Lesson 17: Practice Problems - Homogeneous Equations

ODE 1 - Prof. Adi Ditkowski

Part A: Recognition and Classification (5 problems)

1. Determine if each equation is homogeneous. If yes, identify the degree:

(a)
$$\frac{dy}{dx} = \frac{x^2 + 3xy}{2x^2 - y^2}$$

(b)
$$\frac{dy}{dx} = x + y$$

(c)
$$(x^2 + y^2)dx - 2xydy = 0$$

(d)
$$\frac{dy}{dx} = e^{y/x} + \frac{y}{x}$$

(e)
$$x \frac{dy}{dx} = y \ln\left(\frac{y}{x}\right)$$

2. Show that if M(x,y) and N(x,y) are homogeneous of degree n, then Mdx + Ndy = 0 is a homogeneous equation.

3. Prove that $\frac{dy}{dx} = f\left(\frac{ax+by+c}{dx+ey+f}\right)$ is NOT homogeneous unless c = f = 0.

4. Verify that $(x\sin(y/x) - y\cos(y/x))dx + x\cos(y/x)dy = 0$ is homogeneous.

5. Transform $\frac{dy}{dx} = \frac{y^3 + 2x^2y}{x^3 - xy^2}$ into the form F(y/x).

Part B: Basic Substitution Problems (6 problems)

6. Solve using v = y/x substitution:

$$\frac{dy}{dx} = \frac{y}{x} + 1$$

7. Solve: (x + y)dx - (x - y)dy = 0

8. Find the general solution:

$$x\frac{dy}{dx} = y + \sqrt{x^2 + y^2}$$

9. Solve the IVP:

$$\frac{dy}{dx} = \frac{2y^2}{xy - x^2}, \quad y(1) = 2$$

10. Solve: $xy' = y + x \tan(y/x)$

11. Find all solutions:

$$(x^2 + 2y^2)\frac{dy}{dx} = xy$$

1

Part C: Complete Solution Process (5 problems)

12. Solve and verify your solution:

$$(y^2 - 2xy) dx + x^2 dy = 0$$

13. Find the solution curve passing through (1,1):

$$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$$

14. Solve using the appropriate substitution:

$$x^2y' = y^2 + xy + x^2$$

15. Find the general solution:

$$(3x^2 + y^2)dx - 2xydy = 0$$

16. Solve the equation:

$$\frac{dy}{dx} = \frac{x + 2y}{2x - y}$$

Part D: Tricky Cases and Variations (5 problems)

17. Solve using u = x/y instead of v = y/x:

$$x\frac{dy}{dx} = 2y + x\sec\left(\frac{x}{y}\right)$$

18. Find singular solutions if any:

$$\frac{dy}{dx} = \frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2}$$

19. Solve the equation with parameter a:

$$\frac{dy}{dx} = \frac{ax^2 + y^2}{2xy}$$

20. Transform to homogeneous and solve:

$$\frac{dy}{dx} = \frac{2x + 3y - 5}{x + 2y - 3}$$

(Hint: Use translation of coordinates)

21. Solve the implicit homogeneous equation:

$$x^3 + y^3 = 3xy(x+y)$$

2

Part E: Mixed Recognition Challenge (4 problems)

- 22. Identify which equations are homogeneous and solve only those:
 - (a) $y' = (x^2 + y^2)/(2xy)$
 - (b) $y' = x^2 + y^2$
 - (c) y' = (x y)/(x + y)
 - (d) $y' + y/x = x^2$
- 23. Show that the substitution y = vx transforms the homogeneous equation into a separable equation in v and x.
- 24. Find all homogeneous equations of the form:

$$\frac{dy}{dx} = \frac{ay + bx}{cy + dx}$$

25. Prove that if $y_1(x)$ is a solution to a homogeneous equation, then $y_2(x) = ky_1(kx)$ is also a solution for any constant k.

Part F: Exam-Style Complete Problems (5 problems)

- 26. [Prof. Ditkowski Style] Consider the equation: $(x^2 + y^2)dx + (x^2 2xy)dy = 0$
 - (a) Verify that this is a homogeneous equation
 - (b) Find the general solution
 - (c) Find the particular solution satisfying y(1) = 0
 - (d) Determine if there are any singular solutions
- 27. [Comprehensive Problem] For the equation $\frac{dy}{dx} = \frac{y}{x} + \frac{x}{y}$:
 - (a) Show it's homogeneous
 - (b) Solve using v = y/x
 - (c) Find the solution through (1,1)
 - (d) Sketch the solution curves
- 28. [Application Problem] A curve has the property that at any point (x, y), the tangent line passes through the point (x/2, 0). Find the equation of all such curves.

3

- 29. [Theory and Computation]
 - (a) Prove that every homogeneous equation has solution curves that are similar under scaling from the origin
 - (b) Solve: x(x+y)dy = y(x-y)dx

- (c) Explain the geometric meaning of your solution
- 30. [Challenge Problem] Consider the family of equations: $\frac{dy}{dx} = F(y/x)$ where F is continuous.
 - (a) Show that if F(v) = v has solutions $v = v_i$, then $y = v_i x$ are solutions
 - (b) For $F(v) = v^2 + v 2$, find all straight-line solutions
 - (c) Solve the complete equation and discuss the behavior near the straight-line solutions

Solutions and Hints

Selected Solutions:

Problem 1(a): Homogeneous of degree 0. Divide numerator and denominator by x^2 .

Problem 6: Let v = y/x. After substitution: $v + x \frac{dv}{dx} = v + 1$, so $\frac{dv}{dx} = \frac{1}{x}$. Integrating: $v = \ln|x| + C$, thus $y = x \ln|x| + Cx$.

Problem 11: After substitution and separation: $\int \frac{vdv}{1+v^2} = \int \frac{dx}{x}$. This gives $\frac{1}{2} \ln(1+v^2) = \ln|x| + C$, or $(x^2 + y^2) = Ax^2$ where $A = e^{2C}$.

Problem 17: Check F(v) - v = 0: $v + \sqrt{1 + v^2} - v = \sqrt{1 + v^2} \neq 0$ for any real v. No singular solutions.

Problem 20: Translation: let X = x - 1, Y = y - 1 to eliminate constants.

Key Integration Formulas Needed:

- $\int \frac{dv}{1+v^2} = \arctan(v) + C$
- $\int \frac{vdv}{1+v^2} = \frac{1}{2}\ln(1+v^2) + C$
- $\int \frac{dv}{v^2 1} = \frac{1}{2} \ln \left| \frac{v 1}{v + 1} \right| + C$