A. Candies

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input

output: standard output

Polycarpus has got n candies and m friends ($n \ge m$). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such a_i , where a_i is the number of candies in the i-th friend's present, that the maximum a_i differs from the least a_i as little as possible.

For example, if n is divisible by m, then he is going to present the same number of candies to all his friends, that is, the maximum a_i won't differ from the minimum one.

Input

The single line of the input contains a pair of space-separated positive integers n, m ($1 \le n$, $m \le 100$; $n \ge m$) — the number of candies and the number of Polycarpus's friends.

Output

Print the required sequence $a_1, a_2, ..., a_m$, where a_i is the number of candies in the *i*-th friend's present. All numbers a_i must be positive integers, total up to n, the maximum one should differ from the minimum one by the smallest possible value.

Examples

input	
12 3	
output	
4 4 4	

input	
15 4	
output	
3 4 4 4	

input	
18 7	
output	
2 2 2 3 3 3 3	

Note

Print a_i in any order, separate the numbers by spaces.