TD 14: Groupes, Anneaux, Corps

► Lois de composition interne

- EXERCICE 14.1 Soit (E, \leq) un ensemble totalement ordonné. Alors pour tout $(x, y) \in E^2$, $\max(x, y)$ est bien défini. On définit ainsi une loi de composition interne, notée max sur E.
- PD

- 1. Montrer que la loi max est associative et commutative.
- 2. Donner une condition nécessaire et suffisante pour que (E, max) possède un élément neutre.
- 3. Lorsque cette condition est vérifiée, quels sont les éléments inversibles de E?

EXERCICE 14.2 Éléments réguliers

AD

Soit *E* un ensemble muni d'une loi de composition interne \star , associative, et possédant un élément neutre *e*. Un élément $x \in E$ est dit régulier à gauche si $\forall (y, z) \in E^2$, $x * y = x * z \Rightarrow y = z$ et régulier à droite si $\forall (y, z) \in E^2$, $y * x = z * x \Rightarrow y = z$.

- 1. Quels sont les éléments réguliers (à droite ou à gauche) de (\mathbf{Z}, \times) ?
- 2. Soit A un ensemble. Montrer que dans $(\mathcal{F}(A, A), \circ)$, un élément f est régulier à droite si et seulement si f est surjective. Donner une condition nécessaire et suffisante pour que f soit régulier à gauche.

▶ Groupes

Exercice 14.3 On définit une loi de composition interne \star sur **R** par : $\forall (x,y) \in \mathbf{R}^2$, $x \star y = \sqrt[3]{x^3 + y^3}$. Montrer que (\mathbf{R}, \star) est un groupe abélien.

PD

Exercice 14.4 Centre d'un groupe

PD

Soit G un groupe. On appelle centre de G l'ensemble $\mathcal{Z}(G) = \{x \in G, \forall y \in G, xy = yx\}$ des éléments commutant avec tous les éléments de G. Montrer que $\mathcal{Z}(G)$ est un sous-groupe de G. À quelle condition a-t-on $\mathcal{Z}(G) = G$?

Exercice 14.5 Divers sous-groupes

Dans chacun des cas suivants, déterminer si H est ou non un sous-groupe de G.

PD

1.
$$G = (\mathbf{C}^*, \times), \quad H = \bigcup_{n \in \mathbf{N}^*} \mathbf{U}_n$$

tous les coefficients sont dans Z.

- 2. $G = \mathcal{M}_n(\mathbf{C})$, H l'ensemble des matrices triangulaires supérieures de G.
- 4. $G = GL_n(\mathbf{R})$, H l'ensemble des matrices triangulaires supérieures dont les coefficients diagonaux valent 1.
- 3. $G = GL_2(\mathbf{R})$, H l'ensemble des éléments de G dont
- 5. $G = \mathfrak{S}_n$, $H = \{ \sigma \in \mathfrak{S}_n \mid \sigma(1) = 2 \}$

Exercice 14.6 Donner les tables de multiplication de U_4 et $U_2 \times U_2$. Prouver alors que ces deux groupes ne sont pas isomorphes (c'est-à-dire qu'il n'existe pas d'isomorphisme entre ces groupes), bien que de même cardinal.

AD

Exercice 14.7 Soit G un groupe non réduit à un élément tel que pour tout $g \in G$, $g^2 = e$.

- 1. Montrer que tout élément est égal à son propre inverse. En déduire que G est abélien.
- 2. Montrer que *G* possède au moins un sous-groupe de cardinal 2.
- 3. On suppose que G contient au moins trois éléments. Soit H un sous-groupe fini de G, différent de $\{e\}$ ou de G, et soit $g \in G \setminus H$. On pose alors $gH = \{gh, h \in H\}$.
 - (a) Montrer que $H \cup gH$ est un sous-groupe de cardinal 2|H|.
 - (b) Montrer que si G est fini, alors son cardinal est une puissance de 2.

Exercice 14.8 Un cas particulier du théorème de Lagrange

AD

Soit *G* un groupe commutatif fini, de cardinal *n*.

- 1. Soit $g \in G$. Montrer que $x \mapsto gx$ est une bijection de G sur lui-même.
- 2. Soit $g \in G$. En calculant de deux manières le produit $\prod_{x \in G} (gx)$, montrer que $g^n = 1_G$.
- 3. Déterminer tous les sous-groupes finis de (C^*, \times) .

Exercice 14.9 Opérations sur les sous-groupes

AD

- Soit G un groupe, H et K deux sous-groupes de G. On note $HK = \{h \cdot k, (h, k) \in H \times K\}$
 - 1. Montrer que $H \cap K$ est un sous-groupe de G.
 - 2. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.
 - 3. Si G est abélien, montrer que HK est un sous-groupe de G.

4. (\star) Prouver que HK est un sous-groupe de G si et seulement si HK = KH.

Exercice 14.10 Soit G un groupe. On définit une relation binaire sur G par $x \sim y \Leftrightarrow \exists g \in G, \ x = g^{-1}yg$.

- 1. Montrer que \sim est une relation d'équivalence sur G.
- 2. Déterminer le cardinal de la classe d'équivalence de 1_G .
- 3. Si G est abélien, prouver que les classes d'équivalence sont des singletons.
- 4. Montrer que si $x \sim y$ et s'il existe $n \in \mathbb{N}$ tel que $x^n = 1_G$, alors $y^n = 1_G$.

EXERCICE 14.11 Dans cet exercice, on note G l'ensemble des similitudes directes du plan, qu'on assimile à l'ensemble des fonctions $f: \mathbf{C} \to \mathbf{C}$ telles qu'il existe $(a,b) \in \mathbf{C}^* \times \mathbf{C}$ tels que $\forall z \in \mathbf{C}$, f(z) = az + b.

AD

AD

- 1. Montrer que (G, \circ) est un groupe, et qu'il n'est pas abélien.
- 2. Soit $z_0 \in \mathbb{C}$. On pose $G_{z_0} = \{g \in G \mid g(z_0) = z_0\}$. Montrer que G_{z_0} est un sous-groupe de G, isomorphe à \mathbb{C}^* . Est-il abélien ?

Exercice 14.12 Soit G un groupe, et soit $x \in G$. On dit que x est d'ordre fini s'il existe $n \in \mathbb{N}^*$ tel que $x^n = e_G$.

AD

- 1. Montrer que si G est abélien, et que x et y sont d'ordre fini, alors xy est encore d'ordre fini.
- 2. Le résultat de la question précédente reste-t-il vrai si G n'est plus abélien ?

Exercice 14.13 Conjugaison dans un groupe

Soit G un groupe. Pour $a \in G$, on pose $\tau_a : \begin{vmatrix} G & \longrightarrow & G \\ g & \longmapsto & aga^{-1} \end{vmatrix}$.

AD

- 1. Montrer que τ_a est un morphisme bijectif de G dans lui-même (on parle alors d'automorphisme).
- 2. On pose $\mathscr{C}(G) = \{\tau_a, a \in G\}$. Montrer qu'il s'agit d'un sous-groupe de $(\mathfrak{S}(G), \circ)$.
- 3. Montrer que l'application $\varphi: G \to \mathfrak{S}(G)$ qui à $a \in G$ associe τ_a est un morphisme de groupes. Quel est son noyau ?

Exercice 14.14 Soit $f: G_1 \to G_2$ un morphisme de groupes.

PD

- 1. Prouver que pour tout sous-groupe H_1 de G_1 , $f(H_1)$ est un sous-groupe de G_2 .
- 2. Prouver que pour tout sous-groupe H_2 de G_2 , $f^{-1}(H_2)$ est un sous-groupe de G_1 . En déduire que Ker f est un sous-groupe de G_1 .

Exercice 14.15 Déterminer tous les morphismes de groupe de (Z, +) dans (Z, +). De (Q, +) dans (Z, +).

AD

Exercice 14.16 Soit (G, *) un groupe, et soit A une partie non vide finie de G, stable par *. Prouver que A est un sous-groupe de G.

D

► Anneaux, corps

EXERCICE 14.17 Montrer que $\mathbf{Z}[\sqrt{2}] = \{x + y\sqrt{2}, (x, y) \in \mathbf{Z}^2\}$ est un anneau.

Prouver que $\mathbf{Q}(\sqrt{2}) = \{x + y\sqrt{2}, (x, y) \in \mathbf{Q}^2\}$ est un corps.

AD

Exercice 14.18 Soit $\mathbb D$ l'ensemble des nombres décimaux. Montrer que $(\mathbb D,+,\times)$ est un anneau. Est-ce un corps ?

F PD

EXERCICE 14.19 Produit direct d'anneaux

Soient $(A, +_A, \times_A)$ et $(B, +_B, \times_B)$ deux anneaux. On munit $A \times B$ de deux lois de composition \oplus et \otimes définies par :

$$(a,b) \oplus (a',b') = (a +_A a', b +_B b') \text{ et } (a,b) \otimes (a',b') = (a \times_A a', b \times_B b').$$

Montrer que $(A \times B, \oplus, \otimes)$ est un anneau, commutatif si A et B le sont. Cet anneau est-il intègre ?

Exercice 14.20 Parmi les ensembles suivants, lesquels sont des sous-anneaux de $\mathbb{R}^{\mathbb{N}}$, l'anneau des suites réelles ?

PD

- 1. l'ensemble des suites de limite nulle
- 2. l'ensemble des suites croissantes
- 3. l'ensemble des suites convergentes
- 4. l'ensemble des suites divergentes

- 5. l'ensemble des suites bornées
- 6. l'ensemble des suites (u_n) telles que $\lim_{n\to+\infty} u_n = +\infty$
- 7. l'ensemble des suites stationnaires
- 8. l'ensemble des suites nulles à partir d'un certain rang

Exercice 14.21 Soit $(A, +, \times)$ un anneau commutatif. Pour $a \in A$, on appelle racine carrée de a tout élément dont le carré vaut a.

AD

- 1. Prouver que si A est intègre, alors tout élément de A admet au plus deux racines carrées.
- 2. En revanche, prouver que dans $(\mathcal{F}(\mathbf{R},\mathbf{R}),+,\times)$, la fonction constante $x\mapsto 1$ possède une infinité de racines carrées.

EXERCICE 14.22 Soit A un anneau commutatif et E un ensemble non vide. À quelle condition $\mathcal{F}(E,A)$ est-il intègre?

PD

Exercice 14.23 Montrer qu'un anneau commutatif intègre fini est un corps.

EXERCICE 14.24 Idéaux premiers (D'après oral ENS)

Soit A un anneau commutatif non nul. On appelle idéal de A tout sous-groupe I de (A, +) tel que $\forall (a, x) \in A \times I$, $ax \in I$.

- 1. Montrer que pour tout $x \in A$, $xA = \{ax, a \in A\}$ est un idéal de A.
- 2. Un idéal I est dit maximal si tout idéal de A, différent de A, et qui contient I est égal à I lui-même. Et un idéal I différent de A est dit premier si $\forall (a,b) \in A^2$, $ab \in I \Rightarrow a \in I$ ou $b \in I$.
 - (a) Montrer qu'un idéal I est maximal si et seulement si pour tout $x \in A \setminus I$, I + xA = A (où I + aA est l'ensemble des éléments qui s'écrivent comme somme d'un élément de I et d'un élément de aA).
 - (b) Prouver qu'un idéal maximal est premier.
- 3. Montrer que A est un corps si et seulement si tout idéal de A est premier.

Correction des exercices du TD 14

SOLUTION DE L'EXERCICE 14.1

- 1. C'est trivial.
- 2. Supposons que *E* contienne un élément neutre *e* pour max. Alors, pour tout $x \in E$, $\max(x, e) = x$, et donc $e \le x$.

Donc un élément neutre est forcément un minorant de *E*, et étant dans *E*, c'est le plus petit élément de *E*.

Inversement, si E possède un plus petit élément e, alors pour tout $x \in E$, $\max(x, e) = x$, et donc e est élément neutre.

Ainsi, (E, max) possède un élément neutre si et seulement si il possède un plus petit élément.

3. L'élément neutre est bien entendu inversible, égal à son propre inverse.

Soit $x \in E$ un élément inversible. Alors il existe $y \in E$ tel que $\max(x, y) = e$.

Donc soit x = e, soit y = e.

Mais si y = e, alors y est l'inverse de x, et donc $x = y^{-1} = e^{-1} = e$.

Donc *e* est l'unique élément inversible de *E*.

SOLUTION DE L'EXERCICE 14.2

1. Notons que **Z** étant commutatif, les éléments réguliers à droite et réguliers à gauche sont les mêmes

Supposons donc que x soit régulier, et soient $y, z \in \mathbb{Z}$ tels que xy = xz.

Alors x(y-z) = 0. Et donc soit x = 0, soit $y - z = 0 \Leftrightarrow y = z$.

Il est clair que 0 n'est pas régulier car $0 \cdot 1 = 0 \cdot 2$. Donc tout élément non nul de ${\bf Z}$ est régulier.

2. Supposons que f soit surjective, et soient $g,h\in \mathcal{F}(A,A)$ telles que $g\circ f=h\circ f$.

Soit alors $y \in A$. Par surjectivité de f, il existe $x \in A$ tel que y = f(x).

Et alors g(y) = g(f(x)) = h(f(x)) = h(y). Ceci étant vrai quel que soit $y \in A$, on en déduit que g = h, donc que f est régulier à droite.

En revanche, si f n'est pas surjective, alors il existe $y \in A$ qui ne possède pas d'antécédent par f. Et alors deux fonctions g et h qui diffèrent uniquement en y vérifient $\forall x \in A, g(f(x)) = h(f(x))$ car $f(x) \neq y$.

Pourtant $h \neq g$ par hypothèse, donc f n'est pas régulier à droite.

Si f est injective, soient alors g et h deux fonctions telles que $f \circ g = f \circ h$.

Alors pour tout $x \in A$, f(g(x)) = f(h(x)), et donc g(x) = h(x). Donc g = h: f est régulier à gauche.

Inversement, soit f une fonction régulière à gauche pour la composition, et soient $x_1, x_2 \in A$ tels que $f(x_1) = f(x_2)$.

Soient alors q et h les fonctions constantes égales respectivement à x_1 et x_2 .

On a donc $f \circ g = f \circ h$. Et donc g = h, de sorte que $x_1 = x_2$.

SOLUTION DE L'EXERCICE 14.3

Commençons par prouver l'associativité de la loi \star : soient x, y, z trois réels. Alors

$$x \star (y \star z) = \sqrt[3]{x^3 + \left(\sqrt[3]{y^3 + z^3}\right)^3} = \sqrt[3]{x^3 + y^3 + z^3}.$$

Et d'autre part,

$$(x \star y) \star z = \sqrt[3]{\left(\sqrt[3]{x^3 + y^3}\right)^3 + z^3} = \sqrt[3]{x^3 + y^3 + z^3} = x \star (y \star z).$$

Donc \star est une loi de composition associative.

Notons qu'elle est clairement commutative, puisque la somme dans **R** est commutative, et donc $x^3 + y^3 = y^3 + x^3$.

Autrement dit

On suppose que g(x) = h(x)pour tout $x \neq y$ et que $g(y) \neq h(y)$. 0 est l'élément neutre pour \star , puisque pour tout $x \in \mathbb{R}$, $x \star 0 = \sqrt[3]{x^3} = x$. Et par commutativité, $0 \star x = x \star 0 = x$.

Enfin, tout élément admet bien un inverse, qui est -x, puisque

$$x \star (-x) = \sqrt[3]{x^3 + (-x)^3} = \sqrt[3]{x^3 - x^3} = \sqrt[3]{0} = 0.$$

Et par commutativité, $(-x) \star x = 0$.

Ainsi, (\mathbf{R}, \star) est bien un groupe.

SOLUTION DE L'EXERCICE 14.4

Pour tout $x \in G$, ex = xe = x, donc $e \in \mathcal{Z}(G)$.

Soit $g \in \mathcal{Z}(G)$, et soit $x \in G$. Alors $gx^{-1} = x^{-1}g$, et donc en passant à l'inverse, $xg^{-1} = g^{-1}x$, de sorte que x et g^{-1} commutent. Ceci étant vrai pour tout $x \in G$, $g^{-1} \in \mathcal{Z}(G)$.

Enfin, si $g, h \in \mathcal{Z}(G)$, alors pour tout $x \in G$,

$$ghx = g(hx) = g(xh) = (gx)h = xgh.$$

Donc gh et x commutent, de sorte que $gh \in \mathcal{Z}(G)$.

Et donc nous avons bien vérifié les quatre points caractérisant un sous-groupe, $\mathcal{Z}(G)$ est un sous-groupe de G.

On a alors $\mathcal{Z}(G) = G$ si et seulement si

$$\forall q \in G, \ q \in \mathcal{Z}(G) \Leftrightarrow \forall (q,h) \in G^2, \ hq = qh.$$

Soit encore si et seulement si G est abélien.

SOLUTION DE L'EXERCICE 14.5

1. 1 (qui est l'élément neutre de C^*) est dans tous les U_n , donc dans leur union.

Soient
$$x, y \in \bigcup_{n \in \mathbb{N}^*} \mathbf{U}_n$$
.

Alors il existe $n \in \mathbb{N}^*$ tel que $x^n = 1$ et il existe $p \in \mathbb{N}^*$ tel que $y^p = 1$.

Mais alors $(xy)^{np} = x^{np}y^{np} = (x^n)^p (y^p)^n = 1^p 1^n = 1$.

Donc $xy \in H$.

De plus, si $x \in H$, alors il existe $n \in \mathbb{N}^*$ tel que $x^n = 1$, et donc $\left(\frac{1}{x}\right)^n = 1$, donc $\frac{1}{x} \in \mathbb{U}_n \subset H$.

Ainsi, *H* est un sous-groupe de *G*.

2. La matrice nulle est dans *H*.

La somme¹ de deux matrices triangulaires supérieures est encore triangulaire supérieure. Et si $M \in H$, alors -M (qui est l'inverse de M pour l'addition) est encore dans H.

Donc H est un sous-groupe de $\mathcal{M}_n(\mathbb{C})$.

3. $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ est dans H, mais son inverse, $\begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}$ n'est pas dans H, donc H n'est pas un sous-groupe de G.

4. La matrice I_n est dans H.

Le produit de deux matrices de H est dans H.

Et si $M \in H$, alors son inverse est triangulaire supérieure, et ses coefficients diagonaux sont les inverses de ceux de M, donc valent tous 1.

Donc $M^{-1} \in H$: H est un sous-groupe de G.

5. $id(1) = 1 \neq 2$, donc id, qui est l'élément neutre de \mathfrak{S}_n n'est pas dans H: H n'est pas un sous-groupe de G.

SOLUTION DE L'EXERCICE 14.6

Pour $U_4 = \{1, -1, i, -i\}$, il n'y a pas de difficulté :

×	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Remarque

Bien que l'élément neutre soit le même que celui du groupe (R, +), et que l'inverse d'un élément x soit également le même que dans (R, +), il ne s'agit pas du même groupe, car en général,

 $x \star y \neq x + y$.

Par exemple

 $1 \star 1 = \sqrt[3]{2} \neq 2 = 1 + 1.$

🙎 Danger !-

n et p n'ont aucune raison d'être égaux.

- Remarque –

Si on ajoute la condition que $\det A = \pm 1$, alors H devient un sous-groupe de G.

¹ Ici, $\mathcal{M}_n(\mathbf{C})$ est bien muni de la somme.

CORRECTION 3

Puisque $U_2 = \{-1, 1\}$, le groupe $U_2 \times U_2$ contient 4 éléments : (1, 1), (-1, -1), (1, -1), (-1, 1), et on a alors

×	(1, 1)	(-1, -1)	(-1,1)	(1, -1)
(1, 1)	(1, 1)	(-1, -1)	(-1,1)	(1, -1)
(-1, -1)	(-1, -1)	(1, 1)	(1,-1)	(-1,1)
(-1,1)	(-1,1)	(1,-1)	(1, 1)	(-1, -1)
(1,-1)	(1,-1)	(-1,1)	(-1, -1)	(1, 1)

En particulier, pour tout x dans $U_2 \times U_2$, on a $x^2 = (1, 1)$ l'élément neutre.

Supposons par l'absurde qu'il existe un isomorphisme $\varphi: \mathbf{U}_2 \times \mathbf{U}_2 \to \mathbf{U}_4$.

Alors pour tout $y \in U_4$, il existe un unique $x \in U_2 \times U_2$ tel que $y = \varphi(x)$. Et alors $y^2 = \varphi(x)^2 = \varphi(x^2) = \varphi((1,1)) = 1$.

Autrement dit, le carré de tout élément de U_4 est égal à 1. Ceci est manifestement faux, puisque $i^2 = -1 \neq 1$.

Par conséquent, il n'existe pas d'isomorphisme de $U_2 \times U_2 \to U_4$.

Solution de l'exercice 14.7

- 1. Pour tout $x \in G$, $xx = x^2 = e$, et donc $x^{-1} = x$.
- 2. Soient $x, y \in G$. Alors $xy = (xy)^{-1}$. Mais $(xy)^{-1} = y^{-1}x^{-1}$, qui par la question précédente vaut yx. Et donc xy = yx, si bien que G est abélien.
- 3. Il existe $x \in G$ tel que $x \ne e$. Et alors $\{e, x\}$ est un sous-groupe de G, de cardinal 2.
- **4.a.** Notons qu'un tel sous-groupe *H* existe par la question précédente.

Puisque $e \in H$, $e \in H \cup gH$.

Soient $g_1, g_2 \in H \cup gH$. Soit $g_1 \in H$, soit il existe $h_1 \in H$ tel que $g_1 = gh_1$.

De même, soit $g_2 \in H$, soit il existe $h_2 \in H$ tel que $g_2 = gh_2$.

Montrons que $g_1g_2 \in H \cup gH$ est stable par produit, puisque tout élément étant égal à son propre inverse, on aura donc, $g_1g_2^{-1} = g_1g_2 \in H \cup gH$.

- ▶ Si $g_1, g_2 \in H$. Alors $g_1g_2 \in H$ par définition d'un sous-groupe.
- ► Si $g_1 \in H$ et $g_2 \notin H$. Alors $g_1g_2 = g_1gh_2 = g(g_1h_2) \in gH \subset H \cup gH$.

► Si $g_1 \notin H$ et $g_2 \in H$. Alors $g_1g_2 = g(h_1g_2)$.

► Si $g_1 \notin H$ et $g_2 \notin H$. Alors $g_1g_2 = gh_1gh_2 = g^2h_1h_2 = h_1h_2 \in H \subset H \cup gH$.

Donc nous avons bien prouvé que pour tout $g_1, g_2 \in H \cup gH$, $g_1g_2 \in H \cup gH$, qui est donc un sous-groupe de G.

Puisque la translation à gauche par g est bijective, $h \mapsto gh$ est une bijection de H sur gH, qui a donc même cardinal que H.

Par ailleurs, H et gH sont disjoints. En effet, supposons par l'absurde qu'il existe $x \in H \cup gH$. Alors $x \in H$ et il existe $h \in H$ tel que x = gh. Et alors $g = xh^{-1} \in H$, ce qui est absurde puisqu'on a supposé $g \notin H$.

Donc $H \cup gH$ est de cardial Card(H) + Card(gH) = 2Card(H).

4.b. Supposons par l'absurde que Card(*G*) ne soit pas une puissance de 2.

Soit alors H_1 un sous-groupe de G de cardinal 2. Alors $H_1 \neq G$, et donc il existe $g_1 \in G \setminus H_1$. Donc $H_2 = H_1 \cup g_1 H_1$ est un sous-groupe de G de cardinal 4.

Mais alors $H_2 \neq G$ puisque G n'est pas de cardial 4. Donc il existe $g_2 \in G \setminus H_2$. Et alors $H_3 = H_2 \cup g_2H_2$ est un sous-groupe de G de cardinal 8.

Mais H_3 n'est pas égal à G, etc.

On construit donc par récurrence une suite de sous-groupes $(H_k)_{k\geqslant 1}$ tels que H_k soit de cardinal 2^k .

Mais si k est suffisamment grand, $2^k > Card(G)$, ce qui est absurde.

Donc Card(G) est nécessairement une puissance de 2.

SOLUTION DE L'EXERCICE 14.8

1. Notons $f_g: x \mapsto gx$, et $f_{g^{-1}}: x \mapsto g^{-1}x$. Alors, pour tout $x \in G$,

$$\left(f_g\circ f_{g^{-1}}\right)(x)=g(g^{-1}x)=x \text{ et de même } \left(f^{g^{-1}}\circ f_g\right)(x)=g^{-1}(gx)=x.$$

Donc non seulement f_q est bijective, mais en plus, nous savons que son inverse est $f_{q^{-1}}$.

Un morphisme envoie toujours l'élément neutre sur l'élément neutre.

D'une part, f_q étant bijective, on a, avec le changement de variable y = gx,

$$\prod_{x\in G}(gx)=\prod_{y\in G}y.$$

D'autre part, G étant commutatif, on a

$$\prod_{g \in G} (gx) = g^n \prod_{x \in G} x.$$

Détaillons un poil ce calcul pour bien voir où l'hypothèse de commutativité est indispensable : notons $G = \{g_1, g_2, \dots, g_n\}$. Alors

$$\prod_{x \in G} (gx) = \prod_{i=1}^{n} (gx_i)$$

$$= (gx_1)(gx_2) \cdots (gx_n) = gx_1gx_2 \cdots gx_n$$

$$= ggx_1x_2gx_3 \cdots gx_n$$

$$= \cdots = \underbrace{g \cdots g}_{n \text{ fois}} (x_1x_2 \cdots x_n)$$

$$= g^n \prod_{x \in G} x.$$

En notant $A = \prod x$, on a donc $g^n A = A$, et donc en multipliant à droite par A^{-1} , $g^n = 1_G$.

D'après la question précédente, un sous-groupe de cardinal n de (\mathbb{C}^*, \times) , qui sera forcément commutatif car (\mathbb{C}^* , ×) l'est, est formé d'éléments z tels que $z^n = 1$.

Par conséquent, il est formé de racines $n^{\text{èmes}}$ de l'unité.

Autrement dit, si G est un sous-groupe de (\mathbb{C}^*,\times) de cardinal n, alors $G\subset \mathbb{U}_n$.

Mais U_n est lui-même de cardinal n, et donc $G = U_n$.

Donc pour tout $n \in \mathbb{N}^*$, (\mathbb{C}^*, \times) possède un unique sous-groupe de cardinal n, qui est \mathbb{U}_n .

SOLUTION DE L'EXERCICE 14.9

- C'est du cours, mais reprouvons-le tout de même :
 - ▶ $e_G \in H$ car H est un sous-groupe, et de même, $e_G \in K$. Donc $e_G \in H \cap K$.
 - ▶ soient $q_1, q_2 \in H \cap K$. Alors $q_1q_2 \in H$ car H est un sous-groupe, et de même, $q_1q_2 \in K$, donc $g_1g_2 \in H \cap K : H \cap K$ est stable par produit.
 - ▶enfin, si $g \in H \cap K$, alors $g^{-1} \in H$, puisque H est un sous-groupe, et de même $g^{-1} \in K$, donc $g^{-1} \in H \cap K$.

Et donc $H \cap K$ est un sous-groupe de G.

Si l'un des deux sous-groupes est inclus dans l'autre, alors il est évident que $H \cup K$ est un sous-groupe².

Inversement supposons que $H \cup K$ soit un sous-groupe de G, et supposons que $H \not\subset K$ et

Alors il existe $h \in H \setminus K$ et il existe $k \in K \setminus H$.

Alors $hk \in H \cup K$.

- ► Si $hk \in H$: alors $h^{-1} \in H$ et donc $k = h^{-1}(hk) \in H$, ce qui est absurde.
- ► Si $hk \in K$: alors $k^{-1} \in K$ et donc $h = (hk)k^{-1} \in K$, ce qui est absurde.

Dans tous les cas, on aboutit à une contradiction, et donc $H \cup K$ sous-groupe de G implique $H \subset K$ ou $K \subset H$.

Déjà, $e_G = \underbrace{e_G}_{} \underbrace{e_G}_{} \in HK.$

Soient $x, y \in HK$. Alors il existe $(h, h') \in H^2$ et $(k, k') \in K^2$ tels que x = hk et y = h'k'.

Et alors $xy = (hk)(h'k') = hkh'k' = hh'kk' = \underbrace{hh'}_{\in H} \underbrace{kk'}_{\in K} \in HK$. Et avec les mêmes notations, $x^{-1} = (hk)^{-1} = k^{-1}h^{-1} = \underbrace{h^{-1}}_{\in H} \underbrace{k^{-1}}_{\in K} \in HK$.

Donc HK est un sous-groupe de G.

Explication

La bijectivité nous dit que les gx, quant x parcourt G, prennent une et une seule fois chaque valeur dans G. Et donc le produit des gx est le même que le produit des $x, x \in G$.

Remarquons au passage que cette notation produit n'a de sens que parce que le groupe est commutatif, sans cela, on ne saurait pas dans quel ordre a lieu le produit.

L'associativité nous permet de nous passer des parenthèses.

La commutativité sert ici : on peut permuter l'ordre de deux facteurs.

² Puisqu'il est égal soit à *H* soit à \hat{K} .

Rédaction 🥔

Attention aux quantificateurs : il existe un élément dans H pas dans K, mais ce n'est pas le cas de tous les éléments de H (ne serait-ce que parce que e_G est dans Het dans K).

4. Supposons que KH = HK. Prouvons qu'alors HK est un sous-groupe de G.

Il contient évidemment $e_G = e_G \cdot e_G$.

Soient $x, y \in HK$. Alors il existe $h_1, h_2 \in H$ et $k_1, k_2 \in K$ tels que $x = h_1k_1$ et $y = h_2k_2$.

Et alors $xy^{-1} = (h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1}$. Mais $(k_1k_2^{-1})h_2^{-1} \in KH = HK$. Donc il existe $h \in H$ et $k \in K$ tels que $(k_1k_2^{-1})h_2^{-1} = hk$.

Et alors $xy^{-1} = h_1hk = (h_1h)k \in HK$. Donc HK est un sous-groupe de G.

Inversement, supposons que HK soit un sous-groupe de G.

Puisque K et H sont des sous-groupes de HK, KH est inclus dans HK.

Inversement, soit $x \in HK$. Alors $x^{-1} \in HK$. Et donc il existe $h \in H$ et $k \in K$ tels que $x^{-1} = hk$, de sorte que $x = k^{-1}h^{-1} \in KH$. Donc KH = HK.

SOLUTION DE L'EXERCICE 14.10

1. Soit $x \in G$. Alors $x = 1^{-1}_G x 1_G$, donc $x \sim x : \sim$ est réflexive.

Soient $(x, y) \in G^2$ tels que $x \sim y$. Alors il existe $g \in G$ tel que $x = g^{-1}yg$. Et alors, en multipliant à gauche par g et à droite par g^{-1} , il vient $y = gxg^{-1} = (g^{-1})^{-1}xg^{-1}$, de sorte que $y \sim x$. Donc \sim est symétrique.

Soient $(x, y, z) \in G^3$ tels que $x \sim y$ et $y \sim z$. Alors il existe deux éléments g et h de G tels que $x = g^{-1}yg$ et $y = h^{-1}zh$.

Et donc $x = g^{-1}h^{-1}zhg = (hg)^{-1}z(hg)$, et donc $x \sim z$: la relation \sim est transitive.

2. Un élément $x \in G$ est dans la classe d'équivalence de 1_G si et seulement si il existe $g \in G$ tel que $x = g^{-1}1_G g = g^{-1}g = 1_G$.

Et donc $1_G = \{1_G\}$.

3. Supposons G abélien, et soient $(x, y) \in G^2$ tels que $x \sim y$.

Alors il existe $g \in G$ tel que $x = g^{-1}yg = yg^{-1}g = y$.

Donc la classe d'équivalence de x est réduite à x : c'est un singleton.

4. Soient x et y deux éléments de G tels que $x \sim y$, et soit $g \in G$ tel que $y = g^{-1}xg$.

Alors

$$y^n = (g^{-1}xg)^n = g^{-1}x\underbrace{gg^{-1}}_{=1_G}xg\cdots g^{-1}xg = g^{-1}x^ng = g^{-1}1_Gg = 1_G.$$

SOLUTION DE L'EXERCICE 14.11

1. Puisque les similitudes directes sont des bijections de C dans C, nous allons prouver que G est un sous-groupe du groupe $\mathfrak{S}(C)$ des bijections de C dans C.

G contient évidemment $id_C : z \mapsto z$.

Il est évident que la composée de deux similitudes directes est encore une similitude directe, donc G est stable par produit. Et si $f: z \mapsto az + b$ est une similitude directe, alors

 $f^{-1}: z \mapsto \frac{z-b}{a}$ est également une similitude directe.

Donc G est stable par passage à l'inverse, et donc est un sous-groupe de $(\mathfrak{S}(\mathbf{C}), \circ)$.

Il ne s'agit pas d'un groupe abélien, par exemple car $f: z \mapsto -z$ et $g: z \mapsto z+1$ ne commutent pas :

$$f \circ g : z \mapsto -z - 1$$
 et $g \circ f : z \mapsto -z - 1$.

2. Donc G_{z_0} est l'ensemble des similitudes qui ont z_0 pour point fixe.

C'est bien le cas de l'identité, si f et g ont z_0 pour point fixe, alors $g(z_0) = z_0 \Leftrightarrow g^{-1}(z_0) = z_0$, si bien que $(f \circ g^{-1})(z_0) = f(z_0) = z_0$ et donc $f \circ g^{-1} \in G_{z_0}$.

Ainsi, G_{z_0} est un sous-groupe de G.

Soit alors
$$\varphi: \begin{vmatrix} \mathbf{C}^* & \longrightarrow & G_{z_0} \\ \alpha & \longmapsto & z \mapsto \alpha(z-z_0) + z_0 \end{vmatrix}$$
.

Nous savons que toute similitude directe qui possède z_0 comme point fixe est de la forme $z \mapsto re^{i\theta}(z-z_0) + z_0$ où r est le rapport et θ l'angle de la similitude.

Donc φ est surjective, et même bijective puisque l'écriture d'une similitude sous la forme $z \mapsto az + b$ est unique.

Reste donc à voir qu'ils s'agit d'un morphisme de groupes.

Soient $\alpha_1, \alpha_2 \in \mathbb{C}^*$. Notons $f_1 = \varphi(\alpha_1) : z \mapsto \alpha_1(z-z_0)+z_0$ et $f_2 = \varphi(\alpha_2) : z \mapsto \alpha_2(z-z_0)+z_0$. Alors $f_1 \circ f_2$ est une fonction affine, qui possède z_0 comme point fixe (car il est point fixe de z_1 et de z_2), et qui possède $\alpha_1\alpha_2$ comme coefficient dominant.

Donc pour tout $z \in C$, $(f_1 \circ f_2)(z) = \alpha_1 \alpha_2(z - z_0) + z_0$, c'est donc $\varphi(\alpha_1 \alpha_2)$.

Et donc f est un morphisme de groupes, c'est donc un isomorphisme de groupes.

Rédaction @

Rappel -

Il a été prouvé en cours que l'ensemble des permutations d'un ensemble est un groupe pour la composition.

Alternative •

Si vous n'êtes pas convaincu, faire le calcul!

SOLUTION DE L'EXERCICE 14.12

1. Si G est abélien, alors les puissances de x et de y commutent.

Donc en particulier, si n, p sont deux entiers strictement positifs tels que $x^n = y^p = e_G$, alors $(xy)^{np} = x^{np}y^{np} = (x^n)^p (y^p)^n = e_G$.

Et donc *xy* est d'ordre fini.

2. Le résultat n'est plus vrai si G n'est pas abélien. Par exemple, dans le groupe des similitudes directes du plan³, une rotation d'angle π est d'ordre fini, puisqu'élevée au carré, elle est égale à l'identité.

En revanche, la composée de deux rotations d'angle π , de centre distincts est une translation de vecteur non nul.

En effet, si $\alpha \neq \beta$ sont deux complexes, si $f: z \mapsto -z + \alpha$ et $g: z \mapsto -z + \beta$ sont deux rotations d'angle π , alors $g \circ f: z \mapsto z + (\beta - \alpha)$.

Or, une translation τ de vecteur non nul \vec{u} n'est jamais d'ordre fini puisque pour tout $n \in \mathbb{N}^*$, τ^n est⁴ la translation de vecteur $n\vec{u} \neq \vec{0}$.

SOLUTION DE L'EXERCICE 14.13

1. Soient $(g, h) \in G^2$. Alors

$$\tau_a(g)\tau_a(h) = aga^{-1}aha^{-1} = agha^{-1} = \tau_a(h).$$

Donc τ_a est un morphisme de G dans lui-même.

Pour montrer la bijectivité, il y a deux options:

- ▶soit prouver injectivité et surjectivité
- ▶soit exhiber la bijection réciproque si on la voit.

Ici, la seconde option est de loin la plus facile, puisque pour tout $g \in G$,

$$(\tau_{a^{-1}} \circ \tau_a)(q) = a^{-1}\tau_a(q)a = a^{-1}aqa^{-1}a = q = \mathrm{id}_G(q).$$

Et de même, $\tau_a \circ \tau_{a^{-1}} = id$, donc $\tau_{a^{-1}}$ est la bijection réciproque de τ_a .

Prouvons tout de même injectivité et surjectivité.

Pour l'injectivité, soit $g \in \text{Ker } \tau_a$.

Alors $aga^{-1} = e \Leftrightarrow ag = ea \Leftrightarrow g = e$.

Donc τ_a est injectif.

Soit à présent $y \in G$. Alors $y = a(a^{-1}ya)a^{-1} = \tau_a(a^{-1}ya)$, et donc τ_a est surjectif. On en déduit donc que τ_a est bijectif.

2. Nous venons de prouver que les τ_a sont des éléments de $\mathfrak{S}(G)$, car bijectifs. On a $\tau_e = \mathrm{id}_G \in \mathscr{C}(G)$.

Et pour $(a, b) \in G^2$ et $g \in G$, on a

$$\left(\tau_{a} \circ \tau_{b}^{-1}\right)(g) = \left(\tau_{a} \circ \tau_{b^{-1}}\right)(g) = \tau_{a}\left(b^{-1}gb\right) = ab^{-1}g\left(ab^{-1}\right)^{-1}(g).$$

Et donc $\tau_a \circ \tau_{b^{-1}} = \tau_{ab^{-1}} \in \mathscr{C}(G)$.

Ainsi, $\mathscr{C}(G)$ est bien un sous-groupe de $(\mathfrak{S}(G), \circ)$.

3. Le calcul réalisé à l'instant prouve que pour $(a,b) \in G^2$, $\tau_a \circ \tau_b = \tau_{ab}$, soit encore que $\varphi(ab) = \varphi(a) \circ \varphi(b)$, et donc φ est un morphisme de groupes.

SOLUTION DE L'EXERCICE 14.14

- Soit H₁ un sous-groupe de G₁, et soient y₁, y₂ ∈ f(H₁). Alors il existe deux éléments x₁, x₂ ∈ H₁ tels que y₁ = f(x₁) et y₂ = f(x₂).
 Et alors y₁y₂⁻¹ = f(x₁)f(x₂)⁻¹ = f(x₁x₂⁻¹). Puisque H₁ est un sous-groupe de G₁, x₁x₂⁻¹ ∈ H₁ et donc y₁y₂⁻¹ ∈ f(H₁), de sorte que f(H₁) est un sous-groupe de G₂.
- 2. Soit H_2 un sous-groupe de G_2 , et soient $x_1, x_2 \in f^{-1}(H_2)$.

Alors $f(x_1) \in H_2$ et $f(x_2) \in H_2$.

Donc $f(x_1x_2^{-1}) = f(x_1)f(x_2)^{-1} \in H_2$, de sorte que $x_1x_2^{-1} \in f^{-1}(H_2)$.

Donc $f^{-1}(H_2)$ est un sous-groupe de G_2 .

En particulier, Ker $f = f^{-1}(\{e_{G_2}\})$, et $\{e_{G_2}\}$ est un sous-groupe de G_2 , donc Ker f est un sous-groupe de G_1 .

³ Voir l'exercice précédent.

⁴ Passer par les complexes si vous avez besoin de vous en convaincre.

Méthode

Pour prouver l'injectivité d'un morphisme, il suffit de prouver que son noyau est réduit à l'élément neutre. Et puisqu'on a toujours $\{e_G\} \subset \operatorname{Ker} \varphi$, il suffit de prouver l'inclusion réciproque, c'est à dire

 $x \in \operatorname{Ker} \varphi \Rightarrow x = e_G$.

Remarque

Notons que nous venons de trouver l'unique antécédent de y, et donc la bijection réciproque de τ_a .

SOLUTION DE L'EXERCICE 14.15

Soit $\varphi : \mathbb{Z} \to \mathbb{Z}$ un morphisme de groupes. Alors $\varphi(0) = 0$.

Notons $k = \varphi(1)$. Alors $\varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = k + k = 2k$.

Puis $\varphi(3) = \varphi(2+1) = \varphi(2) + \varphi(1) = 2k + k = 3k$.

Une récurrence facile prouve alors que pour tout $n \in \mathbb{N}$, $\varphi(n) = nk$.

Et pour $n \in \mathbb{Z}$ négatif, $\varphi(n) = -\varphi(-n)$, où $-n \in \mathbb{N}$ et donc $\varphi(n) = -(-nk) = nk$.

Inversement, il est facile de constater que pour $k \in \mathbb{Z}$ fixé, $\varphi : n \mapsto nk$ est bien un morphisme de (Z, +) dans lui-même car

$$\forall (p,q) \in \mathbf{Z}^2, \varphi(p+q) = (p+q)k = pk + qk = \varphi(p) + \varphi(q).$$

Donc les morphismes de $(\mathbf{Z}, +)$ dans lui-même sont les $n \mapsto kn, k \in \mathbf{Z}$.

Soit à présent $\varphi : \mathbf{Q} \to \mathbf{Z}$ un morphisme. Soit alors $r \in \mathbf{Q}$ non nul, et soit $n \in \mathbf{N}$.

Alors
$$\varphi(r) = \varphi\left(\frac{r}{n} + \frac{r}{n} + \dots + \frac{r}{n}\right) = \varphi\left(\frac{r}{n}\right) + \dots + \varphi\left(\frac{r}{n}\right) = n\varphi\left(\frac{r}{n}\right)$$
.

Or, $\varphi(r)$, $\varphi\left(\frac{r}{n}\right)$ et n sont tous des entiers, donc n divise $\varphi(r)$, et ce quel que soit $n \in \mathbb{N}$.

Le seul entier étant divisible par tous les autres est 0, et donc $\varphi(r) = 0$ pour tout $r \in \mathbf{Q} : \varphi$ est le morphisme nul.

Solution de l'exercice 14.16

Soit $a \in A$. Puisque A est stable par *, pour tout $n \in \mathbb{N}^*$, $a^n \in A$.

Mais A étant fini, ces puissances ne sauraient être toutes distinctes : il existe deux entiers distincts n et p tels que $a^n = a^p$.

Quitte à échanger n et p, supposons que p > n. Alors $a^n = a^p \Leftrightarrow a^{p-n} = e_G$.

Donc déjà, $e_G \in A$ car $p - n \in \mathbf{N}^*$.

De plus, $a * a^{p-n-1} = e_G$, de sorte que $a^{p-n-1} = a^{-1}$.

Or, $p - n - 1 \ge 0$, donc $a^{-1} \in A$.

Ainsi, nous avons prouvé que A contient l'élément neutre, et est stable par passage à l'inverse : si $a \in A$, alors $a^{-1} \in A$.

Puisque A est de plus stable par *, il s'agit d'un sous-groupe de G.

SOLUTION DE L'EXERCICE 14.17

Il est clair que $1 \in \mathbb{Z}[\sqrt{2}]$ car $1 = 1 + 0\sqrt{2}$. Soient $(x, y) \in \mathbb{Z}[\sqrt{2}]^2$. Alors il existe quatre entiers a, b, c, d tels que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$.

Et donc
$$x - y = \underbrace{a - c} + \underbrace{(b - d)} \sqrt{2} \in \mathbf{Z}[\sqrt{2}]$$

Et donc
$$x - y = \underbrace{a - c}_{\in \mathbb{Z}} + \underbrace{(b - d)}_{\in \mathbb{Z}} \sqrt{2} \in \mathbb{Z}[\sqrt{2}].$$
De même, $xy = \underbrace{ac + 2bd}_{\in \mathbb{Z}} + \underbrace{(ad + bc)}_{\in \mathbb{Z}} \sqrt{2} \in \mathbb{Z}[\sqrt{2}].$

Donc $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$, et en particulier est un anneau.

Les mêmes types de calculs, en remplaçant Z par Q prouvent que $Q(\sqrt{2})$ est un anneau. De plus, soit x un élément non nul de $\mathbb{Q}(\sqrt{2})$.

Alors il existe deux rationnels a et b tels que $x = a + b\sqrt{2}$.

Et alors l'inverse⁵ de x

$$\frac{1}{x} = \frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2} \in \mathbb{Q}(\sqrt{2}).$$

Et donc tout élément non nul est inversible : $Q(\sqrt{2})$ est bien un corps.

SOLUTION DE L'EXERCICE 14.18
Rappelons que
$$\mathbb{D} = \left\{ \frac{n}{10^k}, (n, k) \in \mathbb{Z} \times \mathbb{N} \right\}.$$

Nous allons prouver qu'il s'agit d'un sous-anneau de Q.

On a 1 =
$$\frac{1}{10^0} \in \mathbb{D}$$
.

Soient x, y deux nombre décimaux. Alors il existe des $(k_1, k_2) \in \mathbb{Z}^2$ et $(n_1, n_2) \in \mathbb{N}^2$ tels que $x = \frac{k_1}{10n_1}$ et $y = \frac{k_2}{10n_2}$. Et alors

$$x - y = \frac{k_1}{10^{n_1}} - \frac{k_2}{10^{n_2}} = \frac{10^{n_2} k_1 - 10^{n_1} k_2}{10^{n_1 + n_2}} \in \mathbb{D}.$$

- 🛕 Attention! -

On ne sait pas encore si $a^0 = e_G \operatorname{est} \operatorname{dans} A$.

Méthode

Pour montrer qu'un ensemble est muni d'une structure d'anneau, toujours commencer par se demander s'il ne pourrait pas 'agir d'un sous-anneau d'un ensemble déjà connu. En effet, il y a bien moins de propriétés à prouver pour un sous-anneau que pour un

anneau.

⁵ Dans le corps **R**.

Et de même, $xy = \frac{k_1k_2}{10^{n_1+n_2}} \in \mathbb{D}$.

Donc il s'agit d'un sous-anneau de Q.

Il ne s'agit pas d'un corps, car bien que $3 \in \mathbb{D}$, $\frac{1}{3}$ n'est pas décimal, puisque les diviseurs premiers du dénominateur d'un nombre décimal ne peuvent qu'être 2 et/ou 5.

SOLUTION DE L'EXERCICE 14.19

Ici, pas question de prouver qu'il s'agit d'un sous-anneau de quelque chose déjà connu, il va donc tout falloir reprouver.

Avec tout de même une bonne nouvelle : il a déjà été prouvé en cours que $(A \times B, \oplus)$ est un groupe⁶, abélien car A et B le sont.

Il reste donc à prouver que \otimes est associative, qu'elle possède un élément neutre (qui est $(1_A, 1_B)$), et qu'elle est distributive par rapport à \oplus .

Prouvons juste ce dernier point, en traitant par exemple le cas de la distributivité à gauche : soient $(x_A, x_B), (y_A, y_B)$ et (z_A, z_B) trois éléments de $A \times B$. Alors

$$(x_A, x_B) \otimes ((y_A, y_B) \otimes (z_A, z_B)) = (x_A, x_B) \otimes ((y_A +_A z_A, y_B +_B z_B))$$

$$= (x_A \times_A (y_A +_A z_A), x_B \times_B (y_B +_B z_B))$$

$$= (x_A \times_A y_A +_A x_A \times_A z_A, x_B \times_B y_B +_B x_B \times_B z_B)$$

$$= (x_A \times_A y_A, x_B \times_B y_B) \oplus (x_A \times_A z_A, x_B \times_B z_B)$$

$$= ((x_A, y_A) \otimes (x_B, y_B)) \oplus ((x_A, y_A) \otimes (z_A, z_B)) .$$

On prouverait de même la distributivité à droite.

Bref, $A \times B$ est un anneau, et il est facile de constater qu'il est commutatif si A et B le sont, et même qu'il s'agit là d'une condition nécessaire et suffisante.

En revanche, même si A et B sont intègres, dès que A et B sont non nuls, on a $A \times B$ qui n'est pas intègre.

En effet, pour $a \in A \setminus \{0_1\}$ et $b \in B \setminus \{0_B\}$, $(a, 0_B) \otimes (0_A, b) = (0_A, 0_B)$, sans qu'aucun des deux facteurs ne soit nul.

Enfin, si A est nul, alors tout élément de $A \times B$ est de la forme $(0_A, b)$, avec $b \in B$. Donc si B est intègre, alors $(0_A, b_1) \otimes (0_A, b_2) = (0_A, 0_B) \Leftrightarrow b_1b_2 = 0_B \Leftrightarrow b_1 = 0_B$ ou $b_2 = 0_B$.

Donc $A \times B$ est intègre.

En revanche, si B n'est pas intègre, et que a, b sont deux diviseurs de zéro tels que $ab = 0_B$, alors $(0_A, a) \otimes (0_A, b) = (0_A, 0_B)$, et donc $(0_A, a)$ est un diviseur de zéro dans $A \times B$, qui n'est donc pas intègre.

SOLUTION DE L'EXERCICE 14.20

- 1. Non, car la suite constante égale à 1 n'est pas dedans.
- 2. Non, car l'opposée d'une suite strictement croissante n'est plus croissante.
- 3. Oui.
- 4. Non: la suite nulle n'est pas divergente.
- 5. Oui : la suite constante égale à 1 est bornée, et la différence et le produit de suites bornées sont bornées.
- **6.** Non : l'opposé d'une suite qui tend vers $+\infty$ tend vers $-\infty$.
- 7. Oui : la suite constante égale à 1 est stationnaire.

Si (u_n) et (v_n) sont stationnaires, alors il existe $n_0 \in \mathbb{N}$ et $n_1 \in \mathbb{N}$ tels que $n \ge n_0 \Rightarrow u_n = u_{n_0}$ et $n \ge n_1 \Rightarrow v_n = v_{n_1}$.

Mais alors pour $n \ge \max(n_0, n_1)$, on a $u_n - v_n = u_{n_0} - v_{n_1}$, et donc $(u_n - v_n)$ est stationnaire. De même, pour $n \ge \max(n_0, n_1)$, $u_n v_n = u_{n_0} v_{n_1}$.

Donc on a bien un sous-anneau de $\mathbb{R}^{\mathbb{N}}$.

8. Non, la suite constante égale à 1 n'est pas dedans.

SOLUTION DE L'EXERCICE 14.21

1. Supposons *A* intègre, et soit $a \in A$ possédant une racine carrée $b: a = b^2$. Si *c* est une racine carrée de *a*, on a donc $c^2 = b^2 \Leftrightarrow c^2 - b^2 = 0_A$. Soit encore⁸, $(c - b)(c + b) = 0_A$.

 \times_A est ditributive par rapport à $+_A$, et idem dans B.

⁶ C'est celui que nous avons appelé produit direct de *A* et *B*.

⁷ Puisque constante.

⁸ Et là, l'hypothèse que *A* est commutatif est importante.

Correction

Puisque A est intègre, on a donc $c - b = 0_A$ ou $c + b = 0_A$, et donc c = b ou c = -b. Donc a possède au plus deux racines carrées.

Bien entendu, vous connaissez bien l'anneau intègre R: nous ne venons pas de dire que tout élément de A possède exactement deux racines carrées, mais bien au plus deux.

Pour $a \in \mathbf{R}$, la fonction définie par $f_a(x) = \begin{cases} 1 & \text{si } x \leq a \\ -1 & \text{si } x > a \end{cases}$ est telle que $f_a \times f_a = \tilde{1}$, et

donc est une racine carrée de 1.

Et donc, cette dernière possède une infinité de racines carrées.

Solution de l'exercice 14.22

Nous allons prouver que $\mathcal{F}(E,A)$ est intègre si et seulement si E est un singleton et que Aest intègre.

Si $E = \{x\}$ est un singleton et que A est intègre, soient alors $f, g \in \mathcal{F}(E, A)$ telles que $f \times q = 0$, la fonction nulle.

Alors $f(x)g(x) = 0_A$, et donc par intégrité de A, $f(x) = 0_A$ ou $g(x) = 0_A$.

Mais alors f est la fonction nulle⁹, ou g est la fonction nulle. Donc $\mathcal{F}(E,A)$ est intègre.

⁹ Qui est le neutre additif de $\mathcal{F}(E,A)$

En revanche, si $Card(E) \ge 2$, alors soient x, y deux éléments distincts de $\mathcal{F}(E, A)$. Alors les

fonctions
$$f: \begin{vmatrix} E & \longrightarrow & A \\ t & \longmapsto & \begin{cases} 1_A & \text{si } t = x & \text{et } g : \\ 0_A & \text{sinon} \end{cases} \begin{vmatrix} E & \longrightarrow & A \\ t & \longmapsto & \begin{cases} 1_A & \text{si } t = y \\ 0_A & \text{sinon} \end{vmatrix}$$
 sont non nulles

mais vérifient $f \times q = 0$.

Donc $\mathcal{F}(E, A)$ n'est pas intègre.

Et si A n'est pas intègre, soient alors x, y deux diviseurs de zéro tels que $xy = 0_A$. Alors les fonctions constantes égales respectivement à x et y ne sont pas nulles, mais leur produit l'est, donc sont des diviseurs de zéro.

SOLUTION DE L'EXERCICE 14.23

Soit $(A, +, \times)$ un anneau commutatif intègre de cardinal n.

Pour prouver que A est un corps, il suffit de prouver que tout élément non nul de A admet un inverse.

Soit donc $x \neq 0_A$.

Alors l'application $f: \begin{vmatrix} A & \longrightarrow & A \\ y & \longmapsto & xy \end{vmatrix}$ est injective.

En effet, si $f(y_1) = f(y_2)$, alo

$$xy_1 = xy_2 \Leftrightarrow xy_1 - xy_2 = 0 \Leftrightarrow x(y_1 - y_2) = 0_A.$$

Mais A étant intègre, et x étant non nul, il vient nécessairement $y_1 - y_2 = 0_A \Leftrightarrow y_1 = y_2$.

Or, A étant de cardinal fini, f est injective si et seulement si elle est bijective 10 .

En particulier, 1_A admet un antécédent par f: il existe $y \in A$ tel que $xy = 1_A$. Puisque Aest commutatif, on a alors $yx = 1_A$, et donc y est l'inverse de x.

Par conséquent, tout élément non nul de A est inversible : A est un corps.

SOLUTION DE L'EXERCICE 14.24

Soit $x \in A$. Alors $0_A = x0_A \in xA$, qui est donc non vide.

Soient xu, xv deux éléments de xA. Alors xu - xv = x(u - v), qui est un élément de xA. Donc déjà xA est un sous-groupe de (A, +).

Si $u \in xA$, alors il existe $v \in A$ tel que u = xv. Et alors pour $y \in A$, $yu = yxv = x(yv) \in xA$. Donc xA est un idéal de A.

Il s'agit de remarquer que si I et J sont deux idéaux, alors $I + J = \{x + y, (x, y) \in I \times J\}$ est encore un idéal de A.

En effet, si x + y et x' + y' sont deux éléments de I + I, avec $(x, x') \in I^2$ et $(y, y') \in I^2$, alors

$$(x + y) - (x' + y') = (x - x') + (y - y') \in I + J$$

car *I* et *J* sont des sous-groupes.

Et pour $a \in A$, et $x + y \in I + J$, on a $ax \in I$ car I est un idéal et de même $ay \in J$, donc

¹⁰ Ce résultat plutôt intuitif sera prouvé bien plus tard.

 $a(x + y) = ax + ay \in I + J$. Donc I + J est un idéal de A.

Soit donc I un idéal maximal, et soit $x \in A \setminus I$. Alors I + xA est un idéal de A, qui contient I, et qui contient même strictement I, puisqu'il contient x, qui n'est pas dans I. Par maximalité de I, ceci signifie donc que I + xA = A.

Et inversement, supposons que pour tout $x \in A \setminus I$, I + xA = A.

Soit alors J un idéal de A, différent de A, et contenant I. Supposons que $J \neq I$. Alors il existe $x \in J \setminus I$, pour lequel I + xA = A.

Mais $I + xA \subset J$, donc $A \subset J$, et donc J = A.

Ceci est absurde, et donc c'est que J = I, ce qui prouve que I est maximal.

2.b. Soit *I* un idéal maximal, et soient $(a, b) \in A^2$ tels que $ab \in I$. Supposons que $a \notin I$.

Alors I + aA = A par la question précédente.

Et donc en particulier, $1 \in A$, et donc il existe $x \in I$ et $y \in A$ tels que x + ay = 1. Après multiplication par b, on a donc bx + bay = b.

Mais x ∈ I, donc bx ∈ I, par définition d'un idéal. Et ab ∈ I, donc yab ∈ I.

Et, donc par stabilité de \hat{I} pour la somme¹¹, $b = bx + aby \in I$.

On prouve de la même manière que si $ab \in I$ et $b \notin I$, alors $a \in I$.

Et donc *I* est bien un idéal premier de *A*.

3. Supposons que A soit un corps, et soit I un idéal de A.

Si $I = \{0\}$, alors I est premier car A est intègre : $ab = 0 \Rightarrow a = 0$ ou b = 0.

En revanche, si $I \neq \{0\}$, alors il existe $x \in I$ non nul.

Et donc $1 = xx^{-1} \in I$. Et donc pour tout $a \in A$, $a \times 1 = a \in I$. Et ainsi, I = A.

Or, il est évident que *A* est premier.

Inversement, supposons que tout idéal de A soit premier.

Puisque {0} est un idéal, il est premier, et donc A est intègre.

Soit $a \in A$. Alors l'idéal a^2A est alors soit égal à A tout entier, soit premier.

Dans le premier cas, cela signifie qu'il existe $b \in A$ tel que $a^2b = 1$, et donc a est inversible. Dans le second cas, puisque $a^2 \in I$, $a \in I$ (ou $a \in I$). Et donc il existe $b \in I$ tel que

 $a^2b = a \Leftrightarrow a(ab-1) = 0.$

Puisque A est intègre, si $a \ne 0$, alors ab = 1, et donc a est inversible.

Par conséquent, tout élément non nul de A est inversible : A est un corps.

¹¹ Rappelons que c'est un sous-groupe de (*A*, +).

Remarque

Nous venons au passage de prouver qu'un idéal qui contient 1 est nécessairement A tout entier.