ДИСКРЕТНАЯ МАТЕМАТИКА

ИУ5 — 4 семестр, 2015 г.

Семинар 7. ТЕОРЕМА ПОСТА

Определение 7.1. Множество булевых функций F называют **полным**, если любая булева функция может быть представлена некоторой формулой над F .

Стандартный базис $\{\lor, \land, ^-\}$ является **полным множеством**, в силу теоремы о любой булевой функции дизьюнктивной или конъюнктивной нормальной формой.

Определение 7.2. Функцию f называют функцией, сохраняющей константу 0 (соответственно константу 1), если $f(\tilde{0})=0$ (соответственно: $f(\tilde{1})=1$), где $\tilde{0}$ — нулевой, а $\tilde{1}$ — единичный наборы значений переменных функции f .

Наборы $\tilde{\alpha}$ и $\overline{\tilde{\alpha}}$ из булева куба $\mathbb{B}^n = \{0,1\}^n$ будем называть **взаимно противоположными**, говоря при этом также, что набор $\overline{\tilde{\alpha}}$ есть **инверсия** (или **отрицание**) **набора** $\tilde{\alpha}$ (в силу единственности дополнения любого элемента булевой алгебры набор $\tilde{\alpha}$ будет, очевидно, инверсией набора $\overline{\tilde{\alpha}}$).

Определение 7.3. Функцию $g \in \mathcal{P}_{2,n}$ называют двойственной к функции $f \in \mathcal{P}_{2,n}$, если для всякого $\tilde{\alpha} \in \left\{0,\,1\right\}^n$ (n>0) имеет место $g(\tilde{\alpha}) = \overline{f}(\overline{\tilde{\alpha}})$.

Определение 7.4. Функцию $f \in \mathcal{P}_{2,n}$ называют **самодвойственной**, если она двойственна к себе самой, т.е.

$$(\forall \tilde{\alpha} \in \{0, 1\}^n)(f(\tilde{\alpha}) = \overline{f}(\overline{\tilde{\alpha}}))$$

Функция самодвойственна тогда и только тогда, когда на взаимно противоположных наборах она принимает взаимно противоположные значения.

Определение 7.5. Функцию $f \in \mathcal{P}_{2,n}$ называют монотонной, если для любых наборов $\tilde{\alpha}$, $\tilde{\beta} \in \mathbb{B}^n$, таких, что $\tilde{\alpha} \leq \tilde{\beta}$, имеет место $f(\tilde{\alpha}) \leq f(\tilde{\beta})$.

базис Жегалкина $\{\oplus,\cdot,1\}$ Любую формулу над базисом Жегалкина называют **полиномом Жегалкина**.

Полином Жегалкина от n переменных можно записать в виде

$$P(x_1, \dots, x_n) = \sum_{\{i_1, i_2, \dots, i_m\} \subseteq \{1, 2, \dots, n\}} \pmod{2} a_{i_1 i_2 \dots i_m} x_{i_1} x_{i_2} \dots x_{i_m},$$

где коэффициенты полинома $a_{i_1i_2...i_m} \in \{0,1\}$ индексированы всеми возможными подмножествами множества $\{1,2,\ldots,n\}$ (коэффициент a_0 соответствует пустому множеству). Формула вида

$$\sum_{i=1}^{n} \pmod{2} a_i x_i \oplus a_0 \tag{7.1}$$

называется полиномом Жегалкина первой степени от переменных. В таком полиноме отсутствуют "нелинейные" слагаемые.

Определение 7.6. Функцию $f \in \mathcal{P}_{2,n}$ называют **линейной**, если она может быть представлена полиномом Жегалкина первой степени от n переменных.

Определение Множества функций T_0 , T_1 , S, M, L называются классами Поста.

Теорема Поста (критерий Поста) Множество F булевых функций полно тогда и только тогда, когда оно не содержится целиком ни в одном из классов Поста.

Расчет булевой функции, заданной формулой

Таблица значений наиболее часто употребляемых булевых функций от двух переменных.

x_1	$ x_2 $	$x_1 \vee x_2$	$x_1 \cdot x_2$	$x_1 \oplus x_2$	$x_1 \rightarrow x_2$	$x_1 \sim x_2$	$x_1 \mid x_2$	$x_1 \downarrow x_2$
0	0	0	0	0	1	1	1	1
0	1	1	0	1	1	0	1	0
1	0	1	0	1	0	0	1	0
1	1	1	1	0	1	1	0	0

Рассмотрим булеву функцию от трех переменных, заданную формулой $f(x_1,x_2,x_3)=(((x_1\downarrow x_2)\oplus ((x_1\vee x_2)\sim x_3))\vee (x_1\mid x_3))\,|(\overline{x_1}\wedge x_2).$ Для расчета разобъем формулу на подформулы A , B , C , D , E , I и J и сведем результаты расчетов в таблицу.

Mo				A	В	C	D	E	I	J	f
№	x_1	$ x_2 $	x_3	$x_1 \downarrow x_2$	$x_1 \vee x_2$	$B \sim x_3$	$A \oplus C$	$x_1 \mid x_3$	$\overline{x_1} \wedge x_2$	$D \vee E$	J I
0	0	0	0	1	0	1	0	1	0	1	1
1	0	0	1	1	0	0	1	1	0	1	1
2	0	1	0	0	1	0	0	1	1	1	0
3	0	1	1	0	1	1	1	1	1	1	0
4	1	0	0	0	1	0	0	1	0	1	1
5	1	0	1	0	1	1	1	0	0	1	1
6	1	1	0	0	1	0	0	1	0	1	1
7	1	1	1	0	1	1	1	0	0	1	1

Разбиение исходной формулы на подформулы однозначно задается расстановкой скобок.

Пусть дано множество функций $F = \{g, w\}$, где g = (11111101); w = (11100110) .

Исследовать элементы этого множества на принадлежность к классам Поста.

	x_1	x_2	x_3	g	\overline{w}
0	0	0	0	1	1
1	0	0	1	1	1
2	0	1	0	1	1
3	0	1	1	1	0
4	1	0	0	1	0
5	1	0	1	1	1
6	1	1	0	0	1
7	1	1	1	1	0

1. Сохранение 0.

Функцию f называют функцией, **сохраняющей константу 0**, если $f(\tilde{0})=0$, где $\tilde{0}$ — нулевой набор значений переменных функции f .

	x_1	x_2	x_3	g	\overline{w}
0	0	0	0	1	1
1	0	0	1	1	1
2 3	0	1	0	1	1
3	0	1	1	1	0
4	1	0	0	1	0
5	1	0	1	1	1
6	1	1	0	0	1
7	1	1	1	1	0

g(0,0,0)=1 . Функция g не сохраняет константу 0 , $g\notin T_0$. w(0,0,0)=1 . Функция w не сохраняет константу 0 , $w\notin T_0$.

2. Coxpaneenue 1.

Функцию f называют функцией, **сохраняющей константу 1**, если $f(\tilde{1})=1$, где $\tilde{1}$ — единичный наборы значений переменных функции f .

	x_1	x_2	x_3	g	\overline{w}
0	0	0	0	1	1
1	0	0	1	1	1
2 3	0	1	0	1	1
3	0	1	1	1	0
4	1	0	0	1	0
5	1	0	1	1	1
6	1	1	0	0	1
7	1	1	1	1	0

g(1,1,1)=1 . Функция g сохраняет константу 1 . $g\in T_1$ w(1,1,1)=0 . Функция w не сохраняет константу 1 . $w\notin T_1$.

3. Самодвойственность.

Функцию $f \in \mathcal{P}_{2,n}$ называют **самодвойственной**, если она двойственна к себе самой, т.е.

$$(\forall \tilde{\alpha} \in \{0, 1\}^n) (f(\tilde{\alpha}) = \overline{f}(\overline{\tilde{\alpha}}))$$

Функция самодвойственна тогда и только тогда, когда на взаимно противоположных наборах она принимает взаимно противоположные значения.

	x_1	x_2	x_3	g	w
0	0	0	0	1	1
1	0	0	1	1	1
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	0	1	0	1	1
3	0	1	1	1	0
4	1	0	0	1	0
5	1	0	1	1	1
6	1	1	0	0	1
7	1	1	1	1	0

Функции g и w не самодвойственны.

$$g(0,0,0) = f(1,1,1) = 1$$
. $g \notin S$ $w(0,1,1) = w(1,0,0) = 0$. $w \notin S$

4. Монотонность.

Функцию $f\in\mathcal{P}_{2,n}$ называют монотонной, если для любых наборов $\tilde{\alpha}$, $\tilde{\beta}\in\mathbb{B}^n$, таких, что $\tilde{\alpha}\leq\tilde{\beta}$, имеет место $f(\tilde{\alpha})\leq f(\tilde{\beta})$.

	x_1	x_2	x_3	g	\overline{w}
0	0	0	0	1	1
1	0	0	1	1	1
2 3	0	1	0	1	1
3	0	1	1	1	0
4	1	0	0	1	0
5	1	0	1	1	1
6	1	1	0	0	1
7	1	1	1	1	0

Функции g и w не монотонны.

5. Линейность.

Формула вида

$$\sum_{i=1}^{n} \pmod{2} a_i x_i \oplus a_0 \tag{7.2}$$

называется полиномом Жегалкина первой степени от переменных. В таком полиноме отсутствуют "нелинейные" слагаемые.

Функцию $f \in \mathcal{P}_{2,n}$ называют **линейной**, если она может быть представлена полиномом Жегалкина первой степени от n переменных.

Найдем полином Жегалкина, представляющий f.

f задана как функция от трех переменных, т.к. размерность вектора значений f равна $2^3=8$.

Функция f представляется некоторым полиномом Жегалкина третьей степени, общий вид которого дает формула

$$a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{13}x_1x_3 \oplus a_{23}x_2x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$$

Значение функции g на наборе 000 равно коэффициенту a_0 : $g(0,0,0)=a_0=1.$

Найдем коэффициенты a_3 , a_2 и a_1 , рассмотрим значения функции на наборах 001, 010 и 100 соответственно ($a_0=1$).

$$g(0,0,1) = a_3 \oplus a_0 = a_3 \oplus 1 = 1, \Rightarrow a_3 = 0;$$
 $g(0,1,0) = a_2 \oplus 1 = 1 \Rightarrow a_2 = 0;$
 $g(1,0,0) = a_1 \oplus 1 = 1 \Rightarrow a_1 = 0;$

Чтобы найти коэффициенты a_{12} , a_{13} и a_{23} , рассмотрим значения функции на наборах 110, 101 и 011 соответственно. Находим a_{12} .

$$g(1,1,0)=0; g(1,1,0)=a_{12}\cdot 1\cdot 1\oplus a_1\cdot 1\oplus a_2\cdot 1\oplus a_0=$$
 $\{\mathrm{r.k.}\ a_1=a_2=0\}=a_{12}\oplus a_0=a_{12}\oplus 1=0\Rightarrow a_{12}=1$

Находим
$$a_{13}$$
 . $g(1,0,1)=1$ $(a_1=a_3=0)$ $g(1,0,1)=a_{13}\oplus a_0=a_{13}\oplus 1=1\Rightarrow a_{13}=0$; Находим a_{23} . $g(0,1,1)=1$ $(a_2=a_3=0)$ $g(0,1,1)=a_{23}\oplus a_0=a_{23}\oplus 1=1\Rightarrow a_{23}=0$ Находим a_{123} . $g(1,1,1)=1$ $(a_1=a_2=a_3=a_{13}=a_{23}=0)$ $g(1,1,1)=a_{123}\oplus a_{12}\oplus a_0=a_{123}\oplus 1\oplus 1=1\Rightarrow a_{123}=1$. Полином Жегалкина, представляющий g есть: $g=x_1x_2x_3\oplus x_1x_2\oplus 1$.

Функция q не линейна, w проверять не будем.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Заполненная критериальная таблица

Таблица 7.1

	T_0	T_1	S	M	L
g	_	+	_	_	_
w	_	_	_	_	?

Множество функций $F = \{g, w\}$ не содержится целиком ни в одном из классов Поста, следовательно система полна.

Можно реализовать константы 0, 1 и стандартный базис $\{\lor, \land, \ ^-\}$.

Реализация основных элементов

Таблица 7.2

	T_0	T_1	S	M	L	
g	_	+	_	_	_	
w	_	-	_	_	?	

Константа 1

 $g \notin T_0$ и $g \in T_1$

Функция g сохраняет константу 1 и функция g не сохраняет константу 0 , g(0,0,0)=1 и g(1,1,1)=1 . Следовательно, g(x,x,x)=1 .

Отрицание.

 $w \notin T_0$ и $w \notin T_1$.

Функция w не сохраняет константу 0 и не сохраняет константу 1 . w(0,0,0)=1 и w(1,1,1)=0 . Следовательно, $w(x,x,x)=\overline{x}$.

Константа 0

 $0=\overline{1}$. w(1,1,1)=0 T.E. w(g(x,x,x),g(x,x,x),g(x,x,x))=0 .

Реализация конъюнкции из нелинейной функции $\,g\,.$

 $g=x_1x_2x_3\oplus x_1x_2\oplus 1$. Положим $x_3=0$, получим $\varphi(x_1,x_2)=x_1x_2\oplus 1=\overline{x_1x_2}$, т.к. $x\oplus 1=\overline{x}$. Пусть $x_1=x$, $x_2=y$, тогда $\psi(x,y)=\overline{\varphi(x,y)}=xy$.

Следовательно, $x \cdot y = g(x, y, 0)$.

В итоге имеем представление конъюнкции следующей формулой:

$$x \cdot y = w(\begin{array}{c} g(x, y, w(g(x, x, x), g(x, x, x), g(x, x, x))), \\ g(x, y, w(g(x, x, x), g(x, x, x), g(x, x, x))), \\ g(x, y, w(g(x, x, x), g(x, x, x), g(x, x, x))) \end{array})$$

Практическая реализация конъюнкции из нелинейной функции f от 2-х переменных.

Функцию от 2-х переменных всегда можно получить из функции от большего числа переменных положив какие-то переменные равными 0 или 1. Например, пусть $f_1=x_1x_2\oplus x_1x_3\oplus x_2x_3\oplus 1$. Положим $x_1=0$, получим $\varphi(x_2,x_3)=x_2x_3\oplus 1$.

Или пусть $f_2=x_1x_2x_3\oplus 1$. Положим $x_1=1$, получим $\varphi(x_2,x_3)=x_2x_3\oplus 1$, положить $x_1=0$ мы не можем, т.к. "потеряем" единственную конъюнкцию $x_1x_2x_3$

Возможны следующие варианты вида функции от 2-х переменных :

- **1.** $f(x,y)=xy\oplus 1=\overline{xy}$. Следовательно, $x\cdot y=\overline{f(x,y)}$.
- **2.** $f(x,y) = xy \oplus x \oplus 1 = x(y \oplus 1) \oplus 1 = x\overline{y} \oplus 1 = \overline{x}\overline{y}; \ x \cdot y = \overline{f(x,\overline{y})}.$
 - **2.a.** $f(x,y) = xy \oplus x = x(y \oplus 1) = x\overline{y}; \ x \cdot y = f(x,\overline{y}).$
- **3.** $f(x,y) = xy \oplus x \oplus y \oplus 1 = x(y \oplus 1) \oplus (y \oplus 1) = (x \oplus 1)(y \oplus 1) = \overline{x} \cdot \overline{y}; \ x \cdot y = f(\overline{x}, \overline{y}).$
- $\textbf{3.a.} \quad f(x,y) = xy \oplus x \oplus y = xy \oplus x \oplus y \oplus 1 \oplus 1 = [\texttt{t.k.}1 \oplus 1 = 0] = x(y \oplus 1) \oplus (y \oplus 1) \oplus 1 = (x \oplus 1)(y \oplus 1) \oplus 1 = \overline{x} \cdot \overline{y} \oplus 1 = \overline{\overline{x} \cdot \overline{y}}; \ x \cdot y = \overline{f(\overline{x}, \overline{y})}.$