An Introduction to Probability Theory: Outline

- Definitions: sample space and (measurable) random variables
- 2. σ -algebras
- 3. Expectation (integration)
- 4. Conditional expectation
- 5. Useful inequalities
- 6. Independent random variables
- 7. The central limit theorem
- 8. Laws of large numbers: Borel-Cantelli lemma
- 9. Uniform integrability
- 10. Kolmogorov's extension theorem for consistent finite-dimensional distributions

Sample space and events

- Consider a random experiment resulting in an *outcome* (or "sample"), ω .
- *E.g.*, the experiment is a pair of dice thrown onto a table and the outcome is the exact orientation of the dice and their position on the table when they stop moving.
- The space of all outcomes, Ω , is called the *sample space*, i.e., $\omega \in \Omega$.
- An event is merely a subset of Ω , e.g., "the sum of the dots on the upward facing surfaces of the dice is 7".
- We say that an event $A \subset \Omega$ has occurred if the outcome ω of the random experiment belongs to A, i.e., $\omega \in A$, so
 - events A and B occurred if $\omega \in A \cap B$, and
 - events A or B occurred if $\omega \in A \cup B$.
- A sample space Ω is an abstract, unordered set in general.
- Let \mathcal{F} be the set of events, *i.e.*, $A \in \mathcal{F} \Rightarrow A \subset \Omega$.

(5) December 26, 2019 George Kesidis _____

(5) December 26, 2019 George Kesidis _____

Probability on a sample space

- A probability measure P maps each event $A \subset \Omega$ to a real number between zero and one inclusive, i.e., $P(A) \in [0,1]$.
- A probability measure has certain properties:
 - 1. $P(\Omega) = 1$ and
 - 2. $P(A) = 1 P(A^c) \forall$ events A, where $A^c = \{\omega \in \Omega \mid \omega \notin A\}$ is the complement of A.
- Moreover, if the events $\{A_i\}_{i=1}^n$ are disjoint (i.e., $A_i \cap A_j = \emptyset$ for all $i \neq j$), then

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}),$$

i.e., P is finitely additive.

- Formally, a probability measure is defined to be countably additive:
 - 3. For any disjoint $\{A_i\}_{i=1}^{\infty}$,

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right) = \sum_{i=1}^{\infty}P(A_{i}),$$

Probability measures on σ -algebras

- On large sample spaces Ω (e.g., $\Omega = \mathbb{R}$), a formal probability measure may be impossible to construct if all subsets of Ω are defined as events, i.e., if $\mathcal{F} = 2^{\Omega}$ (the power set of all subsets of Ω), cf., Caratheodory's Extension Theorem.
- So, the set of events \mathcal{F} is restricted to a σ -algebra (or σ -field) of subsets of Ω formally satisfying the following properties:
 - 1. $\Omega \in \mathcal{F}$ (possesses intersection identity)
 - 2. if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (closed under complementation)
 - 3. if $A_1, A_2, A_3, ... \in \mathcal{F}$, $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$ (closed under countable intersections)
- The probability measure P is defined only on the $\sigma\text{-algebra}$ $\mathcal{F}\subset 2^\Omega,$

$$P: \mathcal{F} \rightarrow [0,1].$$

- We have thus identified a fundamental probability (measure) space: (Ω, \mathcal{F}, P) .
- Note: Equivalently by De Morgan's theorem, can use $\emptyset \in \mathcal{F}$ (union identity) and closed under countable unions instead of conditions 1 and 3 above.

⁽⁵⁾ December 26, 2019 George Kesidis _

⁽⁵⁾ December 26, 2019 George Kesidis ____

Conditioned events

- The probability that A occurred conditioned on (or "given that") another event B occurred is $P(A|B) := P(A \cap B)/P(B)$, where P(B) > 0 is assumed.
- A group of events A₁, A₂, ..., A_n are said to be mutually independent if

$$\mathsf{P}\left(\bigcap_{i\in\mathcal{I}}A_i\right)=\prod_{i\in\mathcal{I}}\mathsf{P}(A_i)\quadorall\ \mathcal{I}\subset\{1,2,...,n\}.$$

- Note if events A and B are independent and P(B) > 0, then P(A|B) = P(A), *i.e.*, knowledge that the event B has occurred has no bearing on the probability that the event A has occurred as well.
- Given that B has occurred with P(B) > 0:
 - The set of events $\mathcal{F}_B:=\{A\cap B\mid A\in\mathcal{F}\}$ is itself a $\sigma\text{-algebra, and}$
 - $P(\cdot|B)$, also a probability measure for (Ω, \mathcal{F}) and (B, \mathcal{F}_B) , addresses the residual uncertainty in the random experiment given that the event B has occurred.
 - On (Ω, \mathcal{F}) , $P(A) = 0 \Rightarrow P(A|B) = 0 \ \forall A \in \mathcal{F}$, i.e., $P(\cdot|B)$ is absolutely continuous w.r.t. P.

Random variables

- A random variable X is a real-valued function with domain Ω , $X:\Omega\to\mathbb{R}$.
- So, $X(\omega)$ is a real number representing some feature of the outcome ω .
- E.g., in a dice-throwing experiment, $X(\omega)$ could be defined as just the sum of the dots on the upward-facing surfaces of outcome ω (which is the configuration of the dice on the table when they stop moving).
- For random variables, we are typically interested in the probability of the event that X takes values in a contiguous interval B of the real line (including singleton points), or some union of such intervals, i.e.,

$$P(X \in B) := P(\{\omega \in \Omega \mid X(\omega) \in B\}) =: P(X^{-1}(B)).$$

- To ensure that the fundamental probability space (Ω, \mathcal{F}, P) is capable of evaluating the probabilities of such events, we formally define random variables as being *measurable*.
- To explain measurability, we need to first define the *Borel* σ -algebra of subsets of $\mathbb R$ that is *generated* by contiguous intervals of $\mathbb R$.

December 26, 2019 George Kesidis —

The Borel σ -algebra on $\mathbb R$

• Consider contiguous intervals of the real line, e.g.,

$$[x,\infty) = \{z \in \mathbb{R} \mid z \ge x\}$$
 or $(x,y) = \{z \in \mathbb{R} \mid x < z < y\}$ etc.

- Define $\sigma(A)$ as the *smallest* σ -algebra containing all elements of elements A, *i.e.*, *generated* by A.
- The Borel σ -algebra is

$$\mathcal{B} := \sigma([x, \infty) \mid x \in \mathbb{R}).$$

• Note that the singleton sets $\{x\} \in \mathcal{B} \ \forall x \in \mathbb{R}$ and that, e.g.,

$$\mathcal{B} = \sigma((-\infty, x] \mid x \in \mathbb{R})$$

= $\sigma([x, y) \mid x \le y, x, y \in \mathbb{Q})$ etc

To see the first equality, note that $[x,\infty)^c=(-\infty,x)$ and that we can define a monotonically decreasing sequence x_n converging to x so that $\bigcap_{n=1}^{\infty}(-\infty,x_n)=(-\infty,x]$.

- The Vitali subset of $\mathbb R$ is *not* in the Borel σ -algebra, *i.e.*, $\mathcal B \neq 2^{\mathbb R}.$
- \bullet Indeed, the cardinality of ${\cal B}$ is only that of ${\mathbb R}.$

Measurability of random variables

• Formally, random variables are defined to be *measurable* with respect to (Ω, \mathcal{F}) , *i.e.*,

$$X^{-1}(B) \in \mathcal{F} \quad \forall B \in \mathcal{B},$$

so that $P(X \in B)$ is well-defined $\forall B \in \mathcal{B}$.

• A random variable X induces a probability measure P_X on $(\mathbb{R}, \mathcal{B})$ (the distribution of X),

$$P_X(B) := P(X \in B),$$

so that $(\mathbb{R}, \mathcal{B}, P_X)$ is also a probability space.

- Note: If a function $g: \mathbb{R} \to \mathbb{R}$ is $(\mathbb{R}, \mathcal{B})$ -measurable (i.e., $g^{-1}(B) \in \mathcal{B} \ \forall B \in \mathcal{B}$) and X is a random variable, then g(X) is a random variable too.
- Note: The cumulative distribution function (CDF) of X is just $F_X(x) := \mathsf{P}_X((-\infty,x]) = \mathsf{P}(X \le x)$.

⁽⁵⁾ December 26, 2019 George Kesidis ____

Measurable compositions of random variables

If Y, X and $X_1, X_2, X_3, ...$ are all extended random variables, then the following are also random variables:

- $\min\{X,Y\}$, $\max\{X,Y\}$, XY, $1\{X\neq 0\}/X$ where $\frac{0}{0}:=1$.
- $\alpha X + \beta Y \ \forall \alpha, \beta \in \mathbb{R}$.
- $\sup_{n\geq 1} X_n$, $\inf_{n\geq 1} X_n$, $\limsup_{n\to\infty} X_n$, $\liminf_{n\to\infty} X_n$.

(5) December 26, 2019 George Kesidis _

σ -algebra generated by a random variable

- Define $\sigma(X) := \sigma(\{X^{-1}(B) \mid B \in \mathcal{B}\})$, *i.e.*, the smallest σ -algebra of events for which the random variable X is measurable.
- Note: One can directly show that

$$\sigma(X) = \sigma(\lbrace X^{-1}([x,\infty)) \mid x \in \mathbb{R} \rbrace),$$

i.e., considering only a "generating" subset of \mathcal{B} .

- $\sigma(X)$ captures the "information" gained by the knowledge of $X(\omega)$ about the outcomes ω .
- E.g., If X is constant then $\sigma(X) = \{\emptyset, \Omega\}.$
- E.g., If $X = \mathbf{1}_B$ for an event $B \in \mathcal{F}$,
 - where the indicator function $\mathbf{1}_B(\omega) = 1$ if $\omega \in B$ and $\mathbf{1}_B(\omega) = 0$ else (also may write $\mathbf{1}_B := \mathbf{1}_B$),
 - -i.e., X is a Bernoulli distributed random variable.
 - then $\sigma(X) = \{\emptyset, B, B^c, \Omega\}.$
 - If the scalars $a \neq b$, then $Y := a\mathbf{1}_B + b\mathbf{1}_{B^c}$ also indicates whether B or B^c has occurred,
 - *i.e.*, $\sigma(X) = \sigma(Y)$ in this case.
- **Doob's Theorem:** If Y is $\sigma(X)$ -measurable (so that $\sigma(Y) \subset \sigma(X)$), then \exists Borel measurable g such that Y = g(X) a.s.
- If g is one-to-one, then $\sigma(Y) = \sigma(X)$.
- (iii) December 26, 2019 George Kesidis _____

Independent random variables

• The random variables $X_1, X_2, ..., X_n$ are said to be *mutually independent* (or just "independent") if and only if

$$\mathsf{P}(\cap_{i=1}^n \{X_i \in B_i\}) = \prod_{i=1}^n \mathsf{P}(X_i \in B_i) \ \forall B_1, ..., B_n \in \mathcal{B}.$$

Clearly mutual independence implies that the joint CDF

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) := P(\cap_{i=1}^n \{X_i \le x_i\})$$

satisfies

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i) \ \ \forall x_1,...,x_n \in \mathbb{R}.$$

- To prove the converse statement, we will now discuss monotone class theorems.
- Note: The marginal $F_{X_1}(x_1) = F_{X_1,...,X_n}(x_1,\infty,\infty,...,\infty)$.

Monotone class theorems

- $\mathcal{C} \subset 2^{\Omega}$ is a π -class over Ω if $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$.
- $\mathcal{C} \subset 2^{\Omega}$ is a λ -class over Ω when:
 - (i) $\Omega \in \mathcal{C}$;
- (ii) if $A, B \in \mathcal{C}$ and $A \subset B \Rightarrow B \setminus A := B \cap A^c \in \mathcal{C}$; and
- (iii) if $A_1, A_2, ... \in \mathcal{C}$ is monotonically increasing $(A_n \subset A_{n+1} \ \forall n)$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{C}$.
- **Proposition:** If C is a λ -class over Ω , then
- (a) $A \in \mathcal{C} \Rightarrow A^c \in \mathcal{C}$ (by (i) and (ii), $\Omega \setminus A \equiv A^c \in \mathcal{C}$).
- (b) $A, B \in \mathcal{C}$ and $A \cap B = \emptyset$ (i.e., they're disjoint), then $A \cup B \in \mathcal{C}$ ($A \subset B^c \Rightarrow (B^c \setminus A)^c \equiv B \cup A \in \mathcal{C}$ by (ii) and (a)).
- (c) if $\mathcal C$ is also a π -class, then $\mathcal C$ is a σ -algebra.

The proof of (c) is left as an exercise.

• Because of the conditions on (ii) or (b), a λ -class seems less inclusive than a σ -algebra.

⁽⁵⁾ December 26, 2019 George Kesidis _

⁽⁵⁾ December 26, 2019 George Kesidis ___

Dynkin's theorem

If $\mathcal D$ is a π -class, $\mathcal C$ a λ -class and $\mathcal D \subset \mathcal C$, then $\sigma(\mathcal D) \subset \mathcal C$. **Proof:**

- Define $\mathcal G$ as the *smallest* λ -class such that $\mathcal D \subset \mathcal G$; thus $\mathcal D \subset \mathcal G \subset \mathcal C$.
- We now prove \mathcal{G} is also a π -class; the theorem then follows by the previous proposition (c).
- To this end, define $\mathcal{H} := \{ A \subset \Omega \mid A \cap D \in \mathcal{G} \ \forall D \in \mathcal{D} \}$:
 - Since $\mathcal{D} \subset \mathcal{G}$ and \mathcal{D} is a π -class, $\mathcal{D} \subset \mathcal{H}$.
 - Check that \mathcal{H} is a λ -class \Rightarrow (minimal) $\mathcal{G} \subset \mathcal{H}$.
 - Thus, $A \in \mathcal{G} \ (\Rightarrow A \in \mathcal{H})$ and $D \in \mathcal{D} \Rightarrow A \cap D \in \mathcal{G}$.
- Now define $\mathcal{F} := \{ B \subset \Omega \mid B \cap A \in \mathcal{G} \ \forall A \in \mathcal{G} \}$:
 - By the previous step, $\mathcal{D} \subset \mathcal{F}$.
 - Check that $\mathcal F$ is a λ -class \Rightarrow (minimal) $\mathcal G \subset \mathcal F$.
 - Thus, \mathcal{G} is a π -class.

Note: So, a λ -class can be much larger than a π -class.

Classical monotone class theorem: if $\mathcal D$ is an algebra, $\mathcal C$ a monotone class (contains all limits of its monotone sequences) and $\mathcal D \subset \mathcal C$, then $\sigma(\mathcal D) \subset \mathcal C$.

(5) December 26, 2019 George Kesidis ___

Independence in probability space (Ω, \mathcal{F}, P)

• Lemma: If $\mathcal{D}, \mathcal{C} \subset \mathcal{F}$ are independent classes of events and \mathcal{D} is a π -class, then $\sigma(\mathcal{D})$ and \mathcal{C} are independent. **Proof:**

- Take an arbitrary $B \in \mathcal{C}$ and define $\mathcal{D}_B = \{A \in \sigma(\mathcal{D}) \mid P(A \cap B) = P(A)P(B)\}$
- $-\mathcal{D}\subset\mathcal{D}_B$.
- Check \mathcal{D}_B is a λ -class.
- Apply Dynkin's theorem.
- Theorem: If the joint CDF $F_{X_1,...,X_n} \equiv \prod_{i=1}^n F_{X_i}$ (i.e., the LHS and RHS are equal at all points in \mathbb{R}^n), then the n random variables $X_1,...,X_n$ are independent. **Proof:**
 - Define $\mathcal{D}_k = \{ \{ X_k \le x \} \mid -\infty \le x \le \infty \}.$
 - Note: $x = -\infty \Rightarrow \emptyset \in \mathcal{D}_k$.
 - Check that \mathcal{D}_k is a π -class $\forall k$.
 - Finally use the lemma to obtain independence of the $\sigma(\mathcal{D}_k) = \sigma(X_k)$.

① December 26, 2019 George Kesidis __

Conditional Independence

- Events A and C are said to be independent given B if $P(A \mid B, C) = P(A \mid B).$
- Note that this implies $P(C \mid B, A) = P(C \mid B)$.
- This is a natural extension of the unqualified notion of independent events, *i.e.*, events A and C are (unconditionally) independent if $P(A \mid C) = P(A)$.
- \bullet Similarly, random variables X and Y are conditionally independent given Z if

 $\mathsf{P}(X \in A \mid Z \in B, \ Y \in C) \ = \ \mathsf{P}(X \in A \mid Z \in B)$ for all Borel $A, B, C \subset \mathbb{R}, \ cf., \ \mathsf{Markov} \ \mathsf{processes}.$

Expectation

• The expectation $\mathsf{E} X$ of a random variable X is simply its average or mean value, which can be expressed as the Riemann-Stieltjes integral:

$$\mathsf{E} X = \int_{-\infty}^{\infty} x \; \mathsf{d} F_X(x),$$

recall that the CDF F_X is nondecreasing on \mathbb{R} .

• In the special case of a differentiable F_X with probability density function (PDF) $f_X = F_X'$, i.e., X is continuously distributed, we can use the Riemann integral

$$\mathsf{E} X = \int_{-\infty}^{\infty} x f_X(x) \mathsf{d} x.$$

- In the case of a discretely distributed random variable X with *countable* state-space R_X ,
 - $F_X'(x) = \sum_{\xi \in R_X} p_X(\xi) \delta(x \xi)$, where
 - δ is the Dirac unit impulse and the probability mass function (PMF) $p_X(\xi) := P(X = \xi) > 0$ for all $\xi \in R_X$, so that

$$\mathsf{E} X \ = \ \sum_{\xi \in R_X} \xi \ p_X(\xi).$$

Lebesgue integration

 Formally, the Lebesgue integral is used to define expectation:

$$\mathsf{E} X \ = \ \int_{\Omega} X(\omega) \mathsf{d} \mathsf{P}(\omega) \ = \ \int_{\Omega} X \ \mathsf{d} \mathsf{P}.$$

- ullet Recall that Ω is generally abstract, unordered.
- If X is simple (discretely distributed with $|R_X| = M < \infty$),
 - define the state-space $R_X = \{\xi_1, \xi_2, ..., \xi_M\}$ and
 - the events $A_i := \{X = \xi_i\} := \{\omega \in \Omega \mid X(\omega) = \xi_i\}$, which a.s. partition Ω ,
 - so that the (well-defined) Lebesque integral is

$$\int_{\Omega} X(\omega) dP(\omega) = \sum_{i=1}^{M} \xi_i P(A_i),$$

i.e., $P(A_i) = p_X(\xi_i)$ for all i.

Lebesgue integration (cont)

- To develop the general Lebesgue integral, we need to consider "extended" random variables $X:\Omega\to\overline{\mathbb{R}}$, where
 - the extended reals $\overline{\mathbb{R}}:=\mathbb{R}\cup\{\pm\infty\}$, and
 - measurability involves Borel sets that include $\pm \infty$.
- For any sequence $X_1, X_2, X_3, ...$ of random variables, the following are extended random variables:
 - $\lim_{n \to \infty} X_n$ (assuming the limit in n of $X_n(\omega)$ exists $\forall \omega \in \Omega$) and
 - $-\sup_{n\to\infty} X_n$.

⁽⁵⁾ December 26, 2019 George Kesidis _

Approximating random variables

- ullet Proposition: For any non-negative extended random variable X, there is a sequence of *simple* random variables X_n such that
- (a) $P(0 \le X_n \le X_{n+1} \le X) = 1$ for all n (i.e., monotonicity), and
- (b) $X_n \to X$ almost surely (a.s.), *i.e.*, almost sure convergence:

$$\mathsf{P}(\lim_{n\to\infty}X_n=X) = 1.$$

- Proof:
 - 1. Define the $n^{\rm th}$ partition of $\overline{\mathbb{R}^+}$ (i.e., of the y-axis unlike Riemannian integration) into a finite collection of contiguous intervals

$$\{[b_n^k, b_n^{k+1})\}_{k=0}^{K_n}$$
,

where $\forall n$: $b_n^0 = 0$, $b_n^{K_n+1} = \infty +$ (last interval includes ∞).

- 2. $\forall k$, define $X_n(\omega)=b_n^k \ \forall \omega \in X^{-1}[b_n^k,b_n^{k+1})$, i.e., $X_n \leq X$ a.s.
- 3. The $(n+1)^{\rm st}$ partition is finer than the $n^{\rm th}$ (i.e., $X_n \leq X_{n+1}$), in such a way that $\lim_{n\to\infty} K_n \uparrow \infty$ to achieve (b).

(5) December 26, 2019 George Kesidis ___

Construction of the Lebesgue integral

• So for a non-negative extended random variable, the Lebesgue integral is defined as

$$\int_{\Omega} X \ \mathrm{dP} \ = \ \lim_{n \to \infty} \int_{\Omega} X_n \ \mathrm{dP},$$

i.e., $\mathsf{E} X = \lim_{n \to \infty} \mathsf{E} X_n$.

- For a signed extended random variable:
 - 1. Note that $X=X^+-X^-$ where the *non-negative* extended random variables

$$X^+ := \max\{0, X\} \text{ and } X^- := \max\{0, -X\}.$$

2. If $\mathrm{E}X^+<\infty$ or $\mathrm{E}X^-<\infty,$ then define the Lebesgue integral

$$\mathsf{E} X = \mathsf{E} X^+ - \mathsf{E} X^-,$$

otherwise the Lebesgue integral $\mathrm{E}X$ is not defined. Note: $|X| = X^+ + X^-$.

• E.g., $1_{\mathbb{Q}^c}$ is Lebesgue but not Riemann integrable:

$$\int_0^1 \mathbf{1}_{\mathbb{Q}^c}(x) \mathrm{d}x \ = \ 1 \cdot \mathsf{P}(\mathbb{Q}^c \cap [0,1]) + 0 \cdot \mathsf{P}(\mathbb{Q} \cap [0,1]) \ = 1,$$

where here P is Lebesgue measure on $\Omega = [0,1]$, so that $P(\mathbb{Q} \cap [0,1]) = 0$ as the rationals are countable.

Integration theorems (1 variable integrand)

Consider a sequence $X_1, X_2, ...$ of random variables:

- Bounded convergence theorem: if $\sup_n |X_n| \leq K < \infty$ a.s. (where K is constant) and $X = \lim_{n \to \infty} X_n$ a.s., then $\mathsf{E} X = \lim_{n \to \infty} \mathsf{E} X_n$ and $\mathsf{E} |X| \leq K$.
- **Proof:** Define $A_n = \{X X_n > \varepsilon\}$ for arbitrary positive $\varepsilon \ll 1$ and note

$$\begin{aligned} |\mathsf{E}X_n - \mathsf{E}X| & \leq & \mathsf{E}|X_n - X| \\ & = & \mathsf{E}|X_n - X|\mathbf{1}_{A_n} + \mathsf{E}|X_n - X|\mathbf{1}_{A_n^c} \\ & \leq & 2K\mathsf{P}(A_n) + \varepsilon. \quad \Box \end{aligned}$$

Now note

$$(\liminf_{n\to\infty} X_n)(\omega) := \liminf_{n\to\infty} X_k(\omega)$$

always exists (though possibly not finite) since $Y_n := \inf_{k \ge n} X_k$ is a.s. monotonically nondecreasing in n.

- Fatou's lemma: $\liminf_{n\to\infty} \mathsf{E} X_n \geq \mathsf{E}(\liminf_{n\to\infty} X_n)$.
- Proof:
 - Let $X := \liminf_{n \to \infty} X_n$.
 - For any K > 0, invoke the bounded convergence theorem on $\min\{Y_n, K\} \uparrow \min\{X, K\}$.
 - Approximating with simple RVs and using monotonicity, $\lim_{K \to \infty} \mathsf{E} \min\{X, K\} = \mathsf{E} X.$

Integration theorems (cont)

Let X be the extended RV such that $X_n \to X$ a.s.

• Monotone convergence theorem: if $\lim_{n\to\infty} X_n \uparrow X$ a.s., then

$$\lim_{n\to\infty}\mathsf{E} X_n \ \uparrow \ \mathsf{E} X.$$

• Lebesgue's dominated convergence theorem: If there exists a random variable Y such that $|X| \leq |Y|$ a.s. and $\mathsf{E}|Y| < \infty$, then

$$\lim_{n\to\infty} \mathsf{E}|X-X_n| = 0.$$

• Corollary (Scheffe):

$$\lim_{n\to\infty} \mathsf{E}|X_n-X| = 0 \quad \Leftrightarrow \quad \lim_{n\to\infty} \mathsf{E}|X_n| = \mathsf{E}|X|$$

⁽⁵⁾ December 26, 2019 George Kesidis _

Conditional expected value and event-conditional distributions

Consider a random variable X and an event A such that P(A) > 0.

• The conditional expected value of X given A, denoted $\mu(X|A)$ is

$$\mu(X|A) = \int_{-\infty}^{\infty} x \mathrm{d}F_{X|A}(x), \quad \text{where} \quad F_{X|A}(z) := \mathrm{P}(X \leq z|A).$$

 \bullet For a discretely distributed random variable X with $R_X = \{a_j\}_{j=1}^\infty$,

$$\mu(X|A) = \sum_{j=1}^{\infty} a_j P(X = a_j|A).$$

- The conditional PMF of X given A is $p_{X|A}(a_j) = P(X = a_j|A)$ for all j.
- ullet Event-conditional PDF of a continuously distributed X is

$$f_{X|A}(x) := rac{\mathsf{d}}{\mathsf{d}x} F_{X|A}(x) \;\; \Rightarrow \;\; \mu(X|A) = \int_{-\infty}^{\infty} x f_{X|A}(x) \mathsf{d}x.$$

Conditional expectation

- ullet Consider now two discretely distributed X and Y.
- The conditional expectation of X given the random variable Y, denoted $\mathsf{E}(X|Y)$, is a random variable itself.
- Indeed, suppose $\{b_j\}_{j=1}^{\infty} = R_Y$ and, for all samples

$$\omega_j \in \{\omega \in \Omega \mid Y(\omega) = b_j\} =: B_j$$

define

$$\mathsf{E}(X|Y)(\omega_j) := \mu(X|B_j) := \mu(X|Y = b_j),$$

- That is, $\mathsf{E}(X|Y)$ maps all samples in the event B_j to the conditional expected value $\mu(X|B_j)$, *i.e.*, $\mathsf{E}(X|Y)$ is "smoother" (less uncertain) than X.
- Therefore, the random variable $\mathsf{E}(X|Y)$ is a.s. a function of Y, i.e., $\mathsf{E}(X|Y)$ is $\sigma(Y)$ -measurable.
- So, E(X|Y) = E(X|Z) a.s. whenever $\sigma(Z) = \sigma(Y)$ allowing for differences involving P-null events.

⁽⁵⁾ December 26, 2019 George Kesidis _

Conditional densities

Now consider two random variables X and Y which are continuously distributed with joint PDF

$$f_{X,Y} = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}.$$

• For $f_Y(y) > 0$, we can define the conditional density:

$$f_{X|Y}(x|y) := \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

for all $x \in \mathbb{R}$.

 \bullet Note that $f_{X|Y}(\cdot|y)$ is itself a PDF and,

$$\mu(X|Y=y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \mathrm{d}x, \quad \text{where} \quad \mathrm{P}(Y=y) = 0.$$

Conditional expectation and MSE

• In general, $\mathsf{E}(X|Y)$ is the function of Y which minimizes the mean-square error (MSE),

$$\mathsf{E}[(X - h(Y))^2],$$

among all (measurable) functions h.

- So, E(X|Y) is the best approximation of X given Y.
- \bullet In particular, $\mathsf{E}(X|Y)$ and X have the same expectation,

$$\mathsf{E}(\mathsf{E}(X|Y)) = \mathsf{E}X.$$

 \bullet Note: if X and Y are independent,

$$E(X|Y) = EX \text{ a.s.}$$

Some useful inequalities

- If event $A_1 \subset A_2$, then $P(A_1) \leq P(A_2) = P(A_1) + P(A_2 \setminus A_1)$.
- For any group of events $A_1, A_2, ..., A_n$, Boole's inequality holds:

$$P\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n P(A_i).$$

- ullet Note that when the A_i are disjoint, equality holds simply by the additivity property of a probability measure P and recall the inclusion-exclusion set identities.
- If two random variables X and Y are such that $X \geq Y$ a.s., then $\mathsf{E} X \geq \mathsf{E} Y$.
- Recall Fatou's lemma.

Markov's Inequality

- Consider a random variable X with $\mathrm{E}|X|<\infty$ and a real number x>0.
- Since $|X| \ge |X| \mathbf{1}\{|X| \ge x\} \ge x \mathbf{1}\{|X| \ge x\}$ a.s., we arrive at Markov's inequality:

$$\begin{array}{rcl} \mathsf{E}|X| & \geq & \mathsf{E}x\mathbf{1}\{|X| \geq x\} \\ & = & x\mathsf{E}\mathbf{1}\{|X| \geq x\} \\ & = & x\mathsf{P}(|X| \geq x). \end{array}$$

ullet An alternative explanation for continuously distributed random variables X (with PDF f) is

$$\begin{aligned} \mathsf{E}|X| &= \int_{-\infty}^{\infty} |z| f(z) \mathrm{d}z \\ &\geq \int_{-\infty}^{-x} (-z) f(z) \mathrm{d}z + \int_{x}^{\infty} z f(z) \mathrm{d}z \\ &\geq \int_{-\infty}^{-x} x f(z) \mathrm{d}z + \int_{x}^{\infty} x f(z) \mathrm{d}z \\ &= x \mathsf{P}(|X| > x). \end{aligned}$$

Chebyshev and Cramer's Inequalities

i.e.,

• Take $x = \varepsilon^2$, where $\varepsilon > 0$, and argue Markov's inequality with $(X - \mathsf{E} X)^2$ in place of |X| to get Chebyshev's inequality

$$\operatorname{var}(X) := E[(X - \operatorname{E}X)^2] \ge \varepsilon^2 P(|X - \operatorname{E}X| \ge \varepsilon),$$

$$P(|X - EX| \ge \varepsilon) \le \varepsilon^{-2} var(X).$$

• Noting that, for all $\theta > 0$, $\{X \ge x\} = \{e^{\theta X} \ge e^{\theta x}\}$ and arguing as for Markov's inequality gives the Chernoff (or Cramer) inequality:

$$\begin{split} & \mathsf{E}\mathsf{e}^{\theta X} & \geq & \mathsf{e}^{\theta x}\mathsf{P}(X \geq x) \\ \Rightarrow & \mathsf{P}(X \geq x) & \leq & \mathsf{exp}\left(-[x\theta - \mathsf{log}\,\mathsf{E}\mathsf{e}^{\theta X}]\right) \\ & \leq & \mathsf{exp}\left(-\max_{\theta > 0}[x\theta - \mathsf{log}\,\mathsf{E}\mathsf{e}^{\theta X}]\right), \end{split}$$

where we have simply sharpened the inequality by taking the maximum over the free parameter $\theta > 0$.

• Note the Legendre transform of the log moment-generating function of X in the Chernoff bound.

Inequalities of Minkowski, Holder, and Cauchy-Schwarz-Bunyakovsky

• Minkowski's inequality: if $E|X|^q$, $E|Y|^q < \infty$ for q > 1, then

$$(E|X + Y|^q)^{1/q} \le (E|X|^q)^{1/q} + (E|Y|^q)^{1/q},$$

i.e., triangle inequality in the L^q space of random variables.

 \bullet Holder's inequality: if ${\rm E}|X|^r, {\rm E}|Y|^q < \infty$ for r>1 and $q^{-1}:=1-r^{-1},$ then

$$E|XY| < (E|X|^r)^{1/r} (E|Y|^q)^{1/q}.$$

• CBS inequality (q = 2): if $EX^2, EY^2 < \infty$, then

$$E|XY| \leq \sqrt{E(X^2)}\sqrt{E(Y^2)}.$$

- CBS is strict whenever $X \neq cY$ or Y = 0 a.s. for some constant c.
- CBS is an immediate consequence of the fact that whenever $X \neq 0$ a.s. and $Y \neq 0$ a.s.,

$$\mathsf{E}\left(\frac{X}{\sqrt{\mathsf{E}(X^2)}} - \frac{Y}{\sqrt{\mathsf{E}(Y^2)}}\right)^2 \ \geq \ 0.$$

⁽⁵⁾ December 26, 2019 George Kesidis _

⁽⁵⁾ December 26, 2019 George Kesidis ___

Jensen's Inequality

• Note that if we take Y=1 a.s., the Cauchy-Schwarz-Bunyakovsky inequality simply states that $var(X) \ge 0$, *i.e.*,

$$\mathsf{E}(X^2) - (\mathsf{E}X)^2 \ \geq \ 0.$$

- This is also an immediate consequence of Jensen's inequality.
- A real-valued function g on $\mathbb R$ is said to be *convex* if $g(px+(1-p)y) \leq pg(x)+(1-p)g(y)$ for any $x,y\in\mathbb R$ and any real fraction $p\in[0,1]$.
- If the inequality is reversed, q is said to be *concave*.
- \bullet For any convex function g and random variable X, we have Jensen's inequality:

$$g(\mathsf{E}X) \leq \mathsf{E}(g(X)).$$

Inequalities: Conditioned versions

- These inequalities and integration theorems have straightforward "conditional" extensions.
- E.g., the conditional Jensen's theorem: if g is convex and $\mathcal{G} \subset \mathcal{F}$ is a σ -algebra,

$$E(g(X) \mid \mathcal{G}) \geq g(E(X \mid \mathcal{G}))$$

- Applying conditional Jensen's with $g(x) = |x|^q$ for real $q \ge 1$, and using the linearity of conditional expectation, we get the following result.
- If X and $X_1,X_2,X_3,...$ are random variables such that, for real $q\geq 1$, $\mathsf{E}|X|^q<1$ and $\mathsf{E}|X_n|^q<\infty$ (i.e., $X,X_n\in\mathsf{L}^q$) $\forall n$, then:
- (a) $||E(X \mid \mathcal{G})||_q \le ||X||_q := (E(|X|^q))^{1/q}$, and, therefore,
- (b) If $\lim_{n\to\infty}||X-X_n||_q=0$, *i.e.*, convergence in L^q , then $\lim_{n\to\infty}||\mathsf{E}(X\mid\mathcal{G})-\mathsf{E}(X_n\mid\mathcal{G})||_q=0.$

⁽⁵⁾ December 26, 2019 George Kesidis ___

Sums of independent random variables

- Consider two independent random variables X_1 and X_2 with PDFs f_1 and f_2 respectively; so, $f_{X_1,X_2} = f_1 f_2$.
- The CDF of the sum is

$$F(z) = P(X_1 + X_2 \le z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z - x_1} f_1(x_1) f_2(x_2) dx_2 dx_1.$$

• Exchanging the first integral on the RHS with a derivative w.r.t. z gives the PDF of $X_1 + X_2$:

$$f(z)=rac{\mathsf{d}}{\mathsf{d}z}F(z)=\int_{-\infty}^{\infty}f_1(x_1)f_2(z-x_1)\mathsf{d}x_1$$
 for all $z\in\mathbb{R}.$

• Thus, f is the *convolution* of f_1 and f_2 which is denoted $f = f_1 * f_2$.

Sums of independent random variables

- In this context, moment generating functions can be used to simplify calculations.
- Let the MGF (bilateral Laplace transform) of X_i be

$$m_i(\theta) = \mathsf{E}\mathsf{e}^{\theta X_i} = \int_{-\infty}^{\infty} f_i(x) \mathsf{e}^{\theta x} \mathsf{d}x.$$

• The MGF of $X_1 + X_2$ is, by independence,

$$m(\theta) = \mathsf{E} \mathsf{e}^{\theta(X_1 + X_2)} = \mathsf{E} \mathsf{e}^{\theta X_1} \mathsf{e}^{\theta X_2} = m_1(\theta) m_2(\theta).$$

• So, convolution of PDFs corresponds to simple multiplication of MGFs (and to addition of independent random variables).

Example: exponential and gamma distributions

Consider independent random variables that are all exponentially distributed with mean $1/\lambda$.

• The PDF of $X_1 + X_2$ is f, where f(z) = 0 for z < 0 and, for z > 0,

$$f(z) = \int_0^z f_1(x_1) f_2(z - x_1) dx_1 = \lambda^2 z e^{-\lambda z},$$

i.e., the (n, λ) gamma distribution with n = 2 (a.k.a. Erlang distribution when $n \in \mathbb{Z}^+$).

• So, the MGF of $X_1 + X_2$ is

$$m(\theta) = \left(\frac{\lambda}{\lambda - \theta}\right)^2,$$

which is consistent with the PDF just computed.

- There is a 1-to-1 relationship between PDFs and MGFs of nonnegative random variables (unilateral Laplace transform).
- \bullet So, for a sum of n random variables

$$m(\theta) = \left(\frac{\lambda}{\lambda - \theta}\right)^n \;\; \Leftrightarrow \;\; f_n(z) = \frac{\lambda^n z^{n-1} \mathrm{e}^{-\lambda z}}{(n-1)!} \; \forall z \geq 0.$$

 Note: Construction of continuous-time Markov chains is based on the memoryless property that is unique to the exponential distribution.

(5) December 26, 2019 George Kesidis _

The Gaussian distribution

Assume X_i is Gaussian (normally) distributed with mean μ_i and variance σ_i^2 , i.e., $X_i \sim N(\mu_i, \sigma_i^2)$.

• If independent RVs, the MGF of $X_1 + X_2$ is

$$m(\theta) = \exp(\mu_1 \theta + \frac{1}{2} \sigma_1^2 \theta^2) \times \exp(\mu_2 \theta + \frac{1}{2} \sigma_2^2 \theta^2)$$

= $\exp((\mu_1 + \mu_2)\theta + \frac{1}{2} (\sigma_1^2 + \sigma_2^2)\theta^2),$

which we also recognize as a Gaussian MGF.

- Even if dependent, $\alpha_1 X_1 + \alpha_2 X_2$, for scalars α_i , is Gaussian distributed with mean $\alpha_1 \mu_1 + \alpha_2 \mu_2$ and variance $\alpha_1^2 \sigma_1^2 + \alpha_2^2 \sigma_2^2 + 2\alpha_1 \alpha_2 \text{cov}(X_1, X_2)$, where the *covariance* $\text{cov}(X_1, X_2) := \text{E} X_1 X_2 \text{E} X_1 \text{E} X_2$.
- $\underline{X} = (X_1, X_2, ..., X_n)$ are jointly Gaussian if

$$f_{\underline{X}}(\underline{x}) = \frac{1}{[2\pi \det(\mathbf{C})]^{n/2}} \exp\left(-\frac{1}{2}(\underline{x} - \mathsf{E}\underline{X})^{\mathsf{T}}\mathbf{C}^{-1}(\underline{x} - \mathsf{E}\underline{X})\right),$$

where the (symmetric) covariance matrix is $C = E(X - EX)(X - EX)^{T}$.

- Note: $E(X_1 \mid X_2) = EX_1 + (X_2 EX_2)E(X_1X_2)/EX_2^2$ is a.s. *linear* in X_2 , and
- if X_1, X_2 are uncorrelated (diagonal covariance matrix), then Gaussian distributed with mean μ_i and variance σ_i^2 . X_1, X_2 are independent (the converse is always true).

(5) December 26, 2019 George Kesidis _____

de Moivre's formula

There is a constant $\beta > 0$ such that $n!e^n \sim \beta n^n \sqrt{n}$.

Proof:

- Define $B(n) = n!e^n/(n^n\sqrt{n})$.
- $\log B(n) = 1 + \sum_{j=2}^{n} [\log B(j) \log B(j-1)]$ where $1 = \log B(1)$.
- By Taylor's theorem,

$$\log(1-x) = -x - x^2/2 - x^3/3 + o(x^3)$$
 where $\lim_{y \to 0} \frac{o(y)}{y} = 0$.

So,

$$\log B(j) - \log B(j-1) = 1 + (j - \frac{1}{2}) \log(1 - \frac{1}{j})$$
$$= -\frac{1}{12j^2} + o(\frac{1}{j^2})$$

• Since j^{-2} is summable, B(n) converges to a finite β .

de Moivre-Laplace Central Limit Theorem (CLT)

• Consider a sequence of independent and identically distributed (i.i.d.) Bernoulli random variables $X_1, X_2, ...,$ where

$$p := P(X_i = 1)$$
 and $q := 1 - p = P(X_i = 0)$.

- Define the sum $S_n = X_1 + X_2 + ... + X_n$.
- S_n is binomially distributed with parameters (n, p), i.e.,

$$P(S_n = k) = \binom{n}{k} p^k q^{n-k}$$

for all $k \in \{0, 1, 2, ..., n\}$.

- $\mathsf{E}S_n = np$ and variance $\mathsf{var}(S_n) = \mathsf{E}S_n^2 (\mathsf{E}S_n)^2 = npq$.
- Thus $Y_n := (S_n np)/\sqrt{nqp}$ is centered (E $Y_n = 0$) and has unit variance $\text{var}(Y_n) = 1$ for all n.
- Theorem (de Moivre-Laplace CLT): If X_i are i.i.d. Bernoulli random variables, then Y_n defined above converges in distribution to a standard normal (Gaussian), *i.e.*,

$$\lim_{n\to\infty} \mathsf{P}(Y_n > y) = \Phi(y) := \int_y^\infty \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathrm{d}x$$

de Moivre-Laplace CLT: Proof

$$P(a < Y_n := \frac{S_n - np}{\sqrt{npq}} \le b)$$

$$= \sum_{\substack{np+a\sqrt{nqp} < k \le np+b\sqrt{nqp} \\ a\sqrt{nqp} < k' \le b\sqrt{nqp}}} \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{\substack{a\sqrt{nqp} < k' \le b\sqrt{nqp} \\ k' + np}} \binom{n}{k' + np} p^{k' + np} q^{nq - k'}$$

where the sums are over integers k,k'. Using de Moivre's formula to uniformly approximate $\binom{n}{k'+np}$ over k' as $n\to\infty$:

$$\begin{split} &\mathsf{P}(a < Y_n \leq b) \\ &\sim \frac{1}{\beta \sqrt{npq}} \sum_{a \sqrt{nqp} < k' \leq b \sqrt{nqp}} (1 + \frac{k'}{np})^{-k'-np} (1 - \frac{k'}{nq})^{-nq+k'} \\ &\sim \frac{1}{\beta \sqrt{npq}} \sum_{a \sqrt{nqp} < k' \leq b \sqrt{nqp}} \exp\left(-\frac{(k')^2}{2npq}\right) \\ &\to_{n \to \infty} \int_a^b \frac{\mathrm{e}^{-x^2/2}}{\beta} \mathrm{d}x \\ &= \frac{\sqrt{2\pi}}{\beta} (\Phi(a) - \Phi(b)) \end{split}$$

where the second step is $\log(1-x) = -x - x^2/2 + o(x^2)$ and the third is the Riemann integral.

Taking $-a, b \to \infty$, gives Wallis' identity: $\beta = \sqrt{2\pi}$.

Stirling's formula

de Moivre's formula with Wallis' identity gives Stirling's formula:

$$n!e^n \sim n^n\sqrt{2\pi n}$$
.

• In the following, we prove a more general sequential CLT.

(5) December 26, 2019 George Kesidis -

An i.i.d. CLT

Theorem: If $X_1, X_2, ...$ are i.i.d. with $E|X_1| < \infty$ and $0 < \sigma^2 := var(X_1) < \infty$, then

$$Y_n := \frac{S_n - n\mu}{\sigma\sqrt{n}} \rightarrow_d N(0, 1),$$

i.e., converges in distr'n to a standard normal. **Proof:**

- Taylor's thm: $e^{ix} = 1 + ix \frac{1}{2}x^2 + R(x)$ where $|R(x)| \le |x|^3$.
- For |x| > 4, $|R(x)| \le |e^{ix}| + 1 + |x| + \frac{1}{2}x^2 \le x^2$, $\Rightarrow |R(x)| \le \min\{|x|^3, x^2\}$.
- So, if $X \sim (X_1 \mathsf{E} X_1)/\sigma$ then the characteristic function of Y_n is $\mathsf{E} \mathsf{e}^{itY_n} = \left(\mathsf{E} \mathsf{e}^{itX/\sqrt{n}}\right)^n$

$$\Rightarrow \mathsf{E}\mathsf{e}^{itY_n} = \left(1 + i(\mathsf{E}\frac{tX}{\sqrt{n}}) - \frac{\mathsf{E}(tX)^2}{2n} + \mathsf{E}R(\frac{tX}{\sqrt{n}})\right)^n$$
$$= \left(1 - \frac{t^2}{2n} + \mathsf{E}R(\frac{tX}{\sqrt{n}})\right)^n,$$

where, by the dominated convergence theorem,

$$\begin{split} |\mathsf{E} R(tX/\sqrt{n})| & \leq n^{-1} \mathsf{E} \min \{ \frac{|tX|^3}{\sqrt{n}}, (tX)^2 \} = n^{-1} o(1). \\ \Rightarrow \lim_{n \to \infty} \mathsf{E} \mathsf{e}^{itY_n} & = \lim_{n \to \infty} (1 - t^2/(2n) + o(1)/n)^n = \mathsf{e}^{-t^2/2}. \quad \Box \end{split}$$

December 26, 2019 George Kesidis

Trotter's proof of the i.i.d. CLT Preliminaries

- Let C be the set of bounded uniformly continuous functions on \mathbb{R} , i.e., if $f \in C$ then $\forall \varepsilon > 0$, $\exists \delta > 0$ such that: $\forall x,y \in \mathbb{R}$, $|x-y| < \varepsilon \implies |f(x) f(y)| < \delta$.
- A transformation (function, operator) $T:C\to C$ is said to be *linear* if $T(af+bg)=aTf+bTg\ \forall f,g\in C$ and $\forall a,b\in\mathbb{R}$. Note that $\forall x\in\mathbb{R},\ (aTf+bTg)(x):=a(Tf)(x)+b(Tg)(x)$.
- Define the supremum norm $|| f || := \sup_{x \in \mathbb{R}} |f(x)|$.
- T is said to be a contraction operator if $||Tf|| \le ||f|| \forall f \in C$.
- ullet For a random variable X, define $T_X:C o C$ as

$$(T_X f)(y) := \mathsf{E} f(X+y) = \int_{-\infty}^{\infty} f(x+y) \mathsf{d} F_X(x) \quad y \in \mathbb{R}.$$

- Note: $f \in C \Rightarrow T_X f \in C$, T_X is a linear contraction, and $(T_X f)(0) = \mathsf{E} f(X)$.
- Note: $T_{X_1}T_{X_2} = T_{X_2}T_{X_1}$ (commutation), furthermore if X_1, X_2 are independent then (as characteristic functions)

$$T_{X_1+X_2} = T_{X_1}T_{X_2} = T_{X_2}T_{X_1},$$

c.f., Fubini's theorem.

- Define $C^2 = \{ f \in C \mid f', f'' \in C \}.$
- ① December 26, 2019 George Kesidis _

Trotter's proof of the i.i.d. CLT Preliminaries (cont)

Lemma 1: If $\lim_{n\to\infty} \mathsf{E} f(X_n) = \mathsf{E} f(X) \ \forall f\in C^2$, then $X_1,X_2,...$ converges in distribution to X.

Note: Hypothesis is satisfied if $||T_{X_n}f - T_Xf|| \to 0$.

Proof of Lemma 1:

- Consider any y at which F_X is continuous.
- Fix $\varepsilon > 0$ arbitrarily and take $\delta > 0$ small enough so that $F_X(y + \delta) F_X(y \delta) < \varepsilon$.
- Define $f, g \in C^2$ such that
 - (i) f(x) = 1 for $x \le y \delta$,
- (ii) g(x) = 1 for $x \le y$,
- (iii) f(x) = 0 for $x \ge y$, and
- (iv) g(x) = 0 for $x \ge y + \delta$;

so that 0 < f < g < 1 in particular.

• So, since $f(X) \le 1\{X \le y - \delta\}$ etc.,

$$F_X(y-\delta) \leq \mathsf{E} f(X) = \lim_{n \to \infty} \mathsf{E} f(X_n) \leq \liminf_{n \to \infty} F_{X_n}(y)$$

 $\leq \limsup_{n \to \infty} F_{X_n}(y) \leq \lim_{n \to \infty} \mathsf{E} g(X_n) = \mathsf{E} g(X) \leq F_X(y+\delta)$

where the equalities are by hypothesis.

• Since this holds $\forall \varepsilon > 0$, $\lim_{n \to \infty} F_{X_n}(y) = F_X(y)$.

(5) December 26, 2019 George Kesidis ____

Trotter's proof of the i.i.d. CLT Preliminaries (cont)

Lemma 2: If $A,B:C\to C$ are linear, contraction operators that commute, then $\parallel A^nf-B^nf\parallel\leq n\parallel Af-Bf\parallel \forall n\in\mathbb{Z}^+,f\in C.$ **Proof:**

Factor

$$A^n f - B^n f = \sum_{i=0}^{n-1} A^{n-i-1} (A-B) B^i f = \sum_{i=0}^{n-1} A^{n-i-1} B^i (A-B) f.$$

where the second equality is by commutativity.

ullet Now take norm of both sides, use the triangle inequality, and finally repeatedly use the contraction hypotheses. \Box

(5) December 26, 2019 George Kesidis _

Trotter's proof of the i.i.d. CLT Preliminaries (cont)

Lemma 3: If $\mathsf{E} X=0$ and $\mathsf{E} X^2=1$, then $\forall f\in C^2$ and $\forall \varepsilon>0$: $\exists N<\infty$ such that $\parallel T_{n^{-1/2}X}f-f-\frac{1}{2n}f" \parallel \leq \frac{\varepsilon}{n} \ \forall n\geq N.$ **Proof:**

- Fix y such that F_X is continuous at y.
- By Taylor's theorem, $\exists z(x) \in [y, y+x]$ such that $f(y+x) = f(y) + xf'(y) + \frac{1}{2}x^2f''(y) + \frac{1}{2}x^2[f''(z(x)) f''(y)].$
- By uniform continuity of f'' $(f \in C^2)$, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $|z(x) y| < \delta \implies |f''(z(x)) f''(y)| < \varepsilon$. Thus,

$$\begin{split} &(T_{n^{-1/2}X}f)(y) \\ &= \int f(y+n^{-1/2}x) \mathrm{d}F_X(x) \\ &= f(y) \int \mathrm{d}F_X(x) + \frac{1}{\sqrt{n}}f'(y) \int x \mathrm{d}F_X(x) + \frac{1}{2n}f''(y) \int x^2 \mathrm{d}F_X(x) \\ &+ \frac{1}{2n} \int [f''(z(n^{-1/2}x)) - f''(y)]x^2 \mathrm{d}F_X(x) \\ &= f(y) + \frac{1}{2n}f''(y) \\ &+ \frac{1}{2n} \left(\int_{|x| < \delta_1/n} + \int_{|x| > \delta_1/n} \right) [f''(z(n^{-1/2}x)) - f''(y)]x^2 \mathrm{d}F_X(x) \end{split}$$

Trotter's proof of the i.i.d. CLT Lemma 3's proof (cont)

- Now, $|x| < \delta \sqrt{n} \implies |z(n^{-1/2}x) y| \le |n^{-1/2}x| \le \delta$.
- Thus,

$$\left| \frac{1}{2n} \int_{|x| < \delta\sqrt{n}} [f''(z(n^{-1/2}x)) - f''(y)] x^2 dF_X(x) \right|$$

$$\leq \left| \frac{1}{2n} \int_{|x| < \delta\sqrt{n}} \varepsilon x^2 dF_X(x) \right|$$

$$\leq \frac{\varepsilon}{n}.$$

• Since $|f''(z) - f''(x)| \le 2 ||f''|| < \infty$ and $EX^2 < \infty$,

$$\begin{split} &\frac{1}{2n} \left| \int_{|x| \geq \delta \sqrt{n}} [f''(z(n^{-1/2}x)) - f''(y)] x^2 \mathrm{d}F_X(x) \right| \\ &\leq & \frac{1}{n} \parallel f'' \parallel \left| \int_{|x| \geq \delta \sqrt{n}} x^2 \mathrm{d}F_X(x) \right| \\ &\leq & \frac{\varepsilon}{n} \; \forall \; \mathrm{suff. \; large} \; n. \end{split}$$

• Finally, substitute the last two estimates into the expression for $(T_{n^{-1/2}X}f)(y)$ of the previous slide.

(5) December 26, 2019 George Kesidis .

(5) December 26, 2019 George Kesidis -

Trotter's proof of the i.i.d. CLT

Theorem: If $X_1, X_2, ...$ are i.i.d. with ${\sf E}|X_1| < \infty$ and $0 < {\sf E}X_1^2 < \infty$, then $n^{-1/2}S_n := n^{-1/2}(X_1 + ... + X_n) \to_d {\sf N}(\mu, \sigma^2)$ where $\mu := {\sf E}X_1$ and $\sigma^2 := {\sf var}(X_1)$. **Proof:**

• Let $Y \sim N(\mu, \sigma^2)$.

- By Lemma 1, theorem follows if $\lim_{n\to\infty} \|T_{n^{-1/2}S_n}f T_Yf\| = 0$.
- w.l.o.g., $\mu = 0$ and $\sigma^2 = 1$, *i.e.*, $Y \sim N(0,1)$ if we restate the theorem in terms of $(S_n n\mu)/(\sigma\sqrt{n})$.
- Since $Y \sim N(0,1)$, $T_Y = T^n_{n^{-1/2}Y}$ and, by IBP, $T^n_{n^{-1/2}Y}f = f + \frac{1}{2n}f$ ".
- \bullet Since the X_i are i.i.d., $T_{n^{-1/2}S_n}=T^n_{n^{-1/2}X_1}.$
- By Lemma 2,

$$\parallel T_{n^{-1/2}S_n}f - T_Yf \parallel \leq n \parallel T_{n^{-1/2}X_1}f - T_{n^{-1/2}Y}f \parallel .$$

• Applying Lemma 3 we get

$$||T_{n^{-1/2}X_1}f - T_{n^{-1/2}Y}f|| \le 2\varepsilon.$$

for all sufficiently large n.

Lindeberg's CLT for independent random variables

- Consider an independent sequence of random variables with $\mathsf{E} X_i = \mathsf{0} \ \forall i \ \mathsf{w.l.o.g.}$
- Let $\sigma_i^2 = \mathsf{E} X_i^2$, *i.e.*, they are not necessarily identically distributed.
- The CLT can be generalized to a sequence of random variables that assuming only their mutual independence under Lindeberg's condition:

$$\lim_{n\to\infty} s_n^{-2} \sum_{i=1}^n \int_{|x|\geq \delta s_n} x^2 \mathrm{d} F_{X_i}(x) \quad = \quad 0 \quad \forall \delta > 0,$$

where $s_n := \sqrt{\sum_{i=1}^n \sigma_i^2}$, *i.e.*, the X_i are not identically distributed (recall the last inequality of the proof of Lemma 3).

- A simple proof of Lindeberg's CLT follows that of Trotter's for the i.i.d. case [Trotter'59].
- Feller proved that Lindeberg's condition is necessary.

П

⁽⁵⁾ December 26, 2019 George Kesidis _

Modes of convergence

- A CLT involves convergence in distribution.
- This is the weakest class of convergence results, in which no limiting random variable need exist.
- $F_{Y_n}(y) \to F_Y(y) \ \forall y$ that are points of continuity of F_Y implies $Y_n \to Y$ in distr'n.
- In the following, we will see that convergence: in distr'n ← in prob. ← (a.s. or in L²).

Weak law of large numbers (WLLN): assumptions

- Assume random variables $X_1, X_2, X_3, ...$ are i.i.d.
- Also suppose that the common distribution has finite variance, *i.e.*, $\sigma^2 := \text{var}(X) := \text{E}(X \text{E}X)^2 < \infty$, where $X \sim X_i$ $\forall i$.
- Finally, suppose that the mean exists and is finite, i.e., $\mu := \mathsf{E} X < \infty$.
- Recall the sum $S_n := X_1 + X_2 + \cdots + X_n$ for $n \ge 1$, $\mathsf{E} S_n = n \mu$ and $\mathsf{var}(S_n) = n \sigma^2$.
- The quantity S_n/n is called the *empirical* mean of X after n samples and is an *unbiased* estimate of μ , *i.e.*,

$$\mathsf{E}\left(\frac{S_n}{n}\right) = \mu.$$

(5) December 26, 2019 George Kesidis _

(5) December 26, 2019 George Kesidis ____

A WLLN: Statement and Proof

Theorem: If $X_1, X_2, ...$ i.i.d. with $var(X_1) < \infty$,

$$\lim_{n\to\infty} \mathsf{P}\left(\left|\frac{S_n}{n} - \mu\right| \geq \varepsilon\right) \ = \ 0 \ \forall \varepsilon > 0.$$

• By Chebyshev's inequality,

$$P\left(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\right) \le \frac{\mathsf{var}(S_n/n)}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2}.$$

- Note: So, S_n/n is said to be a **weakly consistent** estimator of μ .
- Consequently, L² convergence, $E(Y_n Y)^2 \to 0$, implies weak convergence, $P(|Y_n Y| > \varepsilon) \to 0 \ \forall \varepsilon > 0$.
- Example: Discretely distributed $Y_n \to 0$ in probability but not in L^2 when:

$$\mathsf{P}(Y_n=-n)=\mathsf{P}(Y_n=n)=p_n=(1-\mathsf{P}(Y_n=0))/2$$
 such that $p_n\to 0$ as $n\to \infty$ but $n^2p_n\not\to 0$, e.g., $p_n=1/n$ for $n>1$ so that $\mathsf{E}Y_n^2=2n\not\to 0$.

 \bullet Example: $Y_n \to c$ (a constant) in probability $\Leftrightarrow Y_n \to c$ in distribution.

Strong Law of Large Numbers (SLLN)

• Again, a sequence of random variables $X_1, X_2, ...$ is said to **converge almost surely (a.s.)** to a random variable X if

$$P\left(\lim_{n\to\infty}X_n\neq X\right) = 0.$$

• Kolmogorov's strong LLN: if X_1, X_2, \ldots i.i.d. and $\mathrm{E}|X_1| < \infty$, then

$$\mathsf{P}\left(\lim_{n \to \infty} \frac{S_n}{n} = \mu\right) = 1 \quad \text{i.e.,} \quad \frac{S_n}{n} \to \mu := \mathsf{E} X_1 \text{ a.s.}$$

• Formally, the limit states that $\forall r \in \mathbb{Z}^+$, $\exists n$ such that $\forall k \geq n$: $|S_n/n - \mu| < 1/r$ a.s.; *i.e.*,

$$\mathsf{P}\left(\bigcap_{r=1}^{\infty}\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}\left\{|\frac{S_k}{k}-\mu|<\frac{1}{r}\right\}\right) \ = \ 1.$$

• But $P(\bigcap_{r=1}^{\infty} B_r) = 1 \Leftrightarrow P(B_r) = 1 \ \forall r$, so $S_n/n \to \mu$ a.s. if and only if

$$\mathsf{P}\left(\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty}\left\{|\frac{S_k}{k}-\mu|<\frac{1}{r}\right\}\right) \ = \ 1 \ \forall r.$$

SLLN statement (cont)

• Now fix $r \in \mathbb{Z}^+$ arbitrarily and let

$$A_k^c = \{ |S_k/k - \mu| < r^{-1} \}.$$

• The event

$$\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k^c$$

is denoted A_n^c almost always (a.a.), i.e.,

 $\omega \in A_n^c$ a.a. $\Leftrightarrow \exists n^*(\omega) \text{ such that } \omega \in A_n^c \ \forall n > n^*(\omega).$

- Note: $P(\bigcap_{k=n}^{\infty} A_k^c) \uparrow P(A_n^c \ a.a.)$.
- ullet Note: equivalently express above in terms of A_n where the event

$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

is denoted A_n infinitely often (i.o.) = $(A_n^c \text{ a.a.})^c$, i.e.,

 $\omega \in A_n$ i.o. $\Leftrightarrow \forall n \; \exists m > n \; \text{such that} \; \omega \in A_m^c$.

(5) December 26, 2019 George Kesidis -

SLLN and Borel-Cantelli Lemmas

So, $S_n/n \to \mu$ a.s. $\Leftrightarrow \mathsf{P}(A_n^c \text{ a.a.}) = 1 \Leftrightarrow \mathsf{P}(A_n \text{ i.o.}) = 0$ for all $r \in \mathbb{Z}^+$ where $A_n = \{|S_n/n - \mu| \ge r^{-1}\}.$

• First BC Lemma: Generally for events A_1, A_2, \ldots

$$\sum_{n=1}^{\infty} \mathsf{P}(A_n) < \infty \ \Rightarrow \ \mathsf{P}(A_n \text{ i.o.}) = 0.$$

• Proof:

$$\mathsf{P}(A_n \text{ i.o.}) \leq \mathsf{P}(\bigcup_{n=k}^{\infty} A_n) \ \ \forall k$$

 $< \mathsf{P}(A_k) + \mathsf{P}(A_{k+1}) + \cdots \rightarrow_k 0 \ \ \Box$

• **Second BC Lemma:** For *independent* events A_1, A_2, \ldots

$$\sum_{n=1}^{\infty} \mathsf{P}(A_n) = \infty \ \Rightarrow \ \mathsf{P}(A_n \text{ i.o.}) = 1.$$

• **Proof:** $\lim_{m\to\infty}\sum_{k=n}^m \mathsf{P}(A_k)=\infty$ implies

$$0 \leftarrow \mathrm{e}^{-\sum_{k=n}^{m} \mathsf{P}(A_k)} = \prod_{k=n}^{m} \mathrm{e}^{-\mathsf{P}(A_k)} \geq \prod_{k=n}^{m} (1 - \mathsf{P}(A_k)) = \mathsf{P}(\bigcap_{k=n}^{m} A_k^c)$$

where the equalities are by independence and $\mathrm{e}^{-x} \geq 1-x$ was used.

- Note: $P(A_n \text{ i.o.}) \in \{0,1\}$ by the "zero-one law".
- December 26, 2019 George Kesidis _

Kolmogorov's maximal inequality

If $X_1, X_2, ...$ are independent and $\mathsf{E} X_n^2 < \infty \ \forall n$,

$$\mathsf{P}(\max_{1 < k < n} |S_k - \mathsf{E}S_k| \ge \lambda) \ \le \ \frac{\mathsf{var}(S_k)}{\lambda^2} \ \forall n \ge 1, \lambda > 0.$$

Proof:

- W.I.o.g. assume $\mathsf{E} X_n = \mathsf{0} \ \forall n \ \Rightarrow \mathsf{E} S_n = \mathsf{0} \ \forall n. \ \mathsf{Fix} \ \lambda > \mathsf{0}.$
- Define disjoint $B_k = \{ |S_i| < \lambda \ \forall i < k, \ |S_k| \ge \lambda \}.$

$$\begin{split} \mathsf{E} S_n^2 & \geq \sum_{k=1}^n \mathsf{E} S_n^2 \mathbf{1}_{B_k} \\ & \geq \sum_{k=1}^n \mathsf{E} (2(S_n - S_k) S_k + S_k^2) \mathbf{1}_{B_k} \\ & = \sum_{k=1}^n [2 \mathsf{E} (S_n - S_k) \mathsf{E} S_k \mathbf{1}_{B_k} + \mathsf{E} S_k^2 \mathbf{1}_{B_k}] \\ & = \sum_{k=1}^n \mathsf{E} S_k^2 \mathbf{1}_{B_k} \end{split}$$

where the second-to-last inequality is by independence.

- Thus, $ES_n^2 \ge \lambda^2 \sum_{k=1}^n P(B_k) = \lambda^2 P(\bigcup_{k=1}^n B_k)$.
- Note how this generalizes Chebyshev's inequality.

(iii) December 26, 2019 George Kesidis _____

SLLN: proof of bounded second moment case

Assume $\mathrm{E}X_1^2<\infty$.

• Again, assume centered X_n w.l.o.g., and apply the maximal inequality with $\lambda=2^n\varepsilon$ and First BC Lemma to get that

$$P(\{\max_{1 \le k \le 2^n} |S_k| \le 2^n \varepsilon\} \text{ a.a.}) = 1 \ \forall \varepsilon > 0.$$

• Now, $\forall m$ such that $2^{n-1} < m \le 2^n$,

$$\max_{1 \leq k \leq 2^n} |S_k| \leq 2^n \varepsilon \quad \text{implies} \quad |S_m| \leq 2m \varepsilon$$

- This leads to $P(|S_m|/m \le 2\varepsilon \text{ a.a.}) = 1 \ \forall \varepsilon > 0.$
- Note: Kolmogorov's SLLN only requires $\mathrm{E}|X_1|<\infty$, *i.e.*, bounded first moment.

(5) December 26, 2019 George Kesidis _____

Weak and strong LLNs

- SLLN \Rightarrow WLLN since $P(A_n^c \text{ i.o.}) = 0 \Rightarrow P(A_n) \rightarrow 0$.
- Example of persistently shrinking pulse on $\Omega=[0,1]$ with P Lebesgue measure:
 - $\forall m \in \mathbb{Z}^+, k \in \{1, 2, \dots, m\}$, define

$$Y_{k+m(m-1)/2}(\omega) := 1\left\{\frac{k-m}{m} < \omega \le \frac{k}{m}\right\}.$$

- The random variables Y_n converge weakly but not strongly to zero because $P(\{Y_m > \varepsilon\} \ \text{i.o.}) = 1$ for all $\varepsilon = r^{-1} > 0$.
- **Theorem:** If $X_1, X_2, ...$ converges to X in probability then there is a *subsequence* $X_{n_1}, X_{n_2}, ...$ that converges to X a.s.

Uniform integrability: motivation

- Persistently shrinking pulse example *also* showed that convergence in L^q , for $q \ge 1$, does not generally imply convergence a.s.
- Example (Dirac/Heaviside impulse):
 - $-\Omega = [0,1]$ and P is Lebesgue measure.
 - $X_n(\omega) := n \mathbf{1}_{[0,\frac{1}{n}]} \ \forall n \ge 1.$
 - Clearly, $X_n \to 0$ a.s.
 - But, $EX_n = 1 \ \forall n > 1$.
- So, convergence a.s. (i.e., "pointwise") does not generally imply convergence in L^q either.
- Under what conditions does a.s. convergence imply convergence in L^q for $q \ge 1$?

Uniform integrability: preliminaries

Consider the probability space (Ω, \mathcal{F}, P) .

• Theorem: If ${\sf E}|X|<\infty$ then $\forall \varepsilon\in(0,\infty)\ \exists c(\varepsilon)\in[0,\infty)$ such that

$$\mathsf{E}(|X|\mathbf{1}_{\{|X|>c\}}) < \varepsilon \quad \forall c \in [c(\varepsilon), \infty).$$

Proof:

- Lebesgue integrals are uniformly continuous, i.e., $\exists \delta(\varepsilon) \in (0,\infty)$ such that $\mathsf{E} X 1_A < \varepsilon \ \forall A \in \mathcal{F}$ such that $\mathsf{P}(A) < \delta(\varepsilon)$ (exercise: prove by contradiction of the assumption that $\mathsf{E} |X| < \infty$).
- By Markov's inequality $P(|X| \ge c) \le c^{-1}E|X| \ \forall c \in (0, \infty)$.
- Since $\mathrm{E}|X|<\infty$, $\exists c(\varepsilon)\in(0,\infty)$ such that $\mathrm{P}(|X|\geq c)<\delta(\varepsilon)\ \forall c\in[c(\varepsilon),\infty).$
- Finally, take $A = \{X \ge c\}$ for $c \in (c(\varepsilon), \infty)$.

Uniform integrability: definition and sufficient conditions

• A collection of random variables $\mathcal C$ on $(\Omega, \mathcal F, \mathsf P)$ is **uniformly integrable** if: $\forall \varepsilon \in (0, \infty) \ \exists c(\varepsilon) \in [0, \infty)$ such that

$$\sup_{X \in \mathcal{C}} \mathsf{E}(X \mathbf{1}_{\{|X| \geq c\}}) \quad < \quad \varepsilon \quad \forall c \in [c(\varepsilon), \infty) \text{ and } \forall X \in \mathcal{C}.$$

- If $|X| \le Y$ a.s. $\forall X \in \mathcal{C}$ with $\mathsf{E} Y < \infty$, then \mathcal{C} is uniformly integrable (note that $\mathsf{E} X_n \mathbf{1}\{|X_n| > Y\} = 0$ and recall Lebesgue's dominated convergence theorem); the converse is not true.
- For uniformly integrable C, if $c \in [c(\varepsilon), \infty)$ then

$$\mathsf{E}|X| \ = \ \mathsf{E}|X|\mathbf{1}_{\{|X| < c\}} + \mathsf{E}|X|\mathbf{1}_{\{|X| \geq c\}} \ < \ c + \varepsilon \ \forall X \in \mathcal{C},$$

i.e., C is uniformly L^1 bounded; the converse is not true.

- If $C = \{X_0, X_1, ...\}$ such that $0 \le X_n \le X_{n+1} \ \forall n \in \mathbb{Z}^+$ (*i.e.*, an *increasing* sequence) and C is L^1 bounded, then by monotone convergence theorem, C is uniformly integrable.
- Theorem: If $X \in (\Omega, \mathcal{F}, \mathsf{P})$ and $\mathsf{E}|X| < \infty$ and $\{\mathcal{G}_{\lambda}, \ \lambda \in \Lambda\}$ is a collection of sub σ -algebras of \mathcal{F} , then $\{\mathsf{E}(X \mid \mathcal{G}_{\lambda}), \ \lambda \in \Lambda\}$ is uniformly integrable.

Proof: exercise.

⁽⁵⁾ December 26, 2019 George Kesidis _

December 26, 2019 George Kesidis ——

Uniform integrability: main theorem prelim

- Define the ramp $\theta_c(x)=x\mathbf{1}_{\{|x|< c\}}+c\mathbf{1}_{\{x\geq c\}}-c\mathbf{1}_{\{x\leq -c\}}.$
- Theorem: If $\mathcal C$ is uniformly integrable then $\forall \varepsilon \in (0,\infty)$ $\exists c(\varepsilon) \in [0,\infty)$ such that

$$E|X - \theta_c(X)| < \varepsilon \ \forall X \in \mathcal{C}, \ c \in [c(\varepsilon), \infty).$$

• **Proof:** Arbitrarily fix $c \in (0, \infty)$ and note that

$$|x - \theta_c(x)| = (x - c)^+ + (x + c)^- \quad \forall x \in \mathbb{R}$$

$$\Rightarrow \mathsf{E}(X - c)^+ = \mathsf{E}(X - c)\mathbf{1}_{\{X \ge c\}} \le \mathsf{E}|X|\mathbf{1}_{\{|X| \ge c\}}$$
and $\mathsf{E}(X + c)^- = -\mathsf{E}(X + c)\mathbf{1}_{\{X < -c\}} \le \mathsf{E}|X|\mathbf{1}_{\{|X| > c\}}.$

Swapping limits & expectation (integration)

Theorem: If (a) $\lim_{n\to\infty}X_n=X$ a.s. and (b) $\{X_0,X_1,...\}$ are uniformly integrable, then

$$\mathsf{E}|X| < \infty$$
 and $\lim_{n \to \infty} \mathsf{E}|X_n - X| = 0.$

Proof:

- By (b) and previous "uniformly L¹ boundedness" result, $\exists B < \infty$ such that $\mathsf{E}|X_n| < B \ \forall n \in \mathbb{Z}^+$.
- So, by (a) and Fatou's lemma,

$$\mathsf{E}|X| = \mathsf{E}\liminf_{n\to\infty} |X_n| \le \liminf_{n\to\infty} \mathsf{E}|X_n| < B.$$

• To get L¹ convergence of X_n to X, arbitrarily fix $\varepsilon \in (0, \infty)$. By the previous "ramp" result and (b), $\exists c(\varepsilon) \in (0, \infty)$ such that, $\forall c \in (c(\varepsilon), \infty), n \in \mathbb{Z}^+$,

$$\mathsf{E}|X_n - \theta_c(X_n)| < \varepsilon/3$$
 and $\mathsf{E}|X - \theta_c(X)| < \varepsilon/3$.

• Fix $c \in (c(\varepsilon), \infty)$. Since θ_c is continuous and bounded in magnitude by c, by the dominated convergence theorem, $\exists N(\varepsilon) \in \mathbb{Z}^+$ such that

$$\mathsf{E}|\theta_c(X_n) - \theta_c(X)| < \varepsilon/3 \ \forall n \geq N(\varepsilon).$$

• By these three " $\varepsilon/3$ " inequalities and the triangle inequality,

$$|\mathsf{E}|X - X_n| \leq |\mathsf{E}|X_n - \theta_c(X_n)| + |\mathsf{E}|X - \theta_c(X)| + |\mathsf{E}|\theta_c(X_n) - \theta_c(X)|$$

$$< \varepsilon. \quad \square$$

(5) December 26, 2019 George Kesidis _____

⁽⁵⁾ December 26, 2019 George Kesidis -

Completeness of L^q

- **Definition**: $L^q(\Omega, \mathcal{F}, P)$, or just L^q , is the set of random variables X on (Ω, \mathcal{F}, P) such that $||X||_q := (E(|X|^q))^{1/q} < \infty$.
- **Definition**: $X_1, X_2, ...$ is said to be a **Cauchy sequence** in L^q if $\forall \varepsilon > 0$ $\exists N_\varepsilon$ such that $||X_n X_m||_q < \varepsilon$ whenever $n, m > N_\varepsilon$.
- Definition: A set is said to be complete if all of its Cauchy sequences converge to an element inside it.
- For $q \ge 1$, $||\cdot||_q$ is a **norm** by Minkowski's inequality, $||X+Y||_q \le ||X||_q + ||Y||_q$, so that L^q is a (complete) **Banach space**.
- To show that L^q is complete:
 - Consider a Cauchy sequence $X_1, X_2, ...$ in L^q.
 - Let $N^*(\varepsilon):=\inf\{N_\xi\mid \xi\leq \varepsilon\}$ and define $X^*=X_{N^*(\varepsilon)}$; so, by Minkowski's inequality, $\forall n\geq N^*$,

$$||X_n||_q \leq ||X^*||_q + ||X_n - X^*||_q \leq ||X^*||_q + \varepsilon,$$
 i.e., the sequence $\{X_n, n > N^*\}$ is bounded in \mathbf{L}^q .

- Then, one can show that a subsequence X_{n_k} a.s. converges to a (measurable) random variable X (use the completeness of \mathbb{R} and argue by contradiction).
- So by Fatou's lemma, $||X||_q^q < \infty$, i.e., $X \in \mathsf{L}^q$.
- Finally, use Fatou's lemma on $||X-X_n||_q^q$ to establish L^q -convergence to X.

Caratheodory's extension theorem

- Theorem: If A is an algebra on Ω and P is countably additive on A, then there exists P̄ on σ(A) such that P = P̄ on A.
- In addition, if $\exists \ \Omega_1 \subset \Omega_2 \subset \Omega_3... \in \mathcal{A}$ such that $\Omega_n \uparrow \Omega$, then the extension $\bar{\mathsf{P}}$ is unique.
- On \mathbb{R} , Caratheodory's theorem extends a countably additive probability measure on the algebra \mathcal{A} containing all intervals and their finite unions, to a σ -field that is a strict subset of $2^{\mathbb{R}}$ but contains $\mathcal{B} = \sigma(\mathcal{A})$.

⁽⁵⁾ December 26, 2019 George Kesidis ______

Product probability spaces

- Consider two probability spaces $(\Omega_i, \mathcal{F}_i, P_i)$, i = 1, 2.
- Define the product sample space

$$\Omega := \Omega_1 \times \Omega_2 := \{(\omega_1, \omega_2) \mid \omega_i \in \Omega_i, \ i = 1, 2\}$$

• Note that $A_0 := \{A_1 \times A_2 \mid A_i \in \mathcal{F}_i, i = 1, 2\}$ is closed under intersections but *not* under finite unions, *e.g.*, cannot express

$$(A_1\times A_2)\cup (B_1\times B_2)\quad \text{ as } \ C_1\cup C_2$$
 where $A_i,B_i,C_i\in \mathcal{F}_i.$

- So, add all finite disjoint unions of elements of \mathcal{A}_0 to \mathcal{A}_0 and call the result \mathcal{A} , an algebra.
- Denote $\mathcal{F}_1 \times \mathcal{F}_2 = \sigma(\mathcal{A})$.

Product probability space extension

Theorem: There exists a unique P such that

- (a) $P(A_1 \times A_2) = P_1(A_1)P_2(A_2) \ \forall A_1 \times A_2 \in \mathcal{A}_0$, and uniquely extending P to \mathcal{A} with finite unions, and
- (b) $(\Omega = \Omega_1 \times \Omega_2, \mathcal{F} = \sigma(\mathcal{A}), P)$ is a probability space.

Proof:

• Sections of measurable sets are measurable, where a section of $A \subset \Omega$ along ω_2 is

$$A_{\omega_2} := \{ \omega_1 \in \Omega_1 \mid (\omega_1, \omega_2) \in A \} \text{ for } \omega_2 \in \Omega_2,$$
 because $\forall \omega_2 \in \Omega_2$, $\mathcal{M} := \{ A \in \mathcal{F} \mid A_{\omega_2} \in \mathcal{F}_1 \}$ is a monotone class $\Rightarrow \mathcal{M} = \mathcal{F}$.

- $A = A_1 \times A_2 \in \mathcal{A}_0 \Rightarrow A_{\omega_2} = A_1 \text{ if } \omega_2 \in A_2 \text{ otherwise } A_{\omega_2} = \emptyset \Rightarrow$ $\mathsf{P}_1(A_{\omega_2}) = \mathsf{P}_1(A_1) \mathbf{1}_{A_2}(\omega_2) \Rightarrow \mathsf{P}(A) = \int \mathsf{P}_1(A_{\omega_2}) \mathsf{d} \mathsf{P}_2(\omega_2),$ where $\mathsf{P}_1(A_{\omega_2})$ is a $(\Omega_2, \mathcal{F}_2, \mathsf{P}_2)$ random variable.
- Such disintegration extends to $A \in \mathcal{A}$ by finite additivity and P is countably additive on \mathcal{A} by dominated convergence.
- ullet So, P (and disintegration) extend uniquely to ${\mathcal F}$ by Caratheodory.

December 26, 2019 George Kesidis _______

Fubini-Tonelli Theorem

• Theorem: If

- (i) $X: \Omega = \Omega_1 \times \Omega_2 \to \mathbb{R}$ is $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ measurable and,
- (ii) $\omega_{3-i} \to \int X(\underline{\omega}) dP(\omega_i)$ is a.s. finite and \mathcal{F}_{3-i} -measurable $\forall i \in \{1,2\}$,

then

$$\mathsf{E} X := \int X \mathsf{d} \mathsf{P} = \int \left(\int X \mathsf{d} \mathsf{P}_1 \right) \mathsf{d} \mathsf{P}_2 = \int \left(\int X \mathsf{d} \mathsf{P}_2 \right) \mathsf{d} \mathsf{P}_1.$$

Proof:

- By disintegration, $\int X dP_i$ are \mathcal{F}_{3-i} -measurable and the theorem holds for $f = \mathbf{1}_A$, $A \in \mathcal{F}$.
- Extend to simple functions and take limits via dominated convergence to prove for the case where $E|X|<\infty$. \square
- Considering hypothesis (ii), recall how absolute summability of a sequence implies its (unique) summability in any order.

Consistency of Probability Measures

- Consider the product space $(\mathbb{R}^{\mathbb{Z}^+},\mathcal{B}^{\mathbb{Z}^+})=:(\mathbb{R}^{\infty},\mathcal{B}^{\infty})$, where $\mathbb{Z}^+:=\{0,1,2,3,...\}.$
- Again, underlying probability space (Ω, \mathcal{F}, P) .
- A cylinder event $A \in \mathcal{B}^{\infty}$ is of the form

$$A = A_0 \times A_1 \times A_2 \times \dots$$

where all but a finite number of $A_i = \Omega$, *i.e.*, there is a finite index $I_A \subset \mathbb{Z}^+$ such that $A_i = \mathbb{R} \ \forall i \not\in I_A$.

• A family of probability measures $\{\mathsf{P}^n\}_{n\in\mathbb{Z}^+}$, P_n on $(\mathbb{R}^n,\mathcal{B}^n)$, is said to be *consistent* if

$$\mathsf{P}^n(A_0 \times A_1 \times \dots A_{n-1}) = \mathsf{P}^{n+1}(A_0 \times A_1 \times \dots A_{n-1} \times \mathbb{R})$$
 for all cylinder sets $A_0 \times A_1 \times \dots A_{n-1}$.

⁽⁵⁾ December 26, 2019 George Kesidis _

Kolmogorov's Extension Theorem

For each consistent family of probability measures P^n on $(\mathbb{R}^n,\mathcal{B}^n)$, $\exists !$ consistent P^∞ on $(\mathbb{R}^\infty,\mathcal{B}^\infty)$.

• Clearly, require that

$$\mathsf{P}^{\infty}(A) = \mathsf{P}^{n}(A_0 \times A_1 \times ... \times A_{n-1})$$

for all cylinder sets $A = A_0 \times A_1 \times ...$ and all $n \in \mathbb{Z}^+$.

- Since P^{∞} is specified for all cylinder sets, P^{∞} is unique on the algebra generated by them and, by the monotone class theorem, unique on \mathcal{B}^{∞} too.
- For existence:
 - Let \mathcal{A} be the set of finite unions of cylinder sets, including \emptyset , so that $\sigma(\mathcal{A}) = \mathcal{B}^{\infty}$.
 - Show P^{∞} is finitely additive on $\mathcal A$ and apply Caratheodory's extension theorem.

Consistency and FDDs

• Consider a discrete-time/parameter stochastic process

$$X := \{X_t \mid t \in \mathbb{Z}^+\}$$

where each X_t is itself a random variable.

• Let $F_{t_1,t_2,...,t_n}$ be the joint CDF of $X_{t_1},X_{t_2},...,X_{t_n}$ for some finite n and different $t_k \in \mathbb{Z}^+$ for all $k \in \{1,2,...,n\}$, *i.e.*,

$$F_{t_1,...,t_n}(x_1,...,x_n) = P(X_{t_1} \le x_1,...,X_{t_n} \le x_n),$$

where P is the underlying probability measure.

• This is called an n-dimensional distribution of X.

(5) December 26, 2019 George Kesidis ____

(iii) December 26, 2019 George Kesidis ____

KET and Consistent FDDs

- A family of such joint CDFs is called a set of *finite-dimensional distributions* (FDDs).
- The FDDs are *consistent* if one can marginalize (reduce the dimension) of one and obtain another, *e.g.*,

$$F_{t_1,t_4}(x_1,x_4) := F_{t_1,t_2,t_3,t_4}(x_1,\infty,\infty,x_4).$$

then using KET one can prove $\exists !$ a discrete-time *stochastic* process X on \mathbb{R}^{∞} (with distribution P^{∞}), *i.e.*,

$$dP^n := dF_{0,1,\dots,n-1}$$
 and $dP^{\infty} := dF_{\mathbb{Z}^+}$

- Samples ω of the underlying probability space space are actually sample paths of the stochastic process, i.e., $X_t(\omega)$.
- KET can be extended to *continuous-time* stochastic processes, *i.e.*, sample paths in $X_t(\omega) \in \mathbb{R}^{\mathbb{R}^+}$ instead of $\in \mathbb{R}^{\mathbb{Z}^+}$.
- In the following, we will focus on the *underlying* probability space Ω and the σ -algebras $\sigma(X_s \mid s \leq t)$ for $t \in \mathbb{R}^+ = [0, \infty)$, *i.e.*, in continuous-time...

Uncountable products

Suppose I is an <u>un</u>countably infinite index set and $\forall t \in I$: (Ω, \mathcal{F}_t) is a sample space and σ -algebra of events.

- Theorem: If $A \in \sigma(\mathcal{F}_t, t \in I) =: \mathcal{G}_I$, then there is some countable $J \subset I$ (depending on A) such that $A \in \mathcal{G}_J$. Proof:
 - Define $\mathcal{H} = \{ A \in \mathcal{G}_I \mid \exists \text{ countable } J \subset I \text{ s.t. } A \in \mathcal{G}_J \}.$
 - Clearly, $\Omega \in \mathcal{H}$ and \mathcal{H} is closed under countable unions so that \mathcal{H} is a σ -algebra.
 - Finally since $\mathcal{F}_t \subset \mathcal{H} \ \forall t \in I, \ \mathcal{H} = \mathcal{G}_I$.
- Corollary: If $Y:\Omega\to \overline{\mathbb{R}}$ is \mathcal{G}_I -measurable, then \exists a countable $J\subset I$ such that Y is \mathcal{G}_J -measurable. Proof:
 - Use previous theorem if $Y = \mathbf{1}_A$ and easily extended to simple (discretely distributed) Y.
 - Extend to any (measurable) random variable Y by approximating with simple functions. \square
- For the special case where $\mathcal{G}_{[}0,t]=\sigma(X_{s}\mid s\leq t)$, i.e., $\mathcal{F}_{t}=\sigma(X_{t})$ for random variables X_{t} : if Y is \mathcal{F}_{t} -measurable then \exists countable $\{t_{0},t_{1},...\}\subset[0,t]$ and a $\mathcal{B}^{\mathbb{Z}^{+}}$ -measurable mapping Ψ such that

$$Y = \Psi(X_{t_0}, X_{t_1}, ...)$$
 a.s.

Recall Doob's theorem.

(5) December 26, 2019 George Kesidis __

⁽⁵⁾ December 26, 2019 George Kesidis _