Elec. & Comm. Eng. Dep.

- 1- Consider an amplifier circuit using a BJT having $Is = 10^{-15}A$, a collector resistance R = 6.8 K Ω , and a power supply $V_{cc} = 10$ V. Determine the value of the bias voltage V_{BE} required to operate the transistor at $V_{CE} = 3.2$ V. What is the corresponding value of I_C ?
- 2- The transistor in Fig. 1 is biased with a constant current source I = 1 mA and has $\beta = 100$ and $V_A = 100$ V.
 - (a) Find the dc voltages at the base, emitter, and collector.
 - (b) Find g_m , r_{π} , and r_o .
 - (c) If terminal Z is connected to ground, X to a signal source v_{sig} with a source resistance $R_{sig} = 2 \text{ k}\Omega$, and Y to an 8-k Ω load resistance, use the hybrid- π model, to draw the small-signal equivalent circuit of the amplifier. Calculate the overall voltage gain v_y / v_{sig} .

Fig.1

- 3- The amplifier circuit in Fig. 2 has the following parameters: R_C = 1K Ω , R_2 = R_{F1} = R_{F2} = 20K Ω , R_S = 10K Ω , r_π = 1K Ω , β = 100, and r_o = ∞ .
 - a) Draw the small-signal equivalent circuit.
 - b) Determine the voltage gain.

Fig.2

4- For the common-emitter amplifier shown in Fig. 3, let $V_{CC} = 15$ V, $R_1 = 27$ kΩ, $R_2 = 15$ kΩ, $R_E = 2.4$ kΩ, and $R_C = 3.9$ kΩ. The transistor has $\beta = 100$. Calculate the dc bias current I_C. If the amplifier operates between a source for which $R_{sig} = 2$ kΩ and a load of 2 kΩ, replace the transistor with its hybrid- π model, and find the values of R_{in} , R_o , A_{vo} , A_v and the overall voltage gain G_v (v_o/v_{sig}).

Fig. 3

5- For the common-emitter amplifier with an Emitter resistance shown in Fig. 4. Find the equations of R_{in} , R_o , A_{vo} , A_v and the overall voltage gain G_v (v_o/v_{sig}).

Fig. 4

6- In the circuit shown in Fig. 5, the transistor has a β of 200. What is the dc voltage at the collector? Find the values of R_{in} , R_o , and the overall voltage gain (v_o/v_{sig}). For an output signal of ± 0.4 V, what value of v_{sig} is required?

Fig. 5

7- For the Common-Base (CB) amplifier shown in Fig. 6, if , R_S = 100 Ω , R_E = 4.3 $K\Omega$, R_C = 2.2 $K\Omega$, R_L = 51 $K\Omega$ and β = 100. What are the overall voltage gain v_o/v_{sig} , input resistance and output resistance of the amplifier if the DC operating collector current (I_C = 1mA).

Fig. 6

8- For the Common-Collector amplifier shown in Fig. 7: $R_S = 2 K\Omega$, $R_I = 100 K\Omega$, $R_2 = 300 K\Omega$, $R_3 = 13 K\Omega$, $R_4 = 100 K\Omega$, $\beta = 100$ and $I_C = 0.25$ mA. Find the input resistance, output resistance and the overall voltage gain v_{out}/v_{sig} ?

Fig. 7

9- For the circuit shown in Fig. 8, draw a complete small-signal equivalent circuit utilizing an appropriate T model for the BJT (use α = 0.99). Your circuit should show the values of all components, including the model parameters. What is the input resistance R_{in} ? Calculate the voltage gain (v_0/v_{sig}).

Best Wishes	Dr. Eman F. Sawire	es
	End	