Statistische Physik im Gleichgewicht

WS 2023/2024 - Blatt 4

Dr. Milos Knezevic, Dr. Jeanine Shea

Abgabe 27.11.2023

Problem 11: Antiferromagnetism

(10 *Points*)

An antiferromagnet is described by the Hamiltonian

$$H = J \sum_{\langle ij \rangle} S_i S_j - h \sum_i S_i$$

with h, J > 0 and $S_i = \pm 1$.

- (a) This model system is often represented as two grids A and B that pervade each other (see sketch). Why is this a sensible description? What states do A and B correspond to?
- (b) Use the variational approach to arrive at the following self-consistent equations

$$m_A = \tanh(-\beta J m_B z + h)$$

 $m_B = \tanh(-\beta J m_A z + h)$

where $m_{A,B}$ are the magnetizations of subsystems A and B.

- (c) Explain the role of the state $m_A = -m_B = m$ for the system. How are the spins structured?
- (d) The critical temperature of the antiferromagnet is called the *Néel temperature*, T_N . Above the Néel temperature the system is isotropic, and below antiferromagnetic. Calculate the magnetic susceptibilities $\chi_{A,B} = \partial m_{A,B}/\partial h|_{h\to 0}$ and the total susceptibility $\chi_{\rm tot} = (\chi_A + \chi_B)/2$. Show that $\chi_{\rm tot}$ above the transition point has the form

$$\chi_{\rm tot} = \frac{1}{T + T_N}.$$

Hint: At some point, you should assume $m = m_A = -m_B$ here as well. The critical point should be clear, but you can also calculate it again.

- (e) Calculate the susceptibility below T_N . Discuss what happens at $T = T_N$ in comparison to a ferromagnet. Sketch the susceptibility in the vicinity of T_N .
- (f) We now couple the order parameter with a magnetic field in a different way by introducing a (unphysical) staggered magnetic field, that creates a field +h on system A and -h on system B. Adjust the self-consistent equations and then calculate the susceptibilities $\chi_A = \partial m_A/\partial h|_{h\to 0}$ and $\chi_B = \partial m_B/\partial (-h)|_{h\to 0}$. What happens now for $\chi_{\rm tot}$ at $T = T_N$?

Feedback:

Roughly how much time did you spend on this problem set?