|問題 2-3| Rは可換環であるとし、peRであるとする。 aeRのR/LRでの優を面と書き,写像 φ: R[k] → (R/LR)[x]

 $\varphi\left(\sum_{\lambda} a_{\lambda} x^{\lambda}\right) = \sum_{\lambda} \overline{a_{\lambda}} x^{\lambda} \quad (a_{\lambda} \in \mathbb{R})$

と定める、以下を示せ、

- (1) P は 瓊の 準 月 型 写 像 で ある.
- (2) 9 12 全射である。
- (3) $\ker \varphi = p R[x]$
- (4) 環の同型写像 $\overline{\varphi}: R[x]/pR[x] \xrightarrow{\sim} (R/pR)[x], (f mod p) \mapsto \varphi(f)$ か得られる、

注意 pRはもpRも(p)と書かれることかある、分脈によって区別せよ $R[x]/(p) \hookrightarrow (R/(p))[x], (f mod p) \mapsto \varphi(f)$ [] N R 是 23 2 2 12 注意

解答例(1) 9かかなと1と単法を保っことを示せはない、 任意にf,geR図をとる、f,gは次のように表されるこ $f = \sum_{\lambda} a_{\lambda} x^{\lambda}$, $g = \sum_{\lambda} b_{\lambda} x^{\lambda}$, a_{λ} , $b_{\lambda} \in \mathbb{R}$, 有限個王吟 $h \in \mathbb{R}$ $a_{\lambda} = b_{\lambda} = 0$,

つっ"く

このとき, ○→るは環の準同型よりへ $\varphi(f+g) = \varphi\left(\sum_{\hat{a}}(a_{\hat{\lambda}}+b_{\hat{a}})x^{\hat{\lambda}}\right) = \sum_{\hat{a}}\left(\overline{a_{\hat{\lambda}}}+\overline{b_{\hat{\alpha}}}\right)x^{\hat{\lambda}} = \sum_{\hat{a}}\left(\overline{a_{\hat{\lambda}}}+\overline{b_{\hat{\alpha}}}\right)x^{\hat{\lambda}}$ $=\sum_{i}\widehat{a}_{i}x^{i}+\sum_{i}\widehat{b}_{i}x^{i}=\varphi(f)+\varphi(g).$

 $\Upsilon(I) = \overline{I} = ((R/pR)[X] にかける 垂浜の単位元).$

$$\varphi(fg) = \varphi\left(\sum_{k} \left(\sum_{\lambda+j=k} a_{\lambda} b_{j}\right) \chi^{k}\right) = \sum_{k} \left(\overline{\sum_{\lambda+j=k} a_{\lambda} b_{j}}\right) \chi^{k} = \sum_{k} \left(\sum_{\lambda+j=k} \overline{a_{\lambda}} \overline{b_{j}}\right) \chi^{k} \\
= \left(\sum_{\lambda} \overline{a_{\lambda}} \chi^{\lambda}\right) \left(\sum_{j} \overline{b_{j}} \chi^{j}\right) = \varphi(f) \varphi(g),$$

これで Y: R[x] → (R/pR)[x]が環の準同型であることがませれた。

(2) 9か全射であることで示える、

 $F \in (R/\mu R)[x]$ を任意にとる、 $F = \sum_{\lambda} d_{\lambda} x^{\lambda}$ (有限的), $d_{\lambda} \in R/\mu R$ と書ける、 R/pRの元はすべて \overline{a} , $a \in R$ の形をしているので、 $d_{\lambda} = \overline{a_{\lambda}}$, $a_{\lambda} \in R$ と書ける、 d;=0のとき, a;=0とできるのでろうしてあく, そのとき、 $f = \sum_{i} a_i x^i k$ によって、 $f \in R[x]$ を作れ、 $P(f) = \sum_{i} \overline{a_i} x^i = \sum_{i} a_i x^i = F_i$ これで、中の全射性を示せた、

(3) Ker 4 = p R[x] を示えう.

 $\ker \varphi \supset \mu R[X]$ を示えう、任意に f $\in \mu R[X]$ をとる $f = \mu g$, $g \in R[X]$ と書ける. ゆえに、 $\Psi(f) = \Psi(\mu g) = \Psi(\mu g) = \overline{\mu} \Psi(g) = \overline{0} \Psi(g) = \overline{0}$. したがって、 $f \in \ker \Psi$. $\overline{\mu} = \overline{0}$ in $R/\mu R$ これで、 $\ker \Psi \supset \mu R[X]$ かっってもれた。

 $Ker \varphi \subset PR(Q)$ を示るう。任意に $f \in Ker \varphi$ をとる。 $\varphi(f) = \overline{D}$ が成立している。 $f = \sum_{\hat{\alpha}} \alpha_{\hat{\alpha}} x^{\hat{\alpha}}$ と書ける、そのとき、 $\varphi(f) = \sum_{\hat{\alpha}} \overline{\alpha_{\hat{\alpha}}} x^{\hat{\alpha}}$.

これがりに等しいので、すべてのえについて、 豆,=0となる、

これは、a、epRと同値なので、a、=pbi, bieRと書ける。

 $b\lambda r$, $f = \sum_{i} pb_{i}x^{i} = p\sum_{i}b_{i}x^{i} \in pR[x]$.

これで、KerpCpR例加京された、

以上によって、 $Ker \varphi = pR [X]$ が示された、

(4) 環の同型写像 φ: R[X]/pR[X] ⇒ (R/pR)[X], (f mod p) → φ(f) が得られることを示す。しかし、これは (1), (2), (3) に 環の準同型定理を適用した 特里に等しい、 環の準同型定理 環 A, B と 環の準同型写像 φ: A → B につ 11 乙, 次の場の同型写像 が得られる:

$$\overline{\varphi}: A/\ker \varphi \rightarrow \operatorname{Im} \varphi = \{\varphi(x) | x \in A\}$$

$$\psi \qquad \psi$$

$$\widehat{u} + \ker \varphi \longmapsto \varphi(a).$$

これを A=R[x], B=(R/pR)[x], Ψ と問題のものとすると、はい铅字か得られる。

環の準同型定理の証明をきましと理解してあくと,他のことからも理解しせずくなる. そこに基本かっまっている!