Chapitre 1 - Approche énergétique

Sciences
Industrielles de
l'Ingénieur

Activation

Activation – Système de dépose de composants électroniques

Émilien Durif - E3A PSI 2011

Savoirs et compétences :

Le système étudié permet de déposer automatiquement des composants électroniques sur un circuit. On s'intéresse ici à la modélisation d'un seul axe (selon la direction notée $\overrightarrow{y_0}$) actionné par un moteur électrique et utilisant un mécanisme de transformation de mouvement « *vis-écrou* ».

Hypothèses:

- le référentiel associé au repère $R_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est supposé galiléen;
- les solides seront supposés indéformables;
- on notera J_1 le moment d'inertie du solide 1 (composé d'une vis à billes et de l'arbre moteur) selon l'axe $\left(O_0, \overrightarrow{y_0}\right)$: $J_1 = I_{\left(O_0, \overrightarrow{y_0}\right)}(S_1)$;
- on note M_3 et G_3 respectivement la masse et le centre d'inertie du solide S_3 ;
- la position de G_3 est définie par $\overrightarrow{O_0G_3} = y \cdot \overrightarrow{y}_0 + z \cdot \overrightarrow{z}_0$
- les liaisons sont supposées parfaites (sans jeu ni frottement) sauf la glissière entre S_0 et S_3 (Coefficient de frottement noté μ) et la pivot entre S_0 et S_1 (couple résistant noté C_r);

1

• seul l'action de pesanteur sur S_3 sera supposée non négligeable.

- *S*₀ : poutre transversale considérée comme fixe par rapport au bâti.
- *S*₁ : vis à billes (hélice à droite) et arbre moteur.
- *S*₂ : écrou de la vis à billes (inertie négligeable).
- S_3 : chariot supportant la tête de dépose (masse M_3).

Données numériques associées au système :

- Coefficient de frottement dans la liaison glissière (rail + patin à billes) : $\mu = 0, 1$.
- Pas de la vis à billes : $p = 20 \,\mathrm{mm}$.
- Diamètre de la vis à billes : $D = 25 \,\mathrm{mm}$.
- Moment d'inertie de la vis à billes suivant l'axe $\overrightarrow{y_0}$: $I_v = 2, 15 \times 10^{-4} \text{ kg m}^2$.
- Couple résistant sur la vis due à son guidage (paliers + joints) : $C_r = 3 \text{ Nm}$.
- *l*, longueur libre de la vis entre deux paliers (mm) : 1000 mm.
- Caractéristiques du moteur d'axe (puissance, vitesse maxi, inertie) :
 - couple maximal, $C_{\text{max}} = 21.2 \,\text{Nm}$;
 - fréquence de rotation maximale, $N_m = 6000 \,\text{tr/min}$;
 - moment d'inertie du rotor du moteur suivant l'axe $\overrightarrow{y_0}$, $I_m = 1,6 \times 10^{-4} \text{ kg m}^2$.

Objectif L'objectif de cette étude est de relier les grandeurs liées à l'actionneur du système (moteur) :

- couple moteur transmis à $S_1 : \overrightarrow{C}_{\text{Moteur} \to S_1} \cdot \overrightarrow{y_0} = C_m(t)$;
- vitesse de rotation de $S_1: \overrightarrow{\Omega}(S_1/R_0) \cdot \overrightarrow{y_0} = \dot{\theta}(t)$.

à celles liées à l'effecteur (tête de dépose S_3):

- masse: M_3 ;
- cinématique de S_3 : $\overrightarrow{a}(G_3R_0) \cdot \overrightarrow{y_0} = \ddot{y}(t)$.

On considère l'ensemble $E = \{S_1 + S_2 + S_3\}.$

Question 1 Construire le graphe des liaisons modélisant le système entier.

Correction

Question 2 Déterminer l'expression de $\mathcal{P}(ext \to E/R_g)$ en fonction de puissances extérieures élémentaires (on ne développera pas les calculs explicitement pour l'instant).

Correction

$$\mathscr{P}(\text{ext} \to E/R_g) = \mathscr{P}(S_0 \to S_1/R_0) + \mathscr{P}(\text{Moteur} \to S_1/R_0) + \mathscr{P}(S_0 \to S_3/R_0) + \mathscr{P}(\text{poids} \to S_3/R_0)$$

Question 3 Calculer $\mathcal{P}(ext \to E/R_0)$ en fonction des données du problème.

Correction On a:

$$\mathscr{P}(\operatorname{ext} \to E/R_g) = \mathscr{P}(S_0 \to S_1/R_0) + \mathscr{P}(\operatorname{Moteur} \to S_1/R_0) + \mathscr{P}(S_0 \to S_3/R_0) + \mathscr{P}(\operatorname{poids} \to S_3/R_0)$$

- $\mathscr{P}(S_0 \to S_1/R_0) = \{\mathscr{T}(S_0 \to S_1)\} \otimes \{\mathscr{V}(S_1/R_0)\} = \left\{\begin{array}{c} X_{01} \cdot \overrightarrow{x_0} + Y_{01} \cdot \overrightarrow{y_0} + Z_{01} \cdot \overrightarrow{z_0} \\ L_{01} \cdot \overrightarrow{x_0} \pm C_r \cdot \overrightarrow{y_0} + N_{01} \cdot \overrightarrow{z_0} \end{array}\right\}_{C_0} \otimes \left\{\begin{array}{c} \dot{\theta}(t) \cdot \overrightarrow{y_0} \\ \dot{0} \end{array}\right\}_{C_0} = \pm C_r \cdot \dot{\theta}(t).$ Le signe de la composante suivant $\overrightarrow{y_0}$ dépendra du sens du mouvement de S_1/S_0 .
- $\mathscr{P}(\text{Moteur} \to S_1/R_0) = \{\mathscr{T}(\text{Moteur} \to S_1)\} \otimes \{\mathscr{V}(S_1/R_0)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \cdot \overrightarrow{y_0} \end{array}\right\}_{-} \otimes \left\{\dot{\theta}(t) \cdot \overrightarrow{y_0}\right\} \overrightarrow{0} O_0 = C_m \cdot \dot{\theta}(t).$
- $\bullet \mathscr{P}(S_0 \to S_3/R_0) = \mathscr{P}(S_0 \to S_3/R_0) = \{\mathscr{T}(S_0 \to S_3)\} \otimes \{\mathscr{V}(S_3/R_0)\} = \left\{ \begin{array}{c} X_{03} \cdot \overrightarrow{x_0} \pm Y_{03} \cdot \overrightarrow{y_0} + Z_{03} \cdot \overrightarrow{z_0} \\ L_{03} \cdot \overrightarrow{x_0} + M_{03} \cdot \overrightarrow{y}_0 + N_{03} \cdot \overrightarrow{z_0} \end{array} \right\}_{-} \otimes \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{y}(t) \cdot \overrightarrow{y_0} \end{array} \right\}_{-}$
- $\mathscr{P}(\text{Poids} \to S_3/R_0) : \mathscr{P}(S_0 \to S_3/R_0) = \{\mathscr{T}(\text{pes} \to S_3)\} \otimes \{\mathscr{V}(S_3/R_0)\} = \{\overrightarrow{0}\} M_3 \cdot g \cdot \overrightarrow{z_0} l G_3 \otimes \{\overrightarrow{y}(t) \cdot \overrightarrow{y_0}\}\}_{G_3} = 0.$

$$\mathscr{P}(\text{ext} \to E/R_0) = (C_m \pm C_r) \cdot \dot{\theta}(t) \pm Y_{03} \cdot \dot{y}(t)$$

Question 4 Calculer l'ensemble des puissances des actions mutuelles dans les liaisons pour l'ensemble $E: \mathcal{P}_{int}(E)$.

• D'après le graphe des liaisons :

$$\mathcal{P}_{int}(E) = \mathcal{P}(S_1 \longleftrightarrow S_2) + \mathcal{P}(S_2 \longleftrightarrow S_3)$$

• Calcul de $\mathcal{P}(S_1 \longleftrightarrow S_2)$:

$$\mathcal{P}(S_1 \longleftrightarrow S_2) = \{ \mathcal{T}(S_1 \to S_2) \} \otimes \{ \mathcal{V}(S_2/S_1) \} = \left\{ \begin{array}{c} O_0 \\ X_{12} \overrightarrow{x}_0 + Y_{12} \overrightarrow{y}_0 + Z_{12} \overrightarrow{z}_0 \end{array} \right\}_{L_{12} \overrightarrow{x}_0 + M_{12} \overrightarrow{y}_0 + N_{12} \overrightarrow{z}_0} \otimes \left\{ \begin{array}{c} O_0 \\ q_{21} \overrightarrow{y}_0 \end{array} \right\}_{v_{12} \cdot \overrightarrow{y}_0} = Y_{12} \cdot v_{12} + q_{21} \cdot M_{12}$$

Or,

$$\begin{cases} M_{12} = -\frac{p}{2\pi} Y_{12} \\ v_{12} = \frac{p}{2\pi} q_{21} \end{cases}$$

D'où:

$$\mathscr{P}(S_1 \longleftrightarrow S_2) = Y_{12} \cdot v_{12} + q_{21} \cdot M_{12} = \frac{p}{2\pi} \left[Y_{12} \cdot q_{21} - q_{21} \cdot Y_{12} \right] = 0$$

• Calcul de $\mathscr{P}(S_2 \longleftrightarrow S_3)$:

$$\mathcal{P}(S_2 \longleftrightarrow S_3) = \{\mathcal{T}(S_2 \to S_3)\} \otimes \{\mathcal{V}(S_3/S_2)\} = \left\{ \begin{array}{c} A \\ X_{23} \overrightarrow{x}_0 + Y_{23} \overrightarrow{y_0} \end{array} \right\}_{\overrightarrow{0}} \otimes \left\{ \begin{array}{c} A \\ p_{32} \overrightarrow{x}_0 + q_{32} \overrightarrow{y}_0 + r_{32} \overrightarrow{z_0} \end{array} \right\}_{w_{32} \cdot \overrightarrow{z_0}} = 0$$

• On en déduit donc :

$$\mathcal{P}_{int}(E) = 0$$

Question 5 Déterminer l'énergie cinétique de l'ensemble E dans son mouvement par rapport à R_0

Correction • Énergie cinétique de l'ensemble dans son mouvement par rapport à R_0 :

$$E_c(E/R_0) = E_c(1/R_0) + E_c(2/R_0) + E_c(3/R_0)$$

• Énergie cinétique de 1 dans son mouvement par rapport à R_0 :

$$E_{c}(1/R_{0})\{\sigma(1/R_{0})\}\otimes\{\mathcal{V}(1/R_{0})\}=\left\{\begin{array}{c}\overrightarrow{*}\\\overline{I}_{O_{0}}(S_{1})\cdot\dot{\theta}(t)\overrightarrow{y_{0}}\end{array}\right\}_{O_{0}}\otimes\left\{\begin{array}{c}\dot{\theta}(t)\overrightarrow{y_{0}}\\\overrightarrow{0}\end{array}\right\}_{O_{0}}=\frac{1}{2}\left[\dot{\theta}^{2}\overline{I}_{O_{0}}(S_{1})\cdot\overrightarrow{y}_{0}\cdot\overrightarrow{y}_{0}\right]=\frac{1}{2}J_{1}\cdot\dot{\theta}^{2}=\frac{1}{2}(I_{m}+I_{v})\cdot\dot{\theta}^{2}$$

• Énergie cinétique de 2 dans son mouvement par rapport à R_0 :

$$E_c(2/R_0) = \frac{1}{2} \{ \sigma(2/R_0) \} \otimes \{ \mathcal{V}(2/R_0) \} = 0$$

car l'inertie de 2 est négligeable.

• Énergie cinétique de 3 dans son mouvement par rapport à R_0 :

$$\begin{split} E_c(3/R_0) &= \frac{1}{2} \left\{ \sigma\left(3/R_0\right) \right\} \otimes \left\{ \mathcal{V}(3/R_0) \right\} = \left\{ \begin{array}{c} - \\ M_3 \cdot \dot{y}(t) \cdot \overrightarrow{y_0} \end{array} \right\}_{\overrightarrow{0}} \otimes \left\{ \begin{array}{c} - \\ \overrightarrow{0} \end{array} \right\}_{\dot{y}(t) \cdot \overrightarrow{y_0}} \\ &= \frac{1}{2} M_3 \cdot \dot{y}^2(t) \end{split}$$

• L'énergie cinétique galiléenne de l'ensemble *E* :

$$E_c(E/R_0) = \frac{1}{2} \left[(I_m + I_\nu) \cdot \dot{\theta}^2(t) + M_3 \cdot \dot{y}^2(t) \right]$$

Question 6 Déterminer la mobilité du système.

Correction Ici la mobilité vaut 1.

Question 7 Déterminer une relation entre les paramètres cinématiques du problème.

Correction Par une fermeture cinématique on pourrait montrer :

$$\dot{y}(t) = -\frac{p}{2\pi}\dot{\theta}(t).$$

Question 8 Déterminer l'inertie équivalente de E ramenée à la rotation autour de l'axe $(O_0, \overrightarrow{y_0})$ et du paramètre $\dot{\theta}(t)$.

Correction

$$E_c(E/R_0) = \frac{1}{2} \left[(I_m + I_v) \cdot \dot{\theta}^2(t) + M_3 \cdot \dot{y}^2(t) \right] = \frac{1}{2} \left[(I_m + I_v) + M_3 \cdot \left(\frac{p}{2\pi}\right)^2 \right] \cdot \dot{\theta}^2(t)$$

ďoù,

$$J_{eq}(E) = (I_m + I_v) + M_3 \cdot \left(\frac{p}{2\pi}\right)^2$$

Question 9 Déterminer la masse équivalente de E ramené à la translation selon la direction $\overrightarrow{y_0}$ et du paramètre $\dot{y}(t)$.

Correction

$$E_c(E/R_0) = \frac{1}{2} \left[(I_m + I_\nu) \cdot \dot{\theta}^2(t) + M_3 \cdot \dot{y}^2(t) \right] = \frac{1}{2} \left[(I_m + I_\nu) \cdot \left(\frac{2\pi}{p} \right)^2 + M_3 \right] \cdot \dot{y}^2(t)$$

ďoù,

$$M_{eq}(E) = (I_m + I_v) \cdot \left(\frac{2\pi}{p}\right)^2 + M_3$$

Question 10 Appliquer le théorème de l'énergie cinétique à l'ensemble E.

Correction En combinant les résultats des différentes questions précédentes, on obtient :

$$M_{eq} \cdot \dot{y}(t) \cdot \ddot{y}(t) = (C_m \pm C_r) \cdot \dot{\theta}(t) \pm Y_{03} \cdot \dot{y}(t) + 0$$

On peut postuler un sens de déplacement : $\dot{y}(t) > 0$, ainsi $\dot{\theta} = -\frac{2\pi}{p} \dot{y}(t) < 0$, $C_r > 0$, $Y_{03} < 0$:

$$M_{eq} \cdot \dot{y}(t) \cdot \ddot{y}(t) = \left[-(C_m + C_r) \cdot \frac{2\pi}{p} + Y_{03} \right] \cdot \dot{y}(t)$$

Question 11 Déterminer des équations supplémentaires issues des théorèmes généraux pour déterminer l'équation de mouvement du système permettant de relier C_m à y(t).

Correction Il faut éliminer le paramètre Y_{03} . Pour cela on peut écrire le théorème de la résultante dynamique appliqué à S_3 en projection selon \overrightarrow{z}_0 :

$$Z_{03} - M_3 \cdot g = 0$$

Or la loi de Coulomb donne (avec $Z_{03} > 0$ et $Y_{03} < 0$):

$$Y_{03} = -\mu \cdot Z_{03} = -\mu \cdot M_3 \cdot g$$

Ainsi l'équation de mouvement obtenue est (en éliminant $\dot{y}(t) \neq 0$):

$$M_{eq} \cdot \ddot{y}(t) = -(C_m + C_r) \cdot \frac{2\pi}{p} - \mu \cdot M_3 \cdot g$$

Question 12 Déterminer le couple moteur à fournir dans le cas le plus défavorable (accélération maximale).

Correction

$$C_{m} = -\frac{p}{2\pi} \left[M_{eq} \ddot{y}_{max} + M_{3} \cdot g \cdot \mu \right] - C_{r} = -\frac{p}{2\pi} M_{3} \left(\ddot{y}_{max} + g \cdot \mu \right) - (I_{m} + I_{v}) \frac{2\pi}{p} \ddot{y}_{max} - C_{r} + C_{r} +$$

L'application numérique donne : $C_m = -3,79N \cdot m$

On cherche à déterminer en régime permanent les pertes au niveaux de la liaison hélicoïdale entre S_1 et S_2 . On considère donc les actions mécaniques de frottement nulles partout ailleurs dans le système global. On introduit alors un rendement η défini en régime permanent et donc à variation d'énergie cinétique négligeable.

Question 13 En considérant le système $E_1 = \{S_1 + S_2\}$, définir le rendement.

Correction

$$\eta = \frac{\mathcal{P}(utile)}{\mathcal{P}(entre)} = \frac{\mathcal{P}(S_2 \to S_3/R_0)}{\mathcal{P}(moteur \to S_1/R_0)}$$

Question 14 On définit la puissance dissipée comme la puissance des inter-effort entre S_1 et S_2 . En appliquant un théorème de l'énergie cinétique à S_2/R_0 et S_1/R_0 en régime permanent donner l'expression des puissances dissipées dans la liaison hélicoïdale.

 $\textbf{Correction} \qquad \bullet \ \text{Expression de } \mathscr{P}(\text{dissip\'ee}) : \mathscr{P}(\text{dissip\'ee}) = -\mathscr{P}(S_1 \longleftrightarrow S_2) = -(\mathscr{P}(S_1 \to S_2/R_0) + \mathscr{P}(S_2 \to S_1/R_0));$

- TEC appliqué à S_2/R_0 en régime permanent : $\mathscr{P}(S_1 \to S_2/R_0) = -\mathscr{P}(S_3 \to S_2/R_0)$;
- TEC appliqué à S_1/R_0 en régime permanent : $\mathscr{P}(\text{moteur} \to S_1/R_0) = -\mathscr{P}(S_2 \to S_1/R_0)$
- en combinant ces équations on obtient $\mathscr{P}(\text{dissipée}) : \mathscr{P}(\text{dissipée}) = -(-\mathscr{P}(S_3 \to S_2/R_0) \mathscr{P}(\text{moteur} \to S_1/R_0))$ = $-\mathscr{P}(S_2 \to S_3/R_0) + \mathscr{P}(\text{moteur} \to S_1/R_0) = (1-\eta)\mathscr{P}(\text{moteur} \to S_1/R_0)$.

On donne:

• Rendement η dans la liaison hélicoïdale : $\eta = 0.8$;

Question 15 Déterminer dans ces conditions les dissipations.

Correction

$$\mathcal{P}(dissipe) = C_{max} \cdot \dot{\theta}_{max} \cdot (\eta - 1)$$
$$= 21,2 \times 6000 \frac{2\pi}{60} \cdot (1 - \eta) = 2664 \text{ W}$$