APPENDIX

Proof of Proposition 1: Adding the constant term $(\lambda_i^{k-1})^2/2\rho$ to the right-hand side of (2a).

$$\min_{\mathbf{x}_{i} \in \mathcal{X}_{i}} L_{i}^{k} = \frac{1}{2} \mathbf{x}_{i,\text{Re}}^{T} \mathbf{Q}_{i} \mathbf{x}_{i,\text{Re}} + \mathbf{d}_{i} \mathbf{x}_{i,\text{Re}} + \lambda_{i}^{k-1} (x_{i,\text{Sh}} - y_{i,\text{Sh}}^{k-1})
+ \frac{\rho}{2} (x_{i,\text{Sh}} - y_{i,\text{Sh}}^{k-1})^{2} + \frac{(\lambda_{i}^{k-1})^{2}}{2\rho}$$

$$= \frac{1}{2} \mathbf{x}_{i,\text{Re}}^{T} \mathbf{Q}_{i} \mathbf{x}_{i,\text{Re}} + \mathbf{d}_{i} \mathbf{x}_{i,\text{Re}} + \frac{\rho}{2} \left(x_{i,\text{Sh}} - y_{i,\text{Sh}}^{k-1} + \frac{\lambda_{i}^{k-1}}{\rho} \right)^{2}$$
(A1)

Set $x'_{i,\text{Sh}}^k = x_{i,\text{Sh}}^k - y_{i,\text{Sh}}^{k-1} + \lambda_i^{k-1}/\rho$, $\mathbf{x}'_i = [\mathbf{x}_{i,\text{Re}}^T, \mathbf{x}'_{i,\text{Sh}}]^T$, $\mathbf{x}'_i \in \mathbb{R}^{R_i+1}$, $\boldsymbol{\theta}_{i,\text{Re}} = [-\overline{x}_{i,1} \cdots -\overline{x}_{i,R_i} \ \underline{x}_{i,1} \cdots \underline{x}_{i,R_i}]^T$, $\boldsymbol{\theta}_{i,\text{Sh}}^k = D_i - y_{i,\text{Sh}}^{k-1} + \lambda_i^{k-1}/\rho$, then the (A1) can be expressed as:

$$\min_{\boldsymbol{x}_{i}'} L_{i}^{k}(\boldsymbol{x}_{i}',\boldsymbol{\theta}_{i}) = \frac{1}{2} \boldsymbol{x}_{i}^{T} \boldsymbol{Q}_{i}' \boldsymbol{x}_{i}' + \boldsymbol{d}_{i}' \boldsymbol{x}_{i}', \tag{A2a}$$

s.t.
$$A_i \mathbf{x}'_i + \boldsymbol{\theta}_{i,Re} \le \mathbf{0}$$
; $\boldsymbol{\mu}_i$ (A2b)

$$\mathbf{1}^{1\times(R_i+1)}\mathbf{x}'_i - \theta^k_{i,\mathrm{Sh}} = 0: \eta_i \tag{A2c}$$

$$\mathbf{Q}'_{i} = \begin{bmatrix} \mathbf{Q}_{i} & \mathbf{0}^{R_{i}} \\ \mathbf{0}^{1 \times R_{i}} & \rho \end{bmatrix}, \mathbf{d}'_{i} = \begin{bmatrix} \mathbf{d}_{i} & 0 \end{bmatrix}$$
 (A2d)

where, (A2b) corresponds to the resource constraint (1b), and (A2c) corresponds to prosumer's power balance constraint (1c). The multipliers for (A2b) and (A2c) are denoted as μ_i and η_i .

Defining the optimal solution of (A2) as $\mathbf{x'}_{i}^{*} = [\mathbf{x}_{i,\text{Re}}^{*T}, \mathbf{x'}_{i,\text{Sh}}^{k*}]^{T}$, the KKT conditions can be written as:

$$\frac{\partial L_i(\boldsymbol{x}_i^{\prime*},\boldsymbol{\theta}_i)}{\partial \boldsymbol{x}_i^{\prime*}} = \boldsymbol{Q}_i^{\prime} \boldsymbol{x}_i^{\prime*} + \boldsymbol{d}_i^{\prime T} + \boldsymbol{A}_i^{T} \boldsymbol{\mu}_i + \boldsymbol{1}^{R+1} \boldsymbol{\eta}_i = \boldsymbol{0}, \quad (A3a)$$

$$(\mathbf{A}_{i})_{\mathbf{A},\mathbf{S}} \mathbf{x'}_{i}^{*} + (\boldsymbol{\theta}_{i}_{\mathbf{R}_{\mathbf{P}}})_{\mathbf{A},\mathbf{S}} = \mathbf{0}, \tag{A3b}$$

$$(\boldsymbol{\mu}_{i})_{\Lambda} \geq \mathbf{0},$$
 (A3c)

$$(\boldsymbol{A}_{i})_{Ls}\boldsymbol{x}'_{i} + (\boldsymbol{\theta}_{i,Re})_{Ls} \leq \mathbf{0}, \tag{A3d}$$

$$(\boldsymbol{\mu}_i)_{I} = \mathbf{0}, \tag{A3e}$$

$$\mathbf{1}^{1 \times (R_i + 1)} \mathbf{x'}_i^* - \theta_{i, \text{Sh}}^k = 0 \tag{A3f}$$

where, $(\cdot)_{A,s}$ and $(\cdot)_{I,s}$ are matrix reorganization operators, which that combine the rows corresponding to active and inactive constraints within the *s* segments into new matrices.

Support p_A and p_I denote the number of active and inactive constraints. Combining (A3a), (A3b), and (A3f), we have

$$\mathbf{Q}_{i}^{\prime}\mathbf{x}_{i}^{\prime*} + \mathbf{d}_{i}^{\prime T} + \begin{bmatrix} (\mathbf{A}_{i})_{\mathbf{A},s}^{T} & \mathbf{1}^{R_{i}} \\ \mathbf{0}^{1 \times P_{\mathbf{A}}} & 1 \end{bmatrix} \begin{bmatrix} (\boldsymbol{\mu}_{i})_{\mathbf{A}} \\ \eta_{i} \end{bmatrix} = \mathbf{0},$$
(A4a)

$$\begin{bmatrix} (\boldsymbol{A}_{i})_{A,s} & \boldsymbol{0}^{p_{A}} \\ \boldsymbol{1}^{1 \times R_{i}} & 1 \end{bmatrix} \boldsymbol{x'}_{i}^{*} + \begin{bmatrix} (\boldsymbol{\theta}_{i,Re})_{A,s} \\ -\boldsymbol{\theta}_{i,Sh}^{k} \end{bmatrix} = \boldsymbol{0},$$
 (A4b)

Simplifying (A3c)~(A3d) and (A4a)~(A4b), then:

$$\boldsymbol{H}_{1,i,s}\boldsymbol{\Gamma}_{i,s} \geq \boldsymbol{0}, \boldsymbol{H}_{1,i,s} = \begin{bmatrix} (\boldsymbol{E}^{2R_i})_{A,s} & \boldsymbol{0}^{p_A} \\ \boldsymbol{0}^{1 \times 2R_i} & 0 \end{bmatrix}, \boldsymbol{\Gamma}_{i,s} = \begin{bmatrix} (\boldsymbol{\mu}_i)_{A,s} \\ \eta_i \end{bmatrix}$$
(A5a)

$$(\boldsymbol{A}_{i})_{I,s} \boldsymbol{x'}_{i}^{*} + \boldsymbol{H}_{2,i,s} \boldsymbol{\theta}_{i}^{\prime k} \leq \boldsymbol{0}, \boldsymbol{H}_{2,i,s} = \begin{bmatrix} (\boldsymbol{E}^{2R_{i}})_{I,s} & \boldsymbol{0}^{p_{1}} \\ \boldsymbol{0}^{1 \times 2R_{i}} & 0 \end{bmatrix}$$
 (A5b)

$$\mathbf{Q}'_{i}\mathbf{x}'_{i}^{*} + \mathbf{d}'_{i}^{\mathrm{T}} + \mathbf{G}_{i,s}^{\mathrm{T}}\mathbf{\Gamma}_{i,s} = \mathbf{0}, \mathbf{G}_{i,s} = \begin{bmatrix} (\mathbf{A}_{i})_{\mathrm{A},s} & \mathbf{0}^{\rho_{\mathrm{A}}} \\ \mathbf{1}^{\mathrm{1x}R_{i}} & 1 \end{bmatrix}$$
(A5c)

$$G_{i}\boldsymbol{x}_{i}^{\prime^{*}} + \boldsymbol{H}_{3,i,s}\boldsymbol{\theta}_{i}^{\prime k} = \boldsymbol{0}, \boldsymbol{H}_{3,i,s} = \begin{bmatrix} (\boldsymbol{E}^{2R_{i}})_{A,s} & \boldsymbol{0}^{p_{A}} \\ \boldsymbol{0}^{1 \times 2R_{i}} & -1 \end{bmatrix}$$
(A5d)

The E^{2R_i} denotes an identity diagonal matrix of size $2R_i \times 2R_i$. (A5a), (A5b), (A5c) and (A5d) correspond to (A3c), (A3d), (A5a) and (A5b), respectively.

Considering the mutual exclusivity of the upper and lower resource constraints, rank($G_{i,s}$)= p_A +1 and $G_{i,s}Q_i^{r-1}G_{i,s}^T$ is invertible. Hence, combining (A5c) and (A5d), we have

$$\Gamma_{i,s} = M_{1,i,s} \theta_i^{\prime k} + M_{2,i,s} \tag{A6a}$$

$$\boldsymbol{M}_{1,i,s} = (\boldsymbol{G}_{i,s} \boldsymbol{Q}_{i}^{-1} \boldsymbol{G}_{i,s}^{\mathrm{T}})^{-1} \boldsymbol{H}_{3,i,s}$$
 (A6b)

$$\boldsymbol{M}_{2,i,s} = -(\boldsymbol{G}_{i,s} \boldsymbol{Q}_{i}^{'-1} \boldsymbol{G}_{i,s}^{\mathrm{T}})^{-1} \boldsymbol{G}_{i,s} \boldsymbol{Q}_{i}^{'-1} \boldsymbol{d}_{i}^{'\mathrm{T}}$$
(A6c)

By substituting (A6a) into (A5c), we obtain

$$\mathbf{x'}_{i}^{*} = \mathbf{W}_{1i} \, {\boldsymbol{\theta}}_{i}^{'k} + \mathbf{W}_{2i} \, {\boldsymbol{\theta}}_{i}^{*} \tag{A7a}$$

$$\boldsymbol{W}_{1is} = -\boldsymbol{Q}_{i}^{\prime -1} \boldsymbol{G}_{is}^{\mathrm{T}} \boldsymbol{M}_{1is} \tag{A7b}$$

$$W_{2is} = -Q_{i}^{\prime -1} d_{i}^{\prime T} - Q_{i}^{\prime -1} G_{is}^{T} M_{2is}$$
 (A7c)

Combining (A7a) with the definitions of x_i^* , we have

$$x_{i,\text{Sh}}^{k^*} = w_{1,i,s}' \theta_i^{\prime k} + w_{2,i,s}' + y_{i,\text{Sh}}^{k-1} - \frac{\lambda_i^{k-1}}{\rho}$$
 (A8c)

where, $w'_{1,i,s} = W_{1,i,s,R_i+1}$ and $w'_{2,i,s} = W_{2,i,s,R_i+1}$ represent the vectors corresponding to the (R_i+1) -th row of $W_{1,i,s}$ and $W_{2,i,s}$, respectively. To ensure the complementary slackness condition holds, (A8c) is further substituted into (A5a)~(A5b) (A5b), yielding the following domain:

$$\Theta'_{i,s} := \left\{ \boldsymbol{\theta}_{i}^{\prime k} \middle| \begin{aligned} \boldsymbol{H}_{1,i,s}(\boldsymbol{M}_{1,i,s} \boldsymbol{\theta}_{i}^{\prime k} + \boldsymbol{M}_{2,i,s}) &\geq \mathbf{0}, \\ (\boldsymbol{A}_{i})_{1,s}(\boldsymbol{W}_{1,i,s} \boldsymbol{\theta}_{i}^{\prime k} + \boldsymbol{W}_{2,i,s}) + \boldsymbol{H}_{2,i,s} \boldsymbol{\theta}_{i}^{\prime k} &\leq \mathbf{0} \end{aligned} \right\}$$
(A9)

According to (A8c)~(A9), we can derive Proposition 1. The prosumer's best response can be characterized by piecewise linear function. The domain of each segment depends on the cost coefficients and the active constraints.

\blacksquare End of proof of *Proposition 1*.

Proof of Proposition 3:

Since prosumers are not coupled in (4), it is equivalent to show that the \hat{x}_i^k of each prosumer satisfies the (15).

- 1) For prosumers in \mathcal{Z}_{C}^{k} . According to the KKT conditions, (15) is satisfied with $\widehat{\boldsymbol{x}}_{i}^{k} = \boldsymbol{x}_{i}^{k^{*}}$ and $\widehat{\boldsymbol{\alpha}}_{i}^{k} = \boldsymbol{\alpha}_{i}^{k^{*}}$.
 - 2) For prosumers in $\mathcal{I}/\mathcal{I}_{C}^{k}$. Combining (1c) and (13) and AI $\sum_{k} (x_{k} x_{k}^{k}) \le x^{k} \qquad \hat{x}^{k} \le \sum_{k} (\bar{x}_{k} x_{k}^{k})$

$$\sum_{r \in \mathcal{R}_{i}} (\underline{x}_{i,r} - x_{i,r}^{*}) \le x_{i,\text{Sh}}^{k^{*}} - \tilde{x}_{i,\text{Sh}}^{k} \le \sum_{r \in \mathcal{R}_{i}} (\overline{x}_{i,r} - x_{i,r}^{*})$$
(A10a)

$$-\xi \le x_{i,\mathrm{Sh}}^{k^*} - \tilde{x}_{i,\mathrm{Sh}}^k \le \xi \tag{A10b}$$

According to (13) and (1c) existing δ_i have

$$\max\{(\underline{x}_{i,r} - x_{i,r}^{k^*}), -\xi\} \le \delta_{i,r} \le \min\{(\overline{x}_{i,r} - x_{i,r}^{k^*}), \xi\}, \quad (A11a)$$

$$\sum_{r \in \mathcal{R}} \delta_{i,r} = x_{i,\mathrm{Sh}}^{k^*} - \tilde{x}_{i,\mathrm{Sh}}^k \tag{A11b}$$

Assume the $\hat{x}_{i,r}^k = x_{i,r}^{k^*} + \delta_{i,r}$, then we have

$$\tilde{x}_{i,\text{Sh}}^{k} + \sum_{r \in \mathcal{R}_{i}} \hat{x}_{i,r}^{k} = x_{i,\text{Sh}}^{k*} + \sum_{r \in \mathcal{R}_{i}} x_{i,r}^{k*} = D_{i}$$
 (A12a)

$$\underline{x}_{i,r} \le \hat{x}_{i,r}^k \le \overline{x}_{i,r}, -\boldsymbol{\xi} \le \hat{\boldsymbol{x}}_i^k - \boldsymbol{x}_i^{k*} \le \boldsymbol{\xi}$$
(A12b)

Under \hat{x}_i^k , the multipliers of the inactive constraints in (4) are set to 0, and that of active constraints are consistent with $\alpha_{i,r}^{k^*}$. The complementary slackness conditions are satisfied.

■ End of proof of *Proposition 3*.

Proof of Proposition 4:

According to (4), (5c) and the definition of d_P^k , we have

$$\boldsymbol{d}_{P}^{k} = \frac{\partial f(\boldsymbol{x}^{k})}{\partial \boldsymbol{x}} + \boldsymbol{A}_{C}^{T} \boldsymbol{\lambda}^{k} + \rho \boldsymbol{A}_{C}^{T} \boldsymbol{B}_{C} (-\boldsymbol{y}^{k-1} + \boldsymbol{y}^{k}) + \boldsymbol{A}_{C}^{T} \boldsymbol{\alpha}^{k} \quad (A13)$$

Combining (5c) and the KKT conditions of (5a)~(5b), then $P_G - B_C^T \lambda^k + \mathbf{1}^{I+1} \gamma^k = \mathbf{0}$ (A14)

Support the auxiliary variable u^k , where

$$\boldsymbol{u}^{k} := \boldsymbol{d}_{P}^{k} - \boldsymbol{A}_{C}^{T} \boldsymbol{\lambda}^{k} - \rho \boldsymbol{A}_{C}^{T} \boldsymbol{B}_{C} (-\boldsymbol{y}^{k-1} + \boldsymbol{y}^{k}) - \boldsymbol{A}_{P}^{T} \boldsymbol{\alpha}^{k} = \frac{\partial f(\boldsymbol{x}^{k})}{\partial \boldsymbol{x}}$$
(A15)

Since f(x) is a convex function, we have

$$\langle \boldsymbol{u}^k + \boldsymbol{A}_{\mathrm{C}}^{\mathrm{T}} \boldsymbol{\lambda}^* + \boldsymbol{A}_{\mathrm{P}}^{\mathrm{T}} \boldsymbol{\alpha}^*, \boldsymbol{x}^k - \boldsymbol{x}^* \rangle \ge 0$$
 (A16a)

$$\langle \boldsymbol{B}_{C}^{T} \boldsymbol{\lambda}^{k} - \boldsymbol{1}^{I+1} \boldsymbol{\gamma}^{k} - \boldsymbol{B}_{C}^{T} \boldsymbol{\lambda}^{*} + \boldsymbol{1}^{I+1} \boldsymbol{\gamma}^{*}, \boldsymbol{y}^{k} - \boldsymbol{y}^{*} \rangle = 0$$
 (A16b)

Bring (5c) and (A15) to (A16), then we obtain

$$0 \leq \left\langle \boldsymbol{d}_{P}^{k}, \boldsymbol{x}^{k} - \boldsymbol{x}^{*} \right\rangle - \left\langle \boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{*}, \boldsymbol{A}_{C}(\boldsymbol{x}^{k} - \boldsymbol{x}^{*}) \right\rangle$$

$$- \left\langle \rho \boldsymbol{B}_{C}(-\boldsymbol{y}^{k-1} + \boldsymbol{y}^{k}), \boldsymbol{A}_{C}(\boldsymbol{x}^{k} - \boldsymbol{x}^{*}) \right\rangle$$

$$- \left\langle (\boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{*}), -\boldsymbol{B}_{C}(\boldsymbol{y}^{k} - \boldsymbol{y}^{*}) \right\rangle$$

$$+ \left\langle -(\boldsymbol{\alpha}^{k} - \boldsymbol{\alpha}^{*}), \boldsymbol{A}_{P}(\boldsymbol{x}^{k} - \boldsymbol{x}^{*}) \right\rangle$$

$$+ \left\langle -(\boldsymbol{\gamma}^{k} - \boldsymbol{\gamma}^{*}), \boldsymbol{1}^{I+1}(\boldsymbol{y}^{k} - \boldsymbol{y}^{*}) \right\rangle$$
(A17)

According to **Proposition 3**, we have that

$$\langle -(\boldsymbol{\alpha}^k - \boldsymbol{\alpha}^*), \boldsymbol{A}_{p}(\boldsymbol{x}^k - \boldsymbol{x}^*) \rangle \leq 0$$
 (A18a)

$$\langle -(\boldsymbol{\gamma}^k - \boldsymbol{\gamma}^*), \mathbf{1}^{I+1}(\boldsymbol{y}^k - \boldsymbol{y}^*) \rangle = 0$$
 (A18b)

Combining (A17) and (A18), we can get

$$\left\langle \boldsymbol{d}_{P}^{k}, \boldsymbol{x}^{k} - \boldsymbol{x}^{*} \right\rangle - \left\langle \rho \boldsymbol{B}_{C} \left(-\boldsymbol{y}_{Sh}^{k-1} + \boldsymbol{y}_{Sh}^{k} \right), \boldsymbol{A}_{C} \left(\boldsymbol{x}^{k} - \boldsymbol{x}^{*} \right) \right\rangle \\
- \left\langle \boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{*}, -\boldsymbol{B}_{C} \left(\boldsymbol{y}^{k} - \boldsymbol{y}^{*} \right) + \boldsymbol{A}_{C} \left(\boldsymbol{x}^{k} - \boldsymbol{x}^{*} \right) \right\rangle \ge 0$$
(A19)

Bringing (5c) into the third term on (A19), we have

$$\langle \boldsymbol{d}_{P}^{k}, \boldsymbol{x}^{k} - \boldsymbol{x}^{*} \rangle - \langle \boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{*}, \frac{1}{\rho} (\boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{k-1}) \rangle$$

$$\geq \langle \rho \boldsymbol{B}_{C} (-\boldsymbol{y}^{k-1} + \boldsymbol{y}^{k}), \boldsymbol{A}_{C} (\boldsymbol{x}^{k} - \boldsymbol{x}^{*}) \rangle$$
(A20)

With multiplying both sides of (A20) by 2ρ , (19) is obtained

■ End of proof of *Proposition 4*.

Proof of Proposition 5:

According to the definition of inner product, we have

$$\frac{2}{\rho} \left| \left\langle \boldsymbol{\omega}^{k-1} - \boldsymbol{x}^{k}, \boldsymbol{d}_{P}^{k} \right\rangle \right| \leq \frac{2}{\rho} \left\langle \left| \boldsymbol{\omega}^{k-1} \right| + \left| \boldsymbol{x}^{k} \right|, \left| \boldsymbol{d}_{P}^{k} \right| \right\rangle$$
(A21)

According to (16) and the definition of d_P^k , there are

$$\left| \frac{\partial L'_{p}(\boldsymbol{x}^{k}, \boldsymbol{\alpha}^{k})}{\partial \boldsymbol{x}} - \frac{\partial L'_{p}(\boldsymbol{x}^{k^{*}}, \boldsymbol{\alpha}^{k^{*}})}{\partial \boldsymbol{x}} \right| = \left| d_{p}^{k} \right| \le \boldsymbol{\xi}'$$
(A22)

Combining (17b)~(17c) and (A22), we can get

$$\frac{2}{\rho} \left\langle \left| \boldsymbol{\omega}^{k-1} \right| + \left| \boldsymbol{x}^{k} \right|, \left| \boldsymbol{d}_{P}^{k} \right| \right\rangle \leq \frac{2}{\rho} \left\langle \left| \boldsymbol{\omega}^{k-1} \right| + \overline{\boldsymbol{x}}_{\max}^{k}, \boldsymbol{\xi}' \right\rangle$$
 (A23a)

$$\left|\boldsymbol{\omega}^{k-1}\right| \le \overline{\boldsymbol{\omega}}^{k-1} \tag{A23b}$$

Then, we can obtain

$$\left\langle \left| \boldsymbol{\omega}^{k-1} \right| + \left| \boldsymbol{x}^{k} \right|, \left| \boldsymbol{d}_{P}^{k} \right| \right\rangle \le \left\langle \bar{\boldsymbol{\omega}}^{k-1} + \bar{\boldsymbol{x}}_{\max}^{k}, \boldsymbol{\xi}' \right\rangle$$
 (A24)

According to (17a), (A22) and (A24), the (20) is satisfied.

■ End of proof of *Proposition 5*.

Proof of Proposition 6:

According to (17c) and Proposition 5, we can get

$$\|\boldsymbol{\omega}^{k-1} - \boldsymbol{x}^*\|_2^2 - \|\boldsymbol{\omega}^k - \boldsymbol{x}^*\|_2^2$$

$$= -\|\boldsymbol{\omega}^k - \boldsymbol{\omega}^{k-1}\|_2^2 - 2\langle \boldsymbol{\omega}^{k-1} - \boldsymbol{x}^*, \boldsymbol{\omega}^k - \boldsymbol{\omega}^{k-1} \rangle$$

$$= -\rho^2 \|\boldsymbol{d}_{P}^k\|_2^2 + 2\rho\langle \boldsymbol{\omega}^{k-1} - \boldsymbol{x}^k, \boldsymbol{d}_{P}^k \rangle + 2\rho\langle \boldsymbol{x}^k - \boldsymbol{x}^*, \boldsymbol{d}_{P}^k \rangle \quad (A25)$$

$$\geq -\rho^2 \|\boldsymbol{d}_{P}^k\|_2^2 + 2\rho\langle \boldsymbol{x}^k - \boldsymbol{x}^*, \boldsymbol{d}_{P}^k \rangle - 2\rho |\langle \boldsymbol{\omega}^k - \boldsymbol{x}^*, \boldsymbol{d}_{P}^k \rangle|$$

$$\geq 2\rho\langle \boldsymbol{x}^k - \boldsymbol{x}^*, \boldsymbol{d}_{P}^k \rangle - \rho^2 \sigma \|\boldsymbol{A}_{C} \boldsymbol{x}^k - \boldsymbol{B}_{C} \boldsymbol{y}^{k-1}\|_2^2$$

Similarly, we have

$$\begin{aligned} & \left\| \boldsymbol{\lambda}^{k-1} - \boldsymbol{\lambda}^* \right\|_2^2 - \left\| \boldsymbol{\lambda}^k - \boldsymbol{\lambda}^* \right\|_2^2 \\ &= \left\| \boldsymbol{\lambda}^{k-1} - \boldsymbol{\lambda}^k \right\|_2^2 + 2 \left\langle \boldsymbol{\lambda}^{k-1} - \boldsymbol{\lambda}^k, \boldsymbol{\lambda}^k - \boldsymbol{\lambda}^* \right\rangle \end{aligned}$$
(A26)

Furthermore, according to Proposition 4, $(A25)\sim(A26)$ and (5c), we have

$$\Phi^{k-1} - \Phi^k$$

$$\geq \rho^{2} \| \mathbf{A}_{C} \mathbf{x}^{k} - \mathbf{B}_{C} \mathbf{y}^{k} \|_{2}^{2} - \rho^{2} \sigma \| \mathbf{A}_{C} \mathbf{x}^{k} - \mathbf{B}_{C} \mathbf{y}^{k-1} \|_{2}^{2}$$

$$-\rho^{2} \| \mathbf{B}_{C} (-\mathbf{y}^{k} + \mathbf{y}^{*}) \|_{2}^{2} + \rho^{2} \| \mathbf{B}_{C} (-\mathbf{y}^{k-1} + \mathbf{y}^{*}) \|_{2}^{2}$$

$$-2\rho^{2} \langle \mathbf{B}_{C} (-\mathbf{y}^{k} + \mathbf{y}^{k-1}), \mathbf{A}_{C} (\mathbf{x}^{k} - \mathbf{x}^{*}) \rangle$$
(A27)

Due to $A_C x^* - B_C y^* = 0$ and Cauchy-Schwarz Inequality, the fifth term on the right-hand side of (A27) can be written as $2\rho^2 \langle B_C (-y^k + y^{k-1}), A_C (x^k - x^*) \rangle$

$$= \rho^{2} \left(\left\| \boldsymbol{B}_{C} (-\boldsymbol{y}_{=}^{k-1} + \boldsymbol{y}_{=}^{k}) \right\|_{2}^{2} + \left\| \boldsymbol{A}_{C} \boldsymbol{x}^{k} - \boldsymbol{B}_{C} \boldsymbol{y}^{k} \right\|_{2}^{2} - \left\| \boldsymbol{A}_{C} \boldsymbol{x}^{k} - \boldsymbol{B}_{C} \boldsymbol{y}^{k-1} \right\|_{2}^{2} \right)$$

$$- \rho^{2} \left(\left\| \boldsymbol{B}_{C} (-\boldsymbol{y}^{k-1} + \boldsymbol{y}^{k}) \right\|_{2}^{2} + \left\| \boldsymbol{B}_{C} (-\boldsymbol{y}^{k} + \boldsymbol{y}^{*}) \right\|_{2}^{2} - \left\| \boldsymbol{B}_{C} (-\boldsymbol{y}^{k-1} + \boldsymbol{y}^{*}) \right\|_{2}^{2} \right)$$

$$(A28)$$

Bring (A28) to (A27), we obtain

$$\Phi^{k-1} - \Phi^k \ge \rho^2 (1 - \sigma) \| \boldsymbol{A}_{C} \boldsymbol{x}^k - \boldsymbol{B}_{C} \boldsymbol{y}^{k-1} \|_{2}^{2}$$
(A29)

Obviously, is a non-increasing and positive sequence. Then, $\{y^k\}$, $\{\lambda^k\}$, and $\{\omega^k\}$ are bounded sequences. And we can get

$$\lim_{k \to \infty} \mathbf{A}_{\mathbf{C}} \mathbf{x}^k - \mathbf{B}_{\mathbf{C}} \mathbf{y}^{k-1} = \mathbf{0} \tag{A30}$$

Besides, based on *Proposition 3*, $\{x^k\}$ is bounded sequence. Since $\{x^k\}$, $\{y^k\}$, $\{\lambda^k\}$ is bounded, $\{\alpha^k\}$ and $\{\gamma^k\}$ are bounded, according to KKT conditions of (4) and (5).

■ End of proof of *Proposition 6*.

Proof of Proposition 7:

With Bolzano-Weierstrass Theorem, there are K satisfying

$$\lim_{k \to \infty, k \in \mathcal{K}} \lambda^{k} = \overline{\lambda}, \lim_{k \to \infty, k \in \mathcal{K}} \alpha^{k} = \overline{\alpha}, \lim_{k \to \infty, k \in \mathcal{K}} \gamma^{k} = \overline{\gamma}$$
(A31)

According to **Proposition 5**, (A30) and the definition of ω^k , we have

$$\left\langle \boldsymbol{\omega}^{k-1} - \boldsymbol{x}^{k}, \boldsymbol{d}_{P}^{k} \right\rangle = \left\| \boldsymbol{d}_{P}^{k} \right\|^{2} = 0 \tag{A32}$$

Since $\{\omega^k\}$ and $\{x^k\}$ are bounded, we obtain

$$\langle \boldsymbol{x}^{k}, \boldsymbol{d}_{P}^{k} \rangle = \langle \boldsymbol{\omega}^{k}, \boldsymbol{d}_{P}^{k} \rangle = \langle \boldsymbol{A}_{C} \boldsymbol{x}^{k} - \boldsymbol{B}_{C} \boldsymbol{y}^{k-1}, \boldsymbol{A} \boldsymbol{x}^{k} \rangle = 0$$
 (A33)

Support the Fenchel conjugate function of f is f*. According to Legendre Transform Definition, there are

$$\mathbf{u}^{k} = \partial f(\mathbf{x}^{k}) \Leftrightarrow \mathbf{x}^{k} = \partial f^{*}(\mathbf{u}^{k})$$
(A34)

Due to convexity, we have

$$f^{*}(-A_{C}^{T}\boldsymbol{\lambda}^{*} - A_{P}^{T}\boldsymbol{\alpha}^{*})$$

$$\geq f^{*}(\boldsymbol{u}^{k}) + \langle \partial f^{*}(\boldsymbol{u}^{k}), -A_{C}^{T}\boldsymbol{\lambda}^{*} - A_{P}^{T}\boldsymbol{\alpha}^{*} - \boldsymbol{u}^{k} \rangle$$
(A35)

Bring (A15) into (A35), we can get

$$f^*(-A_{\mathrm{C}}^{\mathrm{T}}\boldsymbol{\lambda}^* - A_{\mathrm{P}}^{\mathrm{T}}\boldsymbol{\alpha}^*)$$

$$\geq f^{*}(\boldsymbol{u}^{k}) + \langle \boldsymbol{x}^{k}, \boldsymbol{A}_{C}^{T}(\boldsymbol{\lambda}^{k-1} - \boldsymbol{\lambda}^{*}) \rangle$$

$$+ \langle \boldsymbol{A}_{C}\boldsymbol{x}^{k}, \boldsymbol{\rho}(\boldsymbol{A}_{C}\boldsymbol{x}^{k} - \boldsymbol{B}_{C}\boldsymbol{y}^{k-1}) \rangle$$

$$- \langle \boldsymbol{x}^{k}, \boldsymbol{d}_{P}^{k} \rangle + \langle \boldsymbol{x}^{k}, \boldsymbol{A}_{P}^{T}(\boldsymbol{\alpha}^{k} - \boldsymbol{\alpha}^{*}) \rangle$$
(A36)

According to (A15) and (A30)~(A33), we have

$$\lim_{k \to \infty} u^k = -A_{\rm C}^{\rm T} \overline{\lambda} - A_{\rm P}^{\rm T} \overline{\alpha}$$
 (A37)

Besides, γ^k and γ^* satisfy the KKT conditions of problem (1) and (5a)~(5b). Hence, there are

$$\mathbf{1}^{1 \times (I+1)} \mathbf{y}^{k} = \mathbf{1}^{1 \times (I+1)} \mathbf{y}^{*} = \mathbf{0}$$
 (A38a)

$$P_{G} - B_{C}^{T} \lambda^{k} + 1^{I+1} \gamma^{k} = 0, P_{G} - B_{C}^{T} \lambda^{*} + 1^{I+1} \gamma^{*} = 0$$
 (A38b)

Based on (A31)~(A33) and (A38b), the (A36) can be written as following when $k \to \infty, k \in \mathcal{K}$.

$$f^{*}(-\boldsymbol{A}_{C}^{T}\boldsymbol{\lambda}^{*} - \boldsymbol{A}_{P}^{T}\boldsymbol{\alpha}^{*})$$

$$\geq f^{*}(-\boldsymbol{A}_{C}^{T}\overline{\boldsymbol{\lambda}} - \boldsymbol{A}_{P}^{T}\overline{\boldsymbol{\alpha}}) + \left\langle \boldsymbol{A}_{C}\boldsymbol{x}^{k}, \overline{\boldsymbol{\lambda}} - \boldsymbol{\lambda}^{*} \right\rangle$$

$$+ \left\langle \boldsymbol{A}_{P}\boldsymbol{x}^{k}, \boldsymbol{\alpha}^{k} - \boldsymbol{\alpha}^{*} \right\rangle - \left\langle \boldsymbol{B}_{C}\boldsymbol{y}^{k-1}, \overline{\boldsymbol{\lambda}} - \boldsymbol{\lambda}^{*} \right\rangle$$

$$+ \left\langle \boldsymbol{y}^{k-1}, \boldsymbol{1}^{I+1}(\boldsymbol{\gamma}^{k-1} - \boldsymbol{\gamma}^{*}) \right\rangle$$
(A39)

Bringing (A30), (A38b) and (15a) into (A39) yields

$$f^{*}(-\boldsymbol{A}_{C}^{T}\boldsymbol{\lambda}^{*} - \boldsymbol{A}_{P}^{T}\boldsymbol{\alpha}^{*})$$

$$\geq f^{*}(-\boldsymbol{A}_{C}^{T}\overline{\boldsymbol{\lambda}} - \boldsymbol{A}_{P}^{T}\overline{\boldsymbol{\alpha}}) - \langle \boldsymbol{b}_{P}, \overline{\boldsymbol{\alpha}} \rangle$$

$$- \langle \boldsymbol{A}_{P}\boldsymbol{x}^{k} + \boldsymbol{b}_{P}, \boldsymbol{\alpha}^{*} \rangle + \langle \boldsymbol{b}_{P}, \boldsymbol{\alpha}^{*} \rangle$$

$$\geq f^{*}(-\boldsymbol{A}_{C}^{T}\overline{\boldsymbol{\lambda}} - \boldsymbol{A}_{P}^{T}\overline{\boldsymbol{\alpha}}) - \langle \boldsymbol{b}_{P}, \overline{\boldsymbol{\alpha}} \rangle + \langle \boldsymbol{b}_{P}, \boldsymbol{\alpha}^{*} \rangle$$
(A40)

That is

$$f^{*}(-\boldsymbol{A}_{\mathrm{C}}^{\mathrm{T}}\boldsymbol{\lambda}^{*}-\boldsymbol{A}_{\mathrm{P}}^{\mathrm{T}}\boldsymbol{\alpha}^{*})-\left\langle\boldsymbol{b}_{\mathrm{P}},\boldsymbol{\alpha}^{*}\right\rangle \geq f^{*}(-\boldsymbol{A}_{\mathrm{C}}^{\mathrm{T}}\overline{\boldsymbol{\lambda}}-\boldsymbol{A}_{\mathrm{P}}^{\mathrm{T}}\overline{\boldsymbol{\alpha}})-\left\langle\boldsymbol{b}_{\mathrm{P}},\overline{\boldsymbol{\alpha}}\right\rangle$$
(A41)

Moreover, solving the primary problem (1) is equivalent to solving its dual problem:

$$\min_{\boldsymbol{\lambda}, \boldsymbol{\alpha}, \boldsymbol{\gamma}} f^* (-\boldsymbol{A}_{\mathrm{C}}^{\mathrm{T}} \boldsymbol{\lambda} - \boldsymbol{A}_{\mathrm{P}}^{\mathrm{T}} \boldsymbol{\alpha}) - \boldsymbol{P}_{\mathrm{G}} - \langle \boldsymbol{b}_{\mathrm{P}}, \boldsymbol{\alpha} \rangle - \langle \boldsymbol{0}, \boldsymbol{\lambda} \rangle - \langle \boldsymbol{0}, \boldsymbol{\gamma} \rangle \quad (A42)$$

Since (1) is a convex programming, $\bar{\lambda}$, $\bar{\alpha}$, $\bar{\gamma}$ is the global optimal solution λ^* , α^* , γ^* . Similarly, there are $\mathcal{K}' \subseteq \mathcal{K}$ satisfying

$$\lim_{k \to \infty, k \in \mathcal{K}} \mathbf{x}^k = \overline{\mathbf{x}}, \lim_{k \to \infty, k \in \mathcal{K}} \mathbf{y}^k = \overline{\mathbf{y}}$$
(A43)

According to (A15) and (A31)~(A33), we have

$$\lim_{k \to \infty, k \in \mathcal{K}'} \boldsymbol{u}^{k} = \overline{\boldsymbol{u}} = -\boldsymbol{A}_{C}^{T} \overline{\boldsymbol{\lambda}} - \boldsymbol{A}_{P}^{T} \overline{\boldsymbol{\alpha}} = \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}$$
(A43)

According to $\bar{\lambda} = \lambda^*$, $\bar{\alpha} = \alpha^*$, $\bar{\gamma} = \gamma^*$, (15), (A30), (A38) and (A43), the KKT conditions of (1) are satisfied by $\{\bar{\lambda}, \bar{\alpha}, \bar{\gamma}, \bar{x}, \bar{y}\}$. Therefore, it is the optimal solution.

Based on (A32), $\{\omega^k\}$ is a global convergence sequence that converges to ω^{∞} . Similarly, there is $\mathcal{K}'' \subseteq \mathcal{K}'$ satisfying

$$\lim_{k \to \infty} \boldsymbol{\omega}^k = \boldsymbol{\omega}^{\infty} \tag{A44a}$$

$$\lim_{k \to \infty} \left\| -y^k + y^* \right\|_2^2 = \liminf_{k \to \infty} \left\| -y^k + y^* \right\|_2^2$$
 (A44b)

Introduce an auxiliary variable which satisfies

$$\phi^{k} = \|\boldsymbol{\omega}^{k} - \boldsymbol{x}^{*}\|_{2}^{2} + \rho^{2} \|-\boldsymbol{y}^{k} + \boldsymbol{y}^{*}\|_{2}^{2}$$
(A45)

According to (A44), we have

$$\lim_{k \to \infty, k \in \mathcal{K}^{"}} \boldsymbol{\phi}^{k} = \liminf_{k \to \infty} \boldsymbol{\phi}^{k} = \left\| \boldsymbol{\omega}^{\infty} - \boldsymbol{x}^{*} \right\|^{2} + \rho^{2} \liminf_{k \to \infty} \left\| -\boldsymbol{y}^{k} + \boldsymbol{y}^{*} \right\|^{2}$$
(A46)

From (A21a), Φ^k is global convergence. Then, we can get $\limsup_{k\to\infty} \Phi^k = \lim_{k\to\infty} \Phi^k = \lim_{k\to\infty} \Phi^k$ (A47)

According to $\mathcal{K}'' \subseteq \mathcal{K}'$, (21b), (A31), and $\overline{\lambda} = \lambda^*$, we have

$$\lim_{k \to \infty, k \in \mathcal{K}''} \Phi^k = \lim_{k \to \infty, k \in \mathcal{K}''} \phi^k = \liminf_{k \to \infty} \phi^k$$
(A48)

Combining (21b) and (A45), we obtain

$$\limsup_{k \to \infty} \|\boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{*}\|^{2} = \limsup_{k \to \infty} (\Phi^{k} - \phi^{k})$$

$$\geq \limsup_{k \to \infty} \Phi^{k} - \liminf_{k \to \infty} \phi^{k} = 0$$
(A49)

That is $\lim_{k\to\infty} \lambda^k = \lambda^*$. Since Φ^k , λ^k , ω^k is global convergence, y^k is also global convergence. So

$$\lim_{k \to \infty} \mathbf{y}^k = \mathbf{y}^* \tag{A50}$$

■ End of proof of *Proposition 7*.