Circus Cookie Machine - typechecking

Leo Freitas

March 2008

```
{\bf section} \ \ circus\_cookies \ {\bf parents} \ \ circus\_tookit
   cookie Value, cookie Quantity, MAX\_QUANTITY: \mathbb{N}
\mathit{COOKIE} ::= \mathit{ok} \mid \mathit{notok}
channel in, change : \mathbb{N}
{\bf channel}\ out: COOKIE
process CookieMachine = begin
   State \_\_
   money, quantity: \mathbb{N}
   \overline{quantity} \le MAX\_QUANTITY
state State
   OutputCookieOk \_
   \Delta State
   o!: COOKIE
   money \geq cookie Value
   quantity > 0
   money' = money - cookie Value
   quantity' = quantity - 1
   o! = ok
```

It is not a total operation because there might not be enough money.

```
OutputCookie == OutputCookieOk \lor OutputCookieNotOk
```

Schema expressions as actions.

```
InitState \ \widehat{=} \ \left( [ State' \mid money' = 0 \land quantity' = cookieQuantity ] \right)
```

Note this will generate type error for InputMoney because x? is not into scope.

```
The next line is not being parsed...
```

```
\begin{split} &InputMoney \ \ \widehat{=} \ \ \big( [\Delta State; \ x? : \mathbb{N} \mid money \leq cookie Value \wedge money' = money + x?] \big) \\ &InputMoney \ == \\ & [\Delta State; \ x? : \mathbb{N} \mid money \leq cookie Value \wedge money' = money + x?] \\ &Input \ \ \widehat{=} \ \ \big( money \leq cookie Value \big) \otimes \ \ in \ ?x \longrightarrow \big( InputMoney \big) \end{split}
```

The parser also admits some special commands that are tokenised as hard spaces, such as \circblockbegin , \circblockbegin ,

```
Output \ \widehat{=} \ (money \ge cookieValue) \& \\ (\mathbf{var} \ o: COOKIE \bullet (OutputCookie); \ (out ! o \longrightarrow change ! money \longrightarrow \mathbf{Skip}))
```

• var o! : COOKIE • OutputCookie

end

Z Declarations	Total
Unboxed items	4
Axiomatic definitions	1
Generic axiomatic defs.	0
Schemas	3
Generic schemas	0
Theorems	0
Proofs	0
Total	8
Circus Declarations	Total
Circus Declarations Channel decls.	Total 2
	2000
Channel decls.	2
Channel decls. Channel set decls.	2 0
Channel decls. Channel set decls. Process decls.	2 0 1
Channel decls. Channel set decls. Process decls. Process ref. assertions	2 0 1 0
Channel decls. Channel set decls. Process decls. Process ref. assertions Name sets	2 0 1 0 0

Table 1: Summary of all *Circus* declarations.