Chapter 4: Dynamic Programming

Seungjae Ryan Lee

Dynamic Programming

- Algorithms to compute optimal policies with a perfect model of environment
- Use value functions to structure searching for good policies
- Foundation of all methods hereafter

Policy Evaluation (Prediction)

- ullet Compute state-value $\,v_\pi(s)$ for some policy $\,\pi\,$
- Use the Bellman Equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s'] \Big]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big], \quad \text{for all } s \in \mathcal{S},$$

Iterative Policy Evaluation

- Solving linear systems is tedious → Use iterative methods
- Define sequence of approximate value functions $v_0, v_1, v_2 \dots$
- Expected update using the Bellman equation:
 - Update based on expectation of all possible next states

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s] \\ = \sum_{a} \pi(a|s) \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_k(s') \Big],$$

Iterative Policy Evaluation in Practice

- In-place methods usually converge faster than keeping two arrays
- Terminate policy evaluation when $\max_{s} |v_{k+1}(s) v_k(s)|$ is sufficiently small

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0

Loop:
\Delta \leftarrow 0
Loop for each s \in \mathbb{S}:
v \leftarrow V(s)
V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
\Delta \leftarrow \max(\Delta,|v - V(s)|)
until \Delta < \theta
```

Gridworld Example

- Deterministic state transition
- Off-the-grid actions leave the state unchanged
- Undiscounted, episodic task

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

 $R_t = -1$ on all transitions

Policy Evaluation in Gridworld

k = 1

• Random policy π

	0.0	0.0	0.0	0.0
$l_{r} = 0$	0.0	0.0	0.0	0.0
k = 0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0

$$k = 2$$

$$\begin{vmatrix}
0.0 & -1.7 & -2.0 & -2.0 \\
-1.7 & -2.0 & -2.0 & -2.0 \\
-2.0 & -2.0 & -2.0 & -1.7 \\
-2.0 & -2.0 & -1.7 & 0.0
\end{vmatrix}$$

	0.0	-6.1	-8.4	-6
= 10	-6.1	-7.7	-8.4	-8
_ 10	-8.4	-8.4	-7.7	-(
	-9.0	-8.4	-6.1	(

	0.0	-14.	-20.	-22
$k = \infty$	-14.	-18.	-20.	-20
κ = ∞	-20.	-20.	-18.	-14
	-22.	-20.	-14.	0.

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

Policy Improvement - One state

- Suppose we know v_{π} for some policy π
- For a state s, see if there is a better action $a \neq \pi(s)$
- Check if $q_{\pi}(s,a) \geq v_{\pi}(s)$
 - \circ If true, greedily selecting a is better than $\pi(s)$
 - Special case of Policy Improvement Theorem

Policy Improvement Theorem

For policies π, π' , if for all state $s \in \mathcal{S}$,

$$q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$$

Then, π' is at least as good a policy as π .

$$v_{\pi'}(s) \ge v_{\pi}(s)$$

(Strict inequality if $q_{\pi}(s, \pi(s')) > v_{\pi}(s)$)

Policy Improvement

- Find better policies with the computed value function
- Use a new *greedy* policy π'
- Satisfies the conditions of Policy Improvement Theorem

$$\pi'(s) \stackrel{\dot{=}}{=} \underset{a}{\operatorname{argmax}} q_{\pi}(s, a)$$

$$= \underset{a}{\operatorname{argmax}} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \underset{a}{\operatorname{argmax}} \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big],$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

			Ç
†	1	Ţ	+
1	₽	Ļ	+
₽	\rightarrow	\rightarrow	

Guarantees of Policy Improvement

• If $v_{\pi}=v_{\pi'}$, then the Bellman Optimality Equation holds.

$$v_{\pi'}(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi'}(S_{t+1}) \mid S_t = s, A_t = a]$$
$$= \max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi'}(s') \Big].$$

→ Policy Improvement always returns a better policy unless already optimal

Policy Iteration

- Repeat Policy Evaluation and Policy Improvement
- Guaranteed improvement for each policy
- Guaranteed convergence in finite number of steps for finite MDPs

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*,$$

Policy Iteration in Practice

- Initialize $v_{\pi_{t+1}}$ with v_{π_t} for quicker policy evaluation
- Often converges in surprisingly few iterations

```
Policy Iteration (using iterative policy evaluation) for estimating \pi \approx \pi_*
1. Initialization
    V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrarily for all s \in S
2. Policy Evaluation
   Loop:
         Loop for each s \in S:
              v \leftarrow V(s)
              V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]
              \Delta \leftarrow \max(\Delta, |v - V(s)|)
   until \Delta < \theta (a small positive number determining the accuracy of estimation)
3. Policy Improvement
    policy-stable \leftarrow true
    For each s \in S:
         old\text{-}action \leftarrow \pi(s)
        \pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         If old\text{-}action \neq \pi(s), then policy\text{-}stable \leftarrow false
    If policy-stable, then stop and return V \approx v_* and \pi \approx \pi_*; else go to 2
```


Value Iteration

- "Truncate" policy evaluation
 - \circ Don't wait until $\max\limits_{s}|v_{k+1}(s)-v_k(s)|$ is sufficiently small
 - o Update state values once for each state

o Bellman optimality equation turned into an update rule

$$v_{k+1}(s) = \sum_{a} \pi_k(a, s) \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_k(s')]$$

= $\max_{a} \sum_{s'} p(s', r \mid s, a) [r + \gamma v_k(s')]$

Value Iteration in Practice

• Terminate when $\max_{s} |v_{k+1}(s) - v_k(s)|$ is sufficiently small

Asynchronous Dynamic Programming

- Don't sweep over the entire state set systematically
 - Some states are updated multiple times before other state is updated once
 - Order/skip states to propagate information efficiently
- Can intermix with real-time interaction
 - Update states according to the agent's experience
 - Allow focusing updates to relevant states
- To converge, all states must be continuously updated

Generalized Policy Iteration

- Idea of interaction between policy evaluation and policy improvement
 - Policy improved w.r.t. value function
 - Value function updated for new policy
- Describes most RL methods
- Stabilized process guarantees optimal policy

Efficiency of Dynamic Programming

- ullet Polynomial in $|\mathcal{S}|$ and $|\mathcal{A}|$
 - \circ Exponentially faster than direct search in policy space $|\mathcal{A}|^{|\mathcal{S}|}$
- More practical than linear programming methods in larger problems
 - Asynchronous DP preferred for large state spaces
- Typically converge faster than their worst-case guarantee
 - Initial values can help faster convergence

Thank you!

Original content from

Reinforcement Learning: An Introduction by Sutton and Barto

You can find more content in

- github.com/seungjaeryanlee
- www.endtoend.ai