MATH 4720 / MSCS 5720

Instructor: Mehdi Maadooliat

Chapter 10(Part A)

Department of Mathematics, Statistics and Computer Science

CATEGORICAL DATA ANALYSIS (ANALYSIS FOR COUNT DATA)

- Two Categorical Variables
- Example: (Evaluation of president's performance vs Gender)

subject	President's Job Performance	Gender
1	Approve	F
2	Disapprove	M
	No opinion	F
100	Approve	M

Variables:

- President's Job Performance: Approve, Disapprove, No Opinion

- **Gender:** Male, Female

First variable has three levels, and the second has two levels

ANALYSIS OF COUNT DATA

We can of course convert this data into count data

	President's Job Performance		
Gender	Approve	Disapprove	No Opinion
Male	20	25	5
Female	27	20	3

- One question may be to test whether the opinion on
 - President's Job Performance depends on Gender.
- How to formulate this problem in hypothesis testing?
- What is the probability distribution?
 - Of course, we cannot use normal distribution.

ANALYSIS OF COUNT DATA CONT'D

- In general, for Categorical Data, what probability distribution should be considered?
- Categorical Variable is A with categories: $A_1, A_2, ..., A_k$

Subject	A_1	A_2		A_k
1	Х			
2			Х	
		Х		
				х
n	X			

• Switch to Count Data, and we get:

A:
$$A_1$$
 A_2 ... A_k **Count** y_1 y_2 ... y_k

• where $y_1 + y_2 + \cdots + y_k = n$

WHAT IS THE PROBABILITY DISTRIBUTION OF THIS COUNTS?

• The probability distribution of $(Y_1, Y_2, ..., Y_k)$ is Multinomial distribution

$$P(y_1, y_2, ..., y_k) = \frac{n!}{y_1! y_2! ... y_k!} \pi_1^{y_1} \pi_2^{y_2} ... \pi_k^{y_k}$$

- Here
 - $\pi_1 = P(A_1) =$ Population proportion of category A_1
 - $\pi_2 = P(A_2) =$ Population proportion of category A_2
 - -
 - $\pi_k = P(A_k)$ = Population proportion of category A_k
- We write $(Y_1, Y_2, ..., Y_k) \sim Multinomial(n; \pi_1, \pi_2, ..., \pi_k)$
- Note that this is a generalization of the binomial distribution.
 In the binomial distribution, you have two categories:

$$A_1(success)$$
 and $A_2(Failure)$

GOING BACK TO EXAMPLE

In the example of President's Job Performance, we have

- President Job Performance: Approve Disapprove No Opinion

- Count Y_1 Y_2 Y_3

- $(Y_1, Y_2, Y_3) \sim Multinomial(n; \pi_1, \pi_2, \pi_3)$
- $\pi_1 = P(Approve), \ \pi_2 = P(Disapprove), \ \pi_3 = P(No\ Opinion)$
- Any statistical inference, now, can be made in terms of

$$(\pi_1, \pi_2, \pi_3)$$

 So the statistical analysis for the categorical data is statistical analysis of multinomial distribution.

SIMPLE EXAMPLE (BINOMIAL)

Example: Exit Poll

 Suppose, we collected data on 1,000 voters in election with only two candidates: R and D

Data

Voter	R	D
1	x	
2		x
:		
1,000	х	

Based on this data, we want to forecast who won the election.

POLL EXAMPLE CONT'D

- Let Y = # of voters voted for R = 551
- $Y \sim Binimial(n = 1000, \pi)$
- π = P(a voter voted for R)
 = proportion of all voters voted for R
- We want to predict that "R won the election"
- $\bullet H_0: \pi \le \frac{1}{2}$
- $H_a: \pi > \frac{1}{2}$ (more than $\frac{1}{2}$ voted for R)
- So, if we reject H_0 in favor of H_a at $\alpha=0.05$, this would mean that our forecast that "R won" is with P(False Discovery)=0.05.

HYPTHESIS TESTING FOR π

- H_0 : $\pi = \pi_0$
 - $H_a: \pi > \pi_0$
 - $H_a: \pi < \pi_0$
 - $-H_a:\pi\neq\pi_0$
- T.S. $z = \frac{\widehat{\pi} \pi_0}{\sqrt{\frac{\pi_0(1 \pi_0)}{n}}}$
 - where $\hat{\pi} = \text{sample proportion} = \frac{Y}{n}$
- Assumption:
 - $-n\pi_0 \ge 5$, $n(1-\pi_0) \ge 5$
- Decision Rule: Reject H_0 in favor of H_a if
 - H_a : $\pi > \pi_0$: Reject H_0 in favor of H_a if $z > z_\alpha$
 - H_a : $\pi < \pi_0$: Reject H_0 in favor of H_a if $z < -z_\alpha$
 - H_a : $\pi \neq \pi_0$: Reject H_0 in favor of H_a if $|z| > z_{\alpha/2}$

CONFIDENCE INTERVAL FOR π

• Estimate π with a 100(1- α)% confidence interval

$$\hat{\pi} \pm z_{\alpha/2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

Assumption:

$$n\hat{\pi} \ge 5$$
, $n(1-\hat{\pi}) \ge 5$

BACK TO EXAMPLE

• In an exit poll of 1,000 voters, 516 voted for R. Assume that there are only two candidates: R and D. Is there a sufficient evidence to conclude at $\alpha = 0.05$ that "R won" the election.

- If π is the proportion of all voters voted for R
- $H_0: \pi \le \frac{1}{2}$ $H_a: \pi > \frac{1}{2}$
- Assumption: $n\pi_0 = 500 \ge 5$, $n(1 \pi_0) \ge 5$ (True)

• T.S.
$$z = \frac{\widehat{\pi} - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$
, where $\widehat{\pi} = \frac{516}{1000} = 0.516$, $\pi_0 = \frac{1}{2}$

EXAMPLE CONT'D

•
$$z = \frac{0.516 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{1000}}} = 1.01$$

Decision Rule:

- Reject H_0 in favor of H_a if $z > z_\alpha = 1.64$

- Conclusion: Is z > 1.64?
 - No. Fail to Reject H_0 in favor of H_a .
 - We do not have sufficient evidence to conclude that "R won."
- We can conclude the same based on p-value:

•
$$p - value = P(Z > 1.01) = 0.1562 > 0.05$$

EXAMPLE CONT'D

Estimate the proportion of all voters voted for R using 95% confidence interval

$$\hat{\pi} \pm z_{\alpha/2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

- where $\hat{\pi} = 0.516$
- Assumption: $n\hat{\pi} = 516 \ge 5$ $n(1 \hat{\pi}) \ge 484 \ge 5$

• 95% Cl of
$$\pi$$
: $0.516 \pm 1.96 \sqrt{\frac{0.516(1-0.516)}{1000}}$
 0.516 ± 0.031

$$0.485 < \pi < 0.547$$

SAMPLE SIZE DETERMINATION

• Finding sample size so that π can be estimated with $100(1-\alpha)\%$ at a margin of error of E.

$$\hat{\pi} \pm E$$

• Formula:
$$n = \frac{z_{\alpha/2}^2 \pi (1-\pi)}{E^2}$$

• Since π is unknown, a good guess can be used.

• Or, since $\max[\pi(1-\pi)] = \frac{1}{4}$, we can use

• Formula:
$$n = \frac{z_{\alpha/2}^2}{4F^2}$$

BACK TO EXIT POLL EXAMPLE:

 We want to know how many voters to sample to estimate the proportion of voters voted for R with 95% confidence at 2% margin of error.

$$n = \frac{z_{\alpha/2}^2 \pi (1-\pi)}{E^2}$$

•
$$z_{\alpha/2} = 1.96$$
,

•
$$E = 0.02$$
,

• Since π is unknown, use

$$- \max[\pi(1-\pi)] = \frac{1}{4}$$

$$n = \frac{z_{\alpha/2}^2}{4E^2} = \frac{1.96^2}{4*0.02^2} = 2401$$

TWO POPULATION PROPORTION

Comparing Two Population Proportions

•	Group 1	Group 2
	n_1	n_2
# of success	Y_1	Y_2

•
$$Y_1 \sim Binomial(n_1, \pi_1)$$
 $Y_2 \sim Binomial(n_2, \pi_2)$

- π_1 Population proportion of success of Group 1
- π_2 Population proportion of success of Group 2

HYPTHESIS TESTING FOR π

- H_0 : $\pi_1 = \pi_2$
 - H_a : $\pi_1 > \pi_2$
 - $H_a: \pi_1 < \pi_2$
 - $H_a: \pi_1 \neq \pi_2$

• T.S.
$$Z = \frac{\widehat{\pi}_1 - \widehat{\pi}_2}{\sqrt{\frac{\widehat{\pi}_1(1-\widehat{\pi})}{n_1} + \frac{\widehat{\pi}_2(1-\widehat{\pi}_2)}{n_2}}}$$

Assumption:

- $n_1 \hat{\pi}_1 \ge 5$, $n_1 (1 \hat{\pi}_1) \ge 5$
- $n_2 \hat{\pi}_2 \ge 5$, $n_2 (1 \hat{\pi}_2) \ge 5$

• Decision Rule: Reject H_0 in favor of H_a if

- H_a : $\pi_1 > \pi_2$: Reject H_0 in favor of H_a if $z > z_\alpha$
- H_a : $\pi_1 < \pi_2$: Reject H_0 in favor of H_a if $z < -z_\alpha$
- H_a : $\pi_1 \neq \pi_2$: Reject H_0 in favor of H_a if $|z| > z_{\alpha/2}$

CONFIDENCE INTERVAL FOR $\pi_1 - \pi_2$

• Estimate $\pi_1 - \pi_2$ with a $100(1 - \alpha)\%$ confidence interval

$$\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{\pi}_1(1-\hat{\pi})}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}}$$

Assumption:

$$-n_1\hat{\pi}_1 \ge 5$$
, $n_1(1-\hat{\pi}_1) \ge 5$

$$-n_2\hat{\pi}_2 \ge 5$$
, $n_2(1-\hat{\pi}_2) \ge 5$

BOOK EXAMPLE 10.7

- A study was done on 300 students to compare the effectiveness of teaching English to non-English-speaking people by a computer software program and by a traditional classroom system.
- A randomly selected 125 students were assigned to computer program and the remaining 175 were assigned to traditional program.

•	Exam Results	Computer	Traditional
	Pass	94	113
	Fail	31	62
	Total	125	175

• Is there sufficient evidence to conclude that the computer program is more effective than the traditional at $\alpha = 0.05$?

EXAMPLE 10.7 CONT'D

- $H_0: \pi_1 = \pi_2$ vs. $H_a: \pi_1 > \pi_2$
- Here
 - π_1 = Pop. Prop. of students passing the exam under computer program
 - $\pi_2=$ Pop. Prop. of students passing the exam under traditional program

•
$$\hat{\pi}_1 = \frac{94}{125} = 0.752$$
, $\hat{\pi}_2 = \frac{113}{175} = 0.646$

Assumptions:

-
$$n_1 \hat{\pi}_1 = 94 \ge 5$$
, $n_1 (1 - \hat{\pi}_1) = 31 \ge 5$

-
$$n_2\hat{\pi}_2 = 113 \ge 5$$
, $n_2(1 - \hat{\pi}_2) = 62 \ge 5$

• T.S.
$$Z = \frac{\widehat{\pi}_1 - \widehat{\pi}_2}{\sqrt{\frac{\widehat{\pi}_1(1-\widehat{\pi})}{n_1} + \frac{\widehat{\pi}_2(1-\widehat{\pi}_2)}{n_2}}} = 2.00$$

- Decision Rule: Reject H_0 in favor of H_a if $Z>z_{\alpha}=1.64$
- Conclusion: Is Z > 1.64?
 - Yes. Reject H_0 . We have sufficient evidence to conclude that the computer program is more effective.

EXAMPLE 10.7 CONT'D (CONFIDENCE INT.) MARQUETTE

 Now, suppose you want to know how much effective is the computer program?

• Estimate $\pi_1 - \pi_2$ using a 95% confidence interval.

$$\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\alpha/2} \sqrt{\frac{\hat{\pi}_1(1-\hat{\pi})}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}}$$

• $z_{\alpha/2} = 1.96$.

•
$$0.752 - 0.646 \pm 1.96 \sqrt{\frac{0.752(1 - 0.752)}{125} + \frac{0.646(1 - 0.646)}{175}}$$

• 0.106 ± 0.104

• 95% C.I.

$$0.002 < \pi_1 - \pi_2 < 0.21$$

REMARK

Assumption that

-
$$n_1 \hat{\pi}_1 \ge 5$$
, $n_1 (1 - \hat{\pi}_1) \ge 5$

$$n_2 \hat{\pi}_2 \ge 5, \quad n_2 (1 - \hat{\pi}_2) \ge 5$$

is not satisfied for some experiment since $\hat{\pi}_1$ and $\hat{\pi}_2$ may be very smalls.

• Example: Certain car battery causes fire in engine.

•	Test Battery	Good Battery
	$n_1 = 10$	$n_2 = 10$
# of case	$y_1 = 2$	$y_2 = 0$
fire occu	ırred	

- The above assumption is not satisfied. So, z-test cannot be used.
- In such cases, we use Fisher's Exact test (See Book Example 10.8)