

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electromagnetic 5: Induction Part C

Instructor: Dikun Yang Feb – May, 2019

Lalor VMS Mine

EM Surveys at Lalor

- HELITEM
- Jessy HTS SQUID
- ZTEM
- VTEM
- UTEM3/UTEM5
- Borehole TEM (DigiAtlantis, Crone, Volterra)

- ELF
 - MT/AMT
 - DCIP
 - Ground FDEM

What do different surveys tell us about the mineral deposit at depth?

OUTLINE

- Capability: 3D inversion of EM data
- Select EM data sets at Lalor
 - Natural source: ZTEM
 - Airborne: HELITEM
 - Ground: SQUID
 - Borehole: Crone Pulse-EM
- 3D inversion results
- Unified model: Joint and cooperative inversion
- Conclusions

Geophysical Inversion

Inverse Problem as Parameter Estimation

Regularized (Pixel/Voxel) Inversion

Objective functional

$$\underset{\mathbf{m},\beta}{\text{minimize}} \quad \phi_d(\mathbf{m}) + \beta \, \phi_m(\mathbf{m})$$

Data misfit

$$\phi_d = \frac{1}{2} \sum_{i=1}^{N} \left(\frac{F_i(\mathbf{m}) - \mathbf{d}_i^{obs}}{\varepsilon_i} \right)^2$$

Model norm

$$\phi_m = \frac{1}{2}\alpha_s \int_{\Omega} \{\mathbf{w}_s(\mathbf{m} - \mathbf{m}^{ref})\}^2 dv + \frac{1}{2} \sum_{i=x,y,z} \alpha_i \int_{\Omega} \left\{\mathbf{w}_i \frac{\partial (\mathbf{m} - \mathbf{m}^{ref})}{\partial_i}\right\}^2 dv$$

Inversion Parameters

Forward modeling $F_i(\mathbf{m})$: solving the governing equations

Data uncertainty \mathcal{E}_i : relative weighting of data

Trade-off parameter β : balance wellness of data fitting and the complexity of model

Reference model \mathbf{m}^{ref} : a prior information about the model

Model norm weighting: α_s smallest model; α_i flattest model

Cell weighting W_s and W_i : amount of structure at each cell or cell faces

Inversion Work Flow

3D EM Modeling and Inversion

Computational complexity

EM Data Sets at Lalor

HELITEM:

- airborne
- time-domain

ZTEM:

- airborne
- frequency-domain
- natural source

SQUID:

- surface
- time-domain

PULSE-EM:

- borehole
- time-domain

Data Locations

Data Locations

Data Locations

ZTEM Data

Frequencies: 30, 45, 90, 180, 360, 720 Hz

ZTEM Data Fitting

ZTEM Model

HELITEM Data

Time Channel = 0.3 msec

Base frequency:

30 Hz

Tx moment:

1.9 millions Am²

Time channels:

0.0098 ~ 15.77 msec

Line spacing:

200 m

Issues:

Power line Cultural Noise

HELITEM Data Inversion

Pros:

- Good
 assessment on
 the overall
 conductivity
- Regional trend

Cons:

Conductor too deep?

SQUID TEM Data

Superconducting
QUantum
Interference Device

- Jessy Deep HTS (50 fT/VHz above 100Hz)
- High quality three-component B-field data
- Wideband data

SQUID Data vs. Coil Data

SQUID Data Fitting

SQUID Data Inversion Model

Pros:

- Deep penetration
- Discrete conductors
- Top of target

Cons:

- Localized information
- Conductivity overestimated?

Borehole Data: PULSE-EM

Data Fitting

PULSE-EM Inversion Model

PULSE-EM Inversion Model

Pros:

 High resolution close to the target

Cons:

- Localized information
- Complicated data...

Comparison of Cross Sections

Comparison of Depth Slices

Blind Inversions

- Four very different data sets inverted in 3D
- All models show the Lalor deposit at different scales
- Bad news: they look different...
- Good news: they bear independent information!
- Unified model: incorporating information from multiple data sets

Joint HELITEM + SQUID Model

- Top of the target stays the same
- Conductivity more realistic
- More compatible with regional trend

Cooperative ZTEM + SQUID Inversion

- Target more conductive (closer to typical VMS)
- Top of the target consistent with drill hole model

Lalor Case Study

- Four EM data sets at Lalor inverted in 3D: quantitative tool for interpretation
- The Lalor deposit is recovered but appears different in different surveys
- Attempt to obtain a unified model
 - Joint inversion
 - Cooperative inversion
- More plausible models can be recovered by incorporating multiple data sets