VE444: Networks

Yifei Zhu, assistant professor University of Michigan-Shanghai Jiao Tong University

Homophily

Networks in their surrounding contexts

- Homophily: the tendency of individuals to associate and bond with similar others
 - "Birds of a feather flock together"
 - "similarity begets friendship" Plato
 - "love those who are like themselves" -- Aristotle
 - It has been observed in a vast array of network studies, based on a variety of attributes (e.g., age, gender, organizational role, etc.)
 - Example: people who like the same music genre are more likely to establish a social connection (meeting at concerts, interacting in music forums, etc.)

Correlations Exists in Networks

Example:

- Real social network
 - Nodes = people
 - Edges = friendship
 - Node color = race
- People are segregated by race due to homophily

(Easley and Kleinberg, 2010)

Homophily and Friendship

- For an individual, he has two types of characteristics
 - Intrinsic: gender, race, mother tongue, etc
 - Changeable: where he lives, expertise, what he likes, etc
- Homophily is the external reason for the creation of social networks
 - Common in race, locations, expertise, interests
- One key question in social sciences
 - Commonality >> friendship ? (selection)
 - Friendship → commonality ? (social influence)
 - **Example**: I recommend my "peculiar" musical preferences to my friends, until one of them grows to like my same favorite genres ©

Measuring homophily

- Given a social network where the nodes have only two properties: red and white
- The information we can have:
 - The number of nodes (n), the number of links (e)
 - The ratio of different colors: p, q = 1 p
 - The number of links (s) where the two end nodes have the same color
- If not homophily?

Measuring homophily

- Homophily test: If the fraction of cross-attributes edges is significantly less than 2pq, then there is evidenced for homophily.
- Example:
 - The number of nodes n = 9
 - The number of links e = 18
 - The ratio of red nodes p = 1/3
 - The ratio of white nodes q = 2/3
- Statistical significance test required
- Inverse homophily

Correlations Exist in Networks

- Individual behaviors are correlated in a network environment
- Three main types of dependencies that lead to correlation:

Application of homophily

- How do we leverage this correlation observed in networks to help predict node labels?
- Similar nodes are typically close together or directly connected:
 - "Guilt-by-association": If I am connected to a node with label X, then I am likely to have label X as well.
 - Example: Malicious/benign web page: Malicious web pages link to one another to increase visibility, look credible, and rank higher in search engines

Fake Review Spam Detection

- Behavioral analysis
 - individual features, geographic locations, login times, session history, etc.
- Language analysis
 - use of superlatives, lots of self-referencing, rate of misspellings, many agreement words, ...
- Easy to fake: individual behaviors, content of review
- Hard to fake: graph structure
 - Graphs capture relationships between reviewers, reviews, stores

Node Classification

- Given labels of some nodes
- Let's predict labels of unlabeled nodes
- This is called semi-supervised node classification

Classification with Network Data

How do we leverage this correlation observed in networks to help predict node labels?

How do we predict the labels for the nodes in beige?

Available information

- Classification label of an object O in network may depend on:
 - Features of O
 - Labels of the objects in O's neighborhood
 - Features of objects in O's neighborhood

Collective classification overview

Markov Assumption: the label Y_i of one node i depends on the labels of its neighbors N_i

$$P(Y_i|i) = P(Y_i|N_i)$$

Collective classification involves 3 steps:

Local Classifier

Assign initial labels

Relational Classifier

Capture correlations between nodes

Collective Inference

Propagate correlations through network

Collective Classification: Overview

Local Classifier

 Assign initial labels

Relational Classifier

Capture correlations between nodes

Collective Inference

Propagate correlations through network

Local Classifier: Used for initial label assignment

- Predicts label based on node attributes/features
- Standard classification task
- Does not use network information

Relational Classifier: Capture correlations based on the network

- Learns a classier to label one node based on the labels and/or attributes of its neighbors
- This is where network information is used

Collective Inference: Propagate the correlation

- Apply relational classifier to each node iteratively
- Iterate until the inconsistency between neighboring labels is minimized
- Network structure substantially affects the final prediction

Yifei Zhu, JI VE444: Networks

Probabilistic Relational Classifier

- **Basic idea:** Class probability of Y_i is a weighted average of class probabilities of its neighbors
- For labeled nodes, initialize with ground-truth Y labels
- For unlabeled nodes, initialize Y uniformly
- Update all nodes in a random order until convergence or until maximum number of iterations is reached

Probabilistic relational classifier

Repeat for each node i and label c

$$P(Y_i = c) = \frac{1}{|N_i|} \sum_{(i,j) \in E} W(i,j) P(Y_j = c)$$

- W(i,j) is the edge strength from i to j
- N_i is the number of neighbors of i
- Challenges:
 - Convergence is not guaranteed
 - Model cannot use node feature information

Initialization: All labeled nodes to their labels, and all unlabeled nodes uniformly

- Update for the 1st Iteration:
 - For node 3, N₃={1,2,4}

- Update for the 1st Iteration:
 - For node 4, $N_4 = \{1, 3, 5, 6\}$

- Update for the 1st Iteration:
 - For node 5, N₅={4,6,7,8}

After Iteration 4

- All scores stabilize after 5 iterations:
 - Nodes 5, 8, 9 are + $(P(Y_i = 1) > 0.5)$
 - Node 3 is $(P(Y_i = 1) < 0.5)$
 - Node 4 is in between $(P(Y_i = 1) = 0.5)$

Structural Balance

Local effects can have global consequences that are observable at the level of the network as a whole

Starting from the local

(a) A, B, and C are mutual friends: balanced.

(b) A is friends with B and C, but they don't get along with each other: not balanced.

(c) A and B are friends with C as a mutual enemy: balanced.

(d) A, B, and C are mutual enemies: not balanced.

Structural balance

Structural balance property: For every set of three nodes, if we consider the three edges connecting them, either all three of these edges are labeled +, or else exactly one of them is labeled +.

Structure of a balanced networks

Balance theorem: If a labeled complete graph is balanced, then either all pairs of nodes are friends, or else the nodes can be divided into two groups, X and Y, such that every pair of nodes in X like each other, every pair of nodes in Y like each other, and everyone in X is the enemy of everyone in Y.

Proving the Balance Theorem

- To satisfy balance theorem, we have to
 - (1) every nodes in X are friends
 - (2) every nodes in Y are friends
 - (3) every node in X is an enemy of every node in Y

Balance: good or bad?

Search for balance can lead to two implacably opposed alliances

