributo batimento: elevado Valor da moda para o atributo idade: 23

- Dado o conjunto de dados {2, 2, 3, 4, 5, 80}, calcular:
 - Média
 - Mediana
 - Média podada com p = 33%
 - Média com Winsorização de 10%
 - Moda

Quartis e Percentis

- Mediana divide os dados ao meio
 - No entanto, pontos de localização diferentes podem ser usados
 - Quartis dividem um conjunto ordenado de dados em quartos
 - Q₁: Primeiro quartil (quartil inferior)
 - Valor da observação para a qual 25% dos dados do conjunto tem valor menor ou igual
 - Também é o valor do 25º percentil
 - Q₂: Segundo quartil = mediana
 - Q₃: Terceiro quartil (quartil superior)
 - 75° percentil

Percentis

- Características do valor do 100pº percentil:
 - Pelo menos 100xp% das observações possuem um valor menor ou igual a ele
 - Pelo menos 100x(1-p)% das observações tem um valor igual ou acima
- Mediana é o 100x0,5° ou 50° percentil
 - Para cálculo, usar fórmula da mediana

Cálculo dos percentis

- Ordenar os valores
 - Posição do p-percentil:

$$posição = \left\lceil p \times n + \frac{1}{2} \right\rceil$$

- Arredonda posição para o valor inteiro seguinte (21,5 = 22)
- Retorna o valor nessa posição

Exemplo

 Obter os quartis e o 95º percentil para o conjunto de dados abaixo:

```
6,2 7,67 8,3 9,0 9,4 9,8 10,5 10,7 11,0 12,3
```

Ex

Exemplo

 Obter os quartis e o 95º percentil para o conjunto de dados abaixo:

```
6,2 7,67 8,3 9,0 9,4 9,8 10,5 10,7 11,0 12,3
```

```
Q_1: np = 0.25x10 + 0.5 = 3

usar \ o \ terceiro \ valor: Q_1 = 8.3

Q_2: np = 0.5x10 + 0.5 = 5.5

para \ a \ mediana, usar \ a \ média \ entre \ o \ quinto \ e \ o \ sexto \ valor: Q_2 = 9.6

Q_3: np = 0.75x10 + 0.5 = 8

usar \ o \ oitavo \ valor: Q_3 = 10.7

P_{0.95}: np = 0.95x10 + 0.5 = 10

usar \ o \ décimo \ valor: P_{0.95} = 12.3
```


- Calcular quartis inferior e superior e o 60º percentil para os valores
 - 16, 25, 4, 18, 11, 13, 20, 8, 11 e 9

- Calcular quartis inferior e superior e o 60º percentil para os valores
 - 16, 25, 4, 18, 11, 13, 20, 8, 11 e 9
 - **4**, 8, 9, 11, 11, 13, 16, 18, 20, 25
 - $Q_1 = Q_1$
 - $Q_3 =$
 - 60° percentil =

- Calcular a mediana, o primeiro quartil e o segundo quartil
 - **23**, 7, 12, 6, 10
 - **23**, 7, 12, 6, 10, 7, 10
 - **1**, 1, 1, 1, 1, 98

 Representar os dados a seguir usando faces de Chernoff

Febre	Idade	Batimento	Dor	Diagnóstico
sim não sim sim sim não	23 9 61 32 21 48	elevado baixo elevado baixo elevado elevado	sim não não sim sim	doente saudável saudável doente saudável doente

Considerações Finais

- Caracterização de dados
 - Objetos e atributos
 - Tipos de dados
- Exploração de dados
 - Dados univariados
 - Medidas de localidade, espalhamento e distribuição
 - Dados multivariados
 - Visualização de dados e de resultados

 Descrever e explorar os dados utilizados na aula de laboratório

Perguntas

