Lecture 7: Image & Recognition (3)

- Lecture 7 : Image & Recognition (3)
 - Statistical IR Approach (StatIR)
 - Syntactic IP Approach (StyntIR)
 - Neural Networks IR Approach
 - ANN (Artificial Neural Networoks)
 - Back-Propagation (BP)
 - Deep Learning
 - Machine Learning vs Deep Learning
 - Layer of Deep Learning
 - Feature Extraction from Frequency Domain
 - 2-D Fourier Transform
 - 2D FT: Applications
 - Gabor Filters
 - Gabor Filters Applications

Statistical IR Approach (StatIR)

- Assume a satistical basis.
- Approach:
 - Representation: vector space
 - Generalization: rules & concepts
 - Evaluation: accurate & trustworthy estimates
- Procedure:
 - i. Determine **feature vector** x
 - ii. Train system
 - iii. Classify patterns.

Syntactic IP Approach (StyntIR)

- Structural information
- Quantify and extract **structural** information and to assess structural similarity of patterns.
- Formulate hierarchical descriptions of complex patterns built up from simpler subpatterns.
- Quantify Structure:
 - i. Formal grammars (Parsing)
 - ii. Relational descriptions (Relational Graph Matching)

Neural Networks IR Approach

- Architecture
- Training or Learning
- Activation Function

ANN (Artificial Neural Networoks)

ANN Characterized by:

- 1. Pattern of connections
- 2. Method of determining the weights
- 3. Activation Function

Back-Propagation (BP)

- Gradient descent method to minimize the total squared error.
- Balance between the ability to respond correctly to the **input patterns** that are used for **training** and the ability to give reasonable responses to **input** that is **similar**.
- 3 Stages:
 - i. Feed-forward of the input training pattern
 - ii. Calculation & back-propagation of the associated error
 - iii. Adjustment of the weights

Deep Learning

Machine Learning vs Deep Learning

Machine Learning: ability of machines; Feature extraction by human.

Deep learning: a series of algorithms; Feature extraction by neural network.

Layer of Deep Learning

- 1. Convolutional layers: filters. Result of one filter: feature map (FM).
- 2. Subsampling layers: reduce the **size** of input.

Feature Extraction from Frequency Domain

- Time domain: respect to time
- Frequency domain: respect to frequency.
 - In 2D cases, frequency domain is the space defined by values of the Fourier transform and its frequency variables.
 - How much the signal lies wthin each given frequency band.
 - Decompose a function into frequencies, with more than one sine wave.

2-D Fourier Transform

2-D Fourier Transform

Spatial Domain f(x,y) Fourier Transform
Inverse Fourier Transform

Frequency Domain *F(u, v)*

Two-Dimensional Fourier Transform:

$$F(u,v) = \int_{-\infty}^{\infty} f(x,y) \cdot e^{-i\cdot 2\pi(ux+vy)} dxdy$$

Where in f(x,y), x and y are real, not complex variables.

Two-Dimensional Inverse Fourier Transform:

$$f(x,y) = \int_{-\infty}^{\infty} F(u,v) \cdot e^{+i\cdot 2\pi(ux+vy)} dudv$$

Basis functions

Amplitude and phase of required basis functions

- Center dot: DC component.
- Far away: Higher frequency.
- More contract, wider spectrum.
- The image rotated, the specturm will rotate in the same direction.

2D FT: Applications

- High-pass filter: Sharpen (high frequency)
- Low-pass filter: Blur (low frequency)

Gabor Filters

- Band-pass filters.
- Optimal space frequency resolution (the best joint space-frequency localization)

Gabor Filters Applications

- 1. Fingerprint identification: image enhancement. (Orientation and frequency for each cell)
- 2. Fingerprint verification: texture analysis
- 3. Palmprint identification: texture analysis
- 4. Iris identification: texture coding
- 5. Face recognition: Gaborface