MJE520(SILICON) MJE520K MJE3520

PLASTIC MEDIUM-POWER NPN SILICON TRANSISTORS

. . . designed for use in general-purpose amplifier and switching circuits. Recommended for use in 5 to 10 Watt audio amplifiers utilizing complementary symmetry circuitry.

- DC Current Gain hFE = 25 (Min) @ IC = 1.0 Adc
- MJE520, MJE520K and MJE3520 are Complementary with PNP MJE370, MJE370K and MJE3370
- Choice of Packages MJE520, 25 W Case 77 (E-C-B) MJE3520, 25 W — Case 77 (B-C-E) MJE520K, 40 W — Case 199

MAXIMUM RATINGS

Rating	Symbol	Value		Unit
Collector-Emitter Voltage	VCEO	30		Vdc
Collector-Base Voltage	V _{CB}	30		Vdc
Emitter-Base Voltage	VEB	4.0		Vdc
Collector Current — Continuous	l _C	3.0		Adc
- Peak	l	7.0		
Base Current — Continuous	IВ	2.0		Adc
	 	MJE 520 MJE 3520	MJE 520K	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	25 0.2	40 0.32	Watts W/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150		o _C

THERMAL CHARACTERISTICS

Characteristic	Symbol	MJE 520 MJE 3520	MJE 520K	Unit
Thermal Resistance, Junction to Case	⊕1C	5.0	3.125	°C/W

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Min	Max	Unit
VCEO(sus)	30	- [Vdc
ісво	_	100	μAdc
¹ EBO	-	100	μAdc
hFE	25	-	_
	VCEO(sus)	VCEO(sus) 30	VCEO(sus) 30 - 100 1CBO - 100 10

3 AMPERE POWER TRANSISTORS

NPN SILICON

30 VOLTS 25 and 40 WATTS

MJE520 MJE3520 Style 1 Style 3

CASE 77-03

MJE520K

CASE 199-04

ACTIVE-REGION SAFE OPERATING AREA

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS). There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\rm C} \cdot {\rm VCE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

V_{CE}, COLLECTOR-EMITTER VOLTAGE (VOLTS) The data of Figures 1 and 2 based on $T_{J(pk)}=150^{\rm o}{\rm C}$; $T_{\rm C}$ is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided (T_{Jpk}) $\leqslant 150^{\rm o}{\rm C}$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. (See AN-415)

