基于深度学习的频高图度量技术研究

郑祎杰1,2,李国庆1,2

1中国科学院空天信息创新研究院 2国家对地观测科学数据中心

研究背景和现状

目的: 准确识别电离层结构,并判读电离层参数

度量任务	算法	问题					
电离层	传统图像处理	泛化性弱					
参数提取	语义分割	受噪声干扰					
	传统机器学习	泛化性弱					
电离层	图像分类	泛化性弱					
结构识别	语义分割	评价指标不合理					
	目标检测	评价指标不合理					

问题:缺少一种既能识别电离层结构,又能准确判读电离层参数的算法

发布 年份	电离层 测高仪	频高图 数量	标注类 型	标注类别 数	评价指标
2018	CAS-DIS	9888	分类和 参数	4	参数判读误 差限
2020	CAS-DIS	12000	bbox	6(含扰动结构)	mAP
2022	VIPIR	6141	mask	7	loU
2019	LISN	50780	mask	1	loU

问题:

- · 缺少一个包含多种标注类型和多种扰动结构的频高图度量 benchmark 数据集
- 缺少兼顾电离层结构识别和参数判读的评价指标

度量算法

> 目标检测

 $[c_i,$ 频率边界,高度边界] = [labels[j],bbox[j,2],bbox[j,3]

> 语义分割

模型评估

Iono-score,一种兼顾电离层结构识别和参数判读的评价指标

Step1 判断每个识别出的结构及其参数是否正确

- 无扰动情况:度量得到的临界频率偏差小于 0.25 MHz 且临界高度偏差小于 10 km 则为 TP, 否则为FP
- 有扰动情况:度量得到的临界频率偏差小于 0.5 MHz 则为 TP, 否则为 FP

Step2 计算各类别的准确率和召回率,平均值 mP 和 mR

 $Precision_i = TP_i/(TP_i + FP_i)$ $mP = \sum_{i=1}^{N} Precision_i/N$ $Recall_i = TP_i/num_gtbox_i$ $mR = \sum_{i=1}^{N} Recall_i/N$

Step3 根据 mP 和 mR计算 F1-score, 作为 Iono-score

Iono - score = 2 * mP * mR/(mP + mR)

实验结果

数据集

数据集	Iono4311
电离层测高仪	CAS-DIS
图片数量	4311
标注类型	mask+bbox
标注类别	E, Es-I, Es-c, F1, F2, Spread-F
时间跨度	2013-2019
采集地区	武汉、怀来、海南
反射波频率	1.0MHz-21.0MHz

- 包含mask和bbox标注,可用于训练目标检测和语义分割模型
- 包含多种电离层不规则结构,标注种类在同种测高仪的数据集中最全

基干深度学习的频高图度量 benchmark

至 1 不及子 7 的 侧 同 图 及 里 Delicilian K																		
Туре	Model	Prio	r Time(ms)	E_P	E_R	Es-l_P	Es-l_R	Es-c_F	Es-c_R	F1_P	F1_R	F2_P	F2_R	SF_P	SF_R	mP	mR	Iono-score
	YOLOv7-tiny		16.8	0.903	0.9215	0.75	0.5854	0.8134	0.8583	0.9532	0.9596	0.9758	0.9695	0.7	0.9545	0.8492	0.8748	0.8618
	YOLOv7-tiny	$\sqrt{}$	16.8	0.903	0.9215	0.75	0.5854	0.8134	0.8583	0.9532	0.9596	0.9773	0.9679	0.8	0.9091	0.8662	0.867	0.8666
	RTMDet-tiny		19.3	0.8845	0.9147	0.7553	0.5772	0.806	0.8504	0.9417	0.9798	0.9634	0.9711	0.6471	1	0.833	0.8822	0.8569
dat	RTMDet-tiny	$\sqrt{}$	19.3	0.8845	0.9147	0.7553	0.5772	0.806	0.8504	0.9417	0.9798	0.9724	0.9631	0.8148	1	0.8625	0.8809	0.8716
det	YOLOv6-s		21.9	0.9061	0.9556	0.7589	0.6911	0.75	0.8976	0.9414	0.9731	0.9681	0.9727	0.75	0.9545	0.8457	0.9074	0.8755
	YOLOv6-s	$\sqrt{}$	22.1	0.9061	0.9556	0.7589	0.6911	0.75	0.8976	0.9414	0.9731	0.9727	0.9727	0.9091	0.9091	0.873	0.8999	0.8863
	YOLOv5-s		17.2	0.904	0.9317	0.81	0.6585	0.874	0.874	0.9601	0.9731	0.9791	0.9791	0.8148	1	0.8903	0.9027	0.8965
	YOLOv5-s	V	17.2	0.904	0.9317	0.81	0.6585	0.874	0.874	0.9601	0.9731	0.9807	0.9791	0.913	0.9545	0.907	0.8952	0.901
	PSPEdgeNet		25.5	0.7621	0.8089	0.4805	0.6016	0.7261	0.8976	0.9477	0.9764	0.9665	0.9711	0.8696	0.9091	0.7921	0.8608	0.825
	mask2former-swin-t		58.9	0.8616	0.9352	0.694	0.7561	0.7778	0.8819	0.9475	0.9731	0.9665	0.9727	0.88	1	0.8546	0.9198	0.886
	mask2former-r50		54.6	0.8827	0 9249	0.7734	0 8049	0.8058	0 8819	0.9532	0.9596	0.9631	0 9647	0.8148	1	0.8655	0.9227	0.8932

- 先验知识融入目标检测后处理,可以有效提升准确率
- 减少冗余标注信息,优化目标更符合度量任务
- 降低约90%标注成本

总结

- 建立首个包含 mask 和 bbox 标注、包含扰动结构的频高图度量数据集
- 提出兼顾结构识别和参数判读任务的频高图度量评价指标 Iono-score
- 建立首个基于深度学习的频高图度量 benchmark