75.03 & 95.57 Organización del Computador

U1 – SISTEMAS DE NUMERACIÓN

- Introducción
 - Historia
 - Egipcio (3.000 A.C.)
 - Babilónico (1.800-1.900 A.C.)
 - Chino (1.500 A.C.)
 - Griego (600 A.C.)
 - Romano (27 A.C.)
 - Maya (3 A.C.)
 - Numeración arábiga (siglo X) (Sistema decimal actual)

- Introducción
 - Historia
 - Egipcio (3.000 A.C.)
 - Numeración con símbolos (ideogramas), contando de diez en diez. Sistema no posicional.

- Introducción
 - Historia
 - Babilónico (1.800-1.900 A.C.)
 - Sistema sexagesimal, con ideogramas. Sistema posicional.

- Introducción
 - Historia
 - Chino (1.500 A.C.)
 - Numeración con símbolos (ideogramas), decimal con potencias de 10. Sistema posicional.

- Introducción
 - Historia
 - Griego (600 A.C.)
 - Numeración con símbolos, basado en las letras iniciales de la magnitudes a representar. Sistema decimal.

- Introducción
 - Historia
 - Romano (27 A.C.)
 - Sistema no posicional, con ideogramas.

I	٧	х	L	С	D	М
1	5	10	50	100	500	1.000

- Introducción
 - Historia
 - Maya (3 A.C.)
 - Sistema vigesimal, contenía tres símbolos básicos, punto (1), raya (5) y caracol (0). Sistema posicional, por niveles, de abajo hacia arriba.

NIVEL	EJEMPLO 1	VALORES	MULTIPLICADOR	NÚMERO DECIMAL
PRIMERO	••••	5+5+5+4=19 X 1		19
	19			

NIVEL	EJEMPLO 1	VALORES	MULTIPLICADOR	NÚMERO DECIMAL
SEGUNDO	_	5 + 5 = 10	X 20	200
PRIMERO	•••	5+1+1+1=8	X 1	8
			TOTAL	208

	•	•		••••
0	1	2	3	4
	•	••	• • •	••••
5	6	7	8	9
	<u></u>	<u>• • •</u>	• • •	••••
10	11	12	13	14
		<u></u>	•••	••••
15	16	17	18	19

- Introducción
 - Sistema decimal o de base 10
 - Sistema posicional
 - Otros sistemas de numeración
 - Sistema Binario
 - Sistema Octal
 - Sistema Hexadecimal
 - Concepto de base
 - Tabla comparativa
 - Características

Teorema fundamental de la numeración

$$C = X * B = \sum_{i=-\infty}^{+\infty} X_i * bi$$

donde *C* es un número en cualquier base, *X* es el vector de dígitos, *B* es el vector de pesos y *b* es la base del sistema de numeración

- Pasaje de base
 - Enteros de cualquier base a base 10
 - Con coma de cualquier base a base 10
 - Enteros de base 10 a cualquier base
 - Con coma de base 10 a cualquier base
 - Potencia o raíz exacta entre bases
 - Números periódicos

- Representación en una computadora
 - Formato
 - Definición
 - Características
 - Tipo de datos que permite almacenar
 - Capacidad
 - Rango de valores válidos

- Formatos de representación numéricos
 - Binario de Punto Fijo sin signo
 - Binario de Punto Fijo con signo
 - Decimal Empaquetado (BCD)
 - Decimal Zoneado
 - Binario de Punto Flotante (IEEE754)
- Formatos de representación de caracteres
 - ASCII
 - EBCDIC
 - UNICODE

- Conversión de número en "valor absoluto" a formato almacenado
 - Concepto de Almacenar/Representar
 - Concepto de Interpretar
- Configuración
- Overflow
 - ¿Qué es?
 - ¿Cuándo ocurre?

Referencias

- "Computer Organization and Architecture Designing for Perfomance"
 9na edición. William Stallings
 (http://williamstallings.com/ComputerOrganization/)
- "Structured Computer Organization" 6ta edición. Andrew Tanenbaum / Todd Austin (http://www.pearsonhighered.com/educator/product/Structured- Computer-Organization-6E/9780132916523.page)
- "7503-Apunte-Sistemas_de_Numeracion-v1.3.pdf" Apunte de la cátedra