Homework 6

Question 1

Prove that $n^3 + 3n + 4$ is $O(2n^3)$.

Since the highest degree in this equation is n^3 and $\mathrm{O}(2n^3)$ can be simplified to $\mathrm{O}(n^3)$, this statement is true.

Question 2

Prove that $n^{3/2}$ is not O(n).

Since 3/2 > 1, and O(n) only works for equations that have a degree of 1, $n^{3/2}$ is not O(n).

Question 3

Consider the following recursive algorithm Square(n), which takes as input $n \in \mathbb{N}$:

If n = 0, output 0.

Otherwise, output Square(n-1) + n + n - 1.

Use induction to prove that for all $n \in \mathbb{N}$, Square(n) terminates and outputs n^2 .

Base Case: If we substitute n = 1,

Square
$$(0) + 1 + 1 - 1 = 0 + 2 - 1 = 1$$

Since $1^2 = 1$.

Inductive Step: Assume that for $k \geq 0$, Square(k) returns k^2 for all $k \in \mathbb{N}$. Then we will prove that Square(k+1) returns $(k+1)^2$ for all $k \in \mathbb{N}$.

$$\begin{aligned} \operatorname{Square}(k+1) &= \operatorname{Square}(k) + 2k + 1 \\ \operatorname{Square}(k) &= \operatorname{Square}(k) + \operatorname{Square}(k-1) + \ldots + \operatorname{Square}(1) = k^2 \\ \operatorname{Square}(k+1) &= k^2 + 2k + 1 = (k+1)^2 \quad \blacksquare \end{aligned}$$

Let T(n) denote the number of additions or subtraction operations performed by Square(n). Write down a recurrence relation for T(n).

$$3 \cdot (n-1)$$

Question 4

Use strong induction to prove that for all lists L of positive integers, LocalMin(L) terminates, and its output (denoted by B) satisfies the following: Either b=0 and L has no local minimum or $b \neq 0$ and b is a local minimum of L.

Base Case: We must prove that LocalMin works for L=2 and L=3.

If L has length 2 or less, it outputs zero. \checkmark

If L has length 2 or less, it will output zero or a local minimum. \checkmark

Inductive Step

Assume that for $k \geq 2$, LocalMin(k) is true. Then, we will try to prove that LocalMin(k+1) returns a local minimum or no local minimum.

Write down a recurrence relation for T(n).

$$2T(|L|/2) + \theta(1)$$