

PQ-NET:

A Generative Part Seq2Seq Network for 3D Shapes

Rundi Wu^{1,4} Yixin Zhuang¹ Kai Xu² Hao Zhang^{3,4} Baoquan Chen^{1,4}

¹ Center on Frontiers of Computing Studies, Peking University

² National University of Defense Technology

³ Simon Fraser University

⁴AICFVE, Beijing Film Academy

3D shape generation

Voxel grid

[3DGAN, NIPS 2016]

Mesh

[AtlasNet, CVPR 2018]

Point cloud

[Pointflow, ICCV 2019]

Implicit function

[DeepSDF, CVPR 2019]

- 1. J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances in Neural In-formation Processing Systems, pages 82–90, 2016.
- 2. G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan. Pointflow: 3d point cloud generation with con-tinuous normalizing flows. 2019 IEEE International Conference on Computer Vision (ICCV).
- 3. T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A papier-ma^che approach to learning 3d surface generation. In *Proc. CVPR*, pages 216–224, 2018.
- 4. J.J.Park,P.Florence,J.Straub,R.Newcombe,andS.Love- grove. DeepSDF: Learning continuous signed distance func- tions for shape representation. In CVPR, 2019.

Structural 3D shape generation

[GRASS, SIG 2017]

[3D-PRNN², ICCV 2017]

[G2L³, SIGA 2018]

[StructureNet, SIGA 2019]

- 1. J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and L. Guibas. Grass: Generative recursive autoencoders for shape structures. ACM Trans. on Graph. (SIGGRAPH), 2017.
- 2. C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem. 3D- PRNN: Generating shape primitives with recurrent neural networks. 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017.
- 3. H. Wang, N. Schor, R. Hu, H. Huang, D. Cohen-Or, and H. Huang. Global-to-local generative model for 3d shapes. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA), 37(6):214:1214:10, 2018.
- 4. K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. Mitra, and L. J. Guibas. Structurenet: Hierarchical graph networks for 3d shape generation. ACM Trans. on Graph. (SIGGRAPH Asia), 2019.

Shape structure presentations

hierarchical part organization

phrases nested in phrases

find

linear part order

 \approx

linear string of words

the men will find the books

Generate as a sequence

Our network, PQ-NET, learns 3D shape representation via sequential part assembly

Method

- a. Apply IM-NET to encode each scaled part's geometry
- b. Model sequential part assembly using a Sequence-to-Sequence Auto-encoder (Seq2Seq AE)

Method - Part geometry encoding

Similar architecture as IM-NET¹:

- a CNN encoder e maps 64³ voxelized part P to 128D vector
- ullet a MLP decoder d that predicts the occupancy of a given point p

$$\mathcal{L}(P) = \mathbb{E}_{p \in T_P} |d(e(P), p) - \mathcal{F}(p)|^2$$
 A set of sampled ground truth points from P signed function

^{1.} Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Method - Seq2Seq AE

Encoder:

a bidirectional stacked RNN to encode part sequence

- Stacked GRU Cell
- Number of parts in one-hot representation
- Part Box Parameter : 6D, position + size
- Part Geometry Feature : latent vector encoded by IM-NET

Method - Seq2Seq AE

Decoder:

a stacked RNN to predict geometry and structure feature separately

GRU Cell

Initial input: zero vector

Stop sign: a confidence value between 0~1

Part Box Parameter: 6D, position + size

Part Geometry Feature: latent vector to be decoded by IM-NET

Method - Seq2Seq AE

Training losses

- MSE loss on the reconstruction of geometry feature g_i and structure feature b_i
- Binary Cross Entropy loss on the stop sign s_i predicted by decoder

$$\mathcal{L}_{\mathbf{r}}(S) = \frac{1}{k} \sum_{i=1}^{k} [\beta ||g_i' - g_i||_2 + ||b_i' - b_i||_2]$$

$$\mathcal{L}_{\text{stop}}(S) = \frac{1}{k} \sum_{i=1}^{k} [-s_i \log s_i' - (1 - s_i) \log(1 - s_i')]$$

Results: shape auto-encoding

Metrics	Method	Chair Table		Lamp
IoU	Ours-64	67.29	47.39	39.56
	IM-NET-64	62.93	56.14	41.29
CD	Ours-64	3.38	5.49	11.49
	Ours-256	2.86	5.69	10.32
	Ours-Cross-256	2.46	4.50	4.87
	IM-NET-64	3.64	6.75	12.43
	IM-NET-256	3.59	6.31	12.19
LFD	Ours-64	2734	2824	6254
	Ours-256	2441	2609	5941
	Ours-Cross-256	2501	2415	4875
	IM-NET-64	2830	3446	6262
	IM-NET-256	2794	3397	6622

Results: shape generation

Category	Method	COV	MMD	JSD
Chair	Ours	54.91	8.34	0.0083
	IM-NET	52.35	7.44	0.0084
	StructureNet	29.51	9.67	0.0477
Table	Ours	56.51	7.56	0.0057
	IM-NET	56.67	6.90	0.0047
	StructureNet	16.04	14.98	0.0725
Lamp	Ours	87.95	10.01	0.0215
	IM-NET	81.25	10.45	0.0230
	StructureNet	35.27	17.29	0.1719

Results: shape generation

Results: latent space interpolation

Results: single view reconstruction

Results: comparison to 3D-PRNN

- Shape reconstruction from single depth image
- Compare on two orders: (A) PartNet default (B) enforced top-down

Method	Order	Chair	Table	Lamp	Average
Ours	A	61.47	53.67	52.94	56.03
Ours	В	58.68	48.58	52.17	53.14
3D-PRNN	A	37.26	51.30	47.26	45.27
	В	36.46	51.93	43.83	44.07

Results: applications

- Order denosing and part correspondence
 - Re-train the model the correct the input order

Results: applications

- Partial shape completion
 - Re-train the model to reconstruct from partial shape input

Limitation

- PQ-NET do not produce part relations
 - Comparing to prior works that seek to hierarchical representation
- The order of parts could affect the performance
 - A consistent part order over the dataset is required

Thanks!

Code and data: https://github.com/ChrisWu1997/PQ-NET