### **Prelim 1 Review**

Prelim 1 Tuesday October 17 7:30 pm in 318 Phillips

## **General Question**

- Test format: What types of questions should we expect?
  - 7 multiple choice questions (4 points each)
  - Short problems (includes one graph)
- How far should we be able to extrapolate beyond what is in the notes?
  - You should understand the fundamental concepts and be able to talk about those concepts with your friends
  - Algebra and arithmetic are expected

# **Python based Prelim**

- What could fail?
  - No communication with other humans during the exam
  - No posting questions or answers on the web
  - Delete part of the exam by mistake (save a copy with your name in the title as step 1)
- How do you minimize risk of failure?
  - Save versions
  - Also submit a pdf copy. Print the webpage as a pdf (File – print preview, then print as pdf)



# What are examples of major and minor losses?

 Major: Caused by shear with the solid surface

• Pipe walls

- Velocity Shear (wall on fluid)
- Flocculator baffle surfaces (insignificant)
- Minor: Flow expansions (analogous to pressure drag)
  - Orifice, elbow, valve, any place where flow is  $\frac{h_e = K}{2g}$  expanding!
  - KE is converted into 2 things!

# Head Loss due to Sudden Expansion Energy $h_e = \frac{P_{in} - P_{out}}{\rho g} + \frac{V_{in}^2 - V_{out}^2}{2g}$ Momentum $P_{in} - P_{out}$ $Pg = \frac{V_{out}^2 - V_{in}^2 \frac{A_{in}}{A_{out}}}{2g} + \frac{V_{out}^2 - V_{in}^2 \frac{A_{in}}{A_{out}}}{2g}$ $h_e = \frac{2V_{out}^2 - 2V_{in}^2 \frac{V_{out}}{V_{in}}}{2g} + \frac{V_{in}^2 - V_{out}^2}{2g}$ $h_e = \frac{V_{out}^2 - 2V_{in}V_{out} + V_{in}^2}{2g}$



Discharge into a reservoir? Loss coefficient = 1

# The Challenge of Chemical Metering (Hypochlorinator)



# Hole in a bucket (tank drain)

- What type of head loss (major or minor)?
- What is the equation for those loses?
- How would you calculate the initial flow rate given the minor losses?
- How does the flow vary with time?  $\frac{Q}{Q_0} = 1 \frac{1}{2} \frac{t}{t_{Design}} \frac{h_{Tank}}{h_0}$
- What is the average flow rate while the tank is emptying?

# Hole in a bucket (tank drain)

Case 2, 
$$h_0=1$$
 m,  $h_{tank}=1$  m,  $t_{design}=4$  days



# What happens if raw water temperature drops in a WTP?

- Flow measurement
- Chemical feed (air temperature?)
- Rapid mix
- Flocculation
  - Head loss through flocculator
  - Fluid deformation (Gθ)
- Sedimentation prelim 2!















### **Chemical Dose Controller**

• What is the purpose of CHT?

rate increases?

- What is the purpose of the dosing tubes?



- What is the design constraint for the maximum flow rate in the dosing tubes?  $h_L\Pi_{Error} = \sum K_e \frac{V_{Max}^2}{2g}$  • Why does the flow through the dose  $h_L$ 
  - controller increase if the plant flow
    - $Q = \frac{h_{\rm f} \rho g \pi D^4}{128 \mu L}$

CEE 4540: Sustainable Municipal Drinking Water Treatment Monroe Weber-Shirk

# Head loss, energy dissipation rate, velocity gradient

$$h_e = K_e \frac{V^2}{2g}$$

$$\overline{\varepsilon} = \frac{gh_e}{\theta_e}$$

Use these equations to relate velocity gradient to velocity (and then to flow geometry)

### **Energy dissipation rate**

| 3   | <b>Equation source</b>                          | Equation                                                        | scale                                         |
|-----|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|
| Ave | Control volume     mass     momentum     energy | $\overline{\varepsilon} = K_e \frac{V^2}{2} \frac{1}{\theta_e}$ | time over<br>which<br>energy is<br>dissipated |
| Max | Dimensional analysis                            | $\varepsilon_{Max} \cong \frac{\left(\Pi V\right)^3}{D}$        | Flow<br>-dimension                            |

### **Maximum Energy Dissipation Rate**

| Type of expansion | Context                | П     | Equation                                                                                                              |  |
|-------------------|------------------------|-------|-----------------------------------------------------------------------------------------------------------------------|--|
| Round jet         | Rapid mix              | 0.5   | $arepsilon_{Max} \cong rac{\left(\prod_{JetRound} V_{Jet} ight)^3}{D_{Jet}}$                                         |  |
| Plane jet         | Hydraulic flocculator  | 0.225 | $\varepsilon_{\mathit{Max}} \cong \frac{\left( \Pi_{\mathit{JetPlane}} V_{\mathit{Jet}} \right)^3}{S_{\mathit{Jet}}}$ |  |
| Plate             | Mechanical flocculator | 0.34  | $\varepsilon_{Max} = \frac{\left(\Pi_{Plate}V\right)^3}{W_{Plate}}$                                                   |  |

П

### **Power and Energy**

- Energy: Joule = Newton\*meter
- Power: Watt = Joule/s
- Water elevation change in an AguaClara plant is about 2 m. How much energy are we using per kg of water?  $2m*g = 19.6 (m/s)^2 = J/kg$
- If the flow rate is 100 L/s, what is the equivalent power?
   0.1m<sup>3</sup>/s\*1000kg/m<sup>3</sup>\*19.6J/kg = 1900 W
- Desalination = 1 km, distillation = 250 km

# Identify all of the parameters in the Floc Model

$$pC^* = \frac{3}{2} \log \left( \frac{2}{3} \pi k \frac{d_p^2}{\Lambda_0^2} \frac{\overline{G}}{6} t \alpha + 1 \right)$$

$$n_p = \frac{6}{\pi d_p^3} \frac{C_p}{\rho_p}$$

$$\bar{G}t = \frac{3}{2} \frac{\left( \Lambda^2 - \Lambda_0^2 \right)}{k \pi d_p^2 \alpha}$$

$$\bar{G}t \approx \frac{3}{2} \frac{\Lambda^2}{k \pi d_p^2 \alpha}$$

$$\bar{G}t \approx \frac{3}{2} \frac{\Lambda^2}{k \pi d_p^2 \alpha}$$