

54LS352/DM74LS352 Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

- Inverting version of DM54/74LS153
- Permits multiplexing from N lines to 1 line

- Performs parallel-to-serial conversion
- Strobe (enable) line provided for cascading (N lines to n lines)
- High fan-out, low-impedance, totem-pole outputs
- Typical average propagation delay times

From data 15 ns From strobe 19 ns From select 22 ns

■ Typical power dissipation 31 mW

Connection Diagram

Dual-In-Line Package DATA INPUTS OUTPUT VCC G2 SELECT 2C3 2C2 2C1 2C0 Y2 16 15 14 13 12 11 10 9 B B A A A B B A A STROBE B 1C3 1C2 1C1 1C0 OUTPUT GND DATA INPUTS DATA INPUTS Y1 OUTPUT GND

Order Number 54LS352DMQB, 54LS352FMQB, DM74LS352M or DM74LS352N See NS Package Number J16A, M16A, N16E or W16A

Function Table

1	Select Inputs		Data Inputs				Output	
В	Α	CO	C1	C2	C3	G	Y	
Х	Х	Х	Х	Х	Х	Н	Н	
L	L	L	Х	Х	Х	L	Н	
L	L	Н	Х	Χ	Х	L	L	
L	Н	Х	L	Χ	Χ	L	Н	
L	Н	Х	Н	Χ	Χ	L	L	
Н	L	Х	Х	L	Х	L	Н	
Н	L	Х	Х	Н	Х	L	L	
Н	Н	Х	Х	Χ	L	L	Н	
Н	Н	Х	Х	Χ	Н	L	L	

Select inputs A and B are common to both sections.

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range 54LS -55° C to $+125^{\circ}$ C

DM74LS 0° C to $+70^{\circ}$ C Storage Temperature Range -65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS352			DM74LS352			Units
	T drameter	Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
Іон	High Level Output Current			-0.4			-0.4	mA
loL	Low Level Output Current			12			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	54LS	2.5			V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	54LS			0.4	V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74		0.35	0.5	
		$I_{OL} = 4 \text{ mA}$ $V_{CC} = \text{Min}$	DM74		0.25	0.4	
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 10V$	54LS			0.1	mA
		$V_{CC} = Max, V_I = 7V$	DM74				
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
los	Short Circuit Output Current	V _{CC} = Max	54LS	-20		-100	mA
		(Note 2)	DM74	-20		-100	IIIA
Icc	Supply Current	V _{CC} = Max (Note 3)			6.2	10	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open and all other inputs at ground.

 $\textbf{Switching Characteristics} \ \ \text{at V}_{CC} = 5 \text{V and T}_{A} = 25 ^{\circ}\text{C (See Section 1 for Test Waveforms and Output Load)}$

		From (Input) To (Output)	54LS		DM74LS		Units
Symbol	Parameter		C _L = 15 pF		$\begin{aligned} \textbf{C}_{\textbf{L}} &= \textbf{50} \textbf{pF} \\ \textbf{R}_{\textbf{L}} &= \textbf{2} \textbf{k} \Omega \end{aligned}$		
			Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Y		12		24	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Y		12		35	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Select to Y		22		33	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Select to Y		38		47	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Strobe to Y		15		29	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Strobe to Y		20		41	ns

Logic Diagram

TL/F/6425-2

16-Lead Ceramic Dual-In-Line Package (J) Order Number 54LS352DMQB NS Package Number J16A

16-Lead Small Outline Molded Package (M) Order Number DM74LS352M NS Package Number M16A

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS352FMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor**

Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408