Lecture 3: Loss Functions and Optimization

Announcements: Assignment 1

Released last week, due Fri 4/16 at 11:59pm

Announcements: Midterm details

- Tues, May 4 and is worth 15% of your grade.
- available for **24 hours** on Gradescope from May 4, **12PM** PDT to May 5, 11:59 AM PDT.
- **3-hour** consecutive timeframe
- Exam will be designed for 1.5 hours.
- Open book and open internet but no collaboration
- Only make private posts during those 24 hours

Announcements: Project proposal

Due Mon 4/19

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office hours.html)

Administrative: Piazza

Please make sure to check and read all pinned piazza posts.

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of labels) {dog, cat, truck, plane, ...} cat dog bird deer

truck

Recall from last time: Challenges of recognition

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Recall from last time: data-driven approach, kNN

Recall from last time: Linear Classifier

$$f(x,W) = Wx + b$$

Interpreting a Linear Classifier: Visual Viewpoint

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 3 - 11

April 06, 2021

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0

Recall from last time: Linear Classifier

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function.
 (optimization)

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

-			**************************************	en.
	V			
1			7	
E		Capali N	7	

cat **3.2** 1.3 2.2

5.1 **4.9** 2.5

frog -1.7 2.0 **-3.1**

car

A **loss function** tells how good our current classifier is

			4	
	M			
	9	P	SI	
f			*	
			1	

3.2 cat

2.2

5.1 car

1.3

-1.7 frog

4.9

2.5

2.0

-3.1

cat **3.2**

1.3 **4.9**

2.5

2.2

car 5.1 frog -1.7

2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

3.2

5.1

-1.7

cat

car

frog

Suppose: 3 training examples, 3 classes.

1.3

2.2

4.9 2.0

2.5 -3.1

Fei-Fei Li, Ranjay Krishna, Danfei Xu

A loss function tells how good With some W the scores f(x, W) = Wx are: our current classifier is

Given a dataset of examples $\{(x_i, y_i)\}_{i=1}^N$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a

average of loss over examples:

$$L=rac{1}{N}\sum_{i}L_{i}(f(x_{i},W),y_{i})$$

Lecture 3 - 17 April 06, 2021

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat **3.2**

1.3

2.2

car

4.9

2.5

frog

-1.7

5.1

2.0

-3.1

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

3.2 cat car

frog

5.1

-1.7

1.3

2.2 2.5

4.9

2.0

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat

car

frog

5 1

-1.7

5.1

3.2

.7 2.0

 \sim \sim

4.9

1.3

-3.1

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \ge s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Cal	3. 4
car	5.

ant

2.2

Interpreting Multiclass SVM loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

1.3

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat

car 5.1

frog -1.7 Losses: 2.9

3.2

1 4.9

2.0

2.2

2.5

-3.1

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 5.1 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$
- $= \max(0, 2.9) + \max(0, -3.9)$
- = 2.9 + 0
- = 2.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

3.2 cat

car

frog

4.9 5.1

2.0

1.3

2.2

2.5

-3.1

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 1.3 4.9 + 1)$
 - $+\max(0, 2.0 4.9 + 1)$
- $= \max(0, -2.6) + \max(0, -1.9)$
- = 0 + 0
- = 0

2.9 Losses:

-1.7

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

cat **3.2**

1.3 **4.9** 2.2

=

-3.1

2.5

12.9

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 2.2 (-3.1) + 1)$ $+ \max(0, 2.5 - (-3.1) + 1)$
- $= \max(0, 6.3) + \max(0, 6.6)$
- = 6.3 + 6.6
- = 12.9

frog -1.7 Losses: 2.9

car

2.9

0

2.0

3.2

5.1

-1.7

cat

car

frog

Losses:

4.9

2.0

2.5

-3.1

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form: 2.2 1.3

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^N L_i$$

$$L = (2.9 + 0 + 12.9)/3$$
= **5.27**

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

classes?

Q1: What happens to loss if car scores decrease by 0.5 for this

Multiclass SVM loss:

cat

car

frog

Losses:

1.3

4.9

2.0

training example? Q2: what is the min/max possible SVM loss L_i?

Q3: At initialization W is small so

all s \approx 0. What is the loss L_i, assuming N examples and C Lecture 3 - 27

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including j = y_i)

cat **3.2**

1.3

2.2

4.92.52.0-3.1

frog -1.7 Losses: 2.9

car

9

12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

cat **3.2**

car

frog

Losses:

1.3

2.2

4.9 2.5 2.0 **-3.1**

12.9

5.1

-1.7

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

cat **3.2**

car

frog

Losses:

1.3

2.0

2.2

5.1 **4.9**

2.5 **-3.1**

-1.7 2.9

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx are:

cat **3.2**

1.3

2.2

car 5.1

4.9

2.0

2.5 **-3.1**

frog -1.7 Losses: 2.9

9 (

12.9

Multiclass SVM loss:

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$f(x,W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

Q7. Suppose that we found a W such that L = 0. Is this W unique?

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	

$L_i = \sum_{j eq y_i} \max(0, s_j - s_{y_i} + 1)$

Before:

- = max(0, 1.3 4.9 + 1)+max(0, 2.0 - 4.9 + 1)= max(0, -2.6) + max(0, -1.9)= 0 + 0
- With W twice as large:
- $= \max(0, 2.6 9.8 + 1)$ $+ \max(0, 4.0 - 9.8 + 1)$ $= \max(0, -6.2) + \max(0, -4.8)$
- = 0 + 0
- = 0

= 0

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0! How do we choose between W and 2W?

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)}_{}$$

Data loss: Model predictions should match training data

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Regularization intuition: toy example training data

Regularization intuition: Prefer Simpler Models

Regularization: Prefer Simpler Models

Regularization pushes against fitting the data too well so we don't fit noise in the data

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Occam's Razar: Among multiple competing hypotheses, the simplest is the best, William of Ockham 1285-1347

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization:
$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2):
$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$$

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

L2 regularization:
$$R(W) = \sum_k \sum_l W_{k,l}^2$$

L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc.

$$\lambda$$
 = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Why regularize?

- Express preferences over weights
- Make the model *simple* so it works on test data
- Improve optimization by adding curvature

Regularization: Expressing Preferences

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \end{aligned}$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

Regularization: Expressing Preferences

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \end{aligned}$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

L2 regularization likes to "spread out" the weights

Regularization: Expressing Preferences

$$egin{aligned} x &= [1,1,1,1] \ w_1 &= [1,0,0,0] \end{aligned}$$

$$w_2 = \left[0.25, 0.25, 0.25, 0.25\right]$$

$$w_1^T x = w_2^T x = 1$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Which of w1 or w2 will the L2 regularizer prefer?

L2 regularization likes to "spread out" the weights

Which one would L1 regularization prefer?

Softmax classifier

Want to interpret raw classifier scores as **probabilities**

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$oxed{s=f(x_i;W)} oxed{P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}}$$
 Softmax Function

3.2 cat

5.1 car

-1.7 frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

 $P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax Function

Probabilities must be >= 0

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$S = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Want to interpret raw classifier scores as **probabilities**

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

3.2 cat

car

5.1

-1.7 frog

Q1: What is the min/max possible softmax loss L_i?

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_i , assuming C classes?

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

frog

Q2: At initialization all s will be approximately equal; what is the loss?

A:
$$-\log(1/C) = \log(C)$$
,

If C = 10, then
$$L_i = \log(10) \approx 2.3$$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Softmax vs. SVM

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$

[10, 9, 9]

[10, -100, -100] and
$$y_i = 0$$

the **SVM** loss?

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: What is the **softmax loss** and

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

assume scores:
$$[20, -2, 3]$$
 $[20, 9, 9]$ $[20, -100, -100]$ and $y_i = 0$

20?

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

the SVM loss if I double the

Q: What is the **softmax loss** and

correct class score from 10 ->

Recap

- We have some dataset of (x,y)
- We have a score function: $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a score function: $s = f(x; W) \stackrel{\text{e.g.}}{=} Wx$
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

Optimization

This image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

Strategy #1: A first very bad idea solution: Random search

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Lets see how well this works on the test set...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% accuracy! not bad! (SOTA is ~99.7%)

Strategy #2: Follow the slope

Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347 Lecture 3 - 77 April 06, 2021 Fei-Fei Li, Ranjay Krishna, Danfei Xu

gradient dW:

[0.34 + 0.0001][0.34,-1.11, -1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, [0.33,...]0.33,...?,...] loss 1.25347 loss 1.25322 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 3 - 78 April 06, 2021

gradient dW:

W + h (first dim):

[0.34 + 0.0001][0.34,**-2.5**, -1.11, -1.11, 0.78, 0.78, 0.12, 0.12, (1.25322 - 1.25347)/0.00010.55, 0.55, = -2.52.81, 2.81, $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{dx}$ -3.1, -3.1, -1.5, -1.5, [0.33,...]0.33,...?,...] loss 1.25347 loss 1.25322

Lecture 3 - 79

gradient dW:

April 06, 2021

W + h (first dim):

current W:

Fei-Fei Li, Ranjay Krishna, Danfei Xu

[0.34,[0.34,[-2.5, -1.11 + 0.0001-1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...] 0.33,...?,...] loss 1.25347 loss 1.25353 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 3 - 80 April 06, 2021

gradient dW:

W + h (second dim):

W + h (second dim): current W: gradient dW: [0.34, [0.34,[-2.5, -1.11, -1.11 + 0.00010.6, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, (1.25353 - 1.25347)/0.00012.81, 2.81, = 0.6-3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...?,...] loss 1.25347 loss 1.25353

[0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...] [0.33,...]?,...] loss 1.25347 loss 1.25347 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 3 - 82 April 06, 2021

gradient dW:

W + h (third dim):

current W: **W** + **h** (third dim): gradient dW: [0.34,[0.34,[-2.5, -1.11, -1.11, 0.6, 0.78, 0.78 + 0.00010, 0.12, 0.12, 0.55, 0.55, **Numeric Gradient** 2.81, 2.81, - Slow! Need to loop over -3.1, -3.1, all dimensions -1.5, -1.5, - Approximate [0.33,...]0.33,...*'*,...| loss 1.25347 loss 1.25347 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 3 - 84 April 06, 2021

This is silly. The loss is just a function of W:

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want $\nabla_W L$

This is silly. The loss is just a function of W:

$$L = rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

want $\nabla_W L$

Use calculus to compute an analytic gradient

This image is in the public domain

[0.34,[-2.5, dW = ... -1.11, 0.6, (some function 0.78, 0, data and W) 0.12, 0.2, 0.55, 0.7, 2.81, -0.5, -3.1, 1.1, -1.5, 1.3, [0.33,...]-2.1,...] loss 1.25347 Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 3 - 87 April 06, 2021

gradient dW:

In summary:

- Numerical gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

=>

<u>In practice:</u> Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.**

Gradient Descent

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 3 - 91 April 06, 2021

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common

```
# Vanilla Minibatch Gradient Descent
while True:
  data_batch = sample training data(data, 256) # sample 256 examples
 weights grad = evaluate gradient(loss fun, data batch, weights)
  weights += - step size * weights grad # perform parameter update
```

Interactive Web Demo

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Next time:

Introduction to neural networks

Backpropagation