Relatório 2º Projeto ASA 2023/2024

Grupo: tp055

Aluno: Enzo Nunes ist1106336

Descrição do Problema e da Solução

- O problema baseia-se em encontrar o maior lucro possível para uma fábrica de brinquedos de Natal. A fábrica tem um limite máximo de produção global, *Max*, e disponibiliza N brinquedos que têm cada um uma capacidade máxima de produção, *ToyMax_i*, e um lucro, *ToyProfit_i*, e P pacotes com um lucro especial, *PackProfit_i*, com 3 brinquedos cada um.
- A solução apresentada traduz o problema em um de programação linear de maximização, surtindo efeito de uma biblioteca de *python* (PuLP) que usa *solvers* como o GLPK que, por sua vez, usa o algoritmo *simplex*, para resolver problemas como este.
- As variáveis em consideração são os brinquedos, $toy_1, toy_2, ..., toy_N$ e pacotes especiais de brinquedos, $pack_1, pack_2, ..., pack_N$.
- O programa linear consiste em:
 - o Função objetivo: Maximizar

$$\sum_{i=1}^{N} toy_{i} * ToyProfit_{i} + \sum_{i=1}^{P} pack_{i} * PackProfit_{i}$$

o Restrição global para o máximo de brinquedos que a fábrica pode produzir:

$$\sum_{i=1}^{N} toy_i + \sum_{i=1}^{P} pack_i \le Max$$

o Para cada brinquedo, toy_i , uma restrição para a sua capacidade máxima de produção, considerando $pack_j(i)$ um dos P(i) pacotes que contém toy_i :

$$toy_i + \sum_{i=1}^{P(i)} pack_j(i) \le ToyMax_i$$

O Adicionalmente, para cada brinquedo e pacote, limitá-los inferiormente a 0 unidades e, apesar de não ser necessário dado que isto já foi verificado na restrição anterior, mas a fim de aumentar a eficiência do solver, limitar cada brinquedo também à sua capacidade máxima de produção.

$$toy_i \ge 0$$
, $pack_i \ge 0$, $toy_i \le ToyMax_i$

Análise Teórica

A complexidade de codificação do programa é dada em função de N e P.

Relatório 2º Projeto ASA 2023/2024

Grupo: tp055

Aluno: Enzo Nunes ist1106336

Para cada brinquedo, temos uma variável e três restrições: uma para o limite inferior, uma para o limite superior e uma que tem em conta também o número de pacotes que o contém. Para cada pacote, temos uma variável e duas restrições: uma para o limite inferior e uma para o limite superior. Adicionalmente, temos a restrição da capacidade máxima de produção global.

Conclui-se então que o problema tem O(N+P) variáveis e O(3N+2P+1) restrições.

Avaliação Experimental dos Resultados

Foram utilizadas 15 instâncias para testar o tempo de execução do programa. O tempo de execução guardado para cada uma resulta da média aritmética entre 5 testes realizados em cada uma.

N	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000
P	50	100	150	200	250	350	450	550	650	750	1000	1250	1500	2000	3000
N+P	1050	2100	3150	4200	5250	6350	7450	8550	9650	10750	12000	13250	14500	16000	18000
3N+2P+1	3101	6201	9301	12401	15501	18701	21901	25101	28301	31501	35001	38501	42001	46001	51001
T/s	0,06	0,17	0,36	0,61	0,92	1,31	1,74	2,19	2,74	3,34	3,89	4,48	5,2	5,76	6,06

Como se pode observar, temos dois gráficos muito semelhantes que demonstram a linearidade entre o tempo de execução e o tamanho do programa linear ou dos parâmetros do problema.