- 3 $[R"NH]^{-}$, carboxamides $[R"C(O)NR"]^{-}$, carbanions $[R"]^{-}$, carbonate $[CO_3]^{-2}$, sulfate $[SO_4]^{-2}$,
- 4 phosphate $[PO_4]^{-3}$, biphosphate $[HPO_4]^{-2}$, phosphorus ylides $[R''_4P]^{-1}$, nitrate $[NO_3]^{-1}$, borate
- 5 [B(OH)₄], cyanate [OCN], fluoride [F], hypochlorite [OCl], silicate [SiO₄], stannate [SnO₄],
- 6 basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R"₃N and amine oxides R"₃NO,
- and organometallics comprising R"Li, R"₂Zn, R"₂Mg, and R"MgX', where R" represents an
- 8 organic substituent and multiple organic substituents need not be identical, and X' represents an
- 9 inorganic substituent.
- 1 32. (Once amended) The process of claim 31, wherein the co-reagent is selected from the
- 2 group consisting of common Grignard reagents R"MgX, alkalihalides, zinc compounds
- 3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,
- 4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R"B(OH)₂, BI₃, BBr₃, BCl₃,
- 5 and BF₃, where R" represents an organic substituent and X' represents an inorganic substituent.
- 1 46. (Twice amended) A process of converting a plurality of POSS fragments into a POSS
- 2 compound, comprising:
- mixing an effective amount of a base with the plurality of POSS fragments in a solvent to
- 4 produce a basic reaction mixture, the base reacting with the POSS fragments to produce the
- 5 POSS compound,

7

6 wherein the POSS fragments have the formula $(RSiO_{1.5})_m(RXSiO_{1.0})_n$ and contain from 1

- to 7 silicon atoms and no more than 3 rings, and the POSS compound is selected from the group
- 8 consisting of homoleptic nanostructure compounds having the formula $[(RSiO_{1.5})_n]_{\Sigma\#}$,
- 9 heteroleptic nanostructure compounds having the formula $[(RSiO_{1.5})_m(R'SiO_{1.5})_n]_{\Sigma\#}$
- 10 functionalized homoleptic nanostructure compounds having the formula
- [(RSiO_{1.5})_m(RXSiO_{1.0})_n] $_{\Sigma^{\#}}$, functionalized heteroleptic nanostructure compounds having the
- formula $[(RSiO_{1.5})_m(R'SiO_{1.5})_n(RXSiO_{1.0})_p]_{\Sigma\#}$, and expanded POSS fragments having the
- formula (RSiO_{1.5})_m(RXSiO_{1.0})_n, where R and R' each represents an organic substituent, X
- 14 represents a functionality substituent, m, n and p represent the stoichiometry of the formula, \sum
- 15 indicates nanostructure, and # represents the number of silicon atoms contained within the

4

16 nanostructure.

60295071v1

- 1 53. (Once amended) The process of claim 52, wherein the base is selected from the group
- 2 consisting of hydroxide [OH], organic alkoxides [R"O], carboxylates [R"COO], amides
- 3 [R"NH], carboxamides [R"C(O)NR"], carbanions [R"], carbonate [CO₃]⁻², sulfate [SO₄]⁻²,
- 4 phosphate $[PO_4]^{-3}$, biphosphate $[HPO_4]^{-2}$, phosphorus ylides $[R''_4P]^{-1}$, nitrate $[NO_3]^{-1}$, borate
- [B(OH)₄], cyanate [OCN], fluoride [F], hypochlorite [OCl], silicate [SiO₄]⁻⁴, stannate [SnO₄]⁻⁴,
- basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R"₃N and amine oxides R"₃NO,
- 7 and organometallics comprising R"Li, R"₂Zn, R"₂Mg, and R"MgX', where R" represents an
- 8 organic substituent and multiple organic substituents need not be identical, and X' represents an
- 9 inorganic substituent.
- 1 58. (Once amended) The process of claim 47, wherein the co-reagent is selected from the
- 2 group consisting of common Grignard reagents R"MgX, alkalihalides, zinc compounds
- 3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,
- 4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R"B(OH)₂, BI₃, BBr₃, BCl₃,
- 5 and BF₃, where R" represents an organic substituent and X' represents an inorganic substituent.
- 1 67. (Once amended) The process of claim 66, wherein the base is selected from the group
- 2 consisting of hydroxide [OH], organic alkoxides [R"O], carboxylates [R"COO], amides
- 3 [R"NH], carboxamides [R"C(O)NR"], carbanions [R"], carbonate [CO₃], sulfate [SO₄],
- 4 phosphate [PO₄]⁻³, biphosphate [HPO₄]⁻², phosphorus ylides [R"₄P], nitrate [NO₃], borate
- 5 [B(OH)₄], cyanate [OCN], fluoride [F], hypochlorite [OCl], silicate [SiO₄]⁻⁴, stannate [SnO₄]⁻⁴,
- 6 basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R"₃N and amine oxides R"₃NO,
- 7 and organometallics comprising R"Li, R"₂Zn, R"₂Mg, and R"MgX', where R" represents an
- 8 organic substituent and multiple organic substituents need not be identical, and X' represents an
- 9 inorganic substituent.

60295071v1

- (Once amended) The process of claim 71, wherein the co-reagent is selected from the
 - 2 group consisting of common Grignard reagents R"MgX, alkalihalides, zinc compounds

5

Ŋ١

<u>)</u>

3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,

4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R"B(OH)₂, BI₃, BBr₃, BCl₃,

5 and BF₃, where R" represents an organic substituent and X' represents an inorganic substituent.

1 86. (Twice amended) A process of converting an unfunctionalized POSS nanostructure compound into a functionalized POSS nanostructure compound, comprising:

mixing an effective amount of a base with the unfunctionalized POSS nanostructure compound in a solvent to produce a basic reaction mixture, the base reacting with the unfunctionalized POSS nanostructure compound to produce the functionalized POSS nanostructure compound,

1)¹²

3

4

5

6

7

8

9

10

11

12

13

14

15

16

8

wherein the unfunctionalized POSS nanostructure compound is selected from the group consisting of homoleptic nanostructure compounds having the formula $[(RSiO_{1.5})_n]_{\Sigma^{\#}}$ and heteroleptic nanostructure compounds having the formula $[(RSiO_{1.5})_m(R'SiO_{1.5})_n]_{\Sigma^{\#}}$, and the functionalized POSS nanostructure compound is selected from the group consisting of functionalized homoleptic nanostructure compounds having the formula $[(RSiO_{1.5})_m(RXSiO_{1.0})_n]_{\Sigma^{\#}}$ and functionalized heteroleptic nanostructure compounds having the formula $[(RSiO_{1.5})_m(RXSiO_{1.5})_n(RXSiO_{1.0})_p]_{\Sigma^{\#}}$, where R and R' each represents an organic substituent, X represents a functionality substituent, m, n and p represent the stoichiometry of the formula, Σ indicates nanostructure, and π represents the number of silicon atoms contained within the nanostructure.

1 93. (Once amended) The process of claim 92, wherein the base is selected from the group

2 consisting of hydroxide [OH], organic alkoxides [R"O], carboxylates [R"COO], amides

3 [R"NH], carboxamides [R"C(O)NR"], carbanions [R"], carbonate [CO₃], sulfate [SO₄],

4 phosphate [PO₄]⁻³, biphosphate [HPO₄]⁻², phosphorus ylides [R"₄P]⁻, nitrate [NO₃]⁻, borate

5 [B(OH)₄], cyanate [OCN], fluoride [F], hypochlorite [OCl], silicate [SiO₄], stannate [SnO₄],

basic metal oxides comprising Al₂O₃, CaO, and ZnO, amines R"₃N and amine oxides R"₃NO,

7 and organometallics comprising R"Li, R"₂Zn, R"₂Mg, and R"MgX', where R" represents an

6

organic substituent and multiple organic substituents need not be identical, and X' represents an

9 inorganic substituent.

60295071v1

- 1 97. (Twice amended) The process of claim 86, further comprising mixing a co-reagent with
- 2 the base and the unfunctionalized POSS nanostructure compound in the solvent.

Dy

- 1 98. (Once amended) The process of claim 97, wherein the co-reagent is selected from the
- 2 group consisting of common Grignard reagents R"MgX, alkalihalides, zinc compounds
- 3 comprising ZnI₂, ZnBr₂, ZnCl₂, and ZnF₂, aluminum compounds comprising Al₂H₆, LiAlH₄,
- 4 AlI₃, AlBr₃, AlCl₃, and AlF₃, and boron compounds comprising R"B(OH)₂, BI₃, BBr₃, BCl₃,
- 5 and BF₃, where R" represents an organic substituent and X' represents an inorganic substituent.
- 1 114. (Once amended) A process of converting a polymeric silsesquioxane into a POSS nanostructure compound, comprising:
 - mixing an effective amount of a base with the polymeric silsesquioxane in a solvent to produce a basic reaction mixture, the base reacting with the polymeric silsesquioxane to produce the POSS nanostructure compound,

D)5

3

4

5

- wherein the polymeric silsesquioxane has the formula $[RSiO_{1.5}]_{\infty}$, and the POSS nanostructure compound is $[(RSiO_{1.5})_4(RXSiO_{1.0})_3]_{\Sigma7}$, where R represents an organic substituent,
- 8 X represents a functionality substituent, ∞ represents the degree of polymerization and is a
- 9 number greater than or equal to 1, m, n and p represent the stoichiometry of the formula, \sum
- 10 indicates nanostructure, and # represents the number of silicon atoms contained within the
- 11 nanostructure.

DIG

- 1 128. (Twice amended) A compound having the formula $[(XSiO_{1.5})_n]_{\Sigma^{\#}}$, where X represents a
- 2 functionality substituent, n represents the stoichiometry of the formula, \sum indicates
- 3 nanostructure, and # represents the number of silicon atoms contained within the nanostructure.