Technische Universität Ilmenau Institut für Mathematik

Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 12 (8.1.2024 - 12.1.2024)

Aufgabe 1:

Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^5 + x$ bijektiv ist und berechnen Sie die Ableitung der Umkehrfunktion von f an der Stelle $x_0 = 2$.

Aufgabe 2:

Berechnen Sie die folgenden Grenzwerte, sofern diese existieren, mit Hilfe der Grenzwertregel von Bernoulli und l'Hospital.

- (a) $\lim_{x \to e} \frac{e-x}{\ln x 1}$,
- (b) $\lim_{x \to 0} (\frac{1}{x} \frac{1}{\sin x}),$

- (a) $\lim_{x \to e} \frac{e x}{\ln x 1}$, (b) $\lim_{x \to 0} (\frac{1}{x} \frac{1}{\sin x})$, (c) $\lim_{x \to 0+0} x \ln x$, (d) $\lim_{x \to 0+0} \sin x \cdot \ln x$, (e) $\lim_{x \to \frac{\pi}{4}} (\tan x)^{\tan(2x)}$, (f) $\lim_{x \to \infty} (x \ln \frac{x+1}{x-1})$.

Aufgabe 3:

Berechnen Sie die Ableitungen der folgenden durch Potenzreihen gegebenen Funktionen:

(a)
$$f(x) = \sum_{k=0}^{\infty} x^k, |x| < 1$$

(a)
$$f(x) = \sum_{k=0}^{\infty} x^k$$
, $|x| < 1$ (b)^(*) $g(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$, (c)^(*) $h(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$.

$$(c)^{(*)} h(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

Bemerkung: Es gilt $f(x) = \frac{1}{1-x}$, $g(x) = \sinh x$ und $h(x) = \cosh x$.

Aufgabe 4:

Berechnen Sie mittels Differenziation der geometrischen Reihe $\sum_{k=0}^{\infty} x^k$ mit |x| < 1 die Summen der folgenden Reihen (bei |x| < 1):

(a)
$$\sum_{k=1}^{\infty} kx^k$$
,

(b)^(*)
$$\sum_{k=1}^{\infty} k^2 x^k$$
.

Aufgabe 5:

Betrachtet wird die Funktion $f:[0,\infty)\to\mathbb{R}$ mit $f(x)=\sqrt{x}$.

- (a) Stellen Sie das zweite Taylorpolynom $T_{f,2,x_0}(x)$ von f an der Entwicklungsstelle $x_0=1$ auf.
- (b) Schätzen Sie den Approximationsfehler $|f(x)-T_{f,2,x_0}(x)|$ für $x\in(\frac{1}{2},\frac{3}{2})$ ab.

Aufgabe 6:

Betrachtet wird die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2 + \sin x$.

- (a) Stellen Sie das dritte Taylorpolynom $T_{f,3,x_0}(x)$ von f an der Entwicklungsstelle $x_0=0$ auf.
- (b) Bestimmen Sie eine Zahl $\varepsilon > 0$ so, dass für alle $x \in \mathbb{R}$ mit $|x| < \varepsilon$ gilt

$$|f(x) - T_{f,3,x_0}(x)| < \frac{1}{24}.$$