SURFACE DEFECTS IN THE O(N) MODEL

Maxime Trépanier, based on [1]

INTRODUCTION

Why surfaces?

One of the simplest example of an interacting CFT is the d dimensional $\mathcal{O}(N)$ model

$$S = \int d^d x \left[\frac{1}{2} \left(\partial_{\mu} \varphi^i \right)^2 + \frac{\lambda}{4!} \left(\varphi^i \varphi^i \right)^2 \right] . \tag{1}$$

This theory is conformal when setting $\tilde{\lambda}$ to a critical value λ_* , and, for d=3, is believed to describe many critical phenomena.

In addition to local operators, the theory contains extended operators describing defects. Here I am interested in surface defects, which are operators defined over a two-dimensional plane. At d=3 these objects correspond to interfaces and have attracted a lot of attention in the past, in particular there are three (conformal) interfaces known as the special, ordinary and extraordinary transitions. By studying surface defects more generally for any d and N, I reproduce these 3 known defects and find new ones in the ϵ expansion around d=4,6. Perhaps they play a role in d=3 as well in describing critical phenomena.

The strategy we adopt to construct surface defects is simple. We can integrate local operators over a plane with coefficients \boldsymbol{u}^I

$$D = \exp\left[-\int_{\mathbb{R}^2} d^2 \tau u^I \mathcal{O}_I\right]. \tag{2}$$

The coupling constants u^I get renormalised and give rise to a defect RG flow. Their beta function at small u

is known to be

$$\beta_{u^I} = (\Delta_{\mathcal{O}_I} - 2)u^I + \pi C^I{}_{JK}u^J u^K + \dots$$
(3)

where $\Delta_{\mathcal{O}}$ are the conformal dimensions and C the structure constants. We then obtain the conformal defects we want by tuning u^I to the zeros of these beta function.

The anomaly coefficients

One of the simplest characterisation of surface defects is by their conformal anomaly. For a defect defined over a surface Σ , the anomaly appears a UV divergence

$$\log \langle D_{\Sigma} \rangle \sim \frac{\log \tilde{\epsilon}}{4\pi} \int \operatorname{vol}_{\Sigma} \left[a \, \mathcal{R}^{\Sigma} + b_1 \operatorname{tr} \tilde{\mathbf{I}}^2 + b_2 \operatorname{tr} W + c(\partial n)^2 \right] \,, \tag{4}$$

where $\tilde{\epsilon}$ is a UV cutoff, and \mathcal{R}^{Σ} , $\operatorname{tr} \tilde{\operatorname{I\hspace{-.07cm}I}}^2$, $\operatorname{tr} W$, $(\partial n)^2$ are conformal invariants depending on the geometry of Σ .

The anomaly coefficients a, b_1, b_2, c do not depend on the geometry and are numbers that appear in many observables and can be calculated using e.g. perturbative methods. They are also constrained by unitarity, and in particular, a satisfies an a-theorem

$$a_{UV} > a_{IR} \,, \tag{5}$$

while $b_1, -b_2, c$ are constrained to be positive.

SYMMETRIC DEFECT

Large N analysis

To study defects across dimensions, a convenient tool is the large N expansion. Using the Hubbard-Stratanovich transformation, we can rewrite (1) in terms of the auxiliary field σ

$$S = \int d^d x \left[\frac{1}{2} \left(\partial_{\mu} \varphi^i \right)^2 + \frac{1}{2\sqrt{N}} \sigma \varphi^i \varphi^i - \frac{3}{2N\lambda} \sigma^2 \right]. \tag{6}$$

At large N, σ is promoted to a dynamical field, and to leading order it has dimension 2, so naturally gives rise to a surface operator

$$D_N = \exp\left(-\int d^2\tau h \,\sigma(\tau)\right) \,. \tag{7}$$

From the beta function (3) we find a fixed point of the dRG flow

$$h_* = \frac{2 - \Delta_{\sigma}}{\pi C^{\sigma}_{\sigma\sigma}} + \dots$$
 (8)

where $\Delta_{\sigma}, C^{\sigma}{}_{\sigma\sigma}$ are known quantities (see the result in figure 1) on the left.

- h_* is akin to a mass term for φ^i , and should be positive. When $h_* < 0$ we expect spontaneous breaking where φ^i acquires a VEV.
- The theory can be studied perturbatively using $\epsilon = 4 d$ ($\epsilon = 6 d$) as a small parameter. The defect operator (7) can be studied there as well, and agrees with the large N result.
- An interesting feature of figure 1 is the divergence at d=3. This happens because $C^{\sigma}_{\sigma\sigma}$ vanishes to leading order at large N. The divergence signals a change in scaling with respect to N, and we expect that including subleading corrections to the beta function would yield a finite value $h_* \sim \sqrt{N}$, in agreement with the **ordinary** transition.
- The anomaly coefficient a can be obtained by calculating the expectation value of the spherical defect. To leading order in N, the result is

$$a = \frac{C_{\sigma}^3 (\Delta_{\sigma} - 2)^3}{6C_{\sigma\sigma\sigma}^2}.$$
 (9)

A plot of a(d) is presented in figure 1 on the right. This is in agreement with the a-theorem. Between 2 < d < 4, the coupling h flows from h = 0 (UV fixed point) to $h = h_*$ (IR fixed point). Correspondingly $a_{IR} < 0$. Between 4 < d < 6 the defect is instead the UV fixed point of a dRG flow, and $a_{UV} > 0$.

SYMMETRY BREAKING DEFECTS

We can find more defects by allowing couplings breaking the $\mathcal{O}(N)$ symmetry. Here I discuss two cases.

Breaking to
$$O(N-1)$$

The breaking $O(N) \to O(N-1)$ is naturally realised by coupling the defect to one of the scalar field φ^i .

$$D = \exp \left[-\int \mathrm{d}^2 \tau \left(h\sigma + u^i \varphi^i \right) \right] . \tag{10}$$

Such defects are expected to describe the **extraordinary** transition in d=3. They are easy to analyse near d=6, since there both σ, φ^i have $\Delta \sim 2$, so the zeros of the beta functions (3) are perturbative. We find the perturbative fixed point (with $\epsilon=6-d$)

$$h_* = -\frac{1}{2} \sqrt{\frac{\pi \epsilon}{6N}} \left[1 - \frac{24}{N} - \frac{286}{N^2} + \dots \right], \qquad u_*^2 = -\frac{\pi N \epsilon}{12} \left[3 + \frac{356}{N} + \frac{184652}{N^2} + \dots \right]. \tag{11}$$

Breaking to $O(p) \times O(N-p)$

Below d=4, one can construct a new class of defects. Consider the general coupling

$$D_p = \exp\left[-\int_{\mathbb{R}^2} d^2 \tau h_{ij} \varphi^i \varphi^j\right], \tag{12}$$

We can reduce h_{ij} to its set of eigenvalues. It turns out that there are fixed points with two distinct eigenvalues: $h_{p,+}$ and $h_{N-p,-}$, respectively of multiplicity p and N-p, where (with $\epsilon=4-d$)

$$h_{p,\pm} = (2\pi\epsilon) \frac{(N+3-p)\pm\Delta}{N+8} + \dots, \qquad \Delta^2 = 9 - p(N-p).$$
 (13)

- For $N < N_c$ (and $N_c = 6$ to first order in perturbation theory), there are real fixed points for any $0 \le p \le N$. These are new unitary defects that are saddle points of the dRG flow (see figure 2).
- Above N_c , there is a window 6 < N < 10 where the defects with p = N 1 are unitary and stable.
- At N=6, the defects with p=3,4,5,6 all coincide. This is the first example of four fixed points colliding that I know of!

Figure 2: Example of a defect RG flow for surface defects in the O(2) model. The vector field is $-\beta(h_1,h_2)$ given in terms of the eigenvalues h_1,h_2 . There is a \mathbb{Z}_2 symmetry exchanging $h_1 \leftrightarrow h_2$. The 3 fixed points are D_0 , D_1 and D_2 , their values of h's are given in (13). The black lines indicate the stable manifold.

OUTLOOK & HOLOGRAPHY..?

Outlook

- The O(N) model is the simplest example of an interacting CFT, yet it still contains a rich array of defects. Can they be classified?
- The value of h_* for the symmetric defect changes drastically at d=3, and it would be interesting to understand if there is a deeper reason behind it.
- In addition to reproducing the known defects in 3d (special = trivial defect, ordinary, extraordinary), we found new symmetry breaking defects in the $\epsilon=4-d$ expansion, and some indications of fixed points near d=6. Do they exist also in 3d?
- ullet Symmetry breaking defects seem to be unitary only for small values of N. It would be interesting to clarify if this is a general feature of symmetry breaking defects, and what is the physical interpretation.

What about holography?

Reference

Both the free and critical 3d O(N) models are conjectured to be dual to Vasiliev's higher spin theory on $(A)dS_4$. This is another (perhaps less understood) example of a holographic duality.

Unlike the better known cases of holography in string theory, we don't know of any extended objects in higher-spin theory, so finding the holographic dual to any defect is challenging! The symmetric surface defect introduced here may be an excellent starting point for such a programme because they are invariant under the $\mathcal{O}(N)$ symmetry.

[1] M. Trépanier, "Surface defects in the $\mathcal{O}(N)$ model," arXiv:2305.10486.

