표준강의계획서

* 강의계획서 입력이 되지 않은 경우 공란으로 표시될 수 있습니다.

과목정보					
연도 및 학기	2017학년도 1학기		교과목명	인공지능	
교과목코드	EA0017 분반		2	학점	3
수강대상학년(학과)	3(컴퓨터과학과)			팀티칭여부	N
강의시간	월9,10,화5(G207)			이수구분	1전선

과목개요			
*주강의언어	KR		
*교과목개요	다양한 지식 표현 방법 및 추론 방법, 전문가 시스템, 퍼지 이론, 신경망, 유전 알고리즘 등을 중심으로 인공 지능 분야에 대한 기초 지식을 습득하고, 실제 이론이 적용된 인공지능 시스템들에 대한 이해를 높인다.		
*교과목 목표	1. 인공지능의 다양한 분야 (지식 표현 및 추론, 전문가 시스템, 퍼지 이론, 신경망, 유전 알고리즘 등)를 학습한다. 2. 이론이 적용된 다양한 실제 인공지능 시스템들에 대한 이해를 높인다. 3. 학생들이 상황에 맞는 인공 지능 이론을 적용하여, 지능형 시스템을 개발하도록 한다.		
*주교재	인공지능 개론, 마이클 네그네빗스키 저, 김용혁 역, 한빛미디어		
부교재	Artificial Intelligence 3/E, Michael Negnevitsky, Addison-Wesley		
참고자료	Artificial Intelligence - Structures and Strategies for Complex Problem Solving, George F. Luger, Addison-Wesley		
선수과목명	선수과목 필수여부		
장애학생 수업 안내	개인별 수업참여가 힘든 경우 장애학생지원센터에 요청하여 지정 좌석에서 도우미 학생과 합께 수업을 들을 수 있습니다.		
교강사전달사항			
기타연락처	상담요일 및 시간 수업 후 1시간		
강의 소개 동영상			

교강사정보				
교수명	소속	연구실(전화)	연구실(위치)	이메일
김영준	컴퓨터과학과	0222875316	G505	yjkim@smu.ac.kr

교과유형				
항목	내용			
*수업유형				
수업유형(기타)				
*과목유형	□ 융복합 □ 전공기초 □ 전공핵심 ❷ 전공심화 □ 현장실습 □ 캡스톤디자인 □ 계량연계			
과목유형(기타)				

성적평가				
평가문항	반영비율(%)	평가문항	반영비율(%)	평가유형
*중간고사	40	*발표	0	
*기말고사	40	*참여도	0	
*과제물	10	*퀴즈	0	상대평가I
*출석	10	*프로젝트	0	
*기타평가			0	

상명인이 갖추어야 할 5大 핵심역량별 비율 체계

O S 간 이 웃구 이 아 글 3人 꼭 ㅁ ㅋ 6 글 미 볼 세계					
핵심역량	핵심역량 개요	핵심역량 여부	강의반영비율(%)		
① 전문지식 탐구 역 량	한 분야의 전문가가 되기 위해 전문적인 지식을 탐구하고 연마할 수 있는 역량				
③ 다양성 존중 역량	다양성의 가치를 존중하며 자신과 다른 모든 사람을 배려 및 존중하는 역량				
④ 융복합 역량	자원/정보를 창의적, 효율적인 방법으로 융합하여 새로운 시너지를 창출할 수 있는 역량				
② 윤리실천 역량	다양한 사회와 영역에 관심을 가지며, 윤리의식과 정의감을 실행할 수 있는 역량				
⑤ 창의적 문제해결 역량	지식과 정보 기술이 중요한 사회에서 자원을 활용하여 창의적으로 문제를 해결하는 역량				

기타정보	
Career Development Roadmap(전문직군명)	임베디드소프트웨어개발자

주차	항목	내용
1	*학습목표	지식기반 지능형 시스템 에 대한 이해
	*주요학습내용 및 방법	지능형 시스템의 예, 인공지능의 연구 분야와 역사
2	*학습목표	지식표현 방법으로서의 서술논리에 대한 이해
	*주요학습내용 및 방법	명제논리와 1차 서술논리
3	*학습목표	지식표현 방법으로서의 서술논리에 대한 이해
	*주요학습내용 및 방법	명제논리와 1차 서술논리
4	*학습목표	인공지능 프로그래밍 언어인 Prolog에 대한 이해
	*주요학습내용 및 방법	Prolog 언어에 대한 소개와 프로그램의 구현 예
5	*학습목표	전문가 시스템에 대한 이해
	*주요학습내용 및 방법	규칙기반 전문가 시스템의 구조, 기본적인 특성, 추론 기법, 장점과 단 점
6	*학습목표	Jess(Java Expert System Shell)에 대한 이해
	*주요학습내용 및 방법	Jess 프로그래밍의 기초, 지식 기반 시스템의 구현 예
7	*학습목표	규칙기반 전문가 시스템에서 불확실성 다루기
	*주요학습내용 및 방법	베이즈 추론, 확신도 이론과 증거 추론
8	*학습목표	중간고사
	*주요학습내용 및 방법	중간고사
9	*학습목표	퍼지 이론에 대한 이해
	*주요학습내용 및 방법	퍼지 집합과 연산, 퍼지 규칙, 퍼지 추론
10	*학습목표	퍼지 이론에 대한 이해
	*주요학습내용 및 방법	퍼지 전문가 시스템의 구축
11	*학습목표	기계학습에 대한 이해
	*주요학습내용 및 방법	다양한 학습 방법에 대한 이해
12	*학습목표	기계학습에 대한 이해
	*주요학습내용 및 방법	퍼셉트론, 다층 신경망, 자기 조직 신경망
13	*학습목표	진화 연산에 대한 이해
	*주요학습내용 및 방법	유전 알고리즘, 진화 전략, 유전 프로그래밍
14	*학습목표	지식 공학과 데이터 마이닝에 대한 이해
	*주요학습내용 및 방법	데이터 마이닝과 지식 발견
15	*학습목표	지식 공학과 데이터 마이닝에 대한 이해
	*주요학습내용 및 방법	Weka에 대한 소개