Lecture 2: Analysis of the Tableau Algorithm

Dr. Son P. Nguyen

UEL VNU-HCMC

January 20, 2016

Table of Contents

Definitions and Proofs by Structural Induction

Definitions by Structural Induction

Goal: Define a function f on the set of all propositional formulae

By induction on the structure of propositional formulae:

- 1 Base Case: Define $f(p_i)$ for all proposition symbols p_i .
- 2 Inductive Step: For all propositional formulae φ and ψ , define

$$f(\neg \varphi), \qquad f(\varphi \land \psi), \qquad f(\varphi \lor \psi)$$

in terms of $f(\varphi)$ and $f(\psi)$.

Subformulae

Definition of the set $sub(\varphi)$ of all subformulae of φ :

1 Base Case: For all integers $i \ge 1$, define:

$$\mathsf{sub}(p_i) := \{p_i\}$$

2 Inductive Step: For all propositional formulae φ and ψ , let:

$$\begin{split} & \mathrm{sub}(\neg\varphi) \, := \, \{\neg\varphi\} \, \cup \, \mathrm{sub}(\varphi) \\ & \mathrm{sub}(\varphi \wedge \psi) \, := \, \{\varphi \wedge \psi\} \, \cup \, \mathrm{sub}(\varphi) \, \cup \, \mathrm{sub}(\psi) \\ & \mathrm{sub}(\varphi \vee \psi) \, := \, \{\varphi \vee \psi\} \, \cup \, \mathrm{sub}(\varphi) \, \cup \, \mathrm{sub}(\psi) \end{split}$$

Subformulae example

For
$$\varphi = (p_1 \land \neg p_2) \lor \neg p_3$$
, we have:
$$\operatorname{sub}(\varphi) = \{\varphi\} \cup \operatorname{sub}(p_1 \land \neg p_2) \cup \operatorname{sub}(\neg p_3)$$

$$= \{\varphi\} \cup \{p_1 \land \neg p_2\} \cup \operatorname{sub}(p_1) \cup \operatorname{sub}(\neg p_2) \cup \operatorname{sub}(\neg p_3)$$

$$= \{\varphi, p_1 \land \neg p_2\} \cup \{p_1\} \cup \{\neg p_2\} \cup \operatorname{sub}(p_2) \cup \{\neg p_3\} \cup \operatorname{sub}(p_3)$$

$$= \{\varphi, p_1 \land \neg p_2\} \cup \{p_1\} \cup \{\neg p_2\} \cup \{p_2\} \cup \{\neg p_3\} \cup \{p_3\}$$

$$= \{\varphi, p_1 \land \neg p_2, p_1, \neg p_2, p_2, \neg p_3, p_3\}.$$

Length of formulae

Definition of the length $len(\varphi)$ of a formula φ :

- $len(p_i) := 1$ for all integers $i \ge 1$
- For all propositional formulae φ and ψ :

$$\begin{split} & \operatorname{len}(\neg\varphi) \, := \, 1 + \operatorname{len}(\varphi) \\ & \operatorname{len}(\varphi \wedge \psi) \, := \, 1 + \operatorname{len}(\varphi) + \operatorname{len}(\psi) \\ & \operatorname{len}(\varphi \vee \psi) \, := \, 1 + \operatorname{len}(\varphi) + \operatorname{len}(\psi) \end{split}$$

Length of a Formula: Example

For $\varphi = \neg (p_1 \land \neg p_2)$, we have:

$$\begin{aligned} & \mathsf{len}(\varphi) \, = \, 1 + \mathsf{len}(p_1 \wedge \neg p_2) \\ & = \, 1 + 1 + \mathsf{len}(p_1) + \mathsf{len}(\neg p_2) \\ & = \, 1 + 1 + 1 + 1 + \mathsf{len}(p_2) \\ & = \, 5 \end{aligned}$$

Proofs by Structural Induction

Goal: Prove a statement S about propositional formulae

By induction on the structure of propositional formulae:

- 1 Base Case:
 Prove S for all proposition symbols p_i .
- 2 Inductive Step: Prove that, if S holds for φ and ψ , then S also holds for:

$$\neg \varphi$$
, $\varphi \wedge \psi$, $\varphi \vee \psi$

Proofs by Structural Induction: Example

Claim: For all propositional formulae φ , $|\operatorname{sub}(\varphi)| \leq \operatorname{len}(\varphi)$.

Proof: By induction on the structure of propositional formulae.

• Base case: For all integers $i \ge 0$,

$$|sub(p_i)| = |\{p_i\}| = 1 = len(p_i).$$

• Inductive step: Suppose the claim is true for φ and ψ . Then:

$$\begin{aligned} |\mathrm{sub}(\varphi \wedge \psi)| &= |\{\varphi \wedge \psi\} \cup \mathrm{sub}(\varphi) \cup \mathrm{sub}(\psi)| \\ &\leq 1 + |\mathrm{sub}(\varphi)| + |\mathrm{sub}(\psi)| \\ &\leq 1 + \mathrm{len}(\varphi) + \mathrm{len}(\psi) \\ &= \mathrm{len}(\varphi \wedge \psi). \end{aligned}$$

Exercise: $|\operatorname{sub}(\varphi \vee \psi)| \leq \operatorname{len}(\varphi \vee \psi)$ and $|\operatorname{sub}(\neg \varphi)| \leq \operatorname{len}(\neg \varphi)$

Termination of the Tableau Algorithm

Theorem

Let φ be a propositional formula. Then, the tableau algorithm terminates on input φ .

To prove the theorem, it suffices to show (why?):

There are only finitely many tableau paths starting in $\{\varphi\}$.

Notation

Definition

For every propositional formula φ , we define:

$$\operatorname{sub}^\neg(\varphi) \,:=\, \operatorname{sub}(\varphi) \,\cup\, \{\neg\psi\mid \psi\in\operatorname{sub}(\varphi)\}.$$

Example:

$$\mathsf{sub}^\neg(\,\rho\vee\neg q\,)\,=\,\,\{\,\rho\vee\neg q,\,\neg(\rho\vee\neg q),\,\rho,\,\neg\rho,\,q,\,\neg q,\,\neg\neg q\,\}$$

Termination of the Tableau Algorithm (cont)

Claim: There are only finitely many tableau paths starting in $\{\varphi\}$. Proof:

- Consider a tableau path C_0, C_1, \ldots, C_n with $C_0 = \{\varphi\}$.
- Properties of the path:

 - $|\mathcal{C}_0| < |\mathcal{C}_1| < \dots < |\mathcal{C}_n| \le |\operatorname{sub}^\neg(\varphi)|$

Since $|\mathcal{C}_0| = 1$, property 2 implies $n < |\text{sub}^\neg(\varphi)|$.

- Thus, each tableau path starting in $\{\varphi\}$ is a sequence of at most $|\operatorname{sub}^{\neg}(\varphi)|$ subsets of $\operatorname{sub}^{\neg}(\varphi)$.
- The number of such sequences is at most $|\operatorname{sub}^{\neg}(\varphi)|^{|\operatorname{sub}^{\neg}(\varphi)|}$.

Analysis of the Tableau Algorithm

Theorem

Let φ be a propositional formula. The following properties hold:

- **1** Termination: The tableau algorithm terminates on input φ .
- **2** Soundness: If the algorithms outputs "satisfiable", then φ is satisfiable.
- 3 Completeness: If φ is satisfiable, then the algorithm outputs "satisfiable".

Soundness of the Tableau Algorithm

Theorem

Let φ be a propositional formula. If the tableau algorithm outputs "satisfiable" on input φ , then φ is satisfiable.

Proof: Let the tableau algorithm output "satisfiable" on input φ . Then, there is a complete tableau path $\mathcal{C}_0, \mathcal{C}_1, \ldots, \mathcal{C}_n$ such that \mathcal{C}_n contains no clash.

Define an interpretation \mathcal{I} such that for all integers $i \geq 1$:

$$\mathcal{I}(p_i) = \begin{cases} 1, & \text{if } p_i \in \mathcal{C}_n \\ 0, & \text{otherwise.} \end{cases}$$

Claim: $\mathcal{I}(\psi)=1$ for all $\psi\in\mathcal{C}_n$ (Since $\varphi\in\mathcal{C}_n$, this implies that φ is satisfiable.)

Base Case: Proposition Symbols

For all proposition symbols p_i :

- 1) If $p_i \in C_n$, then $\mathcal{I}(p_i) = 1$.
- 2 If $\neg p_i \in \mathcal{C}_n$, then $\mathcal{I}(p_i) = 0$.

Proof: Let p_i be a proposition symbol.

- If $p_i \in C_n$, then $\mathcal{I}(p_i) = 1$ by the definition of \mathcal{I} .
- Suppose that $\neg p_i \in \mathcal{C}_n$. Since \mathcal{C}_n contains no clash, we have $p_i \notin \mathcal{C}_n$. Hence, $\mathcal{I}(p_i) = 0$ by the definition of \mathcal{I} .

Inductive Step: Negation

Suppose that the claim is true for ψ . Then:

- 1 If $\neg \psi \in \mathcal{C}_n$, then $\mathcal{I}(\neg \psi) = 1$.
- 2 If $\neg \neg \psi \in \mathcal{C}_n$, then $\mathcal{I}(\neg \psi) = 0$.

Proof: We consider the two cases separately:

- 1 $\neg \psi \in \mathcal{C}_n$: Since the claim holds for ψ , this implies $\mathcal{I}(\psi) = 0$, and hence $\mathcal{I}(\neg \psi) = 1$.
- 2 $\neg \neg \psi \in \mathcal{C}_n$: Since the $\neg \neg$ -rule is not applicable to \mathcal{C}_n (otherwise, the tableau path $\mathcal{C}_0, \ldots, \mathcal{C}_n$ wouldn't be complete), we have $\psi \in \mathcal{C}_n$. This implies $\mathcal{I}(\psi) = 1$ (since the claim holds for ψ), and hence $\mathcal{I}(\neg \psi) = 0$.

Inductive Step: Conjunction

Suppose that the claim is true for ψ_1 and ψ_2 . Then:

- 1 If $\psi_1 \wedge \psi_2 \in \mathcal{C}_n$, then $\mathcal{I}(\psi_1 \wedge \psi_2) = 1$.
- 2 If $\neg(\psi_1 \wedge \psi_2) \in \mathcal{C}_n$, then $\mathcal{I}(\psi_1 \wedge \psi_2) = 0$.

Proof: We consider the two cases separately:

- 1) $\psi_1 \wedge \psi_2 \in \mathcal{C}_n$: Since the \wedge -rule is not applicable to \mathcal{C}_n , we have $\psi_1 \in \mathcal{C}_n$ and $\psi_2 \in \mathcal{C}_n$. This implies $\mathcal{I}(\psi_1) = \mathcal{I}(\psi_2) = 1$ (as the claim holds for ψ_1 and ψ_2). Hence, $\mathcal{I}(\psi_1 \wedge \psi_2) = 1$.
- ② $\neg(\psi_1 \wedge \psi_2) \in \mathcal{C}_n$: Since the $\neg \wedge$ -rule is not applicable to \mathcal{C}_n , we have $\neg \psi_1 \in \mathcal{C}_n$ or $\neg \psi_2 \in \mathcal{C}_n$. This implies $\mathcal{I}(\psi_1) = 0$ or $\mathcal{I}(\psi_2) = 0$. Hence, $\mathcal{I}(\psi_1 \wedge \psi_2) = 0$.

Inductive Step: Disjunction

Suppose that the claim is true for ψ_1 and ψ_2 . Then:

- 1 If $\psi_1 \vee \psi_2 \in \mathcal{C}_n$, then $\mathcal{I}(\psi_1 \vee \psi_2) = 1$.
- ② If $\neg(\psi_1 \lor \psi_2) \in \mathcal{C}_n$, then $\mathcal{I}(\psi_1 \lor \psi_2) = 0$.

Proof: Analogous to the case of conjunctions (exercise).

Analysis of the Tableau Algorithm

Theorem

Let φ be a propositional formula. The following properties hold:

- *Termination:* The tableau algorithm terminates on input φ .
- 2 Soundness: If the algorithms outputs "satisfiable", then φ is satisfiable.
- **3** Completeness: If φ is satisfiable, then the algorithm outputs "satisfiable".

Completeness of the Tableau Algorithm

Theorem

Let φ be a propositional formula. If φ is satisfiable, then the tableau algorithm outputs "satisfiable" on input φ .

Proof: Let φ be satisfiable.

- Since φ is satisfiable, there is an interpretation \mathcal{I} with $\mathcal{I}(\varphi)=1$.
- Guided by \mathcal{I} , we construct a complete tableau path $\mathcal{C}_0, \ldots, \mathcal{C}_n$ such that $\mathcal{C}_0 = \{\varphi\}$ and \mathcal{C}_n contains no clash.
- Such a tableau path implies that the tableau algorithm outputs "satisfiable" on input φ .

Construction of the Tableau Path

The path C_0, C_1, \dots, C_n is constructed inductively:

- 2 Assume that C_i has been defined, and $\mathcal{I}(\psi)=1$ for all $\psi\in\mathcal{C}_i$. (Note: C_i contains no clash.)
 - Case 1: No completion rule is applicable to C_i . Then, C_0, C_1, \dots, C_n is the desired path.
 - Case 2: Some completion rule is applicable to \mathcal{C}_i . Then, let \mathcal{C}_{i+1} be the result of applying one of the completion rules to \mathcal{C}_i such that $\mathcal{I}(\psi)=1$ for all $\psi\in\mathcal{C}_{i+1}$.

Construction of C_{i+1}

Case 1: The \land -rule is applicable to C_i .

Then, C_i contains a formula $\psi_1 \wedge \psi_2$ with $\psi_1 \notin C_i$ or $\psi_2 \notin C_i$.

- Since $\mathcal{I}(\psi_1 \wedge \psi_2) = 1$, we have $\mathcal{I}(\psi_1) = 1$ and $\mathcal{I}(\psi_2) = 1$.
- Define $C_{i+1} := C_i \cup \{\psi_1, \psi_2\}$.
- By construction: All formulae in C_{i+1} are true under \mathcal{I} .

Construction of C_{i+1}

Case 2: The \vee -rule is applicable to C_i .

Then, C_i contains a formula $\psi_1 \vee \psi_2$ with $\psi_1 \notin C_i$ and $\psi_2 \notin C_i$.

- Since $\mathcal{I}(\psi_1 \vee \psi_2) = 1$, we have $\mathcal{I}(\psi_1) = 1$ or $\mathcal{I}(\psi_2) = 1$.
- If $\mathcal{I}(\psi_1) = 1$, define $\mathcal{C}_{i+1} := \mathcal{C}_i \cup \{\psi_1\}$.
- If $\mathcal{I}(\psi_2) = 1$, define $\mathcal{C}_{i+1} := \mathcal{C}_i \cup \{\psi_2\}$.
- By construction: All formulae in C_{i+1} are true under \mathcal{I} .

Remaining completion rules: exercise.

Analysis of the Tableau Algorithm

Theorem

Let φ be a propositional formula. The following properties hold:

- **1** Termination: The tableau algorithm terminates on input φ .
- 2 Soundness: If the algorithms outputs "satisfiable", then φ is satisfiable.
- **3** Completeness: If φ is satisfiable, then the algorithm outputs "satisfiable".

