- А.С. Сердюк (Інститут математики НАН України, Київ)
- **У.З. Грабова** (Східноєвропейський національний університет імені Лесі Українки, Луцьк)
- **A.S. Serdyuk** (Institute of Mathematics of The National Academy of Sciences of Ukraine, Kiev)
- U.Z. Grabova (Lesja Ukrainka East European National University, Lutsk)

Порядкові оцінки найкращих наближень і наближень сумами Фур'є класів (ψ, β) – диференційовних функцій

Order estimation of the best approximations and of the approximations by Fourier sums of classes of (ψ, β) -differentiable functions

Встановлено точні за порядком оцінки найкращих рівномірних наближень тригонометричними поліномами на класах $C_{\beta,p}^{\psi}-2\pi$ -періодичних неперервних функцій f, які зображуються згортками функцій, що належать одиничним кулям просторів L_p , $1 \leq p < \infty$, з фіксованими твірними ядрами $\Psi_{\beta} \subset L_{p'}$, $\frac{1}{p}+\frac{1}{p'}=1$, коефіцієнти Фур'є яких спадають до нуля приблизно як степеневі функції. Точні порядкові оцінки найкращих наближень встановлено також і в L_p -метриці, $1 , для класів <math>L_{\beta,1}^{\psi}-2\pi$ -періодичних функцій f еквівалентних відносно міри Лебега до згорток ядер $\Psi_{\beta} \subset L_p$ із функціями з одиничної кулі простору L_1 . Показано, що в усіх розглядуваних випадках порядки найкращих наближень реалізують суми Фур'є.

There were established the exact-order estimations of the best uniform approximations by the trigonometrical polynoms on the $C^{\psi}_{\beta,p}$ classes of 2π -periodic continuous functions f, which are defined by the convolutions of the functions, which belong to the unit ball in L_p , $1 \leq p < \infty$ spaces with generating fixed kernels $\Psi_{\beta} \subset L_{p'}$, $\frac{1}{p} + \frac{1}{p'} = 1$, whose Fourier coefficients decreasing to zero approximately as power functions. The exact order estimations were also established in L_p -metrics, $1 for <math>L^{\psi}_{\beta,1}$ classes of 2π -periodic functions f, which are equivalent by means of Lebesque measure to the convolutions of $\Psi_{\beta} \subset L_p$ kernels with the functions that belong to the unit ball in L_1 space. We showed that in investigating cases the orders of best approximations are realized by Fourier sums.

Нехай L_p , $1 \leq p \leq \infty$, — простір 2π —періодичних сумовних функцій f зі скінченною нормою $\|f\|_p$, де при $p \in [1,\infty)$ $\|f\|_p = \left(\int\limits_0^{2\pi} |f(t)|^p dt\right)^{\frac{1}{p}}$, а при $p = \infty$ $\|f\|_{\infty} = \text{ess sup } |f(t)|$, C — простір 2π —періодичних неперервних функцій, у якому норма задається рівністю $\|f\|_C = \max_t |f(t)|$.

Нехай, далі $L^{\psi}_{\beta,p}$ — клас 2π —періодичних функцій f(x), котрі майже для всіх $x\in\mathbb{R}$ представляються згортками

$$f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} \Psi_{\beta}(x - t) \varphi(t) dt, \ a_0 \in \mathbb{R}, \ \varphi \perp 1,$$
 (1)

де $\|\varphi\|_p \le 1,\, 1 \le p \le \infty,\, \Psi_\beta(t)$ — сумовна на $(0,2\pi)$ функція, ряд Фур'є якої має вигляд

$$\sum_{k=1}^{\infty} \psi(k) \cos\left(kt - \frac{\beta\pi}{2}\right), \ \psi(k) > 0, \ \beta \in \mathbb{R}.$$
 (2)

Функцію φ в зображенні (1), згідно з О.І. Степанцем [1, с. 132], називають (ψ , β)—похідною функції f і позначають через f_{β}^{ψ} .

При $\psi(k) = k^{-r}$ класи $L^{\psi}_{\beta,p}$ перетворюються у відомі класи Вейля–Надя $W^r_{\beta,p}$, а їх (ψ,β) – похідні f^{ψ}_{β} майже скрізь співпадають з похідними в сенсі Вейля–Надя f^r_{β} , останні при $r=\beta$, $r\in\mathbb{N}$ майже скрізь збігаються зі звичайними r–ми похідними функції f.

Якщо твірне ядро Ψ_{β} класу $L_{\beta,p}^{\psi}$ задовольняє включенню $\Psi_{\beta} \in L_{p'}, \frac{1}{p} + \frac{1}{p'} = 1$, то $L_{\beta,p}^{\psi} \subset L_{\infty}, 1 \leq p \leq \infty$, а згортки виду (1) є неперервними функціями (див. твердження 3.8.1 роботи [1, с. 137]). Тому клас усіх функцій f виду (1), для яких $\|\varphi\|_{p} \leq 1$, $\Psi_{\beta} \in L_{p'}$ будемо позначати через $C_{\beta,p}^{\psi}$.

У випадку, якщо $\Psi_{\beta} \in L_p$, $1 \le p \le \infty$, то (див., наприклад, [2, с. 71]) має місце включення $L_{\beta,1}^{\psi} \subset L_p$.

В даній роботі розглядається задача про знаходження точних порядкових оцінок функціональних класів $L_{\beta,p}^{\psi}$ та $L_{\beta,1}^{\psi}$ сумами Фур'є $S_{n-1}(t)$ порядку n-1 у метриках L_{∞} та L_p відповідно

$$\mathcal{E}_n(L_{\beta,p}^{\psi})_{L_{\infty}} = \sup_{f \in L_{\beta,p}^{\psi}} \|f(\cdot) - S_{n-1}(f;\cdot)\|_{\infty}, \quad 1 \le p < \infty, \tag{3}$$

$$\mathcal{E}_n(L_{\beta,1}^{\psi})_{L_p} = \sup_{f \in L_{\beta,1}^{\psi}} \|f(\cdot) - S_{n-1}(f; \cdot)\|_p, \quad 1
(4)$$

а також задача про знаходження точних порядкових оцінок найкращих наближень класів $L^{\psi}_{\beta,p}$ та $L^{\psi}_{\beta,1}$ в метриках L_{∞} та L_p відповідно

$$E_n(L_{\beta,p}^{\psi})_{L_{\infty}} = \sup_{f \in L_{\beta,p}^{\psi}} \inf_{t_{n-1} \in \mathcal{T}_{2n-1}} \|f(\cdot) - t_{n-1}(\cdot)\|_{\infty}, \quad 1 \le p < \infty, \tag{5}$$

$$E_n(L_{\beta,1}^{\psi})_{L_p} = \sup_{f \in L_{\beta,1}^{\psi}} \inf_{t_{n-1} \in \mathcal{T}_{2n-1}} \|f(\cdot) - t_{n-1}(\cdot)\|_p, \quad 1
(6)$$

де \mathcal{T}_{2n-1} — підпростір усіх тригонометричних поліномів t_{n-1} порядку не вищого за n-1. Зрозуміло, що у випадку класів $C_{\beta,p}^{\psi}$ норму $\|\cdot\|_{\infty}$ в (3) і (5) слід замінити на $\|\cdot\|_{C}$ і при цьому $\mathcal{E}_{n}(C_{\beta,p}^{\psi})_{C} = \mathcal{E}_{n}(L_{\beta,p}^{\psi})_{L_{\infty}}$, $E_{n}(C_{\beta,p}^{\psi})_{C} = E_{n}(L_{\beta,p}^{\psi})_{L_{\infty}}$.

Для класів Вейля–Надя $W^r_{\beta,p}$, $\beta \in \mathbb{R}$, $1 \leq p \leq \infty$ точні порядкові оцінки величин (3) – (6) відомі і мають вигляд (див., наприклад, [3, с. 47–49])

$$\mathcal{E}_n(W_{\beta,p}^r)_{\infty} \simeq n^{-r+\frac{1}{p}}, \quad 1 \le p < \infty, \quad r > \frac{1}{p},$$
 (7)

$$E_n(W_{\beta,p}^r)_{\infty} \simeq n^{-r+\frac{1}{p}}, \quad 1 \le p \le \infty, \quad r > \frac{1}{p},$$
 (8)

$$\mathcal{E}_n(W_{\beta,1}^r)_p \approx n^{-r + \frac{1}{p'}}, \qquad 1 \frac{1}{p'}, \qquad \frac{1}{p} + \frac{1}{p'} = 1,$$
 (9)

$$E_n(W_{\beta,1}^r)_p \approx n^{-r+\frac{1}{p'}}, \quad 1 \le p \le \infty, \quad r > \frac{1}{p'}, \quad \frac{1}{p} + \frac{1}{p'} = 1,$$
 (10)

$$\mathcal{E}_n(W_{\beta,p}^r)_p \simeq n^{-r} \ln n, \qquad p = 1, \infty, \quad r > 0, \quad n \in \mathbb{N} \setminus \{1\}.$$
 (11)

У формулах (7) – (11) і надалі під записом $A_n \asymp B_n$ будемо розуміти існування додатних сталих K_1 і K_2 таких, що $K_1B_n \le A_n \le K_2B_n$, $n \in \mathbb{N}$.

Щодо випадку $p=1,\infty$ зауважимо, що завдяки роботам А.М. Колмогорова [4], В.Т. Пінкевича [5], С.М. Нікольського [6], [7], А.В. Єфімова [8] та С.О. Теляковського [9] для величин $\mathcal{E}_n(W^r_{\beta,\infty})_{\infty}$ та $\mathcal{E}_n(W^r_{\beta,1})_1$ при r>0, $\beta\in\mathbb{R}$ відомі асимптотичні рівності при $n\to\infty$.

Що ж стосується найкращих наближень $E_n(W^r_{\beta,\infty})_{\infty}$ та $E_n(W^r_{\beta,1})_1$, то завдяки роботам Ж. Фавара [10, 11], В.К. Дзядика [12], [13], С.Б. Стєчкіна [14] та Сунь Юн-шена [15] встановлені точні значення цих величин при усіх $n \in \mathbb{N}$, r > 0 і $\beta \in \mathbb{R}$. Точні значення величин $\mathcal{E}_n(W^r_{\beta,p})_{\infty}$ відомі також у випадку p = 2 [16].

На класах $L_{\beta,p}^{\psi}$ точні порядкові оцінки величин $\mathcal{E}_n(L_{\beta,p}^{\psi})_s$ та $E_n(L_{\beta,p}^{\psi})_s$ у випадку, коли $\psi(k)k^{\frac{1}{p}-\frac{1}{s}}$ монотонно незростають і $\frac{\psi(k)}{\psi(2k)} \leq K < \infty, \ k \in \mathbb{N}$ були знайдені у роботі О.І. Степанця та О.К. Кушпеля [17] при довільних $1 < p, \ s < \infty$.

Крім того, точні порядкові оцінки величин $\mathcal{E}_n(L_{\beta,p}^{\psi})_s$ та $E_n(L_{\beta,p}^{\psi})_s$ одержані О.І. Степанцем [18, с. 48] при довільних $1 \leq p, s \leq \infty$ за умови $\psi \in \mathfrak{M}_{\infty}'$ (в цьому випадку $\psi(k)$ спадають до нуля не повільніше ніж члени деякої геометричної прогресії), а також при довільних $1 < p, s < \infty$ за умови $\psi \in \mathfrak{M}_{\infty}''$ (в зазначеному випадку $\psi(k)$ спадають до нуля швидше довільної степеневої функції, але не швидше за деяку геометричну прогресію). Згодом В.С. Романюк [19] у випадку $\psi \in \mathfrak{M}_{\infty}''$ доповнив згадані результати О.І. Степанця, встановивши точні порядки величин $\mathcal{E}_n(C_{\beta,p}^{\psi})_C$, $1 (для величин <math>E_n(C_{\beta,p}^{\psi})_C$ при $\psi \in \mathfrak{M}_{\infty}''$ питання про точні порядкові оцінки до цих пір залишається відкритим). Зазначимо також, що при p = 2 точні значення величин $\mathcal{E}_n(C_{\beta,p}^{\psi})_C$ для всіх $n \in \mathbb{N}$, $\beta \in \mathbb{R}$ за умови збіжності ряду $\sum_{k=1}^{\infty} \psi^2(k)$ знайдені у роботі А.С. Сердюка та І.В. Соколенка [20].

Задача про точні значення величин $\mathcal{E}_n(L_{\beta,2}^{\psi})_2$ та $E_n(L_{\beta,2}^{\psi})_2$ повністю розв'язана у роботі О.І. Степанця та О.К. Кушпеля [17].

При $p=1,\infty$ результати, що містять асимптотично точні оцінки величин $\mathcal{E}_n(L_{\beta,p}^{\psi})_p$, а також точні порядкові оцінки величин $E_n(L_{\beta,p}^{\psi})_p$ в залежності від швидкості прямування до нуля послідовності $\psi(k)$ при $k\to\infty$ найбільш повно викладені в монографіях [1], [21].

В даній роботі встановлено точні порядкові оцінки величин (3)–(6) при довільних $\beta \in \mathbb{R}$ у випадку, коли послідовність $\psi(k)$ спадає до нуля не повільніше і не швидше деяких степеневих функцій. Тим самим доповнено основні результати роботи [17] по відшуканню слабкої асимптотики величин $\mathcal{E}_n(L^{\psi}_{\beta,p})_s$ та $E_n(L^{\psi}_{\beta,p})_s$ на випадки p=1 і $s=\infty$.

Перейдемо до точних формулювань.

Вважаючи, що послідовність $\psi(k)$, що визначає клас $C^{\psi}_{\beta,p}$, є слідом на множині $\mathbb N$ деякої неперервної функції $\psi(t)$ неперервного аргументу $t\geq 1$, позначимо через Θ_p , $1\leq p<\infty$, множину монотонно незростаючих функцій $\psi(t)$, для яких існує стала $\alpha>\frac{1}{p}$ така, що функція $t^{\alpha}\psi(t)$ майже спадає, тобто знайдеться додатна стала K така, що $t_1^{\alpha}\psi(t_1)\leq Kt_2^{\alpha}\psi(t_2)$ для будь–яких $t_1>t_2\geq 1$; через B позначимо множину монотонно незростаючих при $t\geq 1$ додатних функцій $\psi(t)$, для кожної з яких можна вказати додатну сталу K таку, що

$$\frac{\psi(t)}{\psi(2t)} \le K, \quad \forall t \ge 1.$$

Надалі скрізь будемо вважати, що $\psi \in B \cap \Theta_p$, $1 \leq p < \infty$. Умова $\psi \in \Theta_p$, $1 \leq p < \infty$, як неважко переконатись, гарантує справедливість включення $\Psi_\beta \in L_{p'}$, $\frac{1}{p} + \frac{1}{p'} = 1$ (див., наприклад, [22, с. 657]). Як випливає з [1, с. 165, 175], якщо $\psi \in B \cap \mathfrak{M}$, де \mathfrak{M} — множина усіх опуклих донизу на $[1, \infty)$ функцій $\psi(t)$, таких, що $\lim_{t \to \infty} \psi(t) = 0$, то можна вказати таке r > 0, що при всіх $t \geq 1$ буде виконуватись нерівність $\psi(t) \geq Kt^{-r}$.

Прикладами функцій ψ , що задовольняють умову $\psi \in B \cap \Theta_p$, ϵ , зокрема, функції виду $\psi(t) = \frac{1}{t^r}, \quad r > \frac{1}{p}; \quad \psi(t) = \frac{1}{t^r \ln^{\alpha}(t+c)}, \quad \alpha \geq 0, \quad c > 0, \quad r > \frac{1}{p}, \quad t \geq 1; \quad \psi(t) = \frac{\ln^{\alpha}(t+c)}{t^r}, \quad \alpha \geq 0, \quad c > e^{\frac{\alpha}{r}} - 1, \quad r > \frac{1}{p}, \quad t \geq 1.$

Має місце наступне твердження.

Теорема 1. Нехай $1 , <math>\beta \in \mathbb{R}$, $\psi \in B \cap \Theta_p$. Тоді існують додатні величини $K_{\psi,p}^{(1)}$, $K_{\psi,p}^{(2)}$, що можуть залежати лише від ψ і p такі, що для довільних $n \in \mathbb{N}$

$$K_{\psi,p}^{(2)}\psi(n)n^{\frac{1}{p}} \le E_n \left(C_{\beta,p}^{\psi}\right)_C \le \mathcal{E}_n \left(C_{\beta,p}^{\psi}\right)_C \le K_{\psi,p}^{(1)}\psi(n)n^{\frac{1}{p}}.$$
 (12)

Доведення. Для довільної функції $f \in C^{\psi}_{\beta,p}$, згідно з інтегральним зображенням (1), одержимо

$$f(x) - S_{n-1}(f;x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \Psi_{\beta,n}(x-t)\varphi(t)dt,$$
 (13)

де

$$\Psi_{\beta,n}(t) = \sum_{k=n}^{\infty} \psi(k) \cos\left(kt - \frac{\beta\pi}{2}\right). \tag{14}$$

Застосовуючи нерівність Гельдера, з рівності (13) маємо

$$\mathcal{E}_n \left(C_{\beta,p}^{\psi} \right)_C \le \frac{1}{\pi} \left\| \Psi_{\beta,n}(\cdot) \right\|_{p'} \|\varphi(\cdot)\|_p \le \frac{1}{\pi} \left\| \Psi_{\beta,n}(\cdot) \right\|_{p'}, \tag{15}$$

де $\frac{1}{p} + \frac{1}{p'} = 1, 1 \le p < \infty.$

Перетворивши функцію $\Psi_{\beta,n}(t)$ за допомогою перетворення Абеля, при довільному $n\in\mathbb{N},$ одержимо

$$\Psi_{\beta,n}(t) = \sum_{k=n}^{\infty} \Delta \psi(k) D_{k,\beta}(t) - \psi(n) D_{n-1,\beta}(t), \tag{16}$$

де $\triangle \psi(k) \stackrel{\text{df}}{=} \psi(k) - \psi(k+1)$, а

$$D_{k,\beta}(t) = \frac{1}{2}\cos\frac{\beta\pi}{2} + \sum_{\nu=1}^{k}\cos\left(\nu t - \frac{\beta\pi}{2}\right) =$$

$$= \cos \frac{\beta \pi}{2} \left[\frac{\sin \frac{2k+1}{2} t}{2 \sin \frac{t}{2}} \right] + \sin \frac{\beta \pi}{2} \left[\frac{\cos \frac{t}{2} - \cos \frac{2k+1}{2} t}{2 \sin \frac{t}{2}} \right]. \tag{17}$$

Оскільки (див., наприклад, [23, с. 13])

$$|D_{k,\beta}(t)| \le \frac{1}{2} + k, \quad |D_{k,\beta}(t)| \le (1+\pi)\left(\frac{1}{|t|}\right), \quad 0 < |t| \le \pi,$$
 (18)

то для будь–яких $k \in \mathbb{N}$ і $1 < p' < \infty$ маємо

$$\int_{-\pi}^{\pi} |D_{k,\beta}(t)|^{p'} dt \le \int_{0 \le |t| \le \frac{1}{k}} (\frac{1}{2} + k)^{p'} dt + \int_{\frac{1}{k} \le |t| \le \pi} (1 + \pi)^{p'} \frac{dt}{|t|^{p'}} \le K_{p'} k^{p'-1}, \tag{19}$$

де $K_{p'}$ — стала, що залежить від p'. З (18) та оцінки (19) отримаємо

$$||D_{k,\beta}(t)||_{p'} \le K_{p,1}k^{\frac{1}{p}}, \quad k \in \mathbb{N}, \quad 1 \le p < \infty, \quad \frac{1}{p} + \frac{1}{p'} = 1, \quad \beta \in \mathbb{R},$$
 (20)

де $K_{p,1}$ — стала, що залежить від p. Із (16) та (20) випливає нерівність

$$\|\Psi_{\beta,n}(t)\|_{p'} \le K_{p,1} \Big(\sum_{k=n}^{\infty} \Delta \psi(k) k^{\frac{1}{p}} + \psi(n) n^{\frac{1}{p}} \Big), \quad 1 \le p < \infty.$$
 (21)

Для оцінки суми $\sum_{k=n}^{\infty} \Delta \psi(k) k^{\frac{1}{p}}$ нам буде корисним наступне твердження.

Лема 1. Нехай $r \in (0,1]$, а $\psi(k) > 0$, монотонно незростає i для ней знайдеться $\varepsilon > 0$ таке, що послідовність $k^{r+\varepsilon}\psi(k)$ майже спадає. Тоді існує стала K, залежна від ψ i r така, що для довільних $n \in \mathbb{N}$

$$\psi(n)n^r \le \sum_{k=n}^{\infty} \triangle \psi(k)k^r \le K\psi(n)n^r.$$
(22)

Доведення. Оскільки $\psi(k)$ монотонно незростає, то для $\forall r > 0$

$$\sum_{k=n}^{\infty} \Delta \psi(k) k^r \ge n^r \sum_{k=n}^{\infty} \Delta \psi(k) = n^r \psi(n). \tag{23}$$

Залишається показати, що за виконання умов леми 1 виконується нерівність

$$\sum_{k=n}^{\infty} \Delta \psi(k) k^r \le K \psi(n) n^r. \tag{24}$$

Застосування перетворення Абеля дозволяє для будь–яких натуральних $n \leq M$, і довільного $r \in (0,1]$ записати рівність

$$\sum_{k=n}^{M} \psi(k)k^{r-1} = \sum_{k=n}^{M} \Delta\psi(k) \sum_{\nu=1}^{k} \frac{1}{\nu^{1-r}} - \psi(n) \sum_{\nu=1}^{n-1} \frac{1}{\nu^{1-r}} + \psi(M+1) \sum_{\nu=1}^{M} \frac{1}{\nu^{1-r}}.$$
 (25)

В силу простих геометричних міркувань неважко переконатись, що для довільних $m \in \mathbb{N}$ і $r \in (0,1]$

$$\frac{1}{r}(m^r - 1) < \sum_{\nu=1}^m \frac{1}{\nu^{1-r}} \le \frac{1}{r}m^r. \tag{26}$$

Тому в силу (25) і (26)

$$\sum_{k=n}^{M} \psi(k)k^{r-1} > \frac{1}{r} \Big(\sum_{k=n}^{M} \Delta \psi(k)(k^{r} - 1) - \psi(n)(n - 1)^{r} \Big) >$$

$$> \frac{1}{r} \Big(\sum_{k=n}^{M} \Delta \psi(k)k^{r} - \psi(n) \Big((n - 1)^{r} + 1 \Big) \Big).$$
(27)

При $M \to \infty$ із () одержуємо

$$\sum_{k=n}^{\infty} \Delta \psi(k) k^r \le r \sum_{k=n}^{\infty} \psi(k) k^{r-1} + \psi(n) ((n-1)^r + 1).$$
 (28)

Оскільки за умовою леми існує $\varepsilon > 0$ таке, що послідовність $k^{r+\varepsilon}\psi(k)$ майже спадає, то знайдеться стала K_1 така, що

$$\psi(k)k^{r+\varepsilon} \le K_1\psi(n)n^{r+\varepsilon}, k = n, n+1, ...,$$
(29)

TOMY

$$\sum_{k=n}^{\infty} \psi(k)k^{r-1} = \sum_{k=n}^{\infty} \frac{\psi(k)k^{r+\varepsilon}}{k^{1+\varepsilon}} \le K_1 \psi(n)n^{r+\varepsilon} \sum_{k=n}^{\infty} \frac{1}{k^{1+\varepsilon}} \le K_2 \psi(n)n^r. \tag{30}$$

Із (28) і (30) випливає (22). Лему доведено.

Оскільки $\psi \in \Theta_p$, то, застосувавши лему 1, при $r = \frac{1}{p}$ із (15) та (21) отримуємо нерівність

$$E_n\left(C_{\beta,p}^{\psi}\right)_C \le \mathcal{E}_n\left(C_{\beta,p}^{\psi}\right)_C \le K_{\psi,p}^{(1)}\psi(n)n^{\frac{1}{p}}, \ 1 \le p < \infty, \tag{31}$$

 $K_{\psi,p}^{(1)}$ — величина, що залежить від ψ і p.

Для того, щоб одержати оцінку знизу розглянемо при заданому $n \in \mathbb{N}$ функцію

$$f_{n,\alpha}^* = \frac{\alpha \psi(n)}{n^{1-\frac{1}{p}}} \Big(V_{2n}(t) - V_n(t) \Big), \ \alpha > 0, \ n \in \mathbb{N},$$

де $V_m(t)$ — ядра методу Валле Пуссена

$$V_m(t) = \frac{1}{m} \sum_{k=m}^{2m-1} D_k(t), \ m \in \mathbb{N},$$
 (32)

 $D_k(t)$ — ядра Діріхле

$$D_k(t) = \frac{1}{2} + \sum_{\nu=1}^k \cos \nu t = \frac{\sin \left(k + \frac{1}{2}\right)t}{2\sin \frac{t}{2}}, \ k \in \mathbb{N}.$$

Покажемо, спочатку, що при певному виборі значення параметра α виконується нерівність

$$\left\| \left(f_{n,\alpha}^*(\cdot) \right)_{\beta}^{\psi} \right\|_p \le 1, \ 1$$

Для цього скористаємось наступним твердженням роботи [21, с. 117], в якій встановлено нерівності Бернштейна для (ψ, β) -похідних в L_p - метриках для поліномів, тобто нерівності між $\|(t_m)^{\psi}_{\beta}\|_p$ та $\|t_m\|_p$, де t_m — тригонометричні поліноми порядку m.

Твердження 1. Нехай $1 , <math>\beta \in \mathbb{R}$, $\psi(k)$ — довільна незростаюча послідовність невід'ємних чисел. Тоді для довільного тригонометричного полінома $t_m(\cdot)$ порядку т знайдеться величина $C_{\psi,p}$, що може залежати тільки від функції $\psi(\cdot)$ та числа р така, що

$$\left\| \left(t_m(\cdot) \right)_{\beta}^{\psi} \right\|_p \le C_{\psi,p}(\psi(m))^{-1} \| t_m(\cdot) \|_p. \tag{34}$$

Оскільки $f_{n,\alpha}^*$ є тригонометричним поліномом порядку 4n-1, то, використовуючи твердження 1, отримаємо

$$\left\| \left(f_{n,\alpha}^*(t) \right)_{\beta}^{\psi} \right\|_{p} \le \frac{\alpha C_{\psi,p}}{n^{1-\frac{1}{p}}} \frac{\psi(n)}{\psi(4n-1)} \| V_{2n}(t) - V_{n}(t) \|_{p}. \tag{35}$$

Знайдемо оцінку $\|V_{2n}(t) - V_n(t)\|_p$. Враховуючи, що

$$V_m(t) = 2F_{2m-1}(t) - F_{m-1}(t), (36)$$

де $F_k(t)$ — ядра Фейера

$$F_k(t) = \frac{1}{k+1} \sum_{\nu=0}^k D_{\nu}(t) = \frac{1}{k+1} \sum_{\nu=0}^k \frac{\sin\left(\nu + \frac{1}{2}\right)t}{2\sin\frac{t}{2}}, \ k \in \mathbb{N}$$

і відомі оцінки для ядер Фейєра (див., наприклад, [23, с. 148–151])

$$0 < F_k(t) < k+1, \ F_k(t) \le \frac{A_1}{(k+1)t^2}, \ 0 < t \le \pi,$$

одержимо наступні оцінки для $V_m(t)$:

$$|V_m(t)| < A_2 m, |V_m(t)| \le \frac{A_3}{mt^2}, 0 < t \le \pi,$$

 A_i — абсолютні сталі. Тоді, при $1 \le p < \infty$

$$||V_{2n}(t) - V_n(t)||_p \le A_4 \left(\int_{0 \le |t| \le \frac{1}{n}} n^p dt + \int_{\frac{1}{n} \le |t| \le \pi} \frac{1}{(nt^2)^p} dt \right)^{\frac{1}{p}} \le A_5 n^{1 - \frac{1}{p}}.$$
 (37)

Зауважимо, що при p=1 з нерівності (37) випливає оцінка

$$||V_{2n}(t) - V_n(t)||_1 \le A_5. \tag{38}$$

Далі, враховуючи включення $\psi \in B$ та нерівність (37), з (35) отримуємо

$$\left\| \left(f_{n,\alpha}^*(t) \right)_{\beta}^{\psi} \right\|_{p} \le \frac{\alpha \widetilde{C}_{p,\psi}}{n^{1-\frac{1}{p}}} n^{1-\frac{1}{p}} = \alpha \widetilde{C}_{p,\psi}, \tag{39}$$

 $\widetilde{C}_{p,\psi}$ — величина, що залежить від ψ і p. При $\alpha = \alpha_* = (\widetilde{C}_{p,\psi})^{-1}$ з (39) випливає нерівність (33), а, отже, і включення $f_{n,\alpha^*}^* \in C_{\beta,p}^{\psi}$.

Знайдемо коефіцієнти Фур'є функції $V_{2n}(t) - V_n(t)$. Згідно з формулою (3.3.5) роботи [1, с. 31] для ядер $V_m(t)$ виконується рівність

$$V_m(t) = D_m(t) + 2\sum_{k=m+1}^{2m-1} \left(1 - \frac{k}{2m}\right) \cos kt, \ m \in \mathbb{N}.$$
 (40)

Застосовуючи (40) при m=n і m=2n, одержуємо

$$V_{2n}(t) - V_n(t) =$$

$$= D_{2n}(t) - D_n(t) - 2\sum_{k=n+1}^{2n-1} \left(1 - \frac{k}{2n}\right) \cos kt + 2\sum_{k=2n+1}^{4n-1} \left(1 - \frac{k}{4n}\right) \cos kt =$$

$$= -\sum_{k=n+1}^{2n} \left(1 - \frac{k}{n}\right) \cos kt + 2\sum_{k=2n+1}^{4n-1} \left(1 - \frac{k}{4n}\right) \cos kt. \tag{41}$$

В силу рівності Парсеваля

$$||V_{2n}(t) - V_n(t)||_2^2 = \pi \left(\sum_{k=n+1}^{2n} \left(1 - \frac{k}{n}\right)^2 + 4\sum_{k=2n+1}^{4n-1} \left(1 - \frac{k}{4n}\right)^2\right) =$$

$$= \frac{\pi}{n^2} \left(\sum_{k=n+1}^{2n} (n-k)^2 + \frac{1}{4}\sum_{k=2n+1}^{4n-1} (4n-k)^2\right) = \frac{\pi}{n^2} \left(\sum_{k=1}^{n} k^2 + \frac{1}{4}\sum_{k=1}^{2n-1} k^2\right) =$$

$$= \frac{\pi}{n^2} \left(\frac{n(n+1)(2n+1)}{6} + \frac{(2n-1)2n(4n-1)}{24}\right) = \pi(n+\frac{1}{4n}). \tag{42}$$

Із () випливає, що $(V_{2n}-V_n)\perp t_{n-1}$ для будь-якого полінома $t_{n-1}\in \mathcal{T}_{2n-1}.$ Тому

$$\int_{-\pi}^{\pi} \left(f_{n,\alpha_*}^*(t) - t_{n-1}(t) \right) \left(V_{2n}(t) - V_n(t) \right) dt = \int_{-\pi}^{\pi} f_{n,\alpha_*}^*(t) \left(V_{2n}(t) - V_n(t) \right) dt - \int_{-\pi}^{\pi} f_{n,\alpha_*}^*(t) \left(V_{2n}(t) - V_n(t) \right) dt$$

$$-\int_{-\pi}^{\pi} t_{n-1}(t) \left(V_{2n}(t) - V_n(t) \right) dt = \int_{-\pi}^{\pi} f_{n,\alpha_*}^*(t) \left(V_{2n}(t) - V_n(t) \right) dt =$$

$$= \frac{\alpha_* \psi(n)}{n^{1-\frac{1}{n}}} \|V_{2n}(t) - V_n(t)\|_2^2. \tag{43}$$

З іншого боку, використовуючи нерівність Гельдера та враховуючи (38), отримуємо

$$\int_{-\pi}^{\pi} \left(f_{n,\alpha_*}^*(t) - t_{n-1}(t) \right) \left(V_{2n}(t) - V_n(t) \right) dt \leq
\leq \| f_{n,\alpha_*}^*(t) - t_{n-1}(t) \|_{\infty} \| V_{2n}(t) - V_n(t) \|_1 \leq A_5 \| f_{n,\alpha_*}^*(t) - t_{n-1}(t) \|_{\infty}.$$
(44)

Iз () – () одержуємо

$$||f_{n,\alpha_*}^*(t) - t_{n-1}(t)||_{\infty} \ge \frac{\alpha_* \psi(n)}{A_5 n^{1-\frac{1}{p}}} ||V_{2n}(t) - V_n(t)||_2^2 \ge \frac{K_{\psi,p}^{(2)} \psi(n)}{n^{1-\frac{1}{p}}} n = K_{\psi,p}^{(2)} \psi(n) n^{\frac{1}{p}}. \tag{45}$$

3 (31) та (45) випливає (12). Теорему 1 доведено.

Теорема 2. $Hexa\check{u} \beta \in \mathbb{R}, \ \psi \in B \cap \Theta_1 \ i \ виконується одна з умов$

$$\Delta^2(1/\psi(k)) \ge 0, \quad k \in \mathbb{N} \tag{46}$$

або

$$\Delta^2(1/\psi(k)) \le 0, \quad k \in \mathbb{N},\tag{47}$$

 $\partial e \ \Delta^2 (1/\psi(k)) \stackrel{\text{df}}{=} \frac{1}{\psi(k)} - \frac{2}{\psi(k+1)} + \frac{1}{\psi(k+2)}.$

Тоді існують додатні величини $K_{\psi}^{(1)}$ і $K_{\psi}^{(2)}$, що можуть залежати лише від ψ такі, що для довільних $n\in\mathbb{N}$

$$K_{\psi}^{(2)}\psi(n)n \le E_n(C_{\beta,1}^{\psi})_C \le \mathcal{E}_n(C_{\beta,1}^{\psi})_C \le K_{\psi}^{(1)}\psi(n)n.$$
 (48)

Доведення. Застосувавши нерівність (31) при p=1 маємо

$$E_n(C_{\beta,1}^{\psi})_C \le \mathcal{E}_n(C_{\beta,1}^{\psi})_C \le K_{\psi}^{(1)}\psi(n)n, \tag{49}$$

де $K_{\psi}^{(1)}$ — величина, що залежить лише від ψ .

Для того, щоб одержати оцінку знизу, розглянемо функцію

$$f_{n,\alpha}^{(1)}(t) = \alpha \psi(n) (V_{2n}(t) - V_n(t)), \ \alpha > 0, \ n \in \mathbb{N},$$

де $V_m(t)$ — ядра Валле Пуссена вигляду (32). Покажемо, що при певному виборі параметра $\alpha>0$ $f_{n,\alpha}^{(1)}\in C_{\beta,1}^{\psi}$. Для цього нам буде корисним твердження роботи [21, с. 120] в якому

встановлено оцінки норм нерівності Бернштейна для (ψ, β) -похідних в L_1 -метриці для поліномів $t_m \in \mathcal{T}_{2m+1}$.

Твердження 2. Нехай $\psi(k)$ — довільна незростаюча послідовність невід'ємних чисел, для яких виконується одна з умов (46) або (47) і, крім того,

$$\left| \sin \frac{\beta \pi}{2} \right| \sum_{k=1}^{n-1} \psi(n) (k \psi(k))^{-1} = O(1), \tag{50}$$

 $de\ O(1)\ -\ величина,\ рівномірно\ обмежена\ no\ n.\ Todi\ для\ довільного\ тригонометричного$ $noлінома <math>t_m(\cdot)\ nopяdку\ m\ знайдеться\ cmana\ C_\psi,\ що\ може\ залежати\ тільки\ від\ функції$ $від\ <math>\psi(\cdot),\ maka,\ щo$

$$\|(t_m(\cdot))_{\beta}^{\psi}\|_1 \le C_{\psi}(\psi(m))^{-1} \|t_m(\cdot)\|_1.$$
(51)

Зауважимо, що коли $\psi \in \Theta_p$, $1 \le p < \infty$, то умова (50) завжди виконується, оскільки в цьому випадку існує число $\alpha > \frac{1}{p}$ таке, що послідовність $\varphi(n) = n^{-\alpha}\psi(n)$ монотонно спадна, а також

$$\sum_{k=1}^{n-1} \frac{\psi(n)}{k\psi(k)} = \sum_{k=1}^{n-1} \frac{\varphi(n)k^{\alpha}}{n^{\alpha}\varphi(k)k} \le \frac{K_1}{n^{\alpha}} \sum_{k=1}^{n-1} \frac{k^{\alpha}}{k} \le K_2 < \infty.$$
 (52)

Зокрема, якщо $\psi \in \Theta_1$, то умова (50) виконується при будь-яких $\beta \in \mathbb{R}$. Зогляду на це, оскільки $f_{n,\alpha}^{(1)}(t)$ — тригонометричний поліном порядку 4n-1, то в силу (51), з урахуванням включення $\psi \in B \cap \Theta_1$ та виконання однієї з умов (46) або (47), одержимо

$$\left\| \left(f_{n,\alpha}^{(1)}(t) \right)_{\beta}^{\psi} \right\|_{1} = \alpha \psi(n) \left\| \left(V_{2n}(t) - V_{n}(t) \right)_{\beta}^{\psi} \right\|_{1} \le$$

$$\le \alpha C_{\psi} \frac{\psi(n)}{\psi(4n-1)} \| V_{2n}(t) - V_{n}(t) \|_{1} \le \alpha \widetilde{C}_{\psi}, \tag{53}$$

де \widetilde{C}_{ψ} — величина, що залежить від ψ . При $\alpha=\alpha_1=(\widetilde{C}_{\psi})^{-1}$ з () випливає, що $\left\|\left(f_{n,\alpha_1}^{(1)}(t)\right)_{\beta}^{\psi}\right\|_1\leq 1.$

Провівши ті ж міркування, які використовувались для знаходження оцінки (45) для функції $f_{n,\alpha}^{(1)}(t)$ одержимо нерівність

$$||f_{n,\alpha_{1}}^{(1)}(t) - t_{n-1}(t)||_{\infty} \ge K_{\psi}^{(2)}\psi(n)n,$$
 (54)

де $K_{\psi}^{(2)}$ — величина, що залежить від ψ . Із (49) та (54) випливає оцінка (48). Теорему 2 доведено.

Теорема 3. Нехай $1 , <math>\beta \in \mathbb{R}$, $\psi \in B \cap \Theta_{p'}$, $\frac{1}{p} + \frac{1}{p'} = 1$, i виконується одна з умов (46) або (47). Тоді існують додатні величини $K_{\psi,p}^{(3)}$ і $K_{\psi,p}^{(4)}$, що можуть залежати лише від ψ і p, такі, що для довільних $n \in \mathbb{N}$

$$K_{\psi,p}^{(4)}\psi(n)n^{\frac{1}{p'}} \le E_n \left(L_{\beta,1}^{\psi}\right)_p \le \mathcal{E}_n \left(L_{\beta,1}^{\psi}\right)_p \le K_{\psi,p}^{(3)}\psi(n)n^{\frac{1}{p'}}.$$
 (55)

Доведення. Зауважимо, що за виконання умови $\psi \in \Theta_{p'}$, $1 \leq p' < \infty$, твірне ядро Ψ_{β} класу $L_{\beta,1}^{\psi}$ задовольняє включенню $\Psi_{\beta} \in L_p$, $1 . Тоді <math>L_{\beta,1}^{\psi} \subset L_p$ і, з урахуванням нерівності Юнга (див., наприклад, [1, с. 293]) та інтегрального зображення (1), маємо

$$\mathcal{E}_n \left(L_{\beta,1}^{\psi} \right)_p \le \frac{1}{\pi} \left\| \Psi_{\beta,n}(\cdot) \right\|_p \| \varphi(\cdot) \|_1 \le \frac{1}{\pi} \left\| \Psi_{\beta,n}(\cdot) \right\|_p. \tag{56}$$

В силу (21)

$$\|\Psi_{\beta,n}(\cdot)\|_{p} \le K_{p',1} \Big(\sum_{k=n}^{\infty} \Delta \psi(k) k^{\frac{1}{p'}} + \psi(n) n^{\frac{1}{p'}} \Big), \quad 1$$

 $K_{p,1}$ — стала, що залежить від p. Тоді, застосувавши до суми $\sum_{k=n}^{\infty} \Delta \psi(k) k^{\frac{1}{p'}}$ лему 1, із (56) та (21) одержимо

$$E_n(L_{\beta,1}^{\psi})_p \le \mathcal{E}_n(L_{\beta,1}^{\psi})_p \le K_{\psi,p}^{(3)}\psi(n)n^{\frac{1}{p'}}.$$
 (58)

Щоб одержати оцінку знизу величини $E_n(L_{\beta,1}^{\psi})_p$, 1 , розглянемо функцію

$$f_{n,\alpha}^{(1)}(t) = \alpha \psi(n) (V_{2n}(t) - V_n(t)), \ \alpha > 0, \ n \in \mathbb{N}.$$

Як випливає з нерівності (), при певному виборі параметра $\alpha = \alpha_1$, залежного від ψ , виконуватиметься нерівність $\left\| \left(f_{n,\alpha_1}^{(1)}(t) \right)_{\beta}^{\psi} \right\|_1 \leq 1$ і, отже, $f_{n,\alpha_1}^{(1)} \in L_{\beta,1}^{\psi}$.

Оскільки $(V_{2n}-V_n)\perp t_{n-1}$ для будь-якого полінома $t_{n-1}\in\mathcal{T}_{2n-1}$, то має місце рівність

$$\int_{-\pi}^{\pi} \left(f_{n,\alpha_1}^{(1)}(t) - t_{n-1}(t) \right) \left(V_{2n}(t) - V_n(t) \right) dt = \alpha_1 \psi(n) \|V_{2n}(t) - V_n(t)\|_2^2.$$
 (59)

З іншого боку, в силу (37)

$$||V_{2n}(t) - V_n(t)||_{p'} \le A_5 n^{\frac{1}{p}}, \quad 1$$

і тому, застосовуючи нерівність 3.8.1 та 3.8.3 роботи [1, с. 137, 138], маємо

$$\int_{-\pi}^{\pi} \left(f_{n,\alpha_1}^{(1)}(t) - t_{n-1}(t) \right) \left(V_{2n}(t) - V_n(t) \right) dt \le \| f_{n,\alpha_1}^{(1)}(t) - t_{n-1}(t) \|_p \| V_{2n}(t) - V_n(t) \|_{p'} \le$$

$$\leq A_5 n^{\frac{1}{p}} \|f_{n,\alpha_1}^{(1)}(t) - t_{n-1}(t)\|_p.$$
(60)

Із (59) та (), враховуючи співвідношення (), отримуємо

$$||f_{n,\alpha_1}^{(1)}(t) - t_{n-1}(t)||_p \ge \frac{\alpha_1 \psi(n)}{A_5 n^{\frac{1}{p}}} ||V_{2n}(t) - V_n(t)||_2^2 = \frac{K_{\psi,p}^{(4)} \psi(n)}{n^{\frac{1}{p}}} n = K_{\psi,p}^{(4)} \psi(n) n^{\frac{1}{p'}}.$$
 (61)

3 (58) та (61) випливає (55). Теорему 3 доведено.

Зауважимо, що в теоремах 2 і 3 вимоги виконання однієї з умов (46) та (47) можна замінити на більш загальну (але менш прозору): щоб для $\beta \in \mathbb{R}$ і для послідовності $\psi \in B \cap \Theta_1$ (у випадку теореми 2) або $\psi \in B \cap \Theta_p$ (у випадку теореми 3) виконувалась нерівність (51). Для функцій $\psi(t) = \frac{\ln^{\alpha}(t+c)}{t^r}, \ \alpha \geq 1, \ c > e^{\frac{2\alpha}{r}} - 1, \ t \geq 1$ та $\psi(t) = \frac{1}{t^r \ln^{\alpha}(t+c)}, \ \alpha \geq 0, \ c > 0, \ t \geq 1$ виконуються всі умови теорем 2 (при $r > \frac{1}{p}$) та 3 (при $r > 1 - \frac{1}{p}$) і, отже, для величин $E_n(C_{\beta,1}^{\psi})_C$ та $E_n(L_{\beta,1}^{\psi})_p, \ 1 , мають місце співвідношення (48) та (55) відповідно.$

Література

- 1. Ствениц А.И. Методы теории приближений. Киев: Ин-т математики НАН Украины, 2002. 40. Ч.І. 427 с.
- 2. Корнейчук Н.П. Экстремальные задачи теории приближения. М.: Наука, 1976. 320 с.
- 3. Temlyakov V.N. Approximation of Periodic Function: Nova Science Publi– chers, Inc. 1993. 419p.
- 4. Kolmogoroff A. Zur Grössennordnung des Restgliedes Fourierschen Reihen differenzierbarer Funktionen // Ann. Math.(2), -1935. -36, N2. -P. 521–526.
- 5. Пинкевич В.Т. О порядке остаточного члена ряда Фурье функций, дифференцируемых в смысле Вейля // Изв. АН СССР. Сер. мат. 1940. 4, №6. С. 521–528.
- 6. Hикольский C.M. Приближение периодических функций тригонометрическими многочленами // Труды МИАН СССР. 1945. 15. 16.
- 7. *Никольский С.М.* Приближение функций тригонометрическими полиномами в среднем // Изв. АН СССР. Сер. мат. 1946. **10**, №3. С. 207—256.
- 8. *Ефимов А.В.* Приближение непрерывных периодических функций суммами Фурье // Изв. АН СССР Сер. мат. 1960. **24**, №2. С. 243—296.
- 9. Теляковский C.A. О нормах тригонометрических полиномов и приближении дифференцируемых функций линейными средними их рядов Фурье // Труды МИАН СССР. 1961. 62. C. 61-97.
- 10. Favard J. Sur l'approximation des fonctions périodiques par des polynomes trigonométriques // C.R. Acad. Sci. -1936. -203. -P. 1122-1124.
- 11. Favard J. Sur les meilleurs procédes d'approximations de certains classes de fontions par des polynomes trigonométriques // Bull. de Sci. Math. 1937. $\bf 61$. P. 209–224, 243–256.
- 12. Дзядык В.К. О наилучшем приближении на классе периодических функций, имеющих ограниченную s-ю производную (0 < s < 1) // Изв. АН СССР, Сер. мат. 1953. 17. С. 135–162.
- 13. Дзядык В.К. О наилучшем приближении на классах периодических функций, определяемых интегралами от линейной комбинации абсолютно монотонных ядер // Мат. заметки. 1974. 16, №5. С. 691–701.

- 14. Стечкин С.Б. О наилучшем приближении некоторых классов периодических функций тригонометрическими полиномами // Изв. АН СССР, Сер. мат. 1956. 20, С. 643–648.
- 15. Сунь Юн–шен О наилучшем приближении периодических дифференцируемых функций тригонометрическими полиномами // Изв. АН СССР. Сер. мат. 1959. 23, №1. С. 67–92.
- 16. *Бабенко В.Ф.*, *Пичугов С.А.* О наилучшем линейном приближении некоторых классов дифференцируемых периодических функций // Мат. заметки. 1980. **27**, №5. С. 683–689.
- 17. Степанец А.И., Кушпель А.К. Скорость сходимости рядов Фурье и наилучшие приближения в пространстве L_p // Укр. мат. журн. — 1987. — **39**, №4. — С. 483–492.
- 18. Ствение A.И. Классификация и приближение периодических функций. Киев: Наук. думка 1987. 268 с.
- 19. *Романюк В.С.* Дополнения к оценкам приближения суммами Фурье классов бесконечно дифференцируемых функций // Екстремальні задачі теорії функцій та суміжні питання: Праці Ін-ту математики НАН України. 2003. **46**, С. 131–135.
- 20. Сердюк А.С., Соколенко І.В. Рівномірні наближення класів $(\psi, \overline{\beta})$ –диференційовних функцій лінійними методами // Зб. праць Ін-ту матем. НАН України. 2011. 8, №1. С. 181–189.
- 21. Ственич А.И. Методы теории приближений. Киев: Ин-т математики НАН Украины, 2002. 40. Ч.ІІ. 468 с.
- 22. $\mathit{Барu}\ H.K.\ \mathsf{Тригонометрические}\ \mathsf{ряды}.-\mathsf{M}.$: Физматгиз, $1961.-936\ \mathsf{c}.$
- 23. 3игмунд А. Тригонометрические ряды. В 2 т. М.: Мир, 1965. Т.І. 615 с.