Week 13 Activity: GLMs

Now reconsider the willow tit dataset and consider modeling not just the presence / absence of birds, but directly modeling the number of birds observed in each spatial region.

birds <- read.csv('http://math.montana.edu/ahoegh/teaching/stat491/data/willowtit2013_count.csv')
head(birds) %>% kable()

siteID	elev	rlength	forest	bird.count	searchDuration
Q001	450	6.4	3	0	160
Q002	450	5.5	21	0	190
Q003	1050	4.3	32	3	150
Q004	950	4.5	9	0	180
Q005	1150	5.4	35	0	200
Q006	550	3.6	2	0	115

This dataset contains 242 sites and 6 variables:

- siteID, a unique identifier for the site, some were not sampled during this period
- elev, mean elevation of the quadrant in meters
- rlength, the length of the route walked by the birdwatcher, in kilometers
- forest, percent forest cover
- bird.count, number of birds identified
- searchDuration, time birdwatcher spent searching the site, in minutes
- 1. Data Visualization Create two figures that explore bird.count as a function of forest cover percentage (forest) and elevation (elev).
- **2. Model Specification** Using a Poisson regression model, clearly write out the model to understand how forest cover and elevation impact bird count.
- **3. Priors** Describe and justify the necessary priors for this model.
- **4. Fit MCMC** Fit the JAGS code for this model.
- **5. Summarize inferences from model** Talk about the model and discuss which and how predictor variables influence the observed bird count. Create figures that show your fitted model for elevation and/or forest coverage.