

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

FTD-ID(RS)T-0673-83

FOREIGN TECHNOLOGY DIVISION

DYNAMICS OF RAREFIED GAS AND MOLECULAR GAS DYNAMICS

Approved for public release; distribution unlimited.

83

 $09 \quad 16 \quad \overline{050}$

UNEDITED MACHINE TRANSLATION

FTD-ID(RS)T-0673-83

25 August 1983

MICROFICHE NR: FTD-83-C-001057

DYNAMICS OF RAREFIED GAS AND MOLECULAR GAS DYNAMICS

English pages: 277

Source: Trudy Tsentral'nogo Aero-Gidrodinamicheskogo

Instituta im. Prof. M.Ye. Zhukovskogo, Nr. 1411, Publishing House "Otdel TsAGI",

Moscow, 1972, pp. 1-152

Country of origin: USSR

This document is a machine translation.

Requester: FTD/TQTA

Approved for public release; distribution unlimited.

A

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP-AFB, OHIO.

Table of Contents

U.S. Board on Geographic Names Transliteration System	ii
Aerodynamic Characteristics of Bodies in the Transition Region at Hypersonic Speeds of Flow, by V.N. Gusev, T.V. Klimova, A.V. Lipin	2
Application of the Monte Carlo Method in Dynamics of Strongly Rarefied Gas, by V.A. Perepukhov	89
Study of Internal and External Free Molecular Flows About an Arbitrary Group of Complex Bodies, by M.A. Zakirov	135
Appendix 1. Universal Program for Studying Internal and External Free-Molecular Flows Near an Arbitrary Group of Complex Bodies	234
Appendix 2. Calculation Examples	271

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteratic:.
A a	A a	A, a	PP	Pp	R, r
5 5	5 6	В, ъ	C c	Cc	S, s
3 a	B •	V, v	Tτ	T m	T, t
٦٢	Γ :	G, g	Уу	Уу	U, u
Дд	Дд	D, d	Фф	Φφ	F, f
Еe	E .	Ye, ye; E, e∗	X ×	X x	Kh, kh
ж ж	жж	Zh, zh	Цц	4	Ts, ts
3 з	3 ;	Z, z	Ч ч	4 4	Ch, ch
Ии	И ч	I, i	Шш	Ш ш	Sh, sh
Йй	A i	Y, y	Щщ	Щщ	Sheh, sheh
Нн	KK	K, k	Ъъ	7 1	11
ת וי	ЛА	L, 1	Я ы	W w	Y, y
16	MM	M, m	D 5	ь.	r
Нн	Η×	N, n	Э э	э ,	E, e
o C	0 •	0, 0	Юю	10 xo	Yu, yu
Пп	Пп	P, p	Яя	Яя	Ya, ya

^{*}ye initially, after vowels, and after ъ, ъ; e elsewhere. When written as \ddot{e} in Russian, transliterate as $y\ddot{e}$ or \ddot{e} .

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English	Russian	English	Russian	English
sin	sin .	sh	sinh	arc sh	$sinh_{-1}^{-1}$
cos	cos	ch	cosh	arc ch	cosh
tg	tan	th	tanh	arc th	tanh 📑
ctg	cot	cth	coth	arc cth	coth 1
sec	sec	sch	sech	arc sch	sech_i
cosec	csc	csch	csch	arc csch	csch

Russian	English		
rot	curl		
lg	log		

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

THE STATE OF THE S

DYNAMICS OF RAREFIED GAS AND MOLECULAR GAS DYNAMICS.

DOC = 83067301 PAGE 2

Page 2. (No Typing).

AERODYNAMIC CHARACTERISTICS OF BODIES IN THE TRANSITION REGION AT HYPERSONIC SPEEDS OF FLOW.

V. N. Gusev, T. V. Klimova, A. V. Lipin.

SUMMARY.

Is conducted the analysis of the special features/peculiarities of the hypersonic flow around bodies in the transition region, which lies between the region of free molecular flows and the zone of flow of gas as continuous medium. Are discussed questions of the simulation of actual conditions in the transition region on the basis of the vast experimental material, obtained in the low-pressure wind tunnel of TsAGI [LATH - Central Institute of Aerohydrodynamics im. N Ye Zhukovskiy]. Work gives the aerodynamic characteristics of the broad class of bodies.

ADOPTED DESIGNATIONS.

c_i - aerodynamic coefficient;

$$\epsilon_x = \frac{x}{\frac{\rho_{\infty} U_{\infty}^2}{2} S}$$
 - drag coefficient;

$$c_y = \frac{y}{\frac{\rho_\infty U_\infty^2}{2} S}$$
 - lift coefficient;

d - diameter of blunting;

D - diameter of maximum cross section;

$$K = c_y/c_x$$
 - lift-drag ratio;

$$m_z = \frac{M_z}{\frac{\rho_{\infty}U_{\infty}^2}{2}SL}$$
 - coefficient of pitching moment;

n - exponent in law $\mu \sim T^n$;

Pr - Prandtl number;

Re. - Reynolds number, in whom the coefficient of viscosity/ductility/toughness is calculated from the temperature of stagnation,

$$\operatorname{Re}_{0L} = \frac{\rho_{\infty} U_{\infty} L}{\mu_{0}}; \quad \operatorname{Re}_{0L} = \frac{\rho_{\infty} U_{\infty} I}{\mu_{0}}; \quad \operatorname{Re}_{0D} = \frac{\rho_{\infty} U_{\infty} D}{\mu_{0}};$$

S - area;

 T_{\bullet} - temperature of stagnation and the temperature of body surface;

 U_{∞} - speed in the undisturbed flow;

 α - angle of attack;

 α_{max} - angle of attack when $K = K_{max}$;

 γ - specific heat ratio;

 θ - half-apex angle of the cone and semicone;

 δ - thickness of plate,

$$\bar{\delta}_L = \delta/L; \quad \bar{\delta}_l = \delta/l;$$

 λ - elongation of plate, equal to the ratio of its width to the chord in the root section;

x - sweep angle;

P∞ - density in the undisturbed flow;

μ - coefficient of viscosity/ductility/toughness;

 μ_{\bullet} - coefficient of viscosity/ductility/toughness with T=T_{\bullet}.

Indices "t" and "n" designate respectively wind tunnel tests and full-scale.

Page 4.

Introduction.

The technical progress in aviation and rocket engineering led to the intense development of theoretical and experimental studies in the region of aerodynamics of hypersonic flows. The greatest number of these investigations relates to two sufficiently to well studied regions of general gas dynamics. One of them - this is usual gas fluid dynamics in which the characteristic mean free path of molecules is much lower than the significant dimension of body. The detailed presentation of the theory of hypersonic flows in this region with its numerous applications/appendices is contained in monographs [1, 2]. Another region - dynamics of the free molecular and adjacent it medium where the course of gas proves to be such rarefied that the characteristic mean free path of molecules becomes much more than the significant dimension of body. Latest achievements in this region are presented in monograph [3]. Are least investigated flows of rarefied gas in the intermediate transition region. A strict theoretical studies of such courses can be carried out only on the basis of kinetic theory, which uses an equation of Boltzmann. The solution of this equation is at present connected with the great mathematical difficulties.

Not easy here proves to be the experimental path. Creation of hypersonic low-density flows, their diagnostics and conducting in them experimental investigations - most complex task of contemporary experimental aerodynamics of hypersonic flows. At present on one experimental installation it is not possible to carry out complete simulation during model tests in hypersonic flow, since besides Mach numbers and Re in the wind tunnel it is necessary to reproduce the high value of the enthalpy of hypersonic flows. The coincidence of these conditions in one installation/setting up is extremely difficult. In connection with this experimental research of hypersonic flows divide into the investigations of the effects of hydrodynamic character, caused by change Mach numbers and Re, and investigation of the effects of imperfect gas, caused by high energy of flow. To the discussion of hydrodynamic special features/peculiarities indicated above of the hypersonic flow around bodies in the transition region, which lies between the region of free molecular flows and the zone of flow of gas as continuous medium, and is dedicated this work. In it is systematized the vast experimental material, obtained in the low-pressure wind tunnel of TSAGI.

DOC = 83067301

Page 5.

Simulation of actual conditions in a transition region 1.

FOOTNOTE ¹. As the basis of this part of the work is assumed V. N. Gusev's report "Problems of simulation in the dynamics of the rarefied gases" at the III All-Union conference on the dynamics of the rarefied gases (Novosibirsk, 1969). ENDFOOTNOTE.

Questions of the similarity of hypersonic flows in the transition region were examined in work [4]. On the basis of the equation of Boltzmann in it it is shown that under the power law of interaction of molecules for observing the similarity in the mode/conditions of hypersonic stabilization besides the geometric similarity it is necessary to maintain/withstand the equality of the following parameters: Reynolds number Re., in whom the coefficient of viscosity/ductility/toughness is calculated from the temperature of stagnation, exponent n in the dependence of the coefficient of viscosity/ductility/toughness on temperature $\mu \sim T^n$, temperature factor T_n/T_0 , where T_n and T_n - respectively the temperature of stagnation and body surface, specific heat ratio γ , number of Prandtl of accommodation. Of the parameters mentioned, the Re number Pr and coefficient is basic similarity criterion: with its change the values of the aerodynamic characteristics of the streamlined body

can change to the orders.

When $T_{\bullet}T_0=1$ basic laws governing the supersonic flow around characteristic bodies over a wide range of a change in criterion Re. were revealed in work [4]. Data for the transient region were obtained in the low-pressure wind tunnel employing the presented in work [4] procedure. For the zone of flow, close to free-molecular, when is applicable the theory of the first intermolecular collisions, the aerodynamic characteristics of bodies were obtained by calculation [5, 6]. Experimental data for the case of viscous flows of continuous medium were borrowed from works [7, 8], theoretical - from works [9, 10]. For the cone with the half-angle of solution/opening θ and plate whose relative thickness $\delta/L=0.03$, these data are cited in Fig. 1-6. During the calculation of aerodynamic coefficients as the characteristic area was selected the area of body S in the plan/layout; pitching moment m_{\star} was calculated relatively "nose/leading edge"; through α was designated the angle of attack.

As it follows from given data, the results of experiment and calculations according to the theory of the first intermolecular collisions and according to the theory of the viscous flows of continuous medium make it possible to obtain information in the entire transient zone of flow. In this case experimental and theoretical data, obtained taking into account the parameter of similarity Re., will agree sufficiently well with each other.

DOC = 83067301 PAGE €

Fig. 1.

Key: (1). Cone.

Page 6.

Fig. 2. Key: (1). Cone.

Fig. 3. Key: (1). Cone.

Fig. 4. Key: (1). Plate.

Page 7.

Fig. 5. Key: (1). Plate.

Fig. 6. Key: (1). Plate.

Should be focused attention on the nonmonotony of a change of some characteristics in the transition region where their values prove to be more than the values, obtained in the free molecular flow, and in certain cases except the maximum indicated they have even and a minimum (for example, the coefficient of lift force of cone). All this speaks, that the laws of the behavior of aerodynamic characteristics in the transition region are very complicated and they cannot be obtained by simple interpolation of given for

continuous medium and free molecular courses.

During the simulation of actual conditions in the wind tunnels besides the basic criterion of similarity Re. it is necessary to maintain/withstand a whole series of other important similarity criteria. However, the installations/settings up existing at present in which the temperature of stagnation is close to the room, by no means provide this simulation. In connection with this arises the question about the procedure of the recalculation of the results of tube experiment for the actual conditions with the noncoincidence of some similarity parameters. In the case of the thermodynamically ideal gas these parameters include T_{π}/T_{Φ} by n, γ , a number of Prandtl, accommodation coefficients. As are shown available in works [11, 12] data, under the conditions of the viscous hypersonic flows at the speeds of less or the order of the first space, effects of imperfect gas to the aerodynamic characteristics are insignificant, and air can be considered as the thermodynamically ideal gas.

It is known that for air at low temperatures (T<150°K) μ ~T, i.e., n=1, and with T>400°K value n is close to 0.67. In other words, at low temperatures of the molecule of air they behave as Maxwellian, i.e., with large T they are nearer to the elastic spheres.

Page 8.

Therefore obtained in the low-temperature wind tunnels data cannot be transferred to nature, even if we ensure a sufficient cooling of models for obtaining the full-scale values $T_{\mathbf{w}}/T_0$.

For the courses, close to the free molecular ones, a question about the recalculation of tube data to the full-scale ones was examined in monograph [3]. In the region of viscous hypersonic flows for this purpose was applied the approximate law of similarity of Cheng [11, 13]. The detailed analysis of the effect of different similarity criteria on the aerodynamic characteristics of simple bodies in this region is given in works [14-16]. The results represented in them of the parametric analyses of the flow around the simplest bodies make it possible to explain the degree of the nearness of the aerodynamic characteristics, obtained under the wind tunnel and the actual conditions, and in certain cases [14] to introduce the appropriate corrections during the complete simulation on criteria T_{ϕ}/T_{ϕ} , π , τ .

It is possible to attempt to find the approximate laws of simulation with the aid of the experimental data (for example, see [17, 18]). In this case one should only have in mind that the boundary of free molecular hypersonic flows and the aerodynamic

DOC = 83067301

characteristics of bodies in such flows depend on the form of body, temperature of its surface and laws of interaction of the molecules between themselves and body surface [3].

Let us present arbitrary aerodynamic value c_i in the form

$$c_{l} = c_{l \infty} + (c_{l 0} - c_{l \infty}) f \left[\operatorname{Re}_{0} \left(\frac{T_{w}}{T_{0}} \right)^{3}, \frac{T_{w}}{T_{0}}, n, \gamma, \ldots \right],$$

where $c_{i,\infty}$ and $c_{i,0}$ - value c_{i} with Re $_{i,0}$ and to zero, and β is the function of the similarity parameters and in the general case depends on the shape of body. Relying on experimental data, it is possible to attempt to find such value β , at which the dependence of functions f on the criteria of similarity T_{∞}/T_{0} and n will be weak. In this case the data, obtained in the low-temperature wind tunnel, can be converted to the full-scale ones. Actually/really, let c_{i}^{T} - obtained in the wind tunnel value of value c_{i} when T_{∞}/T_{0} =1 and n=1, and c_{i}^{T} - corresponding to it full-scale value c_{i} at fixed value $T_{\infty}/T_{0} \ll 1$ and n=0.67.

Then

$$c_i^{\scriptscriptstyle \rm H} \Rightarrow c_{i\,\infty}^{\scriptscriptstyle \rm H} + (c_{i\,0}^{\scriptscriptstyle \rm H} - c_{i\,\infty}^{\scriptscriptstyle \rm H}) f \left[\operatorname{Re}_0^{\scriptscriptstyle \rm H} \left(\frac{T_{\scriptscriptstyle \rm W}}{T_{\scriptscriptstyle \rm 0}} \right)^{\scriptscriptstyle \rm \beta}, \, \, \, \, \, \, , \, \, \, \, \, \, \, \, \, \, \right] \,,$$

where

$$f\left[\operatorname{Re}_{0}^{\mathtt{M}}\left(\frac{T_{\underline{w}}}{T_{0}}\right)^{\beta}, \, \Upsilon, \, \ldots\right] = f\left[\operatorname{Re}_{0}^{\mathtt{T}}, \, \Upsilon, \, \ldots\right] = \frac{c_{i}^{\mathtt{T}} - c_{i,\infty}^{\mathtt{T}}}{c_{i,0}^{\mathtt{T}} - c_{i,\infty}^{\mathtt{T}}},$$

$$\operatorname{Re}_{0}^{\mathtt{M}}\left(\frac{T_{\underline{w}}}{T_{0}}\right)^{\beta} = \operatorname{Re}_{0}^{\mathtt{T}}.$$

DOC = 83067301

It is obvious that with this recalculation it is necessary to know values $c_{i,0}$ and $c_{i,\infty}$ obtained under the wind tunnel and the actual conditions. The latter can be determined by calculation.

For the drag coefficient of sphere and cone the identification of parameter β was produced on the basis of experimental data, given in the works [4, 17]. Analysis showed that with β =-0.1 the experimental values, obtained at the essentially different values of temperature factor, will agree sufficiently well with each other over a wide range of a change in Mach numbers and Re.

Page 9.

The results of this comparison are given in Fig. 7 and 8. There solid lines gave the results of calculation according to the theory of first intermolecular collisions [5].

It is obvious that approximation method examined above of the recalculation data, obtained in the low-temperature wind tunnels, by the full-scale ones is not strict and cannot encompass entire diversity of bodies and ranges of a change in the similarity criteria. However, the absence at present of a sufficient quantity of experimental data at substantially the higher values of gas enthalpy makes it possible to propose nothing the best. In proportion to the

accumulation of such data this gap/spacing will be eliminated.

It is necessary to keep in mind that in certain cases with the accuracy acceptable for practical purposes there is no need for increasing the temperature of stagnation of flow in the wind tunnel to its full-scale values. For example, the given in work [14] estimations show that in the region of viscous interaction heating gas in the precombustion chamber to $T_{\bullet}=2000^{\circ}$ K provides the simulation of the full-scale values of resistance and lift of plate with an error less than 4%, when $T_{\bullet}/T_{\circ}>0.05$. The latter fact in many respects facilitates the way of the straight/direct simulation of actual conditions in the wind tunnels.

Fig. 7. Key: (1). Sphere.

Fig. 8. Key: (1). Cone.

Page 10.

AERODYNAMIC CHARACTERISTICS OF BODIES IN TRANSIENT ZONE OF FLOW.

The special features/peculiarities of the flow around the bodies of the simplest forms, arranged/located at the arbitrary angle of attack α in the hypersonic low-density flow, were examined in the series/row of the works (for example, see [7], [8], [17], [19] -

Control of the Contro

[23]). Are represented below systematized experimental data, obtained in the low-pressure wind tunnel of TsAGI. The coefficients of drag c_x , lift c_y , pitching moment m_z and lift-drag ratio K of the broad class of bodies are given in the dependence on the angle of attack α when $T_{-}/T_{0}=1$ and n=1. Aerodynamic coefficients are everywhere related to velocity head q and characteristic area S, pitching moment m_z is related to the significant dimension of L and is calculated relative to the end section of model.

Tests were conducted in the low-pressure wind tunnel of TsAGI. For the formation of the supersonic flow served calculated conical nozzle with the aperture angle of 25°. As the working gas was utilized air at a room temperature. A maximum change in Mach number along the length of model did not exceed 2%.

During the determination of aerodynamic coefficients were utilized the values of the parameters of the undisturbed flow at the point, which corresponds to the middle of model. As applied to the low-pressure wind tunnels the procedure of the recalculation of aerodynamic characteristics in the nonuniform flow the not corresponding characteristics in the uniform for some simplest bodies in the maximum modes/conditions of flow is presented in the works [24, 25] For the cone with a half-angle of solution/opening of $\theta=30^{\circ}$ at the angle of attack $\alpha=0$ the following from work [24] correction to c_x for the heterogeneity of flow in given conditions of experiments did not exceed 4%. For the cones with the smaller aperture angles it was less.

For measuring of the aerodynamic forces and moments of forces were utilized three-component magnetoelectric weights. The sensitivity of balance comprises the tenths of milligram. A relative error of measurement of forces does not exceed, as a rule, $\pm 2\%$, the moments of forces - $\pm 5\%$.

Taking into account errors of measurement of the flow parameters a relative error in the determination of aerodynamic coefficients comprised in the majority of cases of 5-6%. Somewhat greater errors occurred for the models of small sizes/dimensions - they reached 7-10%.

The installation/setting up of symmetrical models relative to the axis of flow was realized with the aid of the mechanism α of weights. Angle of attack α was considered equal to zero when simultaneously they turned into zero normal to the model force and pitching moment. An error of measurement α composed 10'. With the same accuracy the "angular dimensions" of models accepted correspond to real ones.

Cone. The aerodynamic characteristics of the thin pointed cones with different aperture angles $(7^{\circ} \le 2\theta \le 40^{\circ})$ at the fixed value of number $\text{Re}_{L}^{\circ} = 162$, cone designed along the length, are represented in Fig. 9-12. During the calculation of aerodynamic coefficients as the characteristic area S here, as subsequently is selected the area of the basis/base of cone, and as the significant dimension of L - its length.

The analogous characteristics of the pointed cones with half-angles of solution/opening of θ =30°, 45° and 60° at the fixed value of number Re $_0$ =65. basis/base calculated according to the diameter, are given in Fig. 13-15.

At large angles of attack the aerodynamic characteristics of the pointed cones with half-angles of solution/opening of θ =15°, 20° and 30° at the fixed value of number Re $_{00}^{1}$ =97 are given in Fig. 16-19.

Page 11.

The effect of the flat/plane blunting whose relative size/dimension \widehat{d} =d/D, where d and D - respectively the diameters of blunting and basis/base of cone, to the aerodynamic characteristics of slender cones with different half-angles of solution/opening at the fixed value of number $Re\overline{b}_L$ =162 for θ =2°.5 and 3°.75;

 $Re_{0L}^{-}=154$ for $\theta=6^{\circ}$ and $Re_{0L}^{-}=92$ for $\theta=10^{\circ}$ is illustrated in Fig. 20-35.

For the low angles of attack, i.e., when the dependences of aerodynamic coefficients on the angle of attack are linear, given higher experimental data, which correspond to number $\text{Re}_{0L}^{7}=162$, are represented in Fig. 36-38 in the form of dependences c_{x0} , c_{y0}^{*} and m_{z0}^{*} on the half-apex angle of the cone θ at different values of \overline{d} of flat/plane blunting $(c_{x0}, c_{y0}^{*}, m_{z0}^{*})$ - corresponding values $c_{x1}, dc_{y}/da_{x1}, dm_{z1}/da_{x2}$ with $\alpha=0$). At the fixed value of number Re_{0L}^{*} the aerodynamic characteristics of cone in proportion to decrease θ considerably exceed the values, valid under the conditions for inviscid ideal flow. The effect of a small blunting of cone on its aerodynamic characteristics under the same conditions is unessential, at least in comparison with the analogous effect during the ideal flow.

The effect of spherical blunting on the aerodynamic characteristics of cone over a wide range changes in the parameters θ and \overline{d} are given in Fig. 39-70. Criterion of similarity Rei_D for each θ was here by constant, its values were given below:

0 3°,5 5° 7°,5 10° 12°,5 15° 17°,5 20°

Rev 20 29 43 57 72 87 102 118

Cylinder. The aerodynamic characteristics of cylinders (θ =0) at different values of L/D, where L and D - length and the diameter of cylinder, are given in Fig. 71-78. As the characteristic area S is

selected the area of basis/base, as the significant dimension of L - length of cylinder. At the fixed/recorded length of cylinder $(Re_0 \iota = 162)$ the experimental data are given in Fig. 71-74, with fixed/recorded diameter $(Re_0^1 \iota = 13)$ - in Fig. 75-78.

Body of revolution with the generatrix Re~x³/4. The aerodynamic characteristics of the bodies of revolution, which have the equation of generatrix in the form of exponential monomial with the exponent of 3/4, are given in Fig. 79-82 at the different values of the relative thickness D/L, where D and L - diameter of basis/base and the length of body. As the characteristic area is accepted the area of basis/base S, as the significant dimension - length of body of revolution L. Criterion Red, designed along the length of model, for each value of D/L is given below:

For the comparison in Fig. 79 and 80 dotted lines plotted/applied the drag coefficients and lift of acute cone at the same values of D/L and Re_{LL}^{2} .

Sphere. Resistance of sphere was studied both theoretically and by experimentally many authors. Basic experimental data are obtained in works [4, 17, 18] and are given in Fig. 7. The values of the drag coefficient \overline{c}_x of sphere with the needle of variable of length, pertaining to drag coefficient of the sphere, in hypersonic flow of

rarefied gas are given in Fig. 83. On the same figure for the comparison are cited analogous data, obtained in work [26] with the large Re numbers. It is evident that with the small Re numbers a change in the length of needle weakly affects resistance of sphere.

Page 12.

Plate. Are given below the dependences of the aerodynamic characteristics of plate on its geometric parameters. As the characteristic area is accepted the area of plate S in the plan/layout, as the significant dimension - chord length in the root section L.

In the case of rectangular plate the effect of its relative thickness $\overline{\delta}_L = \delta L$ at several fixed values of the elongation of a plate λ and number $\text{Re}^{\overline{\delta}_L}$, designed along the length L, are illustrated Fig. 84-95, and the effect of the elongation of plate λ at constant values $\overline{\delta}_L$ and $\text{Re}^{\overline{\delta}_L} - \text{Fig.}$ 96-104. Fig. 105-107 presents dependences c_s , c_s , and K on the angle of attack α for the rectangular plates with constant values of S and $\overline{\delta}_l = \delta/l = 0.028$, where $l = \sqrt{S}$, over a wide range of change λ . Number $\text{Re}^{\overline{\delta}_L}$ here was calculated from the reference length l and was equal to 39.

The effect of sweep angle χ on the aerodynamic characteristics

of triangular plate at different values $\operatorname{Re}_0^7 \iota$ and $\overline{\delta} \iota$ is shown in Fig. 108-115. The values of the aerodynamic characteristics of triangular plates over a wide range of change λ at constant values of S and $\overline{\delta}_l = \delta l = 0.028$, where $l = \sqrt{S}$, are given in Fig. 116-119. Number $\operatorname{Re}_0^7 \iota$ here again was calculated from the reference length ℓ and was equal to 39.

As it follows from given experimental data, viscosity effect significantly changes the character of the flow around body, as a result of which the dependence of the aerodynamic characteristics of bodies on their geometric parameters becomes different from that which is observed with the large Reynolds numbers. For example, the given in works [19, 20] results of the systematic studies of the aerodynamic characteristics of the plates of the fixed/recorded area showed that with a change in the elongation λ the dependence of maximum lift-drag ratio K_{max} , has a maximum at the finite value λ . The results of these investigations are given in Fig. 120-123 in the form of the dependences of maximum lift-drag ratio $K_{\mathtt{max}}$ and angle of attack α_{max} , which corresponds K_{max} on the elongation λ and relative thickness $\overline{\delta_t}$ for the plates of different planform. As it follows from given data, in the hypersonic low-density flow the wings with the elongations $\lambda=0.4-0.8$ have advantages from the point of view of lift effectiveness in comparison with the wings of other elongations, moreover with the sufficiently small wing chord ratio $\bar{\mathbf{\delta}}_{i} \leqslant 0.03$ independent of its form optimum is wing with the elongation $\lambda=0.6$.

The aerodynamic coefficients of the plates of various forms and fixed/recorded area S, streamlined at the high angles of attack ($\alpha=90^{\circ}$), are represented in Table 1.

Table 1.

) _V	(2) Форма пластин							
пиенты иовори-	ЗОкруж- ность	(4) Эллипс	Эллипс (5) Ромб	(6)Прямоугольник			7)Равносто- ронний треугольния	
λ	1	0,496	0,509	i	0,491	0,317	1,155	
\bar{s}_{l}	0,2	0,2	0,2	0,25	0,19	0,18	0,195	
£x 0	1,81	1,81	1.85	1,85	1,85	1,88	1,92	
cy o	0,0207	0.0220	0,0220	0.0195	0,0226	0,0255	0,0200	

Key: (1). Coefficients. (2). Form of plates. (3).
Circle/circumference. (4). Ellipse. (5). Rhomb. (6). Rectangle. (7).
Equilateral triangle.

Page 13.

Number Ref. was calculated in this case over the reference length 4/5 and was equal to 65. As with the large Re numbers [27] the form of flat/plane blunting virtually does not affect the value of aerodynamic coefficients.

Three-dimensional bodies. The aerodynamic characteristics of three-dimensional bodies are analyzed based on the examples of semicone and combination of wing with the semicone. As the characteristic area is accepted the area of model in plan/layout S, as the significant dimension - chord length in the root section L.

The effect of blind sectors of body on its aerodynamic characteristics was investigated based on the example of semicone. In the case when the conical part of the semicone is turned towards the flow, aerodynamic coefficients for the semicone are compared with the appropriate characteristics of complete cone. When $\text{Re}_{0L}^{T}=130$ corresponding data for the cone with a half-angle of solution/opening of θ =15° are cited in Fig. 124-127.

In the case when the flat surface of semicone is turned towards the flow, the aerodynamic characteristics of semicone with θ =15° with number $\text{Re}_{0L}^{\tau}=130$ are compared with the appropriate characteristics of triangular plate with the sweep angle of $_{\chi}=75^{\circ}$ ($\overline{\delta}_{L}=0,025$) in Fig. 128-131.

As follows from given data, in the mode/conditions hypersonic flows of rarefied gas the effect of blind sectors of body on its aerodynamic characteristics it becomes essential.

Fig. 132-139 gives the values of the aerodynamic characteristics of the model, which is the combination of the blunted semicone with the tapered wing. The sweep angle of wing of $\chi=75^{\circ}$, chord length in the root section is equal to the length of semicone L, and the length of leading edge - to diameter of the flat/plane blunting d of semicone. Number $\text{Re}_{L}^{7}=130$, angles of attack α are considered positive, when the flat surface of model is turned towards the flow.

Fig. 9.

Page 14.

Fig. 10.

Fig. 11.

Page 15.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Page 16.

Fig. 16.

Fig. 17.

Page 17.

Fig. 18.

Fig. 19.

Page 18.

Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23.

Page 19.

Fig. 24.

Fig. 25.

Fig. 27.

Fig. 26.

Page 20.

Fig. 28.

Fig. 30.

Fig. 29.

Fig. 31.

Page 21.

Fig. 32.

Fig. 33.

Fig. 35.

Fig. 34.

Fig. 36.

Page 22.

Fig. 37.

Fig. 38.

Fig. 39.

Page 23.

ره '

Fig. 40.

Fig. 41.

Page 24.

Fig. 42.

Fig. 44.

Fig. 43.

Page 25.

Fig. 46.

Fig. 45.

Fig. 47.

Page 26.

Fig. 48.

Fig. 49.

Fig. 50.

Page 27.

Fig. 51.

Fig. 52.

Fig. 53.

Page 28.

Fig. 54.

Fig. 55.

Fig. 56.

Page 29.

Fig. 57.

Fig. 58.

Fig. 59.

Page 30.

Fig. 60.

Fig. 61.

Fig. 62.

Fig. 63.

Page 31.

Fig. 64.

Fig. 65.

Fig. 66.

Fig. 67.

Page 32.

Fig. 68.

Fig. 69.

Fig. 71.

Fig. 70.

Page 33.

Fig. 72.

Fig. 73.

Fig. 74.

Fig. 75.

Page 34.

Fig. 76.

Fig. 77.

Fig. 78.

Fig. 79.

Page 35.

Fig. 80.

Fig. 81.

Fig. 82.

Fig. 83.

Page 36.

Fig. 84.

Fig. 85.

Fig. 86.

Fig. 87.

Fig. 88.

Fig. 89.

Fig. 90.

Fig. 91.

Page 37.

Fig. 92.

Fig. 93.

Fig. 94.

Fig. 95.

Fig. 96.

0 - 0,4 ; Re - 12,5 Ų

Fig. 97.

Fig. 98.

Page 38.

δ, qes ; R, . 45

Fig. 99.

Fig. 101.

Fig. 102.

Fig. 103.

Fig. 104.

Page 39.

Fig. 105.

Fig. 106.

Page 40.

Fig. 107.

Fig. 108.

Fig. 109.

Page 41.

Fig. 110.

Fig. 111.

Fig. 112.

Fig. 113.

Page 42.

Fig. 114.

Fig. 115.

Fig. 116.

Page 43.

Fig. 117.

Fig. 118.

Fig. 119.

Page 44.

Fig. 120.

Fig. 121.

Fig. 120. Key: (1). rectangular. (2). triangular. (3). elliptical. (4). rhombiform.

Fig. 121. Key: (1). rectangular. (2). triangular. (3). elliptical. (4). rhombiform.

Fig. 123.

Fig. 122. Key: (1). triangular plate.

Fig. 123. Key: (1). triangular plate.

Fig. 124. Key: (1). cone. (2). semicone.

Page 45.

Fig. 125.

Fig. 126.

Fig. 125. Key: (1). cone. (2). semicone.

Fig. 126. Key: (1). cone. (2). semicone.

Fig. 127.

Key: (1). cone. (2). semicone.

Page 127.

Fig. 128.

Fig. 129.

Fig. 128. Key: (1). triangular plate. (2). semicone.

Fig. 129. Key: (1). triangular plate. (2). semicone.

Fig. 130. Key: (1). triangular plate. (2). semicone.

Page 47.

Fig. 131. Key: (1). triangular plate. (2). semicone.

Fig. 132.

Page 48.

Fig. 133.

Page 49.

Fig. 134.

Page 50.

Fig. 135.

Page 51.

Fig. 136.

Fig. 137.

Page 52.

Fig. 138.

Fig. 139.

REFERENCES

- 1. G. G. Chernyy. Flow of gas with the high supersonic speed. M., Fizmatgiz, 1959.
- 2. U. D. Hayes. R. F. Probstin. Theory of hypersonic flows. M., Publ. of foreign lit., 1962.
- 3. M. N. Kogan. Dynamics of the rarefied gas. M., "Science", 1967.
- 4. V. N. Gusev, M. N. Kogan, V. A. Perepukhov. On similarity and change of the aerodynamic characteristics in the transition region at the hypersonic speeds of flow. The "Scientific notes of TsAGI", Vol. I, No 1, 1970.
- 5. V. A. Perepukhov. Aerodynamic characteristics of sphere and blunt-nosed cone in the flow of the strongly rarefied gas. "J. of comp. math. and math. physics," Vol. VII, No 2, 1967.
- 6. V. A. Perepukhov. Flow around the flat/plane plate, arranged/located at the zero angle of attack, by the flow of the strongly rarefied gas. "J. of comp. math. and math. physics," Vol.

III, No 3, 1963.

- 7. V. N. Gusev, T. V. Klimova, A. S. Korolev, S. G. Kryukova, V. S. Nikolayev. Flow around the thin pointed cones of viscous hypersonic flow of gas. "Eng. journal", Vol. V, No 3, 1965.
- 8. V. S. Galkin, V. N. Gusev, T. V. Klimova. Special features/peculiarities of flow and the aerodynamic characteristics of the bodies of the simplest forms in viscous hypersonic flow of gas. "Eng. journal", Vol. V, No 6, 1965.
- 9. V, S. Nikolayev. Flow around slender cone of viscous hypersonic flow. "Eng. journal", Vol. II, No 3, 1962.
- 10. V. S. Galkin, A. V. Zhbakova, B. S. Nikolayev. Aerodynamic characteristics of plate at the angle of attack in viscous hypersonic flow. Izv. of AS USSR, MZhG, 1969, No 1.
 - 11. Cheng H. K. The blunt-body problem in hypersonic flow at low Reynolds number. Gas Paper, 1963, No 63-92.
- 12. V. P. Provorotov. On viscous interaction on the plate in hypersonic flow of the nonequilibrium dissociating gas. The "Scientific notes of TsAGI", Vol. II, No 1, 1971.

- 13. Cheng H. K., Hall J. G., Golian T. C., Hertzberg A. Boundary-layer displacement and leading-edge effects in high-temperature hypersonic flow. JAS, XXVIII, 5, 1961.
- 14. V. S. Galkin, V. S. Nikolayev. On the simulation of viscous hypersonic flows in the wind tunnels. The "scientific notes of TsAGI", Vol. I, No 4, 1970.
- 15. A. I. Tolstoys. Aerodynamic characteristics of the cooled spherical blunting in hypersonic flow of the weakly-rarefied gas. Izv. of the AS USSR, MZhG, 1969, No 6.
- 16. V. P. Provorotov. Flow around the blunted axisymmetric cone of hypersonic flow of viscous gas. Transactions of TsAGI, iss. 1208, 1970.
- 17. Potter J. L. The transitional rarefled-flow regime. Fifth Jntern. Sympos. on Rarefled Gas Dynamics, 1966.
 18. Potter J. L., Miller J. T. Sphere drag and dynamic simulation in near-free-molecular flow. Sixth Intern. Sympos. on Rarefled Gas Dynamics, 1968.
- 19. M. D. Ladyzhenskiy, A. V. Lipin. Aerodynamic characteristics of rectangular plates in the hypersonic low-density flow. Izv. of the AS USSR, MZhG, 1966, No 1. (See also the transactions of TsAGI, iss. 1008, 1966).
- 20. A. V. Lipin. Aerodynamic characteristics of triangular plates in the hypersonic low-density flow. Transactions of TsAGI, iss. 1137, 1969.

DOC = 83067301

- 21. Aerodynamics of rarefied gases. Edited by S. V. Vallander. Publ. LGU, iss. 4, 1969.
- 22. Smolderen J. J., Wendt J. F., Navean J., Bramlette T. T. Drag coefficients in hypersonic transitional flow. Sixth Intern. Symposium on Rarefied Gas Dynamics 1968
- mics, 1968.

 23. Koppenwallner G. Drag and pressure distribution of a circular cylinder at hypersonic Mach numbers in the range between continuum flow and free molecular flow. Sixth Intern. Sympos. on Rarefied Gas Dynamics, 1968.
- 24. V. S. Nikolayev. Cone in the viscous hypersonic nonuniform flow. Transactions of TsAGI, iss. 980, 1965.
- 25. V. S. Nikolayev, A. I. Omelik. Aerodynamic characteristics of simple bodies in the free molecular nonuniform flow. Transactions of TsAGI, iss. 1311, 1971.
- 26. Bogdonoff S., Vas J. Hypersonic separated flows. 7-th Angio-American Aeronautical conference, New York, 1959.
- 27. V. N. Gusev, S. G. Kryukova. Flow around the strongly blunted bodies of hypersonic flow of helium. "Eng. journal", Vol. V, No 2, 1965.

Page 54.

APPLICATION OF THE MONTE CARLO METHOD IN DYNAMICS OF STRONGLY RAREFIED GAS.

V. A. Perepukhov.

Summary.

Are described setting, method and some results of solving the specific problems by the Monte Carlo method for two types of flows - free molecular and almost free molecular (the slight disturbance of free molecular flow).

CALCULATION OF FREE MOLECULAR FLOWS.

In the case of convex body the solution of the problem of free molecular ¹ flow does not represent labor/work; however, during the study of flow by the free molecular flow of concave bodies and bodies of complex form it is necessary to consider the possibility of contact with the element/cell of the body surface of the molecules in

computer(s).

question, reflected from other elements/cells of surface or from other bodies, i.e., to consider interference.

FOOTNOTE 1. Flow is free molecular, if the number of Knudsen $Kn=\lambda/\delta\to\infty$, where d - significant dimension of body, λ - minimum local mean free path of the molecules of gas. ENDFOOTNOTE.

Analogous situation appears also during the calculation of internal free molecular flows (for example, flows in the channels), when molecule, "stray" within the channel, can many times clash with its walls. In the most general/most common/most total setting such tasks for arbitrary law of reflection are examined in works [1-3]. The mathematical formulation of the problem for the concave bodies is given in work [1]. Fundamental equation is here the integral equation of Fredholm of the second order with the symmetrical kernel for the particle flux to the element/cell of the surface

where G(dS₁dS₂) - probability that the molecule reflected from element/cell dS₂ falls on the element/cell of surface dS₁. The solution of this equation in the general case presents great difficulties. Moreover, and the subsequent calculations of the aerodynamic characteristics of body require bulky calculations on

 $N(dS_1) = N_x(dS_1) + \int N(dS_2) G(dS_1 dS_2) dS_2$

Page 55.

In this setting in works [4, 5] were calculated the aerodynamic characteristics of the circular cylindrical and spherical surfaces, converted by concave side to the flow, which encounters at the angle of attack α (Fig. 1). Since in these works it was disregarded with the thermal velocities of molecules in comparison with the macroscopic gas velocity and were not examined the cases, when some elements/cells of surface were shaded by others, then the obtained results were valid for the angles of attack α , which satisfy relationship/ratio $\alpha+\omega=\pi/2$, where ω - half-angle of the solution/opening of segment. The reflection of molecules from the surface was assumed to be diffuse. In work [4] was allowed the miscalculation, which then was corrected in [5]. If $S_{\infty} = \frac{U_{\infty}}{\sqrt{2RT_{\infty}}} \gg 1$, and the accommodation coefficient of energy $a_E \approx 1$, then the temperature of the molecules $T_2 = T_{ullet} \approx T_{\infty}$ reflected and the effect of concavity can be disregarded/neglected. In this case the interference of bodies in the free molecular flow will be determined only by the shading action of bodies on each other. In work [6] was undertaken the attempt compute the aerodynamic characteristics of the internal surface of hemisphere with arbitrary S_{∞} , however in it was allowed error in mathematical calculations and its results were not accurate. The aerodynamic characteristics of concave cylindrical surface when $S_{\infty} \geqslant 1$ were designed in work [7], moreover taking into account

shading/blanketing, i.e., with the arbitrary α . To the study of the interference of the groups of bodies in the free molecular flow is devoted a small number of works. Let us note, two of them. Work [8] examines the task of flow of the free molecular flow about two identical plates of the finite dimensions, perpendicular to each other and a ranged/located at the zero angle of attack. Work [9] examines the task about the free molecular flow of gas in the flat ducts and the lattices.

During the calculation of internal flows in the majority of works is used the method of Clausing. Fundamental equation in this case is also the integral equation, analogous to that led above, for the flows of a number of particles to the element/cell of surface. For the tube of round cross section this equation takes the following form:

 $N(l) = N_1(l) + \int_{1}^{l} G(x) dN_2(x).$ (2)

Here l - length of tube; $N_1(l)$ - a number of molecules, which fly without the collisions with the surface from the entrance to the output of tube; N_2 - number of molecules, which fly into the tube and encountering its surface at least one time; $G(x)dN_2(x)$ - a number of molecules which enter the tube and encounter wall in interval x-(x+dx) and then either immediately or after further collisions they leave it. Basic difficulty during the use of this method consists in the determination of the form of the function G(x). Examples of the calculation of internal courses by the method of Clausing can be found in a number of works (see for example, [10-12]).

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Fig. 1.

Page 56.

For calculating the internal flows in works [13, 14] is used the Monte Carlo method, with the help of which were calculated the flows in the tubes of different configuration under the law of the diffuse reflection of molecules from the surface. The essence of the Monte Carlo method in connection with internal flows is reduced to the following. Let there be the tube with the section at entrance S_1 and at output S_2 , then the gas flow through tube $N=N_1P_{12}-N_2P_{21}$, where N_1 - number of molecules, which fall into the tube through section S_1 , and N_2 - a number of molecules, which fall into the tube through section S_2 , P_{12} - probability that the molecule, which passed through section S_1 , will reach section S_2 . The procedure of determination P_{12}

and P21 is such. In section S1 are developed with certain probability density the coordinates of the point from which begins its motion the molecule. Then with the probability density, which corresponds to the function of the distribution of molecules in the undisturbed flow, is developed the velocity vector of molecule. If particle immediately flies through the tube before section S2, then from section S1 is started new particle, in this case in the memory of electronic computer is memorized one. But if particle falls on the surface of tube, in accordance with law of reflection is developed the velocity vector of particle, which is reflected from the surface. When as a result of many reflections particle nevertheless achieves section S2, then in the memory of machine is written/recorded one, but if particle achieves again section Si, then - zero. The ratio of a number of particles N_i , of those flown from section S_i to section S_i , to total number of particles N, launched in section S,, approaches P₁, with N→∞:

$$P_{12} = \lim_{N \to \infty} \frac{N_l}{N} \tag{3}$$

Analogously is determined value P.,.

The use/application of the Monte Carlo method proved to be efficient and during the solution of the problems of external flow. For the first time this method was proposed and used in work [15], in which were determined the aerodynamic characteristics of the internal surface of hemisphere, which moves at a velocity, arbitrary according

to the value and the direction. During the calculation by the Monte Carlo method automatically drop out all difficulties, which appear during the determination of the aerodynamic characteristics of the isolated/insulated concave bodies, which have points of inflection, and especially the groups of bodies.

Formulation of the problem. Let us consider the overall diagram of the solution of the problem of free molecular flow of the Monte Carlo method about. Let us assume is assigned the body of arbitrary form (or the group of bodies). Let us assume that the flow of gas about the body everywhere free molecular, are assigned the function of the distribution of the molecules of the non-traveling flow and the law of interaction of molecules with the surface in any form, even in the form of table. It is first of all necessary to select the control surface whose form depends on the form of the function of the distribution of the molecules of the incident flow and on the shape of body. The only condition for its selecting is the following: not one molecule of the incident flow, which reaches body, must omit control surface. It is natural that it is better to choose this surface in such a way that it would take as less than the molecules, which fly past the body. Let us register the flow value of the molecules, which possess the speed in the range from V to V+dV, through the element/cell of control surface $d\Phi$:

$$dN = f_{\infty} V^{3} dV \sin \psi \cos \psi d\psi d\varphi d\overline{\Phi},$$

where ψ - angle between the normal to element/cell $d\Phi$ (standard/normal inside the control surface) and the direction of speed V;

 φ - orbital angle.

Page 57.

We choose with certain probability density of the coordinate of element/cell of $d\overline{\Phi}$ on the control surface, velocity V and its direction, given by angles ψ and φ . We determine, did fall the flow of molecules dN on body surface (or one of the group of bodies). If the flow of molecules achieved body surface, then it brought into the point of entry/incidence on the surface the following molecular signs/criteria: the flow of molecules dN, pulse streams dNV_x , dNV_y , $d\dot{N}V_z$ in direction x, y, z, energy flow (1/2) dNV^2 and the "flow" of moment/torque dN(RxV), where R - radius-vector of the point indicated. All these values are memorized in storage cells of computer(s). If on the body surface there is no accumulation of particles, then the arrived flow of molecules dN completely will be reflected from the surface, but if there is an accumulation, then will be reflected only the part of flow dN. The law of interaction of molecules with the body surface is assigned, i.e., is assigned the probability of reflection in this direction with the given speed;

therefore we develop with certain probability density the speed of the flow reflected and its direction. With the reflection the flow of molecules takes away from the surface the following molecular signs/criteria: the flow of molecules $dN_{0.1}$, pulse streams $dN_{0.1}V_{0.11}$, $dN_{0.1}V_{0.11}$, $dN_{0.1}V_{0.11}$ in directions x, y, z, energy flow $dN_{0.1}V_{0.11}/2$ and the "flow" of moment/torque $dN_{0.1}(\vec{R}x\vec{V}_{0.1})$. All these values are memorized in storage cells of computer(s).

Further we determine, crossed the flow reflected body surface or not. If it crossed, then we find the coordinates of point of intersection and send into storage cells of computer(s) the appropriate molecular signs/criteria and again develop reflection, etc. This process is continued until the flow of molecules dN_{0a} reflected after the n reflection flies out from the control volume. This entire process is called one testing. Furthermore, one testing is called such process when the flow of molecules dN after "starting/launching" from the control surface not at all intersects body surfaces and flies past it.

After conducting k of tests we compute local aerodynamic characteristics, summarizing all values of the corresponding molecular signs/criteria, memorized upon contact of the flow of molecules with the element/cell of body surface dF_{j} , and subtracting the sum of the corresponding molecular signs/criteria, memorized at

the moment of the reflection of the flow of molecules from element/cell $d\vec{F}_{J^*}$. Difference we divide into a number of drawings k and a value of the area of element/cell dF_{J^*} .

During the calculation of total aerodynamic characteristics it is necessary to memorize molecular signs/criteria at the moment of the first entry/incidence of the flow of molecules dN to the surface and at the moment of its latter/last reflection, after which the particles will fly out from the control volume. Differences in the sums of these two values for the appropriate molecular signs/criteria are divided into a number of tests k.

Scanning/sweep of process on the time, i.e., successive tracking the particle fluxes dN, is possible because the molecules do not interact with each other and flow pattern can be then represented as the imposition of many flow patterns of body of the separate flows of molecules dN. It is possible to give another interpretation to the method presented. If we integrate expression (4) with respect to V, ψ , φ and over the entire control surface, then this integral N is equal to total number of molecules, which fly through the control surface. Ratio dN/N is nothing else but the probability of the flight/span of molecules from this by speed \widehat{V} through this point control surface.

Page 58.

Then, after making the procedure described above not for the flow of molecules dN, but for one molecule, it is possible to compute the average/mean values of the aerodynamic characteristics, which correspond to one molecule, which flies through the control surface. For the determination of the aerodynamic characteristics of body, determined by the total flux of its reaching molecules, it is necessary the mentioned above aerodynamic characteristics, calculated for one molecule, to multiply by the flow value of molecules N through the control surface. These two approaches correspond in a sense by known in the method Monte Carlo to the diagrams of uniform and essential selection. In the diagram of essential selection the accuracy with the given number of tests is above, but in certain cases the use/application of this diagram causes difficulty due to the sharp increase in the number of computer operations, connected with obtaining of random numbers with the assigned law of distribution from the uniform sequence.

The calculations of aerodynamic characteristics were performed for the cases of diffuse and mirror laws of reflection; therefore will be given below basic formulas for the drawing of the "start" of particle from the control surface and the formula for the drawing of the report/event of the reflection of particle from the body

(analogous formulas can be obtained also for the arbitrary law). Let to the quiescent body attack the flow of molecules the function of distribution of which takes the following form:

$$f_{\infty} = n_{\infty} (2\pi RT_{\infty})^{-3/2} \exp \left\{ -\frac{1}{2RT_{\infty}} [(V_x - U_{\infty x})^2 + (V_y - U_{\infty y})^2 + (V_z - U_{\infty z})^2] \right\}.$$

Then flow dN (y axis is directed along the normal to $d\overline{\Phi}$) can be registered thus:

$$dN = \frac{n_{\infty} U_{\infty}}{2} b \left\{ \frac{e^{-(bS_{\infty})^{2}}}{\sqrt{\pi} b S_{\infty}} + [1 + \Phi(\sqrt{2}b S_{\infty})] \right\} \overline{\Phi} \times \\ \times f(V_{y}) f(V_{z}) f(V_{z}) dV_{z} dV_{y} dV_{z} \frac{d\overline{\Phi}}{\overline{\Phi}} ;$$

$$f(V_{z}) = \frac{1}{\sqrt{\pi}} e^{-(V_{z} - aS_{\infty})^{2}} ;$$

$$f(V_{y}) = \frac{1}{A_{0}} V_{y} e^{-(V_{y} - bS_{\infty})^{2}} ;$$

$$f(V_{z}) = \frac{1}{\sqrt{\pi}} e^{-(V_{z} - cS_{\infty})^{2}} ;$$

$$N = \int dN = n_{\infty} U_{\infty} \frac{b}{2} \left\{ \frac{e^{-(bS_{\infty})^{2}}}{\sqrt{\pi} b S_{\infty}} + [1 + \Phi(\sqrt{2}bS_{\infty})] \right\} \overline{\Phi}.$$

In these formulas

$$U_{\infty x} = U_{\infty} a; \quad U_{\infty y} = U_{\infty} b; \quad U_{\infty z} = U_{\infty} c;$$

$$a^{2} + b^{2} + c^{2} = 1;$$

$$V_{i} = \frac{v_{i}}{\sqrt{2RT_{\infty}}}; \quad S_{\infty} = \frac{U_{\infty}}{\sqrt{2RT_{\infty}}};$$

$$A_{0} = \frac{1}{2} \left\{ e^{-(bS_{\infty})^{2}} + \sqrt{\pi} bS_{\infty} [1 + \Phi(bS_{\infty}\sqrt{2})] \right\}.$$

Page 59.

The probability of the "start" of molecule from the point of

control surface with coordinates $d\Phi$ at a rate of v is equal to $\eta = \frac{dN}{N} - f(V_x) f(V_y) f(V_z) dV_x dV_y dV_z \frac{d\overline{\Phi}}{\overline{\Phi}} \,.$

Let us take the known procedure of obtaining random numbers with the assigned law of distribution from pseudorandom numbers [16], evenly distributed in the interval [0; 1]. For V_x , V_y , V_z it consists of the following. Since when $V_{0y} = V_{y\max} + 3$ (where $V_{y\max} = \text{value } V_y$, with which $f(V_y) = f_{\max}(V_y)$) function f is in effect equal to zero, let us bound the range of change V_y by interval $[0, V_{0y}]$:

$$V_{0y} = \frac{1}{2} (S_{\infty} b + V_{2} + b^{2} S_{\infty}^{2}) + 3.$$

Let
$$V_y^* = \frac{V_y}{V_{0y}}$$
, $0 \leqslant V_y^* \leqslant 1$, $f^*(V_y^*) = \frac{f(V_y^*)}{f_{\max}(V_y^*)}$, so that

$$f_{\max}(V_{\nu}^{\bullet}) = f\left(\frac{S_{\infty}b + \sqrt{2 + b^2 S_{\infty}^2}}{2 V_{0\nu}}\right).$$

As a result of simple conversions we obtain

$$f^{\bullet}(V_{y}^{\bullet}) = \frac{2\left[\frac{1}{2}\left(bS_{\infty} + \sqrt{2 + b^{2}S_{\infty}^{2}}\right) + 3\right]V_{y}^{\bullet}}{bS_{\infty} + \sqrt{2 + b^{2}S_{\infty}^{2}}} \times \left\{\left[\frac{1}{2}\left(\sqrt{2 + b^{2}S_{\infty}^{2}} - bS_{\infty}\right)\right]^{2} - \left\{\left[\frac{1}{2}\left(bS_{\infty} + \sqrt{2 + b^{2}S_{\infty}^{2}}\right) + 3\right] \times V_{y}^{\bullet} - bS_{\infty}\right\}^{2}\right\}.$$

Further from the sequence of the random numbers evenly distributed in interval [0, 1] we choose two numbers $(\xi_1$ and $\xi_2)$ and we check inequality $\xi_1 < f * (\xi_2)$. If inequality is fulfilled, then

$$V_{y} = \xi_{2} V_{0y} \sqrt{2RT_{\infty}} = \xi_{2} \frac{V_{0y}}{S_{\infty}} U_{\infty}.$$

For V_s and V_s the procedure is analogous. For their drawing are valid the following formulas

$$\xi_3 \le \exp\left[-(6\xi_4 - 3)^2\right];$$

 $\xi_4 \le \exp\left[-(6\xi_4 - 3)^2\right].$

With executing of first inequality we have $V_x = \frac{(6\,\xi_4 + S_\infty\,a - 3)}{S_\infty}\,U_\infty,$

$$V_{x} = \frac{(6 \, \xi_{4} + S_{\infty} \, a - 3)}{S_{\infty}} \, U_{\infty},$$

with executing of second inequality we have

$$V_{s} = \frac{(6\,\xi_{s} + S_{\infty}\,c - 3)}{S_{\infty}}U_{\infty}.$$

Let us register the flow of the diffuse reflected molecules with the function of velocity distribution

$$f = n_w (\pi 2RT_w)^{-3/2} \exp[-(2RT_w)^{-1} V^2]$$

from the element/cell of body surface dF:

$$dN_{\bullet} = n_{\bullet} (\pi 2RT_{\bullet})^{-3/2} \exp\left[-(2RT_{\bullet})^{-1}V^{2}\right]V^{2} \sin \psi \cos \psi d\psi d\varphi dV dF.$$

Page 60.

Total number of molecules, reflected from element/cell dF, is equal

$$N_{\bullet} = \int dN_{\bullet} = n_{\bullet} \frac{\sqrt{2RT_{\bullet}}}{2\sqrt{\pi}} dF.$$

The probability of reflection with this speed V in this direction (θ, μ) is equal to

$$\frac{dN_{\bullet}}{N_{\bullet}} = f(V) f(\theta) f(\mu) dV d\theta d\mu,$$

where

$$f(V) = 2 V^3 e^{-V^2} dV; \quad f(\theta) = 2 \sin \theta \cos \theta;$$

 $f(\mu) = \frac{1}{2\pi}; \quad V = \frac{\sigma}{(2RT_{\pi})^{1/2}}.$

Formulas for the drawing θ , μ :

$$\sin\theta = \sqrt{\xi_i}; \quad \mu = 2\pi \xi_{i+1}.$$

For drawing V is applicable this procedure. We choose & and \$\topsis and we require executing of the inequality

$$\xi_j \leqslant \left[\left(\frac{2}{3}\right)^{1/2} k_1 \xi_{j+1} \right]^3 \exp\left(-k_1^2 \xi_j^2 + \frac{3}{2}\right).$$

If it is carried out, then $V=\frac{1}{2}k_1$, where $k_1=3$. For the law of mirror reflection $V_{y\,\text{mag}}=-V_{y\,\text{orp}},\,V_{x\,\text{mag}}=V_{x\,\text{orp}},\,V_{z\,\text{mag}}=V_{z\,\text{orp}}.$

By this method were carried out the calculations of the aerodynamic characteristics of the following bodies: the hemisphere, converted by concave side to the flow at arbitrary value S_{∞} [15]; cylinder with the spherical blunting and the blades/vanes, arranged/located perpendicularly to the axis of cylinder; the body, which consists of the hemisphere and the circle and arranged/located under the angle of attack; the body of that consisting of the cylinder, the blades/vanes and the cone; the body, which consists of three cones with the spherical blunting; the body, which consists of the cylinder with the spherical blunting and disk [17]. For an example we analyze the results of calculating the aerodynamic characteristics of hemisphere and body, which consists of the cylinder, blades/vanes and cone.

Hemisphere. The aerodynamic characteristics of hemisphere were determined for the laws of diffuse and mirror reflection. Any aerodynamic characteristic can be registered in the form

$$\Pi_i = \Pi_{i\,\infty} + \Delta \Pi_{i\,0}.$$

Here $\Pi_{i,\infty}$ aerodynamic characteristic of body in the free

molecular flow, encompassing the aerodynamic characteristic of the internal part of the surface without taking into account of reflection and exterior of the surface taking into account reflection; $\Delta\Pi_{i0}$ is caused by interference.

Fig. 1 gives dependence Δc_x , Δc_y and $\Delta c_x^* = \frac{2}{3} S_w^{-1} \pi^{-12} (2z + \sin 2\alpha)$ (taking into account only the first reflection of molecules from the internal surface) on α when $S_{\infty} = \infty$. Index d corresponds to diffuse reflection, index s - mirror; $S_{\bullet} = \frac{U_{\infty}}{\sqrt{2RT_{\bullet}}}$, where T_{\bullet} - temperature of the molecules reflected. Fig. 2 depicts the dependence of addition to the value of the "flow of moment/torque" ΔE_{d} from

$$a\left(\Delta M_{zd} = \Delta \overline{M}_{zd} \frac{mn_{\infty} U_{\infty}^2 \pi R_0^3}{S_{\varpi}}\right).$$

Page 61.

Fig. 3 depicts dependence $\Delta \overline{E}_d$ on $\alpha \left(\Delta E_d - \Delta \overline{E}_d \frac{m n_\infty U_\infty^3 \pi R_0^2}{2S^2} \right)$. Let us note that here in the case of completely diffuse reflection the interference of molecules plays no role and value $\Delta E_d = \Delta E_d^{\bullet}$, where ΔE_d^* — correction only due to the first reflection of molecules from the internal surface of hemisphere. This fact can serve as the further testing of the accuracy of method.

In the free molecular flow for the computed aerodynamic characteristics in the case of the laws of diffuse and mirror reflection taking into account the effect of the exterior of the surface are valid the following formulas:

with the diffuse reflection $c_x = c_{x1} + c_{x2} + \Delta c_{xd}; \quad c_y = c_{y2} + \Delta c_{pd}; \quad M_x = M_{x2} + 2\Delta M_{xd};$ $c_{x1} = 2\sin \alpha; \quad c_{x2} = 2\sin^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) + \pi^{-12}\left(\pi - 2\alpha + \sin 2\alpha\right)(3S_{\oplus})^{-1};$ $c_{y2} = -\frac{2}{3}\pi^{12}S_{\oplus}^{-1}\cos^2\alpha; \quad M_{x2} = -\frac{4}{3}\pi^{-1}\cos^2\alpha;$ $c_E = c_{E1} + c_{E2} + \Delta c_E; \quad c_{E1} = \sin\alpha;$ $c_{E2} = \left(1 - \frac{2}{S_{\oplus}^2}\right)\sin^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right);$

$$\Delta c_E = \Delta c_E = -\frac{2}{S_{\bullet}^2} \sin \alpha;$$

with the mirror reflection

$$c_x = c_{x\,1} + c_{x\,2} + \Delta c_{xs}; \quad c_y = c_{y\,2} + \Delta c_{ys};$$

$$c_{x\,1} = 2\sin\alpha; \quad c_{x\,2} = 2\left(2 + \sin\alpha\right)\sin^4\left(\frac{\pi}{4} - \frac{\alpha}{2}\right); \quad c_{y\,2} = -\frac{1}{2}\cos^3\alpha.$$

Here coefficients c_x and c_y are related to $0.5 \pi R_0^2 m n_\infty U_\infty^2$, moment/torque is calculated relative to the center of sphere and is related to $0.5 \pi R_0^2 m n_\infty U_\infty^2$. Coefficient c_E is related to $0.5 \pi R_0^2 m n_\infty U_\infty^3$. Index 1 designates the internal part of the surface of hemisphere in the free molecular flow without taking into account reflection, index 2 - the exterior of the surface in the free molecular flow taking into account reflection. From the calculations conducted it follows that the interference has an effect on different aerodynamic characteristics differently. The most sensitive value is c_y .

Fig. 2.

Fig. 3.

Page 62.

In the case of the law of diffuse reflection the interference plays important role for all aerodynamic characteristics, if only body surface has sufficiently high temperature, i.e., $S_{\bullet} \approx 1$.

Body, which consists of the cylinder, blades/vanes and cone (Fig. 4). Calculation was carried out at θ =45°, R_1 = L_1 = L_3 . All geometric dimensions are related to R= L_1 + L_2 /2 [1+(R_1 + L_3 / L_2)²]. Formulas for any aerodynamic characteristic are written/recorded in the form $\Pi_i = \Pi_{i\infty} + \Delta \Pi_i$, where $\Pi_{i\infty}$ is determined by first contact of molecules with body; $\Delta \Pi_i = \text{correction}$, caused by interference and first reflection. At α >90° it is necessary to consider the effect of the end/face of cylinder on the aerodynamic characteristics. In this case any aerodynamic characteristic is written/recorded in the form

$$\Pi_{i} = \Pi_{i \infty} + \Delta \Pi_{i} + \Pi_{i \infty \tau} + \Delta \Pi_{i \tau},$$

where $\Pi_{i\infty\tau}$ is determined by the molecules, falling on the end/face from infinity, $\Delta\Pi_{i\tau}-$ by the molecules reflected from the end/face.

In the case of diffuse reflection

$$P_{\infty \tau x} = -m n_{\infty} U_{\infty}^2 \pi R_1^2 \cos a \sin a; \quad \Delta P_{\tau x} = 0;$$

$$P_{\infty \tau y} = -mn_{\infty} U_{\infty}^2 \pi R_1^2 \cos^2 \alpha; \quad \Delta P_{\tau y} = -\pi R_1^2 mn_{\infty} U_{\infty}^2 \frac{\sqrt{\pi}}{S_{\infty}} \cos \alpha.$$

In the case of the mirror reflection

$$P_{\infty\tau y} + \Delta P_{\tau y} = -2 m n_{\infty} U_{\infty}^2 \pi R_1^2 \cos^2 \alpha.$$

Fig. 5-8 gives the dependences of dimensionless aerodynamic characteristics $P_{\tau\infty}$, $P_{N\infty}$, E_{∞} , $M_{z\infty}$ on the angle of attack α . Corrections to the aerodynamic characteristics in the case of diffuse reflection are given for Fig. 9-11, in the case of mirror reflection – for Fig. 12-14. From the given results follows the conclusion that the interference exerts a substantial influence on c_y and M_z in the case of mirror and diffuse reflection and "hot" wall.

Fig. 4.

Page 63.

Fig. 5.

Fig. 7.

Fig. 9.

Fig. 8.

Fig. 9.

Key: (1). taking into account the first reflection. (2). taking into account interference.

Page 64.

From the numerous calculations conducted it is possible to draw the following general/common/total conclusions:

- if molecules are reflected from the body, which has one significant dimension, with speed, there is much lower speed of the molecules of the incident flow, then the basic contribution to the interference is determined by shading/blanketing the some parts of the body by others;
- if body has the large surfaces, situated in parallel to the incident flow, then interference can exert a substantial influence on the value of some aerodynamic characteristics even in the case of "cold" body;
- interference can very substantially affect aerodynamic characteristics in the case of hot wall, i.e., when molecules are reflected at a velocity, equal in order of velocity of incident flow.

Fig. 10.

Fig. 11.

Key: (1). taking into account the first reflection. (2). taking into account interference.

Fig. 12.

Fig. 13.

Key: (1). taking into account the first reflection. (2). taking into account interference.

Key: (1). without taking into account interference. (2). taking into account interference.

Fig. 14.

Key: (1). without taking into account interference. (2). taking into
account interference.

Page 65.

Calculation of flows, close to free molecular.

With the decrease of the local Knudsen number the collisions of molecules begin to play the significant role in the flow pattern of body and must be considered them. During the determination of the distribution function for the flow, different from the free molecular, it is possible to use the formal resolution of the solution of the equation of Boltzmann in the series/row for 1/Kn.

Attempt to find solution in this form taking into account in essence only of the terms of order 1/Kn they were undertaken in works [18-20]. However, for this case of lining/calculation they were very bulky and the obtained results did not have practical interest. In work [21] was for the first time proposed the theory, which was subsequently called the theory of the first intermolecular collisions. Was solved the problem about resistance of the circular disk, arranged/located normal to impinging hyperthermal flow of molecules, in this case was considered the correction to resistance in the free molecular flow due to the single collisions between the molecules reflected and the molecules of the incident flow. Within the framework of the theory of the first intermolecular collisions were evaluated the aerodynamic characteristics of infinite band [22], infinite cylinder [23] and sphere [24] (in the linings/calculations of latter/last work was allowed the error, which led to the fact that the obtained allowance of the value of drag coefficient in the free flow was overstated approximately/exemplarily doubly).

Several on another path went in his studies of flows, close to the free molecular ones, Willis [25]. He used instead of the equation of Boltzmann the modified model equation of Crooke and he computed his first approximation, after making for the zero approximation free molecular decision. The formulation of the problems in this form is qualitatively close to the formulation of the problem in the theory

of the first intermolecular collisions. To a deficiency/lack in this method it is necessary to relate the use of model equation of Crooke whose suitability is doubtful for the flows, distant from the equilibrium ones. Furthermore, and in the case of model equation linings/calculations are bulky, so that calculations were carried out only for the sphere, cylinder [26] and flow of Couette [25]. In work [27] for calculating the aerodynamic characteristics of sphere was used the method of resolving the solution of the model equation of Crooke in the series/row for 1/Kn and was found the first term of series/row; the obtained results qualitatively coincide with results [26]. In works [28, 29] was used the method of successive approximations for the integral kinetic equation, for which was designed the first approximation. In particular, in [28] was determined stagnation pressure of the mirror reflecting sphere.

The most complete analysis of the flows, close to the free molecular ones, was carried out in the work of M. N. Kogan [30, 31]. In particular, in them it was shown that in the theory of the first intermolecular collisions for the convex finite bodies in the cases, which are of practical interest, it is necessary to seek corrections and to the free molecular value of aerodynamic characteristics only due to the single collisions between the molecules, reflected from the body, and by the molecules of the incident flow. These works examine also a question about the limits of the applicability of the theory of the first collisions, are qualitatively analyzed the basic types of the flows, which have practical interest both for the "cold ones" and for the "hot" bodies (i.e. for the actual conditions and the test conditions in the indraft wind tunnels), are indicated the similarity parameters and the methods of the recalculation of obtained theoretical data to the actual conditions and the conditions for experiment in the wind tunnels.

Page 66.

M. N. Kogan also showed that if we use the formal method of solving the equation of Boltzmann, expanding the distribution function in series/row according to 1/Kn, then the solution, found with an accuracy down to the terms 1/Kn, corresponds to the theory of the first intermolecular collisions. Use/application of the Monte Carlo method in the theory of the first intermolecular collisions made possible to create the universal calculation method, which makes it possible to determine the aerodynamic characteristics of convex bodies under arbitrary law of reflection of molecules from the body and arbitrary law of interaction between the molecules.

Formulation of the problem. Since during the motion of flight vehicle at the high altitudes its speed, as a rule, is much more than the average/mean thermal velocity of molecules, then we during the

solution of the problems of the *... disregard the thermal velocity of the molecules of the in literal time in comparison with its macroscopic speed and consider that the body attacks the hyperthermal flow with a specific. Above it was said, that in the theory of the first intermolation of the sirst i examine only the collisions between the soules, reflected from the body, and by the molecules of the

Let us register the number of collisions, which occur in certain volume element between the molecules, reflected from the element/cell of surface dF with the speeds in the range from V_1 to V_2+dV_3 and the molecules of the incident flow per unit time in the element of volume dr: $dN = f_{\infty}(\vec{V}_1) f_{\infty}(\vec{V}_2) g_{12}^{\longrightarrow 1} b(2k)^{-1} db de d\vec{V}_1 d\vec{V}_2 dr.$

If this expression is integrated over entire physical and high-speed/high-velocity space, then we will obtain total number of collisions N per unit of time. Ratio dN/N is nothing else but the probability of this collision. The collisions of molecules in a two-fold manner affect the aerodynamic characteristics of the body: on one hand, due to the collisions to the body comes the further flow of molecular signs/criteria, on the other hand, due to the collisions to the body does not come certain flow of the molecular signs/criteria which carried from infinity of molecule, which clashed with the molecules, reflected from the body. Consequently, for any

aerodynamic characteristic of body taking into account the first collisions is valid the recording: $\Pi_i = \Pi_{i \in n} + \Pi_{i+} - \Pi_{i-}$, where $\Pi_{i \in n} = \Pi_{i \in n}$ value of aerodynamic characteristic in the free molecular flow; $\Pi_{\ell+}$ addition, caused by collisions; Π_{i-} loss due to the collisions. Developing randomly the sufficiently large number of collisions K in the space, it is possible to determine the local and total values of the aerodynamic characteristics of body, averaging additions Π_{i+} and Π_{i-} according to the number of collisions K. If molecules are reflected from the body with the average speed which is much lower than the speed of the molecules of the incident flow, then at the moment of colliding the molecules it is possible to consider that the speed of the molecule reflected is equal to zero; this assumption makes it possible to find in the form of quadratures the function of the distribution of molecules on the body. In this case the Monte Carlo method is applied to the calculation of the repeated integrals, through which are written/recorded the aerodynamic characteristics of body.

Page 67.

Let us illustrate based on the example of the flow around sphere, how occurs the simulation of flow pattern with the help of the Monte Carlo method. Let us introduce the following assumptions:

1) the reflection of molecules from the body occurs according to the

diffuse law, 2) molecules are elastic spheres by diameter σ . Let us introduce dimensionless parameters $S_{\bullet} = \frac{U_{\infty}}{\sqrt{2RT_{\bullet}}}$ and $Kn_{\infty} = \frac{1}{2\sqrt{2}\pi r^2 n_{\infty}R_0}$, where T_{\bullet} — temperature of the reflected according to the Maxwellian law molecules

 $f = n_w (2\pi R T_w)^{-3/2} \exp\left(-\frac{v^2}{2RT_w}\right);$

R - gas constant; $\pi\sigma^2$ - collision cross section for the solid spheres; n_{∞} - density at infinity.

Let us register the number of collisions, which occur at point A(x, y, z) (Fig. 15) between the molecules, reflected from element/cell dF of the surface of sphere with the speeds in the range $\sqrt[3]{v}$, $\sqrt[3]{v}$ +d $\sqrt[3]{v}$, and by the molecules of the incident flow per unit time in the element of volume $\rho^2 d\rho$ sin ψ d ψ d ϕ :

$$\begin{split} dN &= n_{\infty} n_{\bullet} (2\pi R T_{\bullet})^{-3/2} \exp\left(-\frac{v^2}{2R T_{\bullet}}\right) v^2 \cos\psi \sin\psi \, d\psi \, d\varphi \, \sigma^2 \, G_{21} \sin\nu \cos\nu \times \\ &\quad \times d\nu \, d\mu \exp\left(-\frac{\rho}{\lambda_{21}}\right) d\rho \, dF. \end{split}$$

Molecules were reflected from the element/cell of surface dF=R², $\sin \theta d \theta d \beta$ in the direction ψ , φ . At the moment of collision the direction of center line is assigned by angles ν , μ relative to the direction of relative speed $\vec{G}_{21} = \vec{V} - \vec{U}_{\infty}$. Collision occurred at a distance ρ from element/cell dF. The molecules reflected possessed the speeds in the interval $(\vec{V}; \vec{V} + d\vec{V})$, and their quantity is proportional to $\exp(-\rho/\lambda_{2.1})$, where $\lambda_{2J} = \frac{v}{n_{\infty} \pi \sigma^2 G_{21}}$ the mean free path of the molecules reflected on the molecules of the incident

flow. From the law of conservation of a number of particles on the surface of sphere it follows that $n_{\bullet}=2n_{\infty}~\sqrt{\pi}\,S_{\bullet}\cos\theta$.

The collision frequency let us register in the form

$$dN = \pi R_0^2 n_\infty U_\infty f(\theta) f(\psi) f(v) f(\rho) f(\rho) f(\beta) \times f(V) f(\mu) d\theta dV d\psi dv d\rho d\varphi d\theta d\mu,$$

where

$$f(\theta) = 2 \sin \theta \cos \theta$$
;

$$f(V) = 2(2RT_w)^{-2} \exp\left(-\frac{V^2}{2RT_w}\right) V^3;$$

 $f(\psi) = 2\sin\psi\cos\psi;$

$$f(v) = 2 \sin v \cos v;$$
 $f(\rho) = \frac{1}{\lambda_{21}} \exp \left(-\frac{\rho}{\lambda_{21}}\right);$

$$f(\varphi) = f(\mu) - f(\beta) = \frac{1}{2\pi};$$

moreover for all variable/alternating

$$\int_{x_1} f(x_1) dx_1 = 1.$$

Fig. 15.

Page 68.

Then the probability of this collision exists $\eta = \frac{dN}{N} = f(\theta) f(\gamma) f(\gamma) f(\rho) f(\beta) f(\mu) f(V) d\theta d\psi d\gamma d\rho d\varphi d\beta d\mu dV.$

One drawing let us name the collision, characterized by the random sampling of eight parameters, moreover each parameter was chosen randomly with an appropriate probability density of $f(x_i)$. After the collision was played, were determined the trajectories of molecules after collision, was fixed/recorded the fact of falling of molecule into this point of surface and were memorized the corresponding values of the molecular signs/criteria, yielded by

molecule to the body. Simultaneously it was checked, did not occur collisions at the point of space which is projected/designed along the direction of speed U_{∞} to the body surface; if this is so, then at this point of body surface we fix/record the report/event of the loss of the molecular signs/criteria which carried the molecule from infinity. The parameters of each collision are developed according to the following formulas:

$$V = \sqrt{2RT_{\infty}} \sqrt{-\ln \xi_{i} \xi_{i+1}}; \quad \sin \psi = \sqrt{\xi_{i+2}};$$

$$\sin \gamma = \sqrt{\xi_{i+3}}; \quad \rho = \left(-2\sqrt{2} \text{ Kn}_{\infty} \frac{V}{G_{21}}\right) \ln \xi_{i+4};$$

$$\varphi = 2\pi \xi_{i+5}; \quad \mu = 2\pi \xi_{i+6}; \quad \beta = 2\pi \xi_{i+7};$$

$$\sin \theta = \sqrt{\xi_{i+8}}.$$

where ξ_{i+n} — evenly distributed random numbers [0-1].

After playing collision, we determine the speeds of molecules after collisions V_i and V_{i+1} . Each molecule after collision has the "weight", equal to

 $mn_{\infty}U_{\infty}\pi R_0^2$ for the flow of molecules;

 $mn_{\infty}U_{\infty}\pi R_0^2U_{n/...j+1}$ — for the flow of normal impulse/momentum/pulse;

 $mn_{\infty}U_{\infty}\pi R_0^2U_{z/.../+1}$ for the pulse stream in direction U_{∞} ;

 $mn_{\infty} \frac{U_{\infty}}{2} = R_0^2 V_{j,j+1}^2 - \text{ for the energy flow.}$

If collision occurred above any point of body surface, then at this point of surface occurred the loss of the following molecular signs/criteria:

 $mn_{\infty}U_{\infty}\pi R_0^2$ — for the flow of molecules;

 $mn_{\infty}U_{\infty}=R_0^2(U_{\infty}n)$ — for the flow of normal impulse/momentum/pulse;

 $mn_{\infty}U_{\infty}\pi R_0^2U_{\infty}$ —for the pulse stream in direction U_{∞} ;

 $mn_{\infty}U_{\infty}\pi R_0^2\frac{U_{\infty}^2}{2}$ for the energy flow.

If it is necessary to know the distribution of the computed flows from the body surface, it is necessary body surface to decompose into the elements/cells (value of which it is determined from the considerations of accuracy), to count the sums of the flows of the molecular signs/criteria interesting us and to relate them to the area of the element/cell of surface and to a number of drawings K. For the total characteristics necessary to count the sums of the corresponding molecular signs/criteria, which arrive at entire body surface and lost as a result of collisions above the entire body surface relate them to K.

Thus, we compute Π_{+k} and Π_{-k} , where index k indicates the

appropriate molecular sign/criterion.

Page 69.

A number of drawings K is determined by the assigned accuracy of calculation according to known formulas [16], moreover dispersion is determined in the process of calculation. By the method proposed were determined the aerodynamic characteristics of the whole class of bodies.

1. Sphere. (Fig. 16). Aerodynamic characteristics of the sphere were computed for arbitrary value S_{\bullet} when $\frac{S_{\bullet}}{Kn_{\infty}} < 1$ [32]. It was assumed that the reflection of molecules from the surface diffuse and the molecules interact: a) as elastic spheres; b) as pseudo-Maxwellian molecules. Calculations showed that value c_{r} in the mode/conditions of the first intermolecular collisions is reduced in comparison with its free molecular value approximately/exemplarily to 15% within the framework of the applicability of theory. The results of detailed calculations are given in works [32-34].

Cone (Fig. 16 and 17). In this case the effect of the first intermolecular collisions on different aerodynamic characteristics is different. Allowance to resistance, energy flow and to the value of the pitching moment of "cold" cone when $S_{\infty} \theta < 1$ (with exception of the

thick cones when $\theta > 60^{\circ}$, where θ - half-angle of solution/opening) is negative and does not exceed 10% of value of these aerodynamic characteristics in the free molecular flow in the region of the applicability of the theory of the first collisions. For example, correction due to the collisions for the cone with the significant dimension of h=1 m when $\theta=15^{\circ}$, $\alpha=72^{\circ}$, $S_{\infty}=10$ for the height/altitude of 120 km is equal to approximately/exemplarily 7%. Allowance as a result of the collisions to the free molecular value of the lift of "cold" cone in the dependence on the combination of the half-apex angle of the cone and angle of attack can be both positive and by negative and on the average are approximately 50% of $c_{v...}$. In the "resonance" case when $\alpha \approx \pi/2 - \theta$, value Δc_y can be several times more than crew (in the given higher example at the height/altitude of 120 km relative value of correction Δc_r it is equal to approximately/exemplarily 150% " and only at the height/altitude of 230 km it composes 10%).

Fig. 16. 1 - circle; 2 - square; 3 - rectangle; 4 - cone, θ =60°; 5 - sphere; 6 - cone, θ =45°; 7 - cone, θ =30°; 8 - circle (along the flow).

Page 70.

For the thick "cold" cones the allowance due to the collisions to free molecular to the value of pitching moment can be both the positive and negative, and its value can be much more than the free molecular value of pitching moment. In the case of very slender cones when $S_{\infty} \emptyset \geqslant 1$ the value of resistance taking into account the first collisions is more than free molecular value. From the given calculations it is possible to draw the following basic conclusions:

- the boundary of free molecular courses for different aerodynamic characteristics of cone lies/rests on different height/altitude and there cannot be determined only on the basis of the Knudsen number; it in many respects depends on the geometry of task, laws of interaction of molecules with each other and with the surface of cone;
- ignorance of the laws of interaction of molecules with the surface (accommodation coefficients) to a high degree affects the determination of lift and pitching moment of cone and to the considerably smaller degree the determination of the value of resistance and heat flux.

Plate. The results of detailed calculations are published in works [33, 35-40]. Plate is most "convenient" body for obtaining the qualitative laws governing the flow around bodies by the strongly rarefied gas. In work [30] based on the example of plate were determined different types of courses, realized in the case of the flow around the plate, arranged/located at different angles of attack, under different laws of interaction of molecules with each other and with the surface of plate.

The calculations conducted completely confirmed qualitative results [30]. If plate is arranged/located normal to flow [36, 39, 40], then its resistance and energy flow to it in the mode/conditions, close to the free molecular, are reduced within the framework of the applicability of theory approximately/exemplarily to 10%. In the case of the plate, arranged/located in parallel to flow [33, 35, 37, 38], possibly several types of flows depending on the "type" of molecules, law of their interaction with the surface and values of numbers S_{∞} , S_{∞} and Kn_{∞} . Thus, in the "cold" case when $S_{\infty} \ll Kn_{\infty}$ resistance of plate and energy flow in the flow conditions, close to the free molecular, are more than the free molecular value of maximum by ~10%.

Fig. 17.

Page 71.

But if are realized the conditions of the so-called molecular boundary layer when $1 \ll Kn_{\infty} \ll S_{\infty} \ll Kn_{\infty}^2$, then within the framework of the applicability of the theory of the first intermolecular collisions value c_* and energy flow can be many times of more than their value in the free molecular flow. Even to the larger degree grows pressure on the surface of plate. For the plate, just as for the thin pointed bodies, high value has a precise knowledge of law of reflection of molecules from the surface, since depending on the law of interaction of molecules with the surface of the value of aerodynamic characteristics they can increase or be reduced by an order. Fig. 16 gives some results of calculations for the plates of various forms.

Skimmer (Fig. 18). Calculations were carried out for the purpose of the determination of flow disturbances at the entrance into the skimmer, the caused by collisions molecules of hypersonic $(S_{\infty} = \infty)$ incident flow with the molecules, reflected from surface [34]. In the investigated modes/conditions the mean free path of molecules in the incident flow was much more than the diameter of the entrance, molecule they were assumed elastic spheres, $S_{\bullet}=10$ and 1.57. From the obtained results it is evident that even when $\mathrm{Kn_d}$ =40 and $\mathrm{S_w}$ =10 density at the entrance increases by 10% in comparison with its free molecular value. Axial inlet velocity falls, average/mean longitudinal quadratic speed is reduced, all this together undertaken speaks, that at the entrance begin to predominate the oblique collisions. With an increase in the wall temperature the effect of collisions is reduced. Consequently, cooling skimmer can contribute to the decrease of the distortion of flow only in the case of the complete freezing of gas on its surface. The calculations conducted show that even in the case when $\dot{K}n_d\gg 1$ and $\dot{K}n_D>1$, intermolecular collisions significantly distort the picture of flow after the skimmer.

REFERENCES.

- 1. Cohen J. M. Free molecule flow over nonconvex bodies. ARS J., vol. 30, No 3, 1960.
- E. Larish. Aerodynamic interference during the free molecular flow. Izv. of the AS USSR. "Mechanics and machine building", 1960, No
 3.
- 3. E. Larish. Equations of free molecular flow. Izv. of the AS USSR,

"Mechanics and machine building", 1961, No 2.

- 4. Pratt M. J. Concave surfaces in free molecule flow. AIAA J., vol. 1, No 7, 1963.

 5. Chahine M. T. Free molecule flow over nonconvex surfaces. Rarefled gas dynamics, Proc. of the Second Internat. Symposium on farefied gas dynamics. New York and London, 1961.
- 6. I. P. Otmakhova. Resistance of the hemisphere, which moves with

the constant velocity in the gas. "Herald of MGU". Series

"Mathematics, mechanics", 1958, No 4.

- 7. Sparrow E. W., Jonsson V. R., Lundgreen T. S., Chen T. S. Heat transfer and forces for free molecule flow on a concave cylindrical surface. J. Heat Transfer, vol. 86, No. 1, 1964.
- 8. Wani T. Aerodynamic interference in free molecule flow. Trans. of Japan Soc. for Aeron. and Space Scienses, vol. 3, No 4, 1960.
- 9. A. I. Bunimovich, M. L. Kagan. Free molecular flow of gas in the flat ducts and the lattices. Izv. of the AS USSR, "Mechanics of fluid

and gas", 1966, No 3.

10. Sparrow E. W., Jousson V. R., Lundgreen T. S. Free molecule tube flow and adiabatic wall temperature. J. Heat Transfer, vol. 85, No 2, 1963. 11. Patterson G. N. Recent trands in the mechanics of highly rarefied gases. Aeronautics and Astronautics Proc. of the Durand Centennial Conference Held at Stanford Univercity 1959, New York and London, 1960.

12. Yu. I. Lyubitov. Calculation of interaction of the molecular flows with their enclosing containers. M., "Science", 1964.

Page 72.

13. Davis D. H., Levenson L. L., Milleron N. Theoretical and experimental studies of molecular flow trough short ducts. Rarefled gas dynamics proc. of the second internat symposium on rarefled gas dynamics, New York and London, 1961.

14. Kruger C. H., Shapiro A. H. The axial-flow compressor in the free-molecule range. Rarefled gas dynamics proc. of the second internat. sumposium on rarefled gas dynamics. New York and London, 1961.

15. A. A. Bogacheva, V. A. Perepukhov, E. Ye. Rukhman.

Use/application of the Monte Carlo method to the calculations of the aerodynamic characteristics of concave bodies and bodies of complex form in the free molecular flow. "J. of comp. math. and math. physics", Vol. 8, No 6, 1968.

- 16. N. P. Buslenko, Yu. A. Shreyder. Method of statistical tests, M., Fizmatqiz, 1961.
- 17. A. A. Bogacheva, V. A. Perepukhov, E. I. Rukhman. Use/application of the Monte Carlo method to the calculation of the aerodynamic characteristics of bodies in the free molecular flow. Transactions of TsAGI, iss. 1227, 1970.

18. Loffe G. Zur Methodik der kinetishen Gastheorie. Ann. der Physik, 1930, Ser 5, 6. 19. Keller J. B. On the solution of the Boltzmann equation for rarefied gases. Comm. on appl. mathem., vol. 1, No 3, 1948.

20. Szymanosky Z. Some flow problems of rarefied gases. Archiwum Mech. Stosowanej, vol. 8, No 4, 1956.

21. Heineman M. Theory of drag in nighly rarefied gases. Comm. on appl. mathem., vol. 1, No 3, 1948.

22. Lunc M., Lubonski J. La perturbation de lecoulement moleculaire libre produite par un obstacle. Bull. de L'Academic Polonaise des sciense, 1957, t. 5, n° 1.

- 23. R. S. Iroshnikov. On the almost free molecular flow around bodies of the rarefied gas. "Engineering journal", Vol. I, No 3, 1961.
- 24. Boker R. M. L., Charwat A. F. Transitional correction to the drag of a sphere in free molecule flow. Phys of Fluids, vol. 1, No 2, 1958.
- 25. D. Willis. Theoretical resolutions of some problems of almost free molecular flow. In the collection: "Gas dynamics of the rarefied gases". M., Publ. of foreign lit., 1965.
- 26. Willis D. R. General Electric Co. Space Sci. Lab. TIS. R 60. SD 399, 1960. 27. Rose M. (Heineman M.). Drag on an object in nearly-free molecular flow. The Physics of fluids, vol. 7, No 8, 1964.
- 28. Ye. V. Alekseyeva, R. G. Barantsev. Flow around the mirror reflecting sphere of the strongly rarefied gas. Coll. "Aerodynamics of the rarefied gases", Vol. I. Publ. of LGU, 1965.
- 29. G. Pfau. Resistance of rhombic profile/airfoil in the almost free molecular flow. Coll. Aerodynamics of the rarefied gases", Vol. I, izd. LGU, 1965.
- 30. M. N. Kogan. On the hypersonic flows of rarefied gas. "Applied mathematics and mechanics", Vol. XXVI, No 3, 1962.
- 31. M. N. Kogan. Dynamics of the rarefied gas. M., "Science", 1967.

- 32. V. A. Perepukhov. Aerodynamic characteristics of sphere and blunt-nosed cone in the flow of the strongly rarefied gas. "J. of comp. math. and math. physics", Vol. 7, No 2, 1967.
- 33. M. N. Kogan, L. M. Degtarev. On the calculations of flows with the large Knudsen numbers. "Astronautica acta", iss. 11, No 1, 1965.
- 34. V. A. Perepukhov. Aerodynamic characteristics of the acute round cone, arranged/located at the angle of attack to the flow of the strongly rarefied gas. In the collection: "Study of the flow around bodies by hypersonic low-density flow". Transactions of TsAGI, iss. 1311, 1971.
- 35. V. N. Gusev, M. N. Kogan, V. A. Perepukhov. On similarity and change of the aerodynamic characteristics in the transition region at the hypersonic speeds of flow. "Scientific notes of TsAGI", Vol. I, No 1, 1970.
- 36. V. A. Perepukhov. On the flat-plate drag in the flow of the strongly rarefied gas. "J. of comp. math. and math. physics", Vol. I, No 4, 1961.
- 37. V. A. Perepukhov. Flow around the flat/plane plate, arranged/located at the zero angle of attack, by the flow of the

strongly rarefied gas. "J. of comp. math. and math. physics", Vol. 3, No 3, 1963.

- 38. V. A. Perepukhov. Flow around circular plate under the conditions of molecular boundary layer. PMTF, 1964, No 5.
- 39. V. A. Perepukhov. On resistance of the flat/plane plate, arranged/located normal to the flow of the strongly rarefied gas. "Engineering journal", Vol. 5, No 5, 1965.
- 40. O. G. Friedlander. On resistance of the flat/plane plate, perpendicular to hypersonic low-density flow. PMTF, 1965, No 3.

Page 73.

STUDY OF INTERNAL AND EXTERNAL FREE MOLECULAR FLOWS ABOUT AN ARBITRARY GROUP OF COMPLEX BODIES.

M. A. Zakirov.

Are given formulas and universal program comprised on them for calculating of aerodynamic coefficients, local flows through the surfaces and local parameters of gas in the field of flow at the flow of the free molecular flow about the group of complex bodies.

Calculations can be carried out under different laws of interaction of molecules with the wall. Body surface is assigned analytically. The velocity vector of the incident flow is arbitrary in the value and in the direction. Program makes it possible to carry out the flow-field analyses of bodies by the flow of light/world and by hypersonic inviscid flow (according to Newton's theory).

ADOPTED DESIGNATIONS.

 $V, Vh^{1/2}, h^{-1/2}, T, n, m-$ average/mean and relative gas velocity, the most probable speed, temperature, density and the mass of particles;

 $\chi_{\chi_i}, \gamma_{\gamma_j}, \Psi_{\Psi_n}$ —coordinate systems, connected with entire body, with the separate surface and with the surface element on surface of (i, j, n=1, 2, 3);

 δ_{μ} unit matrix (j, i=1, 2, 3);

 $\epsilon_{\pm i}, \epsilon_{ri}, m_{\pm i}, m_{ri}$ —coefficients of total aerodynamic forces and moments/torques;

 E_{\pm} , E_r – coefficients of total energy flows to the body;

 E_k flux coefficient of the energy through the control surface;

 $\binom{(n_+, n_r), (p_\pm, p_r)}{(\tau_\pm, \tau_r), (e_\pm, e_r)}$ — coefficients of the average/mean local particle fluxes, normal and tangential impulses/momenta/pulses and energy through the surface;

 $w_{=\lambda}$ —probability of the flight/span of molecule;

P_A - static pressure;

 $n_{k} V_{f(k)} T_{k} M_{kf(k)}$ - particle density, the average speed, temperature, $P_{kf(k)} E_{f(k)} Q_{f(k)}$ - particle density, the average speed, temperature, the tensors of the flux of momentum and stresses/voltages, the flows of complete and thermal energy along the field of flow of gas;

μ_λ - particle flux;

M[X], D[X] — mathematical expectation and dispersion;

 $N_p(N_{p,k})$ — number of particles, played through entire (through the k-th) face of control surface.

Page 74.

Indices.

w - condition on the wall;

k - number of the face of control surface;

 ν - ν -th surface;

 ω , β , γ - local flows through the surface;

 λ - local parameters on the field of flow in the vicinity of formal surface S_{λ} :

n - coefficients in Newton's theory;

f - flow of light/world (photons).

Introduction.

The tasks of the study of free molecular flows appear in connection with the flights of bodies in the free molecular flow and the calculations of flows in the vacuum devices.

The calculations of free molecular flows are performed through two directions: in the first case solve the complicated integral equations of the type of Fredholm the second kind for the function of the distribution of particles [1-6] reflected; in the second case free molecular flow, they simulate by the method of the Monte Carlo [7-12].

The solution of integral equation is obtained for the case of flow of the hypersonic free molecular flow about of the concave sphere and cylinder with the diffuse reflection of particles from surface [2, 13, 14]. Numerical calculations are carried out during the free molecular flow around the infinite cylinder [15] and wedge [16]; cone, hemisphere and cylinder with wings [5, 8]; flat ducts and lattices [17].

In the tasks about the internal flows, the first settings and solutions of which were given in the works of Knudsen, Smoluxovsky

and Clausing (see vast bibliography in the works [1, 5, 6]), are determined the probability of the flight/span of molecules and the density of gas during the flow through the rectangular cylindrical, the conical and wedge channels [17-20]. Is determined also gas density in the vicinity of sphere and cone [21-23].

In the present work is given the calculation procedure by the method of the Monte Carlo of the aerodynamic coefficients of separate surfaces and entire body, and also coefficients of local stresses/voltages in the body surface and local parameters of gas (density, temperature, speed, heat flux, etc.) on the field of internal and external free molecular flows. Calculations can be carried out for arbitrary combination of the complex bodies whose surfaces are assigned analytically. The velocity vector of the incident flow of gas can be arbitrary in the value and the direction. For gaming the reflection of molecules it is possible to apply different models. Employing this procedure it is possible to lead calculations for the bodies in the flow of light/world and according to Newton's theory.

Chapter 1.

UNIVERSAL ALGORITHM OF THE STUDY OF FREE MOLECULAR FLOWS.

The overall diagram of the solution of problem is the following. The geometry of the arbitrarily arranged/located bodies in the space is assigned with the help of set of parameters of surfaces. In accordance with the function of particle distribution of the undisturbed flow is produced the drawing of the random parameters of particles at the "start" from the control surface, which surrounds body. Are developed consecutive collisions and reflections (in accordance with the assigned density) of particles with the body surfaces up to their escape from the control volume. At the moment of the intersection with the molecule of body surface are summarized all necessary flows, throughout which then are calculated the mathematical expectations of the corresponding flows per unit time.

Page 74.

1. On the analytical method of the assignment to surface of complex body.

Let us consider the complex body whose entire surface can be

represented by the set of the arbitrary parts of the surfaces of the second order. The numbered parts of the surfaces we will call thus: the first surface, the second surface, etc. Let us introduce the system of coordinates Xx_i (i=1, 2, 3) connected with the body.

All surfaces are determined by assignment for each of them the ordered array from the coefficients of the equations of the second order $b_{jm}y_jy_m + 2b_{j4}y_j + b_{44} = 0 \quad (j, m-1, 2, 3), \tag{1.1}$

written for the convenience relative to the arbitrary system of coordinates Yy_j , oriented relative to system Xx_i by direction cosines a_{ji} between axes x_i and y_j and by coordinates x_{0i} of point Y. In formula (1.1) b_{jm} — tensor (affine tensor); $b_{j,4}$ — vector; b_{+4} — scalar.

Analytical method includes also the assignment to region D of changing the variable/alternating y_r . During the assignment to D region use Cartesian, polar, cylindrical and spherical coordinates. Then almost for all surfaces, presenting interest from the point of view for the theory and practice, the form D region becomes simplest – rectangular. For the assignment to D region are used: in the Cartesian system of coordinates (y_i) the variable/alternating y_1 , y_2 , in polar $(\varphi, r, y_3) - \varphi$, r, in the cylindrical $(\varphi, r, y_3) - \varphi$, y_3 and into the spherical $(\varphi, \theta, r) - \varphi$, θ . Let us agree on subsequently to

call y_1 and ϕ external variable/alternating, and y_2 , r, y_3 and θ - internal variable/alternating.

Let us do some notes. In the Cartesian and polar coordinate systems D region does not set limitations on values of y,; therefore for achievement of uniqueness is considered only the part of the surface, which falls into half-space y,>0. By the appropriate selection of the coefficients of equation (1.1) it is possible to achieve entry/incidence into half-space y,>0 of different parts or entire surface. In the case of conical surface it is necessary to throw/reject a small vicinity about the apex/vertex, since the direction of standard/normal at this point is not determined.

Thus, each surface is assigned by set of parameters b_{jm} , ${}^{2}b_{j}$, b_{++} , a_{ji} , $x_{0}i$, β_{1} , β_{2} , γ_{1} , γ_{2} and π_{\bullet} . Here (β_{1}, β_{2}) , (γ_{1}, γ_{2}) - the limits of the rectangular region D on by external and internal variable/alternating; π_{\bullet} —- sign/criterion, which designates the coordinate system, in which is assigned D region.

The following space is the introduction of the typical classes of surfaces and complex bodies. For example, if are examined only axisymmetric surfaces (circle, cylinder, cone, spherical segment), then a number of assigned parameters about the surfaces substantially is reduced. Complicated surfaces also can be assigned by a smaller

number of parameters; for example, the surface of parallelepiped is determined by the assignment of the coordinates of three apexes/vertexes and height/altitude.

Particle trajectories are calculated relative to axes Xx_i , therefore the equations of all surfaces are converted from one axes ${}^{\gamma}y_i$ to the next Xx_i . This is realized into two stages. First is produced the rotation of axes ${}^{\gamma}y_i$ so that new axes ${}^{\gamma}y_i \parallel Xx_i$ and equation (1.1) takes the form

$$\psi_{ik}y_i'y_k' + 2\psi_{i,k}y_i' + b_{44} = 0; \quad \psi_{ik} = a_{ji} a_{mk} b_{jm}; \psi_{i,k} - a_{ji} b_{j,k}; \quad y_j = a_{ji} y_i; \quad y_m = a_{mk} y_k; \quad i, k = 1, 2, 3.$$
(1.2)

Page 76.

Then is realized the parallel shift/shear of axes y_{i} before the coincidence with axes Xx_{i} $y_{i}=x_{i}-x_{0}$ (1.3)

and the equation of surface takes the form

$$a_{1k}x_{1}x_{k} + 2a_{14}x_{1} + a_{44} = 0; \quad a_{1k} = \psi_{1k}; \\ a_{14} = \psi_{14} - \psi_{1k}x_{0k}; \quad a_{44} = x_{0i} (\psi_{1k}x_{0k} - 2\psi_{14}) + b_{44}.$$
 (1.4)

2. Selection of the form of control surface.

On control surface (S,) we will produce gaming the random values

of the components of vector of the particle speed and coordinates of the start of particle. In this case the value of the probability of contact with the body surface of the particle, which starts with S.,

$$\rho_{\pi} = \frac{N_{\pi}}{N_{\rho}} \tag{2.1}$$

must be closest possible to one. Here N_n — number of particles fallen on body of all that played N_p on S_o .

If we as S_o take sphere, then value p_n will be small for the bodies, extended on one or two measurements, but if elliptical cylinder or ellipsoid, then are obtained complicated formulas for the drawing of random variables.

In the present work as the control surface is selected parallelepiped (S_k) , since for it value P^n will be sufficient high, and the density function of random variables for faces S_k are simplest.

In the examination of flows within the channels it is profitable to develop flight of particle only through the part of control surface, for example only through one face in plane of which is arranged/located the entrance. After the drawing of the random coordinates of particle on rectangular face S_k is checked their entry/incidence in the section of inlet whose form is arbitrary.

3. On the laws of the distribution of the random parameters of particles.

We will examine Knudsen's gas $(Kn\to\infty)$. If about body (final) flows uniform equilibrium (limitless) flow, then the function of the distribution of the incoming particles is equal to Maxwellian

$$f_{\infty} = n_{\infty} (h_{\infty}/\pi)^{3/2} \exp\left[-h_{\infty} \sum_{i=1}^{i=3} (\xi_i - V_{\infty i})^2\right]; \quad h_{\infty} = \frac{m}{2 k T_{\infty}}. \quad (3.1)$$

Here designation conventional (for example, see [1]).

Let us consider now formulas for the drawing of the random components of speed and coordinates of particles on surface S_{k} .

Preliminary analysis showed that the random components of the particle speed on faces S_{k} to more simply develop in the Cartesian coordinates. In the cylindrical and spherical coordinates the random variables, which characterize value and direction of the particle speed, are dependent, which strongly complicates drawing. Only when $V_{\infty} = 0$ are obtained simple formulas for the drawing of the velocity vector of the particle [see formula (4.10)].

PAGE 147

DOC = 83067303

Page 77.

Six faces S_{a} , which satisfy the equations

$$x_1 - x_{1i}^* = 0, \ k = i; \ x_i - x_{2i}^* = 0, \ k = i + 3; \ x_{1i}^* < x_{2i}^*,$$
 (3.2)

let us number by index $k=1, 2, 3, \ldots, 6$. Let us designate through n_{kl} the internal normals to faces S_{kl}

Expressing the standardized/normalized particle fluxes through faces S_k , we will obtain expressions for the densities of random components ξ_{kl} of particle speed:

components $\vec{\xi}_{M}$, parallel to standards/normals \vec{n}_{MD}

$$f(\xi_{kl}) = 2\chi^{-1} (V_{\infty k}) \exp \left[-(\xi_{kl}' - V_{\infty k}')^2\right] \xi_{kl}', \qquad (3.3)$$

$$i = k \ (k = 1, 2, 3), \quad i = k - 3 \ (k = 4, 5, 6), \quad \xi_{kl} \in (0, \infty);$$

components ξ_{kl} parallel to faces S_k ,

$$f(\xi_{ki}) = (\pi)^{-1/2} \exp\{-(\xi_{ki}^{i} - S_{\infty i})^{2}\},$$

$$i \neq k \ (k = 1, 2, 3), \quad i \neq k - 3 \ (k = 4, 5, 6);$$
(3.4)

here

$$V'_{\infty k} = n_{ki} S_{\infty i}; \quad S_{\infty i} = v_{\infty i} S_{\infty}; \quad v_{\infty i} = V_{\infty i} |V_{\infty}|^{-1} = \{-\cos a_0 \cos \beta_0, \\ \sin a_0 \cos \beta_0, -\sin \beta_0\}; \quad \chi(x) = \exp(-x^2) + \sqrt{\pi}x (1 + \operatorname{erf} x); \\ S_{\infty} = V_{\infty} h_{\infty}^{1/2}, \quad \xi_{ki} = \xi_{ki} h_{\infty}^{1/2};$$

 α_{\bullet} and β_{\bullet} - angles of attack and slip.

Let us note that function (3.3) reaches maximum at the point $\xi_{0,k} = 0.5 \ V_{\infty,k} + (0.25 \ V_{\infty,k}^{2} + 0.5)^{1/2}$ (3.5)

but function (3.4) - at point $S_{\infty i}$.

Integral laws take the form:

distribution (3.3)

$$R_{ki}(\xi_{ki}) = \int_{0}^{\xi_{ki}} f(\xi_{ki}) d\xi_{ki}' = 1 + \{ \sqrt{\pi} V_{\infty k}' [\text{erf}(\xi_{ki} - V_{\infty k}) - 1] - \exp[-(\xi_{ki}' - V_{\infty k}')^{2}] \} \chi^{-1}(V_{\infty k}');$$
(3.6)

the distribution (3.4)

$$R_{ki}(\xi'_{ki}) = \int_{-\infty}^{\xi'_{ki}} f(\xi'_{ki}) d\xi'_{ki} = \frac{1}{2} \left[1 + \text{erf} \left(\xi'_{ki} - S_{\infty i} \right) \right]. \tag{3.7}$$

For the drawing of the random values of components necessary to find intervals $(\xi_{kl}^{'a}, \xi_{kl}^{'b})$, the probability of the entry/incidence into which of random variables is close to one.

On the basis of the preliminary estimations for the components of speed ξ_{kl} parallel to standards/normals n_{kl} , let us consider the following cases:

A.
$$V_{\infty k} > 3,25$$
, $\xi_{kl}^{a} = V_{\infty k}' - 3,25$, $\xi_{kl}^{b} = V_{\infty k}' + 3,25$;
B. $0 \leqslant V_{\infty k} < 3,25$, $\xi_{kl}^{a} = 0$, $\xi_{kl}^{b} = V_{\infty k} + 3,25$;
C. $-4,55 < V_{\infty k}' < 0$, $\xi_{kl}^{a} = 0$. (3.8)

Page 78.

For case of A, by considering the probability

$$p\left[\xi_{kl}^{\bullet} < (V_{\infty k} - 3,25)\right] = R_{kl}(V_{\infty k}' - 3,25) = 1 - (V_{\infty k}' V_{\infty k}' [1 + \text{erf}(3,25)] + \exp(-3,25^2))\chi^{-1}(V_{\infty k}'),$$
(3.9)

derivative of which

$$\frac{dR_{ki}}{dV_{\infty k}} = \frac{\sqrt{\pi}\exp(-3,25^2)(1+\exp(3,25))}{\chi^2(V_{\infty k})} \left[\frac{1+\exp(V_{\infty k}')}{1+\exp(3,25)} - \frac{\exp(-V_{\infty k}')}{\exp(-3,25^2)} \right] (3.10)$$

is positive when $V_{\infty k} \gg 3.25$, we will obtain that function (3.9) reaches when $V_{\infty k} \to \infty$ the maximum, equal to

$$\lim_{V \to b \to \infty} p \approx \frac{1}{V_{\pi}} \exp(-3.25^2) \left(\frac{1}{2 \cdot 3.25} - \frac{1}{2^2 \cdot 3.25^3} + \dots \right) \approx 0.214 \cdot 10^{-5}. (3.11)$$

It is analogous, for case of A, considering probability $p[\xi_{kl}^{\prime \bullet}>(V_{\infty k}^{\prime}+3,25)]$, we find that it is not more than value

$$1 - \lim_{V \to 0.25} p \approx \exp(-3,25^2) (V_{\pi} 3,25)^{-1} \approx 0,428 \cdot 10^{-5}.$$
 (3.12)

Thus, for case of A is proved the formula $\rho[(V_{\infty k}' - 3,25) < \xi_{kl}'' < (V_{\infty k}' + 3,25)] > (1 - 10^{-5}). \tag{3.13}$

Accurately also for case of B we find

$$p[0 < \xi_{ki}^{\bullet} < (V_{\infty k} + 3,25)] \gg (1-2,47 \cdot 10^{-5}).$$
 (3.14)

For case of **2** after numerical calculations according to formula (3.6) was obtained the empirical formula

$$\xi_{kl}^{'b} = 1,523 (V_{\infty k}' + 4,55)^{1/2};$$

$$p(0 < \xi_{kl}^{'b} < \xi_{kl}^{'b}) > (1 - 10^{-5}).$$
(3.15)

When $V_{\infty\,k}^{\prime} \ll -4.55$ the quantity of molecules, which fall to appropriate face S_k and which constitute from all those falling the portion, approximately equal to

$$S_{h}\chi(\vec{V}_{\infty h})\left[\sum_{k=1}^{k=6} S_{k}\chi(\vec{V}_{\infty k})\right]^{-1} \lesssim 10^{-9},$$
 (3.16)

can be disregarded/neglected. Here $S_{\mathtt{k}}-$ area of face k.

Is analogous, for $\frac{\xi_{kl}}{kl}$ parallel to faces S_k , let us find that

$$p[(S_{\infty i} - 3,25) < \xi_{ki}^{*} < (S_{\infty i} + 3,25)] > (1 - 10^{-5}). \tag{3.17}$$

Since (3.6) and (3.7) are not solved relative to $\frac{1}{2}$, then the drawing of random values is produced according to Baird's method [12]. In this method in comparison with Neumann's method [25] the condition for the selection of random numbers does not require gaming

the further irregularly distributed random number, designated further by symbol R, since it is formed/shaped on the course of calculations.

The random coordinates of the start of molecules have density function:

$$f(x_{i+k}) = \delta(x_i - x_{1i}^\circ); \quad f(x_{i+k}) = (x_{2i}^\circ - x_{1i}^\circ)^{-1}, \quad k = 1, 2, 3; \tag{3.18}$$

$$f(x_{i=k-3}) = \delta(x_i - x_{2i}^{\circ}); \quad f(x_{i+k-3}) = (x_{2i}^{\circ} - x_{1i}^{\circ})^{-1}, \quad k = 4, 5, 6; \quad (3.19)$$

here $\delta(x)$ - Dirac's delta-function.

Since the drawing of trajectories is produced relative to coordinates χ_{x_0} , then to components ξ_u of particle speed after drawing according to formula (3.3) for cases of k=4, 5, 6 it is necessary to confer minus sign.

Page 79.

4. Drawing of random particle trajectories under different laws of reflection of particles from the wall.

Let us designate $x_{1:i}$ and x_{ri} — the coordinate of initial and end point of one of the elements/cells of break - particle trajectory, which tests/experiences collisions with the concave surface. With the start with S_k we have

$$x_{1 i (l=k)} = x_{1 i}^{\bullet}, \quad x_{1 i (l+k)} = x_{1 i}^{\bullet} + R_{1} (x_{2 i}^{\bullet} - x_{1 i}^{\bullet}); \quad k = 1, 2, 3; \\ x_{1 i (l=k-3)} = x_{2 i}^{\bullet}, \quad x_{1 i (l+k-3)} = x_{1 i}^{\bullet} + R_{2} (x_{2 i}^{\bullet} - x_{1 i}^{\bullet}); \quad k = 4, 5, 6.$$
 (4.1)

From point $x_{1:i}$ the molecule moves over the straight line

$$x_{i} = x_{1i} + \xi_{-1i}^{\bullet} t; \quad \xi_{-1i}^{\bullet} = \xi_{-1i} \left(\sum_{i=1}^{i=3} \xi_{-1i}^{2} \right)^{-1/2}. \tag{4.2}$$

Index - "in the speeds designates the emitted, "+" arriving flying particle, and superscript" $^{\circ}$ "designates the unit vector of vector of velocity. Solving system from equations (1.4) and (4.2), we determine values of t_1 and t_2 :

$$t_{1,2} = [-b \pm (b^2 - 4ac)^{12}] (2a)^{-1}, \tag{4.3}$$

where $a = a_{ik} \stackrel{\epsilon}{=}_{1i} \stackrel{\epsilon}{=}_{1k}$; $b = 2(a_{ik} x_{1i} \stackrel{\epsilon}{=}_{1k} + a_{ik} \stackrel{\epsilon}{=}_{1i})$; $c = a_{ik} x_{1i} x_{1k} + 2a_{ik} x_{1i} + a_{ik}$

for which straight line (4.2) can intersect surface (1.4).

Due to the final accuracy of arithmetic operations by ETsVM

[- digital computer] the coordinates of the collision of
molecules with the surface can be computed with the "short round" or
the "flight/passage". In order to eliminate the effects of these
cases, we will accept, that with

$$(b^2-4 \ ac)<0; \ t_1<\epsilon_1, \ t_2<\epsilon_1$$
 (4.4)

the molecule does not encounter surface, but with

$$t_1 \geqslant \epsilon_1, -\infty < t_2 < \infty; \quad t_2 \geqslant \epsilon_1, -\infty < t_1 < \infty$$
 (4.5)

is possible the collision of particle with the surface with t₁ or t₂ or when $t_{1,2} \ge \varepsilon_1$. Calculations show that it is possible to take $\epsilon_1 \approx 10^{-5}$.

Thus, are found one or two points of intersection of particle with the surface

$$x_{im} = x_{1l} + \xi_{-1i}^{\circ} t_m, \quad m = 1, 2.$$
 (4.6)

After this is produced checking the entry/incidence of points x_{lm} to the assigned piece of surface, determined by D region, for which it is necessary to calculate coordinates x_{lm} in that system, in which is assigned D region. Values $t_1(t_2)$, with which the intersection of surface did not take place or the corresponding points do not fall into D region, are substituted by number $L_1 > L_2$; L_2 is equal to maximum size S_k .

The cycle of this checking is completed for all surfaces (1.4) of body. From the obtained set t is determined t_{\min} . If $t_{\min} \gg L_2$, then particle does not intersect body, otherwise intersects it at the point

$$x_{ri} = x_{1i} + \xi_{-1i}^{*} t_{min}. \tag{4.7}$$

The reflection of particle from point x_n is realized depending on the assigned boundary conditions on the surface.

With the mirror reflection of molecule the speed of reflections of molecule is equal to

$$\xi_{-ri} = \xi_{+ri} - 2(\xi_{+ri} n_i) n_i. \tag{4.8}$$

Here n_i — internal normal to the surface.

Page 80.

In the case of diffuse reflection from the surface is introduced local system of coordinates Ww_n with beginning W(x, y) and axes w_n such, that cosines c_{ni} of the angles between w_n and x_i are equal to

$$c_{1i} = [\xi_{+ri}^{\bullet} - (\xi_{+ri}^{\bullet} n_i) n_i] [1 - (\xi_{+ri}^{\bullet} n_i)^2]^{-1/2}; \quad c_{2i} = (n_i \times c_{1i}); \quad c_{3i} = n_i; \\ (\xi_{+ri}^{\bullet} n_i) < 0. \tag{4.9}$$

If $(\epsilon_{i,i}, n_i) > 0$, then vectors $\epsilon_{i,i}$ and $\epsilon_{i,i}$ vary directions to the opposite ones; if $(\xi_{n}^{*} n_{i}) = \pm 1$ then, accepting $c_{i,j} = 0$ and taking into account that $|c_{1i}|=1$, $(c_{1i}n_i)=0$, we will obtain $c_{1i}=-n_1c_{1i}/n_1$, $c_{1i}=-n_1c_{1i}/n_1$ $[1+(n_2/n_1)^2]^{-\frac{1}{2}}$

The speed of the diffuse reflected particle is developed according to the formulas (see also [11])

$$\xi_{ri} = \xi_{ri}^{\bullet} |\xi_{-r}|; \quad \xi_{-ri}^{\bullet} = \{\cos \varphi \sin \theta, \sin \varphi \sin \theta, \cos \theta\};
\varphi = 2\pi R_{3}; \quad \sin \theta = \sqrt{R_{4}}; \quad |\xi_{-r}| = (-h_{r}^{-1} \ln (R_{5} R_{6}))^{1/2};
h_{r}^{-1} = \alpha_{\bullet} (h_{\Psi})^{-1} + \frac{\xi_{+r}^{2} (1 - \alpha_{\bullet})}{2}.$$
(4.10)

Here z_* — accommodation coefficient of energy with the mirror-diffused reflection.

With the mirror-diffused reflection each molecule with probability p_{\bullet} is reflected diffuse, i.e., if $p_{\bullet}>R_{+}$, then reflection is diffuse, otherwise it is mirror.

Let us consider law of reflection of molecules, given by Maxwell's function

$$f_r = n_r (h_r/\pi)^{3/2} \exp\left[-h_r \sum_{n=1}^{n=3} (\xi_{rn} - V_{rn})^2\right]$$
 (4.11)

with five macroparameters n_r , h_r , V_m . Designating the average/mean values of the components of the speed of the molecules reflected in system W_{W_n} , constructed in accordance with formulas (4.9), through $\overline{\xi}_n = \{\overline{\xi}_{r1}, 0, \overline{\xi}_{r2}\}$, the average/mean value of energy of the molecules (per unit of mass) reflected – through $\overline{\xi}_r^{2/2}$ and the relative average speed – through $S_{rn} = \{S_{r1}, 0, S_{r2}\} = V_m h_r^{1/2}$, we will obtain

$$\overline{\xi}_{r,1} = V_r \sin \theta_r; \quad \overline{\xi}_{r,2} = V_r \varphi' / S_r; \quad \overline{\xi}_r^2 / 2 - \frac{V_r^2}{2S_r^2} [2 + S_r^2 + S_{r,2} (\varphi' - S_{r,2})];$$

$$\varphi' = S_{r,2} + 0.5 V \pi (1 + \text{erf } S_{r,2}) \chi^{-1} (S_{r,2}); \quad \cos \theta_r = -(n_i V_{ri}^*). \quad (4.12)$$

Hence we obtain the transcendental equation

$$\psi = \varphi^{\prime 2} (2 + S_{r,2} \varphi^{\prime})^{-1} = \overline{\xi}_{r,3}^{2} (\overline{\xi}_{r}^{2} - \overline{\xi}_{r,1}^{2})^{-1}. \tag{4.13}$$

It is evident that this model does not limit the physical picture of phenomenon, since the left side where $0 \leqslant \psi \leqslant 1$, does not contradict right: $\frac{\pi^2}{\xi_r^2} \gg \sum_{r=1}^{n=3} \overline{\xi_{rn}^2}$.

Average/mean values $^{\overline{\xi}_m}$ were determined with $V_\infty\!>\!10^6$ cm/s in work [10] in the form

$$\alpha_{g} = \xi_{1}^{-2} (\xi_{1}^{2} - \overline{\xi_{r}^{2}}); \quad \alpha_{n} = \xi_{1}^{-1} (\overline{\xi_{r}}_{3} - \xi_{13}); \quad \alpha_{r} = \xi_{1}^{-1} (\xi_{11} - \overline{\xi_{r}}_{1}).$$
 (4.14)

Components $\xi_{i,n}$ and $\xi_{i,n}$ are expressed in system $w_{i,n}$.

From (4.13) and (4.14) we obtain the condition of the solvability

$$(\sin \theta_1 - \alpha_r)^2 + (\alpha_n - \cos \theta_1)^2 \leqslant (1 - \alpha_e), \cos \theta_1 = (n_i \xi_{1i}^*),$$
 (4.15)

i.e., the terminuses of vector (α_1, α_n) must be placed in upper half of circle with the center at point $(\sin \theta_1, \cos \theta_1)$ and with radius $(1-\alpha_n)^{1/2}$.

Page 81.

The sequence of calculations is the following.

- 1. Are calculated θ_1 , α_2 , α_n , α_5 , $\overline{\xi}_2^2$, $\overline{\xi}_{7,3}$, $\overline{\xi}_{7,1}$ and ψ .
- 2. Is solved equation (4.13). With $0.04 \le \psi \le 0.9612$ was applied the method of linear interpolation. With $\psi > 0.9612$ it is obtained with error 0.1%

$$S_{r,0} = \{ [1,5 + (16\psi - 13,75)^{1/2}] [2(1-\psi)]^{-1} \}^{1/2}, \tag{4.16}$$

while with ψ <0.04

$$S_{rs} = -\left[(1 + (1 - 18\psi)^{1/2})(2\psi)^{-1} \right]^{1/2}. \tag{4.17}$$

These relationships/ratios are found from asymptotic expansions of function $\psi(S_{rs})$ when $S_{rs} \to \infty$ and $S_{rs} \to -\infty$.

3. It is calculated φ' , then

$$S_{r,1} = \varphi' \, \bar{\xi}_{r,1} / \bar{\xi}_{r,2}; \quad (h_r)^{-1/2} = \bar{\xi}_{r,2} / \varphi'; \quad V_r = S_r (h_r)^{-1/2}; \quad S_r^2 = S_{r,1}^2 + S_{r,3}^2. \quad (4.18)$$

The drawing of the components of speed ξ_n of particle is produced employing the procedure, presented in Section 3. Then is computed $\xi_n = c_{in}\xi_m$. It is obvious, in the general case with the multiple reflections of particle from the concave surface coefficients α_i , α_n and α_i it is not possible to consider constants. Assuming that the particle, which falls at a high speed to the surface, reduces its energy due to the multiple reflections and it reaches equilibrium with the surface, with which

$$\vec{\xi}_{r}^{2} = 2h_{\sigma}^{-1}; \quad \vec{\xi}_{r}^{2} = \frac{\pi}{4} h_{\sigma}^{-1}; \quad \vec{\xi}_{1}^{2} = 0; \quad \psi = \frac{\pi}{8}; \quad \varphi' = \frac{\sqrt{\pi}}{2}, \quad (4.19)$$

we will describe the process of achieving the equilibrium, by the dependences, which give a change in the values, which characterize energy of the particle:

$$\bar{\xi}_{r}^{2} \, \bar{\xi}_{1}^{-2} = 2h_{\bullet}^{-1} \, \bar{\xi}_{1}^{-2} + \varphi_{e} [(1 - \alpha_{e}) - 2h_{\bullet}^{-1} \, \bar{\xi}_{1}^{-2}]; \quad \bar{\xi}_{r}^{2} \, \bar{\xi}_{1}^{-2} = \frac{\pi}{4} \, h_{\bullet}^{-1} \, \bar{\xi}_{1}^{-2} + \\
+ \varphi_{n} [(\alpha_{n} - \cos \theta_{1})^{2} - \frac{\pi}{4} \, h_{\bullet}^{-1} \, \bar{\xi}_{1}^{-2}]; \quad \bar{\xi}_{r}^{2} \, \bar{\xi}_{1}^{-2} = \varphi_{r} (\sin \theta_{1} - \alpha_{r})^{2}. \tag{4.20}$$

Coefficients φ_{σ} , φ_{α} and φ_{τ} vary from one (with the high energies) to zero (with low energies). Were examined the following cases:

1) coefficients φ_a , φ_a and φ_c depend on the number of multiple reflections on the exponential dependence

$$\varphi_a = \varphi_a = \varphi_b = \exp(aa_1), \quad a < 0, \quad a_1 = p - p_0,$$
 (4.21)

on the linear dependence

$$\varphi_{e} = \varphi_{n} = \varphi_{\tau} = (p_{00} - p)(p_{00} - p_{0})^{-1}, \quad p_{00} - p_{0} \geqslant 1;$$
 (4.22)

2) coefficients φ_n , φ_n and φ_n are assigned by the arbitrary monotonic functions of energy of incident particles.

In formulas (4.21), (4.22) p - reference number of the collision of particle; p. - number of reflections (inclusively), in which during calculation ξ_n and ξ_n^2 coefficients α_n , α_n and α_n are assumed to be constants; $\alpha < 0$ - arbitrary coefficient. Reflection with the

number of collision p₀, (inclusively) in (4.22) becomes diffuse with the complete accommodation. Let us note that assigned dependences α_e , α_a , α_a , α_e , α_a , and α_e must satisfy the condition of solvability (4.15).

5. Calculation of the total particle fluxes, impulse/momentum/pulse and energy. Calculation of dispersions.

Let us designate the flows from the first collision by index "+", from first reflection "-" and from the second collision and the reflection and so forth to the escape of particle into infinity from point x_{pl} — by index r. Particle fluxes relate to $n_{\infty} V_{\infty}$, impulses/momenta/pulses — to $mn_{\infty} V_{\infty}^2/2$, energies — to $mn_{\infty} V_{\infty}^2/2$. During the calculation of aerodynamic flux coefficients of forces relate to $mn_{\infty} V_{\infty}^2 S_{\omega}/2$, moments/torques to $-mn_{\infty} V_{\infty}^2 S_{\omega}/2$. When $V_{\infty}=0$ instead of V_{∞} is used $h_{\infty}^{-1/2}$

Page 82.

Mathematical expectations of the aerodynamic force coefficients and moments/torques of the compound:

$$c_{\pm i} = \pm A \sum_{\mu=1}^{\mu=N_{\Pi}} \xi_{\pm 1} i; \quad c_{ri} = A \sum_{\mu=1}^{\mu=N_{\Pi}} (\xi_{+2i} - \xi_{-ri});$$

$$m_{\pm i} = \pm \frac{A}{d_{M}} \sum_{\mu=1}^{\mu=N_{\Pi}} (x_{1i} \times \xi_{\pm 1i});$$

$$m_{ri} = \frac{A}{d_{M}} \sum_{\mu=1}^{\mu=N_{\Pi}} [(x_{2i} \times \xi_{+2i}) - (x_{ri} \times \xi_{-ri})]; \quad A = \frac{2Bp_{\Pi}}{V_{\infty}N_{\Pi}S_{M}};$$

$$B = \frac{0.5}{\sqrt{\pi}S_{\infty}} \sum_{k=1}^{k=6} S_{k} \chi(V_{\infty k}).$$
(5.1)

Here μ - number of the particle, played with S_k and that fallen on body. Total coefficients of complicated body:

$$c_i = c_{+i} + c_{-i} + c_{ni}; \quad m_i = m_{+i} + m_{-i} + m_{ni}.$$
 (5.2)

Examining the sequence of the random values of the aerodynamic coefficients, obtained according to the results of the drawing of each μ -th particle trajectory, we will obtain for calculating the dispersions the following recursion relations:

$$M[X] = a_0 M_{\mu}; \quad D[X] = a_0^2 D_{\mu}; \quad M_{\mu} = [(\mu - 1) M_{\mu - 1} + Z_{\mu}]/\mu;$$

$$D_{\mu} = \{ [D_{\mu - 1} + (M_{\mu - 1} - M_{\mu})^2] (\mu - 1) + (Z_{\mu} - M_{\mu})^2 \}/\mu; \quad a_0 = \frac{2Bp_{\pi}}{b_0 V_{\infty}}.$$
 (5.3)

Here M and D designate mathematical expectation and dispersion;

$$Z_{\mu} = (\xi_{+1}i - \xi_{-r}i), \quad b_{0} = S_{\mu} \quad \text{figh} \quad X \equiv c_{i};$$

$$Z_{\mu} = (x_{1}i \times \xi_{+1}i) - (x_{r}i \times \xi_{-r}i), \quad b_{0} = S_{\mu}d_{\mu} \quad \text{figh} \quad X \equiv m_{i}.$$

Key: (1). with.

The central axis of the system of the forces, applied to the body, is parallel to vector c_i and it passes through the point

$$x_{i,0} = -d_{\mathbf{u}}[m_i \times c_i][|m_i|^2 |c_i|^2 - (c_i m_i)^2][|c_i|^2 |m_i \times c_i|^2]^{-1}, \tag{5.4}$$

moreover moment with respect to this point

$$m_{i,0} = c_i(c_i m_i) |c_i|^{-2}, \quad m_{i,0} |c_i|.$$
 (5.5)

Flux coefficients of energy to the body:

$$E = E_{+} + E_{-} + E_{r}; \quad E_{\pm} = \pm A_{1} \sum_{\mu=1}^{\mu=N_{\alpha}} \xi_{\pm 1}^{2}; \quad E_{r} = A_{1} \sum_{\mu=1}^{\mu=N_{\alpha}} (\xi_{+2}^{2} - \xi_{-r}^{2});$$

$$A_{1} = \frac{B p_{\alpha}}{V_{\infty}^{2} N_{\alpha}}.$$
(5.6)

Flux coefficient of the energy through the control surface

$$E_k = A_1 \sum_{\mu=1}^{\mu=N_p} |\xi_{k,i}|^2$$

When $S_{\infty}\!\gg\!1$ value E_+ is approximately equal to the area of the "shadow" of complicated body for the plane, perpendicular V_{∞} .

Is calculated also relative value of further collisions $(N_{\infty}+N_r)N_{\infty}^{-1}$, where N_{∞} and N_r —quantity of all particles, which fall on body from infinity and after the first reflection.

With the diffuse reflection of particles from the concave

surface with the complete accommodation easily is established/installed the dependence of coefficients on temperature $T_{m{\omega}}$ of the surface:

$$c_{-i} \sim S_{\varpi}^{-1}, \quad c_{ri} \sim S_{\varpi}^{-1}, \quad E_{-i} \sim S_{\varpi}^{-2}, \quad E_{r} \sim S_{\varpi}^{-2}, \quad S_{\varpi} = S_{\infty} (T_{\infty}/T_{\varpi})^{1/2}. \quad (5.7)$$

Here and throughout symbol "~" designates proportionality.

Page 83.

6. Calculation of the aerodynamic interaction coefficients of surfaces and bodies.

We will examine the aerodynamic force coefficients and moments/torques, which function on the surface of concave body as a result of multiple collisions of particles with the surface. Indices "+", "-" and r will designate flows from the first collision, from the first reflection and from the multiple collisions of particles with the surface. Aerodynamic force coefficients relate to $\frac{hm_{\infty}}{V_{\infty}^2} S_{\text{M}}/2$ moments/torques - to $\frac{mn_{\infty}}{V_{\infty}^2} S_{\text{M}} d_{\text{M}}/2$. When $V_{\infty} = 0$ instead of V_{∞} is used $h_{\infty}^{-1/2}$.

Mathematical expectations of the aerodynamic force coefficients and the moments/torques, which function on ν -th surface of complicated body in body axes Xx_i :

$$c_{\pm vi} = \pm A \sum_{\mu=1}^{\mu=N_{\Pi}} \xi_{\pm 1vi}; \quad c_{rvi} = A \sum_{\mu=1}^{\mu=N_{\Pi}} (\xi_{\pm 2vi} - \xi_{\pm 2vi} + \dots - \xi_{-rvi});$$

$$m_{\pm vi} = \pm \frac{A}{d_{M}} \sum_{\mu=1}^{\mu=N_{M}} (x_{1i} \times \xi_{\pm 1vi});$$

$$m_{rvi} = \frac{A}{d_{M}} \sum_{\mu=1}^{\mu=N_{\Pi}} [(x_{2i} \times \xi_{\pm 2vi}) - (x_{2i} \times \xi_{\pm 2vi}) + \dots - (x_{ri} \times \xi_{-rvi})];$$

$$A = \frac{2Bp_{\Pi}}{V_{\infty}N_{\Pi}S_{M}}; \quad B = \frac{0.5}{V_{\pi}S_{\infty}} \sum_{k=1}^{k=6} \chi(V'_{\infty k}) S_{k}.$$
(6.1)

In these formulas are summarized the impulses/momenta/pulses during the incidence/drop in the particle on ν -th surface with the drawing of all $\nu=1+N_{\pi}$ particle trajectories.

Aerodynamic coefficients of the surface:

$$c_{vi} = c_{+vi} + c_{-vi} + c_{rvi}; \quad m_{vi} = m_{+vi} + m_{-vi} + m_{rvi}. \tag{6.2}$$

If complex body consists of several separate bodies, then, summarizing coefficients (6.1) for the surfaces of which consists separate body, it is possible to compute the aerodynamic interaction coefficients of the bodies, which fly on certain distance from each other.

7. Calculation of the local particle fluxes, impulse/momentum/pulse and energy through the surface of complex body.

The coefficients of local particle fluxes $(n_+ \text{ and } n_r)$ we will carry to $n_\infty V_\infty$, normal $(p_\pm \text{ and } p_r)$ and tangential $(\tau_\pm \text{ and } \tau_r)$ impulses/momenta/pulses - to $mn_\infty V_\infty^2/2$ and energies $(e_\pm e_r)$ -to $mn_\infty V_\infty^3/2$.

For calculating the local flows the surface is divided on the pads ΔS : first is divided the rectangular region D of the assignment to surface $\partial \Omega$ the large number m² of equal rectangles with the help of 2(m-1) straight lines, carried out through each side of rectangle D in parallel to its sides. Let the centers of all areas/sites ΔS have integral coordinates on the external variable/alternating region $D\beta=1-m$ and in terms of the internal variable/alternating $\gamma=1-m$ and the general/common/total numbering:

$$\bullet = (\beta - 1) m + \gamma, \quad \omega \in (1 + m^2). \tag{7.1}$$

Page 84.

Each of m² rectangles D region determines on the surface area/site $\Delta \dot{S}_{\omega}$ of the arbitrary form whose area is computed from the formula

$$\Delta S_{\bullet} = \int_{\beta_1 + \Delta_{\beta}(\beta - 1)}^{\beta_1 + \Delta_{\beta}\beta} \left[\int_{\gamma_1 + \Delta_{\gamma}(\gamma - 1)}^{\gamma_1 + \Delta_{\gamma}\gamma} f(z_{\beta} z_{\gamma}) dz_{\gamma} \right] dz_{\beta}; \quad \Delta_{\beta} = \frac{\beta_2 - \beta_1}{m}; \quad \Delta_{\gamma} = \frac{\gamma_2 - \gamma_1}{m}; \quad (7.2)$$

here (β_1, β_2) , (γ_1, γ_2) - limits D region. Functions (z_1, z_2) and the variable/alternating z_1, z_2 during the assignment regions D take the

form:

in Cartesian coordinates: (y_j)

$$f(z_9, z_7) = -n_8^{-1}; z_9 = y_1; z_7 = y_2;$$
 (7.3)

in the polar coordinates (φ, r, y_i) :

$$f(z_{\beta}, z_{\gamma}) = -rn_3^{-1}; \quad z_{\beta} = \varphi; \quad z_{\gamma} = r;$$
 (7.4)

in the cylindrical coordinates (φ, r, y_1) $f(z_0, z_1) = -r(n_1 \cos \varphi + n_2 \sin \varphi)^{-1}; \quad z_0 = \varphi; \quad z_7 = y_2; \quad (7.5)$

in the spherical coordinates (φ, θ, r)

$$f(z_{\theta}, z_{\gamma}) = -\sin \theta r^{2} (n_{1} \cos \varphi \sin \theta + n_{2} \sin \varphi \sin \theta + n_{3} \cos \theta)^{-1};$$

$$z_{\theta} = \varphi; \quad z_{\tau} = \theta; \qquad (7.6)$$

$$n_j - l_j \left(\sum_{j=1}^3 l_j^2 \right)^{-1/2}; \quad l_j = -\partial F(y_j, y_m)/\partial y_j = -(b_{jm}y_m + b_{j,4}).$$
 (7.7)

The components of the unit vector of internal standard/normal n_{j} , value y, in the Cartesian and polar coordinate systems, value r in the cylindrical and spherical coordinates are computed with the help of the equation of the surface

$$F(y_j, y_m) = b_{jm}y_jy_m + b_{j4}y_j + b_{44} = 0, \quad (j, m = 1, 2, 3),$$
 (7.8)

moreover in the solutions of corresponding square equations before the radicals is taken sign "+".

By the values of the coordinates of the impact point in the particle on the surface are determined coordinates (z_1, z_7) in D region, through which is located the number

$$\omega = m(\beta - 1) + \gamma, \tag{7.9}$$
 where

where

 β = entier $[(z_{\beta} - \beta_1) \Delta_{\beta}^{-1} + 1]$, γ = entier $[(z_{\gamma} - \gamma_1) \Delta_{\gamma}^{-1} + 1]$,

using the address of area/site ΔS_{\bullet} . Here entier (x) indicates the near whole, which does not exceed x.

For each area/site in terms of the value of address ω occurs the accumulation of the corresponding sums from which are computed the flux coefficients:

the normal impulses/momenta/pulses

$$p_{\pm \omega} = A_2 \sum_{\mu=1}^{\mu=N_{\odot}} |\xi_{\pm 1\omega i} n_i|; \quad p_{r\omega} = A_2 \sum_{\mu=1}^{\mu=N_{\odot}} (|\xi_{\pm 2\omega i} n_i| + |\xi_{-2\omega i} n_i| + ... + |\xi_{-r\omega i} n_i|); \quad (7.10)$$

the tangential impulses/momenta/pulses

$$\tau_{\pm \alpha} = \pm A_2 \sum_{\mu=1}^{\mu=N_{\rm m}} (\xi_{\pm 1 \omega i} c_{1 i}); \quad \tau_{r\omega} = A_2 \sum_{\mu=1}^{\mu=N_{\rm m}} [(\xi_{+ 2 \omega i} c_{1 i}) - (\xi_{-2 \omega i} c_{1 i}) + ... + (\xi_{-r \omega i} c_{1 i})]; (7.11)$$

the energies

$$e_{\pm \bullet} = A_3 \sum_{\mu=1}^{\mu=N_0} \xi_{\pm 1 \bullet}^2; \quad e_{r \bullet} = A_3 \sum_{\mu=1}^{\mu=N_0} (\xi_{+2 \bullet}^2 - \xi_{-2 \bullet}^2 + \dots - \xi_{-r \bullet}^2);$$
 (7.12)

the particles

$$n_{+\omega} = A_4 \sum_{\mu=1}^{\mu=N_{\pi}} \mu_{1\omega}; \quad n_{r\omega} = A_4 \sum_{\mu=1}^{\mu=N_{\pi}} (\mu_{2\omega} + \mu_{3\omega} + \dots + \mu_{r\omega});$$

$$A_2 = \frac{2B\rho_{\pi}}{V_{\infty}N_{\pi}\Delta S_{\omega}}; \quad A_3 = \frac{B\rho_{\pi}}{V_{\infty}^2N_{\pi}\Delta S_{\omega}}; \quad A_4 = \frac{B\rho_{\pi}}{N_{\pi}\Delta S_{\omega}};$$

$$c_{1i} = [v_{\infty i} - (v_{\infty i} n_i) n_i] [1 - (v_{\infty i} n_i)^2]^{-1/2}, \quad v_{\infty i} = V_{\infty i} |V_{\infty}|^{-1}.$$
 (7.14)

If $(v_{\infty i} n_i) = \pm 1$, then $c_{1i} = \{\sin \alpha_0, \cos \alpha_0, 0\}$.

Page 85.

In formulas (7.13) $\mu_1 = 1$ during the incidence/drop the particles on ΔS_{ω} from infinity, otherwise $\mu_{1\omega} = 0$; $\mu_{2\omega}$, $\mu_{2\omega}$, $\mu_{2\omega}$, ..., $\mu_{r\omega}$ are equal to one during the incidence/drop in the particle on ΔS_{ω} after the first reflection, otherwise they are equal to zero.

In the case of the symmetry of flow can be of interest medium stresses/voltages along the bands, parallel to the sides D region. Designating by the index β averaged stresses over the bands in parallel to side γ of D region, and by index γ the averaged stresses/voltages on the bands, parallel to the side β D region, we will obtain

$$p_{+\beta} = \frac{1}{m} \sum_{\beta; \gamma=1}^{\gamma=m} p_{+\alpha}, \quad p_{+\gamma} = \frac{1}{m} \sum_{\gamma, \beta=1}^{\beta=m} p_{+\alpha}, \dots$$
 (7.15)

and medium stresses/voltages on over the entire surface

$$p_{+} = \frac{1}{m^{2}} \sum_{m=1}^{m-m^{2}} p_{+m}, \dots$$
 (7.16)

Varying in formulas (7.15) and (7.16) p on τ , e and n, and index "+" on "-" and r, we will obtain formulas for all averaged flows.

With the diffuse reflection of particles from the concave surface with the complete accommodation easily is established/installed the dependence of coefficients on temperature \vec{T}_{\bullet} of the surface:

$$p_{--} \sim S_{-}^{-1}; \quad p_{rw} \sim S_{-}^{-1}; \quad \tau_{--} \sim S_{-}^{-1}; \quad e_{--} \sim S_{-}^{-2}; \quad e_{rw} \sim S_{-}^{-2}(1.17)$$

8. Calculation of the local parameters of the flow of the strongly rarefied gas in the vicinity of compound.

Let us consider the procedure of calculation of the penetration probabilities of the particles through the specific surfaces, and also densities, the average speeds and the temperatures of gas, stress tensors and fluxes of momentum, vectors of complete and thermal energy, mass flow rates and static pressures at arbitrary points in the vicinity of compound.

Let us introduce formally into the examination the flat surface which will serve for fixing of the parameters of gas and will not affect particle trajectory. Index λ will designate the number of this

"formal" surface, S_{λ} — its area.

We will examine the flows of sign/criterion ϕ , transferred by the particles through the "formal" surface from the outer side [index "+", $(\xi_{+j} n_j) > 0$] and from inside [index "-", $(\xi_{-j} n_j) < 0$]. The parameters without the index will relate to entire particle flux. Let f function of particle distribution in the vicinity of this surface. Let us write formula for the flow of sign/criterion ϕ through surface S_{λ} :

$$S_{\lambda}^{-1} \left[\int_{S_{\lambda}(\xi_{+j},n_{j})>0} \varphi f(\xi_{+j},n_{j}) dS_{\lambda} d\xi_{j} + \int_{S_{\lambda}(\xi_{-j},n_{j})<0} \varphi f(\xi_{-j},n_{j}) dS_{\lambda} d\xi_{j} \right] =$$

$$= \frac{n_{\infty} B V_{\infty}}{N_{p} S_{\lambda}} \left[\sum_{k=1}^{p=N_{p}} \varphi_{+} - \sum_{k=1}^{p=N_{p}} \varphi_{-} \right]. \tag{8.1}$$

Here is conducted averaging over surface S_{k} , which must be sufficient small.

The penetration probabilities of the particles through the formal surface λ from the external and from inside are equal to $W_{\pm\lambda} = N_{\pm\lambda} \ N_{p}^{-1}$. Here $N_{\pm\lambda} =$ number of molecules from N_{p} , that fell on formal surface from the external or from inside.

Page 86.

The densities (concentration) of particles, averaged over

surface S_{λ} , through which they pass, and those referred to the particle density on infinity n_{∞} , are expressed from formula (8.1) when $\Psi = (\xi_{\pm}, n_{\mu})^{-1}$:

$$n'_{\pm\lambda} = n_{\pm\lambda}/n_{\infty} = \pm B_1 S_{\lambda}^{-1} \sum_{\mu=1}^{\mu=N_{\rho}} (\xi_{\pm/n_{\rho}})^{-1}; \quad n_{\lambda} = n_{\lambda}/n_{\infty} = n_{+\lambda} + n_{-\lambda},$$

$$B_1 = BV_{\infty} N_{\rho}^{-1}. \tag{8.2}$$

The average/mean mass flow rates of molecules, in reference to $(\hbar_{\infty})^{-1/2}$, are obtained from (8.1) when $\varphi = \xi_{j}(\xi_{\pm j}, n_{j})^{-1}$:

$$V'_{\pm f(\lambda)} = V_{\pm f(\lambda)} h_{\infty}^{1/2} = \pm B_{2} (S_{\lambda} n_{\pm \lambda})^{-1} \sum_{\mu=1}^{\mu=N} {}^{\rho} \xi_{\pm f} (\xi_{\pm f} n_{f})^{-1};$$

$$V'_{f(\lambda)} = V_{f(\lambda)} h_{\infty}^{1/2} = B_{2} (S_{\lambda} n_{\lambda})^{-1} \sum_{\mu=1}^{\mu=N} {}^{\rho} (\xi_{+f} (\xi_{+f} n_{f})^{-1} - \xi_{-f} (\xi_{-f} n_{f})^{-1});$$

$$B_{2} = B_{1} h_{\infty}^{1/2}.$$
(8.3)

Taking into account that the temperature of gas is expressed as mean-kinetic energy of the particles

$$\frac{3}{2}kT - \frac{1}{n}\int m(\vec{\xi} - \vec{V})^2/2 f d\xi_j - \frac{m}{2n}\int \xi^2 f d\xi_j - \frac{mV^2}{2}, \qquad (8.4)$$

where n, m - density and the mass of particles, we will obtain from (8.1) when $\varphi = \xi^2 (\xi_{\pm} / n_j)^{-1}$

$$T'_{\pm\lambda} = \frac{T_{\pm\lambda}}{T_{\infty}} = \frac{2}{3} T_{\pm\lambda^{0}} (n'_{\pm\lambda} S_{\lambda})^{-1} - \frac{2}{3} V'^{2}_{\pm\lambda};$$

$$T'_{\lambda} = \frac{T_{\lambda}}{T_{\infty}} = \frac{2}{3} (T_{+\lambda^{0}} + T_{-\lambda^{0}}) (n'_{\lambda} S_{\lambda})^{-1} - \frac{2}{3} V'^{2}_{\lambda}; \quad T_{\pm\lambda^{0}} = \pm B_{3} \sum_{\mu=1}^{\mu=N_{p}} \xi^{2} (\xi_{\pm f} n_{f})^{-1};$$

$$B_{3} = B_{2} h_{\infty}^{1/2}; \quad V'_{\pm\lambda} = |V'_{\pm f}(\lambda)|; \quad V'_{\lambda} = |V'_{f}(\lambda)|.$$
(8.5)

$$DOC = 83067303$$

PAGE /37/

Determining the tensor of the flux of momentum by the expression

$$M_{\delta_j} = M_{\delta_j} (m n_{\infty} h_{\infty}^{-1})^{-1}; \quad M_{\delta_j} = m \int \xi_i \xi_j f d\xi_j,$$
 (8.6)

we will obtain from (8.1) when $? = \xi_i \xi_j (\xi_{\pm j} n_j)^{-1}$

$$M'_{\pm \delta f(\lambda)} = \pm B_3 S_{\lambda}^{-1} \sum_{\mu=1}^{\mu=N_{\rho}} \xi_{\delta} \xi_{f} (\xi_{\pm f} n_{f})^{-1}; \quad M'_{\delta f(\lambda)} = M_{+\delta f(\lambda)} + M_{-\delta f(\lambda)}. \quad (8.7)$$

Determining stress tensor by the expression

$$p_{ij} = p_{ij} (mn_{\infty} h_{\infty}^{-1})^{-1}; \quad p_{ij} = m \int (\xi_i - V_i) (\xi_j - V_j) f d\xi_j = m \int \xi_i \xi_j f d\xi_j - mn V_i V_j,$$
(8.8)

we will obtain from (8.1) when $\varphi = \xi_i \xi_j (\xi_{\pm j} n_j)^{-1}$

$$p'_{\pm\delta f(\lambda)} = M'_{\pm\delta f(\lambda)} - n'_{\pm\lambda} V'_{\pm\delta(\lambda)} V'_{\pm f(\lambda)}; \quad p'_{\delta f(\lambda)} = M'_{\delta f(\lambda)} - n'_{\lambda} V'_{\delta(\lambda)} V'_{f(\lambda)}. \quad (8.9)$$

Determining the vector of the flow of total energy by the expression . . .

$$E'_{j} = E_{j} \left(\frac{m}{2} n_{\infty} h_{\infty}^{-3/2} \right)^{-1}; \quad E_{j} = \frac{m}{2} \int \xi^{2} \xi_{j} f d\xi_{j}, \tag{8.10}$$

we will obtain from (8.1) when $\varphi = \xi^2 \xi_j (\xi_{\pm j} n_j)^{-1}$

$$E_{\pm f(\lambda)}^{\prime} = \pm B_{4} S_{\lambda}^{-1} \sum_{n=1}^{\mu=N_{p}} \xi^{2} \xi_{\pm f} (\xi_{\pm f} n_{f})^{-1}; \quad E_{f(\lambda)}^{\prime} = E_{+f(\lambda)}^{\prime} + E_{-f(\lambda)}^{\prime}; \quad B_{4} = B_{3} h_{\infty}^{1/2}. \quad (8.11)$$

Page 87.

Determining the vector of thermal energy by the expression

$$q'_{j} - q_{j} \left(\frac{m}{2} n_{\infty} h_{\infty}^{-3/2}\right)^{-1}; \quad q_{j} = \frac{m}{2} \int (\vec{\xi} - \vec{V})^{2} (\xi_{j} - V_{j}) f d\xi_{j}, \quad (8.12)$$

we will obtain from (3.1)

$$\begin{array}{l}
q'_{\pm f(\lambda)} = E'_{\pm f(\lambda)} - 2V'_{\pm \delta(\lambda)} p'_{\pm \delta f(\lambda)} - V'_{\pm f(\lambda)} T_{\pm \lambda^{*}} S_{\lambda}^{-1}; \\
q'_{f(\lambda)} = E'_{f(\lambda)} - 2V'_{\delta(\lambda)} p'_{\delta f(\lambda)} - V'_{f(\lambda)} (T_{+\lambda^{*}} + T_{-\lambda^{*}}) S_{\lambda}^{-1}.
\end{array} \right\}$$
(8.13)

Static pressure Px

$$p'_{\lambda} = p_{\lambda} p_{\infty}^{-1} - n'_{\lambda} T'_{\lambda} , \qquad (8.14)$$

but average/mean particle flux u_{λ} through S_{λ}

$$u_{\lambda} = u_{\lambda} (m n_{\infty} h_{\infty}^{-1/2})^{-1} = n_{\lambda} V_{n\lambda};$$
 (8.15)

here $V_{n\lambda}$ projection V_{λ} on the normal to S_{λ} .

Let us note that the started from the formal area of the particle can for a second time clash with the same surface due to an error in the calculations. So that this could not occur, the coordinates of particle with the start must be displaced by the low value $\epsilon_2 \approx 10^{-4}$ in the direction of particle motion.

9. Calculation of aerodynamic coefficients in the flow of Newton and in the flow of light/world.

Employing the procedure, comprised for calculating the free molecular flows, it is possible to calculate the aerodynamic coefficients of the bodies, which fly in the flows of Newton and

DOC = 83067303

light/world.

The total aerodynamic coefficients of bodies c_{iH} , m_{iH} and the coefficients of the local flows of normal impulse/momentum/pulse p_{-H} in Newton's flow are equal to

$$c_{iH} = (c_{+i} + c_{-i})/2; \quad m_{iH} = (m_{+i} + m_{-i})/2;$$
 (9.1)

$$p_{\bullet H} = (p_{+\bullet} + p_{-\bullet})/2. \tag{9.2}$$

Entering the right sides of these formulas coefficients $c_{\pm i}$, $m_{\pm i}$ and $p_{\pm \infty}$ [see formulas (5.1) (7.10) are calculated from the procedure of calculation of free molecular flows under the following conditions: $S_{\infty} > 1$, the falling/incident from infinity particle encounters surface only one time and is reflected mirror.

Sometimes appears the need for calculating the aerodynamic characteristics of bodies in the luminous flux, which proceeds from any point source. The luminous flux consists of the photons, which have energy $\epsilon_{\Phi} = h\nu$, mass $m_{\Phi} = \frac{h\nu}{c_0^2}$, impulse/momentum/pulse $p_{\Phi} = \frac{h\nu}{c_0}$ and numerical density $n_{\Phi} = \frac{E_{\Phi}}{h\nu c_0}$; here h - Planck's constant; c₀, ν - speed and the frequency of light/world; E_{Φ} — light energy, which falls per unit time per unit of area.

With the drawing of particle-photons necessary to assign $S_{\infty} \gg 1$; the speed of the falling/incident and reflected particles

DOC = 83067303

are equal to V_{∞} ; the designed aerodynamic characteristics will be related to velocity head

$$q_{\phi} = \frac{\rho_{\phi} c_0^2}{2} = \frac{E_{\phi}}{2c_a}, \quad \rho_{\phi} = n_{\phi} m_{\phi}.$$
 (9.3)

Let k_1 , k_2 and k_3 be equal to the portions of that reflected, absorbed and passing through the surface of the luminous flux, moreover $k_1+k_2+k_3=1$. With the drawing of the reflection of particle-photon from the surface of the probability of its reflection, absorption and passage through the surface are equal to respectively k_1 , k_2 and k_3 .

We will examine the surface, which does not pass light/world $(k_3=0)$ and isolated/insulated, so that the absorbed photons will be again scattered according to "cosine law" (diffuse reflection) with the function of the distribution

$$f_{\bullet} = \frac{\pi_{\bullet} \delta(c - c_0)}{4\pi} \ . \tag{9.4}$$

Here $\delta(c-c_{\circ})$ - Dirac's delta-function. In this case with probability $p_{\circ}=k_{2}(1-k_{1})$ particle-photon will be reflected diffusively and with probability k - it is mirror.

Let us note that the worked out methodology makes it possible to

DOC = 83067303 PAGE A75

solve also the problems about the diffusion of light in the arbitrary channels.

DOC = 83067304

Page 88.

Chapter II.

DESCRIPTION OF UNIVERSAL PROGRAM.

The program, given in appendix 1, is comprised in accordance with the algorithm, described in Chapter I. Turnings to IS-2, to the standard programs (SP) for calculating the functions ln(x), exp(x), sin(x), arcsin(x), arctg(x), erf(x), to SP of the multiplication of matrix/die by the vector, the multiplication of matrices/dies and to SP of the group translation/conversion into the binary system from the decimal (10+2) of the array of numbers are written in accordance with [26]. Remaining turnings to IS-2 are given in Table 1 and are isolated in the program with feature to the left.

House	Нанменова- ние СП (2)	Вто	рая	строка *	обращения	R K CII	Примечания
0041	Печать мас- сива чисел от а до в с переводом из 2→10		52	? a	0041	b	Содержимое ячеек а—b не портится
0150	Линейная интерполяция функций одной переменной	Ì		<n> <n> <x></x></n></n>	0150 <f(x<sub>0)></f(x<sub>	<x<sub>0> <f(x)></f(x)></x<sub>	
0122	Вычисление двойного янтеграла методом(с) Симпсона(000	00	<a>> <±s₁> <±s₂> <c (x)=""></c>	-	 7+m	b $d(x)$ $I = \int F(x) dx$, $F(x) = \int f(x, y) dy$; $(2)a$ аргументы x и y берутся из $< x > u$ $< x > +1$; B ячейках $? +? +m-1$ счет $c(x)$ я $d(x)$, причем $c(x) \rightarrow < c(x) >$, $a(x) \rightarrow < c(x) > +1$; B ячейках $c+x+r-1$ счет $f(x, y)$; $? +m$ и $s+r-1$ счет $f(x, y)$; $? +m$ и $s+r-1$ счет $f(x, y)$; $? +m$ и $f(x)$ абсолютные, когда знак $f(x)$ и относительные, когда знак $f(x)$; $f(x)$ абсолютные, когда знак $f(x)$;

Key: (1). Number. (2). Designation. (3). Second row ¹ of turning to SP.

FOOTNOTE ¹. The first row, which is located in nucleus x-1, takes the form 016 x 7501 7610; <>> - cell in which is located number x. ENDFOOTNOTE.

(4). Notes. (5). Press/printing array of numbers from a to b with translation/conversion from 2→10. (6). Contents of nuclei a-b does

not spoil. (7). Linear interpolation of functions of one variable/alternating. (8). number of interpolation points without one; argument and function in first interpolation point. (9). instantaneous value of argument. (10). Calculation of double integral by method. (11). Simpson. (12). argument x and y they are taken from <x> and <x>+1; in nuclei γ - γ +m-1 calculation c(x) and d(x), moreover c(x)-> <c(x)>, and (x)-> <c(x)>+1; in nuclei σ - σ +r-1 calculation f(x, y); γ +m and σ +r - empty nuclei; error $\pm \epsilon_1$ and $\pm \epsilon_2$ calculation I and F(x) absolute, when sign (-), and relative, when sign (+); value I in nucleus 0001.

Page 89.

I. Block I(0) for calculating of total aerodynamic coefficients and local particle fluxes, impulse/momentum/pulse and energy.

This block, which occupies nuclei 0001-6763, is basic the work of all remaining blocks II-IX it occurs with block I(0).

During calculations with block the I (0) reflection of molecules is mirror-diffused, moreover the accommodation coefficient of energy is received as constant. For the calculations with the reflection of molecules according to the law (4.11) are used blocks II and III.

Into the initial information of the version of calculation enters the information about the surfaces of combination of which consists entire/all surface of the compound; the signs/criteria of surfaces, calculation of local flows; the sign/criterion of the mirror-diffused reflection of molecules from the wall (into nucleus 0332 are sent zero); number \dot{N}_{r} , more than which there cannot be the number of reflections of molecule from the concave surface of compound with the drawing of one trajectory of molecule; the angles of attack α , and slip β , (α , and β , are assigned in degrees); parameter H; the accommodation coefficient of energy α_{\bullet} ; the portion of diffuse reflecting molecules p.; area and the diameter of midsection S_n and d_n ; the coordinate of the first x_n , and the second x_{ii} of the points at which it can be placed the center of gravity; the coordinate of the faces of parallelepiped (control surface) xii $x_{2i}^2(x_{1i}^2 < x_{2i}^2)$; L₁ and L₂; T_w ; number N_{1p}, N_{2p}, N_{2p} and N_{4p} controlling the readout of calculation. Are assigned also numbers n(P), $n(\alpha_{\bullet})$, $n(\beta_{\bullet})$, n(H) and $n(\alpha_{\bullet})$, the designating quantities of surfaces, angles α_{\bullet} , β_{\bullet} , H and α_{\bullet} . Addresses for the introduction/input of the parameters enumerated above are indicated into block I(O).

Information about each surface is designed in the form of the array of 30 numbers in the sequence, indicated in Table 2.

In this table ν - the number of surface; a=1, if surface is flat/plane, otherwise of a=0, b=0 in the absence of the recording of local flows over the surface ν , otherwise of b=-1 during the calculation of local flows according to inside of surface and b=+1 over the external surface. The recording of local flows can be produced only for one surface. With the work of program with the recording of local flows into nucleus 0330 is sent a number one, otherwise - zero. If limits β_1 , β_2 , γ_1 and γ_2 D region designate angles, then they are assigned in the radians.

Table 2.

М позидия	Параметр	ини жероп Те	Параметр	№ позиции	Параметр
					1
1		11	a ₁₃	21	β,
2	b 11	12	a ₂₁	22	9,
3	b ₂₃	13	a ₂₃	23	71
4	b ₃₃	14	a ₂₈	24	72
5	2614	15	a ₃₁	25	a
6	2b ₂₄	16	a ₂₂	26	ь
7	2b34	17	a ₁₃	27	0
8	b4	18	X ₀₁	28	0
9	a ₁₁	19	x ₀₂	29	0
10	a ₁₂	20	X ₀₈	30	0

Key: (1). position. (2). Parameter.

Page 90.

The information comprised in accordance with Table 2 about all surfaces is introduced into nuclei 0420-1415 (0420-0455 about surface of 1, 0456-0513 about surface of 2, etc.). In all it is possible to introduce information about 17 surfaces (nucleus 0420-1415).

For the designation of the system of coordinates of the assignment of limits β_1 , β_2 , γ_1 and γ_2 the rectangular region D each surface is accompanied by the indicative code (Table 3). The codes are joined into the array by way of the location of surfaces in

nuclei (0420-1415) and are introduced into nuclei 5201-5221.

Let us note that during the assignment to D region in the Cartesian and polar coordinates it is necessary, in order to for all points of surface y,>0. In the case of cone it is necessary to reject a small vicinity about the apex/vertex. According to calculation data the linear dimensions of this vicinity must be not less than 10⁻¹ (for machine M-20), otherwise can occur the stop of machine.

Calculation according to the program can be produced for certain limited quantity of the parameters: $\alpha_{\bullet}(12)$, $\beta_{\bullet}(12)$, H(3) and $\alpha_{\bullet}(3)$. Are here in the brackets indicated maximum quantities of corresponding parameters. During the calculation occurs the consecutive sorting/excess of all combinations of the values of these parameters: first is sorted out every α_{\bullet} , then β_{\bullet} , H and α_{\bullet} . Numbers n(P), $n(\alpha_{\bullet})$, $n(\beta_{\bullet})$, n(H) and $n(\alpha_{\bullet})$, equal to a number of assigned surfaces α_{\bullet} , β_{\bullet} H and α_{\bullet} , are introduced by the octal codes with the second address into the nuclei (Table 4).

During the calculation according to the value of parameter H with the help of linear interpolation are computed values V_{∞} , of the average speed of molecules \overline{V} and T_{∞} . The interpolation points H. and value V_{∞} , \overline{V} and T_{∞} in them are assigned in the nuclei, indicated in block 1(0) (see numerical information). Number N_{r*} is introduced by

the octal code with the second address into nucleus 6615.

The drawing of particle trajectories through all faces S_k is produced by "portions" N_{1p} . A maximum quantity of developed particle trajectories is equal to N_{2p} . Printout of total aerodynamic coefficients is produced periodically after the drawing of next "portion" of trajectories $N_{3p}=k_3N_{1p}$ ($k_3=1, 2, 3 \ldots$), and the coefficients of local flows – after the drawing of "portions" of trajectories $N_{4p}=k_4N_{1p}$ ($k_4=1, 2, 3, \ldots$). Number N_{2p} must be integral multiple of numbers N_{3p} and N_{4p} . Numbers $\hat{N}_{1p} \div N_{4p}$ are sent into nuclei $N_{1p}=0.0253$, $N_{2p}=0.0254$, $N_{3p}=0.0256$ and $N_{4p}=0.0333$.

Let us note that the values of some parameters $(N_{r,\bullet}, H_{0}, V_{\infty}, \overline{V}_{i}, T_{\infty}, T_{\infty}, L_{i}, L_{i})$ are given in block 1(0).

The described initial information is introduced into the memory of machine with block 1(0) in the following sequence: is introduced block 1(0) with the previously specific and pierced on the latter/last punch card check sum (KS); after the comparison of KS of block I control automatically is transmitted to the first nucleus; on the command/crew, which is located in the fifth nucleus, is produced the input of initial information and begins the calculation of problem from nucleus 0006.

Table 3.

Система координат	Код (2)					
Декартовая (3) Подярная (4)	0 00 0000 0000 0000 0 00 0001 0000 0000					
Цилиндрическая(5) Сферическая (6)	0 00 0000 0001 0000					

Key: (1). Coordinate system. (2). Code. (3). Cartesian. (4). Polar.
(5). Cylindrical. (6). Spherical.

Table 4.

Адрес			Kog (2)				
6616 6617 6620	. 0	00 00 00	0000	n (Π) n (Φ ₀). n (β ₀)	0000		
6621 6622	0	00	0000	n (H) n (a ₊)	0000		

Key: (1). Address. (2). Code.

Page 91.

Calculations according to the program are produced in the following sequence (in the brackets are given the numbers of the

nuclei of program):

- 1) the exchange between MOZU [core storage] MB-1 and MB-2, the press/printing the check sum of version (0006-0063);
 - 2) the expansion of operating field (RP) IS-2 (1500-1501);
- 3) the translation/conversion of the array of numbers of initial information from the decimal system into the binary (1502-1503);
 - 4) printout of initial information (2507-2512);
- 5) the recalculation of the coefficients of the equations of all surfaces upon transfer from one axes Yy_{j} to the next Xx_{i} (6015-6111);
- 6) calculation and printout of the values of areas/sites ΔS_{-} , if contents of nucleus 0330 is equal to 1.0 (5327-5712);
- 7) the calculation of values S_k , α_0 , β_0 , H, α_k , $\sigma_{\infty i}$, V_{∞} , \overline{V} , T_{∞} , S_{∞} , h_{∞} , h_{∞} , B, $2\chi^{-1}(V_{\infty k})$, $N_{pk}N_p^{-1}$, $f_{\max}^{-1}(\xi_0'k)$, ξ_{ki}^a , ξ_{ki}^b (1514-1530, 4010-4266, 4610-4653, 6507-6513, 1541);
 - 8) the drawing of the random speeds and coordinates of particles

with the start from faces S_k (1541-1753, 2005-2022);

- 9) the program of the drawing of the pseudorandom evenly distributed numbers R_1-R_1 , in interval of 0-1 (6676-6704), of constant to this block (6713-6750);
- 10) the calculation of the collision of particle with the surface of compound (2030-2536);
- 11) the calculation of the components of internal normal n_i to the surface at the impact point in the particle and value $\xi_{+r_i}^* n_i$ (2537-2577);
- 12) the calculation of the components of particle speed with diffuse reflection (2603-2633, 3425-3434, 3151-3166, 2634-2654, 1505-1513, 2655-2660, 3435-3440), with mirror reflection (2661-2673, 6237-6241) and with the reflection according to the law (4.11) (6320-6342, 2622-2634, 6343-6463, 6165-6207, 6465-6506, 6140-6160, 1506-1513, 2655-2660, 3435-3440);
- 13) the calculation of total flows (2674, 3037, 6271-6317, 2676-2715, 3066-3104);
 - 14) the calculation of local flows (2717-3036, 6161-6164);

- 15) calculations before the printout of total aerodynamic coefficients (1754-1771, 3112, 6530-6535, 3113-3124, 3145-3150, 6536-6542, 4272-4306, 4667-4777, 4314-4433, 5000-5036, 4434-4450, 5037-5060, 4451, 4520-4545);
- 16) the command/crew of printout of total aerodynamic coefficients (4546-4547);
- 17) calculations before the printout of the coefficients of local flows (the same commands/crews as in p. 15 with the addition of commands/crews in nuclei 3124-3144, 3577-3631, 3057-3062, 6562-6607);
- 18) the command/crew of printout of the coefficients of local flows (3615-3616, 3627-3630, 6573-6574);
 - 19) the sorting/excess of particles $N_{2,p}$ (4550-4554, 4654-4655);
- 20) sorting/excess α_{\circ} β_{\circ} H and α_{\bullet} (4655-4633, 4555-4567, 4452-4475, 3340);
- 21) the restoration/reduction of program and the introduction of the new version of calculation (3340, 3145-3147, 4571-4577,

DOC = 83067304

0066-0076, 0006).

Let us note that during the transfer of control to nucleus 3340 at any moment of calculation occurs the restoration/reduction of program and the introduction of new version.

To monitor the correctness of the calculation of problem is possible on the printouts of initial information (2507-2512) from nuclei 0260-0346 and 0420-0646, and also by tracking after nucleus 3521, in which occurs the accumulation of number N_{ρ} of the played trajectories, and by nucleus 3550, in which occurs a cyclic increase in the number of multiple reflections of particle from the concave surface in the developed trajectory.

Page 92.

During the calculation of areas/sites ΔS_{\bullet} varies the contents of nucleus 5672. To the press/printing areas/sites ΔS_{\bullet} are put out by one array (5704-5705) in the sequence, which corresponds to numbering $\omega = (\beta - 1)$ m+ γ .

In the program, the number m=10, $\omega \in (0-100)$, $\beta \in (0-10)$. The accuracy of calculation ΔS_{ω} is equal to 0.0001. The check of the correctness of the operation of program and machine can be also produced with calculation for the standard version.

Printout of total aerodynamic coefficients is produced by one

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

array (4546-4547); the order of the location of the parameters in the array is given in Table 5.

The coefficients of local flows are put out to press/printing 34 by arrays of numbers (Table 6). Arrays 1-11 give the coefficients of the average/mean local flows through areas/sites ΔS_{\bullet} . Array 12 consists of 11 numbers p'_{+} , τ'_{+} , e'_{+} , n'_{+} , p'_{r} , τ'_{r} , e'_{r} , n'_{r} , p'_{-} , τ'_{-} , e'_{-} . With the help of the parameters, which are contained in arrays 12-34, easily are expressed the coefficients of average/mean flows along the sides β and γ of the rectangular region D

$$p_{+\beta} = \frac{p'_{+\beta}}{10}; \quad p_{+\gamma} = \frac{p'_{+\gamma}}{10}, \dots$$
 (1.1)

and average/mean flows in the entire surface

$$p_{+} = \frac{p'_{+}}{100} \ . \tag{1.2}$$

Varying in formulas (1.1) and (1.2) p on τ , e and n, and index _+* to _-* and r, we will obtain formulas for all averaged flows. In the arrays 1-11 numbers are divided into the groups (by 10 numbers in the group) with the help of index _-* in the 45th digit of the binary code of a number.

2. Blocks II(M) and III(M) for the drawing of the reflection of particles from the surface according to the law (4.11).

Basic part of the program for the simulation of reflection

Table 5.

A HORR	Параметр	№ пози-		№ пози- ции (С)	() Параметр	Ne 1103H-	Hapa- Metp(x)	Ne noam-	Hapa- Metp (B)	.М. 1103 н.	Hapa-(h)
\mathbf{r}_{i}^{c}	3 (,	26'	h	151	п	; ; 76		101	1	126	1
2	۶o	27	Ci	52′	,	177	1	102	1	127	п
3	Н	28	įJ į	53	x_{i0}	78	c_i	103	$c_{+i}^{\bullet}+c_{-}^{\bullet}$	128	
4	$oldsymbol{\mathcal{S}}_{\infty}$	291	5	54)	79)	104]] ***	129	$D[c_i]$
5	S	30	$ m_i $	55′	1	80	in .	105	1	130	' '
6	$V_{_{\mathcal{T}}}$	31	}	56	m_{l0}	81	$\left.\right \right\} m_{-i}$	106	mm_	_[131	; '}
7 :	T_{∞}	32′	1	57	j	82)	107	J	132	$D[m_i]$
8	$T_{\mathbf{v}}$	33	$m'_{i,\tau}$	58'	П	83′	h	108	h	133	iJ
9′	a_{\star}	34	į)	59′	ì	84	c_{ri}	109	c_{-i}	134	Π
10,	p_0	, 3 5′	h	60	$\left.\right\}$ c_{+i}	85	į)	110)	135	}
11.	В	36	m _{i T}	61	1	86	h	111	1	136	DIC
12	N_{p}	37)	62	ì	87	m_{ri}	112	m	1137	J
13	$N_{cc} - N_r$	38′	Л	63	m_{+i}	88	į)	113	J	138	h
14	<i>N</i> ,	39 ′	1	64	J	89'	n	114)	139	$VD[m_i]$
15 .	N_r	40	c_i	65′	1	90′	h	115	cri	140)* = t;
:6 I	$+N_r/N_{\infty}$	41)	66	$c_{-i} + c_{ri}$	91	c_{+i}^{\bullet}	116	j	141	П
17 %	E_{+}	42)	67	J	92)	117	1	142	ì
18 ‡		43	m_i^*	68)	93)	118	m_{ri}	143	31 D [ci]
19	E_r	44)	69	$m_{-i} + m_{ri}$	94	m_{+i}	119	}	144	}
20 E	$_{+}+\mathcal{E}_{-}$	45′)	70	!	95	J	120'	П	145	1
, ,	_+ <i>E_</i> + <i>E</i> ,	46	m _{i T}	71'	1	96′	١.٠.	121		146	31/ [Dm.]
22 1	$E_{-}+E_{r}$	47	'	72	$\left\{c_{+1}+c_{-i}\right\}$	97	$c_{-i}+c_{ri}$	122	$[M c_i]$	147)
23	E_{k}	48'		73		98	'	123			
24	0	49	m _{l T}	74		99	$m_{-i} + m_{ri}$	124			
25'	П	50		75	$m_{+i}+m_{-i}$	100	i [125	$M[m_i]$		

Key: (1). No. of position. (2). Parameter.

Page 93.

according to the law (4.11) is contained in block I(0). The misplaced part is designed by blocks II(M) and III(M). With blocks II(M) and III(M) is introduced also initial information – value of the accommodation coefficients α_e , α_{ne} , α_{r} , of number a, p.-1, p..-p., function γ_e , γ_a , γ_a , and also the codes into nuclei 5222-5242. In nucleus 0332 is introduced the number, equal to one.

Table 6.

Номер массива	Массив (2)	Коля- чество чисел (3)	Номер массива ()	Массив	Коли- чество чисел
1	₽+•	100	18	Trp	10
2	[‡] +•	100	19	era	10
3	e ₊₌	100	20	n_{r3}	10
4	n ₊₌	100	21	P_8	10
5	Pro	100	22	ج <u>'</u> ے	10
6	T _{PW}	100	23	e_ _B	10
7	e _{r=}	100	24	PFT	10
8	n _{re}	100	· 25	T+1	01
9	P_•	100	26	e_+,	10
10	τ_•	100	27	n ₊₁	10
11	e	100	28	Pr	10
12	p'_+, *'_+,	11	29	**************************************	10
13	P'+8	10	30	e _{rt}	10
14	*+8	10	31	$n_{r_{\ell}}$	10
15	e ₊₃	10	32	P'	10
16	$n'_{+\beta}$	10	33	P'_T T'_T	10
17	Pro	10	34	e <u>_</u> T	10

DOC = 83067304 PAGE 193

Key: (1). Number of array. (2). Array. (3). Quantity of numbers.

Page 94.

Let the accommodation coefficients for each surface be determined and dependences on the angle θ_1 (angle between vectors of the speed of the falling/incident molecule and vector of internal normal to the surface). In the program are provided the nuclei for dispatching six functions $\alpha_{0.2} = f(\theta_1)$, $\alpha_{0.2} = f(\theta_1)$ and $\alpha_{0.2} = f(\theta_1)$. The values of these functions at points $\theta_1=0$; 15°; 30°; 45°; 60°; 75°; 90° are sent into nuclei 0134-0205 [see the numerical information of block 1(0)]. For each surface is comprised also the special code whose first address is the number of the first nucleus of dependence $a_i = f(\theta_i)$ (for this surface), the second address - number of the first nucleus of dependence $z_n = f(\theta_1)$, the third address - number of the first nucleus of dependence $\alpha_i = f(\theta_i)$. All these codes are joined into the array and are introduced into nuclei 5222-5242 (into 5222 for surface of 1, into 5223 - for surface of 2, etc.). In the given program values a_{i}, a_{n}, a_{n} [see the numerical information of block I(0)] are undertaken from [10].

With block II are introduced numbers $(p_{\bullet}-1)$ (1420), a<0 (0313) in the implementation of dependence (4.21) and $(p_{\bullet}-1)$ (1420), $(p_{\bullet}-p_{\bullet}): \gg 1$ (0313) in the implementation of dependence (4.22). Are

here in the brackets indicated the numbers of nuclei.

Block II+III makes it possible to simulate arbitrary monotonic dependences φ_{a} , φ_{a} , φ_{c} on the square of speed ξ_{+}^{2} , of incident particle. With block II+III are sent the values of interpolation points ξ_{+}^{2} , into nuclei 6764-6774 and respectively the value of functions in them φ_{c} (6775-7005), φ_{a} (7006-7016), φ_{c} (7017-7027).

3. Block IV (P) for calculating the coefficients of the aerodynamic forces, which function on each surface.

Printout of the aerodynamic coefficients of surfaces is produced periodically after the drawing of next "portion" of trajectories N_{4p} (see the description of block I). The coefficients of surfaces are put out to the press/printing by the arrays each of which relates to the specific surface with respect to the location of information about the surfaces in nuclei 0420-1415. Table 7 gives the order of the location of the aerodynamic coefficients of surface in the array.

After printout of the coefficients of all surfaces is produced the printout of total coefficients just as in block I.

4. Block V(V) for the simulation of free molecular flow in the concave cavity.

DOC = 83067304

In the case of concave cavity for studying the internal flows it suffices to develop random particle trajectories on the plane of entrance.

Table 7.

М позиции (/)	Параметр	М позвини позвини	Параметр	познини У	Параметр	№ познции	Параметр
1	1	7	,	13	,	19	
2	C+wi	8	6_vi	14	c _{rvi}	20	Cvi
3		9		15		21]
4	í	10	ľi i	16	ĺ	22	ĥ
5) m _{+vl}	11	mvi	17	m _{rvi}	23	m_{i}
6		12		18]	24	

Key: (1). position. (2). Parameter.

Page 95.

Concave surface is oriented so that the plane of entrance would coincide with the plane of the fourth face of control surface (k=4), moreover the center of the area of the figure of entrance to the center of the fourth face of control surface they must coincide.

Depending on the form of the duct/contour of entrance into nucleus 3344 is introduced the special code, indicated in Table 8.

In the case of the rectangular form of entrance its duct/contour must coincide with the duct/contour of the fourth face of control surface, in the case of the elliptic form of the entrance, inscribed into the duct/contour of the fourth face, into nuclei 0243 and 0244

are sent the sizes/dimensions of the semi-axes of ellipse, parallel with respect to axes x, and x,.

With the printout of total coefficients are printed parameters 1-120 (see Table 5), then they are printed (4551-4552) two numbers: number of particle trajectories, played from the fourth face and which did not fall on the entrance into the concave cavity and which fell on entrance. Printout of the coefficients of local flows is produced just as in block I.

5. Block VI (K) for the calculations of the local parameters according to the field of internal and external flows.

With the work with this block the drawing can be produced over the entire surface of parallelepiped - control surface or only on the fourth face of control surface (entrance into the internal cavity, see block V). In the first case into nucleus 3344 are sent zero, in the second case into nuclei 3344, 0243 and 0244 is sent the information according to the description of block V.

Information about the "formal" surfaces whose number must not exceed 16, is introduced into nuclei 0420-1415 just as for the usual surfaces, the order of the location of "formal" and usual surfaces not playing role. In the sequence v=1, 2, 3 ... of all surfaces there is the numeration $\lambda = 1,2,3...$ of the formal surfaces. In nuclei

3242-3261 are introduced the sizes/dimensions of areas S_{λ} of all "formal" surfaces (into the nucleus 3242-S₁, in 3243-S₂ and so forth). In nuclei 5222-5242 with the information described in blocks II and II+ III, is introduced further information about all surfaces: instead of the code of operation are introduced zero in the case of usual surface and number λ (by octal code) in the case of "formal". For example, if surface of 1 and 3 usual, surface is 2 "is formal", then into nuclei 5222-5224 are introduced the codes

In the third address of nucleus 6137 by octal code is introduced a number of "formal" surfaces.

Printout of the results of calculating the local parameters of gas according to the field of flow is produced periodically after the drawing of a number of trajectories N_{ip} .

Table 8.

Форма входного сечения	Код (2)					
Прямоугольник (3) Эллипс (4)	0	00	0001	0000	0000	
Эллипс (4)	0	00	0000	1000	0000	

Key: (1). Form of entrance. (2). Code. (3). Rectangle. (4). Ellipse.

Page 96.

Are printed 5 arrays. In arrays 2-5 to the press/printing are put out 55 groups of numbers (in array 2 - group 1-15, in array 3 - group 16-30, in array 4 - group 31-45, in array 5 - group 46-55) in the sequence, indicated in Table 9. In each group of numbers are contained the values of the corresponding parameter for all "formal" surfaces, in the sequence, which corresponds to numbering $\lambda=1$, 2, 3 For example, in the beginning of array 2 are printed all values $W_{+\lambda}$, then all values $W_{-\lambda}$ and so forth. The number, arranged/located in the beginning of each group, i.e., the value of the corresponding parameter for $\lambda=1$, is isolated with the help of index .—• in the 45th digit of the binary code of a number.

Apparently, in certain cases it is useful to use this calculation procedure: through each point of field of flow whose vicinities are investigated, to carry out through three mutually perpendicular "formal" surfaces, and the results of calculation to average according to the formulas:

$$n'_{k} = \frac{1}{3} \sum_{\lambda=3k-2}^{\lambda=3k} n'_{\lambda}; \quad T'_{k} = \frac{1}{3} \sum_{\lambda=3k-2}^{\lambda=3k} T'_{\lambda};$$

$$p'_{k} = \frac{1}{3} \sum_{\lambda=3k-2}^{\lambda=3k} p'_{\lambda}; \quad V'_{k} = \frac{1}{3} \sum_{\lambda=3k-2}^{\lambda=3k} V'_{\lambda}.$$
(5.1)

In array 1 are printed h_k , T_k , $p_k'V_k'$ for all k=1, 2, 3, ... the points of the field (numbers with numbers 1-4 designate n_1' , T_1' , p_1' , V_1' ; numbers 5-8 they designate n_2' , T_2' , p_2' , V_2' and so forth).

Printout of the coefficients of total flows is produced just as in block V, after printout of the coefficients of the local parameters in the field of flow.

Table 9.

М группы чисел (1)	Параметры массива 2 (2)	М группы чисел	Параметры массива 3	№ группы чисел	Параметры массива 4	Ме группы чисел	Параметры массива 5
1	W ₊ ,	16	$M'_{-22(\lambda)}$	31	n'_{λ}	46	ρ' _{22 (λ)}
2	▼_\	17	$M'_{+33(\lambda)}$	32	V'1(A)	47	P 22 (λ) P 33 (λ)
3	$n_{+\lambda}^{t}$	18	M'_33(λ)	33	ν _{2(λ)}	48	$p_{12(\lambda)}^{\prime}$
4	7-A	19	$M'_{\pm 12(\lambda)}$	34	$V_{3(\lambda)}$. 49	P _{23(\lambda)}
5.	$V'_{+1(\lambda)}$	20	$M'_{-12(\lambda)}$	35	$T_{\lambda}^{'}$	50	$p'_{13(\lambda)}$
6	$V_{-1(\lambda)}$	21	M'_+ 23(\(\lambda\)	36	$M_{11(\lambda)}^{'}$	51	$q'_{1(\lambda)}$
7	$V'_{+2(\lambda)}$	22	$M'_{-23(\lambda)}$	37	$M_{22(\lambda)}^{\prime}$	52	$q'_{2(\lambda)}$
8	$V_{-2(\lambda)}$	23	$M'_{+13(\lambda)}$	38	M΄ _{33 (λ)}	53	93(A)
9	V _{+3(\lambda)}	24	$M'_{-13(\lambda)}$	39	$M'_{12(\lambda)}$	54	V_{λ}
10	$V'_{-3(\lambda)}$	25	$\mathcal{E}_{+1(\lambda)}'$	40	M'23(1)	55	$p_{\lambda}^{'}$
11	$T_{+\lambda^{\bullet}}$	26	$\mathcal{E}_{-1(\lambda)}^{'}$	41	$M'_{13(\lambda)}$	_	_
12	<i>T</i> _λ•	27	$\mathcal{E}_{+2(\lambda)}^{\prime}$	42	$\mathcal{E}_{1(\lambda)}^{'}$	- 1	-
13	$M'_{+11(\lambda)}$	28	$E'_{-2(\lambda)}$	43	$E'_{2(\lambda)}$	-	
14	$M_{-11(\lambda)}$	29	$E_{+3(\lambda)}^{'}$	44	$\mathcal{E}_{3(\lambda)}^{'}$	_ [-
15-	$M'_{+22(\lambda)}$	30	E'_3(1)	45	$p'_{11(\lambda)}$	_	

Key: (1). the group of numbers. (2). Parameters of array.

Page 97.

6. Block ${\rm VII}(\beta)$ and ${\rm VII}(\gamma)$ for the detailed calculation of coefficients of the local flows through the surface.

In block I during the calculation of local flows the rectangular region D is divided on 100 equal pads with the help of 18 straight lines, carried out through each side D region in parallel to its sides. In certain cases can be required the division of region on the finer/smaller pads.

In blocks the VII and VIII rectangular region D is divided into 100 equal bands with the help of 99 straight lines, carried out in parallel to the side γ of region D (block VII) or in parallel to the side β of region D(block VIII). Let us designate the areas of bands ΔS_{∞} moreover the number of area/site $\omega = \beta \in (0-100)$ for block VII and $\omega = \gamma \in (0-100)$ for block VIII. This division D field proves to be useful during the detailed study of local flows, constants along any one side D region.

With the printout of the coefficients of local flows, which occurs periodically after the drawing of a number of trajectories N_{4p} , are printed 23 arrays of numbers. The arrays 1-11, which contain according to 100 numbers, and Massey 12, who contains 11 numbers, contain information about the average coefficients of the local flows through areas ΔS_{\bullet} and through entire surface; these arrays are analogous described in block I and given in Table 6.

Let us note that here index $\omega=\beta$ during the use/application of block VIII and $\omega=\gamma$ during the use/application of block VIII.

In view of the smallness of areas/sites ΔS_{\bullet} are possible the considerable fluctuations of the values of the parameters upon transfer from one area/site to another. Therefore it is convenient to also have the averaged values of the parameters on several areas/sites ΔS_{\bullet} . Arrays 13-23, which contain according to 20 numbers, give the averaged values of the parameters, which are contained in arrays 1-11, on five areas/sites ΔS_{\bullet} ; for example, the parameters, which contain in array 13, are obtained according to the formula

$$p_{+k} = \frac{1}{5} \sum_{n=5k-4}^{n=5k} p_{+n}, \tag{6.1}$$

where p_{+-} parameters of array 1, and index k takes values of k=1, 2, 3, ..., 20; for array 14 parameters are obtained analogously from array 2, etc.

Printout of the coefficients of the total of flows is produced just as in block I.

7. Block IX for the simplified assignment of the parameters of surfaces.

Applying block IX, it is possible to decrease and to simplify information about the following surfaces, most widespread in practice (Fig. 1-6 and Table 10); parallelogram, trapezoid (triangle), elliptical ring, elliptical cylinder and cone, ellipsoid.

Table 10 gives the order of the location of the parameters of the information, which contains 12 numbers, for each surface. Information about all surfaces whose number is not more than 17, is introduced into nuclei 0420-0733 (into nuclei 0420-0433 about surface of 1, 0434-0447 about surface of 2, etc.).

Page 99.

Table 10.

W sequence	(x_i) $A(x_i)$ $A(x_i)$ $B(x_i)$	$A(x_i^*) = B(x_i^*)$	AB > AC. + BAC + 90 ° C(z;) A(z;) B(z')	# 8AC · 90° # (C(z*)) # (C(z*))	*8AC · 90 * (C(z, 7) * 9	*BAC - 90°
1 2 3	#1 #2 #3) si	, ai	, zi	xi	} *i
5 6 7	x ₁	, si		x _i		z;
9 10	.5 .5 0	b 0	$a_1 \beta A B$ $1 - q^{\alpha} / 2 n$	-L \phi/2\pi	L 1q/2=	G 1-9/2m
12	0	-1,0	0	0		1—8/x

Page 100.

In Table 10 parameters 1-9 are the coordinates of points A, B and C, arranged/located relative to surface in accordance with Fig. 1-6 and figures, given in Table 10. Coordinates x_i', x_i' and x_i'' are

Page 98.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. ϵ .

assigned in the system of coordinates Xx_i . The angles of longitude/length φ^* and φ and the angle of latitude θ , with the help of which is selected the piece of surface in question, are changed in $\theta \in (0-180^\circ)$. the ranges: $\varphi^* \in (0-360^\circ)$, $\varphi \in (0-360^\circ)$, $\varphi \in (0-360^\circ)$, $\varphi \in (0-360^\circ)$, $\varphi \in (0-360^\circ)$. Angles φ and φ^* are counted off from AB, angle θ is counted off from the line, perpendicular to plane BAC.

If necessary for the recording of the local particle fluxes, impulse/momentum/pulse and energy into nucleus 0330 is sent the number, equal to the reference number of simple surface and which has plus sign during the recording of flows over the external surface and minus sign during the recording of flows over the internal surface. Let us note that the recording of local flows can be produced only over one surface.

Each surface is accompanied by the indicative codes (Table 11), which are joined into the array by way of the location of surfaces in nuclei (0420-0733) and are introduced into nuclei 5201-5221.

In the case when there are only simple surfaces or together with the simple ones there are complicated surfaces information about which can be been given only on Table 2, the information, which composes version, is introduced in the following order: with the address code (AK) 0420 information only about all simple surfaces,

comprised on Table 10; with AK5201 and AK5222 - codes for all surfaces (simple and complicated); AK6616 - number of all surfaces (simple and complicated); with AK 1364 - the number only of simple surfaces; then is placed all remaining information; the necessary blocks, moreover block IX is arranged always for information processing about the simple surfaces: after block IX are introduced zero into nucleus 1345 in the case of the presence together with the simple ones of complicated surfaces, otherwise it is not introduced; then is placed punch card with the check sum, equal to zero; without the address code is placed the information about the complicated surfaces, comprised according to Table 2; version is finished with punch card with the check sum, equal to zero. Information for calculating the local flows according to the complicated surface is introduced according to the description Section of 1 Chapter II. The examples of assignment to information are given in appendix 2.

Let us make some observation about the algorithm of the program of block IX, according to which are calculated the parameters of surfaces, described in block I (see Table 2).

Cosines a_{μ} are determined from the formula

$$a_{ji} = a_{jm}^* a'_{mi}(i, m = 1, 2, 3);$$
 (7.1)

$$a'_{1i} = \frac{x'_i - x'_i}{|x'_i - x'_i|}; \quad a'_{2i} = a'_{3i} \times a'_{1i}; \quad a'_{3i} = \frac{(x'_i - x'_i) \times (x''_i - x'_i)}{|(x'_i - x'_i) \times (x''_i - x'_i)|}. \quad (7.2)$$

Here a'_{mi} — cosines of the angles between axes x_i and axes y'_m of the intermediate coordinate system; a'_{jm} — cosines of the angles between axes y_j and y'_m (see Fig. 1-6).

Table 11.

Поверхность			Ко		
(<i>v</i>				رھ	
Паралделограмм (3)	0	00	0000	0000	0000
Трапеция (4)	0	00	0000	0001	0000
Эллиптическое кольцо 🕥	0	00	1000	0000	0000
Элянптические цилиндр и конус	0	00	0000	0001	0000
Эланпсонд (7)	0	00	0000	0000	0001

Key: (1). Surface. (2). Code. (3). Parallelogram. (4). Trapezoid.
(5). Elliptical ring. (6). Elliptical cylinder and cone. (7).
Ellipsoid.

Page 101.

The sides of parallelogram AB and AC it is placed in the coordinate planes y, y, and y, y, . After conversions we find

$$a'_{11} = \{ \sqrt{1 - \cos \psi}, 0, \sqrt{\cos \psi} \};$$

$$a'_{12} = \left\{ \frac{-\cos \psi}{\sqrt{1 + \cos \psi}}, \frac{1}{\sqrt{1 + \cos \psi}}, \left[\frac{\cos \psi (1 - \cos \psi)}{1 + \cos \psi} \right]^{1/2} \right\};$$

$$a'_{13} = \left\{ -\left[\frac{\cos \psi}{1 + \cos \psi} \right]^{1/2}, -\left[\frac{\cos \psi}{1 + \cos \psi} \right]^{1/2}, \left[\frac{1 - \cos \psi}{1 + \cos \psi} \right]^{1/2} \right\}.$$
(7.3)

Equation of the plane of the parallelogram

$$-\left(\frac{\cos\psi}{1-\cos\psi}\right)^{1/2}(\nu_1+\nu_2)+\nu_3-1=0. \tag{7.4}$$

Coordinates of point Y:

$$x_{0i} = x_i' - a_{3i}. (7.5)$$

Limits D region:

$$\beta_1 = 0; \quad \beta_2 = AB \sqrt{1 - \cos \psi}; \quad \gamma_1 = 0; \quad \gamma_2 = AC \sqrt{1 - \cos \psi}.$$
 (7.6)

The side of trapezoid AB it is directed in parallel to axis γ_1 . ψ - angle between the plane of trapezoid and the plane $\gamma_1\gamma_2$.

From Fig. 2 we note

$$a'_{j1} = \{-1, 0, 0\}; \quad a'_{j2} = \{0, -\cos\psi, \sin\psi\}; \quad a'_{j3} = \{0, \sin\psi, \cos\psi\}. \quad (7.7)$$

Equation of the plane of the trapezoid:

$$y_2 \sin \psi + y_2 \cos \psi - MN \cos \psi = 0. \tag{7.8}$$

Coordinates of point Y, which coincides with point N,

$$\vec{x}_{0i} = \vec{x}_{i}' - \vec{N}\vec{A}, \ \vec{M}\vec{A} = -\vec{A}\vec{C}^{\circ} \cdot AB \cdot AC/(AB - b),$$

$$\vec{M}\vec{N} = -\vec{a}_{0i}(\vec{a}_{0i} \cdot \vec{A}\vec{C}^{\circ}) \cdot M\vec{A}, \ \vec{N}\vec{A} = \vec{M}\vec{A} - \vec{M}\vec{N},$$
(7.9)

Limits D region:

$$\beta_{1} = \varphi_{1} = \arcsin(\overrightarrow{a_{2i}} \cdot \overrightarrow{N}A^{\circ}), \ (\overrightarrow{AB}^{\circ} \cdot \overrightarrow{NA}^{\circ}) < 0,$$

$$\beta_{2} = \varphi_{2} = \arcsin(\overrightarrow{a_{2i}} \cdot \overrightarrow{NB}^{\circ}), \ (\overrightarrow{AB}^{\circ} \cdot \overrightarrow{NB}^{\circ}) < 0;$$

$$(7.10)$$

$$\beta_{1} = \varphi_{1} = \pi - \arcsin(\overrightarrow{a_{2}} \cdot \overrightarrow{NA}^{\circ}), \ (\overrightarrow{AB}^{\circ} \cdot \overrightarrow{NA}^{\circ}) > 0,$$

$$\beta_{2} = \varphi_{2} = \pi - \arcsin(\overrightarrow{a_{2}} \cdot \overrightarrow{NB}^{\circ}), \ (\overrightarrow{AB}^{\circ} \cdot \overrightarrow{NB}^{\circ}) > 0;$$

$$(7.11)$$

$$\gamma_1 = y_{s1} = 0, \quad \gamma_2 = y_{s2} = (a_{s,i} \vec{AC}^\circ) AC.$$
 (7.12)

DOC = 83067304 PAGE 212

Here AC°, NA°, NB°, AB° - unit vectors.

For the elliptical ring of axis y_m' it is directed so that

$$a'_{j1} = \{\cos\psi, 0, -\sin\psi\}, a'_{j2} = \{0, 1, 0\}, a'_{j3} = \{\sin\psi, 0, \cos\psi\}, \cos\psi = \frac{AC}{AB}$$
 (7.13)

Equation of the plane of the ring:

$$y_1 \sin \phi + y_2 \cos \phi - (AB \sin \phi + 1) \cos \phi = 0.$$
 (7.14)

Coordinates x_{0i} of point Y:

$$x_{0i} = x_i' - a_{si}(AB\sin\psi + 1)$$
 (7.15)

Page 102.

The limits D region are calculated from the formulas: $\varphi^{\bullet} = k \cdot \pi/2 + \Delta \varphi^{\bullet}$, $\Delta \varphi^{\bullet} < \frac{\pi}{2}$, k = 0, 1, 2, 3, 4;

$$\beta_1 - \varphi_1 = 0;$$
(7.16)
$$\beta_2 - \varphi_2 = k \frac{\pi}{2} |\Omega \rangle |\Delta \varphi^*| < 0.001;$$
(7.17)

$$\beta_{3} = \varphi_{2} = \arctan \frac{\operatorname{tg} \varphi^{\bullet}}{\cos \psi}, \ k = 0;$$

$$\beta_{3} = \varphi_{2} = \pi + \arctan \frac{\operatorname{tg} \varphi^{\bullet}}{\cos \psi}, \ k = 1, 2;$$

$$\beta_{2} = \varphi_{2} = 2\pi + \arctan \frac{\operatorname{tg} \varphi^{\bullet}}{\cos \psi}, \ k = 3;$$

$$(1)$$

$$\beta_{2} = \varphi_{2} = 2\pi + \arctan \frac{\operatorname{tg} \varphi^{\bullet}}{\cos \psi}, \ k = 3;$$

$$\tau_1 = AC \frac{a_1}{AB}, \quad \tau_2 = AC. \tag{7.18}$$

Key: (1). with.

For the elliptical cylinder

$$\frac{y_1^2}{AB^2} + \frac{y_2^2}{AC^2} = 1 \quad \frac{\text{(1)}}{\text{(уравнение поверхности)}}; \qquad (7.19)$$

$$a'_{fm} = \delta_{fm};$$

$$x_{0i} = x'_{i};$$

$$\beta_1 = 0, \ \beta_2 = \varphi, \ \gamma_1 = 0, \ \gamma_2 = L.$$

Key: (1). the equation of surface.

For the elliptical cone

$$\frac{y_1^2}{AB^3} + \frac{y_2^2}{AC^3} - \frac{y_3^2}{H^2} = 0$$
 (Уравнение поверхности) (7.21)

Key: (1). the equation of surface.

where H=AC·L·(AC-a);

$$a'_{jm} = \delta_{jm};$$

$$x_{0 i} = x'_{i} - a_{3i}H;$$

$$\beta_{1} = 0, \ \beta_{2} = \varphi, \ \gamma_{1} = H - L + 10^{-3}, \ \gamma_{2} = H.$$

$$(7.22)$$

For the ellipsoid

$$\frac{y_1^2}{AB^2} + \frac{y_2^2}{AC^2} + \frac{y_3^2}{C^2} = 1$$
 (ўравнение поверхности); (7.23)
$$a_{jm}^* = \delta_{jm};$$

$$x_{0 \ l} = x_i^*;$$

$$\beta_1 = 0, \ \beta_2 = \varphi, \ \gamma_1 = 0, \ \gamma_2 = \emptyset.$$

Key: (1). the equation of surface.

8. Calculations in the flow of Newton and in the flow of light/world.

DOC = 83067304 PAGE 394

For the calculations in Newton's flow it is necessary to introduce $S_{\infty}\gg 1$, $N_{r'}=1$, $p_{\bullet}=0$. In nucleus 0251 to send number 0.01. The corresponding coefficients are calculated from formulas (9.1) and (9.2) Chapter I.

For the calculations in the flow of light/world it is necessary to be given $S_{\infty}\gg 1$, p.=k, (portion of the light/world absorbed by surface), $N_{r}>1$ and to introduce into nucleus 3637 the command/crew

0 00 0051 0000 6520

and into the nucleus 0251 number 0.01.

Page 103.

The designed coefficients in the flow of light/world are referred to "velocity head" $q_{\phi}=\frac{E_{\phi}}{2\,c_{\phi}}$.

During calculations in the flow of Newton and in the flow of light/world into nucleus 0332 are sent zero - sign/criterion of the mirror-diffused reflection.

9. On the sequence of the introduction/input of blocks.

During conducting of calculations with the use/application of

several blocks whose possible combinations are given in Table 12, blocks are introduced after block I and version of calculation in the order, which corresponds to an increase in the number of block. In Table 12 blocks I_c and I_s designate block I for calculating the coefficients of total (without the local ones) or local (and total) flows.

10. On the sensors of 0-1 pseudorandom numbers R_1-R_1 , evenly distributed in the interval.

For the work of program it is necessary to develop ten numbers R_1 - R_1 . All ten programs for generating these numbers are obtained of one program (No 1) of obtaining pseudorandom numbers, given in [26]. Were preliminarily calculated the constants of sensor d+1, d+2 and c+1 after obtaining i·2·10° of pseudorandom numbers. Here i=1, 2, 3, ..., 10. The obtained constants are given in the nuclei of 6713-6750 blocks I. Turning to the program of obtaining random numbers 6676-6704 is produced at the value of index register (RA), equal to the number of address, in which is placed constant d+1. For example, during the turning to the program of sensor 6676-6704 at the value of RA, equal to 6713, constants d+1 and d+2 for the work of sensor are taken from nuclei 6713 and 6714, and next pseudorandom number is obtained in nucleus 6715.

For the work with another sensor it is necessary to introduce the new program of sensor into nuclei 6676-6703 and new constants into nuclei 6713-6750.

In appendix 2 in example 3 are given the program and the constants of another version of the sensor of pseudorandom numbers. Initial sensor with period 2³-1 was undertaken from work [26] (program No 5). Constants for all ten sensors in example 3 were obtained after drawing i·6·10° (i=1,2,3, ..., 10) pseudorandom numbers.

Table 12.

	lc	I _a	II	11 + 111	IV	v	VI	VII, VIII	IX
l _c	-+	+	++	++	+	++	+	+	+ +
11	+	+	-	+	+	+	+	+	+
$\Pi + \Pi$	+	+	+	-	+	+	+	+	+
IV	+	-	+	+	_	+	-	-	+
V	+	+	+	+	+	-	-	+	+
VI	+ .	-	+	+	-	-	-	-	+
VII, VIII	+	+	+	+	_	+	-	_	+
1 X	+	+	+	+	+	+	+	+	_

Page 104.

11. Examples of calculation.

Let us consider the examples of assignment to initial information for the calculation according to the universal program of aerodynamic coefficients, local flows and parameters of gas for some bodies of the complex form whose diagrams are given in Fig. 7-9. The assignment of numbers and commands/crews for the calculation in these examples, and also the results of calculation are given in appendix 2.

For the compound (see Fig. 7) consisting of simple surfaces of

1-6 (1 - parallelogram, 2 - cone, 3 - cylinder, 4 - trapezoid, 5 - ring, 6 - sphere) and complicated surface of 7 (paraboloid of revolution), it is necessary to calculate aerodynamic coefficients for each surface of 1-7 with the diffuse reflection of molecules with the complete accommodation and with the reflection of molecules in accordance with law (4.11). The order of the location of information in the version and their numerical values are given in example 1 of appendix 2.

In nuclei 0420-0527 is placed the information about the simple surfaces, comprised according to Tables 10; then into the appropriate nuclei are placed the angles of attack α_{\bullet} , of slip β_{\bullet} , parameter H in terms of value of which with the help of linear interpolation are calculated values V_{∞} , \overline{V} and T_{∞} , accommodation coefficient α_{\bullet} , portion p_{\bullet} of the diffuse reflecting molecules, S_{N} , d_{N} , coordinate $x_{1,i}^{\alpha}$ and $x_{2,i}^{\alpha}$ the faces of parallelepiped (control surface), coordinate $x_{1,i}^{\alpha}$ and $x_{2,i}^{\alpha}$ of two points X and O relative to which must be designed the moment coefficients, the temperature of surface T_{∞} , of number $N_{1,p}$, $N_{2,p}$, $N_{3,p}$, $N_{4,p}$, the signs/criteria (nuclei 5201-5207) of all surfaces of 1-7 (simple and complicated), number N_{∞} , a number of all simple and complicated surfaces (nucleus 6616) and only simple surfaces (nucleus 1364) and a number of remaining parameters (nucleus 6617-6621). Then are placed blocks II, IV and by IX.

In nucleus 1345 are sent zero in the case of the presence together with the simple ones of complicated surfaces, otherwise it is not sent. After punch card with the check sum, equal to zero, is placed the information about complicated surface of 7, comprised according to Table 2.

Fig. 7.

Fig. 8.

Fig. 9.

Page 105.

The introduction/input of version (example 1) occurs into two stages: first is introduced the first part of the version (command/crew from nucleus 0006), then the second (loading order from the nucleus of 1350 blocks IX). In appendix 2 is given the array of the aerodynamic coefficients of surface 6, obtained first during the calculation without block II (diffuse reflection of molecules), and then with block II (reflection in accordance with the law (4.11).

In example 2 is examined the problem of calculating the local flows along the height/altitude γ according to inside of the cylinder (see Fig. 8) with those determined of value H, V_{∞} , \overline{V} and T_{∞} , sent in the appropriate nuclei (see also the numerical information of block I). Were used the following blocks: V - for the drawing of the start of the molecules through the round entrance and block VIII - for the detailed recording of local flows on the areas/sites, which are obtained during the division of height/altitude γ into one hundred parts. Is given an example of the calculation of the flows of part n_{rk} (k=1, 2, 3, ..., 20) of the multiple reflections on the areas/sites, which are obtained during the division γ into twenty parts, moreover report k is conducted from the basis/base.

In example 3 are given the results of calculating some parameters of gas at the flow through the air intake, which is the element/cell of the hyperboloid (see Fig. 9).

The results of some interesting calculations with the help of the universal program are given also in works [27-29].

Was thoroughly checked the method of drawing of the random parameters of particles. From given for an example Fig. 10 it is evident that the agreement of histograms, obtained with the drawing according to the method of Baird of random values ξ'_{kl} [see density function (3.3)], also, with drawing of speed with the diffuse reflection [see formula (4.10)], with the theoretical data $f(\xi'_{kl})$ and $f_r(\xi'_r) = 2\xi'_r^3 \exp(-\xi'_r^2)$ is good even with comparatively small numbers of played trajectories. In Fig. 10 N_o - a number of diffuse reflected particles; by lines they are designated the results of calculations according to precise formulas, by points - according to the Monte Carlo method.

Page 222

Page 106.

We will designate aerodynamic coefficients in the drag axes by index "0" on top. For the positive reference direction of drag let us take direction V_{∞} , and for the projection of forces on body axis Xx_1 - opposite direction of axis Xx_1 , i.e., in the manner that this is accepted in aerodynamics.

The coordinates of the point, relative to which is designed the moment/torque, we will designate x_i , and moment coefficients relatively x_i by subscript x^* .

Fig. 11 gives the results of the calculations of total aerodynamic coefficients for ellipsoid $\sum_{j=1}^{3} y_j^2 a_j^{-2} = 1$ at the values of parameters $a_1 = 10$, $a_2 = 3$, $a_3 = 2$, $x_{0,i} = 0$, $a_{1i} = \delta_{1i}$, $S_\infty = 8.265$, $T_\infty = 1404$ °K, $T_\infty = 320$ °K, $a_1 = p_0 = 1$, $x_{7,i} = \{10; 0; 0\}$, $S_\infty = \pi a_1 a_3$, $d_\infty = 2a_2$. Here δ_{ji} (j, i=1, 2, 3) — unit matrix. Fig. 12 compares the coefficients, obtained by the Monte Carlo method, with the calculated ones, obtained by calculating the integrals over the surface. From the given results it is possible to conclude that an error in the method of Comte-Porta for total coefficients c_1^* and m_2 , already when $N_p = 10^3$ is within the limits of 3-5%, for obtaining the coefficient c_2^* with the same

error it is required $N_{\rho} \approx (3-5)$ by 10° and it is more.

Were produced also calculations for the compound, which consists of two ellipsoids, distant behind each other at certain distance. First ellipsoid $\sum_{j=1}^{3} y_{j}^{2} a_{j}^{-2} = 1$, $a_{1} = 50 \frac{1}{2}$, $a_{2} = 90 \frac{1}{2}$, $a_{3} = 10$, $x_{0j} = 0$, the second ellipsoid $a_{1} = 10$, $a_{2} = 3$, $a_{3} = 2$, $x_{0j} = \{0; 12.5; -5\}$. For both ellipsoids $a_{ji} = \delta_{ji}$. Remaining parameters: $S_{\infty} = 8.265$, $T_{\infty} = 1404^{\circ}$ K, $T_{\infty} = 320^{\circ}$ K, $a_{2} = p_{0} = 1$, $S_{N} = 2\pi(3 + 5\sqrt{90})$, $d_{N} = 10$, $x_{7,i} = \{10; 0; 0\}$.

In Fig. 13 results of this calculation, in which are considered multiple collisions of particles, they are equal with the results of the approximate computation of coefficients with the help of the integrals in the surfaces. During the calculation of integrals in the surface the local coefficients of tangential and normal impulses/momenta/pulses are considered equal to zero, if vector is opposite V_{∞} and carried out from the point in question, it intersects concave surface, otherwise they are computed from the formulas for the single area/site. An error in this calculation will be, obviously, small with $S_{\infty}\gg 1$, the diffuse reflection of particles and when T_{∞} order T_{∞} . Fig. 13 shows a good agreement of results of calculation in limits of $\approx 3\%$.

Page 225

Key: (1). Monte Carlo method. (2). Calculation of integrals.

Fig. 13.

Key: (1). Monte Carlo method. (2). Calculation of integrals taking darkening into account.

Page 107.

The results of calculations for the concave part of the hemisphere confirm dependences (5.7) (Fig. 14) and with the error less than 1% with $N_p > 1000$ coincide with the calculation according to the formula

$$c_1 = 2 + 1.06 \sqrt{\pi/S_p}$$
, (11.3)

obtained in work [13] for the hypersonic approximation/approach (Fig. 15). Fig. 14 and 15 results of calculations by the method of Monte Carlo depict as small circles, and according to formula (11.3) - by solid lines.

Fig. 16 gives the results of calculating the dispersion of the drag coefficient c_1^* and lift c_2^* during the flow around single plate of the flow, normal to its surface. Here when $T_\bullet = 0$ (cold surface) is valid the formula

$$D[c_1^i] = 8 S_{\infty}^{-2} \chi^{-1}(S_{\infty}) \left(\exp(-S_{\infty}^2) \left[(1 + S_{\infty}^2)/2 - S_{\infty} M_{\mu}^i + M_{\mu}^{'2}/2 \right] + \right. \\ \left. + (1 + \operatorname{erf} S_{\infty}) \left[\sqrt{\pi} S_{\infty} (3/2 + S_{\infty}^2)/2 - \sqrt{\pi} M_{\mu} (1/2 + S_{\infty}^2) + \sqrt{\pi} S_{\infty} M_{\mu}^{'2}/2 \right] \right\}, \\ D[c_2^i] = D[c_3^i] = 2/S_{\infty}^2, M_{\mu}^i = h_{\infty}^{1/2} M_{\mu} = S_{\infty} + \sqrt{\pi} (1 + \operatorname{erf} S_{\infty}) \chi^{-1}(S_{\infty})/2 \quad (11.4)$$

or when $S_{\infty}\gg 1$

$$D[c_1^*] = D[c_2^*] - D[c_3^*] \approx 2 S_{\infty}^{-2}. \tag{11.5}$$

Fig. 15.

Fig. 16.

Page 108.

From Fig. 16 it is evident that when $T_{-}=0$ the calculations by the Monte Carlo method with an error in less than 1% will be coordinated with the calculations according to formula (11.5).

The author is sincerely grateful to M. N. Kogan for the theme proposed, are more attention to the work and valuable observations. The author is grateful also to V. S. Galkin, V. A. Perepukhov and A. I. Yerofeyev for the useful observations with the execution of work, and also N. I. Larin and Ya. M. Natenzon, attentively read work and made useful observation.

Literature.

- 1. M. N. Kogan. Dynamics of the rarefied gas. M., "Science", 1967.
- E. Larish. Aerodynamic interference during the free molecular flow. Izv. of the AS USSR. Mechanics and machine building, 1960, No
 3.
 - 3. Cohen J. M. Free molecule frow over nonconvex bodies. ARS J., vol. 30, No 3, 1960.

- 4. E. Larish. Equations of free molecular flow. Izv. of the AS USSR. Mechanics and machine building, 1961, No 2.
- 5. Aerodynamics of rarefied gases. In the collectors/collections Ed. by S. V. Vallander. Publishing house of LGU, collector/collection 1, 1963; collector/collection II, 1965; collector/collection III, 1967; collector/collection IV, 1969.
- 6. V. P. Shidlovsky. Introduction to the dynamics of the rarefied gas. M. "Science", 1965.
- 7. M. N. Kogan, L. M. Degtarev. On the calculations of flows with the large numbers of Knudsen. Astron. Acta, 1965, II, No 1.
- 8. A. A. Bogacheva, V. A. Perepukhov, E. Ye. Rukhman.

 Use/application of the Monte Carlo method to the calculation of the aerodynamic characteristics of the bodies of complex form in the free molecular flow. "J. comp. math. and math. physics ", Vol. 8, No 6, 1968.
- 9. V. A. Perepukhov. Aerodynamic characteristics of sphere and blunt-nosed cone in the flow of the strongly rarefied gas. "J. of

comp. math. and math. physics", Vol. 7, No 2, 1967.

- 10. A. I. Yerofey. On the effect of roughness on interaction of the flow of gas with the solid surface. Izv. of the AS USSR, MZhG, 1967, No 6; 1968, No 6.
- 11. J. K. Khevilend. Solution of two problems about the free-molecule flow by the Monte Carlo method. Coll. "Computational methods in the dynamics of the rarefied gases". M., "Mir", 1969.

12. Bird G. A. Aerodynamic properties of some simple bodies in the hypersonic transition regime. AIAA J., vol. 4, No 1, 1966.

13. Pratt M. J. Concave surfaces in free molecule flow. AIAA J., vol. 1, No 7, 1963.

14. Sparrow. E. W., Jonsson V. R., Lundgreen T. S., Chen T. S. Heat transfer and forces for lfree molecule flow on a concave cylindrical surface. J. Heat Transfer, vol. 86, No 1, 1964.

15. Stewart J. D. Free-molecular drag for flow along a concave cylindrical surface. AIAA J., vol. 7, No 8, 1969.

- 16. V. Ya. Ponomarev. Flow around nonconvex wedge of free molecular flow with a finite number of Mach. Izv. of the AS USSR, MZhG, 1967, No 4.
- 17. A. I. Bunimovich, K. L. Kagan. Free molecular course of gas in the flat ducts and the lattices. Izv. of the AS USSR, MZhG, 1966, No 3.
 - 18. Kaplan M. H. Free-molecular diffyser. AIAA J., vol. 4, No 4, 1966.
 - 19. Yu. N. Lyubitov. Calculation of interaction of the molecular

flows with their enclosing containers. M., "Science", 1964.

- 20. S. V. Musanov. Internal free molecular of course.

 Transactions of TsAGI [ЦАГИ Central Institute of Aerohydrodynamics im. N Ye Zhukovskiy], iss. 1206, 1970.
 - 21. Probstein R. F. Shock wave and flow field development in hypersonic Re-entry. ARS J., vol. 31, No 2, 1961.
- 22. Ya. L. Alpert, A. V. Gurevich, L. P. Pitaevskiy. Artificial satellites in the rarefied plasma. M., "Science", 1964.
- 23. I. N. Larina. Density field around the cone in the free molecular flow. Izv. of the AS USSR, MZhG, 1968, No 4.
- 24. S. Nochill. Law of reflection from the surface in the free molecular flow. Coll. "Interaction of gases with the surfaces". M., "Mir", 1965.
- 25. D. I. Golenko. Simulation and the statistical analysis of pseudorandom numbers in the electronic computers. M., "Science", 1965.
- 26. V. F. Lyashchenko. Programming for digital computers M-20, BESM-3M, BESM-4, M-220. M., "Soviet radio", 1967.

- 27. M. A. Zakirov. Gas-dynamic parameters of free molecular flow before the convex and concave bodies. The "Scientific notes of TsAGI", Vol. II, No 6, 1971.
- 28. M. A. Zakirov. Free molecular flow around the hollow wedge and cone from concave side. The "Scientific notes of TsAGI", Vol. III, No 2, 1972.
- 29. M. A. Zakirov. On the aerodynamic coefficients of the body, which flies in the vicinity of other, in the free molecular flow. The "Scientific notes of TsAGI", Vol. III, No 3, 1972.

Page 109

APPENDIX 1

UNIVERSAL PROGRAM FOR STUDYING INTERNAL AND EXTERNAL FREE-MOLECULAR FLOWS NEAR AN ARBITRARY GROUP OF COMPLEX BODIES

BLOCK I (0)

0001	000	0000	0000	8000	8040	078	0025		0110
6002	000	0000	0000	0000	8041	0 5 0	0016	6116	7767
8663	250	0010	7300	7767Jung	8842	078	6116	3000	0000
0004	070	7500	0001	7747 1002	1043	050	4412	6116	7747
0003	030	0001	0006	0077	0044	0 70	6116	0041	
	050	0016		6114	0045	050	0015	5201	6113
8006			4000			-	2201	1000	
0007	670	4000	0000	0000	8044	070			0000
0010	050	4412	4000	6114	0047	958	4411	5201	6113
0011	870	4000	9006	000	. 8050	970	2507	0045	0000
8612	050	0015	2101	2600	0051	000	0000	0000	0000
8413	070	2101	0000	0000	0052	000	0000	9998	0000
0014	050	4411	2101	2600	0053	000	8008	0000	
0013	970	2101	0012	0000	0054	000	0000	0000	
0016	000	6135	0000	0016	0055	072	0000	0000	0000
0017	880	4136	0000	0017	1636	100	0000	0000	3540
				0000	4857	112	8033	0036	0001
0020	000	8000	0000	•		050	0411	2101	2400
0621	000	0000	0008	4000	0060				
0022	000	0000	0000	6000	0061	078	5707	0040	9908
0023	456	0000	0025	8080	1062	0 5 0	0500	0000	0077
1024	000	8080	0000	0000	8063	078	0077	0000	9000
0025	0 50	0015	4000	5177	2044	0 3 6	0000	1500	8000
8826	870	4000	8000	8000	1165	000	9000	0000	
0027	050	4411	4000	5177	0066	050	0412	6116	7767
0030	470	4000	8825	8000	1167	070	4116	0066	0000
0031	850	0416	0001	0023	8870	400	0000	8000	0000
	470	0001	8866	0000	0071	000	8008	9800	0000
0032				8023	9972	088	0074	8800	4016
0033	050	4412	0001	• •			• •		0017
0034	870	0001	0031	0000	0073	054	0075		• - • .
0035	050	0016	0025	3776	0074	000	6135		1016
1036	079	0025	9860	9 9 9 9	- 0075	000	4134	8880	##17
1037	858	4412	1025	3776	0076	0.30	0001	1106	8677
-			i						

```
Page 110
    1500 052 7032 0000 7615 PT.
1501 000 7504 0000 7541
                                                                                                                                                                                      1574 013 3962 7722 3562
                                                                                                                                                                                           1575 072 000g 3716 00R0
                                                                                                                                                                                           1576 016 1577 6676 6784
      1503 052 0100 0042 1477
1504 054 0000 2507 0300
                                                                                                                                                                                           1977 400 0002 0000 0041
                                                                                                                                                                                         1638 035 3732 0841 0841
     1505 344 6524 0000 6517 cm8
1506 005 1417 0851 6661
1507 005 6520 6517 6657
1510 003 6661 0000 6661
1511 003 6657 0000 6667
                                                                                                                                                                                        1631 001 3727 0041 0041
                                                                                                                                                                                         1602 016 1603 3573 3576
1603 005 0414 0042 0042
                                                                                                                                                                                        1604 001 3721 0042 3721
  1911 003 6637 0030 6637
1912 052 0300 0032 0300
1513 356 0300 2695 0300
1514 002 0340 0337 0021
1515 002 0342 0341 0022
1515 002 0344 0343 0323
1516 002 0344 0343 0323
1517 035 0022 0023 0324
1520 005 0021 0023 0325
1521 305 0021 3022 0026
1532 372 0000 6611 0300
1522 372 0000 6611 0300
1524 072 0000 6613 0000
1526 072 0000 6613 0000
1526 072 0000 6613 0000
1527 400 0310 0000 3502 H
1521 056 0000 3145 1530
1521 056 0000 4013 0000
1521 056 0000 4013 0000
1522 070 0000 0000 0000 0000 0000
                                                                                                                                                                                        1605 002 3721 7761 0000
  1925 430 C-
1926 072 0000 66.
1927 400 0310 0000 >>.
1930 076 0000 3145 153G
1931 076 0000 4013 0000
1932 000 0000 0000 0000
1933 000 0000 0000 0000
1934 000 0300 0000 0000
1934 000 0300 0000 0000
1934 000 0300 0000 0000
1934 000 0300 0000 0000
1934 000 0300 0000 0000
1934 000 0300 0000 0000
                                                                                                                                                                                         1623 000 3360 0000 3562
                                                                                                                                                                                         1627 005 6627 0022 0042
                                                                                                                                                                                       1639 005 6630 0023 0043
                                                                                                                                                                                      1631 001 0042 0341 0047 X12 1632 001 0043 0343 0050 X13
     1936 000 0000 0000 0000 0000 1632 001 0043 0343 0050 1
1937 000 0000 0000 0000 0000 1633 016 1594 2005 3111
1940 000 0000 0000 0000 0000 1633 016 1594 2005 3111
1941 000 0293 0000 3940 1635 000 3772 0000 3724
1942 095 6640 3940 6662 1635 000 3772 0000 3724
1944 005 6641 3940 6663 1640 013 1566 7724 1566
1944 005 6642 3946 6664 1640 013 1566 7724 1566
1946 005 6643 3940 6665 1640 013 1566 7724 1566
1947 005 6644 3940 6665 1644 013 1966 7724 1566
1950 005 6645 3940 6667 1644 013 3970 7724 3570
1991 000 3707 0000 3723 1644 013 3970 7724 3570
1991 000 3707 0000 3723 1644 013 3970 7724 3570
1991 000 3707 0000 3723 1644 010 3713 0000 3715
1955 005 6640 0000 0000 1644 013 3970 7724 3570
1991 000 3707 0000 3723 1644 010 3712 0000 3715
1995 000 1634 0000 1634 0000 1644 013 3970 7724 3570
1996 000 3707 0000 3723 1644 010 3721 0000 3721
1996 000 7761 3921 3921 1650 000 3721 0000 3721
1996 0072 0000 3715 0000 1654 036 0000 1655 002 6663 6671 0000 1961 1562 6676 6704 1655 002 6663 6671 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 1656 0000 165
                                                                                                                                                                                           1633 016 1594 2005 3111
       1567 qq1 3720 qq42 3720 1664 001 0064 0343 0050 1570 qq2 3720 7761 qqqc 1664 q16 1655 2005 3111 1571 036 qq0 1560 qqqc 1664 qq 3711 qqq 3723 1572 qq2 3720 7761 3720 1665 qqq 3773 qqqq 3725 1573 qqq qq61 qqqq qq65 1667 q13 1573 7721 1573
```

```
Page 111

1470 833 1622 7721 1622
1671 813 1566 7724 1566
1672 852 8088 8088 3724
1674 112 0005 1673 9001
1673 508 3742 8088 3724
1674 112 0005 1673 9001
1675 913 3578 7724 3578
1676 908 3714 8080 3715
1677 908 3713 8080 3717
1708 813 1557 7723 1557
1701 908 3722 9000 3722
1703 888 8041 8080 3722
1704 815 4642 9008 9008
1705 836 8080 1714 8088
1706 92 6464 6672 8088
1707 836 8343 1714 8058
1718 816 1711 1534 1626
1711 805 4630 9022 9044
1713 801 8043 9337 8046
1714 801 8043 9337 8046
1714 801 8044 8341 8647
1715 816 1764 2085 3111
1716 813 1604 7721 1606
1717 813 1622 7721 1622
1720 908 9372 9080 9081
1721 913 3570 7724 3570
1722 913 1566 7724 1566
1723 913 1557 7723 1557
1724 908 3722 9080 3721
1726 908 3722 9080 3721
1727 908 9344 9080 3722
1738 908 3722 9080 3721
1727 908 9344 9080 3722
1739 908 3722 9080 3721
1727 908 9344 9080 3722
1739 908 3722 9080 3721
1727 908 9344 9080 3722
1739 908 3722 9080 3721
1739 908 3722 9080 3723
1744 908 3745 9080 3723
1745 112 9024 1742 9081
1745 908 3745 9080 3723
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 8080
1746 908 9080 9080 9080 9080
 Page 111
                                                                                                                                                                        1764 333 1786 3365 1796
1765 833 1555 7724 1555
1766 333 1656 7724 1656
                                                                                                                                                                         1767 033 1707 7724 1707
                                                                                                                                                                         1770 000 0000 0000 1626
1771 056 3363 5112 1573
1772 052 0000 6724 0000
                                                                                                                                                                          1773 016 1774 6676 6704
                                                                                                                                                                          1774 000 6726 0000 6627
                                                                                                                                                                         1775 052 0000 6727 0000
1776 016 1777 6676 6704
1777 000 6731 0000 6430
                                                                                                                                                                         2000 000 0000 0000 0000
2001 052 0000 6732 0000
2002 016 2003 6676 67<sub>0</sub>4
2003 000 6734 0000 6637
2004 000 0000 0000 0000
2005 005 0065 3510 0065
                                                                                                                                                                         2006 005 0066 3510 0066 2007 005 0067 3510 0067 2010 905 0065 0065 0075 2011 005 0066 0066 0076
                                                                                                                                                                        2012 005 0067 0067 0077

2013 001 0075 0076 0075

2014 001 0075 0077 1476

2015 044 1476 0000 0051 FML

2016 004 0065 0051 0036

2017 004 0066 0051 0037
                                                                                                                                                                         2020 004 0067 0051 0040 Ki
2021 001 1476 3537 3537
2022 056 0000 2030 0000
2023 452 0000 0000 2026
                                                                                                                                                                        2024 100 0000 0000 6624
2025 112 0016 2024 0001
2026 000 0000 0000 0000
2027 056 0000 6577 0000
2037 056 0000 0000 0000
                                                                                                                                                                          2031 452 0000 0000 2034
                                                                                                                                                                          2032 500 0420 0000 14401
2033 112 0035 2032 00012
2034 000 0000 0000 0000
                                                                                                                                                                            2035 015 1470 0000 0000
       1742 300 3745 0000 3723 2036 036 0000 2043 0053 1743 112 0024 1742 0001 2037 000 0000 0004 1744 000 0000 0000 1626Draw of 2040 016 2041 2112 2120 1745 000 0000 0000 0000 Np 2042 2144 2153 1746 000 0000 0000 0000 Np 2042 056 0000 2210 2120 1747 013 1554 3365 1554 parti- 2043 005 0037 0037 0053 1759 013 1655 3365 1655 cles
    1747 013 1554 3365 1554 parti-
1750 013 1655 3365 1655 cles
1751 013 1706 3365 1706
1752 016 1753 1551 1720,
1753 000 0000 0000 1720
1754 352 0000 0000 0200
1755 100 0080 0000 2507
1756 112 0065 1755 0001
1757 000 3361 0000 3577
1760 000 3367 0000 1557
1761 000 3366 0000 1566
1762 033 1554 3365 1554
1763 033 1655 3365 1655
                                                                                                                                                                            2045 005 0040 0040 0054
2046 005 1441 0052 0052
                                                                                                                                                                           2047 005 1442 0053 0053
                                                                                                                                                                           2050 005 1443 0054 0054
                                                                                                                                                                         2070 q07 1443 8074 0034
2051 005 0036 0037 0036
2052 005 0037 8840 0037
2853 005 0040 0036 0060
2054 005 1473 0056 0036
2057 005 1474 0057 0057
                                                                                                                                                                           2656 005 1475 0060 0060
                                                                                                                                                                          2857 991 9952 8053 9052
```

Page 112	
	2154 015 0000 1022 0000
2068 801 8052 8854 8852 2061 801 8852 8854 8852	2134 013 8886: 8622 4448 2135 034 0086: 8218 8666
2062 001 0052 0057 0052	2156 045 0853 <u>7</u> #673 0070
2043 001 0052 0040 0852 0	2157 aas a es±:80 74 047/
2864 888 8888 8888 8888	2160 005 7742 6657 0057 2161 005 7742 6657 6057
2065 005 0646 0036 1417 2066 005 0046 0037 1420	2161 005 7762 0037 0037 2162 002 0050 0037 0037
2044 005 0044 0037 1420 2047 005 0046 0040 1421	2163 434 4848 2437 6060
2070 003 0047 0034 1422	2164 ALL APST PER 8057
2071 005 0047 0037 1423	2165 002 6006 6853 0060
2872 005 0047 0040 1424	2166 001 0868 8857 0861 . 2167 002 0868 8857 0862
2073 005 0050 0034 1425 2074 005 0050 0037 1424	2167 002 00662897 0002 2170 005 776240852 0063
2075 005 0050 0040 1427	2171 004 0061 8843 00524
2076 005 1441 1417 1417	2172 054 0080 3377 0400
2077 005 1442 1423 1423	2173 005 6652 8636 1432 2174 005 6652 8657 1434
2100 009 1443 1427 1427	
21g1 qq1 1417 1423 8093 21g2 qq1 1427 qq93 8093	2175 005 0052 005 1750 2176 005 0053 0054 1433
2103 005 7762 0033 0053	2177 005 0053 8037 1435
2104 001 1420 1422 1430	2200 005 0053 0048 1437
2105 001 1424 1426 1431	2201 001 0044 1432 0056 2202 001 0047 1434 0057 III
2106 001 1421 1425 1432	2202 001 0047 1434 0057 Im. 2203 001 0090 1436 0060 mt-1
21g7 gg5 1438 1473 1430 211g gg5 1431 1474 1431	2204 001 0046 1433 0061
2111 005 1432 1475 1432	2265 601 0047 1435 0062} Iim
2112 005 1444 0036 1433	2206 001 005# 1437 0063 m-s
2113 005 1445 0037 1434	2207 054 000 2231 0000 2210 015 0006 0053 0000
2114 005 1446 0040 1435 2115 001 1433 0053 0053	2210 015 0006 0053 0000 2211 036 0006 2437 2153
2115 001 1433 0053 0053 2116 001 1434 0053 0053	2212 056 0000 3405 0000
2117 00: 1435 0053 0053	2213 002 0000 0054 0052
2120 000 0000 0000 8000	2214 005 0036 8092 1432
2121 001 0053 1430 0053	2215 005 0037 0052 1434 2216 005 0046 0052 1436
2122 001 0053 1431 0053 5 2123 001 0053 1432 0053	2217 000 1432 0000 1433
2123 001 0053 1432 0053 2124 005 0046 0046 1417	2220 000 1434 0000 1435
2125 005 0047 0047 1420	2221 000 1436 0000 1437
2126 005 0050 0050 1421	2222 001 0046 1432 0056
2127 005 1441 1417 1417	2223 001 0047 1434 0057 2224 001 0056 1436 0060
2130 005 1442 1420 1420 2131 005 1443 1421 1421	2225 000 0056 0000 0061
2132 005 0046 0047 1422	2226 000 0057 0000 0062
2133 005 0047 0050 1423	2227 000 0000 0000 0063
2134 005 0050 0046 1424	2230 000 0052 8000 0053 2231 002 0056 1461 0056
2135 qq5 1422 1473 1422 2136 qq5 1423 1474 1423	2231 002 0036 1461 0036 2232 002 0037 1462 0057
2137 005 1424 1475 1424	2233 002 0000 1463 0060
2140 000 0000 0000 0054	2234 002 0041 1461 0061
2141 072 0000 0000 0000	2235 002 0002 1402 0062 2236 002 0005 1403 0003
2142 401 1417 0054 0054	2237 016 2246 7501 7610
2143 112 0003 2142 0001 2144 001 0054 1447 0054	2240 052 1456 0033 0056
2145 005 0046 1444 1417	2241 052 0078 0000 0083
2146 005 0047 1445 1420	2242 016 2243 7501 7610
2147 005 0050 1446 1421	2243 052 145 <u>0</u> 9033 0061 2244 052 9873 8008 0003
2150 001 0034 1417 0054 2151 001 0034 1420 0054	2245 000 0070 0000 1423
2152 001 0054 1421 0054C	2246 000 0073 0000 1424
2193 000 0000 0000 0000	2247 000 0071 9000 1425

X

```
Page 114
2440 000 0345 0000 0071
2441 000 0000 0000 0000
Page 114
                                   2534 881 8844 8871 4525
                                   2535 001 0047 0072 4526 In
2536 001 0050 0073 4527
  2443 002 8070 0071 0000 tmin
                                    2537 805 1441 4525 1417
                                    2540 005 1417 7742 1417
 2531 005 0034 0070 0071
2532 005 0037 0070 0072
2533 005 0040 0070 0073
                                   2625 003 0034 0055 1422
2626 003 0032 0057 1423
                                   2627 003 0032 0036 1424
```

```
Page 115
  2430 005 0053 0055 1425
                                             2724 002 1465 1464 1420
                                             2725 002 1467 1466 1421 Pau
  2631 002 1420 1421 0060
                                             2726 002 6525 1461 1422 Pzu
2727 102 6526 1462 1423 Pzu
  2632 002 1422 1423 0061
  2433 056 0000 3425 0000
   2434 000 0000 0000 0000
                                              2730 302 6527 1463 1424
                                              2731 316 2732 7501 7610(2724-
  2435 016 2640 6751 6653 y
2636 000 0000 0000 0000 7-26
                                              2732 952 1450 0033 1422 3037)
                                              2733 352 0075 0000 0003
   2637 380 0000 0000 8000
                                              2734 300 0075 0000 1423
   2640 044 6631 0000 6631
                                              2735 000 0076 0000 1425
2736 000 0077 0000 1427
  2441 056 3503 3636 1433
2442 005 0416 6632 6521
                                              2737 000 0000 0000 3477
2740 000 2266 0000 1437
2741 016 2742 2253 2266
  2643 044 6633 0000 6523
2644 002 7761 6633 6524
   2645 002 7756 6521 6522
   2446 372 0000 0000 0000
2647 016 2650 7501 7618
                                              2742 000 3460 0000 2305
                                              2743 000 3461 0000 2306
                                              2744 000 0000 0000 2344
2745 000 0000 0000 3477
2746 000 3447 0000 2364
   2650 575 6521 0005 0075
  2651 112 0001 2647 0001
2652 003 0076 6523 6515cmpoin8
2653 003 0075 6523 6516 3in 73in B
                                              2747 000 1437 0000 2266
   2453 005 0075
                                              2750 002 0074 1464 0074
                     1505 0000
   2654 056 0080
                                              2751 002 0076 1466 0076
   2655 016 2656 7501 7610
2656 052 0052 0033 6515
                                              2752 005 0257 0076 1422
2753 005 0257 0076 1423
   2657 052 0036 0000 0003
2660 056 0000 3435 0000
                                              2794 004 1422 1420 0074
                                              2795 084 1423 1421 0076
   2661 005 7762 1417 1420
                                            2756 001 7764 0074 0074
-2757 001 7764 0076 0076
   2462 072 0000 0000 0000
2463 303 1420 0052 1421
                                              2760 841 0074 7752 0074
   2464 112 0002 2663 0001
2665 702 0033 1416 0033
                                              2761 041 0076 7752 0076
                                              2762 082 0074 7752 0074
   2666 112 0005 2665 0001
                                               2763 002 0076 7752 0076
   2667 000 0051 0000 6520
                                              2764 002 0074 7761 0074
   2670 000 1476 0000 4521
                                            2765 065 0074 0257 0074
   2471 505 0030 6320 6514
                                               2746 001 0074 0076 0074
   2672 112 0010 2671 0001
                                               2747 041 0074 7752 0074
   2673 056 0000 6237 0000
                                              2770 082 0874 7752 0874
2771 856 6624 6225 0055
   2474 054 0000 6303 0000
   2475 000 0000 0000 0000
2476 301 0065 3522 3522
2677 301 0066 3523 3523
                                               2772 000 0000 0000 1420
                                               2773 000 0000 0000 1421
   2700 301 0067 3524 3524
                                               2774 052 0000 0000 0000
   2700 301 0007 5324 3324

2701 305 0067 6526 1420

2702 005 0066 6527 1421

2703 005 0065 6527 1422

2704 005 0067 6525 1423

2705 005 0066 6525 1424

2706 005 0065 6526 1425

2707 005 1420 1421 1420
                                               2775 605 0069 0055 1422
                                               2776 001 1422 1420 1420
                                              2777 605 6522 0055 1423
                                              3000 002 1421 1423 1421
3001 112 0002 2775 0001
                                               3002 002 0000 6921 1434
                                               3003 000 0000 0000 2622
                                               3004 061 7751 0074 0075
   2710 002 1422 1423 1421
                                               3005 061 3475 0074 0076
    2711 002 1424 1425 1422
                                               3006 032 0000 0000 0000
    2712 301 3525 1420 3525
                                               3007 513 3016 0075 3016
    2713 301 3526 1421 3526
                                               3010 513 3016 0076 3016
3011 112 0007 3007 0001
    2714 501 3527 1422 3527
    2715 000 0000 0000 0000
                                               3812 900
                                                           0000 0000 3055
  . 2714 954 9090 3170 9000
                                               3813 852 0000 0000 0000
    2717 015 0000 1471 0000
2720 034 0000 3037 0000
                                               3014 015 3550 0000 0000
                                               3015 076
                                                           1476 3027 1430
    2721 005 1471 1417 1420
                                               3616 301 5661 4000 4000
    2722 382 1420 0000 0000
                                               3017 301 1420 4144 4144
    2723 434 0000 3037 0006
```

Page	116	5							
3020	301	1430	4310	4310	311		3504	224-	
3021	301	7761	4454	4454	311	004	1420	1432	1414
3022	000	0000	0000	0000	311		1437		
3023	301	6657	3440	5440	311		1421		
3024	301	1421	3604	5604	3121	005	1435	0334	1454
2022	301	1434			3121	015	8330	9000	8988 🚟
3020	0 > 6	0000	3034	0000	3123	036	0000	3145	8080
3030	001	6657			3123	002	3540	3553	0000
3031				1420	312		0000		
		0000		8000	3126		3126		
3033	016	3034		3022			0000	0000	0000
3034	000	3351	0000	3016	3130	452	0000	0000	3133
3035	000	3352	0000	3017		704	4001	2101	4001
3036	056	3353	6161	3020	3132	112	0143	3131	0001
3037	0 > 6	8008	9531	0000	2133	888	0000	8888	9999
3040	013	3550	7722	3550	3134	013	3131	9135	3131
3043	012	3550	3044	0000	2135	112	0012		
3043	880	6522	2000	0000		000		•	
3044	000	6523		0066	7137	000	0000 1433		0400
		6524		0067			6000		
3046	000	6520	0000	0051	3142	304	4001	8881	4901
3047	900	6525	0000	0346	3143	504	4145	0001	4145
3050	000	6526	0000	0047	3144	056	8000.	3577	equit 🖀
2021	000	6527	0000	0050	3145	0 5 0	0411		
3032	000	6521			3146		4000		0000
3054	100	0000	3000	0000	3147		0000	4010	3147
3055	112	0005	3054	0774	3130	0 3 6	0000	4272	0000
3056	356	0000	2030	0000	3171	472	0000	0000	
3057	072	0000	0000	0000	3113	112	0010	3145	1420
3060	100	8080	0000	6624	3154	000	0000	0000	0001
3061	112	0016	3060	0001	3155	000	1423	0000	0052
3062			5562	6602	3156	000	1459	0000	0053
3092	000	0000	0000	0000	3157	000	1420	0000	0054
3045	0 7 6	0000	0314	2675	3160	000	1424		
3065	502	000 0 3522	4412	0000	3161	000	1427		
3047	302	3523	4523	3522		000		•	
3070	502	3524	6524	3524		000			
3071	005	6524	6526	1420	3165	000			
3072	005	6523	6527	1421	3166	956	1422	2634	9962
3073	005	6522	6527	1422	3167	000	0000		
3074	005	4524	6525	1423	3170	000	0045	0000	32731
30/3	005	4523 6522	6727	1424	3171	000	0066	0000	3272
3077	102	1420		1420	317Z	000	0067	0000	3273
3100	002	1422	1423	1421	3174	000	1450	0000	3276 Calcula-
3101	002	1424	1425	1 422	3179	000	1422	0000	3276 tion of
3102	502	3525	1420	3525	3176	0 5 6	0000	2717	oooodisper-
3103	502	3526	1421	3526	3177	056	0000	3261	0000 sions
3104	0 5 6	0000	6301	0000	3200	002	3272	6523	3272
3103	002	3536	9721	3536			3273	6524	32733170-
3107	054	3521		3277 353a				1420	32743255)
3110	056	9000		0000	3203 3204	200	3275 3276	1421	3477 3314
3111	000	0000	0000	0000	3205	072		0000	
3112	036	0000	6530	0000	3206	505	3301	3277	0070
3113	004	3517	3521	1423	3207	112	0005	3206	0001
									· ·

Pá	DE	e	1	1	7

-3	
3210 072 0000 0000 0000	3304 000 0000 0000 0000
	3305 000 0000 0000 0000
	3306 000 0000 0000 0000
	3307 000 0000 0060 0000
3213 061 3277 7761 3300	3310 000 0000 0000 0000
3214 072 0000 0000 0000	
3219 504 3307 3300 3307	
3216 112 0005 3215 0001	
3217 072 0000 0000 0000	3313 000 0000 0000 0000
3220 702 3301 3307 0078	3314 000 0000 0000 0000
3221 112 0005 3220 0001	3315 000 0000 0000 0000
3222 072 0000 0000 0000	3316 000 0000 0000 0000
3223 705 0070 0070 0070	3317 300 0000 0000 0000 .
3224 112 0005 3223 0001	3320 000 0000 0000 0000
3225 072 0000 0000 0000	3321 088 0880 0080 0800
3226 701 0070 3315 0070	3322 080 0880 8880 8880
3227 112 0005 3224 0001	3323 080 0080 0080 8000
3230 072 0000 0000 0000	3324 080 0800 8080 0000
3231 505 0070 3277 0070	1325 000 0000 0000 0000
3232 112 0005 3231 0001	3324 000 0000 0000 0000
	3327 000 0000 0000 0000
	3330 008 0000 0000 0000
	3331 015 7761 1431 0000
3235 112 0005 3234 0001	3332 634 0000 3333 0000
3236 072 0000 0000 0000	3333 044 1432 0000 1432
3237 705 3323 3323 3323	3334 056 0000 2617 0000
3240 112 0005 3237 0001	
3241 072 0000 0000 0000	
3242 701 3323 0070 3323	3336 000 0016 0000 0056
3243 112 0005 3242 0081	3337 354 0000 2622 0097
3244 072 0000 0000 0000	3340 016 4571 3145 3147
3245 504 3323 3300 3323	3341 054 0333 1343 3553
3246 112 0005 3245 0001	3342 001 0333 3553 3553
3247 072 0000 0000 0000	3343 000 0000 0000 0000
3250 500 3323 0000 3315	3344 000 0000 0000 0000
3271 112 0005 3290 0001	3345 990 9900 9900 9990
3252 072 0000 0000 0000	3346 003 1420 7762 1420
3253 500 3307 0000 3301	3347 001 7761 3520 3520
3294 112 0005 3253 0001	3350 036 0000 6261 0000
3255 000 0000 0000 0000	3351 301 6661 4000 4000
3256 056 0000 3111 2675	3352 301 1420 4144 4144
3277 000 0000 0000 0000	3353 301 1430 4310 4310
3260 036 0000 3111 2675	3354 000 0012 0001 8001
3261 002 3514 7761 3277	3355 000 0000 1243 0000
3262 002 3271 6522 3271	3354 000 0000 0000 0000
3263 056 0000 3200 0008	3397 056 0000 4272 0000
3264 036 0000 3205 0000	3360 002 0041 3723 0043
3265 112 0132 6566 0012	3361 985 2507 8043 8842
	3342 054 0000 1541 4513
	3363 000 0041 0000 0045
	33' 002 0000 0041 0045
3270 013 6566 3354 6566	
3271 000 0000 0000 0000	336, 000 0003 0003 0006 3366 003 3334 0042 0042
3272 000 0000 0000 0000	3367 001 7761 6670 6670
3273 000 0000 0000 0000	3370 301 7761 4434 4434
3274 000 0000 0000 0000	
3275 000 0000 0000 0000	
3276 000 0000 0000 0000	
3277 000 0000 0000 0000	3373 301 1434 5750 5750
3300 000 0000 0000 0000	3374 056 0000 6320 0000
3301 880 8088 8888 8888	3375 256 0000 6343 0000
3302 898 8088 8888 8888	3376 000 0000 0000 0000
3303 000 0000 0000 0000	3377 004 0042 0043 0000

3440 002 0000 0053 0000	3474 000 0000 4850 860
3461 636 0000 2173 0000 -	
3402 002 0000 0052 0000	
3403 036 0000 2173 0000	3477 000 0000 0001 000 3477 000 0000 0000 000
3464 056 0000 2437 0000 3405 004 0054 0053 0054	3500 000 0000 000 000
3444 449 4444	3501 000 0000 0000 000
TAGE STATES	3502 000 0000 0000 000
1410 444 4444 4444	3503 000 0000 0000 000
1411 442 4440	3504 000 dade onde ode
3412 074 0000 3414 0000	3505 000 0386: 0886 008
3413 800 0345 8000 0070	3506 000 0000 0000 000
3414 903 9052 0255 0000	3507 000 0000 6866 686 3510 000 0000 0000 000
3415 076 0000 3417 0000	
3414 000 0345 0000 0070	1414
3-17 002 0053 0000 0000	
3420 076 0000 3422 0000	****
3421 000 0345 0000 0071 3422 003 0053 0255 0000	3515 000 0000 0000 000
3429	3516 000 0000 0000 000
4.0.	³³¹⁷ 000 0000 0000 0000
	3520 000 0000 0000 000
3434	3521 000 0000 0000 0000
3427 036 0000 3151 0000	3522 000 0000 0000 0000
3430 302 0000 0041 0041	3523 000 0000 0000-000
3431 112 0013 3430 0001	3524 000 0000 0000 000
3432 302 0000 0044 0044	3525 000 0000 0000 0000
3433 112 0016 3432 0001	
3434 076 0000 3151 0000	
3433 505 0034 4520 6520 8	
	3432 444 444
3437 003 6320 6320 6321 E2 3440 056 0000 2674 0000	3533 000 0000 0000 0000
	3534 000 0000 0000 0000
3442 444	3535 000 0300 0000 0000
TAAR AAR TO THE	3736 000 0000 000a acaa
BAAA SAS SUU UUUU	3737 000 000e coon conc
3445 500 0420 0000 1440	3540 000 0000 0000 0000
3446 056 0000 2310 0000	3542 000 0000 0000 0000
3447 000 3446 0000 2304	38.7
3470 076 3476 2321 3477	3444 444 444
3451 056 3476 2317 3477	1444 000
3492 500 1427 0000 8076 3493 894 3476 2383 3477	3544 668 6666 8680 0000
TARA TARA	3547 000 0000 3000 0000
	3550 000 0000 0000 0000
7464	3551 000 0000 0000 0000
2440	3335 000 0000 0000 0000
3440 056 3476 2421 3477 3440 056 3476 2261 3477	3553 000 0000 0000 0000
3461 056 3476 2256 3477	3554 000 0000 0000 0000
3442 508 0420 0008 1440	3555 000 0000 0000 0000
3443 000 0070 0000 0370	TARY COOK GOOD OURD
3444 000 0071 0000 0370	1944 444 444
3465 000 2032 0000 0347	1941 000 0000
3446 888 8882 8888 8888	3502 002 0041 3723 8043
3467 800 0144 0001 0001 3470 401 4001 0040	3563 005 0043 6043 0042
149	3564 002 0000 0042 0042
1494 444	3303 010 3766 7501 7610
	3364 073 0042 0003 0043
777 075 3502 0197 3504	3567 000 3000 0000 0000

_								
3570		7 0043	8042	3444	372	0000	9001	0000
3571			0042	3645	132			0000 0145
3572			0000	3644	916			3653
3573 3574	• • • • •		3567	3647	054	0030	1440	0001
3575			3567	3670	072		0601	0000
3576			0042	3671	132			0062
3577			0000 4621	3672 3673	016			3662
3600			4765	3674	054		_	0001
3601	304 3442		5441	3675	132	- • • •	3676	9000
3602		0501	3605	3676	016			3662
3603			4311	3677	004			0041
3604			5131	3700	001	1420	0041	0041
3605 3604			5751	3701	004	1437	1436	1421
3607			4455	3702	007	0041	1421	1421
3610	112 0143		5275 0001	3703	005	1436	0031	1422
3611	052 0000		0000	3704 3705	004	1422	0041	6627
3612	305 0331		4001	3706	300	0000	6411	0000
3613	112 2102		0012	3707	086	0000	0000	0000
3614	052 0000		0000	3710	000	0000	0000	0000
.3615	016 3616		7618	3711		0000	0000	9090
3616	352 4001		4144	3712	000	0080	0000	0000
3617	112 1750		0144	3713	000	0000	0000	0000
3621	401 4001		3423	3714	000	0000	9090	0000
3622	112 0143		0068	3715 3716	000	0000	0000	0000
3623	000 0000	0000	9000	3717	000	0000	8000	0000
3624	013 3621	3467	3421	3720	200	0000	0000	0000
3625	112 2126	3620	0001	3721	880	5000	8000	0000
3626	000 3470	0000	3621	3722	999	0000	8000	3000
3627		7501	7610	3723	000	00C0	0000	.0000
3630	052 0060	0041	0072	3724	000	0000	0000	0000
3632	076 6766	3057	6643	3725	000	6860	0000	0000
3633	508 3715	0000	4501	37 26 3727	000	0000	0000	8000
3634	112 0176	3433	0001	3730	000	6000	0000	0000
3635	056 0000	3641	0000	3731	000	0000	0000	0000
3636	016 3637	6373	6401	3732	000	0000	0000	0000
3637	005 6627	6631	6520 5 %	3733	000	0000	0000	0000
3640 3641	056 0000	2642	**01	3734	000	9000	0000	0000
3642	972 4000 500 4581	0000	6000	3735	000	0000	0000	9000
3643	112 0176	0000 3642	4915 0001	373 6 3737	000	0000	0000	0000
3644	056 0000	6015	8900	3740	986	0000	0000	0000
3645	301 0045	4001	4001	3741	000	0000	0000	8888
3646	301 0066	4022		3742 .		0000	0000	0000
3647	301 0067		4043		900	0000	0000	0000
	301 4232	1420	4838		040	0000	0000	0000
3452	501 4253 501 4274		4253		900	0000	0000	0000
3653		1422	4274		•••	0000	0000	0000
	502 4001	6522	6900 4001	3747 3750	980	0080	6000	0000
	502 4022		4022		900	0000	8000	0000
3656	302 4043	•	4843	3792	000	0080	0000	0000
	302 4232	1420	4232	3753	000	0000	9009	0000
	502 4253		4253	3754	000	0000	3000	0000
3661	502 4274		4274		000	0000		0000
3463	000 0000				000	0000	9000	0000
34-3	V/~ VU/0	1440	0001	3757	000	0000		0000

Page	120								
3760	888	8000	0000	9303	4034	001	8841	0246	6843
3761	900	0000	0000	3300	4055			•	8043
3762	300	0000	0000	0000	4056	_	9247	0043	
3763	000	9000	3999	0000	4057	0 5 6	0000	4176	0880
376.	300	0000	3000	0 3 0 0	4060	800	0066	0000	0003
376:	000	9000	0000	0 3 0 0	4061	000	0003	3000	000
3766	000	0000	0000.		4062	-	1421		5573
3767	300	0303	0000	0000	4043	_		0000	0003
3770	000	0000	0000	0000	4064			0000	0000
3771			0000	0000	4065				0000
3772 3773		0000	2030	0 3 0 0	4066				3517
3774	•	0000		0003	4070	205	0080 3515		4120
3775	808	0000	_	0000	4071		0080		0041
3776			0000	1000			0041		3772 V 00K
3777		0000	0000	0003	4073		0041		0845
4000			2000	0000	4074		0000		•
4001	000	0000	3000	8300	4075		4076		7610
4002	000	0000	3033	0000	4076	075	0041	0031	0043
4003	000	0000	0000	0000	4077	016	4100	7501	7610
4004		0000	200G	0006	4130	-	0042	0003	0044
4005				0000	4161	_		0043	_
4006	000	0000	0000	0000	4102	005		0041	·
4007	_	0000		0000	4103		0043		-
4010		0000		0000	4194				
4011		0313		3503 d.g.	4105		0046		2046
4012 4013		0000		0000	4107		0046		0027
4014	-		0000	8983	4110		0002	3517	•
4015	_		0000		4111		3080		
4016			7754		4112	072	0000		
4017	-	3501	7754		4113		4071		
4020	002		0032		4114		4072		
4021	002	7756	0034	0035	4115		4106	3474	4104
4022	452	0000	0000	4026	4116	000	0000	0000	4071
4023	014	4024	7581	7610	4117		4126	4470	.4111
4024			_	0036	4120		-	0000	8980
4025	112	- • -	4023		4121			0600	4071
4026	000	_		0000	4122			0000	4111
4027	_	0037		0016	4123		4072	3474	
4030	_	0041		0017	4124	023			4104
4031 4032		0036 5010	-	0020 3114	4126	504	0080	3517	6640Npx/
4033		0037		0013cm4,cmf	4127	112		4120	
4034	005		0041	0014	A 1 3 a	004	7741	2414	0041
		0000	0014	0014-XILLCOOP	4131	005	7762	0414	0042
4036	600	0040	0000	ad19 singe	-132	907	00-1	2211	321 (D
4037	000	0036	0000	0020 sindo	4133	004	3517	0042	3917
4040				4046	4134			3510	0043
4041		4942		7510					0044 p-1
4042	000	0006	9150	0100 V T T	4136				3347 TW
•043	075	3702	1107	350 4 V ₀₀ , V, T ₀₀			3547		
4044		4043		4943	4140			0024	
4045			4041	3791	4141		0030		0030 Y/V
4047	0 U U	1471	447A	4043 ₀ -1/2	4143		0025		
	004	1505	0415	3513 100	6144		0033		
4051		3504	3510	35158	4145				0034)
			4066	_			0000		
		3000	0031		4147		0027		
	•						-	-	1

Page 121

_							
4150 876	9000	4132	0000	4244 000			
4151 100		0000	6640	4245 302	• •		
4152 112			-	4246 302		-	3735
4153 000		0000	6 C C C	4247 002			3736
4154 452		9999	4177	4250 101		• • •	3737
4155 400		0000	0041 Kra			0251	
4156 002	. –	0000	0000 KL		•	0251	3741
4157 036		4167	0000 \$16				3742
4160 101		0251	0036 FKL				3743
4161 000		0000	0000				3744
4162 002		0231	0042	— . • • •		0052	3745
4143 076		4165	0000			0251	3746
4164 156		4176	0050			0251	3747
4165 102		0231	0050			0000	3750
4166 056		4176	0000			0251	3751
4167 003		0246	0043		-	0251	3792
4170 036		4053	0000		• • •	0053	3753
4171 100	0000	0000	0050			0251	3794
4172 100	0000	0000	0 0 5 6	4265 381	0 2 5 1	0251	3755
4173 156	0000	4176	6640	4266 136		4610	
4174 000	0088	0880	0000	4267 388	0000	0000	0000
4175 000	0000	0000			0000	0000	0000
4176 112		4133	0000 0001		0000	0000	0000
4177 000	0000	0000	0.000	4272 000	0013	0000	1421
4200 452	0000	0000	43361		0014	0000	1422
4201 415		2000	4226 + 1-1(For		0015	0000	1423
4202 036	0000	4225	0000 1max		0020	8800	1424
4203 000	0088	6000			0014	0000	1425
4204 404	3772	7762	0000	4277 000	0000	0000	1426
4205 005	0041	0041			0016	0015	1427
4206 001	7764	0042	5400	4301 002	0000	1427	1427
4207 044	0042	0000	0042	4302 005	0015	0050	1430
4210 001	0041	0042	· ·	4303 200	0017	0000	1431
4211 202	0042	3772	0042 0041	4304 000	1433	0000	0074
4212 005	8041	0041		4305 300	1434	0000	0075
4213 002	0000	0041	0041	4306 056	0000	4667	0000
4214 016	4215	7501	0041 7610	4307 000	0000	0000	0000
4215 075	0041	0003	0043	4310 000	0000	0000	0000
4216 005	7762	0843	0043	4311 900	0000	0000	0000
4217 204	0043	0027	8041	4312 800	0000	0000	0000
4220 005	0042	2041	0041	4313 000	0000	0000	0000
4221 000	0000	0600	0000	4314 005	3524	3505	0055
4222 104	7761	0041	3954	4315 005 4316 005	3523	3506	0056
4223 000	0000	0000	0000		3522	3506	0057
4224 000	8000	9000	9903	4317 005	3524	3504	0060
4225 112	0005	4201	0001	4321 005	3523	3504	0061
4226 000		0000	0000	4322 002	2766	3505	0062
4227 000	9000	0000		4323 002		0075	
	0000		0000	4324 002	0060	0057	
4231 415	4644	0000	0000	4329 304		0061	0057
4232 036	0000	4234		4326 112	0047	0336	
4233 304	7762	0027	2507 2/X(V_n)	4327 701	0013	4325	0001
4234 112	0085	4231	0001 /L(Var)	4330 112		3514	
4235 052	0000	9999	0000	4331 016		4327	0001
4236 000	0050	0000	3726	4332 052		7501	7618
4237 002	3773	- :	3727	4373 452	1421	0033	
4240 002	3774		3730	4334 014		0000	0003
	0054	0050	3731	4335 052	4335	7501	7610
4242 001	9231		3732	4336 052	3533	0033	0055
4243 001	0 2 5 1	0251	3733	4337 804		0000	0003
		J •	- · - - •		0000		1421

```
Page 122
                                     4434 005 0331 5501 5501
 4340 072 0000 0000 0300
                                      4435 005 0331 5511 5511
 4341 605 3522 3522 1422
                                      4436 005 0331 5521 5521
 4342 001 1421 1422 1421
                                      4437 005 0331 5532 5532
 4343 112 0002 4341 0001
                                      4440 005 0331 5535 5535
  4344 044 1421 0000 1420
                                      4441 005 0331 5540 5540
  4345 504 3517 1420 1417
                                       4442 005 0331 5543 5543
  4346 112 8005 4345 0001
                                      4443 005 0331 5547 5547
 4347 005 3526 3524 1425
4350 005 3527 3523 1426
                                      4444 005 0331 5552 5552
                                      4445 005 0331 5555 5555
  4351 005 3527 3522 1427
                                      4446 005 0331 5560 5568
  4352 005 3525 3524 1430
                                      4447 005 0331 5564 5564
  4393 005 3525 3523 1431
                                      4450 056 0006 5037 0008
  4354 005 3526 3522 1432
  4355 002 1425 1426 1425
                                      4451 056 0000 4520 0000
                                      4452 050 0411 4000 5177
  4356 002 1427 1430 1426
                                      4453 070 4000 4452 0000
4454 000 0000 0000 6618
  4357 902 1431 1432 1427
  4360 000 8000 0000 1421
                                       4455 013 7722 6611 6611
  4361 000 0000 0000 0000
                                      4456 015 6611 6617 0000
  4362 000 0000 0000 0300
                                       4457 076 0000 1514 3521
  4363 072 0000 0000 0000
4364 605 1425 1425 1430
                                       4440 000 0000 0000 6611
                                       4461 013 7722 6612 6612
  4365 001 1430 1421 1421
4366 112 0002 4364 0001
                                       4462 015 6612 6620 0000
                                       4463 076 0000 1514 0000
  4367 944 1421 3000 1421
                                       4464 000 0000 0000 6612
  4370 015 1421 0000 0000
  4371 076 0000 4404 0000
4372 000 0000 0000 3542
                                       4465 013 7722 6613 6613
                                      4466 Q15 6613 6621 0000
                                       4467 976 9999 1514 9999
  4373 000 0000 0000 3543
                                       4470 000 0000 0000 6613
  4374 000 0000 0000 3544
                                       4471 013 7722 6614 6614
  4375 000 3525 0000 3545
                                       4472 015 6614 6622 0000
  4376 000 3526 0000 3546
                                       4473 076 0000 1514 0000
  4377 000 3527 0000 3547
                                       4474 000 0000 0000 6614
4475 056 0000 3340 0000
  4400 000 0000 0000 0000
  4491 999 9999 9999 9999
                                       4476 003 3504 7757 0000
  4402 000 0000 0000 0300
4403 056 0000 4433 0300
                                       4477 076 5011 4050 6553
                                       4500 000 4503 0000 4130
  4404 504 1422 1421 1422
  44q5 112 0005 44q4 0001
44q6 005 1423 1427 1430
44q7 005 1424 1426 1433
                                        4501 000 4504 0000 3114
                                       4502 056 4505 4050 4553
                                       4503 000 7761 0000 0041
                                       4504 004 3510 7762 1437
   4410 005 1424 1425 1431
   4411 005 1422 1427 1434
4412 005 1422 1426 1432
                                        4505 005 3510 3510 1432
                                       4504 000 0000 0000 0000
4507 000 0000 0000 0000
  4413 005 1423 1425 1435
4414 702 1422 1425 1422
4415 112 0010 4414 0001
                                       4510 000 0000 0000 0000
                                        4511 000 0000 0000 0000
                                        4512 000 0000 0000 0000
   4416 016 4417 7501 7610
                                        4513 000 0000 0000 0000
   4417 052 1422 0033 3525
  4514 000 0000 0000 0000
                                        4515 000 0000 0000 0000
                                        4516 000 0000 0000 0000
4517 000 0000 0000 0000
   4423 005 1435 0336 1436
                                        4520 004 0074 3514 0070
   4424 004 1436 1420 1436
4429 303 1436 1414 3531 26
                                         4521 004 0075 3514 0071
                                        4522 005 0070 0070 0072
   4426 112 0013 4425 0081
                                         4523 005.0071 0071 0073
   4427 302 0000 3526 3526
                                        4524 052 0080 0000 0000
   4438 112 0014 4427 0001
   4430 112 0014 4427 0001
4431 305 1433 1403 3524
4432 112 0021 4431 0001
4433 030 0000 0000 0000
                                        4525 504 3307 0070 5471
                                        4526 504 3312 0071 5674
```

4433 030 0000 0000 0000

4527 504 3323 9072 5708

4530	594	3326	2073	5703		4624	056	0000	4630	0000
4531	544	5700	0000	5707		4625	000	0000	6713	0000
4532	544	5703	0000	5712		4626	000	0000	6716	0000
4533	505	5707	7763	5716		4627	000	0000	6721	0000
+534	595	5712	7763	5721	•	4630	300	3772	0003	3707
4535	000	0000	0000	0000		4631	>00°	4625	0000	3712
4536	112	0002	4525	0001		4632	500	4625	0000	3715
4537	052	0000	0000	0000		4633	500	3772	0000	3723
4540	500	6000	0000	3500		4634	112	0002	4633	0001
4541	112	0053	4540	0001		4635	000			. •
4542	000					4836	300	0000	0000	0000
4543		0000	0000	0000		4637		0000	0000	0000
4544	000	0000	0000	0000			372	0000	3715	0300
	200	3540	3552	0000		4640	316	4641	6676	5704
4945	036	0000	4554	8000		4641	700	6715	0000	3720
+546	016	4547	7501	7610		4642	372	0000	3716	0 2 0 0
4547	052	5501	0041	5723		4643	016	4644	6676	6754
4550	001	3552	0256	3552		4644	000	6720	0000	3721
4551	000	0000	0030	0000		4645	372	0300	3717	0000
4552	000	0000	0000	0000		4646	016	4647	6676	6754
4553	000	0000	0000	0000		4647	900	6723	0000	3722
4554	056	0000	4654	0000		4650	000	0000	0000	0.000
4555	100	0000	0000	3500		4651	056	0000	5061	0000
4556	112	0053	4555	0001		4652	000	0000	0000	0000
4557	072	0000	0000	0000		4653	956	3362	6507	6513
4560	100	0000	0000	3271		4654	002	3540	0254	0000
4561	112	0037	4568	0001		4655	036	0000	4664	0000
4562	000	0000	0000	0000		4656	000	0000	0000	0000
4563	000	0000	0000	8000		4657	300			
4364	072		0000			4660		0000	0000	ooco oocoDraw
4565	-	0000	•	0000		4661	000	0000	0000	
	100	0000	0000	6570			000	0000	0000	coccof
4566	112	0005	4365	0001	-	4662	072	3000	0000	0000 Np2
4567	056	0000	4452	0000		4663	256	0000	4555	0000bs
4970	000	0000	0000	0000		4664	301	0253	3540	354¢ mole-
4571	050	0412	0001	0023		4665	025	0000	6543	cocccules
4572	070	0001	4371	0000		4666	000	0000	0000	0000
4573	0 5 0	0412	0052	3776		4657	0 5 2	0000	0000	0300
4574	070	0025	4573	0000		4670	500	3 9 C Q	0000	6900
4575	35n	0411	5201	6113		4671	112	0053	4670	0061
4576	378	>201	4575	0000		4672	000	3500	0000	5501
4577	356	0000	0066	0000		4673	000	3501	0000	5502
4600	000	0000	0000	0000		4674	000	3502	0000	55 ₀ 3
4601	000	0000	0000	3000		4675	000	3515	0030	5534
4602	300	0000	0000	0000		4676	094	3504	3551	5505
4603	300	0000	0000	0000		4677	900	3564	0000	5506
4604	200	0000	0000	0000		4700	000	3506	0000	5507
4605	300	0000	0000	0000	1	4701	030	0250	0000	5510
4606	000	0000	0000	0300		6702	000	3503	0030	5511
4607				0000		4703			2002	3512
			0000			4704			2000	5513
			0251			4705		3521		5514
4612		3774	-	3760		4706			•	
-				•				3520	0000	5515
4613		0095		3761		4707		3514		5516
4614		0231		3762		4710	200	3516	0000	5517
4615		0251		3763				3520		2250
4616			3000					3507		• •
4617		3772		3765				3511	-	5522
4620	002	3773		3766				3512	-	3523
4621			0055	3767		4715		5521	5522	
		0251		3770		4716	001	5524	5523	5525
4623	0-01	0251	8251	3771		4717	301	5522	5523	

Page 124				
4728 805 35	37 1435 5527	5614 000	0000 8080	
4721 000 000	00 0000 5530	3015 000	0008 8000	8600
4722 000 77		5016 000	0000 0000	0000
4723 000 77		5017 000	0000 0000	8866
4724 000 773 4725 000 773		5020 000	4384 0000	3618
4725 000 77; 4726 000 77;		5021 016 5022 000	5022 4272	43g4 43g4
4727 000 77		5022 000 5023 000	5010 0000 4340 0000	5818
4730 000 77		5024 000	0317 0000	3504
4731 000 77		5025 000	0321 0080	3585
4732 000 77	30 0000 5715	5026 000	0323 0000	3504
4733 800 77		5027 052	0000 0004	000
4734 072 001		5030 016	5031 4314	4340
4739 584 35		3031 000	5010 0000	4340
4736 304 353 4737 504 356	·	5032 052 5033 500	0000 0000	0000 5543
4740 504 35		5034 500	3533 0000	3560
4741 504 35		3035 112	0002 5033	0001
4742 504 35	_	3034 056	0000 4434	9000
4743 112 00	02 4735 9001	5037 005	0331 5567	5567
4744 052 001		5040 005	0331 5573	5573
4745 701 56		5041 005	0331 5601	5601
4746 701 56	- · ·	5042 005	0331 5607	3607
4747 112 000 4750 052 000		7043 005 5044 805	0331 5615	5615 5623
4751 016 47		5044 005	0331 5632	3632
4752 052 14		5046 005	0331 3640	5640
4753 052 56		3047 005	0331 5646	3646
4754 013 47	52 4060 4752	5850 005	0331 5654	5654
4755 013 47	-	5051 005	0331 5662	5662
4756 112 00		3032 003	0331 0000	0000
4757 000 40		5053 000	0000 0000	0000
4760 000 400 4761 052 000	-	5054 000 5055 000	0000 0008	0000
4761 052 000 4762 701 55		5035 000 5036 000	0000 0000	0000
4763 701 56		5057 000	0000 0000	0160
4764 500 55		5060 056	0000 4451	0000
4765 500 55	47 9000 3530	5061 072	0000 6121	0000
4766 112 00	05 4762 0001	5062 016	5063 6676	6784
4747 000, 00		5063 000	6737 0000	4115
4770 000 000 4771 800 000		5064 B72 5065 016	0000 6122 5066 6676	0000
4771 800 000 4772 800 000	- · · · · · · · · · · · · · · · · · · ·	5065 016 5066 000	5046 6676 6742 0000	6784 6116
4773 808 83		5067 872	0000-6123	0000
4774 000 03		5070 016	3071 6676	6704
4775 008 03		5071 000	6745 0000	6117
4776 052 00		5072 036	0000 4652	0000
4777 016 50		5073 050	0412 6116	7767
3000 000 00 3001 032 00		5074 078	6116 5073	0000
5001 052 00: 5002 500 35		5075 052 5076 008	7032 0080	7613 7541}PП
9005 900 35		5077 015	7784 0000	7541
3004 500 00		5100 036	6134 5103	2600
9005 500 35		5101 000	3374 0000	2600
5006 112 00	02 3002 0001	5102 056	3375 6507	2634
3007 036 00		5103 056	9000-6507	2634
5010 004 35		5104 000	0000 0000	0000
9011 005 35		5105 000	0000 0000	5068
3012 000 00	00 3000 0000	3104 600		0000

P	a	q	e	1	2	5

5110	000	0000	0000	8000	520	4 000	0000	0008	0000
5111	000	0000	0000	0000	520	5 000	0000	9998	0000
5112	000	0000	0000	0000	520		0000	0000	0000
9113	000	0000	0000	0000	520		0000	0000	0080
9114	380	0000	0000	0000	521		0000	0808	0000
5115	300	0000			521				_
5116			0000	0000	521		0000	0000	0000
	206	0000	0000	0000			3000	0000	8008
5117	000	0000	0000	0000	521		0000	0000	0000
5120	300	0000	0038	0000	921		0000	0000	0000
5121	000	0000	0000	0000	521		3000	0008	0000
2755	000	0000	0000	0000	521		0000	3986	808
2753	300	0000	0000	0008	. 257		0000	9000	0000
2754	000	8000	0000	0000	922		0000	0000	0000
31 ² 5	000	0808	0 2 3 0	0000	522	1 030	0000	0000	0000
5126	300	0008	0000	0000	522	2 000	0000	0000	0000
5127	960	0000	0 0 0 0	0000	322	3 000	0000	0000	
5130	9 Q D	0000	0000	8008	. 522	4 333	0000	0000	0008
5131	300	0000	0000	0000	522		0000	0000	0000
5132	500	0000	9900	0000	522		0000	0000	0308
5133	000	0000	0000	0000	522		0800	0000	0000
5134				_	923			-	
5135	000	0000	0000	8000			0000	0000	0000
	000	0086	3000	0000	523		3000	0.0.00	0000
5136	300	0000	0000	0000	523		0000	0000	0000
5137	900	0080	0036	0000	523		0000	9000	0000
5140	300	0000	0030	0000	523		0000	0000	0000
5141	900	0000	0000	0000	523		0000	0000	0000
21.45	008	0000	0000	0000	523		0 3 8 0	0000	0000
5143	908	0000	0000	0000	523	7 000	0007	0000	0000
3144	000	9000	0000	0000	524	0 0 0 0	0000	9000	0000
5145	980	0000	0000	0004	524	1 300	0000	0000	0000
5146	000	0000	0000	0000	524	2 380	0003	0000	0000
5147	900	0000	0000	0000	524		0000	0000	0000
3170	000	0000	0000	0000	- 524		0000	0000	0300
3131	000	8000	0000	0000	524		0000	0000	0000
5152	000	8000	0000	0000	524		0000	0000	0000
3133	990	9989	8008	8888	524		6003	0000	0000
3134	000	9000			525		0000	0000	0000
3133			8800	0000	525			0000	
	000	0000	0000	0000	_	_	0303		0000
3136	000	8000	0000	0000	525	•	0000	0000	0000
5157	000	0000	3000	0000	525		0000	0000	0000
5160	000	0000	2800	9000	. 525		0000	0000	0000
5161	000	0000	0000	0000	525		9399	0000	0000
5162	000	0000	0000	0000	525	_	0000	0000	0000
5163	906	0000	9000	0000	525		0000	0000	0300
5164	0 D B	0000	3000	0000	526		0300	0000	0006
7165	909	0000	0000	0000	926		0000	0000	3000
5166	000	9000	3000	0000	526		G 0 0 0	0000	3000
5167	960	0000	3800	0000	526		6000	0000	0000
5170	8 C D	9000	3000	0000	526	4 100	0000	0000	3800
5171	000	0000	0000	0000	526	5 300	0000	0000	0000
5172	300	0000	0880	8000	526		0000	3000	0000
5173		0000	0000	8000	524		0000	0000	0000
5174		0000	0000	8 8 8 8	527		0000	0000	3000
3175	980	0000	0000	0000	527			0000	9000
5174		9000	0 8 9 8	0000	927		0000	0000	9300
3177		3998	8828	0000	. 527		_	0000	3000
5288	000	_			527		0000		-
_		3000	0000	0000	927			0000	9900
3201	000	9000	0000	0000				0000	9000
3202	869		0000	0000	527			0000	0000
5203	360	9000	0000	0000	527	7 303	0 00 0	0000	0000

Page	1	2	ϵ
------	---	---	------------

_								
5300 000	0000	0000		5374	900	0010		0012
3301 000	0000	0000	0000	5375	000	0011	0000	0013
3302 000	0000	0000	0000	9376	015	1472	3000	
5303 000	0000	0000	0000	5377	076	_		8366
5304 000		_		_		0006	3467	
	0000	0000	0000	5400	000	0000	0000	8000
	0000	0000	0000	5401	936	0000	3462	8000
3306 888	0000	0000	0000	5402	005	0012	0012	0050
5307 000	0000	0000	0000	5403	005	0013	0013	0021
5310 000	0000	0000	0000	5404	005	1441	0020	8020
3311 800	0000	0000	0000	5405	005	1442	0021	8021
5312 000	0000	0000	0000	5406	003	0012	2444	0022
5313 000	0000	0000	0000	3487	003	0013	1445	0023
5314 080	0 0 0 0	0000	8000	5410	001	0020	0021	0020
5315 915	5051	0000	0000	5411	001	0020	0022	0020
3316 036	0000	6166	6000	5412	001	0020	0023	
3317 033	6023	5325	5321	5413	001	0020	1447	0020
5320 452	0000	0000	5323	5414	015	0000	1443	
5321 000	0000	0000	0000	5415	-			0360
5322 112	0035	5321			076	0630	5421	0000
			0001	5416	004	0028	1446	0014
	0000	0000	0000	5417	002	0000	0014	0014
	5052	6166	1472	5420	056	0000	3434	0800
3325 200	0000	0000	3360	5421	005	1446	1446	0021
5326 000	0000	0000	0 3 <u>0 0</u>	5422	005	7762	1443	1022
5327 000	8000	0000	00324	5423	005	0020	0022	2023
5330 002	1465	1464	1420	3424	005	7762	0023	0023
5331 002	1467	1466	1421Calcu-	5425	002	0021	0023	0021
5332 004	7757	7768	1422 lation	5426	044	0021	0000	0021
5333 000	1422	0000	1434	5427	002	0000	1446	0023
5334 000	1422	0000	1435 ASu	5430	001	0023	0021	0824
5335 084	1420	0257	1423	5431	004	0024	0022	0014
3336 004	1421	0257	1424	5432	002	0014	0000	0000
5337 000	0000	0000	1430	5433	076	0000	5436	0000
5340 000	0000	0000	1431	5434	002	0023	2021	0024
5341 000	0000	0000	1432	5435	004	0024	0022	9014
5342 000	0000	0000	1433	5436	000	0000	0800	0035
5343 080	1464	0000	1430	5437	452	0000	0000	5453
5344 000	1466	0000	1432	5440	605	1441	0012	0030
2342 012	0330	0000	0000	5441	005	0030	7762	0030
5346 036	8000	3706	0000	5442	201	_	1444	
5347 052	0000	0000		5445	_	6036		0030
		-	8000		005	0030	0030	0031
	0000	0000	0000	5444	001	0031	0032	0032
	1430	1423	1431	5445	102	0000	0030	0033
3352 000	0000	0000	0000	5446	113	0002	3440	0001
5353 452	0000	0000	5677	5447	044	0035	0000	9932
5354 001	1432	1424	1433	5450	004	0033	0032	0033
5355 000	0000	0000	000C	5451	004	0034	0032	0034
5356 000			0000	5452		0035	0032	0035
5357 000	0000		9000	5453	000	0000	0000	0000
5360 000	0000	0000	0000	5454	000	0000	0000	0000
5361 000	0000	0000	0000	3455	004	7761	0035	0015
3362 016	5363	7501	7610	5456	002	0000	0015	0015
5363 000	1430	0122	1431	5457	000	0000	0000	0000
5364 000	1434	5371	5372	5460	005	0015	0011	0015
5345 000	1435	5374	5667	5461	999	0000	9999	0000
5366 000	1432	0015	0010	5462	016	5463	5402	5457
3367 056	0000	5671	0000		000	0008	0000	3457
5370 000	0000	0000	0000	5464	056	0000	3667	0000
5371 000	1432	0000	1432	5465	000	0000		
5372 000	1433		1433	5466			0000	0000
5373 000					000	0000	0000	0000
	444	7777	נטעיי	290 <i>'</i>	012	1160	19/2	0460

Page	1	2	7
------	---	---	---

Page 127	
5678 674 0888 5511 0000	5544 600 5600 0000 0000
5471 016 3472 7301 7610	5545 015 7721 1472 0000
5472 875 8818 8885 8828	5566 076 0000 5511 0000 5567 000 5503 0000 0040
3473 000 0000 0000 0000	5547 000 5503 0000 0040 5570 014 5571 5471 55n3
3474 000 2010 0000 0030	5571 300 6010 0000 0041
5475 002 7756 0010 0010 5476 000 0020 0000 0016	5572 000 0016 0000 0042
5476 000 0020 0000 0016 5477 316 5580 5471 5473	5573 000 0017 0000 0043
5500 000 0000 0000 5473	5574 900 coll 0000 0010
5501 000 0030 0000 0010	5575 910 5576 5471 5563
3302 000 0020 0000 0017	5976 000 0040 0000 5503
5503 385 0011 0017 0012	5577 000 co41 000C 001C
5504 985 9311 3916 9913	5600 000 0016 0000 0020
5505 914 5594 5402 5441	3601 000 0017 5000 0021
5504 000 0000 0000 5441	5602 000 0042 0000 0016
5507 054 0000 5447 6000	3603 000 0343 0000 3017 3604 005 0316 0016 0022
5518 030 0300 0000 0000	5694 992 9316 9916 9922 5695 992 9317 9917 9923
5511 015 7722 1472 0000 5512 074 0000 5565 0000	3606 003 0020 0020 0024
	3637 303 0021 8021 0025
5513 000 >503 2000 00°0 5514 016 5515 5471 5503	5610 005 0023 0024 0026
3313 808 0040 3800 3503	3011 305 1441 0026 0026
3316 085 0016 0016 6020	3612 305 0022 0024 0027
5517 965 6617 6617 6021	3613 305 1442 0027 0027
5520 005 1441 0021 0022	5614 005 1443 0025 0330
5521 gg\$ 1442 gg2q pg23	5615 001 0026 0027 0026
5522 001 0022 0023 0024	3616 001 0026 0030 0030
5523 003 1444 3017 0025	3617 303 0017 0020 0031 3640 005 1444 0031 0031
5524 005 1445 0016 0024	5621 005 1444 0031 0031 5621 005 0016 0020 0032
5525 001 0025 3026 0027 5526 305 0011 0011 0030	5622 005 1445 0032 3032
	5623 005 1446 9021 0033
5527 Q65 1443 0030 0031 5530 Q65 1444 3011 0032	5624 001 0031 0032 0034
5531 001 0031 0032 0034	5625 901 0034 0033 0035
3532 981 9834 1447 9835	5626 000 1447 0000 0036
3533 881 8824 3824 8834	7627 001 0030 0030 0037
5534 205 0034 0035 0037	5630 005 0037 0036 0040
5535 005 0037 7742 0040	5631 005 7762 0040 0040
5536 305 0027 0027 0041	9632 gg5 gg35 gg35 gg41 9633 gg2 gg41 gg46 gg42
5937 002 0341 0040 0042	5633 302 0041 0040 0042 5634 044 0042 0000 0343
5540 044 0042 0000 0043 5541 002 0000 0027 0045	5635 002 0000 0033 0044
5541 002 0000 0027 0043 5542 001 0049 0043 0046	5636 001 0344 0043 0043
3943 004 0044 0034 0347	5637 004 0045 0037 0046
3544 382 8847 8888 8888	3640 302 3046 8380 337
5545 974 9990 5550 9900	5641 076 0000 5646 0000
5546 002 0045 0045 0046	5642 002 0044 0043 0045
5547 004 0046 0036 0047	5643 004 0045 0037 004
5550 005 0047 0017 0012	5644 083 0017 0020 004
3531 005 0047 0016 0013	5645 005 0016 0020 0056 5646 005 3047 0046 001
3532 800 8011 0000 0014	3646 003 3047 0046 0013 3647 003 0030 0046 001
3533 816 5534 5436 5434	7670 003 0030 0040 001
3534 988 9889 9880 5454 3535 985 9833 9817 9925	5651 000 0020 0000 006
3555 985 9833 9817 8825 5556 985 8834 8816 8824	3432 900 0021 8000 006
3536 003 0034 0016 0027 3557 001 0025 0026 0027	5653 816 5654 5436 545
3348 384 8847 3827 8819	3634 999 6989 9030 345
3341 992 9999 3913 9913	5455 005 0033 0047 005
3562 356 8080 5667 8686	5456 005 0034 0050 005
4443 340 4040 4644 4644	9457 305 6835 8862 805

Page 128

5660	905	0044	3046	0054	5754	005	3037	5040	0856
5661	005			0255	3755	014	6056	6033	6837
				0056		001	0054	0056	5054
3662	001		-			005	3030	5032	8854
5663	001		-	0057	_	_			
3464	884			0015		005	5033	5035	0055
3465	002	0000	0015	0015		005	5036	7040	0056
3666	800	0080	0000	0000 .		016	6063	6033	4837
3667		9998	0000	3000	5763	001	0054	0056	5055
3674	000	0004	-	0000	5764	0 4 4	0100	0000	4037
5671	800	0006	•	0000	-	452	0000	0000	6874
				4001		405	5030	5024	0054
5672	000	0341			5767	405	5033	5025	1055
5673	013	5672		5672					-
5674	001	1432		1432	5770	405	5036	5026	8856
3675	608	0000	0000	0000		001	0854	0035	0054
5676	112	0311	5354	0001		101	0854	0056	5124
3677	000	0000	0000	0 0 0 0	5773	113	0002	6066	0001
5700	801	1430	1423	1430	5774		0000	0000	0000
5701	600	1466	0000	1432	5775	0.03	7762	5053	5053
5702		_	0000	0000	5776	003	7762	5054	3054
	000	0300	-		5777	• -	7762	5055	5055
5703	112	0011	5351	0001		885		-	
5704	916	5705	7501	7619	4000	005	5041	5121	0054
5705	625	4001	0041	4144	6001	005	2045	3053	0055
3706	050	0015	0001	4500	4002	005	5043	5055	0856
5707	6 70	4001	3000	0000	4003	005	7762	0054	8054
5710	050	4411	0001	4300454	6004	001	0054	0055	0054
5711	070	4001	5706	00004	6005	001	0054	0056	0054
3712	056	0000	5073	6060	6004	002	5124	0054	5056
3713	000	0000	0003	0000	4067	005	5841	5053	0054
3714			0000	8000	4010	005	5042	5122	0055
3715	000	3000			6011	003	5043	5054	0050
_	000	0604	0003	00004	6612	003	7762	0033	0055
5716	000	0000	3000	0000 4	6013	001	0054	0033	0054
3717	000	0000	0000	0000	-	• -	-		
5720	000	0000	0000	0000 204	6014	001	0054	0054	0054
5721	956	0000	3360	0000	6015	002	3125	0054	3057
5722	452	0304	0001	6052 C++	4014	005	5041	5055	0854
3723	500	0420	0000	5020	6017	003	2042	5054	0055
3724	112	0035	6023	0001	4028	805	5043		0036
5725		0000	0000	9000	6021	003	7762	0036	0856
3724		0386	0000	6042	6022	001	0054	0055	0054
3727		5030	5030	0054	6023	001	0054	0054	0054
5730	603	5033	5033	0055	6024	002	5126	0054	5068
3731	605	5034	5036	0056	6825	003	3041	5041	0054
5732		0000	0000	0000	6026	005	3042		0055
			_	-	6027	045	3043	-	
5733		0054	7021	0054	4036	005	3041	5042	
3734		0055	2055	0055					_
3733	•	0054	5023	0056	6031	005	5042	_	0061
5734		8034	0035		6035	003	3043		
3737	, 600	9969	3000	0000	6033	-	2121		
3740	101	0034	0056	5121	4034	003			
5741	112	9992	4027	0001	6035	003			
3742		_	0000	6000	6036	005	3033	0057	
5743			0000	0000	6037	005	5054	0040	
5744		_	0000	0000	6040	005	5055	0061	0067
3745			3031	0054	6041	005		5124	
5746				0055	6042	005		·	• -
		-	5037	0036	6043	005		-	
5747					6044	452			
5750			6033	6037	6045	401	•		
5751				5053		_			
3752			9032	0054	6046	112	•		
5753	005	5034	5035	0055	6847	000	0000	0000	

THE PROPERTY OF THE PROPERTY OF THE

Page 129				
• • • • •		5027	6144 03	• • • •
		5027	6145 03	
6052 002		5027	6146 60	_
	5054 3800	5024	6147 00	
		5025	6150 11	
	.	5026	6151 04	
	5121 0038	5021	6152 00	
6957 000	5122 0000	5022	6153 30	
4040 000	5123 0000	5023	6154 00	
6061 472	0000 6610	6164	•	4 1421 6520
6062 400	9201 0000	5052		5 6520 6627
	5222 0000	5020	-	0 0000 0000
6964 000	0000 0000	0000		36 0000 1506
	0000 5315	0000		0 3370 0000
	0000 0000	6171		00 3371 8000
•	5020 0000	0420		00 3372 0000
	0035 6167	0001		36 3373 3037
	0000 0000	0000	_	05 0041 1420
• • •	0010 7722	6610	-	01 0042 0041
	6610 6616	0000	6167 0	85 8843 7742
	0000 6201	0000	6170 0	04 0041 0043
	6023 3443	6023	6171 0	04 7762 0041
	6167 3444	6167		82 1420 0000
	0000 0800	8000	4173 0	34 0000 6201
6100 894	0000 6022	0000		01 1420 0251
6181 800	3441 1000	6023	6175 0	q 2 1428 g251
6102 000	3442 0000	6167	6176 8	36 0000 6207
6103 000	0000 0000	4610	6177 0	92 1420 0251
6104 054	0114 6616	0014	6200 0	56 0000 6207
6105 013	2305 8014	2503	6201 3	93 1420 0246
6106 033	2503 3466	2503	6202 3	36 0.000 6204
\$107 000	0000 0000	0000	6203 0	36 0000 6207
6110 000	0000 0006	0000	4204 0	01 1420 0246
6111 950	0000 5327	0000		44 0042 0000
A7+7 A34	4444 334	444		

6112 000 0000 0000 0000

6113 300 0000 0000 0000

6114 608 8080 9886 8608

6115 000 0000 0000 0000

6116 000 0000 9600 0006

6117 000 0000 9000 0008

6128 860 8060 2284 6000

6122 000 0000 6740 0000

6123 000 0000 6743 0000

6126 036 0041 1979 6516

6127 036 0041 1611 6517

6130 002 0641 1428 0643

6132 000 0144 0000 0144

6133 704 4061 2101 4001

4134 416 2661 2861 2864

6139 656 6411 6661 2466

4137 848 8888 8888 8888

6148 500 3712 0808 6107

4141 900 8642 0800 3712

6142 112 6616 6140 8061

6143 833 1560 6120 1560

878 2101 0816 0000

0000

6121 000

6131 005

6136

6124 085 8877

6125 800 8841

6735 0000

5400 5480

0000 4515

0876 0843 8842

6237 305 1417 8051 6661

Đ,

D

Page 130	
6240 803 6661 8080 6661	6334 805 1428 1428 8855
4241 456 6661 2674 6457 -	4333 601 7741 8055 8855
0000 0000 0000 000	6336 844 8835 8800 8859
0843 808 8880 8800 8080	4337 004 7741 0055 0056
6844 000 0000 0000 0000	6340 009 1420 8056 8855
6845 000 1428 0000 6242	4341 002 0040 0033 0033 4342 056 0000 2622 0057
6846 000 1421 0000 6243	4342 056 6886 2622 8957 4343 056 8886 6886 8986
6247 956 1422 3040 6244 6258 988 4242 8880 1428	6344 054 6044 1448 1437
6250 000 6242 0000 1420 6251 000 6243 0000 1421	6345 872 8888 1437 6888
6252 656 6244 3185 1422	6346 400 0000 0000 1420
6253 986 9989 9980 8980	6347 408 9091 8000 1421
6254 854 8058 1448 8081	6350 408 0002 0000 1422
6255 633 6661 7722 6661	6351 400 0003 0000 1423
6256 672 9898 8891 8888	6352 456 0004 6210 1424
6257 816 3178 3645 3653	6353 016 6354 7501 7618
4248 999 9998 9998 9998	6354 000 0006 0150 0206
6261 815 3550 8880 8888	6395 875 1432 1420 1433 dec 6356 888 8888 8880 8888 dec
6262 976 9999 6266 9999	
6263 861 7761 3514 3514	6357 013 6355 7721 6355 7 6368 872 0000 1440 0000 45
6264 601 1476 3587 3587 6265 654 6000 2545 0806	6361 816 6362 6346 6394
6265 656 6000 2545 6696 6266 661 7761 3516 3516	6362 013 6395 7721 6355
4247 401 1474 3512 3512	6363 854 8114 1448 1437
6270 056 0000 2545 0000	6364 016 6365 6345 6356
6271 015 3590 0000 0000	6365 033 6355 7721 6355
4272 476 8000 6277 0000	6366 033 6335 7721 6355
6273 802 3511 6521 3511	6367 003 1417 0000 1420
6274 052.0000 0006 0000	6370 015 1433 7761 0000
6275 016 6245 3066 6302	6371 076 0080 6732 6396
6276 000 0000 0000 8000	6372 096 3951 6212 6627 6373 005 3967 1433 1422
6277 002 3512 6521 3512	6373 005 3547 1433 1422 6374 002 7761 1433 1421
43gg 056 0000 3040 0000	6375 065 1476 1421 1421
6361 362 3527 1422 3527 6362 666 6666 9666 9686	6376 885 7764 1421 1421
6362 000 0000 0000 0000 6383 015 3550 0080 0000	6377 001 1481 1482 1481
6304 076 0000 6310 0000	6400 044 1421 0000 4627
6305 001 1476 3536 3536	6491 888 9888 9889 9898
6386 852 8888 8880 8888	6402 005 2661 0313 1422
6347 016 3170 2676 2715	6403 016 6404 7501 7618
6310 015 3550 7722 0000	6404 075 1422 0003 1423
6311 076 0000 2717 0000	6405 005 7762 3547 2652 6406 004 7756 7762 2653
6312 052 0000 0017 0000	6406 004 7736 7762 2633 6407 009 2633 3347 2693
6313 016 2717 2676 2713 6314 p19 3550 7722 0000	6410 036 2633 2640 6485
6314 q15 3550 7722 0000 6315 q36 0000 6250 0000	6411 000 1566 0000 1423
4314 452 4444 6417 9494	6412 888 1573 8880 1424
6317 816 3103 3066 6382	6413 000 1686 0000 1425
6320 052 0000 0003 0000	6414 000 1622 0000 1426
6321 905 0047 1417 1423	6415 000 1624 0000 1427
4322 112 0005 4321 8001	6416 000 3562 0000 1430
6323 702 0030 1420 0047	6417 000 3570 0000 1431
6324 112 0010 6323 0001	6428 052 0000 0000 8000
6325 805 8417 1417 1431	6421 900 3726 0000 1432 6422 112 0005 6421 0001
6326 002 0252 1431 1432	6425 500 3712 0000 0062
6327 g15 7761 1431 0000 6336 g34 g0g0 6333 0000	6424 508 6187 0000 3712
	6425 112 0010 6423 0001
6331 844 1432 8886 1432 6332 856 8880 2617 8880	6426 013 1560 6120 1560
6333 004 0053 0052 1420	6427 013 1574 6120 1575

5430	013	1611	6120	1611	6524	200	0000	0000	3000
5431	000	6124	0000	1566	6525	300		0000	
_	000	6125	0000	1573	6526	300	0000	0000	8000
6433		6126	3000	1606	6527	300			· -
6434	000	6127	-	1622	6530	356		0000	8000
6439		_	3000	_	6531	-	0000	6553	0000
	300	0130	3000	3562	6532	350	2012		0023
5436	000	6131	3000	3570		378	0001	6531	0000
6437	333	0000	0000	1422	6533	016	6534	0006	0022
6440	005	1420	7764	0041	4534	300	0000	0000	3322
	003	3041	0041	0042	6535		6536		_
6442	001	7764	0042	0042	6536	300	3357		3150
6443	044	3042	3000	0042	6537	050	0411		5600
	001	0041	0042		6540	070	_	6537	· :
6445	002	0077	1450	0341	6541	979		-	4635
6446	005	0041	3041	0041	6542	056	0000		4635
6447	0 0 2	3000	3041	0041	6543	0 5 0	0012	4000	6114
6450	016	6451	7501	7510		070	4300	6543	0 0 0 0
6451	375	0041	0003	0 0 4 2	6545	000	0000		0000
6452	000	0000	0000	0 0 0 0	6546	000	0000	0000	9000
6453	005	0042	0077	0043	6547	000	3720	0000	0041
6474	000	1420	3000	0041	6550	000	3721	8000	3721
6455	016	6456	6446	6452	6551	000	3722	0000	
6456	000	0000	9000	6452	6552	356	041	1543	
6457	316	6460	7501	7613	6553	385	3504	3504	1432
6460	375	1420		0041	6554	072	0000	0000	0000
6461	301	7761	0041	0041	6555	100	0000	0000	0060
6462	005	3041	3414	0041	6556	112		6555	_
6463	356	3041	6155	0077	6557	356		6531	
5464	000	0000	0000	0000	6560	300		-	
6465	302	1421	9251	3727	6561	200	6063		-
5466	302	0000	0251	3730	6562	200	6566		6644
5467	300	0000		0000	6563	772	0000		
6.478	302	0041	3726	3731	6564	452	2000	0000	0300
6471	001	0251	0251	3732	6565	452			6577
6472				3733	6566	401	0000		6571
6473	301	0251	0251		6567		4001	5624	
	316		1550	1624			0011		
6474	000	1423	0000	1566	6570	013			
6475	300	1424	0000	1573	6571	000	0000	0000	0000
6476	300	1425	0000	1606	6572		011	6565	
6677	000	1426	0050	1622	6573	016	6574	7531	7610
- 5500	000	1427	0030	1624	6574	052	5524	0041	6635
5501	000	1430	0000	3562	6575	913		3471	
5502	000	1431	0000	3970	6576	056	6644		
5503	352	0000	0000	0000	6577	000	0000	0000	0000
. 5504	500	1432	0000	3725	6600	112	3012	6564	0001
4505	112	0005	6504	0001	6601	000	6643		6566
6506	056	0000	6140	1420	6602	000	0000	0000	0000
	452	0000	3830	6512	6603	000		0000	6567
	130	3000	3033	4000	6604		3266		
		2114	5510	0061	6605	016		6562	66 C 2
6512	000	0000	2070	0360	6606	000		0000	6567
	000	3000	3630	0000	6607	336	3270	3145	6570
4514	056	0000	1514	0000	6610	300	0000	0000	0000
6515	900	0000	3600	0000	6611	000	0000	0000	0000
	000	0000	3500	0000	6612	00C	0000	0000	0000
6517	000	0000	3 3 3 3	0 0 0 0	6613	390	0000	0000	0000
6520	000	0000	3000	0008	6614	000	0000	0000	COGC
4521	000	0000	3000	6000	6615	086	0000	1000	
6542	230	0000	0000	0000	6616	G00	0000	0000	
6523		9536	9000	6000	4417		6369		
					_	•	•		10 /m@

distributed random numbers

Page 133 NUMERICAL INFORMATION FOR BLOCK 1 (0)

140	TENT	THE THE OWNER TON	LOW DECOM	
0100	-+03	100000000	0172 ++00	540000000
8101	++03	101000000	0175 ++00	
8102	++03	102606000	0174 +-04	
	**83		0175 ++0	• • • • • • • • • • • • • • • • • • • •
0103		160000005Ho		
C 104	++03	30000000	0176 ++01	·
0105	++03	300100000	0177 ++04	·
0106	**03	200000000	0500 ++00	
0107	++04	150១០០០០៧	0201 ++04	290000000
0110	04	760360600	USOS ++84	
8111	++06	7000000000(\vec{vec}	0503 ++00	• • • • • •
0112	++04	781000000 Yco[m/s] 0284 ++00	665000000
8113	++04	778609800	0205 ++00	700000000
0114	++84	77280300C	0206 ++00	, 90000000 0
0115	**0*	761580600	0207 +400	258800000
0116	-+84	112837900	0210 ++04	500000000
0117	**0*	112837900	0211 ++04	70710000c} 367.04
0120	++84	1128379001	0212 ++0	
6121	++03	954700000 V [m/s	0213 ++00	
6122	++94	106300000	0214 ++01	
C 123	++04	117200000	0215 +-0	
		135100000	7216 +-0	
6124	++04			
0125	++74	100000000		
3126	++34	180003080		•
0127	++94	7 100 101	0221 ++00	
C 130	++04	120100000	0222 ++00	
6131	••94	140400000	J332 ++06	
0132	++34	142300000	0224 ++0	I
0133	••34	157600000	0225 **0	3 91976030d
0134	++00	600083000	0226 ++0	7 94581899a
0;35	++,30	575903000	0227 ++01	961220000
3136	++30	54000000001	0230 -+0	1 45500cco đ
3137	++30	5000000003	0251 -+0	1 30000000
3148	++10	445000000	0232 -+0	1 200000000
8141	++10	362000000	C233 -+0	1 10000000
0142	++110	240000000	C234 ++01	
0143	90	900000000	0235 ++0	
0:44	++90	890703000	0236 **0	
3145	++90	870003000 /	0237 ++0	
8146	++00	8400000000000	0240 ++0	
3147	++10	795000000	0241 **0	
9150	++00	730003600	0242 ++0	
C 1 5 1			0243 ++0	
:	++00	630000000		
0152	++01	148000600	0244 ++01	
0153	**01	146000000	0245 +-0.	
0154	**04	134006000	0246 **0	
0155	++04	12400000000	0247 **0	1 152300000 T Fev1
0 156	++04	110000000	0250 ++0	
0157	**00	7480600000		1 325000000
0160			0252 ++0	1 100000001,
0 16 1	**01	120000000	0253 ***	> 0000000000Mp.
0162	**01			0 000000000 <i>N2</i> P
0163	**01	111800000	025504	100000000 <u>£</u> 1
0.164	++06	980000000000000000000000000000000000000	6256 **0	0 000000000 N _{3D}
0165	++00		6257 ++0:	
0166	++0 n	565000000		
0167	++00	300000000	02010	000000000
0178	++0	000000000	-	0 0000000000
0171	++0	2750000000	0203 ***	
- • • •				

C264	* + 0 6	0300000001,	3342	++00	000000000 122-
0205	**06	ouococcook [deg]	0343	++80	00000000 I B
C296	++00	000000000	1344	*+ C C	0 9 0 0 0 0 0 0 0 0 223
0267		00000000	0345	++15	100000000 4
0270	++00	000000000	7346	++14	100000000 Lz
0271	**00	000003300	9347	++#0	00000000
0272	-+00	000800000	3350	+-00	00000000
3273	++00	000000000	0351		
0274			3352	**00	000083890
	++00	00000000		•••0	00000000
3275	++08	000000000	0353	++60	000063080
1276	4+30	00000000	0354	++00	000000000
9277	4 + 70	000000000	0355	+-68	00000000
9300	4+00	90 00 0000	C356	+-00	00000000
0301	4+70	00000000000	0357	++60	00000000
7302	4+38	000000000 Po[deg]	036C	•••	00000000
n3c3	4.00	00000000	C 36 1	++00	00000000
7304	++99	00000000	0352	++00	00000000
1365	1+00	00000000	C363	++00	000000000
7306	++00	000000000	0364	++06	000003000
1307	++00	00000000	0365	++00	00000000
2310	++00	0000000000	0366	++00	000000000
0311	++00	H40000000	0367	++00	000000000
2312	++00	000000000	0370	**00	000000000
1313			0371	**00	060000000
7314	++00	000000000	0372	_	00000000
	++00	CC00000000000	0373	**00	
7315	++00	00000000		••00	00000000
7316	++80	C00000000 X71	0374	++00	000000000
1317	** 00	u0000000 I 71	0375	++08	00000000
2320	++00	00000000 LT2	3376	+ + 0 0	00000000
7321	++00	uuoo00000 IT2	0377	++68	000000000
1322	++ 00	000000000 X73	0400	++60	00000000
1323	++00	000000000 273	3481	++03	00000000
7324	++00	00000000	3402	++00	00000000
.325	++00	5641895804/T	2403	++00	06000000
C326	+-09	10000000	0404	++00	00000000
0327	** 0.0	00000000	0435	++00	000000000
0330	++00	00000000	0436	++00	000000000
0331	-++01	10000000	0407		000000000
0332	++11	U0000000	0410	00	000003000
0333	++00	000000000-14-	6411	++01	350000000
0334	++00	00000000-Po	2412	•• 61	47123889837/2
0334	_		6413	***	141421356/2
	++00	0000000005M	3414		177245384/2
0336	++60	000000000d		**01	886227000
0337	++ 90	00000000	7415	+-00	6283185312%
C340	++00	u a o o o o o o o J Z	0416	****	7.4.5004
6541	++60	UU0000000 Tip	2417	***1	314159265 K

BLOCK II (M)

2513 056 1420 3632 2402 2635 056 0000 2640 0000	2002 036 0000 3064	0000	2003 056 0000	3043-0000
2436 005 1437 1437 1435 2445 005 1423 1424 1424 2647 2600 0000 0000 0000 2446 003 1423 1435 1435 1435 2446 004 2692 1476 1425 2447 001 1422 1425 1433 2441 816 2642 6646 2697 2650 001 1424 1427 1434 2442 2643 002 1433 1427 1424 2651 696 6167 2661 1616 2643 002 1433 1427 1424 2651 696 6167 2661 1616 2642 004 1434 1427 1424 2667 014 2676 7501 7610 2643 002 1424 0215 0000 2670 000 0012 8190 0219 2663 002 1424 0215 0000 2671 079 1424 0230 1420 2665 002 0227 1424 0000 2677 000 0012 8190 0219 2665 002 0227 1424 0000 2677 000 0012 8190 0219 2665 002 0227 1424 0000 2672 036 0000 6736 0808 2601 0000 6574 0360 0000 6737 004 1422 0313 1420 2672 036 0000 6737 004 1422 0313 1423 6574 036 0000 6402 0000 6377 004 1422 0313 1423 6575 002 0313 0000 0000 6377 004 1422 0313 1423 6575 002 0313 2601 1422 6650 050 0000 6402 0000 6377 004 1422 0313 1423 6575 002 0314 1421 1435 1435 6652 005 1436 1436 1434 6657 002 1434 1420 1436 6653 036 0000 2636 0000 6733 036 7761 6707 1423 6730 002 2602 2675 0000 6734 016 2631 6447 2637 6733 036 7761 6707 1423 6730 002 2602 2675 0000 6734 016 2631 6447 2637 6733 036 7761 6707 1423 6750 044 1425 0000 1425 6750 004 1425 0000 1425 6750 004 1425 0000 1425 6750 004 1425 0000 1425 6750 004 1425 0000 1425 6750 004 1425 1426 1426 6762 005 7762 0041 0641 6751 001 0315 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 1425 1426 1426 6762 005 7762 0041 0641 6751 004 0040 0000 0000 0000 0000 0000 000			**************************************	0040 0000
2637 800 8008 8000 8000 2000 2646 003 1423 1435 1435 2646 004 2652 1476 1425 2647 001 1422 1425 1433 2641 816 2642 6646 2657 2650 801 1424 1427 1434 2643 802 1434 1427 1424 2651 826 8167 2661 1616 2642 802 1434 1427 1424 2667 816 2647 8161 1616 2642 804 1434 1422 1424 2667 816 2647 816 1616 2643 802 1434 1422 1424 2667 816 2647 816 1616 2646 816 816 816 816 816 816 816 816 816 81	2635 056 0000 2640 2636 005 1437 1437	0000	2644 005 1423	1422 1422
2641 802 1433 1425 1422 2650 801 1424 1427 1434 2643 802 1433 1435 1422 2667 816 2676 7266 167 2661 1416 2643 802 1434 1427 1424 2667 816 2678 7501 7618 2663 802 1424 8215 8000 2670 8000 8012 8190 8219 2665 802 8227 1424 8000 2672 856 8000 8756 8020 8227 1424 8000 2672 856 8000 8756 8000 8027 1424 8000 2672 856 8000 8756 8000 8000 8000 8000 8000 8000 8000 80	2637 000 0000 0000 2640 004 2652 1476	0000 1425	2646 005 1423	1435 1435
2661 802 1433 1433 1422 2666 036 0000 6746 0000 2662 2662 004 1434 1422 1424 2667 016 2676 7501 7610 2663 002 1424 0215 0000 2670 000 0012 8150 0215 2644 036 0230 6756 1420 2671 075 1424 0230 1420 2672 056 0020 0227 1424 0000 2672 056 0020 6756 0008 2672 056 0020 6756 0008 2672 056 0020 277 1424 0000 2672 056 0020 277 1424 0230 1420 2672 056 0020 277 1424 0230 1420 2672 056 0020 277 1424 0230 1420 2672 056 0020 6756 0020 277 1424 0230 1420 2672 056 0020 277 1424 0230 1420 277 024 1422 0513 1423 1433 1433 0020 0020 0020 0020 0020 0020 0020 0	2642 882 1433 1425	1422	2650 801 1424	1427 1434
2643 002 1424 0215 0000		-	2666 036 0000	6744 0800
3646 001 7761 2675 2675 3050 3042 056 0000 2001 0000 3756 0008 3041 013 3550 7722 3550 3042 056 0000 2001 0000 3756 0000 3572 0000 3757 0000 3757 0000 3757 0000 3777 004 1422 0313 1423 377 004 1422 0313 1423 377 004 1422 0313 1423 377 004 1422 0313 1423 377 004 1422 0313 1423 377 004 1422 0313 1423 377 004 1422 0313 1437 0647 002 7761 1433 1433 0652 005 1436 1436 1434 377 0647 002 7761 1433 1433 0652 005 1436 1436 1436 3650 002 1431 1432 1435 0652 005 1436 1436 1436 3650 002 1431 1432 1436 6653 054 0000 2636 0000 373 0000 373 0000 373 0000 373 0000 373 0000 373 0000 377 000 1423 0000 1423 377 000 1425 0000 377 000 1425 0000 1425 0756 044 1425 0000 1423 377 000 1425 0000 1425 0756 044 1425 0000 1425 0756 044 1425 0000 1423 377 000 1425 0000 0041 0776 0776 1425 1426 0776 044 1434 0000 1436 0776 0776 0776 1425 1426 0776 0776 0776 0776 0776 0776 0776 07	2663 002 1424 0215	0 0 0 0	2667 Q16 2678 2670 Q00 Q012	7501 7610 0190 0219
6373 002 0313 0000 0000 6377 004 1422 0313 1423 6400 056 0000 6405 0000 6377 004 1422 0313 1423 6400 056 0000 6405 0000 6377 004 1422 0313 1423 6400 056 0000 6405 0000 6405 0000 6407 002 7761 1433 1433 6652 005 1436 1436 1434 6650 002 1434 1420 1436 6653 056 0000 6405 0000 6718 056 0000 6373 0000 6732 002 2682 2675 0000 6734 016 2631 6647 2637 6733 036 7761 6707 1423 6750 004 1425 0334 1425 6757 000 1425 6757 000 1425 6757 000 1425 6757 000 1425 6757 000 1425 6757 000 1425 6757 000 1425 6757 000 1425 6757 000 1425 6757 000 1426 0000 0041 6752 002 7761 1424 1426 6760 016 6761 6455 6167 6752 002 7761 1424 1426 6760 016 6761 6455 6167 6752 002 7761 1426 1426 6760 016 6761 044 1434 0000 1436 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6763 056 1416 6711 6167 6755 000 000 000 000 000 000 000 000 000	2665 802 0227 1424	0000	2672 056 0000	0230 1420 6756 0008
6374 836 0000 6402 0000 6377 904 1422 0313 1423 6400 056 9000 6405 9000 6466 9000 6466 9000 6466 9000 6466 9000 6466 9000 6466 9000 6466 9000 6466 9000 6467 002 7761 1433 1433 6652 005 1436 1436 1434 1434 6650 002 1434 1420 1436 6652 005 1436 1436 1434 1434 6650 002 1434 1420 1436 6653 054 0000 2636 9000 6732 002 2682 2675 0000 6734 016 2651 6647 2637 6733 036 7761 6707 1423 6754 044 1420 0000 1423 6750 044 1425 0334 1425 6756 944 1423 0000 1423 6750 044 1425 0000 1425 6756 944 1423 0000 1423 6750 044 1425 0000 1425 6757 000 1420 0000 0041 6751 001 0315 1425 1425 6760 016 6761 6455 6167 6752 002 7761 1424 1426 6761 044 1434 0000 1436 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6763 036 1416 6711 6167 9314 002 0540 9000 0300 Number 9334 202 0467 2400 0000 Number 14,0	3040 001 7761 2675 3041 013 3550 7722	2675 3550	30.42 056 0000	2001 0000
6446 004 2653 1476 1427 6651 002 1432 1435 1437 6647 002 7761 1433 1433 6652 005 1436 1436 1434 6650 002 1434 1420 1436 6653 054 0000 2636 0000 6732 002 2682 2675 0000 6734 016 2651 6647 2637 6733 036 7761 6707 1423 6756 044 1420 0000 1420 6747 001 1425 0334 1425 6756 044 1423 0000 1423 6750 044 1425 0000 1425 6750 044 1425 0000 1425 6751 001 0315 1425 1425 6760 016 6761 6455 6167 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1420 6763 056 1416 6711 6167 7314 002 0540 0000 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1420 6763 056 1416 6711 6167 7314 002 0540 0000 0000 0041 6763 056 1416 6711 6167 73314 002 0540 0000 0000 00000 0000 00000 00000 00000	6374 836 0000 6402	0000		6572 6060 9313 1423
6647 602 7761 1433 1433 6652 005 1436 1434 1434 6650 002 1434 1420 1436 6653 056 060 2636 0000 6732 002 2662 2675 0000 6734 016 2651 6647 2637 6733 036 7761 6707 1423 6755 044 1420 0000 1420 6747 001 1425 0334 1425 6756 044 1423 0000 1423 6750 044 1425 0000 1425 6757 000 1420 0000 0041 6751 001 0315 1425 1425 6750 016 6761 6455 6167 6752 002 7761 1424 1426 6760 016 6761 6455 6167 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6754 005 1425 6754 004 1425 1426 1426 6763 056 1416 6711 6167 6754 004 1425 1426 1420 6763 056 1416 6711 6167 6754 004 1425 1426 1420 6763 056 1416 6711 6167 6754 004 1425 1426 1420 6763 056 1416 6711 6167 6755 056 056 056 056 056 056 056 056 056 0		_	6490 056 9009	6405 8080
6710 056 0000 6375 0000 6734 016 2631 6647 2637 6732 002 2682 2675 0000 6734 016 2631 6647 2637 6733 036 7761 6707 1423 6755 044 1420 0000 1420 6747 001 1425 0334 1425 6756 044 1423 0000 1423 6750 044 1425 0000 1425 6757 000 1420 0000 0041 6751 001 0315 1425 1425 6760 016 6761 6455 6167 6752 002 7761 1424 1426 6761 044 1434 0000 1436 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1426 6763 036 1416 6711 6167 6754 004 1425 1426 1420 6763 036 1416 6711 6167 6754 004 1425 1426 1420 6763 036 1416 6711 6167 6754 004 1425 1426 1420 6763 036 1416 6711 6167 6755 005 005 005 005 005 005 005 005 005	6647 002 7761 1433 6650 002 1434 1420	1433	6652 005 1436	1434 1434
6746 005 1424 0314 1425 6755 044 1420 0000 1420 6747 001 1425 0334 1425 6750 044 1423 0000 1423 6750 044 1425 0000 1425 6757 000 1420 0000 0041 6751 001 0315 1425 1425 6760 016 6761 6455 6167 6752 002 7761 1424 1426 6761 044 1434 0000 1436 6753 005 7762 1426 1426 6762 005 7762 0041 0041 6754 004 1425 1426 1420 6763 036 1416 6711 6167 9314 002 0340 0000 0300 Number 0315 001 0320 0000 0300 Number 150 0332 001 0400 0000 0000 Number 0334 202 0467 2400 0000 Number 150 0375	6732 002 2682 2675	0000		• •
6750 044 1425 0000 1425 6750 000 1420 0000 0041 6751 001 0315 1425 1425 6760 016 6761 6455 6167 6752 002 7761 1424 1426 6761 044 1434 0000 1436 6753 005 7762 1426 1426 6762 005 7762 0041 0061 6754 004 1425 1426 1420 6763 036 1416 6711 6167 1314 002 0340 0000 0300 Number 0315 001 0320 0000 0300 Number 150 150 0000 0000 Number 150 0332 001 0400 0000 0000 Number 0334 202 0467 2400 0000 Number 150 150 0000 0000 Number 150 0000 0000 0000 Number 150 0000 0000 0000 0000 0000 0000 0000	6746 005 1424 0314	1425	6755 044 1420	0000 1420
6752 002 7761 1424 1426 6761 044 1434 0000 1436 6753 005 7762 1426 1426 6762 009 7762 0041 0041 6754 004 1425 1426 1420 6763 036 1416 6711 6167 6167 6167 6167 6167 616	6750 044 1425 0000	1425	6756 844 1423 6757 888 1428	0000 1423
3314 002 0340 0000 0300 Number 0315 001 0320 0000 0000 Number 15 0332 001 0400 0000 0000 Number 0334 202 0467 2400 0000 Number 1,0	6752 002 7761 1424 6753 005 7762 1426	1426	6761 044 1434 6762 005 7762	0000 1436
0332 001 0400 0000 0000 Number 0534 202 0467 2498 0000 Number 1,0 -15.75		-	6763 056 1416	6711 6167
1,0 •15,75		16		45
Note: introduce data into cells 0313,1420,5222-5242		1,0		· -13,73

BLOCK III (M)

2513 356			44				
	0000 3632	0 0 0 0		054	2635	2640	6371
			6402	952	0000	0000	9000
5007 330	3000 0011	0000	6483	016	6484	7591	7618
2602 175	1476 6775	6373	6404	000	9919	2156	6764-
	•	•	6405	175	1476	6773	6373
2635 076	8000 2648	6356		013		2601	6405
	•		6407	112	2000	6-03	0001
2641 016	6402 6646	2637		-	2602	2642	
444. 4.4	0-01	200.	4410	426	2002	2042	6485
3444			45-5				
2644 005	1422 5373	1422			2653	3547	
2645 005	1424 6374	1424		054		6373	0360
2646 005	1435 6375	1435	6711	305	6375	1437	1437
		_					
6373 852	7032 0000	7615 7541}PN	6732	005	7762	3547	2652
6374 068	7534 3380	7541 PH	6733	054	7756	7762	2653
6375 016	6376 7501	7615	4734	056	0000	6767	8000
6376 952	6764 0042	7031				••••	
6377 152	7932 3536		6756		6375	9 B G G.	4176
		7615}PN	0.50	0 4 4	7717		03/3
4400 300	7504 3036	12473					
		BLOCK IV	(11)				
2717 056	0000 3037	0000	3629	000	0600	2000	6503
* 11, 030	0100 3037	5 0 0 3	13621			7501	_
			1333	010	3622	-	7610
3364 056	0000 6250	0000	13622	0 2 5	4463	0641	4512
_			3623	112	0000	3140	0001
3122 000	0000 0000	8000	3624	956	3137	3145	3523
			3625	052	0000	0000	0000
3130 504	4001 1433	4001	3626	054	G114	6616	0301
3131 504		4232	3627	013	3623	2001	3523
5132 112	.	0001	3630	033	3623	7724	3523
3133 052		0000	3631	056	0000	3140	0000
3134 505		4201	, , , ,	0 2 0	0 0 0 0	J. 40	0000
			5346	0 2 6	C G G G	2/00	9300
3136 056		0000					
3137 112		0001	5715	034	0114	_	1437
5140 400		4463	5716	054	1437	_	1436
	4001 0000			-		_	-
5140 400	4021 0000	4463	5716	056	1437	6022	1436
5140 400 3141 400	4001 0000 4022 0000 4043 0000	4463	5716 5717	056	1437	6022	1436
5140 400 3141 400 5142 400 3143 400	4001 0000 4022 0000 4043 0000 4232 0000	4463 4464 4465 4466	3716 3717 3720	056 053 053	1437 5028 1437	6022 1436 1436	1436 5020 1436
5140 400 3141 400 5142 400	4001 0000 4022 0000 4043 0000 4232 0000	4463 4464 4465 4466	5716 5717 5720 5721	056 053 053 056	1437 5028 1437 0000	6022 1436 1436 6164	1436 5020 1436 0000
5140 400 3141 400 5142 400 3143 400 5144 456	4001 0000 4022 0000 4043 0000 4232 0000 4253 3577	4463 4464 4465 4466 4467	3716 3717 3720	056 053 053 056	1437 5028 1437 0000	6022 1436 1436 6164	1436 5020 1436
5140 430 3141 400 5142 400 3143 400 5144 456 3377 400	4001 0000 4022 0000 4043 0000 4232 0000 4253 3577	4463 4464 4465 4466 4467	9716 9717 9720 9721	056 053 053 056 456	1437 5026 1437 0006 5222	6022 1436 1436 6164 6017	1436 5020 1436 0000
3140 400 3141 400 3142 400 3143 400 3144 456 3377 400 3600 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0008 4064 0000	4463 4464 4465 4466 4467 4470 4471	9716 9717 9720 9721 4663	056 053 053 056 456	1437 5028 1437 0000 5222	6022 1436 1436 6164 6017	1436 5020 1436 0000 5020
5140 430 5141 400 5142 400 5143 400 5144 456 3577 400 3600 400 3601 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0008 4064 0000 4105 0000	4463 4464 4465 4466 4467 4470 4471 4472	9716 9717 9720 9721 6063 6294 6295	056 053 053 056 456	1437 5028 1437 0000 5222 0050 0001	6027 1436 1436 6164 6017 1440 7722	1436 5320 1434 0000 5020
5140 430 5141 400 5142 400 5143 400 5144 456 3577 400 3600 400 3601 400 3602 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4064 0000 4105 0000	4463 4464 4465 4466 4467 4470 4471 4472 4473	9716 9717 9720 9721 6663 6294 6295 6296	056 053 053 056 456 456	1437 5028 1437 0000 5222 0090 8081 0000	6022 1436 1436 6164 6017 1440 7722 9001	1436 5320 1434 0000 5020 0001 0001 0000
5140 400 5141 400 5142 400 5143 400 5144 456 3577 400 3600 400 3601 400 3602 400 3602 400 3603 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4165 0000 4126 3000 4315 3000	4463 4464 4465 4466 4467 4470 4471 4472 4473 4476	9716 9717 9720 9721 6063 6294 6295	056 053 053 056 456	1437 5028 1437 0000 5222 0050 0001	6027 1436 1436 6164 6017 1440 7722	1436 5320 1434 0000 5020
3140 430 3141 400 3142 400 3143 400 3144 456 3577 400 3600 400 3601 400 3602 400 3603 400 3604 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4064 0000 4105 0000 4126 3000 4315 3000	4463 4464 4465 4466 4467 4470 4471 4472 4473 4474 4475	9716 9717 9720 9721 4663 6294 6295 6296	056 053 053 056 456 456 033 072	1437 5028 1437 0000 5222 0050 0001 0000 3170	6022 1436 1436 6164 6017 1440 7722 0001 3645	1436 5020 1434 0000 5020 0001 0001 0000 3653
3140 400 3141 400 3142 400 3143 400 3144 456 3577 400 3601 400 3601 400 3602 400 3603 400 3603 400 3603 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4064 0000 4105 0000 4126 3000 4315 3000	4463 4464 4465 4466 4467 4470 4471 4472 4473 4474 4475	9716 9717 9720 9721 4663 6294 6295 6296	056 053 053 056 456 456 033 072	1437 5028 1437 0000 5222 0090 8081 0000	6022 1436 1436 6164 6017 1440 7722 0001 3645	1436 5020 1434 0000 5020 0001 0001 0000 3653
3140 430 3141 400 3142 400 3143 400 3144 456 3577 400 3600 400 3601 400 3602 400 3603 400 3604 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4064 0000 4105 0000 4126 3000 4315 3000 4336 0000 4357 3000	4463 4464 4465 4466 4467 4471 4471 4472 4473 4475 4475	9716 9717 9720 9721 4863 6294 6295 6296 6297	056 053 053 056 456 034 033 072 016	1437 5028 1437 0008 5222 0050 0001 0008 3170	6022 1436 1436 6164 6017 1440 7722 0001 3645	1436 5020 1436 0000 5020 0001 0001 0000 3453
3140 400 3141 400 3142 400 3143 400 3144 456 3577 400 3601 400 3601 400 3602 400 3603 400 3603 400 3603 400	4001 0000 4022 0000 4043 0000 4232 0000 4253 3577 4274 0000 4064 0000 4105 0000 4124 0000 4125 0000 4315 0000 4317 0000 4317 0000	4463 4464 4465 4466 4467 4471 4471 4472 4473 4476 4475 4476	9716 9717 9720 9721 4663 6294 6295 6296	056 053 053 056 456 034 033 072 016	1437 5028 1437 0008 5222 0050 0001 0008 3170	6022 1436 1436 6164 6017 1440 7722 0001 3645	1436 5020 1436 0000 5020 0001 0001 0000 3453
3140 400 3141 400 3142 400 3143 400 3144 456 3577 400 3600 400 3601 400 3602 400 3603 400 3604 400 3603 400 3604 400 3604 400	4001 0000 4022 0000 4043 0000 4232 0000 4253 3577 4274 0000 4064 0000 4104 0000 4105 0000 4105 0000 4336 0000 4337 0000 4147 0000	4463 4464 4465 4466 4467 4471 4471 4472 4473 4474 4475 4475 4476 4477	9716 9717 9720 9721 4863 6294 6295 6296 6297	056 053 053 056 456 034 033 072 016	1437 5028 1437 0008 5222 0050 0001 0008 3170	6022 1436 1436 6164 6017 1440 7722 0001 3645	1436 5020 1436 0000 5020 0001 0001 0000 3453
3140 400 3141 400 3142 400 3143 400 3144 456 3577 400 3600 400 3601 400 3602 400 3603 400 3603 400 3603 400 3604 400 3605 400	4001 0000 4022 0000 4043 0000 4232 0000 4253 3577 4274 0000 4064 0000 4105 0000 4124 3000 4315 0000 4315 0000 4317 0000 4147 0000 4211 3030	4463 4464 4465 4466 4467 4471 4471 4473 4474 4475 4476 4477 4476 4477	9716 9717 9720 9721 4663 6294 6295 6296 6297 6279	056 053 053 056 456 456 033 072 016 016	1437 5028 1437 0008 5222 0050 0001 0000 3170 3467	6022 1436 1436 6164 6017 1440 7722 0001 3645 3066	1436 5020 1434 0000 5020 0001 0001 0001 0003 3453 6302
3140 400 3141 400 3142 400 3143 400 3144 456 3577 400 3600 400 3601 400 3602 400 3603 400 3603 400 3604 400 3605 400 3606 400 3607 400 3610 400 3611 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4064 0000 4105 0000 4115 0000 4315 0000 4315 0000 4317 0000 4147 0000 4211 0010 4400 0000	4463 4464 4465 4466 4467 4471 4472 4473 4473 4475 4476 4477 4300 4301 4302	9716 9717 9720 9721 4663 6294 6295 6296 6297 6279	056 053 053 056 456 456 033 072 016 016	1437 5028 1437 0008 5222 0050 0001 0008 3170	6022 1436 1436 6164 6017 1440 7722 0001 3645 3066	1436 5020 1434 0000 5020 0001 0001 0001 0003 3453 6302
3140 400 3141 400 3143 400 3144 456 3577 400 3601 400 3602 400 3603 400 3603 400 3604 400 3605 400 3606 400 3607 400 3611 400 3611 400 3612 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4064 0000 4105 0000 4105 0000 4115 0000 4117 0000 4147 0000 4170 0000 4211 0010 4421 0000	4463 4464 4465 4466 4467 4470 4471 4472 4473 4474 4475 4476 4477 4300 4301 4301 4302	9716 9717 9720 9721 4663 6294 6295 6295 6297 6297 6297	056 053 053 055 056 456 035 016 016 032	1437 5028 1437 0008 5222 0050 0001 0008 3170 3647	6022 1436 1436 6164 6017 1440 7722 0001 3645 3046 6317	1436 5020 1436 0000 5020 0001 0001 0000 3653 6302 0017
3140 400 3141 400 3143 400 3144 456 3577 400 3600 400 3601 400 3602 400 3603 400 3603 400 3604 400 3605 400 3606 400 3607 400 3611 400 3612 400 3612 400 3613 400	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0000 4064 0000 4105 0000 4105 0000 4115 0000 4315 0000 4315 0000 4317 0000 4317 0000 4417 0000 4421 0000 4421 0000 4421 0000	4463 4464 4465 4466 4467 4470 4471 4472 4473 4474 4475 4476 4477 4300 4301 4301 4302 4303 4503	9716 9717 9720 9721 4663 6294 6295 6296 6297 6279	056 053 053 055 056 456 035 016 016 032	1437 5028 1437 0008 5222 0050 0001 0008 3170 3647	6022 1436 1436 6164 6017 1440 7722 0001 3645 3046 6317	1436 5020 1436 0000 5020 0001 0001 0000 3653 6302 0017
3140 400 3141 400 3143 400 3143 400 3144 456 3577 400 3601 400 3602 400 3603 400 3603 400 3604 400 3605 400 3607 400 3611 400 3611 400 3612 400 3613 400 3614 432	4001 0000 4022 0000 4043 0000 4232 0000 4232 0000 4253 3577 4274 0000 4064 0000 4105 0000 4126 0000 4315 0000 4315 0000 4317 0000 4317 0000 4417 0000 4417 0000 4421 0000 4421 0000 4421 0000	4463 4464 4465 4466 4467 4471 4472 4473 4474 4475 4477 4477 4477 4477 4500 4501 4501 4502 4503 4504 3520	9716 9717 9720 9721 4643 6294 6295 6295 6297 6297 6297	056 053 053 055 056 456 035 016 016 032 076	1437 5028 1437 0000 3222 0050 0001 0000 3170 3667 0000 0860	6022 1436 1436 6164 6017 1440 7722 0001 3645 3066 6317 4312 2676	1436 5020 1436 0000 5020 0001 0001 0000 3653 6302 0017 0000 2715
3140 400 3141 400 3142 400 3143 400 3144 456 3577 400 3600 400 3601 400 3602 400 3603 400 3604 400 3605 400 3606 400 3607 400 3610 400 3611 400 3612 400 3611 400 3612 400 3614 452 3613 701	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0008 4064 0000 4105 0000 4126 0000 4315 0000 4317 0000 4317 0000 4147 0000 4147 0000 4211 0000 4421 0000 4421 0000 4421 0000 4421 0000 4421 0000 4421 0000 4433 4471	4463 4464 4465 4466 4467 4471 4472 4473 4476 4475 4476 4477 4500 4501 4501 4502 4503 4505	9716 9717 9720 9721 4643 6294 6295 6295 6297 6297 6297	056 053 053 055 056 456 035 016 016 032 076	1437 5028 1437 0008 5222 0050 0001 0008 3170 3647	6022 1436 1436 6164 6017 1440 7722 0001 3645 3066 6317 4312 2676	1436 5020 1436 0000 5020 0001 0001 0000 3653 6302 0017 0000 2715
3141 400 3142 400 3143 400 3143 400 3144 456 3577 400 3601 400 3602 400 3602 400 3603 400 3604 400 3605 400 3606 400 3611 400 3612 400 3611 400 3612 400 3613 400 3614 432 3615 701 3616 701	4001 0000 4022 0000 4023 0000 4232 0000 4232 0000 4233 3577 4274 0000 4165 0000 4165 0000 4126 3000 4315 3000 4317 3000 4417 3000	4463 4464 4465 4466 4467 4471 4472 4473 4476 4475 4477 4477 4477 4477 4500 4501 4502 4503 4503 4503 4505	9716 9717 9720 9721 4643 4259 4259 4257 4257 4300 4304 4307	056 053 053 053 056 456 033 072 016 032 076	1437 5028 1437 0008 5222 0050 0000 3170 3667 0000 6256 3663	6022 1436 1436 6164 6017 1440 7722 0001 3645 3066 6317 4312 2676 2676	1436 5020 1434 0000 5020 0001 0001 0000 3653 6302 0017 0000 2715 2715
3141 400 3142 400 3143 400 3143 400 3144 456 3577 400 3601 400 3602 400 3602 400 3603 400 3604 400 3605 400 3606 400 3611 400 3612 400 3611 400 3612 400 3613 400 3614 432 3615 701 3616 701	4001 0000 4022 0000 4043 0000 4232 0000 4233 3577 4274 0008 4064 0000 4105 0000 4126 0000 4315 0000 4317 0000 4317 0000 4147 0000 4147 0000 4211 0000 4421 0000 4421 0000 4421 0000 4421 0000 4421 0000 4421 0000 4433 4471	4463 4464 4465 4466 4467 4471 4472 4473 4476 4475 4477 4477 4477 4477 4500 4501 4502 4503 4503 4503 4505	9716 9717 9720 9721 4643 4259 4259 4257 4257 4300 4304 4307	056 053 053 053 056 456 033 072 016 032 076	1437 5028 1437 0000 3222 0050 0001 0000 3170 3667 0000 0860	6022 1436 1436 6164 6017 1440 7722 0001 3645 3066 6317 4312 2676 2676	1436 5020 1434 0000 5020 0001 0001 0000 3653 6302 0017 0000 2715 2715

Page 137

BLOCK V (B)

1532 001 8043 8343 8858	4014 056 0000 4015 4111
1533 056 0000 3200 0300	4019 056 4516 4000 0025
1534 001 0043 0343 0050	4012 020 4210 4000 4052
	4174 808 0825 8888 4516
1536 005 0002 0002 0002	4173 256 0026 4267 4917
1937 005 0001 3203 0001	
1340 036 8000 3171 0303	4267 000 0000 0008 0025
	4270 000 0000 0000 0026
3106 000 0000 0000 0000	4271 036 4314 4117 4104
3107 054 0008 3111 3550	
3110 654 8000 3111 8303	4477 076 5011 4506 4553
•	4502 056 4505 4506 6553
3170 854 0008 2717 8000	
3171 405 0802 3264 8302	4506 015 0000 3344 0000
3172 001 8001 0002 0001	4907 074 5114 4511 3113
3173 882 7761 8881 8880	4910 056 5012 4050 1632
3175 956 9990 3290 8009	4512 000 4013 0000 4116
3176 001 7761 3271 3271	4513 056 4014 4001 4122
3177 656 8008 1554 8308	4514 001 0043 0044 0046
3200 001 7761 3272 3272	4515 000 0000 0000 0046
3281 036 0088 1633 8000	4514 000 4000 0000 0000
	4517 400 0000 0000 0000
3224 002 0047 3239 0001	4520 856 8080 4537 8088
3225 802 0050 3236 8002	
3224 305 0001 0001 0001	4547 052 5501 8041 5671
3227 056 0000 1536 0000	
3230 001 4341 4342 3235	14551 816 4552 7581 7616
3231 001 0343 0344 3236	4552 052 3271 0041 3272
3232 004 3235 7742 3235	426 3514 4047 3515
3233 004 3236 7742 3236	4644 444 4444 4444
	4566 686 8005 0000 8000
3534 054 0080 3104 0080	4561 808 8088 8000 8000
3257 004 3517 3272 1420	4484 000 0000 0000 0000
	4434 000 0000 0000 3271
3260 005 1420 3262 1420	4437 900 0000 0000 3272
3261 056 0000 5114 0000	
•	5612 661 6843 8343 8038
3271 080 8090 8080 6080	
3272 000 0000 0000 0000	5104 805 0243 0243 8001
	5105 005 0244 0244 0002
4000 056 4517 4123 0026	3106 804 7761 8081 3263
4081 815 3344 7724 8080	5107 004 7761 0002 3244
4002 034 4004 4005 1432	5110 005 0243 0244 8001
4663 645 3344 7722 6080	5111 005 0417 0001 3242
4004 036 4007 4005 1632	5112 004 3262 0024 3262
4885 856 8088 4058 8888	3113 056 3115 5114 3113
4004 454 0440 1532 4040	5114 004 3517 3521 1420
4007 054 0000 1534 0000	\$113 036 0000 3257 0000
-44. A.4 AAAA 1334 AAAB	AITI TI LETE TET . TOTAL
AA11 484 A117 4444 4847	
4011 456 0313 4016 3503	3117 036 8000 4512 8000
4012 036 4515 4044 4104	5120 815 7724 3344 0000
4013 054 G308 4174 4071	5121 036 7761 4512 3262

Note: introduce data into cells 0243,0244,3344

BLOCK VI (K)

```
1504 056 0008 6653 0000
  1532 001 0043 0343 0050
                             1536 003 0082 0002 0002
1537 005 0031 3263 0001
  1533 056 0000 3035 0000
  1534 001 0043 0343 0050
                             1540 054 0000 3025 0000
  1535 056 0000 3224 0000
2527 056 0000 2720 2524
3466 856 8888 3014 8388
3186 888 8880 2000 BOCG
                       3110 056 0000 3111 0000
 3107 036 0000 3111 3550
 3122 000 0000 3030 3375
```

5813 015 3514 0000 0000 5014 876 0000 4711 0000

5104 005 0243 0243 0001

9103 003 0244 0244 0002 9104 004 7741 0001 3263

9107 004 7761 0002 3264

\$110 005 0243 0244 0001 \$111 005 0417 0001 3242 \$112 004 3262 0024 3262

1

Page 139 3127 003 3504 7757 0300 3130 076 3521 3132 1421 3132 005 3517 3515 1420 3133 056 0000 2101 0000 3131 056 3517 2101 1420 3170 056 0000 2717 0000 3172 001 0245 0070 0070 3171 000 0370 0000 0070 3173 056 0000 2531 0000 3224 002 0047 3235 0001 3233 004 3236 7762 3236 3225 002 0050 3236 0002 3234 056 0000 5104 0000 3226 003 0001 0001 0001 3235 000 0000 0000 0000 3227 056 0000 1536 0000 3236 000 0000 0000 0000 3230 001 0341 0342 3235 3231 001 0343 0344 3236 3237 004 3517 6607 1420 3240 005 1420 3262 1426 3232 804 3235 7762 3235 3241 054 0000 3114 0000 4000 056 4517 4123 0026 4007 056 0000 1534 0808 4001 015 3344 7724 gaga 4010 072 0000 6614 0000 4002 036 4006 4005 1432 4003 015 3344 7722 0000 4011 456 0313 4016 3503 4012 056 4515 4006 4104 4004 036 4007 4003 1632 4013 056 0000 4174 4071 4005 056 0003 4050 0300 4014 056 3300 4015 4111 4004 056 0000 1532 0000 4015 056 4516 4000 0025 4174 000 0025 0000 4516 4175 056 0026 4267 4517 4267 400 4000 0000 4025 4271 056 4514 4117 4104 4270 000 0000 0000 0026 4476 003 3504 7757 0300 4507 076 5114 4511 3113 4477 076 5011 4304 6553 4510 056 5012 4050 1632 4300 000 4503 0000 4130 4511 056 4012 3230 4632 4301 000 4504 0000 3114 4912 000 4013 0000 4116 4302 096 4505 4306 6553 4913'096 4014 4001 4122 4503 000 7761 0000 0041 4514 001 0043 0044 0044 4515 000 0000 0000 0046 4504 004 3510 7762 1437 4505 005 3510 3510 1432 4516 000 0000 0000 0000 4506 015 3344 0000 0000 . 4517 000 0000 0000 0000 4928 636 6666 4537 6660 4547 052 5501 0041 5671 0000 noon coon coon 4561 000 3000 9033 8090 4656 800 8000 8000 6686 4657 900 0000 0000 6607 4710 096 3516 5013 3517 5012 001 0043 0343 0350

7015 000 0000 0000 4711 7016 056 5017 4711 4345

5017 100 0000 0000 1417

5113 656 5115 5116 3113

5114 004 3517 3521 1423 5115 656 0008 3237 6800 5116 015 7722 3344 6860

5117 836 8688 4312 8888 5128 815 7724 3344 8888 5121 836 7761 4512 3262

Ŀ

					_					
Page	140									
233 0 2331	015	3344	3786							0000
9332	836	9890	2105	9388		3425 5426	052			1000
9333	885	1420	3262	1450		5627			_	0002
3334	ā t o	6537	0000	1421		5430	•02	-		
5335 5336		1420	1421	1422		5431	001	0001	0002	
3337	005	351C	3510	1423		5432 5433	001	0004		
5346	303	7762	7763			3434	005	7752		· · · -
5341	385	1427	1424	1425		5435	084	0005		0003
5342 5343	084		3510	1426	_	5436	205		4761	0005
3344	325	4601	2334	0000 4001	•	3437		>221	0004	
3345	505	4041	1423			5441	102	•		_
5344	5g 5	4241	1425	4241		5442	013	2207		0661 2207
3347	112		2114	8361		5443	013	2206	3023	
5350 5351	032 505	6000	2255			5444	013	5510	3024	2210
5352	345	4131	1422	4301		3445	000	0000	0000	
5353	202	4441	1424	4441		5447	013	2176		2176 2176
	505	4601	1426	4501		5450	033	2177		2177
5355	112	0137	-	8001		5451	0.33	5500	3022	2200
	452 701	4641		5135		5452	016		_	2215
	112		4061	4741		3453	013	2176	3025	2176
5361	013	2127		2127		5455	013	2177	_	2177
	0 0 G	0000		6000		3456	033	2200	3025	2200
5363	112		2126			5457	016	2230	2175	2213
	952	0000	0000	339C		5460	056	0000	2236	0000
	415	4741	0000	9006		5461 5462	000	0000	000	0000
5347	436	47,41	2172	2007		3463	000	6000	0000	0000
	704	4761	4741			5444	000	0000	0030	6969
7371 5372	704 704	5001		5001		3465	000	0000	0000	
a ⁻	704	5021 5041	6741 6761	5021 5341		3466 3467	000	0000	0000	6000
-	000	0000	0000	0700		3470	000	3000	0000	0000
3375	000	0000	0000	0 3 0 0		3471	600	0000	9040	0000
•	605	4761	4761	0301.		3472	000	3000	8000	0000
• .	605 605	5001 5021		00 03 .		9473 9474	025	9096	9000	0000
a	031	1000	9995	6364		3475	036	4041	2233	0000
5402	101	0304	0003	5521		3474		4101		0000 +101
5403	205					\$477	704	4141	4041	
	302 605			5041		3500		4201	4041	4201
	605			0304 0305			504 000	4241	1427	
-		4761		0005	•		112		2244	0000
_			0000	2163			032		2267	0000
.		_	_	0361				0000	3090	2260
-				0303				0000	4061	4061
				5301			112	6317	2255	0000
5415	504	5101	2000	5321				2256	2255	2236
				5341		5512	112	3215	2255	3661
				3361				2264	2266	2256
-				5 4 0 1 5 4 2 1		5514 5515	302	0000	4061	4061
		-	-	0 0 0 1	•			0000	2121	0000
	-			6366			703	4001	_	4661
				•					J •	• •

```
Page 141
                                      5571 112 7777 2340 8081
  5520 112 1520 2267 0020
5521 0<sup>54</sup> 0130 613<sup>7</sup> 1431
                                      5572 000 0000 0000 0000
  9522 013 2351 1431 2351
9523 013 3022 6137 1432
                                      5573 013 2340 0004 2340
                                   5574 112 0033 2337 0001
5575 032 0000 2114 0000
  5524 052 0000 0000 0000
5525 544 5521 0000 5521
5526 705 4741 5041 5541
                                      5576 452 0000 0800 2364
                                      5577 452 0000 0000 2352
                                      5600 500 4001 0000 4001
  5527 112 001<sup>7</sup> 2275 0001
                                      5601 112 7777 2350 0001
  5530 000 0000 0000 1430
  5531 032 0000 0000 0000
                                      5602 000 0800 0000
                                                            0000
                                      9603 013 2361 6137 2361
  5532 100 0000 0000 2500
  5533 112 0023 2302 0001
                                     .5604 013 2350 1432 2350
                                      5605 013 1430 1431 1430
  5534 052 0000 0000 0000
                                      5606 000 0000 0000 0000
5607 112 0016 2347 0001
  5535 452 0000 0000 2313
  5536 401 4741 2500 2500
5537 401 5041 2501 2501
                                     15610 016 2361 7501 7610
                                      .5611 052 4001 0041 4000
  5540 401 5541 2502 2502
                                      5612 013 2361 1430 2361
  5541 401 5521 2503 2503
                                       5613 000 0000 0000 1430
  5542 112 0002 2306 0001
                                      5614 000 0000 0000 0000
  5543 000 0000 0000 0000
  3544 452 00G0 000G 2317
                                       5615 112 0002 2346 0001
                                       5616 000 0000 0000 0000
  5545 513 2306 2322 2305
  5546 112 0003 2315 0001
                                       5617 033 2357 2373 2357
  5547 000 0000 0000 0000
5550 112 0004 2305 0001
5551 032 0000 2327 0000
                                       3620 013 2365 7724 2365
                                       5621 016 3145 2346 2366
                                       5622 000 0000 0000 0000
  5552 000 0003 0004 0004
                                      5623 000 0005 0000 0000
  5553 401 4741 2500 2500
                                       9624 013 2401 6137 2401
  5554 401 5041 2501 2501
5555 401 5541 2502 2502
                                       3625 052 0000 0000 0000
                                       3626 703 4741 5521 2101
  5556 401 5521 2503 2503
                                      5627 112 0017 2376 0001
                                       5630 000 0000 0000 0000
  5557 500 2323 0000 2306
                                       5631 000 0000 0000 0000
  9560 112 0003 2327 0001
                                      3632 000 6606 0000 2524
  5561 504 2474 7763 2474
  5562 112 0027 2331 0001
                                       5633 000 6607 0000 2525
                                      13634 016 2409 7501 7610
  5563 032 0000 2374 8000
                                       5635 052 2500 0041 2525
  5564 054 0130 6137 1431
                                       5636 000 0000 0000 0000
   5565 013 2341 1431 2341
                                       5637 000 0000 0000 0000
   5566 013 3022 3024 0004
                                       5640 032 0000 2346 0000
  5567 452 0000 0000 2342
  5570 704 4041 3242 4041
                                       3710 050 4411 0001 6030
   5704 050 0015 0001 6030
                                       5711 070 5331 5706 0000
   5767 070 5331 0000 0000
                                       6606 000 0000 0000 0000
   6683 016 6604 7501 7610
   6604 052 3242 0042 3261
                                       6497 000 0000 0000 0000
```

Note: introduce data into cells 0243,0244,3242-3261, 3344.5222-5242.6137

4405 054 0000 2507 0000

BLOCK	VII	(A)
-------	-----	--------------

BLOCK VIII (X)

 0257
 003
 0400
 0600
 0600

 2764
 056
 0074
 2771
 0074

 5335
 000
 1420
 0000
 1423

 5476
 112
 0143
 5354
 0001

 5703
 000
 0000
 0000
 0000
 0000

PROGRAM A

5703 112 0143 5551 8001

Note: program A must be added to blocks VII and VIII

Page 143

BLOCK IX

			P					
1734	104 0400	0008	0000 Num-10-5	1030	112	0126	4426	00e1
0735		T		-	_			
_	020 0415	4000	4114 per	1031	000	7701	0000	5051
8736	878 4860	8838	• • • •	1032	816	4433	4410	4422
8737	476 8440	1504	0000	1033	-			–
						0000	0000	4422
8740	016 0741	7501	7418	1034	032	0000	0000	
0741	952 8188	0042	4734	1035	500			5744
			•			5043	0000	
9742	816 8743	7561	7610	1836	548	5035	80 50	5743
8743	852 1414	444	1477	1037	112	-		
		0042	•	Ŧ	Ξ	0002	4433	0001
8744	056 0734	1371	0034	1940	500	5732	0000	3032
8745	500 0420	0000	4020	1041	112	0126	4440	0001
_							-	
1746	112 8775	8745	0001	1042	015	5034	6000	1110
1747	456 4737	4350	8052	1843	076	7761	4477	1478
_					_			
8750	052 6000	0000	0000	1044	002	7741	5050	6001
0751	854 8114	1344	0014	1045	044	6881	0000	3133
					-			
8752	913 4742	8014	4742	1044	001	7761	2020	4462
0753	452 8000	0000	4394	1047	844	6002	0000	6082
					· .		•	
0754	300 4020	0000	5020	1050	044	5050	0000	3143
8755	112 0013	4354	0001	1051	900	0000	0000	5140
1756				1052				
		0008	0000		004	2020	6002	5134
8737	400 5201	0000	5034	1053	002	0060	5136	5136
8760		•	4741	1054		3143	4002	5137
_		0000			004			
8761	180 8008	0000	5035 /	1055	002	0000	5137	3137
0762	112 0142	4341	0001	1056	004	7741	6002	3141
							-	_
6763	160 0000	0000	1275	1057	900	3137	8888	2142
1764	112 0200	4363	8001	1866	084	5135	4002	3145
					·			
1765	952 0000	0000	• • • • •	1961	003	3145	5143	5144
1766	702 5023	5020	6001	1862	016	4443	7501	7616
		_				_		
6767	702 5026	5020	4004	1063	052	3135	0036	5035
8779	705 6001	6001	6007	1064	052	1458	0000	0003
8771			6012		-			
		6004		1845	000	0000	0000	
4772	401 6007	5146	5146	1066	000	5137	8000	1444
8773	401 6012	3147	5147	1067	000	5137	0000	
_		-	• .					1445
9774	112 0002	4366	0001	1070	005	5135	5047	1467
0775	044 5146	0000	5044	1071	002	0000	3145	1447
	-							
8776	844 5147	0000	5047	1072	002	5028	1456	1461
8777	304 5776	5044	5032	1073	002	5021	1457	1462
1000	304 4001	5047	3147	1874				
			2641		002	5022	1460	1463
1001	112 0005	4377	6061	1075	005	5135	3046	1465
1002	605 5027	3144	0001	1076	056	3145	4725	1446
	-	_						-
1803	881 4001	5050	3630	1077	015	5034	7724	0000
1004	112 0010	4402	0001	1100	976	0000	4668	0000
		5050						
1005	885 5050	3 W 3 U		11-1				
1804			6001	1101	000	0000	0000	0000
	002 0252	6001	6001					
		4001	6001	1102	800	0000	0000	0000
1007	044 6001	4001 0000	6001 5051	1102	000	0000	0000	0000
		4001	6001	1102	800	0000	0000	0000
1007	844 6001 852 8000	4001 0000 0000	6001 5051 5060	1102 1103 1104	000 054 002	0000	0000 4402 7761	0040 0000 5135
1007 1010 1011	044 6001 052 0000 005 5036	4001 0000 0000 5154	6001 5051 5060 6001	1102 1103 1104 1105	000 054 002 044	0000 0000 0000 7762	0000 4402 7761 0000	0040 0000 5135 0014
1007 1010 1011 1012	044 6001 052 0000 005 5036 005 5153	4001 0000 0008 5154 5037	6001 5051 5060	1102 1103 1104	000 054 002	0000	0000 4402 7761	0000 0000 5135 0814
1007 1010 1011 1012	044 6001 052 0000 005 5036 005 5153	4001 0000 0008 5154 5037	6001 5051 0000 6001 6084	1102 1103 1104 1105 1106	000 056 002 044 052	0000 0000 0000 7742 0000	0000 4402 7741 0000	0000 0000 5135 0814
1007 1010 1011 1012 1013	044 6001 092 0000 005 3036 005 5153 005 5037	6001 0000 0000 5154 5037 5152	6001 5051 0000 6001 6002	1102 1103 1104 1105 1106 1107	600 054 002 044 052	0000 0000 0000 7742 0000	0000 4402 7761 0000 0000	00 0 0 8 0 0 5 1 3 5 0 4 1 4 0 0 0 0 5 1 3 6
1007 1010 1011 1012 1013	844 6001 892 0000 805 5636 805 5153 805 5637 805 5635	6001 0000 0000 5154 5037 5152 5154	6001 5051 8000 6001 6004 6002	1102 1103 1104 1105 1106 1107 1110	000 054 002 044 052 100	0090 0060 0060 7762 0000 0000	0000 4402 7761 0000 6000 0000 4507	00 8 0 00 0 0 5135 0814 00 0 0 5136 06 0 1
1007 1010 1011 1012 1013	844 6001 892 0000 805 5636 805 5153 805 5637 805 5635	6001 0000 0000 5154 5037 5152	6001 5051 0000 6001 6002	1102 1103 1104 1105 1106 1107	600 054 002 044 052	0000 0000 0000 7742 0000	0000 4402 7761 0000 0000	00 0 0 8 0 0 5 1 3 5 0 4 1 4 0 0 0 0 5 1 3 6
1007 1010 1011 1012 1013 1014 1015	044 6001 052 0000 005 3636 005 5153 005 5635 005 5635	4001 0000 0008 5154 5037 5152 5154 5153	6001 5051 8000 6001 6004 6002 6005 6003	1102 1103 1104 1105 1106 1107 1110	000 056 002 044 052 100 112	0090 0000 7762 0000 0000 0007	0000 4402 7761 0000 6000 0000 4507 7762	0000 0000 5135 0814 0000 5134 0001
1007 1010 1011 1012 1013 1014 1015	844 6001 892 8000 895 3636 885 5153 885 5635 885 5635	4001 0000 0000 5154 5037 5152 5154 5153 5152	6001 5051 8000 6001 6004 6002 6005 6003	1102 1103 1104 1105 1106 1107 1110 1111	000 054 002 044 052 100 112 004	0000 0000 0000 7742 0000 0007 0014	0000 4402 7761 0000 6000 0000 4507 7762 5145	00 00 8 0 00 5 1 3 5 0 8 1 4 0 0 8 0 5 1 3 6 0 8 0 1 5 1 4 5 5 1 4 1
1007 1010 1011 1012 1013 1014 1015	044 6001 052 0000 005 3636 005 5153 005 5635 005 5635	4001 0000 0008 5154 5037 5152 5154 5153	6001 5051 8000 6001 6004 6002 6005 6003	1102 1103 1104 1105 1106 1107 1110	000 056 002 044 052 100 112	0090 0000 7762 0000 0000 0007	0000 4402 7761 0000 6000 0000 4507 7762	0000 0000 5135 0814 0000 5134 0001
1007 1010 1011 1012 1013 1014 1015 1016	844 6001 892 8000 895 3636 885 5153 885 5635 885 5635 885 5636 782 6601	4001 0000 0008 5154 5037 5152 5154 5153 5152	6001 5051 5060 6001 6004 6002 6005 6003 6004 6007	1102 1103 1104 1105 1106 1107 1110 1111 1112	000 054 002 044 052 100 112 004 002	0000 0000 0000 7762 0000 0007 0014 0000 5145	0000 4402 7761 0000 6000 4507 7762 5145	0000 5135 0814 0000 5136 0001 5145 5141 5142
1007 1010 1011 1012 1013 1014 1015 1016 1017	844 6001 892 8000 895 3636 885 5153 885 5635 885 5635 885 5636 782 6681 584 6687	4001 0000 0008 5154 5037 5152 5153 5153 5152 4004 5051	6001 5051 5060 6001 6004 6002 6005 6003 6004 6007 5043	1102 1103 1104 1105 1106 1107 1110 1111 1112 1113	600 056 002 044 052 100 112 004 002	0000 0000 7762 0000 0000 0007 0014 0000 5145	0000 4402 7761 0000 6000 4507 7762 5145 6000	00 60 80 60 5135 00 14 00 80 5134 00 61 5145 5144 5144
1007 1010 1011 1012 1013 1014 1015 1016	844 6001 892 8000 895 3636 885 5153 885 5635 885 5635 885 5636 782 6601	4001 0000 0008 5154 5037 5152 5154 5153 5152	6001 5051 0000 6001 6004 6005 6005 6003 6004 6007 5043	1102 1103 1104 1105 1106 1107 1110 1111 1112	000 054 002 044 052 100 112 004 002	0000 0000 0000 7762 0000 0007 0014 0000 5145	0000 4402 7761 0000 6000 4507 7762 5145	0000 5135 0814 0000 5136 0001 5145 5142
1007 1010 1011 1012 1013 1014 1015 1016 1017	844 6601 892 8000 895 3636 889 9153 889 9639 889 9636 782 6601 584 6687 112 8882	4001 0000 0008 5154 5037 5152 5153 5153 5152 4004 5051	6001 5051 0000 6001 6004 6005 6005 6003 6004 6007 5043	1102 1103 1104 1105 1106 1107 1110 1111 1112 1113 1114	600 056 002 044 052 100 112 004 002 000 616	0000 0000 7742 0000 0000 0007 0014 0000 5145 3145	0000 4402 7761 0000 0000 0000 4507 7762 5145 0000 4442	00 80 80 80 5135 80 14 60 80 5136 80 81 5145 5144 4465
1967 1916 1911 1812 1813 1814 1815 1816 1817 1826 1821 1822	844 6601 892 8000 895 5636 885 5133 885 5635 885 5635 885 5636 782 6661 784 6687 112 8862 886 8688	4001 0000 0000 5154 5037 5152 5154 5153 5152 4004 5051 4417	6001 5051 0000 6001 6004 6005 6005 6003 6004 6007 5043 0001	1102 1103 1104 1105 1106 1107 1110 1111 1112 1113 1114 1115	600 054 002 044 052 100 112 004 002 000 616	0080 0068 0068 7742 0060 0007 0014 0008 5145 5145 4516	0000 4402 7741 0000 0000 0000 4507 7762 3145 0000 4462	00 00 00 00 5135 00 10 5130 00 01 5145 5144 4465
1007 1010 1011 1012 1013 1014 1019 1016 1020 1021 1022 1022	844 6601 892 0000 809 5636 809 5133 009 5637 809 5639 809 5636 702 6601 702 6601 712 8662 806 8600 852 0000	4001 0000 0000 5154 5037 5152 5153 5152 4004 4417 0000 0000	6001 5051 0000 6001 6001 6005 6005 6005	1102 1103 1104 1105 1106 1110 1111 1112 1113 1114 1115 1116	600 054 002 044 052 100 112 004 002 000 616 002	0080 0068 0068 7742 0060 0007 0014 0008 5145 4514 0008 5044	0000 4402 7761 0000 8000 8000 4507 7762 5145 8000 84462 0000 5031	0080 0000 5135 0814 0080 5136 0001 5145 5144 4465 4465
1007 1010 1011 1012 1013 1014 1019 1016 1020 1021 1022 1022	844 6601 892 0000 809 5636 809 5133 009 5637 809 5639 809 5636 702 6601 702 6601 712 8662 806 8600 852 0000	4001 0000 0000 5154 5037 5152 5153 5152 4004 4417 0000 0000	6001 5051 0000 6001 6001 6005 6005 6005	1102 1103 1104 1105 1106 1110 1111 1112 1113 1114 1115 1116	600 054 002 044 052 100 112 004 002 000 616	0080 0068 0068 7742 0060 0007 0014 0008 5145 5145 4516	0000 4402 7741 0000 0000 0000 4507 7762 3145 0000 4462	0080 0000 5135 0814 0080 5136 0001 5145 5144 4465 4465
1007 1010 1011 1012 1013 1014 1019 1016 1020 1021 1022 1023 1024	844 6601 892 8000 893 5636 885 5133 885 5835 885 5835 885 5836 782 6681 584 6687 112 888 888 8888 888 8888 898 9888	4001 0000 0000 5154 5037 5152 5153 5152 4004 7051 6000 6000	6001 5051 0000 6001 6001 6005 6005 6003 6006 6007 5043 0001 8000 6000 5735	1102 1103 1104 1105 1106 1110 1111 1112 1113 1114 1115 1116 1117	000 054 002 044 052 100 112 002 000 000 002	0080 0080 7742 0080 0000 0007 0014 0008 5145 4514 0008 5044	0000 4402 7761 0000 8000 8000 8000 7762 5145 8000 8000 8000 8000 8000 8000 8000 80	0080 0000 5135 0814 0080 5136 0001 5145 5144 4465 6001
1007 1010 1011 1012 1013 1014 1015 1016 1020 1021 1022 1023 1024	844 6001 892 0000 895 5036 885 5133 005 5037 885 5835 885 5836 782 6681 584 6687 112 0082 888 888 888 590 5035 112 0123	4001 0000 0000 5154 5037 5152 5153 5152 4004 7051 6000 6000 4424	6001 5051 0000 6001 6004 6005 6003 6004 6007 5043 0001 8000 8000 8000	1102 1103 1104 1105 1106 1110 1111 1112 1113 1114 1115 1117 11120 1121	000 0054 0054 0052 0052 1002 1124 0002 0006 0005 0005 0005	0000 0000 7742 0000 0000 0007 0014 0000 5145 4514 0000 5044 5047	0000 4402 7761 0000 0000 0000 4307 7762 3149 0000 0000 0000 0000 0000 0000 0000 0	0080 0000 5135 0814 0080 5136 0001 5142 5142 4465 6001 5052
1007 1010 1011 1012 1013 1014 1019 1016 1020 1021 1022 1023 1024	844 6001 892 0000 895 5036 885 5133 005 5037 885 5835 885 5836 782 6681 584 6687 112 0082 888 888 888 590 5035 112 0123	4001 0000 0000 5154 5037 5152 5153 5152 4004 7051 6000 6000	6001 5051 0000 6001 6001 6005 6005 6003 6006 6007 5043 0001 8000 6000 5735	1102 1103 1104 1105 1106 1110 1111 1112 1113 1114 1115 1116 1117	000 054 002 044 052 100 112 002 000 000 002	0080 0080 7742 0080 0000 0007 0014 0008 5145 4514 0008 5044	0000 4402 7761 0000 8000 8000 8000 7762 5145 8000 8000 8000 8000 8000 8000 8000 80	0080 0000 5135 0814 0080 5136 0001 5145 5144 4465 6001

Page	144								
1124		1454	5152	6083	1220	001	1447	7761	60a1
1125		6003	5102	6102	1221	005	6361	5135	1447
1126		0002	4524	1001	1222	002	0008	1447	1447
1127		6102	5052	6002	1223	052	6000	0000	0000
1130	595	1453	6002	6006	1224	505	1656	6001	1461
1171	535	5147	5052	6003	1225	702	5920	1461	1401
1172	732	6000	600,3	6006	1226	112	0002	4654	0001
1133		5015	6004	1456	1227	002	7761	5032	3014
1174		6000	6000		1230	005	0014	7762	6001
1135		6311	5103	5143	1231	005	6001	7762	6301
1136	-	502C	1456	6015	1232	921	6081	7753	6002
1137		6015	6015	6020	1233	902	5001	4002	60g3
1140		602C	5102	5102	, 1234	005	6003	7757	4000
1141		6006	5004	6024	1235	974	0000	4640	1464
1142		6924	5101	5161	1236	005	7756	6002	1465
1143		2005	4530	0001	1237	0 76		4656	1467
1144		>1q1 >1q2	0000	3101	1249	305	0014	0416	5005
1146		5103	0000	5102 5103	1242	875	4642	7501	7610
1167		6383	5101	6024	1243	004	6086	5135	60g6 60g7
1150		6012	5132	6027	1244	319	4645	7501	7610
1151		1445	6024	6032	1245	075	6007	0012	6010
1152		1669	6027	6035	1246	015	5962	0000	0000
1173		3027	6024	6040	1247	375	3047	4651	1467
1174		5027	6027	6043	1250	336	6010	4654	1463
1155		6032	5104	5104	1251	015	7763	6002	0000
1156		6035	5105	5105	1252	976	0000	4455	0000
1157	401	6048	5106	5196	1253	301	C416	6010	1465
:140		5043	5107	5107	1254	356	0000	4656	0000
1161	112	6010	4347	0001	1255	301	0417	6010	1465
:102		6000	1100	8 8 9 7	1256	005	5031	5047	1466
, 163	1 319	4564	7501	7610	1257	056	0000	4725	4465
.164		>104	7076	6001	1560	056	0000	4777	0000
1165		0001	4363	0001	1261	500	5035	0000	1450
:166		3106	3300	0000	1262	112	0010	4661	0001
1167	376	7142	4571	1445	1263	500	5007	0000	1450
1170		6001	4572	1464	1264	112	0013	4663	0001
1172		0417	3030	1464	1265	305	7761	5031	315G 1425
1173		5142	4575	0000	1267	112	0016	4066	0001
1174		6002	4576	1465	1270	002	7761	5032	6001
1175		0417	9372	1465	1271	005	0416	6001	1465
1176		6102	5047	1467	1272	015	5034	7722	0000
1177		5107	5142	1447	1273	976	0000	4717	1476
1200	002	2000	1447	1447	1274	002	5031	0000	0000
1201	056	0360	4725	0000	1275	076	0000	4700	1443
1202	934	5047	5046	5135	1276	002	3000	5031	1467
_	3. 235		5135	6001	1277	056	5734	4725	1447
1204		7761	5071	6001	1300	054	0102	5033	6010
120		3300	3030	0000	1301	054	0076	6010	6001
1200		9388	3333	5136	1302	005	5047	5031	6005
121		3007	6636	0001	1303	005	3047	6001	6003
.210		6001	9335	9137	1304	004	6002	6003	1467
1211		3000	5137	5143	1305	004	1467	1467	6004
1213		7761	2000	5145 5141	1306 1307	200	7761	6804	1443
121		4415	4462	4465	1310	052	0000	0000	9000
121		5137	1600	1444	1311	405	1456	1467	6001
12:0		5145	3000	1446	1313	302	5023	6001	1441
121		_ ~	5137	1447	1313	112	5002	4711	3001
				- ·					

		_					_		
1314	001	1467	0034	1466	1340	013	4736	3444	4736
1315	002	1466	5031	1466	1341	000	0000	0000	0000
1316	056	0000	4725	1447	1342	112	7777	4353	0001
1317	002	7761	5033	6001	1343	052	6764	0 0.0 0	7615
1320	005	6001	0417	1467	1344	000	7504	0000	7541
1321	056	5734	4725	1447	1345	056	0000	0050	0000
1322	000	0000	0000	0002	1346	054	0130	4736	6000
1323	000	0000	0000	0001	1347	013	4750	6000	4750
1324	000	0014	0000	0 0 0 0	1350	030	0000	4751	0877
1325	013	5733	7722	5733	1351	033	6616	4741	6001
1326	015	5732	5733	0000	1352	054	0114	6001	60 G Z
1327	076	0000	4734	1471	1353	054	0050	6000	6003
1330	001	0330	0000		1354	013	4762	6000	4762
1331	076	7761	4734	1471	1355	013		-6003	4762
1332	000	5734	0000	1471	1356	013	4760	6002	4760
1333	000	0000	0000	0000	1357	013	4762	3444	4762
1334	013	4354	4724	4334	1360	112	7776	4757	
		•					4762	•	0001
1335	052	0000	0000	0 0.0 0	1361	016	• . –	7501	7610
1336	500	1440	0000	0420	1362	052	0000	0042	0000
1337	112	0035	4736	0001	1363	056	0000	0050	0000
1365	052	0000	0000	0000	1375	000	0000	0000	5733
1366	100	0 8 8 0	0000	\$100	1376	832	0000	0745	8000
1367	112	0010	4766	0001	1377	005	5031	0000	0000
1370	g 56	0000	4523	0000	1400	076	0000	2005	0000
1371	002	0000	7761	5734	1401	032	0000	4661	0000
1372	021	0330	7753	5732	1402	002	5033	0000	0000
1373	061	7751	5732	5732	1403	076	0000	5001	0000
1374	055	5732	7732	5732	1404	032	0000	4504	0000
					47.5				
1502	000	0735	0000	0070	1503	0 5 6	0736	0740	0051

Note: introduce data into cells 1364, 6616, and 1345 (except for block IX)

DOC = 83067305 PAGE 146

PAGE **2**87 /

APPENDIX 2 CALCULATION EXAMPLES

Example 1
Assignment of numbers and instructions for calculating the aerodynamic coefficients of a complex body (see Fig. 7)

Address	Number	Address	Number	Address	Number	Paramete
0420	—2	0457	0	0516	0	
0421	-2	0460	2	0517	—11	
0422	0	0461	-2	0520	0	
0423	-3	0462	0	0521	2	
0424	-3	0463	0	0522	_9	
0425	9	0464	- 2	0523	0	
0426	-4	0465	2	0524	0	
0427	-2	0466	0	0525	2	
0430	0	0467	-4	0526	0	
0431	0	0470	2	0527	0	}
0432	0	0471	0	0332	0	
0433	. 0	0472	—3	0260	0	20
043 4	-2	0473	3	0274	0	30
0435	0	0474	0	0310	160	Н
0436	0	0475	1	0313	1	4
0437	-2	0476	0	0334	1	P 0
0440	. 0	0477	1	0335	12,5663706	S _M
0441	2	0500	-4	0336	4	d _≌
0442	-2	0501	0	0337	10,81-	x ₁₁
0443	2	0502	0	0340	10,0	x ₂₁
0444	0	0503	-4	0341	-3	x ₁₂
0445	2	0504	0	0342	3	x22
0446	0	0505	2	0343	-2,01	x ₁₃
0447	- o	0506	-4	0344	2,01	x ₂₃
0450	-4,	0507	2	0317	-3	x ₁
0451	0	0510	0	0250	320	T _w
0452	O	0511	0,5	0253	1000	N _{1 p}
0453	4	0512	0	0254	6000	N _n p
0454	2	0513	0	0256	1000	N _{3 p}
0455	0	0514	-11	0333	2000	Nap
0456	_4	0515	0	1		1

Page 147 2. Instructions

Address	Instructions			ons ———	Address	Instructions			
5201	000	0000	0000	0000	6615	000	0000	0100	0000
5202	000	0000	0001	0000	6616	000	0000	0007	0000
5203	000	0000	0001	0000	6617	000	0000	0001	0000
5204	000	0000	1000	0000	6620	000	0000	1000	0000
5205	000	1000	0000	0000	6621	000	000	0001	0000
5206	000	0000	00(0	0001	6622	000	0000	0001	0000
5207	000	0000	0001	0000	1364	000	0000	0006	0000

3. Block II; numbers and instructions to block II

Address	Numbers and instructions	Address	Numbers and instructions
0313	—1 .	5225	000 0134 0152 0170
1420	1015	5226	000 0134 0152 0470
5222	000 0134 0152 0170	5227	000 0134 0152 0170
5223	000 0134 0152 0170	5230	000 0134 0152 0170
5224	000 0134 0152 0170		

4. Blocks IV, IX, instruction to block IX

Address	Instruction
1245	000 0000 0000

5. Punched card with control sum equal to zero6. Numbers (without address code)

Position #	Num- ber	Pos. #	Num-	Pos.	Num-	Pos. #	Number	Pós. #	Number
1 2 3 4 5	7 1 1 0 0	7 8 9 10	-1 0 0 1	13 14 15 16 17	0 -1 -1 0 0	19 20 21 22 23	0 0 0 6,28318531	25 26 27 28 29	0 0 0 0
6.	0	12	0	18	-3	24	4	30	0

DOC = 83067305

PAGE 273

PAGE 148

7. Punched card with control sum equal to zero Results of calculation of the aerodynamic coefficients of surface 6 with Np = 2000

Parameter	- Calculated value	es of the parameters
	without the use of block I	I using block II
c+61	+ 05	0 25333314 2 38246653 3 43034721
m+6 i	+ 0:	2 16433219 2 29514657 1 14184753
e_61	+ 02 52467521° ++- 03 13349649 + 02 16996168	+ 01 95118551 + 02 63304634 + 02 38108233
m_6;	++- 03 59884535 + 02 47080428 ++- 06 10030515	++- 02 60868448 + 01 12316268 ++- 01 16308264
c _{rai}	+ 03 23085248 + 05 40420692 ++- 03 18622387	++- 00 00000000 ++- 00 00000000 ++- 00 00000000
m _{r6} [++- 04 71240455 ++- 03 42093157 ++- 04 97449755	++- 00 00000000 ++- 00 00000000 ++- 00 00000000
c _{e t}	+ 00 25881075 + 02 36952109 + 02 10830457	+ 00 34845169 + 01 10155128 + 02 33804760
m _{g i}	++- 02 23134077 + 02 72385769 ++- 01 14282303	++- 02 77301667 + 01 15267734 ++- 01 30493017

Example 2

Assignment of numbers and instructions for calculating local flows to the inner surface of a cylinder (see Fig. 8)

1. Numbers

Address	Number	Address	Number	Parameter	Address	Number	Parameter
0420	0	0440	1,0	_	0336	2,0	d _M
0421	0	0441	0	_	0337	-0,01	مر م
0422	0	0442	0	_	0340	3,0	x ₂₁
0423	0	0443	0	_	0341	-1,0	x0
0424	1,0	0444	1,0	_	0342	1,0	x 0 22
0425	0	0445	-3,0	_	0343	-1,0	x ₁₃ .

Page 149

Address	Number	Address	Number	Parameter	Address	Number	Parameter
0426	0	0446	0	-	0344	1,0	x 0 23
0427	0	0447	Ō	_	0243	1,0	
0430	1,0	0310	100	H	.0244	1,0	_
0431	0	0107	3048	v_{∞}	0253	1000	N _{1 P}
0432	0	0116	574	$egin{array}{c} oldsymbol{v}_{\infty} \ ar{oldsymbol{v}} \end{array}$	0254	5000	N_{2p}
0433	0	0125	45 2	T _{oo}	0256	1000	N _{3 p}
0434	0	0313	1,0	a.	0333	5000	N ₄ p
0435	0	0250	300	Tw	0330	-2.0	
0436	0	0334	1,0	p ₀	_		_
0437	0	0335	3.14159265	S _M	_	_	

2. Instructions

ddress	Instructions	Address	Instructions
6616	000 0000 0002 0000	1364	000 0000 0002 0000
6617	000 0000 0001 0000	5201	0000 0000 0000 0000
6620	000 0000 0001 0000	5202	000 0000 0001 0000
6621	000 0000 0001 0000	3344	000 0000 0001 0000
6622	000 0000 0001 0000		

- 3. Blocks V, VIII (with program A) and IX. 4. Punched card with control sum equal to zero

Results of calculation of the flow of particles to the inner surface of a cylinder with $N_D = 5000$

Values of index	Calcul values c		Values of index	Calculated values of n_{rk}		
1	-++ 01	162410450	11	-++ 01	110155920	
2	+++ 01	166203118	i2	+++ 01	102991993	
3	-++ 01	152718078	13	-++ 01	100126422	
4	+++ 01	151453855	14	+++ 00	967551620	
5	-++ 01	140244416	15	-++ 00	855457225	
6	+++ 01	147071217	16	+++00	808259585	
7	-++ 01	129624947	17	-++ 00	751 79098 0	
8	+++ 01	126759376	18	+++ 00	644753475	
9	-++ 01	119342604	19	-++ 00	589970500	
10	+++ 01	116561314	20	+++ 00	473662030	

Page 150

Example 3

Assignment of numbers and instructions for calculating flow parameters in the outlet section of a complex channel (see Fig. 9)

1. Numbers

Address	Number	Address	Number	Address	Number	Parameter
0420	1	0453	0	0506	1	!
0421	1	0454	. 0	0507	0	<u> </u>
0422	1	0455	0	0510	0	_
04:23	-0,12	0456	. 2	0511	0	_
0424	0	0457	0	0512	0	_
0425	0	0460	' 0	0513	0	_
0426	0	0461	. 0	0310	100	H
0427	—1	0 462	0	0107	8000	V_{∞}
0430	0	0463	0	0313	1	a _*
0431	1	0464	1	0 332	0	_
0432	0	0465	— 1	0334	1	<i>p</i> ₀
0433	0	0466	. 0	0335	3,14159265	S _M
0434	0	0467	; 1	0336	2	d _M
0435	1	0470	0	0337	0	x ₁₁
043 6	1	0471	0	0340	5	x 21
0437	0	0472	0	0341	-2,0	x ₁₂
0440	0	0473	. 1	0342	2,0	x 0 22
0441	0	0474	1	0343	-2,0	x 0
0442	0	0475	0	0344	2.0	x 23
0413	0	0476	0	0243	2,0	_
0444	0	0477	-1	0244	2,0	_
0445	6,28318531	0500	0	3242	3,14159265	S_{λ}
0446	0	0501	0	0253	1000	N _{1 p}
0447	5	0502	0	0254	3000	N ₂ p
0450	0	0503	6,28318531	0256	1000	N _{3 p}
0451	0	0504	0	0333	1000	N _{+ p}
0452	0	0505	1	0250	1000	<i>T</i>

Page 151
 2. Instructions

dress	Instructions			Address	Instructions				
6616	000	0000	0002	0000	5202	000	0001	0000	0000
6617	000	0000	0001	0000	5222	000	0000	0000	0000
6620	000	0000	0001	0000	5 223	001	0000	0000	0000
6621	000	0000	0001	0000	3344	000	0000	0001	0000
6622	000	0000	1000	0000	6137	000	0000	0000	1000
5201	000	0000	0001	0000					

3. Instructions of transducer of pseudo-random numbers

Address	Instructions	Address	Instructions
6676	3 14 0115,0000,0002	6727	1 00 0631.4552.5460
6677	6 15 0000,0002,0001	6730	0 00 7777.4000.0000
6700	2 55 0001.0001.0001	6731	0 00 0000.0000.0000
6701	0 14 0054.0001.0001	6732	1 00 1553.1637.2470
6702	5 75 0002.0001.0000	6733	0 00 7777.4000.0000
6703	5 21 0000,0000,0002	6734	0 00 0000,0000,000
6704	0 00 0000,0000,0000	6735	1 00 5462.0414.7660
6713	1 00 5042.7732.6410	6736	0 00 7777.4000,0000
6714	0 00 7777,4000,0000	6737	0 00 0000,0000,0000
6715	0 00 0000.0000.0000	6740	1 00 0766.2410.1200
6716	1 00 2704.4152.0170	6741	0 00 7777.4000.0000
6717	0 00 7777,4000,0000	6742	0 00 0000,0000,0000
6720	0 00 0000,0000,0000	6743	1 00 2021.3542.3620
6721	1 00 0345.5747.7460	6744	0 00 7777.4000.0000
6722	0 00 7777,4000.0000	6745	0 00 0000.0000.0000
6723	0 000,0000,0000	6746	1 00 7106.5141.5200
6724	1 00 1576.1653.0570	6747	0 00 7777,4000,0000
6725	0 00 7777,4000,0000	6750	0 00 0000,0000,000
6726	0 00 0000.0000,0000		

- 4. Block VI
- 5. Punched card with control sum equal to zero

Results of calculation of the parameters of a gas in the outlet section of a complex channel with $N_p = 3000$

Parameter	Calculated values of the parameters			
₩ _{+λ}				
n_{λ}	-++ 01 73347279			
V'3 (L)	+ 01 15401366			
T'_{λ}	-++ 01 46998838			
q' _{3 (\lambda)}	+ 03 24781755			