

AD-A271 980

IBIS

Quarterly Report

Analysis of Cost:
CVD Diamond Deposition

Contract Number: N00014-93-C2044

DTIC
ELECTED
NOV 03 1993
S B D

IBIS Associates, Inc.
55 William Street
Suite 220
Wellesley, MA 02181

Quarterly Report

Analysis of Cost:
CVD Diamond Deposition

Contract Number: N00014-93-C2044

Distribution Statement A:
Approved for Public Release:
Distribution is Unlimited.

3rd Quarter 1993

IBIS Associates, Inc.
55 William Street, Suite 220
Wellesley, MA 02181
Tel: 617-239-0666
Fax: 617-239-0852

93-26214

55 10 00056

bpf

Table of Contents

Executive Summary	1
Modeling Progress	3
Laser Trimming	3
DC Arcjet Model	4
Description of the DC Arcjet Deposition Theory	4
Sensitivity Analysis	6
<i>Wafer Cost per Square Centimeter vs Gas Temperature and Area</i>	6
<i>Wafer Cost per Square Centimeter vs Reactor Power and Area</i>	8
<i>Deposition Cost per Square Centimeter vs Substrate Area (Constant Duct Area)</i>	8
Future Work	11
Microwave Model	12
<i>Microwave Deposition</i>	12
<i>Application of Zero-Order Hydrogen Plasma Diffusion Theory to the Model</i>	12
Boundary Conditions	14
<i>Substrate:</i>	14
<i>Center:</i>	15
Solution of the 1-D Diffusion Equation	15
Future Work	17
Sensitivity Analysis	17
<i>Wafer Cost Per Square Centimeter vs Reactor Power and Surface Recombination Coefficient</i>	17
<i>Wafer Cost Per Square Centimeter vs Reactor Power and Plasma Ball Skew Factor</i>	19
Summary & Conclusions	21
Appendix A	
Appendix B	
Appendix C	

DTIC QUALITY INSPECTED 8

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
P-1	

Executive Summary

IBIS Associates has updated its predictive spreadsheet models of the DC arcjet and microwave chemical vapor deposition (CVD) diamond technologies. This report presents the results obtained with the new models and revised sets of baseline inputs for diamond heat sink manufacture. The cost of producing 1,000 polished diamond wafers, 1 mm thick, is estimated in the long run to be \$23.70 per square centimeter by the DC arcjet deposition technology (six inch diameter), and \$8.49 per square centimeter by the microwave deposition technology (sixteen inch diameter).

Fifty-one percent of the DC arcjet cost is due to the deposition step, which consumes process gases and is capital intensive. Overall, the material cost of 31.2% and labor cost of 30.2% are significant factors in the total cost.

Eighty-seven percent of the microwave cost is due to the deposition step, which is capital intensive. Overall, the equipment cost of 37.9% and the material, utility and maintenance costs each at about 15.5% are significant factors in the total cost.

The major revision of the DC Arcjet Model is the inclusion of the kinetic theory of DC arcjet deposition into the model. According to the model based on this theory, the key factors driving the cost of thermal management diamond produced by the DC arcjet technology are the gas temperature, the power of the reactor, and the substrate diameter. It is shown that maximizing the gas temperature is critical to reducing the cost of the diamond wafer due to its dramatic effect on growth rate.

The major revision of the Microwave Model is the incorporation of similar theory of deposition kinetics, adapted to the typical conditions of microwave deposition. According to the model, the key factor driving the cost of thermal management diamond produced by the microwave technology is the power of the reactor. The reactor power has such a strong effect on cost because it affects both the linear growth rate and the plasma ball diameter. There are two inputs to the diffusion model which have a strong effect on the deposition cost. Research in the area of those inputs, the surface recombination of hydrogen at the substrate and the plasma ball skew or shape factor, has not advanced far enough to predict these input values reliably. The values for these inputs in the current version of the model were reported to IBIS as typical values by Professor David Goodwin at the California Institute of Technology.

To be investigated further are the relationships between diamond growth rate and process yield for both the DC arcjet and microwave technologies. It is expected that as the growth rate increases, the yield decreases; yet a specific relation between these factors is unknown. Similarly, the relationship between substrate diameter and yield requires further investigation, due to the known complications with the increase of this parameter. Lastly, expert approval of the models is continually in progress.

Modeling Progress

The seven steps for the fabrication of diamond film are Surface Preparation, Deposition, Etching, Laser Trimming, Lapping, Microscopic Inspection, and Thermal Conductivity Inspection. The flowchart for the process is shown in Figure 1, and descriptions for the processes that existed before this quarter can be obtained from previous quarterly reports.

The progress of the CVD diamond thin film models has involved both deposition improvements and the addition of the secondary operation of laser trimming. The changes to the deposition steps are described later in this report, and the laser trimming operation is described in the following section.

Laser Trimming

During the deposition process, the gas plasma deposits diamond around the edges of the deposition substrate, causing low quality diamond to form on the periphery of the desired area. Through laser trimming, the final shape of the diamond wafer can be cut, removing excess material. This process is usually performed one wafer at a time.

Figure 1

DC Arcjet Model

The progress of the DC Arcjet Model, as stated above, has involved the incorporation of deposition theory and a laser trimming step into the cost model. The incorporation of the theory has been accomplished with the help of Professor David Goodwin of Caltech and Dr. Richard Woodin of Technion. Subsequent progress by IBIS has been the conducting of analyses with the new model and soliciting expert review for its approval. A printout of the model is included in Appendix A, and the new deposition operation in the model are described in the following section.

Description of the DC Arcjet Deposition Theory

A theory of the physics and chemistry involved in the chemical vapor deposition of diamond by means of convective flows has been developed by Professor David Goodwin and Dr. Richard L. Woodin. With the help of Professor Goodwin and Dr. Woodin, IBIS Associates has successfully incorporated this theory into a Technical Cost Model for the manufacture of CVD diamond using the DC arcjet technology.

Figure 2 shows the two steps involved in modeling the linear growth rate of diamond, the basis of the theory being that the linear growth rate of diamond is proportional to the square of the concentration of atomic hydrogen at the growth surface. First, an energy balance from the input parameters determines the concentration of atomic hydrogen in the gas jet, then a boundary layer calculation leads to the determination of atomic hydrogen concentration at the substrate.

An energy balance of the gas jet physical and chemical reactions determines an equilibrium value for either the inlet gas temperature or the inlet gas volumetric flow rate, as well as the mole fraction of atomic hydrogen in this hot gas stream. The input side of the energy balance contains the power that is imparted to the gas by the DC arc power source. The output side of the energy balance contains the mean specific enthalpy of the gas mixture plus the kinetic energy of the gas stream.

The mole fractions in the gas mixture are calculated from gas flow rates (an input), the pressure inside the reactor (an input), the heat, entropy and free energy of reaction for the conversion of molecular hydrogen to atomic hydrogen. The heat, entropy and free energy of the reaction are determined from the temperature of the gas mix, the ideal gas constant and NASA enthalpy constants.

Figure 2

The gas velocity is calculated using the mass flow rate (which was calculated for the input side of the energy balance equation), the area of the gas duct (an input), the ideal gas constant, the temperature of the gas mix (an input), the pressure inside the reactor (an input) and the mean molecular weight.

Given the mole fraction of atomic hydrogen and the gas velocity, boundary layer transport theories are employed to determine the flux of hydrogen to the surface. Diamond deposition theory indicates that the linear growth rate is proportional to the concentration of atomic hydrogen at the substrate raised to some power between one and two. Using assumed values for growth rate, power and gas flow, a proportionality constant was found for the atomic hydrogen concentration exponent of two.

Linear growth rate is converted to a mass growth rate by assuming uniform growth across the surface. Mass growth rate is critical to the DC Arcjet Model because it has great impact on the costs for the deposition operation.

Sensitivity Analysis

One of the advantages of a Technical Cost Model is that it permits the flexibility of performing sensitivity analyses. Using sensitivity analyses, it is possible to explore the cost implications of changing key input variables such as production volume, material prices, product dimensions, etc. As an R&D management tool, these analyses help set development goals for cost effective manufacturing. Further, they help in long term planning, by indicating the cost savings that may be realized through scale-up. Presented in the following sections are the following analyses:

- Cost vs Gas Temperature and Substrate Area
- Cost vs Reactor Power and Substrate Area
- Cost vs Substrate Area (Constant Duct Area)

With the exception of the last sensitivity, the ratio of substrate to duct area is held constant. This constraint is due to the geometry of the DC arcjet methodology. The area of the gas duct is the cross-sectional area of the plasma jet before it is affected by the flow pattern around the substrate. For a DC arcjet CVD diamond plasma jet with a corresponding duct area impinging on an infinite plane, there will be a circular region of desirable diamond and a surrounding region of unacceptable diamond. Consider the similar case of a gas jet impinging on a substrate of the same area. As a substrate diameter increases while the duct diameter remains constant, there is a point at which the substrate extends into this zone of unacceptable diamond. Therefore, there is a maximum substrate:duct area ratio that should not be exceeded. Experts in DC arcjet CVD diamond suggest that this ratio is roughly 3:1. When the substrate diameter is varied in the following analyses, the duct diameter is adjusted so that the ratio of substrate to duct area is constant at three.

Wafer Cost per Square Centimeter vs Gas Temperature and Area

Figure 3 shows the cost per square centimeter as the gas temperature for the production run is varied for a range of wafer sizes, holding the substrate to duct area ratio (three) and reactor power (200 kW) constant. The graph shows that as the gas temperature increases, the cost of depositing a square centimeter of diamond decreases. The cost savings for increasing temperature are most dramatic at the lower end of the temperature range examined; a slight increase in temperature can result in a relatively large cost savings. At the high end of the temperature range there is little cost savings for slight increases in temperature. The equation shows the best fit for the area cost versus temperature and substrate area. This data regression shows that cost is inversely proportional to the temperature raised to the 5.45 power multiplied by substrate area raised to the 0.72 power. This relationship suggests that gas temperature is a variable of primary importance in the deposition process: an increase in temperature over the range in Figure 3 for the baseline diameter results in a cost reduction of 54%.

Cost vs Gas Temperature and Area

Substrate:Duct Ratio = 3
Reactor Power = 200 kW
 $\text{Cost} = 6.61\text{E}21 \times \text{Area}^{-0.72} \times \text{Temp}^{-5.45} + 7.30$

□	\$10 - \$20	▨	\$20 - \$30	■	\$30 - \$40
■	\$40 - \$50	■	\$50 - \$60	■	\$60 - \$70

Figure 3

Figure 3 also shows the relationship between cost and substrate area. Over the range of temperatures examined, the cost of depositing diamond decreases with increasing wafer sizes. The importance of increasing the substrate area is evident toward the higher temperatures, where the slope of decreasing cost is more dramatic. For the range of substrate areas and at baseline temperature, the cost is reduced by 56%. Overall, a 75% reduction in cost (\$65 to \$16 per square centimeter) can occur by increasing both the gas temperature from 2,700K to 3,000K and the substrate area from 50 to 200 square centimeters.

Wafer Cost per Square Centimeter vs Reactor Power and Area

Figure 4 shows the dependence of cost on reactor power and substrate area, holding the substrate to duct area ratio (three) and the gas temperature (3,000 K) constant. The cost model reports that at our baseline data set, cost per square centimeter is inversely proportional to reactor power raised to the 0.28 power. This graph suggests that cost savings due to a small increase in power are much greater in the lower end of the power range examined than in the higher end: there are diminishing returns on increasing power in the higher end of the range examined. At constant gas temperature and area, the mach number of the gas flow is nearly directly proportional to reactor power. Therefore, this graph could also represent the behavior of cost as the mach number is increased while keeping the temperature constant. A closer look at the model reveals that at constant temperature, an increase in reactor power will further heat the gas mix. To sustain a constant gas temperature, the gas flow rate (mach number) must also increase to allow more gas to pass through the system to absorb the power increase. The lower cost per square centimeter and higher deposition rates of higher power reactors, at constant temperature, can be attributed directly to higher mach numbers.

Deposition Cost per Square Centimeter vs Substrate Area (Constant Duct Area)

Figure 5 recasts the data from Figure 3 at 200 kW showing the relationship between substrate area and cost for two cases: with duct area held constant at 58 square centimeters, and with the substrate to duct area ratio maintained at three. This graph suggests that great cost reductions may be accomplished by increasing the substrate area, especially at the low end of the area range examined.

For the curve with constant duct area in Figure 5, the largest valid substrate area is roughly 180 sq cm. This upper limit is determined from the assumption that the substrate:duct area ratio should not be greater than three, and the assumption of 58 square centimeters as the baseline duct area. At the baseline gas temperature of 3,000K

Figure 4

Figure 5

and reactor power of 200kW, the majority of cost reduction occurs while the substrate area is varying below this theoretical limit. The equation for this curve reveals that the cost varies inversely with the area raised to the 0.83 power, and that the cost approaches zero as the diameter nears a kilometer. Obviously, this diameter is infeasible, especially for such a duct area. The economics of substrate scale-up can be better examined by increasing the duct area with the substrate area to maintain a constant ratio.

Figure 5 also shows the result of this investigation by varying the substrate diameter while holding the substrate:duct ratio and gas temperature constant. From this graph, it is apparent that increasing the substrate area reduces cost significantly, even with the substrate:duct area ratio maintained at three. At the 200 kW baseline power, the cost per square centimeter varies inversely with the substrate area raised to the 2.01 power. For this graph, the cost reduces by 75% over the range of areas examined.

Future Work

Working towards a more powerful version of the DC Arcjet Model, a few goals remain. First, expert review is in progress and will continue for the duration of the project. Second, as mentioned in the Executive Summary, work remains in establishing correlations between growth rate and yield, and substrate diameter and yield. Lastly, investigations into alternative finishing technologies continue, with the goal of identifying preferable techniques.

Microwave Model

The progress of the Microwave Model has involved the incorporation of deposition theory into the cost model. This has been accomplished with the help of Professor David Goodwin of Caltech. Based on expert review of the microwave deposition theory, however, two versions of the IBIS Microwave CVD Diamond Technical Cost Model were developed: one model which uses the empirical relationship between growth rate and input microwave power only (printout in Appendix B), and one model which uses the hydrogen diffusion theory to determine growth rate (printout in Appendix C). IBIS has been conducting analyses with both models and soliciting expert review for their approval. The descriptions of microwave deposition and the diffusion theory are in the following sections.

Microwave Deposition

The microwave deposition operation involves the formation of the diamond film. The diamond growing substrate is mounted on a heated fixture perpendicular to the direction of flow in a gas flow tube (usually quartz), which is at a controlled pressure. The microwave generator is affixed outside of the sealed gas flow tube such that the tube's cross-sectional volume of energized gas is close to the substrate. The generator itself is contained in a radiation-proof jacket for safety considerations. A controlled mix of gases passes through the reaction chamber, and the frequency (usually about 2.45 GHz) is set so as to excite the gas into a plasma. The diamond then grows on the substrate, which is positioned on the periphery of the plasma ball. The relationship between this diamond growth rate and the deposition parameters is described in the next section.

Application of Zero-Order Hydrogen Plasma Diffusion Theory to the Model

This section outlines a reduced mechanism for diamond growth which leads to a closed-form expression for the growth rate in terms of the local chemical environment at the substrate. The issue of atomic hydrogen transport to the substrate is considered in depth and relations are presented to allow the rapid estimation of the H concentration at the substrate for specified process parameters in diffusion-dominated flows.

This model assumes:

- *One dimensional diffusion*
- *No convective transport ($Pe \ll 1$)*
- *Neglect temperative gradients*
- *Constant atomic hydrogen volumetric production rate in the plasma*
- *Fraction of absorbed power used to dissociate H_2*

- Negligible homogeneous recombination of H to H₂

Consider the following geometry:

where L is the distance from the substrate to the "center" of the plasma and C_{H·} is the atomic hydrogen concentration. The "center" of the plasma is defined such that:

$$\frac{d C_{H\cdot}}{d y} \Big|_{y=L} = 0$$

And the H concentration can be described by

Let $C_H = H$ concentration (moles/cm³), then the 1-D diffusion equation is

$$D \frac{d^2 C_H}{dy^2} = -P_H.$$

Where D is the diffusion coefficient (m²/s) and P_H is the H volumetric production rate.

Boundary Conditions

Substrate:

Due to the conservation of mass, the flux of H to surface is equal to the recombination rate. At the substrate, the conservation of mass can be described by

$$C_H(0) - \frac{\lambda_H}{\gamma} \left(\frac{d C_H}{d y} \right)_{y=0} = 0$$

where λ_H is defined as defined as $4D / \bar{V}_H$. (\bar{V}_H is the mean thermal speed) and γ is the recombination coefficient.

Center:

From our definition of L, the change of H concentration at the center of the plasma ball is

$$\left(\frac{d C_H}{d y} \right)_{y=L} = 0$$

Solution of the 1-D Diffusion Equation

The solution to the 1-D diffusion subject to the boundary conditions is

$$C_H(y) = \frac{P_H}{D} \left[L y - \frac{y^2}{2} + \frac{\lambda_H}{\gamma} L \right]$$

And at $y=0$

$$C_H(0) = \frac{4 P_H L}{V_H \gamma}$$

Now the H volumetric production rate is

$$P_H = \epsilon \frac{W}{V \Delta H}$$

where W is the power coupled to the plasma, V is the plasma volume, ΔH is the enthalpy of reaction for $H_2 > H$ and ϵ is the efficiency factor to account for power lost to line radiation or other losses.

Assume that $V = f A L$ where A is the plasma ball footprint or deposition area, which is a function of power at a given pressure, L is the height of the center of the plasma ball and f is a geometrical factor that defines the relationship between the physical center of the plasma and the center as determined by the zero $C_{H\cdot}$ gradient:

Substituting the H volumetric production rate into the 1-D diffusion equation results in

$$C_{H\cdot}(0) = \frac{4 \epsilon W}{V_H \gamma f A \Delta H}$$

A comparison between an estimate of H concentration and a data point provided by Hsu¹ results in a value of 0.2 for the efficiency factor ϵ .

Once the atomic hydrogen concentration at the substrate has been calculated then the linear growth rate can be estimated by

$$\text{Linear Growth Rate} = z [C_{H\cdot}(0)]^n$$

Where z is a calibration factor and n is between 1 and 2.

1 Hsu, J. Appl. Phys. 72, 3102-3109, (1992)

Future Work

Working towards a more powerful version of the Microwave Model, a few goals remain. First, expert review is in progress and will continue for the duration of the project. Second, as mentioned in the Executive Summary, work remains in establishing correlations between growth rate and yield, and substrate diameter and yield. Third, an investigation into the cost of new microwave tube prices and issues of tube reusability is currently being conducted. Lastly, investigations into alternative finishing technologies continue, with the goal of identifying preferable techniques.

Sensitivity Analysis

For the diffusion version of the model, two sensitivity analyses are presented below to indicate the sensitivity of cost to two inputs that cannot be easily characterized at this time.

The sensitivity analyses presented are

- Cost Per Sq Cm vs Reactor Power and Surface Recombination Coefficient
- Cost Per Sq Cm vs Reactor Power and Plasma Ball Skew Factor (f)

One assumption which extends through each of the analyses is that the deposition area is assumed to be a function of the reactor power. As the power of the reactor increases, the deposition area also increases.

Wafer Cost Per Square Centimeter vs Reactor Power and Surface Recombination Coefficient

Figure 6 shows the cost per square centimeter as a function of the coefficient describing the atomic hydrogen recombination at the substrate surface at various reactor powers. The graph shows that the cost is very strongly dependent on the surface recombination factor, especially at the low end of the reactor power scale. Even though the cost difference is most dramatic at the low end of the reactor power scale it should be noted that the difference in cost resulting from a surface recombination coefficient change from 0.2 to 0.05 results in an order of magnitude drop in cost all along the reactor power scale. The 50 kW reactors, which represent the low end of the reactor power scale, are among the state-of-the-art near term reactors. As stated earlier in this report, the surface recombination factor has not been studied to the extent that it can be easily characterized or predicted. Further research in this area will permit more accurate estimation of microwave CVD costs.

Cost vs Reactor Power and Surface Recombination Coefficient

Plasma Ball Skew Factor = 3

Figure 6

Wafer Cost Per Square Centimeter vs Reactor Power and Plasma Ball Skew Factor

Figure 7 shows the cost per square centimeter as a function of the plasma ball skew factor at various reactor powers. The graph shows that cost is strongly dependent on the plasma ball skew factor. As the plasma ball skew factor decreases from a value of 4 to 2 the cost per square centimeter drops by a factor of 3. Again, the low end of the scale on this graph represents the state-of-the-art near term reactor. Like the surface recombination coefficient, the plasma ball skew factor has not been studied to the extent that it can be easily characterized or predicted. The plasma ball skew factor is most likely strongly dependent on reactor geometry, so even if there was existing research in this area it may be difficult to apply that research to a generic microwave model. However, further research in this area will permit more accurate estimation of microwave CVD costs.

Cost vs Reactor Power and Plasma Ball Skew Factor

Surface Recombination Coefficient = 0.1

Figure 7

Summary & Conclusions

IBIS Associates, through Technical Cost Modeling (TCM), has updated its predictive spreadsheet models of the DC arcjet and microwave diamond deposition technologies. This report presents the results obtained with the new models and a revised set of baseline inputs for diamond heat sink manufacture.

The cost of producing 1,000 polished diamond wafers, 1 mm thick, is estimated in the long run to be \$23.70 per square centimeter by the DC arcjet deposition technology (six inch diameter), and \$8.49 per square centimeter by the microwave deposition technology (sixteen inch diameter). However, each of these estimates embodies many uncertain assumptions, and these estimates will be refined as work continues.

The major revision of the DC Arcjet Model is the inclusion of the kinetic theory of DC arcjet deposition into the model. According to this theory, the key factors driving the cost of thermal management diamond produced by the DC arcjet technology are the gas temperature, the power of the reactor, and the substrate diameter. It was shown that maximizing the gas temperature is critical to reducing the cost of the diamond wafer due to its dramatic effect on growth rate.

The major revision of the Microwave Model is the incorporation of similar theory of deposition kinetics, adapted to the typical conditions of microwave deposition. According to the model, the key factor driving the cost of thermal management diamond produced by the microwave technology is the reactor power. It is determined that research into atomic hydrogen surface recombination and plasma ball shaping factors would increase the accuracy of cost predictions.

To be investigated further are the relationships between diamond growth rate and process yield for both the DC arcjet and microwave technologies. It is expected that as the growth rate increases, the yield decreases; yet a specific relation between these factors is unknown. Similarly, the relationship between substrate diameter and yield requires further investigation, due to the known complications with the increase of this parameter. Lastly, expert approval of the models is continually in progress.

Appendix A

Carbon Containing Gas	15	0.1%	GASB VOLB	1.1	Silicon	\$43.45	3810.00	15.24	20.00
Carrier Gas	4	33.3%	GMSC VOLC	12	Silicon	\$135.20	3810.00	20.32	20.00
Other Gas	0	0.0%	GPSD VOLD	13	Silicon	\$6.85	6350.00	5.08	20.00
	100.0%			14	Si-Tech	\$12.80	6350.07	7.62	20.00
Hydrogen Recycle Rate	0.0%		RECYC?	15	Si-Tech	\$22.75	6350.00	10.16	20.00
Carrier Gas Recycle Ratio	0.0%		RECYC?	16	Si-Tech	\$35.55	6350.00	12.70	20.00
Gas Recycle Equipment Cost	\$250,000	Total	MCH2A	17	Si-Tech	\$68.30	6350.00	15.24	20.00
Recombine Coef. (gammaH)	0.10			18	Si-Tech	\$212.45	6350.00	20.32	20.00
Substrate:Duct Area Ratio	3.00		RECOMBX	19	Molybdenum Phil. Elmet	\$3.90	254	5.08	10.00
Substrate Shape Factor (C)	1.00		SUBDUCT	20	Molybdenum Phil. Elmet	\$8.20	254	10.16	10.00
Hydrogen Concentration Exp	2.00		SHAFAC	21	Molybdenum Phil. Elmet	\$14.50	254	15.24	10.00
Diamond Quality Factor (2)	2.50E-18	???	HEXP	22	Molybdenum Logics Corp	\$25.35	254	20.32	10.00
Diamond Density	3.52	g/cc	ZFAC	23	Molybdenum Logics Corp	\$4.80	508.00	5.08	10.00
Ideal Gas Constant (R)	62,358	c torr/K mol	IDEALG1	24	Molybdenum Logics Corp	\$14.75	508.00	10.16	10.00
Ideal Gas Constant 2 (R)	8.31	J / mol K	IDEALG2	25	Molybdenum Logics Corp	\$24.30	508.00	15.24	10.00
NASA Enthalpy Constants		H2	H	26	Molybdenum Logics Corp	\$37.10	508.00	20.32	10.00
				27	Molybdenum Phil. Elmet	\$9.15	1524.00	5.08	10.00
				28	Molybdenum Logics Corp	\$27.60	1524.00	10.16	10.00
				29	Molybdenum Logics Corp	\$52.25	1524.00	15.24	10.00
				30	Molybdenum Logics Corp	\$85.25	1524.00	20.32	10.00
				31	Molybdenum Logics Corp	\$14.75	2286.00	5.08	10.00
				32	Molybdenum Logics Corp	\$36.00	2286.00	10.16	10.00
				33	Molybdenum Logics Corp	\$69.00	2286.00	15.24	10.00
				34	Molybdenum Logics Corp	\$113.50	2286.00	20.32	10.00
				35	Molybdenum Logics Corp	\$18.50	3175.00	5.08	10.00
				36	Molybdenum Logics Corp	\$46.75	3175.00	10.16	10.00
				37	Molybdenum Logics Corp	\$90.50	3175.00	15.24	10.00
				38	Molybdenum Logics Corp	\$149.00	3175.00	20.32	10.00
				39	Tungsten Logics Corp	\$7.75	254	5.08	10.00
				40	Tungsten Logics Corp	\$24.50	254	10.16	10.00
				41	Tungsten Logics Corp	\$50.00	254	15.24	10.00
				42	Tungsten Logics Corp	\$79.25	254	20.32	10.00
PROCESS RELATED FACTORS - ETCHING				43	Tungsten Logics Corp	\$10.00	508.00	5.08	10.00
Process In Use?	1.00	[1-Y 0-N]	USE3	44	Tungsten Logics Corp	\$35.10	508.00	10.16	10.00
Dedicated Investment	1.00	[1-Y 0-N]	DED3	45	Tungsten Logics Corp	\$67.00	508.00	15.24	10.00
Process Yield	99.0%		YLD3	46	Tungsten Logics Corp	\$109.20	508.00	20.32	10.00
Average Equipment Downtime	10.0%		DOWN3	47	Tungsten Logics Corp	\$50.00	1524.00	5.08	10.00
Direct Laborers Per Station	1.00		NLAB3	48	Tungsten Logics Corp	\$112.00	1524.00	10.16	10.00
Load/Unload and Rinse Time	30.00	min/batch	PTIME3	49	Tungsten Logics Corp	\$1524.00	1524.00	15.24	10.00
Pieces Per Batch	20.00		PCS3	50	Tungsten Logics Corp	\$317.00	1524.00	20.32	10.00
Machine Cost	\$6,000	/sta	MCH3	51	Tungsten Logics Corp	\$422.00	1524.00	3175.00	5.08
Etchant Cost	\$70	/liter	ETCH3A	52	Tungsten Logics Corp	\$60.00	3175.00	10.16	10.00
Etchant Disposal Cost	\$30	/liter	ETCH3B	53	Tungsten Logics Corp	\$161.25	3175.00	15.24	10.00
Machine Etchant Capacity	1.00	/batch	CAP3	54	Tungsten Logics Corp	\$521.30	3175.00	20.32	10.00
Machine Power	0.00	kW	POW3	55	Tungsten Logics Corp	\$687.00	3175.00	46.00	10.00
Building Space Requirement	100	sqft/sta	FLR3						
PROCESS RELATED FACTORS - LASER TRIMMING									
Process In Use?	1.00	[1-Y 0-N]	USE4						
Dedicated Investment	1.00	[1-Y 0-N]	DED4						
Process Yield	99.0%		YLD4						
Average Equipment Downtime	10.0%		DOWN4						
Direct Laborers Per Station	1.00		NLAB4						
Machine Cost	\$6,000	/sta	MCH4						

Trimming Rate	1.00	cm/s	RATE4
Machine Power	0.00	kW	POW4
Building Space Requirement	100	sqft/sta	FLR4
PROCESS RELATED FACTORS - LAPING			
Process In Use?	1.00	[1=Y 0=N]	USE5
Dedicated Investment	1.00	[1=Y 0=N]	DED5
Process Yield	90.0%		YLD5
Average Equipment Downtime	15.0%		DOWN5
Direct Laborers Per Station	1.00		NLAB5
Lapped Material Removal No of Lapping Steps Pieces Per Batch	10.0% by wgt 2.00 5.00		TLAP5 LAPS5 PCS5
Load/Unload and Clean Wafers	40.00	min/batch	PTIME5
Average Lapping Rate	1.0	um/hr	RATES5
Lapping Slurry Cost	\$53	/liter	LAPSL5
Lapping Slurry Usage Rate	0.50	liter/hr	LAPR5
Lapping Plate Life	320.00	hrs	PLALS5
Available Lapping Time	8,640	hrs/yr	DAYHR5
Building Space Requirement	400	sqft/sta	FLR5 /rnd
PROCESS RELATED FACTORS - INSPECTION - MICROSCOPY			
Process In Use?	1.00	[1=Y 0=N]	USE6
Dedicated Investment	1.00	[1=Y 0=N]	DED6
Process Yield	95.0%		YLD6
Average Equipment Downtime	5.0%		DOWN6
Direct Laborers Per Station	1.00		NLAB6
Average Inspection Time Percent Inspection Machine Cost	15.00 100% \$50,000 /sta	min/batch	PTIME6 INSP6 MCH6
Machine Power	0.10	kW	POW6
Building Space Requirement	50	sqft/sta	FLR6
PROCESS RELATED FACTORS - INSPECTION - THERMAL CONDUCTIVITY			
Process In Use?	1.00	[1=Y 0=N]	USE7
Dedicated Investment	1.00	[1=Y 0=N]	DED7
Process Yield	95.0%		YLD7
Average Equipment Downtime	5.0%		DOWN7
Direct Laborers Per Station	1.00		NLAB7
Average Inspection Time Percent Inspection Machine Cost	15.00 100% \$50,000 /sta	min/batch	PTIME7 INSP7 MCH7
Machine Power	0.10	kW	POW7
Building Space Requirement	50	sqft/sta	FLR7
OPTIONAL INPUTS	override	estimate	

Surface Preparation	Machine Cost	\$0	\$65,774	/sta	OMCH1
	Machine Power	0.0	19.2	kW	OPOW1
Deposition	Duct Area	0.00	60.80	sqcm	ODAREA2
	Deposition Rate	0.00	4.95	g/hr	ODRATE2
Deposition Equipment Cost	\$0	\$512	\$/sta	OMC112	
Etching	Process Cycle Time	0.00	0.18	hrs	OCTIME3
	Chemical Requirement	\$0	\$5.00	/pc	OCHEM3
Laser Trimming	Process Cycle Time	0.00	0.01	hrs	OCTIME4
Lapping	Lapping Time	0.00	111.11	hrs	OCTIME5
	Lapping Plate Cost	\$0	\$969	/ea	OWHEELS
	Lapping Machine Cost	\$0	\$11,939	/sta	OMCH5
	Lapping Machine Power	0.00	4.2	kW	OPWR5
EXOGENOUS COST FACTORS	Direct Wages	\$13.33	/hr	WAGE	* exc. dep. & lapp
	Indirect Labor Salary	\$50,000	/yr	ILAB	
	Indirect:Direct Labor Ratio	1.00		BENI	
	Benefits on Wage and Salary	35.0%		DAY1	
	Working Days per Year	360.00		DAY2	
	Working Hours per Day (*)	8.00	/hr	HRS	
	Capital Recovery Rate	10%		CRR	
	Capital Recovery Period	5.00	Yrs	ELIFE	
	Building Recovery Life	20.00	Yrs	BLIFE	
	Working Capital Period	3.00	months	WCP	
	Price of Electricity	\$0.050	/kWh	ELEC	
	Price of Natural Gas	\$6.50	/MBTU	GAS	
	Price of Building Space	\$100	/sqft	PBLD	
	Price of Cooling Water	\$0.03	/100 gal	WATER	
Auxiliary Equipment Cost	15.0%		AUX		
Equipment Installation Cost	35.0%		INST		
Maintenance Cost	8.0%		MNT		

REGRESSION CONSTANTS, COEFFICIENTS, AND EXPONENTS

-Surface Preparation-

Machine Cost Constant	1,334	MCH1A
Machine Cost Capacity Coef	3,222	MCH1B
Machine Power Constant	-0.75	PWR1A
Machine Power Capacity Coef	1.00	PWR1B

-Deposition-

Deposition Rate Constant	0.009	CYC2
Machine Cost Power Coef	43,500	MCH2Y
Machine Cost Power Exponent	0.40	MCH2Z
Machine Cost Power Constant	150,000	MCH2X
Tank 1 \$ Capacity Constant	1,175	TANK2A
Tank 1 \$ Capacity Coef	0.165	TANK2B

Tank 2 \$ Capacity Constant	370.00	TANK2X
Tank 2 \$ Capacity Coef	0.03	TANK2Y
-Etching-		
-Lapping-		
Machine Cost Constant	2.719	MCHSA
Machine Cost Capacity Coef	1.844	MCHSB
Machine Power Constant	-0.75	PWRDA
Machine Power Capacity Coef	1.00	PWRDB
Tool Cost Constant	771.00	TOOLSA
Tool Cost Capacity Coef	0.92	TOOLSB
Tool Cost Capacity Exponent	2.90	TOOLSC

IBIS ASSOCIATES, INC.
TECHNICAL COST MODEL (C) 1993
RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013

DC ARC CVD TCM: SURFACE PREPARATION
IBIS ASSOCIATES, INC. Copyright

DC ARC CVD TCM: SURFACE PREPARATION
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

DC ARC CVD TCM: DEPOSITION
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS		per piece		per year		investment		VARIABLE COST ELEMENTS		per piece		per year		percent		Investment						
Material Cost	\$65.66	\$65,660	50.0%	Direct Labor Cost	\$85.00	0.6%	Utility Cost	\$0.07	\$72	0.1%	Material Cost	\$552.54	\$552,543	25.0%	Direct Labor Cost	\$190.45	\$199,449	9.0%	Utility Cost	\$212.38	\$212,363	9.6%
FIXED COST ELEMENTS																						
Equipment Cost	\$19.73	\$19,732	15.0%	Tooling Cost	\$0.00	0.0%	Building Cost	\$1.25	\$1,250	1.0%	Building Cost	\$25,000	\$98,661	Equipment Cost	\$614.59	\$614,593	27.8%	\$3,072,964				
Maintenance Cost	\$9.89	\$9,893	7.5%	Overhead Labor Cost	\$25.00	19.1%	Cost of Capital	\$8.76	\$8.764	6.7%	Maintenance Cost	\$293.84	\$0.00	Tooling Cost	\$0.00	\$0	0.0%	\$0				
Overhead Labor Cost	\$25.00	\$25,000	19.1%	Cost of Capital	\$8.76	6.7%	Cost of Capital	\$8.76	\$8.764	6.7%	Overhead Labor Cost	\$80.00	\$80,000	Building Cost	\$30.00	\$30,000	1.4%	\$600,000				
Total Fabrication Cost	\$31.22	\$131,221	100.0%	Total Fabrication Cost	\$31.22	\$131,221	Total Fabrication Cost	\$31.22	\$131,221	100.0%	Total Fabrication Cost	\$2,213.56	\$2,213,556	Total Fabrication Cost	\$3,672,964	\$3,672,964						

INTERMEDIATE CALCULATIONS

Effective Production Volume	substrate Area	Process Cycle Time
Cummulative Yield	New Substrate Cost	Runtime for One Station
Process In Use	Substrate Useful Life	Number of Parallel Stations

INTERMEDIATE CALCULATIONS

Process In
Cumulative Y
Effective Production Vo

ENERGY BALANCE CONVERSATIONS

	H ₂	H	Ar
Enthalpy Per Unit Mass	44,019	271,987	1,406 J/g
Molar Enthalpy	88,734	274,136	56,160 J/mol
Molar Entropy	202.79	162.59	202.72 J/K mol
Molar Heat Capacity (C _p)	37.11	20.79	20.79 J/K mol
Heat of Reaction (H ₂ =>2H)	459,538 J/mol		
Entropy of Rxn (H ₂ =>2H)		122 J/K mol	

Machine Cost	\$65,774	/sta	MCH1
Machine Power	19.2	kW	POW1
Installed Equipment Cost	\$88,795	/sta	EQUIP1
Auxiliary Equipment Cost	\$9,866	/sta	AUX1

	Equipment Cost	\$88,795 /sta	EQUIP1
	Military Equipment Cost	\$9,866 /sta	AEQUIP1
	Tooling Annuity	\$25,155 /yr	EINT1
	Building Annuity	\$2,895 /yr	TINT1
	Working Annuity	\$103,171 /yr	BINT1
			WINT1

Deposition Arc Power	80	kW	DAP012
Duct Area (A inf.)	60.80	sqcm	DCAREA
Mass Flux	6.44	g/s	
Gas Velocity (U inf.)	33,113	cm/s	
Specific Heat Ratio (gamma)	1.45		
Speed of sound	174,029	cm/s	

DC ARC CVD TCM:
IBIS ASSOCIATES, INC.

ETCHING
Copyright (c) 1991 v4.0

DC ARC CVD TCM: .SER TRIMMING
IBIS ASSOCIATES, INC.
Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS		per piece		per year percent		INVESTMENT		VARIABLE COST ELEMENTS		per piece		per year percent		INVESTMENT	
Material Cost	\$3.98	\$3,980	6.2%			Material Cost		Direct Labor Cost		Per Piece	\$0.00	\$0	0.0%	\$0	0.0%
Direct Labor Cost	\$4.62	\$4,616	7.1%			Direct Labor Cost		Utility Cost		Per Year	\$0.33	\$331	0.6%	\$0	0.0%
Utility Cost	\$0.00	\$0	0.0%			Utility Cost				Percent	\$0.00				
FIXED COST ELEMENTS						FIXED COST ELEMENTS		FIXED COST ELEMENTS							
Equipment Cost	\$1.80	\$1,800	2.8%			\$9,000		Equipment Cost		Per Piece	\$1.80	\$1,800	3.2%	\$9,000	
Tooling Cost	\$0.00	\$0	0.0%			\$0		Tooling Cost		Per Year	\$0.00	\$0	0.0%	\$0	
Building Cost	\$0.50	\$500	0.8%			\$10,000		Building Cost		Percent	\$0.50	\$500	0.9%	\$10,000	
Maintenance Cost	\$1.52	\$1,520	2.4%					Maintenance Cost		Per Year	\$1.52	\$1,520	2.7%		
Overhead Labor Cost	\$50.00	\$50,000	77.4%					Overhead Labor Cost		Percent	\$50.00	\$50,000	89.0%		
Cost of Capital	\$2.16	\$2,157	3.3%					Cost of Capital		Investment	\$2.02	\$2,019	3.6%		
TOTAL FABRICATION COST	\$64.57	\$64,574	100.0%			\$19,000		TOTAL FABRICATION COST		Per Piece	\$56.17	\$56,170	100.0%	\$19,000	

IMMEDIATE CALCULATIONS

Process In Use	1.00 [1=Y 0=N]	PRO3	Process In Use	1.00 [1=Y 0=N]	PRO4
Cumulative Yield	79.6%	CYLD3	Cumulative Yield	80.4%	CYLD4
Effective Production Volume	1,256 /yr	ENUM3	Effective Production Volume	1,244 /yr	ENUM4
Total Etched Thickness	3,810 um	ETHIK3			
Average Etchant Rate	20.00 um/min	ERATE3	Process Cycle Time	0.01 hrs/pc	CTIME4
Process Cycle Time	0.18 hrs/pc	CTIME3	Runtime for One Station	1%	RTIME4
Runtime for One Station	9%	RTIME3	Number of Parallel Stations	1.00	NSTAT4
Number of Parallel Stations	1.00	NSTAT3	Auxiliary Equipment Cost	\$900 /sta	
Chemical Requirement	\$5.00 /pc	CHEM3	Energy Requirement	0 kWh/pc	ENERG4
Energy Requirement	0 kWh/pc	ENERGY3	Building Space/Station	100 sq ft	SPACE4
Building Space/Station	100 sq ft	SPACE3	Installed Equipment Cost	\$8,100 /sta	IEQUIP4
Installed Equipment Cost	\$8,100 /sta	IEQUIP3	Auxiliary Equipment Cost	\$900 /sta	AEQUIP4
Auxiliary Equipment Cost	\$900 /sta	AEQUIP3	Equipment Annuity	\$2,295 /yr	EINT4
Equipment Annuity	\$2,295 /yr	EINT3	Tooling Annuity	\$0 /yr	TINT4
Tooling Annuity	\$0 /yr	TINT3	Building Annuity	\$1,158 /yr	BINT4
Building Annuity	\$1,158 /yr	BINT3	Working Annuity	\$52,717 /yr	WINT4
Working Annuity	\$61,121 /yr	WINT3			

DC ARC CVD TCM: LAPPING IBIS ASSOCIATES, INC.		Copyright (c) 1991 v4.0	DC ARC CVD TCM: INSPECTION - MICROSCOPY IBIS ASSOCIATES, INC.		Copyright (c) 1991 v4.0
	per piece	per year percent	per year percent	per year percent	per year percent
VARIABLE COST ELEMENTS			VARIABLE COST ELEMENTS		
Material Cost	\$725.01	\$725,009	Material Cost	\$0.00	\$0.0%
Direct Labor Cost	\$586.32	\$586,316	Direct Labor Cost	\$5.25	\$5,249
Utility Cost	\$5.79	\$5,786	Utility Cost	\$0.00	\$1.0%
FIXED COST ELEMENTS			FIXED COST ELEMENTS		
Equipment Cost	\$14.33	\$14,327	Equipment Cost	\$15.00	\$15,000
Tooling Cost	\$74.41	\$74,415	Tooling Cost	\$0.00	\$0.0%
Building Cost	\$8.00	\$8,000	Building Cost	\$0.25	\$250
Maintenance Cost	\$18.53	\$18,531	Maintenance Cost	\$6.40	\$6,400
Overhead Labor Cost	\$200.00	\$200,000	Overhead Labor Cost	\$50.00	\$50,000
Cost of Capital	\$60.58	\$60,581	Cost of Capital	\$5.48	\$5,482
TOTAL FABRICATION COST	\$1,692.97	\$1,692,966	TOTAL FABRICATION COST	\$82.38	\$82,382
		100.0%			100.0%
		\$603,707			\$80,000

INTERMEDIATE CALCULATIONS					
Process In Use	1.00	[1=Y 0=N]	PRO5	Process In Use	1.00 [1=Y 0=N]
Cumulative Yield	81.2%		CYLD5	Cumulative Yield	90.3%
Effective Production Volume	1,231	/yr	ENOM5	Effective Production Volume	1,108 /yr
Thickness of Material Lapped					
Setup Time	111.11	um	HLAP5	Process Cycle Time	0.25 hrs
Lapping Time	1.33	hrs/batch	CTIME5A	Runtim for One Station	10.0
Runtime for One Station	111.11	hrs/batch	CTIME5B	Number of Parallel Stations	1.00
Number of Parallel Stations	3774		RTIME5		
Lapping Plate Cost	\$869	/ea	NSTAT5	Energy Requirement	0 kWh/pc
Lapping Plate Life	14	pcs	PLAS	Building Space/Station	50 sq ft
Number of Plates Required	428.00		WHEELS		
Lapping Slurry Consumption	11.11	l/pic	PLATS	Installed Equipment Cost	\$67,500 /sta
			GRITS	Auxiliary Equipment Cost	\$7,500 /sta
Machine Power	4.2	kW	PWR5	Equipment Annuity	\$15,122 /yr
Energy Requirement	94	kWh/pc	ENERGYS	Tooling Annuity	\$0 /yr
Machine Cost	\$11,939	/sta	MCH5	Building Annuity	\$579 /yr
Building Space/station	400	sq ft	SPACES	Working Annuity	\$62,680 /yr
Installed Equipment Cost	\$16,118	/sta	IEQUIPS		
Auxiliary Equipment Cost	\$1,791	/sta	AEQUIPs		
Equipment Annuity	\$18,264	/yr	EINT5		
Tooling Annuity	\$94,865	/yr	TINT5		
Building Annuity	\$18,528	/yr	BINT5		
Working Annuity	\$1,561,308	/yr	WINT5		

DC ARC CVD TCM: INSPECTION - THERMAL CONDUCTIVITY
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

DC ARC CVD TCM: COST SUMMARY
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v1.0

VARIABLE COST ELEMENTS	per piece			per year percent			Investment VARIABLE COST ELEMENTS			per piece			per year percent			investment		
	Material Cost	\$0.00	\$0	0.0%	Direct Labor Cost	\$4,986	6.1%	Material Cost	\$1,347.19	\$1,347,192	31.2%	Direct Labor Cost	\$801.80	\$801,797	18.5%	Utility Cost	\$218.24	\$218,245
FIXED COST ELEMENTS																		
Equipment Cost	\$15.00	\$15,000	18.3%	\$75,000	Equipment Cost	\$682.25	\$682,252	15.8%	\$3,411,259									
Tooling Cost	\$0.00	\$0	0.0%	\$0	Tooling Cost	\$74.41	\$74,415	1.7%	\$372,073									
Building Cost	\$0.25	\$250	0.3%	\$5,000	Building Cost	\$40.75	\$40,750	0.9%	\$815,000									
Maintenance Cost	\$6.40	\$6,400	7.8%		Maintenance Cost	\$338.10	\$338,101	7.8%										
Overhead Labor Cost	\$50.00	\$50,000	60.9%		Overhead Labor Cost	\$505.00	\$505,000	11.7%										
Cost of Capital	\$5.48	\$5,477	6.7%		Cost of Capital	\$315.23	\$315,232	7.3%										
TOTAL FABRICATION COST	\$82.11	\$82,115	100.0%	\$80,000	TOTAL FABRICATION COST	\$4,322.98	\$4,322,983	100.0%	\$4,598,332									

INTERMEDIATE CALCULATIONS

Process In Use 1.00 [1-Y 0=N]
Cumulative Yield 95.0%
Effective Production Volume 1,053 /yr

PRO7
CYLD7
ENON7

CTIME7
RTIME7
NSTAT7

0.25 hrs
10%
1.00

Energy Requirement 0 kWh/pc
Building Space/Station 50 sq ft

ENERGY7
SPACE7

Installed Equipment Cost \$67,500 /sta
Auxiliary Equipment Cost \$7,500 /sta

EQUIP7
AEQUIP7

Equipment Annuity \$19,122 /yr

EINT7

Tooling Annuity \$0 /yr

TINT7

Building Annuity \$579 /yr

BINT7

Working Annuity \$62,413 /yr

WINT7

SUMMARY INFORMATION

	Part Name	6 in. substrate
Total Direct Laborers	10.10	/shift
Total Floor Space	8,150	sqft
Total Capital Investment	\$4.6	MM

	Operation	Equipment	Material	Labor	Other
Surface Preparation	\$20	\$66	\$26	\$20	
Deposition	\$615	\$553	\$279	\$767	
Etching	\$2	\$4	\$55	\$4	
Laser Trimming	\$2	\$0	\$50	\$4	
Lapping	\$14	\$725	\$786	\$167	
Inspect - Microscopy	\$15	\$0	\$55	\$12	
Inspect - Thermal Cond'vity	\$15	\$0	\$55	\$12	
Total	\$682	\$1,347	*****	\$987	
Total -	\$4,323				

Appendix B

MICROWAVE CVD DIAMOND TECHNICAL COST MODEL
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

Revision Date: 8/10/93

PRODUCT SPECIFICATIONS

Wafer Diameter	15.24 cm	substrate	NAME	
Finished Wafer Thickness	1,000 um		DIAM	
Annual Production Volume	1 (000/yr)		THIK	
Length of Production Run	5 yrs		NOM	
			PLIFE	
PROCESS RELATED FACTORS - SURFACE PREPARATION				
Process In Use?	1.00 [1-Y O-N]		USE1	0 None
Dedicated Investment	1.00 [1-Y O-N]		DED1	1.1g Hydrogen
Process Yield	95.0%		YLD1	2.1g Hydrogen
Average Equipment Downtime	20.0%		DOWN1	3.1g Hydrogen
Direct Laborers Per Station	0.50		NLAB1	4.1g Argon
Substrate Material	37	[menu #]	MATL1	5.1g Argon
Pieces Per Batch	20.00	pos/batch	PCSI	6.1g Argon
Process Time	60.00	min/batch	PTIME1	7.1g Argon
Building Space Requirement	250	sqft/sta	FLR1	8.1g Hydrogen
PROCESS RELATED FACTORS - DEPOSITION				
Process In Use?	1.00 [1-Y O-N]		USE2	9.1g Hydrogen
Dedicated Investment	1.00 [1-Y O-N]		DED2	10.1g Hydrogen
Process Yield	90.0%		YLD2	11.1g Hydrogen
Average Equipment Downtime	15.0%		DOWN2	12.1g Hydrogen
Direct Laborers	0.20 / sta		NLAB2	13.1g Hydrogen
				14.1g Argon
				15.1g Argon
				16.1g Methane
				17.1g Methane
				18.1g Acetylene
				19.1g Acetylene
				20.1g Helium
				21.1g Helium
				22.1g Nitrogen
				23.1g Nitrogen
				24.1g Oxygen
				25.1g Oxygen
				26.1g Oxygen
				100.0g
Hydrogen	9	88.7%	GASA VOLA	
Carbon Containing Gas	16	10.0%	GASB VOLB	
Carrier Gas	0	0.0%	GASC VOLC	
Other Gas	25	1.3%	GASD VOLD	

MICROWAVE CVD DIAMOND TECHNICAL COST MODEL
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

Revision Date: 8/10/93

GAS DATABASE

#	Gas	Source	Purity	Price \$/SCM	No. of Carbons	Liq Gas	Tank gal	Price Update
0	None			\$0.00	0.00	0.00	0.00	1/93
1	1.1g Hydrogen	Airco	99.998%	\$0.34	0.00	1.00	6000	1/93
2	2.1g Hydrogen	Airco	99.998%	\$0.32	0.00	1.00	11000	1/93
3	3.1g Hydrogen	Airco	99.998%	\$0.30	0.00	1.00	20000	1/93
4	4.1g Argon	Airco	99.998%	\$1.41	0.00	1.00	30000	1/93
5	5.1g Argon	Airco	99.998%	\$1.32	0.00	1.00	60000	1/93
6	6.1g Argon	Airco	99.998%	\$1.29	0.00	1.00	110000	1/93
7	7.1g Hydrogen	MG Ind.	99.999%	\$29.86	0.00	0.00	0.00	1/93
8	8.1g Hydrogen	MG Ind.	99.9996%	\$40.61	0.00	0.00	0.00	1/93
9	9.1g Hydrogen	MG Ind.	99.9994	\$10.28	0.00	0.00	0.00	1/93
10	10.1g Hydrogen	Air Prod.	99.95%	\$1.59	0.00	0.00	0.00	1/93
11	11.1g Argon	MG Ind.	99.999%	\$33.09	0.00	0.00	0.00	1/93
12	12.1g Argon	Air Prod.	99.9997%	\$37.33	0.00	0.00	0.00	1/93
13	13.1g Argon	Air Prod.	99.999%	\$11.74	0.00	0.00	0.00	1/93
14	14.1g Argon	Air Prod.	99.997%	\$2.03	0.00	0.00	0.00	1/93
15	15.1g Argon	Air Prod.	99.99%	\$21.99	1.00	0.00	0.00	1/93
16	16.1g Methane	Air Prod.	99%	\$13.76	1.00	0.00	0.00	1/93
17	17.1g Methane	Air Prod.	93%	\$4.93	1.00	0.00	0.00	1/93
18	18.1g Acetylene	Air Prod.	99.6%	\$6.80	2.00	0.00	0.00	1/93
19	19.1g Acetylene	Air Prod.	99.98%	\$5.85	2.00	0.00	0.00	1/93
20	20.1g Helium	Air Prod.	99.9995%	\$15.90	0.00	0.00	0.00	1/93
21	21.1g Helium	Air Prod.	99.9995%	\$4.77	0.00	0.00	0.00	1/93
22	22.1g Nitrogen	Air Prod.	99.9996%	\$45.50	0.00	0.00	0.00	1/93
23	23.1g Nitrogen	MG Ind.	99.999%	\$9.23	0.00	0.00	0.00	1/93
24	24.1g Oxygen	Air Prod.	99.998%	\$1.24	0.00	0.00	0.00	1/93
25	25.1g Oxygen	Air Prod.	99.998%	\$2.00	0.00	0.00	0.00	1/93
26								

SUBSTRATE DATABASE

#	Substrate	Source	Price \$/ea	Thickness um	Diam cm	Etch um/min	Life used	Price Update
0	None		\$0.00		1	1.00	1.00	1/93
1	Silicon	Si-Tech	\$2.65	1270.00	5.08	20.00	1	1/93
2	Silicon	Si-Tech	\$3.50	1270.00	7.62	20.00	1	1/93
3	Silicon	Si-Tech	\$6.25	1270.00	10.16	20.00	1	1/93
4	Silicon	Si-Tech	\$9.70	1270.00	12.70	20.00	1	1/93
5	Silicon	Si-Tech	\$18.60	1270.00	15.24	20.00	1	1/93
6	Silicon	Si-Tech	\$57.95	1270.00	20.32	20.00	1	1/93
7	Silicon	Si-Tech	\$4.35	3810.00	5.08	20.00	1	1/93
8	Silicon	Si-Tech	\$8.15	3810.00	7.62	20.00	1	1/93
9	Silicon	Si-Tech	\$14.50	3810.00	10.16	20.00	1	1/93
10	Silicon	Si-Tech	\$22.65	3810.00	12.70	20.00	1	1/93

HYDROGEN RECYCLE EQUIPMENT

Hydrogen Recycle Rate	0.0%	RECYC RECYC2	Price \$/ea	Thickness um	Diam cm	Etch um/min	Life used	Price Update
Carrier Gas Recycle Rate	0.0%	MCH2A						
Gas Recycle Equipment Cost	\$250,000 total							
Machine Power	250 kW	POW2						
Carbon Capture Factor	15.0%	CCF2						
Machine Load/Unload Time	30.00 min/batch	PTIME2						
Available Deposition Time	8,640 hrs/yr	DAYHR2						
Microwave Tube Life	3000 hrs	LIFE2						
Coolant Temp. Rise	50.00 C	TEMP2						
Heat Capacity of Coolant	1.0 cal/g/C	CP2						
Building Space Requirement	400 sqft/sta	FLR2						

PROCESS RELATED FACTORS - ETCHING										
Process In Use?										
0.00	[1-Y	0=N]	USE3	12	Silicon	Si-Tech	\$43.15	15.24	20.00	
1.00	[1-Y	0=N]	DED3	13	Silicon	Si-Tech	\$135.20	20.32	20.00	
99.0%	YLD3	14	Silicon	Si-Tech	\$6.85	6350.00	5.08	20.00	1/93	
Average Equipment Downtime	DOWN3	15	Silicon	Si-Tech	\$12.90	6350.00	7.62	20.00	1/93	
Direct Laborers Per Station	NLAB3	16	Silicon	Si-Tech	\$22.75	6350.00	10.16	20.00	1/93	
Load/Unload and Rinse Time	30.00	min/batch	PTIME3	17	Silicon	Si-Tech	\$35.35	12.70	20.00	
Pieces Per Batch	20.00	PCS3	18	Silicon	Si-Toch	\$68.30	6350.00	15.24	20.00	
Machine Cost	\$6,000	/sta	20	Molybdenum	Phil.	\$3.90	6350.00	20.32	20.00	
Etchant Cost	\$70	/liter	21	Molybdenum	Phil.	\$8.20	254	5.08	1/93	
Etchant Disposal Cost	\$30	/liter	22	Molybdenum	Logies	\$14.50	254	10.16	1/93	
Machine Etchant Capacity	1.00	1/batch	23	Molybdenum	Logies	\$25.35	254	10.00	1/93	
Machine Power	0.00	kW	24	Molybdenum	Logies	\$4.80	508.00	5.08	1/93	
Building Space Requirement	100	sqft/sta	25	Molybdenum	Logies	\$14.75	508.00	10.16	1/93	
PROCESS RELATED FACTORS - LASER TRIMMING										
Process In Use?	1.00	[1-Y	0=N]	USE4	26	Molybdenum	Logies	\$24.30	15.24	1/93
Dedicated Investment	1.00	[1-Y	0=N]	DED4	27	Molybdenum	Phil.	\$37.10	508.00	1/93
Process Yield	99.0%	YLD4	28	Molybdenum	Logies	\$9.15	1524.00	5.08	1/93	
Average Equipment Downtime	10.0%	DOWN4	29	Molybdenum	Logies	\$27.60	1524.00	10.16	1/93	
Direct Laborers Per Station	1.00	NLAB4	30	Molybdenum	Logies	\$52.25	1524.00	15.24	1/93	
Machine Cost	\$6,000	/sta	31	Molybdenum	Logies	\$85.25	1524.00	20.32	1/93	
Trimming Rate	1.00	cm/s	32	Molybdenum	Logies	\$14.75	2286.00	5.08	1/93	
Building Space Requirement	5.00	kW	33	Molybdenum	Logies	\$36.00	2286.00	10.16	1/93	
Machine Power	1.00	sqft/sta	34	Molybdenum	Logies	\$69.00	2286.00	15.24	1/93	
Machine Cost	\$6,000	/sta	35	Molybdenum	Logies	\$139.50	2286.00	20.32	1/93	
Trimming Rate	1.00	cm/s	36	Molybdenum	Logies	\$18.50	3175.00	5.08	1/93	
Building Space Requirement	5.00	kW	37	Molybdenum	Logies	\$46.75	3175.00	10.16	1/93	
Machine Power	1.00	sqft/sta	38	Molybdenum	Logies	\$90.50	3175.00	15.24	1/93	
Machine Cost	\$6,000	/sta	39	Tungsten	Logies	\$149.00	3175.00	20.32	1/93	
Trimming Rate	1.00	cm/s	40	Tungsten	Logies	\$7.75	3175.00	5.08	1/93	
Building Space Requirement	5.00	kW	41	Tungsten	Logies	\$24.50	254	10.16	1/93	
Machine Power	1.00	sqft/sta	42	Tungsten	Logies	\$50.00	254	15.24	1/93	
Machine Cost	\$6,000	/sta	43	Tungsten	Logies	\$79.25	254	20.32	1/93	
Trimming Rate	1.00	cm/s	44	Tungsten	Logies	\$10.00	508.00	5.08	1/93	
Building Space Requirement	5.00	kW	45	Tungsten	Logies	\$35.10	508.00	10.16	1/93	
Machine Power	1.00	sqft/sta	46	Tungsten	Logies	\$67.00	508.00	15.24	1/93	
Machine Cost	\$6,000	/sta	47	Tungsten	Logies	\$109.20	508.00	20.32	1/93	
Trimming Rate	1.00	cm/s	48	Tungsten	Logies	\$50.00	1524.00	5.08	1/93	
Building Space Requirement	5.00	kW	49	Tungsten	Logies	\$122.00	1524.00	10.16	1/93	
Machine Power	1.00	sqft/sta	50	Tungsten	Logies	\$317.00	1524.00	15.24	1/93	
Machine Cost	\$6,000	/sta	51	Tungsten	Logies	\$60.00	3175.00	5.08	1/93	
Trimming Rate	1.00	cm/s	52	Tungsten	Logies	\$161.25	3175.00	10.16	1/93	
Building Space Requirement	5.00	kW	53	Tungsten	Logies	\$521.30	3175.00	15.24	1/93	
Machine Power	1.00	sqft/sta	54	Tungsten	Logies	\$687.00	3175.00	20.32	1/93	
Trimming Rate	1.00	cm/s	55	Tungsten	Logies	0	None	1.00	1/93	
TARGET DATABASE										
#	Metal	Vendor	Price \$/g	Dep.Rt. \$/g	Density g/cc				Price Update	
8,640	hrs/yr	DAYRS	\$0	\$0	\$0				1/93	
400	sqft/sta	FLRS							1/93	
PROCESS RELATED FACTORS - HOT IRON POLISH										
Process In Use?	0.00	[1-Y	0=N]	USE6	1	Titanium	Tosoh	\$1.90	80.00	4.51
Dedicated Investment	1.00	[1-Y	0=N]	DED6	2	Platinum	Tosoh	\$19.00	125.00	21.45
Process Yield	90.0%	YLD6	3	Gold	Tosoh	\$7.00	230.00	19.32	1/93	
Average Equipment Downtime	DOWN6	4	Silver	Tosoh	\$2.45	215.00	10.50	1/93		
Direct Laborers Per Station	NLAB6	5	Copper	Tosoh	\$1.15	210.00	8.96	1/93		

Average Equipment Downtime
Direct Laborers Per Station

15.0⁴
0.25

DOWN6

NLAB6

6

Nickel

Tosoh

\$0.95

30.00

8.91

1/93

1/93

1/93

2.33

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

1/93

100.0%

Material Removed
No of Polishing Steps
Pieces Per Batch
Oxygen Gas Consumption

10.0% by wgt
1.00
3.00
10.00 sccm

Ion Source Life
Ion Source Cost

1,000 hrs
\$1,000 /ea

Load/Unload and Clean Wafers
Preheat Time
Linear Polishing Rate

40.00 min/batch
5.00 min
0.240 um/hr

Machine Power
Machine Cost

1.00 kW
\$500,000 /sta

Available Polishing Time
Building Space Requirement

8,640 hrs/yr
400 sqft/sta

PROCESS RELATED FACTORS - METALLIZATION - SPUTTERING

Process In Use? 1.00 [1=Y 0=N] USE9

Dedicated Investment 1.00 [1=Y 0=N] DED9

Process Yield 99.0% YLD9

Average Equipment Downtime 20.0% DOWN9

Direct Laborers Per Station 0.10 NLAB9

Load/Unload Laborers 1.00 LLAB9

Metal Layers

Menu #

Thick (um)

Titanium	1	MET9A	0.10 THK9A
Platinum	2	MET9B	0.10 THK9B
Gold	3	MET9C	0.10 THK9C

Load Time 15 min/batch PTIME9

Target Preheat Time 1 min/kW HTIME9

Pieces Per Batch 3 pcs/batch PCS9

METALLIZATION Magnetron Power

3 kW PON9

Building Space Requirement 400 sqft/sta FLR9

PROCESS RELATED FACTORS - METALLIZATION - EVAPORATION

Process In Use? 1.00 [1=Y 0=N] USE10

Dedicated Investment 1.00 [1=Y 0=N] DED10

Process Yield 99.0% YLD10

Average Equipment Downtime 20.0% DOWN10

Direct Laborers Per Station 0.10 NLAB10

Load/Unload Laborers 1.00 LLAB10

Metal Layers

Menu #

Thick (um)

Titanium	1	MET10A	0.10 THK10A
Platinum	2	MET10B	0.10 THK10B
Gold	3	MET10C	0.10 THK10C

Target Load Time	15 min/batch	PTIME10
Preheat Time	1.00 min/kW	HTIME10
Pieces Per Batch	5.00 pcs/batch	PCS10
Evaporator Power	7.00 kW	POW10
Building Space Requirement	400 sqft/sta	FIR10
Percent Inspection	100%	INSP10
PROCESS RELATED FACTORS - INSPECTION - MICROSCOPY		
Process In Use?	1.00 [1=Y 0=N]	USE11
Dedicated Investment	1.00 [1=Y 0=N]	DED11
Process Yield	95.0%	YLD11
Average Equipment Downtime	5.0%	DOWN11
Direct Laborers Per Station	1.00	NLAB11
Average Inspection Time	15.00 min/batch	PTIME11
Percent Inspection	100%	INSP11
Machine Cost	\$50,000 /sta	MCH11
Machine Power	0.10 kW	POW11
Building Space Requirement	50 sqft/sta	FIR11
PROCESS RELATED FACTORS - INSPECTION - THERMAL CONDUCTIVITY		
Process In Use?	1.00 [1=Y 0=N]	USE12
Dedicated Investment	1.00 [1=Y 0=N]	DED12
Process Yield	95.0%	YLD12
Average Equipment Downtime	5.0%	DOWN12
Direct Laborers Per Station	1.00	NLAB12
Average Inspection Time	15.00 min/batch	PTIME12
Percent Inspection	100%	INSP12
Machine Cost	\$50,000 /sta	MCH12
Machine Power	0.10 kW	POW12
Building Space Requirement	50 sqft/sta	FIR12
OPTIONAL INPUTS		
Surface Preparation	override	estimate
Deposition	Machine Cost	\$65,774 /sta
	Machine Power	12.2 kW
Etching	Deposition Rate	3.25 g/hr
	Deposition Equipment Cost	\$1,829 k\$/sta
	Microwave Tube Cost	\$25,977 /sta
Laser Trimming	Process Cycle Time	0.29 hrs
	Chemical Requirement	\$5.00 /pc
Process Cycle Time	0.00	OCTIME3
Lapping	Lapping Time	111.11 hrs
	Lapping Plate Cost	\$869 /ea
		OCTIME5
		OWHEEL5

Hot Iron Polish	Lapping Machine Cost	\$0	\$11,939	/sta
	Lapping Machine Power	0.00	4.2	kW
	Lapping Time	0.00	34.34	hrs
	Lapping Plate Cost	\$0	\$784	/ea
Oxygen Plasma Polishing	Machine Cost	\$0	\$11,939	/sta
Oxygen Ion Milling	Machine Power	\$0	45.84	kW
Metalization-Sputtering	Process Cycle Time	0.00	34.34	hrs
Metalization-Evaporation	Process Cycle Time	0.00	154.57	hrs
Metalization	Machine Cost	\$0	0.29	hrs
	Process Cycle Time	\$0	\$225,516	OSBUT9
	Metallization Time	0.00	#VALUE!	hrs
		0.07	0.07	OEVAP10

EXOGENOUS COST FACTORS	Direct Wages	\$13.33	/hr	WAGE
Indirect/Direct Labor Ratio	Indirect Salary	\$50,000	/yr	SALARY
Benefits on Wage and Salary	1.00			ILAB
Working Days per Year	35.0%			BENI
Working Hours per Day (*)	360.00			DAYs
Capital Recovery Rate	8.00	/hr		HRS
Capital Recovery Period	10%			CRR
Building Recovery Life	5.00	Yrs		ELIFE
Working Capital Period	20.00	yrs		BLIFE
Price of Electricity	3.00	months		WCP
Price of Natural Gas	0.050	/kWh		ELEC
Price of Building Space	\$6.50	/MBTU		GAS
Price of Cooling Water	\$100	/sqft		PBLD
Auxiliary Equipment Cost	\$0.03	/100 gal		WATER
Equipment Installation Cost	15.0%			AUX
Maintenance Cost	35.0%			INST
	8.0%			MNT

REGRESSION CONSTANTS, COEFFICIENTS, AND EXPONENTS

-Surface Preparation-

Machine Cost Constant	1,334	MCH1A
Machine Cost Capacity Coef	3,222	MCH1B
Machine Power Constant	-0.75	PWR1A
Machine Power Capacity Coef	1.00	PWR1B

-Deposition-

Deposition Rate Constant	0.013	CYC2
Machine Cost Power Coef	68.276	MCH2Y
Machine Cost Power Exponent	0.58	MCH2Z
Machine Cost Power Constant	150.000	MCH2X
Tube Cost Constant	1724	TUBE2Y
Tube Cost Coef	97.01	TUBE2Z

Rank 1	1 S	Capacity Constant	1.175	TANK2A
	Tank 1	S Capacity Coef	0.165	TANK2B
	Tank 2	S Capacity Constant	370.00	TANK2X
	Tank 2	S Capacity Coef	0.03	TANK2Y

-Etching-

-lapping-	Machine Cost Constant	2,719	MCH5A
	Machine Cost Capacity Coef	1,844	MCH5B
	Machine Power Constant	-0.75	PMS5A
	Machine Power Capacity Coef	1.00	PMS5B
	Tool Cost Constant	771.00	TOOLSA
	Tool Cost Capacity Coef	0.92	TOOLSB
	Tool Cost Capacity Exponent	2.90	TOOLSC

-Hot Iron Polish
Machine Cost Constant
Machine Cost Capacity Coef
Machine Power Constant
Machine Power Capacity Coef
Tool Cost Constant
Tool Cost Capacity Coef
Tool Capacity Exponent
Tool Cost Constant

-Metalization-Sputtering-	Machine Cost Constant	160,720.00	MCH9A
	Machine Cost Capacity Coef1	129.43	MCH9B
	Machine Cost Capacity Coef2	-0.02	MCH9C
	Machine Cost Capacity Coef2	0.00	MCH9D
-Metalization-Evaporation-	Machine Cost Constant	367,070.00	MCH10A
	Machine Cost Capacity Coef1	(3,797.80)	MCH10B
	Machine Cost Capacity Coef2	22.02	MCH10C
	Machine Cost Capacity Coef3	(0.05)	MCH10D
	Machine Cost Capacity Coef4	0.00	MCH10E

IBIS ASSOCIATES, INC.
TECHNICAL COST MODEL (C) 1993
RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

MICROWAVE CVD TCM: SURFACE PREPARATION
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: DEPOSITION
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS	per piece		per year percent		Investment		VARIABLE COST ELEMENTS		per piece		per year percent		investment
	Material Cost	\$2.89	\$2,890	4.3%			Material Cost	\$142.30	\$142,304	2.4%			
Direct Labor Cost	\$0.83	\$826	1.2%				Direct Labor Cost	\$132.72	\$132,721	2.3%			
Utility Cost	\$0.07	\$70	0.1%				Utility Cost	\$393.42	\$393,424	6.8%			
FIXED COST ELEMENTS							FIXED COST ELEMENTS						
Equipment Cost	\$19.73	\$19,732	29.3%	\$98,651			Equipment Cost	\$2,743.63	\$2,743,631	47.2%	\$13,718,155		
Tooling Cost	\$0.00	\$0	0.0%	\$0			Tooling Cost	\$337.69	\$337,695	5.8%	\$1,688,473		
Building Cost	\$1.25	\$1,250	1.9%	\$25,000			Building Cost	\$10.00	\$10,000	0.2%	\$200,000		
Maintenance Cost	\$9.89	\$9,893	14.7%				Maintenance Cost	\$1,113.45	\$1,113,452	19.2%			
Overhead Labor Cost	\$25.00	\$25,000	37.1%				Overhead Labor Cost	\$50.00	\$50,000	0.9%			
Cost of Capital	\$7.71	\$7,714	11.4%				Cost of Capital	\$890.59	\$890,595	15.3%			
TOTAL FABRICATION COST	\$67.38	\$67,377	100.0%	\$123,661			TOTAL FABRICATION COST	\$5,813.82	\$5,813,821	1C.0%	\$15,606,627		

INTERMEDIATE CALCULATIONS

Process In Use	1.00	[1=Y 0=N]	PRO1	Process In Use	1.00	[1=Y 0=N]	PRO2
Cummulative Yield	68.1%	/yr	CYLD1	Cummulative Yield	71.6%	/yr	CYLD2
Effective Production Volume	1,469	/yr	ENUM1	Effective Production Volume	1,396	/yr	ENUM2
Substrate Area	182.4	sq cm	AREA1	Mass of Diamond Deposited	71.34	g	MASS2
New Substrate Cost	\$90.50	/pc	SUB1	Mass Deposition Rate	3.25	g/hr	MASDE2
Substrate Useful Life	46.00	cycle	LIFE1	Linear Deposition Rate	51	um/hr	LINDE2
Process Cycle Time	3	min/pc	CTIME1	Deposition Time	21.95	hrs	CTIMEB2
Runtimes for One Station	3	#	RTIME1	Machine Setup Time	0.50	hrs	CTIMEA2
Number of Parallel Stations	1.00		NSPAT1	Runtime for One Station	427*		RTIME2
Energy Requirement	0.959	kWh/pc	ENERGY1	Number of Parallel Stations	5.00		NSTAT2
Building Space/Station	250	sqft	SPACE1	Total Carbon Gas Volume	0.97	SCM	CARGAS2
Machine Cost	\$65,774	/sta	MCH1	Total Gas Volume	10	SCM	TVOL2
Machine Power	19.2	kW	PW1	Total Gas Flow Rate	7,358	sccm	FLOWR2
Installed Equipment Cost	\$88,795	/sta	IEQUIP1	Consumption	Cost		
Auxiliary Equipment Cost	\$9,866	/sta	AEQUIP1	(SCM/pc)	(\$/pc)		
Equipment Annuity	\$25,155	/yr	EINT1	Hydrogen Consumption	8.60		
Tooling Annuity	\$0	/yr	TINT1	Carbon Gas Consumption	0.97		
Building Annuity	\$2,895	/yr	BINT1	Carrier Gas Consumption	0.00		
Working Annuity	\$39,327	/yr	WINT1	Other Gas Consumption	0.13		

INTERMEDIATE CALCULATIONS

Process In Use	1.00 [1=Y 0=N]	PRO1	Process In Use	1.00 [1=Y 0=N]	PRO2		
Cummulative Yield	68.1%	/yr	CYLD1	Cummulative Yield	71.6%	/yr	CYLD2
Effective Production Volume	1,469	/yr	ENUM1	Effective Production Volume	1,396	/yr	ENUM2
Substrate Area	182.4	sq cm	AREA1	Mass of Diamond Deposited	71.34	g	MASS2
New Substrate Cost	\$90.50	/pc	SUB1	Mass Deposition Rate	3.25	g/hr	MASDE2
Substrate Useful Life	46.00	cycle	LIFE1	Linear Deposition Rate	51	um/hr	LINDE2
Process Cycle Time	3	min/pc	CTIME1	Deposition Time	21.95	hrs	CTIMEB2
Runtimes for One Station	3	#	RTIME1	Machine Setup Time	0.50	hrs	CTIMEA2
Number of Parallel Stations	1.00		NSPAT1	Runtime for One Station	427*		RTIME2
Energy Requirement	0.959	kWh/pc	ENERGY1	Number of Parallel Stations	5.00		NSTAT2
Building Space/Station	250	sqft	SPACE1	Total Carbon Gas Volume	0.97	SCM	CARGAS2
Machine Cost	\$65,774	/sta	MCH1	Total Gas Volume	10	SCM	TVOL2
Machine Power	19.2	kW	PW1	Total Gas Flow Rate	7,358	sccm	FLOWR2
Installed Equipment Cost	\$88,795	/sta	IEQUIP1	Consumption	Cost		
Auxiliary Equipment Cost	\$9,866	/sta	AEQUIP1	(SCM/pc)	(\$/pc)		
Equipment Annuity	\$25,155	/yr	EINT1	Hydrogen Consumption	8.60		
Tooling Annuity	\$0	/yr	TINT1	Carbon Gas Consumption	0.97		
Building Annuity	\$2,895	/yr	BINT1	Carrier Gas Consumption	0.00		
Working Annuity	\$39,327	/yr	WINT1	Other Gas Consumption	0.13		
Energy Requirement				Energy Requirement	5,488	kWh/pc	ENERGY2
Physical Tube Life				Physical Tube Life	0.41	years	TLIFE2
Number of Tubes per Station				Number of Tubes per Station	13.00		NTUBE2
New Microwave Tube Cost				New Microwave Tube Cost	\$25,977	/tube	TUBE2

Cooling Water Flow Rate	18.9	gal/min	WATER2
Cooling Water Requirement	24,927	gal/pc	COOL2
Building Space/Station	400	sqft	SPACE2
Recycle Equipment Cost	\$0	/sta	REC2
Liquid Hydrogen Tank Rental	\$0	/mo/tank	HYD2
Liq Carrier Gas Tank Rental	\$0	/mo/tank	CAR2
Gas Storage Equipment Rent	\$0	/year	GTANK2
Machine Cost	\$1,829,087	/sta	MCH2B
Installed Equipment Cost	\$2,469,268	/sta	EQUIP2
Auxiliary Equipment Cost	\$274,363	/sta	AEQUIP2
Equipment Annuity	\$3,497,643	/yr	EINT2
Tooling Annuity	\$430,501	/yr	TINT2
Building Annuity	\$22,161	/yr	BINT2
Working Annuity	\$1,862,517	/yr	WINT2

MICROWAVE CVD TCM:
IBIS ASSOCIATES, INC.

ETCHING
Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: SER TRIMMING
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS		per piece		per year		percent investment		VARIABLE COST ELEMENTS		per piece		per year percent investment	
Material Cost	\$0.00	.00	\$0	#DIV/0!				Material Cost	\$0.00	\$0	0.0%		
Direct Labor Cost	\$0.00	.00	\$0	#DIV/0!				Direct Labor Cost	\$0.33	\$334	0.6%		
Utility Cost	\$0.00	.00	\$0	#DIV/0!				Utility Cost	\$0.00	\$4	0.0%		
FIXED COST ELEMENTS								FIXED COST ELEMENTS					
Equipment Cost	\$0.00	.00	\$0	#DIV/0!				Equipment Cost	\$1.80	\$1,800	3.2%	\$9,000	
Tooling Cost	\$0.00	.00	\$0	#DIV/0!				Tooling Cost	\$0.00	\$0	0.0%	\$0	
Building Cost	\$0.00	.00	\$0	#DIV/0!				Building Cost	\$0.50	\$500	0.9%	\$10,000	
Maintenance Cost	\$0.00	.00	\$0	#DIV/0!				Maintenance Cost	\$1.52	\$1,520	2.7%		
Overhead Labor Cost	\$0.00	.00	\$0	#DIV/0!				Overhead Labor Cost	\$50.00	\$50,000	89.0%		
Cost of Capital	\$0.00	.00	\$0	#DIV/0!				Cost of Capital	\$2.02	\$2,019	3.6%		
TOTAL FABRICATION COST	\$0.00	.00	\$0	#DIV/0!				TOTAL FABRICATION COST	\$56.18	\$56,178	100.0%	\$19,000	

INTERMEDIATE CALCULATIONS

Process In Use	0.00	[1=Y 0=N]	PRO3	Process In Use	1.00	(1-Y 0-N)	PRO4
Cumulative Yield	79.6%		CYLD3	Cumulative Yield	79.6%		CYLD4
Effective Production Volume	1,256 /yr		ENUM3	Effective Production Volume	1,256 /yr		ENUM4
Total Etched Thickness	3.175 um		ETHK3	Process Cycle Time	0.01 hrs/pc		CTIME4
Average Etch Rate	10.00 um/min		ERATE3	Runtime for One Station	1t		RTIME4
Process Cycle Time	0.29 hrs/pc		CTIME3	Number of Parallel Stations	1.00		NSTAT4
Runtime for One Station	14%		RTIME3				
Number of Parallel Stations	1.00		NSTAT3				
Chemical Requirement	\$5.00 /pc		CHRM3	Energy Requirement	0 kWh/pc		ENERGY4
Energy Requirement	0 kWh/pc		ENERGY3	Building Space/Station	100 sq ft		SPACE4
Building Space/Station	100 sq ft		SPACE3	Installed Equipment Cost	\$8,100 /sta		IEQUIP4
Installed Equipment Cost	\$8,100 /sta		IEQUIP3	Auxiliary Equipment Cost	\$900 /sta		AQUIP4
Auxiliary Equipment Cost	\$900 /sta		AEQUIP3	Equipment Annuity	\$2,295 /yr		EINT4
Equipment Annuity	\$0 /yr		EINT3	Tooling Annuity	\$0 /yr		TINT4
Tooling Annuity	\$0 /yr		TINT3	Building Annuity	\$1,158 /yr		BINT4
Building Annuity	\$0 /yr		BINT3	Working Annuity	\$52,725 /yr		WINT4
Working Annuity	\$0 /yr		WINT3				

MICROWAVE CVD TCM: OXYGEN PLASMA POLISHING
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: OXYGEN ION MILLING
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS		per piece		per year percent		investment		VARIABLE COST ELEMENTS		per piece		per year percent		Investment	
Material Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Material Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
Direct Labor Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Direct Labor Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
Utility Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Utility Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
FIXED COST ELEMENTS								FIXED COST ELEMENTS							
Equipment Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Equipment Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
Tooling Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Tooling Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
Building Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Building Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
Maintenance Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Maintenance Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
Overhead Labor Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Overhead Labor Cost	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
Cost of Capital	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0	Cost of Capital	\$0.00	\$0	\$0	\$0	\$0	\$0	\$0
TOTAL FABRICATION COST		\$0.00		\$0		\$0		TOTAL FABRICATION COST		\$0.00		\$0		\$0	
INTERMEDIATE CALCULATIONS								INTERMEDIATE CALCULATIONS							
Process In Use	0.00	[1-Y 0-N]	PRO7	Process In Use		0.00 [1-Y 0-N]		Cumulative Yield	89.3%	0.00 [1-Y 0-N]		Effective Production Volume	1,119 /yr	PRO8	CYLD8
Cumulative Yield	89.3%	CYLD7	ENUM7	Cumulative Yield		89.3% /yr		Thickness of Material Lapped	111.11 um	89.3% /yr		Thickness of Material Lapped	111.11 um	HMAP8	ENUM8
Effective Production Volume	1,119 /yr	ENUM7		Effective Production Volume		1,119 /yr		Polishing Time	462.96 hrs/batch	HMAP8		Polishing Time	462.96 hrs/batch	CTIME8A	CTIME8B
Thickness of Material Lapped	111.11 um	HLAP7		Thickness of Material Lapped		111.11 um		Load/Unload Time	0.00 min	HMAP8		Load/Unload Time	0.00 min	LTIME8	CTIME8
Polishing Time	33.67 hrs/batch	CTIME7A		Polishing Time		462.96 hrs/batch		Total Process Cycle Time	154.57 hrs/pc	HMAP8		Total Process Cycle Time	154.57 hrs/pc	RTIME8	CTIME8
Load/Unload Time	0.00 min	LTIME7		Load/Unload Time		0.00 min		Runtime for One Station	785¢	RTIME8		Runtime for One Station	785¢	RTIME8	RTIME8
Total Process Cycle Time	34.34 hrs/pc	CTIME7		Total Process Cycle Time		154.57 hrs/pc		Number of Parallel Stations	8.00	RTIME8		Number of Parallel Stations	8.00	RTIME8	RTIME8
Consumption				Cost		Consumption		Cost		Consumption		Cost		Consumption	
Oxygen Consumption	1.03	\$2.31	GASA7	Oxygen Consumption		0.09		Argon Consumption	0.00	GASA8		Other Gas Consumption	0.00	0.21	GASA8
Argon Consumption	0.00	\$0.00	GASB7	Argon Consumption		0.00		Other Gas Consumption	0.00	GASB8		Other Gas Consumption	0.00	\$0.00	GASB8
Other Gas Consumption	0.00	\$0.00	GASC7	Other Gas Consumption		0.00		Energy Requirement	155 kWh/pc	GASC8		Energy Requirement	155 kWh/pc	ENERGY8	GASC8
Energy Requirement	343 kWh/pc	ENERGY7		Energy Requirement		155 kWh/pc		Building Space/Station	400 sq ft	ENERGY8		Building Space/Station	400 sq ft	SPACE8	ENERGY8
Building Space/Station	400 sq ft	SPACE7		Building Space/Station		400 sq ft		Ion Source Life	19 Pcs	SPACE8		Ion Source Life	19 Pcs	SLIFE8	SPACE8
Installed Equipment Cost	\$405,000 /sta	IEQUIP7		Ion Source Life		19 Pcs		Number of Sources Required	289.00	SLIFE8		Number of Sources Required	289.00	SLIFE8	SLIFE8
Auxiliary Equipment Cost	\$45,000 /sta	AEQUIP7		Number of Sources Required		289.00		Installed Equipment Cost	\$675,000 /sta	SLIFE8		Auxiliary Equipment Cost	\$75,000 /sta	EQUIP8	AEQUIP8
Equipment Annuity	\$0 /yr	EINT7		Installed Equipment Cost		\$675,000 /sta		Tooling Annuity	\$0 /yr	EINT8		Tooling Annuity	\$0 /yr	TINT8	EINT8
Tooling Annuity	\$0 /yr	TINT7		Tooling Annuity		\$0 /yr		Building Annuity	\$0 /yr	TINT8		Building Annuity	\$0 /yr	BINT8	TINT8
Building Annuity	\$0 /yr	BINT7		Building Annuity		\$0 /yr		Working Annuity	\$0 /yr	BINT8		Working Annuity	\$0 /yr	WINT8	BINT8
Working Annuity	\$0 /yr	WINT7		Working Annuity		\$0 /yr				WINT8					

MICROWAVE CVD TCM: METALLIZATION - SPUTTERING
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: METALLIZATION - EVAPORATION
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS		Investment		VARIABLE COST ELEMENTS		Investment	
	Per Piece	per year	percent		Per piece	per year	percent
Material Cost	\$1.52	\$1,520	1.2%	Material Cost	\$0.00	\$0	\$DIV/0!
Direct Labor Cost	\$0.24	\$242	0.2%	Direct Labor Cost	\$0.00	\$0	\$DIV/0!
Utility Cost	\$0.02	\$16	0.0%	Utility Cost	\$0.00	\$0	\$DIV/0!
FIXED COST ELEMENTS							
Equipment Cost	\$67.65	\$67,655	52.6%	\$338,274	Equipment Cost	\$0.00	\$0
Tooling Cost	\$0.00	\$0	0.0%	\$0	Tooling Cost	\$0.00	\$0
Building Cost	\$2.00	\$2,000	1.6%	\$40,000	Building Cost	\$0.00	\$0
Maintenance Cost	\$30.26	\$30,262	23.5%		Maintenance Cost	\$0.00	\$0
Overhead Labor Cost	\$5.00	\$5,000	3.9%		Overhead Labor Cost	\$0.00	\$0
Cost of Capital	\$21.84	\$21,844	17.0%		Cost of Capital	\$0.00	\$0
TOTAL FABRICATION COST		\$128.54	\$128,539	100.0%	\$378,274	TOTAL FABRICATION COST	\$0.00
INTERMEDIATE CALCULATIONS							
Process In Use	1.00	[1=Y 0=N]	PRO9	Process In Use	0.00	[1=Y 0=N]	PRO10
Cumulative Yield	89.3%	/yr	CYLD9	Cumulative Yield	90.3%		CYLD10
Effective Production Volume	1,119	/yr	ENUM9	Effective Production Volume	1,108	/yr	ENUM10
Metal Coating							
	Consumption	Cost	Op. Time		Metal Coating	Consumption	Cost
	(g/piece)	(\$/pc)	(min)		Titanium	(g/piece)	(\$/pc)
Titanium	0.01	\$0.02	4.17		Platinum	0.01	\$0.04
Platinum	0.04	\$0.74	2.67		Gold	0.04	\$0.73
Gold	0.04	\$0.60	1.45			0.04	\$0.51
Metallization Thickness							
Metallization Time	0.30	um	THK9	Metallization Thickness	0.30	um	THK10
Preheat Time	8.28	min	SPUT9	Metallization Time	0.06	min	EVAP10
Load/Unload Time	9.00	min	PREHT9	Preheat Time	21.00	min	PREHT10
Total Process Cycle Time	0.00	min	LTIME9	Load/Unload Time	0.00	min	LTIME10
	0.10	hrs/pc	CTIME9	Total Process Cycle Time	0.07	hrs/pc	CTIME10
Runtime for One Station							
Number of Parallel Stations	1.00		RTIME9	Runtime for One Station	3%		RTIME10
Wafer Capacity per Station	547.24	cm^2	CAP9	Wafer Capacity per Station	141.37	cm^2	CAP10
Machine Cost	\$225,516	/sta	MCH9	Machine Cost	\$141,904	/sta	MCH10
Energy Requirement	0.288	kWh/pc	ENERGY9	Energy Requirement	0.491	kWh/pc	ENERGY10
Building Space/Station	400	sq ft	SPACE9	Building Space/Station	400	sq ft	SPACE10
Installed Equipment Cost							
Auxiliary Equipment Cost	\$304,447	/sta	IEQUIP9	Installed Equipment Cost	\$191,570	/sta	IEQUIP10
	\$33,827	/sta	AEQUIP9	Auxiliary Equipment Cost	\$21,286	/sta	AEQUIP10
Equipment Annuity							
Tooling Annuity	\$86,248	/yr	EINT9	Equipment Annuity	\$0	/yr	EINT10
Building Annuity	\$0	/yr	TINT9	Tooling Annuity	\$0	/yr	TINT10
Working Annuity	\$4,632	/yr	BINT9	Building Annuity	\$0	/yr	BINT10
	\$37,659	/yr	WINT9	Working Annuity	\$0	/yr	WINT10

INTERMEDIATE CALCULATIONS

	Process In Use	Cumulative Yield	Effective Production Volume		Process In Use	Cumulative Yield	Effective Production Volume	
Process In Use	1.00	[1=Y 0=N]	PRO9	Process In Use	0.00	[1=Y 0=N]	PRO10	
Cumulative Yield	89.3%	/yr	CYLD9	Cumulative Yield	90.3%		CYLD10	
Effective Production Volume	1,119	/yr	ENUM9	Effective Production Volume	1,108	/yr	ENUM10	
Metallization Thickness								
Metallization Time	0.30	um	THK9	Metallization Thickness	0.30	um	THK10	
Preheat Time	8.28	min	SPUT9	Metallization Time	0.06	min	EVAP10	
Load/Unload Time	9.00	min	PREHT9	Preheat Time	21.00	min	PREHT10	
Total Process Cycle Time	0.00	min	LTIME9	Load/Unload Time	0.00	min	LTIME10	
	0.10	hrs/pc	CTIME9	Total Process Cycle Time	0.07	hrs/pc	CTIME10	
Runtime for One Station								
Number of Parallel Stations	1.00		RTIME9	Runtime for One Station	3%		RTIME10	
Wafer Capacity per Station	547.24	cm^2	CAP9	Wafer Capacity per Station	141.37	cm^2	CAP10	
Machine Cost	\$225,516	/sta	MCH9	Machine Cost	\$141,904	/sta	MCH10	
Energy Requirement	0.288	kWh/pc	ENERGY9	Energy Requirement	0.491	kWh/pc	ENERGY10	
Building Space/Station	400	sq ft	SPACE9	Building Space/Station	400	sq ft	SPACE10	
Installed Equipment Cost								
Auxiliary Equipment Cost	\$304,447	/sta	IEQUIP9	Installed Equipment Cost	\$191,570	/sta	IEQUIP10	
	\$33,827	/sta	AEQUIP9	Auxiliary Equipment Cost	\$21,286	/sta	AEQUIP10	
Equipment Annuity								
Tooling Annuity	\$86,248	/yr	EINT9	Equipment Annuity	\$0	/yr	EINT10	
Building Annuity	\$0	/yr	TINT9	Tooling Annuity	\$0	/yr	TINT10	
Working Annuity	\$4,632	/yr	BINT9	Building Annuity	\$0	/yr	BINT10	
	\$37,659	/yr	WINT9	Working Annuity	\$0	/yr	WINT10	

MICROWAVE CVD TCM: INSPECTION - MICROSCOPY
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: INSPECTION - THERMAL CONDUCTIVITY
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS		per piece		per year percent		Investment		VARIABLE COST ELEMENTS		per piece		per year percent		Investment	
Material Cost		\$0.00	\$0	0.0%				Material Cost		\$0.00	\$0	0.0%			
Direct Labor Cost		\$5.25	\$5,249	6.4%				Direct Labor Cost		\$4.99	\$4,986	6.1%			
Utility Cost		\$0.00	\$1	0.0%				Utility Cost		\$0.00	\$1	0.0%			
FIXED COST ELEMENTS								FIXED COST ELEMENTS							
Equipment Cost		\$15.00	\$15,000	18.2%		\$75,000		Equipment Cost		\$15.00	\$15,000	18.3%		\$75,000	
Tooling Cost		\$0.00	\$0	0.0%		\$0		Tooling Cost		\$0.00	\$0	0.0%		\$0	
Building Cost		\$0.25	\$250	0.3%		\$5,000		Building Cost		\$0.25	\$250	0.3%		\$5,000	
Maintenance Cost		\$6.40	\$6,400	7.8%				Maintenance Cost		\$6.40	\$6,400	7.8%			
Overhead Labor Cost		\$50.00	\$50,000	60.7%				Overhead Labor Cost		\$50.00	\$50,000	60.9%			
Cost of Capital		\$5.48	\$5,482	6.7%				Cost of Capital		\$5.48	\$5,477	6.7%			
TOTAL FABRICATION COST		\$82.38	\$82,382	100.0%		\$80,000		TOTAL FABRICATION COST		\$82.11	\$82,115	100.0%		\$80,000	

INTERMEDIATE CALCULATIONS

Process In Use	1.00	(1=Y 0=N)	PRO11	Process In Use	1.00	[1=Y 0-N]	PRO12
Cumulative Yield	90.3%		CYLD11	Cumulative Yield	95.0%		CYLD12
Effective Production Volume	1,108 /yr		ENUM11	Effective Production Volume	1,053 /yr		ENUM12
Process Cycle Time	0.25 hrs		CTIME11	Process Cycle Time	0.25 hrs		CTIME12
Runtime for One Station	10 ⁴		RTIME11	Runtime for One Station	10 ⁴		RTIME12
Number of Parallel Stations	1.00		NSTAT11	Number of Parallel Stations	1.00		NSTAT12
Energy Requirement	0 kWh/pc		ENERGY11	Energy Requirement	0 kWh/pc		ENERGY12
Building Space/Station	50 sq ft		SPACE11	Building Space/Station	50 sq ft		SPACE12
Installed Equipment Cost	\$67,500 /sta		IEQUIP11	Installed Equipment Cost	\$67,500 /sta		IEQUIP12
Auxiliary Equipment Cost	\$7,500 /sta		AEQUIP11	Auxiliary Equipment Cost	\$7,500 /sta		AEQUIP12
Equipment Annuity	\$19,122 /yr		EINT11	Equipment Annuity	\$19,122 /yr		EINT12
Tooling Annuity	\$0 /yr		TINT11	Tooling Annuity	\$0 /yr		TINT12
Building Annuity	\$579 /yr		BINT11	Building Annuity	\$579 /yr		BINT12
Working Annuity	\$62,680 /yr		WINT11	Working Annuity	\$62,413 /yr		WINT12

MICROWAVE CVD TCH: COST SUMMARY
IBIS ASSOCIATES INC.

Copyright (c) 1991 v4.0

	Per piece	per year	percent	investment
VARIABLE COST ELEMENTS				
Material Cost	\$879.05	\$879,047	12.0%	
Direct Labor Cost	\$292.42	\$292,417	4.0%	
Utility Cost	\$399.36	\$399,362	5.4%	
FIXED COST ELEMENTS				
Equipment Cost	\$2,877.14	\$2,877,145	39.2%	\$14,385,724
Tooling Cost	\$412.80	\$412,805	5.6%	\$2,064,023
Building Cost	\$22.25	\$22,250	0.3%	\$445,000
Maintenance Cost	\$1,186.46	\$1,186,458	16.2%	
Overhead Labor Cost	\$280.00	\$280,000	3.8%	
Cost of Capital	\$984.20	\$984,196	13.4%	
TOTAL FABRICATION COST	\$7,333.68	\$7,333,680	100.0%	\$16,894,747

SUMMARY INFORMATION

Part Name 6 in. substrate
 Total Direct Laborers 6.25 /shift
 Total Floor Space 6,750 sqft
 Total Capital Investment \$16.9 M²

Operation	Equipment	Material	Labor	Other
Surface Preparation	\$20	\$3	\$26	\$19
Deposition	\$2,744	\$142	\$183	\$2,745
Etching	\$0	\$0	\$0	\$0
Laser Trimming	\$2	\$0	\$50	\$4
Lapping	\$14	\$732	\$198	\$159
Hot Iron Polishing	\$0	\$0	\$0	\$0
Oxygen Plasma Polishing	\$0	\$0	\$0	\$0
Oxygen Ion Beam Polishing	\$0	\$0	\$0	\$0
Metallization - Sputtering	\$68	\$2	\$5	\$54
Metallization - Evaporation	\$0	\$0	\$0	\$0
Inspect - Microscopy	\$15	\$0	\$55	\$12
Inspect - Thermal Cond'vity	\$15	\$0	\$55	\$12
Total	\$2,877	\$879	\$572	\$3,005
Total =	\$7,334			

Appendix C

Hydrogen	9	88.7%	GASA VOLA	2	Platinum	Tosoh	\$19.00	125.00	21.45	1/93
Carbon Containing Gas	16	10.0%	GASB VOLB	3	Gold	Tosoh	\$17.00	230.00	19.32	1/93
Carrier Gas	0	0.0%	GASC VOLC	4	Silver	Tosoh	\$2.45	215.00	10.10	1/93
Other Gas	25	1.3%	GASD VOLD	5	Copper	Tosoh	\$1.15	210.00	8.96	1/93
				6	Nickel	Tosoh	\$0.95	30.00	8.91	1/93
				7	Palladium	Tosoh	\$8.45	210.00	12.02	1/93
				8	Silicon	Tosoh	\$0.80	15.00	2.33	1/93
Hydrogen Recycle Rate	0.0%		RECYC							
Carrier Gas Recycle Rate	0.0%		RECYC2							
Gas Recycle Equipment Cost	\$250,000	total	MCH2A							
Rated Microwave Power	75	kW	POW2							
Microwave Coupling Eff.	98%		P2GEFF2							
Total Power Multiplier	200%		TPM2							
Carbon Capture Factor	10.0%		CCF2							
Machine Load/Unload Time	30.00	min/batch	PTIME2							
Available Deposition Time	8,640	hrs/yr	DAYHR2							
Microwave Tube Life	5000	hrs	LIFE2							
Coolant Temp. Rise	50.0	C	TEMP2	0	None	Titanium re Tech Inc	\$0	*****	1.00	1/93
Heat Capacity of Coolant	1.0	cal/g/C	CP2	1	Platinum re Tech Inc	\$4.40	9,520.00	4.51	21.45	1/93
Building Space Requirement	400	sqft/sta	FLR2	2	Gold re Tech Inc	\$18.59	6,428.57	6,428.57	19.32	1/93
PROCESS RELATED FACTORS - ETCHING				3	Silver re Tech Inc	\$14.58	6,428.57	19.32	10.50	1/93
Process In Use?				4	Copper re Tech Inc	\$3.12	215.00	215.00	8.96	1/93
Dedicated Investment				5	Nickel re Tech Inc	\$1.08	210.00	210.00	8.91	1/93
Process Yield	0.0%	(1=Y 0=N)	USE3	6	Palladium re Tech Inc	\$1.49	30.00	30.00	8.91	1/93
Average Equipment Downtime	99.0%		DED3	7	Silicon re Tech Inc	\$7.03	210.00	210.00	12.02	1/93
Direct Laborers Per Station	1.00		YLD3	8		\$7.51	15.00	15.00	2.33	1/93
Load/Unload and Rinse Time	30.00	min/batch	PTIME3							
Pieces Per Batch	20.00	/sta	PCS3							
Machine Cost	\$6,000	/sta	MCH3							
Etchant Cost	\$70	/litter	ETCH3A							
Etchant Disposal Cost	\$30	/litter	ETCH3B							
Machine Etchant Capacity	1.00	1/batch	CAP3							
Machine Power	0.00	kW	POW3							
Building Space Requirement	100	sqft/sta	FLR3							
PROCESS RELATED FACTORS - LASER TRIMMING										
Process In Use?	1.00	(1=Y 0=N)	USE4							
Dedicated Investment	1.00	(1=Y 0=N)	DED4							
Process Yield	99.0%		YLD4							
Average Equipment Downtime	10.0%		DOWN4							
Direct Laborers Per Station	1.00		NLAB4							
Machine Cost	\$6,000	/sta	MCH4							
Trimming Rate	1.00	cm/s	RATE4							
Machine Power	5.00	kW	POW4							
Building Space Requirement	100	sqft/sta	FLR4							

PROCESS RELATED FACTORS - LAPPING			
Process In Use?	1.00	[1=Y 0=N]	USE5
Dedicated Investment	1.00	[1=Y 0=N]	DED5
Process Yield	90.0%		YLD5
Average Equipment Downtime	15.0%		DOWN5
Direct Laborers Per Station	0.25		NLAB5
Lapped Material Removal	10.0% by wgt		TLAP5
No of Lapping Steps	2.00		LAPS5
Pieces Per Batch	5.00		PCS5
Load/Unload and Clean Wafers	40.00	min./batch	PTIME5
Average Lapping Rate	1.0	um/hr	RATES
Lapping Slurry Cost	\$53	/liter	LAPS5
Lapping Slurry Usage Rate	0.50	liter/hr	LAPR5
Lapping Plate Life	320.00	hrs	PLALS5
Available Lapping Time	8,640	hrs/yr	DAYHRS
Building Space Requirement	400	sqft/sta	FLRS5
PROCESS RELATED FACTORS - INSPECTION - MICROSCOPY			
Process In Use?	1.00	[1=Y 0=N]	USE6
Dedicated Investment	1.00	[1=Y 0=N]	DED6
Process Yield	95.0%		YLD6
Average Equipment Downtime	5.0%		DOWN6
Direct Laborers Per Station	1.00		NLAB6
Average Inspection Time	15.00	min./batch	PTIME6
Percent Inspection	100%		INSP6
Machine Cost	\$50,000	/sta	MCH6
Building Space Requirement	0.10	kW	POW6
	50	sqft/sta	FLR6
PROCESS RELATED FACTORS - INSPECTION - THERMAL CONDUCTIVITY			
Process In Use?	1.00	[1=Y 0=N]	USE7
Dedicated Investment	1.00	[1=Y 0=N]	DED7
Process Yield	95.0%		YLD7
Average Equipment Downtime	5.0%		DOWN7
Direct Laborers Per Station	1.00		NLAB7
Average Inspection Time	15.00	min./batch	PTIME7
Percent Inspection	100%		INSP7
Machine Cost	\$50,000	/sta	MCH7
Building Space Requirement	0.10	kW	POW7
	50	sqft/sta	FLR7
OPTIONAL INPUTS			
Surface Preparation	override	estimate	
Deposition	Machine Cost	\$0	\$65,774 /sta
	Machine Power	0.0	19.2 kW
Plasma Ball Area		0.00	633.19 sq cm
			OBAREA2

Plasma Ball Height	0.00	7.10	cm	OBSHT2	
Deposition Diameter	0.00	25.8*	cm	ODDIAM2	
Deposition Rate	0.00	2.35	g/hr	ODRATE2	
Deposition Equipment Cost	\$0	\$688	ls/sta	OMCH2	
Microwave Tube Cost	\$4,500	\$4,500	/sta	OTUBE2	
Etching	Process Cycle Time	0.00	0.03	hrs	OCTIME3
	Chemical Requirement	\$0	\$5.00	/pc	OCHEM3
Laser Trimming	Process Cycle Time	0.00	0.02	hrs	OCTIME4
Lapping	Lapping Time	0.00	111.11	hrs	OCTIME5
	Lapping Plate Cost	\$0	\$869	/ea	OWHEELS
	Lapping Machine Cost	\$0	\$11,939	/sta	OMCH5
	Lapping Machine Power	0.00	4.2	kW	OPWR5
EXOGENOUS COST FACTORS					
	Direct Wages	\$13.33	/hr		
	Indirect Salary	\$50,000	/yr		
	Indirect:Direct Labor Ratio	1.00		TLAB	
	Benefits on Wage and Salary	35.0%		BENI	
	Working Days per Year	360.00		DAYS	
	Working Hours Per Day (*)	8.00	/hr	HRS	
	Capital Recovery Rate	10%		CRR	
	Capital Recovery Period	5.00	yrs	ELIFE	
	Building Recovery Life	20.00	yrs	BLIFE	
	Working Capital Period	3.00	months	WCP	
	Price of Electricity	\$0.050	/kWh	ELEC	
	Price of Natural Gas	\$6.50	/MBTU	GAS	
	Price of Building Space	\$1.00	/sqft	PBLD	
	Price of Cooling Water	\$0.03	/100 gal	WATER	
	Auxiliary Equipment Cost	15.0%		AUX	
	Equipment Installation Cost	35.0%		INST	
	Maintenance Cost	8.0%		MNT	

REGRESSION CONSTANTS, COEFFICIENTS, AND EXPONENTS

-Surface Preparation-				
Machine Cost Constant	1,334	MCH1A		
Machine Cost Capacity Coef	3,222	MCH1B		
Machine Power Constant	-0.75	PWR1A		
Machine Power Capacity Coef	1.00	PWR1B		
-Deposition-				
sma Ball Diam Power Exponent	0.38	BDIAM2X		
Ball Diam Power Coefficient	5.01	BDIAM2Y		
Plasma Ball Diam Constant	2.54	BDIAM2Z		
Plasma Ball Area:Height	4.00	BAHRAZ2		
Machine Cost Power Coef	4,658	MCH2Y		
Machine Cost Power Exponent	1.00	MCH2Z		
Machine Cost Power Constant	338,896	MCH2X		
Tube Cost Constant	1724	TUBE2Y		

Tube Cost Coef 97.01 TUBE22
Tank 1 \$ Capacity Constant 1,175 TANK2A
Tank 1 \$ Capacity Coef 0.165 TANK2B
Tank 2 \$ Capacity Constant 370.00 TANK2X
Tank 2 \$ Capacity Coef 0.03 TANK2Y

-Etching-

-Lapping-
Machine Cost Constant 2,719 MCH5A
Machine Cost Capacity Coef 1,844 MCH5B
Machine Power Constant -0.75 PWR5A
Machine Power Capacity Coef 1.00 PWR5B
Tool Cost Constant 771.00 TOOL5A
Tool Cost Capacity Coef 0.92 TOOL5B
Tool Cost Capacity Exponent 2.90 TOOL5C

IBIS ASSOCIATES, INC.
TECHNICAL COST MODEL (C) 1993
RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013

MICROWAVE CVD TCM: SURFACE PREPARATION
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: DEPOSITION
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

	Per piece	per year percent	investment
VARIABLE COST ELEMENTS			
Material Cost	\$7.45	\$7,453	10.4%
Direct Labor Cost	\$0.82	\$8.18	1.1%
Utility Cost	\$0.07	\$7.0	0.1%
FIXED COST ELEMENTS			
Equipment Cost	\$19.73	\$19,732	27.4%
Tooling Cost	\$0.00	\$0	0.0%
Building Cost	\$1.25	\$1,250	1.7%
Maintenance Cost	\$9.89	\$9,893	13.7%
Overhead Labor Cost	\$25.00	\$25,000	34.7%
Cost of Capital	\$7.79	\$7,790	10.8%
TOTAL FABRICATION COST	\$72.01	\$72,007	100.0%
 VARIABLE COST ELEMENTS			
Material Cost		\$98,661	
Direct Labor Cost		\$0	
Utility Cost		\$25,000	
 FIXED COST ELEMENTS			
Equipment Cost		\$3,418.17	
Tooling Cost		\$74.80	
Building Cost		\$33.11	
Maintenance Cost		\$1,420.24	
Overhead Labor Cost		\$165.55	
Cost of Capital		\$1,064.15	
TOTAL FABRICATION COST	\$8,218.14	\$8,218,137	100.0%

INTERMEDIATE CALCULATIONS

Process In Use	1.00	[1=Y 0=N]	PRO1
Cumulative Yield	68.8%		CYLD1
Effective Production Volume	1,454 /yr		ENUM1
Substrate Area	525.0 sq cm		AREA1
New Substrate Cost	\$235.72 /pc		SUBL1
Substrate Useful Life	46.00 cycle		LIFE1
Process Cycle Time	3 min/pc		CTIME1
Runtimes for One Station	3% .		RTIME1
Number of Parallel Stations	1.00		NSTAT1

ENERGY REQUIREMENT

Building Space/Station	0.959 kwh/pc	ENERGY1
Machine Cost	250 sqft	SPACE1
Machine Power	\$65,774 /sta	MCH1
	19.2 kW	POW1
Installed Equipment Cost	\$88,795 /sta	IEQUIP1
Auxiliary Equipment Cost	\$9,866 /sta	AEQUIP1

EQUIPMENT ANNUITY

Equipment Annuity	\$25,155 /yr	EINT1
Tooling Annuity	\$0 /yr	TINT1
Building Annuity	\$2,895 /yr	BINT1
Working Annuity	\$43,957 /yr	WINT1

INTERMEDIATE CALCULATIONS

Process In Use	1.00 [1=Y 0=N]	PRO2
Cumulative Yield	72.4%	CYLD2
Effective Production Volume	1,382 /yr	ENUM2
Delivered Power	73.5 kW	EPOR2
HYDROGEN DIFFUSION CALCULATIONS		
H2	H2	H2

Enthalpy Per Unit Mass	44,019 J/mol	HTRXN2
Molar Enthalpy	88,734 J/mol	BDIAM2
Molar Entropy	202.79 J/K mol	BAREA2
Molar Heat Capacity (Cp)	37.11 J/K mol	BHTT2
Heat of Reaction (H2=>2H•)	459,538 J/mol	BDL2
Plasma Ball Diameter	28.39 cm	DDIAM2
Plasma Ball Area	633.19 sq cm	
Plasma Ball Half-Height	7.0 cm	
Volume of Plasma	13,484 cc	
Deposition Diameter	25.85 sq cm	
Mean H- Thermal Speed	502,063 cm/s	HSPEED2
H- Generation Rate	1.19E-05 mol/s/cc	HGEN2
H- Conc. at Substrate	1.34E-09 mol/cc	HCONC2

***** DEPOSITION RATE CALCULATIONS *****

Mass of Diamond Deposited	205.32 g	MASS2
Mass Deposition Rate	2.3 g/hr	MASDEP2
Linear Deposition Rate	12.7 μm/hr	LINDEP2
Deposition Time	87.49 hrs	CTIMEB2
Machine Setup Time	0.50 hrs	CTIMEA2

Runtime for One Station	1655*		RTIME2
Number of Parallel Stations	16.55		NSPAT2
Total Carbon Gas Volume	4.18	SCM	CARGAS2
Total Gas Volume	42	SCM	TVOL2
Total Gas Flow Rate	7,970	sccm	FLOWR2
Consumption (SCM/pc)		Cost (\$/pc)	
Hydrogen Consumption	37.11	\$327.12	GASA2
Carbon Gas Consumption	4.18	\$79.54	GSB2
Carrier Gas Consumption	0.00	\$0.00	GASC2
Other Gas Consumption	0.54	\$1.50	GRD2
Energy Requirement	13,123	kWh/pc	ENERGY2
Physical Tube Life	0.68	years	TITLE2
Number of Tubes per Station	8.00		NTUBE2
New Microwave Tube Cost	\$4,500	/tube	TUBE2A
Reworked Microwave Tube Cost	\$2,500	/tube	TUBE2B
Cooling Water Flow Rate	5.7	gal/min	WATER2
Cooling Water Requirement Building Space/Station	29,803	gal/pc sqft	COOL2 SPACE2
Recycle Equipment Cost	\$0	/sta	REC2
Liquid Hydrogen Tank Rental	\$0	/mo/tank	HD2
Liq Carrier Gas Tank Rental	\$0	/mo/tank	CR2
Gas Storage Equipment Rent	\$0	/year	GANK2
Machine Cost	\$688,246	/sta	MCH2B
Installed Equipment Cost	\$929,132	/sta	EQUIP2
Auxiliary Equipment Cost	\$103,237	/sta	AEQUIP2
Equipment Annuity	\$4,357,560	/yr	EINT2
Tooling Annuity	\$95,357	/yr	TINT2
Building Annuity	\$76,684	/yr	BINT2
Working Annuity	\$3,688,536	/yr	WINT2

MICROWAVE CVD TCM:
IBIS ASSOCIATES, INC.
ETCHING
Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS		per piece		per year		percent		Investment		per piece		per year		percent		Investment		
		Material Cost	\$0.00	\$0	*VALUE!	\$0	*VALUE!	\$0	*VALUE!	Material Cost	\$0.00	\$0	*VALUE!	\$0	*VALUE!	Material Cost	\$0.00	*VALUE!
Direct Labor Cost		\$0.00		\$0	*VALUE!					Direct Labor Cost	\$0.56		\$561			Direct Labor Cost	\$0.56	*VALUE!
Utility Cost		\$0.00		\$0	*VALUE!					Utility Cost	\$0.01		\$7			Utility Cost	\$0.01	*VALUE!
FIXED COST ELEMENTS																		
Equipment Cost		\$0.00		\$0	*VALUE!					Equipment Cost	\$1.80		\$1,800			Equipment Cost	\$1.80	*VALUE!
Tooling Cost		\$0.00		\$0	*VALUE!					Tooling Cost	\$0.00		\$0			Tooling Cost	\$0.00	*VALUE!
Building Cost		\$0.00		\$0	*VALUE!					Building Cost	\$0.50		\$500			Building Cost	\$0.50	*VALUE!
Maintenance Cost		\$0.00		\$0	*VALUE!					Maintenance Cost	\$1.52		\$1,520			Maintenance Cost	\$1.52	*VALUE!
Overhead Labor Cost		\$0.00		\$0	*VALUE!					Overhead Labor Cost	\$50.00		\$50,000			Overhead Labor Cost	\$50.00	*VALUE!
Cost of Capital		\$0.00		\$0	*VALUE!					Cost of Capital	\$2.02		\$2,023			Cost of Capital	\$2.02	*VALUE!
TOTAL FABRICATION COST		\$0.00		\$0		*VALUE!		\$0		TOTAL FABRICATION COST		\$56.41		\$56,411		100.0%		

INTERMEDIATE CALCULATIONS
 Process In Use
 Cumulative Yield
 Effective Production Volume

Total Etched Thickness
 Average Etchant Rate
 Process Cycle Time
 Runtime for One Station
 Number of Parallel Stations

Chemical Requirement
 Energy Requirement
 Building Space/Station

Installed Equipment Cost
 Auxiliary Equipment Cost

PRO3
 CYLD3
 ENUM3

ETHIK3
 ERATE3
 CTIME3
 RTIME3
 NSTAT3

CHEM3
 ENERGY3
 SPACE3

EQUIP3
 AEQUIP3

INTERMEDIATE CALCULATIONS
 Process In Use
 Cumulative Yield
 Effective Production Volume

Process Cycle Time
 Runtime for One Station
 Number of Parallel Stations

Energy Requirement
 Building Space/Station

Installed Equipment Cost
 Auxiliary Equipment Cost

Equipment Annuity
 Tooling Annuity
 Building Annuity
 Working Annuity

PRO4
 CYLD4
 ENUM4

CTIME4
 RTIME4
 NSTAT4

0 kWh/pc
 100 sq ft

\$8,100 /sta
 \$900 /sta

\$2,295 /yr
 \$1,158 /yr
 \$52,959 /yr

MICROWAVE CVD TCM: LAPPING
IBIS ASSOCIATES, INC.

Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: INSPECTION - MICROSCOPY
IBIS ASSOCIATES, INC.
Copyright (c) 1991 v4.0

VARIABLE COST ELEMENTS	Per year percent investment			VARIABLE COST ELEMENTS		
	Material Cost	Direct Labor Cost	Utility Cost	Material Cost	Direct Labor Cost	Utility Cost
Material Cost	\$725.01	\$725,009	66.3%			
Direct Labor Cost	\$116.58	\$146,579	13.4%			
Utility Cost	\$5.79	\$5,786	0.5%			
TOTAL FABRICATION COST	\$1,093.37	\$1,093,372	100.0%	\$603,707	TOTAL FABRICATION COST	\$82.38

FIXED COST ELEMENTS	Per piece			FIXED COST ELEMENTS		
	Equipment Cost	Tooling Cost	Building Cost	Equipment Cost	Tooling Cost	Building Cost
Equipment Cost	\$14.33	\$14,327	1.3%	\$71,634	\$15,000	\$75,000
Tooling Cost	\$74.41	\$74,415	6.0%	\$372,073	\$0	\$0
Building Cost	\$8.00	\$8,000	0.7%	\$160,000	\$0.25	\$250
Maintenance Cost	\$18.53	\$18,531	1.7%		\$6.40	\$5,000
Overhead Labor Cost	\$50.00	\$50,000	4.6%		\$50.00	\$6.40
Cost of Capital	\$50.73	\$50,725	4.6%		\$5.48	\$5,482
TOTAL FABRICATION COST	\$1,093.37	\$1,093,372	100.0%	\$603,707	TOTAL FABRICATION COST	\$82.38

INTERMEDIATE CALCULATIONS

Process In Use	1.00	[1-Y 0-N]	PRO5	Process In Use	1.00	[1-Y 0-N]	PRO6
Cumulative Yield	81.2%		CYLD5	Cumulative Yield	90.3%		CYLD6
Effective Production Volume	1,231	/yr	ENUM5	Effective Production Volume	1,108	/yr	ENUM6
Thickness of Material Lapped			HLAP5	Process Cycle Time	0.25	hrs	CTIME6
Setup Time	111.11	um	CTIME5A	Runtime for One Station	104		RTIME6
Lapping Time	1.33	hrs/batch	CTIME5B	Number of Parallel Stations	1.00		NSTPAT6
Runtime for One Station	111.11	hrs/batch	RTIME5				
Number of Parallel Stations	3774		NSTAT5	Energy Requirement	0	kWh/pc	ENERGY6
	4.00			Building Space/Station	50	sq ft	SPACE6
Lapping Plate Cost	\$869	/ea	PLAS	Installed Equipment Cost	\$67,500	/sta	IEQUIP6
Lapping Plate Life	14	pcs	WHEELS	Auxiliary Equipment Cost	\$7,500	/sta	AEQUIP6
Number of Plates Required	428.00		PLATS				
Lapping Slurry Consumption	11.11	1/pc	GRITS5	Equipment Annuity	\$19,122	/yr	EINT6
				Tooling Annuity	\$0	/yr	TINT6
Machine Power	4.2	kW	PWR5	Building Annuity	\$579	/yr	BINT6
Energy Requirement	94	kWh/pc	ENERGY5	Working Annuity	\$62,680	/yr	WINT6
Machine Cost	\$11,939	/sta	MCH5				
Building Space/Station	400	sq ft	SPACES5				
Installed Equipment Cost	\$16,118	/sta	IEQUIPS				
Auxiliary Equipment Cost	\$1,791	/sta	AEQUIP5				
Equipment Annuity	\$18,264	/yr	EINT5				
Tooling Annuity	\$94,865	/yr	TINT5				
Building Annuity	\$18,528	/yr	BINT5				
Working Annuity	\$961,714	/yr	WINT5				

MICROWAVE CVD TCM: INSPECTION - THERMAL CONDUCTIVITY
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: INSPECTION - THERMAL CONDUCTIVITY
IBIS ASSOCIATES, INC. Copyright (c) 1991 v4.0

MICROWAVE CVD TCM: COST SUMMARY
IBIS ASSOCIATES, INC.

MICROWAVE CVD TCM: COST SUMMARY
IBIS ASSOCIATES, INC.

INTERMEDIATE CALCULATIONS	Process Cycle Time	Runtime per One Station	Number Of Parallel Stations
Process In U			
Cumulative Yield			
Effective Production Volume			

SUMMARY INFORMATION