

Secure Cloud Workloads!

A Developer's Guide to Cloud Network Security

How Cloud Projects "normally" start

How Cloud Projects "normally" run

Source: https://tanzu.vmware.com/content/blog/enterprise-journey-to-the-cloud

Table of contents

- 1. Prerequisites
- 2. Overview of Azure Network Services
- 3. Azure Virtual Network
- 4. Azure Service Endpoints
- 5. Azure Private Endpoint
- **6. General Azure Security Services**
- 7. Key Takeaways (Q&A)

Which <u>requirements</u> must be fulfilled before an enterprise can successfully start with Azure workloads (modernization).

Prerequisitesof Azure Network Services

Prerequisites

What is needed <u>before</u> bringing the <u>first</u> Workload to Azure?

Cloud Strategy (Goal, Destination, etc.)

Azure Governance

- Azure Billing & Cost Management
- Azure Hierarchy
- Naming Convention
- Tag & Lock Strategy
- Azure RBAC
- Azure Policies

Azure Core Infrastructure

- General Design
- Network Architecture
- Hybrid Connection
- Azure Firewall & Azure NVA
- · Logging & Monitoring
- · etc.

Cloud Automation

- No "Click-Click-Cloud"/"ClickOps"
- Infrastructure as Code (IaC)
- Central Module Library
- Reusability
- Module Lifecycle
- · CI/CD
- etc.

Azure Security

Why Network Security on Azure?

- Collection of Azure best practices to enhance the network security.
- Derived from experience with Azure networking in real customer projects.

Content:

- What is best practice?
- Why you want to enable that best practice?
- What might be the result if you **fail** to enable the best practice?
- Possible alternatives to the best practice?
- How can you learn to enable the best practice?

- Based on a consensus opinion. → Microsoft CAF & Well-architected Framework (WAF)
- Usage of Azure platform capabilities and feature sets.
- Stay up to date ("Don't get left behind").

What kind of Azure resources are relevant to bring application workloads to the cloud?

Overview Azure Network Services

Azure Network Services

Examples of Azure Network Services

Azure Networking Services – Overview

Networking Capabilities to secure Azure Services

Connect to Azure & on-premises resources Virtual Network & Peerings Virtual WAN ExpressRoute VPN Gateway Azure DNS Route Server Azure Bastion NAT Gateway ...etc.

Connectivity

Application Protection

Protect cloud applications

› Load Balancer › Private Links › DDoS Protection › Azure Firewall › Network Security Groups › Web Application Firewall › Private Endpoints › ... etc.

Application Delivery

Deliver applications in the Azure network

Network Monitoring

Monitor network resources

Network Watcher
ExpressRoute Monitor
Azure Monitor
VNet TAP
...etc.

Azure networking services enable users to **access/connect** Azure resources and on-premises resources, **protect**, **deliver**, and **monitor** the applications in the Azure network.

Azure Virtual Network (VNet) is the <u>fundamental</u> building block for the <u>private</u> network in Azure.

Azure Virtual Network

"Hub & Spoke" Architecture

- **Hub** = VNet hosts **shared** Azure services
- Spoke = VNets isolated and manage app workloads separately

Microsoft Azure VNets

What are the characteristics of an Azure VNet?

- <u>Logical</u> isolation with control over the network
- Contain subnets to isolate traffic using NSGs or FW
- Support for IP addresses ranges (CIDR)
- One or more non-overlapping address ranges
- Support for static/dynamic IPs
- DHCP "out-of-the-box" available
- DNS Support
- Hybrid Connectivity Support:
 - VPN Site-to-Site
 - VPN Point-to-Site
 - ExpressRoute
- VNet <u>cannot</u> span over **Azure Subscriptions**

Azure VNet Peerings

- Connect 2 VNets in the same/other region
- Utilizes the Azure Backbone network
- Appears as one network for connectivity
- Managed as separate resource
- VNet peering is between 2 Vnets
- There is no derived transitive relationship.
- VNet address spaces <u>cannot</u> overlap.
- Peered VNets can be in different subscriptions (linked to same tenant).
- Inter-VNet traffic is not encrypted.
- Think about name resolution (DNS).

Network Segmentation

Isolating resources in the network from each other

- Azure VNet → /22
 - Azure Subnet → /26 → Number of possible Subnets 16
 - Azure Subnet → /27 → Number of possible Subnets 32

Subnet address	Range of addresses	Useable IPs	Hosts	Divide	Join		n		
10.100.4.0/26	10.100.4.0 - 10.100.4.63	10.100.4.1 - 10.100.4.62	62	<u>Divide</u>	/25 /26 /26	12			/22
10.100.4.64/26	10.100.4.64 - 10.100.4.127	10.100.4.65 - 10.100.4.126	62	<u>Divide</u>		ŰĬ	/24		
10.100.4.128/26	10.100.4.128 - 10.100.4.191	10.100.4.129 - 10.100.4.190	62	<u>Divide</u>	/26	12	1		
10.100.4.192/26	10.100.4.192 - 10.100.4.255	10.100.4.193 - 10.100.4.254	62	<u>Divide</u>	/26	/25		/23	
10.100.5.0/26	10.100.5.0 - 10.100.5.63	10.100.5.1 - 10.100.5.62	62	<u>Divide</u>	/26	2	/24	23	
10.100.5.64/26	10.100.5.64 - 10.100.5.127	10.100.5.65 - 10.100.5.126	62	<u>Divide</u>	/26	/25			
10.100.5.128/26	10.100.5.128 - 10.100.5.191	10.100.5.129 - 10.100.5.190	62	<u>Divide</u>	/26	12	4		
10.100.5.192/26	10.100.5.192 - 10.100.5.255	10.100.5.193 - 10.100.5.254	62	<u>Divide</u>	/26	25			
10.100.6.0/26	10.100.6.0 - 10.100.6.63	10.100.6.1 - 10.100.6.62	62	<u>Divide</u>	/25 /25 /26 /26 /26	12			
10.100.6.64/26	10.100.6.64 - 10.100.6.127	10.100.6.65 - 10.100.6.126	62	<u>Divide</u>		5	/24		
10.100.6.128/26	10.100.6.128 - 10.100.6.191	10.100.6.129 - 10.100.6.190	62	<u>Divide</u>		1%	12		
10.100.6.192/26	10.100.6.192 - 10.100.6.255	10.100.6.193 - 10.100.6.254	62	<u>Divide</u>		25		/23	
10.100.7.0/26	10.100.7.0 - 10.100.7.63	10.100.7.1 - 10.100.7.62	62	<u>Divide</u>	/26	12		3	
10.100.7.64/26	10.100.7.64 - 10.100.7.127	10.100.7.65 - 10.100.7.126	62	<u>Divide</u>	725 1/26		/24		
10.100.7.128/26	10.100.7.128 - 10.100.7.191	10.100.7.129 - 10.100.7.190	62	<u>Divide</u>	/26	12	4		
10.100.7.192/26	10.100.7.192 - 10.100.7.255	10.100.7.193 - 10.100.7.254	62	<u>Divide</u>	25 /26	25			

(Subnet Calculator)

Zero Trust Network

Ensure Zero Trust methodology in the Azure Hub & Spoke network.

Mindset → "assume breach, never trust, always verify"

- Zero Trust is a security **strategy**, <u>not</u> a product or a service!
- It's an approach in designing and implementing security principles.
- Affects cloud infrastructure, deployment strategy, and implementation.

Network Security Groups (NSG) – Overview

Use NSG to filter network traffic between Azure resources in an Azure VNet.

- No extra costs.
- Enables subnet segmentation scenarios.
- Contains a list of ACL rules that "Allow" or "Deny" traffic from/to a VNET. (Layer 3 & 4)
- Restrict traffic from/to internal and external sources.
- Manage using "Infrastructure as Code" (IaC).
- Enforce NGS and rules with "DeployIfNotExist" Policy.
- Rules on URLs or FQDN is <u>not</u> supported.
- But "Service Tags" can be used for rules.
- Custom rules with priority between 100 and 4096.
- Can be assigned to a NIC or an Azure subnet.

Provide a <u>secure</u> and <u>direct</u> connectivity to Azure services using <u>Service</u> Endpoints on Azure.

Azure Service Endpoints

Azure Service Endpoints

Overview

ServiceTags_Public_20230925.json

- Azure Services are generally public. → <u>Document (JSON)</u>
- Fully removing public internet access → Only allow traffic from your VNet/Subnet.
- Provide a secure and direct connectivity to Azure services.
- Enable private IP addresses in the Azure VNet to reach the endpoint of an Azure service.
- Effective Route → nextHopType = VirtualNetworkServiceEndpoint
- An optimized route over the Azure Backbone network.
- Goal: Secure your critical Azure service resources.
- Without needing a public IP address on the VNet.

Azure Service Endpoints

What are the main **benefits** & **limitations** of Azure Service Endpoints?

Benefits:

- No extra costs for using service endpoints.
- Improved security for your Azure service resources.
- Optimal routing for Azure service traffic from your VNet.
- Simple to set up with less management overhead.
- Switches from public IPv4 to private IPv4 addresses.
- DNS entries for Azure services remain the same.
- NSGs can be used to block outbound traffic (Service Tags).

Limitations:

- Only available for certain Azure Services & Regions → <u>List</u>
- <u>Cannot</u> be used for traffic from **on-premises** to Azure.
- Allow public (NAT) client IP addresses from on-premises.
- Azure service using Azure public IP addresses will stop working.
- Certain Azure services can be allowed based on the trusted services <u>list</u>.

Provide a <u>secure</u> connectivity to Azure services using <u>Private</u> Endpoints on Azure.

Azure Private Endpoints

Azure Private Endpoint – Overview

Use Private Endpoint with a private IP to secure your Azure service.

- Private endpoint = **NIC** that uses a <u>private</u> **IP address** from your VNet.
- Used to bring certain services into your VNet.
- Connects privately and securely to a service that is powered by Azure Private Link.
- Private Link resource is the destination target of a specified private endpoint (<u>List</u>).
- Causes extra costs! > 11

Azure Private Endpoint

How to protect and secure your private endpoint?

- By default, network policies (UDR, NSG) are <u>disabled</u> for a subnet in a VNet.
- Network policy support must be enabled for the subnet.
- Once enable it affects <u>all</u> private endpoints within the subnet.
- Ensure connection requests go through an Azure Firewall/NVA.

Azure Private Endpoint – DNS

How to configure DNS if you are using private endpoints?

- Goal: Resolve the private endpoint IP address to the FQDN
- Azure Services have already a DNS configuration for a public endpoint. → Must be overridden!
- NIC associated contains the information to configure your DNS.
- NIC information includes FQDN and private IP addresses for the Azure Private Link.
- Recommend to integrate your private endpoint using a private DNS zone.

Azure Private Endpoint – Name Resolution

How does name resolution work behind the scenes?

- Host file (only for testing)
- Private DNS Zone
- DNS Forwarder (DNS Server)
- Azure creates a CNAME on the public DNS. → Redirects the resolution to the private domain name.
 - A → [name].blob.core.windows.net
 CNAME → [name].privatelink.blob.core.windows.net
 IP address → 10.100.4.4
- Your applications do <u>not</u> need to change the connection URL.
- When resolving to a DNS service, the DNS server will resolve to your <u>private</u> endpoints.

Azure Private Endpoint – DNS Query Process

Scenarios of DNS resolution.

Additional services to secure your application workloads on Azure

General Azure Security Resources

Azure Key Management

Focus data protection on Azure using key management.

- Keys used for Azure Data Encryption at rest on certain Azure resources.
- Encryption keys can be either "platform-managed" (PMK) or "customer-managed" (CMK).
- By default, Azure encrypts storage account data at rest (managed by Microsoft).
- Customers do <u>not</u> interact with PMKs. → 256-bit AES (FIPS 140-2 compliant)
- CMK stored in a key vault with full access by the customer.
- BYOK scenarios are supported as well (<u>Link</u>) using HSM.
- Recommendation use CMK to protect data.

Encryption selection					
Enable support for customer-managed keys ①	Blobs and files only				
Infrastructure encryption ①	Disabled				
Encryption type	Microsoft-managed keys Customer-managed keys				

Azure Managed Identities

Connect to Azure resources securely without any credential management.

- Eliminate the need to manage credentials of the identity.
- Provide automatically an identity in Microsoft Entra ID for applications.
- Used when connecting to resources that support Microsoft Entra <u>authentication</u>.
- No need to manage credentials. → Credentials are not even accessible to customers.
- Can be used at no extra cost.
- For Azure or Arc-enabled workloads only!
- 2 types of managed identities:
 - System-assigned → Some Azure resources allow to enable a managed identity <u>directly</u> on the resource.
 - User-assigned → Create a managed identity as a <u>standalone</u> Azure resource

What are the essential takeaways of the session?

Key Takeaways

Key Takeaways

- Check with the Azure Infrastructure Team <u>before</u> the start!
- Use given Azure Landing Zone
- Start making a plan or network design ("But do not Click!")
- Size your application network according to your workload
 - # of possible hosts
 - # of possible subnets
 - · restrictions from Microsoft
- Think about a suitable **separation** of the application workloads
- How traffic is controlled in the given Azure Landing Zone
- Are there areas of shared responsibilities with other teams
- Secure Azure Services using the "Networking" section
 - Service Endpoints
 - Private Endpoints

PROFILE – Speaker

Stefan Rapp

Cloud Solution Architect (CSA) & Microsoft MVP

Let's engage: https://www.linkedin.com/in/rapster83/

#AzureRocks 🤘 🥻 🎸

info@blog.misterazure.com E-Mail:

https://blog.misterazure.com Blog:

GitHub: @rapster83

Specializations: (MS Consultant since 2008)

- Identity & Access Management (IAM)
- Microsoft Infrastructure
- Azure Governance
- Azure Infrastructure
- Cloud Automation IaC (with Terraform)
- Cloud Migrations
- Application Modernization