Derivatios e Risco

Glauber Matheus Rafael

04-05-2018

Agenda

Derivativos

2 Opções, Futuros e Swaps

Risco

Agenda

Derivativos

2 Opções, Futuros e Swaps

3 Risco

Contratos que derivam seu valor de outro ativo

Os derivativos são:

- Instrumentos financeiros que derivam seu valor de um ativo subjacente.
- Contrato pré-acordado entre as contrapartes.
- Negociados em bolsa ou mercado de balcão (OTC).

Agenda

Derivativos

2 Opções, Futuros e Swaps

3 Risco

Opções

Futuros

Comprar ou vender um ativo no futuro

- Contrato Futuro ou Termo comprar ou vender um ativo em uma data futura por um preço determinado.
- Futuro ajustes diários e variados ativos subjacentes.
- Termo margem de garantia, incidência de juros e ações como ativo subjacente.
- Ambos contratos são negociados em bolsa.

Swaps

Agenda

Opções, Futuros e Swaps

Risco

Probabilidade de eventos adversos

- Risco Fortemente relacionado a incerteza. Chance de acontecimento de um evento que impacte o resultado de uma operação financeira.
 Pode ser decomposto em fatores.
- Risco de mercado oscilações do mercado.
- Risco de crédito default da contra-parte.
- Risco de juros oscilações nas taxas de juros.
- Risco de liquidez não poder comprar ou vender a tempo.
- Risco do modelo uso de um modelo incorreto.
- Risco operacional risco do negócio da empresa.

Várias medidas de risco podem ser utilizadas

As principais são:

- Valor em Risco VaR
- Expected Shortfall ES

Outras:

- Volatilidade histórica
- Semi-Deviation
- Sharpe Ratio
- Information Ratio
- Omega Ratio

VaR - Valor em Risco

 VaR - Valor em Risco: medida da máxima perda potencial com uma dada probabilidade em um horizonte pré-definido.

$$VaR_{\alpha}^{t} = \inf\{F_{L_{t+1}}|\mathcal{H}_{t}(\mathcal{L}) \geq \alpha\}$$

Problemas associados ao VaR:

- Não informa nada sobre a cauda da distribuição.
- Não é subaditivo em alguns casos, portanto, não é uma medida coerente de risco.

ES - Expected Shortfall

 ES - Expected Shortfall: também conhecido como Conditional VaR -CVaR, é o valor esperado de uma perda, dado que esta tenha violado o valor do VaR.

$$\mathsf{ES}^t_lpha = \mathsf{E}[\mathsf{L}_{t+1}|\mathsf{L}_{t+1} > \mathsf{VaR}^t_lpha] = rac{1}{1-lpha} \int_lpha^1 q_u(\mathsf{F}_\mathsf{L}) \mathsf{d}u$$

- Surgiu para contornar os problemas do VaR.
- É coerente e possui informação sobre a cauda.
- Adotado pelo Comitê de Basileia

Diversas maneiras de calcular VaR e ES

Tanto o VaR quanto o ES podem ser calculados:

- Simulação histórica
- Paramétrico (Normal, t-Student)
- Paramétrico modificado (Cornish-Fisher)
- Semi-paramétrico (teoria do valor extremo)

04-05-2018

VaR e ES na distribuição de perdas

Evolução de LAME4 e NATU3

Cálculo das medias de risco

Características da Carteira		
Peso LAME4	0,5	
Peso NATU3	0,5	
Dias Vol. Histórica	252	
Data Inicial	01/01/2014	
Investimento Ini.	R\$ 1.000.000,00	

Matriz Covariâncias	LAME4	NATU3
	0,000451	0,000235
	0,000235	0,000546

Carteira em 03/05/2018					
Retorno Acumulado		30,82%			
Valor	R\$ 1	.308.158,79			
VaR95% hist. 252d	R\$	36.027,70			
VaR95% norm. 252d	R\$	40.841,71			
ES95% norm. 252d	R\$	52.033,84			

Variância Carteira 0,000367

Stress Test

- Surge após a crise financeira global de 2008-09
- Projeções de perdas em um cenário extremo para avaliar a adequação da tomada de risco
- Período de 1 ano de grandes perdas como base das projeções
- Ao valor do VaR deve ser adicionado o Stressed VaR

Simulação de Monte Carlo em cenário de stress

Incluir os dados da simulação

Perguntas e Respostas

Basileia

- "The Committee requires banks to calculate a stressed value-at-risk taking into account a one-year observation period relating to significant losses, which must be calculated in addition to the value-at-risk based on the most recent one-year observation period." Revisions to the Basel II Market Risk Framework. 2011
- on Banking Supervision, Basel Committee. Fundamental review of the trading book: A revised market risk framework. 2013. Disponível em: http://www.bis.org/publ/bcbs265.pdf. Estipula o ES a 97.5% como a medida de risco de mercado a ser utilizada no futuro.

VaR normal e simulação histórica

Fonte: Economática e cálculos dos autores.

Simulação de Monte Carlo Histogramas Retornos 10d

Formulário

Movimento Browniano: $\ln(P_t/P_{t-1}) \sim \Phi[(\mu - \frac{\sigma^2}{2})T, \sigma\sqrt{T}]$

Retorno continuamente composto: $\lim_{n\to\infty} (1+\frac{r}{n})^n = e^r$

Black-Scholes:

Futuro:

$$VaR_{\alpha} = \omega' \mu + \sigma \Phi^{-1}(\alpha)$$

$$ES_{\alpha} = \omega' \mu + \sigma \frac{1}{1-\alpha} \phi [\Phi^{-1}(\alpha)]$$

$$\sigma^{2} = \omega' \Sigma \omega$$

