RÉPONSES TEMPORELLES ET FRÉQUENTIELLES

La synthèse...

Viviane Cadenat, enseignant - chercheur à l'UPS

Réponse temporelle

- Définition : La réponse temporelle est la sortie y(t) délivrée par le système sous l'action de la commande u(t).
- · Méthode de calcul : dépend du type de modèle
 - Représentation d'état : Calculer la solution de l'équation d'état X(t) puis déduire y(t)
 - Equation différentielle d'ordre n : résoudre l'équation différentielle
 - Fonction de transfert : écrire Y(p) = F(p)U(p) et déduire y(t) à l'aide de tables de transformée de Laplace
- Deux types de réponses :
 - Réponse impulsionnelle $\rightarrow u(t) = \delta(t)$ où δ : impulsion de Dirac
 - Réponse indicielle → u(t) = u₀ U(t) où U(t) : échelon unitaire

Caractéristiques d'une réponse indicielle

Temps de montée

- Temps que met la réponse indicielle pour passer de 10 à 90% de sa valeur finale
- Evalue la rapidité de « démarrage du système »

Temps de réponse à n%

- Temps nécessaire à la réponse indicielle pour atteindre sa valeur finale à ±n % près (n=5 dans la plupart des cas)
- Evalue la rapidité du système à se stabiliser

Premier dépassement

- Se mesure lorsque la réponse indicielle dépasse sa valeur finale
- Evalue si le système est oscillatoire

Valeur au régime permanent

- Valeur y_{RP} de y(t) lorsque le système est stabilisé
- Nécessite que le système soit stable

Caractérise le régime permanent

Analyser une réponse indicielle

$$y_{RP} = \lim_{t \to \infty} y(t)$$

Réponse fréquentielle

- La réponse fréquentielle (ou harmonique) suppose que :
 - Le système est excité avec une entrée sinusoïdale u(t) = u₀ sin(ωt)
 - · Le système est stable
 - · La fonction de transfert F(p) du système est connue

 Réponse fréquentielle = Régime permanent de la réponse à u(t) = u₀ sin(ωt)

Réponse fréquentielle

- Réponse fréquentielle = Régime permanent de la réponse à u(t) = u₀ sin(ωt)
- · On montre que ce régime permanent s'écrit :

$$y(t) = y_0 \sin(\omega t + \varphi)$$
 où $y_0 = |F(j\omega)| \ u_0$ et $\varphi = Arg(F(j\omega))$

→ L'amplitude y₀ et le décalage φ (appelé phase) dépendent de la pulsation (et donc de la fréquence) du signal d'entrée et des caractéristiques du système

$$u(t) = u_0 \sin(\omega t)$$
 Système $y(t) = y_0 \sin(\omega t + \varphi)$

Réponse fréquentielle

- Hypothèses
 - · Entrée sinusoïdale
 - Système Linéaire Invariant Stable
- Au régime permanent, la sortie est :
 - Sinusoïdale, de même pulsation que l'entrée
 - Avancée/retardée en fonction de la phase
 - Amplifiée/réduite en fonction du gain

Réponse fréquentielle

- Représentation graphique
 - La réponse fréquentielle dépend de |F(jω)| et φ
 - · Diagramme de Bode :
 - Principe : tracer le gain G (en dB) et la phase φ en fonction de la pulsation ω
 2 tracés :
 - Tracé de G = 20 log |F(jω)| en fonction de la pulsation ω
 - · Tracé de φ en fonction de la pulsation ω
 - Le tracé se fait sur du papier à échelle semi-logarithmique (échelle linéaire en ordonnée, échelle logarithmique en abscisse)
 - Ce diagramme est très utilisé pour l'analyse et la commande des systèmes
 - · NB : Il existe deux autres représentations graphiques :
 - Diagramme de Black : TRACÉ DU GAIN G EN FONCTION DE LA PHASE ϕ
 - Diagramme de Nyquist : tracé de la partie imaginaire de $F(j\omega)$ en fonction de la partie réelle de $F(j\omega)$ en remarquant que $F(j\omega)$ = $Re(F(j\omega))$ + $\int Im(F(j\omega))$

Caractéristiques d'une réponse fréquentielle

- Gain statique
 - En dB: $G_{dB}(0) = \lim_{\omega \to 0} G_{dB}(\omega)$
- Pulsation de coupure à -x dB
 - Valeur ω_c de ω telle que $G_{db}(\omega_c) = G_{db}(0) x$
 - Valeurs usuelles en automatique :
 - x = -3 (signal de sortie / $\sqrt{2}$)
 - -x = -6 (signal de sortie / 2)
 - L'intervalle [0, ω_c] définit la bande passante à −x dB → une grande bande passante est le signe d'un système rapide.
- Pulsation de résonance : Valeur ω_r de ω telle que $G_{db}(\omega_r)$ est maximum
- Coefficient de surtension

$$Q_{dB} = G_{dB}(w_r) - G_{dB}(0)$$

Une résonance et un coefficient de surtension sont le signe d'un système oscillant qui comporte donc des pôles complexes conjugués.

Caractéristiques d'une réponse fréquentielle

