## Characterizing Non-Singular Graphs with Games

#### Giovani Thai

Cal Poly, San Luis Obispo Frost Summer Research Program Joint work with Dr. Jeffrey Liese; Cameron Klig, Riley Lane, Matthew Moscot

November 12, 2022

#### Matrix Games

- Two-Player: One for row, one for column.
- Zero-Sum: what's gained in one player is lost in another
- The Game: call out row and column, resulting matrix entry is payoff to row player.

$$R = \begin{bmatrix} +1 & 0 & +2 \\ +2 & +1 & 0 \\ 0 & +2 & +1 \end{bmatrix} C = \begin{bmatrix} -1 & 0 & -2 \\ -2 & -1 & 0 \\ 0 & -2 & -1 \end{bmatrix}$$

### Matrix Games

- Players develop **optimal strategies**  $\vec{x}$  and  $\vec{y}$  to maximize row gain, minimize column loss
- Optimal Value: Expected payoff under optimal play.

### Theorem. (Shapley-Snow, 1950).

Extreme optimal solutions come from invertible submatrices. If an extreme optimal solution uses every row, the matrix must be invertible.

• **Broad Plan:** Remove an arbitrary row from the matrix, show that the value goes down. Implies that row must be played to achieve the optimal value.

## Rock Paper Scissors

$$M = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

- Det(M) = 9 (M is invertible)
- Optimal Strategies:
  - Row Strategy:  $\vec{x} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$  Column Strategy:  $\vec{y} = \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle$

  - v = 1
- If Row Player can't play rock:
  - $\vec{y} = \langle \frac{1}{3}, 0, \frac{2}{3} \rangle$
  - $v' = \frac{2}{3}$



### Connections to Graphs

• **Graph:** A graph G is composed of a collection of vertices (V), and an edge set (E) defining which vertices are adjacent (connected).

• Adjacency Matrix, A(G): 
$$A_{i,j=}$$
 
$$\begin{cases} 1, & \{v_i, v_j\} \in E \\ 0, & \{v_i, v_j\} \notin E. \end{cases}$$

- Investigating Vertex-Transitive Graphs
  - No advantage in choosing/playing one vertex over another
  - Uniform probability is an optimal strategy (true for any regular graph)

## Example: Kneser Graph Adjacency Matrix



### Motivation: Transversal Graph Adjacency Matrix



### Method

- **1** Remove the first row from M, denote it M'.
  - Corresponds to removing vertex 1 from play for the row player.
- **2** Find a **regular partition**  $P = P_1, \dots, P_k$  of the vertices.
  - Goal: group vertices based on their relationship to the removed  $v_1$ .
  - Regular:  $|N(x) \cap P_j|$  is constant on  $P_i$  for all i.
  - We want  $P_1 = \{v_1\}.$
  - Preserves the density of connections within and across groups.

#### Method

- Based on the regular partition, create the intersection-probability matrix.
  - i, j-entry represents the probability that two vertices from P<sub>i</sub> and P<sub>j</sub>
    chosen uniformly at random are adjacent.
- **1** Remove the first row from I-P matrix (M''); find a column strategy  $\vec{y}$  for M'' that reduces the value of the original game.

## Complete Graph, K<sub>n</sub>

• Each vertex connected to every other vertex;  $deg(v_j) = n - 1 \ \forall \ j \in [n] = \{1, \dots, n\}.$ 

Ex. Complete Graph on 8 vertices:



## Complete Graph, $K_n$



Dimension of  $M = A(K_8)$ : 8 × 8

#### Intersection – Probability Matrix:



Dimension of I-P Matrix:  $2 \times 2$ (General Dimension:  $2 \times 2$ )

# Complete Graph, K<sub>n</sub>

### For K<sub>8</sub>:

- $v = \frac{7}{8}$
- $\vec{y} = \langle 0, 1 \rangle \implies v' = \frac{6}{7}$

#### For $K_n$ :

- Game Value:  $v = \frac{n-1}{n}$
- Optimal Column Strategy on M":  $\vec{y} = \langle 0, 1 \rangle$ 
  - $M''\vec{y} = \frac{n-2}{n-1}\mathbf{1}$
  - Thus,  $v' = \frac{n-2}{n-1} < \frac{n-1}{n} = v$

## Rook's Graph, R(m, n)

- Vertices represent tiles on  $m \times n$  chessboard; ordered pairs (R, C).
- A vertex is adjacent to all possible moves for a Rook in that position.
- Regular Partition:

$$\{(1,1)\},\{(i,1):2\leq i\leq m\},\{(1,j):2\leq j\leq n\},\{(i,j):i,j\neq 1\}$$



# Rook's Graph, R(m, n)

### Adjacency Matrix of R(4, 10):



Dimension of  $M:40\times40$ 

#### Intersection-Probability Matrix:



Dimension of I-P Matrix:  $4 \times 4$  (General Dimension:  $4 \times 4$ )

# Rook's Graph, R(m, n)

### For R(4, 10):

- $v = \frac{12}{40} = \frac{3}{10} = 0.3$
- $\vec{y} = \langle \frac{1}{20}, \frac{7}{20}, \frac{3}{5}, 0 \rangle \implies v' = \frac{41}{138} \approx 0.297$

#### General R(m, n):

- Game Value:  $v = \frac{m+n-2}{mn}$
- Optimal Strategy on M":

$$\vec{y} = \begin{bmatrix} 0 & \frac{(m-2)(m-1)(n-3)}{mn(m-3)(n-3)-4} & \frac{(m-3)(n-2)(n-1)}{mn(m-3)(n-3)-4} & \frac{(m-1)(n-1)((m-3)(n-3)-1)}{(m-3)m(n-3)n-4} \end{bmatrix}^{T}$$

$$\implies M''\vec{y} = \frac{(m-3)(n-3)(m+n-2)-2}{mn(m-3)(n-3)-4} \cdot \mathbf{1}$$

$$\implies v - v' = \frac{2(m-2)(n-2)}{mn(mn(m-3)(n-3)-4)} > 0 \ \forall \ m, n \ge 4.$$

## Kneser Graph, K(n, k)

- Vertices: k-element subsets of  $[n] = \{1, \dots, n\}$ .
- $\{v_i, v_i\} \in E \iff$  corresponding subsets are disjoint.
- Regular Partition: based on number of elements in common with  $[k] = \{1, \dots, k\}.$



# Kneser Graph, K(n, k)

#### Adjacency Matrix of K(7, 3):



Dimension of  $M:35\times35$ 

Game Value:  $v = \frac{4}{35}$ 

#### Intersection-Probability Matrix:



Dimension of I-P Matrix:  $4 \times 4$  General Dimension: $(k+1) \times (k+1)$   $\vec{y} = \langle 0, \frac{2}{9}, \frac{4}{9}, \frac{1}{3} \rangle \Rightarrow v' = \frac{4}{36} < \frac{4}{35} = v$ 

# Kneser Graph, K(n, k)

### For General Kneser Graphs:

- $V = \frac{\binom{n-k}{k}}{\binom{n}{k}}$
- A Column Strategy on M'':

$$y_{j} = \frac{\binom{n-k}{k}\binom{n-k-1}{k}}{\binom{n}{k}\binom{n-k-1}{k}+1} \left( \frac{k\binom{k}{j}\left((-1)^{j+k} + \binom{n-k-1}{j}\right)}{\binom{n-k-1}{k-1}(n-j-k)} \right)$$
$$\forall j = 0, \dots, k.$$

$$\implies M''\vec{y} = \frac{\binom{n-k}{k}\binom{n-k-1}{k}}{\binom{n}{k}\binom{n-k-1}{k} + 1}\mathbf{1}$$

$$\implies v' = \frac{\binom{n-k}{k}\binom{n-k-1}{k}}{\binom{n}{k}\binom{n-k-1}{k} + 1} < \frac{\binom{n-k}{k}\binom{n-k-1}{k}}{\binom{n}{k}\binom{n-k-1}{k}} = \frac{\binom{n-k}{k}}{\binom{n}{k}} = v$$

## Next Steps and Further Questions

- Which graph families correspond to matrix games whose optimal row strategies must use every row? We conjecture that all non-singular vertex-transitive graphs have this property.
- What information about the spectrum of a graph can be obtained from regular partitions?
- Can we classify vertices by the effect of the value of the game if removed from the graph?

## Acknowledgements

- Frost Team: Dr. Jeff Liese, Cameron Klig, Riley Lane, Matthew Moscot
- Cal Poly COSAM Frost Undergraduate Summer Research Program
- CSU Northridge, CSU JMM
- and You!