1. Let G be a set with an operation \cdot such that

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

for any $a, b, c \in G$. Then if G satisfies that

- (1) there exists $e \in G$, such that $a \cdot e = a$ for any $a \in G$;
- (2) for any $a \in G$, there exists $b \in G$ such that $a \cdot b = e$.

Then (G, \cdot, e) is a group.

解答 我们需要证明: (i) 对任意 $a \in G$, 我们有 $e \cdot a = a \cdot e = a$. (ii) 对任意 $a \in G$, 存在 $b \in G$, 使得 $a \cdot b = b \cdot a = e$.

对任意 $a \in G$, 根据 (1), 存在 $b, c \in G$ 使得 $a \cdot b = b \cdot c = e$. 现考虑 $b \cdot a = b \cdot a \cdot e = b \cdot a \cdot (b \cdot c) = b \cdot (a \cdot b) \cdot c = (b \cdot e) \cdot c = e$. 所以 $a \cdot b = b \cdot a = e$, 即 (i) 成立.

对上述 $a, b \in G$, $e \cdot a = (a \cdot b) \cdot a = a \cdot (b \cdot a) = a \cdot e = a$. 所以 $a \cdot e = e \cdot a = a$, 即 (ii) 成立. \Box

2. Let $G := \{(a_{ij})_{n \times n} | a_{ij} \in \mathbb{Z} \text{ and } | (a_{ij})_{n \times n}| = 1 \text{ or } -1\}$. Prove that G is a group respect to the matrix multiplication.

解答 假设 $A=(a_{ij})_{n\times n}, B=(b_{ij})_{n\times b}\in G$. 根据矩阵的乘法,我们有 |AB|=|A||B|,故 |AB|=1 或 -1 且 AB 中的 (i,j) 项为 $\sum_{k=1}^n a_{ik}b_{kj}\in\mathbb{Z}$,所以 G 对乘法封闭.又因为单位阵 I 显然在 G 中,且 IA=AI=A. 假设 A 的代数余子式为 A^* ,因为 A^* 中的 (i,j) 项都是 A 中的项的多项式,所以 A^* 中的项仍为整数.因为 $A^{-1}=(\det A)^{-1}A^*$ 且 $\det A=\pm 1$, $\det A^{-1}=\pm 1$,所以 $A^{-1}\in G$.显然 $AA^{-1}=A^{-1}A=I$,故 G 是群.

3. Let J be a fixed $n \times n$ matrix over \mathbb{R} with $|J| \neq 0$. Prove that

$$G := \{A \mid A \in \mathbb{R}^{n \times n}, AJA^T = J\}$$

is a group respect to the matrix multiplication.

解答 $G \subset GL_n(\mathbb{R})$,我们只需证明对任意 $A, B \in G$,都有 $AB \in G$ 且 $A^{-1} \in G$. 因为 $ABJ(AB)^T = ABJB^TA^T = A(BJB^T)A^T = AJA^T = J$,所以 $AB \in G$. 因为 $AJA^T = J$,所以 $J = A^{-1}J(A^T)^{-1} = A^{-1}J(A^{-1})^T$,所以 $A^{-1} \in G$.

4. Let M be an arbitrary set, and P(M) be the set consisting of all the subsets of M. Prove that P(M) is a group respect to the operation

$$A \cdot B = (A - B) \cup (B - A).$$

解答 令 $E=\emptyset$, 对任意 $A\in P(M)$, 我们有 $E\cdot A=A\cdot E=A$, 且 $A\cdot A=E$. 我们需要证明结合性. $(A\cdot B)\cdot C=A\cdot (B\cdot C)$. 注意到可定义双射 $\chi:P(M)\to \operatorname{Hom}(M,\mathbb{Z}_2)$. 注意到 $\chi_{A\cdot B}=\chi_A+\chi_B$. 从而 $\chi((A\cdot B)\cdot C)=\chi_{A\cdot B}+\chi_C=\chi_A+\chi_B+\chi_C=\chi_A+\chi_{B\cdot C}=\chi_{A\cdot (B\cdot C)}=\chi(A\cdot (B\cdot C))$. 所以 $(A\cdot B)\cdot C=A\cdot (B\cdot C)$.

5. Let G be a group with operation \cdot , and S be a nonempty set. Let M(S,G) be the set consisting of all the map $f: S \to G$ with the operation

$$f * g : S \to G,$$

$$s \mapsto f(s) \cdot g(s)$$

Prove that M(S,G) is a group respect to above operation *.

解答 对任意 $s \in S$, 我们有 $(f*g)*h(s) = (f*g)(s)\cdot h(s) = (f(s)\cdot g(s))\cdot h(s) = f(s)\cdot (g(s)\cdot h(s)) = f(s)\cdot (g*h)(s) = f*(g*h)(s)$, 即 (f*g)*h = f*(g*h). 令 $e:S \to G$ 定义为对任意 $s \in G$, $e(s) = 1_G$. 那么对任意 $s \in G$, $e(s) = f(s) = f(s) \cdot e(s) = f*(s)$, 所以 e*f = f*e = f. 对于 $f \in M(S,G)$, 对每个 $s \in G$, 定义 $f^{-1}(s) = f(s)^{-1}$, 那么 $(f*f^{-1})(s) = f(s)\cdot f^{-1}(s) = 1_G = e(s) = f^{-1}(s)\cdot f(s) = (f^{-1}*f)(s)$, 所以 $f*f^{-1} = f^{-1}*f = e$.

6. Prove that: for any abelian group G, we have

$$\circ(ab)\leqslant\circ(a)\circ(b)$$

for any $a, b \in G$. On the same time, point out there exists non-abelian group such that above equality is not valid.

解答 假设 $\circ(a)=m, \circ(b)=n,$ 即 $a^m=b^n=e,$ 那么又因为 G 是 Abel 群, $(ab)^{mn}=(a^m)^n(b^n)^m=1.$ 所以 $\circ(ab)\leqslant mn.$

令

$$a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \quad ab = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

我们发现 $a^4 = b^3$ 是单位阵. 那么 ab 的阶是无限的, 要想有限阶, 则可以在模 n 的世界中操作 (只需要 $n \ge 13$ 即可).

7. Prove that the group $(\mathbb{Q}, 0, +)$ is not isomorphic to $(\mathbb{Q}^* := \mathbb{Q} - \{0\}, 1, x)$.

解答 第一个群没有二阶元, 因为 2x = 0 推出 x = 0; 第二个群存在二阶元, $(-1)^2 = 1$, 故两个群不同构.

8. Prove that there exists no simple group G of order |G| = 56.

解答 根据 Sylow 定理, Sylow-7 子群的个数模 7 余 1, 且是 8 的因子, 所以有 1 个或 8 个. 如果有 1 个, 那么这个 Sylow-7 子群是正规子群. 如果有 8 个, 那么 7 阶元有 48 = (7-1)*8 个, 还剩 56-48=8 个非 7 阶元. 所以 Sylow-2 子群只有一个, 故为正规子群.

9. Prove that any group G of order |G| = 35 is cyclic, namely G = (a) for some $a \in G$.

解答 根据 Sylow 定理, Sylow-7 子群只有 1 个 N. 而 Sylow 5 子群也只有一个 H. H 共轭作用在 N 上,得到一个群作用 $\mathbb{Z}_5 \simeq H \to \operatorname{Aut}(N) \simeq U(\mathbb{Z}_7) = \mathbb{Z}_6$. 所以只有平凡作用. 所以对任意 $a \in H, b \in N$,我们有 ab = ba. 令 $x \not\in H$ 的生成元, $y \not\in N$ 的生成元,那么 xy 的阶是 35,所以 G = (xy).

10. Let $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$, and $U(\mathbb{Z}_n)$ be the group of all units (invertible elements in \mathbb{Z}_n). Prove that

$$\bar{m} \in U(\mathbb{Z}_n) \iff (m,n) = 1.$$

解答 根据 Bezout 定理, 如果 (m,n)=1, 那么存在 mx+ny=1, 所以模 n 后得到 $\bar{m}\bar{x}=\bar{1}$, 即 $\bar{m}\in U(\mathbb{Z}_n)$.

如果 $m \in U(\mathbb{Z}_n)$, 那么存在 $\bar{x} \in \mathbb{Z}_n$, $\bar{mx} = \bar{1}$, 所以存在 $y \in \mathbb{Z}$, 使得 mx + ny = 1. 那么 (m,n)|1, 即 (m,n) = 1.

11. Let G=(a) be a cyclic group of order n. Prove that its group of isomorphisms $\operatorname{Aut}(G)\simeq U(\mathbb{Z}_n)$. In particular, when n=p is a prime number, $\operatorname{Aut}(G)$ is also cyclic.

解答 由于 G = (a), 任何 $f \in \operatorname{Aut}(G)$ 由 f(a) 决定, 所以 f(a) 是 G 中的 n 阶元. 但是 $x \in \mathbb{Z}_n$ 的阶恰是 n/(n,x). 所以 $\operatorname{Aut}(G) \simeq U(\mathbb{Z}_n)$.

有限域的乘法子群是循环群. 设 $U(\mathbb{Z}_p)$ 中最大阶为 n, 不妨设 $\circ(x)=n$. 由于 $U(\mathbb{Z}_p)$ 是交换群, 所以该群中每个元素的阶整除 n. 如若不然, 存在一个非平凡元素的阶和 n 互素, $\circ(y)=m$, 且 (m,n)=1. 所以 xy 的阶为 mn, 矛盾. 又因为在域中 $x^n=1$ 的根最多 n 个, 所以 $n\leqslant |U(\mathbb{Z}_p)|\leqslant n$. 所以存在 p-1 阶元.

12. Let R be a (noncommutative) ring, and 1-ab is invertible. Prove that 1-ba is also invertible.

解答 设 (1-ab)c = 1, 那么 (1+bca)(1-ba) = 1-ba+bca-bcaba = 1-ba+bc(1-ab)a = 1.

- 13. Let R be a ring, then a non-zero element x is called by a nilpotent element if $x^n = 0$ for some $n \in \mathbb{Z}^+$. Prove:
 - (1) If x is nilpotent, then 1-x is invertible.
 - (2) The ring $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$ has a nilpotent element if and only if m can be divisible by p^2 for some $p \in \mathbb{Z}^+$.

解答

- (1) 如果 $x^n = 0$, 那么 $(1-x)(1+x+x^2+\cdots+x^{n-1}) = 1-x^n = 1$. 所以 1-x 是可逆的.
- (2) 如果 $m = p^2 n$, 那么 $p\bar{n} \neq 0$, 但是 $(p\bar{n})^2 = p^{\bar{2}} n \cdot n = 0$. 反之, 不妨假设 $x^2 = 0, x \neq 0$. 令 $h = m/(m, x) \neq 1$, 则 $m = h^2 \cdot \frac{(m^2, x^2)}{m}$.
- 14. Let $m, n \in \mathbb{Z}$ be positive. Prove that the great common divisor $(m, n) \in \mathbb{Z}$ equals to $(m, n) \in \mathbb{Z}[i]$.

解答 假设在 \mathbb{Z} 中, 我们有 (m,n) = a, m = am', n = an'. 于是 $\mathbb{Z}[i]$ 中, (m,n) = a(m',n'). 但是存在 $x,y \in \mathbb{Z}$ 使得 m'x + n'y = 1. 如果 $\mathbb{Z}[i]$ 中有素数 p 满足 p|(m',n'), 那么 p|m'x + n'y, 即 p|1, 矛盾.

15. Let R be a ring. Prove that $f(x) \in R[x]$ is a zero divisor if and only if $r \cdot f(x) = 0$ for some $r \neq 0 \in R$.

解答 使用反证法. 假设 q 是最小次数的非零多项式使得 fq = 0. 令

$$f(x) = a_0 + a_1 x + \dots + a_k x^k + \dots + a_n x^n$$

$$g(x) = b_0 + b_1 x + \dots + b_m x^m$$

假设 k 是使得 $a_k g(x) \neq 0$ 的最大值, 如果不存在, 则对任意 $0 \leq i \leq m$, 都有 $b_i f(x) = 0$, 矛盾. 因为 f(x)g(x) = 0, 则 $a_k b_m = 0$, 从而 $\deg(a_k g(x)) < \deg(g(x))$. 我们有 $f(x)(a_k g(x)) = 0$, 矛盾. □ 16. Prove that $\mathbb{C}[x,y]/(x^2+y^2-1)$ is an Euclidean ring.

解答 令 u=x+iy, v=x-iy, 那么 $R:=\mathbb{C}[x,y]/(x^2+y^2-1)=\mathbb{C}[u,v]/(uv-1)\simeq\mathbb{C}[u,u^{-1}]$. 因此 R 中每个非零元素都可以唯一的写为 $u^mf(u)$ 的形式, 其中 $f(u)\in\mathbb{C}[u], f(0)\neq 0, m\in\mathbb{Z}$. 现在定义 $u^mf(u)\mapsto \deg(f(u)):R^*\to\mathbb{N}$ 的欧式映射 δ . 对于任意 $u^mf(u), u^ng(u)$, 因为 $\mathbb{C}[u]$ 是欧式环, 存在 $g(u), r(u)\in\mathbb{C}[u]$ 使得

$$f(u)=g(u)q(u)+r(u),\quad u^mf(u)=u^ng(u)\cdot u^{m-n}q(u)+u^mr(u)$$

那么 $\delta(u^m r(u)) \leq \deg(r(u)) < \delta(u^n g(u))$ 或 r(u) = 0. 所以 $\mathbb{C}[x,y]/(x^2 + y^2 - 1)$ 是 Euclidean 环.

17. Prove that $\mathbb{R}[x,y]/(x^2+y^2-1)$ is not an UFD.

解答 我们已经证明了 $\mathbb{C}[x,y]/(x^2+y^2-1)$ 是 ED, 从而是 UFD. 或者说 $R=\mathbb{C}[u,u^{-1}]$ 是 UFD. 考虑 $x\cdot x=(1-y)\cdot (1+y)$. 在 $\mathbb{C}[u,u^{-1}]$ 中,

$$x = \frac{1}{2u}(u+i)(u-i)$$

$$1-y = \frac{i}{2u}(u-i)^2$$

$$1+y = \frac{-i}{2u}(u+i)^2$$

所以 $x \cdot x = (1 - y) \cdot (1 + y)$ 是两个不可约分解.

18. Prove that $\mathbb{C}[x,y]/(x^2-y^3)$ is not an UFD.

解答 由于 $\mathbb{C}[x,y]$ 是 UFD, 因为 x^2-y^3 是不可约元, 所以是素元, 从而 $R:=\mathbb{C}[x,y]/(x^2-y^3)$ 是整环. 如果赋予 x 次数 3, y 次数 2, 那么 R 是分次环, 且 x, y 是不可约元. 因为 $x \cdot x = y \cdot y \cdot y$ 是两个不同的不可约分解. 所以 R 不是 UFD.

19. Prove that R[x] is an UFD, provided R is so.

解答 记 $f(x) = \sum_{i=0}^n a_i x^i$,令 $d(f) = (a_0, \cdots, a_n)$. 于是 $f(x) = d(f) f_0(x)$. 将 $f_0(x)$ 写成 $p_1(x) \cdots p_t(x)$ 的形式,其中 $p_i(x)$ 是不能写成两个次数更低的多项式的乘积. 由高斯引理知这些 $p_i(x)$ 是本原多项式,于是不可约;因为 R 是 UFD, $d(f) = a_1 \cdots a_s$ 为 R 中的唯一分解. 我们得到一个不可约分解:

$$f(x) = a_1 \cdots a_s p_1(x) \cdots p_t(x).$$

假设 $f(x) = b_1 \cdots b_k q_1(x) \cdots q_l(x)$ 是另一个不可约分解,于是 $q(x) = q_1(x) \cdots q_l(x)$ 和 $p(x) = p_1(x) \cdots p_t(x)$ 是本原多项式.于是 $a_1 \cdots a_s \cdot d(p(x)) \hookrightarrow d(f) \hookrightarrow b_1 \cdots b_k \cdot d(q(x))$. 因为 R 是 UFD,s = k,可设 $a_i \hookrightarrow b_i$. 因此存在 $u \in U(R)$ 使得 p(x) = uq(x).

考虑 K=Q(R) 是 R 的分式域, 则 $p_i(x),q_j(x)$ 也是不可约的. 因为 K[x] 是 UFD, 从而 t=l, 可设 $p_i(x)=v_iq_i(x),v_i\in K$. 但是 $p_i(x)$ 和 $q_i(x)$ 是本原多项式, 所以 $p_i(x) extstyle q_i(x) (1\leqslant i\leqslant t)$. \square 20. Let $F \subseteq E$ and $E \subseteq K$ be two finite algebraic extensions. Prove that $F \subseteq K$ is a finite algebraic extension.

解答 因为 $[K:F]=[K:E]\cdot [E:F]$, E/F 和 K/E 是有限代数扩张, 从而 $[K:F]<\infty$. \square 21. Prove that the isomorphisms of $\mathbb Q$ and $\mathbb R$ are both trivial (only identities).

 $f(\frac{m}{n}) = \frac{m}{n}$. 所以 $f = id_{\mathbb{Q}}$.

假设 $g \in \operatorname{Aut}(\mathbb{R})$, 同理可得 $g|_{\mathbb{Q}} = \operatorname{id}_{\mathbb{Q}}$. 对每个 x > 0, $g(x) = g((\sqrt{x})^2) = g(\sqrt{x})^2 > 0$, 因此如果 a > b, 我们有 g(a) = g(b) + g(a - b) > g(b). 由 Dedekind 分割, 每个无理数 α 和 $g(\alpha)$ 给出有理数相同的分割, 从而 $\alpha = g(\alpha)$.

22. Let $\mathbb{R} \subseteq K$ be a finite algebraic extension with $[K : \mathbb{R}] = 2$. Prove that K is isomorphic to \mathbb{C} .

解答 假设 $\alpha \in K \setminus \mathbb{R}$, α 在 \mathbb{R} 上的极小多项式为 $f(x) \in \mathbb{R}[x]$. 由于 $1 < \deg f(x) \leqslant [K : \mathbb{R}]$, 所以 $\deg f(x) = 2$. 不妨设 $f(x) = x^2 + bx + c$. 因为 f(x) 在 $\mathbb{R}[x]$ 上不可约, 所以 $\Delta = b^2 - 4c < 0$. 从而 $y = \frac{2x+b}{\sqrt{4c-b^2}} \in K$ 满足 $y^2 + 1 = 0$. 所以 $K \supset \mathbb{R}[y] \supsetneq \mathbb{R}$, 从而 $K = \mathbb{R}[y] \simeq \mathbb{R}[X]/(X^2 + 1) \simeq \mathbb{C}$. \square 23. Let $\mathbb{Q}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{5}] \subset \mathbb{R}$ be subfields. Prove that $\mathbb{Q}[\sqrt{2}]$ is not isomorphic to $\mathbb{Q}[\sqrt{5}]$.

解答 假设 $f: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{5}]$ 是同构, 设 $f(\sqrt{2}) = a + b\sqrt{5}, a, b \in \mathbb{Q}$. 那么 $f(\sqrt{2})^2 = f(2) = 2$, 所以 $(a + b\sqrt{5})^2 = 2$. 展开得 $a^2 + 5b^2 + 2ab\sqrt{5} = 2$, 所以 ab = 0. 如果 a = 0, 得 $5b^2 = 2$; 如果 b = 0, 得 $a^2 = 2$. 均得到矛盾.

24. Let F be a finite field, and $F^* := F - \{0\}$. Prove that $(F^*, \times, 1)$ is a cyclic group.

解答 记 $G = F^*$. G 是一个 Abel 群. 设 G 中元素阶最大的元素为 a, 且 \circ (a) = n. 首先证明对任意 $b \in G$, $b^n = 1$. 如果不然,存在 $b \in G \setminus \{1\}$, b 的阶为 m 且 (m,n) = 1. 那么 \circ (ab) = mn, 矛盾. 但是在域 F 中 $x^n = 1$ 的解最多 n 个,所以 $n = \circ(a) \leqslant |G| \leqslant n$. 所以 n = |G|, 从而 G = (a) 是循环群.

25. Construct a non-separable polynomial.

解答 固定一个特征为 p 的完全域 F. 令 K = F(t). 那么 $t \in K \setminus K^p$. 记 $L = K[\alpha]$ 是 f 的分裂域, 其中 $\alpha^p = t$. 考虑多项式 $f(x) = x^p - t$. 这是一个那么 $f(x) \in K[x]$ 是不可约多项式. 否则 f(x) = g(x)h(x). 它在 L[x] 中就变成 $(x - \alpha)^p = g(x)h(x)$, 故不妨设 $g(x) = (x - \alpha)^{n_1}, h(x) = (x - \alpha)^{n_2}$, 从而常数项 $u = \alpha^{n_1}, v = \alpha^{n_2} \in K$. 因为 $(n_1, n_2) = 1$, 存在 $a, b \in \mathbb{Z}$, 使得 $an_1 + bn_2 = 1$. 从而 $u^a v^b = \alpha \in K, t = \alpha^p \in K^p$, 矛盾.

26. Prove that one can construct regular 17-gons using straight-edge and compass.

解答 因为 $\cos \frac{2\pi}{17}$ 是包含在 $\mathbb Q$ 的某个二次根塔里面. 所以可被尺规作图.

27. Prove that one can not construct regular 7-gons using straight-edge and compass.

解答 考虑 7 次单位根 ω , 则 ω 的极小多项式是 $x^6+x^5+\cdots+x+1=0$. 所以 $[\mathbb{Q}[\omega]:\mathbb{Q}]=6$ 不是 2 的幂次, 所以不可以被尺规作图.

28. Let $K \subseteq L$ be a Galois extension, and $K \subseteq E \subseteq L$. Prove that E/K is Galois if and only if $\operatorname{Gal}(L/E) \subseteq \operatorname{Gal}(L/K)$ is a normal subgroup.

解答 如果 E/K 是 Galois 的, 那么所有的 L 的 K 自同构 σ 都有 $\sigma(E) = E$. 考虑 $h \in \operatorname{Gal}(L/E), g \in \operatorname{Gal}(L/K)$, 那么对于任意 $x \in E$, 我们有 $g^{-1}(x) \in E, hg^{-1}(x) = g^{-1}(x)$, 且 $ghg^{-1}(x) = gg^{-1}(x) = x$, 所以 $ghg^{-1} \in \operatorname{Gal}(L/E)$.

如果 L 的 K 自同构 σ 使得存在 $x \in E$, 但是 $\sigma(x) \notin E$. 存在 $h \in \operatorname{Gal}(L/E)$ 使得 $y := h(\sigma(x)) \neq \sigma(x)$. 那么 $\sigma^{-1}h\sigma(x) = \sigma^{-1}(y) \neq \sigma^{-1}(\sigma(x)) = x$. 所以 $\sigma^{-1}h\sigma \notin \operatorname{Gal}(L/E)$.

29. Prove that $f(x) = x^n - 1 \in \mathbb{Q}[x]$ can be solved by radicals.

解答 $x^n - 1 \in \mathbb{Q}[x]$ 的一个分裂域为 $L = \mathbb{Q}[\omega]$, 他的全部根的集合

$$U_n = \{\omega^k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}\}$$

那么 $\mathrm{Gal}(L/\mathbb{Q})$ 作用在 U_n 上得到单同态 $\mathrm{Gal}(L/\mathbb{Q}) \to \mathrm{Aut}(U_n) \simeq U(\mathbb{Z}_n)$. 因为这个群是交换群, 所以可解. 从而 f(x) 可根式解.

30. Construct a polynomial $f(x) \in \mathbb{Q}[x]$, which cannot be solved by radicals.

解答 取 p=5 使用爱森斯坦判别法可知 $f(x)=x^5-80x+5\in\mathbb{Q}[x]$ 在 \mathbb{Q} 上不可约,利用单调性可知 f(x) 恰有两个非实数根,故 $G_f=S_5$ 不可解.

31. Prove (by a direct computation) that $\mathbb{Q} = (\mathbb{Q}[\sqrt{2}, \sqrt{11}])^G$ where $G = \text{Gal}(\mathbb{Q}[\sqrt{2}, \sqrt{11}]/QQ)$ is the Galois group.

解答 注意到 $\mathrm{Gal}(\mathbb{Q}[\sqrt{2},\sqrt{11}]/\mathbb{Q})$ 同构于 $\mathbb{Z}_2 \times \mathbb{Z}_2$,由 $\sigma_1:\sqrt{2}\mapsto -\sqrt{2}$, $\sqrt{11}\mapsto \sqrt{11}$ 和 $\sigma_2:\sqrt{2}\mapsto \sqrt{2}$, $\sqrt{11}\mapsto -\sqrt{11}$ 生成. 假设 $x=a+b\sqrt{2}+c\sqrt{11}+\sqrt{22}\in (\mathbb{Q}[\sqrt{2},\sqrt{11}])^G$,那么 $\sigma_1(x)=a-b\sqrt{2}+c\sqrt{11}-d\sqrt{22}$,所以 b=d=0, $\sigma_2(x)=a-c\sqrt{11}$,所以 c=0.从而 $x=a\in\mathbb{Q}$. \square