1. Gaussian-Newton Pose-Graph优化

程序运行结果截图:

Performance

CPU: Intel© Core $^{\text{\tiny{M}}}$ i5-4210H CPU @ 2.90GHz × 2

Memory: 8G

数据	分解方法	Final Error	TimeCost(s)	
intel(v=729 e=3070)	LDLT	65.40	78.868540	
intel(v=729 e=3070)	FullPivLU	65.402	1174.170862	

数据	分解方法	Final Error	TimeCost(s)	
intel(v=729 e=3070)	HouseholderQR	65.402	366.307586	
killian(v=1941 e=3995)	LDLT	10344.7	1919.979211	
killian(v=1941 e=3995)	HouseholderQR	\	too long	
killian(v=1941 e=3995)	g2o	10344.7	490.776	

2. 耗时分析和提速

在方程Hx=b求解这块耗时最大. 可以根据H矩阵的稀疏性, 考虑矩阵的稀疏性, 使用合适的分解计算方法. 对图进行分块 ,并行优化, 然后合并. 以及使用SIMD等技术进行优化加速.

3. 非线性优化方法

非线性优化问题定义:

Find
$$\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x}} \{ F(\mathbf{x}) \}$$

现实情况下,非线性函数很难寻找全局最优解,一般求解局部最优解.

线搜索方法:

$$F(\mathbf{x} + \alpha \mathbf{h}) = F(\mathbf{x}) + \alpha \mathbf{h}^T F'(\mathbf{x}) + O(\alpha^2)$$

$$\simeq F(\mathbf{x}) + \alpha \mathbf{h}^T F'(\mathbf{x}) \quad \text{for } \alpha \text{ sufficiently small}$$

这里, h是搜索方向, α 是搜索步长. 线搜索方法一次迭代分为两个步骤: ①选择一个搜索方向; ②选择搜索步长.

- 最速下降(梯度下降)法 梯度下降方法将非线性函数近似为其一阶泰勒展开, 取负梯度方向为搜索方向 $\mathbf{h} = -F'(\mathbf{x})$, 该方法越接近目标值, 步长越小, 前进越慢, 一阶收敛, 因此在最后阶段收敛非常慢.
- 牛顿法

牛顿法将非线性函数近似为其二阶泰勒展开, 通过计算 $F'(\mathbf{x}) = 0$ 得到搜索方向和步长.

$$F'(\mathbf{x} + \mathbf{h}) = F'(\mathbf{x}) + F''(\mathbf{x})\mathbf{h} + O(\|\mathbf{h}\|^2)$$

$$\simeq F'(\mathbf{x}) + F''(\mathbf{x})\mathbf{h} \quad \text{for } \|\mathbf{h}\| \text{ sufficiently small}$$

$$\Rightarrow \mathbf{H}\mathbf{h} = -F'(\mathbf{x}) \quad \text{with } \mathbf{H} = F''(\mathbf{x})$$

牛顿法, 为二阶收敛. 在最后阶段收敛非常好. 但有以下两个问题:

①为了避免收敛到不正确的驻点(非极小值但 $F'(\mathbf{x})=0$ 的点),在计算时需要检查 \mathbf{H} 是否为正定,若不是,则使用梯度下降或者需要对 \mathbf{H} 矩阵进行修改.

②矩阵 \mathbf{H} 可能不可逆,若不可逆,则需要使用Quassi-Newton方法来近似计算.

另外, 计算矩阵 \mathbf{H} , 以及求解 $\mathbf{H}\Delta\mathbf{x}=b$ 一般很是耗时.

• 高斯牛顿法

对于最小二乘问题 $F(\mathbf{x})=rac{1}{2}f(\mathbf{x})^Tf(\mathbf{x})$,使用 J^TJ 来近似Hessian矩阵 \mathbf{H} ,求解 $\Delta\mathbf{x}=\left(\mathbf{J^TJ}\right)^{-1}g$

Trust Region方法

• Levenberg Marguardt(LM)方法

Gaussian-Newton方法简单实用,但无法保证 $\mathbf{H}=J^TJ$ 可逆,LM方法改进了Gaussian-Newton方法,认为近似只在一定区域内可靠.根据近似的程度ho选择合适的可靠范围:

$$\rho = \frac{f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x})}{J(\mathbf{x})\Delta \mathbf{x}}$$

在Trust Region中优化, 利用Lagrange乘子转化为无约束问题:

$$egin{aligned} \min_{\Delta\mathbf{x}_k} & rac{1}{2} \parallel f(\mathbf{x}_k) + J(\mathbf{x}_k) \Delta\mathbf{x}_k \parallel^2 + rac{\lambda}{2} \parallel D\Delta\mathbf{x} \parallel \ \Rightarrow & (\mathbf{H} + \lambda D^T D) \Delta\mathbf{x} = g \end{aligned}$$

4.使用非线性优化库求解位姿优化问题

程序运行打印输出:

Vertexs: 1941 Edges:3995

initError:3.08592e+08

THITCELLOL . 3 . 0039	26-00					
iteration= 0	chi2= 6973711.783675	time= 32.8318	cumTime= 32.8318	edges= 3995	schur= 0	lambda= 42.
iteration= 1	chi2= 477444.019837	time= 32.766	cumTime= 65.5978	edges= 3995	schur= 0	lambda= 14.:
iteration= 2	chi2= 129918.234974	time= 32.7349	cumTime= 98.3328	edges= 3995	schur= 0	lambda= 4.7:
iteration= 3	chi2= 58093.623167	time= 32.6586	cumTime= 130.991	edges= 3995	schur= 0	lambda= 1.5
iteration= 4	chi2= 37310.104253	time= 32.6929	cumTime= 163.684	edges= 3995	schur= 0	lambda= 0.5
iteration= 5	chi2= 24203.405820	time= 32.6525	cumTime= 196.337	edges= 3995	schur= 0	lambda= 0.1
iteration= 6	chi2= 17429.389130	time= 32.6374	cumTime= 228.974	edges= 3995	schur= 0	lambda= 0.0!
iteration= 7	chi2= 15053.951025	time= 32.6178	cumTime= 261.592	edges= 3995	schur= 0	lambda= 0.0:
iteration= 8	chi2= 13862.008409	time= 32.6044	cumTime= 294.196	edges= 3995	schur= 0	lambda= 0.00
iteration= 9	chi2= 12832.051089	time= 32.7704	cumTime= 326.967	edges= 3995	schur= 0	lambda= 0.00
iteration= 10	chi2= 11675.800703	time= 32.8028	cumTime= 359.77	edges= 3995	schur= 0	lambda= 0.00
iteration= 11	chi2= 10722.720750	time= 32.8699	cumTime= 392.64	edges= 3995	schur= 0	lambda= 0.00
iteration= 12	chi2= 10381.563442	time= 32.6857	cumTime= 425.325	edges= 3995	schur= 0	lambda= 0.00
iteration= 13	chi2= 10345.270407	time= 32.702	cumTime= 458.027	edges= 3995	schur= 0	lambda= 0.00
iteration= 14	chi2= 10344.666305	time= 32.7485	cumTime= 490.776	edges= 3995	schur= 0	lambda= 0.00
iteration= 15	chi2= 10344.665263	time= 32.6327	cumTime= 523.408	edges= 3995	schur= 0	lambda= 0.00
iteration= 16	chi2= 10344.665262	time= 32.7086	cumTime= 556.117	edges= 3995	schur= 0	lambda= 0.00
iteration= 17	chi2= 10344.665262	time= 32.7532	cumTime= 588.87	edges= 3995	schur= 0	lambda= 0.00
iteration= 18	chi2= 10344.665262	time= 32.7348	cumTime= 621.605	edges= 3995	schur= 0	lambda= 0.00
iteration= 19	chi2= 10344.665262	time= 130.742	cumTime= 752.347	edges= 3995	schur= 0	lambda= 0.00

FinalError:10344.7

TimeCost:752386734 microseconds