

LES GRANDEURS ELECTRIQUES ET UNITES DE MESURE

I- GENERALITES:

La mesure joue un rôle de plus en plus important dans les domaines électriques et électroniques. On mesure avec pour but :

- La vérification expérimentale d'un circuit ;
- La modélisation, la mise au point ou le dépannage d'un montage ;
- La certification d'un procédé ou d'un produit, dans le domaine industriel ;
- La maintenance ou la réparation d'un dispositif électrique ou électronique.

Dans le domaine électrique et électronique, on utilise plusieurs types d'appareils de mesure, tels que :

- Le voltmètre (analogique et numérique) pour mesurer des tensions ;
- L'ampèremètre, pour mesurer des intensités ;
- Le wattmètre pour mesurer des puissances ;
- L'ohmmètre pour mesurer des résistances etc...

Le voltmètre, ampèremètre et ohmmètre sont souvent regroupés en un seul appareil qui s'appelle **multimètre**.

Le multimètre possède, en outre, dans la plus part des cas, un testeur de composants (diodes et transistors). Certains modèles sont dotés d'un capacimètre (pour mesurer des capacités), d'un fréquencemètre, etc...

Compte tenu des difficultés spécifiques soulevées par la mesure de l'intensité é dans un circuit, dés que l'ampérage dépasse quelques dizaines d'ampères, on utilise la **pince amperemetrique.**

Parmi les autres appareils de mesure couramment utilisés par l'électricien ou électronicien, on doit mentionner l'**oscilloscope**, qui permet de visualiser la forme d'une onde et d'obtenir de nombreux renseignements (amplitude, période, etc...).

II- POURQUOI MESURER?

La mesure reste bien souvent, le seul moyen de vérifier le fonctionnement ou les performances d'un procédé industriel, grâce à des appareils de mesure très performants.

Il faut savoir que les laboratoires disposent maintenant d'appareils extrêmement sophistiqués, pilotés par ordinateurs. Par exemple on peut mesurer simultanément plusieurs paramètres d'un véhicule en marche à l'aide d'une unité d'acquisition reliée à un ordinateur.

III- LES GRANDEURS ELECTRIQUES ET LEURS UNITES.

Les principales grandeurs électriques qu'un électrotechnicien est amené à mesurer sont les suivants :

- La tension, ou ddp entre deux points;
- L'intensité d'un courant dans une branche;

- La résistance d'un récepteur ;
- La capacité d'un condensateur ;
- La puissance dissipée dans un circuit ;
- La fréquence et la période d'un signal.

Les grandeurs et unités de base dans le système international sont donnés par le tableau suivant (voir tableau 1).

Grandeur	Symbole	Unité	Symbole	Appareil de mesure
Tension	U	Volt	V	Voltmètre
Intensité	Ι	Ampère	A	Ampèremètre
Puissance	P	Watt	W	Wattmètre
Résistance	R	Ohm	Ω	Ohmmètre
Capacité	С	Farad	F	Capacimètre
Inductance	L	Henry	Н	Henry mètre
Période	T	seconde	S	périodemètre
Fréquence	f	Hertz	Hz	fréquencemètre
Température	T	Degrés celsius	°C	Thermomètre
Pression	P	Pascal	Pa (ou bar)	Baromètre
Chaleur	Q	Calorie	Cal	Calorimètre
Eclairement	E	Luxe	Lux	luxmètre
Intensité lumineuse	Ι	Candela	Cd	Candelamètre

Tableau 1 : Grandeurs et unités de base

Les différentes unités peuvent être subdivisées en multiples et sous multiples (voir tableau 2).

Préfixe	Symbole	multiplicateur
Exa	Е	10 ¹⁸
Péta	P	10^{15}
Téra	Т	10 ¹²
Giga	G	109
Méga	M	10 ⁶
Kilo	K	10^{3}
hecto	h	10^{2}
déca	da	10^{1}
déci	d	10-1
centi	C	10-2
milli	m	10 ⁻³
micro	μ	10-6
nano	n	10-9
pico	p	10 ⁻¹²
femto	f	10 ⁻¹⁵
alto	a	10-18

Tableau 2: multiples et sous multiples des unités

Grandeurs	Unités traditionnelles	Unités légales
Force	1 Kgf	9.8 N
	0.102 Kgf	1 N
Pression	1 Kgf/m ²	9.8 Pa
	0.102 Kgf/m^2	1 Pa
	1 Kgf/cm ²	0.98 bar = 98060 Pa
	1.02 Kgf/cm ²	1 bar
	1 mCE	0.098 bar = 9806 Pa
	1 mmCE	0.098 mbar = 9.8 Pa
	10.2 mCE	1 bar
	10.2 mmCE	1 mbar
Energie	1 Kgm	9.8 J
	0.102 Kgm	1 J
	1 Kcal	4.1855 KJ
	0.2389 Kcal	1 KJ
	1 Kcal	1.163 Wh
	0.860 Kcal	1 Wh
	860 Kcal	1 KWh
Puissance	1 Kgm/s	9.8 W
	0.102 Kgm/s	1 W
	1 Kcal/h	1.163 W
	0.860 Kcal/h	1 W
	860 Kcal/h	1 KW

Tableau 3 : Equivalences des unités traditionnelles et les unités légales

Grandeurs	Unités françaises	Unités anglo-saxonnes	
Logeur	1 mm	0.0394 pouce	
	25.4 mm	1 pouce	
Volume	1 dm ³	0.264 gallon	
	3.79 dm^3	1 gallon	
Pression	1 g/cm ²	0.0142 p.s.i	
	70.3 g/cm^2	1 p.s.i	
	1 Pa	$1.45 \times 10^{-4} \text{ p.s.i}$	
	6889 Pa	1 p.s.i	
	1 bar	14.5 p.s.i	
	0.0689 bar	1 p.s.i	
Température	Température celsius tc	Température Fahrenheit tf	
	tc = (tf - 32) / 1.8	tf = 1.8 tc + 32	
Chaleur	1 KJ	0.948 BTU	
	1.0548 KJ	1 BTU	
	1 KWh	1.341 HPH	
	0.7457 KWh	1 HPH	
Puissance	1 KW	1.341 HP	
	0.7457 KW	1 HP	

Tableau 4 : Equivalence des unités anglo-saxonnes