AI-3001: Advanced Topics in Machine Learning

Aug-Nov 2022

Lecture 4: Convex Optimization Review

Lecturer: Ganesh Ghalme Scribes: Ganesh Ghalme

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Convex Optimization Review

Definition 4.1 (affine combination). Given two points $x_1, x_2 \in \mathbb{R}^d$ we define a line passing through these points by the set of points $\{x \in \mathbb{R}^d : x = \alpha x_1 + (1 - \alpha)x_2, \alpha \in \mathbb{R}\}$

Definition 4.2 (Convex combination). Given two points $x_1, x_2 \in \mathbb{R}^d$ we define a convex combination is the set $\{x : x = \alpha x_1 + (1 - \alpha)x_2, \alpha \in [0, 1]\}$.

Definition 4.3 (Convex Set). We call a set $X \subseteq \mathbb{R}^d$ convex if for all pairs $x_1, x_2 \in X$ we have $\alpha x_1 + (1 - \alpha)x_2 \in X$.

Definition 4.4 (Convex Hull). A set of all convex combinations of points in a given set is the convex hull of that set. Given $X \subseteq \mathbb{R}^d$ we call $conv(X) = \{\alpha x_1 + (1 - \alpha x_2) : x_1, x_2 \in X, \alpha \in [0, 1]\}.$

- Convex hull of a set is the 'smallest' set that contains that set.
- Equivalent definition: Let $h(x) \leq f(x) \forall x \in X$ be a convex function. Then h is a conex hull of f if there does not exist a function $g \neq h$ such that 1. g is convex 2. $g(x) \leq f(x)$ for all $x \in X$, and 3. g(x) > h(x) for some $x \in X$.

Examples of convex sets

- Empty set, point, line
- Norm ball $\{x : ||x|| \le r\}$
- Probability simplex $\{x: \sum_{i=1}^d x_i = 1, x_i \ge 0 \forall i \in [d]\}$
- Set of all polynomials of degree atmost d
- Set of all polygons $\{x: Ax \leq b\}$ where \leq is interpreted componentwise
- Hyperplanes $(\{x: a^Tx = b\})$ and halfspaces $\{x: a^Tx \leq b\}$

Properties of Convex Sets

• Separating Hyperplane Theorem Let $X, Y \subseteq \mathbb{R}^d$ be convex sets. Then there exists a vector **a** and a constant b such that for all **x** and **y** we have

$$\mathbf{x}^T \mathbf{a} \ge b$$
 for all $\mathbf{x} \in X$
 $\mathbf{y}^T \mathbf{a} \le b$ for all $\mathbf{y} \in Y$

• Following operations preserve convexity

- Intersection
- Image (and pre-image) of affine function: Let $S \subseteq \mathbb{R}^n$ be a convex set and $f : \mathbb{R}^n \to \mathbb{R}^m$ be an affine function (is of the form f(x) = Ax + b) then the image of S defined as $f(S) = \{f(x) \in \mathbb{R}^m : x \in S\}$ is convex

Definition 4.5 (convex function). A function $f: \mathbb{R}^d \to \mathbb{R}$ is called convex if for any $x_1, x_2 \in \mathbb{R}^d$ and $\alpha \in [0,1]$ we have

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha \cdot f(x_1) + (1 - \alpha) \cdot f(x_2).$$

Definition 4.6 (Strictly convex function). The inequality is strict in the above equation.

$$f(\alpha x_1 + (1 - \alpha)x_2) < \alpha \cdot f(x_1) + (1 - \alpha) \cdot f(x_2).$$

Theorem 4.7. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. The following conditions are equivalent.

- f is a convex function i.e. $f(\alpha x_1 + (1 \alpha)x_2) \le \alpha \cdot f(x_1) + (1 \alpha) \cdot f(x_2)$.
- $f(y) \ge f(x) + \nabla f(x)^T (y x)$ for all $x, y \in \mathbb{R}^n$.
- $(\nabla f(x) \nabla f(y))^T (x y) \ge 0$ for all $x, y \in \mathbb{R}^n$.
- If f is twice differentiable then $\nabla^2 f(x)$ is positive semi-definite for all $x \in \mathbb{R}^n$ that is $y^T \nabla^2 f(x) y \geq 0$ for all $y \in \mathbb{R}^n$.

Definition 4.8 (α -strongly convex function). Let f be a differential function. We call f an α -strongly convex function if any one of the below equivalent conditions is satisfied

- $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y) \frac{\alpha}{2}||x y||^2$
- $f(y) \ge f(x) + \nabla f(x)^T (y x) + \frac{\alpha}{2} ||y x||^2$
- $(\nabla f(y) \nabla f(x))^T (y x) > \alpha I$
- If f is twice differentiable, $\nabla^2 f(x) \geq \alpha$ for all $x \in \mathbb{R}^n$
- $f(x) \frac{\alpha}{2}||x||^2$ is convex.

Definition 4.9 (β -smooth functions). Let f be a differential function. We call f a β -smooth function if

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||^2.$$

Definition 4.10 (Exp-concave functions). A function f is called α -exp concave if

$$h(x) = e^{-\alpha f(x)} \tag{4.1}$$

is concave.

Observation 1. exp-concavity \implies convexity.

Examples:

- e^{ax} is convex for any value $a \in \mathbb{R}$.
- x^a is convex for $a \leq 0$ and $a \geq 1$ and concave for $a \in [0,1]$.

- $\log(x)$ is concave over \mathbb{R}_{++}
- $A^T x + b$ is both convex and concave.
- $x^TQx + b^Tx + c$ is convex over $\mathbb R$ if and only if Q is positive semi-definite.
- e^x is strictly convex but not strongly convex.
- square loss is 2-strongly convex
- \bullet *KL*-divergence defined as

$$D(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{P(x)}{Q(x)}\right)$$

is strictly convex but not strongly convex. Here, P and Q are probability distributions defined on the same probability space.

- $f(x) = \sum_{i} x_i \log(x_i)$ is 1-strongly convex.
- Square loss is $\frac{1}{2}$ -exp-concave (exercise)

4.2 Probability Bounds

We begin with basic definitions and cover (a very small) subset of fundamental results relevant for this course.

1. Markov's Inequality Let X be a non-negative random variable and $\varepsilon > 0$ then we have

$$\mathbb{P}[X \geq \varepsilon] \leq \frac{\mathbb{E}[X]}{\varepsilon}$$

2. Chebyshev's Inequality Let X be a real-valued random variable with finite second moment then we have

$$\mathbb{P}[|X - \mathbb{E}[X]| \ge k\sigma] \le \frac{1}{k^2}$$

Here, $\sigma = Var(X)$.

3. Upper Bound on Variance Let X be a random variable taking values in [a, b] then

$$\operatorname{Var}[X] \le \frac{(b-a)^2}{4}.\tag{4.2}$$

Proof. Let $\mathbb{E}[X] = \mu$.

$$\begin{aligned} \operatorname{Var}[X] &\leq \mathbb{E}[(X - \mu)^2 + (b - X)(X - a)] \\ &= \mathbb{E}[\mu^2 - 2X\mu + (a + b)X - ab] \\ &= -\mu^2 + (a + b)\mu - ab \\ &= (\mu - a)(b - \mu) \end{aligned} \tag{since } X \in [a, b])$$

The above inequality holds for any value of μ . Hence, it also holds for $\mu = \frac{a+b}{2}$. This gives the desired result.

4. **Hoeffdings Inequality)** Let X be a random variable taking values in [a, b] and $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ where each random variable X_i is an independent copy of X, then we have

$$\mathbb{P}[|\overline{X} - \mathbb{E}[X]| \ge \varepsilon] \le 2 \cdot \exp\left(-\frac{2n\varepsilon^2}{(b-a)^2}\right).$$

4.3 Other Important Inequalities/Theorems

1. AM-GM inequality: Given n reals a_1, a_2, \dots, a_n we have

$$\frac{1}{n} \sum_{i=1}^{n} a_i \ge \left(\prod_{i=1}^{n} a_i \right)^{1/n}$$

2. (Taylor's Series Expansion) Let f be n+1 times continuously differentiable function at every point between x and y. Then we have

$$f(x) = \sum_{m=0}^{n} \frac{(x-y)^m}{m} f^{(m)}(y) + \frac{(x-z)^{(n+1)}}{(n+1)!} f^{(m+1)}(z)$$

for some z between x and y.

3. Cauchy-Shwartz Inequality:

$$|\langle x, y \rangle| \le ||x|| ||y||$$

4. Holder's Inequality:

$$\sum_{i=1}^{n} |x_i y_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |y_i|^q\right)^{1/q}$$

where $p, q \in (1, \infty)$ are such that $\frac{1}{p} + \frac{1}{q} = 1$.

5. $e^x \ge 1 + x \quad \forall x \in \mathbb{R}$.

6.
$$e^{-x} \le 1 - x + \frac{x^2}{2} \quad \forall x \in \mathbb{R}.$$

7.
$$e^{-x-x^2} \le 1 - x \quad \forall x \le \frac{1}{2}$$
.

8.
$$\log(1+x) \ge x - \frac{x^2}{2} \quad \forall x \ge 0.$$

9.
$$\log(1+x) \le x \quad \forall x \ge 0$$
.

10. Jensen's Inequality

Let ϕ be a convex function then,

$$\phi(\frac{\sum_i a_i x_i}{\sum_i a_i}) \le \frac{\sum_i a_i \phi(x_i)}{\sum_i a_i}.$$

Equivalently, for any random variable X, we have

$$\phi(\mathbb{E}(X)) \leq \mathbb{E}[\phi(X)].$$

Proof.
$$\phi(\frac{\sum_i a_i x_i}{\sum_i a_i}) = \phi(\sum_i (\frac{a_i}{\sum_i a_i}) x_i) \leq \sum_i \frac{a_i}{\sum_i a_i} \phi(x_i) = \frac{\sum_i a_i x_i}{\sum_i a_i}.$$