Lab3

Saturday, March 12, 2022 8:15 PM

(6 6

Krelab

34 computing orthogonal projection of \underline{x} onto O (abstacle)

1. Spherical O: $n \in \mathbb{R}^3$ $O = \{ x \in \mathbb{R}^9 : ||x - c|| \le R \}$ $o \in \mathbb{R}^3$

 $C + \lambda(x-c)$ Find λ s.t. $C + \lambda(x-c) \in \partial D$ トッロ

Take 2 \$ 0

T(x) =

Impose that the point $C + \lambda(x-c)$ is at a distance R from C, i.e.,

||c + x(x-c) - c|| = R

 $\lambda \parallel_{x} - c \parallel = R = D \qquad \lambda = R$

 $\pi(x) = \begin{cases} c + \frac{R}{\|x - c\|} (x - c) & ||x - c|| \geq R \\ v & ||x - c|| \leq R \end{cases}$

2. Cylindrical O: