MEC549: Robot Dynamics and Control

(Fall 2022)

Amin Fakhari, Ph.D.

Department of Mechanical Engineering
Stony Brook University

Amin Fakhari, Fall 2022

Ch1: Summary of Linear Algebra & Robot Kinematics

Amin Fakhari, Fall 2022

Linear Algebra

Linear Algebra

Basic Notation

A

Linear Algebra

●○○○○○○○○○○○○○○○

 \exists

 \in

 \Rightarrow

 \Leftrightarrow

 $\dot{\chi}$

:=

 $f: \mathcal{D} \to \mathcal{R}$

 \mathbb{R}

 $\mathbb{R}_+, \mathbb{R}_{++}$

|x|

Vector

 $x \in \mathbb{R}^n$: (an *n*-dimensional real vector in the column format)

 \mathbb{R}^n : n-dimensional real space (Euclidian Space)

Linear Algebra

Vector Norm

Forward/Velocity/Inverse Kinematics

General Definition: Given $x \in \mathbb{R}^n$, vector norm $||x|| \in \mathbb{R}_+$ is defined such that

- ||x|| > 0 when $x \neq 0$ and ||x|| = 0 iff x = 0.
- $||kx|| = |k|||x||, \ \forall k \in \mathbb{R}.$
- $||x + y|| \le ||x|| + ||y||$, $\forall y \in \mathbb{R}^n$.
- ❖ The p-norm (or ℓ_p -norm) of x for $p \in \mathbb{R}$, $p \ge 1$ is defined as $||x||_p \coloneqq \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$

e.g.
$$||x||_2 = ||x|| = \sqrt{x^T x}$$
 (Euclidean Norm)

Special case:
$$||x||_{\infty} := \max_{i} |x_{i}|$$

Schwartz Inequality: $|x^Ty| \le ||x||_2 ||y||_2 \quad \forall x, y \in \mathbb{R}^n$

Unit Vector: $\|\widehat{x}\|_2 = \widehat{x}^T \widehat{x} = 1$, $\widehat{x} = x/\|x\|_2$

Linear Algebra

Dot Product or Scalar Product or Inner Product

Dot Product or Scalar Product or Inner Product of two vectors $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$ is a <u>scalar</u> defined as

(Algebraic Definition)
$$\langle x, y \rangle = x \cdot y = \sum_{i=1}^{n} x_i y_i = x^T y = y^T x$$

(Geometric Definition)
$$< x, y >= x \cdot y = ||x||_2 ||y||_2 \cos \theta$$

$$(0 \le \theta \le 180^\circ)$$

Orthogonal Vectors:

Linear Algebra

Matrix

$$A \in \mathbb{R}^{m \times n}$$

(an m by n dimensional real matrix)

 \boldsymbol{A}^T

Linear Algebra

Matrix-vector multiplication Ax as linear combination of columns of A:

Particular Matrices

Square Matrix:

Linear Algebra

- Upper Triangular
- Lower Triangular
- Diagonal
 - Identity Matrix
- Null Matrix

Symmetric Matrix:

Skew-symmetric Matrix:

Partitioned Matrix: A matrix whose elements are matrices (blocks) of proper dimensions.

Matrix Operations

Trace of a square matrix $A \in \mathbb{R}^{n \times n}$: tr(A)

Sum of matrices: C = A + B

Symmetric and skew-symmetric part of a square matrix A:

Product of matrices: C = AB

Determinant of a square matrix $A \in \mathbb{R}^{n \times n}$: det(A)

Singular and Nonsingular Matrices:

Matrix Operations

Rank of a matrix $A \in \mathbb{R}^{m \times n}$: rank(A)

Inverse of $A: A^{-1}$

Linear Algebra

Orthogonal Matrix:

Linearly Independent Vectors $x_i \in \mathbb{R}^m$, i = 1, ..., n

Derivative of $A(t) \in \mathbb{R}^{m \times n}$: $\frac{d}{dt}A(t) = \dot{A}(t)$

Derivative of $A^{-1}(t) \in \mathbb{R}^{n \times n}$:

Gradient

For a **scalar function** $f: \mathbb{R}^n \to \mathbb{R}$ which is differentiable with respect to the elements x_i of $x \in \mathbb{R}^n$, its **gradient** with respect to x is an n-dimensional column vector $\nabla_x f \in \mathbb{R}^n$ as:

(nabla symbol and pronounced "del")
$$\nabla_{x} f(x) = \left(\frac{\partial f}{\partial x}\right)^{T} = \begin{bmatrix} \frac{\partial f}{\partial x_{1}}(x) \\ \vdots \\ \frac{\partial f}{\partial x_{n}}(x) \end{bmatrix}$$

 $f(x_1, x_2) = -(\cos^2 x_1 + \cos^2 x_2)^2$

The gradient depicted as a projected vector field.

If x(t) is a differentiable function with respect to t:

$$\dot{f}(x) = \frac{d}{dt} f(x(t)) = \frac{\partial f}{\partial x} \frac{dx}{dt} = \frac{\partial f}{\partial x} \dot{x} = \nabla_x^T f(x) \dot{x} \quad \text{(Chain Rule)}$$

Linear Algebra

Jacobian

For a **vector function** $f: \mathbb{R}^n \to \mathbb{R}^m$ whose elements f_i are differentiable with respect to the elements x_i of $x \in \mathbb{R}^n$, its **Jacobian** with respect to x is matrix $J_f \in \mathbb{R}^{m \times n}$ as:

$$J_{f}(x) = \frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f_{1}(x)}{\partial x} \\ \frac{\partial f_{2}(x)}{\partial x} \\ \vdots \\ \frac{\partial f_{m}(x)}{\partial x} \end{bmatrix}$$

If x(t) is a differentiable function with respect to t:

$$\dot{f}(x) = \frac{d}{dt}f(x(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} = \frac{\partial f}{\partial x}\dot{x} = J_f(x)\dot{x} \qquad \text{(Chain Rule)}$$

Linear Algebra

Cross Product or Vector Product

Cross product of $x, y \in \mathbb{R}^3$ (in the Euclidean space) is defined as a <u>vector</u> $v = x \times y \in \mathbb{R}^3$ that is orthogonal to both x and y ($v \perp x, v \perp y$), with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span.

$$\|\boldsymbol{v}\|_2 = \|\boldsymbol{x}\|_2 \|\boldsymbol{y}\|_2 \sin \theta \quad (0 \le \theta \le 180^\circ)$$

$$\mathbf{v} = \mathbf{x} \times \mathbf{y} = (x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k}) \times (y_1 \mathbf{i} + y_2 \mathbf{j} + y_3 \mathbf{k})$$

Coordinate notation

Linear Algebra

$$\mathbf{x} = (x_1, x_2, x_3), \mathbf{y} = (y_1, y_2, y_3)$$

$$\boldsymbol{v} = \boldsymbol{x} \times \boldsymbol{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

Matrix notation

Cross Product as a Matrix-Vector Multiplication

Cross product $x \times y$ ($x, y \in \mathbb{R}^3$) can be thought of as a multiplication of a vector by a 3×3 skew-symmetric matrix as

$$\mathbf{x} \times \mathbf{y} = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = [\mathbf{x}]\mathbf{y} = -[\mathbf{y}]\mathbf{x}$$

The matrix [x] is a 3x3 skew-symmetric matrix representation of x. $[x] = -[x]^T$

Linear Algebra

Eigenvalues and Eigenvectors

If the vector resulting from the linear transformation $A \in \mathbb{R}^{n \times n}$ on a vector u has the same direction of u (with $u \neq 0$), then $Au = \lambda u$.

For each square matrix $A \in \mathbb{R}^{n \times n}$ there exist n eigenvalues (in general, complex numbers) denoted by $\lambda_i(A)$, i = 1, ..., n that satisfy

(characteristic equation)
$$\det(\mathbf{A} - \lambda_i(\mathbf{A})\mathbf{I}) = 0 \qquad \mathbf{I} = \operatorname{diag}(1) \in \mathbb{R}^{n \times n}$$

• If $A = A^T$, then $\lambda_i(A) \in \mathbb{R}$, i = 1, ..., n.

Eigenvectors u_i associated with the eigenvalues λ_i satisfy $(A - \lambda_i I)u_i = 0$ i = 1, ..., n

- If the eigenvectors \boldsymbol{u}_i of \boldsymbol{A} are linearly independent, matrix \boldsymbol{U} formed by the column vectors \boldsymbol{u}_i is invertible and $\boldsymbol{\Lambda} = \boldsymbol{U}^{-1}\boldsymbol{A}\boldsymbol{U}$ where $\boldsymbol{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. If \boldsymbol{A} is symmetric, \boldsymbol{U} is orthogonal ($\boldsymbol{U}\boldsymbol{U}^T = \boldsymbol{U}^T\boldsymbol{U} = \boldsymbol{I}$) and $\boldsymbol{\Lambda} = \boldsymbol{U}^T\boldsymbol{A}\boldsymbol{U}$.
 - \Rightarrow Eigendecomposition: $A = U\Lambda U^{-1}$ and if A is symmetric $A = U\Lambda U^{T}$.
- $\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$ $\lambda(\mathbf{A}^T) = \lambda(\mathbf{A})$

Linear Algebra

Matrix Norm

General Definition: Given $A \in \mathbb{R}^{n \times n}$, vector norm $||A|| \in \mathbb{R}_+$ is defined such that

- ||A|| > 0 when $A \neq 0$ and ||A|| = 0 iff A = 0.
- $||kA|| = |k|||A||, \forall k \in \mathbb{R}.$
- $||A + B|| \le ||A|| + ||B||$, $\forall B \in \mathbb{R}^{n \times n}$.
- $||AB|| \leq ||A|| ||B||$, $\forall B \in \mathbb{R}^{n \times n}$.

The p-norm of A (induced by vector p-norms) for $0 \le p \le \infty$ is defined as

$$||A||_p = \sup_{||x||_p=1} ||Ax||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p} \quad \forall x \in \mathbb{R}^n$$

Linear Algebra

Matrix Norm (cont.)

In the special cases of $p=1,2,\infty$, these norms can be computed/estimated by:

- $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$ (the max. absolute column sum of A)
- $\|A\|_2 = \sqrt{\lambda_{\max}(A^TA)} = \sigma_{\max}(A)$ (Spectral Norm) If $A = A^T$ $\begin{cases} \|A\|_2 = \max_i |\lambda_i(A)| \\ \|A^{-1}\|_2 = 1/\min_i |\lambda_i(A)| \end{cases}$ (the square root of the maximum eigenvalue of A^TA , or the largest singular value of A)
- $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ (the max. absolute row sum of A)
- Frobenius Norm: $\|A\|_F = \sqrt{\sum_{i,j=1}^n \ \left|a_{ij}\right|^2} = \sqrt{\mathrm{tr}(A^TA)}$

$$||Ax||_2 \le ||A||_2 ||x||_2$$
, $||A||_2 \le ||A||_F$

Linear Algebra

Quadratic Form

Forward/Velocity/Inverse Kinematics

A **Quadratic Form** is a polynomial with terms all of degree two:

$$Q(x) = ax^{2}$$

$$Q(x_{1}, x_{2}) = ax_{1}^{2} + bx_{1}x_{2} + cx_{2}^{2}$$

$$Q(x_{1}, x_{2}, x_{3}) = ax_{1}^{2} + bx_{1}x_{2} + cx_{2}^{2} + dx_{2}x_{3} + ex_{3}^{2} + fx_{1}x_{3}$$

The quadratic form associated with a $n \times n$ matrix $A \in \mathbb{R}^{n \times n}$ is the function $Q: \mathbb{R}^n \to \mathbb{R}$ such that $Q(x) = x^T A x$ for all x.

• The quadratic function associated with a skew-symmetric matrix A_{ss} is always **zero**.

$$A_{ss}$$
 is skew-symmetric $\Leftrightarrow x^T A_{ss} x = 0 \quad (\forall x)$

• Each quadratic function $x^T A x$ is always equal to a quadratic function with the symmetric part of matrix. $Q(x) = x^T A x = x^T (A_s + A_{ss}) x = x^T A_s x$

• If
$$\mathbf{A} = \mathbf{A}^T$$
: $\nabla_{\mathbf{x}} Q(\mathbf{x}) = \left(\frac{\partial Q(\mathbf{x})}{\partial \mathbf{x}}\right)^T = 2\mathbf{A}\mathbf{x}$, $\dot{Q}(\mathbf{x}) = \frac{d}{dt}Q(\mathbf{x}(t)) = 2\mathbf{x}^T \mathbf{A}\dot{\mathbf{x}} + \mathbf{x}^T \dot{\mathbf{A}}\mathbf{x}$

Linear Algebra

Definite and Semi-Definite Matrices

A square not necessarily symmetric matrix $A \in \mathbb{R}^{n \times n}$ is

- Positive Definite (PD or A > 0) if $x^T A x > 0$ for all nonzero $x \in \mathbb{R}^n$.
- Positive Semi-Definite (PSD or $A \ge 0$) if $x^T A x \ge 0$ for all $x \in \mathbb{R}^n$.
- Negative Definite (ND or A < 0) if $x^T A x < 0$ for all nonzero $x \in \mathbb{R}^n$.
- Negative Semi-Definite (NSD or $A \leq 0$) if $x^T A x \leq 0$ for all $x \in \mathbb{R}^n$.
- Indefinite if A neither positive semi-definite nor negative semi-definite.

Geometric Interpretation of the Positive Definiteness of *A*.

- A square matrix $A \in \mathbb{R}^{n \times n}$ is negative definite if -A is positive definite and it is negative semidefinite if -A is positive semidefinite.
- A **necessary** condition for $A \in \mathbb{R}^{n \times n}$ to be PD [or PSD] is that its diagonal elements be strictly positive [or nonnegative].
- Since $x^T A_{ss} x = 0$, the test for the definiteness of A may be done by considering only its symmetric part.

Linear Algebra

Definite and Semi-Definite Matrices (cont.)

 $A \in \mathbb{R}^{n \times n}$ is symmetric and PD [or PSD].

00000000000

Linear Algebra

Principal minors (i.e., a_{11} , $a_{11}a_{22} - a_{21}a_{12}$, ..., det **A**) all are \Leftrightarrow strictly positive [or nonnegative].

All its eigenvalues are strictly positive [or nonnegative].

- Any symmetric PD matrix $A = A^T > 0$ is always <u>full-rank</u> and <u>nonsingular</u>.
- Let $A \in \mathbb{R}^{n imes n}$ be a symmetric PD matrix and λ_{\min} , λ_{\max} be the minimum and maximum eigenvalues of A. For any $x \in \mathbb{R}^n$,

$$\lambda_{\min}(A) ||x||_2^2 \le x^T A x \le \lambda_{\max}(A) ||x||_2^2$$

(Rayleigh-Ritz Theorem)

- Semi-definiteness implies that rank(A) = r < n, and thus r eigenvalues of A are positive/negative and n-r are 0.
- A matrix inequality of the form $A_1 > A_2$, where $A_1, A_2 \in \mathbb{R}^{n \times n}$ means that $A_1 A_2 > 0$, i.e., $A_1 - A_2$ is PD. Similar notations apply to the concepts of PSD, ND, NSD.

Linear Algebra

Rotations	Rigid-Body Motions
$R \in SO(3)$: 3×3 matrices $R^T R = I$, $det(R) = 1$	$T \in SE(3)$: 4×4 matrices $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$, where $R \in SO(3)$, $p \in \mathbb{R}^3$
$R^{-1} = R^{\mathrm{T}}$	$\boldsymbol{R}^{-1} = \begin{bmatrix} \boldsymbol{R}^{\mathrm{T}} & -\boldsymbol{R}^{\mathrm{T}} \boldsymbol{p} \\ \boldsymbol{0} & 1 \end{bmatrix}$
Change of coordinate frame: $m{R}_{ab}m{R}_{bc} = m{R}_{ac}, \; m{R}_{ab}m{p}_b = m{p}_a$	Change of coordinate frame: $m{T}_{ab}m{T}_{bc} = m{T}_{ac}, \ \ m{T}_{ab}m{p}_b = m{p}_a$

Linear Algebra

Rotations	Rigid-Body Motions
Rotating a frame $\{b\}$: $ R = \operatorname{Rot}(\hat{\boldsymbol{\omega}}, \theta) $ $ R_{sb'} = RR_{sb}$: $ \operatorname{rotate} \theta \text{ about } \hat{\boldsymbol{\omega}}_s = \hat{\boldsymbol{\omega}} $ $ R_{sb''} = R_{sb}R$: $ \operatorname{rotate} \theta \text{ about } \hat{\boldsymbol{\omega}}_b = \hat{\boldsymbol{\omega}} $	Displacing a frame $\{b\}$:
Unit rotation axis is $\hat{\boldsymbol{\omega}} \in \mathbb{R}^3$, where $\ \hat{\boldsymbol{\omega}}\ = 1$	"Unit" screw axis is $\pmb{S} = \begin{bmatrix} \pmb{S}_{\omega} \\ \pmb{S}_{v} \end{bmatrix} \in \mathbb{R}^{6}$, where either (i) $\ \pmb{S}_{\omega}\ = 1$ or (ii) $\ \pmb{S}_{\omega}\ = 0$, $\ \pmb{S}_{v}\ = 1$
	For a screw axis $\{q, \hat{s}, h\}$ with finite h , $S = \begin{bmatrix} S_{\omega} \\ S_{v} \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}$
Angular velocity is $oldsymbol{\omega} = \hat{oldsymbol{\omega}} \dot{ heta}$	Twist is $oldsymbol{\mathcal{V}} = oldsymbol{\mathcal{S}}\dot{ heta}$

Linear Algebra

Forward/Velocity/Inverse Kinematics

Rotations	Rigid-Body Motions
For any $\boldsymbol{\omega} \in \mathbb{R}^3$, $ [\boldsymbol{\omega}] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3) $ Properties: For any $\boldsymbol{\omega}, \boldsymbol{x} \in \mathbb{R}^3, \boldsymbol{R} \in SO(3)$: $ [\boldsymbol{\omega}] = -[\boldsymbol{\omega}]^T, [\boldsymbol{\omega}] \boldsymbol{x} = -[\boldsymbol{x}] \boldsymbol{\omega}, $ $ [\boldsymbol{\omega}] [\boldsymbol{x}] = ([\boldsymbol{x}] [\boldsymbol{\omega}])^T, \boldsymbol{R} [\boldsymbol{\omega}] \boldsymbol{R}^T = [\boldsymbol{R} \boldsymbol{\omega}] $	For any $\mathbf{\mathcal{V}} = \begin{bmatrix} \boldsymbol{\omega} \\ \boldsymbol{v} \end{bmatrix} \in \mathbb{R}^6$ or $\mathbf{S} = \begin{bmatrix} \mathbf{S}_{\omega} \\ \mathbf{S}_{v} \end{bmatrix} \in \mathbb{R}^6$, $[\mathbf{\mathcal{V}}] = \begin{bmatrix} [\boldsymbol{\omega}] & \boldsymbol{v} \\ 0 & 0 \end{bmatrix} \in se(3),$ $[\mathbf{S}] = \begin{bmatrix} [\mathbf{S}_{\omega}] & \mathbf{S}_{v} \\ 0 & 0 \end{bmatrix} \in se(3)$
$\dot{R}R^{-1} = [\boldsymbol{\omega}_S], \ R^{-1}\dot{R} = [\boldsymbol{\omega}_b]$	$\dot{\boldsymbol{T}}\boldsymbol{T}^{-1} = [\boldsymbol{\mathcal{V}}_S], \ \boldsymbol{T}^{-1}\dot{\boldsymbol{T}} = [\boldsymbol{\mathcal{V}}_b]$
	$ \begin{aligned} [\mathrm{Ad}_{T}] &= \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6} \\ \text{Properties: } [\mathrm{Ad}_{T}]^{-1} &= [\mathrm{Ad}_{T^{-1}}], \\ [\mathrm{Ad}_{T_{1}}][\mathrm{Ad}_{T_{2}}] &= [\mathrm{Ad}_{T_{1}T_{2}}] \end{aligned} $
Change of coordinate frame: $\hat{\boldsymbol{\omega}}_a = \boldsymbol{R}_{ab}\hat{\boldsymbol{\omega}}_b, \boldsymbol{\omega}_a = \boldsymbol{R}_{ab}\boldsymbol{\omega}_b$	Change of coordinate frame: $\mathbf{S}_a = [\mathrm{Ad}_{\mathbf{T}_{ab}}]\mathbf{S}_b, \mathbf{\mathcal{V}}_a = [\mathrm{Ad}_{\mathbf{T}_{ab}}]\mathbf{\mathcal{V}}_b$

Linear Algebra

000

Rigid-Body Motions

Forward/Velocity/Inverse Kinematics

Rotations	Rigid-Body Motions
Exponential coordinate for $\mathbf{R} \in SO(3)$: $\hat{\boldsymbol{\omega}} \theta \in \mathbb{R}^3$	Exponential coordinate for $T \in SE(3)$: $S\theta \in \mathbb{R}^6$
exp: $[\hat{\boldsymbol{\omega}}]\theta \in so(3) \to \boldsymbol{R} \in SO(3)$ $\boldsymbol{R} = \text{Rot}(\hat{\boldsymbol{\omega}}, \theta) = e^{[\hat{\boldsymbol{\omega}}]\theta}$ $\boldsymbol{R} = \boldsymbol{I} + \sin \theta[\hat{\boldsymbol{\omega}}] + (1 - \cos \theta)[\hat{\boldsymbol{\omega}}]^2$ (Rodrigues' formula for rotations)	$\exp : [S]\theta \in se(3) \to T \in SE(3)$ $T = e^{[S]\theta}$ $T = \begin{bmatrix} e^{[S_{\omega}]\theta} & G(\theta)S_{v} \\ 0 & 1 \end{bmatrix}$ $G(\theta)$ $= I\theta + (1 - \cos\theta)[S_{\omega}] + (\theta - \sin\theta)[S_{\omega}]^{2}$
log: $\mathbf{R} \in SO(3) \to [\hat{\boldsymbol{\omega}}]\theta \in so(3)$ $\log(\mathbf{R}) = [\hat{\boldsymbol{\omega}}]\theta$	$\log: \mathbf{T} \in SE(3) \to [\mathbf{S}]\theta \in se(3)$ $\log(\mathbf{T}) = [\mathbf{S}]\theta$
Moment change of coordinate frame: $m{m}_a = m{R}_{ab} m{m}_b$	Wrench change of coordinate frame: $\boldsymbol{\mathcal{F}}_a = (\boldsymbol{m}_a, \boldsymbol{f}_a) = \left[\operatorname{Ad}_{\boldsymbol{T}_{ba}}\right]^{\operatorname{T}} \boldsymbol{\mathcal{F}}_b$

Linear Algebra

Forward/Velocity/Inverse **Kinematics**

Linear Algebra

Forward Kinematics

The forward kinematics of a robot refers to the calculation of the position and orientation (**pose**) of its end-effector frame from its joint positions θ .

"Minimum-Coordinate" forward kinematics:

Given
$$m{ heta} \in \mathbb{R}^n$$
, Find $m{x} = m{f}(m{ heta}) \in \mathbb{R}^m$ $(m \leq n) \quad m{f} \colon \mathbb{R}^n o \mathbb{R}^m$

Linear Algebra

Velocity Kinematics

•
$$\mathcal{V}_{S} = \begin{bmatrix} \boldsymbol{\omega}_{S} \\ \boldsymbol{v}_{S} \end{bmatrix} = \boldsymbol{J}_{S}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}$$

•
$$\mathbf{v}_b = \begin{bmatrix} \boldsymbol{\omega}_b \\ \boldsymbol{v}_b \end{bmatrix} = \mathbf{J}_b(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}$$

•
$$\begin{bmatrix} \boldsymbol{\omega}_{S} \\ \dot{\boldsymbol{p}} \end{bmatrix} = \boldsymbol{J}_{g}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}}$$

Geometric Jacobian

•
$$\begin{bmatrix} \dot{\boldsymbol{\phi}} \\ \dot{\boldsymbol{p}} \end{bmatrix} = \boldsymbol{J}_{a,\boldsymbol{\phi}}(\boldsymbol{\theta})\dot{\boldsymbol{\theta}} \qquad \boldsymbol{\phi} = (\alpha,\beta,\gamma)$$

•
$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = J_{a,q}(\theta)\dot{\theta}$$
 $q = (q_0, q_1, q_2, q_3)$

•
$$\begin{bmatrix} \dot{r} \\ \dot{p} \end{bmatrix} = J_{a,r}(\theta)\dot{\theta}$$
 $r = \hat{\omega}\theta$

Analytic Jacobian

$$-\boldsymbol{J}_{s}(\boldsymbol{\theta}) = \begin{bmatrix} \boldsymbol{J}_{s1} & \boldsymbol{J}_{s2}(\boldsymbol{\theta}) & \cdots & \boldsymbol{J}_{sn}(\boldsymbol{\theta}) \end{bmatrix}, \ \boldsymbol{J}_{si}(\boldsymbol{\theta}) = \begin{bmatrix} \operatorname{Ad}_{e^{[\boldsymbol{S}_{1}]\boldsymbol{\theta}_{1}} \dots e^{[\boldsymbol{S}_{i-1}]\boldsymbol{\theta}_{i-1}} \end{bmatrix} \boldsymbol{S}_{i} \qquad \begin{array}{c} i = 2, \dots, n, \\ \boldsymbol{J}_{s1} = \boldsymbol{S}_{1} \end{array}$$

$$-\boldsymbol{J}_b(\boldsymbol{\theta}) = [\mathrm{Ad}_{\boldsymbol{T}_{bs}}] \boldsymbol{J}_s(\boldsymbol{\theta})$$

- Statics: $\boldsymbol{\tau} = \boldsymbol{J}_b^{\mathrm{T}}(\boldsymbol{\theta})\boldsymbol{\mathcal{F}}_b$, $\boldsymbol{\tau} = \boldsymbol{J}_s^{\mathrm{T}}(\boldsymbol{\theta})\boldsymbol{\mathcal{F}}_s$
- In singular configuration θ^* , $J(\theta^*) \in \mathbb{R}^{r \times n}$ is rank-deficient, i.e., $\operatorname{rank}(J(\theta^*)) < r$.

Inverse Kinematics

The inverse kinematics of a robot refers to the calculation of the joint coordinates θ from the position and orientation (**pose**) of its end-effector frame.

"Geometric" inverse kinematics:

Given
$$T_{sb} = T(\theta) \in SE(3)$$
, Find $\theta \in \mathbb{R}^n$

Given
$$x = f(\theta) \in \mathbb{R}^m$$
, Find $\theta \in \mathbb{R}^n$

- Analytic Methods: Finding closed-form solutions using algebraic or geometric intuition intuitions.
- Iterative Numerical Methods: For instance, using Newton–Raphson method:

$$\boldsymbol{\theta}^{i+1} = \boldsymbol{\theta}^i + \boldsymbol{J}^{\dagger}(\boldsymbol{\theta}^i)\boldsymbol{e} = \boldsymbol{\theta}^i + \boldsymbol{J}^{\dagger}(\boldsymbol{\theta}^i)(\boldsymbol{x}_d - \boldsymbol{f}(\boldsymbol{\theta}^i))$$

Linear Algebra

Trajectory Generation

Linear Algebra

Trajectory Generation: Path & Time Scaling

Trajectory C(s(t)) or C(t) specifies the robot configuration as a function of time, i.e., the combination of a path C(s) and a time scaling s(t).

$$\mathcal{C}: [0,1] \to \mathbb{C}$$

$$\mathcal{C}: [0,1] \to \mathbb{C}$$
 $s: [0,T] \to [0,1]$

- Straight-Line Path in Joint Space: $\theta(s) = \theta_{\text{start}} + s(\theta_{\text{end}} \theta_{\text{start}})$
- Straight-Line Path in Task Space:

$$(1) x(s) = x_{\text{start}} + s(x_{\text{end}} - x_{\text{start}}) \in \mathbb{R}^m$$

(2)
$$p(s) = p_{\text{start}} + s(p_{\text{end}} - p_{\text{start}}) \in \mathbb{R}^3$$

$$R(s) = R_{\text{start}} \exp(\log(R_{\text{start}}^{\text{T}} R_{\text{end}}) s) \in SO(3)$$

(3)
$$T(s) = T_{\text{start}} \exp(\log(T_{\text{start}}^{-1} T_{\text{end}}) s) \in SE(3)$$

- 3rd-Order, 5th-Order Polynomial Position Profile $\begin{cases} s(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \\ s(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5 \end{cases}$
- Trapezoidal/S-Curve Velocity Profile
- Polynomial Via Point Trajectories

₋inear Algebra