Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko*

Seminar $I_b - 1$. letnik, II stopnja

Supersimetrija v nerelativistični kvantni mehaniki

MENTOR:

AVTOR: Prof. Dr. Svjetlana Fajfer,

Jože Zobec, dipl. fiz. (UN)

SOMENTOR:

Prof. Dr. Tomaž Prosen

Povzetek

Supersimetrija je širše področje, ki ni omejeno zgolj na fiziko osnovnih delcev, pač pa lahko najde rabo tudi drugod v fiziki. V tem seminarju bom pokazal računske prijeme v obravnavi šolskih kvantno-mehanskih problemov s pomočjo supersimetričnega ogrodja in novosti v teoriji izospektralnih Hamiltonianov ter teoriji perturbacij.

Ljubljana, 31. maj 2013

Kazalo

1	$\mathbf{U}\mathbf{vod}$	2		
2	Osnove supersimetrije 2.1 Mešanje bozonskih in fermionskih stanj	2 5		
3	Neskončna potencialna jama			
4	Podobni Hamiltoniani4.1 Operatorji višanja	7 8 8		
5	Izospektralni Hamiltoniani5.1Enoparametrične družine izospektralnih potencialov	9 9 10		
6	Supersimetrija v teoriji perturbacij 6.1 Variacijski pristop	11 11 12		
7	Zaključek			

1 Uvod

Supersimetrija je področje, ki je nastalo v fiziki visokih energij, vendar pa ima zanimive aplikacije lahko tudi drugod. Omejil se bom na enodelčne probleme v nerelativistični kvnatni mehaniki.

To je simetrija, ki velja med fermionskimi in bozonskimi operatorji. Npr. kot toč-kovna simetrija C_2 slika $-\psi$ v ψ , ne da bi se pri tem spremenila energija sistema, tako supersimetrija pomeni, da lahko bozonske operatorje zamenjamo s fermionskimi, ne da bi pri tem vplivali na fizikalne opazljivke.

V nerelativistični kvantni mehaniki supersimetrični opis problema predstavlja alternativno in marsikdaj enostavnejšo pot do rešitve. Omogoča konstrukcijo konsistentne teorije, s katero lahko konstruiramo izospektralne Hamiltoniane in nove integrabilne sisteme.

2 Osnove supersimetrije

V fiziki visokih energij moramo za opis konsistentne teorije upoštevati simetrije problema. Te se delijo na notranje in zunanje.

Zunanje simetrije so tiste, ki veljajo v splošnem za vse fizikalne probleme: ohranitvi energije in gibalne količine sta posledici invariantnosti fizikalnih zakonov na translacije (oz. rotacije) po prostoru in času. Operatorji teh transformacij tvorijo grupo, ki se imenuje po francoskem fiziku Henriju Poincaré – Poincaréjeva grupa. Ta upošteva transformacije klasične fizike in splošne teorije relativnosti.

Notranje simetrije so simetrije med posameznimi polji, ki nastopajo v našem problemu. Operatorji teh transformacij, na katere je naš problem invarianten, so lahko rotacije v večdimenzionalnem prostoru in mogoče sestavljajo grupo, lahko pa so tudi kar polja sama – opišemo jih namreč s ti. operatorji polja, ki morajo zadoščati bodisi bozonski, bodisi fermionski algebri.

V sedemdesetih letih prejšnjega stoletja, so si ljudje prizadevali, da bi poenotili opis fermionov in bozonov. Supersimetrija je otrok te zveze in hkrati predstavlja edino možnost cin združitve notranjih simetrij z zunanjimi, tj. naravno razširi Poincaréjevo grupo s simetrijami polj.

Tekom celotnega seminarja bomo imeli v mislih reševanje Schrödingerjeve enačbe,

$$H = -\frac{\hbar^2}{2m} \nabla^2 + mV(\vec{x}). \tag{1}$$

Zaradi enostavnosti pisave bomo imeli brezdimenzijske količine $\hbar=m=1$. Omejili se bomo na enodimenzionalne probleme, tj. Hamiltonian en. (1) prepišemo v

$$H = -\frac{1}{2}\partial_x^2 + V(x). \tag{2}$$

Naš potencial naj bo neničelen in navzdol omejen¹. Potem lahko izmed vezanih stanj poiščemo lastne pare E_n , $\psi_n(x)$ Hamiltonovega operatorja H,

¹Obstaja tak V_0 , da $V(x) \ge V_0$, $\forall x$.

$$H\psi_n(x) = E_n\psi_n(x) = i\partial_t\psi_n(x). \tag{3}$$

Za $E_0=0$ velja $H|\psi_0\rangle=0$. Od tod dobimo pogoj za potencial

$$V(x) = \frac{1}{2} \frac{\partial_x^2 \psi_0}{\psi_0},\tag{4}$$

Naš Hamiltonian bi radi razcepili na produkt posplošenega kreacijskega in anihilacijskega operatorja, tj. $H = a^{\dagger}a$. Vidimo, da je (2) oblike $H \sim (A+B)(A-B)$, tako bomo definirali superpotencial W(x), da bo

$$a = W(x) + \frac{1}{\sqrt{2}}\partial_x,\tag{5}$$

$$a^{\dagger} = W(x) - \frac{1}{\sqrt{2}} \partial_x. \tag{6}$$

Taka operatorja sta res drug drugemu hermitsko adjungirana, saj je operator ∂_x antihermitski (do totalnega odvoda natančno).

Pogoje za obstoj W(x) bomo določili retrospektivno, kot se to mnogokrat zgodi v fiziki. En. (5) in (6) vstavimo v Hamiltonov operator, od koder bodo vezi, katerim mora zadoščati, očitnejše. Faktoriziran H na neki funkciji $\phi(x)$ stori

$$H\phi(x) = a^{\dagger}a \ \phi(x) = \left[W(x) - \frac{1}{\sqrt{2}}\partial_x\right] \left[W(x) + \frac{1}{\sqrt{2}}\partial_x\right] \phi(x)$$

$$= \left[-\frac{1}{2}\partial_x^2 + W^2(x)\right] \phi(x) - \frac{1}{\sqrt{2}} \left[\underbrace{\partial_x \left(W(x)\phi(x)\right) - W(x)\partial_x \phi(x)}_{(\partial_x W(x))\phi(x)}\right]$$

$$= \left\{-\frac{1}{2}\partial_x^2 + \underbrace{W^2(x) - \frac{1}{\sqrt{2}} \left[\partial_x W(x)\right]}_{V(x)}\right\} \phi(x). \tag{7}$$

To je prvotna Schrödingerjeva enačba (2) natanko tedaj, kadar W(x) spoštuje sledeča izraza:

$$V(x) = \frac{1}{2} \frac{\partial_x^2 \psi_0(x)}{\psi_0(x)} = W^2(x) - \frac{1}{\sqrt{2}} \partial_x W(x)$$
 (8)

$$W(x) = -\frac{1}{\sqrt{2}} \frac{\partial_x \psi_0(x)}{\psi_0(x)} = -\frac{1}{\sqrt{2}} \partial_x \ln \psi_0(x), \tag{9}$$

kjer smo izraz (9) dobili z reševanjem Riccatijeve enačbe (8).

Tako smo dobili $H_1 = a^{\dagger}a$ in ima rešitve $\psi_n(x)$ in E_n , kot jih poznamo od prej. Poglejmo, kaj se zgodi, če zamenjamo vrstni red operatorjev – definirajmo $H_2 = aa^{\dagger}$. Dobimo par Hamiltonianov H_1 in H_2 ,

$$H_1 = -\frac{1}{2}\partial_x^2 + V_1(x) = a^{\dagger}a, \tag{10}$$

$$H_2 = -\frac{1}{2}\partial_x^2 + V_2(x) = aa^{\dagger}, \tag{11}$$

kjer sta $V_1(x)$ in $V_2(x)$ povezana prek

$$V_{1}(x) = W^{2}(x) - \frac{1}{\sqrt{2}} \partial_{x} W(x),$$

$$V_{2}(x) = W^{2}(x) + \frac{1}{\sqrt{2}} \partial_{x} W(x).$$
(12)

Enačbo (12) lahko dokažemo z istim postopkom kot v en. (7).

Pravimo, da je $V_2(x)$ supersimetrični partner $V_1(x)$. Hamiltonian H_1 ima lastne pare $\psi_n^{(1)}(x)$, $E_n^{(1)}$, H_2 pa $\psi_n^{(2)}(x)$, $E_n^{(2)}$. Lastne funkcije in energijski spekter H_2 lahko dobimo z reševanjem, ali pa ga uganemo:

$$\psi_n^{(2)}(x) = a\psi_n^{(1)}(x),\tag{13}$$

od koder vidimo da $\psi_0^{(2)}(x)$ ne obstaja, saj anihilacijski operator iz vakuuma po definiciji naredi ničlo. Energijski spekter H_2 je enak tistemu iz H_1 , s tem da nima osnovnega stanja E_0 , kar lahko pokažemo kot

$$H_2\psi_n^{(2)}(x) = aa^{\dagger}(a\psi_n^{(1)}(x)) = a(a^{\dagger}a)\psi_n^{(1)}(x) =$$

$$= aE_n^{(1)}\psi_n^{(1)}(x) = E_n^{(1)}(a\psi_n^{(1)}) = E_n^{(1)}\psi_n^{(2)}, \tag{14}$$

se pravi

$$E_n^{(1)} \equiv E_n^{(2)}, \qquad n = 1, 2, 3 \dots$$
 (15)

Zaradi tega redefiniramo H_1 , da bo po novem osnovno stanje $\psi_0^{(1)}$ v jedru operatorja H_1

$$H_1 \to H_1' = H_1 - E_0.$$
 (16)

Kadar $E_0 \neq 0$ govorimo o zlomu supersimetrije.

Hamiltoniana H_1 in H_2 bi radi združili v enega, tako da se prostora ne mešata. Zato definiramo

$$\mathbf{H} \equiv H_1 \oplus H_2 \equiv \begin{bmatrix} H_1 & \\ & H_2 \end{bmatrix}, \tag{17}$$

$$Q^{\dagger} = \sigma^{+} a^{\dagger} = \begin{bmatrix} 0 & a^{\dagger} \\ 0 & 0 \end{bmatrix}, \quad Q = \sigma^{-} a = \begin{bmatrix} 0 & 0 \\ a & 0 \end{bmatrix}, \tag{18}$$

$$Q^{\dagger}Q + QQ^{\dagger} = \{Q, Q^{\dagger}\} = \mathbf{H}.\tag{19}$$

Operatorji Q in Q^{\dagger} skupaj s generatorji Poincaréjeve grupe tvorijo ti. supersimetrično algebro, ali na kratko "superalgebro".

2.1 Mešanje bozonskih in fermionskih stanj

Bozonski in fermionski operatorji tvorijo algebro, ki zadošča kanoničnim komutacijskim relacijam

$$[a_i, a_i^{\dagger}]_{\pm} = \delta_{ij}, \tag{20}$$

$$[a_i, a_j]_{\pm} = 0, \tag{21}$$

kjer je $[\bullet, \bullet]_- \equiv [\bullet, \bullet]$ komutator in velja za bozone, $[\bullet, \bullet]_+ \equiv \{\bullet, \bullet\}$ pa je anti-komutator in velja za fermione.

V supersimetričnih teorijah bozonske in fermionske operatorje opišemo na identično enak način. To je posebej razvidno iz operatorjev Q in Q^{\dagger} iz en. (18). Operatorja a in a^{\dagger} tvorita boznonsko algebro

$$[a, a^{\dagger}] = (\partial_x W), \qquad [a, a] = 0.$$
 (22)

V splošnem je $\partial_x W = 1$ le za harmonski oscilator, za višje člene pa je problem zaradi anharmonske sklopitve bolj kompliciran, vendar obstaja dokaz za splošen polinomski potencial, v katerem opis v Fockovem prostoru ni več tako enostaven, so pa a, a^{\dagger} še vedno bozonski. Definirajmo operatorje c in c^{\dagger} , tako da

$$c = \sigma^+, \qquad c^\dagger = \sigma^-, \tag{23}$$

Pokažemo lahko, da operatorji c in c^{\dagger} zadostijo enostavni fermionski algebri,

$$\{c, c^{\dagger}\} = 1, \quad \{c, c\} = 0, \quad n_F = \frac{1 - [c, c^{\dagger}]}{2},$$
 (24)

kjer je n_F fermionski operator štetja. Q in Q^{\dagger} lahko potem zapišemo kot

$$Q = c^{\dagger} a, \qquad Q^{\dagger} = a^{\dagger} c. \tag{25}$$

Sedaj vidimo, kako je pravzaprav treba interpretirati operatorje Q in Q^{\dagger} . Ker namreč velja

$$[Q, \mathbf{H}] = [Q^{\dagger}, \mathbf{H}] = 0, \tag{26}$$

vidimo, da Q in Q^{\dagger} menjata bozonska in fermionska stanja, ne da bi pri tem spremenila energijo sistema, hkrati pa prenesejo stanja iz H_1 v H_2 oz. H_2 v H_1 . Torej H_1 ustreza bozonom, H_2 pa fermionom.

3 Neskončna potencialna jama

Poglejmo si supersimetrijo na primeru neskončne potencialne jame. Gre začetniški potencial, omejen med 0 do 1. Lastne fukcije so

$$\psi_n^{(1)}(x) = \frac{1}{2}\sin n\pi x, \quad E_n^{(1)} = \frac{(n\pi)^2}{2} \quad n = 1, 2, \dots$$
 (27)

stanja za n = 0 ni, ker to stanje ustreza situaciji brez delca². Osnovni lastni par je torej za n = 1, vendar ga bolj kljub temu označil z indeksom 0.

$$\psi_0^{(1)}(x) = \frac{1}{2}\sin \pi x, \quad \frac{2}{\pi^2} E_0^{(1)} = 1 \neq 0.$$
 (28)

Supersimetrija je v tem primeru zlomljena³, zato moramo začetnemu Hamiltonianu odšteti energijo osnovnega stanja.

$$(\underbrace{H - E_0^{(1)}}_{H_1})\psi_0^{(1)} = (E_0^{(1)} - E_0^{(1)})\psi_0^{(1)} = 0 \cdot \psi_0^{(1)} = 0.$$
(29)

Od tod lahko poiščemo superpotencial W(x) iz en. (9)

$$W(x) = -\frac{1}{\sqrt{2}} \frac{\partial_x \sin \pi x}{\sin \pi x} = -\frac{\pi}{\sqrt{2}} \cot \pi x.$$
 (30)

S pomočjo en. (12) lahko poiščemo supersimetričnega partnerja neskončne potencialne jame

$$V_2(x) = \frac{\pi^2}{2} \left(\cot^2 \pi x + \frac{1}{\sin^2 \pi x} \right) = \frac{\pi^2}{2} \left(\frac{1}{\sin^2 \pi x} - 1 \right), \tag{31}$$

kar očitno ni več neskončna potencialna jama, za katero dobimo $V_1(x) = \pi^2/2$, ki pa se ravno prikladno odšteje s konstantno $E_0^{(1)}$ v enačbi (29). Potencial V_2 je poseben primer potenciala Rosen Morse I (tj. triginometrična izvedenka).

Sedaj smo dobili oba Hamiltoniana,

$$H_{1} = -\frac{1}{2}\partial_{x}^{2},$$

$$H_{2} = -\frac{1}{2}\partial_{x}^{2} - V_{2}(x),$$
(32)

od koder lahko že sklepamo, kako bo izgledal supersimetrični Hamiltonian H.

Poglejmo še kako izgledajo valovne funkcije $\psi_n^{(2)}(x)$. Za to bomo seveda uporabili operatorje višanja in nižanja iz en. (14). Vemo, da H_2 nima stanja pri n=1, ampak da se štetje začne pri n=2, vendar bomo tudi sedaj pisali indeks 0. Uporabili bomo identiteto

$$\psi_0^{(2)}(x) = a\psi_2^{(1)} = -\frac{1}{2\sqrt{2}}(\pi \cot \pi x - \partial_x)\sin 2\pi x \tag{33}$$

$$= \frac{2\pi}{2\sqrt{2}}(\cos^2 \pi x - \cos 2\pi x) = \frac{\pi}{\sqrt{2}}\sin^2 \pi x,$$
 (34)

za $\psi_3^{(2)}$, tj. prvo vzbujeno stanje H_2 , pa je

$$\psi_3^{(2)}(x) \propto \sin(\pi x)\sin(2\pi x),\tag{35}$$

Operatorja a in a^{\dagger} seveda po pretvorbi pokvarita normalizacijo, tako da rezultati niso nujno normirani.

²Verjetnost, da se delec nahaja v jami je natanko 0.

³Torej $E_0 \neq 0$.

4 Podobni Hamiltoniani

Prava moč supersimetrije se pokaže pri obravnavi rešljivih problemov. Njihov nabor je sicer neskončen, vendar pa obstaja končna podmnožica, iz katere lahko dobimo vse ostale. Tudi znotraj te podmnožice imamo v resnici transformacije, ki "generatorski" potencial slika v drugega.

Imejmo potencial $V_1(x; \underline{p}_1)$ in potencial $V_2(x; \underline{p}_2)$, kjer sta \underline{p}_1 in \underline{p}_2 urejena nabora parametrov v potencialih. Če sta V_1 in V_2 podobna, potem veljata sledeči identiteti:

$$V_2(x; p_1) = V_1(x; p_2) + R(p_1), \tag{36}$$

$$\underline{p}_2 = \underline{f}(\underline{p}_1). \tag{37}$$

Prek en. (37) dobimo družino potencialov, ki so podobni V_1 . Nove parametre dobimo iz kompozituma funkcije f

$$\underline{p}_{2} = \underline{f}(\underline{p}_{1}),
\underline{p}_{3} = \underline{f}(\underline{p}_{2}) = (\underline{f} \circ \underline{f})(\underline{p}_{1}),
\vdots
\underline{p}_{n} = (\underline{f} \circ \underline{f} \circ \dots \circ \underline{f})(\underline{p}_{1}),$$
(38)

potenciali pa so potem

$$V_{2}(x; \underline{p}_{1}) = V_{1}(x; \underline{p}_{2}) + R(\underline{p}_{1}),$$

$$V_{3}(x; \underline{p}_{1}) = V_{2}(x; \underline{p}_{2}) + R(\underline{p}_{2}) = V_{1}(x; \underline{p}_{3}) + R(\underline{p}_{1}) + R(\underline{p}_{2}),$$

$$\vdots$$

$$V_{n}(x; \underline{p}_{1}) = V_{1}(x; \underline{p}_{n}) + \sum_{k=1}^{n-1} R(\underline{p}_{k}),$$

$$(39)$$

ki je spet očitno podoben $V_1(x)$. Sedaj dobimo družino podobnih Hamiltonianov,

$$H_n = -\frac{1}{2}\partial_x^2 + V_n(x; \underline{p}_1) = -\frac{1}{2}\partial_x^2 + V_1(x; \underline{p}_n) + \sum_{k=1}^{n-1} R(\underline{p}_k). \tag{40}$$

Dobljeni Hamiltoniani imajo enak spekter, z izjemo vakuumov in prvih nekaj stanj. Energije osnovnih stanj so očitno

$$E_0^{(n)} = \sum_{k=1}^{n-1} R(\underline{p}_k). \tag{41}$$

Ker so spektri od neke energije dalje enaki, sledi da energije vakuumov teh Hamiltonianov sovpadajo z energijami vzbujenih stanj Hamiltonianov z indeksom m < n. Seveda

gremo lahko do konca nazaj, pridemo do m=1 in $E_0^{(1)}=0$ in tako dobimo celoten vezani spekter Hamiltoniana H_1 :

$$E_n^{(1)}(\underline{p}_1) = \sum_{k=1}^n R(\underline{p}_k). \tag{42}$$

Seveda to pomeni, da V_2 (in posledično \underline{p}_2) ne sme biti arbitraren, ampak tak, da zadosti pogoju en. (42), sicer pademo lahko v poljubno vzbujeno stanje. Tak način iskanja spektra je dosti enostavnejši, vendar moramo za to poznati funkcijo f.

4.1 Operatorji višanja

Razumeti je treba, da so a in a^{\dagger} posplošitvi pravi opeatorjev višanja ali nižanja iz harmonskega oscialtorja. Pokazali smo, kako z njimi mešamo bozone s fermioni, sedaj bom pokazal, kako jih je treba uporabiti, da z njimi dejansko lahko dvignemo oz. spustimo stanje.

Spet imejmo Hamiltonian H_1 z energijo osnovnega stanja $E_0^{(1)}=0$ in valovno funkcijo $\psi_0^{(1)}(x;p_1)$. Operatorje a^{\dagger} bi morali dejansko ves čas pisati kot $a^{\dagger}(x;p)$, saj

$$a^{\dagger} \equiv a^{\dagger}(x;\underline{p}) \equiv W(x;\underline{p}) - \frac{1}{\sqrt{2}}\partial_x,$$

Hamiltonianu H_1 pripada supersimetrični partner H_2 , ki ima enak spekter, hkrati pa nima lastnega stanja pri vakuumski energiji H_1 , zato lahko H_2 obravnavamo kot H_1 podoben Hamiltonian.

Višja vzbujena stanja moramo očitno dobiti kot

$$\psi_n^{(1)}(x; \underline{p}_1) \propto a^{\dagger}(x; \underline{p}_1) \ a^{\dagger}(x; \underline{p}_2) \ \dots \ a^{\dagger}(x; \underline{p}_n) \ \psi_0^{(1)}(x; \underline{p}_{n+1}),$$
 (43)

Odtod sledi pomembna posledica: supersimetrična partnerja V_1 in V_2 sta si podobna potenciala, kar pomeni, da je med njima lahko netrivialna podobnostna transformacija – konkretno si lahko spet za zgled vzamemo neskončno potencialno jamo in en. (31).

Ker je neprikladno računati poljubno visok \underline{p}_k na zalogo, se po navadi raje uporabi kar

$$\psi_n^{(1)}(x; \underline{p}_1) = a^{\dagger}(x; \underline{p}_1) \ \psi_{n-1}^{(1)}(x; \underline{p}_2), \tag{44}$$

ki nam namiguje, da je za dviganje in spuščanje spet dejansko dovolj le poznavanje supersimetričnih partnerjev.

4.2 Klasifikacija podobnih potencialov

Posebej prikladno je, če znamo podobne potenciale, ki pripadajo podobnostnim transformacijam iste baže, razvrstiti v množice. Ta problem je še nerešen, saj pravzaprav splošen eksaktno rešljivi potencial še ni definiran. Kljub temu so fiziki našli dva tipa podobnih potencialov, v katere sodi večina potencialov iz raznih učbenikov.

• $\underline{p}' = \underline{p} + \underline{q}$ – potenciali, podobni na translacije parametrov,

• p' = qp – potenciali, podobni na skaliranje parametrov.

Poleg teh imamo še primere, ko je \underline{f} nelinearna transformacija, takrat se lahko zgodi npr. $p_k'=q\cdot p_k^2$, teh niso našli veliko.

Potenciali, ki imajo lastnost podobnosti ne rabijo biti centralni. Tabela 1 prikazuje potenciale, ki pripadajo translatorni družini.

Tabela 1: Nekaj preprostih potencialov, ki pripadajo podobnim na translacije. Rosen-Morse I je res podoben neskončni potencialni jami – Rosen-Morse I, pri $\alpha=\pi,\ A=\pi$ in B=0. Coulombov potencial se da transformirati v 3D harmonski oscilator. Rosen-Morse I ima pogoj $0\leq \alpha x\leq \pi$, Eckart pa $B>A^2$.

Naziv	W(x)	V(x)
Rosen-Morse I	$-A\cot\alpha x - B/A$	$\frac{A(A-\alpha)}{\sin^2 \alpha x} + 2B \cot \alpha x - A^2 + (B/A)^2$
Coulomb	$\frac{e^2}{2(\ell+1)} - \frac{(\ell+1)}{r}$	$-\frac{e^2}{r} + \frac{\ell(\ell+1)}{r^2} - \frac{e^4}{4(\ell+1)^2}$
1D harmonski oscilator	$\frac{1}{2}\omega x - b$	$\frac{1}{4}\omega^2\left(x-\frac{2b}{\omega}\right)^2-\frac{\omega}{2}$
3D harmonski oscilator	$\frac{1}{2}\omega r - \frac{\ell+1}{r}$	$\frac{1}{4}\omega^2r^2 + \frac{\ell(\ell+1)}{r^2} - (\ell+3/2)\omega$
Eckart	$-A \coth \alpha r + B/A$	$A^{2} + (B/A)^{2} - 2B \coth \alpha r + \frac{A(A+\alpha)}{\sinh^{2} \alpha r}$

5 Izospektralni Hamiltoniani

Izospektralni Hamiltoniani v nerelativistični kvantni mehaniki so taki, ki imajo strogo enake energijske spektre vezanih stanj in enake transmisijske/refleksijske koeficiente sipalnih stanj. Edino, kar se med njima razlikuje, so valovne funkcije in posledično nekateri momenti $(\langle x \rangle, \langle x^2 \rangle \dots)$.

Izospektralne družine hamiltonianov so intimno povezane z multisolitonskimi rešitvami nelinarnih evolucijskih enačb, ki nam vračajo solitonske rešitve.

5.1 Enoparametrične družine izospektralnih potencialov

Ideja je ta: superpotencial W(x) ni enoličen, zato lahko poišcemo družino potencialov $\{\tilde{V}_1(x;\lambda_1)\}$, ki imajo vsi istega supersimetričnega partnerja. Da se bomo ognili nanavadnim koeficientom bomo delali v enotah $\hbar=2m=1$, zaradi česar se bomo iznebili raznoraznih koeficientov $(\sqrt{2})^{\pm 1}$ (pozor, cele potence 2 ostanejo). Hamiltoniani, oblike

$$H = \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \tilde{V}_1(x; \lambda_1),\tag{45}$$

so vsi izospektralni glede na parameter λ_1 .

Recimo, da W(x) ni enoličen. Potem poleg W(x) obstaja še $\tilde{W}(x)$, ki prav tako ustreza en. (12). Najpreprostejša ideja bi bila potem

$$W(x) \to \tilde{W}(x) = W(x) + \phi(x), \tag{46}$$

kjer zahtevamo, da $\tilde{W}(x)$ prav tako uboga en. (8) za $V_2(x)$, ki se v teh enotah glasi

$$V_2(x) = W^2(x) + \partial_x W(x) = \tilde{W}^2(x) + \partial_x \tilde{W}(x), \tag{47}$$

od koder sledi

$$W^{2} + \frac{d}{dx}W = W^{2} + \frac{d}{dx}W + 2W\phi + \frac{d}{dx}\phi + \phi^{2},$$

$$2W(x)\phi(x) + \phi^{2}(x) = -\frac{d}{dx}\phi(x),$$

$$\frac{2W(x)}{\phi(x)} + 1 = -\frac{1}{\phi^{2}(x)}\frac{d}{dx}\phi(x), \qquad y(x) = 1/\phi(x),$$

$$2W(x)y(x) + 1 = -\frac{d}{dx}y(x).$$
(48)

Ko to enačbo rešimo, dobimo

$$\phi(x) = \frac{\mathrm{d}}{\mathrm{d}x} \ln \left[\int_{-\infty}^{x} \psi_0^2(u) \mathrm{d}u + \lambda_1 \right] = \frac{\mathrm{d}}{\mathrm{d}x} \ln \left[\mathcal{I}_1(x) + \lambda_1 \right], \tag{49}$$

kjer je $\psi_0(x)$ spet normirana funkcija izvornega potenciala $V_1(x)$.

Družina potencialov $V_1(x; \lambda_1)$, ki ima partnerski potencial $V_2(x)$ je torej

$$\tilde{V}_1(x;\lambda_1) = V_1(x) - 2\frac{\mathrm{d}^2}{\mathrm{d}x^2} \ln\left[\mathcal{I}_1(x) + \lambda_1\right]. \tag{50}$$

Parameter λ_1 se je notri prištulil kot integralska konstanta in ne more biti čisto poljuben, ampak $\lambda_1 \notin [0,1]$, tj $\lambda_1 \in \mathbb{R} \setminus [-1,0]$ – v tistem režimu je osnovno stanje $\psi_0(x;\lambda_1)$ potenciala $\tilde{V}_1(x;\lambda_1)$ nenormalizabilno, ampak je sipalno stanje – torej nam kot pri supersimetričnih partnerjih manjka ostnovno stanje, čeprav so vsa ostala stanja nespremenjena. Prvotni potencial $V_1(x)$ dobimo kot limito $\lambda_1 \to \pm \infty$.

5.2 Večparametrične družine izospektralnih potencialov

V obravnavi enoparametričnih družin obstaja drugačen pristop, ki ga lahko posplošimo v večparametričnega. Partnerski potencial V_2 je v bistvu V_1 brez osnovnega stanja. Družina potencialov \tilde{V}_1 niso nič drugega, kot V_1 z modificiranim osnovnim stanjem.

Malo bom spremenil notacijo: ψ_1 je osnovno stanje V_1 in ima energijo E_1 , ψ_2 je osnovno stanje V_2 in ima energijo E_2 , ψ_n je osnovno stanje V_n z energijo E_n .

Na enoparametričnem primeru odrežemo⁴ osnovno stanje kot $V_2 = V_1 - 2\partial_x^2 \ln \psi_1$. Nato moramo V_2 dodati splošno stanje, ki bi ustrezalo energiji E_1 To stanje je linearna kombinacija $1/\psi_1$ in \mathcal{I}_1/ψ_1 , torej je novo osnovno stanje

$$\Phi_1(x;\lambda_1) = \frac{\alpha \mathcal{I}_1 + \beta}{\psi_1} = \frac{\mathcal{I}_1 + \lambda_1}{\psi_1}.$$
 (51)

Tu smo upoštevali, da α in β v resnici nista neodvisna parametra, saj imamo še pogoj, da je to novo stanje normirano – potem zadošča le en parameter – λ_1 . Ko to stanje vstavimo nazaj v V_2 dobimo

 $^{^4}$ Od potenciala odštejemo funkcijo g(x), zaradi česar izgubi osnovno stanje.

$$\tilde{V}_{1}(x;\lambda_{1}) = V_{2} - 2\frac{d^{2}}{dx^{2}} \ln \Phi_{1}(x;\lambda_{1}) =
= V_{1} - 2\frac{d^{2}}{dx^{2}} \ln \psi_{1} - 2\frac{d^{2}}{dx^{2}} \ln \Phi_{1} =
= V_{1} - 2\frac{d^{2}}{dx^{2}} \ln(\psi_{1}\Phi_{1}) =
= V_{1} - 2\frac{d^{2}}{dx^{2}} \ln(\mathcal{I}_{1} + \lambda_{1}).$$
(52)

Osnovno stanje takega potenciala je $\tilde{\psi}_1(x;\lambda_1) = 1/\Phi_1(x;\lambda_1)$ in v limiti $\lambda_1 \to \pm \infty$ vrne ψ_1 . Kot prej sledi, da mora biti $\lambda_1 \in \mathbb{R} \setminus [-1,0]$. Ta postopek lahko posplošimo na večparametrične primere: ne samo, da odštejemo ψ_1 in ga vrnemo s parametrom λ_1 , odštejemo še osnovno stnanje V_2, V_3, \ldots in na koncu dobimo $\tilde{V}_1(x;\lambda_1,\lambda_2\ldots\lambda_n) = \tilde{V}_1(x;\underline{\lambda})$, kjer imamo toliko λ_i , da parametriziramo vsa vezana stanja.

6 Supersimetrija v teoriji perturbacij

Supersimetrija omogoča dva supersimetrična pristopa v teoriji perturbacij. To sta variacijska metoda in δ -razvoj. Prva potrebuje začetno aproksimacijo osnovnega stanja in je zato lahko zelo natačna, druga pa ja analitično nadaljevanje harmonskega oscilatorja v poljuben polinomski potencial. Obe metodi sta uporabni le za osnovno, oz. vzbujena stanja blizu osnovnega, sicer so standardni prijemi natančnejši in hitrejši za izračunati.

6.1 Variacijski pristop

Potencial V_1 ima člene, ki jih je treba obravnavati perturbativno. Za metodo potrebujemo testno valovno funckijo, ψ_v , ki aproksimira osnovno stanje. Pričakovana energija tega stanja bo naša aproksimacija prave osnovne energije. Upoštevamo en. (8).

$$V_1(x) - E_0 = W^2(x) - \frac{1}{\sqrt{2}} \partial_x W(x).$$
 (53)

s katero izračunamo W(x) do neke natančnosti. Z njim lahko prek en. (5) in (6) izračunamo operatorje dviganja, a^{\dagger} , in spuščanja, a, s katerima se lahko zavihtimo v vzbujena stanja.

Začetno aproksimacijo W(x) in E_0 dobimo prek variacijske metode, s testno funkcijo, ki aproksimira osnovno stanje. Po navadi se jo aproksimira z Gaussovo krivuljo. Imejmo testno funkcijo $\psi_v(x;\eta)$, kjer parameter η določimo tako, da minimizira energijo – s tem dobimo aproksimacijo osnovnega stanja. Pričakovana energija take testne valovne funkcije je

$$\langle E \rangle_{\eta} = \langle \psi_{v} | H | \psi_{v} \rangle$$

$$= \int_{-\infty}^{\infty} dx \ \psi_{v}(x; \eta) H \psi_{v}(x; \eta)$$

$$= \int_{-\infty}^{\infty} dx \ \psi_{v}(x; \eta) \left[-\frac{1}{2} \partial_{x}^{2} + V_{1}(x) \right] \psi_{v}(x; \eta)$$

$$= -\frac{1}{2} \int_{-\infty}^{\infty} dx \ \psi_{v}(x; \eta) \ \partial_{x}^{2} \ \psi_{v}(x; \eta) + \int_{-\infty}^{\infty} dx \ \psi_{v}(x; \eta) V_{1}(x) \psi_{v}(x; \eta)$$

$$= \int_{-\infty}^{\infty} dx \left[\frac{1}{\sqrt{2}} \partial_{x} \psi_{v}(x; \eta) \right]^{2} + \int_{-\infty}^{\infty} dx \ \psi_{v}^{2}(x; \eta) V_{1}(x), \tag{54}$$

kjer smo v en. (54) predpostavili, da je naša testna funkcija integrabilna, analitična in da dovolj hitro pada, ko $x \to \pm \infty$ – ker je testna funkcija arbitrarna, lahko zadostimo vsem tem pogojem. Prav tako smo zgolj zaradi preprostosti pisave predpostavili, da potencial V_1 komutira z falovno funkcijo, vendar to ni pravi pogoj.

Parameter η določimo tako, da minimizira energijo $\langle E \rangle_{\eta}$, tj. zahtevamo

$$\frac{\partial \langle E \rangle_{\eta}}{\partial \eta} \bigg|_{\eta=\xi} = 0, \qquad \frac{\partial^2 \langle E \rangle_{\eta}}{\partial \eta^2} \bigg|_{\eta=\xi} > 0.$$
(55)

Energijo zato odvajamo po parametru η ,

$$\partial_{\eta} \langle E \rangle_{\eta} = \int_{-\infty}^{\infty} dx \left[(\partial_x \psi_v) \partial_{\eta} (\partial_x \psi_v) + 2\psi_v (\partial_{\eta} \psi_v) V_1 \right]. \tag{56}$$

Sedaj, ko imamo približek za E_0 in ψ_0 lahko izračunamo W(x) prek identitete (9), tj.

$$W(x;\xi) = -\frac{1}{\sqrt{2}}\partial_x \ln \psi_v(x;\xi), \tag{57}$$

s čimer dobimo par V'_1 in V'_2 , ki sta približka za V_1 in V_2 . Potenciala V'_1 in V'_2 bi radi takšna, da poznamo njuno točno rešitev.

Ta metoda ima zelo veliko pomankljivost – zelo dobro moramo uganiti ψ_v . Po navadi se uporablja več parametrov η_i , kjer potem zahtevamo

$$\partial_{\eta_i} \langle E \rangle_{\underline{\eta}} \Big|_{\underline{\eta} = \underline{\xi}} = 0, \ \forall i$$
 (58)

in pozitivnost determinante Hessejeve matrike glede na n-terec parametrov η_i (pogoj za lokalni minimum).

6.2 δ -razvoj

To metodo bom predstavil na primeru kvartičnega anharmonskega oscilatorja. Naj bo $V_1(x) = 2gx^4$ anharmonski oscilator. Potenca 4 je previsoka, rešiti znamo samo za x^2 , zato bomo V_1 definirali kot analitično nadaljevanje harmonskega oscilatorja

$$V_1 = 2gx^4 = M^{2+\delta}x^{2+2\delta} - C(\delta) = W^2 - \frac{1}{\sqrt{2}}\partial_x W.$$
 (59)

Parameter M se je notri prištulil tako kot pri dimenzijski regularizaciji iz kvantne teorije polja. Sicer je res, da delamo z brezdimenzijskimi količinami, vendar ta skalirni faktor ostaja. Parameter δ nam predstavlja "anharmonskost" oscilatorja. Energijo osnovnega stanja, $C(\delta)$ odštejemo za faktorizacijo hamiltoniana z operatorji a in a^{\dagger} .

Pri $\delta=0$ imamo M=m, pri kvartičnem anharmonskem oscilatorju, $\delta=1$, pa je $M=(2g)^{1/3}$. Če sta V_1 in W analitična, potem za oba obstaja Taylorjev razvoj po potencah δ ,

$$V_1 = M^2 x^2 \sum_{k=0}^{\infty} \delta^k \frac{[\ln(Mx^2)]^k}{k!} - 2 \sum_{k=0}^{\infty} \delta^k E_k,$$
 (60)

 E_k je energija osnovnega stanja potenciala V_1 , ki je znan do reda δ^k natačno. Analogno aproksimiramo tudi superpotencial W(x),

$$W(x) = \sum_{k=0}^{\infty} \delta^k W_{(k)}(x). \tag{61}$$

Nadaljujemo tako, da na obeh straneh en. (8) upoštevamo en. (60) in (61), ki mora veljati v vseh redih razvoja – dobimo sistem diferencialnih enačb po redih δ^k . V prvem redu dobimo harmonski oscilator

$$W_{(0)}^2 - \partial_x W_{(0)} = M^2 x^2 - 2E_0, (62)$$

ki ima rešitve $W_{(0)} = Mx$ in $E_0 = M/2$. V drugem redu dobimo poleg en (62) še enačbo

$$\partial_x W_{(1)} - 2W_{(1)}W_{(0)} = -M^2 x^2 \ln M x^2 + 2E_1, \tag{63}$$

z rešitvami

$$W_{(1)} = -e^{Mx^2} \int_0^x dy \ e^{-My^2} [M^2 y^2 \ln M y^2 - 2E_1].$$
 (64)

Ta metoda je dobra, če nimamo nobene predstave o problemu in si želimo relativno grobo oceno osnovnega stanja. Za vzbujena stanja je variacijska metoda natančnejša, vendar za visoka vzbujena stanja tudi ta podleže vsled česar moramo poseči po standarnih metodah.

7 Zaključek

Napredek v supersimetriji nima uporabe zgolj v nerelativistični kvantni mehaniki, uporabo je zaenkrat našla tudi v teoriji trdne snovi in jedrski fiziki. Posebej se obravnava Diracovo enačbo, periodične potenciale in delce v elektromagnetnih poljih. Supersimetrija v relativistični kvantni mehaniki je stara 40 let, v zadnjih 20 letih počasi prodira v druge veje naravoslovja.

Uporaba supersimetrije izven konteksta visokih energij omogoča tudi lažjo preverljivost matematične konstrukcije teorij, ki so eksperimentalno težko dokazljive, v nizkoenergijskem režimu, ki je dostopnejši.

Kje povsod je supersimetrični opis smiseln je težko reči, verjetno bi lahko analogijo našli tudi v klasični fiziki. Morda bodo s pomočjo tega orodja prej nerešljivi oz. zahtevni problemi postali trivialni.

Literatura

- [1] F. Cooper, A. Khare in U. Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific, 2001.
- [2] P. West, Introduction to Supersymmetry and Supergravity, World Scientific, 1990.
- [3] J. F. Cariñena in A. Ramos, arXiv:math-ph/0311029v1, 2003.
- [4] J. F. Cariñena in J. de Lucas, arXiv:0908.2235v1 [math-ph], 2009.