

Estimating Salaries Of NBA Players Using Predictive Modeling Techniques

16th August, 2019

Aishwarya Pawar Eric Naumann Brandon Whiteley Yeong-in Jang Haritha Maheshkumar

The University of Texas at Austin, McCombs School of Business - MSBA Class of 2020

Agenda

- **Problem statement** (What are we doing?)
- Exploratory Data Analysis (Why are we doing it?)
- Methodology & Results summary (How are we doing it?)
- Findings and Insights (What did we find?)
- Next steps and ideas (What can be done better and how?)

What metrics can be used to predict NBA player salaries?

Key questions: Out of the many assessment metrics, which have been significant in estimating a player's salary? How accurate is the estimation? How are they different from rest of the metrics?

Available information: Dataset containing salary and performance information of 419 NBA players, spanned over 48 variables

Sample variable types / Data snapshot:

- Per Game Metrics: Minutes, Field Goals, 3 pointers, Free Throws, Rebounds etc..
- Percentage Metrics: FT%, 3PT% etc..
- Advanced Metrics: PER, True Shooting %, TO%, Usage %, Win Shares, Plus Minus, etc..

Cleaning the data and observing the relationships across variables

Data cleaning:

- Predictors from 2017 are used to predict salary information in 2018
- 0.09% of players were removed due to missing information in a few metrics
- Averaged stats for players who played for multiple teams

Correlations:

- Correlated variables were removed in some regressions (Corr<Abs(0.5))
 - Ex: 2 PT FGs , FGA per game, & 2 PT FGA
 - Effective Field Goal Percentage ~ True Shooting Percentage ~ Field
 Goal Percentage

Age, Steals, Field Goals, Turnovers (per game) metrics show a promising relationship with the salaries

Other potential significant variables:

Minutes played per Game
Win Shares
2 Points Field Per Points
Value over replacement player

We tried estimating the salaries of players using the following predictive modeling techniques

Modeling technique	Refinements tried	Test RMSE obtained	Variance Explained
Linear	 Introduced interaction terms Tested for non-linear relationships 	USD 5.14M	58.11%
Ridge	Best lambda selection based on RMSE curve	USD 5.48M	59.23%
Lasso	Best lambda selection based on RMSE curve	USD 5.45M	59.81%
Random Forest	 Experimentation with mtry (best result at mtry=23) Variable elimination using importance() function 	USD 5.46M	58.99%
Bagging	31 variables selected based on importance() function	USD 5.24M	54.31%

Problem statement

```
# Significant Variables = 14
RMSE = 5.34 M

Forward Selection OLS

# Significant Variables = 5
RMSE = 5.16 M

# Significant Variables = 7
RMSE = 5.14 M
```

Salary = - 7,862,915 + 429,094×Age - 48,917×Games + 66,699×Games started + 547,183×Field goal attempts per game + 1,041,936×Free throw attempts per game - 1,429,831×Turnovers per game + 1,580,038×Value over replacement player

Linear Regression with Non-linearity and Interactions

Non-Linearity

- Non- Linearity was observed for win share (2 degree) and box plus (2 and 3 degree
- RMSE post introducing non-linearity = 5.17 Mn

Interactions

- Interaction between was observed
- RMSE post introducing interaction = 5.17 Mn

Ridge and Lasso

With minimum Lambda, we obtained RMSE of 5.48 Mn

With minimum Lambda, we obtained RMSE of 5.45 Mn

We tried estimating the salaries of players using the following predictive modeling techniques

Modeling technique	Refinements tried	Test RMSE obtained	Variance Explained
Linear	 Introduced interaction terms Tested for non-linear relationships 	USD 5.14M	58.11%
Ridge	Best lambda selection based on RMSE curve	USD 5.48M	59.23%
Lasso	Best lambda selection based on RMSE curve	USD 5.45M	59.81%
Random Forest	 Experimentation with mtry (best result at mtry=23) Variable elimination using importance() function 	USD 5.46M	58.99%
Bagging	31 variables selected based on importance() function	USD 5.24M	54.31%

Bagging:

Problem statement

The accuracy just doesn't improve

...ctd

Modeling technique	Refinements tried	RMSE obtained	Variance Explained
PCR	Chose # principal components model based on min RMSE	USD 5.07M	-
Boosting	31 variables selected based on importance() function	USD 5.24M	54.31%
Neural networks	1. Choose the size and decay factor with minimum RMSE	USD 617K	

Principal Component Regression

Number of Components: 17

Test RMSE: 5.07 Mil

Adjusted R_squared: 57.34%

Boosting:

Problem statement

Best Iteration with shrinkage factor=0.01 and #Trees = 500, : RMSE: 5.4Mil

Neural Network:

Best Iteration with decay factor=0.01 and size= 10

RMSE obtained : \$ 617K

We observed that irrespective of any variations, there was still an average error of USD 5M associated with our model, and we explored why...

- The skewness of the dependent variable could be the reason behind the high RMSE
- Our hypothesis was that variation in salary could be better explained if similar salaried players are grouped together
- Since salary is what we're trying to predict, we tried using other independent variables to group the players, as a proxy

Grouping the players into different clusters, reduced the variation in salaries and combined similar players together

Cluster <int></int>	avg_sal <dbl></dbl>	3
1	5689368	
2	3357706	
3	8709291	
4	14069664	
5	22619060	

- Optimal number of clusters were selected based on the elbow curve. Well, 5 seemed like a good point (Maybe not?)
- The average salaries across the 5 clusters indicates that the objective of grouping the players based on their salaries is achieved to an extent
- However, increase in number of clusters, decreased the data points in each clusters to ~60 per cluster

Linear regression

- 28% and 4,649,000 k=5
- 35% and 4,566,000 k=4
- 48% and 6,016,000 k=3
- 47.8% and 6.616.000 k=2

Improving Predictions in the future

- Examining only contracts signed in the previous season
 - o Contracts signed during different years use a different salary cap number
- Examining the contracts in subsets
 - Some players such as LeBron James are undervalued because the cap doesn't allow for him to be paid market value

Problem statement >> Exploratory Data Analysis >> Methodology & results summary >> Fi

Findings & Insights

Next steps

Questions?

Problem statement

Test RMSE: 5,140,189

Best subset method: Backward

<u>Salary = - 7,862,915 + 429,094×Age - 48,917×Games + 66,699×Games started</u>

+ 547,183×Field goal attempts per game + 1,041,936×Free throw attempts per game

- 1,429,831×Turnovers per game + 1,580,038×Value over replacement player