COVID19 30 04 estados

April 30, 2020

1 Dados COVID19 em .ipynb 30/04/2020

Estou tentando importar e utilizar os dados do Ministério da Saúde em https://covid.saude.org.br para avaliar a situação divulgada oficialmente pelo MS; A url muda diariamente, há uma série de caracteres em primeira vista aleatórios que é atualizada também todo dia... como puxar o arquivo csy automaticamente?

O site não disponibiliza dados de SRAG, apenas uma tabela repetida e desatualizada do COVID19.

Nova tabela com dados do Brasil (população)

Dados de SRAG da fiocruz estão no padrão brasileiro (109,0009) como transformar o arquivo em padrão americano/internacional (109.0009) automaticamente pela URL?

1.1 Gráficos dos Dados

Mostrar infectados e mortes confirmados diariamente Mostrar infectados e mortes confirmados acumulados Mostrar dados separados por região e por estado

Mostrar dados de SRAG e comparar com o aumento dos números confirmados de COVID

Dados em semana epidemiológica

1.2 Estimativas (Regressão)

Estimar próximos números (até 7 dias?) utilizando 3 dias anteriores e regressão não linear

Estimar curvas com ajuda dos dados de SRAG inconclusivos (qual a porcentagem de testes incompletos espera-se que serão confirmados)

1.3 Modelo de Contágio

Utilizar dados adquiridos para rodar um modelo epidemiológico que

utiliza valores de reprodução base e evolução da COVID-19, causada pelo vírus SARS-COV-2

1.4 Creating the base of the code

```
[1]: import pandas as pd
    import numpy as np
    from datetime import datetime, timedelta
    from sklearn.metrics import mean_squared_error
    from scipy.stats import norm
    from scipy.optimize import curve_fit
    from scipy.optimize import fsolve
    import matplotlib.pyplot as plt
    %matplotlib inline
    # Databases
    url_B = "https://raw.githubusercontent.com/Yannngn/COVID19-04-20/master/brasil.
     ⇔csv"
    url_C = "https://mobileapps.saude.gov.br/esus-vepi/files/
     →unAFkcaNDeXajurGB7LChj8SgQYS2ptm/
     [2]: brasil = pd.read_csv(url_B, sep = ';')
    df = pd.read_csv(url_C, sep = ";")
[3]: FMT = '\%Y - \%m - \%d'
    date = df['data']
    regi = df['regiao']
    df['data'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.
     ⇔strptime("2020-01-30", FMT)).days)
[4]: df_BR = brasil.loc[range(27), ['UF', 'Unidade da Federação', 'Regiao', L
     →'População']]
    df BR = df BR.sort values('UF')
    df = df.sort_values('estado')
    df1 = df.loc[:, ['data', 'casosAcumulados', 'casosNovos', 'obitosAcumulados', | 
     → 'obitosNovos']]
    dfs = df.loc[:, ['regiao', 'data', 'casosAcumulados', 'casosNovos', | 
     →'obitosAcumulados', 'obitosNovos', 'estado']]
    df_UF = df.loc[:, ['estado', 'data', 'casosAcumulados', 'casosNovos', | 
     →'obitosAcumulados', 'obitosNovos']]
```

```
[5]: df1 = df1.groupby("data").sum()

# total of days since 2020-01-30 - x
days = list(df1.index)
x = days
```

1.5 Exponential Model

```
[6]: # exponential model for the evolution of the covid 19 in Brazil
     def exponential_model (x, a, b, c) :
          return a * np.exp (b * (x - c))
     def exp_param (R, X) :
          a = np.exp(X[2] * (((np.log(R[2]))/X[2]) - ((np.log(R[1]) - np.log(R[0]))/
      \hookrightarrow (X[1] - X[0])))
          b = (np.log(R[2])/X[2]) - (1/X[2])*(((np.log(R[0])/X[0]) - (np.log(R[1])/X[0]))
      \rightarrow X[1]))/((X[0])**(-1) - (X[1])**(-1)))
          return [a, b]
     def exp_est (R, X) :
          np.random.seed(max(x))
          a = np.exp(X[2] * (((np.log(R[2]))/X[2]) - ((np.log(R[1]) - np.log(R[0]))/
      \hookrightarrow (X[1] - X[0])))
          b = (np.log(R[2])/X[2]) - (1/X[2])*(((np.log(R[0])/X[0]) - (np.log(R[1])/X[0]))
      \rightarrow X[1]))/((X[0])**(-1) - (X[1])**(-1)))
          return a * np.exp(b * (max(x) + 1)) + norm.rvs(size = 1,scale = 0.05 *_\text{L}
      \hookrightarrow (max(x) + 1))
```

1.6 Logistic Model

```
[7]: # logistic model for the evolution of the covid 19 in Brazil

def logistic_model (x, a, b, c):
    return c / (1 + np.exp ( - (x - b) / a))

a0 = 2.7

lb = [df1.index.size + 31, df1.index.size + 86, df1.index.size + 45, df1.index.
    →size + 45]

pBrasil = brasil.at[brasil['UF'].eq('BR').idxmax(), 'População']

lc = [0.2 * pBrasil, 0.001 * pBrasil, 0.008 * pBrasil, 0.00016 * pBrasil]
```

1.7 Data for every Brazilian State

1.7.1 Population

Source: IBGE

1.7.2 Last Confimed Numbers

Source: covid.saude.gov.br

1.7.3 Incidence of Cases and Deaths

Number of cases or deaths for million citizens

1.7.4 Speed of the Contamination

How many days does the COVID takes to double in every state

```
[8]: casosInc = []
    casosDia = []
     casosCres = []
     obitosInc = []
     obitosDia = []
     obitosCres = []
     dfs = dfs.sort_values('estado')
     estados = dfs["estado"].unique()
     x = days
     for e in estados :
         pop = brasil.at[brasil['UF'].eq(e).idxmax(), 'População']
         uf = brasil.at[brasil['UF'].eq(e).idxmax(), "Unidade da Federação"]
         # Values for daily cases
         df_e = df_UF.loc[df_UF.iloc[:,0] == e, :].iloc[:, [1, 2]].
      →sort_values("data")
         y = list(df_e.iloc[:, 1])
         casosDia.append(round(y[max(days)], 2))
         casosInc.append(round((10 ** 6) * y[max(days)] / pop, 2))
         exp_p = exp_param([y[-5], y[-3], y[-1]], [x[-5], x[-3], x[-1]])
         exponential_fit = curve_fit(exponential_model, x, y, p0 = [exp_p[0] * np.
      \rightarrowexp(-1), exp_p[1], 1])
         casosCres.append(round(np.log(2) / exponential_fit[0][1], 1))
         # Values for daily deaths
         df_e = df_UF.loc[df_UF.iloc[:,0] == e, :].iloc[:, [1, 4]].
      ⇔sort_values("data")
         y = list(df_e.iloc[:, 1])
         obitosInc.append(round((10 ** 6) * y[max(days)] / pop, 2))
```

C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4:
RuntimeWarning: overflow encountered in exp
after removing the cwd from sys.path.

[8]:		UF	Unidade da Federação	Regiao	População	Casos	\
	0	AP	Amapá	Norte	842914	1080	
	1	AM	Amazonas	Norte	4240210	5254	
	2	RR	Roraima	Norte	546891	519	
	3	CE	Ceará	Nordeste	9178363	7606	
	4	PΕ	Pernambuco	Nordeste	9650604	6876	
	5	SP	São Paulo	Sudeste	46064928	28698	
	6	ES	Espírito Santo	Sudeste	4138657	2465	
	7	RJ	Rio de Janeiro	Sudeste	16946541	9453	
	8	AC	Acre	Norte	866811	404	
	9	MA	Maranhão	Nordeste	7121156	3190	
	10	DF	Distrito Federal	Centro-Oeste	3223048	1356	
	11	PA	Pará	Norte	8628901	2876	
	12	RN	Rio Grande do Norte	Nordeste	3598288	1177	
	13	AL	Alagoas	Nordeste	3419689	1044	
	14	SC	Santa Catarina	Sul	7266193	2085	
	15	RO	Rondônia	Norte	1857992	502	
	16	PB	Paraíba	Nordeste	4097859	814	
	17	SE	Sergipe	Nordeste	2352207	447	
	18	BA	Bahia	Nordeste	15522855	2851	
	19	ΡI	Piauí	Nordeste	3233891	513	
	20	RS	Rio Grande do Sul	Sul	11416895	1466	
	21	PR	Paraná	Sul	11538518	1407	
	22	GO	Goiás	Centro-Oeste	7017496	781	
	23	MS	Mato Grosso do Sul	Centro-Oeste	2800704	255	

24	MT	Mato Gros	sso	Centro-	Deste	345509	92 297
25	TO	Tocantins		Norte		159931	16 137
26	MG	Minas Gera	ais	Su	deste	214513	56 1827
	Incidência	do Cagos	Diag	nara d	ohrar	(63505)	Mortes \
0	Incluencia	1281.27	Dias	para u	oblai	7.0	34
1		1239.09				7.7	425
2		949.00				7.2	7
3		828.69				7.9	482
4		712.49				6.5	565
5		622.99				9.6	2375
6		595.60				7.4	83
7		557.81				9.3	854
8		466.08				8.2	19
9		447.96				6.5	184
10		420.72				12.9	30
11		333.30				5.5	208
12		327.10				9.2	56
13		305.29				4.1	47
14		286.95				10.4	46
15		270.18				5.6	16
16		198.64				5.9	62
17		190.03				4.5	12
18		183.66				8.4	104
19		158.63				5.7	24
20		128.41				12.2	51
21		121.94				12.1	83
22		111.29				9.4	29
23		91.05				11.4	9
24		85.96				10.5	11
25		85.66				6.9	3
26		85.17				11.5	82
	Incidência	de Mortes	Dia	ıs para	dobrar	(obitos))
0		40.34		•		6.1	
1		100.23				6.9	9
2		12.80				9.4	4
3		52.51				6.9	9
4		58.55				6.7	7
5		51.56				8.3	3
6		20.05				6.5	5
7		50.39				7.8	3
8		21.92				6.2	2
9		25.84				5.6	3
10		9.31				11.4	4
11		24.11				4.2	2
12		15.56				8.2	2

13.74	5.5
6.33	10.6
8.61	5.2
15.13	7.6
5.10	9.2
6.70	7.4
7.42	9.0
4.47	8.9
7.19	9.2
4.13	9.8
3.21	9.1
3.18	8.0
1.88	5.8
3.82	8.2
	6.33 8.61 15.13 5.10 6.70 7.42 4.47 7.19 4.13 3.21 3.18 1.88

1.8 Plots

1.8.1 Daily Confirmed Number by Brazilian regions

Norte Centro-Oeste Nordeste Sudeste Sul

New Confirmed Cases New Confimed Deaths

```
[9]: plt.rc('font', size=14)
    plt.rcParams['figure.figsize'] = [14, 7]
     ttl = ["New Confirmed Cases", "New Confirmed Deaths"]
     dfs = dfs.sort_values("data")
     regioes = dfs["regiao"].unique()
     estados = list(dfs["estado"].unique())
     # Real data
     # Brazilian areas separated
     for r in regioes :
         for f in range(2) :
             for e in estados :
                 plt.grid(True)
                 uf = brasil.at[brasil['UF'].eq(e).idxmax(), "Regiao"]
                 yx = max(dfs[dfs['regiao'] == r].iloc[:, 3 + (2 * f)])
                 if uf == r :
                     xs = days
```

```
ys = list(dfs[dfs['estado'] == e].iloc[:, 3 + (2 * f)])
    plt.plot(xs, ys, marker = '.', label = e)
plt.title("Scatter of " + ttl[f] + " in " + r)
plt.legend()
plt.xlabel("Days since 30 January 2020")
plt.ylabel("Number of " + ttl[f])
plt.xlim(30, max(xs) * 1.01)
plt.ylim(0, yx * 1.05)
plt.show()
```


1.9 Casos Totais por estado

Casos confirmados x tempo

Dados reais, estimativa exponencial e em estados com mais de 1000 casos estimativa logistica
Os dados são subnotificados e possuem baixa confiabilidade

```
[10]: plt.rc('font', size = 14)
      plt.rcParams['figure.figsize'] = [14, 7]
      ttl = ["Confirmed Cases", "Confirmed Deaths"]
      dfs = dfs.sort values('estado')
      estados = dfs["estado"].unique()
      cor = ["#1d2b49", "#235174"]
      for e in estados :
          df_e = df_UF.loc[df_UF.iloc[:, 0] == e, :].iloc[:, [2, 4, 1]].
      →sort values("data")
          pop = brasil.at[brasil['UF'].eq(e).idxmax(),'População']
          est = brasil.at[brasil['UF'].eq(e).idxmax(),'Unidade da Federação']
          for f in range(2) :
              plt.grid(True)
              x = days
              # Real Numbers
              y = list(df_e.iloc[:, f])
              plt.plot(x, y, marker = '.', label = "Real numbers", color = cor[f])
              # Lines
              if max(y) > 1000:
                  logistic_fit = curve_fit(logistic_model, x, y, p0 = [a0, lb[f * 2],__
       \rightarrow 0.1 * pop])
                  logistic_sol = int(fsolve(lambda x : logistic_model(x,__
       →logistic_fit[0][0], logistic_fit[0][1],
       →logistic_fit[0][2]) - int(logistic_fit[0][2]),
                                             logistic_fit[0][1]))
                  pred_x = list(range(max(x), logistic_sol))
                  # Predicted logistic curve
                  plt.plot(x + pred_x, [logistic_model(i, logistic_fit[0][0],__
       →logistic_fit[0][1], logistic_fit[0][2])
                                        for i in x + pred_x], label = "Logistic_"
       →model", color = "#c2cdd8")
                  plt.xlim(0, max(pred_x) * 1.05)
                  plt.ylim(0, logistic_fit[0][2] * 1.05)
              else :
                  pred_x = list(range(max(x), max(x) + 15))
```

```
plt.xlim(0, max(x) * 1.05)
           plt.ylim(0, max(y) * 1.05)
       exp_p = exp_param([y[-5], y[-3], y[-1]], [x[-5], x[-3], x[-1]])
       exponential_fit = curve_fit(exponential_model, x, y, p0 = [exp_p[0] *__
\rightarrownp.exp(-1), exp_p[1], 1])
       plt.plot(x + pred_x, [exponential_model(i, exponential_fit[0][0],__
→exponential_fit[0][1], exponential_fit[0][2])
                             for i in x + pred_x], label = "Exponential_
→model", color = "#3881b8")
       plt.title(ttl[f] + " in " + est + " - " + e)
       plt.legend()
       plt.xlabel("Days since 30 January 2020")
       plt.ylabel(ttl[f])
       plt.show()
       print("Next estimated number of confirmed cases in " + est + " is: " +
             str(round(exponential_model(max(x) + 1, exponential_fit[0][0],__
→exponential_fit[0][1], exponential_fit[0][2]), 3))
             + " or + " +
             str(round(exponential_model(max(x) + 1, exponential_fit[0][0],__
→exponential_fit[0][1], exponential_fit[0][2]) - max(y), 3))
```


Next estimated number of confirmed cases in Acre is: 423.412 or + 19.412 C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp

after removing the cwd from sys.path.

Next estimated number of confirmed cases in Acre is: 21.868 or + 2.868

Next estimated number of confirmed cases in Alagoas is: 1287.105 or + 243.105

Next estimated number of confirmed cases in Alagoas is: 55.467 or + 8.467 C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp after removing the cwd from sys.path.

Next estimated number of confirmed cases in Amazonas is: 5855.522 or + 601.522 C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4:

RuntimeWarning: overflow encountered in exp after removing the cwd from sys.path.

Next estimated number of confirmed cases in Amazonas is: 490.704 or + 65.704

Next estimated number of confirmed cases in Amapá is: 1245.971 or + 165.971

Next estimated number of confirmed cases in Amapá is: 39.076 or + 5.076

Next estimated number of confirmed cases in Bahia is: 3274.571 or + 423.571

Next estimated number of confirmed cases in Bahia is: 116.981 or + 12.981

Next estimated number of confirmed cases in Ceará is: 8913.326 or + 1307.326

Next estimated number of confirmed cases in Ceará is: 557.208 or + 75.208

Next estimated number of confirmed cases in Distrito Federal is: 1484.329 or +128.329

Next estimated number of confirmed cases in Distrito Federal is: 37.952 or +7.952

Next estimated number of confirmed cases in Espírito Santo is: 2698.314 or + 233.314

Next estimated number of confirmed cases in Espírito Santo is: 91.707 or + 8.707

Next estimated number of confirmed cases in Goiás is: 843.598 or +62.598

Next estimated number of confirmed cases in Goiás is: 35.953 or + 6.953 C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp after removing the cwd from sys.path.

Next estimated number of confirmed cases in Maranhão is: 3693.448 or + 503.448

Next estimated number of confirmed cases in Maranhão is: 209.941 or + 25.941

Next estimated number of confirmed cases in Minas Gerais is: 2118.478 or \pm 291.478

Next estimated number of confirmed cases in Minas Gerais is: 94.714 or + 12.714

Next estimated number of confirmed cases in Mato Grosso do Sul is: 304.439 or +49.439

Next estimated number of confirmed cases in Mato Grosso do Sul is: 11.294 or +2.294

Next estimated number of confirmed cases in Mato Grosso is: 351.039 or + 54.039

Next estimated number of confirmed cases in Mato Grosso is: 13.759 or + 2.759 C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp after removing the cwd from sys.path.

Next estimated number of confirmed cases in Pará is: 3326.416 or + 450.416 C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4:

RuntimeWarning: overflow encountered in exp after removing the cwd from sys.path.

Next estimated number of confirmed cases in Pará is: 220.56 or + 12.56

Next estimated number of confirmed cases in Paraíba is: 899.782 or + 85.782

Next estimated number of confirmed cases in Paraíba is: 74.425 or + 12.425

Next estimated number of confirmed cases in Pernambuco is: 8039.848 or + 1163.848

Next estimated number of confirmed cases in Pernambuco is: 678.992 or + 113.992 C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4: RuntimeWarning: overflow encountered in exp after removing the cwd from sys.path.

Next estimated number of confirmed cases in Piauí is: 590.351 or + 77.351

Next estimated number of confirmed cases in Piauí is: 27.192 or + 3.192

Next estimated number of confirmed cases in Paraná is: 1660.857 or + 253.857

Next estimated number of confirmed cases in Paraná is: 102.717 or + 19.717

Next estimated number of confirmed cases in Rio de Janeiro is: 10714.042 or +1261.042

C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4:
RuntimeWarning: overflow encountered in exp
after removing the cwd from sys.path.

Next estimated number of confirmed cases in Rio de Janeiro is: 997.514 or + 143.514

Next estimated number of confirmed cases in Rio Grande do Norte is: 1234.132 or +57.132

Next estimated number of confirmed cases in Rio Grande do Norte is: 64.477 or +8.477

C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4:
RuntimeWarning: overflow encountered in exp
after removing the cwd from sys.path.

Next estimated number of confirmed cases in Rondônia is: 605.252 or + 103.252

Next estimated number of confirmed cases in Rondônia is: 17.752 or + 1.752

Next estimated number of confirmed cases in Roraima is: 593.288 or + 74.288

Next estimated number of confirmed cases in Roraima is: 6.685 or + -0.315

Next estimated number of confirmed cases in Rio Grande do Sul is: 1606.484 or +140.484

C:\Users\calad\anaconda3\lib\site-packages\ipykernel_launcher.py:4:
RuntimeWarning: overflow encountered in exp
after removing the cwd from sys.path.

Next estimated number of confirmed cases in Rio Grande do Sul is: 56.911 or +5.911

Next estimated number of confirmed cases in Santa Catarina is: 2038.004 or + -46.996

Next estimated number of confirmed cases in Santa Catarina is: 59.403 or +13.403

Next estimated number of confirmed cases in Sergipe is: 453.196 or + 6.196

Next estimated number of confirmed cases in Sergipe is: 13.565 or + 1.565

Next estimated number of confirmed cases in São Paulo is: 30813.583 or +2115.583

Next estimated number of confirmed cases in São Paulo is: 2639.596 or + 264.596

Next estimated number of confirmed cases in Tocantins is: 118.367 or + -18.633

Next estimated number of confirmed cases in Tocantins is: 3.574 or + 0.574

[]: