Exploratory Data Analysis (EDA) Findings

Dataset Summary

• Duration: June 2023 to May 2025

• Scope: Rajasthan-level solar generation (CEA) + NASA POWER climate data

• Records: 731 daily entries

Column Renaming & Structure

Cleaned and normalized columns:

• Solar generation: solar_mwh

• Temperature: temp_avg_c , temp_max_c , temp_min_c

Humidity: humidity_pct

Wind: wind_speed_ms

• Precipitation: precip_mm

• Solar irradiance: solar_rad_allsky_mj_m2 , solar_rad_clrsky_mj_m2

• Cloudiness proxy: cloudiness_index = clrsky - allsky

1. Correlation Heatmap Insights

**Target: **``

Predictor	Correlation	Direction	Strength
All-sky Irradiance	+0.86	7	Very Strong
Clear-sky Irradiance	+0.81	7	Strong
Cloudiness Index (derived)	-0.72	7	Strong Inverse
Max Temperature	+0.17	7	Weak
Humidity	-0.13	Ä	Weak
Rainfall	-0.08	7	Negligible
Wind Speed	-0.03	\leftrightarrow	None

Conclusion:

Solar radiation (especially All-sky) is the dominant driver. Cloudiness has strong negative effect. Other variables provide minor seasonal context.

2. Temporal Trend Analysis

- solar_mwh and solar_rad_allsky_mj_m2 show strong seasonal alignment.
- Peak: April to June
- Dips: July (monsoon) & December-January (winter haze)
- precip_mm spikes during monsoon (June–September) correlate with solar troughs.
- cloudiness_index surges during same low solar periods, confirming its suppressive role.
- Temperatures peak May-June but are not strongly aligned with solar output drops.

3. 🧦 Cloudiness as Key Inhibitor

- Difference between clear-sky and all-sky irradiance reveals true cloud burden.
- Cloudiness index is highly anti-correlated with solar output (-0.72).

4. Correlation Matrix Summary

```
solar_mwh
                    1.00
solar_rad_allsky
                    0.86
solar_rad_clrsky
                    0.81
cloudiness_index
                  -0.72
temp_max_c
                    0.17
humidity_pct
                   -0.13
precip_mm
                   -0.08
wind_speed_ms
                   -0.03
```

5. **a**Pairplot Insights

• Strong Linear Cluster:

- solar_mwh vs. solar_rad_allsky_mj_m2
- solar_mwh vs. solar_rad_clrsky_mj_m2
- · Clear Negative Slope:
- solar_mwh vs. cloudiness_index

• Wide Scatter / Weak Correlation:

```
solar_mwh vs. humidity_pctsolar_mwh vs. precip_mmsolar_mwh vs. wind_speed_ms
```

Outliers & Distribution Checks:

• All variables generally show Gaussian distributions except for precipitation, which is heavily right-skewed.

Recommendations for Modeling

- Primary predictors: solar_rad_allsky_mj_m2, cloudiness_index
 Optional add-ons: temp_max_c, humidity_pct
 Exclude: wind_speed_ms, precip_mm (low signal)
- Would you like me to proceed with feature engineering (lags, rolling means) or start building a baseline predictive model next?