Ruteo - Capacidad

14 de septiembre de 2016

Índice general

1.	Rou	ting Problems	2
	1.1.	Online Route Assignment	2
	1.2.	Offline Route Assignment	3
	1.3.	Online Route and Capacity Assignment	3
	1.4.	Offline Route Assignment	4
	1.5.	Online 1+1 Route and Capacity Assignment	5
	1.6.	Online 1+1 Route and Capacity Assignment	6
	1.7.	Offline 1+1 Route Assignment	7

Capítulo 1

Routing Problems

1.1. Online Route Assignment

Given

- G = (V, E): Graph that represents the topology.
- M = |V|: Number of vertices.
- W_{ij} : Cost of (i, j) edge.
- s: Source vertex $s \in V$.
- d: Destination vertex $d \in V$.

Variables

• x_{ij} : Binary, one iff the path cross (i,j) edge from i to j, zero otherwise.

Formulation

• Minimize:

$$z = \sum_{i=1}^{M} \sum_{j=1}^{M} W_{ij} x_{ij}$$

■ Subject to:

$$\sum_{j=1}^{M} x_{ij} - \sum_{j=1}^{M} x_{ji} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in \{0, 1, ..., M\}$$

$$x_{ij} \in \{0, 1\}$$

1.2. Offline Route Assignment

Given

• G = (V, E): Graph that represents the topology.

• M = |V|: Number of vertices.

 \bullet K: Number of flows.

• W_{ij} : Cost of (i, j) edge.

• s^k : Source vertex $s \in V$ of flow k.

• d^k : Destination vertex $d \in V$ of flow k.

Variables

• x_{ij}^k : Binary, one iff the path of flow k cross (i,j) edge from i to j, zero otherwise.

Formulation

Minimize:

$$z = \sum_{k=1}^{K} \sum_{i=1}^{M} \sum_{j=1}^{M} W_{ij} x_{ij}^{k}$$

■ Subject to:

$$\sum_{j=1}^{M} x_{ij}^{k} - \sum_{j=1}^{M} x_{ji}^{k} = \begin{cases} 1 & \text{if } i = s^{k} \\ -1 & \text{if } i = d^{k} \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in \{1, ..., M\} \quad \forall k \in \{1, 2, ..., K\}$$

$$x_{ij}^k \in \{0,1\}$$

1.3. Online Route and Capacity Assignment

Given

• G = (V, E): Graph that represents the topology.

• M = |V|: Number of vertices.

• W_{ij} : Cost of (i,j) edge.

 $\, \bullet \, C :$ Capacity demanded.

• C_{ij} : Capacity of edge (i, j).

• s: Source vertex $s \in V$.

• d: Destination vertex $d \in V$.

Variables

• x_{ij} : Binary, one iff the path cross (i, j) edge from i to j, zero otherwise.

Formulation

Minimize:

$$z = \sum_{i=1}^{M} \sum_{j=1}^{M} W_{ij} x_{ij}$$

■ Subject to:

$$\sum_{j=1}^{M} x_{ij} - \sum_{j=1}^{M} x_{ji} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases} \forall i \in \{0, 1, ..., M\}$$

$$C(x_{ij} + x_{ji}) \le C_{ij} \quad \forall (i, j) \in E$$

$$x_{ij} \in \{0, 1\}$$

1.4. Offline Route Assignment

Given

• G = (V, E): Graph that represents the topology.

• M = |V|: Number of vertices.

• K: Number of flows.

• W_{ij} : Cost of (i, j) edge.

• C^k : Capacity demanded by flow k.

• C_{ij} : Capacity of edge (i, j).

• s^k : Source vertex $s \in V$ of flow k.

• d^k : Destination vertex $d \in V$ of flow k.

Variables

• x_{ij}^k : Binary, one iff the path of flow k cross (i,j) edge from i to j, zero otherwise.

Formulation

• Minimize:

$$z = \sum_{k=1}^{K} \sum_{i=1}^{M} \sum_{j=1}^{M} W_{ij} x_{ij}^{k}$$

Subject to:

$$\sum_{j=1}^{M} x_{ij}^{k} - \sum_{j=1}^{M} x_{ji}^{k} = \begin{cases} 1 & \text{if } i = s^{k} \\ -1 & \text{if } i = d^{k} \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in \{1, ..., M\} \quad \forall k \in \{1, 2, ..., K\}$$

$$\sum_{k=1}^{K} C^{k} (x_{ij}^{k} + x_{ji}^{k}) \leq C_{ij} \quad \forall (i, j) \in E$$

$$x_{ij}^k \in \{0, 1\}$$

1.5. Online 1+1 Route and Capacity Assignment

Given

- G = (V, E): Graph that represents the topology.
- M = |V|: Number of vertices.
- W_{ij} : Cost of (i, j) edge.
- ullet C: Capacity demanded.
- C_{ij} : Capacity of edge (i, j).
- s: Source vertex $s \in V$.
- d: Destination vertex $d \in V$.
- $B: A \text{ big number } (B \ge \sum^{ij} W_{ij})$

Variables

• x_{ij}^k : Integer, the number of paths from s to d that cross edge (i, j) from i to j.

Formulation

Minimize:

$$z = \sum_{i=1}^{M} \sum_{j=1}^{M} Bj_{ij} + \sum_{i=1}^{M} \sum_{j=1}^{M} W_{ij}x_{ij}$$

Subject to:

$$\sum_{j=1}^{M} x_{ij} - \sum_{j=1}^{M} x_{ji} = \begin{cases} 2 & \text{if } i = s \\ -2 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases} \forall i \in \{0, 1, ..., M\}$$

$$C(x_{ij} + x_{ji}) \le C_{ij}$$
 $\forall (i, j) \in E$
 $j_{ij} \ge x_{ij} + x_{ji} - 1$ $\forall (i, j) \in E$

$$x_{ij} \in \{0, 1, 2\}$$

 $j_{ij} \in \{0, 1\}$

1.6. Online 1+1 Route and Capacity Assignment

Given

- G = (V, E): Graph that represents the topology.
- M = |V|: Number of vertices.
- W_{ij} : Cost of (i,j) edge.
- lacksquare C: Capacity demanded.
- C_{ij} : Capacity of edge (i, j).
- s: Source vertex $s \in V$.
- d: Destination vertex $d \in V$.
- $B: A \text{ big number } (B \geq \sum^{ij} W_{ij})$

Variables

• x_{ij}^k : Integer, the number of paths from s to d that cross edge (i,j) from i to j.

Formulation

Minimize:

$$z = \sum_{i=1}^{M} \sum_{j=1}^{M} Bj_{ij} + \sum_{i=1}^{M} \sum_{j=1}^{M} W_{ij}(x_{ij} + y_{ij})$$

■ Subject to:

$$\sum_{j=1}^{M} x_{ij} - \sum_{j=1}^{M} x_{ji} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in \{0, 1, ..., M\}$$

$$\sum_{j=1}^{M} y_{ij} - \sum_{j=1}^{M} y_{ji} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = d \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in \{0, 1, ..., M\}$$

$$C(x_{ij} + x_{ji} + y_{ij} + y_{ji}) \le C_{ij}$$
 $\forall (i, j) \in E$
 $j_{ij} \ge x_{ij} + x_{ji} + y_{ij} + y_{ji} - 1$ $\forall (i, j) \in E$

$$y_{ij} \in \{0, 1\}$$

 $x_{ij} \in \{0, 1\}$
 $j_{ij} \in \{0, 1\}$

1.7. Offline 1+1 Route Assignment

Given

• G = (V, E): Graph that represents the topology.

• M = |V|: Number of vertices.

• K: Number of flows.

• W_{ij} : Cost of (i,j) edge.

• C^k : Capacity demanded by flow k.

• C_{ij} : Capacity of edge (i, j).

• s^k : Source vertex $s \in V$ of flow k.

• d^k : Destination vertex $d \in V$ of flow k.

• $B: A \text{ big number } (B \ge K \sum^{ij} W_{ij})$

Variables

• x_{ij}^k : Integer, the number of paths from s^k to d^k that cross edge (i,j) from i to j.

Formulation

Minimize:

$$z = \sum_{k=1}^{K} \sum_{i=1}^{(i,j)\in E} Bj_{ij}^{k} + \sum_{k=1}^{K} \sum_{i=1}^{M} \sum_{j=1}^{M} W_{ij} x_{ij}^{k}$$

• Subject to:

$$\sum_{j=1}^{M} x_{ij}^{k} - \sum_{j=1}^{M} x_{ji}^{k} = \begin{cases} 1 & \text{if } i = s^{k} \\ -1 & \text{if } i = d^{k} \\ 0 & \text{otherwise} \end{cases} \forall i \in \{1, ..., M\} \quad \forall k \in \{1, 2, ..., K\}$$

$$\sum_{k=1}^{K} C^{k} (x_{ij}^{k} + x_{ji}^{k}) \leq C_{ij} \qquad \forall (i, j) \in E$$

$$\sum_{k=1}^{k} c \left(x_{ij} + x_{ji}\right) = c_{ij} \qquad (c, j) \in I$$

$$j_{ij}^{k} \ge x_{ij}^{k} + x_{ji}^{k} - 1 \qquad \forall (i, j) \in E$$

$$x_{ij}^k \in \{0, 1, 2\}$$