Apache Spark MLlib's past trajectory and new directions

Joseph K. Bradley
Spark Summit 2017

databricks

About me

Software engineer at Databricks

Apache Spark committer & PMC member

Ph.D. Carnegie Mellon in Machine Learning

About Databricks

TEAM

Started Spark project (now Apache Spark) at UC Berkeley in 2009

MISSION

Making Big Data Simple

PRODUCT

Unified Analytics Platform

Try Apache Spark in Databricks!

UNIFIED ANALYTICS PLATFORM

- Collaborative cloud environment
- Free version (community edition)

DATABRICKS RUNTIME 3.0

- Apache Spark optimized for the cloud
- Caching and optimization layer DBIO
- Enterprise security DBES

Try for free today. databricks.com

5 years ago...

Figure 7: Duration of the first and later iterations in Hadoop, HadoopBinMem and Spark for logistic regression and k-means using 100 GB of data on a 100-node cluster.

Zaharia et al. NSDI, 2012

Scalable ML using Spark!

3 ½ years ago until today

People added some algorithms...

Classification

- Logistic regression & linear SVMs
 - L1, L2, or elastic net regularization
- Decision trees
- Random forests
- Gradient-boosted trees
- Naive Bayes
- Multilayer perceptron
- One-vs-rest
- Streaming logistic regression

Statistics

- Pearson correlation
- Spearman correlation
- Online summarization
- Chi-squared test
- databricks Kemel density estimation

Frequent itemsets

- FP-growth
- Prefix span

Linear Algebra

- Local & distributed dense & sparse matrices .
- Matrix decompositions (PCA, SVD, QR)

Regression

- Least squares
 - L1, L2, or elastic net regularization
- Decision trees
- Random forests
- Gradient-boosted trees
- Isotonic regression
- Streaming least squares

Recommendation

Alternating Least Squares (ALS)

Feature extraction, transformation & selection

- Binarizer
- Bucketizer
- Chi-Squared selection
- CountVectorizer
- Discrete cosine transform
 - ElementwiseProduct
- Hashing term frequency
- Inverse document frequency
- MinMaxScaler

Ngram Clustering

- Normalizer
- VectorAssembler
- VectorIndexer
- VectorSlicer
- Word2Vec

- Gaussian mixture model
- K-Means
 - Streaming K-Means
- Latent Dirichlet Allocation
- Power Iteration Clustering

6

Today

Apache Spark is widely used for ML.

- Many production use cases
- 1000s of commits
- 100s of contributors
- 10,000s of users (on Databricks alone)

salesforce

Capital(

This talk

What?

How has MLlib developed, and what has it become?

So what?

What are the implications for the dev & user communities?

Now what?

Where could or should it go?

What?

How has MLlib developed, and what has it become?

Let's do some data analytics

50+ algorithms and featurizers

Rapid development

Shift from adding algorithms to improving algorithms & infrastructure

Growing dev community

Algorithms added per Spark release

Activity per algorithm added

Diversity of contributing organizations

Measured using entropy of distribution over organizations' commits (Higher = more diverse)

Major projects

Note: These are unofficial "project" labels based on JIRA/PR activity.

So what?

What are the implications for the dev & user communities?

Integrating ML with the Big Data world

Seamless integration with SQL, DataFrames, Graphs, Streaming, both within MLlib...

Data sources CSV, JSON, Parquet, ... DataFrames
Simple, scalable
pre/post-processing

Graphs
Graph-based ML
implementations

Streaming
ML models deployed
with Streaming

Integrating ML with the Big Data world

Seamless integration with SQL, DataFrames, Graphs, Streaming, both within MLlib...and outside MLlib

Framework for integrating non-"big data" or specialized ML libraries

E.g., on spark-packages.org

- scikit-learn integration package ("spark-sklearn")
- Stanford CoreNLP integration ("spark-corenlp")

Deep Learning libraries

- Deep Learning Pipelines ("spark-deep-learning")
- BigDL
- TensorFlowOnSpark
- Distributed training with Keras ("dist-keras")

Scaling

Workflow scalability

Same code on laptop with small data -> cluster with big data

Big data scalability

Scale-out implementations

Building workflows

Simple concepts: Transformers, Estimators, Models, Evaluators

Unified, standardized APIs, including for algorithm parameters

Pipelines

- Repeatable workflows across Spark deployments and languages
- DataFrame APIs and optimizations
- Automated model tuning

Now what?

Where could or should it go?

Top items from the dev@ list...

- Continued speed & scalability improvements
- Enhancements to core algorithms
- ML building blocks: linear algebra, optimization
- Extensible and customizable APIs

Goals

Scale-out ML

Standard library

Extensible API

These are unofficial goals based on my experience + discussions on the dev@ mailing list.

Scale-out ML

General improvements

DataFrame-based implementations

E.g., 10x scaling for Connected Components in GraphFrames

Targeted improvements

- Gradient-boosted trees: feature subsampling
- Linear models: vector-free L-BFGS for billions of features

• ...

Standard library

General improvements

- NaN/null handling
- Instance weights
- Warm starts / initial models
- Multi-column feature transforms

Algorithm-specific improvements

Trees: access tree structure from Python

• ...

Extensible and customizable APIs

MLlib has ~50 algorithms. CRAN lists 10,750 packages.

→ Users must be able to modify algorithms or write their own.

Spark Packages

spark-packages.org

340+ packages written for Spark 80+ packages for ML and Graphs

E.g.:

- GraphFrames ("graphframes"): DataFrame-based graphs
- Bisecting K-Means ("bisecting-kmeans"): now part of MLlib
- Stanford CoreNLP wrapper ("spark-corenlp"): UDFs for NLP

How to write a custom algorithm

You need to:

Extend an API like Transformer, Estimator, Model, or Evaluator

MLlib provides some help:

- UnaryTransformer
- DefaultParamsWritable/Readable
- defaultCopy

You get:

Natural integration with DataFrames, Pipelines, model tuning

Challenges in customization

Modify existing algorithms with custom:

- Loss functions
- Optimizers
- Stopping criteria
- Callbacks

Implement new algorithms without worrying about:

- Boilerplate
- Python API
- ML building blocks
- Feature attributes/ metadata

Example of MLlib APIs

Deep Learning Pipelines for Apache Spark

spark-packages.org/package/databricks/spark-deep-learning

APIs are great for users:

- Plug & play algorithms
- Standard API

But challenges remain:

- Development requires expertise
- Community under development

My challenge to you

Can we fill out the long tail of ML use cases?

Resources

Spark Packages: spark-packages.org

- Plugin for building packages: https://github.com/databricks/sbt-spark-package
- Tool for generating package templates: https://github.com/databricks/spark-package-cmd-tool

Example packages:

- scikit-learn integration ("spark-sklearn") Python-only
- GraphFrames Scala/Java/Python

Thank you!

Office hours today @ 3:50pm at Databricks booth

Twitter: @jkbatcmu

