

INFORME PRÁCTICA 1

1. Generación de señales discretas

a. Ejercicio guiado

```
%Generamos la señal
    x=[0 0 -.25 -.5 -.3 0 .2 .5 1.1 .9 .5 0 -.2 0 0];
%Generamos eje temporal
    N=floor(length(x)/2);
    n=[-N:N];
%Dibujamos la señal (Gráfica 1)
    stem(n,x,'.')
%Mostramos el valor de la señal en n=-2 y modificamos su valor por -.5
    x(find(n==-2))= -.5;
%Dibujamos la señal (Gráfica 2)
    stem(n,x,'.')
```


Gráfica 1

Gráfica 2

b.
$$y[n] = (-1)^n$$

%Generamos la señal
 y=(-1).^n;
%Dibujamos la señal
 stem(n,y,'.')

c.
$$x2[n] = y[n] \cdot x[n]$$

%Generamos la señal
 x2=y.*x;
%Dibujamos la señal
 stem(n,x2,'.')

d.
$$z[n] = 0.5(x[n] + x2[n])$$

```
%Generamos la señal
   z=.5*(x+x2);
%Dibujamos la señal
   stem(n,z,'.')
```


e.
$$E[n] = x[n]^2$$

%Generamos la señal
 E=x.^2;
%Dibujamos la señal
 stem(n,E,'.')

f. Calcular energía y potencia de x[n]

```
% Calcular la energía y la potencia de x[n]
    En=sum(E)
    syms N
    f=[(1/(2*N+1))*En]
    Po=limit(f,N,inf)
```

En Matlab se muestra que: En = 3.2525, Po = 0

2. Transformación en la variable independiente. D

a. Ejercicio guiado

```
x=rand(1,21);
n=-10:10;
y=desplazar(x,1);
subplot(2,1,1)
stem(n,x,'.')
subplot(2,1,2)
stem (n,y,'.')
```


b. Desplazamos 3

```
yd3=desplazar(x,3);
subplot(2,1,1)
stem(n,x,'.')
subplot(2,1,2)
stem(n,yd3,'.')
```


c. Desplazamos -2

```
yd2=desplazar(x,-2);
subplot(2,1,1)
stem(n,x,'.')
subplot(2,1,2)
stem(n,yd2,'.')
```


3. Transformación en la variable independiente. I

a. Invertimos x1

```
x1=[1 2 3 4 5 6 7 8 9];
n3=0:8;
[y1,n1]=invertir(x1,n3);
stem(n1,y1,'.')
```


b. Invertimos x2

```
x2=[1 -2 3 -4 3 -2 1];
n4=-3:3;
[y2,n2]=invertir(x2,n4);
stem(n2,y2,'.')
```


Al tener una simetría par, la inversión sale idéntica a la original.

4. Transformación en la variable independiente. E

a. Comprimimos x1 con un factor 2

```
x1=[1 2 3 4 5 6 7 8 9];
n=0:8;
[y1,n1]=comprimir(x1,n,2);
subplot(2,1,1)
stem(n,x1,'.')
subplot(2,1,2)
stem(n1,y1,'.')
```


b. Comprimimos x2 con un factor 0,5

```
x2=[1 -2 3 -4 3 -2 1];
n=-3:3;
[y2,n2]=comprimir(x2,n,0.5);
subplot(2,1,1)
stem(n,x2,'.')
subplot(2,1,2)
stem(n2,y2,'.')
```


Como podemos ver, si el factor de compresión es mayor que 1, las dimensiones del vector disminuyen, en cambio, si este es menor que 1, las dimensiones aumentarán.

5. Señales periódicas

a. Ejercicio guiado

```
x=randn(1,7);
x=[x x x];
x=[x x x];
N=floor(length(x)/2);
n=-N:N;
subplot(2,1,1)
stem(n,x,'.')
n2=-10:10;
i0=find(n==n2(1));
subplot(2,1,2)
stem(n2,x(i0:i0+length(n2)-1))
```


b.
$$x[n] = \cos(\pi/5n)$$
 en un intervalo $[-100:100]$

n=-100:100; x=cos(pi/5*n); stem(n,x,'..')

c. Cuál es el periodo de la señal

$$N = m \cdot \frac{2\pi}{w_0} = m \frac{2\pi}{\pi/5} = m \cdot 10 = 10 \text{ muestras}$$

d. Mostrar en la parte superior el intervalo [-10:15] y en la inferior x[x-N] en el mismo intervalo

```
n1=-10:15;
i0=find(n==n1(1));
N=10
x2=cos(pi/5*(n-N));
subplot(2,1,1)
stem(n1,x(i0:i0+length(n1)-1),'.')
subplot(2,1,2)
stem(n1,x2(i0:i0+length(n1)-1),'.')
```


e. $x[n] = \cos(0.6n)$ en un intervalo [-100:100]

```
n=-100:100;
y=cos(0.6*n);
stem(n,y,'.')
```



```
f. x[n] = cos(0.6n) en un intervalo [-10:15]
n1=-10:15;
i0=find(n==n1(1));
subplot(2,1,2)
stem(n1,y(i0:i0+length(n1)-1),'.')
```

La gráfica es parecida, pero no igual, ya que hay valores que podemos observar que no se repiten.

```
g. z[n] = y[n] - y[n - N] en un intervalo [-10:15] 
n1=-10:15; 
i0=find(n==n1(1)); 
z=cos(0.6*n)-cos(0.6*(n-10)); 
stem(n1,z(i0:i0+length(n1)-1))
```


Como podemos observar, y[n] no es periódica.

6. Exponenciales complejas

```
%Crear complejos
    z1=1+0.5*j;
    z2=0.6+0.9*j;
%Fijar ejes
    cla reset
    axis ([-1 1.5 -1 1.5])
    hold on
%Dibujar numeros complejos
    plot(z1,'b.')
    plot(z2,'g.')
    plot(z1*z2,'r.')
    abs(z1) %Modulo -> 1.1180
    angle(z1) %Fase -> 0.4636
```



```
% Mostrar arriba real, abajo imaginario
    hold off
    subplot(2,1,1)
    stem(n,real(x),'.')
    subplot(2,1,2)
    stem(n, imag(x),'.')
```

