Logic Exercises 5

- 1. Represent the formula $(x \wedge y) \oplus z$ by a binary decision tree, against the variable order x, y, z, and transform it into a reduced OBDD.
- 2. Consider the ternary majority function: m(x, y, z) = 1 if and only if at least two of the arguments x, y, z are equal to 1. Represent this function by a binary decision tree, against some variable order, and transform it into a reduced OBDD.
- 3. Give a formula that corresponds to the following reduced OBDD:

- 4. Let O_1 and O_2 be OBDDs, against the same variable order.
 - (a) Explain how an OBDD for $O_1 \oplus O_2$ can be constructed from O_1 and O_2 .
 - (b) Give an example to show that given reduced OBDDs O_1 and O_2 , the constructed OBDD for $O_1 \oplus O_2$ is not always reduced.
- 5. Consider the variable order x, y, z.
 - (a) Give the reduced OBDDs for $\neg(x \lor y)$ and for z.
 - (b) Build an OBDD for $\neg(x \lor y) \lor z$ from the reduced OBDDs for $\neg(x \lor y)$ and for z; if needed, transform it into a reduced OBDD.
 - (c) Build an OBDD for $\exists y (\neg(x \lor y) \lor z)$ from the reduced OBDD for $\neg(x \lor y) \lor z$; if needed, transform it into a reduced OBDD.
 - (d) Build an OBDD for $\forall y (\neg(x \lor y) \lor z)$ from the reduced OBDD for $\neg(x \lor y) \lor z$; if needed, transform it into a reduced OBDD.

- 6. Say for each of the following statements whether it holds or not. Motivate your answers. In (d-g), $\phi(x)$ denotes a propositional formula in which x is the only propositional variable to occur (freely).
 - (a) $\exists x (x \to y)$ is a tautology.
 - (b) $\forall x (x \to y)$ is a tautology.
 - (c) $\forall x \exists y (x \to y) \equiv \forall x (x \to y)$.
 - (d) $\exists x \, \phi(x)$ is either a tautology or a contradiction.
 - (e) $x \wedge \exists x \phi(x)$ is either a tautology or a contradiction.
 - (f) $\forall x \, \phi(x) \equiv \forall y \, \phi(y)$. $(\phi(y) \text{ is obtained by renaming each (free) occurrence of } x \text{ in } \phi(x) \text{ into } y.)$
 - (g) $\phi(x) \equiv \phi(y)$.
- 7. Consider the variable order x, y, z.
 - (a) Construct the reduced OBDD for the formula $(x \land y) \lor (\neg x \land \neg z)$ from its binary decision tree.
 - (b) Construct OBBDs for $\forall x ((x \land y) \lor (\neg x \land \neg z))$ and $\exists x ((x \land y) \lor (\neg x \land \neg z))$, using the OBDD you constructed in (a).