

SÍLABO SISTEMAS DE MICROONDAS Y VÍA SATÉLITE

AREA CURRICULAR: COMUNICACIONES Y REDES

CICLO E2 SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO : 090705E2040

II. CRÉDITOS : 04

III. REQUISITOS : 09010907040 Líneas de Transmisión y Antenas

09015108050 Telecomunicaciones II

IV. CONDICIÓN DEL CURSO : Electivo

V. SUMILLA

El curso de microondas y comunicaciones vías satélites forma parte de la formación especializada: área curricular de comunicaciones y redes tiene carácter teórico - práctico y experimental con uso de equipos disponibles de laboratorio. Permita al estudiante consolidar los fundamentos teóricos y experimentales relacionados con los diversos usados en microondas.

El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Guías de ondas y líneas de Micrstrip. II. Comunicaciones con Microstrip. III. Generadores de microondas. IV. Evaluación de enlaces satelitales

VI. FUENTES DE CONSULTA:

Bibliográficas

- · Neri, R. (2007). Comunicaciones por Satélite. México DF: Editorial Thompson
- Mooijweer (2009). Técnicas de Microondas. Editorial Paraninfo
- Watson (2006). Microwave Semiconductor Device and their Circuit Applications Edited McGraw-Hill Book Company

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: GUÍAS DE ONDA YLINEAS DE MICROSTRIP

OBJETIVOS DE APRENDIZAJE:

- Analizar las propiedades de las ondas en la banda de microondas
- Analizar comportamiento de las Líneas de Transmisión, en las bandas de microondas
- Realizar pruebas experimentales de transmisiomn y medicion de la atenuacion

PRIMERA SEMANA

Primera sesión

Propiedades de las ondas electromagnéticas,

Segunda sesión

Sistemas y tecnologías de comunicación en la banda de microondas.

SEGUNDA SEMANA

Primera sesión

Bandas de Microondas, ejemplo equipos reales que operan en esas bandas.

Segunda sesión:

Experimentos en laboratorio, N°01, N°02 y N° 03, con el equipo DTR-14 sobre atenuación de la densidad de potencia

TERCERA SEMANA

Primera sesión:

Guías de onda de sección rectangular y cilíndrica. Modos de propagación, TEM, TE, TM.

Segunda sesión

Experimentos N°04 y N°05 de reflexión, en medios de superficies planas, guías de onda,

CUARTA SEMANA

Primera sesión

Análisis matemáticos de los modos TEmn

Segunda sesión

Experimentos N° 06, N° 07 y N° 08, sobre medición de parámetros de las ondas estacionarias: λ , ρ , VSWR.

QUINTA SEMANA

Primera sesión:

Líneas de transmisión de cinta en la banda de microondas. Microstripy strip line,

Segunda sesión

Impedancias características de línea de cinta stripline,

SEXTA SEMANA

Primera sesión

Parámetros "S" de dispersión (Scatter-Parmeters),

Segunda sesión

Medición de parámetros S

Practica calificada 1

SÉPTIMA SEMANA

Primera sesión

Análisis de redes, parámetros "S", modelo matricial con parámetros "S".

Segunda sesión

Laboratorio N°1:mediciones de los parámetros S.en líneas de cinta.

OCTAVA SEMANA

Examen Parcial

UNIDAD II: COMUNICACIONES CON MICROSTRIP OBJETIVOS DE APRENDIZAJE

- Analizar y comprende los fundamentos de las comunicaciones con microstrip
- Entender mediante el análisis las ventajas de las nuevas tecnologías de microondas
- Conocer los diversos con microstrip: filtros, Resonadores, divisores de potencia

NOVENA SEMANA

Primera sesión

Divisor de potencia Wilkinson matriz de parámetros "S". Resonador de anillo, Acoplador de anillo **Segunda sesión**

Laboratorio N° 2: Resonancia del anillo, divisor de potencia Wilkinson,

DÉCIMA SEMANA

Primera sesión

Matriz ABCD, microstrip. Acoplador direccional de $\lambda/4$, análisis par e impar.

Segunda sesión

Laboratorio: Medición de pérdidas de retorno, acoplamiento Y aislación de un microstrip de derivador de línea paralela de 3db en el rango de 2 a 3 GHz

UNDÉCIMA SEMANA

Primera sesión

Filtros de Microondaspasa-bajo LPF. Pasabanda BPF: con stub de $\lambda/4$ en paralelo.

Segunda sesión

UNIDAD III: GENERADORES DE MICROONDAS -DISPOSITIVOS DE VACIO Y SOLIDOS

OBJETIVOS DEL APRENDIZAJE

- Analizarel funcionamiento de los dispositivos vigentes de vacío y semiconductores
- Reconocer las características y aplicaciones de estos dispositivos en equipos específicos

DUODÉCIMA SEMANA

Primera sesión

Generadores de Microondas: El Klistrón, magnetrón características de funcionamiento TWT.

Segunda sesión

Generadores de Microondas de Estado Solido: Diodos de Microondas, Pin, Túnel,

Transistores de microondas, amplificadores de 4 GHZ, Banda X

UNIDAD IV: EVALUACIÓN DE SISTEMAS SATELITÁLES

OBJETIVOS DEL APRENDIZAJE

- Analizar los diversos sistemas de comunicaciones vía microondas
- Conocer la composición de los transmisores. Receptores repetidores

DECIMOTERCERA SEMANA

Primera sesión

Radio transmisor de microondas, repetidores de microondas, transponder satelital

Segunda sesión

Laboratorio N°4 transmisión de información modulando la frecuencia de 10 GHZ

DECIMOCUARTA SEMANA

Primera sesión

Cinturón de Clark, Orbitas bajas intermedias y altas, uso de orbitas.

Segunda sesión

Estructura y funcionamiento de un satélite, de comunicaciones,

Enlace de RF, atenuación en el espacio libre, Estaciones terrenas y terminales móviles

Practica calificada 2

DECIMOQUINTA SEMANA

Primera sesión

Comunicaciones con satélites móviles de orbitas medias y bajas, técnicas de GSM CDM,

Telefonía celular

Segunda sesión

Calculo de enlaces. Estaciones terrenas y satélites

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENETE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante. Visitas técnicas
- **Método de Demostración Ejecución**. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor con proyector multimedia en la teoría y prácticas, y una computadora personal para cada estudiante del curso en los laboratorios

Materiales: Kits de microondas. Adquiridos para laboratorios

XI. EVALUACIÓN

El promedio final (PF) se determina de la siguiente forma:

PF = (PE+EP+EF)/3PE = (P1 + P2 + P3)/3

Donde:

EP = Examen parcial escrito

EF = Examen final escrito

PE = Promedio de evaluaciones

P1 y P2 = prácticas calificadas escritas

P3 = Promedio de laboratorios calificados.

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados del programa de ingeniería electrónica (Outcomes) se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	K	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	K	
(d).	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería		
(f)	Comprensión de lo que es la responsabilidad ética y profesional		
(g)	Habilidad para comunicarse con efectividad		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida		
(j)	Conocimiento de los principales temas contemporáneos		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	К	

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
2	2	2

- b) Sesiones por semana: dos sesiones.
- c) Duración: 6 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Ing. Alejandro Cevallos Echevarría

XV. FECHA

La Molina, marzo de 2018.