Naive Bayes classifier Algorithm

Importing libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Loading dataset i.e. Adult dataset

```
df = pd.read_csv('adult.csv')
df.head()
```

₽		39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	21
	0	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	
	1	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	
	4						Married-					•

```
df.shape
```

df.head()

(32560, 15)

Rename column names

а	age	workclass	fnlwgt	education	education_num	marital_status	occupation	rel
	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	
	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	N
	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	
	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	
	37	Private	284582	Masters	14	Married-civ- spouse	Exec- managerial	
								•

Declaring feature vector and target variable

```
X = df.drop(['income'], axis=1)
y = df['income']
```

Split X and y into training and testing sets

pip install --upgrade category_encoders

```
Collecting category_encoders

Downloading category_encoders-2.4.0-py2.py3-none-any.whl (86 kB)
```

Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from package) Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages Installing collected packages: category-encoders
Successfully installed category-encoders-2.4.0

Juccessivity installed edeegory encoders 2.4.0

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir
import pandas.util.testing as tm

Encoding remaining variables with one-hot encoding

X_train = the_encoder.fit_transform(X_train)
X_test = the_encoder.transform(X_test)

X_train.head()

	age	workclass_1	workclass_2	workclass_3	workclass_4	workclass_5	workclas
20721	32	1	0	0	0	0	
32097	45	0	1	0	0	0	
25205	47	0	0	1	0	0	
23491	37	0	1	0	0	0	
12367	24	0	1	0	0	0	

5 rows × 108 columns

X_test.head()

	age	workclass_1	workclass_2	workclass_3	workclass_4	workclass_5	workcla:
22278	40	1	0	0	0	0	
8950	46	0	1	0	0	0	
7838	33	0	0	0	0	0	
16505	21	0	1	0	0	0	
19140	59	0	1	0	0	0	

5 rows × 108 columns

Feature scaling

the_cols = X_train.columns

```
from sklearn.preprocessing import RobustScaler

scaler = RobustScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = pd.DataFrame(X_train, columns=[the_cols])

X_test = pd.DataFrame(X_test, columns=[the_cols])
```

X_train.head()

	age	workclass_1	workclass_2	workclass_3	workclass_4	workclass_5	workclass_0
0	-0.25	1.0	-1.0	0.0	0.0	0.0	0.0
1	0.40	0.0	0.0	0.0	0.0	0.0	0.0
2	0.50	0.0	-1.0	1.0	0.0	0.0	0.0
3	0.00	0.0	0.0	0.0	0.0	0.0	0.0
4	-0.65	0.0	0.0	0.0	0.0	0.0	0.0

5 rows × 108 columns

- Train a Gaussian Naive Bayes classifier on the training set
- instantiate the model
- fit the model

```
from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()

gnb.fit(X_train, y_train)

/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:1692: FutureWarnir
    FutureWarning,
    GaussianNB()
```

Predicting results

```
y_pred = gnb.predict(X_test)
y_pred
```

Checking model accuracy score

```
from sklearn.metrics import accuracy_score
print('Model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, y_pred)))
    Model accuracy score: 0.8062

print('Training set score: {:.4f}'.format(gnb.score(X_train, y_train)))

print('Test set score: {:.4f}'.format(gnb.score(X_test, y_test)))

/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:1692: FutureWarnir FutureWarning,
    /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:1692: FutureWarnir FutureWarning,
    Training set score: 0.8021
    Test set score: 0.8062
```

Checking class distribution in test set

```
y_test.value_counts()

<=50K 7454
>50K 2314
Name: income, dtype: int64
```

Printing the Confusion Matrix and slicing it into four pieces

```
True Positives(TP) = 5970
```

True Negatives(TN) = 1905

False Positives(FP) = 1484

False Negatives(FN) = 409

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
<=50K	0.94	0.80	0.86	7454
>50K	0.56	0.82	0.67	2314
accuracy			0.81	9768
macro avg	0.75	0.81	0.77	9768
weighted avg	0.85	0.81	0.82	9768

```
TP = cm[0,0]
```

TN = cm[1,1]

FP = cm[0,1]

FN = cm[1,0]

```
classification_accuracy = (TP + TN) / float(TP + TN + FP + FN)
```

print('Classification accuracy : {0:0.4f}'.format(classification_accuracy))

Classification accuracy : 0.8062

classification_error = (FP + FN) / float(TP + TN + FP + FN)

print('Classification error : {0:0.4f}'.format(classification_error))

Classification error: 0.1938

precision = TP / float(TP + FP)

print('Precision : {0:0.4f}'.format(precision))

Precision: 0.8009