

Regression modelling using I-priors

NUS Department of Statistics & Data Science Seminar

Haziq Jamil

Mathematical Sciences, Faculty of Science, UBD https://haziqj.ml

Wednesday, 16 November 2022

Overview

Examples

Longitudinal analysis of growth of cattle Predicting fat content in meat samples

Longitudinal analysis of growth of cattle

Aim: Discern whether there is a difference between two treatments given to cows, and whether this effect varies among individual cows.

Data consists of a balanced longitudinal set of weights y_{it} for 60 cows. The herd were randomly split between two treatment groups (x_i) . Model

$$y_{it} = f_{1t}(i) + f_{2t}(x_i) + f_{12t}(i, x_i) + \epsilon_{it}$$

assuming smooth effect of time, and nominal effect of cow index and treatment group.

				No. of
	Explanation	Model	Log-lik.	param.
1	Growth due to cows only	f_{1t}	-2792.2	3
2	Growth due to treatment only	f_{2t}	-2295.2	3
3	Growth due to both	$f_{1t} + f_{2t}$	-2270.9	4
4	Growth due to both with	$f_{1t} + f_{2t} + f_{12t}$	-2250.9	4
	cow-treatment variation			

Growth curve

Predicting fat content in meat samples

Aim: Predict fat content of meat samples from its spectrometric curves (Tecator data set).

For each meat sample i, data consist of 100 channel spectrum of absorbances $(x_i(t))$ and its corresponding fat content (y_i) . Train/test split is 160 + 55. Model

$$y_i = f(x_i) + \epsilon_i$$

where x_i is the *i*th spectral curve.

Results

	RMSE	
Model	Train	Test
I-prior		
Linear	2.89	2.89
Quadratic	0.72	0.97
Smooth (fBm-0.70)	0.19	0.63

Smooth (fBm-0.70)	
Others	
Linear functional regression	
Quadratic functional regression	

Gaussian process regression Neural networks Kernel smoothing

Functional additive regression (CSEFAM)

Multivariate adaptive regression splines (MARS)

2.93

0.36 1.49

2.78 0.80

0.88 0.85