0.1. Análisis y construcción del diagrama de tiempos

Se construyó para el microprocesador M68HC11 el diagrama de tiempos para un ciclo de lectura/escritura, usando como ejemplo la posición de memoria \$2345, la cual está dentro de la hipotética región del mapa de memoria donde se aloja la memoria para la cual se diseñó el decodificador anteriormente.

Figura 1: Ciclo de lectura/escritura de DATA en la dirección de memoria \$2345

Para el análisis de tiempos se tiene en cuenta una frecuencia característica de 2 MHz. Dado esto, se obtiene un rise time de las señales de $t_4 = 20 \ ns$ y un periodo entre ciclos de lectura/escritura de $t_1 = 500 \ ns$, por lo que los tiempos en alto y bajo de la señal $\bf E$ de enable serán de $t_3 = 230ns$ respectivamente.

0.1.1. Primera mitad del ciclo de escritura/lectura

El comienzo del ciclo de lectura o escritura comienza con el flanco descendente de la señal de enable. Un tiempo $t_{26}=53\ ns$ después se activa la señal **AS** de address strobe, lo cual indica que se utilice el bus de address entero para cargar la parte baja y alta de la dirección de memoria en los puertos C y B del M68HC11 respectivamente. Esta señal se desactiva luego de un tiempo $t_{27}=96\ ns$ activando el latch que retendrá la parte baja de la dirección de memoria. De esta manera se logra multiplexar la parte baja del bus de address, o puerto C, para leer o escribir datos al igual que retener la parte baja de la dirección del mapa de memoria.

El puerto C tiene la dirección de memoria por un tiempo válido de $t_{t22} = 88 \ ns$ como mínimo y el puerto B por un tiempo de $t_{12} = 94 \ ns$ como mínimo, que corresponde con el flanco ascendente de la señal de enable y marca la mitad del ciclo de lectura/escritura.

0.1.2. Segunda mitad del ciclo de escritura/lectura

Lectura: En el caso de la lectura, el puerto C obtiene el dato a leer luego de $t_3 - t_{17} = 200 \ ns$ y será valido por $t_{17} + t_{18A} = 40 \ ns$, para luego pasar a hiZ pasados $t_{18B} = 83 \ ns$ como máximo del tiempo valido de lectura. **Escritura:** Para el caso de la escritura, el puerto C tiene un delay máximo para contener el dato a escribir de $t_{19} = 128 \ ns$ y un tiempo de hold de $t_{21} = 33 \ ns$ como mínimo, por lo cual el tiempo de escritura deberá ser como máximo de $t_3 + t_{21} - t_{19} = 143 \ ns$.

Finalmente, el address se mantendrá por un tiempo de t_9 tras el flanco descendente de la señal de enable, por lo que el tiempo válido de lectura de la dirección de memoria en un ciclo de $t_1 = 500ns$ será de $t_1 - t_{26} + t_9 = 480 ns$.