

alexkashi.github.io/ akashi@berkelev.edu aakashi@stanford.edu 408-431-1273

## **EDUCATION**

### **UC BERKELEY**

BS IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

May 2017 | Berkeley, CA College of Engineering High Honors (Magna Cum Laude) Cum. GPA: 3.85 / 4.0 Major GPA: 3.84 / 4.0

## LINKS

Github:// AlexKashi LinkedIn:// AlexKashi

# **COURSEWORK**

## **UNDERGRADUATE CS**

Introduction to Machine Learning Operating Systems Artificial Intelligence Internet Architecture and Protocols Computer Security Efficient Algorithms

### **UNDERGRADUATE EE**

Feedback Control Systems Analog Integrated Circuits Introduction to Robotics Introduction to Embedded Systems Signals and Systems Microelectronic Devices and Circuits

# SKILLS

### **PROGRAMMING**

**Professional Proficiency** Python • Java • Android • C++

**High Proficiency** C • GraphQL • AWS • LATEX

Matlab • Tensorflow • OpenCV

Working Proficiency Ot • ROS • C#

# **AFFILIATIONS**

2016 Camp Kesem

2015 Eta Kappa Nu Electrical Engineering Honor Society (Top 25%)

2013 Academic All American (Water Polo)

## **AWARDS**

National Intel Scholarship Regional Silicon Valley Eng. Council Regional Top Senior Thesis - FHS

## **EXPERIENCE**

## **STANFORD GENOME TECHNOLOGY CENTER** | RESEARCHER

Sep 2017 - Present | Stanford, CA | Advisor: Prof. Ronald W. Davis & Dr. Robert Phair Python

- Devised the first classifier for Myalgic Encephalomyelitis (ME/CFS) based on the data collected by our sensor and my feature extraction algorithm, published in PNAS
- Developed hardware and software for a low-cost impedance measurement device
- Optimized the above technologies from inception to a commercially viable product
- Designed an image segmentation algorithm to extract individual cells from SEM images
- Used CNNs to determine the distribution of blood cells for clinical diagnostics
- Manuscript submitted to MDPI Diagnostics for the metabolic & genetic origin of ME

### **INTEL** | SOFTWARE ENGINEER

Jun 2017 - Sep 2017 | Santa Clara, CA C · ASL

- Improved drivers for I2C and UART interfaces, including touch screens and cameras
- Debugged BIOS ASL code adding features and configuring new peripherals
- Programmed firmware for x86 based R&D devices

### **ZSPACE** | Software Engineering Research Intern

May 2016 - Aug 2016 | Sunnyvale, CA Python · C++ · C#

- Utilized CNNs to design a gaze tracking system compatible with polarized 3D glasses
- GPU accelerated using the Theano machine learning framework
- Trained on over 10GB of data collected from 36 participants on a proprietary data collection application
- Classified test images from infrared cameras in real-time

### INTEL | Undergraduate Technical Intern - Client R&D

May 2015 - Aug 2015 | Santa Clara, CA Java · C++ · C

- Architected a MapReduce framework for local big data processing on Android devices
- Developed parallelized framework using the Android NDK in native C/C++ • Created an application for my framework by implementing k-means clustering to preprocess location data locally before sending the result to the server
- Effectively reduced server storage requirements and average query time

# PROJECT EXPERIENCE

### **FULL-STACK ANDROID DEVELOPMENT**

Java · GraphQL · AWS

- Designed fully featured Android social networking application from the ground up
- Back-end designed using AWS amplify, deployed with Serveless Framework
- DynmoDB NoSQL database streamed to Elasticsearch over Lambda for handling geospatial and full-text queries
- Authentication and security provided by AWS cognito, and IAM roles
- Caching and loading data from the back-end using android architecture components

## LOW-COST RELIABLE LOCALIZATION OF DRONE Python

- Created a low-cost highly redundant alternative to a Vicon Motion capture system that enables indoor aerial delivery via drone
- Reduced the cost by only requiring a standard HD webcam and an array of AR tags
- Acquired a single pose estimation with the ROS package ar track alvar and used MAVROS to communicate with the Pixhawk PX4 2.4.8 flight controller

### **PUBLICATIONS** | STANFORD

Healthcare · Nano-electronics Biosensor · Machine Learning · Artificial Intelligence Esfandyarpour R., Kashi A., Nemat-Gorganib M., Wilhelmy J., & Davis R. (2019). A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proceedings of the National Academy of Sciences.