TSO Revision 1

- mcSCRB-seq protocol (https://www.protocols.io/view/mcscrb-seq-protocol-p9kdr4w) -> note that in this protocol the first strand synthesis/template switch concentrations are double the final concentration
- http://core-genomics.blogspot.com/2012/04/how-do-spri-beads-work.html

First Strand Synthesis and Template Switch

1. Add the following reagents:

Reagent	Volume (uL)
5x Maxima buffer	3.75
1st strand primer pool (~1.5 uM final concentration)	1
total RNA	10 ug (14 uL)
Total	18.75

- 2. Place samples in thermo-cycler and run the following cycle: 70°C 1 min, 65°C 5 min, 4°C Hold
- 3. Make the enzyme dNTP mix for each sample as detailed below:

Reagent (final concentration per protocol in parentheses)	
5X Maxima buffer	4
25 mM dNTP mix (25 mM of each dNTP; final conc = 1 mM mcSCRB-seq protocol, 0.5 mM Dwyer protocol, 1 mM Smart3Seq protocol, 0.5 mM Thermo protocol -> try 1 mM for now)	
50% PEG 8000 mix (7.5% mcSCRB-seq)	0
TSO 50 uM stock (2 uM mcSCRB-seq, 1 uM Smart3Seq protocol -> try 1 uM for now)	1.6
200 U/uL Maxima H Minus RT (2 U/uL mcSCRB-Seq, 10 U/uL Thermo protocol -> try 10 U/uL for now)	
ddH2O	11.3
Total	20

- 1. Directly add 20 uL dNTP mix to the template/primer mix on ice
 - Note: Maintaining a temperature of 55-60°C is crucial for minimizing non-specific primer annealing and thus off-target 1st stand products. <- Not sure about this still actually, but test at a future date
- 2. Transfer the tubes to a preheated thermocycler at **50°C**. Allow the 1st strand synthesis reaction to proceed for **90 min**
- 3. Incubate sample at **85°C** for 5 minutes to inactivate the enzyme
 - Huang et al 2013 (NAR) and Okello et al 2010 (PLoS One) shows RT enzyme severely inhibits the PCR reaction which is reason to inactivate it
- 4. Purify the DNA at this step using **SPRI bead purification** at 1.6X.

Exonuclease I Treatment

Since the unextended primer cannot be sequenced, we can have a less stringent purification than biotin-streptavidin now.

1. Prepare the following reaction mix:

Reagent	Volume (uL)
cDNA	17 uL
10X Exonuclease I buffer	2 uL
Exonuclease I	1 uL

- 2. Place samples in thermo-cycler and run the following cycle: **37°C 45 min (Exol digest), 80°C 15 min (heat inactivate), 4°C Hold**
 - Timing based of off considerations of Enroth et al 2019, NEB protocol, mcSCRB protocol
- 3. Consider purifying before PCR at this step.

Things to consider optimizing

- Temperature (55,60, 65)
- 1st strand synthesis time
- Purification after exonuclease I treatment before PCR
- +PEG (7.5%)
- +Trehalose (0.6M)
- +Betaine (1M)