Época Normal

Universidade de Aveiro Dep. de Eletrónica, Telecomunicações e Informática Exame de Introdução aos Sistemas Digitais

15-01-2014

Notas Importantes!

•	Duração: 2h30m. Durante a realização do teste não é permitida a permanência na sala
	de calculadoras, telemóveis ou outros dispositivos eletrónicos.

• Responda na folha do teste. Escreva nome e Nº. mec. em todas as folhas.

Nº mec:	Nome						
1 [5 ualoned Done	anda avantão muon.	osto evistam evista	questão	а	b	С	d
1. [5 valores] Para			1.1				
alternativas de respos			1.2				
escolher marcando '>			1.3				
lado. No caso de se	•	•	1.4				
círculo a cheio sobre	,	1 0	1.5				
valores. Questões na	*	1.6					
errada (ou de resposta	1.7						
limite mínimo de 0 valores no cômputo geral desta parte.			1.8				
			1.9				-
1 1 A mamma amta a 2 a d	a mámana 157 am ha	na 10 4.	1.10				
1.1 A representação d	o numero 1578 em ba						
a) 157		c) 751					
b) 111		d) nenhuma das	anteriores				
1.2. A representação o	do número 27 ₁₀ em ba	ase 2 com 8 bits é:					
a) 00011011		c) 00000111					
b) 11011000		d) nenhuma das	anteriores				
1.3. A representação o	lo número 0 6273° er	n hase 16 é·					
a) 0.6273	10 Hamero 0.02736 CI	c) 0.DCC					
b) 0.C4E6		d) nenhuma das	anteriores				
0) 0.C+L0		d) nemiuma das	anteriores				
1.4. Considere os núr	neros binários A=11	0 e B=111. Verifica-se	a relação	A>B	se o	cód	igo
de representação for:							
a) complemento para	2 com 3 bits	c) sinal e módu	lo com 3 bi	ts			
b) complemento para	1 com 3 bits	d) sem sinal con	m 3 bits				
1.5. Considere os nú	meros A=1010 (rep	resentação em complen	nento para	2 cc	om 4	bits	s) e
B=11111010 (represe	ntação em compleme	ento para 2 com 8 bits).	Pode-se afi	rmar	que:		
a) $A = B$		c) A < B					
b) A < B		d) é impossível	comparar o	s nú	merc	S	
1.6. Considere a pala é:	vra 1111 (em código	AIKEN). A sua repres	sentação no	cód	igo I	3CD	842
a) 1111		c) 0011					
b) 1001		d) impossível					
0) 1001		u) impossivei					
1.7. A palavra 1011 e	m código binário nat	ural corresponde, em có	digo de Gra	ay, a			
a) 1100		c) 1110					
b) 1011		d) nenhuma das	anteriores				
1.8. O código de Ham		_					
a) detetar, mas não co		c) detetar até 2		igir a	até 1	erro	
b) detetar e corrigir 2	erros	d) detetar 3 erro	os				

1.9. No sistema de representação em complemento para 1 com 4 *bits*, a soma aritmética de 0100 e 1100 é:

a) 1000 c) 0001

b) 0000 d) nenhuma das opções anteriores

1.10. No sistema de representação em complemento para 2 com 4 bits, a soma aritmética de 0100 e 1100 é:

a) 1000 c) 0001

b) 0000 d) nenhuma das opções anteriores

2. [3 valores] Pretende-se implementar a função $k(a,b,c) = (a+c) \cdot (\overline{b}+c) \cdot (b+\overline{c})$ recorrendo apenas a multiplexers 2:1 (vide bloco mux21 representado na questão 3). Comece por construir a tabela de verdade e depois desenhe o circuito explicitando todas as ligações. Admita que dispõe dos complementos das variáveis de entrada e das constantes 0 e 1. Use o número mínimo possível de multiplexers. Não pode usar outros componentes.

Nº mec: _____ Nome_

3. [2 valores] O circuito da figura seguinte contém um descodificador binário 3:8, um multiplexer 2:1 e uma porta OR de quatro entradas e deve implementar a função $f(a,b,c,d) = a \oplus b \oplus c \oplus d$. As entradas a,b,c e d já estão ligadas, bem como a saída f. Complete o circuito (na própria figura), adicionando as ligações que faltam. Em termos de componentes adicionais, só pode usar portas lógicas NOT. <u>Justifique</u> a sua solução.

4. [2 valores] Pretende-se projetar um circuito que processe o operando A, representado no sistema 'complemento para dois' com 3 bits (A2A1A0), e realize a operação seguinte:

R3

R2

R1

R0

OF

$$R = \begin{cases} (A^2), se \ A \ge 0 \\ -(A^2), se \ A < 0 \end{cases}$$

O resultado R(R3R2R1R0) também é representado no sistema 'complemento para dois' (com 4 bits). A saída adicional (OF) destina-se a assinalar *overflow*.

Construa apenas a tabela de verdade do bloco em causa; em caso de *overflow*, considere irrelevante o estado das saídas R3, R2, R1 e R0.

- 5. A tabela de verdade especifica as funções f(a,b,c,d) e g(a,b,c,d).
- **5.1.** [l valor] Usando o método de Karnaugh, encontre a representação mínima da função f(a,b,c,d) na forma de soma de produtos, aproveitando o melhor possível as situações de irrelevância.

а	b	С	d	f	g
0	0	0	0	Х	1
0	0	0	1	Х	0
0	0	1	0	1	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	0	Х	0
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	Х	1
1	1	0	0	Х	0
1	1	0	1	Х	1
1	1	1	0	Х	0
1	1	1	1	1	1

5.2. [1 valor] Indique as expressões algébricas de todos os <u>implicantes primos essenciais</u> da função g(a,b,c,d).

Nº mec: _____ Nome__

6. Considere o circuito sequencial síncrono da figura, baseado em *flip-flops* do tipo D.

6.1. [2 valores] Analise-o, apresentando em detalhe <u>todos os passos</u> seguidos e desenhe o diagrama de estados/saídas.

6.2. [1 valor] Os flip-flops que compõem o circuito têm as caraterísticas temporais seguintes: t_{setup} =15 ns, t_{hold} =5 ns, t_{pHL} =25 ns, t_{pLH} =20 ns; o tempo de atraso de uma porta lógica elementar é t_{porta} = 10 ns. Nestas condições, determine a frequência máxima de funcionamento do circuito. <u>Justifique</u> a sua conta e não esqueça as unidades.

7. Observe o circuito seguinte, baseado num registo de 4 bits e um somador iterativo de 4 bits.

7.1. [1 valor] Determine a sequência de contagem que poderá ser observada nas saídas Q3Q2Q1Q0. <u>Justifique</u>.

7.2. [1 valor] Assumindo que o somador é do tipo ripple-carry, calcule o tempo de atraso máximo de cada etapa elementar de soma para que o circuito possa funcionar a 10 MHz. Admita que $t_{setup} = t_{hold} = 5$ ns e $t_{pHL} = t_{pLH} = 15$ ns.

8. [*1 valor*] Analise o diagrama temporal seguinte que ilustra o comportamento no tempo de uma máquina sequencial síncrona com uma entrada, *x*, e uma saída, *y*. O estado da máquina é representado pelo sinal *Q*. Indique, <u>justificando</u>, o tipo da máquina.

