

Прикладная статистика и анализ данных _{Съезд IX}

Комбинации критериев

$$X = (X_1, ..., X_n), Y = (Y_1, ..., Y_n)$$
 — выборки.

Являются ли они нормальными или нет, однородными или нет?

 H_1 : выборка X нормальна

 H_2 : выборка Y нормальна

 H_3 : выборки однородны: $X_i \stackrel{d}{=} Y_i$

Условие: $FWER \leqslant \alpha$

Идея:

- 1. Применяем критерии нормальности.
- Если нормальность X и Y не отвергнута
 → Критерии однородности для нормальных;

 Если нормальность X или Y отвергнута
 - Критерии однородности непараметрические.

Идея:

- 1. Применяем критерии нормальности.
- 2. Если нормальность Х и Ү не отвергнута
 - \longrightarrow Критерии однородности для нормальных;

Eсли нормальность X или Y отвергнута

— Критерии однородности непараметрические.

Реализация:

- 1. МПГ(критерии нормальности для каждой выборки; критерии однородности, требующие нормальность). Метод Холма, ур. значимости α .
- 2. Если нормальность X и Y не отвергнута \longrightarrow Выдаем ответ; Если нормальность X или Y отвергнута \longrightarrow Не смотрим на те критерии однор., делаем другую МПГ: МПГ(непараметрические критерии однородности) Метод Холма, ур. значимости α .

Утверждение. Процедура обеспечивает $FWER\leqslant \alpha$ почти всегда.

Разберем случаи. Серые области — невозможные.

Утверждение. Процедура обеспечивает $FWER\leqslant \alpha$ почти всегда.

Разберем случаи. Серые области — невозможные.

Пусть верны H_1 или H_2 или $H_1 \& H_2$.

Соответствующие критерии в одной процедуре.

 \Longrightarrow отклоняет в $\leqslant \alpha$ случаев независимо от критериев однор..

Анализ

Утверждение. Процедура обеспечивает $FWER\leqslant \alpha$ почти всегда.

Разберем случаи. Серые области — невозможные.

Пусть верны $H_1 \& H_2 \& H_3$.

Ошибка происходит \Leftrightarrow что-либо отклоняется в первой процедуре, что происходит с вероятностью $\leqslant \alpha.$

Вторая процедура работает только внутри этого множества.

Анализ

Утверждение. Процедура обеспечивает $FWER\leqslant \alpha$ почти всегда.

Разберем случаи. Серые области — невозможные.

Пусть верна H_3 .

Если H_1 или H_2 отвергаются (в чем нет ошибки), то переходим во вторую процедуру, где можем совершить ошибку с вер-тью $\leqslant \alpha$. Иначе смотрим на критерии однор. при неверных предположениях. Но если H_1 и H_2 не отвергаются, то данные обладают свойствами, похожими на нормальность. Обычно, именно это требуют критерии.

Сравнение интенсивностей событий

Пуассоновское распределение

$$Pois(\lambda): p(x) = \frac{\lambda^x}{x!}e^{-\lambda}, x \in \mathbb{Z}_+$$

Смысл: число событий,

произошедших за единицу времени

Условия:

- 1. события происходят с фиксированной интенсивностью λ .
- 2. независимо друг от друга.

Утверждение: время между двумя событиями имеет распр. $Exp(\lambda)$ (см. пуассоновские случайные процессы)

Примеры:

- 1. число клиентов в час
- 2. число запросов на сервер за минуту

Интенсивность не постоянна, может зависеть от каких-то факторов.

Независимые экспоненциальные выборки

$$X = (X_1, ..., X_n) \sim Exp(\lambda_1)$$

$$Y = (Y_1, ..., Y_n) \sim Exp(\lambda_1)$$

$$Y = (Y_1, ..., Y_m) \sim Exp(\lambda_2)$$

$$\mathsf{H}_0$$
: $\lambda_1 = \lambda_2$ vs. H_1 : $\lambda_1 \ \{<, \neq, >\} \ \lambda_2$

Статистика критерия: $F(X,Y)=\overline{X}\left/\overline{Y}\right.\sim F_{2n,2m}$ при $\mathsf{H}_0.$

- 1. $H_1: \lambda_1 \neq \lambda_2 \Longrightarrow S = \{F(x,y) < F_{2n,2m,\alpha/2}\} \cup \{F(x,y) > F_{2n,2m,1-\alpha/2}\}$
- 2. $H_1: \lambda_1 > \lambda_2 \Longrightarrow S = \{F(x, y) < F_{2n, 2m, \alpha}\}$
- 3. $H_1: \lambda_1 < \lambda_2 \Longrightarrow S = \{F(x, y) > F_{2n, 2m, 1-\alpha}\}$

Доказательство:

$$\sum_{i=1}^{n} X_i \sim \Gamma(\lambda_1, n) \Longrightarrow 2\lambda_1 \sum_{i=1}^{n} X_i \sim \Gamma(1/2, n) = \chi_{2n}^2$$

$$\overline{X}/\overline{Y} \stackrel{\mathsf{H_0}}{=} \frac{2\lambda_1 \sum_{i=1}^{n} X_i/2n}{2\lambda_2 \sum_{i=1}^{m} Y_i/2m} \sim \frac{\chi_{2n}^2/2n}{\chi_{2m}^2/2m} = F_{2n,2m}$$

Заметим, что в общем случае $\frac{\lambda_1 X}{\lambda_2 \overline{Y}} \sim F_{2n,2m}$

Пуассоновские процессы

Сравнение интенсивностей пуассоновских процессов

 N_1 — кол-во событий процесса 1 интенсивности λ_1 за время t_1 .

 N_2 — кол-во событий процесса 2 интенсивности λ_1 за время t_2 .

Тогда $N_1 \sim Pois(\lambda_1 t_1), N_2 \sim Pois(\lambda_2 t_2)$

$$H_0\colon \lambda_1=\lambda_2 \ \textit{vs}. \ H_1\colon \lambda_1\ \{<,\neq,>\}\ \lambda_2$$

Статистика критерия

$$Z(X,Y) = \left(N_2 - \frac{t_2}{t_1}N_1\right) \left[\frac{t_2}{t_1}(N_1+1)\right]^{-1/2}$$

Распределение приближается нормальным.

Для
$$H_0$$
: $\lambda_1 = \lambda_2$ vs. H_1 : $\lambda_1 < \lambda_2$ критерий $\{Z(x,y) > z_\alpha\}$

Более точное приближение с помощью статистики

$$Z(X,Y) = 2\left(\sqrt{N_2 + \frac{3}{8}} - \sqrt{\frac{t_2}{t_1}\left(N_1 + \frac{3}{8}\right)}\right)\left[1 + \frac{t_2}{t_1}\right]^{-1/2}$$

Перестановочные критерии

Как построить критерий?

T(X) — статистика критерия

$$\{T(X)\geqslant c_{lpha}\}$$
 — критерий

Далее нужно либо найти c_{α} , либо научится считать p-value.

Для этого нужно знать распределение $\mathcal{T}(X)$ при H_0 . Всего лишь то...

Что делать если не выходит? Или просто лень...

Идея: найти группу "перестановок" G исходной выборки X, для которой распределение выборки при справедливости H_0 совпадает с распределением $gX, \ \forall g \in G.$

Пример: гипотеза о среднем

$$X=(X_1,...,X_n)$$
 — выборка из неизвестного распределения $\mathsf{P}\in\mathscr{P}$, где \mathscr{P} — симметричные распределения относительно $\mathsf{E} X_1$.

$$\mathsf{H}_0\colon\mathsf{E} X_1=0$$
 vs. $\mathsf{H}_1\colon\mathsf{E} X_1<0$ или $\mathsf{H}_1\colon\mathsf{E} X_1>0$ или $\mathsf{H}_1\colon\mathsf{E} X_1\neq0$ $T(X)=\sum\limits_{i=1}^n X_i$ — статистика критерия

$$G = \{(s_1,...,s_n) \mid s_i \in \{-1,1\}\}$$
 — группа, для которой выполнено $orall g \in G: \ gX \stackrel{d_0}{=} X$, где $gX = (s_1X_1,...,s_nX_n)$

$$x=(x_1,...,x_n)$$
 — реализация выборки. Тогда pvalue:
$$p(x)=\frac{1}{2^n} \begin{cases} \sum\limits_{g\in G} I\{T(gx)\leqslant T(x)\}, \text{ если } \mathsf{H}_1\colon \mathsf{E} X_1<0; \text{ (аналог. для >)} \\ \sum\limits_{g\in G} I\{|T(gx)|\geqslant |T(x)|\}, \text{ если } \mathsf{H}_1\colon \mathsf{E} X_1\neq 0. \end{cases}$$

Пример

Выборка
$$X = (-7, 1, 5)$$

Гипотезы: H_0 : $EX_i = 0$ vs. $EX_i < 0$

Статистика критерия: T(x) = -1

Группа:				Пер	естан	ювки		T(gx)
1	1	1	\Longrightarrow	-7	1	5	\Longrightarrow	-1
1	1	-1	\Longrightarrow	-7	1	-5	\Longrightarrow	-11
1	-1	1	\Longrightarrow	-7	-1	5	\Longrightarrow	-3
1	-1	-1	\Longrightarrow	-7	-1	-5	\Longrightarrow	-13
-1	1	1	\Longrightarrow	7	1	5	\Rightarrow	13
-1	1	-1	\Rightarrow	7	1	-5	\Longrightarrow	3
-1	-1	1	\Rightarrow	7	-1	5	\Longrightarrow	11
-1	-1	-1	\Longrightarrow	7	-1	-5	\Longrightarrow	1

p-value= $4/2^{-3} = 0.5$

Пример: гипотеза о равенстве средних

$$X=(X_1,...,X_n),\,Y=(Y_1,...,Y_n)$$
 — связные выборки

$$H_0$$
: $EX_1 = EY_1$

$$\mathsf{H}_1\colon \mathsf{E} X_1 < \mathsf{E} Y_1$$
 или $\mathsf{H}_1\colon \mathsf{E} X_1 > \mathsf{E} Y_1$ или $\mathsf{H}_1\colon \mathsf{E} X_1
eq \mathsf{E} Y_1$

$$T(X,Y) = \sum_{i=1}^{n} D_{i}$$
 — статистика критерия, где $D = (X_{i} - Y_{i})_{i=1}^{n}$

$$G = \{(s_1,...,s_n) \mid s_i \in \{-1,1\}\}$$
 — группа, для которой выполнено

$$orall g \in G$$
 : $gD \stackrel{d_0}{=} D$, где $gD = (s_1D_1,...,s_nD_n)$

$$d=\left(d_{1},...,d_{n}
ight)$$
 — реализация разностей. Тогда pvalue:

$$p(x)=rac{1}{2^n}egin{cases} \sum\limits_{g\in G}I\{T(gd)\leqslant T(d)\},\ ext{если H}_1\colon \mathsf{E}X_1<\mathsf{E}Y_1;\ ext{(аналог. для >)} \ \sum\limits_{g\in G}I\{|T(gd)|\geqslant |T(d)|\},\ ext{если H}_1\colon \mathsf{E}X_1
eq \mathsf{E}Y_1. \end{cases}$$

Пример: гипотеза о равенстве средних

$$X^1=(X_1,...,X_n), X^2=(X_{n+1},...,X_{n+m})$$
 — независимые выборки $\mathsf{H}_0\colon \mathsf{E} X_i^1=\mathsf{E} X_i^2$ $\mathsf{H}_1\colon \mathsf{E} X_i^1<\mathsf{E} X_i^2$ или $\mathsf{H}_1\colon \mathsf{E} X_i^1>\mathsf{E} X_i^2$ или $\mathsf{H}_1\colon \mathsf{E} X_i^1\ne \mathsf{E} X_i^2$ $\mathcal{T}(X^1,X^2)=\overline{X^1}-\overline{X^2}$ — статистика критерия

$$G = \{(s_1,...,s_{n+m}) \mid \{s_1,...,s_n\} \in C^n_{\{1,...,n+m\}}, (s_{n+1},...,s_{n+m})$$
— дополнение} — группа, для которой выполнено $\forall g \in G: g(X^1,X^2) \stackrel{d_0}{=} (X^1,X^2)$

$$x^1=(x_1,...,x_n), x^2=(x_{n+1},...,x_{n+m})$$
 — реализация. Тогда pvalue:
$$p(x)=\frac{1}{C_{n+m}^n} \begin{cases} \sum\limits_{g\in G} I\{T(g(x^1,x^2))\leqslant T(x^1,x^2)\}, \text{ если } \mathsf{H}_1\colon \mathsf{E}X_i^1<\mathsf{E}X_i^2; \\ \sum\limits_{g\in G} I\{|T(g(x^1,x^2))|\geqslant |T(x^1,x^2)|\}, \text{ если } \mathsf{H}_1\colon \mathsf{E}X_i^1\ne \mathsf{E}X_i^2. \end{cases}$$

Пример

Независимые выборки $X^1 = (3,2)$, $X^2 = (6,4,8)$

Гипотезы: H_0 : $EX_i^1 = EX_i^2$ vs. $EX_i^1 < EX_i^2$

Статистика критерия: $T(x^1, x^2) = 2.5 - 6 = -3.5$

П	epec	T(gx)				
3	2	6	4	8	\Longrightarrow	-3,5
3	6	2	4	8	\Longrightarrow	-0,16
3	4	6	2	8	\Longrightarrow	-1,8
3	8	6	4	2	\Longrightarrow	1,5
2	6	3	4	8	\Longrightarrow	-1
2	4	6	3	8	\Longrightarrow	-2,67
2	8	6	4	2	\Rightarrow	1
6	4	3	2	8	\implies	0,67
6	8	3	2	2	\implies	4,67
4	8	6	3	2	\Rightarrow	2,33

p-value=1/10

2. Множественная проверка гипотез с помощью перестановок

Пакет на R:

http://web.mit.edu/r/current/arch/i386_linux26

/lib/R/library/multtest/html/mt.maxT.html

Задача МПГ

$$X_j = (X_{j1},...,X_{jn_j}) - j$$
-ая выборка, $j=1,...,m$ $H_j\colon \mathsf{P}_j\in\mathscr{P}_j$, где P_j — распределение j -ой выборки. $T_j(X_j)$ — статистика для проверки H_j . $t_j=T_j(x_j)$ — реализация статистики

Предположения:

- 1. совместное распределение $T_{j_1},...,T_{j_s}$ при справедливости $H_{j_1},...,H_{j_s}$ не зависит от справедливости остальных гипотез;
- 2. для T_j определена группа перестановок G_j .

Временное предположение: все статистики T_j имеют одинаковое распределение, причем критерий правосторонний: $\{T_j\geqslant c\}$.

Б.о.о. считаем $t_1 \geqslant ... \geqslant t_m$

Мультигипотеза

Пусть $J \in \{1, ..., m\}$ — набор индексов.

$$\mathsf{H}_J\colon \mathsf{P}\in \bigcap_{j\in J}\mathscr{P}_j$$
, т.е. одновременно верны $\mathsf{H}_j\ orall j\in J$.

 $T^{*1},...,T^{*B}$ — [набор значений статистик по методу перестановок] или [бутстрепная выборка] в предположении справедливости H_J .

Тогда для H_J определим pvalue

$$p_{J} = \frac{1}{B} \sum_{b=1}^{B} I \left\{ \max_{j \in J} T_{j}^{*b} \geqslant \max_{j \in J} t_{j} \right\}$$

Процедура

- 1. Отвергнуть H_1 , если $p_{\{1,...,m\}} \leqslant \alpha$, иначе остановиться;
- 2. Отвергнуть H_2 , если $p_{\{2,...,m\}} \leqslant \alpha$, иначе остановиться;
- j. Отвергнуть H_j , если $p_{\{j,\dots,m\}}\leqslant lpha$, иначе остановиться; ...

Модифицированные pvalue:
$$\widetilde{p_j} = \max_{s \in \{1, \dots, j\}} p_{\{s, \dots, m\}}$$

T.e. H_i отвергается $\iff \widetilde{p_i} \leqslant \alpha$.

Избавление от временного предположения

- 1. Гипотезы упорядочены в соответствии со значениями pvalue: $p_1\leqslant ...\leqslant p_m;$
- 2. $p^{*1},...,p^{*B}$ [набор значений pvalue по методу перестановок] или [бутстрепная выборка pvalue] в предположении справедливости H_J .

T.e. p_j^{*b} — pvalue для проверки гипотезы H_j , посчитанное для статистики T_j^{*b} .

Тогда

$$p_{J} = \frac{1}{B} \sum_{b=1}^{B} I \left\{ \min_{j \in J} p_{j}^{*b} \leqslant \min_{j \in J} p_{j} \right\}$$