Devoir à la maison n° 16

À rendre le 6 avril

Dénombrement d'un ensemble d'applications.

Soit E un ensemble fini, de cardinal n. Quel est le nombre d'applications $f: E \to E$ vérifiant $f \circ f = f$? On écrira le résultat sous forme de somme.

Indication : Pour $f: E \to E$, on pourra chercher une condition nécessaire et suffisante sur $f_{|\operatorname{Im}(f)}$ pour que $f \circ f = f$.

II. Endomorphismes nilpotents.

Soit E un \mathbb{K} -espace vectoriel. Un endomorphisme f de E est dit nilpotent s'il existe un entier naturel p vérifiant $f^p = 0_{\mathscr{L}(E)}$. Dans ce cas, l'indice de f est le plus petit des entiers naturels p vérifiant $f^p = 0_{\mathscr{L}(E)}$. On considère $f \in \mathscr{L}(E)$ nilpotent, d'indice p.

- 1) Soit $u \in E \setminus \text{Ker}(f^{p-1})$, montrer que la famille $(u, f(u), \dots, f^{p-1}(u))$ est libre.
- 2) En déduire que, si E est de dimension finie égale à n, alors $f^n = 0_{\mathscr{L}(E)}$.
- 3) Soit $g \in \mathscr{GL}(E)$ vérifiant $f \circ g = g \circ f$ (g commute avec f). Montrer que $f + g \in \mathscr{GL}(E)$ lorsque :
 - a) E est de dimension finie;
 - **b)** E est quelconque.
- **4)** Donner des exemples d'endomorphismes f et g de $\mathcal{L}(\mathbb{K}^2)$, avec f est nilpotent, que $g \in \mathcal{GL}(\mathbb{K}^2)$ mais $f + g \notin \mathcal{GL}(\mathbb{K}^2)$.

— FIN —