### § 5.3 抽样分布

在实际应用中,当我们从总体中抽取一个样本  $(X_1, X_2, ..., X_n)$ 后,并不能直接应用它去对进行统计推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。为了进行统计推断,需要把分散的信息集中起来,针对不同的研究目的,构造不同的样本函数,这种函数在统计学中称为统计量.

定义1 设 $X_1, X_2, \dots, X_n$ 是从总体X中抽取的容量为n的一个样本,如果由此样本构造一个函数  $T(X_1, X_2, \dots, X_n)$ 不依赖于任何未知参数,则称函数

 $T(X_1, X_2, ..., X_n)$ 为一个统计量. 当获得样本的一组具体观测值 $x_1, x_2, ..., x_n$ 后,称 $T(x_1, x_2, ..., x_n)$ 为该统计统计量的一个观测值.

例1 设 $X_1, X_2, ..., X_n$ 是从某总体X中抽取的一个样本,判断下列各量是否为统计量.

$$(1)\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i},$$

$$(2)S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

$$(3)\sum_{i=1}^{n} [X_{i} - E(X)]^{2},$$

$$(4)\frac{X_{i} - E(X)}{D(X)}.$$

解: (1)(2)是统计量, (3)(4)不是统计量. 因为(3)(4)依赖总体分布的未知参数.

#### 一常用的统计量

对于一维总体X,常用的统计量有

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i;$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2;$$

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2};$$

$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k;$$

(5)样本*k*阶中心矩 
$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k;$$

此外,有顺序统计量、样本峰度和样本偏度等统计量,对于二维总体(*X*,*Y*),常用的统计量有(6)样本协方差

$$S_{XY}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y});$$

(7)样本相关系数

$$\rho_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \cdot \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}};$$

当样本取得观测值 $x_1, x_2, ..., x_n$ 后,代入即可得到这些统计量的观测值.

寻找抽样分布一般有两种方法:

- (1)求出分布函数的精确表达式;
- (2)求其渐近分布.

只有在少数情况下,才能得到统计量的精确分布.

下面介绍数理统计中的三大分布.

#### 二 数理统计的三大分布

### (-) $\chi^2$ 分布

设 $X_1, X_2, \cdots, X_n$ 相互独立且都服从N(0,1),则称随机变量

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$$

所服从的分布称为自由度为n的 $\chi^2$ 分布,记为 $\chi^2$ (n). 其密度函数为

$$f_{\chi^{2}}(x,n) = \begin{cases} \frac{1}{2^{n/2} \Gamma(n/2)} x^{\frac{n}{2}-1} e^{-x/2}, & x > 0; \\ 0, & x \leq 0. \end{cases}$$

其中 
$$\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$$
,  $r > 0$ .



χ²分布的概率密度函数

### $\chi^2$ 分布的特点:

- 1. 分布的变量值始终为正;
- 2. 分布的形状取决于自由度n的大小,通常为不对称的正偏分布,但随着n的增大逐渐趋于对称;

### $\chi^2$ 分布的性质:

性质1 
$$E(\chi^2(n)) = n$$
,  $D(\chi^2(n)) = 2n$ ;  
证明:  $X_i \sim N(0,1)$ ,  $EX_i^2 = DX_i = 1$ ,  $D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2 = 3 - 1 = 2$ , 故  
 $E(\chi^2) = E(\sum_{i=1}^n X_i^2) = \sum_{i=1}^n E(X_i^2) = n$ .  $D(\chi^2) = D(\sum_{i=1}^n X_i^2) = \sum_{i=1}^n D(X_i^2) = 2n$ .

性质2  $\chi^2$ 分布的可加性:

设
$$\chi_1^2 \sim \chi^2(n_1)$$
,  $\chi_2^2 \sim \chi^2(n_2)$ ,并且相互独立,则 
$$\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2).$$

(此性质可以推广到多个随机变量的情形)

设 $\chi_i^2 \sim \chi^2(n_i)$ , 并且 $\chi_i^2(i=1,\cdots,m)$ 相互独立,则

$$\sum_{i=1}^{m} \chi_{i}^{2} \sim \chi^{2} (n_{1} + n_{2} + \cdots + n_{m}).$$

证明:利用卷积公式

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx$$

即可证明. 亦可利用特征函数证明.

性质3 设 $\chi^2 \sim \chi^2(n)$ ,则对任意x,有

$$\lim_{n\to\infty} P\{\frac{\chi^2 - n}{\sqrt{2n}} \le x\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

证明 由假设 $\chi^2 = \sum_{i=1}^n X_i^2$ , 其中 $X_1, X_2, \dots, X_n$ 独立且

每个 $X_i \sim N(0,1)$ ,因而 $X_1^2, X_2^2, \cdots, X_n^2$ 独立同分布,且

$$E(X_i^2) = 1,$$
  $D(X_i^2) = 2.$   $(i = 1, 2, \dots, n)$ 

由中心极限定理得

$$\lim_{n\to\infty} P\{\frac{\chi^2 - n}{\sqrt{2n}} \le x\} = \lim_{n\to\infty} P\{\frac{\sum_{i=1}^n X_i^2 - n\mu}{\sqrt{n\sigma}} \le x\}$$
$$= \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

即 $\chi^2$ 分布的极限分布是正态分布,当n很大时

近似 
$$\chi^2(n) \sim N(n,2n)$$
.

#### (二) *t*分布

设随机变量 $X \sim N(0,1), Y \sim \chi^2(n)$ ,且X与Y独立,则随机变量

$$t = \frac{X}{\sqrt{Y/n}}$$

所服从的分布称为自由度为n的t分布,记为t(n). 其密度函数为

$$f_t(x;n) = \frac{\Gamma[(n+1)/2]}{\Gamma(n/2)\sqrt{n\pi}} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}, -\infty < x < +\infty.$$



t分布的密度函数: 低峰、厚尾

#### *t*分布的性质:

1. 密度函数f(x,n)是偶函数,且

$$\lim_{n\to\infty} f(x,n) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} = \varphi(x).$$

此说明:t分布的极限分布是标准正态分布.

2. t(1)是标准柯西分布,它的均值不存在,

当 $n \ge 2$ 时,t分布的数学期望 E(T) = 0,

当 $n \ge 3$ 时,t分布的方差  $D(T) = \frac{n}{n-2}$ .

#### (三) F分布

设随机变量 $X \sim \chi^2(m)$ ,  $Y \sim \chi^2(n)$ , 且X与Y独立,则随机变量

$$F = \frac{X / m}{Y / n}$$

的分布称为自由度为m与n的F分布,记为 $F \sim F(m, n)$ ,其中m为分子自由度,n为分母自由度.其密度函数为

$$f(x,m,n) = \begin{cases} \frac{\Gamma[(m+n)/2]}{\Gamma(m/2)\Gamma(n/2)} m^{\frac{m}{2}} n^{\frac{n}{2}} \frac{x^{\frac{m}{2}-1}}{m^{\frac{m+n}{2}}}, & x > 0, \\ 0, & x \leq 0. \end{cases}$$



F分布概率密度函数

首先,求出Z = X/Y的密度函数,再求F = nZ/m的密度函数。

$$p_Z(z) = \int_0^{+\infty} y p_1(zy) p_2(y) dy$$

$$=\frac{z^{\frac{m}{2}-1}}{\Gamma(m/2)\Gamma(n/2)2^{\frac{m+n}{2}}}\int_{0}^{+\infty}y^{\frac{m+n}{2}-1}e^{-\frac{y}{2}(1+z)}dy$$

做变换令u = y(1+z)/2, 于是

$$p_{Z}(z) = \frac{z^{\frac{m}{2}-1}(1+z)^{-\frac{m+n}{2}}}{\Gamma(m/2)\Gamma(n/2)} \int_{0}^{+\infty} u^{\frac{m+n}{2}-1} e^{-u} du$$

$$= \frac{\Gamma[(m+n)/2]}{\Gamma(m/2)\Gamma(n/2)} z^{\frac{m}{2}-1} (1+z)^{-\frac{m+n}{2}}, z > 0.$$

求F = nZ/m的密度函数.

$$f_{F}(x) = f_{Z}(\frac{m}{n}x) \cdot \frac{m}{n}$$

$$= \frac{\Gamma[(m+n)/2]}{\Gamma(m/2)\Gamma(n/2)} (\frac{m}{n}x)^{\frac{m}{2}-1} (1 + \frac{m}{n}x)^{-\frac{m+n}{2}} \cdot \frac{m}{n}$$

$$= \frac{\Gamma[(m+n)/2]}{\Gamma(m/2)\Gamma(n/2)} m^{\frac{m}{2}} n^{\frac{n}{2}} \frac{x^{\frac{m}{2}-1}}{(mx+n)^{\frac{m+n}{2}}}$$

这就是自由度为m与n的F分布的密度函数.

#### F分布的性质:

性质1 若 $X \sim F(m,n)$ ,则 $1/X \sim F(n,m)$ ;性质2 若 $X \sim t(n)$ ,则  $X^2 \sim F(1,n)$ ;性质3  $E(F) = \frac{n}{n-2}$  (n > 2), $D(F) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}, \quad (n > 4).$ 

F – 分布是为纪念英国著名统计学家费歇 (R.A. Fisher,1890 – 1962) 而命名的. 它是数 理统计的重要分布之一.



#### 三 分位数(点)

定义 设X的分布函数为F(x), 满足等式  $P(X > x_{\alpha}) = 1 - F(x_{\alpha}) = \alpha,$ 

的实数 $x_{\alpha}$ ,称为随机变量X的上 $\alpha$ 分位数. 其中  $0 < \alpha < 1$ .

注:若F(x)不是严格递增的连续函数时,为保证 $x_{\alpha}$ 的存在性和唯一性,定义改为

$$x_{\alpha} = \inf \{x: 1 - F(x) \leq \alpha \}.$$

标准正态分布, $\chi^2(n)$ ,t(n),F(m,n)的上 $\alpha$ 分位数分别记为 $u_{\alpha}$ , $\chi^2_{\alpha}(n)$ , $t_{\alpha}(n)$ , $F_{\alpha}(m,n)$ 如下图所示:

### 附表2-1

### 标准正态分布表

| Z   | 0.00   | 0.01   | 0.02              | 0.03               | 0.04                  | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|-------------------|--------------------|-----------------------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080            | 0.5120             | 0.5160                | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478            | 0.5517             | 0.5557                | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871            | 0.5910             | 0.5948                | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255            | 0.6293             | 0.6331                | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628            | 0.6664             | 0.6700                | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0      |                   | _                  | 0.7054                | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0      | 1.64              | 15                 | 0.7389                | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0      |                   |                    | 0.7703                | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | <del>0.7959</del> | <del>0.79</del> 07 | <mark>-</mark> 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212            | 0.8238             | 0.8264                | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461            | 0.8485             | 0.8508                | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686            | 0.8708             | 0.8729                | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888            | 0.8907             | 0.8925                | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066            | 0.9082             | 0.9099                | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222            | 0.9236             | 0.9251                | 0.9265 | 0.9278 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357            | 0.9370             | 0.9382                | 0.9394 | 0.9406 | 0.9418 | 0.9430 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474            | 0.9484             | 0.9495                | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |

## 附表2-2

### 标准正态分布表

| Z   | 0.00   | 0.01   | 0.02   | 0.03        | 0.04        | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|-------------|-------------|--------|--------|--------|--------|--------|
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484      | 0.9495      | 0.9505 | 0.9015 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582      | 0.9591      | 0.9599 | 0.9508 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9648 | 0.9656 | 0.9664      | 0.9671      | 0.9678 | 0.9586 | 0.9693 | 0.9700 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732      | 0.9738      | 0.9744 | 0.9750 | 0.9756 | 0.9762 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9    | <del></del> | <del></del> | 9798   | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9    | 1 (         | 16          | 9842   | 0.9846 | 0.9850 | 0.9854 | 0.9853 |
| 2.2 | 0.9861 | 0.9864 | 0.9    | 1.9         | 70          | 9878   | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9    |             |             | 9906   | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925      | 0.9927      | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943      | 0.9945      | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957      | 0.9959      | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968      | 0.9969      | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977      | 0.9977      | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983      | 0.9984      | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9990 | 0.9993 | 0.9995      | 0.9997      | 0.9698 | 0.9998 | 0.9999 | 0.9999 | 1.0000 |

## 附表4-1

# $\chi^2$ 分布表

| n  | $\alpha$ = 0.25 | 0.10   | 0.05   | 0.025  | 0.01   | 0.005  |
|----|-----------------|--------|--------|--------|--------|--------|
| 1  | 1.323           | 2.706  | 3.841  | 5.024  | 6.635  | 7.879  |
| 2  | 2.773           | 4.605  | 5.991  | 7.378  | 9.210  | 10.597 |
| 3  | 4.108           | 6.251  | 7.815  | 9.348  | 11.345 | 12.838 |
| 4  | 5.385           | 7.7    |        | 11.143 | 13.277 | 14.860 |
| 5  | 6.626           | 9.2    | 7.535  | 12.833 | 15.086 | 16.750 |
| 6  | 7.841           | 10.€   |        | 14.449 | 16.812 | 18.548 |
| 7  | 9.037           | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 |
| 8  | 10.219          | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 |
| 9  | 11.389          | 14.684 | 16.919 | 19.023 | 21.666 | 23.589 |
| 10 | 12.549          | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 |
| 11 | 13.701          | 17.275 | 19.675 | 21.920 | 24.725 | 26.757 |
| 12 | 14.845          | 18.549 | 21.026 | 23.337 | 26.217 | 28.299 |
| 13 | 15.984          | 19.812 | 22.362 | 24.736 | 27.688 | 29.891 |
| 14 | 17.117          | 20.064 | 23.685 | 26.119 | 29.141 | 31.319 |
| 15 | 18.245          | 22.307 | 24.996 | 27.488 | 30.578 | 32.801 |
| 16 | 19.369          | 23.542 | 26.296 | 28.845 | 32.000 | 34.267 |

## 附表4-2

# $\chi^2$ 分布表

| n  | <i>α</i> =0.995 | 0.99  | 0.975 | 0.95  | 0.90  | 0.75   |
|----|-----------------|-------|-------|-------|-------|--------|
| 1  | _               | -     | 0.001 | 0.004 | 0.016 | 0.102  |
| 2  | 0.010           | 0.020 | 0.051 | 0.103 | 0.211 | 0.575  |
| 3  | 0.072           | 0.115 | 0.216 | 0.352 | 0.584 | 1.213  |
| 4  | 0.207           | 0.297 | 0.484 | 0.711 | 1.064 | 1.923  |
| 5  | 0.412           | 0.554 | 0.831 | 1.145 | 1.610 | 2.675  |
| 6  | 0.676           | 0.872 | 1.237 | 2 2 4 |       | 3.455  |
| 7  | 0.989           | 1.239 | 1.690 | 3.24  |       | 4.255  |
| 8  | 1.344           | 1.646 | 2.180 |       |       | 5.071  |
| 9  | 1.735           | 2.088 | 2.700 | o.325 | 4.168 | 5.899  |
| 10 | 2.156           | 2.558 | 3.247 | 3.940 | 4.865 | 6.737  |
| 11 | 2.603           | 3.053 | 3.816 | 4.575 | 5.578 | 7.584  |
| 12 | 3.074           | 3.571 | 4.404 | 5.226 | 6.304 | 8.438  |
| 13 | 3.565           | 4.107 | 5.009 | 5.892 | 7.042 | 9.299  |
| 14 | 4.075           | 4.660 | 5.629 | 6.571 | 7.790 | 10.165 |
| 15 | 4.601           | 5.229 | 6.262 | 7.261 | 8.547 | 11.037 |
| 16 | 5.142           | 5.812 | 6.908 | 7.962 | 9.312 | 11.912 |

## 附表3-1

### t分布表

| n  | α=0.25 | 0.10   | 0.05   | 0.025   | 0.01         | 0.005   |
|----|--------|--------|--------|---------|--------------|---------|
| 1  | 1.0000 | 3.0777 | 6.3138 | 12.7062 | 31.8207      | 63.6574 |
| 2  | 0.8165 | 1.8856 | 2.9200 | 4.3027  | 6.9646       | 9.9248  |
| 3  | 0.7649 | 1.6377 | 2.3534 | 3.1824  | 4.5407       | 5.8409  |
| 4  | 0.7407 | 1.5332 | 2.1318 | 2.7764  | 3.7469       | 4.6041  |
| 5  | 0.7267 | 1.4759 | 2.0150 | 2.5706  | 3.3649       | 4.0322  |
| 6  | 0.7176 | 1.4398 | 1.9432 | 1 013   | <b>–</b> 127 | 3.7074  |
| 7  | 0.7111 | 1.4149 | 1.8946 | 1.812   | 80           | 3.4995  |
| 8  | 0.7064 | 1.3968 | 1.8595 |         | 65           | 3.3554  |
| 9  | 0.7027 | 1.3830 | 1.8331 | 2.2622  | 2.8214       | 3.2498  |
| 10 | 0.6998 | 1.3722 | 1.8125 | 2.2281  | 2.7638       | 3.1693  |
| 11 | 0.6974 | 1.3634 | 1.7959 | 2.2010  | 2.7181       | 3.1058  |
| 12 | 0.6955 | 1.3562 | 1.7823 | 2.1788  | 2.6810       | 3.0545  |
| 13 | 0.6938 | 1.3502 | 1.7709 | 2.1604  | 2.6503       | 3.0123  |
| 14 | 0.6924 | 1.3450 | 1.7613 | 2.1448  | 2.6245       | 2.9768  |
| 15 | 0.6912 | 1.3406 | 1.7531 | 2.1315  | 2.6025       | 2.9467  |
| 16 | 0.6901 | 1.3368 | 1.7459 | 2.1199  | 2.5835       | 2.9208  |

## 附表3-2

### t分布表

| n  | <i>α</i> =0.25 | 0.10   | 0.05   | 0.025   | 0.01    | 0.005   |
|----|----------------|--------|--------|---------|---------|---------|
| 1  | 1.0000         | 3.0777 | 6.3138 | 12.7062 | 31.8207 | 63.6574 |
| 2  | 0.8165         | 1.8856 | 2.9200 | 4.3027  | 6.9646  | 9.9248  |
| 3  | 0.7649         | 1.6377 | 2.3534 | 3.1824  | 4.5407  | 5.8409  |
| 4  | 0.7407         | 1.5332 | 2.1318 | 2.7764  | 3.7469  | 4.6041  |
| 5  | 0.7267         | 1.4759 | 2.0150 | 2.5706  | 3.3649  | 4.0322  |
| 6  | 0.7176         | 1.4398 | 1.9432 | 2.4469  | 3.1427  | 3.7074  |
| 7  | 0.7111         | 1.4149 | 1.8946 | 2.3646  | 2.9980  | 3.4995  |
| 8  | 0.7064         | 1.3968 | 1.8595 | 2.3060  | 2.8965  | 3.3554  |
| 9  | 0.7027         | 1.3830 | 1 8331 | 2.2622  | 2.8214  | 3.2498  |
| 10 | 0.6998         | 1.37   | 1215   | 2.2281  | 2.7638  | 3.1693  |
| 11 | 0.6974         | 1.36   | 2.1315 | 2.2010  | 2.7181  | 3.1058  |
| 12 | 0.6955         | 1.35   |        | 2.1788  | 2.6810  | 3.0545  |
| 13 | 0.6938         | 1.3502 | 1.7705 | 2.1604  | 2.6503  | 3.0123  |
| 14 | 0.6924         | 1.3450 | 1.7613 | 2.1448  | 2.6245  | 2.9768  |
| 15 | 0.6912         | 1.3406 | 1.7531 | 2.1315  | 2.6025  | 2.9467  |
| 16 | 0.6901         | 1.3368 | 1.7459 | 2.1199  | 2.5835  | 2.9208  |

## 附表5-1

### F分布表

 $\alpha = 0.025$ 

| $n_1$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10                | 12    | 15     | 20    | 24    | 30    | 40    | 120   | $\infty$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------|-------|--------|-------|-------|-------|-------|-------|----------|
| 1     | 647.8 | 799.5 | 864.2 | 899.6 | 921.8 | 937.1 | 948.2 | 956.7 | 963.3 | 968.6             | 976.7 | 984.9  | 993.1 | 997.2 | 1001  | 1006  | 1014  | 1018     |
| 2     | 38.51 | 39.00 | 39.17 | 39.25 | 39.30 | 39.33 | 39.36 | 39.37 | 39.39 | 39.40             | 39.41 | 39.43  | 39.45 | 39.46 | 39.46 | 39.47 | 39.49 | 39.50    |
| 3     | 17.44 | 16.04 | 15.44 | 15.10 | 14.88 | 14.73 | 14.62 | 14.54 | 14.47 | 14.42             | 14.34 | 14.25  | 14.17 | 14.12 | 14.08 | 14.04 | 13.95 | 13.90    |
| 4     | 12.22 | 10.65 | 9.98  | 9.60  | 9.36  | 9.20  | 9.07  | 8.98  | 8.90  | 8.84              | 8.75  | 8.66   | 8.56  | 8.51  | 8.46  | 8.41  | 8.31  | 8.26     |
| 5     | 10.01 | 8.43  | 7.76  | 7.39  | 7.15  | 6.98  | 6.85  | 6.76  | 6.68  | 6.62              | 6.52  | 6.43   | 6.33  | 6.28  | 6.23  | 6.18  | 6.07  | 6.02     |
| 6     | 8.81  | 7.26  | 6.60  | 6.23  | 5.99  | 5.82  | 5.70  | 5.60  | 5.52  | 5.46              | 5.37  | 5.27   | 5.17  | 5.12  | 5.07  | 5.01  | 4.90  | 4.85     |
| 7     | 8.07  | 6.54  | 5.89  | 5.52  | 5.29  | 5.12  | 4.99  | 4.90  | 4.82  | 4.76              | 4.67  | 4.57   | 4.47  | 4.42  | 4.36  | 4.31  | 4.20  | 4.14     |
| 8     | 7.57  | 6.06  | 5.42  | 5.50  | 4.82  | 4.65  | 4.53  | 4. 8  | 4.36  | 4.30              | 4.20  | 4.10   | 4.00  | 3.59  | 3.89  | 3.84  | 3.73  | 3.67     |
| 9     | 7.21  | 5.71  | 5.08  | 4.72  | 4.48  | 4.23  | 4.20  | 4.    | 4.03  | 3.96              | 3.87  | 3.77   | 3.67  | 3.61  | 3.56  | 3.51  | 3.39  | 3.33     |
|       |       |       |       |       |       |       |       |       |       |                   |       |        |       |       |       |       |       |          |
| 10    | 6.94  | 5.46  | 4.83  | 4.47  | 4.24  | 4.07  | 3.95  | 3.    | 3.78  | 3.72              | 3.62  | 3.52   | 3.42  | 3.37  | 3.31  | 3.26  | 3.14  | 3.08     |
| 11    | 6.72  | 5.26  | 4.63  | 4.28  | 4.04  | 3.88  | 3.76  | 3.    | 79    | 3.53              | 3.43  | L 3.33 | 3.23  | 3.17  | 3.12  | 3.06  | 2.94  | 2.88     |
| 12    | 6.55  | 5.10  | 4.47  | 4.12  | 3.89  | 3.73  | 3.61  |       |       |                   |       | 3.18   | 3.07  | 3.02  | 2.96  | 2.91  | 2.79  | 2.72     |
| 13    | 6.41  | 4.97  | 4.35  | 4.00  | 3.77  | 3.60  | 3.48  |       | A (   | $\mathbf{\Omega}$ |       | 3.05   | 2.95  | 2.89  | 2.84  | 2.78  | 2.66  | 2.60     |
| 14    | 6.30  | 4.86  | 4.24  | 3.89  | 3.66  | 3.50  | 3.38  |       | 4.9   | <b>9</b> ()       |       | 2.95   | 2.84  | 2.79  | 2.73  | 2.67  | 2.55  | 2.49     |
|       |       |       |       |       |       |       |       |       |       |                   |       |        |       |       |       |       |       |          |
| 15    | 6.20  | 4.77  | 4.15  | 3.80  | 3.58  | 3.41  | 3.29  |       |       |                   |       | 2.86   | 2.76  | 2.70  | 2.64  | 2.59  | 2.46  | 2.40     |
| 16    | 6.12  | 4.69  | 4.08  | 3.73  | 3.50  | 3.34  | 3.22  | J. 1Z | ა.სა  | 2.99              | 2.09  | 2.79   | 2.68  | 2.63  | 2.57  | 2.51  | 2.38  | 2.32     |
| 17    | 6.04  | 4.62  | 4.01  | 3.66  | 3.44  | 3.28  | 3.16  | 3.06  | 2.98  | 2.92              | 2.82  | 2.72   | 2.62  | 2.56  | 2.50  | 2.44  | 2.32  | 2.25     |
| 18    | 5.95  | 4.56  | 3.95  | 3.61  | 3.38  | 3.22  | 3.10  | 3.01  | 2.93  | 2.87              | 2.77  | 2.67   | 2.56  | 2.50  | 2.44  | 2.38  | 2.26  | 2.19     |
| 19    | 5.92  | 4.51  | 3.90  | 3.56  | 3.33  | 3.17  | 3.05  | 2.96  | 2.88  | 2.82              | 2.72  | 2.62   | 2.51  | 2.45  | 2.39  | 2.33  | 2.20  | 2.13     |

## 附表5-2

### F分布表

 $\alpha = 0.05$ 

| $n_1$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8        | 9     | 10    | 15    | 20    | 24    | 30    | 40    | 60    | 120   | $\infty$ |
|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| 1     | 161.4 | 199.5 | 215.7 | 224.6 | 230.2 | 234.0 | 236.8 | 238.9    | 24.05 | 241.9 | 245.9 | 248.0 | 249.1 | 250.1 | 151.1 | 252.2 | 253.3 | 254.3    |
| 2     | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37    | 19.38 | 19.40 | 19.43 | 19.45 | 19.45 | 19.46 | 19.47 | 19.48 | 19.49 | 19.50    |
| 3     | 10.13 | 9.55  | 9.28  | 9.12  | 9.01  | 8.94  | 8.89  | 8.85     | 8.81  | 8.79  | 8.70  | 8.66  | 8.64  | 8.62  | 8.59  | 8.57  | 8.55  | 8.53     |
| 4     | 7.71  | 6.94  | 6.59  | 6.39  | 6.26  | 6.16  | 6.09  | 6.04     | 6.00  | 5.96  | 5.86  | 5.80  | 5.77  | 5.75  | 5.72  | 5.69  | 5.66  | 5.63     |
|       |       |       |       |       |       |       |       |          |       |       |       |       |       |       |       |       |       |          |
| 5     | 6.61  | 5.79  | 5.41  | 5.19  | 5.05  | 4.95  | 4.88  | 4.82     | 4.77  | 4.74  | 4.62  | 4.56  | 4.53  | 4.50  | 4.46  | 4.43  | 4.40  | 4.36     |
| 6     | 5.99  | 5.14  | 4.76  | 4.53  | 4.39  | 4.28  | 4.21  | 4.15     | 4.10  | 4.06  | 3.94  | 3.87  | 3.84  | 3.81  | 3.77  | 3.74  | 3.70  | 3.67     |
| 7     | 5.59  | 4.74  | 4.35  | 4.12  | 3.97  | 3.87  | 3.79  | 3.73     | 3.68  | 3.64  | 2.51  | 3.44  | 3.41  | 3.38  | 3.34  | 3.30  | 3.27  | 3.23     |
| 8     | 5.32  | 4.46  | 4.07  | 3.84  | 3.69  | 3.58  | 3.50  | 3.44     | 3.39  | 3.35  | 3.22  | 3.15  | 3.12  | 3.08  | 3.04  | 3.01  | 2.97  | 2.93     |
| 9     | 3.12  | 4.26  | 3.81  | 3.63  | 3.48  | 3.37  | 3.29  | 3.23     | 3.18  | 3.14  | 3.01  | 2.94  | 2.90  | 2.86  | 2.83  | 2.79  | 2.75  | 2.71     |
|       |       |       |       |       |       |       |       |          |       |       |       |       |       |       |       |       |       |          |
| 10    | 4.96  | 4.10  | 3.71  | 3.48  | 3.33  | 3.22  | 3.14  | 3.07     | 3.02  | 2.98  | 2.85  | 2.77  | 2.74  | 2.70  | 2.66  | 2.62  | 2.58  | 2.54     |
| 11    | 4.84  | 3.98  | 3.59  | 3.36  | 3.20  | 3.09  | 3.01  | 2.95     | 0.00  | 0.05  | 0.70  | 5     | 2.61  | 2.57  | 2.53  | 2.49  | 2.45  | 2.40     |
| 12    | 4.75  | 3.89  | 3.49  | 3.26  | 3.11  | 3.00  | 2.91  | 2.       |       |       |       |       | 2.51  | 5.47  | 2.43  | 2.38  | 2.34  | 2.30     |
| 13    | 4.67  | 3.81  | 3.41  | 3.18  | 3.03  | 2.92  | 2.83  | 2.<br>2. |       | 2.3   | 1     |       | 2.42  | 2.38  | 2.34  | 2.30  | 2.25  | 2.21     |
| 14    | 4.60  | 3.74  | 3.34  | 3.11  | 2.96  | 2.85  | 2.76  | 2.       | 4     | 4.3   |       |       | 2 35  | 2.31  | 2.27  | 2.22  | 2.18  | 2.13     |
|       |       |       |       |       |       |       |       |          |       |       |       |       |       |       |       |       |       |          |
| 15    | 4.54  | 3.68  | 3.29  | 3.06  | 2.90  | 2.79  | 2.71  | 2.       |       |       |       |       | 2.29  | 2.25  | 2.20  | 2.16  | 2.11  | 2.07     |
| 16    | 4.49  | 3.63  | 3.24  | 3.01  | 2.85  | 2.74  | 2.66  | 2.59     | 2.54  | 2.49  | 2.35  | 2.28  | 2.24  | 2.19  | 2.15  | 2.11  | 2.06  | 2.01     |
| 17    | 4.45  | 3.59  | 3.20  | 2.96  | 2.81  | 2.70  | 2.61  | 2.55     | 2.49  | 2.45  | 2.31  | 2.23  | 2.19  | 2.15  | 2.10  | 2.06  | 2.01  | 1.96     |
| 18    | 4.41  | 5.55  | 3.16  | 2.93  | 2.77  | 2.66  | 2.58  | 2.51     | 2.46  | 2.41  | 2.27  | 2.19  | 2.15  | 2.11  | 2.06  | 2.02  | 1.97  | 1.92     |
| 19    | 4.38  | 3.52  | 3.13  | 2.90  | 2.74  | 2.63  | 2.54  | 2.48     | 2.42  | 2.38  | 2.23  | 2.16  | 2.11  | 2.07  | 2.03  | 1.98  | 1.93  | 1.88     |



$$u_{0.05} = 1.645$$
 $u_{0.025} = 1.96$ 
 $u_{0.005} = 2.575$ 

性质: 
$$u_{1-\alpha} = -u_{\alpha}$$



当n < 45 时,对某些特殊的 $\alpha$ ,可查表得到 $\chi^2_{\alpha}(n)$ .

费歇证明: $\sqrt{2\chi^2(n)} \xrightarrow{\frac{\text{fill}}{n \geq 45}} N(\sqrt{2n-1},1)$ .



$$n < 45$$
时,查表得 $t_{\alpha}(n)$ .  $n > 45$ 时, $t_{\alpha}(n) \approx u_{\alpha}$ .

$$n > 45$$
时, $t_{\alpha}(n) \approx u_{\alpha}$ 

性质: 
$$t_{1-\alpha} = -t_{\alpha}$$



对某些 $n,\alpha$ . 查表得 $F_{\alpha}(m,n)$ .

性质: 
$$F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$$
.

用来求解 $\alpha$ 较大时的分位数.

证明: 
$$F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$$

设 $F \sim F(m,n)$ , 则 $1/F \sim F(n,m)$ 

$$1-\alpha=P\{\frac{1}{F}>F_{1-\alpha}(n,m)\}=P\{F<\frac{1}{F_{1-\alpha}(n,m)}\}$$

$$=1-P\{F\geq\frac{1}{F_{1-\alpha}(n,m)}\}$$

所以 
$$P\{F > \frac{1}{F_{1-\alpha}(n,m)}\} = P\{F \ge \frac{1}{F_{1-\alpha}(n,m)}\} = \alpha$$

即 
$$F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$$

例: 
$$F_{0.95}(12,9) = \frac{1}{F_{0.05}(9,12)} = \frac{1}{2.80} = 0.357$$

#### 四 正态总体的抽样分布定理

正态总体是最常见的总体,本节介绍的几个抽样分布定理均对正态总体而言.这里我们主要掌握 定理的结论,对定理的证明不作要求.

定理1 设 $X_1, X_2, \dots, X_n$ 是来自正态总体 $X \sim N(\mu, \sigma^2)$ 的一组样本,则有下列结论:

$$(1)\overline{X} = \frac{1}{n}\sum_{i=1}^{n}X_{i} \sim N(\mu, \frac{\sigma^{2}}{n})$$
或 $U = \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1);$ 

$$(2)\frac{(n-1)S^{2}}{\sigma^{2}} = \frac{nS_{n}^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sim \chi^{2}(n-1);$$

$$(3)$$
 $\overline{X}$ 与 $S^2$ 独立,且 $\frac{\sqrt{n(\overline{X}-\mu)}}{S} \sim t(n-1)$ .

证明: 记 
$$X = (X_1, \dots, X_n)^T$$
,则有 
$$E(X) = (\mu, \dots, \mu)^T, \quad D(X) = \sigma^2 I$$

取一n阶正交矩阵A,其第1行的每个元素均为 $1/\sqrt{n}$ .如

$$A = \begin{pmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{2 \cdot 1}} & -\frac{1}{\sqrt{2 \cdot 1}} & 0 & \cdots & 0 \\ \frac{1}{\sqrt{3 \cdot 2}} & \frac{1}{\sqrt{3 \cdot 2}} & -\frac{2}{\sqrt{3 \cdot 2}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \cdots & -\frac{n-1}{\sqrt{n(n-1)}} \end{pmatrix}$$

令Y = AX,则由多维正态分布的性质知Y仍服从n维正态分布,其均值和方差分别为

$$EY = A \cdot EX = (\sqrt{n}\mu, 0, \dots, 0)^{T},$$

$$D(Y) = A \cdot D(X) \cdot A^{T} = A \cdot \sigma^{2} I \cdot A^{T} = \sigma^{2} A A^{T} = \sigma^{2} I.$$

由此 $Y = (Y_1, \dots, Y_n)^T$ 的各分量相互独立,且都服从正态分布

$$Y_1 \sim N(\sqrt{n}\mu, \sigma^2), \quad Y_2, \dots, Y_n \sim N(0, \sigma^2)$$

由于 $\bar{X} = Y_1/\sqrt{n}$ , 故 $\bar{X}$ 与 $Y_2, \dots, Y_n$ 相互独立,且

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}).$$

标准化得

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1).$$

由于

$$\sum_{i=1}^{n} Y_i^2 = Y^T Y = X^T A^T A X = \sum_{i=1}^{n} X_i^2$$

所以

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \sum_{i=1}^{n} X_{i}^{2} - (\sqrt{n}\overline{X})^{2}$$
$$= \sum_{i=1}^{n} Y_{i}^{2} - Y_{1}^{2} = \sum_{i=2}^{n} Y_{i}^{2}.$$

$$\Rightarrow \frac{(n-1)S^2}{\sigma^2} = \sum_{i=2}^n \left(\frac{Y_i}{\sigma}\right)^2 \sim \chi^2(n-1).$$

由于 $\overline{X}$ 与 $Y_2, \dots, Y_n$ 相互独立. 且

$$\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0,1),$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=2}^n \left(\frac{Y_i}{\sigma}\right)^2 \sim \chi^2(n-1).$$

因而 $\overline{X}$ 与 $S^2$ 相互独立,再根据t分布的定义得

$$\frac{\sqrt{n}(\overline{X}-\mu)}{S} = \frac{\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/n-1}} \sim t(n-1).$$

定理2 设 $X_1, X_2, \dots, X_m$ 是来自正态总体 $X \sim N(\mu_1, \sigma_1^2)$ 的一组样本, $Y_1, Y_2, \dots, Y_n$ 是来自正态总体  $Y \sim N(\mu_2, \sigma_2^2)$ 的一组样本,且两组样本相互独立. 记 $\overline{X}, \overline{Y}$ 分别是两组的样本均值, $S_X^2 = S_Y^2$ 分别是样本方差,则

(1) 
$$F = \frac{S_X^2 / \sigma_1^2}{S_Y^2 / \sigma_2^2} = \frac{S_X^2 / S_Y^2}{\sigma_1^2 / \sigma_2^2} \sim F(m-1, n-1),$$

(2) 
$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} \sim N(0,1),$$

$$(3) \quad \stackrel{\text{\psi}}{=} \sigma_1^2 = \sigma_2^2 = \sigma^2 \text{\psi},$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_W \sqrt{1/m + 1/n}} \sim t(m + n - 2).$$

其中 
$$S_W^2 = \frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}$$
.

(4) 当m=n 时

$$\frac{\sqrt{n}[(\bar{X}-\bar{Y})-(\mu_{1}-\mu_{2})]}{S} \sim t(n-1).$$

其中

$$S^2 = S_X^2 + S_Y^2 - 2S_{XY}^2.$$

证明: (1) 由两样本独立可知

 $S_X^2$ 与 $S_Y^2$ 相互独立,且

$$\frac{(m-1)S_X^2}{\sigma_1^2} \sim \chi^2(m-1), \qquad \frac{(n-1)S_Y^2}{\sigma_2^2} \sim \chi^2(n-1).$$

由F的定义知

$$F = \frac{S_X^2 / \sigma_1^2}{S_Y^2 / \sigma_2^2} \sim F(m-1, n-1).$$

(2) 由
$$\overline{X} \sim N(\mu_1, \frac{\sigma_1^2}{m})$$
,  $\overline{Y} \sim N(\mu_2, \frac{\sigma_2^2}{n})$ ,  $\overline{X}$ 与 $\overline{Y}$ 独立

$$\Rightarrow \overline{X} - \overline{Y} = N(\mu_1 - \mu_2, (\sigma_1^2/m + \sigma_2^2/n))$$

$$\Rightarrow \frac{(X-Y)-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/m+\sigma_2^2/n}} \sim N(0,1).$$

(3) 当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
时,由(2)得 
$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sigma \sqrt{1/m + 1/n}} \sim N(0,1).$$

再由定理1知:

$$\frac{(m-1)S_X^2}{\sigma^2} \sim \chi^2(m-1), \quad \frac{(n-1)S_Y^2}{\sigma^2} \sim \chi^2(n-1), \text{ in } \vec{\Sigma}$$

 $\chi^2$ 分布可加性

$$\frac{(m+n-2)S_w^2}{\sigma^2} = \frac{(m-1)S_X^2 + (n-1)S_Y^2}{\sigma^2} \sim \chi^2(m+n-2)$$

又 $\bar{X} - \bar{Y} = S_w^2$ 相互独立,根据t分布的定义即得所证.

(4) 当
$$m=n$$
时令

$$Z_{i} = X_{i} - Y_{i}, i = 1, 2, \dots, n.$$

则  $Z_1, Z_2, \cdots, Z_n$ 独立同分布,

$$Z_i \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2),$$

根据定理1得

$$\frac{\sqrt{n}\left[\overline{Z}-(\mu_1-\mu_2)\right]}{S_Z} \sim t(n-1).$$

由于  $\bar{Z} = \bar{X} - \bar{Y}$ ,

$$S_{Z}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} \left[ (X_{i} - Y_{i}) - (\overline{X} - \overline{Y}) \right]^{2}$$

$$= S_{X}^{2} + S_{Y}^{2} - 2S_{XY}^{2} = S^{2}.$$

所以

$$\frac{\sqrt{n}[(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)]}{S} \sim t(n-1).$$

### 四、例子

【例1】设随机变量X与Y相互独立, $X \sim N(0,16)$ , $Y \sim N(0,9)$ , $X_1, X_2, \dots, X_9$ 与 $Y_1, Y_2, \dots, Y_{16}$ 分别是取自X与Y的简单随机样本,求统计量

$$Z = \frac{X_1 + X_2 + \dots + X_9}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_{16}^2}}$$

所服从的分布.

解 因为
$$X_1 + X_2 + \dots + X_9 \sim N(0, 9 \times 16)$$
,所以  $\frac{1}{12}(X_1 + X_2 + \dots + X_9) \sim N(0, 1)$ . 由于  $\frac{Y_i}{3} \sim N(0, 1)$ ,  $\frac{1}{9} \sum_{i=1}^{16} Y_i^2 \sim \chi^2(16)$ ,

例2 设总体 $X \sim N(0,1), X_1, \dots, X_6$ 为总体X的样本,  $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2.$  试确定常数c, 使cY服从 $\chi^2$ 分布.

解: 
$$X_1 + X_2 + X_3 \sim N(0,3)$$
,  $X_4 + X_5 + X_6 \sim N(0,3)$ .
$$(X_1 + X_2 + X_3) / \sqrt{3}, (X_4 + X_5 + X_6) / \sqrt{3} \sim N(0,1).$$
故  $\left[ (X_1 + X_2 + X_3) / \sqrt{3} \right]^2 + \left[ (X_4 + X_5 + X_6) / \sqrt{3} \right]^2$ 

$$= \frac{1}{3} Y \sim \chi^2(2). \quad \text{因此} \quad c = 1/3.$$

例2 设总体 $X \sim N(0,1), X_1, \dots, X_6$ 为总体X的样本,  $Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2.$  试确定常数c, 使cY服从 $\chi^2$ 分布.

解: 
$$X_1 + X_2 + X_3 \sim N(0,3)$$
,  $X_4 + X_5 + X_6 \sim N(0,3)$ .
$$(X_1 + X_2 + X_3) / \sqrt{3}, (X_4 + X_5 + X_6) / \sqrt{3} \sim N(0,1).$$
故  $\left[ (X_1 + X_2 + X_3) / \sqrt{3} \right]^2 + \left[ (X_4 + X_5 + X_6) / \sqrt{3} \right]^2$ 

$$= \frac{1}{3} Y \sim \chi^2(2). \quad \text{因此} \quad c = 1/3.$$

例3: 设总体X服从正态分布 $N(\mu,\sigma^2)$ ,从总体 中抽取样本 $X_1, X_2, \cdots X_{n+1}$ ,记

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

证明: 
$$\sqrt{\frac{n}{n+1}} \frac{X_{n+1} - \overline{X}_n}{S_n} \sim t(n-1)$$

证明  $\bar{X}_{n+1}$ 相互独立,且

$$\overline{X}_n \sim N(\mu, \sigma^2/n)$$
,  $X_{n+1} \sim N(\mu, \sigma^2)$ 

故  $X_{n+1} - \overline{X}_n \sim N(0, (1+1/n)\sigma^2),$ 

$$\sqrt{\frac{n}{n+1}}\frac{X_{n+1}-\overline{X}_n}{\sigma}\sim N(0,1).$$

再根据 $X_{n+1} - \overline{X}_n$ 与 $S_n$ 独立,及t分布的定义即得证.

#### 练习题:

调节一个装瓶机使其对每个瓶子的灌装量均值为 $\mu$ 盎司,通过观察这台装瓶机对每个瓶子的灌装量服从标准差 $\sigma=1.0$ 盎司的正态分布. 随机抽取由这台机器灌装的9个瓶子形成一个样本,并测定每个瓶子的灌装量. 试确定样本均值偏离总体均值不超过0.3盎司的概率有多大?

#### 练习题答案:

解: 由题意知,
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$
,故 $\bar{X} \sim N(\mu, \frac{1}{9})$ 

$$P(|\bar{X} - \mu| \le 0.3) = P(\frac{-0.3}{1/3} \le \frac{\bar{X} - \mu}{1/3} \le \frac{0.3}{1/3})$$

$$= \Phi(0.9) - \Phi(-0.9)$$

$$= 2\Phi(0.9) - 1$$

$$= 2 \times 0.8159 - 1 = 0.6318.$$

在练习题中,如果希望 $\bar{Y}$ 与 $\mu$ 的偏差在0.3盎司之内的概率达到0.95,应当抽取多大的样本?

解: 
$$\overline{Y} \sim N(\mu, \frac{1}{n})$$
,  $P(|\overline{Y} - \mu| \le 0.3) = 0.95$ 

即  $P(\frac{|\overline{Y} - \mu|}{1/\sqrt{n}} \le \frac{0.3}{1/\sqrt{n}}) \le 0.95$ .

而 
$$P(\frac{|\overline{Y} - \mu|}{1/\sqrt{n}} \le \frac{0.3}{1/\sqrt{n}}) = 2\Phi(0.3\sqrt{n}) - 1.$$
 所以

$$2\Phi(0.3\sqrt{n})-1\geq 0.95, \quad \Phi(0.3\sqrt{n})\geq 0.975$$

查表得:  $0.3\sqrt{n} \ge 1.96$ ,  $\square n \ge 42.68$ .

所以应当抽取容量至少为43的样本.

例4 (1)设 $X_1, X_2, \dots, X_6$ 是来自正记总体N(2,3)的 样本, 求b使P{ $\sum_{i=0.95.}^{6} (V_i - 2)^2 \le b$ } = 0.95. (2)设两正态总体 X,Y的方差分别为 $\sigma_1^2 = 12, \sigma_2^2 = 18, 在<math>X,Y$ 中分别取出样 本容量为 $n_1 = 61, n_2 = 31$ 的样本, 两样本独立, 样本方差 为 $S_1^2$ ,  $S_2^2$ , 求 $P\{S_1^2 / S_2^2 > 1.16\}$ 

解: (1)  $\frac{X_i-2}{\sqrt{3}} \sim N(0,1)$  (*i* = 1,···,6)且相互独立,

$$\Rightarrow \sum_{i=1}^{6} \left(\frac{X_i - 2}{\sqrt{3}}\right)^2 \sim \chi^2(6)$$

$$0.95 = P\{\sum_{i=1}^{6} (X_i - 2)^2 \le b\}$$

$$= P\{\sum_{i=1}^{6} \left(\frac{X_i - 2}{\sqrt{3}}\right)^2 \le \frac{b}{3}\} = 1 - P\{\chi^2(6) \ge \frac{b}{3}\}$$

即 $P{\chi^2(6) > b/3} = 0.05$ . 查表知,

$$P\{\chi^{2}(6) > 12.592\} = 0.05, \quad b/3 = 12.592$$
  
 $\Rightarrow b = 37.776$ 

(2) 
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/12}{S_2^2/18} \sim F(61-1,31-1) = F(60,30)$$

$$P\{S_1^2 / S_2^2 > 1.16\} = P\{\frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} > \frac{1.16}{12/18} = 1.74\}$$

查表知, $F_{0.05}(60,30)=1.74$ 

$$\Rightarrow P\{S_1^2 / S_2^2 > 1.16\} = 0.05$$

## 本章总结:

1) 数理统计基本概念

总体与个体

样本 (特征: 独立同分布)

统计量 (特征: 无未知参数)

2) 抽样分布: $\begin{cases} \chi^2(n) \text{ 分布} \\ t(n) \text{ 分布} \\ F(m,n) \text{ 分 } \end{cases}$  定义、性质、分位点 $\frac{\overline{X} \sim N(\mu, \frac{\sigma^2}{n})}{n},$  正态总体的抽样分布 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 

# 常见统计量及正态总体抽样分

| 名称        | 定义                                                                                                             | 性质                  | 正态抽样分布                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|
| 样本均值      | $\overline{\frac{X}{N}} = \frac{1}{n} \sum_{i=1}^{n} X_i$                                                      | $E(\overline{X}) =$ | $\overline{X} \sim N(\mu, \frac{\sigma^2}{n});$ |
| <u> </u>  | $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$                                              | E(X),               | n                                               |
| 样本方差      | $= \frac{1}{n-1} \left( \sum_{i=1}^{n} X_i^2 - n \overline{X}^2 \right)$                                       |                     | $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1);$   |
| 样本标准<br>差 | $S = \sqrt{S^2}$                                                                                               | D(X)/n              | <del>X</del> 与 <b>S</b> <sup>2</sup> 独立;        |
| 样本原点<br>矩 | $A_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$ $B_{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{k}$ | $E(S^2) = D(X).$    | $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1).$   |
| 样本中心<br>矩 | n = 1                                                                                                          |                     |                                                 |

### 三类常见的抽样分布

| 名称   | 定义                                                                 | 性质                        | 概率密度图像                                                                                             |
|------|--------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|
| χ²分布 | $\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$ $X_i \sim N(0,1)$ 且独立        | 期望(n)、<br>方差(2n)。<br>可加性  | $f(x)$ $\alpha$ $y$ $\alpha$ $y$ $\alpha$ $y$ $y$ $\alpha$ $y$ |
|      | 其中 $Y \sim \chi^2(n)$ 且独立                                          |                           | $f(x)$ $-t_{\alpha}(n)0  t_{\alpha}(n)  x$                                                         |
| F分布  | $X/m/Y/n \sim F(m,n)$ 其中 $X \sim \chi^2(m)$ 且独立 $Y \sim \chi^2(n)$ | 若 X ~F(m,n) 则 1/X ~F(n,m) |                                                                                                    |

$$t_{1-\alpha}(n) = -t_{\alpha}(n) F_{1-\alpha}(n_1, n_2) = 1/F_{\alpha}(n_2, n_1)$$