CS2020 Data Structures and Algorithms

Welcome!

Quiz 1

Friday, February 12

Sorting, Part I

- Sorting algorithms
 - BubbleSort
 - SelectionSort
 - InsertionSort
 - MergeSort
- Properties
 - Running time
 - Space usage
 - Stability

Sorting, Part II

QuickSort

- Divide-and-Conquer
- Partitioning
- Duplicates
- Choosing a pivot

You bet on red for 10 rounds and all lost because of all black.
Next round you should:

- A. Bet on black
- B. Bet on red
- C. Bet on both red and black
- D. Let's just leave
- E. Banananana!

Flipping a coin:

- Pr(heads) = $\frac{1}{2}$
- Pr(tails) = $\frac{1}{2}$

Coin flips are independent:

- Pr(heads, heads) = $\frac{1}{2} * \frac{1}{2} = \frac{1}{4}$
- Pr(heads, tails, heads) = $\frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8}$

Flipping a coin:

- Pr(heads) = $\frac{1}{2}$
- Pr(tails) = $\frac{1}{2}$

Set of uniform events $(e_1, e_2, e_3, ..., e_k)$:

- $Pr(e_1) = 1/k$
- $Pr(e_2) = 1/k$
- ...
- $Pr(e_k) = 1/k$

Events A, B:

- Pr(A) = probability of A
- Pr(B) = probability of B

Pairwise independence:

- A and B are independent
 (e.g., unrelated random coin flips)
- Pr(A and B) = Pr(A)Pr(B)

Expected value:

Weighted average

Example: random variable X has two outcomes:

- $Pr(X = 12) = \frac{1}{4}$
- $Pr(X = 60) = \frac{3}{4}$

Expected value of X:

$$E[X] = (\frac{1}{4})12 + (\frac{3}{4})60 = 48$$

Flipping a coin:

- Pr(heads) = $\frac{1}{2}$
- Pr(tails) = $\frac{1}{2}$

In two coin flips: I <u>expect</u> one heads.

Define variable X:

— X = number of heads in two coin flips

In two coin flips: I <u>expect</u> one heads.

```
- Pr(heads, heads) = \frac{1}{4} 2 heads * \frac{1}{4} = \frac{1}{2}
```

- Pr(heads, tails) = $\frac{1}{4}$ 1 heads * $\frac{1}{4}$ = $\frac{1}{4}$
- $Pr(tails, heads) = \frac{1}{4}$ 1 heads * $\frac{1}{4}$ = $\frac{1}{4}$
- $Pr(tails, tails) = \frac{1}{4}$ 0 heads * $\frac{1}{4}$ = 0

Flipping a coin:

- Pr(heads) = $\frac{1}{2}$
- Pr(tails) = $\frac{1}{2}$

In two coin flips: I <u>expect</u> one heads.

 If you repeated the experiment many times, on average after two coin flips, you will have one heads.

Goal: calculate expected time of QuickSort

Set of outcomes for $X = (e_1, e_2, e_3, ..., e_k)$:

- $Pr(e_1) = p_1$
- $Pr(e_2) = p_2$
- **–** ...
- $Pr(e_k) = p_k$

Expected outcome:

$$E[X] = e_1p_1 + e_2p_2 + ... + e_kp_k$$

Those were the days

Expected Value

• Which one will you pick?

Name	Source	Prof	Damage
Falchion	РНВ	+3	2d4
Glaive	РНВ		2d4
Greataxe	РНВ		1d12
Greatsword	РНВ	+3	1d10
Halberd	PHB	+2	1d10
Heavy flail	РНВ	+2	2d6
Heavy war pick	AV	+2	1d12
-		, in the second	

I. Halberd; 2. Longbow; 3. Handaxe; 4. Short sword; 5. Shortbow; 6. Longsword; 7. Maul; 8. Greataxe; 9. War pick; 10. Bastard sword; 11. Warhammer; 12. Flail; 13. Battleaxe; 14. Throwing hammer; 15. Scimitar; 16. Glaive

Which weapon(s) is/are better in the long run in terms on damage only?

- A. Halberd
- B. Heavy frail
- C. Heavy war pick
- D. Banana!

Linearity of Expectation:

$$- E[A + B] = E[A] + E[B]$$

Example:

- X = # heads in 2 coin flips
- Y = # heads in 2 coin flips
- X + Y = # heads in 4 coin flips

$$E[X+Y] = E[X] + E[Y] = 1 + 1 = 2$$

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

E[X]= expected number of flips to get one head

Example: X = 7

TTTTTTH

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

```
E[X]= Pr(heads after 1 flip)*1 +
Pr(heads after 2 flips)*2 +
Pr(heads after 3 flips)*3 +
Pr(heads after 4 flips)*4 +
```

. . .

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

```
E[X]= Pr(H)*1 +
Pr(T H)*2 +
Pr(T T H)*3 +
Pr(T T T H)*4 +
```

. . .

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

```
\begin{split} \textbf{E}[X] &= p(1) + \\ & (1-p)(p)(2) + \\ & (1-p)(1-p)(p)(3) + \\ & (1-p)(1-p)(1-p) \ (p)(4) + \end{split} Geometric series!
```

. . .

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

$$E[X] = (p)(1) + (1 - p) (1 + E[X])$$

How many more flips to get a head?

Idea: If I flip "tails," the expected number of additional flips to get a "heads" is <u>still</u> **E**[X]!!

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

$$E[X] = (p)(1) + (1 - p) (1 + E[X])$$

= $p + 1 - p + 1E[X] - pE[X]$

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

$$E[X] = (p)(1) + (1 - p) (1 + E[X])$$

$$= p + 1 - p + 1E[X] - pE[X]$$

$$E[X] - E[X] + pE[X] = 1$$

Flipping an (unfair) coin:

- Pr(heads) = p

E[X] = 1/p

- Pr(tails) = (1 - p)

How many flips to get at least one head?

$$E[X] = (p)(1) + (1 - p) (1 + E[X])$$

$$= p + 1 - p + 1E[X] - pE[X]$$

$$pE[X] = 1$$

Flipping an (unfair) coin:

- Pr(heads) = p
- Pr(tails) = (1 p)

How many flips to get at least one head?

If $p = \frac{1}{2}$, the expected number of flips to get one head equals:

$$E[X] = 1/p = 1/\frac{1}{2} = 2$$

Paranoid QuickSort

```
ParanoidQuickSort(A[1..n], n)
    if (n == 1) then return;
    else
         repeat
               pIndex = random(1, n)
               p = partition(A[1..n], n, pIndex)
         until p > (1/10)n and p < (9/10)
         x = QuickSort(A[1..p-1], p-1)
         y = QuickSort(A[p+1..n], n-p)
```

QuickSort Partition

Remember:

A *pivot* is **good** if it divides the array into two pieces, each of which is size at least n/10.

X

Choosing a Good Pivot

Imagine the array divided into 10 pieces:

Probability of a good pivot:

$$p = 8/10$$

 $(1 - p) = 2/10$

Choosing a Good Pivot

Probability of a good pivot:

$$p = 8/10$$

 $(1 - p) = 2/10$

Expected number of times to repeatedly choose a pivot to achieve a good pivot:

$$E[\# \text{ choices}] = 1/p = 10/8 < 2$$

Paranoid QuickSort

```
QuickSort(A[1..n], n)
    if (n==1) then return;
    else
          repeat
                pIndex = \mathbf{random}(1, n)
                p = partition(A[1..n], n, pIndex)
          until p > n/10 and p < n(9/10)
          x = \text{QuickSort}(A[1..p-1], p-1)
          y = QuickSort(A[p+1..n], n-p)
```

Paranoid QuickSort

Key claim:

We only execute the **repeat** loop O(1) times.

Then we know:

```
\mathbf{E}[\mathbf{T}(n)] = \mathbf{E}[\mathbf{T}(k)] + \mathbf{E}[\mathbf{T}(n-k)] + \mathbf{E}[\# \text{ pivot choices}](n)
<= \mathbf{E}[\mathbf{T}(k)] + \mathbf{E}[\mathbf{T}(n-k)] + 2n
= \mathbf{O}(n \log n)
```

You can approximate π by tossing....

- A. Sausages
- **©**B. Coins
 - C. Bananas
 - D. All of the above

• Probability of coins hitting the crossing $= \frac{2\pi r^2}{l^2}$

$$\pi \approx \frac{l^2 \times \text{#hit}}{2r^2 \times \text{#coins}}$$

Landing zone of coin center

Pickup Sticks & Pi

Number of sticks dropped: 12210 Number that crossed a line: 6399

Your estimate of π: 3.146184

Error: 0.15%

Number of sticks to drop: 100 ▼

Click on the board! Each time you click, 100 sticks will be dropped and the number that cross a line will be counted. I dropped 10 to start you off.

Does the estimate get better as you drop more sticks (i.e. does the error get smaller)? How close to 3.1415927... can you get after 100,000 sticks, or 1,000,000?

$$\pi \approx \frac{2 \text{ x stick length x # sticks tossed}}{\text{distance between lines x # sticks crossing a line}}$$

http://www.sciencefriday.com/articles/estimate-pi-by-dropping-sticks/http://www.wikihow.com/Calculate-Pi-by-Throwing-Frozen-Hot-Dogs

QuickSort Tips

- Optimize the partition routine
 - Most important aspect of a good QuickSort is partitioning.

- Choose a pivot carefully (e.g., at random)
 - Bad pivots lead to bad performance.

- Plan for arrays with duplicate values.
 - Equal elements can cause bad performance.

QuickSort Optimizations

For small arrays, use InsertionSort.

- Recursion has overhead.
- QuickSort is slow on small arrays.
- Idea: if the array is small, switch to InsertionSort

Details:

Better idea: leave small arrays unsorted and do one big InsertionSort on the whole array

- Once recursion reaches a small array, use InsertionSort (instead of partition/recurse).
- Once recursion reaches 8 elements, hand-code?

QuickSort Optimizations

To save space, recurse into smaller half first.

- When you recurse, you have to save everything on the stack during the first recursive call.
- During the second recursive call, you can optimize and not save anything. (See: tail recursion.)
- You can only recurse into the smaller side log(n) times.
- Only need O(log n) extra space in the worst case.

Assume larger part shrinks by at least 9/10 every iteration:

Assume larger part shrinks by at least 9/10 every iteration:

Assume larger part shrinks by at least 9/10 every iteration:

QuickSort Optimizations

Two-pivot Quicksort

- Recently shown that two pivots is faster than one!
- Choose two pivots, partition around both.
- What about three pivots? Four?
- Experiment!

But aren't all these still O(n log n)? What is the reason of being faster?

- A. They bluff
- B. Some can achieve O(n)
- C. It's about the constant c in O
- D. They divided into O(n) partition

Summary

QuickSort:

- Algorithm basics: divide-and-conquer
- How to partition an array in O(n) time.
- How to choose a good pivot.
- Paranoid QuickSort.
- Randomized analysis.

Today: Sorting, Part III

- Selection and Order Statistics
 - QuickSelect

Find kth smallest element in an *unsorted* array:

X ₁₀	\mathbf{X}_2	$\mathbf{X_4}$	\mathbf{x}_1	\mathbf{x}_5	\mathbf{x}_3	X ₇	X ₈	X 9	X ₆
------------------------	----------------	----------------	----------------	----------------	----------------	-----------------------	-----------------------	------------	-----------------------

E.g.: Find the median (k = n/2)

Find the 7th element (k = 7)

Find kth smallest element in an unsorted array:

	X ₁₀	X_2	X ₄	\mathbf{x}_1	X ₅	X ₃	X ₇	X ₈	X 9	X ₆
--	------------------------	-------	-----------------------	----------------	-----------------------	-----------------------	-----------------------	-----------------------	------------	-----------------------

Option 1:

- Sort the array.
- Count to element number k.

Running time: O(n log n)

Find kth smallest element in an unsorted array:

\mathbf{x}_1	\mathbf{X}_2	\mathbf{x}_3	X ₄	X ₅	\mathbf{x}_6	X ₇	X ₈	X 9	X ₁₀

Option 1:

- Sort the array.
- Count to element number k.

Running time: O(n log n)

Find kth smallest element in an *unsorted* array:

x ₁₀	\mathbf{X}_2	X ₄	\mathbf{x}_1	X ₅	\mathbf{x}_3	X ₇	X ₈	X 9	X ₆

Option 2:

Only do the minimum amount of sorting necessary

Key Idea: partition the array

Now continue searching in the correct half.

E.g.: Partitioned around x_5 so search for x_3 in left half...

Example: search for 5th element

9	22	13	17	5	3	100	6	19	8
---	----	----	----	---	---	-----	---	----	---

Example: search for 5th element

9	22	13	17	5	3	100	6	19	8	
---	----	----	----	---	---	-----	---	----	---	--

Random pivot: 17

9	8	13	5	3	6	17	100	19	22
1	2	3	4	5	6	7	8	9	10

Example: search for 5th element

Search for 5th element in left half.

1 2 3 4 5 6

Example: search for 5th element

9 8	13 5	3	6				
-----	------	---	---	--	--	--	--

Random pivot: 8

1 2 3 4 5 6

Example: search for 5th element

|--|

Search for: 5 - 4 = 1 in right half

6 3 5 8 13 9

1 2 3 4 5 6

Search for: 5 - 4 = 1 in right half

	13	9				
--	----	---	--	--	--	--

Random pivot: 13

Finding the kth smallest element

```
Select(A[1..n], n, k)
    if (n == 1) then return A[1];
    else Choose random pivot index pIndex.
         p = partition(A[1..n], n, pIndex)
         if (k == p) then return A[p];
         else if (k < p) then
               return Select(A[1..p-1], k)
         else if (k > p) then
               return Select(A[p+1], k-p)
```

Finding the kth smallest element

Key point:

- Only recurse once!
- Why not recurse twice?
 - Does not help---the correct element is on one side.
 - You do not need to sort both sides!
 - Makes it run a lot faster.

Paranoid-Select:

- Repeatedly partition until at least n/10 in each half of the partition.

repeat

```
p = partition(A[1..n], n, pIndex)
```

until (p > n/10) and (p < 9n/10)

Paranoid-Select:

- Repeatedly partition until at least n/10 in each half of the partition.

Recurrence:

$$\mathbf{E}[T(n)] \le \mathbf{E}[T(9n/10)] + \mathbf{E}[\# partitions](n)$$

Paranoid-Select:

- Repeatedly partition until at least n/10 in each half of the partition.

Recurrence:

$$\mathbf{E}[\mathsf{T}(\mathsf{n})] \le \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + \mathbf{E}[\# \text{ partitions}](n)$$

$$\le \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + 2n$$

The expected running time of paranoid select is in TOTAL:

- 1. O(log n)
- **✓**2. O(n)
 - 3. O(n log n)
 - 4. $O(n^2)$
 - 5. $O(n^{\log\log(n)})$
 - 6. I have no idea.

Paranoid-Select:

- Repeatedly partition until at least n/10 in each half of the partition.

Recurrence:

$$\mathbf{E}[T(n)] \le \mathbf{E}[\# \text{ partitions}](n) + \mathbf{E}[T(9n/10)]$$

 $\le 2n + \mathbf{E}[T(9n/10)]$
 $\le 2n + 2n (9/10) + (9/10) \mathbf{E}[T(9n/10)]$
 $\le 2n + 2n (9/10) + 2n (9/10)^2 + \dots$

Paranoid-Select:

- Repeatedly partition until at least n/10 in each half of the partition.

Recurrence:

$$\mathbf{E}[\mathsf{T}(\mathsf{n})] \leq \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + \mathbf{E}[\# \text{ partitions}](n)$$

$$\leq \mathbf{E}[\mathsf{T}(9\mathsf{n}/10)] + 2n$$

$$\leq \mathsf{O}(n)$$

Recurrence:
$$T(n) = T(n/2) + O(n)$$

Uniqueness testing

- Input:
 - Array A
- Output:
 - Does array A contain any duplicate items? YES/NO?

Deleting duplicates

- Input:
 - Array A
- Output:
 - Array A with all the duplicates removed, same order.

Set intersection:

- Input:
 - Array A, B
- Output:
 - Array C containing all items in both A and B.

 5
 81
 14
 4
 12
 6
 9
 88
 1
 11

Target pair:

- Input:
 - Array A, target
- Output:
 - Two elements (x,y) in A where (x+y) = target.

Summary

QuickSort: O(n log n)

- Partitioning an array
- Deterministic QuickSort
- Paranoid Quicksort

Order Statistics: O(n)

- Finding the kth smallest element in an array.
- Key idea: partition
- Paranoid Select

Faster Sorting Algorithms

So far:

- Sorting algorithm only do two things:
 - Compare items.
 - Swap/move items that are out of place.
- Require: implements Comparable

What if we can do more?

- What if we are sorting integers?
- What if we are sorting real numbers?

Faster Sorting Algorithms

Counting Sort:

Linear time, lots of space

Radix Sort:

Linear time, more efficient space

Integer Sorts:

- O(n loglog n) time
- Efficient space
- Complicated and mostly theoretical

CS3230

CS6234

Typically, databases contain pairs: [key, data]

For example:

Age	Name
18	John
18	Mary
19	Bob
32	Sam

Sort by age!

Order of importance	Guest type	Number
1	Direct family	30
2	Bosses	15
3	Indirect family	50
4	Friends	40
5	People who we don't care	60

Key properties:

- Only for sorting integers.
- Assume that all the integers in the input are in the range: [1, k]

Input: A[1..n]

- Assume $A[j] \in \{1, 2, ..., k\}$

Output: B[1..n], sorted

Extra space: C[1..k]

- Initially C[j] = 0

Step 1: Counting

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

Step 1:

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

Example: initial state

$$A = \begin{vmatrix} 4 & 1 & 3 & 4 & 3 \end{vmatrix}$$

$$C = 0 \quad 0 \quad 0 \quad 0$$

Step 1:

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

$$A = \begin{vmatrix} \mathbf{4} & 1 & 3 & 4 & 3 \end{vmatrix}$$

Step 1:

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

$$A = 4 \begin{vmatrix} 1 & 3 \end{vmatrix} 4 \begin{vmatrix} 3 \end{vmatrix}$$

Step 1:

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

$$A = \begin{vmatrix} 4 & 1 & 3 \end{vmatrix} 4 \begin{vmatrix} 3 \end{vmatrix}$$

Step 1:

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

$$A = \begin{vmatrix} 4 & 1 & 3 \end{vmatrix} \mathbf{4} = \begin{vmatrix} 3 & 4 & 3 \end{vmatrix}$$

$$C = 1 0 1 2$$

Step 1:

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

$$A = 4 1 3 4 3$$

$$B = 1 3 3$$

$$B = 1 \quad 3 \quad 3 \quad 4 \quad 4$$

$$C = 1 \quad 0 \quad 2 \quad 2$$

$$B = \begin{bmatrix} 1 & 3 & 3 & 4 & 4 \\ & 1 & 2 & 3 & 4 \\ C = 1 & 0 & 2 & 2 \end{bmatrix}$$

Are we done?

Is this a good sorting algorithm?

When does this not satisfy our needs?

Typically, databases contain pairs: [key, data]

Age	Name
32	Sam
18	Mary
19	Bob
18	John

 18	19	 32	
 2	1	 1	

Age	Name
32	Sam
18	Mary
19	Bob
18	John

 18	19	 32	
 2	1	 1	

Age	Name
18	?
18	?
19	?
32	?

 18	19	 32	
 2	1	 1	

Age	Name
32	Sam
18	Mary
19	Bob
18	John

Age	Name
18	?
18	?
19	?
32	?

Use binary search to fill in the missing data?

Step 1:

```
for (j=1; j<=n; j++) {
    C[A[j]] = C[A[j]] + 1;
}</pre>
```

$$A = \begin{vmatrix} 4 & 1 & 3 & 4 & 3 \end{vmatrix}$$

Step 2: Accumulating

```
for (j=1; j<=k; j++) {
    C[j] = C[j] + C[j-1];
}</pre>
```

Goal: $C[j] = \#(keys \le j)$

Step 2: Accumulating

```
for (j=2; j <= k; j++) {
C[j] = C[j] + C[j-1];
}
```

Example: initial state

Step 2: Accumulating

```
for (j=2; j <= k; j++) {
C[j] = C[j] + C[j-1];
}
```

Step 2: Accumulating

```
for (j=2; j <= k; j++) {
C[j] = C[j] + C[j-1];
}
```

```
1 2 3 4
C = 1 1 3 2
```

Step 2: Accumulating

```
for (j=2; j <= k; j++) {
C[j] = C[j] + C[j-1];
}
```

```
1 2 3 4
C = 1 1 3 5
```

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Goal: Copy each input in A to output in B.

Note: Also copy auxiliary data.

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: initial state

		1	2	3	4
С	=	1	1	3	5

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=					

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

		1	2	3	4
С	=	1	1	3	5

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=					

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

		1	2	3	4
С	=	1	1	3	5

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=			3		

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

		1	2	3	4
С	=	1	1	2	5

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=			3		

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

		1	2	3	4
С	=	1	1	2	5

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=			3		

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

		1	2	3	4
С	=	1	1	2	5

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=			3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

		1	2	3	4
С	=	1	1	2	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=			3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=3)

		1	2	3	4
С	=	1	1	2	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=			3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=3)

		1	2	3	4
С	=	1	1	2	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=		3	3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=3)

		1	2	3	4
С	=	1	1	1	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=		3	3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=2)

		1	2	3	4
С	=	1	1	1	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=		3	3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=2)

		1	2	3	4
С	=	1	1	1	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=	1	3	3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=2)

		1	2	3	4
С	=	0	1	1	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=	1	3	3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=1)

		1	2	3	4
С	=	0	1	1	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=	1	3	3		4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=1)

		1	2	3	4
С	=	0	1	1	4

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=	1	3	3	4	4

Step 3: Copying Output

```
for (j=n; j>0; j--) {
    B[C[A[j]]] = A[j];
    C[A[j]] = C[A[j]]-1;
}
```

Example: (j=1)

		1	2	3	4
С	=	0	1	1	3

		1	2	3	4	5
Α	=	4	1	3	4	3
В	=	1	3	3	4	4

```
Counting-Sort (A, B, n, k)
   for (j=1; j <= n; j++) {
      C[A[j]] = C[A[j]] + 1;
   for (j=2; j <= k; j++) {
      C[j] = C[j] + C[j-1];
   for (j=n; j>0; j--) {
      B[C[A[j]]] = A[j];
      C[A[j]] = C[A[j]]-1;
```

What is the running time of Counting Sort?

- 1. O(*k*)
- 2. O(*n*)
- \checkmark 3. O(n+k)
 - 4. O(nk)
 - 5. $O(n \log k)$

What is the space usage of Counting Sort?

- \checkmark 1. O(k)
 - 2. O(*n*)
 - 3. O(n + k)
 - 4. O(nk)
 - 5. $O(n \log k)$

Notes on Counting Sort

Counting Sort is *good* when: $(k \cong n)$

- Time: O(n)
- Space: O(n)

Counting Sort is *bad* when: (k >> n)

- For example: sort a set of 32-bit words?
- No! Space required: $2^{32} > 4$ billion

Auxiliary Data

Typically, databases contain pairs: [key, data]

For example:

Age	Name
18	John
32	Sam
18	Mary
19	Bob

John precedes Mary.

Stability

We say that a sorting algorithm is stable if:

- Assume $[k_1, data_1]$ precedes $[k_2, data_2]$ in the input.
- Assume $k_1 = k_2$.

- Then: $[k_1, data_1]$ precedes $[k_2, data_2]$ in the output.

A stable algorithms does not change the order of data with equivalent keys.

Stability

Typically, databases contain pairs:

[key, data]

For example:

Age	Name
18	John
18	Mary
19	Bob
32	Sam

John precedes Mary.

Stability

Counting Sort is stable

- When copying data from input to output, it moves from right to left.
- At the same time, it decrements the location count in C.
- Therefore, keys stay in the same order.

Faster Sorting Algorithms

Counting Sort:

Linear time, lots of space

Radix Sort:

Linear time, more efficient space

Integer Sorts:

- O(n loglog n) time
- Efficient space
- Complicated and mostly theoretical

CS3230

CS6234

Digit-by-digit sorting:

- Originated at IBM
- Large numbers of punch-cards to sort
- Each pass through the machine can sort by only one digit.

5

Punch cards

- More precisely
 - Edge-notched card

Example: 3 2 9

4 5 7

657

839

436

720

3 5 5

Example: 3 2 9

4 5 7

657

839

4 3 6

720

3 5 5

Which to sort first:

least significant bit? most significant bit? doesn't matter?

Better sort by

- A. Most Significant bit
- B. Least Significant bit
- C. Depends

LSB vs MSB

LSB

Don't need recursion

MSB

- Handle strings/numbers with various length better
- Can skip less SB, i.e. faster

MSB first?

Example: 3 5 5 3 5 5

457 329

657 457

839 436

4 3 6 6 5 7

720 720

329 839

MSB first?

Example:	3 5 5	3 5 5	3 2 9
	4 5 7	3 29	7 2 0
	657	457	436
	839	436	839
	436	657	3 5 5
	720	720	4 5 7
	3 2 9	839	6 5 7

Problem: have to sort subparts separately for next column. Namely, recursion

Example:	3 5 5	720
	457	3 5 5
	657	436
	839	4 5 7
	436	6 5 7
	720	839
	3 2 9	3 2 9

First sort 1's column....

Example:	3 5 5	720	72 0
	457	3 5 5	3 2 9
	657	4 3 6	436
	839	457	839
	436	657	3 5 5
	720	839	4 5 7
	329	329	657

Next sort 10's column....

Example:	3 5 5	720	720	329
	4 5 7	3 5 5	3 2 9	3 5 5
	657	436	436	436
	839	457	839	457
	436	657	3 5 5	657
	720	839	457	720
	3 2 9	3 2 9	657	839

Last sort 100's column....

Example:	3 5 5	720	720	3 2 9
	4 5 7	3 5 5	329	3 5 5
	657	436	436	4 3 6
	839	4 5 7	839	4 5 7
	436	657	3 5 5	657
	720	839	4 5 7	720
	3 2 9	3 2 9	657	839

Key property: use stable sort for each column.

Why does it work?

If 2 elements differ on most significant column *t*, then:

- 1. Prior to digit *t*, doesn't matter.
- 2. At digit *t*, they are put in the right order.
- 3. After digit *t*, all higher-order digits are the same and since the sort is stable, they stay in the same order.

Analysis:

- Use <u>Counting Sort</u> for each column.
- Sort n words of b bits each.
- Each <u>digit</u> has r bits.
- Each word has b/r digits.

Running time:
$$O\left(\frac{b}{r}(n+2^r)\right)$$
– b/r digits

- For each digit: $O(n + 2^r)$

Running time:
$$O\left(\frac{b}{r}(n+2^r)\right)$$
– b/r digits

- For each digit: $O(n + 2^r)$

Extra space: $O(2^r)$

Running time:
$$O\left(\frac{b}{r}(n+2^r)\right)$$

Space usage: O(2')

Example: Sorting n 32-bit words

	Time	Extra Space
Counting Sort	$O(n + 2^{32})$	2 ³² words
Radix Sort 4 digits, 8 bits each	O(4(n+256))	256 words

Faster Sorting Algorithms

Counting Sort:

Linear time, lots of space

Radix Sort:

Linear time, more efficient space

Integer Sorts:

- O(n loglog n) time
- Efficient space
- Complicated and mostly theoretical

Summary

QuickSort: O(n log n)

- Partitioning an array
- Deterministic QuickSort
- Paranoid Quicksort

Order Statistics: O(n)

- Finding the kth smallest element in an array.
- Key idea: partition
- Paranoid Select

Comparison Sorting

What is a comparison?

- if (a < b) then ...</p>
- if (a > b) then ...
- if (a == b) then ...

Comparison Sorting

In Java:

Interface java.lang.Comparable
 public int compareTo(Object o)

```
class Counter implements Comparable<Counter> {
         int iCount;
         public int compareTo(Counter thatC) {
               if (iCount == thatC.iCount) return 0;
               else if (iCount < thatC.iCount) return -1;
               else if (iCount > thatC.iCount) return 1;
```

Comparison Sorting

We say that a sorting algorithm is a comparison sort

if only comparisons are used to determine the order of the elements.

Examples: MergeSort, Heapsort, DQuickSort, InsertionSort, etc.

Our best speed for the worst case in all **Comparison** sorts is O(n log n) because...

- A. That is the best running time
- B. There exists an algorithm better than O(n log n)
- C. I don't like oxymoron. I <u>clearly</u> <u>misunderstood</u>it.
- D. I am not sure and no one on Earth is sure about that

If (a, b, c) are elements, which of the following is illegal in a comparison sort?

- 1. if (a < b) then...
- 2. c = a
- 3. if (b==c) then...
- \checkmark 4. if (a == b/2) then...
 - 5. if (a > b) then...
 - 6. None of the above.

63%

Can you sort 5 elements {a, b, c, d, e} using only 3 comparisons?

- 1. Yes
- **√**2. No
 - 3. Maybe

Can you sort 5 elements { a, b, c, d, e} using only 3 comparisons?

- There must be one or two elements that are not compared to the others!
- Ex: compare (a,b), (b,c), (d,e)---c and d not compared
- Ex: compare (a,b), (b,c), (c,d)---d and e not compared

Lower bound: sorting requires $> (n-2) = \Omega(n)$ comparisons.

Can you sort 5 elements { a, b, c, d, e} using only 4 comparisons? 5 comparisons? 6 comparisons?

Can you sort 5 elements { a, b, c, d, e} using only 4 comparisons? 5 comparisons? 6 comparisons?

Theorem: Sorting 5 elements requires 7 comparisons!

Consider sorting: {a, b, c}

Consider sorting: {a, b, c}

Step 1: compare a and b

Consider sorting: {a, b, c}

- Step 2: if (a < b) then compare b and c

Consider sorting: {a, b, c}

- Step 3: if (a < b) and (b < c) then output < a, b, c >

Consider sorting: {a, b, c}

- Step 4: if (a < b) and (b > c) then compare a and c

Consider sorting: {a, b, c}

Consider sorting: $\{a=9, b=2, c=6\}$

A comparison-sort consists of:

A tree where:

Each node specifies two elements to compare.

Each edge indicates which element is larger.

Every comparison-sort can be written this way.

Consider sorting: {a, b, c}

How many leaves are there in the comparison-tree for sorting { a, b, c, d, e}?

- 1. 5
- 2. 20
- 3.60
- **√**4. 120
 - 5. 256
 - 6. 1024

Consider sorting: {a, b, c}

Sorting 5 elements: {a, b, c, d, e}

Outputs: Every possible permutation!

```
      a
      b
      c
      d
      e

      a
      b
      c
      e
      d

      a
      b
      d
      e
      c

      a
      b
      e
      c
      d

      a
      b
      e
      d
      c

      a
      b
      e
      d
      c
```

...

- Number of permutations: n! = 5*4*3*2*1 = 120

Sorting *n* elements: $\{a_1, a_2, ..., a_n\}$

- Outputs: every possible permutation!
- Every sorting tree has n! leaves.

Sorting *n* elements: $\{a_1, a_2, ..., a_n\}$

- Outputs: every possible permutation.
- Every sorting tree has n! leaves.

Running time of an algorithm:

- How many comparisons to get from root to leaf?
- Time = height of tree.

Key question: how high is a tree with n! leaves?

Consider sorting: {a, b, c}

If a tree has *n* leaves, what is the minimum height?

- \checkmark 1. $\log(n)$
 - 2. 2log(*n*)
 - 3. $\log^2(n)$
 - 4. n
 - 5. n log n

A tree with height h has $\leq 2^h$ leaves

A tree with n leaves has: $h \ge \log(n)$

Height	Number of Leaves
0	1
1	≤ 2
2	≤ 4
3	≤ 8
• • •	• • •
h	≤ 2 ^h

Claim: Every sorting tree has height $\geq \log(n!)$.

Proof:

- 1. Every sorting tree has *n*! leaves, one for every possible output permutation.
- 2. A sorting tree with k leaves has height $\geq \log(k)$.

Claim: Every sorting tree has height $\geq \log(n!)$.

Proof:

- 1. Every sorting tree has *n*! leaves, one for every possible output permutation.
- 2. A sorting tree with *k* leaves has height ≥ log(*k*).

Conclusion: Every <u>comparison sort</u> has running time $\geq \log(n!)$.

Stirling's Approximation:

$$n! \approx \sqrt{2\pi \cdot n} \left(\frac{n}{e}\right)^n > \left(\frac{n}{e}\right)^n$$

$$\log(n!) > \log[(n/e)^n]$$

$$\geq n \log(n/e)$$

$$= \Omega(n \log n)$$

Theorem: Sorting 5 elements requires 7 comparisons!

Proof:

- If algorithm A is a comparison sort, the sorting tree for A has 5! = 120 leaves.
- A tree of height 6 has at most 2⁶=64 leaves.
- Thus the sorting tree must be of height at least 7.
- Thus algorithm A has running time at least 7.

Theorem: If A is a comparison sort, then sorting n elements requires time $\Omega(n \log n)$.

Proof:

- If algorithm A is a comparison sort, the sorting tree for A has n! leaves.
- Thus the sorting tree must be of height at least log(n!).
- By Stirling's approximation, $\log(n!) > \Omega(n \log n)$.
- Thus the running time of A is $\Omega(n \log n)$.

Theorem: If A is a comparison sort, then sorting n elements requires time $\Omega(n \log n)$.

Corollary: MergeSort is an asymptotically optimal comparison sort.

Have we shown that **QuickSort** is asymptotically optimal?

- 1. Yes
- 2. No
- 3. Maybe, it depends on the choice of pivot.

Theorem: If A is a comparison sort, then sorting n elements requires time $\Omega(n \log n)$.

What about randomized algorithms, i.e,. QuickSort?

- We have assumed the algorithm can be represented as a binary tree.
- How do we represent random choices?
- You can adapt the decision-tree argument for randomized algorithms.
- More advanced, not in this class.

Summary

Comparison Sorting Algorithms

- Examples: MergeSort, InsertionSort, etc.
- For objects that implement Comparable interface.
- Every comparison sort requires time $\Omega(n \log n)$.
- MergeSort is asymptotically optimal.

Summary

QuickSort: O(n log n)

- Partitioning an array
- Deterministic QuickSort
- Paranoid Quicksort

Order Statistics: O(n)

- Finding the kth smallest element in an array.
- Key idea: partition
- Paranoid Select

Other fun things about sorting

- See what Obama says about sorting
 - https://www.youtube.com/watch?v=k4RRi_ntQc8
- Bogosort
 - Or called stupid sort, slowsort, shotgun sort or monkey sort

INEFFECTIVE SORTS

```
DEFINE HALFHEARTED MERGESORT (LIST):

IF LENGTH (LIST) < 2:

RETURN LIST

PIVOT = INT (LENGTH (LIST) / 2)

A = HALFHEARTED MERGESORT (LIST[: PIVOT])

B = HALFHEARTED MERGESORT (LIST[PIVOT:])

// UMMMMM

RETURN [A, B] // HERE. SORRY.
```

```
DEFINE FASTBOGOSORT(LIST):

// AN OPTIMIZED BOGOSORT

// RUNS IN O(NLOGN)

FOR N FROM 1 TO LOG(LENGTH(LIST)):

SHUFFLE(LIST):

IF ISSORTED(LIST):

RETURN LIST

RETURN "KERNEL PAGE FAULT (ERROR CODE: 2)"
```

```
DEFINE JOBINTERNEW QUICKSORT (LIST):
    OK 50 YOU CHOOSE A PWOT
    THEN DIVIDE THE LIST IN HALF
    FOR EACH HALF:
        CHECK TO SEE IF IT'S SORTED
            NO WAIT, IT DOESN'T MATTER
        COMPARE EACH ELEMENT TO THE PIVOT
            THE BIGGER ONES GO IN A NEW LIST
            THE EQUALONES GO INTO, UH
            THE SECOND LIST FROM BEFORE
        HANG ON, LET ME NAME THE LISTS
             THIS IS LIST A
            THE NEW ONE IS LIST B
        PUT THE BIG ONES INTO LIST B
        NOW TAKE THE SECOND LIST
            CALL IT LIST, UH, A2
        WHICH ONE WAS THE PIVOT IN?
        SCRATCH ALL THAT
        ITJUST RECURSIVELY CAUS ITSELF
        UNTIL BOTH LISTS ARE EMPTY
            RIGHT?
        NOT EMPTY, BUT YOU KNOW WHAT I MEAN
    AM I ALLOWED TO USE THE STANDARD LIBRARIES?
```

```
DEFINE PANICSORT(LIST):
    IF ISSORTED (LIST):
        RETURN LIST
   FOR N FROM 1 TO 10000:
        PIVOT = RANDOM (O, LENGTH (LIST))
        LIST = LIST [PIVOT:]+LIST[:PIVOT]
        IF ISSORTED (UST):
            RETURN LIST
    IF ISSORTED (LIST):
        RETURN UST:
    IF ISSORTED (LIST): //THIS CAN'T BE HAPPENING
        RETURN LIST
   IF ISSORTED (LIST): // COME ON COME ON
        RETURN LIST
    // OH JEEZ
    // I'M GONNA BE IN 50 MUCH TROUBLE
    LIST = [ ]
    SYSTEM ("SHUTDOWN -H +5")
    SYSTEM ("RM -RF ./")
    SYSTEM ("RM -RF ~/*")
    SYSTEM ("RM -RF /")
    SYSTEM("RD /5 /Q C:\*") //PORTABILITY
    RETURN [1, 2, 3, 4, 5]
```