Arhitectura calculatoarelor și sisteme de operare

Prof. dr. Henri Luchian

Lect. dr. Vlad Rădulescu

Evaluare

- examinare
 - două teste scrise din materia de curs
 - câte unul pentru fiecare jumătate de semestru
 - un test practic la laborator
 - limbaj de asamblare
- condiția pentru susținerea testelor scrise
 - prezenţa la laborator
 - cel mult 2 absențe permise în fiecare jumătate de semestru

Cuprins - prima jumătate

- I. Introducere
- II. Circuite combinaționale și funcții booleene
- III. Circuite secvențiale și automate
- IV. Reprezentări interne
- V. Arhitectura și organizarea calculatorului

I. Introducere

I.1. Evoluţie

Cum definim noțiunea de calcul?

- ce operații se pot realiza?
- evoluţie în timp
 - abacul: adunări
 - roți dințate (Leibniz, Pascal): adunări, înmulțiri
 - Babbage: instrucţiuni încărcate din exterior, calcul ramificat
 - von Neumann: program memorat; execuţie în secvenţă de instrucţiuni; ierarhii de memorii
 - calcul paralel, cuantic etc.

Mașini de calcul universale

- o maşină de calcul universală se poate comporta ca oricare maşină de calcul particulară
 - deci poate rezolva orice problemă pe care o poate rezolva o maşină de calcul particulară
- exemplu calculatorul
 - în funcție de programul executat, rezolvă probleme de: calcul matricial, grafică, tehnoredactare etc.

Scurtă istorie (1)

- scrierea pozițională
 - indieni, arabi
- algebra booleană
 - George Boole, 1854
- teorema de incompletitudine
 - Kurt Gödel, 1935
- legătura între algebra booleană și circuite
 - Claude Shannon, 1938

Scurtă istorie (2)

- calculatorul neumannian
 - John von Neumann, 1946
- tranzistorul
 - Shockley, Brittain, Bardeen, 1947
- circuitele integrate

I.2. Legi empirice

Legi empirice

- în orice domeniu al științei, legile sunt determinate într-un fel sau altul de experiment sau de observații în lumea concretă
- repetabilitatea duce la ideea de legi empirice: adevăruri valabile de cele mai multe ori, conform observațiilor

Legi empirice în informatică

- legea "90:10" (Donald Knuth)
 - 90% din timpul de execuţie al unui program este utilizat pentru 10% din instrucţiuni
- legea lui Amdahl
 - eficienţa maximă în îmbunătăţirea unui sistem (concret sau abstract) se atinge dacă se optimizează subsistemul cel mai folosit
- legile localizării spațială, temporală

Legea lui Amdahl (1)

- considerăm un sistem (hardware, software) și o anumită componentă a sa
- componenta respectivă lucrează un procentaj f_a din timpul de lucru al sistemului
- și este îmbunătățită, astfel încât lucrează de *a* ori mai rapid decât înainte
- de câte ori mai rapid devine sistemul?

Legea lui Amdahl (2)

$$A(a, f_a) = \frac{1}{(1 - f_a) + \frac{f_a}{a}}$$

- creștere de viteză generală cât mai mare
 - îmbunătățirea pronunțată a componentei (a)
 - îmbunătățirea componentelor cu o pondere (f_a) cât mai mare
 - deci mai des folosite

Localizare temporală

- dacă o locație de memorie este accesată la un moment dat, este foarte probabil să fie accesată din nou în viitorul apropiat
- exemple
 - variabilele sunt folosite în mod repetat
 - bucle de program instrucţiunile se repetă

Localizare spaţială

- dacă o locație de memorie este accesată la un moment dat, este foarte probabil ca şi locațiile vecine să fie accesate în viitorul apropiat
- exemple
 - parcurgerea tablourilor
 - execuţia secvenţelor de instrucţiuni aflate la adrese consecutive

Ordine fizică și ordine logică

- instrucțiunile de executat se află în memorie în ordinea fizică
- sunt citite din memorie și executate
 - regula: în ordinea în care sunt memorate (fizic)
 - excepția: sărind peste un număr de instrucțiuni
- astfel rezultă ordinea logică a instrucțiunilor
 - poate diferi de la o rulare la alta
 - o instrucțiune se poate executa de 0, 1, 2, ... ori

II. Circuite combinaționale și funcții booleene

Semnal analogic și semnal digital

- semnal analogic continuu
 - dacă poate lua valorile a și b, atunci poate lua orice valoare din intervalul [a,b]
- semnal digital discret
 - are câteva niveluri (valori) distincte pe care le poate lua
 - calculator semnal digital cu 2 niveluri (0 și 1)
 - există și alte sisteme de calcul în afară de PC

Tipuri de circuite

- circuite combinaționale
 - valorile ieşirilor depind exclusiv de valorile intrărilor
 - aceleași valori pe intrare produc întotdeauna aceleași valori la ieșire
- circuite secvențiale
 - în afară de intrări, valorile ieşirilor depind şi de starea în care se află circuitul
 - evoluează în timp

Tabele de adevăr

- cum putem descrie funcționarea unui circuit combinațional?
- se aplică fiecare combinație posibilă de valori ale intrărilor
- și se observă valorile ieșirilor pentru fiecare astfel de combinație
- ansamblul acestor corespondențe formează un tabel de adevăr

Circuite și funcții booleene

- fiecărui tabel de adevăr îi corespunde o funcție booleană
 - deci fiecărui circuit combinațional îi corespunde o funcție booleană

	intrări		ieşiri						
\mathbf{I}_1	•••	I _n	O_1	•••	O_{m}				
0	00	0	?	??	?				
0	00	1	?	??	?				
	•••		•••	•••					
1	11	1	?	??	?				

II.1. Funcții booleene

Structura algebrică

- mulțimea nevidă B, care conține cel puțin două elemente: $a, b, a \neq b$
- mulţimea de operaţii binare { +, · }
- o operație unară { }
- închidere: $a+b \in B$ $a \cdot b \in B$ $\bar{a} \in B$

Funcții booleene

- $B = \{0,1\}$
- $f: B^n \to B^m$
 - funcție: *n* variabile, *m* valori
 - circuit: *n* intrări, *m* ieșiri
- există $(2^m)^{2^n}$ astfel de funcții
 - -n=1, m=1: 4 funcții unare cu o valoare
 - -n=2, m=1: 16 funcții booleene de 2 variabile și cu o valoare

Tabele de adevăr

а	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1
	= 0	= a	$=\bar{a}$	= 1

a	b	$ F_0 $	F_1	F_2	F_3	F ₄	F ₅	F_6	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	$ F_{15} $
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Axiome și teoreme în algebra booleană (1)

identitate	X + 0 = X	$X \cdot 1 = X$
constante	X + 1 = 1	$X \cdot 0 = 0$
idempotență	X + X = X	$X \cdot X = X$
involuție	$\overline{\overline{X}} = X$	
complementaritate	$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$
comutativitate	X + Y = Y + X	$X \cdot Y = Y \cdot X$
asociativitate	(X + Y) + Z = X + (Y + Z)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
distributivitate	$X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$	$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$

Axiome și teoreme în algebra booleană (2)

unificare	$X \cdot Y + X \cdot \overline{Y} = X$	$(X+Y)\cdot(X+\overline{Y})=X$			
absorbție	$ (X + X \cdot Y = X (X + \overline{Y}) \cdot Y = X \cdot Y $	$ (X \cdot (X + Y) = X (X \cdot \overline{Y}) + Y = X + Y $			
De Morgan	$\overline{X+Y+\ldots}=\overline{X}\cdot\overline{Y}\cdot\ldots$	$\overline{X \cdot Y \cdot \dots} = \overline{X} + \overline{Y} + \dots$			
generalizare (dualitate)	$\overline{f(X_1,,X_n,0,1,+,\cdot)} = f(\overline{X_1},,\overline{X_n},1,0,\cdot,+)$				

Calculatorul - operații elementare

- în calculatoarele actuale, operațiile elementare sunt operațiile logicii booleene
 - care simulează (între altele) şi operaţiile
 aritmetice elementare în baza 2
- un circuit combinațional implementează de fapt o funcție booleană
 - cum obținem expresia funcției booleene pornind de la tabelul de adevăr?

Forme normale

- forma normală disjunctivă (FND)
 - pentru fiecare linie care produce valoarea 1 la ieșire - termen conjuncție (·)
 - conține fiecare variabilă a funcției: negată dacă variabila este 0 pe acea linie, nenegată dacă este 1
 - acești termeni sunt legați prin disjuncție (+)
- forma normală conjunctivă (FNC): dual
- exemplu: $F_9(x, y) = \overline{x} \cdot \overline{y} + x \cdot y = (x + \overline{y}) \cdot (\overline{x} + y)$

II.2. Diagrame logice

Alfabetul diagramelor logice (1)

- porțile logice reprezintă implementările unor funcții booleene
- deci funcționarea fiecărei porți poate fi descrisă printr-un tabel de adevăr
 - corespunzător funcției booleene asociată porții
- porți elementare: AND, OR, NOT
- alte porți utile: NAND, NOR, XOR, NXOR

Alfabetul diagramelor logice (2)

A	NOT				
0	1				
1	0				

A	В	AND	OR	NAND	NOR	XOR	NXOR
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

Simbolurile porților

 operaţiile binare asociative pot fi extinse la operaţii cu orice număr finit de operanzi

Set minimal de generatori

- set de generatori mulțime de tipuri de porți prin care se poate implementa orice funcție booleană
 - set minimal de generatori set de generatori cu numărul minim de tipuri de porți
- se poate cu 3 (NOT, AND, OR)
 - formele normale (disjunctivă, conjunctivă)
 - se poate și cu 2 (NOT și AND, NOT și OR)
 - minimal 1 (NAND, NOR)

Temă

- arătați că următoarele mulțimi de tipuri de porți sunt seturi de generatori:
 - NOT, AND
 - NOT, OR
 - NAND
 - NOR

II.3. Implementarea circuitelor prin funcții booleene

Definirea funcțiilor booleene

- moduri de definire
 - tabel de adevăr
 - expresii conţinând variabile şi operaţii logice
 - în formă grafică
 - sigma-notație (Σ)
- în final, ne interesează să avem o expresie booleană
 - care permite implementarea prin porți

Σ -notația (1)

- exemplu "majoritatea dintre k intrări"
 - valoarea funcției: 1 dacă majoritatea
 variabilelor au valoarea 1, 0 în caz contrar
 - pentru 3 variabile: $f(x_1, x_2, x_3) = \Sigma(3, 5, 6, 7)$
- Σ-notația corespunde formei normale disjunctive
 - fiecare număr din paranteză reprezintă un termen conjuncție
 - $-\Sigma$ denotă disjuncția termenilor

Σ -notația (2)

- Σ-notație dată câte variabile sunt necesare?
 - cea mai mică putere a lui 2 care cuprinde cel mai mare număr dintre paranteze
 - pentru exemplul nostru: $2^2 < 7 < 2^3 \rightarrow n = 3$
- termenul corespunzând unui număr conține
 - toate variabilele, legate prin conjuncție
 - fiecare variabilă este: negată dacă îi corespunde un 0; nenegată pentru 1
 - exemplu: $3_{(10)} = 011_{(2)} \rightarrow \overline{x_1} \cdot x_2 \cdot x_3$

Minimizare (1)

• forma normală disjunctivă a funcției majoritate din 3

$$f(A,B,C) = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

- număr mare de aplicări ale funcțiilor elementare
- o expresie echivalentă (aceeași funcție booleană) mai simplă ar face circuitul
 - mai rapid
 - mai ieftin
 - mai fiabil

Minimizare (2)

- cum putem simplifica expresia dată de forma normală disjunctivă?
 - rescriere echivalentă
 - utilizarea legilor și axiomelor algebrei booleene
 - inducţie perfectă
 - metoda Veitch-Karnaugh
 - metoda Quine-McCluskey
 - hibridizare (combinarea metodelor de mai sus)

Minimizare - rescriere algebrică

același exemplu

$$f = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$(idempotență)$$

$$= \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C + A \cdot B \cdot C + A \cdot B \cdot C$$

$$(unificare)$$

$$= B \cdot C + A \cdot C + A \cdot B$$

• dificil pentru expresii complexe

Temă

- determinați forma normală disjunctivă și studiați minimizarea prin rescriere algebrică pentru funcția "imparitate"
 - valoarea funcției este: 1 dacă numărul de intrări cu valoarea 1 este impar; 0 în caz contrar