Population Econ HW2

YU HSIANG LIEN 1A202G34

November 2023

1 Chapter 4

Q1 $E_D = 1200 - 30w, E_S = 750$

- 1. Since the labor supply is perfectly in-elastically, the number of workers employed = 750
- 2. To find the market wage $\Rightarrow 1200 30w = 750 \Rightarrow 30w = 450 \Rightarrow w = 15$
- 3. Producer Surplus = $\frac{(40-15)750}{2}$ = 9375

Ans: Employed Workers = 750, Wage = 15, Producer Surplus = 9375

Q2 $E_D = 1000 - 50w$

(a) When $E_S = 100w - 800$

 $\Rightarrow MarketEquilibrium \Rightarrow 1000 - 50w = 100w - 800 \Rightarrow 1800 = 150w \Rightarrow w = 12$

$$E = 1000 - 600 = 400$$

Producer Surplus = $\frac{(20-12)400}{2}$ = 1600

Ans: Wage = 12, Employed Worker = 400, Producer Surplus = 1600

(b) Impose minimum wage of 16

$$E = 1000 - (50 \times 16) = 200$$
 Producer Surplus = $\frac{(20-16)200}{2} = 400$

Ans: Wage = 16, Employed Worker = 200, Producer Surplus = 400

Q3 Demand: W = 24 - 0.1E

If Immigrants Not Allow
$$\Rightarrow E = 120 \Rightarrow w = 24 - 0.1(120) = 24 - 12 = 12$$

If Allow
$$\Rightarrow E = 120 + 20 = 140 \Rightarrow w = 24 - 0.1(140) = 24 - 14 = 10$$

Immigrant Surplus = $2 \times \frac{20}{2} = 20$ Transfer Surplus = $2 \times 120 = 240$

Ans:

Wage when immigrant are not allow = 12

Wage when immigrant are allow = 10

Immigrant Surplus = 20

Transferred Surplus = 240

2 Chapter 6

Q1 Plan 1: Lifetime income = $100000 + \frac{110000}{1.2} + \frac{90000}{(1.2)^2} = 100000 + 91666.67 + 62500 =$

Plan 2: Lifetime income = $(-50000) + \frac{180000}{1.2} + \frac{180000}{(1.2)^2} = (-50000) + 150000 + 125000 = (-50000) + 150000 = (-50000) + 150000 = (-50000) + 150000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-500000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + 1500000 = (-50000) + (-50000) + (-50000) + (-50000) = (-50000) + (-500$ 225000

Plan 3: Lifetime income = $(-50000) + \frac{0}{1.2} + \frac{400000}{(1.2)^2} = (-50000) + 0 + 277777.78 = 207777.78$ 227777.78

Ans: Since Plan 1 generates the largest lifetime income, choosing Plan 1 maximizes Peter's net present value of his lifetime earnings.

3

Q2 MRR of Schooling for Carl

From years 9 to
$$10 = \frac{20350 - 18500}{18500} = 0.1 = 10\%$$

From years 10 to $11 = \frac{22000 - 20350}{20350} = 0.0811 = 8.1\%$
From years 11 to $12 = \frac{23100 - 22000}{22000} = 0.05 = 5\%$
From years 12 to $13 = \frac{23900 - 23100}{23100} = 0.0346 = 3.5\%$
From years 13 to $14 = \frac{24000 - 23900}{23900} = 0.0042 = 0.42\%$

Ans:

When the discount rate is $4\% \Rightarrow$ Quit schooling when years 12 When the discount rate is $9\% \Rightarrow$ Quit schooling when years 10

Q3 For low ability students $\Rightarrow k - 20000 < 25000 \Rightarrow 25000 + 20000 > k \Rightarrow 45000 > k$ For high ability students $\Rightarrow k - 8000 > 25000 \Rightarrow 25000 + 8000 < k \Rightarrow 33000 < k$ **Ans**: $\Rightarrow 33000 < k < 45000$