

രൂപങ്ങൾ

ചിത്രം നോക്കൂ.

കുത്തുകൾ യോജിപ്പിച്ച് പല തരം രൂപങ്ങൾ. മൂന്നു കുത്തുകൾ യോജിപ്പിച്ച് ത്രികോണം. ചതുർഭുജമോ? ഇനി അഞ്ചു കുത്തുകൾ യോജിപ്പിച്ച് വരച്ചത് നോക്കൂ. എത്ര മൂലകൾ? എത്ര വശങ്ങൾ?

വിചിത്ര ബഹുഭുജങ്ങൾ ഈ ചിത്രങ്ങൾ നോക്കൂ.

ഇവയും നേർവരകൾ മാത്രം ഉപയോ ഗിച്ചാണ് വരച്ചിരിക്കുന്നത്. അതിനാൽ ഇവയേയും ബഹുഭുജങ്ങളായി ചില പ്പോൾ പരിഗണിക്കാറുണ്ട്. എന്നാൽ നമ്മുടെ പാഠത്തിൽ, ശീർഷങ്ങൾ അക ത്തേക്കു കുഴിഞ്ഞിരിക്കുന്നതോ, വശ ങ്ങൾ പരസ്പരം മുറിച്ചു കടക്കുന്നതോ ആയ ഇത്തരം രൂപങ്ങളെ ബഹുഭുജങ്ങ ളുടെ കൂട്ടത്തിൽ ഉൾപ്പെടുത്തുന്നില്ല. നാം പൊതുവായി പറയാനുദ്ദേശിക്കുന്ന പല തത്വങ്ങളും ഇവയ്ക്ക് ബാധകമാകാത്ത

ആറ് മൂലയുള്ള രൂപം വരയ്ക്കുക.

എത്ര വശങ്ങൾ?

അഞ്ച് വശങ്ങളും അഞ്ച് മൂലകളും ഉള്ള രൂപങ്ങളെ പഞ്ച ഭുജം എന്ന് പറയും. ആറ് വശങ്ങളും ആറ് മൂലകളും ഉള്ള രൂപങ്ങളുടെ പേരാണ് ഷഡ്ഭുജം (അഞ്ചാം ക്ലാസിലെ കണ ക്കുപുസ്തകത്തിൽ, വരകൾ ചേരുമ്പോൾ എന്ന പാഠ ത്തിലെ ബഹുഭുജങ്ങൾ എന്ന ഭാഗം). ഇങ്ങനെ മൂന്നോ അതിലധികമോ വശങ്ങളുള്ള രൂപത്തിന്റെ പൊതുവായ പേരാണ് ബഹുഭുജം (polygon).

കോണുകളുടെ തുക

ഒരു ത്രികോണത്തിലെ മൂന്ന് കോണുകളും കൂട്ടിയാൽ 180° കിട്ടുമെന്ന് ഏഴാം ക്ലാസിൽ കണ്ടല്ലോ.

ഇതുപോലെ എല്ലാ ചതുർഭുജത്തിലും കോണുകളുടെ തുക ഒന്നുതന്നെയാണോ?

ഒരു ചതുർഭുജം വരച്ച് അതിന്റെ ഒരു വികർണം വരച്ച് നോക്കൂ.

ചതുർഭുജം ഇപ്പോൾ രണ്ട് ത്രികോണങ്ങളായി. വികർണം രണ്ട് മൂലയി ലേയും കോണുകളെ രണ്ട് ഭാഗമാക്കുന്നു; ഒരു ഭാഗം ഒരു ത്രികോണ ത്തിലും മറുഭാഗം മറ്റേ ത്രികോണത്തിലും. അപ്പോൾ ചതുർഭുജത്തിലെ കോണുകൾ രണ്ടു ത്രികോണത്തിലെയും കോണുകളായി. അതിനാൽ ചതുർഭുജത്തിലെ നാലു കോണുകളുടെ തുക, രണ്ട് ത്രികോണത്തി ലെയും കോണുകളുടെ തുക തന്നെയാണല്ലോ.

അതായത്, $2 \times 180^{\circ} = 360^{\circ}$.

ഏതു ചതുർഭുജത്തിലും ഇതുപോലെ കോണുകളുടെ തുക 360° തന്നെ യാണെന്ന് കാണാം.

ഇനി പഞ്ചഭുജമായാലോ?

ഒന്നിടവിട്ട രണ്ടു മൂലകൾ യോജിപ്പിച്ച് ഒരു ചതുർഭുജവും ഒരു ത്രികോ ണവുമായി ഭാഗിക്കാം.

ഈ ചതുർഭുജത്തിന്റെയും ത്രികോണത്തിന്റെയും കോണുകളുടെ തുക യാണ്, പഞ്ചഭുജത്തിലെ കോണുകളുടെ തുക. അതായത്,

$$360^{\circ} + 180^{\circ} = 540^{\circ}$$

മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ, പഞ്ചഭുജത്തിനെ മൂന്ന് ത്രികോണങ്ങ ളായി ഭാഗിക്കാം; അവയുടെ കോണുകളുടെയെല്ലാം തുകയാണ്, പഞ്ച ഭുജത്തിലെ കോണുകളുടെ തുക.

ബിന്ദുവിനു ചുറ്റും

ഈ ചിത്രം നോക്കു:

ഒരു ബിന്ദുവിൽത്തന്നെ കുറേ കോണു കൾ അടയാളപ്പെടുത്തിയിരിക്കുന്നു. ഇവ യുടെ തുകയെന്താണ്?

ഇവയുടെ വശങ്ങളെല്ലാം ഒരേ നീളത്തിലാ ക്കിയാൽ, ചുവടെ കാണുന്നതുപോലെ ഒരു വൃത്തം വരയ്ക്കാം.

അപ്പോൾ ഈ കോണുകൾ കൃത്യ മായിച്ചേർത്തുവച്ച് ഒരു പൂർണവൃത്തമു ണ്ടാക്കാം; അഥവാ ഒരു വൃത്തത്തെ മുറിച്ച് കിട്ടുന്നവയാണ് ഈ കോണുകൾ. അപ്പോൾ, ഡിഗ്രി എന്ന അളവിന്റെ നിർവ ചനമനുസരിച്ച്, അവയുടെ തുക 360° ആണ്.

ഇപ്പോൾ കണ്ട കാര്യം, ഇങ്ങനെ ചുരുക്കി പ്പറയാം:

ഒരു ബിന്ദുവിനു ചുറ്റുമുള്ള കോണുകളുടെ തുക 360° ആണ്.

ഇനി എട്ട് വശമുള്ള ബഹുഭുജം (അഷ്ടഭുജം) ആയാലോ?

എത്ര ത്രികോണങ്ങളായി ഭാഗിക്കാം? 1-ാം മൂലയെ 3, 4, 5, 6, 7 എന്നീ അഞ്ച് മൂലകളുമായി യോജിപ്പിക്കാം:

അഞ്ച് വരകൾ, ആറ് ത്രികോണങ്ങൾ. കോണുകളുടെ തുക $6 imes 180^\circ = 1080^\circ$

12 വശങ്ങളുള്ള ബഹുഭുജമായാലോ?

ചിത്രം വരയ്ക്കാതെ ആലോചിക്കാം. ഒരു മൂലയിൽ നിന്ന് തുടങ്ങിയാൽ, അതിന്റെ തൊട്ടപ്പുറത്തും ഇപ്പുറത്തുമുള്ള മൂലകളൊഴിച്ച്, മറ്റു 9 മൂലകളു മായും യോജിപ്പിച്ച് വരയ്ക്കാം. 9 വരകൾ, 10 ത്രികോണങ്ങൾ;

കോണുകളുടെ തുക $10 imes 180^{
m o} = 1800^{
m o}$

ഇക്കാര്യം ബീജഗണിതമുപയോഗിച്ച് പറയാം. n മൂലകൾ (വശങ്ങളും) ഉള്ള ബഹുഭുജത്തിൽ, ഒരു മൂല എടുത്തു കഴിഞ്ഞാൽ, ബാക്കി n-1 മൂലകളുണ്ട്. ഇവയിൽ ആദ്യമെടുത്ത മൂലയുടെ തൊട്ടിരുവശത്തുമുള്ള മൂലകളോഴിച്ച് മറ്റെല്ലാ മൂലകളുമായി യോജിപ്പിച്ചാൽ ആകെ (n-1)-2=n-3 വരകൾ.

ഓരോ വര വരയ്ക്കുമ്പോഴും ഒരു പുതിയ ത്രികോണവും, മിച്ചമൊരു ബഹുഭുജവും; അവസാനത്തെ വര വരയ്ക്കുമ്പോൾ, ഒരു ത്രികോണ വും, മിച്ചമൊരു ത്രികോണവും. ആകെ (n-3)+1=n-2 ത്രികോണങ്ങൾ, കോണുകളുടെ തുക $(n-2)\times 180^\circ$

n വശങ്ങളുള്ള ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക $(n-2) imes 180^{
m o}$ ആണ്.

ഇനി ഒരു ചോദ്യം.

ഏതെങ്കിലും ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 2700° ആകുമോ?

ഏതൊരു ബഹുഭുജത്തിന്റെയും കോണുകളുടെ തുക 180° യുടെ ഗുണിതമാണല്ലോ?

അപ്പോൾ 2700 എന്നത് 180 ന്റെ ഗുണിതമാണോ എന്ന് പരിശോധിച്ചാൽ മതി. അതിന് 2700 നെ 180 കൊണ്ട് ഹരി ച്ചുനോക്കണം.

$$2700 \div 180 = 15$$

അതായത്, $2700 = 180 \times 15$

നമ്മുടെ പൊതുതത്വമനുസരിച്ച്, 15+2=17 വശങ്ങളുള്ള ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 2700° ആണല്ലോ.

- (1) 52 വശങ്ങളുള്ള ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുകയെത്രയാണ്?
- (2) ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 8100° . അതിന് എത്ര വശങ്ങളുണ്ട്?

വേറൊരു വിഭജനം

ഒരു ബഹുഭുജത്തിന്റെ ഉള്ളിലെ ഒരു ബിന്ദു വിൽ നിന്ന് ശീർഷങ്ങളിലേക്ക് വരകൾ വരച്ചും അതിനെ ത്രികോണങ്ങളായി ഭാഗി ക്കാം.

n വശങ്ങളുള്ള ബഹുഭുജത്തിനെ ഇങ്ങനെ ഭാഗിച്ചാൽ, n ത്രികോണങ്ങൾ തന്നെ കിട്ടുമല്ലോ. ഇവയുടെ കോണുകളുടെ തുക $= n \times 180^\circ$.

ഈ കോണുകളിൽ, എല്ലാ ത്രികോണങ്ങ ളുടെയും O യിലെ കോണുകളൊഴിച്ച്, മറ്റു ള്ള വയുടെ തുക, ബഹു ഭുജത്തിന്റെ കോണുകളുടെ തുക തന്നെയാണ്. O യിലെ കോണുകളുടെ തുക 360° ആണെന്ന് നേരത്തെ കണ്ടല്ലോ. അപ്പോൾ ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക.

 $(n \times 180^{\circ}) - (2 \times 180^{\circ}) = (n-2) \times 180^{\circ}$

- (3) ഏതെങ്കിലും ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 1600° ആകുമോ? 900° ആകുമോ?
- (4) 20 വശങ്ങളുള്ള ഒരു ബഹുഭുജത്തിന്റെ കോണുകളെല്ലാം തുല്യമാ ണ്. ഓരോ കോണും എത്ര ഡിഗ്രിയാണ്?
- (5) ഒരു ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക 1980°. വശങ്ങളുടെ എണ്ണം ഒന്നു കൂടുതലായ ബഹുഭുജത്തിന്റെ കോണുകളുടെ തുക എത്ര യാണ്? വശങ്ങളുടെ എണ്ണം ഒന്ന് കുറവായാലോ?

പുറംകോണുകൾ

ഒരു ത്രികോണം വരച്ച് ഏതെങ്കിലും ഒരു വശം ഒരു ഭാഗത്തേക്ക് നീട്ടി വരയ്ക്കുക. അപ്പോൾ ത്രികോണത്തിന്റെ പുറത്ത് ഒരു പുതിയ കോൺ കിട്ടിയില്ലേ?

ഈ കോണിനെ ത്രികോണത്തിന്റെ ഒരു പുറംകോൺ, അല്ലെങ്കിൽ ബാഹ്യ കോൺ (external angle) എന്നാണ് പറയുന്നത്.

C എന്ന മൂലയിൽത്തന്നെ ത്രികോണത്തിന്റെ ഒരു കോണും ഉണ്ടല്ലോ. ഇതിനെ C യിലെ അകക്കോൺ അല്ലെങ്കിൽ ആന്തരകോൺ (interior angle) എന്നു പറയാം.

 $\angle ACD$ എന്ന പുറംകോണിന് $\angle ACB$ എന്ന കോണുമായി എന്താണ് ബന്ധം? ഇവ ഒരു രേഖീയജോടി ആയതിനാൽ, $\angle ACD = 180^{\circ} - \angle ACB$.

ഇനി AC എന്ന വശം നീട്ടിയാൽ C യിൽത്തന്നെ മറ്റൊരു പുറംകോൺ $\angle BCE$ കിട്ടും. A

ഈ രണ്ട് പുറംകോണുകൾ തമ്മിലെന്തെങ്കിലും ബന്ധമുണ്ടോ? AE യും BD യും മുറിച്ചു കടക്കുമ്പോൾ ഉണ്ടാകുന്ന ഒരു ജോടി എതിർകോണു കളാണ് ഇവ. അതിനാൽ $\angle ACD = \angle BCE$.

അതായത്, ഒരു ശീർഷത്തിലെ രണ്ട് പുറംകോണുകളും തുല്യമാണ്.

അപ്പോൾ ഒരു മൂലയിലെ പുറംകോണുകളുടെ അളവുകളെക്കുറിച്ച് മാത്രം പറയുമ്പോൾ ഇവയിൽ ഏതാണെന്ന പ്രശ്നമില്ല.

ത്രികോണത്തിന്റെ മൂന്ന് മൂലകളിലും പുറംകോണുകൾ വരയ്ക്കാം.

ഇതുപോലെ ചതുർഭുജത്തിന്റെയും പഞ്ചഭുജത്തിന്റെയും ഓരോ മൂല യിലും പുറംകോണുകൾ വരയ്ക്കാം.

ഓരോ മൂലയിലും അകക്കോണും പുറംകോണും രേഖീയജോടിയല്ലേ?

- (1) ഒരു ത്രികോണത്തിന്റെ രണ്ടു കോണുകൾ 40°, 60°. അതിന്റെ എല്ലാ പുറംകോണുകളുടെയും അളവുകൾ കണ്ടുപിടിക്കുക.
- (2) ചിത്രത്തിലെ എല്ലാ കോണുകളും കണ്ടുപിടിക്കുക.

ഗണിതം

(3) ചിത്രത്തിലെ ചതുർഭുജത്തിന്റെ എല്ലാ പുറംകോണുകളും കണ്ടുപി ടിക്കുക.

(4) ചുവടെ കൊടുത്ത ചിത്രങ്ങളിലെ എല്ലാ കോണുകളും കണ്ടുപിടി ക്കുക.

(5) ഏതൊരു ത്രികോണത്തിലും ഒരു മൂലയിലെ പുറംകോൺ, മറ്റ് രണ്ട് മൂലകളിലെ അകക്കോണുകളുടെ തുകയ്ക്ക് തുല്യമാണെന്ന് തെളി യിക്കുക.

മാറാത്ത തുക

ഏതു ബഹുഭുജത്തിലും അകക്കോണു കളുടെ തുക കണക്കാക്കാൻ വശങ്ങ ളുടെ എണ്ണം അറിഞ്ഞാൽ മതി. പുറം കോണുകളുടെ തുകയോ? ത്രികോണത്തിൽ നിന്നു തുടങ്ങാം. ചിത്രത്തിലെ പുറംകോണുകളെല്ലാം കണ്ടുപിടിക്കാമോ?

A യിലെ പുറംകോൺ, $180^{\circ} - 65^{\circ} = 115^{\circ}$

B യിലേത് $180^{\circ} - 35^{\circ} = 145^{\circ}$

C യിലെ അകക്കോൺ $180^{\circ} - (65^{\circ} + 35^{\circ}) = 180^{\circ} - 100^{\circ}$ $= 80^{\circ}$

C യിലെ പുറംകോൺ $180^{\circ} - 80^{\circ} = 100^{\circ}$

പുറംകോണുകളുടെ തുക

$$115^{\circ} + 145^{\circ} + 100^{\circ} = 360^{\circ}$$

എല്ലാ ത്രികോണങ്ങളിലും പുറംകോണുകളുടെ തുക 360° തന്നെയാണോ? ഈ ചിത്രം നോക്കൂ.

A

ത്രികോണത്തിലെ A എന്ന മൂലയിലെ അകക്കോണും പുറം കോണും കൂട്ടിയാൽ 180° കിട്ടുമല്ലോ. ഇതുപോലെ Bയിലും C യിലും 180° കിട്ടും. അപ്പോൾ മൂന്നു മൂലകളി ലെയും അകക്കോണും പുറംകോണും എല്ലാം കൂട്ടിയാൽ

$$3 \times 180^{\circ} = 540^{\circ}$$

ഇതിൽ ത്രികോണത്തിലെ മൂന്ന് കോണുകളുടെ തുക

അപ്പോൾ പുറംകോണുകൾ മാത്രം കൂട്ടിയാൽ $540^{\circ} - 180^{\circ} = 360^{\circ}$.

ഏതു ത്രികോണത്തിലും പുറംകോണുകളുടെ തുക 360°.

ചതുർഭുജമായാലോ? ഓരോ മൂലയിലെയും അകക്കോണിന്റെയും പുറംകോണി ന്റെയും തുക 180° ആണ്. നാല് ശീർഷങ്ങളിലുംകൂടി

$$4 \times 180^{\circ} = 720^{\circ}$$

ഇതിൽനിന്ന് ചതുർഭുജത്തിന്റെ കോണുകളുടെ തുക 360° കുറച്ചാൽ

$$720^{\circ} - 360^{\circ} = 360^{\circ}$$
.

ഈർക്കിൽക്കണക്ക്

ഈർക്കിൽക്കഷണങ്ങളു പയോഗിച്ച്, ചുവടെ കാണുന്നതുപോലെ ഒരു ത്രികോ ണമുണ്ടാക്കി, കോണുകൾ വരച്ചടയാളപ്പെ ടുത്തുക.

ഇതിനു മുകളിൽ മറ്റു മൂന്നു ഈർക്കി ലുകൾ നേരത്തെ വച്ചതിനു സമാന്തര മായി വച്ച്, അൽപം കൂടി ചെറിയ ത്രികോണമുണ്ടാ

ഇപ്പോഴും കോണുകൾ മാറിയിട്ടില്ലല്ലോ. അൽപം കൂടി ചെറുതാക്കിയാലോ?

അവസാനം ത്രികോണമേ ഇല്ലാതായാലോ?

ഈ ചിത്രത്തിൽ, അടയാളപ്പെടുത്തിയിരി ക്കുന്ന കോണുകളുടെ തുകയെന്താണ്? അപ്പോൾ ആദ്യചിത്രത്തിലെയോ?

ചതുർഭുജത്തിന്റെയും പുറംകോണുകളുടെ തുക 360° തന്നെ. പഞ്ചഭുജത്തിലും ഷഡ്ഭുജത്തിലും ഇതുപോലെ കണക്കാക്കി നോക്കൂ.

ചുരുങ്ങിച്ചുരുങ്ങി

കോണുകൾ മാറാതെ ത്രികോണത്തെ ചുരുക്കിയതുപോലെ, ഏതു ബഹുഭുജ ത്തിനെയും ചുരുക്കാം. ഈ ചിത്രങ്ങൾ നോക്കൂ.

ഒടുവിൽ ബഹുഭുജം തന്നെ ഇല്ലാതായി ഒരു ബിന്ദു മാത്രമാകുമ്പോഴോ?

ബഹുഭുജത്തിന്റെ ബാഹ്യകോണുകളുടെ തുകയോ? പൊതുവായി n വശമുള്ള ബഹുഭുജത്തെക്കുറിച്ച് ആലോചിക്കാം. ആകെ n മൂലകൾ. ഓരോ മൂലയിലും ഒരു പുറംകോണും ബഹുഭുജത്തിലെ കോണും ചേർന്ന് ഒരു രേഖീയജോടി; ആകെ n രേഖീയജോടികൾ. ഈ കോണുകളുടെയെല്ലാം തുക $n \times 180^\circ$. ഇതിൽ അകക്കോണുകളുടെ തുക $(n-2) \times 180^\circ$. അപ്പോൾ പുറംകോണുകളുടെ തുക

$$= n \times 180^{\circ} - (n-2) \times 180^{\circ}$$
$$= 2 \times 180^{\circ}$$
$$= 360^{\circ}$$

അതായത്,

ഏത് ബഹുഭുജത്തിലും പുറംകോണുകളുടെ തുക 360° ആണ്.

- (1) 18 വശങ്ങളുള്ള ഒരു ബഹുഭുജത്തിന്റെ കോണു കളെല്ലാം തുല്യമാണ്. ഓരോ പുറംകോണും എത്രയാണ്?
- (2) *PQRS* എന്ന ചതുർഭുജത്തിൽ *PQ*, *RS* എന്നീ വശങ്ങൾ സമാന്തരമാണ്. ചതുർഭുജത്തിന്റെ എല്ലാ കോണുകളും പുറംകോണുകളും കണ്ടുപിടിക്കുക.

(3) ഒരു ചതുർഭുജം വരച്ച്, ഏതെങ്കിലും രണ്ടു മൂലകളിലെ പുറംകോണുകൾ അടയാളപ്പെടുത്തുക. ഇവയുടെ തുക യും, മറ്റു രണ്ടു മൂലകളിലെ അകക്കോണുകളുടെ തുകയും തമ്മിലെന്തെങ്കിലും ബന്ധമുണ്ടോ?

- (4) കോണുകളെല്ലാം തുല്യമായ ഒരു ബഹുഭുജത്തിന്റെ ഒരു ബാഹ്യകോൺ, ബഹുഭുജത്തിന്റെ ഒരു അകക്കോ ണിന്റെ രണ്ട് മടങ്ങാണ്.
 - i) അതിലെ ഓരോ കോണും എത്ര ഡിഗ്രിയാണ്?
 - ii) അതിന് എത്ര വശങ്ങളുണ്ട്?
- (5) ഒരു ബഹുഭുജത്തിന്റെ പുറംകോണുകളുടെ തുക അക ക്കോണുകളുടെ തുകയുടെ രണ്ട് മടങ്ങാണ്. ആ ബഹു ഭുജത്തിന് എത്ര വശങ്ങൾ ഉണ്ട്? പുറം കോണുക ളുടെ തുക, അകക്കോണുകളുടെ തുകയുടെ പകുതി യാണെങ്കിലോ? തുകകൾ തുല്യമാണെങ്കിലോ?

സമബഹുഭുജങ്ങൾ

ഒരു ത്രികോണത്തിലെ കോണുകളെല്ലാം തുല്യമാണെ ങ്കിൽ ഓരോ കോണും എത്രയാണ്?

കോണുകളെല്ലാം തുല്യമായതിനാൽ ത്രികോണത്തിന്റെ വശങ്ങളുടെ നീളവും തുല്യമാണ്. (തുല്യ ത്രികോണങ്ങൾ എന്ന പാഠത്തിൽ സമപാർശ്വത്രികോണങ്ങൾ എന്ന ഭാഗം) മറിച്ച്, ഒരു ത്രികോണത്തിലെ വശങ്ങളെല്ലാം തുല്യമാ യാലോ? കോണുകളും തുല്യമാണ്. ഇത്തരം ത്രികോണങ്ങളാണല്ലോ സമഭുജത്രികോണങ്ങൾ.

min = 0.01, max = 2, increment = 0.01 ആകത്തക്കവിധം സ്ലൈഡർ a നിർമിക്കുക. ആരം a ആയി ഒരു വൃത്തം വരച്ച് അതിൽ അഞ്ചോ ആറോ കുത്തുകളിടുക. ഈ കുത്തുകൾ ചിത്രത്തിൽ കാണുന്നതു പോലെ യോജിപ്പിക്കുക. (ray tool ഉപയോഗിക്കാം)

ഇനി വൃത്തം മറച്ചു വയ്ക്കാം. Angle എടുത്ത് പുറംകോണുകൾ അടയാളപ്പെടു ത്തുക. a എന്ന സംഖ്യ മാറ്റി നോക്കു.

ഒരു ചതുർഭുജത്തിന്റെ കോണുകളെല്ലാം തുല്യമാണെങ്കിൽ വശങ്ങളുടെ നീളവും തുല്യമാകണമെന്നുണ്ടോ?

ചതുരത്തിലെ കോണുകളെല്ലാം തുല്യമാണ്. വശങ്ങൾ തുല്യമാകണ മെന്നില്ല. വശങ്ങളുടെ നീളവും തുല്യമായാൽ സമചതുരമായി.

മറിച്ച്, ഒരു ചതുർഭുജത്തിന്റെ വശങ്ങളെല്ലാം തുല്യമായാൽ കോണു കൾ തുല്യമാകണമെന്നുണ്ടോ?

വശങ്ങൾ തുല്യമായ സാമാന്ത രികത്തിന്റെ കോണുകൾ തുല്യ മാകണമെന്നില്ലല്ലോ?

കോണുകളും തുല്യമായാൽ സമചതുരം തന്നെ.

വൃത്തവും സമബഹുഭുജങ്ങളും

വൃത്തത്തിനുള്ളിൽ സമപഞ്ചഭുജവും, സമ ഷഡ്ഭുജവും വരച്ചത് ഓർമയുണ്ടോ? വൃത്തകേന്ദ്രത്തിൽ, 72° കോണു കൾ വരച്ചാൽ, സമപഞ്ചഭുജം വരയ്ക്കാം.

ഇതുപോലെ സമഷഡ്ഭുജം വരയ്ക്കാൻ കോണുകൾ എത്രയായി എടുക്കണം? സമ അഷ്ടഭുജത്തിനോ?

ജ്യാമിതിപ്പെട്ടിയിലെ മട്ടങ്ങൾ ഉപയോഗിച്ച്, വൃത്തത്തെ പല പല രീതിയിൽ സമഭാഗ ങ്ങളാക്കാമല്ലോ.

മട്ടങ്ങൾ ഉപയോഗിച്ച് ഏതെല്ലാം സമബഹു ഭുജങ്ങൾ വരയ്ക്കാം?

24 വശങ്ങളുള്ള സമബഹുഭുജം വരയ്ക്കാൻ കഴിയുമോ? അതായത്, വശങ്ങൾ തുല്യവും കോണുകൾ തുല്യവുമായ ചതുർഭുജമാണ് സമചതുരം.

ഒരു പഞ്ചഭുജത്തിന്റെ കോണുകളെല്ലാം തുല്യമാണെങ്കിൽ ഓരോ കോണും എത്രയാണ്?

പഞ്ചഭുജത്തിന്റെ കോണുകളുടെ തുക $3 \times 180^{\circ} = 540^{\circ}$ ആണല്ലോ.

അതിനാൽ ഒരു കോണിന്റെ അളവ് $\frac{540}{5}$ = 108° എന്ന് കിട്ടും. അപ്പോൾ കോണുകൾ തുല്യ മായ പഞ്ചഭുജം വര യ്ക്കാൻ ഓരോ ശീർഷത്തിലും 108° കോൺ വരത്ത ക്കവിധം വരച്ചാൽ മതിയല്ലോ.

ഇതിൽ വശങ്ങളെല്ലാം തുല്യമാകണമെന്നുണ്ടോ?

കോണുകൾ തുല്യവും വശ ങ്ങൾ തുല്യവുമായ പഞ്ച ഭുജവും വരയ്ക്കാം. ഇത്തരം പഞ്ചഭുജഭുമാണ് സമപഞ്ചഭുജം.

ഇതുപോലെ കോണുകളും വശങ്ങളും തുല്യ മായ ഷഡ്ഭുജം (സമഷഡ്ഭുജം) വര യ്ക്കാമല്ലോ?

വശങ്ങൾ തുല്യവും കോണുകൾ തുല്യവുമായ ബഹുഭുജങ്ങളെ സമബ ഹുഭുജങ്ങൾ (regular polygons) എന്നാണ് പറയുന്നത്.

ഈ ചിത്രം നോക്കൂ.

Regular Polygon എടുത്ത് രണ്ടു ബിന്ദുക്ക ളിൽ ക്ലിക്ക് ചെയ്യുക. മൂലകളുടെ എണ്ണം (വശങ്ങളുടെ എണ്ണം) നൽകി OK കൊടു ക്കുക.

ABCDE ഒരു സമപഞ്ചഭുജമാണ്. D എന്ന മൂലയിലെ മൂന്നു കോണുകളും കണക്കാക്കാമോ?

സമപഞ്ചഭുജമായതിനാൽ, കോണുകളെല്ലാം 108°:

 ΔAED യും ΔBCD യും സമപാർശ്വ ത്രികോണങ്ങളാണ്. (എന്തുകൊണ്ട്?) അപ്പോൾ അവയുടെ മറ്റു രണ്ടു കോണു കളും കണക്കാക്കാമല്ലോ. (എങ്ങനെ?)

D എന്ന മൂലയിലെ മൂന്നു കോണുകളും കൂട്ടിയാൽ 108° ; അപ്പോൾ ഇനി മിച്ചമുള്ള കോണോ?

$$\angle ADB = 108^{\circ} - (36^{\circ} + 36^{\circ}) = 36^{\circ}.$$

ചേർത്ത് വയ്ക്കാം

ചിത്രത്തിൽ 6 തുല്യ സമഭുജത്രികോണ ങ്ങൾ ഒരു ബിന്ദുവിന് ചുറ്റുമായി ചേർത്ത് വച്ചിരിക്കുന്നത് നോക്കൂ.

ഇതുപോലെ മറ്റ് ഏതെല്ലാം തുല്യമായ സമബഹുഭുജങ്ങൾ ഒരു ബിന്ദുവിന് ചുറ്റും ഇങ്ങനെ ചേർത്തു വയ്ക്കാം.

ഒരു ബിന്ദുവിന് ചുറ്റുമുള്ള കോൺ 360° ആണല്ലോ. തുല്യമായ സമബഹുഭുജങ്ങൾ ഒരു ബിന്ദുവിന് ചുറ്റും ചേർത്തു വയ്ക്കാൻ, ബഹുഭുജത്തിന്റെ കോണിന്റെ അളവ് 360 ന്റെ ഘടകം ആയിരിക്കണം.

ചിത്രം നോക്കൂ.

ഇനി ഏതെങ്കിലും സമബഹുഭുജങ്ങ ളുണ്ടോ?

സമബഹുഭുജങ്ങളല്ലെങ്കിലോ?

അങ്ങനെ, AD, BD എന്നീ വരകൾ പഞ്ചഭുജത്തിലെ D എന്ന മൂലയിലെ കോണിനെ മൂന്നു സമഭാഗങ്ങളാക്കുന്നു എന്നു കാണാം.

ഇനി ഈ ചിത്രത്തിൽത്തന്നെ, AB യ്ക്ക് സമാന്തരമായി D യിലൂടെ ഒരു വര വരച്ചു നോക്കൂ.

Slider എടുത്ത് അതിൽ Integer ക്ലിക്ക് ചെയ്താൽ n എന്ന് കിട്ടും. (Integer എന്നാൽ പൂർണസംഖ്യ എന്നർഥം) min = 3, max = 8 എന്നെടുക്കുക. n എന്ന സംഖ്യ 8 എന്നെടുക്കുമ്പോൾ 8 വശമുള്ള സമബഹുഭുജം ലഭിക്കും. Reflect about Line എടുത്ത് ബഹുഭുജത്തിനുള്ളിലും ഒരു വശത്തിലും ക്ലിക്ക് ചെയ്യുക. ഇങ്ങനെ ഓരോ വശത്തിലും ചെയ്താൽ ചുവടെ കൊടുത്തിരിക്കുന്ന ചിത്രം കിട്ടും.

n എന്ന സംഖൃ 6 ൽ കുറയുമ്പോൾ ചിത്ര ത്തിന് എന്ത് പ്രത്യേകതയാണ്? 6 ൽ കൂടു മ്പോഴോ? 6 ആകുമ്പോഴോ?

ഇപ്പോൾ D യിലുണ്ടായ രണ്ടു പുതിയ കോണുകളും $36^{\rm o}$ തന്നെയല്ലേ? എന്തുകൊണ്ട്?

മറ്റൊരു ചോദ്യം:

ഒരു സമബഹുഭുജത്തിന്റെ ഒരു കോൺ 144° ആണ്. അതിനെത്ര വശങ്ങളുണ്ട്?

ഓരോ കോണും 144°. അപ്പോൾ, ഓരോ പുറംകോണും 36°.

പുറംകോണുകളുടെ തുക 360° ആയതിനാൽ വശങ്ങളുടെ

എണ്ണം
$$\frac{360^{\circ}}{36^{\circ}} = 10$$

അതായത്, ഈ സമബഹുഭുജത്തിന് 10 വശങ്ങളുണ്ട്.

- (1) വശങ്ങൾ തുല്യവും കോണുകൾ വ്യത്യസ്തവുമായ ഒരു ഷഡ്ഭുജം വരയ്ക്കുക.
- (2) കോണുകൾ എല്ലാം തുല്യവും വശങ്ങൾ വ്യത്യസ്തവുമായ ഒരു ഷഡ്ഭുജം വരയ്ക്കുക.
- (3) 15 വശങ്ങളുള്ള ഒരു സമബഹുഭുജത്തിന്റെ ഓരോ കോണും എത്ര ഡിഗ്രിയാണ്? പുറംകോണോ?
- (4) ഒരു സമബഹുഭുജത്തിന്റെ ഒരു കോൺ 168°. അതിന് എത്ര വശങ്ങ ഉുണ്ട്?
- (5) പുറംകോണുകളെല്ലാം 6° ആയ സമബഹുഭുജം വരയ്ക്കാമോ? 7° ആയാലോ?

(6) ചിത്രത്തിൽ ഒരു സമപഞ്ചഭുജവും ഒരു സമഷഡ്ഭുജവും ചേർത്തു വച്ചിരിക്കു ന്നു. $\angle PQR$ എത്ര ഡിഗ്രിയാണ്?

(7) ചിത്രത്തിൽ സമചതുരവും, സമപഞ്ചഭുജവും, സമഷഡ്ഭുജവും ചേർത്തു വരച്ചിരിക്കുന്നത് നോക്കൂ. $\angle BAC$ എത്ര ഡിഗ്രിയാണ്?

(8) ചിത്രത്തിൽ *ABCDEF* ഒരു സമഷഡ്ഭുജമാണ്. ഇതിലെ ഒന്നിടവിട്ട മൂലകൾ യോജിപ്പിച്ചാൽ കിട്ടുന്ന ത്രികോണം സമഭുജ്യതികോണമാണെന്ന് തെളിയിക്കുക.

(9) ചിത്രത്തിൽ ABCDEF ഒരു സമഷഡ്ഭുജമാണ്. ACDFഒരു ചതുരമാണെന്ന് തെളിയിക്കുക.

കോമ്പസ്

മട്ടങ്ങളോ, കോൺമാപിനിയോ ഉപയോ ഗിച്ചു കോണുകൾ അളക്കാതെ, കോമ്പസ് ഉപയോഗിച്ചും സമബഹുഭുജങ്ങൾ വര യ്ക്കാം. ഇങ്ങനെ സമഭുജത്രികോണവും, സമചതുരവും, സമഷഡ്ഭുജവും വരയ്ക്കു ന്നത് പല ക്ലാസുകളിലായി കണ്ടിട്ടു ണ്ടല്ലോ.

കോമ്പസ് ഉപയോഗിച്ച് സമപഞ്ചഭുജം വര യ്ക്കാൻ പല മാർഗങ്ങളുമുണ്ട്. ലളിതമായ ഒരു മാർഗം.

www.cut-the-knot.org/pythagoras/ PentagonConstruction

എന്ന വെബ്പേജിലുണ്ട്. കോമ്പസും സ്കെയിലും മാത്രം ഉപയോഗിച്ച് 17 വശ

ങ്ങളുള്ള സമബഹു ഭുജം വരയ്ക്കാമെന്ന്, പ്രസിദ്ധ ഗണിതശാ സ്ത്രജ്ഞനായ ഗൗസ് അദ്ദേഹത്തിന്റെ പത്തൊമ്പതാം വയ സിൽ തെളിയിച്ചു. ഇതി നെ ക്കു റി ച്ചുള്ള

കൂടുതൽ വിവരങ്ങൾ

en.wikipedia.org/wiki/Heptadecagon എന്ന വെബ്പേജിലുണ്ട്.

തിരിഞ്ഞു നോക്കുമ്പോൾ

പഠനനേട്ടങ്ങൾ	എനിക്ക് കഴിയും	ടീച്ചറുടെ സഹായത്തോടെ കഴിയും	ഇനിയും മെച്ചപ്പെടേ ണ്ടതുണ്ട്
 ബഹുഭുജത്തിലെ കോണുകളുടെ തുക കാണു ന്നതിനുള്ള വിവിധ മാർഗങ്ങൾ വിശദീകരി ക്കുന്നു. 			
 ബഹുഭുജത്തിലെ പുറംകോണുകളും അക ക്കോണുകളും തമ്മിലുള്ള ബന്ധം വിശദീക രിക്കുന്നു 			
 പുറംകോണുകളുടെ തുക കണ്ടുപിടിക്കാനുള്ള മാർഗം വിശദീകരിക്കുന്നു. 			
 ബഹുഭുജങ്ങളിൽ നിന്ന് സമബഹുഭുജങ്ങളെ തിരിച്ചറിയുന്നു. 			
കോണളവ് ഉപയോഗിച്ച് സമബഹുഭുജങ്ങ ളുടെ വശങ്ങളുടെ എണ്ണം കണ്ടെത്തുന്നു.			