Задача А. Великая стена

Имя входного файла: wall.in
Имя выходного файла: wall.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 64 мегабайта

У короля Людовика двое сыновей. Они ненавидят друг друга, и король боится, что после его смерти страна будет уничтожена страшными войнами. Поэтому Людовик решил разделить свою страну на две части, в каждой из которых будет властвовать один из его сыновей. Он посадил их на трон в города A и B, и хочет построить минимально возможное количество фрагментов стены таким образом, чтобы не существовало пути из города A в город B.

Страну, в которой властвует Людовик, можно упрощенно представить в виде прямоугольника $m \times n$. В некоторых клетках этого прямоугольника расположены горы, по остальным же можно свободно перемещаться. Кроме этого, ландшафт в некоторых клетках удобен для строительства стены, в остальных же строительство невозможно.

При поездках по стране можно перемещаться из клетки в соседнюю по стороне, только если ни одна из этих клеток не содержит горы или построенного фрагмента стены.

Формат входных данных

В первой строке входного файла содержатся числа m и n ($1 \leqslant m, n \leqslant 50$). Во второй строке заданы числа k и l, где $0 \leqslant k, l, k+l \leqslant mn-2, k$ — количество клеток, на которых расположены горы, а l — количество клеток, на которых можно строить стену. Естественно, что на горах строить стену нельзя. Следующие k строк содержат координаты клеток с горами x_i и y_i , а за ними следуют l строк, содержащие координаты клеток, на которых можно построить стену — x_j и y_j . Последние две строки содержат координаты городов A (x_A и y_A) и B (x_B и y_B) соответственно. Среди клеток, описанных в этих k+l+2 строках, нет двух совпадающих. Гарантируется, что $1 \leqslant x_i, x_j, x_A, x_B \leqslant m$ и $1 \leqslant y_i, y_i, y_A, y_B \leqslant n$.

Формат выходных данных

В первой строке выходного файла должно быть выведено минимальное количество фрагментов стены F, которые необходимо построить. В последующих F строках необходимо вывести один из возможных вариантов застройки.

Если невозможно произвести требуемую застройку, то необходимо вывести в выходной файл единственное число -1.

Примеры

wall.in	wall.out
5 5	3
3 8	1 3
3 2	2 3
2 4	3 1
3 4	
3 1	
1 3	
2 3	
3 3	
4 3	
5 3	
1 4	
1 5	
2 1	
5 5	

Задача В. Count Online

Имя входного файла: countonline.in Имя выходного файла: countonline.out

Ограничение по времени: 6 секунд Ограничение по памяти: 256 мегабайт

Вам дано множество точек на плоскости.

Нужно уметь отвечать на два типа запросов:

 \circ ? x_1 y_1 x_2 y_2 — сказать, сколько точек лежит в прямоугольнике $[x_1..x_2] \times [y_1..y_2]$. Точки на границе и в углах тоже считаются. $x_1 \leqslant x_2, y_1 \leqslant y_2$.

 \circ + x y — добавить в множество точку (x + res % 100, y + res % 101). Где res — ответ на последний запрос вида ?, а % — операция взятия по модулю.

Формат входных данных

Число точек N ($1 \le N \le 50\,000$). Далее N точек. Число запросов Q ($1 \le Q \le 100\,000$). Далее Q запросов. Все координаты от 0 до 10^9 .

Формат выходных данных

Для каждого запроса GET одно целое число — количество точек внутри прямоугольника.

Примеры

countonline.in	countonline.out
5	3
0 0	3
1 0	1
0 1	0
1 1	0
1 1	3
9	
? 0 1 1 2	
+ 1 2	
+ 2 2	
? 1 0 2 2	
? 0 0 0 0	
+ 3 3	
? 3 3 3 3	
? 4 3 4 3	
? 4 4 5 5	

Замечание

На самом деле добавлялись точки (4, 5), (5, 5), (4, 4).

Задача С. K-я порядковая статистика на отрезке

Имя входного файла: kth.in
Имя выходного файла: kth.out
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Дан массив из N неотрицательных чисел, строго меньших 10^9 . Вам необходимо ответить на несколько запросов о величине k-й порядковой статистики на отрезке [l,r].

Формат входных данных

Первая строка содержит число N ($1 \le N \le 450\,000$) — размер массива.

Вторая строка может быть использована для генерации a_i — начальных значений элементов массива. Она содержит три числа a_1 , l и m ($0 \le a_1$, l, $m < 10^9$); для i от 2 до N

$$a_i = (a_{i-1} \cdot l + m) \mod 10^9$$
.

В частности, $0 \le a_i < 10^9$.

Третья строка содержит одно целое число B ($1 \le B \le 1000$) — количество групп запросов.

Следующие B строк описывают одну группу запросов. Каждая группа запросов описывается 10 числами. Первое число G обозначает количество запросов в группе. Далее следуют числа x_1, l_x и m_x , затем y_1, l_y и m_y , затем, k_1, l_k и m_k ($1 \le x_1 \le y_1 \le N$, $1 \le k_1 \le y_1 - x_1 + 1$, $0 \le l_x, m_x, l_y, m_y, l_k, m_k < 10^9$). Эти числа используются для генерации вспомогательных последовательностей x_g и y_g , а также параметров запросов i_g, j_g и k_g ($1 \le g \le G$)

$$\begin{array}{rcl} x_g & = & ((i_{g-1}-1)\cdot l_x + m_x) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ y_g & = & ((j_{g-1}-1)\cdot l_y + m_y) \bmod N) + 1, & 2 \leqslant g \leqslant G \\ i_g & = & \min(x_g,y_g), & 1 \leqslant g \leqslant G \\ j_g & = & \max(x_g,y_g), & 1 \leqslant g \leqslant G \\ k_g & = & (((k_{g-1}-1)\cdot l_k + m_k) \bmod (j_g - i_g + 1)) + 1, & 2 \leqslant g \leqslant G \end{array}$$

Сгенерированные последовательности описывают запросы, g-й запрос состоит в поиске k_g -го по величине числа среди элементов отрезка $[i_g, j_g]$.

Суммарное количество запросов не превосходит 600 000.

Формат выходных данных

Выведите единственное число — сумму ответов на запросы.

Примеры

kth.in	kth.out
5	15
1 1 1	
5	
1	
1 0 0 3 0 0 2 0 0	
1	
2 0 0 5 0 0 3 0 0	
1	
1 0 0 5 0 0 5 0 0	
1	
3 0 0 3 0 0 1 0 0	
1	
1 0 0 4 0 0 1 0 0	

Задача D. Рефрен

Имя входного файла: refrain.in Имя выходного файла: refrain.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется рефреном, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Формат входных данных

Первая строка входного файла содержит два целых числа: n и m ($1 \le n \le 150\,000$, $1 \le m \le 10$). Вторая строка содержит n целых чисел от 1 до m.

Формат выходных данных

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

Примеры

refrain.in	refrain.out
9 3	9
1 2 1 2 1 3 1 2 1	3
	1 2 1

Задача Е. Дуэль

Имя входного файла: duel.in
Имя выходного файла: duel.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Формат входных данных

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Формат выходных данных

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Примеры

duel.in	duel.out
101010101	4
101001	0

Замечание

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.