Lecture 1 Outline

Reminders to self:

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone

Last Lecture

- Finished Binary Arithmetic
- Representation of negative numbers in binary
- Addition with 2's complement binary encoding

Today's Lecture

- Addition with 1's complement binary encoding
- Binary codes
- Start Boolean algebra

Handouts and Announcements

Announcements

ECE2060

- Homework Problems 2-1
 - Already on Carmen available at end of lecture
 - Due in Carmen 11:59pm, Thursday 1/26
 - HW 1-6: 11:25am, Monday 1/23
 - HW 1-7, 1-8: 11:25am Wednesday 1/25
- Homework Problem 1-6, 1-7 and 1-8 reminder
 - HW 1-6 due: 11:25am, Monday 1/23
 - HW 1-7, 1-8 due: 11:25am Wednesday 1/25
- Read for Monday: Pages 46-53, 66-70, 87, 94-97

Handouts and Announcements

Announcements

ECE2060

- Mini-Exam 1 Reminder
 - Available 5pm Monday 1/23 through 5:00pm Tuesday 1/24
 - Due in Carmen PROMPTLY at 5:00pm on 1/24
 - Designed to be completed in ~36 min, but you may use more
 - When planning your schedule:
 - I recommend building in 10-15 min extra
 - To allow for downloading exam, signing and dating honor pledge, saving solution as pdf, and uploading to Carmen
 - I also recommend not procrastinating
- Exam review topics available on Carmen

Representation of Negative Numbers

1's compliment:

$$\overline{N} = (2^n - 1) - N$$

• Ex:
$$-5_{10} = (2^4 - 1) - 5 = 16 - 1 - 5 = 10_{10} = 1010_{10}$$

- Alternately, 1's complement can be found via bit-by-bit complement $-5_{10} = 0101_2 -> -5 = 1010$ 1's comp
- End around carry: In one's compliment addition
 - The last carry is not discarded as it is in 2's compliment
 - Rather, added to the *n*-bit sum in the position furthest to the right

Representation of Negative Numbers

Example: 1's compliment Addition

- Addition of two positive numbers is identical to 2's compliment
- Not repeated here
 - Addition of positive and negative numbers (negative number with greater magnitude)

4. Same as case 3 except positive number has greater magnitude

Representation of Negative Numbers

Example 10: 1's compliment Addition (continued)

5. Addition of two negative numbers, $|\operatorname{sum}| < 2^{n-1}$

$$\begin{array}{c|c}
-3 & 1100 \\
\underline{-4} & \underline{1011} \\
\hline
 & 1) & 0111 \\
\hline
 & 1) & 0111 \\
\hline
 & 1) & (end-around carry) \\
\hline
 & 1000 & (correct answer, no overflow)
\end{array}$$

6. Addition of two negative numbers, $|\text{sum}| \ge 2^{n-1}$

$$\begin{array}{c|c}
-5 & 1010 \\
\underline{-6} & 1001 \\
\hline
 & 1 & 0011 \\
\hline
 & 1 & 0011 \\
\hline
 & 1 & 0100 \\
\hline
 & 0100 & (wrong answer because of overflow)
\end{array}$$

Representation of Negative Numbers

Example: 1's compliment Addition (continued)

n = 8 example

1. Add -11 and -20 in 1's complement.

$$+11 = 00001011$$
 $+20 = 00010100$

taking the bit-by-bit complement,

-11 is represented by 11110100 and -20 by 11101011

$$\begin{array}{ccc}
11110100 & (-11) \\
 & 11101011 & +(-20) \\
\hline
(1) 11011111 & (end-around carry) \\
\hline
111000000 = -31
\end{array}$$

Binary codes

- Although most large computers work internally with binary numbers, the input-output equipment generally uses decimal numbers.
- Because most logic circuits only accept two-valued signals, the decimal numbers must be coded in terms of binary signals.
- In the simplest form of binary code, each decimal digit is replaced by its binary equivalent. For example, 937.25 is represented by:

 | Binary Coded | Decimal (BCD)

Binary codes

	Decimal Digit	8-4-2-1 Code (BCD)	6-3-1-1 Code	Excess-3 Code	2-out-of-5 Code	Gray Code	
	0	0000	0000	0011	00011	0000	Only one bit
	1	0001	0001	0100	00101	0001	flips at each
	2	0010	0011	0101	00110	0011	digit
	3	0011	0100	0110	01001	0010	Good for input
	4	0100	0101	0111	01010	0110	Good for input from electro-
5		0101	0111	1000	01100	1110	mechanical
	6	0110	1000	1001	10001	1010	switches
	7	0111	1001	1010	10010	1011	look at
	8	1000	1011	1011	10100	1001	3-34 in BCD Rotan Encoder
	9	1001	1100	1100	11000	1000	7 - 7 - 1000
				1			

Historically: mechanical adding machines, cash registers, and early computers and electronic calculators

8-4-2-1+11z 2 of 5 bits Aka X5-3 Emor Checking

TABLE 1-3 ASCII Code

ECE2060

Binary codes

	IABLE 1-3	AS	CII	COU	ie																					
				ASC	CII C	ode	9					ASC	II C	ode					-	ASC	II Co	ode			NA	lodern
	Character	A_6	A ₅	A_4	A_3	A_2	A_1	A ₀	Character	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Character	A_6	A_5	A_4	A_3	A_2	A ₁	A_0	171	Oucili
	space	0	1	0	0	0	0	0	@	1	0	0	0	0	0	0	,	1	1	0	0	0	0	0	ex	tensions hav
	!	0	1	0	0	0	0	1	Α	1	0	0	0	0	0	1	a	1	1	0	0	0	0	1		
Codes starting	σ "	0	1	0	0	0	1	0	В	1	0	0	0	0	1	0	b	1	1	0	0	0	1	0	m	any more
•	"	0	1	0	0	1	١	0	C D	4	0	0	0	1	0	0	c d	1	1	0	0	1	0	0	CC	odes
000 & 001 are	e 💰	0	i	0	0	1	0	1	E	1	0	0	o	i	0	1	e	i	1	0	0	i	0	1	CO	ACS
for control	&	0	1	0	0	1	1	0	F	1	0	0	0	1	1	0	f	1	1	0	0	1	1	0		
TOI COILLOI	,	0	1	0	0	1	1	1	G	1	0	0	0	1	1	1	g	1	1	0	0	1	1	1		a IIniaada
functions:	(0	1	0	1	0	0	0	н	1	0	0	1	0	0	0	h	1	1	0	1	0	0	0	e.;	g. Unicode
ranctions.)	0	1	0	1	0	0	1	1	1	0	0	1	0	0	1	i	1	1	0	1	0	0	1	10	2.1 standard
e.g.	*	0	1	0	1	0	1	0	Ţ	1	0	0	1	0	1	0	از.	1	1	0	1	0	1	0	12	2.1 Stanuaru
- · · · · · · · · · · · · · · · · · · ·	+	0	1	0	1	0	1	1	K	1	0	0	1	0	1	1	k	1	1	0	1	0	1	0	ha	as 137,994
	,	0	1	0	1	1	0	1	M	- 1	0	0	1	1	0	1	, , , , , , , , , , , , , , , , , , ,	1	1	0	1	1	0	1		•
"end of	_	0	1	0	1	1	1	0	N	i	0	0	1	1	1	0	m n	1	1	0	1	1	1	0	ch	naracters
CHU OI	,	0	i	0	1	1	1	1	Ö	i	0	0	1	i	1	1	0	i	1	ō	1	i	i	1		N /1
transmission"	0	0	1	1	0	0	0	0	P	1	0	1	0	0	0	0	р	1	1	1	0	0	0	0	•	Modern
	1	0	1	1	0	0	0	1	Q	1	0	1	0	0	0	1	q	1	1	1	0	0	0	1		scripts,
(0000100)	2	0	1	1	0	0	1	0	R	1	0	1	0	0	1	0	r	1	1	1	0	0	1	0		•
	3	0	1	1	0	0	1	1	S	1	0	1	0	0	1	1	S	1	1	1	0	0	1	1	•	Historic
	4	0	1	1	0	1	0	0	T	1	0	1	0	1	0	0	t	1	1	1	0	1	0	0		
or	5	0	1	1	0	1	0	1	U	1	0	1	0	1	0	1	u	1	1	1	0	1	0	1		scripts.
or	6	0	1	1	0	1	1	0	V	1	0	1	0	1	1	0	V	1	1	1	0	1	1	0		
	,	0	1	1	1	١	١	0	W X	- 1	0	1	1	1	0	0	w	1	1	1	1	0	0	0	•	Emoji, etc.
	9	0	1	1	1	0	0	1	Ŷ	i	0	i	1	0	0	1	x V	1	1	1	1	0	0	1	2014	
"file	:	0	1	1	1	0	1	0	z	1	0	1	1	0	1	0	Z	1	1	1	1	0	1	0	ming 2	
	;	0	1	1	1	0	1	1]	1	0	1	1	0	1	1	{	1	1	1	1	0	1	1	ami	
separator"	<	0	1	1	1	1	0	0	Ň	1	0	1	1	1	0	0	ĺ	1	1	1	1	1	0	0	e Le	
(0011100)	=	0	1	1	1	1	0	1]	1	0	1	1	1	0	1	}	1	1	1	1	1	0	1	gag	
(0011100)	>	0	1	1	1	1	1	0	^	1	0	1	1	1	1	0	~	1	1	1	1	1	1	0	e G	
	2	0	1	1	1	1	1	1	_	1	0	1	1	1	1	1	doloto	1	1	1	1	1	1	1	6	

ve

Binary codes

3-bit Rotary Encoder

- 8 positions
- 3-bit Gray code
- Often done optically
- Let light beam through or block light
- Three source-detector pairs

Boolean Algebra

Switching to Chapter 2 now: Boolean Algebra

Learning Objectives

- Understand basic operations and laws of Boolean algebra
- Relate operations and laws to circuits composed of AND gates, OR gates, INVERTERS and switches
- Prove laws in switching algebra using a truth table
- Apply laws to manipulation of algebraic expressions including:
 - obtaining a sum of products or product of sums,
 - simplifying an expression, and/or
 - finding the complement of an expression

Boolean Algebra

Introduction

ECE2060

- All switching devices we will use are two-state devices, so we will emphasize the case in which all variables assume only one of two values
- Boolean variables, such as *X* or *Y*, will be used to represent input or output of switching circuit
- Symbols "0" and "1" represent the two values any variable can take on
- These represent states in a logic circuit, and do not have numeric value.
- Logic gate:
 - 0 usually represents range of low voltages, and
 - 1 represents range of high voltages
- Switch circuit:
 - 0 represents open switch, and
 - 1 represents closed
- 0 and 1 can be used to represent the two states in any binary valued system.

Boolean Algebra – Basic Operations

- The basic operations of Boolean (Switching) algebra are called
 - AND,
 - OR, and
 - complement (or inverse)
- To apply switching algebra to a switch circuit, each switch contact is labeled with a variable

$$X = 0 \rightarrow \text{switch open}$$
 as drawn $X = 1 \rightarrow \text{switch closed Connection made}$

• NC (normally closed) and NO (normally open) contacts are always in opposite states.

• If variable X is assigned to NO contact, then X' will be assigned for NC (the prime denotes complementation)

14

Boolean Algebra – Basic Operations

Complementation / Inversion:

- Prime (') denotes complementation
 - 0' = 1 and 1' = 0
- For a switching variable, *X*:
 - X' = 1 if X = 0, and
 - X' = 0 if X = 1
- Complementation is also called inversion
- An inverter (gate implementing inversion) is represented as shown here, where circle at output denotes inversion

$$X \longrightarrow X'$$

- Triangle symbol without the circle would be a buffer
 - No logic function: Input = X, Output = X
 - Might do things like, provide propagation delay, boost output current, etc.

Boolean Algebra – Basic Operations

Series Switching Circuits / AND Operation:

- Operation defined by this truth table is called AND
- Written algebraically as $C = A \cdot B$
- We will usually write AB instead of $A \cdot B$
- AND operation also referred to as logical (or Boolean) multiplication

Switch Circuit Diagram $1 \stackrel{A}{\bullet} \stackrel{B}{\circ} \stackrel{O}{\circ} 0 \stackrel{O}{\bullet} 2$

Either switch open $C = 0 \rightarrow \text{ open circuit between terminals 1 and 2}$ $C = 1 \rightarrow \text{ closed circuit between terminals 1 and 2}$ C = 8 switches closed

Logic Gate Diegram

Note: the dot is often (actually usually) not shown. Shape identifies function.

(IEEE Std 91/91a-1991 does not include the dot)

Boolean Algebra – Basic Operations

Parallel Switching Circuits / Operation:

$$\begin{array}{c|cccc}
A & B & C = A + B \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}$$

- Operation defined by this truth table is called
- Written algebraically as C = A + B
- OR operation also referred to as logical (or Boolean) addition

Note: the plus sign is often (actually usually) not shown. Shape identifies function.

(IEEE Std 91/91a-1991 does not include the plus)

Boolean Operations and Truth Tables

Examples: Boolean Expressions & Corresponding Diagrams

- Expressions
 - -AB'+C

- [A(C+D)]' + BE

- Order of operations:
 - 1.
 - 2.
 - 3.
 - 4

For the second expression,

if
$$A = B = D = 1$$
 and $C = E = 0$ then

$$[A(C+D)]' + BE =$$

Boolean Operations and Truth Tables

 Expression 	AB' +	- <i>C</i>	$B \xrightarrow{A} \xrightarrow{AB'} + (AB' + C)$									
TABLE 2-1	ABC	B'	AB'	AB' + C	A + C	B' + C	(A+C)(B'+C)					
© Cengage Learning 2014 Discuss	0 0 0	1	0	0	0	1	0					
	0 0 1	1	0	1	1	1	1					
Discuss	0 1 0	0	0	0	0	0	0					
order of	0 1 1	0	0	1	1	1	1					
filling input	1 0 0	1	1	1	1	1	1					
filling input	1 0 1	1	1	1	1	1	1					
columns	1 1 0	0	0	0	1	0	0					
	1 1 1	0	0	1	1	1	1					

Equal Boolean Expressions:

Two Boolean expressions are said to be equal if they have the same value for every possible combination of the variables

Boolean Algebra – Basic Operations

A bit more about Complementation / Inversion:

- Also known at the operation
- Our textbook uses the prime mark to indicate inversion
 - X' = 1 if X = 0, and
 - X' = 0 if X = 1
- It is very common to see an overbar mark used for inversion
 - $\overline{X} = 1$ if X = 0, and
 - $\bar{X} = 0 \text{ if } X = 1$
- Looking at the same two expressions from a few slides ago:
 - $AB' + C \Leftrightarrow A\bar{B} + C$
 - $[A(C+D)]' + BE \Leftrightarrow \overline{A(C+D)} + BE$

Crossovers vs. Connections

Wires in circuit schematics: 1) Sometime branch. 2) Sometimes they cross without connecting							
	Connected	Not Connected					
Preferred							
Accepted							
But see sometimes							
Archaic		21					