LP2R

Generated by Doxygen 1.9.2

1 Linear rheology of linear polydisperse polymers	1
1.1 Introduction	1
1.2 Usage	1
1.3 Input files	2
1.3.1 Material input file	2
1.3.2 Resource file	3
1.4 Output files	4
1.4.1 Relaxation spectra outputs	5
1.4.2 Time relaxation	5
1.4.3 Tube diameters	5
1.4.4 Terminal relaxation pathways	6
1.4.5 Log file	6
2 Namespace Index	7
2.1 Namespace List	7
3 Class Index	9
3.1 Class List	9
4 File Index	11
4.1 File List	11
5 Namespace Documentation	13
5.1 LP2R_NS Namespace Reference	13
5.1.1 Detailed Description	14
5.1.2 Variable Documentation	14
5.1.2.1 A_eq	14
5.1.2.2 AboveTauEFirst	15
5.1.2.3 Add_header	15
5.1.2.4 Alpha	15
5.1.2.5 B_eq	15
5.1.2.6 B_zeta	15
5.1.2.7 beta_glass	15
5.1.2.8 CalcDielectric	15
5.1.2.9 CSVdelimiter	15
5.1.2.10 cur_time	15
5.1.2.11 deltaCR	15
5.1.2.12 DiRelSpecFNM	15
5.1.2.13 Disentanglement_Switch	15
5.1.2.14 DtMult	16
5.1.2.15 Entangled_Dynamics	16
5.1.2.16 f_Log	16
5.1.2.17 f_phi	16
5.1.2.18 f_trelax	16

5.1.2.19 FreqMax
5.1.2.20 FreqMin
5.1.2.21 FreqRatio
5.1.2.22 G_0
5.1.2.23 G_glass
5.1.2.24 GenLogFL
5.1.2.25 has_chem
5.1.2.26 has_label
5.1.2.27 has_origin
5.1.2.28 has_temp
5.1.2.29 inpFNM
5.1.2.30 LastReptationTime
5.1.2.31 LastReptZ
5.1.2.32 Log_DtMult
5.1.2.33 LPoly
5.1.2.34 M_e
5.1.2.35 M_Kuhn
5.1.2.36 MechRelFNM
5.1.2.37 MechRelSpecFNM
5.1.2.38 N_e
5.1.2.39 npoly
5.1.2.40 OutPhiPhiST
5.1.2.41 OutPhiPhiSTFNM
5.1.2.42 Output_G_of_t
5.1.2.43 OutputFormat
5.1.2.44 OutTermRelaxFNM
5.1.2.45 OutTermRelaxPathways
5.1.2.46 phi_ar
5.1.2.47 phi_eq
5.1.2.48 phi_eq_indx
5.1.2.49 phi_rept
5.1.2.50 phi_ST
5.1.2.51 phi_ST_0
5.1.2.52 phi_ST_ar
5.1.2.53 phi_true
5.1.2.54 Psi_rept
5.1.2.55 rcFNM
5.1.2.56 RelSpecFNM
5.1.2.57 Rept_Switch_Factor
5.1.2.58 reptate_chem
5.1.2.59 reptate_label
5.1.2.60 reptate_origin

5.1.2.61 reptate_temp	 20
5.1.2.62 ret_pref	 20
5.1.2.63 ret_pref_0	 20
5.1.2.64 ret_switch_exponent	 20
5.1.2.65 Rouse_Switch_Factor	 20
5.1.2.66 Rouse_wt	 20
5.1.2.67 ST_activ_time	 20
5.1.2.68 STmaxDrop	 20
5.1.2.69 supertube_activated	 20
5.1.2.70 Sys_MN	 20
5.1.2.71 Sys_MW	 20
5.1.2.72 Sys_PDI	 20
5.1.2.73 t_ar	 21
5.1.2.74 t_CR_START	 21
5.1.2.75 t_eq_ar	 21
5.1.2.76 tau_e	 21
5.1.2.77 tau_glass	 21
6 Class Documentation	23
6.1 C LPoly Class Reference	23
6.1.1 Detailed Description	23
6.1.2 Member Data Documentation	23
6.1.2.1 alive	23
6.1.2.2 mass	23
6.1.2.3 p_max	24
6.1.2.4 p_next	24
6.1.2.5 relax_free_Rouse	24
6.1.2.6 rept_set	 24
6.1.2.7 rept_wt	 24
6.1.2.8 t FRouse	24
	24
6.1.2.10 wt	24
6.1.2.11 z	 24
6.1.2.12 Z_chain	 24
6.1.2.13 Z_rept	24
6.2 InvSqSum Class Reference	25
6.2.1 Detailed Description	 25
7 File Documentation	27
7.1 include/LP2R.h File Reference	27
7.1.1 Detailed Description	27
7.2 LP2R.h	27
7.3 LP2R_global.h	 28

7.4 include/LP2R_NS.h File Reference	29
7.4.1 Detailed Description	29
7.5 LP2R_NS.h	29
7.6 routines.h	30
7.7 main/LinPoly2Rheo.cpp File Reference	31
7.7.1 Detailed Description	31
7.8 main/parse_arg.cpp File Reference	31
7.8.1 Detailed Description	31
7.8.2 Function Documentation	32
7.8.2.1 parse_arg()	32
7.9 mainpage.h	32
7.10 prep/assign_FNMs.cpp File Reference	32
7.10.1 Detailed Description	32
7.11 prep/GenLinGPC.cpp File Reference	32
7.11.1 Detailed Description	32
7.11.2 Function Documentation	32
7.11.2.1 aa_sort2_minmax()	33
7.11.2.2 GenLinGPC()	33
7.12 prep/GenLinLogNormal.cpp File Reference	33
7.12.1 Detailed Description	33
7.12.2 Function Documentation	33
7.12.2.1 aaerfcc()	33
7.12.2.2 GenLinLogNormal()	34
7.12.2.3 LogNormalWt()	34
7.13 prep/GenLinWt.cpp File Reference	}4
7.13.1 Detailed Description	35
7.14 prep/genPolyLin.cpp File Reference	35
7.14.1 Detailed Description	35
7.14.2 Function Documentation	35
7.14.2.1 genPolyLin()	35
7.15 prep/ModelParams.cpp File Reference	35
7.15.1 Detailed Description	36
7.16 prep/ReadInput.cpp File Reference	36
7.16.1 Detailed Description	36
7.17 prep/ReadRCFL.cpp File Reference	36
7.17.1 Detailed Description	36
7.17.2 Function Documentation	36
7.17.2.1 assign_RC_dbl()	36
7.17.2.2 assign_RHS_bool()	37
7.17.2.3 ReadRCFL()	37
7.18 Relax/arm_retraction.cpp File Reference	37
7.18.1 Detailed Description	37

7.19 Relax/frac_unrelaxed.cpp File Reference	37
7.19.1 Detailed Description	37
7.20 Relax/GetPhiEq.cpp File Reference	38
7.20.1 Detailed Description	38
7.21 Relax/time_step.cpp File Reference	38
7.21.1 Detailed Description	38
7.22 Relax/try_reptate.cpp File Reference	38
7.22.1 Detailed Description	38
7.23 Rheology/add_goft_headers.cpp File Reference	39
7.23.1 Detailed Description	39
7.24 Rheology/Calc_goft.cpp File Reference	39
7.24.1 Detailed Description	39
7.25 Rheology/CalcGstar.cpp File Reference	39
7.25.1 Detailed Description	39
7.26 Rheology/CalcVisc.cpp File Reference	40
7.26.1 Detailed Description	40
7.26.2 Function Documentation	40
7.26.2.1 CalcVisc()	40
7.26.2.2 viscRouseModes()	40
7.27 Rheology/GoftFast.cpp File Reference	40
7.27.1 Detailed Description	40
7.28 Rheology/GoftRouse.cpp File Reference	41
7.28.1 Detailed Description	41
7.29 Rheology/GoftTube.cpp File Reference	41
7.29.1 Detailed Description	41
7.30 Rheology/GStarFastRouse.cpp File Reference	41
7.30.1 Detailed Description	42
7.31 Rheology/GStarGlass.cpp File Reference	42
7.31.1 Detailed Description	42
7.31.2 Function Documentation	42
7.31.2.1 GStarGlass()	42
7.32 Rheology/GStarRouse.cpp File Reference	42
7.32.1 Detailed Description	43
7.33 Rheology/GStarSlow.cpp File Reference	43
7.33.1 Detailed Description	43
7.33.2 Function Documentation	43
7.33.2.1 GStarSlow()	43
7.33.2.2 symbint()	44
7.34 Rheology/LinRheology.cpp File Reference	44
7.34.1 Detailed Description	44
7.35 Rheology/RepTateOut.cpp File Reference	44
7.35.1 Detailed Description	44

7.35.2 Function Documentation	45
7.35.2.1 CSVOpen()	45
7.35.2.2 CSVWrite()	45
7.35.2.3 RepTateOpen()	45
7.35.2.4 RepTateWrite()	45
7.36 util/safeGetLine.cpp File Reference	46
7.36.1 Detailed Description	46
7.36.2 Function Documentation	46
7.36.2.1 readEquality()	46
7.36.2.2 safeGetline()	46
7.36.2.3 safeGetline_int()	47
Index	49

Linear rheology of linear polydisperse polymers

© Chinmay Das and Daniel J. Read 28/09/2022

GNU GPLv3 (or at your option any later version)

1.1 Introduction

The code in this depository accompanies our paper "A tube model for predicting the stress and dielectric relaxations of polydisperse linear polymers" submitted to Journal of Rheology (2022). This implements modern ideas about how constraint release and tube escape modes in linear polymer melts affect each other in a numerical code to predict linear respose in arbitrarily polydisperse linear polymers. The information about the polymers can be supplied as moments of a distribution, or as data files containing gel permeation chromatography measurements (GPC), or a set of discrete molar masses and associated weight fractions. Arbitrarily complex blends can be designed by adding several such components. Besides the mechanical relaxation moduli, the code also can calculate dielectric relaxation for type-A polymers (polymers with monomer dipole moments aligned along the chain backbone). With appropriate instructions, the code outputs evolutions of model constructs like different dynamic tube diameters or how a specific molar mass chain will undergo the terminal relaxation.

The code is available for download from github. On UNIX/Linux systems, you can use make command from LP2R/src/obj subdirectory to create the executable. A precompiled windows executable is available from google drive. A snapshot of the code at the time of submission of this paper including the submitted preprint is available at zenodo.

The rest of this page documents the command line options, input file syntax, and output file formats.

```
Go to Table of Contents

⇒ Introduction ⇒ Usage ⇒ Input files • Material input file • Resource file ⇒ Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.2 Usage

```
LP2R [-L] [-d] [-i inputfile] [-r resourcefile] [-h] [--version]
```

Optional command line arguments:

- -L: Output debugging and extra information in a file named LP2Rlog.txt
- -i inputfile : material and output frequency information supplied via a named file. Default inputfile name is inp.dat

- -r resourcefile: Presumably chemistry independent parameters, and output options can be set via a resource file. Default resourcefile name is LP2R.rc
- -h : help (this usage information)
- · --version : version information

```
Go to Table of Contents \Rightarrow Introduction \Rightarrow Usage \Rightarrow Input files • Material input file • Resource file \Rightarrow Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.3 Input files

The code expects input to be supplied from plain text files. The percentage (%) character is used as a comment character in the files. If the first non-space character in a line is %, the entire line is ignored. Similarly a % sign can be used beyond the intended input in the same line to add comments. The files are read one line at a time - so, if multiple entries are supposed to be in the same line, a line break between entries will lead to input error. The input file itself may contain names of some other file containing detailed molecular weight information. In such cases, names containing space or percentage sign will not be processed correctly. Avoid names like "Molecular Weight.txt" or "Pl100k(2%)_Pl50k(98%).txt": The first name will be truncated to "Molecular" and the second will be truncated to "Pl100k(2" and the code will fail to find the intended data file.

Two different files are used for input: The first should supply the material parameters and the frequency range over which relaxation spectra is desired. The default file name for this file is *inp.dat*. A different file can be supplied with the command line option *-i filename*. Details of the information required in this file are described in Material input file.

The second optional file supplies model parameters that are thought to be insensitive to the chemistry, and can be used to choose the results that the code should generate. The default file name for this resource file is **LP2R.rc**. A different file can be supplied with the command line option **-r filename**. Details of the information required in this file are described in Resource file.

```
Go to Table of Contents

⇒ Introduction ⇒ Usage ⇒ Input files • Material input file • Resource file ⇒ Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.3.1 Material input file

The information about the polymers is supplied via a plain-text file called **inp.dat** (a different file can be used by using the command line option **-i filename**). The input can be imagined as having three distinct parts: the first part gives the frequency range and discretization for the relaxation spectra output, the second part inputs the material parameters (chemistry dependent but architucture independent parameters), and finally the third part inputs the information about the molar mass distribution(s) of the molecules of interest.

The first valid line (the code will ignore comment lines or empty lines) needs the minimum angular frequency (ω_{min}), the maximum angular frequency (ω_{max}) and the ratio of successive angular frequencies (ω_{ratio}) for the desired relaxation spectra output.

The second valid line requires the Kuhn molar mass (M_{Kuhn}) in g/mole, entanglement molar mass (M_e) in g/mole, plateau modulus (G_N^0) in Pa, and the entanglement time (τ_e) in seconds. The third line gives the glassy modulus (G_∞) in Pa, glassy relaxation time (τ_g) in seconds and the exponent for the stretched exponential glassy relaxation (β_0) .

The fourth line contains a single integer specifying the number of components (n_{comp}) forming the blend. (In the special case of single component polymer, this number is one). A *component* is understood to be a set of *molecules* having a easily described distribution. For each of these components, additional two input-lines are given to characterize the components. The first of thse lines contain an integer parameter (p_{type}) and the weight fraction of this

1.3 Input files 3

component (w_{comp}) in the blend. If p_{type} =0, the component is assumed to be represented by a log-normal distribution. The following line in that case needs number of discrete molar masses to be used to represent the distribution (n_{poly}), the weight-averaged molar mass (M_W) in g/mole and the polydispersity index (PDI). Instead if, p_{type} =1, the molar mass distribution is assumed to exist as a GPC measurement and the second line of component specification in that case gives the file name of the GPC data. The GPC file should have usual {M, dW/dlog₁₀M} values with the molar mass in g/mole. Finally, p_{type} =2, assumes that the molar mass is specified by a set of weights associated with discrete sets of molar mass. Again, the second line of component specification is a file name and the file should contain two columns: molar mass in g/mole and the associated weights {M_i, w_i}.

The following is an input file for 1,4-PI at 25 °C for a 1131000 g/mole polymer assumed to be described by a log-normal distribution: 1.0e-4 1.0e6 1.2 % ω_{\min} , ω_{\max} , ω_{ratio}

Blending 30-wt% 226kg/mole polymer would require an input file like the following 1.0e-4 1.0e6 1.2 % ω_{\min}

```
M_{Kuhn}, M_e, G_N^0, \tau_e
113.0 4350.0 476000.0 1.30e-5 %
1.0e9 7.0e-11 0.370
                        %
                               G_{\infty}, \tau_{g}, \beta_{g}
    %
           Two components: n_{comp}=2
          %
                First component:
0 0.70
                                          p<sub>type</sub>=0 (log-normal distribution), w<sub>comp</sub>=0.70
                     %
                           n_{poly}{=}50,\,M_W,\,PDI
50 1131000 1.05
                                              p_{type}=0 (log-normal distribution), w_{comp}=0.30
         %
                 Second component:
50 225900 1.03 %
                          n_{poly}=50, M_W, PDI
```

Some more examples of input files can be found in the examples subdirectory in the code distribution. *Some pointers about the input:*

- A strictly monodisperse polymer can be specified by choosing a log-normal distribution ($p_{type}=0$) and PDI=1, or $n_{poly}=1$ in the specification of the distribution.
- If the glassy parameters are not be available for the chemistry of interest, a good starting point may be G_{∞} =1.0e9, τ_g =1.0e5 \times τ_e , and β_g =0.35.

```
Go to Table of Contents

⇒ Introduction ⇒ Usage ⇒ Input files • Material input file • Resource file ⇒ Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.3.2 Resource file

The code searches for a file named *LP2R.rc* in the current directory to input additional parameters besides the material parameters. A different file can be specified with command line option *-r filename*. In the absence of this file, the code will continue with default parameters and options detailed below. Similarly any entry in the file that is not understood by the code is silenty ignored. If you use the command line option *-L* to generate a log file, such unresolved entries will be written in the log file as warning messages. Each entry in the resource file is a property-value pair separated by a equal (=) sign. Each line can contain only one such property-value pair. Unlike the material input file, the ordering of the different entries in the file does not have any consequence.

A sample file with all options set to default values is available in the examples/rcdefault subdirectory.

```
% Model parameters
```

```
Alpha=1.0
                %
                      Dilution exponent \alpha
t CR START=1.0
                              Constraint release starts after this time (in units of \tau_e)
deltaCR=0.30
                    % Fractional drop in \varphi_{ST} for \tau_{CR} » \tau_{e} (\delta_{CR}^{\infty})
                     Proportionality constant relating friction coefficient to supertube fraction (B_c)
B zeta=2.0
                      Proportionality constant connecting "effective equilibrium time" and time to locally equilibrate in
A eq=2.0
                %
a certain supertube (A<sub>eq</sub>)
                     Constant delaying equilibrium for fast CR events (Beq)
B_eq=10.0
                         Constant in arm retraction formula (C_{a,\infty})
```

% Time discretization

```
Start_time=1.0e-3 % Start of integration (in units of \tau_{\rm e})
Time ratio=1.02 % Ratio of successive discrete times
```

% Options for results

```
CalcDielectric=no % "yes" asks for dielectric relaxation spectra.

OutTermRelaxPathways=no % "yes" outputs individual chain relaxation modes.

OutPhiPhiST=no % "yes" outputs evolution of different tube diameters

Output_G_of_t=no % "yes" asks for time relaxation of modulus
```

% Control of output

```
OutputFormat=Default % Other options are "Text", "CSV" and "RepTate"

CSVdelimiter=, % For OutputFormat=CSV you can specify a different delimiter than usual comma (,)

Add header=yes % "no" does not add header line in the output files
```

label= % You can specify a string as a label (default is an empty string). The label will be used in output file names.

chem= % You can specify a string as chemistry (default is an empty string). If specifed and *Output*← Format=RepTate, this will be added in the output headers.

origin= % You can specify a string as origin (default is an empty string). If specifed and *OutputFormat=RepTate*, this will be added in the output headers.

Temp=0.0 % You can specify the temperature (in degree centigrades). If *OutputFormat=RepTate*, this will be added in the output headers.

```
Go to Table of Contents

⇒ Introduction ⇒ Usage ⇒ Input files • Material input file • Resource file ⇒ Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.4 Output files

By default the code only outputs the mechanical relaxation spectra $G'(\omega)$ and $G''(\omega)$. In addition, you can ask it to output the dielectric relaxation spectra $\varepsilon'(\omega)$ and $\varepsilon''(\omega)$ (assuming that the dipoles are aligned along the chain backbone), time domain mechanical relaxation G(t), evolution of different relevant tube constraints after an instantaneous small shear deformation, and assignment of the terminal relaxation pathway for each chain in the ensemble. These additional outputs are initiated by setting the appropriate flags in the resource file to yes. The different outputs are directed to different files with the contents somewhat dependent on the OutputFormat variable set from the resource file. If the label option is set in the resource file, the files include the label as part of their names. If OutputFormat=Default, the output file names have .dat extensions. Unless the option Add_header is not set to no in the resource file (the default behaviour is Add_header=yes), the first line will be a header line starting with a hash (#) character (default comment option for many UNIX plotting softwares). The choice OutputFormat=Text behaves similarly as the OutputFormat=Default option, except that the filenames end with .txt extensions and the header line, if not switched off with Add_header=no in the resource file, start without a # character. OutputFormat=CSV behaves like OutputFormat=Text except the entries are separated by a comma (,) (or, any other character chosen via CSVdelimiter in the resource file) and the file names end with .csv extensions. OutputFormat=RepTate uses RepTate specific extensions and data formats for the relaxation spectra and the time relaxation function. For other outputs, it uses the same outputs as the OutputFormat=Text choice. The headers for the relaxation spectra and the time relaxation function in this case contain temperature that can be set via the variable *Temp* in the resource file. In absence of a supplied value, a default temperature of 0 °C will be added to the headers. Additional options chem, label, and origin can be set via the resource file and they will be added in the RepTate format output headers. The subsections below document the different outputs separately.

```
Go to Table of Contents
```

1.4 Output files 5

```
\Rightarrow Introduction \quad \Rightarrow Usage \quad \Rightarrow Input files \quad \text{Material input file} \quad \cdot \text{ Resource file} \quad \Rightarrow Output files \quad \text{Relaxation} spectra  \cdot \text{ Time relaxation} \quad \cdot \text{ Tube diameters} \quad \cdot \text{ Relaxation pathways} \quad \cdot \text{ Relaxation pathways} \quad \cdot \text{ Relaxation pathways} \quad \cdot \text{ Log file}
```

1.4.1 Relaxation spectra outputs

By default, the code always outputs $G'(\omega)$ and $G''(\omega)$ in an range of angular frequencies ω_{\min} and ω_{\max} with the ratio of subsequent frequencies being ω_{ratio} . These frequency information is set in the first line of the \max_{ratio} input file. In addition, dielectric relaxation output is given if either -d option is used at the command line or there is an entry CalcDielectric=yes in the resource file.

Except for OutputFormat=RepTate, if the variable label is not set, the releaxation spectra output is written in a file **RelSpec.extn** with extn is either dat, txt, or csv depending on the setting for the OutputFormat. If the label variable is set, for example label=PS112k, the file name instead will be set to **RS_PS112k.extn** with appropriate choices of extn. The entries in the file are **1.** frequency ω , **2.** dynamic storage modulus $G'(\omega)$, **3.** dynamic loss modulus $G''(\omega)$, **4.** dynamic viscosity $\eta''(\omega)$, **5.** dielectric storage modulus $\varepsilon''(\omega)$, **6.** dielectric loss modulus $\varepsilon''(\omega)$. The dielectric information (columns 5 and 6) are only present if appropriate instruction is given either via the command line flag or via the resource file.

If OutputFormat=RepTate is chosen, the mechanical output is written in **MechSpec.tts** in the absence of label variable in the resource file, and, if asked for, dielectric response in file **DiSpec.dls**. If label is set, for example as PS112k, the file names will be **PS112k.tts** and **PS112k.dls** respectively. The contents of the mechanical relaxation file are the **1.** frequency ω , **2.** dynamic storage modulus $G'(\omega)$, **3.** dynamic loss modulus $G''(\omega)$, and those of the dielectric file are the **1.** frequency ω , **2.** dielectric storage modulus $\varepsilon'(\omega)$, **3.** dielectric loss modulus $\varepsilon''(\omega)$.

```
Go to Table of Contents \Rightarrow Introduction \Rightarrow Usage \Rightarrow Input files \cdot \text{Material input file} \cdot \text{Resource file} \Rightarrow Output files \cdot \text{Relaxation} spectra \cdot Time relaxation \cdot Tube diameters \cdot Relaxation pathways \cdot Relaxation pathways \cdot Log file
```

1.4.2 Time relaxation

Time domain decay of modulus after a step strain is calculated if $Output_G_of_t=yes$ option is set via the resource file (the default is $Output_G_of_t=no$). As with relaxation spectra, file name extensions for OutputFormat=Default, Text and CSV are respectively .dat, .txt, and .csv. In the absence of label in the resource file, the data is written in a file named MechRel with appropriate file extension. The data are set of time t, modulus G(t), tube survival probability $\mu(t)$, and the constraint release contribution R(t). With OutputFormat=RepTate, time t and modulus G(t) is written in file MechRel.gt. With the label variable set, for example as label=PS100k, the file name for OutputFormat=RepTate choice will be PS100k.gt. With the same label, OutputFormat=Default will use a file $MR_PS100k.dat$. Other choices will change the file extension appropriately. The range of time for the time relaxation output is chosen to be between $10^{-4} \tau_e$ and $10^4 \tau_d$, with τ_d being the longest relaxation time. These times can only be changed by editing $src/Rheology/Calc_goft.cpp$ in the source code.

```
Go to Table of Contents \Rightarrow Introduction \Rightarrow Usage \Rightarrow Input files • Material input file • Resource file \Rightarrow Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.4.3 Tube diameters

If OutPhiPhiST=yes option is set via the resource file (the default is OutPhiPhiST=no), different dynamic tube diameters ($\mathbf{a_X}$) are output in terms of associated fractions of unrelaxed tube constraints ($\varphi_{\mathbf{X}}$): $\mathbf{a_X} = \mathbf{a_0} \ \varphi_{\mathbf{X}}^{-\alpha/2}$ with $\mathbf{a_0}$ being the equilibrium tube diameter or the bare tube diameter. The output is written in a file named \mathbf{STube} with appropriate extension in the absence of the label string. If the label variable is set, for example as label=Pl645k, the file name will be \mathbf{STube}_Pl645k with appropriate extension. The output contains 1. time after step deformation t, 2. fraction of unrelaxed tube contraints $\varphi(t)$, 3. supertube fraction $\varphi_{ST}(t)$, 4. equilibriated constraint fraction $\varphi_{eq}(t)$, 5. constraint fraction allowing reptation $\varphi_{rept}(t)$, and 6. enhancement of reptation due to contour length fluctuation along fat tube $\Psi_{min}(t)$.

```
Go to Table of Contents \Rightarrow Introduction \Rightarrow Usage \Rightarrow Input files \cdot \text{Material input file} \cdot \text{Resource file} \Rightarrow Output files \cdot \text{Relaxation}
```

```
spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.4.4 Terminal relaxation pathways

If the variable *OutTermRelaxPathways* is set to *yes* via the resource file, information about terminal relaxation pathways of each chain is written in an output file named *TermRelax.dat* (or .txt, or .csv) in the absence of the *label* variable. With *label* set to some string, that string is appended to *TermR*_ along with an appropriate extension.

The output contains 1. Index i (index of the polymer in the ensemble), 2. Weight fraction w_i , 3. Molar mass M_i , 4. Relaxation time τ_{relax} , 5. Integer code for relaxation pathway, 6. Relevant constraint fraction, 7. Speed up factor from fat tube CLF.

The integer code in the fifth column is set to 0 for unentangled chains. For those chains, $\tau_{\textit{relax}}$ is set to the Rouse time of the chains $\tau_{\textit{R}}$. The entries in both the sixth and seventh columns in this case are 1 signifying irrelevance of tube dilation for the relaxation of these chains.

When the chain of concern relaxes by reptation, the fifth column is set to 1 and the $\tau_{\textit{relax}}$ is set to the reptation time $\tau_{\textit{d}}$. The sixth column in this case gives φ_T \$ associated with the optimal tube diameter for reptation at the time the chain switches from relaxing by contour length fluctuation to reptation. The seventh column in this case is the speed up due to fat tube CLF Ψ_{\min} , evaluated at the time the chain commits to relax remaining stress via reptation.

When a chain effectively becomes unentangled in the *supertube*, the remaining stress associated with the chain relaxes with this time scale via *disentanglement*. In such cases, the fifth column is set to 2 and the $\tau_{\textit{relax}}$ is set to the time at which the chain first becomes disentangled. The sixth column in this case report φ_{ST} and the seventh column reports the speed up factor Ψ_{min} evaluated at the time of disentanglement.

```
Go to Table of Contents

⇒ Introduction ⇒ Usage ⇒ Input files • Material input file • Resource file ⇒ Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

1.4.5 Log file

Command line argument -L directs the code to write information in a file named LP2Rlog.txt . If something goes wrong during processing the input files, the log file can be helpful in resolving the place where the code failed. The log file also reports molar mass moments $(M_N, M_W, \text{ and } M_Z)$ and the zero-shear viscosity.

```
Go to Table of Contents

⇒ Introduction ⇒ Usage ⇒ Input files • Material input file • Resource file ⇒ Output files • Relaxation spectra • Time relaxation • Tube diameters • Relaxation pathways • Relaxation pathways • Log file
```

Namespace Index

2.1	Namespace	List

2.1 Namespace List	
Here is a list of all documented namespaces with brief descriptions:	
LP2R_NS	13

8 Namespace Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:	
C_LPoly	23
InvSqSum	
Class to hold and retrieve partial sums of the form 1/p^2	
25	

10 Class Index

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:	
include/LP2R.h	
Define classes and namespaces	27
include/LP2R_global.h	28
include/LP2R_NS.h	
Global namespaces	29
include/routines.h	30
main/LinPoly2Rheo.cpp	
main for LP2R	31
main/parse_arg.cpp	
Parse command line arguments	31
mdfiles/mainpage.h	32
prep/assign_FNMs.cpp	
Depending on the output format and presence of "reptate_label", select file names for output .	32
prep/GenLinGPC.cpp	
Generate polymers based on GPC data from a file	32
prep/GenLinLogNormal.cpp	
Generate discrete representation of a logNormal distribution	33
prep/GenLinWt.cpp	
Generate polymers with {molar mass, weight fraction} entries in a file	34
prep/genPolyLin.cpp	
Read input for polymer components and generate/read polymers	35
prep/ModelParams.cpp	
Set default model parameters that are unlikely to be changed by most users	35
prep/ReadInput.cpp	
Read material parameters from the input file and call <code>genPolyLin</code>	36
prep/ReadRCFL.cpp	
Read options given as option=value pair in a file	36
Relax/arm_retraction.cpp	
Relaxation from contour length fluctuation	37
Relax/frac_unrelaxed.cpp	
Decide on supertube relaxation based on material relaxed in the current time interval	37
Relax/GetPhiEq.cpp	
Tube diameter for CLF (phi_eq)	38
Relax/time_step.cpp	-00
Update relaxation by one time step	38
Relax/try_reptate.cpp	00
Attempt relaxation by reptation	38
Rheology/add_goft_headers.cpp	00
Add appropriate header to time domain relaxation output file	39

12 File Index

Rheology/Calc_goft.cpp	
Calculate G(t)	39
Rheology/CalcGstar.cpp	39
Rheology/CalcVisc.cpp	
Zero shear viscosity	40
Rheology/GoftFast.cpp	
G(t) contribution from in-tube Rouse modes	40
Rheology/GoftRouse.cpp	
G(t) contribution from unentangled chains	41
Rheology/GoftTube.cpp	
G(t) contribution from in-tube Rouse modes	41
Rheology/GStarFastRouse.cpp	
Internal Rouse and longitudinal modes (in units of G0)	41
Rheology/GStarGlass.cpp	
Return glassy contribution of G' and G" at given frequency	42
Rheology/GStarRouse.cpp	
Rouse spectra for unentangled chains	42
Rheology/GStarSlow.cpp	
Tube relaxation part of relaxation	43
Rheology/LinRheology.cpp	
Calculate relaxation spectra	44
Rheology/RepTateOut.cpp	
Handle output in RepTate format	44
util/safeGetLine.cpp	
Read a nonempty line with either unix or windows style line-ending, discarding anything after a	
% sign	46

Namespace Documentation

5.1 LP2R NS Namespace Reference

Variables

- double M Kuhn
- double M e
- double N_e
- double G 0
- double tau_e
- · double G glass
- · double tau glass
- · double beta_glass
- double Alpha =1.0
- double t_CR_START =1.0
- double deltaCR =0.30
- double B zeta =2.0
- double A_eq =2.0
- double **B_eq** =10.0
- double ret_pref =0.189
- double Rept_Switch_Factor =1.664
- double Rouse Switch Factor =1.5
- double Disentanglement_Switch =1.0
- double ret_pref_0 =0.020
- double ret_switch_exponent =0.42
- double cur_time =1.0e-3
- double DtMult =1.02
- double Log_DtMult
- double FreqMin =1.0e-3
- double FreqMax =1.0e3
- double FreqRatio =1.1
- bool CalcDielectric =false
- bool OutTermRelaxPathways =false
- bool OutPhiPhiST =false
- bool Output_G_of_t =false
- std::string OutputFormat ="Default"
- std::string CSVdelimiter =","
- bool Add_header =true
- bool has_temp =false
- bool has_origin =false
- bool has label =false
- bool has_chem =false

- double reptate_temp =0.0
- std::string reptate_origin
- std::string reptate label
- · std::string reptate chem
- bool GenLogFL =false
- std::string inpFNM ="inp.dat"
- std::string rcFNM ="LP2R.rc"
- std::fstream f Log
- std::string RelSpecFNM ="RelSpec"
- std::string MechRelSpecFNM
- std::string DiRelSpecFNM
- std::string MechRelFNM ="MechRel"
- std::string OutTermRelaxFNM ="TermRelax"
- std::string OutPhiPhiSTFNM ="STube"
- std::fstream f trelax
- std::fstream f_phi
- int npoly =0
- std::vector< C_LPoly * > LPoly
- double Rouse_wt =0.0
- double Sys_MN =0.0
- double Sys MW =0.0
- double Sys_PDI =1.0
- bool Entangled_Dynamics =true
- double phi_true =1.0
- double phi_ST =1.0
- double phi rept =1.0
- double phi_eq =1.0
- double Psi_rept =1.0
- double LastReptationTime =1.0
- double LastReptZ =1.0
- bool supertube_activated =false
- bool AboveTauEFirst =false
- double phi_ST_0 =1.0
- double ST activ time =1.0
- double STmaxDrop =1.0
- std::vector< double > t ar
- std::vector< double > phi ar
- std::vector< double > phi_ST_ar
- std::vector< double > t eq ar
- int phi_eq_indx =0

5.1.1 Detailed Description

Global variables

5.1.2 Variable Documentation

5.1.2.1 A eq

double LP2R_NS::A_eq =2.0

Proportionality constant connecting "effective equilibrium time" and time to locally equilibiate in a certain supertube

5.1.2.2 AboveTauEFirst

bool LP2R_NS::AboveTauEFirst =false Start with false and set to true once $t > t_CR_START$

5.1.2.3 Add_header

bool LP2R_NS::Add_header =true (true) Add appropriate headers in the output files

5.1.2.4 Alpha

double LP2R_NS::Alpha =1.0
Dilution exponent

5.1.2.5 B_eq

double LP2R_NS::B_eq =10.0

Constant delaying equilibrium for fast CR events

5.1.2.6 B_zeta

double LP2R_NS::B_zeta =2.0

Proportionality constant relating friction coefficient to supertube fraction

5.1.2.7 beta_glass

double LP2R_NS::beta_glass
stretching exponent for glassy relaxation

5.1.2.8 CalcDielectric

bool LP2R_NS::CalcDielectric =false

(false) If true, output dielectric loss (assuming type-A dipoles)

Commad line flag -d takes precedence over resource file instruction.

5.1.2.9 CSVdelimiter

std::string LP2R_NS::CSVdelimiter =","

Allow for non-standard delimiter (ex. some european locale uses semicolon)

5.1.2.10 cur_time

double LP2R_NS::cur_time =1.0e-3

Read as Start_time from resource file, start of integration time

5.1.2.11 deltaCR

double LP2R_NS::deltaCR =0.30

Fractional drop in tube constraints at CR events (in long polymers)

5.1.2.12 DiRelSpecFNM

std::string LP2R_NS::DiRelSpecFNM

Output file name for Dielectric relaxation (reptate mode)

5.1.2.13 Disentanglement_Switch

double LP2R_NS::Disentanglement_Switch =1.0

Number of entanglement in the supertube below which chains relax by "disentanglement".

5.1.2.14 DtMult

```
double LP2R_NS::DtMult =1.02
```

Read as Time_ratio from resource file, ratio of consecutive discrete times

5.1.2.15 Entangled_Dynamics

bool LP2R_NS::Entangled_Dynamics =true true if polymers are entangled to begin with

5.1.2.16 f Log

```
std::fstream LP2R_NS::f_Log
File stream for log
```

5.1.2.17 f phi

```
std::fstream LP2R_NS::f_phi
```

File stream for tube diameters as a function of time

5.1.2.18 f_trelax

```
std::fstream LP2R_NS::f_trelax
```

File stream for detailed relaxation information

5.1.2.19 FreqMax

```
double LP2R_NS::FreqMax =1.0e3
```

Maximum frequency for dynamic rheology output

5.1.2.20 FreqMin

```
double LP2R_NS::FreqMin =1.0e-3
```

Minimum frequency for dynamic rheology output

5.1.2.21 FreqRatio

```
double LP2R_NS::FreqRatio =1.1
```

Multiplier (>1) between subsequent frequencies for output

5.1.2.22 G_0

```
double LP2R_NS::G_0
```

Plateau modulus

5.1.2.23 G_glass

double LP2R_NS::G_glass

Glassy modulus

5.1.2.24 GenLogFL

```
bool LP2R_NS::GenLogFL =false
```

(false) If true, create a log file to output each step

5.1.2.25 has_chem

```
bool LP2R_NS::has_chem =false
```

flag to note if reptate header variables have been set

5.1.2.26 has_label

bool LP2R_NS::has_label =false

flag to note if reptate header variables have been set

5.1.2.27 has_origin

bool LP2R_NS::has_origin =false

flag to note if reptate header variables have been set

5.1.2.28 has temp

bool LP2R_NS::has_temp =false

flag to note if reptate header variables have been set

5.1.2.29 inpFNM

std::string LP2R_NS::inpFNM ="inp.dat"
Input file name

5.1.2.30 LastReptationTime

double LP2R_NS::LastReptationTime =1.0

Keep track of time at which some chain switched to reptation.

Any subsequent molecules may not have reptation time smaller than this.

5.1.2.31 LastReptZ

double LP2R_NS::LastReptZ =1.0

Z_chain corresponding to the largest reptation time assigned so far

5.1.2.32 Log_DtMult

double LP2R_NS::Log_DtMult
Log(DtMult)

5.1.2.33 LPoly

std::vector< C_LPoly * > LP2R_NS::LPoly
Polymer objects

5.1.2.34 M_e

double LP2R_NS::M_e

Entanglement molar mass

5.1.2.35 M_Kuhn

double LP2R_NS::M_Kuhn

Kuhn Molar mass

5.1.2.36 MechRelFNM

 $std::string LP2R_NS::MechRelFNM = "MechRel" Output file name for <math display="inline">G(t)$

5.1.2.37 MechRelSpecFNM

std::string LP2R_NS::MechRelSpecFNM

Output file name for Mechanical relaxation (Reptate mode)

5.1.2.38 N_e

double LP2R_NS::N_e

N_e == M_e/M_Kuhn; Number of Kuhn beads in one entanglement

5.1.2.39 npoly

int LP2R_NS::npoly =0

Number of polymers

5.1.2.40 OutPhiPhiST

bool LP2R_NS::OutPhiPhiST =false

(false) If true, time evolution of different phi (can be mapped to tube diameters) as a function of time is written in a file

5.1.2.41 OutPhiPhiSTFNM

std::string LP2R_NS::OutPhiPhiSTFNM ="STube"

File in which different phi are written to

5.1.2.42 Output_G_of_t

bool LP2R_NS::Output_G_of_t =false

(false) If true, output mechanical relaxation in the time domain.

5.1.2.43 OutputFormat

std::string LP2R_NS::OutputFormat ="Default"

Output format in result files:

Default (.dat extension, space as dilimiter, header as comment with hash)

Text (.txt extension, space as dilimiter, header as string)

CSV (.csv extension, comma as (default) dilimiter)

RepTate (various extensions, see https://reptate.readthedocs.io)

5.1.2.44 OutTermRelaxFNM

std::string LP2R_NS::OutTermRelaxFNM ="TermRelax"

File in which terminal relaxation information should be written to

5.1.2.45 OutTermRelaxPathways

bool LP2R_NS::OutTermRelaxPathways =false

(false) If true, terminal relaxation of each chain triggers detailed output

5.1.2.46 phi_ar

std::vector< double > LP2R_NS::phi_ar

unrelaxed fraction (as function of time)

5.1.2.47 phi_eq

double LP2R_NS::phi_eq =1.0

related to tube in which CLF is possible

5.1.2.48 phi_eq_indx

int LP2R_NS::phi_eq_indx =0

index in t_eq_ar closest to the current time

5.1.2.49 phi_rept

double LP2R_NS::phi_rept =1.0
related to the tube in which reptation is preferred currently

5.1.2.50 phi_ST

double LP2R_NS::phi_ST =1.0
current unrelaxed supertube fraction

5.1.2.51 phi_ST_0

double LP2R_NS::phi_ST_0 =1.0
phi_ST just before supertube relaxation is activated

5.1.2.52 phi ST ar

std::vector< double > LP2R_NS::phi_ST_ar
unrelaxed supertube fraction (as function of time)

5.1.2.53 phi_true

double LP2R_NS::phi_true =1.0
current unrelaxed fraction

5.1.2.54 Psi_rept

double LP2R_NS::Psi_rept =1.0

Speed up factor for reptation by accessing fatter tube

5.1.2.55 rcFNM

std::string LP2R_NS::rcFNM ="LP2R.rc"
resource file name

5.1.2.56 RelSpecFNM

std::string LP2R_NS::RelSpecFNM ="RelSpec"

Output filename for relaxation spectra in default mode

5.1.2.57 Rept_Switch_Factor

double LP2R_NS::Rept_Switch_Factor =1.664
Constant deciding transition from CLF to reptation

5.1.2.58 reptate_chem

std::string LP2R_NS::reptate_chem
reptate header string

5.1.2.59 reptate_label

std::string LP2R_NS::reptate_label
reptate header string

5.1.2.60 reptate_origin

std::string LP2R_NS::reptate_origin
reptate header string

5.1.2.61 reptate_temp

```
double LP2R_NS::reptate_temp =0.0
temperature for reptate header
```

5.1.2.62 ret_pref

```
double LP2R_NS::ret_pref =0.189 Constant in arm retraction formula ( \mathcal{C}_{a,\infty} )
```

5.1.2.63 ret pref 0

```
double LP2R_NS::ret_pref_0 =0.020 Short-time prefactor for CLF ( \mathcal{C}_{a,0} )
```

5.1.2.64 ret switch exponent

```
double LP2R_NS::ret_switch_exponent =0.42
```

Exponent ϵ_a determining how steeply CLF switches to long-time strength

5.1.2.65 Rouse_Switch_Factor

```
double LP2R_NS::Rouse_Switch_Factor =1.5 Minimum number of bare entanglements to be considered entangled ( Z_u )
```

5.1.2.66 Rouse wt

```
double LP2R_NS::Rouse_wt =0.0
```

Weight fraction of chains that relax by free Rouse

5.1.2.67 ST_activ_time

```
double LP2R_NS::ST_activ_time =1.0
```

time at which current supertube relaxation is activated

5.1.2.68 STmaxDrop

```
double LP2R_NS::STmaxDrop =1.0

Long time maximum drop in phi_ST druing one time step.

STmaxDrop = exp(-log(DtMult)/(2.0*Alpha))
```

5.1.2.69 supertube_activated

```
bool LP2R_NS::supertube_activated =false
(false) set to true during supertube relaxation
```

5.1.2.70 Sys_MN

```
double LP2R_NS::Sys_MN =0.0
```

Number averaged molar mass of the blend

5.1.2.71 Sys_MW

```
double LP2R_NS::Sys_MW =0.0
```

Weight averaged molar mass of the blend

5.1.2.72 Sys_PDI

```
double LP2R_NS::Sys_PDI =1.0
polydispersity index of the blend
```

5.1.2.73 t_ar

 $\label{eq:std:std:std} {\tt std::vector} < {\tt double} > {\tt LP2R_NS::t_ar} \\ {\tt Discrete\ times\ at\ which\ relaxation\ is\ tracked} \\$

5.1.2.74 t_CR_START

```
double LP2R_NS::t_CR_START =1.0
```

Time (units of tau_e) below which no CR events are included in the tube model. (faster events are accounted in the bare tube picture itself.)

5.1.2.75 t_eq_ar

std::vector< double > LP2R_NS::t_eq_ar
equilibration time in current supertube

5.1.2.76 tau_e

double LP2R_NS::tau_e
Entanglement time

5.1.2.77 tau_glass

double LP2R_NS::tau_glass
Glassy relaxation time

Class Documentation

6.1 C_LPoly Class Reference

#include <LP2R.h>

Public Member Functions

• C_LPoly (const double M, const double W, const double M_e)

Public Attributes

- double mass =0.0
- double wt =0.0
- double Z_chain =0.0
- double **z** =0.0
- bool alive =true
- bool relax_free_Rouse =false
- bool rept_set =false
- double tau_d_0 = 1.0e22
- double Z_rept =0.0
- double rept_wt =0.0
- int p_max =0
- int p_next =0
- double t_FRouse

6.1.1 Detailed Description

Agreegate class to hold information about a linear polymer

6.1.2 Member Data Documentation

6.1.2.1 alive

bool C_LPoly::alive =true

Becomes false if the chain completely relaxes

6.1.2.2 mass

double C_LPoly::mass =0.0
molar mass of the polymer (g/mole)

24 Class Documentation

6.1.2.3 p_max

```
int C_LPoly::p_max =0
Highest reptation mode
```

6.1.2.4 p_next

int C_LPoly::p_next =0
Next available reptation mode

6.1.2.5 relax_free_Rouse

```
bool C_LPoly::relax_free_Rouse =false
True for unentangled chains
```

6.1.2.6 rept set

```
bool C_LPoly::rept_set =false
```

Becomes true once further relaxation is assigned tobe via reptation

6.1.2.7 rept_wt

```
double C_LPoly::rept_wt =0.0
Weight associated with reptation
```

6.1.2.8 t_FRouse

```
double C_LPoly::t_FRouse
```

Relaxation time by free Rouse relaxation (Z_chain^2) tau_e

6.1.2.9 tau_d_0

```
double C_LPoly::tau_d_0 =1.0e22
```

Reptation time for the zeroth mode; initialized to a large number

6.1.2.10 wt

```
double C_LPoly::wt =0.0
```

Weight fraction associated with the polymer in the ensemble

6.1.2.11 z

```
double C_LPoly::z =0.0
```

Escaped number of entanglements from either ends of the chain at current time

6.1.2.12 Z_chain

```
double C_LPoly::Z_chain =0.0
```

Number of entanglements in the chain. Z_chain=mass/M_e

6.1.2.13 Z_rept

```
double C_LPoly::Z_rept =0.0
```

Amount of chain that should relax by reptation

The documentation for this class was generated from the following file:

include/LP2R.h

6.2 InvSqSum Class Reference

Class to hold and retrieve partial sums of the form $1/p^2$

```
#include <LP2R.h>
```

Public Member Functions

- double intg_psum (int n1, int n2)
- double **operator()** (int Z)
- double operator() (int Z1, int Z2)

6.2.1 Detailed Description

Class to hold and retrieve partial sums of the form $1/p^{\wedge}2$

. . . .

Explicitly sum $1/p^2$ till $1/499^2$

Higher terms are added as integrals as required.

Function call operator is overloaded to return partial sums

The documentation for this class was generated from the following file:

• include/LP2R.h

26 Class Documentation

File Documentation

7.1 include/LP2R.h File Reference

Define classes and namespaces.

```
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>
#include <cmath>
#include <algorithm>
#include "./LP2R_NS.h"
#include "./routines.h"
```

Classes

- class C_LPoly
- class InvSqSum

7.1.1 Detailed Description

Define classes and namespaces.

7.2 LP2R.h

Go to the documentation of this file.

```
1 #ifndef _LinLin_H_
2 #define _LinLin_H_
3 #include <iostream>
4 #include <stream>
5 #include <stream>
6 #include <vector>
7 #include <cmath>
9 #include <cmath>
9 #include <algorithm>
10
20 class C_LPoly{
21 public:
22 C_LPoly() = default;
23 C_LPoly(const double M, const double W, const double M_e):
4 mass(M), wt(W), Z_chain(M/M_e), t_FRouse(Z_chain*Z_chain) {}
25
26 double mass=0.0;
27 double wt=0.0;
28 double Z_chain=0.0;
29 double z=0.0;
31 bool alive=true;
```

28 File Documentation

```
32 bool relax_free_Rouse=false;
34 bool rept_set=false;
35 double tau_d_0=1.0e22;
36 double Z_rept=0.0;
37 double rept_wt=0.0;
38 int p_max=0;
39 int p_next=0;
41 double t_FRouse;
42
43
44
53 class InvSqSum{ // sum(1/p^2)
54 double psum[500];
55 public:
56
    InvSqSum() {
     psum[0]=0.0; psum[1]=1.0;
      for(int i=2; i<500; i++) \{psum[i]=psum[i-1]+1.0/((double) (i*i));\}
58
59
     double intg_psum(int n1, int n2){
      double n1d=((double) n1); double n2d=((double) n2);
      double n1dsq=n1d*n1d; double n2dsq=n2d*n2d;
63
      double val=1.0/n1d - 1.0/n2d + 0.50*(1.0/n1dsq + 1.0/n2dsq);
      val+=(1.0/(n1d*n1dsq) - 1.0/(n2d*n2dsq))/6.0;
64
6.5
        return val;
66
      double operator()(int Z){
68
       if(Z < 500) {return psum[Z];}</pre>
69
       else{ return psum[499]+intg_psum(500,Z);}
70
71
      double operator()(int Z1, int Z2){
       double s1, s2;
72
73
         if(Z1 <= 500) {s1=psum[Z1-1];}</pre>
         else(s1=psum[499]+intg_psum(500,Z1-1);}
75
         if(Z2 < 500) {s2=psum[Z2];}</pre>
76
         else(s2=psum[499]+intg_psum(500,Z2);)
77
         return s2-s1;
78
82 #include "./LP2R_NS.h"
83 #include "./routines.h"
84
86 #endif
```

7.3 LP2R global.h

```
1 // Define global namespace objects
2 namespace LP2R_NS{
3 // Model parameters
4 double M_Kuhn, M_e, N_e, G_0, tau_e; 5 double G_glass, tau_glass, beta_glass;
7 double Alpha=1.0, t_CR_START=1.0, deltaCR=0.30;
8 double B_zeta=2.0, A_eq=2.0, B_eq=10.0;
9 double ret_pref=0.189, Rept_Switch_Factor=1.664;
10 double Rouse_Switch_Factor=1.5, Disentanglement_Switch=1.0;
11 double ret_pref_0=0.020, ret_switch_exponent=0.42;
13 // discrete time evolution control
14 double cur_time=1.0e-3, DtMult=1.02, Log_DtMult;
1.5
16 // Output control
17 double FreqMin=1.0e-3, FreqMax=1.0e3, FreqRatio=1.1;
18 bool CalcDielectric=false, OutTermRelaxPathways=false, OutPhiPhiST=false;
19 bool Output_G_of_t=false;
20 std::string OutputFormat="Default", CSVdelimiter=","; bool Add_header=true;
21 bool has_temp=false, has_origin=false, has_label=false, has_chem=false;
22 double reptate_temp=0.0;
23 std::string reptate_origin, reptate_label, reptate_chem;
24 bool GenLogFL=false;
25
26 // input filenames and file handles 27 std::string inpFNM="inp.dat", rcFNM="LP2R.rc";
28 std::fstream f Log:
29
30 // output filenames
31 std::string RelSpecFNM="RelSpec", MechRelSpecFNM, DiRelSpecFNM;
32 std::string MechRelFNM="MechRel";
33 std::string OutTermRelaxFNM="TermRelax", OutPhiPhiSTFNM="STube";
34 std::fstream f_trelax;
35 std::fstream f_phi;
37 // Polymer collection
```

```
38 int npoly=0;
39 std::vectorCC_LPoly *> LPoly;
40 double Rouse_wt=0.0;
41 double Sys_MN=0.0, Sys_MW=0.0, Sys_PDI=1.0;
42 bool Entangled_Dynamics=true;
43
44 // time dependent relaxation variables
45 double phi_true=1.0, phi_ST=1.0, phi_rept=1.0, phi_eq=1.0, Psi_rept=1.0;
46 double LastReptationTime=1.0, LastReptZ=1.0;
47
48 bool supertube_activated=false, AboveTauEFirst=false;
49 double phi_ST_0=1.0, ST_activ_time=1.0, STmaxDrop=1.0;
50
51 // Storage of relaxation data
52 std::vector<double> t_ar, phi_ar, phi_ST_ar, t_eq_ar;
53 int phi_eq_indx=0;
54
```

7.4 include/LP2R_NS.h File Reference

global namespaces

Namespaces

namespace LP2R_NS

7.4.1 Detailed Description

global namespaces

7.5 LP2R_NS.h

Go to the documentation of this file.

```
1 #ifndef _LP2R_NS
2 #define _LP2R_NS
12 namespace LP2R_NS{
14 // Model parameters
1.5
16 extern double M Kuhn:
17 extern double M e:
18 extern double G_0;
19 extern double tau_e;
20 extern double N_e;
22 extern double G_glass;
23 extern double tau_glass;
24 extern double beta glass;
26 extern double Alpha;
27 extern double t_CR_START;
30 extern double deltaCR;
31 extern double B_zeta;
32 extern double A eq;
34 extern double B_eq;
35 extern double ret_pref;
36 extern double ret_pref_0;
37 extern double ret_switch_exponent;
39 extern double Rept_Switch_Factor;
40 extern double Rouse_Switch_Factor;
41 extern double Disentanglement Switch;
43 extern double cur_time;
44 extern double DtMult;
45 extern double Log_DtMult;
47 // Files
48 extern std::string inpFNM;
49 extern std::string rcFNM;
51 // control output
52 extern bool CalcDielectric;
54 extern std::string OutputFormat;
59 extern std::string CSVdelimiter;
60 extern bool Add_header;
61 extern bool OutTermRelaxPathways;
62 extern bool Output G of t;
63 extern bool GenLogFL;
64 extern std::fstream f_Log;
65 extern std::fstream f_trelax;
66 extern std::fstream f_phi;
68 extern bool OutPhiPhiST;
```

```
70 extern double FreqMin;
71 extern double FreqMax;
72 extern double FreqRatio;
74 // relaxation data
75 extern double phi_true;
76 extern double phi_ST;
77 extern double phi_rept;
78 extern double phi_eq;
79 extern double Psi_rept;
81 extern bool supertube_activated;
82 extern double phi_ST_0;
83 extern double ST activ time:
84 extern bool AboveTauEFirst;
85 extern double STmaxDrop;
88 // Reptate software specific input
89 extern bool has_temp;
90 extern bool has_origin;
91 extern bool has_label;
92 extern bool has_chem;
93 extern std::string reptate_origin;
94 extern std::string reptate_label;
95 extern std::string reptate_chem;
96 extern double reptate_temp;
98 // Output file names
99 extern std::string RelSpecFNM;
100 extern std::string MechRelSpecFNM;
101 extern std::string DiRelSpecFNM;
102 extern std::string MechRelFNM;
103 extern std::string OutTermRelaxFNM;
104 extern std::string OutPhiPhiSTFNM;
106 extern std::vector<double> t_ar;
107 extern std::vector<double> phi_ar;
108 extern std::vector<double> phi_ST_ar;
109 extern std::vector<double> t_eq_ar;
110 extern int phi_eq_indx;
111 extern double LastReptationTime;
113 extern double LastReptZ;
115 extern std::vector<C_LPoly *> LPoly;
116 extern int npoly;
117 extern double Rouse_wt;
118 extern double Sys_MN;
119 extern double Sys MW;
120 extern double Sys PDT:
121 extern bool Entangled_Dynamics;
122
123
124 #endif
```

7.6 routines.h

```
1 int parse_arg(int argc, char* argv[]);
2 void ReadRCFL(void);
3 int ReadInput(void);
5 int genPolyLin(std::fstream&);
6 double aaerfcc(const double x);
7 void GenLinLogNormal(const int n, const double mw, const double pdi, const double wtcomp);
8 int GenLinGPC(std::string &fname, const double wtcomp);
9 int GenLinWt(std::string &fname, const double wtcomp);
10 void assign_FNMs(void);
12 std::istream& safeGetline(std::istream& is, std::string& t);
13 std::istream& readEquality(std::istream& is, std::string& sL, std::string& sR);
14
15 // relaxation
16 double GetPhiEq(void);
17 void frac_unrelaxed(void);
18 void try_reptate(const int np);
19 void arm_retraction(const int np, const int indx);
20 int time_step(const int indx);
22 // Calculation of responses
23 void add_spectra_headers(std::fstream &fRh, std::fstream &fDi);
24 void GStarGlass(const double w, double &gp, double &g2p);
25 void GStarRouse(double freq, double &gRs, double &g2Rs, double &eRs, double &e2Rs);
26 void GStarFastRouse(const double w, double &gpf, double &g2pf);
27 void GStarSlow(const double w, double &gp, double &g2p, double &ep, double &e2p);
28 void CalcGstar(std::fstream &fRh, std::fstream &fDi);
30 double CalcVisc(void);
31 void add_goft_headers(std::fstream &fRh);
32 double GoftRouse(const double t);
33 double GoftFast(const double t);
34 double GoftTube(const double t, double &muoft, double &Roft);
35 void Calc_goft(std::fstream &fRh);
```

```
36
37 void LinRheology(void);
```

7.7 main/LinPoly2Rheo.cpp File Reference

```
main for LP2R
#include "../include/LP2R.h"
#include "../include/LP2R_global.h"
#include "../include/tclap/CmdLine.h"
```

Functions

• int main (int argc, char *argv[])

7.7.1 Detailed Description

main for LP2R

Parameters

in	argc	Number of command line arguments
in	argv	argument list

Returns

nonzero integer is run fails

7.8 main/parse_arg.cpp File Reference

```
parse command line arguments
#include "../include/LP2R.h"
#include "../include/tclap/CmdLine.h"
```

Functions

• int parse_arg (int argc, char *argv[])

7.8.1 Detailed Description

```
parse command line arguments
options [-i input_file] [-r resource_file] [-d] [-L] [-v] [-h] [-version] [-help]
-i input_file : Read material and polymer information from this file (default: inp.dat)
-r resource_file : Model parameters (default: LP2R.rc).
Will use default values if the file does not exist.
-d : Switch on output of dielectric response.
-L : Output steps in LP2Rlog.txt, useful for debugging.
-v / -version : version information
```

-h / -help: help page.

7.8.2 Function Documentation

7.8.2.1 parse_arg()

Parameters

in	argc	number of arguments passed to main.
in	argv	character array containing the arguments.

Returns

zero if parsed properly and non-zero in case of error.

7.9 mainpage.h

1

7.10 prep/assign_FNMs.cpp File Reference

Depending on the output format and presence of "reptate_label", select file names for output. #include "../include/LP2R.h"

Functions

void assign_FNMs (void)

7.10.1 Detailed Description

Depending on the output format and presence of "reptate_label", select file names for output.

7.11 prep/GenLinGPC.cpp File Reference

```
Generate polymers based on GPC data from a file. #include "../include/LP2R.h" #include <algorithm>
```

Functions

- void aa_sort2_minmax (std::vector< double > &m, std::vector< double > &p)
- int GenLinGPC (std::string &fname, const double wtcomp)

7.11.1 Detailed Description

Generate polymers based on GPC data from a file.

7.11.2 Function Documentation

7.11.2.1 aa_sort2_minmax()

```
void aa_sort2_minmax (
          std::vector< double > & m,
          std::vector< double > & p )
```

sort paired vectors in ascending order of the first

Parameters

in,out	т	molar mass
in,out	р	dwdm associated with m

7.11.2.2 GenLinGPC()

GPC data in {M, dw/dlog_10(M)} format in the specified file As with all other files, comments are allowed with a "%" symbol

Parameters

in,out	fname	string containing the filename
in	wtcomp	weight fraction assigned to the current component

Returns

zero if successful

7.12 prep/GenLinLogNormal.cpp File Reference

Generate discrete representation of a logNormal distribution.

```
#include "../include/LP2R.h"
```

Functions

- double aaerfcc (const double x)
- double LogNormalWt (const double Mw, const double PDI, const double M1, const double M2, double &Mw← Bin)
- void GenLinLogNormal (const int n, const double mw, const double pdi, const double wtcomp)

7.12.1 Detailed Description

Generate discrete representation of a logNormal distribution.

7.12.2 Function Documentation

7.12.2.1 aaerfcc()

Series for complementary error function

Parameters

Returns

errc(x)

7.12.2.2 GenLinLogNormal()

Generate polymers from a logNormal distribution characterized by molar mass mw and PDI pdi.

Special case: if either the number of discrete molar mass is one or PDI < 1, create a single polymer with the molar mass supplied.

Parameters

in	n	number of discrete molar mass to represent the distribution	
in	mw	weight averaged molar mass	
in	pdi	Polydispersity index	
in	wtcomp	wtcomp weight fraction of this polymer componennt	

7.12.2.3 LogNormalWt()

Weight fraction in a specified molar mass range from a logNormal distribution

Parameters

in	Mw	weight-averaged molar mass
in	PDI Polydispersity index	
in	M1 Lower limit of the molar mass range	
in	M2 upper limit of the molar mass range	
out	MwBin	weight averaged molar mass in this interval

Returns

weight fraction in the molar mass range.

Negative M1 ==> (0, M2); Negative M2 ==> (M1, infinity)

7.13 prep/GenLinWt.cpp File Reference

Generate polymers with {molar mass, weight fraction} entries in a file.

```
#include "../include/LP2R.h"
```

Functions

• int GenLinWt (std::string &fname, const double wtcomp)

7.13.1 Detailed Description

Generate polymers with {molar mass, weight fraction} entries in a file.

Parameters

in,out	fname	file containing the weight fractions
in	wtcomp	weight fraction of the current component

Returns

zero if successful

7.14 prep/genPolyLin.cpp File Reference

Read input for polymer components and generate/read polymers. #include "../include/LP2R.h"

Functions

• int genPolyLin (std::fstream &f1)

7.14.1 Detailed Description

Read input for polymer components and generate/read polymers.

7.14.2 Function Documentation

7.14.2.1 genPolyLin()

```
int genPolyLin (
     std::fstream & f1 )
```

Read input for polymer components and generate polymers

Parameters

```
in f1 input file stream
```

Returns

status=0 if success, else non-zero

7.15 prep/ModelParams.cpp File Reference

Set default model parameters that are unlikely to be changed by most users. #include "../include/LinLin.h"

Functions

· void ModelParams (void)

7.15.1 Detailed Description

Set default model parameters that are unlikely to be changed by most users.

7.16 prep/ReadInput.cpp File Reference

```
Read material parameters from the input file and call {\tt genPolyLin}.
```

```
#include "../include/LP2R.h"
```

Functions

· int ReadInput (void)

7.16.1 Detailed Description

Read material parameters from the input file and call genPolyLin.

Returns

nonzero integer in case input fails

7.17 prep/ReadRCFL.cpp File Reference

```
Read options given as option=value pair in a file.
```

```
#include "../include/LP2R.h"
```

Functions

- bool assign RHS bool (std::string &sR)
- void assign_RC_dbl (double ¶m, const std::string &sR, const std::string sprm, const double val)
- void ReadRCFL (void)

7.17.1 Detailed Description

Read options given as option=value pair in a file.

7.17.2 Function Documentation

7.17.2.1 assign_RC_dbl()

Try to assign double equivalent value of sR to param (repeated as string sprm). If it fails, it will assign the default value val (repeated as string sval).

out	param	parameter value represented in string sR	
-----	-------	--	--

Parameters

in	sR	string object representing some double
in	sprm Name of the parameter we are trying to ass	
in	val default value of the parameter	

7.17.2.2 assign_RHS_bool()

```
bool assign_RHS_bool (  std::string \ \& \ sR \ )  return true if string sR=="yes"
```

7.17.2.3 ReadRCFL()

```
void ReadRCFL (
```

(If present) read resource file Ignore anything that does not make sense

7.18 Relax/arm_retraction.cpp File Reference

```
relaxation from contour length fluctuation
#include "../include/LP2R.h"
```

Functions

• void arm_retraction (const int np, const int indx)

7.18.1 Detailed Description

relaxation from contour length fluctuation

Parameters

in	np	Index for polymer relaxing by CLF	
in	indx	Set to zero at first call when z=0 (avoid division by zero)	

7.19 Relax/frac_unrelaxed.cpp File Reference

Decide on supertube relaxation based on material relaxed in the current time interval. #include "../include/LP2R.h"

Functions

· void frac unrelaxed (void)

7.19.1 Detailed Description

Decide on supertube relaxation based on material relaxed in the current time interval.

7.20 Relax/GetPhiEq.cpp File Reference

Tube diameter for CLF (phi_eq)
#include "../include/LP2R.h"

Functions

double GetPhiEq (void)

7.20.1 Detailed Description

Tube diameter for CLF (phi_eq)

When a certain tube will be accessible for CLF is stored in t_eq_ar as that information is aquired. Always, this time is in the future. This routine interpolates the stored values to return the tube diameter relevant for CLF at the current time.

7.21 Relax/time_step.cpp File Reference

update relaxation by one time step

#include "../include/LP2R.h"

Functions

• int time_step (const int indx)

7.21.1 Detailed Description

update relaxation by one time step

Parameters

in	indx	set to zero for first call

Returns

number of chains still trapped in old tubes

7.22 Relax/try_reptate.cpp File Reference

Attempt relaxation by reptation.

#include "../include/LP2R.h"

Functions

• void try_reptate (const int np)

7.22.1 Detailed Description

Attempt relaxation by reptation.

in	np	index of chain for which reptation is attempted

7.23 Rheology/add goft headers.cpp File Reference

add appropriate header to time domain relaxation output file #include "../include/LP2R.h"

Functions

• void add_goft_headers (std::fstream &fRh)

7.23.1 Detailed Description

add appropriate header to time domain relaxation output file

Parameters

in <i>fRh</i>	File handle for G(t) output
---------------	-----------------------------

7.24 Rheology/Calc_goft.cpp File Reference

Calculate G(t)

#include "../include/LP2R.h"

Functions

• void Calc_goft (std::fstream &fRh)

7.24.1 Detailed Description

Calculate G(t)

The span of time is hardcoded here between $10^{-4}\tau_e$ and $10^4\tau_d$ with τ_d being the longest relaxation time.

Parameters

in	fRh	File handle for the output
----	-----	----------------------------

7.25 Rheology/CalcGstar.cpp File Reference

#include "../include/LP2R.h"

Functions

• void CalcGstar (std::fstream &fRh, std::fstream &fDi)

7.25.1 Detailed Description

\breif Calculate and output frequency responses

in	fRh	File handle for mechanical response
in	fDi	File handle for dielectric response

7.26 Rheology/CalcVisc.cpp File Reference

```
Zero shear viscosity.
#include "../include/LP2R.h"
```

Functions

• double viscRouseModes (void)

Viscosity contribution from internal Rouse modes, Longitudinal modes, and Free Rouse chains.

double viscGlass (void)

zero-shear contribution from glassy modes

double viscTubeRelax (void)

zero-shear viscosity from tube relaxation in units of [G_0 * tau_e]

• double CalcVisc (void)

7.26.1 Detailed Description

Zero shear viscosity.

7.26.2 Function Documentation

7.26.2.1 CalcVisc()

```
double CalcVisc (
     void )
```

Return zero-shear viscosity as Pa-s

7.26.2.2 viscRouseModes()

Viscosity contribution from internal Rouse modes, Longitudinal modes, and Free Rouse chains. Return viscosity in units of G_0*tau_e

7.27 Rheology/GoftFast.cpp File Reference

```
G(t) contribution from in-tube Rouse modes.
```

```
#include "../include/LP2R.h"
```

Functions

• double GoftFast (const double t)

7.27.1 Detailed Description

G(t) contribution from in-tube Rouse modes.

in	t	time in units of
		tau e

Returns

G(t) in units of G_0

7.28 Rheology/GoftRouse.cpp File Reference

G(t) contribution from unentangled chains. #include "../include/LP2R.h"

Functions

double GoftRouse (const double t)

7.28.1 Detailed Description

G(t) contribution from unentangled chains.

Parameters

in	t	time in units of
		tau_e

Returns

G(t) in units of G_0

7.29 Rheology/GoftTube.cpp File Reference

G(t) contribution from in-tube Rouse modes.

#include "../include/LP2R.h"

Functions

• double GoftTube (const double t, double &muoft, double &Roft)

7.29.1 Detailed Description

G(t) contribution from in-tube Rouse modes.

Parameters

in	t	time in units of tau_e
out	muoft	Tube survival probability $\mu(t)$
out	Roft	Constraint release contribution $R(t)$

Returns

G(t) in units of G_0

7.30 Rheology/GStarFastRouse.cpp File Reference

Internal Rouse and longitudinal modes (in units of G0)

#include "../include/LP2R.h"

Functions

• void GStarFastRouse (const double w, double &gpf, double &g2pf)

7.30.1 Detailed Description

Internal Rouse and longitudinal modes (in units of G0)

Parameters

in	W	Frequency
out	gpf	Internal Rouse and longitudinal mode contribution to G'
out	g2pf	Internal Rouse and longitudinal mode contribution to G"

7.31 Rheology/GStarGlass.cpp File Reference

Return glassy contribution of $\mbox{\ensuremath{G^{\prime\prime}}}$ and $\mbox{\ensuremath{G^{\prime\prime}}}$ at given frequency.

```
#include "../include/LP2R.h"
```

Functions

- · double kwws (const double, const double)
- · double kwwc (const double, const double)
- void GStarGlass (const double w, double &gp, double &g2p)

7.31.1 Detailed Description

Return glassy contribution of G' and G" at given frequency.

7.31.2 Function Documentation

7.31.2.1 GStarGlass()

```
void GStarGlass (  {\rm const\ double\ } w,  {\rm double\ } \&\ gp,  {\rm double\ } \&\ g2p\ )
```

Glassy contribution to G' and G" Used kww.c from Wuttke, Algorithms 5, 604-628 (2012), doi:10.3390/a5040604 @param [in] w frequency of interest @param [out] gp Glassy contribution in storage modulus G'(w) @param [out] g2p Glassy contribution in loss modulus G"(w)

7.32 Rheology/GStarRouse.cpp File Reference

```
Rouse spectra for unentangled chains.
```

```
#include "../include/LP2R.h"
```

Functions

• void GStarRouse (double freq, double &gRs, double &g2Rs, double &eRs, double &e2Rs)

7.32.1 Detailed Description

Rouse spectra for unentangled chains.

Parameters

	in	freq	Frequency
	out	gRs	G'
Ī	out	g2Rs	G" @param [out] eRs epsilon' @param [out] e2Rs epsilon"

7.33 Rheology/GStarSlow.cpp File Reference

```
Tube relaxation part of relaxation.
```

```
#include "../include/LP2R.h"
```

Functions

- void symbint (const double tk, const double td, const double w, double &rint1, double &rint2)
 analytical result from extending R(t) to time infinity.
- void GStarSlow (const double w, double &gp, double &g2p, double &ep, double &e2p)

Calculate tube escape contrubution to relaxation moduli.

7.33.1 Detailed Description

Tube relaxation part of relaxation.

Given some frequency w, returns G'(w), G''(w), epsilon'(w), epsilon'(w)

Assume $G(t)/G_0 = mu(t) R(t)$, with mu and R determined by exponential weighted integral of changes in phi and phi_ST

R(t) is slowly relaxing. Extend R(t) to infinity analytically.

Dielectric relaxation is considered to be proportional to mu(t)

7.33.2 Function Documentation

7.33.2.1 GStarSlow()

Calculate tube escape contrubution to relaxation moduli.

in	W	: frequency at which result is required
out	gp	: elastic modulus G'
out	g2p	: viscous modulus G" @param [out] ep : dielectric storage modulus epsilon' @param [out] e2p : dielectric loss modulus epsilon"

7.33.2.2 symbint()

analytical result from extending R(t) to time infinity.

Parameters

in	tk	: discrete time interval at which contribution from the integral is sought.
in	td	: time at which mu(t) first goes to zero
in	W	: frequency
out	rint1	: int($(a+x)/((a+x)^2 + b x^2) dx/sqrt(x)$, $x=1inf$); I2(a,b) in Eqn B6 in the manuscript
out	rint2	: int($sqrt(x)/((a+x)^2 + b x^2) dx$, $x=1inf$); I1(a,b) in Eqn B7 in the manuscript

7.34 Rheology/LinRheology.cpp File Reference

Calculate relaxation spectra.

```
#include "../include/LP2R.h"
```

Functions

• void LinRheology (void)

7.34.1 Detailed Description

Calculate relaxation spectra.

7.35 Rheology/RepTateOut.cpp File Reference

```
Handle output in RepTate format.
```

```
#include "../include/LP2R.h"
```

Functions

• void RepTateOpen (std::fstream &fRh, std::fstream &fDi)

Open files for Reptate format and add headers.

• void RepTateWrite (std::fstream &fRh, std::fstream &fDi, const double(&res)[5])

write relaxation data in RepTate format

• void CSVOpen (std::fstream &fRh)

Open file for CSV format and add headers.

• void CSVWrite (std::fstream &fRh, const double(&res)[5])

write relaxation data in CSV file

7.35.1 Detailed Description

Handle output in RepTate format.

7.35.2 Function Documentation

7.35.2.1 CSVOpen()

```
void CSVOpen (
          std::fstream & fRh )
```

Open file for CSV format and add headers.

Parameters

	out	fRh	: file for mechanical spectra output	1
--	-----	-----	--------------------------------------	---

7.35.2.2 CSVWrite()

```
void CSVWrite (
          std::fstream & fRh,
          const double(&) res[5] )
```

write relaxation data in CSV file

Parameters

in	fRh	: file for relaxation spectra output
in	res	: fixed length array containing w, G', G", and possibly e', e"

7.35.2.3 RepTateOpen()

Open files for Reptate format and add headers.

Parameters

out	fRh	: file for mechanical spectra output
out	fDi	: file for Dielectric spectra output

7.35.2.4 RepTateWrite()

```
void RepTateWrite (
          std::fstream & fRh,
          std::fstream & fDi,
          const double(&) res[5] )
```

write relaxation data in RepTate format

	in	fRh	: file for mechanical spectra output
	in	fDi	: file for Dielectric spectra output
ſ	in	res	: fixed length array containing w, G', G", and possibly e', e"

7.36 util/safeGetLine.cpp File Reference

read a nonempty line with either unix or windows style line-ending, discarding anything after a % sign

```
#include <string>
#include <iostream>
#include <algorithm>
```

Functions

- std::istream & safeGetline_int (std::istream &is, std::string &t)
- std::istream & safeGetline (std::istream &is, std::string &t)
- std::istream & readEquality (std::istream &is, std::string &sL, std::string &sR)

7.36.1 Detailed Description

read a nonempty line with either unix or windows style line-ending, discarding anything after a % sign handle line ending with \n , \n , \n , or no line ending

7.36.2 Function Documentation

7.36.2.1 readEquality()

Read lines with contents like a=b On either side of the equality, space or tabs are removed return the LHS and RHS separately in sL and sR

Parameters

in	is	input stream	
out	sL	string containing LHS of some equality	
out	sR	string containing RHS of some equality	

Returns

input stream

7.36.2.2 safeGetline()

Read a line from the input stream, discard anything after a " sign (treat as comment indicator) If the resulting string has no non-space characters and the input stream hasn't reached the end of file, read the next line. Continue till either the end of file is reached, or a line with some non-empty, non-comment character is found.

in	is	input stream
out	t	string

Returns

input stream

7.36.2.3 safeGetline_int()

Implementation of getline() to handle different line endings.

Parameters

in	is	input stream
out	t	string

Returns

input stream

Index

A_eq	RepTateOut.cpp, 45
 LP2R_NS, 14	CSVWrite
aa_sort2_minmax	RepTateOut.cpp, 45
GenLinGPC.cpp, 32	cur_time
aaerfcc	LP2R_NS, 15
GenLinLogNormal.cpp, 33	
AboveTauEFirst	deltaCR
LP2R_NS, 14	LP2R_NS, 15
Add_header	DiRelSpecFNM
LP2R_NS, 15	LP2R_NS, 15
alive	Disentanglement_Switch
C_LPoly, 23	LP2R_NS, 15
Alpha	DtMult
LP2R_NS, 15	LP2R_NS, 15
assign_RC_dbl	Entered Dimension
ReadRCFL.cpp, 36	Entangled_Dynamics
assign_RHS_bool	LP2R_NS, 16
ReadRCFL.cpp, 37	f_Log
	LP2R NS, 16
B_eq	f_phi
LP2R_NS, 15	LP2R NS, 16
B_zeta	f trelax
LP2R_NS, 15	LP2R NS, 16
beta_glass	FreqMax
LP2R_NS, 15	LP2R NS, 16
C_LPoly, 23	FreqMin
alive, 23	LP2R NS, 16
mass, 23	FreqRatio
p_max, 23	LP2R NS, 16
p_next, 24	_ ,
relax_free_Rouse, 24	G_0
rept_set, 24	LP2R_NS, 16
rept_wt, 24	G_glass
t_FRouse, 24	LP2R_NS, 16
tau d 0, 24	GenLinGPC
wt, 24	GenLinGPC.cpp, 33
z, <mark>24</mark>	GenLinGPC.cpp
Z chain, 24	aa_sort2_minmax, 32
Z_rept, 24	GenLinGPC, 33
CalcDielectric	GenLinLogNormal
LP2R_NS, 15	GenLinLogNormal.cpp, 34
CalcVisc	GenLinLogNormal.cpp
CalcVisc.cpp, 40	aaerfcc, 33
CalcVisc.cpp	GenLinLogNormal, 34
CalcVisc, 40	LogNormalWt, 34
viscRouseModes, 40	GenLogFL
CSVdelimiter	LP2R_NS, 16
LP2R_NS, 15	genPolyLin
CSVOpen	genPolyLin.cpp, 35

50 INDEX

genPolyLin.cpp	G_0, 16
genPolyLin, 35	G_glass, 16
GStarGlass	GenLogFL, 16
GStarGlass.cpp, 42	has_chem, 16
GStarGlass.cpp	has label, 16
GStarGlass, 42	has_origin, 17
,	
GStarSlow	has_temp, 17
GStarSlow.cpp, 43	inpFNM, 17
GStarSlow.cpp	LastReptationTime, 17
GStarSlow, 43	LastReptZ, 17
symbint, 43	Log_DtMult, 17
	LPoly, 17
has_chem	M_e, 17
LP2R_NS, 16	M_Kuhn, 17
has_label	MechRelFNM, 17
 LP2R_NS, 16	MechRelSpecFNM, 17
has origin	•
_ •	N_e, 17
LP2R_NS, 17	npoly, 18
has_temp	OutPhiPhiST, 18
LP2R_NS, 17	OutPhiPhiSTFNM, 18
	Output_G_of_t, 18
include/LP2R.h, 27	OutputFormat, 18
include/LP2R_global.h, 28	OutTermRelaxFNM, 18
include/LP2R_NS.h, 29	OutTermRelaxPathways, 18
include/routines.h, 30	phi_ar, 18
inpFNM	• —
LP2R_NS, 17	phi_eq, 18
InvSqSum, 25	phi_eq_indx, 18
mvoqoam, 20	phi_rept, 18
LastReptationTime	phi_ST, 19
•	phi_ST_0, 19
LP2R_NS, 17	phi_ST_ar, 19
LastReptZ	phi_true, 19
LP2R_NS, 17	Psi_rept, 19
Log_DtMult	rcFNM, 19
LP2R_NS, 17	RelSpecFNM, 19
LogNormalWt	•
GenLinLogNormal.cpp, 34	Rept_Switch_Factor, 19
LP2R_NS, 13	reptate_chem, 19
A_eq, 14	reptate_label, 19
AboveTauEFirst, 14	reptate_origin, 19
Add_header, 15	reptate_temp, 19
	ret_pref, 20
Alpha, 15	ret_pref_0, 20
B_eq, 15	ret_switch_exponent, 20
B_zeta, 15	Rouse Switch Factor, 20
beta_glass, 15	Rouse_wt, 20
CalcDielectric, 15	ST activ time, 20
CSVdelimiter, 15	
cur_time, 15	STmaxDrop, 20
deltaCR, 15	supertube_activated, 20
DiRelSpecFNM, 15	Sys_MN, 20
Disentanglement_Switch, 15	Sys_MW, 20
_	Sys_PDI, 20
DtMult, 15	t_ar, 20
Entangled_Dynamics, 16	t_CR_START, 21
f_Log, 16	t_eq_ar, 21
f_phi, 16	tau_e, 21
f_trelax, 16	
FreqMax, 16	tau_glass, 21
FreqMin, 16	LPoly
FreqRatio, 16	LP2R_NS, 17

INDEX 51

M_e	prep/GenLinWt.cpp, 34
	prep/genPolyLin.cpp, 35
M Kuhn	prep/ModelParams.cpp, 35
-	• •
LP2R_NS, 17	prep/ReadInput.cpp, 36
main/LinPoly2Rheo.cpp, 31	prep/ReadRCFL.cpp, 36
main/parse_arg.cpp, 31	Psi_rept
mass	 LP2R NS, 19
	21 21 210, 10
C_LPoly, 23	rcFNM
mdfiles/mainpage.h, 32	
MechReIFNM	LP2R_NS, 19
LP2R NS, 17	readEquality
MechRelSpecFNM	safeGetLine.cpp, 46
LP2R NS, 17	ReadRCFL
LI 211_NO, 17	ReadRCFL.cpp, 37
NI -	• • •
N_e	ReadRCFL.cpp
LP2R_NS, 17	assign_RC_dbl, 36
npoly	assign_RHS_bool, 37
LP2R NS, 18	ReadRCFL, 37
	Relax/arm_retraction.cpp, 37
OutPhiPhiST	
	Relax/frac_unrelaxed.cpp, 37
LP2R_NS, 18	Relax/GetPhiEq.cpp, 38
OutPhiPhiSTFNM	Relax/time_step.cpp, 38
LP2R_NS, 18	Relax/try_reptate.cpp, 38
Output G of t	relax_free_Rouse
LP2R_NS, 18	
	C_LPoly, 24
OutputFormat	RelSpecFNM
LP2R_NS, 18	LP2R_NS, 19
OutTermRelaxFNM	rept_set
LP2R_NS, 18	C_LPoly, 24
OutTermRelaxPathways	Rept_Switch_Factor
•	
LP2R_NS, 18	LP2R_NS, 19
	rept_wt
p_max	C_LPoly, 24
C_LPoly, 23	reptate chem
p_next	LP2R_NS, 19
C_LPoly, 24	reptate_label
parse_arg	• —
. – -	LP2R_NS, 19
parse_arg.cpp, 32	reptate_origin
parse_arg.cpp	LP2R_NS, 19
parse_arg, 32	reptate temp
phi_ar	LP2R_NS, 19
LP2R NS, 18	
phi_eq	RepTateOpen
. — .	RepTateOut.cpp, 45
LP2R_NS, 18	RepTateOut.cpp
phi_eq_indx	CSVOpen, 45
LP2R_NS, 18	CSVWrite, 45
phi rept	RepTateOpen, 45
LP2R NS, 18	•
_ :	RepTateWrite, 45
phi_ST	RepTateWrite
LP2R_NS, 19	RepTateOut.cpp, 45
phi_ST_0	ret_pref
LP2R_NS, 19	LP2R_NS, 20
phi_ST_ar	
• — —	ret_pref_0
LP2R_NS, 19	LP2R_NS, 20
phi_true	ret_switch_exponent
LP2R_NS, 19	LP2R_NS, 20
prep/assign_FNMs.cpp, 32	Rheology/add_goft_headers.cpp, 39
prep/GenLinGPC.cpp, 32	
prep/GenLinLogNormal.cpp, 33	Rheology/Calc_goft.cpp, 39
propraementogrammanopp, oo	Rheology/CalcGstar.cpp, 39

52 INDEX

Rheology/CalcVisc.cpp, 40 Rheology/GoftFast.cpp, 40 Rheology/GoftRouse.cpp, 41 Rheology/GoftTube.cpp, 41 Rheology/GStarFastRouse.cpp, 41 Rheology/GStarGlass.cpp, 42 Rheology/GStarRouse.cpp, 42 Rheology/GStarSlow.cpp, 43 Rheology/LinRheology.cpp, 44 Rheology/RepTateOut.cpp, 44 Rouse_Switch_Factor	C_LPoly, 24 z
LP2R_NS, 20	
Rouse_wt	
LP2R_NS, 20	
safeGetline	
safeGetLine.cpp, 46	
safeGetLine.cpp	
readEquality, 46	
safeGetline, 46	
safeGetline_int, 47	
safeGetline_int	
safeGetLine.cpp, 47	
ST_activ_time	
LP2R_NS, 20	
STmaxDrop	
LP2R_NS, 20	
supertube_activated LP2R NS, 20	
symbint	
GStarSlow.cpp, 43	
Sys MN	
LP2R_NS, 20	
Sys MW	
LP2R_NS, 20	
Sys_PDI	
LP2R_NS, 20	
t_ar	
LP2R_NS, 20	
t_CR_START	
LP2R_NS, 21	
t_eq_ar LP2R_NS, 21	
t FRouse	
C_LPoly, 24	
tau_d_0	
 C_LPoly, 24	
tau_e	
LP2R_NS, 21	
tau_glass	
LP2R_NS, 21	
W (0 d)	
util/safeGetLine.cpp, 46	
viscRouseModes	
CalcVisc.cpp, 40	
34.34100.0pp, 10	

wt