Correction du devoir surveillé 7.

Exercice 1

Partie 1

 $\mathbf{1}^{\circ}$) $f \in A_0$ donc $f \circ f = 0$.

Ainsi, pour tout $x \in E$, $f \circ f(x) = 0$ i.e. f(f(x)) = 0 donc, pour tout $x \in E$, $f(x) \in \text{Ker}(f)$. On vient de montrer que tous les éléments de la forme f(x) où $x \in E$ sont dans Ker(f).

Ceci prouve que : $\boxed{\mathrm{Im}(f)\subset\mathrm{Ker}(f)}$

2°) Soit $k \in \mathbb{N}$ et $f \in A_k$. On suppose $k \neq 0$ et f bijective.

 $f \circ f = kf$. f^{-1} existe: $f \circ f \circ f^{-1} = kf \circ f^{-1}$.

Donc $f \circ id_E = k id_E$, donc $f = k id_E$.

Donc f est l'homothétie de rapport k

3°) a) On sait déjà que $\{0\} \subset \operatorname{Ker}(f) \cap \operatorname{Im}(f)$.

Réciproquement, soit $x \in \text{Ker}(f) \cap \text{Im}(f)$. Montrons que x = 0.

 $x \in \text{Ker}(f) \text{ donc } f(x) = 0.$

De plus, $x \in \text{Im}(f)$ donc x s'écrit x = f(y) où $y \in E$.

Ainsi, f(f(y)) = 0 *i.e.* $f \circ f(y) = 0$.

Or $f \in A_k$ donc $f \circ f = kf$. Ainsi, kf(y) = 0.

Comme $k \neq 0$, il vient f(y) = 0. Donc x = 0.

On a montré : $Ker(f) \cap Im(f) \subset \{0\}$.

Finalement, $Ker(f) \cap Im(f) \subset \{0\}$

b) Soit $x \in E$.

$$f\left(x - \frac{1}{k}f(x)\right) = f(x) - \frac{1}{k}f(f(x)) \qquad \text{par linéarité de } f$$

$$= f(x) - \frac{1}{k}f \circ f(x)$$

$$= f(x) - \frac{1}{k}kf(x) \qquad \text{car } f \circ f = kf$$

$$= 0$$

Ainsi,
$$x - \frac{1}{k}f(x) \in \text{Ker}(f)$$
.

c) Soit $x \in E$.

$$x = \frac{1}{k}f(x) + x - \frac{1}{k}f(x)$$

On note $y = \frac{1}{k}f(x)$ et $z = x - \frac{1}{k}f(x)$.

On a bien : x = y + z.

y s'écrit, par linéarité de $f,\,y=f\left(\frac{1}{k}x\right)$. Ainsi, $y\in \mathrm{Im}(f).$

De plus, par 3b, $z \in \text{Ker}(f)$.

Ainsi, on a montré que : E = Ker(f) + Im(f)

- d) On a vu : $E = \operatorname{Ker}(f) + \operatorname{Im}(f)$ et $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0\}$. On en déduit que $\operatorname{Ker}(f)$ et $\operatorname{Im}(f)$ sont supplémentaires dans E. Ce qui revient à : $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
- 4°) Tout d'abord, $f \circ g \in \mathcal{L}(E)$ comme composée d'endomorphismes de E. $(f \circ g)^2 = f^2 \circ g^2$ car f et g commutent. Or $f \in A_k$ et $g \in A_k$ donc $f^2 = kf$ et $g^2 = kg$. D'où $(f \circ g)^2 = (kf) \circ (kg) = k^2 (f \circ g)$. De plus, $k^2 \in \mathbb{N}$. On en déduit que $f \circ g \in A_{k^2}$. Ainsi, $\exists k' \in \mathbb{N}, f \circ g \in A_{k'}$.
- 5°) a) On suppose que $f \circ g + g \circ f = 0$, notée (*). On compose (*) à gauche par f:

$$f\circ (f\circ g+g\circ f)=f\circ 0$$
 i.e.
$$f\circ f\circ g+f\circ g\circ f=0$$

$$kf\circ g+f\circ g\circ f=0 \ \text{car} \ f^2=kf$$

On compose (*) à droite par f:

$$(f\circ g+g\circ f)\circ f=0\circ f$$
 i.e.
$$f\circ g\circ f+g\circ f\circ f=0$$

$$f\circ g\circ f+kg\circ f=0 \ \ {\rm car} \ f^2=kf$$

Ainsi $f \circ g \circ f = -kf \circ g = -kg \circ f$, et comme $k \neq 0$, il vient : $f \circ g = g \circ f$. Comme, par (*), $f \circ g = -g \circ f$, on obtient : $f \circ g = g \circ f = 0$.

- b) $f + g \in \mathcal{L}(E)$ comme somme d'endomorphismes de E. $(f+g)^2 = (f+g) \circ (f+g) = f^2 + f \circ g + g \circ f + g^2 = k(f+g) + f \circ g + g \circ f$ car $f \in A_k, g \in A_k$.
 - ★ On suppose que $f \circ g = g \circ f = 0$. Alors, $(f+g)^2 = k(f+g)$. Donc $f+g \in A_k$.
 - ★ On suppose que $f + g \in A_k$. Donc $(f + g)^2 = k(f + g)$. On en déduit que : $f \circ g + g \circ f = 0$. Par la question précédente, $f \circ g = g \circ f = 0$. Finalement, $f + g \in A_k \iff f \circ g = g \circ f = 0$.

Partie 2

6°) Pour $(x, y, z) \in E$, $x + y = 0 \iff x = -y$, donc :

$$F = \{ (-y, y, z) / (y, z) \in \mathbb{R}^2 \}$$

$$= \{ y.(-1, 1, 0) + z.(0, 0, 1) / (y, z) \in \mathbb{R}^2 \}$$

$$= \text{Vect} ((-1, 1, 0), (0, 0, 1))$$

On en déduit que F est un sev de E et que ((-1,1,0),(0,0,1)) en est une famille génératrice. Par ailleurs, (-1,1,0) et (0,0,1) sont 2 vecteurs non colinéaires : ils forment donc une famille libre. C'est donc une base de F et $\dim(F)=2$, F est bien un plan.

7°) f va bien de E dans E. Soient u = (x, y, z) et v = (x', y', z') deux éléments de E et soit $\lambda \in \mathbb{R}$. On a :

$$f(\lambda . u + v) = (\lambda x + x' - (\lambda y + y'), -(\lambda x + x') + (\lambda y + y'), 2(\lambda x + x') + 2(\lambda y + y') + 2(\lambda z + z'))$$

$$= (\lambda (x - y) + x' - y', \lambda (-x + y) + (-x' + y'), \lambda (2x + 2y + 2z) + 2x' + 2y' + 2z')$$

$$= \lambda . (x - y, -x + y, 2x + 2y + 2z) + (x' - y', -x' + y', 2x' + 2y' + 2z')$$

$$= \lambda . f(u) + f(v)$$

Donc, f est linéaire.

Ainsi f est un endomorphisme de E

8°) Soit $u = (x, y, z) \in E$.

$$u \in \text{Ker}(f) \iff f(u) = 0$$

$$\iff (x - y, -x + y, 2x + 2y + 2z) = 0$$

$$\iff \begin{cases} x - y = 0 \\ -x + y = 0 \\ 2x + 2y + 2z = 0 \end{cases}$$

$$\iff \begin{cases} y = x \\ z = -2x \end{cases}$$

Donc $Ker(f) = \{(x, x, -2x) / x \in \mathbb{R}\} = \boxed{Vect((1, 1, -2))}$

Ainsi ((1,1,-2)) est une famille génératrice de Ker(f) constituée d'un vecteur non nul, donc c'est une famille libre et c'est une base de Ker(f).

Comme $Ker(f) \neq \{0\}$, f n'est pas injective, donc pas bijective, ce n'est pas un automorphisme de E

9°) On a f(1,0,0) = (1,-1,2), f(0,1,0) = (-1,1,2) et f(0,0,1) = (0,0,2), et ces vecteurs forment une famille génératrice de Im(f). Comme f(0,1,0) = -f(1,0,0) + 2f(0,0,1), la famille (f(1,0,0),f(0,0,1)) = ((1,-1,2),(0,0,2)) est encore génératrice de Im(f).

Or, ces deux vecteurs sont non colinéaires, donc ils forment une famille libre.

Finalement, ((1,-1,2),(0,0,2)) est une base de Im(f)

Au passage, on obtient que Im(f) est de dimension 2.

On constate que les vecteurs (1, -1, 2) et (0, 0, 2) sont dans F, car leurs coordonnées vérifient l'équation de F. Donc $\text{Im}(f) = \text{Vect}((1, -1, 2), (0, 0, 2)) \subset F$.

Comme $\dim(\operatorname{Im}(f)) = 2 = \dim(F)$, on en déduit : $\operatorname{Im}(f) = F$

- 10°) On peut constater que pour tout $(x, y, z) \in \mathbb{R}^3$, f(f(x, y, z)) = 2f(x, y, z), ou bien : Calculons :
 - $f^2(1,0,0) = f(f(1,0,0)) = f(1,-1,2) = (2,-2,4) = 2f(1,0,0).$
 - $f^2(0,1,0) = f(f(0,1,0)) = f(-1,1,2) = (-2,2,4) = 2f(0,1,0).$
 - $f^2(0,0,1) = f(f(0,0,1)) = f(0,0,2) = (0,0,4) = 2f(0,0,1)$

Ainsi f^2 et 2f coïncident sur la base canonique de \mathbb{R}^3 , donc $f^2=2f$. Ainsi $f\in A_2$.

Posons, pour tout $n \in \mathbb{N}^* : P_n : f^n = 2^{n-1} \cdot f$.

- $f^1 = f = 2^0 \cdot f$ donc P_1 est vraie.
- Supposons que pour un $n \in \mathbb{N}^*$ fixé, on ait $f^n = 2^{n-1}f$. Alors $f^{n+1} = f^n \circ f = 2^{n-1}f \circ f = 2^{n-1}.2.f = 2^{n+1-1}f$. Ainsi P_{n+1} est vraie.
- Ainsi pour tout $n \in \mathbb{N}^*$, $f^n = 2^{n-1} \cdot f$
- 11°) Soit $y \in \text{Im}(f 2id_E)$. Il existe un vecteur $x \in E$ tel que $y = (f 2id_E)(x) = f(x) 2x$. On a donc $y = -2\left(x - \frac{1}{2}f(x)\right)$. D'après la question 3b, $x - \frac{1}{2}f(x) \in \text{Ker}(f)$. Comme Ker(f) est un sous-espace vectoriel de E, on en tire que $y \in \text{Ker}(f)$ aussi.

On a donc : $Im(f - 2id_E) \subset Ker(f)$.

Comme $f \neq 2id_E$, on a Im $(f - 2id_E) \neq \{0\}$ et dim $(Im(f - 2id_E)) \geq 1$.

De plus, $\dim(\operatorname{Ker}(f)) = 1$, on a donc $\operatorname{Im}(f - 2\operatorname{id}_E) = \operatorname{Ker}(f)$

On a bien l'égalité

Partie 3

12°) Soit $f \in E$. Alors $f'(0) \in \mathbb{R}$ et comme e_k est de classe C^{∞} sur \mathbb{R} , $\varphi(f) \in E$. Ainsi $\varphi : E \to E$.

Soient $(f,g) \in E^2$ et $\lambda \in \mathbb{R}$.

$$\varphi(\lambda f + g) = (\lambda f + g)'(0)e_k$$

$$= (\lambda f'(0) + g'(0)) e_k$$

$$= \lambda f'(0)e_k + g'(0)e_k$$

$$= \lambda \varphi(f) + \varphi(g)$$

Donc φ est linéaire.

Ainsi, $\varphi \in \mathcal{L}(E)$.

13°) Soit $f \in E$. Notons $g = \varphi(f)$; pour tout $x \in \mathbb{R}$, $g(x) = f'(0) \exp(kx)$, donc pour tout $x \in \mathbb{R}$, $g'(x) = kf'(0) \exp(kx)$. Ainsi g'(0) = kf'(0).

On en tire que $\varphi(\varphi(f)) = kf'(0)e_k = k\varphi(f)$; ceci pour tout $f \in E$, donc $\varphi \circ \varphi = k\varphi$. Ainsi, $\varphi \in A_k$.

14°) Par définition, pour tout $f \in E$, $\varphi(f) \in F$, donc $\text{Im}(\varphi) \subset F$.

Réciproquement, Si $h \in F$, il existe $\lambda \in \mathbb{R}$ tel que $h = \lambda e_k$. Posons $f : x \mapsto \lambda x$, alors $f \in E$ et $f'(0) = \lambda$, donc $h = \lambda e_k = \varphi(f)$. Ainsi $h \in \text{Im}(\varphi)$.

Ainsi, $F = \text{Im}(\varphi)$.

Par ailleurs, pour tout $f \in E$,

$$f \in \text{Ker}(\varphi) \iff \varphi(f) = 0 \iff \forall x \in \mathbb{R}, \ f'(0) \exp(kx) = 0 \iff f'(0) = 0$$

(puisque exp ne s'annule jamais).

Ainsi $Ker(\varphi) = G$ (ce qui montre au passage que G est un sous-espace vectoriel de E).

Comme $\varphi \in A_k$ et $k \neq 0$, la question 3d nous permet de conclure que F et G sont supplémentaires dans E.

Exercice 2

 $Question\ pr\'eliminaire:$

Soit
$$P = a_0 + a_1 X + \dots + a_n X^n$$
 où $n \in \mathbb{N}, a_0, \dots, a_n$ sont des réels.
On pose $Q = a_0 X + \frac{a_1}{2} X^2 + \dots + \frac{a_n}{n+1} X^{n+1}$. Alors $Q \in E$ et $Q' = P$.

Partie 1

1°) Soit $(P,Q) \in E^2, \lambda \in \mathbb{R}$. Montrons que : $\Delta(\lambda P + Q) = \lambda \Delta(P) + \Delta(Q)$.

$$\begin{split} \Delta(\lambda P+Q) &= (\lambda P+Q)(X+1) - (\lambda P+Q)(X) \\ &= \lambda P(X+1) + Q(X+1) - (\lambda P(X) + Q(X)) \qquad \text{par propr des lois} + \text{et . sur } E \\ &= \lambda (P(X+1) - P(X)) + Q(X+1) - Q(X) \\ &= \lambda \Delta(P) + \Delta(Q) \end{split}$$

Ainsi, Δ est linéaire. De plus, Δ va de E dans E.

Donc, Δ est un endomorphisme de E.

 2°) a) On suppose qu'il existe un polynôme P non constant de E dans $Ker(\Delta)$.

On a donc : $\varphi(P) = 0$ donc P(X + 1) = P(X). P n'est pas constant donc admet au moins une racine α dans \mathbb{C} .

Montrons que, pour tout $n \in \mathbb{N}$, $\alpha + n$ est une racine de P.

Pour $n \in \mathbb{N}$, on pose $H_n : P(\alpha + n) = 0$.

 $\star P(\alpha) = 0$ car α est une racine de P. Donc H_0 est vraie.

- ★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. P(X+1) = P(X). En évaluant en $\alpha + n : P(\alpha + n + 1) = P(\alpha + n)$. Or, par H_n , $P(\alpha + n) = 0$ donc $P(\alpha + n + 1) = 0 : \alpha + n + 1$ est une racine de P. H_{n+1} est vraie.
- ★ On a montré par récurrence que, pour tout $n \in \mathbb{N}$, $\alpha + n$ est une racine de P. On en déduit que P admet une infinité de racines. C'est donc le polynôme nul. Or, P n'est pas constant.

On aboutit donc à une contradiction : il n'y a pas de polynôme non constant dans $\operatorname{Ker}(\Delta)$

- b) \star Si $P \in \mathbb{R}_0[X]$ alors P est constant donc $\Delta(P) = P(X+1) P(X) = 0 : P \in \text{Ker}(\Delta)$. Ainsi, $\mathbb{R}_0[X] \subset \text{Ker}(\Delta)$.
 - ★ Soit $P \in \text{Ker}(\Delta)$ alors, par la question précédente, P est constant (sinon, on aboutit à une contradiction). Ainsi, $\text{Ker}(\Delta) \subset \mathbb{R}_0[X]$.

Finalement, $Ker(\Delta) = \mathbb{R}_0[X]$

3°) L'équation à résoudre se réécrit $\Delta(P)=1$. Comme Δ est linéaire, c'est une équation linéaire, et on constate que le polynôme X est une solution particulière : (X+1)-X=1. De plus, on connaît l'ensemble des solutions de $\Delta(P)=0$, c'est $\mathrm{Ker}(\Delta)=\mathbb{R}_0[X]=\{c\ /\ c\in\mathbb{R}\}$. Donc l'ensemble des solutions de l'équation P(X+1)-P(X)=1 est $\{X+c\ /\ c\in\mathbb{R}\}$.

Partie 2

4°) a) $P \in \mathcal{A}$ donc, pour tout $k \in \mathbb{N}$, $\int_{k}^{k+1} P(t) dt = k$.

Or Q'=P donc Q est une primitive de la fonction P donc

$$\int_{k}^{k+1} P(t) dt = [Q(t)]_{k}^{k+1} = Q(k+1) - Q(k).$$

Ainsi, pour tout $k \in \mathbb{N}$, Q(k+1) - Q(k) = k, soit encore Q(k+1) - Q(k) - k = 0.

Tous les entiers naturels sont donc racines du polynôme Q(X+1)-Q(X)-X. Le polynôme Q(X+1)-Q(X)-X admet donc une infinité de racines : c'est le polynôme nul.

On a bien :
$$Q(X + 1) - Q(X) = X$$
.

- b) Q(X+1)-Q(X)=X. En dérivant : Q'(X+1)-Q'(X)=1. Or Q'=P donc P(X+1)-P(X)=1. Par 3, $\exists \ c\in\mathbb{R}, P(X)=X+c$.
- 5°) \star On a prouvé que si $P \in \mathcal{A}$ alors $\exists c \in \mathbb{R}, P(X) = X + c$.
 - ★ Réciproquement, soit P un polynôme qui s'écrit : P(X) = X + c où $c \in \mathbb{R}$. $\forall k \in \mathbb{N}$,

$$\int_{k}^{k+1} P(t) dt = \int_{k}^{k+1} (t+c) dt$$

$$= \left[\frac{t^{2}}{2} + ct \right]_{k}^{k+1}$$

$$= \frac{(k+1)^{2}}{2} + c(k+1) - \frac{k^{2}}{2} - ck$$

$$= \frac{2k+1}{2} + c$$

$$= k + c + \frac{1}{2}$$

Ainsi, $P \in \mathcal{A} \iff c + \frac{1}{2} = 0 \text{ donc } P \in \mathcal{A} \iff c = -\frac{1}{2}.$

 \mathcal{A} est réduit à un seul élément : $\mathcal{A} = \left\{ X - \frac{1}{2} \right\}$.

Partie 3

6°) Soit $k \in \mathbb{N}^*$.

$$Q' = P \text{ donc } \int_{k}^{k+1} P(t) dt = Q(k+1) - Q(k).$$

On a donc, par (*): $\forall k \in \mathbb{N}^*$, $Q(k+1) - Q(k) = \frac{1}{k}$, ce qui s'écrit : k(Q(k+1) - Q(k)) = 1 soit encore k(Q(k+1) - Q(k)) - 1 = 0.

Tous les entiers naturels non nuls sont donc racines du polynôme X(Q(X+1)-Q(X))-1: il admet donc une infinité de racines. C'est donc le polynôme nul. Ainsi, X(Q(X+1)-Q(X))=1.

7°) On sait que X(Q(X+1) - Q(X)) = 1.

Méthode 1 : En évaluant en 0, on obtient 0 = 1 : absurde.

Méthode 2 : On a donc $\deg(X(Q(X+1)-Q(X))=\deg(1)$ i.e. $1+\deg(Q(X+1)-Q(X))=0$, d'où $\deg(Q(X+1)-Q(X))=-1$: impossible.

Ainsi, il n'existe pas de polynôme P de E tel que : $\forall k \in \mathbb{N}^*, \int_k^{k+1} P(t) dt = \frac{1}{k}$

Exercice 3

1°)
$$T_2 = 2XT_1 - T_0 = 2X^2 - 1$$

 $T_3 = 2XT_2 - T_1 = 2X(2X^2 - 1) - X = 4X^3 - 3X$
 $T_4 = 2XT_3 - T_2 = 2X(4X^3 - 3X) - 2X^2 + 1 = 8X^4 - 8X^2 + 1$

- 2°) On pose, pour tout $n \in \mathbb{N}^*$, $H_n : T_n$ est de degré n et son coefficient dominant est 2^{n-1} .
 - ★ $T_1 = X = 2^0 X$ et $T_2 = 2X^2 12^1 X^2 1$ donc H_1 et H_2 sont vraies.
 - ★ On suppose, pour un rang $n \ge 1$ fixé, H_n et H_{n+1} vraies. Montrons que H_{n+2} est vraie. Par H_{n+1} , T_{n+1} s'écrit : $T_{n+1} = 2^n X^{n+1} + Q$ où Q est un polynôme de degré < n+1. Ainsi,

$$T_{n+2} = 2X(2^n X^{n+1} + Q) - T_n = 2^{n+1} X^{n+2} + 2XQ - T_n$$

 $\deg(2XQ - T_n) \le \max(\deg(2XQ), \deg(T_n)).$

Or $deg(T_n) = n$ par H_n et deg(2XQ) = 1 + deg Q < n + 2.

Donc, $deg(2XQ - T_n) < n + 2$.

On en déduit alors que $deg(T_{n+2}) = n+2$ et le coefficient dominant de T_{n+2} est 2^{n+1} . Ainsi, H_{n+2} est vraie.

- \star On a montré par récurrence double que, pour tout $n \in \mathbb{N}^*$, H_n est vraie.
- 3°) a) Soient a et b des réels.

 $M\'{e}thode~1$: On sait que

$$\begin{cases} \cos(a+b) = \cos a \cos b - \sin a \sin b \\ \cos(a-b) = \cos a \cos b + \sin a \sin b \end{cases}$$

En effectuant la demi-somme des deux lignes, on obtient :

$$\cos a \cos b = \frac{1}{2}(\cos(a+b) + \cos(a-b))$$

6

 $M\'{e}thode\ 2$: Avec les complexes.

$$\cos a \cos b = \frac{e^{ia} + e^{-ia}}{2} \frac{e^{ib} + e^{-ib}}{2}$$

$$= \frac{1}{4} \left(e^{ia} e^{ib} + e^{-ia} e^{ib} + e^{ia} e^{-ib} + e^{-ia} e^{-ib} \right)$$

$$= \frac{1}{2} \left(\frac{e^{i(a+b)} + e^{-i(a+b)}}{2} + \frac{e^{i(a-b)} + e^{-i(a-b)}}{2} \right)$$

$$\cos a \cos b = \frac{1}{2} \left(\cos(a+b) + \cos(a-b) \right)$$

- **b)** Soit $\theta \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on pose $H_n : T_n(\cos \theta) = \cos(n\theta)$.
 - ★ $T_0 = 1$ et $T_1 = X$ donc $T_0(\cos \theta) = 1 = \cos(0\theta)$ et $T_1(\cos \theta) = \cos(\theta) = \cos(1\theta)$. Ainsi, H_0 et H_1 sont vraies.
 - \star Supposons que, pour $n \in \mathbb{N}$ fixé, H_n et H_{n+1} sont vraies. Montrons que H_{n+2} est vraie.

$$T_{n+2}(\cos\theta) = 2\cos\theta T_{n+1}(\cos\theta) - T_n(\cos\theta)$$

$$= 2\cos\theta\cos((n+1)\theta) - \cos(n\theta) \quad \text{par } H_n \text{ et } H_{n+1}$$

$$= \cos(\theta + (n+1)\theta) + \cos(\theta - (n+1)\theta) - \cos(n\theta) \quad \text{par } 3\theta$$

$$= \cos((n+2)\theta) \quad \text{car cos est paire}$$

Ainsi, H_{n+2} est vraie.

- \star On a montré par récurrence double que, pour tout $n \in \mathbb{N}, H_n$ est vraie.
- c) Soit $n \in \mathbb{N}$. Soit Q_n un polynôme de $\mathbb{R}[X]$ tel que : $\forall \theta \in \mathbb{R}$, $Q_n(\cos \theta) = \cos(n\theta)$. Alors, pour tout $\theta \in \mathbb{R}$, $T_n(\cos \theta) = Q_n(\cos \theta)$ ie $(T_n Q_n)(\cos \theta) = 0$. $\cos \theta$ décrit [-1,1] lorsque θ décrit \mathbb{R} . Ainsi, le polynôme $T_n Q_n$ admet pour racines tous les réels de [-1,1] et a donc une infinité de racines. C'est donc le polynôme nul. Ainsi $T_n = Q_n$. Finalement, T_n est l'unique polynôme de $\mathbb{R}[X]$ tel que : $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
- d) $\star T_n(1) = T_n(\cos 0) = \cos(n0) = \cos 0 = \boxed{1}$
 - $\star T_n(0) = T_n\left(\cos\left(\frac{\pi}{2}\right)\right) = \cos\left(n\frac{\pi}{2}\right)$ par 3b.

Supposons n impair. Alors n s'écrit : n = 2k + 1 où $k \in \mathbb{N}$, et $T_n(0) = \cos\left(k\pi + \frac{\pi}{2}\right) = 0$. Supposons n pair. Alors n s'écrit : n = 2k où $k \in \mathbb{N}$.

$$T_n(0) = \cos(k\pi) = (-1)^k = (-1)^{\frac{n}{2}}.$$

Finalement,
$$\begin{cases} T_n(0) = 0 & \text{si } n \text{ est impair} \\ T_n(0) = (-1)^{\frac{n}{2}} & \text{si } n \text{ est pair} \end{cases}$$

4°) a) Soit $n \in \mathbb{N}$. On note Q_n le polynôme $Q_n = (-1)^n T_n(-X)$. $\forall \theta \in \mathbb{R}$,

$$Q_n(\cos \theta) = (-1)^n T_n(-\cos \theta) = (-1)^n T_n(\cos(\theta + \pi))$$
$$= (-1)^n \cos(n(\theta + \pi)) = (-1)^n \cos(n\theta + n\pi)$$
$$= (-1)^{2n} \cos \theta$$
$$= \cos(n\theta)$$

Par unicité du polynôme T_n (cf. 3c), il vient $Q_n = T_n$ ie $T_n(X) = (-1)^n T_n(-X)$

b) Soit $n \in \mathbb{N}$. On a $T_n(-X) = \frac{1}{(-1)^n} T_n(X) = (-1)^n T_n(X)$.

— Si n est pair alors $T_n(-X) = T_n(X)$ ie T_n est un polynôme pair

- Si n est impair alors $T_n(-X) = -T_n(X)$ ie T_n est un polynôme impair
- **5**°) **a**) Soit $n \in \mathbb{N}$. $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.

Les fonctions $\theta \mapsto T_n(\cos \theta)$ et $\theta \mapsto \cos(n\theta)$ sont de classe C^{∞} sur \mathbb{R} .

En dérivant :

$$\forall \theta \in \mathbb{R}, -\sin \theta T_n'(\cos \theta) = -n\sin(n\theta)$$

En dérivant à nouveau :

 $\forall \theta \in \mathbb{R},$

$$-\cos\theta T_n'(\cos\theta) + \sin^2\theta T_n''(\cos\theta) = -n^2\cos(n\theta)$$
$$\cos\theta T_n'(\cos\theta) + (\cos^2\theta - 1)T_n''(\cos\theta) = n^2T_n(\cos\theta)$$

Comme $\cos \theta$ décrit [-1,1] lorsque θ décrit \mathbb{R} , on obtient :

$$\forall x \in [-1, 1], \ (x^2 - 1)T_n''(x) + xT_n'(x) = n^2 T_n(x)$$

- b) On pose x=1 dans la relation précédente, on obtient, en utilisant $T_n(1)=1$: $T_n'(1)=n^2$
- **6**°) **a**) Soit $k \in \{1, ..., n\}$.

Par (*),
$$T_n(\alpha_k) = T_n\left(\cos\left(\frac{2k-1}{2n}\pi\right)\right) = \cos\left(\frac{2k-1}{2}\pi\right) = \cos\left(k\pi - \frac{\pi}{2}\right) = \boxed{0}$$

b) On note, pour tout $k \in \{1, ..., n\}, x_k = \frac{2k-1}{2n}\pi$.

$$1 \le k \le n \text{ donc } 1 \le 2k - 1 \le 2n - 1. \text{ Puis, } \frac{\pi}{2n} \le x_k \le \frac{2n - 1}{2n} \pi. \text{ Ainsi, } 0 < x_k < \pi.$$

Les réels x_k , pour k variant de 1 à n, sont des éléments distincts 2 à 2 de l'intervalle $[0, \pi]$. Comme cos réalise une bijection de $[0, \pi]$ sur [-1, 1], on en déduit que les $\alpha_k = \cos(x_k)$ sont 2 à 2 distincts pour $k \in \{1, \ldots n\}$.

Or, les α_k sont racines de T_n ; donc T_n admet (au moins) n racines distinctes. Comme T_n est de degré n, ce sont nécessairement les seules racines de T_n et elles sont <u>simples</u>. T_n est ainsi scindé.

Comme les racines de T_n sont des valeurs de la fonction cos, on en déduit de plus que toutes les racines de T_n sont éléments de [-1,1].

c) Par la question précédente et en utilisant le fait que le coefficient dominant de T_n est 2^{n-1} , il vient :

$$T_n = 2^{n-1} \prod_{k=1}^n (X - \alpha_k) = 2^{n-1} \prod_{k=1}^n \left(X - \cos\left(\frac{2k-1}{2n}\pi\right) \right)$$

d) Soit $n \in \mathbb{N}^*$. On reconnaît la somme des racines de T_n et le produit des racines de T_n . Notons a_0 le coefficient constant de T_n et a_{n-1} le coefficient de X^{n-1} dans T_n . Comme le coefficient dominant de T_n est 2^{n-1} :

$$s_n = -\frac{a_{n-1}}{2^{n-1}}$$
 et $\pi_n = (-1)^n \frac{a_0}{2^{n-1}}$

- Comme T_n a la parité de n, on a toujours $a_{n-1} = 0$: en effet, si n est pair, c'est un coefficient impair alors que T_n est pair; et si n est impair, c'est un coefficient pair alors que T_n est impair. Ainsi, $s_n = 0$.
- $\pi_n = (-1)^n \frac{a_0}{2^{n-1}} = (-1)^n \frac{T_n(0)}{2^{n-1}}$. En utilisant la question 3.d : Si n est impair, $\pi_n = 0$.

Si
$$n$$
 est pair, $\pi_n = \frac{(-1)^{\frac{n}{2}}}{2^{n-1}}$ (car $(-1)^n = 1$).