2.19 Les droites $(d_1): 2x-3y+4=0$ et $(d_2): -4x+6y-9=0$ admettent comme vecteurs directeurs respectifs $\vec{d_1} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\vec{d_2} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$.

Les vecteurs $\vec{d_1}$ et $\vec{d_2}$ sont colinéaires, car $\vec{d_2} = 2 \vec{d_1}$ ou encore car le déterminant $\begin{vmatrix} 3 & 6 \\ 2 & 4 \end{vmatrix} = 0$.

On peut aussi prouver le parallélisme des droites d_1 et d_2 en constatant que le système $\begin{cases} 2x - 3y + 4 = 0 \\ -4x + 6y - 9 = 0 \end{cases} \begin{vmatrix} \cdot 2 \\ \text{aboutit à l'équation impossible } -1 = 0,$ ce qui signifie que les droites d_1 et d_2 n'ont aucun point d'intersection.

Le point A(-2;0) se situe sur la droite d_1 , vu que $2 \cdot (-2) - 3 \cdot 0 + 4 = 0$.

$$\delta(d_1; d_2) = \delta(A; d_2) = \frac{\left| -4 \cdot (-2) + 6 \cdot 0 - 9 \right|}{\sqrt{(-4)^2 + 6^2}} = \frac{\left| -1 \right|}{\sqrt{52}} = \frac{1}{2\sqrt{13}} = \frac{\sqrt{13}}{26}$$

Géométrie : la droite dans le plan métrique