FORMULARIO SULLE EQUAZIONI DIFFERENZIALI

	CLASSIFICAZIONE	TIPOLOGIA		SOLUZIONE	
Equazioni Differenziali del PRIMO ORDINE	IMMEDIATE	y'=p(x)		$y = \int p(x) dx + c$	
	LINEARI OMOGENEE	y'=a(x)y		$\mathbf{y} = \mathbf{k} \mathbf{e}^{\mathbf{A}(x)} \operatorname{con} A(x) = \int a(x) dx$	
	LINEARI COMPLETE	y'=a(x)y+b(x)		$y = e^{A(x)} \left[\int b(x)e^{-A(x)} dx + c \right] con A(x) = \int a(x) dx$	
	A VARIABILI SEPARABILI	$y' = g(x) \cdot h(y)$		$\frac{dy}{dx} = g(x) \cdot h(y) \stackrel{h(y) \neq 0}{\Longrightarrow} \int \frac{dy}{h(y)} = \int g(x) dx$ Poi si controlla se $h(y) = 0$ è anche una soluzione	
Equazioni Differenziali del SECONDO ORDINE	IMMEDIATE	$y^{\prime\prime}=p(x)$		$y' = \int p(x) dx + c_1 \Longrightarrow y = \int \left[\int p(x) dx + c_1 \right] dx + c_2$	
	LINEARI OMOGENEE A COEFFICIENTI COSTANTI	$ay^{\prime\prime}+by^{\prime}+cy^{\prime}=0$	$\Delta > 0$	$z_1ez_2realidistinte$	$y = c_1 e^{z_1 x} + c_2 e^{z_2 x}$
		Equazione Caratteristica: $az^2 + bz + c = 0$	$\Delta = 0$	z_1 e z_2 reali coincidenti = z	$y = c_1 e^{zx} + c_2 x e^{zx} = e^{zx} (c_1 + c_2 x)$
			$\Delta < 0$	z_1 e z_2 complesse coniugate $= \alpha \pm \beta i$	$y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$