Regression

Del 1

Agenda

- Regression
 - Vad
 - Enkel linjär
 - Delar
 - Variationer exempel
 - Hur
 - Antaganden
 - Kod
 - Övning
 - Flervariabel linjär
 - Polynom(teori)

Regression

"Regression analysis is a reliable method of identifying which variables have impact on a topic of interest. The process of performing a regression allows you to confidently determine which factors matter most, which factors can be ignored, and how these factors influence each other."

- <u>alchemer.com...</u>

Regression

- Finns det ett f\u00f6rh\u00e4llande mellan de h\u00e4r tv\u00e4 variabler?
- Hur starkt är sambandet?
- Kan använda flera variabler.
- Förutspå nya värden.

Enkel linjär

- Enkel endast två variabler
- Tittar på **förhållandet** mellan dem.
- Vad blir y vid olika x värden y = f(x)
- y är beroende av x (dependent variable)
- x är oberoende av y (independent)
- Linjär värdet av y "följer" värdet av x

$$y = b + m * x$$

$$y = \beta_0 + \beta_1 * \times$$

Ref: Länk 1.

Enkel Linjär

- Vad representerar konstanterna m och b?
- m kallas riktningskoefficient och bestämmer linjens lutning, aka "unit change"
- när m är positivt lutar linjen uppåt
- när m är negativt lutar linjen neråt
- när storleken på m växer (negativt eller positivt) blir linjen brantare
- b representerar linjens skärningspunkt med y axeln (intercept)
- alla linjer med samma m värde är parallella

Exempel - variationer

$$\Delta = \delta = delta$$
 skillnaden

Positivt vs. negativt m och b

Exempel - m och b variationer

Samma b, olika m

Samma m, olika b.

Exempel

Simple Linear Regression:

Regression

Regression

- Skillnaden (residual = error)
- Summera alla
- Upphöjt (squared) hantera "+/-"
- Vill minimera
- Stora skillnader har större påverkan
- Små värden finjustering

Linjär Regression - Antaganden

1. Linearity

a. Det finns en linjär relation mellan den oberoende och beroende variabeln

2. <u>Homoscedasticity</u>

- a. Homogenitet av variansen
- b. Standardavvikelsen för alla normalfördelade grupper av Y-värden är lika.

3. <u>Multivariate normality</u>

4. Independence of errors

a. Felen (residuals) är oberoende (av y).

Lack of <u>multicollinearity</u>

a. "One predictor variable in a multiple regression model cannot be linearly predicted from the others with a substantial degree of accuracy."

Fig: By Q9 at the English-language Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=16464531

Kod!

Kod

- pandas
- matplotlib
 - pyplot
- sklearn
 - model_selection
 - train test split
 - random_state int, default=None - Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls.

- linear_model
 - <u>LinearRegression</u>
 - <u>fit</u>
 - x_vals
 - y_vals
 - predict
 - new x_vals
 - coef
 - intercept_

Övning

- Ladda ned diamonds data från Kaggle
- Gör en linjär regression av
 - pris och "cut"
 - pris och "clarity"
 - pris och färg
- Gör lite snygga grafer för att visa upp ditt resultat

Testa med annan data

Linjär Regression med flera variabler

Flervariabel Linjär Regression

y är nu beroende av två, eller fler, variabler (years of experience AND years of education)

Varje ny variabel är också oberoende.

Har sin egen riktningskoefficient.

https://images.app.goo.gl/ZuAVS1F2JuiTXN1B8

Flervariabel LR

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

Dependent variable (DV) Independent variables (IVs)
$$y = b_0 + b_1^* x_1 + b_2^* x_2 + ... + b_n^* x_1$$
Constant Coefficients

Flervariabler - två oberoende variabler - 3D

bedrooms bathrooms

price

The dummy variable trap

Ordinal to numerical

Third can be inferred by the absence of the other two.

sklearn model is advanced and will figure that out

Övning

- Ladda ned Iris data
- Omvandla nominell data till numeriska kategorier
- Gör en flervariabelregression för att förutspå Sepal längden.

- <u>Ladda ned Pima indians diabetes</u>
 <u>data</u>
- Gör en flervariabelregression.

Polynom

Polynom Linjär Regression

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Polynom LR

$$y = b + m_0 x + m_1 x^2 + ... + m_n x^n$$

y är beroende av x

x är oberoende

förhållandet mellan dem som en n-graders polynom av x (relationship between them as a n-th degree polynomial of x)

högre grad -> mer komplex modell

Kan modellera mer komplexa förhållanden.

Antalet parametrar går upp.

https://images.app.goo.gl/qriDKw1nLNMr2fmf9

Polynom regression - när behövs det

Länkar

- <u>Linear regression basics for absolute beginners</u>
- <u>Linear regression clearly explained video</u>
- Examples of Linear regression and sklearn
- Regression och korrelation
- Homeoscedasticity
- Regression olika typer
- An inspiring journey