Odd Even Sorting Algorithm -Comparation

Students:

Keli Tauana Prass Ruppenthal Victor Dallagnol Bento

Santa Maria/ December, 2018

Presentation

- Objectives:
- Area: 50 um²;
- Power: 10 mW;
- Performance: Best case -> 18 ns, Worst case -> 180 ns;
- Tools: draw.io, Logisim, ISE Design Suite, NCLaunch.

Motivation

- Sorting algorithm fairly simple;
- Variation of BubbleSort,
- Explore parallelism by running some comparison efficiently at the same time;
- Fast when all elements in the input array are close to their sorted indexes;
- Complexity in best case: O(n);
- Complexity in average case: O(log² n);
- Complexity in worst case: O(log² n).

Odd Even Sort Algorithm

Figure 1: Data Path - main.

8 mux 4:1 (16 bits) 6 mux 2:1 (16 bits) 10 registers (16 bits) 5 comparators (16 bits)

Figure 2: Data Path - Input vector and registers.

Figure 3: Control Path - Output logic.

Figure 4: Data Path - Reg enable logic.

```
1 mux 2:1 (1 bit)
1 mux 2:1 (2 bits)
1 register (1 bit)
1 adder (2 bits)
```


Figure 5: Data Path - Phase manipulation.

Figure 6: Data Path - Ordering completed and sorted output.

Figure 7: FSM.

Comparations

Group 1:

NON-OPTIMIZED SYNTHESIS AND SLOW CELLS

	Group 1 - Structural B.C.	Ours- Structural B.C.	Difference	Group 1 - Structural W.C.	Ours- Structural W.C.	Difference
Area (um^2)	55,492	56,080	† 1,04%	55,492	56,080	† 1,04%
Power (mW)	14.235	9.64	\$ 47,6%	14.235	9.64	\$ 47,6%
Critical Path (ρs)	6.1	8.8	† 30,68%	6.1	8.8	1 30,68%
Frequency (MHz)	166.67	113	4 7,49%	166.67	113	\$ 47,49%
Energy (J)	1.71E-10	4.24E-10	† 60%	1.02E-09	2.12E-9	† 51,2%
Runtime (ns)	12	44	† 72,7%	72	220	† 67,27%

Similarities between Ours and Group 1

- Algorithm;
- Area.

Differences between Ours and Group 1

- Critical Path -> Frequency -> Power;
- Number of states -> Runtime.

Group 2:

NON-OPTIMIZED SYNTHESIS AND SLOW CELLS

	Group 2 - Structural B.C.	Ours- Structural B.C.	Difference	Group 2 - Structural W.C.	Ours- Structural W.C.	Difference
Area (um^2)	49,639	56,080	1 1,5%	49,639	56,080	1 1,5%
Power (mW)	8,91	9.64	† 7,57%	8,91	9.64	† 7,57%
Critical Path (ps)	-	8.8	-	-	8.8	-
Frequency (MHz)	117,6	113	\$ 4%	117,6	113	4 4%
Energy (J)	1.52E-10	4.24E-10	† 64%	9.09E-10	2.12E-9	† 57%
Runtime (ns)	17,10	44	† 61,13%	102,10	220	† 53,6%

Similarities between Ours and Group 2

Algorithm.

Differences between Ours and Group 2

- Group 2 got all the requirements;
- Frequency -> Power;
- Number of states -> Runtime.

Quantitative Comparative Analysis Area:

Power:

Critical Path:

Frequency:

Time Best and Worst Case:

Conclusions...

- Number of states -> Runtime;
- Power♥;
- Area, W.C. Runtime and B.C. Runtime X;
- Embedded systems II: new visions about how to design and build circuits... there are a lot of things to be worry about!

Thank you!

 $\underline{keli.ruppenthal@ecomp.ufsm.br}$

victor.bento@ecomp.ufsm.br