Bases de Dados

Modelo Relacional

moacirponti@gmail.com

Modelo Relacional - Definição

- O Modelo Relacional é um modelo para armazenamento e manutenção de banco de dados, baseado em teoria dos conjuntos e álgebra relacional.
- Os primeiros conceitos foram desenvolvidos por Codd em 1970 e expandidos em 1979.
- Apesar do nome ser parecido, o Modelo Relacional
 NÃO É o mesmo que Modelo Entidade-Relacionamento,

 desenvolvido por Chen (1976).

Modelo Relacional - Definição

- O Modelo Relacional foi o primeiro modelo que se estabeleceu para aplicações comerciais
- Há uma base teórica substancial nos bancos de dados relacionais. Essa teoria apóia o projeto de banco de dados relacionais e permite um processamento eficiente.

Estrutura Básica de uma Relação

Seja

```
cliente_nome = {João, Márcia, Denise, Marcelo}
cliente_rua = {Sete de Setembro, Augusta, Castelo Branco}
cliente_cidade = {Passos, São Paulo, Ribeirão Preto}
```

Então

```
    R = { (João, Sete de Setembro, Passos),
    (Márcia, Augusta, São Paulo),
    (Denise, Augusta, São Paulo),
    (Marcelo, Castelo Branco, Ribeirão Preto) }
```

• É uma relação entre:

```
cliente_nome x cliente_rua x cliente_cidade
```

Relações

- Todos os dados são representados como relações.
- Os valores atuais de uma relação, ou seja, uma instância de uma relação, pode ser chamado de tabela.
- Cada tabela tem um nome, único em todo o banco de dados

Aluno

CodMatr	Nome	DataMatr
10001	Fernando	10/01/01
10002	Marcela	10/01/01
10010	Fernanda	01/03/01
20001	Augusto	01/03/04
30001	Ana Clara	01/05/05

Tuplas

 Uma linha em uma relação representa uma instância da relação com valores definidos, recebendo o nome de TUPLA

Exemplo:

(José da Silva, 10/08/1965, 140.610.654-10)

(Maria Fernanda Souza, 22/06/1983, 231.333.654-40)

(Ana Fernanda, 22/12/1975, 100.322.265-35)

são tuplas da relação Pessoa

Tuplas

 Uma tupla é composta de valores, os quais são chamados de ATRIBUTOS de uma relação

Exemplos:

Titulo x Diretor x Ano_Lancamento x Duracao são atributos da relação *Filme*

Nome x Data_Nascimento x CPF são atributos da relação *Pessoa*

Domínio

 Um atributo pode assumir um valor dentro de um conjunto de valores possíveis, este conjunto é denominado **DOMÍNIO** do atributo

```
Exemplo 1: Estado, atributo da relação Cliente, só pode assumir um valor dentro do conjunto: { SP, RJ, MG, ES, RS, PR, SC, BA, MS, MT, GO, PA, AM, AP, RO, ..., RN }
```

Exemplo 2: Temperatura, atributo da relação *Clima* só pode assumir valores do conjunto dos números reais no intervalo [-60 60]

Valores

- Todo valor no modelo relacional é <u>ATÔMICO</u>
 - Indivisível: não pode ser recuperado em partes
 Ex: nome quando definido num único atributo
 - Monovalorado: assume apenas um valor para uma dada tupla e atributo, num dado instante

Tuplas e Domínio

- Na relação (tabela) Aluno, cada linha consiste de uma
 3-tupla (a₁, a₂, a₃), onde:
 - $-a_1$ é o código de matrícula do aluno e está no domínio D_1 ,
 - $-a_2$ é o nome do aluno e está no domínio D_2 ,
 - $-a_3$ é a data de matrícula do aluno e está no domínio D_3 .
- Aluno é, portanto, um subconjunto dos domínios:

$$D_1 \times D_2 \times D_3$$

 Esta definição corresponde à definição matemática de relação, parecida com a de tabela

Aluno

CodMatr	Nome	DataMatr
10001	Fernando	10/01/01
10002	Marcela	10/01/01
10010	Fernanda	01/03/01
20001	Augusto	01/03/04
30001	Ana Clara	01/05/05

Tuplas e Domínio

- Na relação (tabela) Aluno, existem 5 tuplas e 3 atributos
- Todos os atributos devem possuir domínio atômico.
- Um domínio é atômico se todos os elementos deste domínio são considerados indivisíveis.
 - Ou seja, não são permitidos atributos compostos ou multivalorados
- No exemplo, claramente os atributos possuem domínios diferentes
- Um valor especial, nulo (NULL)
 pode ser usado para representar
 dados não conhecidos ou opcionais

Aluno

CodMatr	Nome	DataMatr
10001	Fernando	10/01/01
10002	Marcela	10/01/01
10010	Fernanda	01/03/01
20001	Augusto	01/03/04
30001	Ana Clara	01/05/05

Superchave

- Conjunto de atributos na relação que identifique univocamente cada tupla
 - Forma um conjunto de valores que n\u00e3o se repete
 - Exemplo:
 - Na relação Cliente = {CPF, Nome, DataNasc, NomeMae}
 - SCH₁(Cliente) = {Nome, NomeMae, DataNasc}
 - SCH₂(Cliente) = {Nome, CPF}

Chave

- Superchave mínima: uma superchave da qual não se pode retirar nenhum atributo sem perder a propriedade de identificação única
 - Exemplo:
 - Na relação Cliente = {CPF, Nome, DataNasc, NomeMae}
 - SCH₂(Cliente) = {Nome, CPF}
 - CH₂(Cliente) = {CPF}

Chave Candidata

- Pode existir mais de uma chave numa mesma relação
 - São chamadas chaves candidatas

Exemplo: Na relação Aluno:

- CH₁(Aluno)= { NUSP }
- CH₂(Aluno)= { CPF }

Chave Primária

- Cada relação possui uma chave primária, um identificador único constituído por um ou mais atributos escolhido dentre as chaves.
 - A maioria das chaves primárias é uma coluna apenas
 Exemplo: CODIGO_CLIENTE
 - Em alguns casos pode ser composta por dois ou mais atributos
 Exemplo: (COD_VENDA, NUM_PARCELA), ou seja, para identificar uma tupla desta tabela é preciso ter o código da venda e o número da parcela

1	Aluno		
Esquema	<u>CodMatr</u>	Nome	DataMatr
	1001	Fernando	10/01/01
	1002	Marcela	10/01/01
Instância	1010	Fernanda	01/03/01
	2001	Augusto	01/03/04
	3001	Ana Clara	01/05/05

Aluno

Relação (Tabela)

CodMatr	Nome	DataMatr
1001	Fernando	10/01/01
1002	Marcela	10/01/01
1010	Fernanda	01/03/01
2001	Augusto	01/03/04
3001	Ana Clara	01/05/05

Aluno

R	F	I	Δ	C	Ã	0
П	匚	ᆫ	Н	V	A	U

<u>CodMatr</u>	Nome	DataMatr
1001	Fernando	10/01/01
1002	Marcela	10/01/01
1010	Fernanda	01/03/01
2001	Augusto	01/03/04
3001	Ana Clara	01/05/05

Ordenação

- Uma relação é um conjunto de tuplas
- Não há noção de ordenação em teoria de conjuntos e, portanto, não existe teoricamente uma ordem para as tuplas
 - No entanto, há uma ordem física de armazenamento

 Em uma tupla os valores estão ordenados pela disposição dos atributos definidos no esquema

Terminologia

- Relação: Tabela
- <u>Tupla</u>: Registro, linha
- Atributo: Campo
- Valor
- Relation Intension: Esquema
- Relation Extension: Instância

Base de Dados Relacional

- O esquema S de uma base de dados relacional é composto por:
 - um conjunto de esquemas de relações

$$S = \{R_1, R_2, ..., R_N\}$$

- um conjunto de restrições de integridade
- Uma (instância de) base de dados relacional é composta por uma instância do conjunto de relações que satisfaz todas as restrições de integridade

Relacionamento entre Relações

Como é possível relacionar tabelas no Modelo Relacional?
 Exemplo: Como saber em qual curso um aluno está matriculado?

CURSO

CodCur	Título
A1	Sistemas de Informação
B1	Ciências Contábeis
B2	Direito

ALUNO

CodMatr	Nome
1001	Fernando
1002	Marcela
1010	Fernanda
2001	Augusto

Chave Estrangeira

- Uma tabela se relaciona com outra incluindo-se nesta a chave primária da outra tabela.
- Esta coluna incluída é chamada chave estrangeira
- Note que há compatibilidade de domínio entre os atributos.

Exemplo: *Curso* é chave estrangeira de Alunos, que referencia a chave primária *CodCur* da tabela Cursos

CURSO

CodCur	Título
A1	Sistemas de Informação
B1	Ciências Contábeis
B2	Direito
•	

ALUNO

CodMatr	Nome	Curso
1001	Fernando	A1
1002	Marcela	A1
1010	Fernanda	B2
2001	Augusto	B1

Esquema Relacional

- Constitui um esquema que representa as relações, atributos e chaves de um banco de dados relacional
- Há diversas formas de representar.
- Exemplos:

Esquema Relacional

Outros Exemplos:

Exemplo: Esquema Relacional

```
aluno = (cod_aluno, nome, data_nasc, CPF, endereco, telefone)

matricula = (num_matricula, data, cod_aluno, cod_curso)

professor = (cod_professor, nome, data_nasc, titulacao, area)

curso = (cod_curso, titulo, area_conhecimento, periodo, duracao)

disciplina = (cod_disc, titulo, curso)

leciona = (cod_professor, cod_disc)
```

Exercício

 Defina o esquema relacional, com suas chaves primárias e chaves estrangeiras para o DER abaixo:

Restrições de Integridade

- Restrições de Integridade são regras com respeito aos valores que podem ser armazenados nas relações e que devem ser sempre satisfeitas, em quaisquer das relações do banco de dados.
- São elas, principalmente:
 - Restrição de Unicidade de Chave
 - Restrição de Integridade da Entidade
 - Restrição de Integridade Referencial

Restrições de Integridade

Restrição de Unicidade de Chave

Uma chave primária não pode ter o mesmo valor em duas tuplas distintas de uma mesma relação

Exemplo: Dada uma relação *NotaFiscal*, um mesmo valor do atributo numNota (chave primária), não pode estar em duas tuplas distintas, pois perderia sua identidade.

NotaFiscal

	<u>numNota</u>	Emissão	Valor	Cliente
	100	01/02/2006	680,00	265.669.999-60
\rightarrow	101	01/02/2006	80,00	665.990.997-70
	101	02/03/2006	150,00	665.990.997-70

Modelo Relacional - Restrições

- Restrição de Integridade da Entidade
 - É possível definir no esquema os atributos que podem e não podem assumir valor nulo
 - Nulo pode significar não informado, não disponível ou não se aplica
 - O valor de um atributo a_i deve ser um valor atômico pertencente a Dom(a_i)

Modelo Relacional - Restrições

Restrição de Integridade da Entidade

A chave primária de qualquer relação não pode ter valor nulo em nenhuma tupla da relação, pois isto faria com que a tupla não pudesse ser identificada e por conseqüência não poderia ser recuperada

Modelo Relacional - Restrições

Restrição de Integridade Referencial

Envolve duas relações e é usada para manter a consistência entre os dados de tabelas diferentes.

Esta restrição especifica que o valor de uma chave estrangeira deve existir na relação a qual faz referência

Curso		Aluno		
CodCur	Título	CodMatr	Nome	Curso
A1	Sistemas de Informação	10001	Fernando	A1
	O valor 'B1' desta tupla não existe em <i>Cursos</i> , ferindo a ——	10002	Marcela	A1
		20001	Augusto	5 1
	integridade referencial			

Projeto Lógico

- Projeto Lógico
 - criação de domínios
 - criação dos esquemas de relação
 - definição de
 - restrições de relação
 - restrições de integridade

Modelo Relacional – Resumo (1)

- O Modelo Relacional é um conjunto de especificações para Banco de Dados digitais, formulado especialmente para bancos grandes e compartilhados entre vários usuários
- Os dados são armazenados em tabelas, que são relações.
- As relações possuem atributos.
- Domínio é o conjunto de valores que um atributo pode assumir
- As instâncias das relações são tuplas, dados que preenchem as tabelas.

Modelo Relacional – Resumo (2)

- Chave primária é o atributo que identifica uma tupla em uma relação
- Chave estrangeira é um atributo de uma relação que faz referência a outra relação.
- Restrições são regras que permitem manter a consistência dos dados armazenados.
- A Restrição de Integridade Referencial especifica que o valor de uma chave estrangeira deve existir em alguma tupla da relação a qual faz referência.

Modelo Relacional - Bibliografia

- ELMASRI; NAVATHE. O Modelo de Dados Relacional e Restrições de Bases de Dados Relacionais (capítulo 3). Em: Sistemas de Banco de Dados, Pearson, 6.ed.
- SILBERSCHATZ et al. Modelo Relacional (capítulo 3). Em: Sistema de Banco de Dados, Pearson, 1999.
- TAKAI; ITALIANO; FERREIRA, J.E. O Modelo de Dados Relacional (capítulo 5). Em: Introdução a Banco de Dados (apostila). DCC-IME-USP, 2005
- BIAJIZ, M. Modelo Relacional (capítulo 3). Em: Banco de Dados (apostila).
 DC-UFSCar, 2001.

BIBLIOGRAFIA COMPLEMENTAR:

CODD, E.F. A Relational Model of Data for Large Shared Data Banks.
 Communications of the ACM, v.13, n.6, 1970 pp. 377-387. (artigo original do Modelo Relacional)

Exercício – Projeto Lógico

Um médico deseja informatizar sua clínica, armazenando as informações de seus pacientes, das consultas e dos exames realizados por eles. Cada paciente pode realizar vários exames na clínica. Além disso, a cada exame realizado por um paciente está associado um diagnóstico principal. Armazenar o nome, RG, telefone e endereço de cada paciente. Os exames possuem um código e um tipo. É importante ainda que o sistema permita a geração de um relatório mensal de todos os exames realizados no mês por um paciente.

- a) crie o esquema relacional com chave primária e restrições de integridade referencial;
- **b)** defina os domínios (com nome, definição lógica, tipo de dado e formato) necessários para o esquema criado no item a); **ex:** Nomes de Pessoas: conjunto de todos os nomes possíveis para pessoas string de 60 caracteres
- c) para cada esquema de relação defina o domínio de cada atributo, ex: <u>Dom(Nome) = Nomes de Pessoas</u>, e indique os atributos que podem e os que não podem receber valor nulo
- **d)** crie uma instância da base de dados, e exemplifique tuplas válidas e inválidas de acordo com as restrições de integridade da BD relacional. Explique cada caso (qual é restrição e por que é ou não atendida em cada tupla).