High Frequency Technologies

Problems on transmission lines

Problem 1

We want to feed two antennas with input impedances $Z_1 = 40\,\Omega$ and $Z_2 = 60\,\Omega$, with a generator of peak voltage $V_g = 10\,\mathrm{V}$, frequency $f_0 = 2\,\mathrm{GHz}$, and internal impedance $Z_0 = 50\,\Omega$. To do so, a lossless three-port network will be used, with an equivalent circuit shown in the figure (the part composed of the reactances jX_p and jX_s). The three-port network is connected to the other elements through coaxial cables with characteristic impedance Z_0 . The length of the cable that connects the common port and the generator is $\beta l = \frac{3\pi}{4}$ rad, while the antenna cables that connect the other ports with the loads Z_1 and Z_2 have lengths $\beta l_1 = \frac{\pi}{2}$ rad and $\beta l_2 = \pi$ rad, respectively. Find the power delivered to each antenna.

Note The coaxial cable attenuation is $3.5 \times 10^{-3} \, \mathrm{Np/cm}$. The matching network reactances are $X_s = 10 \, \Omega$ and $X_p = 100 \, \Omega$.

Answer

 $P_1 = 86.129 \,\mathrm{mW}, P_2 = 80.239 \,\mathrm{mW}.$

Problem 2

A shunt resistance $R = 100 \Omega$ is connected at an arbitrary point between the two conductors of a lossless transmission line with characteristic impedance $Z_0 = 50 \Omega$. One of the transmission line ends is connected to a generator with internal impedance Z_0 and available power $P_{\rm av} = 250 \,\mathrm{mW}$, while the other end is loaded with Z_0 . Determine:

a) The incident and reflected voltage and current waves between the generator and the $100\,\Omega$ resistor, and also between the resistor and the load.

b) The power dissipated in the resistor, the power delivered to the load, and also the power reflected to the generator.

Answer

• Power reflected to the generator: 10 mW

• Power delivered to the load: 160 mW

• Power dissipated in $R: 80 \,\mathrm{mW}$

Problem 3

Find the ratio between the maximum power that can be transmitted in a lossless transmission line when its load is matched (P_1) , and the transmitted power when there is an arbitrary standing wave ratio $S(P_2)$. Suppose that the only limitation is the electric breakdown, so that the maximum electric field strength supported by the dielectric is E_{rup} .

Answer

$$\frac{P_1}{P_2} = SWR$$

Problem 4

Using the computer, characterize the electrical parameters along a transmission line terminated with loads corresponding to different reflection coefficient values Γ_L . Try this five loads: short circuit, open circuit, pure inductance, pure capacitance, and a complex load with inductive character. Draw both the voltage and current waves, as well as the reflection coefficient. Do it for different time instants.

Problem 5

Consider the following network, composed of two sections of transmission line, with a source and a load.

Find:

- a) The power P_a , delivered at the input of the first transmission line section (a/a').
- b) The power P_b , delivered at the input of the second transmission line section (b/b').

- c) The power P_c , delivered to the load (c/c').
- d) If $\alpha_1 = \alpha_2 = 0$ (lossless transmission lines), sketch the envelope of the voltage along the transmission line sections.

Answer

a)
$$P_a = \frac{|V_g|^2}{8Z_0} \left(1 - \left| \frac{Z_0' - Z_0}{Z_0' + Z_0} \right|^2 e^{-4\alpha_1 l_1} \right)$$

b)
$$P_b = \frac{|V_g|^2}{8Z_0} \left(1 - \left| \frac{Z_0' - Z_0}{Z_0' + Z_0} \right|^2 \right) e^{-2\alpha_1 l_1}$$

c)
$$P_c = \frac{|V_g|^2}{8Z_0} \left(1 - \left| \frac{Z_0' - Z_0}{Z_0' + Z_0} \right|^2 \right) e^{-2(\alpha_1 l_1 + \alpha_2 l_2)}$$

d) Voltage envelope (with $\Gamma_b = \frac{Z_0' - Z_0}{Z_0' + Z_0}$):

Problem 6

Compute the power delivered to the load $Z_L = Z_0$ from the source with frequency 1 GHz, peak voltage $V_g = 10 \,\text{V}$, and internal impedance Z_0 , when they are connected by three cascaded sections of transmission lines, as shown in the schematic,

where the dielectric of the transmission lines has $\varepsilon_r = 1$, their lengths are $l_1 = 2 \,\text{m}$, $l_2 = 10 \,\text{cm}$, $l_3 = 1 \,\text{m}$, and their respective characteristic impedances and attenuations are:

3

- First and third sections: $Z_0 = 50 \,\Omega$, $\alpha = 3.5 \times 10^{-3} \,\mathrm{Np/cm}$.
- Second section: $Z_0' = 75 \,\Omega, \, \alpha' = 3 \times 10^{-3} \,\mathrm{Np/cm}.$

Answer

The power delivered to the load is

$$P_L = P_{\text{av}} \frac{(1 - |\Gamma_{1o}|^2)(1 - |\Gamma_{2o}|^2)(1 - |\Gamma_{3o}|^2)}{(1 - |\Gamma_{2i}|^2)(1 - |\Gamma_{3i}|^2)} e^{-2(\alpha l_1 + \alpha' l_2 + \alpha l_3)} = 25.57 \,\text{mW}$$

where Γ_{ki} and Γ_{ko} are, respectively, the reflection coefficients seen at the input and output of the k^{th} transmission line section,

$$\Gamma_{1i} = 0.0814 e^{-2.5687j}$$
 $\Gamma_{1o} = 0.3300 e^{-0.474j}$
 $\Gamma_{2i} = 0.1884 e^{-1.047j}$ $\Gamma_{2o} = -0.2$
 $\Gamma_{3i} = 0$ $\Gamma_{3o} = 0$

and $P_{\rm av}=250\,{\rm mW}$ is the available power of the source.