Iris Classification Project Report

1. Introduction

The Iris dataset is one of the most famous datasets in machine learning. It contains 150 iris flowers across three species (Setosa, Versicolor, Virginica) described by four features: sepal length, sepal width, petal length, and petal width. The goal is to classify flowers into the correct species.

2. Tools and Technologies

- Python (VS Code, Jupyter Notebook)
- Libraries: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn

3. Dataset Exploration

- 150 samples (50 per species)
- Balanced dataset, no missing values
- Features: SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm

4. Exploratory Data Analysis (EDA)

- Petal features (length, width) provide strong class separation.
- Sepal features overlap between species.
- Pairplots, heatmaps, and boxplots confirm correlations and feature importance.

5. Data Preprocessing

- Split into features (X) and labels (y)
- Train-test split (80%-20%)
- StandardScaler applied to normalize features

6. Model Training

- KNN: Simple, effective, 100% accuracy with k=3
- Decision Tree: Easy to interpret, ~97-100% accuracy
- Random Forest: Robust, ~98-100% accuracy
- SVM: Strong generalization, ~97-99% accuracy

- Logistic Regression: ~92-95% accuracy

7. Model Evaluation

Metrics used: Accuracy, Precision, Recall, F1-score, Confusion Matrix

Example (KNN, k=3):

- Accuracy: 100%

- Precision, Recall, F1-score: 1.00 for all classes

8. Hyperparameter Tuning

- GridSearchCV applied to KNN

- Best parameter: k=3

9. Model Insights

- Feature importance (Random Forest): Petal length > Petal width > Sepal features
- Decision boundaries: Petal features separate species clearly

10. Conclusion

- KNN, Random Forest, and SVM performed best.
- KNN achieved 100% accuracy, but Random Forest and SVM are more robust.
- Logistic Regression less effective due to non-linear separability.

11. Future Improvements

- Deploy model as a web app (Flask/Django)
- Use PCA for dimensionality reduction and visualization
- Experiment with neural networks

This project demonstrates the complete ML workflow: data preprocessing, visualization, training, evaluation, tuning, interpretation, and reporting.