Graph theory in Communication and networks – Spring'16

Dynamic Communities in Evolving Network Graphs

Joseph P. Macker, David J. Claypool

J. P. Macker and D. J. Claypool, "Dynamic communities in evolving network graphs," MILCOM 2012 - 2012 IEEE Military Communications Conference, Orlando, FL, 2012, pp. 1-6.

Keerthiraj Nagaraj

Dept of ECE, University of Florida

Spring 2016

Abstract

•Spectral graph partitioning is used to examine potential community structures in evolving graphs.

•Evolving graps: structures vary with time.

•Set of mobile network scenarios is used to explain dynamic spectral partitioning methods.

•Automatic selection of number of clusters and a measure for partitioning quality.

Motivation

- •Clustering is the first step to analyze large datasets or catagorize huge networks.
- •Networks such as wireless mobile ad-hoc networks dynamically change their structure with time, grouping of the network nodes with some similarity measure becomes crucial to monitor these networks.
- •There is a need for measuring the quality of clusering to trust the results obtained from spectral clustering.
- •Authors have used the proposed method for analyzing the mobile network trace models to detect, stabilize and track structural community decomposition

Processing models

Normalized graph laplacian

$$L = D - A$$

$$d_u = \sum_{v \in V} w_{u,v}$$

$$A(u,v) = \begin{cases} w_{u,v} & \text{if } (u,v) \in E \\ 0 & \text{otherwise.} \end{cases}$$

$$L_{norm} = \begin{cases} 1 - (w_{u,v}/d_v) & \text{if } u = v \text{ and } d_v \neq 0; \\ -(w_{u,v}/\sqrt{d_u d_v}) & \text{if } u \text{ and } v \text{ are adjacent;} \\ 0 & \text{otherwise.} \end{cases}$$

$$L_{norm} = D^{-1/2} L \hat{D^{-1/2}}$$

Eigengap detection

•Disadvantage of spectral clustering with K-means is that we need to input the value of number of clusters.

•For this reason, spectral clustering with K-means cannot be dynamically applied to a series of graph inputs.

•Eigengap detection is used to auto-configure the values of optimal number of clusters k.

Eigengap detection

- $ullet L_{\text{gap}}$ is defined as the difference between consecutive eigenvalues of the normalized laplacian matrix.
- $L_{gap} = L_{n+1} L_n$, where L_n represents the n'th eigenvalue

•All the Lgap values are calculated and max Lgap is used to decide optimal value of k.

•If $L_{gap,max} = L_{k+1} - L_k$ then 'k' is the optimal number of clusters for input dataset

Eigengap detection

Partitioning quality measure

•Partitioning information becomes less accurate as community structures become more vague such as large grid scenarios or uniform randomly generated networks.

•Pq: peak-to-average ratio – Higher the value better is the quality of clustering.

$$P_q = \max \lambda_{gap} / ((\sum_{i=1,n} \lambda_{gapi}) / n)$$

Dynamic mobile cluster scenario

•60 network nodes

Total simulation time: 600 seconds

•First 200 seconds: 3 groups of 20

•Next 200 seconds: 2 groups of 20 and 2 groups of 10

Last 200 seconds: 6 groups of 10

Dynamic mobile cluster scenario

Operationally clustered scenario

- •15 nodes in group A stationery west
- •15 nodes in group B stationery south
- •15 nodes move as cluster among groups A & B, forming at times a combined unit with each of the two groups
- •10 high flying aerial units backhaul network
- •East grid of locally connected stationery 32 nodes with 2 of the nodes in this grid is connected to aerial backhaul network

Operationally clustered scenario

Future work and challenges

- •Formulate new metrics for measuring partitioning quality.
- •The proposed work could be used to improve the analysis in network planning, design and potential network cognition.
- •Analysis of distributed selection in mobile relay nodes based on some node centrality metric.

•For large networks more computationally efficient techniques are required.

Conlusions

 Automated spectral graph partitioning technique is implemented to detect dynamic cluster communities.

 Eigengap detection is used to auto-configure the optimal number of communities.

Partitioning quality metric is defined.