

Lecture 12: Introduction to Age Models

- 1. The importance of knowing time
- 2. Building an age model
 - Markov chain Monte Carlo approaches
 - constant sedimentation rates
 - varying sedimentation rates

We acknowledge and respect the $l \ni k^w \ni \eta \ni n$ peoples on whose traditional territory the university stands and the Songhees, Esquimalt and $W S \land N E \textcircled{E}$ peoples whose historical relationships with the land continue to this day.

Importance of knowing time

Importance of knowing time

Age models are important: how do we get them?

- 1. Cyclostratigraphy
- 2. Biostratigraphy
- 3. Absolute ages
 - U-Pb (volcanics), Ar-Ar (volcanics), Re-Os (sediments)
- 4. Signal matching
 - magnetostratigraphy
 - chemostratigraphy
- 5. Relative ages
 - Amino Acid Racemization

Biostratigraphy

• based on the unique, sequential, nonrepeating appearance of fossils through time

http://www.labspaces.net/pictures/blog/4d497dd38d7031296661971_blog.jpg

Biostratigraphy

- based on the unique, sequential, nonrepeating appearance of fossils through time
- observations are: first appearance and last appearance per section

- what is wrong with this picture?
- fence diagram (correlation) of the observed FADs and LAD between 7 sections that preserve 62 taxa of the Cambrian Riley Formation of Texas (data from Palmer, 1954; Shaw, 1964).
- lines are meant to represent time lines, so equal time

Contradictory ranges

what could be causing this?

Contradictory ranges

• ranges of original data need modification to be consistent everywhere (time goes left to right)

• can we rule any out? working out the possibilities not so hard with just two taxa..

• can we rule any out? working out the possibilities not so hard with just two taxa.. 90 options with 3,

• can we rule any out? working out the possibilities not so hard with just two taxa.. 90 options with 3,

Number of possible sequences

- requires constrained optimization (CONOP9; Sadler and Cooper, 2008)
- number of atoms in universe = 10^{82}

Best-fit solution

• what are some features of this that look familiar to our model outputs?

Building an age model

Building an age model

