CS204: Discrete Mathematics

Ch 5. Induction and Recursion Recursive Definition and Structural Induction - 1

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Ch 5. Induction and Recursion

- 5.1 Mathematical Induction
- 5.2 Strong Induction and Well-Ordering
- 5.3 Recursive Definitions and Structural Induction

- 5.4 Recursive Algorithms
- 5.5 Program Correctness

Recursive Definitions and Structural Induction

- 1. Recursive Definition
- 2. Writing Recursive Definitions
- 3. Structural Induction

1. Recursive definitions

A recursive definition has two parts:

- B. a base case, which defines the simplest object or objects.
- R. a recursive case, which defines one or more complicated objects in terms of a simpler one or simpler ones.
 - almost "circular" but not completely circular

A recursive definition can define

- 1) a set of objects, called "a recursively generated set of objects", or
- an operation, function or algorithm, called a "recursive operation,
 recursive function and recursive algorithm," respectively.

Recursively Defined Set - Example 1

Example

A set E is defined as follows:

Basis clause 0 is a member.

Recursive clause If $n \in E$ then $n+2 \in E$.

$$E = \{0, 2, 4, \dots\}$$

How about $E = \{0, 1, 2, 3, 4, \dots\}$?

Extremal clause is implicit!

Recursively Defined Set - Example 2

This following defines a recursively generated set.

Given a set of symbols a_1, a_2, \ldots, a_m , a <u>string of these symbols</u> is:

 B_1 . the empty string, denoted by λ , or

 B_2 . any symbol a_i , or

R. xy, the concatenation of x and y, where x and y are strings.

Definition (String Concatenation Operation)

Given an alphabet Σ . Let $x, y \in \Sigma^*$.

If $x = a_1 a_2 ... a_m$ and $y = b_1 b_2 ... b_n$, where $a_i, b_j \in \Sigma$ and $m, n \in \mathbb{N}$, then the *concatenation of x with y*, denoted xy, is the string

 $xy = a_1 a_2 ... a_m b_1 b_2 ... b_n$.

If $x = \lambda$, then xy = y for any y and if $y = \lambda$ then xy = x for any x.

Recursively Defined Set – Example 3

binary trees - A recursively defined data structure

- **B**₁. The empty tree is a binary tree. Tree: empty tree or null tree
- **B₂.** A single vertex is a binary tree. In this case, the vertex is the root of the tree.

 Tree:

 Tree:
 - **R.** If T_1 and T_2 are binary trees with roots r_1 and r_2 respectively, then the tree

is a binary tree with root r. Here the circles represent the binary trees T_1 and T_2 . If either of these trees T_i (i = 1, 2) is the empty tree, then there is no edge from r to T_i .

All binary trees with #nodes ≤ 3

Recursively Defined Operation

the reverse of a string

If s is a string, define its reverse s^R as follows.

B.
$$\lambda^R = \lambda$$

R. If s has one or more symbols, write s = ta where a is a symbol and t is a string (possibly empty). Then $s^R = (ta)^R = at^R$

This is a recursive operation on a recursively generated set.

the reverse of a string

If s is a string, define its reverse s^R as follows.

B.
$$\lambda^R = \lambda$$

R. If s has one or more symbols, write s = ta where a is a symbol and t is a string (possibly empty). Then $s^R = (ta)^R = at^R$

For example,

 $(pit)^R = t(pi)^R$ by part \mathbf{R} $= ti(p)^R$ by part \mathbf{R} $= ti(\lambda p)^R$ (insertion of empty string) $= tip\lambda^R$ by part \mathbf{R} $= tip\lambda$ by part \mathbf{B} = tip (removal of empty string)

This is a recursive operation

on a recursively generated set.

Proving Correctness of Recursively Defined Operation

The string reversal function:

B.
$$\lambda^R = \lambda$$

R. If s has one or more symbols, write s = ta, where a is a symbol and t is a string (possibly empty). Then

$$s^R = (ta)^R = at^R$$

This is a recursive operation on a recursively generated set.

Theorem

The string reversal function works. In other words, for any $n \ge 1$, $(a_1 a_2 \cdots a_{n-1} a_n)^R = a_n a_{n-1} \cdots a_2 a_1$.

2. Writing Recursive Definitions

Using recursive definitions, we can define a set of objects (or a data structure), an operation, a function, an algorithm, and etc.

To write a recursive definition, we need to consider:

- For the base case, what are the simplest objects?
- For the recursive case, how can I construct more complicated objects from simpler ones?

Example: browsing the Internet

Suppose you start browsing the Internet at some specified page p. Let W be the set of all pages you can reach by following links, starting at p. Give a recursive definition for the set W.

Example: browsing the Internet

Suppose you start browsing the Internet at some specified page p. Let W be the set of all pages you can reach by following links, starting at p. Give a recursive definition for the set W.

Solution

Observe that if you can reach some page x, then you can reach any page to which x has a link. This gives the recursive part of the definition:

The base case is the page where you start:

B.
$$p \in W$$
.

Example: browsing the Internet

Suppose you start browsing the Internet at some specified page p. Let W be the set of all pages you can reach by following links, starting at p. Give a recursive definition for the set W.

Solution

Observe that if you can reach some page x, then you can reach any page to which x has a link. This gives the recursive part of the definition:

R. If $x \in W$ and y is some page such that x links to y, then $y \in W$.

The base case is the page where you start:

B. $p \in W$.

Koch snowflake: definition

Define a sequence of shapes as follows.

B. K(1) is an equilateral triangle.

Koch snowflake: definition

Define a sequence of shapes as follows.

- **B.** K(1) is an equilateral triangle.
- **R.** For n > 1, K(n) is formed by replacing each line segment

of K(n-1) with the shape

such that the central vertex points outwards.

Koch snowflake: first three terms

Recursively generated geometric objects.

Koch snowflake: limiting fractal

More Examples of Fractals

What is the basis case? What is the recursive case?

Badda-Bing axiomatic system

Recall the following set of axioms.

Undefined terms: badda, bing, hit

Axioms:

- Every badda hits exactly four bings.
- Every bing is hit by exactly two baddas.
- If x and y are distinct baddas, each hitting bing q, then there are no other bings hit by both x and y.
- 4 There is at least one bing.

One possible interpretation:

badda: square

bing: corner of a square

hit: a square hits corner if the corner belongs to the square

Model for badda-bing system

hit

Badda-Bing fractal: definition

Badda-Bing fractal: first three terms

Badda-Bing fractal: limit

After
applying
—— Rule R
infinitely
many
times

Quiz 14-2

Which of the following is NOT true?

- (a) Recursive definition can be used to define an infinite set.
- (b) Recursive definition can be used to define a finite set.
- (c) A recursive definition can have multiple basis clauses.
- (d) A recursive definition can have multiple recursive clauses.
- (e) Recursive definition may be used to define not only sets but also to prove correctness of functions.
- (f) Mathematical induction may be used to prove properties of recursively generated sets and also operations and functions.
- (g) It is NOT possible that when a recursive clause is applied to a given set, the resulting set remains the same as the given set.

