TRANSMISSION POWER CONTROL SYSTEM FOR SATELLITE COMMUNICATION AND BROADCASTING

Patent number:

JP5041683

Publication date:

1993-02-19

Inventor:

MATSUDO TAKASHI; KARASAWA YOSHIO

Applicant:

KOKUSAI DENSHIN DENWA CO LTD

Classification:

- international:

H04B7/15

- european:

H04B7/185D2

Application number:

JP19910198010 19910807

Priority number(s):

JP19910198010 19910807

Report a data error here

Abstract of JP5041683

PURPOSE:To compensate the attenuation of signal strength by controlling the transmission power of the satellite built-in transmitter or the radiation directive characteristic of the builtin antenna of the satellite with a variable radiation characteristic antenna by using weather information to be provided to the areas for satellite communication or broadcasting. CONSTITUTION: The system is provided with an area weather information collection/gathering function 1 which collect area weather information Sa, Sb, and Sc of a plurality of service areas A, B, and C for communication or broadcasting through a satellite 4, an arithmetic unit 2 calculating a distribution coefficient delta for each service area from weather information Sd collecting the service areas A, B, and C and calculating transmission power control information S1 distributing sum of the supply transmission power to a beam antenna 5 for each service area in the satellite, and a satellite control station 3 transmitting the transmission power control information 1 and controlling the transmission power of the beam antenna for each service area.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-41683

(43)公開日 平成5年(1993)2月19日

(51) Int CL.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H04B 7/15

6942-5K

H04B 7/15

Z

審査請求 未請求 請求項の数4(全 8 頁)

(21)出願番号

特願平3-198010

(22)出顧日

平成3年(1991)8月7日

(71)出願人 000001214

国際電信電話株式会社

東京都新宿区西新宿2丁目3番2号

(72)発明者 松戸 孝

東京都新宿区西新宿二丁目3番2号 国際

電信電話株式会社内

(72)発明者 唐沢 好男

東京都新宿区西新宿二丁目3番2号 国際

電信電話株式会社内

(74)代理人 弁理士 菅 隆彦

(54) 【発明の名称】 衛星通信・放送の送信電力制御方式

(57) 【要約】

(修正有)

【目的】衛星通信又は衛星放送の対象となる地域に提供 される気象情報を用いて、衛星搭載送信装置の送信電力 あるいは可変放射特性アンテナを持つ衛星の搭載アンテ ナの放射指向特性を制御することで、信号強度の減衰の 補償を行う。

【構成】衛星4を介した通信又は放送の複数のサービス 地域A、B、Cの地域気象情報Sa、Sb、Scを収集 して集合する地域気象情報収集・配信機関1と、サービ ス地域A, B, Cの集合された気象情報Sdから、各サ ーピス地域ごとの配分係数δを演算し、衛星内のビーム アンテナ5への供給送信電力総量を各サービス地域ごと に振向け配分する送信電力制御情報S1を演算する演算 装置2と、送信電力制御情報S1を送信し各サービス地 域向けのピームアンテナの送信電力を制御する衛星管制 局3とを具備する。

30

特開平5-41683

(2)

・(時公母68mm~81369号公報)。 **で創計多衰減雨到丁え聯多置装引送代出高と壊逝周の用 専製地南類31星帯、対了引亜星帯ムーソモバアC許多ム** ーソイッホスの残魃\psi 株 、ゴさち 。(8 € − £ € · q 4 、古野錦実星帯TA2V5AT衛星実験報告, p I 、始林木、会学別函辦於千部、平8861、011-路民法会会補債する方式もある(信学技報、CS88 の瞬回の下の一周牧政士さん下掛の支が困難のそ間の周 校猷千丁いさコ鼠校猷央中 、幻コ合猷の昏匪星游る主果

又引赴3同、6分さいすん公見多くだーマ用料の量書的 赿、お星常芝姑・引赿【取購さたろさよし光報次即辞】 [7000]

いおしろ要込きえち代くぐーマ雨剤でも咲きコのるい丁 J 特琳多寶品縣回於刊泉以作扩技鄉放跑艇得間 , J 據戲 雨菊さすろ要込ま根並の仕館鳥去なき大コさちひよくに ーア雨料は六の界熱質品、もち内域此入ソーセの发並は

发放の骨重星神、なるきア敵実のよコ等とこるで呼鳴る の胡天前と鬼蛇骨昏昏受のる心鼠手財、灯ゴ合群るパち ٠¢ なようになり、 衛星の限りある電力の非合理な配分とな

減此 スソーゼの 发址 訂又 引 重 引 漢 固 基 の 子 、 合 器 る え 副 ◇置装骨送け出高の用移域做雨料が起帯。 婚代习越越い払丁J与鼠用専島受幻鼠粧妣の渡を宝砕不 、幻丁发姑星帝るも丁スソーせの用専局受令スソーせ座

の員身受发並星游今員身受用スソーや陸差並の昏重星游 のでおるお丁島商公類規盟共 、おくこるけ魏多茂班周の 用専勉健雨鞠、ごさち。るななパなるで大猷な広軍養路 の星帯 、(無参蔣公号もも13-63階公科品前) ホ ち駄干」るな习要心体置差冒发化出高の機動 、ろるを消 呼る心形状雨刻な的は平の内固本日でご子【8000】 ・るで存出了率主統領同の雨剤の間域此と接

双哥亜星帯で行き角酔の衰減の鬼蛭号昏るよ习害窮遊窜 の等雨類、ケムコるを時時を封持向能検放の器昌芝雄群 の星帯で許多器骨送対替視放変向おいるあれ御冒送の器 **冒送簿者の基礎ムーソモハアC許多ムーソイで下入の凌** 妣さな」条仗の送妣显漱却又冒垂星游 、ケのも式パち計 随口必式るで先務多取購の品値 、幻即発本【7000】

「同不幻」こる式冠多等時前坐発養減雨氧の数量、数重へ

基礎なら自員用専島受 、Cか、 き肝多小蜂類の海輪置差

[8000] 。るるすのさるもくふむ典典多左九時時の玄雄ひ

コるで共称多関縣協値【現手の体式るで共和多関縣】

. ራ የ ቷ ት ላ አ ኢ ሲ ራ የ

罰計多登減雨쬨の瞬回で土ぐ心向へ星砕る心局段的、さ 心下類の衰減雨類の第回で不ご心向へ局矩触さべ里帯丁 情滅めいれるある量衰減雨剤るありて一の時間量害貿逝

いな习侵救強、幻コ合思の冒函基準、るい丁ノ快並へ星 **ずさ心局较敢却いるあへ局较敢さ心星群、多逝軍のち鮫** の宝一当小人人見多 (くぐーを雨剤) 勘宝獣の量度減雨料 雷る心斯式衰減或雷の減敗入ソーセの 芸址打又引面、灯 04 丁以は习发灶星南却又引面星帯の来労【游戏の来労】

[0000] 。るるすのするで関コ左式時時の发並び返冒底星群る バち掛づ玉巻・奇龢の衰滅の鬼絵号島るよづ群計量害腎

[10001]

【関係な職業の限発】

大式時時代節目送の送城・昏重星常の薄

、灯C一の時間量告貿並軍る飛引象戻越戦【4更來酷】

品を更永酷るでく婚替をくこるもり時前量雨料象及越助 **太式時時代軍員炎の炎雄・局重星帯を下る婚 券をとこるで齢具をと現手るで時時を對待向間協備のも**

そくて「協価のわ向減敗大ソーや各の星幣場前のより時間 時時代軍員送簿、、3項手る下算統多時前時間代軍員送る で変にコムコ越地大当一せ各のよコ境級化価減多掛替向 俄の七元くてで行ふ发姑婦値が大生局配婦値な星帯場値 、ノ草節を境系代面のムン域此入ソーセ各丁と置害斡兹 摩倩合ので式も間領が単域の丁炭畝スソーゼ全く量害郭 **越雷は平のC 式を間荷並単の煉畝 K ソーセ各、3 心時情** ∞ 量害貿站軍の対射スソーせ域、と曳手るで巣如多時前量 告南弦雷る飛引象戻減戦の減強スソーゼのパ子パチるな 斯コ賽城の班雷送並却又引<u>新</u>式し介多星帯【8.更永龍】

大式時時式實易 X O X 址· 冒 配 星 游 O 藻 **張1**取象籍るでと婚許多ろこる**も**び腓前量雨到參戻越郎 、打て「の群前量告貿越軍る私コ衆民越戦 【2 更來酷】

た式野婦**は**伊島岩の<u></u>数域・ 間面星溝るで

る厳禁をとこるを散見をと頃手るで時間多れ舞局数の器 **氰芝店値の行向減強大ソーせ各の基礎場値し割送多膵費** 時時代軍冒芝雄 、ろ煩手る下草剤多時散時間代軍昂数る 01 を仕届习当コ製財大当一せ各さもお扶多は實質英餘井の パチパチゴ付代無のよコ境系伝協協論を最終に審局送徐 **井の〜器§巻の内基帯33値を行き数並33値が又§番33**6 、ノ真節多度系化国のムン純地大ソーせ各丁と量害貿易 置信合のひ式も間荷が単類の丁製敢入ソーセ金く量害貿

南親から、各サービス地域の単位時間あたりの平均電法 屋客貿站市の減畝尺と一せ渡、1.5項手を乍集吹多時前屋 おいまれているとと、対象の対域気象に係る電池障害

藍コ賽穌の珎韋发斌却又昂亜≾し介多星帯【1 更永閣】 【**囲跡**の永橋指替】

することにより達成される。即ち、本発明の第1の特徴は、衛星を介した通信又は放送電波の残衰に連がるそれぞれのサービス地域の地域気象に係る電波障害量情報を収集する手段と、該サービス地域の電波障害量情報から、各サービス地域での時間あたりの平均電波障害量を会サービス地域での該単位時間あたりの合計電波障害と全サービス地域でとの配分係数を演算し、前記通信又は前記放送を行う前記衛星内の送信器への供給送信電力を対応する各サービス地域ごとに配分する送信電力を対応する各サービス地域ごとに配分する送信電力制御情報を演算する手段と、該送信電力制御情報により前記衛星の各サービス地域向けの前記送信器の送信電力を制御する手段とを具備することを特徴とする衛星通信・放送の送信電力制御方式である。

【0009】本発明の第2の特徴は、前記第1の特徴における地域気象に係る電波障害量情報の1つが、地域気象降雨量情報としてなる衛星通信・放送の送信電力制御方式である。

【0010】本発明の第3の特徴は、衛星を介した通信 又は放送電波の減衰に連がるそれぞれのサービス地域の 20 地域気象に係る電波障害量情報を収集する手段と、該サービス地域の電波障害量情報から、各サービス地域の単位時間あたりの平均電波障害量と全サービス地域での該単位時間あたりの合計電波障害量とで各サービス地域でとの配分係数を演算し、前配衛星が前配通信または前配放送を行うアンテナの指向特性を該配分係数により各サービス地域ごとに可変する送信電力制御情報を演算する手段と、該送信電力制御情報により前配衛星の各サービス地域向けの前配アンテナの前記指向特性を制御する手段とを具備することを特徴とする衛星通信及び放送の送 30 信電力制御方式である。

【0011】本発明の第4の特徴は、前配第3の特徴における地域気象に係る電波障害量情報の一つが、地域気象阵雨量情報としてなる衛星通信・放送の送信電力制御方式である。

[0012]

【作用】本発明は前記のような手段を講じたので、衛星通信又は衛星放送の対象地域の即時又は間欠的に提供される気象情報を用いてマルチピーム衛星の搭載送信装置の送信電力あるいは衛星の搭載アンテナの放射指向特性を制御する。即ち、地域気象情報を用いて降雨状況を把握し、この情報によってマルチピーム衛星の搭載送信装置の送信電力を制御して晴天地域では不必要となる降雨マージンに相当する送信電力を降雨地域へ与えて、衛星の実効輻射電力を時天地域より降雨地域に対して大きくする。また、マルチピーム衛星搭載送信装置の送信電力を制御する代わりに、地域気象情報を用いて衛星搭載アンテナの放射指向特性を制御して、衛星の実効輻射電力と受信利得を晴天地域より降雨地域に対して大きくする。

[0013]

【実施例】(第1実施例)本発明の第一実施例を図面に つき説明する。図1はマルチビームを用いた衛星通信又 は衛星放送の本実施例を示すシステム構成図、図2は本 実施例におけるマルチビームを用いた衛星通信又は衛星 放送の降雨減衰補償効果を示すグラフである。

【0014】図中、A、B、Cは通信又は放送の複数の各サービス地域、Sa、Sb、Scはそれぞれサービス地域A、B、Cの降雨等の地域気象情報、Sdは各サー10 ビス地域A、B、Cから寄せられた地域気象情報Sa、Sb、Scを集合した気象情報、S1は送信電力制御情報、1は地域気象情報収集及び配信機関、2は演算装置、3は衛星管制局、4は衛星、5はマルチビームアンテナ、T1は送信電力制御情報S1を衛星4へ伝える電波、Taはサービス地域A向けの通信波又は放送波、Tbはサービス地域B向けの通信波又は放送波、Tbはサービス地域B向けの通信波又は放送波、Tcはサービス地域C向けの通信波又は放送波である。本実施例は、通信又は放送のサービス地域総数が3つの場合である。

【0015】本実施例の仕様は、このような具体的実施 態様であるため、各サービス地域A,B,Cの地域気象 情報Sa,Sb,Scは地域気象情報収集及び配信機関 1を経由して、各サービス地域A,B,Cの集合された 気象情報Sdとして即時又は間欠的に演算装置2へ入力 される。演算装置2は、各サービス地域A,B,Cの地 域気象情報Sa,Sb,Scが集合された気象情報Sd に基づき、降雨減衰補債用送信電力(各サービス地域 A,B,Cの降雨マージンに相当する送信電力の中で降 雨減衰補債用として使用する他のサービス地域A,B, Cへ配分可能な送信電力の地域総数の合計、本実施例で は3地域の合計)を降雨による回線品質の劣化がより大 きいと予測されるサービス地域A,B,Cへ優先的に提 向け配分する情報、即ち送信電力制御情報S1を導く。 【0016】この送信電力制御情報S1は新見空

【0016】この送信電力制御情報S1は衛星管制局3を経由して送信電力制御情報を伝える電波T1として衛星4に伝えられる。衛星4は、電波T1により伝えられた送信電力制御情報S1に基づき各サービス地域A,B,C向けの送信電力を制御し、各サービス地域向けの通信波又は放送波Ta,Tb,Tcをマルチビームアンテナ5から放射する。

【0017】地域気象情報Sa,Sb,Sc及び気象情報Sdの電波障害量情報としては気象庁が提供するAMeDAS(以下、アメダスとする)毎正時1時間降水量、レーダアメダス合成降水量、降水量の短時間予報等が考えられる。地域気象情報収集及び配信機関1としては気象庁や日本気象協会や民間の気象情報会社等が考えられる。また、衛星通信又は衛星放送を行う日本全国を営業範囲とする企業においては、日本各地に点在する営業所や支店にある降雨計や気象観測装置の降雨情報を企50業内通信網により収集する方法も考えられる。他に気象

情報Sdに係る電波障害量情報としては、降雪量,風 力,温度、湿度、濃霧、落雷等が考えられる。

【0018】送信電力制御情報S1としては、例えばア メダス毎正時1時間降水量から求めた1時間毎の各地域 の平均降雨量を平均降雨量の地域総数(本第一実施例の 場合は3)の合計で除算した割合、即ち、配分割合αか*

【0019】ここで、Mは従来から運用されている各サ ーピス地域A、B、Cに対して予め見込んだ固定した降 の降雨マージンM (dB) に相当する送信電力の中で降 雨減衰補債用として使用せずに各サービス地域A, B, Cへ残す電力マージン(dB)、Nはサービス地域総数 3を表す。衛星4は、各サービス地域A, B, Cの新た な降雨マージンがMrとなるように送信電力を制御す

【0020】このように、本実施例は、即時又は間欠的 に提供される地域気象情報Sdを用いて、空間的にも時 間的にもダイナミックにマルチピーム衛星搭載送信装置 の送信電力を送信電力制御情報S1により制御すること で、衛星4の有限な送信電力を降雨による回線品質の劣 化がより大きいと予測されるサービス地域へ優先的に振 向け配分して、衛星4から地球局への下り回線の降雨減 **疫補債を実施する。**

【0021】なお、本実施例では、サービス地域A. B, Cの総数を3とするもこれに限定されない。ちなみ に、図2は、通信又は放送のサービス地域総数Nを6と した場合の降雨減衰補償効果を示すグラフである。 図 中、L1は降雨減衰補債なしのときの降雨減衰の累積時 間分布曲線、L2は降雨減衰補償ありのときの降雨減衰 30 の累積時間分布曲線、L3は降雨減衰補債の限界を示す 降雨減衰の累積時間分布曲線である。

【0022】日本国内(南西諸島を除く)を6地域(北 海道地域,東北地域,関東甲信越地域,中部近畿地域, 中国四国地域、九州地域の各地域)に分割し、各地域の スポットビームが10dBの降雨マージンMを持ってい る時に、その10dBに相当する電力の中で降雨減衰補 債用として使用せずに各地域へ残す電力マージンMkを 5 d Bとする場合、降雨減衰補賃用送信電力を配分割合 α(アメダス毎正時1時間降水量から求めた1時間毎の 40 各地域の平均降雨量を平均降雨量の地域総数の合計で除 算した値) で各地域へ再配分した。

【0023】この結果、周波数22.75GHzの衛星 による通信又は放送を関東地方に於いて仰角30度で1 990年の9月の1ヶ月間運用したとすると、降雨減衰 値10dB以上の時間率が降雨減衰補債によってL1の 1. 8% (約13時間) からL2の1. 0% (約7時 間)に減少して、降雨減衰補債効果が確認できる。さら に降雨減衰値が大きくなると、L3の降雨減衰補債の限

* 5 求められる新たな降雨マージンM r (d B) などが考 えられる。新たな降雨マージンM r は、各サービス地域 A, B, Cの配分割合δにより、降雨減衰補債用送信電 カを各サービス地域A, B, Cへ再配分することにより 求まり、次式で表される。

$Mr = 10 \log \{ (10M/10 - 10Mk/1) N\delta + 10Mk/10 \}$

る.

【0024】 (第2実施例) 次に本発明の第二実施例を 雨マージン(dB)、Mkは各サービス地域A、B、C 10 図面につき説明する。図3は本実施例において可変放射 特性アンテナを用いた衛星通信又は衛星放送を示す図、 図4は図3中の可変放射特性アンテナの例としてのフェ ーズドアレーアンテナを示す図である。

【0025】図中、6は可変放射特性アンテナ、7, 8,~nは可変放射特性アンテナ6の例としてのフェー ズドアレーアンテナのアレーアンテナ素子(n は任意 数)、9,10, \sim n'はフェーズドアレーアンテナの 位相器(n'は任意数)、11はフェーズドアレーアン テナの位相制御装置、12,13,~n"はフェーズド アレーアンテナのアンテナ素子用給電点 (n ~ は任意 数)、S2は可変放射特性アンテナ制御情報、ヶは可変 放射特性アンテナ6の放射指向特性である。なお、第一 実施例と同一の要素には、同一の符号を付した。

【0026】本実施例においても、通信又は放送のサー ビス地域総数は3つの場合である。本第実施例において は、衛星4は図1のマルチピームアンテナ5の代わりに 可変放射特性アンテナ6を具備する。可変放射特性アン テナ6はアンテナの放射指向特性γを制御して変化させ ることのできるアンテナであり、何としてはフェーズド アレーアンテナが考えられる。フェーズドアレーアンテ ナは、図3に示すようにアレーアンテナ素子7、8、~ n、位相器9, 10, ~n'、位相制御装置11で構成 され、アレーアンテナの各案子7、8、~nに給電する 位相を電子的に変化させて、放射指向特性でを変化させ るアンテナである。

【0027】本実施例の仕様は、このような具体的実施 態様であるため、アンテナ 6 の放射指向特性ヶは、送信 と受信の両方に対する特性であるから、任意の方向の実 効輻射電力が大きくなるような放射指向特性ャの時に は、その方向に対する受信利得も大きくなる。演算装置 2は、各サービス地域A, B, Cの集合された気象情報 Sdに基づき、降雨等による回線品質の劣化がより大き いと予測されるサービス地域A,B,Cへ衛星4の実効 輻射電力を優先的に大きくするようにアンテナ6の放射 指向特性でを形成する情報、即ち可変放射特性アンテナ 制御情報S2を導く。

【0028】この可変放射特性アンテナ制御情報S2 は、衛星管制局3を経由して可変放射特性アンテナ制御 情報S2を伝える電波T2として衛星4に伝えられる。 界に接近し、補債効果が存在し続けることが確認でき 50 衛星4は、電波T2により伝えられた可変放射特性アン

テナ制御情報S2に基づき、可変放射特性アンテナ6の 放射指向特性γを制御し、各サービス地域A, B, C向 けの通信波又は放送波Ta、Tb、Tcを可変放射特性 アンテナ6から放射する。

【0029】可変放射特性アンテナ6が図4に示すよう なフェーズドアレーアンテナの場合、衛星4は可変放射 特性アンテナ制御情報S2に基づき位相制御装置11を 制御して、放射指向特性でを変化させる。可変放射特性 アンテナ6を用いて衛星4の実効輻射電力を降雨地域に 対して大きくすると、同時に降雨地域に対する衛星4の 10 受信利得も大きくなる。

【0030】このように、本実施例は、即時又は間欠的 に提供される気象情報Sdを用いて、空間的にも時間的 にもダイナミックに衛星搭載アンテナ6の放射指向特性 γを制御することで、衛星4の実効輻射電力と受信利得 を降雨による回線品質の劣化がより大きいと予測される サービス地域A、B、Cへ優先的に大きくして振向け、 衛星4から地球局への下り回線と地球局から衛星4への 上り回線の両方の降雨減衰補債を同時に実施する。

[0031]

【発明の効果】かくして、本発明は、即時又は間欠的に 提供される地域気象情報により電波障害量情報たる降雨 状況を把握するので、マルチピーム衛星搭載送信装置の 送信電力を制御する場合には従来不可能だった、地球局 が受信専用局となる衛星通信の放送型サービスや衛星放 送における衛星から受信専用局への下り回線の降雨減衰 補債が個別に実現できる。本発明の各実施例では通信又 は放送のサービス地域総数が3の場合を述べたが、地域 総数は任意の数を設定できる。

【0032】また、本発明は、降雨地域専用の高出力送 30 T2…可変放射特性アンテナ制御情報S2を衛星へ伝え 信装置を新たに設けることはせず、晴天地域では不必要 となる降雨マージンに相当する送信電力の一部又は全部 を降雨地域へ与えるので、従来のマルチピーム衛星に比 べて衛星の総消費電力を増加することはない。そして、 晴天時には必要最低限の送信電力で運用できるので、衡 星搭載の送信電力装置の故障率の低減と電波の放射され る地域周辺の干渉調整地域の狭域化に役立つ。

【0033】さらに、衛星搭載アンテナの放射指向特性 を制御する場合には、衛星の実効輻射電力と受信利得を 同時に大きくできるので、衛星から地球局への下り回線 40 11…位相制御装置 と地球局から衛星への上り回線の両方の降雨減衰補債を 同時に実施できる等、優れた有効性、有用性を発揮す る.

【図面の簡単な説明】

【図1】本発明の第一実施例を示す図で、マルチビーム を用いた衛星通信又は衛星放送を示す図である。

8

【図2】本発明の第一実施例を適用した、マルチピーム・ を用いた衛星通信又は衛星放送の降雨減衰補債効果を示 すグラフである。

【図3】本発明の第二実施例を示す図で、可変放射特性 アンテナを用いた衛星通信又は衛星放送を示す図であ

【図4】図3中の可変放射特性アンテナの例としてのフ ェーズドアレーアンテナの構成を示す図である。 【符号の説明】

A, B, C…サービス地域

L 1 ··· 降雨減衰補債なしのときの降雨減衰の累積時間分

L 2…降雨減衰補債ありのときの降雨減衰の累積時間分 布曲線

L3…降雨減衰補債の限界を示す降雨減衰の累積時間分 布曲線

S 1 …送信電力制御情報

S2…可変放射特性アンテナ制御情報

Sa…サービス地域Aの地域気象情報

Sb…サービス地域Bの地域気象情報

Sc…サービス地域Cの地域気象情報

S d…集合された気象情報

Ta…サービス地域A向けの通信波又は放送波

Tb…サービス地域B向けの通信波又は放送波

Tc…サービス地域C向けの通信波又は放送波

T1…送信電力制御情報S1を衛星へ伝える電波

る電波

1…地域気象情報収集及び配信機関

2…演算装置

3…衛星管制局

4…衡星

5…マルチピームアンテナ

6…可変放射特性アンテナ

7,8~n…アレーアンテナ素子

9. 10~n'…位相器

12, 13~n" …アンテナ素子給電点

r…可変放射特性アンテナ6の放射指向特性

[図1]

