

1. Introduction

당신은 풀스택 개발자로서 새로운 웹 페이지 개발에 대한 의뢰를 받는다. 의뢰 받은 내용은 [통합 CCTV 관리 사이트]를 개발하는 것이다. 해당 사이트는 설치된 CCTV들을 GPS 기반으로 관리자가 관리하고자 하는 CCTV와 그에 대한 로그 데이터를 열람 및 관리할 수 있는 시스템이다. 관리자가 모니터링하고자 하는 CCTV를 GPS 기반으로 등록하고, 해당 CCTV에서 생성되는(해당 CCTV와 연결되는) 영상 및 로그 메타 데이터를 저장 및 관리할 수 있다. 또한 CCTV의 위치 및 CCTV가 촬영하는 공간에 따른 로그 수집 및 연계를 통한 고품질 모니터링이 가능한 환경이 구현되어야 한다.

2. System Goals

당신이 구현해야 할 시스템은 **[통합 CCTV 관리 사이트]**로 등록된 관리자가 간단한 UI를 통해 CCTV, CCTV가 촬영하는 장소, 촬영된 영상 및 메타데이터를 모니터링 할 수 있는 기능을 갖춘 시스템이다.

이와 같은 목적을 이루기 위해 시스템은 구체적으로 다음과 같은 조건을 만족해야 한다.

- ✓ 시스템은 RDBMS(관계형 데이터베이스 관리 시스템)를 통해 사이트에서 필요한 데이터들
 을 관리하며, 네트워크를 통해 데이터베이스 서버와 통신할 수 있어야 한다.
- ✓ 시스템은 사용자 (최고관리자 / 일반관리자) 로그인 기능을 갖춰야 한다. 시스템 최고관리자 계정은 유일하며 미리 등록되어 있다. 일반관리자의 경우 최고관리자가 등록 및 삭제할 수 있고, 일반관리자는 로그인하여 본인의 정보 수정이 가능하여야 한다.
- ✓ 시스템은 사용자를 위한 UI를 제공하며, 이 UI를 통해 관리 중인 CCTV와 그에 대한 정보 를 통합적으로 파악할 수 있어야 한다.
- ✓ 시스템은 영상 파일, CSV 파일을 읽고 전처리 하여 시스템에 저장하고 로딩할 수 있어야 한다.
- ✓ 시스템의 구체적인 기능은 '5.System Requirements Specification'에 따라 설계 되어야 한다.

3. Glossary Of Terms

이하 본문에서 사용하는 용어들은 아래의 용어 정의를 따라 사용된다.

- ✓ CCTV: 특정 위치에 설치된 IP카메라로 본 시스템에서 관리자가 등록 및 모니터링 한다.
- ✓ **촬영공간:** 단일 CCTV가 촬영할 수 있는 공간에 대한 단위이며, 공간의 이름과 함께 위 치정보(행정동 주소, 건물이름, 층, 위치 명)를 가진다.
- ✓ **촬영 영상 파일:** 단일 CCTV에서 일정 주기동안 특정 공간을 촬영하여 생성되는 촬영 영상 파일이다.
- ✓ 메타 로그 파일: 단일 촬영 영상 파일의 분석 결과로 생성되며 다수의 메타 로그 레코드로 구성되어 있다.
- ✓ **메타 로그 레코드:** 영상의 각 프레임마다 영상에 출현한 객체의 움직임 정보(크기, 위치, 속도, 색상 등)를 담은 로그의 최소 단위이다.
- ✓ 이웃공간: 서로 다른 두 촬영공간에 대하여 특정 경로를 통해 이동가능한 공간을 이웃공 간이라 부른다.
- ✓ 공간 시퀀스: 연결가능한 이웃공간의 연속으로 이루어 진다.
- ✓ **최고관리자:** System Administrator에 해당하며, 해당 시스템의 일반관리자들을 관리하고 현재 시스템에 등록된 CCTV 및 공간에 대한 관리 상태를 모두 모니터링 할 수 있다.
- ✓ 일반관리자: 최고관리자로부터 부여 받은 권한으로 일부 CCTV 및 공간을 모니터링 할수 있다.

4. System Requirements Specification

4.1. 시스템 구조 명세

- ✓ 시스템은 상용 RDBMS(관계형 데이터베이스 관리 시스템) 사용을 기반으로 회원 정보 및 제출 데이터들을 관리하며, 네트워크를 통해 데이터베이스 서버와 통신할 수있어야 한다.
- ✓ 상용 브라우저(크롬, IE, 파이어폭스 등)를 이용하여 시스템에 접근할 수 있어야 한다.
- ✔ 시스템은 HTTP Server와 Server side로 구성되어 아래의 요구사항을 만족하는 시스템을 구현하여야 한다. 이때 사용하는 HTTP server의 종류나 programming 언어는 제한하지 않으며, 인터페이스(front-side)와 관련된 요구사항은 없다.
- ✓ 구현과 관련하여 언어나 프레임워크에 대한 제한조건은 없으나 ORM(Object-Relation Mapping)과 같은 구현에 SQL을 직접적으로 사용하지 않는 툴은 사용할 수 없다.

 (ex. Python의 sqlalchemy, Rails의 Active Record 등)

4.2. 사용 가능한 정보

시스템은 다음과 같은 정보들을 사용할 수 있으며, 필요 시 구현기능을 간소화 시키지 않는 선에서 명기되지 않은 정보를 추가적으로 사용할 수 있다. 또한 아래 정보들을 통하여 도출(derived)될 수 있는 새로운 정보들, 혹은 차별화를 위한 추가적 기능에 사용될 정보 등은 생성 가능하다.(단, 보고서에 그 이유를 반드시 서술할 것)

4.2.0. CCTV

- ✓ CCTV는 각각의 고유한 ID를 가진다.
- ✓ 하나의 CCTV는 1개 이상의 촬영 공간을 촬영한다.
- ✓ 각 CCTV는 촬영한 영상 파일 및 그 영상에 대한 로그 레코드 파일을 정각마다 생성한다. (매시 정각)
- ✓ 모델명, 설치 날짜, 책임자 등 CCTV에 대한 간략한 정보를 가진다.

4.2.1. 촬영 공간

- ✓ 촬영 공간은 각각의 고유한 ID와 위치정보를 가지고 있다.
- ✓ 위치 정보는 행정동 주소, 건물 명, 층 수, 실내 위치 등의 정보를 포함하며 복합적으로 구성되어 개별적인 정보를 가지고 있다.
 - ex.) <"서울시 서대문구 연세로 50 연세대학교", "중앙도서관", "4층", "화장실 앞">

4.2.2. 촬영 영상 파일 및 메타 로그 파일

- ✓ 촬영 영상 파일은 일반적인 동영상 파일로 avi, mp4 등 확장자의 제한조건은 없다.
- ✓ 메타 로그 파일은 파싱(parsing)이 가능한 형식(txt, csv 등)이며 타임스탬프, 객체 id, 객체 위치 좌표, 객체 크기, 객체 속도, 객체 색상으로 구성된다
- ✓ 촬영 영상과 메타 로그 파일은 매 시간 정각 마다 최고관리자에게 전송된다고 가정하고 각 촬영공간을 담당하는 일반관리자에게 배포된다.
- ✓ 각 파일을 배포받은 일반관리자는 각 영상 파일과 로그 파일을 시스템에 업로드한다.

4.2.3. 메타 로그 통계 수치

- ✓ 메타 로그 통계 수치는 메타 로그 파일별로 메타 로그 레코드를 집계하여 저장한다.
- ✓ 레코드 수, 촬영 시간 길이, 객체 수, 평균 속도, 평균 크기, 평균 색상 등 메타 로그 레코드와 메타 로그 파일들을 요약하여 설명할 수 있는 통계 수치이다.

4.2.4. 이웃공간

- ✓ 서로 다른 두 촬영공간과 그 사이의 경로가 이웃공간으로 정의된다.
 (ex. 열람실1, 열람실2 라는 두 촬영공간에 대하여 복도A 라는 이동 가능한 경로가 존재한다면 열람실1-복도A-열람실2 을 이웃공간으로 정의할 수 있다.)
- ✓ 한 촬영공간에 대하여 여러 촬영공간이 이웃공간으로 정의될 수 있다. 서로 다른 두 촬영공간 사이에 다수의 이동 가능한 경로가 있을 경우 여러 이웃공간으로 정의될 수 있다. (ex. 열람실1-복도A-열람실2, 열람실1-복도B-열람실2 와 같이 두 이웃공간이 정의됨)
- ✓ 이웃공간은 두 촬영공간, 경로명, 경로 위치 등의 정보를 가진다

4.2.5. 시퀀스

✓ 시퀀스는 연결 가능한 이웃 공간의 리스트로 정의된다.

(ex. 열람실1-복도A-열람실2, 열람실2-복도C-화장실 두 이웃공간은 시퀀스이다.)

4.3. 기능적 요구 사항

위와 같은 정보를 활용하여, 최고관리자와 일반관리자에게 아래와 같은 주기능을 제공할수 있어야 한다.

4.3.1. 관리자 계정 및 인증 기능

- 사용자(최고관리자 / 일반관리자)들이 본 사이트를 이용하기 위해서는 로그인이 필요하다. 이를 위해 본 사이트는 사용자 인증 기능을 갖추어야 한다.
- 최고관리자는 사전 생성된 아이디와 패스워드를 통해 관리자로 로그인이 가능하다.
- 최고관리자는 일반관리자를 생성할 수 있다.
- 이때 일반관리자는 아이디, 패스워드, 이름, 직책, 휴대전화 등의 기본 정보를 갖는다.
- 일반관리자는 부여 받은 아이디와 패스워드로 로그인이 가능하다.
- 로그인 된 일반관리자는 해당 계정의 패스워드 및 기본 정보를 수정할 수 있다.
- 최고관리자는 일반관리자에게 접근 가능한 CCTV를 할당할 수 있다.
- 최고관리자는 일반관리자가 할 수 있는 모든 요구사항을 동일하게 수행할 수 있다.

4.3.2. CCTV 및 촬영 공간 관리 기능

- 최고관리자는 CCTV를 추가할 수 있다.
- 최고관리자는 등록된 CCTV들을 모델명, 설치날짜, 책임자를 기준으로 검색할 수 있어야 한다.
- CCTV 추가 시 csv 파일을 통해 다수의 CCTV를 입력할 수 있다.
- 일반관리자는 본인에게 할당된 CCTV의 촬영 공간을 추가할 수 있다.

4.3.3. 촬영 영상 파일 및 메타 로그 파일 업로드

일반관리자는 본인에게 할당된 촬영 영상 파일과 메타 로그 파일을 함께 업로드
 할 수 있으며 이때 촬영공간과 파일 생성 시간을 지정하여 업로드한다.

- 촬영 영상 파일은 해당 CCTV와 해당 촬영공간에 대하여 규칙적인 파일명을 가진다. (ex. [cctv_id]_[촬영공간이름]_[시간].avi, CCTV01_중도4층복도_171030AM7.avi)
- 모든 파일은 촬영 공간 별로 다른 디렉토리에 저장되어야 한다.
- 메타 로그 파일 업로드 시 해당 파일의 메타 로그 통계 수치가 계산되어 별도 테이블에 저장된다.

4.3.4. 이웃 공간 및 공간 시퀀스 관리 기능

- 최고관리자는 이웃공간을 입력 및 검색, 수정할 수 있다.
- 최고관리자는 공간 시퀀스를 입력 및 검색, 수정할 수 있다.
- 공간 시퀀스는 연결된 이웃공간으로만 입력될 수 있다. (시퀀스의 정의에 위배되는 시퀀스는 존재할 수 없다.) (<열람실1-복도A-열람실2>, <화장실-복도D-강의실1> 같은 경우는 시퀀스로 입력될 수 없다.)

4.3.5. 촬영 영상 파일 및 메타 로그 파일 검색 및 다운로드

- 일반관리자는 촬영 영상 파일 및 메타 로그 파일을 촬영 공간, 공간 시퀀스를 기준으로 검색할 수 있어야 한다.
- 촬영 공간의 경우 복합 속성별로 검색 가능해야 한다. (ex. 서울시 CCTV 전체, 중앙도서관 3층 CCTV 전체 등)
- 공간 시퀀스의 검색 결과는 시퀀스에 포함된 촬영공간 전체에 대한 검색과 동일하다.
- 일반관리자는 촬영 영상 파일 및 메타 로그 파일을 시작 시간과 끝 시간을 지정 하여 검색할 수 있어야 한다. (파일 업로드시 함께 입력한 파일 생성시간을 기준 으로 검색한다)
- 검색 결과에 대한 파일들을 다운로드 할 수 있어야 한다. (업로드한 파일)
- 검색 결과에는 각 파일 별 메타 로그 통계 수치와 함께 전체 평균이 계산되어 보여져야 하며 모든 통계 수치는 CSV 파일로 다운로드 할 수 있어야 한다.
- 촬영 영상 및 메타로그 파일은 일정 시간을 기준으로 일괄 삭제할 수 있어야 한다. (ex. 10월 26일 이전 데이터 전체 삭제 가능)

4.3.6. 필수 기능 리스트

System Requirement Specification 바탕으로 아래의 필수 기능들을 구현하여야 하며 최종 시연 평가는 아래의 필수 기능 리스트를 기준으로 평가한다. (검정-1, 빨강-2)

- 1 패스워드를 통해 최고관리자로 로그인 할 수 있다.
- 2 최고관리자는 일반관리자를 추가/삭제 할 수 있다.
- 3 2에서 추가된 일반관리자 계정으로 로그인 및 정보변경을 할 수 있다.
- 4 최고관리자는 CCTV를 등록할 수 있다.
- 5 최고관리자는 등록된 CCTV에 대하여 일반관리자 별 열람 권한을 조절할 수 있다..
- 6 최고관리자는 등록된 CCTV를 모델명, 설치 날짜, 책임자 별로 검색할 수 있다.
- 7 최고관리자는 일반관리자를 기본 정보(이름 등)와 할당된 CCTV를 기준으로 검색 할 수 있다.
- 8 일반관리자는 열람 가능한 CCTV에 대하여 해당 CCTV의 촬영 공간을 추가/수정 할 수 있어야 한다.
- 9 일반관리자는 열람 가능한 CCTV에 대하여 해당 촬영 영상 파일 및 메타 로그 파일을 업로드하고 업로드 된 파일들을 열람할 수 있으며 다시 다운로드 할 수 있다.
- 10 최고관리자는 이웃 공간에 대한 정의를 추가/수정 할 수 있어야 한다.
- 11 최고관리자는 공간 시퀀스를 이웃공간 정보를 기반으로 추가할 수 있다.
- **12** 최고관리자는 이웃 공간을 삭제 할 수 있고, 시스템은 그 삭제된 이웃공간에 기반한 시퀀스를 자동 삭제한다.
- 13 촬영 영상 파일 및 메타 로그 파일을 CCTV id, 촬영 공간, 시퀀스, 시간대(시작 시간~끝 시간)를 기준으로 검색할 수 있다.
- 14 13의 검색 결과에 대한 메타 로그 통계 수치를 볼 수 있다.
- 15 13의 검색 결과에 대한 메타 로그 통계 수치를 csv 등 열람 가능한 파일로 다운 로드 할 수 있다.

4.4. Extra Credit

추가 점수는 아래의 사항들을 추가적으로 구현할 경우 주어질 수 있으며, 최대 점수 이상으로는 부여되지 않는다.

- ✓ 메타 로그 통계 수치 시각화 기능
 - 메타 로그 통계 수치를 꺾은선 그래프 등으로 시각화 하여 표현할 수 있다.
- ✓ 지도 api를 활용한 시각화 기능
 - CCTV 카메라의 위치 정보와 촬영 공간의 위치 정보를 이용하여 지도에 표현할 수 있다.
 - 시퀀스의 각 공간의 위치 정보를 이용하여 지도에 표현할 수 있다.
 - ◆ 지도에 표현하는 방식은 제한없음

✓ 그 외 추가 기능

위 사항 외에도 필수 기능 리스트 외의 기능을 추가로 구현하거나 시스템의 약점을 보 완한다면 가산점이 부여될 수 있다. 추가 기능에 대한 구상은 자유롭게 가능하다. 단, 본 명세서에 제시된 내용이 활용되어야 하며, 전혀 상관없는 내용을 추가로 구현한 것은 해 당되지 않는다.

5. 프로젝트 일정

(* 각 보고서 별 필수 항목들 파란색으로 표기)

	Due Date	Dscription
1차 보고서	11월 6일 (월)	ER-Diagram & Mapping ERD to Relational Schema
	(~ AM 10:00)	✔ 시스템의 기초가 되는 1)ER-Diagram을 작성하고, 이를
		2)relational schema로 매핑한다.
		✓ 이 시점에서 정한 내용들은 추후 변경 가능하지만, 전체적인
		일정을 고려하여 가능한 최적화된 분석을 하여 제출할 수 있
		도록 한다.
		✓ 3)ERD 작성과 관련하여 가정한 내용, 4)팀원의 역할 분담 내
		용, 5)일정을 기록한 보고서를 제출한다.
2차 보고서	11월 20일 (월)	시스템 설계 문서 및 중간 구현내용
	(~ AM 10:00)	✓ 1)시스템 설계 문서는 State Diagram, Sequence Diagram,
		Application Flowchart 등 다양한 표현 방식을 자유롭게 포함
		할 수 있으며, 각 팀의 아이디어를 최대한 나타낼 수 있는
		것으로 한다.
		Database table 생성 script 명기
		✓ 또한 2차 보고서에는 시스템이 사용하는 2)Database table
		들의 생성 script를 첨부한다.
417	12 OL - OL (F)	✓ 1차 보고서에서 3)변경/추가된 내용을 반드시 서술한다.
최종보고서	12월 7일 (목)	최종 결과 보고서 및 구현 내용
	(~PM 11:59)	✓ 완성된 시스템에 대한 최종적인 보고서는 1)결과물과 더불어
		단계별 프로젝트 2)진행 과정 을 포함한다. (사용된 쿼리 포 함)
		의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의 의
		다.
		기· ✓ 시스템에 사용된 4)DB 전체를 dump하여 제출한다.
		✓ 보고서의 가독성 또한 평가의 요소가 된다.
		· · · · · · · · · · · · · · · · · · ·
최종시연	12월 8일 (금)	모든 조를 대상으로 시연 평가
	_ = \ - /	· · · · · · · ·
	l .	

6. 주의 사항

- ✓ 팀 구성은 자유롭게 최대 3인 1조를 원칙으로 합니다.
- ✓ 각 단계별 제출기한을 엄수, 제출기한 이후의 결과물은 인정하지 않습니다.
- ✓ 보고서와 프로그램을 [팀명]_project1.zip / [팀명]_project2.zip / [팀명]_project3.zip 으로 압축하여 YSCEC 보고서 게시판에 업로드 후 보고서를 하드카피로 공지된 장소에 제출합니다. (ex. 언더우드팀_project1.zip , ...)
- ✓ 각 단계별 수정사항이나 차별화를 위한 추가 기능 및 부각하고자 하는 장점이 있다면 보고서에 명시적으로 작성해야 합니다.
- ✓ 과제의 목표는 관계형 데이터베이스를 이해하고 SQL을 사용하는 것입니다. 따라서 본 목표에 부합하지 않는 구현물에 대해서는 감점이 있을 수 있으니 유의하세요. (관계형 데이터베이스, SQL 사용하지 않을 시 감점)