10-701 Machine Learning Recitation #3

MLE, MAP, and Vector/Matrix Differentiation

Calvin Murdock cmurdock@andrew.cmu.edu

(Some slides borrowed from Andrew Moore, Steven Nydick, etc.)

Maximum Likelihood Estimation (MLE)

$$\mathcal{L}(\boldsymbol{\theta}) = \ln p(\mathcal{D}|\boldsymbol{\theta}) = \ln \prod_{i=1}^{N} p(\boldsymbol{x}^{(i)}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln p(\boldsymbol{x}^{(i)}|\boldsymbol{\theta})$$

$$\widehat{\boldsymbol{\theta}}_{ML} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathcal{L}(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{i=1}^{N} \ln p(\boldsymbol{x}^{(i)} | \boldsymbol{\theta})$$

- Suppose you have $x_1, x_2, ... x_R \sim N(\mu, \sigma^2)$
- But you don't know μ

(you do know σ^2)

MLE: For which μ is $x_1, x_2, ..., x_R$ most likely?

MAP: Which μ maximizes $p(\mu | X_1, X_2, ..., X_R, \sigma^2)$?

- Suppose you have $x_1, x_2, ... x_R \sim N(\mu, \sigma^2)$
- But you don't know μ (you do know σ^2)
- MLE: For which μ is $x_1, x_2, ... x_R$ most likely?

$$\mu^{mle} = \underset{\mu}{\operatorname{arg\,max}} p(x_1, x_2, ... x_R \mid \mu, \sigma^2)$$

$$\mu^{mle} = \underset{\mu}{\operatorname{arg\,max}} p(x_1, x_2, ... x_R \mid \mu, \sigma^2)$$

$$\mu^{mle} = \underset{\mu}{\operatorname{arg\,max}} p(x_1, x_2, ... x_R \mid \mu, \sigma^2)$$

$$\underset{\mu}{\operatorname{arg\,max}} \prod_{i=1}^{R} p(x_i \mid \mu, \sigma^2)$$

$$= \underset{\mu}{\operatorname{arg\,max}} \sum_{i=1}^{R} \log p(x_i \mid \mu, \sigma^2)$$

$$= \underset{\mu}{\arg \max} \frac{1}{\sqrt{2\pi} \sigma} \sum_{i=1}^{R} -\frac{(x_i - \mu)^2}{2\sigma^2}$$

$$\underset{\mu}{\operatorname{arg\,min}} \sum_{i=1}^{R} (x_i - \mu)^2$$

(by i.i.d)

(monotonicity of log)

(plug in formula for Gaussian)

(after simplification)

Intermission: A General Scalar MLE strategy

Task: Find MLE θ assuming known form for p(Data | θ , stuff)

- 1. Write LL = log P(Data | θ , stuff)
- 2. Work out $\partial LL/\partial\theta$ using high-school calculus
- 3. Set $\partial LL/\partial\theta$ =0 for a maximum, creating an equation in terms of θ
- 4. Solve it*
- 5. Check that you've found a maximum rather than a minimum or saddle-point, and be careful if θ is constrained

*This is a perfect example of something that works perfectly in all textbook examples and usually involves surprising pain if you need it for something new.

The MLE

$$\mu^{mle} = \underset{\mu}{\operatorname{arg\,max}} p(x_1, x_2, ... x_R \mid \mu, \sigma^2)$$

$$= \underset{\mu}{\operatorname{arg\,min}} \sum_{i=1}^R (x_i - \mu)^2$$

$$= \mu \text{ s.t. } 0 = \frac{\partial LL}{\partial \mu} =$$

The MLE

$$\mu^{mle} = \arg\max_{\mu} p(x_1, x_2, ... x_R \mid \mu, \sigma^2)$$

$$= \arg\min_{\mu} \sum_{i=1}^R (x_i - \mu)^2$$

$$= \mu \text{ s.t. } 0 = \frac{\partial LL}{\partial \mu} = \frac{\partial}{\partial \mu} \sum_{i=1}^R (x_i - \mu)^2$$

$$-\sum_{i=1}^R 2(x_i - \mu)$$
Thus $\mu = \frac{1}{R} \sum_{i=1}^R x_i$

The MLE

$$\mu^{mle} = \frac{1}{R} \sum_{i=1}^{R} x_i$$

 The best estimate of the mean of a distribution is the mean of the sample!

- Suppose $\theta = (\theta_1, \theta_2, ..., \theta_n)^T$ is a vector of parameters.
- Task: Find MLE θ assuming known form for p(Data| θ ,stuff)
- 1. Write LL = log P(Data | θ , stuff)
- 2. Work out the gradient $\partial LL/\partial \theta$ using high-school calculus

$$\nabla_{\boldsymbol{\theta}} LL = \frac{\partial LL}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial LL}{\partial \theta_1} \\ \frac{\partial LL}{\partial \theta_2} \\ \vdots \\ \frac{\partial LL}{\partial \theta_n} \end{bmatrix}$$

Suppose $\theta = (\theta_1, \theta_2, ..., \theta_n)^T$ is a vector of parameters.

Task: Find MLE θ assuming known form for p(Data| θ ,stuff)

- 1. Write LL = log P(Data| θ ,stuff)
- 2. Work out the gradient $\partial LL/\partial \theta$ using high-school calculus
- 3. Solve the set of simultaneous equations

$$\frac{\partial LL}{\partial \theta_1} = 0$$

$$\frac{\partial LL}{\partial \theta_2} = 0$$

$$\vdots$$

$$\frac{\partial LL}{\partial \theta_n} = 0$$

Suppose $\theta = (\theta_1, \theta_2, ..., \theta_n)^T$ is a vector of parameters.

Task: Find MLE θ assuming known form for p(Data| θ ,stuff)

- 1. Write LL = log P(Data| θ ,stuff)
- 2. Work out the gradient $\partial LL/\partial \theta$ using high-school calculus
- 3. Solve the set of simultaneous equations

$$\frac{\partial LL}{\partial \theta_1} = 0$$

$$\frac{\partial LL}{\partial \theta_2} = 0$$

$$\vdots$$

$$\frac{\partial LL}{\partial \theta_n} = 0$$
4. Check that you're at a maximum
$$\frac{\partial LL}{\partial \theta_n} = 0$$

Suppose $\theta = (\theta_1, \theta_2, ..., \theta_n)^T$ is a vector of parameters.

Task: Find MLE θ assuming known form for p(Data| θ ,stuff)

- 1. Write LL = log P(Data| θ ,stuff)
- 2. Work out the gradient $\partial LL/\partial \theta$ using high-school calculus
- 3. Solve the set of simultaneous equations

If you can't solve them, what should you do?

$$\frac{\partial LL}{\partial \theta_1} = 0$$

$$\frac{\partial LL}{\partial \theta_2} = 0$$

$$\vdots$$

$$\frac{\partial LL}{\partial LL} = 0$$

4. Check that you're at a maximum

- Suppose you have x_1 , x_2 , ... $x_R \sim (i.i.d) N(\mu, \sigma^2)$
- But you don't know μ or σ^2
- MLE: For which $\theta = (\mu, \sigma^2)$ is $x_1, x_2, ..., x_R$ most likely?

$$\log p(x_1, x_2, ... x_R \mid \mu, \sigma^2) = -R(\log \pi + \frac{1}{2} \log \sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^R (x_i - \mu)^2$$

$$\frac{\partial LL}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{R} (x_i - \mu)$$

$$\frac{\partial LL}{\partial \sigma^2} = -\frac{R}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{R} (x_i - \mu)^2$$

- Suppose you have x_1 , x_2 , ... $x_R \sim (i.i.d) N(\mu, \sigma^2)$
- But you don't know μ or σ^2
- MLE: For which $\theta = (\mu, \sigma^2)$ is $x_1, x_2, ..., x_R$ most likely?

$$\log p(x_1, x_2, ... x_R \mid \mu, \sigma^2) = -R(\log \pi + \frac{1}{2} \log \sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^R (x_i - \mu)^2$$

$$0 = \frac{1}{\sigma^2} \sum_{i=1}^{R} (x_i - \mu)$$

$$0 = -\frac{R}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{R} (x_i - \mu)^2$$

- Suppose you have x_1 , x_2 , ... $x_R \sim (i.i.d) N(\mu, \sigma^2)$
- But you don't know μ or σ^2
- MLE: For which $\theta = (\mu, \sigma^2)$ is $x_1, x_2, ..., x_R$ most likely?

$$\log p(x_1, x_2, ... x_R \mid \mu, \sigma^2) = -R(\log \pi + \frac{1}{2} \log \sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^R (x_i - \mu)^2$$

$$0 = \frac{1}{\sigma^2} \sum_{i=1}^R (x_i - \mu) \Longrightarrow \mu = \frac{1}{R} \sum_{i=1}^R x_i$$

$$0 = -\frac{R}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{R} (x_i - \mu)^2 \Rightarrow \text{what?}$$

- Suppose you have x_1 , x_2 , ... $x_R \sim (i.i.d) N(\mu, \sigma^2)$
- But you don't know μ or σ^2
- MLE: For which $\theta = (\mu, \sigma^2)$ is $x_1, x_2, ..., x_R$ most likely?

$$\mu^{mle} = \frac{1}{R} \sum_{i=1}^{R} x_i$$

$$\sigma_{mle}^2 = \frac{1}{R} \sum_{i=1}^{R} (x_i - \mu^{mle})^2$$

Unbiased Estimators

- An estimator of a parameter is unbiased if the expected value of the estimate is the same as the true value of the parameters.
- If $x_1, x_2, ... x_R \sim \text{(i.i.d)} N(\mu, \sigma^2)$ then

$$E[\mu^{mle}] = E\left[\frac{1}{R}\sum_{i=1}^{R} x_i\right] = \mu$$

 μ^{mle} is unbiased

Biased Estimators

- An estimator of a parameter is biased if the expected value of the estimate is different from the true value of the parameters.
- If $x_1, x_2, ... x_R \sim \text{(i.i.d)} N(\mu, \sigma^2)$ then

$$E\left[\sigma_{mle}^{2}\right] = E\left[\frac{1}{R}\sum_{i=1}^{R}(x_{i} - \mu^{mle})^{2}\right] = E\left[\frac{1}{R}\left(\sum_{i=1}^{R}x_{i} - \frac{1}{R}\sum_{j=1}^{R}x_{j}\right)^{2}\right] \neq \sigma^{2}$$

 σ^2_{mle} is biased

MLE Variance Bias

• If $x_1, x_2, ... x_R \sim \text{(i.i.d)} N(\mu, \sigma^2)$ then

$$E\left[\sigma_{mle}^{2}\right] = E\left[\frac{1}{R}\left(\sum_{i=1}^{R} x_{i} - \frac{1}{R}\sum_{j=1}^{R} x_{j}\right)^{2}\right] = \left(1 - \frac{1}{R}\right)\sigma^{2} \neq \sigma^{2}$$

Intuition check: consider the case of R=1

Why should our guts expect that σ^2_{mle} would be an underestimate of true σ^2 ?

How could you prove that?

Unbiased estimate of Variance

• If $x_1, x_2, ... x_R \sim (i.i.d) N(\mu, \sigma^2)$ then

$$E\left[\sigma_{mle}^{2}\right] = E\left[\frac{1}{R}\left(\sum_{i=1}^{R} x_{i} - \frac{1}{R}\sum_{j=1}^{R} x_{j}\right)^{2}\right] = \left(1 - \frac{1}{R}\right)\sigma^{2} \neq \sigma^{2}$$

So define
$$\sigma_{\text{unbiased}}^2 = \frac{\sigma_{mle}^2}{\left(1 - \frac{1}{R}\right)}$$
 So $E[\sigma_{\text{unbiased}}^2] = \sigma^2$

Unbiased estimate of Variance

• If $x_1, x_2, ... x_R \sim (i.i.d) N(\mu, \sigma^2)$ then

$$E\left[\sigma_{mle}^{2}\right] = E\left[\frac{1}{R}\left(\sum_{i=1}^{R} x_{i} - \frac{1}{R}\sum_{j=1}^{R} x_{j}\right)^{2}\right] = \left(1 - \frac{1}{R}\right)\sigma^{2} \neq \sigma^{2}$$

$$\sigma_{\text{unbiased}}^2 = \frac{\sigma_{mle}^2}{\left(1 - \frac{1}{R}\right)} \qquad \text{So } E\left[\sigma_{\text{unbiased}}^2\right] = \sigma^2$$

So
$$E[\sigma_{\text{unbiased}}^2] = \sigma^2$$

$$\sigma_{\text{unbiased}}^2 = \frac{1}{R-1} \sum_{i=1}^{R} (x_i - \mu^{mle})^2$$

Unbiaseditude discussion

Which is best?

$$\sigma_{mle}^2 = \frac{1}{R} \sum_{i=1}^{R} (x_i - \mu^{mle})^2$$

$$\sigma_{\text{unbiased}}^2 = \frac{1}{R-1} \sum_{i=1}^{R} (x_i - \mu^{mle})^2$$

Answer:

- •It depends on the task
- •And doesn't make much difference once R--> large

Don't get too excited about being unbiased

- Assume $x_1, x_2, ... x_R \sim (i.i.d) N(\mu, \sigma^2)$
- Suppose we had these estimators for the mean

$$\mu^{suboptimal} = \frac{1}{R + 7\sqrt{R}} \sum_{i=1}^{R} x_i$$

$$\mu^{crap} = x_1$$

Are either of these unbiased?

Will either of them asymptote to the correct value as R gets large?

Which is more useful?

Maximum Conditional Likelihood Estimation (MCLE)

- Same as MLE except with conditional likelihood.
 - E.g. for regression: Given $\{(x_i, y_i)\}_{i=1}^n$, learn θ

Output

Given input Gaussian noise
$$y = f_{\theta}(x) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Deterministic function with parameters θ

Equivalent to: μ

$$y \sim \mathcal{N}(f_{\theta}(x), \sigma^2)$$

Maximum Conditional Likelihood Estimation (MCLE)

- Same as MLE except with conditional likelihood.
 - E.g. for regression: Given $\{(x_i, y_i)\}_{i=1}^n$, learn θ

Output Given input Gaussian noise
$$y = f_{\theta}(x) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$y = f_{\theta}(x) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Deterministic function with parameters θ

Equivalent to:

$$y \sim \mathcal{N}(f_{\theta}(x), \sigma^2)$$

Standard MLE:
$$\mu^{mle} = \underset{\mu}{\operatorname{arg\,max}} p(y_1, ..., y_n \mid \mu, \sigma^2)$$

Maximum Conditional Likelihood Estimation (MCLE)

- Same as MLE except with conditional likelihood.
 - E.g. for regression: Given $\{(x_i, y_i)\}_{i=1}^n$, learn θ

Output Given input Gaussian noise
$$y = f_{\theta}(x) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Deterministic function with parameters θ

Equivalent to: $\mu = f_{\boldsymbol{\theta}}(\boldsymbol{x})$ $\gamma \sim \mathcal{N}(f_{\theta}(x), \sigma^2)$

Conditional MLE:
$$\boldsymbol{\theta}^{mle} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} p(y_1, ..., y_n | \boldsymbol{\theta}, \sigma^2, \boldsymbol{x}_1, ..., \boldsymbol{x}_n)$$

Maximum a Posteriori (MAP) Estimation

$$\widehat{\boldsymbol{\theta}}_{MAP} = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathcal{D})$$

▶ Since $p(\theta|D) \propto p(D|\theta)p(\theta)$

$$\widehat{\boldsymbol{\theta}}_{MAP} = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$$

- Suppose you have \mathbf{x}_1 , \mathbf{x}_2 , ... $\mathbf{x}_R \sim \text{(i.i.d)} N(\mu, \Sigma)$
- ullet But you don't know μ or Σ
- MAP: Which (μ, Σ) maximizes $p(\mu, \Sigma \mid \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_R)$?

Step 1: Put a prior on (μ, Σ)

- Suppose you have \mathbf{x}_1 , \mathbf{x}_2 , ... $\mathbf{x}_R \sim \text{(i.i.d)} N(\mu, \Sigma)$
- ullet But you don't know μ or Σ
- MAP: Which (μ, Σ) maximizes $p(\mu, \Sigma \mid \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_R)$?

Step 1: Put a prior on (μ, Σ)

Step 1a: Put a prior on Σ

$$(v_0\text{-m-1}) \Sigma \sim \text{IW}(v_0, (v_0\text{-m-1}) \Sigma_0)$$

This thing is called the Inverse-Wishart distribution.

A PDF over SPD matrices!

- Suppose you have \mathbf{x}_1 , \mathbf{x}_2 , ... $\mathbf{x}_R \sim \text{(i.i.d)} N(\mu, \Sigma)$
- ullet But you don't know μ or Σ
- MAP: Which (μ, Σ) maximizes $p(\mu, \Sigma \mid \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_R)$?

Step 1: Put a prior on (μ, Σ)

Step 1a: Put a prior on Σ

$$(v_0\text{-m-1}) \Sigma \sim \text{IW}(v_0, (v_0\text{-m-1}) \Sigma_0)$$

This thing is called the Inverse-Wishart distribution.

A PDF over SPD matrices!

- Suppose you have \mathbf{x}_1 , \mathbf{x}_2 , ... $\mathbf{x}_R \sim \text{(i.i.d)} \ N(\mu, \Sigma)$
- ullet But you don't know μ or Σ
- MAP: Which (μ, Σ) maximizes $p(\mu, \Sigma \mid \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_R)$?

```
Step 1: Put a prior on (\mu, \Sigma)
```

Step 1a: Put a prior on Σ

$$(v_0-m-1)\Sigma \sim IW(v_0, (v_0-m-1)\Sigma_0)$$

Step 1b: Put a prior on $\mu \mid \Sigma$

$$\mu \mid \Sigma \sim N(\mu_0, \Sigma / \kappa_0)$$

Together, " Σ " and " $\mu \mid \Sigma$ " define a joint distribution on (μ , Σ)

- Suppose you have \mathbf{x}_1 , \mathbf{x}_2 , ... $\mathbf{x}_R \sim \text{(i.i.d)} \ N(\mu, \Sigma)$
- \bullet But you don't know μ or Σ
- MAP: Which (μ, Σ) maximizes $p(\mu, \Sigma \mid \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_R)$?

Step 1: Put a prior on
$$(\mu, \Sigma)$$

Step 1a: Put a prior on Σ

$$(v_0-m-1)\Sigma \sim IW(v_0, (v_0-m-1)\Sigma_0)$$

Step 1b: Put a prior on $\mu \mid \Sigma$

$$\mu \mid \Sigma \sim N(\mu_0, \Sigma / \kappa_0)$$

Why do we use this form of prior?

- Suppose you have \mathbf{x}_1 , \mathbf{x}_2 , ... $\mathbf{x}_R \sim \text{(i.i.d)} \ N(\mu, \Sigma)$
- ullet But you don't know μ or Σ
- MAP: Which (μ, Σ) maximizes $p(\mu, \Sigma \mid \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_R)$?

Step 1: Put a prior on
$$(\mu, \Sigma)$$

Step 1a: Put a prior on Σ

$$(v_0\text{-m-1})\Sigma \sim \text{IW}(v_0, (v_0\text{-m-1})\Sigma_0)$$

Step 1b: Put a prior on $\mu \mid \Sigma$

$$\mu \mid \Sigma \sim N(\mu_0, \Sigma / \kappa_0)$$

Why do we use this form of prior?

Actually, we don't have to

But it is computationally and algebraically convenient...

...it's a conjugate prior.

- Suppose you have \mathbf{x}_1 , \mathbf{x}_2 , ... $\mathbf{x}_R \sim (i.i.d) N(\mu, \Sigma)$
- MAP: Which (μ, Σ) maximizes $p(\mu, \Sigma \mid \mathbf{x}_1, \mathbf{x}_2, ... \mathbf{x}_R)$?

Step 1: Prior:
$$(v_0-m-1) \Sigma \sim IW(v_0, (v_0-m-1) \Sigma_0), \mu \mid \Sigma \sim N(\mu_0, \Sigma / \kappa_0)$$

Step 2:

$$\overline{\mathbf{x}} = \frac{1}{R} \sum_{k=1}^{R} \mathbf{x}_{k}$$

$$\overline{\mathbf{x}} = \frac{1}{R} \sum_{k=1}^{R} \mathbf{x}_{k} \left[\mathbf{\mu}_{R} = \frac{\kappa_{0} \mathbf{\mu}_{0} + R \overline{\mathbf{x}}}{\kappa_{0} + R} \right] \frac{\nu_{R} = \nu_{0} + R}{\kappa_{R} = \kappa_{0} + R}$$

$$v_R = v_0 + R$$

$$\kappa_R = \kappa_0 + R$$

$$(\nu_R + m - 1)\Sigma_R = (\nu_0 + m - 1)\Sigma_0 + \sum_{k=1}^R (\mathbf{x}_k - \overline{\mathbf{x}})(\mathbf{x}_k - \overline{\mathbf{x}})^T + \frac{(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)^T}{1/\kappa_0 + 1/R}$$

Step 3: Posterior:
$$(v_R + m - 1)\Sigma \sim IW(v_R, (v_R + m - 1)\Sigma_R),$$

 $\mu \mid \Sigma \sim N(\mu_R, \Sigma / \kappa_R)$

Result:
$$\mu^{\text{map}} = \mu_{\text{R}}$$
, $E[\Sigma | \mathbf{x}_{1}, \mathbf{x}_{2}, ... \mathbf{x}_{R}] = \Sigma_{\text{R}}$

Being Bayesian: M

- MAP: Which (μ,Σ) n

Step 1: Prior: $(v_0$ -m-1) $\Sigma \sim$

Step 2:

- Suppose you have x Conjugate priors mean prior form and posterior form are same and characterized by "sufficient statistics" of the data.
 - •The marginal distribution on μ is a student-t
 - •One point of view: it's pretty academic if R > 30

$$\overline{\mathbf{x}} = \frac{1}{R} \sum_{k=1}^{R} \mathbf{x}_{k} \left[\mathbf{\mu}_{R} = \frac{\kappa_{0} \mathbf{\mu}_{0} + R \overline{\mathbf{x}}}{\kappa_{0} + R} \right] \frac{\nu_{R} = \nu_{0} + R}{\kappa_{R} = \kappa_{0} + R}$$

$$(\nu_R + m - 1)\Sigma_R = (\nu_0 + m - 1)\Sigma_0 + \sum_{k=1}^R (\mathbf{x}_k - \overline{\mathbf{x}})(\mathbf{x}_k - \overline{\mathbf{x}})^T + \frac{(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)(\overline{\mathbf{x}} - \boldsymbol{\mu}_0)^T}{1/\kappa_0 + 1/R}$$

Step 3: Posterior:
$$(v_R+m-1)\Sigma \sim IW(v_R, (v_R+m-1)\Sigma_R),$$

$$\mu \mid \Sigma \sim N(\mu_R, \Sigma \mid \kappa_R)$$

Result:
$$\mu^{\text{map}} = \mu_{\text{R}}$$
, $E[\Sigma | \mathbf{x}_{1}, \mathbf{x}_{2}, ... \mathbf{x}_{R}] = \Sigma_{\text{R}}$

Vector/Matrix Derivatives

Best reference: The Matrix Cookbook
 (www.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf)

1	Basics		
	1.1	Trace	
	1.2	Determinant	
	1.3	The Special Case 2x2	
2	Derivatives		
	2.1	Derivatives of a Determinant	
	2.2	Derivatives of an Inverse	
	2.3	Derivatives of Eigenvalues	
	2.4	Derivatives of Matrices, Vectors and Scalar Forms	
	2.5	Derivatives of Traces	
	2.6	Derivatives of vector norms	
	2.7	Derivatives of matrix norms	
	2.8	Derivatives of Structured Matrices	

Vector/Matrix Derivatives

Second best reference: Google

Vector Gradient

A <u>Gradient</u> is the derivative of a scalar with respect to a vector.

scalar function
$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \left(\left[\frac{\partial f(\mathbf{x})}{\partial x_1} \right] \quad \left[\frac{\partial f(\mathbf{x})}{\partial x_2} \right] \quad \dots \quad \left[\frac{\partial f(\mathbf{x})}{\partial x_n} \right] \right)^T$$
 parameter vector

If we have the function: $f(\mathbf{x}) = 2x_1x_2 + x_2^2 + x_1x_3^2$, then the Gradient is

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \left(\begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \end{bmatrix} & \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_2} \end{bmatrix} & \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_3} \end{bmatrix} \right)^T$$
$$= \begin{bmatrix} 2x_2 + x_3^2 & 2x_1 + 2x_2 & 2x_1x_3 \end{bmatrix}^T$$

Matrix Gradient

scalar function parameter matrix
$$\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \begin{pmatrix} \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{1,1}} \end{bmatrix} & \dots & \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{1,m}} \end{bmatrix} \\ \vdots & \ddots & \vdots \\ \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{n,1}} \end{bmatrix} & \dots & \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{n,m}} \end{bmatrix} \end{pmatrix}$$

Jacobian

A <u>Jacobian</u> is a the derivative of a vector with respect to a transposed vector.

vector function parameter vector
$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}^T} = \begin{pmatrix} \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} \end{bmatrix} & \dots & \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_n} \end{bmatrix} \\ \vdots & \dots & \vdots \\ \begin{bmatrix} \frac{\partial f_k(\mathbf{x})}{\partial x_1} \end{bmatrix} & \dots & \begin{bmatrix} \frac{\partial f_k(\mathbf{x})}{\partial x_n} \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial \mathbf{x}} \end{bmatrix}^\mathsf{T} \\ \vdots & \vdots & \vdots \\ \begin{bmatrix} \frac{\partial f_k(\mathbf{x})}{\partial x_1} \end{bmatrix} & \dots & \begin{bmatrix} \frac{\partial f_k(\mathbf{x})}{\partial x_n} \end{bmatrix} \end{pmatrix}$$

If we have the function

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} 3x_1^2 + x_2 & \ln(x_1) & \sin(x_2) \end{bmatrix}^T$$

Then the Jacobian is

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}^T} = \begin{pmatrix} 6x_1 & 1\\ \frac{1}{x_1} & 0\\ 0 & \cos(x_2) \end{pmatrix}$$

Hessian

The <u>Hessian</u> is derivative of a Gradient with respect to a transposed vector.

scalar function parameter vector
$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = \begin{pmatrix} \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1^2} \end{bmatrix} & \dots & \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1 \partial x_n} \end{bmatrix} \\ \vdots & \ddots & \vdots \\ \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_n \partial x_1} \end{bmatrix} & \dots & \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_n^2} \end{bmatrix} \end{pmatrix}$$

Because our above Gradient is

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} 2x_2 + x_3^2 & 2x_1 + 2x_2 & 2x_1x_3 \end{bmatrix}^T$$

The Hessian would be

$$\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^T} = \begin{pmatrix} 0 & 2 & 2x_3 \\ 2 & 2 & 0 \\ 2x_3 & 0 & 2x_1 \end{pmatrix}$$

There are two ways of computing gradients...

$$f(\boldsymbol{\theta}) = \|\boldsymbol{x} - \boldsymbol{\theta}\|^2$$
 $\frac{df}{d\boldsymbol{\theta}} = ?$

1. Compute each element of gradient using scalar partial derivatives:

$$f(\boldsymbol{\theta}) = \sum_{j} (x_{j} - \theta_{j})^{2} \qquad \left(\frac{df}{d\boldsymbol{\theta}}\right)_{j} = \frac{\partial f}{\partial \theta_{j}} = \frac{\partial}{\partial \theta_{j}} (x_{j} - \theta_{j})^{2} = 2(\theta_{j} - x_{j})$$
(using chain rule, power rule)

2. Directly use properties of vector calculus.

$$f(\theta) = (x - \theta)^{\mathrm{T}}(x - \theta)$$
 $\frac{df}{d\theta} = 2(\theta - x)$ (using **vector** chain rule, **vector** power rule)

Important Properties

• Linearity:

$$\frac{d}{dx}[a \cdot f(x) + b \cdot g(x)] = a \cdot \frac{df}{dx} + b \cdot \frac{dg}{dx}$$

• Product Rule:

$$\frac{d}{dx}f(x) \cdot g(x) = f(x) \cdot \frac{dg}{dx} + g(x) \cdot \frac{df}{dx}$$

$$\frac{d}{dx}f(x)^{T}g(x) = \left(\frac{dg}{dx^{T}}\right)^{T}f(x) + \left(\frac{df}{dx^{T}}\right)^{T}g(x)$$

• Chain Rule:

$$\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} = f'(g(x)) \cdot \frac{dg}{dx} \qquad f: \mathbb{R} \to \mathbb{R}, \ g: \mathbb{R}^p \to \mathbb{R}$$

$$\frac{df}{dx} = \left(\frac{dg}{dx^{\mathrm{T}}}\right)^{\mathrm{T}} \frac{df}{dg} \qquad f: \mathbb{R}^q \to \mathbb{R}, \ g: \mathbb{R}^p \to \mathbb{R}^q$$

 $(p \times 1) (p \times q) (q \times 1)$

Hint: the sizes should match up.

Examples

$$L = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = f(\mathbf{x})^{\mathrm{T}} \mathbf{g}(\mathbf{x})$$
$$f(\mathbf{x}) = \mathbf{x}, \qquad \mathbf{g}(\mathbf{x}) = \mathbf{A} \mathbf{x}$$
$$\frac{dL}{d\mathbf{x}} = \left(\frac{d\mathbf{f}}{d\mathbf{x}^{\mathrm{T}}}\right)^{\mathrm{T}} \mathbf{g}(\mathbf{x}) + \left(\frac{d\mathbf{g}}{d\mathbf{x}^{\mathrm{T}}}\right)^{\mathrm{T}} f(\mathbf{x})$$
$$\frac{dL}{d\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{A}^{\mathrm{T}} \mathbf{x} = (\mathbf{A} + \mathbf{A}^{\mathrm{T}}) \mathbf{x}$$

Examples

$$L = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{f}(\mathbf{x})^{\mathrm{T}} \mathbf{g}(\mathbf{x})$$
$$\mathbf{f}(\mathbf{x}) = \mathbf{x}, \qquad \mathbf{g}(\mathbf{x}) = \mathbf{A} \mathbf{x}$$
$$\frac{dL}{d\mathbf{x}} = \left(\frac{d\mathbf{f}}{d\mathbf{x}^{\mathrm{T}}}\right)^{\mathrm{T}} \mathbf{g}(\mathbf{x}) + \left(\frac{d\mathbf{g}}{d\mathbf{x}^{\mathrm{T}}}\right)^{\mathrm{T}} \mathbf{f}(\mathbf{x})$$
$$\frac{dL}{d\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{A}^{\mathrm{T}} \mathbf{x} = (\mathbf{A} + \mathbf{A}^{\mathrm{T}}) \mathbf{x}$$

$$L = f(\mathbf{a}^{\mathrm{T}}\mathbf{x}) = f(g(\mathbf{x}))$$
$$g(\mathbf{x}) = \mathbf{a}^{\mathrm{T}}\mathbf{x}$$

$$\frac{dL}{dx} = \frac{df}{da} \cdot \frac{dg}{dx} = f'(g) \cdot a = f'(a^{T}x) \cdot a$$

Other Important Properties

Refer to The Matrix Cookbook

$$\frac{\partial \mathbf{x}^T \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{B} + \mathbf{B}^T) \mathbf{x}$$

$$\mathbf{x}^T \mathbf{D} \mathbf{x}_0$$
(81)

$$\frac{\partial \mathbf{b}^T \mathbf{X}^T \mathbf{D} \mathbf{X} \mathbf{c}}{\partial \mathbf{X}} = \mathbf{D}^T \mathbf{X} \mathbf{b} \mathbf{c}^T + \mathbf{D} \mathbf{X} \mathbf{c} \mathbf{b}^T$$
(82)

$$\frac{\partial}{\partial \mathbf{X}} (\mathbf{X}\mathbf{b} + \mathbf{c})^T \mathbf{D} (\mathbf{X}\mathbf{b} + \mathbf{c}) = (\mathbf{D} + \mathbf{D}^T) (\mathbf{X}\mathbf{b} + \mathbf{c})\mathbf{b}^T$$
(83)

Assume W is symmetric, then

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{A}\mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s}) = -2\mathbf{A}^T \mathbf{W} (\mathbf{x} - \mathbf{A}\mathbf{s})$$
(84)
$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{s})$$
(85)

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x} - \mathbf{s})^T \mathbf{W} (\mathbf{x} - \mathbf{s}) = 2\mathbf{W} (\mathbf{x} - \mathbf{s}) \tag{85}$$

- Refer to Wikipedia:
 - https://en.wikipedia.org/wiki/Gradient
 - https://en.wikipedia.org/wiki/Matrix calculus

Next week: convexity, gradient descent, etc...