1. Двойственная задача:

$$\begin{cases} 24y_1 + 20y_2 - 4y_3 \min \\ 3y_1 + y_2 + 2y_3 \ge 4 \\ y_1 - 3y_3 \ge -1 \\ -2y_1 + y_2 - y_3 = 4 \\ y_1 + 2y_2 - y_3 \ge 7 \\ y_1 \ge 0, y_2 \in \mathbb{R}, y_3 \ge 0 \end{cases}$$

2. а) Двойственная задача:

$$\begin{cases} w = 9y_1 + 6y_2 \to \min \\ y_1 + y_2 \ge 4 \\ 5y_1 + y_2 \ge 12 \\ y_1 + 8y_2 \ge 18 \\ y_1 \ge 0, y_2 \ge 0 \end{cases}$$

Прямые ℓ_1 , ℓ_2 и ℓ_3 пересекаются в одной точке.

Решение двойственной задачи: $y_1 = 2$, $y_2 = 2$, минимум равен 30.

б) В двойственной задаче $y_1>0$, поэтому $x_1+5x_2+x_3=9$. В двойственной задаче $y_2>0$, поэтому $x_1+x_2+8x_3=6$.

Решение исходной задачи: $x_3 \in [0; 21/39], x_2 = (3+7x_3)/4, x_1 = (21-39x_3)/4$, максимум равен 30.

Решение исходной задачи можно также записать в виде Convex(A,B), где A=(21/4,3/4,0), B=(0,22/13,21/39).

- в) Сравниваем два варианта:
 - і. Решение двойственной задачи сохраняется. Изменение прибыли равно $\Delta\pi = -\Delta b_1 \cdot p + \Delta b_1 \cdot y_1 = 2 \cdot 2 2 \cdot 2 = 0.$
 - іі. Решение двойственной задачи сохраня
ется. Изменение прибыли равно $\Delta\pi=-\Delta b_2\cdot p+\Delta b_2\cdot y_2=-3\cdot 1+3\cdot 2=3.$ Данный вариант выгоднее.

3.

	Грузоподъёмность	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
4.	A, B, C	0	0	0 5	4 6	4	4		9/8 $18/16$	19/20	9/12 $23/21$	26/25	$\frac{13}{12}$ $\frac{28}{30}$	16 13/16 31/30 32/31	33/31		20 18/20	20 21/20	20 22/20

a)

б)

$$\begin{cases} 4x_a + 9x_b + 10x_c \to \max \\ 3x_a + 7x_b + 8x_c \le 17 \\ x_a, x_b, x_c \in \{0, 1, 2, 3, \dots\} \end{cases}$$

,	вершина									
	$\overline{A_1}$	0	0*							
	A_2	∞	6	3	3	3*				
	A_3	∞	2	2	2^*					
5.	A_4	∞	1	1*						
	A_5	∞	∞	∞	7	6	6*			
	A_6	∞	∞	8	8	8	7	7^*		
	A_7	∞	∞	9	9	9	9	8	8*	
	A_8	∞	∞	∞	∞	∞	11	9	9	9*

а) Оптимальные маршруты:

$$A_1 \xrightarrow{1} A_4 \xrightarrow{2} A_2 \xrightarrow{3} A_5 \xrightarrow{1} A_6 \xrightarrow{2} A_8, \quad A_1 \xrightarrow{1} A_4 \xrightarrow{2} A_2 \xrightarrow{3} A_5 \xrightarrow{1} A_6 \xrightarrow{1} A_7 \xrightarrow{1} A_8,$$

стоимость равна 9.

б) $A_2 \stackrel{3}{\to} A_5 \stackrel{1}{\to} A_6 \stackrel{1}{\to} A_7$, стоимость равна 5.