National University of Singapore Faculty of Engineering

ME5402/EE5016R Advanced Robotics

Sample Solution to Exercise 2

There can be more than one correct answer/solution to some of the questions. Email me at mpecck@nus.edu.sg if you have found any errors in the solution. – CK Chui

- 1. Figure 1 shows the schematic diagram of the Intelledex Robot Model 605T. This robot is a six-axis manipulator consisting of all rotational joints with axes 1, 2 and 3 always co-intersecting at a common joint. (Axis 6 intersects at the same co-intersection point only at the configuration shown in Fig. 1.)
- a. Assign coordinate frames to each link according to the Denavit-Hartenberg convention and the following rules:
 - The base frame (frame 0) should be as indicated in the figure. Its origin should coincide with the co-intersection point of axes 1, 2 and 3.
 - The end-effector frame and the z-axes of the rest of the frames should be as indicated in the figure.
 - To the maximum extent possible, make a_i and d_i be equal to zero.
 - The values of the six joint coordinates ($[\theta_1 \ \theta_2 \ \theta_3 \ \theta_4 \ \theta_5 \ \theta_6]$) for the robot at the configuration shown in Fig. 1 are $[0.90^{\circ} \ 90^{\circ} \ 0.90^{\circ} \ 0]$.
- b. Identify the kinematic parameters of the robot by filling in the table in Table 1.
- c. If at the configuration shown in Figure 1, axis 2 has a joint motion range of $\pm 115^{\circ}$, determine the joint motion range in terms of θ_2 (joint variable for 2^{nd} joint, assigned according to the Denavit-Hartenberg convention, item a above.).

Table 1:

Link number	θ_{i}	di	α_{i}	ai
1	θ_1	0	-90°	0
2	θ_2	0	90°	0
3	θ_3	0	0	L_1
4	θ_4	0	0	L_2
5	θ5	0	-90°	0
6	θ_6	L ₃	0	0

$${}^{0}_{1}\mathbf{A} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}_{2}\mathbf{A} = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ s_{2} & 0 & -c_{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}_{3}\mathbf{A} = \begin{bmatrix} c_{3} & -s_{3} & 0 & L_{1}c_{3} \\ s_{3} & c_{3} & 0 & L_{1}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}_{4}\mathbf{A} = \begin{bmatrix} c_{4} & -s_{4} & 0 & L_{2}c_{4} \\ s_{4} & c_{4} & 0 & L_{2}s_{4} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{4}_{5}\mathbf{A} = \begin{bmatrix} c_{5} & 0 & -s_{5} & 0 \\ s_{5} & 0 & c_{5} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{5}_{6}\mathbf{A} = \begin{bmatrix} c_{6} & -s_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 1 & L_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c) $-90^{\circ}-115^{\circ} \le \theta_2 \le -90^{\circ}+115^{\circ}$

- 2. Figure 2 shows a 3-joint robot with one translational joint. It is a cylindrical robot whose first two joints are analogous to polar coordinates when viewed from above. The last joint provides "roll" for the hand.
- a. Assign a coordinate frame to each link according to the Denavit-Hartenberg convention.
- b. Identify and tabulate the Denavit-Hartenberg parameters.
- c. Compute ${}_{3}^{0}T$.
- d. Describe the three degrees-of-freedom of the robot in Cartesian space. Sketch the reachable workspace of the robot.
- e. Derive the complete inverse kinematic equations for the robot.

a)

Figure 2

b)

Link number	$\theta_{\rm i}$	di	ai	αi
1	θ_1	l_{I}	0	-90°
2	0	d_2	0	0
3	θ_3	<i>l</i> ₃	0	0

c)

$${}^{0}_{1}\mathbf{A} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{1}_{2}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} {}^{2}_{3}\mathbf{A} = \begin{bmatrix} c_{3} & -s_{3} & 0 & 0 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & l_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{0}\mathbf{T} = {}_{1}^{0}\mathbf{A}_{2}^{1}\mathbf{A}_{3}^{2}\mathbf{A} = \begin{bmatrix} c_{1}c_{3} & -s_{3}c_{1} & -s_{1} & -(l_{3}+d_{2})s_{1} \\ s_{1}c_{3} & -s_{3}s_{1} & c_{1} & (l_{3}+d_{2})c_{1} \\ -s_{3} & -c_{3} & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

d)

The first two joints can be viewed as the polar coordinates for the wrist. The third joint (wrist) does not cause any change to the end-point position. The reachable workspace is shown below (assume $0 \le d_2 \le D$ and θ_1 is unlimited):

$$\begin{array}{ll} => & \\ a_x = -s_1 \\ a_y = c_1 & => \theta_1 = Atan2(s_1, c_1) = Atan2(-a_x, a_y) \\ \\ p_x = -(l_3 + d_2)s_1 => d_2 = -l_3 - p_x/s_1 \\ \\ n_z = -s_3 \\ o_z = -c_3 & => \theta_3 = Atan2(s_3, c_3) = Atan2(-n_z, -o_z) \end{array}$$

3. Coordinate frame N is attached to an end-effector as shown in Figure 3. It is desired to design an N-joint robot that can provide the following position and orientation of the end-effector:

$${}_{N}^{0}T = \begin{bmatrix} n_{x} & o_{x} & 0 & p_{x} \\ n_{y} & o_{y} & 0 & p_{y} \\ 0 & 0 & -1 & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where n_x , n_y , o_x , o_y , p_x , p_y , and p_z are functions of the robot joint coordinates.

- a. What is the minimum number of degrees-of-freedom required of the robot? (That is, what is the minimum number of joints?)
- b. Suggest a robot structure/configuration that can satisfy the task ${}_{N}^{0}T$. That is, identify the number and type of joints, draw the base frame 0 and provide a schematic diagram of the robot including the end-effector and its frame N.

Figure 3

a) 7 parameters with three constraint equations:

$$\begin{split} &n_x{}^2 + n_y{}^2 = 1 \text{ (unit vector for } \boldsymbol{n}) \\ &o_x{}^2 + o_y{}^2 = 1 \text{ (unit vector for } \boldsymbol{o}) \\ &n_xo_x + n_yo_y = 0 \text{ (orthonormal between } \boldsymbol{n} \text{ and } \boldsymbol{o}) \end{split}$$

Hence, 7-3 = 4 dof are required.

b) Example: 3 prismatic joints and 1 revolute joint

- 4. A three-degree-of-freedom RPR robot is as shown in Figure 4. The joint variables are $(\theta_1, d_2, \theta_3)$ and $l_3 = 1$ m.
 - a. Assign the remaining coordinate frames based on Denavit-Hartenberg notation and fill out the link parameters table.
 - b. Obtain the ${}_{3}^{0}T$ matrix that describes the position and orientation of Frame $\{3\}$ relative to Frame $\{0\}$.
 - c. Given the desired position vector of the tip of the arm, ${}^{\theta}p = [p_x, p_y, 0]^T$ and the desired x_3 axis direction expressed in terms of angle ϕ , which is measured anti-clockwise from x_0 , find the expressions of the joint variables in terms of p_x , p_y and ϕ . Assume $d_2 > 0$.

Figure 4

a) For the frames chosen for links 1 and 2 as shown above:

Link number	θ_{i}	di	ai	αi
1	θ_{l}	0	0	90°
2	0	d_2	0	-90°
3	θ_3	0	l_3	180°

(Note: The solutions depend on the frame orientations chosen for links 1 and 2.)

b)

$${}^{0}_{1}\mathbf{A} = \begin{bmatrix} c_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -c_{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{1}_{2}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{2}_{3}\mathbf{A} = \begin{bmatrix} c_{3} & s_{3} & 0 & c_{3} \\ s_{3} & -c_{3} & 0 & s_{3} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{0}T = {}_{1}^{0}A_{2}^{1}A_{3}^{2}A = \begin{bmatrix} c_{13} & s_{13} & 0 & c_{13} + d_{2}s_{1} \\ s_{13} & -c_{13} & 0 & s_{13} - d_{2}c_{1} \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

c)

$$\begin{bmatrix} p_x \\ p_y \\ \phi \end{bmatrix} = \begin{bmatrix} c_{13} + d_2 s_1 \\ s_{13} - d_2 c_1 \\ \theta_1 + \theta_3 \end{bmatrix}$$

That is,

$$p_x = c_{13} + d_{2}s_1$$
 (1)
 $p_y = s_{13} - d_2c_1$ (2)

Rearranging equations (1) and (2),

$$p_x - c_{13} = d_2 s_1$$
 (3)
 $p_y - s_{13} = -d_2 c_1$ (4)

Squaring equations (3) and (4),

$$px^{2} - 2pxc_{13} + c_{13}^{2} = dz^{2}s_{1}^{2}$$
 (5)

$$py^{2} - 2pys_{13} + s_{13}^{2} = dz^{2}c_{1}^{2}$$
 (6)

(5)+(6),

$$p_x^2 + p_y^2 - 2(p_x c_{13} + p_y s_{13}) + 1 = d_2^2$$

Therefore,

$$d_2 = \sqrt{p_x^2 + p_y^2 - 2(p_x c_\phi + p_y s_\phi) + 1} \qquad \text{(given } d_2 > 0\text{)}$$

From equations (1) and (2),

$$s_1 = \frac{p_x - c_\phi}{d_2}, c_1 = \frac{s_\phi - p_y}{d_2}$$

$$\theta_1 = A \tan 2(s_1, c_1)$$

Finally, $\theta_3 = \phi - \theta_1$