Let n be the number of samples used, \mathcal{R}_n be the region used with n samples, V_n be the volume of \mathcal{R}_n , k_n be the number of samples falling in \mathcal{R}_n , and $p_n(\mathbf{x}) = \frac{k_n/n}{V}$ be the

estimate for
$$p(\mathbf{x})$$
.

If $p_n(\mathbf{x})$ is to converge to $p(\mathbf{x})$, three conditions are required

▶ If $p_n(\mathbf{x})$ is to converge to $p(\mathbf{x})$, three conditions are required: $\lim V_n = 0$

If
$$p_n(\mathbf{x})$$
 is to converge to $p(\mathbf{x})$, three conditions are require
$$\lim_{n\to\infty}V_n=0$$

$$\lim_{n\to\infty}k_n=\infty$$