

Controlador CAN de Servomotores

Autor:

Alejandro Virgillo

Director:

Gabriel Gavinowich (FIUBA)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar	. 5
2. Identificación y análisis de los interesados	. 6
3. Propósito del proyecto	. 7
4. Alcance del proyecto	. 7
5. Supuestos del proyecto	. 7
6. Requerimientos	. 7
7. Historias de usuarios (<i>Product backlog</i>)	. 8
8. Entregables principales del proyecto	. 8
9. Desglose del trabajo en tareas	. 9
10. Diagrama de Activity On Node	. 9
11. Diagrama de Gantt	. 10
12. Presupuesto detallado del proyecto	. 13
13. Gestión de riesgos	. 13
14. Gestión de la calidad	. 14
15. Procesos de cierre	. 15

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	21 de octubre de 2021
1	Se completa hasta el punto 5 inclusive	30 de octubre de 2021

Acta de constitución del proyecto

Buenos Aires, 21 de octubre de 2021

Por medio de la presente se acuerda con el Ing. Alejandro Virgillo que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Controlador CAN de Servomotores", consistirá esencialmente en la implementación de una interfaz que permita configurar y relevar información de servomotores conectados a través de una red CAN, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y U\$1000, con fecha de inicio 21 de octubre de 2021 y fecha de presentación pública 9 de octubre de 2022.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Alejandro Virgillo
A3 Engineering

Gabriel Gavinowich Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

El proyecto busca obtener un dispositivo que permita programar y supervisar servomotores conectados dentro de una red **CAN** (*Controller Area Network*), así como relevar información de estos. El resultado debe ser de carácter industrial, por lo que se prioriza su robustez para poder operar en planta y debe contar con una interfaz de usuario.

Un servomotor es un tipo de motor eléctrico al que se le pueden controlar distintas variables de funcionamiento. Entre ellas están la posición, la velocidad, la aceleración y el torque. La solución buscada se vincula con un proyecto previo de la organización en el que se desarrolló un sistema embebido capaz de servocontrolar motores del tipo paso a paso o steppers. Este sistema también cuenta con un puerto de comunicación CAN, que se agregó originalmente para poder programar y supervisar al controlador de una forma cómoda y robusta a través de una interfaz externa. El proyecto actual busca lograr las funcionalidades de dicha interfaz. Actualmente, varios de estos motores, junto con las placas controladoras mencionadas, se encuentran en funcionamiento en la planta de la empresa Cambre, realizando diversos tipos de actuaciones mecánicas en líneas de manufactura. El problema que este proyecto afronta es la dificultad para alterar los parametros de control de dichos motores y la imposibilidad de supervisar el estado de funcionamiento de estos. Se elige el protocolo de comunicación CAN debido a su robustez y amplia utilización en el marco industrial.

También dentro del marco de este proyecto se encuentra el desarrollo de la estructura de mensajes a emplear entre los dispositivos conectados a través de la red **CAN**. Esta debe permitir al controlador supervisar las distintas variables de interés de cada uno de los motores conectados, así como realizar cambios en las configuraciones.

Por otro lado, el dispositivo debe tener entradas y salidas discretas, eléctricamente aisladas y en otros niveles de tensión que permitan envíar señales a un **PLC** (*Programmable Logic Controller*). Estas señales se emplearán para indicar posibles errores al controlador, así como para recibir ciertas instrucciones específicas de este.

El equipo debe contar también con un display y una botonera, conformando el aspecto **HMI** (*Human Machine Interface*) de la solución. Esto permite a un usuario operarlo y revisar el correcto funcionamiento del sistema.

En la **Figura 1** se muestra, a modo de ejemplo, un diagrama en bloques del sistema. El proyecto abarca el diseño y fabricación de la parte que aparece denominada como controlador y su interacción con los demás bloques. También notar que en el bus **CAN** pueden haber conectados más de 1 servomotor. Cada uno de estos tendrá una de las placas controladoras descriptas previamente.

Figura 1. Diagrama en bloques del sistema

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante	Alejandro Virgillo	A3 Engineering	Líder de proyecto
Cliente	Alejandro Virgillo	A3 Engineering	Líder de proyecto
Impulsor	Sector de automatiza-	Cambre	-
	ción		
Responsable	Alejandro Virgillo	FIUBA	Alumno
Colaboradores	Andres Battisti	Cambre	Jefe de Automatización
Orientador	Gabriel Gavinowich	FIUBA	Director Trabajo final
Usuario final	Sector de automatiza-	Cambre	Técnicos
	ción		
Usuario final	Sector de armado	Cambre	Operarios

Por ejemplo:

- Orientador: Gabriel Gavinowich, es especialista en sistemas embebidos y trabaja en protocolo CAN, será de gran ayuda en materias de este aspecto.
- Colaborador: Andrés Battisti, es hábil en la coordinación de proyectos. Puede dar una mano con la implementación en planta.
- Usuario final: Sería de ayuda consultar a los operarios del sector de automatización para determinar temas de uso y de calidad que puedan considerar deseable. Pueden dar pautas para requerimientos que pueden ser de utilidad.

3. Propósito del proyecto

El propósito de este proyecto es desarrollar un sistema embebido que actúe de interfaz para configurar y supervisar servomotores conectados a una red \mathbf{CAN} .

4. Alcance del proyecto

El proyecto incluye:

- Una interfaz de usuario que permite configurar y supervisar los servomotores conectados.
- La estructura de mensajes que ha de transmitirse a través del bus CAN.
- La inclusión de entradas y salidas eléctricamente aisladas para comunicación con un PLC.
- La configuración de la red CAN.
- El desarrollo y fabricación de una plaqueta que abarque al sistema.

El proyecto no incluye:

- El acceso a los datos de funcionamiento de los servomotores de forma remota o el almacenamiento de estos en una memoria.
- El desarrollo de las placas controladoras de los servomotores.
- La implementación final en planta.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- El dinero disponible será suficiente para la adquisición de los materiales requeridos.
- Habrá stock de los componentes del sistema y no habrá problemas de importación.
- Las demoras para obtener los componentes no serán excesivas.
- La relación con la empresa Cambre se mantendrá durante el transcurso del proyecto.

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

1. Requerimientos funcionales

- 1.1. El sistema debe...
- 1.2. Tal componente debe...
- 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: como [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

Figura 2. Diagrama en $Activity\ on\ Node$

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete *pgfgantt*http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
COSTOS INDIRECTOS						
Descripción	Cantidad	Valor unitario	Valor total			
SUBTOTAL						
TOTAL						

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.