Lösung von: Dr. T. Bohl Abgegeben: 04.11.–08.11.13

Wintersemester 2013/14 **Lineare Algebra und Geometrie 1** Lösung zum 3. Übungsblatt

Zielgruppe: Mo 8:15h Übungsgruppe

Aufgabe 1. Es sei G eine Gruppe mit der **binären** (=zweistelligen) Verknüpfung \circ . Zeigen Sie, dass für alle $a, b \in G$ genau ein $x \in G$ existiert, so dass $a \circ x = b$, und genau ein $y \in G$ existiert, so dass $y \circ a = b$. Geben Sie x und y explizit an.

Lösung: bereits in Übung vorgerechnet.

Aufgabe 2. Beweisen Sie die folgenden Aussagen:

- (1) Gilt $(ab)^2 = a^2b^2$ für alle Elemente a, b einer Gruppe G, dann ist G kommutativ.
- (2) Wenn jedes Element einer Gruppe G zu sich selbst invers ist, so ist G kommutativ.
- (3) Jede Gruppe mit drei Elementen ist kommutativ.

Lösung: Sei G eine Gruppe (mit Eins e) und $u, v \in G$ beliebig. Möge G2 das Gruppenaxiom vom Existenz einer (beidseitigen) Eins e und G3 die Existenz eines (beidseitigen) Inversen bezeichnen.

(1) Sei $(ab)^2 = a^2b^2 \forall a, b \in G$ (*1). Zu zeigen: uv = vu. Beweis:

$$uv \overset{G2}{=} e\left(uv\right) \overset{G2}{=} \left(e\left(uv\right)\right) e \overset{G3 \text{ mit } e=vv^{-1}=u^{-1}u}{=} \left(\left(u^{-1}u\right)\left(uv\right)\right) \left(vv^{-1}\right) \overset{\text{assoz}}{=} u^{-1} \left(\left(\left(uu\right)\left(vv\right)\right)v^{-1}\right)$$

$$\stackrel{*1 \text{ für } u,v}{=} u^{-1} \left(\left(\left(uv \right) \left(uv \right) \right) v^{-1} \right) \stackrel{\text{assoz}}{=} \left(\left(u^{-1}u \right) \left(vu \right) \right) \left(vv^{-1} \right) \stackrel{G3}{=} \left(e \left(vu \right) \right) e \stackrel{G2}{=} vu$$

(2) Sei $a^{-1} = a \forall a \in G \ (*2)$.

Zu zeigen: uv = vu.

Beweis: $uv \stackrel{*2 \text{ für } u,v}{=} (u^{-1}) (v^{-1}) \stackrel{\text{Vorlesung 2.1.2.(2)}}{=} (vu)^{-1} \stackrel{*2 \text{ für } (uv) \in G}{=} vu.$

(3) Sei G dreielementig. OBdA bezeichne seine Elemente: $G=\{u,v,e\}$ mit $e\neq u\neq v\neq e$.

Zu zeigen: G ist kommutativ.

Genügt zu zeigen: uv = vu, denn die übrigen Produkte sind durch G2 abgedeckt (ue, eu, ve, ev) oder symmetrisch (uu, vv, ee).

Genügt zu zeigen: uv = e und e = vu.

Beweis: Fallunterscheidung nach uv. Falls uv=u gilt, dann besagt der Eindeutigkeitsteil von Aufgabe 1, dass v=e (denn ue=u). Das widerspricht der OBdA-Annahme, d.h. unserer Konvention, wie wir die Gruppenelemente bezeichnen. Falls uv=v gilt, führen ev=v und Aufgabe 1 zum gleichen Widerspruch. Der Fall uv=e bleibt als einziger übrig. Genauso zeigt man vu=e.

• 2.1.2.(2) aus der der Vorlesung: Seien $a, b \in G$ beliebige Elemente einer Gruppe G mit Eins e. Zeigen: $(ab)^{-1} = b^{-1}a^{-1}$. Denn: $e \stackrel{G^2}{=} b^{-1}b \stackrel{G^3}{=} (b^{-1}e)b \stackrel{G^2}{=} (b^{-1}(a^{-1}a))b \stackrel{\text{assoz}}{=} (b^{-1}a^{-1})(ab)$. Weil das Inverse $(ab)^{-1}$ von ab nach G^3 eindeutig ist, muss $b^{-1}a^{-1}$ mit ihm übereinstimmen.

Aufgabe 3.

- (1) Zeigen Sie, dass die Permutationsgruppe S_n aus n! Elementen besteht.
- (2) Zeigen Sie, dass S_n für $n \geq 3$ nicht kommutativ ist.

Zur Erinnerung, $S_n = \{\pi : \text{Die Funktion } \pi : \{1, \dots, n\} \to \{1, \dots, n\} \text{ ist bijektiv.} \}$. Insbesondere ist S_n keine Teilmenge von S_{n+1} . Die Schreibweise $(a\,b)$ (für $a,b\in\{1,\dots n\}$) bezeichnet diejenige Transposition $(a\,b)\in S_n$, die a und b vertauscht. Dabei ist $(a\,a)$ die Identität, die gar nichts vertauscht.

Lösung: Salopper Beweis von (i): Für jedes $n \in \mathbb{N}^*$ entspricht S_n der Menge R_n der Zahlenketten $(\pi(1), \pi(2), \ldots, \pi(n))$, die jede der Zahlen $\{1, \ldots, n\}$ genau einmal enthalten (denn man kann jeder solchen Folge eine Permutation $S_n \ni \pi = \begin{pmatrix} 1 & 2 & \ldots & n \\ \pi(1) & \pi(2) & \ldots & \pi(n) \end{pmatrix}$ zuordnen und umgekehrt). Es genügt also induktiv zu zeigen, dass es genau n! solcher Zahlenketten in R_n gibt, d.h. $|R_n| = n!$.

Induktionsanfang n = 1: $R_1 = \{(1)\}$, daher $|R_1| = 1$.

Induktionsschritt von n nach n+1: Nach IV möge $|R_n|=n!$. Zu zeigen ist $|R_{n+1}|=(n+1)!$. Es gibt n+1 mögliche Positionen, an denen in $\tilde{\pi}\in R_{n+1}$ die Zahl n+1 vorkommen kann. Durch Streichen der n+1 in $\tilde{\pi}$ erhält man stets eine Zahlenfolge in R_n . Umgekehrt entsteht jedes Element von R_n genau so, und $\tilde{\pi}$ ist durch die Angabe der gestrichenen Position eindeutig rekostruierbar. Also enthält R_{n+1} n+1-mal so viele Elemente wie R_n . Nach IV ist daher $|R_{n+1}|=|R_n|$ (n+1)=n! (n+1)=(n+1)!.

Beweis von (ii): $[(12) \circ (23)](1) = 2$ aber $[(23) \circ (12)](1) = 3$. Daher kommutieren (12) und (23) nicht.

Umständliche, aber "geradlinig gedachte", formalistische Lösung zu 3.1: Beweis von (i) per Induktion über n.

Induktionsanfang (Fall n=1): zu zeigen: S_1 besteht aus einem Element. Beweis: S_1 enthält nur die identische Abbildung id: $\{1\} \to \{1\}, 1 \mapsto \operatorname{id}(1) = 1$.

Induktionsschritt (von n nach n+1): Induktionsvoraussetzung (kurz IV) ist, dass S_n n! Elemente enthält.

Zu zeigen: S_{n+1} enthält (n+1)! Elemente.

Setze $N_{n+1} := \{ \pi \in S_{n+1} : \pi (n+1) = n+1 \}$. Die Einschränkungsabbildung $P : N_{n+1} \to S_n, \pi \mapsto P[\pi]$ ordnet jedem $\pi \in N_{n+1}, \pi : \{1, \ldots, n+1\} \to \{1, \ldots, n+1\}$ die eingeschränkte Abbildung $P[\pi] : \{1, \ldots, n\} \to \{1, \ldots, n\}$ zu, so dass $P[\pi](k) := \pi(k)$ für alle $k \leq n$. Die Abbildung $P[\pi]$ seinen Wertebereich nicht verlässt. Denn $P[\pi]$ erbt Injektivität von π , was als Selbstabbildung einer endlichen Menge $\{1, \ldots, n\}$ die Bijektivität von $P[\pi]$ garantiert). Die Abbildung $P[\pi]$ ist offensichtlich bijektiv. Deshalb enthalten N_{n+1} und N_n gleich viele Elemente. Nach IV sind das $|N_{n+1}| = |S_n| = n!$

Jedes $\pi \in S_{n+1}$ lässt sich als $\pi = \pi \circ (n+1\pi(n+1)) \circ (n+1\pi(n+1))$ schreiben. (Es ist $(n+1\pi(n+1)) \in S_{n+1}$.) Offensichtlich ist $\pi \circ (n+1\pi(n+1)) \in N_{n+1}$ und $\pi(n+1) \in \{1,\ldots,n+1\}$. Deshalb ist $Q: S_{n+1} \to N_{n+1} \times \{1,\ldots,n+1\}$, $\pi \mapsto (\pi \circ (n+1\pi(n+1)), \pi(n+1))$ wohldefiniert. Außerdem ist $R: N_{n+1} \times \{1,\ldots,n+1\} \to S_{n+1}, (\pi,k) \mapsto \pi \circ (n+1k)$ das Inverse von Q, weil offensichtlich $Q \circ R$ und $R \circ Q$ die Identitäten auf $N_{n+1} \times \{1,\ldots,n+1\}$ bzw auf S_{n+1} sind. Daher $|S_{n+1}| \stackrel{Q \ bijek}{=} |N_n \times \{1,\ldots,n+1\}| \stackrel{P \ roduktmenge}{=} |N_n| |\{1,\ldots,n+1\}| \stackrel{IV}{=} n! (n+1) = (n+1)!$.

Aufgabe 4. Beweisen Sie mittels vollständiger Induktion, dass sich jede Permutation als Komposition von endlich vielen Transpositionen darstellen lässt.

Lösung: Wurde in der umständlichen Version zu Aufgabe 3 mitbewiesen, denn $(n+1\pi(n+1))$ ist eine Transposition und P erhält die Eigenschaft, aus endlich vielen Transpositionen zusammengesetzt zu sein.