Demium.

NNUWE

ICE THAT STABILE

WOL.2

ARMED DONE TO RECEIVE

Node Je & Mongoll

Reto Individual

Base de datos para asteroides potencialmente peligrosos

RETO INDIVIDUAL -HACK THAT STARTUP 2-

BACKGROUND

Lebron es un ex-científico de la NASA que trabajaba en el 'Jet Propulsion Laboratory' del 'California Institute of Technology' actualizando la base de datos de la NASA con los nuevos NEA(Near Earth Asteroid). Estos son los asteroides que tienen su órbita situada entre el sol y Marte. Aproximadamente hay unos 24.000 NEAs catalogados hasta el momento, y esto es una mínima parte de los que realmente hay, ya que resulta muy complicado detectarlos debido a su pequeño tamaño y su color superficial tan oscuro. Lebron ahora quiere crear su propia página web con todos estos con los NEAs que resultan potencialmente peligrosos PHA (potentially hazardous asteroid) y además permitir que astrónomos aficionados puedan registrar nuevos NEAs que descubran que puedan ser PHA para así minimizar la posibilidad de que un PHA no detectado acabe impactando contra la tierra, pero Lebron tan solo tiene conocimiento de Frontend y no de Backend, es por ello que Lebron necesita tu ayuda.

Las características principales que tendrán los NEA en esta DB serán:

- **full_name** : Nombre completo del asteroide.
- α : Semieje mayor de la órbita.
- e : excentricidad de la órbita.
- *i* : Inclinación de la órbita.
- om: longitude of the ascending node.
- w: argumento del perihelio.
- **ma** : Anomalía Media.

RETO

Se debe construir una API Rest que devuelva información básica sobre estos asteroides. El API será un microservicio conectado a MongoDB y se utilizará para guardar nueva información y consultar información ya guardada.

1) MODELO DEL ASTEROIDE(NEA) y User

2) findAll & addList

Implementar el método (findAll) que permite recuperar todos los modelos tanto de User como de Neas.

Añadir el método addList que permita crear autmática modelos a través de enviar un array de datos (para Users y Neas)

3) CRUD

Crear un CRUD para los modelos de User y NEAs.

4) AUTH

Implementar un método de autentificación (puedes utilizar páquetes o hacer el authToken / session tu mismo)

Debe poder permitirte registrarte y hacer login con username y password.

5) TESTING

Testing automáticos y con Postman / Insomnia

6) CSV to JSON

Implementa un método que convierta un csv en un json e incorpora la información de los asteroides del csv 'OrbitalParameters_PHAs.csv'. en tu DB.

RECURSOS

Archivo 'OrbitalParameters_PHAs.csv'. Contiene los parametros orbitales de 120 asteroides potencialmente peligrosos para la raza humana.

Formato del csv:

full_name	a	e	i	om	w	ma
1566 Icarus (1949 MA)	1.078076432	0.827072914	22.81881892	87.98911327	31.40697081	8.16059889
1620 Geographos (1951 RA)	1.245655278	0.33545381	13.33739043	337.1856335	276.9638903	16.89243
1862 Apollo (1932 HA)	1.470372413	0.559950159	6.354774105	35.61719647	285.9919159	199.087018
1981 Midas (1973 EA)	1.7763363	0.650335103	39.83111805	356.8629785	267.8249087	35.9911584
2101 Adonis (1936 CA)	1.874240001	0.763956935	1.322075868	349.4986766	43.60366893	52.9687242
2102 Tantalus (1975 YA)	1.290033303	0.29927236	64.00479642	94.36039279	61.53675306	216.514041
2135 Aristaeus (1977 HA)	1.599790251	0.503134536	23.06648429	191.1342704	290.9712244	240.289838

El csv ha sido obtenido de https://ssd.jpl.nasa.gov/sbdb_query.cgi

ENTREGA

Pega el enlace a tu repositorio en el registro del evento (Hack That Startup V2) antes de las 23:59 PM

EVALUACIÓN

- Implementación de diferentes objetivos
- Calidad del código (Syntaxis y complejidad)
- Documentación

- Code coverage (Automatic + Post/Anima)
- Code quality

- Estructuración y escalabilidad

RETO INDIVIDUAL -HACK THAT STARTUP 2-

JUST FOR FUN

Para qué sirven los parámetros orbitales? : https://www.youtube.com/watch?v=2gAYqtmNJx8

Todos los asteroides descubiertos hasta la fecha en el sistema solar: https://www.youtube.com/watch?v=vfvo-Ujb_qk

¿ Como se identifican los asteroides cercanos a la tierra?

El proceso de identificar PHAs y NEAs se basa en la comparación de imágenes de la misma región del cielo tomadas con varios minutos de diferencia. La gran mayoría de los objetos registrados en las imágenes son estrellas y galaxias que aparecerán en la misma posición en todas ellas. Por el contrario, los PHAs y NEAs son objetos cercanos con altas velocidades relativas y aparecerán en posiciones ligeramente diferentes.

https://near.cab.inta-csic.es/docs/?pagename=esp/Introduccion