EX.NO :12

DATE:

DECISION TREE CLASSIFICATION

AIM:

To classify the Social Network dataset using Decision tree analysis

Source Code:

```
# Importing
the libraries import
numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv'
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, -1].values
# Splitting the dataset into the Training set
and Test set from sklearn.model selection import
train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_{\text{test}} = \text{sc.transform}(X_{\text{test}})
# Training the Decision Tree Classification model
on the Training set from sklearn.tree import
DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random state = 0)
classifier.fit(X_train, y_train)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
```

```
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() +
1, step =
0.01), np.arange(start = X_{set}[:, 1].min() - 1, stop = X_{set}[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red',
'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j,
11.
c = ListedColormap(('red', 'green'))(i), label =
j) plt.title('Decision Tree Classification
(Training set)') plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
# Visualising the Test set results
from matplotlib.colors import ListedColormap
X \text{ set, } y_\text{set} = X_\text{test, } y_\text{test}
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() +
1, step =
0.01), np.arange(start = X_{set}[:, 1].min() - 1, stop = X_{set}[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red',
'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == i, 0], X_set[y_set == i, 1],
c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Decision Tree Classification (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
```

plt.show()

OUTPUT:

