Lecture #3

Data Transmission & Media

Agenda

Transmission Terminology

Signals & Analog vs. Digital

Frequency Domain Concepts

Transmission Impairments

Guided Transmission Media (Twisted pairs, coaxial,..)

Wireless Transmission

Data Transmission

- The successful transmission of data depends on two factors:
 - The quality of the signal being transmitted
 - The characteristics of the transmission medium
- Data transmission occurs between a transmitter and a receiver over some transmission medium.
 - Guided media physical path
 - twisted pair, coaxial cable, optical fiber
 - Unguided (wireless) media
 - Air, water , vacuum

Transmission Terminology

- Direct link
 - Transmission path from transmitter to receiver with no intermediate devices (other than amplifiers)
- Point to point
 - Direct link between the only two devices sharing the medium (Note: can apply to unguided media)
- Multipoint
 - More than two devices share the same medium

b. Multipoint

Transmission Terminology

- Simplex
 - Signal transmitted in one direction
 - e.g. cable television
- Half-duplex
 - Both stations may transmit, but one at a time
 - e.g. police radio
- Full-duplex
 - Both stations may transmit simultaneously
 - e.g. telephone

Analog vs. Digital

- Analog signal
 - Signal intensity varies in a smooth, continuous, fashion over time
 - no breaks
- Digital signal
 - Signal intensity maintains constant level for some period of time and then abruptly changes to another constant level – discrete signals

Examples of Periodic Signals

Any signal is either periodic (the following two) or aperiodic

Sine Wave

(periodic continuous signal)

- Peak amplitude (A)
 - Maximum strength of signal
 - Typically measured in volts
- Frequency (f)
 - Rate at which signal repeats
 - Hertz (Hz) or cycles per second

$$T = 1/f$$

- Period (T) is time to repeat
- Phase (φ)
 - Relative position in time within a single period

Wavelength (λ)

Distance occupied by a single cycle

or

Distance between **two points** of **corresponding phase** of two consecutive cycles

Signal with velocity v, then wavelength is

$$\lambda = vT$$
 or $\lambda f = v$

Consider signal travelling at speed of light

$$v = c = 3 \times 10^8 \text{ m/s}$$

Frequency Domain Concepts

- Signals are made up of many frequencies
- Components are sine waves
- Fourier analysis can show any signal is made up of components at various frequencies
- Each component is a sinusoid
- Can plot frequency domain functions

Addition of Frequency Components (T = 1/f)

Spectrum & Bandwidth

- Spectrum
 - Range of frequencies contained in a signal
 - e.g. f and 3f on previous slide
- Absolute bandwidth
 - Width of the spectrum
 - e.g. 2*f*
- Effective bandwidth (or just "bandwidth")
 - Narrow band of frequencies containing most of the energy in the signal

Data Rate and Bandwidth

- Any transmission system can carry only a limited band of frequencies
 - Limits the data rate that can be carried
- Square waves have infinite components
 - Infinite bandwidth
- Most energy in first few components
- Limiting bandwidth creates distortions

Data, Signals, and Transmission

- Data
 - Entities that convey information
- Signals
 - Electric or electromagnetic representations of data
- Signaling
 - Physical propagation of signal along medium
- Transmission
 - Communication of data by propagation and
 - processing of signals

Digital Data & Signals

- Text (character strings)
 - Coded into sequence of bits
 - IRA International Reference Alphabet (ASCII)
 - 7-bit code with parity bit
- Image
 - Coded into pixels with number of bits per pixel
 - May then be compressed
- Advantages
 - Cheaper
 - Less susceptible to noise interference
- Disadvantages
 - Suffer more from attenuation (strength loss)

Analog Signaling

Digital Signaling

Transmission Impairments

- signal received may differ from signal transmitted causing:
 - analog degradation of signal quality
 - digital bit errors
- most significant impairments are
 - attenuation
 - delay distortion
 - noise

Attenuation

- Signal strength falls off with distance over any communications medium
- Varies with frequency higher has more
- Received signal strength must be:
 - strong enough to be detected
 - sufficiently higher than noise to be received without error
- Strength increased with repeaters or amplifiers
- Adjust for attenuation by amplifying more at higher frequencies

Delay Distortion

- occurs because propagation velocity of a signal through a guided medium varies with frequency
- various frequency components arrive at different times
 resulting in phase shifts between the frequencies
- particularly critical for digital data since parts of one bit spill over into others causing intersymbol interference

Noise

- Unwanted signals that are inserted somewhere between transmission and reception
- Major limiting factor in communications system performance

Categories of Noise

- Thermal Noise
 - Thermal agitation of electrons
 - Uniformly distributed across bandwidths
 - Referred to as "white noise"
- Intermodulation Noise
 - Produce unwanted signals at a frequency that is the sum or difference of two original frequencies
- e.g. signals at 4 KHz and 8 KHz may add noise
 at 12 KHz and interfere with a 12 KHz signal

Categories of Noise..

- Crosstalk
 - a signal from one line is picked up by another
 - can occur by electrical coupling between nearby twisted pairs or when microwave antennas pick up unwanted signals
- Impulse Noise
 - caused by external electromagnetic interferences
 - non-continuous, consisting of irregular pulses or spikes
 - short duration and high amplitude
 - minor annoyance for analog signals but a major source of error in digital data
 - For **example**, a sharp spike of energy of 0.01 s duration would not destroy any voice data but would wash out about 560 bits of digital data being transmitted at 56 kbps

Channel Capacity

- Maximum rate at which data can be transmitted over a given communications channel under given conditions
- Four concepts
 - Data rate bits per second (bps))
 - Bandwidth cycles per second Hertz (Hz)
 - Noise average noise level over path
 - Error rate rate of corrupted bits
- Limitations are due to physical properties
- Main constraint on achieving efficiency is noise

Nyquist Bandwidth

In the case of a channel that is noise free:

- if rate of signal transmission is 2B then can carry signal with frequencies no greater than B
 - given bandwidth B, highest signal rate is 2B
- for binary signals, 2B bps needs bandwidth B Hz
- can increase rate by using L signal levels
- Nyquist Formula is: C = 2B log₂ L
- data rate can be increased by increasing signals
 - however this increases burden on receiver
 - noise & other impairments limit the value of L

1. A noiseless channel has a bandwidth of 4000 Hz and is transmitting a signal with two signal Levels. Calculate the maximum bit rate.

Bit Rate = 2 * Bandwidth * log₂L

Bit Rate =
$$2 * 4000 * \log_2 2$$

= $2 * 4000 * 1$
= 8000 bps

2. A noiseless channel has a bandwidth of 4000 Hz and is transmitting a signal with four signal Levels. Calculate the maximum bit rate.

Bit Rate = 2 * Bandwidth *
$$log_2L$$

Bit Rate = 2 * $4000 * log_2 4$
= 2 * $4000 * 2$
= 16,000 bps

3. Consider a noiseless channel with a bandwidth of 20 KHz. We need to send 280 kbps over a channel. How many signal levels are required?

Bit Rate = 2 * Bandwidth * log₂L

$$280 = 2 * 20 * \log_2 L$$

$$280/40 = \log_2 L$$

$$7 = \log_2 L$$

$$log_2 L = 7$$

$$L = 2^7$$

Shannon Capacity Formula

- considering the relation of data rate, noise and error rate:
 - faster data rate shortens each bit so bursts of noise corrupts more bits
 - given noise level, higher rates mean higher errors
- Shannon developed formula relating these to signal to noise ratio (in decibels)
- SNR_{db} = 10 log₁₀ (signal/noise)
- capacity C = B log₂(1+SNR)
 - theoretical maximum capacity
 - get much lower rates in practice

Shannon Capacity: Noisy Channel

Capacity = Bandwidth * $log_2(1+SNR)$

 $SNR = \frac{Average Signal Power}{Average noise Power}$

 $SNR_{dB} = 10 \log_{10} SNR$

1. Consider a extremely noisy channel in which signal to noise ratio is almost zero. Calculate the capacity of the channel.

Capacity = Bandwidth *
$$log_2(1+SNR)$$
 SNR = $\frac{Average Signal Power}{Average noise Power}$

Capacity =
$$B * log_2(1+SNR)$$

= $B * log_2(1+0)$
= $B * log_2(1)$
= $B*0$

2. Calculate the highest bit rate(capacity of a channel) if the bandwidth is 3000Hz and signal to noise ratio(SNR) is 3162.

Capacity = Bandwidth * log₂(1+SNR)

Capacity =B *
$$log_2(1+SNR)$$

= $3000 * log_2(1+3162)$
= $3000 * log_2(3163)$
= $3000*11.627$
= $34881 bps$

3. Assume that SNR $_{
m dB}$ =36 and bandwidth of channel is 2MHz. Calculate channel capacity.

$$SNR_{dB} = 10 \log_{10} SNR$$

Capacity = Bandwidth * $log_2(1+SNR)$

SNR
$$_{dB}$$
= 10 log_{10} SNR
SNR $_{dB}$ /10= log_{10} SNR
 log_{10} SNR= SNR $_{dB}$ /10
SNR = $10^{SNR_{dB}}$ /10
SNR = 10^{36} /10
SNR = $10^{3.6}$
SNR=3981

$$\log_{a} x = y$$

$$x = a^{y}$$

$$\log_{10} SNR = SNR_{dB}/10$$

$$SNR = 10^{SNR_{dB}}/10$$

Capacity =
$$B * log_2(1+SNR)$$

= $2 * log_2(1+3981)$
= $2 * log_2(3982)$
= $2 * 11.959$
= 23.91
= 24 Mbps approx.
= $24 * 10^6 \text{ bps}$

Transmission Media

- Physical path between transmitter and receiver
- conducted or guided media
 - use a conductor such as a wire or a fiber optic cable to move the signal from sender to receiver
- wireless or unguided media
 - use radio waves of different frequencies and do not need a wire or cable to transmit signals

Guided Transmission Media

- the transmission capacity depends on the distance and on whether the medium is point-to-point or multipoint
- e.g.
 - twisted pair wires
 - coaxial cables
 - optical fiber

Twisted Pair Wires

- consists of two insulated copper wires arranged in a regular spiral pattern to minimize the electromagnetic interference between adjacent pairs (crosstalk)
- often used at customer facilities and also over distances to carry voice as well as data communications
- low frequency transmission medium

Two varieties

- STP (shielded twisted pair)
 - the pair is wrapped with metallic foil or braid to insulate the pair from electromagnetic interference
- UTP (unshielded twisted pair)
 - each wire is insulated with plastic wrap, but the pair is encased in an outer covering

Twisted Pair Wires...

- Category 3 UTP
 - data rates of up to 16 Mbps are achievable
- Category 5 UTP
 - data rates of up to 100 Mbps are achievable
 - more tightly twisted than Category 3 cables
- Category 7 STP
 - Data rates in excess of 10 Gbps
 - More expensive, harder to work with

Twisted Pair Adv & Disadv

- Advantages
 - inexpensive and readily available
 - flexible, light weight, easy to install
- <u>Disadvantages</u>
 - susceptibility to interference and noise
 - attenuation problem
 - For analog, repeaters needed every 5-6 km
 - For digital, repeaters needed every 2-3 km
 - relatively low bandwidth (100 MHz)

Coaxial Cable (or Coax)

- bandwidth of up to 500 MHz
- has an inner conductor surrounded by a braided mesh
- both conductors share a common center axial, hence the term "co-axial"

Coax Adv & Disadv

- √higher bandwidth
 - ✓ 400 to 600 Mhz
 - ✓ Over 10,000 simultaneous voice conversations
- ✓ can be tapped easily (pros and cons)
- ✓ much **less** susceptible to **interference** than twisted pair
- ✓ Repeaters required every 2-3 km
- x high attenuation rate makes it expensive over long
 distance more repeaters especially for digital
 signaling at higher data rates
- x bulky

Fiber Optic Cable

- relatively new transmission medium used by telephone
 companies in place of long-distance trunk lines
- also used by private companies in implementing local data networks
- require a light source with injection laser diode (ILD) or light-emitting diodes (LED)
- consists of three concentric sections

Fiber Optic Types

multimode step-index fiber

receiver

the reflective walls of the fiber move the light pulses to the

- multimode graded-index fiber
 - acts to refract the light toward the center of the fiber by variations in the density

- single mode fiber
 - the light is guided down the center of an extremely narrow core

Fiber Optic Adv & Disadv

- √ greater capacity (hundreds of Gbps)
- √ smaller size and lighter weight
- ✓ lower attenuation
- ✓ immunity to environmental interference
- √ Greater repeater spacing 10s of km
- √ highly secure due to tap difficulty and lack of signal radiation
- x expensive over short distance
- x requires highly skilled installers
- x adding additional nodes is difficult

Guided Media Comparison

Point-to-Point Characteristics

Transmission	Rate	Bandwidth	Repeaters
<u>Medium</u>	Mbps	MHz	<u>km .</u>
Twisted Pair	100	3.5	2-6
Coaxial	500	500	1-10
Optical Fiber	200000	200000	10-50

Wireless Transmission

Transmission and reception are achieved by means of an

antenna

- **Directional** (higher frequencies)
 - transmitting antenna puts out focused beam
 - transmitter and receiver must be aligned
- Omnidirectional (lower frequencies)
 - signal spreads out in all directions
 - can be received by many antennas

Wireless Examples

- terrestrial microwave transmission
- satellite transmission
- broadcast radio
- infrared

Terrestrial Microwave

- uses the radio frequency spectrum, commonly from 2 to
 40 Ghz
- parabolic dish transmitter, mounted high as possible
- used by common carriers as well as private networks
- requires unobstructed line of sight between source and receiver
- curvature of the earth requires stations (called repeaters) to be ~50 km apart

Microwave Applications

- long-haul telecommunications service for both voice and television transmission
- short point-to-point links between buildings for closedcircuit TV or link between LANs
- bypass application
 - e.g. bypass local telephone company to reach longdistance
 carrier

Microwave Data Rates

Typical Digital Microwave Performance

Band (GHz)	Bandwidth (MHz)	Data Rate (Mbps)
2	7	12
6	30	90
11	40	135
18	220	274
10	-2 0	<u>-</u> , ,

Microwave

- Advantages
 - no cabling needed between sites
 - wide bandwidth
 - multichannel transmissions
- <u>Disadvantages</u>
 - line of sight requirement
 - expensive towers and repeaters
 - subject to interference e.g. passing airplanes, rain

Satellite Transmission

- a microwave relay station in space
- can relay signals over long distances
- geostationary satellites
 - remain above the equator at height of 35,863 km (geosynchronous orbit)
 - travel around the earth in exactly the time the earth takes to rotate

Satellite Transmission Links

- earth stations communicate by sending signals to the satellite on an uplink
- the satellite then repeats those signals on a downlink
- the broadcast nature of the downlink makes it attractive for services such as the distribution of television programming

Satellite Transmission Process

Satellite Applications

- television distribution
 - a network provides programming from a central location
 - direct broadcast satellite (DBS)
- long-distance telephone transmission
 - high-usage international trunks
- private business networks
- global positioning
 - GPS services

Principal Satellite Bands

- C band: 4(downlink) 6(uplink) GHz
 - the first to be designated
- Ku band: 12(downlink) -14(uplink) GHz
- smaller and cheaper earth stations used
 - rain interference is the major problem
- Ka band: 20(downlink) 30(uplink) GHz
 - even smaller and cheaper receivers
 - Even greater attenuation

Satellite

- Advantages
 - can reach a large geographical area
 - high bandwidth
 - cheaper over long distances
- Disadvantages
 - high initial cost
 - susceptible to noise and interference
 - propagation delay (1/4 second)

Radio

- Omnidirectional and easily received
- Broadcast radio
 - 30 MHz to 1 GHz FM, UHF, VHF television
- Mobile telephony
 - several bands below 1GHz
- Wireless LAN
 - 2.4 GHz range for 11 MB up to 525 ft.

Infrared

- Modulation of incoherent infrared light
- Wavelength 900 nm
- Up to 2 Mbps
- Does not penetrate walls
 - no licensing required