Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images

Kevin Thandiackal^{1, 2} *, Boqi Chen^{1, 2} *, Pushpak Pati¹, Guillaume Jaume³, Drew F. K. Williamson³, Maria Gabrani¹, and Orcun Goksel^{2, 4} ¹Accelerated Discovery and AI, IBM Research Europe; ²Computer-assisted Applications in Medicine, ETH Zurich;

³Dept. of Pathology, Brigham and Women's Hospital, Harvard Medical School; ⁴Dept. of Information Technology, Uppsala University

* Contributed equally

github.com/histocartography/zoommil

kth@zurich.ibm.com

1 Background

- Pathologists examine whole-slide images (WSIs) in a hierarchical manner, detecting diagnostically informative regions at a low magnification and examining these regions at a high magnification
- Most existing WSI classification methods build on multiple instance learning (MIL) to process all image patches in a WSI, either at a single magnification (lack of context) or across multiple magnifications (computationally expensive)
- We propose **ZoomMIL**: a multi-scale, context-aware MIL method that learns to zoom for highly efficient (up to 40x faster computation time) WSI classification

2 Idea

- First identify informative patches at a low magnification, then zoom in on the selected patches at high magnification
- Instead of relying on a handcrafted patch selection strategy, employ a differentiable Top-K module¹ to learn identifying the most relevant patches
- Aggregate information across multiple magnifications to obtain a context-aware WSI representation tailored to the downstream task

- Cordonnier, J. et al.: Differentiable patch selection for image recognition. CVPR (2021)
- Ilse, M. et al.: Attention-based deep multiple instance learning. ICML (2018)
- Lerousseau, M. et al.: Sparseconvmil: Sparse convolutional context-aware multiple instance learning for whole slide image classification. MICCAI Workshop on Computational Pathology (2021)
- Lu, M. et al.: Data efficient and weakly supervised computational pathology on whole slide images. Nature Biomedical Engineering 5 (2021)
- Shao, Z. et al.: TransMIL: Transformer based correlated multiple instance learning for whole slide image classification. NeurIPS (2021)
- Hashimoto, N. et al.: Multi-scale domain-adversarial multiple-instance cnn for cancer subtype classification with unannotated histopathological images. CVPR (2020)
- Li, B. et al.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. CVPR (2021)
- Brancati, N. et al.: BRACS: A dataset for breast carcinoma subtyping in H&E histology images. arXiv (2021)
- Bejnordi, B. et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318 (2017)

3 Method: ZoomMIL-

- A WSI is split into a bag of patch features $\mathbf{H} = [\mathbf{h}_1 \ ... \ \mathbf{h}_N]^\mathrm{T} \in \mathbb{R}^{N \times D}$
- The WSI-level representation is obtained through gated attention pooling²: $\mathbf{g}(\mathbf{H}) = \sum_{i=1}^{N} a_i \mathbf{h}_i$, with an attention weight a_i per patch
- Using a differentiable Top-*K* module, compute the indices of the *K* patches with the highest attention weights

$$\mathbf{T}_m = \mathbb{E}\left[\operatorname{argmax}\langle \widehat{\mathbf{T}}, (\mathbf{a}_m + \sigma \mathbf{Z}) \mathbf{1}^{\mathrm{T}} \rangle\right]$$

- The resulting selector matrix T_m then selects the K most informative patches at magnification $m: \widetilde{\mathbf{H}}_m = \mathbf{T}_m^{\mathrm{T}} \mathbf{H}_m$
- The final classifier $f(\cdot)$ computes the predicted label \hat{y} by sumpooling WSI-level representations over all magnifications:

$$\hat{\mathbf{y}} = f(\mathbf{g}_1(\mathbf{H}_1) + \mathbf{g}_2(\widetilde{\mathbf{H}}_2) + \dots + \mathbf{g}_M(\widetilde{\mathbf{H}}_M))$$

4 Results

 SOTA results for breast cancer subtyping on the BRIGHT⁸ dataset as well as two other WSI classification datasets

Methods	Classification		Computation	
	Weighted F1	Accuracy	TFLOPs	Time (s)
SparseConvMIL³ (10x)	53.2 ± 3.6	55.3 ± 3.7	0.96	0.13
ABMIL ² (10x)	63.5 ± 2.7	65.5 ± 1.9	16.45	5.86
CLAM-SB ⁴ (10x)	63.1 ± 1.7	64.3 ± 1.7	16.45	5.86
TransMIL ⁵ (10x)	65.5 ± 2.8	66.0 ± 2.7	16.46	5.86
MSMIL ⁶ (1.25x + 2.5x + 10x)	61.7 ± 0.6	62.5 ± 1.1	21.59	7.69
DSMIL 7 (1.25x + 2.5x + 10x)	63.1 ± 1.6	64.0 ± 1.1	21.66	7.69
ZoomMIL-Eff (1.25x → 2.5x)	66.0 <u>+</u> 1.9	66.5 ± 1.5	0.40	0.14
ZoomMIL $(1.25x \rightarrow 2.5x \rightarrow 10x)$	$\textbf{68.3} \pm \textbf{1.1}$	69.3 \pm 1.0	1.29	0.46

Best throughput-accuracy trade-off on CPU and GPU

 Annotated tumor regions and ZoomMIL's attention maps for WSIs from the (a, b) BRIGHT and (c-f) CAMELYON169 datasets

