Regular Flattening

Troels Henriksen (athas@sigkill.dk)

DIKU University of Copenhagen

Agenda

Representation and Fusion

Handling nested parallelism

Basic flattening rules

Incremental flattening

Multi-level parallelism

Final words as time permits

Representation and Fusion

Handling nested parallelism

Basic flattening rules

Incremental flattening

Multi-level parallelism

Final words as time permits

"Unzipped" SOACs

Representation

```
An array [](t1, t2, t3...) is represented in memory as ([]t1, []t2, []t3...), i.e. as multiple arrays, each containing only primitive values.
```

Instead of

we write

let
$$(xs, ys) = map (\x y -> (x-1, y+1)) xs ys$$

- In the compiler, All SOACs accept multiple inputs and produce unzipped results.
- Arrays of tuples (or records, or sums) do not exist in the core language.
- Isomorphic to source language, but this form is simpler in a compiler.

Loop fusion

```
def increment [n][m] (as: [n][m]i32) : [n]i32 =
  map (\r -> map (+2) r) a
def sum [n] (a: [n]i32) : i32 =
  reduce (+) 0 a
def sumrows [n][m] (as: [n][m]i32) : [n]i32 =
  map sum as
```

Suppose we wish to first call increment, then sumrows:

```
sumrows (increment a)
```

Naively Run increment, then call sumrows.

Problem Manifests intermediate matrix in memory.

Solution *Loop fusion*, which combines loops to avoid intermediate results.

An example of a fusion rule

The expression

is always equivalent to

map
$$(f \circ g)$$
 a

- This is an extremely powerful property that is only true in the absence of side effects.
- Fusion is the core optimisation that permits the efficient decomposition of a data parallel program.
- A full fusion engine has much more awkwark rules (mostly bookkeeping related to fusing only some of several inputs), but safety is guaranteed.

A fusion example

```
sumrows (increment a) = (Initial expression)

map sum (increment a) = (Inline sumrows)

map sum (map (\lambda r \rightarrow \text{map}(+2) r) a) = (Inline increment)

map (sum \circ (\lambda r \rightarrow \text{map}(+2) r) a) = (Apply map-map fusion)

map (\lambda r \rightarrow \text{sum}(\text{map}(+2) r) a) = (Apply composition)
```

- We have avoided the temporary matrix, but the composition of sum and the map also holds an opportunity for fusion – specifically, reduce-map fusion.
- Will not cover in detail, but a reduce can efficiently apply a function to each input element before engaging in the actual reduction operation.
- Important to remember: a **map** going into a **reduce** is an efficient pattern.

A shorthand notation for sequences

$$\overline{z}^{(n)}=z_0,\cdots,z_{(n-1)}$$

- The *n* may be omitted.
- A separator may be implied by context.

$$f \, \overline{v}^{(n)} \equiv f \, v_1 \, \cdots \, v_n$$

or a tuple

$$(\overline{v}^{(n)}) \equiv (v_1, \ldots, v_n)$$

or a function type

$$\overline{\tau}^{(n)} \to \tau_{n+1} \equiv \tau_1 \to \cdots \to \tau_n \to \tau_{n+1}.$$

When not all terms under the bar are variant, subscript variant terms with i.

$$(\overline{[d]v_i}^{(n)}) = ([d]v_1, \dots, [d]v_n)$$

and

$$(\overline{[d_i]v_i}^{(n)})=([d_1]v_1,\ldots,[d_n]v_n)$$

Fused constructs

Convenient shorthands

$$\begin{array}{ll} \mathbf{redomap} \ \odot \ f \ (\overline{d}) \ \overline{\mathit{xs}} \equiv & \mathbf{reduce} \ \odot \ (\overline{d}) \ (\mathsf{map} \ f \ \overline{\mathit{xs}}) \\ \\ \mathbf{scanomap} \ \odot \ f \ (\overline{d}) \ \overline{\mathit{xs}} \equiv & \mathbf{scan} \ \odot \ (\overline{d}) \ (\mathsf{map} \ f \ \overline{\mathit{xs}}) \end{array}$$

- Emphasises that reduce/scan-map compositions can be considered as a single construct.
- We will see several examples where this is useful.

Fused constructs

Convenient shorthands

- Emphasises that reduce/scan-map compositions can be considered as a single construct.
- We will see several examples where this is useful.

redomap \odot $f(\overline{d}) \overline{xs} \equiv$

Note:

```
reduce \odot (\overline{d}) \overline{xs} \equiv reduce \odot (\overline{d}) (\text{map id } \overline{xs}) \equiv
                                                                                                                                             redomap \odot id (\overline{d}) \overline{xs}
       \operatorname{scan} \odot (\overline{d}) \overline{xs} \equiv \operatorname{scan} \odot (\overline{d}) (\operatorname{map} \operatorname{id} \overline{xs}) \equiv \operatorname{scanomap} \odot \operatorname{id} (\overline{d}) \overline{xs}
```

Representation and Fusion

Handling nested parallelism

Basic flattening rules

Incremental flattening

Multi-level parallelism

Final words as time permits

GPUs vs CPUs

- GPUs have thousands of simple cores and taking full advantage of their compute power requires tens of thousands of threads.
- GPU threads are very restricted in what they can do: no stack, no allocation, limited control flow, etc.
- Potential very high performance and lower power usage compared to CPUs, but programming them is hard.

The SIMT Programming Model

- GPUs are programmed using the SIMT model (*Single Instruction Multiple Thread*).
- Similar to SIMD (Single Instruction Multiple Data), but while SIMD has explicit vectors, we provide sequential scalar per-thread code in SIMT.

Each thread has its own registers, but they all execute the same instructions at the same time (i.e. they share their instruction pointer).

SIMT example

For example, to increment every element in an array a, we might use this code:

```
increment(a) {
  tid = get_thread_id();
  x = a[tid];
  a[tid] = x + 1;
}
```

- If a has n elements, we launch n threads, with get_thread_id() returning i for thread i.
- This is *data-parallel programming*: applying the same operation to different data.
- When we launch a GPU program (*kernel*), we say how many threads should be launched, *all running the same code*.

Branching

If all threads share an instruction pointer, what about branches?

```
mapabs(a) {
  tid = get_thread_id();
  x = a[tid];
  if (x < 0) {
    a[tid] = -x;
  }
}</pre>
```

Masked Execution

Both branches are executed in all threads, but in those threads where the condition is false, a mask bit is set to treat the instructions inside the branch as no-ops.

Do GPUs exist in theory as well?

GPU programming is a close fit to the *bulk synchronous parallelism* model:

- Supersteps are threads, which cannot talk to each other.
- The synchronisation barriers are kernel launches.

¹Illustration by Aftab A. Chandio.

A SOAC-kernel correspondence

The compiler *knows*² that certain nestings of **map**s correspond to GPU basic blocks.

- maps containing scalar code is a kernel with one thread per iteration of the maps.
- **map**s containing a single **reduce** is a *segmented reduction*.
- **map**s containing a single **scan** is a *segmented scan*.
- maps containing a single scatter is a segmented scatter.
- ...see the pattern?

Crucial: the **map**s must be *perfectly nested* around the operation.

Perfect nesting of an operation e_o

An expression e is a perfect nesting of e_0 if e has form

map
$$(\lambda \overline{p} \rightarrow e_f) \overline{x}$$

where either $e_f = e_0$ or e_f is a perfect nesting of e_0 .

²Because it was taught it by Cosmin in PMPH.

Example

- Suppose xss is of shape [n][m].
- This could be compiled to a kernel with $n \times m$ threads, each doing a single x + y operation.

Handling nested parallelism

Problem

Futhark permits *nested* parallelism, but GPUs need *flat* parallel *kernels*.

Handling nested parallelism

Problem

Futhark permits *nested* parallelism, but GPUs need *flat* parallel *kernels*.

Solution

Have the compiler rewrite program to perfectly nested **map**s containing sequential operations, or known parallel patterns such as segmented reduction.

Handling nested parallelism

Problem

Futhark permits *nested* parallelism, but GPUs need *flat* parallel *kernels*.

Solution

Have the compiler rewrite program to perfectly nested **map**s containing sequential operations, or known parallel patterns such as segmented reduction.

Flattening via loop fission

The classic map fusion rule:

$$\mathsf{map}\, f \circ \mathsf{map}\; g \Rightarrow \mathsf{map}\; (f \circ g)$$

³ Futhark: Purely Functional GPU-Programming with Nested Parallelism and In-Place Array Updates, PLDI 2017

Flattening via loop fission

The classic map fusion rule:

$$\mathsf{map}\, f \circ \mathsf{map}\; g \Rightarrow \mathsf{map}\; (f \circ g)$$

We can also apply it backwards to obtain fission:

$$\mathsf{map}\; (f\circ g)\Rightarrow \mathsf{map}\; f\circ \mathsf{map}\; g$$

This, along with other fission rules (see paper³), are applied by the compiler to extract perfect map nests.

³ Futhark: Purely Functional GPU-Programming with Nested Parallelism and In-Place Array Updates, PLDI 2017

Example: (a) Initial program, we inspect the map-nest

```
let (asss. bss) =
  map (\( ps: [m]i32 \) \rightarrow
         let ass = map (\((p: i32): [m]i32 ->
                            let cs = scan (+) 0 (iota p)
                            let r = reduce (+) 0 cs
                            in map (+r) ps) ps
         let bs = loop ws=ps for i < n do
                       map (\as w: i32 \rightarrow
                              let d = reduce (+) 0 as
                              let e = d + w
                              in 2 * e) ass ws
         in (ass, bs)) pss
We assume the type of pss : \lceil m \rceil \lceil m \rceil i 32.
```

(b) Distribution

```
let asss: [m][m][m]i32 =
 map (\( ps: [m]i32 \) \rightarrow
        let ass = map (\((p: i32): [m]i32 ->
                           let cs = scan (+) 0 (iota p)
                           let r = reduce (+) 0 cs
                           in map (+r) ps) ps
        in ass) pss
let bss: [m][m]i32 =
 map (\setminus ps ass ->
        let bs = loop ws=ps for i < n do
                      map (\setminus as w ->
                             let d = reduce (+) 0 as
                             let e = d + w
                             in 2 * e) ass ws
        in bs) pss asss
```

(c) Interchanging outermost map inwards

```
let asss: [m][m][m]i32 =
 map (\( ps: [m]i32 \) \rightarrow
         let ass = map (\((p: i32): [m]i32 ->
                           let cs = scan (+) 0 (iota p)
                           let r = reduce (+) 0 cs
                           in map (+r) ps) ps
        in ass) pss
let bss: [m][m]i32 =
 map (\ps ass \rightarrow
         let bs = loop ws=ps for i < n do
                      map (\setminus as w ->
                             let d = reduce (+) 0 as
                             let e = d + w
                             in 2 * e) ass ws
         in bs) pss asss
```

(c) Interchanging outermost map inwards

```
let asss: [m][m][m]i32 =
 map (\( ps: [m]i32 \) \rightarrow
         let ass = map (\((p: i32): [m]i32 \rightarrow
                           let cs = scan (+) 0 (iota p)
                           let r = reduce (+) 0 cs
                           in map (+r) ps) ps
         in ass) pss
let bss: [m][m]i32 =
  loop wss=pss for i < n do
    map (\setminus ass ws ->
           let ws' = map (\setminus as w ->
                              let d = reduce (+) 0 as
                              let e = d + w
                              in 2 * e) ass ws
           in ws') asss wss
```

(d) Skipping scalar computation

```
let asss: [m][m][m]i32 =
 map (\( ps: [m]i32 \) \rightarrow
         let ass = map (\((p: i32): [m]i32 ->
                           let cs = scan (+) 0 (iota p)
                           let r = reduce (+) 0 cs
                           in map (+r) ps) ps
        in ass) pss
let bss: [m][m]i32 =
  loop wss=pss for i < n do
    map (\setminus ass ws ->
           let ws' = map (\setminus as w ->
                             let d = reduce (+) 0 as
                             let e = d + w
                             in 2 * e) ass ws
           in ws') asss wss
```

(d) Skipping scalar computation

```
let asss: [m][m][m]i32 =
 map (\( ps: [m]i32 \) \rightarrow
         let ass = map (\((p: i32): [m]i32 ->
                           let cs = scan (+) 0 (iota p)
                           let r = reduce (+) 0 cs
                           in map (+r) ps) ps
        in ass) pss
let bss: [m][m]i32 =
  loop wss=pss for i < n do
    map (\setminus ass ws ->
           let ws' = map (\setminus as w ->
                             let d = reduce (+) 0 as
                             let e = d + w
                             in 2 * e) ass ws
           in ws') asss wss
```

(e) Distributing reduction

```
let asss: [m][m][m]i32 =
 map (\( ps: [m]i32 \) \rightarrow
         let ass = map (\((p: i32): [m]i32 ->
                           let cs = scan (+) 0 (iota p)
                           let r = reduce (+) 0 cs
                           in map (+r) ps) ps
        in ass) pss
let bss: [m][m]i32 =
  loop wss=pss for i < n do
    map (\setminus ass ws ->
           let ws' = map (\setminus as w ->
                             let d = reduce (+) 0 as
                             let e = d + w
                             in 2 * e) ass ws
           in ws') asss wss
```

(e) Distributing reduction

```
let asss: [m][m][m]i32 =
 map (\(ps: [m]i32) \rightarrow
        let ass = map ((p: i32): [m]i32 ->
                          let cs = scan (+) 0 (iota p)
                           let r = reduce (+) 0 cs
                           in map (+r) ps) ps
        in ass) pss
let bss: [m][m]i32 =
  loop wss=pss for i < n do
    let dss: [m][m]i32 =
      map (\setminus ass ->
             map (\setminus as ->
                    reduce (+) 0 as) ass)
           asss
    in map (\ws ds \rightarrow
              let ws' =
                 map (\w d -> let e = d + w
                               in 2 * e) ws ds
              in ws') asss dss
```

(f) Distributing inner map

(f) Distributing inner map

```
let rss: [m][m]i32 =
 map (\( ps: [m]i32 \) \rightarrow
        let rs = map (\((p: i32): i32 ->
                         let cs = scan (+) 0 (iota p)
                         let r = reduce (+) 0 cs
                         in r) ps
        in rs) pss
let asss: [m][m][m]i32 =
 map (\((ps: [m]i32) (rs: [m]i32) \rightarrow
        map (\((r: i32): [m]i32 ->
               map (+r) ps) rs
      ) pss rss
let bss: [m][m]i32 = ...
```

(g) Cannot distribute as it would create irregular array

Array cs has type [p]i32, and p is variant to the innermost map nest.

(h) These statements are sequentialised

Array cs has type [p]i32, and p is variant to the innermost map nest.

Result

- From a single kernel with parallelism m to four kernels of parallelism m^2 , m^3 , m^3 , and m^2 .
- The last two kernels are executed *n* times each.

Representation and Fusion

Handling nested parallelism

Basic flattening rules

Incremental flattening

Multi-level parallelism

Final words as time permits

Notation for flat parallelism

Instead of

we write

```
\begin{array}{l} \textbf{segmap} \; (\langle \texttt{ps}, \texttt{rs} \in \texttt{pss}, \texttt{rss} \rangle, \; \langle \texttt{r} \in \texttt{rs} \rangle, \; \langle \texttt{p} \in \texttt{ps} \rangle) \\ e \end{array}
```

Segmented flat parallel constructs

$$\Sigma = \Sigma' \ \langle \overline{x} \in \overline{y}
angle$$
 segmap $\Sigma \ e \equiv \mod(\lambda \overline{x_p} o \max_{oldsymbol{map}} (\lambda \overline{x_{p-1}} o \ldots \max_{oldsymbol{map}} (\lambda \overline{x_1} o e) \ \overline{y_1})$ $\overline{y_p}$

- Conceptually a perfect nest of **map**s with some operation inside.
- *These* are what trigger GPU code generation.
- Any SOACs left in e will be executed sequentially.

Similarly for reductions and scans

```
segred \Sigma \odot \overline{d} e \equiv \mathsf{map} (\lambda \overline{X_p} \rightarrow \mathsf{map} (\lambda \overline{X_p}))
                                                                         map (\lambda \overline{X_{p-1}} \rightarrow \dots)
                                                                                redomap \odot (\lambda \overline{x_1} \rightarrow e) (\overline{d}) \overline{y_1})
                                                                                \overline{y_{p-1}}
seqscan \Sigma \odot \overline{d} e \equiv \text{map} (\lambda \overline{x_n} \rightarrow
                                                                         map (\lambda \overline{X_{p-1}} \rightarrow \dots
                                                                                scanomap \odot (\lambda \overline{x_1} \rightarrow e) \overline{d} \overline{y_1})
                                                                                \overline{y_{p-1}})
```

Let us look at how one can rewrite SOAC nests to these segmented operations.

Functional flattening rules

A flattening rewrite

$$\mathcal{G}(\Sigma,e)\Rightarrow e'$$

says that flattening an operation e nested inside a map nest Σ produces the expression e'.

- Rewrite rules define which rewrites are valid.
- Not an algorithm: multiple rewrites are often possible.
- Form in is a bit different and have more details; I have tried to keep it more high level.

Basic rules

Distribution rule

$$\mathcal{G}(\Sigma, \mathbf{let} \ \overline{a_0} = e_1 \ \mathbf{in} \ e_2) \Rightarrow \mathbf{let} \ \overline{a_p} = \mathcal{G}(\Sigma, e_1) \ \mathbf{in} \ \mathcal{G}(\Sigma', e_2)$$
 (G6)

where

$$\begin{array}{rcl} \Sigma & = & \langle \overline{x_p} \in \overline{y_p} \rangle, \ldots, \langle \overline{x_1} \in \overline{y_1} \rangle \\ \Sigma' & = & \langle \overline{x_p} \, \overline{a_{p-1}} \in \overline{y_p} \, \overline{a_p} \rangle, \ldots, \langle \overline{x_1} \, \overline{a_0} \in \overline{y_1} \, \overline{a_1} \rangle \end{array}$$

and $\overline{a_p}, \ldots, \overline{a_1}$ are fresh names.

Note: only applicable when each array in $\overline{a_0}$ is invariant to Σ .

Example

We are flattening

$$e = \text{map} (\lambda xs \rightarrow \text{let } y = \text{redomap} (+) (\lambda x \rightarrow x) 0 xs$$

$$\text{in map} (\lambda x \rightarrow x + y) xs)$$
xss

Example

We are flattening

$$e = extsf{map} (\lambda xs
ightarrow \ extsf{let} \ y = extsf{redomap} (+) (\lambda x
ightarrow x) \ 0 \ xs$$
 in map $(\lambda x
ightarrow x + y) \ xs)$

By applying rule G1 we get

$$\mathcal{G}(\bullet,e) = \mathcal{G}(\langle \mathtt{xs} \in \mathtt{xss} \rangle, \ \mathbf{let} \ \mathtt{y} = \mathbf{redomap} \ (+) \ (\lambda \mathtt{x} \to \mathtt{x}) \ \mathtt{0} \ \mathit{xs} \) \\ \mathbf{in} \ \mathbf{map} \ (\lambda \mathtt{x} \to \mathtt{x} + \mathtt{y}) \ \mathtt{xs})$$

$$\mathcal{G}(\langle xs \in xss \rangle, \text{ let } y = \text{redomap } (+) (\lambda x \to x) 0 xs)$$

in map $(\lambda x \to x + y) xs)$

Apply distribution rule by:

Reminder: distribution rule

$$\mathcal{G}(\Sigma, \mathbf{let} \ \overline{a_0} = e_1 \ \mathbf{in} \ e_2) \Rightarrow \mathbf{let} \ \overline{a_p} = \mathcal{G}(\Sigma, e_1) \ \mathbf{in} \ \mathcal{G}(\Sigma', e_2)$$
 (G6)

Flattening transposition

rearrange (d_1, \dots, d_n) x is a generalization of **transpose** in that it rearranges the dimensions of d-dimensional array based on a permutation defined by the integer sequence d_1, \dots, d_n . E.g:

$$transpose \equiv rearrange (1,0)$$

Flattening transposition

rearrange (d_1, \dots, d_n) x is a generalization of **transpose** in that it rearranges the dimensions of d-dimensional array based on a permutation defined by the integer sequence d_1, \dots, d_n . E.g:

$$extbf{transpose} \equiv extbf{rearrange} (1,0)$$

Flattening rule

$$\mathcal{G}(\Sigma \langle x \in y \rangle, \mathtt{rearrange} (k_1, \dots, k_n) \, x) \Rightarrow \mathcal{G}(\Sigma, \mathtt{rearrange} (0, 1 + k_1, \dots, 1 + k_n) \, y)$$

Eventually reaches base case where $\Sigma = \bullet$.

map-loop interchange

$$\mathcal{G}(\Sigma \ \langle \overline{x} \ \overline{y} \in \overline{xs} \ \overline{ys} \rangle, \textbf{loop} \ \overline{z'} \ \overline{y'} = \overline{z} \ \overline{y} \ \textbf{for} \ i < n \ \textbf{do} \ f \ i \ \overline{q} \ \overline{x} \ \overline{y} \ \overline{y'} \ \overline{z'}) \Rightarrow \\ \mathcal{G}(\Sigma, \textbf{loop} \ \overline{zs'} \ \overline{ys'} \ = \ \overline{z'} \ \overline{ys} \ \textbf{for} \ i < n \ \textbf{do} \ \textbf{map} \ (f \ i \ \overline{q}) \ \overline{xs} \ \overline{ys} \ \overline{ys'} \ \overline{zs'})$$

where

$$m=$$
 outer size of each of \overline{xs} and \overline{ys} $\overline{z^r}=$ $\overline{\mathbf{replicate}\ m\ z_i}$ $\{n,\overline{q},\overline{z}\}\cap\{\overline{x},\overline{y}\}=$

and $\overline{zs'}$ and $\overline{ys'}$ are fresh names.

Informal example of interchange

Validity of interchange

The simple intuition is that

because they both produce

$$[f^n \times s[0], \dots, f^n \times s[m-1]]$$

Representation and Fusior

Handling nested parallelism

Basic flattening rules

Incremental flattening

Multi-level parallelism

Final words as time permits

Consider Matrix Multiplication

```
for i < n:
    for j < m:
        acc = 0
        for l < p:
        acc += xss[i,l] * yss[l,j]
        res[i,j] = acc</pre>
```

Turning it Functional

```
map (\xs ->
    map (\ys ->
        let zs = map (*) xs ys
        in reduce (+) 0 zs)
        (transpose yss))
    xss
```

Using redomap notation

```
map (\xs ->
    map (\ys ->
        redomap (+) (*) 0 xs ys)
        (transpose yss))
xss
```

```
\mathbf{redomap} \, \odot \, f \, 0_{\odot} \, x \ \equiv \ \mathbf{reduce} \, \odot \, 0_{\odot} \, (\mathbf{map} \, f \, x)
```

Emphasises that a **map-reduce** composition can be turned into a fused tight sequential loop, or into a parallel reduction.

So how should we parallelise this on GPU?

Full flattening map (\xs -> map (\ys -> redomap (+) (*) 0 xs ys) (transpose yss)) xss

- All parallelism exploited
- Some communication overhead
- Best if outer maps don't saturate GPU

So how should we parallelise this on GPU?

Full flattening

```
map (\xs ->
  map (\ys ->
  redomap (+) (*) 0 xs ys)
  (transpose yss))
xss
```

- All parallelism exploited
- Some communication overhead
- Best if outer maps don't saturate GPU
- There is no one size fits all.
- Both situations may be encountered at program runtime.

Moderate flattening

```
map (\xs ->
  map (\ys ->
  redomap (+) (*) 0 xs ys)
  (transpose yss))
xss
```

- Only outer parallelism
- The redomap can be block tiled
- Best if outer maps saturate GPU

The essence of incremental flattening

From a single source program, for each parallel construct generate multiple semantically equivalent parallelisations, and generate a single program that at runtime picks the least parallel that still saturates the hardware.

- Implemented in the Futhark compiler.
- ...but technique is applicable to any (regular) nested parallelism expressed with the common functional array combinators (map, reduce, scan, etc).

Simple Incremental Flattening

At every level of map-nesting we have two options:

- 1. Continue flattening inside the map, exploiting the parallelism there.
- 2. Sequentialise the map body; exploiting only the parallelism on top.
- Full flattening in the Blelloch style will do the former, maximising utilised parallelism.
- Incremental flattening generates both versions and uses a predicate to pick at runtime.

Multi-versioned matrix multiplication

```
xss : [n][p]i32
yss : [p][m]i32.
if n * m > t_0 then
  map (\setminus xs \rightarrow
           map (\setminus vs ->
                     redomap (+) (*) 0 xs ys)
                 (transpose vss))
        XSS
else
  map (\setminus xs \rightarrow
           map (\setminus vs ->
                     redomap (+) (*) 0 xs ys)
                 (transpose yss))
        XSS
```

The t_0 threshold parameter is used to select between the two versions—and should be auto-tuned on the concrete hardware.

Multiplying matrices of size $2^n \times 2^m$ and $2^m \times 2^n$, where m = 25 - 2n, meaning that work is constant as we vary n.

Multiplying matrices of size $2^n \times 2^m$ and $2^m \times 2^n$, where m = 25 - 2n, meaning that work is constant as we vary n.

Multiplying matrices of size $2^n \times 2^m$ and $2^m \times 2^n$, where m = 25 - 2n, meaning that work is constant as we vary n.

Multiplying matrices of size $2^n \times 2^m$ and $2^m \times 2^n$, where m = 25 - 2n, meaning that work is constant as we vary n.

Incremental flattening rule

where $\Sigma' = \Sigma, \langle \overline{x} \in \overline{xs} \rangle$.

Example for

Incremental flattening rule

$$\begin{array}{ll} \mathcal{G}(\Sigma, \text{map } (\lambda \overline{x} \to e) \ \overline{\text{xs}}) \Rightarrow & \text{if } \operatorname{Parallelism}(\Sigma') \geq t_{\operatorname{top}} \\ & \text{then segmap } \Sigma' \ e \\ & \text{else } \mathcal{G}(\Sigma', e) \end{array}$$

where $\Sigma' = \Sigma, \langle \overline{x} \in \overline{xs} \rangle$.

Example for

Autotuning

- An incrementally flattened program may have dozens of threshold parameters, t_i , used to select versions at runtime.
- As we have seen, the default value (2¹⁶) is often not optimal.

A configuration P maps each t_i to an integer $P(t_i)$.

The search problem

Find the P that minimises the cost function F(P), where the the cost function runs the program on a set of user-provided representative datasets and sums the observed runtimes.

- Other cost functions are also possible, e.g. average runtime over datasets.
- Note: recompilation is not necessary.

Briefly on the search procedure⁴

- Suppose we are given training data sets D_j , j < k, each of which provide a value $v_{i,j}$ for each threshold parameter n_i .
- Starting from the deepest comparison (t_3) , for each D_j find an (x_j, y_j) that minimises runtime, take the intersection of the intervals, and use that to determine threshold value.
- Tuning time is linear in the number of comparisons.

⁴https://futhark-lang.org/publications/tfp21.pdf

Using incremental flattening

Compile with a GPU backend (opencl or cuda):

\$ futhark opencl matmul.fut

To autotune:

\$ futhark autotune -v --backend=opencl matmul.fut

Produces matmul .fut .tuning, which is automatically picked up by futhark bench (use --no-tuning to stop this).

Use futhark dev -s --extract-kernels -e matmul.fut to see IR.

Representation and Fusior

Handling nested parallelism

Basic flattening rules

Incremental flattening

Multi-level parallelism

Final words as time permits

Confession

I lied when I claimed that GPU threads were completely isolated.

Confession

I lied when I claimed that GPU threads were completely isolated.

- Most hardware has useful (fixed) levels of parallelism.
- An ideal flattening algorithm maps levels of application parallelism (any number) to hardware parallelism (fixed number) in a way that exploits locality well.

Example of deep nesting: a system consists of multiple *datacenters*, that each contain multiple *computers*, that each contain multiple *GPUs*, that each contain multiple *SMs* (next slide), that each run some number of threads.

Confession

I lied when I claimed that GPU threads were completely isolated.

- Most hardware has useful (fixed) levels of parallelism.
- An ideal flattening algorithm maps levels of application parallelism (any number) to hardware parallelism (fixed number) in a way that exploits locality well.

Example of deep nesting: a system consists of multiple *datacenters*, that each contain multiple *computers*, that each contain multiple *GPUs*, that each contain multiple *SMs* (next slide), that each run some number of threads.

General principle

"Tasks" at the same hardware level cannot communicate, but can "launch" tasks at a lower level.

K20 GPU layout

Streaming Multiprocessor (SM) layout

single precision/integer CUDA core smemory load/store unit double precision FP unit special function unit

Level-aware segmented operations

$$l \in \{\text{thread}, \text{block}\}\$$

■ Each segmented operation then tagged with the level at which its *body* executes.

$$\begin{split} & \operatorname{segmap}_{l} \Sigma \ e \\ & \operatorname{segscan}_{l} \Sigma \ \odot \ \overline{d} \ e \\ & \operatorname{segred}_{l} \Sigma \ \odot \ \overline{d} \ e \end{split}$$

Restrictions

Both thread and block can occur at top level, but a block construct can contain only thread constructs, and thread cannot contain any segmented constructs.

Examples

Each thread transposes part of an array

$$segmap_{thread} \langle x \in xs \rangle$$
 (transpose x)

Each workgroup transposes part of an array

$$segmap_{block} \langle x \in xs \rangle$$
 (transpose x)

These are both equivalent to map transpose xs.

Each workgroup sums the row of an array

```
\mathbf{segmap}_{block} \ \langle \mathtt{xs} \in \mathtt{xss} \rangle \ (\mathbf{segred}_{thread} \ \langle \mathtt{x} \in \mathtt{xs} \rangle \ (+) \ 0 \ \mathtt{x})
```

Equivalent to map (reduce (+) 0) xss.

Tags carry no semantic meaning; used solely for code generation.

Example: LocVolCalib

The following is the essential core of the LocVolCalib benchmark from the FinPar suite.

```
map (\xss ->
    map (\xs ->
        let bs = scan \oplus d_{\oplus} xs
    let cs = scan \otimes d_{\otimes} bs
    in scan \odot d_{\odot} cs)
    xss)
```

How can we map the application parallelism to hardware parallelism?

Option I: sequentialise the inner scans

```
\begin{split} \mathbf{segmap}_{\mathrm{thread}} \; & (\langle \mathtt{xss} \in \mathtt{xsss} \rangle, \langle \mathtt{xs} \in \mathtt{xss} \rangle) \\ \mathbf{let} \; & \mathtt{bs} = \mathbf{scan} \oplus \; d_{\oplus} \; \mathtt{xs} \\ \mathbf{let} \; & \mathtt{cs} = \mathbf{scan} \otimes \; d_{\otimes} \; \mathtt{bs} \\ \mathbf{in} \; & \mathbf{scan} \; \odot \; d_{\odot} \; \mathit{cs} \end{split}
```

scan is relatively expensive in parallel, so this is a good option if the outer dimensions provide enough parallelism.

Option II: flatten and parallelise inner scans

Flattening uses *loop distribution* (or *fission*) to create **map** nests:

```
map (\xss ->
    map (\xs ->
        let bs = scan \oplus d_{\oplus} xs
    let cs = scan \otimes d_{\otimes} bs
        in scan \odot d_{\odot} cs)
        xss)
    xsss
```

Option II: flatten and parallelise inner scans

```
\label{eq:letbsss} \begin{split} &\textbf{segscan}_{thread} \; \big( \langle \texttt{xss} \in \texttt{xsss} \rangle, \langle \texttt{xs} \in \texttt{xss} \rangle,, \langle \texttt{x} \in \texttt{xs} \rangle \big) \; \oplus \; d_{\oplus} \; \texttt{x} \\ &\textbf{let} \; \texttt{csss} = \\ &\textbf{segscan}_{thread} \; \big( \langle \texttt{bss} \in \texttt{bsss} \rangle, \langle \texttt{bs} \in \texttt{bss} \rangle,, \langle \texttt{b} \in \texttt{bs} \rangle \big) \; \oplus \; d_{\oplus} \; \texttt{b} \\ &\textbf{in} \\ &\textbf{segscan}_{thread} \; \big( \langle \texttt{css} \in \texttt{csss} \rangle, \langle \texttt{cs} \in \texttt{css} \rangle,, \langle \texttt{c} \in \texttt{cs} \rangle \big) \; \oplus \; d_{\oplus} \; \texttt{c} \end{split}
```

This is what full flattening will do.

Option III: Mapping innermost parallelism to the workgroup level

Option III: Mapping innermost parallelism to the workgroup level

```
\begin{split} \mathbf{segmap}_{block} & \left( \langle \mathtt{xss} \in \mathtt{xsss} \rangle, \langle \mathtt{xs} \in \mathtt{xss} \rangle \right) \\ \mathbf{let} \ \mathtt{bs} &= \mathbf{segscan}_{thread} \ \langle \mathtt{x} \in \mathtt{xs} \rangle \ \oplus \ d_{\oplus} \ \mathtt{x} \\ \mathbf{let} \ \mathtt{cs} &= \mathbf{segscan}_{thread} \ \langle \mathtt{b} \in \mathtt{bs} \rangle \otimes \ d_{\otimes} \ \mathtt{b} \\ \mathbf{in} \ \mathbf{segscan}_{thread} \ \langle \mathtt{c} \in \mathtt{cs} \rangle \otimes \ d_{\otimes} \ \mathtt{c} \end{split}
```

- Iterations of outer segmaps assigned to GPU workgroups⁵.
- Each segscan_{thread} is executed collaboratively by a workgroup and in local memory⁶.
- Only works if the innermost parallelism fits in a workgroup.

⁵Thread block in CUDA

⁶Shared memory in CUDA

LocVolCalib speedup (higher is better)

Sequential scans (MF) is the baseline.

Level-aware incremental flattening

 $\left| \mathcal{G}_l(\Sigma, e) \Rightarrow e' \right|$ In a map-nest context Σ , the source expression e can be translated at machine level l into the target expression e'.

$$\mathcal{G}_{l+1}(\Sigma, exttt{map}\ (\lambda \overline{x} o e)\ \overline{ exttt{xs}}) \Rightarrow \ exttt{if}\ ext{Par}(\Sigma') \geq t_{ ext{top}} \ ext{then segmap}_{l+1}\ \Sigma'\ e \ ext{else if}\ ext{Par}(e_{ ext{middle}}) \geq t_{ ext{intra}} \ ext{then segmap}_{l+1}\ \Sigma'\ \mathcal{G}_{l}(ullet, e) \ ext{else}\ \mathcal{G}_{l+1}(\Sigma', e)$$

where $\Sigma' = \Sigma, \langle \overline{x} \in \overline{xs} \rangle$ and t_{top}, t_{intra} fresh. In the Futhark compiler, only two levels are handled (thread, block), but we believe the idea generalises well. Representation and Fusior

Handling nested parallelism

Basic flattening rules

Incremental flattening

Multi-level parallelism

Final words as time permits

Block tiling

Level-aware constructs can also be used for expressing other powerful optimisations.

Block tiling

Level-aware constructs can also be used for expressing other powerful optimisations.

Threads accessing same memory can cooperatively cache it in on-chip memory.

Motivation for block tiling

map (
$$\x -> \text{redomap} (+) (\y -> y + x) 0 xs) xs$$

After flattening we get this inner-sequential version:

$$\textbf{segmap}_{thread} \ \langle \textbf{x} \in \textbf{xs} \rangle \ (\textbf{redomap} \ (+) \ (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \ \textbf{0} \ \textbf{xs})$$

Operation One thread for each element of xs, and each sequentially traverses xs.

Problem ?

Motivation for block tiling

map (
$$\x -> \text{redomap} (+) (\y -> y + x) 0 xs) xs$$

After flattening we get this inner-sequential version:

$$\textbf{segmap}_{thread} \ \langle \textbf{x} \in \textbf{xs} \rangle \ (\textbf{redomap} \ (+) \ (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \ \textbf{0} \ \textbf{xs})$$

Operation One thread for each element of xs, and each sequentially traverses xs. Problem Poor utilisation of memory bus.

- Many threads simultaneously read same address, which is redundant.
- **Better:** *cooperatively* copy *block* into on-chip memory and iterate from there.

Strip mining/chunking the outer segmap

$$\textbf{segmap}_{thread} \ \langle \textbf{x} \in \textbf{xs} \rangle \ (\textbf{redomap} \ (+) \ (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \ \textbf{0} \ \textbf{xs})$$

Assuming we can split xs into m equally sized *tiles* each of size t, giving xss: [m][t]f32, then we can rewrite to

$$\begin{split} \textbf{segmap}_{block} & \left< xs \text{'} \in xss \right> \\ \textbf{segmap}_{thread} & \left< x \in xs \text{'} \right> \\ \textbf{redomap} & \left(+ \right) \left(\lambda y \rightarrow y + x \right) 0 \text{ } xs \end{split}$$

Question: does this compute the same value as the original?

Strip mining/chunking the outer segmap

$$\textbf{segmap}_{thread} \ \langle \textbf{x} \in \textbf{xs} \rangle \ (\textbf{redomap} \ (+) \ (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \ \textbf{0} \ \textbf{xs})$$

Assuming we can split xs into m equally sized *tiles* each of size t, giving xss: [m][t]f32, then we can rewrite to

$$\begin{split} \textbf{segmap}_{block} & \left< xs \text{'} \in xss \right> \\ \textbf{segmap}_{thread} & \left< x \in xs \text{'} \right> \\ \textbf{redomap} & \left(+ \right) \left(\lambda y \rightarrow y + x \right) 0 \text{ } xs \end{split}$$

Question: does this compute the same value as the original?

- No—the original expression had type [n]f32, while this has type [m][t]f32
- This can be flattened away.

```
\begin{array}{l} \textbf{segmap}_{block} \; \langle \textbf{xs'} \in \textbf{xss} \rangle \\ \textbf{segmap}_{thread} \; \langle \textbf{x} \in \textbf{xs'} \rangle \\ \textbf{redomap} \; (+) \; (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \; \textbf{0} \; \textbf{xs} \end{array}
```

Chunking/strip-mining the **redomap**, we get

```
\begin{array}{l} \textbf{segmap}_{block} \; \langle \textbf{xs'} \in \textbf{xss} \rangle \\ \textbf{segmap}_{thread} \; \langle \textbf{x} \in \textbf{xs'} \rangle \\ \textbf{loop} \; \textbf{acc} \; = \; 0 \; \textbf{for} \; \textbf{ys} \; \textbf{in} \; \textbf{xss} \; \textbf{do} \\ \textbf{redomap} \; (+) \; (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \; \textbf{acc} \; \textbf{ys} \end{array}
```

```
\begin{array}{c} \textbf{segmap}_{block} \; \langle \textbf{xs'} \in \textbf{xss} \rangle \\ \textbf{segmap}_{thread} \; \langle \textbf{x} \in \textbf{xs'} \rangle \\ \textbf{redomap} \; (+) \; (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \; \textbf{0} \; \textbf{xs} \end{array}
```

Chunking/strip-mining the **redomap**, we get

```
segmap_{block} \langle xs' \in xss \rangle
                           seqmap_{thread} \langle x \in xs' \rangle
                               loop acc = 0 for ys in xss do
                                  redomap (+) (\lambda v \rightarrow v + x) acc vs
Distributing and interchanging segmap<sub>thread</sub> gives
                        segmap_{block} \langle xs' \in xss \rangle
                            loop accs = replicate t 0
                            for vs in xss do
                              segmap_{thread} \langle x, acc \in xs', accs \rangle
                                 redomap (+) (\lambda v \rightarrow v + x) acc vs
```

```
\begin{array}{l} \textbf{segmap}_{block} \; \langle \texttt{xs'} \in \texttt{xss} \rangle \\ \textbf{loop} \; \texttt{accs} \; = \; \texttt{replicatet0} \\ \textbf{for} \; \texttt{ys} \; \textbf{in} \; \texttt{xss} \; \textbf{do} \\ \textbf{segmap}_{thread} \; \langle \texttt{x}, \texttt{acc} \in \texttt{xs'}, \texttt{accs} \rangle \\ \textbf{redomap} \; (+) \; (\lambda \texttt{y} \to \texttt{y} + \texttt{x}) \; \texttt{acc} \; \texttt{ys} \end{array}
```

Collectively copy ys to shared/local memory

```
\begin{array}{l} \textbf{segmap}_{block} \; \langle \textbf{xs'} \in \textbf{xss} \rangle \\ \textbf{loop} \; \textbf{accs} \; = \; \textbf{replicate} \; \textbf{t} \; \textbf{0} \\ \textbf{for} \; \textbf{ys} \; \textbf{in} \; \textbf{xss} \; \textbf{do} \\ \textbf{let} \; \textbf{ys'} \; = \; \textbf{copy} \; \textbf{ys} \; \textbf{in} \\ \textbf{segmap}_{thread} \; \langle \textbf{x}, \textbf{acc} \in \textbf{xs'}, \textbf{accs} \rangle \\ \textbf{redomap} \; (+) \; (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \; \textbf{acc} \; \textbf{ys'} \end{array}
```

- Now the many iterations of the **redomap** read from fast on-chip memory rather than slower global memory!
- copy done collectively by all threads in group

The fine print

```
\begin{array}{l} \textbf{segmap}_{block} \; \langle x \textbf{s} \; ' \in x \textbf{ss} \rangle \\ \textbf{loop} \; \textbf{accs} \; = \; \textbf{replicate} \; \textbf{t} \; \textbf{0} \\ \textbf{for} \; \textbf{ys} \; \textbf{in} \; \textbf{xss} \; \textbf{do} \\ \textbf{let} \; \textbf{ys} \; ' = \; \textbf{copy} \; \textbf{ys} \; \textbf{in} \\ \textbf{segmap}_{thread} \; \langle x, \textbf{acc} \in x \textbf{s} \; ', \textbf{accs} \rangle \\ \textbf{redomap} \; (+) \; (\lambda \textbf{y} \rightarrow \textbf{y} + \textbf{x}) \; \textbf{acc} \; \textbf{ys} \; ' \end{array}
```

- Very simple case (e.g. xss traversed in both loops)
- 2D tiling much more complex
- The tile size t is a sensitive tuning parameter; in this case it should coincide with workgroup size
- Appreciate what a compiler can do for you

Summary

- There is no one size fits all: for optimal performance, we need different amounts of parallelisation for different workloads.
- Incremental flattening generates a single program that for varying datasets exploits only as much parallelism as profitable.
- Autotuning for specific hardware and program is needed to select the optimal version at runtime.
- A good IR is as crucial to a compiler as a good language is to a human.