Linear Algebra

Trong

2018

Part I January

1 Theorem 6.1. Properties of inner products

Let $V \langle \rangle$. Then $\langle x, y \rangle = \langle x, z \rangle$ for all x, then y = z. Similarly $\langle y, x \rangle = \langle z, x \rangle$.

Part II February

M19F18

2 Exercise 5.4.25. Simultaneously diagonalizable if UT = TU

Proposition. If T and U are diagonalizable linear operators on a finite-dimensional vector space V s.t. UT = TU, then T and U are simultaneously diagonalizable.

- 3 Theorem. If two operators agree on a basis, they are equal.
- 4 Theorem. Eigenvectors corresponding to distinct eigenvalues of a normal operator are orthogonal

Theorem. Let T be normal on V, $\langle \cdot, \cdot \rangle$. Then eigenvectors corresponding to distinct eigenvalues of T are orthogonal.

- 5 Theorem. Normal operators are diagonalizable
- 6 Theorem *6.3. An operator T is diagonalizable iff there exists a basis of V consisting of eigenvectors of T

Corollary. If T is a self-adjoint operator, then there is a basis of V consisting of eigenvectors of T.

Proof. Follows from Theorem 6.16 or 6.17.

7 Theorem 6.3

Theorem. Let V be an inner product space and $S = \{v_1, v_2, \dots, v_k\}$ be an orthogonal subset of V consisting of nonzero vectors. If $y \in \text{span}(S)$ then

$$y = \sum_{i=1}^k \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i.$$

Corollary. Let V be an inner product space and $S = \{v_1, v_2, \dots, v_k\}$ be an orthonormal subset of V and $y \in \text{span}(S)$, then

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i.$$

Corollary. Let V be an inner product space, $y \in V$, and $\beta = \{v_1, v_2, \dots, v_k\}$ be an orthonormal basis for V. Then

$$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i.$$

8 Theorem 6.16. Complex case: normal operator and orthonormal basis consisting of eigenvectors

Let T be a linear operator on a finite-dimensional complex inner product space V. Then T is normal iff there exists an orthonormal basis for V consisting of eigenvectors of T.

9 Theorem 6.17. Real case: self-adjoint operator and orthonormal basis consisting of eigenvectors

Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint iff there exists an orthonormal basis for V consisting of eigenvectors of T.

Corollary 6.17. Let T be a linear operator on a finite-dimensional complex [real] inner product space V. If T is normal [self-adjoint] then T is diagonalizable.

Proof. In either case, V has an orthonormal basis consisting of eigenvectors of T. By Theorem *6.3, this happens iff T is diagonalizable. Oh, I already have this corollary as a corollary over there.

10 Eigenvectors of a normal operator

Proposition. Let T be a normal linear operator on an inner product space V with eigenvalue λ and eigenvector x, then x is an eigenvector of T^* corresponding to eigenvalue $\overline{\lambda}$.

Part III March

11 18156 2593 600 50 2018-04-04 Wed 23:55:16

Theorem. The inner product is unique up to an orthonormal basis. Specifically, let V be a finite-dimensional inner product on C or R, and β and γ be any orthonormal bases for V, and x, y be vectors in V. Then

$$\langle x,y\rangle = \overline{y}^Tx = [y]_\beta \cdot [x]_\beta = [y]_\gamma \cdot [x]_\gamma.$$

In other words, the dot product of two vectors is the same in any orthonormal basis.

Proof. TODO.

Definition. A linear operator T on a finite dimensional inner product space V is called positive definite if T is self-adjoint and $\langle T(x), x \rangle > 0$ for all $x \neq 0$. It's called positive semidefinite if $\langle T(x), x \rangle \geq 0$ for all $x \neq 0$. Similarly for a square matrix A.

12 Exercise 6.4.17. Positive semi/definite operator

Let T and U be self-adjoint linear operators on an n-dimensional inner product space V, and let $A = [T]_{\beta}$, where β is an orthonormal basis for V. Prove:

- 1. T is positive definite (semidefinite) iff all of its eigenvalues are positive (nonnegative).
- 2. T is positive definite iff

$$\sum_{i,j} A_{ij} a_j \overline{a}_i > 0$$

for all $(a_1, \ldots, a_n) \neq 0$. [What about semidefinite? Also true.]

- 3. T is positive semidefinite iff $A = B^*B$ for some square matrix B.
- 4. If T and U are positive semidefinite operators s.t. $T^2 = U^2$, then T = U.
- 5. If T and U are positive definite (semidefinite?) operators s.t. TU = UT, then TU is positive definite (semidefinite?).
- 6. T is positive definite (semidefinite) iff A is.

Proof 1. We'll show definite, semi is similar. Let T be positive definite, and let λ be an eigenvalue, and $x \neq 0$. Then

$$\langle T(x), x \rangle > 0$$

 $\langle \lambda x, x \rangle >$
 $\lambda \langle x, x \rangle >$
 $\lambda |x|^2 > 0.$

Since |x| > 0, λ must also be > 0. Conversely, suppose that all eigenvalues of T are positive. Let v_i be the eigenvectors of T with corresponding eigenvalues λ_i . Then

$$T(v_i) = \lambda_i v_i.$$

Now let x be any vector, and $x = \sum a_i v_i$. Then

$$\langle T(x), x \rangle = \left\langle T\left(\sum a_i v_i\right), \sum a_i v_i \right\rangle = \left\langle \sum a_i \lambda_i v_i, \sum a_i v_i \right\rangle = \sum \lambda_i \left| v_i \right|^2$$

(because the v_i 's are orthonormal).

Proof 2. First note that

$$\sum_{i,j} A_{ij} a_j \overline{a}_i = \overline{a}^T A a = \overline{\begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}} \begin{bmatrix} A_{ij} \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

This is equal to

$$\langle T(x), x \rangle$$

since β is an orthonormal basis (recall that the dot product of two vectors is the same in any orthonormal basis).

13 18151 2593 600 50 2018-04-09 Mon 23:13:09

14 Ex 6.4.18

Let $T:V\longrightarrow W$ be a linear transformation, where V and W are finite-dim. Then

- 1. T^*T and TT^* are positive semidefinite.
- 2. $\operatorname{rank}(T^*T) = \operatorname{rank}(TT^*) = \operatorname{rank}(T)$.

15 Ex 6.4.19

Let T and U be positive definite operators on an inner product space V. Then

- 1. T + U is positive definite.
- 2. If c > 0, then cT is p.d.
- 3. T^{-1} is p.d.

16 18149 2592 600. Unitary and orthogonal operators and their matrices

Definition. Let T, n, $\langle \rangle$, V, F. If ||T(x)|| = ||x|| for all x, we call T a unitary operator if F = C, and an orthogonal operator if F = R. T is also called an isometry, or length-preserving operator.

E.g. any rotation or reflection in \mathbb{R}^2 preserves length and hence is an orthogonal operator.

E.g. Recall the space H of continuous complex-valued functions defined on $[0,2\pi]$ with the inner product

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt.$$

Let $h \in H$ satisfy |h(x)| = 1 for all x. Define T on H by T(f) = hf. Then

$$||T(f)||^2 = ||hf||^2 = \frac{1}{2\pi} \int_0^{2\pi} h(t)f(t)\overline{h(t)}f(t)dt = ||f||^2$$

since $|h(t)|^2 = 1$. So T is a unitary operator.

17 18143 2591 600 50 2018-04-17

18 Lemma 6.18

Let U be self adjoint on $n, \langle \rangle, V$. If $\langle x, U(x) \rangle = 0$ for all x, then $U = T_0$, the zero operator.

Proof. By Theorem 6.16 or 6.17, there exists an orthonormal basis β for V consisting of eigenvectors of U. Let $x \in \beta$. Then $U(x) = \lambda x$ for some λ . Thus

$$0 = \langle x, U(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle = \overline{\lambda} ||x||^2,$$

and $\overline{\lambda} = 0$. Hence U(x) = 0 for all $x \in \beta$ and $U = T_0$.

Nonexample of a non-self adjoint operator that has $\langle x, U(x) \rangle = 0$ but is not the zero op: U is the rotation by 90 degrees in the plane.

19 Theorem 6.18. Characterizing unitary / orthogonal / isometric operators on a fin dim inner product space

Let T, n, $\langle \rangle$, V, F. Then the following statements are equivalent:

- 1. $TT^* = T^*T = I$. In particular, T is normal and there exists an orthonormal basis for V consisting of eigenvectors of T.
- 2. $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all x, y.
- 3. If β is an orthonormal basis, then $T(\beta)$ is an orthonormal basis.
- 4. There exists an orthonormal basis β s.t. $T(\beta)$ is an orthonormal basis.
- 5. ||T(x)|| = ||x|| for all x.

In other words, an operator is unitary / orthogonal iff it is normal and its "norm" TT^* is 1.

Proof (1) implies (2). For any x, y,

$$\langle x, y \rangle = \langle T^*T(x), y \rangle = \langle T(x), T(y) \rangle.$$

Proof (2) implies (3). Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V. Then $T(\beta) = \{T(v_1), \dots, T(v_n)\}$ and

$$\langle T(v_i), T(v_i) \rangle = \langle v_i, v_i \rangle = \delta_{ii},$$

so $T(\beta)$ is an orthonormal basis for V.

Proof (3) implies (4). [This one is a little odd?] Any orthonormal basis β satisfies this property, and there must be one because V is fin dim.

Proof (4) implies (5). Let $x \in V, \beta = \{v_1, \dots, v_n\}$. Then

$$x = \sum_{i=1}^{n} a_i v_i$$

for some a_i , and

$$||x||^2 = \left\langle \sum_{i=1}^n a_i v_i, \sum_{i=1}^n a_i v_i \right\rangle = \sum_i \sum_j a_i \overline{a_j} \left\langle v_i, v_j \right\rangle = \sum_{i=1}^n |a_i|^2.$$

Similarly,

$$\left|\left|T(x)\right|\right|^2 = \left\langle \sum_{i=1}^n a_i T(v_i), \sum_{i=1}^n a_i T(v_i) \right\rangle = \sum_i \sum_j a_i \overline{a_j} \left\langle T(v_i), T(v_j) \right\rangle = \sum_{i=1}^n \left|a_i\right|^2,$$

since $T(\beta)$ is also orthonormal.

Proof (5) implies (1). For any x,

$$\langle x,x\rangle = \langle T(x),T(x)\rangle = \langle x,T^*T(x)\rangle$$

$$\langle x,(I-T^*T)(x)\rangle = 0.$$

Let $U = I - T^*T$. Then U is self-adjoint and $\langle x, U(x) \rangle = 0$ for all x. By the previous lemma, $I - T^*T = U = T_0$ and $I = T^*T$. [Why does this imply that $TT^* = I$? The referenced Exercise 2.4.10 is about invertible matrices, not adjoint operators.... Ah, See next.]

20 Proposition. The adjoint of a unitary / orthogonal operator is its inverse

Let $Tn \langle \rangle VF$, and let β be an orthonormal basis for V. Then $T^* = T^{-1}$ iff $T(\beta)$ is also an orthonormal basis for V.

If that were true we can apply Exercise 2.4.10 and say that $TT^* = TT^{-1} = I$ and therefore $T^{-1}T = T^*T = I$.

Proof. Suppose $T^* = T^{-1}$. Then $TT^* = T^*T = I$ and (3) implies that $T(\beta)$ is an orthonormal basis. Conversely suppose that $T(\beta)$ is an orthonormal basis,

$$\beta = \{v_1, \dots, v_n\}, T(\beta) = \{T(v_1), \dots, T(v_n)\}.$$

To show that $T^* = T^{-1}$, we want to show that

$$\langle T^{-1}(x), y \rangle = \langle T^*(x), y \rangle = \langle x, T(y) \rangle$$

for all $x, y \in V$. It suffices to show that this holds for all $x \in T(\beta), y \in \beta$. [Why? This feels right, but it's not quite the result I'm thinking about.] There are two cases: either (1) x = T(y) or (2) $x \neq T(y)$. In case (1),

$$\langle T^{-1}(x), y \rangle = \langle y, y \rangle = 1 = \langle x, T(y) \rangle.$$

In case (2),

$$\langle x, T(y) \rangle = 0 = \langle T^{-1}(x), y \rangle.$$

Therefore $T^* = T^{-1}$.

21 Conjecture. Equality of two operators in an inner product

Let $T, n \langle VF, \text{ and let } \beta \text{ and } T(\beta) \text{ be orthonormal bases for } V.$ If

$$\langle T^{-1}(x), y \rangle = \langle x, T(y) \rangle$$

for all $y \in \beta, x \in T(\beta)$, then $\langle T^{-1}(x), y \rangle = \langle x, T(y) \rangle$ for all $x, y \in V$. In particular $\langle T^{-1}(x), y \rangle = \langle T^*(x), y \rangle$ for all x, y, and therefore $T^{-1} = T^*$. Proof. TODO.

We should apply abstract results on concrete examples.

22 Exercise 2.4.10. TODO