# **Valbal Trajectory Planning**

Joan Creus-Costa and John Dean
Stanford Student Space Initiative

December 6, 2018

# **System Dynamics**

#### Assumptions

- $F_d \propto v$  i.e. drag is linear.
- $F_l F_g = F_d$  i.e. the balloon is always at terminal velocity

#### Equations of motion

- let  $\ell = F_\ell F_g$  be the net lift on the balloon
- $\dot{\ell}$  is commanded by controller
- $-\dot{v}(t) = k_d(\dot{\ell}(t) + w_{\dot{\ell}}(t))$
- $-\dot{h}(t) = v(t) + w_v(t)$
- $\mathcal{L}\{h(t)/\dot{\ell}(t)\} = k_d/s^2$



 $F_d$ : Force of drag

 $F_g$ : Gravity

 $F_{\ell}$ : Buoyant force

v: vertical velocity of balloon

 $w_v$ : vertical velocity of

surrounding air

### **Plant Block Diagram**



 $\dot{\ell}$ : commanded change in lift (valve and ballast actions)

 $w_{\ell}$ : atmospheric lift disturbance

 $w_v$ : atmosphereic velocity disturbance

h: altitude

$$x = \begin{bmatrix} h \\ v \end{bmatrix} \qquad u = \dot{\ell}$$

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ k_d \end{bmatrix} u + \begin{bmatrix} w_v \\ k_d w_{\dot{\ell}} \end{bmatrix}$$

#### **Controller Block Diagram**



- $f_1(v\,;v_{
  m lim})$  clamp on the velocity commanded by the altitude loop set by  $v_{
  m lim}$ 
  - $f_2(\ell\,; au)$  deadband on the controller effort set by au
    - $h_c$  commanded altitude (set by Flight Controller)
    - $v_c commanded \ velocity \ (output \ of \ position \ loop)$ 
      - $c_c$  commanded change in lift per unit time (output of velocity loop)
    - $w_{\dot{\ell}}$   $\,$  atmospheric disturbances that change balloon lift (heating/cooling)
    - $w_v$  atmospheric disturbances that change balloon velocity (turbulence)
      - h balloon altitude
      - $\hat{v}$  estimate of velocity

#### **Controller Deadband**

Since we typically command a target altitude and an allowable region, we add a deadband to the controller output. Let  $\dot{l}_o$  be the output of the nonlinearity. Deadband:



To set bounds on the altutude, we set  $\tau = e_{\rm tol} k_v k_h$ , where  $e_{\rm tol}$  is the allowable distance from the altitude command.

#### **Controller Block Diagram**



Altitude Control 6

 $w_v h$ 

balloon altitude estimate of velocity

# **Atmosphere Waves**



## **Velocity Estimator**

Low pass filtered velocity estimate uses a 2nd order filter to remove the effect of atmospheric waves



H(s) a 2nd order lowpass filter

#### **Controller Block Diagram**



Altitude Control 9

 $w_v h$ 

balloon altitude estimate of velocity

atmospheric disturbances that change balloon velocity (turbulence)

### **Picking gains**

*note:* while the deadband makes the controller non-linear, it still peicewise linear, thus linear analysis can be used.

Transfer function for the linear system is

$$T(s) = \frac{k_h k_v k_d}{s^2 + k_v k_d s + k_h k_v k_d}.$$

So damping ratio is  $\zeta = \frac{1}{2} \sqrt{\frac{k_d k_v}{k_h}}$ .

- lacktriangle We choose gains such that  $\zeta>1$  and we have over damping.
- ▶ This gives ratio between  $k_v$  and  $k_h$ , but what about magnitude?
- lacktriangle high gain o controller waits and acts agressively near  $e_{
  m tol}$
- lacktriangle low gain o controller acts cautiously before  $e_{
  m tol}$

demonstraited on next slide

## High vs Low Gain

# Plots of simulation shown high gain



#### low gain



High gain performs better but can't tolerate uncertainty, low gain is worse but performs better under uncertainty

### **Simulations**



# **Nightfall**



- ► Left plot shows 10 sunsets across various flights (each flight different color).
- plot blow shows a fit to the data using convex regularization and contraints

