Data set

Qi

1 H_X

1.1 Definitions

Definition 1. The initial symbols of \mathcal{L}_X are called \mathcal{L}_X -symbols, of which there are three types:

- Propositional variables: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z;
- Propositional connectives: \neg , \rightarrow (\neg is unitary, \rightarrow is binary);
- Brackets: (and).

Definition 2. The formulas of \mathcal{L}_X are called \mathcal{L}_X -formulas, which are the symbolic strings based on \mathcal{L}_X -symbols according to the formation-rules as follows:

- All propositional variables of \mathcal{L}_X are \mathcal{L}_X -formulas;
- If ϕ is a \mathcal{L}_X -formula, $\neg \phi$ is a \mathcal{L}_X -formula;
- If ϕ and ψ are \mathcal{L}_X -formulas, $(\phi \to \psi)$ is a \mathcal{L}_X -formula;
- Only these are \mathcal{L}_X -formulas.

Definition 3. $\vee, \wedge, \leftrightarrow$ are introduced as abbreviations that for any formula ϕ and ψ :

$$\phi \lor \psi \triangleq \neg \phi \to \psi; \quad \phi \land \psi \triangleq \neg (\phi \to \neg \psi); \quad \phi \leftrightarrow \psi \triangleq (\phi \to \psi) \land (\psi \to \phi).$$

Example 4. Axiomatic system H_X .

The axioms of H_X :

X1
$$p \rightarrow (q \rightarrow p)$$

X2
$$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$$

X3
$$\neg p \rightarrow (p \rightarrow q)$$

$$X4 (p \rightarrow \neg p) \rightarrow \neg p$$

The rules of inference of S:

mp (modus ponens): ψ can be obtained from $\phi \to \psi$ and ϕ .

sub (substitution): $\phi(\mathfrak{s})$ can be obtained from ϕ , where \mathfrak{s} is a finite substitution.

Definition 5. A proof of ϕ in H_X is a sequence of formulas ϕ_0, \dots, ϕ_n , where

- $\phi_n = \phi$, and
- For each $k \leq n$, ϕ_k is either an axiom of H_X , or is obtained from $\phi_0, \dots, \phi_{k-1}$ by sub or mp.

Definition 6. ϕ is provable in H_X if and only if there is a proof of ϕ in H_X .

Definition 7. A deduction from Γ , which is a set of formulas, to ϕ in H_X is a sequence of formulas ϕ_0, \dots, ϕ_n , where

- $\phi_n = \phi$, and
- For each $k \leq n$, ϕ_k is either an axiom of H_X , or an element of Γ , or is obtained from $\phi_0, \dots, \phi_{k-1}$ by sub or mp, where sub is only used for the axiom.

Definition 8. For any formula set Γ and any formula ϕ , ϕ is deducible from Γ in H_X or ϕ is a deductive consequence of Γ in H_X if and only if there is a deduction from Γ to ϕ in H_X , denoted as $\Gamma \vdash_X \phi$. If $\Gamma = \varnothing$, $\varnothing \vdash_X \phi$ is denoted as $\vdash_X \phi$.

Theorem 9. For any formula ϕ , ϕ is provable in H_X if and only if $\vdash_X \phi$.

Theorem 10 (Soundness). In H_X , if $\vdash_X \phi$, ϕ is a tautology.

Theorem 11 (Incompleteness). For any formula ϕ , if ϕ isn't a \mathfrak{T}_X -{2}-tautology, where $\mathfrak{T}_X = \langle \{0,1,2\}, g_{\neg}, g_{\rightarrow} \rangle$ is a three-value interpretation structure in \mathscr{L}_X and the definitions of g_{\neg} and g_{\rightarrow} are in Table 1, ϕ is unprovable in H_X , denoted as $\nvdash_X \phi$.

	g_{\lnot}	$g_{ ightarrow}$			
0	1	0	2	1	2
$\frac{1}{2}$	2	1	2	2	2
2	1	2	0	2	2

Table 1: g_{\neg} and g_{\rightarrow}

1.2 Tools

Theorem 12 (Cut). For any set of formulas Δ and Γ , as well as any formula ϕ_0, \dots, ϕ_k and ψ , if $\Delta, \phi_0, \dots, \phi_k \vdash_X \psi$ and $\Gamma \vdash_X \phi_i$ holds for any $i \leq k$, then $\Gamma \cup \Delta \vdash_X \psi$.

Theorem 13 (DT). $\Gamma, \phi \vdash_X \psi$, iff $\Gamma \vdash_X \phi \to \psi$.

[deduction theorem]

Proof Later.

Theorem 14 (SRAA). *If* Γ , $\phi \vdash_X \neg \phi$, $\Gamma \vdash_X \neg \phi$.

[simple reductio ad absurdum]

Proof Later.

Theorem 15 (IE). For any set of formulas Γ and Δ , as well as any formula ϕ , if $\Gamma \vdash_X \phi$ and $\Delta \vdash_X \neg \phi$, then for any formula ψ , $\Gamma \cup \Delta \vdash_X \psi$. [inconsistency effect]

Proof Later.

2 Propositions

2.1 Axioms

Proposition 16. $\vdash_X p \to (q \to p)$

1.
$$\vdash_X p \to (q \to p)$$
 X1

Proposition 17. $\vdash_X (p \to (q \to r)) \to ((p \to q) \to (p \to r))$

1.
$$\vdash_X (p \to (q \to r)) \to ((p \to q) \to (p \to r))$$
 X2

Proposition 18. $\vdash_X \neg p \to (p \to q)$

1.
$$\vdash_X \neg p \to (p \to q)$$
 X3

Proposition 19. $\vdash_X (p \rightarrow \neg p) \rightarrow \neg p$

1.
$$\vdash_X (p \to \neg p) \to \neg p$$
 X4

Proposition 20. $\nvdash_X (\neg p \to p) \to p$

Proposition 21. $\vdash_X (\neg p \rightarrow p) \rightarrow \neg \neg p$

1.
$$\neg p, \neg p \rightarrow p \vdash_X p$$
 mp
2. $\neg p, p \vdash_X \neg \neg p$ IE
3. $\neg p, \neg p \rightarrow p \vdash_X \neg \neg p$ Cut. 1,2
4. $\neg p \rightarrow p \vdash_X \neg \neg p$ SRAA. 3
5. $\vdash_X (\neg p \rightarrow p) \rightarrow \neg \neg p$ DT. 4

2.2 Deduction

Proposition 22. $\vdash_X p \rightarrow p$

1.
$$p \vdash_X p$$

2. $\vdash_X p \to p$

Definition of deduction

DT. 1

Proposition 23. $\vdash_X (p \to (q \to r)) \to (q \to (p \to r))$

1.
$$p \to (q \to r), p, q \vdash_X r$$

 $_{
m mp}$

2.
$$p \to (q \to r), q \vdash_X p \to r$$

DT. 1

3.
$$\vdash_X (p \to (q \to r)) \to (q \to (p \to r))$$

DT. 2

Proposition 24. $\vdash_X (q \to r) \to ((p \to q) \to (p \to r))$

1.
$$p \rightarrow q, p \vdash_X q$$

mp

2.
$$q \rightarrow r, q \vdash_X r$$

mp

3.
$$q \rightarrow r, p \rightarrow q, p \vdash_X r$$

Cut. 1,2

4.
$$\vdash_X (q \to r) \to ((p \to q) \to (p \to r))$$

DT. 3

Proposition 25. $\vdash_X (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

1.
$$p \rightarrow q, p \vdash_X q$$

mp

2.
$$q \rightarrow r, q \vdash_X r$$

mp

3.
$$p \rightarrow q, q \rightarrow r, p \vdash_X r$$

Cut. 1,2

4.
$$\vdash_X (p \to q) \to ((q \to r) \to (p \to r))$$

DT. 3

2.3 Negation(\neg)

Proposition 26. $\vdash_X p \rightarrow \neg \neg p$

1.
$$p, \neg p \vdash_X \neg \neg p$$

 $_{
m IE}$

2.
$$p \vdash_X \neg \neg p$$

SRAA. 1

3.
$$\vdash_X p \rightarrow \neg \neg p$$

DT. 2

Proposition 27. $\nvdash_X \neg \neg p \rightarrow p$

Proposition 28. $\vdash_X \neg p \rightarrow \neg \neg \neg p$

1.
$$\neg p, \neg \neg p \vdash_X \neg \neg \neg p$$

 $^{\rm IE}$

 $2. \quad \neg p \vdash_X \neg \neg \neg p$

SRAA. 1

3.
$$\vdash_X \neg p \rightarrow \neg \neg \neg p$$

DT. 2

Proposition 29. $\vdash_X \neg \neg \neg p \rightarrow \neg p$

1.	$p \vdash_X \neg \neg p$	Proposition 26, DT
2.	$\neg\neg p, \neg\neg\neg p \vdash_X \neg p$	IE
3.	$p, \neg \neg \neg p \vdash_X \neg p$	Cut. 1,2
4.	$\neg\neg\neg p \vdash_X \neg p$	SRAA. 3
5.	$\vdash_X \neg \neg \neg p \to \neg p$	DT. 4

Proposition 30. $\vdash_X \neg \neg p \rightarrow \neg \neg \neg \neg p$

1.	$\neg \neg p, \neg \neg \neg p \vdash_X \neg \neg \neg \neg p$	IE
2.	$\neg \neg p \vdash_X \neg \neg \neg \neg p$	SRAA. 1
3.	$\vdash_X \neg \neg p \to \neg \neg \neg p$	DT. 2

Proposition 31. $\vdash_X \neg \neg \neg \neg p \rightarrow \neg \neg p$

1.	$\neg p \vdash_X \neg \neg \neg p$	Proposition 28, DT
2.	$\neg\neg\neg p,\neg\neg\neg\neg p \vdash_X \neg\neg p$	IE
3.	$\neg p, \neg \neg \neg p \vdash_X \neg \neg p$	Cut. 1,2
4.	$\neg\neg\neg\neg p \vdash_X \neg\neg p$	SRAA. 3
5.	$\vdash_X \neg \neg \neg \neg p \to \neg \neg p$	DT. 4

2.4 Contrap(Contraposition)

Proposition 32. $\vdash_X (p \to q) \to (\neg q \to \neg p)$

1.	$p \to q, p \vdash_X q$	mp
2.	$\neg q, q \vdash_X \neg p$	$_{ m IE}$
3.	$\neg q, p \to q, p \vdash_X \neg p$	Cut. 1,2
4.	$\neg q, p \to q \vdash_X \neg p$	SRAA. 3
5.	$\vdash_X (p \to q) \to (\neg q \to \neg p)$	DT. 4

Proposition 33. $\vdash_X (p \rightarrow \neg q) \rightarrow (q \rightarrow \neg p)$

1.	$p \to \neg q, p \vdash_X \neg q$	mp
2.	$\neg q, q \vdash_X \neg p$	IE
3.	$p \to \neg q, p, q \vdash_X \neg p$	Cut. 1,2
4.	$p \to \neg q, q \vdash_X \neg p$	SRAA. 3
5.	$\vdash_X (p \to \neg q) \to (q \to \neg p)$	DT. 4

Proposition 34. $\nvdash_X (\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$

Proposition 35. $\nvdash_X (\neg p \rightarrow q) \rightarrow (\neg q \rightarrow p)$

Proposition 36. $\vdash_X (\neg p \rightarrow \neg q) \rightarrow (q \rightarrow \neg \neg p)$

1.
$$\neg p \rightarrow \neg q, \neg p \vdash_X \neg q$$
 mp
2. $\neg q, q \vdash_X \neg \neg p$ IE
3. $\neg p \rightarrow \neg q, \neg p, q \vdash_X \neg \neg p$ Cut. 1,2
4. $\neg p \rightarrow \neg q, q \vdash_X \neg \neg p$ SRAA. 3
5. $\vdash_X (\neg p \rightarrow \neg q) \rightarrow (q \rightarrow \neg \neg p)$ DT. 4

Proposition 37. $\vdash_X (q \to \neg \neg p) \to (\neg p \to \neg q)$

$$\begin{array}{lll} 1. & q \rightarrow \neg \neg p, q \vdash_X \neg \neg p & \text{mp} \\ 2. & \neg \neg p, \neg p \vdash_X \neg q & \text{IE} \\ 3. & q \rightarrow \neg \neg p, q, \neg p \vdash_X \neg q & \text{Cut. 1,2} \\ 4. & q \rightarrow \neg \neg p, \neg p \vdash_X \neg q & \text{SRAA. 3} \\ 5. & \vdash_X (q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg q) & \text{DT. 4} \end{array}$$

Proposition 38. $\vdash_X (\neg p \rightarrow q) \rightarrow (\neg q \rightarrow \neg \neg p)$

$$\begin{array}{lll} 1. & \neg p \rightarrow q, \neg p \vdash_X q & \text{mp} \\ 2. & q, \neg q \vdash_X \neg \neg p & \text{IE} \\ 3. & \neg p \rightarrow q, \neg p, \neg q \vdash_X \neg \neg p & \text{Cut. 1,2} \\ 4. & \neg p \rightarrow q, \neg q \vdash_X \neg \neg p & \text{SRAA. 3} \\ 5. & \vdash_X (\neg p \rightarrow q) \rightarrow (\neg q \rightarrow \neg \neg p) & \text{DT. 4} \end{array}$$

Proposition 39. $\nvdash_X (\neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow q)$

Proposition 40. $\vdash_X (\neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg q)$

1.
$$\neg q \rightarrow \neg \neg p, \neg q \vdash_X \neg \neg p$$
 mp
2. $\neg \neg p, \neg p \vdash_X \neg \neg q$ IE
3. $\neg q \rightarrow \neg \neg p, \neg q, \neg p \vdash_X \neg \neg q$ Cut. 1,2
4. $\neg q \rightarrow \neg \neg p, \neg p \vdash_X \neg \neg q$ SRAA. 3
5. $\vdash_X (\neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg q)$ DT. 4

2.5 Negation and implication $(\neg \& \rightarrow)$

Proposition 41. $\nvdash_X \neg (p \rightarrow q) \rightarrow p$

Proposition 42. $\vdash_X \neg (p \rightarrow q) \rightarrow \neg q$

	$\vdash_X q \to (p \to q)$	X1(q/p, p/q)
2.	$q \to (p \to q) \vdash_X \neg (p \to q) \to \neg q$	Proposition 32, DT
3.	$\vdash_X \neg (p \to q) \to \neg q$	Cut. 1,2

Proposition 43. $\vdash_X \neg (p \rightarrow q) \rightarrow \neg \neg p$

1.	$\neg p \vdash_X p \to q$	IE, DT
2.	$p \to q, \neg (p \to q) \vdash_X \neg \neg p$	IE
3.	$\neg p, \neg (p \to q) \vdash_X \neg \neg p$	Cut. 1,2
4.	$\neg(p \to q) \vdash_X \neg \neg p$	SRAA. 3
5.	$\vdash_X \neg (p \to q) \to \neg \neg p$	DT. 4

Proposition 44. $\vdash_X p \to (\neg q \to \neg (p \to q))$

$p, p \to q \vdash_X q$	mp
$q, \neg q \vdash_X \neg (p \to q)$	IE
$p, p \to q, \neg q \vdash_X \neg (p \to q)$	Cut. 1,2
$p, \neg q \vdash_X \neg (p \to q)$	SRAA. 3
$\vdash_X p \to (\neg q \to \neg (p \to q))$	DT. 4
	$q, \neg q \vdash_X \neg (p \to q)$ $p, p \to q, \neg q \vdash_X \neg (p \to q)$ $p, \neg q \vdash_X \neg (p \to q)$

Proposition 45. $\vdash_X \neg \neg (p \to q) \to (\neg \neg p \to \neg \neg q)$

1.	$p, \neg q \vdash_X \neg (p \to q)$	Proposition 44, DT
2.	$\neg(p \to q), \neg\neg(p \to q) \vdash_X \neg p$	IE
3.	$p, \neg q, \neg \neg (p \to q) \vdash_X \neg p$	Cut. 1,2
4.	$\neg q, \neg \neg (p \to q) \vdash_X \neg p$	SRAA. 3
5.	$\neg\neg(p\to q)\vdash_X\neg q\to\neg p$	DT. 4
6.	$\neg q \to \neg p \vdash_X \neg \neg p \to \neg \neg q$	Proposition 32, DT
7.	$\neg\neg(p\to q)\vdash_X\neg\neg p\to\neg\neg q$	Cut. 5,6
8.	$\vdash_X \lnot\lnot(p \to q) \to (\lnot\lnot p \to \lnot\lnot q)$	DT. 7

Proposition 46. $\vdash_X (\neg \neg p \rightarrow \neg \neg q) \rightarrow \neg \neg (p \rightarrow q)$

1.	$\neg (p \to q) \vdash_X \neg q$	Proposition 42, DT
2.	$\neg(p \to q) \vdash_X \neg \neg p$	Proposition 43, DT
3.	$\neg \neg p, \neg \neg p \to \neg \neg q \vdash_X \neg \neg q$	mp
4.	$\neg (p \to q), \neg \neg p \to \neg \neg q \vdash_X \neg \neg q$	Cut. 2,3

5.
$$\neg q, \neg \neg q \vdash_X \neg \neg (p \to q)$$
 IE
6. $\neg (p \to q), \neg \neg p \to \neg \neg q \vdash_X \neg \neg (p \to q)$ Cut. 1,4,5
7. $\neg \neg p \to \neg \neg q \vdash_X \neg \neg (p \to q)$ SRAA. 6
8. $\vdash_X (\neg \neg p \to \neg \neg q) \to \neg \neg (p \to q)$ DT. 7

2.6 CE(Conditional Exchange)

Proposition 47. $\vdash_X (\neg p \lor q) \to (p \to q) \mid (\neg \neg p \to q) \to (p \to q)$

1.	$p \vdash_X \neg \neg p$	Proposition 26, DT
2.	$\neg \neg p, \neg \neg p \to q \vdash_X q$	mp
3.	$p, \neg \neg p \to q \vdash_X q$	Cut. 1,2
4.	$\vdash_X (\neg \neg p \to q) \to (p \to q)$	DT. 3

Proposition 48. $\nvdash_X (p \to q) \to (\neg p \lor q) \mid (p \to q) \to (\neg \neg p \to q)$

Proposition 49. $\vdash_X (p \to q) \to (\neg p \lor \neg \neg q) \mid (p \to q) \to (\neg \neg p \to \neg \neg q)$

1.
$$\neg q, p \rightarrow q \vdash_X \neg p$$
 Proposition 32, DT, mp, Cut
2. $\neg p, \neg \neg p \vdash_X \neg \neg q$ IE
3. $\neg q, p \rightarrow q, \neg \neg p \vdash_X \neg \neg q$ Cut. 1,2
4. $p \rightarrow q, \neg \neg p \vdash_X \neg \neg q$ SRAA. 3
5. $\vdash_X (p \rightarrow q) \rightarrow (\neg \neg p \rightarrow \neg \neg q)$ DT. 4

Proposition 50. $\nvdash_X (\neg p \lor \neg \neg q) \to (p \to q) \mid (\neg \neg p \to \neg \neg q) \to (p \to q)$

Proposition 51. $\vdash_X (\neg p \lor \neg \neg q) \to (p \to \neg \neg q) \mid (\neg \neg p \to \neg \neg q) \to (p \to \neg \neg q)$

1.
$$p \vdash_X \neg \neg p$$
 Proposition 26, DT
2. $\neg \neg p, \neg \neg p \rightarrow \neg \neg q \vdash_X \neg \neg q$ mp
3. $p, \neg \neg p \rightarrow \neg \neg q \vdash_X \neg \neg q$ Cut. 1,2
4. $\vdash_X (\neg \neg p \rightarrow \neg \neg q) \rightarrow (p \rightarrow \neg \neg q)$ DT. 3

Proposition 52. $\vdash_X (p \to \neg \neg q) \to (\neg p \vee \neg \neg q) \mid (p \to \neg \neg q) \to (\neg \neg p \to \neg \neg q)$

1.
$$\neg q, p \rightarrow \neg \neg q \vdash_X \neg p$$
 Proposition 33, DT, mp, Cut
2. $\neg p, \neg \neg p \vdash_X \neg \neg q$ IE
3. $\neg q, p \rightarrow \neg \neg q, \neg \neg p \vdash_X \neg \neg q$ Cut. 1,2
4. $p \rightarrow \neg \neg q, \neg \neg p \vdash_X \neg \neg q$ SRAA. 3
5. $\vdash_X (p \rightarrow \neg \neg q) \rightarrow (\neg \neg p \rightarrow \neg \neg q)$ DT. 4

Proposition 53. $\vdash_X (p \to \neg q) \to (\neg p \lor \neg q) \mid (p \to \neg q) \to (\neg \neg p \to \neg q)$

- 1. $p \rightarrow \neg q, \neg \neg p \vdash_X \neg \neg \neg q$ Proposition 49, DT 2. $\neg \neg \neg q \vdash_X \neg q$ Proposition 29, DT 3. $p \rightarrow \neg q, \neg \neg p \vdash_X \neg q$ Cut. 1,2
- 4. $\vdash_X (p \to \neg q) \to (\neg \neg p \to \neg q)$ DT. 3

2.7 Disjunction(\vee)

Proposition 54. $\vdash_X p \to p \lor q \mid p \to (\neg p \to q)$

1. $p, \neg p \vdash_X q$ 2. $\vdash_X p \to (\neg p \to q)$ DT. 1

Proposition 55. $\vdash_X p \to q \lor p \mid p \to (\neg q \to p)$

1.
$$\vdash_X p \to (\neg q \to p)$$
 $X1(\neg q/q)$

Proposition 56. $\vdash_X \neg (p \lor q) \to \neg p \mid \neg (\neg p \to q) \to \neg p$

1. $p \vdash_X \neg p \to q$ IE, mp 2. $\neg p \to q, \neg(\neg p \to q) \vdash_X \neg p$ IE 3. $p, \neg(\neg p \to q) \vdash_X \neg p$ Cut. 1,2 4. $\neg(\neg p \to q) \vdash_X \neg p$ SRAA. 3 5. $\vdash_X \neg(\neg p \to q) \to \neg p$ DT. 4

Proposition 57. $\vdash_X \neg (p \lor q) \rightarrow \neg q \mid \neg (\neg p \rightarrow q) \rightarrow \neg q$

Proposition 58. $\nvdash_X p \lor q \to q \lor p \mid (\neg p \to q) \to (\neg q \to p)$

See Proposition 35.

Proposition 59. $\vdash_X \neg (p \lor q) \to \neg (q \lor p) \mid \neg (\neg p \to q) \to \neg (\neg q \to p)$

1. $\neg(\neg p \rightarrow q) \vdash_X \neg p$ Proposition 56, DT 2. $\neg(\neg p \to q) \vdash_X \neg q$ Proposition 57, DT 3. $\neg q, \neg q \rightarrow p \vdash_X p$ mp4. $\neg(\neg p \rightarrow q), \neg q \rightarrow p \vdash_X p$ Cut. 2,3 5. $p, \neg p \vdash_X \neg (\neg q \rightarrow p)$ IE6. $\neg(\neg p \to q), \neg q \to p \vdash_X \neg(\neg q \to p)$ Cut. 1,4,5 7. $\neg(\neg p \to q) \vdash_X \neg(\neg q \to p)$ SRAA. 6 8. $\vdash_X \neg (\neg p \rightarrow q) \rightarrow \neg (\neg q \rightarrow p)$ DT. 7

Proposition 60. $\vdash_X \neg p \lor \neg q \to \neg q \lor \neg p \mid (\neg \neg p \to \neg q) \to (\neg \neg q \to \neg p)$

1.
$$p \vdash_X \neg \neg p$$
 Proposition 26, DT
2. $\neg \neg p, \neg \neg p \rightarrow \neg q \vdash_X \neg q$ mp
3. $p, \neg \neg p \rightarrow \neg q \vdash_X \neg q$ Cut. 1,2
4. $\neg q, \neg \neg q \vdash_X \neg p$ IE
5. $p, \neg \neg p \rightarrow \neg q, \neg \neg q \vdash_X \neg p$ Cut. 3,4
6. $\neg \neg p \rightarrow \neg q, \neg \neg q \vdash_X \neg p$ SRAA. 5
7. $\vdash_X (\neg \neg p \rightarrow \neg q) \rightarrow (\neg \neg q \rightarrow \neg p)$ DT. 6

Proposition 61. $\nvdash_X p \lor \neg q \to \neg q \lor p \mid (\neg p \to \neg q) \to (\neg \neg q \to p)$

Proposition 62. $\vdash_X \neg p \lor q \to q \lor \neg p \mid (\neg \neg p \to q) \to (\neg q \to \neg p)$

1.
$$\neg q, \neg \neg p \rightarrow q \vdash_X \neg \neg \neg p$$
 Proposition 32, DT, mp, Cut
2. $\neg \neg \neg p \vdash_X \neg p$ Proposition 29, DT
3. $\neg q, \neg \neg p \rightarrow q \vdash_X \neg p$ Cut. 1,2
4. $\vdash_X (\neg \neg p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$ DT. 3

Proposition 63. $\vdash_X p \lor \neg q \to \neg q \lor \neg \neg p \mid (\neg p \to \neg q) \to (\neg \neg q \to \neg \neg p)$

1.
$$\vdash_X (\neg p \rightarrow \neg q) \rightarrow (\neg \neg q \rightarrow \neg \neg p)$$
 Proposition 32

Proposition 64. $\vdash_X \neg q \lor \neg \neg p \to p \lor \neg q \mid (\neg \neg q \to \neg \neg p) \to (\neg p \to \neg q)$

1.
$$\neg p, \neg \neg q \rightarrow \neg \neg p \vdash_X \neg \neg \neg q$$
 Proposition 33, DT, mp, Cut
2. $\neg \neg \neg q \vdash_X \neg q$ Proposition 29, DT
3. $\neg p, \neg \neg q \rightarrow \neg \neg p \vdash_X \neg q$ Cut. 1,2
4. $\vdash_X (\neg \neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg q)$ DT. 3

Proposition 65. $\vdash_X \neg p \to (\neg q \to \neg (p \lor q)) \mid \neg p \to (\neg q \to \neg (\neg p \to q))$

1.
$$\neg p, \neg p \rightarrow q \vdash_X q$$
 mp
2. $q, \neg q \vdash_X \neg (\neg p \rightarrow q)$ IE
3. $\neg p, \neg p \rightarrow q, \neg q \vdash_X \neg (\neg p \rightarrow q)$ Cut. 1,2
4. $\neg p, \neg q \vdash_X \neg (\neg p \rightarrow q)$ SRAA. 3
5. $\vdash_X \neg p \rightarrow (\neg q \rightarrow \neg (\neg p \rightarrow q))$ DT. 4

Proposition 66. $\vdash_X \neg p \to (\neg q \to \neg (q \lor p)) \mid \neg p \to (\neg q \to \neg (\neg q \to p))$

1.
$$\neg q, \neg q \rightarrow p \vdash_X p$$
 mp
2. $p, \neg p \vdash_X \neg (\neg q \rightarrow p)$ IE
3. $\neg q, \neg q \rightarrow p, \neg p \vdash_X \neg (\neg q \rightarrow p)$ Cut. 1,2
4. $\neg q, \neg p \vdash_X \neg (\neg q \rightarrow p)$ SRAA. 3
5. $\vdash_X \neg p \rightarrow (\neg q \rightarrow \neg (\neg q \rightarrow p))$ DT. 4

Proposition 67. $\vdash_X p \to p \lor p \mid p \to (\neg p \to p)$

1.
$$\vdash_X p \to (\neg p \to p)$$
 $X1(\neg p/q)$

Proposition 68. $\nvdash_X p \lor p \to p \mid (\neg p \to p) \to p$

See Proposition 20.

Proposition 69. $\vdash_X p \lor p \to \neg \neg p \mid (\neg p \to p) \to \neg \neg p$

$$\begin{array}{lll} 1. & \neg p, \neg p \rightarrow p \vdash_X p & \text{mp} \\ 2. & \neg p, p \vdash_X \neg \neg p & \text{IE} \\ 3. & \neg p, \neg p \rightarrow p \vdash_X \neg \neg p & \text{Cut. 1,2} \\ 4. & \neg p \rightarrow p \vdash_X \neg \neg p & \text{SRAA. 3} \\ 5. & \vdash_X (\neg p \rightarrow p) \rightarrow \neg \neg p & \text{DT. 4} \\ \end{array}$$

Proposition 70. $\vdash_X \neg \neg p \to p \lor p \mid \neg \neg p \to (\neg p \to p)$

1.
$$\vdash_X \neg \neg p \to (\neg p \to p)$$
 $X3(\neg p/p, p/q)$

Proposition 71. $\forall_X (p \to r) \to ((q \to r) \to (p \lor q \to r)) \mid (p \to r) \to ((q \to r) \to ((\neg p \to q) \to r))$

Proposition 72. $\forall_X (p \to r) \to ((q \to r) \to (q \lor p \to r)) \mid (p \to r) \to ((q \to r) \to ((\neg q \to p) \to r))$

Proposition 73. $\vdash_X (p \to r) \to ((q \to r) \to (p \lor q \to \neg \neg r)) \mid (p \to r) \to ((q \to r) \to ((\neg p \to q) \to \neg \neg r))$

$$\begin{array}{llll} 1. & \neg r, \neg r \rightarrow \neg q \vdash_X \neg q & \text{mp} \\ 2. & \neg r, \neg r \rightarrow \neg p, \neg p \rightarrow q \vdash_X q & \text{mp} \\ 3. & q \rightarrow r \vdash_X \neg r \rightarrow \neg q & \text{Proposition 32, DT} \\ 4. & p \rightarrow r \vdash_X \neg r \rightarrow \neg p & \text{Proposition 32, DT} \\ 5. & \neg r, q \rightarrow r \vdash_X \neg q & \text{Cut. 1,3} \\ 6. & \neg r, p \rightarrow r, \neg p \rightarrow q \vdash_X q & \text{Cut. 2,4} \\ 7. & \neg q, q \vdash_X \neg \neg r & \text{IE} \end{array}$$

8.
$$\neg r, q \rightarrow r, p \rightarrow r, \neg p \rightarrow q \vdash_X \neg \neg r$$
 Cut. 5,6,7
9. $q \rightarrow r, p \rightarrow r, \neg p \rightarrow q \vdash_X \neg \neg r$ SRAA. 8
10. $\vdash_X (p \rightarrow r) \rightarrow ((q \rightarrow r) \rightarrow ((\neg p \rightarrow q) \rightarrow \neg \neg r))$ DT. 9

Proposition 74. $\vdash_X (p \to r) \to ((q \to r) \to (q \lor p \to \neg \neg r)) \mid (p \to r) \to ((q \to r) \to ((\neg q \to p) \to \neg \neg r))$

1.
$$\neg r, \neg r \rightarrow \neg p \vdash_X \neg p$$
 mp

2.
$$\neg r, \neg r \rightarrow \neg q, \neg q \rightarrow p \vdash_X p$$

3.
$$p \to r \vdash_X \neg r \to \neg p$$
 Proposition 32, DT

4.
$$q \to r \vdash_X \neg r \to \neg q$$
 Proposition 32, DT

5.
$$\neg r, p \rightarrow r \vdash_X \neg p$$
 Cut. 1,3

6.
$$\neg r, q \rightarrow r, \neg q \rightarrow p \vdash_X p$$
 Cut. 2,4

7.
$$\neg p, p \vdash_X \neg \neg r$$
 IE
8. $\neg r, p \to r, q \to r, \neg q \to p \vdash_X \neg \neg r$ Cut. 5,6,7

9.
$$p \rightarrow r, q \rightarrow r, \neg q \rightarrow p \vdash_X \neg \neg r$$
 SRAA. 8

10.
$$\vdash_X (p \to r) \to ((q \to r) \to ((\neg q \to p) \to \neg \neg r))$$
 DT. 9

Proposition 75.
$$\vdash_X (p \to \neg r) \to ((q \to \neg r) \to (p \lor q \to \neg r)) \mid (p \to \neg r) \to ((q \to \neg r) \to ((\neg p \to q) \to \neg r))$$

1.
$$p \to \neg r, q \to \neg r, \neg p \to q \vdash_X \neg \neg \neg r$$
 Proposition 73, DT

2.
$$\neg \neg \neg r \vdash_X \neg r$$
 Proposition 29, DT

3.
$$p \to \neg r, q \to \neg r, \neg p \to q \vdash_X \neg r$$
 Cut. 1,2

4.
$$\vdash_X (p \to \neg r) \to ((q \to \neg r) \to ((\neg p \to q) \to \neg r))$$
 DT. 3

Proposition 76. $\vdash_X (p \to \neg r) \to ((q \to \neg r) \to (q \lor p \to \neg r)) \mid (p \to \neg r) \to ((q \to \neg r) \to ((\neg q \to p) \to \neg r))$

1.
$$p \to \neg r, q \to \neg r, \neg q \to p \vdash_X \neg \neg \neg r$$
 Proposition 74, DT

2.
$$\neg \neg \neg r \vdash_X \neg r$$
 Proposition 29, DT

3.
$$p \to \neg r, q \to \neg r, \neg q \to p \vdash_X \neg r$$
 Cut. 1,2

4.
$$\vdash_X (p \to \neg r) \to ((q \to \neg r) \to ((\neg q \to p) \to \neg r))$$

Proposition 77. $\vdash_X p \lor \neg p \mid \neg p \to \neg p$

1.
$$\neg p \vdash_X \neg p$$
 Definition of deduction
2. $\vdash_X \neg p \rightarrow \neg p$ DT. 1

Proposition 78.
$$\nvdash_X \neg p \lor p \mid \neg \neg p \to p$$

See Proposition 27.

Proposition 79. $\vdash_X \neg p \lor \neg \neg p \mid \neg \neg p \to \neg \neg p$

1.
$$\neg \neg p \vdash_X \neg \neg p$$
 Definition of deduction
2. $\vdash_X \neg \neg p \rightarrow \neg \neg p$ DT. 1

2.8 Conjunction(\wedge)

Proposition 80. $\nvdash_X p \land q \rightarrow p \mid \neg(p \rightarrow \neg q) \rightarrow p$

Proposition 81. $\nvdash_X p \land q \rightarrow q \mid \neg(p \rightarrow \neg q) \rightarrow q$

Proposition 82. $\vdash_X p \land q \rightarrow \neg \neg p \mid \neg(p \rightarrow \neg q) \rightarrow \neg \neg p$

$$\begin{array}{lll} 1. & \neg p \vdash_X p \rightarrow \neg q & \text{X3}(\neg q/q), \text{ mp} \\ 2. & \neg (p \rightarrow \neg q), p \rightarrow \neg q \vdash_X \neg \neg p & \text{IE} \\ 3. & \neg (p \rightarrow \neg q), \neg p \vdash_X \neg \neg p & \text{Cut. } 1,2 \\ 4. & \neg (p \rightarrow \neg q) \vdash_X \neg \neg p & \text{SRAA. } 3 \\ 5. & \vdash_X \neg (p \rightarrow \neg q) \rightarrow \neg \neg p & \text{DT. } 4 \end{array}$$

Proposition 83. $\vdash_X p \land q \rightarrow \neg \neg q \mid \neg(p \rightarrow \neg q) \rightarrow \neg \neg q$

1.
$$\neg q \vdash_X p \rightarrow \neg q$$
 $X1(\neg q/p, p/q)$, mp
2. $\neg (p \rightarrow \neg q), p \rightarrow \neg q \vdash_X \neg \neg q$ IE
3. $\neg (p \rightarrow \neg q), \neg q \vdash_X \neg \neg q$ Cut. 1,2
4. $\neg (p \rightarrow \neg q) \vdash_X \neg \neg q$ SRAA. 3
5. $\vdash_X \neg (p \rightarrow \neg q) \rightarrow \neg \neg q$ DT. 4

Proposition 84. $\vdash_X \neg p \land q \rightarrow \neg p \mid \neg(\neg p \rightarrow \neg q) \rightarrow \neg p$

1.
$$\neg(\neg p \rightarrow \neg q) \vdash_X \neg \neg \neg p$$
 Proposition 82, DT
2. $\neg \neg \neg p \vdash_X \neg p$ Proposition 29, DT
3. $\neg(\neg p \rightarrow \neg q) \vdash_X \neg p$ Cut. 1,2
4. $\vdash_X \neg(\neg p \rightarrow \neg q) \rightarrow \neg p$ DT. 3

Proposition 85. $\nvdash_X \neg p \land q \rightarrow q \mid \neg(\neg p \rightarrow \neg q) \rightarrow q$

Proposition 86. $\vdash_X p \land \neg q \to \neg q \mid \neg(p \to \neg \neg q) \to \neg q$

1.
$$\neg(p \to \neg \neg q) \vdash_X \neg \neg \neg q$$
 Proposition 83, DT
2. $\neg \neg \neg q \vdash_X \neg q$ Proposition 29, DT
3. $\neg(p \to \neg \neg q) \vdash_X \neg q$ Cut. 1,2
4. $\vdash_X \neg(p \to \neg \neg q) \to \neg q$ DT. 3

Proposition 87. $\nvdash_X p \land \neg q \rightarrow p \mid \neg(p \rightarrow \neg \neg q) \rightarrow p$

Proposition 88. $\vdash_X p \land q \rightarrow q \land p \mid \neg(p \rightarrow \neg q) \rightarrow \neg(q \rightarrow \neg p)$

1. $\vdash_X (q \to \neg p) \to (p \to \neg q)$ Proposition 33 2. $(q \to \neg p) \to (p \to \neg q) \vdash_X \neg (p \to \neg q) \to \neg (q \to \neg p)$ Proposition 32, DT

3. $\vdash_X \neg (p \to \neg q) \to \neg (q \to \neg p)$

Cut. 1,2

Proposition 89. $\vdash_X \neg (p \land q) \rightarrow \neg (q \land p) \mid \neg \neg (p \rightarrow \neg q) \rightarrow \neg \neg (q \rightarrow \neg p)$

1. $\neg(q \to \neg p) \vdash_X \neg(p \to \neg q)$ 2. $\neg(p \to \neg q), \neg\neg(p \to \neg q) \vdash_X \neg\neg(q \to \neg p)$ 3. $\neg(q \to \neg p), \neg\neg(p \to \neg q) \vdash_X \neg\neg(q \to \neg p)$ 4. $\neg\neg(p \to \neg q) \vdash_X \neg\neg(q \to \neg p)$ 5. $\vdash_X \neg\neg(p \to \neg q) \to \neg\neg(q \to \neg p)$ DT. 4

Proposition 90. $\vdash_X \neg p \rightarrow \neg(p \land q) \mid \neg p \rightarrow \neg \neg(p \rightarrow \neg q)$

1. $\neg(p \to \neg q) \vdash_X \neg \neg p$ Proposition 82, DT 2. $\neg \neg p, \neg p \vdash_X \neg \neg (p \to \neg q)$ IE 3. $\neg(p \to \neg q), \neg p \vdash_X \neg \neg (p \to \neg q)$ Cut. 1,2 4. $\neg p \vdash_X \neg \neg (p \to \neg q)$ SRAA. 3 5. $\vdash_X \neg p \to \neg \neg (p \to \neg q)$ DT. 4

Proposition 91. $\vdash_X \neg p \rightarrow \neg(q \land p) \mid \neg p \rightarrow \neg \neg(q \rightarrow \neg p)$

1. $\neg(q \to \neg p) \vdash_X \neg \neg p$ Proposition 83, DT 2. $\neg \neg p, \neg p \vdash_X \neg \neg (q \to \neg p)$ IE 3. $\neg(q \to \neg p), \neg p \vdash_X \neg \neg (q \to \neg p)$ Cut. 1,2 4. $\neg p \vdash_X \neg \neg (q \to \neg p)$ SRAA. 3 5. $\vdash_X \neg p \to \neg \neg (q \to \neg p)$ DT. 4

Proposition 92. $\vdash_X p \to p \land p \mid p \to \neg(p \to \neg p)$

1. $p, p \rightarrow \neg p \vdash_X \neg p$ mp 2. $p, \neg p \vdash_X \neg (p \rightarrow \neg p)$ IE 3. $p, p \rightarrow \neg p \vdash_X \neg (p \rightarrow \neg p)$ Cut. 1,2 4. $p, \vdash_X \neg (p \rightarrow \neg p)$ SRAA. 3 5. $\vdash_X p \rightarrow \neg (p \rightarrow \neg p)$ DT. 4

Proposition 93. $\nvdash_X p \land p \rightarrow p \mid \neg(p \rightarrow \neg p) \rightarrow p$

¹Consider Proposition 88(q/p, p/q)

Proposition 94. $\vdash_X p \land p \rightarrow \neg \neg p \mid \neg (p \rightarrow \neg p) \rightarrow \neg \neg p$

1.	$\neg p \vdash_X p \to \neg p$	$X1(\neg p/p, p/q), mp$
2.	$\neg(p \to \neg p), p \to \neg p \vdash_X \neg \neg p$	IE
3.	$\neg(p \to \neg p), \neg p \vdash_X \neg \neg p$	Cut. 1,2
4.	$\neg(p \to \neg p) \vdash_X \neg \neg p$	SRAA. 3
5.	$\vdash_X \neg (p \to \neg p) \to \neg \neg p$	DT. 4

Proposition 95. $\vdash_X \neg \neg p \rightarrow p \land p \mid \neg \neg p \rightarrow \neg (p \rightarrow \neg p)$

1.	$p \to \neg p \vdash_X \neg p$	X4, mp
2.	$\neg\neg p, \neg p \vdash_X \neg (p \to \neg p)$	$_{ m IE}$
3.	$\neg \neg p, p \to \neg p \vdash_X \neg (p \to \neg p)$	Cut. 1,2
4.	$\neg\neg p \vdash_X \neg (p \to \neg p)$	SRAA. 3
5.	$\vdash_X \neg \neg p \to \neg (p \to \neg p)$	DT. 4

Proposition 96. $\vdash_X p \to (q \to p \land q) \mid p \to (q \to \neg(p \to \neg q))$

1.	$p, p \to \neg q \vdash_X \neg q$	mp
2.	$q, \neg q \vdash_X \neg (p \to \neg q)$	$_{ m IE}$
3.	$p,q,p \to \neg q \vdash_X \neg (p \to \neg q)$	Cut. 1,2
4.	$p, q \vdash_X \neg (p \to \neg q)$	SRAA. 3
5.	$\vdash_X p \to (q \to \neg(p \to \neg q))$	DT. 4

Proposition 97. $\vdash_X p \to (q \to q \land p) \mid p \to (q \to \neg(q \to \neg p))$

1.	$q, q \to \neg p \vdash_X \neg p$	mp
2.	$p, \neg p \vdash_X \neg (q \to \neg p)$	$_{ m IE}$
3.	$p,q,q \to \neg p \vdash_X \neg (q \to \neg p)$	Cut. 1,2
4.	$p, q \vdash_X \neg (q \to \neg p)$	SRAA. 3
5.	$\vdash_X p \to (q \to \neg (q \to \neg p))$	DT. 4

Proposition 98. $\vdash_X \neg (p \land \neg p) \mid \neg \neg (p \rightarrow \neg \neg p)$

1. $\vdash_X p \to \neg \neg p$	Proposition 26
$2. p \to \neg \neg p \vdash_X \neg \neg (p \to \neg \neg p)$	Proposition 26, DT
$3. \vdash_X \neg \neg (p \to \neg \neg p)$	Cut. 1,2

Proposition 99. $\vdash_X \neg (\neg p \land p) \mid \neg \neg (\neg p \rightarrow \neg p)$

1. $\vdash_X \neg p \to \neg p$	Proposition 77
$2. \neg p \to \neg p \vdash_X \neg \neg (\neg p \to \neg p)$	Proposition 26, DT
3. $\vdash_X \neg \neg (\neg p \to \neg p)$	Cut. 1,2

2.9 RAA(Reduction Ad Absurdum)

Proposition 100. $\vdash_X (p \to q) \to ((p \to \neg q) \to \neg p)$

1.
$$p, p \to q \vdash_X q$$
 mp

2.
$$p, p \rightarrow \neg q \vdash_X \neg q$$
 mp

3.
$$q, \neg q \vdash_X \neg p$$

4.
$$p, p \rightarrow q, p \rightarrow \neg q \vdash_X \neg p$$
 Cut. 1,2,3

IE

mp

 $_{
m IE}$

5.
$$p \rightarrow q, p \rightarrow \neg q \vdash_X \neg p$$
 SRAA. 4

6.
$$\vdash_X (p \to q) \to ((p \to \neg q) \to \neg p)$$

Proposition 101. $\nvdash_X ((p \to \neg q) \to \neg p) \to (p \to q)$

Proposition 102. $\vdash_X ((p \to \neg q) \to \neg p) \to (p \to \neg \neg q)$

1.
$$p, p \to \neg (p \to \neg q) \vdash_X \neg (p \to \neg q)$$

2.
$$(p \to \neg q) \to \neg p \vdash_X p \to \neg (p \to \neg q)$$
 Proposition 33, DT

3.
$$p, (p \rightarrow \neg q) \rightarrow \neg p \vdash_X \neg (p \rightarrow \neg q)$$
 Cut. 1,2

4.
$$\neg (p \rightarrow \neg q) \vdash_X \neg \neg q$$
 Proposition 83, DT

5.
$$p, (p \rightarrow \neg q) \rightarrow \neg p \vdash_X \neg \neg q$$
 Cut. 3,4

6.
$$\vdash_X ((p \to \neg q) \to \neg p) \to (p \to \neg \neg q)$$

Proposition 103. $\vdash_X (p \to \neg \neg q) \to ((p \to \neg q) \to \neg p)$

1.
$$p, p \rightarrow \neg \neg q \vdash_X \neg \neg q$$
 mp

2.
$$p, p \rightarrow \neg q \vdash_X \neg q$$

3.
$$\neg \neg q, \neg q \vdash_X \neg p$$

4.
$$p, p \rightarrow \neg \neg q, p \rightarrow \neg q \vdash_X \neg p$$
 Cut. 1,2,3

5.
$$p \rightarrow \neg \neg q, p \rightarrow \neg q \vdash_X \neg p$$
 SRAA. 4

6.
$$\vdash_X (p \to \neg \neg q) \to ((p \to \neg q) \to \neg p)$$

Proposition 104. $\nvdash_X (\neg p \rightarrow q) \rightarrow ((\neg p \rightarrow \neg q) \rightarrow p)$

Proposition 105. $\nvdash_X ((\neg p \rightarrow \neg q) \rightarrow p) \rightarrow (\neg p \rightarrow q)$

Proposition 106. $\vdash_X (\neg p \rightarrow q) \rightarrow ((\neg p \rightarrow \neg q) \rightarrow \neg \neg p)$

DT. 5

Proposition 107. $\nvdash_X ((\neg p \rightarrow \neg q) \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow q)$

6. $\vdash_X (\neg p \rightarrow q) \rightarrow ((\neg p \rightarrow \neg q) \rightarrow \neg \neg p)$

Proposition 108. $\vdash_X ((\neg p \rightarrow \neg q) \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg q)$

1.
$$\neg p, \neg p \rightarrow \neg (\neg p \rightarrow \neg q) \vdash_X \neg (\neg p \rightarrow \neg q)$$
 mp
2. $(\neg p \rightarrow \neg q) \rightarrow \neg \neg p \vdash_X \neg p \rightarrow \neg (\neg p \rightarrow \neg q)$ Proposition 33, DT
3. $\neg p, (\neg p \rightarrow \neg q) \rightarrow \neg \neg p \vdash_X \neg (\neg p \rightarrow \neg q)$ Cut. 1,2
4. $\neg (\neg p \rightarrow \neg q) \vdash_X \neg \neg q$ Proposition 83, DT
5. $\neg p, (\neg p \rightarrow \neg q) \rightarrow \neg \neg p \vdash_X \neg \neg q$ Cut. 3,4
6. $\vdash_X ((\neg p \rightarrow \neg q) \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg \neg q)$ DT. 5

Proposition 109. $\vdash_X (\neg p \rightarrow \neg \neg q) \rightarrow ((\neg p \rightarrow \neg q) \rightarrow \neg \neg p)$

1.
$$\neg p, \neg p \rightarrow \neg \neg q \vdash_X \neg \neg q$$
 mp
2. $\neg p, \neg p \rightarrow \neg q \vdash_X \neg q$ mp
3. $\neg \neg q, \neg q \vdash_X \neg \neg p$ IE
4. $\neg p, \neg p \rightarrow \neg \neg q, \neg p \rightarrow \neg q \vdash_X \neg \neg p$ Cut. 1,2,3
5. $\neg p \rightarrow \neg \neg q, \neg p \rightarrow \neg q \vdash_X \neg \neg p$ SRAA. 4
6. $\vdash_X (\neg p \rightarrow \neg \neg q) \rightarrow ((\neg p \rightarrow \neg q) \rightarrow \neg \neg p)$ DT. 5

Proposition 110. $\nvdash_X (p \to q) \to ((\neg p \to q) \to q)$

Proposition 111. $\vdash_X ((\neg p \to q) \to q) \to (p \to q)$

1.
$$p \vdash_X \neg p \to q$$
 IE,mp
2. $\neg p \to q, (\neg p \to q) \to q \vdash_X q$ mp
3. $p, (\neg p \to q) \to q \vdash_X q$ Cut. 1,2
4. $\vdash_X ((\neg p \to q) \to q) \to (p \to q)$ DT. 3

Proposition 112. $\vdash_X (p \to q) \to ((\neg p \to q) \to \neg \neg q)$

1.
$$\neg q, p \rightarrow q \vdash_X \neg p$$
 Proposition 32, DT, mp, Cut
2. $\neg q, \neg p \rightarrow q \vdash_X \neg \neg p$ Proposition 32, DT, mp, Cut
3. $\neg p, \neg \neg p \vdash_X \neg \neg q$ IE
4. $\neg q, p \rightarrow q, \neg p \rightarrow q \vdash_X \neg \neg q$ Cut. 1,2,3
5. $p \rightarrow q, \neg p \rightarrow q \vdash_X \neg \neg q$ SRAA. 4

DT. 6

Proposition 113. $\nvdash_X ((\neg p \to q) \to \neg \neg q) \to (p \to q)$

6. $\vdash_X (p \to q) \to ((\neg p \to q) \to \neg \neg q)$

Proposition 114. $\vdash_X ((\neg p \to q) \to \neg \neg q) \to (p \to \neg \neg q)$

$$\begin{array}{ll} 1. & p \vdash_X \neg p \to q & \text{IE,mp} \\ 2. & \neg p \to q, (\neg p \to q) \to \neg \neg q \vdash_X \neg \neg q & \text{mp} \\ 3. & p, (\neg p \to q) \to \neg \neg q \vdash_X \neg \neg q & \text{Cut. 1,2} \\ 4. & \vdash_X ((\neg p \to q) \to \neg \neg q) \to (p \to \neg \neg q) & \text{DT. 3} \end{array}$$

Proposition 115. $\vdash_X (p \to \neg \neg q) \to ((\neg p \to q) \to \neg \neg q)$

1.	$\neg q, p \to \neg \neg q \vdash_X \neg p$	Proposition 33, DT, mp, Cut
2.	$\neg p, \neg p \to q \vdash_X q$	mp
3.	$\neg q, p \to \neg \neg q, \neg p \to q \vdash_X q$	Cut. 1,2
4.	$q \vdash_X \neg \neg q$	Proposition 26, DT
5.	$\neg q, p \to \neg \neg q, \neg p \to q \vdash_X \neg \neg q$	Cut. 3,4
6.	$p \to \neg \neg q, \neg p \to q \vdash_X \neg \neg q$	SRAA. 5
7.	$\vdash_X (p \to \neg \neg q) \to ((\neg p \to q) \to \neg \neg q)$	DT. 6

Proposition 116. $\vdash_X (p \to \neg q) \to ((\neg p \to \neg q) \to \neg q)$

1.	$q, q \to \neg p, \neg p \to \neg q \vdash_X \neg q$	mp
2.	$p \to \neg q \vdash_X q \to \neg p$	Proposition 33, DT
3.	$q, p \to \neg q, \neg p \to \neg q \vdash_X \neg q$	Cut. 1,2
4.	$p \to \neg q, \neg p \to \neg q \vdash_X \neg q$	SRAA. 3
5.	$\vdash_X (p \to \neg q) \to ((\neg p \to \neg q) \to \neg q)$	DT. 4

Proposition 117. $\vdash_X ((\neg p \to \neg q) \to \neg q) \to (p \to \neg q)$

1.
$$p \vdash_X \neg p \to \neg q$$
 IE,mp
2. $\neg p \to \neg q, (\neg p \to \neg q) \to \neg q \vdash_X \neg q$ mp
3. $p, (\neg p \to \neg q) \to \neg q \vdash_X \neg q$ Cut. 1,2
4. $\vdash_X ((\neg p \to \neg q) \to \neg q) \to (p \to \neg q)$ DT. 3

2.10 Exp(Exportation)

Proposition 118.
$$\forall_X (p \to (q \to r)) \to ((p \land q) \to r) \mid (p \to (q \to r)) \to (\neg(p \to \neg q) \to r)$$

Proposition 119. $\vdash_X ((p \land q) \to r) \to (p \to (q \to r)) \mid (\neg (p \to \neg q) \to r) \to (p \to (q \to r))$

1.
$$p, q \vdash_X \neg (p \rightarrow \neg q)$$
 Proposition 96, DT

2.
$$\neg(p \to \neg q), \neg(p \to \neg q) \to r \vdash_X r$$

3.
$$p, q, \neg(p \rightarrow \neg q) \rightarrow r \vdash_X r$$
 Cut. 1,2

4.
$$\vdash_X (\neg(p \to \neg q) \to r) \to (p \to (q \to r))$$

Proposition 120. $\vdash_X (p \to (q \to r)) \to ((p \land q) \to \neg \neg r) \mid (p \to (q \to r)) \to (\neg (p \to \neg q) \to \neg \neg r)$

1.
$$\neg (p \rightarrow \neg q) \vdash_X \neg \neg p$$
 Proposition 82, DT

2.
$$\neg (p \rightarrow \neg q) \vdash_X \neg \neg q$$
 Proposition 83, DT

3.
$$p \to (q \to r) \vdash_X \neg \neg p \to \neg \neg (q \to r)$$
 Proposition 49, DT

4.
$$\neg \neg p, \neg \neg p \rightarrow \neg \neg (q \rightarrow r) \vdash_X \neg \neg (q \rightarrow r)$$

5.
$$\neg (p \to \neg q), p \to (q \to r) \vdash_X \neg \neg (q \to r)$$
 Cut. 1,3,4

6.
$$\neg \neg (q \to r) \vdash_X \neg \neg q \to \neg \neg r$$
 Proposition 45, DT

7.
$$\neg(p \to \neg q), p \to (q \to r) \vdash_X \neg \neg q \to \neg \neg r$$
 Cut. 5.6

8.
$$\neg \neg q, \neg \neg q \rightarrow \neg \neg r \vdash_X \neg \neg r$$

9.
$$\neg (p \rightarrow \neg q), p \rightarrow (q \rightarrow r) \vdash_X \neg \neg r$$
 Cut. 2,7,8

10.
$$\vdash_X (p \to (q \to r)) \to (\neg(p \to \neg q) \to \neg \neg r)$$
 DT. 9

2.11 Assoc(Association)

Proposition 121. $\vdash_X (p \to q) \to ((r \land p) \to (r \land q)) \mid (p \to q) \to (\neg(r \to \neg p) \to \neg(r \to \neg q))$

1.
$$\neg (r \rightarrow \neg p) \vdash_X \neg \neg r$$
 Proposition 82, DT

2.
$$\neg (r \rightarrow \neg p) \vdash_X \neg \neg p$$
 Proposition 83, DT

3.
$$p \to q \vdash_X \neg \neg p \to \neg \neg q$$
 Proposition 49, DT

4.
$$r \to \neg q \vdash_X \neg \neg q \to \neg r$$
 Proposition 32, DT

5.
$$\neg \neg p, \neg \neg p \rightarrow \neg \neg q, \neg \neg q \rightarrow \neg r \vdash_X \neg r$$

6.
$$\neg (r \to \neg p), p \to q, r \to \neg q \vdash_X \neg r$$
 Cut. 2,3,4,5

7.
$$\neg \neg r, \neg r \vdash_X \neg (r \rightarrow \neg q)$$

8.
$$\neg (r \to \neg p), p \to q, r \to \neg q \vdash_X \neg (r \to \neg q)$$
 Cut. 1,6,7

9.
$$\neg (r \to \neg p), p \to q \vdash_X \neg (r \to \neg q)$$
 SRAA. 8

10.
$$\vdash_X (p \to q) \to (\neg(r \to \neg p) \to \neg(r \to \neg q))$$
 DT. 9

Proposition 122. $\vdash_X (p \to q) \to ((p \land r) \to (q \land r)) \mid (p \to q) \to (\neg (p \to \neg r) \to \neg (q \to \neg r))$

```
1. p \to q, r \land p \vdash_X r \land q
                                                                                                                         Proposition 121, DT
       2. p \wedge r \vdash_X r \wedge p
                                                                                                                           Proposition 88, DT
       3. p \to q, p \land r \vdash_X r \land q
                                                                                                                                              Cut. 1,2
       4. r \wedge q \vdash_X q \wedge r
                                                                                                                           Proposition 88, DT
       5. p \to q, p \land r \vdash_X q \land r
                                                                                                                                              Cut. 3,4
       6. \vdash_X (p \to q) \to ((p \land r) \to (q \land r)) \mid (p \to q) \to (\neg(p \to \neg r) \to \neg(q \to \neg r))
                                                                                                                                                  DT. 5
Proposition 123. \vdash_X (p \land q) \land r \rightarrow p \land (q \land r) \mid \neg(\neg(p \rightarrow \neg q) \rightarrow \neg r) \rightarrow \neg(p \rightarrow \neg \neg(q \rightarrow \neg r))
       1. q, r \vdash_X \neg (q \rightarrow \neg r)
                                                                                                                           Proposition 96, DT
        2. p, p \rightarrow \neg \neg (q \rightarrow \neg r) \vdash_X \neg \neg (q \rightarrow \neg r)
                                                                                                                                                       mp
       3. \neg (q \rightarrow \neg r), \neg \neg (q \rightarrow \neg r) \vdash_X \neg q
                                                                                                                                                        ^{\mathrm{IE}}
       4. p, q, r, p \rightarrow \neg \neg (q \rightarrow \neg r) \vdash_X \neg q
                                                                                                                                           Cut. 1,2,3
       5. p, r, p \rightarrow \neg \neg (q \rightarrow \neg r) \vdash_X \neg q
                                                                                                                                             SRAA. 4
       6. p \to \neg \neg (q \to \neg r) \vdash_X r \to (p \to \neg q)
                                                                                                                                                  DT. 5
       7. r \to (p \to \neg q) \vdash_X \neg (p \to \neg q) \to \neg r
                                                                                                                           Proposition 32, DT
       8. p \to \neg\neg(q \to \neg r) \vdash_X \neg(p \to \neg q) \to \neg r
                                                                                                                                              Cut. 6,7
       9. \vdash_X (p \to \neg\neg(q \to \neg r)) \to (\neg(p \to \neg q) \to \neg r)
                                                                                                                                                  DT. 8
       10. \vdash_X \neg (\neg(p \rightarrow \neg q) \rightarrow \neg r) \rightarrow \neg(p \rightarrow \neg \neg (q \rightarrow \neg r))
                                                                                                            Proposition 32, DT, Cut. 9
Proposition 124. \vdash_X p \land (q \land r) \rightarrow (p \land q) \land r \mid \neg(p \rightarrow \neg \neg (q \rightarrow \neg r)) \rightarrow \neg(\neg(p \rightarrow \neg q) \rightarrow \neg r)
                                                                                               Proposition 88, Proposition 121,DT
       1. p \wedge (q \wedge r) \vdash_X p \wedge (r \wedge q)
        2. p \wedge (r \wedge q) \vdash_X (r \wedge q) \wedge p
                                                                                                                            Proposition 88,DT
       3. (r \wedge q) \wedge p \vdash_X r \wedge (q \wedge p)
                                                                                                                           Proposition 123,DT
       4. r \wedge (q \wedge p) \vdash_X (q \wedge p) \wedge r
                                                                                                                             Proposition 88,DT
       5. (q \wedge p) \wedge r \vdash_X (p \wedge q) \wedge r
                                                                                               Proposition 88, Proposition 122,DT
       6. p \wedge (q \wedge r) \vdash_X (p \wedge q) \wedge r
                                                                                                                                     Cut. 1,2,3,4,5
        7. \vdash_X p \land (q \land r) \rightarrow (p \land q) \land r \mid \neg(p \rightarrow \neg \neg(q \rightarrow \neg r)) \rightarrow \neg(\neg(p \rightarrow \neg q) \rightarrow \neg r)
                                                                                                                                                  DT. 6
Proposition 125. \vdash_X (p \lor q) \lor r \to p \lor (q \lor r) \mid (\neg(\neg p \to q) \to r) \to (\neg p \to (\neg q \to r))
                                                                                                                           Proposition 65, DT
       1. \neg p, \neg q \vdash_X \neg (\neg p \rightarrow q)
       2. \neg(\neg p \rightarrow q), \neg(\neg p \rightarrow q) \rightarrow r \vdash_X r
                                                                                                                                                       mp
       3. \neg p, \neg q, \neg (\neg p \rightarrow q) \rightarrow r \vdash_X r
                                                                                                                                              Cut. 1,2
       4. \vdash_X (\neg(\neg p \to q) \to r) \to (\neg p \to (\neg q \to r))
                                                                                                                                                  DT. 3
Proposition 126. \vdash_X p \lor (q \lor r) \to (p \lor q) \lor r \mid (\neg p \to (\neg q \to r)) \to (\neg (\neg p \to q) \to r)
       1. \neg(\neg p \to q) \vdash_X \neg p
                                                                                                                           Proposition 56, DT
       2. \neg(\neg p \to q) \vdash_X \neg q
                                                                                                                           Proposition 57, DT
       3. \neg p, \neg q, \neg p \rightarrow (\neg q \rightarrow r) \vdash_X r
                                                                                                                                                       mp
       4. \neg(\neg p \rightarrow q), \neg p \rightarrow (\neg q \rightarrow r) \vdash_X r
                                                                                                                                           Cut. 1,2,3
       5. \vdash_X (\neg p \to (\neg q \to r)) \to (\neg (\neg p \to q) \to r)
                                                                                                                                                  DT. 4
```

2.12 DeM(DeMorgan's laws)

Proposition 127. $\vdash_X \neg (p \lor q) \to (\neg p \land \neg q) \mid \neg (\neg p \to q) \to \neg (\neg p \to \neg \neg q)$

1. $\neg(\neg p \to q) \vdash_X \neg p$ Proposition 56, DT 2. $\neg(\neg p \to q) \vdash_X \neg q$ Proposition 57, DT 3. $\neg p, \neg q \vdash_X \neg(\neg p \to \neg \neg q)$ Proposition 96, DT 4. $\neg(\neg p \to q) \vdash_X \neg(\neg p \to \neg \neg q)$ Cut. 1,2,3 5. $\vdash_X \neg(\neg p \to q) \to \neg(\neg p \to \neg \neg q)$ DT. 4

Proposition 128. $\vdash_X (\neg p \land \neg q) \rightarrow \neg (p \lor q) \mid \neg (\neg p \rightarrow \neg \neg q) \rightarrow \neg (\neg p \rightarrow q)$

1. $\neg(\neg p \rightarrow \neg \neg q) \vdash_X \neg p$ Proposition 56, DT 2. $\neg(\neg p \rightarrow \neg \neg q) \vdash_X \neg \neg \neg q$ Proposition 57, DT 3. $\neg p, \neg p \rightarrow q \vdash_X q$ mp4. $\neg(\neg p \rightarrow \neg \neg q), \neg p \rightarrow q \vdash_X q$ Cut. 1,3 5. $q \vdash_X \neg \neg q$ Proposition 26, DT 6. $\neg(\neg p \rightarrow \neg \neg q), \neg p \rightarrow q \vdash_X \neg \neg q$ Cut. 4,5 7. $\neg \neg q, \neg \neg \neg q \vdash_X \neg (\neg p \rightarrow q)$ IE8. $\neg(\neg p \rightarrow \neg \neg q), \neg p \rightarrow q \vdash_X \neg(\neg p \rightarrow q)$ Cut. 2,6,7 9. $\neg(\neg p \rightarrow \neg \neg q) \vdash_{X} \neg(\neg p \rightarrow q)$ SRAA. 8 10. $\vdash_X \neg (\neg p \rightarrow \neg \neg q) \rightarrow \neg (\neg p \rightarrow q)$ DT. 9

Proposition 129. $\vdash_X \neg (p \land q) \rightarrow (\neg p \lor \neg q) \mid \neg \neg (p \rightarrow \neg q) \rightarrow (\neg \neg p \rightarrow \neg q)$

1. $\neg\neg(p \to \neg q) \vdash_X \neg\neg p \to \neg\neg\neg q$ Proposition 45, DT 2. $\neg\neg p, \neg\neg p \to \neg\neg\neg q \vdash_X \neg\neg\neg q$ mp 3. $\neg\neg p, \neg\neg(p \to \neg q) \vdash_X \neg\neg\neg q$ Cut. 1,2 4. $\neg\neg\neg q \vdash_X \neg q$ Proposition 29, DT 5. $\neg\neg p, \neg\neg(p \to \neg q) \vdash_X \neg q$ Cut. 3,4 6. $\vdash_X \neg\neg(p \to \neg q) \to (\neg\neg p \to \neg q)$ DT. 5

Proposition 130. $\vdash_X (\neg p \lor \neg q) \to \neg (p \land q) \mid (\neg \neg p \to \neg q) \to \neg \neg (p \to \neg q)$

1. $\neg\neg p, \neg\neg p \rightarrow \neg q \vdash_X \neg q$ mp 2. $\neg q \vdash_X \neg\neg \neg q$ Proposition 28, DT 3. $\neg\neg p, \neg\neg p \rightarrow \neg q \vdash_X \neg\neg \neg q$ Cut. 1,2 4. $\neg\neg p \rightarrow \neg q \vdash_X \neg\neg p \rightarrow \neg \neg \neg q$ DT. 3 5. $\neg\neg p \rightarrow \neg \neg \neg q \vdash_X \neg\neg (p \rightarrow \neg q)$ Proposition 46, DT 6. $\neg\neg p \rightarrow \neg q \vdash_X \neg\neg (p \rightarrow \neg q)$ Cut. 4,5 7. $\vdash_X (\neg\neg p \rightarrow \neg q) \rightarrow \neg \neg (p \rightarrow \neg q)$ DT. 6

2.13 RE(Replacement of Equivalents)

Proposition 131. $\vdash_X (p \to r) \to ((q \to s) \to ((r \to q) \to (p \to s)))$

1.
$$p, p \to r, r \to q, q \to s \vdash_X s$$
 mp

2.
$$\vdash_X (p \to r) \to ((q \to s) \to ((r \to q) \to (p \to s)))$$
 DT. 1

Proposition 132. $\vdash_X (p \to r) \to ((q \to s) \to (p \lor q \to r \lor s)) \mid (p \to r) \to ((q \to s) \to ((\neg p \to q) \to (\neg r \to s)))$

1.
$$\neg r, p \rightarrow r \vdash_X \neg p$$
 Proposition 32, DT, mp, Cut

2.
$$\neg p, \neg p \rightarrow q, q \rightarrow s \vdash_X s$$
 mp

3.
$$\neg r, p \rightarrow r, \neg p \rightarrow q, q \rightarrow s \vdash_X s$$
 Cut. 1,2

4.
$$\vdash_X (p \to r) \to ((q \to s) \to ((\neg p \to q) \to (\neg r \to s)))$$
 DT. 3

Proposition 133. $\nvdash_X (p \to r) \to ((q \to s) \to (p \lor q \to s \lor r)) \mid (p \to r) \to ((q \to s) \to ((\neg p \to q) \to (\neg s \to r)))$

2.14 Dist(Distribution)

Proposition 134. $\vdash_X (p \to q) \to ((p \to r) \to (p \to q \land r)) \mid (p \to q) \to ((p \to r) \to (p \to \neg (q \to \neg r))$

1.
$$p, p \rightarrow q \vdash_X q$$
 mp

1.
$$p, p \rightarrow q + \chi q$$

2. $p, p \rightarrow r \vdash_X r$ mp

3.
$$q, r \vdash_X \neg (q \to \neg r)$$
 Proposition 96, DT

4.
$$p \to q, p \to r, p \vdash_X \neg (q \to \neg r)$$
 Cut. 1,2,3

5.
$$\vdash_X (p \to q) \to ((p \to r) \to (p \to \neg (q \to \neg r))$$

Proposition 135. $\vdash_X (p \to r) \to ((q \to s) \to (p \land q \to r \land s)) \mid (p \to r) \to ((q \to s) \to (\neg (p \to \neg q) \to \neg (r \to \neg s)))$

1.
$$\neg (p \rightarrow \neg q) \vdash_X \neg \neg p$$
 Proposition 82, DT

2.
$$\neg (p \rightarrow \neg q) \vdash_X \neg \neg q$$
 Proposition 83, DT

3.
$$\neg \neg p, p \rightarrow r \vdash_X \neg \neg r$$
 Proposition 49, DT, mp, Cut

4.
$$\neg \neg q, q \rightarrow s \vdash_X \neg \neg s$$
 Proposition 49, DT, mp, Cut

5.
$$\neg \neg r, r \rightarrow \neg s \vdash_X \neg \neg \neg s$$
 Proposition 49, DT, mp, Cut

6.
$$\neg (p \rightarrow \neg q), p \rightarrow r, r \rightarrow \neg s \vdash_X \neg \neg \neg s$$
 Cut. 1,3,5

7.
$$\neg (p \rightarrow \neg q), q \rightarrow s \vdash_X \neg \neg s$$
 Cut. 2,4

8.
$$\neg \neg \neg s, \neg \neg s \vdash_X \neg (r \rightarrow \neg s)$$

9.
$$\neg (p \to \neg q), p \to r, r \to \neg s, q \to s \vdash_X \neg (r \to \neg s)$$
 Cut. 6,7,8

10.
$$\neg (p \to \neg q), p \to r, q \to s \vdash_X \neg (r \to \neg s)$$
 SRAA. 9

11.
$$\vdash_X (p \to r) \to ((q \to s) \to (\neg (p \to \neg q) \to \neg (r \to \neg s)))$$
 DT. 10

Proposition 136. $\vdash_X (p \to r \land s) \to ((q \to r \land s) \to (p \lor q \to r \land s)) \mid (p \to \neg(r \to \neg s)) \to r \land s \mapsto (p \lor q \to r \land s)$ $((q \rightarrow \neg (r \rightarrow \neg s)) \rightarrow ((\neg p \rightarrow q) \rightarrow \neg (r \rightarrow \neg s)))$

1.
$$p \to \neg (r \to \neg s), q \to \neg (r \to \neg s), (\neg p \to q) \vdash_X \neg (r \to \neg s)$$
 ²Proposition 75,DT

2.
$$\vdash_X (p \to \neg(r \to \neg s)) \to ((q \to \neg(r \to \neg s)) \to ((\neg p \to q) \to \neg(r \to \neg s)))$$
 DT. 1

Proposition 137. $\vdash_X p \land (q \lor r) \rightarrow ((p \land q) \lor (p \land r)) \mid \neg (p \rightarrow \neg (\neg q \rightarrow r)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg q)) \rightarrow (\neg (p \rightarrow \neg q) \rightarrow$ $\neg(p \to \neg r)$

1.
$$\neg (p \to \neg (\neg q \to r)) \vdash_X \neg \neg p$$
 Proposition 82, DT

2.
$$\neg (p \to \neg (\neg q \to r)) \vdash_X \neg \neg (\neg q \to r)$$
 Proposition 83, DT

3.
$$\neg \neg p, p \rightarrow \neg r \vdash_X \neg \neg \neg r$$
 Proposition 49, DT, mp, Cut

3.
$$\neg \neg p, p \rightarrow \neg r \vdash_X \neg \neg \neg r$$
 Proposition 49, DT, mp, Cut 4. $\neg (p \rightarrow \neg (\neg q \rightarrow r)), p \rightarrow \neg r \vdash_X \neg \neg \neg r$ Cut. 1,3

5.
$$\neg p, \neg (p \rightarrow \neg q) \vdash_X \neg \neg \neg q$$
 Proposition 45, DT, mp, Cut

6.
$$\neg \neg \neg q, \neg \neg (\neg q \rightarrow r) \vdash_X \neg \neg r$$
 Proposition 45, DT, mp, Cut

7.
$$\neg \neg p, \neg \neg (p \to \neg q), \neg \neg (\neg q \to r) \vdash_X \neg \neg r$$
 Cut. 5,6

8.
$$\neg (p \to \neg (\neg q \to r)), \neg \neg (p \to \neg q) \vdash_X \neg \neg r$$
 Cut. 1,2,7

9.
$$\neg r, \neg \neg r \vdash_X \neg (p \rightarrow \neg r)$$
 IE

10.
$$\neg (p \to \neg (\neg q \to r)), p \to \neg r, \neg \neg (p \to \neg q) \vdash_X \neg (p \to \neg r)$$
 Cut. 4,8,9

11.
$$\neg (p \to \neg (\neg q \to r)), \neg \neg (p \to \neg q) \vdash_X \neg (p \to \neg r)$$
 SRAA. 10

12.
$$\vdash_X \neg (p \to \neg (\neg q \to r)) \to (\neg \neg (p \to \neg q) \to \neg (p \to \neg r))$$
 DT. 11

Proposition 138. $\vdash_X ((p \land q) \lor (p \land r)) \rightarrow p \land (q \lor r) \mid (\neg \neg (p \rightarrow \neg q) \rightarrow \neg (p \rightarrow \neg r)) \rightarrow \neg (p \rightarrow \neg r)$ $\neg(\neg q \to r)$

1.
$$\vdash_X p \to p$$
 Proposition 22

2.
$$\vdash_X q \to q \lor r$$
 Proposition 54

3.
$$p \to p, q \to q \lor r \vdash_X p \land q \to p \land (q \lor r)$$
 Proposition 135,DT

4.
$$\vdash_X p \land q \rightarrow p \land (q \lor r)$$
 Cut. 1,2,3

5.
$$\vdash_X r \to q \lor r$$
 Proposition 55

6.
$$p \to p, r \to q \lor r \vdash_X p \land r \to p \land (q \lor r)$$
 Proposition 135,DT

7.
$$\vdash_X p \land r \rightarrow p \land (q \lor r)$$
 Cut. 1,5,6

8.
$$\vdash_X (p \land q) \lor (p \land r) \rightarrow p \land (q \lor r)$$
 Proposition 136, DT, Cut. 4,7

9.
$$\vdash_X (\neg \neg (p \to \neg q) \to \neg (p \to \neg r)) \to \neg (p \to \neg (\neg q \to r))$$

Proposition 139. $\vdash_X p \lor (q \land r) \to ((p \lor q) \land (p \lor r)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \lor q)) \mid (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (p \to \neg (q \to \neg r))) \to \neg ((\neg p \to q) \to \neg (p \to \neg (q \to \neg r))) \mapsto \neg ((\neg p \to q) \to \neg (p \to \neg (q \to \neg r))) \mapsto \neg ((\neg p \to q) \to \neg (p \to \neg (q \to \neg r))) \mapsto \neg ((\neg p \to q) \to \neg (p \to \neg (q \to \neg r))) \mapsto \neg ((\neg p \to q) \to \neg (p \to \neg (q \to \neg r))) \mapsto \neg ((\neg p \to q) \to \neg (p \to \neg (q \to \neg r))) \mapsto \neg ((\neg p \to \neg (q \to \neg (q \to \neg r))) \mapsto \neg ((\neg p \to \neg (q \to ($ $\neg(\neg p \to r)$

1.
$$\vdash_X p \to (p \lor q)$$
 Proposition 54

2.
$$\vdash_X p \to (p \lor r)$$
 Proposition 54

3.
$$p \to (p \lor q), p \to (p \lor r) \vdash_X p \to (p \lor q) \land (p \lor r)$$
 Proposition 134,DT

4.
$$\vdash_X p \to (p \lor q) \land (p \lor r)$$
 Cut. 1,2,3

5.
$$\vdash_X q \to (p \lor q)$$
 Proposition 55

^{6.} $\vdash_X r \to (p \lor r)$ Proposition 55

²Consider Proposition $76((r \rightarrow \neg s)/r)$

7. $q \to (p \lor q), r \to (p \lor r) \vdash_X q \land r \to (p \lor q) \land (p \lor r)$ Proposition 135,DT 8. $\vdash_X q \land r \to (p \lor q) \land (p \lor r)$ Cut. 5,6,7 9. $\vdash_X p \lor (q \land r) \to ((p \lor q) \land (p \lor r))$ Proposition 136, DT, Cut. 4,8 10. $\vdash_X (\neg p \to \neg (q \to \neg r)) \to \neg ((\neg p \to q) \to \neg (\neg p \to r))$

Proposition 140. $\vdash_X ((p \lor q) \land (p \lor r)) \rightarrow p \lor (q \land r) \mid \neg((\neg p \rightarrow q) \rightarrow \neg(\neg p \rightarrow r)) \rightarrow (\neg p \rightarrow \neg(q \rightarrow \neg r))$

1. $\neg((\neg p \to q) \to \neg(\neg p \to r)) \vdash_X \neg \neg(\neg p \to q)$ Proposition 82 2. $\neg((\neg p \to q) \to \neg(\neg p \to r)) \vdash_X \neg \neg(\neg p \to r)$ Proposition 83 3. $\neg p, \neg \neg (\neg p \rightarrow q) \vdash_X \neg \neg q$ Proposition 28,45, DT, mp, Cut 4. $\neg p, \neg \neg (\neg p \rightarrow r) \vdash_X \neg \neg r$ Proposition 28,45, DT, mp, Cut 5. $\neg p, \neg((\neg p \rightarrow q) \rightarrow \neg(\neg p \rightarrow r)) \vdash_X \neg \neg q$ Cut. 1,3 6. $\neg p, \neg((\neg p \rightarrow q) \rightarrow \neg(\neg p \rightarrow r)) \vdash_X \neg \neg r$ Cut. 2,4 7. $\neg \neg q, q \rightarrow \neg r \vdash_X \neg \neg \neg r$ Proposition 49, DT, mp, Cut 8. $\neg p, \neg((\neg p \rightarrow q) \rightarrow \neg(\neg p \rightarrow r)), q \rightarrow \neg r \vdash_X \neg \neg \neg r$ Cut. 5,7 9. $\neg \neg \neg r, \neg \neg r \vdash_X \neg (q \rightarrow \neg r)$ $^{\mathrm{IE}}$ 10. $\neg p, \neg((\neg p \rightarrow q) \rightarrow \neg(\neg p \rightarrow r)), q \rightarrow \neg r \vdash_X \neg(q \rightarrow \neg r)$ Cut. 6,8,9 11. $\neg p, \neg((\neg p \rightarrow q) \rightarrow \neg(\neg p \rightarrow r)) \vdash_X \neg(q \rightarrow \neg r)$ SRAA. 10 12. $\vdash_X \neg ((\neg p \to q) \to \neg (\neg p \to r)) \to (\neg p \to \neg (q \to \neg r))$ DT. 11

2.15 CO(Choose one)

Proposition 141. $\vdash_X (p \to q) \lor (q \to p) \mid \neg (p \to q) \to (q \to p)$

Proposition 142. $\vdash_X (p \to q) \lor (p \to \neg q) \mid \neg (p \to q) \to (p \to \neg q)$

1. $\neg(p \rightarrow q) \vdash_X \neg q$ Proposition 42, DT 2. $\neg q \vdash_X p \rightarrow \neg q$ $X1(\neg q/p, p/q)$, DT 3. $\neg(p \rightarrow q) \vdash_X p \rightarrow \neg q$ Cut. 1,2 4. $\vdash_X \neg(p \rightarrow q) \rightarrow (p \rightarrow \neg q)$ DT. 3

Proposition 143. \mathcal{F}_X $(p \to \neg q) \lor (p \to q) \mid \neg (p \to \neg q) \to (p \to q)$

Proposition 144. $\vdash_X (p \to \neg \neg q) \lor (p \to \neg q) \mid \neg (p \to \neg \neg q) \to (p \to \neg q)$

1.	$\neg (p \to \neg \neg q) \vdash_X \neg \neg \neg q$	Proposition 42, DT
2.	$\neg\neg\neg q \vdash_X \neg q$	Proposition 29, DT
3.	$\neg q \vdash_X p \to \neg q$	$X1(\neg q/p, p/q), DT$
4.	$\neg(p \to \neg \neg q) \vdash_X p \to \neg q$	Cut. 1,2,3
5.	$\vdash_X \neg (p \to \neg \neg q) \to (p \to \neg q)$	DT. 4

Proposition 145. $\vdash_X (p \rightarrow \neg q) \lor (p \rightarrow \neg \neg q) \mid \neg (p \rightarrow \neg q) \rightarrow (p \rightarrow \neg \neg q)$

1. $\vdash_X \neg (p \rightarrow \neg q) \rightarrow (p \rightarrow \neg \neg q)$ 3Proposition 142

Proposition 146. $\vdash_X (p \to q) \lor (\neg p \to q) \mid \neg (p \to q) \to (\neg p \to q)$

$$\begin{array}{ll} 1. & \neg p \vdash_X p \to q \\ 2. & p \to q, \neg (p \to q) \vdash_X q \\ 3. & \neg p, \neg (p \to q) \vdash_X q \\ 4. & \vdash_X \neg (p \to q) \to (\neg p \to q) \end{array}$$
 IE, DT
 Cut. 1,2

Proposition 147. $\vdash_X (\neg p \to q) \lor (p \to q) \mid \neg (\neg p \to q) \to (p \to q)$

$$\begin{array}{ll} 1. & p \vdash_X \neg p \to q \\ 2. & \neg p \to q, \neg (\neg p \to q) \vdash_X q \\ 3. & p, \neg (\neg p \to q) \vdash_X q \\ 4. & \vdash_X \neg (\neg p \to q) \to (p \to q) \end{array} \qquad \begin{array}{l} \text{IE, DT} \\ \text{Cut. 1,2} \\ \text{DT. 3} \end{array}$$

2.16 DN(Double Negation)

Proposition 148. $\vdash_X \neg \neg ((\neg p \rightarrow p) \rightarrow p)$

1.	$\neg((\neg p \to p) \to p) \vdash_X \neg \neg(\neg p \to p)$	Proposition 43, DT
2.	$\neg((\neg p \to p) \to p) \vdash_X \neg p$	Proposition 42, DT
3.	$\neg p, \neg \neg (\neg p \to p) \vdash_X \neg \neg p$	Proposition 28,45, DT, mp, Cut
4.	$\neg((\neg p \to p) \to p) \vdash_X \neg \neg p$	Cut. 1,2,3
5.	$\neg p, \neg \neg p \vdash_X \neg \neg ((\neg p \to p) \to p)$	${ m IE}$
6.	$\neg((\neg p \to p) \to p) \vdash_X \neg \neg((\neg p \to p) \to p)$	Cut. 2,4,5
7.	$\vdash_X \neg \neg ((\neg p \to p) \to p)$	SRAA. 6

Proposition 149. $\vdash_X \neg \neg (\neg \neg p \rightarrow p)$

1.	$\neg(\neg\neg p\to p)\vdash_X\neg\neg p$	Proposition 56, DT
2.	$\neg(\neg\neg p \to p) \vdash_X \neg p$	Proposition 57, DT
3.	$\neg \neg p, \neg p \vdash_X \neg \neg (\neg \neg p \to p)$	IE
4.	$\neg(\neg\neg p\to p)\vdash_X\neg\neg(\neg\neg p\to p)$	Cut. 1,2,3
5.	$\vdash_X \neg \neg (\neg \neg p \to p)$	SRAA. 4

³Consider Proposition $142(\neg q/q)$

Proposition 150. $\vdash_X \neg \neg ((\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p))$

1.	$\neg((\neg p \to \neg q) \to (q \to p)) \vdash_X \neg \neg(\neg p \to \neg q)$	Proposition 43, DT
2.	$\neg((\neg p \to \neg q) \to (q \to p)) \vdash_X \neg(q \to p)$	Proposition 42, DT
3.	$\neg(q \to p) \vdash_X \neg \neg q$	Proposition 43, DT
4.	$\neg (q \to p) \vdash_X \neg p$	Proposition 42, DT
5.	$\neg((\neg p \to \neg q) \to (q \to p)) \vdash_X \neg \neg q$	Cut. 2,3
6.	$\neg p, \neg \neg (\neg p \to \neg q) \vdash_X \neg \neg \neg q$	Proposition 28,45, DT, mp, Cut
7.	$\neg((\neg p \to \neg q) \to (q \to p)) \vdash_X \neg \neg \neg q$	Cut. 1,2,4,6
8.	$\neg \neg q, \neg \neg \neg q \vdash_X \neg \neg ((\neg p \to \neg q) \to (q \to p))$	$_{ m IE}$
9.	$\neg((\neg p \to \neg q) \to (q \to p)) \vdash_X \neg \neg((\neg p \to \neg q) \to (q))$	$\rightarrow p)$) Cut. 5,7,8
10.	$\vdash_X \neg \neg ((\neg p \to \neg q) \to (q \to p))$	SRAA. 9

Proposition 151. $\vdash_X \neg \neg ((\neg p \to q) \to (\neg q \to p))$

1.	$\neg((\neg p \to q) \to (\neg q \to p)) \vdash_X \neg \neg(\neg p \to q)$	Proposition 43, DT
2.	$\neg((\neg p \to q) \to (\neg q \to p)) \vdash_X \neg(\neg q \to p)$	Proposition 42, DT
3.	$\neg(\neg q \to p) \vdash_X \neg q$	Proposition 56, DT
4.	$\neg(\neg q \to p) \vdash_X \neg p$	Proposition 57, DT
5.	$\neg((\neg p \to q) \to (\neg q \to p)) \vdash_X \neg q$	Cut. 2,3
6.	$\neg p, \neg \neg (\neg p \to q) \vdash_X \neg \neg q$	Proposition 28,45, DT, mp, Cut
7.	$\neg((\neg p \to q) \to (\neg q \to p)) \vdash_X \neg \neg q$	Cut. 1,2,4,6
8.	$\neg q, \neg \neg q \vdash_X \neg \neg ((\neg p \to q) \to (\neg q \to p))$	IE
9.	$\neg((\neg p \to q) \to (\neg q \to p)) \vdash_X \neg \neg((\neg p \to q) \to (\neg q \to q))$	$\rightarrow p))$ Cut. 5,7,8
10.	$\vdash_X \neg \neg ((\neg p \to q) \to (\neg q \to p))$	SRAA. 9

Proposition 152. $\vdash_X \neg \neg ((\neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow q))$

1.
$$\vdash_X \neg \neg ((\neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow q))$$
 ⁴Proposition 150

Proposition 153. $\vdash_X \neg \neg (\neg(p \to q) \to p)$

1.	$\neg(\neg(p\to q)\to p)\vdash_X\neg(p\to q)$	Proposition 56, DT
2.	$\neg(\neg(p\to q)\to p)\vdash_X\neg p$	Proposition 57, DT
3.	$\neg p \vdash_X p \to q$	IE, DT
4.	$\neg(\neg(p\to q)\to p)\vdash_X p\to q$	Cut. 2,3
5.	$p \to q, \neg(p \to q) \vdash_X \neg \neg(\neg(p \to q) \to p)$	IE
6.	$\neg(\neg(p \to q) \to p) \vdash_X \neg\neg(\neg(p \to q) \to p)$	Cut. 1,4,5
7.	$\vdash_X \neg \neg (\neg (p \to q) \to p)$	SRAA. 6

Proposition 154. $\vdash_X \neg \neg ((p \to q) \to (\neg p \lor q)) \mid \neg \neg ((p \to q) \to (\neg \neg p \to q))$

⁴Consider Proposition $150(q/p, \neg p/q)$

1. $\neg((p \to q) \to (\neg \neg p \to q)) \vdash_X \neg \neg(p \to q)$ Proposition 43, DT 2. $\neg((p \to q) \to (\neg \neg p \to q)) \vdash_X \neg(\neg \neg p \to q))$ Proposition 42, DT 3. $\neg(\neg\neg p \to q)) \vdash_X \neg\neg p$ Proposition 56, DT 4. $\neg(\neg\neg p \to q)) \vdash_X \neg q$ Proposition 57, DT 5. $\neg((p \to q) \to (\neg \neg p \to q)) \vdash_X \neg q$ Cut. 2,4 6. $\neg \neg p, \neg \neg (p \rightarrow q) \vdash_X \neg \neg q$ Proposition 45, DT, mp, Cut 7. $\neg((p \to q) \to (\neg \neg p \to q)) \vdash_X \neg \neg q$ Cut. 1,2,3,6 8. $\neg q, \neg \neg q \vdash_X \neg \neg ((p \rightarrow q) \rightarrow (\neg \neg p \rightarrow q))$ IE9. $\neg((p \to q) \to (\neg \neg p \to q)) \vdash_X \neg \neg((p \to q) \to (\neg \neg p \to q))$ Cut. 5,7,8 10. $\vdash_X \neg \neg ((p \to q) \to (\neg \neg p \to q))$ SRAA. 9

2.17 Other

Proposition 155. $\vdash_X \neg (p \lor \neg p \to q \land \neg q) \mid \neg ((\neg p \to \neg p) \to \neg (q \to \neg \neg q))$

1. $\vdash_X p \lor \neg p$ Proposition 77 2. $p \lor \neg p, p \lor \neg p \to q \land \neg q \vdash_X q \land \neg q$ mp 3. $p \lor \neg p \to q \land \neg q \vdash_X q \land \neg q$ Cut. 1,2 4. $\vdash_X \neg (q \land \neg q)$ Proposition 98 5. $\neg (q \land \neg q), q \land \neg q \vdash_X \neg (p \lor \neg p \to q \land \neg q)$ IE 6. $p \lor \neg p \to q \land \neg q \vdash_X \neg (p \lor \neg p \to q \land \neg q)$ Cut. 3,4,5 7. $\vdash_X \neg (p \lor \neg p \to q \land \neg q) \mid \neg ((\neg p \to \neg p) \to \neg (q \to \neg \neg q))$ DT. 6

2.18 Peirce(Peirce' law)

Proposition 156. $\nvdash_X ((p \rightarrow \neg p) \rightarrow p) \rightarrow p$

Proposition 157. $\vdash_X ((p \rightarrow q) \rightarrow p) \rightarrow \neg \neg p$

1. $\neg p, (p \rightarrow q) \rightarrow p \vdash_X \neg (p \rightarrow q)$ Proposition 32, DT, mp, Cut 2. $\neg (p \rightarrow q) \vdash_X \neg \neg p$ Proposition 43, DT 3. $\neg p, (p \rightarrow q) \rightarrow p \vdash_X \neg \neg p$ Cut. 1,2 4. $(p \rightarrow q) \rightarrow p \vdash_X \neg \neg p$ SRAA. 3 5. $\vdash_X ((p \rightarrow q) \rightarrow p) \rightarrow \neg \neg p$ DT. 4

Proposition 158. $\vdash_X ((\neg p \to q) \to \neg p) \to \neg p$

1. $p, (\neg p \rightarrow q) \rightarrow \neg p \vdash_X \neg (\neg p \rightarrow q)$ Proposition 33, DT, mp, Cut 2. $\neg (\neg p \rightarrow q) \vdash_X \neg p$ Proposition 56, DT 3. $p, (\neg p \rightarrow q) \rightarrow \neg p \vdash_X \neg p$ Cut. 1,2 4. $(p \rightarrow q) \rightarrow p \vdash_X \neg p$ SRAA. 3 5. $\vdash_X ((\neg p \rightarrow q) \rightarrow \neg p) \rightarrow \neg p$ DT. 4 **Proposition 159** (Peirce' law). $\nvdash_X ((p \to q) \to p) \to p$