Пространственно-временные характеристики в задаче декодирования временных рядов

Даниил Дмитриевич Дорин Научный руководитель: к.ф.-м.н. А.В. Грабовой

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.04.01 Прикладные математика и физика

Цель исследования

Цель

Проанализировать влияние пространственно-временных характеристик на точность и качество декодирования временных рядов фМРТ.

Задача

Построить метод аппроксимации показаний фМРТ по просматриваемому видеоряду. Предложить метод классификации сегментов временных рядов фМРТ.

Методы решения

- ightharpoonup Учет постоянного времени гемодинамической ответной реакции зависимости уровня кислорода в крови Δt .
- Снижение пространственной размерности временных рядов путем анализа активных областей мозга.
- Использование римановой геометрии для выделения пространственно-временных характеристик.

Постановка задачи восстановления временных рядов фМРТ по просматриваемому видеоряду

lacktriangleright Задана частота кадров $u\in\mathbb{R}$ и продолжительность $t\in\mathbb{R}$ видеоряда. Задан видеоряд

$$\mathbf{P} = [\mathbf{p}_1, \dots, \mathbf{p}_{\nu t}], \quad \mathbf{p}_{\ell} \in \mathbb{R}^{W \times H \times C},$$

с шириной, высотой и числом каналов изображения W, H и C соответственно.

lacktriangle Обозначим частоту снимков фМРТ $\mu\in\mathbb{R}$. Задана последовательность снимков

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{\mu t}], \quad \mathbf{x}_{\ell} \in \mathbb{R}^{X \times Y \times Z},$$

где X, Y и Z — размерности воксельного изображения.

ightharpoonup Задача состоит в построении отображение ightharpoonup, которое бы учитывало задержку Δt между снимком фМРТ и видеорядом, а также предыдущие томографические показания:

$$\mathbf{g}(\mathbf{p}_1,\ldots,\mathbf{p}_{k_\ell-\nu\Delta t};\mathbf{x}_1,\ldots,\mathbf{x}_{\ell-1})=\mathbf{x}_\ell,\ \ell=1,\ldots,\mu t,\ k_\ell=\frac{\ell\cdot\nu}{\mu}.$$

Постановка задачи классификации сегментов временных рядов фМРТ

▶ Задано N наблюдений временных рядов фМРТ длины T:

$$\mathbf{X} = \{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N\},$$

 $\mathbf{X}_i = [\mathbf{x}_1^i, \mathbf{x}_2^i, \dots, \mathbf{x}_T^i],$

где $\mathbf{x}_t^i \in \mathbb{R}^{X \times Y \times Z}$ — это тензор снимка в момент времени t для набора i. Кроме того, каждому наблюдению соответствует метка класса $y_i \in \{1, \dots, C\}$, где C — число классов.

Имеется выборка:

$$\mathfrak{D} = \{(y_i, \mathbf{X}_i) \mid i = 1, \dots, N\}.$$

▶ Требуется построить модель классификации g, которая учитывает пространственно-временные характеристики временных рядов фМРТ:

$$g: \mathbf{X} \rightarrow \{1, \ldots, C\}.$$

Схема предлагаемого метода восстановления снимков фМРТ

Схема предлагаемого метода восстановления снимков фМРТ приведена на Рис. 1.

Рис. 1: Схема метода

Предлагаемый метод восстановления временных рядов фМРТ по просматриваемому видеоряду

Предположение марковости:

$$\mathbf{g}(\mathbf{p}_{k_{\ell}-\nu\Delta t}) = \mathbf{x}_{\ell}-\mathbf{x}_{\ell-1} = \boldsymbol{\delta}_{\ell}, \ \ell=2,\ldots,\mu t.$$

Отображение $\mathbf{g}: \mathbf{P} \to \mathbf{X}$ представляется в виде композиции:

$$\mathbf{g} = \boldsymbol{\varphi} \circ \boldsymbol{\psi},$$

 $m{\psi}: \mathbf{P} o \mathbb{R}^d$ — ResNet152 без последнего слоя. $m{arphi}: \mathbb{R}^d o \mathbf{X}$ — восстанавливаемое отображение.

Используется линейная модель с вектором параметров:

$$\mathbf{w}_{ijk} = [w_1^{ijk}, \dots, w_d^{ijk}]^{\mathsf{T}} \in \mathbb{R}^d,$$

$$\varphi_{ijk}(\mathbf{z}, \mathbf{w}_{ijk}) = \langle \mathbf{z}, \mathbf{w}_{ijk} \rangle,$$

где $\mathbf{z} = [z_1, \dots, z_d]^\mathsf{T} \in \mathbb{R}^d$ — признаки изображения. Используется квадратичная функция потерь с коэффициентом L_2 -регуляризации $\alpha \in \mathbb{R}$. Решение для каждого вокселя находится методом наименьших квадратов, $N = \mu(t - \Delta t)$: $\hat{\mathbf{w}}_{iik} = (\mathbf{Z}^\mathsf{T}\mathbf{Z} + \alpha \mathbf{I})^{-1}\mathbf{Z}^\mathsf{T}\Delta_{iik}$.

$$\mathbf{Z} = [\mathbf{z}_2, \dots, \mathbf{z}_N]^\mathsf{T} \in \mathbb{R}^{(N-1) \times d} -$$
матрица объекты-признаки.

▶ $\Delta_{ijk} = [\delta_{ijk}^2, \dots, \delta_{ijk}^N]^\mathsf{T} \in \mathbb{R}^{N-1}$ — вектор изменения вокселя.

Взвешивание вокселей фМРТ

Пусть имеется временной ряд фМРТ $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_\tau], \ \mathbf{x}_t \in \mathbb{R}^{X \times Y \times Z}$ с частотой μ и соотвествующий ему временной ряд стимула $\mathbf{s} = [s_1, \dots, s_\tau], \ s_t \in \{0, 1\}.$

- 1. К каждому \mathbf{x}_t применяем 3D Average Pooling с размером ядра k_s . Сжатые тензоры обозначим $\mathbf{x}_t' \in \mathbb{R}^{X/k_s \times Y/k_s \times Z/k_s}$.
- 2. Нормализуем временные ряды. Обозначим нормализованные данные $\hat{\mathbf{X}}'$ и $\hat{\mathbf{s}}$ соответственно.
- 3. Вычисляем кросс-корреляцию между временным рядом каждого вокселя $\mathbf{v}^{i,j,k}$ и временным рядом стимулов $\hat{\mathbf{s}}$ следующим образом:

$$c_{i,j,k}\left(p\right) = \left(\hat{\boldsymbol{s}} * \boldsymbol{v}^{i,j,k}\right)\left(p\right) = \frac{1}{\tau - 1} \sum_{t=1}^{\tau - p} \hat{\boldsymbol{s}}_t \cdot \boldsymbol{v}_{t+p}^{i,j,k}, \quad p = 0, \ldots, \tau - 1.$$

- 4. Рассмотрим тензор C с элементами $c_{i,j,k}(\lfloor \mu \Delta t \rfloor)$ с учетом параметра задержки Δt . Введем нулевой тензор $\mathcal{M}_c \in \mathbb{R}^{X/k_s \times Y/k_s \times Z/k_s}$ и присвоим единицы лишь на h позициях с наибольшей положительной корреляцией.
- 5. Последним шагом выполняем upsample и получаем маску $\mathcal{M} \in \mathbb{R}^{X \times Y \times Z}$.

Схема предлагаемого метода классификации сегментов фМРТ

Схема предлагаемого метода классификации сегментов фМРТ приведена на Рис. 2.

Классификация

Рис. 2: Схема метода

Задана обучающая выборка $\mathfrak{D} = \{(\mathbf{X}_j, y_j), \ \mathbf{X}_j \in \mathbb{R}^{\tau \times X \times Y \times Z} \mid j=1,\dots,N\}$. Для каждой категории стимулов задана сжатая с ядром k_s бинарная маска активности: $\mathbf{M} = \{\mathcal{M}^k \in \{0,1\}^{X/k_s \times Y/k_s \times Z/k_s} \mid k=1,\dots,C\}$.

Предлагаемый метод классификации сегментов временных рядов фМРТ

Отображение $g: \mathbf{X} \to \{1, \dots, C\}$ представляется в виде композиции:

$$g \coloneqq \varphi \circ \psi \circ \mathcal{A},$$

 $\mathcal{A}: \mathbf{X}
ightarrow \mathbb{R}^{ au imes X/k_s imes Y/k_s imes Z/k_s}$ — Average Pooling, $\psi: \mathbb{R}^{ au imes X/k_s imes Y/k_s imes Z/k_s}
ightarrow \mathbb{R}^d$ — векторизатор, $\varphi: \mathbb{R}^d
ightarrow \{1, \dots, C\}$ — классификатор.

Отображение \mathcal{A} — применение 3d Average Pooling с ядром k_s . Обозначим число ненулевых элементов в \mathcal{M}^k как $h_k,\ k=1,\ldots,\mathcal{C}$.

Отображение ψ является конкатенацией $\psi_k, \; k=1,\ldots,\mathcal{C}$:

$$oldsymbol{\psi}\coloneqq oldsymbol{\psi}_1\oplus\ldots\oplusoldsymbol{\psi}_{\mathcal{C}},\quad d=\sum_{k=1}^{\mathcal{C}}d_k,$$

$$oldsymbol{\psi}_k: \mathbf{X}
ightarrow \mathbb{R}^{d_k}, \quad k=1,\ldots,C,$$

$$\forall k \in \{1,\ldots,C\}: \quad \psi_k \coloneqq \pi_k \circ f_k.$$

Здесь $\mathbf{f}_k: \mathbb{R}^{ au imes X/k_s imes Y/k_s imes Z/k_s}
ightarrow \mathbb{R}^{h_k imes au} -$ применение маски активности \mathcal{M}^k . Отображение $\pi_k: \mathbb{R}^{h_k imes au}
ightarrow \mathbb{R}^{d_k} -$ проекция на риманово касательное пространство с последующей векторизацией. $d_k = \frac{h_k(h_k+1)}{2}$.

Анализ качества восстановления фMPT от гиперпараметра Δt

Локализация области

Проведена локализация на затылочную долю мозга, отсекая нижнюю треть и правые две трети объемного томографического изображения. Красным цветом выделены 3% наиболее изменяющихся вокселей затылочной доли.

Метрика MSE была пересчитана на локализованную область, результаты представлены на графиках.

На скорректированном графике наблюдается характерный минимум при $\Delta t \approx 5$ с, что согласуется с биологическими сведениями.

Корректность метода восстановления снимков фМРТ по видеоряду

Рассмотрено качество работы метода на неинформативной матрице объекты-признаки **Z**, целиком состоящей из единиц. Ниже приведены срезы последнего снимка, восстановленного последовательно по всем предсказанным изменениям, и значения метрики MSE.

Значение MSE на неинформативной выборке больше, что говорит о наличии корреляции между даннами.

Анализ метода взвешивания вокселей фМРТ снимков

- ▶ Рассматриваются реальные данные фМРТ испытуемого, которому показывали различные изображения из восьми категорий.
- ▶ Частота снимков $\mu = 2.5 \text{ c}^{-1}$, число областей h = 10, размер ядра $k_c = 4$.

(е) Статистически значимые области

(f) Разметка нейробиологов

Полученные области очень близки к истинной разметке. Корреляция взвешенных вокселей со стимулом является статистически значимой.

Качество работы модели классификации

- Рассмотрены сегменты временного ряда фМРТ для трех испытуемых. Объем выборки для каждого испытуемого составил N=96 объектов, число классов C=8. Данные разделены на тренировочные и тестовые в соотношении 80% к 20%.
- ightharpoonup Зафиксированы следующие параметры метода: число выделяемых областей для каждого класса $h_k=10,\ k=1,\ldots,\mathcal{C}$, размер ядра $k_s=4$.
- В качестве классификатора рассмотриваются логистическая регрессия и перцептрон с двумя скрытыми слоями размера 100 и сигмоидной функцией активации.

В Таблице 1 представлены усредненные значения метрик на тесте.

Таблица 1: Среднее арифметическое метрик по испытуемым

Классификатор	Accuracy	Macro F1 score	Micro F1 score
Логистическая регрессия	0.600	0.558	0.600
Перцептрон	0.700	0.636	0.636

Влияние отдельных компонент модели на качество классификации

Для сравнения с предложенным методом классификации используются две упрощенные модели. В Таблице 2 представлены результаты работы трех методов на данных второго испытуемого. В качестве классификатора рассмотрена логистическая регрессия.

Таблица 2: Влияние отдельных компонент метода на качество классификации

Метод	Accuracy	Macro F1 score	Micro F1 score
Предложенный	0.650	0.598	0.650
Без Tangent Space Mapping	0.150	0.121	0.150
Без масок активности	0.400	0.376	0.400

- ▶ Наибольшее снижение метрик происходит при исключении проекции на риманово касательное пространство.
- ► Качество классификации также падает, если используется общая усредненная маска вместо масок активности для каждого класса стимула.

Выносится на защиту

- 1. Предложен метод восстановления показаний фМРТ по видеоряду, просматриваемому человеком.
- 2. Проанализирована зависимость качества прогноза от задержки Δt .
- 3. Проверена корректность метода на неинформативных данных.
- 4. Предложен метод взвешивания активных областей мозга на фМРТ снимках. Проведены статистические тесты.
- 5. Предложен метод классификации сегментов временного ряда фМРТ.
- 6. Проверено, что исключение отдельных компонент метода приводит к значительному снижению качества классификации.

Список работ автора по теме диплома

- 1. *D. Dorin*, *N. Kiselev*, *A. Grabovoy*. Forecasting fMRI Images From Video Sequences: Linear Model Analysis // Health Information Science and Systems (на рецензировании).
- 2. Пространственно-временные методы анализа временных рядов // 66-я Всероссийская научная конференция МФТИ, 2024.