

Inertial Navigation System INS-B, INS-P, INS-D

Interface Control Document

Revision 2.9

nertial Labs Interface Control Document

CHANGE STATUS LOG					
DOCUMENT: Inertial Labs [™] INS Interface Control Document					
REVISION	DATE	AFFECTED PARAGRAPHS	REMARKS		
1.0	Jul. 14, 2015	All	Released version.		
1.1	Jul. 17, 2015	6.2	Minor changes.		
1.2	Sep.03, 2015	6, 6.8	1. Implemented auto start option with choice of desirable variant of output data format afte device power on. Since INS firmware version 1.0.2.0.		
		6.2	2. Corrected mistake in tables: ms_pos is replaced by ms_gps		
		6.2.5	3. Updated description of the «INS NMEA Output» data format (timestamp is added).		
		6.3.2	4. Renamed command DataOnRequest to SetOnRequestMode to exclude misunderstanding of this command action.		
1.3	Nov.02, 2015	5	1. Added diagrams Fig.5.4, Fig.5.5 of electric connection of INS with two and three COM ports.		
		5	2. Changed connector pinout to include two more COM ports, Table 5.1.		
		6.2.6	3. Added new "INS Sensors NMEA Output" data format.		
		6.3.1	4 . Updated "Table 6.18. INS maximum data rate at different output data formats".		
		6.10	5 . Added section "6.10. Post processing of the INS data".		
		6.4	6 . Added sections "6.4.1. GNSS receiver parameters" and "6.4.2. Control of GNSS receiver model".		
1.4	Dec. 01, 2015	5	Added color of wires in cable with mating connector in Table 5.1.		
1.5	Feb.02, 2016	6.2.1, 6.2.2, 6.2.4, 6.2.6 6.4.1	 Corrected values of maximum data rate for different data formats. Added description of new GNSS_com2_bps parameter. 		
		5	3. Added description of PPS in section "5.2. PPS description".		
1.6	Feb.18, 2016	6.2.1	For INS with firmware version since 2.1.2.0: 1. Corrected INS message payload at the "INS OPVT" data format in the Table 6.4.		
		6.2.2	2. Implemented new "INS QPVT" output data format.		
		6	3. Byte #3 in the INS output data is used for identification of command which the INS answers on (see Table 6.2).		
1.7	Apr.21, 2016	1	Added section "1.3. True and magnetic heading".		
		5 2 . Added description of 19 pin connector of			

nertial Labs Interface Control Document

			the INS with RS-422 interface.
		5	3 . Added section "5.2. Connection of the
			Inertial Labs TM INS with RS-422 interface to
			the host computer for tests".
		6.2.3	4 . Added magnetic declination field to "INS
			Full Output Data" format instead of reserved
			·
			field (see Table 6.10) – since firmware
			version 2.2.0.2.
		6.3.1	5 . Changed byte structure of the block of
			initial alignment data – added Table 6.21.
		6.3.2	6. INS_SensorsData command is not
		0.0.2	supported in the "On Request" operating
			mode since INS firmware version 2.1.1.0.
		6	7 . Added sections "6.11. Change of the main
			COM port baud rate" and "6.12. Limitation of
			the INS maximum output data rate".
		VDDEVIDIA D	
		APPENDIX D	8. Added APPENDIX D. Forms of the Inertial
			Labs [™] INS orientation presentation.
1.8	Jul.29, 2016		For INS with firmware version since 2.2.1.0:
	·	5.3	1. Changed section "5.3. PPS description".
		5.4	2 . Added section "5.4. GPIO description".
			•
		6.2.1, 6.2.2,	3. Changed GNSS information in output data
		6.2.3, 6.2.5	formats INS OPVT; INS QPVT; INS Full
			Output Data; INS Minimal Data. See notes in
			these sections.
		6.2.1	4. Changed GNSS information in Table 6.5,
		0.2.1	· ·
			Table 6.6.
		6.4.1	5 . Added new parameters to section "6.4.1.
			GNSS receiver parameters" including PPS
			control and input marks control.
		6.10.1	6. Added section "6.10.1. Raw GNSS receiver
		0.10.1	data".
		0.44	
		6.11	7 . Added section "6.11. Synchronization of
			the INS data with LiDAR and other devices".
		6	8. COM3 has two functions: to receive data
			for GNSS differential corrections or to output
			\$GPRMC messages
2.0	A 00 0040	4.4	
2.0	Aug.09, 2016	1.1	1. Presented new line of Inertial Labs INS:
			INS-B, INS-P, INS-D.
		1.4, 1.5	2. Added sections "1.4. Ground track angle vs
			heading" and "1.5. Using GNSS heading in
			INS-D".
		4.3	3. Added section "4.3 Installation of two
		4.3	
			GNSS antennas for INS-D operation".
		5	4 . Shown connectors position on back side of
			INS-B, INS-P, INS-D units (Fig.5.1, Fig.5.2).
		5	5 . Added electrical specifications for INS-B,
			INS-P, INS-D units (Table 5.3).
		60.00	
		6.2, 6.3,	6. Added two output data formats – OPVT2A,
		APPENDIX C	OPVT2AHR and appropriate commands

			INO ODVITOR LA DIO ODVITORIO	
			INS_OPVT2Adata, INS_OPVT2AHRdata.	
		6.5	7. Heave calculation is supported in INS-D	
			but not in INS-B and INS-P units.	
2.1	Sep.05, 2016	6.2	1. Added ±450°/s gyro range for KG values	
			(see notes to Tables 6.4, 6.7, 6.8).	
		6.9	2. Added indication of GNSS receiver failure	
			in the Unit Status Word (since INS firmware	
			version 2.5.0.2).	
2.2	Sep.16, 2016	6.2, 6.3,	Added output data format – OPVT2AW, and	
	-	APPENDIX C	appropriate command	
2.3	Oct.02, 2016	6.2	Corrected KA scale factor for ±8g	
	·		accelerometer range and scale factor for	
			supply voltage (see Tables 6.4, 6.7, 6.8, 6.9,	
			6.10 and notes to them).	
		6.3.6	2. Added type of pressure sensor in INS	
			devices information Table 6.25.	
2.4	Dec.06, 2016	6.2.12	Added GNSS receiver NMEA data set.	
		6.2.13	2. Changed GPRMC format description.	
		6.4.1	3. Added new parameters COM2_data,	
			NMEA set.	
		6.7.5,	4 . Added description of VG3D calibration,	
		APPENDIX A,	and appropriate command StartVG3DClb.	
		APPENDIX C		
		6.9	5 . Changed description of the bits #7, 15 of	
			USW	
2.5	Jan.06, 2017	6.7.12,	1. Added description of on-the- fly VG3D	
	·	APPENDIX A,	calibration, and appropriate commands	
		APPENDIX C	StartVG3Dclb_flight, StopVG3Dclb_flight.	
		6.9	2. Bits #7, 15 of USW are used for indication	
			of stages of on-the- fly VG3D calibration.	
2.6	Sep.25, 2017	1.1	1. Added Fig.1.4. Position of the accelerome-	
	,		ter mass-center in Inertial Labs [™] INS unit.	
		5	2. Added one more function to COM3 port –	
			to output of the raw GNSS receiver data	
			(since INS firmware version 2.8.0.6).	
		5	3 . Added description of the combined RS-232	
			/ RS-422 interface (24 pin connector).	
		6	4. Deleted "INS Full Output Data" format.	
		6.2.11	5. Added description of GPHDT log.	
		6.4.1	6. Updated the description of GNSS control	
			parameters.	
		6.6	7. Added description of external sensors data	
			input.	
		6.2.1, 6.2.2,	8. Latency field is split into two fields: Latency	
		6.2.6	ms_pos and Latency ms_vel in the following	
		0.2.0	output formats: INS Sensors, INS OPVT, INS	
			QPVT, INS Minimal	
		6.2.3, 6.2.5	9. Changed fields Pitch GNSS, Heading STD	
		0.2.0, 0.2.0	and Pitch STD to Latency ms_head, Latency	
			ms_pos, Latency ms_vel respectively in the	
		1	I mo_poo, Latency mo_ver respectively in the	

			1
			following output formats: INS OPVT2A, OPVT2AHR.
		6.2.6	10 . Added INS OPVTAD data format and its description.
		6.5	11. Changed Baro_enabled to Baro_altimeter
			parameter and its description.
		6.9	12 . Added information about GNSS receiver
			cold start to sequence of INS operations after
		6.10	power on at INS automatic start. 13. Changed USW bit #1 indication to "IMU"
		0.10	data correctness".
		All	14 . Removed the information about Heave.
		All	15. Removed TSS1 data format
2.7	Jan.23, 2018	1.1	1. Implemented calculation of INS position
			and velocity for any measuring point set by its
			position relative to INS unit (since firmware version 3.2.2.6).
		4.3	2 . Added feature for INS-D secondary
			antenna installation in arbitrary (but known)
			position relative to the INS-D unit and the
			primary antenna (since firmware version
		5	2.9.1.7).3. Corrected picture of the connector pinout of
			the Inertial Labs TM INS with combined RS-232
			/ RS-422 interface (Fig.5.5).
		5.4, 6.6.1	4 . Added description of COM4 port functions
			(to receive external data from a device with
			RS232 interface or to output GPRMC messages).
		5.7	5 . Added section "5.7. Connection of the
			Inertial Labs [™] INS with Ethernet interface to
			the host computer".
		6.2	6 . Added g value to notes to Tables 6.4, 6.7 – 6.11 with description of output data formats.
		6	7. Since firmware version 3.2.0.0 only INS
			data rates that are factors of 200 Hz are
			available.
		6.2, 6.3,	8. Added two output data formats "INS OPVT
		APPENDIX C	& Raw IMU Data", "SPAN rawimu" and appropriate commands (since firmware
			version 3.2.1.8).
		6.6	9 Added sections "6.6.2.Odometer data input
			from encoder (wheel speed sensor)" and
			"6.6.3. Calibration of encoder-based
		6.6.3,	odometer (wheel speed sensor)". 10 . Added commands Start_Odom_Clb and
		APPENDIX C	Stop_Odom_Clb to start and stop odometer
		7 2.1.2	calibration.
		6.15	11. Added simple "INS solution status" (good
			/ poor) to "Angles position type" value in

			appropriate output data formats (since firmware version 3.2.2.7).	
2.8	Mar.14, 2018	6	1. Corrected Table 6.2. Byte structure for a commands and messages to / from the INS.	
		6.2.10	2. Changed "SPAN rawimu" data format (scale factors for raw accelerometers and gyros data, IMU status).	
2.9	May 10, 2018	5.5	Added the information about availability of the 5V TTL level of the PPS.	

TABLE OF CONTENTS

1.	Introduction	. 10
	1.1. Description of the System	. 10
	1.2. Principles of the Inertial Labs [™] INS Operation	. 14
	1.3. True and magnetic heading	
	1.4. Ground track angle vs heading	. 17
	1.5. Using GNSS heading in INS-D	. 17
2.	Scope and applicability	. 18
	Specifications	
4.	Mechanical interface	. 18
	4.1. Mechanically mounting the Inertial Labs TM INS	. 19
	4.2. Installation of single GNSS antenna	
	4.3. Installation of two GNSS antennas for INS-D operation	
	4.4. Where to install the Inertial Labs TM INS and its antenna for tests	. 25
	4.5. Where to install the Inertial Labs [™] INS on the object	. 26
5.	Electrical Interface	
	5.1. Connection of the Inertial Labs TM INS with RS-232 interface to the host compu	uter
	for tests	. 32
	5.2. Connection of the Inertial Labs TM INS with RS-422 interface to the host compu	uter
	for tests	
	5.3. Connection of the Inertial Labs TM INS with combined RS-232 / RS-422 interface	e to
	the host computer for tests	
	5.4. Connection of encoder-based odometer to INS	. 43
	5.5. PPS description	. 43
	5.6. GPIO description	. 45
	5.7. Connection of the Inertial Labs TM INS with Ethernet interface to the host compu	uter
		. 46
6.	Software interface	. 47
	6.1. Operational modes of the Inertial Labs TM _INS	. 49
	6.2. Output Data Formats of the Inertial Labs [™] INS in the Operating Modes	
	6.2.1. The "INS OPVT" (Orientation, Position, Velocity, Time) data format	. 50
	6.2.2. The "INS QPVT" (Quaternion of orientation, Position, Velocity, Time) d	ata
	format	
	6.2.3. The "INS OPVT2A" (Orientation, Position, Velocity, Time, Dual-anter	าทล
	receiver data) format	. 56
	6.2.4. The "INS OPVT2AW" (Orientation, Position, Velocity, Time, Dual-anter	าทล
	receiver data, GPS Week) format	
	6.2.5. The "INS OPVT2AHR" (Orientation, Position, Velocity, Time, Dual-anter	
	receiver data, with high resolution) format	
	6.2.6. "INS OPVTAD" output data format with external aiding data	
	6.2.7. The "INS Sensors Data" format	
	6.2.8. The "INS Minimal Data" format	
	6.2.9. The "INS OPVT & Raw IMU Data" (Orientation, Position, Velocity, Time a	and
	raw IMU) format	.72
	6.2.10. The "SPAN rawimu" data format	
	6.2.11. The "INS NMEA Output" data format	.78

INS

Inertial Labs

1	Into	rface	Contro	I Document
- 1	IIILE	llace	COILLIO	ı Dücüllelli

COAO The "INIC Corner NIMEA Cutrout" data formest	70
6.2.12. The "INS Sensors NMEA Output" data format	
6.2.13. The GNSS receiver NMEA data format (through COM2 port)	79
6.2.14. The GNSS receiver GPRMC data format (through COM3 port)	83
6.3. Control of the Inertial Labs TM INS	84
6.3.1. INS_OPVTdata, INS_QPVTdata, INS_OPVT2Adata, INS_OPVT2AW	
INS_OPVT2AHRdata, INS_OPVTADdata, INS_SensorsData, INS_min	
INS_OPVT_rawIMUdata, SPAN_rawimu, INS_NMEA, INS_Sensors_N	
commands	
6.3.2. SetOnRequestMode command – getting INS data on request (on demand	
6.3.3. Stop command	
6.3.4. LoadINSpar command	89
6.3.5. ReadINSpar command	91
6.3.6. GetDevInfo command	92
6.3.7. GetBIT command	92
6.4. Control of the GNSS receiver	93
6.4.1. GNSS receiver parameters	
6.4.2. Control of GNSS receiver model	
6.5. Altitude calculation	
6.6. Using external sensors data	
6.6.1. Odometer data input using RS-232 interface	
6.6.2. Odometer data input from encoder (wheel speed sensor)	
6.6.3. Calibration of encoder-based odometer (wheel speed sensor)	104
6.6.4. Aiding data input through the main COM port	
6.7. Acceleration compensation at object swaying	
6.8. Calibration of the Inertial Labs TM INS on hard and soft iron	100
6.8.1. Start3DClb command for INS 3D calibration	
6.8.2. StopClbRun command	
6.8.3. AcceptClb command	
6.8.4. ExitClb command	
6.8.5. StartVG3DClb command for INS VG3D calibration	
6.8.6. Start2D2TClb command for INS 2D-2T calibration	
6.8.7. StartClbRun command	
6.8.8. FinishClb command for INS 2D-2T calibration	
6.8.9. Start2DClb command for INS 2D calibration	
6.8.10. ClearClb command	
6.8.11. GetClbRes command	
6.8.12. StartVG3Dclb_flight and StopVG3Dclb_flight commands for start and	
INS on-the-fly VG3D calibration	
6.9. INS automatic start	
6.10. The Unit Status Word definition	125
6.11. Post-processing of the INS and GNSS data	
6.11.1. Raw GNSS receiver data	
6.12. Synchronization of INS data with LiDAR and other devices	
6.12.1. Synchronization pulses issued by INS	
6.12.2. Trigging of INS by external devices	
6.12.3. Synchronization of INS data with LiDAR	128

Interface Control Document

6.13. Change of the main COM port baud rate	129
6.14. Limitation of the INS maximum output data rate	
6.15. INS solution status	131
APPENDIX A. The Inertial Labs TM INS Calibration	132
APPENDIX B. Variants of the Inertial Labs TM INS mounting relative to the object axes	
APPENDIX C. Full list of the Inertial Labs TM INS commands	136
APPENDIX D. Forms of the Inertial Labs TM INS orientation presentation	137

1. INTRODUCTION

1.1. Description of the System

The Inertial LabsTM Inertial Navigation System, INS is high-performance GPS-aided strapdown system that calculates absolute orientation (heading, pitch and roll) and position (latitude, longitude, altitude) for any device on which it is mounted. Orientation and position are determined with high accuracy for both motionless and dynamic applications.

The Inertial Labs[™] INS utilizes 3-axes each of precision accelerometers, magnetometers and gyroscopes to provide accurate heading, pitch and roll of the device under measure. Integration of gyroscopes' output provides high frequency, real-time measurement of the device rotation about all three rotational axes. Accelerometers and Fluxgate magnetometer measure absolute Pitch, Roll and magnetic Azimuth at INS initial alignment as well as providing ongoing corrections to gyroscopes during operation.

The Inertial Labs[™] INS has an onboard high-grade Global Navigation Satellite System (GNSS) receiver which provide high accurate position using the next GNSS systems:

- GPS L1, L2, L2C;
- GLONASS L1, L2;
- Galileo E1;
- BeiDou B1;
- Compass3;
- SBAS;
- QZSS.

Inertial Labs[™] provides three models of INS products:

- INS-B (Basic model) uses MEMS grade magnetometers, high grade IMU and high grade single antenna GNSS receiver;
- INS-P (Professional model) uses high-grade Fluxgate magnetometers, high grade IMU and high grade single antenna GNSS receiver;
- INS-D (Dual antenna model) uses high grade IMU, dual-antenna GNSS receiver and measures static and dynamic Heading, independent on magnetic field disturbance.

For INS operations it is necessary to connect one (for INS-B, INS-P) or two (for INS-D) active antennas to the TNC connector(s) on the back side of the Inertial LabsTM INS (see Fig.1.1, Fig.1.2).

Fig.1.1. Inertial Labs[™] INS-B and INS-P

Fig.1.2. Inertial Labs[™] INS-D

Fig.1.3 shows the INS own coordinate system $Ox_oy_oz_o$. This coordinate system is body-fixed and defined as the calibrated sensors coordinate system. Non-orthogonality between axes of the body-fixed coordinate system $Ox_oy_oz_o$ is an order of 0.01°.

Measured angles are the standard Euler angles of rotation from the Earth-level frame (East-North-Up) to the body frame, heading first, then pitch, and then roll.

Orientation angles, measured by the Inertial LabsTM INS, are not limited and are within common ranges:

- Heading 0...360°;
- Pitch ±90°;
- Roll ±180°.

Also the Inertial LabsTM INS provides orientation calculation in quaternion form. See "APPENDIX D. Forms of the Inertial LabsTM INS orientation presentation".

Fig.1.3. Coordinate system of the Inertial Labs[™] INS

At its operation the Inertial LabsTM INS calculates position and linear velocity using its gyros and accelerometers data with correction from the onboard GNSS receiver. For altitude calculation the INS also uses correction from the onboard pressure sensor.

The Inertial Labs[™] INS calculates position and velocity for the accelerometer mass-center of the INS unit (see Fig.1.4).

Since INS firmware version 3.2.2.6 INS can calculate position and velocity for any measuring point set by its position relative to the accelerometer mass-center of the INS unit. The measuring point can be set using INS Demo Program since version 2.0.45.248 from 2017-12-29. See User's Manual rev.2.7 and higher, section «4.2.1. "IMU" tab of "Devices options..." window» for details.

Fig.1.4. Position of the accelerometer mass-center in Inertial Labs[™] INS unit (in millimetres)

1.2. Principles of the Inertial Labs[™] INS Operation

Fig.1.5 shows the operational diagram of the Inertial LabsTM INS. The INS uses gyros to measure absolute angular rate of the carrier object, accelerometers to measure the specific force (apparent acceleration of the object), magnetometers to measure components of the Earth magnetic field.

Fig.1.5. Operational Diagram of the Inertial Labs[™] INS

nertial Labs Interface Control Document

Orientation angles (heading, pitch and roll) are obtained by using special integration of gyros outputs with correction from GNSS position and velocity data. INS-D also utilises gyros correction by heading calculated as direction from the master GNSS antenna to the rover one.

Position (latitude, longitude and altitude) are calculated using special integration of accelerometers and known orientation. To avoid accumulation of the INS error they are estimated and compensated using Global Navigation Satellite System (GNSS) data provided by onboard receiver and pressure sensor data.

Also accelerometers are used to determine initial attitude of the INS, and magnetometers are used to determine initial heading. In INS-D unit initial heading is calculated as direction from the master GNSS antenna to the rover one if GNSS data are available and RTK solution for heading is made by on-board GNSS receiver.

The base of the INS algorithm is robust Kalman filter which is used for estimation of the INS errors in orientation, position, velocity calculation and also gyros and accelerometers biases. For this purpose the Kalman filter uses aiding information from GNSS about position and velocity, and also barometric altitude calculated fro, pressure sensor data.

As result of integration of all above data, the INS provides accurate calculation of stabilized heading, pitch and roll angles, latitude, longitude and altitude, east, north and vertical velocity. The Kalman filter automatically adjusts for changing of dynamic conditions.

Note the initial position and velocity are provided by the GNSS receiver if it has solution. If GNSS data are not available then the initial position are taken from the INS nonvolatile memory. There the initial position can be changed using the LoadINSpar command (see Table 6.36, bytes #8-19) or using the INS Demo Program (that is easier).

After the Inertial LabsTM INS power on an initialisation of the onboard GNSS receiver starts that takes about 25 seconds. Then the INS is ready to receive commands from the host computer and to start required operation.

After start the Inertial LabsTM INS it requires about 30 seconds for initial alignment process. At this initial orientation angles are determined as initial conditions for integration of gyros outputs. Also gyros bias is estimated using Kalman filter for next compensation. Therefore don't move the INS during initial alignment process. If this requirement is not met then large errors may be occurred in orientation angles calculation.

Features of INS algorithm and possibilities of their adjustment are described in the INS Demo User's Manual, Rev.2.0 and higher, section "4.3.1. "Settings" tab of «Correction options…» window".

1.3. True and magnetic heading

If the Inertial LabsTM INS uses magnetic sensors for heading reference, then it directly determines just magnetic heading. Then INS calculates true North heading using the current magnetic declination. Declination, also called magnetic variation, is the difference between true and magnetic North, relative to a point on the Earth. Declination angle vary throughout the world, and changes slowly over time. Magnetic declination angle can be entered directly to the Inertial LabsTM INS memory using special command (see Table 6.36, bytes #4-7) or the Inertial LabsTM INS Demo Program. Also, the magnetic declination can be calculated by INS itself based on calculated latitude, longitude, altitude and date.

Both INS unit on-board and INS Demo Program calculate the magnetic declination using the World Magnetic Model WMM2015 produced by the U.S. National Geophysical Data Center and the British Geological Survey, http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml

The World Magnetic Model is the standard model of the US Department of Defense, the UK Ministry of Defense, the North Atlantic Treaty Organization (NATO), and the World Hydrographic Office (WHO) navigation and attitude/heading referencing systems.

Since INS firmware version 2.2.0.2 the INS unit can calculate the magnetic declination continuously on-board if "Auto" checkbox is checked in the "IMU" tab of the "Devices Options" window in the INS Demo Program.

Note using magnetometers for INS heading correction requires necessity of magnetometers calibration after INS unit installed on carrier object to compensate hard and soft iron effects of the carrier object on the INS heading determination accuracy (see section "6.8. Calibration of the Inertial LabsTM INS on hard and soft iron" for details).

1.4. Ground track angle vs heading

Ground track angle or the course over ground is determined using the position delta between two position computed. Track angle shows direction of vehicle motion in horizon plane.

For some carrier objects it is possible to use GNSS track angle instead of magnetic heading for INS correction. In such case magnetometers can be switched off, and INS does not require any calibration of magnetometers.

Ground track angle can be used as heading for ground vehicles where the direction of travel is coincident with the forward axis of the. But replacement of heading by the ground track angle may not be suitable for some marine or airborne applications, where the direction of travel may be different from the forward axis of the vehicle because of factors like a crab angle.

Also the ground track angle has no sense when the vehicle is stationary. But integration of INS with GNSS data allows to use GNSS track angle instead of magnetic heading for INS correction even at vehicle stops. Only initial vehicle movement is required to perform calculation of initial heading in INS.

1.5. Using GNSS heading in INS-D

More accurate INS heading correction than use of magnetometers or GNSS track angle can be provided in INS-D with two antennas installed along forward axis of carrier object. In INS-D magnetometers also can be switched off, and INS does not require any calibration of magnetometers in such case.

In contrast to using GNSS track angle, heading calculated on base of two antennas position does not require vehicle movement strictly in direction of the forward axis of the vehicle, moreover, vehicle can be stationary.

2. SCOPE AND APPLICABILITY

This Interface Control Document (ICD) provides details on mechanically mounting, the electrical connections, powering and software interface between the Inertial LabsTM INS and host computer. This document is intended for all parties requiring such information, including engineers and researchers responsible for implementing the interface.

3. SPECIFICATIONS

See separate document, Inertial Labs INS Datasheet.

4. MECHANICAL INTERFACE

Fig.4.1 sows the outline drawings of the Inertial LabsTM INS. All dimensions are in millimetres.

Fig.4.1. The Inertial Labs[™] INS outline drawing (all dimensions are in millimetres)

4.1. Mechanically mounting the Inertial Labs[™] INS

The Inertial LabsTM INS housing has two base surfaces A and B (see Fig.4.2) that are designed for the INS mounting during its run and testing.

Salient bottom base surface A has 4 holes \emptyset 4.2 mm (see Fig.4.2, positions 1) which are designed for the INS mounting. Lateral base surface B is designed for the INS alignment during mounting.

Fig.4.2. INS mounting surfaces A, B and mounting holes 1, 2

The Inertial LabsTM INS is factory calibrated with respect to the base surfaces A and B, thus it must be aligned within the host system (carrier object) with respect to these mounting surface, not the device edges.

When mounting Inertial LabsTM INS on your system, please pay attention to orientation of input axes X", "Y", "Z" marked on the cover of the INS (see Fig.1.3). During the ordinary operation on the carrier object the INS is set on the surface A with the axis Y directed to the nose of the object.

Also the Inertial Labs[™] INS can be mounted on the object in any known position (up to upside-down, upright etc.) relative to the object axes. Such mounting doesn't change right determination of the object orientation if angles of the INS mounting are correctly stored in the INS nonvolatile

memory. See Appendix B. Variants of the Inertial LabsTM INS mounting relative to carrier object axes.

To obtain accurate attitude and heading, please remember that mounting is very important and mounting error can cause attitude and heading errors. When Inertial LabsTM INS mounting please align it on two base surfaces A, B relative your system axes.

The Inertial LabsTM INS is mounting on your system by using 4 holes \emptyset 4.2 mm (see Fig.4.2, positions 1).

Requirements to the mounting surface of the carrier object: flatness tolerance is 0.03 mm; undulation is Ra=1.25.

4.2. Installation of single GNSS antenna

Usually the INS unit and GNSS antenna are installed in different places of the carrier object. Moreover, placement of the antenna close to the INS unit is undesirable because of the antenna impact on the INS magnetometers.

While the best place for the INS unit is center of gravity of the carrier object, the GNSS antenna must of course be placed with a clear view of the sky with a sufficient ground plane.

After the INS unit and GNSS antenna installation on the carrier object it is necessary to measure the antenna position relative to the accelerometer mass-center of the INS unit (see Fig.1.4.), in the object axes – on the right, forward and up. Then it is necessary to store these coordinates to the INS nonvolatile memory using the LoadINSPar command (see Table 6.36, bytes #29-34) or using the INS Demo Program (that is more easy).

Fig.4.3 shows positive right, forward and up directions of the antenna position relative to the INS unit.

Important notes:

- 1. If after the INS mounting its axes (see Fig.1.3) are parallel to the carrier object axes, then the antenna coordinates should be measured in the directions of X, Y and Z axes.
- 2. On the other hand, the INS unit can be mounted on the object in any known position (up to upside-down, upright etc., see Appendix B. Variants of the Inertial Labstm INS mounting relative to the object axes). In that case please set the GNSS antenna coordinates

measures just in the object axes (on the right, forward and up directions), but not in the INS axes.

Fig.4.3. Determination of the GNSS antenna position relative to the INS unit (positive directions)

4.3. Installation of two GNSS antennas for INS-D operation

The Inertial Labs[™] INS-D uses heading calculated by dual-antenna GNSS receiver for the INS correction. Two antennas must be installed in parallel to the longitudinal axis of the carrier object to allow GNSS receiver to measure object heading accurately. At this the rover antenna is installed <u>ahead</u> the master antenna, so direction from the master to the rover antenna is forward for the carrier object, see Fig.4.4.

Fig.4.4. Installation of the master and rover GNSS antennas on carrier object

Requirements for the master antenna installation are the same as described in section "4.2. Installation of single GNSS antenna". Position of the master antenna relative to the accelerometer mass-center of the INS unit must be measured and stored to the INS nonvolatile memory.

Since the firmware version 2.9.1.7 the INS-D algorithm has the feature of the secondary antenna installation in arbitrary (but known) position relative to the INS-D unit and the primary antenna. It is possible to set secondary antenna location in two ways: by specifying its position in meters relative to the accelerometer mass-center of the INS or by specifying the antennas baseline orientation in degrees. To set these parameters please use INS Demo Program since version 2.0.40.196 from 2017-06-23, "Devices options", "IMU" tab, see Fig.4.5.

Fig.4.5. Two variants of setting of the secondary antenna position in INS Demo Program

Fig.4.6 shows Alpha and Beta angles of the antennas baseline orientation relative to the INS unit. Alpha angle is measured in horizon plane of the object, clockwise direction is positive. Beta angle is measured in vertical plane, positive is up. Note that on the Fig.4.6 there are positive Alpha and negative Beta angles.

Fig.4.6. Angles of baseline of two GNSS antennas installation on carrier object

4.4. Where to install the Inertial Labs[™] INS and its antenna <u>for tests</u>

The Inertial LabsTM INS has magnetometers with wide dynamic range and its sophisticated calibration algorithms allow it to operate in many environments. For optimal performance however, you should mount the Inertial LabsTM INS with the following considerations in mind.

Locate the Inertial Labs[™] INS away from local sources of magnetic fields

The place for testing must not have ferromagnetic (magneto-susceptible) materials and the lab room itself must have the level of intrinsic magnetic and electro-magnetic fields suitable for the magnetic heading system testing:

- inside and near the lab room there must be no powerful source of magnetic, electrical and electro-magnetic fields. The magnetic field intensity must not be different from the Earth magnetic field intensity at the test site more than 0.01%;
- small ferromagnetic objects must be as far as 3 meters from the test table. Large size ferromagnetic objects such as cars and trucks must be as far as 15 m from the table;
- it is necessary to conduct a regular check-up of the magnetic field uniformity inside the lab room.

It is highly recommended to degauss the INS before heading test to remove permanent magnetization of some components in the INS (if you accidentally expose the unit to a large magnetic field). You can use a hand-held degausser (tape eraser) to demagnetize the INS. Most audio and video degaussing units can be used. Follow the instructions for your demagnetizer.

If heading accuracy is not checked and only pitch and roll accuracy are tested then there are no requirements to magnetic fields and ferromagnetic materials near place of the Inertial LabsTM INS mounting,

• The Inertial LabsTM INS should be mounted in a physically stable location

Choose a location that is isolated from excessive shock, oscillation, and vibration. Special rotary table must be used for the Inertial LabsTM INS accuracy testing, that mounted on a special testing basement which is free from the laboratory oscillations and vibrations.

Tests on vibrations and shocks are fulfilled separately from the main accuracy tests.

• Install the Inertial Labs[™] INS and GNSS antenna on the same base

For test of the INS position and linear velocity calculation, it is necessary to connect the active GNSS antenna(s) to the INS. Both INS unit and the antenna(s) should be installed immovable each to other. Position of the antenna(s) relative to the INS unit should be measured and stored to the INS nonvolatile memory (see sections "4.2. Installation of single GNSS antenna" and "4.3. Installation of two GNSS antennas for INS-D operation", for details).

4.5. Where to install the Inertial Labs[™] INS on the object

It is necessary to follow the recommendations listed in the section 4.4 whenever it is possible, when installing the Inertial LabsTM INS on an carrier object.

• Inertial Labs[™] INS should be installed on an object as far as possible from large ferromagnetic masses of the object and powerful sources of magnetic, electrical and electro-magnetic fields

Inertial LabsTM INS software allows compensation of hard and soft iron effects of the carrier object on the heading measurement accuracy. For this purpose, field calibration of the INS magnetometers is provided. This calibration does not require any additional equipment, but it requires turns of the carrier object, on which the INS is mounted.

Note that the above field calibration is correct until the residual magnetic field of the object surrounding the INS is changed. If this field is changed due to displacement of ferromagnetic masses of the object or magnetic field sources, the INS should be re-calibrated.

Field calibration procedure of the Inertial LabsTM INS can be performed by two means:

- by INS itself using special commands described in the section 6.8;
- using the Inertial Labs[™] INS Demo Program.

The INS Demo Program provides more variants of the field calibration and is more convenient for use, but it requires connection of the INS to PC. Calibration of the INS itself is performed without its disconnection from the host system on the carrier object.

More detailed description of the field calibration procedure is given in the section "6.8. Calibration of the Inertial LabsTM INS on hard and soft iron".

• It is preferable to locate the Inertial Labs TM INS as close to the center of gravity of the object as possible

With such location, effects of linear accelerations during oscillations on the INS accelerometers are reduced, and therefore, orientation angle determination errors are also reduced.

5. ELECTRICAL INTERFACE

All connectors and LED indicator are placed on the back side of the Inertial LabsTM INS, see Fig.5.1 and Fig.5.2.

Fig.5.1. Back side of the Inertial Labs[™] INS-B and INS-P

- 1 interface connector;
- 2 GNSS antenna TNC connector:
- 4 LED indicator; 5 pressure sensor

Fig.5.2. Back side of the Inertial Labs[™] INS-D

- 1 interface connector:
- 2 master GNSS antenna TNC connector:
- 3 rover GNSS antenna TNC connector;
- 4 LED indicator; 5 pressure sensor

The Inertial LabsTM INS has TNC female connectors for the GNSS antenna connection.

Also the Inertial Labs[™] INS has the Binder male connector for electrical connection to the host system. This connector is different for the INS with RS-232, RS-422 and combined RS-232/RS-422 interface:

- The Inertial Labs[™] INS with RS-232 interface has the Binder Series 723 male 12 pin connector, part # 09 0131 80 12, see https://www.binder-usa.com/contacts-12-male-panel-mount-connector
- The Inertial Labs[™] INS with RS-422 interface has the Binder Series 723 male 19 pin connector, part # 09 0463 80 19, see https://www.binder-usa.com/contacts-19-male-panel-mount-connector

 The Inertial Labs[™] INS with combined RS-232 / RS-422 interface has the Binder Series 723 male 24 pin connector, part # 09 0497 90 24, see https://www.binder-usa.com/contacts-24-male-panel-mount-connector

The host system should have a cable with appropriate mating connector:

- For INS with RS-232 interface: the Binder Series 423, 425 or 723 female 12 pin connector (or cordset), part # 09 0130 70 12, # 99 5130 40 12, or # 79 6130 20 12.
- For INS with RS-422 interface: the Binder Series 423 or 723 female 19 pin connector (or cordset), part # 99 5662 00 19, # 99 5662 75 19 or # 09 0462 70 19, # 99 0462 75 19.
- For INS with combined RS-232/RS-422 interface: the Binder Series female 24 pin cordset, part #99 5896 15 24.

Fig.5.3 shows connector pinout of the Inertial Labs[™] INS with **RS-232** interface. Table 5.1 contains pin diagram of this connector and appropriate color of wires in cable with mating Binder Series 425 Female plug, part # 79 6130 20 12.

Fig.5.3. The Inertial Labs[™] INS RS-232 connector pinout (mating side of the connector)

Table 5.1. Pin diagram of the Inertial Labs[™] INS RS-232 connector

Pin	Wire color	Signal		
Α	White	RS232 – RX2		
В	Brown	RS232 – TX2		
O	Green	RS232 – RX3		
D	Yellow	RS232 – TX3		
ш	Grey	Power		
L	Pink	Ground		
G	Blue	RS232 – RX1		
Ι	Red	RS232 – TX1		
٦	Black	PPS		
K	Violet	GPIO		
L	Grey/pink	Do not connect		
М	Red/blue	Do not connect		

Note: Do not connect anything to pins #L or #M that are connected to INS PCB for firmware updates.

Nertial Labs Interface Control Document

Fig.5.4 shows connector pinout of the Inertial LabsTM INS with RS-422 interface. Table 5.2 contains pin diagram of this connector and appropriate color of wires in Alpha Wire cable part number 5478C with 16 conductors.

Fig.5.4. The Inertial Labs[™] INS RS-422 connector pinout (mating side of the connector)

Table 5.2. Pin diagram of the Inertial Labs™ **INS RS-422 connector**

Pin	Pairs color	Wire color	Signal
G	Yellow	Yellow	RS422-A
R	+ Black	Black	RS422-B
F	Orange	Orange	RS422-X
E	+ Black	Black	RS422-Z
Р			Reserve1
D	Red	Red	POWER
0	+ Black	Black	GND
С	Blue+	Blue	RS232-RX2
В	Black,	Brown	RS232-TX2
N	Brown+ Black	2xBlack	GND2
I	Green+	Green	RS232-RX3
K	Black, White+	White	RS232-TX3
Т	Black	2xBlack	GND3
L	Red	Red	PPS
U	+White	White	GPIO
Α			Do not connect
М			Do not connect
Н			Reserve2
S			Reserve3

Note: Do not connect anything to pins #A and #M that are connected to INS PCB for firmware updates.

Fig.5.5 shows connector pinout of the Inertial LabsTM INS with combined RS-232 / RS-422 interface. Table 5.3 contains pin diagram of this connector and appropriate color of wires in 24-pin multiport cable part number #99 5896 15 24.

nertial Labs Interface Control Document

Fig.5.5. Connector pinout of the Inertial Labs[™] INS with combined RS-232 / RS-422 interface (mating side of the connector)

Table 5.3. Pin diagram of the connector of the Inertial Labs[™] INS with combined RS-232 / RS-422 interface

1		ORNE
2		Offi
3		٠,0
4		RED
5		BRNN
6		BRY
7		DK.BL
8		04.
9		WHITE
10		MK
11		ta.
12		GRAT
	3 4 5 6 7 8 9 10	3 4 5 6 7 8 9 10

RS422-B	13	MOLT
RS422-A	14	110
RS232-RX2	15	OX.CR
RS232-TX2	16	Off.
RS232-RX1	17	Ti.gr
RS232-TX1	18	4,0
RS232-RX3	19	.>
RS232-TX3	20	VELL.
ETHX+	21	4
ETHX-	22	PINY
ERHX+	23	J.BL
ERHX-	24	11.

Since the serial number F1560007 the Inertial LabsTM INS has three COMports with RS-232 interface on default:

- COM1 is the main. It is used for commands and data transfer between the Inertial LabsTM INS and the host computer.
- COM2 is used for output of the raw GNSS receiver data (see section 6.11. Post processing of the INS data) or NMEA data set.
- COM3 has three functions:

- o to receive data for differential corrections of GNSS (DGPS mode);
- or to output of the raw GNSS receiver data (see section 6.11. Post processing of the INS data) – since INS firmware version 2.8.0.6;
- o or to output \$GPRMC messages (since INS firmware version 2.2.0.3).

The Inertial Labs[™] INS with 24-pin connector has four COM-ports (see pin diagram in Table 5.3). COM4 port has the next functions:

- to receive external data from a device with RS232 interface (like odometer data – see section 6.6.1);
- o or to output \$GPRMC messages.

Configuration of all COM ports can be done using INS Demo Program in "Devices options" menu item.

Table 5.4. Electrical specifications

Parameter	Conditions	Min	Typical	Max	Units
Input Supply		+9	+12V	+36V	Volts DC
INS-B Current	$V_{DD} = +12V$	200	220	250	mA
INS-P Current	$V_{DD} = +12V$	225	245	275	mA
INS-D Current	$V_{DD} = +12V$	325	345	355	mA

At the Inertial LabsTM INS operations, it should be connected to the host system that provides command interface described in the section 6 and the INS powering.

5.1. Connection of the Inertial Labs[™] INS with RS-232 interface to the host computer for tests

For tests the Inertial LabsTM INS with RS-232 interface can be connected to PC by cables as Fig.5.6 – Fig.5.8 show. For usual operations the COM1 port of INS should be connected to PC using cable 1 (see Fig.5.6). To use the raw GNSS data and NMEA messages the cable 2 or cable 3 should be used (see Fig.5.7). To provide the INS operation with DGPS mode the Cable 3 should be used (see Fig.5.8).

As default, the Inertial Labs provides cable 1 for the INS evaluation.

For the Inertial LabsTM INS powering the AC/DC adapter can be used which receives the power from the 100...240V 50...60Hz AC power source. This

AC/DC adapter is provided by the Inertial Labs and is included in the delivery set.

Fig.5.6. The diagram of electric connection of the Inertial Labs[™] INS to host computer (PC) for tests

Fig.5.7. The diagram of electric connection of the Inertial Labs[™] INS to PC with output of the raw GNSS data or NMEA data set

Fig.5.8. The diagram of electric connection of the Inertial Labs[™] INS with DGPS mode to PC for tests

The delivery set for the INS with RS-232 interface electrical connection to PC is provided by the Inertial Labs and includes:

- interface cable 1 for the Inertial Labs[™] INS COM1 port connection to the COM-port of PC or another device, with branch wires for the Inertial Labs[™] INS DC powering;
- COM-to-USB converter for connection of the INS to PC through the USB port;
- AC/DC adapter.

Also Inertial Labs INS Demo software is included in the delivery set for quick evaluation of the Inertial LabsTM INS.

Fig.5.9 – Fig.5.11 show the diagram of the interface cables 1, 2, 3 for the Inertial Labs $^{\text{TM}}$ INS connections to the COM-ports of host computer and to the DC power source.

Fig.5.9. The diagram of the interface cable 1 for the Inertial Labs[™] INS connection to the COM-port of the host computer and to the AC/DC adapter

nertial Labs Interface Control Document

Fig.5.10. The diagram of the interface cable 2 for the Inertial Labs[™] INS connections to two COM-ports of the host computer and to the AC/DC adapter

nertial Labs Interface Control Document

Fig.5.11. The diagram of the interface cable 3 for the Inertial Labs[™] INS connections to two COM-ports of the host computer, to radio modem and to the AC/DC adapter

5.2. Connection of the Inertial Labs[™] INS with RS-422 interface to the host computer for tests

Usual PC has no possibility of devices connection through RS-422 interface directly. Therefore for the Inertial LabsTM INS with RS-422 interface connection to PC it is necessary to use some converter, for example Serial-to-USB MOXA 1130 converter, which is supplied with INS unit by the Inertial Labs. In other parts above diagrams Fig.5.6 – Fig.5.8 are still valid.

Fig.5.12, Fig.5.13 show the diagram of the interface cables 1, 3 for the Inertial LabsTM INS with RS-422 interface connections to the COM-ports of host computer and to the DC power source.

The delivery set for the INS with RS-422 interface electrical connection to PC is provided by the Inertial Labs and includes:

- interface cable 1 for the Inertial LabsTM INS COM1 port connection to the COM-port MOXA converter, with branch wires for the Inertial LabsTM INS DC powering;
- USB-to-Serial MOXA converter for connection of the INS to PC through the USB port;
- AC/DC adapter.

Also Inertial Labs INS Demo software is included in the delivery set for quick evaluation of the Inertial LabsTM INS.

Fig.5.12. The diagram of the interface cable 1 for the Inertial Labs[™] INS RS-422 connection to the host computer and to the AC/DC adapter

Fig.5.13. The diagram of the interface cable 3 for the Inertial Labs[™] INS RS-422 connections to two COM-ports of the host computer, to radio modem and to the AC/DC adapter

5.3. Connection of the Inertial Labs[™] INS with combined RS-232 / RS-422 interface to the host computer for tests

Usual PC has no possibility of devices connection through RS-422 interface directly. Therefore for the Inertial LabsTM INS with RS-422 interface connection to PC it is necessary to use some converter, for example Serial-to-USB MOXA 1130 converter, which is supplied with INS unit by the Inertial Labs.

The delivery set for the INS with combined RS-232/RS-422 interface electrical connection to PC is provided by the Inertial Labs and includes:

- 24-pin multiport cable development kit (see Fig. 5.14)
- interface cable for the Inertial LabsTM INS COM-ports connection to the COM-port MOXA converter, with branch wires for the Inertial LabsTM INS DC powering;
- USB-to-Serial MOXA converter for connection of the INS to PC through the USB port;
- AC/DC adapter.

Fig.5.14. The Inertial Labs[™] 24-pin multiport cable development kit

Fig.5.15 shows the diagram of the interface cables for the Inertial LabsTM INS with RS-422 interface connection to the COM-ports of host computer and to the DC power source.

Also Inertial Labs INS Demo software is included in the delivery set for quick evaluation of the Inertial LabsTM INS.

nertial Labs Interface Control Document

Fig.5.15. The diagram of the interface cable for the Inertial Labs[™] INS with RS-232/RS-422 interface connections to COM-ports of the host computer and to the AC/DC adapter

5.4. Connection of encoder-based odometer to INS

The Inertial LabsTM INS with 24-pin connector can be factory configured to receive pulse/bi-phase signals from encoder. In such case pins assigned to COM4 port (see Table 5.3) are used to connect to encoder lines as Table 5.5 shows.

Table 5.5. Diagram of bi-phase encoder connection to COM4 lines of the Inertial Labs[™] INS

Incremental encoder,	COM4 INS connector,	24-pin INS connector,
contact function	contact number	contact number
OUT A	2	10
OUT B	3	9
GND	5	8

Please contact Inertial Labs to receive INS unit with encoder input support.

5.5. PPS description

The Inertial Labs[™] INS outputs the pulse per second (PPS) signal generated by GNSS receiver. Appropriate pin of the INS main connector provides the PPS signal (see Table 5.1, Table 5.2, and Table 5.3).

The leading edge of the PPS pulse is always the trigger / reference:

- Negative generates a normally high, active low pulse with the falling edge as the reference;
- Positive generates a normally low, active high pulse with the rising edge as the reference.

GNSS receiver produces a TTL (Transistor-transistor logic) level pulse. Either 3.3V or 5V TTL levels are available. Note that 3.3V level is available by default and 5V level is optional (please contact Inertial Labs for this option).

PPS pulses are shown on the Fig.5.16 and Fig.5.17.

Since the INS firmware version 2.2.0.3 the pulse polarity, period and pulse width are user-adjustable and can be set using the Inertial LabsTM INS Demo Program since version 2.0.22.84 from 04/22/2016 (see INS Demo User's Manual, section "13.1.Control of PPS output signal"). By default GNSS receiver generates a normally high, active low (negative polarity) pulse with the falling edge as the reference. Default PPS period is 1 second, pulse width is 1000 microseconds.

Fig.5.17. PPS pulse; 5V TTL (optional)

Note: Cable set provided with the Inertial Labs INS is designed for INS connection to PC and therefore it does not transfer PPS signal. To receive PPS signal it is necessary to make another cable with PPS wire. Please contact Inertial Labs to purchase cable with PPS signal transferring.

5.6. GPIO description

The Inertial LabsTM INS provides general-purpose input/output (GPIO) pin in the main connector (see pin diagram of the Inertial LabsTM INS connector in Table 5.1, Table 5.2, and Table 5.3).

Since the INS firmware version 2.2.0.3 the GPIO can be used for mark inputs to trigger specific GNSS raw receiver data. TTL mark pulse configuration is the same as Fig.5.16 shows. Adjustment of the mark input signal processing is provided by the Inertial LabsTM INS Demo Program since version 2.0.22.84 from 04/22/2016 (see INS Demo User's Manual, section "13.2.Processing of mark input signal"): processing of the mark input signal can be enabled or disabled, polarity can be changed and a time offset and guard against extraneous pulses can be added.

To allow mark inputs the MARK_switch should be set to 1 (see section 6.4.1).

When a pulse is detected at GPIO mark input then the GNSS receiver generates asynchronous MARK2POS and MARK2TIME logs which are added to the raw GNSS data.

Note: On the pin diagram (see Table 5.3) and structure diagram (see Fig. 5.15) of the 24 pin multiport connector (combined RS-232/RS-422) GPIO is signed as TRIGGER.

5.7. Connection of the Inertial Labs[™] INS with Ethernet interface to the host computer

Inertial LabsTM INS unit, which have built-in Ethernet port, is equipped with USR-TCP232-ED2 module made by USR-IOT. This document refers to the website of USR-IOT as to the location of required software tools and datasheets, http://www.usriot.com/p/modbus-tcp-ethernet-ip-modules/

Such Inertial LabsTM INS is delivered to a customer with the multi-conductor cable. One side of the cable should be connected to the connector on the rear wall of the device. The other side of the cable is attached to the breakout board with numerous connectors on it (see Fig.5.18). The connectors needed for Ethernet communication are XS6 (used for a data) and XS7 (used for a power). The INS with Ethernet retains the communication via a serial port as well. So XS3 can also be used as RS232 port if necessary.

Fig.5.18

See detailed description of Ethernet settings in the INS Demo Program User's Manual, Appendix H. "Using Ethernet port for communication with the Inertial LabsTM INS".

6. SOFTWARE INTERFACE

After the Inertial LabsTM INS power on an initialisation of the onboard GNSS receiver starts that takes about 25 seconds. During this initialization the INS' LED indicator (see Fig.5.1) lights yellow. After the initialization completed the INS' indicator lights red, and the INS works in the mode of commands waiting.

If the auto start option is enabled the INS starts operation automatically after power on (see section 6.9 for more details). The INS indicator lights green.

The commands are transmitted through the COM1 serial port according to the protocol RS232 with baud rate 115200 bps (default settings).

Table 6.1. COM-port parameters

and the second point parameter.				
COM-port parameters				
Baud rate	115200			
Data bits	8			
Parity	none			
Stop bits	1			

Notes

- **1**. Other baud rate than 115200 bps can be set for INS with firmware version since 2.2.0.0. See section "6.13. Change of the main COM port baud rate" for details.
- 2. The Inertial Labs[™] INS with RS-422, RS-485, CAN 2.0 interfaces are also available.

All commands and messages to / from the Inertial LabsTM INS have the byte structure shown in the Table 6.2. Exception is done for the INS output in the NMEA text format (see section 6.2).

Table 6.2. Byte structure for all commands and messages to / from the INS

Byte number	0	1	2	3	4, 5	6 (n+5)	n+6, n+7
Parameter	Header 0	Header 1	Message type	INS data identifier	Message length	Payload	Check sum
Length	1 byte	1 byte	1 byte	1 byte	1 word	n bytes (variable)	1 word
Note	0xAA	0x55		In INS messages	n+6		

In the Table 6.2 and in all other tables there is denoted:

word = unsigned 2 byte integer;

sword = signed 2 byte integer.

Message type is equal to:

0 – for commands:

1 – for transferred data.

All the INS outputs are data, therefore they have Message type = 1.

<u>INS data identifier</u> is used in INS output data only. This byte is equal to code of the command from the host system which requested this INS message. See all commands code in "APPENDIX C. Full list of the Inertial LabsTM INS commands".

Note byte #3 in the block of the initial alignment data is equal to set output data rate (see Table 6.34). In all other messages and commands byte #3 in the Table 6.2 is zero.

Note: in INS with firmware version before 2.1.2.0 this byte #3 is zero in all messages.

The <u>Message length</u> is the number of bytes in the message without header. It is equal to the payload length (n) + 6.

The <u>Check sum</u> is the arithmetical sum of bytes 2...(n+5) (all bytes without header). In the check sum the low byte is transmitted first (see Table 6.3).

Table 6.3. Format of the check sum transmitting

byte0	byte1
low byte	high byte

Important note

The low byte is transmitted by first in all data denoted as word, sword, float.

6.1. Operational modes of the Inertial Labs[™] INS

The Inertial LabsTM INS can operate in the four modes:

- 1. **Idle** mode. All sensors and electronics are powered. The INS microprocessor waits any command from the host computer to start operate in one of the next modes. In the idle mode the indicator of INS lights red.
- 2. **Continuous** operating mode. In this mode the INS operates in the endless loop, providing the continuous output of calculated position, orientation and other data according to chosen output data format (see section 6.2). Data rate is set by user from 1 Hz to 200 Hz. In the Continuous operating mode indicator of the INS lights green.
- 3. "On Request" operating mode. It is close to the Continuous operating mode, but the INS sends only one data block after each Request command issued from host computer. In this mode indicator of the INS lights green.
- 4. **Calibration** operating mode. In this mode the embedded calibration procedure is performed for compensation of hard and soft iron effects of the carrier object. See section 6.8 for more details.

6.2. Output Data Formats of the Inertial Labs[™] INS in the Operating Modes

The next output data formats are available in the "Continuous" and "On Request" operating modes:

- INS OPVT;
- INS QPVT;
- INS OPVT2A;
- INS OPVT2AW;
- INS OPVT2AHR;
- INS OPVTAD;
- INS Sensors Data;
- INS Minimal Data;
- INS OPVT & Raw IMU Data;
- SPAN rawimu;
- INS NMEA Output;
- INS Sensors NMEA Output.

Note output data formats INS OPVT2A, INS OPVT2AW, INS OPVT2AHR, INS OPVTAD are created for INS-D to output orientation data calculated by dual antenna GNSS receiver. But all these data formats can be used for any INS model – INS-B, INS-P, INS-D, absent data will be replaced by zeros.

6.2.1. The "INS OPVT" (Orientation, Position, Velocity, Time) data format This is default data format. It provides the INS output in the form of:

- 3 orientation angles (heading, pitch and roll);
- calibrated outputs of the 9 sensors (gyros, accelerometers, magnetometers) that give information about current angular rate, linear acceleration of the INS and components of outer magnetic field;
- AHRS (IMU) service data;
- position latitude, longitude, altitude above mean sea level;
- east, north and vertical velocity;
- GNSS position and velocity data;
- GPS reference time;
- GPS service data;
- calibrated data from the pressure sensor pressure and barometric altitude.

More correctly gyros, accelerometers, magnetometers output are integrated angular rate, linear acceleration (specific force), magnetic field increments. In the INS output these increments are divided by time step of data output so they may be interpreted as average angular rates, linear acceleration and magnetic field for cycle of data output. On the other hand, incremental sensor data are good for the INS using as IMU (inertial measurement unit) – they are delta Theta and Delta Velocity divided by time step of data output.

Structure of the INS data blocks at the "INS OPVT" data format corresponds to the Table 6.2 with payload shown in the Table 6.4.

Note: before INS firmware version 2.2.1.0 other GNSS information (TS_gps, GNSS_info) were shown in bytes #80, 81. This information can be returned if uncheck "Extended info" checkbox in INS Demo Program in "GNSS receiver" tab of "Devices options" menu item.

<u>Maximum data rate</u> for the INS output at the "INS OPVT" data format is limited to 100 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.4. The INS message payload	d at the "INS	OPVT " data format
------------------------------------	---------------	---------------------------

Byte number	0 – 1	2-3	4 – 5	6 – 11	12 – 17	18 – 23	24 – 25	26 – 27	28 – 29
Parameter	Heading	Pitch	Roll	GyroX, GyroY, GyroZ	AccX, AccY, AccZ	MagX, MagY, MagZ	USW	Vinp	Temper
Length	2 byte word	2 byte sword		/ NVTA	3× 2 byte sword	3× 2 byte sword	2 byte word	2 byte word	2 byte sword
Note	Orientation angles, deg*100		Angular rates, deg/s *KG	Accele- rations g*KA	Magne- tic fields, nT/10		Supply voltage, VDC* 100		

Table 6.4 (continued)

Byte number	30 – 33	34 – 37	38 – 41	42 – 45	46 – 49	50 – 53
Parameter	Latitude	Longitude	Altitude	East speed	North speed	Vertical speed
Length	4 byte integer					
Note	deg *1.0e7	deg *1.0e7	m*100	m/s*100	m/s*100	m/s*100

Table 6.4 (continued)

Byte number	54 – 57	58 – 61	62 – 65	66 – 69	70 – 71	72 – 75
Parameter	Latitude GNSS	Longitude GNSS	Altitude GNSS	Horizont al speed	Track over ground	Vertical speed
Length	4 byte integer	4 byte integer	4 byte integer	4 byte integer	2 byte word	4 byte integer
Note	deg *1.0e7	deg *1.0e7	m*100	m/s*100	deg*100	m/s*100

Table 6.4 (continued)

Byte number	76-79	80	81	82	83	84	85-86	87-90	91
Parameter	ms_gps	GNSS_ info1				Latency ms_vel	P_bar	H_bar	New GPS
Length	4 byte	1 byte	1 byte	1 byte	1 byte	1 byte	2 byte word	4 byte integer	1 byte
Note	ms				ms	ms	Pa/2	m*100	

Notes:

1. Values of KG, KA are scale factors depending on gyro and accelerometer range:

Gyro range, deg/sec	250 or 300	450 or 500	1000	2000
KG	100	50	20	10

Accelerometer range, g	2	6	8
KA	10000	5000	4000

- **2.** Angular rates, linear accelerations and magnetic fields are in the carrier object axes (X is lateral axis, Y is longitudinal axis, Z is vertical axis). The INS orientation relative to the carrier object axes is set by alignment angles (see Appendix B. Variants of the Inertial LabsTM INS mounting relative to the object axes).
- 3. $q = 9.8106 \text{ m/s}^2$.
- 4. USW is unit status word (see section 6.10 for details).
- **5.** Vinp is input voltage of the INS.
- **6.** Temper is averaged temperature in 3 gyros.
- 7. ms_gps are milliseconds from the beginning of the GPS reference week;
- **8.** GNSS_info1, GNSS_info2 contain information about GNSS data (see Table 6.5, Table 6.6);
- **9.** #SolnSVs is number of satellites used in navigation solution;
- **10.** Latency ms_pos and Latency ms_vel are the position and velocity latency in milliseconds respectively;
- **11.** P_bar, H_bar pressure and barometric height.
- 12. New_GPS is indicator of new update of GPS data;
- 13. The low byte is transmitted by first.

Table 6.5. GNSS info1 – information about GNSS data

	Table 6.5. 6N66_III/61 - III/6/III/at/6/II about 6N66 data
Bit	Value and Description
0 - 3	Position type:
	0 – Single point position;
	1 – DGPS (pseudorange differential solution);
	2 – Solution calculated using corrections from SBAS;
	3 – PPP solution;
	4 – RTK (other) solution;
	5 – RTK (narrow-int) solution;
	6 – Other.
4 – 7	Pseudorange iono correction:
	0 – unknown or default Klobuchar model;
	1 – Klobuchar Broadcast;
	2 – SBAS Broadcast;
	3 – Multi-frequency Computed;
	4 – DGPS (pseudorange differential correction);
	5 – NovAtel Blended Iono Value.

Table 6.6. GNSS	info2 –	information	about	GNSS	data
-----------------	---------	-------------	-------	-------------	------

Bit	Value and Description
0 – 1	Solution status:
	0 – GNSS solution is computed;
	1 – insufficient observations;
	2 – not yet converged from cold start;
	3 – other reason of absent solution.
2 – 3	GPS reference time status:
	0 – time validity is unknown;
	1 – time is coarse set and is being steered;
	2 – position is lost and the range bias cannot be calculated;
	3 – time is fine set and is being steered.
4	1 – GPS GNSS signal is used
5	1 – GLONASS GNSS signal is used
6	1 – Galileo GNSS signal is used
7	1 – BeidDou GNSS signal is used

6.2.2. The "INS QPVT" (Quaternion of orientation, Position, Velocity, Time) data format

This data format is near the same as the "INS OPVT" format but provides the quaternion of orientation instead of orientation angles. See "APPENDIX D. Forms of the Inertial LabsTM INS orientation presentation" for correct relationship between orientation angles and quaternion.

The "INS QPVT" format provides output in the form of:

- Quaternion of orientation;
- calibrated outputs of the 9 sensors (gyros, accelerometers, magnetometers) that give information about current angular rate, linear acceleration of the INS and components of outer magnetic field;
- AHRS (IMU) service data;
- position latitude, longitude, altitude above mean sea level;
- east, north and vertical velocity;
- GNSS position and velocity data;
- GPS reference time;
- GPS service data;
- calibrated data from the pressure sensor pressure and barometric altitude.

More correctly gyros, accelerometers, magnetometers output are integrated angular rate, linear acceleration (specific force), magnetic field increments. In

the INS output these increments are divided by time step of data output so they may be interpreted as average angular rates, linear acceleration and magnetic field for cycle of data output. On the other hand, incremental sensor data are good for the INS using as IMU (inertial measurement unit) – they are delta Theta and Delta Velocity divided by time step of data output.

Structure of the INS data blocks at the "INS QPVT" data format corresponds to the Table 6.2 with payload shown in the Table 6.7.

Note: before INS firmware version 2.2.1.0 other GNSS information (TS_gps, GNSS_info) were shown in bytes #82, 83. This information can be returned if uncheck "Extended info" checkbox in INS Demo Program in "GNSS receiver" tab of "Devices options" menu item.

<u>Maximum data rate</u> for the INS output at the "INS QPVT" data format is limited to 100 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.7. The INS message payload at the "INS QPVT" data format

	1010 0.7. THE	nto moodag	o pay.oud	. at tilo 1	4.	auta 10	
Byte number	0-7	8 – 13	14 – 19	20 – 25	26 – 27	28 – 29	30-31
Parameter	Lk0, Lk1, Lk2, Lk3	GyroX, GyroY, GyroZ	AccX, AccY, AccZ	MagX, MagY, MagZ	USW	Vinp	Temper
Length	4× 2 byte sword	3× 2 byte sword	3× 2 byte sword	3× 2 byte sword	2 byte word	2 byte word	2 byte sword
Note	Quaternion of orientation *10000	Angular rates, deg/s *KG	Accele- rations g*KA	Magne- tic fields, nT/10		Supply voltage, VDC* 100	Temper ature, °C*10

Table 6.7 (continued)

Byte number	32 – 35	36 – 39	40 – 43	44 – 47	48 – 51	52 – 55
Parameter	Latitude	Longitude	Altitude	East speed	North speed	Vertical speed
Length	4 byte integer	4 byte integer				
Note	deg *1.0e7	deg *1.0e7	m*100	m/s*100	m/s*100	m/s*100

Table 6.7 (continued)

				<u> </u>			
Byte numb		56 – 59	60 – 63	64 – 67	68 – 71	72 – 73	74 – 77
Parame	eter	Latitude GNSS	Longitude GNSS	Altitude GNSS	Horizont al speed	OVAr	Vertical speed
Leng	gth	4 byte integer	4 byte integer	4 byte integer	4 byte integer	2 byte word	4 byte integer
Not	te	deg *1.0e7	deg *1.0e7	m*100	m/s*100	deg*100	m/s*100

Table 6.7 (continued)

rabio di (dentinada)									
Byte number	78-81	82	83	84	85	86	87-88	89-92	93
Parameter	ms_gps	GNSS info1		#Soln SVs	Latency ms_pos	Latency ms_vel	P_bar	H_bar	New GPS
Length	4 byte	1 byte	1 byte	1 byte	1 byte	1 byte	2 byte word	4 byte integer	1 byte
Note	ms				ms	ms	Pa/2	m*100	

Notes:

- 1. The "INS QPVT" data format is implemented in INS with firmware since version 2.1.2.0.
- 2. Values of KG, KA are scale factors depending on gyro and accelerometer range:

Gyro range, deg/sec	250 or 300	450 or 500	1000	2000
KG	100	50	20	10

Accelerometer range, g	2	6	8
KA	10000	5000	4000

- 3. $g = 9.8106 \text{ m/s}^2$.
- 4. Angular rates, linear accelerations and magnetic fields are in the carrier object axes (X is lateral axis, Y is longitudinal axis, Z is vertical axis). The INS orientation relative to the carrier object axes is set by alignment angles (see Appendix B. Variants of the Inertial LabsTM INS mounting relative to the object axes).
- **5.** USW is unit status word (see section 6.10 for details).
- **6.** Vinp is input voltage of the INS.
- **7.** Temper is averaged temperature in 3 gyros.
- 8. ms_gps are milliseconds from the beginning of the GPS reference week;
- 9. GNSS info1, GNSS info2 contain information about GNSS data (see Table 6.5, Table 6.6):
- 10. Latency ms_pos and Latency ms_vel are the position and velocity latencies in milliseconds respectively;
- **11.** V_latency is latency in the velocity time tag in milliseconds;
- **12.** P bar, H bar pressure and barometric height.
- 13. New_GPS is indicator of new update of GPS data;
- **14.** The low byte is transmitted by first.

6.2.3. The "INS OPVT2A" (Orientation, Position, Velocity, Time, Dual-antenna receiver data) format

The "INS OPVT2A" data format is implemented in INS with firmware since version 2.2.1.7. This data format is based on the "INS OPVT" format but provides additional data calculated by dual antenna GNSS receiver:

- 3 orientation angles (heading, pitch and roll) calculated by INS;
- calibrated outputs of the 9 sensors (gyros, accelerometers, magnetometers) that give information about current angular rate, linear acceleration of the INS and components of outer magnetic field;
- AHRS (IMU) service data;
- position latitude, longitude, altitude above mean sea level;
- east, north and vertical velocity;
- GNSS position and velocity data;
- GPS reference time;
- GPS orientation data;
- GPS service data;
- calibrated data from the pressure sensor pressure and barometric altitude.

Structure of the INS data blocks at the "INS OPVT2A" data format corresponds to the Table 6.2 with payload shown in the Table 6.8.

<u>Maximum data rate</u> for the INS output at the "INS OPVT2A" data format is limited to 90 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.8. The INS message payload at the "INS OPVT2A" data format

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			. <u>g. p</u> j.			<u> </u>		<u> </u>
Byte number	0 – 1	2-3	4 – 5	6 – 11	12 – 17	18 – 23	24 – 25	26 – 27	28 – 29
Parameter	Heading	Pitch	Roll	GyroX, GyroY, GyroZ	AccX, AccY, AccZ	MagX, MagY, MagZ	USW	Vinp	Temper
Length	2 byte word	2 byte sword	2 byte sword	/ N//TA	3× 2 byte sword	3× 2 byte sword	2 byte word	2 byte word	2 byte sword
Note	Orientation angles, deg*100		Angular rates, deg/s *KG	Accele- rations g*KA	Magne- tic fields, nT/10		Supply voltage, VDC* 100	Temper ature, °C*10	

Table 6.8 (continued)

Byte number	30 – 33	34 – 37	38 – 41	42 – 45	46 – 49	50 – 53
Parameter	Latitude	Longitude	Altitude	East speed	North speed	Vertical speed
Length	4 byte integer	4 byte integer	4 byte integer	4 byte integer	4 byte integer	4 byte integer
Note	deg *1.0e7	deg *1.0e7	m*100	m/s*100	m/s*100	m/s*100

Table 6.8 (continued)

Byte number	54 – 57	58 – 61	62 – 65	66 – 69	70 – 71	72 – 75
Parameter	Latitude GNSS	Longitude GNSS	Altitude GNSS	Horizont al speed	Track over ground	Vertical speed
Length	4 byte integer	4 byte integer	4 byte integer	4 byte integer	2 byte word	4 byte integer
Note	deg *1.0e7	deg *1.0e7	m*100	m/s*100	deg*100	m/s*100

Table 6.8 (continued)

	Table de (Commuda)									
Byte number	76-79	80	81	82	83-84	85	86-87			
Parameter	ms_gps	GNSS_ info1	GNSS_ info2	#solnSVs	V_latency	Angles position type	Heading GNSS			
Length	4 byte	1 byte	1 byte	1 byte	2 byte	1 byte	2 byte word			
Note	ms				s*1000		Orientation angle, deg*100			

Table 6.8 (continued)

Byte number	88-89	90-91	92-93	94-95	96-99	100
Parameter	Latency ms_head	Latency ms_pos	Latency ms_vel	P_bar	H_bar	New GPS
Length	2 byte sword	2 byte sword	2 byte sword	2 byte word	4 byte integer	1 byte
Note		ms	Pa/2	M*100		

Notes:

1. Values of KG, KA are scale factors depending on gyro and accelerometer range:

Gyro range, deg/sec	250 or 300	450 or 500	1000	2000
KG	100	50	20	10

Accelerometer range, g	2	6	8
KA	10000	5000	4000

- **2.** Angular rates, linear accelerations and magnetic fields are in the carrier object axes (X is lateral axis, Y is longitudinal axis, Z is vertical axis). The INS orientation relative to the carrier object axes is set by alignment angles (see Appendix B. Variants of the Inertial LabsTM INS mounting relative to the object axes).
- **3.** $g = 9.8106 \text{ m/s}^2$.
- **4.** USW is unit status word (see section 6.10 for details).
- **5.** Vinp is input voltage of the INS.
- **6.** Temper is averaged temperature in 3 gyros.
- **7.** ms_gps are milliseconds from the beginning of the GPS reference week;
- **8.** GNSS_info1, GNSS_info2 contain information about GNSS data (see Table 6.5, Table 6.6);
- **9.** #SolnSVs is number of satellites used in navigation solution;
- **10.** V_latency is latency in the velocity time tag in milliseconds;
- **11.** Latency ms_head, Latency ms_pos, and Latency ms_vel are heading, position and additional velocity latency in milliseconds respectively;
- **12.** Angles position type is GNSS position type at orientation calculation using dual GNSS antennas. If this value is less than 100 then see its description in the Table 6.15. Otherwise subtract 100 from the "Angles position type" and refer again to Table 6.15. See section 6.15 for explanation.
- **13.** P_bar, H_bar pressure and barometric height;
- **14.** New_GPS is indicator of new update of GPS data;
- **15.** The low byte is transmitted by first.

6.2.4. The "INS OPVT2AW" (Orientation, Position, Velocity, Time, Dualantenna receiver data, GPS Week) format

The "INS OPVT2AW" data format is implemented in INS with firmware since version 2.5.0.5. This data format is based on the "INS OPVT2A" format but also provides the GPS Week number.

Structure of the INS data blocks at the "INS OPVT2AW" data format corresponds to the Table 6.2 with payload shown in the Table 6.9.

<u>Maximum data rate</u> for the INS output at the "INS OPVT2AW" data format is limited to 90 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Tahla 6 0	The INS massage	navioad at the "ING	S OPVT2AW" data format
Table 0.3.	. IIIE IIIO IIIESSAU	e Davidau al liie - IIN	J OF VIZAVV LIGIGILIII (1

Byte number	0 – 1	2-3	4 – 5	6 – 11	12 – 17	18 – 23	24 – 25	26 – 27	28 – 29
Parameter	Heading	Pitch	Roll	GyroX, GyroY, GyroZ	AccX, AccY, AccZ	MagX, MagY, MagZ	USW	Vinp	Temper
Length	2 byte word	2 byte sword		I	3× 2 byte sword	3× 2 byte sword	2 byte word	2 byte word	2 byte sword
Note	Orientation angles, deg*100		Angular rates, deg/s *KG	Accele- rations g*KA	Magne- tic fields, nT/10		Supply voltage, VDC* 100		

Table 6.9 (continued)

	14610 010 (00111111404)								
Byte number	30 – 33	34 – 37	38 – 41	42 – 45	46 – 49	50 – 53			
Parameter	Latitude	Longitude	Altitude	East speed	North speed	Vertical speed			
Length	4 byte integer	4 byte integer	4 byte integer	4 byte integer	4 byte integer	4 byte integer			
Note	deg *1.0e7	deg *1.0e7	m*100	m/s*100	m/s*100	m/s*100			

Table 6.9 (continued)

Byte number	54 – 57	58 – 61	62 – 65	66 – 69	70 – 71	72 – 75
Parameter	Latitude GNSS	Longitude GNSS	Altitude GNSS	Horizont al speed	Track over ground	Vertical speed
Length	4 byte integer	4 byte integer	4 byte integer	4 byte integer	2 byte word	4 byte integer
Note	deg *1.0e7	deg *1.0e7	m*100	m/s*100	deg*100	m/s*100

Table 6.9 (continued)

	Table 0.5 (continued)										
Byte number	76-79	80-81	82	83	84	85	86	87			
Parameter	ms_gps	GPS week	GNSS info1	GNSS info2	#soln SVs	Latency ms_pos	Latency ms_vel	Angles position type			
Length	4 byte	2 byte word	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte			
Note	ms					ms	ms				

Byte number	88-89	90-91	92-93	94-95	96-97	98-101	102
Parameter	Heading GNSS	Pitch GNSS	Heading STD GNSS	Pitch STD GNSS	P_bar	H_bar	New GPS
Length	2 byte word	2 byte sword	2 byte word	2 byte word	2 byte word	4 byte integer	1 byte
Note	Orientation deg*		STD, de	eg*100	Pa/2	m*100	

Notes:

1. Values of KG, KA are scale factors depending on gyro and accelerometer range:

Gyro range, deg/sec	250 or 300	450 or 500	1000	2000
KG	100	50	20	10

Accelerometer range, g	2	6	8
KA	10000	5000	4000

- 2. Angular rates, linear accelerations and magnetic fields are in the carrier object axes (X is lateral axis, Y is longitudinal axis, Z is vertical axis). The INS orientation relative to the carrier object axes is set by alignment angles (see Appendix B. Variants of the Inertial LabsTM INS mounting relative to the object axes).
- **3.** $a = 9.8106 \text{ m/s}^2$.
- **4.** USW is unit status word (see section 6.10 for details).
- **5.** Vinp is input voltage of the INS.
- **6.** Temper is averaged temperature in 3 gyros.
- 7. ms aps are milliseconds from the beginning of the GPS reference week;
- 8. GNSS_info1, GNSS_info2 contain information about GNSS data (see Table 6.5, Table 6.6):
- **9.** #SolnSVs is number of satellites used in navigation solution;
- 10. Latency ms pos and Latency ms vel are the position and velocity latencies in milliseconds respectively;
- 11. Angles position type is GNSS position type at orientation calculation using dual GNSS antennas. If this value is less than 100 then see its description in the Table 6.15. Otherwise subtract 100 from the "Angles position type" and refer again to Table 6.15. See section 6.15 for explanation;
- **12.** P_bar, H_bar pressure and barometric height.
- **13.** New GPS is indicator of new update of GPS data;
- **14.** The low byte is transmitted by first.

6.2.5. The "INS OPVT2AHR" (Orientation, Position, Velocity, Time, Dualantenna receiver data, with high resolution) format

The "INS OPVT2AHR" data format is implemented in INS with firmware since version 2.3.0.5. This data format provides the same data as the "INS OPVT2A" format, but sensors and position data are presented with higher resolution:

- 3 orientation angles (heading, pitch and roll) calculated by INS;
- calibrated outputs of 3 gyros and 3 accelerometers with high resolution;
- calibrated outputs of 3 magnetometers;
- AHRS (IMU) service data;
- position latitude, longitude, altitude above mean sea level, with high resolution;
- east, north and vertical velocity;
- GNSS position (with high resolution) and velocity data;
- GPS reference time;
- GPS orientation data;
- GPS service data;
- calibrated data from the pressure sensor pressure and barometric altitude.

Structure of the INS data blocks at the "INS OPVT2AHR" data format corresponds to the Table 6.2 with payload shown in the Table 6.10.

<u>Maximum data rate</u> for the INS output at the "INS OPVT2AHR" data format is limited to 70 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.10. The INS message payload at the "INS OPVT2AHR" data format

	01.01.11	••		, , , , , , ,					<u>a</u>
Byte number	0 – 1	2-3	4 – 5	6 – 17	18 – 29	30 – 35	37 – 37	38 – 39	40 – 41
Parameter	Heading	Pitch	Roll	GyroX, GyroY, GyroZ	AccX, AccY, AccZ	MagX, MagY, MagZ	USW	Vinp	Temper
Length	2 byte word	2 byte sword	_	4 byte	3× 4 byte integer	3× 2 byte sword	2 byte word	2 byte word	2 byte sword
Note		Orientation angles, deg*100		Angular rates, deg/s *1.0e5	Accele- rations, g*1.0e6	Magne- tic fields, nT/10		Supply voltage, VDC* 100	

Table 6.10 (continued	Table 6.10	(continued)
-----------------------	-------------------	-------------

Byte number	42 – 49	50 – 57	58 – 61	62 – 65	66 – 69	70 – 73
Parameter	Latitude	Longitude	Altitude	East speed	North speed	Vertical speed
Length	8 byte	8 byte	4 byte	4 byte	4 byte	4 byte
Lengin	integer	integer	integer	integer	integer	integer
Note	deg*1.0e9	deg*1.0e9	m*1000	m/s*100	m/s*100	m/s*100

Table 6.10 (continued)

			(• •/		
Byte number	74 – 81	82 – 89	90 – 93	94 – 97	98 – 99	100 – 103
Parameter	Latitude GNSS	Longitude GNSS	Altitude GNSS	Horizont al speed GNSS	Track over ground	Vertical speed GNSS
Length	8 byte integer	8 byte integer	4 byte integer	4 byte integer	2 byte word	4 byte integer
Note	deg*1.0e9	deg*1.0e9	m*1000	m/s*100	deg*100	m/s*100

Table 6.10 (continued)

				210 0110 (01			
Byte number	104-107	108	109	110	111-112	113	114-115
Parameter	ms_gps	GNSS_ info1	GNSS_ info2	#solnSVs	V_latency	Angles position type	Heading GNSS
Length	4 byte	1 byte	1 byte	1 byte	2 byte	1 byte	2 byte word
Note	ms				s*1000		Orientatio n angle, deg*100

Table 6.10 (continued)

Byte number	116-117	118-119	120-121	122-123	124-127	128
Parameter	Latency ms_head	Latency ms_pos	Latency ms_vel	P_bar	H_bar	New GPS
Length	2 byte sword	2 byte sword	2 byte sword	2 byte word	4 byte integer	1 byte
Note		ms		Pa/2	m*100	

Notes:

- **1.** Angular rates, linear accelerations and magnetic fields are in the carrier object axes (X is lateral axis, Y is longitudinal axis, Z is vertical axis). The INS orientation relative to the carrier object axes is set by alignment angles (see Appendix B. Variants of the Inertial LabsTM INS mounting relative to the object axes).
- **2.** $g = 9.8106 \text{ m/s}^2$.
- **3.** USW is unit status word (see section 6.10 for details).
- 4. Vinp is input voltage of the INS.
- **5.** Temper is averaged temperature in 3 gyros.
- **6.** ms_gps are milliseconds from the beginning of the GPS reference week;
- **7.** GNSS_info1, GNSS_info2 contain information about GNSS data (see Table 6.5, Table 6.6);
- 8. #SolnSVs is number of satellites used in navigation solution;
- **9.** V_latency is latency in the velocity time tag in milliseconds;
- **10.** Latency ms_head, Latency ms_pos, and Latency ms_vel are heading, position and additional velocity latency in milliseconds respectively;
- **11.** Angles position type is GNSS position type at orientation calculation using dual GNSS antennas. If this value is less than 100 then see its description in the Table 6.15. Otherwise subtract 100 from the "Angles position type" and refer again to Table 6.15. See section 6.15 for explanation;
- **12.** P_bar, H_bar pressure and barometric height;
- 13. New_GPS is indicator of new update of GPS data;
- 14. The low byte is transmitted by first.

6.2.6. "INS OPVTAD" output data format with external aiding data

To control receiving of the external aiding data the special output data format "INS OPVTAD" is implemented since INS firmware version 2.8.2.0. The "INS OPVTAD" data format provides the same data as the "INS OPVT2AHR" format, but includes data from the external sensors.

External aiding data structure is described in section "6.6.3. Aiding data input through the main COM port".

Structure of the INS data blocks at the "INS OPVTAD" data format corresponds to the Table 6.2 with payload shown in the Table 6.11.

<u>Maximum data rate</u> for the INS output at the "INS OPVTAD" data format is limited to 50 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.11. The INS message payload at the "INS OPVTAD" data format

Byte number	0 – 1	2 – 3	4 – 5	6-17	18 – 29	30 – 35	36-37	38-39	40-41
Parameter	Heading	Pitch	Roll	GyroX, GyroY, GyroZ	AccX, AccY, AccZ	MagX, MagY, MagZ	USW	Vinp	Temper
Length	•		2 byte sword	3× 4 byte integer	3× 4 byte integer	3× 2 byte sword	2 byte word	2 byte word	2 byte sword
Note	Orientation angles, deg*100		Angular rates, deg/s *1.0e5	Accele- rations g*1.0e6	Magnetic fields, nT/10		Supply voltage, VDC* 1000	Temperature, °C*10	

Table 6.11 (continued)

Byte number	42-49	50-57	58-61	62-65	66-69	70-73
Parameter	Latitude	Longitude	Altitude	East speed	North speed	Vertical speed
Length	8 byte integer	8 byte integer	4 byte integer	4 byte integer	4 byte integer	4 byte integer
Note	deg *1.0e9	deg *1.0e9	m*1000	m/s*100	m/s*100	m/s*100

Table 6.11 (continued)

Byte number	74 – 81	82 – 89	90 – 93	94 – 97	98 – 99	100 – 103
Parameter	Latitude GNSS	Longitude GNSS	Altitude GNSS	Horizontal speed	Track over ground	Vertical speed
Length	8 byte integer	8 byte integer	4 byte integer	4 byte integer	2 byte word	4 byte integer
Note	deg *1.0e9	deg *1.0e9	m*1000	m/s*100	deg*100	m/s*100

Table 6.11 (continued)

Byte number	104 – 107	108	109	110	111	112	113
Parameter	ms_gps	GNSS_info 1	GNSS_info 2			Latency ms_vel	Angles position type
Length	4 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte
Note	ms				ms	Ms	

nertial Labs Interface Control Document

Byte number	114 – 115	116 – 117	118 – 119	120 – 123	124
Parameter	Heading GNSS	Latency ms_head	P_bar	H_bar	New GPS
Length	2 byte word	2 byte sword	2 byte word	4 byte integer	1 byte
Note	Orientation angles, deg*100	ms	Pa/2 or m*100	m*100	

Table 6.11 (continued)

Byte number	125-128	129-130	131-132	133-134	135-136	137-138
Parameter	Odometer	Air speed	North wind	East wind	North wind STD	East wind STD
Length	4 byte integer	2 byte word	2 byte sword	2 byte sword	2 byte word	2 byte word
Note	Distance, m*1000	Speed, kt*100	North wind, kt*100	East wind, kt*100	STD,	kt*100

Table 6.11 (continued)

Byte number	139-142	143-146	147-150	151-152	153-154	155-156	157-158
Parameter	Latitude external	Longitude external	Altitude external	Latitude external STD	Longitude external STD	Altitude external STD	Latency external
Length	4 byte integer	4 byte integer	4 byte integer	2 byte word	2 byte word	2 byte word	2 byte word
Note	deg *1.0e7		m*1000	m *100			sec*1000

Table 6.11 (continued)

Byte number	159-162	163-166	167-170	171-172	173-174	175-176
Parameter	Locator latitude	Locator longitude	Locator altitude	Doppler shift	Doppler shift STD	New aiding data
Length	4 byte integer	4 byte integer	4 byte integer	2 byte sword	2 byte word	2 byte word
Note	deg *1.0e7	deg *1.0e7	m*1000	(m/s	s) *100	

- 1. Angular rates, linear accelerations and magnetic fields are in the carrier object axes (X is lateral axis, Y is longitudinal axis, Z is vertical axis).
- **2.** $g = 9.8106 \text{ m/s}^2$.

3. USW is unit status word.

- 4. Vinp is input voltage of the INS.
- **5.** Temper is averaged temperature in 3 gyros.
- **6.** ms_gps are milliseconds from the beginning of the GPS reference week;
- 7. GNSS info1, GNSS info2 contain information about GNSS data:
- **8.** #SolnSVs is number of satellites used in navigation solution;
- 9. Latency ms head, Latency ms pos, and Latency ms vel are latencies of heading, position and velocity GNSS data in milliseconds;
- 10. Angles position type is GNSS position type at orientation calculation using dual GNSS antennas. If this value is less than 100 then see its description in the Table 6.15. Otherwise subtract 100 from the "Angles position type" and refer again to Table 6.15. See section 6.15 for explanation;
- **11.** P_bar, H_bar pressure and barometric height;
- **12.** New GPS is an indicator of new update of GPS data;
- **13.** New aiding data is an indicator of update of external sensors data (see Table 6.12);

14. The low byte is transmitted by first.

Table 6.12. New aiding data indicator

		Table 6.12. New alu	
	Bit	Parameter	Description
Low byte	0	Odometer	0 – data absent 1 – data updated
	1	Air speed	0 – data absent 1 – data updated
	2	Wind data (North wind component, East wind component, North wind STD, East wind STD)	0 – data absent 1 – data updated
	3	External position (Latitude, Longitude, Altitude, Latitude STD, Longitude STD, Altitude STD, Latency)	0 – data absent 1 – data updated
	5	Doppler shift from locator (Locator latitude, Locator longitude, Locator altitude, Doppler shift, Doppler shift STD) Reserved	0 – data absent 1 – data updated
	6	Reserved	

	7	Reserved
High byte	8	Reserved
	9	Reserved
	10	Reserved
	11	Reserved
	12	Reserved
	13	Reserved
	14	Reserved
	15	Reserved

6.2.7. The "INS Sensors Data" format

This data format contains data from the devices inside INS:

AHRS (IMU) data:

- 3 orientation angles (heading, pitch and roll);
- raw data from the 9 sensors (gyros, accelerometers, magnetometers) in original ADC codes;
- AHRS service data;

GNSS receiver data:

- position latitude, longitude, height above mean sea level;
- standard deviations of latitude, longitude and height;
- horizontal and vertical speed;
- direction of motion (track over ground);
- GPS reference time;
- GPS service data;

Pressure sensor data:

temperature and pressure raw data in ADC codes.

Structure of the INS data blocks at the "INS Sensors Data" format corresponds to the Table 6.2 with payload shown in the Table 6.13.

<u>Maximum data rate</u> for the INS output at the "INS Sensors Data" format is limited to 100 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.13.	The message payload at the "INS Sensors Data" format	t
--------------------	--	---

Byte number	0 – 1	2-3	4 – 5	6 – 23	24 – 25	26 – 27	28 – 29	30 – 31	32 – 33
Parameter	Heading (AHRS)	Pitch (AHRS)	Roll (AHRS)	Ugyro, Uacc, Umag	Reser- ved	Reser- ved	USW	Vdd	Utermo
Length	2 byte word	2 byte sword	2 byte sword	byte 9×2 byte		2 byte sword	2 byte word	2 byte word	2 byte sword
Note	Orientation angles, deg*100		Raw sensor data (gyros, accelerometers, magnetometers)				Combi- ned voltage	Temper ature in each sensor	

Table 6.13 (continued)

Byte number	34 – 37	38 – 41	42 – 45	46-47	48 – 49	50 – 51	52-55	56-57	58-61
Parameter	Latitude	Longitude	Altitude	Latitude	Longitude	Altitude	Horizont	Track over	Vertical
raiametei	GNSS	GNSS	GNSS	STD	STD	STD	al speed	ground	speed
Longth	4 byte	4 byte	4 byte	2 byte	2 byte	2 byte	4 byte	2 byte	4 byte
Length	integer	integer	integer	word	word	word	integer	word	integer
Note	deg *1.0e7	deg *1.0e7	m*100	m*1000	m*1000	m*1000	m/s*100	deg*100	m/s*100

Table 6.13 (continued)

Byte number	62 – 65	66	67	68	69	70	71	72
Parameter	ms_gps	TS_gps	sol_stat	pos_type	#SVs	#SolnSVs	#SolnL1SVs	#SolnMultiSVs
Length	4 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte	1 byte
Note	ms							

Table 6.13 (continued)

Byte number	73	74	75	76	77	78-79	80-81	82	83
Parameter	ext_sol_ stat	Galileo and BeiDou	GPS and GLONASS	,	Latency ms_vel	UP	UT	New GPS	Reserv
Length	1 byte	1 byte	1 byte	1 byte	1 byte	2 byte word	2 byte word	1 byte	1 byte
Note				ms	ms				

Notes

- 1. USW is unit status word (see section 6.10 for details).
- 2. The following data are recorded in the field «Vdd» sequentially:
 - the INS input voltage, Vinp, VDC*100;
 - stabilized voltage supplied to the INS sensors, Vdd, VDC*1000;

- In the «Utermo» field ADC codes are recorded sequentially from 7 temperature sensors inside gyros, accelerometers and magnetometers.
- **4.** ms_gps are milliseconds from the beginning of the GPS reference week;
- **5.** TS_gps is time status which indicates the quality of the GPS reference time (see Table 6.5);
- **6.** sol_stat is GNSS solution status (see Table 6.14);
- **7.** pos_type is GNSS position type (see Table 6.15);
- **8.** #SVs is number of satellites tracked;
- **9.** #SolnSVs is number of satellites used in navigation solution;
- **10.** #SolnL1SVs is number of satellites with L1/E1/B1 signals used in solution;
- 11. #SolnMultiSVs is number of satellites with multi-frequency signals used in solution;
- **12.** ext_sol_stat is GNSS extended solution status (see Table 6.16);
- 13. GPS and GLONASS is GPS and GLONASS signal-used mask (see Table 6.17);
- 14. Galileo and BeiDou is Galileo and BeiDou signal-used mask (see Table 6.18);
- **15.** Latency ms_pos, Latency ms_vel are position and velocity latency in milliseconds respectively;
- **16.** UP and UT are raw data from the pressure sensor pressure and temperature;
- 17. New_GPS is indicator of new update of GPS data;
- **18.** The low byte is transmitted by first.

Table 6.14. sol stat - GNSS solution status

	1 abic 0.14. 301_3tat = 01100 301ation 3tatus
Value	Description
0	Solution computed
1	Insufficient observations
2	No convergence
3	Singularity at parameters matrix
4	Covariance trace exceeds maximum (trace > 1000 m)
5	Test distance exceeded (maximum of 3 rejections if distance >10 km)
6	Not yet converged from cold start
7	Height or velocity limits exceeded (in accordance with export licensing
	restrictions)
8	Variance exceeds limits
9	Residuals are too large
13	Large residuals make position unreliable
18	When a FIX POSITION command is entered, the receiver computes its own
	position and determines if the fixed position is valid
19	The fixed position, entered using the FIX POSITION command, is not valid
20	Position type is unauthorized - HP or XP on a receiver not authorized

Table 6.15. pos_type - GNSS position or velocity type

Value	Description
0	No solution
8	Velocity computed using instantaneous Doppler
16	Single point position
17	Pseudorange differential solution

INS Interface Control Document

18	Solution calculated using corrections from an WAAS
19	Propagated by a Kalman filter without new observations
20	OmniSTAR VBS position (1)
32	Floating L1 ambiguity solution
33	Floating ionospheric-free ambiguity solution
34	Floating narrow-lane ambiguity solution
48	Integer L1 ambiguity solution
50	Integer narrow-lane ambiguity solution OmniSTAR HP position (1)
64	OmniSTAR HP position (1)
65	OmniSTAR XP or G2 position (1)
68	Converging PPP TerraStar-C solution (2)
69	Converged PPP TerraStar-C solution (2)
77	Converging PPP TerraStar-L solution (2)
78	Converged PPP TerraStar-L solution (2)

Notes

- (1) A subscription for OmniSTAR or use of a DGPS service is required. It is not realized in the Inertial LabsTM INS firmware yet.
- (2) PPP solution requires access to a suitable correction stream, delivered either through L-Band or the internet. For L-Band delivered TerraStar or Veripos service, appropriate receiver software model is required, along with a subscription to the desired service. It is not realized in the Inertial LabsTM INS firmware yet.

Table 6.16, ext sol stat - GNSS extended solution status

Bit	Mask	Description							
0	0x01	If an RTK solution: NovAtel CORRECT solution has been verified							
		a PDP solution: solution is GLIDE							
		Otherwise: Reserved							
1-3	0x0E	Pseudorange Iono Correction							
		0 = Unknown or default Klobuchar model							
		1 = Klobuchar Broadcast							
		2 = SBAS Broadcast							
		3 = Multi-frequency Computed							
		4 = PSRDiff Correction							
		5 = NovAtel Blended Iono Value							
4	0x10	Reserved							
5	0x20	0 = No antenna warning							
		1 = Antenna information is missing							
6-7	0xC0	Reserved							

Table 6.17. GPS and GLONASS signal-used mask

Bit	Mask	Description
0	0x01	GPS L1 used in solution
1	0x02	GPS L2 used in solution
2	0x04	GPS L5 used in solution
3	0x08	Reserved

4	0x10	GLONASS L1 used in solution
5	0x20	GLONASS L2 used in solution
6-7	0x40-0x80	Reserved

Table 6.18. Galileo and BeiDou signal-used mask

Bit	Mask	Description					
0	0x01	Galileo E1 used in solution					
1-3	0x02-0x08	Reserved					
4	0x10	BeiDou B1 used in solution					
5	0x20	BeiDou B2 used in solution					
6-7	0x40-0x80	Reserved					

6.2.8. The "INS Minimal Data" format

This data format specifies the minimum of the INS data that can be transferred with larger data rate:

- 3 orientation angles (heading, pitch and roll);
- AHRS (IMU) service data;
- position latitude, longitude, altitude above mean sea level;
- · east, north and vertical velocity;
- GPS reference time;
- GPS service data.

Structure of the INS data blocks at the "INS Minimal Data" format corresponds to the Table 6.2 with payload shown in the Table 6.19.

Note: before INS firmware version 2.2.1.0 other GNSS information were shown in byte #40 – TS_gps. This information can be returned if uncheck "Extended info" checkbox in INS Demo Program in "GNSS receiver" tab of "Devices options" menu item.

Maximum data rate for the INS output at the "INS Minimal Data" format is 200 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Byte number	0 – 1	2-3	4 – 5	6 – 7	8 – 9	10 – 11	12 – 15	16 – 19	20 – 23
Parameter	Heading	Pitch	Roll	USW	Vinp	Temper	Latitude	Longitude	Altitude
Length	2 byte word	2 byte sword	2 byte sword	2 byte word	2 byte word	2 byte sword	4 byte integer	4 byte integer	4 byte integer
Note	Orientation angles, deg*100				Supply voltage, VDC* 100	Temper ature, °C*10	deg *1.0e7	deg *1.0e7	m*100

Table 6.19 (continued)

Byte number	24 – 27	28 – 31	32 – 35	36-39	40	41
Parameter	East speed	North speed	Vertical speed	ms_gps	GNSS _info1	#SolnSVs
Length	4 byte integer	4 byte integer	4 byte integer	4 byte integer	1 byte	1 byte
Note	m/s*100	m/s*100	m/s*100			

Notes:

- 1. USW is unit status word (see section 6.10 for details);
- 2. Vinp is input voltage of the INS;
- 3. Temper is averaged temperature in 3 gyros;
- **4.** ms_gps are milliseconds from the beginning of the GPS reference week;
- 5. GNSS_info1 contains information about GNSS data (see Table 6.5);
- **6.** #SolnSVs is number of satellites used in navigation solution;
- 7. The low byte is transmitted by first.

6.2.9. The "INS OPVT & Raw IMU Data" (Orientation, Position, Velocity, Time and raw IMU) format

The "INS OPVT & Raw IMU Data" format provides the most accurate information about the raw IMU data (measurements from the gyros and accelerometers) including their precision time stamps, and is intended for post-processing of INS data, and other tasks where accurate information from gyros and accelerometers is necessary. Also this data format contains the main INS data – orientation, position and velocity.

This data format is implemented in INS firmware since version 3.2.1.2.

Structure of the INS data blocks at the "INS OPVT & Raw IMU Data" format corresponds to the Table 6.2 with payload shown in the Table 6.20.

<u>Maximum data rate</u> for the INS output at the "INS OPVT & Raw IMU Data" format is limited to 100 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.20. The message payload at the "INS OPVT & Raw IMU Data" format

Byte number	0-7	8-15	16-27	28 – 39	40-41	42-45	46-49	50-53
Parameter	GPS Time	GPS IMU Time	GyroX, GyroY, GyroZ	AccX, AccY, AccZ	USW	Heading	Pitch	Roll
Length	8 byte unsigned integer	8 byte unsigned integer	3× 4 byte integer	3× 4 byte integer	2 byte word	4 byte unsigned integer	4 byte integer	4 byte integer
Note	s*1.0e9	s*1.0e9	Angular rates, deg/s *10000	Accelerations, m/s ² *10000		Orienta de	ition an g*1000	_

Table 6.20 (continued)

rasio diza (deritinada)							
Byte number	54-61	62-69	70-73	74-77	78-81	82-85	
Parameter	Latitude	Longitude	Altitude	East speed	North speed	Vertical speed	
Length	8 byte integer	8 byte integer	4 byte integer	4 byte integer	4 byte integer	4 byte integer	
Note	deg *1.0e9	deg *1.0e9		m/s*100	m/s*100	m/s*100	

Table 6.20 (continued)

Byte number	86	87	88	89
Parameter	GNSS_info 1	GNSS_info 2	#solnSVs	New GPS
Length	1 byte	1 byte	1 byte	1 byte
Note				

Notes:

- **1.** GPS Time is time of INS navigation solution (orientation, position, velocity data), in nanoseconds from the beginning of the GPS reference week;
- 2. GPS IMU Time is time of getting IMU data (measurements from the gyros and accelerometers), in nanoseconds from the beginning of the GPS reference week;
- 3. USW is unit status word (see section 6.10 for details);
- **4.** GNSS_info1, GNSS_info2 contain information about GNSS data (see Table 6.5, Table 6.6);
- 5. #SolnSVs is number of satellites used in navigation solution;
- **6.** New_GPS is indicator of new update of GPS data;
- **7.** The low byte is transmitted by first.

6.2.10. The "SPAN rawimu" data format

This is copy of the NovAtel SPAN rawimub data log that is widely used to output the raw IMU data (measurements from the gyros and accelerometers) and their precision time stamps, see document

https://www.novatel.com/assets/Documents/Manuals/OM-20000144UM.pdf

In contrast to the "INS OPVT & Raw IMU Data" format, the "SPAN rawimu" data do not contain information about orientation, position, velocity.

The "SPAN rawimu" data format is implemented in INS firmware since version 3.2.1.8. <u>Note</u> scale factors for raw gyros and accelerometers data, IMU status description were changed in INS firmware since version 3.2.3.8.

The Table 6.21 shows full structure of the INS data blocks at the "SPAN rawimu" Note this data format has the NovAtel binary data structure and does not corresponds to the Table 6.2.

<u>Maximum data rate</u> for the INS output at the "SPAN rawimu" data format is limited to 100 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

Table 6.21. The "SPAN rawimu" message structure

Byte number	0	1	2	3	4-5	6	7	8-9
Parameter	Sync1	Sync2	Sync3	Header	Message	Message	Port	Message
1 arameter	Oyrici	Syricz	Cyrico	Length	ID	Type	Address	Length
Length	1 byte	1 byte	1 byte	1 byte	2 byte	1 byte	1 byte	2 byte
Lengui	1 Dyle	1 Dyte	1 Dyte	1 Dyte	word	1 Dyte	1 Dyte	word
Note	0xAA	0x44	0x12	28	268	0x00		40

Table 6.21 (continued)

				- (-				
Byte number	10-11	12	13	14-15	16-19	20-23	24-25	26-27
Parameter	Sequence	Idle Time	Time Status	Week	GPS Time	Receiver Status	Reserved	Receiver S/W Version
Length	2 byte word	1 byte	1 byte	2 byte word	4 byte unsigned integer	4 byte unsigned integer	2 byte word	2 byte word
Note	0x00				ms			

Table 6.21 (continued)

Byte number	28-31	32-39	40-43	44-55	56-67	68-71
Parameter	Week	GPS IMU Time	IMU Status	AccZ, -Accy, AccX	GyroZ, -GyroY, GyroX	32-bit CRC
Length	4 byte unsigned integer	8 byte double	4 byte integer	3× 4 byte integer	3× 4 byte integer	4 byte hex
Note		S		m/s *2 ³¹ /200	deg *2 ³¹ /720	

Notes:

- 1. Bytes 0 to 27 are header of the "SPAN rawimu" message;
- 2. Time Status indicates the quality of the GPS reference time (see Table 6.22);
- **3.** Week is the GPS week number;
- **4.** GPS Time are milliseconds from the beginning of the GPS reference week;
- **5.** Receiver Status is 32-bits representing the status of various hardware and software components of the GNSS receiver (see Table 6.23);
- **6.** Receiver S/W Version is a value (0 65535) representing the receiver software build number;
- **7.** GPS IMU Time is time of getting IMU data (measurements from the gyros and accelerometers), in seconds from the beginning of the GPS reference week;
- 8. IMU Status see Table 6.24:
- **9**. AccZ, -AccY, AccX are accelerometers output along Z, Y, X axes in form of linear velocity increments in m/s. Note -AccY has opposite sign for velocity Y increment;
- **10**. GyroZ, -GyroY, GyroX are gyros output around Z, Y, X axes in form of angle increments in degrees. Note -GyroY has opposite sign for angle Y increment.

Table 6.22. GPS Reference Time Status

Value	Description
20	Time validity is unknown
60	Time is set approximately
80	Time is approaching coarse precision
100	Time is valid to coarse precision
120	Time is coarse set and is being steered
130	Position is lost and the range bias cannot be calculated
140	Time is adjusting to fine precision
160	Time has fine precision
170	Time is fine set and is being steered by the backup system
180	Time is fine set and is being steered

Table 6.23. GNSS Receiver Status

Nibble	Bit	Mask	Description	Bit = 0	Bit = 1
	0	0x0000001	Error flag	No error	Error
NO	1	0x00000002	Temperature status	Within	Warning
N0	2	0,00000004	Voltage cumply status	specifications OK	Maraina
	3	0x00000004	Voltage supply status		Warning
		0x00000008	Antenna power status	Powered	Not powered
	4	0x00000010	LNA Failure	OK	Failure
N1	5	0x00000020	Antenna open flag	OK	Open
	6	0x00000040	Antenna shorted flag	OK	Shorted
	7	0x00000080	CPU overload flag	No overload	Overload
	8	0x00000100	COM1 buffer overrun flag	No overrun	Overrun
N2	9	0x00000200	COM2 buffer overrun flag	No overrun	Overrun
	10	0x00000400	COM3 buffer overrun flag	No overrun	Overrun
	11	0x00000800	Link overrun flag	No overrun	Overrun
	12	0x00001000	Reserved		
N3	13	0x00002000	Aux transmit overrun flag	No overrun	Overrun
110	14	0x00004000	AGC out of range	OK	Out of range
	15	0x00008000	Reserved		
	16	0x00010000	INS Reset	No Reset	INS reset
N4	17	0x00020000	Reserved		
1114	18	0x00040000	Almanac flag/UTC known	Valid	Invalid
	19	0x00080000	Position solution flag	Valid	Invalid
	20	0x00100000	Position fixed flag	Not fixed	Fixed
N5	21	0x00200000	Clock steering status	Enabled	Disabled
INS	22	0x00400000	Clock model flag	Valid	Invalid
	23	0x00800000	External oscillator locked flag	Unlocked	Locked
	24	0x01000000	Software resource	OK	Warning
NC	25	0x02000000	Reserved		
N6	26	0x04000000	Reserved		
	27	0x08000000	Reserved		
	28	0x10000000	Reserved		
N 1-7	29	0x20000000	Auxiliary 3 status event flag	No event	Event
N7	30	0x40000000	Auxiliary 2 status event flag	No event	Event
	31	0x80000000	Auxiliary 1 status event flag	No event	Event

Table 6.24. IMU Status

Nibble	Bit	Mask	Description	Range Value
	0	0x00000001	Alarm Status Flag	
N0	1	0x00000002	Reserved	
INU	2	0x00000004	Reserved	
	3	0x00000008	SPI Communication Error	0 = Passed, 1 = Failed

nertial Labs Interface Control Document

	4	0x00000010	Sensor Over-Range	0 = Passed, 1 = One or more sensors over-ranged
N1	5	0x00000020	Initial Self Test Failure	0 = Passed, 1 = Failed
	6	0x00000040	Flash Memory Failure	0 = Passed, 1 = Failed
	7	0x00000080	Processing Overrun	0 = Passed, 1 = Failed
	8	0x00000100	Self Test Failure – X-axis gyro	0 = Passed, 1 = Failed
N2	9	0x00000200	Self Test Failure – Y-axis gyro	0 = Passed, 1 = Failed
INZ	10	0x00000400	Self Test Failure – Z-axis gyro	0 = Passed, 1 = Failed
	11	0x00000800	Self Test Failure – X-axis accelerometer	0 = Passed, 1 = Failed
	12	0x00001000	Self Test Failure – Y-axis accelerometer	0 = Passed, 1 = Failed
N3	13	0x00002000	Self Test Failure – Z-axis accelerometer	0 = Passed, 1 = Failed
	14	0x00004000	Reserved	
	15	0x00008000	Reserved	
	16	0x00010000		
N4	17	0x00020000		
114	18	0x00040000		
	19	0x00080000		
	20	0x00100000		
N5	21	0x00200000		
INO	22	0x00400000	IMU temperature reading a	as follows:
	23	0x00800000		
	24	0x01000000	Signed 2-byte value (SHO	RI)
N6	25	0x02000000	25°C = 0x0000	
IND	26	0x04000000	1 L CD 0 005650C	
	27	0x0800000	1 LSB = 0.00565°C	
	28	0x10000000		
NZ	29	0x20000000		
N7	30	0x40000000		
1	31	0x80000000		

6.2.11. The "INS NMEA Output" data format

At the "INS NMEA Output" the INS data are transmitted in the form of sentences with printable ASCII characters like the NMEA 0183 format. Each sentence starts with a "\$" sign and ends with <CR><LF> (carriage return 0xD and line feed 0xA symbols). All data fields are separated by commas. The general form of the "INS NMEA Output" sentence is the next

\$PAPR,LLmm.mmmm,n,YYYmm.mmmm,x,AAAA.aa,B,RRRR.rr,PPP.pp, HHH.hh,ttttttttt,TTT.t,VV.v,SSSS*CC<CR><LF>

where PAPR is identifier and other fields are listed below:

- **LLmm.mmmm** is unsigned latitude, where LL are degrees, mm.mmmm are minutes;
- **n** is N or S (North or South);
- YYYmm.mmmm is unsigned longitude, where YYY are degrees, mm.mmmm are minutes;
- x is E or W (East or West);
- AAAA.aa is altitude in meters;
- **B** denotes kind of height data 'a' altitude.
- **RRRR.rr** is roll in degrees;
- PPP.pp is pitch in degrees;
- HHH.hh is heading in degrees;
- tttttttt is timestamp (milliseconds from the beginning of the GPS reference week);
- TTT.t is temperature inside INS (averaged value for 3 gyros);
- VV.v is input voltage of the INS;
- **SSSS** is unit status word, USW (see section 6.10 for details). It is hex written with ASCII:
- **CC** is check sum that consists of a "*" and two hex digits representing XOR of all characters between, but not including "\$" and "*".

<u>Maximum data rate</u> for the INS output at the "INS NMEA Output" data format is limited to 100 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

6.2.12. The "INS Sensors NMEA Output" data format

The "INS Sensors NMEA output" data have structure close to the "INS NMEA", with addition of gyros and accelerometers data. So, at the "INS Sensors NMEA output" the INS data are transmitted in the form of sentences with printable ASCII characters like the NMEA 0183 format. Each sentence starts with a "\$" sign and ends with <CR><LF> (carriage return 0xD and line

feed 0xA symbols). All data fields are separated by commas. The general form of the "INS Sensors NMEA output" sentence is the next

\$PAPS,LLmm.mmmm,n,YYYmm.mmmm,x,AAAA.aa,B,RRRR.rr,PPP.pp, HHH.hh,GGGG.xx,GGGG.yy,GGGG.zz,AA.xxxx,AA.yyyy,AA.zzzz,ttttttttt, TTT.t,VV.v,SSSS*CC<CR><LF>

where PAPS is identifier and other fields are listed below:

- LLmm.mmmm is unsigned latitude, where LL are degrees, mm.mmmm are minutes;
- n is N or S (North or South);
- **YYYmm.mmm** is unsigned longitude, where YYY are degrees, mm.mmmm are minutes;
- x is E or W (East or West);
- AAAA.aa is altitude in meters:
- B denotes kind of height data:
 'a' altitude.
- RRRR.rr is roll in degrees;
- PPP.pp is pitch in degrees;
- HHH.hh is heading in degrees;
- GGGG.xx is gyro X data in degrees/s;
- **GGGG.yy** is gyro Y data in degrees/s;
- **GGGG.zz** is gyro Z data in degrees/s;
- AA.xxxx is accelerometer X data in g (g = 9.8106 m/s²);
- AA.yyyy is accelerometer Y data in g;
- AA.zzzz is accelerometer Z data in q;
- tttttttt is timestamp (milliseconds from the beginning of the GPS reference week);
- TTT.t is temperature inside INS in °C (averaged value for 3 gyros);
- **VV.v** is input voltage of the INS, in Volts;
- **SSS** is unit status word, USW (see Appendix C for details). It is hex written with ASCII:
- **CC** is check sum that consists of a "*" and two hex digits representing XOR of all characters between, but not including "\$" and "*".

<u>Maximum data rate</u> for the INS output at the "INS Sensors NMEA Output" data format is limited to 80 Hz at standard COM-port baud rate 115200 bps. See Table 6.70 for maximum data rate at other baud rates.

6.2.13. The GNSS receiver NMEA data format (through COM2 port)

The Inertial LabsTM INS can use the second COM2 port for output the set of GNSS receiver data in NMEA format. The INS starts output of these data

after power on and completing of the receiver initialization (when the INS LED indicator switches from yellow to red).

NMEA data set is variable and can be changed by user using INS Demo Program. NMEA data set can include next synchronous logs:

- GPGGA,
- GPGSA,
- GPRMC,
- GPVTG,
- GPZDA,

And one asynchronous log:

GPHDT.

The data for synchronous logs are generated with frequency set for each log individually (see section 6.4. Control of the GNSS receiver).

Data are transmitted in the form of sentences with printable ASCII characters like the NMEA 0183 format. Each sentence starts with a "\$" sign and ends with <CR><LF> (carriage return 0xD and line feed 0xA symbols). All data fields are separated by commas.

GPGGA log contains time, position and fix related data of the GNSS receiver. The structure of the GPGGA log is shown in Table 6.25.

Table 6.25 The GPGGA log structure

Message	Description
component	
\$GPGGA	Log header
utc	UTC time status of position (hours/minutes/seconds/
	decimal seconds)
lat	Latitude (DDmm.mm)
lat dir	Latitude direction (N = North, S = South)
lon	Longitude (DDDmm.mm)
lon dir	Longitude direction (E = East, W = West)
quality	GPS Quality Indicators (see Table 6.26)
# sats	Number of satellites in use. May be different to the
	number in view
hdop	Horizontal dilution of precision
alt	Antenna altitude above/below mean sea level
a-units	Units of antenna altitude (M = meters)

nertial Labs Interface Control Document

undulation	Undulation - the relationship between the geoid and the WGS84 ellipsoid
u-units	Units of undulation (M = meters)
age	Age of correction data (in seconds)
stn ID	Differential base station ID
*xx	Checksum
[CR][LF]	Sentence terminator

Table 6.26 GPS Quality Indicators

Indicator	Description			
0	Fix not available or invalid			
1	Single point			
2	Pseudorange differential			
	Unconverged OmniSTAR			
	HP/XP/G2/VBS converging PPP			
4	RTK fixed ambiguity solution (RT2)			
	Operational			
5	RTK floating ambiguity solution (RT20)			
	Converged OmniSTAR HP/XP/G2			
	Converged PPP			
6	Dead reckoning mode			
7	Manual input mode (fixed position)			
8	Simulator mode			
9	WAAS (SBAS)			

GPGSA log contains GNSS receiver operating mode, satellites used for navigation and DOP values. The structure of the GPVTG log is shown in Table 6.27.

Table 6.27 The GPGSA log structure

Message	Description			
component				
\$ GPGSA	Log header			
mode MA	A = Automatic 2D/3D			
	M = Manual, forced to operate in 2D or 3D			
mode 123	Mode: 1 = Fix not available; 2 = 2D; 3 = 3D			
prn	PRN numbers of satellites used in solution (null for			
(fields 4-15)	unused fields), total of 12 fields			
	GPS = 1 to 32			
	SBAS = 33 to 64 (add 87 for PRN number)			
	GLO = 65 to 96			
pdop	Position dilution of precision			
hdop	Horizontal dilution of precision			

vdop	Vertical dilution of precision	
*xx	Checksum	
[CR][LF]	Sentence terminator	

GPRMC log contains time, position and fix related data of the GNSS receiver. The structure of the GPRMC log is shown in Table 6.28.

Table 6.28 The GPRMC log structure

Message	Description			
component				
\$ GPRMC	Log header			
utc	UTC time status of position (hours/minutes/seconds/			
	decimal seconds)			
pos status	Position status:			
	A = data valid, V = data invalid			
lat	Latitude (DDmm.mm)			
lat dir	Latitude direction (N = North, S = South)			
lon	Longitude (DDDmm.mm)			
lon dir	Longitude direction (E = East, W = West)			
speed Kn	Speed over ground, knots			
track true	Track made good, degrees True			
date	Date: dd/mm/yy			
mag var	Magnetic variation direction E/W			
mode ind	Positioning system mode indicator (see Table 6.30)			
*xx	Checksum			
[CR][LF]	Sentence terminator			

GPVTG log contains the track made good and speed relative to the ground. The structure of the GPVTG log is next:

Table 6.29 The GPVTG log structure

Message	Description		
component			
\$ GPVTG	Log header		
track true	Track made good, degrees True		
T	True track indicator		
track mag	Track made good, degrees Magnetic;		
	Track mag = Track true + (MAGVAR correction)		
M	Magnetic track indicator		
speed Kn	Speed over ground, knots		
N	Nautical speed indicator (N = Knots)		
speed Km	Speed, kilometers/hour		
K	Speed indicator (K = km/hr)		
mode ind	Positioning system mode indicator (see Table 6.30)		

*xx	Checksum	
[CR][LF]	Sentence terminator	

Table 6.30 NMEA Positioning System Mode Indicator

Mode	Indicator			
Α	Autonomous			
D	Differential			
E	Estimated (dead reckoning) mode			
M	Manual input			
N	Data not valid			

GPZDA log outputs the UTC date and time. The structure of the GPZDA log is shown in Table 6.31.

Table 6.31 The GPZDA log structure

Message	Description			
component				
\$ GPZDA	Log header			
utc	UTC time status			
day	Day, 01 to 31			
month	Month, 01 to 12			
year	Year			
null	Local zone description—not available			
7null	Local zone minutes description—not available			
*xx	Checksum			
[CR][LF]	Sentence terminator			

GPHDT log outputs actual carrier object heading in degrees True (from True North). The structure of the GPHDT log is shown in Table 6.32.

Table 6.32 The GPHDT log structure

Message	Description	
component		
\$ GPHDT	Log header	
heading	Heading in degrees	
True	Degrees True	
*xx	Checksum	
[CR][LF]	Sentence terminator	

6.2.14. The GNSS receiver GPRMC data format (through COM3 port)

The Inertial Labs[™] INS can use the third COM3 port for output the GNSS receiver log GPRMC. To set GPRMC message for output through COM3 port

please use the INS Demo Program (see INS Demo User's Manual section "4.2.2 GNSS receiver tab of "Device options..." window").

The INS starts output of these data after power on and completing of the receiver initialization (when the INS LED indicator switches from yellow to red). The data for synchronous logs are generated with set frequency (see section 6.4. Control of the GNSS receiver).

Data are transmitted in the form of sentences with printable ASCII characters like the NMEA 0183 format. Each sentence starts with a "\$" sign and ends with <CR><LF> (carriage return 0xD and line feed 0xA symbols). All data fields are separated by commas. GPRMC log contains time, position and fix related data of the GNSS receiver. See the structure of the GPRMC log in the Table 6.28.

6.3. Control of the Inertial Labs[™] INS

After power connection an initialisation of the onboard GNSS receiver starts that takes about 15 seconds. During this initialization the INS' LED indicator (see Fig.5.1) lights yellow. After the initialization completed the LED indicator switches to red, and the INS' goes to the idle mode in which it is ready to receive commands from the host computer.

When the INS switches from idle to any operation mode, the light indicator changes its color from red to green.

The next commands are used to control the INS:

- INS_OPVTdata;
- INS_QPVTdata;
- INS_OPVT2Adata;
- INS_OPVT2AHRdata;
- INS OPVT2AWhrdata;
- INS_OPVTADdata
- INS_SensorsData;
- INS_minData;
- INS_OPVT_rawIMUdata;

- SPAN rawimu
- INS NMEA;
- INS_Sensors_NMEA;
- SetOnRequestMode;
- Stop:
- ReadINSpar;
- LoadINSpar;
- GetDevInfo;
- GetBIT.

All these commands have the byte structure shown in the Table 6.2. Payload for all commands has length 1 byte and contains code of the command. See Appendix C for exact structure of these commands.

6.3.1. INS_OPVTdata, INS_QPVTdata, INS_OPVT2Adata, INS_OPVT2AWdata, INS_OPVT2AHRdata, INS_OPVTADdata, INS_SensorsData, INS_minData, INS_OPVT_rawIMUdata, SPAN_rawimu, INS_NMEA, INS_Sensors_NMEA commands

Commands INS_OPVTdata, INS_QPVTdata, INS_OPVT2Adata, INS_OPVT2AWdata, INS_OPVT2AHRdata, INS_OPVTADdata, INS_SensorsData, INS_minData, INS_OPVT_rawIMUdata, SPAN_rawimu, INS_NMEA, INS_Sensors_NMEA are used to start the Inertial LabsTM INS in the "Continuous" operating mode with appropriate variant of output data format as Table 6.33 shows.

Table 6.33. INS control command and appropriate output data format

Command	Code	Output data format	
INS_SensorsData	0x50	INS Sensors Data	
INS_OPVTdata	0x52	INS OPVT	
INS_QPVTdata	0x56	INS QPVT	
INS_OPVT2Adata	0x57	INS OPVT2A	
INS_OPVT2AWdata	0x59	INS OPVT2AW	
INS_OPVT2AHRdata	0x58	INS OPVT2AHR	
INS_OPVTADdata	0x61	INS OPVTAD	
INS_minData	0x53	INS Minimal Data	
INS_OPVT_rawIMUdata	0x66	INS OPVT & Raw IMU	
SPAN_rawimu	0x68	SPAN rawimu	
INS_NMEA	0x54	INS NMEA Output	
INS_Sensors_NMEA	0x55	INS and Sensors NMEA Output	

All these commands have the byte structure shown in the Table 6.2. Payload for all commands has length 1 byte and contains code of the command listed in the Table 6.33.

In order to identify to the host system that INS received one of these commands, the INS answers back immediately on this command prior to completion of the initial alignment process. The INS calculates the check sum of the message (without its header and check sum) and returns it for a

checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word). This check sum should be equal to the check sum in the message that was sent to the INS.

After receiving of any from these commands the INS starts process of initial alignment that takes usually 30 seconds. This process includes the INS gyros bias estimation, therefore <u>don't move the INS</u> during its initial alignment. If this requirement is not met then large errors may be occurred in orientation and position calculation.

<u>Note:</u> Default time 30 seconds of the initial alignment can be changed (see section 6.3.4. LoadINSpar command) but only <u>in agreement with developers</u> of the Inertial LabsTM INS.

After completing of the initial alignment the INS gives out message with block of the initial alignment data (see Table 6.34, Table 6.35) and goes to the "Continuous" operating mode.

Byte 0 1 2 3 4, 5 6..55 56, 57 number Header Header Message Output data Message Check Parameter Payload rate (Hz) length 0 1 type sum 1 byte 1 word Length 1 byte 1 byte 1 byte 50 bytes 1 word 0x38 hexadecimal see Note 0xAA 0x55 0x01 value 0x00 Table 6.35

Table 6.34. Byte structure of the block of initial alignment data

Table 6.35. Structure of the payload of the block of initial alignment data

Byte	Parameter	Format	Length	Note
0-11	Gyros bias	float	3*4	3 numbers in ADC codes
12-23	Average acceleration	float	3*4	3 numbers in ADC codes
24-35	Average magn. field	float	3*4	3 numbers in ADC codes
36-39	Initial Heading	float	4	degrees
40-43	Initial Roll	float	4	degrees
44-47	Initial Pitch	float	4	degrees
48-49	USW	word	2	0 – successful initial
	(see section 6.10)			alignment;
				≠0 – unsuccessful

In the "Continuous" operating mode set by any of above commands INS_OPVTdata, INS_OPVT2AWdata, INS_OPVT2AWdata,

nertial Labs Interface Control Document

INS_OPVT2AHRdata, INS_OPVTADdata, INS_SensorsData, INS_minData, INS_OPVT_rawIMUdata, SPAN_rawimu, INS_NMEA, INS_Sensors_NMEA the program in the INS microprocessor operates in the endless loop, providing the process of data reading from ADC and calculation of position and orientation.

At the INS_OPVTdata, INS_QPVTdata, INS_OPVT2Adata, INS_OPVT2AWdata, INS_OPVT2AHRdata, INS_OPVTADdata, INS_SensorsData, INS_minData, INS_OPVT_rawIMUdata commands output data blocks have binary structure described in the Table 6.2 with payload depending on chosen variant of output data format (see matching Table 6.33 and more detailed Tables 6.4, 6.7, 6.8, 6.9, 6.10, 6.11, 6.13, 6.19 and 6.20).

Note: For better identification of data format of the INS output blocks, since the INS firmware version 2.1.2.0 the INS data identifier is present in the data block structure (see Table 6.2, byte #3) which is equal to appropriate command code and corresponds to data format according to the Table 6.33.

At the **SPAN_rawimu** command output data blocks have binary structure described in the Table 6.21.

At the **INS_NMEA**, **INS_Sensors_NMEA** commands output data blocks are transmitted in the form of sentences with printable ASCII characters as sections 6.2.11, 6.2.12 describe.

The update rate of data blocks is set by the user in range (1...200) Hz, but maximum data rate depends on chosen output data format and COM port baud rate (see Table 6.70).

6.3.2. SetOnRequestMode command – getting INS data on request (on demand)

The command SetOnRequestMode is used to start the Inertial LabsTM INS operation in the "On Request" (on demand) operating mode. This command has the byte structure shown in the Table 6.2 where payload is one byte equal to 0xC1.

In order to identify to the host system that INS received this command, the INS answers back immediately on this command prior to completion of the

nertial Labs Interface Control Document

initial alignment process. The INS calculates the check sum of the message (without its header and check sum) and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word). This check sum should be equal to the check sum in the message that was sent to the INS.

After receiving of the SetOnRequestMode command the INS starts process of initial alignment that takes usually 30 seconds. This process includes the INS gyros bias estimation, therefore don't move the INS during its initial alignment. If this requirement is not met then large errors may be occurred in orientation angles calculation.

Note: Default time 30 seconds of the initial alignment can be changed (see section 6.3.4. LoadINSpar command) but only in agreement with developers of the Inertial LabsTM INS.

After completing of the initial alignment the INS gives out message with block of the initial data (payload is 50 bytes of the data – see the Table 6.34, Table 6.35) and goes to the "On Request" operating mode.

In the "On Request" operating mode the INS sends only one data block after each request. To get this data block send one of above described commands INS OPVTdata, INS QPVTdata, INS OPVT2Adata, INS OPVT2AWdata, INS_OPVT2AHRdata, INS_OPVTADdata, INS_OPVTADdata_INS_minData, INS OPVT rawIMUdata, SPAN rawimu, INS NMEA, INS Sensors NMEA (see section 6.3.1). Note INS_SensorsData command is not supported in the "On Request" operating mode since the INS firmware version 2.1.1.0.

INS_OPVTdata, INS_QPVTdata, lf one of the INS OPVT2Adata, INS_OPVT2AWdata, INS_OPVT2AHRdata, INS OPVTAD data. **INS_minData**, **INS_OPVT_rawIMUdata** commands is used for request then output data block has binary structure described in the Table 6.2 with payload depending on chosen variant of output data format (see matching Table 6.18 and more detailed Tables 6.4, 6.7, 6.8, 6.9, 6.10, 6.11, 6.13, 6.19 and 6.20).

Note: For better identification of data format of the INS output blocks, since the INS firmware 2.1.2.0 the INS data identifier is present in the data block structure (see Table 6.2, byte #3) which is equal to appropriate command code and corresponds to data format according to the Table 6.33.

If the **SPAN_rawimu** command is used for request then output data block has binary structure described in the Table 6.21.

If one of the **INS_NMEA**, **INS_Sensors_NMEA** commands is used for request then output data block contains printable ASCII characters as sections 6.2.11, 6.2.12 describe.

6.3.3. Stop command

At receiving the Stop command (code 0xFE in the "Payload" field) the INS stops work in an operating mode and goes to the idle mode. At that the INS LED indicator changes its color to red. The INS is ready to receive any command from the host computer.

<u>Important Note:</u> Before using all other commands please send the **Stop** command to the INS to switch device into the idle mode. Be sure that the INS's light indicator is red before sending of any other commands.

6.3.4. LoadINSpar command

The LoadINSpar command (code 0x40 in the "Payload" field) is used to load the block of the INS parameters (which are available for changing by user) into the INS nonvolatile memory. After sending the LoadINSpar command, the block of the INS parameters must be send to the INS in the message shown in the Table 6.2 with payload shown in the Table 6.36. This message should be sent without pause after sending the LoadINSpar command.

Table 6.36. Payload of the message following after the LoadINSpar command (block of parameters for loading to the INS)

Byte	Parameter	Format	Length	Note
0-1	Data rate	word	2	Hz
2-3	Initial alignment time	word	2	seconds
4-7	Magnetic declination,	longint	4	degrees*100,
	Mdec			if Mdec > 360 then INS
				calculates it
8-11	Latitude	longint	4	degrees*1e7
12-15	Longitude	longint	4	degrees*1e7
16-19	Altitude	longint	4	meters*100
20	Date (Year from 2000)	byte	1	0 to 255
21	Date (Month)	byte	1	1 to 12
22	Date (Day)	byte	1	1 to 31

nertial Labs Interface Control Document

23-24	Alignment angle A1	sword	2	Angles of INS mounting on the
25-26	Alignment angle A2	sword	2	carrier object, degrees*100
27-28	Alignment angle A3	sword	2	(see Appendix B)
29-30	INS mount, right	sword	2	INS mounting lever relative to
31-32	INS mount, forward	sword	2	the object center of gravity,
33-34	INS mount, up	sword	2	m*100 (see section 6.7)
35-36	Antenna pos., right	sword	2	GNSS antenna mounting
37-38	Antenna pos., forward	sword	2	lever relative to the INS,
39-40	Antenna pos., up	sword	2	meters*100
41	Altitude	byte	1	1 = Altitude
42-49	Reserved	byte	8	
50-57	INS device name	char	8	only read, change is ignored
58	Baro_altimeter	byte	1	0 = disabled; 1 = primary
				altitude sensor, 2 =secondary
				altitude sensor
59	Reserved	byte	1	

The INS calculates the check sum of received parameters and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (2 bytes).

Notes:

- 1. The most easy and sure way to change above parameters is using the Inertial Labs[™] INS Demo Program.
- 2. Before using LoadINSpar command it is necessary to use ReadINSpar command (see below) to read parameters from the INS at first. After that user can change some parameters listed in the Table 6.36, and to send back all block of parameters to the Inertial LabsTM INS.
- 3. Since firmware version 3.2.0.0, available are only data rates that are factors of 200: (1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200) Hz.
- 4. Default time 30 seconds of the initial alignment can be changed but only in agreement with developers of the Inertial LabsTM INS.
- 5. It is necessary to set current latitude, longitude and altitude for setting the initial position in case of the GNSS data may be not available at the INS start.
- 6. It is necessary to set current latitude, longitude, altitude, year, month, day before hard/soft iron calibration of the INS magnetometers (see section 6.8).
- 7. Baro altimeter switch enables or disables using of the pressure sensors data for the INS altitude correction. On default it is set to 0 (altitude sensor is disabled). See section 6.5 for details.

6.3.5. ReadINSpar command

The ReadINSpar command (code 0x41 in the "Payload" field, see the Table 6.2) is used to read block of the Inertial LabsTM INS parameters (60 bytes) from the INS nonvolatile memory.

After receiving ReadINSpar command, the INS sends out the message with structure according to Table 6.2 and payload shown in the Table 6.37.

Table 6.37. Payload of the INS answer on the ReadINSpar command (block of parameters read from the INS)

Byte	Parameter	Format	Length	Note
0-1	Data rate	word	2	(1 200) Hz
2-3	Initial alignment time	word	2	seconds
4-7	Magnetic declination,	longint	4	degrees*100
	Mdec			
8-11	Latitude	longint	4	degrees*1e7
12-15	Longitude	longint	4	degrees*1e7
16-19	Altitude	longint	4	meters*100
20	Date (Year from 2000)	byte	1	0 to 255
21	Date (Month)	byte	1	1 to 12
22	Date (Day)	byte	1	1 to 31
23-24	Alignment angle A1	sword	2	Angles of INS mounting on the
25-26	Alignment angle A2	sword	2	carrier object, degrees*100
27-28	Alignment angle A3	sword	2	(see Appendix B)
29-30	INS mount, right	sword	2	INS mounting lever relative to
31-32	INS mount, forward	sword	2	the object center of gravity,
33-34	INS mount, up	sword	2	m*100 (see section 6.7)
35-36	Antenna pos., right	sword	2	GNSS antenna mounting
37-38	Antenna pos., forward	sword	2	lever relative to the INS,
39-40	Antenna pos., up	sword	2	meters*100
41	Altitude	byte	1	1 = Altitude
42-49	Reserved	byte	8	
50-57	INS device name	char	8	
58	Baro_altimeter	byte	1	0 = disabled; 1 = primary
				altitude sensor, 2 =secondary
				altitude sensor
59	Reserved	byte	1	

See Notes to the section "6.3.4. LoadINSpar command".

6.3.6. GetDevInfo command

The GetDevInfo command (code 0x12 in the "Payload" field) is used to get detailed information about devices installed in the INS:

- 1) INS processor;
- 2) IMU (AHRS);
- 3) GNSS receiver;
- 4) Pressure sensor.

As answer the INS sends out the message with structure according to the Table 6.2 and payload shown in the Table 6.38.

Table 6.38. Payload of the INS answer on the GetDevInfo command

Byte	Parameter	Format	Length	Note
0-7	ID_sn	char	8	Integrated device (INS) s/n
8-47	ID_fw	char	40	INS firmware version
48	Press_Sens	byte	1	Pressure sensor: 0 = absent,
				1= Type1, 2= Type2
49	IMU_type	byte	1	IMU type (1=AHRS)
50-57	IMU_sn	char	8	IMU (AHRS) s/n
58-97	IMU_fw	char	40	IMU (AHRS) firmware version
98-113	GNSS_model	char	16	GNSS receiver model
114-129	GNSS_sn	char	16	GNSS receiver product s/n
130-145	GNSS_hw	char	16	GNSS receiver hardware version
146-161	GNSS_fw	char	16	GNSS receiver firmware version
162-163	GPS_week	word	2	GPS reference week number
164	GNSS_data_rate	byte	1	GNSS receiver max data rate, Hz
165	Reserved	byte	1	Reserved

6.3.7. GetBIT command

The Inertial Labs[™] INS has continuous built-in monitoring of its health. In both "Continuous" and "On Request" operation modes the INS sends out the Unit Status Word (USW) in each data block (see Table 6.4, 6.7, 6.8, 6.9, 6.10, 6.11, 6.13 and 6.17). The USW is described in the section 6.10.

The USW can be got in any time if the INS is in Idle or "On Request" operation mode (after SetOnRequestMode command). For this the **GetBIT** command (code 0x1A in the "Payload" field) is used. In answer the INS sends out the message with data according to the Table 6.39.

Table 6.39. Payload of the INS answer on the GetBIT command

Byte number	0 – 1	2 – 3
Parameter	Utermo100	USW
Length	2 byte word	2 byte word

In the Table 6.39 Utermo100 is the INS temperature in 1/100 °C increments.

6.4. Control of the GNSS receiver

6.4.1. GNSS receiver parameters

User can get information about the GNSS receiver model, serial number, firmware version and data rate using GetDevInfo command (see section 6.3.6).

Setting of the GNSS receiver parameters is performed by the Inertial LabsTM INS Demo Program – see User's Manual, section "10.2. Control of the GNSS receiver" for details. There are the next parameters that can be changed:

- Measurement_rate specifies the maximum measurement rate for the GNSS receiver in Hertz. Default value is determined by the maximum possible measurement rate of the GNSS receiver.
- Altitude_var allows to choose the type of height which is outputted by GNSS receiver (see Table 6.40)

Table 6.40. Altitude var values

Altitude_var	Height type
0	MSL
1	WGS84

 COM2_data – allows to choose GNSS data set for output through COM port 2 (see Table 6.41)

Table 6.41 COM2 data values

COM2_data value	Data set
0	No data
1	Raw GNSS
2	NMEA Set

GNSS_com2_data_frq – specifies the GNSS data (see Table 6.42).

Table 6.42. GNSS_com2_data_frq values

GNSS_com2_data_frq value	Frequency, Hz
0	No data
1	1
2	2
3	4
4	5
5	10
6	20

• **GNSS_com2_bps** – sets baud rate of COM2 which outputs GNSS data (see Table 6.43).

Table 6.43. GNSS_com2_bps values

GNSS_com2_bps value	Baud rate, bps
0	115200
1	230400
2	460800
4	9600

• **NMEA_set** parameter allows to set needed NMEA messages for output through COM port 2 (see Table 6.44):

Table 6.44 NMEA_set value

Bit	Parameter	Description
0	GPGGA	0 – unset
		1 – set
1	GPGSA	0 – unset
		1 – set
2	GPRMC	0 – unset
		1 – set
3	GPVTG	0 – unset

		1 – set
4	GPZDA	0 – unset
		1 – set
5	GPHDT	0 – unset
		1 – set
6	Reserved	_
7	Reserved	_

By default INS outputs GPGGA, GPVTG and GPZDA messages if COM2 data value is set to 2 (see Table 6.41).

Note: GPHDT message is available only in dual antenna receivers.

It is possible to output each NMEA message chosen in the NMEA_set (see Table. 6.39) with individual frequency:

- GPGGA_frq allows to output GPGGA message with specified frequency (see Table 6.45) if log was chosen in NMEA_set parameter.
- GPGSA_frq allows to output GPGSA message with specified frequency (see Table 6.45) if log was chosen in **NMEA_set** parameter.
- GPRMC_frq allows to output GPRMC message with specified frequency (see Table 6.45) if log was chosen in **NMEA_set** parameter.
- GPVTG_frq allows to output GPVTG message with specified frequency (see Table 6.45) if log was chosen in **NMEA_set** parameter.
- GPZDA frq allows to output GPZDA message with specified frequency (see Table 6.45) if log was chosen in **NMEA_set** parameter.

Table 6.45. GPGGA_frq, GPGSA_frq, GPRMC_frq, GPVTG_frq, GPZDA_frq values

NMEA_frq value	Frequency, Hz
1	1
2	2
3	4
4	5
5	10
6	20

• COM3_data_set - allows to choose GNSS data set for output through the COM port 3 (see Table 6.46). Default value is "No data" (COM3 data set=0).

Table 6.46 COM3_data_set values

GNSS_raw_data_frq value	Data set
0	No data
1	Raw GNSS
2	GPRMC

Setting the **COM3_data_set** parameter to 2 allows to output \$GPRMC log with the recommended minimum navigation data provided by the GNSS receiver through COM3 port with specified frequency (see Table 6.47).

Note: If COM3_data parameter is set to nonzero value then COM3 port can't be used for input of the GNSS corrections.

 GNSS_com3_data_frq – specifies the GNSS data frequency (see Table 6.47).

Table 6.47. GNSS_com3_data_frq values

GNSS_com3_data_frq value	Frequency, Hz
0	No data
1	1
2	2
3	4
4	5
5	10
6	20

 GNSS_com3_bps – sets baud rate of COM3 which provides input of the GNSS corrections (see Table 6.48).

Table 6.48. GNSS_com3_bps values

GNSS_com3_bps value	Baud rate, bps
1	9600
2	19200
3	38400
4	57600
5	115200
6	230400
7	460800

- **GNSS_corr_type** specifies type of GNSS correction which should be used. (see Table 6.49):
 - No correction no GNSS corrections will be used;
 - AUTO both SBAS and DGPS correction data will be used;
 - SBAS correction data from Satellite Based Augmentation Systems (SBAS) will be used;
 - DGPS transmitted from a base station Differential GPS (DGPS) correction data will be used.

Default value is "AUTO" (GNSS_corr_type=1).

Table 6.49. GNSS_corr_type values

GNSS_corr_type value	Type of correction
0	No correction
1	AUTO
2	SBAS
3	DGPS

SBAScontrol – specifies type of SBAS correction (see Table 6.50).
 Default value is "Auto SBAS" (SBAScontrol=1);

Table 6.50. SBAScontrol values

SBAScontrol value	Type of SBAS correction
0	No SBAS
1	AUTO
2	ANY
3	WAAS
4	EGNOS
5	MSAS
6	GAGAN
7	QZSS

• **GNSS_corr_format** – specifies format of differential correction data (see Table 6.51). Default value is "Auto" (GNSS_corr_format=0);

Table 6.51. GNSS corr format values

GNSS_corr_format value	Type of format
0	AUTO
1	RTCM

2	RTCMV3

<u>Note</u>: COM3 port can be used for input of the GNSS corrections <u>only if</u> COM3_data_set parameter is set to zero.

• **PPS_switch** – allows to output PPS signal (see Table 6.52). Default value is "Enabled" (PPS_switch =0).

Table 6.52 PPS_switch values

PPS_switch value	Enabled or disabled
0	Enabled
1	Disabled

• **PPS_polarity** – specifies polarity of the PPS pulse (see section "5.5. PPS description"). Table 6.53 shows available values of the PPS_polarity parameter. Default value is "Negative" (PPS_polarity =0).

Table 6.53. PPS_polarity values

PPS_polarity value	Polarity
0	Negative
1	Positive

• **PPS_period** – sets period of the pulse in seconds (see Table 6.54). Default value is "1.0" (PPS_period =6).

Table 6.54. PPS_period values

PPS_period value	Period, sec
0	1.0
1	0.05
2	0.1
3	0.2
4	0.25
5	0.5
6	1.0
7	2.0
8	3.0
9	4.0
10	5.0
11	6.0

Interface Control Document

Inertial La	bs
-------------	----

12	7.0
13	8.0
14	9.0
15	10.0
16	11.0
17	12.0
18	13.0
19	14.0
20	15.0
21	16.0
22	17.0
23	18.0
24	19.0
25	20.0

- PPS_pulse_width sets pulse width of the PPS signal in microseconds. Default value is PPS_pulse_width =1000.
- MARK_switch allows to control the processing of the mark input signal through GPIO pin of the main INS connector (see section "5.6. GPIO description). Table 6.55 shows the MARK_switch values. Default value is "Disabled" (MARK_switch =0);

Table 6.55. MARK_switch values

MARK_switch value	Mark signal processing
0	Disabled
1	Enabled

 MARK_polarity – specifies polarity of the pulse at a mark input (see Table 6.56). Default value is "Negative" (MARK_polarity =0);

Table 6.56. MARK_polarity values

MARK_polarity value	Polarity
0	Negative
1	Positive

• MARK_timebias – sets an offset, in nanoseconds, to be applied to the time the mark input pulse occurs. Default value is MARK_timebias =0;

 MARK_timeguard – sets a time period, in milliseconds, during which subsequent pulses after an initial pulse are ignored. Default value is MARK_timeguard =4, minimum value is MARK_timeguard =2.

<u>Important note:</u> It is necessary to power off / on the INS after changing any of GNSS receiver parameters to restart the GNSS receiver with new settings.

6.4.2. Control of GNSS receiver model

The Inertial LabsTM INS contains the NovAtel GNSS receiver inside. NovAtel uses the term "models" to refer to and control different levels of functionality in the GNSS receiver firmware. For example, user can purchase INS with the base model of the GNSS receiver which has an L1 only capability. At a later time he can easy upgrade this receiver to a more feature intensive model, like L1/L2 dual-frequency. All that is required to upgrade is an authorization code for the higher model and the INS Demo Program to enter this code to the receiver. Reloading of the INS or GNSS receiver firmware or returning the INS for service to upgrade the model is not required.

See http://www.novatel.com/assets/Documents/Papers/NovAtelModels.pdf for information about available models for OEM615 NovAtel GNSS receiver. User can perform next options by using INS Demo Program:

- add new model to the GNSS receiver
- choose one of saved models
- remove model from the GNSS receiver

See section "10.2.2. Control of GNSS receiver model" in the INS Demo Program User's Manual.

6.5. Altitude calculation

At its operation the Inertial LabsTM INS calculates position using its sensors data with correction from the onboard GNSS receiver. Also, for altitude calculation the INS can use correction from the onboard pressure sensor.

In practice the GNSS altitude data are much less accurate than the horizontal position (because of high vertical dilution of precision). Using a static pressure sensor (barometer), as an aiding sensor for the altitude, increases the vertical accuracy. Though the relation between altitude and pressure is dependent on many factors, the most important is the "weather".

The Inertial LabsTM INS allows two variants of the altitude correction that depends on the Baro_altimeter switch:

- a) correction by altitude and vertical velocity provided by GNSS data (Baro_altimeter=0);
- b) correction by barometric altitude calculated using pressure sensor data and vertical velocity provided by GNSS data (Baro_altimeter=1 – primary altitude sensor);
- c) altitude correction is provided by GNSS data if they are valid, otherwise barometric altitude calculated using pressure sensor data is used (Baro_altimeter=2 secondary altitude sensor).

The default value is Baro_ altimeter=0. User can change this value using the LoadINSpar command (see Table 6.36, byte #58) or using the INS Demo Program (that is easier).

<u>Important note:</u> To measure barometric altitude the pressure sensor in the INS must have access to the ambient external pressure. Also the pressure sensor must not be exposed to high speed air streams. So if the INS is installed inside a pressurized cabin or outside the high-speed object, please set Baro_altimeter=0 to switch to the GNSS altitude for INS correction.

Note in both variants of the INS altitude correction, the <u>initial altitude</u> is equal to altitude provided by the GNSS receiver if it has solution. If GNSS data are not available then the initial altitude is equal to its value stored in the INS nonvolatile memory. There initial altitude can be changed using the LoadINSpar command (see Table 6.36, bytes #16-19) or using the INS Demo Program (that is easier)

6.6. Using external sensors data

Using external sensors data can greatly improve INS position, velocity and orientation data during long-time GNSS outage.

6.6.1. Odometer data input using RS-232 interface

Since the serial number F1760362 the Inertial Labs[™] INS has an additional fourth COM-port with RS-232 interface on default. COM4 port can be used for input data from the odometer. INS supports the OBDII odometer interface,

at using the appropriate cable OBDLink S, https://www.scantool.net/obdlink-s/.

Setting of the odometer data input parameters is performed by the Inertial LabsTM INS Demo Program – see User's Manual, section «4.2.4 "External sensors" tab of "Devices options" window» for details. There are the next parameters that can be changed:

• Odometer_type – allows to choose the odometer type (see Table 6.57). Default value is "Disabled" (Odometer_type =0).

Odometer_type valueDescription0Disabled1OBD_Link2Encoder-based

Table 6.57. Odometer_type values

- **ODOM_COM4_data_rate** specifies the frequency of the odometer data input in Hertz. The default value is set to 20Hz.
- **ODOM_COM4_bps** sets the baud rate of COM4 which provides input of the odometer data (see Table 6.58).

ODOM_com4_bps value	Baud rate, bps
1	4800
2	9600
3	14400
4	19200
5	38400
6	57600
7	115200
8	230400
9	460800

Table 6.58. ODOM_com4_bps values

Notes:

- 1. COM4 port can be used for output \$GPRMC messages. Setting the Odometer_type value to "OBD_Link" configures the COM4 port just for receiving ODBII odometer data.
- 2. The odometer data input feature is at the testing stage. Please contact Inertial Labs about the possibility of using the odometer data input.

6.6.2. Odometer data input from encoder (wheel speed sensor)

The Inertial Labs[™] INS unit can be factory configured to receive pulse/biphase signals from encoder, using signal lines originally assigned to COM4 port. See section "5.4. Connection of encoder-based odometer to INS" for details.

Setting of the encoder-based odometer parameters is performed by the Inertial LabsTM INS Demo Program – see User's Manual, section "10.7. INS operation with encoder-based odometer (wheel speed sensor)" for details. There are the next parameters that should be set:

- **Odometer type** sets type of odometer. Please choose "Encoder-based" type (see Table 6.57);
- **Pulse length** is the distance in meters between low to high transitions of the encoder signal;
- Odometer offset is the lever arm measured from the accelerometer mass-center of the INS unit to the point at which the vehicle's tire makes contact with the road in the vehicle co-ordinate frame, in the right, forward and vertical directions;
- **STD_Vh** is standard deviation of the odometer noise. Usually this value is 0.1 m/s, but it depends on encoder.

The pulse length can be calculated using formula:

Pulse length = pi*D/n;

where D – is wheel diameter (in meters); n – is number of pulses per revolution.

The pulse length should be set accurately because INS position calculation at GNSS outage is highly depends on pulse length accuracy. On the other hand, the pulse length can be set approximately or even set to zero if the odometer calibration procedure will be performed before ordinary operation of INS with odometer (see section 6.6.3).

6.6.3. Calibration of encoder-based odometer (wheel speed sensor)

The aim of the odometer calibration is accurate estimation of the pulse length.

Start INS ordinary operation. Start vehicle run. The odometer calibration can be started at any time after INS started calculation of valid position, velocity and orientation.

Send the **Start_Odom_clb** command to start the odometer calibration:

AA 55 00 00 07 00 28 2F 00

Note these are hexadecimal numbers but not ASCII text symbols.

After receiving of this command INS starts accumulation of odometer data for its calibration. At this the bit #7 is set to 1 in INS status word USW for indication of data accumulation process (see Fig.6.1 and section 6.10).

It is desirable the vehicle runs approximately straight line during the odometer calibration. Distance of the run should be not less than 1 km. During this calibration run the GNSS outage is allowed, but it should be not more than 10 seconds.

To finish the odometer calibration send the **Stop_Odom_clb** command:

AA 55 00 00 07 00 29 30 00

Note these are hexadecimal numbers but not ASCII text symbols.

After receiving of this command INS stops data accumulation for the odometer calibration and sets the USW bit #7 to 0 (see Fig.6.1).

Then INS starts calculations for the odometer pulse length and sets USW bit #7 to 1 again. In the end of these calculations, if calibration is successful, INS calculates the pulse length. Also INS sets the USW bit #15 to 1 to inform the host system that the odometer calibration is performed and successful (see Fig.6.1). If this calibration was estimated as unsuccessful then the USW bit #15 is set to 0.

Fig.6.1. The diagram of indication of the odometer calibration process in the USW (Unit Status Word, see section 6.10)

Calculated pulse length will be used immediately for operation with odometer. But the pulse length will be stored to INS nonvolatile memory only after INS receives the Stop command to finish INS work in operating mode (see section 6.3.3).

During INS run you can perform new odometer calibration several times without INS stop, without vehicle stop. The last calculated pulse length will be written to the INS flash memory after INS stop.

At the next INS run this pulse length will be used for operation with odometer.

Note during all steps of the odometer calibration the INS unit continues calculation of navigation data and their output.

Calculated value of the pulse length can be checked using INS Demo Program in "Devices option", "External sensors" tab.

6.6.4. Aiding data input through the main COM port

Since INS firmware version 2.8.2.0 it is possible to send external aiding data to INS unit using the main COM1 port during INS ordinary operation when INS outputs data through the same COM1 port.

The Inertial Labs[™] INS allows aiding data input when COM1_Aiding_data parameter is set to 1. The default value is COM1_Aiding_data=0 (no aiding data input). User can change this value using the INS Demo Program – see User's Manual, section «4.2.4 "External sensors" tab of "Devices options"» for details.

Structure of the external aiding data blocks corresponds to the Table 6.2 with payload shown in the Table 6.59.

Table 6.59. Aiding data payload structure

rable 6.59. Alding data payload structure					
Field	Offset in payload, bytes	Size, bytes	Value		
Meas Num	0	1	Number of measurements present in the payload (M)		
Meas List	1	M	List of measurement types, one per byte, refer to Table 6.60 for values		
Meas Data 1	M+1	Variable, depends on measurement type, refer to Table 6.60 for sizes	Data according to measurement structure, refer to Table 6.60 for structures		
Meas Data 2	Variable, depends on Meas Data 1 size	Variable, depends on measurement type, refer to Table 6.60 for sizes	Data according to measurement structure, refer to Table 6.60 for structures		
Meas Data M	Variable, depends on preceding data		Data according to measurement structure, refer to Table 6.60 for structures		

Table 6.60. Aiding data measurements structure (to be further expanded)

Туре	Semantic	Size, bytes	Structure		
0x00	Reserved	TBD	TBD		
0x01	Odometer	4	signed long	Accumulated distance in mm	
0x02	Air speed	2	unsigned short	Air speed in 0.01 kt	

0x03	03 Wind data 8		signed short	North wind component in 0.01 kt		
			signed short	East wind component in 0.01 kt		
			unsigned short	North wind STD in 0.01 kt		
			unsigned short	East wind STD in 0.01 kt		
0x04	External	20	signed long	Latitude in signed deg*1.0e7		
	position		signed long	Longitude in signed deg*1.0e7		
			signed long	Altitude above MSL in mm		
			unsigned short	Latitude STD in 0.01 m		
			unsigned short	Longitude STD in 0.01 m		
			unsigned short	Altitude STD in 0.01 m		
			unsigned short	Latency in msec		
0x05	Doppler	16	signed long	Locator latitude in signed deg*1.0e7		
	shift from		signed long	Locator longitude in signed deg*1.0e7		
	locator		signed long	Locator altitude above MSL in mm		
			signed short	Doppler shift in cm/sec		
			unsigned short	Doppler shift STD in cm/sec		

Notes:

- 1. MSL is mean sea level
- 2. All multi-byte integer values are LSB first.

Currently INS can use only "Air sped" and "External position" aiding data for operation at GNSS outage. Using of other types of aiding data listed in the Table 6.60 is at the developing stage.

Aiding data example 1 (air speed + wind data). The packet is: AA 55 01 62 13 00 02 02 03 B9 0B E9 03 0B FE 34 00 2A 00 94 03

Table 6.61. explains data in this packet.

Table 6.61.

Field	Semantic	Decimal value	Hex value	Bytes (hex)
Header 0		n/a	n/a	AA
Header 1		n/a	n/a	55
Packet type	Data	n/a	n/a	01
Packet ID	Aiding data	n/a	n/a	62
Length	Total packet length (without checksum)	19	0x0013	13 00
Meas Num	Number of measurements present (2)	2	0x02	02
Meas List	List of types (0x02, 0x03)	n/a	n/a	02 03
Meas 1 Field 1	Air speed of 30.01 kt	3001	0x0BB9	B9 0B
Meas 2 Field 1	North wind component of 10.01 kt	1001	0x03E9	E9 03
Meas 2 Field 2	East wind component of -5.01 kt	-501	0xFE0B	0B FE
Meas 2 Field 3	North wind STD of 0.52 kt	52	0x0034	34 00

Meas 2 Field 4	East wind STD of 0.42 kt	42	0x002A	2A 00
Checksum	Least significant 16 bits of the arithmetic	916	0x0394	94 03
	sum of all preceding bytes except header.			

Aiding data example 2 (air speed + External position + Doppler shift from locator). The packet is:

AA 55 01 62 30 00 03 02 04 05 B9 0B 21 25 CF 17 B5 5E 04 D2 E2 51 02 00 7D 00 32 02 1E 04 2C 01 21 25 CF 17 B5 5E 04 D2 E2 51 02 00 E6 FB 32 00 0C 0D

Table 6.62. explains data in this packet.

Table 6.62

	Table 6.62						
Field	Semantic	Decimal value	Hex value	Bytes (hex)			
Header 0		n/a	n/a	AA			
Header 1		n/a	n/a	55			
Packet type	Data	n/a	n/a	01			
Packet ID	Aiding data	n/a	n/a	62			
Length	Total packet length (without checksum)	48	0x0030	30 00			
Meas Num	Number of measurements present (2)	3	0x03	03			
Meas List	List of types (0x02, 0x04, 0x05)	n/a	n/a	02 04 05			
Meas 1 Field 1	Air speed of 30.01 kt	3001	0x0BB9	B9 0B			
Meas 2 Field 1	External latitude (39.9451425)	399451425	0x17CF2521	21 25 CF 17			
Meas 2 Field 2	External longitude (-77.1465547)	-771465547	0xD2045EB5	B5 5E 04 D2			
Meas 2 Field 3	External altitude above MSL (152.034 m)	152034	0x000251E2	E2 51 02 00			
Meas 2 Field 4	Latitude STD (1.25 m)	125	0x007D	7D 00			
Meas 2 Field 5	Longitude STD (5.62 m)	562	0x0232	32 02			
Meas 2 Field 6	Altitude STD in (10.54 deg)	1054	0x041E	1E 04			
Meas 2 Field 7	Latency (300 msec)	300	0x012C	2C 01			
Meas 3 Field 1	Locator latitude (39.9451425)	399451425	0x17CF2521	21 25 CF 17			
Meas 3 Field 2	Locator longitude (-77.1465547)	-771465547	0xD2045EB5	B5 5E 04 D2			
Meas 3 Field 3	Locator altitude above MSL (152.034 m)	152034	0x000251E2	E2 51 02 00			
Meas 3 Field 4	Doppler shift (-10.5 m/sec)	-1050	0xFBE6	E6 FB			
Meas 3 Field 5	Doppler shift STD (0.5 m/sec)	50	0x0032	32 00			
Checksum	Least significant 16 bits of the arithmetic sum of all	3340	0x0D0C	0C 0D			

preceding	bytes	except		
header.				

To control receiving of the external aiding data the special output data format "INS OPVTAD" is implemented since INS firmware version 2.8.2.0 – see section 6.2.6.

6.7. Acceleration compensation at object swaying

It is possible to increase the INS orientation accuracy at the carrier object swaying if to compensate linear acceleration at place of the INS mounting. For this purpose please set coordinates of the INS mounting relative to the center of the object swaying (usually this is object center of gravity).

These coordinates are set in meters in such sequence of the object directions: right, forward, up. For this please use the LoadINSpar command (see Table 6.36, bytes #29-34) or the INS Demo Program (that is more easy).

6.8. Calibration of the Inertial Labs[™] INS on hard and soft iron

The Inertial LabsTM INS software allows compensation of hard and soft iron effects of the carrier object on the heading determination accuracy. For this purpose, field calibration of the INS magnetometers is provided (see Appendix A, The INS calibration). Inertial Labs utilizes several types of field calibration depending on the carrier object type.

<u>Note</u> INS does not require calibration of its magnetometers on hard/soft iron if "Use_mags" switch is disabled in the "Settings" tab of «Correction options...» window of the INS Demo Program.

The next types of the calibration are implemented in the Inertial Labs[™] INS firmware:

- 3D calibration;
- 2D-2T calibration;
- 2D calibration;
- VG3D calibration (since firmware version 2.6.2.2);
- on-the-fly VG3D calibration (since firmware version 2.6.2.2).

The next commands are used for the INS calibration:

Start3DClb;StartClbRun;ClearClb;StartVG3DClb;StopClbRun;ExitClb;Start2D2TClb;FinishClb;GetClbRes;

Start2DClb; AcceptClb; StartVG3Dclb_flight;

StopVG3Dclb_flight.

All these commands have the byte structure shown in the Table 6.2. Payload for all commands has length 1 byte and contains code of the command. See Appendix C for examples of these commands.

6.8.1. Start3DClb command for INS 3D calibration

The **3D calibration** is designed for carrier objects that can operate in full heading, pitch and roll ranges. At this calibration the carrier object should be rotated in all these ranges.

To start the 3D calibration the host computer sends to the INS the Start3DClb command (code 0x23 in the "Payload" field) followed by message with block of parameters listed in the Table 6.63. This message have the byte structure shown in the Table 6.2, and should be sent without pause after sending the Start3DClb command.

Table 6.63. Payload of the message following after the Start3DClb, StartVG3DClb, Start2D2TClb and Start2DClb commands (the block of parameters loaded to the INS)

Byte	Parameter	Format	Length	Note
0-3	Reserved	byte	4	
4-5	Time of data accumu-	word	2	Seconds
	lation in one run			
6-9	Latitude	float	4	Degrees
10-13	Longitude	float	4	Degrees
14-17	Altitude	float	4	Meters
18-21	Date (Year, Month, Day)	float	4	Year + (Month-1)/12 + (Day-1)/365

The INS calculates the check sum of received parameters and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

nertial Labs Interface Control Document

Then the INS starts process of initial alignment. This process includes the INS gyros bias estimation, therefore <u>don't move the INS</u> during its initial alignment. Default time of the initial alignment is 30 seconds and can be changed (see section 6.3.4. LoadINSpar command) but only <u>in agreement with developers</u> of the Inertial LabsTM INS.

After completing of the initial alignment the INS gives out the block of the initial alignment data (see the Table 6.34, Table 6.35) and starts data accumulation during time specified in message sent after the Start3DClb command (see the Table 6.63).

During the INS data accumulation the object should be rotated in full azimuth, pitch and roll ranges. For example the object is rotated in the horizon plane (the Z-axis is up) with periodical stops about each 90 degrees for tilting in pitch and roll. After full 360° rotation the object with the INS is turned over (the Z-axis is down) and the procedure described above should be repeated. During this calibration the range of pitch and roll angles changing must be as much as possible.

<u>Note</u>: there is estimation of 3D calibration quality in terms of possible INS heading accuracy. To allow this possibility it is necessary to include additional rotation of the INS with the carrier object in the horizon plane on about 360 degrees or more with pitch and roll near the level. Acceptable pitch and roll change can be set using INS Demo Software by the "Pitch/Roll threshold" parameter in the "Device Options".

After set accumulation time is reached or StopClbRun command is sent to the INS (see section 6.8.2 for details) the INS finishes data accumulation and calculates the calibration parameters.

After calculation of the calibration parameters that takes <0.5 seconds, the INS gives out message with the calibration results (see the Table 6.64) and it waits one of the next commands:

- the AcceptClb command (see section 6.8.3) to accept and save the calibration parameters (usually if the "Calibration success" byte in the INS message is nonzero and corresponds to satisfactory INS heading accuracy (see the Table 6.64 and Note below it));
- or the ExitClb command (see section 6.8.4 to exit from calibration procedure without accepting and saving its results (usually if the "Calibration success" byte in the INS message is equal to 0 or

corresponds to not satisfactory INS heading accuracy (see the Table 6.64 and Note below it)).

The INS answers on these commands with checksum and goes to idle mode.

Table 6.64. Payload of the INS message after calibration completed

Byte	Parameter	Format	Length	Note
0	Type of calibration	byte	1	1 for 2D calibration;
				2 for 2D-2T calibration;
				3 for 3D calibration;
				5 for VG3D calibration
1	Number of used calibration	byte	1	
	runs			
2	Percent of used data	byte	1	for 2D and 3D calibrations only
	points			
3	Calibration success	byte	1	0 – calibration is not successful
				>0 – calibration is successful
				(see Note below)
4-39	Matrix for soft iron	float	9*4	Matrix Tm_c (3×3) by rows
	correction			
39-51	Matrix for hard iron	float	3*4	Matrix Hm_0 (3×1)
	correction			. ,

Note: there is estimation of the calibration quality as predicted INS heading accuracy. So nonzero value of byte #3 "Calibration success" is predicted maximum (3 sigma) heading error of the INS after calibration, in degrees*10. For example, byte #3 equal to 5 corresponds to the INS accuracy ±0.5 deg. If calibration is successful but INS cannot estimate predicted accuracy it returns byte #3 equal to 255.

6.8.2. StopClbRun command

After receiving the StopClbRun command (code 0x20 in the "Payload" field) the INS early stops data accumulation in the calibration run before set accumulation time is reached.

Then the calibration procedure continues in the same way as after set accumulation time was reached.

6.8.3. AcceptClb command

The AcceptClb command (code 0x2E in the "Payload" field) is applied to accept the calibration parameters and to save them to the INS nonvolatile memory. This command can be used in the end of the calibration procedure.

The INS answers on this command. The INS calculates the check sum of the message (without its header and check sum) and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

6.8.4. ExitClb command

The ExitClb command (code 0xFE in the "Payload" field) is used to exit from the calibration without any calculations in the INS and without saving any calibration parameters. The INS stops work in operating mode and goes into the idle mode.

The INS answers on this command. The INS calculates the check sum of the message (without its header and check sum) and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

6.8.5. StartVG3DClb command for INS VG3D calibration

Since firmware version 2.6.2.2 the INS provides **VG3D** calibration. The **VG3D** calibration is designed for carrier objects that can operate in full heading, pitch and roll ranges. VG3D calibration is similar to 3D calibration but allows performing simpler rotation than is necessary for 3D calibration.

Note: VG3D calibration is at the testing stage. Please contact Inertial Labs about the possibility of using the VG3D calibration.

To start the VG3D calibration the host computer sends to the INS the StartVG3DClb command (code 0x25 in the "Payload" field) followed by message with block of parameters listed in the Table 6.63. This message have the byte structure shown in the Table 6.2, and should be sent without pause after sending the StartVG3DClb command.

The INS calculates the check sum of received parameters and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

Then the INS starts process of initial alignment. This process includes the INS gyros bias estimation, therefore don't move the INS during its initial alignment. Default time of the initial alignment is 30 seconds and can be

changed (see section 6.3.4. LoadINSpar command) but only in agreement with developers of the Inertial Labs $^{\text{TM}}$ INS.

After completing of the initial alignment the INS gives out the block of the initial alignment data (see the Table 6.34, Table 6.35) and starts data accumulation during time specified in message sent after the StartVG3DClb command (see the Table 6.63).

During the INS data accumulation the object should be rotated in full azimuth range and maximum possible pitch and roll ranges. Allowed object motion should be agreed with Inertial Labs.

After set accumulation time is reached or StopClbRun command is sent to the INS (see section 6.8.2 for details) the INS finishes data accumulation and calculates the calibration parameters.

After calculation of the calibration parameters that takes <0.5 seconds, the INS gives out message with the calibration results (see the Table 6.64) and it waits one of the next commands:

- the AcceptClb command (see section 6.8.3) to accept and save the calibration parameters (usually if the "Calibration success" byte in the INS message is nonzero and corresponds to satisfactory INS heading accuracy (see the Table 6.64 and Note below it));
- or the ExitClb command (see section 6.8.4) to exit from calibration procedure without accepting and saving its results (usually if the "Calibration success" byte in the INS message is equal to 0 or corresponds to not satisfactory INS heading accuracy (see the Table 6.64 and Note below it)).

The INS answers on these commands with checksum and goes to idle mode.

6.8.6. Start2D2TClb command for INS 2D-2T calibration

The **2D-2T calibration** is designed for objects that operate in full azimuth range but with limited range of pitch and roll angles. This calibration procedure involves a few full 360° rotations of the object in azimuth with different pitch angles.

nertial Labs Interface Control Document

To start the 2D-2T calibration the host computer sends to the INS the Start2D2TClb command (code 0x22 in the "Payload" field) followed by message with block of parameters listed in the Table 6.63. This message have the byte structure shown in the Table 6.2, and should be sent without pause after sending the Start2D2TClb command.

The INS calculates the check sum of received parameters and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

The 2D-2T calibration procedure involves a few runs with full 360° rotations of the object with installed INS in heading with different pitch angles.

Set the object to the first pitch angle (usually the minimum pitch angle is set first). Then send the StartClbRun command followed by message (see section 6.8.6) to start the first run of the calibration.

After receiving the StartClbRun command with its message, the INS calculates the check sum of received block of parameters and returns it for checking. This check sum should be equal to the check sum in the StartClbRun command message that was sent to the INS. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

Then the INS starts process of initial alignment. This process includes the INS gyros bias estimation, therefore <u>don't move the INS</u> during its initial alignment. Default time of the initial alignment is 30 seconds and can be changed (see section 6.3.4. LoadINSPar command) but only <u>in agreement with developers</u> of the Inertial LabsTM INS.

After completing of the initial alignment the INS gives out the block of the initial alignment data (see the Table 6.34, Table 6.35) and starts data accumulation during time specified in message sent after the Start2D2TClb command (see the Table 6.63). Rotate object in azimuth with approximately constant pitch and roll. This rotation must include one or more full 360 deg turns. Please, correct the time required for such rotation in the «Time of data accumulation» field of the message (Table 6.63) to provide necessary rotation.

After set accumulation time is reached or StopClbRun command is sent to the INS (see section 6.8.2 for details) the INS gives out message with result of the calibration run (see the Table 6.65).

Table 6.65. Payload of the INS message after each calibration run of the 2D-2T calibration

Byte	Parameter	Format	Length	Note
0	Type of calibration	byte	1	2 for 2D-2T calibration
1	Calibration run	byte	1	1, 2,
2	Percent of used data points	byte	1	
3	Calibration success	byte	1	0 – unsuccessful; >0 – successful (see Note below)
4-7	Reserved	float	4	
8-11	Average pitch, deg	float	4	
12-15	Average roll, deg	float	4	
16-27	Reserved	float	3*4	
28-29	USW	word	2	See section 6.10

If the "Calibration success" byte is zero (calibration run is not successful) in the INS answer Table 6.65 then this run will be excluded from calculations in the 2D-2T calibration procedure. To complete this procedure, it is necessary to perform at least two successful runs with essentially different pitch angles.

Note: there is estimation of the calibration quality as predicted INS heading accuracy. So nonzero value of byte #3 "Calibration success" is predicted maximum (3 sigma) heading error of the INS after calibration, in degrees*10. For example, byte #3 equal to 5 corresponds to the INS accuracy ±0.5 deg. If calibration is successful but INS cannot estimate predicted accuracy it returns byte #3 equal to 255.

After each calibration run completed the INS sends message with payload shown in the Table 6.65, and it waits one of the next three commands from the host computer:

 StartClbRun command followed by its message (see section 6.8.7) to start new calibration run. Before send this command the object should be turned to the next pitch angle. After sending this command the above described procedure of the calibration run with object rotation in heading should be performed.

- 2. <u>FinishClb</u> command (see section 6.8.8 for details) to finish the calibration procedure and to calculate calibration parameters. After that the INS gives out message with the calibration results (see the Table 6.64) and waits one of the two commands:
 - a. the AcceptClb command (see section 6.8.3) to accept and save the calibration parameters (usually if the "Calibration success" byte in the INS message is nonzero and corresponds to satisfactory INS heading accuracy (see the Table 6.64 and Note below it));
 - b. or the ExitClb command (see section 6.8.4) to exit from calibration procedure without accepting and saving its results (usually if the "Calibration success" byte in the INS message is equal to 0 or corresponds to not satisfactory INS heading accuracy (see the Table 6.64 and Note below it)).

The INS answers on these commands with checksum and goes to idle mode.

3. <u>ExitClb</u> command (see section 6.8.4) In this case the calibration finishes without any calculations in the INS and without saving any calibration parameters. The INS answers on this command with checksum and goes into the idle mode.

Notes:

- 1. Rotation of the object with the INS in heading <u>must include one or more full 360° turns</u>. Please, correct the time required for saving data in the **«Accumulation time»** window to attain necessary rotations.
- 2. During calibration run pitch and roll angles should be approximately constant.
- **3**. If place of the INS mounting on the object is changed, or if the object is changed, then the INS should be re-calibrated on the hard and soft iron of this object.

6.8.7. StartClbRun command

If calibration procedure includes more than one run (like 2D-2T calibration) then the StartClbRun command (code 0x2B in the "Payload" field) is used to start each run.

For unification with the StartClbRun command for some other calibration types, this command must be followed by message with block of parameters listed in the Table 6.66. But for the 2D-2T calibration the values of those 6 bytes don't influence, so these 6 bytes may be any, for example zeros. Only

requirement is that this message should have the byte structure shown in the Table 6.2, and should be sent <u>without pause</u> after sending the StartClbRun command.

Table 6.66. Payload of the message following after the StartClbRun command (block of parameters loaded to the INS)

Byte	Parameter	Format	Length	Note
0-3	Reserved	float	4	
4-5	Reserved	word	2	

After receiving the StartClbRun command the INS calculates the check sum of received parameters and returns it for a checking. This check sum should be equal to the check sum in the StartClbRun command message that was sent to the INS. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

6.8.8. FinishClb command for INS 2D-2T calibration

After receiving the FinishClb command (code 0x2C in the "Payload" field) the INS finishes the calibration procedure with multiple runs (like 2D-2T) and calculates the calibration parameters. After that the INS gives out message with the calibration results (see the Table 6.64).

Then the INS waits one of the next commands:

- the AcceptClb command (see section 6.8.3) to accept and save the calibration parameters;
- or the ExitClb command (see section 6.8.4) to exit from calibration procedure without accepting and saving its results.

6.8.9. Start2DClb command for INS 2D calibration

The **2D calibration** is designed for carrier objects that operate in full azimuth range but with small pitch and roll angles (not more than a few degrees). This calibration procedure involves full 360° rotation of the carrier object in azimuth. During this rotation pitch and roll angles must be as close to zero as possible.

To start the 2D calibration the host computer sends to the INS the Start2DClb command (code 0x21 in the "Payload" field) followed by message with block of parameters listed in the Table 6.63. This message have the byte structure shown in the Table 6.2, and should be sent without pause after sending the

Start2DClb command.

The INS calculates the check sum of received parameters and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

Then the INS starts process of initial alignment. This process includes the INS gyros bias estimation, therefore <u>don't move the INS</u> during its initial alignment. Default time of the initial alignment is 30 seconds and can be changed (see section 6.3.4. LoadINSPar command) but only <u>in agreement</u> with developers of the Inertial LabsTM INS.

After completing of the initial alignment the INS gives out the block of the initial alignment data (see the Table 6.34, Table 6.35) and starts data accumulation during time specified in message sent after the Start2DClb command (see the Table 6.63). Rotate carrier object in azimuth with pitch and roll angles close to zero as possible. This rotation must include one or more full 360 deg turns. Please, correct the time required for such rotation in the «Time of data accumulation» field of the message (Table 6.63) to provide necessary rotation.

After set accumulation time is reached or StopClbRun command is sent to the INS (see section 6.8.2 for details) the INS finishes data accumulation and calculates the calibration parameters.

After calculation of the calibration parameters that takes <0.5 seconds, the INS gives out message with the calibration results (see the Table 6.64) and it waits one of the next commands:

- the AcceptClb command (see section 6.8.3) to accept and save the calibration parameters (usually if the "Calibration success" byte in the INS message is nonzero and corresponds to satisfactory INS heading accuracy (see the Table 6.64 and Note below it));
- or the ExitClb command (see section 6.8.4) to exit from calibration procedure without accepting and saving its results (usually if the "Calibration success" byte in the INS message is equal to 0 or corresponds to not satisfactory INS heading accuracy (see the Table 6.64 and Note below it)).

The INS answers on these commands with checksum and goes to idle mode.

6.8.10. ClearClb command

The ClearClb command (code 0x2F in the "Payload" field) is used to clear parameters of the hard and soft iron calibration from the INS nonvolatile memory.

The INS answers on this command. The INS calculates the check sum of the message (without its header and check sum) and returns it for a checking. Byte structure of this message is shown in the Table 6.2 where payload is the calculated check sum (1 word).

You should clear parameters of the soft and hard iron calibration if you uninstall the INS from object to avoid incorrect azimuth determination with standalone INS.

6.8.11. GetClbRes command

The GetClbRes command (code 0x2A in the "Payload" field) can be send from the host computer to check the last calibration results of the INS. As answer on this command the INS sends out the message with the data block near the same as after completing calibration, see the Table 6.67.

Table 6.67. Payload of the INS answer on request GetClbRes about calibration results

Byte	Parameter	Format	Length	Note
0	Type of calibration performed	byte	1	0 – INS is not calibrated; 1 – 2D calibration; 2 – 2D-2T calibration; 3 – 3D calibration; 5 – VG3D calibration; >0x80 – INS is calibrated by loading calibration parameters from other software (e.g. Demo software).
1	Number of used calibration runs	byte	1	
2	Reserved	byte	1	
3	Calibration success	byte	1	0 – not successful calibration >0 – successful calibration (see Note below)
4-39	Matrix for soft iron correction	float	9*4	Matrix Tm_c (3×3) by rows
39-51	Matrix for hard iron correction	float	3*4	Matrix Hm_0 (3×1)

Note: There is estimation of the calibration quality as predicted INS heading accuracy. So nonzero value of byte #3 "Calibration success" is predicted maximum (3 sigma) heading error of the INS after calibration, in degrees*10. For example, byte #3 equal to 5 corresponds to the INS accuracy ±0.5 deg. If calibration is successful but INS cannot estimate predicted accuracy it returns byte #3 equal to 255.

6.8.12. StartVG3Dclb_flight and StopVG3Dclb_flight commands for start and finish INS on-the-fly VG3D calibration

Since firmware version 2.6.2.2 the INS provides **on-the-fly VG3D calibration**. It allows to calibrate INS unit during INS ordinary operation without interruption of INS navigation data calculation and output.

To start the on-the-fly VG3D calibration the host computer sends to the INS the **StartVG3Dclb_flight** command (see APPENDIX C):

AA 55 00 00 07 00 26 2D 00

Note these are hexadecimal numbers but not ASCII text symbols.

After receiving of this command INS starts accumulation of magnetometers data for VG3D calibration. At this the bit #7 is set to 1 in INS status word USW for indication of data accumulation process (see Fig.6.2 and section 6.10).

The carrier object with INS unit should be rotated in full azimuth range with maximum possible pitch and roll ranges. For example, airplane should perform at least two full 360° coordinated turns (on the right and on the left) with maximum roll angles.

After finishing of calibration rotation of the carrier object it is necessary to send the StopVG3Dclb_flight command (see APPENDIX C):

AA 55 00 00 07 00 27 2E 00

Note these are hexadecimal numbers but not ASCII text symbols.

After receiving of this command INS stops data accumulation for VG3D calibration and sets the USW bit #7 to 0 (see Fig.6.2).

Inertial Labs **Interface Control Document**

Then INS starts calculations for VG3D calibration and sets USW bit #7 to 1 again. In the end of these calculations, if calibration is successful, INS calculates calibration parameters for compensation of hard and soft iron, and stores them to INS nonvolatile memory. Also INS sets the USW bit #15 to 1 to inform the host system that on-the-fly VG3D calibration is performed and successful (see Fig.6.2). If this calibration was estimated as unsuccessful then the USW bit #15 is set to 0.

Fig.6.2. The diagram of indication of on-the-fly VG3D calibration process in the USW (Unit Status Word, see section 6.10)

Calculated calibration parameters are applied immediately to INS magnetometers data for compensation of hard and soft iron of the carrier object.

Note during all steps of on-the-fly VG3D calibration the INS unit continues calculation of navigation data and their output.

Because these calibration parameters are stored to INS nonvolatile memory then they will be applied at all the next INS operations until new calibration is performed or parameters are cleared using the ClearClb command (see section 6.8.10).

On the other hand, if INS unit is uninstalled from the carrier object then it is necessary to clear parameters of the soft and hard iron calibration using the ClearClb command (see section 6.8.10).

Parameters of the on-the-fly VG3D calibration can be checked after INS stop using the GetClbRes command (see section 6.8.11).

6.9. INS automatic start

Since firmware version 1.0.2.0 the Inertial LabsTM INS auto start is implemented that allows start of its operation and data output after power on without any command from the host computer. There is possible to choose desirable output data format for auto start (see section 6.2).

The auto start option can be enabled or disabled using the INS Demo Program, in the "Options / Device options" menu. There is drop-down list "Auto start" where auto start with desirable output data format can be chosen. See INS Demo Program User's Manual, section "10.5. INS automatic start" for details.

If the auto start option is enabled then after the INS power on the next operations take place:

- Initialization of the on-board GNSS receiver and IMU that takes not more than 15 seconds. The INS LED indicator lights yellow.
- Then the INS automatically starts operation from sending out the message AA 55 01 00 08 00 00 00 09 00 (in hexadecimal format) that indicates INS started without any external command. The INS LED indicator changes color to green.
- After that the initial alignment procedure starts when initial orientation angles are calculated and gyros bias is estimated for its next compensation. <u>Therefore don't move the INS</u> during initial alignment process. If this requirement is not met then large errors may be occurred in orientation angles calculation.

<u>Note:</u> Default time of the initial alignment is 30 seconds. It can be changed (see section 6.3.4) but only <u>in agreement with developers</u> of the Inertial LabsTM INS.

- After completing of the initial alignment the INS gives out message with block of the initial alignment data (see Table 6.33) and starts data output according to the chosen data format. The INS LED indicator lights green.
- Valid INS position and velocity data appears only after the on-board GNSS receiver starts output navigation data. The receiver requires 50 seconds after power on for this so-called cold start.

Note: To identify the INS output data format at auto start mode use the INS data identifier in the data block structure (see Table 6.2, byte #3) which is equal to the command code and corresponds to data format according to the Table 6.33. This is implemented in the INS firmware since version 2.1.2.0.

To stop the INS please send the Stop command (see section 6.3.3). After receiving the Stop command the INS stops data calculation and goes to the idle mode. The INS LED indicator changes its color to red. The INS is ready to receive any command from the host computer.

6.10. The Unit Status Word definition

The Unit Status Word (USW) provides the INS state information. The low byte (bits 0-7) of USW indicates failure of the INS. If this byte is 0, the INS operates correctly, if it is not 0, see the Table 6.68 for type of failure. The high byte (bits 8-15) contains a warning or is informative for the user. Status of each bit of the USW warning byte is specified in the Table 6.68.

Table 6.68. The Unit Status Word description

	Bit	Parameter	Description
Low	0	Initial Alignment	0 – Successful initial alignment
(failure)			1 – Unsuccessful initial alignment due to INS
byte			moving or large changing of outer magnetic field
	1	IMU data	0 – Correct IMU data
		correctness	1 – Incorrect IMU data
	2	Gyroscope Unit	0 – No failure
			1 – Failure detected
	3	Accelerometer Unit	0 – No failure
			1 – Failure detected
	4	Magnetometer Unit	0 – No failure
			1 – Failure detected
	5	Electronics	0 – No failure
			1 – Failure detected
	6	GNSS receiver	0 – No failure
			1 – Failure detected
	7	On-the-fly	1 – during data accumulation and calculation
		calibration	0 otherwise
High	8		0 – Supply voltage is not less than minimum level
(warning)		Incorrect Power	1 – Low supply voltage detected
byte	9	Supply	0 – Supply voltage is not greater than max level
			1 – High supply voltage detected
	10		0 – X-angular rate is within the range
			1 – X-angular rate is outrange
	11	Angular Rate	0 – Y-angular rate is within the range
		Exceeding Detect	1 – Y-angular rate is outrange
	12		0 – Z-angular rate is within the range
			1 – Z-angular rate is outrange
	13	Large Magnetic	0 – Total magnetic field is within the normal range
		Field Detect	1 – Total magnetic field limit is exceeded
	14	Environmental	0 – Temperature is within the operating range
		Temperature	1 – Temperature is out of the operating range
	15	On-the-fly	0 – No on-the-fly calibration
		calibration	1 – Successfully calibrated during current run

6.11. Post-processing of the INS and GNSS data

For applications requiring highly accurate postmission position, velocity and orientation, the INS and GNSS data post-processing can be used. This feature is provided by NovAtel software, see http://www.novatel.com/products/software/.

For such post-processing the raw GNSS and raw IMU data should be used.

The Inertial Labs[™] INS uses additional COM ports (COM2 or COM3) for output the raw GNSS receiver data (see section 6.11.1). For these data recording from receiver an external program **GNSS_Reader** can be used. The GNSS_Reader is supplied with the Inertial Labs INS Demo software.

File with raw IMU data can be created from files .bin, .prm saved by INS Demo Program. Use "Convert to IMU data" item in the "Convert" menu – see the Inertial LabsTM INS Demo Program User's Manual, section "12.2. Raw IMU data generation".

For more details about post-processing see Section "12. INS and GNSS data post-processing" in the INS Demo Program User's Manual.

6.11.1. Raw GNSS receiver data

The Inertial Labs[™] INS uses the COM2 or COM3 port for output the raw GNSS receiver data. The INS starts output of these data after power on and completing of the receiver initialization (when the INS LED indicator switches from yellow to red).

Raw GNSS data consist of necessary logs for post-processing. There are synchronous and asynchronous logs. The data for synchronous logs are generated with set frequency. In order to output the most current data as soon as they are available, asynchronous data are generated at irregular intervals. List of generated logs is shown in the Table 6.69.

Table 6.69. Logs of raw GNSS data

Log Description						
Asynchronous						
CLOCKSTEERING	Clock steering status					
GLOCLOCK	GLONASS clock information					
ALMANAC	Decoded GPS Almanac					
GPSEPHEM	Decoded GPS ephemerides					
RAWALM	Raw Almanac data					
RAWEPHEM	Raw ephemeris					
RAWGPSSUBFRAME	Raw subframe data					
RAWCNAVFRAME	Raw CNAV frame data					
RAWGPSWORD	Raw navigation word					
GLOALMANAC	Decoded GLONASS Almanac					
GLOEPHEMERIS	Decoded GLONASS ephemeris					
GLORAWALM	Raw GLONASS Almanac data					
GLORAWEPHEM	Raw GLONASS Ephemeris data					
GLORAWFRAME	Raw GLONASS frame data					
GLORAWSTRING	Raw GLONASS string					
MARK2POS	Position at time of mark input event (see note below)					
MARK2TIME	Time of mark input event (see note below)					
	Synchronous					
CLOCKMODEL	Current clock model status					
TIMESYNC	Synchronize time between GNSS receivers					
TIME	Time data					
RANGE	Satellite range information					
RANGEGPSL1	L1 version of the RANGE log					
TRACKSTAT	Tracking status					

<u>Note</u>: If input marks are enabled (MARK_switch = 1, see section 6.4.1) then asynchronous MARK2POS and MARK2TIME logs are added to the raw GNSS data when a pulse is detected at GPIO mark input (see section 5.6).

6.12. Synchronization of INS data with LiDAR and other devices

Synchronization of the Inertial LabsTM INS measurements with data form other devices is very important in many applications. The INS can trigger other devices, or an external device can trigger the INS measurements.

6.12.1. Synchronization pulses issued by INS

To trigger external devices the Inertial LabsTM INS outputs accurate pulse per second (PPS) signal generated by on-board GNSS receiver. The PPS signal is provided by appropriate pin of the INS main connector (see Table 5.1 and Table 5.2). See section "5.5. PPS description" for details.

Adjustment of the PPS signal (pulse polarity, period, width) can be done using the Inertial LabsTM INS Demo Program – see User's Manual, section "13.1.1. Control of PPS output signal" for details.

6.12.2. Trigging of INS by external devices

The Inertial LabsTM INS output data can be get on request by two ways.

At the first, the INS can operate in the "On Request" (on demand) mode when the INS sends one data block after each Request command issued from the host computer. See section "6.3.2. SetOnRequestMode command – getting INS data on request (on demand)" for details.

The second way of the INS data synchronization is using of General Purpose Input Output (GPIO) line to trigger the INS output data by external devices. GPIO line is connected to appropriate pin of the INS main connector (see Table 5.1 and Table 5.2). Also, see section "5.6. GPIO description". Currently the GPIO is used to trigger GNSS raw data in INS.

6.12.3. Synchronization of INS data with LiDAR

For Inertial Labs INS operation with LiDAR it is necessary to make the next connections:

- use INS COM1 port for output of the main INS data;
- use INS COM2 port for output of GNSS raw data or NMEA data set generated by INS onboard GNSS receiver;

- connect INS COM3 port for output of \$GPRMC messages issued by INS onboard GNSS receiver to LiDAR;
- connect pulse-per-second (PPS) signal generated by INS onboard GNSS receiver to LiDAR;
- optionally, for camera synchronization connect General Purpose Input Output (GPIO) line for input signal from camera to trigger specific GNSS receiver data (MARK2POS and MARK2TIME logs)

All these data and signals are available on the main INS connector – see section "5. Electrical interface". For adjustment of INS data and signals use INS Demo Program. See INS Demo Program User's Manual, section "13.3. INS operation with LiDAR" for details.

6.13. Change of the main COM port baud rate

COM1 is the main COM port. It is used for commands and data transfer between the Inertial Labs $^{\text{TM}}$ INS and the host computer.

The default baud rate for the INS COM1 port is set to 115200 bps (maximum for the standard COM-port). Since firmware version 2.2.0.0 the INS supports different baud rates: 4800, 9600, 14400, 19200, 38400, 57600, 115200, 230400, 460800 bps.

Change of the INS COM1 port baud rate can be done using INS Demo Program since version 2.0.19.78 from 03/18/2016. See INS Demo Program User's Manual, section "4.2.4. Change of the main COM port baud rate" for details.

Note the same baud rate must be set for COM port of the host computer.

6.14. Limitation of the INS maximum output data rate

When setting of the output data rate for the INS unit using LoadAHRSIIPar command (see section 6.3.4) or using the Inertial LabsTM INS Demo Program it is essential to ensure the chosen baud rate of the main COM port is capable of handling the data throughput with desirable data rate. The maximum data rate (Hz) can be calculated using the baud rate and data package length:

$$max_data_rate = \frac{COM_baud_rate}{bits_per_byte * package_le ngth},$$
(6.1)

where COM_baud_rate is COM port baud rate (bits/s); bits_per_byte = 11 bits per one transferred byte of data; package_length for binary data = payload length plus 8 bytes of overhead. See Tables 6.4, 6.7, 6.8, 6.9, 6.10, 6.11, 6.13, 6.19 and 6.20 for payload length of binary output data formats. The package_length of the text output data formats correspond to their structure shown in sections 6.2.1 to 6.2.12.

Below Table 6.70 contains data package length for each output data format and also maximum data rate calculated using formula (6.1), with some spare. Note the maximum measurement rate of INS data is limited by 200 Hz.

Table 6.70. INS maximum measurement rate for different output data formats

	Data	COM-port baud rate, bps						
Output data format	package length,	9600	19200	38400	115200	230400	460800	
	bytes	Maximum data rate, Hz						
INS Sensors Data	84+8	9	10	30	100	200	200	
INS OPVT	92+8	8	10	30	100	200	200	
INS QPVT	94+8	8	10	30	100	200	200	
INS OPVT2A	101+8	8	10	30	90	190	200	
INS OPVT2AW	103+8	7	10	30	90	180	200	
INS OPVT2AHR	129+8	6	10	20	70	150	200	
INS OPVTAD	177+8	4	9	10	50	100	200	
INS Minimal Data	42+8	10	30	60	200	200	200	
INS_OPVT_rawIMUdata	90+8	5	10	40	100	200	200	
SPAN_rawimu	72	20	25	50	100	200	200	
INS NMEA	93	9	10	30	100	200	200	
INS Sensors NMEA	141	6	10	20	80	140	200	

Notes:

- 1. INS unit controls correctness of the data rate setting. If user sets data rate which exceeds limit shown in Table 6.70, then its value is corrected. True data rate is given out in the byte #3 of INS message after completing of the initial alignment procedure (see Table 6.34, Table 6.35).
- **2**. Since firmware version 3.2.0.0, available are only data rates that are factors of 200: (1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200) Hz.

6.15. INS solution status

Simple "INS solution status" is added to output data to indicate good or poor INS data since firmware version 3.2.2.7.

Good solution means the INS Kalman filter is converged, and INS outputs valid position, velocity and orientation data.

Poor solution is set in one of such cases:

- 1. If INS started at absence of valid GNSS data, until these data appear.
- 2. At absence of valid GNSS data during long time that exceeds the maximum time of INS autonomous operation.
- 3. If INS uses GNSS track angle as heading reference for INS correction or "Inertial" type of INS correction is set, but the carrier object did not reach yet necessary speed to start using the track angle.
- 4. If INS-D uses dual-antenna GNSS heading as reference, but valid GNSS heading did not appeared yet after INS start.

Currently the "INS solution status" is combined with the "Angles position type" value in output data formats OPVT2A, OPVT2AW, OPVT2AHR, OPVTAD. If the "INS solution status" is poor then 100 is added to the value of the "Angles position type". So use the next simple formula to get the "INS solution status":

If "Angles position type" < 100 then "INS solution status" is good, otherwise it is pure.

APPENDIX A. The Inertial Labs[™] INS Calibration

The Inertial LabsTM INS software allows to take into account influence of the carrier object soft and hard iron on the heading determination. For this purpose, field calibration of the INS magnetometers on hard and soft iron is provided. This calibration does not require any additional equipment, but it requires setting of the carrier object, where the INS is mounted, in specified positions.

There are several types of the calibration implemented onboard the INS:

- 3D calibration;
- 2D-2T calibration;
- 2D calibration;
- VG3D calibration;
- on-the-fly VG3D calibration.

Other types of hard/soft iron calibration can be fulfilled with Inertial Labs INS Demo software.

3D calibration is designed for carrier objects that can operate in full heading, pitch and roll ranges. For this calibration the carrier object is rotated in the horizon plane (the Z-axis is up) with periodical stops about each 90 degrees for tilting in pitch and roll. After full 360° rotation the carrier object with the INS is turned over (the Z-axis is down) and the procedure described above should be repeated. During this calibration the range of pitch and roll angles changing must be as much as possible.

VG3D calibration is similar to 3D calibration but allows performing simpler rotation than it is necessary for 3D calibration.

2D-2T calibration is designed for carrier objects that operate in full heading range but with limited range of pitch and roll angles. This calibration procedure involves a few full 360° rotations of the carrier object with installed INS in heading with different pitch angles. During each rotation, pitch and roll angles should be as constant as possible.

2D calibration is designed for carrier objects that operate in full azimuth range but with small pitch and roll angles (not more than a few degrees). This

calibration procedure involves full 360° rotation of the carrier object with installed INS in the horizon plane. During this rotation pitch and roll angles must be as close to zero as possible.

On-the-fly VG3D calibration allows to calibrate INS unit during INS ordinary operation without interruption of INS navigation data calculation and output.

If place of the INS mounting on the carrier object is changed, or if the carrier object is changed, then the INS should be re-calibrated on the hard and soft iron of the carrier object.

See section 6.8 for detailed description of embedded calibration procedures.

APPENDIX B.

Variants of the Inertial Labs[™] INS mounting relative to the object axes

The Inertial LabsTM INS can be mounted on the object in any known position (up to upside-down, upright etc.) relative to the object axes. Such mounting doesn't change right determination of the object orientation if angles of the INS mounting are correctly stored in the INS nonvolatile memory.

To store angles of the INS mounting to its nonvolatile memory please use the Inertial LabsTM INS Demo Program (item «Device option ...» from the «Options» menu) or send LoadINSPar command to the INS directly (see structure of the message following after the LoadINSPar command in the Table 6.36). In both cases these angles are denoted as "Alignment angles".

Angles of the INS position (alignment angles) are set in next order (like heading, pitch and roll setting):

- first alignment angle sets position of the INS longitudinal axis Y relative to longitudinal axes of the object measured in the horizontal plane of the object. Clockwise rotation is positive;
- second alignment angle is equal to angle of inclination of the INS longitudinal axis Y relative to the horizontal plane of the object. Positive direction is up;
- third alignment angle is equal to inclination angle of the INS lateral axis X measured around INS' longitudinal axis. Positive rotation is X axis moving down.

All angles are set in degrees. Some examples of the Inertial Labs INS mounting relative the carrier object are shown on Fig.B.1.

To check correctness of the alignment angles please run the INS using the Inertial Labs INS Demo program. Default values of the INS alignment angles are all zero.

Fig.B.1. Examples of the Inertial Labs $^{\text{TM}}$ INS mounting on the carrier object

a – alignment angles are 0, 0, 0 (degrees);

b – alignment angles are 0, 0, 180 (degrees);

c – alignment angles are 90, 0, 0 (degrees);

d – alignment angles are 180, -90, 0 (degrees);

APPENDIX C. Full list of the Inertial Labs[™] INS commands

All the INS commands have the byte structure shown in the Table 6.2. Payload for all commands has length 1 byte and contains code of the command. Below Table C.1 lists all commands with their exact structure in hexadecimal numbers.

Table C.1. List of the INS commands with exact structure

Command name	Code	Exact structure (hex)				
Commands for Inertial Labs [™] INS control						
INS_SensorsData	0x50	AA 55 00 00 07 00 50 57 00				
INS_OPVTdata	0x52	AA 55 00 00 07 00 52 59 00				
INS_QPVTdata	0x56	AA 55 00 00 07 00 56 5D 00				
INS_OPVT2Adata	0x57	AA 55 00 00 07 00 57 5E 00				
INS_OPVT2AWdata	0x59	AA 55 00 00 07 00 59 60 00				
INS_OPVT2AHRdata	0x58	AA 55 00 00 07 00 58 5F 00				
INS_OPVTADdata	0x61	AA 55 00 00 07 00 61 68 00				
INS_minData	0x53	AA 55 00 00 07 00 53 5A 00				
INS_OPVT_rawIMUdata	0x66	AA 55 00 00 07 00 66 6D 00				
SPAN_rawimu	0x68	AA 55 00 00 07 00 68 6F 00				
INS_NMEA	0x54	AA 55 00 00 07 00 54 5B 00				
INS_Sensors_NMEA	0x55	AA 55 00 00 07 00 55 5C 00				
SetOnRequestMode	0xC1	AA 55 00 00 07 00 C1 C8 00				
Stop	0xFE	AA 55 00 00 07 00 FE 05 01				
LoadINSpar	0x40	AA 55 00 00 07 00 40 47 00				
ReadINSpar	0x41	AA 55 00 00 07 00 41 48 00				
GetBIT	0x1A	AA 55 00 00 07 00 1A 21 00				
Commands for Inertial Labs						
Start2DClb	0x21	AA 55 00 00 07 00 21 28 00				
Start2D2TClb	0x22	AA 55 00 00 07 00 22 29 00				
Start3DClb	0x23	AA 55 00 00 07 00 23 2A 00				
StartVG3DClb	0x25	AA 55 00 00 07 00 25 2C 00				
StartVG3Dclb_flight	0x26	AA 55 00 00 07 00 26 2D 00				
StopVG3Dclb_flight	0x27	AA 55 00 00 07 00 27 2E 00				
StartClbRun	0x2B	AA 55 00 00 07 00 2B 32 00				
StopClbRun	0x20	AA 55 00 00 07 00 20 27 00				
FinishClb	0x2C	AA 55 00 00 07 00 2C 33 00				
AcceptClb	0x2E	AA 55 00 00 07 00 2E 35 00				

ExitClb	0xFE	AA 55 00 00 07 00 FE 05 01					
ClearClb	0x2F	AA 55 00 00 07 00 2F 36 00					
GetClbRes	0x2A	AA 55 00 00 07 00 2A 31 00					
Commands for odometer calibration							
Start_Odom_Clb	0x28	AA 55 00 00 07 00 28 2F 00					
Stop_Odom_Clb	0x29	AA 55 00 00 07 00 29 30 00					

APPENDIX D. Forms of the Inertial Labs[™] INS orientation presentation

Define coordinate system $Ox_oy_oz_o$ to be fixed to the carrier object where Ox_o axis is lateral and directed to the right, Oy_o axis is longitudinal and directed forward, Oz_o axis is normal and directed vertical. At usual installation of the INS on carrier object the INS appropriate axes should be parallel to the axes as above Fig.1.3 shows. Also, it is possible to install the INS in any known position relative to the object with known alignment angles (see APPENDIX B for details).

The Inertial LabsTM INS calculates orientation of the coordinate system $Ox_oy_oz_o$ fixed to the carrier object with respect to Cartesian geographical reference frame Oxyz where axes Ox and Oy are in the level and directed to the East and North, and Oz axis is directed up. Such reference frame is also known as ENU (East-North-Up) Earth-level frame.

Measured angles are the standard <u>Euler angles</u> of rotation from the Earth-level frame to the object frame: heading K is first, then pitch θ , and then roll γ -- see Fig.D.1.

Notes:

- **1**. Positive direction of heading is clock-wise. So heading K is shown with minus sign on Fig.D.1.
- **2**. In different applications "heading" is also known as "azimuth" or "yaw"; "pitch" is also known as "elevation" or "tilt"; "roll" is also known as "bank".

Due to the definition of Euler angles there is a mathematical singularity when the object longitudinal y_0 -axis is pointed up or down (i.e. pitch approaches $\pm 90^{\circ}$). This singularity is not present in the quaternion or directional cosine matrix (rotation matrix) presentation.

Fig.D.1. Transformation of coordinate systems

Directional cosine matrix (DCM) is the rotation matrix **C** from the object body reference frame $Ox_oy_oz_o$ to the geographical reference frame Oxyz. According to Fig.D.1, DCM can be represented through Euler angles as

$$\mathbf{C} = \begin{bmatrix} \cos K \cos \gamma + \sin K \sin \gamma \sin \theta & \sin K \cos \theta & \cos K \sin \gamma - \sin K \cos \gamma \sin \theta \\ -\sin K \cos \gamma + \cos K \sin \gamma \sin \theta & \cos K \cos \theta & -\sin K \sin \gamma - \cos K \cos \gamma \sin \theta \\ -\cos \theta \sin \gamma & \sin \theta & \cos \theta \cos \gamma \end{bmatrix}.$$
(D.1)

Or, Euler angles can be calculated from elements c_{ii} of directional cosine matrix **C**:

$$K = \arctan \frac{c_{12}}{c_{22}}; \ \theta = \arcsin c_{32}; \ \gamma = -\arctan \frac{c_{31}}{c_{33}}.$$
 (D.2)

Also the Inertial LabsTM INS provides orientation output in <u>quaternion</u> **Q** form which is a hyper-complex number with four components

$$\mathbf{Q} = (q_0, q_1, q_2, q_3), \tag{D.3}$$

where q_0 is real part, q_1 , q_2 , q_3 are vector part. In other words, q_0 represents the magnitude of the rotation, and the other three components represent the axis about which that rotation takes place.

With only four components, quaternion representation of orientation is computationally efficient. However, manipulation of quaternions is not intuitive, so their use in place of directional cosine matrices may increase the chances of mistakes being made.

Quaternion \boldsymbol{Q} is converted to directional cosine matrix \boldsymbol{C} using the next expressions:

$$C = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 + q_2^2 - q_1^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & q_0^2 + q_3^2 - q_1^2 - q_2^2 \end{bmatrix}.$$
 (D.4)

The reverse conversation from directional cosine matrix \boldsymbol{C} to quaternion \boldsymbol{Q} is following:

$$q_0 = \frac{1}{2}\sqrt{1 + c_{11} + c_{22} + c_{33}};$$

$$q_1 = \frac{c_{32} - c_{23}}{4q_0}; \quad q_2 = \frac{c_{13} - c_{31}}{4q_0}; \quad q_3 = \frac{c_{21} - c_{12}}{4q_0}.$$
(D.5)

Expressions (D.5) are wide used but they have singularity at $q_0 = 0$. Therefore the Inertial LabsTM INS uses other expressions that have no singularity:

$$q_{0} = \frac{1}{2}\sqrt{1 + c_{11} + c_{22} + c_{33}}; \quad q_{1} = \frac{1}{2}\sqrt{1 + c_{11} - c_{22} - c_{33}} \cdot sign(c_{32} - c_{23});$$

$$q_{2} = \frac{1}{2}\sqrt{1 - c_{11} + c_{22} - c_{33}} \cdot sign(c_{13} - c_{31}); \quad q_{3} = \frac{1}{2}\sqrt{1 - c_{11} - c_{22} + c_{33}} \cdot sign(c_{21} - c_{12}).$$
(D.6)

At necessity to calculate Euler angles from quaternion, calculate elements c_{12} , c_{22} , c_{31} , c_{32} , c_{33} , according to (D.6), and then use formulas (D.2):

$$K = \arctan \frac{2(q_1q_2 - q_0q_3)}{q_0^2 + q_2^2 - q_1^2 - q_3^2}; \quad \theta = \arcsin(2q_2q_3 + 2q_0q_1);$$

$$\gamma = -\arctan \frac{2(q_1q_3 - q_0q_2)}{q_0^2 + q_3^2 - q_1^2 - q_2^2},$$
(D.7)

where arctan is four-quadrant inverse tangent.