#### "Косморозминка"

Сучасний Всесвіт описується за допомогою 1) рівняння  $\Phi$ рідмана (c=1)

$$H^2 = \frac{8\pi G}{3}(\rho_m + \rho_r + \rho_\Lambda) - \frac{\kappa}{a^2} \tag{1}$$

де  $H=\frac{1}{a}\frac{da}{dt}$  — параметр Хаббла, a — масштабний фактор, який залежить тільки від часу і який описує розширення Всесвіту,  $\rho_m$  — густина енергії нерелятивістської речовини у Всесвіті (сума так званої баріонної складової Всесвіту та темної матерії),  $\rho_r$ —густина радіаційної складової Всесвіту (електромагнітне випромінювання),  $\rho_{\Lambda}$  — густина так званої темної енергії, а член  $\frac{\kappa^2}{a^2}$  ( $\kappa=0,\pm 1$ ) описує вклад просторової кривизни Всесвіту в його динаміку, 2) рівняння

$$\ddot{a} = -\frac{4\pi G}{3}(\rho_m + \rho_r + \rho_\Lambda + 3(p_m + p_r + p_\Lambda))a\tag{2}$$

де  $p_i$  – це тиск відповідної складової. Тиск і густина енергії пов'язані між собою співвідношенням  $p_i=\omega_i\rho_i$ , де  $\omega_m=0,~\omega_r=\frac{1}{3},~{\rm a}~\omega_{\Lambda}$  лежить у межах від -1.2 до -0.8 і в загальному може залежати від часу

- 1) Використовуючи рівняння (1)-(2) отримайте рівняння, яке зв'язує між собою похідні за часом від густини енергії, параметр Хаббла і густини та тиски складових Всесвіту
- 2) Знайти залежності кожної з густин енергій складових Всесвіту від масштабного фактору. Якісно проаналізувати, коли яка складова дає основний внесок в динаміку розширення Всесвіту
- 3) Отримати залежності  $a=a(t),\; \rho=\rho(t),\; H=H(t)$  для плоского Всесвіту ( $\kappa=0$ ), який складається тільки з
  - 3.1) радіаційної складової
  - 3.2) нерелятивістської матерії
- 4) В який момент часу після народження Всесвіту густина матерії вперше стане більшою за густину випромінювання? Вважаючи, що сучасні значення параметру Хаббла  $H_0$ , а також відносні густини енергій  $\Omega_m^0 = \frac{\rho_m^0}{\rho_{cr}}$  і  $\Omega_r^0 = \frac{\rho_r^0}{\rho_{cr}}$  відомі (тут  $\rho_{cr} = \frac{3H_0^2}{8\pi G}$  сучасне значення так званої критичної густини Всесвіту,  $\rho_m^0$  і  $\rho_r^0$  сучасні значення густини енергії нерелятивістської матерії та випромінювання)
- 5) Вважаючи відомими сучасні значення  $H_0$ ,  $\Omega_r^0$ ,  $\Omega_m^0$  знайти сучасний вік Всесвіту, вважаючи, що він просторово-плоский ( $\kappa=0$ ) з домінуванням 1) матерії 2) випромінювання 3) обох складових
- 6) Параметр z характеризує розбігання галактик у Всесвіті і визначається співвідношенням  $\frac{a_0}{a}=1+z$ , де  $a_0$  сучасне значення масштабного фактору. Вважаючи, що Всесвіт складається з темної енергії ( $\Omega_{\Lambda}^0=\frac{\rho_{\Lambda}^0}{\rho_{cr}}\simeq 0.75$ ) і матерії ( $\Omega_m^0=\simeq 0.25$ ). Знайти при якому значенні параметру z сповільнене розширення Всесвіту  $\ddot{a}<0$  змінилось прискореним  $\ddot{a}>0$ , вважаючи, що густина енергії та тиск темної енергії зв'язані співвідношенням  $p_{\Lambda}=-\rho_{\Lambda}$
- 7) Знайти сучасний вік Всесвіту, який складається з темної енергії і нерелятивістської матерії, вважаючи, що  $\Omega_m^0=0.25,~\Omega_\Lambda^0=0.75,~H_0=73$  км/(с· Мегапарсек) (1 Мегапарсек =  $3.1\cdot 10^{24}$  см)

| № завдання | Відповідь          | Можлива<br>кількість<br>балів | Оцінка |
|------------|--------------------|-------------------------------|--------|
| Завд. 1    | aT = const         | 1.00                          |        |
| Завд. 2    | H(T) = ?           | 0.25                          |        |
| Завд. 3    | T(t) = ?           | 1.0                           |        |
| Завд. 4    | t = ?              | 0.5                           |        |
| Завд. 5    | T(z) = ?           | 0.25                          |        |
|            | $T_r =$            | 1.5                           |        |
| Завд. 6    | $t_r =$            | 1.0                           |        |
|            | $z_r =$            | 0.5                           |        |
| Завд. 7    | A = ?              | 1.0                           |        |
| Завд. 8    | $t_u = ?  t_t = ?$ | 1.0                           |        |

Густина енергії  $\rho$  та густина числа частинок n (концентрація), які заповнюють Всесвіт, наступним чином залежать від температури T Всесвіту:

$$\rho = \alpha_1 T^4, \quad n = \beta_1 T^3$$

(де  $\alpha$ ,  $\beta$  – числові коефіцієнти), якщо частинки є релятивістськими (рухаються зі швидкостями близькими до швидкості світла). Якщо ж частинки є нерелятивістськими, то:

$$n = \beta_2 (mT)^{\frac{3}{2}} e^{\frac{\mu - m}{T}},$$

де  $\beta_2$ —числовий коефіцієнт,  $\mu$ —так званий хімічний потенціал, m—маса частинки,

$$\rho = (m + \frac{3}{2}T)n,$$

(використано систему одиниць  $c=1,\,\hbar=1,\,k_B=1)$ 

- 1) Показати, що при розширенні Всесвіту, в якому домінують релятивістські частинки, добуток масштабного фактору a на температуру T  $\epsilon$  інваріантом  $aT \simeq const$
- 2) У ранньому Всесвіті знайти залежність параметру Хаббла від температури
  - 3) Знайти залежність температури Всесвіту від часу
- 4) В перших прискорювачах елементарні частинки прискорювались до енергій порядку 1  $MeB=10^6$  eB. В прискорювачах останнього покоління

LHC протони прискорюються до 1 TeB=  $10^{12}$  eB. Які часи в історії Всесвіту дозволяють дослідити ці енергії? (вважати  $\alpha_1 \sim 10$ )

- 5) Знайти залежність температури випромінювання у Всесвіті, що розширюється, від так званого z параметру червоного зміщення  $z=\frac{a(t_0)}{a(t)}-1$ , де  $t_0$ —сучасний вік Всесвіту
- 6) Вважаючи, що матеріальну складову Всесвіту утворюють нерелятивістські протони p, електрони e, атоми водню H, і проходять реакції  $p+e\rightleftharpoons H+\gamma$ , з умови збереження баріонного числа  $n_p+n_e=n_H$  знайти температуру, при якій стає термодинамічно вигідним утворення атомів водню з протонів та електронів. Знайти вік Всесвіту на цей момент, а також значення параметру z.(Вважати, що  $n_i=g_i\left(\frac{m_iT}{2T}\right)^{\frac{3}{2}}e^{\frac{\mu_i-m_i}{T}}$ ,  $g_p=g_e=2$ ,  $g_H=4$ ,  $m_p\simeq m_H$ ,  $\mu_e+\mu_p=\mu_H$ , середовище весь час є електронейтральним в загальному)
- 7) Вважаючи, що  $(n_B-n_{\bar{B}})a^3=const$ , де  $n_B$  густина числа частинок, а  $n_{\bar{B}}$  густина числа античастинок, і вважаючи відомим відношення сучасних значень густини числа частинок  $n_B^0$  до густини числа фотонів  $n_\gamma^0$  відомо  $\frac{n_B^0}{n_\gamma^0}\sim 10^{-9}$  розрахувати так звану величину баріон-антибаріонної асиметрії Всесвіту  $A=\frac{n_B-n_{\bar{B}}}{n_B}$  (врахувати, що в сучасному Всесвіті антиречовини немає!)
- 8) Нехай зірка випромінює світло в момент часу t. Це світло реєструється в момент часу  $t_0$  на Землі і має червоне зміщення z=100. Який вік Всесвіту в момент випромінювання фотону? Скільки часу фотони були в дорозі до Землі?

# Листок - відповідей

Прізвише, Ім'я, По-батькові,

|            |             |            | Можлива   |        |
|------------|-------------|------------|-----------|--------|
| № завдання | Відповідь   |            | кількість | Оцінка |
|            |             |            | балів     |        |
| Завд. 1    | $M_{tot} =$ | $M_{DM} =$ | 0.5       |        |
| Завд. 2    | m =         |            | 1.25      |        |
| Завд. 3    | $\beta =$   |            | 0.75      |        |
| Завд. 4    | n =         | $\beta =$  | 2.5       |        |

Далека галактика, що рухається від нас, спостерігається на відстані d=10 мегапарсек ( 1 мегапарсек=  $3.0856\cdot 10^{22}$ ). Під час спектральних спостережень двох протилежних крайових областей зображення галактики (кутова діаметр зображення галактики  $\alpha=718''$ ) були виділені лінії поглинання з довжинами хвиль  $\lambda_1=394.553nm,\,\lambda_2=394.159nm,$  що відповідають лабораторній лінії  $\lambda_0=393.477nm.$  Загальна маса випромінюючої речовини складає  $M_{obs}=3.5\cdot 10^9 M_{\odot}$  (масса Сонця  $M_{\odot}=2\cdot 10^{30} kg$ ).

- 1. Визначити загальну масу галактики  $M_{tot}$  та масу зосередженої в ній невидимої темної матерії  $M_{DM}$ .
- 2. Введемо гіпотезу про те, що невідома гравітуюча темна матерія може бути пояснена за допомогою гіпотетичних елементарних частинок. Одночасно в найменщій елементарній комірці 6-вимірного простору імпульсів та координат не може знаходитися більше двох частинок. Також відоме співвідношення невизначеностей Гейзенберга  $\Delta x \Delta p \geq \frac{\hbar}{2}$ , де  $\Delta x$ ,  $\Delta p$  невизначеності значень координати та імпульсу,  $\hbar = 4.135 \cdot 10^{-15}$  eB·c. Оцінити масу m в електрон-вольтах гіпотетичної частинки темної матерії.
- 3. Одним з можливих методів визначення маси темної матерії в гравітаційно зв'язаних структурах є спостереження відхиленная променів світла від прямолінійних траєкторій в їх гравітаціному полі. Користуючись н'ютонівською теорією гравітації (вважати, що фотон має надзвичайно малу масу) визначити кут, на який відхилиться промінь світла в гравітаційному полі галактики, описаної в п.1. Мінімальна відстань між траєкторією променя і центром галактики (прицільний параметр)—  $r_0$ . Вся маса галактики зосереджена в сфері радіуса, що менше за прицільний параметр.
- 4. Для слабких гравітаційних полів для променя світла виконується співвідношення  $0=\left(1-\frac{2U}{c^2}\right)c^2\mathrm{d}t^2-\left(1+\frac{2U}{c^2}\right)\mathrm{d}\vec{x}^2,\, \vec{x}=(x,y,z)$  звичайні координати тривімірного простору, t— час,  $U(r)=\frac{GM_{tot}}{r}$ . Визначити ефективний показник заломлення простору в такій теорії та кутове зміщення  $\beta$  променя світла від прямої траєкторії для галактики з п.1. Прицільний параметр—  $r_0$ .

# Задача 1

Частинка з енергією спокою  $E_1$  і швидкістю  $\vec{v_1}$  зіткнулася з нерухомою частинкою з енергією спокою  $E_2$ , яка поглинає частинку, що налетіла. Знайти енергію спокою (0.5 бала) і швидкість  $\vec{v}$  (0.5 бала) частинки, що виникла в результаті зіткнення.

## Задача 2

Частинка з енергією спокою  $E_0$  пружньо зіткнулася зі стаціонарною частинкою, яка має таку ж саму енергію спокою. Якою буде кінетична енергія T частинки, що налітала після розсіяння, якщо кут розсіяння дорівнює  $\theta$ , а кінетична енергія цієї частинки до зіткнення була  $T_0$ ? (1 бал)

## Задача 3

Відбувається реакція  $A \to B + C$  (з масами  $m_a, m_b$  і  $m_c$  відповідно)

- 1. Вважаючи, що частинка A знаходиться в стані спокою в лабораторній системі відліку, знайти енергію  $E_b$  частинки B в цій системі. (0.5 бала)
- 2. Атом A знаходиться в стані спокою і випускає фотон з енергією  $h\nu$ . Після цього утворюється атом, енергія спокою якого  $(m_ac^2 \delta)$ . Знайти як співвідносяться між собою  $h\nu$  і  $\delta$ :  $h\nu > \delta$ ,  $h\nu < \delta$  чи  $h\nu = \delta$ . (0.5 бала)
- 3. Вважаючи, що частинка A рухається в лабораторній системі координат і розпадається на частинки B і C, знайти як зв'язані між собою кут, під яким випромінюється частинка B і енергії частинок A та B. (0.5 бала)

### Задача 4

В першому експерименті пучок протонів, прискорених до енергії 30 ГеВ, падає на нерухому мішень. В другому експерименті кожен з двох окремих пучків протонів прискорюється до енергії 15 ГеВ, після чого пучки направляються назустріч один одному. Розрахувати повну енергію двох протонів в системі центра мас в кожному експерименті. (1 бал). До якої енергії необхідно прискорити пучок протонів у експерименті першого типу, щоб досягти тієї самої енергії, що і в другому експерименті. (0.5 бала)

3адача Ефект Саньяка». Нехай деяка хвиля довільної природи рухається по круглому диску радіусом R (в



подальшому -кільце), який обертається навколо осі, перпендикулярної до центру диску з кутовою швидкістю  $\Omega$  (така модель може бути реалізована в волоконному кільцевому інтерферометрі або у звичайному кільцевому інтерферометрі у випадку, коли число розташованих по колу дзеркал або призм повного внутрішнього відбиття прямує до нескінченності). На диску розташовані і обертаються з ним джерело випромінювання хвиль

довільної природи, напівпрозора пластинка 2 і приймач хвиль 3. Напівпрозора пластинка 2 ділить хвилю, яку випромінює джерело, на

дві хвилі — хвиля 1 рухається по колу радіуса R в напрямку обертання диска, а хвиля 2 — по колу радіуса R в протилежному напрямку. Вважаючи, що швидкість хвилі, яка рухається по колу відносно нерухомого диску дорівнює  $V_{\phi}$ , а частота -  $\omega$ , і нехтуючи:

1)зміною геометричних розмірів інтерферометра під впливом центробіжних сил; 2) поперечним зсувом

Рис. 2. Кільцевий інтерферометр: 1- джерело випромінювання, 2- світло подільна пластинка (напівпрозоре дзеркало), 3 — дзеркала, 4 — фотоприймач. Стрілки показують напрямок обертання інтерферометра.

зустрічних хвиль під дією центр обіжних сил, пов'язаних з кривизною їх траєкторії в інтерферометрі (це призводить до незначного збільшення площі кільця, яке  $\epsilon$  однаковим для обох зустрічних хвиль), знайти:

- 2.1) різницю  $\Delta t$  між часами, які витрачають на проходження кільця кожна з хвиль, що рухається по круглому диску назустріч одна одній, (1 бал)
- 2.2) з'ясуйте, чи залежить ця різниця від того, заповнений кільцевий інтерферометр оптичним середовищем чи ні.(0.5 бала)
- 2.3) порівняйте цю різницю часів для акустичних хвиль і електромагнітних хвиль (0.5 бала.

Хвилі, які створюють інтерференційну картину на приймаючі (тобто ті хвилі, які прийшли на приймач після обходу кільця, одночасно, на вході кільця виходять з напівпрозорої пластинки, що ділить хвилю, з різницею в часі  $\Delta t$ . Вважаючи, що джерело випромінювання хвиль і приймач хвиль розташовані на відстані R від центра обертання і обертаються разом з диском з тією ж кутовою швидкістю  $\Omega$  знайти

2.4) різницю фаз зустрічних хвиль на виході з кільця (1.0 бала)