Jegyzőkönyv ^a fajhő méréséről (5)

Készítette: Tüzes Dániel

Mérés ideje: szerda 14-18 óra

Jegyzőkönyv elkészülte: 2008-09-24

A mérés célja

A feladat egy szilárd anyag (fém) fajhőjének közelítő meghatározása. Ugyan ma már automatikavezérelt gépek is rendelkezésre állnak ezen meghatározására, a mérésnek didaktikai célja van: számítógép segítségével ugyan, de manuálisan meghatározni a fajhőjét egy anyagnak. A természettudományos alapelvekből következik, hogy a mérőberendezések nem lehetnek tökéletesek, de ezen mérés egyik célja megmutatni, hogy nem feltétlenül szükséges tökéletes eszközöket készíteni, a hibák és veszteségek megfelelő figyelembe vételével kielégítő eredmény kapható.

Elvi alapok

A fajhő definíciójából, miszerint egy anyag c fajhőjére fennáll, hogy $Q=c\cdot m\cdot \Delta T$, abból egyszerűen meghatározható a minta w hőkapacitása: $w=c\cdot m=Q/\Delta T$. Ez a mennyiség egy adott anyagdarab jellemzője. Hogy csak az anyagi minőségtől függjön, arányítani kell a tömegével, vagyis $c=Q\Delta T/m$. Ez már csak az anyagi minőségtől függ, ezen értéket lehet publikálni, és összevetni mások eredményével.

A fajhő mérésére szolgáló eszköz a hőértékmérő eszköz, más néven kaloriméter. E berendezés által fogjuk tudni mérni a közölt hőt és a test hőmérsékletét jelen esetünkben. Vagyis a kaloriméter kölcsönhatásban lesz vizsgált anyaggal. Célunk, hogy a vizsgált anyag környezete jó közelítéssel csak a kaloriméter legyen.

Mérési módszerek áttekintése

A fajhő meghatározásához szükséges tudni a kaloriméter vhőkapacitását, és környezetével való hőcseréjének mértékét. Előbbit úgy mérjük, hogy hőt közlünk a kaloriméterrel, melynek során vizsgáljuk annak hőmérséklet-változását. A hő közlést fűtőszállal végezzük, melyen elektromos áramot folyatunk át. Ismert, hogy egy adott egységen az elektromos teljesítmény U^2/R , ahol Uaz egységen eső feszültség, R pedig annak ellenállása. Ebből a Wvégzett munka, és egyben a közölt hő $(1.1)W = U^2\Delta t/R$. R értéke adott, U értéke pedig a mérés során kívánt értékre állítható. Feltételezzük, hogy a végzett munka csak hőtermeléssel jár, így $W = v\Delta T$. Az (1.1) képletből visszahelyettesítve ebből kifejezhetjük a kaloriméter hőkapacitásának értékét: $v = \frac{U^2\Delta t}{R\Delta T}$. A környezettel való hőcserét a melegítési szakasz utáni hőmérséklet-változás időbeli függéséből fogjuk meghatározni.

A vizsgált anyag fajhőjének meghatározásához két módszer kerül alkalmazásra. (A pontos számításnál figyelembe lesz véve a rendszer környezettel való hőcseréje.)

 A vizsgált testet felmelegítjük egy termosztátban adott hőmérsékletre, majd gyorsan a hidegebb, ismert hőmérsékletű kaloriméterbe helyezzük, és azt zárjuk. A két test között hőcsere megy végbe, melynek során kiegyenlítődik a hőmérsékletük. Ideális rendszert feltételezve a hőátadások értéke megegyező az energia-megmaradás miatt. A belső

energiákkal:
$$\Delta E_{b, \text{kaloriméter}} = \Delta E_{b, \text{minta}}$$
, ahol $\Delta E_b = c \cdot m \cdot \Delta T$, így $c = \frac{v}{m} \frac{T_{\text{közös}} - T_{\text{kaloriméter}}}{T_{\text{minta}} - T_{\text{egvensúlvi}}}$.

 Hőt közlünk a rendszerrel elektromos fűtéssel, melynek során vizsgáljuk annak hőmérséklet-változását. Az kaloriméter hőkapacitásának méréséhez hasonló ez az eljárás. A

végzett munka itt is hőtermelésre fordítódik, mely jelen esetünkben $W = (w + v)\Delta T$, és a keresett mennyiségre $c = \frac{U^2 \Delta t}{mP \Delta T} - \frac{V}{m}$.

A mérési módszereinek részletes ismertetése

A kaloriméter hőkapacitásának és hőátadási tényezőjének meghatározása

Tekintsük jobb oldalt a mérési elrendezés vázlatát. R a fűtőszál, H egy termoelem, E a kaloriméter belseje. A kaloriméteren kívül lévő kettős falú tartályban vizet keringtetünk az állandó hőmérsékletű környezet szimulálásáért. H termoelem feszültségéből tudjuk a kaloriméter hőmérsékletét.

H termoelemet a labor már korábban kalibrálta, a kivezetésein mérhető feszültség a számítógépen már mint azzal ekvivalens hőmérséklet jelenik meg. A gép ezt rögzíti az idő függvényében. Továbbá rögzíti, hogy R fűtőszál mennyi ideig volt bekapcsolva.

A kaloriméter hőkapacitásának meghatározása során a kaloriméter az M minta nélkül üzemel. A befűtés előtt (előszakasz) elkezdjük az adatgyűjtést, ezen adatok extrapolálásával a fűtés alatti környezeti hőmérsékletet meghatározhatjuk. Törekszünk arra azonban, hogy már az előszakaszban állandó legyen a hőmérséklet.

A befűtés során (főszakasz) továbbra is mérjük a hőmérsékletét a rendszernek, végig a lehűlés (utószakasz) során is. A befűtés során néhány ° C-os hőmérsékletemelkedést érünk el, majd hagyjuk a rendszert hűlni, exponenciálisan megközelítve a környezet $T_{
m k\"{o}rny}$ hőmérsékletét. Az egész mérés hozzávetőleg 20 percig tartott.

A Newton-féle lehűlési törvény alapján a hőcsere üteme arányos a közegek hőmérséklet különbségével, vagyis (1.2) $\frac{dQ_{\text{kalori->körny}}}{dt} = h \left(T_{\text{kalori}} - T_{\text{körny}} \right)$, ahol h a kaloriméter-környezet hőátadási együtthatója, az energia-megmaradás szerint $v \frac{dT_{kalori}}{dt} = \frac{dQ_{k\delta z\delta lt}}{dt} - \frac{dQ_{kalori->k\delta rny}}{dt}$, ezekből kapjuk formális átrendezéssel és integrálással, hogy $\int v \left(dT_{kalori} + \frac{h}{v} \left(T_{kalori} - T_{k\ddot{o}rny} \right) dt \right) = \int dQ_{k\ddot{o}z\ddot{o}lt}$. Kezdetben

 $T_{\it kalori} = T_{\it k\"orny}$, így a befűtés elejétől az utószakasz egy pontjáig integrálva, átrendezve:

$$v \left(T_{_{kalori,t_2}} + \int\limits_{_{t_1}}^{^{t_2}} \frac{h}{v} \left(T_{_{kalori}} - T_{_{k\tilde{o}rny}} \right) dt - T_{_{k\tilde{o}rny}} \right) = Q_{_{k\tilde{o}z\tilde{o}lt}} \text{. A zárójelben szereplő első két tag összege megadja,}$$

hogy mennyi lenne a kaloriméter hőmérséklete, ha az nem adott volna le hőt a környezetének. Legyen neve korrigált hőmérséklet, jele T^* . Ismert T^* esetén a kaloriméter hőkapacitása meghatározható,

$$(1.3)v = \frac{Q_{_{k\ddot{o}z\ddot{o}lt}}}{T^* - T_{_{k\ddot{o}rnv}}}$$
. T^* értékének meghatározásához szükség van $h/v = \varepsilon_0$ hűlési állandó értékére,

melynek értékét az utószakaszból határozhatjuk meg, itt ugyanis 0 a hőcsere, ezért (1.2) alapján $v\frac{dT_{kalori}}{dt}=-h\left(T_{kalori}-T_{k\ddot{o}rny}\right)$. A differenciálegyenlet megoldása $T_{kalori}=T_{k\ddot{o}rny}+Ce^{-\varepsilon_0 t}$ (C tetszőleges konstans). A mérési adatokra exponenciális függvényt illesztve leolvasható ε_0 értéke. Továbbá a mérési adatokból az előző integrál numerikusan elvégezhető, így T^* értéke kiszámítható. $T_{k\ddot{o}rny}$ értéke ismert, akárcsak $Q_{k\ddot{o}z\ddot{o}lt}=W$, az (1.1) képlet alapján. Minden adott (1.3) egyenlet jobb oldalán, így v értéke meghatározható már.

Fajhő mérése a kialakuló közös hőmérséklet alapján

A mérés előtt a vizsgált mintát egy termosztátba helyeztem, még a mérés legelején, így ekkorra már $T_{\min a,t_0}$ hőmérséklete beállt. Ezek után a termosztátot a kaloriméter felé helyeztem, majd a kaloriméter fedelének eltávolítása után abba ejtettem a testet, majd a kaloriméter tetejét visszahelyeztem. Így elenyésző ideig volt nyitva a kaloriméter és a minta-környezet hőveszteség is elenyésző.

A mérés során a pontosabb számításokért figyelembe vehetjük, hogy nem közvetlenül a minta, hanem a kaloriméter hőmérsékletét mérjük. A (1.2) összefüggés itt kétszeresen alkalmazandó. Egyrészt a minta adja át hőjét a nála hidegebb kaloriméternek (paramétere k), másrészt a kaloriméter adja át hőjét a környezetének (paramétere h). Az összefüggések egymásba ágyazásával, $dQ_{k\"oz\'olt}=0$ felhasználásával kapjuk az energia-megmaradásból következő(1.4)

$$v \frac{dT_{\rm kalori}}{dt} + w \frac{dT_{\rm minta}}{dt} = -h \Big(T_{\rm kalori} - T_{\rm k\"{o}rny} \Big) \ \text{egyenlet seg\'its\'eg\'evel levezethet\'o¹, hogy a keresett c fajh\"ore }$$

$$(1.5) \ c = \frac{v}{m} \frac{T^* - T_{\rm k\"{o}rny}}{T_{\rm minta,t_0} - T_{\rm minta}}^*, \text{ ahol } T_{\rm minta}^* = T_{\rm k\"{o}rny} + \frac{\varepsilon'}{\varepsilon' - \varepsilon_0} \Big(T^* - T_k \Big). \ \text{Itt ε' a r\'af\~ut\'eses m\'odszer f\"oszakasza során illesztett exponenciális kitevőj\'eben szereplő állandó. A levezetés során használt r\"ovidít\'esekből }$$

$$(1.6) \ k = \frac{\varepsilon \varepsilon' w}{\varepsilon_0}.$$

$$\mathcal{E}_0$$

A fajhő mérése ráfűtéssel

A mérés elkezdése előtt a minta már sok ideje a kaloriméterben állt, hőmérsékletük azonos és állandó volt. Ennek elérésében segített a kaloriméterbe helyezett hőkulcs. Az adatgyűjtést elkezdve, megbizonyosodva az állandó hőmérsékletről ismét, feszültséget kapcsoltam R ellenállásra. Néhány °*C* hőmérséklet-változás után a melegítést leállítottam. A hűlés során továbbra is rögzítettem a számítógéppel az adatokat.

Az adatok kiértékelése során fontos adat az \mathcal{E} , mely a főszakasz (melegítés) görbéjére illesztett exponenciális hatványkitevőjében szereplő állandó. Felhasználva a Newton-féle hűlési törvényt,

valamint a
$$v \frac{dT_{kalori}}{dt} + w \frac{dT_{minta}}{dt} = \frac{dQ_{k\ddot{o}z\ddot{o}lt}}{dt} - h \left(T_{kalori} - T_{k\ddot{o}rny}\right)$$
 összefüggést, a levezetéseket mellőzve¹ kapjuk, hogy (1.7) $c = \frac{Q_{k\ddot{o}z\ddot{o}lt} - v \left(T * - T_{k\ddot{o}rny}\right)}{m \left(T - * - T - T_{k\ddot{o}rny}\right)}$.

Ne feledjük, hogy
$$Q_{k\ddot{o}z\ddot{o}lt} = W = \frac{U^2}{R} \Delta t$$
.

Mérési eredmények, hibaszámítás

• A kaloriméter hőkapacitásának és hőátadási tényezőjének meghatározása

Az alábbi táblázatban foglalom össze a mérési eredményeket és beállításokat:

fűtőellenállás	$R = (7,07 \pm 0,01)\Omega$
fűtőfeszültség	$U = (1781 \pm 0.5) mV$
fűtési idő	$t = (178,29 \pm 0,05)s$
környezet hőmérséklete	$T_{\text{k\"{o}rny}} = (17,858 \pm 0,03)^{\circ} \mathcal{C}$
hűlési állandó	$\varepsilon_0 = 0.085527\mathrm{min}^{-1}$
korrigált hőmérséklet	$T^* = (21,448 \pm 0,004)^{\circ} C$

Ezen adatokból, a (1.3) képletből adódóan megkapjuk a kaloriméter v hőkapacitását, melynek értéke:

$$v = 22,46 \frac{J}{K}$$
, ill a h hőátadási tényezőt, melynek értéke $h = 1,92 \frac{Ws}{\min K}$.

Habár a környezet hőmérsékletét állandónak akartuk, értékét az előszakasz adataiból extrapoláltuk, így látható, hogy ennek is van a hibája. Vegyük rendre a hibákat!

$$\Delta T^* = T^* \left(\frac{\Delta \varepsilon_0}{\varepsilon_0} + \frac{\Delta T_{k\ddot{o}rny}}{T_{k\ddot{o}rny}} \right) = 0.036K$$

$$\Delta Q_{k\ddot{o}z\ddot{o}lt} = Q_{k\ddot{o}z\ddot{o}lt} \left(2 \frac{\Delta U}{U} + \frac{\Delta R}{R} \right) = \pm 0.21 Ws$$

Ezen adatok alapján a mérés hibája: $\Delta v = v \left(\frac{\Delta Q}{Q} + \frac{\Delta T^*}{T^*} + \frac{\Delta T_{k\ddot{o}rny}}{T_{k\ddot{o}rny}} \right) = \pm 0,13 J/K$, ill $\Delta h = 0,02 \frac{Ws}{\min \cdot K}$.

Utóbbi értékét a többszörös mérés hiányában v hibájából számoltam.

Fajhő meghatározása a kialakuló közös hőmérséklet alapján

A mérési eredményeimet az alábbi táblázat tartalmazza.

minta tömege	$m = (4766, 6 \pm 0, 1) mg$	
minta hőmérséklete	$T_{\text{minta,t}_0} = (34,0\pm0,1)^{\circ}C$	
környezet hőmérséklete	$T_{k\ddot{o}rny} = (17,972 \pm 0,001)^{\circ}C$	
főszakasz melegedési paramétere	$\varepsilon' = 4,527 \mathrm{min}^{-1}$	
hűlési állandó	$\varepsilon = 0.0705 \mathrm{min}^{-1}$	
korrigált hőmérséklet	$T^* = (20,567 \pm 0,003)^{\circ}C$	

A (1.5) képletből adódóan kiszámolható ezen adatokból a minta c fajhője, melynek értéke $c=913\frac{J}{K\cdot k\sigma}.$

A fajhő hibáját a
$$\Delta c = c \left(\frac{\Delta V}{V} + \frac{\Delta m}{m} + \frac{\Delta \left(T^* - T_{\text{k\"{o}rny}}\right)}{T^* - T_{\text{k\"{o}rny}}} + \frac{\Delta \left(T_{\text{minta},t_0} - T_{\text{minta}}^*\right)}{T_{\text{minta},t_0} - T_{\text{minta}}^*} \right)$$
 összefüggésből kaphatjuk meg. A részletek kiírását mellőzve, a hiba értéke $\pm 10 \frac{J}{K \cdot kg}$

A minta-kaloriméter k hőátadási tényezőjére pedig kapjuk a (1.6) alapján, hogy $k = 16,46 \frac{J}{\min K}$.

A fajhő mérése ráfűtéssel

A mérési eredményeimet az alábbi táblázat tartalmazza.

fűtőellenállás	$R = (7,07 \pm 0,01)\Omega$	
fűtőfeszültség	$U = (1780 \pm 0.5) mV$	
fűtési idő	$t = (231, 4 \pm 0.05)s$	
környezet hőmérséklete	$T_{\text{k\"{o}rny}} = (17,846 \pm 0,001)^{\circ} \mathcal{C}$	
hűlési állandó	$\varepsilon_0 = 0.0673\mathrm{min}^{-1}$	
korrigált hőmérséklet	$T^* = (20,708 \pm 0,002)^{\circ}C$	

Az (1.7) összefüggés alapján kiszámolhatjuk a keresett fajhőt, melyre kapjuk, hogy $c=936\frac{J}{K\cdot kg}$. (A feladat nem kéri ebben az esetben a hibaszámítást, azonban ezt megbecsülve a hiba $\pm 20\frac{J}{K\cdot kg}$ -ra tehető.)

Megjegyzés

¹: A levezetés megtalálható a következő műben: Havancsák Károly: Mérések a klasszikus fizika laboratóriumban, ELTE Eötvös Kiadó, Budapest, 2003.