~11	ssifica	~	

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2023/2024 - UC 47166 (1° Ano/2° Sem)

	Exame Final - $19/06/2024$	Duração: 2h 30m	
NOME:	Exemplo de Resolues -	NMec:	
CURSO:		Folhas Supl.:	

A - Bloco Questões 1, 2, 3

1. (3.5) Considere uma linguagem de primeira ordem com os símbolos de predicado E e P de um argumento, A e C de dois argumentos, sendo x e y, símbolos de variáveis, com as seguintes fórmulas:

$$\varphi_1 \equiv \forall x \left(E(x) \to \forall y \big(P(y) \to \big(A(x,y) \lor \neg C(x,y) \big) \big) \right)$$

$$\varphi_2 \equiv \exists x \exists y \big(E(x) \land P(y) \land C(x,y) \big)$$

$$\psi \equiv \exists x \exists y A(x,y)$$

Usando o método de resolução mostre que $\varphi_1, \varphi_2 \models \psi$.

- 2. (4.0) Determine, justificando, o número de elementos dos seguintes conjuntos:
 - (a) (2.0) Conjunto de passwords de 6 caracteres, formadas a partir de um alfabeto de 11 letras e 4 digítos, contendo exatamente dois digítos. Note que, tanto as letras como os digítos podem repetir-se, ou seja, xx33az, 01xzza e z00xaa são exemplos de possíveis passwords, admitindo que tanto as letras a, x, z como os digítos 0, 1, 3 estão incluídos no alfabeto considerado.
 - (b) (2.0) Conjunto de sacos de 7 peças de fruta que podem ser escolhidas de uma coleção de ameixas, bananas, laranjas, maçãs e pêras, não se fazendo distinção entre frutas da mesma espécie.

3. (2.5) Determine o coeficiente do termo $x^2y^2z^3$ no desenvolvimento de $\left(2x-y+\frac{z^3}{x}\right)^6$. Justifique.

(i) $p \to q \equiv 7p \vee q$ 1) $V_1 \equiv V_2 \left(7 \to (\chi) \vee V_3 \left(7 \to (\chi) \vee 7 \to (\chi) \to (\chi) \vee 7 \to (\chi) \to (\chi)$

```
Conjunto de clavanlas obtidas de
             41, 42, 74, com renomeaes de vauaveis:
S= {TE(n)VTP(y) V AIXIY) VTC(XIY), E(a), P(b),
                     C(a,b), 7 A(Z,W) & xiy,Ziw vandruis
a,b constants
 Método de resoluças(R)= 51=4424 ung de 1E(x), E(a)4
  C151: 7 E(a) V 7 P(y) V A(a1y) V 7 C(a1y)
C2: E(a)
                                   7 P(4) V A(a,y) V 7 C(a,y) > R(C,51,C2)
       G:
   C3 (2): P(b)

C_{7}: P(b)

C_{7}: A(a_{1}b) \vee TC(a_{1}b) > R(C_{6}\sigma_{2_{1}}C_{3})

C_{9}: C_{9}:
                                      A(a,b) > R (C7,C4)
          C8:
                               7 A(a,b)
  C523:
                                                                                                                                     53 = 1/3, b/W/
                                      1 > R(C8, C5-53)
                                                                                                                                   ing de
                                                                                                                                       1 4 (3, w), A6, 5) 9
Donde, S el inconsistante,
                                                                                                             (on sep., 4 e
   pelo que, P1, P2 # 4
                                                                                                             consequência lofta
                                                                                                                de Gre Gz)
```

- 2) (a) Existem $C_2 = \binom{6}{2} = \frac{6!}{4!2!} = \frac{6 \times 5}{2} = 15$ prombiblededes de colorar es 2 digitos,
 es queis podem repetirose, donde, temos $4 \times 4 = 4^2 = 16$ maneiras de os obter;

 finalmente, escolhemos as 4 letras pena

 Colorar mas 4 prompos restantes Ramendo $11 \times 11 \times 11 \times 11 = 114$ possib- de fazer isto;

 logo, pelo principio la multiplicaçi existem $15 \times 16 \times 114$, "passwords" nas condições requendas.
 - (b) Cada saco e' um multisonjento de condinal 7
 que se pode obter cm 5 tipos de objetos distintos
 (a,b,l,m,p); por exemplo, ¿a,a,b,b,l,m,þ)

 e' um multisonjento provincel em 2 ameixas,
 2 bananas, 1 laranja, 1 maçã e 1 pêra;
 Portanto, o me de sacro provincios de obter coincide
 com o me de combinações em repetiços de 5
 objetos tomados 7 a 7, i.e.,

 ((5)) = (5+7-1) = (11) = (11) = 11×10×9×8
 4!

3)
$$(2\chi - y + 3\frac{3}{2}\chi)^{6} = \sum_{M_{1}+M_{2}+M_{3}=6} {\binom{6}{M_{1}M_{2}}} {\binom{2}{M_{3}}}^{M_{2}} {\binom{33}{2}}^{M_{3}}$$
Coeficiente de $\chi^{2}y^{2}y^{3}$ e' obtrodo de
$${\binom{6}{M_{1}M_{2}}}^{M_{2}} {\binom{33}{2}}^{M_{3}} \Rightarrow c_{M_{1}} {\binom{9}{2}}^{M_{2}} {\binom{33}{2}}^{M_{3}} \Rightarrow c_{M_{1}} {\binom{9}{2}}^{M_{2}} {\binom{33}{2}}^{M_{3}} \Rightarrow c_{M_{1}} {\binom{9}{2}}^{M_{2}} {\binom{9}{2}}^{M_{2}} {\binom{9}{2}}^{M_{2}} = {\binom{6}{3}}^{M_{2}+M_{2}} = {\binom{6}{3}}^{M_{2}+M_{3}} = {\binom{6}{3}}^{M_{2}} {\binom{9}{2}}^{M_{2}} + {\binom{9}{2}}^{M_{2}}^{M_{2}} {\binom{9}{2}}^{M_{2}} = {\binom{6}{3}}^{M_{2}+M_{2}}^{M_{2}+M_{3}} = {\binom{6}{3}}^{M_{2}}^{M_{2}} + {\binom{9}{2}}^{M_{2}}^{M_{2}}^{M_{2}} + {\binom{9}{2}}^{M_{2}}^{M_{2}}^{M_{2}}^{M_{2}}^{M_{2}} + {\binom{9}{2}}^{M_{$$

\sim 1	• • •	~	
	assin	cação	
		caşao	

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2023/2024 - UC 47166 (1º Ano/2º Sem)

Exame Final - 19/06/2024

Duração: 2h 30m

NOME:

NMec:

CURSO:____

Folhas Supl.:

B - Bloco Questão 4

4. (3.0) Seja $(a_n)_{n\in\mathbb{N}}$ a sucessão definida por

$$\begin{cases} a_n = 6a_{n-1} - 9a_{n-2} + (-3)^n & , n \ge 2, \\ a_0 = 1, a_1 = 3. \end{cases}$$

Resolva a equação de recorrência dada, de modo a obter uma fórmula fechada para $a_n, n \ge 0$.

(Ver resolver ma Quester 1 du Toste T2 de Avalizer Discreta)

~1		~	
' 0	coitio	nnn	•
110	ssific	at att	
	~~	-3	

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2023/2024 - UC 47166 (1º Ano/2º Sem)

Exame Final - 19/06/2024 Duração: 2h 30m

NOME:	NMec:	

CURSO:

Folhas Supl.: _____

C - Bloco Questão 5

5. (7.0) Considere a seguinte matriz de custos W relativa a um grafo G = (V, E, W) cujo conjunto de vértices é $V = \{u, v, w, x, y, z\}$:

$$W = \begin{bmatrix} u & v & w & x & y & z \\ v & 0 & 5 & 3 & 6 & \infty & 4 \\ 5 & 0 & 1 & 1 & 3 & \infty \\ 3 & 1 & 0 & 4 & \infty & \infty \\ 6 & 1 & 4 & 0 & 1 & \infty \\ y & \infty & 3 & \infty & 1 & 0 & 3 \\ z & 4 & \infty & \infty & \infty & 3 & 0 \end{bmatrix}$$

(a) (3.0) Desenhe o grafo G e aplique o algoritmo de Dijkstra para determinar o caminho de menor custo entre os vértices u e y, e indique o custo desse caminho.

Nota: Apresente todos os passos (iterações) do algoritmo através de uma tabela adequada.

- (b) (2.0) Seja H o subgrafo de G induzido pelo subconjunto de vértices $\{u, v, w, x, y\} \subset V$. Verifique que H contém 8 arestas e, aplicando a fórmula recursiva $\tau(H) = \tau(H \alpha) + \tau(H//\alpha)$, onde α é uma aresta de H que não é lacete, determine o número de árvores abrangentes de H, $\tau(H)$.
- (c) (2.0) Obtenha, justificando, um subgrafo abrangente de G que seja conexo e bipartido, indicando a respetiva bipartição do conjunto dos seus vértices.

(Ver resolver ne Questo 4 de Teste T2 de Avaliage Discreta)