PC 6 – Convergences & Loi des grands nombres

Exercice 1 (Convergences). Soit $(X_n)_{n\geq 1}$ des v.a.r. de loi Bernoulli $X_n \sim \mathcal{B}(p_n)$ avec $p_n \to 0$.

- 1. Montrer que $X_n \stackrel{\mathbb{P}}{\to} 0$ et même que $X_n \stackrel{\mathrm{L}^1}{\to} 0$;
- 2. Montrer que $X_n \stackrel{\text{p.s.}}{\to} 0$ si $\sum_n p_n < \infty$;
- 3. Si les $(X_n)_{n\geq 1}$ sont indépendantes, montrer que $\mathbb{P}(X_n \not\to 0) = 1$ si $\sum_n p_n = \infty$;
- 4. Montrer enfin que si les $(X_n)_{n\geq 1}$ sont dépendantes, alors on peut avoir $\mathbb{P}(X_n\to 0)=1$ et $\sum_n p_n=\infty$. Indication : trouver un contre exemple du type $X_n=f_n(U)$ avec U uniforme

Solution. 1. On a $\mathbb{E}(|X_n|) = \mathbb{E}(X_n) = \mathbb{P}(X_n = 1) = p_n \to 0$, donc $X_n \to 0$ dans L^1 et donc en probabilité. Pour la convergence en probabilité, on peut aussi remarquer que $\mathbb{P}(|X_n| \geq \varepsilon) = p_n \mathbf{1}_{\varepsilon \leq 1} \to 0$.

- 2. D'après le premier lemme de Borel-Cantelli, si $\sum_n p_n < \infty$ alors $\mathbb{P}(\overline{\lim}_n \{|X_n| = 1\}) = 0$ i.e. $\mathbb{P}(\underline{\lim}_n \{|X_n| = 0\}) = 1$. Donc p.s. $|X_n| = 0$ pour n assez grand.
- 3. D'après le second lemme de Borel-Cantelli (nécessite l'indépendance des événements), si $\sum_n p_n = \infty$ alors $\mathbb{P}(\overline{\lim}_n \{|X_n| = 1\}) = 1$ i.e. p.s. $|X_n| = 1$ pour une infinité de valeurs de n, donc p.s. $X_n \not\to 0$.
- 4. En prenant $X_n = \mathbf{1}_{[0,p_n]}(U)$ et $p_n = 1/n$, on a $X_n \to 0$ p.s. car $p_n \to 0$, mais $\sum_n p_n = \infty$.

Exercice 2 (Convergence p.s). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires avec, pour tout $n\geq 1,\, X_n$ de loi exponentielle de paramètre n. Montrer que $X_n\to 0$ presque sûrement.

Solution. Comme X_n suit une loi exponentielle de paramètre n, on a pour tout t > 0,

$$\mathbb{P}(X_n > t) = e^{-nt}.$$

Ceci entraîne déjà que $X_n \to 0$ en probabilité. On observe de plus que cette convergence est très rapide. Prenons $t_n = \frac{1}{\sqrt{n}}$, on a alors

$$\mathbb{P}(X_n > t_n) = e^{-\sqrt{n}}, \qquad n \ge 1.$$

En particulier, $\sum_{n\geq 1} \mathbb{P}(X_n > t_n) < +\infty$. D'après le premier lemme de Borel-Cantelli, on conclut que $\mathbb{P}(\overline{\lim}_n \{X_n > t_n\}) = 0$ et donc $\mathbb{P}(\underline{\lim}_n \{X_n \leq t_n\}) = 1$. Autrement dit, avec probabilité 1, $0 \leq X_n \leq 1/\sqrt{n}$ pour tout n assez grand. Donc $X_n \to 0$ presque sûrement.

Exercice 3 (LGN). Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue bornée. Déterminer

$$\lim_{n \to \infty} \int_{[0,1]^n} f\left(\frac{x_1 + \dots + x_n}{n}\right) dx_1 \dots dx_n \quad \text{et} \quad \lim_{n \to \infty} \sum_{k=0}^{+\infty} e^{-\lambda n} \frac{(\lambda n)^k}{k!} f\left(\frac{k}{n}\right).$$

Solution. Si $S_n = X_1 + \cdots + X_n$ avec X_1, X_2, \ldots i.i.d. uniforms sur [0, 1] alors

$$\int_{[0,1]^n} f\left(\frac{x_1 + \dots + x_n}{n}\right) dx_1 \dots dx_n = \mathbb{E}(f(S_n/n)).$$

Par la loi forte des grands nombres, S_n/n converge vers $\mathbb{E}[X_1] = 1/2$ presque sûrement. Comme la fonction f est supposée continue sur \mathbb{R} on a $f(S_n/n) \to f(1/2)$ presque sûrement. La fonction f étant par ailleurs bornée, on a $|f(S_n/n)| \leq M$ où $M = ||f||_{\infty}$. Le théorème de convergence dominée entraîne donc que $\lim_{n\to+\infty} \mathbb{E}[f(S_n/n)] = f(1/2)$.

Pour la deuxième limite, on remarque que si $(X_n)_{n\geq 1}$ est une suite de variables aléatoires indépendantes de Poisson de paramètre $\lambda > 0$, alors pour tout $n \geq 1$, $X_1 + \cdots + X_n$ suit une loi de Poisson de paramètre $n\lambda$. Donc

$$\sum_{k=0}^{+\infty} e^{-\lambda n} \frac{(\lambda n)^k}{k!} f\left(\frac{k}{n}\right) = \mathbb{E}[f(S_n/n)].$$

On conclut comme précédemment que $\mathbb{E}[f(S_n/n)] \to f(\mathbb{E}[X_1]) = f(\lambda)$.

Exercice 4 (Marche aléatoire simple sur \mathbb{R}). On modélise la position d'une particule sur \mathbb{R} à l'instant n par $X_{n+1} = X_n + \varepsilon_{n+1}$ où $(\varepsilon_n)_{n \geq 1}$ est une suite de v.a.r. i.i.d. indépendantes de X_0 , et de moyenne m. Montrer que $\lim_{n \to \infty} |X_n| = +\infty$ presque sûrement si $m \neq 0$.

Solution. Par la loi forte des grands nombres, si $m \neq 0$ alors avec probabilité 1,

$$X_n - X_0 = \varepsilon_1 + \dots + \varepsilon_n = n(m + o_{n \to \infty}(1))$$

Donc $X_n \to \text{signe}(m)\infty$ presque sûrement.

Exercice 5 (Biais par la taille). On considère une population comportant un grand nombre n de foyers. On modélise la taille de ces foyers par une suite de v.a. i.i.d. X_1, \ldots, X_n sur \mathbb{N}^* , de moyenne $m := \mathbb{E}(X_1) = \sum_{k \geq 1} k p_k < \infty$ où $p_k = \mathbb{P}(X_1 = k)$. Soit T la taille du foyer d'un individu pris au hasard dans la population. Montrer que $\mathbb{P}(T = k) \approx \frac{k}{m} p_k$, pour tout $k \in \mathbb{N}^*$.

Solution. La population compte au total $X_1 + \cdots + X_n$ individus. On modélise le choix d'un individu au hasard par le tirage, conditionnellement à X_1, \ldots, X_n (c'est-à-dire sachant X_1, \ldots, X_n), d'un entier selon la loi uniforme sur l'intervalle $[1, X_1 + \cdots + X_n]$. Pour tout $k \geq 1$, il y a $N_k := \mathbf{1}_{\{X_1 = k\}} + \cdots + \mathbf{1}_{\{X_n = k\}}$ foyers de taille k qui comptent au total kN_k individus. Par conséquent, par définition de la loi uniforme (formule "cas favorables sur cas totaux") et à une double application de la loi forte des grands nombres :

$$\mathbb{P}(T = k | X_1, \dots, X_n) = \frac{k \sum_{i=1}^n \mathbf{1}_{\{X_i = k\}}}{\sum_{i=1}^n X_i} = \frac{k \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{\{X_i = k\}}}{\frac{1}{n} \sum_{i=1}^n X_i} \xrightarrow[n \to \infty]{\text{p.s.}} \frac{k}{m} p_k.$$

à présent, par convergence dominée, on obtient le résultat souhaité :

$$\mathbb{P}(T=k) = \mathbb{E}(\mathbb{P}(T=k|X_1,\ldots,X_n)) \underset{n\to\infty}{\longrightarrow} \frac{k}{m} p_k.$$

Exercice 6. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi à valeurs dans $\{a;b\}$ avec 0 < a < 1 < b et telles que $\mathbb{E}[X_1] = 1$. On pose $Y_n = \prod_{i=1}^n X_i, n \geq 1$. Montrer que $Y_n \stackrel{\text{p.s.}}{\to} 0$. La convergence a-t-elle lieu en moyenne? La variable $Y = \sup_{n\geq 1} Y_n$ est-elle intégrable?

Solution. Considérons $S_n := \log Y_n = \sum_{i=1}^n \log X_i$. D'après la loi forte des grands nombres, avec probabilité 1,

$$\frac{S_n}{n} \to \mathbb{E}[\log X_1],$$

lorsque $n \to \infty$. Or, en notant $p = \mathbb{P}(X_1 = a)$, on a

$$\mathbb{E}[\log X_1] = p \log a + (1-p) \log b < \log(pa + (1-p)b) = \log \mathbb{E}[X_1] = 0,$$

où l'inégalité stricte vient de la stricte concavité de la fonction log. On conclut que $S_n \to -\infty$ et donc que $Y_n \to 0$ avec probabilité 1. Par indépendance, $\mathbb{E}[Y_n] = \prod_{i=1}^n \mathbb{E}[X_i] = 1$. Il n'y a donc pas convergence en moyenne. On conclut en particulier que la variable $Y = \sup_{n \geq 1} Y_n$ n'est pas intégrable. En effet, si elle l'était, alors comme $0 \leq Y_n \leq Y$ et $Y_n \to 0$ p.s, on pourrait appliquer le théorème de convergence dominée et on aurait $\mathbb{E}[Y_n] \to 0$ - contradiction.

Exercice 7 (Une preuve de la LFGN). Dans cet exercice, on présente une preuve rapide de la loi forte des grands nombres sous une hypothèse de moment d'ordre 4 fini. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées telles que $\mathbb{E}[|X_1|^4] < \infty$. On pose $S_n = \sum_{k=1}^n X_k$ et on note $m = \mathbb{E}[X_1]$.

1. Montrer qu'il existe une constante K > 0 telle que, pour tout $n \ge 1$

$$\mathbb{E}[(S_n - nm)^4] \le Kn^2.$$

2. En déduire que $\frac{S_n}{n} \to m$ presque sûrement.

Solution. Sans perte de généralité, on suppose pour simplifier les notations que m=0. Il s'agit donc de montrer que $S_n/n \to 0$ presque sûrement.

1. En développant S_n^4 , on trouve

$$\mathbb{E}[S_n^4] = \mathbb{E}\left[\left(\sum_{i=1}^n X_i\right) \left(\sum_{j=1}^n X_j\right) \left(\sum_{k=1}^n X_k\right) \left(\sum_{l=1}^n X_l\right)\right] = \sum_{(i,j,k,l) \in \{1,\dots,n\}^4} \mathbb{E}[X_i X_j X_k X_l]$$

Distinguons les cas :

- Si (i, j, k, l) est tel que $i \notin \{j, k, l\}$ alors, par indépendance, $\mathbb{E}[X_i X_j X_k X_l] = \mathbb{E}[X_i] \mathbb{E}[X_j X_k X_l] = 0$. On a bien sûr la même conclusion si $j \notin \{i, k, l\}$, ou $k \notin \{i, j, l\}$ ou $l \notin \{i, j, k\}$.
- Considérons maintenant l'ensemble A des (i,j,k,l) restant. On a $A=A_1\cup A_2$, où A_1 est l'ensemble des (a,a,a,a), avec $a\in\{1,\ldots,n\}$ et A_2 l'ensemble des (a,a,b,b), (a,b,a,b), (a,b,b,a) avec $a\neq b$. D'où $\operatorname{Card}(A_1)=n$ et $\operatorname{Card}(A_2)=3n(n-1)$. De plus, si $(i,j,k,l)\in A_1$, $\mathbb{E}[X_iX_jX_kX_l]=\mathbb{E}[X_1^4]$ et si $(i,j,k,l)\in A_2$, $\mathbb{E}[X_iX_jX_kX_l]=\mathbb{E}[X_1^2]^2$. Finalement

$$\mathbb{E}[S_n^4] = n\mathbb{E}[X_1^4] + 3n(n-1)\mathbb{E}[X_1^2]^2.$$

On en conclut qu'il existe bien K > 0 telle que $\mathbb{E}[S_n^4] \leq Kn^2$, pour tout $n \geq 1$.

2. D'après la question précédente, on a donc $\mathbb{E}[(S_n/n)^4] \leq K/n^2$ et donc $\sum_{n=1}^{+\infty} \mathbb{E}[(S_n/n)^4] < +\infty$. Or par le théorème de convergence monotone,

$$\sum_{n=1}^{+\infty} \mathbb{E}[(S_n/n)^4] = \mathbb{E}\left[\sum_{n=1}^{+\infty} (S_n/n)^4\right]$$

Par conséquent, la variable aléatoire $V = \sum_{n=1}^{+\infty} (S_n/n)^4$ est intégrable. Etant intégrable elle est finie presque sûrement. Avec probabilité 1, la série $\sum_{n=1}^{+\infty} (S_n/n)^4$ est donc convergente, et par suite son terme général tend vers 0. Autrement dit, avec probabilité 1, $S_n/n \to 0$, ce qui termine la preuve.

Exercice 8 (Lemme de Scheffé). Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires positives intégrables convergeant presque sûrement vers une variable aléatoire X intégrable et telle que $\mathbb{E}[X_n]$ \to $\mathbb{E}[X]$.

Montrer que $X_n \stackrel{\mathrm{L}^1}{\to} X$.

Solution. Il s'agit de montrer que $\mathbb{E}[|X_n - X|] \to 0$ lorsque $n \to +\infty$. On remarque que

$$|X_n - X| = \max(X_n, X) - \min(X_n, X).$$

On sait que $X_n \to X$ presque sûrement (et donc $\min(X_n, X) \to X$ presque sûrement) et $0 \le \min(X_n, X) \le X$. Comme X est intégrable, le théorème de convergence dominée entraîne que $\mathbb{E}[\min(X_n, X)] \to \mathbb{E}[X]$. Par ailleurs,

$$X_n + X = \max(X_n, X) + \min(X_n, X)$$

et donc en passant à l'espérance

$$\mathbb{E}[\max(X_n, X)] = \mathbb{E}[X_n] + \mathbb{E}[X] - \mathbb{E}[\min(X_n, X)] \to \mathbb{E}[X].$$

Finalement, $\mathbb{E}[|X_n - X|] = \mathbb{E}[\max(X_n, X)] - \mathbb{E}[\min(X_n, X)] \to 0$ lorsque $n \to +\infty$.

Exercice 9 (Modes de convergence).

- 1. Montrer qu'une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires converge presque sûrement vers une variable aléatoire X si et seulement si $M_n = \sup_{k\geq n} |X_k X|$ converge vers 0 en probabilité.
- 2. Montrer qu'une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires converge en probabilité vers 0 si et seulement si $\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right] \to 0$ lorsque $n \to +\infty$.

Solution. 1. L'événement $C := \{X_n \to X\}$ s'écrit

$$C = \cap_{\varepsilon \in \mathbb{Q}_+^*} \cup_{n \geq 1} \cap_{k \geq n} \{ |X_n - X| \leq \varepsilon \} = \cap_{\varepsilon \in \mathbb{Q}_+^*} \cup_{n \geq 1} \{ M_n \leq \varepsilon \}$$

On remarque que si $\varepsilon \leq \varepsilon'$ alors $\bigcup_{n\geq 1} \{M_n \leq \varepsilon\} \subset \bigcup_{n\geq 1} \{M_n \leq \varepsilon'\}$. Par la propriété de continuité décroissante, on a donc

$$\mathbb{P}(C) = \inf_{\varepsilon \in \mathbb{Q}_+^*} \mathbb{P}(\cup_{n \ge 1} \{ M_n \le \varepsilon \}).$$

Par ailleurs, $\{M_n \leq \varepsilon\} \subset \{M_{n+1} \leq \varepsilon\}$, et donc par continuité croissante,

$$\mathbb{P}(\cup_{n\geq 1} \{M_n \leq \varepsilon\}) = \sup_{n>1} \mathbb{P}(\{M_n \leq \varepsilon\}) = \lim_{n\to\infty} \mathbb{P}(\{M_n \leq \varepsilon\}).$$

On a donc

$$X_n \stackrel{\mathrm{p.s}}{\to} X \Leftrightarrow \mathbb{P}(C) = 1 \Leftrightarrow \left(\mathbb{P}(\cup_{n \geq 1} \{ M_n \leq \varepsilon \}) = 1, \forall \varepsilon \in \mathbb{Q}_+^* \right) \Leftrightarrow \left(\lim_{n \to \infty} \mathbb{P}(\{ M_n \leq \varepsilon \}) = 1, \forall \varepsilon \in \mathbb{Q}_+^* \right) \Leftrightarrow M_n = 0$$

2. Si $X_n \stackrel{\mathbb{P}}{\to} 0$ alors, pour tout $\varepsilon > 0$

$$\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right] = \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\mathbf{1}_{|X_n|\leq \varepsilon}\right] + \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\mathbf{1}_{|X_n|>\varepsilon}\right] \leq \varepsilon + \mathbb{P}(|X_n|>\varepsilon).$$

En passant à la $\limsup_{n\to+\infty}$ on trouve $\limsup_{n\to+\infty}\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]\leq \varepsilon$. Ceci étant vrait pour tout $\varepsilon>0$, on en déduit que $\limsup_{n\to+\infty}\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]=0$ et donc, comme la suite est à valeurs positives, $\lim_{n\to+\infty}\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]=0$.

Réciproquement, comme la fonction $u \mapsto u/(1+u)$ est croissante sur \mathbb{R}^+ ,

$$\frac{\varepsilon}{1+\varepsilon} \mathbb{P}(|X_n| > \varepsilon) \le \mathbb{E}\left[\frac{|X_n|}{1+|X_n|} \mathbf{1}_{|X_n| > \varepsilon}\right] \le \mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right],$$

et donc la convergence en probabilité de X_n vers 0 découle de la convergence de $\mathbb{E}\left[\frac{|X_n|}{1+|X_n|}\right]$ vers 0.

Exercice 10. Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles, et Z et Z' deux variables aléatoires réelles.

1. On suppose que:

$$X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z$$
 et $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z'$.

Montrez que Z = Z' p.s.

2. On suppose que Z = Z' p.s. montrez que

$$X_n \xrightarrow[n \to +\infty]{p.s.} Z \iff X_n \xrightarrow[n \to +\infty]{p.s.} Z'.$$

3. On suppose que $(X_n)_{n\geq 1}$ est une suite croissante. Montrez que :

$$X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z \implies X_n \xrightarrow[n \to +\infty]{p.s.} Z.$$

4. On suppose que la suite $(X_n)_{n\geq 1}$ est une suite i.i.d. et on pose

$$m := \sup\{x \in \mathbb{R} \mid F_X(x) < 1\},\$$

avec F_X la fonction de répartition de X_1 . On suppose que $m < +\infty$. On pose pour tout $n \ge 1$,

$$M_n := \max_{1 \le i \le n} X_i.$$

Montrez que

$$M_n \xrightarrow[n \to +\infty]{p.s.} m.$$

Solution. 1. Soit $\varepsilon > 0$, on remarque que si $|X_n - Z| \le \varepsilon/2$ et que $|X_n - Z'| \le \varepsilon/2$ alors $|Z - Z'| \le |X_n - Z| + |X_n - Z'| \le \varepsilon$ et donc :

$$\{|X_n - Z| \le \varepsilon/2\} \cap \{|X_n - Z'| \le \varepsilon/2\} \subset \{|Z - Z'| \le \varepsilon\},$$

puis par complémentarité :

$$\{|Z-Z'|>\varepsilon\}\subset\{|X_n-Z|>\varepsilon/2\}\cup\{|X_n-Z'|>\varepsilon/2\}.$$

On en déduit :

$$\mathbb{P}\left(|Z-Z'|>\varepsilon\right)\leq \mathbb{P}\left(|X_n-Z|>\varepsilon/2\right)+\mathbb{P}\left(|X_n-Z'|>\varepsilon/2\right)\underset{n\to+\infty}{\longrightarrow}0.$$

Puis, par continuité croissante des probabilités, en faisant tendre ε vers 0,

$$\mathbb{P}(Z \neq Z') = \mathbb{P}(|Z - Z'| > 0) = 0,$$

ce qui permet de conclure que Z = Z' p.s.

2. Soient:

$$C := \{ \omega \in \Omega \mid X_n(\omega) \to Z(\omega) \} \text{ et } C' = \{ \omega \in \Omega \mid Z(\omega) = Z'(\omega) \}.$$

Pour tout $\omega \in C \cap C'$, par construction, $X_n(\omega) \to Z'(\omega)$. De plus :

$$\mathbb{P}(C \cap C') = 1 - \mathbb{P}(C^c \cup C'^c) > 1 - \mathbb{P}(C^c) - \mathbb{P}(C'^c) = 1.$$

3. Soit $\omega \in \Omega$, la suite $(X_n(\omega))_{n\geq 1}$ est croissante : soit elle converge, soit elle diverge en $+\infty$.

On pose:

$$C := \{ \omega \in \Omega \mid X_n(\omega) \to +\infty \}.$$

Soit $\varepsilon > 0$, on a :

$$\mathbb{P}\left(|X_n - Z| > \varepsilon\right) \ge \mathbb{P}\left(\left\{|X_n - Z| > \varepsilon\right\} \cap C\right) = \mathbb{E}\left(\mathbf{1}_{\left\{|X_n - Z| > \varepsilon\right\} \cap C}\right)$$

Etant donné que pour $\omega \in C$, $X_n(\omega)$ tend vers l'infini, par convergence dominée,

$$\lim_{n \to +\infty} \mathbb{P}\left(|X_n - Z| > \varepsilon\right) \ge \mathbb{P}(C).$$

Comme $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z$, on a $\mathbb{P}(C) = 0$.

Pour $\omega \notin C$, $X_n(\omega)$ converge, notons $Z'(\omega)$ sa limite. Par construction,

$$X_n \xrightarrow[n \to +\infty]{p.s.} Z'.$$

La convergence p.s. implique la convergence en probabilité, on obtient

$$X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z'.$$

En appliquant le résultat de la première question, on en déduit que Z=Z' p.s., et en appliquant la question 2 on en déduit que

$$X_n \xrightarrow[n \to +\infty]{p.s.} Z.$$

4. On remarque que $(M_n)_{n\geq 1}$ est une suite croissante, par la question précédente, il suffit de montrer que $(M_n)_{n\geq 1}$ converge en probabilité vers m.

On remarque que par définition de m et par continuité à droite de F_X , $F_X(x) = 1$ pour $x \ge m$, en particulier,

$$\mathbb{P}(X_1 \le m) = 1.$$

Ceci implique que pour tout $n, X_n \leq m$ p.s. puis $M_n \leq m$ p.s. Finalement,

$$\mathbb{P}\left(|M_n - m| > \varepsilon\right) = \mathbb{P}\left(m - M_n > \varepsilon\right) = \mathbb{P}\left(M_n < m - \varepsilon\right) = F_X^n(m - \varepsilon).$$

Comme $m - \varepsilon < m$, par définition de m, $F_X(m - \varepsilon) < 1$ et on en déduit le résultat.