On Modeling and Testing Components of the ETCS

Huu-Nghia Nguyen and Ana Cavalli

Institut Mines-Télécom/Télécom-SudParis, France

Outline

- Distributed Testing System

Architectures

Architecture of SUT and the Testing System

TetGen-IFx tool

- Use IF language to model components: expressiveness, tool support
- Implement four kinds of strategies of exploration: exhaustive (DFS or BFS), interactive, random, coverage
- Complete toolchain

TetGen-IFx tool

- Use IF language to model components: expressiveness, tool support
- Implement four kinds of strategies of exploration: exhaustive (DFS or BFS), interactive, random, coverage
- Complete toolchain

Local Test Case

A *local test case* of tester t^k that test the component p^k of SUT is a sequence $\sigma^k = \langle d_1, \alpha_1, d_2, \alpha_2, \dots, \alpha_m \rangle$, where $d_i \in \mathcal{D}$ is a duration, and each α_i is one of the following:

- a sending of a message to its component pⁱ
- a reception of a message from p^i
- an observation of a sending message of p^i to its component partner p^j , with $i \neq j$
- an observation of a reception message of p^i from its component partner p^j , with $i \neq j$

Outline

1 Distributed Testing System

2 Case Study: Release Speed Monitoring

3 Conclusion

ETCS level 3

Movement Authority

- A train moves in virtual moving blocks defined by its RBC via Movement Authorities
- Movement Authority (MA) gives a permission from RBC to train to run until a location called End Of Authority (EOA)

Release Speed Monitoring

- To ensure the train is able to stop at the given EOA, a MA contains also a release speed that is a speed limit under which the train is allowed to run in the vicinity of the EOA.
- Release speed monitoring ensures that the current speed of the train does not overpass the release speed.

Models

OBU

Models

RBC

BFS Exhaustive Test Generation

Depth	#Test cases	Time(s)	Coverage of variables		
			V	1	X
1	11	0.06		✓	
2	121	0.10		✓	√
3	121	0.14		✓	✓
4	242	0.35		✓	✓
5	24,563	38.81		✓	✓
6	4,913,084	7792.08	✓	✓	✓

Test Case

Test objective:

- the train is in the INDICATION state.
- running at 190km/h meanwhile the release speed is 80km/h,

Formulate:

```
TP := \{tp_1, tp_2, tp_3, tp_4\}
tp_1 = "process : instance = {OBU}0"
tp_2 = "state : source = INDICATION"
tp_3 = "variable : v = 190"
tp_4 = "variable : m.speed = 80"
```


Test Case

Test objective:

- the train is in the INDICATION state,
- running at 190km/h meanwhile the release speed is 80km/h,

Test case:

```
Test case of OBU
   !; t; ELocation{p1=3};
                                            {OBU}0
   !; {OBU}0; MARequest{p1=3};
                                            {RBC}0
  delav 2
   ?; {RBC}0; MA{p1={distance=3, speed=80}};
                                            {OBU}0
   !; {OBU}0; DMIcmd{p1=80};
   !; t; ESpeed{p1=190};
                                            {OBU}0
   ?; {OBU}0; EBcmd{p1=1};
   ?; {OBU}0; DMIcmd{p1=80};
  - Test case of RBC
10
   !; t; DLocation{p1=6};
                                            {RBC}0
  delay 2
   ?; {OBU}0; MARequest{p1=3};
                                             {RBC}0
13
   !; {RBC}0; MA{p1={distance=3, speed=80}};
14
                                            {OBU}0
```


Outline

- Conclusion

Conclusion

- Framework for distributed testing of timed composite systems
 - Time, Asynchronous communications
 - No need of communications among testers
 - Test generation tool
 - Applied to ETCS release speed monitoring
- Future work
 - Test executions
 - Clocks drifting

Thank you for your attention!

15 / 15

