Devoir surveillé n°06: corrigé

Problème 1 – D'après Petites Mines 2006

Partie I - Etude d'une fonction

- **1.** Puisque $\sin x \sim_{x\to 0} x$, $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Puisque \cos est continue en 0, $\lim_{x\to 0} \cos x = \cos 0 = 1$. Par opérations, $\lim_{x\to 0} g = 1$.
- 2. On sait que $\sin x = x + o(x^2)$ donc $\frac{\sin x}{x} = 1 + o(x)$. Par ailleurs $\cos x = 1 + o(x)$ donc $2 \cos x = 1 + o(x)$. On en déduit que g(x) = 1 + o(x).
- 3. Finalement,

$$\frac{g(x) - g(0)}{x - 0} = o(1)$$

Ainsi, $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = 0$ donc g est dérivable en 0 et g'(0) = 0.

4. On calcule la dérivée d'un quotient. Pour tout $x \in \mathbb{R}^*$,

$$g'(x) = \frac{x\cos x(2-\cos x) - \sin x(2-\cos x + x\sin x)}{x^2(2-\cos x)^2} = \frac{\varphi(x)}{x^2(2-\cos x)^2}$$

5. φ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$\varphi'(x) = -2x \sin x - 1 + \cos^2 x - \sin^2 x = \cos(2x) - 1 - 2x \sin x$$

Or $x\mapsto\cos(2x)-1$ est clairement négative sur $[0,\pi]$ et ne s'annule qu'en 0 et π sur cet intervalle. De même, $x\mapsto-2x\sin x$ est clairement négative sur $[0,\pi]$ et ne s'annule également qu'en 0 et π sur cet intervalle. Par conséquent, φ est négative sur $[0,\pi]$ et ne s'annule qu'en 0 et π sur cet intervalle.

On en déduit que φ est strictement décroissante sur $[0, \pi]$.

Puisque $\varphi(0) = 0$, φ est négative sur $[0, \pi]$ et ne s'annule qu'en 0 sur cet intervalle.

- 6. On rappelle que $g'(x) = \frac{\varphi(x)}{x^2(2-\cos(x))^2}$ pour tout $x \in \mathbb{R}^*$. D'après ce qui précède, g' est négative sur $[0,\pi]$ et ne s'annule qu'en 0 sur cet intervalle.
- On en déduit que g est strictement décroissante sur $[0, \pi]$.
- 7. g est clairement continue sur $]0,\pi]$ et continue en 0 par définition. Ainsi elle est continue sur $[0,\pi]$. Comme g est par ailleurs strictement décroissante sur $[0,\pi]$, le théorème de la bijection permet d'affirmer que g induit une bijection de $[0,\pi]$ sur $I=[g(\pi),g(0)]=[0,1]$.

Partie II – Etude d'une suite

Pour $n \in \mathbb{N}^*$, on définit la fonction $f_n : x \mapsto \frac{\sin(x)}{2-\cos(x)} - \frac{x}{n}$.

- 8. Soit n∈ N*. On rappelle que g induit une bijection de [0, π] sur [0,1]. Puisque ¹/_n ∈ [0,1], ¹/_n admet un unique antécédent par g dans [0,1]. Autrement dit, l'équation g(x) = ¹/_n admet une unique solution sur [0, π].
- 9. Remarquons que, pour tout $n \in \mathbb{N}^*$, $x_n = h(1/n)$. Comme g est strictement décroissante sur $[0, \pi]$, h est également strictement décroissante sur [0, 1]. Par ailleurs, la suite de terme général 1/n est strictement décroissante et à valeurs dans [0, 1].

Il s'ensuit que la suite (x_n) est strictement croissante.

10. Puisque g est continue sur $[0,\pi]$, h est également continue sur [0,1]. Notamment, h est continue en 0. Puisque $\lim_{n\to+\infty} 1/n=0$ et $x_n=h(1/n)$ pour tout $n\in\mathbb{N}^*$,

$$\lim_{n\to+\infty} x_n = h(0)$$

Or $g(\pi) = 0$ donc $h(0) = \pi$.

Ainsi (x_n) converge vers π .

11. Posons $u_n = x_n - \pi$ pour $n \in \mathbb{N}^*$. Alors

$$\frac{1}{n} = g(x_n) = g(u_n + \pi) = -\frac{\sin u_n}{(\pi + u_n)(2 + \cos u_n)}$$

Puisque (u_n) converge vers 0,

$$\sin u_n \sim u_n$$

$$\pi + u_n \sim \pi$$

$$2 + \cos u_n \sim 3$$

Finalement, $\frac{1}{n} \sim -\frac{u_n}{3\pi}$. Ainsi

$$x_n - \pi = u_n \sim -\frac{3\pi}{n}$$

Partie III - Développement asymptotique

1. Tout d'abord

$$g(\pi+u) = -\frac{\sin u}{(\pi+u)(2+\cos u)}$$

Or $\sin u = u(1 + o(u))$ et $2 + \cos u = 3 + o(u)$ donc

$$g(\pi + u) = -u \cdot \frac{1 + o(u)}{(\pi + u)(3 + o(u))}$$

$$= -u \cdot \frac{1 + o(u)}{3\pi + 3u + o(u)}$$

$$= -u \cdot \frac{1 + o(u)}{3\pi (1 + u/\pi + o(u))}$$

$$= -\frac{u}{3\pi} (1 + o(u)) \left(1 - \frac{u}{\pi} + o(u)\right)$$

$$= -\frac{u}{3\pi} \left(1 - \frac{u}{\pi} + o(u)\right)$$

$$= -\frac{u}{3\pi} + \frac{u^2}{3\pi^2} + o(u^2)$$

2. On admet que h admet un développement limité à l'ordre 2 en 0. Il existe donc $(a, b, c) \in \mathbb{R}^3$ tel que

$$h(t) = a + b t + c t^2 + o(t^2)$$

Posons $t = g(\pi + u)$, alors $t \longrightarrow 0$ et la question précédente montre que

$$t = -\frac{u}{3\pi} + \frac{u^2}{3\pi^2} + o(u^2)$$

$$t^2 = \frac{u^2}{9\pi^2} + o(u^2)$$

Or, pour $u \in [-\pi, 0]$, $h \circ g(\pi + u) = \pi + u$. Ainsi

$$\pi + u = a - \frac{b}{3\pi}u + \frac{3b+c}{9\pi^2}u^2 + o(u^2)$$

Par unicité du développement limité,

$$a = \pi$$

$$-\frac{b}{3\pi} = 1$$

$$\frac{3b+c}{9\pi^2}=0$$

On en déduit que

$$a = \pi$$

$$b = -3\pi$$

$$c = 9\pi^2$$

Finalement,

$$h(t) = \pi - 3\pi t + 9\pi^2 t^2 + o(t^2)$$

3. Puisque $\lim_{n\to+\infty} 1/n = 0$,

$$x_n = h(1/n) = \pi - \frac{3\pi}{n} + \frac{9\pi^2}{n^2} + o\left(\frac{1}{n^2}\right)$$

SOLUTION 1.

1. Clairement $\mathbb{Z}[\sqrt{2}] \subset \mathbb{R}$.

 $1 = 1 + 0\sqrt{2} \in \mathbb{Z}[\sqrt{2}].$

Soit $(x, y) \in \mathbb{Z}[\sqrt{2}]^2$. Il existe donc $(a, b, c, d) \in \mathbb{Z}^4$ tel que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$.

Alors $x - y = (a - c) + (b - d)\sqrt{2}$ et $(a - c, b - d) \in \mathbb{Z}^{2}$ donc $x - y \in \mathbb{Z}[\sqrt{2}]$.

Également, $xy = (ac + 2bd) + (ad + bc)\sqrt{2}$ et $(ac + 2bd, ad + bc) \in \mathbb{Z}^2$ donc $xy \in \mathbb{Z}[\sqrt{2}]$.

Ainsi $\mathbb{Z}[\sqrt{2}]$ est donc un sous-anneau de $(\mathbb{R}, +, \times)$.

2. **a.** Soit $x \in \mathbb{Z}[\sqrt{2}]$. L'existence d'un couple $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$ découle simplement de la définition de $\mathbb{Z}[\sqrt{2}]$. Soit maintenant $(c, d) \in \mathbb{Z}^2$ tel que

$$x = a + b\sqrt{2} = c + d\sqrt{2}$$

On a donc $(a-c)=(d-b)\sqrt{2}$. Si $d\neq b$, $\sqrt{2}$ serait rationnel. Ainsi b=d et par suite a=c. D'où l'unicité du couple (a,b).

b. Soit $(x, y) \in \mathbb{Z}[\sqrt{2}]$. Il existe donc $(a, b, c, d) \in \mathbb{Z}^4$ tel que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$. Alors

$$\overline{x \cdot y} = \overline{(a+b\sqrt{2})(c+d\sqrt{2})} = \overline{ac+2bd+(ad+bc)\sqrt{2}} = ac+2bd-(ad+bc)\sqrt{2}$$

$$\overline{x} \cdot \overline{y} = \overline{a+b\sqrt{2}c+d\sqrt{2}} = (a-b\sqrt{2})(c-d\sqrt{2}) = ac+2bc-(ad+bc)\sqrt{2}$$

On a donc bien $\overline{x \cdot y} = \overline{x} \cdot \overline{y}$.

- 3. a. Soient $x \in \mathbb{Z}[\sqrt{2}]$ et $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. Alors $N(x) = a^2 2b^2 \in \mathbb{Z}$.
 - **b.** Soit $(x, y) \in \mathbb{Z}[\sqrt{2}]^2$. Alors, en utilisant la question précédente

$$N(xy) = xy\overline{x \cdot y} = xy\overline{x} \cdot \overline{y} = x\overline{x}y\overline{y} = N(x)N(y)$$

c. Soit $x \in \mathbb{Z}[\sqrt{2}]$.

Supposons x inversible. Il existe donc $y \in \mathbb{Z}[\sqrt{2}]$ tel que xy = 1. Ainsi N(xy) = N(1) = 1. D'après la question précédente, N(xy) = N(x)N(y) d'où N(x)N(y) = 1. Puisque N(x) et N(y) sont entiers, on a donc $N(x) = \pm 1$ i.e. |N(x)| = 1.

Réciproquement soit $x \in \mathbb{Z}[\sqrt{2}]$ tel que |N(x)| = 1. Si N(x) = 1, alors $x\overline{x} = 1$ donc x est inversible (d'inverse \overline{x}). Si N(x) = -1, alors $x(-\overline{x}) = 1$ donc x est inversible (d'inverse $-\overline{x}$).

- **4. a.** Supposons $a \ge 0$ et $b \ge 0$. On ne peut avoir (a, b) = (0, 0) car $0 \notin H$. Un des deux entiers naturels a et b est donc non nul. Ainsi $a \ge 1$ ou $b \ge 1$ et, dans les deux cas, $x \ge 1$.
 - **b.** Supposons $a \le 0$ et $b \le 0$. On ne peut avoir (a, b) = (0, 0) car $0 \notin H$. Un des deux entiers a et b est donc non nul. Ainsi $a \le -1$ ou $b \le -1$ et, dans les deux cas, $x \le -1$.
 - **c.** Supposons $ab \le 0$. Alors $a(-b) \ge 0$. Les deux questions précédentes montrent que $|\overline{x}| \ge 1$. Puisque $|N(x)| = |x||\overline{x}| = 1$, $|x| \le 1$.
- **5. a.** Puisque x > 1, la question précédente montre qu'on ne peut avoir $a \le 0$ et $b \le 0$ ni $ab \le 0$. C'est donc que nécessairement a > 0 et b > 0.
 - **b.** $u \in H^+ \text{ car } u > 1 \text{ et } N(u) = -1.$

Soient $x \in H^+$ et $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. D'après la question précédente, $a \ge 1$ et $b \ge 1$ donc $x \ge u$. Ainsi u est un minorant de H^+ .

u est donc le minimum de H^+ .

6. a. Il suffit de poser $n = \lfloor \frac{\ln x}{\ln u} \rfloor$. On a alors

$$n \le \frac{\ln x}{\ln u} < n + 1$$

ou encore

$$n \ln(u) \leq \ln(x) < (n+1) \ln u$$

car $\ln u > 0$. Puis par stricte croissance de l'exponentielle

$$u^n \le x < u^{n+1}$$

b. Supposons $x \neq u^n$. Alors

$$u^n < x < u^{n+1}$$

puis

$$1 < \frac{x}{u^n} < u$$

car u > 0. Or H et $u \in H$ donc $u^n \in H$. On sait également que $x \in H$ donc $\frac{x}{u^n} \in H$ car H est un groupe. Or $\frac{x}{u^n} > 1$ donc $\frac{x}{u^n} \in H^+$. Or $\frac{x}{u^n} < u$, ce qui contredit la minimalité de u. On a donc prouvé que $x = u^n$.

7. On sait que $u \in H$ donc $u^n \in H$ pour tout $n \in \mathbb{Z}$ car H est un groupe. Puisque $-1 \in H$, on a également $-u^n \in H$ pour tout $n \in \mathbb{Z}$. Ainsi

$$\{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\} \subset H$$

Soit maintenant $x \in H$. On sait que $0 \notin H$ donc $x \neq 0$.

- ▶ Si x > 1, alors $x \in H^+$ et il existe donc $n \in \mathbb{Z}$ tel que $x = u^n$ d'après la question précédente.
- ightharpoonup Si x = 1, alors $x = u^0$.
- ► Si 0 < x < 1, alors $\frac{1}{x} \in \mathbb{H}^+$ donc il existe $n \in \mathbb{Z}$ tel que $\frac{1}{x} = u^n$ i.e. $x = u^{-n}$.
- ▶ Si x < 0, alors $-x \in H$ et -x > 0, et les cas précédents montrent l'existence d'un $n \in \mathbb{Z}$ tel que $-x = u^n$ i.e. $x = -u^n$.

On a donc prouvé que

$$H \subset \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}$$

Par double inclusion

$$\mathbf{H} = \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}\$$

SOLUTION 2.

- **1.** Dans ce cas, on a $u_{n+1} = \frac{3}{4}u_n^2$ pour tout $n \in \mathbb{N}$.
 - a. Une récurrence évidente montre que (u_n) est constamment nulle.
 - **b.** Puisque $\lambda \neq 0$, $u_1 = \frac{3}{4}\lambda^2 > 0$. Supposons que $u_n > 0$ pour un certain $n \in \mathbb{N}^*$. Alors $u_{n+1} = \frac{3}{4}u_n^2 > 0$. Par récurrence, $u_n > 0$ pour tout $n \in \mathbb{N}^*$.
 - **c.** Pour tout $n \in \mathbb{N}^*$, on a donc

$$w_{n+1} = \ln(u_{n+1}) = \ln\frac{3}{4} + 2\ln(u_n) = 2w_n + \ln\frac{3}{4}$$

La suite (w_n) est donc arithmético-géométrique. On a tout simplement pour tout $n \in \mathbb{N}^*$

$$w_{n+1} + \ln \frac{3}{4} = 2\left(w_n + \ln \frac{3}{4}\right)$$

La suite $(w_n + \ln \frac{3}{3})_{n \in \mathbb{N}^*}$ est donc géométrique de raison 2. On en déduit que pour tout $n \in \mathbb{N}^*$

$$w_n + \ln \frac{3}{4} = 2^n \left(w_1 + \ln \frac{3}{4} \right)$$

ou encore

$$w_n = 2^{n-1} \left(w_1 + \ln \frac{3}{4} \right) - \ln \frac{3}{4}$$

Puisque $w_1 = \ln(u_1) = \ln(\frac{3}{4}\lambda^2)$, pour tout $n \in \mathbb{N}^*$

$$w_n = 2^{n-1} \ln \left(\left(\frac{3}{4} \lambda \right)^2 \right) - \ln \frac{3}{4}$$

ATTENTION! On ne peut pas écrire $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) = 2\ln\left(\frac{3}{4}\lambda\right)$ car λ est éventuellement négatif.

d. Pour tout $n \in \mathbb{N}^*$

$$u_n = e^{w_n} = \frac{4}{3} \exp\left(w_1 + \ln\frac{3}{4}\right)^{2^{n-1}} = \frac{4}{3} u_1^{2^{n-1}} \left(\frac{3}{4}\right)^{2^{n-1}}$$

Or $u_1 = \frac{3}{4}\lambda^2$ donc pour tout $n \in \mathbb{N}^*$

$$u_n = \frac{4}{3}\lambda^{2^n} \left(\frac{3}{4}\right)^{2^n} = \frac{4}{3}\left(\frac{3}{4}\lambda\right)^{2^n}$$

Remarque. Cette expression est encore valable lorsque n = 0 ou $\lambda = 0$.

e. Si $|\lambda| < \frac{4}{3}$, alors $\left|\frac{3}{4}\lambda\right| < 1$ et donc (u_n) converge vers 0. Si $|\lambda| > \frac{4}{3}$, alors $\left|\frac{3}{4}\lambda\right| > 1$. De plus, pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{4}{3} \left| \frac{3}{4} \lambda \right|^{2^n}$$

car 2^n est pair. On en déduit que (u_n) diverge vers $+\infty$.

Si $|\lambda| = \frac{4}{3}$, alors la dernière expression montre que la suite (u_n) est constante égale à $\frac{4}{3}$ à partir du rang 1. Elle converge donc vers $\frac{4}{3}$.

Remarque. On pouvait également utiliser la suite (w_n) dans le cas où $\lambda \neq 0$. En effet pour tout $n \in \mathbb{N}^*$,

$$w_n = 2^{n-1} \ln \left(\left(\frac{3}{4} \lambda \right)^2 \right) - \ln \frac{3}{4}$$

Si $|\lambda| < \frac{4}{3}$, alors $0 < \left(\frac{3}{4}\lambda\right)^2 < 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) < 0$ donc (w_n) diverge vers $-\infty$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers 0.

Si $|\lambda| > \frac{4}{3}$, alors $\left(\frac{3}{4}\lambda\right)^2 > 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) > 0$ donc (w_n) diverge vers $+\infty$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers $+\infty$.

Si $|\lambda| = \frac{4}{3}$, alors $\left(\frac{3}{4}\lambda\right)^2 = 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) = 0$ donc (w_n) est constante égale à $-\ln\frac{3}{4}$ et converge donc vers $-\ln\frac{3}{4}$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers $\frac{4}{3}$.

- **2.** Dans ce cas, on a donc $u_{n+1} = \frac{1}{4} (3u_n^2 8u_n + 12)$.
 - **a.** Pour tout $n \in \mathbb{N}$

$$u_{n+1} - u_n = \frac{1}{4} (3 u_n^2 - 12 u_n + 12) = \frac{3}{4} (u_n - 2)^2 \ge 0$$

La suite (u_n) est donc croissante.

- **b.** Supposons que (u_n) converge vers une limite l. Alors $\lim_{n\to+\infty}u_{n+1}-u_n=0$ et $\lim_{n\to+\infty}\frac{3}{4}(u_n-2)^2=\frac{3}{4}(l-2)^2$. Par unicité de la limite, $\frac{3}{4}(l-2)^2=0$ et donc l=2.
- c. Comme (u_n) est croissante, $u_n \ge \lambda$ pour tout $n \in \mathbb{N}$. Si (u_n) convergeait vers une certaine limite l, on aurait $l \ge \lambda > 2$ par passage à la limite. Ceci est impossible d'après la question **2.b**. Comme (u_n) est croissante, elle converge ou diverge vers $+\infty$ d'après le théorème de la limite monotone. Puisqu'elle ne peut converger, elle diverge vers $+\infty$.
- d. Il s'agit de résoudre une équation du second degré.

$$u_1 = 2$$

$$\iff \frac{1}{4} (3\lambda^2 - 8\lambda + 12) = 2$$

$$\iff 3\lambda^2 - 8\lambda + 4 = 0$$

$$\iff (3\lambda - 2)(\lambda - 2) = 0$$

$$\iff \lambda \in \left\{ \frac{2}{3}, 2 \right\}$$

Les réels recherchés sont donc $\lambda_1 = \frac{2}{3}$ et $\lambda_2 = 2$.

e. Puisque (u_n) est croissante, on a clairement $u_n \ge \lambda \ge \lambda_1$ pour tout $n \in \mathbb{N}$.

On montre alors par récurrence que $u_n \le \lambda_2 = 2$ pour tout $n \in \mathbb{N}$.

L'initialisation est claire.

Supposons $u_n \le \lambda_2$ pour un certain $n \in \mathbb{N}$. D'après notre remarque préliminaire, on a même $\lambda_1 \le u_n \le \lambda_2$. Alors

$$u_{n+1} = \frac{1}{4} \left(3u_n^2 - 8u_n + 12 \right) = \frac{1}{4} \left((3u_n - 2)(u_n - 2) + 8 \right) = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \le 2$$

 $\operatorname{car} u_n - \lambda_1 \ge 0 \text{ et } u_n - \lambda_2 \le 0.$

Par récurrence, $u_n \le 2$ pour tout $n \in \mathbb{N}$.

La suite (u_n) étant croissante et majorée, elle converge. D'après la question **2.b**, (u_n) converge vers 2.

f. On remarque que

$$u_1 = \frac{3}{4}(3\lambda^2 - 8\lambda + 12) = \frac{3}{4}(\lambda - \lambda_1)(\lambda - \lambda_2) + 2 > 2$$

Il suffit alors de reprendre la preuve de la question **2.c**. Puisque (u_n) est croissante, $u_n \ge u_1$ pour tout $n \in \mathbb{N}^*$. Si (u_n) convergeait vers une limite l, on aurait $l \ge u_1 > 2$ ce qui est impossible d'après la question **2.b**. La suite (u_n) ne converge donc pas donc, étant croissante, elle diverge vers $+\infty$.

- 3. a. On remarque que P(a) = (a-2)(a-b) > 0, P(b) = (b-2)(b-a) < 0 et P(2) = (2-a)(2-b) > 0.
 - **b.** Pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{4} P(u_n) + u_n$$

Comme P est continue en L, on obtient par passage à la limite

$$L = \frac{1}{4}P(L) + L$$

et donc P(L) = 0. Ainsi L est une des deux racines de P.

Le signe de P(a), P(b) et P(2) et la continuité de P montre que P s'annule sur A, B et A, B via le théorème des valeurs intermédiaires. Puisque P possède au plus deux racines, c'est qu'il en possède exactement deux et qu'elles sont situés dans les intervalles A, B et B, B.

On en déduit que a < L < b ou b < L < 2.