

Soluções Comuns Baseadas em MPI para Processamento de Alto Desempenho em Python Avaliadas em Casos de Teste Selecionados

Eduardo F. Miranda

Mestrado CAP (orientador Stephan Stephany)

Por que Python?

Prototipagem rápida

Interfaceamento fácil

Fácil de ler e manter

Ambiente moderno

Comunidade código aberto

Muitas bibliotecas disponíveis (incluindo PAD)

http://spectrum.ieee.org

Introdução

Exemplos de pacotes de desenvolvimento Python

 Ambos disponiveis no supercomputador
 Santos Dumont (LNCC)

Data Science Package & Environment Manager

Objetivos (I)

Python -> programação e prototipagem rápida, mas permite <u>processamento de alto desempenho</u> (PAD)?

Compilação do código Python padrão para linguagem intermediária (bytecode)

Execução interpretada (lenta) por Python

Então Python não é adequado PAD?

Objetivos (II)

Abordagens de PAD/HPC para Python para 3 casos de teste selecionados

Foco em MPI, execução no Santos Dumont (LNCC)

Avaliar o desempenho das abordagens

Referência: versões F90 sequencial e MPI

Roteiro para o uso de recursos PAD em Python

Algumas abordagens e recursos **Python** para PAD/HPC

Algumas abordagens e recursos

IPython: shell + completo para computação interativa

IPython Parallel (IPP): pacote p/ disparar via srun/mpiexec/etc. processos mestre & escravos (engines) p/ execução paralela do programa Python

mpi4py: biblioteca para usar MPI em Python

NumPy: pacote CC, arrays multidimensionais, funções álgebra linear, I/F de conversão p/ F90 (F2PY)

Algumas abordagens e recursos

F2PY (NumPy): código F90 -> bibliotecas Python

PyCuda: biblioteca de acesso à API CUDA Nvidia

Scikit-learn: biblioteca de aprendizado de máquina (permite escolher backend de paralelização: OpenMP, LOKY, IPP, Dask)

Cython: compilador para Python e Cython

Numba: compilador JIT (just-in-time) para Python

Algumas abordagens e recursos

Python: implementação padrão interpretada (lenta!!!)

JupyterLab: aplicativo web interativo

Distribuições Python: Anaconda & Intel

F90 (referência): GNU & Intel

Outras possíveis, não usadas neste trabalho: computação distribuída, computação em nuvem ou grade, ambiente específicos (Dask), etc.

Três casos de teste:

Estêncil FFT Floresta Aleatória

Caso de teste Estêncil

Problema de difusão de calor 2D

Modelado matemático: equação de Poisson, método das diferenças finitas, estêncil de 5 pontos

Simulação ao longo de timesteps com atualização sucessiva da grade 2D

Equação de Poisson 2D (difusão de calor)

Campo de temperatura U em malha discreta 2D (x, y)

Resolução $\Delta x = \Delta y = h$

Estêncil de 5 pontos, expressão diferenças finitas:

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \approx \frac{U_{i+1,j} + U_{i,j+1} - 4U_{i,j} + U_{i-1,j} + U_{i,j-1}}{h^2}$$

Divisão do domínio 2D

Paralelização: divisão em subdomínios com replicação das bordas (temperaturas) nas fronteiras entre eles

A cada timestep, atualização da grade com estêncil 5 pontos exige comunicação MPI entre bordas subdomínios vizinhos

@njit

Parte intensiva do código em questão

```
do j=2,by+1
do i=2,bx+1
anew(i,j)=1/2*(aold(i,j)+1/4*(aold(i-1,j)+aold(i+1,j)+aold(i,j-1)+aold(i,j+1)))
enddo
enddo
```

```
cpdef kernel(double[:,::1] anew, double[:,::1] aold, Py_ssize_t by, Py_ssize_t bx):
    for i in range(1,bx+1):
        for j in range(1,by+1):
        anew[i,j]=1/2*(aold[i,j]+1/4*(aold[i-1,j]+aold[i+1,j]+aold[i,j-1]+aold[i,j+1]))
```

Caso de teste FFT 3D

Transformação domínio espacial/temporal p/ domínio frequência (transformada discreta de Fourier):

FT -> DFT (FT discreta) -> algoritmo Fast DFT (FFT)

FFTW (Fast FFT in the West)

FFTW p/ array multidimensional 3D (dado sintético)

Elementos array gerados por um esquema particular

Caso de teste FFT 3D

Array multimensional 576 x 576 x 576 (múltiplo do número de processos MPI)

FFTs multidimensionais (composição de FFTs 1D)

$$H(k_1,k_2,k_3) = \sum_{n_3=0}^{N_3-1} \sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} h(n_1,n_2,n_3) e^{\frac{-2\pi i k_3 n_3}{N_3} \frac{-2\pi i k_2 n_2}{N_2} \frac{-2\pi i k_1 n_1}{N_1}}$$

Paralelização: FFT 3D (transposição)

Caso de teste Floresta Aleatória

N árvores de decisão treinadas independentemente

Teste/validação → N resultados (média/votação)

Classificação de órbitas de asteróides

Dataset com 100.000 asteróides JPL/NASA

Paralelização

Paralelização trivial: N árvores mapeadas para p processos MPI/IPP/LOKY (N/p árvores cada processo)

Resultados: análise de desempenho sequencial e paralelo

Ambiente (Santos Dumont LNCC)

Nó B710: 2x Xeon E5-2695v2 12-core

Nó B715: 2x Xeon E5-2695v2 12-core + 2x Tesla K40

Nó Sequana X: 2x Xeon 6152 22-core + 4x Volta V100

GNU Fortran 7.4, GNU Fortran 8.3, OpenMPI 4.0.1, Intel Fortran 19.0.3, Intel MPI, Python 3.6.12, Cython 0.29.20, NumPy 1.18.1, Numba 0.41.0, e CUDA 10.1 e outros

4.1

Resultados:

Difusão de calor 2D: Estêncil de 5 pontos

Caso de teste Estêncil Cython 24.0 24.0 7.5 6.3 4.7 2.2 1.7 1.3 2.1

F90

F2PY

Tempos de processamento [s] - nós B710								
	Número de processos MPI							
Seq.	1	4	9	16	36	49	64	

19.3 21.9 7.3 6.2 4.7 **2.1** 1.9 **1.2**

18.9 23.6 7.5 6.2 **4.6** 2.1 **1.6** 1.3 **1.0**

81

Tempos d	e pro	cess	same	ento	[S] -	nós	B710)
Número de processos MPI								
Sea.	1	4	9	16	36	49	64	

Python 212.4 227.2 64.7 44.8 33.5 15.2 10.4 7.8

Numba 30.5 30.5 8.2 6.3 5.9 3.2 2.7 1.8 2.1 (CPU)

25/65

Caso de teste Estêncil Numba **Python** 26/65

(CPU)

Spe	edup	- ná	ós B7	710
	Núm	ero c	le pro	cesso
1	4	9	16	36

9.3

2.9

			Núr	nero (de pro	cess	os MF	Pl	
	Seq.	1	4	9	16	36	49	64	81
F90	1.0	0.9	2.6	3.1	4.1	9.0	10.2	15.7	11.4
F2PY	1.0	8.0	2.6	3.1	4.2	9.0	11.8	15.1	19.0
Cython	0.8	8.0	2.6	3.1	4.1	8.6	11.6	14.7	9.4

0.6 2.4 3.0 3.3

0.3 0.4

6.0

1.3

0.6

7.2 10.8

2.5

1.8

0.1

0.6

0.1

Caso de teste Estêncil **F90** 27/65

Eficiência paralela - nós B710						
		Núm	nero c	le pro	cesso	s MPI
Seq.	1	4	9	16	36	49

0.63 0.59 0.34 0.21 0.17 0.15 0.17 0.12

1.02 0.82 0.65 0.35 **0.26** 0.25 **0.24** 0.24 **0.23**

0.09 0.08 0.07 0.05 0.04 0.04 0.04 0.04 0.04

64

81

F2PY Cython 0.80 0.80 0.65 0.34 0.26 0.24 0.24 0.23 0.12

(CPU)

0.63

Tempos de processamento [s] - nós B710

Speedup - nós B710

Eficiência paralela - nós B710

Comparação tempos [s] Numba-GPU x F90

	Número de processos MPI					
Implementação	Seq.	1	4	9	16	36
F90/B715	19.3	21.9	7.3	6.2	4.7	2.1
F90/Seq-X	15.8	15.6	4.1	2.1	1.5	1.2
Numba-GPU/B715	9.4	104.8	27.2	11.7	7.9	4.3
Numba-GPU/Seq-X	2.2	49.5	15.2	6.9	6.7	9.1

4.2

Resultados:

FFT 3D

F90

F2PY

Python

Cython

Numba

33/65

rempos de processamento [s] - nos B <i>i</i> to
Número de processos MPI
Numero de processos in r

4

2.6

7.9

13.3 5.2 4.3 13.0

7.4 3.5

161.7 174.8 44.9 11.1 7.5 12.3

6.4

16 24

2.4

4.1

7.7

72

2.2

10.5

10.6

11.5

4.3 3.6

48

2.2

10.2

96

2.3

5.2

8.7

8.6

Tempos d	le processamen	nto [s] - nós E	3710

Tempos de processamento	[s] - nós B710

Seq.

19.3 23.4

23.8 27.6

48.6 50.0

109.0 124.2 29.1

F90

F2PY

Python

Cython

Numba

34/65

Speedup - nós B710

8.7

4.5

1.6

1.9

1.5

72

8.6

5.4

1.8

1.8

96

8.3

3.7

2.2

2.3

			Núme	ro de	proce	ssos N	/IPI
-	Seq.	1	4	16	24	48	7

8.0

0.4

1.0

8.0

0.1

0.2

0.4

3.0

2.6

0.4

0.7

1.5

7.3

5.5

1.7

2.4

3.7

8.2

4.7

2.6

2.5

4.5

F90

F2PY

Python

Cython

Numba

35/65

Eficiôncia paralala nác B710

4 16 24

0.81 0.70 0.65 0.34 0.20 0.09 0.07 0.04

0.12 0.11 0.11 0.11 0.03 0.03 0.02

0.18 0.16 0.17 0.15 0.10 0.04 0.03 0.02

0.40 0.39 0.36 0.23 0.19 0.03 0.02 0.02

0.82 0.75 0.46 0.34 0.18 0.12 0.09

96

48 72

Eliciencia paraleia - 1105 B/10
Número de processos MPI

Seq.

Tempos de processamento [s] - nós B710

Speedup - nós B710

Eficiência paralela - nós B710

Comparação tempos [s] CuPy x F90

			Número de processos MP					
Implementação	GPU	Seq.	1	4	16	24		
F90/B715		23.77	23.41	6.48	2.73	2.48		
F90/Seq-X		12.74	14.85	4.06	1.37	0.96		
CuPy(GPU)/B715	38.16							
CuPy(GPU)/Seq-X	19.62							

Tempos [s] - otimização para NUMA

	16 processos MPI								
Implemen-	B71	L O	Seq-X						
tação	None	Bind	None	Bind					
F90	2.65	2.47	1.65	1.33					
F2PY	3.53	3.20	2.09	1.54					
Python	11.09	10.10	6.60	5.66					
Cython	7.92	6.52	5.31	4.51					
Numba	5.20	4.70	3.40	2.30					

None (sem opção): P1 (12 cores) e P2 (4 cores) Opção Binding: P1(8 cores) e P2 (8 cores)

40/6

4.3

Resultados:

Floresta Aleatória para classificação de órbitas de asteróides **Python**

F90

F2PY

42/65

Seq.

Tempos de processamento [s] - nos B/10
Número de processos
Nullició de Diocessos

Numba 25.0 33.6 16.6 13.0 13.8 15.7 15.5 16.7

Cython 29.5 65.6 25.7 15.3 15.4 17.7 15.6

135.1 141.7 48.3 23.0 19.2 17.1

137.7 138.9 45.3 20.8 19.1

1 4 16 24 48

25.7 28.6 14.9 11.1 11.0 12.0 13.9 14.5

96

16.9

16.0

18.0

72

14.6 14.6

Tempos de processamento [s] - nós B710

	rempos de processamento [2] - nos bi to
_	Número de processos
(O)	Nullició de di decasos

Numba

Cython

F90

43/65

24

2.3

1.9

1.7

1.3

1.3

48

2.1

1.6

1.4

1.8

1.5

72

1.8

1.7

1.6

1.8

1.5

96

1.8

1.5

1.5

1.6

1.4

	Speeaup - nos B/10
<u>ਰ</u>	Número de processos
2	

8.0

0.4

0.2

0.2

1.5

1.0

0.6

0.5

2.0

1.7

1.2

1.1

A Ale		Seq.	1	4	16	
Floresta	Python	1.0	0.9	1.7	2.3	

1.0

0.9

0.2

Python

Cython

F90

F2PY

44/65

Numba

Seq.

1.00

1.03

0.87

16

0.90 0.43 0.14 0.10 0.04

0.08

0.39 0.12 0.08 0.03

0.13 0.07 0.06 0.03

24

0.07

0.06 0.04

48

0.03

96

0.02

72

0.02 0.02

0.02 0.02

0.03

0.02

0.02

Efficiencia	paraieia - nos B/10
	Número de processos
	itailiele de pleceses

4

0.39 0.25 0.10

0.14

1

0.76

0.18

Tempos de processamento [s] - nós B710

Speedup - nós B710

Eficiência paralela - nós B710

4.4

Floresta aleatória (Implementação alternativa)

Floresta aleatória (implementação alternativa)

Classificação de órbitas de asteróides (Python), biblioteca Scikit-learn, nós Sequana-X (2x 24-core)

IPP (IPython parallel): até 4 nós, 192 processos

LOKY: único nó, até 48 processos

Implementação extra feita após entrega da dissertação

Floresta aleatória (implementação alternativa)												
Implemen-	Número de processos											
tação	Seq.	1	8	16	24	32	40	48	96	144	192	
Tempos de processamento [s]												
IPP	8.99	10.62	5.71	5.53	5.60	5.97	6.14	6.64	7.99	7.21	6.87	
IPP Numa			5.77	5.43	5.62	6.02	6.17					
LOKY		5.96	1.24	0.72	0.67	0.62	0.62	0.64				
				Spe	edup							
IPP	1.00	0.85	1.57	1.62	1.60	1.51	1.46	1.35	1.12	1.25	1.31	
IPP Numa			1.56	1.66	1.60	1.49	1.46					
LOKY		1.51	7.26	12.56	13.51	14.47	14.50	14.12				
			Ef	iciênc	ia par	alela						
IPP	1.00	0.85	0.20	0.10	0.07	0.05	0.04	0.03	0.01	0.01	0.01	

0.19 0.10 0.07 0.05 0.04

0.56 0.45 0.36 0.29

0.91 0.79

1.51

IPP Numa

50/65

Tempo processamento [s] x no. processos - nós Seq-X

Speedup x no. processos - nós Seq-X

Eficiência paralela x no. processos - nós Seq-X

4.5

PROFILING:

Intel APS (Application **Performance Snapshot**) e outras

	Número de processos MPI										
Parâmetro	Seq.	1	4	9	16	36	49	64	81		
Elapsed Time [s]	22.6	23.3	9.1	7.9	7.5	5.0	4.8	5.4	5.7		
ETime - MPI [s]	-	22.8	8.1	6.7	5.5	2.4	2.0	1.8	1.5		
Speedup	-	1.0	2.5	2.9	3.0	4.5	4.7	4.2	4.0		
Efficiency	-	1.0	0.6	0.3	0.2	0.1	0.1	0.1	0.0		
MPI Time [s]	-	0.5	1.0	1.2	2.0	2.6	2.8	3.6	4.2		
MPI Time [%]	-	2.1	10.9	15.1	27.5	52.5	59.4	68.2	74.4		
MPI_Init [s]	-	1.0	0.8	1.0	1.1	1.5	1.4	1.9	2.0		
MPI_Wait [s]	-	-	0.2	0.1	0.9	0.9	1.0	8.0	1.2		
MPI_Bcast [s]	-	-	0.0	0.0	0.0	0.2	0.3	8.0	0.8		
MPI Imbalance [s]	-	-	0.1	0.0	0.7	0.9	1.0	1.2	1.6		
DP [GFlops]	3.8	3.6	9.6	12.4	12.0	17.2	16.4	15.4	13.6		
IPC Rate	1.5	1.3	1.0	0.6	0.9	1.3	1.5	1.5	1.7		
Bound	mem	mem	mem	mem	mem	MPI	MPI	MPI	MPI		
Cache Stalls [%c]	13.0	14.4	23.8	32.2	26.9	16.2	16.3	12.6	10.2		
DRAM Stalls [%c]	13.3	14.3	29.2	33.2	27.7	24.4	14.0	10.6	7.1		
DRAM [GB/s]	-	11.9	26.4	-	28.5	20.0	12.1	12.5	8.0		
Mem Stalls [%ps]	29.3	31.9	44.7	67.3	52.9	36.2	26.1	21.7	14.0		

100.0

100.0

100.0

99.9

98.5

99.8

98.0

100.0

100.0

55/65 Vectorization [%]

Estêncil F90: % métricas x processos MPI - nós B710

Perfil (Intel APS) - FFT 3D F90 - nós B710

reim (mie	IAFS	<i>/</i>	<u> </u>	D F)U - I	105 1	D/ T/				
		Número de processos MPI									
Parâmetros	Serial	1	4	16	24	48	72	96			
Elapsed Time [s]	20.3	21.1	7.4	4.0	4.0	3.8	5.1	5.5			
ETime - MPI [s]	-	20.6	5.8	2.3	1.9	1.2	1.3	1.3			
Speedup	-	1.0	2.7	5.1	5.1	5.4	4.0	3.7			
Efficiency	-	1.0	0.7	0.3	0.2	0.1	0.1	0.0			
MPI Time [s]	-	0.5	1.5	1.7	2.1	2.5	3.7	4.1			
MPI Time [%]	-	2.4	20.9	41.9	52.2	68.3	78.7	77.3			
MPI_Init [s]	-	0.5	0.7	1.0	1.5	1.8	2.2	2.6			
MPI_Sendrecv [s]	-	-	8.0	0.6	0.4	0.3	0.5	0.3			
MPI Imbalance [s]	-	-	0.1	0.3	0.2	0.4	1.2	1.1			
DP [GFlops]	1.1	1.1	3.0	5.6	6.3	6.2	4.5	3.6			
IPC Rate	1.4	1.4	1.3	1.1	1.1	1.3	1.6	1.5			
Bound	mem	mem	mem	MPI	MPI	MPI	MPI	MPI			
Cache Stalls [%c]	9.1	8.8	19.2	17.9	18.0	13.7	9.3	10.6			
DRAM Stalls [%c]	32.2	29.2	16.0	21.0	21.5	12.3	5.7	4.9			
DRAM [GB/s]	-	1.6	6.9	15.5	16.5	8.8	4.6	2.8			
Mem Stalls [%ps]	45.9	41.7	41.3	44.9	43.2	29.4	13.7	17.4			
Vectorization [%]	5.3	5.5	5.3	5.4	7.8	5.0	31.0	18.4			

57/65 vectorization [%]

FFT 3D F90: % métricas x processos MPI - nós B710

Estencii F90(sem APS) & F2PY(com cProfiler) [s] - nos B/10												
		Número de processos MPI										
Implementação	Seq	1	4	9	16	36	49	64	81			
F90												
comando time do SO	21.9	22.6	8.0	7.0	5.6	3.8	3.5	4.1	3.8			
chamada F90 wall time	21.9	22.0	7.4	6.2	4.6	2.2	1.8	1.7	1.4			
F2PY												
comando time do SO	22.5	21.0	6.8	5.3	4.0	3.4	4.2	4.5	4.7			
chamada Python wall time	21.9	20.4	6.2	4.6	3.3	2.7	3.5	3.7	3.8			

20.0 5.8

6.2

6.7

20.4

20.9

4.0

4.6

5.1

2.3

3.3

3.8

1.4

2.7

3.2

1.8

3.5

3.8

3.7

4.3

1.7

3.8

4.5

21.9

21.9

22.3

chamada F90 wall time

cProfile tottime

Estêncil F90 (sem APS) & F2PY (com cProfiler) - nós B710

61/65

FFT 3D F90(sem A	(PS) & F	ZPY(C	om ch	rofile	r) [s]	- nos	B/10		
		Número de processos MPI							
Implementação	Seq.	1	4	16	24	48	72	96	
		F90							
comando time do OS	18.8	20.1	6.4	3.2	3.6	3.2	4.2	4.3	

20.9

20.3

19.9

20.3

20.7

6.8

6.2

5.8

6.2

6.7

2.2

4.1

3.4

2.4

3.4

3.9

1.8

4.3

3.5

2.0

3.5

4.1

1.2

4.1

3.4

1.6

3.4

3.9

1.9

4.8

3.9

1.9

3.9

4.5

2.0

5.4

4.6

2.0

4.6

5.2

TQ'Q chamada F90 wall time 18.6 **19.7** 5.6

comando time do OS

chamada F90 wall time

cProfile tottime

cProfile cumtime

chamada Python wall time

20.4

19.8

19.8

19.8

FFT 3D F90 (sem APS) & F2PY (com cProfiler) - nós B710

Considerações Finais

Considerações finais

Abordagens HPC/PAD comuns p/Python

3 casos de teste executados no Santos Dumont

Referências: versões F90 sequencial & MPI

Versões F2PY, Cython, Numba/GPU, Python

Comparação versões pl métricas desempenho

Profiling (Intel APS e outros)

Trabalhos futuros

64/65

Obrigado!

Código fonte: https://github.com/efurlanm/msc22

Contato: Eduardo Furlan Miranda. Programa de Pós Graduação em

Computação Aplicada (CAP) / INPE

E-mail: efurlanm@gmail.com

Orientador: Dr. Stephan Stephany. Coordenação de Pesquisa Aplicada

e Desenvolvimento Tecnológico (COPDT) (CAP) / INPE

E-mail: stephan.stephany@inpe.br