医学 DR 图像基本阅片项目

软件开发报告

日期	修订版本	修订描述	作者	审核
2021-11-20	1.0	初稿	邹刘文	邹刘文
2021-11-23	2.0	补充	邹刘文	邹刘文
2021-11-28	3.0	完善	邹刘文	邹刘文

作者:	<u> </u>
版本:	3.0
日期:	2021-11-28

目录

1 系统概述
1.1 系统标识3
1.2 系统概要说明3
1.3 系统用户定位3
2 系统需求分析 3
2.1 功能性需求3
2.2 非功能性需求5
3 系统设计5
3.1 系统总体设计5
3.1.1 技术架构总体设计5
3.1.2 页面总体设计6
3.1.3 功能模块总体设计6
3.2 系统详细设计6
3.2.1 系统界面详细设计6
3.2.2 系统功能模块详细设计8
4 系统开发12
4.1 编码规范12
4.2 开发平台12
5 系统测试
6 系统成果展示及分析
6.1 图像文件管理14
6.2 图像基本信息获取17
6.3 图像缩放20
6.4 图像旋转21
6.5 图像灰度窗映射21
6.6 图像增强24
6.7 图像重置26
7 参考资料

1 系统概述

1.1 系统标识

医学 DR 图像基本阅片软件 v 1.0

1.2 系统概要说明

本系统主要提供对 DR(digital radiography,DR)类医学图像的基本功能支持。主要包括 DR 图像文件管理、图像基本信息获取、图像缩放、图像旋转、灰度窗映射、图像增强(细节增强、对比度增强)、图像重置这7类功能。特别需要指出的是,这里 DR 图像的文件格式并非标准格式,而是由用户自定义,需要由用户提前告知开发人员。

本系统由《数字图像处理基础》授课老师鲍老师提出,经由软件开发人员邹刘文完成。

1.3 系统用户定位

本系统主要面向两类用户。第一类是需要使用 DR 图像问诊的相关医生,本系统可以增强医生对图像的理解;第二类是从事医学图像处理研究的科研人员,本系统能通过 GUI 来显式呈现算法的研究结果。

2 系统需求分析

2.1 功能性需求(Functional Requirement,简写为 FR)

图 2-1 功能性需求结构图

功能模块	需求编号	需求名称	需求描述
FR1 图片文	// · · // ·	打开文件夹	读取文件夹下所有后缀名为
件管理	1711-1		raw 的图片文件,将文件列表显示
件官理			
			在界面;默认显示文件夹下的第一
			张图片;手动选择文件列表中的文
			件,然后显示
	FR1-2	打开单一文件	读取某一指定图片文件并显
			示
	FR1-3	保存文件	保存对原图像的所有操作,覆
			盖原图像
	FR1-4	另存为	将对原图像的所有操作另存
			为另外一个图像,不覆盖原图像
FR2 图片基	FR2-1	获取尺寸信息	获取图像的高度和宽度
本信息获取	FR2-2	获取灰度信息	获取图像的灰度值区间范围,
			利用灰度直方图显示图片灰度信
			息分布
FR3 图像缩	FR3-1	缩小指定倍数	图片按照指定倍数缩小
放	FR3-2	放大指定倍数	图片按照指定倍数放大
FR4 图像旋	FR4-1	旋转指定角度	图片按照指定角度旋转
转			
FR5 灰度窗	FR5-1	调整窗宽和窗	在合理的窗位和窗宽范围内
映射		位	取值(合理窗宽的范围会随着窗
			位的改变而变化),从而调整图片
			的灰度分布,
FR6 图像增	FR6-1	细节增强	增强图像的细节而不放大原
强			有噪音
FR7 图像重	FR7-1	重置所有操作	撤销对图像的所有操作,展示
置			最初始的图像

2.2 非功能性需求(Non-Functional Requirement,简写为 UFR)

非功能性需求类 别	需求编号	需求名称	需求描述
	UFR1-1	风格一致	同类界面元素有相同的视觉和相同的
UFR1 用户界面			操作方式
需求	UFR1-2	操作易用	无错误文字、图标直观明了、界面结
			构清晰
	UFR1-3	及时反馈	用户进行某项操作后,系统能够及时
			给出处理信息
	UFR1-4	布局合理	界面总体布局具有逻辑性,与工作流
			程吻合
	UFR1-5	放错处理	合理的错误避免和纠正,如检验、警
			告
UFR2 运行时间	UFR2-1	图像加载	对自定义格式的 raw 图像文件的读取
需求		迅速	和显示在 3s 以内
	UFR2-2	图像操作	对自定义格式的 raw 图像文件的图像
		迅速	处理操作和显示在 1s 以内
UFR3 可拓展性	UFR3-1	多种自定义	当有多种自定义图像格式的时候,用
需求		图像格式读	户可以在界面上显式地选择预定义的
		取	读取选项,系统将根据选中的读取方
			式来解析 raw 文件

3 系统设计

3.1 系统总体设计

3.1.1 系统技术架构总体设计

图 3-1 技术架构总体设计图

3.1.2 页面总体设计

图 3-2 页面总体设计

3.1.3 功能模块总体设计

与系统需求结构图一一对应。

3.2 系统详细设计

3.2.1 系统界面详细设计

系统界面由如下图所示的**主菜单区(1)、文件快捷打开区(2)、图像处理工** 具面板区(3)、图像显示区(4)这四个区域组成。

其中主**菜单区主要对应于图像文件管理需求模块(FR1)**,文件快捷打开区是主菜单部分功能的快捷方式**:图像处理工具面板区对应于**图像基本信息获取(FR2)、图像缩放(FR3)、图像旋转(FR4)、灰度窗映射(FR5)、图像增强(FR6)、图像重置(FR7)需求模块**:图像显示区主要实时展现图像处理结果**。

图 3-3 系统界面区域划分图

图 3-4 主菜单区详情

图 3-5 图像处理工具面板区详情

3.2.2 系统功能模块详细设计

3.2.2.1 图像文件处理模块

7. 掛 44 /泊	フ世中	日存れたこと	
子模块编	子模块	具体设计	T
号	名称	操作流程	核心算法
Module1-1	打开文	点击"Folder"按	raw 类型文件的读取和显示:
	件夹	钮,选择包含	a) 使用文件字节流的方式来读取
		raw 文件类型的	raw 文件, 1-4 字节、5-8 字节按
		文件夹,点击	照其小端存储的方式直接读取出
		"OK";选择左	图像的宽度 w 和高度 h, 据此构
		侧文件列表中	造 h * w 的灰度矩阵; 然后 每两
		的一项点击,右	个字节按照小端方式读取低 12
		侧图像显示区	位的值作为 1 个像素值,将这些
		域展示选中的	像素值按顺序存储进数组。
		图像	b) Windows 系统不能显示 12 位的
Module1-2	打开单	点击 "File" 按	灰度图,故需要将原始图像灰度
	一文件	钮,选择一个后	范围线性映射到【0,255】,映射
		缀名为raw的文	后的图像用于显示。
		件,点击确定;	
		右侧图像显示	
		区域展示图像	
Module1-3	保存文	点击菜单项	raw 文件类型的写入:
	件	"File",然后再点	使用文件字节流的方式来写入 raw 文
		击 "Save" 子菜	件,先将当前操作后图片的 width 和
		单	height 按照小端存储的方式分别向文
Module1-4	另存为	点击菜单项	件中写入4字节,然后对于每个像素
Triodule 1 -4	71,11 7.3	"File",然后再点	的灰度值,同样按照小端存储的方式
		击"Save As",在	每次向文件中写入2个字节。
		弹出的文件对	
		话框内选择保	
		存位置并填写	
		文件名,最后点	
		击"OK"	

3.2.2.2 图像基本信息获取模块

子模块编	子模块名称	具体设计	
号		操作流程	核心算法
Module2-	获取尺寸信	点击工具面板上	直接获取图像数组的 shape
1	息	的 "Basics" 选 项	即可
		卡,点击下方的	
		"Basic Info"接	
		钮,弹出图像基	
		本信息框	
Module2-	获取灰度信	点击工具面板上	利用 np.histogram 函数
2	息	的 "Basics" 选 项	
		卡,点击下方的	
		"Histogram" 按	
		钮,弹出图像灰	
		度直方图	

3.2.2.3 图像缩放模块

子模块编	子模块	具体设计	
号	名称	操作流程	核心算法
Module3-1	缩小指	点击工具面板上的	cv2.resize 函数
	定倍数	"Scaling"选项卡,向	
		左滑动到某一倍数	
		位置	
Module3-2	放大指	点击工具面板上的	cv2.resize 函数
	定倍数	"Scaling"选项卡,向	
		右滑动到某一倍数	
		位置	

3.2.2.4 图像旋转模块

子模块编	子模块名称	具体设计	
号		操作流程	核心算法
Module3-	旋转指定角	点击工具面板上	cv2.rotate 函数
1	度	的"Rotation"选项	
		卡,向右滑动到某	
		一角度	

3.2.2.5 图像灰度窗映射模块

子模块编	子模块名称	具体设计	
号		操作流程	核心算法
Module5-	调节窗宽和	当读入图片以后, 窗位滑	线性灰度窗映射:
1	窗位	动条的范围为(图像最小	相当于分段映射函
		灰度值+1,图像最大灰度	数,值在滑窗之外且
		值-1),初始位置为最左	在左侧,则映射为0;
		端;窗宽滑动条的范围为	值在滑窗之外且在
		(2,图像灰度区间长	右侧,则映射为255;
		度),初始位置为最左端。	值在滑窗之内,则先
			利用最大最小值归
		移动窗位滑动条,窗宽滑	一化归一到[0,1],再
		动条的范围会自动发生	放大至[0,255]区间。
		改变,默认此时的窗宽位	
		置自动调整到最右端;移	为了加快运算速度,
		动窗宽滑动条,窗位保持	使用 np.select 向量
		不变。滑动条移动时,图	化方式来替代多重
		像都会更新。	循环,能够缩短时间
			至 0.5s 以内

3.2.2.6 图像增强模块

	具体设计	
块编 块名 号 称	操作流程	核心算法

Modu 细节 点击工具 面板上的 "Enhance ment" 选 项卡,点 击下方的 "Homomo rphicFilte-r"按钮,得 到细节增 强后的图

像

同态滤波算法[1][2]:

a) 适用场景:

属于图像频率域处理范畴,其作用是对图像 灰度范围进行调整,通过消除图像上照明不 均的问题,增强暗区的图像细节,同时又不 损失亮区的图像细节

b) 算法原理:

图像可以分解为**照射分量和反射分量的乘** 积,即:

$$f(x,y) = i(x,y) \cdot r(x,y)$$

同态滤波的整个流程可以分为 3 步概括: 1) 利用对数来分离照射分量和反射分量, 然后映射到频率域:

$$z(x, y) = \ln(f(x, y) + 1)$$
$$= \ln i(x, y) + \ln r(x, y)$$

$$Z(u,v) = Fi(u,v) + Fr(u,v)$$

2)构造滤波器然后进行滤波:这里的滤波器通常是基于高斯高通滤波器来构造(c 控制滤波器的形态,即从低频过度到高频的陡峭程度, d_0 为截至频率参数, G_h 、 G_l 、 H_h 、 H_l 用 于 控 制 频 率 区 间 , 且 $G_h > 1, H_h > 1, G_l < 1, H_l < 1$)

$$H_g(u,v) = (G_h - G_1)e^{-\frac{\operatorname{cd}^2(u,v)}{2d_0^2}} + G_l$$

$$H(u,v) = (H_h - H_l)H_g(u,v) + H_l$$

$$S(u,v) = H(u,v)Z(u,v)$$
$$= H(u,v)Fi(u,v) +$$
$$H(u,v)Fr(u,v)$$

3)映射回空间域,并合并照射分量和反射分量:

$$s(x, y) = IDFT(S(u, v))$$

$$g(x,y) = e^{s(x,y)} - 1$$

参数选择:

Gh 设置为 2, Gl 设置为 0.5, Hh 设置为 2,
H1 设置为 0.7, c 设置为 4, d0 设置为 17.
a) d0 设置的理由: 截至频率越低,对比度越高, 图像越清晰,但是会有细节丢失;截止频率 越高,对比度越低,图像更模糊但是更平滑, 但是图像细节会保留得多一点。经过实验将 d0 设置为 17 时图片既具有较好的对比度又 没有丢失细节。 b) H _I 和 H _h 设置的理由: H _I 一般设置为 0.5, H _h 一般设置为 2,但是在此问题中经过实验 发现 H _I 设置为 0.5 时, lung.raw 和 lumbar.raw 大量区域变亮,灰度细节消失, 对比度过高,故增加 H _I 使得对比度减小。

3.2.2.7 图像重置模块

子模块编	子模块名称	具体设计	
号		操作流程	核心算法
Module7-	重置所有操	点击工具面板上	设置两类变量,一类用于存
1	作	的 "Reset" 选 项	储最开始读入的图片数据
		卡, 然后点击下	origial_img,另一类用于存储
		方 "Reset All" 按	经过各种操作后的图片数据
		钮,得到对比度	cur_img,重置时将cur_img重
		增强后的图像	新赋值为 original_img

4 系统开发

4.1 编码规范

Python3.8 编码规范、PySimpleGUI 4.55.1 编码规范^[3]

4.2 开发平台

Pycharm 2020.1.25

5 系统测试

用例编号	用例内容	预期输出	实际输出 == 预期输出
UC1.1	打耳 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	正确显示原图像	True
	打开 lung.raw 文件		
UC1.2	另存为 lung2.raw 文	成功且正确保存	True
	件		
UC2.1	显示 lung.raw 图像信	显示宽为 1500, 高为	True
	息	1534	
UC2.2	显示 lung.raw 灰度分	正确显示,灰度在250-	True
	布	200 之间	
UC3.1	缩小 lung.raw 图像到	显示的图片缩小	True
	50%		
UC3.2	放大 lung.raw 图像到	显示的图片放大	True
	200%		
UC4.1	旋转 lung.raw 图像 60	图片顺时针旋转对应	True
	度	角度	
UC5.1	不断向右滑动窗位位	窗宽范围自动变化,	True
	置	图片灰度发生相应变	
		化	
UC5.2	窗位不动, 滑动窗宽	图片灰度发生相应变	True
	位置	化	
UC6.1	对 lung.raw 图像进行	图片对比度增加,细	True
	同态滤波	节变清晰	
UC7.1	图像重置	图片恢复到初始状态	True

6 系统成果展示及分析

6.1 图像文件管理

图 6-1 lumbar.raw 读取

图 6-2 lung.raw 读取

图 6-3 vertebra.raw 读取

图 6-4 lumbar.raw 缩小 0.3 倍后另存为

6.2 图像基本信息获取

图 6-5 lumbar.raw 图像基本信息

图 6-6 lumbar.raw 灰度直方图

图 6-7 lung.raw 图像基本信息

图 6-8 lung.raw 灰度直方图

图 6-9 vertebra.raw 图像基本信息

图 6-10 vertebra.raw 灰度直方图

分析:三张图片都具有相同的图像尺寸, vertebra.raw 和 lumbar.raw 的灰度范围都是【0,4095】,而 lung.raw 的灰度范围是【27,4095】;

通过比较灰度直方图,可以发现 lumbar.raw 的灰度范围集中在【1250,2750】, lung.raw 的灰度范围集中在【250,1500】, vertebra.raw 的灰度范围集中在【250,

1000】,也就说 lumbar.raw 的灰度以中间灰度值为主,且灰度区间范围大,而 lung.raw 和 vertabra.raw 都集中在低灰度段,且灰度区间比较狭窄。

6.3 图像缩放

图 6-11 lumbar.raw 图像缩小 0.4 倍

图 6-12 lumbar.raw 图像放大 1.5 倍

6.4 图像旋转

图 6-13 lumbar.raw 图像顺时针旋转 60 度

6.5 图像灰度窗映射

图 6-14 窗位沿着 939->1212->2269 变化时 lumbar.raw 图像的变化

图 6-15 窗位固定在 2269, 窗宽从 3652->2664 变化时 lumbar.raw 图像的变化分析:

窗宽和窗位对图片操作的影响会受到图片本身灰度分布的影响。

针对 lumbar.raw 这种图片,由前分析知其灰度集中在【1250,2750】区域。 当窗位沿着 939->1212->2269 变化,而其窗宽取得对应最大值时,可以发现图像 变得越来越暗,这是因为从 939->1212->2269,窗口中心不断右移,其对应的最

大窗宽值也越来越大,窗口内的像素会被更多的映射到【0,255】的低灰度段内 (这时候窗口外的区域较窗口内的区域要小很多,可以忽略其影响);

当窗外固定在 2269 不变,而窗宽从 3652->2664 变化时,可以发现图像同样变得越来越暗,这是因为 lumbar.raw 图像的像素大多数在 2269 这个窗位的左侧,缩小窗口会让窗口左侧的大量像素点被映射到 0,这时候窗口外的像素点对图像起到了主要影响。

6.6 图像增强

图 6-16 经同态滤波增强后的 lumbar.raw 图像

图 6-17 经同态滤波增强后的 lung.raw 图像

图 6-18 经同态滤波增强后的 vertebra 图像

分析:可以看出经同态滤波处理之后:三张图片的对比度都有明显的提升,从肉眼观察来说出现更多比较亮的区域;同时三张图片的清晰度明显提升,具体表现在腰部脊柱的轮廓、胸腔处的肋骨连接、脊椎侧面的骨头轮廓线。

6.7 图像重置

图像恢复到刚读入时的界面,同图 6-1、图 6-2、图 6-3。

7参考资料

- [1]https://blog.csdn.net/wujuxKkoolerter/article/details/95088851
- [2]https://blog.csdn.net/HUSTLX/article/details/50817827
- [3]https://pysimplegui.readthedocs.io/en/latest/cookbook/