这与 $(x,y) \in S$ (从而有 $y \notin G_1$)矛盾。

其次,有 $E' \subset S$ 。这是因为,若不然,则存在边 $(x,y) \in E'$ 满足条件:

- (1) $x, y \in V(G_1)$, 或者
- (2) $x, y \notin V(G_1)$.

然而,情况 (1) 不可能成立,因为按引理 9.1,如果 $x,y \in V(G_1)$,则 $p(G - (E' - \{(x,y)\})) = p((G - E') \cup \{(x,y)\}) = p(G - E') < p(G)$,这与 E' 是割集矛盾。

情况 (2) 也不可能成立。若不然,考虑 $G'' = G' \cup \{(x,y)\}$,因为 $E' - \{(x,y)\} \subset E'$,按割集定义,应当有 $p(G'') = p(G' \cup \{(x,y)\}) = p(G - (E - \{(x,y)\})) = p(G)$ 。但由于 x,y 都不在 G_1 中,由引理 9.1 可知, G_1 在 G'' 中仍是一个独立的连通分支。这时,再向 G'' 中加入 e = (u,v)。注意到, $E(G'' \cup \{e\}) = E(G) - (E' - \{(u,v),(x,y)\}) \subseteq E(G)$,由引理 9.3 应有 $p(G'' \cup \{e\}) \ge p(G)$ 。然后,由引理 9.1,却有 $p(G'' \cup \{(u,v)\}) = p(G'') - 1 = p(G) - 1 < p(G)$ 。矛盾。

这就证明了 $E' \subset S$ 。从而 E' = S 是一个断集。

再证原题。

证明: 考虑关于由 T_1 的树枝 e_1 产生的基本割集 S_{e_1} 。设 $e_1=(u,v)$ 且 u 在 $G-S_{e_1}$ 中所在的连通分支为 V_1 。由引理 9.4 可知, $S_{e_1}=(V_1,\overline{V}_1)$ 。我们注意到, $T_1[V_1]$ 和 $T_1[\overline{V}_1]$ 是 T_1-e_1 中仅有的两个连通分支(这是因为, $E(T_1-e_1)\subseteq E(G-S_{e_1})$,从而由引理 9.3 知, $T_1[V_1]$ 和 $T_1[\overline{V}_1]$ 之间是不连通的,而因为 $p(T_1)=1$,所以由引理 9.1 可知, $p(T_1-e_1)\le 2$ 。也即, $T_1[\overline{V}_1]$ 恰是 T_1-e_1 的另一个连通分支)。由于 S_{e_1} 是割集,所以由教材定理 9.13, S_{e_1} 至少包含 T_2 中的一个树枝,设 $e_2\in S_{e_1}\cap E(T_2)$ 就是这样的一个树枝。注意到, $e_2\neq e_1$ (因为 $e_1\notin E(T_2)$),从而有 $e_2\notin E(T_1)$ (因为由基本割集定义, S_{e_1} 中只有 e_1 是 T_1 的树枝)。注意到,由于 $e_2\in S_{e_1}=(V_1,\overline{V}_1)$,所以 e_2 的两端分别在 V_1 和 \overline{V}_1 中(从而在 $T_1[V_1]$ 和 $T_1[\overline{V}_1]$ 中)。从而由引理 9.1 可知, $p((T_1-e_1)\cup\{e_2\})=p(T_1-e_1)-1=1$,从而是 $(T_1-e_1)\cup\{e_2\}$ 是连通的。再由 T_1 是树可知 $|(T_1-e_1)\cup\{e_2\}|=|T_1|-1+1=|T_1|=n-1$,从而根据教材定理 9.1, $(T_1-e_1)\cup\{e_2\}$ 是树(自然也就是 G 的生成树)。同理可证 $(T_2-e_2)\cup\{e_1\}$ 是 G 的生成树。

9.14

证明:考虑标定图 $G = K_n$ 和 H = G - e (其中 $e \in E(G)$)。注意到,G 的一棵生成树 $T \subseteq G$ 是 H 的生成树当且仅当 $e \notin E(T)$ 。因此, $\tau(H)$ 即为 G 中不含 e 的生成树数量。

由教材定理 9.7 可知,G 共有 n^{n-2} 棵不同的生成树。每棵生成树中有 n-1 条边,从而 G 中的边在各生成树中出现的次数之和为 $(n-1)n^{n-2}$ 。由对称性,G 中的每一条边在 K_n 的生成树中出现的总次数是相同的。因此,e 在所有生成树中出现的总次数应为 $\frac{(n-1)n^{n-2}}{n(n-1)/2} = 2n^{n-3}$ 。而 e 在每棵生成树中至多只出现一次,从而 G 中共有 $2n^{n-3}$ 棵含 e 的生成树。这就是说, $\tau(H) = \tau(G) - 2n^{n-3} = n^{n-2} - 2n^{n-3} = (n-2)n^{n-3}$ 。

9.15

证明: 对任意 $G_i, G_i \in \Omega$, $a, b \in \{0, 1\}$:

- (1) 由定义显然有 $G_i \oplus G_i \in \Omega$ 。从而环和运算对 Ω 是封闭的。
- (2) 由环和运算定义和教材例 1.7 可知,环和运算满足结合律和交换律。
- (3) $\emptyset \in \Omega$,且 $\emptyset \oplus G_i = G_i \oplus \emptyset = G_i$,从而 Ω 中有单位元 \emptyset 。
- (4) 由环和运算定义和教材例 1.7 可知, $G_i \oplus G_i = \emptyset$ 。从而 Ω 中每个元素都有逆元。
- (5) 若 a = b = 1,则 $(ab)G_i = 1 \cdot G_i = 1 \cdot (1 \cdot G_i) = a(b \cdot G_i)$,若 $a = 0 \lor b = 0$,则 $(ab)G_i = 0 \cdot G_i = \emptyset = a(b \cdot G_i)$,从而数乘运算满足结合律。
 - (6) 由定义, 有 $1 \in \{0,1\}$ 且 $1 \cdot G_i = G_i$, 从而 1 是关于数乘运算的单位元。