Definition 1. Lusztig's stratification of g

Definition 2. $S \subset \mathfrak{g}$ is a **transverse** or **normal** slice to a nilpotent orbit $\alpha \equiv \mathbb{O}_e$ at the element $e \in \mathfrak{g}$ if

- (1) $T_e \alpha \oplus T_e S = \mathfrak{g}$
- (2) there is a \mathbb{G}_m action on S
 - (a) contracting it to e, and
 - (b) preserving Lusztig's stratification of \mathfrak{g}

Lemma 1. Let L be a Lusztig stratum.

- $S \cap \alpha = \{e\}$
- $S \cap L \neq \emptyset \iff \alpha \subset \overline{L}$
- S intersects L transversely, i.e. for each $x \in S \cap L$, $T_xS \oplus T_xL = \mathfrak{g}$

Proof. • The first point is a consequence of Definition 2 (2)?

Lemma 2. The following data specifies a normal slice S to α at e.

- $h \in \mathfrak{g}^{ss}$ such that ad(h) has integer eigenvalues, and ad(h)(e) = 2e
- $C \subset \mathfrak{g}$ such that $C \cap T_e(\alpha) = C \cap [\mathfrak{g}, e] = 0$, ad(h)(C) = C, and if ad(h)(x) = nx for some $x \in C$, then $n \leq 1$

Proof. Anne: See Lemma 5.2.1, 5.4.2, but most importantly Lemma 4.3.1 of Riche's Kostant section and universal centralizer.

(1)
$$e = \sum_{\Lambda} e_{\alpha}; \quad \check{\lambda}_{\circ} := \sum_{\Lambda} \tilde{\Phi}^{+} \check{\alpha}; \quad t \cdot x := t^{-2} \check{\lambda}_{\circ}(t) \cdot x$$

Apparently, we can lift the action of h on \mathfrak{g} to a map $\mathbb{G}_m \to G$ and hence an action of \mathbb{G}_m on \mathfrak{g} which fixes e and preserves e+C. The element h defines a 1-parameter subgroup e^{sh} in G.

MVy construct an isomorphism $\psi: T_x \cap \mathcal{N} \to T_b \cap \operatorname{Gr}_N$ where

- $T_x = \{x + f | f \in \text{End}(D), [\text{conditions}]\}$
- \mathcal{N} is the nilpotent cone in $\operatorname{End}(D)$
- $T_b := L^{<0}G(\mathcal{K})L_b$ which is the same as to use the notation that we're used to Gr_{μ} as $L^{<0}G(\mathcal{K}) = \ker(G(\mathbb{C}[z^{-1}]) \xrightarrow{z^{-1} \mapsto 0} G)$
- $\operatorname{Gr}_N = \{L \supset L_0 | \dim L / L_0 = N \}$