Module 12 Introduction to Complexity Theory

S. Lakshmivarahan
School of Computer Science
University of Oklahoma
USA-73019
Varahan@ou.edu

Tractable Vs Intractable Problems

- All the problems solved in this course so far take time of the form log n, n, n log n, n², n³, etc.
- Each of this time functions are polynomially bounded.
- Definition: The set of all problems solvable in polynomially bounded time, are called <u>Tractable Problems</u>
- Problems that require exponential time, 2ⁿ are known as <u>Intractable</u>.

Some Intuition

- If a "LARGE" sized problem can be solved in a "Short" time, it is Tractable.
- Intractable problems are those require "LARGE" time to solve even "SMALL" sized problems.
- Problem π_1 of size n_1 with $T_1(n)=n_1^3$ Problem π_2 of size n_2 with $T_2(n)=2^{n_2}$

Intuition- continued

- Let $n_1=10^6$ then $T_1(n_1)=10^{18}$ operations
- Verify: $n_1^3 = 10^{18} = 2^{n_2}$ and $n_2 = 59.78$
- Problem π_2 of size merely n_2 = 60, takes the same time as problem π_1 of size n_1 =10⁶
- π_1 is tractable, π_2 is not.

Prevalence of Intractable Problems

- A large variety of combinational problems from many walks of life are intractable
- Some of these are "DECISION PROBLEMS" who's answer is YES or NO
- A large variety are "Optimization Problems"
- Complexity theory is built around the decision problems.
- In assessing the complexity of optimization problems, consider the decision version
- The idea is if the decision version is difficult, the optimization is even more difficult.

Example - Satisfiability Problem

- X- Logical Variable Takes two values : T or F
- \bar{X} Complement of X
- $\{X, \bar{X}\}$ Literal
- A <u>clause</u> is a disjunction (Boolean "OR", V) of literals
- $(X_1 \lor X_2 \lor X_3)$, $(\bar{X}_1 \lor X_2 \lor \bar{X}_3)$ $(\bar{X}_1 \land X_3)$ are clauses
- A <u>Logical Expression</u> is in conjunctive normal form if it a conjunction (Boolean "AND", ∧) of clauses
- $f(x_1, x_2, x_3) = (\bar{X}_1 \vee X_3) \wedge (\bar{X}_1 \vee X_2 \vee \bar{X}_3) \wedge (X_1 \vee X_2 \vee X_3)$ is a <u>Logical Expression</u>

Satisfiability (SAT) Problem - decision problem

- Set $x_1 = F$, $x_2 = F$, $x_3 = T$ called truth assignment for logical variables x_1, x_2, x_3 .
- Verify that $f(x_1, x_2, x_3)$ is "TRUE" for this truth assignment <u>Satisfying Assignment</u>
- Given a logical expression $f(x_1, x_2, x_n)$ finding an assignment of truth values to x_1, x_2, x_n that makes $f(x_1, x_2, x_n)$ True is called the satisfiability problem.
- This is combinatorial decision problem since there are 2^n distinct truth assignments to $x_1 \dots x_n$.
- In the worst case, have to exhaust all the 2ⁿ possibilities Intractable

SAT Problem

- Naturally arises in automatic theorem proving.
- Played a central role in the development of "COMPLEXITY THEORY" as we know it today.
- An intimate relation between SAT problem and algorithms implemented on Turing machines.
- It is a model for Intractable Decision Problem.

Final Exam time table problem

- A large university wants to schedule all the final exams in a week with four times slots of two hours each on a given day with a total of twenty time slot.
- Constraints Student taking different subjects must have exam in different time slots.
- Verify: This is a combinatorial decision problem Does there exits a schedule satisfying the constraint?

Reduction to graph coloring problem

- Define G=(V, E)
- V The set of all courses {1, 2,n} in the university
- E Two courses i and j are adjacent if they cannot have exam at the same time.
- The number of colors are equal to the total number (=20) of distinct time slots available.
- The final exams can be scheduled without conflicts only if we can color the nodes
 of the graph in such a way that no two adjacent nodes have the same color –
 called Legal coloring of the graph
- <u>Decision Version</u>: Is there a legal coloring of a graph with atmost k colors (k = 20) in time table problem.
- Optimization Problem: Find the chromatic number $\varkappa(G)$ the smallest number of colors needed to legally color a graph.

Hamiltonian cycle (HC) and travelling salesman problem (TSP)

- Let G = (V, E) be a graph.
- HC is the simple, spanning cycle.
- Let G = (V, E, W) be a weighted graph with positive weights.
- Optimization- TSP: Find a tour (which is a HC) of least cost.
- Decision TSP: Is there a tour of cost at most k?
- Applications: routing trucks through a city to pick up garbage, deliver package

Tractability and P - class

- A problem π is said to be in class P (called the polynomial class) if there exits a polynomial time algorithm $T(n) = O(n^k)$, k>0 integer, to solve π
- Tractability is identified with P class
- P is the class of polynomially bounded decision problems.

Properties of P - class

- Tractability or P class => Efficient algorithm
- P Class has nice closure properties.
- P- Class closed under addition, multiplication, and composition of complexities of component algorithms.
- No smaller class has this closure property.
- The P class is independent of the formal model for computation Turing machine models, RAM model, circuit model, etc.
- If a problem π has polynomial time in one model then it enjoys polynomial time in all other models.

Intractability and NP-class

- NP Non deterministic polynomial class
- A problem π in NP admits a non deterministic polynomial time algorithm on a Turing machine.
- A non- deterministic finite automata with n states can be transformed into a deterministic finite automata with 2ⁿ states.
- Likewise, a non deterministic polynomial time algorithm takes exponential time when implemented deterministically.

Properties of NP-Class

- NP algorithm has two phases.
- Non- deterministic/ Guessing phase: Guess a solution
- Deterministic phase: Verify if the suspected solution is indeed a solution.
- Example: Pick an arbitrary truth assignment from among 2ⁿ assignments.
- Verify if the given assignment is a satisfying assignment.

Complete problems- transformations

- Let L be a class of problems.
- A problem $\pi \in L$ is called a <u>Complete Problem for the class L</u> if every problem $\pi' \in L$ can be <u>reduced</u> or transformed to the problem π denoted by $\pi' \to \pi$
- We are interested in transformation or reduction of π_1 to π_2

Polynomial transformation NP- Completeness

- Motivated by feasibility, interested in polynomial transformations
- Problem π is a complete problem for the NP Class if $\pi \in \text{NP}$ and for every problem $\pi' \in \text{NP}$, there is a polynomial time transformation / reduction denoted by $\stackrel{\text{P}}{\longrightarrow}$ such that $\pi' \stackrel{\text{P}}{\longrightarrow} \pi$.
- S Cook in 1971 first proved that the SAT problem is NP- complete (ie) SAT is NP-C

Frame work – The complexity of combinational problems

- Let $\pi_1 \xrightarrow{P} \pi_2$ and $\pi_2 \in P$, then $\pi_1 \in P$.
- To prove that a problem π is NP– C, select a known NP-C problem π' and produce a polynomial time transformation such that $\pi' \xrightarrow{P} \pi$
- A view of the world of problems

• Problem: Argue P ⊆ NP

IS P=NP?

- It is not known if P=NP and is a major open problem.
- To show P=NP, enough to show that a known NP-C problem can be solved in polynomial time (ie) for all $\pi' \in NP$.

$$\pi' \xrightarrow{P} \pi \in P$$

- Hence every problem is NP can be solved in polynomial time and hence NP =P
- This is one of the major open problems of our time.

NP- hard Problems

- By definition, NP is the class of decision problems.
- A combinational optimization problem eg: TSP cannot be in NP
- But the decision version of it is in NP and can be shown to be NP-C.
- Thus, any combinatorial optimization problem whose decision version is NP-C is called NP-hard. TSP is NP-hard.

Module 12 20

Tree of NP-C problems

 This tree is very big and grows continuously as new NP –C problems are discovered

Module 12 21