第三周作业反馈

罗晏宸

March 6 2020

1 作业答案

练习7

2. 下面的公式哪些恒为永真式?

$$4^{\circ} \quad (p \wedge \neg q) \vee ((q \wedge \neg r) \wedge (r \wedge \neg p)).$$

$$5^{\circ} \quad (p \to (q \to r)) \to ((p \land \neg q) \lor r).$$

解

(p	\wedge	\neg	q)	V	((q	\wedge	\neg	r)	\wedge	(r	\wedge	\neg	p))
	0	0	1	0		0		0	0	1	0		0		0	0	1	0	
	0	0	1	0		0		0	0	0	1		0		1	1	1	0	
	0	0	0	1		0		1	1	1	0		0		0	0	1	0	
	0	0	0	1		0		1	0	0	1		0		1	1	1	0	
	1	1	1	0		1		0	0	1	0		0		0	0	0	1	
	1	1	1	0		1		0	0	0	1		0		1	0	0	1	
	1	0	0	1		0		1	1	1	0		0		0	0	0	1	
	1	0	0	1		0		1	0	0	1		0		1	0	0	1	

表 1: 公式 4° 的真值表

4° 由真值表可知,公式 4°可能存在成假指派,因此不恒为永真式。

(p	\rightarrow	(q	\rightarrow	r))	\rightarrow	((p	\wedge	\neg	q)	\vee	r)
	0	1		0	1	0		0		0	0	1	0		0	0	
	0	1		0	1	1		1		0	0	1	0		1	1	
	0	1		1	0	0		0		0	0	0	1		0	0	
	0	1		1	1	1		1		0	0	0	1		1	1	
	1	1		0	1	0		1		1	1	1	0		1	0	
	1	1		0	1	1		1		1	1	1	0		1	1	
	1	0		1	0	0		1		1	0	0	1		0	0	
	1	1		1	1	1		1		1	0	0	1		1	1	

表 2: 公式 5° 的真值表

5° 由真值表可知,公式5°可能存在成假指派,因此不恒为永真式。

3. 以下结论是否正确? 为什么?

$$1^{\circ} \models p(x_1, \cdots, x_n) \Leftrightarrow \models (\neg x_1, \cdots, \neg x_n).$$

$$2^{\circ} \models (p \rightarrow q) \leftrightarrow (p' \rightarrow q') \Rightarrow \models p \leftrightarrow p' \perp \exists \vdash q \leftrightarrow q'.$$

解

 1° 结论正确,以下对等价关系 \Leftrightarrow 做两个方向上的 分别证明: \longleftarrow 形式上参考代换定理的证明证明. " \Rightarrow ": 由代换定理,取 p_1, \dots, p_n 分别为 $\neg x_1, \dots, \neg x_n$,立刻可得:

$$\vDash p(x_1, \cdots, x_n) \Rightarrow \vDash (\neg x_1, \cdots, \neg x_n).$$

" \Leftarrow ": 设 v 是 L(X) 的任一赋值,记

$$u_1 = v(\neg x_1), \cdots, u_n = v(\neg x_n)$$

将 u_1, \dots, u_n 分别指派给 x_1, \dots, x_n ,且将此真值指派扩张成 $L(X_n)$ 的赋值 u_o 于是 u 满足:

(1)
$$u(x_i) = u_i = v(\neg x_i) = \neg v(x_i) \qquad i = 1, \dots, n$$

现需证明下面的(2)式:

(2)
$$v(p(x_1, \dots, x_n)) = u(p(\neg x_1, \dots, \neg x_n))$$

我们有:

$$\begin{split} u(p(\neg x_1,\,\cdots,\,\neg x_n)) &= p(\neg u(x_1),\,\cdots,\,\neg u(x_n)) & (u \text{ 的保运算性}) \\ &= p(\neg u_1,\,\cdots,\,\neg u_n) \\ &= p(\neg v(\neg x_i),\,\cdots,\,\neg v(\neg x_n)) & (\text{由}(1)式) \\ &= p(\neg \neg v(x_i),\,\cdots,\,\neg \neg v(x_n)) & (v \text{ 的保运算性}) \\ &= p(v(x_i),\,\cdots,\,v(x_n)) & (\mathbb{Z}_2 \text{ 中公式}) \\ &= v(p(x_i,\,\cdots,\,x_n)) & (v \text{ 的保运算性}) \end{split}$$

有了(2)便可得:

$$\vDash (\neg x_1, \dots, \neg x_n) \Rightarrow u(p(\neg x_1, \dots, \neg x_n)) = 1$$

$$\Rightarrow v(p(x_i, \dots, x_n)) = 1$$

$$\vDash p(x_1, \dots, x_n)$$

2° 结论不正确,取以下公式为例

$$p = x_1, q = x_1$$

 $p' = x_2, q' = x_2$

我们有

$$\vDash (x_1 \to x_1) \leftrightarrow (x_2 \to x_2)$$

但

$$\not\models x_1 \to x_2$$

练习9

1. 证明以下各对公式是等值的.

$$3^{\circ} \quad (\neg p \lor q) \to r \not\exists l \ (p \land \neg q) \lor r.$$

$$4^{\circ} \quad \neg (\neg p \lor q) \lor r \not\exists l \ (p \to q) \to r.$$

解

 3° 下面列出公式 $((\neg p \lor q) \to r) \leftrightarrow ((p \land \neg q) \lor r)$ 的 真值表: $\longleftarrow p$ 与 q 等值,

等值的定义: -p 与 q 等值, 是指 $p \leftrightarrow q$ 是永真式

((\neg	p	\vee	q)	\rightarrow	r)	\leftrightarrow	((p	\wedge	\neg	q)	\vee	r)
	1	0	1	0		0	0		1		0	0	1	0		0	0	
	1	0	1	0		1	1		1		0	0	1	0		1	1	
	1	0	1	1		0	0		1		0	0	0	1		0	0	
	1	0	1	1		1	1		1		0	0	0	1		1	1	
	0	1	0	0		1	0		1		1	1	1	0		1	0	
	0	1	0	0		1	1		1		1	1	1	0		1	1	
	0	1	1	1		0	0		1		1	0	0	1		0	0	
	0	1	1	1		1	1		1		1	0	0	1		1	1	

表 3: 公式 $((\neg p \lor q) \to r) \leftrightarrow ((p \land \neg q) \lor r)$ 的真值表

因此 $((\neg p \lor q) \to r) \leftrightarrow ((p \land \neg q) \lor r)$ 是永真式, 由定义可知 $(\neg p \lor q) \to r$ 与 $(p \land \neg q) \lor r$ 等值。

4° 下面列出公式 $(\neg(\neg p \lor q) \lor r) \leftrightarrow ((p \to q) \to r)$ 的真值表:

(¬ (\neg	p	V	q)	V	r)	\rightarrow	((p	\rightarrow	q)	\rightarrow	r)
0	1	0	1	0		0	0		1		0	1	0		0	0	
0	1	0	1	0		1	1		1		0	1	0		1	1	
0	1	0	1	1		0	0		1		0	1	1		0	0	
0	1	0	1	1		1	1		1		0	1	1		1	1	
1	0	1	0	0		1	0		1		1	0	0		1	0	
1	0	1	0	0		1	1		1		1	0	0		1	1	
0	0	1	1	1		0	0		1		1	1	1		0	0	
0	0	1	1	1		1	1		1		1	1	1		1	1	

表 4: 公式 $(\neg(\neg p \lor q) \lor r) \leftrightarrow ((p \to q) \to r)$ 的真值表

因此 $(\neg(\neg p\lor q)\lor r)\leftrightarrow((p\to q)\to r)$ 是永真式,由定义可知 $\neg(\neg p\lor q)\lor r$ 与 $(p\to q)\to r$ 等值。

3. 设公式 p 与 q 都已写成只含有命题变元和 \neg , \lor , \land 三种运算. 把 p 和 q 中所有 \lor 改为 \land , \land 改为 \lor , 分别得到 p^d 和 q^d . 证明

$$\vDash p \leftrightarrow q \implies \vDash p^d \leftrightarrow q^d$$

解

证明. 设
$$p = p(x_1, \dots, x_n)$$
, $q = q(x_1, \dots, x_n)$ 。由代换定理,

2 问题总结

2.1 真值表格式问题

仍有小部分同学在绘制公式真值表时有格式方面的错误,例如没有按公式顺序绘制、没有用竖线标示出最终真值、竖线过多没有突出最终真值等。一个规范的真值表不仅能帮助快速解决问题,也能够减少在答题和批改两方面可能出现的错漏,希望大家注意。

2.2 证明表述不准确

在本次作业中出现了关于永真式、等值等概念的证明,这些数学证明和 此前的形式证明不同,没有严格的格式或内容要求,但准确地完成这些证明 依然需要大家理解相关概念的定义。在证明技术的使用上可以参考书上相 关小节的例证或例题,例如按层次归纳、扩张赋值等都是有力的证明手段。