L. Vandenberghe January 14, 2016

EE236B homework #1 solutions

(a) Expanding the squares in the ith term of the cost function gives

$$(u_i - u_c)^2 + (v_i - v_c)^2 - R^2 = -2u_i u_c - 2v_i v_c + u_c^2 + v_c^2 - R^2 + u_i^2 + v_i^2$$

= $-2u_i u_c - 2v_i v_c + w + u_i^2 + v_i^2$.

This is linear in u_c , v_c , w, so we obtain a linear least-squares problem with variables $x = (u_{\rm c}, v_{\rm c}, w)$ and

$$A = \begin{bmatrix} -2u_1 & -2v_1 & 1\\ -2u_2 & -2v_2 & 1\\ \vdots & \vdots & \vdots\\ -2u_m & -2v_m & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} -u_1^2 - v_1^2\\ -u_2^2 - v_2^2\\ \vdots\\ -u_m^2 - v_m^2 \end{bmatrix}.$$

(b) The property follows from the normal equations $A^{T}(Ax - b) = 0$. Ax - b is an m-vector with components $-2u_iu_c - 2v_iv_c + w + u_i^2 + v_i^2$. Since the last column of A is all ones, the last equation of $A^{T}(Ax - b) = 0$ gives

$$0 = \sum_{i=1}^{m} \left(-2u_{i}u_{c} - 2v_{i}v_{c} + w + u_{i}^{2} + v_{i}^{2} \right)$$

$$= \sum_{i=1}^{m} \left((u_{i} - u_{c})^{2} + (v_{i} - v_{c})^{2} + w - u_{c}^{2} - v_{c}^{2} \right)$$

$$= \sum_{i=1}^{m} \left((u_{i} - u_{c})^{2} + (v_{i} - v_{c})^{2} \right) + m(w - u_{c}^{2} - v_{c}^{2}).$$

$$u_{c}^{2} + v_{c}^{2} - w = \frac{1}{m} \sum_{i=1}^{m} \left((u_{i} - u_{c})^{2} + (v_{i} - v_{c})^{2} \right) \ge 0.$$

Therefore

$$u_{\rm c}^2 + v_{\rm c}^2 - w = \frac{1}{m} \sum_{i=1}^m \left((u_i - u_{\rm c})^2 + (v_i - v_{\rm c})^2 \right) \ge 0.$$

The solution for the test problem is

$$R = 1.3214,$$
 $u_{\rm c} = -2.5671,$ $v_{\rm c} = 6.468.$

2. (a) Equal lamp powers. The figure shows $f_0(\gamma \mathbf{1}) = \max_k |\log(\gamma a_k^T \mathbf{1})|$ versus γ .

The minimum is reached at $\gamma = 0.3453$.

(b) Least-squares with saturation. We compute p as

$$p = A \setminus ones(n,1).$$

All coefficients of p are outside the feasible interval [0,1] and need to be rounded.

(c) Regularized least-squares. We compute p by solving a least-squares problem

p = [A; sqrt(rho)*eye(m)] \ [ones(n,1); sqrt(rho)*.5*ones(m,1)]. The smallest
$$\rho$$
 that gives a feasible p is $\rho = 0.2190$.

(d) Chebyshev approximation. We solve this problem using cvx.

```
cvx_begin
  variable p(m)
  minimize (norm(A*p-b, inf))
  subject to
     p >= 0
     p <= 1
cvx_end</pre>
```

(e) Piecewise-linear approximation. We solve this problem using cvx.

(f) Exact solution.

```
cvx_begin
  variable p(m)
  minimize (max([A*p; inv_pos(A*p)]))
  subject to
      p >= 0
      p <= 1
cvx_end</pre>
```

The results are summarized in the following table.

	Equal power	Sat. LS	Weighted LS	Cheb.	PWL	Exact
$\overline{p_1}$	0.3448	1	0.5004	1	1	1
p_2	0.3448	0	0.4778	0.1165	0.1896	0.2023
p_3	0.3448	1	0.0833	0	0	0
p_4	0.3448	0	0.0000	0	0	0
p_5	0.3448	0	0.4561	1	1	1
p_6	0.3448	1	0.4354	0	0	0
p_7	0.3448	0	0.4598	1	1	1
p_8	0.3448	1	0.4307	0.0249	0.1640	0.1882
p_9	0.3448	0	0.4034	0	0	0
p_{10}	0.3448	1	0.4526	1	1	1
$f_0(p)$	0.4693	0.8628	0.4439	0.4198	0.3664	0.3575

3. (a) If A=0, the matrix X is positive semidefinite if and only if for all u, v,

$$2u^T B v + v^T C v = \begin{bmatrix} u \\ v \end{bmatrix}^T \begin{bmatrix} 0 & B \\ B^T & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \ge 0.$$

Clearly, a sufficient condition is that B=0 and C is positive semidefinite. Taking u=0 shows that positive semidefiniteness of C is also necessary. To see that B=0 is necessary, take any v with $Bv\neq 0$ and choose u=-tBv. The quadratic form then reduces to

$$-2t\|Bv\|_{2}^{2} + v^{T}Cv$$

which is negative for sufficiently large t.

(b) We have

$$AA^{\dagger} = Q_{1}\Lambda_{1}Q_{1}^{T}Q_{1}\Lambda_{1}^{-1}Q_{1}^{T}$$

$$= Q_{1}Q_{1}^{T}$$

$$I - AA^{\dagger} = Q_{1}Q_{1}^{T} + Q_{2}Q_{2}^{T} - AA^{\dagger}$$

$$= Q_{2}Q_{2}^{T}.$$

The proofs of the identities $A^{\dagger}A = Q_1Q_1^T$ and $I - A^{\dagger}A = Q_2Q_2^T$ are similar.

(c) Suppose we sort the eigenvalues of A so that its eigenvalue decomposition can be written as

$$A = Q\Lambda Q^T = \left[\begin{array}{cc} Q_1 & Q_2 \end{array} \right] \left[\begin{array}{cc} \Lambda_1 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} Q_1 & Q_2 \end{array} \right]^T$$

with Λ_1 positive diagonal. Following the hint, the question can be reduced to showing that the block matrix

$$\left[egin{array}{cccc} \Lambda_1 & 0 & Q_1^T B \ 0 & 0 & Q_2^T B \ B^T Q_1 & B^T Q_2 & C \end{array}
ight]$$

is positive semidefinite. By the result in part (a), the matrix is positive semidefinite if and only if

$$Q_2^T B = 0, \qquad \left[\begin{array}{cc} \Lambda_1 & Q_1^T B \\ B^T Q_1 & C \end{array} \right] \succeq 0.$$

The first condition is equivalent to $(I - AA^{\dagger})B = 0$. Since Λ_1 is nonsingular, we can apply the Schur complement result for nonsingular A to the 2×2 block matrix. This gives the condition

$$C - B^T Q_1 \Lambda^{-1} Q_1^T B = C - B^T A^{\dagger} B \succeq 0.$$