МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. ЛОМОНОСОВА

Физический факультет

КАФЕДРА ОПТИКИ, СПЕКТРОСКОПИИ И ФИЗИКИ НАНОСИСТЕМ

К защите допустить:
Заведующий кафедрой
 М. В. Ковальчук

Диссертация

на тему

Разработка алгоритмов расчета двух- и трехкристальных кривых дифракционного отражения с учетом вклада аппаратной функции рентгеновского дифрактометра для моделирования КДО исследуемых кристаллов

Студент Руководитель Руководитель И. И. Чернецкий С. Ю. Стремоухов

Н. В. Марченков

СОДЕРЖАНИЕ

1	Литературный обзор		
	1.1	Атомный фактор рассеяния	(
	1.2	Структурный фактор рассеяния	7
	1.3	Температурный фактор рассеяния	(

1 Литературный обзор

1.1 Атомный фактор рассеяния

Рентгеновское излучение, взаимодействуя с электронами атомов вещества рассеивается. Величина такого рассеяния зависит от количества электронов в атоме. Тяжелые металлы, например свинец, Pb (Z=82), рассеивают рентгеновское излучение сильнее легких, таких как Ni (Z=28) или Co (Z=27), а такие атомы, как He или H- прозрачны для рентгеновского излучения. Величина, которая характеризует о том, как сильно рассеивает атом, называется атомным фактором рассеяния f. На рисунке 1 представлена диаграмма направленности атомного фактора лантана в зависимости от угла, максимальная величина наблюдается в случае рассеяния вперед и рассеяния назад.

Рис. 1: (Слева) фактор рассеяния для атома лантана (La, N=57), (справа) схема расположения векторов для падающей и рассеянной волн

Приближенное выражение для расчета атомного фактора рассеяния представляется [1] в виде выражения:

$$f_0 = \sum_{i=1}^{4} a_i e^{-b_i (\frac{\sin \theta_B}{\lambda})^2} + C$$
 (1.1.1)

где a_i , b_i и c - коэффициенты Кромер-Манна для бездисперсионного канала рассеяния атомами решетки, ограничением является $0 < \frac{sin\vartheta}{\lambda} < 2.0 \ \text{Å}^{-1}$. Характерная зависимость структурного фактора от угла рассеяния и длины волны для атомов входящих в состав кристалла LGT (La, Ga, Ta, O) представлена на рисунке 2.

В общем случае атомный фактор рассеяния является комплексной величиной, но мнимая часть выражения становится значимой только вблизи

Рис. 2: Атомный фактор рассеяния для атомов: галлия (Ga), лантана (La), тантала (Ta) и кислорода (O)

края собственного поглощения, когда энергия кванта близка к резонансной энергии атома.

$$f = f_0 + f' + if'' (1.1.2)$$

 f_0 - атомный фактор рассеяния, независящий от энергии падающего излучения, f', f'' - действительная и мнимая части дисперсионной поправки [2], обусловленные преломлением и поглощением

1.2 Структурный фактор рассеяния

Атомы решетки излучают рассеянное электромагнитное излучение. Если в элементарной ячейке более одного атома, волны от разных атомов, интерферируя между собой, вносят вклад в общую картину рассеяния, ослабляя или усиливая ее.

Рассеяние от набора атомов характеризуется структурным фактором рассеяния, с учетом векторного сложения всех фаз по всем атомам N

Рис. 3: Примеры интерференции двух волн, отраженных соседними атомными плоскостями

элементарной ячейки:

$$F = \sum_{n} f \cdot e^{-i\phi_n} \tag{1.2.1}$$

где $\phi_n = 2\pi(hx_n + ky_n + lz_n)$.

На рисунке 4 цветом изображена величина структурного фактора для разных индексов плоскостей отражения в сравнении между кристаллом LGT и Si. В таком представлении просматривается периодичность образования запрещенных рефлексов в кубическом кремнии. В кристалле LGT запрещенных (синий цвет) индексов для отражения на порядок меньше, связанно это с более низкими симметричными свойствами.

Рис. 4: Карта распределения величины структурного фактора (цвет соответствует его величине) в координатах индексов Миллера

1.3 Температурный фактор рассеяния

При определении положений атомов следует также учитывать их тепловые колебания около равновесных положений, нарушающих «совершенность» решетки. Мерой смещения атомов при тепловых колебаниях служит их среднеквадратичная амплитуда u^2 . Структурный фактор рассеяния для колеблющихся атомов имеет вид:

$$F_T = F \cdot e^{-B(\frac{\sin\vartheta_B}{\lambda})^2} \tag{1.3.1}$$

где $B=8\pi^2u^2$ - температурный фактор (фактор Дебая - Валлера). Величина B может варьироваться в диапазоне от 1 Å до 100 Å.

Список литературы

- [1] P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe and B. T. M. Willis. International Tables for Crystallography (2006). Vol. C, ch. 6.1, pp. 554-595
- [2] Coraux J., Favre-Nicolin V., Proietti M.G., et al. // Phys.Rev. B. 2007. 75. 235312