Statistik Zusammenfassung

Alexander Strobl

July 3, 2014

Contents

1 Grundlagen

	1.1 1.2 1.3	Häufigkeitsverteilungen Verschiedene Diagrammtypen Maßzahlen zur Beschreibung der Lage einer Verteilung	2 4
2	Stre	euung und Konzentration	5
3	Wal 3.1	Rechenbeispiele	6 6 6 7
4	Disk 4.1	Verteilungsfunktionen 4.1.1 Bernoulli-Verteilung 4.1.2 Binomialverteilung 4.1.3 Diskrete Gleichverteilung 4.1.4 Geometrische Verteilung 4.1.5 Hypergeometrische Verteilung 4.1.6 Poisson-Verteilung	8 8 8 8 8 8 8
5		tige Zufallsvariablen Normalverteilung	9
6	title		12
Li	ist d	of Figures	
	1 2 3 4 5 6 7 8 9 10 11	Begriffserklärungen: Häufigkeitsverteilung Beispiel: Häufigkeitsverteilung von Noten Histogramm Relative Klassenhäufigkeiten Häufigkeitsdichte klassierte Altersverteilung Empirische Verteilungsfunktion Approximierende Verteilungsfunktion Boxplot Begriffserklärungen: Streuung und Konzentration Scatterplot	2 2 2 2 3 3 4 5
	12 13	HIV-Test - Krankheitswahrscheinlichkeit bei pos. Testergebnis	7

1 Grundlagen

1.1 Häufigkeitsverteilungen

Eigenschaft	Beschreibung
Merkmalsträger	Objekt von Interesse bei einer empirischen Unter-
	suchung
Gesamtheit	Menge der relevanten Merkmalsträger; Die Anzahl
	nennt man Umfang der Gesamtheit
Mikrodaten	Daten, welche ausgewertet werden sollen
Häufigkeitsverteilung	Ausprägungen der einzelnen Merkmalsträger

Figure 1: Begriffserklärungen: Häufigkeitsverteilung

Merkmalsausprä-	absolute	relative
gung x_i	Häufigkeiten n_i	Häufigkeiten f_i
1	6	0.3 / 30%
2	7	0.35
3	4	0.2
4	2	0.1
5	1	0.05
\sum	20	1

Figure 2: Beispiel: Häufigkeitsverteilung von Noten

1.2 Verschiedene Diagrammtypen

Figure 3: Histogramm

Figure 4: Relative Klassenhäufigkeiten

Wird allerdings nicht mehr verwendet, sondern stattdessen:

Figure 5: Häufigkeitsdichte

Klasse i x_i	Klassenobergrenze	absolute	relative	emp. Verteilungsfunktion
	x_i^o	Häufigkeiten n_i	Häufigkeiten f_i	an der Klassenobergrenze
				$F(x_i^0)$
1	29	7	0.01165	1.17 %
2	39	59	0.09817	10.98 %
3	49	127	0.21131	32.11 %
4	54	120	0.19967	52.08 %
5	59	146	0.24293	76.37 %
6	64	112	0.18636	95.01 %
7	73	30	0.04992	100.00 %
\sum		601	1	

Figure 6: klassierte Altersverteilung

Figure 7: Empirische Verteilungsfunktion

Figure 8: Approximierende Verteilungsfunktion

1.3 Maßzahlen zur Beschreibung der Lage einer Verteilung

Eigenschaft	Formeln	Beschreibung
Modus	$\max(x_i)$	Merkmalsausprägung die am Häufigsten vorkommt
Median	$x_{0.5}$	$50\% \le x \&\& 50\% \ge x$
	= Summe aller Merkmalswerte Anzahl aller Merkmalswerte	Ist ein Spezialfall des Erwartungswertes, mit gleicher Wahrscheinlichkeit für alle Elemente
	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	dabei sind die x_i die Merkmalswerte, und n ist die Anzahl der Merkmalswerte, d.h. die Anzahl der Merkmalsträger)
	$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} x_i n_i$	dabei ist x_i die i-te Merkmalsausprägung, n_i die absolute Häufigkeit der Ausprägung x_i und k ist die Anzahl der verschiedenen Merkmalsausprägungen
Arithmetisches Mittel \overline{x}	$\overline{x} = \sum_{i=1}^{k} x_i f_i$	dabei ist x_i die i-te Merkmalsausprägung, f_i die relative Häufigkeit der Ausprägung x_i und k ist die Anzahl der verschiedenen Merkmalsausprägungen
	$\overline{x} = \frac{1}{n} \sum_{i=1}^{r} \overline{x_i} n_i$	dabei bezeichnet x_i das arithmetische Mittel in der i-ten Schicht, n_i den Umfang der i-ten Schicht und r die Zahl der Schichten
	$\overline{x} = \sum_{i=1}^r \overline{x_i} f_i$	dabei bezeichnet x_i das arithmetische Mittel in der i-ten Schicht, f_i den Anteil der Merkmalsträger in der i-ten Schicht und r die Zahl der Schichten
Quantile	$x_p, x_{1-p} \to x_{0.3}, x_{0.7}$	Spezialfall: Quartile $x_{0.25}, x_{0.75}$

Figure 9: Boxplot

2 Streuung und Konzentration

Eigenschaft	Formel	Beschreibung
Spannweite	$\Delta = \max - \min$	Differenz zwischen max. und min. Merkmalswerten
Quartilsabstand	$\Delta = x_{0.75} - x_{0.25}$	Differenz zwischen den beiden Quartilen
	s^2	Mittlere quad. Abweichung vom Mittelwert, invariant gegenüber Verschiebungen
Varianz	$= \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$	$= \frac{1}{n} \sum_{i=1}^{k} (x_i - \overline{x})^2 n_i \qquad = \sum_{i=1}^{k} (x_i - \overline{x})^2 f_i$ $= \frac{1}{n} \sum_{i=1}^{k} x_i^2 n_i - \overline{x}^2 \qquad = \sum_{i=1}^{k} x_i^2 f_i - \overline{x}^2$
	$= \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$ $= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2$ $= \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$	$= \frac{1}{n} \sum_{i=1}^{k} x_i^2 n_i - \overline{x}^2 \qquad = \sum_{i=1}^{k} x_i^2 f_i - \overline{x}^2$
	$= \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$	Bei Stichproben ein n weniger nehmen
Standardabweichung	$s = \sqrt{s^2}$	Mittlere Abweichung vom Mittelwert, invariant gegenüber Verschiebungen
Standardisierte Merkmale	$\overline{x} = 0 \text{ und } s^2 = 1$	Merkmalsverteilung gilt als Standardisiert
Kovarianz	$s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$ $= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \overline{y}$	
	$= \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{xy}$	
	r	nach Bravais-Pearson
Korrelationskoeffizient	$\frac{s_{XY}}{s_{X}s_{Y}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}}$	r = 1 r = -1: steigende / fallende Gerade
	, ,	r = 0: kein lin. Zusammenhang
	$\hat{y} = \hat{\alpha} + \hat{\beta}x$	$\hat{\beta} = \frac{s_{XY}}{s_X}$
Regressionsgerade	$\hat{a} = \overline{y} - \hat{\beta}\overline{x}$	
Simpsons Paradoxon		Widersprüchliche Ergebnisse bei genauerer Betrachtung

Figure 10: Begriffserklärungen: Streuung und Konzentration

Figure 11: Scatterplot

3 Wahrscheinlichkeitstheorie

Eigenschaft	Formel	Beschreibung
Eigenschaft	Former	Descricioning
Wahrscheinlichkeitsraum	Ω	Alle Ergebnisse, die stattfinden können
LaPlace-Wahrscheinlichkeit	$P(A) = \frac{\text{Anz. Elem in A}}{\text{Anz. Elem in }\Omega} = \frac{\sharp A}{\sharp \Omega}$	Alles gleich wahrscheinlich
Bedingte Wahrscheinlichkeiten	$P(A_1 A_2) = \frac{P(A_1 \cap A_2)}{P(A_2)}$	Wahrscheinlichkeit für A_1 nachdem A_2 eingetreten
	$P(A \cup B) = P(A) + P(B)$	Nur bei sich gegenseitig ausschliessenden Ereignissen
Axiome von Kolmogorov	$P(A \cup B C)$	
	$= P(A C) + P(B C) - P(A \cap B C)$	
Abhängigkeit	$P(A \cup B) = P(A) + P(B) - P(A)P(B)$	
Unabhängigkeit	$P(A \cap B) = P(A)P(B)$	
Totale Wahrscheinlichkeit	$P(B) = \sum_{i=1}^{m} P(B \cap A_i) = P(A_i)P(B A_i)$	
Satz von Bayes	$P(A_j B) = \frac{P(B A_j)P(A_j)}{\sum\limits_{i=1}^{m} P(B A_i)P(A_i)}$	

Table 1: Begriffserklärungen: Wahrscheinlichkeitstheorie

3.1 Rechenbeispiele

3.1.1 Paarbildung

12 Männer, 10 Frauen: Wie viele Paare können gebildet werden? $\sharp A\sharp B=12\times 10=120$

3.1.2 Sortierung

n Elemente sollen sortiert werden: Wie viele Möglichkeiten?

3.1.3 Satz von Bayes - HIV-Test

 $\mathrm{P}(HIV^+)=\mathrm{Pr\ddot{a}valenz}=\mathrm{Anteil}$ Kranke an der Bevölkerung

$$P(HIV^{+} \mid T^{+}) = \frac{P(T^{+} \mid HIV^{+})P(HIV^{+})}{P(T^{+} \mid HIV^{+})P(HIV^{+}) + P(T^{+} \mid HIV^{-})P(HIV^{-})}$$

Figure 12: HIV-Test - Krankheitswahrscheinlichkeit bei pos. Testergebnis

3.1.4 Elemente aus einer Menge nehmen

Anzahl der Möglichkeiten, n aus N Elementen auszuwählen	mit Zurücklegen	ohne Zurücklegen
mit Berücksichtigung der Reihenfolge	N ⁿ	N! (N – n)!
ohne Berücksichtigung der Reihenfolge	$\binom{N+n-1}{n}$	$\binom{N}{n}$

Figure 13: Verschiedene Lösungsformeln der Kombinatorik

4 Diskrete Zufallsvariablen

Eigenschaft	Formel	Beschreibung
Verteilungsfunktion	$F_x(x) = P(X \le x)$	definiert die Wahrscheinlichkeit der Zufallsvariable X, dass X höchstens den Wert x annimmt
Unabhängigkeit	$P(X_1 = x_1, X_2 = x_2)$ $= P(X_1 = x_1) * P(X_2 = x_2)$	gilt ebenfalls für andere Operationen wie z.B. \leq
Erwartungswert	$E(X) = \mu_x = \mu$ $= \sum_{i=1}^{k} x_i p_i = \sum_{i=1}^{k} x_i * P(X = x_i)$	Ist der Mittelwert von X
	v-1 v-1	Weitere Rechenregeln:
	$E(Y) = E(g(X)) = \sum_{i} g(x_i)p_i$	Wenn $g(x)$ eine reelle Funktion und $Y = g(X)$
	E(X + Y) = E(X) + E(Y)	
	$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$	
Varianz	$Var(X) = E((X - \mu_x)^2)$	
	$= \sum_{i=1}^{k} (x_i - \mu_x)^2 * p_i$	
	$= E(X^2) - E(X)^2$	
	Var(aX + b) = Var(aX)	

Table 2: Begriffserklärungen: Diskrete Zufallsvariablen

4.1 Verteilungsfunktionen

4.1.1 Bernoulli-Verteilung

Wird verwendet, wenn es nur 2 Möglichkeiten als Ausgang gibt (Sieg / Niederlage, Gewin / Verlust usw.), z.B. Münzwurf, Los ziehen.

$$f(x) = \begin{cases} 1 - \pi & \text{für } x = 0 \\ \pi & \text{für } x = 1 \\ 0 & sonst \end{cases}$$

$$E(X) = \sum_{i=1}^{2} x_i p_i = 0 * P(X = 0) + 1 * P(X = 1) = \pi$$

$$Var(X) = \sum_{i=1}^{2} (x_i - \mu_x)^2 p_i = (0 - \pi)^2 (1 - \pi) + (1 - \pi)^1 \pi = \pi (1 - \pi)$$

4.1.2 Binomialverteilung

X sind die Anzahl der Treffer bei n Versuchen, z.B. Multiple Choice

$$\begin{split} X_i &= \left\{ \begin{array}{ll} 1 & \text{falls im iten Versuch ein Treffer erzielt wird} \\ 0 & \text{sonst} \end{array} \right\} \\ \text{und es gilt } \mathbf{X} &= \sum_{i=1}^n X_i \\ \mathbf{f}(\mathbf{x}|n,\pi) &= \left\{ \begin{array}{ll} \binom{n}{x} \pi^x (1-\pi)^{n-x} & \text{für } \mathbf{x} = 0,1,2,...,\mathbf{n} \\ 0 & \text{sonst} \end{array} \right\} \\ \mathbf{E}(\mathbf{X}) &= n*\pi \end{split}$$

$$Var(X) = n * \pi * (1 - \pi)$$

4.1.3 Diskrete Gleichverteilung

$$f(x|n) = \begin{cases} \frac{1}{n} & \text{für } x = 1,2,...,n \\ 0 & \text{sonst} \end{cases}$$

$$E(X) = \frac{n+1}{2}$$

$$Var(X) = \frac{n^2 - 1}{12}$$

4.1.4 Geometrische Verteilung

Ein Bernoulli-Experiment (0/1-Verteilung) wird immer wieder wiederholt. Die Zufallsvariable X ist die Versuchsnummer des ersten

$$f(n|\pi) = \left\{ \begin{array}{cc} (1-\pi)^{n-1} * \pi & \text{für } n = 1,2,3,... \\ 0 & \text{sonst} \end{array} \right\}$$
$$E(X) = \frac{1}{\pi}$$

$$Var(X) = \frac{1-\tau}{2}$$

$$Var(X) = \frac{1-\pi}{\pi^2}$$

4.1.5 Hypergeometrische Verteilung

M aus N Elementen haben eine bestimmte Eigenschaft (Losgewinn). Wenn n Elemente mit Zurücklegen gezogen werden: $\pi = \frac{M}{N}$

Wenn n Elemente ohne Zurücklegen gezogen werden, ist die Anzahl X nicht mehr exakt binomialverteilt.

$$f(\mathbf{n}|\mathbf{n},\mathbf{N},\mathbf{M}) = \left\{ \begin{array}{c} \left(\begin{array}{c} M \\ x \end{array} \right)_* \left(\begin{array}{c} N-M \\ n-x \end{array} \right) \\ \left(\begin{array}{c} N \\ n \end{array} \right)_* \\ 0 \\ \end{array} \right. \text{ für } \mathbf{x} = \max(0,\mathbf{n} - (\mathbf{N}-\mathbf{M})), \dots, \min(\mathbf{n},\mathbf{M}) \\ \end{array} \right\}$$

$$E(X) = n * \frac{M}{N}$$

$$Var(X) = n * \frac{M}{N} * \left(1 - \frac{M}{N}\right) * \frac{N-n}{N-1}$$

4.1.6 Poisson-Verteilung

Muss in der Klausur erwähnt werden, kann nicht selbst entschieden werden.

z.B. Anrufe in best. Zeitabschnitt in einer Hotline oder Anzahl der Personen, die in einem best. Zeitabschnitt einen Schalter besuchen

$$f(\mathbf{x}|\lambda) = \left\{ \begin{array}{ll} \frac{\lambda^x}{x!} \epsilon^{-\lambda} & \text{für } \mathbf{x} = 0, 1, 2, 3, \dots \\ 0 & \text{sonst} \end{array} \right\}$$

$$E(X) = \lambda$$

$$Var(X) = \lambda$$

$$(n+1)! = (n+1) * n! \le (n+1) * n^n = n^{n+1} + n^n \le (n+1)^{n+1}$$

5 Stetige Zufallsvariablen

Eigenschaft	Formel	Beschreibung
	$F_x(x) = \int_{-\infty}^x f(t)dt$	Verteilungsfunktion, $f(t)$ = Dichtefunktion
Definition	P(X=x)=0	Wahrscheinlichkeit für einen Wert gleich x ist immer 0
	$P(x_1 \le X \le x_2) = F_x(x_2) - F_x(x_1)$	$F_x^{'}(x)=f_x(x)$ Die Dichtefunktion ist die Ableitung der Verteilungsfunktion
Erwartungswert μ_x	$E(X) = \int_{-\infty}^{+\infty} x * f(x) dx$	Die Dichtefunktion $f(x)$ wird nie verändert! $E(\frac{1}{X}) = \int \frac{1}{X} * f(x) dx$
	$E(Y) = E(g(X)) = \int_{a}^{b} g(x) * f(x) dx$	g(x) ist eine reelle Funktion
Rechenregeln	E(aX + b) = a * E(X) + b	lineare Transformation
	E(X+Y) = E(X) + E(Y)	
Modus	$F_x(x_p) = p$	Die Wahrscheinlickeit, dass X höchstens den Wert x_p annimmt, ist mind. $p/100\%$
Varianz	$Var(X) = \int_{-\infty}^{+\infty} (x - \mu_x)^2 * f(x) dx$	Standardabweichung ist $\sqrt{Var(X)}$
Rechenregeln	vgl. Diskrete Zufallsvariablen	

Table 3: Begriffserklärungen: Stetige Zufallsvariablen

5.1 Normalverteilung

Gegeben ist $\mu = E(X)$, sowie $\sigma^2 = Var(X)$, z.B.: N(E(X), Var(x))Dies kann auf die Standardnormalverteilung $\mu = 0$, sowie $\sigma = 1$ zurückgerechnet werden: $P(z = \frac{x-\mu}{\sigma}) = z_p$

5.1.1 Rechenbeispiel - Normalverteilung

 $N(4000, 10^6)$

Wie hoch ist die Wahrscheinlichkeit für weniger als 3000?

$$P(Z \le \frac{3000 - 4000}{10^3}) = z_p$$

$$P(Z \le -1) = 1 - P(Z \ge 1)$$

$$= 1 - 0.84$$

$$= 0.16$$

diskrete Verteilungen

Verteilungsname	Wahrscheinlichkeitsgewicht/	Erwartungs	Varianz	Anwendung
	Zähldichte	-wert $E(X)$	Var(X)	
Bernoulli-Verteilung	P(X=1)=p,	d	$p \cdot (1-p)$	X = 1 = Erfolg, X = 0 = Misserfolge
Parameter 0	P(X=0) = 1 - p			z.B. beim einmaligen Werfen eines Würfels eine 6
				geworfen (=Erfolg), hier $p = \frac{1}{6}$.
Binomialverteilung	$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$	$d \cdot u$	$n \cdot p \cdot (1-p)$	X = Anzahl der Erfolge bei n identischen Bernoulli-
Parameter 0	für $k \in \{0, 1, 2, 3, \dots, n\}$			Experimenten
				z.B. $X = \text{Anzahl geworfener 6en beim n-maligen}$
				Wurf eines fairen Würfels (hier $p = \frac{1}{6}$).
				z.B. $X = \text{Anzahl gezogener roter Kugeln, beim Zie-}$
				hen \mathbf{mit} Zurücklegen von n Kugeln aus einer Urne
				M roten und $N-M$ sonstigen Kugeln, wobei $p=\frac{M}{N}$
Diskrete Gleichverteilung	$P(X=k) = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2 - 1}{12}$	z.B. ein Wurf mit einem Würfel beschreibt X die
auf $\{1, 2, 3, \dots, n\}$	für $k \in \{1, 2, 3, \dots, n\}$	l	1	geworfene Augenzahl, hier $n=6$.
Geometrische Verteilung	$P(X = k) = (1 - p)^{k-1} \cdot p$	1 a	$\frac{1-p}{v^2}$	X beschreibt die Wartezeit auf den ersten Er-
Parameter 0	für $k \in \{1, 2, 3,\}$	•	4	folg, beim fortgesetzten Ausführen eines Bernoulli-
				Experimentes
				z.B. beim Würfeln warten auf die erste 6, d.h. $X=k$
				bedeutet die erste 6 wurde im k-ten Wurf geworfen.
Hypergeometrische Vert.	$P(X=k) = \frac{\binom{M}{N} \cdot \binom{N-M}{n-k}}{\binom{N}{N}} \text{ für } k \in$	$n \cdot rac{M}{N}$	$n \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right) \cdot \frac{N-n}{N-1}$	X = Anzahl gezogener roter Kugeln, beim Ziehen
N Anzahl Kugeln in der Urne				ohne Zurücklegen von n Kugeln aus einer Urne M
M Anzahl roter Kugeln				roten und $N-M$ sonstigen Kugeln
n Anzahl zu ziehende Kugeln				
k Anzahl roter Kugeln unter				
den gezogenen Kugeln				
Poisson-Verteilung	$P(X=k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$	Κ	Υ	Anzahl Ereignisse in einem vorgegebenen Zeitinter-
Parameter $\lambda > 0$	für $k \in \{0, 1, 2, 3,\}$			vall z.B. Anzahl radioaktiver Zerfälle, Anzahl Blitz-
				schläge auf einer gegebenen Fläche,

stetige Verteilungen

Verteilungsname	Dichte	Verteilungsfunktion	Median	E[X]	Var(X)	Var(X) Anwendung
stetige Gleichverteilung $\operatorname{auf}\left[a,b ight]$	$f(x) = \begin{cases} \frac{1}{b-a} & \text{fiir } x \in [a, b] \\ 0 & \text{sonst} \end{cases}$	$F(x) = \begin{cases} 0 & \text{für } x < a \\ \frac{x-a}{b-a} & \text{für } x \in [a, b] \\ 1 & \text{für } x > b \end{cases}$	$\frac{a+b}{2}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	stetiges Analogon zur diskreten Gleichverteilung z.B. jede reelle Zahl aus dem Intervall [a, b] wird mit gleicher Wahrscheinlichkeit gewählt.
Exponentialverteilung Parameter $\alpha > 0$	$f(x) = \begin{cases} \alpha \cdot e^{-\alpha \cdot x} & \text{fiir } x \ge 0 \\ 0 & \text{sonst} \end{cases}$	$F(x) = \begin{cases} 0 & \text{für } x < 0 \\ 1 - e^{-\alpha \cdot x} & \text{für } x \ge 0 \end{cases}$	$\frac{\ln(2)}{\alpha}$	υ 1	$\frac{1}{\alpha^2}$	stetiges Analogon zur geometrischen Verteilung Warten auf das erste/nächste Eintreffen eines Ereignisses z.B. Warten auf den Ausfall einer Glübbirne
Normalverteilung Parameter $\mu \in \mathbb{R}$ und $\sigma > 0$	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot \exp\left(-\frac{(x-\mu)^2}{2 \cdot \sigma^2}\right)$	F(x) kann nicht als Funktion hingeschrieben werden, vgl. Ta- belle	μ	щ	σ^2	Wenn auf etwas viele verschiedene zufällige Einflussfaktoren einwirken, ist das Ergebnis in etwa normalverteilt, z.B. die Körpergröße von Männern (Ernährung, Veranlagung,) Wird auch zur Approximation von Binomial- und Poissonverteilungen verwendet

6 title