2018 Fall CTP431: Music and Audio Computing

Sound Synthesis (Part 1)

Graduate School of Culture Technology, KAIST

Juhan Nam

Outlines

- Signal model (analog / digital) Part 1
 - Additive Synthesis
 - Subtractive Synthesis
 - Modulation Synthesis
 - Distortion Synthesis
- Sample model (digital) Part 2
 - Sampling Synthesis
 - Granular Synthesis
 - Concatenative Synthesis
- Physical model (digital) Part 2
 - Digital Waveguide Model

Signal Model

- Modeling the patterns of musical tones using elementary waveforms
 - Time domain: ADSR
 - Frequency domain: spectrum
- Types of signal models
 - Additive synthesis: a set of sine waveforms
 - Subtractive synthesis: sawtooth, square waveforms + filters
 - Frequency modulation synthesis: a pair of sine waveforms
 - Distortion synthesis: sine waveforms + nonlinear units
- These techniques date back to the analog age

Additive Synthesis

- Synthesize sounds by adding multiple sine oscillators
 - Also called Fourier synthesis

Telharmonium

- Additive synthesizer using electro-magnetic "tone wheels" (Cahill, 1897)
 - Transmitted through telephone lines
 - Subscription only but the the business failed

Tone wheel

Hammond Organ

- Drawbars
 - Control the levels of individual tonewheels

Theremin

- A sinusoidal tone generator
 - Two antennas are remotely controlled to adjust pitch and volume

Theremin (by Léon Theremin, 1928)

Theremin (Clara Rockmore)

https://www.youtube.com/watch?v=pSzTPGINa5U

Sound Examples

- Web Audio Demo
 - http://femurdesign.com/theremin/
 - http://www.venlabsla.com/x/additive/additive.html
 - http://codepen.io/anon/pen/jPGJMK
- Examples (instruments)
 - Kurzweil K150
 - https://soundcloud.com/rosst/sets/kurzweil-k150-fs-additive
 - Kawai K5, K5000

Subtractive Synthesis

- Synthesize sounds by filtering wide-band oscillators
 - Source-Filter model

Moog Synthesizers

MiniMoog (1970)

Moog Synthesizers

Architecture

"Switched-On-Bach" by Wendy Carlos (1968)

Oscillators

Classic waveforms

Modulation

- Pulse width modulation
- Hard-sync
- More rich harmonics

Amp Envelop Generator

- Amplitude envelope generation
 - ADSR curve: attack, decay, sustain and release
 - Each state has a pair of time and target level

Examples

Web Audio Demos

- http://www.google.com/doodles/robert-moogs-78th-birthday
- http://webaudiodemos.appspot.com/midi-synth/index.html
- http://aikelab.net/websynth/
- http://nicroto.github.io/viktor/

Example Sounds

- SuperSaw
- Leads
- Pad
- MoogBass
- 8-Bit sounds: https://www.youtube.com/watch?v=tf0-Rrm9dl0
- TR-808: https://www.youtube.com/watch?v=YeZZk2czG1c

Modulation Synthesis

- Modulation is originally from communication theory
 - Carrier: channel signal, e.g., radio or TV channel
 - Modulator: information signal, e.g., voice, video
- Types of modulation synthesis
 - Amplitude modulation (or ring modulation)
 - Frequency modulation
- Decreasing the frequency of carrier to hearing range can be used to synthesize sound
 - Generate new sinusoidal components
 - Modulation is non-linear processing

Ring Modulation / Amplitude Modulation

- Change the amplitude of one source with another source
 - Slow change: tremolo
 - Fast change: generate a new tone

 $a_m(t)A_c\cos(2\pi f_c t)$

Ring Modulation

 $(1 + a_m(t))A_c\cos(2\pi f_c t)$

Amplitude Modulation

Ring Modulation / Amplitude Modulation

Frequency domain

- Expressed in terms of its sideband frequencies
- The sum and difference of the two frequencies are obtained according to trigonometric identity
- If the modulator is a non-sinusoidal tone, a mirrored-spectrum with regard to the carrier frequency is obtained

Examples

- Tone generation
 - SawtoothOsc x SineOsc
 - https://www.youtube.com/watch?v=yw7_WQmrzuk
- Ring modulation is often used as an audio effect
 - http://webaudio.prototyping.bbc.co.uk/ring-modulator/

Frequency Modulation

- Change the frequency of one source with another source
 - Slow change: vibrato
 - Fast change: generate a new (and rich) tone
 - Invented by John Chowning in 1973 → Yamaha DX7

Frequency Modulation

- Frequency Domain
 - Expressed in terms of its sideband frequencies
 - Their amplitudes are determined by the Bessel function
 - The sidebands below 0 Hz or above the Nyquist frequency are folded

$$y(t) = A_c \sum_{k=-\infty}^{k=-\infty} J_k(\beta) \cos(2\pi (f_c + kf_m)t)$$

Frequency Modulation

Bessel Function

$$J_k(\beta) = \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\beta}{2})^{k+2n}}{n!(n+k)!}$$

The Effect of Modulation Index

FM Synthesizer

Yamaha DX7 (1983)

Examples

- Web Audio Demo
 - http://www.taktech.org/takm/WebFMSynth/

- Sound Examples
 - Bell
 - Wood
 - Brass
 - Electric Piano
 - Vibraphone

Non-linear Synthesis (wave-shaping)

- Generate a rich sound spectrum by distorting sine waveforms using non-linear transfer functions
- Also called "distortion synthesis"

x'=gx: g correspond to the "gain" of the distortion

Distortion Transfer Function

- Examples of transfer function: y = f(x)
 - $y = 1.5x' 0.5x'^3$
 - y = x'/(1+|x'|)
 - $y = \sin(x')$
 - Chebyshev polynomial: $T_{k+1}(x) = 2xT_k(x)-T_{k-1}(x)$

$$T_0(x)=1$$
, $T_1(x)=x$,
 $T_2(x)=2x^2-1$, $T_2(x)=4x^3-3x$