Duração: 90 minutos

Teste de Cálculo B

Curso: MIEMec Nome: _ Nr.: ____

- Pode consultar os "formulários" da disciplina.
- Apresentação OBRIGATÓRIA dos resultados no próprio enunciado do teste.
- Bom Trabalho.

Relativamente as questões seguintes, indique se são verdadeiras ou falsas, justificando adequadamente. Cada pergunta vale 1.0 valores. Cada pergunta não justificada vale 0.0 valores.

- 1. O valor de sen $\left(\arccos\frac{2\sqrt{6}}{7}\right)$ é $\frac{5}{7}$.
- 2. Calculando a primitiva $\int \left(x\sqrt{2x+1}\right)dx$ através da substituição $2x+1=t^2,\,t\geq 0$, somos conduzidos a $\int \left(\frac{t^2-1}{2}t\right)dt$.
- 3. Considere a função $f(x) = \frac{4}{4 x^2}$ definida num intervalo I. Então $F(x) = -\arctan\left(\frac{x}{2}\right)$ é uma primitiva de f em I.
- 4. Sejam $F \in G$ duas primitivas (que nunca se anulam) da mesma função f tais que G(x) = F(x) + 3, então tem-se que $\left(\frac{F}{G}\right)'(x) = 3f(x)$.

$$\bullet \, \operatorname{sen} \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}$$

$$\bullet \ \operatorname{sen} \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

•
$$\sin \frac{\pi}{6} = \cos \frac{\pi}{3} = \frac{1}{2}$$
 • $\sin \frac{\pi}{3} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ • $\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$

- 1. Considere a função $f(x) = -2\arccos(1-\frac{x}{3}) + \frac{\pi}{4}$.
 - (a) Determine o domínio e o contradomínio da função f.

(b) Determine a expressão da função f^{-1} .

2. Determine as seguintes primitivas:

(a)
$$\int \left(\frac{2}{7\sqrt[3]{x}} + \frac{4}{3 - 2x} + \sqrt{4x - 3}\right) dx$$

(b)
$$\int \left(\sin x \cdot e^{\cos x} + \frac{\cos(5x)}{\sin^4(5x)} \right) dx$$

(c)
$$\int \left(\frac{5}{\sqrt{1-9x^2}} + \frac{e^x}{\sqrt{4+e^{2x}}}\right) dx$$

(d)
$$\int x \ln(x^2) dx$$

3. Sem determinar as constantes, apresente a decomposição da função racional $\frac{1}{(x-1)^2(x^2+2x)(x^2+3)}$ em fracções elementares:

1. Determine a função f definida em \mathbb{R}^+ que verifica $f'(t)=\frac{1}{t}+t^2$ e tal que f(1)=2.

2. Calcule
$$\int \frac{x^4 - 8}{x^3 - 2x^2} dx$$

3. Calcule $\int \sin^3 x \, dx$