Swansea University College of Science Prifysgol Abertawe Coleg Gwyddoniaeth

January 2018/19

CSCM59

Relational and Object-Oriented Database Systems

Time Available: 2 hours

Coordinator: Mr C J Whyley

Queries: The Exams Office hold contact details for this paper

Only University-supplied dictionaries are permitted

Calculators? Not Permitted

Attempt all questions.

Attempt all questions

Some questions refer to the following **Suppliers and Parts** database. (Bold underlined headers represent the primary key.)

	$\underline{\mathbf{SNumber}}$	SName	Status	City
\mathbf{S}	S1	Smith	20	London
	S2	Jones	10	Paris
	S3	Blake	30	Paris
	S4	Clark	20	London
	S5	Adams	30	Athens

SNumber	r PNumber	Qty
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	500
	S1 S1 S1 S1 S1 S1 S1 S1 S2 S2 S2 S3 S4 S4	S1 P1 S1 P2 S1 P3 S1 P4 S1 P5 S1 P6 S2 P1 S2 P2 S3 P2 S4 P4

	<u>PNumber</u>	PName	Colour	Weight	City
P	P1	Nut	Red	12.0	City
	P2	Bolt	Green	17.0	Paris
	P3	Screw	Blue	17.0	Oslo
	P4	Screw	Red	14.0	London
	P5	Cam	Blue	12.0	Paris
	P6	Cog	Red	19.0	London

1. Explain, using a diagram, what happens with the $\bf Lost~Update~Problem$

[7 marks]

2. • Who or what is responsible for **Data**?

[2 marks]

• Who or what is responsible for **Optimisation**?

[2 marks]

CSCM59: Page 1 of 2

- 3. In database design it is necessary to remove any **Transitive Dependencies**. Explain formally (i.e. with a mathematical expression) and in English what is meant by a transitive dependency. [4 marks]
- 4. Give a **Relational Integrity Predicate** for the table **SP** above stating that parts can only be supplied in lots between 100 and 500.

[5 marks]

- 5. In an Object-Oriented database what replaces a primary key, and how is it generated? [2 marks]
 - How are objects' relationships implemented?

[2 marks]

- 6. Give an SQL statement which would create the table **P** above. You must think carefully about the attribute types. [10 marks]
- 7. Suppose a table **R** in a database contains attributes A, B, C, D and E. As the DBA you wish to decompose it into **T**{A, B, C} and **U**{A, D, E}. You know that many users have written programs or queries using table R.
 - (a) Give a potential problem with your plan.

[2 marks]

(b) Explain how you could use a view to solve the problem.

[6 marks]

- 8. You need the name and status of suppliers who supply part P1.
 - (a) Give an expression in **Relation Algebra** to achieve this. (Use the format used in lectures). [3 marks]
 - (b) Give an expression in **Relational Calculus** to achieve this. (Use the format used in lectures) [5 marks]

End of Paper

CSCM59: Page 2 of 2