

Cairo University Faculty of Computers and Artificial Intelligence Computer Science

Computer Organization and Architecture

Practice Sheet 1

Dr. Amin Allam

 \Rightarrow A 4 × 1 multiplexer with selection inputs S_1 and S_0 selects input 0 when $S_1S_0=00$, selects input 1 when $S_1S_0=01$, selects input 2 when $S_1S_0=10$, and selects input 3 when $S_1S_0=11$.

For questions 1 to 6, consider an electronic circuit which has:

- Inputs: S_1 , S_0 , C_0 , the binary number $A = A_1 A_0$, and the binary number $B = B_1 B_0$.
- output: the binary number $D = D_1 D_0$.

The circuit consists of the following items:

- A 4 × 1 multiplexer with selection inputs S_1 , S_0 , and 4 inputs: Q_0 , Q_1 , Q_2 , Q_3 , and output: M_0 .
- Another 4×1 multiplexer with selection inputs S_1 , S_0 , and 4 inputs: R_0 , R_1 , R_2 , R_3 , and output: M_1 .
- A full-adder with inputs: A_0 , M_0 , C_0 and outputs: C_1 (carry), D_0 (sum).
- Another full-adder with inputs: A_1 , M_1 , C_1 and outputs: C_2 (carry), D_1 (sum).
- B_0 is connected to Q_0 . B_1 is connected to R_0 . $\overline{B_0}$ is connected to Q_1 . $\overline{B_1}$ is connected to R_1 .
- Logic 0 is connected to both Q_2 and R_2 . Logic 1 is connected to both Q_3 and R_3 .

1 When
$$S_1 = 0$$
, $S_0 = 0$, $C_0 = 0$:

$$oxed{A} D = A + B \quad oxed{B} D = A - B \quad oxed{C} D = A + 1 \quad oxed{D} D = A - 1 \quad oxed{E} D = A$$

2 When
$$S_1 = 0$$
, $S_0 = 1$, $C_0 = 1$:

$$oxed{A} D = A + B \quad oxed{B} D = A - B \quad oxed{C} D = A + 1 \quad oxed{D} D = A - 1 \quad oxed{E} D = A$$

3 When
$$S_1 = 1$$
, $S_0 = 0$, $C_0 = 0$:

$$\overline{\overline{A}} D = A + B$$
 $\overline{\overline{B}} D = A - B$ $\overline{\overline{C}} D = A + 1$ $\overline{\overline{D}} D = A - 1$ $\overline{\overline{E}} D = A$

4 When
$$S_1 = 1$$
, $S_0 = 0$, $C_0 = 1$:

$$\boxed{ \textbf{A} } \hspace{0.1cm} D = A + B \hspace{0.3cm} \boxed{ \textbf{B} } \hspace{0.1cm} D = A - B \hspace{0.3cm} \boxed{ \textbf{C} } \hspace{0.1cm} D = A + 1 \hspace{0.3cm} \boxed{ \textbf{D} } \hspace{0.1cm} D = A - 1 \hspace{0.3cm} \boxed{ \textbf{E} } \hspace{0.1cm} D = A - 1$$

5 When
$$S_1 = 1$$
, $S_0 = 1$, $C_0 = 0$:

$$\boxed{ \textbf{A} \ D = A + B } \quad \boxed{ \textbf{B} \ D = A - B } \quad \boxed{ \textbf{C} \ D = A + 1 } \quad \boxed{ \textbf{D} \ D = A - 1 } \quad \boxed{ \textbf{E} \ D = A }$$

6 When
$$S_1 = 1$$
, $S_0 = 1$, $C_0 = 1$:

$$\overline{\overline{A}}D = A + B$$
 $\overline{B}D = A - B$ $\overline{C}D = A + 1$ $\overline{D}D = A - 1$ $\overline{E}D = A$