Apunts d'Equacions diferncials ordinàries

ALEIX TORRES I CAMPS

Pau Martín (p.martin@gmail.com), Marcel Guardia i Rafael Ramírez

1 Tema 1: Introducció i definicions bàsiques

Definició 1. Una equació diferencial és una equació que involucra una funció incógnita i les seves derivades.

Exemple 1. $y(x), x \in \mathbf{R}$ amb y''(x) - y(x) = 0

Exemple 2. $y''(x) = -\sin(y(x))$

Exemple 3. $y''(x) = -\sin(y(x)) + \cos(x)$

Exemple 4. $\frac{\delta^2 z}{\delta x^2} + \frac{\delta^2 z}{\delta y^2} = 0$ on la incògnita és una funció de dues variables z(x,y).

Definició 2. Una e.d.o. és una equació diferencial de la forma:

- 1. Forma implícita: $g(x, y(x), \dots, y^{(n)}(x)) = 0$ on la incògnita és una funció $y(x) = (y_1(x) \dots y_m(x))^t$ d'una variable unidimensional x. Per tant, $g: U \in \mathbf{R} \times (\mathbf{R}^m)^{n+1} \to \mathbf{R}^m$.
- 2. Forma explícita: $y^{(n)}(x) = f(x, y(x), \dots, y^{n-1}(x))$.

Nota 5. A partir d'ara treballarem amb només la forma explícita. La qual abreviarem com $y^{(n)} = f(x, y, \dots, y^{n-1})$

Definició 3. Direm que $\phi:(a,b)\to \mathbb{R}^m$ és una solució si ϕ és n vegades derivable i:

$$\phi^{(n)}(x) = f(x, \phi(x), \dots, \phi^{(n-1)}(x)), \forall x \in (a, b)$$

Implícitament demantarem que:

$$\{(x,\phi(x),\ldots,\phi^{n-1}(x)|x\in(a,b)\}\subset Dom f$$

La solució general és el conjunt de totes les seves solucions.

Definició 4. Es diu que l'e.d.o. $y^{(n)} = f(x, y, \dots, t^{(n-1)})$ on $y = (y_1 \cdots y_m)^t$ és un sistema de m e.d.o.'s d'ordre n.

Nota 6. Comentaris:

 $y^{(n)} = f(x, y, \dots, t^{(n-1)})$ és equivalent a un sistema de $n \times m$ e.d.o.'s d'ordre 1.

En efecte, $z_1 = y$ (vector de m components), $z_2 = y', \dots, z_m = y^{(n-1)}$. Per tant, en total hi ha $n \times m$ components.

Anem a veure, ... $z_1' = (y)' = y' = z_2$ i, anar fent, $z_{n-1}' = (y^{n-2})' = y^{(n-1)} = z_n$ i $z_n' = (y^{(n-1)})' = y^{(n)} = f(x, y, \dots, y^{(n-1)}) = f(x, z_1, \dots, z_n)$

Exemple 7. y'' = -sin(y). Aleshores, $z_1 = y$ i $z_2 = y'$. Podem prendre per sistema d'equacions $z'_1 = z_2$ i $z'_2 = -sin(z_1)$.

1.1 Sistemes autònoms i no autònoms

Definició 5. Direm que una e.d.o. és autònoma si és de la forma y' = f(y) (equació que no depen de x). Direm que un sistema es no autònom si y' = f(x, y).

Proposició 6. Siguin y' = f(y) una e.d.o autònoma $i \phi : (a,b) \to \mathbf{R}^n$ una solució. Llavors, $\forall x \in \mathbf{R}$ i $\phi_{\alpha} : (a + \alpha, b\alpha) \to (R)^n$ per $x \to \phi(x - \alpha)$ també és solució.

Demostració. En efecte: $\phi'_{\alpha}(x) = \phi'(x - \alpha) = \phi'(x - \alpha) = f(\phi(x - \alpha)) = f(\phi_{\alpha}(x))$.

Nota 8. Podem transformar el sistema d'ordre 1 i n incògnites d'e.d.o's no autònom y' = f(x,y), en un sistema d'e.d.o's autónom d'ordre 1 i n + 1 incògnites.

En efecte, $z_1 = x$ i $z_2 = y$ Amb $z = (z_1 \ z_2)^t$ compleix que $z' = (z'_1 \ z'_2)^t = (1 \ f(x,y))^t = (1 \ f(z))^t = F(z)$

1.2 Problema de Cauchy o problema de valors inicials

Definició 7. Sigui $U \subset \mathbf{R} \times \mathbf{R}^n$ un obert i $f: U \to R^n$ una funció. Sigui $(x_0, y_0) \in U$. Anomenarem problema de Cauchy o problema de valor inicial (p.v.i) a trobar una solució de

$$y' = f(x, y)$$

$$y(x_0) = y_0$$

Exemple 9. Volem trobar una funció que compleixi que: y' = y i y(0) = 1. Escollint $\phi(x) = e^x$ és una solució.

Exemple 10. Volem trobar una funció que compleixi que: y' = y i $y(x_0) = y_0$. Escollint $\phi(x) = y_0 e^{x-x_0}$ (caldria comprovar-ho).

Pregunta: Les solucions que hem trobat són totes les possibles? N'hi ha més?

Exemple 11. yy' - x = 0 i y(0) = 0. Solucions: $\phi_{+-}(x) = + -x$ en són solució.

Exemple 12. yy' + x = 0 i y(0) = 0. No té cap solució.

1.3 Interpretació geomètrica d'una e.d.o

Sigui $f: U \subset \mathbf{R}^2 \to \mathbf{R}$ $(x,y) \mapsto f(x,y)$. y' = f(x,y) i $\phi: (a,b) \to \mathbf{R}$ nés solució si $\phi'(x) = f(x,\phi(x))$. El que diu és si existeix una funció ϕ , el pendent de la seva gràfica seguix $f(x,\phi)$.

1.4 Exemples importansts

Exemple 13. Equació d'una molla elàstica (oscil·lador harmònic):

$$my'' = -k^2y$$

On y és el desplaçament respecte la posició d'equilibri.

Exemple 14. Pendol de longitud l sota un camp gravitatori constant el qual exerceig una força mq.

$$m\theta''l = -mg\sin\theta \iff \theta'' = -\frac{g}{l}\sin\theta$$

On θ és l'angle del pendol respecte la vertical.

Exemple 15. Model SIR. S és el nombre de persones subceptibles, I infectats i R persones que deixen de ser de la resta tant perquè es curen com perquè moren. N = S + I + R

$$S' = -\frac{\beta}{N}SII' = \frac{\beta}{N}SI - \gamma IR' = \gamma I$$

Exemple 16. n cossos a l'espai de masses m_1, m_2, \ldots, m_n submessos a la seva mutua atracció gravitatòria. q_i és la posició del cos i en un sistema de referència.

$$m_i q_i'' = G \sum_{j \neq i} \frac{m_i m_j}{||q_j - q_i||^3} (q_j q_i)$$

Exemple 17. E.d.o's de famílies de corbes.

Considerem la següent família de corbes: $x^2 + y^2 = r^2$, per $r \in \mathbf{R}$. Tinc les solucions i m'interessa buscar la e.d.o. que la tingui per solució. Si y = y(x), derivant respecte a x: 2x + 2yy' = 0 o simplificant y'y + x = 0, o també $y' = -\frac{x}{y}$.

Família ortogonal. Té el pendent ortogonal, $y' = -\frac{1}{-\frac{x}{y}} = \frac{y}{x}$. Té per solució $y(x) = \alpha x$ per $\alpha \in \mathbf{R}$.

Exercici: Trobeu l'e.d.o de la família de corbes $(x - \alpha)^2 + y^2 = \alpha^2$. I la família de corbes ortogonals.