1. Condition Variables (Code Review)

Is it necessary for the change method to lock the mutex, to release a blocked thread? Why is 'if" incorrect?

```
void change() {
    x = 1;
    pthread_cond_signal(&cv);
}

void wait_for_positive_x() {
    pthread_mutex_lock(&m);
    if(x < 1)
        pthread_cond_wait(&cv, &m);

    pthread_mutex_unlock(&m);
}</pre>
```

- ... Implications for cond wait implementation?
- 2. What is Livelock?

2	D = = =	37 ~ ~ 1.	cond	J - L	
.) .	neac	1 I OCK	cone	1 I T.	TOUS

3. Deadlock	
The	conditions for deadlock are:
resources which are being held	_: "A process is currently holding at least one resource and requesting additional d by other processes."
by P_2 , P_2 is waiting for a resour	_:"There is a set of waiting processes, such that P_1 is waiting for a resource held ce held by P_3 and so on until P_N is waiting for a resource held by P_1 ."
that process has completed its	_:"A resource can be released only voluntarily by the process holding it, after task"
	_:"At least one resource must be held in a non-shareable mode"

4. Deadlock (applied)

Three gardeners visit the garden shed pick up their desired tools for the day. There is a potential for deadlock. Fortunately they know about the C_____ conditions! Find four ways to solve the problem (break one condition each time). Name which condition you break in each case.

2

3

4

5. Think concurrently!

Remember (for example) Mergesort? How can you implement parallel Mergesort? Explain what synchronization calls you will use and when.

6. What is the "Dining Philosophers" problem?

Candidate Solutions:

1. "Pick up left chopstick. Pickup right chopstick. Eat. Release both."

2 5 3 4

- 2. "Pick up right. Pick up left. Eat. Release both"
- 3. "Eat when I tell you"
- 4. "Pick up left chopstick. Try to pickup right chopstick (Fail? release both and restart). Eat. Release both."

5?