PeakTech® Prüf- und Messtechnik

Spitzentechnologie, die überzeugt

PeakTech® 4055 MV / 4060 MV

Bedienungsanleitung / **Operation Manual**

DDS Funktionsgeneratoren / **DDS Function Generators**

Inhalt

Thema	Seite
1. Sicherheitshinweise zum Betrieb des Gerätes	1
2. Einführung <i>PeakTech</i> ® DDS-Funktionsgeneratoren	
2.1. Vorbereitungen zum Betrieb	2
2.2. Beschreibung der Gerätefront und der Rückseite	
2.4. Beschreibung der Tasten	4
2.5. Allgemeine Bedienung - 2.5.1. Einzel-Frequenz-Funktion	5
- 2.5.2. Frequenz-Wobbel-Funktion - 2.5.3. Burst-Funktion	6
- 2.5.4 .Frequenzmodulationsfunktion- 2.5.5. Amplitudenmodulationsfunktion- 2.5.6. Phasenmodulation	7
- 2.5.7. Pulsweitenmodulation- 2.5.8. Frequenz-Shift-Keying-Funktion (Frequenzumtastung):	8
3. Funktionsbeschreibung	9
4. Bedienung 4.1. Allgemeine Bedienung	10
4.2. Frequenz - 4.2.1. Einstellen der Frequenz - 4.2.2. Einstellen der Periode - 4.2.3. Einstellen der Amplitude - 4.2.4. Format des Amplitudenwerts - 4.2.5. Amplitudendämpfung	11
- 4.2.6. Ausgangsimpedanz- 4.2.7. Offset-Einstellungen- 4.2.8. Gleichspannungsausgang	12
- 4.2.9. Auswahl der Signalform für Kanal A- 4.2.10. Einstellen des Tastverhältnisses	13
4.3. Ausgangs-Phasen-Einstellung	14
4.4. Frequenz-Sweep-Funktion	14
4.5. Burst Funktion	16
4.6. Frequenzmodulation (FM)	17
4.7 Amplitudenmodulation (AM)	18
4.8. Phasenmodulation (PM)	19
4.9. Pulsweitenmodulation (PWM)	20
4.10 Frequenzumtastung - Frequency Shift Keying (FSK)	21
4.11. Ausgangs-Port 4.12. Eingangs-Port 4.13. Programmierbare Schnittstelle	22
4.14. Parameterkalibrierung	23
4.15 Standardeinstellungen - 4.15.1. Kontinuierliche-Funktion - 4.15.2. Frequenz Wobbellung (Sweep) - 4.15.3. Burst - 4.15.4. Modulation (FM, AM, PM, PWM) - 4.15.5. FSK	24
4.16. Leistungsverstärker	25
5. Spezifikationen	26

Content

Issue	Page
1. Safety Precautions	29
2. Introduction of PeakTech® DDS Function Generators	
2.1. Prepare to use	30
2.2. Description of Front Panel and Rear Panel	
2.4. Keyboard introduction	32
2.5. Basic operation - 2.5.1 Single frequency function	33
- 2.5.2 Frequency sweeping function - 2.5.3. Burst function	34
- 2.5.4. Frequency modulation function- 2.5.5. Amplitude modulation function- 2.5.6. Phase modulation function	35
- 2.5.7. Pulse width modulation function (PWM)- 2.5.8. Frequency shift keying function (FSK)	36
3. Principle summarize	37
4. Handling instruction 4.1. General operation rule	38
4.2. Single frequency function - 4.2.1. Frequency setting - 4.2.2. Period setting - 4.2.3. Amplitude setting - 4.2.4. Format of amplitude value - 4.2.5. Amplitude attenuation setting	39
- 4.2.6. Output load - 4.2.7. Offset-setting - 4.2.8. DC Output voltage	40
- 4.2.9. Selection of waveform of channel A:- 4.2.10. Setting of duty cycle	41
4.3. Output phase setting 4.4. Frequency sweeping function	42
4.5. Burst function	44
4.6. Frequency modulation (FM)	45
4.7. Amplitude modulation (AM)	46
4.8 Phase modulation (PM)	47
4.9. Pulse width modulation (PWM)	48
4.10. Frequency shift keying (FSK)	49
4.11. Output port 4.12. Input port 4.13. Programmable interface	50
4.14. Parameter calibration	51
4.15. Default setting - 4.15.1. Continuity function - 4.15.2. Frequency sweeping function - 4.15.3. Burst - 4.15.4. Modulation (FM, AM, PM, PWM) - 4.15.5. FSK	52
4.16. Power amplifier	53

1. Sicherheitshinweise zum Betrieb des Gerätes

Dieses Gerät erfüllt die EU-Bestimmungen 2004/108/EG (elektromagnetische Kompatibilität) und 2006/95/EC (Niederspannung) entsprechend der Festlegung im Nachtrag 2004/22/EG (CE-Zeichen).

Zur Betriebssicherheit des Gerätes und zur Vermeidung von schweren Verletzungen durch Strom- oder Spannungsüberschläge bzw. Kurzschlüsse sind nachfolgend aufgeführte Sicherheitshinweise zum Betrieb des Gerätes unbedingt zu beachten.

Schäden, die durch Nichtbeachtung dieser Hinweise entstehen, sind von Ansprüchen jeglicher Art ausgeschlossen.

- * Vor Anschluss des Gerätes an eine Steckdose überprüfen, dass die Spannungseinstellung am Gerät mit der vorhandenen Netzspannung übereinstimmt
- * Gerät nur an Steckdosen mit geerdetem Schutzleiter anschließen
- * maximal zulässige Eingangswerte unter keinen Umständen überschreiten
- * Defekte Sicherungen nur mit einer dem Originalwert entsprechenden Sicherung ersetzen. Sicherung oder Sicherungshalter **niemals** kurzschließen.
- * Vor dem Umschalten auf eine andere Messfunktion Prüfleitungen oder Tastkopf von der Messschaltung abkoppeln.
- * Gerät, Prüfleitungen und sonstiges Zubehör vor Inbetriebnahme auf eventuelle Schäden bzw. blanke oder geknickte Kabel und Drähte überprüfen. Im Zweifelsfalle keine Messungen vornehmen.
- * Ventilationsschlitze im Gehäuse unbedingt freihalten (bei Abdeckung Gefahr eines Wärmestaus im Inneren des Gerätes)
- * Keine metallenen Gegenstände durch die Ventilationsschlitze stecken.
- * Keine Flüssigkeiten auf dem Gerät abstellen (Kurzschlussgefahr beim Umkippen des Gerätes)
- * Gerät nicht auf feuchten oder nassen Untergrund stellen.
- * Messspitzen der Prüfleitungen nicht berühren.
- * Warnhinweise am Gerät unbedingt beachten.
- * Gerät keinen extremen Temperaturen, direkter Sonneneinstrahlung, extremer Luftfeuchtigkeit oder Nässe aussetzen.
- * Starke Erschütterung vermeiden.
- * Gerät nicht in der Nähe starker magnetischer Felder (Motoren, Transformatoren usw.) betreiben
- * Heiße Lötpistolen aus der unmittelbaren Nähe des Gerätes fernhalten.
- * Vor Aufnahme des Messbetriebes sollte das Gerät auf die Umgebungstemperatur stabilisiert sein (wichtig beim Transport von kalten in warme Räume und umgekehrt)
- * Säubern Sie das Gehäuse regelmäßig mit einem feuchten Stofftuch und einem milden Reinigungsmittel. Benutzen Sie keine ätzenden Scheuermittel.
- * Dieses Gerät ist ausschließlich für Innenanwendungen geeignet.
- * Nehmen Sie das Gerät nie in Betrieb, wenn es nicht völlig geschlossen ist.
- * Vermeiden Sie jegliche Nähe zu explosiven und entflammbaren Stoffen.
- * Keine technischen Veränderungen am Gerät vornehmen.
- * Öffnen des Gerätes und Wartungs- und Reparaturarbeiten dürfen nur von qualifizierten Service-Technikern durchgeführt werden.
- * Gerät darf nicht unbeaufsichtigt betrieben werden
- * -Messgeräte gehören nicht in Kinderhände-

Reinigung des Gerätes:

Vor dem Reinigen des Gerätes, Netzstecker aus der Steckdose ziehen. Gerät nur mit einem feuchten, fusselfreien Tuch reinigen. Nur handelsübliche Spülmittel verwenden.

Beim Reinigen unbedingt darauf achten, dass keine Flüssigkeit in das Innere des Gerätes gelangt. Dies könnte zu einem Kurzschluss und zur Zerstörung des Gerätes führen.

2. Einführung PeakTech® DDS-Funktionsgeneratoren

Ausgerüstet mit Direkter Digitalsynthese-Technik bieten *PeakTech*® DDS Funktionsgeneratoren eine hohe Leistung sowie vielfältige Funktionen, die für schnelle Messeinsätze nötig sind. Die einfach gestaltete Front, die numerische Anzeige sowie die Anzeigelampen erlauben komfortables Arbeiten und Ablesen. Darüber hinaus erweitern zahlreiche optionale Funktionen die Eigenschaften des Gerätes.

2.1. Vorbereitungen zum Betrieb

2.1.1. Prüfen des Messgerätes und des Zubehörs

Prüfen Sie, ob das Messgerät und das Zubehör vollständig und unbeschädigt sind. Bei starker Beschädigung der Verpackung sollten Sie diese aufbewahren, bis Sie das Messgerät vollständig geprüft haben.

2.1.2. Funktionsgenerator mit dem Stromnetz verbinden und einschalten

Ein sicherer Betrieb des Gerätes ist nur unter folgenden Bedingungen gewährleistet.

Spannung: AC 100-240V Temperatur: $0 \sim 40^{\circ}$ C Frequenz: 45 - 65 Hz Feuchte: < 80%

Stromaufnahme: < 20VA

Stecken Sie den Kaltgerätestecker in die Buchse (100 ~ 240 V AC) auf der Geräterückseite. Achten Sie auf korrekte Erdung. Drücken Sie den Hauptschalter an der Gerätefront. Der Generator wird initialisiert und die Standardparameter eingestellt. Das Gerät geht in folgenden Arbeitsmodus: Einzelfrequenz auf Kanal A, Sinussignal, Anzeige der Werte für Frequenz und Amplitude von Kanal A.

WARNUNG!

Um die Sicherheit des Bedieners zu gewährleisten, muss das Gerät an eine dreipolige Schutzkontaktsteckdose mit Schutzleiter angeschlossen werden.

2.2. Beschreibung der Gerätefront und der Rückseite

1.

2.

- 1. Hauptschalter
- 2. Funktionstasten
- 3. Signalausgang
- 4. Sync-Ausgang

5. Einstellknopf

4.

- 6. Zifferntasten
- 7. Anzeige

2.2.2. Geräterückseite:

- 8. USB-Anschluss
- 9. Leistungsverstärker Ausgang
- 10. Leistungsverstärker Eingang
- 11. Trigger-Eingang
- 12. Kaltgerätebuchse

2.3. Anzeige

Das Display zeigt zwei Gruppen von Ziffern, die Gruppe auf der linken Seite mit 6 Ziffern zeigen Frequenz, Periodendauer, Dämpfung und Tastverhältnis der Signale.

Die vier Ziffern auf der rechten Seite zeigen Amplitude und Offset der Signale. Es werden auch weitere auf dem Display angezeigt, wie das aktuelle Wellenform-Signal, Signalparameter und Einheiten der Parameter.

2.4. Beschreibung der Tasten

Auf der Gerätefront befinden sich 28 Tasten mit folgenden Funktionen (siehe Gerätefront).

- * Die Tasten [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] dienen zur Eingabe von Zahlen.
- * Die Taste [.] dient zur Eingabe des Dezimalpunktes.
- * Die Taste [-] dient zur Eingabe von Minuswerten in der Option von "Offset" sowie in anderen Fällen; auch zum Einschalten bzw. Ausschalten des Tastendrucktons.
- * Die Tasten [<] [>] Cursor nach links oder nach rechts.
- * Die Taste [Freq] [Period] auswählen; deaktiviert die Kalibrierfunktion während der Kalibrierung.
- * Die Tasten [Ampl] [Atten] ; wählen jeweils Periode und Amplitude
- * Die Taste [Offset] : wählt Offset.
- * Die Tasten [FM] [AM] [PM] [PWM] [FSK] [Sweep] [Burst] : um die Funktionen FM, AM, PM, PWM, FSK, Wobbelung oder Burst auszuwählen oder zu beenden.
- * Die Taste [Trigg] : externen Trigger auswählen während den Funktionen Frequenzwobbelung, FSK-Modulation und Burst.
- * Die Taste [Output] : Öffnen und Schließen des Signalausgangs
- * Die Taste [Shift]: auswählen, um während des Remote-Betriebes (verbunden mit PC) in den Tastaturbetrieb zurückzukehren.
- * Die Tasten [Sine] [Square] [Ramp] : auswählen von jeweils Sinus, Rechteck und Rampe drei gemeinsamen Wellenformen.
- * Die [Arb] -Taste: auswählen von 16 anderen Wellenform mit der jeweiligen Sequenz-Nummer.
- * Die Taste [duty] auswählen von Tastverhältnis von Rechtecksignalen und Symmetrie von Rampensignalen.
- * Die [Cal] -Taste: Wählen Sie den Parameter "Kalibrierfunktion".
- * Unit-Tasten: Die sechs Tasten unter den Maßeinheiten-Markierungen sind Doppel-Funktionstasten, mit denen man direkt die Funktionen ausführen kann. Bei der Eingabe von Ziffern mit den Zifferntasten, drücken sie danach auf die Einheit und die Eingabe endet.
- * Die [Menü] Taste: Wählen Sie unter verschiedenen Optionen zirkular verschiedenen Funktionen, siehe unten Liste:

Optionen des Auswahlmenüs

Menü	Option	
Tone	Phase und Art der Wellenform	
Frequenz -	Startfrequenz, Stopfrequenz, Sweepzeit, Sweep-Modus	
Sweep		
Burst	Periode, Pulszähler, Startphase	
FM	Modulationsfrequenz, Modulationsfrequenzabweichung,	
	Modulationswellenform	
AM	Modulationsfrequenz, Modulationsamplitudentiefe,	
	Modulationswellenform	
PM	Modulationsfrequenz, Phasenverschiebung, Modulationswellenform	
PWM	Modulationsfrequenz, Modulationsbreitentiefe,	
	Modulationswellenform	
FSK	Hop Rate, Hop-Frequenz	
Calibration	Kalibrierwert: Null, Offset, Amplitude, Frequency,	
	Amplitudenverzerrung	

2.5. Allgemeine Bedienung

Die folgende Beschreibung erklärt die allgemeine Bedienung für die Standardnutzung. Bei Fragen lesen Sie bitte die entsprechenden Abschnitte in Kapitel 3 dieser Anleitung.

2.5.1. Einzel-Frequenz-Funktion

Nach dem Einschalten des Gerätes geben die Ausgänge ein Einzel-Frequenz-Signal aus.

Frequenzeinstellung:

Stellen Sie den Frequenz-Wert bei 3,5 kHz [Freq] [3] [.] [5] [kHz] .

Frequenzeinstellung:

Drücken Sie [<] oder [>] Taste, zum Setzen des Cursors.

Drehen Sie den Drehknopf nach links oder rechts zum Verringern oder Erhöhen des Wertes oder geben Sie den Wert direkt über das numerische Tastenfeld ein. Bewegen Sie den Cursor für grobe Einstellungen nach zur Feinjustierung nach links. Der Drehknopf dient zur Einstellung von Ziffernfeldern in den verschiedenen Funktionen.

Einstellung der Periodendauer:

Stellen Sie die Zeit als 2.5ms [Period] [2] [.] [5] [ms] .

Amplituden - Einstellung:

Stellen Sie die Amplitude auf 1.5 Vpp [Ampl] [1] [.] [5] [Vpp] .

Attenuation - Einstellung:

Stellen Sie die Dämpfung 0 dB (Auto Dämpfung wird standardmäßig nach dem Einschalten aktiviert) [Atten] [0] [dB].

Offset-Einstellung:

Stellen Sie den DC-Offset auf -1 Vdc [Offset] [-] [1] [Vdc].

Gemeinsame Wellenformauswahl:

Wählen Sie "Rechteck" (Sinus ist standardmäßig nach dem Einschalten aktiv) 【Shift】 【Square】.

Einstellung des Tastverhältnisses:

Stellen Sie das Tastverhältnis auf 20% [Shift] [Duty] [2] [0] [%].

Auswahl anderer Wellenformen:

Wählen Sie eine beliebige Wellenform (z.B. laufende Nummer 9, siehe Liste der laufenden Nummer von 16 Arten an Wellenformen) [Shift] [Arb] [1] [2] [N]

Unterhalb wird die Häufigkeit der SWEEP-Durchläufe angezeigt.

Um die Messung zu beobachten, kann die Frequenz als Sinus-Signal mit einer Amplitude von 1Vss und einem Offset von 0V DC festgelegt werden legen.

2.5.2. Frequenz-Wobbel-Funktion

Drücken Sie die Taste 【Sweep】 für die Ausgangsfrequenz mit Sinus-Signal.

Startfrequenz-Einstellung: Legen Sie die Start-Frequenz auf 5 kHz fest

Drücken Sie die Taste [Menü], die "Startfrequenz" leuchtet auf, drücken Sie [5] [kHz].

Endfrequenz-Einstellung: Stellen Sie die Endfrequenz auf 2 kHz.

Drücken Sie die Taste [Menü], die "Endfrequenz leuchtet auf, drücken Sie [2] [kHz].

Sweep Zeiteinstellung: Stellen Sie die Sweep-Zeit auf 5 s.

Drücken Sie die Taste [Menü], die "Sweep-Time" leuchte auf, drücken Sie [5] [s].

Sweeping-Modus-Einstellung: Stellen Sie den Sweep-Modus auf "Logarithmus".

Drücken Sie die Taste [Menü], drücken Sie [1] [N].

Trigger-Sweep-Einstellung:

Drücken Sie die 【Trig】-Taste, um die Wobbelung nach jedem Erreichen des Endpunktes, zu beenden. Mit jedem Drücken der 【Trig】-Taste, startet der Generator die Trigger-Wobbelung erneut. Drücken Sie die 【Sweep】-Taste, um eine kontinuierliche Wobbelung fortzusetzen.

2.5.3. Burst-Funktion:

kontinuierliche Frequenz auf 1 kHz einstellen.

[Burst] -Taste drücken, um das Burst-Signal am Ausgang auszugeben.

Perioden-Einstellung:

Stellen Sie den Wiederholungszeitraum auf 5ms.

[MENU] - Taste, "Period"-Zeichen erscheint im Display

Drücken Sie [5] [ms].

Impulszähler-Einstellung:

Stellen Sie den Impulszähler auf 1 ein.

[MENU] -Taste, "NCYC"-Zeichen erscheint im Display

Drücken Sie [1] [N].

Start Phase-Einstellung:

Startphase auf 180 ° einstellen.

[MENU] -Taste, "Phase"-Zeichen erscheint im Display

Drücken Sie [1] [8] [0] [°].

Trigger-Burst-Einstellung:

Drücken Sie die [Trig] -Taste, um das Ausgangssignal über den Burst zu stoppen. Nun wird jedes Mal, wenn Sie die [Trig] -Taste drücken, ein Burst-Signal getriggert. Drücken Sie die [Burst] - Taste erneut, um zur kontinuierlichen Burst-Funktion zurück zukehren.

2.5.4 .Frequenzmodulationsfunktion:

Stellen Sie die kontinuierliche Frequenz auf 20kHz

[FM] -Taste drücken, um über den Ausgang ein Frequenzmodulationssignal auszugeben.

Modulationsfrequenz Einstellung:

Stellen Sie die Modulationsfrequenz auf 10Hz

Drücken Sie die [Menü] -Taste, "Mod_f"-Zeichen erscheint im Display

Drücken Sie [1] [0] [Hz].

Frequenzabweichung Einstellung:

Stellen Sie die Frequenzabweichung auf 2kHz.

Drücken Sie die [Menü] -Taste, "Devia"-Zeichen erscheint im Display

Drücken Sie [1] [kHz].

Wellenform für die Modulations-Einstellung:

Wählen Sie als Modulationswellenform "Dreieck"-Signal

Drücken Sie die [Menü] -Taste, "Shape"-Zeichen erscheint im Display

Drücken Sie [2] [N].

2.5.5. Amplitudenmodulationsfunktion:

Drücken Sie die [AM] -Taste, um über den Ausgang ein Amplitudenmodulationssignal auszugeben.

Modulationsfrequenz Einstellung:

Stellen Sie die Modulationsfrequenz auf 1kHz.

Drücken Sie die [Menü] -Taste, "Mod_f"-Zeichen erscheint im Display

Drücken Sie [1] [kHz].

Modulationsamplituden Tiefeneinstellung:

Stellen Sie die Tiefe der Modulationsamplitude auf 50%.

Drücken Sie die 【Menü】-Taste, "Depth"-Zeichen erscheint im Display

Drücken Sie [5] [0] [%].

Wellenform für die Modulationseinstellung:

Stellen Sie die Modulationswellenform auf Sinus.

Drücken Sie die [Menü] -Taste, "Shape"-Zeichen erscheint im Display

Drücken Sie [0] [N].

2.5.6. Phasenmodulation:

Drücken Sie die [PM] -Taste, um über den Ausgang ein Phasenmodulationssignal auszugeben.

Modulationsfrequenz Einstellung:

Stellen Sie die Modulationsfrequenz auf 10kHz.

Drücken Sie die [Menü] -Taste, "Mod_f"-Zeichen erscheint im Display

Drücken Sie [1] [0] [kHz].

Phasenabweichung Einstellung:

Stellen Sie die Phasenabweichung auf 180 °.

Drücken Sie die [Menü] -Taste, "Phase"-Zeichen erscheint im Display

Drücken Sie [1] [8] [0] [°].

Einstellung der Wellenform für die Modulation:

Stellen Sie die Modulationswellenform auf "Rechtecksignal".

Drücken Sie die [Menü] -Taste, "Shape"-Zeichen erscheint im Display

Drücken Sie [1] [N].

2.5.7. Pulsweitenmodulation:

Drücken Sie die 【PWM】-Taste, um über den Ausgang ein Pulsbreitenmodulationssignal auszugeben.

Modulationsfrequenz Einstellung:

Stellen Sie die Modulationsfrequenz als 1Hz Drücken Sie die [Menü] -Taste, "Mod_f"-Zeichen erscheint im Display Drücken Sie [1] [Hz].

Einstellung der Pulsweitenabweichung:

Stellen Sie die Impulsbreitenabweichung auf 80%. Drücken Sie die [Menü] -Taste, "Devia"-Zeichen erscheint im Display Drücken Sie [8] [0] [%].

Wellenform für die Modulation Einstellung:

Stellen Sie die Modulationswellenform auf "Sinussignal". Drücken Sie die [Menü] -Taste, "Shape"-Zeichen erscheint im Display Drücken Sie [0] [N].

2.5.8. Frequenz-Shift-Keying-Funktion (Frequenzumtastung):

Stellen Sie die Wellenform auf Sinus.

Drücken Sie die 【FSK】-Taste, um über den Ausgang ein Frequenzumtastungssignal auszugeben.

Hop-Raten-Einstellung:

Stellen Sie die Hop-Rate auf 1 kHz. Drücken Sie die [Menü] -Taste, "Rate"-Zeichen erscheint im Display Drücken Sie [1] [kHz].

Hop-Frequenz-Einstellung:

Stellen Sie die Hop-Frequenz auf 2kHz.

Drücken Sie die [Menü] -Taste, "Hop"-Zeichen erscheint im Display

Drücken Sie [2] [kHz].

3. Funktionsbeschreibung

3.2. DDS-Funktionsprinzip

- * Herkömmliche Signalgeneratoren verwenden zur Erzeugung eines Spannungssignals verschiedene elektronische Oszillatorschaltungen. Die damit erreichbare Frequenzgenauigkeit und Frequenzstabilität ist nicht hoch genug. Darüber hinaus ist die Technik sehr komplex, die Auflösung gering, die Frequenzeinstellung unbequem, und die Steuerung durch einen PC schwierig. Die direkte Digitalsynthese (DDS) ist ein neuartiges Verfahren zur Signalerzeugung ohne Oszillatorkomponenten, das mit Hilfe einer digitalen Synthese einen Datenstrom erzeugt, aus dem über einen DA-Wandler ein vorher einstellbares Analogsignal erzeugt wird.
- * Zur Erzeugung eines Sinussignals wird zunächst die Funktion y = sinx gequantelt, dann x als Adresse und y als gequantelte Daten im Signalformspeicher gespeichert. DDS nutzt die Phasenadditionstechnik zur Ansteuerung des Signalformspeichers. Bei jedem Taktimpuls wird das Phasenergebnis des Phasenspeichers inkrementiert, so dass die Ausgangsfrequenz analog zur Phasenerhöhung erhöht wird. Gemäß der Adresse des Phasenspeichers werden die gequantelten Daten aus dem Signalspeicher entnommen und über DA-Wandler und Operationsverstärker in eine analoge Spannung umgewandelt. Da die Signalformdaten kontinuierlich abgetastet werden, gibt der DDS-Generator ein getrepptes Sinussignal aus. Die damit einhergehenden harmonischen Oberwellen werden mit einem Tiefpass gefiltert, um ein glattes Sinussignal zu erzielen. Die Verwendung einer hochgenauen Referenzspannung in dem DA-Wandler ermöglicht die Ausgabe eines sehr genauen und stabilen Signals.
- * Die Amplitudensteuerung besteht aus einem DA-Wandler. Auf Grundlage des vom Bediener voreingestellten Amplitudenwerts erzeugt dieser eine entsprechende Analogspannung, die mit dem Ausgangssignal multipliziert wird und so die Einhaltung des voreingestellten Werts für die Amplitude des Ausgangssignals garantiert. Die Offsetsteuerung besteht aus einem DA-Wandler. Auf Grundlage des vom Bediener voreingestellten Offsetwerts erzeugt dieser eine entsprechende Analogspannung, die mit dem Ausgangssignal multipliziert wird und so die Einhaltung des voreingestellten Werts für den Offset des Ausgangssignals garantiert.

3.3. Bedienkonzept

- * Die MCU steuert die Tasten und die Anzeigeelemente über eine Schnittstellenschaltung. Wird eine Taste gedrückt, identifiziert die MCU den Code dieser Taste und führt die zugehörigen Befehle aus. Die Anzeigenschaltung zeigt den Betriebszustand sowie die Generatorparameter über Menüzeichen an.
- * Mit dem Drehknopf wird der Zahlenwert an der Cursorposition verändert. Jede Drehung um 15° erzeugt einen Triggerimpuls. Die MCU erkennt, ob die Drehung nach rechts oder nach links erfolgt. Bei einer Drehung nach links wird der Zahlenwert an der Cursorposition um 1 verringert, bei einer Drehung nach rechts um 1 erhöht.

4. Bedienung

4.1. Allgemeine Bedienung

4.1.1. Dateneingabe:

- * Wird ein Eintrag ausgewählt, so ist die Eingabe von Parameterwerten über zehn Zifferntasten von links nach rechts möglich. Wird in einem Parameter mehr als ein Dezimalpunkt eingegeben, so wird nur der erste ausgewertet. Für die Funktion "Offset" können Minuswerte eingegeben werden. Die Eingabe der Werte muss mit der Einheitentaste abgeschlossen werden. Eine fehlerhafte Dateneingabe kann auf zwei Arten korrigiert werden. Drücken Sie eine beliebige Einheitentaste und geben Sie dann die Werte erneut ein, wenn das Ausgabeende ein falsches Ausgangssignal erlaubt. Wählen Sie den gleichen Eintrag erneut aus und geben Sie die richtigen Werte ein, wenn das Ausgabeende ein falsches Ausgangssignal nicht erlaubt.
- * Sie können Werte in beliebiger Form mit oder ohne Dezimalpunkt eingeben; das Gerät zeigt solche Werte in einem einheitlichen Format an. Eine Werteeingabe von 1,5 kHz oder 1500 Hz zeigt das Gerät immer als 1.500.00kHz.

4.1.2. Drehknopfeinstellung:

* In der Praxis muss das Signal manchmal mehrfach nachgestellt werden; dazu wird der Einstellknopf verwendet. Der Cursor in der numerischen Anzeige blinkt an einer bestimmten Position. Drücken Sie die Taste 【<】 oder 【>】, um den blinkenden Cursor nach links oder rechts zu bewegen. Drehen Sie den Einstellknopf im bzw. gegen den Uhrzeigersinn, um den Wert jeweils um 1 zu erhöhen oder zu verringern, auch in höheren Stellen. Bei Einstellung mit dem Einstellknopf werden die Werte sofort wirksam und müssen nicht mit einer Einheitentaste abgeschlossen werden. Bei Bewegung des blinkenden Cursors nach links ist eine Grobeinstellung der Werte möglich, bei Bewegung nach rechts können Werte fein eingestellt werden.

4.1.3. Auswahl des Eingabemodus

* Bei bekannten Werten ist die Verwendung der Zifferntasten am einfachsten, da die gewünschten Werte sofort ohne Übergangswerte erzeugt werden können, unabhängig von der Größe des Wertesprungs. Änderungen an den Eingaben oder Eingaben von Reihenwerten gelingen mit dem Einstellknopf einfacher. Für eine Reihe von Werten gleicher Schrittweite ist die Verwendung der Schrittfunktion wesentlich bequemer. Der Benutzer sollte daher seine Wahl entsprechend treffen.

4.2. Frequenz

* Nach dem Start wählt der Generator automatisch die Kontinuitätsfunktion aus. Die Kontinuitätsfunktion bedeutet, dass das Ausgangssignal stabil und kontinuierlich ist und die Wellenform, sowie Frequenz, Amplitude und Phase sich nicht mit der Zeit verändern.

4.2.1. Einstellen der Frequenz

* Drücken Sie die Taste 【Freq】, um den aktuellen Frequenzwert anzuzeigen. Der Frequenzwert kann entweder über die Zifferntasten oder mit dem Einstellknopf eingegeben werden. Das Signal wird an "Ausgang" ausgegeben.

4.2.2. Einstellen der Periode

- * Das Signal kann auch als Periode eingestellt und angezeigt werden.
- * Drücken Sie die [Freq] -Taste, das Symbol "Periode", um den gegenwärtigen Periodenwert anzuzeigen. Geben Sie den Eingangsperiodenwert mit den Zifferntasten oder dem Drehknopf ein. Intern wird jedoch weiterhin mit der Frequenzsynthese gearbeitet. Bei der Eingabe und Anzeige der Werte handelt es sich lediglich um eine Konvertierung. Bedingt durch die geringe Frequenzauflösung können nur Frequenzpunkte mit großen Periodensprüngen bei längeren Perioden eingegeben werden. Die Eingabe und Anzeige der Periode ist zwar genau, aber die Periodenwerte des tatsächlichen Ausgangssignals werden sehr unterschiedlich sein.

4.2.3. Einstellen der Amplitude

- * Drücken Sie die Taste 【Ampl】, um die aktuelle Amplitude anzuzeigen. Verwenden Sie dann die Zifferntasten oder den Einstellknopf zur Eingabe des Amplitudenwerts. Die Amplitude wird an "Ausgang" ausgegeben.
- * Das Verhältnis zwischen maximaler Amplitude und Offset-Wert sollte unter Formel. Wenn die Einstellungen von Amplitude die Spezifikation überschreitet, wird der Generator diese abändern, bis sie im Bereich des erlaubten maximalen Amplitudenwertes liegt.

Vpp≤2× (10-|offset|)

4.2.4. Format des Amplitudenwerts

Es gibt zwei Formen zur Eingabe und Anzeige der Amplitude: Peak-Peak und RMS

- * Drücken Sie 【Vpp】 oder 【mVpp】 zur Eingabe des Amplitudenwertes Peak-Peak nachdem die Ziffern eingegeben wurde.
- Drücken Sie [mVrms] oder [Vrms] zur Eingabe des Amplitudenwertes RMS. RMS-Wert gilt nur für Sinus-, Rechteck- und Rampen-Signale.

Andere Wellenformen können nur mit Amplitudenwerten des Peak-Peak angezeigt werden.

4.2.5. Amplitudendämpfung

Der Generator wird beim Start oder Reset auf "Auto" gesetzt. Drücken Sie die Taste 【Atten】. Der Generator wählt dann die Dämpfung automatisch anhand des eingestellten Amplitudenwerts. Die Dämpfung wird bei Ausgangsamplituden von 2 Vss, 0,2 Vss und 0,02 Vss umgeschaltet. Es können nun unabhängig von der Amplitudengröße eine höhere Amplitudenauflösung sowie ein höherer Rauschabstand erzielt werden. Die Signalverzerrung ist geringer. Allerdings wird, wenn die Dämpfung umschaltet, am Ausgangssignal ein kurzzeitiger Impuls erkennbar sein, was in manchen Fällen nicht erlaubt ist. Dann können Sie eine feste Dämpfung für den Generator wählen. Drücken Sie die Taste 【Atten】, um den Dämpfungswert über die Zifferntasten einzugeben. Die Dämpfung beträgt 0 dB, 20 dB, 40 dB und 60 dB. Sie können die Dämpfung auch mit dem Einstellknopf einstellen. Die Dämpfung ändert sich pro Schritt um eine Einstellung. Wenn der feste Dämpfungsmodus gewählt wird, ändert sich der Dämpfungsschritt nicht zusammen mit der Signalamplitude, so dass das Ausgangssignal innerhalb des gesamten Amplitudenbereichs laufend angepasst wird. Ist allerdings die Signalamplitude bei einer Dämpfung von 0 dB klein, so erhöht sich die Verzerrung des Signals, und der Rauschabstand wird geringer.

4.2.6. Ausgangsimpedanz:

- * Der Amplitudeneinstellwert wird bei offenem Ausgang kalibriert. Die wirkliche Spannung der Ausgangsimpedanz ist der Amplituden-Einstellwert multipliziert mit dem Zuweisungsverhältnis aus Lastimpedanz und Ausgangsimpedanz. Die Ausgangsimpedanz beträgt ca. 50Ω. Ist die Lastimpedanz groß genug, geht das Zuweisungsverhältnis gegen 1. Der Spannungsabfall der Ausgangsimpedanz kann vernachlässigt werden. Die wirkliche Spannung ist nahe dem eingestellten Wert für die Amplitude. Wenn jedoch die Lastimpedanz kleiner ist, kann der Spannungsabfall der Ausgangsimpedanz nicht vernachlässigt werden. Es sollte darauf geachtet werden, dass die wirkliche Spannung nicht mit dem eingestellten Wert für die Amplitude zusammenfällt.
- Mit 50Ω Innenwiderstand, ein kurzzeitiger Kurzschluss des Ausgangs beschädigt den Generator nicht, jedoch sollte der Benutzer dies zu vermeiden. Ein Kurzschluss unter Hochspannung kann zu einer Beschädigung des Generators führen. Der Generator verfügt über eine Funktion des gegenüberliegenden Überspannungsschutzes, mit der der Generator automatisch den Ausgang schließt und einen Alarm mit Hilfe der Ausgangsanzeige auslöst, wenn achtlos eine hohe Spannung (weniger als 30V) an den Ausgang angeschlossen wurde. Geben Sie den Ausgang durch Drücken 【Output】-Taste wieder frei, sobald die Störung behoben ist.

4.2.7. Offset-Einstellungen:

In einigen Fällen ist ein gewisser Gleichspannungsbestandteil in dem auszugebenden Wechselspannungssignal gewünscht, damit ein Gleichspannungsoffset erzeugt wird.

Drücken Sie die 【Offset】-Taste (die Tastenbeleuchtung geht an), die Anzeige zeigt den aktuellen Offset-Wert. Geben Sie den Offset-Wert für das Ausgangssignal mit den numerischen Tasten oder Drehknopf ein.

Der vorgegebene Gleichspannungsoffset wird vom Ausgang erzeugt.

Das Verhältnis zwischen dem maximalen DC-Offset und des Amplitudenwertes entspricht der u.a. Formel. Sollte die Offset-Einstellung den errechneten Wert überschreitet, verändert der Generator diesen selbstständig, bis der Offset innerhalb der Grenzen des maximalen Offset-Wertes liegt.

【offset】≤10-Vpp÷2

Beachten Sie bitte, dass die Summe aus der Hälfte der Ausgangssignalamplitude und dem absoluten Offsetwert kleiner als 10 V sein sollte, damit ein Signalspitzenwert von weniger als ±10 V garantiert ist. Anderenfalls ergibt sich eine amplitudenbegrenzende Verzerrung. Wenn für die Dämpfung von Kanal A die Einstellung "Auto" verwendet wird, wird der Ausgangsoffset mit der Amplitudendämpfung gedämpft. Bei einer Amplituden-Effektivspannung größer als 2 V ist der wirkliche Ausgangsoffset gleich dem eingestellten Offsetwert. Bei einer Amplituden-Effektivspannung größer als 0,2 V aber kleiner als 2 V beträgt der wirkliche Ausgangsoffset ein Zehntel des eingestellten Offsetwerts. Bei einer Amplituden-Effektivspannung kleiner als 0,2V beträgt der wirkliche Ausgangsoffset ein Prozent des eingestellten Offsetwerts.

Die Einstellung des Gleichspannungsoffsets für das Ausgangssignal ist mit den Zifferntasten einfacher durchzuführen als mit dem Einstellknopf. Grundsätzlich steigt der Gleichspannungspegel bei Drehung nach rechts und sinkt bei Drehung nach links, unabhängig davon, ob der Gleichspannungsoffset positiv oder negativ ist. Beim Durchgang durch den Nullpunkt wechselt das Vorzeichen automatisch.

4.2.8. Gleichspannungsausgang:

* Wenn die Amplitudendämpfung auf 0 dB eingestellt ist, ist der Ausgangsoffsetwert gleich dem voreingestellten Offsetwert und ist von der Amplitude unabhängig. Wenn die Amplitude auf 0 V eingestellt ist, kann der Offset frei im Bereich von ±10 V eingestellt werden. Das Gerät arbeitet als Gleichspannungsquelle, und ein voreingestelltes Gleichspannungssignal kann ausgegeben werden.

4.2.9. Auswahl der Signalform für Kanal A:

Der Generator kann 16 Arten von Wellenformen ausgeben.

- * Drücken Sie die Tasten [Shift] [Sine], [Shift] [Square], [Shift] [Ramp], um diese drei Arten von Wellenformen direkt zu wählen.
- * Das entsprechende Symbol leuchtet nach Betätigung in der Anzeige auf.
- * Wählen Sie 16 weitere Arten von Wellenformen mit der [Shift] [Arb] –Taste, welche nach Betätigung aufleuchtet und ein entsprechendes Symbol in der Anzeige angibt.
- * Das Gerät zeigt die aktuelle Wellenform Sequenz-Nummer.
- * Der Benutzer kann nun Wellenformen durch Eingabe einer entsprechenden Sequenz-Nummer mit dem Tastenfeld bzw. dem Drehknopf wählen. Die Wellenform-Sequenz-Nummern sind wie nachfolgend aufgeführt:

Liste der Namen und IDs der 16 Signalformen:

ID	Signalform	ID	Signalform
00	Sinus	08	Sinus Grenzwert
01	Rechteck	09	Exponentialfunktion
02	Rampe	10	Logarithmusfunktion
03	Puls-positiv	11	Tangensfunktion
04	Puls-negativ	12	Sin (x)/x
05	Treppe	13	Halbrundfunktion
06	Rauschen	14	Cardiac
07	Halbsinus	15	Quake

4.2.10. Einstellen des Tastverhältnisses:

Wenn als aktuelle Wellenform "Rechteck" oder Rampe (einschließlich pos-Quadrat-und POS-Rampe) ausgewählt wurde, drücken Sie die [Duty] - Taste, um den aktuellen Wert des Tastverhältnisses anzuzeigen.

Zur Eingabe der Werte für das Tastverhältnis verwenden Sie die Zifferntasten oder Drehknopf, um das Rechteck – bzw. Rampensignal mit einem festen Tastverhältnis Wert am Ausgang auszugeben.

Die Definition des Tastverhältnisses eines Rechtecksignals, ist das Verhältnis der Zeit der positiven Flanke zur Periodendauer des gesamten Rechtecksignals.

Das übliche Tastverhältnis eines Rechtecksignals liegt bei 50%. Wellenformen mit einem anderen Tastverhältnis nennt man in der Regel "Puls". Die Definition des Tastverhältnisses eines Rampensignals ist das Verhältnis der Anstiegszeit einer Rampe zur Periodendauer der gesamten Rampe. Das Rampen-Tastverhältnis wird in der Regel Rampen-Symmetrie genannt. Rampensignale mit einer Symmetrie von 0% oder 100% werden Sägezahn-Signale genannt und Rampensignale mit einer Symmetrie von 50% werden Dreiecksignale genannt.

Wenn die Frequenz des Rechtecksignals vergleichsweise hoch ist, ist die Einstellung des Tastverhältnisses entsprechend der Flankenzeit begrenzt, wie in der folgenden Formel beschrieben:

duty cycle × Periode ≥ 2 × Edge time oder duty cycle × Period ≤ Period -(2 × Edge time)

4.3. Ausgangs-Phasen-Einstellung

- * Unter der kontinuierlichen Frequenzfunktion, drücken Sie die [Menü] -Taste, "Phase" leuchtet auf und die Anzeige gibt den Phasen-Wert an.
- * Um den Phase-Wert einzugeben, verwenden Sie die Zifferntasten oder den Drehknopf. Licht, gibt es nur zwei Werte, 0 und 1, der Output-Phase. Bei der Einstellung der Phase auf 0 ist der Phasenwert des "OUTPUT"-Anschlusses gleich dem des "SYNC"-Anschlusses.
- Bei der Einstellung der Phase auf 1 sind die Phasenwerte des "OUTPUT"-Anschlusses und des "SYNC"-Anschlusses gegensätzlich.

4.4. Frequenz-Sweep-Funktion

Im Frequenz-Sweep ändert sich die Ausgangsfrequenz von der Start-Frequenz bis an die End-Frequenz, entsprechend der eingestellten Sweep-Zeit. Der Benutzer kann innerhalb des gesamten Frequenzbereiches wobbeln (sweep). Während dieses Prozesses ist die Phasenausgang kontinuierlichen. Alle 16 möglichen Wellenformen können gewobbelt werden, außer natürlich den DC- oder Rauschen - Signalen. Das Wobbeln einer linearen Frequenz ist vergleichbar mit der Frequenzmodulation des Rampensignals, mit dem Unterschied, dass Frequenzwobbelung die Modulationswellenform nicht verwendet, jedoch am Ausgang einer Reihe von separaten Frequenzpunkten entsprechend dem Zeit-Intervall nutzt.

Drücken Sie die [Sweep] -Taste und der Generator aktiviert die Frequenzwobbellungsfunktion (Sweep).

4.4.1. Start - und End - Frequenz:

- * Drücken Sie die [Menü] -Taste und setzen Sie dann die Startfrequenz.
- * Drücken Sie die [Menü] -Taste und setzen Sie dann die Endfrequenz.
- * Wenn der Endfrequenzwert höher ist als der Startfrequenzwert, wird die niedrigere Frequenz von einem positiven Sweep zu einer höheren Frequenz. Die Frequenz wird Schritt für Schritt von der Startfrequenz bis zur Endfrequenz erhöht und dann wieder auf die Start-Frequenz gesetzt.
- * Wenn der Endfrequenzwert kleiner ist als der Startfrequenzwert, wird die höhere Frequenz von einem negativen Sweep zu einer niedrigeren Frequenz. Die Frequenz wird Schritt für Schritt von der Startfrequenz bis zur Endfrequenzverringert wieder auf die Startfrequenz gesetzt.

4.4.2. Sweep Zeit:

- * Drücken Sie die 【Menü】-Taste und setzen Sie dann den Sweep-Zeitwert.
- * Sweep-Zeit ist die Zeit des wobbeln von der Start-Frequenz bis zum Endpunkt der Endfrequenz.
- * Die Sweep-Zeit von jedem Frequenzpunkt ist die gleiche, je länger die Sweep-Zeit ist, desto mehr Frequenzpunkte werden gewobbelt. Liegen weniger Schritte zwischen den Frequenzpunkten, je feiner ist die Wobbelung.
- * Je kürzer der Sweep-Zeit ist, desto weniger Frequenzpunkte werden gewobbelt, welches mehr Frequenzpunktschritte bedeutet, somit ist die Wobbelung gröber.

4.4.3. Sweeping-Modus:

- * Drücken Sie die [Menü] -Taste um den Sweep-Modus einzustellen. Setzen Sie den Wert "0", das Zeichen "linear" wird angezeigt, und der Sweep-Modus ist "Linearität".
- * Setzen Sie den Wert als "1", das Zeichen "log" wird angezeigt und "Logarithmus" ist als Sweep-Modus ausgewählt.
- * Im Sweep-Modus "Linearität", sind die Frequenzpunktschritte festgelegt, jedoch haben feste Frequenzpunktschritte immer eine vergleichsweise schlechte Auswirkung auf den weiten Frequenzbereich.
- * In diesem Fall ist jedoch die Auflösung hoch, wenn der obere Frequenzbereich gewobbelt wird.
- * Die Frequenz ändert sich langsam und die Wobbelung ist fein.
- * Aber die Auflösung ist kleiner, wenn der untere Frequenzbereich gewobbelt wird.
- * Die Frequenz ändert sich sehr schnell und die Wobbelung ist grob.
- * Der lineare Sweep-Modus ist nur für Messungen innerhalb eines begrenzten Frequenzbereiches zu empfehlen.
- * Unter Sweep-Modus " Logarithmus" ist der Frequenzpunkteschritt nicht festgelegt, sondern ändert sich je nach logarithmischem Zusammenhang.
- * Beim Sweep des oberen Frequenzbereiches ist der Frequenzpunkteschritt vergleichsweise groß; wenn der untere Frequenzbereich gewobbelt wird, ist der Frequenzpunkteschritt vergleichsweise klein.
- * Die Frequenzänderung ist vergleichsweise durchschnittlich beim Sweep eines weiten Frequenzbereiches.
- * Der logarithmische Sweep-Modus ist für Messungen innerhalb eines weiten Frequenzbereiches anwendbar.

4.4.4. Trigger-Wobbelung:

Beim kontinuierlichen Sweep, verwendet der Generator kontinuierlich eine interne Trigger-Quelle, und die Sweep läuft kontinuierlich und wiederholend. Drücken Sie die [trig] -Taste, die Taste leuchtet auf. Der Sweep wird beendet, wenn der Endpunkt erreicht wird und bei jedem weiteren Drücken der [trig] -Taste, läuft der Sweep einmal und stoppt dann an der Start-Frequenz und wartet auf die nächste Auslösung der Trigger-Wobbelung.

Ein externer Trigger ist ebenfalls verfügbar.

Der TTL-Trigger-Signaleingang "Trig In" auf der Rückseite.

Der Sweep läuft einmal bei der steigenden Flanke von jedem Triggersignal. Natürlich muss die Dauer des Trigger-Signals größer eingestellt sein, als die der Ablaufzeit.

Im Trigger-Sweep-Modus drücken Sie die 【Sweep】-Taste, die "trig"-Tasten-Beleuchtung schaltet sich aus und der Generator kehrt wieder zu dem kontinuierliche Sweep-Modus zurück.

4.4.5. Sync Output:

- * Während des Frequenz-Sweep gibt der "Sync"-Ausgang an der Frontplatte ein Sync-Signal aus.
- * Ein Sync-Signal ist ein Puls mit einem TTL-Pegel, in dem die steigende Flanke des Pulses immer dem Startpunkt des Sweep entspricht und die abfallende Flanke immer dem Mittelpunkt des Sweep-Bereiches entspricht. Die Periodendauer des Pulses ist die gleiche, wie die Sweep-Zeit.

4.5. Burst Funktion

Es wird erläutert, dass im Burst-Modus das Wort "Burst" den Zyklus der jeder Wellenform bedeutet nicht nur der Impuls. Im Burst-Ausgang wird eine Wellenform mit einer spezifizierten Anzahl von Zyklen und einem bestimmten Abschnitt einer Startphase, oder gibt ein Signal mit einer spezifizierten Anzahl von Zyklen nur einzeln aus. Alle der 16 Wellenformen können als Burst-Signal verwendet werden, ausgenommen DC-oder Rauschsignal. Vor dem Starten der Burst-Funktion, sollte der Benutzer die Einstellungen der Wellenform, Frequenz und Amplitude des Bursts unter der Funktion "Frequenz" vornehmen.

Drücken Sie die [Burst] -Taste (Taste leuchte auf), um die Burst-Funktion zu starten.

4.5.1. Wiederholende Periode:

Drücken Sie die [Menü] -Taste, das "Periode"-Zeichen erscheint im Display und legen Sie dann den Wiederholungszeitraum fest.

Der Zeitabschnitt stellt die Zeit vom Beginn eines Impulses bis zum Beginn des nächsten Impulses dar, welcher lang genug sein und die Impulszahlen der Einstellung enthalten muss, wie die folgende Formel zeigt:

Wiederholende Periode > Impulszähler ÷ Pulsfrequenz

Wenn der wiederholte Zeitabschnitt zu kurz ist, werden die Einstellungen automatisch an die zulässigen Mindestwerte angepasst.

4.5.2. Burst Zähler:

Drücken Sie die [Menü] -Taste, das "NCYC"-Zeichen erscheint im Display und legen Sie dann die Burst-Anzahl fest.

Die Burst-Anzahl stellt die Anzahl der Zyklen der Impulsfolgen in einer wiederholten Periode dar, die klein genug sein muss und in einer wiederholten Periode enthalten sein müssen, wie die folgende Formel dargestellt:

Impulszahl <(Wiederholende Periode × Pulsfrequenz)

Ist die Impulszähler-Einstellung zu groß, werden die Einstellungen automatisch an die zulässigen Maximalwerte angepasst.

4.5.3. Start-Phase:

Drücken Sie die [Menü] -Taste, das "Phase"-Zeichen erscheint im Display und legen Sie dann die Anfangs-und Endphasenwerte fest.

Der Anfang und das Ende einer Impulskette liegen immer auf der gleichen Phase der Wellenform. Diese Phase wird "Startphase" genannt.

Die Einstellung der Startphase kann von 0° bis 360° betragen. Diese Einstellungen stehen bei Rechtecksignalen nicht zur Verfügung.

4.5.4. Trigger-Burst:

Im kontinuierlichen Burst-Modus verwendet der Generator eine kontinuierliche, interne Triggerquelle zum Ausgeben eines kontinuierlichen Burst-Signals, dessen wiederholende Zeitabschnitte und Burst-Anzahl vorab festgelegt wurden.

Drücken Sie die [trig] -Taste, "TRIG"-Taste leuchte auf. Das Burst-Signal stoppt am Ausgang und der Generator gibt jedes Mal einen Burst aus, wenn die Taste [trig] gedrückt wird.

Dann wird der Punkt der Startphase gehalten und auf den nächsten Trigger gewartet.

Sie können auch eine externe Trigger-Quelle verwenden, wie z.B. den TTL-Trigger-Signaleingang "Trig In"-Anschluss der Geräterückseite.

Der Generator gibt ein Burst-Signal an jeder ansteigenden Flanke des Trigger-Signals.

Dann wird der Punkt der Startphase gehalten und auf den nächsten Trigger gewartet. Natürlich sollte der Trigger-Signal-Zyklus auf die eingeschränkten Bedingungen der Burst-Periode entsprechen. Wird die Burst-Funktion ausgewählt, wird die Einstellung der Periodendauer ignoriert.

Drücken Sie die [Burst] -Taste erneut, um den kontinuierliche Burst-Modus wieder aufzunehmen. Die Beleuchtung der Taste "trig" wird ausgeschaltet.

4.5.5. Sync-Ausgang:

Unabhängig vom kontinuierlichen Burst-, Einzel-Burst-Modus oder angesteuerten Ausgabemodus, kann ein Sync-Signal über den "Sync"-Anschluss ausgegeben werden.

Es ist eine pulsierende Wellenform eines TTL-Pegels, dessen ansteigende Flanke entsprechend des Burst-Startpunktes, während die abfallende Flanke entsprechend dem Burst-Endpunktes ist.

Während des kontinuierlichen Bursts hält der Sync-Ausgang einen hohen Pegel und während der Stillstandszeit vom Burst hält der Sync-Ausgang einen niedrigen Pegel. Drücken Sie im kontinuierlichen Burst-Modus die Taste [Burst] erneut, um den Burst-Modus zu verlassen. Die Beleuchtung der Taste erlischt automatisch.

4.6. Frequenzmodulation (FM)

In der Frequenzmodulation wird die Trägerfrequenz durch die aktuelle Spannung des Modulationssignals verändert. Alle 16 Signale können als Trägerwellenform verwendet werden. Natürlich ist dies nicht mit DC oder Rauschen als Trägerwelle möglich.

Vor dem Starten der Frequenzmodulation, müssen die Wellenform, Frequenz und Amplitude der Trägerwelle in der kontinuierlichen Funktion einstellen.

Drücken Sie die [FM] -Taste, "FM"-Taste leuchtet auf und der Generator startet den Frequenzmodulations-Modus.

4.6.1. Modulationsfrequenz:

Drücken Sie die [Menü] -Taste, das "Mod_f "-Zeichen erscheint im Display und setzen Sie nun den Wert der Modulationsfrequenz. Im FM ist die Modulationsfrequenz in der Regel deutlich niedriger als Trägerfrequenz.

4.6.2. Frequenzabweichung:

Drücken Sie die [Menü] -Taste, das "Devia"-Zeichen erscheint im Display und setzen Sie nun den Wert der Frequenzabweichung. Die Frequenzabweichung repräsentiert den Frequenzunterschied der Trägerwelle, wenn die modulierende Wellenform mit voller Amplitude im FM-Prozess ist. Wenn die Amplitude des Modulationssignals am positiven Spitzenwert ist, ist die Ausgangsfrequenz gleich der Frequenz des Trägers und der Frequenzabweichung.

Ist die Amplitude des Modulationssignals am negativen Spitzewert, ist die Ausgangsfrequenz gleich der Trägerfrequenz minus Frequenzabweichung.

Daher muss die Frequenzabweichungseinstellung die folgenden zwei Bedingungen erfüllen:

(Trägerfrequenz-Abweichung) >0 (Trägerfrequenz + Frequenzabweichung) < maximale Bandbereite des Generators

4.6.3. Wellenform für die Modulation:

Drücken Sie die [Menü] -Taste, das "Shape"-Zeichen erscheint im Display und die aktuelle Sequenznummer der Modulationswellenform wird angezeigt.

Die Eingangsmodulationswellenform kann mit Nummerntasten bzw. mit dem Drehknopf ausgewählt werden. Sie können eine der 16 Arten von Wellenformen auswählen, welche in der Wellenformen Tabelle in Abschnitt 4.2.9 aufgeführt sind.

4.6.4. Sync-Ausgang:

Während der Frequenzmodulation, gibt der Generator vom "Sync"-Anschluss ein Sync-Signal ein Rechtecksignal mit TTL-Pegel und 50% Tastverhältnis aus, dessen Frequenz gleich der Wellenmodulatorfrequenz und die Phase ist bezogen auf die Phase der modulierten Welle. Im Modus der Frequenzmodulation drücken Sie die [FM] - Taste, die Tastaturbeleuchtung "FM" erlischt und der Generator verlässt die Frequenzmodulationsfunktion und kehrt zurück zur kontinuierlichen Funktion.

4.7 Amplitudenmodulation (AM)

In der Amplitudenmodulation wird die Amplitude des Trägersignals mit der aktuellen Spannung des Modulationssignals verändert. Alle 16 Signale der Trägerwellenform können verwendet werden.

Natürlich ist dies nicht mit DC oder Rauschen möglich.

Vor dem Starten der Amplitudenmodulation, müssen die Wellenform, Frequenz und Amplitude der Trägerwelle in der kontinuierlichen Funktion eingestellt werden.

Drücken Sie die 【AM】-Taste, "AM"-Taste leuchtet auf und der Generator startet den Amplitudenmodulations-Modus.

4.7.1. Modulationsfrequenz:

Drücken Sie die [Menü] -Taste, das "Mod_f"-Zeichen erscheint im Display und setzen Sie nun den Modulationsfrequenzwert. In der Amplitudenmodulation ist Modulationsfrequenz in der Regel deutlich niedriger als die Trägerfrequenz.

4.7.2. Modulationstiefe:

Drücken Sie die [Menü] -Taste, das "Depth"-Zeichen erscheint im Display und setzen Sie nun den Modulationstiefenwert. Die Modulationstiefe stellt das prozentuale Verhältnis der Trägeramplitude zur eingestellten Amplitude der Modulationswellenform bei voller Amplitude während des Amplitudenmodulationsprozesses dar.

Die maximale Amplitude der modulierten Wellenform wird "Amax" genannt, die minimale Amplitude "Amin", der einzustellende Amplitudenwert "A", der Modulationstiefe "M", dann ist das Verhältnis zwischen den vier Werten:

Amax = $(1 + M) \times A \div 2,2$ Amin = $(1-M) \times A \div 2,2$ Dann wird die Modulationstiefe M = $(Amax-Amin) \times 1,1 \div A$

Ist die Modulationstiefe 120%, Amax = A, Amin =-0.09A.

Beträgt die Modulationstiefe 100%, Amax = 0.909A, Amin = 0.

Beträgt die Modulationstiefe 50%, Amax = 0.682A, Amin = 0.227A.

Ist die Modulationstiefe 0%, Amax = 0.455A, Amin = 0.455A.

Das heißt, wenn die Modulationstiefe 0 beträgt, ist Trägeramplitude die Hälfte der eingestellten Amplitude.

4.7.3. Wellenform für die Modulation:

Drücken Sie die [Menü] -Taste, das "Shape"-Zeichen erscheint im Display und die aktuelle Sequenznummer der Modulationswellenform wird angezeigt, Eingang Nr. Die Eingangsmodulationswellenform kann mit Nummerntasten bzw. mit dem Drehknopf ausgewählt werden. Sie können eine der 16 Arten von Wellenformen auswählen, welche in der Wellenformen Tabelle in Abschnitt 4.2.9 aufgeführt sind.

4.7.4. Sync-Ausgang:

Während der Amplitudenmodulation, gibt der Generator vom "Sync"-Anschluss ein Sync-Signal als Rechtecksignal mit TTL-Pegel und 50% Tastverhältnis aus, dessen Frequenz gleich der Modulationsfrequenz und die Phase ist bezogen auf die Phase des modulierten Signals.

In Modus der Amplitudenmodulation drücken Sie 【AM】-Taste erneut, die Tastaturbeleuchtung erlischt für die Taste "AM" und der Generator verlässt die Amplitudenmodulationsfunktion und kehrt zurück zur kontinuierlichen Funktion.

4.8. Phasenmodulation (PM)

Bei der Phasenmodulation wird die Phase des Trägersignals durch die Momentanspannung der Modulationssignalform verändert.

Alle 16 Signale, außer DC und Rauschen, können als Trägerwellenform verwendet werden.

Vor dem Starten der Phasenmodulation, müssen die Wellenform, Frequenz und Amplitude der

Trägerwelle in der kontinuierlichen Funktion eingestellt werden.

Drücken Sie die [PM] -Taste, "PM"-Taste leuchtet auf und der Generator startet den

Phasenmodulations-Modus.

4.8.1. Modulationsfrequenz:

Drücken Sie die [Menü] -Taste, das "Mod_f"-Zeichen erscheint im Display und stellen Sie den Modulationsfrequenzwert ein.

In der Phasenmodulation ist die Modulationsfrequenz in der Regel deutlich niedriger als die Trägerfrequenz.

4.8.2. Phase-Abweichung:

Drücken Sie die [Menü] -Taste, das "Devia"-Zeichen erscheint im Display und setzen Sie den Phasenabweichungswert.

Die Phasenabweichung repräsentiert den Phasenunterschied, wenn die modulierende Trägerwellenform mit voller Amplitude in Phasenmodulationsprozess ist. Wenn die Amplitude des Modulationssignals an positiven Spitzenwert ist, erhöht sich die Phasenverschiebung der Phase des ausgegebenen Signals.

Ist die Amplitude am negativen Spitzenwert, nimmt die Phasenverschiebung der Phase des ausgegebenen Signals.

4.8.3. Wellenform für die Modulation:

Drücken Sie die [Menü] -Taste, das "Shape"-Zeichen erscheint im Display und die aktuelle Sequenznummer der Modulationswellenform wird angezeigt.

Die Eingangsmodulationswellenform kann mit Nummerntasten bzw. mit dem Drehknopf ausgewählt werden. Sie können eine der 16 Arten von Wellenformen auswählen, welche in der Wellenformen Tabelle in Abschnitt 4.2.9 aufgeführt sind.

4.8.4. Sync-Ausgang:

Während der Phasenmodulaton, gibt der Generator vom "Sync"-Anschluss ein Sync-Signal als Rechtecksignal mit TTL-Pegel und 50% Tastverhältnis aus, dessen Frequenz gleich der Modulationsfrequenz und die Phase ist bezogen auf die Phase des modulierten Signals. Im Modus der Phasenmodulation drücken Sie die [PM] -Taste erneut, die Tastaturbeleuchtung erlischt für die Taste "PM" und der Generator verlässt die Phasenmodulationsfunktion und kehrt zurück zur kontinuierlichen Funktion.

4.9. Pulsweitenmodulation (PWM)

Bei der Pulsweitenmodulation wird die Impulsbreite des Trägersignals durch die Momentanspannung des Modulationssignals verändert. Die Trägersignalform muss Impuls sein.

Vor dem Starten der Pulsweitenmodulation, müssen die Wellenform, Frequenz und Amplitude der Trägerwelle in der kontinuierlichen Funktion eingestellt werden.

Drücken Sie die [PWM] -Taste, die Taste "PWM" leuchtet auf und der Generator startet den Pulsweitenmodulations-Modus. Die Trägerwelle wird automatisch als Pulswelle eingestellt.

4.9.1. Modulationsfrequenz:

Drücken Sie die [Menü] -Taste, das "Mod_f"-Zeichen erscheint im Display und stellen Sie nun den Modulationsfrequenzwert ein. In der Pulsweitenmodulation ist der Wert der Modulationsfrequenz viel niedriger als der Wert der Trägerfrequenz.

4.9.2. Puls-Weiten-Abweichung:

Drücken Sie die [Menü] -Taste, das "Depth"-Zeichen erscheint im Display und stellen Sie nun den Pulsweiten-Abweichungswert ein.

Die Pulsweiten-Abweichung stellt die Änderung der Pulsweite des Trägerimpulses im Verhältnis zur Pulsweite des modulierten Signals mit voller Amplitude während der Pulsweitenmodulation und auch die Veränderung des Tastverhältnisses.

Das maximale Tastverhältnis des modulierten Trägersignals "Dmax" und der minimale "Dmin", in der Pulsweiten-Abweichung der folgenden Formel sollte sein:

Puls-Weiten-Abweichung = Dmax-Dmin

Wenn Dmax = 80%, Dmin = 20%, die Impulsbreite Abweichung beträgt 60%.

Wenn Dmax = 50%, Dmin = 50%, die Impulsbreite Abweichung sollte 0% betragen. Das heißt, wenn die Pulsweiten-Abweichung 0 ist, wäre die relative Einschaltdauer von Pulswellen 50%.

4.9.3. Wellenform für die Modulation:

Drücken Sie die [Menü] -Taste, das "Shape"-Zeichen erscheint im Display und die aktuelle Sequenznummer der Modulationswellenform wird angezeigt. Die Eingangsmodulationswellenform kann mit den Nummerntasten bzw. mit dem Drehknopf ausgewählt werden. Sie können eine der 16 Arten von Wellenformen auswählen, welche in der Wellenformen Tabelle in Abschnitt 4.2.9 aufgeführt sind.

4.9.4. Sync-Ausgang:

Während der Pulsweitenmodulation gibt der Generator vom "Sync"-Anschluss ein Sync-Signal als Rechtecksignal mit TTL-Pegel und 50% Tastverhältnis aus, dessen Frequenz gleich der Modulationsfrequenz und die Phase ist bezogen auf die Phase des modulierten Signals. Im Modus der Pulsweitenmodulation drücken Sie die [PWM] -Taste erneut, die Tastaturbeleuchtung erlischt für die Taste "PWM" und der Generator verlässt die Pulsweitenmodulationsfunktion und kehrt zurück zur kontinuierlichen Funktion.

4.10. Frequenzumtastung - Frequency Shift Keying (FSK)

Bei der Frequenzumtastung (FSK) wird die Trägerfrequenz einer periodischen sinusförmigen Schwingung zwischen einem Satz unterschiedlicher Frequenzen verändert, welche die einzelnen Sendesymbole darstellen. Alle 16 Ausgangssignaledes Generators, ausgenommen DC und Rauschen, können als Trägerwelle verwendet werden.

Vor dem Starten der Frequenzumtastung (FSK), müssen die Wellenform, Frequenz und Amplitude der Trägerwelle in der kontinuierlichen Funktion eingestellt werden. Drücken Sie die [FSK] -Taste, die Taste "FSK" leuchtet auf und der Generator startet den Frequenzumtastungs-Modus.

4.10.1. Hop-Rate:

Drücken Sie die [Menü] -Taste, das "Rate"-Zeichen erscheint im Display. Setzen Sie den Hop-Rate-Wert. Während der Frequenzumtastung (FSK) ist die Modulationswellenform als Rechtecksignal mit Tastverhältnis von 50% festgelegt und diese Rechteckfrequenz ist die Hop-Rate-Wellenform.

4.10.2. Hop-Frequenz:

Die Frequenzumtastung (FSK) ist vergleichbar mit der Frequenzmodulation (FM), dessen modulierende Wellenform quadratisch ist. Die "Hop-Frequenz" ist ähnlich dem "Frequenz-Offset". Der Unterschied zwischen diesen Merkmalen ist, dass der Frequenz-Offset des "FM" in einem festen Verhältnis mit der Trägerfrequenz (positive oder negativ) steht.

Die Hop-Frequenz kann innerhalb des gesamten Frequenzbereiches beliebig eingestellt werden und hat somit keine Relation zur Trägerfrequenz.

4.10.3. Externer Trigger:

Nachdem Starten der Frequenzumtastung (FSK) verwendet der Generator standardmäßig eine interne Triggerquelle und gibt ein FSK-Signal basierend auf eine festgelegte Hop-Frequenz aus.

Drücken Sie die [Trig] -Taste, die "Trig"-Taste leuchtet auf und der Generator startet den Frequenzumtastungs-Modus (FSK) mit externem Trigger.

Das Triggersignal mit TTL-Pegel wird an der Rückseite am "Trig In"-Eingang eingespeist.

Ist der Pegel des Trigger-Signals niedrig, so ist die Frequenz des Ausgangssignals die Trägerfrequenz. Ist der Pegel des Trigger-Signals hoch, so ist die Frequenz des Ausgangssignals die Hop-Frequenz.

Wird der externe Trigger verwendet, werden die Einstellungen der Hop-Frequenz ignoriert.

Zur Verwendung eines externen Triggers, drücken Sie die [FSK] -Taste.

Die Beleuchtung der "Trig"-Taste erlischt und der Generator schaltet automatisch auf den internen Trigger-Modus um.

4.10.4. Sync-Ausgang:

Im FSK, gibt der Generator ein Sync-Signal von der Frontplatte "Sync"-Anschluss, der ein Rechtecksignal mit TTL-Pegel und 50% Tastverhältnis aus, dessen Frequenz gleich der Hop-Rate ist. Wenn das Ausgangssignal eine Hop-Frequenz ist, gibt dist ein niedriger Gehalt Sync-Signal ausgegeben.

Wenn am Ausgang eine Hop Frequenz ausgegeben wird, wird ein Sync-Signal mit hohem Pegel ausgegeben.

Während der Modus Frequenzumtastung (FSK) mit internem Trigger verwendet wird, drücken Sie die [FSK] -Taste erneut, die Beleuchtung der "FSK"-Taste erlischt und der Generator verlässt die Funktion Frequenzumtastung (FSK) und kehrt zur kontinuierlichen Funktion zurück.

4.11. Ausgangs-Port:

Es gibt zwei Ausgänge an der Vorderseite des Gerätes. Um Beschädigungen am Gerät zu vermeiden, sollte der Benutzer keinerlei Spannungen an die beiden Ausgänge anlegen.

4.11.1. Signal-Ausgang "Output":

- * Alle Signale, die der Generator erzeugt, werden am Signal-Ausgang ausgegeben.
 Drücken Sie die 【Output 】-Taste, um den Signal-Ausgang zu öffnen oder zu schließen.
- Der Ausgang ist aktiviert, wenn die "Output"-Taste leuchtet und deaktiviert, wenn die Beleuchtung der "Output"-Taste ausgeschaltet ist.

Wenn versehentlich eine externe Hochspannung am Signal-Ausgang angelegt wurde, entsteht für das Gerät eine Gefährdung und das Gerät schaltet die interne Schutz-Funktion ein, der Ausgang wird automatisch deaktiviert (Tastenbeleuchtung aus). In diesem Fall müssen Sie die externe Last überprüfen.

Erst nach Beseitigung der Störung drücken Sie die [Output] -Taste um den Signal-Ausgang wieder zu aktivieren.

4.11.2. Sync-Ausgang "Sync":

Ausgabe einer Pulswellenform mit TTL-Pegel und CMOS, Hi > 4V, Low <0.3V.

- 1.) Im Frequenz-Funktionsmodus besteht der Sync-Ausgang aus einem Rechtecksignal mit TTL-Pegel, welches die gleiche Frequenz liefert, wie die Frequenz des "Output"-Anschlusses. Wenn die "Phase" auf 0 eingestellt ist, ist die Phase des Sync-Signals die gleiche, wie die Phase des "Output"-Anschluss. Wenn die Phase auf 1 eingestellt ist, ist die Phase des Sync-Signals das Gegenteil der Phase des "Output"-Anschluss.
- 2.) Im Frequenz-Sweep-Modus besteht das Sync-Signal aus einem Impuls-Signal mit TTL-Pegel, in dem die steigende Flanke des Pulses immer dem Startpunkt des Sweep entspricht und die abfallende Flanke immer dem Mittelpunkt des Sweep-Bereiches entspricht. Die Periodendauer des Pulses ist die gleiche, wie die Sweep-Zeit.
- 3.) In der FM, AM, PM, PWM-Modulation ist das Sync-Signal ein Rechtecksignal mit einem Tastverhältnis von 50%, dessen Frequenz gleich der Frequenz der modulierenden Wellenform und Phase bezieht sich auf die Phase der modulierenden Wellenform.
- 4.) In der FSK-Modulation ist das Sync-Signal ein Rechtecksignal mit einem Tastverhältnis von 50%, dessen Frequenz gleich der Hop-Frequenz ist. Wird die Trägerfrequenz ausgegeben, so besitzt das Sync-Signal eine niedrige Amplitude (Low-Level). Wird die Hop-Frequenz ausgegeben, so verfügt das Sync-Signal eine hohe Amplitude (High-Level).
- 5.) Bei Ausgabe eines Puls-Signals ist das Sync-Signal eine Impulswellenform, dessen steigende Flanke mit dem entsprechenden dem Start-Punkt beginnt und die fallende Flanke dem End-Punkt entspricht.
- 6.) Wird der manuelle oder externeTrigger in den Funktionen Frequenz-Sweep, Puls und FSK ausgewählt, so wird das Sync-Signal durch das Trigger-Signal bestimmt.

4.12. Eingangs-Port

An der Rückseite des Generators ist ein Trigger-Eingang [Trig In] vorhanden, der nur dann als Eingangskanal des externen Signals verwendet wird, jedoch nicht als Ausgangskanal.

Dieser Anschluss kann auch als Eingangskanal für Pulssignale, kompatibel mit TTL und CMOS, mit einer hohen Amplitude >4V (Hi-Level) und einer niedrigen Amplitude <0,3V (Low-Level) verwendet werden können.

4.13. Programmierbare Schnittstelle

Ein USB Device Interface- Anschluss (USB Device) ist auf der Rückseite des Gerätes angebracht, durch die das Gerät durch den Anschluss an einen Computer mit einem USB-Kabel programmierbar und ferngesteuert werden kann. Ausführlich wird die Funktion der Schnittstelle auf der dem Gerät beiliegenden CD beschrieben.

4.14. Parameterkalibrierung

- * Das Instrument wird kalibriert ausgeliefert, aber einige Spezifikationen können sich während einer längeren Nutzungszeit verändern. Um die Genauigkeit über einen langen Zeitraum zu gewährleisten, sollte das Gerät regelmäßig kalibriert werden.
- * Sie können die Genauigkeit des Geräts wiederherstellen durch den Tastaturbetrieb, um die wichtigsten Spezifikationen zu kalibrieren, ohne die Abdeckung des Gerätes zu entfernen.

4.14.1. Aktivieren der Kalibrierung:

- * Nach dem Einschalten ist die Kalibrierfunktion im deaktivierten Zustand und der Generator kann nicht ohne die Eingabe des Kalibrierung-Passwort kalibriert werden.
- * Um die Kalibrierfunktion zu aktivieren, wählen Sie Sinus-Signal [Shift] und drücken Sie dann die [Cal] -Taste.
- * Die Kalibrierfunktion zeigt nun 0 als Passwort an.
- * Geben Sie nun das vollständige Kalibrierfunktions-Passwort ein "1900" und drücken Sie die Taste ["N"] um die Kalibrierung zu aktivieren.

4.14.2. Parameter-Kalibrierung:

- * Drücken Sie die [Menü] -Taste, um den Kalibrierwert auf der linken Seite und die Kalibrier-Sequenz auf der rechten Seite anzeigen zu lassen. Die Kalibriereinstellungen erfolgen automatisch.
- * Kalibrierwert der ausgewählten Kalibrieroption einstellen, damit der Ausgabe den abgeglichenen Wert ausgibt. Fahren fort indem Sie die [Menu] -Taste drücken und die Kalibrier-Sequenznummer wird Schritt für Schritt erhöht. So können alle Kalibrier-Optionen nacheinander kalibriert werden. In der folgenden Liste werden alle Optionen aufgeführt.

Während des Kalibrierprozesses drücken Sie jeder Zeit die 【Shift】-Taste und dann die 【Cal】-Taste und drücken Sie dann die 【Menu】-Taste, um zur Kalibrier-Sequenznummer 00 zurück zukehren.

Kalibriertabelle

Sequenz- nummer	Referenzwert	Ausgangswert	Passen Sie den Kalibrierwert dem Ausgangswert innerhalb der Spezifikationen an
00	2047	0 VDC	Nullpunktkalibrierung: Ausgang DC Spannung: -20 ~ 20 mVDC
01	870	10 VDC	Offset-Kalibrierung: Ausgang DC Spannung: 9.88 ~ 10.12 VDC
02	873	7 Vrms	Amplitude-Kalibrierung: Ausgang AC Spannung: 6.928 ~ 7.072 Vrms
03	300	0,71 Vrms	Amplitude-Kalibrierung: Ausgang AC Spannung: 0,701 ~ 0,719 Vrms
04	500	1 MHz	Frequenz-Kalibrierung: Ausgangsfrequenz: 1 MHz ± 20 Hz
05 ~ **	100	5 Vpp	Flatness-Kalibrierung: Ausgangsamplitude 4,5 Vpp ~ 5,5 Vpp

^{**} P 4055: Sequenznummer ist 05 ~ 07 P 4060: Sequenznummer ist 05 ~ 24

4.14.3. Deaktivieren Kalibrierung

Nach Beendigung der Kalibrierung drücken Sie die 【Shift】 & 【Cal】-Tasten und die Anzeige gibt wieder 1900 aus.

- * Drücken Sie eine beliebige Zifferntaste und dann die [N] -Taste, um die Kalibrierungs-Parameter zu speichern und den Kalibrierprozess zu beenden.
- * Sollte während der Kalibrierung ein Fehler aufgetreten sein, können Sie jederzeit die 【Freq】-Taste drücken, um den Kalibrierprozess abzubrechen und ohne Speichern zu verlassen.
- * Nach dem Neustart ruft der Generator automatisch wieder die Kalibrierparameter auf, die während der letzten Kalibrierung gespeichert wurden.

4.15 Standardeinstellungen

4.15.1. Kontinuierliche-Funktion:

Kontinuierliche Funktion ist nach dem Einschalten standardmäßig aktiviert

Wellenform	Sinus
Frequenz	1 kHz
Amplitude	1Vpp
Dämpfung	Auto
Offset	0Vdc
Tastverhältnis	50%
Ausgang-Phase	0°
Ausgang	offen

4.15.2. Frequenz Wobbelung (Sweep):

Startfrequenz	100 Hz
End-Frequenz	1 kHz
Sweep-Zeit	3 s
Sweep-Modus	linear
Trigger-Modus	intern, kontinuierlich

4.15.3. Burst:

Wiederholte Periode	10ms
Burst-Anzahl	3
Start-Phase	0°
Trigger-Modus	intern, kontinuierlich

4.15.4. Modulation (FM, AM, PM, PWM):

Modulationsfrequenz	1 kHz
Modulation Frequenzabweichung	1 kHz
Modulation Amplituden-Tiefe	100 %
Phasenversatz	180°
Modulationstiefe	50 %
Modulationswellenform	Sinus

4.15.5. FSK:

_	7.0. · 0. · ·		
	Hop-Rate	1kHz	
	Hop-Frequenz	4kHz	
	Modulationswellenform	Rechteck (Square)	
	Trigger-Modus	internally, continuous	

4.16. Leistungsverstärker

Im Gerät befindet sich ein Leistungsverstärker, ein unabhängiges Modul des Generators zum Anschluss zwischen der Ausgangsbuchse des Generators und der Eingangsbuchse des Verbrauchers.

Um das Ausgangssignal zu verstärken, verbinden Sie das Eingangssignal mit dem "Verstärkereingang" (P-Input), um am "Ausgang" (P-Output) auf der Geräterückseite ein zweifach verstärktes Signal zu erhalten. Das Eingangssignal kann vom Ausgang Kanal A des Signalgenerators stammen. Es kann auch das Signal eines anderen Gerätes sein.

4.16.1 Eingangssignal

Sinus.

Bei der Verstärkung von anderen Wellenformen, wird die Verzerrung zu groß. Somit ist es nicht empfehlenswert andere Wellenformen als Sinus mit dem Leistungsverstärker zu verbinden.

4.16.2. Eingangsspannung:

Der Leistungsverstärker hat eine zweifache Verstärkung bei einer maximalen Ausgangsamplitude von 9 Veff. Die maximale Eingangsspannung sollte also 4,5 Veff nicht übersteigen. Das Ausgangssignal wird jenseits dieser Grenzen verzerrt.

4.16.3. Frequenzbereich:

Der Frequenzbereich des Leistungsverstärkers ist 100 Hz ~ 10 kHz.

4.16.4. Ausgangsleistung:

Die Leistung des Leistungsverstärkers errechnet sich wie folgt:

$$P = V^2 / R$$

- * P steht für die Ausgangsleistung (in W), V steht für den ausgegebenen virtuellen Amplitudenwert (in Veff), R steht für die Lastimpedanz (in Ω).
- * Die maximale Ausgangsamplitude ist 9 Veff, die minimale Lastimpedanz kann 2Ω betragen. Je höher die Temperatur der Arbeitsumgebung, desto höher ist die Frequenz des Ausgangssignals und die Verzerrung des Ausgangssignals. Typischerweise kann die maximale Ausgangsleistung 10W (8 Ω) erreichen.

4.16.5. Ausgangsschutzschaltung:

Der Leistungsverstärker ist gegen Kurzschluss und Überhitzung geschützt. Unter normalen Bedingungen ist er nicht zerstörbar; allerdings sollten längere Kurzschlüsse vermieden werden. Frequenz, Amplitude und Impedanz sollten, wenn möglich, innerhalb der Spezifikation liegen. Sind mehr als zwei Größen gleichzeitig außerhalb der Spezifikation, kann der Leistungsverstärker Schaden nehmen.

5. Spezifikationen

5.1. Kanal A

5.1.1. Wellenform:

Ausgangssignale	16 Standardsignale wie Sinus, Rechteck, Rampe,
	Exponent, Rauschen, etc.
Wellenformlänge	1024 Punkte
Messrate	100 MSa/s
Amplitudenauflösung	8 bits
harmonische Verzerrung (1Vss)	≤-40 dBc (<5 MHz)
	<-35 dBc (>5 MHz)
Gesamtverzerrung	≤0,5% (20 Hz ~ 20 kHz / 20 Vss)
Anstiegs-/Abfallzeit:	≤35 ns, over shoot ≤10 %
Tastverhältnis	0,1 % ~ 99,9 %
Symmetrie	0,0 % ~ 100,0 %

5.1.2. Frequenz:

Frequenzbereich	Cinus	P 4055 10 μHz ~ 3 MHz	
	Sinus	P 4060	10 μHz ~ 20 MHz
	Rechteck	P 4055	10 μHz ~ 3 MHz
	Recitleck	P 4060	10 μHz ~ 5 MHz
	Andere		10 μHz ~ 1 MHz
Auflösung	10 µHz	10 μHz	
Frequenzgenauigkeit	±50 ppm		

5.1.3. Amplitude:

Amplitude - Bereich	Ohne Last	<8 MHz	0 mVss ~ 20 Vss
		>8 MHz	0 mVss ~ 18 Vss
	50 Ω Last	<8 MHz	0 mVss ~ 10 Vss
		>8 MHz	0 mVss ~ 9 Vss
Auflösung	5 mVss	Bei einer Amplitude >2 Vss	
	0,5 mVss	Bei einer Amplitude <2 \	/ss
Amplitudengenauigkeit	±(1% + 2 mVeff)	frequency is 1 kHz/>5	mVeff
Amplitudenstabilität	±10%	Im Vergleich zu Sinus 1	MHz, 5 Vss
Ausgangswiderstand	50Ω typisch		

5.1.4. Offset (bei einer Dämpfung von 0 dB):

Offset Baraish	±10 V DC (ohne Last)
Offset Bereich	±5V DC (50 Ω Last)
Auflösung	5 mV DC
Offset-Genauigkeit	±(1% + 20 mV DC)

5.1.5. Sweep:

Wellenform	16 Arten von Signalen, wie Sinus, Rechteck, Rampe, etc.
Sweep-Bereich	der Start/End-Punkt kann beliebig eingestellt werden
Sweep-Rate	50ms ~ 500s
Sweep-Modus:	Linearität, Logarithmus
Triggerquelle	intern, extern, manuell

5.1.6. FM, AM, PM, PWM:

Trägerwellenform		16 Arten von Wellenformen inklusive Sinus, Rechteck, Rampe, etc. (PWM nur Impuls-Signal)
Wellenform für die Modulation		16 Arten von Wellenformen inklusive Sinus, Rechteck, Rampe, etc.
Modulationsfrequenz		40 mHz ~ 20 kHz
Frequenz-Offset	P 4055	10 μHz ~ 3 MHz
	P 4060	10 μHz ~ 20 MHz
Modulationsamplituden-Tiefe		0%~120%
Phasenverschiebung		0°~360°
Pulsweitenabweichung		0%~99%

5.1.7. FSK:

Trägerwellenform		16 Arten von Wellenformen inklusive Sinus, Rechteck,
		Rampe, etc.
Modulationswellenform		Rechteck
FSK-Rate		40mHz ~ 100kHz
Hop Fraguenz	P 4055	10 μHz ~ 3 MHz
Hop-Frequenz	P 4060	10 μHz ~ 20 MHz
Triggerquelle		Intern, Extern

5.1.8. Burst:

Wellenform	16 Arten von Wellenformen inklusive Sinus, Rechteck, Rampe
wiederholende Periode	1 μs ~ 20 s
Impulszähler	1 ~1000000
Start-Phase	0°~ 360°
Triggerquelle	Intern, Extern, Manuell

5.2. Sync-Ausgang

Wellenform	Rechteck, Flankenzeit	≤ 20 ns
Amplitude	Kompatibilität des TTL, CMOS	Low Level < 0.3 V
		High Level > 4 V

5.2.1. programmierbare Schnittstelle:

USB-Device Schnittstelle

Die Bedienungsanleitung hierfür ist auf der mitgelieferten Software-CD beigefügt.

5.3. Leistungsverstärker

Eingangssignal	0 Vrms to 4.5 Veff
Maximum Ausgangsspannung	9 Veff
Frequenz Bandbreite	100 Hz ~ 10 kHz
Spannungsverstärker	Doppelt
Maximum Ausgangsleistung	10 W (Last 8Ω)

5.4. Allgemeine Daten

or it / tilgollionio Baton		
	Spannung	100 ~ 240 V AC
Versorgungsspannung	Frequenz	45 ~ 65 Hz
	Leistungsaufnahme	< 20 VA
Harach was a singular as	Temperatur	0 ~ 40 °C
Umgebungsbedingungen	Luftfeuchtigkeit	<80% RH
Operation characteristics	Volltastaturbedienung, kontinuierlich mit Drehknopf einstellbar.	
Display mode	VFD Fluoreszenz Anzeige	
Abmessungen (BxHxT):	256 x 102 x 322 mm	
Gewicht	1,5 kg	

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung dieser Anleitung oder Teilen daraus, vorbehalten.

Reproduktionen jeder Art (Fotokopie, Mikrofilm oder ein anderes Verfahren) nur mit schriftlicher Genehmigung des Herausgebers gestattet.

Letzter Stand bei Drucklegung. Technische Änderungen des Gerätes, welche dem Fortschritt dienen, vorbehalten.

Hiermit bestätigen wir, dass alle Geräte, die in unseren Unterlagen genannten Spezifikationen erfüllen und werkseitig kalibriert geliefert werden. Eine Wiederholung der Kalibrierung nach Ablauf von einem Jahr wird empfohlen.

© *PeakTech*® 10/2015/Po.

1. Safety Precautions

This product complies with the requirements of the following European Community Directives: 2004/108/EC (Electromagnetic Compatibility) and 2006/95/EC (Low Voltage) as amended by 2004/22/EC (CE-marking).

To ensure safe operation of the equipment and eliminate the danger of serious injury due to short-circuits (arcing), the following safety precautions must be observed.

Damages resulting from failure to observe the safety precautions are exempt from any legal claims whatever.

- * Prior to connection of the equipment to the main outlet, check that the available mains voltage corresponds to the voltage setting of the equipment.
- * Connect the main plugs of the equipment only to a mains outlet with earth connection.
- * Do not exceed the maximum permissible input rating
- * Replace a defective fuse only with a fuse of the original rating. Never short-circuit fuse or fuse holding
- * Disconnect test leads or probe from the measuring circuit before switching models or functions.
- * Check the test leads and probes for faulty insulation or bare wires before connection to the equipment
- * Do not cover the ventilation slots of the cabinet to ensure that the air is able to circulate freely inside
- * Do not insert metal objects into the equipment by way of the ventilation slots
- * Do not place water-filled containers on the equipment (danger of short-circuit in case of know-over the container)
- * To avoid electrical shock, do not operate this product in wet or damp conditions. Conduct measuring works only in dry clothing and rubber shoes, i. e. on isolating mats
- * Never touch the tips of the test leads or probe
- * Comply with warning labels and other info on the equipment
- * Do not subject the equipment to direct sunlight or extreme temperatures, humidity or dampness
- * Do not subject the equipment to shocks or strong vibrations
- * Do not operate the equipment near strong magnetic fields (motors, transformers etc.)
- * Keep hot soldering irons or guns away from the equipment
- * Allow the equipment to stabilise at room temperature before taking up measurement important for exact measurements)
- * Periodically wipe the cabinet with a damp cloth and mid detergent. Do not use abrasives or solvents
- * The meter is for indoor use only.
- * Do not operate the meter before the cabinet has been closed and screwed safely as terminal can carry voltage.
- * Do not store the meter in a place of explosive, inflammable substances
- * Do not modify the equipment in any way
- * Opening the equipment and service- and repair work must only be performed by qualified service personnel
- * The instrument must be set up so that the power plug can removed from the socket easily.
- * -Measuring instruments don't belong to children hands-

Cleaning the cabinet:

Prior to cleaning the cabinet, withdraw the mains plug from the power outlet. Clean only with a damp, soft cloth and a commercially available mild household cleaner. Ensure that no water gets inside the equipment to prevent possible short and damage to the equipment.

2. Introduction of PeakTech® DDS Function Generators

With Direct Digital Synthesis Technique (DDS), *PeakTech*®DDS function generators are of the high performance indexes and numerous function characteristics which are necessary for the fast completion of measuring. The simple and clear front panel design and the display interface of number and indicator light are convenient for the users to operate and observe. Moreover, the extended optional functions enhance the system characteristics.

2.1. Prepare to use

2.1.1. To check the instrument and the accessories

Check whether the instrument and the accessories are complete and unbroken. If the package is badly damaged, please keep it until the instrument passes the performance testing.

2.1.2. Plug in and turn on the function generator

To guarantee the safe operation of the instrument, the following conditions should be achieved.

Voltage: AC 100-240V Temperature: $0 \sim 40^{\circ}$ C Frequency: 45 - 65 Hz Humidity: < 80%

Power: < 20VA

Plug the power connector into power socket outlet (AC $100 \sim 240 \text{ V}$) on the rear panel with safe earth-wire. Press the power switch on the front panel to switch on the power. Now the initialization of the generator begins, and then the default parameters are installed. The instrument will enter into the working state of single frequency of channel A and output sine waveform and display the frequency value and amplitude value of signal of channel A.

WARNING!

In order to ensure the security of the operator, triple- core socket outlet with safe earth-wire must be used.

2.2. Description of Front Panel and Rear Panel

- 1. Power switch
- Function keys
- 3. Waveform output
- 4. Sync output

- 5. Adjusting knob
- 6. Numeric keys
- 7. Display screen

2.2.2. Rear Panel:

- 8. USB device
- 9. Power Amplifier output
- 10. Power Amplifier input
- 11. Trigger input
- 12. AC power socket

2.3. Screen description

The display screen display two groups of digits, the group on the left with 6 digits shows frequency, period, attenuation, duty cycle and so on of the signals. The four digits on the right show amplitude offset and so on of the signals. There are also letter indicator lights on the display screen, to indicate present waveform signal, parameter options and also units of parameters.

2.4. Keyboard introduction

There are totally 28 keys on the front panel (see front panel picture), the functions of which respectively are:

- * [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] keys: Digits inputting key.
- * [.] key: Point inputting key.
- * [-] key: Minus inputting key, press this key to input minus under "offset" option. Press this key to enable or disable the key-tone circularly under other options.
- * [<] key: Move the cursor left; delete the input when inputting digits.</p>
- * 【>】 key: Move the cursor right.
- * [Freq] [Period] key: select frequency and period circularly, disable calibration process when calibrating.
- * [Ampl] [Atten] key: select amplitude and attenuation circularly.
- * [Offset] key: select offset.
- * [FM] [AM] [PM] [PWM] [FSK] [Sweep] [Burst] key: respectively select and exit FM, AM, PM, PWM, FSK, frequency sweeping and burst function.
- * [Trigg] key: select external trigger under frequency sweeping, FSK modulation and burst function.
- * [Output] key: open and close output signal circularly.
- * [Shift] key: select shift key, return back to keyboard function under remote control state.
- * [Sine] [Square] [Ramp] key: shift key, select respectively sinewave, square and ramp three common waveforms.
- * [Arb] key: shift key, select 16 kinds of waveforms with the waveforms sequence number.
- * [Duty] key: shift key, select duty cycle of square and symmetry of ramp.
- * [Cal] key: shift key, select parameter calibration function.
- * Unit key: The six keys with unit characters above them on the bottom of the instrument are not shift keys, but double-function keys, press these keys directly to execute the functions marked on themselves; when inputting digits with numeric keys, press these six keys to select the unit of the inputting and end the digits Inputting at the same time.
- * [Menu] key: key for menu, select different options circularly under different functions, see below list:

Options list of menu

Menu	Option
Tone	Phase and version of waveform
Frequency	Start frequency, end frequency, sweep time, sweep mode
sweeping	
Burst	Period, pulse count, start phase
FM	Modulation frequency, modulation frequency deviation, modulation
	waveform
AM	Modulation frequency, modulation amplitude depth, modulation
	waveform
PM	Modulation frequency, phase deviation, modulation waveform
PWM	Modulation frequency, modulation width depth, modulation waveform
FSK	Hop rate, hop frequency
Calibration	Calibration value: zero, offset, amplitude, frequency, amplitude
	flatness

2.5. Basic operation

The following description will explain the basic operation to meet the usual need of the users. Every user whoever has questions should read the corresponding contents in the chapter 3 of this instruction.

2.5.1 Single frequency function:

Which is default after booting and outputs single frequency signal.

Frequency setting:

Set the frequency value at 3.5 kHz [Freq] [3] [.] [5] [kHz].

Frequency adjusting:

Press [<] or [>] key to move the cursor, switch the adjusting knob left or right to decrease or increase the digit at the cursor, borrowing from or carry to the former digit continuously. Move the cursor left for coarse adjusting, and right for fine adjusting. The adjusting knob is applicable for adjusting digits of other options too, which will not be described any more.

Period setting:

Set the period as 2.5ms [Period] [2] [.] [5] [ms].

Amplitude setting:

Set the amplitude as 1.5Vpp [Ampl] [1] [.] [5] [Vpp].

Attenuation setting:

Set the attenuation as 0dB (Auto attenuation is default after booting) [Atten] [0] [dB] .

Offset setting:

Set DC offset as -1Vdc [Offset] [-] [1] [Vdc].

Common waveform selection:

Select square (sine is default after booting) [Shift] [Square].

Duty cycle setting:

Set the duty cycle of square as 20% [Shift] [[Duty] [2] [0] [%].

Other waveforms selection:

Select exponent waveform (sequence number 16, see sequence number list of 16 kinds of waveforms) [Shift] [[Arb] [1] [2] [N]

Below content shows the frequency sweeping function. In order to observe and measure, users may set the single frequency signal as sine, with amplitude of 1Vpp, and offset of 0V DC.

2.5.2 Frequency sweeping function:

Press [Sweep] key to output frequency sweeping signal.

Start frequency setting:

Set the start frequency at 5 kHz

Press [Menu] key to light the "Start" letter, press [5] [kHz].

End frequency setting:

Set the end frequency at 2 kHz

Press [Menu] key to light the "Stop" letter, press [2] [kHz].

Sweeping time setting:

Set the sweeping time at 5 s

Press [Menu] key to light the "Time" letter, press [5] [s].

Sweeping mode setting:

Set logarithm sweeping mode

Press [Menu] key, press [1] [N].

Trigger sweep setting:

Press [Trig] key, the sweeping will end when reaching to the end point, each time you press [Trig] key, the generator trigger sweep once. Press [Sweep] key again to resume to continuous sweep.

2.5.3. Burst function:

Set continuous frequency as 1kHz.

[Burst] key, output burst signal.

Repeated period setting:

Set repeated period as 5ms

[Menu] key, light "Period" character, press [5] [ms].

Pulse count setting:

Set pulse count as 1

[Menu] key, light "Ncyc" character, press [1] [N].

Start phase setting:

Set start phase as 180°.

[Menu] key, light "Phase" character, press [1] [8] [0] [°].

Trigger burst setting:

Press [Trig] key to stop the output of burst, then each time you press [Trig] key, the generator triggers a burst once. Press [Burst] key to resume continuous burst.

2.5.4. Frequency modulation function:

Set continuous frequency as 20kHz

[FM] key, output frequency modulation signal.

Modulation frequency setting: set modulation frequency as 10Hz Press [Menu] key to light "Mod_f" character, press [1] [0] [Hz].

Frequency deviation setting: set frequency deviation as 2kHz. Press [Menu] key to light "Devia" character, press [1] [kHz].

Modulation waveform setting: set modulation waveform as tri-angle Press [Menu] key to light "Shape" character, press [2] [N].

2.5.5. Amplitude modulation function:

[AM] key, output amplitude modulation signal.

Modulation frequency setting:

Set modulation frequency as 1kHz.

Press [Menu] key to light "Mod_f" character, press [1] [kHz].

Modulation amplitude depth setting:

Set modulation amplitude depth as 50%.

Press [Menu] key to light "Depth" character, then press [5] [0] [%].

Modulation waveform setting:

Set modulation waveform as sine.

Press [Menu] key to light "Shape" character, then press [0] [N].

2.5.6. Phase modulation function:

[PM] key, output phase modulation signal.

Modulation frequency setting: set modulation frequency as 10kHz.

Press [Menu] key to light "Mod f" character, then press [1] [0] [kHz].

Phase deviation setting: set phase deviation as 180°.

Press [Menu] key to light "Phase" character, then press [1] [8] [0] [°].

Modulation waveform setting: set modulation waveform as square.

Press [Menu] key to light "Shape" character, then press [1] [N].

2.5.7. Pulse width modulation function (PWM):

[PWM] key, output pulse width modulation signal.

Modulation frequency setting: set modulation frequency as 1Hz Press [Menu] key to light "Mod_f" character, then press [1] [Hz].

Pulse Width Deviation Setting: set pulse width deviation as 80%.

Press [Menu] key to light "Devia" character, then press [8] [0] [%].

Modulation waveform setting: set modulation waveform as sine.

Press [Menu] key to light "Shape" character, and then press [0] [N].

2.5.8. Frequency shift keying function (FSK):

Set the waveform as sine.

[FSK] key, output FSK signal.

Hop rate setting: set hop rate as 1kHz.

Press [Menu] key to light "Rate" character, then press [1] [kHz].

Hop frequency setting: set hop frequency as 2kHz.

Press [Menu] key to light "Hop" character, then press [2] [kHz].

3. Principle summarize

3.2. Working principle of DDS

- * To generate a voltage signal, the traditional analogue signal source adopts electronic components as oscillator in different ways. So both frequency accuracy and stability are not high enough. Besides, it is of the disadvantages of complicated technique, low resolution and inconvenient frequency setting and realization of computer control. Direct Digital Synthesize (DDS) technique is a new developing method of generating signals without any oscillator components, by which a series of data stream are generated using digital synthesizing method and then a pre-established analogue signal is generated from digital-analogue converter.
- * To generate a sine signal, for example, the function of y=sinx should be digitally quantized first, and then taking x as the address and y as the quantized data to store them into waveform memorizer. DDS uses phase adding technique to control the address of waveform memorizer. Add a phase increment on the present result of phase accumulator in each sampling clock period so as to change the output frequency value by change phase increment. According to the address from the phase accumulator, take the quantized data out from the wave memorizer and then convert it into analog voltage via digit-analog converter and operation amplifier. Since the waveform data are discontinuous sampling, stair sine waveform is output from DDS generator. The included high-level harmonic wave should be filtered by lowpass filter so to output a continuous sine wave. With high accurate reference voltage source in digit-analog converter, the output waveform is if high amplitude accuracy and stability.
- * Amplitude controller is a digital-analogue converter. Based on the amplitude value preset by user, it generates a corresponding analogue voltage and then multiplied by the output signal so to guarantee the amplitude of output signal to be the preset value. Offset controller is a digit-analog converter. Based on the offset value preset by user, it generates a corresponding analog voltage and then added with the output signal so to guarantee the offset of output signal to be the preset value.

3.3. Working principle of operation control

- Micro-controller controls the keyboard and display parts with interface circuit, when a key is pressed, the micro-controller recognizes the code of pressed key and executes corresponding command program of this key. The display circuit will work to display the instrument's working state and each parameter.
- * Switch the adjusting knob on the panel to change the digit on the cursor position, generating a trigger pulse every 15° rotation. The microprocessor could judge the rotation is left or right, if it is left, the number in the position of cursor will be subtracted by 1; if it is right, the number in the position of cursor will be added by 1 with continuous carry or borrow.

4. Handling instruction

4.1. General operation rule

4.1.1. Data input:

- * Select an option and input with the numeric keys the parameters of this option. The ten digit keys are of the function of inputting data from left to right one by one.

 Point is allowed in this data, but only the first one is valid when more than one points inputted. Under "offset" function, minus may be input. The digit keys input digit to the display area which do not work yet and could be deleted by pressing [<] . or select this option again, to input right one if it is a wrong
- * For any input by pressing the point key and the units, the generator will display this input in its own certain form. Such as, the generator displays 1.50000 kHz for both of input of 1.5 kHz and 1500 Hz.

4.1.2. Adjust with the adjusting Knob:

* In actual operations, users may use the adjusting knob to continuously adjust the signal. Press [<] or [>] to move the cursor left or right. Rotate the adjusting knob on the front panel right to add the digit on the cursor position by 1, it can do a carry to the former; rotate the adjusting knob left to subtract the digit on the cursor position by 1, it can borrow digit from the former. The digit adjusted by the adjusting knob works immediately and no need to press unit key. Move the cursor to the left to do rough adjusting by the knob, and to the right to do fine adjusting.

4.1.3. Selecting of inputting means:

* For known data, it is the most convenient to use numeric keys as it can be gotten easily without the generating of transient data no matter how big the change of the data is, which is so important. For the modifying of the entered data or for entering sequence data, it will be more convenient to use the knob. But for a series of equidistant data, using step key will be much more convenient. So user should select neatly according to the different applications.

4.2. Single frequency function

* After booting, the generator enters continuity function automatically, continuity function means the output signal is stable and continuous, of which the waveform, frequency, amplitude and phase will not change along with the time change.

4.2.1. Frequency setting:

* Press [Freq] key, the light of which will be on, to display present frequency value. Input frequency value with numeric keys or adjusting knob and the signals of this frequency will be output from the output port.

4.2.2. Period setting:

* Press [Freq] key, the light of "Period" will be on, to display present period value, input period value with numeric keys or adjusting knob. Frequency is synthesized in the internal of the generator, and converted to period when inputting and displaying. Limited by the frequency low resolution, for a comparatively long period, the generator could only output some frequency points with long period interval. Although the setting and displaying period value are accurate, the period of actual output signal may be comparatively different from them, which should be under consideration during operations.

4.2.3. Amplitude setting:

- * Press [Ampl] key, the light of which will be on, to display present amplitude value, input amplitude value with numeric keys or adjusting knob and the signals of this amplitude will be output from the output port.
- * The relation between maximum amplitude and offset value should be below formula, if the setting of amplitude exceeds specification, the generator will modify it until it is within the range of allowed maximum amplitude value.

Vpp≤2× (10-|offset|)

4.2.4. Format of amplitude value:

There are two forms for amplitude input and display: peak-peak form and RMS form.

- * Press [Vpp] or [mVpp] to input amplitude peak-peak value after inputting the digits.
- * Press [Vrms] or [mVrms] to input amplitude RMS value. RMS value is applicable only to sinewave, square wave and ramp wave, and other waveforms could only be shown by amplitude peak-peak value.

4.2.5. Amplitude attenuation setting

* Press [Ampl] key to light "Atten" and show the present attenuation value. Amplitude attenuation is auto as default of booting and there display "Auto" the generator will select automatically proper attenuation proportion according to the amplitude setting value, higher amplitude resolution, higher signal-noise ratio and less waveform distortion could be realized at the same time regardless of the amplitude magnitude of the signal. The output signal makes a momentary hop when the attenuation changes, which is not welcome in some operations, but the generator has fixed attenuation function to avoid this circumstance. Input attenuation values of 0dB, 20dB, 40dB and 60dB with the numeric keys, input 80dB to select auto attenuation. Users may use the adjusting knob as well, the attenuation changes to next one for every step of the rotation. When select fixed attenuation mode, the attenuation is fixed while the signal amplitude changes, and the output signal could changes continuously within the whole amplitude range. But higher distortion of the waveform and poor signal-noise ratio maybe appear when the attenuation is 0dB and the amplitude of the signal is small.

4.2.6. Output load:

- The setting value of amplitude is calibrated when the output end is open. The real voltage of output load is the setting value of amplitude multiplied by the assignment ratio of load impedance (including inductance and capacitance) and output impedance. The output resistance is about 50Ω . When the load impedance is high enough, the assignment ratio approaches to 1. The voltage loss of output impedance can be neglected. The real voltage approaches to the setting value of amplitude. But when the load impedance is lower, the voltage loss of output impedance cannot be neglected. It should be paid more attention that the real voltage does not accord with the setting value of amplitude.
- * With 50Ω output resistance, a momentary short-circuit of the output port makes no damage to the generator, but the users should try to avoid long time short-circuit under high voltage output as a danger of making damage to the generator. The generator has function of opposite voltage protection, with which the generator close output automatically, make an alarm with the output indicating light off when carelessly connect a high voltage (less than 30 V) to the output port. Open the output by pressing [Output] key only after the fault cleared.

4.2.7. Offset-setting:

In some cases, certain DC components should be contained in the AC signal to be output so as to produce DC offset.

Press [Offset] key, the light of which will be on and the present offset value will be displayed. Input offset value with the numeric keys or adjusting knob for the output signal to generate this DC offset to the output.

The relationship between the maximum DC offset and amplitude value should be below formula, if the setting of offset exceeds, the generator will modify it until it is within the limit of the maximum offset value.

【offset】≤10-Vpp÷2

It must be paid attention that the summation of the half of the output amplitude of signal and the absolute offset value should be less than 10V to guarantee the peak value of signal less than ±10V. Otherwise, the amplitude-limited distortion will be induced. Besides, when the attenuation of channel A is selected auto, the output offset will attenuate with the attenuation of amplitude. For the Vpp of amplitude greater than 2V, the real output offset is the set offset value. For the Vpp of amplitude less than 0.2V but less than 2V, the real output offset is tenth of the set offset value. For the Vpp of amplitude less than 0.2V, the real output offset is one percent of the set offset value.

It will be more convenient using the numeric keys than the knob when adjusting DC offset for output signal. In general case, whether DC offset is positive or negative, DC level will rise if turning right and fall if turning left. Sign of positive and negative will change automatically when passing through zero point.

4.2.8. DC Output voltage:

* If the amplitude attenuation is set to 0 dB, the output offset value is equal to the preset offset value and is independent of the amplitude.Set amplitude at 0V, the offset value could be set arbitrarily within ±10V range, the generator is now a DC voltage power supply and outputs specified DC voltage signal.

4.2.9. Selection of waveform of channel A:

* The generator could output 16 kinds of waveforms, press [Shift] [Sine], [Shift] [Square], [Shift] [Ramp] keys directly to select these three kinds of common waveforms, the corresponding waveform character will be displayed. Users may select all 16 kinds of waveforms with waveforms sequence numbers, [Shift] [Arb] key to show current waveforms sequence number, users may also input waveforms sequence numbers with the numeric keys or adjusting knob to select the corresponding waveforms defined by the sequence numbers. Except three common waveforms, the waveform character of the other waveforms are "Arb". The waveform sequence numbers of 16 kinds of waveforms are listed as below:

List of names and sequence numbers of 16 waveforms:

sequence number	waveform	sequence number	waveform
00	sine	08	limit sine
01	square	09	exponent
02	ramp	10	logarithm
03	pos-pulse	11	tangent
04	neg-pulse	12	sin (x)/x
05	stair	13	half round
06	noise	14	cardiac
07	half sine	15	quake

4.2.10. Setting of duty cycle:

When the present selection of waveform is square or ramp(including pos-square and pos-ramp), users may press [Duty] key to display present duty cycle value, input duty cycle value with numeric keys or adjusting knob, then the output will be square or ramp with a fixed duty cycle value. The definition of square duty cycle is the ratio of high level time of one square to the period of this square. The usual thought of square duty cycle is 50%, waveforms with other duty cycle are usually named pulse. The definition of ramp duty cycle is the ratio of rising time of one ramp to the period of this ramp. The ramp duty cycle is usually named ramp symmetry, ramps with symmetry of 0% or 100% are usually named sawtooth wave, and ramp with symmetry of 50% is named triangle wave.

When the frequency of square is comparatively high, the setting of duty cycle is limited by the edge time, in a relationship as below formula:

Duty cycle× Period≥2× Edge time or Duty cycle × Period ≤ Period — (2× Edge time)

4.3. Output phase setting

- * Under continuity function, press [Menu] to display output phase value, input phase value with numeric keys or adjusting knob, there are only two output phase values, 0 and 1.
- * When setting the phase as 0, the phase of signal from 《OUTPUT》 port and is the same with the one of signal from 《SYNC》 port, while when setting the phase as 1, the two are opposite.

4.4. Frequency sweeping function

In frequency sweep, the output frequency changes from the start frequency point to the end frequency point according to the setting sweep time. Users may sweep within the whole frequency range. During this process, the phase of output signals is continuous. All the 16 kinds of waveform could be swept, of course it makes no sense to sweep DC or noise. Linearity frequency sweeping is similar with ramp frequency modulation, with the difference of, frequency sweeping does not use modulation waveform, but continuously output a series of discrete frequency points according to certain time interval.

Press [Sweep] key and the generator enters frequency sweeping function.

4.4.1 Start and end frequency:

- * Press [Menu] key to light "Start" letter and then set start frequency point.
- * Press [Menu] key to light "Stop" letter and then set end frequency point.
- * If the end frequency value is more than the start frequency value, the sweep is positive from lower frequency to higher frequency, increasing step by step from the start frequency to the end frequency and then return to the start frequency.
- * If end frequency value is less than the start frequency value, the sweep is opposite from higher frequency to lower frequency, decreasing step by step from the start frequency to the end frequency and then return to the start frequency.

4.4.2 Sweeping time:

- * Press [Menu] -key to light "Time" letter and then set sweep time value.
- * Sweep time means the time of sweeping from the start frequency point to the end frequency point.
- * The sweep time of every frequency point is the same, so the longer the sweep time is, the more frequency points are swept, the less the step of the frequency point is, and the finer the sweep is.
- * The shorter of the sweep time is, the less frequency points are swept, the more the step of the frequency point is, and the rougher the sweep is.

4.4.3. Sweeping mode:

- * Press [Menu] -key to set sweeping mode. Set the value as 0, the character "linear" will be lighted, and the sweeping mode now is linearity. Set the value as 1, the character "log" will be lighted, to select logarithm mode.
- * Under linearity sweeping mode, the frequency step is fixed, but a fixed frequency step always does a bad effect when sweeping comparatively wide-range frequency.
- * In that case, the resolution is high when sweeping high end of frequency, the frequency changes slowly, and the sweeping is fine.
- * But the resolution is low when sweeping the low end of frequency, the frequency changes very quickly, the sweeping is rough.
- * So linearity sweeping is applicable only for sweeping with narrow frequency range.
- * Under logarithm sweeping mode, the frequency step value is not fixed but changes according to logarithm relation.
- * When sweeping the high end of frequency, the frequency step value is comparatively large; when sweeping the low end of frequency, the frequency step value is comparatively small.
- * The frequency change is comparatively average for sweeping with wide frequency range.
- * So logarithm sweeping is applicable for sweeping with wide frequency range.

4.4.4 Trigger sweeping:

When continuous sweep, the generator uses internal continuous trigger source, and the sweep runs continuously and repeatedly. Press [trig] key to light "trig" keyboard indicator, and the sweep will end when reaching to the end point, then each time you press [trig] key, the sweep runs once and then stops at the start frequency waiting for the next trigger.

External trigger is also available.

Input TTL trigger signal into the 《Trig In》 port on the rear panel.

The sweep runs once at the rising edge of each trigger signal. Of course, the period of trigger signal should be larger than the sweep time set.

In trigger sweep, press 【Sweep】 key, the "trig" keyboard indicator will be off and the generator resumes to continuous sweep mode.

4.4.5. Sync output:

- * During frequency sweeping, the "Sync" port on the front panel output a sync signal.
- * A sync signal is a pulse wave signal with TTL level, of which the rising edge of the pulse is match along with the start point of the sweeping, and the falling edge is match along with the middle point of the sweeping area, the period of the pulse wave is the same with sweeping time.

4.5. Burst function

It is explained that in burst mode, the word "burst" means the cycle of any waveform, not only the pulse. In burst output, instrument outputs a waveform with a specified number of cycles and at a specified period at a starting phase, or it outputs a waveform with a specified number of cycles only single once. All the 16 waveforms could be used as burst waveform, Of course, using DC or noise signal as burst signal is invalid. Before entering burst function, users should set the waveform, frequency and amplitude of the burst under the continuity function.

Press [Burst] key to light "Burst" keyboard indicator, the generator will enter into burst function.

4.5.1. Repeated Period:

Press [Menu] key to light "Period" character, and then set repeated period. Period represents time from the start of one pulse string to the start of the next one which must be long enough to contain the pulse numbers of setting, as the following formula shows:

Repeated period > Pulse count ÷ Pulse frequency

If the repeated period setting is too short, the instrument will modify it to the allowable minimum value.

4.5.2. Burst count:

Press [Menu] key to light "Ncyc" indicator, and then set the burst count. Burst count represents the number of cycles of pulse string in a repeated period, which must be small enough to be contained in one repeated period, as following formula shows:

Pulse count < (repeated period x pulse frequency)

If the pulse count setting is too big, the instrument will modify it to the allowable maximum value.

4.5.3. Start phase:

Press [Menu] key to light "Phase" character, and then set start and end phase value. The start and end of the pulse string are always on the same phase of the waveform, this phase is named as the start phase. The start phase setting range is 0° to 360°, it is not available to square wave.

4.5.4. Trigger burst:

In continuous burst mode, the generator uses internal continuous trigger source to output continuous burst based on the repeated period and burst count set in advance. Press [trig] key to light "trig" keyboard indicator, the burst output stop and the generator outputs a burst each time pressing [trig] key, then keep on the start phase point and wait for the next trigger. You can also use external trigger source, input TTL trigger signal from the instrument rear panel "Trig In" connector. The generator outputs a burst at each rising edge of the trigger signal, then keeps on the start phase point and waits for the next trigger. Of course, the trigger signal cycle should conform to the restricted conditions of burst period. When trigger burst, the setting of period is ignored. When trigger burst, press [Burst] key, the "trig" keyboard light will be off and the generator will resume to continuous burst mode.

4.5.5. Sync output:

Regardless of in the continuous burst, single burst mode or gated output mode, a sync signal can be outputted from the front panel "Sync" connector. It is a TTL level's pulse wave, its rising edge is corresponding to the burst starting point, while the falling edge is corresponding to the end of the burst. That is to say, during the continuation of burst, sync output keeps high level; during the stop period of burst, sync output keeps at low level.

In continuous burst, press 【Burst】 key again, the keyboard indicator will be off, the generator exit burst function and return back to continuity function.

4.6. Frequency modulation (FM)

In Frequency modulation, the frequency of the carrier is varied by the instantaneous voltage of modulating waveform, all 16 waveforms could be used as carrier waveform, Of course, using DC or noise as carrier wave is invalid. Before entering into frequency modulation, users should firstly set the waveform, frequency and amplitude of carrier wave under continuity function.

Press [FM] key, the keyboard indicator of "FM" will be on, and the generator will enter into frequency modulation function.

4.6.1 Modulation frequency:

Press [Menu] key to light "Mod_f" character, and then set modulation frequency value. In FM, modulation frequency is usually far lower than carrier frequency.

4.6.2 Frequency deviation:

Press [Menu] key to light "Devia" character, and then set frequency deviation value. Frequency deviation represents the frequency variation of carrier wave when the modulating waveform is with full amplitude during FM process. When the amplitude of the modulating waveform is at positive peak value, the output frequency is equal to the frequency of the carrier plus the frequency deviation, and when it is at the negative peak value, the output frequency is equal to the carrier frequency minus the frequency deviation. Therefore, the frequency deviation setting must conform to the following two conditions:

(Carrier frequency - frequency deviation) > 0 (Carrier frequency + frequency deviation) < The upper limit of the generator

4.6.3 Modulation waveform:

Press [Menu] key to light "Shape" character, the current modulation waveform sequence No. is shown, input modulation waveform No. with the numeric keys or adjusting knob to select modulation waveform, the modulation waveform may be any one of the 16 kinds of waveforms listed in the waveforms table in section 4.2.9.

4.6.4. Sync output:

In FM, the generator outputs a sync signal from the front panel "Sync" connector, which is a square wave with TTL level and 50% duty cycle, its frequency is equal to modulating wave frequency and its phase is referenced to the phase of the modulating wave.

In FM, press [FM] key, the keyboard light of "FM" will be off, the generator will exit frequency modulation function and return back to continuity function.

4.7. Amplitude modulation (AM)

In AM, the amplitude of the carrier is varied by the instantaneous voltage of the modulating waveform, all the 16 waveforms could be used as carrier waveform, of course, it is invalid to use DC or noise. Before entering into amplitude modulation, users should firstly set the waveform, frequency and amplitude of carrier wave under continuity function.

Press [AM] key, the keyboard light of "AM" will be on and the generator enters into amplitude modulation function.

4.7.1. Modulation frequency:

Press [Menu] key to light "Mod_f" character, and then set modulation frequency value. In AM, modulation frequency is usually far lower than carrier frequency.

4.7.2. Modulation depth:

Press [Menu] key to light "Depth" character, and then set modulation depth value. Modulation depth represents the percentage of variation of the carrier amplitude to the amplitude setting value while the modulating wave is with full amplitude during AM process. If the maximum amplitude of the modulated waveform is called as Amax, the minimum amplitude as Amin, the amplitude setting value as A, the modulation depth as M, then the relationship between the four values is:

Amax =
$$(1 + M) \times A \div 2.2$$
 Amin = $(1 - M) \times A \div 2.2$
Then the modulation depth is M = $(Amax - Amin) \times 1.1 \div A$

If modulation depth is 120%, Amax=A, Amin=-0.09A.

If modulation depth is 100%, Amax=0.909A, Amin=0.

If modulation depth is 50%, Amax=0.682A, Amin=0.227A.

If modulation depth is 0%, Amax=0.455A, Amin=0.455A.

That is to say, when modulation depth is 0, carrier amplitude is half of the amplitude setting.

4.7.3. Modulation waveform:

Press [Menu] key to light "Shape" character, the current modulation waveform sequence No. is shown, input modulation waveform No. with the numeric keys or adjusting knob to select modulation waveform, the modulation waveform may be any one of the 16 kinds of waveforms listed in the waveforms table in section 4.2.9.

4.7.4. Sync output:

In AM, the generator outputs a sync signal from the front panel "Sync" connector, which is square wave with TTL level and 50% duty cycle, its frequency is equal to modulating frequency and its phase is referenced to the phase of the modulating signal.

In AM, press [AM] key again, the "AM" light will be off, and the generator exits AM function and returns back to continuity function.

4.8 Phase modulation (PM)

In PM, the phase of the carrier is varied by the instantaneous voltage of the modulating waveform.

All the 16 waveforms could be used as carrier waveform.

Of course, it is invalid to use DC or noise.

Before entering into phase modulation, users should firstly set the waveform, frequency and amplitude of carrier wave under continuity function.

Press [PM] key to light "PM", the generator enters into PM function.

4.8.1. Modulation frequency:

Press [Menu] key to light "Mod f" character and then set modulation frequency value.

In PM, modulation frequency is usually far lower than carrier frequency.

4.8.2. Phase deviation:

Press [Menu] key to light "Devia" character, and then set phase deviation value.

Phase deviation represents the variation of carrier phase while the modulating waveform is with full amplitude in phase modulation. When the amplitude of the modulating waveform is at positive peak value, the phase of the outputted signal increase one phase shift, and when it is at the negative peak value, the phase of the outputted signal decrease one phase shift.

4.8.3. Modulation waveform:

Press [Menu] key to light "Shape" character, the current modulation waveform sequence No. is shown, input modulation waveform No. with the numeric keys or adjusting knob to select modulation waveform, the modulation waveform may be any one of the 16 kinds of waveforms listed in the waveforms table in section 4.2.9.

4.8.4. Sync output:

In PM, the generator outputs a sync signal from the front panel "Sync" connector, which is a square wave with TTL level and 50% duty cycle, its frequency is equal to modulating frequency and its phase is referenced to the phase of the modulating signal.

In PM, press [PM] key, the "PM" keyboard light will be off, the generator exits PM function and returns back to continuity function.

4.9. Pulse width modulation (PWM)

In PWM, the pulse width of the carrier varies with the instantaneous voltage of the modulating signal, and the waveform shape of the carrier must be pulse.

Before entering into PWM, users should firstly set the frequency and amplitude of carrier wave under continuity function.

Press [PWM] key, the keyboard indicator of "PWM" will be on and the generator enters into pulse width modulation function, the carrier wave is automatically set as pulse wave.

4.9.1. Modulation frequency:

Press [Menu] key to light "Mod_f" character and set modulation frequency value. In pulse width modulation, modulation frequency is far lower than carrier frequency.

4.9.2. Pulse width deviation:

Press [Menu] key to light "Depth" indicator and set pulse width deviation value. It represents the variation of carrier pulse width to the period of the pulse when the modulating waveform is with full amplitude during PWM process, also the variation of the duty cycle. Name the maximum duty cycle of modulated carrier as Dmax, and the minimum as Dmin, the pulse width deviation's formula should be:

Pulse width deviation = Dmax - Dmin

If Dmax = 80%, Dmin = 20%, the pulse width deviation is 60%.

If Dmax = 50%, Dmin = 50%, the pulse width deviation should be 0%.

That is to say, when pulse width deviation is 0, the duty cycle of pulse wave is 50%.

4.9.3. Modulation waveform:

Press [Menu] key to light "Shape" character, the current modulation waveform sequence No. is shown, input modulation waveform No. with the numeric keys or adjusting knob to select modulation waveform, the modulation waveform may be any one of the 16 kinds of waveforms listed in the waveforms table in section 4.2.9.

4.9.4. Sync output:

In PWM, the generator outputs a sync signal from the front panel "Sync" connector, which is a square wave with TTL level and 50% duty cycle, its frequency is equal to modulating frequency and its phase is referenced to the phase of the modulating signal.

In PWM, press [PWM] key, the "PWM" keyboard light will be off, and the generator exits PWM function and returns back to continuity function.

4.10. Frequency shift keying (FSK)

In FSK, the frequency of the carrier shifts between "carrier frequency" and "hop frequency" alternately, the rate at which the output shifts is determined by hop rate.

All 16 waveforms could be used as carrier wave.

Of course, using DC or noise signal as carrier wave is invalid.

Before entering into FSK, users should firstly set the waveform, frequency and amplitude of carrier wave under continuity function.

Press [FSK] key to light "FSK" keyboard indicator, the generator enter into FSK function.

4.10.1. Hop rate:

Press [Menu] key to light "Rate" character, then set hop rate value.

In FSK, the modulation waveform is fixed as a square wave with 50% duty cycle, the frequency of the square wave is the hop rate.

4.10.2. Hop frequency:

Frequency shift keying is similar with FM whose modulating waveform is square.

"Hop frequency" is similar with "Frequency offset", with the difference of, frequency offset is an offset value that the frequency of carrier wave positive or negative, whose setting range is relational with the frequency of carrier wave, hop frequency could be set arbitrarily within whole frequency range, it has no relationship with carrier frequency.

4.10.3. External trigger:

After entering into FSK function, the generator uses internal trigger source as default, outputs FSK signal based on hop rate set.

Press [trig] key, the "trig" keyboard indicator will be on and the generator enters into FSK mode with external trigger.

The trigger signal with TTL level is inputted from the rear panel "Trig In" connector.

If the level of the trigger signal is low, the frequency of the output signal is that of the carrier, if the level of the trigger signal is high, the frequency of the output signal is the hop frequency.

When using external trigger, the setting of hop rate is ignored. When using external trigger, press [FSK] key, the "trig" keyboard indicator will be off and the generator resume to internal trigger mode.

4.10.4 Sync output:

In FSK, the generator outputs a sync signal from the front panel "Sync" connector, which is a square wave with TTL level and 50% duty cycle, its frequency is equal to the hop rate. If the output signal is the carrier, a low level sync signal is outputted. If the output is hop frequency, a high level sync signal is outputted.

In internal trigger FSK, press [FSK] key again, the "FSK" keyboard indicator will be off, the generator exits FSK function and returns back to continuity function.

4.11. Output port:

There are two output ports on the front panel of the instrument, users must not input signal to the output port as a possibility of damaging the instrument.

4.11.1. Signal output port:

- * [Output]: the signals that the instrument generates are all output from the signal output port, press [Output] key to open or close the signal from the output port circularly.
- * The output port is open when the "Output" light is on, and close when the "Output" is off. If wrongly connect external high voltage to signal output port, instrument will suffer "inverse filling" danger, and then instrument will turn on the protection function, close immediately signal output port and make an alarm with the "Output" light off. In this case, you must check external load, only after eliminating the failure can press [output] key to open signal output port.

4.11.2. Sync output port 《Sync》:

Output pulse wave compatible with TTL and CMOS, high level >4 V, low level <0,3 V.

- 1.) Under single frequency function, sync signal is a square signal with TTL level, the frequency of sync signal is the same as the frequency of the signal from 《Output》 port, when the phase is set to be 0, the phase of sync signal is the same as the phase of the signal from the 《Output》 port. When the phase is set to be 1, the phase of sync signal is the opposite of the phase of the signal from the 【Output】 port.
- 2.) Under frequency sweep function, the sync signal is a pulse signal with TTL level, the rising edge of the pulse wave match along with the start point of the sweep, and the falling edge of the pulse wave match along with the middle point of sweep range, the period of pulse wave is the same as sweep time.
- 3.) In FM, AM, PM, PWM modulation, sync signal is a square wave with 50% duty cycle, whose frequency equals to frequency of modulating waveform and phase refers to the phase of modulating waveform.
- 4.) In FSK, sync signal is a square wave with 50% duty cycle, whose frequency equals to hop rate, when outputting carrier frequency, sync signal is low level; when outputting hop frequency, sync signal is high level.
- 5.) When pulse string output, sync signal is a pulse wave whose rising edge corresponds to start point, falling edge corresponds to stop point, and cycle equals to pulse string repeated cycle.
- 6.) In frequency sweep, pulse string and FSK, if select manual trigger or external trigger, frequency of sync signal will be determined by trigger signal.

4.12. Input port

There is a trigger input port [Trig In] on the rear panel of the generator, which could be used only as the input channel of external signal, but not output channel. This port could be also used as the input channel of pulse signal which is compatible with TTL and CMOS, the high level of which is higher than 4V, and low level is lower than 0.3V.

4.13. Programmable interface

There is an USB device interface socket 【USB Device】 on the rear panel of the instrument, through which the instrument could be program-controlled by connecting to computer with an USB cable. The use method of this interface is described in detail in the CD that attached with the instrument.

4.14. Parameter calibration

- * The instrument is calibrated before shipment, but some specifications may change a bit lot during long time of use. To ensure the accuracy, the instrument should be calibrated termly.
- * Users may regain the accuracy of the instrument by operating the keyboard to calibrate the main specifications without removing the cover of the instrument.

4.14.1. Enable calibration:

- * After booting, the calibration is in off state, and the generator could not be calibrated without inputting calibration password, this is a way to protect calibrated parameters which may be changed carelessly.
- * To enable calibration, select sine wave and then press [Shift] [Cal] -key, the calibration password displayed as 0, input calibration password 1900, press [N] -key to enable calibration.

4.14.2. Parameters calibration:

- * Press [Menu] -key to display calibration value on the left, and calibration sequence number on the right when setting calibration conditions automatically.
- * Adjust calibration value to calibrate present selected calibration option and make the output expected.
- * Continue to press [Menu] -key and the calibration sequence number will increase step by step, users could calibrate all those options respectively, which is shown in the following list.
- * During calibration process, press [Cal] -key at any time then press [Menu] -key to return the calibration sequence number to 00.

Parameter calibration table

Sequence No.	Default calibration value	Output nominal value	Adjust the calibration value till the output is within the error range
00	2047	0 VDC	Zero calibration: output DC voltage as: -20 ~ 20 mVDC
01	870	10 VDC	Offset calibration: output DC voltage as: 9.88 ~ 10.12 VDC
02	873	7 Vrms	Amplitude calibration: output AC voltage as: 6.928 ~ 7.072 Vrms
03	300	0,71 Vrms	Amplitude calibration: output AC voltage as: 0,701 ~ 0,719 Vrms
04	500	1 MHz	Frequency calibration: output frequency as: 1 MHz ± 20 Hz
05 ~ **	100	5 Vpp	Flatness calibration: output amplitude as. 4,5 Vpp ~ 5,5 Vpp

** P 4055: Sequence-no.: 05~07 P 4060: Sequence-no.: 05~24

4.14.3. Disable calibration:

- * After finishing the calibration, press [Shift] & [Cal] key and the display shows 1900, press any numeric keys and then [N] key to store the calibration parameters, disable calibration and exit the process.
- * During the calibration process, if wrong calibration occurred, press [Freq] key at any time to disable calibration and exit without storing calibration parameters.
- * After rebooting, the generator automatically recalls and uses the calibration parameters stored during last calibration.

4.15. Default setting

4.15.1. Continuity function:

Continuity function is default after booting.

Waveform	sinewave
Frequency	1 kHz
Amplitude	1 Vpp
Attenuation	auto
Offset	0Vdc
Duty cycle	50%
Output phase	0°
Output port	open

4.15.2. Frequency sweeping function:

Start frequency	100 Hz
End frequency	1 kHz
Sweep time	3 s
Sweep mode	linearity
Trigger mode	internally, continuous

4.15.3. Burst:

Repeated period	10ms
Burst count	3
Start phase	0°
Trigger mode	internally, continuous

4.15.4. Modulation (FM, AM, PM, PWM):

Modulation frequency	1 kHz
Modulation frequency deviation	1 kHz
Modulation amplitude depth	100 %
Phase offset	180°
Modulation width depth	50 %
Modulation waveform	Sine

4.15.5. FSK

<u> </u>	
Hop rate	1 kHz
Hop frequency	4 kHz
Modulation waveform	square
Trigger mode	internally, continuous

4.16. Power amplifier

The unit has an integrated power amplifier. It is an independent component of the generator, 'Amplifer In' in rear panel is input connector of power amplifier and 'Amlifer Out' is output connector of power amplifier. Connect the input signal to 'Amplifer In' connector, then amplified signal can be obtained at the connector of 'Amlifer Out'. The input signal can be the output signal of this instrument or other device's.

4.16.1 Input Waveform

Sine.

For other waveforms, the distortion will be too big. It is not recommend to input other waveforms than sine.

4.16.2. Input voltage:

The multiple of the power amplifier is double and the maximum output amplitude is 9 V_{RMS} . So the maximum input amplitude should be limited within 4,5 V_{RMS} . The output signal will be distorted beyond the limitation.

4.16.3. Frequency range:

The frequency range of the power amplifier is 100Hz ~ 10kHz.

4.16.4. Output power:

* The expression of power for the power amplifier is

$$P = V^2 / R$$

- * Where, P is the output power (the unit is W), V is the output virtual amplitude value (the unit is Vrms), R is the load resistance (the unit is Ω).
- * The maximum output amplitude can reach 9 V_{RMS} and the minimum load resistance can be 2Ω . Besides, the higher the temperature of the working environment, the larger is the frequency of the output signal and the greater distortion of the output signal. Usually, the maximum output power can reach 10 W (8 Ω).

4.16.5. Output protection:

The power amplifier is of short circuit protection function and over heat protection. Usually it is unable to be destroyed but long time output short circuit should be avoided. The frequency, amplitude and loading should be best within the limitation, two of which, especially, cannot get the limitation at the same time in case that the power amplifier is damaged.

5. Specifications

5.1. Output characteristics of channel A

5.1.1. Waveform characteristics:

Waveform types	16 types including sine, square, ramp, exponent, noise and so on.
Waveform length	1024 points
Sampling rate	100 MSa/s
Amplitude resolution	8 bits
Harmonic distortion (1Vpp)	≤-40 dBc (<5 MHz)
Trannonic distortion (TVPP)	≤-35 dBc (>5 MHz)
Total distortion of sine	≤0,5 % (20 Hz ~ 20 kHz / 20 Vpp)
Rising/Falling Edge time	≤35 ns, over shoot: ≤ 10 %
Duty cycle of Square	0,1 % ~ 99,9 %
Ramp symmetry	0,0 % ~ 100,0 %

5.1.2. Frequency characteristics:

orner requestoy enaracters	01.00.		
Frequency range	Sine	P 4055	10 μHz ~ 3 MHz
	Sille	P 4060	10 μHz ~ 20 MHz
	Square	P 4055	10 μHz ~ 3 MHz
		P 4060	10 μHz ~ 5 MHz
	Others		10 μHz ~ 1 MHz
Resolution	10 µHz	10 μHz	
Frequency accuracy	±50 ppm		

5.1.3. Amplitude characteristics:

	open circuit load	<8 MHz	0 mVpp ~ 20 Vpp
Amplitude range		>8 MHz	0 mVpp ~ 18 Vpp
	50 O load	<8 MHz	0 mVpp ~ 10 Vpp
	50 Ω load		0 mVpp ~ 9 Vpp
Resolution	5 mVpp	for amplitude >2 Vpp	
Resolution	0,5 mVpp	for amplitude <2 Vpp	
Amplitude accuracy	±(1% + 2 mVrms)	frequency is 1 kHz/>	5 mVrms
Amplitude flatness	±10%	Sine, compared to 1 M	ИНz, 5 Vpp
Output impedance	50Ω typical		

5.1.4. Offset characteristics:

Officet range	±10 V DC (open circuit load)	
Offset range	±5V DC (50 Ω load)	
Resolution	5 mV DC	
Offset accuracy	±(1% + 20 mV DC)	

5.1.5. Sweeping characteristics:

Waveform	16 kinds of waveforms including sine, square, ramp, etc.
Sweeping range	the start/end point can be set arbitrarily
Sweeping rate	50 ms ~ 500 s
Sweeping mode:	linearity, logarithm
Trigger source	internal continuous, external signal, manual trigger

5.1.6. FM, AM, PM, PWM:

Carrier waveform		16 kinds of waveforms including sine, square, ramp, etc. (PWM only for pulse)	
Modulation waveform		16 kinds of waveforms including sine, square, ramp, etc.	
Modulation frequency		40 mHz ~ 20 kHz	
Frequency offset	P 4055	10 μHz ~ 3 MHz	
	P 4060	10 μHz ~ 20 MHz	
Modulation amplitude depth		0%~120%	
Phase offset		0°~360°	
Pulse width deviation		0%~99%	

<u>5.1.7. FSK:</u>

Carrier waveform		16 kinds of waveforms including sine, square, ramp, etc.	
Modulation waveform		Square	
FSK rate		40 mHz ~100 kHz	
Hop frequency	P 4055	10 μHz ~ 3 MHz	
	P 4060	10 μHz ~ 20 MHz	
Trigger source		Internal continuous, external signal	

5.1.8. Burst:

Waveform	16 kinds of waveforms including sine, square, ramp	
Repeated period	1 μs ~ 20 s	
Pulse count	1 ~1000000	
Start phase	0°~ 360°	
Trigger source	Internal continuous, external signal, manual trigger	

5.2. Sync-Output characteristics

Waveform characteristics:	Square, edge time	≤ 20 ns
Amplitude characteristics:	Compatibility of TTL, CMOS	low level < 0.3 V
		high level > 4 V

5.2.1 Programmable interface:

USB device interface, of which the operation guide is on the CD attached with the generator.

5.3. Power amplifier

Input Signal	0 Vrms to 4.5 Vrms
Maximum output voltage	9 Vrms
Frequency bandwidth:	100 Hz ~ 10 kHz
Voltage Amplifier	Double
Maximum output power	10 W (load 8Ω)

5.4. General characteristics

Power conditions	Voltage	100 ~ 240 V AC
	Frequency	45 ~ 65 Hz
	Power	< 20 VA
Environment conditions	Temperature	0 ~ 40 °C
	Humidity	<80% RH
Operation characteristics	Fully keyboard operation, continuously adjust with adjusting knob.	
Display mode	VFD fluorescence display screen.	
Dimensions (WxHxD)	256 x 102 x 322 mm	
Weight	1,5 kg	

All rights, also for translation, reprinting and copy of this manual or parts are reserved.

Reproduction of all kinds (photocopy, microfilm or other) only by written permission of the publisher.

This manual considers the latest technical knowing. Technical alterations reserved.

We herewith confirm, that the units are calibrated by the factory according to the specifications as per the technical specifications.

We recommend to calibrate the unit again, after one year.

© **PeakTech**® 10/2015/Po.