Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 209.6 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

0

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 12.64, tilsynelatende blå størrelseklass $m_B=15.56$

20

30

Periode (år)

40

50

60

10

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 12.64, tilsynelatende blå størrelseklass $m_B = 14.56$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=5.32,$ tilsynelatende

blå størrelseklass m_B = 8.24

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 5.32, tilsynelatende blå størrelseklass $m_B = 7.24$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.13 og store halvakse a=66.40 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.13 og store halvakse a=99.49 AU.

Filen 1F.txt

Ved bølgelengden 555.24 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

9.60 - 9.40 - 9.20 - 9.00 - 8.80 - 0 10 20 30 40 50

Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 31.90 solmasser, temperatur på 10.50 Kelvin og tetthet 1.47e-20 kg per kubikkmeter

Gass-sky B har masse på 19.40 solmasser, temperatur på 39.60 Kelvin og tetthet 1.25e-21 kg per kubikkmeter

Gass-sky C har masse på 13.40 solmasser, temperatur på 89.30 Kelvin og

tetthet 2.68e-21 kg per kubikkmeter

Gass-sky D har masse på 17.40 solmasser, temperatur på 42.40 Kelvin og tetthet 7.01e-22 kg per kubikkmeter

Gass-sky E har masse på 3.80 solmasser, temperatur på 26.30 Kelvin og tetthet 4.72e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjerna har en degenerert heliumkjerne

STJERNE B) stjerna har et degenerert heliumskall

STJERNE C) stjernas energi kommer fra Planck-stråling alene

STJERNE D) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE E) hele stjerna er elektrondegenerert

Filen 1L.txt

Stjerne A har spektralklasse A4 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 5.90

Stjerne B har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 9.79

Stjerne C har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 2.76

Stjerne D har spektralklasse K4 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 7.38

Stjerne E har spektralklasse F5 og visuell tilsynelatende størrelseklasse m_V = 6.75

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

Filen 2B/Oppgave2B_Figur 4.png

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 . i ż ż 5 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.9609999999999996536104 AU.

Tangensiell hastighet er 34196.277837907960929442 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.520 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.760 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=21.009.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9692 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00015 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=980.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9898 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 658.80 nm.

Filen 4A.txt

Stjernas masse er 2.99 solmasser.

Stjernas radius er 0.58 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 -400 200 400 -600 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 12.39 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.28 solmasser.

r-koordinaten til det innerste romskipet er r $=13.36~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=19.52~\mathrm{km}.$