

Cover Page for Faxing Documents to your DocuSign Envelope

- 1. Write the number of pages on the line below.
- 2. Fax the document and cover page to the appropriate number below:

U.S. and Canada: +1 888 258 1788, +1 206 734 3204

London: +44 330 822 0103 Singapore: +65 3158 6507 Australia: +61 284 172 358

From: Tester

Envelope Subject: Testing fax receipt

Attachments to Fax:

Envelope ID: 51f8d70f-6d4a-4a23-a9be-296235edcd6e

Sender Account Name: Rowdy Labs LLC

Number of Pages: (Including cover page)

DocuSign Customer Support: https://support.docusign.com

Note:

Fax transmissions take approximately one minute per page faxed.

This page may only be used once. If you would like to fax again, you must print a new cover page.

AAAACLPAUUA

AAAACLPAUUA

Module-Level Constructs

The Constant Operators

Miscellaneous Constructs

Action Operators

Temporal Operators

User-Definable Operator Symbols

Precedence Ranges of Operators

Operators Defined in Standard Modules.

ASCII Representation of Typeset Symbols

Begins the module or submodule named M.

EXTENDS M_1, \ldots, M_n

Incorporates the declarations, definitions, assumptions, and theorems from the modules named M_1, \ldots, M_n into the current module.

CONSTANTS C_1, \ldots, C_n (1)

Declares the C_j to be constant parameters (rigid variables). Each C_j is either an identifier or has the form $C(_, ..., _)$, the latter form indicating that C is an operator with the indicated number of arguments.

VARIABLES x_1, \ldots, x_n (1)

Declares the x_i to be variables (parameters that are flexible variables).

ASSUME P

Asserts P as an assumption.

 $F(x_1, \ldots, x_n) \stackrel{\Delta}{=} exp$

Defines F to be the operator such that $F(e_1, \ldots, e_n)$ equals exp with each identifier x_k replaced by e_k . (For n = 0, it is written $F \triangleq exp$.)

 $f[x \in S] \stackrel{\Delta}{=} exp^{(2)}$

Defines f to be the function with domain S such that f[x] = exp for all x in S. (The symbol f may occur in exp, allowing a recursive definition.)

INSTANCE M WITH $p_1 \leftarrow e_1, \ldots, p_m \leftarrow e_m$

For each defined operator F of module M, this defines F to be the operator whose definition is obtained from the definition of F in M by replacing each declared constant or variable p_j of M with e_j . (If m=0, the WITH is omitted.)

⁽¹⁾ The terminal s in the keyword is optional.

⁽²⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

DocuSign Envelope ID: 51F8D70F-6D4A-4A23-A9BE-296235EDCD6E $N\left(x_1,\ldots,x_n\right)=\text{INSTANCE }M\text{ WITH }p_1\leftarrow e_1,\ldots,\ p_m\leftarrow e_m$

For each defined operator F of module M, this defines $N(d_1,\ldots,d_n)!F$ to be the operator whose definition is obtained from the definition of F by replacing each declared constant or variable p_i of M with e_i , and then replacing each identifier x_k with d_k . (If m = 0, the WITH is omitted.)

THEOREM P

Asserts that P can be proved from the definitions and assumptions of the current module.

LOCAL def

Makes the definition(s) of def (which may be a definition or an INSTANCE statement) local to the current module, thereby not obtained when extending or instantiating the module.

Ends the current module or submodule.

Logic

Sets

$$= \neq \in \notin \cup \cap \subseteq \setminus [\text{set difference}]$$

$$\{e_1, \dots, e_n\} \qquad [\text{Set consisting of elements } e_i]$$

$$\{x \in S : p\} \ ^{(2)} \qquad [\text{Set of elements } x \text{ in } S \text{ satisfying } p]$$

$$\{e : x \in S\} \ ^{(1)} \qquad [\text{Set of elements } e \text{ such that } x \text{ in } S]$$

$$\text{SUBSET } S \qquad [\text{Set of subsets of } S]$$

$$\text{UNION } S \qquad [\text{Union of all elements of } S]$$

Functions

$$f[e] \qquad \qquad [\text{Function application}] \\ \text{DOMAIN } f \qquad \qquad [\text{Domain of function } f] \\ [x \in S \mapsto e] \qquad \qquad [\text{Function } f \text{ such that } f[x] = e \text{ for } x \in S] \\ [S \to T] \qquad \qquad [\text{Set of functions } f \text{ with } f[x] \in T \text{ for } x \in S] \\ [f \text{ EXCEPT } ![e_1] = e_2] \qquad [\text{Function } \widehat{f} \text{ equal to } f \text{ except } \widehat{f}[e_1] = e_2] \\ \end{cases}$$

Records

$$e.h \qquad \qquad [\text{The h-field of record e}] \\ [h_1 \mapsto e_1, \dots, h_n \mapsto e_n] \qquad [\text{The record whose h_i field is e_i}] \\ [h_1 : S_1, \dots, h_n : S_n] \qquad [\text{Set of all records with h_i field in S_i}] \\ [r \text{ EXCEPT } !.h = e] \qquad [\text{Record \widehat{r} equal to r except $\widehat{r}.h = e$}]$$

Tuples

e[i]	[The i^{th} component of tuple e]
$\langle e_1, \ldots, e_n \rangle$	[The <i>n</i> -tuple whose i^{th} component is e_i]
$S_1 \times \ldots \times S_n$	[The set of all <i>n</i> -tuples with i^{th} component in S_i]

⁽¹⁾ $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

⁽²⁾ x may be an identifier or tuple of identifiers.

⁽³⁾ $![e_1]$ or !.h may be replaced by a comma separated list of items $!a_1\cdots a_n$, where each a_i is $[e_i]$ or $.h_i$.

Action Operators

 $\begin{array}{ll} e' & \qquad \qquad [\text{The value of } e \text{ in the final state of a step}] \\ [A]_e & \qquad \qquad [A \lor (e' = e)] \\ \langle A \rangle_e & \qquad \qquad [A \land (e' \neq e)] \\ \text{ENABLED } A & \qquad \qquad [\text{An } A \text{ step is possible}] \\ \text{UNCHANGED } e & \qquad [e' = e] \\ A \cdot B & \qquad \qquad [\text{Composition of actions}] \end{array}$

Temporal Operators

 $\begin{array}{ll} \Box F & [F \text{ is always true}] \\ \diamondsuit F & [F \text{ is eventually true}] \\ \text{WF}_e(A) & [\text{Weak fairness for action } A] \\ \text{SF}_e(A) & [\text{Strong fairness for action } A] \\ F \leadsto G & [F \text{ leads to } G] \\ \end{array}$

Infix Operators

+ (1)	_ (1)	* (1)	(2)	o ⁽³⁾	++
÷ (1)	% (1)	^ (1,4)	(1)		
\oplus $^{(5)}$	\ominus ⁽⁵⁾	\otimes	\oslash	\odot	**
< (1)	> (1)	< ⁽¹⁾	> ⁽¹⁾	П	//
\prec	\succ	\preceq	\succeq	\sqcup	^^
«	>>	<:	$:>^{(6)}$	&	&&
		□ ⁽⁵⁾	\supseteq		%%
\subset	\supset		\supseteq	*	@@(6
\vdash	\dashv	=	=	•	##
\sim	\simeq	\approx	\cong	\$	\$\$
\bigcirc	::=	\asymp	Ė	??	!!
\propto	}	\forall			

Postfix Operators (7)

(1) Defined by the Naturals, Integers, and Reals modules.

(2) Defined by the *Reals* module.

(3) Defined by the Sequences module.

(4) x^y is printed as x^y .

(5) Defined by the Bags module.

(6) Defined by the TLC module.

(7) e^+ is printed as e^+ , and similarly for * and *#.

The relative precedence of two operators is unspecified if their ranges overlap. Left-associative operators are indicated by (a).

Prefix Operators

\neg	4-4		4 - 15	UNION	8-8
ENABLED	4 - 15	\Diamond	4 - 15	DOMAIN	9 - 9
UNCHANGED	4 - 15	SUBSET	8-8	_	12 – 12

Infix Operators

mix Operators							
\Rightarrow	1-1	\leq	5-5	<:	7 - 7	\ominus	11–11 (a)
+ >	2-2	«	5-5	\	8-8	_	11-11 (a)
≡	2-2	\prec	5-5	\cap	8-8 (a)		11-11 (a)
\sim	2-2	\preceq	5-5	U	8-8 (a)	&	13-13 (a)
\wedge	3 - 3 (a)	\propto	5-5		9-9	&&	13-13 (a)
\vee	3-3 (a)	\sim	5-5		9-9	\odot	13-13 (a)
\neq	5-5	\simeq	5-5	!!	9-13	\oslash	13-13
\dashv	5-5		5-5	##	9-13 (a)	\otimes	13-13 (a)
::=	5-5		5-5	\$	9-13 (a)	*	13-13 (a)
:=	5-5		5-5	\$\$	9-13 (a)	**	13-13 (a)
<	5-5	\supseteq	5-5	??	9-13 (a)	/	13-13
=	5-5	\subset	5-5	П	9-13 (a)	//	13-13
\Rightarrow	5-5	\subseteq	5-5	\sqcup	9-13 (a)	\bigcirc	13-13 (a)
>	5-5	\succ	5-5	\forall	9-13 (a)	•	13-13 (a)
\approx	5-5	\succeq	5-5	}	9-14	÷	13-13
\simeq	5-5	\supset	5-5	\oplus	10-10 (a)	0	13-13 (a)
\cong	5-5	\supseteq	5-5	+	10-10 (a)	*	13-13 (a)
\doteq	5-5	\vdash	5-5	++	10-10 (a)	^	14 - 14
\geq	5-5	⊨	5-5	%	10 – 11	^^	14 - 14
\gg	5-5	.(1)	5 - 14 (a)	%%	10-11 (a)	.(2)	17-17(a)
\in	5-5	@@	6-6 (a)		10-11 (a)		
∉	5-5	:>	7-7		10-11 (a)		

Postfix Operators

⁽¹⁾ Action composition (\cdot).

⁽²⁾ Record field (period).

DocuSign Envelope ID: 51F8D70F-6D4A-4A23-A9BE-296235EDCD6E Operators Defined in Standard in Indules.

Modules Naturals, Integers, Reals

- (1) Only infix is defined in *Naturals*.
- (2) Defined only in *Reals* module.
- (3) Exponentiation.
- (4) Not defined in *Naturals* module.

Module Sequences

 $\begin{array}{cccc} \circ & & Head & SelectSeq & SubSeq \\ Append & Len & Seq & Tail \end{array}$

Module FiniteSets

IsFiniteSet Cardinality

Module Bags

Module RealTime

RTBound RTnow now (declared to be a variable)

Module TLC

\wedge	/\ or \land	V	\/ or \lor	⇒ =>
_	or \lnot or \neg	=	<=> or \equiv	<u>△</u> ==
\in	\in	∉	\notin	_ ≠ # or /=
<	<<)	>>	□ []
<	<	>	>	
<	\leq or =< or <=	\geq	\geq or >=	~ ~>
≤ ≪	\11	≫	\gg	+ ⊳ -+->
	\prec	\succ	\succ	→ ->
Y Y U U	\preceq		\succeq	÷ \div
\subseteq	\subseteq	\succeq	\supseteq	· \cdot
\subset	\subset	\supset	\supset	<pre></pre>
	\sqsubset	\Box	\sqsupset	• \bullet
	\sqsubseteq	\supseteq	\sqsupseteq	* \star
\vdash	I -	\dashv	-	○ \bigcirc
=	=	=	=	\sim \sim
\rightarrow	->	\leftarrow	<-	\simeq \simeq
\cap	\cap or \intersect	\cup	\cup or \union	\asymp \asymp
П	\sqcap	Ш	\sqcup	\approx \approx
\oplus	(+) or \oplus	\forall	\uplus	≅ \cong
\ominus	(-) or \ominus	×	\X or \times	≐ \doteq
\odot	(.) or \odot	?	\wr	x^y x^y $^{(2)}$
\otimes	(\X) or $\$ otimes	\propto	\propto	$x^{+} x^{-+} (2)$
\oslash	(/) or \oslash	"s"	"s" (1)	x^* x^* (2)
3	\E	\forall	\A	$x^{\#}$ x^# $^{\scriptscriptstyle{(2)}}$
3	\EE	A	\AA	,
$]_v$	$]_v$	\rangle_v	>>_v	
	, WF_ <i>v</i>	SF_{i}	SF_v	
	(3)			(3)
	(3)			(3)

⁽¹⁾ s is a sequence of characters.

⁽²⁾ x and y are any expressions.

⁽³⁾ a sequence of four or more – or = characters.