Readiness Assurance Test

Choose the most appropriate response for each question.

- 41) Compute $\int xe^x dx$
 - (a) $xe^x + e^x$ (b) $xe^x e^x$
- (c) $\frac{1}{2}x^2e^x$
- (d) xe^x

- 42) Compute $\int 4x \ln(x) dx$

 - (a) $2x^2 \ln(x)$ (b) $2x^2 \ln(x) x^2$ (c) 2x

(d) $2x^2 - \frac{1}{x}$

- 43) Compute $\int_0^\infty e^{-t} dt$
 - (a) -1

(c) 1

(b) 0

(d) The integral diverges

- 44) Compute $\int_0^\infty t e^{-t} \ dt$
 - (a) The integral diverges

(c) 0

(b) 1

(d) -1

- 45) If s>1 is a real number, compute $\int_0^\infty e^{(1-s)t}\ dt$
 - (a) e^{1-s}
- (b) e^{s-1}
- (c) $\frac{1}{s-1}$
- (d) $\frac{1}{1-s}$

46) Which of the following is equivalent to $\frac{1}{x^2-5x+6}?$

(a)
$$\frac{1}{x-3} - \frac{1}{x-2}$$

(b)
$$\frac{1}{x-2} - \frac{1}{x-3}$$

(a)
$$\frac{1}{x-3} - \frac{1}{x-2}$$
 (b) $\frac{1}{x-2} - \frac{1}{x-3}$ (c) $-\frac{1}{x-2} - \frac{1}{x-3}$ (d) $\frac{1}{x-3} + \frac{1}{x-2}$

(d)
$$\frac{1}{x-3} + \frac{1}{x-2}$$

47) Which of the following is equivalent to $\frac{x}{x^2-5x+6}$?

(a)
$$\frac{1}{x-3} - \frac{1}{x-2}$$

(b)
$$\frac{1}{x-3} + \frac{1}{x-2}$$

(c)
$$\frac{2}{x-3} - \frac{3}{x-2}$$

(a)
$$\frac{1}{x-3} - \frac{1}{x-2}$$
 (b) $\frac{1}{x-3} + \frac{1}{x-2}$ (c) $\frac{2}{x-3} - \frac{3}{x-2}$ (d) $\frac{3}{x-3} - \frac{2}{x-2}$

48) Which of the following is equivalent to $\frac{x}{x^2-4x+4}$?

(a)
$$\frac{2}{(x-2)^2} + \frac{1}{x-2}$$

(a)
$$\frac{2}{(x-2)^2} + \frac{1}{x-2}$$
 (b) $\frac{x}{(x-2)^2} + \frac{1}{x-2}$ (c) $\frac{1}{(x-2)^2}$

(c)
$$\frac{1}{(x-2)^2}$$

(d)
$$\frac{x}{x-2}$$

49) Which of the following ODEs models the displacement of an damped spring-mass system?

(a)
$$x'' - 4x = 0$$

(b)
$$x'' + 4x = 0$$

(a)
$$x'' - 4x = 0$$
 (b) $x'' + 4x = 0$ (c) $x'' + 4x' + 4x = 0$ (d) $x'' - 4x' + 4x = 0$

(d)
$$x'' - 4x' + 4x = 0$$

50) Which of the following ODEs models the displacement of a undamped spring-mass system?

(a)
$$x'' - 4x = 0$$

(b)
$$x'' + 4x = 0$$

(a)
$$x'' - 4x = 0$$
 (b) $x'' + 4x = 0$ (c) $x'' + 4x' + 4x = 0$ (d) $x'' - 4x' + 4x = 0$

(d)
$$x'' - 4x' + 4x = 0$$