- 7. a) Derive an equation which gives the relation between sound intensity level and sound pressure level. Show that as the distance from a point source doubles, the sound intensity level decreases by 6 dB.
 - Explain the working of Sound Level Meter and Sound Frequency Analyzer.
- 8. Explain in brief, following with respect to noise:
 - i) Octava band analysis
 - ii) Noise standards and limits
 - iii) Noise control techniques

w		
Roll No	 	

MMMD/MMPD-205

M.E./M.Tech., II Semester

Examination, June-2013

Vibration And Noise Control

Time: Three Hours

Maximum Marks: 70

Note: Attempt any five questions.

All questionss carry equal marks.

Assume buitable data, if necessary.

- 1. a) Define the flexibility and stiffness influence coefficients. What is the relation between them?
 - b) Find the natural frequencies and mode shapes of the system shown in fig-1

for
$$k_1 = k_2 = k_3 = k$$
 and $m_1 = m_2 = m_3 = m$.

fig-1

RGPVONLINE.COM

2. Determine the influence coefficients of the spring mass system shown in fig-2 and hence find out the natural frequencies using the method of matrix itteration.

- 3. a) A uniform beam fixed at one end and simply supported at the other is having transverse vibrations. Derive the suitable expression for frequency.
 - b) Determine the equation for the natural frequencies of a uniform rod in torsional oscillation with one end fixed and the other end free.
- 4. a) What is the purpose of Experimental Model Analysis?

 Describe the use of frequency response function in Model Analysis.
 - b) Write a short note on "Condition Monitoring and diagnosis".
- 5. a) What is the difference vibration isolator and vibration absorber? Explain the principle of working of an undamped dynamic vibration absorber.

PTO

- b) A heavy machine of mass m is mounted through a resilient system on a foundation. The resilient system comprises of a spring of stiffness k and a viscous damper with damping coefficient c, the machine produces an excitation force $F(t) = F_0 \sin wt$.
 - Derive the formula for total force transmitted to the foundation and prove that the forcing frequency should be greater than $\sqrt{2}$ times the natural frequency of the system in order to achieve vibration isolation.
- 6. a) What is the source of nonlinearity in Duffing's equation? How is the frequency of the solution of Duffing's equation is affected by the nature of the spring?
 - b) A single degree of freedom shown in Fig-3 is subjected to a force whose spectral density is a white noise $S_X(w) = S_0$. Find the following:
 - i) Complex frequency response function of the system
 - ii) Power spectral density of the response
 - iii) Mean square value of the response

fig-3