n [12]:	Dependencies
	<pre># !pip install torch # !pip install pandas # !pip install scikit-learn # !pip install tensorboard # !pip install seaborn # !pip install torchvision Imports import torch from torch import autograd</pre>
	<pre>from torch import and from torch.utils.data import TensorDataset, DataLoader from torchvision.datasets import MNIST from torchvision import transforms from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np from tqdm import tqdm from copy import deepcopy</pre>
	<pre>from collections import OrderedDict from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from torch.utils.tensorboard import SummaryWriter import sklearn.metrics as metrics from pandas import Series from typing import Union import json from sklearn.metrics import confusion_matrix, accuracy_score</pre>
	<pre>from sklearn.decomposition import PCA from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import RandomizedSearchCV Helper functions def train(train_loader, model, optimizer, criterion, device, detect_bad_gradients=False, clip_grad_norm=False)</pre>
	<pre>Args: train_loader: Data loader for training set. model: Neural network model. optimizer: Optimizer (e.g. SGD). criterion: Loss function (e.g. cross-entropy loss). """ avg_loss = 0 model.train() # Iterate through batches</pre>
	<pre>for i, data in enumerate(train_loader): # Get the inputs; data is a list of [inputs, labels] inputs, labels = data # Move data to target device inputs, labels = inputs.to(device), labels.to(device) # Zero the parameter gradients optimizer.zero_grad() # Forward + backward + optimize</pre>
	<pre>outputs = model(inputs) loss = criterion(outputs, labels) # Compute RMSE from MSE if detect_bad_gradients: with autograd.detect_anomaly(): loss.backward() else: loss.backward() if clip_grad_norm: grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad_norm) # Clip gradient.optimizer.step() # Keep track of loss (MSE) and r2</pre>
	<pre># Keep track of loss (MSE) and r2 avg_loss += torch.sqrt(loss) return avg_loss / len(train_loader) def test(test_loader, model, criterion, device):</pre>
	<pre>model: Neural network model. criterion: Loss function (e.g. cross-entropy loss). """ avg_loss = 0 model.eval() # Use torch.no_grad to skip gradient calculation, not needed for evaluation with torch.no_grad(): # Iterate through batches</pre>
	<pre>all_predictions = [] all_labels = [] for data in test_loader: # Get the inputs; data is a list of [inputs, labels] inputs, labels = data # Move data to target device inputs, labels = inputs.to(device), labels.to(device) # Forward pass</pre>
	<pre>outputs = model(inputs) loss = torch.sqrt(criterion(outputs, labels)) # Compute RMSE from MSE all_predictions.extend(outputs.detach().numpy()) all_labels.extend(labels.detach().numpy()) # Keep track of loss (MSE) and r2 avg_loss += loss return avg_loss / len(test_loader) # Track the average loss and the r2 of the last batch</pre>
	<pre>def run_torch(model, train_set, val_set, test_set, log_comment="", log_hparams=False, writer=None, **config Run a test if writer is None: # Create a writer to write to Tensorboard writer = SummaryWriter(comment=log_comment)</pre>
	<pre>writer.add_text("run_params", json.dumps(config, indent=2)) # Create the dataloaders train_loader = DataLoader(</pre>
	<pre># Create loss function and optimizer if config["loss"] == "MSE" or config["loss"] == "RMSE":</pre>
	<pre># Use GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) patience = config.get("early_stopping_patience", torch.inf) best_model = None best_loss = np.inf counter = 0 print("Starting initial training")</pre>
	<pre>for epoch in tqdm(range(config["epochs"])): # Train on data train_loss = train(train_loader, model, optimizer, criterion, device, config["detect_bad_gradients"]) # After training set eval mode on model.eval() # Test on data val_loss = test(val_loader, model, criterion, device) test_loss = test(test_loader, model, criterion, device) if config["lr_scheduler"]:</pre>
	<pre>scheduler.step() # Write metrics to Tensorboard writer.add_scalars("Loss", {"Train_loss": train_loss, "Val_loss": val_loss, "Test_loss": test_loss if log_hparams: report_metrics = { "hparam/test_loss": test_loss, "hparam/train_loss": train_loss, } writer.add_hparams(log_hparams, report_metrics, run_name=log_comment)</pre>
	<pre># Early stopping if best_loss > val_loss.detach().numpy(): best_loss = val_loss.detach().numpy() counter = 0 best_model = deepcopy(model) else: counter += 1 if counter > patience: print("Initiating early stopping") if best_model is not None:</pre>
	<pre>print("Restoring best weights")</pre>
	<pre>if not log_hparams: results, predictions, model = gather_results(model, train_loader, val_loader, test_loader) return results, predictions, model else: return def gather_results(model, train_loader, val_loader, test_loader): """</pre>
	<pre>Gather the results for train, val and test sets. Returns: results, predictions, model model.eval() with torch.no_grad(): y_train = [] y_pred_train = [] y_val = [] y_pred_val = []</pre>
	<pre>y_test = [] y_pred_test = [] for data in train_loader: inputs, labels = data pred = model(inputs) y_train.extend(labels.detach().numpy().flatten()) y_pred_train.extend(pred.detach().numpy().flatten()) # Iterate through batches</pre>
	<pre>for data in val_loader: inputs, labels = data pred = model(inputs) y_val.extend(labels.detach().numpy().flatten()) y_pred_val.extend(pred.detach().numpy().flatten()) for data in test_loader: inputs, labels = data pred = model(inputs) y_test.extend(labels.detach().numpy().flatten()) y_pred_test.extend(pred.detach().numpy().flatten())</pre>
	<pre>y_pred_train = np.array(y_pred_train) y_pred_val = np.array(y_pred_val) y_pred_test = np.array(y_pred_test) y_train = np.array(y_train) y_val = np.array(y_val) y_test = np.array(y_test) train_res = classification_report(y_train, y_pred_train) validation_res = classification_report(y_val, y_pred_val) test_res = classification_report(y_test, y_pred_test) results = pd.DataFrame({"train": train_res, "validate": validation_res, "test": test_res})</pre>
	<pre>predictions = { "train": {"y": y_train, "pred": y_pred_train}, "validate": {"y": y_val, "pred": y_pred_val}, "test": {"y": y_test, "pred": y_pred_test}, } return results, predictions, model</pre> Load the data
	<pre>transform = transforms.Compose([transforms.ToTensor(),</pre>
	<pre>print("Lenght of the training set:", len(train_data)) print("Lenght of the test set:", len(test_data)) print() print("Shape of \"features\", i.e. images: ", train_data[0][0].shape) Lenght of the training set: 60000 Lenght of the test set: 10000 Shape of "features", i.e. images: torch.Size([1, 28, 28])</pre>
	<pre>Show some example images fig, axs = plt.subplots(5, 5, figsize=(5, 5)) for i in range(25): x, _ = test_data[i] ax = axs[i // 5][i % 5] ax.imshow(x.view(28, 28), cmap='gray') ax.axis('off') ax.axis('off') plt.tight_layout() plt.show()</pre>
	7 2 1 0 4 1 9
	06901 59734
	<pre># Distribution of labels in train and test sets train_labels = [train_data[i][1] for i in range(len(train_data))] test_labels = [test_data[i][1] for i in range(len(test_data))]</pre>
	<pre>test_features = torch.stack([test_data[i][0] for i in range(len(test_data))]) train_features = torch.stack([train_data[i][0] for i in range(len(train_data))]) train_labels = pd.DataFrame({"label": train_labels, "dataset": "train"}) test_labels = pd.DataFrame({"label": test_labels, "dataset": "test"}) labels = pd.concat([train_labels, test_labels], axis=0) sns.histplot(data=labels, x="label", hue="dataset",</pre>
ut[7]:	multiple="dodge", stat="percent", discrete=True, common_norm=False,) <axessubplot: ,="" xlabel="label" ylabel="Percent"> dataset train</axessubplot:>
	B-
	print("Feature statistics") print("Min:", train_features.min()) print("Max:", train_features.max()) print("Mean:", train_features.std()) Feature statistics Min: tensor(-0.4242) Max: tensor(2.8215) Mean: tensor(-0.0001) Std: tensor(1.0000) The data is normalized correctly as we see. Visualize the pixel distributions in training set fig,axs = plt.subplots(3,2, figsize=(12,10)) plt.suptitle("Qualitative feature comparison") sns.heatmap(train_features.mean(dim=0)[0], ax=axs[0,0]) axs[0, 0].set_title("Pixelwise mean (train")) sns.heatmap(sns.mean(dim=0)[0], avaice(0)[0], avaice(0)[0][0], avaice(0)[0][0], avaice(0)[0][0][0][0][0][0][0][0][0][0][0][0][0][
	<pre>sns.heatmap(np.median(train_features.detach().numpy(), axis=0)[0], ax=axs[0,1]) axs[0, 1].set_title("Pixelwise median (train)") sns.heatmap(test_features.mean(dim=0)[0], ax=axs[1,0]) axs[1,0].set_title("Pixelwise mean (test)") sns.heatmap(np.median((test_features).detach().numpy(), axis=0)[0], ax=axs[1,1]) axs[1,1].set_title("Pixelwise median (test)") sns.heatmap(train_features.mean(dim=0)[0] - test_features.mean(dim=0)[0], ax=axs[2,0]) axs[2,0].set_title("Pixelwise mean difference") sns.heatmap(np.median(train_features.detach().numpy()) - np.median((test_features).detach().numpy(), axis=0 axs[2,1].set_title("Pixelwise median difference")</pre> Text(0.5, 1.0, 'Pixelwise median difference')
	Pixelwise mean (train Pixelwise median (train) - 1.25 - 1.00 6 0.75 10 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 14
	16 - 18 - 20 - 22 - 24 - 26 - 0.00 20 - 0.25 22 - 24 - 26 - 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise mean (test) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median (test) - 1.25 2 - 4 - 6 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8
	10 - 12 - 12 - 12 - 12 - 14 - 16 - 16 - 16 - 18 - 20 - 22 - 24 - 26 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1
	0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise mean difference Pixelwise median difference
	0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise mean difference 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference 0 2 7 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
[10]:	0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise mean difference 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 0 0 0 0 8
[10]: t[10]:	0 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise mean difference -0.04 20.02 40.00 80.02 120.04 160.04 160.06 180.06 180.08 220.08 220.08 220.08 220.09 2 4 6 8 10 12 14 16 18 20 22 24 26 Feature engineering For the more traditional models in comparison, the total number of input features 28x28 = 784 is significantly high, and PCA is use to reduce the features train_set_flat = train_features.flatten(start_dim=-2).squeeze() test_set_flat = test_features.flatten(start_dim=-2).squeeze() train_set_flat.shape, test_set_flat.shape (torch.Size([60000, 784]), torch.Size([10000, 784])) PCA Elbow Curve pca = PCA(0.9) pca.fit(train_set_flat) plt.plot(pca.explained_variance_ratio_, 'k-x') plt.xlabel('# components")
[10]: t[10]:	Pixelwise mean difference 0
[10]: t[10]:	Pixelwise mean difference 0
[10]:	Pixelwise mean difference Pixelwise mean difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise mean difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 4 6 8 10 12 14 16 18 20 22 24 26 O 2 4 6 8 10 12 14 16 18 20 22 24 26 Pixelwise median difference O 2 10
[10]: [13]: [13]:	Pixelwise mean difference 0.04
[10]: [13]: [13]:	Pixelwise mean difference Pixelwise mean difference Oct 1
[10]: [13]: [13]:	## Components ## Com
[10]: t[10]: t[13]:	## Pixelian in the property of the common difference
[10]: t[10]: t[13]:	Feature engineering For Jerman Folding crosses in the board of the components of th
[10]: t [10]: t [13]: t [14]:	Processor mean of ofference Processor mean
[10]: t [10]: t [10]: t [13]: [14]:	The content of the state of the
[10]: t [10]: t [13]: [14]:	Testing and the second of the
[10]: t [10]: t [13]: [14]:	The control of the co
[10]: [13]: [14]: [15]:	The control of the co
[10]: [13]: [14]: [15]:	Testing and the second of the
[10]: [13]: [14]: [15]:	The control of the co
[10]: t [10]: t [13]: [14]:	The control makes of difference and the control of
[10]: t [10]: t [13]: [14]:	The control of the co
[10]: t [10]: t [13]: [14]:	The control of the co
[10]: t[10]: t[13]: [14]: [201	The control of the co
[10]: t[10]: t[13]: [14]: [201	The control of the co
[10]: t [10]: t [10]: [13]: [14]: [15]:	The control makes of difference and the control of
[10]: t[10]: t[10]: [13]: [14]:	Feature engineering For exame motivate mode is consistent as the construction of the
[10]: t [10]: t [10]: [13]: [14]: [15]:	The control makes of difference and the control of
[10]: t[10]: t[13]: [14]: [201	The control of the co
[10]: t[10]: t[13]: [14]: [201	The control of the co
[10]: t [10]: t [13]: [14]:	The control of the co

= 6.0s [CV 3/5] END ma = 6.0s [CV 4/5] END ma = 5.9s [CV 5/5] END ma = 5.9s [CV 1/5] END ma = 6.5s [CV 2/5] END ma = 6.5s	ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.771 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.768 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.771 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.777 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.789 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.742 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.717 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.731 total
= 6.7s [CV 5/5] END ma = 6.7s [CV 1/5] END ma 9.5s [CV 2/5] END ma 9.8s [CV 3/5] END ma 10.5s [CV 1/5] END ma e= 7.2s [CV 4/5] END ma 10.0s [CV 2/5] END ma 10.0s	ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.710 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.740 total ax_depth=7, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.778 total timex_depth=7, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.767 total timex_depth=7, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.773 total timex_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.846 total ax_depth=10, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.761 total timex_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.836 total ax_depth=7, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.794 total timex_depth=7, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.794 total timex_depth=7
e= 6.7s [CV 1/5] END ma 3.3s [CV 4/5] END ma e= 6.2s [CV 2/5] END ma 3.1s [CV 5/5] END ma e= 5.8s [CV 3/5] END ma 2.9s [CV 4/5] END ma 2.8s [CV 5/5] END ma 2.8s	ax_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.850 total ax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.793 total tax_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.827 total ax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.789 total tax_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.858 total ax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.789 total tax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.788 total tax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.788 total tax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.724 total tixex_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.724 total tixex_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=10;
2.9s [CV 1/5] END ma me= 9.2s [CV 3/5] END ma 2.8s [CV 2/5] END ma me= 9.3s [CV 4/5] END ma 2.7s [CV 3/5] END ma me= 9.8s [CV 5/5] END ma 2.6s	ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.708 total ti ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.855 tota ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.701 total ti ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.841 total ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.711 total ti ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.844 total ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.728 total ti ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.841 total
me= 9.6s [CV 1/5] END ma = 6.0s [CV 2/5] END ma = 6.1s [CV 3/5] END ma = 6.2s [CV 4/5] END ma = 6.5s [CV 5/5] END ma = 6.6s [CV 1/5] END ma 4.6s [CV 2/5] END ma 5.2s	ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.861 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.811 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.791 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.809 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.795 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.823 total ax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.859 total tax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.835 total tax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.836 total tax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;
[CV 4/5] END ma 5.4s [CV 5/5] END ma 5.2s [CV 1/5] END ma me= 16.9s [CV 2/5] END ma me= 17.1s [CV 4/5] END ma me= 17.0s [CV 3/5] END ma me= 18.7s [CV 5/5] END ma me= 16.9s [CV 1/5] END ma me= 16.9s	ax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.843 total tax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.856 total tax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.861 total ax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.857 total ax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.858 total ax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.859 total ax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.872 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.860 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.867 total
me= 10.3s [CV 4/5] END ma me= 11.3s [CV 5/5] END ma me= 11.4s [CV 1/5] END ma 12.2s [CV 1/5] END ma 12.2s [CV 2/5] END ma 12.0s [CV 2/5] END ma 12.0s [CV 2/5] END ma 12.0s [CV 3/5] END ma 12.3s	ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.851 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.855 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.875 total ax_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.738 total time ax_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.877 total ax_depth=None, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.718 total time ax_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.861 total ax_depth=None, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.731 total time ax_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.862 total
= 29.0s [CV 4/5] END ma 12.4s [CV 4/5] END ma = 29.1s [CV 5/5] END ma 12.2s [CV 5/5] END ma = 29.9s [CV 1/5] END ma = 11.9s [CV 2/5] END ma = 11.1s [CV 3/5] END ma = 10.8s [CV 1/5] END ma = 7.4s	ax_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.716 total timex_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.862 total ax_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.757 total timex_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.880 total ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.810 total ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.804 total ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.797 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.844 total ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=10;, score=0.789 total
= 10.4s [CV 5/5] END ma = 9.9s [CV 2/5] END ma me= 7.1s [CV 3/5] END ma me= 7.1s [CV 4/5] END ma me= 7.1s [CV 5/5] END ma me= 7.3s [CV 1/5] END ma e= 9.0s [CV 2/5] END ma e= 9.1s [CV 3/5] END ma e= 9.1s	ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.818 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.833 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.844 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.845 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.862 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.864 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.854 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.858 total
e= 5.6s [CV 4/5] END ma e= 8.7s [CV 2/5] END ma e= 5.6s [CV 5/5] END ma e= 8.5s [CV 3/5] END ma e= 5.5s [CV 4/5] END ma e= 5.3s [CV 5/5] END ma e= 5.2s [CV 1/5] END ma e= 4.8s	ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.789 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.859 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.806 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.870 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.811 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.781 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.829 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.771 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.762 total
e= 4.5s [CV 4/5] END ma e= 4.6s [CV 5/5] END ma e= 4.6s [CV 1/5] END ma = 4.1s [CV 2/5] END ma = 3.9s [CV 3/5] END ma = 3.6s [CV 4/5] END ma = 3.3s [CV 5/5] END ma = 3.3s	ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.777 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.749 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.782 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.728 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.714 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.717 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.720 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.740 total
display(hparam_hparam_data["meplt.xlabel("Meaplt.figure()sns.lineplot(damean_test_countmeanstd mean_std min 25% 50%	data[["mean_test_score", "mean_fit_time"]].describe().round(3)) ean_test_score"].hist() ean_test_scores") eata=hparam_data, x="param_max_depth", y="mean_test_score", estimator="mean") score
75% max 3.5 3.0 2.5	0.846 9.968 0.868 28.951 xlabel='param_max_depth', ylabel='mean_test_score'>
1.5 1.0 0.5 0.675 0.7 0.850 -	700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 Mean test scores
0.800 - mean fest score 0.775 - 0.725 - 0.700 -	
let us first apply the 4 pca = PCA(n_com hparam_cv_pca = Fitting 5 folds [CV 3/5] END ma = 0.9s [CV 1/5] END ma = 0.9s [CV 4/5] END ma = 0.9s	
= 0.9s [CV 2/5] END ma = 0.9s [CV 1/5] END ma = 1.0s [CV 2/5] END ma = 1.0s [CV 4/5] END ma = 1.0s [CV 3/5] END ma = 1.0s [CV 5/5] END ma = 1.0s [CV 1/5] END ma = 1.1s [CV 2/5] END ma = 1.1s	ax_depth=5, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.561 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.687 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.680 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.710 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.683 total ax_depth=7, max_features=0.665, min_samples_leaf=4, min_samples_split=10;, score=0.714 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.664 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.618 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.648 total
= 1.1s [CV 3/5] END ma = 1.2s [CV 5/5] END ma = 1.2s [CV 1/5] END ma e= 1.0s [CV 2/5] END ma e= 1.0s [CV 3/5] END ma e= 1.0s [CV 4/5] END ma e= 1.0s [CV 4/5] END ma 1.5s [CV 1/5] END ma 1.5s	ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.672 total ax_depth=6, max_features=0.8325, min_samples_leaf=4, min_samples_split=5;, score=0.683 total ax_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.777 total ax_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.776 total ax_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.752 total ax_depth=10, max_features=0.4975, min_samples_leaf=4, min_samples_split=5;, score=0.767 total ax_depth=7, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.696 total times_dex_depth=7, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.712 total times_ax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.719 total_times_ax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.719 total_times_split=10;
0.4s [CV 2/5] END ma 0.4s [CV 4/5] END ma 1.5s [CV 3/5] END ma 1.6s [CV 5/5] END ma 1.5s [CV 3/5] END ma 0.5s [CV 4/5] END ma 0.4s [CV 5/5] END ma 0.4s [CV 5/5] END ma 0.5s [CV 5/5] END ma 0.5s	ax_depth=8, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.731 total tota
0.4s [CV 2/5] END ma 0.5s [CV 4/5] END ma 0.4s [CV 3/5] END ma 0.4s [CV 5/5] END ma 0.4s [CV 1/5] END ma me= 1.5s [CV 1/5] END ma = 1.0s [CV 2/5] END ma = 1.0s [CV 2/5] END ma me= 1.5s	ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.517 total ti ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.649 total ti ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.582 total ti ax_depth=6, max_features=0.33, min_samples_leaf=1, min_samples_split=2;, score=0.668 total ti ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.788 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.755 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.735 total ax_depth=8, max_features=0.665, min_samples_leaf=1, min_samples_split=10;, score=0.794 total
= 0.9s [CV 4/5] END ma me= 1.5s [CV 4/5] END ma = 0.9s [CV 5/5] END ma me= 1.5s [CV 3/5] END ma me= 1.5s [CV 5/5] END ma 0.9s [CV 1/5] END ma 0.6s [CV 2/5] END ma 0.6s [CV 3/5] END ma 0.6s	ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.805 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.706 total ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.811 total ax_depth=10, max_features=0.8325, min_samples_leaf=1, min_samples_split=10;, score=0.780 total ax_depth=8, max_features=0.665, min_samples_leaf=2, min_samples_split=10;, score=0.746 total ax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.762 total tex_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.733 total tex_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.755 total tex_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.755 total text_depth=10, max_features=0.33, min_samples_split=2, min_samples_split=2;, score=0.755 total text_depth=10, max_features=0.33, min_samples_split=10;
0.6s [CV 4/5] END ma 0.6s [CV 1/5] END ma me= 2.1s [CV 2/5] END ma me= 2.1s [CV 2/5] END ma me= 0.8s [CV 1/5] END ma me= 0.9s [CV 4/5] END ma me= 1.9s [CV 4/5] END ma me= 2.1s [CV 5/5] END ma me= 2.1s	ax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.778 total toax_depth=10, max_features=0.33, min_samples_leaf=2, min_samples_split=2;, score=0.689 total toax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.843 totalax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.833 totalax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.820 totalax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.827 totalax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.834 totalax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.829 totalax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.829 totalax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;, score=0.845 totalax_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5;
me= 0.8s [CV 4/5] END ma me= 0.9s [CV 5/5] END ma me= 0.7s [CV 1/5] END ma 1.0s [CV 2/5] END ma 1.1s [CV 4/5] END ma 1.1s [CV 5/5] END ma 1.1s	ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.822 tota ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.808 tota ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10;, score=0.825 tota ax_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.678 total times_ax_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.660 total times_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.659 total times_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.664 total times_depth=6, max_features=1.0, min_samples_leaf=1, min_samples_split=5;, score=0.698 total times_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.698 total times_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.842 total
= 3.1s [CV 1/5] END ma = 1.1s [CV 2/5] END ma = 1.1s [CV 4/5] END ma = 2.9s [CV 5/5] END ma = 3.0s [CV 3/5] END ma = 3.2s [CV 3/5] END ma = 1.2s [CV 1/5] END ma me= 0.9s	ax_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.845 total ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.752 total ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.728 total ax_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.840 total ax_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.849 total ax_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5;, score=0.834 total ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.726 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.782 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.770 total
me= 0.9s [CV 4/5] END ma me= 0.9s [CV 4/5] END ma = 1.2s [CV 5/5] END ma me= 1.0s [CV 5/5] END ma = 1.3s [CV 1/5] END ma e= 1.0s [CV 2/5] END ma e= 1.0s [CV 1/5] END ma e= 0.7s	ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.754 tota ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.745 tota ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.722 total ax_depth=10, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.776 tota ax_depth=8, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.722 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.820 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.822 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.714 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.814 total
e= 0.7s [CV 3/5] END ma e= 0.7s [CV 4/5] END ma e= 0.8s [CV 5/5] END ma e= 0.8s [CV 4/5] END ma e= 1.1s [CV 5/5] END ma e= 1.0s [CV 1/5] END ma e= 0.7s [CV 2/5] END ma e= 0.7s [CV 3/5] END ma e= 0.7s	ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.718 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.718 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.713 total ax_depth=8, max_features=0.4975, min_samples_leaf=1, min_samples_split=10;, score=0.716 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.821 total ax_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5;, score=0.823 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.679 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.645 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.615 total
e= 0.7s [CV 1/5] END ma = 0.6s [CV 2/5] END ma = 0.6s [CV 3/5] END ma = 0.6s [CV 5/5] END ma e= 0.6s [CV 4/5] END ma = 0.5s [CV 5/5] END ma = 0.5s [CV 5/5] END ma = 0.5s	ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.650 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.627 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.626 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.617 total ax_depth=7, max_features=0.4975, min_samples_leaf=2, min_samples_split=10;, score=0.638 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.623 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=2;, score=0.647 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=10;, score=0.647 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=10;, score=0.647 total ax_depth=6, max_features=0.4975, min_samples_leaf=4, min_samples_split=10;, score=0.647 t
plt.figure() sns.lineplot(da mean_test	ata=hparam_data_pca, x="param_max_depth", y="mean_test_score", estimator="mean") _score
4.0 4.0 3.5 4.0 2.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	xlabel='param_max_depth', ylabel='mean_test_score'>
0.5 0.0 0.675 0.7 0.850 -	700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 Mean test scores
0.800 - 0.775 - 0.750 - 0.725 - 0.700 -	6 7 8 9 10
	param_max_depth e performance didn't decrease even though the number of features is lower after the PCA. Let us increase the raining is significantly faster with the PCA. etures to consider at every split np.linspace(0.33, 1.0, 5) er of levels in tree
depth, since the tr # Number of feat max_features = # Maximum number max_depth = [in max_depth.appen # Minimum number min_samples_spl # Minimum number min_samples_lea # Create the ra random_grid = { 'max_featur	<pre>nt(x) for x in np.linspace(10, 25, num = 5)] nd(None) er of samples required to split a node lit = [2, 5, 10] er of samples required at each leaf node af = [1, 2, 4] andom grid</pre>

Fitting 5 folds for each of 20 candidates, totalling 100 fits

= 4.6s

= 5.2s

[CV 1/5] END max_depth=5, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.675 total time

[CV 2/5] END max_depth=5, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.679 total time

[CV 3/5] END max_depth=5, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.675 total time

[CV 4/5] END max_depth=5, max_features=0.8325, min_samples_leaf=2, min_samples_split=2;, score=0.649 total time

[CV] END max_depth=13, max_features=0.33, min_samples_leaf=1, min_samples_split=2; total time= [CV] END max_depth=25, max_features=0.8325, min_samples_leaf=1, min_samples_split=10; total time= 2.7s [CV] END max_depth=21, max_features=0.665, min_samples_leaf=2, min_samples_split=10; total time= [CV] END max_depth=21, max_features=0.665, min_samples_leaf=2, min_samples_split=10; total time= [CV] END max_depth=25, max_features=0.8325, min_samples_leaf=1, min_samples_split=10; total time= [CV] END max_depth=25, max_features=0.8325, min_samples_leaf=1, min_samples_split=10; total time= 2.7s [CV] END max_depth=25, max_features=0.8325, min_samples_leaf=1, min_samples_split=10; total time= 2.8s [CV] END max_depth=25, max_features=0.8325, min_samples_leaf=1, min_samples_split=10; total time= [CV] END max_depth=21, max_features=0.665, min_samples_leaf=2, min_samples_split=10; total time= 1.8s [CV] END max_depth=21, max_features=0.665, min_samples_leaf=2, min_samples_split=10; total time= 1.9s [CV] END max_depth=21, max_features=0.665, min_samples_leaf=2, min_samples_split=10; total time= [CV] END max_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5; total time= [CV] END max_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5; total time= [CV] END max_depth=25, max_features=0.33, min_samples_leaf=2, min_samples_split=2; total time= [CV] END max_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5; total time= 2.1s [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10; total time= [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10; total time= [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10; total time= [CV] END max_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5; total time= 2.2s [CV] END max_depth=None, max_features=0.665, min_samples_leaf=2, min_samples_split=5; total time= [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10; total time= 1.1s [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=10; total time= 1.1s [CV] END max_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5; total time= 3.5s [CV] END max_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5; total time= [CV] END max_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5; total time= 3.6s [CV] END max_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5; total time= 3.9s [CV] END max_depth=None, max_features=1.0, min_samples_leaf=4, min_samples_split=5; total time= [CV] END max_depth=13, max_features=1.0, min_samples_leaf=1, min_samples_split=5; total time= [CV] END max_depth=21, max_features=0.8325, min_samples_leaf=2, min_samples_split=2; total time= [CV] END max_depth=21, max_features=0.8325, min_samples_leaf=2, min_samples_split=2; total time= [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5; total time= [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5; total time= [CV] END max_depth=25, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.6s [CV] END max_depth=25, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.6s [CV] END max_depth=25, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.5s [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5; total time= [CV] END max_depth=25, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.5s [CV] END max_depth=25, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.5s [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5; total time= 1.0s [CV] END max_depth=21, max_features=0.8325, min_samples_leaf=2, min_samples_split=2; total time= 2.5s [CV] END max_depth=21, max_features=0.8325, min_samples_leaf=2, min_samples_split=2; total time= 2.7s [CV] END max_depth=None, max_features=0.33, min_samples_leaf=1, min_samples_split=5; total time= 1.0s [CV] END max_depth=21, max_features=0.8325, min_samples_leaf=2, min_samples_split=2; total time= 2.6s [CV] END max_depth=21, max_features=0.4975, min_samples_leaf=1, min_samples_split=10; total time= [CV] END max_depth=17, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= [CV] END max_depth=17, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.3s [CV] END max_depth=21, max_features=0.4975, min_samples_leaf=1, min_samples_split=10; total time= 1.4s [CV] END max_depth=21, max_features=0.4975, min_samples_leaf=1, min_samples_split=10; total time= 1.4s [CV] END max_depth=21, max_features=0.4975, min_samples_leaf=1, min_samples_split=10; total time= 1.3s [CV] END max_depth=21, max_features=0.4975, min_samples_leaf=1, min_samples_split=10; total time= 1.3s [CV] END max_depth=17, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.2s [CV] END max_depth=17, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.2s [CV] END max_depth=13, max_features=0.4975, min_samples_leaf=4, min_samples_split=2; total time= 0.9s [CV] END max_depth=17, max_features=0.4975, min_samples_leaf=2, min_samples_split=10; total time= 1.1s [CV] END max_depth=13, max_features=0.4975, min_samples_leaf=4, min_samples_split=2; total time= 0.9s [CV] END max_depth=13, max_features=0.4975, min_samples_leaf=4, min_samples_split=2; total time= 0.8s [CV] END max_depth=13, max_features=0.4975, min_samples_leaf=4, min_samples_split=2; total time= 0.7s [CV] END max_depth=13, max_features=0.4975, min_samples_leaf=4, min_samples_split=2; total time= 0.7s In [23]: hparam_data_pca = pd.DataFrame(hparam_cv_pca.cv_results_) display(hparam_data_pca[["mean_test_score", "mean_fit_time"]].describe().round(3)) hparam_data_pca["mean_test_score"].hist() plt.xlabel("Mean test scores") plt.figure() sns.lineplot(data=hparam_data_pca, x="param_max_depth", y="mean_test_score", estimator="mean") mean_test_score mean_fit_time count 20.000 20.000 0.829 1.722 mean 0.804 std 0.014 min 0.784 0.806 25% 0.822 1.032 0.833 1.502 75% 0.838 2.226 0.845 3.617 max Out[23]: <AxesSubplot: xlabel='param_max_depth', ylabel='mean_test_score'> 5

4 3 2 1 0 0.80 0.79 0.81 0.82 0.83 0.84 Mean test scores 0.84 0.83 mean_test_score 0.82 0.81 0.80 0.79 22 12 14 20 24 10 16 18 param_max_depth **Decision Tree Full Training Set test** In [234... model_dt = Pipeline(("pca", PCA(n_components=20)), ("clf", DecisionTreeClassifier(**hparam_cv.best_params_)) model_dt.fit(X_train, y_train) y_pred_train = model_dt.predict(X_train) y_pred_test = model_dt.predict(X_test) # Additional print("Train accuracy", accuracy_score(y_train, y_pred_train)) print("Test accuracy", accuracy_score(y_test, y_pred_test)) fig, axs = plt.subplots(1,2, figsize=(15, 5), sharex=True, sharey=True) sns.heatmap(confusion_matrix(y_train, y_pred_train), annot=True, ax=axs[0]) sns.heatmap(confusion_matrix(y_test, y_pred_test), annot=True, ax=axs[1]) Train accuracy 0.9422833333333333 Test accuracy 0.8501 Out[234]: <AxesSubplot: > o 5.8e+0 14 10 29 30 10 20 8.9e+0 14 10 17 26 - 1000 6000 16 .6e+0 18 8 25 .6e+0 28 34 34 74 22 5000 16 12 12 19 15 37

79

57

48

In [42]: from sklearn.cluster import KMeans

pca = PCA(n_components=20)

pipeline = Pipeline(

("pca", pca), ("kmeans", kmeans)

for i in range(10):

mask = y_train == i

axs[0].legend() for i in range(10):

axs[1].legend()

ax.set_xlabel("PCA0") ax.set_ylabel("PCA1")

for ax in axs:

24

19

23

29

18

46

15

31

KMeans

.8e+0

35 1.3e+02 62

26

34

67 1.5e+02 47

31

66

63 2e+02 56

from sklearn.decomposition import PCA

43

26

Let us see if the classes are separable in the latent space

kmeans = KMeans(n_clusters=10) # 1 for each label

cluster_labels = pipeline.fit_predict(X_train)

pca_X = pca.fit_transform(X_train)

In [46]: fig, axs = plt.subplots(1,2, figsize=(15,8))

mask = cluster_labels == i

16

38

34

42

24

26

12 1.1e+02 50

70

60

18

20

23

39

10

83

axs[0].scatter(pca_X[mask, 0], pca_X[mask,1], label=i, marker=".", alpha=.2)

axs[1].scatter(pca_X[mask, 0], pca_X[mask,1], label=i, marker=".", alpha=.2)

26 1e+02

4000

3000

2000

1000

178

10

10

25

40

10

11

51

15

18

26

8

21

15

6

1

43

22

50

19

5

15

9e+02 14

25 6

13

24

16

99

49

10

43

13

16 7

14

10

14 7

46

- 800

- 600

400

- 200

