11. Teoremas integrales (Green, Gauss, Stokes)

Nomenclatura y consideraciones básicas:

- $\nabla f \equiv \operatorname{grad}(f)$ simboliza al *gradiente* del campo escalar f.
- Dado el campo vectorial $\bar{f}: D \subset \Re^3 \to \Re^3/\bar{f}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))$ $\nabla \cdot \bar{f} \equiv \operatorname{div}(\bar{f})$ simboliza a la *divergencia* de \bar{f} , $\operatorname{div}(\bar{f}) \doteq P'_x + Q'_y + R'_z$.

$$\nabla \wedge \bar{f} = \operatorname{rot}(\bar{f}) = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \doteq (R'_y - Q'_z, P'_z - R'_x, Q'_x - P'_y) \text{ es el } \boldsymbol{rotor} \text{ de } \bar{f}.$$

• Un campo es: $\begin{cases} \textit{solenoidal}, \text{ si su divergencia es nula en todo punto.} \\ \textit{irrotacional}, \text{ si su rotor es nulo en todo punto.} \\ \textit{armónico}, \text{ si su } \textit{laplaciano } \nabla^2 f \doteq \text{div}(\text{grad}(f)) \text{ es nulo en todo punto.} \end{cases}$

<u>Nota</u>: sea $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$, $f \equiv a$ (constante) indica que $f(X) = a \ \forall X \in D$.

01) Sea $\bar{f} \in C^1/\bar{f}(x,y) = (P(x,y),Q(x,y))$ con $Q'_x - P'_y \equiv k \neq 0$ (k constante). Aplicando el teorema de Green demuestre que Área $(D) = \frac{1}{k} \oint_{\partial D} + \bar{f} \cdot d\bar{s}$ con ∂D frontera de $D \subset \Re^2$. Proponga alguna fórmula para el cálculo del área de regiones planas mediante integrales

de línea y aplíquela para calcular el área de las regiones definidas por:
a)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$$
 $a,b \in \Re^+$. b) $1 \le x^2 + y^2 \le 4$. c) $x^2 + y^2 \le 4$, $x^2 + y^2 \ge 2x$, $x \ge 0$.

02) Calcule el área de la región plana *D* de la figura, sabiendo que su curva frontera *C* admite la ecuación vectorial:

$$\overline{X} = (u - u^2, u - u^4) \text{ con } 0 \le u \le 1$$

- 03) Calcule la circulación de $\bar{f}(x, y) = (x^2 + y^2, 3xy + \ln(y^2 + 1))$ a lo largo de la frontera de la región definida por $4x^2 + (y-1)^2 \le 1$ recorrida en sentido positivo.
- 04) Verifique el teorema de Green con $\bar{f}(x,y)=(x^2\ y\ ,\ y^2)$, en la región plana $D=D_1-D_2$ donde $D_1=[-2,2]\times[-2,2]$ y $D_2=[-1,1]\times[-1,1]$.
- 05) La región plana D sombreada en la figura tiene como frontera el segmento \overline{AB} y el arco de curva C de ecuación $y=x^2-x^4$. Dado $\bar{f}=(P,Q)\in C^1$ con matriz jacobiana $D\bar{f}(x,y)=\begin{pmatrix} P_X'(x,y) & 3x-1 \\ 3x+2 & Q_y'(x,y) \end{pmatrix}$, calcule la circulación de \bar{f} desde \bar{A} hasta \bar{B} a lo largo de C sabiendo que a lo largo del segmento resulta $\int_{\overline{AB}} \bar{f} \cdot d\bar{s} = 17$.

06) Calcule la circulación en sentido positivo de $\bar{f} \in C^1$ a lo largo de la frontera de la región plana definida por $x + y \le 2$, $2x + y \ge 2$, 1° cuadrante, siendo:

a)
$$\bar{f}(x,y) = (2y - g(x), 5x - h(y))$$
. b) $\bar{f}(x,y) = (2y + g(x - y), 2x - g(x - y))$.

07) Calcule
$$\oint_{\partial D^+} \bar{f} \cdot d\bar{s}$$
, con: $D = [-2,2] \times [-3,3]$, $\bar{f}(x,y) = (1-y,h(x))$, h par, h' continua.

- 08) Sea $\bar{f} = (P,Q) \in C^1$ en $\Re^2 \{\bar{0}\}$ tal que $Q'_x P'_y \equiv 5$, dadas las curvas C_1 : $x^2 + 9y^2 = 36$ y C_2 : $x^2 + y^2 = 4$, calcule $\oint_{C_2^+} \bar{f} \cdot d\bar{s}$ sabiendo que $\oint_{C_1^+} \bar{f} \cdot d\bar{s} = 7\pi$.
- 09) Dado $\bar{f}: \Re^2 \{\overline{A}\} \to \Re^2 / \bar{f} = (P,Q)$; suponga matriz jacobiana continua con $Q_x' P_y' \equiv 6$.

 Calcule $\oint_{C_1^+} \bar{f} \cdot d\bar{s}$ sabiendo que $\oint_{C_2^+} \bar{f} \cdot d\bar{s} = 12$, C_1 es una circunferencia de radio 8, C_2 es un cuadrado de lado 5.

- 10) Sea $\bar{f}: \mathbb{R}^2 \to \mathbb{R}^2$ con matriz jacobiana continua y simétrica, demuestre que para toda C en \mathbb{R}^2 resulta $\oint_C \bar{f} \cdot d\bar{s} = 0$; indique hipótesis para C.
- 11) Dado $\bar{f}(x,y) = (9x^2 + 2y + y^2, 2x + 2xy)$, demuestre que \bar{f} admite función potencial ϕ en \Re^2 . Suponiendo $\phi(0,0) = 2$, analice la existencia de extremos locales de $\phi(x,y)$ clasificándolos y calculándolos.
- 12) Sea \bar{f} con $D\bar{f}$ continua y simétrica en todo el plano salvo en los puntos \bar{A} y \bar{B} .

Calcule
$$\oint_{C_3} \bar{f} \cdot d\bar{s}$$
 sabiendo que
$$\oint_{C_1} \bar{f} \cdot d\bar{s} = 12\pi \text{ y } \oint_{C_2} \bar{f} \cdot d\bar{s} = 16\pi .$$

Se entiende que cada circulación se realiza con la orientación indicada en la figura, C_3 es la frontera del triángulo.

- 13) Sea $\bar{f}: \Re^2 \{\overline{A}\} \to \Re^2$ con $D\bar{f}$ continua y simétrica en D. Demuestre que \bar{f} es campo de gradientes en D si, y sólo si, $\oint_C \bar{f} \cdot d\bar{s} = 0$ con C cualquier curva simple y suave a trozos que rodea al punto \bar{A} .
- 14) Analice si $\bar{f}: \Re^2 \{\bar{0}\} \to \Re^2 / \bar{f}(x,y) = (x,y) + (y,-x)/(4x^2 + y^2)$ admite función potencial en su dominio.
- 15) Sea $\bar{f}: \Re^3 \{\bar{A}\} \to \Re^3$ con $D\bar{f}$ continua y rotor nulo en su dominio, aplique el teorema del rotor para demostrar que \bar{f} admite función potencial en dicha región del espacio. (&)

^{(&}amp;) Observe que $\Re^3 - \{\overline{A}\}$ es un conjunto simplemente conexo de \Re^3 , pero $\Re^2 - \{\overline{A}\}$ no lo es en \Re^2 .

16) Demuestre que $\overline{E}(\overline{r}) = kq \, \overline{r}/r^3$ con $\overline{r} = (x, y)$, $r = ||\overline{r}||$, k,q constantes^(*) admite función potencial en $\Re^2 - \{\overline{0}\}$. Halle U(x, y) tal que $\overline{E} = -\nabla U$ con $U(\infty, \infty) = 0$.

Nota: Se utiliza $U(\infty,\infty)$ para simbolizar el $\lim_{(x,y)\to(\infty,\infty)} U(x,y)$.

Esta es una nomenclatura que suele figurar en algunos libros de física y de electromagnetismo. Es más, es común hablar del "potencial en el infinito" sin dejar de entender que se trata de un límite.

- 17) Resuelva el ítem anterior en $\Re^3 \{\overline{0}\}\$: dado $\overline{E}(\overline{r}) = kq\,\overline{r}/r^3$ con $\overline{r} = (x,y,z)$, $r = ||\,\overline{r}\,||$ analice la existencia de función potencial; halle U(x,y,z) tal que $\overline{E} = -\nabla U$ con $U(\infty,\infty,\infty) = 0$.
- 18) Analice si \bar{f} admite función potencial en su dominio natural; en "c" y "d" suponga $\varphi \in C^1$:

a)
$$\bar{f}(x,y) = (\frac{y}{(x-1)^2 + y^2}, \frac{1-x}{(x-1)^2 + y^2})$$
 c) $\bar{f}(x,y,z) = (\frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2}, \varphi(z))$

b)
$$\bar{f}(x,y) = (\frac{-6y}{4x^2 + 9y^2}, \frac{6x}{4x^2 + 9y^2})$$
 d) $\bar{f}(x,y,z) = (\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, \varphi(z))$

- 19) En \Re^3 , demuestre que:
 - a) $rot(\bar{f}) \equiv \bar{0} \Leftrightarrow D(\bar{f}) \text{ simétrica.}$
 - b) $\bar{f} \in C^2 \implies div(rot(\bar{f})) \equiv 0$.
 - c) $\bar{f} = \nabla \phi \in C^1 \implies rot(\bar{f}) \equiv \overline{0}$.
 - d) Con a,b constantes: $div(a\bar{f} + b\bar{g}) = a div(\bar{f}) + b div(\bar{g})$, $rot(a\bar{f} + b\bar{g}) = a rot(\bar{f}) + b rot(\bar{g})$.
 - e) Con f escalar: $div(f \overline{g}) = f div(\overline{g}) + \nabla f \cdot \overline{g}$, $rot(f \overline{g}) = f rot(\overline{g}) + \nabla f \wedge \overline{g}$.
 - f) $div(\bar{f} \wedge \bar{g}) = rot(\bar{f}) \cdot \bar{g} \bar{f} \cdot rot(\bar{g})$.
- 20) Calcule la circulación de $\bar{f}(x, y, z) = (x y, x + y, z x y)$ a lo largo de la curva intersección del plano x + 2y + 3z = 6 con los planos coordenados aplicando el teorema del rotor. Indique gráficamente la orientación que ha elegido para recorrer la curva.
- 21) Calcule la circulación de $\bar{f}(x,y,z) = (xy, y-x, yz^2)$ a lo largo de la curva intersección de $x^2 + y^2 + z^2 = 8$ con $x = \sqrt{y^2 + z^2}$ aplicando el teorema del rotor. Indique gráficamente la orientación que ha elegido para recorrer la curva.
- 22) Siendo $\bar{f} \in C^1$, $\operatorname{rot}(\bar{f}(x,y,z)) = (3,1,2y)$, calcule la circulación de \bar{f} a lo largo del arco de curva de ecuación $\bar{X} = (0,2\cos(u),2\sin(u))$ con $u \in [0,\pi]$, sabiendo que la circulación de \bar{f} por el segmento desde (0,-2,0) hasta (0,2,0) es igual a 16/3.
- 23) Verifique el teorema de la divergencia con el campo $\bar{f}(x, y, z) = (xy, yz, xz)$ y la superficie frontera del paralepípedo $[0,1] \times [0,2] \times [0,3]$.

^(*) Distribución plana de campo electrostático creado por una carga eléctrica q puntual ubicada en (0,0).

- 24) Calcule el flujo de $\bar{f}(x,y,z) = (x-y-z, y-x-z, g(x,y))$ a través de la superficie frontera del cuerpo definido por $2x+3y+4z \le 12$ en el 1° octante. Indique la orientación del versor normal que considera y las hipótesis que supone para el campo escalar g.
- 25) Calcule el flujo de $\bar{f}(x, y, z) = (x^2 z^2, 1 + xyz^2, 1 xz^3)$ a través del trozo S de paraboloide de ecuación $y = x^2 + z^2$ con y < 4 aplicando convenientemente el teorema de la divergencia. Indique gráficamente la orientación que ha elegido para el versor normal a S.
- 26) Suponga $\varphi: \Re \to \Re$, $\varphi \in C^1$, $\bar{f}(x,y,z) = (x\varphi(xz), y^2 + x\varphi(xz), y z\varphi(xz))$; **calcule** el flujo de \bar{f} a través de una superficie esférica S de radio R con centro en el origen aplicando el teorema de la divergencia, indique gráficamente la orientación del versor normal a S.
- 27) Calcule el flujo de $\bar{f} \in C^1$ a través de la superficie de ecuación $z = \sqrt{1 x^2 y^2}$ sabiendo que $\bar{f}(x, y, 0) = (x, y, x^2)$, siendo div $(\bar{f}(x, y, z)) = 2(1 + z)$.
- 28) Sea $\bar{f}: \Re^3 \{\overline{A}\} \to \Re^3$ con derivadas continuas y divergencia nula en su dominio. Aplique el teorema de la divergencia para demostrar que el flujo de \bar{f} a través de una superficie S cerrada sólo depende de si S encierra o no al punto \overline{A} . Se supone $\overline{A} \notin S$, \overline{n} saliente.
- 29) Sea $\overline{E}(x,y,z) = kq\,\overline{r}/r^3$ con $\overline{r} = (x,y,z)$, $r = ||\,\overline{r}\,||$. Calcule el flujo de \overline{E} a través de una superficie esférica de radio R con centro en el origen. Aplique lo indicado en el ítem 28 y concluya sobre el valor de dicho flujo a través de otras superficies que encierren al origen.
- 30) Si $\bar{f} = \text{rot}(\bar{g})$, se dice que \bar{g} es el **potencial vectorial** de \bar{f} . Demuestre que es nulo el flujo a través de cualquier superficie cerrada S de todo campo C^1 que admita potencial vectorial (se supone S suave a trozos).
- 31) Sean $\varphi \in C^2$ armónico, ∂H suave a trozos la superficie frontera del cuerpo H y el campo vectorial $\bar{f} = \varphi \nabla \varphi$. Demuestre que $\oiint_{\mathcal{H}} \bar{f} \cdot \bar{n} \, d\sigma \geq 0$, siendo \bar{n} saliente de H.
- 32) Calcule el flujo de $\bar{f}(x,y,z) = (g(y,z), h(x,z), 3x^2)$ a través de la superficie Σ abierta de ecuación $z = 5 x^2 y^2$ con $z \ge 1$; suponga $\bar{f} \in C^1$, indique la orientación que eligió para el \bar{n} de Σ .
- 33) Sea $\bar{f}(x, y, z) = (x + g(x, y), y + g(x, y), g(x, y) 2z)$ calcule el flujo de \bar{f} a través de la frontera del cuerpo definido por $x^2 + y^2 \le 4$ con $-1 \le z \le 1$, si $\nabla g(x, y) = (x + y, x y)$.
- 34) Sea $\bar{f} \in C^1/\bar{f}(x,y,z) = (z+xg(2xy), yg(2xy), zxy-2zg(2xy))$, halle la expresión de \bar{f} sabiendo que el campo es solenoidal y que $\bar{f}(1,1,1) = (3,2,-3)$.
- 35) Calcule el flujo de $\bar{f}=\nabla(g+h)$ a través de $x^2+y^2+z^2=9$, siendo g armónico y h una solución de la ecuación diferencial $\nabla^2 h=x^2+y-z$. Suponga $\bar{f}\in C^1$.
- 36) Dados $\bar{f}(x,y,z)=(6a^3x,6aby,b^2z)$ con a,b constantes y la superficie Σ frontera del cuerpo D definido por $x^2+y^2\leq 4$ con $1\leq z\leq 4$. Halle a y b tales que el flujo de \bar{f} a través de Σ sea un extremo local; clasifique dicho extremo suponiendo Σ orientada hacia el exterior de D.