COMP5211: Machine Learning

Lecture 2

Last lecture Matrix Derivates

- Before we have df = f'(x)dx
- In the vector view:
 - Scalar to vector: $df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i = \frac{\partial f}{\partial x} dx$ where $\frac{\partial f}{\partial x}$ and dx are $n \times 1$ vector
 - Similarly, scalar to matrix: $df = \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial f}{\partial X_{ij}} dX_{ij} = tr(\frac{\partial f}{\partial X}^T dX)$
 - For the derivate, we also have $d(X\pm Y)=dX\pm dY$, d(XY)=(dX)Y+XdY, $d(X^T)=(dX)^T$, dtr(X)=tr(dX), $dX^{-1}=-X^{-1}dXX^{-1}$
 - For the trace operation, we also have a = tr(a), $tr(A \pm B) = tr(A) \pm tr(B)$, tr(AB) = tr(BA), $tr(A^T(B \odot C)) = tr((A \odot B)^TC)$

Last lecture

Matrix Derivates

• Chain rule: f is a function of Y, let Y=AXB, to get $\frac{\partial f}{\partial X}$

$$df = tr(\frac{\partial f}{\partial Y}^T dY) = tr(\frac{\partial f}{\partial Y}^T A dXB) = tr(B\frac{\partial f}{\partial Y}^T A dX) = tr((A^T \frac{\partial f}{\partial Y} B^T)^T dX)$$

- Since dY = (dA)XB + A(dX)B + AX(dB) = A(dX)B as dA = 0, dB = 0
- . So we get $\frac{\partial f}{\partial X} = A^T \frac{\partial f}{\partial Y} B^T$

Last lecture

Matrix calculus

• $f=\|Xw-y\|^2$, solve $\frac{\partial f}{\partial w}$, where y is $m\times 1$ vector, X is $m\times n$ matrix, w is $n\times 1$ vector

$$df = d(||Xw - y||^2) = d((Xw - y)^T(Xw - y)) = d((Xw - y)^T)(Xw - y) + (Xw - y)^Td(Xw - y)$$
$$= (Xdw)^T(Xw - y) + (Xw - y)^T(Xdw) = 2(Xw - y)^TXdw$$

So
$$\frac{\partial f}{\partial w} = 2X^T(Xw - y)$$

Regression Example

- Classification:
 - Customer record → Yes/No
- Regression: predicting credit limit
 - Customer record dollar amount

Regression

Linear regression

- Classification:
 - Customer record → Yes/No
- Regression: predicting credit limit
 - Customer record dollar amount
- Linear Regression:

$$h(x) = \sum_{i=0}^{d} w_i x_i = w^T x$$

The data set

- Training data:
 - $(x1,y1), (x2,y2), ..., (x_N, y_N)$
 - $x_n \in \mathbb{R}^d$: feature vector for a sample
 - $y_n \in \mathbb{R}$: observed output (real number)

The data set

- Training data:
 - $(x1,y1), (x2,y2), ..., (x_N, y_N)$
 - $x_n \in \mathbb{R}^d$: feature vector for a sample
 - $y_n \in \mathbb{R}$: observed output (real number)
- Linear regression: find a function $h(x) = w^T x$ to approximate y

The data set

- Training data:
 - $(x1,y1), (x2,y2), ..., (x_N, y_N)$
 - $x_n \in \mathbb{R}^d$: feature vector for a sample
 - $y_n \in \mathbb{R}$: observed output (real number)
- Linear regression: find a function $h(x) = w^T x$ to approximate y
- Measure the error by $(h(x) y)^2$ (square error)
 - Training error: $E_{\mathsf{train}}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(x_n) y_n)^2$

Illustration

Matrix form

$$E_{\text{train}}(w) = \frac{1}{N} \sum_{n=1}^{N} (x_n^T w - y_n)^2 = \frac{1}{N} \| \begin{bmatrix} x_1^T w - y_1 \\ x_2^T w - y_2 \\ \vdots \\ x_N^T w - y_N \end{bmatrix} \|^2$$

$$= \frac{1}{N} \left\| \begin{bmatrix} -x_1^T - \\ -x_2^T - \\ \vdots \\ -x_N^T - \end{bmatrix} w - \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \right\|$$

$$= \frac{1}{N} \left\| \underbrace{X}_{N \times d} w - \underbrace{y}_{N \times 1} \right\|^2$$

Minimize E_{train}

- $min_w f(w) = ||Xw y||^2$
 - E_{train} : continuous, differentiable, convex
 - Necessary condition of optimal w:

$$\nabla f(w^*) = \begin{bmatrix} \frac{\partial f}{\partial w_0}(w^*) \\ \vdots \\ \frac{\partial f}{\partial w_d}(w^*) \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Minimizing f

$$f(w) = ||Xw - y||^2 = w^T X^T X w - 2w^T X^T y + y^T y$$

$$\nabla f(w) = 2(X^T X w - X^T y)$$

$$\nabla f(w^*) = 0 \Rightarrow X^T X w^* = X^T y$$

$$\overbrace{\text{normal equation}}$$

Minimizing f

$$f(w) = ||Xw - y||^2 = w^T X^T X w - 2w^T X^T y + y^T y$$

$$\nabla f(w) = 2(X^T X w - X^T y)$$

$$\nabla f(w^*) = 0 \Rightarrow X^T X w^* = X^T y$$

$$\text{normal equation}$$

$$\Rightarrow w^* = (X^T X)^{-1} X^T y \qquad \text{How?}$$

Solutions

- Case I: X^TX is invertible \Rightarrow Unique solution
 - Often when N > d
 - Yes, $w^* = (X^T X)^{-1} X^T y$
- Case II: X^TX is non-invertible \Rightarrow Many solutions
 - Often when d > N

Linear System Solver

- A "linear system":
 - . Find the minimum 2-norm solution of $\min_{w} \|Xw y\|$

Linear System Solver

- A "linear system":
 - Find the minimum 2-norm solution of $\min_{w} \|Xw y\|$
- Let $X = U\Sigma V^T$ be the SVD of X:
 - $U^TU = I$
 - $V^TV = I$
 - $\Sigma = \text{diag}[\sigma_1, \sigma_2, ..., \sigma_r, 0, ..., 0], (\sigma_1, ..., \sigma_r > 0)$
 - Solution: $w^+ = X^+ y$
 - where $X^+=V\Sigma^+U^T$, $\Sigma^+=\mathrm{diag}[1/\sigma_1,1/\sigma_2,\ldots,1/\sigma_r,0,\ldots,0]$

Linear System Solver

- A "linear system":
 - . Find the minimum 2-norm solution of $\min \|Xw y\|$
- Let $X = U\Sigma V^T$ be the SVD of X:
 - $U^TU = I$
 - $V^TV = I$
 - $\Sigma = \text{diag}[\sigma_1, \sigma_2, ..., \sigma_r, 0, ..., 0], (\sigma_1, ..., \sigma_r > 0)$
 - Solution: $w^+ = X^+ y$
 - where $X^+ = V \Sigma^+ U^T$, $\Sigma^+ = \text{diag}[1/\sigma_1, 1/\sigma_2, ..., 1/\sigma_r, 0, ..., 0]$
 - X^+ : pseudo-inverse of X
 - Why?

Linear System Solver (Cont*)

- $||Xw y||^2 = ||U\Sigma V^T w y||^2 = ||\Sigma V^T w U^T y||^2$ since?
- Let $z = V^T w$,
 - . The solution of $\min_{w} \| \Sigma V^T w U^T y \|^2$ is equivalent to find the solution of
 - $\min_{z} \|\Sigma z U^T y\|^2$
 - Since Σ is diagonal, so the solution is $z^+ = \Sigma^+ U^T y$
 - So $w^+ = Vz^+ = V\Sigma^+U^Ty$

Computation complexity

Dense vector and sparse vector

- If $x, y \in \mathbb{R}^m$ are dense:
 - $x + y, x y, x^Ty : O(m)$ operations
- If $x, y \in \mathbb{R}^m$, x is dense and y is sparse:
 - $x + y, x y, x^Ty : O(nnz(y))$ operations
- If $x, y \in \mathbb{R}^m$ and both of them are sparse:
 - $x + y, x y, x^Ty : O(nnz(y) + nnz(x))$ operations

Computation complexity

Dense matrix

- Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times n}, s \in \mathbb{R}$:
 - A + B, sA, A^T : O(mn) operations
- If $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{n \times 1}$
 - Ab: O(mn) operations
- If $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$,
 - $AB: O(n^3)$ operations; theoretical best: $O(n^{2.xxx})$
- $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$
 - AB: O(mnk) operations;

Matrix

1	5	9		
2	6	10		
3	7	11		
4	8	12		

Array (in Memory Space)

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Computation complexity

Sparse matrix format

- Widely-used format: Compressed Sparse Column (CSC), Compressed Sparse Row (CSR), ...
- CSR: three arrays for storing an $m \times n$ matrix with nnz nonzero
 - *val* (*nnz* real numbers): the values of each nonzero elements
 - row_ind (nnz integers): the column indices corresponding to the values
 - col_ptr (m+1 integers): the list of value indexes where each column starts

Computation complexity Sparse matrix operations

- Let $A \in \mathbb{R}^{m \times n}$ (sparse), $B \in \mathbb{R}^{m \times n}$ (sparse or dense), $s \in \mathbb{R}$:
 - A + B, sA, A^T : O(nnz) operations
- If $A \in \mathbb{R}^{m \times n}$ (sparse), $b \in \mathbb{R}^{n \times 1}$
 - Ab: O(nnz) operations
- If $A \in \mathbb{R}^{n \times k}$ (sparse), $B \in \mathbb{R}^{k \times n}$ (dense),
 - AB: O(nnz(A)n) operations (use sparse BLAS)
- $A \in \mathbb{R}^{n \times k}$ (sparse), $B \in \mathbb{R}^{k \times n}$ (sparse),
 - AB: O(nnz(A)nnz(B)/k) in average
 - AB: O(nnz(A)n) worst case
 - The resulting matrix will be much denser

Computational complexity

- Computational cost for computing $(X^TX)^{-1}X^Ty$:
 - Computing X^TX : $O(d^2N)$ time
 - Computing matrix inversion: $O(d^3)$ time
 - Overall complexity: $O(d^2N + d^3)$
- What if $d, N \approx$ millions?
 - (Use iterative algorithms, next class)

Binary Classification

- Input: training data $x_1, x_2, ..., x_n \in \mathbb{R}^d$ and corresponding outputs $y_1, y_2, ..., y_n \in \{+1, -1\}$
- Training: compute a function f such that $sign(f(x_i)) \approx y_i$ for all i
- Prediction: given a testing sample \tilde{x} , predict the output as $sign(f(x_i))$

Binary Classification

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

•
$$P(y = 1 \mid x) = \theta(w^T x)$$
,

• Where
$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

It is called sigmoid function

Binary Classification

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

•
$$P(y = 1 \mid x) = \theta(w^T x)$$
,

• Where
$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

• How about P(y = -1 | x)?

Binary Classification

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

•
$$P(y = 1 \mid x) = \theta(w^T x)$$
,

• Where
$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

• How about P(y = -1 | x)?

Binary Classification

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

•
$$P(y = 1 \mid x) = \theta(w^T x)$$
,

• Where
$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

• How about P(y = -1 | x)?

•
$$P(y = -1 | x) = 1 - \frac{1}{1 + e^{-w^T x}} = \frac{1}{1 + e^{w^T x}} = \theta(-w^T x)$$

• Therefore, $P(y|x) = \theta(yw^Tx)$

Maximizing the likelihood

• Likelihood of $\mathcal{D} = (x_1, y_1), ..., (x_N, y_N)$:

$$\prod_{n=1}^{N} P(y_n | x_n) = \prod_{n=1}^{N} \theta(y_n w^T x_n)$$

Maximizing the likelihood

Likelihood of

$$\mathcal{D} = (x_1, y_1), \dots, (x_N, y_N)$$
:

$$\prod_{n=1}^{N} P(y_n | x_n) = \prod_{n=1}^{N} \theta(y_n w^T x_n)$$

• Find w to maximize the likelihood!

$$\max_{w} \prod_{n=1}^{N} \theta(y_{n}w^{T}x_{n})$$

$$\Rightarrow \max_{w} \log(\prod_{n=1}^{N} \theta(y_{n}w^{T}x_{n}))$$

$$\Rightarrow \min_{w} - \sum_{n=1}^{N} \log(\theta(y_{n}w^{T}x_{n}))$$

$$\Rightarrow \min_{w} \sum_{n=1}^{N} \log(1 + e^{-y_{n}w^{T}x_{n}})$$

Empirical Risk Minimization (linear)

• Linear classification/regression:

•
$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} loss(\underbrace{w^{T} x_{n}}_{\hat{y_{n}}}, y_{n})$$
• $\hat{y_{n}}$: the predicted score

- Linear regression: $loss(h(x_n), y_n) = (w^T x_n - y_n)^2$
- Logistic regression: $loss(h(x_n), y_n) = log(1 + e^{-y_n w^T x_n})$

Support Vector Machines Hinge loss

Replace the logistic loss by hinge loss:

•
$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} \max(0, 1 - y_n w^T x_n)$$

Empirical Risk Minimization (general)

- Assume $f_W(x)$ is the decision function to be learned
 - (W is the parameters of the function)
- General empirical risk minimization

$$min_{W} \frac{1}{N} \sum_{n=1}^{N} loss(f_{W}(x_n), y_n)$$

• Example: Neural network ($f_W(\ \cdot\)$ is the network)