Квиз

Пусть X_1, \ldots, X_n – выборка независимых случайных величин, каждая из которых принадлежит к одному из двух кластеров. В k-ом кластере наблюдения распределены с функцией вероятности или функцией плотности $p_k(x|\theta_k)$, где θ_k – вектор неизвестных параметров. Пусть вероятность того, что наблюдение принадлежит первому кластеру, равна γ .

Обозначим за θ вектор, в который последовательно собраны неизвестные параметры для каждого из кластеров, а также γ :

$$\theta := \begin{pmatrix} -\theta_1 - & -\theta_2 - & \gamma \end{pmatrix}$$

Введите подходящие латентные переменные и выведите формулы для шагов ЕМ-алгоритма (Е-шаг – чему равно $p(Z|X,\theta_{old}),$ М-шаг – формулы обновления $\theta_{new}=...),$ если

Задача 1

 p_k – функция вероятности распределения Бернулли $\mathrm{Bern}(\alpha_k)$. Распределение Бернулли: $P(X=1)=\alpha, P(X=0)=1-\alpha$

Задача 2

 p_k – функция вероятности биномиального распределения $\mathrm{Bin}(3,\alpha_k).$ Биномиальное распределение: $P(X=k)=C_n^k\cdot\alpha^k\cdot(1-\alpha)^{n-k}$

Задача 3

 p_k – функция плотности экспоненциального распределения $\exp(\lambda_k)$. Экспоненциальное распределение: $f_X(x) = \lambda e^{-\lambda x}$

Задача 4

 p_k – функция вероятности распределения Пуассона Роіs (λ_k) . Распределение Пуассона: $P(X=k)=\frac{\lambda^k \cdot e^{-\lambda}}{k!}$

Задача 5

 p_k – функция вероятности геометрического распределения $Geom(\alpha_k)$. Геометрическое распределение: $P(X=k) = (1-p)^k \cdot p$

Подготовка к контрольной работе

Теория информации

$$H(X) = -\sum_{i} p_{i} \log_{2}(p_{i})$$

$$H(X) = -\int_{a}^{b} f(x) \log_{2}(f(x)) dx$$

$$H(X,Y) = -\sum_{x,y} p(x,y) \log_{2} p(x,y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$$

$$CE(X||Y) = -\sum_{x,y} p(x) \log_{2} q(x)$$

$$H(X|Y) = H(X,Y) - H(Y)$$

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

$$D_{KL}(X||Y) = CE(X||Y) - H(X) = \sum_{x \in X} p(x) \log_{2} \frac{p(x)}{p(y)}$$

Множественная проверка гипотез

	H_0 не отвергается	H_0 отвергается	Итого
H_0 верна	V	U	m_0
<i>H</i> ₀ неверна	S	T	$m-m_0$
Итого	R	m-R	m

• FWER =
$$P\{U > 0\} = E[I\{U > 0\}] = \frac{m_0 \cdot \alpha}{m}$$

• FDR =
$$E\left[\frac{U}{max\{U+T,1\}}\right]$$
 =

- поправка Бонферрони $\alpha_{ind} = \frac{\alpha}{m}$
- ullet поправка Холма-Бонферрони $lpha_k = rac{lpha}{m+1-k}$
- \bullet процедура Бенджамини-Хокберга $\alpha_k = \frac{\alpha \cdot k}{m}$

2.1 Энтропия нормального распределения (КР-2021, №6)

Условие задачи

Величина X имеет нормальное распределение $N(\mu, \sigma^2)$, а величина Y — другое распределение с математическим ожиданием μ и дисперсией σ^2 .

Докажите, что $H(X) \ge H(Y)$ или приведите контр-пример.

Решение

По сути нам необходимо доказать, что у нормального распределения энтропия максимальна в классе распределений с одинаковой дисперсией. Доказательство этого факта приведено в английской википедии

2.2 Производная функции правдоподобия (КР-2021, №2)

Условие

Рассмотрим логарифм функции правдоподобия $l=2\ln a+4\ln b-10a+12b-10$. Кажется, что если посчитать производные этой функции по а и b и взять математическое ожидание этих производных, то получается не ноль, хотя на лекции точно доказывалось, что $E(l_{\theta}^{'})=0$. Объясните это противоречие

Решение

l - это логарифм функции правдоподобия, то есть $l(x|\theta) = \ln L(x|\theta) = \ln \prod_{i}^{n} P(x|\theta)$. Попробуем восстановить исходную функцию плотности для имеющегося логарифма правдоподобия:

$$L(\cdot) = \exp 2 \ln a + 4 \ln b - 10a + 12b - 10 = a^2 \cdot b^4 \cdot \exp(-10a + 12b - 10)$$

Видим, что получившаяся исходная функция правдоподобия никак не зависит от реализации выборки, то есть по сути является константой, в точке максимального правдоподобия ($\hat{a}_{ML}=0.2, \hat{b}_{ML}=-\frac{1}{3}$) равной $0.2^2\cdot 13^4\cdot \exp(-2+4-10)$, что явлется предельно малым числом, никак не удовлевторяющим базовым свойствам вероятностной меры. Таким образом, можем сделать вывод, что максимизируемая функция правдоподобия не является функцией правдоподобия как таковой и поэтому можем сделать вывод, что доказанное на лекции никак не противоречит рассмотренному случаю.

2.3 Проверка гипотез для функции от параметра (КР-2021, №3)

Условие задачи

Пусть $X_1, ..., X_n$ – независимые случайные величины из распределения с функцией плотности или функцией вероятности $p(x|\theta)$. Обозначим как $I_{\theta}(\theta)$ информацию Фишера для задачи поиска $\hat{\theta}_{ML}$. Добрый волшебник Евгений решает ввести новый параметр μ , такой что $\theta = \psi(\mu)$, где ψ – дифференцируемая функция.

Обозначим как $I_{\mu}(\mu)$ информацию Фишера в терминах μ .

- Докажите, что $I_{\mu}(\mu) = [\psi^{'}(\mu)]^{2} I_{\theta}(\psi(\mu)).$
- Пусть $X_i \sim \text{Bin}(10,\theta)$, то есть $p_{x|\theta} = C_{10}^x \theta^x (1-\theta)^{10-x}$. Найдите $\hat{\theta}_{ML}$, если $\sum_i^{100} Xi = 70$.
- Проверьте гипотезу $H_0: \theta^3=0.03$ против $H_1: \theta^3!=0.03$ при помощи теста Вальда на уровне значимости 5%

Решение

- *TBA*
- Выпишем функцию правдоподобия в явном виде:

$$L(x|\theta) = \prod_{i=1}^{100} (\theta^{x_i} (1-\theta)^{10-x_i})$$

Прологарифмируем её:

$$l(x|\theta) = \sum_{i} (x_i \ln \theta + (10 - x_i) \ln(1 - \theta))$$

•

2.4 LR,LM,W и точечный ММП (ДЗ1 2021, №1)

Условие задачи

Компания "Напиши-ка" производит три вида ручек: синие, красные и зелёные. Аналитик компании, Данил, хочет понять, какая ручка выстрелит, а какая не будет пользоваться популярностью. Он анализирует выборку из 300 проданных ручек, среди которых оказалось 150 синих, 100 красных и 50 зелёных. Данил уверен, что ручки продаются независимо друг от друга и вероятность того, что будет продана синяя, он обозначает за p_1 , а что будет продана красная – за p_2 .

- 1. Обозначим $p = [p_1 \ p_2]^{\top}$, найдите \hat{p}_{ML} , оценку максимального правдоподобия.
- 2. Проверьте гипотезу

$$\begin{cases} H_0 : p_1 = 0.2, \\ H_A : p_1 \neq 0.2 \end{cases}$$

на уровне значимости 0.05 с помощью тестов LR и LM.

3. Проверьте гипотезу

$$\begin{cases} H_0 : p = \begin{bmatrix} 0.3 \\ 0.2 \end{bmatrix}, \\ H_A : p \neq \begin{bmatrix} 0.3 \\ 0.2 \end{bmatrix} \end{cases}$$

на уровне значимости 0.05 с помощью тестов LR и W.