Université de Biskra Faculté des Sciences Département de Mathématiques Concours d'entrée en Doctorat de Mathématiques Appliquées

Epreuve de Probabilités

Exercice 1 (6 points)

- 1) Soit (B_t) un mouvement Brownien. On rappelle que la loi de B_t est définie par la densité $g(x) = \frac{1}{\sqrt{2\pi t}} \exp(-\frac{x^2}{2})$. Trouver la densité de B_t^2 .
- 2) Soit (B_t) un mouvement Brownien et f une fonction de classe C_b^1 . Trouver une fonction h(t, x) telle que

$$E[f'(B_t)] = E[f(B_t).h(B_t, t)]$$

Exercice 2 (8 points)

Soit (X_n) une suite de variables aléatoires indépendantes de même loi gaussienne de moyenne 0 et de variance 1. On définit la suite

$$S_n = \sum_{k=0}^n c^k X_k$$
 avec c une constante telle que $-1 < c < 1$.

1) Montrer que la suite (S_n) est une martingale par rapport à la filtration (\mathcal{F}_n) des X_i , définie par

$$\mathcal{F}_n = \sigma(X_1, X_2, ..., X_n)$$

- 2) Montrer qu'il existe une variable aléatoire S telle que la martingale (S_n) converge presque surement vers S.
- 3) Montrer en utilisant la fonction caratéristique que la variable aléatoire S suit une loi gaussienne de moyenne 0 et de variance $\frac{1}{1-c^2}$.
- 4) Soit (X_n) une suite de variables aléatoires indépendantes de même loi gaussienne de moyenne 0 et de variance 1. On pose $S_n = \sum_{k=1}^n X_k$. Montrer que pour tout $\alpha \in \mathbb{R}$, la suite $Y_n = \exp\left\{\alpha S_n \frac{n\alpha^2}{2}\right\}$ est une martingale.

Exercice 3 (6 points)

Soit X une variable aléatoire suit une loi géométrique de paramètre $p \in [0,1[$.

- 1) Soit $n \in \mathbb{N}$. Exprimer P(X > n) en fonction de p et n. Quel est le lien avec F(n), où F est la fonction de répartition de X.
 - 2) En déduire la propriété dite "d'absence de mémoire" de la loi géométrique, à savoir que:

$$\forall (m, n) \in \mathbb{N} \times \mathbb{N}, \ P(X > n + m | X > m) = P(X > n),$$

3) Soient X_1 une variable aléatoire suit une loi géométrique de paramètre $p_1 \in]0,1[$, et X_2 une variable aléatoire suit une loi géométrique de paramètre $p_2 \in]0,1[$, avec X_1 et X_2 indépendantes. Notons $X = \min(X_1, X_2)$ le minimum de ces deux variables

Soit $n \in \mathbb{N}$. Exprimer P(X > n) en fonction de p_1 , p_2 et n. En déduire la loi de X.