

Source book for Pre-CCAT

Name of the Organization ACTS C-DAC

1. Course Objective:

a. To prepare for C-DAC entrance exam (C-CAT).

2. Prerequisite:

Candidates should have knowledge of basics of Computer.

3. Eligibility:

- a. Graduate in discipline of Engineering (10+2+4 or 10+3+3 years)
- b. Post Graduate Degree in Physics / Mathematics / Statistics, OR
- c. MCA, MCM, OR
- d. Post Graduate Degree in Management with graduation in IT / Computer Science/Applications.

The candidates must have secured a minimum of 50% marks in their qualifying examination.

4. Teaching Schema: (Tabular format)

Sr. No.	Module Name		Hours
1.	Section A	Computer Fundamentals and Concepts of Programming	10
		English Language / Verbal Ability	20
		Quantitative Aptitude	25
		Logical Reasoning	20
2.	Section B	Programming in C	30
		Data Structures	20
		Object Oriented Programming Concepts Using C++	10
		Operating System Concepts	10
		Networking	15
		Basic Concepts of Big Data	20
		Introduction to Artificial Intelligence	20
3.	Section C	Computer Architecture	40
		Microprocessors	50
		Digital Electronics	30
Total Hours			320

5. Detailed Course Contents

I. Section A (75 Hrs. Theory)

A. Computer Fundamentals and Concepts of Programming (10 Hours)

- Session 1-2:
 - Evaluation and Types of Computers
- Session 3-7:
 - o Number Systems, Conversions and Data Representation (Binary, hex, octal etc.)
 - Input and Output Devices
 - Low level language vs High level language
- Session 8-10:
 - o Evaluation of Programming languages
 - Algorithm and Flowcharts

B. English Language & Verbal Ability (20 Hours)

- Session 1-8:
 - Comprehension
 - o Sentence completion
 - o Fill in the blanks
 - Spotting errors
- Session 9-15:
 - Sentence correction
 - Sentence improvement
 - Sentence fillers
 - o Sentence construction/arrangement
- Session 16-20:
 - O Cloze test /Word substitution in the sentence with either synonym / antonym idiom /phrases

C. Quantitative Aptitude (25 Hours)

- Session 1-4:
 - o Compound & Simple Interest
 - o Profit & Loss
 - o Time & Work
- Session 5-7:
 - o LCM & HCF
 - Number System
- Session 8-12:
 - o Percentage
 - o Average
- Session 13-18:
 - o Pipes & Cistern
 - Time & Distance
 - Partnership
- Session 19-20:
 - Probability
- Session 21-25:
 - o Ratio & Proportion
 - o Problems on Age
 - Clock & Calendar

- Allegation & Mixtures
- o Problems on Mensuration

D. Logical Reasoning (20 Hours)

- Session 1-4:
 - Coding & Decoding
 - o Alphabets
 - o Directions Sense Test
 - Series Completion (Number)
 - Odd Man Out (Number Series)
- Session 5-9:
 - o Mathematical Operators
 - o Symbols
 - o Syllogism
- Session 10-15:
 - Blood Relation
 - o Data Sufficiency
 - o Puzzle Test
- Session 16-20:
 - Classification
 - o Arithmetical Reasoning
 - o Number & Ranking

II. Section B (125 Hrs. Theory)

A. Programming in C (30 Hours)

- Session 1-10:
 - o Structure of a C program
 - o Data Types
 - Constants
 - Operators
 - o Arithmetic Expressions
 - o Control-flow Statements
- Session 11-20:
 - o Functions
 - Arrays
 - o Pointers & Strings
 - o Structures & Unions
- Session 21-30:
 - o Dynamic Memory Allocation
 - o Preprocessor statements
 - Storage classes
 - Writing multi file C programs
 - o File & Console I/O and Command line arguments.

B. Data Structures (20 Hours)

- Session 1-5:
 - o Introduction to Data Structures
 - o Complexity of Algorithms
- Session 6-8:
 - Abstract data types, Lists, Stacks, Queues
- Session 9-12:

- Sorting Algorithms Selection Sort, Insertion Sort, Bubble Sort, Quick Sort, Merge Sort, Heap Sort
- Session 13-15:
 - o Searching Algorithms Sequential Search, Binary Search, Hashing
- Session 16-18:
 - o Trees Binary Trees, Binary Search Trees
- Session 19-20:
 - o Graphs

C. Object Oriented Programming Concepts Using C++ (10 Hours)

- Session 1-3:
 - o Basic OOP Concepts
 - o Features
 - Abstraction
 - o Data Hiding
- Session 5-7:
 - Inheritance
 - o Polymorphism
 - o Classes, Objects
- Session 8-10:
 - O Static data members & member functions
 - Friend functions
 - Constructors and Destructor
 - Benefits and Applications of OOP

D. Operating System Concepts (10 Hours)

- Session 1-2:
 - o Introduction to operating system, goals, types of operating systems
 - o Hardware Protection
 - o Components
 - o Operating System Services
- Session 3-5:
 - o System Calls
 - o Process Concept
 - o Process Scheduling
 - o Inter-process Communication
 - o Synchronization
 - Deadlocks
 - o Threads
- Session 6-7:
 - Memory management contiguous memory allocation, paging, segmentation, virtual memory, demand paging, page fault & page replacement algorithms
- Session 8-10:
 - o File system interface, structure and implementation
 - o kernel I/O subsystem.

E. Networking (15 Hours)

• Session 1-3:

- Introduction to Computer Networks
- o LAN, WAN, Inter network
- Topologies
- Session 5-6:
 - o ISO and TCP/IP reference model
- Session 7-8:
 - o Transmission Media
 - Switching
 - Multiplexing
 - Coding
 - o Data link layer design issues
- Session 9-11:
 - Error control
 - o Flow control
 - Error detection and correction
 - Elementary data link protocols
 - o Sliding window protocols
 - o Medium access control and local area network protocols
- Session 12-13:
 - Internetworking
 - Devices
 - Addressing
 - o Routing
 - Network layer protocols
 - Transport layer protocols
- Session 14-15:
 - o TCP & UDP
 - Application layer
 - o Client-Server model & sockets
 - o DNS, SMTP, FTP, HTTP and WWW

F. Basic Concepts of Big Data (20 Hours)

- Session 1-4:
 - o Concept and characteristics of Big Data
 - History of Big Data
 - o Jobs in Big Data
 - o Types of Big data (structured, semi-structured, unstructured)
- Session 5-9:
 - o Big Data Frameworks
 - o Big Data Programming Paradigms
 - o Big Data Programming Languages
- Session 10-11:
 - Introduction to Data Science and Skillset required for working with Big Data
- Session 12-15:
 - Simplified Overview of Machine Learning Algorithms and Neural Networks
 - o Types of Machine Learning (Supervised, Un-Supervised, Reinforcement)
- Session 16-18:

- Examples of Big Data and Data Science in Practice (Healthcare, Logistics & Transportation, Manufacturing etc.
- Session 19-20:
 - O Application Examples and Real –World Use Cases (e.g., Healthcare, finance, marketing, etc.)

G. Introduction to Artificial Intelligence (20 Hours)

- Session 1-5:
 - o Definition of Artificial Intelligence
 - Understanding AI
 - o Different types of AI and main domains of AI technology
- Session 6-10:
 - History of Al
 - o Al Uses
 - Various applications of AI
- Session 11-13:
 - o Advantages and disadvantages associated with Artificial Intelligence
- Session 14-16:
 - o Learn about the basics of Neural Networks, Fuzzy Logic and Genetic Algorithms
- Session 17-20:
 - Current trends and future directions in AI

III. Section C (120 Hrs. Theory)

A. Computer Architecture (40 Hours)

- Session 1-4:
 - o Computer Organization and Architecture
 - Basic Computer Model and different units of Computer
 - Arithmetic and Logic Unit (ALU) of CPU
 - Main Memory Unit
 - I/O Devices
- Session 5-8:
 - Overview of CPU Design
 - Fetch Instruction
 - Interpret Instruction
 - Fetch Data
 - Process Data
 - Write Data
 - Data Bus
 - Address Bus
 - Control Bus
 - Register organization
 - User-visible registers
 - Control and status registers
 - Processor Status Word
- Session 9-11:
 - o Control Unit Design
 - Hardwired Control
 - Microprogrammed Control

- Organization of Control Unit
- Programmable Logic Array
- Control Word (CW)
- Session 12-15:
 - Concept of Memory
 - Register
 - Cache Memory
 - Main Memory
 - Magnetic Disk
 - Removable Media (Magnetic tape)
 - Binary Storage Cell
 - SRAM
 - SRAM
 - Operation of Cache Memory
- Session 16-19:
 - o Input/Output Organization
 - Control and timing
 - Processor Communication
 - Device Communication
 - Data Buffering
 - Error Detection
 - Memory Mapped I/O
 - Isolated or Mapped I/O
- Session 20-25:
 - o Arithmetic and Logic unit
 - Arithmetic Operations
 - Logical Operations
- Session 26-30:
 - Memory Management
 - Main Memory
 - Memory Management
 - Swapping
 - Partitioning
 - Variable size Partition
- Session 31-34:
 - Virtual Memory
 - Paging
 - Virtual Memory
 - Address Translation
 - Inverted page table structures
 - Translation Lookaside Buffer (TLB)
- Session 35-37:
 - Execution of a complete Instructions
 - Concept of Program Execution
 - Basic Instruction Cycle
- Session 38-40:
 - Internal Organization of Memory Chips
 - 1024 x 1 memory chips
 - Mapping Functions and Replacement Algorithms
 - Mapping Functions
 - Direct Mapping

- Associative Mapping
- Block-set-associative mapping
- Replacement Algorithms
- Least Recent Used (LRU) Replacement Policy
- FIFO replacement policy
- Random replacement policy

B. Microprocessors (50 Hours)

- Session 1-5:
 - o Microprocessor
 - Basics of Microprocessor
 - 16, 32, 64 bit Microprocessor
 - Types of Processors
 - Complex Instruction Set Computer (CISC)
 - Reduced Instruction Set Computer (RISC)
 - Explicitly Parallel Instruction Computing (EPIC)
- Session 6-8:
 - Microprocessor | Externally Initiated Operations
 - Reset
 - Interrupt
 - Ready
 - Hold
- Session 9-10:
 - o Bus organization of 8085 microprocessor
 - Address bus
 - Data bus
 - Control bus
- Session 11-12:
 - o Generations of computer
 - First Generation
 - Second Generation
 - Third Generation
 - Fourth Generation
 - Fifth Generation
- Session 13-14:
 - o Intel x86 evolution and main features
 - **8080**
 - **8086**
 - **80286**
 - 80386
 - Pentium
 - Pentium Pro
 - Pentium II
 - Pentium III
 - Pentium 4
 - Core
 - Core 2
- Session 15-16:
 - Memory Banking
 - Even Bank

- Odd Bank
- Lower Bank
- Higher Bank
- Session 17-18:
 - o Introduction to quantum computing
 - Superposition
 - Entanglement
- Session 19-20:
 - o Conventional Computing vs Quantum Computing
- Session 21-22:
 - o Rethinking binary with Quantum computers
 - How traditional computers work?
 - Rethinking binary and transistors
 - How quantum computing work?
 - Advantages and Applications
- Session 23-24:
 - o Flynn's taxonomy
 - Parallel Computing
 - Single-instruction, single-data (SISD) systems
 - Single-instruction, multiple-data (SIMD) systems
 - Multiple-instruction, single-data (MISD) systems
 - Multiple-instruction, multiple-data (MIMD) systems
- Session 25-27:
 - Clusters in Computer Organization
 - Load Balancing Cluster
 - Fail over Clusters
 - High Availability Clusters
 - Advantages
- Session 28-30:
 - o Parallel processing systolic arrays
 - Characteristics
 - Advantages
 - Disadvantages
- Session 31-33:
 - o 8259 PIC Microprocessor
 - Features
 - Pin Diagram
 - Block Diagram
 - Block Diagram of 8259 Microprocessor
 - Registers ISR, IRR & IMR
 - Priority Resolver
 - SP/EN (Low Active Pin)
 - Cascade Buffer
 - o Microprocessor | 8251 USART
 - Block Diagram
- Session 34-35:
 - Evolution of Microprocessors
 - 8, 16, 32, 64-bit microprocessors
 - Generation of Microprocessors
 - Types of Microprocessors
 - Advantages

- Disadvantages
- O Human Computer interaction through the ages
- Session 36-38:
 - Computer Ports
 - Serial Ports
 - Parallel Ports
 - PS/2 ports
 - Universal serial bus port
 - VGA Ports
 - HDMI Ports
 - Modem port
 - Ethernet Port
 - Game Port
 - Sockets
 - DVI Port
- Session 39-41:
 - Introduction to Parallel Computing
 - Introduction
 - Types of Parallelism
 - Bit-level parallelism
 - Instruction-level parallelism
 - Task Parallelism
 - Advantages and Limitations
 - Future of Parallel Computing
- Session 42-44:
 - Hardware architecture (parallel computing)
 - Computing
 - Types of Computing
 - Parallel computing
 - Hardware architecture of parallel computing
 - Computer Architecture | Multiprocessor and Multicomputer
 - Multiprocessor
 - Advantages, Benefits
 - Multicomputer
 - Difference between Multicomputer and Multiprocessor
- Session 43-46:
 - o Timing diagram of INR M in 8085
 - Priority Interrupts
 - Software Method Polling
 - Hardware Method Daisy Chaining
 - I/O Interface
 - Modes of transfer
 - Programmed I/O
 - Interrupt-initiated I/O
 - Direct Memory Access
 - Types of DMA transfer using DMA Controller
 - Cyclic Stealing
 - Direct memory access with DMA controller 8257/8237
 - Modes of DMAC
 - o Computer Organization | Asynchronous input output synchronization
 - Problem faced in asynchronous input output synchronization
 - Strobe Mechanism

- Handshaking Mechanism
- Session 44-47:
 - o Programmable peripheral interface 8255
 - Block Diagram
 - Pin Diagram
 - Operating Modes
 - o Interface 8255 with 8085 microprocessors for 1's and 2's complement of a number
 - o Microprocessor | 8255 (programmable peripheral interface)
 - 8255
 - 8255 pin Diagram
 - Modes of 8255
 - o Interface 8254 PIT with 8085 microprocessors
 - 8254 Control Register and Operating modes
 - Synchronous Data Transfer in Computer Organization
 - Advantages and Disadvantages
- Session 48:
 - Introduction of Input-Output Processor
 - The Block Diagram
 - o MPU Communication in Computer Organization
 - I/Os with 8-bit addresses
 - I/Os with 16-bit addresses
- Session 49:
 - Memory mapped I/O and Isolated I/O
 - Isolated I/O
 - Memory Mapped I/O
 - Their differences
- Session 50:
 - o BUS Arbitration in Computer Organization
 - Centralized bus arbitration
 - Distributed bus arbitration
 - Methods of Centralized BUS Arbitration

C. <u>Digital Electronics</u> (30 Hours)

- Session 1-3:
 - o Number System and Representation:
 - Binary representations
 - Number System and Base Conversions
 - Floating Point Representation
- Session 4-8:
 - o Programs:
 - Binary to Decimal Conversion
 - Decimal to Binary Conversion
 - Decimal to octal conversion
 - Octal to decimal conversion
 - Hexadecimal to decimal
- Session 9-13:
 - o Boolean Algebra and Logic Gates:
 - Properties of Boolean algebra
 - Representation of Boolean Functions
 - Canonical and Standard Form
 - Functional Completeness

- Logic Gates
- Session 14-16:
 - o Gate Level Minimization:
 - K-Map (Karnaugh Map)
 - Implicants in K-Map
 - 5 variable K-Map
 - Variable entrant map (VEM)
 - Minimization of Boolean Functions
 - Consensus theorem
- Session 17-20:
 - Combinational Logic Circuits:
 - Half-Adder
 - Half-Subtractor
 - Half-Adder and Half-Subtractor using NAND NOR Gates
 - Full-Adder
 - Full Subtractor
 - Code Converters BCD (8421) to/from Excess-3
 - Code Converters Binary to/from Gray Code
 - Code Converters BCD to 7 Segment Decoder
 - Parallel Adder & Parallel Subtractor
 - Carry Look-Ahead Adder
 - Magnitude Comparator
 - BCD Adder
 - Encoders and Decoders
 - Encoder
 - Binary Decoder
 - Combinational circuits using Decoder
 - Multiplexers
 - Static Hazards
- Session 21-22:
 - Flip-Flops and Sequential Circuits:
 - Latches
 - One-bit memory cell
 - Flip-Flops (Types and Conversions)
 - Master Slave JK Flip Flop
 - Introduction of Sequential Circuits
 - Synchronous Sequential Circuits
 - Asynchronous Sequential Circuits
 - Difference between combinational and sequential circuit
 - RTL (Register Transfer Level) design vs Sequential logic design
 - Difference between Synchronous and Asynchronous Sequential Circuits
- Session 23-25:
 - Register and Counters:
 - Counters
 - Design counter for given sequence
 - n-bit Johnson Counter
 - Amortized analysis for increment in counter
 - Ripple Counter
 - Digital Logic | Ring Counter
 - Shift Registers
 - Design 101 sequence detector
 - Universal Shift Register

- RTL (Register Transfer Level) design vs Sequential logic design
- Verilog Data Types
- Session 26-28:
 - Memory and Programmable Logic:
 - Read-Only Memory (ROM) | Classification and Programming
 - Programmable Logic Array
 - Programming Array Logic
 - RAM vs ROM
 - Operational Amplifier (op-amp)
- Session 29-30:
 - Data Communication:
 - Block Coding
 - Difference between Unipolar, Polar and Bipolar Line Coding
 - Difference between Broadband and Baseband Transmission
 - Transmission Impairment
 - What is Scrambling?
 - Analog to Analog Conversion (Modulation)
 - Analog to digital conversion
 - Digital to Analog Conversion
 - Difference Between Digital and Analog System

6. List of Reference Books

- Quicker math by M.Tyra (BSC publication co. Pvt. Ltd)
- How to prepare GRE by Barron's / galgotia publications pvt. Ltd
- Foundations of Computing, PK Sinha, BPB
- Data Structures with C (Schaum's Outline Series)
- Object-Oriented Programming with C++ (E Balagurusamy)
- Computer Organization and Architecture, William Stallings
- Microprocessor Architecture, Programming, and Applications with 8085, Ramesh Gaonkar
- The Intel Microprocessors, Barry. B. Brey
- Digital Design, Morris Mano
- Modern Digital Electronics, R. P. Jain
- C Programming Language (Kernighan & Ritchie)
- Let Us C (Yashavant Kanetkar)
- Artificial Intelligence for Dummies, John Paul Mueller by Luca Massaron)
- Big Data Fundamentals Concepts Drivers & Techniques by Paul Zikopoulos