Teoría de Autómatas y Lenguajes Formales

Tipo 3	Gram. Regular
	AFD
	AFND
L.i.c.det.	GramLR(k)
	A.Pila det.
Tipo 2	Gram.i.c.
	A.Pila
Tipo 1	Gram. sens.c.
	LBA
Tipo 0	Gram. General
	MT.

Aut. no det.	Aut. det.	Equivalentes
AFND	AFD	si
A.P.no det.	A.P.det.	no
LBA	LBA det.	?
MT	MT det.	si

Propiedades de Cierre

	Intersección	Unión	Complementario	Concatenación	Clausura
Tipo 3	si	si	si	si	si
L.i.c.det.	no	no	si	no	no
Tipo 2	no	si	no	si	si
Tipo 1	si	si	si	si	si
Tipo 0	si	si	no	si	si

Sean $L_1 = \{0^i 1^i 2^j \mid i,j \geq 0 \}$, $L_2 = \{0^i 1^j 2^j \mid i,j \geq 0 \}$ L_1 y L_2 son lenguajes independientes del contexto deterministas pero $L_1 \cup L_2$ no lo es.

Sea $L_3 = aL_1 \cup L_2$. L_3 es un l.i.c. det., sin embargo a^*L_3 no lo es.

Sea $L_5=\{a\}\cup\ L_3$. L_5 es un l.i.c. det., sin embargo L_5^* no lo es.

¿Los siguientes problemas son decidibles?

	$w \in L(G)$	$L(G)=\emptyset$	$L(G_1) \cap L(G_2) = \emptyset$	$L(G_1)=L(G_2)$
Tipo 3	si	si	si	si
L.i.c.det.	si	si	no	?
Tipo 2	si	si	no	no
Tipo 1	si	no	no	no
Tipo 0	no	no	no	no