Molecular Dynamics in NAMD

· Collection of [charged] atoms, with bonds

- Newtonian mechanics
- Relatively small #of atoms (100K 10M)
- At each time-step
 - Calculate forces on each atom
 - Bonds:
 - Non-bonded: electrostatic and van der W
 - Short-distance: every timestep
 - Long-distance: using PME (3D FFT)
 - Multiple Time Stepping : PME every 4 timesteps
 - Calculate velocities and advance positions
- Challenge: femtosecond time-step, millions needed!

Collaboration with K. Schulten, R. Skeel, and coworkers

Spatial Decomposition Via Charm

- •Atoms distributed to cubes based on their location
- Size of each cube:
 - •Just a bit larger than cut-off radius
 - •Communicate only with neighbors
 - •Work: for each pair of nbr objects
- •C/C ratio: O(1)
- ·However:
 - •Load Imbalance
 - •Limited Parallelism

Charm++ is useful to handle this

Object Based Parallelization for MD:

Force Decomposition + Spatial Decomposition

- •Now, we have many objects to load balance:
 - •Each diamond can be assigned to any proc.
 - Number of diamonds (3D):
 - −14·Number of Patches
- -2-away variation:
 - -Half-size cubes
 - -5x5x5 interactions
- -3-away interactions: 7x7x7

Parallelization Using Charm++

The computation is decomposed into "natural" objects of the application, which are assigned to processors by Charm++ RTS

Bhatele, A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L. V. 2008 Overcoming Scaling Challenges in Biomolecular Simulations across Multiple Platforms. In *Proceedings of IEEE International Parallel and Distributed Processing Symposium*, Miami, FL, USA, April 2008.

Time

Performance on Intrepid (BG/P)

SMP Performance on Titan(Dev)

ChaNGa: Parallel Gravity

- Collaborative project (NSF)
 - with Tom Quinn, Univ. of Washington
- Gravity, gas dynamics
- Barnes-Hut tree codes
 - Oct tree is natural decomp
 - Geometry has better aspect ratios, so you "open" up fewer nodes
 - But is not used because it leads to bad load balance
 - Assumption: one-to-one map between sub-trees and PEs
 - Binary trees are considered better load balanced

Evolution of Universe and Galaxy Formation

With Charm++: Use Oct-Tree, and let Charm++ map subtrees to processors

9/15/12 LBNL/LLNL

Control flow

Send request message to owner TreePiece if data not present locally

OpenAtom: MD with quantum effects

- Much more finegrained:
 - Each electronic
 state is modeled
 with a large array

Semiconductor Surfaces:

Nanowires:

Collaboration with: G. Martyna (IBM) M. Tuckerman (NYU) L. Kale (UIUC)

Using Charm++ virtualization, we can efficiently scale small (32 molecule) systems to thousands of processors

Decomposition and Computation

UIUC

Topology Aware Mapping of Objects

 Object based decomposition provides new degrees of freeedom to easily try different mappings of objects to processors, to help minimize contention