# Statistics and Probability

Alex Corner

Sheffield Hallam University



▶ **Population**: *All* relevant data.

- Population: All relevant data.
- ➤ **Sample**: Some of the relevant data, hopefully enough to be representative of the population.

- Population: All relevant data.
- ➤ **Sample**: Some of the relevant data, hopefully enough to be representative of the population.
  - ▶ This should be a **random sample** with no **bias** towards a group or individual in the population.

- **Population**: All relevant data.
- ► Sample: Some of the relevant data, hopefully enough to be representative of the population.
  - ▶ This should be a random sample with no bias towards a group or individual in the population.
  - ▶ This can be difficult to achieve and careful thought needs to be given as to how data is collected.

- **Population**: *All* relevant data.
- ➤ **Sample**: Some of the relevant data, hopefully enough to be representative of the population.
  - ▶ This should be a **random sample** with no **bias** towards a group or individual in the population.
  - ▶ This can be difficult to achieve and careful thought needs to be given as to how data is collected.
- Sample/population data can be:
  - ▶ **Discrete**: E.g., number of attacks on a port in a given hour of the day.

- **Population**: *All* relevant data.
- ► **Sample**: *Some* of the relevant data, hopefully enough to be *representative* of the population.
  - ▶ This should be a **random sample** with no **bias** towards a group or individual in the population.
  - ▶ This can be difficult to achieve and careful thought needs to be given as to how data is collected.
- Sample/population data can be:
  - **Discrete**: E.g., number of attacks on a port in a given hour of the day. Usually integer-valued, e.g., 0, 1, 2, etc.

- **Population**: *All* relevant data.
- ➤ **Sample**: *Some* of the relevant data, hopefully enough to be *representative* of the population.
  - ▶ This should be a **random sample** with no **bias** towards a group or individual in the population.
  - ▶ This can be difficult to achieve and careful thought needs to be given as to how data is collected.
- Sample/population data can be:
  - **Discrete**: E.g., number of attacks on a port in a given hour of the day. Usually integer-valued, e.g., 0, 1, 2, etc.
  - **Continuous**: E.g., amount of time elapsed since previous attack.

- **Population**: *All* relevant data.
- ➤ **Sample**: *Some* of the relevant data, hopefully enough to be *representative* of the population.
  - ▶ This should be a **random sample** with no **bias** towards a group or individual in the population.
  - ▶ This can be difficult to achieve and careful thought needs to be given as to how data is collected.
- Sample/population data can be:
  - ▶ **Discrete**: E.g., number of attacks on a port in a given hour of the day. Usually integer-valued, e.g., 0, 1, 2, etc.
  - **Continuous**: E.g., amount of time elapsed since previous attack. Often classified into groups, e.g., 0-5 minutes, 5-10 minutes, 10-15 minutes, etc.

Suppose that we have data from a random sample of 100 people, giving their age at their last birthday.

Suppose that we have data from a random sample of 100 people, giving their age at their last birthday.

```
70
               54
                   62
                        13
                             11
                                  15
                                       69
                                            26
                                                 49
                                                      11
                                                            3
66
         10
67
     10
         54
               42
                   32
                        56
                             39
                                  60
                                        79
                                            33
                                                 12
                                                      47
                                                           24
                                            20
19
     47
         63
              32
                        70
                             55
                                  46
                                       11
                                                 15
                                                      39
                                                           37
28
     72
         46
               64
                   61
                        51
                             56
                                  53
                                       61
                                            11
                                                 80
                                                      53
                                                           28
76
      6
           5
               39
                   58
                        29
                             52
                                  54
                                       47
                                            60
                                                 62
                                                      51
                                                           72
               12
41
     57
         32
                   33
                        17
                             40
                                  20
                                        10
                                            27
                                                 47
                                                      71
                                                           68
                        23
                             12
                                  33
                                       16
                                                 71
                                                           58
44
         23
               17
                   81
                                            46
                                                      48
         43
              31
                   72
                        68
                              36
79
     80
                                  41
                                       11
```

It's a little hard to get a feel for the data, so we could count the frequency in each bin, order the data numerically, or calculate various statistics.

Suppose that we have data from a random sample of 100 people, giving their age at their last birthday.

```
54
                   62
                         13
                             11
                                  15
                                       69
                                            26
                                                 49
                                                      11
                                                             3
66
     70
         10
67
     10
         54
               42
                   32
                         56
                             39
                                  60
                                        79
                                            33
                                                 12
                                                      47
                                                           24
                                            20
19
     47
         63
              32
                         70
                             55
                                  46
                                       11
                                                  15
                                                      39
                                                           37
28
     72
         46
               64
                   61
                         51
                             56
                                  53
                                       61
                                            11
                                                 80
                                                      53
                                                           28
76
      6
           5
               39
                   58
                         29
                             52
                                  54
                                       47
                                            60
                                                 62
                                                      51
                                                           72
41
     57
         32
               12
                   33
                         17
                             40
                                  20
                                        10
                                            27
                                                 47
                                                      71
                                                           68
                        23
                             12
                                  33
                                        16
                                                 71
                                                           58
44
         23
               17
                   81
                                            46
                                                      48
         43
              31
                    72
                         68
                             36
79
     80
                                  41
                                       11
```

- ▶ It's a little hard to get a feel for the data, so we could count the frequency in each bin, order the data numerically, or calculate various **statistics**.
- ▶ In doing so, we lose some of the information but might get a clearer overview.

▶ Here we have placed the data into bins of **class width** 5.

| Group<br>Number | Age<br>Range      | Tally | Number<br>in Group<br>(Frequency) |  |  |  |
|-----------------|-------------------|-------|-----------------------------------|--|--|--|
| 1               | $0 \le x < 5$     |       | 1                                 |  |  |  |
| 2               | $5 \le x < 10$    |       | 4                                 |  |  |  |
| 3               | $10 \le x < 15$   |       | 12                                |  |  |  |
| 4               | $15 \le x < 20$   |       | 6                                 |  |  |  |
| 5               | $20 \le x < 25$   |       | 5                                 |  |  |  |
| 6               | $25 \le x < 30$   |       | 5                                 |  |  |  |
| 7               | $30 \le x < 35$   |       | 7                                 |  |  |  |
| 8               | $35 \le x < 40$   |       | 5                                 |  |  |  |
| 9               | $40 \le x < 45$   |       | 6                                 |  |  |  |
| 10              | $45 \le x < 50$   |       | 9                                 |  |  |  |
| 11              | $50 \le x < 55$   |       | 8                                 |  |  |  |
| 12              | $55 \le x < 60$   |       | 6                                 |  |  |  |
| 13              | $60 \le x < 65$   |       | 8                                 |  |  |  |
| 14              | $65 \le x < 70$   |       | 5                                 |  |  |  |
| 15              | $70 \le x < 75$   |       | 7                                 |  |  |  |
| 16              | $75 \le x < 80$   |       | 3                                 |  |  |  |
| 17              | $80 \le x < 85$   |       | 3                                 |  |  |  |
| 18              | $85 \le x < 90$   |       | 0                                 |  |  |  |
| 19              | $90 \le x < 95$   |       | 0                                 |  |  |  |
| 20              | $95 \le x < 100$  |       | 0                                 |  |  |  |
| 21              | $100 \le x < 105$ |       | 0                                 |  |  |  |

Charts: Bar Chart



# Charts: Histogram



# Charts: Histogram



▶ **Arithmetic Mean**: Add up all of the values and divide by how many there are.

- Arithmetic Mean: Add up all of the values and divide by how many there are.
- ▶ **Median**: Order the data and look at the middle value(s).

- ▶ **Arithmetic Mean**: Add up all of the values and divide by how many there are.
- ▶ **Median**: Order the data and look at the middle value(s).
- Mode: Tally the data and select the one with the highest frequency.



▶ In a sample of five values (6, 9, 2, 4, 3) the mean value is:

$$\frac{6+9+2+4+3}{5} = \frac{24}{5} = 4.8.$$

▶ In a sample of five values (6, 9, 2, 4, 3) the mean value is:

$$\frac{6+9+2+4+3}{5} = \frac{24}{5} = 4.8.$$

The one hundred values from the previous histogram example add up to 4165 and so the mean value is  $\frac{4165}{100} = 41.65$ .

▶ In a sample of five values (6, 9, 2, 4, 3) the mean value is:

$$\frac{6+9+2+4+3}{5} = \frac{24}{5} = 4.8.$$

- ▶ The one hundred values from the previous histogram example add up to 4165 and so the mean value is  $\frac{4165}{100} = 41.65$ .
- For *n* data values  $x_1, x_2, \ldots, x_n$ , the formula for the mean is:

$$\bar{x}=\frac{x_1+x_2+\ldots+x_n}{n}.$$

▶ In a sample of five values (6, 9, 2, 4, 3) the mean value is:

$$\frac{6+9+2+4+3}{5} = \frac{24}{5} = 4.8.$$

- ▶ The one hundred values from the previous histogram example add up to 4165 and so the mean value is  $\frac{4165}{100} = 41.65$ .
- For *n* data values  $x_1, x_2, \ldots, x_n$ , the formula for the mean is:

$$\bar{x}=\frac{x_1+x_2+\ldots+x_n}{n}.$$

- ▶ Here we arrange the data values in ascending (or descending) order. Then the **median** is:
  - 1. the middle item if there is an odd number of data items;
  - 2. the average of the middle two items if there is an even number of data items.

- ▶ Here we arrange the data values in ascending (or descending) order. Then the **median** is:
  - 1. the middle item if there is an odd number of data items;
  - 2. the average of the middle two items if there is an even number of data items.
- ▶ E.g., if the ordered data is 2, 3, 4, 6, 9, then the middle item is 4 and so the median is 4.

- ▶ Here we arrange the data values in ascending (or descending) order. Then the **median** is:
  - 1. the middle item if there is an odd number of data items;
  - 2. the average of the middle two items if there is an even number of data items.
- ▶ E.g., if the ordered data is 2, 3, 4, 6, 9, then the middle item is 4 and so the median is 4.
- From our histogram example, the sample of one hundred data values, the ordered data is:

| 3  | 5  | 6  | 7  | 7  | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 11 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 12 | 12 | 12 | 13 | 15 | 15 | 16 | 17 | 17 | 19 | 20 | 20 | 23 |
| 23 | 24 | 26 | 27 | 28 | 28 | 29 | 31 | 32 | 32 | 32 | 33 | 33 |
| 33 | 36 | 37 | 39 | 39 | 39 | 40 | 41 | 41 | 42 | 43 | 44 | 46 |
| 46 | 46 | 47 | 47 | 47 | 47 | 48 | 49 | 51 | 51 | 52 | 53 | 53 |
| 54 | 54 | 54 | 55 | 56 | 56 | 57 | 58 | 58 | 60 | 60 | 61 | 61 |
| 62 | 62 | 63 | 64 | 66 | 67 | 68 | 68 | 69 | 70 | 70 | 71 | 71 |
| 72 | 72 | 72 | 76 | 79 | 79 | 80 | 80 | 81 |    |    |    |    |

- ▶ Here we arrange the data values in ascending (or descending) order. Then the **median** is:
  - 1. the middle item if there is an odd number of data items;
  - 2. the average of the middle two items if there is an even number of data items.
- ▶ E.g., if the ordered data is 2, 3, 4, 6, 9, then the middle item is 4 and so the median is 4.
- From our histogram example, the sample of one hundred data values, the ordered data is:

| 3  | 5  | 6  | 7  | 7  | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 11 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 12 | 12 | 12 | 13 | 15 | 15 | 16 | 17 | 17 | 19 | 20 | 20 | 23 |
| 23 | 24 | 26 | 27 | 28 | 28 | 29 | 31 | 32 | 32 | 32 | 33 | 33 |
| 33 | 36 | 37 | 39 | 39 | 39 | 40 | 41 | 41 | 42 | 43 | 44 | 46 |
| 46 | 46 | 47 | 47 | 47 | 47 | 48 | 49 | 51 | 51 | 52 | 53 | 53 |
| 54 | 54 | 54 | 55 | 56 | 56 | 57 | 58 | 58 | 60 | 60 | 61 | 61 |
| 62 | 62 | 63 | 64 | 66 | 67 | 68 | 68 | 69 | 70 | 70 | 71 | 71 |
| 72 | 72 | 72 | 76 | 79 | 79 | 80 | 80 | 81 |    |    |    |    |

The middle two values are 43 and 44, hence the median is 43.5.

▶ The **mode** is the data value which occurs most in the sample.

- ▶ The **mode** is the data value which occurs most in the sample.
- ► For grouped data we can talk of a **modal group** or **modal class**, sometimes specifying the mid-point in order to give a single value.

- ▶ The **mode** is the data value which occurs most in the sample.
- For grouped data we can talk of a modal group or modal class, sometimes specifying the mid-point in order to give a single value.
- ► For the one hundred data values in the histogram example the mode is clearly indicated on the bar chart as the tallest bar: 11. We can also tally values to find it.





▶ *A* is a statement which is either true or false.

- ▶ A is a statement which is either true or false.
- N is the number of trials, or observations.

- ▶ A is a statement which is either true or false.
- ▶ *N* is the number of trials, or observations.
- $\triangleright$  S is the number of successes (so N-S is the number of failures).

- ▶ A is a statement which is either true or false.
- ▶ *N* is the number of trials, or observations.
- $\triangleright$  S is the number of successes (so N-S is the number of failures).
- ► For a single trial: Probability that *A* is true, or the **probability of success**, is:

$$P(A) = \frac{S}{N}$$
.

- ▶ A is a statement which is either true or false.
- N is the number of trials, or observations.
- $\triangleright$  *S* is the number of successes (so N-S is the number of failures).
- ► For a single trial: Probability that *A* is true, or the **probability of success**, is:

$$P(A)=\frac{S}{N}.$$

▶ Since  $0 \le S \le N$ , then  $0 \le P(A) \le 1$ .

- ▶ A is a statement which is either true or false.
- ▶ *N* is the number of trials, or observations.
- $\triangleright$  S is the number of successes (so N-S is the number of failures).
- ► For a single trial: Probability that *A* is true, or the **probability of success**, is:

$$P(A)=\frac{S}{N}.$$

- ▶ Since  $0 \le S \le N$ , then  $0 \le P(A) \le 1$ .
- ► The *probability of failure* is:

$$P(\overline{A}) = \frac{N-S}{N} = 1 - \frac{S}{N} = 1 - P(A).$$

Tossing a coin:

► Toss a coin 4 times: we *expect* 2 heads.

- ▶ Toss a coin 4 times: we *expect* 2 heads.
- ▶ Toss a coin 100 times: we *expect* 50 heads.

- ▶ Toss a coin 4 times: we *expect* 2 heads.
- ▶ Toss a coin 100 times: we *expect* 50 heads.
- ► Toss a coin once: what do we *expect*?

- ▶ Toss a coin 4 times: we *expect* 2 heads.
- ▶ Toss a coin 100 times: we *expect* 50 heads.
- ► Toss a coin once: what do we *expect*?

$$P(\text{one head in one trial}) = \frac{1}{2}.$$

### Tossing a coin:

- ▶ Toss a coin 4 times: we expect 2 heads.
- ▶ Toss a coin 100 times: we *expect* 50 heads.
- ► Toss a coin once: what do we expect?

$$P(\text{one head in one trial}) = \frac{1}{2}.$$

▶ A = 'a head shows when a coin is tossed', so  $P(A) = \frac{1}{2}$ .

| Group<br>Number | Age<br>Range      | Tally | Number<br>in Group<br>(Frequency) |
|-----------------|-------------------|-------|-----------------------------------|
| 1               | $0 \le x < 5$     |       | 1                                 |
| 2               | $5 \le x < 10$    |       | 4                                 |
| 3               | $10 \le x < 15$   |       | 12                                |
| 4               | $15 \le x < 20$   |       | 6                                 |
| 5               | $20 \le x < 25$   |       | 5                                 |
| 6               | $25 \le x < 30$   |       | 5                                 |
| 7               | $30 \le x < 35$   |       | 7                                 |
| 8               | $35 \le x < 40$   |       | 5                                 |
| 9               | $40 \le x < 45$   |       | 6                                 |
| 10              | $45 \le x < 50$   |       | 9                                 |
| 11              | $50 \le x < 55$   |       | 8                                 |
| 12              | $55 \le x < 60$   |       | 6                                 |
| 13              | $60 \le x < 65$   |       | 8                                 |
| 14              | $65 \le x < 70$   |       | 5                                 |
| 15              | $70 \le x < 75$   |       | 7                                 |
| 16              | $75 \le x < 80$   |       | 3                                 |
| 17              | $80 \le x < 85$   |       | 3                                 |
| 18              | $85 \le x < 90$   |       | 0                                 |
| 19              | $90 \le x < 95$   |       | 0                                 |
| 20              | $95 \le x < 100$  |       | 0                                 |
| 21              | $100 \le x < 105$ |       | 0                                 |

| Group<br>Number | Age<br>Range      | Tally | Number<br>in Group<br>(Frequency) |  |
|-----------------|-------------------|-------|-----------------------------------|--|
| 1               | $0 \le x < 5$     |       | 1                                 |  |
| 2               | $5 \le x < 10$    |       | 4                                 |  |
| 3               | $10 \le x < 15$   |       | 12                                |  |
| 4               | $15 \le x < 20$   |       | 6                                 |  |
| 5               | $20 \le x < 25$   |       | 5                                 |  |
| 6               | $25 \le x < 30$   |       | 5                                 |  |
| 7               | $30 \le x < 35$   |       | 7                                 |  |
| 8               | $35 \le x < 40$   |       | 5                                 |  |
| 9               | 40 ≤ x < 45       |       | 6                                 |  |
| 10              | $45 \le x < 50$   |       | 9                                 |  |
| 11              | $50 \le x < 55$   |       | 8                                 |  |
| 12              | $55 \le x < 60$   |       | 6                                 |  |
| 13              | $60 \le x < 65$   |       | 8                                 |  |
| 14              | $65 \le x < 70$   |       | 5                                 |  |
| 15              | $70 \le x < 75$   |       | 7                                 |  |
| 16              | $75 \le x < 80$   |       | 3                                 |  |
| 17              | $80 \le x < 85$   |       | 3                                 |  |
| 18              | $85 \le x < 90$   |       | 0                                 |  |
| 19              | 90 ≤ x < 95       |       | 0                                 |  |
| 20              | $95 \le x < 100$  |       | 0                                 |  |
| 21              | $100 \le x < 105$ |       | 0                                 |  |

Age at last birthday:

▶ Probability that one of the people selected at random is in the 15-19 age group.

| Group<br>Number |                   |  | Number<br>in Group<br>(Frequency) |  |
|-----------------|-------------------|--|-----------------------------------|--|
| 1               | $0 \le x < 5$     |  | 1                                 |  |
| 2               | $5 \le x < 10$    |  | 4                                 |  |
| 3               | $10 \le x < 15$   |  | 12                                |  |
| 4               | $15 \le x < 20$   |  | 6                                 |  |
| 5               | $20 \le x < 25$   |  | 5                                 |  |
| 6               | $25 \le x < 30$   |  | 5                                 |  |
| 7               | $30 \le x < 35$   |  | 7                                 |  |
| 8               | $35 \le x < 40$   |  | 5                                 |  |
| 9               | 40 ≤ x < 45       |  | 6                                 |  |
| 10              | $45 \le x < 50$   |  | 9                                 |  |
| 11              | $50 \le x < 55$   |  | 8                                 |  |
| 12              | $55 \le x < 60$   |  | 6                                 |  |
| 13              | $60 \le x < 65$   |  | 8                                 |  |
| 14              | $65 \le x < 70$   |  | 5                                 |  |
| 15              | $70 \le x < 75$   |  | 7                                 |  |
| 16              | $75 \le x < 80$   |  | 3                                 |  |
| 17              | $80 \le x < 85$   |  | 3                                 |  |
| 18              | $85 \le x < 90$   |  | 0                                 |  |
| 19              | $90 \le x < 95$   |  | 0                                 |  |
| 20              | $95 \le x < 100$  |  | 0                                 |  |
| 21              | $100 \le x < 105$ |  | 0                                 |  |

- ▶ Probability that one of the people selected at random is in the 15-19 age group.
- ▶ The total number of outcomes is 100 and the number of 'successes' is 6.

| Group<br>Number | Age<br>Range      | Tally | Number<br>in Group<br>(Frequency) |  |
|-----------------|-------------------|-------|-----------------------------------|--|
| 1               | $0 \le x < 5$     |       | 1                                 |  |
| 2               | $5 \le x < 10$    |       | 4                                 |  |
| 3               | $10 \le x < 15$   |       | 12                                |  |
| 4               | $15 \le x < 20$   |       | 6                                 |  |
| 5               | $20 \le x < 25$   |       | 5                                 |  |
| 6               | $25 \le x < 30$   |       | 5                                 |  |
| 7               | $30 \le x < 35$   |       | 7                                 |  |
| 8               | $35 \le x < 40$   |       | 5                                 |  |
| 9               | 40 ≤ x < 45       |       | 6                                 |  |
| 10              | $45 \le x < 50$   |       | 9                                 |  |
| 11              | $50 \le x < 55$   |       | 8                                 |  |
| 12              | $55 \le x < 60$   |       | 6                                 |  |
| 13              | $60 \le x < 65$   |       | 8                                 |  |
| 14              | $65 \le x < 70$   |       | 5                                 |  |
| 15              | $70 \le x < 75$   |       | 7                                 |  |
| 16              | $75 \le x < 80$   |       | 3                                 |  |
| 17              | $80 \le x < 85$   |       | 3                                 |  |
| 18              | $85 \le x < 90$   |       | 0                                 |  |
| 19              | 90 ≤ x < 95       |       | 0                                 |  |
| 20              | $95 \le x < 100$  |       | 0                                 |  |
| 21              | $100 \le x < 105$ |       | 0                                 |  |

- ▶ Probability that one of the people selected at random is in the 15-19 age group.
- ▶ The total number of outcomes is 100 and the number of 'successes' is 6.
- ▶ The probability of success is:  $P(Success) = \frac{6}{100}$ .

| Group<br>Number | Age<br>Range     | Tally | Number<br>in Group<br>(Frequency) |  |
|-----------------|------------------|-------|-----------------------------------|--|
| 1               | $0 \le x < 5$    |       | 1                                 |  |
| 2               | $5 \le x < 10$   |       | 4                                 |  |
| 3               | $10 \le x < 15$  |       | 12                                |  |
| 4               | $15 \le x < 20$  |       | 6                                 |  |
| 5               | $20 \le x < 25$  |       | 5                                 |  |
| 6               | $25 \le x < 30$  |       | 5                                 |  |
| 7               | $30 \le x < 35$  |       | 7                                 |  |
| 8               | $35 \le x < 40$  |       | 5                                 |  |
| 9               | $40 \le x < 45$  |       | 6                                 |  |
| 10              | $45 \le x < 50$  |       | 9                                 |  |
| 11              | $50 \le x < 55$  |       | 8                                 |  |
| 12              | $55 \le x < 60$  |       | 6                                 |  |
| 13              | $60 \le x < 65$  |       | 8                                 |  |
| 14              | $65 \le x < 70$  |       | 5                                 |  |
| 15              | $70 \le x < 75$  |       | 7                                 |  |
| 16              | $75 \le x < 80$  |       | 3                                 |  |
| 17              | $80 \le x < 85$  |       | 3                                 |  |
| 18              | $85 \le x < 90$  |       | 0                                 |  |
| 19              | $90 \le x < 95$  |       | 0                                 |  |
| 20              | $95 \le x < 100$ |       | 0                                 |  |
| 21              | 100 < x < 105    |       | 0                                 |  |

- Probability that one of the people selected at random is in the 15-19 age group.
- ▶ The total number of outcomes is 100 and the number of 'successes' is 6.
- ► The probability of success is:  $P(Success) = \frac{6}{100}$ .
- ► The probability of failure is:  $P(\text{Failure}) = \frac{94}{100}$ .

Rolling dice:

### Rolling dice:

▶ Two dice are rolled and the sum of the spots is calculated.

### Rolling dice:

- ▶ Two dice are rolled and the sum of the spots is calculated.
- ightharpoonup A = 'The sum is 7 when two dice are rolled.'

### Rolling dice:

- ▶ Two dice are rolled and the sum of the spots is calculated.
- $\triangleright$  A = 'The sum is 7 when two dice are rolled.'

| (1, 1) | (1, 2) | (1, 3) | (1, 4) | (1, 5) | (1, 6) |
|--------|--------|--------|--------|--------|--------|
| (2, 1) | (2, 2) | (2, 3) | (2, 4) | (2, 5) | (2, 6) |
| (3, 1) | (3, 2) | (3, 3) | (3, 4) | (3, 5) | (3, 6) |
| (4, 1) | (4, 2) | (4, 3) | (4, 4) | (4, 5) | (4, 6) |
| (5, 1) | (5, 2) | (5, 3) | (5, 4) | (5, 5) | (5, 6) |
| (6, 1) | (6, 2) | (6, 3) | (6, 4) | (6, 5) | (6, 6) |

#### Rolling dice:

- ▶ Two dice are rolled and the sum of the spots is calculated.
- $\triangleright$  A = 'The sum is 7 when two dice are rolled.'

| (1, 1) | (1, 2) | (1, 3) | (1, 4) | (1, 5) | (1, 6) |
|--------|--------|--------|--------|--------|--------|
| (2, 1) | (2, 2) | (2, 3) | (2, 4) | (2, 5) | (2, 6) |
| (3, 1) | (3, 2) | (3, 3) | (3, 4) | (3, 5) | (3, 6) |
| (4, 1) | (4, 2) | (4, 3) | (4, 4) | (4, 5) | (4, 6) |
| (5, 1) | (5, 2) | (5, 3) | (5, 4) | (5, 5) | (5, 6) |
| (6, 1) | (6, 2) | (6, 3) | (6, 4) | (6, 5) | (6, 6) |

► There are 36 possible outcomes when rolling two dice. But only six of these outcomes make A true.

### Rolling dice:

- ▶ Two dice are rolled and the sum of the spots is calculated.
- $\triangleright$  A = 'The sum is 7 when two dice are rolled.'

| (1, 1) | (1, 2) | (1, 3) | (1, 4) | (1, 5) | (1, 6) |
|--------|--------|--------|--------|--------|--------|
| (2, 1) | (2, 2) | (2, 3) | (2, 4) | (2, 5) | (2, 6) |
| (3, 1) | (3, 2) | (3, 3) | (3, 4) | (3, 5) | (3, 6) |
| (4, 1) | (4, 2) | (4, 3) | (4, 4) | (4, 5) | (4, 6) |
| (5, 1) | (5, 2) | (5, 3) | (5, 4) | (5, 5) | (5, 6) |
| (6, 1) | (6, 2) | (6, 3) | (6, 4) | (6, 5) | (6, 6) |

- ► There are 36 possible outcomes when rolling two dice. But only six of these outcomes make *A* true.
- Number of trials N = 36, number of successes S = 6.

$$P(A) = \frac{6}{36} = \frac{1}{6}$$
.



Last semester you used  $A \cdot B$  to mean A AND B. We will sometimes use  $A \wedge B$  instead.

- ▶ Last semester you used  $A \cdot B$  to mean A AND B. We will sometimes use  $A \wedge B$  instead.
- ▶ Its analogue in set theory is **intersection**:  $A \cap B$ .

- ▶ Last semester you used  $A \cdot B$  to mean A AND B. We will sometimes use  $A \wedge B$  instead.
- ▶ Its analogue in set theory is **intersection**:  $A \cap B$ .
- ▶ Last semester you used A + B to mean A OR B. We will sometimes use  $A \lor B$  instead.

- ▶ Last semester you used  $A \cdot B$  to mean A AND B. We will sometimes use  $A \wedge B$  instead.
- ▶ Its analogue in set theory is **intersection**:  $A \cap B$ .
- ▶ Last semester you used A + B to mean  $A \cap B$ . We will sometimes use  $A \vee B$  instead.
- ▶ Its analogue in set theory is **union**:  $A \cup B$ .

Consider two events A and B.

- Consider two events A and B.
- $\triangleright$  P(A) and P(B) are denoted by the sets in the Venn diagram.

- Consider two events A and B.
- ightharpoonup P(A) and P(B) are denoted by the sets in the Venn diagram.



▶ The intersection of the sets is  $P(A \land B)$ : this is the probability A and B are both true.

- Consider two events A and B.
- ightharpoonup P(A) and P(B) are denoted by the sets in the Venn diagram.



- ▶ The intersection of the sets is  $P(A \land B)$ : this is the probability A and B are both true.
- ▶ If A and B are mutually exclusive (i.e., can't both be true at the same time), then  $P(A \land B) = 0$ .

- Consider two events A and B.
- $\triangleright$  P(A) and P(B) are denoted by the sets in the Venn diagram.



- ▶ The intersection of the sets is  $P(A \land B)$ : this is the probability A and B are both true.
- ▶ If A and B are mutually exclusive (i.e., can't both be true at the same time), then  $P(A \land B) = 0$ .
- ▶ If A and B are **independent** (i.e., the outcome of one does not affect the other), then  $P(A \land B) = P(A) \times P(B)$ .

▶ A pack of 52 playing cards has 26 red cards and 26 black cards.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- One card is drawn from the full pack at random, then replaced in the pack.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then replaced in the pack.
- ▶ Then a second card is drawn from the pack.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then replaced in the pack.
- ▶ Then a second card is drawn from the pack.
- Calculate the probability that both cards are red.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then replaced in the pack.
- ▶ Then a second card is drawn from the pack.
- Calculate the probability that both cards are red.
- Let A = 'The first card is red' and B = 'The second card is red'.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then replaced in the pack.
- ► Then a second card is drawn from the pack.
- ► Calculate the probability that both cards are red.
- ▶ Let A = 'The first card is red' and B = 'The second card is red'.
- ▶  $P(A) = \frac{26}{52} = \frac{1}{2}$  and  $P(B) = \frac{26}{52} = \frac{1}{2}$ . The two events are independent, so:

$$P(A \wedge B) = P(A) \times P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}.$$

► Consider two events *A* and *B*.

- Consider two events A and B.
- $\triangleright$  P(A) and P(B) are denoted by the sets in the Venn diagram.



- Consider two events A and B.
- $\triangleright$  P(A) and P(B) are denoted by the sets in the Venn diagram.



▶ The union of the sets is  $P(A \lor B)$ : this is the probability that A or B are true.

- Consider two events A and B.
- $\triangleright$  P(A) and P(B) are denoted by the sets in the Venn diagram.

P(A) P(B)

- ▶ The union of the sets is  $P(A \lor B)$ : this is the probability that A or B are true.
- ▶ If A and B are mutually exclusive, then  $P(A \lor B) = P(A) + P(B)$ .

- Consider two events A and B.
- $\triangleright$  P(A) and P(B) are denoted by the sets in the Venn diagram.

P(A) P(B)

- ▶ The union of the sets is  $P(A \lor B)$ : this is the probability that A or B are true.
- ▶ If A and B are mutually exclusive, then  $P(A \lor B) = P(A) + P(B)$ .
- ► In general,

$$P(A \vee B) = P(A) + P(B)$$

- Consider two events A and B.
- $\triangleright$  P(A) and P(B) are denoted by the sets in the Venn diagram.

P(A) P(B)

- ▶ The union of the sets is  $P(A \lor B)$ : this is the probability that A or B are true.
- ▶ If A and B are mutually exclusive, then  $P(A \lor B) = P(A) + P(B)$ .
- ► In general,

$$P(A \vee B) = P(A) + P(B) - P(A \wedge B).$$

Same setup as our previous example, but now we want the probability that at least one card is red.  $(P(A) = P(B) = \frac{1}{2})$ 

- Same setup as our previous example, but now we want the probability that at least one card is red.  $(P(A) = P(B) = \frac{1}{2})$
- ▶ We want to find  $P(A \lor B) = P(A) + P(B) P(A \land B)$ . Since A and B are independent, then  $P(A \land B) = P(A) \times P(B)$ .

- Same setup as our previous example, but now we want the probability that at least one card is red.  $(P(A) = P(B) = \frac{1}{2})$
- ▶ We want to find  $P(A \lor B) = P(A) + P(B) P(A \land B)$ . Since A and B are independent, then  $P(A \land B) = P(A) \times P(B)$ . So:

$$P(A) + P(B) - P(A) \times P(B) = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} = \frac{3}{4}.$$



▶ A short network link consists of two sections (a) and (b), in series as shown below.



▶ The link functions only if both (a) and (b) both function.

 $\triangleright$  A short network link consists of two sections (a) and (b), in series as shown below.



- ▶ The link functions only if both (a) and (b) both function.
- ▶ The two sections are independent. If one fails, the other is not affected.

 $\triangleright$  A short network link consists of two sections (a) and (b), in series as shown below.



- ► The link functions only if both (a) and (b) both function.
- ▶ The two sections are independent. If one fails, the other is not affected.
- The probability that (a) functions is P(A) = 0.8, while for (b) the probability is P(B) = 0.9.

 $\triangleright$  A short network link consists of two sections (a) and (b), in series as shown below.



- ▶ The link functions only if both (a) and (b) both function.
- ▶ The two sections are independent. If one fails, the other is not affected.
- ▶ The probability that (a) functions is P(A) = 0.8, while for (b) the probability is P(B) = 0.9.
- ▶ The probability that the network functions (both sections function) is:

$$P(A \land B) = P(A) \times P(B) = 0.8 \times 0.9 = 0.72.$$



A short network link consists of two sections (a) and (b), in parallel as shown below.



▶ The link functions if either of (a) or (b) function (or both).



- ▶ The link functions if either of (a) or (b) function (or both).
- ▶ The two sections are independent. If one fails, the other is not affected.



- ▶ The link functions if either of (a) or (b) function (or both).
- ▶ The two sections are independent. If one fails, the other is not affected.
- The probability that (a) functions is P(A) = 0.8, while for (b) the probability is P(B) = 0.9.



- ▶ The link functions if either of (a) or (b) function (or both).
- ▶ The two sections are independent. If one fails, the other is not affected.
- ▶ The probability that (a) functions is P(A) = 0.8, while for (b) the probability is P(B) = 0.9.
- ► The probability that the network functions is:

$$P(A \lor B) = P(A) + P(B) - P(A \land B) = 0.8 + 0.9 - 0.72 = 0.98.$$

▶ When two events are *not independent*, then the process is not as simple.

- ▶ When two events are *not independent*, then the process is not as simple.
- ► Consider a single trial consisting of two events *A* and *B*.

- ▶ When two events are *not independent*, then the process is not as simple.
- Consider a single trial consisting of two events A and B.
- ▶ The **conditional probability** P(B|A) means 'the probability that B will be true *given that* A is already true'.

▶ A pack of 52 playing cards has 26 red cards and 26 black cards.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- One card is drawn from the full pack at random, then kept.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then *kept*.
- Then a second card is drawn from the pack.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then *kept*.
- Then a second card is drawn from the pack.
- Calculate the probability that both cards are red.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then *kept*.
- ► Then a second card is drawn from the pack.
- Calculate the probability that both cards are red.
- ▶ Let A = 'The first card is red' and B = 'The second card is red'.

- ► A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then *kept*.
- Then a second card is drawn from the pack.
- Calculate the probability that both cards are red.
- Let A = 'The first card is red' and B = 'The second card is red'.
- ▶  $P(A) = \frac{26}{52} = \frac{1}{2}$  as before but P(B) is a conditional probability because it depends on the result of event A.

- ▶ A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then *kept*.
- Then a second card is drawn from the pack.
- Calculate the probability that both cards are red.
- ▶ Let A = 'The first card is red' and B = 'The second card is red'.
- ▶  $P(A) = \frac{26}{52} = \frac{1}{2}$  as before but P(B) is a conditional probability because it depends on the result of event A.
- ▶ If the first card was red, then there are now only 25 cards left in the remaining 51 cards, so:

$$P(B|A)=\frac{25}{51}.$$

- ► A pack of 52 playing cards has 26 red cards and 26 black cards.
- ▶ One card is drawn from the full pack at random, then *kept*.
- ▶ Then a second card is drawn from the pack.
- Calculate the probability that both cards are red.
- ▶ Let A = 'The first card is red' and B = 'The second card is red'.
- ▶  $P(A) = \frac{26}{52} = \frac{1}{2}$  as before but P(B) is a conditional probability because it depends on the result of event A.
- ▶ If the first card was red, then there are now only 25 cards left in the remaining 51 cards, so:

$$P(B|A) = \frac{25}{51}.$$

This means the probability that the second card is red given the first card was red is:

$$P(A \wedge B) = P(B|A) \times P(A) = \frac{25}{51} \times \frac{1}{2} = \frac{25}{102}.$$

▶ The **conditional probability** can be expressed as

$$P(B|A) = \frac{P(A \wedge B)}{P(A)}.$$

▶ The conditional probability can be expressed as

$$P(B|A) = \frac{P(A \wedge B)}{P(A)}.$$

► This can be rearranged as

$$P(A \wedge B) = P(B|A) \times P(A).$$

▶ The conditional probability can be expressed as

$$P(B|A) = \frac{P(A \wedge B)}{P(A)}.$$

► This can be rearranged as

$$P(A \wedge B) = P(B|A) \times P(A).$$

► If A and B are independent, then

$$P(B|A) = P(B)$$
.

Calculate the probability that the first card is black and the second card is red.

- ► Calculate the probability that the first card is black and the second card is red.
- ▶ Both cards are red:

$$P(A \wedge B) = P(B|A) \times P(A) = \frac{25}{51} \times \frac{1}{2} = \frac{25}{102}.$$

- ► Calculate the probability that the first card is black and the second card is red.
- ► Both cards are red:

$$P(A \wedge B) = P(B|A) \times P(A) = \frac{25}{51} \times \frac{1}{2} = \frac{25}{102}.$$

First card is black, second card is red:

$$P(\overline{A} \wedge B) = P(B|\overline{A}) \times P(\overline{A}) = \frac{26}{51} \times \frac{1}{2} = \frac{26}{102}.$$

## **Probability Trees**

For small examples, we can often visualise things in the form of a **probability tree**.

#### **Probability Trees**

For small examples, we can often visualise things in the form of a **probability tree**.

