

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

033072-022.ST25
SEQUENCE LISTING

11

<110> Barak, Larry S.
Oakley, Robert H.
Caron, Marc G.
Laporte, Stephane A.
Wilbanks, Alyson

<120> Constitutively Desensitized G Protein-Coupled Receptors

<130> 033072-022

<140> US 10/054,616
<141> 2002-01-22

<150> US 60/263,406
<151> 2001-01-23

<160> 12

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 371

<212> PRT

<213> Homo sapiens

<400> 1

Met Leu Met Ala Ser Thr Thr Ser Ala Val Pro Gly His Pro Ser Leu
1 5 10 15
Pro Ser Leu Pro Ser Asn Ser Ser Gln Glu Arg Pro Leu Asp Thr Arg
20 25 30
Asp Pro Leu Leu Ala Arg Ala Glu Leu Ala Leu Leu Ser Ile Val Phe
35 40 45
Val Ala Val Ala Leu Ser Asn Gly Leu Val Leu Ala Ala Leu Ala Arg
50 55 60
Arg Gly Arg Arg Gly His Trp Ala Pro Ile His Val Phe Ile Gly His
65 70 75 80
Leu Cys Leu Ala Asp Leu Ala Val Ala Leu Phe Gln Val Leu Pro Gln
85 90 95
Leu Ala Trp Lys Ala Thr Asp Arg Phe Arg Gly Pro Asp Ala Leu Cys
100 105 110
Arg Ala Val Lys Tyr Leu Gln Met Val Gly Met Tyr Ala Ser Ser Tyr
115 120 125
Met Ile Leu Ala Met Thr Leu Asp His His Arg Ala Ile Cys Arg Pro
130 135 140
Met Leu Ala Tyr Arg His Gly Ser Gly Ala His Trp Asn Arg Pro Val
145 150 155 160
Leu Val Ala Trp Ala Phe Ser Leu Leu Leu Ser Leu Pro Gln Leu Phe
165 170 175
Ile Phe Ala Gln Arg Asn Val Glu Gly Ser Gly Val Thr Asp Cys
180 185 190
Trp Ala Cys Phe Ala Glu Pro Trp Gly Arg Arg Thr Tyr Val Thr Trp
195 200 205
Ile Ala Leu Met Val Phe Val Ala Pro Thr Leu Gly Ile Ala Ala Cys
210 215 220
Gln Val Leu Ile Phe Arg Glu Ile His Ala Ser Leu Val Pro Gly Pro
225 230 235 240
Ser Glu Arg Pro Gly Gly Arg Arg Arg Gly Arg Arg Thr Gly Ser Pro
245 250 255
Gly Glu Gly Ala His Val Ser Ala Ala Val Ala Lys Thr Val Arg Met
260 265 270
Thr Leu Val Ile Val Val Val Tyr Val Leu Cys Trp Ala Pro Phe Phe
275 280 285
Leu Val Gln Leu Trp Ala Ala Trp Asp Pro Glu Ala Pro Leu Glu Gly
290 295 300
Ala Pro Phe Val Leu Leu Met Leu Leu Ala Ser Leu Asn Ser Cys Thr
305 310 315 320

033072-022.ST25

Asn Pro Trp Ile Tyr Ala Ser Phe Ser Ser Ser Val Ser Ser Glu Leu
325 330 335
Arg Ser Leu Leu Cys Cys Ala Arg Gly Arg Thr Pro Pro Ser Leu Gly
340 345 350
Pro Gln Asp Glu Ser Cys Thr Thr Ala Ser Ser Ser Leu Ala Lys Asp
355 360 365
Thr Ser Ser
370

<210> 2
<211> 515
<212> PRT
<213> Golden hamster

<400> 2
Met Asn Pro Asp Leu Asp Thr Gly His Asn Thr Ser Ala Pro Ala Gln
1 5 10 15
Trp Gly Glu Leu Lys Asp Ala Asn Phe Thr Gly Pro Asn Gln Thr Ser
20 25 30
Ser Asn Ser Thr Leu Pro Gln Leu Asp Val Thr Arg Ala Ile Ser Val
35 40 45
Gly Leu Val Leu Gly Ala Phe Ile Leu Phe Ala Ile Val Gly Asn Ile
50 55 60
Leu Val Ile Leu Ser Val Ala Cys Asn Arg His Leu Arg Thr Pro Thr
65 70 75 80
Asn Tyr Phe Ile Val Asn Leu Ala Ile Ala Asp Leu Leu Leu Ser Phe
85 90 95
Thr Val Leu Pro Phe Ser Ala Thr Leu Glu Val Leu Gly Tyr Trp Val
100 105 110
Leu Gly Arg Ile Phe Cys Asp Ile Trp Ala Ala Val Asp Val Leu Cys
115 120 125
Cys Thr Ala Ser Ile Leu Ser Leu Cys Ala Ile Ser Ile Asp Glu Tyr
130 135 140
Ile Gly Val Arg Tyr Ser Leu Gln Tyr Pro Thr Leu Val Thr Arg Arg
145 150 155 160
Lys Ala Ile Leu Ala Leu Leu Ser Val Trp Val Leu Ser Thr Val Ile
165 170 175
Ser Ile Gly Pro Leu Leu Gly Trp Lys Glu Pro Ala Pro Asn Asp Asp
180 185 190
Lys Glu Cys Gly Val Thr Glu Glu Pro Phe Tyr Ala Leu Phe Ser Ser
195 200 205
Leu Gly Ser Phe Tyr Ile Pro Leu Ala Val Ile Leu Val Met Tyr Cys
210 215 220
Arg Val Tyr Ile Val Ala Lys Arg Thr Thr Lys Asn Leu Glu Ala Gly
225 230 235 240
Val Met Lys Glu Met Ser Asn Ser Lys Glu Leu Thr Leu Arg Ile His
245 250 255
Ser Lys Asn Phe His Glu Asp Thr Leu Ser Ser Thr Lys Ala Lys Gly
260 265 270
His Asn Pro Arg Ser Ser Ile Ala Val Lys Leu Phe Lys Phe Ser Arg
275 280 285
Glu Lys Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Met Phe Ile
290 295 300
Leu Cys Trp Leu Pro Phe Phe Ile Ala Leu Pro Leu Gly Ser Leu Phe
305 310 315 320
Ser Thr Leu Lys Pro Pro Asp Ala Val Phe Lys Val Val Phe Trp Leu
325 330 335
Gly Tyr Phe Asn Ser Cys Leu Asn Pro Ile Ile Tyr Pro Cys Ser Ser
340 345 350
Lys Glu Phe Lys Arg Ala Phe Met Arg Ile Leu Gly Cys Gln Cys Arg
355 360 365
Ser Gly Arg Arg Arg Arg Arg Arg Arg Leu Gly Ala Cys Ala Tyr
370 375 380
Thr Tyr Arg Pro Trp Thr Arg Gly Gly Ser Leu Glu Arg Ser Gln Ser
385 390 395 400
Arg Lys Asp Ser Leu Asp Asp Ser Gly Ser Cys Met Ser Gly Ser Gln
405 410 415

033072-022.ST25

Arg Thr Leu Pro Ser Ala Ser Pro Ser Pro Gly Tyr Leu Gly Arg Gly
420 425 430
Ala Gln Pro Pro Leu Glu Leu Cys Ala Tyr Pro Glu Trp Lys Ser Gly
435 440 445
Ala Leu Leu Ser Leu Pro Glu Pro Pro Gly Arg Arg Gly Arg Leu Asp
450 455 460
Ser Gly Pro Leu Phe Thr Phe Lys Leu Leu Gly Glu Pro Glu Ser Pro
465 470 475 480
Gly Thr Glu Gly Asp Ala Ser Asn Gly Gly Cys Asp Ala Thr Thr Asp
485 490 495
Leu Ala Asn Gly Gln Pro Gly Phe Lys Ser Asn Met Pro Leu Ala Pro
500 505 510
Gly His Phe
515

<210> 3
<211> 515
<212> PRT
<213> Golden hamster

<400> 3
Met Asn Pro Asp Leu Asp Thr Gly His Asn Thr Ser Ala Pro Ala Gln
1 5 10 15
Trp Gly Glu Leu Lys Asp Ala Asn Phe Thr Gly Pro Asn Gln Thr Ser
20 25 30
Ser Asn Ser Thr Leu Pro Gln Leu Asp Val Thr Arg Ala Ile Ser Val
35 40 45
Gly Leu Val Leu Gly Ala Phe Ile Leu Phe Ala Ile Val Gly Asn Ile
50 55 60
Leu Val Ile Leu Ser Val Ala Cys Asn Arg His Leu Arg Thr Pro Thr
65 70 75 80
Asn Tyr Phe Ile Val Asn Leu Ala Ile Ala Asp Leu Leu Leu Ser Phe
85 90 95
Thr Val Leu Pro Phe Ser Ala Thr Leu Glu Val Leu Gly Tyr Trp Val
100 105 110
Leu Gly Arg Ile Phe Cys Asp Ile Trp Ala Ala Val Asp Val Leu Cys
115 120 125
Cys Thr Ala Ser Ile Leu Ser Leu Cys Ala Ile Ser Ile Asp Ala Tyr
130 135 140
Ile Gly Val Arg Tyr Ser Leu Gln Tyr Pro Thr Leu Val Thr Arg Arg
145 150 155 160
Lys Ala Ile Leu Ala Leu Leu Ser Val Trp Val Leu Ser Thr Val Ile
165 170 175
Ser Ile Gly Pro Leu Leu Gly Trp Lys Glu Pro Ala Pro Asn Asp Asp
180 185 190
Lys Glu Cys Gly Val Thr Glu Glu Pro Phe Tyr Ala Leu Phe Ser Ser
195 200 205
Leu Gly Ser Phe Tyr Ile Pro Leu Ala Val Ile Leu Val Met Tyr Cys
210 215 220
Arg Val Tyr Ile Val Ala Lys Arg Thr Thr Lys Asn Leu Glu Ala Gly
225 230 235 240
Val Met Lys Glu Met Ser Asn Ser Lys Glu Leu Thr Leu Arg Ile His
245 250 255
Ser Lys Asn Phe His Glu Asp Thr Leu Ser Ser Thr Lys Ala Lys Gly
260 265 270
His Asn Pro Arg Ser Ser Ile Ala Val Lys Leu Phe Lys Phe Ser Arg
275 280 285
Glu Lys Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Met Phe Ile
290 295 300
Leu Cys Trp Leu Pro Phe Phe Ile Ala Leu Pro Leu Gly Ser Leu Phe
305 310 315 320
Ser Thr Leu Lys Pro Pro Asp Ala Val Phe Lys Val Val Phe Trp Leu
325 330 335
Gly Tyr Phe Asn Ser Cys Leu Asn Pro Ile Ile Tyr Pro Cys Ser Ser
340 345 350
Lys Glu Phe Lys Arg Ala Phe Met Arg Ile Leu Gly Cys Gln Cys Arg
355 360 365

033072-022.ST25

Ser Gly Arg Arg Arg Arg Arg Arg Arg Leu Gly Ala Cys Ala Tyr
370 375 380
Thr Tyr Arg Pro Trp Thr Arg Gly Gly Ser Leu Glu Arg Ser Gln Ser
385 390 395 400
Arg Lys Asp Ser Leu Asp Asp Ser Gly Ser Cys Met Ser Gly Ser Gln
405 410 415
Arg Thr Leu Pro Ser Ala Ser Pro Ser Pro Gly Tyr Leu Gly Arg Gly
420 425 430
Ala Gln Pro Pro Leu Glu Leu Cys Ala Tyr Pro Glu Trp Lys Ser Gly
435 440 445
Ala Leu Leu Ser Leu Pro Glu Pro Pro Gly Arg Arg Gly Arg Leu Asp
450 455 460
Ser Gly Pro Leu Phe Thr Phe Lys Leu Leu Gly Glu Pro Glu Ser Pro
465 470 475 480
Gly Thr Glu Gly Asp Ala Ser Asn Gly Gly Cys Asp Ala Thr Thr Asp
485 490 495
Leu Ala Asn Gly Gln Pro Gly Phe Lys Ser Asn Met Pro Leu Ala Pro
500 505 510
Gly His Phe
515

<210> 4
<211> 515
<212> PRT
<213> Golden hamster

<400> 4
Met Asn Pro Asp Leu Asp Thr Gly His Asn Thr Ser Ala Pro Ala Gln
1 5 10 15
Trp Gly Glu Leu Lys Asp Ala Asn Phe Thr Gly Pro Asn Gln Thr Ser
20 25 30
Ser Asn Ser Thr Leu Pro Gln Leu Asp Val Thr Arg Ala Ile Ser val
35 40 45
Gly Leu Val Leu Gly Ala Phe Ile Leu Phe Ala Ile Val Gly Asn Ile
50 55 60
Leu Val Ile Leu Ser Val Ala Cys Asn Arg His Leu Arg Thr Pro Thr
65 70 75 80
Asn Tyr Phe Ile Val Asn Leu Ala Ile Ala Asp Leu Leu Leu Ser Phe
85 90 95
Thr Val Leu Pro Phe Ser Ala Thr Leu Glu Val Leu Gly Tyr Trp val
100 105 110
Leu Gly Arg Ile Phe Cys Asp Ile Trp Ala Ala Val Asp Val Leu Cys
115 120 125
Cys Thr Ala Ser Ile Leu Ser Leu Cys Ala Ile Ser Ile Asp His Tyr
130 135 140
Ile Gly Val Arg Tyr Ser Leu Gln Tyr Pro Thr Leu Val Thr Arg Arg
145 150 155 160
Lys Ala Ile Leu Ala Leu Leu Ser Val Trp Val Leu Ser Thr Val Ile
165 170 175
Ser Ile Gly Pro Leu Leu Gly Trp Lys Glu Pro Ala Pro Asn Asp Asp
180 185 190
Lys Glu Cys Gly Val Thr Glu Glu Pro Phe Tyr Ala Leu Phe Ser Ser
195 200 205
Leu Gly Ser Phe Tyr Ile Pro Leu Ala Val Ile Leu Val Met Tyr Cys
210 215 220
Arg Val Tyr Ile Val Ala Lys Arg Thr Thr Lys Asn Leu Glu Ala Gly
225 230 235 240
Val Met Lys Glu Met Ser Asn Ser Lys Glu Leu Thr Leu Arg Ile His
245 250 255
Ser Lys Asn Phe His Glu Asp Thr Leu Ser Ser Thr Lys Ala Lys Gly
260 265 270
His Asn Pro Arg Ser Ser Ile Ala Val Lys Leu Phe Lys Phe Ser Arg
275 280 285
Glu Lys Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Met Phe Ile
290 295 300
Leu Cys Trp Leu Pro Phe Phe Ile Ala Leu Pro Leu Gly Ser Leu Phe
305 310 315 320

033072-022.ST25

Ser Thr Leu Lys Pro Pro Asp Ala Val Phe Lys Val Val Phe Trp Leu
325 330 335
Gly Tyr Phe Asn Ser Cys Leu Asn Pro Ile Ile Tyr Pro Cys Ser Ser
340 345 350
Lys Glu Phe Lys Arg Ala Phe Met Arg Ile Leu Gly Cys Gln Cys Arg
355 360 365
Ser Gly Arg Arg Arg Arg Arg Arg Arg Leu Gly Ala Cys Ala Tyr
370 375 380
Thr Tyr Arg Pro Trp Thr Arg Gly Gly Ser Leu Glu Arg Ser Gln Ser
385 390 395 400
Arg Lys Asp Ser Leu Asp Asp Ser Gly Ser Cys Met Ser Gly Ser Gln
405 410 415
Arg Thr Leu Pro Ser Ala Ser Pro Ser Pro Gly Tyr Leu Gly Arg Gly
420 425 430
Ala Gln Pro Pro Leu Glu Leu Cys Ala Tyr Pro Glu Trp Lys Ser Gly
435 440 445
Ala Leu Leu Ser Leu Pro Glu Pro Pro Gly Arg Arg Gly Arg Leu Asp
450 455 460
Ser Gly Pro Leu Phe Thr Phe Lys Leu Leu Gly Glu Pro Glu Ser Pro
465 470 475 480
Gly Thr Glu Gly Asp Ala Ser Asn Gly Gly Cys Asp Ala Thr Thr Asp
485 490 495
Leu Ala Asn Gly Gln Pro Gly Phe Lys Ser Asn Met Pro Leu Ala Pro
500 505 510
Gly His Phe
515

<210> 5

<211> 515

<212> PRT

<213> Golden hamster

<400> 5

Met Asn Pro Asp Leu Asp Thr Gly His Asn Thr Ser Ala Pro Ala Gln
1 5 10 15
Trp Gly Glu Leu Lys Asp Ala Asn Phe Thr Gly Pro Asn Gln Thr Ser
20 25 30
Ser Asn Ser Thr Leu Pro Gln Leu Asp Val Thr Arg Ala Ile Ser Val
35 40 45
Gly Leu Val Leu Gly Ala Phe Ile Leu Phe Ala Ile Val Gly Asn Ile
50 55 60
Leu Val Ile Leu Ser Val Ala Cys Asn Arg His Leu Arg Thr Pro Thr
65 70 75 80
Asn Tyr Phe Ile Val Asn Leu Ala Ile Ala Asp Leu Leu Ser Phe
85 90 95
Thr Val Leu Pro Phe Ser Ala Thr Leu Glu Val Leu Gly Tyr Trp Val
100 105 110
Leu Gly Arg Ile Phe Cys Asp Ile Trp Ala Ala Val Asp Val Leu Cys
115 120 125
Cys Thr Ala Ser Ile Leu Ser Leu Cys Ala Ile Ser Ile Asp Asn Tyr
130 135 140
Ile Gly Val Arg Tyr Ser Leu Gln Tyr Pro Thr Leu Val Thr Arg Arg
145 150 155 160
Lys Ala Ile Leu Ala Leu Leu Ser Val Trp Val Leu Ser Thr Val Ile
165 170 175
Ser Ile Gly Pro Leu Leu Gly Trp Lys Glu Pro Ala Pro Asn Asp Asp
180 185 190
Lys Glu Cys Gly Val Thr Glu Glu Pro Phe Tyr Ala Leu Phe Ser Ser
195 200 205
Leu Gly Ser Phe Tyr Ile Pro Leu Ala Val Ile Leu Val Met Tyr Cys
210 215 220
Arg Val Tyr Ile Val Ala Lys Arg Thr Thr Lys Asn Leu Glu Ala Gly
225 230 235 240
Val Met Lys Glu Met Ser Asn Ser Lys Glu Leu Thr Leu Arg Ile His
245 250 255
Ser Lys Asn Phe His Glu Asp Thr Leu Ser Ser Thr Lys Ala Lys Gly
260 265 270

033072-022.ST25

His Asn Pro Arg Ser Ser Ile Ala Val Lys Leu Phe Lys Phe Ser Arg
275 280 285
Glu Lys Lys Ala Ala Lys Thr Leu Gly Ile Val Val Gly Met Phe Ile
290 295 300
Leu Cys Trp Leu Pro Phe Phe Ile Ala Leu Pro Leu Gly Ser Leu Phe
305 310 315 320
Ser Thr Leu Lys Pro Pro Asp Ala Val Phe Lys Val Val Phe Trp Leu
325 330 335
Gly Tyr Phe Asn Ser Cys Leu Asn Pro Ile Ile Tyr Pro Cys Ser Ser
340 345 350
Lys Glu Phe Lys Arg Ala Phe Met Arg Ile Leu Gly Cys Gln Cys Arg
355 360 365
Ser Gly Arg Arg Arg Arg Arg Arg Arg Leu Gly Ala Cys Ala Tyr
370 375 380
Thr Tyr Arg Pro Trp Thr Arg Gly Gly Ser Leu Glu Arg Ser Gln Ser
385 390 395 400
Arg Lys Asp Ser Leu Asp Asp Ser Gly Ser Cys Met Ser Gly Ser Gln
405 410 415
Arg Thr Leu Pro Ser Ala Ser Pro Ser Pro Gly Tyr Leu Gly Arg Gly
420 425 430
Ala Gln Pro Pro Leu Glu Leu Cys Ala Tyr Pro Glu Trp Lys Ser Gly
435 440 445
Ala Leu Leu Ser Leu Pro Glu Pro Pro Gly Arg Arg Gly Arg Leu Asp
450 455 460
Ser Gly Pro Leu Phe Thr Phe Lys Leu Leu Gly Glu Pro Glu Ser Pro
465 470 475 480
Gly Thr Glu Gly Asp Ala Ser Asn Gly Gly Cys Asp Ala Thr Thr Asp
485 490 495
Leu Ala Asn Gly Gln Pro Gly Phe Lys Ser Asn Met Pro Leu Ala Pro
500 505 510
Gly His Phe
515

<210> 6
<211> 359

<212> PRT

<213> Rattus norvegicus

<400> 6

Met Ala Leu Asn Ser Ser Ala Glu Asp Gly Ile Lys Arg Ile Gln Asp
1 5 10 15
Asp Cys Pro Lys Ala Gly Arg His Ser Tyr Ile Phe Val Met Ile Pro
20 25 30
Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu
35 40 45
Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser
50 55 60
Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr
65 70 75 80
Cys Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe
85 90 95
Gly Asn His Leu Cys Lys Ile Ala Ser Ala Ser Val Thr Phe Asn Leu
100 105 110
Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp His Tyr Leu
115 120 125
Ala Ile Val His Pro Met Lys Ser Arg Leu Arg Arg Thr Met Leu Val
130 135 140
Ala Lys Val Thr Cys Ile Ile Ile Trp Leu Met Ala Gly Leu Ala Ser
145 150 155 160
Leu Pro Ala Val Ile His Arg Asn Val Tyr Phe Ile Glu Asn Thr Asn
165 170 175
Ile Thr Val Cys Ala Phe His Tyr Glu Ser Arg Asn Ser Thr Leu Pro
180 185 190
Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe
195 200 205
Leu Ile Ile Leu Thr Ser Tyr Thr Leu Ile Trp Lys Ala Leu Lys Lys
210 215 220

033072-022.ST25

Ala Tyr Glu Ile Gln Lys Asn Lys Pro Arg Asn Asp Asp Ile Phe Arg
 225 230 235 240
 Ile Ile Met Ala Ile Val Leu Phe Phe Phe Ser Trp Val Pro His
 245 250 255
 Gln Ile Phe Thr Phe Leu Asp Val Leu Ile Gln Leu Gly Val Ile His
 260 265 270
 Asp Cys Lys Ile Ser Asp Ile Val Asp Thr Ala Met Pro Ile Thr Ile
 275 280 285
 Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly Phe
 290 295 300
 Leu Gly Lys Lys Phe Lys Lys Tyr Phe Leu Gln Leu Leu Lys Tyr Ile
 305 310 315 320
 Pro Pro Lys Ala Lys Ser His Ser Ser Leu Ser Thr Lys Met Ser Thr
 325 330 335
 Leu Ser Tyr Arg Pro Ser Asp Asn Met Ser Ser Ser Ala Lys Lys Pro
 340 345 350
 Ala Ser Cys Phe Glu Val Glu
 355

<210> 7

<211> 1116

<212> DNA

<213> Homo sapiens

<400> 7

atgctcatgg	cgtccaccac	ttccgctgtg	cctgggcatac	cctctctgcc	cagcctgccc	60
agcaacagca	gccaggagag	gccactggac	acccgggacc	cgctgcttagc	ccggggcggag	120
ctggcgtcgc	tctccatagt	cttggctgct	gtggccctga	gcaatggcct	ggtgctggcg	180
gccctagctc	ggcggggccc	gcggggccac	tgggcaccca	tacacgtctt	cattggcac	240
tttgtgcctgg	ccgacccgtgc	cgtggctctg	ttccaagtgc	tgccccagct	ggcccttggaa	300
gccaccgacc	gcttcctgtgg	gccagatgcc	ctgtgtcggg	ccgtgaagta	tctgcagatg	360
gtgggcatgt	atgcctccctc	ctacatgatc	ctggccatga	cgctggacca	ccaccgtgcc	420
atctggcgtc	ccatgtgtgc	gtaccgcatt	ggaatgtgggg	ctcaactggaa	ccggccgggtg	480
cttagtggctt	ggggcccttctc	gctcccttctc	agccctggccc	agctcttac	cttcgcccag	540
cgcaacgtgg	aagggtggcag	cggggtcaact	gactgtctggg	cctgctttgc	ggagccctgg	600
ggccgtcgca	cctatgtcac	ctggatttgc	ctgtatgggt	tcgtggacc	tacccctgggt	660
atcgccgcct	gccagggtgc	catcttccgg	gagattcatg	ccagtctgg	gccagggcca	720
tcagagaggc	ctggggggcgc	ccgcaggggaa	cgccggacag	gcagccccgg	tgagggagcc	780
cacgtgtcag	cagctgtgtgc	caagactgtg	aggatgacgc	tagtattgt	ggtcgtctat	840
gtgctgtct	gggcaccctt	cttccctgtgt	cagctgtggg	ccgcgtggga	cccgaggcca	900
cctctggaa	gggcgcctt	tgtctactc	atgttgcgttgc	ccagctcaa	cagctgcacc	960
aaccccttgg	tctatgtcatc	ttttagcagc	agcgtgtctt	cagagctgcg	aagcttgctc	1020
tgctgtgccc	ggggacgcac	cccacccagc	ctgggtcccc	aagatgagtc	ctgcaccacc	1080
gccagctcct	ccctggccaa	ggacacttca	tcgtga			1116

<210> 8

<211> 1548

<212> DNA

<213> Syrian golden hamster

<400> 8

atgaatcccc	atctggacac	cggccacaac	acatcagcac	ctgcccata	gggagagtt	60
aaagatgcca	acttcactgg	cccccaaccag	acctcgagca	actccacact	gccccagctg	120
gacgttacca	gggcacatctc	tgtgggcctg	gtgtggggcg	ccttcatct	cttgcatt	180
gtgggcacaa	tccctgtcat	cctgtcagt	gcctgcaatc	ggcacctgcg	gacgcccacc	240
aactactca	ttgtcaacat	ggccatttgc	gacctgtgt	tgagtttac	agtctgtccc	300
ttctccgcta	ccctagaagt	gcttggctac	tgggtctgg	ggcgcatctt	ctgtgacatc	360
tgggcagcgg	tggacgtctt	tgtgtac	gcctccatcc	tgagctatg	tgccatctcc	420
attgtatact	acattgggt	gctgctactt	ctgcagttacc	ccactctgt	cacccgcagg	480
aaggccatct	tggcactctt	cagtgtgtgg	gttttgatca	cggtcatctc	catcgggcct	540
ctccctggat	ggaaaagaacc	agcgcacaa	gacgacaagg	aatgcggagt	caccaagaa	600
cccttctatg	ccctcttttc	ctccctggc	tccttctaca	tcccactcgc	ggtcattctg	660
gtcatgtact	gccccgtcta	catctgtggc	aagaggacca	ccaagaacat	ggaggctgg	720
gtcatgaagg	agatgtccaa	ctccaaggag	ctgaccctga	ggatccactc	caagaactt	780
catgaggaca	ccctcagcag	taccaaggcc	aaggccaca	acccctggg	tccatagct	840
gtcaaactt	ttaagttctc	caggaaaaag	aaagcagcca	aaaccttggg	cattgtggc	900
ggaatgttca	tcttgcgttg	gtcccccttc	ttcatcgctc	tcccacttgg	ctccctgttc	960

033072-022.ST25

tccactctca	agcccccgga	cggccgtgttc	aagggttat	tctggctggg	ctacttcaac	1020
agctgcctca	accccattat	ctacccgtgc	tccagcaagg	agttcaagcg	cgcccttcatg	1080
cgtatccttg	ggtgcgcagt	ccgttagtgc	cgtgcggcc	gccgcggccg	tcgtctggc	1140
gcgtgcgcct	acacctatcg	gccgtggacg	cgcggcggct	cgctggagcg	atcgcagtcg	1200
cggaaaggact	ccctggacga	cagcggcagc	tgcataagtg	cgagcggagag	gaccctgccc	1260
tcggcgtcgc	ccagccccggg	ctacctgggt	cgcggagcgc	agccaccact	ggagctgtgc	1320
gcctaccccg	aatggaaatc	cggggctctg	ctcagtcgtgc	cagagcctcc	gggtgcgcgc	1380
ggtcgcctcg	actctgggccc	cctcttcaact	ttcaagctct	tgggagagcc	ggagagcccg	1440
ggcaccgggg	gcgatgcca	aatgggggc	tgcacgcaa	cgaccgacct	ggccaatggg	1500
cagcccggtt	tcaagagcaa	catgcctctg	gcacccgggc	acttttag		1548

<210> 9

<211> 1548

<212> DNA

<213> Syrian golden hamster

<400> 9

atgaatcccg	atctggacac	cggccacaac	acatcagcac	ctgcccata	gggagagttg	60
aaagatgcca	acttcactgg	ccccaaaccag	acctcgagca	actccacact	gccccagctg	120
gacgttacca	ggggccatctc	tgtgggcctg	gtgtggggcg	ccttcatcct	ctttgccatt	180
gtgggcaaca	tcctggtcat	cctgtcaagt	gcctgcaatc	ggcacctgcg	gacgcccacc	240
aactacttca	ttgtcaacact	ggccattgtct	gacctgctgt	tgagtttac	agtctgccc	300
ttctccgcta	cccttagaagt	gcttggctac	tgggttctgg	ggcgcatctt	ctgtgacatc	360
tgggcagcgg	tggacgtctt	gtgctgtacg	gcctccatcc	tgagcctatg	tgccatctcc	420
attgatgcct	acattgggtt	gchgctactt	ctgcagttac	ccactctgtt	caccgcagg	480
aaggccatct	tggcactctt	cagtgtgtgg	gttttgtcca	cggtcatctc	catcgggcct	540
tccttggat	ggaaaagaacc	agcgcccaac	gacgacaagg	aatgcggagt	caccgaagaa	600
cccttctatg	ccctcttttc	ctccctgggc	tccttctaca	tcccactcgc	ggtcattctg	660
gtcatgtact	gccgggtcta	catcgtagcc	aagaggacca	ccaagaacct	ggaggctgga	720
gtcatgaagg	agatgtccaa	ctccaaggag	ctgaccctga	ggatccactc	caagaacttt	780
catgaggaca	ccctcagcag	taccaaggcc	aaggccaca	accccaggag	ttccatagct	840
gtcaaacttt	ttaagttctc	cagggaaaag	aaagcagcca	aaaccttggg	cattgtggc	900
ggaatgttca	tcttgggttg	gctcccttc	ttcatcgctc	tcccacttgg	ctccctgttc	960
tccactctca	agcccccgga	cgccgtgttc	aagggttat	tctggctggg	ctacttcaac	1020
agctgcctca	accccattat	ctacccgtgc	tccagcaagg	agttcaagcg	cgcccttcatg	1080
cgtatccttg	ggtgcgcagt	ccgttagtgc	cgtgcggcc	gccgcggccg	tcgtctggc	1140
gcgtgcgcct	acacctatcg	gccgtggacg	cgcggcggct	cgctggagcg	atcgcagtcg	1200
cggaaaggact	ccctggacga	cagcggcagc	tgcataagtg	cgagccagag	gaccctgccc	1260
tcggcgtcgc	ccagccccggg	ctacctgggt	cgcggagcgc	agccaccact	ggagctgtgc	1320
gcctaccccg	aatggaaatc	cggggctctg	ctcagtcgtgc	cagagcctcc	gggtgcgcgc	1380
ggtcgcctcg	actctgggccc	cctcttcaact	ttcaagctct	tgggagagcc	ggagagcccg	1440
ggcaccgggg	gcgatgcca	aatgggggc	tgcacgcaa	cgaccgacct	ggccaatggg	1500
cagcccggtt	tcaagagcaa	catgcctctg	gcacccgggc	acttttag		1548

<210> 10

<211> 1548

<212> DNA

<213> Syrian golden hamster

<400> 10

atgaatcccg	atctggacac	cggccacaac	acatcagcac	ctgcccata	gggagagttg	60
aaagatgcca	acttcactgg	ccccaaaccag	acctcgagca	actccacact	gccccagctg	120
gacgttacca	ggggccatctc	tgtgggcctg	gtgtggggcg	ccttcatcct	ctttgccatt	180
gtgggcaaca	tcctggtcat	cctgtcaagt	gcctgcaatc	ggcacctgcg	gacgcccacc	240
aactacttca	ttgtcaacact	ggccattgtct	gacctgctgt	tgagtttac	agtctgccc	300
ttctccgcta	cccttagaagt	gcttggctac	tgggttctgg	ggcgcatctt	ctgtgacatc	360
tgggcagcgg	tggacgtctt	gtgctgtacg	gcctccatcc	tgagcctatg	tgccatctcc	420
attgatgagt	acattgggtt	gchgctactt	ctgcagttac	ccactctgtt	caccgcagg	480
aaggccatct	tggcactctt	cagtgtgtgg	gttttgtcca	cggtcatctc	catcgggcct	540
tccttggat	ggaaaagaacc	agcgcccaac	gacgacaagg	aatgcggagt	caccgaagaa	600
cccttctatg	ccctcttttc	ctccctgggc	tccttctaca	tcccactcgc	ggtcattctg	660
gtcatgtact	gccgggtcta	catcgtagcc	aagaggacca	ccaagaacct	ggaggctgga	720
gtcatgaagg	agatgtccaa	ctccaaggag	ctgaccctga	ggatccactc	caagaacttt	780
catgaggaca	ccctcagcag	taccaaggcc	aaggccaca	accccaggag	ttccatagct	840
gtcaaacttt	ttaagttctc	cagggaaaag	aaagcagcca	aaaccttggg	cattgtggc	900
ggaatgttca	tcttgggttg	gctcccttc	ttcatcgctc	tcccacttgg	ctccctgttc	960
tccactctca	agcccccgga	cgccgtgttc	aagggttat	tctggctggg	ctacttcaac	1020
agctgcctca	accccattat	ctacccgtgc	tccagcaagg	agttcaagcg	cgcccttcatg	1080

033072-022.ST25

cgtatccttg	ggtgcgcagt	ccgttagtggc	cgtcgcccgc	gccgcgcggc	tcgtctggc	1140
gcgtgcgtt	acaccttatcg	gcccgtggacg	cgcggcggct	cgctggagcg	atcgactcg	1200
cggaaaggact	ccctggacga	cagcggcagc	tgcatagtg	gcagccagag	gaccctgccc	1260
tcggcgtcgc	ccagccccgg	ctacctgggt	cgcggagcgc	agccacca	ggagctgtgc	1320
gcctaccccg	aatggaaatc	cggggctctg	ctcagatctgc	cagagcctcc	gggtcgccgc	1380
ggtcgcctcg	actctgggccc	cctcttca	ttaagctct	tgggagagcc	ggagagcccg	1440
ggcacccgagg	gcgatgcag	caatggggc	tgcgacgcaa	cgaccgac	ggccaatggg	1500
cagcccggtt	tcaagagcaa	catgcctctg	gcacccgggc	acttttag		1548

<210> 11

<211> 1548

<212> DNA

<213> Syrian golden hamster

<400> 11

atgaatcccc	atctggacac	cggccacaac	acatcagcac	ctgcccata	gggagagtt	60
aaagatgcca	acttcactgg	ccccaaacca	acctcgagca	actccacact	gccccagctg	120
gacgttacca	gggcattatc	tgtgggcctg	gtgcgtggcg	ccttcatct	ctttgcatt	180
gtgggcacaca	tcctggtcat	cctgtcagtg	gcctgcata	ggcacctgcg	gacgcccacc	240
aactacttca	tttgtcaac	ggccatttgct	gacccgtctgt	tgattttac	agtctgc	300
ttctccgcta	ccctagaagt	gcttggctac	tgggttctgg	ggcgcata	ctgtgacatc	360
tgggcagcgg	tggacgtct	gtgcgttagc	gcctccatcc	tgagcctatg	tgccatctcc	420
attgataact	acattgggtt	gcgcatact	ctgcagtagc	ccactctgtt	cacccgcagg	480
aaggccatct	ttgcactcct	cagtgtgtgg	gtttgtcca	cggtcatctc	catcgggcct	540
ctctttggat	ggaaagaacc	agcgcacaa	gacgacaagg	aatgcggagt	caccaagaa	600
cccttctatg	cccttcttcc	ctccctggc	tccttctaca	tcccactc	gttattctg	660
gtcatgtact	ggccgggtcta	catcgtggcc	aaaggacca	caagaacac	ggaggctgga	720
gtcatgaagg	agatgtccaa	ctccaaggag	ctgaccctga	ggatccactc	caagaacttt	780
catgaggaca	ccctcagcag	taccaaggcc	aaggccaca	accccaggag	ttccatagct	840
gtcaaacttt	ttaagttctc	caggaaaaag	aaagcagcca	aaaccttgg	cattgtggc	900
ggaatgttca	tcttgtgtt	gctccccc	ttcatcgctc	tcccacttgg	ctccctgtt	960
tccacttca	agccccccgg	cgccgtgtt	aagggttat	tctggctgg	ctacttcaac	1020
agctgcctca	accatcat	ctacccgtgc	tccagcaagg	agttcaagcg	cgccttcatg	1080
cgtatcttg	ggtcgcgt	cgtatgtggc	cgtcggccgc	gcccggccg	tcgtctggc	1140
gcgtgcgtt	acacctatcg	gcccgtggac	cgcggcggct	cgctggagcg	atcgactcg	1200
cggaaaggact	ccctggacga	cagcggcagc	tgcatagtg	gcagccagag	gaccctgccc	1260
tcggcgtcgc	ccagccccgg	ctacctgggt	cgcggagcgc	agccacca	ggagctgtgc	1320
gcctaccccg	aatggaaatc	cggggctctg	ctcagatctgc	cagagcctcc	gggtcgccgc	1380
ggtcgcctcg	actctgggccc	cctcttca	ttaagctct	tgggagagcc	ggagagcccg	1440
ggcacccgagg	gcgatgcag	caatggggc	tgcgacgcaa	cgaccgac	ggccaatggg	1500
cagcccggtt	tcaagagcaa	catgcctctg	gcacccgggc	acttttag		1548

<210> 12

<211> 1080

<212> DNA

<213> Rattus norvegicus

<400> 12

atggccctta	actcttctgc	tgaagatgt	atcaaaaagaa	tccaaagatga	ctgccccaa	60
gctggcaggc	acagttacat	atttgcata	atccctaccc	tctacagcat	catcttgc	120
gtggaaatat	ttgaaacag	cttgggtgtt	attgtcattt	acttttacat	gaaggtgaag	180
actgtggcca	gcgtctttct	tctcaatctc	gccttggctg	actttagctt	tttgcgtact	240
tgtccctgt	gggcagtcta	taccgtatg	gagtaccgt	ggcccttcgg	caatcaccta	300
tgtaaagatcg	cttcggccag	cgtgacgtt	aacctctacg	ccagtgttt	ccttctcacg	360
tgtctcagca	tgcaccacta	cctggccatc	gtccacccaa	tgaatgtctg	ccttcggccgc	420
acgatgtgg	tggccaaatg	cacccgtcat	atcatctggc	tgatggctgg	cttggccagg	480
ttgcccagt	tcatccaccc	aaatgtatac	ttcatcgaga	acaccaat	cacagtgtgc	540
gcgtttcatt	atgagtctcg	gaattcgacg	ctccccatag	ggctgggcct	taccaagaat	600
attctgggct	tcttgttccc	tttccttata	atttcacca	gctataaccc	tatggaaa	660
gctctaaaga	aggcttatga	aattcaaaag	aacaaacccaa	gaaacgtatg	catctttagg	720
ataattatgg	cgattgtgt	tttcttcttc	ttttcttggg	tcccccacca	aatattcact	780
ttccatggatg	tgtgtattca	gctgggcgtc	atccatgact	gtaaaaattt	tgacatcg	840
gacactgcca	tgcccatcac	catctgcata	gcgtatTTTA	acaactgcct	gaaccctcg	900
ttctacggct	ttctggggaa	gaaatttaaa	aagtatTTCC	tccagctct	gaaatatatt	960
cccccaaagg	ccaagtcctca	ctcaagcctg	tctacgaaaa	tgagcacgt	ttcttaccgg	1020
ctttcggata	acatgagctc	atcgccaaa	aagcctgcgt	tttgcatttga	ggtggagtg	1080

033072-022.ST25