Algebra 2 Assessment Review: Polynomials

This document provides revised scaffolded questions to help students prepare for questions 5, 9, 22, and 23 (Polynomials group) of the enVision Algebra 2 Progress Monitoring Assessment Form C. Each question includes scaffolded steps to build understanding from basic concepts to the level required by the assessment, with clear guidance for concept-naive students. This is followed by the original assessment questions.

Scaffolded Review Questions

Scaffolded Question for Assessment Item 5: Finding Zeros of Polynomial Functions

The original question asks to select all x-values where the polynomial $f(x) = x^4 - 2x^3 - 29x^2 + 30x$, modeling a pelican's height, equals zero. The following questions build understanding of finding polynomial zeros.

- 5.1 Understanding Zeros: A zero of a function is an x-value where f(x) = 0, where the graph crosses the x-axis. Find the zeros of:
 - a) f(x) = x 2: Set x 2 = 0, zero at x =_____
 - b) $f(x) = x^2 4 = (x 2)(x + 2)$: Zeros at $x = ___, x = ___$
 - c) What does a zero represent for a height function?
- 5.2 Factoring Polynomials: Factor each polynomial and find zeros:
 - a) $f(x) = x^2 + 3x = x(x+3)$: Zeros at $x = ___, x = ___$
 - b) $f(x) = x^3 9x = x(x^2 9) = x(x 3)(x + 3)$: Zeros at $x = \underline{\hspace{1cm}}, x = \underline{\hspace{1cm}}, x = \underline{\hspace{1cm}}$
 - c) If a factor appears twice (e.g., $(x-1)^2$), the zero has multiplicity 2, meaning the graph touches the x-axis. Why might multiplicity matter?
- 5.3 Contextual Zeros: A ball's height is modeled by $h(t) = -16t^2 + 48t$. Find when it hits the ground (h(t) = 0):
 - a) Factor: $-16t^2 + 48t = -16t(t-3) = 0$. Zeros at $t = ____, t = ____$
 - b) Interpret: t = 0 is when the ball is ______; t = 3 is when it _____.
 - c) Why ignore negative times? _____
- 5.4 **Testing Zeros**: For a polynomial $f(x) = x^4 x^3 8x^2 + 8x$, test if the following are zeros by substituting:
 - a) x = -2: Compute $f(-2) = \underline{\hspace{1cm}}$. Is it a zero? $\underline{\hspace{1cm}}$
 - b) x = 1: Compute f(1) =____. Is it a zero? ____

c) For the original $f(x) = x^4 - 2x^3 - 29x^2 + 30x$, which of these are zeros: -6, -5, 0, 1, 4, 6? Test two values (e.g., x = 0, x = 1). $f(0) = \underline{\qquad}$ (Zero? $\underline{\qquad}$) $f(1) = \underline{\qquad}$ (Zero? $\underline{\qquad}$) Selected Zeros:

Scaffolded Question for Assessment Item 9: Polynomial Long Division

The original question asks to divide $x^3 - 4x^2 + 6x - 2$ by x - 1 and complete the quotient. The following questions build understanding of polynomial division.

- 9.1 **Basic Polynomial Division**: Divide each term by the divisor, matching powers of x:
 - a) $\frac{8x^3}{2x} =$ _____
 - b) $\frac{10x^4+4x^2}{2x^2} = \frac{10x^4}{2x^2} + \frac{4x^2}{2x^2} = \underline{\qquad} + \underline{\qquad}$
 - c) Why divide term by term? _____
- 9.2 **Simple Long Division**: Divide $x^2 + 4x + 3$ by x + 1:
 - a) $x^2 \div x =$ _____, multiply: x(x+1) =_____, subtract: $(x^2 + 4x + 3) (x^2 + x) =$ _____
 - b) Continue: $3x \div x = \underline{\hspace{1cm}}$, multiply, subtract to get remainder 0.
 - c) Result: $x^2 + 4x + 3 = (x+1)(\underline{\hspace{1cm}}) + \underline{\hspace{1cm}}$
- 9.3 Synthetic Division: Use synthetic division for $x^2 + 5x + 6$ by x 2:
 - a) Divisor x-2, so use 2. Coefficients: 1, 5, 6. Setup:

- b) Quotient: _____, Remainder: ___
- c) Why is synthetic division faster for linear divisors?
- 9.4 **Applying to the Original Problem**: Divide x^3-4x^2+6x-2 by x-1 using synthetic division:
 - a) Coefficients: $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$, $\underline{\hspace{1cm}}$. Divisor: x-1, so use $\underline{\hspace{1cm}}$.
 - b) Perform synthetic division:

c) Quotient: _____, Remainder: ___. Write as: $x^3 - 4x^2 + 6x - 2 = (x - 1)(_____) + __.$

Scaffolded Question for Assessment Item 22: Multiplying Polynomials

The original question asks to simplify $(x^2 + 4x)(x^2 + x + 2)$. The following questions build understanding of polynomial multiplication.

22.1 Monomial Distribution: Multiply by distributing each term:

a)
$$x(x+5) = x^2 + 5x$$

b)
$$3x(x^2+2) = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

c) Why distribute each term? _____

22.2 Binomial Multiplication: Use FOIL:

a)
$$(x+3)(x+2)$$
: First: x^2 , Outer: $3x$, Inner: $2x$, Last: 6. Result: $x^2 + 5x + 6$

b)
$$(x-1)(x+4)$$
: _____ + ____ + ____ = ____.

22.3 Quadratic by Binomial: Multiply:

a)
$$(x^2+1)(x+3) = x^2(x+3) + 1(x+3) = x^3 + 3x^2 + x + 3$$

b)
$$(x^2 + 2x)(x + 1) = \underline{\qquad} + \underline{\qquad} + \underline{\qquad} = \underline{\qquad}$$

22.4 Applying to the Original Problem: Multiply $(x^2 + 4x)(x^2 + x + 2)$:

a) Distribute:
$$x^2(x^2 + x + 2) + 4x(x^2 + x + 2)$$

b) Compute:
$$x^4 + x^3 + 2x^2 + 4x^3 + 4x^2 + 8x$$

c) Combine:
$$x^4 + (1+4)x^3 + (2+4)x^2 + 8x =$$
_____.
Compare to choices: $x^4 + 5x^3 + 6x^2 + 8x$.

Scaffolded Question for Assessment Item 23: Polynomial Function Behavior

The original question asks to analyze $f(x) = x^3 + 3x^2$, finding zeros and describing end behavior. The following questions build understanding of polynomial analysis.

23.1 Finding Zeros: Factor to find zeros:

a)
$$f(x) = x(x-4)$$
: Zeros: $x = 0, x = 4$

b)
$$f(x) = x^2(x+2)$$
: Zeros: $x =$ ____ (multiplicity ___), $x =$ ____

c) What does multiplicity mean graphically? _____

23.2 End Behavior: End behavior depends on the leading term:

- a) $f(x) = 2x^3$: As $x \to -\infty$, $f(x) \to -\infty$; as $x \to +\infty$, $f(x) \to +\infty$.
- b) $f(x) = -x^3 + x$: Leading term: $-x^3$. As $x \to -\infty$, $f(x) \to \underline{\hspace{1cm}}$; as $x \to +\infty$, $f(x) \to \underline{\hspace{1cm}}$.
- 23.3 **Graphing Cubics**: For $f(x) = x^3 x^2 = x^2(x-1)$:
 - a) Zeros: x = 0 (multiplicity 2), x = 1
 - b) Test points: $f(-1) = (-1)^3 (-1)^2 = -1 1 = -2$; f(2) = 8 4 = 4.
 - c) Multiplicity 2 at x = 0: Graph _____ the x-axis.
- 23.4 Applying to the Original Problem: For $f(x) = x^3 + 3x^2$:
 - a) Factor: $f(x) = x^2(x+3)$. Zeros: ______, _____.
 - b) End behavior: Leading term x^3 . As $x \to -\infty$, $f(x) \to$ _____; as $x \to +\infty$, $f(x) \to$ _____.Atx = 0 (multiplicity 2): Graph _____ the x-axis.

Original Assessment Questions

Question 5

The height above sea level of a pelican diving for fish is modeled by $f(x) = x^4 - 2x^3 - 29x^2 + 30x$. Select all the x-values where the pelican enters or exits the water.

- **⊘** -6 D. [⋈] 1
- \boxtimes -5 E. $[\boxtimes]$ 4
- $\boxtimes 0$ F. $[\boxtimes] 6$

(Note: Replace ⊠with □if you want empty boxes for students to fill)

Question 9

Divide $x^3 - 4x^2 + 6x - 2$ by x - 1. Complete the quotient using the choices provided.

3x	-5x	-3x	3
11	-3	$\frac{9}{x-1}$	$\frac{1}{x-1}$

Question 22

Simplify $(x^2 + 4x)(x^2 + x + 2)$.

A.
$$8x^2 + 5x^3 + 8x$$

B.
$$x^4 + 5x^3 + 6x^2 + 8x + 2$$

C.
$$x^4 + 5x^3 + 6x^2 + 8x$$

D.
$$4x^5 + 4x^4 + 8x^3$$

Question 23

Use a graph of the polynomial function $f(x) = x^3 + 3x^2$ to complete the following:

- The zeros of f are \square and \square .
- As x decreases, f(x) [\boxtimes] increases. [\boxtimes] decreases.
- As x increases, f(x) [\boxtimes] increases. [\boxtimes] decreases.

(Note: Replace ⊠with □if you want empty boxes for students to fill)