AceRec: Academic Paper Recommendation System

Zengwen Yuan Jiaming Shen, Zhaowei Tan, Yunqi Guo

December 1, 2014

Outline

Introduction

Motivation State-of-Art Academic Engines Our Goal

2 General Considerations

Dataset and Preprocessing Topic Analysis Network Analysis

3 Implementation

Data Acquisition LDA Analysis Citation Analysis

Introduction

- Introduction
 Motivation
 State-of-Art Academic Engines
 Our Goal
- Q General Considerations Dataset and Preprocessing Topic Analysis Network Analysis
- 3 Implementation Data Acquisition LDA Analysis Citation Analysis

Motivation

- Online Social Network is booming
- Recreational Social Network
- Academic Social Network?

State-of-Art Academic Engines

- Google Scholar, Microsoft Academic Search
- DBLP, CiteSeer^X, etc.
- ArnetMiner, ResearchGate, etc.

However, none of above provides a comprehensive search suggestion of the research topic evolution tendency as time goes by.

What about an academic search engine for layman?

Our Goal

- To build an academic search engine which can:
 - Return paper search results based on topic similarity with user's query
 - 2 Analyse the latent topic distribution and topic development over time
 - 3 Visualize the "topic tree" starting from a particular paper
 - 4 and more.

General Considerations

- Introduction
 Motivation
 State-of-Art Academic Engines
 Our Goal
- Q General Considerations
 Dataset and Preprocessing
 Topic Analysis
 Network Analysis
- Implementation
 Data Acquisition
 LDA Analysis
 Citation Analysis

Dataset

For an excellent and accurate search engine/recommendation system, it is essential that the system have a dataset which contains large volume of authentic data.

Figure: Volume of dataset (# publication)

Dataset (Cont'd)

 We want to obtain the following metadata of papers: title, author, abstract, keywords, citation, reference, year, venue

Figure: Metadata Example

Data Preprocessing

For further processing, we need to preprocess the corpus, forming one entry for each paper.

This procedure includes:

- stripping puncutations, space and stop words
- converting all the words to lower-case (and stem processing)
- repeating the title three times (weight factor) and appending it to the abstract

Then the data can be used for Topic Analysis and LDA.

Topic Model

Why we need topic model? (Unsupervised) Extract the latent topic from papers

computer	chemistry	cortex	orbit	infection
methods	synthesis	stimulus	dust	immune
number	oxidation	fig	jupiter	aids
two	reaction	vision	line	infected
principle	product	neuron	system	viral
design	organic	recordings	solar	cells
access	conditions	visual	gas	vaccine
processing	cluster	stimuli	atmospheric	antibodies
advantage	molecule	recorded	mars	hiv
important	studies	motor	field	parasite

Figure: Five topics from a 50-topic LDA model fit to Science (David M. Blei)

Latent Dirichlet Allocation

PLSA (Probabilistic Latent Semantic Analysis) ⇒ LDA

Figure: The intuitions behind latent Dirichlet allocation

Latent Dirichlet Allocation (Cont'd)

- Assume that some "topics" exist for the whole collection
- Each document is assumed to be generated as follows:
 - Choose a distribution over the topics
 - 2 For each word in the document, randomly choose:
 - a) a topic from the distribution over topics in step #1
 - b) a word from the corresponding distribution over the vocabulary

Figure: A Brief Illustration of LDA Model (Rickjin, 2013)

Query Interface and Mapping

What happens when user starts a query:

- Resolve the user's input, and find the keywords
- 2 Find the most close topic (keyword mapping)
- Trace back to the paper
- 4 Return the search result

Network Analysis

- Complex citation network (4.4 million citation relationships)
- Citation and reference suggests latent time orders in publication and topic development
- Authors have their collective credit weights (Hua-Wei Shen and Barabási, PNAS 2014)
- Matthew effect

Visulization

Figure: Website Prototype

Implementation

- Introduction
 Motivation
 State-of-Art Academic Engines
 Our Goal
- ② General Considerations
 Dataset and Preprocessing
 Topic Analysis
 Network Analysis
- 3 Implementation
 Data Acquisition
 LDA Analysis
 Citation Analysis

Paper Dataset

- We did experiments collecting paper metadata (Zhaowei).
- We already have a rather comprehensive dataset from ArnetMiner:

Figure: Comprehensive Dataset

Data Preprocessing

We preprocessed \sim 1,600,000 entries (Jiaming):

```
title_list = []
          abstract_list = [
          for i in range(0,M):
              # print "----"
              if (i % 1000 -- 0): print i
              raw_info = list_of_all_the_lines[i].split('\n')
                  title = raw_info[0]
                  if (title[0:2] - "#*" ):
                      title = title[2:]
                      title_list.append( seg(title) )
                  abstract = raw_info[-1]
                  if (abstract[0:2] = "#!" ):
                      abstract = abstract[2:]
                      abstract_list.append( seg(abstract) )
                      # print "This paper:",i, "do not have abstract"
                      abstract_list.append(□)
Line: 81 Python
                 ○ Seft Tabe: 4~ 春〇
```

Figure: Data Preprocesser

Topic and LDA Anaysis

We used Gibbs Sampling and LDA algorithm with proper parameter: topics = 100, iteration = 1000, top words = 200, words total = 827185 The experiment result shows high relavence within each topic:

```
Topic 1th:
| Compared to the Compared to the Compared to Compared
```

Figure: Word Distribution

Query Resolver

```
Query \Rightarrow Keyword \Rightarrow Topic \Rightarrow Paper
For each paper, we found the most relevant topics (Yunqi):
```

```
{{7, 0.132979}, {67, 0.101064}, {34, 0.069149}, {16, 0.058511}, {9,
         0.037234}, {96, 0.015957}, {93, 0.015957}, {81, 0.015957}, {79,
         0.015957}, {74, 0.015957}, {61, 0.015957}, {43, 0.015957}, {28,
        0.015957}, {6, 0.015957}}
        {{99, 0.051471}, {80, 0.051471}, {16, 0.051471}, {9, 0.051471}, {3,
        0.051471}, {2, 0.051471}}
       {{86, 0.1}, {94, 0.053846}, {34, 0.053846}, {12, 0.053846}}
       {{51, 0.1}, {99, 0.053846}, {68, 0.053846}, {9, 0.053846}}
        {{9, 0.117378}, {34, 0.092988}, {43, 0.074695}, {67, 0.056402}, {54,
        0.053354}, {73, 0.047256}, {7, 0.044207}, {86, 0.03811}, {65,
        0.028963}, {33, 0.019817}, {16, 0.019817}, {77, 0.016768}, {68,
        0.016768}, {3, 0.016768}, {100, 0.01372}, {83, 0.01372}, {48,
        0.01372}, {40, 0.01372}, {13, 0.01372}, {84, 0.010671}, {57,
        0.010671}, {56, 0.010671}, {31, 0.010671}, {26, 0.010671}, {15,
        0.010671}, {10, 0.010671}, {78, 0.007622}, {74, 0.007622}, {70,
        0.007622}, {55, 0.007622}, {29, 0.007622}, {21, 0.007622}, {11,
        0.007622}, {4, 0.007622}, {99, 0.004573}, {97, 0.004573}, {91,
        0.004573}, {90, 0.004573}, {89, 0.004573}, {88, 0.004573}, {87,
        0.004573}, {72, 0.004573}, {64, 0.004573}, {59, 0.004573}, {51,
        0.004573}, {50, 0.004573}, {22, 0.004573}, {20, 0.004573}, {18,
        0.004573}, {8, 0.004573}, {1, 0.004573}}
        {{16, 0.201299}, {69, 0.045455}, {57, 0.045455}, {22, 0.045455}, {8,
         0.045455}}
         {{86, 0.059322}, {51, 0.059322}, {34, 0.059322}}
Line: 1 Plain Text 0 Soft Table: 4 ∨ 100 0
```

Figure: Possibility of Topics For Papers

Network Analysis

Figure: Topic Tree