Cvičení 5 – Komplexní analýza 2024/2025 Týden 5

Úloha 1. Rozviňte funkci f(z) do mocninné řady se středem v z_0 a určete parametry jejího kruhu konvergence.

(a)
$$f(z) = \frac{z-3}{1-2z}$$
, $z_0 = 3$

(b)
$$f(z) = \frac{1}{(z+6)^2}, z_0 = -4$$

(c)
$$f(z) = (z-2)^4 e^{3z}, z_0 = 2$$

(a)
$$f(z) = \frac{z-3}{1-2z}$$
, $z_0 = 3$
(b) $f(z) = \frac{1}{(z+6)^2}$, $z_0 = -4$
(c) $f(z) = (z-2)^4 e^{3z}$, $z_0 = 2$
(d) $f(z) = \frac{(z+1)^5}{z^2+z-2}$, $z_0 = -1$

Úloha 2.

(a) Laurentova řada

$$\sum_{n=-\infty}^{\infty} a_n (z+4)^n$$

má vnitřní poloměr konvergence r=3 a vnější R=9. Konverguje v bodě z=-6?

(b) Laurentova řada

$$\sum_{n=-\infty}^{\infty} a_n (z-i)^n$$

má vnitřní poloměr konvergence r=1 a vnější R=4. Konverguje v bodě z=2?

Úloha 3. Rozviňte funkci

$$f(z) = \frac{1}{(z+5)(z-3)^4(z^2+2z-15)^2}$$

do Laurentovy řady na maximálním prstencovým okolí bodu $z_0 = 3$ a určete jeho parametry.

Úloha 4. Klasifikujte typ izolované singularity funkce f(z) v bodě z, je-li

(a) $z = -2 \ a$

$$f(z) = -\frac{9}{(z+2)^5} + \frac{8}{(z+2)^3} - \frac{3}{(z+2)^2} + \sum_{n=-3}^{\infty} n^2 (z+2)^{3n+4}, \ z \in P(-2);$$

(b) $z = i \ a$

$$f(z) = \frac{2}{(z-i)^3} + \frac{1}{z-i} + \sum_{n=-5}^{\infty} (n+3)(z-i)^{2n+7}, \ z \in P(i).$$

Úloha 5. Určete koeficient $\alpha \in \mathbb{C}$ a exponent $k \in \mathbb{Z}$ tak, aby funkce

$$f(z) = \frac{\alpha}{(z-1)^k} + \frac{7}{3(z-1)^2} + \sum_{n=1}^{\infty} \frac{(z-1)^{n-3}}{3^n}, \ z \in P(1),$$

měla v bodě 1 jednoduchý pól.

Pro nudící se

Úloha 6. Rozviňte funkci $f(z)=rac{z^3-2z+1}{z+2}$ do mocninné řady se středem v 1 a určete parametry jejiho kruhu konvergence.

Úloha 7. Rozviňte funkci $f(z) = \frac{e^{2z}}{(z-1)^3}$ do Laurentovy řady na co největším prstencovým okolí bodu 1 a určete jeho parametry. Dále klasifikujte typ izolované singularity funkce v bodě 1.

Úloha 8. O funkci f(z) víme, že má v bodě i pól řádu 1. Dále o ní víme, že splňuje $(z-i)f(z)|_{z=i}=5i$ $a(z-i)f(z)|_{z=0}=-3$. Klasifikujte typ izolované singularity funkce $g(z)=f(z)+3+z^2-\frac{5i}{z-i}, z\in P(i),$ v bodě i.

Mocninné řady

Připomenutí.

• Mocninná řada je řada tvaru

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

 $kde \{a_n\}_{n=0}^{\infty}$ je daná číselná posloupnost (tzv. koeficienty mocninné řady), z je proměnná a z₀ je pevné dané číslo (tzv. střed mocninné řady).

- \star Pro každou mocninnou řadu existuje (právě jedno) $R \in [0,\infty]$ takové, že řada absolutně konverguje na otevřeném kruhu se středem v z₀ a poloměru R, a diverguje na množině $\{z \in \mathbb{C} : |z-z_0| > R\}$. Toto R se nazývá poloměr konvergence mocninné řady. Otevřený kruh se středem z_0 a poloměru R se nazývá kruh konvergence mocninné řady.
- $\star~R=\infty~znamenlpha,$ že kruh konvergence je celá komplexní rovina. Pokud je R=0,~tak je tento otevřený kruh vlastně prázdná množina. Případ R=0 nastat může, ale takové mocninné řady jsou pro nás nezajímavé, protože s nimi nejde nic moc dále dělat.
- * Mocninná řada NEobsahuje záporné mocniny $(z-z_0)$.
- Známé součty/rozvoje, které bychom měli bezpečně znát:
 - $\overline{\star \ (\underline{geometrick\'a\ \check{r}ad}a:)\ \sum_{n=0}^{\infty}z^n=\frac{1}{1-z}\ pro\ |z|<1};$
 - $\star \frac{(rozvoj \ exponenciály:)}{(rozvoj \ exponenciály:)} e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \ pro \ libovolné \ z \in \mathbb{C}.$
- Jednoduché parciální zlomky (tj. s lineárním polynomem ve jmenovateli) rozvíjíme pomocí známého součtu geometrické řady.
- Správný střed si vyrobíme přepsáním $z = (z z_0) + z_0$.
- Parciální zlomky odpovídající vyšší násobnosti kořene převedeme na jednoduché, které umím rozvinout, pomocí integrování. Následně derivujeme, abychom získali požadovaný rozvoj.

Laurentovy řady

Připomenutí.

• Laurentova řada je řada tvaru

$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n,$$

 $kde \{a_n\}_{n=\infty}^{\infty} je \ daná \ \check{c}$ íselná posloupnost (tzv. koeficienty Laurentovy řady), z je proměnná a z₀ je pevné dané číslo (tzv. střed Laurentovy řady).

- Narozdíl od mocninných řad Laurentova řada obsahuje i záporné mocniny $(z-z_0)$.
- Laurentovy řady konvergují na mezikružích.
 - $\star P(z_0; r; R)$, $kde\ z_0\ je\ st\check{r}ed$, $r\ je\ vnit\check{r}ni\ poloměr\ a\ R\ je\ vnějši\ poloměr$.
 - \star Speciálně $P(z_0;0;R)$ je prstencové okolí bodu z_0 , tj. otevřený kruh se středem v z_0 a poloměru R bez svého středu.

• Při rozvoji racionální funkce do Laurentovy řady na prstencovém okolí bodu $z_0 \in \mathbb{C}$ postupujeme stejně jako u mocninných řad.

Klasifikace izolovaných singularit (pomocí Laurentova rozvoje)

Připomenutí.

- Nechť $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ je Laurentův rozvoj funkce f na prstencovém okolí izolované $\sum_{n=-\infty}^{n=-\infty}$ singularity $z_0 \in \mathbb{C}$. Rozlišujeme tři typy izolovaných singularit.
 - (1) Pokud $a_n = 0$ pro každé n < 0, pak z_0 je odstranitelná singularita.

$$\star f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$$
 na prstencovém okolí z_0

- (2) Pokud $a_{-k} \neq 0$ pro nějaké $k \in \mathbb{N}$ a $a_n = 0$ pro každé n < -k, pak z_0 je **pól řádu** k.

 * $f(z) = \frac{a_{-k}}{(z-z_0)^k} + \cdots + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + \cdots$ na prstencovém okolí z_0 , kde
- (3) Pokud $a_n \neq 0$ pro nekonečně mnoho n < 0, pak z_0 je **podstatná singularita**.
- Máme-li k dispozici Laurentův rozvoj (na správném prstencovém okolí!), vyčteme typ izolované singularity z rozvoje.

Úloha 1: (a)
$$f(z) = \sum_{n=0}^{\infty} \frac{2^n}{(-5)^{n+1}} (z-3)^{n+1}$$
 pro $|z-3| < \frac{5}{2}$ (tj. $R = \frac{5}{2}$)

(b)
$$f(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n+1}} n(z+4)^{n-1} \text{ pro } |z+4| < 2 \text{ (tj. } R=2)$$

(c)
$$f(z) = e^6 \sum_{n=0}^{\infty} \frac{3^n (z-2)^{n+4}}{n!}$$
 pro každé $z \in \mathbb{C}$ (tj. $R = \infty$)

$$\begin{aligned} \mathbf{V} \hat{\mathbf{y}} \mathbf{s} \mathbf{ledky} \\ \hat{\mathbf{U}} \text{loha 1:} & \text{ (a) } f(z) = \sum_{n=0}^{\infty} \frac{2^n}{(-5)^{n+1}} (z-3)^{n+1} \text{ pro } |z-3| < \frac{5}{2} \text{ (tj. } R = \frac{5}{2}) \\ & \text{ (b) } f(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n+1}} n(z+4)^{n-1} \text{ pro } |z+4| < 2 \text{ (tj. } R = 2) \\ & \text{ (c) } f(z) = e^6 \sum_{n=0}^{\infty} \frac{3^n (z-2)^{n+4}}{n!} \text{ pro každ\'e } z \in \mathbb{C} \text{ (tj. } R = \infty) \\ & \text{ (d) } f(z) = -\frac{1}{3} \sum_{n=0}^{\infty} (-1)^n (z+1)^{n+5} - \frac{1}{3} \sum_{n=0}^{\infty} \frac{(z+1)^{n+5}}{2^{n+1}} \text{ pro } |z+1| < 1 \text{ (tj. } R = 1) \end{aligned}$$

Úloha 2: (a) Ne.

(b) Ano.

Úloha 3:
$$f(z) = \frac{1}{2} \sum_{n=2}^{\infty} \frac{(-1)^n}{8^{n+1}} n(n-1) (z-3)^{n-8}$$
 pro $0 < |z-3| < 8$ (tj. $r = 0$ a $R = 8$)

Úloha 4: (a) Pól řádu 3.

(b) Odstranitelná singularita.

Úloha 5: $k=2, a=-\frac{8}{3}$

Úloha 6:
$$f(z) = (z-1)^2 - \sum_{n=1}^{\infty} \frac{(-1)^n}{3^n} (z-1)^n$$
 pro $|z-1| < 3$ (tj. $R = 3$)

Úloha 6:
$$f(z) = (z-1)^2 - \sum_{n=1}^{\infty} \frac{(-1)^n}{3^n} (z-1)^n$$
 pro $|z-1| < 3$ (tj. $R=3$)
Úloha 7: $f(z) = \sum_{n=-3}^{\infty} \frac{2^{n+3}e^2}{(n+3)!} (z-1)^n$ pro $0 < |z-1| < \infty$ (tj. $r=0$ a $R=\infty$); pól řádu 3

Úloha 8: Odstranitelná singularita.