$\int cu \ dx$	$\int (u+v) \ dx$
$\int x^n dx$	$\int \frac{1}{x} dx$
$\int e^x dx$	$\int \frac{dx}{1+x^2}$
$\int u \frac{dv}{dx} dx$	$\int \sin x \ dx$
$\int \cos x \ dx$	$\int \tan x \ dx$

$\int \cot x \ dx$	$\int \sec x \ dx$
$\int \csc x \ dx$	$\int \arcsin \frac{x}{a} dx$
$\int \arccos \frac{x}{a} dx$	$\int \arctan \frac{x}{a} dx$
$\int \sin^2(ax)dx$	$\int \cos^2(ax) dx$
$\int \sec^2 x \ dx$	$\int \csc^2 x \ dx$

$\int \sin^n x \ dx$	$\int \cos^n x \ dx$
$\int \tan^n x \ dx$	$\int \cot^n x \ dx$
$\int \sec^n x \ dx$	$\int \csc^n x \ dx$
$\int \sinh x \ dx$	$\int \cosh x \ dx$
$\int \tanh x \ dx$	$\int \coth x \ dx$

$\int \operatorname{sech} x dx$	$\int \operatorname{csch} x dx$
$\int \sinh^2 x \ dx$	$\int \cosh^2 x \ dx$
$\int \operatorname{sech}^2 x \ dx$	$\int \operatorname{arcsinh} \frac{x}{a} dx$
$\int \operatorname{arctanh} \frac{x}{a} dx$	$\int \operatorname{arccosh} \frac{x}{a} dx$
$\int \frac{dx}{\sqrt{a^2 + x^2}}$	$\int \frac{dx}{a^2 + x^2}$

$\int \sqrt{a^2 - x^2} dx$	$\int (a^2 - x^2)^{3/2} dx$
$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\int \frac{dx}{a^2 - x^2}$
$\int \frac{dx}{(a^2 - x^2)^{3/2}}$	$\int \sqrt{a^2 \pm x^2} dx$
$\int \frac{dx}{\sqrt{x^2 - a^2}}$	$\int \frac{dx}{ax^2 + bx}$
$\int x\sqrt{a+bx}\ dx$	$\int \frac{\sqrt{a+bx}}{x} dx$

$\int \frac{x}{\sqrt{a+bx}} dx$	$\int \frac{\sqrt{a^2 - x^2}}{x} dx$
$\int x\sqrt{a^2 - x^2} dx$	$\int x^2 \sqrt{a^2 - x^2} dx$
$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\int \frac{x dx}{\sqrt{a^2 - x^2}}$
$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}}$	$\int \frac{\sqrt{a^2 + x^2}}{x} dx$
$\int \frac{\sqrt{x^2 - a^2}}{x} dx$	$\int x\sqrt{x^2 \pm a^2} dx$

$\int \frac{dx}{x\sqrt{x^2 + a^2}}$	$\int \frac{dx}{x\sqrt{x^2 - a^2}}$
$\int \frac{dx}{x^2 \sqrt{x^2 \pm a^2}}$	$\int \frac{x dx}{\sqrt{x^2 \pm a^2}}$
$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx$	$\int \frac{dx}{ax^2 + bx + c}$
$\int \frac{dx}{\sqrt{ax^2 + bx + c}}$	$\int \sqrt{ax^2 + bx + c} dx$
$\int \frac{x dx}{\sqrt{ax^2 + bx + c}}$	$\int \frac{dx}{x\sqrt{ax^2 + bx + c}}$

$\int x^3 \sqrt{x^2 + a^2} dx$	$\int x^n \sin(ax) \ dx$
$\int x^n \cos(ax) \ dx$	$\int x^n e^{ax} dx$
$\int x^n \ln(ax) \ dx$	$\int x^n (\ln ax)^m dx$

$\int u dx + \int v dx$	$c \int u dx$
$\ln x$	$\frac{1}{n+1}x^{n+1}, n \neq -1$
$\arctan x$	e^x
$-\cos x$	$uv - \int v \frac{du}{dx} dx$
$-\ln \cos x $	$\sin x$

$\ln \sec x + \tan x $	$\ln \cos x $
$\arcsin\frac{x}{a} + \sqrt{a^2 - x^2}, a > 0$	$\ln \csc x + \cot x $
$x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), a > 0$	$\arccos\frac{x}{a} - \sqrt{a^2 - x^2}, a > 0$
$\frac{1}{2a}(ax + \sin(ax)\cos(ax))$	$\frac{1}{2a}(ax - \sin(ax)\cos(ax))$
$-\cot x$	$\tan x$

$\frac{\cos^{n-1}x\sin x}{n} + \frac{n-1}{n} \int \cos^{n-2}x dx$	$-\frac{\sin^{n-1}x\cos x}{n} + \frac{n-1}{n} \int \sin^{n-2}x dx$
$-\frac{\cot^{n-1}x}{n-1} - \int \cot^{n-2}x dx, n \neq 1$	$\frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x dx, n \neq 1$
$-\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x dx, n \neq 1$	$\frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x dx, n \neq 1$
$\sinh x$	$\cosh x$
$\ln \sinh x $	$\ln \cosh x $

$\ln\left anhrac{x}{2} ight $	$rctan \sinh x$
$\frac{1}{4}\sinh(2x) + \frac{1}{2}x$	$\frac{1}{4}\sinh(2x) - \frac{1}{2}x$
$x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, a > 0$	$\tanh x$
$\begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$	$x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln a^2 - x^2 $
$\frac{1}{a}\arctan\frac{x}{a}, a > 0,$	$\ln\left(x+\sqrt{a^2+x^2}\right), a>0,$

$\frac{x}{8}(5a^2 - 2x^2)\sqrt{a^2 - x^2} + \frac{3a^4}{8}\arcsin\frac{x}{a}, a > 0,$	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\arcsin\frac{x}{a}, a > 0,$
$\frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $,	$\arcsin\frac{x}{a}, a > 0,$
$x = \begin{pmatrix} 2 & 1 & 2 & 2 \\ 2 & 1 & 2 & 2 \end{pmatrix}$	$\frac{x}{a^2\sqrt{a^2-x^2}},$
$\frac{x}{2}\sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left x + \sqrt{a^2 \pm x^2} \right ,$	$a^2\sqrt{a^2-x^2}$
$\frac{1}{a}\ln\left \frac{x}{a+bx}\right $,	$ \ln\left x + \sqrt{x^2 - a^2}\right , a > 0, $
$a = a+ox ^{\gamma}$	
$2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$	$\frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$

$\sqrt{a^2 - x^2} - a \ln \left \frac{a + \sqrt{a^2 - x^2}}{x} \right ,$	$\frac{1}{\sqrt{2}} \ln \left \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right , a > 0,$
$\frac{x}{8}(2x^2 - a^2)\sqrt{a^2 - x^2} + \frac{a^4}{8}\arcsin\frac{x}{a}, a > 0,$	$-\frac{1}{3}(a^2-x^2)^{3/2},$
$-\sqrt{a^2-x^2}$,	$-\frac{1}{a}\ln\left \frac{a+\sqrt{a^2-x^2}}{x}\right ,$
$\sqrt{a^2 + x^2} - a \ln \left \frac{a + \sqrt{a^2 + x^2}}{x} \right ,$	$-\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\arcsin\frac{x}{a}, a > 0,$
$\frac{1}{3}(x^2 \pm a^2)^{3/2}$,	$\sqrt{x^2 - a^2} - a \arccos \frac{a}{ x }, a > 0,$

$\frac{1}{a}\arccos\frac{a}{ x }, a > 0,$	$\frac{1}{a} \ln \left \frac{x}{a + \sqrt{a^2 + x^2}} \right ,$
$\sqrt{x^2 \pm a^2}$,	$\mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$
$\begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right , & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$	$\mp \frac{(x^2+a^2)^{3/2}}{3a^2x^3},$
$\frac{2ax+b}{4a}\sqrt{ax^2+bx+c} + \frac{4ax-b^2}{8a} \int \frac{dx}{\sqrt{ax^2+bx+c}},$	$\begin{cases} \frac{1}{\sqrt{a}} \ln \left 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right , & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$
$ \begin{cases} \frac{-1}{\sqrt{c}} \ln \left \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right , & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{ x \sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases} $	$\frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$

$-\frac{1}{a}x^n\cos(ax) + \frac{n}{a}\int x^{n-1}\cos(ax)\ dx,$	$(\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$
$\frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$	$\frac{1}{a}x^n\sin(ax) - \frac{n}{a}\int x^{n-1}\sin(ax)\ dx,$
$\frac{x^{n+1}}{n+1}(\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$	$x^{n+1}\left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2}\right),$