Tecnica delle Costruzioni Corso di laurea in ingegneria edile Prof. Ing. Andrea Prota-a.a. 2022/2023

Ivano D'Apice

N41002772

Indice

1	Assegno Solaio	2
2	Analisi dei carichi	3
	2.1 Carichi strutturali permanenti $G_1 \dots G_1 \dots G_n \dots$	4
	2.2 Carichi permanenti non strutturali G_2	4
	2.3 Condizioni di Carico	4
3	Sollecitazioni di progetto allo stato limite Ultimo	5
	3.1 Combinazione di carico n° 1	6

Capitolo 1

Assegno Solaio

Geometria

 $L_1 = 0,70 + 0,10 \cdot n$ $L_2 = 4,30 + 0,10 \cdot c$ $L_3 = 4,80 + 0,10 \cdot c - 0,10 \cdot n$

n=n.ro lettere del nome c=n.re lettere del cognome

Figura 1.1

Figura 1.2: Dati numerici in 1 metro di solaio.

Carichi Accidentali^I Matricola pari Sullo Sbalzo \longrightarrow $q_{k1} = 5,00kN/m^2$ In Campata \longrightarrow $q_{k2} = 3,50kN/m^2$

Capitolo 2

Analisi dei carichi

Consideriamo due tipi di carico: Q e G. I carichi di tipo Q si dicono **variabili**, mentre quelli di tipo G **permanenti**. Differenziamo poi i carichi G in **permanenti strutturali** G_1 e **permanenti non strutturali** G_2 .

Si ricorda che verrà fatta una verifica rispetto allo **S.L.U** (Stati Limite Ultimo), tenendo conto dello **S.L.E** (Stato Limite di Esercizio) per quanto riguarda il dimensionamento del solaio.

Dati:

$$L_1 = 0,70 + 0,10 \cdot n$$
 = $0,70 + 0,50$ = **1,20m**
 $L_2 = 4,30 + 0,10 \cdot c$ = $4,30 + 0,60$ = **4,90m**
 $L_3 = 4,80 + 0,10 \cdot c - 0,10 \cdot n$ = $4,80 + 0,10$ = **4,90m**

Utilizziamo la luce maggiore ($L_2=L_3$) per calcolare l'altezza del solaio grazie allo S.L.E. Avremo che $\mathbf{H}=\frac{\mathbf{L}}{20}$ e quindi $H=\frac{490cm}{20}=24,50cm\sim$ **25,00cm**.

Come da progetto [1.2] avremo $\mathbf{H}_{sbalzo} = H - 4,00cm = 25,00cm - 4,00cm = \mathbf{21,00cm}$. II

2.1 Carichi strutturali permanenti G₁

Campata	h (m)	L (m)	$\mathbf{G}_1 \; (\mathrm{kN/m^3})$	$\mathbf{G}_1 \; (\mathrm{kN/m^2})$
Soletta	0,05	1,00	25,00	1,25
Travetti	0,20	0,10.2	25,00	1,00
Laterizi ^{III}	0,20	$0,40\cdot 2$	6,00	0,96
Sbalzo	h (m)	L (m)	$\mathbf{G}_1 \; (\mathrm{kN/m^3})$	$\mathbf{G}_1 \; (\mathrm{kN/m^2})$
Soletta	0,05	1,00	25,00	1,25
Travetti	$0,\!16$	0,10.2	25,00	0,80
Laterizi	0,16	$0,\!40.2$	6,00	0,77
$\mathbf{G}_{1campata}$ =	=(1,25+1,	$00 + 0,96)kN_{s}$	$/m^2 = 3,21kN/m^2$	

.2 Carichi permanenti non strutturali G_2

 $\mathbf{G}_{1sbalzo} = (1, 25 + 0, 80 + 0, 77)kN/m^2 = 2,82kN/m^2$

	h (m)	L (m)	$G_2 (kN/m^3)$	$\mathbf{G}_2 \; (\mathrm{kN/m^2})$
Massetto	0,60	1,00	16,00	0,96
Pavimento	0,01	1,00	16,00	0,18
Intonaco	0,01	1,00	18,00	0,18

Totale in campata e sullo sbalzo:

$$G_2 = (0,96+0,18+0,18)kN/m^2 = 1,32kN/m^2$$

2.3 Condizioni di Carico

Dobbiamo usare i coefficienti parziali per le azioni nelle verifiche agli S.L.U per calcolare i carichi distribuiti da applicare al solaio.

$G_{1campata}$	$3,21kN/m^2\cdot\gamma_{G1}$	=	$4,17kN/m^2$
$G_{1sbalzo}$	$2,82kN/m^2\cdot\gamma_{G1}$	=	$3,67kN/m^2$
G_2	$1,32kN/m^2\cdot\gamma_{G2}$	=	$1,98kN/m^2$
Q_{k1}	$5,00kN/m^2 \cdot \gamma_{Q_{k1}}$ IV	=	$7,50kN/m^2$
Q_{k2}	$3,50kN/m^2\cdot\gamma_{Ok2}$	=	$5,25kN/m^2$

Capitolo 3

Sollecitazioni di progetto allo stato limite Ultimo

I carichi permanenti G_1, G_2 e variabili Q_k , devono essere combinati tenendo conto dei coefficienti di sicurezza parziali (γ_G e γ_{Qk}) in modo da ottenere le sollecitazioni più gravose allo S.L.U. Le condizioni di carico da considerare sono tre:

- 1. Entrambe le campate caricate con carichi permanenti e variabili, rispettivamente moltiplicati per i coefficienti parziali 1,30 e 1,50. Sullo sbalzo va considerato solo il carico permanente moltiplicato per il coefficiente parziale 1,30.
- 2. Carichi permanenti su tutta la trave moltiplicati per il coefficiente parziale 1,30. Carichi variabili sulla prima campata e sullo sbalzo moltiplicati per il coefficiente parziale 1,50.
- **3.** Carichi permanenti su tutta la trave moltiplicati per il coefficiente parziale 1,30. Carichi variabili solo sulla seconda campata, moltiplicati per il coefficiente parziale 1,50.

3.1 Combinazione di carico n° 1

Figura 3.1

Addizioniamo i carichi agenti sulle uguali campate.

Figura 3.2

Metodo degli spostamenti:

 \boxtimes Come primo passaggio, possiamo semplificare lo sbalzo come un momento applicato all'estremo del vincolo in B.

Figura 3.3

α) FASE A NODI BLOCCATI.

 \boxtimes Aggiungiamo un vincolo fittizio (morsetto) in mezzeria.

Figura 3.4

Figura 3.5: Tratto BC.

$$M_c^{sx}(M_b) = -2,04kNm$$

Figura 3.6: Tratto BC.

$$M_c^{sx}(q) = 28,96kNm$$

Figura 3.7: Tratto CD.

$$M_c^{dx}(q) = -28,96kNm$$

β) ATTIVAZIONE DEGLI SPOSTAMENTI NODALI.

Figura 3.8: Flessione dei tronchi indotta dagli spostamenti.

Figura 3.9: Tratto BC.

$$M_c^{sx}(\varphi_c) = -\frac{3EI}{4,90m}\varphi_c$$

Figura 3.10: Tratto CD.

$$M_c^{dx}(\varphi_c) = -\frac{3EI}{4.90m}\varphi_c$$

$\gamma)$ SCRITTURA DELL'EQUAZIONE DI EQUILIBRIO AL NODO.

$$M_{csx} + M_{cdx} - M_{est} = 0$$

$$\begin{cases}
M_c^{sx}(M_b) + M_c^{sx}(q) + M_c^{sx}(\varphi_c) + M_c^{dx}(q) + M_c^{dx}(\varphi_c) &= 0 \\
-2,04kNm + 28,96kNm - \frac{3EI}{4,90m}\varphi_c - 28,96kNm - \frac{3EI}{4,90m}\varphi_c &= 0
\end{cases} (3.1)$$

$$\varphi_c = -\frac{10,00kNm^2}{6EI}$$

$$M_c^{dx}=M_c^{sx}(\varphi_c)=-\frac{3EI}{4,90m}\varphi_c=-\frac{3EI}{4,90m}\cdot-\frac{10,00kNm^2}{6EI}=\frac{10,00kNm^2}{4,90m}\frac{3EI}{6EI}=1,02kNm$$

δ) REAZIONI VINCOLARI.

Figura 3.11: Tratto BC.

$$\Sigma Y = 0 \qquad R_a + R_{bsx} - qL = 0$$

$$\Sigma M_b = 0 \qquad \frac{qL^2}{2} - R_{bsx}L - 1,69kNm = 0$$

$$R_{bsx} 4,90m = 115,85kNm - 1,02kNm$$

$$R_{bsx} = \frac{115,85kNm - 1,02kNm}{4,90m} = 23,43kN$$

$$R_a = 47,29kN - 23,43kN = 23,86kN$$

Figura 3.12: Tratto CD.

$$\Sigma Y = 0 \qquad R_{bdx} + R_c - qL = 0$$

$$\Sigma M_c = 0 \qquad \frac{qL^2}{2} - R_cL = 0$$

$$R_c 4,90m = 115,86kNm$$

$$R_c = \frac{115,85kNm}{4,90m} = 23,64kN$$

$$R_{bdx} = 47,29kN - 23,64kN = 23,65kN$$

$$\begin{aligned} & \mathbf{R}_{a} = 23,99kN, \\ & \mathbf{R}_{b} = 47,64kN, \\ & \mathbf{R}_{c} = 23,64kN, \\ & \mathbf{M}_{c}^{dx} = \mathbf{M}_{c}^{sx}(\varphi_{c}) = 1,02kNm \end{aligned}$$

NOTE 11

Note

 $^{\rm I}$ I valori di carico accidentale in situazione normale sono $q=4.00kN/m^2$ e $q=2.00kN/m^2$ rispettivamente per lo sbalzo e campata. I valori usati in esercizio sono puramente didattici.

 $^{\rm II}$ Considerando che una pignatta non è alta meno di 12 cm, l'altezza minima del solaio è comunque di 17 cm.

 $^{\rm III}$ ll peso specifico dei blocchi di allegerimento in laterizio è stato ricavato dalle tabelle dei pesi specifici di normativa, considerando una percentuale di foratura pari al 67%(18·[1-0,67]) = 5,94 -> 6,00 KN/m³.

 $^{\rm IV}$ In realtà bisogna comunque ricordare che essendo Q_k un carico variabile, γ_{Q1} può essere sia pari a 1,5, sia a 0. In questo caso sono stati riportati tutti i casi sfavorevoli.

 ${}^{\rm V}$ Quando abbiamo un incastro-appoggio con una coppia esterna, la coppia opposta andrà dimezzata