NOTES ON HOMOLOGY

VAIBHAV KARVE

These notes were last updated October 11, 2018. They are notes taken from my reading of *Computational Topology: An Introduction* by *Herbert Edelsbrunner* and *John L. Harer*.

1. Definitions

- (1) Let K: simplicial complex, p: integer dimension. A p-chain is a formal sum of p-simplices in K. Standard notation is $c = \sum a_i \sigma_i$ where a_i are the coefficients (either 0 or 1 that is, modulo 2 coefficients).
- (2) Chains are added componentwise $\sum a_i \sigma_i + b_i \sigma_i = \sum (a_i + b_i) \sigma_i$ where 1 + 1 = 0. Denote by $(C_p, +)$ the abelian group of p-chains with addition.
- (3) For p < 0 and for $p > \dim K$, the group $C_p(K)$ is trivial.
- (4) Define boundary: p-chain $\to (p-1)$ -chain as the sum of the (p-1)-dimensional faces, denoted by $\partial_p c$. Extend linearly so we have $\partial_p : C_p \to C_{p-1}$. This makes the boundary map a group homomorphism.
- (5) The ${\it Chain\ complex}$ is the sequence of chain groups connected by boundary maps —

$$\cdots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \cdots$$

- (6) A *p-cycle* is a *p*-chain with empty boundary that is, $\partial_p c = 0$. The *p*-cycles themselves form an abelian group denoted $Z_p = Z_p(K) = \ker \partial_p$. We have $Z_p \leq C_p$, $\forall p$ (subgroup).
- (7) $Z_0 = \ker \partial_0 = C_0$.
- (8) A *p-boundary* is a *p*-chain that is the boundary of a (p+1)-chain, $c = \partial d$ for $d \in C_{p+1}$. The *p*-boundaries also form an abelian group denoted $B_p = \operatorname{im} \partial_{p+1}$ which is also a subgroup of C_p .
- (9) Fundamental lemma of homology: $\partial_p \partial_{p+1} d = 0$, for every p: integer and every $d \in C_{p+1}$.
 - Consequence: every p-boundary is also a p-cycle that is, $B_p \leq Z_p$ (subgroup).

- (10) The p^{th} homology group is the defined as the abelian group $H_p = Z_p/B_p$. The p^{th} Betti number is the rank of this group $\beta_p = \operatorname{rank} H_p$. (the rank of a group is the smallest cardinality of agenerating set of the group). So elements of H_p are of the form $c + B_p$ where $c \in Z_p$. Each element is an equivalence class also called a homology class. Any two cycles in the same homology class are said to be homologous, denoted $c \sim c'$.
- (11) $|C_p(K)| = 2^{\# \text{ of } p\text{-dimensional simplices in } K}$ and $C_p \cong (\mathbb{Z}_2^n, \text{XOR})$. Also have, ord $H_p = \text{ord } Z_p/\text{ord } B_p$

and

$$\beta_p = \operatorname{rank} H_p = \operatorname{rank} Z_p - \operatorname{rank} B_p$$

(12) Euler-Poincaré formula: The Euler characteristic of a simplicial complex is the alternating sum of the number of simplices in each dimension. Let the rank of C_p, Z_p and B_p be denoted by n_p, z_p and b_p respectively. We have

$$\chi = \sum_{p\geq 0} (-1)^p n_p$$

$$= \sum_{p\geq 0} (-1)^p (z_p + b_{p-1})$$
(by Rank-nullity by viewing groups as a \mathbb{Z}_2 -vspace
$$= \sum_{p\geq 0} (-1)^p (z_p - b_p)$$

$$= \sum_{p\geq 0} (-1)^p \beta_p$$

- (13) The p^{th} -boundary matrix represents the (p-1)-simplices as rows and the p-simplices as columns (assuming arbitrary by fixed ordering of simplices). The (i,j)-entry is $a_i^j = 1$ if the i^{th} (p-1)-simplex is a face of the j^{th} p-simplex and $a_i^j = 0$ otherwise, $\forall i \in \{1, \ldots, n_{p-1}\}, \ \forall j \in \{1, \ldots, n_p\}$. Given a p-chain $c = \sum a_k \sigma_k$, the boundary $\partial_p c$ can be computed by matrix multiplication of $\partial_p = [a_i^j]$ with the column vector of coefficients (a_k)
- (14) A collection of columns of ∂_p represents a p-chain and the sum of these columns gives its boundary. A collection of rows represents a (p-1)-chain and the sum of these rows gives its coboundary.
- (15) The rows of ∂_p form a basis of the group C_{p-1} and the columns form a basis of the group C_p .
- (16) Smith normal form: The matrix ∂_p (with entries in \mathbb{Z}_2) is in Smith normal form if the initial segment of the diagonal is 1 (doesn't need to be the entire diagonal, just a segment) and everything else is 0.

$$\begin{bmatrix} \mathbf{I}_{b_{p-1}\times(n_p-z_p)} & \mathbf{O}_{b_{p-1}\times z_p} \\ \mathbf{O}_{(n_{p-1}-b_{p-1})\times(n_p-z_p)} & \mathbf{O}_{(n_{p-1}-b_{p-1})\times z_p} \end{bmatrix}_{n_{p-1}\times n_p}$$

Here, the leftmost b_{p-1} columns represent p-chains whose nonzero boundaries generate the group B_{p-1} . The rightmost z_p columns represent p-cycles that generate Z_p (these are zero columns in ∂_p but will become non-zero rows in ∂_{p+1}).

(17) Once all the boundary matrices (for different p) are in Smith normal form, the Betti numbers can be calculated as differences between ranks —

$$\begin{split} \tilde{\beta}_p &= \mathrm{rank} Z_p - \mathrm{rank} B_p \\ &= z_p - b_p \\ &= (\# \text{ of zero columns in } N_p) - (\# \text{ of nonzero rows in } N_{p+1}) \end{split}$$
 where N_p is ∂_p in Smith normal form.

2. Examples

- (1) $H_1(\text{Torus}) = \{B_1, x + B_1, y + B_1, x + y + B_1\}$ where B_1 is the 1-boundary group, and x and y are the one non-bounding 1-cycles that go once around the arm and the hole of the torus.
 - Therefore, $H_1(\text{Torus}) = \langle x + B_1, y + B_1 \rangle$ and hence $\beta_1 = 2$. This situation can be represented as a square with vertices $\{0, x, y, x + y\}$.
- (2) Closed ball is any triangulated topological space that is homeomorphic to $\mathbb{B}^k = \{x \in \mathbb{R}^k \mid ||x|| \leq 1\}$. $H_p(\text{Ball}) = 0$, $\forall p \geq 1$. But rank $H_0(\text{Ball}) = 1$ because $H_0 \cong \mathbb{Z}_2$.

If K is the set of faces of a single simplex of dimension k then rank $C_p = \binom{k+1}{p+1}$. For every $c \in Z_p$, one can find a $d \in B_p$ such that $\partial_p d = c$. Hence $Z_p = B_p$ and $H_p = 0$ for $p \ge 1$.

- (3) If we build a tetrahedron one dimension at a time.
 - (a) First there are only four vertices. Then $\partial_0 = [1 \ 1 \ 1]$. Its normal form N_0 has 1 nonzero row and 3 zero columns. Therefore $\tilde{\beta}_0 = 3$.
 - (b) Now add the six vertices. Then $\partial_0 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$.

 ∂_1 's normal form N_1 has 3 nonzero rows and 3 nonzero columns. $\tilde{\beta}_0 = 3(\text{from } N_0) - 3(\text{from } N_1) = 3 - 3 = 0$ and $\tilde{\beta}_1 = 3(\text{from } N_1)$.

- (c) At next step, we'll have $\tilde{\beta}_0 = 3 3 = 0$, $\tilde{\beta}_1 = 3 3 = 0$ and $\tilde{\beta}_2 = 1$.
- (d) At the final step we'll have $\tilde{\beta}_0 = 3 3 = 0$, $\tilde{\beta}_1 = 3 3 = 0$, $\tilde{\beta}_2 = 1 1 = 0$ and $\tilde{\beta}_3 = 0$.