Comenzado el	Saturday, 19 de December de 2020, 15:14
Estado	Finalizado
Finalizado en	Saturday, 19 de December de 2020, 19:15
Tiempo empleado	4 horas
Calificación	17,00 de 20,00 (85 %)

Correcta
Puntúa 1,00
sobre 1,00

La corriente que circula a través de un conductor de largo L=2m y sección A=2 cm² es I=2x10⁻³nA. La cantidad de portadores elementales de carga que atraviesan por segundo el área A es, aproximadamente ($|q_e|$ =1.6x10⁻¹⁹ C):

Seleccione una:

- 12.5
- Ninguna de las otras respuestas es válida
- No respondo
- 125000
- 37500
- 12.5 x10⁶

La respuesta correcta es: 12.5 x10⁶

Correcta

Puntúa 1,00 sobre 1,00 Los tres segmentos rectos de alambre, *ab, bc,* y *cd* están sobre las aristas de un cubo de 20 cm de lado y conducen una corriente I = 8 A en la dirección y sentido que se muestra. El conjunto está inmerso en un campo magnético uniforme de magnitud $\vec{B} = -0.03 \ \hat{y}$ T. La fuerza sobre cada tramo vale, aproximadamente:

Seleccione una:

$$\vec{F}_{ba} = 0 \text{ N}; \ \vec{F}_{cb} = -48 \text{ mN } \hat{x}; \ \vec{F}_{dc} = -48 \text{ mN } \hat{z}$$

$$\bigcirc \qquad \vec{F}_{ba} = \text{0 N; } \ \vec{F}_{cb} = \text{96 nN } \ \hat{x} \ ; \quad \vec{F}_{dc} = \text{96 nN } \ \hat{z}$$

$$\bigcirc \qquad \vec{F}_{ba} = \text{0 N}; \; \vec{F}_{cb} = \; \text{48 mN} \; \; \hat{x} \; ; \; \; \vec{F}_{dc} = \; \text{48 mN} \; \; \hat{z}$$

Ninguna de las otras respuestas es válida

No respondo

$$\bigcirc \qquad \vec{F}_{ba} = \text{0 N}; \; \vec{F}_{cb} = \text{- 96 nN} \; \; \hat{x} \; ; \quad \vec{F}_{dc} = \text{- 96 nN} \; \; \hat{z}$$

La respuesta correcta es: \vec{F}_{ba} = 0 N; \vec{F}_{cb} = - 48 mN \hat{x} ; \vec{F}_{dc} = - 48 mN \hat{z}

Correcta

Puntúa 1,00 sobre 1,00 Dos conductores paralelos muy largos están separados una distancia d= 0.5 m. Por el conductor C1 circula una corriente I1 = 10 A entrante al papel y por C2 una corriente I2 = 20 A entrante al papel. La fuerza por unidad de longitud que actúa sobre C1 es, aproximadamente:

Seleccione una:

- 8x10⁻⁵ (\hat{x}); [N/m] ✓
- 0 8x10⁻⁵ $(-\hat{x})$; [N/m]
- No respondo
- O $4x10^{-5} (\hat{x});$ [N/m]
- O 2x10⁻⁵ $(-\hat{x})$; [N/m]
- Ninguna de las otras respuestas es válida

La respuesta correcta es: $8x10^{-5} (\hat{x});$ [N/m]

Correcta

Puntúa 1,00 sobre 1,00 El circuito magnético de la figura está constituido por un núcleo de 100 cm de longitud media, 1 cm² de sección y permeabilidad relativa de 1000. Los bobinados 1 y 2 tienen 100 y 600 espiras, respectivamente. La corriente por el bobinado 1 es de 1A y tiene el sentido indicado. Si el campo B vale 300 mT (sentido horario), la corriente por el bobinado 2 vale, aproximadamente:

Seleccione una:

- 23 A en el sentido contrario al indicado en la figura
- No respondo
- 23 A en el sentido indicado en la figura
- 0.23 A en el sentido contrario al indicado en la figura
- 0.23 A en el sentido indicado en la figura
- Ninguna de las otras respuestas es válida

La respuesta correcta es: 0.23 A en el sentido contrario al indicado en la figura

Pregunta **5**

Incorrecta
Puntúa 0,00
sobre 1,00

El conductor de la figura tiene sección transversal con forma de medio círculo de radio r = 0.5 mm y largo L = 100 cm. Si la resistividad del material es $\rho = 40 \mu \Omega \mathrm{m}$, la resistencia entre los extremos superior en inferior vale, aproximadamente:

Seleccione una:

- No respondo
- Arr R= 102 M Ω
- \blacksquare R= 51 Ω \times
- \bigcirc R= 51 M Ω
- \bigcirc R= 102 Ω
- Ninguna de las otras respuestas es válida

Correcta

Puntúa 1,00 sobre 1,00 Un ion con una carga q y una masa m entra, en t = 0, en una zona de campo eléctrico \overrightarrow{E} uniforme con una velocidad $\overrightarrow{v_0}$ como indica la figura. ¿Cuáles son las características del movimiento del ion?

Datos:

$$q = 1, 6 \times 10^{-19} \ C$$

 $m = 3,821 \times 10^{-29} \ kg$
 $\overrightarrow{E} = 100 \ V/m \ (+\hat{y})$
 $\overrightarrow{v_0} = 3 \times 10^4 \ m/s \ (+\hat{x})$

Seleccione una:

- El ion describe un arco de parábola y la velocidad en t=2~s es $\overrightarrow{v}=3\times 10^4~m/s~(+\hat{x})~+8,37\times 10^5~m/s~(-\hat{y})$
- El ion describe un arco de circunferencia y el módulo de la velocidad permanece constante
- No respondo
- El ion describe un arco de parábola y la velocidad en $t=2~\mu s$ es $\overrightarrow{v}=3\times 10^4~m/s~(+\hat{x})~+8,37\times 10^5~m/s~(+\hat{y})$
- Ninguna de las otras respuestas es válida
- El ion describe un arco de parábola y la velocidad en t=2 ms es $\overrightarrow{v}=3\times 10^4$ m/s $(+\hat{x})$ $+8,37\times 10^5$ m/s $(+\hat{y})$

La respuesta correcta es: El ion describe un arco de parábola y la velocidad en $t=2~\mu s$ es $\overrightarrow{v}=3\times 10^4~m/s~(+\hat{x})~+8,37\times 10^5~m/s~(+\hat{y})$

Pregunta **7**

Correcta

Puntúa 1,00 sobre 1,00 En el circuito de la figura, la fuente (círculo de la izquierda) entrega una corriente I. ¿ Cuanto vale la potencia P recibida por las resistencias? DATOS: R_1 = 3 Ω , R_2 = 6 Ω , I= 2 A.

Seleccione una:

- No respondo
- 8 W

 ✓
- 16 W
- 32 W
- Ninguna de las otras respuestas es válida
- 9 4 W

La respuesta correcta es: 8 W

Pregunta **8**

Correcta

Puntúa 1,00 sobre 1,00 En una región del espacio hay un campo magnético ${\bf B}=6{\rm T}$ uniforme y perpendicular al plano de la figura. En ese plano se mueven dos objetos cargados con cargas q_1 y q_2 , y la relación de masas es m_1 =3 m_2 . El objeto 1 gira en sentido antihorario sobre una circunferencia de radio R_1 = 5 cm. El objeto 2 gira en sentido horario sobre una circunferencia de radio R_2 = 15 cm. Las velocidades de ambos objetos son iguales. La relación entre cargas q_1/q_2 es igual a:

Seleccione una:

- Ninguna de las otras respuestas es válida
- __1
- No respondo
- _3
- -1/3
- ─ -9 ✓

La respuesta correcta es: -9

Pregunta •

Finalizado Sin calificar SELECCIONE OBLIGATORIAMENTE, EL NÚMERO DE CURSO EN EL CUAL SE ENCUENTRA INSCRIPTO CURSANDO:

Seleccione una:

- a. 01-A
- b. 02-A
- c. 03-A
- d. 04-A
- e. 05-A
- f. 06-A
- g. 07-A
- h. 08-A
- i. 09-A
- j. 10-A
- k. 11-A
- I. 12-A
- m. 13-A
- n. 14-A
- o. 15-A
- p. 16-A
- o q. 17-A
- r. 01-B
- s. 02-B
- o t. 03-B

Las respuestas correctas son: 01-A, 02-A, 03-A, 04-A, 05-A, 06-A, 07-A, 08-A, 09-A, 10-A, 11-A, 12-A, 13-A, 14-A, 15-A, 16-A, 17-A, 01-B, 02-B, 03-B

Correcta

Puntúa 1,00 sobre 1,00 Se tienen 3 conductores cilíndricos huecos (espesor despreciable), muy largos, de radio R=10 cm y ubicados en los vértices de un triángulo rectángulo de lados $L_1=2$ m y $L_2=1$ m. Los 3 transportan densidades de corriente iguales $\vec{K}=1$ A/m \hat{z} . El campo B en centro de C_3 vale, aproximadamente:

Seleccione una:

- \vec{B} = 62,8 nT (\hat{x}) + 125,7 nT $(-\hat{y})$
- No respondo
- \vec{B} = 125,7 nT (\hat{x}) + 62,8 nT $(-\hat{y})$
- No se puede resolver sin conocer la posición de los cilindros conductores
- \vec{B} = 125,7 nT $(-\hat{x})$ + 62,8 nT (\hat{y})
- Ninguna de las otras respuestas es válida

La respuesta correcta es: \vec{B} = 125,7 nT (\hat{x}) + 62,8 nT $(-\hat{y})$

Pregunta **11**

Correcta

Puntúa 1,00 sobre 1,00 La resistencia equivalente (R_{AB}) del circuito de la figura (R_1 = 400 Ω , R_2 = 400 Ω , R_3 =400 Ω , R_4 = 400 Ω) entre los puntos A y B vale, aproximadamente:

Seleccione una:

- \sim R_{AB} = 200 Ω .
- Ninguna de las otras respuestas es correcta.
- R_{AB}= 400 Ω.
- No contesto.
- \bigcirc R_{AB}= 800 Ω.
- \bigcirc R_{AB}= 1200 Ω.

La respuesta correcta es: R_{AB} = 400 Ω .

Incorrecta

Puntúa 0,00 sobre 1,00 Un cable coaxial muy largo está formado por un conductor cilíndrico interior de radio a=0.8 cm y una malla conductora concéntrica de radios interior b=1 cm y exterior c=3 cm. El espacio intermedio es vacío, siendo $\mu_0=4\pi.10^{-7}$ T.m/A . Por estos conductores circulan corrientes paralelas y opuestas de intensidad I=64 A.

El módulo de la inducción magnética B en r = 2 cm es:

(B en unidades de μT: microTesla)

Seleccione una:

- 400 μT
- 80 µT
- No respondo
- 160 µT
- 0 μT
- Ninguna de las otras respuestas es válida x

La respuesta correcta es: 400 µT

Pregunta **13**

Incorrecta

Puntúa 0,00 sobre 1,00 Un toroide de sección cuadrada $S = 1 \text{ cm}^2 \text{ y radio medio } r = 12 \text{ cm}$, está constituido por un núcleo formado por dos materiales ferromagnéticos dispuestos como se muestra en la figura (esquema fuera de escala). El material 1 tiene una permeabilidad relativa de 2000 y ocupa la sexta parte del núcleo; el material 2 tiene una permeabilidad relativa de 1000. Por el bobinado, de N = 300 espiras, circula una corriente de 1,1 A. Los vectores inducción magnética en los materiales 1 y 2 valen, aproximadamente:

Seleccione una:

- No respondo
- $B_1 = 2B_2 = 1200 \text{mT}$
- \bigcirc B₂ = 2B₁= 1200mT
- \bigcirc B₁ = B₂ = 60 T
- \bigcirc B₁ = B₂ = 600mT
- Ninguna de las otras respuestas es válida X

Correcta

Puntúa 1,00 sobre 1,00 El cable azul de la figura transporta una corriente l= 7 A desde A hacia B. El cable está formado por dos semicircunferencias de 5 cm de radio y está inmerso en un campo $\vec{B} = -2T\ddot{z}$. La fuerza magnética sobre el cable vale, aproximadamente:

Seleccione una:

- $\vec{F} = -2,8N\breve{y}$
- No contesto.
- $\vec{F} = -5,6N\ddot{y}$
- $\vec{F} = 2,8N\ddot{y}$
- $\bigcirc \qquad \vec{F} = 5,6N\breve{y}$
- Ninguna de las otras respuestas es correcta.

La respuesta correcta es: $\vec{F}=2,8N\breve{y}$

Pregunta **15**

Correcta

Puntúa 1,00 sobre 1,00

La diferencia de potencial V(A) -V(B) que determina una corriente I = 3 A en el circuito de la figura ($R = 20 \Omega$) es:

Seleccione una:

- \vee V(A) V(B) = -200 V
- Ninguna de las otras respuestas es válida
- No respondo
- V(A) V(B) = 240 V
- V(A) − V(B) = -240 V
- V(A) V(B) = 200 V

La respuesta correcta es: V(A) - V(B) = -240 V

Correcta

Puntúa 1,00 sobre 1,00 La espira plana de la figura consta de un arco de circunferencia de radio R = 80 cm, y dos tramos rectos, que se intersectan en el centro de la circunferencia, y que forman un ángulo ϕ = 120°. Por la espira circula una corriente de 1 A en sentido antihorario, y está inmersa en un campo magnético $\vec{B} = -0.2 {\rm T} \hat{\rm y} - 0.2 {\rm T} \hat{\rm z}$. El torque resultante sobre la espira con respecto al punto O vale, aproximadamente:

Seleccione una:

- $\vec{\tau} = 0.54 \text{Nm}(-\hat{\mathbf{x}})$
- Ninguna de las otras respuestas es válida
- No respondo
- $\vec{\tau} = 0.27 \text{Nm}(\hat{\mathbf{x}})$
- $\vec{\tau} = 0.27 \text{Nm}(-\hat{\mathbf{x}})$
- $\vec{\tau} = 0.13 \text{Nm}(-\hat{\mathbf{x}}) \checkmark$

La respuesta correcta es: $\vec{\tau} = 0.13 \mathrm{Nm}(-\hat{\mathbf{x}})$

Correcta

Puntúa 1,00 sobre 1,00 Basándose en el circuito de la figura, ¿cuál es la terna de corrientes que satisface las dos leyes de Kirchhoff (nodos y mallas)?

DATOS: V_{p1} = 12 V, V_{p2} = 18 V, V_{p3} = 36 V, R_1 = 3 Ω , R_2 = 6 Ω , R_3 = 12 Ω , R_4 = 12 Ω , R_5 = 3 Ω

.

Seleccione una:

- I_1 =0.548 A; I_2 =1.677 A; I_3 = -1.129 A
- I₁=0.755 A; I₂=3.111 A; I₃= -2.355 A ✓
- No respondo
- I_1 =2.19 A; I_2 =6.71 A; I_3 = -4.52 A
- Ninguna de las otras respuestas es válida
- I_1 =3.29 A; I_2 =10.06 A; I_3 = -6.77 A

La respuesta correcta es:

 I_1 =0.755 A; I_2 =3.111 A; I_3 = -2.355 A

Correcta

Puntúa 1,00 sobre 1,00 La espira roja, de radio R_1 = 20 cm, yace en el plano xz y su centro se encuentra en (0,0,1m). Por esta espira circula una corriente I_1 = 1 A en sentido antihorario visto desde el eje y. La espira verde, de radio R_2 = 20 cm, yace en el plano xy y su centro se encuentra en (0,1m,0). Por esta espira circula una corriente I_2 = 1 A en sentido antihorario visto desde el eje z. El campo B en el punto \mathbf{P} =(0,1m,1m) vale, aproximadamente:

Seleccione una:

- Ninguna de las otras respuestas es válida
- (0, 47.4 nT, 47.4 nT)
- (0, 47.4 nT, 0)
- No respondo
- (0, 23.7 nT, 23.7 nT) ✓
- (0, 0, 47.4 nT)

La respuesta correcta es: (0 , 23.7 nT , 23.7 nT)

Correcta

Puntúa 1,00 sobre 1,00 Se tienen dos superficies conductoras, una plana y una cilíndrica, por las que circulan densidades de corriente \overrightarrow{K} iguales y perpendiculares a la pantalla (ver figura).

La lámina plana de la derecha (roja) se encuentra en x = C y tiene dimensiones muy grandes a lo largo de los ejes y y z.

El cilindro de la izquierda (azul), de radio R, es muy largo. Su eje, paralelo al eje z, se encuentra en x = -C.

¿Cuánto vale, aproximadamente, el campo \overrightarrow{B} en el origen de coordenadas?

Datos:

$$\overrightarrow{K} = 2 A/m (-\hat{k})$$

C = 2 m

R = 10 cm

Seleccione una:

$$\overrightarrow{B} = 1,13 \ \mu T \ (+\hat{j}) \checkmark$$

Ninguna de las otras respuestas es válida

$$\overrightarrow{B} = 1,13 \ \mu T \ (-\hat{j})$$

No respondo

$$\overrightarrow{B} = 1,26 \ \mu T \ (-\hat{j}) + 126 \ nT \ (+\hat{\varphi})$$

La respuesta correcta es: $\overrightarrow{B}=1,13~\mu T~(+\hat{j})$

Correcta

Puntúa 1,00 sobre 1,00 En el circuito de la figura circula una corriente I = 1 A, la potencia disipada por la resistencia R_L es 40 W. Si R_1 = 40 Ω y R_2 = 40 Ω , el valor de la pila es, aproximadamente:

Seleccione una:

- 120 V
- 130 V
- No respondo
- 160 V
- 180 V
- Ninguna de las otras respuestas es válida

La respuesta correcta es: 160 V

Correcta

Puntúa 1,00 sobre 1,00 Las zonas sombreadas de la figura representan cuatro láminas de corriente perpendiculares al papel, de espesor despreciable y muy grandes. Dichas láminas transportan densidades superficiales de corriente K_1 =5 A/m (en y= 4 m), K_2 =3 A/m (en x= 4 m), K_3 =5 A/m (en y= -4 m) y K_4 =3 A/m (en x= -4 m) en las direcciones indicadas en la figura. Despreciando efectos de borde, el campo \vec{B} en el origen vale aproximadamente:

Seleccione una:

- $\vec{B} = 6,3\mu T(-\hat{x}) + 3,8\mu T(\hat{y})$
- $\vec{B} = 12,6\mu T(\hat{x}) + 7,5\mu T(-\hat{y})$
- No respondo
- $\vec{B} = 6,3\mu T(\hat{x}) + 3,8\mu T(-\hat{y})$
- Ninguna de las otras respuestas es válida
- $\vec{B} = 5\mu T(-\hat{x}) + 3\mu T(\hat{y})$

La respuesta correcta es: $\vec{B}=6,3\mu T(\hat{x})+3,8\mu T(-\hat{y})$

■ Avisos

Ir a...