Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 10: dérivabilité. Les exercices porteront sur le chapitre 9: continuité.

Chapitre 10 : Dérivabilité des fonctions de $\mathbb R$ dans $\mathbb K$.

Fonctions dérivables, fonction dérivée

Taux d'accroissement, dérivabilité en a. f est dérivable en a si et seulement si elle admet un développement limité à l'ordre 1 en a. La dérivabilité implique la continuité. Dérivabilité à gauche, à droite. Fonction dérivée. (\star) Opérations sur les fonctions dérivables : combinaison linéaire, produit, quotient, composée, réciproque.

Conséquences de la dérivabilité

 (\star) Si f admet un extremum local en $a \in \mathring{l}$, alors f'(a) = 0. Théorème de Darboux. (\star) Théorème de Rolle dans le cas d'un segment. Extensions sur des intervalles non bornés. (\star) Égalité des accroissements finis. Égalité généralisée des accroissements finis. (\star) Inégalité des accroissements finis dans le cas réel. Inégalité des accroissements finis dans le cas complexe. Lien entre monotonie et signe de la dérivée. (\star) Théorème de la limite de la dérivée.

Fonctions de classe C^k

Fonction k-fois dérivable, de classe C^k . Opérations sur les fonctions k-fois dérivables : combinaisons linéaires, (\star) Formule de Leibniz, composée, quotient, réciproque. Théorème de la limite de la dérivée n-ième. Toute fonction de classe C^1 sur un segment est Lipschitzienne.

* * * * *