Submit for the first 9 problems. (29 in total)

1) The following difference equation for a causal LTI system is given,

$$y[n] - \frac{1}{2}y[n-1] = x[n] - x[n-1] + x[n-2]$$

- a) Find the impulse response, h[n].
- b) Find the frequency response, $H(e^{j\omega})$.
- c) Plot the magnitude response, $|H(e^{j\omega})|$ and phase response, $\not\preceq H(e^{j\omega})$, in MATLAB using "freqz" command.
- d) Let $x[n] = \cos\left(\frac{\pi}{3}n\right) + \sin\left(\frac{\pi}{2}n + \frac{\pi}{4}\right)$ be the system input. Find the output y[n].
- e) Prove that $H(e^{j\omega}) = H^*(e^{j(2\pi-\omega)})$. Does this equality hold for an arbitrary h[n]? Explain.
- **2)** Find the DTFT of the sequence $x[n] = na^{n-2}u[n-2]$.
- 3) Let $x_1[n] = \sin\left(\frac{\pi}{7}n\right) + \sin\left(\frac{\pi}{3}n\right)$ and $x_2[n] = x_1[n]u[n]$. Find the responses, $y_1[n]$ and $y_2[n]$ to $x_1[n]$ and $x_2[n]$, respectively, of the following systems.

 - a) A moving average system with impulse response $h[n] = [\frac{1}{2} \ \frac{1}{2}]$ for $n = [0 \ 1]$. b) A moving average system with impulse response $h[n] = [\frac{1}{2} \ \frac{1}{2}]$ for $n = [2 \ 3]$. c) A moving average system with impulse response $h[n] = [\frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6}]$ for $n = [0 \ 1 \ 2 \ 3 \ 4 \ 5]$.

Compare $y_1[n]$ to $y_2[n]$ in each case; can you identify an interval on which $y_1[n] = y_2[n]$. How is that interval related to the particular impulse response?

- **4)** In the $[-\pi,\pi)$ interval, the DTFT, $X(e^{j\omega})$, of a real sequence x[n] is nonzero only in [a,b], $a<0< b,b-a=\frac{\pi}{2}$; otherwise it is arbitrary.
 - a) Plot the magnitude and phase of a candidate $X(e^{j\omega})$.
 - b) Express the DTFTs, $X_C(e^{j\omega})$ and $X_S(e^{j\omega})$, respectively, of $\cos\left(\frac{\pi}{5}n\right)x[n]$ and $\sin\left(\frac{\pi}{5}n\right)x[n]$ in terms of $X(e^{j\omega}).$
 - c) Assume that $X(e^{j\omega})$ is real valued and still complies with the specifications above. Plot the magnitudes and phases of $X_{\mathcal{C}}(e^{j\omega})$ and $X_{\mathcal{S}}(e^{j\omega})$ using your $X(e^{j\omega})$ in part-a.
- **5)** Find $\int_{-\pi}^{0} \left| \frac{\sin(\frac{5}{2}\omega)}{\sin(\frac{\omega}{2})} \right|^{2} d\omega$.
- **6)** Show that the response of a LTI system to a complex exponential $x[n]=e^{j\omega_0n}$ is $H(e^{j\omega_0})e^{j\omega_0n}$ by taking the inverse DTFT of $Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$ where $X(e^{j\omega})$ is the DTFT of $x[n] = e^{j\omega_0 n}$.

7) Impulse responses of some LTI systems are given below. Let $x[n] = 3^n$ be the input signal of these systems. Determine those systems for which their output signals can be expressed as $y[n] = C 3^n$ where C is a complex constant. Explain formally. Submit parts-a and -b only.

a)
$$h[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[n]$$

b)
$$h[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[-n]$$

c)
$$h[n] = 5^n u[-n]$$

d)
$$h[n] = 3^n u[n]$$

8) Find the impulse responses of the stable LTI systems having the following system functions. Which of them are causal? Plot the pole-zero diagrams and show the ROCs. **Submit part-a only.**

a)
$$H(z) = \frac{2z^{-1}+1}{\left(1-\frac{1}{4}z^{-1}\right)(1+z^{-1})\left(1+\frac{1}{4}z^{-1}\right)}$$

b) $H(z) = \frac{z-4}{(1-3z^{-1})(1-5z^{-1})}$
c) $H(z) = \frac{z^{-1}}{\left(1-\frac{1}{4}z^{-1}\right)\left(1-\frac{1}{3}z^{-1}\right)}$
d) $H(z) = \frac{1}{\left(1-\frac{1}{2}z^{-1}\right)^3}$

b)
$$H(z) = \frac{z-4}{(1-3z^{-1})(1-5z^{-1})}$$

c)
$$H(z) = \frac{z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}$$

d)
$$H(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)^3}$$

9) The magnitude and the phase of the frequency response of a LTI system are given. Find the output signal of this system for each of the following input

signals. Submit part-c only.

a.
$$x[n] = \cos(1.6\pi n)$$

b.
$$x[n] = \sin(30.4 \pi n)$$

c.
$$x[n] = 3 + j5 + \sin(0.25 \pi n)$$

10) The impulse response of a LTI system is

$$h[n] = \delta[n] - \sqrt{2}\delta[n-1] + \delta[n-2].$$

- a) Find the system function H(z). Plot the pole-zero diagram, indicate ALL poles and zeros, show the ROC.
- b) Does this system have a frequency response? Why? If yes, plot its magnitude and phase.
- c) Find the output of this system to the following input signals

$$x_1[n] = \sin\left(\frac{\pi}{4}n + \frac{\pi}{4}\right)$$

$$x_2[n] = \sin\left(\frac{\pi}{4}n + \frac{\pi}{4}\right)u[n]$$

$$x_3[n] = \sin\left(\frac{\pi}{4}n + \frac{\pi}{4}\right) + \sin\left(\frac{3\pi}{4}n\right)$$

Comment on the relationship between the frequency response and zero locations of H(z).

11) The system function of a LTI system is

$$H(z) = \frac{1 - \sqrt{2}z^{-1} + z^{-2}}{1 - 2z^{-1}}.$$

When the input is $\sin\left(\frac{\pi}{2}n\right)$, the output of this system is $\sqrt{\frac{2}{5}}\sin\left(\frac{\pi}{2}n + \tan^{-1}\frac{1}{2}\right)$.

- a) Find the impulse response of this system.
- b) Is the system causal?
- c) Find the difference equation for this system.
- 12) Prove the modulation/windowing property of DTFT.
- **13)** Let

$$x[n] = \cos\left(\frac{\pi}{4}n\right)$$

$$y[n] = w[n]x[n]$$

- a) Find the DTFT, $Y(e^{j\omega})$, of y[n] in terms of $W(e^{j\omega})$ using the modulation/windowing property of DTFT.
- b) Let

$$w[n] = \begin{cases} 1 & n \in [-M, M] \\ 0 & otherwise \end{cases}$$

 $w[n] = \begin{cases} 1 & n \in [-M,M] \\ 0 & otherwise \end{cases}$ Find $W(e^{j\omega})$ and plot (MATLAB) its magnitude in $\omega \in [-\pi,\pi]$ for M=3,10,50.

- c)
- Plot (MATLAB) $|Y(e^{j\omega})|$ in $\omega \in [-\pi, \pi]$ for M = 3, 10, 50.
- Note the frequencies at which the peak of $|Y(e^{j\omega})|$ is observed for M=3,10,50. Are they the same? Comment on your observation and explain why it is so.
- d) Let

$$x[n] = \cos\left(\frac{\pi}{4}n\right) + \cos\left(\frac{\pi}{30}n\right)$$

- Plot (MATLAB) $|Y(e^{j\omega})|$ in $\omega \in [-\pi, \pi]$ for M = 3, 10, 50. i.
- Describe the differences you observe in the three plots. Explain the reasons of these differences. ii.
- e) Based on your experience in this item, comment on the results of items (e) and (f) of Homework 2.
- **14)** The z-transform, X(z), of a sequence x[n] exists for $z=4e^{j\pi}$. Show that X(z) exists for $z=4e^{j\frac{2\pi}{7}}$ and in general for $z = 4e^{j\omega}$, $0 \le \omega < 2\pi$.
- **15)** The z-transform, X(z), of a right –sided sequence x[n] exists for $z=4e^{j\omega}$, $0\leq\omega<2\pi$. Show that X(z) exists for $=4.1e^{j\omega}$, $0\leq\omega<2\pi$, but not necessarily for $z=3.9e^{j\omega}$, $0\leq\omega<2\pi$.
- **16)** Find (if exists) the outputs of the systems in question-7 to the inputs $x_1[n] = \cos\left(\frac{\pi}{2}n\right)$ and $x_2[n] = \cos\left(\frac{\pi}{2}n\right)$ $\cos\left(\frac{\pi}{2}n\right)u[n].$

17) Find the impulse responses of the stable LTI systems having the following system functions. Which of them are causal? Plot the pole-zero diagrams and show the ROCs.

e)
$$H(z) = \frac{2z^{-1}+1}{\left(1-\frac{1}{4}z^{-1}\right)\left(1+z^{-1}\right)\left(1+\frac{1}{4}z^{-1}\right)}$$

f)
$$H(z) = \frac{z-4}{(1-3z^{-1})(1-5z^{-1})}$$

g)
$$H(z) = \frac{z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}$$

h)
$$H(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)^3}$$

- 18) What the ROCs of the z-transforms of the following sequences?
 - a) $x[n] = \delta[n+3] + \delta[n-3]$
 - b) $x[n] = \delta[n + 3]$
 - c) $x[n] = \delta[n-3]$
- **19)** Let $x[n] = \delta[n+1] + \left(\frac{1}{2}\right)^n u[n]$. Find the z-transforms of the following sequences. What are the ROCs? State all poles and zeros.
 - a) x[n]
 - b) x[n-5]
 - c) nx[n]
 - d) $\cos\left(\frac{\pi}{2}n\right)x[n]$
- 20) Let the frequency response of a LTI system be

$$H(e^{j\omega}) = \begin{cases} 1 & -\frac{\pi}{10} < \omega < \frac{\pi}{10} \\ 0 & otherwise \end{cases}$$

- a) Find the impulse response, h[n], of this system. Is it a causal one?
- b) Let $h_1[n] = h[n] \cos\left(\frac{\pi}{4}n\right)$. Find and plot $H_1(e^{j\omega})$.
- 21) Impulse responses of some LTI systems are given. Find the difference equation that represents the input-output relationship of each system.

a)
$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$

b)
$$h[n] = -\left(\frac{1}{2}\right)^n u[-n-1]$$

b)
$$h[n] = -\left(\frac{1}{2}\right)^n u[-n-1]$$

c) $h[n] = \left(\frac{1}{2}\right)^{n-1} u[n-1]$
d) $h[n] = \left(\frac{1}{2}\right)^n u[n-4]$

d)
$$h[n] = \left(\frac{1}{2}\right)^n u[n-4]$$

e)
$$h[n] = \left(\frac{1}{2}\right)^n u[n] + 2^n u[n]$$

22) The pole-zero plot of the system function, H(z), of a <u>stable</u> LTI system is shown. It is known that H(1) = 1.

b. Let $h_1[n] = h[-n+2]$. Sketch the pole-zero plot for $H_1(z)$ show its ROC.

- **23)** The output of a stable LTI system is $y[n] = \delta[n+1] + 2\delta[n] + \delta[n-1]$ when its input is $x[n] = -2\delta[n+2] 4\delta[n+1] + 4\delta[n-1] + 2\delta[n-2]$. Find its impulse response h[n].
- 24) Evaluate

$$\sum_{n=-\infty}^{\infty} \left| \frac{\sin\left(\frac{\pi n}{4}\right)}{\pi n} \right|^2$$

25) MATLAB - Let

$$x[n] = [1\ 2\ 3\ 4\ 5\ 6\ 7\ 6\ 5\ 4\ 3\ 2\ 1] \quad \text{for } n=0,1,\dots,12$$
 and
$$h[n] = [\tfrac{1}{5}\ \tfrac{1}{5}\ \tfrac{1}{5}\ \tfrac{1}{5}] \qquad \qquad \text{for } n=0,1,\dots,4.$$

i.e, h[n] is a moving average filter of length 5.

- a) Generate x and h sequences (vectors) and convolve them; y = conv(h, x). Plot x[n] and y[n] in the same panel. Comment on the effect of the filter h[n] on x[n].
- b) Compute and plot the magnitudes of DTFTs of x[n] and y[n] as follows

```
X_{mag} = abs(fft(x,1024));
Y_{mag} = abs(fft(y,1024));

To plot in [0,2\pi]
w = 0:1023;
w = 2 * pi * w / 1024;
plot(w, X_{mag});
hold
plot(w, Y_{mag}, r');

To plot in [-\pi, \pi]
w = -512:511;
w = pi * w / 512;
plot(w, fftshift(X_{mag}));
```

Comment on the differences between X_mag and Y_mag.

plot(w, fftshift(Y_mag),'r');

hold

26) MATLAB – In this item, the moving average filter of item-3 will be applied to the following (chirp) signal

$$x[n] = \cos((\omega_0 + k_\omega n)n), \quad n = 0,1, \dots 999$$

$$\omega_0 = 0.33\pi$$

$$\omega_f = 1.1\omega_0$$

$$k_\omega = \frac{(\omega_f - \omega_0)}{999}.$$

- a) Generate x and h sequences (vectors) and convolve them; y = conv(h, x)..
- b) Plot x and y sequences.

where

c) Plot the magnitude response of the moving average filter of length 5 in $[0, \pi]$. You may use the code below:

```
clear all
close all

filt_length = 5;
h = ones(1,filt_length) / filt_length;

N = 1000 ;
w_0 = 0.33 * pi ;
w_f = w_0 * 1.1 ;
n = 0:(N-1) ;
k_w = (w_f - w_0) / (N-1) ;
x = cos((w_0 + k_w * n) .* n);

y = conv(h,x);

plot(x)
figure
plot(y)

[H,W] = freqz(h,1,1000);
figure
plot(W/pi,abs(H))
```

- d) Now, set $\omega_0=0.4\pi$ and repeat parts a,b.
- e) You can make your own trials with different filter lengths or other parameter values.
- f) Comment on your results.
- **27)** MATLAB Using the relevant parts of the code in item-4, compare the magnitudes of the frequency responses of the filters that have the following impulse responses:

$$h_1[n] = \left[\frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5}\right]$$
 for $n = 0,1,...,4$

$$h_2[n] = \left[\frac{1}{5} \frac{-1}{5} \frac{1}{5} \frac{-1}{5} \frac{1}{5} \frac{-1}{5}\right] \text{ for } n = 0,1,\dots,4$$

28) MATLAB - Generate

$$x[n] = \sin\left(\frac{2\pi}{9}n\right) + \cos\left(\frac{10\pi}{17}n\right), \quad n = 0, 1, ..., 152$$

- a) What are the fundamental periods of the sinusoidal components.
- b) Design a Butterwoth filter using the 'butter' command. Set the filter order to 8 and the cutoff frequency to $\frac{\pi}{4}$. The command is '[b,a]=butter(8, 0.25)'. (Note that 0.25 corresponds to $\frac{\pi}{4}$. Explain why?) This is an IIR filter. The coefficients of the numerator and denominator polynomials of its rational transfer function are in vectors b and a, respectively.
- c) Filter x[n] by the this Butterworth filter using the 'filter' command. (This time we do not use the 'conv' command. Explain why?)
- d) Plot x and y (the output of the Butterworth filter) using both 'plot' and 'stem' commands.
- e) Plot x and y on the same panel.
- f) Plot the magnitude response of the Butterworth filter.
- g) Comment on the effect of this filter on the input signal. You may use the code below:

```
clear all
close all
n = 0:152;
x = \sin(n*2*pi/9) + \cos(n*10*pi/17);
[b,a] = butter(8,0.25);
y = filter(b,a,x);
plot(x);
figure
stem(x)
figure
plot(y)
figure
plot(y)
figure
plot(x)
hold
plot(y,'r')
[H,W] = freqz(b,a,1000);
figure
plot(W,abs(H))
figure
plot(W, 20*log10(abs(H)))
```

29) MATLAB - Spectrogram is a convenient mathematical tool to observe the "time-varying" frequency content of signals. Spectrogram is closely related to Fourier transform.

a) Generate

$$x[n] = \begin{cases} \sin\left(\frac{2\pi}{9}n\right), & n = 0,1,\dots,199\\ \cos\left(\frac{10\pi}{17}n\right), & n = 200,\dots,399\\ \sin\left(\frac{2\pi}{9}n\right) + \cos\left(\frac{10\pi}{17}n\right), & n = 400,\dots,699 \end{cases}$$

- b) Plot and observe the spectrogram of x[n] using "spectrogram (x)" command.
- c) State your interpretation of the picture displayed.
- d) Describe how the "spectrogram" command might have generated the observed pictures.
- e) Now try "spectrogram (x, 50, 0)" and "spectrogram (x, 50, 25). What are the roles of these parameters? How do they affect the spectrogram picture?
- f) Now try "spectrogram (x, 10, 0)". State your observation on how the resulting picture differs from the previous ones.

You may use the code below:

```
clear all
close all
n1 = 0:199;
x1 = \sin(n1*2*pi/9);
n2 = 200:399;
x2 = cos(n2*10*pi/17);
n3 = 400:799;
x3 = \sin(n3*2*pi/9) + \cos(n3*10*pi/17);
x = [x1 \ x2 \ x3];
plot(x)
figure
spectrogram(x)
figure
spectrogram(x, 50, 0)
figure
spectrogram(x, 50, 25)
figure
spectrogram(x, 10, 0)
```