DS4

4 heures

- Tout résultat ou raisonnement doit être clairement justifié, sauf mention du contraire.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- La présentation de la copie sera prise en compte dans l'évaluation :
 - ▷ | encadrez | les résultats principaux;
 - > soulignez les résultats et arguments intermédiaires importants;
 - *⊳* soignez votre écriture ;
 - ${\color{red}\triangleright}\ \ maintenez\ une\ marge\ dans\ vos\ copies,\ a\'erez\ vos\ copies;$
 - ⊳ enfin, numérotez vos copies.
- Les documents, calculatrices et autres appareils électroniques sont interdits.
- Si un élève constate ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie en expliquant les initiatives qu'il a été amené à prendre.

DS 4 1/6

Étude d'une suite de racines

Application à l'optimalité d'un contrôle

Notations

- Si $P \in \mathbb{C}[X]$, on désigne par $Z_{\mathbb{C}}(P)$ l'ensemble des racines complexes de P.
- $Si \mathscr{P}(n)$ est un prédicat de $n \in \mathbb{N}$: \rhd on notera « $\mathscr{P}(n)$ APCR » l'assertion « $\exists N_0 \in \mathbb{N} : \forall n \geqslant N_0, \mathscr{P}(n)$ »; \rhd « $\mathscr{P}(n)$ APCR » se lit « $\mathscr{P}(n)$ (est vraie) à partir d'un certain rang ».
- $Pour \ n \geqslant 2$, on pose

$$P_n := X^n - X^{n-1} - X^{n-2} - \dots - X - 1.$$

Dans ce problème, on s'intéresse aux racines du polynôme P_n .

• Dans ce qui suit, on fixe un entier naturel n tel que $n \ge 2$.

Les parties I, II, V et VI peuvent être cherchées sans que les autres parties n'aient été traitées.

Le barème est donné à titre indicatif.

Partie I – Un contrôle classique

4 points/70

1. Soit $P \in \mathbb{C}[X]$ un polynôme unitaire de degré n qu'on écrit

$$P = X^n + \sum_{k=0}^{n-1} a_k X^k$$

où $\forall k \in [0, n-1], a_k \in \mathbb{C}$.

Soit $\alpha \in \mathbb{C}$ une racine de P.

Montrer que

$$(\forall k \in [0, n-1], |a_k| \leqslant 1) \implies |\alpha| < 2.$$

On pourra raisonner par l'absurde.

Partie II – Étude d'une fonction auxiliaire

8 points/70

Notation

Dans la suite, on considère la fonction

$$f_n: \left\{ \begin{array}{ll} [1,2] \longrightarrow \mathbb{R} \\ t \longmapsto t^{n+1} - 2t^n + 1. \end{array} \right.$$

- **2.** (a) Étudier le signe de $f'_n(t)$ pour $t \in [1, 2]$.
 - (b) En déduire la valeur de u_n telle que le tableau de variations de f_n soit

On précisera les valeurs en 1 et 2 mais on ne calculera pas $f_n(2-u_n)$.

- (c) En utilisant le théorème des valeurs intermédiaires, montrer que f_n s'annule en un unique point sur]1,2].
- 3. On note

$$m_n := 1 - \left(2 - \frac{2}{n+1}\right)^n \times \frac{2}{n+1}.$$

- (a) Sans justification, donner un équivalent simple de m_n quand $n \to \infty$.
- (b) En déduire la limite de la suite $(m_n)_n$.
- 4. Dessiner l'allure de \mathscr{C}_{f_n} .

On attend un dessin propre, schématique, sur lequel figurent quelques valeurs remarquables.

Partie III – Premières propriétés de la suite des racines

6 points/70

5. (a) Soit $t \in]1,2]$. Montrer que

$$P_n(t) = 0 \iff f_n(t) = 0.$$

(b) En déduire que P_n possède une unique racine dans $]1,+\infty[$.

Notation

Dans toute la suite du problème, pour tout $n \ge 2$, on note x_n cette unique racine.

- **6.** Montrer que $2 \frac{2}{n+1} \le x_n < 2$.
- 7. (a) Calculer x_2 .
 - (b) Montrer que $x_2 > \frac{3}{2}$.
- 8. Montrer que $x_n \longrightarrow 2$.

Partie IV – Optimalité du contrôle classique

5 points/70

Notations et définition

- Pour $n \in \mathbb{N}^*$, on note \mathcal{E}_n l'ensemble des polynômes unitaires de degré n à coefficients complexes de module au plus 1.
- On pose $\mathscr{E} := \bigcup_{n\geqslant 0} \mathscr{E}_n$.
- Soit $M \in \mathbb{R}_+$. On dit que M contrôle les racines de \mathscr{E} quand

$$\forall P \in \mathscr{E}, \ \forall \alpha \in \mathsf{Z}_{\mathbb{C}}(P), \ |\alpha| \leqslant M.$$

- **9.** Montrer que 2 contrôle les racines de \mathscr{E} .
- **10.** Soit $M \in \mathbb{R}_+$. Montrer que

M contrôle les racines de $\mathscr{E} \implies M \geqslant 2$.

Partie V – Un premier lemme

10 points/70

Notations

• Dans cette partie, on se donne :

$$\triangleright (\delta_n)_n \in \mathbb{R}^{\mathbb{N}} \text{ une suite telle que } \delta_n \longrightarrow 0;$$

$$(p_n)_n \in \mathbb{R}^{\mathbb{N}} \text{ une suite };$$

$$\triangleright \ell \in \mathbb{R}$$
.

• On va montrer le résultat suivant, qui servira dans la suite :

$$\delta_n = o\left(\frac{1}{n}\right) \implies (1 + \delta_n)^n \longrightarrow 1.$$

11. Montrer que

$$\delta_n \times p_n \longrightarrow \ell \implies (1 + \delta_n)^{p_n} \longrightarrow e^{\ell}.$$

- 12. Applications.
 - (a) (i) Soit $n \ge 2$. Montrer que $n! \ge 3^{n-2}$.
 - (ii) En déduire que

$$\left(1+\frac{1}{n!}\right)^{2^n}\longrightarrow 1.$$

(b) Déterminer la limite de la suite de terme général

$$\left(1 + \frac{1}{n^n}\right)^{(n+1)^n}.$$

13. Le premier lemme.

Montrer que

$$\delta_n = o\left(\frac{1}{n}\right) \implies (1 + \delta_n)^n \longrightarrow 1.$$

Partie VI – Un deuxième lemme

12 points/70

Soit $(\delta_n)_n \in \mathbb{R}^{\mathbb{N}}$.

Dans cette partie, on va montrer le résultat suivant, qui servira dans la suite :

$$\delta_n = O\left(\frac{1}{2^n}\right) \implies (1 + \delta_n)^n - 1 \sim n \times \delta_n$$

ainsi qu'un raffinement.

- **14.** On suppose que $\forall n \in \mathbb{N}, \ \delta_n \neq 0 \ \text{et que } \delta_n = O\left(\frac{1}{2^n}\right)$.
 - (a) Montrer que

$$\frac{(1+\delta_n)^n-1}{n\delta_n}=1+\frac{\delta_n}{n}\sum_{k=2}^n \binom{n}{k}\delta_n^{k-2}.$$

(b) Montrer que

$$\left| \frac{\delta_n}{n} \sum_{k=2}^n \binom{n}{k} \delta_n^{k-2} \right| \leqslant \frac{2^n |\delta_n|}{n} \text{ APCR.}$$

(c) Le deuxième lemme.

En déduire que

$$(1+\delta_n)^n-1\sim n\delta_n$$
 quand $n\to\infty$.

15. Un raffinement.

Montrer que

$$(1+\delta_n)^n = 1 + n\delta_n + \frac{n^2\delta_n^2}{2} + o(n^2\delta_n^2)$$
 quand $n \to \infty$.

On admettra que ces résultats sont encore vrais sans l'hypothèse de non-nullité de $(\delta_n)_n$.

Partie VII – Étude de la suite des racines

25 points/70

Rappels

On rappelle que la suite $(x_n)_n$ introduite dans la partie III. vérifie la relation suivante

$$\forall n \ge 2, \ x_n^{n+1} - 2x_n^n + 1 = 0.$$

et qu'on a démontré que $x_n \longrightarrow 2$.

- **16.** (a) Montrer que $f_n(x_{n+1}) > 0$.
 - (b) En déduire que $(x_n)_n$ est strictement croissante.

17. On considère la suite $(\varepsilon_n)_n$ définie par

$$\forall n \geqslant 2, \ x_n = 2 - \varepsilon_n.$$

- (a) Montrer que $\varepsilon_n \longrightarrow 0$.
- (b) Montrer que

$$\varepsilon_n = \frac{1}{2^n} \frac{1}{\left(1 - \frac{\varepsilon_n}{2}\right)^n}.$$

(c) En déduire que

$$\varepsilon_n \leqslant \left(\frac{3}{4}\right)^n$$
 APCR.

- (d) En déduire que $\varepsilon_n \sim \frac{1}{2^n}$ quand $n \to \infty$.
- 18. On considère la suite $(\alpha_n)_n$ définie par

$$\forall n \geqslant 2, \ x_n = 2 - \frac{1}{2^n} + \alpha_n.$$

- (a) (i) Montrer que $2^n \alpha_n = 1 2^n \varepsilon_n$.
 - (ii) En déduire que $\alpha_n = o\left(\frac{1}{2^n}\right)$.
- (b) Montrer que

$$2^{n}\alpha_{n}\left(1 - \frac{1}{2^{n+1}} + \frac{\alpha_{n}}{2}\right)^{n} = \left(1 - \frac{1}{2^{n+1}} + \frac{\alpha_{n}}{2}\right)^{n} - 1.$$

(c) En déduire que $\alpha_n \sim -\frac{n}{2 \times 4^n}$.

On a donc prouvé que

$$x_n = 2 - \frac{1}{2^n} - \frac{n}{2 \times 4^n} + o\left(\frac{n}{4^n}\right).$$

19. Donner le terme suivant du développement asymptotique de x_n . Cette question nécessite de prendre des initiatives.

FIN DU SUJET.

