

单管放大电路

实验内容二选一:

- 1. BJT共发射极放大电路
- 2. MOSFET 共源极放大电路

认识三极管(BJT)

实验用三极管管脚排布如下:

9011和 9014为NPN型, 9015为PNP型。

注意:此次实验用的是NPN型9014

用万用表测量三极管β值

三极管插入 位置

直接将被测三极管插入万用 表的插座中,注意晶体管的 类型。万用表的显示值即为 β 值。

测试条件为: I_b ≈10 μ A, V_{ce} ≈ 2.8V。可初步检查三极管的好坏。

本实验中所用的9014型三极管的 β 值一般在200~400之间

实验电路

(1) 直流工作点的调整

调节 R_W ,使 $I_{CQ} = 1.0$ mA,测量相应的 V_{CEQ} , V_{BEQ} 的值。 注意事项:

- 1、 I_{CQ} 的测量:不用将万用表串入电路的方法直接测量,而是用万用表电压档测量 R_{C} 或者发射极电阻两端的电压,间接计算出 I_{CQ} 。
- 2、测量直流工作点时,要断开输入信号 v_i,即不要将 v_i接入 电路。

(2) 无交流负反馈的条件下的电路特性

将旁路电容 C_E 接于1端,设置输入信号vi为峰峰值40mV,频率为1kHz的正弦信号,观察放大电路的输出波形,测量电压"增益"(负载电阻上的输出信号和输入信号的峰峰值之比)。

(3) 射极负反馈电阻对动态特性的影响

将旁路电容 C_E 接于2端,即电容 C_E 改为与 R_{E2} 并联,其他条件不变, 测量计算此时电路相应的电压增益 A_v ,输入电阻 R_{in} ,输出电阻 R_{out} 。

注意事项:

- 1. 特别留意使用的电解电容的极性
- 2. 实验中要将直流电源、信号源、示波器等电子仪器和实验电路共地
- 3. 测量输入电阻、电压增益时,输出端要接负载电阻 R_L

实验内容二选一:

- 1. BJT共发射极放大电路
- 2. MOSFET 共源极放大电路

认识NMOS FET

实验用NMOS管脚排布如下:

2N7000为增强型NMOS FET $i_d = \frac{1}{2} k_n (V_{gs} - V_{TH})^2$

$$i_d = \frac{1}{2} k_n (V_{gs} - V_{TH})^2$$

其中
$$V_{TH} = 1.33 \text{V}$$
, $k_n = 48 \text{mA/V}^2$

实验电路

(1) 直流工作点的调整

调节 R_W ,使 $I_{DQ} = 1.0$ mA,测量相应的 V_{DSQ} , V_{GSQ} 的值。 注意事项:

- 1、 I_{DQ} 的测量:不用将万用表串入电路的方法直接测量,而是用万用表电压档测量 R_D 或者源极电阻两端的电压,间接计算出 I_{DQ} 。
- 2、测量直流工作点时,要断开输入信号 v_i,即不要将 v_i接入 电路。

(2) 无交流负反馈的条件下的电路特性

将旁路电容 C_S 接于1端,设置输入信号vi为峰峰值100mV,频率为1kHz的正弦信号,观察放大电路的输出波形,测量电压"增益"(负载电阻上的输出信号和输入信号的峰峰值之比)。

(3) 源极负反馈电阻对动态特性的影响

将旁路电容 C_S 接于2端,即电容 C_S 改为与 R_{S2} 并联,其他条件不变, 测量计算此时电路相应的电压增益 A_v ,测量输入电阻 R_{in} ,输出电阻 R_{out} 。

注意事项:

- 1. 特别留意使用的电解电容的极性
- 2. 实验中要将直流电源、信号源、示波器等电子仪器和实验电路共地
- 3. 测量输入电阻、电压增益时,输出端要接负载电阻 R_{L}

后续课程安排:

项目	周次	实验内容
实验6	6-7	单管放大电路
实验7	8-10	与非门电路
实验8	10-12	波形产生电路
综合实验	13-15	万花尺综合实验

祝各位同学实验顺利!