INTRODUCTION

Théorème 1 (A. Dvoretzky, 1961). Il existe une fonction $k:]0,1[\times \mathbb{N} \to \mathbb{N}$, telle que $\forall \varepsilon \in]0,1[$, $k(\varepsilon,n) \xrightarrow{n\to\infty} \infty$ et pour tout $n\in \mathbb{N}$ et tout compact convexe symétrique $K\subset \mathbb{R}^n$, il existe $V\subset \mathbb{R}^n$ tels que :

- (i) $\dim V = k(\varepsilon, n)$
- (ii) $\exists r>0$ tel que , $r\cdot (V\cap B_2^n)\subset V\cap K\subset (1+\varepsilon)r\cdot (V\cap B_2^n)$

INTRODUCTION

Théorème 2 (V. Milman, 1971). Pour tout $\varepsilon > 0$, il existe une constante c > 0 telle que pour tout $n \in \mathbb{N}$ et pour tout compact convexe symétrique $K \subset \mathbb{R}^n$, il existe $V \subset \mathbb{R}^n$ tels que :

- (i) $\dim V \ge c \cdot \log(n)$
- (ii) $\exists r>0$ tel que , $r\cdot (V\cap B_2^n)\subset V\cap K\subset (1+\varepsilon)r\cdot (V\cap B_2^n)$

Théorème 3. Pour tout $\varepsilon > 0$ il existe c > 0 telle que pour tout $n \in \mathbb{N}^*$ et pour toutes normes ||.|| sur \mathbb{R}^n , ℓ_2^k s'injecte $(1+\varepsilon)$ -continûment dans $(\mathbb{R}^n,||.||)$ pour un $k \ge c.\log(n)$.

INTRODUCTION

1.1. MESURES DE HAAR

Définition & Théorème (Mesures de Haar). Soit (X, d) un espace métrique, G un groupe topologique localement compact qui agit sur X et tel que :

$$\forall x, y \in X \ \forall g \in G, \ d(gx, gy) = d(x, y)$$
 (**)

Alors, il existe une unique mesure à un coefficient multiplicatif près, régulière définie sur les boréliens de X qui est invariante sous l'action de G. Cette mesure est appelée mesure de Haar de X (où G est sous-entendu).

1.1. MESURES DE HAAR

Lemme 1.1. Soit $f \in C(S^{n-1})$ et $Y = (g_1, ..., g_n)$ où les $\{g_i\}_{1 \le i \le n}$ sont i.i.d suivant une loi normale $\mathcal{N}(0,1)$, alors

$$\int_{S^{n-1}} f \, d\mu = \mathbb{E} \bigg[f \bigg(\frac{Y}{|Y|} \bigg) \bigg]$$

1.1. MESURES DE HAAR

Lemme 1.2. Soit $A \subset S^{n-1}$ un borélien, alors pour tout $x \in S^{n-1}$

$$\nu\Big(T\in O(n)\;;\; Tx\in A\Big)=\mu\Big(A\Big)$$

1.2. CONCENTRATION DE LA MESURE

Théorème 1.3. Soit $A \in \text{Bor}(S^{n-1})$ tel que $\mu(A) \ge \frac{1}{2}$, alors pour tout t > 0:

$$\mu(A_t) \geq 1 - 2e^{-\frac{nt^2}{4}}$$

Corollaire 1.4 (concentration de la mesure sur la sphère). Pour tout t>0 et toute fonction f, L-Lipschitzienne de S^{n-1} dans $\mathbb R$ pour un L>0 on a :

$$\mu\big\{|f-\mathbb{E}[f]|>t\big\}\leq 4e^{-\beta\frac{t^2n}{L^2}}$$

où $\mathbb{E}[f] = \int_{S^{n-1}} f \, d\mu$ et $1 > \beta > 0$ une constante universelle.

1.3. ELLIPSOÏDES

Défintion. On appelle ellipsoïde de \mathbb{R}^n l'image de la boule unité euclidienne par un élément de GL(n).

Donnons une définition alternative d'un l'ellipsoïde.

Proposition 1.5. Pour tout ellipsoïde \mathcal{E} , il existe $\alpha_1,...,\alpha_n > 0$ et $\nu_1,...,\nu_n$ une base orthonormée tels que :

$$\mathcal{E} = \left\{ x \in \mathbb{R}^n \; ; \; \sum_{i=1}^n \frac{\langle x, \nu_i \rangle^2}{\alpha_i^2} < 1 \right\}$$

Lemme 1.6. Soit $\mathscr E$ un ellipsoïde de $\mathbb R^n$, alors $\exists \lambda > 0$ et $V \subset \mathbb R^n$ de dimension $\lceil \frac{n}{2} \rceil$ tels que :

$$\mathcal{E}\cap V=\lambda B_2^n\cap V$$

1.3. ELLIPSOÏDES

Définition & Théorème (Ellipsoïde de John). Tout compact convexe symétrique d'intérieur non vide contient un unique ellipsoïde de volume maximal, il est appelé ellipsoïde de John.

1.4. LOI GAUSSIENNE

Lemme 1.8. Soit $g = (g_1, ..., g_n)$ où les $(g_i)_{i \le n}$ sont des variables aléatoires i.i.d suivant une loi $\mathcal{N}(0,1)$, alors $\frac{g}{|g|}$ et |g| sont indépendantes.

Lemme 1.9. il existe c>0 telle que $\forall N>1$ et $\{g_i\}_{1\leq i\leq N}$ des variables aléatoires i.i.d suivant une loi $\mathcal{N}(0,1)$ on ait :

$$\mathbb{E}\big[\max_{1\leq i\leq \left\lceil\frac{N}{2}\right\rceil}|g_i|\big]\geq c\sqrt{\log N}$$

où $\left\lceil \frac{N}{2} \right\rceil$ est la partie entière supérieure de $\frac{N}{2}$.

2.1. LEMMES D'APPROXIMATIONS

Défintion. Soit (X, d) un espace métrique et $\theta > 0$, on dit que $A \subset X$ est un θ -net si

- A est de cardinal fini.
- (ii) $\forall x \in X$, $\exists y \in A$ tel que $d(x, y) \leq \theta$

Lemme 2.1. Pour tous $0 < \theta < 1$, $V \subset \mathbb{R}^n$ de dimension k > 0, alors il existe un θ -net sur $V \cap S^{n-1}$ de cardinal inférieur à $\left(\frac{3}{\theta}\right)^k$.

2.1. LEMMES D'APPROXIMATIONS

Lemme 2.2. Soit $x \in S^{n-1}$, A un θ -net pour un $1 > \theta > 0$, alors il existe $(y_i)_{i \in \mathbb{N}} \subset A$ et $(\beta_i)_{i \in \mathbb{N}} \subset \mathbb{R}^+$ tels que

$$x = \sum_{i=0}^{+\infty} y_i \beta_i$$
 et $\forall i \in \mathbb{N}, \ \beta_i \leq \theta^i$

2.1. LEMMES D'APPROXIMATIONS

Lemme 2.3. $\forall \varepsilon > 0$, il existe $1 > \theta > 0$ tel que pour tout $n \in \mathbb{N}$, si on a A un θ -net sur $V \cap S^{n-1}$ pour $V \subset \mathbb{R}^n$ de dimension k, ||.|| une norme sur \mathbb{R}^n et $T \in GL(n)$, tels que :

$$\forall x \in A$$
, $(1-\theta) \le ||Tx|| \le (1+\theta)$

alors,

$$\forall x \in V, \quad \frac{1}{\sqrt{1+\varepsilon}}|x| \leq \left|\left|Tx\right|\right| \leq \sqrt{1+\varepsilon}|x|$$

de plus si $\varepsilon \leq \frac{1}{9},$ on peut prendre $\theta = \frac{\varepsilon}{9}$

2.1. LEMMES D'APPROXIMATIONS

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

Théorème 2.4. Pour tout $\varepsilon > 0$ il existe $c(\varepsilon) > 0$ tel que pour tout $n \in \mathbb{N}^*$ et ||.|| une norme sur \mathbb{R}^n , il existe $V \subset \mathbb{R}^n$ tels que dim $V \ge c(\varepsilon)(\frac{M}{b})^2 n$ et pour tout $x \in V$:

$$|x| \frac{M}{\sqrt{1+\varepsilon}} \le ||x|| \le M\sqrt{1+\varepsilon}|x|$$

Où $M=\int_{S^{n-1}}||x||\,d\mu(x)$ et b>0 le plus petit réel tel que $||.||\leq b|.|$

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

Lemme 2.6 (Dvoretzky-Rogers). Soit ||.|| une norme sur \mathbb{R}^n telle que B_2^n est l'ellipsoïde de John de $B_{||.||}$, alors il existe une base orthonormée $\{x_i\}_{i=1,\dots,n}$ telle que pour $1 \leq i \leq n$

$$e^{-1}(1-\frac{i-1}{n}) \le ||x_i|| \le 1$$

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

Proposition 2.7. Soit ||.|| une norme sur \mathbb{R}^n tel que B_2^n est l'ellipsoïde de John de $B_{||.||}$, alors il existe c>0 tel que

$$M =: \int_{S^{n-1}} ||x|| d\mu(x) \geq c \sqrt{\frac{\log n}{n}}$$

2.2. DÉMONSTRATION DU THÉORÈME DE DVORETZKY

3 SECTIONS PRESQUE EUCLIDIENNES DE ℓ_p^N

 $\label{eq:defintion.} \text{Défintion.} \text{ (Dimension critique) Soit } X = (\mathbb{R}^n, ||.||) \text{ pour } ||.|| \text{ une norme sur } \mathbb{R}^n \text{ , pour } \varepsilon > 0 \text{ on note } k(X, \varepsilon) \text{ le plus grand entier tel que } \ell_2^{k(X, \varepsilon)} \text{ s'injecte } (1+\varepsilon)\text{-continûment dans } X.$

Corollaire 3.1. Pour tout $\varepsilon > 0$, il existe $c(\varepsilon) > 0$, tels que pour tout $p, q \in]1, \infty[$ avec $\frac{1}{p} + \frac{1}{q} = 1$ on a,

$$k(\ell_p^n,\varepsilon).k(\ell_q^n,\varepsilon) \geq c(\varepsilon).n^{1+\frac{2}{p}}$$

3 SECTIONS PRESQUE EUCLIDIENNES DE ℓ_P^N

Proposition 3.2. Soit $2 et <math>0 < \varepsilon < 1$, alors il existe $c_p(\varepsilon) > 0$ tel que,

$$k(\ell_p^n,\varepsilon) \leq c_p(\varepsilon) n^{\frac{2}{p}}$$

3 SECTIONS PRESQUE EUCLIDIENNES DE $\ell_{\scriptscriptstyle P}^{\scriptscriptstyle N}$

 $\textbf{Corollaire 3.3. Soit } p \in [1,+\infty[, \text{ pour tout } \varepsilon > 0 \text{ il existe } c_p(\varepsilon) > 0 \text{ tel que pour tout } n \geq 2,$

$$k(\ell_p^n,\varepsilon) \geq \left\{ \begin{array}{ll} c_p(\varepsilon)n & \text{si } 1 \leq p < 2 \\ c_p(\varepsilon)n^{\frac{2}{p}} & \text{si } 2 \leq p < \infty \end{array} \right.$$

3 SECTIONS PRESQUE EUCLIDIENNES DE ℓ_p^N

Proposition 3.5. Soit $0 < \varepsilon \le \frac{1}{32}$, il existe c, C > 0 des constantes universelles tel que :

$$k(\ell_{\infty}^n, \varepsilon) \leq \frac{C \log(n)}{\log(\frac{1}{c\varepsilon})}$$

3 SECTIONS PRESQUE EUCLIDIENNES DE ℓ_P^N

Proposition 3.6. Soit $0 < \varepsilon < 1$, ℓ_2^k s'injecte $(1 + \varepsilon)$ -continûment dans ℓ_{∞}^n pour $k = \left\lceil \frac{\log n}{\log(\frac{3}{\varepsilon})} \right\rceil$.

A - INÉGALITÉ DE PRÉKOPA-LEINDLER

Lemme A.1. Soit A, B deux compacts non vides de \mathbb{R} , alors

$$\lambda(A+B) \ge \lambda(A) + \lambda(B)$$

Théorème A.2 (Prékopa-Leindler). Soit $\alpha \in]0,1[$, $f,g,h \in L^{\infty}(\mathbb{R}^n,[0,+\infty))$ tel que pour tout $x,y \in \mathbb{R}^n$,

$$h(\alpha x + (1-\alpha)y) \ge f(x)^{\alpha}g(y)^{1-\alpha}$$

alors

$$\int_{\mathbb{R}^n} h d\lambda \ge \left(\int_{\mathbb{R}^n} f d\lambda\right)^{\alpha} \left(\int_{\mathbb{R}^n} g d\lambda\right)^{1-\alpha}$$

A - INÉGALITÉ DE PRÉKOPA-LEINDLER

A - INÉGALITÉ DE PRÉKOPA-LEINDLER

Corollaire A.3 (Brunn-Minkowsky). Soit A,B deux compacts non vides de \mathbb{R}^n , on a

- (i) Pour $\alpha \in]0,1[, \lambda \Big(\alpha A + (1-\alpha)B\Big) \geq \lambda(A)^{\alpha}\lambda(B)^{1-\alpha}$
- (ii) $\lambda(A+B)^{\frac{1}{n}} \ge \lambda(A)^{\frac{1}{n}} + \lambda(B)^{\frac{1}{n}}$