ANALOG WALL FOLLOWING ROBOT

TEAM EVOKE

INTRODUCTION

We chose to build a simple wall-following robot using analog electronic components. We measure the distance from the robot to the side walls using sharp IR sensors. Then using a PID control circuit, we generate a signal so that the robot tracks and travels on the centerline between the walls.

COMPONENTS

10 TL084CN ICs -JFET 14 pin ICs with 4 OpAmps

- Gain is maximum at low frequencies. Gain decreases after 20Hz.
- Quad opamp IC is used since our circuit includes 28 opamps.
- Dual power supply IC- higher stability.
- High CMRR (86dB) IC- less effects from noise

2 Sharp IR sensors-

- measure distance from robot to wall
- only available distance measuring sensor which produces an analog signal.
- range- 2-60cm ideal measurable distance

COMPONENTS

2 N20 motors-

- more accurate than plastic motors- for plastic motors even though the same voltage is applied rpm values differ
- low power consumption

L298 motor controller-

To control both motors simultaneously

Wheels-

Two rubber wheels and a caster wheel is used

CIRCUITS -Instrumentation Amplifier

Instrumentation Amplifier

Reduce noise in sharp IR sensor outputs and amplify

CIRCUITS - PID

Control the error signal smoothly using feedback

CIRCUITS - Adder & Substractor

Adder and Substractor

Generate two different comparator voltages for the two motors

motor 1 = base speed + PID output motor 2 = base speed - PID output

CIRCUITS - PWM

Generate two PWM signals with varying duty cycles according to PID output

motor 1 duty cycle ∝ base speed + PID output motor 2 duty cycle ∝ base speed - PID output

CIRCUITS - Voltage Regulator

To have 3.3V and 5V for the required parts accordingly

CIRCUITS - Speed Selector

Manually Control the base speed.

SYSTEM MODEL

SCHEMATIC

PCB DESIGN

PCB DESIGN - 3D

ENCLOSURE DESIGN

SIMULATION RESULTS - PID CIRCUIT

SIMULATION RESULTS - PWM CIRCUIT

CONTRIBUTIONS

Sahan

Enclosure Designing

Dinujaya

PCB Designing

Ruchira

Circuit Designing

Lasitha

Soldering & Testing

THANKYOU