Computer Architecture

Performance Assessment : Quantitative Approach

- 1. Limits of performance
- 2. Micro-architecture Design
- 3. Domain Specific Architectures

Moore's Law

Moore's Law: The number of transistors on microchips doubles every two years Our World

in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Year in which the microchip was first introduced Data source: Wikipedia (wikipedia.org/wiki/Transistor count)

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Limits of performance?

- 1st-level, 2nd-level, 3rd-level, and even 4th-level caches
- 512-bit SIMD floating-point units
- 15+ stage pipelines
- Branch prediction
- Out-of-order execution
- Speculative prefetching
- Multithreading
- Multiprocessing

Moore's Law can't continue forever ... We have another 10 to 20 years before we reach a fundamental limit

Gordon Moore, Intel Co-Founder (2005)

Feature	Personal mobile device (PMD)	Desktop	Server	Clusters/warehouse- scale computer	Internet of things/ embedded
Price of system	\$100-\$1000	\$300-\$2500	\$5000-\$10,000,000	\$100,000-\$200,000,000	\$10-\$100,000
Price of microprocessor	\$10–\$100	\$50–\$500	\$200–\$2000	\$50–\$250	\$0.01-\$100
Critical system design issues	Cost, energy, media performance, responsiveness	Price- performance, energy, graphics performance	Throughput, availability, scalability, energy	Price-performance, throughput, energy proportionality	Price, energy, application- specific performance

Figure 1.2 A summary of the five mainstream computing classes and their system characteristics. Sales in 2015 included about 1.6 billion PMDs (90% cell phones), 275 million desktop PCs, and 15 million servers. The total number of embedded processors sold was nearly 19 billion. In total, 14.8 billion ARM-technology-based chips were shipped in 2015. Note the wide range in system price for servers and embedded systems, which go from USB keys to network routers. For servers, this range arises from the need for very large-scale multiprocessor systems for high-end transaction processing.

Microprocessor	16-Bit address/ bus, microcoded	32-Bit address/ bus, microcoded	5-Stage pipeline, on-chip I & D caches, FPU	2-Way superscalar, 64-bit bus	Out-of-order 3-way superscalar	Out-of-order superpipelined, on-chip L2 cache	Multicore OOO 4-way on chip L3 cache, Turbo
Product	Intel 80286	Intel 80386	Intel 80486	Intel Pentium	Intel Pentium Pro	Intel Pentium 4	Intel Core i7
Year	1982	1985	1989	1993	1997	2001	2015
Die size (mm ²)	47	43	81	90	308	217	122
Transistors	134,000	275,000	1,200,000	3,100,000	5,500,000	42,000,000	1,750,000,000
Processors/chip	1	1	1	1	1	1	4
Pins	68	132	168	273	387	423	1400
Latency (clocks)	6	5	5	5	10	22	14
Bus width (bits)	16	32	32	64	64	64	196
Clock rate (MHz)	12.5	16	25	66	200	1500	4000
Bandwidth (MIPS)	2	6	25	132	600	4500	64,000
Latency (ns)	320	313	200	76	50	15	4

Memory module	DRAM	Page mode DRAM	Fast page mode DRAM	Fast page mode DRAM	Synchronous DRAM	Double data rate SDRAM	DDR4 SDRAM
Module width (bits)	16	16	32	64	64	64	64
Year	1980	1983	1986	1993	1997	2000	2016
Mbits/DRAM chip	0.06	0.25	1	16	64	256	4096
Die size (mm ²)	35	45	70	130	170	204	50
Pins/DRAM chip	16	16	18	20	54	66	134
Bandwidth (MBytes/s)	13	40	160	267	640	1600	27,000
Latency (ns)	225	170	125	75	62	52	30

Local area network	Ethernet	Fast Ethernet	Gigabit Ethernet	10 Gigabit Ethernet	100 Gigabit Ethernet	400 Gigabit Ethernet
IEEE standard	802.3	803.3u	802.3ab	802.3ac	802.3ba	802.3bs
Year	1978	1995	1999	2003	2010	2017
Bandwidth (Mbits/seconds)	10	100	1000	10,000	100,000	400,000
Latency (µs)	3000	500	340	190	100	60
Hard disk	3600 RPM	5400 RPM	7200 RPM	10,000 RPM	15,000 RPM	15,000 RPM
Product	CDC WrenI 94145-36	Seagate ST41600	Seagate ST15150	Seagate ST39102	Seagate ST373453	Seagate ST600MX0062
Year	1983	1990	1994	1998	2003	2016
Capacity (GB)	0.03	1.4	4.3	9.1	73.4	600
Disk form factor	5.25 in.	5.25 in.	3.5 in.	3.5 in.	3.5 in.	3.5 in.
Media diameter	5.25 in.	5.25 in.	3.5 in.	3.0 in.	2.5 in.	2.5 in.
Interface	ST-412	SCSI	SCSI	SCSI	SCSI	SAS
Bandwidth (MBytes/s)	0.6	4	9	24	86	250
Latency (ms)	48.3	17.1	12.7	8.8	5.7	3.6

Energy numbers are from Mark Horowitz *Computing's Energy problem (and what we can do about it)*. ISSCC 2014 Area numbers are from synthesized result using Design compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Figure 1.13 Comparison of the energy and die area of arithmetic operations and energy cost of accesses to SRAM and DRAM. [Azizi][Dally]. Area is for TSMC 45 nm technology node.

CISC ISA

When there is a large number of dedicated hardware co-processors/ modules, it needs to use more instructions.

- CISC : Complex Instruction Set Computer
- Consumes more power, because large number of modules are active
 Large number of instructions for dedicated hardware operations
- Difficult to program. Too many ways to choose from!

RISC ISA

When we have a minimal set of hardware we can use a simple set of instructions.

- RISC : Reduced Instruction Set Computer
 Consumes less power, hardware is simple and minimal
- Only a handful of instructions
- Easy to program

MicroArchitecture Design

Some questions

- How many cycles does the fastest instruction take?
- How many cycles does the slowest instruction take?
- Why does a specific instruction take as long as it takes?
- What determines the clock cycle time?

Micro Architecture Design Principles

- Critical Path
 - Find and decrease the maximum combinational logic delay
 - Break a path into multiple cycles if it takes too long
- Common Case vs Uncommon Case
 - Spend time and resources on where it matters most
 - No point in putting much effort to improve rarely used instructions
- Eliminate the bottlenecks

Single Cycle vs Multi-Cycle microarchitectures

- Some instructions are fast, some are slow.
 - Example: ADDI instruction is fast. LOAD/ STORE instructions are slow
- Single cycle processors need to adjust to the slowest stage.
- Idea
 - Determine clock cycle time independently of instruction processing time
 - Each instruction takes as many clock cycles as it needs to take
 - Multiple state transitions per instruction
 - The states followed by each instruction is different
 - Example:
 - Load Instruction may take 8 clock cycles (Or even an undetermined time period)
 - ADDI instruction takes only 1 clock cycle

Programmable Control Unit

- Three components:
 - Microinstruction, control store, micro-sequencer
 - Microinstruction: control signals that control the datapath and help determine the next state
 - Each microinstruction is stored in a unique location in the control store (a special memory structure)
 - Micro-sequencer determines the address of the next microinstruction
 - Who is programming the microinstruction sequences?
 - Processor manufacturers themselves usually do the micro-coding
 - Processor "firmware"

microprogramming

• The concept of a control store of microinstructions enables the hardware designer with a new abstraction:

microprogramming

- The designer can translate any desired operation to a sequence of microinstructions
- All the designer needs to provide is
 - The sequence of microinstructions needed to implement the desired operation
 - The ability for the control logic to correctly sequence through the microinstructions
 - "Soft" and dynamic datapath control signals (no need of additional hardware control signals if the operation can be "translated" into existing control signals)

- Drawbacks of micro-coded architectures
 - Complex Instruction Set (Leading to CISC)
 - High Power Consumption
 - General Purpose optimizations, only the hardware vendor can re-purpose the instructions
 - High-level language compiles might not use the optimizations available in the ISA
- The other end?

Domain specific Architectures

- Use dedicated memories to minimize the distance over which data is moved
- Invest the resources saved from dropping advanced microarchitectural optimizations into more arithmetic units or bigger memories
- Use the easiest form of parallelism that matches the domain
- Reduce data size and type to the simplest needed for the domain
- Use a domain-specific programming language to port code to the DSA

- Shared Memory and Cache Hierarchy
- Performance measurements
 - Benchmarking How to compare two processors/systems
 - Read

Performance Equation

- CPU time = CPU clock cycles for a program x Clock cycle time
- Clock cycles per instruction
 - CPI = CPU clock cycles for a program / Instruction count
 - Instructions per clock (IPC) = 1/CPI
- CPU time = Instruction count x Cycles per instruction x Clock cycle time

$$\frac{\text{Instructions}}{\text{Program}} \times \frac{\text{Clock cycles}}{\text{Instruction}} \times \frac{\text{Seconds}}{\text{Clock cycle}} = \frac{\text{Seconds}}{\text{Program}} = \text{CPU time}$$

- Clock cycle time—Hardware technology and organization
- *CPI*—Organization and instruction set architecture
- *Instruction count*—Instruction set architecture and compiler technology

- Benchmarks
- Requirements change!
 - with time
 - type of device

Benchmarks	Sun Ultra Enterprise 2 time (seconds)	AMD A10- 6800K time (seconds)	SPEC 2006Cint ratio	Intel Xeon E5-2690 time (seconds)	SPEC 2006Cint ratio	AMD/Intel times (seconds)	Intel/AMD SPEC ratios
perlbench	9770	401	24.36	261	37.43	1.54	1.54
bzip2	9650	505	19.11	422	22.87	1.20	1.20
gcc	8050	490	16.43	227	35.46	2.16	2.16
mcf	9120	249	36.63	153	59.61	1.63	1.63
gobmk	10,490	418	25.10	382	27.46	1.09	1.09
hmmer	9330	182	51.26	120	77.75	1.52	1.52
sjeng	12,100	517	23.40	383	31.59	1.35	1.35
libquantum	20,720	84	246.08	3	7295.77	29.65	29.65
h264ref	22,130	611	36.22	425	52.07	1.44	1.44
omnetpp	6250	313	19.97	153	40.85	2.05	2.05
astar	7020	303	23.17	209	33.59	1.45	1.45
xalancbmk	6900	215	32.09	98	70.41	2.19	2.19
Geometric mean			31.91		63.72	2.00	2.00

Figure 1.19 SPEC2006Cint execution times (in seconds) for the Sun Ultra 5—the reference computer of SPEC2006—and execution times and SPECRatios for the AMD A10 and Intel Xeon E5-2690. The final two columns show the ratios of execution times and SPEC ratios. This figure demonstrates the irrelevance of the reference computer in relative performance. The ratio of the execution times is identical to the ratio of the SPEC ratios, and the ratio of the geometric means (63.7231.91/20.86 = 2.00) is identical to the geometric mean of the ratios (2.00). Section 1.11 discusses libquantum, whose performance is orders of magnitude higher than the other SPEC benchmarks.

	System 1		Syste	m 2	System 3		
Component		Cost (% Cost)		Cost (% Cost)		Cost (% Cost)	
Base server	PowerEdge R710	\$653 (7%)	PowerEdge R815	\$1437 (15%)	PowerEdge R815	\$1437 (11%)	
Power supply	570 W		1100 W		1100 W		
Processor	Xeon X5670	\$3738 (40%)	Opteron 6174	\$2679 (29%)	Opteron 6174	\$5358 (42%)	
Clock rate	2.93 GHz		2.20 GHz		2.20 GHz		
Total cores	12		24		48		
Sockets	2		2		4		
Cores/socket	6		12		12		
DRAM	12 GB	\$484 (5%)	16 GB	\$693 (7%)	32 GB	\$1386 (11%)	
Ethernet Inter.	Dual 1-Gbit	\$199 (2%)	Dual 1-Gbit	\$199 (2%)	Dual 1-Gbit	\$199 (2%)	
Disk	50 GB SSD	\$1279 (14%)	50 GB SSD	\$1279 (14%)	50 GB SSD	\$1279 (10%)	
Windows OS		\$2999 (32%)		\$2999 (33%)		\$2999 (24%)	
Total		\$9352 (100%)		\$9286 (100%)		\$12,658 (100%)	
Max ssj_ops	910,978		926,676		1,840,450		
Max ssj_ops/\$	97		100		145		
Figure 1.20 Tl	nree Dell PowerEd	lge servers bei	ng measured and t	heir prices as of	July 2016. We cal	culated the cost	

Performance is Domain Specific

• Examples:

- Neural Networks
- Security / Networking
- Video Encoding. Decoding Etc.