Analysis and Design of Algorithms

Lecture 11,12 **Backtracking Method**

Lecturer: Ha Dai Duong duonghd@mta.edu.vn

2/2/201

1

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

2/2/2017

2

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

2/2/201

Giới thiệu

- Phương pháp quay lui dùng để giải các bài toán mà lời giải của nó X là một tập các phần tử x₁, x₂, .., x_n.
- Ví dụ: Bài toán 8 hậu, Mã đi tuần ...

2/2/2017

Ý tưởng

- Ý tưởng chính của phương pháp quay lui là các bước hướng tới lời giải cuối cùng của bài toán dựa trên việc Thử-và-Sai.
- Tại mỗi bước:
 - Nếu có 1 lựa chọn được chấp nhận thì ghi nhận lại lựa chọn này và và tiến hành các bước thử tiếp theo;
 - Nếu tất cả các lựa chọn không được chấp nhận thì trở lại bước trước, xóa bỏ sự ghi nhận của ứng viên và chọn lựa ứng viên tiếp theo.

2/2/2017

Ví dụ

 Mã đi tuần trên bàn cờ 4 x 4 (bắt đầu từ Ô(1,1)

2/2/2017

_

Ví dụ • Mã đi tuần trên bàn cờ 4 x 4 (bắt đầu từ Ô(1,1)

• Mã đi tuần Ô(1,1)	trên	dụ ờ 4 x	4 (bắ	t đầu từ	,
	1	2			
		_			
			2		
2/2/2017					8

٠,	,		
v	ı	a	П
v		u	v

• Mã đi tuần trên bàn cờ 4×4 (bắt đầu từ $\hat{O}(1,1)$

1	2	5	
8	11	2	
13	4	9	6
10	7	12	3

2/2/2017

10

Ví dụ

• Mã đi tuần trên bàn cờ 4 x 4 (bắt đầu từ $\hat{O}(1,1)$

2/2/2017

11

Ví dụ

• Mã đi tuần trên bàn cờ 4×4 (bắt đầu từ $\hat{O}(1,1)$

2/2/2017

Ví dụ

 Mã đi tuần trên bàn cờ 4 x 4 (bắt đầu từ Ô(1,1)

2/2/2017

13

Quay lui

- Khi quay lui điểm quan trọng của thuật toán là phải ghi nhớ tại mỗi bước đi để tránh trùng lặp khi quay lui.
- Dễ thấy cấu trúc ngăn xếp khá phù hợp để lưu trữ các thông cần ghi nhớ như đề cập ở trên.
- Đệ qui là kỹ thuật thường được sử dụng trong phương pháp quay lui.

2/2/201

14

Lược đồ chung

- Lời giải bài toán có thể mô tả dạng 1 vector n chiều x = (x₁, x₂, ..., x_n) thỏa mãn một điều kiện nào đó.
- Giả sử đã xây dựng được i-1 thành phần $(x_1, x_2,..., x_{i-1})$, cần xác định thành phần thứ i:
 - Nếu khả năng k nào đó phù hợp -> lấy x_i=k, ghi nhận trạng thái đã dùng của k. Nếu i=n -> có được 1 lời giải.
 - Nếu không có khả năng nào cho \mathbf{x}_i thì quay lui và chọn lại $\mathbf{x}_{i\text{-}1}$.

4.5

Lược đồ chung ...

```
Try(i) \equiv \\ for (j = 1 \rightarrow k) \\ If (x_i chấp nhận được khả năng j) \\ \{ \\ Xác định x_i theo khả năng j; \\ Ghi nhận trạng thái mới; \\ if (i < n) \\ Try(i+1); \\ else \\ Ghi nhận nghiệm; \\ Trả lại trạng thái cũ cho bài toán; \\ \}
```

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

2/2/201

17

Bài toán

- Hãy tìm cách xếp 8 con hậu trên một bàn cờ vua sao cho không con nào ăn được nhau.
- Ví dụ: Đây là 1 PA

2/2/2017

Ý tưởng thuật toán

Ý tưởng (Thử và Sai) bài toán 8 hậu

- 1. Lần lượt xếp các con hậu vào bàn cờ
- 2. Giả sử đã xếp được i con hậu (từ 1 đến i)
- 3. Xếp hậu thứ i+1
 - a. Nếu tìm được 1 ô hợp lệ (không bị các con hậu trước đó ăn) -> xếp hậu thứ i+1 vào vị trí vừa tìm thấy. Lặp lại bước 3.
 - b. Nếu không tìm được ô hợp lệ -> tìm vị trí phù hợp khác để đặt lại hậu thứ i.

2/2/201

19

Phương án (nghiệm) của bài toán

- Nhận xét: Mỗi con hậu phải nằm trên 1 hàng
- Dùng mảng x[1..8] để thể hiện một phương án của bài toán:
 - Chỉ số mảng i: dòng chứa con hậu thứ i (chỉ số dòng là cố định)
 - Giá trị x[i] (i=1..8): là cột đặt con hậu thứ i
- Bài toán xếp hậu trở thành: Lần lượt xác định giá trị các thành phần của x[i], i=1..8.

2/2/201

20

Ví du

• Phương án nghiệm

2/2/2017

Ứng viên

- Tại bước i
 - Cần xác định giá trị k , là chỉ số cột, cho x[i], k={1,..,8}.
 - Nếu ứng viên được chọn là j, nghĩa là x[i]=j, khi đó cần "đánh dấu" là cột j đã được chọn để bước sau không chọn lại.
- Tổ chức mảng a[j], j=1..8, để ghi nhận cột j đã được chọn hay chưa, a[j]=1 là cột j chưa được chọn và a[j]=0 là cột j đã được chọn.

/2/2017

Tính hợp lệ

- Hậu ở dòng i, chỉ được đặt vào cột j nếu i-1 hẫu đã đặt trước đó không "ăn" được hậu ở vị trí [i,j] (dòng i, cột j).
- Trên đường chéo đỏ:
 - Giá trị i+j là hằng số
 - Có giá trị từ 2 đến 16
- Trên đường chéo xanh
 - Giá trị **i-j** là hằng số
 - Có giá trị từ -7 đến 7

2/2/2017

i+j=2 i+j=7 i-j=7 i-j=7 i+j=16 i-j=-7 i-j=-1 23

Tính hợp lệ ...

- Mảng b[k], k=2..16, nếu b[k]=1, được đặt ở đường chéo thuận k.
- Mảng c[k], k=-7..7, nếu c[k]=1, được đặt ở đường chéo nghịch k.

2/2/2017

Tính hợp lệ ...

 Như vậy hậu i (dòng i) được đặt vào cột j nếu:

```
b[i+j] = 1
và
c[i-j] = 1
```


2/2/2017

```
for (j = 1; j \le 8; j++)
                        if (a[j] && b[i+j] && c[i-j])
                             x[i] = j; a[j] = 0;
Cài đặt
                             b[i+j] = 0; c[i-j] = 0;
                             if (i < 8)
Khởi tạo
                                    Try (i+1);
                             else
a[j] = 1
                                     Xu\acute{a}t(x);
b[i+j] = 1
                            /* Sau khi in 1 lời giải xong,trả lại
tình trạng ban đầu còn trống cho hàng
c[i-j] = 1
                                a[j], đường chéo i+j và đường chéo
                               i-j, để tìm lời giải khác */
                            a[j] = 1; b[i+j] = 1; c[i-j] = 1;
                  }
  2/2/2017
```

Minh họa

• Một lời giải của bài toán với N=8

Kết quả

- Độ phức tạp thuật toán: T(n) = ???
- Viết hàm Xuat(x): in phương án lựa chọn ra màn hình.
- Code, chạy thử và trình bày kết quả

2/2/2017

28

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

2/2/201

29

Bài toán

- Trên bàn cờ vua, con mã ở vị trí (x₀, y₀)
- Hãy chỉ ra hành trình để con mã đi qua tất cả các ô, mỗi ô 1 lần.
- Ví dụ: Đây là 1 PA trên bàn cờ 8x8 khi mã bắt đầu từ ô (1,1)

2/2/2017

Ý	tưởng	thuât	toán
•	240116	c a a c	COGI

Ý tưởng (Thử và Sai) bài toán mã đi tuần

- 1. Đặt ngựa tại vị trí (x_0,y_0) di chuyển ngựa theo luật cờ vua.
- 2. Giả sử đã đi được i-1 bước.
- 3. Xét nước đi thứ i
 - a. Nếu tìm được 1 nước đi hợp lệ (và ngựa chưa qua lần nào) -> xếp nước đi thứ i của ngựa vào vị trí vừa tìm thấy. Lặp lại bước 3.
 - b. Nếu không tìm được ô hợp lệ -> tìm vị trí phù

2/2/2017 hợp khác để đặt lại bước đi thứ i-1 của ngựa.

Phương án nghiệm

• Dùng mảng 2 chiều **h[x,y]** (x=1..N, y=1..N) với qui ước:

h[x,y] = 0 là ô (x,y) chưa có ngựa đi qua h[x,y] = k là ngựa đã qua ô (x,y) ở nước thứ k.

• Bài toán trở thành: Xác định giá trị mảng h là nước đi của mã trong hành trình đi qua tất cả các ô bắt đầu từ (x_0,y_0) . Khi NxN ô được đi qua ta có 1 phương án (nghiệm) thể hiện cách đi của mã.

2/2/2017

Ví du

• Một phương án để mã đi tuần trên bàn cờ 5x5 bắt đầu từ ô (1,1) là

1_	18	13	8	3
12	7	2	19	14
17	24	21	4	9
22	11	6	15	20
25	16	23	10	5

2/2/2017


```
Try(i, \ x, \ y) \equiv \\ for(k = 1; \ k <= 8; \ k++) \\ \{ \\ u = x + a[k]; \\ v = y + b[k]; \\ if \ (1 <= u \ , v <= n \ \&\&h[u][v] == 0) \\ \{ \\ \textbf{Cài dặt} \\ h[u][v] = i; \\ if \ (i < n*n) \\ Try(i+1,u,v); \\ else \\ xuat\_h(); // In \ ma \ trận \ h \\ \} \\ h[u][v] = 0; \\ \}
```

Minh họa

• Với N=5, mã xuất phát tại (1,1)

1	6	15	10	21
14	9	20	5	16
19	2	7	22	11
8	13	24	17	4
25	18	3	12	23

2/2/2017

Minh họa

• Với N=6, mã xuất phát tại (2,3)

36	17	6	29	8	11
19	30	1	10	5	28
16	35	18	7	12	9
23	20	31	2	27	4
34	15	22	25	32	13
21	24	33	14	3	26

2/2/2017

Kết quả

- Độ phức tạp thuật toán: T(n) = ???
- Viết hàm Xuat_h(x): in phương án lựa chọn ra màn hình.
- Code, chạy thử và trình bày kết quả
- Lưu ý: Tùy vào kích thước bàn cờ, bài toán chỉ có lời giải ở một số vị trí bắt đầu (x_0, y_0) nhất định.

Nội dung

- 1. Lược đồ chung
- 2. Bài toán 8 hậu
- 3. Bài toán ngựa đi tuần
- 4. Trò chơi Sudoku
- 5. Liệt kê dãy nhị phân độ dài N
- 6. Liệt kê các hoán vị
- 7. Duyệt đồ thị

Bài toán

• Trò chơi: Cho hình vuông được chia thành 9x9 ô, trên đó 1 số ô đã có sẵn các số từ 1 đến 9.

• Hãy đặt các số từ 1-9 vào các ô trống sao cho: 1 hàng, 1 cột, 1 vùng 3x3 đều có đủ các số từ 1-9.

								'	Ví dụ	ļ										
		В	an	đ	ầu					1	>									
5	3			7						5	3	4	6	7	8	9	1	2		
6			1	9	5					6	7	2	1	9	5	3	4	8		
	9	8					6			1	9	8	3	4	2	5	6	7		
8				6				3		8	5	9	7	6	1	4	2	3		
4			8		3			1		4	2	6	8	5	3	7	9	1		
7				2				6		7	1	3	9	2	4	8	5	6		
	6					2	8			9	6	1	5	3	7	2	8	4		
			4	1	9			5		2	8	7	4	1	9	6	3	5		
				8			7	9		3	4	5	2	8	6	1	7	9		

Ý tưởng thuật toán

Ý tưởng (Thử và Sai) bài toán Sudoku

- 1. Cần xếp N ô trống
- 2. Giả sử đã xếp được đến ô thứ i.
- 3. Xét ô thứ i+1
 - a. Nếu tìm được 1 giá trị thích hợp -> xếp giá trị đó vào ô thứ i+1 vừa tìm thấy. Lặp lại bước 3.
 - b. Nếu không tìm được 1 giá trị hợp lệ -> tìm giá trị phù hợp khác để đặt lại cho $\hat{0}$ thứ i.

2/2/2017

44

Phương án nghiệm

 Dùng mảng 2 chiều S[x,y] (x=1..9, y=1..9) để lưu giá trị số Sudoku:

S[x,y] = 0 là ô (x,y) chưa được xử lý S[x,y] = k (k=1...9) là giá trị số Sudoku.

 Bài toán trở thành: Xác định giá trị mảng S là các số Sukodu. Khi tất cả các ô được đặt ta có 1 phương án (nghiệm) thể hiện 1 cách chơi Sukodu.

2/2/2017

·′u	• ^
Ứng	vier
מיי כ	VICI

 Úng viên (giá trị) có thể đặt cho ô có tọa độ (x_i,y_i) là giá trị k:

 $k \in \, \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\}$

2/2/2017

46

Tính hợp lệ

- Ứng viên k được đặt vào ô (x_i,y_i) nếu
 - Trên hàng x_i chưa có giá trị k
 - Trên cột y_i chưa có giá trị k
 - Vùng 3x3 chứa (x $_{\rm i}, y_{\rm i})$ chưa có giá trị k

2/2/2017

47

Cài đặt

• Tính hợp lễ, hàm $\begin{array}{ll} \text{Feasible}(S[1,2,\ldots,9][1,2,\ldots,9],x,\\ & \underbrace{\text{Feasible}}(S[1,2,\ldots,9][1,2,\ldots,9],x,y,k) \colon \\ & \text{for } i \leftarrow 1 \text{ to } 9 \\ & \text{ if } S[x][i] = k \\ & \text{return False} \\ & \text{for } i \leftarrow 1 \text{ to } 9 \\ & \text{ if } S[i][y] = k \\ & \text{return False} \\ & a \leftarrow \lfloor (x-1)/3 \rfloor, b \leftarrow \lfloor (y-1)/3 \rfloor \\ & \text{for } i \leftarrow 3a+1 \text{ to } 3a+3 \\ & \text{ for } j \leftarrow 3b+1 \text{ to } 3b+3 \\ & \text{ if } S[i][j] = k \\ & \text{return False} \\ & \text{return False} \\ & \text{return True} \end{array}$

```
\begin{split} & \underbrace{\text{SUDOKU}}(S[1,2,\ldots,9][1,2,\ldots,9],x,y) \colon \\ & \text{if } y = 10 \\ & \text{if } x = 9 \\ & \text{print } S \\ & \text{else} \\ & \text{SUDOKU}(S[1,2,\ldots,9][1,2,\ldots,9],x+1,1) \\ & \text{else if } S[x][y] = \emptyset \\ & \text{for } k \leftarrow 1 \text{ to } 9 \\ & \text{if } \text{FEASIBLE}(S,x,y,k) \\ & S[x][y] \leftarrow k \\ & \text{SUDOKU}(S[1,2,\ldots,9][1,2,\ldots,9],x,y+1) \\ & S[x][y] \leftarrow \emptyset \quad \text{[[for next branching]]} \\ & \text{else} \qquad \qquad \text{[[S[x][y] is given]]} \\ & \text{SUDOKU}(S[1,2,\ldots,9][1,2,\ldots,9],x,y+1) \end{split}
```

Minh họa

9	1	3	6	5	2	8	7	4
7	5	8	9	4	1	6	2	3
6	2	4	7	3	8	5	1	9
2	9	7	3	8	5	4	6	1
1	3	6	4	2	9	7	5	8
8	4	5	1	6	7	3	9	2
3	7	1	8	9	6	2	4	5
4	6	2	5	1	3	9	8	7
5	8	9	2	7	4	1	3	6

2/2/2017

Minh họa ...

4	8	3	7	5	9	1	6	2
9	2	1	8	4	6	3	5	7
5	7	6	1	3	2	9	8	4
2	5	7	6	9	1	8	4	3
8	1	9	3	7	4	5	2	6
6	3	4	2	8	5	7	9	1
3	4	2	5	1	8	6	7	9
1	6	8	9	2	7	4	3	5
7	9	5	4	6	3	2	1	8

2/2/2017

		I	M	in	h	hç	pa					
	4	2	3	6	9	7	8	1	5			
	6	9	1	5	3	8	4	7	2			
	5	8	7	4	2	1	6	3	9			
	3	1	9	8	7	5	2	6	4			
	2	5	6	1	4	9	3	8	7			
	7	4	8	3	6	2	5	9	1			
	9	6	4	2	1	3	7	5	8			
	1	3	5	7	8	4	9	2	6			
	8	7	2	9	5	6	1	4	3			
2/2/2017												52

Bài tập

- 1. Thực hiện việc đặt 5 con hậu trên bàn cờ, thể hiện kết quả từng bước.
- Thực hiện các nước đi của con ngựa trên bàn cờ 5x5 bắt đầu từ ô (1,2) thể hiện kết quả từng bước.

2/2/2017 5

Bài tập

3. Chơi trò sudoku (theo thuật toán) với các số đã cho như sau:

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				Я			7	a

2/2/2017

55

Bài tập

- 4. Hoàn thiện cài đặt bài toán 8 hậu
- 5. Hoàn thiện cài đặt bài toán mã đi tuần.
- 6. Hoàn thiện cài đặt trò chơi Sukodu.
- 7. Sử dụng phương pháp quay lui đề xuất giải thuật đánh cờ caro (tự động) cho máy tính.
- 8. Giải bài toán cái túi theo giải thuật quay lui.

2/2/2017