Úkol

- 1. Změřte závislost prodloužení tyče na teplotě. Měření proveď te pro čtyři různé materiály.
- 2. Výsledky měření zpracujte metodou lineární regrese a graficky znázorněte.
- 3. Určete koeficient teplotní roztažnosti měřených materiálů.

Teorie

Teplotní objemovou roztažnost spočteme podle vztahu [1]

$$V = V_0 \left(1 + \beta t \right), \tag{1}$$

kde V je objem při teplotě $t,\ V_0$ objem měřený při teplotě 0°C a β součinitel objemové roztažnosti [1]

$$\beta = \frac{1}{V_0} \left(\frac{\partial V}{\partial t} \right)_p. \tag{2}$$

Pro tělesa, jejichž jeden rozměr je výrazně větší než ostatní, zavádíme délkovou roztažnost [1]

$$l = l_0 \left(1 + \alpha t \right) \tag{3}$$

vzhledem k délce tělesa l při teplotě t. Součinitel délkové roztažnosti vypočítáme jako [1]

$$\alpha = \frac{1}{l_0} \left(\frac{\partial l}{\partial t} \right)_p. \tag{4}$$

V případě izotropních těles platí [1]

$$\beta = 3\alpha. \tag{5}$$

Statistické vyhodnocení

Průměrná hodnota naměřených veličin při n měřeních je počítána podle vzorce aritmetického průměru [2]

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Statistická chyba σ_{stat} aritmetického průměru se získá ze vztahu [2]

$$\sigma_{stat} = \frac{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}}{\sqrt{n}}.$$

Absolutní chyba je potom získána z σ_{stat} a chyby měřidla $\sigma_{\text{měř}}$ jako [3]

$$\sigma_{abs} = \sqrt{\sigma_{m\check{e}\check{r}}^2 + \sigma_{stat}^2}$$

Chyba výpočtů se řídí zákonem přenosu chyb [4], lineární regrese podle metody nejmenších čtverců [5].

Pomůcky

Dilatometr (držák tyče a indikátorové hodinky), pásové měřidlo, teploměr, nádrž s vodou, čerpadlo, ohřívač vody, tyče ze čtyř materiálů (mosaz, měď, ocel, hliník)

Výsledky měření

Délka tyče byla naměřena pásovým měřidlem pro všechny čtyři tyče shodně

$$l = (600 \pm 0, 5)$$
 mm.

Rozdíl této hodnoty a délky měřené při teplotě 0°C padne do intervalu chyby měřidla.

 $\acute{\mathbf{U}}\mathbf{kol}~\mathbf{1}$ Změny délky byly měřeny indikátorovými hodinkami s přesností $0,01\mathrm{mm}.$

t [°C]	$\Delta l_{ m mosaz} \ [{ m mm}]$	$\Delta l_{ ext{meed}'} \ [ext{mm}]$	$\Delta l_{ m ocel} \ [{ m mm}]$	$\Delta l_{ m hliník} \ m [mm]$
20	0,00	0,00	0,00	0,00
25	0,06	$0,\!05$	0,04	0,06
30	0,11	0,10	0,07	0,14
35	$0,\!17$	$0,\!15$	0,11	0,20
40	$0,\!21$	$0,\!20$	$0,\!15$	$0,\!27$
45	$0,\!27$	$0,\!24$	0,18	0,33
50	$0,\!32$	$0,\!29$	$0,\!22$	$0,\!41$
55	$0,\!37$	$0,\!34$	$0,\!25$	$0,\!47$
60	$0,\!42$	0,38	0,28	0,52

Tabulka 1: Závislost délkové roztažnosti v závislosti na teplotě

Úkol 2

Lineární regrese byla provedena pomocí metody nejmenších čtverců s vyznačením chyb jednotlivých hodnot (přesnosti měření).

Obrázek 1: Graf závislosti délkové roztažnosti mosazi na teplotě

Obrázek 2: Graf závislosti délkové roztažnosti mědi na teplotě

Obrázek 3: Graf závislosti délkové roztažnosti oceli na teplotě

Obrázek 4: Graf závislosti délkové roztažnosti hliníku na teplotě

	mosaz	měď	ocel	hliník
k	$0,0104 \pm 0,0001$	$0,0095 \pm 0,0001$	$0,0071 \pm 0,0001$	$0,0133 \pm 0,0002$
q	$-0,202 \pm 0,005$	$-0,186 \pm 0,004$	$-0,138 \pm 0,004$	$-0,264 \pm 0,008$

Tabulka 2: Parametry lineární regrese přímkou y = kx + q

Úkol 3

Dosazením z tabulky 1 a 2 a hodnoty l do (4) získáme součinitele délkové roztažnosti

$$\begin{split} \alpha_{\rm mosaz} &= (173, 3 \pm 1, 7) \times 10^{-7} \ {\rm K}^{-1} \\ \alpha_{\rm m\check{e}d'} &= (158, 3 \pm 1, 7) \times 10^{-7} \ {\rm K}^{-1} \\ \alpha_{\rm ocel} &= (118, 3 \pm 1, 7) \times 10^{-7} \ {\rm K}^{-1} \\ \alpha_{\rm hlinfk} &= (221, 7 \pm 3, 3) \times 10^{-7} \ {\rm K}^{-1} \end{split}$$

Využitím (5) dostaneme součinitele objemové roztažnosti

$$\beta_{\text{mosaz}} = (520, 0 \pm 5, 0) \times 10^{-7} \text{ K}^{-1}$$

$$\beta_{\text{měd}} = (475, 0 \pm 5, 0) \times 10^{-7} \text{ K}^{-1}$$

$$\beta_{\text{ocel}} = (355, 0 \pm 5, 0) \times 10^{-7} \text{ K}^{-1}$$

$$\beta_{\text{hliník}} = (665, 0 \pm 10, 0) \times 10^{-7} \text{ K}^{-1}$$

Diskuse

Chyby v tomto měření jsou převážně spojeny s měřením teploty, jelikož soustava použitá k měření nebyla velmi dobře tepelně izolovaná a teploměr nebylo možné umístit do polohy, která by zajišťovala, že naměřená teplota skutečně odpovídá teplotě vody proudící trubicemi. Tato chyba byla částečně eliminována mícháním vody v nádrži.

Díky přesným indikátorovým hodinkám nedocházelo při měření změny délky tyče k příliž velkým chybám, následně provedené lineární regrese se nevychylují z oblasti nejistoty měření.

Závěr

Součinitele délkové roztažnosti měřených materiálů jsou

$$\begin{split} \alpha_{\rm mosaz} &= (173, 3 \pm 1, 7) \times 10^{-7} \ {\rm K}^{-1} \\ \alpha_{\rm m\check{e}d'} &= (158, 3 \pm 1, 7) \times 10^{-7} \ {\rm K}^{-1} \\ \alpha_{\rm ocel} &= (118, 3 \pm 1, 7) \times 10^{-7} \ {\rm K}^{-1} \\ \alpha_{\rm hlinfk} &= (221, 7 \pm 3, 3) \times 10^{-7} \ {\rm K}^{-1} \end{split}$$

Součinitele objemové roztažnosti měřených materiálů jsou

$$\beta_{\text{mosaz}} = (520, 0 \pm 5, 0) \times 10^{-7} \text{ K}^{-1}$$

$$\beta_{\text{měď}} = (475, 0 \pm 5, 0) \times 10^{-7} \text{ K}^{-1}$$

$$\beta_{\text{ocel}} = (355, 0 \pm 5, 0) \times 10^{-7} \text{ K}^{-1}$$

$$\beta_{\text{hliník}} = (665, 0 \pm 10, 0) \times 10^{-7} \text{ K}^{-1}$$

Literatura

- [1] Studijní text "Teplotní roztažnost pevných látek a kapalin", dostupné z http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_124.pdf
- [2] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 10, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar10.pdf
- [3] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 1, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar1.pdf
- [4] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 9, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar9.pdf
- [5] Doc. Mgr. Jakub Čížek, PhD.: prezentace Úvod do praktické fyziky, seminář 11, dostupné z http://physics.mff.cuni.cz/kfnt/vyuka/upf/seminar11.pdf