Chapter 1

Arthur Chen

September 1, 2022

1.1 Probability spaces, measures, and σ -algebras

Problem 1.1.4

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and A, B, A_i events in \mathcal{F} . Prove the following properties of every probability measure.

Part a

Monotonicity: If $A \subset B$ then $P(A) \leq P(B)$.

If A is not a proper subset of B, then A = B and equality follows because P is a function. Otherwise, A partitions B into A and $B \setminus A$. Then by countable subadditivity,

$$P(B) = P(A) + P(B \setminus A) \ge P(A)$$

by the nonnegativity of measure.

Part b

Sub-additivity:

$$A \subset \cup_i A_i \longrightarrow \mathbf{P}(A) \leq \sum_i \mathbf{P}(A_i)$$

Let $B_i = \bigcup_{k=1}^i A_k$, and $C_i = B_i - B_{i-1}$, letting $B_0 = \emptyset$. Then $\bigcup_i A_i = \bigcup_i C_i$, and $A \subset \bigcup_i C_i$. By monotonicity, $\mathbf{P}(A) \leq \mathbf{P}(\bigcup_i C_i)$. Since the C_i are disjoint, $\mathbf{P}(\bigcup_i C_i) = \sum_{i=1} \mathbf{P}(C_i)$. Since $C_i = \bigcup_{j=1}^i A_j - \bigcup_{k=1}^{i-1} A_k$, $C_i \subset A_i$, so by monotonicity,

$$P(A) \le \sum_{i=1} P(C_i) \le \sum_{i=1} P(A_i)$$

Part c

Continuity from Below:

 $A_i \uparrow A$ implies $\mathbf{P}(A_i) \uparrow \mathbf{P}(A)$.

Note that $P(A_i)$ is weakly increasing.

Define $B_i = A_i - A_{i-1}$, and let $A_0 = \emptyset$. Then $A_i = \bigcup_{k=1}^i B_i$. Then by disjointedness $\mathbf{P}(A_i) = \sum_{k=1}^i \mathbf{P}(B_k)$ implies

$$A = \bigcup_{i=1}^{\infty} = \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{i} B_k = \bigcup_{i=1}^{\infty}$$

and by countable additivity,

$$\boldsymbol{P}(A) = \sum_{k=1}^{\infty} \boldsymbol{P}(B_k)$$

Since the range of P is [0,1], $|P(A)| < \infty$ and the series $\sum_{k=1}^{\infty} P(B_k)$ converges to P(A). Since $A_i = \bigcup_{k=1}^{i} B_k$, $P(A_i)$ is the *i*th partial sum of the $P(B_k)$ series, which converges. Thus the $P(A_i)$ sequence converges to P(A).

Part d

Continuity from Above:

 $A_i \downarrow A, \cap_i^{\infty} A_i = A \text{ implies } \boldsymbol{P}(A_i) \downarrow A.$

Consider A_i^C . The A_i^C are decreasing sets because the A_i are decreasing. $\bigcap_{i=1}^{\infty} A_i = A$ implies $A^C = (\bigcap_{i=1}^{\infty} A_i)^C = \bigcup_{i=1}^{\infty} A_i^C$. By continuity from below, $P(A_i^C) \uparrow P(A^C)$. Because $P(\Omega) = 1$, this implies $P(A_i) \downarrow P(A)$ as desired.

Problem 1.1.5

Prove that a finitely additive non-negative set function μ on a measurable space (Ω, \mathcal{F}) with the 'continuity' property

$$B_n \subset \mathcal{F}, B_n \downarrow \emptyset, \mu(B_n) < \infty \longrightarrow \mu(B_n) \to 0$$

must be countably additive if $\mu(\Omega) < \infty$. Give an example that it is not necessarily so when $\mu(\Omega) = \infty$.

Let $A_n \in \mathcal{F}$ be a countable collection of disjoint, measurable sets. Let $B_k = \bigcup_{i=k}^{\infty} A_i$.

Since sigma-algebras are closed under countable union, $B_k \in \mathcal{F}$ for all $k \in \mathbb{N}$. Since $\mu(\Omega) < \infty$, monotonicity implies that $\mu(B_k) < \infty$.

Lemma 1 $B_k \downarrow \emptyset$.

Proof: The limit suupremum of B_k is the set of points x such that $x \in B_k$ for infinitely many k. I will show this set is empty.

 B_k is the union of disjoint sets A_i , so $x \in B_k$ for some k implies that $x \in A_j$ for some $j \in \mathbb{N}$. This then implies that $x \in B_k$ for $k \le k$, and $x \notin B_k$ for k > j. Thus x is only in a finite number of B_k . Thus $\limsup B_k = \emptyset$. Since $\limsup B_k = \emptyset$. Since the upper and lower limit equal each other, $\limsup B_k = \emptyset$. Since the B_k are weakly decreasing, the lemma is proved.

We will now prove the main result. For all $n \in \mathbb{N}$, finite additivity means

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{n} P(A_i) + P(\bigcup_{i=n+1}^{\infty} A_i) = \sum_{i=1}^{n} P(A_i) + P(B_{n+1})$$

Taking limits, the last term goes to zero, leaving

$$P(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

as desired.

For an example of how this breaks down when $\mu(\Omega) = \infty$, let $\Omega = \mathbb{N}$, $\mathcal{F} = 2^{\mathbb{N}}$, and μ be finitely-additive with $\mu(\emptyset) = 0$ and the following properties:

- If $A_n \in \mathcal{F}$ is an event such that A is a singleton that only contains $n \in N$, then $\mu(A_n) = \frac{1}{2^n}$.
- If $A \in \mathcal{F}$ is infinite, $\mu(A) = \infty$.

Thus, $\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(\Omega) = \infty$, but $\lim_{n\to\infty} \sum_{i=1}^n \mu(A_i) = 2$. Thus μ is not countably additive.

Problem 1.1.8

Suppose P is non-atomic and $A \in F$ with P(A) > 0.

Part a

Show that for every $\epsilon > 0$, we have $B \subset A$ such that $0 < P(B) < \epsilon$.

If $\epsilon \geq P(A)$, then the proof is trivial. Otherwise, we will construct a sequence of decreasing subsets A_n such that eventually, $P(A_n) < \epsilon$. Let $A_1 = A$. Because P is nonatomic, there exists $B_1 \subset A, B_1 \in \mathcal{F}$ such that $P(B_1) < P(A_1)$. Since sigma-algebras are closed under complements, $A_1 \setminus B_1$ is also measurable, with $P(B_1) + P(A_1 \setminus B_1) = P(A_1)$. Because of this, we know that $\min(P(B_1), P(A_1 \setminus B_1)) \leq \frac{1}{2}P(A_1)$. Denote the subset with the smaller measure as A_2 , and repeat this process to create A_i . Note that the A_i s are measurable by induction.

Since at each step, $P(B_i) < P(A_i)$, $P(B_i)$, $P(A_i \setminus B_i) > 0$. Thus, we construct a decreasing sequence $A_1 \supset A_2 \supset \dots$ such that at each step, $0 < P(A_i) \le \frac{P(A)}{2^i}$. Eventually, for large enough i, we will get a A_i with $P(A_i) < \epsilon$.

Part b

Prove that if $0 < a < \mathbf{P}(A)$, then there exists $B \subseteq A$ with $\mathbf{P}(B) = a$.

I will follow the hint used in the notes. Let $\epsilon_n \downarrow 0$ be arbitrary but fixed. Define inductively the numbers x_n and sets $G_n, H_n \in \mathcal{F}$ as follows.

Let $H_0 = \emptyset$ and $H_n = \bigcup_{k < n} G_k$. What we're going to do is repeatedly take slices out of A. Denote these slices G_i . H_n is the union of all the previous slices, and we keep taking slices G_i to slowly increase $P(H_n)$ up to a, with ϵ_n controlling the rate of convergence. We construct these sets inductively. We start with the base case.

We first figure out what the 'maximum' possible slice is. Let $x_n = \sup\{P(G): G \subset A \setminus H_n, P(H_n \cup G) \leq a\}$. In other words, x_n is limiting value of the possible Gs at this nth step, such that $P(H_{n+1})$ will be $\leq a$.

This is where the non-atomic assumption comes in. $A \in \mathcal{F}$ by assumption, and $H_0 = \emptyset \in \mathcal{F}$ trivially. At the n = 1 step, $A \setminus H_1 = A$ is measurable. By the assumption that \mathbf{P} is nonatomic and from Part a, there exists a $G \subset A$ such that $\mathbf{P}(G) < a$. Thus this supremum is over a nonempty set, and x_1 is a real number.

We now determine the actual G_1 we take. Because x_1 is the supremum of possible G_1 subsets we can take, we can take a G_1 such that $P(G_1)$ is arbitrarily close to x_1 . This is where the ϵ_1 comes in; it controls how arbitrarily close to x_1 we want $P(G_1)$ to be.

Thus, let G_1 be a set $G_1 \subset A \setminus H_1 = A$ such that $\mathbf{P}(H_1 \cup G_1) \leq a$ and $\mathbf{P}(G_1) \geq (1 - \epsilon_1)x_1$. As discussed above, this construction is well defined. We thus have a G_1 with the following properties:

- $P(H_1 \cup G_1) \leq a$
- SOMETHING ABOUT HOW THE G1 ARE GETTING CLOSER TO a

TODO

inductively, $H_n \in \mathcal{F}$ for all $n \in \mathbb{N}$, implying $A \setminus H_n \in \mathcal{F}$ for all $n \in \mathbb{N}$. Now using the non-atomic assumption, there exists at $G \subset A \setminus H_n$ such that $\mathbf{P}(G) < \mathbf{P}(A \setminus H_n) = \mathbf{P}(A) - \mathbf{P}(H_n)$.