作业 #3

- 1. 公司决定使用 1000 万元新产品开发基金开发 A, B, C 三种新产品。经预测估计,开发 A, B, C 三种新产品的投资利润率分别为 5%, 7%, 10%。由于新产品开发有一定风险,公司研究后确定了下列优先顺序目标:
 - (1) A产品至少投资 300 万元;
 - (2) 为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的 35%;
 - (3) 应至少留有 10%的开发基金,以备急用;
 - (4) 使总的投资利润最大。

试建立投资分配方案的目标规划模型。

解: 设分配给 A, B, C 三种新产品的开发投资额分别为 x_1, x_2, x_3

min
$$P_1d_1^- + P_2\left(d_2^+ + d_3^+ + d_4^+\right) + P_3d_5^- + P_4d_6^-$$

$$\begin{cases} x_1 + x_2 + x_3 \le 1000 \\ x_1 + d_1^- - d_1^+ = 300 \\ x_1 + d_2^- - d_2^+ = 350 \end{cases}$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 1000 \\ x_1 + d_2^- - d_1^+ = 300 \\ x_2 + d_3^- - d_3^+ = 350 \\ x_3 + d_4^- - d_4^+ = 350 \\ 1000 - \left(x_1 + x_2 + x_3\right) + d_5^- - d_5^+ = 100 \\ 0.05x_1 + 0.07x_2 + 0.1x_3 + d_6^- - d_6^+ = 100 \\ x_i \ge 0, i = 1, 2, 3; \ d_j^-, d_j^+ \ge 0, j = 1, \dots, 6 \end{cases}$$

- 2. 已知单位牛奶、牛肉、鸡蛋中的维生素及胆固醇含量等有关数据见下表。 如果只考虑这三种食物,并且设立了下列三个目标:
 - 第一,尽量满足三种维生素的每日最小需求量;
 - 第二,使每日摄入的胆固醇尽可能少;
 - 第三, 使每日购买食品的费用尽可能少。

请建立问题的目标规划模型。

项目	牛奶	牛肉	鸡蛋	每日最小需求量
火口	(500g)	(500g)	(500g)	/mg
维生素 A/mg	1	1	10	1
维生素 C/mg	100	10	10	30
维生素 D/mg	10	100	10	10
胆固醇/单位	70	50	120	
费用/元	1.5	8	4	

解: 设三种食物的每日摄入量分别为 x_1, x_2, x_3

$$\min \ P_1\Big(d_1^- + d_2^- + d_3^-\Big) + P_2d_4^+ + P_3d_5^+$$

$$\begin{cases} x_1 + x_2 + 10x_3 + d_1^- - d_1^+ = 1 \\ 100x_1 + 10x_2 + 10x_3 + d_2^- - d_2^+ = 30 \\ 10x_1 + 100x_2 + 10x_3 + d_3^- - d_3^+ = 10 \\ 70x_1 + 50x_2 + 120x_3 + d_4^- - d_4^+ = 0 \\ 1.5x_1 + 8x_2 + 4x_3 + d_5^- - d_5^+ = 0 \\ x_i \ge 0, i = 1, 2, 3; \ d_j^-, d_j^+ \ge 0, j = 1, \cdots, 5 \end{cases}$$

- 3. 下表中给出了一个运输问题及它的一个解,试问:
 - (1) 表中给出的解是否为最优解?请用位势法进行检验。
 - (2) 若价值系数 c_{24} 由 1 变为 3, 所给的解是否仍为最优解?若不是,请求出最优解。
 - (3) 若所有价值系数均增加1,最优解是否改变?为什么?
 - (4) 若所有价值系数均乘以 2, 最优解是否改变? 为什么?
 - (5) 写出该运输问题的对偶问题,并给出其对偶问题的最优解。

销地产地	B_1	B_2	B_3	B_4	产量
A_1	4	5 1	3 4	6	8
A_2	8	2	6	2 1	10
A_3	3	7	3 5	1	4
销量	8	5	6	3	22

解: (1) 采用位势法计算其检验数,结果如下:

销地产地	B_1	B_2	B_3	B_4	产量	и
A_{l}	(4) 4	5 1	3 4	(6) 6	8	0
A_2	8 1	(0) 2	(1) 6	2 1	10	1
A_3	(2) 3	(5) 7	3 5	1 1	4	1

销量	8	5	6	3	22	
v	0	1	4	0		

所有检验数非负,因此是最优解。

(2) 当价值系数 c_{24} 由1变为3时,重新计算其检验数,结果如下:

销地产地	B_1	B_2	B_3	B_4	产量	и
A_1	(6) 4	5 1	3 4	(6) 6	8	0
A_2	8 1	(- 2)	(-1)	2 3	10	3
A_3	(4) 3	(5) 7	3 5	1 1	4	1
销量	8	5	6	3	22	
v	-2	1	4	0		

有负的检验数,因此不是最优解。采用闭回路调整,得:

销地产地	B_1	B_2	B_3	B_4	产量	и
A_{l}	(4)	3	5 4	(6) 6	8	0
A_2	8	2	(1) 6	(2)	10	1
A_3	(2) 3	(5) 7	1 5	3 1	4	1
销量	8	5	6	3	22	
v	0	1	4	0		

此时检验数全部非负,得到最优解:

$$x_{12} = 3, x_{13} = 5, x_{21} = 8, x_{22} = 2, x_{33} = 1, x_{34} = 3$$

- (3) 最优解不变。
- (4) 最优解不变。
- (5) 对偶问题为:

max
$$w = 8u_1 + 10u_2 + 4u_3 + 8v_1 + 5v_2 + 6v_3 + 3v_4$$

s.t. $u_i + v_j \le c_{ij}$ $(i = 1, 2, 3; j = 1, 2, 3, 4)$

由(1)中所得检验数知,对偶问题的最优解为 $Y = (0,1,1,0,1,4,0)^T$ (对偶最优解不唯一)。

4. 某市有三个面粉厂,它们供应三个面食加工厂所需的面粉。各面粉厂的产量、各面食加工厂加工面粉的能力、各面食加工厂和各面粉厂之间的单位运价,均示于下表中。假定在第1,2和3面食加工厂制作单位面粉食品的利润分别为12、16和11,试确定使总效益最大的面粉分配计划(假定面粉厂和面食厂都属于同一个主管单位)。

食品厂面粉厂	1	2	3	面粉厂产量
I	3	10	2	20
II	4	11	8	30
III	8	11	4	20
食品厂需量	15	25	20	

解:据题意所得的新运价表:

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	-9	-6	-9	0	20
II	-8	-5	-3	0	30
III	-4	-5	-7	0	20
食品厂需量	15	25	20	10	

用西北角法获得初始可行解:

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	15	5	(-5)	(-3)	20
II	(0)	20	10	(-4)	30
III	(8)	(4)	10	10	20
食品厂需量	15	25	20	10	

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	15	(5)	5	(2)	20
II	(-5)	25	5	(-4)	30
III	(3)	(4)	10	10	20
食品厂需量	15	25	20	10	

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	10	(0)	10	(2)	20
II	5	25	(5)	(1)	30
III	(3)	(-1)	10	10	20
食品厂需量	15	25	20	10	

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	0	(0)	20	(1)	20
II	15	15	(5)	(0)	30
III	(4)	10	(1)	10	20
食品厂需量	15	25	20	10	

总效益为: 20×9+15×8+15×5+10×5=425。

由于有检验数为0,所以本题有无穷多最优解。

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	0		20		20
II	15	5		10	30
III		20			20
食品厂需量	15	25	20	10	

总效益为: 20×9+15×8+5×5+20×5=425。

5. **[3.10]** 甲、乙、丙三个城市每年需要的煤炭由鸡西、鹤岗两处煤矿负责供应。这两处煤矿的价格和质量都基本相同。鸡西、鹤岗两处煤矿的供应能

力分别为 400 万 t,450 万 t,由煤矿至各城市的单位运价(万元 / 万 t)如表所示。

表 煤矿运价与供需表

销地 产地	甲城市	乙城市	丙城市	产量(万t)
鸡西煤矿	15	18	22	400
鹤岗煤矿	21	25	16	450
需求量 (万 t)	320	250	无上限	

由于供不应求,三个城市申报需求分别为 320 万 t, 250 万 t 和无上限。经协商决定甲城市供应量可减少 30 万 t; 乙城市应全部满足,丙城市不少于 270 万 t。试求总运费为最低的调运方案。

解:据题意所得的新运价表:

销地 产地	甲 1	甲 2	Z	丙 1	丙 2	产量(万t)
鸡西煤矿	15	15	18	22	22	400
鹤岗煤矿	21	21	25	16	16	450
虚拟产地	M	0	M	M	0	30
需求量 (万 t)	290	30	250	270	40	880

鸡西煤矿给甲公司 150万 t, 乙公司 250万 t; 鹤岗煤矿给甲公司 140万 t, 丙公司 310万 t。总调运费用为 14650万元。

6. **[3.12]** 某农业贸易公司从事谷物买卖,现在农产品生产基地 A_1 、 A_2 、 A_3 分别购买了谷物 3 车皮、6 车皮、5 车皮。拟在 B_1 、 B_2 、 B_3 、 B_4 这 4 城市销售,各地的需求分别为 2 车皮、4 车皮、3 车皮、3 车皮。所有货物都要经过中转地 T_1 或 T_2 运往目的地。相关线路的运输价格如下表(单位:千元/车皮)。

表(1)

-	中转地 T ₁	中转地 T2
 农基地 A ₁	0	1 17 × 12
	0	0
农基地 A ₂	3	8
农基地 A3	9	3

表(2)

	城市 B ₁	城市 B ₂	城市 B ₃	城市 B4
中转地 T1	44	34	34	32
中转地 T2	57	35	28	24

试利用计算机求出最优的运输方案。

- **解:** (1) 总供给 S=14 车皮; 总需求 D=12 车皮; 供过于求。
 - (2) 总运输费用为 419 千元。农基地 A1 向中转地 T2 运 1 车皮;农基地 A2 向中转地 T1 运 6 车皮;中转地 T1 向城市 B1、B2 运 2、4 车皮;中转地 T2 向城市 B3、B4 运 3、3 车皮。
- 7. [3.14] 某飞机制造厂根据合同要求,今后 3 年的年底各交付 4 架飞机。每架飞机的生产成本在 3 年中各不相同,分别为 500,550 和 600 万元,如果加班生产,则每架成本将增加 50 万元。又知积压飞机每年增加维护保养费 30 万元。该厂今年初储存 1 架飞机,今后 3 年生产能力:第 1 年正常生产 2 架,加班生产 2 架;第 2 年正常生产 3 架,加班生产 2 架;第 3 年正常生产 3 架,加班生产 3 架。如果第 3 年年底需要储存一架飞机备用,试分析该厂如何安排计划,即满足上述要求,又使总的费用支出最少(试利用计算机求解)。
- 解:这属于供过于求的情况,增加一个虚拟的需求点。另外,因为,时间的逻辑关系,本年的生产的飞机不能用于该年之前的飞机需求,所以令相应线路运价等于惩罚系数 M。飞机单位成本与供需表:

销售 生产		第一年	第二年	第三年	虚拟需求	供应量
第一年	正常	500	530	560	0	2
第一 年	加班	550	580	610	0	2
第二年	正常	M	550	580	0	3
	加班	M	600	630	0	2
第三年	正常	M	M	600	0	3
	加班	M	M	650	0	3
需求量		3	4	5	3	15

经计算,最优生产计划方案如表所示,最小总成本为 6840(6870)万元(考虑年初那架飞机的存储成本)。

销售 生产		第一年	第二年	第三年	虚拟需求	供应量
第一年	正常	1	1			2
第 平 	加班	2				2
第二年	正常		3			3
第二十 	加班			2		2
第三年	正常			3		3
	加班				3	3
需求量		3	4	5	3	15

8. 【选做题】请尝试用列生成算法求解第四次课 PPT 中的 7.5 下料问题的松弛

问题(其中的整数规划子优化问题可借助计算机求解,比如 Excel)。

某工厂生产一型号的机床,每台机床上分别需用 2.9、2.1、1.5 米长的轴 1根、2根和 1根,这些轴需用同一种圆钢制作,圆钢的长度为 7.4 米。如需要生产 100 台机床,问应如何安排下料,才能使用料最省?试建立其线性规划模型。

	B1	B2	В3	B4	B5	B6	B7	B8	需要量
2.9m	1	2	0	1	0	1	0	0	100
2.1m	0	0	2	2	1	1	3	0	200
1.5m	3	1	2	0	3	1	0	4	100
余料	0	0.1	0.2	0.3	0.8	0.9	1.1	1.4	
	x_1	x_2	x_3	X_4	x_5	x_6	x_7	x_8	

解:设x,为按第i种方案切割的原材料根数

$$\min \sum_{i=1}^{8} x_{i}$$

$$x_{1} + 2x_{2} + x_{4} + x_{6} \ge 100$$

$$2x_{3} + 2x_{4} + x_{5} + x_{6} + 3x_{7} \ge 200$$

$$3x_{1} + x_{2} + 2x_{3} + 3x_{5} + x_{6} + 4x_{8} \ge 100$$

$$x_{i} \ge 0, x_{i} \not\exists \underbrace{\mathbb{E}}_{\mathbf{W}}_$$

求解子问题 1:

$$\max z = a^{1} + \frac{1}{3}a^{2} + \frac{1}{4}a^{3} - 1$$
s.t. $2.9a^{1} + 2.1a^{2} + 1.5a^{3} \le 7.4$

$$a^{1}, a^{2}, a^{3} \ge 0 \text{ and } 为整数$$

最优解为:
$$z = \frac{5}{4} \ge 0$$
 , $(a^1 \ a^2 \ a^3)^T = (2 \ 0 \ 1)^T$, 对应 x_2 ;

$$x_2$$
 对应的列= B_0^{-1} $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1/4 \end{bmatrix}$,

$$B_0^{-1}b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} 100 \\ 200 \\ 100 \end{bmatrix} = \begin{bmatrix} 100 \\ 200/3 \\ 25 \end{bmatrix}$$

$$\min Q = \min \begin{pmatrix} 100/2 \\ - \\ 25/1/4 \end{pmatrix} = 50 , 则 x_9 出基, x_2 进基。 x_{BV1} = \{x_2 x_7 x_8\}$$

$$B_{1} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 4 \end{bmatrix}, \quad B_{1}^{-1} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ -1/8 & 0 & 1/4 \end{bmatrix}$$

$$c_{BV}B_1^{-1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ -1/8 & 0 & 1/4 \end{bmatrix} = \begin{bmatrix} \frac{3}{8} & \frac{1}{3} & \frac{1}{4} \end{bmatrix}$$

$$c_{BV}B_1^{-1} \begin{bmatrix} a_k^1 \\ a_k^2 \\ a_k^3 \end{bmatrix} - 1 = \frac{3}{8}a_k^1 + \frac{1}{3}a_k^2 + \frac{1}{4}a_k^3 - 1$$

求解子问题 2:

$$\max z = \frac{3}{8}a^1 + \frac{1}{3}a^2 + \frac{1}{4}a^3 - 1$$

s.t.
$$2.9a^1 + 2.1a^2 + 1.5a^3 \le 7.4$$

$$a^1, a^2, a^3 \ge 0$$
 and 为整数

最优解为: $z = \frac{1}{6} \ge 0$, $(a^1 \ a^2 \ a^3)^T = (0 \ 2 \ 2)^T$, 对应 x_3 ;

$$x_3$$
 对应的列= $B_1^{-1} \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ -1/8 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2/3 \\ 1/2 \end{bmatrix},$

$$B_1^{-1}b = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ -1/8 & 0 & 1/4 \end{bmatrix} \begin{bmatrix} 100 \\ 200 \\ 100 \end{bmatrix} = \begin{bmatrix} 50 \\ 200/3 \\ 25/2 \end{bmatrix}$$

则
$$x_8$$
 出基, x_3 进基。 $x_{BV1} = \{x_2 \ x_7 \ x_3\}$

$$B_2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 1 & 0 & 2 \end{bmatrix}, \quad B_2^{-1} = \begin{bmatrix} 1/2 & 0 & 0 \\ 1/6 & 1/3 & -1/3 \\ -1/4 & 0 & 1/2 \end{bmatrix}$$

$$c_{BV}B_2^{-1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ 1/6 & 1/3 & -1/3 \\ -1/4 & 0 & 1/2 \end{bmatrix} = \begin{bmatrix} \frac{5}{12} & \frac{1}{3} & \frac{1}{6} \end{bmatrix}$$

$$c_{BV}B_2^{-1} \begin{bmatrix} a_k^1 \\ a_k^2 \\ a_k^3 \end{bmatrix} - 1 = \frac{5}{12}a_k^1 + \frac{1}{3}a_k^2 + \frac{1}{6}a_k^3 - 1$$

求解子问题 3:

$$\max z = \frac{5}{12}a^{1} + \frac{1}{3}a^{2} + \frac{1}{6}a^{3} - 1$$
s.t. $2.9a^{1} + 2.1a^{2} + 1.5a^{3} \le 7.4$

$$a^{1}, a^{2}, a^{3} \ge 0 \text{ and } 为整数$$

最优解为:
$$z = \frac{1}{8} \ge 0$$
 , $(a^1 \ a^2 \ a^3)^T = (1 \ 2 \ 0)^T$, 对应 x_4 ;

$$x_4$$
 对应的列= B_2^{-1} $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ = $\begin{bmatrix} 1/2 & 0 & 0\\1/6 & 1/3 & -1/3\\-1/4 & 0 & 1/2 \end{bmatrix}$ $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ = $\begin{bmatrix} 1/2\\5/6\\-1/4 \end{bmatrix}$,

$$B_2^{-1}b = \begin{bmatrix} 1/2 & 0 & 0 \\ 1/6 & 1/3 & -1/3 \\ -1/4 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 100 \\ 200 \\ 100 \end{bmatrix} = \begin{bmatrix} 50 \\ 50 \\ 25 \end{bmatrix}$$

则
$$x_7$$
 出基, x_4 进基。 $x_{BV2} = \{x_2 \ x_4 \ x_3\}$

$$B_3 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 0 & 2 \end{bmatrix}, \quad B_3^{-1} = \begin{bmatrix} 2/5 & -1/5 & 1/5 \\ 1/5 & 2/5 & -2/5 \\ -1/5 & 1/10 & 2/5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} -1/5 & 1/10 & 2/5 \end{bmatrix}$$

$$c_{BV}B_3^{-1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2/5 & -1/5 & 1/5 \\ 1/5 & 2/5 & -2/5 \\ -1/5 & 1/10 & 2/5 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & \frac{3}{10} & \frac{1}{5} \end{bmatrix}$$

$$c_{BV}B_3^{-1} \begin{bmatrix} a_k^1 \\ a_k^2 \\ a_k^3 \end{bmatrix} - 1 = \frac{2}{5}a_k^1 + \frac{3}{10}a_k^2 + \frac{1}{5}a_k^3 - 1$$

求解子问题 4:

$$\max z = \frac{2}{5}a^{1} + \frac{3}{10}a^{2} + \frac{1}{5}a^{3} - 1$$
s.t. $2.9a^{1} + 2.1a^{2} + 1.5a^{3} \le 7.4$

$$a^1, a^2, a^3 \ge 0$$
 and 为整数

最优解为: z=0 , $(a^1 \quad a^2 \quad a^3)^T=(2 \quad 0 \quad 1)^T$ 。此时达到最优。

$$B_3^{-1}b = \begin{bmatrix} 2/5 & -1/5 & 1/5 \\ 1/5 & 2/5 & -2/5 \\ -1/5 & 1/10 & 2/5 \end{bmatrix} \begin{bmatrix} 100 \\ 200 \\ 100 \end{bmatrix} = \begin{bmatrix} 20 \\ 60 \\ 40 \end{bmatrix}$$
,最优解为 $x_2 = 20, x_3 = 40, x_4 = 60$ 。