直流电桥测量电阻

马江岩

2021年11月27日

摘要

电桥是用比较法测电阻的仪器. 电桥拿未知电阻与标准电阻相比较, 由检流计示零来判断电桥平衡, 对电源的稳定度要求不高. 只要检流计足够灵敏, 用标准电阻作桥臂, 被测电阻就可达到同其他桥臂同样的精度. 这两个特点使电桥成为准确测量电阻的仪器. 本实验利用直流电桥测量了未知电阻的阻值和电桥的灵敏度, 分析了不同因素对电阻不确定度和电桥灵敏度的影响.

1 用自组电桥测量未知电阻及相应的电桥灵敏度

用 3 个电阻箱和 1 个待测电阻如图 1 所示组成自组电桥, 分别测量 3 个未知电阻阻值 R_x , 估算其合成不确定度 ΔR_x , 并测量计算相应的电桥灵敏度.

实验中, 电源电压取 $E=4.0\,\mathrm{V}$, 直流指针式检流计的分度值为 $1.2\times10^{-6}\,\mathrm{A/A}$, 内阻为 $45\,\Omega$. 所用 ZX96 型直流电阻器的允差如表 1 所示.

表 1: ZX96 型直流电阻箱允差.

$\times 10\mathrm{k}\Omega$	$\times 1\mathrm{k}\Omega$	$\times 100\Omega$	$\times 10\Omega$	$\times 1\Omega$	$\times 0.1\Omega$
±0.1%	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.5\%$	$\pm 2\%$

用数字万用表粗测 3 个待测电阻的阻值,得到 $R_{x1}=47.9\Omega$, $R_{x2}=359.0\Omega$, $R_{x3}=4.05$ k Ω . 随后在不同的 R_1,R_2 阻值下,先按照公式

$$R_0 = \frac{R_2}{R_1} R_x$$

调整 R_0 的阻值, 其中 R_x 取待测电阻的粗测值; 然后将 R_h 调到最大, 闭合开关, 反复减小 R_h 的阻值同时调整 R_0 的阻值, 使检流计的示数为 0. 最后将 R_h 的阻值调至 0, 记录下 R_0 . 改变 R_0 , 使检流计偏转 $3 \sim 6$ 格, 记录下此时的 R'_0 , 及检流计偏转的格数 Δn . 利用公式

$$R_x = R_0 \left(\frac{R_1}{R_2}\right)$$

图 1: 自组电桥测量未知电阻及相应的电桥灵敏度电路图.

可以计算出 R_x , 利用公式

$$S = \frac{\Delta n}{\frac{\Delta R_0}{R_0}}$$

可以计算出电桥灵敏度 S. 在不同的实验参数下所测得的实验数据如表 2 所示.

表格中,第 1 行的实验中电桥灵敏度较高,当 $R_0=47.9\Omega$ 时检流计指针偏向一边而当 $R_0=48.0\Omega$ 时检流计指针偏向另一边,故将它们都记录下来, R_0 取两者的线性插值,计算电桥灵敏度 S 时 Δn 为两次的检流计指针偏转格数之和.第 3,4 行的实验参数相同,不同之处在于将 R_1,R_2 调换了位置.

下面进行不确定度分析. 由表 1 可以算出 R_0, R_1, R_2 的允差. 由

$$R_x = \frac{R_1}{R_2} R_0,$$

得

$$\begin{split} \sigma_{R_x}' &= R_x \sqrt{\left(\frac{\sigma_{R_1}}{R_1}\right)^2 + \left(\frac{\sigma_{R_2}}{R_2}\right)^2 + \left(\frac{\sigma_{R_0}}{R_0}\right)^2} \\ &= R_x \sqrt{\left(\frac{e_{R_1}}{\sqrt{3}R_1}\right)^2 + \left(\frac{e_{R_2}}{\sqrt{3}R_2}\right)^2 + \left(\frac{e_{R_0}}{\sqrt{3}R_0}\right)^2}. \end{split}$$

R_x	R_1/R_2	$R_0(\Omega)$	$R'_0(\Omega)$	$\Delta n(格)$	$R_x(\Omega)$	$\Delta R_0(\Omega)$	S(格)
R_{x1}	$500\Omega/500\Omega$	47.95	47.9	2.1	47.95	0.1	2.0×10^{3}
			48.0	2.0			
R_{x2}	$50\Omega/500\Omega$	3588.0	3608.0	3.8	358.80	20.0	6.8×10^{2}
	$500\Omega/500\Omega$	359.2	360.2	4.9	359.2	1.0	1.8×10^{3}
	$500\Omega/500\Omega$	359.2	360.2	4.8	359.2	1.0	1.8×10^{3}
R_{x3}	$500\Omega/500\Omega$	4055	4105	4.4	4055	50	3.6×10^2

表 2: 直流平衡电桥测量待测电阻阻值实验数据.

由检流计灵敏度限制带来的误差为

$$\delta R_x = \frac{0.2R_x}{S},$$

故总的不确定度为

$$\sigma_{R_x} = \sqrt{(\sigma'_{R_x})^2 + (\delta R_x)^2}.$$

分别计算表 2 中 5 个实验的不确定度, 计算结果如表 3 所示.

4055

4.075

 R_x R_1/R_2 $R_0(\Omega)$ $e_{R_0}(\Omega)$ $e_{R_1}(\Omega)$ $e_{R_2}(\Omega)$ $\delta R_x(\Omega)$ $\sigma_{R_r}(\Omega)$ 测量结果 (Ω) R_{x1} $500 \Omega/500 \Omega$ 47.950.0940.5000.5000.0050.07 47.95 ± 0.07 R_{x2} $50 \Omega/500 \Omega$ 3588.03.6200.0500.5000.1050.37 358.8 ± 0.4 $500 \Omega/500 \Omega$ 359.20.3990.5000.5000.0410.38 359.2 ± 0.4 R_{x2} R_{x2} $500 \Omega/500 \Omega$ 359.20.3990.5000.5000.0420.38 359.2 ± 0.4

0.500

2.273

4.7

 4055 ± 5

表 3: 电阻不确定度的计算结果.

第 3, 4 行的实验是在相同的参数下交换 R_1,R_2 测得的, 所测 R_x 的几何平均值为

0.500

$$R_x = \sqrt{R_{01}R_{02}} = 359.2\,\Omega,$$

由检流计灵敏度限制带来的误差为

 $500 \Omega/500 \Omega$

 R_{x3}

$$\delta R_x = \frac{0.2R_x}{S}.$$

总的不确定度

$$\begin{split} \sigma_{R_x} &= \sqrt{(\delta R_x)^2 + \frac{1}{4} \frac{R_{02}}{R_{01}} \sigma_{R_{01}}^2 + \frac{1}{4} \frac{R_{01}}{R_{02}} \sigma_{R_{02}}^2} \\ &= \sqrt{(\delta R_x)^2 + \frac{1}{12} \frac{R_{02}}{R_{01}} e_{R_{01}}^2 + \frac{1}{12} \frac{R_{01}}{R_{02}} e_{R_{02}}^2}. \end{split}$$

代入 $R_x = 359.2 \,\Omega$, $S = 1.8 \times 10^3 \,\text{Å}$, 得

$$\delta R_x = 0.040 \,\Omega,$$

$$\sigma_{R_x} = 0.21 \,\Omega.$$

故交换桥臂得到的 R_{x2} 的测量结果为

$$R_{x2} = (359.2 \pm 0.2) \Omega.$$

2 了解影响直流电桥灵敏度的因素

仍在图 1 中的电路上进行实验. 未知电阻使用 R_{x2} , 在不同的电源电压 E、桥臂电阻 R_1 和 R_2 、保护电阻 R_h 下进行实验, 实验参数及测量结果如表 4 所示.

 $R'_0(\Omega)$ $\Delta n(格)$ $R_{x2}(\Omega)$ $\Delta R_0(\Omega)$ S(格) $R_0(\Omega)$ $E = 4.0 \,\mathrm{V}, R_1/R_2 = 500 \,\Omega/500 \,\Omega,$ 359.2 360.2359.2 1.8×10^{3} 4.9 1.0 $R_{\rm h} = 0\,\Omega$ $E = 2.0 \,\mathrm{V}, R_1/R_2 = 500 \,\Omega/500 \,\Omega,$ 9.0×10^2 359.2 361.24.9 359.2 2.0 $R_{\rm h} = 0 \, \Omega$ $E = 4.0 \,\mathrm{V}, R_1/R_2 = 500 \,\Omega/5000 \,\Omega,$ 3.4×10^{2} 3590 3540 4.8 359.050 $R_{\rm h} = 0\,\Omega$ $E = 4.0 \,\mathrm{V}, R_1/R_2 = 500 \,\Omega/500 \,\Omega,$ 2.0×10^{2} 359.2 352.24.5 359.2 8.0 $R_{\rm h}=3\,{\rm k}\Omega$

表 4: 探究影响直流平衡电桥灵敏度的因素实验数据.

下面进行一些理论分析. 忽略电源内阻, 解基尔霍夫方程组, 可以得到下面公式:

$$S = \frac{S_{\rm i} \cdot E}{R_1 + R_2 + R_0 + R_x + R_{\rm g} \left(2 + \frac{R_1}{R_x} + \frac{R_0}{R_2}\right)}.$$
 (1)

第 1 行实验的电源电压 E 是第 2 行实验的 2 倍, 其他实验参数相同, 故由式 (1), 第 1 行实验的电桥灵敏度应当是第 2 行实验的 2 倍. 由表 4 的测量结果可知确实是这样. 由式 (1) 还可知

3 思考题 5

 $R_1/R_2 = 500 \Omega/5000 \Omega$ 时的电桥灵敏度应小于 $R_1/R_2 = 500 \Omega/500 \Omega$ 时的电桥灵敏度, 与测量结果相符. 第 4 行实验中 R_h 增大, 式 (1) 中 R_g 增大, S 应减小. 这也与表 4 中的实验结果相符.

3 思考题

- 1. 下列因素是否会加大测量误差?
 - (a) 电源电压大幅度下降;

会. 由式 (1) 可知, 电源电压大幅度下降, 电桥灵敏度也会下降, 故

$$\delta R_x = \frac{0.2R_x}{S}$$

上升, 合成出的总的不确定度也会上升.

(b) 电源电压稍有波动;

不会. 电源电压的波动不会影响电桥的平衡, 即不会影响 R_x 的测量值; 并且稍有波动对 S 的影响也可以忽略不计, 即不会影响 R_x 的不确定度.

(c) 在测量较低电阻时, 导线电阻不可忽略;

会. 本实验采用二线接法, 无法避免导线电阻的影响. 尤其是测量小电阻时, 导线电阻对所测电阻及其不确定度的影响不可忽略.

(d) 检流计零点没有调准;

会. 公式

$$R_x = R_0 \left(\frac{R_1}{R_2}\right)$$

的成立条件是没有电流流过检流计. 若检流计零点没有调准, 实验中检流计示数为零时上述公式不再成立, 所测得的电阻值自然也是不成立的.

(e) 检流计灵敏度不够高.

会. 由式 (1), 检流计灵敏度不够高会使电桥灵敏度 S 偏小,

$$\delta R_x = \frac{0.2R_x}{S}$$

偏大, 增大实验的不确定度.

4 分析与讨论

1. 分析比较电阻不确定度中各主要成分的贡献,了解各桥臂精度和电桥灵敏度对不确定度的影响;讨论如何提高电桥法测电阻的精度.

4 分析与讨论 6

不妨来计算交换电桥臂测量 R_{x2} 时不确定度中各部分的贡献. 由检流计灵敏度限制带来的不确定度为

$$\delta R_x = 0.041 \,\Omega,$$

由电阻箱允差带来的不确定度为

$$\sigma'_{R_{\pi}} = 0.373 \,\Omega,$$

故不确定度中占主要部分的是电阻箱允差带来的不确定度. 但是, 在测量大电阻 R_{x3} 时, 由检流计灵敏度限制带来的不确定度为

$$\delta R_x = 2.273 \,\Omega$$

由电阻箱允差带来的不确定度为

$$\sigma'_{R_{\alpha}} = 4.062 \,\Omega,$$

两者在同一数量级.

要提高电桥法测电阻的精度,一方面可以增大检流计灵敏度或电源电压,降低由检流计灵敏度限制带来的不确定度;另一方面可以使用允差更小的电阻箱,降低由电阻箱允差带来的不确定度.

2. 比较灵敏度测量值与理论计算值; 分析灵敏度与各个参数间的依赖关系.

利用公式

$$S = \frac{S_{\rm i} \cdot E}{R_1 + R_2 + R_0 + R_x + R_{\rm g} \left(2 + \frac{R_1}{R_x} + \frac{R_0}{R_2}\right)}$$

可以算出电桥灵敏度的理论值, 其中 $S_{\rm i}=\frac{1}{1.2\times 10^{-6}}$ 格, $R_{\rm g}$ 为检流计内阻与保护电阻的阻值之和. 计算结果如表 5 所示.

可见理论值和实测值是比较接近的.

表:	5:	比较直流平	产衡电桥员	敏度的理论	〉值和实验所测值.

	$R_0(\Omega)$	$R_{x2}(\Omega)$	S(格)	$S_{ m theory}$ (格)
$E = 4.0 \text{ V}, R_1/R_2 = 500 \Omega/500 \Omega,$ $R_h = 0 \Omega$	359.2	359.2	1.8×10^3	1.8×10^{3}
$E = 2.0 \text{ V}, R_1/R_2 = 500 \Omega/500 \Omega,$ $R_h = 0 \Omega$	359.2	359.2	9.0×10^{2}	8.8×10^{2}
$E = 4.0 \mathrm{V}, R_1/R_2 = 500 \Omega/5000 \Omega,$ $R_{\mathrm{h}} = 0 \Omega$	3590	359.0	3.4×10^2	3.5×10^2
$E = 4.0 \mathrm{V}, R_1/R_2 = 500 \Omega/500 \Omega,$ $R_\mathrm{h} = 3 \mathrm{k}\Omega$	359.2	359.2	2.0×10^2	2.3×10^2

参考文献

[1] 吕斯骅, 段家忯, 张朝晖. 新编基础物理实验[M]. 北京: 高等教育出版社, 2006.