MobileNet

This folder contains building code for MobileNetV2 and MobilenetV3 networks. The architectural definition for each model is located in mobilenet_v2.py and mobilenet_v3.py respectively.

For MobilenetV1 please refer to this page

We have also introduced a family of MobileNets customized for the Edge TPU accelerator found in Google Pixel4 devices. The architectural definition for MobileNetEdgeTPU is located in mobilenet v3.py

Performance

Mobilenet V3 latency

This is the timing of MobileNetV2 vs MobileNetV3 using TF-Lite on the large core of Pixel 1 phone.

Mobilenet V2 and V3 Latency for Pixel 1.png

MACs

MACs, also sometimes known as MADDs - the number of multiply-accumulates needed to compute an inference on a single image is a common metric to measure the efficiency of the model. Full size Mobilenet V3 on image size 224 uses \sim 215 Million MADDs (MMadds) while achieving accuracy 75.1%, while Mobilenet V2 uses \sim 300MMadds and achieving accuracy 72%. By comparison ResNet-50 uses approximately 3500 MMAdds while achieving 76% accuracy.

Below is the graph comparing Mobilenets and a few selected networks. The size of each blob represents the number of parameters. Note for ShuffleNet there are no published size numbers. We estimate it to be comparable to MobileNetV2 numbers.

madds_top1_accuracy

Mobilenet EdgeTPU latency

The figure below shows the Pixel 4 Edge TPU latency of int8-quantized Mobilenet EdgeTPU compared with MobilenetV2 and the minimalistic variants of MobilenetV3 (see below).

Mobilenet Edge TPU latency for Pixel 4 Edge TPU.png

Pretrained models

Mobilenet V3 Imagenet Checkpoints

All mobilenet V3 checkpoints were trained with image resolution 224x224. All phone latencies are in milliseconds, measured on large core. In addition to

large and small models this page also contains so-called minimalistic models, these models have the same per-layer dimensions characteristic as MobilenetV3 however, they don't utilize any of the advanced blocks (squeeze-and-excite units, hard-swish, and 5x5 convolutions). While these models are less efficient on CPU, we find that they are much more performant on GPU/DSP.

Imagenet	MACs	Params				
Checkpoint	(M)	(M)	Top1	Pixel 1	Pixel 2	Pixel 3
Large dm=1 (float)	217	5.4	75.2	51.2	61	44
Large dm=1 (8-bit)	217	5.4	73.9	44	42.5	32
Large dm=0.75 (float)	155	4.0	73.3	39.8	48	34
Small dm=1 (float)	66	2.9	67.5	15.8	19.4	14.4
Small dm=1 (8-bit)	66	2.9	64.9	15.5	15	10.7
Small dm=0.75 (float)	44	2.4	65.4	12.8	15.9	11.6

Minimalistic checkpoints:

Imagenet Checkpoint	MACs (M)	Params (M)	Top1	Pixel 1	Pixel 2	Pixel 3
	()	()	P -			
Large minimalistic (float)	209	3.9	72.3	44.1	51	35
Large minimalistic (8-bit)	209	3.9	71.3	37	35	27
Small minimalistic (float)	65	2.0	61.9	12.2	15.1	11

Edge TPU checkpoints:

Imagenet Checkpoint	MACs (M)	Params (M)	Top1	Pixel 4 Edge TPU	Pixel 4 CPU
MobilenetEdgeTPU dm=0.75 (8-bit)	624	2.9	73.5	3.1	13.8

Imagenet Checkpoint	MACs (M)	Params (M)	Top1	Pixel 4 Edge TPU	Pixel 4 CPU
MobilenetEdgeTPU dm=1 (8-bit)	990	4.0	75.6	3.6	20.6

Note: 8-bit quantized versions of the Mobilenet EdgeTPU models were obtained using Tensorflow Lite's post training quantization tool.

Mobilenet V2 Imagenet Checkpoints

				Top	Top	
				1	5	Mobile
				Ac-	Ac-	CPU
			C₽aran	ne ter s	cu-	(ms)
Classification Checkpoint	Quant	i z(&1)	(M)	racy	racy	Pixel 1
float_v2_1.4_224	uint8	582	6.06	75.0	92.5	138.0
float_v2_1.3_224	uint8	509	5.34	74.4	92.1	123.0
float_v2_1.0_224	uint8	300	3.47	71.8	91.0	73.8
float_v2_1.0_192	uint8	221	3.47	70.7	90.1	55.1
float_v2_1.0_160	uint8	154	3.47	68.8	89.0	40.2
float_v2_1.0_128	uint8	99	3.47	65.3	86.9	27.6
float_v2_1.0_96	uint8	56	3.47	60.3	83.2	17.6
float_v2_0.75_224	uint8	209	2.61	69.8	89.6	55.8
float_v2_0.75_192	uint8	153	2.61	68.7	88.9	41.6
float_v2_0.75_160	uint8	107	2.61	66.4	87.3	30.4
float_v2_0.75_128	uint8	69	2.61	63.2	85.3	21.9
float_v2_0.75_96	uint8	39	2.61	58.8	81.6	14.2
float_v2_0.5_224	uint8	97	1.95	65.4	86.4	28.7
float_v2_0.5_192	uint8	71	1.95	63.9	85.4	21.1
float_v2_0.5_160	uint8	50	1.95	61.0	83.2	14.9
float_v2_0.5_128	uint8	32	1.95	57.7	80.8	9.9
float_v2_0.5_96	uint8	18	1.95	51.2	75.8	6.4
float_v2_0.35_224	uint8	59	1.66	60.3	82.9	19.7
float_v2_0.35_192	uint8	43	1.66	58.2	81.2	14.6
float_v2_0.35_160	uint8	30	1.66	55.7	79.1	10.5
float_v2_0.35_128	uint8	20	1.66	50.8	75.0	6.9
float_v2_0.35_96	uint8	11	1.66	45.5	70.4	4.5

Training

V3

The following configuration, achieves 74.6% using 8 GPU setup and 75.2% using $2\mathrm{x}2$ TPU setup.

Final Top 1 Accuracy	74.6	
learning_rate	0.16	Total learning rate. (Per clone learning rate is 0.02)
rmsprop_momentum	0.9	
rmsprop_decay	0.9	
rmsprop_epsilon	0.002	
learning_rate_decay_factor	0.99	
optimizer	RMSProp	
warmup_epochs num_epochs_per_decay	3	Slim uses per clone epoch, so the the flag value is 0.6 Slim uses per clone epoch,
batch giga (now ahin)	192	so the flag value is 0.375
batch_size (per chip) moving_average_decay	0.9999	
weight_decay	0.9999 1e-5	
init_stddev	0.008	
dropout_keep_prob	0.008	
bn_moving_average_decay	0.8	
9 9	0.997	
bn_epsilon label_smoothing	0.001	
laner_smoothing	0.1	

V2

The numbers above can be reproduced using slim's train_image_classifier. Below is the set of parameters that achieves 72.0% for full size MobileNetV2, after about 700K when trained on 8 GPU. If trained on a single GPU the full convergence is after 5.5M steps. Also note that learning rate and num_epochs_per_decay both need to be adjusted depending on how many GPUs are being used due to slim's internal averaging.

⁻⁻model_name="mobilenet_v2"

⁻⁻preprocessing_name="inception_v2"

```
--label_smoothing=0.1
--moving_average_decay=0.9999
--batch_size= 96
--num_clones = NUM_GPUS # you can use any number here between 1 and 8 depending on your hard---learning_rate_decay_factor=0.98
--num_epochs_per_decay = 2.5 / NUM_GPUS # train_image_classifier does per clone epochs
```

Example

See this ipython notebook or open and run the network directly in Colaboratory.