Decision Tree Regression

Example

Predictors	Target

				-
Outlook	Temp.	Humidity	Windy	Hours Played
Rainy	Hot	High	Falce	26
Rainy	Hot	High	True	30
Overoast	Hot	High	Falce	48
Sunny	Mild	High	Falce	46
Sunny	Cool	Normal	Falce	62
Sunny	Cool	Normal	True	23
Overoast	Cool	Normal	True	43
Rainy	MIId	High	Falce	36
Rainy	Cool	Normal	Falce	38
Sunny	Mild	Normal	Falce	48
Rainy	Mild	Normal	True	48
Overoast	Mild	High	True	62
Overoast	Hot	Normal	Falce	44
Sunny	Mild	High	True	30

Attribute Selection Criteria: SD

Use standard deviation to calculate the homogeneity of a numerical sample. If the numerical sample is completely homogeneous its standard deviation is zero.

Attribute Selection Criteria: SD

Hours Played
25
30
46
45
52
23
43
35
38
46
48
52
44
30

$$S = \sqrt{\frac{\sum (x - \mu)^2}{n}}$$

Standard Deviation

$$S = 9.32$$

Attribute Selection Criteria: SD

$$S(T,X) = \sum_{c \in X} P(c)S(c)$$

		Hours Played (StDev)	Count
	Overcast	3.49	4
Outlook	Rainy	7.78	5
	Sunny	10.87	5
			14

S(Hours, Outlook) = P(Sunny)*S(Sunny) + P(Overcast)*S(Overcast) + <math>P(Rainy)*S(Rainy)= (4/14)*3.49 + (5/14)*7.78 + (5/14)*10.87= 7.66

SD Reduction

$$SDR(T,X) = S(T) - S(T,X)$$

SDR(Hours, Outlook) = S(Hours, Outlook)

$$= 9.32 - 7.66 = 1.66$$

SD Reduction

		Hours Played (StDev)
	Overcast	3.49
Outlook	Rainy	7.78
	Sunny	10.87
SDR=1.66		

		Hours Played (StDev)
High		9.36
Humidity	Normal	8.37
SDR=0.28		

		Hours Played (StDev)
	Cool	10.51
Temp.	Hot	8.95
	Mild	7.65
SDR=0.17		

		Hours Played (StDev)
False		7.87
Windy True		10.59
SDR=0.29		

Attribute with highest SDR

*		Hours Played (StDev)
	Overcast	
Outlook	Rainy	7.78
Sunny		10.87
SDR=1.66		

Regression Tree: Depth1

Outlook	Temp.	Humidity	Windy	Hours Played
Sunny	Mild	High	FALSE	45
Sunny	Cool	Normal	FALSE	52
Sunny	Cool	Normal	TRUE	23
Sunny	Mild	Normal	FALSE	46
Sunny	Mild	High	TRUE	30
Rainy	Hot	High	FALSE	25
Rainy	Hot	High	TRUE	30
Rainy	Mild	High	FALSE	35
Rainy	Cool	Normal	FALSE	38
Rainy	Mild	Normal	TRUE	48
Overcast	Hot	High	FALSE	46
Overcast	Cool	Normal	TRUE	43
Overcast	Mild	High	TRUE	52
Overcast	Hot	_	FALSE	44

Regression Tree: Depth2

Temp.	Humidity	Windy	Hours Played
Mild	High	FALSE	45
Cool	Normal	FALSE	52
Mild	Normal	FALSE	46
Cool	Normal	TRUE	23
Mild	High	TRUE	30

*		Hours Played (StDev)
M.C. J.	False	3.09
Windy True		3.50
SDR= 7.62		

 $SDR = 10.87 - ((3/5)^{*}3.09 + (2/5)^{*}3.5)$

