Predictive Inventory Agent (PIA) Using OpenWebUI + LangGraph + Deepseek R1 / LLaMa 3.3
Solution Overview
This document outlines the architecture and integration flow for building a Predictive Inventory Agent (PIA) using the following technologies:
- User Interface: OpenWebUI
- Workflow Orchestration: LangGraph
- LLM Model: Deepseek R1 or LLaMa 3.3
- Retrieval Framework: LangChain-powered RAG
- Vector Database: Milvus
- Source Database: PostgreSQL
- Embedding Model: BGE / Instructor-XL / OpenAI Embeddings
The goal is to enable intelligent, predictive inventory responses based on sales and stock data using Retrieval-Augmented Generation (RAG) and LLM-based reasoning.
Architecture Diagram (Logical Flow)
User Query Initiation: The user submits a predictive inventory query via OpenWebUI.
2. LangGraph Entry Node: Receives the query and initiates workflow.

3. RAG Retrieval Node: Fetches relevant knowledge using two methods: - Vector Search from Milvus (contextual inventory knowledge) - SQL Queries from PostgreSQL (live inventory and sales data) 4. Decision Node: Validates if sufficient information has been gathered; loops back if needed. 5. LLM Node: The LLM (Deepseek R1 or LLaMa 3.3) predicts future demand and suggests restocking decisions. 6. LangGraph Exit Node: Outputs the summarized, actionable response back to OpenWebUI. ### Example PostgreSQL Schema -- Inventory Table CREATE TABLE inventory (item_id SERIAL PRIMARY KEY, item_name TEXT, stock_qty INTEGER, reorder_point INTEGER, lead_time_days INTEGER); -- Sales Table CREATE TABLE sales (sale_id SERIAL PRIMARY KEY, item_id INTEGER REFERENCES inventory(item_id), quantity_sold INTEGER, sale_date DATE

);

Vector Database (Milvus)
- Documents embedded: Product descriptions, SKUs, inventory policies
- Embedding Model: OpenAI, BGE, or Instructor models
- Integration: LangChain VectorStore abstraction
LangGraph Workflow
Node Type Description
Entry Node Receives query from OpenWebUI
RAG Node Performs hybrid retrieval from Milvus & PostgreSQL
LLM Node Uses Deepseek/LLaMa to infer predictions
Decision Node Validates and loops back if retrieval is insufficient
Exit Node Sends final response to UI
Sample User Query & Response
Query: "Do we need to reorder Amoxicillin 250mg in the next 10 days?"

Response:
"Based on current stock of 180 units, average daily sales of 15 units, and a lead time of 7 days, reordering within 3 days
is advisable to avoid stock-out."
Deployment Strategy
- Containers: All components dockerized
- Orchestration: Kubernetes for scalability (optional)
- LangGraph API: gRPC or REST
- Milvus & PostgreSQL: Stateful services
- LLM Hosting: Local Ollama or vLLM
Security & Governance
- Secure data access via API tokens and RBAC
- PostgreSQL access over SSL
- Audit trails of LLM responses (optional logging)
Conclusion
This integrated solution empowers business users to predict inventory requirements and automate restocking decisions

using conversational interfaces powered by LangGraph and state-of-the-art open-source LLMs. It combines real-time
data, semantic search, and AI reasoning into a seamless, user-friendly experience.