EPFL

MAN

Mise à niveau

Maths 1B Prepa-033(b)

Student: Arnaud FAUCONNET

Professor: Olivier WORINGER

Printemps - 2019

Chapter 3

Calcul différentiel

3.1 Dérivée d'une fonction

3.1.1 Définitions

Soit f définie sur un voisinage de x_0 , posons y = f(x). Une information **locale** sur le comportement de f sur un voisinage de x_0 est donné par le quotien

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{(x_0 + \Delta x) - x_0}$$

appelé le rapport de Newton de f en x_0 .

- Δx est l'accroissement de la variable indépendante x.
- Δy est l'accroissement correspondant liée à Δx .

$$\frac{\Delta y}{\Delta x} = \tan(x)$$
 est la pente

sécente passant par $(x_0,f(x_0))$ et $(x_0+\Delta x;f(x_0+\Delta x))$

En gardant x_0 fixe, on fait tendre $\Delta x \to 0$

Alors

$$x_0 + \Delta x \rightarrow x_0$$

et

$$f(x_0 + \Delta x) \to f(x_0)$$

si f est continue en x_0 , alors

$$\frac{\Delta y}{\Delta x}$$

est une FI de type " $\frac{0}{0}$ "

Trois cas peuvent se présenter

1.
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 n'existe pas

Exemple:

$$f(x) = \begin{cases} x \cdot \sin(x) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}, \quad x_0 = 0$$

$$2. \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = +\infty$$

Exemple:

$$f(x) = \sqrt[3]{x^3 + x}, \quad x_0 = 0$$

3.
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = a$$
, $(a \in \mathbb{R})$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{(2 + \Delta x)^2 - 2^2}{\Delta x} = 4$$

Définition: Soit f définie sur un voisinage de x_0 . On dit que f est dérivable en x_0 . Si

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

existe et on note $f'(x_0)$ cette limite.

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

est appelé **nombre dérivé** de f en x_0

La sécant s tends vers la "droite-limite" t.

$$\alpha \xrightarrow{\Delta \to 0} \varphi$$

Cette "droite-limite" est appelée la tangente à

$$y = f(x_0)$$
 en x_0

La pente m de la tangente vaut

$$m = \tan(\varphi) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$$

Donc l'équivalente de t s'écrit

Tangente de y = f(x)

$$t: y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

Théorème: Soit f définie sur un voisinage de x_0 . Alors

$$f$$
 dérivable en $x_0 \implies f$ continue en x_0

Démonstration f est dérivable en x_0 donc

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0)$$

$$\implies \lim_{\Delta x \to 0} \underbrace{\left(\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0)\right)}_{:=r(\Delta x)} = 0$$

Donc

$$\lim_{\Delta x \to 0} r(\Delta x) = 0$$

et

$$f(x_0 + \Delta x) = f(x_0) + \Delta x \cdot f'(x_0) + \Delta x \cdot r(\Delta x)$$

Et lorsque $\Delta x \to 0$, on a

$$\lim_{\Delta x \to 0} f(x_0 + \Delta x) = f(x_0) + \underbrace{\lim_{\Delta x \to 0} \Delta x \cdot f'(x_0)}_{\to 0} + \underbrace{\lim_{\Delta x \to 0} \Delta x \cdot r(\Delta x)}_{\to 0}$$

f est donc continue en x_0

⚠ La réciproque est fausse ⚠

Contre-exemple

$$f(x) = |x|, \quad x_0 = 0, \qquad \lim_{x \to 0} |x| = 0, \quad |x| \Big|_{x=0} = 0$$

donc |x| est continue en x=0

Mais

$$\lim_{\Delta x \to 0} \frac{|0 + \Delta x| - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$$

n'existe pas donc f(x) = |x| n'est pas dérivable en $x \to 0$.

Définitions:

• On dit que f est dérivable à gauche en x_0 , si

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

existe, on note ce nombre $f'(x_0^-)$ et il représente la pente de la demi-tangente à gauche en x_0 .

• de même f est dérivable à droite en x_0 , si

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

existe, $f'(x_0^+)$ et il représente la pente de la demi-tangente à droite en x_0 .

Exemple:

$$f(0^-) = -1$$

Définitions: Si $I \subset \mathbb{D}_f$

• Si f est dérivable en tout $x_0 \in I$, on définit:

$$f': I \to \mathbb{R},$$

$$x_0 \mapsto f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

appelé la fonction dérivée de f sur I.

• Si f est dérivable sur I, et si f' est continue sur I, alors on dit que f est continument dérivable sur I et on note $f \in \mathbb{C}^1$

3.1.2 Règles de dérivation

(C.f. exercice facultatif série 8)

Soient f et g dérivable sur $I \in \mathbb{D}_f \cap \mathbb{D}_g$

1.
$$(f+g)'(x) = f'(x) + g'(x)$$

2.
$$(\lambda \cdot f)'(x) = \lambda \cdot f'(x)$$

3.
$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

4. Si
$$g(x) \neq 0$$
, $\forall x \in I$

$$\left[\frac{f}{g}\right]'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

En particulier

$$\left(\frac{1}{f(x)}\right) = -\frac{f'(x)}{(f(x))^2}$$

Théorème: Dérivée de la composée

Soit f dérivable en x_0 et g dérivable en $f(x_0)$. Alors $g \circ f$ est dérivable en x_0 et

Dérivée de la composée

$$(g \circ f)'(x) = g'(f(x_0)) \cdot f'(x_0)$$

Démonstration

• Rappel:

$$r(\Delta x) = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} - f'(x_0)$$

$$\implies f(x_0 + \Delta x) = f(x_0) + \Delta x \cdot f'(x_0) + \Delta x \cdot r(\Delta x)$$

avec

$$r(\Delta x) \xrightarrow{\Delta x \to 0} 0$$

• Dérivée $g \circ f(x)$

$$g \circ f(x+h) = g(f(x+h))$$

$$= g(f(x) + \underbrace{f(x+h) - f(x)}_{=\Delta})$$

$$= g(f(x)) + g'(f(x)) \cdot \underbrace{(f(x+h) - f(x))}_{=\Delta} + r\underbrace{(f(x+h) - f(x))}_{=\Delta} \cdot \underbrace{(f(x+h) - f(x))}_{=\Delta}$$

Donc

$$\frac{g(f(x+h)) - g(f(x))}{h} = g'(f(x)) \cdot \frac{f(x+h) - f(x)}{h} + r(f(x+h) - f(x)) \cdot \frac{f(x+h) - f(x)}{h}$$

Et

$$\lim_{h \to 0} \frac{g(f(x+h)) - g(f(x))}{h} = g'(f(x)) \cdot f'(x) + r(\underbrace{f(x+h) - f(x)}_{0} \cdot f'(x_0))$$

D'où

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

3.1.3 Dérivées de quelque fonctions

$$1. \ f(x) = c,$$

$$\lim_{h \to 0} \frac{f(x+h) - f(h)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

2.
$$f(x) = x$$
,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = 1$$

3.
$$f(x) = x^n, \quad n \in \mathbb{N}^* \quad f'(x) = n \cdot x^{n-1}$$
 à démontrer par récurrence

• Vérification pour n = 1:

$$(x)' = 1$$
 et $n \cdot x^{n-1} \Big|_{n=1} = 1 \cdot x^0 = 1$

• Démonstration du pas de récurrence:

Hypothèse: $(x^n)' = n \cdot x^{n-1}$ pour un $x \in \mathbb{N}^*$ donné

Conclusion: $(x^{n+1})' = (n+1) \cdot x^n$

Preuve:

$$(x^{n+1})' = (x \cdot x^n)' = 1 \cdot x^n + x \cdot (x^n)'$$

= $x^n + x \cdot n \cdot x^{n-1} = x^n + n \cdot x^n = (n+1) \cdot x^n$

4.
$$f(x) = x^{-m}, m \in \mathbb{N}^*, x \neq 0$$

$$f'(x) = \left(\frac{1}{x^m}\right)' = -\frac{m \cdot x^{m-1}}{(x^m)^2}$$
$$= -m \cdot x^{m-1-2m} = -m \cdot x^{-m-1}$$

Donc
$$(x^n)' = n \cdot x^{n-1}, \quad \forall \in \mathbb{Z}$$

5.
$$f(x) = x^{\frac{p}{q}}, \quad p \in \mathbb{Z}, \quad q \in \mathbb{N}^*, \quad x > 0$$

$$y = x^{\frac{p}{q}} \iff y^q = x^p$$

En dérivant les deux termes par rapport à x, on a

$$q \cdot y^{q-1} \cdot y' = p \cdot x^{p-1}$$

$$y' = \frac{p}{q} \cdot \frac{x^{p-1} \cdot y}{y^{q-1} \cdot y} = \frac{p}{q} \cdot \frac{x^{p-1} \cdot x^{\frac{p}{q}}}{x^{p}} = \frac{p}{q} \cdot x^{-1} \cdot x^{\frac{p}{q}} = \frac{p}{q} \cdot x^{\frac{p}{q}-1}$$

Donc

$$(x^r)' = r \cdot x^{r-1}, \forall r \in \mathbb{Q}, \quad x > 0$$

En particulier

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}, \quad x > 0$$

Exemples:

1. Soit f une fonction

$$f(x) = \sqrt{1 - x^2}, x \in [-1; 1]$$

L'équation de t tangente à y = f(x) en $x_0 = \frac{\sqrt{3}}{2}$

$$t: y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

•
$$f(x_0) = \frac{1}{2}$$

•
$$f'(x) = \frac{(-x^2)'}{2 \cdot \sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}}, \quad x \neq \pm 1$$

$$f'(x_0) = f'(x)\Big|_{\frac{\sqrt{3}}{2}} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$$

$$t: y - \frac{1}{2} = -\sqrt{3} \cdot \left(x - \frac{\sqrt{3}}{2}\right)$$

2.
$$f(x) = x \cdot \sqrt{x+2}, \quad x \ge -2$$

Tangente au graphe de f issues du point P(1,0)

Donc

$$-x_0 \cdot \sqrt{2 + x_0} = \frac{3x_0 + 4}{2 \cdot \sqrt{2 + x_0}} \cdot (1 - x_0)$$

$$\iff -2x_0(2 + x_0) = 3x_0 + 4 - 3x_0^2 - 4x_0$$

$$\iff x_0^2 - 3x_0 - 4 - 0 \iff (x_0 - 4) \cdot (x_0 + 1) = 0$$

$$x_0 = -1: \qquad t: y + 1 = \frac{1}{2}(x + 1)$$

$$x_0 = 4: \qquad t: 8x - \sqrt{6}y - 8 = 0$$

3.1.4 Dérivée d'ordre supérieure

Soit f dérivable sur I, si f' est dérivable sur I, on peut dériver f' sur I et on note

$$(f')' = f''$$

et ainsi de suite

$$(f'')' = f'''$$

etc.

Définition par récurrence:

$$f^{(n)}(x) = [f^{(n-1)}(x)]', \quad n \in \mathbb{N}^*$$

$$avec f^{(0)}(n) = f(x)$$

Exemples:

1. $f(x) = x^p$, $p \in \mathbb{N}^*$

$$f^{(n)}(x) = \begin{cases} p \cdot (p-1) \cdot \dots \cdot (p-n+1) & \text{si } p \le n \\ 0 & \text{si } p > n \end{cases}$$

2. $f(x) = \cos(x)$

$$f'(x) = -\sin(x), \quad f''(x) = -\cos(x), \quad f^{(3)}(x) = \sin(x), \quad f^{(4)}(x) = \cos(x)$$

Conjecture:

$$f^{(x)} = \cos\left(x + \frac{\pi}{2} \cdot n\right), \quad n \in \mathbb{N}^*$$

Définition par récurrence:

• Vérification:

$$-n = 0: \cos\left(x + n \cdot \frac{\pi}{2}\right)\Big|_{n=0} = f^{(0)}(x)$$

$$-n = 1: \cos\left(x + n \cdot \frac{\pi}{2}\right)\Big|_{n=1} = -\sin(x) = f'(x)$$

- Démonstration du pas de récurrence:
 - Hypothèse:

$$f^{(n)}(x) = \cos\left(x + n \cdot \frac{\pi}{2}\right)$$
 pour un $n \in \mathbb{N}$ donné

– Conclusion:

$$f^{(n+1)}(x) = \cos\left(x + (n+1) \cdot \frac{\pi}{2}\right)$$

_

$$f^{(n+1)}(x) = [f^n(x)]' = \left[\cos\left(c + n \cdot \frac{\pi}{2}\right)\right]' =$$

$$= \cos'\left(x + n \cdot \frac{\pi}{2}\right) \cdot \left(x + n \cdot \frac{\pi}{2}\right)'$$

$$= -\sin\left(x + n \cdot \frac{\pi}{2}\right) \cdot 1 = \cos\left(x + \left(n \cdot \frac{\pi}{2}\right) + \frac{\pi}{2}\right)$$

$$= \cos\left(x + (n+1) \cdot \frac{\pi}{2}\right)$$

Remarque: Si f est n-fois dérivable sur I et si $f^{(n)}(x)$ est continue sur I, alors on note

$$f \in \mathbb{C}^n_I$$

Maths 1B

Exemple:

$$\cos(x) \in \mathbb{C}^{\infty}_{\mathbb{R}}$$

3.2 Différentielles et approximations linéaires

3.2.1 Différentielles

Définitions:

• La différentielle de la variable indépendante x, notée dx est l'accroissement infinitésimale de cette variable

$$dx = \Delta x$$
, (lorsque $\Delta x \to 0$)

• La différentielle de la variable dépendante y (ou de la fonction f), notée

$$dy$$
 ou df

en x_0 est la fonction linéaire de dx définie par

$$dy = f'(x_0) \cdot dx$$

La différentielle dy en x_0 est l'accroissement des y correspondant à dx, mesuré sur la tangente au graphe de f en x_0 .

La définition des différentielles induit la notation de Leibniz

$$dy = f'(x_0) \cdot dx \implies \frac{dy}{dx}\Big|_{x=x_0} = f'(x_0)$$

3.2.2 Approximation linéaire

Rappel Soit f dérivable en x_0 On a

$$f(x_0 + h) = f(x_0) + h \cdot f'(x_0) + h \cdot r(h)$$

avec

$$r(h) = \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0)$$

d'où

$$\lim_{h \to 0} r(h) = 0$$

Donc si $h \to 0$,

$$\underbrace{h}_{\to 0} \cdot \underbrace{r(h)}_{\to 0}$$

est négligeable et

$$f(x_0 + h) \simeq f(x_0) + h \cdot f'(x_0)$$

La quantité

$$A = f(x_0) + h \cdot f'(x_0)$$

est appelé l'approxiamation linéaire de f en x_0

A est l'ordonnée correspondant à $x_0 + h$ mesurée sur la tangente en x_0

Exemple: Évaluation de $\sqrt[3]{8.012}$ On détermine l'AL de $\sqrt[3]{8.012}$ en $x_0 = 8$

$$h = 0.012, \quad f(x) = \sqrt[3]{x}$$

$$A = f(x_0) + h \cdot f'(x_0)$$

$$f(x_0) = f(8) = 2$$

$$f'(x_0) = f'(8) = \frac{1}{3 \cdot \sqrt{x^2}} \Big|_{x=8} = \frac{1}{12}$$

$$A = 2 + 0.0012 \cdot \frac{1}{12} = 2.001$$

3.3 Théorème des accroissement finis

3.3.1 Préliminaire (sans démonstration)

Soit f continue sur [a;b] = I

- 1. L'image de I par f est un intervalle fermé
- 2. f atteint sur I = [a; b] son minimum et son maximum (f(I) = [m, M])

3.3.2 Théorème de Rolle

Soit f continue sur [a; b] et dérivable sur [a; b]. Si f(a) = f(b) = 0, alors

$$\exists c \in]a; b[$$
 t.q. $f'(c) = 0$

Démonstration:

• Si $f(x) \equiv 0$ sur [a;b], alors le théorème est vérifié

• Si $f(x) \not\equiv 0$, f(x) prend des valeurs positions ou négatives, on suppose que a et b sont zéros consécutif de f et que

$$f(x) > 0, \quad \forall x \in]a; b[$$

f est continue sur [a;b], donc f atteint son max M. Soit x_0 l'abscisse de M. Alors $\forall h$ suffisamment petit pour que

$$f(x_0 + h) = f(x_0) + h \cdot f'(x_0) + h \cdot r(h)$$

Or

$$f(x_0 + h) \le f(x_0)$$

car

$$f(x_0) = M$$

est un max, donc

$$f(x_0) + h \cdot f'(x_0) + h \cdot r(h) \le f(x_0)$$

$$\iff h \cdot f'(x_0) + h \cdot r(h) \le 0$$

$$\iff h \cdot [f'(x_0) + r(h)] \le 0$$

• Si h < 0, on a

$$f'(x_0) + r(h) \ge \xrightarrow{h \to 0^-} f'(x_0) \ge 0$$

• Si h > 0, on a

$$f'(x_0) + r(h) \le \xrightarrow{h \to 0^+} f'(x_0) \le 0$$

D'où $f'(x_0) = 0, x_0 := c$

3.3.3 Théorème des accroissements finis

Soit f continue sur [a;b] et dérivable sur [a;b], alors

$$\exists c \in]a; b[\text{ t.q. } f'(c) = \frac{f(b) - f(a)}{b - a}$$

Démonstration: Soit

$$y(x) = \underbrace{f(x)}_{\begin{subarray}{c} {\rm ordonn\acute{e}\,sur} \\ {\rm la\,courbe} \end{subarray}}_{\begin{subarray}{c} {\rm ordonn\acute{e}\,sur\,la\,s\acute{e}cante} \end{subarray}} - \underbrace{\left[\underbrace{f(a) + \frac{f(b) - f(a)}{b - a} \cdot (x - 1)}_{\begin{subarray}{c} {\rm ordonn\acute{e}\,sur\,la\,s\acute{e}cante} \end{subarray}}_{\begin{subarray}{c} {\rm ordonn\acute{e}\,sur\,la\,s\acute{e}cante} \end{subarray}} \right]$$

- g est continue sur [a;b] car f l'est
- g est dérivable sur a; b car f l'est
- De plus g(a) = 0 et g(b) = 0

Donc d'après Rolle,

$$\exists c \in]a; b[\text{ t.q. } g'(c) = 0$$

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} = 0 \iff f'(c) = \frac{f(b) - f(a)}{b - a}$$

Autre expression de TAF.

Soit $x_0 = a$ et $x_0 + h = b$, (h > 0)

$$\exists \theta \]0;1[\text{ t.q. } \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0+\theta\cdot h)$$

 $(x_0 + \theta \cdot h \in [x_0; x_0 + h])$ (énoncé analogue pour h < 0)

Exemple: f définie sur [1;3] par

$$f(x) = \begin{cases} -\frac{1}{2} \cdot (x-2)^2 + 4 & \text{si } x \le 2\\ (x-4)^2 & \text{si } x > 2 \end{cases}$$

• f continue en x = 2, car

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} -\frac{1}{2}(x-2)^{2} + 4 = 4$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x-4)^{2} = 4$$

et
$$f(2) = 4$$

• Recherche de

$$x_0 \in]1; 3[\text{ t.q. } f(x_0) = \frac{f(3) - f(1)}{3 - 1} = \frac{1 - \frac{7}{2}}{2} = -\frac{5}{4}$$

$$- \text{ Sur }]1; 2[$$

$$f'(x_0) = -\frac{5}{4} \iff -(x_0 - 2) = -\frac{5}{4}$$

$$\iff x_0 = -\frac{1}{4} \notin]0; 2[$$

$$- \text{ Sur }]2; 3[$$

$$f'(x_0) = -\frac{5}{4} \iff 2 \cdot (x_0 - 4) = -\frac{5}{4}$$

$$\iff x_0 = -\frac{5}{8} + 4 = \frac{27}{8} > 3$$

Donc x_0 les hypothèses du TAF ne sont pas validés, car f est non-dérivable sur en x=2

$$\lim_{x \to 2^{-}} f'(x) = 0 \qquad \lim_{x \to 2^{+}} f'(x) = -4$$

3.4 Règle de Bernoulli, de l'Hospital

3.4.1 Forme indéterminée de type $\frac{0}{0}$

Soient f et g deux fonctions dérivables sur une voisinage de x_0 telles que $f(x_0) = g(x_0) = 0$ avec $g(x) \neq 0$ et $g'(x) \neq 0$ sur un voisinage pointé de x_0 :

$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$

est dont une FI de type " $\frac{0}{0}$ "

Alors si

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

existe ou est infinie, on a

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Démonstration: Soit $D(x) = f(x_0 + h) \cdot g(x_0) - g(x_0 + h) \cdot f(x)$

$$D(x_0) = 0$$
 et $D(x_0 + h) = 0$

or D est continue et dérivable sur un voisinage de x_0 Donc d'après Rolle,

$$\exists \theta \in]0; 1[\text{ t.g. } D'(x_0 + \theta \cdot h)]$$

$$D'(x) = f(x_0 + h) \cdot g'(x) - g(x_0 + h) \cdot f'(x)$$

$$D'(x_0 + h) = 0 \implies f(x_0 + h) \cdot g(x_0 + \theta h) = g(x_0 + h) \cdot f'(x_0 + \theta h)$$

$$\iff \frac{f(x_0 + h)}{g(x_0 + h)} = \frac{f'(x_0 + \theta h)}{g'(x_0 + \theta h)}$$

Et lorsque $h \to 0$, on a

$$\lim_{h \to 0} \frac{f(x_0 + h)}{g(x_0 + h)} = \lim_{h \to 0} \frac{f'(x_0 + \theta h)}{g'(x_0 + \theta h)}$$

$$\iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Remarque: Cette règle reste valable lorsque $x \to \pm \infty$

Soient f et g deux fonctions dérivables sur une voisinage de l'infini, telles que $\lim_{x\to\infty} f(x)=0$ et $\lim_{x\to\infty} g(x)=0$ Alors si $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ existe ou est infinie on a

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

3.4.2 Forme indéterminée de type " $\frac{\infty}{\infty}$ "

Soient f et g deux fonctions dérivable sur un voisinage de x_0 (fini ou infini) et telles que

$$\lim_{x \to x_0} f(x) = \infty \text{ et } \lim_{x \to x_0} g(x) = \infty$$

Alors si $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ existe ou est infinie, on a

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Illustration de la démonstration

$$L = \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}$$

est une FI de " $\frac{0}{0}$ "

$$\stackrel{\text{BH}}{=} \lim_{x \to x_0} \frac{-\frac{g'(x)}{g^2(x)}}{-\frac{f'(x)}{f^2(x)}} = \lim_{x \to x_0} \frac{g'(x)}{f'(x)} \cdot \underbrace{\frac{f^2(x)}{g^2(x)}}_{L^2} = L^2 \cdot \lim_{x \to x_0} \frac{g(x)}{f(x)}$$

D'où

$$\lim_{x\to x_0}\frac{g'(x)}{f'(x)}=\frac{1}{L}\ \mathrm{et}\ \lim_{x\to x_0}\frac{f(x)}{g(x)}=L$$

Exemples:

1. $\lim_{x\to 1} \frac{x-1}{\ln(x^2)}$: FI " $\frac{0}{0}$ "

$$\stackrel{\mathrm{BH}}{=} \lim_{x \to 1} \frac{1}{\frac{2}{x}} = \frac{1}{2}$$

2. $\lim_{x\to\infty} \frac{e^x}{x^2}$: FI " $\frac{\infty}{\infty}$ "

$$\stackrel{\text{BH}}{=} \lim_{x \to \infty} \frac{e^x}{2x} \text{ FI } "\frac{\infty}{\infty}"$$

$$\stackrel{\text{BH}}{=} \lim_{x \to \infty} \frac{e^x}{2} = +\infty$$

3. $\lim_{x\to\infty} \frac{\ln(x)}{x}$: FI " $\frac{\infty}{\infty}$ "

$$\stackrel{\text{BH}}{=} \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

4. $\lim_{x\to 0^+} x \cdot \ln(x)$: FI " $0 \cdot \infty$ "

$$\begin{split} &= \lim_{x \to 0^+} = \frac{\ln(x)}{\frac{1}{x}} : \text{ FI "} \frac{\infty}{\infty} \text{"} \\ &\stackrel{\text{BH}}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0 \end{split}$$

5. Rappel:

$$u(x)^{v(x)} \stackrel{\text{def}}{=} e^{v(x) \cdot \ln(u(x))}, \quad \forall u(x) > 0$$

$$\lim_{x \to 0^+} (x^x) = \lim_{x \to 0^+} e^{x \cdot \ln(x)} = e^{\lim_{x \to 0^+} x \cdot \ln(x)}$$

car exp et continuité et

$$\lim_{x \to 0^+} x \cdot \ln(x) = 0 \text{ (cf. 4.) donc } \lim_{x \to 0^+} x^x = e^0 = 1$$

3.5 Variation locale d'une fonction

3.5.1 Croissance, décroissance

Soit f dérivable sur un intervalle ouvert I

1. Si

$$f'(x) > 0, \quad \forall x \in I$$

alors *f* strictement croissante sur *I*.

2. Si

$$f'(x) < 0, \quad \forall x \in I$$

alors f est strictement décroissante sur I.

Démonstration: Pour tout $a, b \in I, a < b$ le TAF nous donne l'existence de

$$c \in]a; b[, \text{ t.q. } f'(c) = \frac{f(b) - f(a)}{b - a}, \quad f(b) - f(a) = f'(c) \cdot (b - a)$$

Or b - a > 0 donc

1. Si f'(x) > 0, alors

$$f'(c) > 0 \implies f(b) - f(a) > 0, \forall a < b \in I$$

donc f est strictement croissante sur I.

2. Si f'(x) < 0, alors

$$f'(c) < 0 \implies f(b) - f(a) < 0, \forall a < b \in I$$

donc f est strictement décroissante sur I.

⚠ La réciproque est **fausse**

Contre-exemple: $f(x) = x^3$

3.5.2 Extrema

Définitions: Soient

$$f: \mathbb{D}_f \to \mathbb{R}$$

et

$$c \in \mathbb{D}_f$$

• f(c) est un maximum local de f si

$$\exists \delta > 0 \text{ t.q. } f(x) \leq f(c), \quad \forall \in]c - \delta; c + \delta[$$

ullet f(c) est un maximum global de f si

$$f(x) \le f(c), \forall x \in \mathbb{D}_f$$

ullet f(c) est un minimum local de f si

$$\exists \delta > 0 \text{ t.q. } f(x) \ge f(c), \quad \forall \in]c - \delta; c + \delta[$$

• f(c) est un maximum global de f si

$$f(x) \ge f(c), \forall x \in \mathbb{D}_f$$

 $f(x_1)$ est l'unique minimum local de f

 $f(x_2), f(x_4)$ sont des maximums locaux

 $f(x_3), \underbrace{f(x_5)}_{ ext{n'existe pas}}$ ne sont des extremas locaux de f.

Théorème: Soit $f: \mathbb{D}_f \to \mathbb{R}$ dérivable en x_0 . Alors si $f(x_0)$ est un extrema de f, on a $f'(x_0) = 0$

Démonstration: C.f. démonstration du théorème de Rolle

Remarque: La réciproque est fausse

Contre-exemple: $f(x) = x^3, x_0 = 0$

$$f'(0) = 3 \cdot x^2 \Big|_{x=0} = 0$$

mais

$$f(0) = 0$$

n'est pas un extremum de f.

Théorème: Soit f continue sur I ouvert et dérivable sur I sauf peut-être en $x_0 \in I$ Alors $f'(x_0)$ est une extremum de f si f'(x) change de signe en x_0

Démonstration: Soit f continue sur $]x_0 - \delta; x_0 + \delta[(\delta > 0)]$ et dérivable sur

$$]x_0 - \delta; x_0[\cup]x_0; x_0 + \delta[$$

$$f(x) = f(x_0) + f'(c) \cdot (x - x_0)$$

avec c entre x et x_0 (TAF)

f' change de signe en x_0 donc:

 $\begin{array}{l} \operatorname{si} x - x_0 < 0, \text{ on a } f'(c) > 0 \implies f(x) < f(x_0) \\ \operatorname{si} x - x_0 > 0, \text{ on a } f'(c) < 0 \implies f(x) < f(x_0) \end{array} \right\} f(x_0) \text{ est max}$

 $\begin{array}{c} \bullet \\ \sin x - x_0 < 0, \text{ on a } f'(c) > 0 \implies f(x) > f(x_0) \\ \sin x - x_0 > 0, \text{ on a } f'(c) < 0 \implies f(x) > f(x_0) \end{array} \right\} f(x_0) \text{ est min}$

