Cálculo das Probabilidades II - Lista 2 - 2021/01

Prof. Hugo Carvalho 10/09/2021

- INSTRUÇÕES - LEIAM ATENTAMENTE! -

- A data limite de entrega da avaliação é domingo 19/09/2021 às 23h59'. Avaliações entregues após esse prazo serão desconsideradas.
- A entrega deve ser feita exclusivamente através do Google Classroom, clicando na caixa "+ Adicionar ou Criar" dentro da postagem dessa lista, para então anexar um arquivo com sua resolução. Após isso, clique em "Entregar" para enviar sua resolução.
 - **Atenção**: Somente anexar a resolução não é suficiente! O envio deve ser feito para que sua resolução de fato seja entregue.
- Você tem a liberdade de escrever sua resolução no computador (usando Word, IATEX, dentre outros), ou manuscrito e depois escanear ou fotografar a sua resolução. Nesse último caso, tome cuidado para que o documento fique legível. No caso de fotografar, opte por utilizar luz natural e tome cuidado com sombras.
- Dica: Se for fotografar sua resolução com um *smartphone* ou *tablet*, utilize o aplicativo próprio da câmera, e evite fotografar através de WhatsApp, Telegram, Messenger, e outros. Os aplicativos de comunicação, ao utilizarem a câmera, fazem uma severa compressão da imagem, incorrendo em uma grande diminuição de sua qualidade. Para transferir a imagem do celular para o computador prefira fazer o envio por e-mail, ou acessando sua galeria de fotos através do Google Photos no computador (caso já utilize esse aplicativo para gerenciar suas fotos no aparelho).
- Independente do modo de escrita, a resolução deve ser entregue em um único documento, no formato PDF, com a resolução em pé (formato retrato). O layout da resolução não será levado em consideração na avaliação, porém o texto deve estar legível para ser corrigido.
 - Atenção: Resoluções ilegíveis ou fora desse formato não serão corrigidas e serão desconsideradas.
- A troca de conhecimento na realização da avaliação é permitida e encorajada: ciência se faz com colaboração, e devemos seguir esse espírito aqui. Porém, cada aluno deverá ter a sua própria resolução, e cópias ou outras ilegalidades serão severamente punidas com a anulação da avaliação para o(s) aluno(s) suspeito(s).
- Todos os passos de sua resolução devem ser devidamente justificados.
- Ao entregar essa avaliação, você afirma ter lido e estar de acordo com essas regras, comprometendo-se a cumpri-las.

Questão 1: $(Raz\tilde{a}o\ de\ correlaç\tilde{a}o)$ Sejam X e Y variáveis aleatórias tais que $\mathbb{E}[Y]$ e $\mathbb{V}(Y)$ existam e sejam finitas. Assuma também que $\mathbb{V}(Y) > 0$. Definimos então a $raz\tilde{a}o\ de\ correlação\ de\ Y\ com\ relação\ a\ X$ como

$$K_X(Y) = \frac{\mathbb{V}(\mathbb{E}[Y|X])}{\mathbb{V}(Y)}.$$

O objetivo desta questão é explorar tal conceito. Para isso, faça o que se pede abaixo.

- a) Mostre que $0 \le K_X(Y) \le 1$.
- b) Mostre que se X e Y são independentes, então $K_X(Y) = 0$.
- c) Aqui vamos mostrar que a recíproca do item b) não é verdadeira. Para isso, considere o par aleatório (X,Y) com distribuição uniforme na região descrita por $x^2 + y^2 \le 1$. Mostre que $K_X(Y) = 0$, e que X e Y não são independentes.
- d) Para ganhar intuição sobre tal quantidade, assuma que a esperança condicional é linear em X, ou seja, assuma que $\mathbb{E}[Y|X] = aX + b$. Mostre que, nesse caso especial, temos $K_X(Y) = \rho_{X,Y}^2$, onde $\rho_{X,Y}$ denota a correlação entre X e Y.

Questão 2: (Uma aplicação de esperança condicional) O sistema de navegação de um satélite tem duas unidades de controle, e enquanto uma está em funcionamento a outra está em espera. O tempo no qual a unidade ativa está em funcionamento tem distribuição exponencial com média $1/\mu$. Caso a unidade ativa falhe, a unidade em espera é colocada em funcionamento, caso ela esteja disponível. O tempo para recuperação de uma unidade que falhou é fixo e conhecido, igual a $\tau > 0$ unidades de tempo. Uma falha total no sistema ocorre se não há uma unidade em espera no momento que a unidade em operação falha. Calcule o tempo esperado até a primeira falha total do sistema.

Questão 3: (Função geradora de probabilidades) Seja X uma variável aleatória discreta que assume apenas os valores $k \in \{0, 1, 2, 3, ...\}$. Definimos a sua função geradora de probabilidades como

$$G_X(z) = \mathbb{E}[z^X] = \sum_{n=0}^{\infty} z^n \mathbb{P}(X=n), \text{ para } |z| \le 1.$$

Note que tal função está bem definida para todo z tal que $|z| \le 1$, e você pode usar isso livremente na resolução da questão. Para melhor explorarmos este novo conceito, faça o que se pede abaixo.

a) Mostre que

$$\mathbb{E}[X(X-1)(X-2)\dots(X-k+1)] = \frac{d^k}{dz^k}G_X(z)\Big|_{z=1}$$
, para $k=1,2,3,\dots$

Com isso, conclua que $\mathbb{E}[X] = G_X'(1)$ e $\mathbb{E}[X^2] = G_X''(1) + G_X'(1)$.

- b) Calcule a função geradora de probabilidades de uma variável aleatória X que segue uma distribuição de Poisson de média λ .
- c) Mostre que a probabilidade de X assumir um valor par é dada por $\frac{1}{2}[G_X(-1)+1]$.

Questão 4: (Uma aplicação da função geradora de probabilidades) A quantidade de indenizações que uma seguradora irá pagar é modelada por N, uma variável aleatória com distribuição de Poisson de média λ . Assuma que as indenizações são variáveis aleatórias discretas, independentes e identicamente distribuídas, com função massa de probabilidade denotada por a_k , para $k=1,2,3,\ldots$ Denote por S o montante total desembolsado pela seguradora por conta de tais indenizações, ou seja, $S=\sum_{i=1}^N X_i$, onde X_1,X_2,X_3,\ldots representam as indenizações acima mencionadas. Faça o que se pede abaixo.

- a) Mostre que a função geradora de probabilidade de S é dada por $e^{-\lambda[1-A(z)]}$, onde A(z) é a função geradora de probabilidades comum das variáveis aleatórias X_i .

 Dica: Condicione em N. Você pode usar livremente o fato que $G_{U+V}(z) = G_U(z)G_V(z)$, se U e V são variáveis aleatórias independentes.
- b) Conclua, usando o resultado do item a), que $\mathbb{E}[S] = \mathbb{E}[N]\mathbb{E}[X_1]$ e que $\mathbb{V}(S) = \mathbb{E}[N]\mathbb{V}(X_1) + \mathbb{V}(N)\mathbb{E}[X_1]^2$.