심층학습 03 역전파 알고리즘

SW융합학부 양희경

주교재: 오렐리앙 제롱, 핸즈온 머신러닝(사이킷런과 텐서플로를 활용한 머신러닝, 딥러닝 실무), 한빛미디어, 2018.04 Andrew Ng, Deep Learning Specialization, Coursera

학기 내용

- 1. 심층학습 소개Deep learning
- 2. 인공 신경망Neural network (2/2)
- 3. 역전파 알고리즘Backpropagation
- 4. 심층 신경망 훈련
- 5. 합성곱 신경망Convolutional neural network(CNN)
- 6. 오토인코터 Auto encoder(AE)
- 7. 적대적 생성 네트워크Generative adversarial network(GAN)
- 8. 순환 신경망Recurrent neural network(RNN)

3.1 (리뷰) 모델, 비용함수, 경사 하강법

3.2 역전파 알고리즘의 작동 방식

3.1 (리뷰) 모델, 비용함수, 경사 하강법

	회귀Regression	(이진)분류 ^{Binary classification}
예제	에어가 () 이 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	0.5 (441) 0 XXXX (841) 0 XXXX
모델 ^{Model}	$h_{w}(x) = wx + b$	$h_w(x) = g(wx + b)$
비용함수 Cost function	$J(w) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(wx^{(i)} + b \right) - y^{(i)} \right)^2$ $m: \text{doff } \text{if } \text{for } \text{grade}$ $y: \text{deff} \text{ doff}$ $y: \text{deff} \text{ doff}$ $x \text{ doff}$	$J(w) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} bg \ \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$ $J(w) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} bg \ \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$
최적화 Optimization	$w = w - \alpha$	$ \cdot \frac{\partial}{\partial w} J(w) \qquad \begin{array}{l} \text{Gradient descent, Stochastic gradient} \\ \text{descent, Momentum, NAG, Adagrad,} \\ \text{AdaDlta, Adam,} \end{array} $

3.1 (리뷰) 모델, 비용함수, 경사 하강법

- 모델의 학습과 미분
 - 비용함수를 최소화하는 모델의 파라미터 찾기
 - 경사 하강법을 위해 미분 필요
 - 각 파라미터로 비용함수를 미분

3.1 (리뷰) 모델, 비용함수, 경사 하강법

3.2 역전파 알고리즘의 작동 방식

• 연쇄 법칙(Chain rule)

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

- 출력 계층의 미분을 구한다
 - 비용함수 J에 대한 미분이 필요함

03. 역전파 알고리즘 SW융합학부 양희경 8

- 마지막 은닉 계층의 미분을 구한다
 - 비용함수의 미분과 출력 계층의 미분이 필요함
 - 입력 계층으로 나아가며, 중복된 미분값 계산을 하게 됨.
 각 노드에 미분값을 미리 저장해 두면 중복 계산을 피하게 됨 (다이나믹 프로그래밍의 미모이제이션 기법)

03. 역전파 알고리즘 SW융합학부 양희경 SW융합학부 양희경

- 특정 은닉 계층의 미분을 구한다
 - 비용함수, 출력 계층, 사이 모든 은닉 계층의 미분이 필요함

03. 역전파 알고리즘 SW융합학부 양희경 10

- 정방향 전파Forward propagation
 - 비용함수 계산을 위해 입력 계층에서 출력 계층으로 연산
 - 학습 후 완성된 모델을 사용할 때는 정방향 전파만 사용

- 역전파 알고리즘(학습법)Backpropagation
 - 정방향 전파와 반대 방향으로 미분값을 구하여
 최적화 방법을 통해 파라미터를 학습함
 - 정방향 & 역방향 전파가 모두 수행됨

3.1 (리뷰) 모델, 비용함수, 경사 하강법

3.2 역전파 알고리즘의 작동 방식

3.3 역전파 알고리즘

• 그라디언트Gradient 계산

$$- W^{(l)} = W^{(l)} - \alpha \frac{\partial J}{\partial W^{(l)}}$$
$$- b^{(l)} = b^{(l)} - \alpha \frac{\partial J}{\partial b^{(l)}}$$

3.1 (리뷰) 모델, 비용함수, 경사 하강법

3.2 역전파 알고리즘의 작동 방식

학기 내용

- 1. 심층학습 소개Deep learning
- 2. 인공 신경망Neural network (2/2)
- 3. 역전파 알고리즘Backpropagation
- 4. 심층 신경망 훈련
- 5. 합성곱 신경망Convolutional neural network(CNN)
- 6. 오토인코터 Auto encoder(AE)
- 7. 적대적 생성 네트워크Generative adversarial network(GAN)
- 8. 순환 신경망Recurrent neural network(RNN)