

Heinrich-Böll-Gymnasium Troisdorf Schuljahr 2022/2023

Die Mandelbrot-Menge

Mathematische Grundlagen und die visuelle Darstellung

verfasst von

Christoph Derszteler

Leistungskurs Mathematik

Betreuerin: Frau Dammers

Abgabetermin: 23.02.2023 12:00 Uhr CET

Inhaltsverzeichnis

1	Ein	Einleitung				
2	Ben	ötiges Vorwissen	4			
	2.1	Komplexe Zahlen	4			
		2.1.1 Multiplikation & Addition von komplexen Zahlen \dots	4			
		2.1.2 Graphische Darstellung komplexer Zahlen	5			
	2.2	Iterationen	6			
3	$\operatorname{Th}\epsilon$	oretische Grundlage	8			
	3.1	Mathematische Definition	8			
	3.2	Grafische Analyse	9			
		3.2.1 Farbbedeutung	0			
		3.2.2 Exemplarische Kartografierung	1			
4	Literatur und Quellen					
5	Anl	ang	7			

1 Einleitung

Die Mandelbrot-Menge ist durch ihre hübschen, ansehnlichen Darstellungen verglichen mit anderen mathematischen Phänomenen recht bekannt. Dies liegt jedoch nicht nur an ihrer rein visuellen Attraktivität, sondern vielmehr auch an Benoît Mandelbrot [A.3], dem Entdecker dieser Menge. Dieser sorgte mit seinen vielen Vorträgen und Büchern dafür, dass sich Fraktale, also selbstähnliche¹, geometrische Figuren mit gebrochener Dimension², vornehmlich die Mandelbrot-Menge, in der Bevölkerung weit verbreiteten³.

Obwohl die Natur mit ihren fraktal-ähnlichen Formationen wie dem Aufbau einer Schneeflocke, dem Verlauf eines Flusses oder die Verteilung von Baumästen [nna] die Inspiration für Mandelbrot war [ZK14], so liegt der Ursprung dieser Arbeit in den für manchen simpler erscheinenden, viel moderneren aber dennoch genauso spannenden, computer-generierten Videos⁴, die man im Internet finden kann. Mit unter anderem der Frage, wie diese Videos in Ansätzen generiert werden können und vielem weiteren beschäftigt sich diese Arbeit.

Dafür jedoch und zum vollen Verständnis der Mandelbrot-Menge ist Grundlagenwissen gewisser Themengebiete erforderlich, das in Kapitel 2 näher erörtert wird. Kapitel 3 beschäftigt sich daraufhin mit der rein mathematischen Betrachtung der Mandelbrot-Menge selbst und insbesondere mit der Analyse visueller Darstellungen dieser. Abschließend befasst sich diese Arbeit in Kapitel 4 mit der praktischen Anwendung der Mandelbrot-Menge in Form von Bildgenerierungen mithilfe von Computern als auch anderweitigen Zusammenhänge zwischen dem theoretischen Konzept der Mandelbrot-Menge und der realen Welt.

¹Das heißt, sich selbst wiederholend oder in ähnlicher Form erneut aufkommend.

²Im Vergleich zu zum Beispiel einem zwei-dimensionalen Viereck.

³[IBM11], Vgl. letzten Absatz.

 $^{^4}$ Vgl. bspw. [Tow17].

2 Benötiges Vorwissen

Dieses Kapitel befasst sich mit den benötigten mathematischen Grundlagen, um der restlichen Arbeit folgen zu können. Dafür wird zunächst das Konzept der komplexen Zahlen als auch der für den weiteren Verlauf benötigter Umgang mit diesen erörtert. Darauffolgend wird das Prinzip und die Eigenschaften von Iterationen grob anhand eines Beispiels skizziert.

2.1 Komplexe Zahlen

Unter den komplexen Zahlen \mathbb{C} versteht man die nächst größere Zahlenmenge nach den reellen Zahlen \mathbb{R} , die zusätzlich zu einem Realteil auch einen sogenannten Imaginärteil besitzen. Sie werden im weiteren Verlauf in der kartesischen Form z = a + bi dargestellt, wobei a der Realteil und bi der Imaginärteil ist. Der Buchstabe i steht hierbei für die imaginäre Einheit und ist definiert durch die Gleichung $i^2 = -1$.

2.1.1 Multiplikation & Addition von komplexen Zahlen

Viele Rechenoperationen mit komplexen Zahlen funktionieren anders, als man sie von den reellen oder natürlichen Zahlen gewohnt ist. Im Folgenden werden zwei dieser unterschiedlich funktionierenden Operationen vorgestellt:

Zur Addition zwei komplexer Zahlen addiert man den Realteil und den Imaginärteil getrennt voneinander und fügt diesen danach wieder zusammen [Lic02, S. 2]: $(a_1 + b_1 i) + (a_2 + b_2 i) = a_1 + a_2 + (b_1 + b_2)i$.

Um komplexe Zahlen zu multiplizieren, wendet man das Distributivgesetz an, indem man den zweiten Faktor ebenfalls in seinen Realteil und seinen Imaginärteil trennt und diese jeweils einzeln mit dem ersten Faktor multipliziert [Lic02, S. 2f.]. Die zwei entstehenden Produkte lassen sich dann wie oben beschrieben addieren. Bei der Multiplikation mit dem Imaginärteil multipliziert man unter anderem zwei imaginäre Elemente miteinander. Da $i^2 = -1$ gilt, entsteht durch

diese Multiplikation ein negatives, aber reales Produkt. Wie in A.1 gezeigt, gilt somit: (a + bi)(c + di) = ac - bd + (bc + ad)i

Das in der Mandelbrot-Menge häufig angewandte Quadrieren von komplexen Zahlen, lässt sich mit der kartesischen Form ebenfalls herleiten [A.2]. Für eine gegeben, zu quadrierende, komplexe Zahl a+bi gilt somit: $(a+bi)^2 = a^2-b^2+2abi$

Ein illustriertes Beispiel soll beide Rechenoperationen veranschaulichen:

$$(-3+6i)^{2} + (7+(-4i))$$

$$= ((-3\cdot(-3)) - (6\cdot6) + ((6\cdot(-3)) + (-3\cdot6))i) + (7+(-4i))$$

$$= (-27+(-36i)) + (7+(-4i))$$

$$= -20+(-40i)$$
(2.1)

2.1.2 Graphische Darstellung komplexer Zahlen

Komplexe Zahlen können wie auch Zahlen anderer Zahlenmengen grafisch dargestellt werden. Da komplexe Zahlen jedoch sowohl aus einem Realteil und einem Imaginärteil bestehen, reicht eine Achse nicht aus, um diese darzustellen; stattdessen braucht man eine **Ebene**⁵. Diese komplexe Zahlenebene teilt den Realteil auf die waagerechte Achse und den Imaginärteil auf die horizontale Achse auf. Eine komplexe Zahl z = a + bi besitzt somit die Koordinaten P(a|b).

Eine komplexe Zahl lässt sich wie auch eine reelle Zahl absolut betrachten, wobei dieser absolute Wert ebenfalls als einen Abstand zum Ursprung zu betrachten ist [Lic02, S. 3]. Aufgrund dessen, dass eine komplexe Zahl aus zwei Komponenten besteht, lässt sich der Abstand über den Satz des Pythagoras berechnen:

$$|z|^2 = a^2 + b^2$$
 beziehungsweise $z = \sqrt{a^2 + b^2}$ (2.2)

 $^{{}^5{}m Ebenfalls}$ unter komplexer Zahlenebene und gaußsche Zahlenebene zu finden.

Abbildung 2.1: Komplexe Ebene mit den Punkten P_1 , und P_2 und dem absoluten Wert |z| vom Punkt P_1 .

2.2 Iterationen

Iterationen beziehen sich in der Mathematik auf das Wiederholen einer bestimmten Prozedur beziehungsweise in diesem Fall einer Berechnung. Bei Funktionsiterationen iteriert (also wiederholt) man die Berechnung eines Funktionswerts mit dem Funktionsargument des vorherigen Funktionswerts: $z_1 = f(z_0), z_2 = f(z_1), z_3 = f(z_2), \dots, z_n = f(z_{n-1}).$

Eine wichtige Eigenschaft von Iterationen ist die Entwicklung von z für $z \to \infty$. Dabei wird unterschieden, ob die Iteration divergent ist, das heißt gegen Unendlich verläuft ("explodiert"), oder sich einem bestimmten Punkt, annähert. Letzteres bezeichnet man als einen beschränkten Verlauf.

Dieser Verlauf ist bei Iterationen, die ihre Ausgangswerte als neue Eingangswerte benutzen, schwer vorauszusagen. Dabei können ähnlich Funktionen bereits sehr unterschiedliche Entwicklungen aufweisen. Die Funktionen $f(z) = z^2 + c$ mit $z_0 = 0$ stellt beispielhaft die unterschiedlichen Verlaufsformen für $c_1 = c$

1, $c_2 = -1$ und $c_3 = 0.5$ dar:

	Parameter für $f(z)$			
Iteration	$c_1 = 1$	$c_2 = -1$	$c_3 = 0.5$	
1.	1	-1	0.5	
2.	2	0	0.75	
3.	5	-1	1.0625	
4.	26	0	≈ 1.6289	
5.	667	-1	pprox 3.1533	
6.	$\approx 1.9 \times 10^{11}$	0	≈ 10.4433	
7.	$\approx 3.9 \times 10^{22}$	-1	≈ 109.5625	

Tabelle 2.1: f(z) verläuft mit c_1 und c_3 divergent, higegen ist der Verlauf für f(z) mit c_2 beschränkt. Die dick markierten Zahlen sind für eine spätere Erwähnung dieser Tabelle gedacht.

3 Theoretische Grundlage

Nachdem im vorherigen Kapitel die Grundlagen für die Mandelbrot-Menge erklärt wurden, befasst sich diese Kapitel mit der rein mathematischen Betrachtung dieser Menge, indem diese zunächst fachlich korrekt definiert und im Anschluss grafisch analysiert wird.

3.1 Mathematische Definition

Die Mandelbrot-Menge wird mit der bereits im vorherigen Kapitel vorgestellen, komplexen Iteration $z_{n+1} = z_n^2 + c$ mit $z_0 = 0$ und einem variablen Wert für c [Wei, S.477ff.] definiert. Dabei enthält die Menge alle komplexen Werte für c, mit denen die oben angegebene Iteration beschränkt ist. Mathematisch ist die Menge iterativ wie folgt definiert:

$$\mathbb{M} = \{ c \in \mathbb{C} \mid \forall n \in \mathbb{N} : |f_c^n(z)| \leq 2 \} \quad \text{mit} \quad f_c(z) = z^2 + c; \ z, c \in \mathbb{C}$$
 (3.1)

Wie in der Definition zu sehen, wird der Funktionswert der gegen Unendlich strebenden n-ten Iteration, ausgedrückt durch $f^n(z)$, absolut betrachtet, was bedeutet, dass die Funktion symmetrisch zur reellen Achse ist.

Ebenfalls zu betrachten ist die Einschränkung auf Funktionswerte ≤ 2 , denn für alle Funktionswerte, die sich in der oben genannten Iteration ergeben und > 2 sind, lässt sich das jeweilige c aus der Mandelbrot-Menge ausschließen. Obwohl der gesamte Beweis dessen über den Rahmen dieser Arbeit hinausginge, so soll dennoch angemerkt werden, dass mithilfe der Dreiecksungleichung und vollständiger Induktion unter der Vorausnahme von $|z_n| > 2$ und $|z_n| > |c|$ folgende Ungleichung, die eine divergente Entwicklung repräsentiert, $\frac{|z_{n+11}|}{|z_n|} > 1$ bewiesen werden kann [MH97], wobei sich zusätzlich zeigen lässt, dass für alle Werte von |c| > 2 nach spätestens 2 Iterationen gilt: $z_2 = |c^2 + c| \geqslant |c|^2 - |c| > 2$.

Es befinden sich deshalb alle Werte für c als auch somit die grafische Darstellung der Mandelbrot-Menge in einem Einheitskreis mit dem Radius 2 [Vgl. A.4].

3.2 Grafische Analyse

Im Folgenden soll der grundlegende Aufbau der in einem kartesischen Diagramm entstehenden Formation der Mandelbrot-Menge erörtert als auch eine Erklärung zur Farbbedeutung gegeben werden. Zusätzlich zeigt dieses Unterkapitel mit einer exemplarischen Kartografierung verschiedene, sich wiederholende Bereiche der visuellen Darstellung auf.

Abbildung 3.1: Exemplarische Darstellung der Mandelbrot-Menge⁶

Die hier zu sehende Grafik entspricht der Darstellung der Mandelbrot-Menge in einer komplexen Zahlenebene und wird aufgrund seiner Form "Apfelmännchen" genannt. Die zu sehenden, schwarz gefärbten Pixel repräsentieren einen jeweiligen

⁶Generiert durch den Code · · ·

Wert für c, der sich in der Mandelbrot-Menge befindet. Auffällig ist bei erster Betrachtung, dass sich neben der großen, einheitlichen Struktur in der Mitte, deutlich kleinere, ähnlich aussende Formationen um den eigentlichen Hauptkörper dem Apfelmänchen, zum Beispiel im negativen Teil der reellen Achse, erkennen lassen. Diese werden **Satelliten** genannt und existieren aufgrund der Selbstähnlichkeit der Mandelbrot-Menge in unendlicher Stückzahl - und zwar nicht nur für den Hauptkörper, sondern auch für jeden Satelliten selbst [LP18].

3.2.1 Farbbedeutung

Im Gegensatz zu den ersten grafischen Darstellungen der Mandelbrot-Menge, auf denen, aufgrund ihrer deutlich geringeren Auflösung, kleine Satelliten als Druckfehler gewertet wurden⁷ und die mit ihrem schwarz-weißen Druck nur zwischen Werte für c in und außerhalb der Mandelbrot-Menge unterschieden, besitzt die oben dargestellte Figur (3.1) einen Farbverlauf. Dieser, in diesem Fall grüne, Farbgradient gibt an, wie viele Iterationen es benötigte, um festzustellen, ob das jeweilige c außerhalb der Mandelbrot-Menge liegt. Dabei gilt, dass je heller der Pixel beziehungsweise c ist, desto mehr Iterationen hat es benötigt, um c aus m auszuschließen⁸.

Neben dieser einen, verhältnismäßig simplen und dementsprechend auf den ersten Blick aussagekräftigeren Farbkodierung, existiert eine Vielzahl teils deutlich

⁷Dies ist eine recht amüsante Anekdote: Während den frühsten Forschungen, die Benoît Mandelbrot in den 1970er bei IBM anstellte, war das Drucken deutlich mühseliger und aufwendiger, als es heutzutage ist. Deshalb existierte ein ganzes Abteil nur für die Herstellung und Bearbeitung von Drucks, die - da es damals häufig vorkam - kleine Satelliten am Rande der ersten Darstellungen [A.7] gutgemeint wegretuschierten. Die ersten Bilder, die Herr Mandelbrot also erhielt, verwunderten ihn sehr und er war äußerst aufgebracht, als er von der tolpatschigen Wahrheit erfur [Num].

 $^{^8}$ Vgl. z.B. dick markierten Werte für $c_1 = 1$ und $c_3 = 0.5$ in Tabelle 2.1. c_1 ließ sich nach der 3. Iteration aus der Mandelbrot-Menge ausschließen, hingegen war dies bei c_3 erst nach der 5. Iteration der Fall.

komplexerer Algorithmen, mit denen sich jedoch eine auf das menschliche Auge ansprechendere Farbgestaltung erzielen lässt. Diese werden in Kapitel · · · · genauer beschrieben. Ein Beispiel, auf das im Folgenden Bezug genommen wird, lässt sich in A.6 betrachten.

3.2.2 Exemplarische Kartografierung

Die entstehenden Formationen der Mandelbrot-Menge, die teilweise erst bei sehr kleinen Ausschnitten erkennbar sind, sind kartografiert und teilweise wegen einer gewissen Ähnlichkeit nach Objekten aus der realen Welt benannt. So bezeichnet man die größte kreisförmige Kardioide oder auch "Knospe" als "Körper" (wobei dieser genauer unterteilt werden kann) und die daran angrenzende Kardioide als "Kopf"⁹.

Obwohl man jeden Punkt beziehungsweise jeden Ausschnitt einzeln beliebig detailliert analysieren kann, werden aufgrund der Selbstähnlichkeit Elemente mit ähnlichem oder gleichen Aufbau erneut aufkehren und dementsprechend gleich benannt. Im Folgenden soll beispielhaft ein Ausschnitt des in diesem Video [Bey17] gezeigten "Tal der Seepferdchen" analysiert werden:

Die Spalte zwischen Kopf und Körper wird "Tal der Seepferdchen" genannt¹⁰ [Rob10], da bei Vergrößerung dieses Ausschnitts sich unter anschaulicher Farb-kodierung auf der rechten Seite Seepferdchen-ähnliche Formationen erkennen lassen¹¹. Vergrößert man die Sicht auf das Seepferdchen-Tal stark, so lassen sich, neben weiteren (teils deformierten) Satelliten¹², bei genauerer Betrachtung des "Seepferdchenschwanzes" ein Misiurewicz-Punkt erkennen¹³. Dieser Misiurewicz-Punkt zeigt ebenfalls die Selbstähnlichkeit der Mandelbrot-Menge auf, da dieser Punkt sich neben einer Drehung kaum von der eigentlichen Mandelbrot-Menge

 $^{^9}$ Vgl. A.5

 $^{^{10}}$ Vgl. A.6.1

 $^{^{11}}$ Vgl. A.6.2

 $^{^{12}}$ Vgl. A.6.3

 $^{^{13}}$ Vgl. A.6.4

unterscheidet [Lei89]. Vergrößert man diesen Punkt weiter, so findet man erneut einen im Vergleich zum Apfelmännchen sehr ähnlichen aussehenden Satelliten¹⁴.

¹⁴Vgl. A.6.5

4 Literatur und Quellen

- [Bey05a] Wolfgang Beyer. Partial view of the Mandelbrot set. Step 1 of a zoom sequence: Gap between the "headand the "bodyalso called the Beahorse valley". 12. Sep. 2005. URL: https://de.wikipedia.org/wiki/Datei:Mandel_zoom_01_head_and_shoulder.jpg (besucht am 30.01.2023).
- [Bey05b] Wolfgang Beyer. Partial view of the Mandelbrot set. Step 2 of a zoom sequence: On the left double-spirals, on the right ßeahorses". 12. Sep. 2005. URL: https://de.wikipedia.org/wiki/Datei:Mandel_zoom_02_seehorse_valley.jpg (besucht am 30.01.2023).
- [Bey05c] Wolfgang Beyer. Partial view of the Mandelbrot set. Step 3 of a zoom sequence: SSeahorseüpside down. Its "bodyïs composed by 25 βpokeskonsisting of 2 groups of 12 βpokesëach and one βpokeconnecting to the main cardioid. These 2 groups can be attributed by some kind of metamorphosis to the 2 fingersöf the üpper handöf the Mandelbrot set.

 Therefore the number of βpokesïncreases from one βeahorseto the next by 2. The "hubïs a so called Misiurewicz point. Between the üpper part of the bodyänd the tailä distorted satellite can be recognized. 12. Sep. 2005. URL: https://de.wikipedia.org/wiki/Datei:Mandel_zoom_03_seehorse.jpg (besucht am 30.01.2023).
- [Bey05d] Wolfgang Beyer. Partial view of the Mandelbrot set. Step 4 of a zoom sequence: The central endpoint of the ßeahorse tailis also a Misiurewicz point. 12. Sep. 2005. URL: https://de.wikipedia.org/wiki/Datei: Mandel_zoom_04_seehorse_tail.jpg (besucht am 30.01.2023).
- [Bey05e] Wolfgang Beyer. Partial view of the Mandelbrot set. Step 8 of a zoom sequence: Äntennaöf the satellite. Several satellites of second order can be recognized. 12. Sep. 2005. URL: https://de.wikipedia.org/

- wiki/Datei:Mandel_zoom_08_satellite_antenna.jpg (besucht am 30.01.2023).
- [Bey17] Wolfgang Beyer. Zoomfahrt in die Mandelbrotmenge. 16. Juni 2017.

 URL: https://www.wolfgangbeyer.de/chaos/mandelzoom.htm
 (besucht am 29.01.2023).
- [Elp07] Elphaba. Command-line depiction of the Mandelbrot set, just like the picture Brooks and Matelski included in their article of 1978 on Kleinian groups. 2. Feb. 2007. URL: https://en.wikipedia.org/wiki/File:Mandel.png (besucht am 30.01.2023).
- [Gai97] Raphael Gaillarde. Benoit Mandelbrot, mathematician, inventor of fractals. 9. Feb. 1997. URL: https://www.gettyimages.co.uk/detail/ news-photo/benoit-mandelbrot-mathematician-inventor-offractals-in-news-photo/110137025 (besucht am 22.01.2023).
- [IBM11] IBM. Fractal Geometry. 21. Mai 2011. URL: https://www.ibm.
 com/ibm/history/ibm100/us/en/icons/fractal/ (besucht am
 16.01.2023).
- [Lei89] TAN Lei. "Similarity Between the Mandelbrot Set and Julia Sets". In: Communications in Mathematical Physics. 10. Juli 1989, S. 587–617. URL: https://arxiv.org/pdf/1410.6729v2.pdf (besucht am 29.01.2023).
- [Lic02] Klaus Lichtenegger. Komplexe Analysis. Mai 2002. URL: https://www.math.tugraz.at/~lichtenegger/kompan.pdf (besucht am 16.01.2023).
- [LP18] Luna Lomonaco und Carsten Lunde Petersen. "On quasi-conformal (in-) compatibility of satellite copies of the Mandelbrot set". In: (10. Okt. 2018). URL: https://arxiv.org/pdf/1505.05422.pdf (besucht am 29.01.2023).

- [MH97] Robert P. Munafo und Mike Hurley. "Escape Radius, Mu-Ency at MROB". In: (19. Sep. 1997). URL: http://mrob.com/pub/muency/escaperadius.html (besucht am 24.01.2023).
- [MSC16] Arun Mahanta, Hemanta Sarmah und Gautam Choudhury. "MAN-DELBROT SET, THE MESMERIZING FRACTAL WITH INTEGER DIMENSION". In: International Journal of Applied Mathematics and Statistical Sciences 6 (Dez. 2016), S. 1-18. URL: https://www.researchgate.net/figure/The-Body-B-and-Head-H-of-the-Mandelbrot-Set-The-surface-of-these-two-parts-are-covered_fig6_310798765 (besucht am 29.01.2023).
- [nna] Mike (nnart). Fractals in Nature. How Do Fractals Appear in Nature? 10 Outstanding Examples. URL: https://nnart.org/fractals-in-nature/ (besucht am 16.01.2023).
- [Num] Numberphile. What's so special about the Mandelbrot Set? Number-phile. URL: https://youtu.be/FfftmWSzgmk?t=602 (besucht am 30.01.2023).
- [Rob10] Munfao Robert P. "Seahorse Valley, Mu-Ency at MROB". In: (7. Sep. 2010). URL: http://www.mrob.com/pub/muency/seahorsevalley. html (besucht am 30.01.2023).
- [Tow17] Maths Town. Eye of the Universe. Eye of the Universe Mandelbrot Fractal Zoom (e1091) (4k 60fps). 28. Aug. 2017. URL: https://www.youtube.com/watch?v=pCpLWbHVNhk (besucht am 16.01.2023).
- [Tro] Heinrich Böll Gymnasium Troisdorf. *HBG Logo*. In der Titelseite zu finden. URL: https://www.hbgtroisdorf.de/images/hbg_logo_web.png (besucht am 18.12.2022).
- [Wei] Edmund Weitz. Konkrete Mathematik (nicht nur) für Informatiker.
 1. Aufl. Springer Spektrum. 942 S. ISBN: 978-3-658-21565-1.

[ZK14] Iris Zink und Hanna Kotarba. Der kosmische Code. Der kosmische Code. 28. Sep. 2014. URL: https://www.zdf.de/dokumentation/terra-x/faszination-universum-der-kosmische-code-mit-harald-lesch-100.html (besucht am 16.01.2023).

5 Anhang

A.1:

$$z_1 \cdot z_2$$

$$(a+bi) \cdot (c+di)$$

$$= c(a+bi) + di(a+bi)$$

$$= ac + bci + adi + bdi^2$$

$$= ac + bci + adi - bd$$

$$= ac - bd + (bc + ad)i$$
(A.1)

A.2:

$$z_1^2 = z_1 \cdot z_1$$

$$= (a+bi) \cdot (a+bi)$$

$$= a \cdot (a+bi) + bi \cdot (a+bi)$$

$$= a^2 + abi + abi - b^2$$

$$= a^2 - b^2 + 2abi$$
(A.2)

A.3:

Abbildung A.3: Benoît Mandelbrot 1997 in Frankreich [Gai97].

A.4:

Abbildung A.4: Einheitskreis mit dem Radius 2. Zu sehen ist der Punkt P_1 , der im Einheitskreis liegt und Punkt P_2 , der außerhalb des Einheitskreises liegt.

A.5:

Abbildung A.5: Körper (B) und Kopf (H) der Mandelbrot-Menge [MSC16].

A.6:

Abbildung A.6.1: Spalte zwischen Kopf und Körper [Bey05a]

Abbildung A.6.2: "Tal der Seepferdchen, [Bey05b]

Abbildung A.6.3: Rechts ein deformierter Satellit und links Misiurewicz-Punkt [Bey05c]

Abbildung A.6.4: Misiurewicz-Punkt [Bey05e]

Abbildung A.6.5: Satellit mit ähnlicher Struktur wie das Apfelmännchen [Bey05d]

A.7:

Abbildung A.7: Darstellung der ersten Drucks der Mandelbrot-Menge [Elp07].