A big thanks to our sponsors, the participants and ...

Thank you!

From Point Groups to Space Groups

What are they and why do we need them?

Andreas Decken, University of New Brunswick

In the absence of symmetry, we can choose every possible unit cell.

Hein Schaper:

To correctly describe our structure, we have always to choose the highest possible symmetry.

How can we describe a crystal which contains a certain symmetry, for example a mirror plane, but the smallest cells are incompatible with these symmetry elements.

We choose a cell of higher volume, containing more than one lattice point, a so called centered cell. In this example, we have a C-centered cell.

Bravais Lattices

Courtesy: Charles Campana

- Within each crystal system, different types of centering produce a total of 14 different lattices.
- P Simple
- I Body-centered
- F Face-centered
- B Base-centered (A, B, or C-centered)
- All crystalline materials can have their crystal structure described by one of these Bravais lattices.

Bravais Lattices

Courtesy: Charles Campana

Cullity, B.D. and Stock, S.R., 2001, Elements of X-Ray Diffraction, 3^{rd} Ed., Addison-Wesley

Bravais Lattices

Courtesy: Charles Campana

Cullity, B.D. and Stock, S.R., 2001, Elements of X-Ray Diffraction, 3rd Ed., Addison-Wesley

Screw Axes

Credit: M. Kastner, T. Medlock & K. Brown, Univ. of Bucknell

Two-fold Screw Axis

Credit: M. Kastner, T. Medlock & K. Brown, Univ. of Bucknell

Three-fold Screw Axis

Source: G.H Stout & L.H. Jensen - X-Ray Structure Determination (A Practical Guide)

Screw Axes

Combination of translation and rotation

Designated as n_m (e.g. 2_1 , 3_1 , 3_2)

Rotation as 360°/n

Translation as m/n of a unit cell

Does not change handedness

Glide Plane

Credit: M. Kastner, T. Medlock & K. Brown, Univ. of Bucknell

Glide Plane

Credit: M. Kastner, T. Medlock & K. Brown, Univ. of Bucknell

Glide Planes

Combination of translation and reflection

Designated as a, b, c, n, d

Translation as a/2 (a-glide), b/2 (b-glide)or c/2 (c-glide)

Changes handedness

n and d Glide Planes

- n glides translate along face diagonals, (a+b)/2, (a+c)/2, or (b+c)/2
- d glides only occur F and I centred lattices
- d glides translate along face diagonals at ½ along each direction, i.e. (a+b)/4, (a+c)/4, or (b+c)/4

Systems – Point Groups – Space Groups

System Triclinic	Point Group	Space Group						
	$\frac{1}{1}$	P1 P1	Ç					
Monoclinic	2	P2	P2 ₁	C2				
	m	Pm	Pc	Cm	Cc			
	2/ m	P2/m	$P2_1/m$	C2/m	P2/c	$P2_1/c$	C2/c	
Orthorhombic	222	P222	P222 ₁	P2 ₁ 2 ₁ 2	P2 ₁ 2 ₁ 2 ₁	$C222_{1}$	C222	
		F222	<i>I</i> 222	$I2_{1}2_{1}2_{1}$				
	mm2	Pmm2	$Pmc2_1$	Pcc2	Pma2	$Pca2_1$	Pnc2	
		Pmn2 ₁	Pba2	$Pna2_1$	Pnn2	Cmm2	$Cmc2_1$	
		Ccc2	Amm2	Abm2	Ama2	Aba2	Fmm2	
		Fdd2	Imm2	Iba2	Ima2			
	mmm	Pmmm	Pnnn	Pccm	Pban	Pmma	Pnna	
		Pmna	Pcca	Pbam	Pccn	Pbcm	Pnnm	
		Pmmn	Pbcn	Pbca	Pnma	Cmcm	Cmca	
		Cmmm	Cccm	Cmma	Ccca	Fmmm	Fddd	
		Immm	Ibam	Ibca	Imma			
Tetragonal	4	P4	P4 ₁	P4 ₂	P4 ₃	<i>I</i> 4	<i>I</i> 4 ₁	
	4 4	$P\bar{4}$	$I\bar{4}$	- 2	3		1	
	4/m	P4/m	$P4_2/m$	P4/n	$P4_2/n$	I4/m	$I4_1/a$	
	422	P422	P42 ₁ 2	P4 ₁ 22	P4 ₁ 2 ₁ 2	P4 ₂ 22	P4 ₂ 2 ₁ 2	
		P4 ₃ 22	$P4_{3}2_{1}2$	I422	$I4_{1}22$	1 1222	1 72212	
	4 mm	P4mm	P4bm	P4 ₂ cm	$P4_2nm$	P4cc	P4nc	
	_	$P4_2mc$	$P4_2bc$	I4mm	I4cm	$I4_1md$	$I4_1cd$	
	42 m	$P\bar{4}2m$	$P\bar{4}2c$	$P\overline{4}2_1m$	$P\bar{4}2_1c$	$P\bar{4}m2$	$P\overline{4}c2$	
		P4b2	$P\bar{4}n2$	$I\overline{4}m2$	$I\bar{4}c2$	$I\overline{4}2m$	142d	

	4/mmm	$P4/mmm$ $P4/nmm$ $P4_2/mbc$ $I4_1/amd$	P4/mcc P4/ncc P4 ₂ /mnm I4 ₁ /acd	$P4/nbm$ $P4_2/mmc$ $P4_2/nmc$	$P4/nnc$ $P4_2/mcm$ $P4_2/ncm$	P4/mbm P4 ₂ /nbc I4/mmm	P4/mnc P4 ₂ /nnm I4/mcm
Trigonal/rhombohedral	$\frac{3}{3}$	P3 P3	P3 ₁ R3̄	P3 ₂	R3		
	32	P312 R32	P321	P3 ₁ 12	P3 ₁ 21	P3 ₂ 12	P3 ₂ 21
	3 m 3 m	P3m1 P31m	P31m P31c	P3c1 P3m1	P31c P3c1	R3m R3m	R3c R3c
Hexagonal	6 6 6/ <i>m</i>	P6 P6 P6/m	P6 ₁ P6 ₃ /m	P6 ₅	P6 ₂	P6 ₄	P6 ₃
	622 6mm 6m2 6/mmm	P622 P6mm P6m2 P6/mmm	P6 ₁ 22 P6cc P6c2 P6/mcc	$P6_522$ $P6_3cm$ $P\overline{6}2m$ $P6_3/mcm$	$P6_222$ $P6_3mc$ $P\overline{6}2c$ $P6_3/mmc$	P6₄22	P6 ₃ 22
Cubic	23 m3	P23 Pm3 Ia3	F23 Pn3	I23 Fm3	P2 ₁ 3 Fd3	I2 ₁ 3 Im3	Pa3
	432	P432 P4 ₁ 32	P4 ₂ 32 ⁻ I4 ₁ 32	F432	F4 ₁ 32	I432	P4 ₃ 32
S	43 m m3 m	P43 m Pm3 m Fd3 m	F43m Pn3n Fd3c	I43m Pm3n Im3m	P43n Pn3m Ia3d	F43c Fm3m	I43d Fm3c

^aThe 11 Laue symmetries are separated by horizontal lines.

Source: G.H Stout & L.H. Jensen - X-Ray Structure Determination (A Practical Guide)

Interpretation of Space Group Symbols

 Space group symbols consist of several parts

Bravais lattice type
List of symbols denoting type and orientation of symmetry elements

 Must know the Crystal System in order to correctly interpret the space group symbol

Representations of Symmetry

- Graphical Representation
 - Qualitative and Symbolic
 - Non-mathematical
 - Visually intuitive (for the most part)
- Equivalent positions (x,y,z)
 - Simple algebraic expressions
 - Good for humans
- Matrix Representation
 - Easy to transform
 - Numerically oriented
 - Good for computers
- ORTEP Representation
 - Compact notation of symmetry operation and unit cell translations
 - Related representations found in PLATON, XP, and CIF

Graphical Representation of Symmetry Elements

- Proper rotations depicted as symbols with the number of vertices which corresponds to n
- Screw axes have same symbol, but have "tails"

Space Groups and Crystallographic Symmetry

A tutorial Version 1.55m

Fachschule Raumgruppe Brandeis University Jerry P. Jasinski (Keene state college)

and

Bruce M. Foxman (Brandeis University)

(Mac-compatible version by Ian S. Batson, 2015)

Copyright 2004-2015

Support by the National science Foundation through grants DMR-0504000 (Brandeis university) and DMR-0303450 (Clemson University) is gratefully acknowledged

$$Z=1;$$
 (x,y,z)

Z=2;
$$(x, y, z)$$
 $(\bar{x}, y+1/2, \bar{z})$

Z=2;
$$(x, y, z)$$
 $(x, \overline{y}, z + 1/2)$

Z=4; (x, y, z) (x, 1/2 - y, 1/2 + z) $(\overline{x}, \overline{y}, \overline{z})$ $(\overline{x}, 1/2 + y, 1/2 - z)$

The Asymmetric Unit

The Asymmetric Unit

The asymmetric unit is the smallest portion of a crystal structure to which symmetry operations can be applied in order to generate the complete unit cell

Educational portal of PROTEIN DATA BANK

 $\mathbf{Z}=1; \qquad (x,y,z)$

Z=2;
$$(x, y, z)$$
 $(x, y+1/2, z)$

Z=2;
$$(x, y, z)$$
 $(x, \overline{y}, z + 1/2)$

Z=4;
$$(x, y, z)$$
 $(x, 1/2 - y, 1/2 + z)$ (x, y, z) $(x, 1/2 + y, 1/2 - z)$

Equivalent Position Representation

- Simple algebraic expressions
- Good for humans

• P2₁/c example

$$(2) \bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$$

$$(3) \overline{x}, \overline{y}, \overline{z}$$

$$(4) x, \overline{y} + \frac{1}{2}, z + \frac{1}{2}$$

Courtesy: Paul Boyle

Matrix Representation of Symmetry

- Symmetry operator can be partitioned into a rotational part and a translational part
- Rotations can be described as simple 3x3 matrices. Matrix elements are either 1, 0, or -1
- Translations described as 3x1 matrix
- v' = Rv + t where v = [x,y,z]
- For example, in P2₁/c the equivalent position: \bar{x} , $y + \frac{1}{2}$, $\bar{z} + \frac{1}{2}$ looks like this in matrix representation:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 1/2 \\ 1/2 \end{bmatrix}$$

ORTEP Symmetry Representation

- Early days of computing memory was expensive
- Needed compact way to depict symmetry equivalent atomic positions including translations
- Avoid negative numbers in unit cell translations
- "5" is the new "0"
- Example: 347502
- Depends on lists of atoms and symmetry operators elsewhere in the file or the program

Courtesy: Paul Boyle

PLATON, XP, and CIF Symmetry Codes

- Derived from original ORTEP scheme, maintains compactness
- PLATON: [sym_op][T_xT_vT_z].[residue]
 - -e.g. 2565.01
- XP: $[sym_op][T_xT_yT_z]$
 - -e.g. 2565
- CIF: $[sym_op]_[T_xT_vT_z]$
 - -e.g. 2_565
- SHELX & OLEX combine the symmetry operator and translation

Structure courtesy of Russel Bell

Small Molecule Example – a14 Generation of CIF Files


```
loop
 _geom_bond_atom_site_label_1
 geom bond atom site label 2
 geom bond distance
 geom_bond_site_symmetry 2
  geom bond publ flag
Ag01 N005 2.222(3) . ?
Ag01 N006 2.201(3) 4 575 ?
S002 C00H 1.720(4)
 S002 C00I 1.638(5)
F003 B00K 1.449(5)
F004 B00K 1.364(5)
N005 H005 0.9900
N005 C00A 1.454(5)
N005 C00F 1.452(5)
N006 C00B 1.444(5)
N006 C00D 1.369(5) . ?
```

- All of the crystallographic journals and most of the major chemical journals have now adopted the CIF (Crystal Information Format) for depositing and publishing crystallographic data.
- Most commercial and publicdomain structure refinement programs now generate CIF files for validation and deposition.

SHELX output

Olex Tables for Publication

```
Operators for generating equivalent atoms: x, -y+3/2, z+1/2 x, -y+3/2, z-1/2
```

Bond lengths and angles

Ag01 -	Distance	Angles
N006_\$2	2.2006 (0.0030)	-
N005	2.2218 (0.0030)	175.29 (0.11)
	Ag01	N006_\$2

Table 4 Bond Lengths for a14.

Table 4 bond Lengths for a14.					
Atom Atom	Length/Å	Atom Atom	Length/Å		
Ag01 N005	2.222(3)	C008 C00H	1.442(5)		
Ag01 N006 ¹	2.201(3)	C008 C00J	1.434(6		
S002 C00H	1.720(4)	F009 B00K	1.337(5)		
S002 C00I	1.638(5)	C00A C00B	1.521(5)		
F003 B00K	1.449(5)	C00B C00C	1.428(5		
F004 B00K	1.364(5)	C00C C00G	1.396(5		
N005 C00A	1.454(5)	C00D C00E	1.388(5		
N005 C00F	1.452(5)	C00E C00G	1.491(6)		
N006 C00B	1.444(5)	C00F C00H	1.481(6)		
N006 C00D	1.369(5)	C00I C00J	1.353(6		
F007 B00K	1,329(6)				

 1 X, 3/2 - Y, -1/2 + Z

Symm operator: X, -Y - 1/2, Z - 1/2Trans (575): X, -Y - 1/2 + 2, Z - 1/2Result: X, -Y + 3/2, Z - 1/2

International Tables for Crystallography

- Information on crystallographic symmetry and related topics has been codified and published in the International Tables for Crystallography
- Originally published in 1935, the work has been revised and expanded to include all sorts of topics relevant to X-ray Crystallography
- We will only concern ourselves with material related to space groups (Volume A)

Using the International Tables for X-ray Crystallography

- The International Tables (IT) contain information on all space groups
- Most common information used by crystallographers:
 - Graphical depictions
 - Equivalent positions
 - Special positions and site symmetries
 - Systematic absence conditions

Example of International Tables Example (P2₁/c)

 $P2_1/c$

 C_{2h}^5

2/m

Monoclinic

No. 14

 $P12_{1}/c1$

Patterson symmetry P12/m1

UNIQUE AXIS b, CELL CHOICE 1

Origin at $\bar{1}$

Asymmetric unit $0 \le x \le 1$; $0 \le y \le \frac{1}{4}$; $0 \le z \le 1$

Symmetry operations

(1) 1 (2) $2(0,\frac{1}{2},0)$ $0,y,\frac{1}{4}$

(3) 1 0,0,0

(4) $c x, \frac{1}{4}, z$

Example of International Tables Example (P2₁/c)

No. 14 $P2_1/c$ CONTINUED

```
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)
```

Po	sitic	ons					
Multiplicity, Wyckoff letter,		f letter,	Coordinates			Reflection conditions	
Sit	e syn	nmetry					General:
4	e	1	(1) x, y, z	(2) $\bar{x}, y + \frac{1}{2}, \bar{z} + \frac{1}{2}$	$(3)\ \bar{x},\bar{y},\bar{z}$	(4) $x, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$	h0l: l = 2n 0k0: k = 2n 00l: l = 2n
							Special: as above, plus
2	d	Ī	$\tfrac{1}{2},0,\tfrac{1}{2}$	$\tfrac{1}{2},\tfrac{1}{2},0$			hkl: k+l=2n
2	c	ī	$0,0,\frac{1}{2}$	$0, \tfrac{1}{2}, 0$			hkl: k+l=2n
2	b	Ī	$\frac{1}{2}$, 0 , 0	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$			hkl: k+l=2n
2	а	ī	0,0,0	$0, \frac{1}{2}, \frac{1}{2}$			hkl: k+l=2n

plus

Symmetry of special projections

Along [001] p2gm	Along [100] p 2 g g	Along [010] p 2
$\mathbf{a}' = \mathbf{a}_{p} \qquad \mathbf{b}' = \mathbf{b}$	$\mathbf{a}' = \mathbf{b}$ $\mathbf{b}' = \mathbf{c}_{p}$	$\mathbf{a}' = \frac{1}{2}\mathbf{c}$ $\mathbf{b}' = \mathbf{a}$
Origin at $0,0,z$	Origin at $x,0,0$	Origin at $0, y, 0$

Maximal non-isomorphic subgroups

```
[2] P1c1(Pc,7) 1; 4
      [2] P 1 2_1 1 (P 2_1, 4) 1; 2
      [2] P \bar{1} (2)
                          1; 3
IIa
      none
IIb
      none
```

Maximal isomorphic subgroups of lowest index

```
Hc [2] P12/c1 (\mathbf{a}' = 2\mathbf{a} or \mathbf{a}' = 2\mathbf{a}, \mathbf{c}' = 2\mathbf{a} + \mathbf{c}) (P2/c, 14); [3] P12/c1 (\mathbf{b}' = 3\mathbf{b}) (P2/c, 14)
```

Minimal non-isomorphic supergroups

- [2] Pnna (52); [2] Pmna (53); [2] Pcca (54); [2] Pbam (55); [2] Pccn (56); [2] Pbcm (57); [2] Pnnm (58); [2] Pbcn (60); [2] Pbca (61); [2] Pnma (62); [2] Cmce (64)
- $[2]A12/m1(C2/m, 12); [2]C12/c1(C2/c, 15); [2]I12/c1(C2/c, 15); [2]P12_1/m1(c' = \frac{1}{2}c)(P2_1/m, 11);$ [2] P12/c1 (**b**' = $\frac{1}{2}$ **b**) (P2/c, 13)

Example of International Tables Example (P2₁/c)

Symmetry of special projections

(001) pgm; a'-a, b'-b

 $0,0,\frac{1}{2}; 0,\frac{1}{2},0.$

1,0,0; 1,1,1. 0,0,0; 0,1,1.

(100) pgg; b'=b, c'=c

(010) p2; c'-c/2, a'-a

hkl: k+l-2n

