

Benchmarking Entity Linking for Question Answering over Knowledge Graphs

Guillermo Echegoyen Blanco

Álvaro Rodrigo Anselmo Peñas {gblanco, alvarory, anselmo} **at** lsi.uned.es

NLP & IR Group Universidad Nacional de Educación a Distancia

Overview

- 1. Introduction
- 2. Characterization
- 3. Automatic Generation
- 4. Results
- 5. Conclusions & Future Work
- 6. Outcomes
- 7. References

Introduction

Introduction | UNED

Entity Linking

Def: Link parts of a Natural Language passage to their corresponding node in a Knowledge Graph. Usually comprises:

- Recognize the entity mention in the text.
- Disambiguate the mention.

Introduction | UNED

Motivation

- Lots of QA systems do perform an EL step with good results.
- · Asses impact of EL Task on QA systems over KG.

Characterization

Characterization

Input Datasets

- QALD {1-4} Unger et al. 2014) ≤ 200 QA pairs each
- LC-QuAD (Trivedi et al. 2017) 5K QA pairs

Example

```
"id": "37",
"query": { "sparql": "SELECT ?uri ... },
"answers": {
 "answer": [{ ...
 }, ...]
},
"question": [
    "string": "List all episodes of the first season of the
        HBO television series The Sopranos!",
    "language": "en"
```

Difficulty?

• Given the Question, how easy is the Entity Linking?

Cases	QALD-1	QALD-2	QALD-3	QALD-4
Identical to DBP uri	92.0%	72.0%	75.0%	80.0%
Missing tokens		4.0%	5.0%	10.0%
Additional tokens	6.0%	1.0%	1.0%	0.5%
Lexical variation	2.0%	5.0%	5.0%	8.5%
Other		18.0%	14.0%	1.0%
Distance method	92.0%	80.0%	83.0%	89.5%
Trigram method	92.0%	84.0%	86.0%	94.5%

Problem

· Actual collections for QA are easy for Entity Linking.

Q: List all episodes of the of the HBO television series

Automatic Generation

Objective: Complex dataset for Entity Linking

Strategy

- Develop method to detect easy mentions
- 2. Remove easy mentions from collection

Methods

- Trigram based mention detection
- Distance based mention detection

Results

Results

Released Datasets

Dataset	Unique Q.	Unique E.	Total
QALD-1-EL	3	3	4
QALD-2-EL	11	11	12
QALD-3-EL	13	13	14
QALD-4-EL	38	40	45
LC-QuAD-EL	1204	997	1292
C-EL4QA	1269	1064	1367

Conclusions & Future Work

Conclusions

- We found QA that collections do not really tackle the EL problem.
- · QA Systems go for automated solutions

Open Questions

 If Entity Linking were more difficult, how QA system would perform?

Outcomes

Outcomes

Our main contributions are:

- QA Datasets characterization
- Semi-automatic method to generate complex EL datasets.
- Release large benchmark dataset and baseline for EL in QA (url)

Thank you! Questions?

References

References i

References

Priyansh Trivedi et al. "Lc-quad: A corpus for complex question answering over knowledge graphs". In: *International Semantic Web Conference*. Springer. 2017, pp. 210–218.

Christina Unger et al. "Question Answering over Linked Data (QALD-4)". In: (2014). URL: https://hal.inria.fr/hal-01086472/.