Assignment 2

Quantum Information and Computing Course 2022/2023

Massimo Colombo

Department of Physics and Astronomy "Galileo Galilei"

DEGREE IN PHYSICS

November 7, 2022

Exercise 1

Debugging subroutine: **print_matrix_debug**("matrix info, ... ", *debug*). It contains an IF statement that depends on the logical variable *debug*.

• logical :: debug = .true.

logical :: debug = .false.

```
Air-di-Massimo:Week_2 massimocolombo$ ./Exercise1
Debug mode is OFF
```

Fig. 1 STDOUT: Exercise1.f90 vs Debug variable.

Exercise 1 Assignment 2 2 / 6

Exercise 2, Part. 1

The second request is to implement a previous assignment's exercise in 5 points.

- (1) DOCUMENTATION can be read in the Read.me file.
- (2) COMMENTS can be read in the Exercise2.f90 code.
- (3) PRE- and POST- CONDITIONS:

```
IF (n_columns_AA /= n_rows_B8) THEN
    PRINT*, 'In order to do the matrix product the #columns of A has to be equal to #rows of B'
    STOP
END IF

subroutine comparing_matrix(AA, BB, nn, mm, eps)
    integer** err_counts

...

IF(ABS(AA(ii,jj) = BB(ii,jj)) > eps) THEN
    PRINT*, 'Entry (',ii, ',', jj,')', 'of the matrices are different'
    err_counts = err_counts + 1

...

IF(err_counts /= 0) THEN
    PRINT*, new_line('a'), 'There are', err_counts, 'entries that differ more than a value of', eps
    ELSE
    PRINT*, 'Matrices result the same up to a value', eps
...
```

Fig.2 Pre- and Post- Conditions

Exercise 2, Part. 1 Assignment 2 3 / 6

Exercise 2, Part. 2

(4) ERROR HANDLING: Possible errors may arise from the incorrect matrix-dimension STDIN. To prevent this, the IOSTAT command was exploited together with IF statements.

```
subroutine read_and_check_mat_dim(n_rows, n_columns)

READ(*,*, iostat = ierror) n_rows, n_columns

IF (ierror == 0) THEN

IF (n_rows < 0 .or. n_columns < 0) THEN ...

ELSE IF (int(n_rows) * int(n_columns) > 10**7) THEN ...

ELSE

RETURN
```

Fig.3 Error Handling.

- IOSTAT = 0, means the READ was executed flawlessly and all variables have received their input values.
- IOSTAT > 0, the previous READ has encountered some problem. A common problem is illegal data.
- IOSTAT < 0, it means the end of the input has reached. Under this circumstance, some or all of the variables in the READ may not receive input values.
- (5) CHECKPOINTS: Logical variable *Debug* as in Ex.1 together with PRINT(debug) subroutines.

Exercise 2, Part. 2 Assignment 2 4 / 6

Exercise 3, Part. 1

The goal is to construct a Derived Type related to Complex Matrices. It is possible to read in "Exercise3.f90" all the subroutines and functions that are associated with the Derived Types in Fig. 3.

```
type C_matrix
  complex*16, allocatable, dimension(:,:) :: elements
  integer*4, dimension(2)
end type C_matrix
type, extends(C_matrix) :: square_C_matrix
  complex*16 :: trace
end type square_C_matrix
```

Fig.4 Derived Types.

The choice of defining an extended type from the derived type C_matrix has been made to start understanding how the OOP feature works in Fortran. It has been possible to explore the definition of subroutines and functions that act through **INHERITANCE** or distinctly on the type and its extended one.

Exercise 3, Part. 1 Assignment 2 5 / 6

Exercise 3, Part. 2

To conclude, a subroutine that prints in a readable form a complex matrix into a file, has been added to the test program:

print_C_matrix_intofile(mat, name, unit):

- "Mat, name, unit" corresponds to the matrix, its name, and the unit associated with the output file, requested by the **OPEN** and **WRITE** commands.
- The subroutine splits the real and imaginary part of each entry, adds the imaginary unit *i*, and adds the coherent sign between them".

Matrix	di	mensions:	Rows =			4 Columns =			5					
Matrix	el	ements =												
0.65	+	0.69i	0.96	+	0.24i	0.72	+	0.89i	0.33	+	0.54i	0.41	+	0.92i
0.26									0.60		0.45:			
0.26	+	0.09i	0./3	+	0.81i	0.25	+	0.10i	0.62	+	0.45i	1.00	+	0.85i
0.90		0.34i	0.05	+	0.29i	0.96	+	0.63i	0.15	+	0.69i	0.25	+	0.28i
0.47	+	0.24i	0.69	+	0.29i	0.28	+	0.30i	0.28	+	0.43i	0.24	+	0.17i

Fig.5 Result.

Exercise 3, Part. 2 Assignment 2 6 / 6