Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>3220</u>	К работе допущен		
Студент <u>Гафурова Ф. Ф.</u>	Работа выполнена		
Преподаватель Терещенко Г. В.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе 3.08

Эффект Холла в примесных полупроводниках

1. Цель работы:

Изучить эффект Холла в примесных полупроводниках. Ознакомиться с методом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла.

2. Задачи, решаемые при выполнении работы:

- 1. Изучение эффекта Холла в примесных полупроводниках.
- 2. Измерение продольного напряжения при различных температурах и вычисление электропроводности и ее логарифма.
- 3. Исследование зависимости ЭДС Холла от величины магнитного поля при постоянной силе тока и температуре.
- 4. Исследование зависимости ЭДС Холла от величины тока при постоянной величине магнитного поля и температуре.
- 5. Исследование зависимости ЭДС Холла от температуры при постоянных величинах магнитного поля и тока.
- 6. Оценка постоянной Холла, концентрации свободных электронов и подвижности носителей тока для различных температур.
- 7. Определение типа полупроводников по знаку ЭДС Холла.

3. Объект исследования:

Объектом исследования является примесный полупроводник, используемый в виде образца для демонстрации эффекта Холла, что позволяет определить концентрацию и подвижность основных носителей тока.

4. Метод экспериментального исследования

- Методика эксперимента основывается на последовательном проведении следующих этапов:
- Измерение продольного напряжения между точками 1 и 2 образца для определения его электропроводности по формуле

$$\sigma = \frac{IL_{12}}{U_{12}bd}$$

• Измерение ЭДС Холла U_x , возникающей при приложении поперечного магнитного поля к образцу. Для исключения вклада дополнительной продольной разности потенциалов проводятся измерения при двух противоположных направлениях вектора индукции с последующим вычислением

$$U_x = \frac{U_{34}' - U_{34}''}{2}$$

- Проведение измерений в заданном температурном диапазоне с обеспечением температурного контроля.
- Использование неинвертирующего усилителя с коэффициентом усиления 100 для усиления слабого сигнала с датчика Холла.

5. Измерительные приборы

Наименование	Кол-во
Блок амперметра-вольтметра AB1	1 шт.
Блок генератора напряжений ГНЗ	1 шт.
Стенд с объектами исследования С3-ЭХ01	1 шт.
Соединительные провода с наконечниками	6 шт.

6. Схема установки

- 1. Собрать схему для измерения продольного напряжения U_{12} между точками 1 и 2 образца (см. рис. 1). Подключить блок амперметравольтметра AB1 и блок генератора напряжений ГНЗ для создания необходимого тока.
- 2. Установить образец (C3-ЭX01) в магнитном поле, обеспечив возможность изменения направления вектора магнитной индукции для измерения ЭДС Холла.
- 3. Подключить измерительные зонды для регистрации напряжения между точками 3 и 4, а также предусмотреть схему для устранения вклада продольной разности потенциалов (см. рис. 2).
- 4. Организовать температурный контроль образца для проведения измерений в диапазоне от комнатной температуры до 380 К.

Рисунок 1. Рабочая схема для исследования электропроводимости образца

Рисунок 2. Рабочая схема для измерения ЭДС Холла

7. Рабочие формулы и исходные данные:

Электропроводность образца $\sigma-$ величина обратная его удельному сопротивления p:

$$\sigma = \frac{1}{p}$$

Удельное сопротивление входит в формулу для сопротивления образца между точками 1 и 2:

$$R_{12} = p \frac{L_{12}}{bd}$$

где L_{12} – расстояние между точками 1 и 2 образца (10 мкм); bd – площадь поперечного сечения образца (2 на 2 мм). По закону Ома сопротивление, сила тока и продольное напряжение между точками 1 и 2 связаны между собой соотношением:

$$IR_{12} = U_{12}$$

Формула для экспериментального определения электропроводности образца.

$$\sigma = \frac{IL_{12}}{U_{12}bd}$$

При изменении направления вектора магнитной индукции \vec{B} на противоположное, при сохранении направлении тока I, знак ЭДС Холла U_x изменяется, а знак продольной разности потенциалов ΔU не изменяется. Следовательно, при одном направлении \vec{B} напряжение между точками 3 и 4, будет составлять:

$$U'_{34} = U_x + \Delta U$$

А при обратном направлении \vec{B} :

$$U^{\prime\prime}_{34} = -U_x + \Delta U$$

Вычтем из первого выражения второе и вырази U_x :

$$U_x = \frac{U_{34}' - U''_{34}}{2}$$

 U_x – ЭДС Холла, ΔU – продольная разность потенциалов

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов)

Таблица 1 – вычисление электропроводности

a straight in the straight of				
	Т, к	303	330	365
Измерить	U_{12} , B	-0,022	0,005	0,05
	1/T, 1/K	0,0033	0,00303	0,0027
	σ, сименс	0,145	0,637	0,064
Вычислить	$\ln (\sigma)$	-1,933	-0,452	-2,754

$$I=10^{-3}\,A,\,L_{12}=10\,{
m MKM}=10^{-5}{
m M}$$

Пример расчета:

$$\sigma = \frac{IL_{12}}{U_{12}bd} = \frac{10^{-3} * 10^{-5}}{0,022 * 3,14 * 10^{-6}} = 0,145$$

Таблица 2 – зависимость ЭДС Холла от величины магнитного поля

Измерить	В, мТл	15	83	115
	U'_{34} , B	-0.03	-0,16	-0,21
	$U^{\prime\prime}_{34}$, B	0,01	0,13	0,19
Вычислить	U_x , B	-0.02	-0,145	-0,2

$$T = 303 \, K, \ I = 1.881 * 10^{-3} \, A$$

Пример счета:

$$U_x = \frac{U'_{34} - U''_{34}}{2} = \frac{-0.03 - 0.01}{2} = -0.02$$

Таблица 3 – зависимость ЭДС Холла от величины тока

Измерить	<i>I</i> , мкА	1267	1787	601
	U'_{34} , B	-0,019	-0,026	-0,008
	$U^{\prime\prime}{}_{34}$, B	0,007	0,011	0,003
Вычислить	U_{x} , B	-0,013	-0,0185	-0,0055

$$T = 303 K, B = 0.01 Tл$$

Пример счета:

$$U_x = \frac{U'_{34} - U''_{34}}{2} = \frac{-0,019 - 0,007}{2} = -0,013$$

Таблица 4 – зависимость ЭДС Холла от температуры

Измерить	<i>T</i> , <i>K</i>	310	334	352
	U'_{34} , B	-0,018	-0,012	-0,019
	$U^{\prime\prime}_{34}$, B	0,019	0,026	0,053
Вычислить	U_x , B	-0,0185	-0,019	-0,017

$$I = 1,785 * 10^{-3} A$$
, $B = 0,01$ Тл

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$R_{x} = \frac{U_{x}b}{IR}$$

Для
$$T=310~K$$
: $R_{x}=\frac{-0.0185*2*10^{-3}}{1.785*10^{-3}*10^{-2}}=-2.073\frac{\mathrm{M}^{3}}{\mathrm{K}_{\mathrm{Л}}}$

Для
$$T=334~K$$
: $R_{\chi}=\frac{-0.019*2*10^{-3}}{1.785*10^{-3}*10^{-2}}=-2.129\frac{^{M^3}}{_{KЛ}}$

Для
$$T=352~K$$
: $R_{\chi}=rac{-0.017*2*10^{-3}}{1.785*10^{-3}*10^{-2}}=-1.905rac{{
m M}^3}{{
m K}\pi}$

$$n = \frac{a}{q_e R_x}$$

Для
$$T = 310 \ K$$
: $n = \frac{1,93}{1,60217663*10^{-19}*(-2,073)} = -5,811*10^{18} \text{м}^{-3}$

Для
$$T = 334 \, K$$
: $n = \frac{1,93}{1,60217663*10^{-19}*(-2,129)} = -5,658*10^{18} \text{м}^{-3}$

Для
$$T = 352 \ K$$
: $n = \frac{1,93}{1,60217663*10^{-19}*(-1,905)} = -6,323*10^{18} \text{м}^{-3}$

$$\mu = \frac{\sigma}{q_e n}$$

Для
$$T=310~K$$
: $\mu=\frac{0.144}{1.60217663*10^{-19}*(-5.811)*10^{18}}=-0.155\frac{\text{м}^2}{B}*C$

Для
$$T=334~K$$
: $\mu=\frac{0.144}{1.60217663*10^{-19}*(-5.658)*10^{18}}=-0.159\frac{{\rm M}^2}{B}*C$

Для
$$T=352~K$$
: $\mu=\frac{0.144}{1.60217663*10^{-19}*(-6.323)*10^{18}}=-0.142\frac{\mathsf{M}^2}{B}*C$

10. Графики (перечень графиков, которые составляют Приложение 2).

Рисунок 3. График зависимости $ln\left(\sigma\right)$ om 1/T, 1/K

Участок от 0,00303 до 0,0033 по 1/Т (соответствует Т от 303 до 330 К) соответствует примесной проводимости.

11. Окончательные результаты

Знак напряжения Холла U_x помогает определить тип преобладающих носителей заряда в полупроводнике. Положительное напряжение Холла указывает на то, что основными носителями являются дырки, что соответствует $p-{\rm тип}y$ полупроводника. Отрицательное напряжения Холла говорит о том, что основным носителями являются электроны, что соответствует $n-{\rm тип}y$ полупроводника.

В нашем случае все значения U_x имеют отрицательный знак, что указывает на то, что исследуемый образец является полупроводником n- типа, в котором электроны являются основными носителями заряда.

12. Выводы и анализ результатов работы

В процессе выполнения лабораторной работы я исследовала эффект Холла в примесных полупроводниках и познакомилась с методом определения концентрации и подвижности основных носителей тока с использованием этого эффекта. Я рассчитала напряжение Холла, постоянную Холла, электропроводность, концентрацию свободных электронов в проводнике и подвижность носителей тока. Данный для экспериментов полупроводник оказался $n-\tau$ ипа.