

Team 36: Self-Navigating, Obstacle
Avoiding Robot
Bi-Weekly Update 3

Teammates:

Arkadi Zhanov Nathan Sommer Nikolai Paderin

Sponsor: Stavros Kalafatis

Project Summary

- Create a system that takes in a point on a map as the rover's destination, creates a route for the rover, and gets the rover to its destination and back while avoiding obstacles.
- The main motivation for this project is for application in military settings such as aid delivery to wounded soldiers in the battlefield or local, residential delivery of food or mail.

Project/Subsystem Overview

Project Timeline

(Green done, yellow underway, red in trouble, white not started)

9/11) nt	Integrate Pathfinder and Novement/Co trols and test (to complete by 9/20	Integration with Android App and Raspberry Pi using cellular data (to complete by 10/5)	Final Integration (to complete by 10/15)	Systems Test (to complete by 11/2)	Validation (to complete by 11/26)	Demo and Report (to complete by 12/5)
----------	--	---	---	--	---	--

Interface and Communication

By Nathan Sommer

Accomplishments since last update 30 hrs of effort - Created a DDNS hostname to track the IP address of the client using a client application using Dnyu - Created a VPN Server using WireGuard - Created a VPC using OpenVPN - Created a VPC using OpenVPN - Currently trying to run the OpenVPN profile on raspberry pi (Working with OpenVPN helpdesk) - Problems: - DDNS hostname only works when on same network (Can't access hostname when on different network) - Wireguard only works when on same network - Currently trying to run the OpenVPN profile on raspberry pi (Working with OpenVPN helpdesk)
track the IP address of the client using a client application using Dnyu - Created a VPN Server using WireGuard - Created a VPC using OpenVPN - Created a VPC using OpenVPN - Created a VPC using OpenVPN - Currently trying to run the OpenVPN profile on raspberry pi (Working with OpenVPN helpdesk)
- Started Integrating the client code into app

Interface and Communication

Nathan Sommer

Pathfinding and Navigation

Arkadi Zhanov

Accomplishments since last update 25 hrs of effort	Ongoing progress/problems and plans until the next presentation
 Pathfinder integrated with the Movement/Control subsystem Developed algorithm and framework obstacle avoidance code which is integrated with the Movement/Control subsystem Created a common case obstacle avoidance testbench to validate functionality 	Problems: - Identify best weights and weight vector orders Ongoing Progress: - Continue testing obstacle avoidance by adding more test cases to testbench - Finish adjusting obstacle avoidance code as needed - Final validation of obstacle avoidance code - Complete final integration into Movement/Control subsystem

Pathfinding and Navigation

Obstacle Avoidance Overview

Arkadi Zhanov

Potential Obstacles and Desired Direction Based on Position

Vector Determination and Case Classifier Table

Cases	Туре	Sensor Order (Highest to least effect
c1	Hard Left	R1, R2, M, L1, L2
c2	Left	R2, R1, M, L1, L2
с3	Straight	M, (L1/R1), (L2/R2)
c4	Right	L2, L1, M, R1, R2
с5	Hard Right	L1, L2, M R1, R2

This table is used to determine weight and set up weight vectors for the cases

Sample Output From Classifier for Obstacle Avoidance

```
Hard Left Case
Scenario: [10, 10, 10, 1, 10]
The cases values are: [820, 1330, 1120, 1420, 1711]
the case determined is: c1
the case type is: hard left
Left Case
Scenario: [10, 10, 10, 10, 1]
The cases values are: [1270, 610, 760, 1501, 1711]
the case determined is: c2
the case type is: left
Straight Case
Scenario: [1, 10, 10, 10, 1]
The cases values are: [1261, 601, 310, 601, 1261]
the case determined is: c3
the case type is: straight
Right Case
Scenario: [1, 10, 10, 10, 10]
The cases values are: [1711, 1501, 760, 610, 1270]
the case determined is: c4
the case type is: right
Hard Right Case
Scenario: [10, 1, 10, 10, 10]
The cases values are: [1711, 1420, 1120, 1330, 820]
the case determined is: c5
the case type is: hard right
```


Navigation/Movement/Control

Nikolai Paderin

Accomplishments since last update 12 hrs of effort	Ongoing progress/problems and plans until the next presentation
Node Navigation completed -Able to seek nodes autonomously -Segmented movements resolution in terms of location and direction(0.1 meter segmentations)	Object Avoidance integration -Adding corner cases to account for niche cases -account for road angles 4G Hat
Integration with other subsystem -Able to orient itself towards other nodes and navigate towards nodes - Fixed issues with Rover -1/3 chance of misfire command	-Test out GPS accuracy + Precision -Test Internet connectivity -Send and receive instructions from application
-movement refined to reduce over/undercompensation -re-allocated sensors to allow for greater object resolution detection	

Navigation/Movement/Control

Nikolai Paderin

Latitude	Longitude
30.62106	-96.33951
30.6210661	-96.3395267
30.6210051	-96.3395974
30.6210433	-96.3396346
30.620907	-96.3398266
30.6207174	-96.3400937
30.620863	-96.340229
30.6207297	-96.3404325
30.62071	-96.34042

```
Step 1: Walk 1.74 m and turn to face 293.00 degrees. Step 2: Walk 9.58 m and turn to face 224.93 degrees. Step 3: Walk 5.54 m and turn to face 320.04 degrees. Step 4: Walk 23.82 m and turn to face 230.48 degrees. Step 5: Walk 33.13 m and turn to face 230.48 degrees. Step 6: Walk 20.73 m and turn to face 321.35 degrees. Step 7: Walk 24.47 m and turn to face 232.72 degrees. Step 8: Walk 2.50 m and turn to face 151.36 degrees.
```


right	68.07
right	95.11
left	89.56
no turn	0
right	90.87
left	88.63
left	81.36
left	151.36

Execution & Plan

Thank you for your patience! Any questions?