Lab 9: Ensemble Classifications

R Abhijit Srivathsan 2448044

Titanic Survival Prediction Using Multiple Classifiers

This notebook demonstrates how to build and evaluate four different classifiers on the Titanic dataset to predict passenger survival:

- 1. **SVM**
- 2. Multilayer Perceptron (MLP)
- 3. Random Forest
- 4. Gradient Boosting

We will compare their performances and record observations.

```
# 1. Importing Libraries

# 1. Importing Libraries

# import numpy as np
import pandas as pd

# For splitting dataset & performance metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# Classifiers
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier

# For data preprocessing
from sklearn.preprocessing import LabelEncoder
```

```
# Ignore warnings for cleaner output (optional)
import warnings
warnings.filterwarnings('ignore')
```

2. Loading the Dataset

```
In [16]: # ------
# 2. Loading the dataset
# -----
df = pd.read_csv('train.csv')
df.head()
```

Out[16]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

A quick look at the data:

- **PassengerId**: Unique ID for each passenger
- **Survived**: 0 = No, 1 = Yes
- **Pclass**: Ticket class (1 = 1st, 2 = 2nd, 3 = 3rd)
- Name: Passenger name
- **Sex**: Passenger gender
- **Age**: Passenger age in years
- **SibSp**: # of siblings/spouses aboard
- Parch: # of parents/children aboard

- Ticket: Ticket number
- Fare: Passenger fare
- Cabin: Cabin number
- **Embarked**: Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)

3. Preprocessing

We will:

- 1. Handle missing values (particularly in the Age and Embarked columns).
- 2. Drop unnecessary columns (PassengerId , Name , Ticket , Cabin).
- 3. Convert categorical features (Sex, Embarked) to numeric.
- 4. Split the dataset into features and labels. "

```
In [17]: #
         # 3. Data Preprocessing
         # Check missing values
         df.isnull().sum()
Out[17]: PassengerId
                          0
         Survived
         Pclass
         Name
         Sex
         Age
                        177
         SibSp
         Parch
         Ticket
         Fare
                          0
         Cabin
                        687
          Embarked
                          2
         dtype: int64
```

```
In [18]: # Fill missing 'Age' with median
df['Age'].fillna(df['Age'].median(), inplace=True)

# Fill missing 'Embarked' with the most frequent value
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)

# Drop columns that are not essential or have too many NaNs
df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True)

# Convert categorical columns into numeric
le_sex = LabelEncoder()
df['Sex'] = le_sex.fit_transform(df['Sex']) # 0 or 1

le_embarked = LabelEncoder()
df['Embarked'] = le_embarked.fit_transform(df['Embarked']) # 0,1,2 for 5,C,Q (depending on order)

df.head()
```

2

Out[18]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	1	22.0	1	0	7.2500	2
	1	1	1	0	38.0	1	0	71.2833	0
	2	1	3	0	26.0	0	0	7.9250	2
	3	1	1	0	35.0	1	0	53.1000	2

0

0 8.0500

3 1 35.0

Final Feature Set

0

Now our data should look something like:

- Survived (label)
- Pclass

4

- **Sex** (0 or 1)
- Age

- SibSp
- Parch
- Fare
- **Embarked** (encoded as 0,1,2)

We'll separate the target variable Survived from the features.

4. Training Models and Evaluating Performance

We will train each of the following classifiers on the training data:

- 1. SVM (Support Vector Classifier)
- 2. Multilayer Perceptron
- 3. Random Forest

Out[19]: ((712, 7), (179, 7))

4. Gradient Boosting

After training, we'll predict on the test set and compare accuracies.

```
svm model = SVC()
         svm model.fit(X train, y train)
        y pred svm = svm model.predict(X test)
        accuracy svm = accuracy score(y test, y pred svm)
         print("SVM Accuracy: {:.4f}".format(accuracy svm))
        print("Classification Report:\n", classification report(y test, y pred svm))
        print("Confusion Matrix:\n", confusion matrix(y test, y pred svm))
       SVM Accuracy: 0.6592
       Classification Report:
                      precision
                                  recall f1-score support
                  0
                          0.64
                                   0.94
                                             0.76
                                                       105
                          0.76
                                   0.26
                                             0.38
                                                        74
                                             0.66
                                                       179
           accuracy
          macro avg
                          0.70
                                   0.60
                                             0.57
                                                       179
       weighted avg
                          0.69
                                   0.66
                                             0.61
                                                       179
       Confusion Matrix:
        [[99 6]
        [55 19]]
In [21]: # -----
        # 4.2 Multilayer Perceptron
         # -----
        mlp model = MLPClassifier(max_iter=500, random_state=42)
         mlp model.fit(X train, y train)
         y pred mlp = mlp model.predict(X test)
         accuracy mlp = accuracy score(y test, y pred mlp)
         print("MLP Accuracy: {:.4f}".format(accuracy_mlp))
         print("Classification Report:\n", classification report(y test, y pred mlp))
        print("Confusion Matrix:\n", confusion matrix(y test, y pred mlp))
```

```
MLP Accuracy: 0.7654
        Classification Report:
                       precision
                                   recall f1-score support
                   0
                           0.80
                                    0.80
                                              0.80
                                                         105
                          0.72
                                    0.72
                                              0.72
                   1
                                                          74
                                              0.77
            accuracy
                                                         179
                                              0.76
                                                         179
           macro avg
                          0.76
                                    0.76
        weighted avg
                          0.77
                                    0.77
                                              0.77
                                                         179
        Confusion Matrix:
         [[84 21]
         [21 53]]
In [22]:
         # 4.3 Random Forest
         rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
         rf_model.fit(X_train, y_train)
         y_pred_rf = rf_model.predict(X_test)
         accuracy_rf = accuracy_score(y_test, y_pred_rf)
         print("Random Forest Accuracy: {:.4f}".format(accuracy_rf))
         print("Classification Report:\n", classification_report(y_test, y_pred_rf))
         print("Confusion Matrix:\n", confusion matrix(y test, y pred rf))
```

```
Random Forest Accuracy: 0.8212
       Classification Report:
                     precision
                                 recall f1-score support
                  0
                         0.83
                                  0.88
                                           0.85
                                                      105
                         0.81
                                  0.74
                                           0.77
                 1
                                                      74
                                           0.82
           accuracy
                                                      179
                                           0.81
                                                     179
          macro avg
                         0.82
                                  0.81
       weighted avg
                         0.82
                                  0.82
                                           0.82
                                                     179
       Confusion Matrix:
        [[92 13]
        [19 55]]
In [23]: # -----
        # 4.4 Gradient Boosting
         # -----
        gb_model = GradientBoostingClassifier(n_estimators=100, random_state=42)
        gb_model.fit(X_train, y_train)
        y_pred_gb = gb_model.predict(X_test)
        accuracy_gb = accuracy_score(y_test, y_pred_gb)
        print("Gradient Boosting Accuracy: {:.4f}".format(accuracy_gb))
        print("Classification Report:\n", classification_report(y_test, y_pred_gb))
        print("Confusion Matrix:\n", confusion matrix(y test, y pred gb))
```

```
Gradient Boosting Accuracy: 0.8101
Classification Report:
               precision
                            recall f1-score
                                               support
           0
                   0.81
                             0.89
                                       0.85
                                                  105
                   0.81
                             0.70
                                       0.75
                                                   74
                                       0.81
                                                  179
    accuracy
                                       0.80
                                                  179
   macro avg
                   0.81
                             0.79
weighted avg
                   0.81
                             0.81
                                                  179
                                       0.81
Confusion Matrix:
 [[93 12]
 [22 52]]
```

5. Comparing Results

Random Forest 0.821229 Gradient Boosting 0.810056 MLP 0.765363 SVM 0.659218

Final Observations and Conclusions

- Random Forest achieved the highest accuracy (0.821229), indicating it most effectively captured the relationships in the data among all tested models.
- **Gradient Boosting** followed closely (**0.810056**), reinforcing the typical strength of ensemble methods on tabular datasets like Titanic.
- **Multilayer Perceptron (MLP)** (**0.765363**) outperformed the baseline SVM but did not surpass the ensemble methods, suggesting that further hyperparameter tuning (e.g., adjusting hidden layers, learning rate, or regularization) could improve its performance.
- **SVM** recorded the lowest accuracy (**0.659218**), indicating that in its default configuration, it may not be well-suited for this dataset. SVMs often require careful tuning of parameters (such as (C), kernel choice, and gamma) to reach competitive results.

Overall, **ensemble methods** (Random Forest and Gradient Boosting) proved most effective in this case, which is a common outcome when dealing with structured data like the Titanic dataset.