Naive Bayes & regressão logística

Henrique Laureano

http://leg.ufpr.br/~henrique

CiDWeek I, 03-07/02/2020

Naive Bayes

Primeiro, precisamos falar sobre o que é um classificador de Bayes.

Classificador de Bayes

Um *framework* probabilístico para problemas de classificação, baseado no teorema de Bayes.

Exemplo, ___

- » Meningite causa torcicolo 50% das vezes, $\mathbb{P}[T|M]$
- » Prob. a priori de um paciente estar com meningite é 1/50.000, $\mathbb{P}[M]$
- » Probabilidade *a priori* de um paciente estar com torcicolo é 1/20, $\mathbb{P}[T]$

Se um paciente está com torcicolo, qual a probabilidade dele estar com meningite?

$$\mathbb{P}[M|T] = \frac{\mathbb{P}[T|M] \ \mathbb{P}[M]}{\mathbb{P}[T]} = \frac{1/2 \times 1/50.000}{1/20} = 0.0002.$$

Classificadores Bayesianos

Considere atributos $A_1, A_2, \ldots A_n$ e uma classe C com rótulos $c_1, c_2, \ldots c_k$.

O que queremos?

Predição :
$$C = c_1$$
 ou $C = c_2$ ou ...,

i.e., queremos o valor de C que maximiza $\mathbb{P}[C|A_1,A_2,\ldots,A_n]$.

Como fazemos? Teorema de Bayes.

Calculamos a probabilidade a posteriori $\mathbb{P}[C|A_1, A_2, \dots, A_n]$ para todos os valores de C,

$$\mathbb{P}[C|A_1,A_2,\ldots,A_n] = \frac{\mathbb{P}[A_1,A_2,\ldots,A_n|C] \, \mathbb{P}[C]}{\mathbb{P}[A_1,A_2,\ldots,A_n]}.$$

E como calculamos $\mathbb{P}[A_1, A_2, \dots, A_n | C]$? Naive Bayes.

Classificador Naive Bayes

Por que naive?

Porque se assume independência entre os atributos A_i , i.e.,

$$\mathbb{P}[A_1, A_2, \dots, A_n | C_k] = \mathbb{P}[A_1 | C_k] \ \mathbb{P}[A_2 | C_k] \ \dots \ \mathbb{P}[A_n | C_k].$$

Vantagem: Grande redução do custo computational.

Um novo ponto é classificado como C_j se $\mathbb{P}[C_j] \times \prod_{i=1}^n \mathbb{P}[A_i | C_k]$ é máximo.

Exemplo: Estimando probabilidades a partir dos dados

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

»
$$\mathbb{P}[C] = N_k/N$$

» $\mathbb{P}[C = \text{No}] = 7/10$
» $\mathbb{P}[C = \text{Yes}] = 3/10$

Atributos discretos:

»
$$\mathbb{P}[A_i|C_k] = A_{ik}/N_k$$

- » $\mathbb{P}[\mathsf{Status} = \mathsf{Married}|\mathsf{No}] = 4/7$
- » $\mathbb{P}[\mathsf{Refund} = \mathsf{Yes}|\mathsf{Yes}] = 0$
- **»** ...

E com atributos contínuos?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Estimação da densidade de probabilidade

- » Se assume distribuição Normal
- » Se estima a média μ e o desvio padrão σ
- » Se estima a probabilidade condicional

$$\mathbb{P}[A_i|C_k] = \frac{\exp\left\{-\frac{(A_i - \mu_{ik})^2}{2\sigma_{ik}^2}\right\}}{\sqrt{2\pi\sigma_{ik}^2}}$$

Exemplo,

$$\mathbb{P}[\mathsf{Income} = 120|\mathsf{No}] = \frac{1}{\sqrt{2\pi2975}} \exp\left\{-\frac{(120-110)^2}{22975}\right\}$$
$$= 0.0072.$$

Classificador Naive Bayes: Exemplo

```
Dado o perfil: X = (Refund = No, Married, Income = 120k)
                      \mathbb{P}[X|\mathsf{Class} = \mathsf{No}] = \mathbb{P}[\mathsf{Refund} = \mathsf{No}|\mathsf{Class} = \mathsf{No}] \times
                                                            \mathbb{P}[\mathsf{Married}|\mathsf{Class} = \mathsf{No}] \times
                                                            \mathbb{P}[\mathsf{Income} = 120k | \mathsf{Class} = \mathsf{No}]
                                                      = 4/7 \times 4/7 \times 0.0072 = 0.0024.
                     \mathbb{P}[X|\text{Class} = \text{Yes}] = \mathbb{P}[\text{Refund} = \text{No}|\text{Class} = \text{Yes}] \times
                                                            \mathbb{P}[\mathsf{Married}|\mathsf{Class} = \mathsf{Yes}] \times
                                                            \mathbb{P}[\mathsf{Income} = 120k | \mathsf{Class} = \mathsf{Yes}]
                                                      = 1 \times 0 \times 10^{-9} = 0
```

$$\mathsf{J}\mathsf{\acute{a}}\ \mathsf{que}\ \mathbb{P}[X|\mathsf{No}]\ \mathbb{P}[\mathsf{No}] > \mathbb{P}[X|\mathsf{Yes}]\ \mathbb{P}[\mathsf{Yes}],$$

$$\Rightarrow \mathbb{P}[X|No] > \mathbb{P}[X|Yes] \Rightarrow Class = No.$$

"Dibrando" o problema de probabilidade zero

Going a little deeper in the smoothing penalty

Smoothing penalty leads to an optimal curve, the smoothing spline¹. The penalty for smoothing splines takes the form $J(\beta,\lambda) = \lambda \int (Df)^2 = \lambda \langle Df, Df \rangle$.

When
$$f(x) = \sum_{j=1}^{M} \beta_j \psi_j(x)$$
, we have $J(\beta, \lambda) = \lambda \beta^{\top} \mathbf{S} \beta$

where **S** is a $M \times M$ matrix with $(i,j)^{\text{th}}$ entry $\langle D\psi_i, D\psi_j \rangle$.

Rewriting the penalized log-likelihood as a likelihood,

$$\exp\{I_p(\boldsymbol{\beta}, \lambda)\} = \exp\{I(\boldsymbol{\beta})\} \times \exp(-\lambda \boldsymbol{\beta}^{\top} \boldsymbol{S} \boldsymbol{\beta}),$$

 $\exp(-\lambda \boldsymbol{\beta}^{\top} \boldsymbol{S} \boldsymbol{\beta})$ is \propto to a MVN $(0, \boldsymbol{S}_{\lambda}^{-1} = (\lambda \boldsymbol{S})^{-1})$.

The penalized likelihood is equivalent to assigning the prior $\beta \sim \text{MVN}(0, \mathbf{S}_{\lambda}^{-1})$.

Connection: SPDE model as a basis-penalty smoother

- » For a given differential operator D, the approx. \mathbf{Q} for the SPDE is the same as the precision matrix \mathbf{S}_{λ} computed using the smoothing penalty $\langle Df, Df \rangle$;
- » Differences between the basis-penalty approach and the SPDE finite element approx., when using the same basis and differential operator, are differences in implementation only.

Lindgren, F., Rue, H. and Lindström, J. (2011)^a

^aAn Explicit Link between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach (with discussion). *Journal of the Royal Statistical Society: Series B* 73(4), 423-498

An approx. solution to the SPDE is given by representing f as a sum of linear (specifically, B-spline) basis functions multiplied by coefficients; the coefs of these basis form a GMRF.

Matérn penalty

$$D = \tau(\kappa^2 - \Delta)$$
 \Rightarrow smoothing penalty : $\tau \int (\kappa^2 f - \Delta f)^2 dx$.

- » inverse correlation range κ : higher values lead to less smooth functions;
- » smoothing parameter τ controls the overall smoothness of f.

In matrix form, this leads to the smoothing matrix

$$\boldsymbol{S} = \tau (\kappa^4 \boldsymbol{C} + 2\kappa^2 \boldsymbol{G}_1 + \boldsymbol{G}_2)$$
 where

C, G_1 , G_2 are all $M \times M$ sparse matrices with $(i,j)^{\text{th}}$ entries $\langle \psi_i, \psi_i \rangle$, $\langle \psi_i, \nabla \psi_i \rangle$, and $\langle \nabla \psi_i, \nabla \psi_i \rangle$.

The matrix \boldsymbol{S} is equal to the matrix $\boldsymbol{Q} = \boldsymbol{P}^{\top} \boldsymbol{Q}_{e} \boldsymbol{P}$ computed using the FEM.

Fitting the Matérn SPDE in mgcv

mgcv allows the specification of new basis-penalty smoothers.

step-by-step

- » INLA::inla.mesh.(1d or 2d) to create a mesh;
- » INLA::inla.mesh.fem to calculate C, G_1 , and G_2 ;
- » Connect the basis representation of f to the observation locations,
 - » The full design matrix is given by combining the fixed effects design matrix X_c and the contribution for f, A - the projection matrix found using INLA::inla.spde.mesh.A;
- » Use REML to findo optimal κ, τ and β .

Some final remarks,

- » As REML is an empirical Bayes procedure, we expect point estimates for $\hat{\beta}$ to coincide with R-INLA;
- » A uniform prior is implied for the smoothing parameters au and κ ;
- » R-INLA allows for similar estimation by just using the modes of the hyperparameters κ and τ (int.strategy="eb").

To finish, let's check some [code].

