

Hamburger-Siegel Theorem

The **Hamburger-Siegel theorem** (more commonly known as **Hamburger's theorem** for the moment problem) characterizes when a sequence of real numbers is a moment sequence of a positive measure on the real line. [1] [2] [3] [4]

Statement of the Theorem

Given a sequence $(s_n)_{n\geq 0}$ of real numbers, the **Hamburger moment problem** asks whether there exists a positive Borel measure μ on $\mathbb R$ such that

$$s_n = \int_{-\infty}^\infty x^n \, d\mu(x), \quad n=0,1,2,\ldots$$

Hamburger's Theorem (Existence): The sequence $(s_n)_{n\geq 0}$ is a moment sequence if and only if the **Hankel matrix**

$$H=egin{pmatrix} s_0 & s_1 & s_2 & \cdots \ s_1 & s_2 & s_3 & \cdots \ s_2 & s_3 & s_4 & \cdots \ dots & dots & dots & dots & dots \end{pmatrix}$$

is **positive semidefinite**. That is, for every finite sequence $(c_j)_{j\geq 0}$ of complex numbers with only finitely many nonzero terms, [3] [4] [1]

$$\sum_{j,k\geq 0} s_{j+k} c_j \overline{c_k} \geq 0.$$

Equivalently, all principal minors (finite Hankel determinants) must be nonnegative:

$$\detegin{pmatrix} s_0 & s_1 & \cdots & s_{n-1} \ s_1 & s_2 & \cdots & s_n \ dots & dots & \ddots & dots \ s_{n-1} & s_n & \cdots & s_{2n-2} \end{pmatrix} \geq 0$$

for all $n \geq 1$. [1]

Uniqueness (Determinacy)

Hamburger also addressed the uniqueness question. The moment problem is **determinate** (the measure μ is unique) if and only if

$$\lim_{n o\infty}rac{\det(H_n)}{\det(H_n')}=0,$$

where H_n and H'_n are certain finite sections of the Hankel matrix. A more practical sufficient condition for determinacy is **Carleman's criterion**: if [1]

$$\sum_{n=1}^{\infty}rac{1}{\sqrt[2n]{s_{2n}}}=\infty,$$

then the moment problem is determinate. [2] [1]

Hamburger's Converse Theorem for the Riemann Zeta Function

A different but related result, also due to Hamburger, characterizes the Riemann zeta function via its functional equation. [5] [6] [7] [8]

Hamburger's Converse Theorem (1921): Let $h(s)=\sum_{n=1}^\infty a_n n^{-s}$ and $g(s)=\sum_{n=1}^\infty b_n n^{-s}$ be absolutely convergent for $\Re(s)>1$, and suppose both (s-1)h(s) and (s-1)g(s) are entire functions of finite order. If the functional equation $\frac{[6]}{[5]}$

$$\pi^{-s/2}\Gamma\left(rac{s}{2}
ight)\!h(s)=\pi^{-(1-s)/2}\Gamma\left(rac{1-s}{2}
ight)\!g(1-s)$$

holds, then $h(s)=g(s)=a_1\zeta(s)$.

This says the Riemann zeta function is **uniquely determined** by its functional equation (up to a constant factor), provided suitable regularity conditions hold. [5] [6]

Detailed Proof of Hamburger's Theorem

The proof uses orthogonal polynomials, functional analysis, and the theory of linear functionals on polynomial algebras.

Step 1: Reformulation via Linear Functionals

For a sequence $s=(s_n)_{n\geq 0}$, define a linear functional L_s on the polynomial algebra $\mathbb{R}[x]$ by

$$L_s(x^n)=s_n,\quad n=0,1,2,\dots$$

By linearity of integration, (s_n) is a moment sequence for measure μ if and only if

$$L_s(p) = \int_{-\infty}^{\infty} p(x) \, d\mu(x)$$

for all polynomials $p \in \mathbb{R}[x].$

Step 2: Positive Definiteness

The measure μ is positive if and only if

$$L_s(p^2) = \int_{-\infty}^\infty p(x)^2\,d\mu(x) \geq 0$$

for all $p \in \mathbb{R}[x].$ Writing $p(x) = \sum_{j=0}^m c_j x^j$, we have $^{[4]}$

$$L_s(p^2) = L_s\left(\left(\sum_j c_j x^j
ight)^2
ight) = \sum_{j,k} c_j c_k s_{j+k}.$$

Thus, μ is positive if and only if the associated Hankel form is positive semidefinite. [3] [4]

Step 3: Construction via Orthogonal Polynomials

Given a positive definite sequence (s_n) , construct orthonormal polynomials (P_n) via Gram-Schmidt orthogonalization with respect to the inner product

$$\langle p,q
angle = L_s(pq).$$

These polynomials satisfy a three-term recurrence relation

$$xP_n(x) = b_n P_{n+1}(x) + a_n P_n(x) + b_{n-1} P_{n-1}(x),$$

with $b_n>0$. [2] [1]

By **Favard's theorem**, such a recurrence relation determines a positive measure μ for which (P_n) are orthonormal. [2] [1]

Step 4: Spectral Theorem

The multiplication operator Mf(x)=xf(x) on $L^2(\mu)$ is self-adjoint. By the spectral theorem, μ is the spectral measure of this operator, uniquely determined by the moments. [4] [1]

Step 5: Uniqueness (Determinacy)

Hamburger proved that the measure μ is unique if and only if the polynomials are dense in $L^2(\mu)$, or equivalently,

$$\sum_{n=0}^{\infty}\left(P_n^2(0)+Q_n^2(0)
ight)<\infty,$$

where Q_n are the polynomials of the second kind. Carleman's sufficient condition follows from analyzing growth rates of moments. [1] [2]

Conclusion

Hamburger's theorem provides a complete solution to the existence and uniqueness questions for the moment problem on \mathbb{R} . The positive definiteness criterion is both necessary and sufficient for existence, and various criteria (Carleman, Krein) determine uniqueness. [3] [2] [4] [1]

- 1. https://web.williams.edu/Mathematics/sjmiller/public_html/book/papers/jcmp.pdf
- 2. https://en.wikipedia.org/wiki/Stieltjes_moment_problem
- 3. https://en.wikipedia.org/wiki/Hamburger_moment_problem
- 4. https://arxiv.org/pdf/2008.12698.pdf
- 5. https://arxiv.org/pdf/1910.09837.pdf
- 6. https://www.clas.kitasato-u.ac.jp/~miyazaki/rims2022/RIMS_Jan23.pdf
- 7. https://sites.math.rutgers.edu/~zeilberg/EM18/TitchmarshZeta.pdf
- 8. https://sites.math.rutgers.edu/~sdmiller/gelbart-miller-zeta.pdf
- 9. https://en.wikipedia.org/wiki/Siegel's_theorem_on_integral_points
- 10. https://surya-teja.com/2010/11/24/riemann-functional-equation-and-hamburgers-theorem/
- 11. https://www.fandm.edu/directory/wendell-ressler.html
- 12. https://www.sciencedirect.com/science/article/pii/S0096300396003050
- 13. https://gorogoro.cis.ibaraki.ac.jp/web/papers/kano2018-a.pdf
- 14. https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-27/issue-3/On-determinate-H amburger-moment-problems/pjm/1102983768.pdf
- 15. https://arxiv.org/abs/2407.08511
- 16. https://womengovtcollegevisakha.ac.in/departments/Number theory [p211-226].pdf
- 17. https://harvest.usask.ca/bitstreams/7c81b396-34c2-47cc-9b9c-be6d20ddc34c/download
- 18. https://kam.mff.cuni.cz/~kyncl/presentations/40_hamburger_theorem/burger.pdf
- 19. https://mathworld.wolfram.com/PositiveDefiniteSequence.html
- 20. https://math.iisc.ac.in/~khare/papers/hankel.pdf
- 21. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/517508F83FF5A35EF04D 6F0F7C1483FA/S0013091500022628a.pdf/an_extended_hamburger_moment_problem.pdf
- 22. https://www.sciencedirect.com/science/article/pii/S0925772117300640
- 23. https://www.mscand.dk/article/download/112091/163320/236397
- 24. https://en.wikipedia.org/wiki/Moment_problem
- 25. https://www.sciencedirect.com/science/article/pii/0377042787901750
- 26. https://ems.press/journals/jems/articles/2579441
- 27. https://www.sciencedirect.com/science/article/pii/S0024379515006035
- 28. <a href="https://onlinelibrary.wiley.com/doi/pdf/10.1002/(SICI)1522-2616(200002)210:1<67::AID-MANA67>3.0.C <a href="https://onlinelibrary.wiley.com/doi/pdf/10.1002/(SICI)1522-2616(200002)210:1

 $29.\ \underline{https://projecteuclid.org/journals/tokyo-journal-of-mathematics/volume-5/issue-1/On-an-Analogoue-to-mathematics/volume-1/On-an-Analogoue-to-mathematics/volum$

Hecke-Correspondence/10.3836/tjm/1270215036.pdf