Chapter 10 Equality constrained minimization

Last update on 2022-05-26 21:39

Table of contents

Equality constrained minimization

Eliminating equality constraints

Newton's method with equality constraints

Infeasible start Newton method

Eliminating equality constraints

Newton's method with equality constraints

Infeasible start Newton method

equality constrained minimization problem

minimize
$$f(x)$$

subject to $Ax = b$

- f convex and twice continuously differentiable
- $ightharpoonup A \in \mathbb{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- ightharpoonup assume optimal value p^* is finite and attained

optimality condition (review)

$$x^*$$
 is optimal \iff $x^* \in \operatorname{dom} f, \quad Ax^* = b,$ there exists ν^* such that $\nabla f(x^*) + A^T \nu^* = 0$

equality constrained quadratic minimization (with $P \in \mathbb{S}^n_+$)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Ax = b$

optimality condition

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \nu^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

- coefficient matrix is called KKT matrix
- ► KKT matrix is nonsingular if and only if

$$Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T Px > 0$$

equivalent condition for nonsingularity

$$P + A^T A \succ 0$$

Eliminating equality constraints

Newton's method with equality constraints

Infeasible start Newton method

Eliminating equality constraints

represent solutions of $\{x \mid Ax = b\}$ as

$${x \mid Ax = b} = {Fz + \hat{x} \mid z \in \mathbb{R}^{n-p}}$$

- $ightharpoonup \hat{x}$ is any particular solution
- lacktriangle range of $F \in \mathbb{R}^{n \times (n-p)}$ is nullspace of A

reduced or eliminated problem

minimize
$$f(Fz + \hat{x})$$

- unconstrained problem with variable $z \in \mathbb{R}^{n-p}$
- ▶ from solution z^* , obtain x^* and ν^* as

$$x^* = Fz^* + \hat{x}, \qquad \nu^* = -(AA^T)^{-1}A\nabla f(x^*)$$

example optimal allocation with resource constraint

minimize
$$f_1(x_1) + \cdots + f_n(x_n)$$

subject to $x_1 + \cdots + x_n = b$

eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, namely, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbb{R}^{n \times (n-1)}$$

reduced problem

minimize
$$f_1(x_1) + \cdots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \cdots - x_{n-1})$$

Eliminating equality constraints

Newton's method with equality constraints

Infeasible start Newton method

Newton step

Newton step $\Delta x_{
m nt}$ of f at feasible x is given by the solution v of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

interpretations

 $ightharpoonup \Delta x_{
m nt}$ solves second order approximation (with variable v)

minimize
$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v$$
 subject to
$$A(x+v) = b$$

 $ightharpoonup \Delta x_{
m nt}$ equations follow from linearizing optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \qquad A(x+v) = b$$

Newton decrement

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{\rm nt}\right)^{1/2}$$

interpretations

 \blacktriangleright gives an estimate of $f(x)-p^*$ using quadratic approximation \widehat{f}

$$f(x) - \inf_{Ay=b} f(y) = (1/2)\lambda(x)^2$$

directional derivative in Newton direction

$$\frac{\mathrm{d}}{\mathrm{d}t}f\left(x+t\Delta x_{\mathrm{nt}}\right)\bigg|_{t=0} = -\lambda(x)^{2}$$

▶ in general $\lambda(x) \neq \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$

Newton's method with equality constraints

given starting point $x \in \operatorname{\mathbf{dom}} f$ with Ax = b, tolerance $\epsilon > 0$ repeat

- 1. Compute the Newton step and decrement $\Delta x_{\rm nt}$, $\lambda(x)$
- 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$
- 3. Line search. Choose step size t by backtracking line search
- 4. Update. $x := x + t\Delta x_{\rm nt}$

- feasible descent method: $x^{(k)}$ feasible and $f\left(x^{(k+1)}\right) < f\left(x^{(k)}\right)$
- affine invariant

Newton's method and elimination

Newton's method for reduced problem

$$\text{minimize } \tilde{f}(z) = f(Fz + \hat{x})$$

- lacksquare $z \in \mathbb{R}^{n-p}$ are variables, \hat{x} satisfies $A\hat{x} = b$, range of F is the nullspace of A
- Newton's method for \tilde{f} starts at $z^{(0)}$, generates iterates $z^{(k)}$

relation to Newton's method with equality constraints

when starting at $x^{(0)} = Fz^{(0)} + \hat{x}$, iterates are

$$x^{(k)} = Fz^{(k)} + \hat{x}$$

hence no separate convergence analysis is needed

Eliminating equality constraints

Newton's method with equality constraints

Infeasible start Newton method

Newton step at infeasible points

Newton step Δx_{nt} of f at infeasible x is given by the solution of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = - \begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$

interpretation

 $ightharpoonup \Delta x_{
m nt}$ equations follow from linearizing optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \qquad A(x+v) = b$$

primal-dual interpretation

• write optimality condition as r(y) = 0 where

$$y = (x, \nu),$$
 $r(y) = (\nabla f(x) + A^T \nu, Ax - b)$

linearizing r(y) = 0 gives

$$r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$$

which is equivalent to

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \Delta \nu_{\rm nt} \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + A^T \nu \\ Ax - b \end{bmatrix}$$

same as the above equation with $w = \nu + \Delta \nu_{\rm nt}$

Infeasible start Newton method

given starting point $x\in {\bf dom}\, f$, ν , tolerance $\epsilon>0,\ \alpha\in (0,1/2),\ \beta\in (0,1)$ repeat

- 1. Compute primal and dual Newton steps $\Delta x_{\rm nt}$, $\Delta \nu_{\rm nt}$
- 2. Backtracking line search on $||r||_2$. $t \coloneqq 1$. while $||r(x + t\Delta x_{\rm nt}, \nu + t\Delta \nu_{\rm nt})||_2 > (1 \alpha t)||r(x, \nu)||_2$, $t \coloneqq \beta t$
- 3. Update. $x \coloneqq x + t\Delta x_{\rm nt}, \nu \coloneqq \nu + t\Delta \nu_{\rm nt}$

$$\textbf{until} \qquad Ax = b \text{ and } \|r(x,\nu)\|_2 \le \epsilon$$

- ▶ not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- lacktriangle directional derivative of $\|r(y)\|_2$ in direction $\Delta y = (\Delta x_{
 m nt}, \Delta
 u_{
 m nt})$ is

$$\frac{\mathrm{d}}{\mathrm{d}t} \|r(y + t\Delta y)\|_2 \Big|_{t=0} = -\|r(y)\|_2$$

Eliminating equality constraints

Newton's method with equality constraints

Infeasible start Newton method

Solving KKT systems

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = - \begin{bmatrix} g \\ h \end{bmatrix}$$

solution methods

- ► LDL^T factorization
- ightharpoonup elimination with nonsingular H

$$AH^{-1}A^{T}w = h - AH^{-1}g, \qquad Hv = -(g + A^{T}w)$$

ightharpoonup elimination with singular H first write as

$$\begin{bmatrix} H + A^T Q A & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = - \begin{bmatrix} g + A^T Q h \\ h \end{bmatrix}$$

with $Q \succeq 0$ for which $H + A^T Q A \succ 0$, then apply elimination

Equality constrained analytic centering

primal problem

$$-\sum_{i=1}^{n} \log x_i$$
 subject to
$$Ax = b$$

dual problem

$$\text{maximize} \qquad -b^T \nu + \sum_{i=1}^n \log(A^T \nu)_i + n$$

three methods for an example with $A \in \mathbb{R}^{100 \times 500}$, different starting points

dominant steps of three methods

1. use block elimination to solve KKT system

$$\begin{bmatrix} \mathbf{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ w \end{bmatrix} = \begin{bmatrix} \mathbf{diag}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

reduces to solving

$$A\operatorname{\mathbf{diag}}(x)^2A^Tw=b$$

2. solve Newton system

$$A \operatorname{\mathbf{diag}} (A^T \nu)^{-2} A^T \Delta \nu = -b + A \operatorname{\mathbf{diag}} (A^T \nu)^{-1} \mathbf{1}$$

3. use block elimination to solve KKT system

$$\begin{bmatrix} \mathbf{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \mathbf{diag}(x)^{-1} \mathbf{1} - A^T \nu \\ b - Ax \end{bmatrix}$$

reduces to solving

$$A \operatorname{diag}(x)^2 A^T w = 2Ax - b$$

comparison of complexity per iteration

in each case, solve

$$ADA^Tw = h$$

with D positive diagonal

complexity per iteration of three methods is identical

Network flow optimization

minimize
$$\sum_{i=1}^{n} \phi_i(x_i)$$
 subject to
$$Ax = b$$

- ▶ directed (connected) graph with n arcs and p+1 nodes
- $ightharpoonup x_i$ is flow through arc i
- $ightharpoonup \phi_i$ is cost flow function for arc i (with $\phi_i''(x) > 0$)
- ► A is (reduced) node-arc incidence matrix
- ▶ $b \in \mathbb{R}^p$ is (reduced) source vector

KKT system

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = - \begin{bmatrix} g \\ h \end{bmatrix}$$

- $ightharpoonup H = \mathbf{diag}(\phi_1''(x_1), \dots, \phi_n''(x_n))$ with positive diagonal
- solve via elimination

$$AH^{-1}A^{T}w = h - AH^{-1}g, \qquad Hv = -(g + A^{T}w)$$

sparsity pattern of coefficient matrix is given by graph connectivity

$$(AH^{-1}A^T)_{ij} \neq 0 \qquad \Longleftrightarrow \qquad (AA^T)_{ij} \neq 0$$

$$\iff \qquad \text{nodes i and j are connected by an arc}$$

Analytic center of linear matrix inequality

minimize
$$-\log \det X$$

subject to $\mathbf{tr}(A_iX) = b_i, \qquad i = 1, \dots, p$

where $X \in \mathbb{S}^n$ is the variable, $A_i \in \mathbb{S}^n$, $b_i \in \mathbb{R}$

optimality conditions

$$X^* \succ 0, \qquad -(X^*)^{-1} + \sum_{j=1}^p \nu_j^* A_i = 0, \qquad \mathbf{tr}(A_i X^*) = b_i, \qquad i = 1, \dots, p$$

Newton equation at feasible X

$$X^{-1}\Delta X X^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \quad \mathbf{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p$$

► follows from linear approximation

$$(X + \Delta X)^{-1} \approx X^{-1} - X^{-1} \Delta X X^{-1}$$

▶ n(n+1)/2 + p variables in ΔX and w

solution by block elimination

ightharpoonup compute ΔX from first equation

$$\Delta X = X - \sum_{j=1}^{p} w_j X A_j X$$

ightharpoonup substitute ΔX in second equation

$$\sum_{j=1}^{p} \mathbf{tr}(A_i X A_j X) w_j = b_i, \qquad i = 1, \dots, p$$

a (dense) positive definite set of linear equations with variable $w \in \mathbb{R}^p$

flop count (dominant terms) using Cholesky factorization $\boldsymbol{X} = \boldsymbol{L}\boldsymbol{L}^T$

- form p products $L^T A_i L$: $(3/2)pn^3$
- form p(p+1)/2 inner products $\mathbf{tr}((L^T A_i L)(L^T A_j L))$: $(1/2)p^2n^2$
- ▶ solve for w_j via Cholesky factorization: $(1/3)p^3$