Tematy projektów z Algorytmów geometrycznych Rok akademicki 2020/2021

1. Otoczka wypukła dla zbioru punktów w przestrzeni dwuwymiarowej

Należy zaimplementować omawiane na wykładzie algorytmy wyznaczania otoczki wypukłej dla zbioru punktów w przestrzeni dwuwymiarowej: przyrostowy, górna i dolna otoczka, Quickhull, dziel i rządź oraz Chan'a. Porównać je między sobą oraz z algorytmami zaimplementowanymi na ćwiczeniach (Grahama i Jarvisa). Dobrać odpowiednio zbiory testowe. Porównać efektywność algorytmów.

Program powinien w sposób graficzny prezentować etapy konstrukcji otoczki (w celu objaśnienia działania algorytmu) dla każdego z algorytmów. Program ma służyć jako narzędzie dydaktyczne do objaśnienia działania algorytmów.

2. Lokalizacja punktu w przestrzeni dwuwymiarowej – metoda trapezowa

Dany jest obszar z podziałem poligonowym. Zadawany jest punkt P na płaszczyźnie. Należy zaimplementować algorytm lokalizacji punktu metodą trapezową, który odpowie na pytanie, w którym elemencie znajduje się dany punkt. Zrobić analizę efektywności algorytmu.

Program powinien w sposób graficzny prezentować etapy algorytmu dla wybranych przykładów (w celu objaśnienia działania algorytmu). Program ma służyć jako narzędzie dydaktyczne do objaśnienia działania algorytmu.

3. Lokalizacja punktu w przestrzeni dwuwymiarowej – metoda doskonalenia triangulacji – algorytm Kirkpatrick'a

Dany jest obszar z podziałem poligonowym. Zadawany jest punkt P na płaszczyźnie. Należy zaimplementować algorytm Kirkpatrick'a lokalizacji punktu, który odpowie na pytanie, w którym elemencie znajduje się dany punkt. Zrobić analizę efektywności algorytmu. Program powinien w sposób graficzny prezentować etapy algorytmu dla wybranych przykładów (w celu objaśnienia działania algorytmu). Program ma służyć jako narzędzie

4. Lokalizacja punktu w przestrzeni dwuwymiarowej – metoda separatorów

Dany jest obszar z podziałem poligonowym. Zadawany jest punkt P na płaszczyźnie. Należy zaimplementować algorytm lokalizacji punktu metodą separatorów, który odpowie na pytanie, w którym elemencie znajduje się dany punkt. Zrobić analizę efektywności algorytmu. Program powinien w sposób graficzny prezentować etapy algorytmu dla wybranych przykładów (w celu objaśnienia działania algorytmu). Program ma służyć jako narzędzie

dydaktyczne do objaśnienia działania algorytmu.

dydaktyczne do objaśnienia działania algorytmu.

5. Wieloboki Voronoi – porównanie metod konstrukcji

Należy zaimplementować dwa różne algorytmy wyznaczania wieloboków Voronoi dla zadanego zbioru punktów na płaszczyźnie (wykorzystując metrykę euklidesową).

Przetestować te algorytmy na różnych zbiorach danych i przeanalizować różnice w obu podejściach.

Program powinien w sposób graficzny prezentować etapy algorytmu dla wybranych przykładów (w celu objaśnienia działania algorytmu).

6. Triangulacja Delaunay'a chmury punktów 2D z wykorzystaniem algorytmu iteracyjnego – analiza etapów triangulacji

Należy zaimplementować iteracyjny algorytm konstrukcji triangulacji Delaunay'a dla chmury punktów w 2D w dwóch wariantach omawianych na wykładzie. Wybrać odpowiedni sposób poszukiwania trójkąta w istniejącej triangulacji. Program powinien pozwolić na wizualizację działania programu. Przeprowadzić analizę efektywności dla dużych zbiorów punktów wraz z analizą poszczególnych etapów. Porównać oba warianty metody.

7. Wyszukiwanie geometryczne – przeszukiwanie obszarów ortogonalnych – quadtree oraz kd-drzewa

Dane – zbiór punktów P na płaszczyźnie. Zapytanie: dla zadanych x_1 , x_2 , y_1 , y_2 znaleźć punkty q ze zbioru P takie, że $x_1 \le qx \le x_2$, $y_1 \le qy \le y_2$.

Celem projektu jest zaimplementowanie odpowiednich struktur danych – quadtree oraz kddrzew, które pozwalają szybko odpowiadać na takie zapytania.

Program ma służyć jako narzędzie dydaktyczne do objaśnienia tworzenia struktury i realizacji zapytań.

Należy zrobić analizę porównawczą obu podejść.