

TITULO DEL TRABAJO: Act. Preliminar: Investigación de redes de Computadoras

NOMBRE DEL ALUMNO: Alexis valencia Ramírez

UNIVERSIDAD AUTONOMA DE CHIAPAS

FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN

ASIGNATURA: Computo Distribuido

GRADO Y GRUPO: 8-. N

NOMBRE DEL DOCENTE:

FECHA: 15/Marzo/2024

LUGAR: Tuxtla Gutiérrez, Chiapas.

Los principales componentes de una red de cómputo según Black (1993) son:

- 1. Medios de comunicación: Incluyen cualquier cosa utilizada para transportar datos en forma de señales eléctricas, como líneas telefónicas, líneas dedicadas o canales LAN.
- 2. Macrocomputadoras: Son computadoras donde residen grandes bases de datos o información de una empresa bajo un ambiente centralizado.
- 3. Terminales de cómputo: Son dispositivos de entrada/salida de una computadora principal, como teclados, lectores ópticos o cámaras de video para la entrada, y monitores de video o impresoras para la salida.
- 4. Enrutadores: Son dispositivos que examinan las direcciones de la red y encaminan los paquetes al destino por la ruta más eficiente previamente determinada.
- 5. Modem: Dispositivo usado para convertir datos digitales seriales en señales analógicas para un canal telefónico, así como para reconvertir señales analógicas a digitales para ser usadas por una terminal receptora.
- 6. Multiplexores: Permiten que más de una terminal comparta la línea de comunicación, reduciendo el número de líneas usadas.
- 7. Estaciones de trabajo: Computadoras de alto rendimiento para un único usuario, utilizadas para diseño, ingeniería o aplicaciones científicas en un entorno de red.
- 8. Conmutadores: Dispositivos para comandar el flujo de señales eléctricas u ópticas.
- 9. Procesador central: Encargado de manejar el procesamiento de comunicaciones en un entorno de macrocomputadoras, conectando los canales de comunicación y la macrocomputadora.

Según Tanenbaum (1997), los modos de operación y conmutación en un enlace de comunicación son importantes en sistemas distribuidos. Aquí están los modos de operación comunes y los métodos de conmutación:

1. Modos de operación:

Comunicación simplex: Los datos viajan en una sola dirección.

Comunicación half-duplex: Permite que los datos viajen en ambas direcciones, pero solo una a la vez.

- Comunicación full-duplex: Los datos viajan simultáneamente en ambas direcciones.

2. Métodos de conmutación:

Conmutación de circuitos: Establece una ruta única e ininterrumpida entre dos dispositivos para la comunicación, ocupando la ruta exclusivamente durante la comunicación.

Conmutación de mensajes: No hay una ruta establecida de antemano entre el emisor y el receptor. Los datos se almacenan en centrales de conmutación y se transmiten un bloque a la vez.

Conmutación de paquetes: Divide los datos en paquetes que pueden viajar por múltiples rutas entre diferentes computadoras. No reserva ancho de banda y adquiere recursos según sea necesario.

Conmutación híbrida: Combina características de la conmutación de circuitos y la conmutación de paquetes para aprovechar sus ventajas, como la velocidad de conexión de la conmutación de circuitos y la flexibilidad de la conmutación de paquetes, como la conmutación por división de tiempo.

Estos modos y métodos son fundamentales para entender cómo se transmiten y gestionan los datos en una red de comunicación.

Método de Conmutación	Ventajas	Desventajas
	Garantiza una ruta única e	Requiere recursos dedicados
	interrumpida	durante toda la comunicación.
	Mayor seguridad al establecer	Menos flexible en términos de
	conexiones exclusivas.	uso compartido de recursos.
Conmutación de Circuitos	Alta tasa de transferencia de	Menor escalabilidad para
	datos durante la conexión.	adaptarse a cambios en la
		red.
		No es eficiente para tráfico
		intermitente o esporádico.
	No requiere una ruta	Mayor latencia debido al
	establecida de antemano.	almacenamiento y
		retransmisión.
	Flexibilidad para enviar	Posible pérdida de mensajes
	mensajes de diferentes	si la red está congestionada.
Conmutación de Mensajes	tamaños.	
	Eficiente para tráfico	Menor tasa de transferencia
	intermitente o esporádico.	de datos en comparación.
		Menor seguridad al no
		establecer conexiones
	lande la	exclusivas.
Conmutación de Paquetes	Utiliza el ancho de banda de	Mayor complejidad en el
	manera eficiente.	enrutamiento y gestión de
	Mayor accelebilided rose	paquetes.
	Mayor escalabilidad para	Posible congestión de la red en momentos de alta
	adaptarse a cambios en la red.	demanda.
	Menor latencia al transmitir	Puede haber retrasos en la
	paquetes de manera	entrega si hay problemas de
	independiente.	enrutamiento.
	Mayor accesibilidad al	Menor seguridad en
	permitir el uso compartido de	comparación con la
	recursos	conmutación de circuitos.
	Combina ventajas de la	Mayor complejidad en la
Conmutación Híbrida	conmutación de circuitos y	implementación y gestión.
	paquetes.	, ,
	Permite adaptarse a	Puede haber una mezcla de
	diferentes tipos de tráfico y	ventajas y desventajas de
	necesidades.	ambos métodos.
	Mayor seguridad en	Requiere un diseño cuidadoso
	comparación con la	para maximizar las ventajas
	conmutación de paquetes	de ambos métodos.
	pura.	
	Mejora la tasa de	
	transferencia de datos en	
	comparación con la	

	conmutación de mensajes	
	pura.	