Linux device driver for a RISC-V System-on-a-Chip (SoC)

June 2020

- Goals
- System
 - Hardware
 - FPGA / CPU
 - Software
- TDC
 - FPGA Module
 - Device Driver
- Tools
- Demonstration
- Conclusions

Goals

- Learn about
 - open-source SoC FPGA tools
 - embedded Linux
- Build
 - a simple Linux device driver for time-to-digital converter (TDC) core

- Goals
- System
 - Hardware
 - FPGA / CPU
 - Software
- TDC
 - FPGA Module
 - Device Driver
- Tools
- Demonstration
- Conclusions

Hardware

- Versa Development Kit
 - Lattice ECP5 FPGA
 - -SDRAM
 - UART/JTAG (USB FTDI)
 - Ethernet

FPGA SoC

- Litex Soc Builder
 - Written in Python
 - Configures SoC (CPU, Cores, IOs, etc)
 - Open source synthesis tools
- TDC core is added to wishbone bus
- CPU running at 75 MHz

CPU

- VexRiscV processor
- RISC-V architecture
- Soft Core
- Highly configurable
- Linux capable
- Written in SpinalHDL language

- Goals
- System
 - Hardware
 - FPGA / CPU
- TDC
 - FPGA Module
 - Device Driver
- Tools
- Demonstration
- Conclusions

SW/FPGA Stack

• Blue: implemented within this project

TDC FPGA Core

- Measures time between two events
- Implemented as a counter
- 75MHz → 13.3ns resolution
- Written in Python! (Migen)

 Shortcut: start & stop signals come from device driver, not from external inputs!

TDC Device Driver

- Implemented as a dynamic kernel module
- Character device: /dev/mod_tdc
- Interfaces to TDC FPGA core via system bus

- Goals
- System
 - Hardware
 - FPGA / CPU
 - Software
- TDC
 - FPGA Module
 - Device Driver
- Tools
- Demonstration
- Conclusions

Generation Flow

Development Setup

- All tools are in docker container https://github.com/plex1/TrellisDev.git
 - Easy to be replicate
 - Compilation of Image takes multiple hours
 - Requires 50GB + of disk space
- Raspberry Pi for interfacing to HW: USB/JTAG & Ethernet/TFTP
- Complex setup

Conclusion

- Open source SoC with Linux running
 - Docker Container created
- Simple TDC FPGA core implemented
- Simple Linux device driver implemented
- Learned about Linux ecosystem
- Great open source tools for FPGA SoC available

Demonstration

Links

- This project:
 - https://github.com/plex1/tdc_kernel_driver
 - https://github.com/plex1/TrellisDev
- Referenced repos:
 - https://github.com/litex-hub/linux-on-litex-vexriscv
 - https://github.com/enjoy-digital/litex
 - https://github.com/m-labs/migen
 - https://github.com/SpinalHDL/VexRiscv