CPSC 313 — Winter 2020

Assignment 2 — Context-Free Languages and Grammars

Haohu Shen

30063099

1. Non-regular languages and the Pumping Lemma

Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, =\}$ and consider the language L of all strings over Σ that constitute a valid and correct equation of the form a + b = c where a, b, c are non-negative integers represented in base 10, without leading zeros. Some elements of L include 13+17=30 and 99+0=99, but not 13+17=29 (wrong arithmetic) or 99+01=100 (leading zero in the number 1). Use the Pumping Lemma to prove that L is not regular.

Solution. We prove L is regular by contradiction. Assume that L is regular. Then L satisfies the Pumping Lemma. Let p be the pumping length of L and consider the string s such that it denotes $1^p + 0 = 1^p$ where 1^p is an integer of size p that contains 1 only, thus we have $s \in L$. Since $|s| = p + 3 + p = 2p + 3 \ge p$, by the Pumping Lemma, s can be written as s = xyz with strings $x, y, z \in \Sigma^*$ such that

- $y \neq \varepsilon$
- $|xy| \leq p$
- $xy^iz \in L$ for all $i \geq 0$

Since $|xy| \leq p$, xy only contains 1's, thus y only contains 1's. Since $y \neq \varepsilon$, y contains at least one 1. Thus y can be write as 1^i such that $i \geq 1$. Consider the string $w = xy^2$, we have $w = xy^2 = xyyz$ denotes the string $1^{p+i} + 0 = 1^p$, thus $w \notin L$ since $1^{p+i} \neq 1^p$, which contradicts that $w \in L$ from the third property of the Pumping Lemma. Thus, the assumption is wrong and L is not regular.

2. Regular languages are context-free

Formally prove that every regular language is context-free. Use the following ingredients in your proof.

- The recursive definition of regular expressions;
- The fact that L is a regular language if and only if L = L(e) for some regular expression e;
- Strong induction on the length of a regular expression recall that every regular expression is a string of length at least 1 consisting of elements in Σ as well as the symbols $\cup, *, (,), \varepsilon, \emptyset$;
- The fact that context-free languages are closed under the regular operations; that is, if L_1 and L_2 are any context-free languages, then $L_1 \cup L_2$, L_1L_2 and L_1^* are context-free. (You may use this result without proof; we will prove it in

Solution. Suppose L is a language over some alphabet Σ , suppose e is a regular expression such that L = L(e), thus L is a regular language. We prove that L is context-free by using strong induction on the length of e, that is, |e|. And the case that |e| = 1 will be considered in the basis.

Basis: When |e| = 1, e can be one of three subcases below:

- e = w such that $w \in \Sigma$
- $e = \varepsilon$
- \bullet $e = \emptyset$

Thus we can define a grammar $G = (V, \Sigma, R, S)$ such that

- If e = w such that $w \in \Sigma$, $R = \{S \to w\}$
- If $e = \varepsilon$, $R = \{S \to \varepsilon\}$
- If $e = \emptyset$, $R = \emptyset$

We prove that L = L(G) for all 3 subcases:

- When e = w such that $w \in \Sigma$, L(w) = w, since $R = \{S \to w\}$ in this case and it only contains 1 rule, the only string we can generate by G is w, thus we have $L(G) = L(e) = L(w) = \{w\}$
- When $e = \varepsilon$, since $R = \{S \to \varepsilon\}$ in this case and it only contains 1 rule, the only string we can generate by G is ε , thus we have $L(G) = L(\varepsilon) = \varepsilon$
- When $e = \emptyset$, since $R = \emptyset$, we cannot generate any string since there is no rule in G, thus the language is empty, thus $L(G) = L(e) = \emptyset$.

Therefore, we have L = L(G) for all 3 subcases, thus L is context free when |e| = 1, as required.

Inductive Step: Let $k \ge 1$ be an integer. It is necessary and sufficient to use:

Inductive Hypothesis: Suppose n is a non-negative integer. Suppose for all n such that $1 \le n \le k$, for any language L = L(e) where e is a regular expression such that |e| = n, L is

context-free.

to prove:

Induction claim: For any language L = L(e) where e is a regular expression such that |e| = k + 1, L is context-free.

Let language L = L(e) where e is a regular expression such that |e| = k + 1, since $k \ge 1$, $|e| = k + 1 \ge 2$, therefore, according to the recursive definition of a regular expression, the form of e can be split into 3 cases:

Case 1: When e is the union of two regular expressions, that is, $e = e_0 \cup e_1$ such that e_0 and e_1 are two regular expressions, so

$$|e| = |e_0 \cup e_1| = |e_0| + 1 + |e_1| = |e_0| + |e_1| + 1 = k + 1$$

thus $|e_0| + |e_1| = k \le k$, from the ingredients we know that $|e_0| \ge 1$ and $|e_1| \ge 1$, thus we have $|e_0| \le k$ and $|e_1| \le k$, thus we have that $L(e_0)$ and $L(e_1)$ are context-free by Inductive Hypothesis. From the ingredients we also know that context-free languages are closed under unions, thus we can conclude that $L = L(e) = L(e_0) \cup L(e_1)$ is context-free.

Case 2: When e is the concatenation of two regular expressions, that is, $e = e_0e_1$ such that e_0 and e_1 are two regular expressions, we have

$$|e| = |e_0e_1| = |e_0| + |e_1| = k + 1$$

thus $|e_0| + |e_1| - 1 = k + 1 - 1 = k$, since we have $|e_0| \ge 1$ and $|e_1| \ge 1$ from the ingredients,

$$k = |e_0| + |e_1| - 1 = |e_0| + (|e_1| - 1) > |e_0|$$

thus $|e_0| \leq k$, also

$$k = |e_1| + |e_0| - 1 = |e_1| + (|e_0| - 1) \ge |e_1|$$

thus $|e_1| \leq k$, thus by Inductive Hypothesis, we have that $L(e_0)$ and $L(e_1)$ are context-free. From the ingredients we know that context-free languages are closed under concatenation, thus we can conclude that $L = L(e) = L(e_0)L(e_1)$ is context-free.

Case 3: When e is the Kleene closure of a regular expression, that is, $e = e_0^*$ such that e_0 is a regular expression, we have

$$|e| = |e_0^*| = |e_0^+ \cup \varepsilon| = |e_0^+| + 2 = k + 1$$

thus $|e_0^+| = k + 1 - 2 = k - 1 \le k$, thus $|e_0| \le |e_0^+| \le k$, thus by Inductive Hypothesis, we have that $L(e_0)$ is context-free. From the ingredients we know that context-free languages are closed under Kleene closure, thus we can conclude that $L = L(e) = L(e_0)^*$ is context-free.

Conclusion: Therefore, by strong induction, we can conclude that every regular language is context-free.

3. Designing context-free grammars and languages

(a) Design a context-free grammar for the language

$$L = \left\{ a^{2i}b^{j}vc^{j}(ac)^{i} \mid i, j \ge 0, v \in \{a, b\}^{*} \right\}$$

over the alphabet $\Sigma = \{a, b, c, \}$. Your grammar must have at most 3 variables and at most 7 rules. Clearly state the variables, the terminals, the rules, and the start variable for your grammar. You need *not* formally prove your grammar correct, but you should give a concise and convincing explanation of its correctness (in case of errors, such an explanation may also secure you partial credit).

Solution. We design a context-free grammar $G = (V, \Sigma, R, S)$ such that $V = \{S, A, B\}$ and R is consist of 7 rules:

$$S \rightarrow aaSac$$

$$S \rightarrow A$$

$$A \rightarrow bAc$$

$$A \rightarrow B$$

$$B \rightarrow Ba$$

$$B \rightarrow Bb$$

$$B \rightarrow \varepsilon$$

Firstly, we explain that for any $w \in \Sigma^*$, if $S \stackrel{*}{\Rightarrow} w$, then $w \in L$.

- Firstly, We start any derivation $S \stackrel{*}{\Rightarrow} w$ by applying the rule $S \to aaSac$ for 0 or more times, and we have the string $(aa)^i S(ac)^i$ for some $i \ge 0$, that is, $w = a^{2i} S(ac)^i$ such that i > 0.
- Secondly, we apply the rule $S \to A$ on the previous string form, and we have $w = a^{2i} A(ac)^i$.
- Thirdly, we apply the rule $A \to bAc$ on the previous string form for 0 or more times, and we have $w = a^{2i}b^jAc^j(ac)^i$ for some $j \ge 0$.
- Next we apply the rule $A \to B$ and replace the previous string form as $w = a^{2i}b^{j}Bc^{j}(ac)^{i}$.
- And then we apply the rule $B \to Ba$ or the rule $B \to Bb$ by replacing B with the string Bv for $v \in \{a,b\}^*$, and we have $w = a^{2i}b^jBvc^j(ac)^i$.
- Finally we apply the rule $B \to \varepsilon$ to eliminate all occurrences of B from the previous string form, and we have $w = a^{2i}b^jvc^j(ac)^i \in L$ such that $i \ge 0, j \ge 0, v \in \{a, b\}^*$

Secondly, we explain that for any $w \in \Sigma^*$, if $w \in L$, then $S \stackrel{*}{\Rightarrow} w$. Consider a string $w \in L$, thus $w = a^{2i}b^jvc^j(ac)^i \in L$ such that $i \geq 0, j \geq 0, v \in \{a,b\}^*$, we can obtain w from S by

- Firstly applying i times of the rule $S \to aaSac$
- Secondly applying the rule $S \to A$
- Thirdly applying j times of the rule $A \to bAc$
- Next applying the rule $A \to B$

- And then apply 0 or more times of the rule $B \to Ba$ or the rule $B \to Bb$ to become Bv since $v \in \{a,b\}^*$
- Finally we eliminate all occurrences of B by applying the rule $B \to \varepsilon$, and we have w.

(b) Consider the context-free grammar $G = (V, \Sigma, R, S)$ where $\Sigma = \{a, b, c\}, V = \{S, A, B, C\},$ S is the start variable and R consists of the rules

$$S \to ASA \mid B$$

$$A \to a \mid b$$

$$B \to BC \mid \varepsilon$$

$$C \to cc$$

Give a formal description of L(G), in the form $L(G) = \{\cdots \mid \cdots \}$. You need not formally prove your language correct, but you should again give a concise, coherent, convincing explanation of how you obtained your answer. (Again, in case of errors, such an explanation may help you gain partial credit for this problem).

Solution. Since we notice that the rules of G with variables A or C contain terminals only on the right, we merge these 2 rules and simplify R such that the rules become:

$$S \to aSa \mid aSb \mid bSa \mid bSb \mid B$$
$$B \to Bcc \mid \varepsilon$$

And we rewrite it into 4 rules in order to make our later explanation more clearly:

$$S \to aSa \mid aSb \mid bSa \mid bSb$$

$$S \to B$$

$$B \to Bcc$$

$$B \to \varepsilon$$

We introduce $f \in \{a, b\}$ and let

$$L = \{f^j c^{2i} f^j \mid i \geq 0, j \geq 0, f \in \{a,b\}\}$$

and we explain that L = L(G) in 2 steps.

Firstly we explain that for any $w \in \Sigma^*$, if $w \in L$, then $S \stackrel{*}{\Rightarrow} w$.

Let $w \in L$, thus $\exists i \geq 0, j \geq 0$ such that $w = f^j c^{2i} f^j$ and $f \in \{a, b\}$. We apply a finite sequence of rules of G, starting from the rule $S \to aSa \mid aSb \mid bSa \mid bSb$ to generate w:

- Firstly we apply the rule $S \to aSa \mid aSb \mid bSa \mid bSb$ for j times, and we have the string form f^jSf^j such that $f \in \{a,b\}$.
- Secondly we apply the rule $S \to B$ and replace the previous string form to $f^j B f^j$.
- Thirdly we apply the rule $B \to Bcc$ for i times on the previous string form, and we have $f^j B(cc)^i f^j = v^j Bc^{2i} f^j$.
- Finally we apply the rule $B \to \varepsilon$ to eliminate B on the previous string form, which yields the string $f^j c^{2i} v^f = w$.

Secondly we explain that for any $w \in \Sigma^*$, if $S \stackrel{*}{\Rightarrow} w$, $w \in L$.

Let $w \in \Sigma^*$ with $S \stackrel{*}{\Rightarrow} w$. According to the value of w, we can split it into 2 cases.

Case 1: If $w = \varepsilon$, then $w = f^0 c^0 f^0 = f^0 c^{2 \times 0} f^0 \in L$.

Case 2: If $w \neq \varepsilon$, by the definition 2 on the handout CPSC 313 — Winter 2020 Designing Context-Free Grammars, $\exists x \in (V \cup \Sigma)^*$ such that $S \stackrel{*}{\Rightarrow} x \Rightarrow w$. By the definition 1 from the handout, we have

- x = uAv, w = uzv where $u, v, z \in (V \cup \Sigma)^*$
- $A \in V$
- $A \to z$ is a rule in G.

Since w consists of terminals only, $w \in L(G) \subseteq \Sigma^*$, $u, v, z \in \Sigma^*$. Since the only rule whose right-hand side does not include a variable is the rule $B \to \varepsilon$, so it must map to the rule $A \to z$ in the definition 1, thus we can obtain other mapping relations as:

- \bullet A = B
- $z = \varepsilon$

Thus x = uBv and $w = u\varepsilon v = uv$. And the derivation $S \stackrel{*}{\Rightarrow} x \Rightarrow w$ becomes

$$S \stackrel{*}{\Rightarrow} uBv \Rightarrow uv = w$$

Since the derivation $S \stackrel{*}{\Rightarrow} uBv$ must contain at least one application of the rule $S \to B$ before applying the rule $B \to \varepsilon$, we consider that the first application of this rule $S \to B$ in our derivation, thus our derivation now has the form

$$S \stackrel{*}{\Rightarrow} t \Rightarrow y \stackrel{*}{\Rightarrow} x = uBv \Rightarrow uv = w$$

such that $t, y \in (V \cup \Sigma)^*$ and the derivation $t \Rightarrow y$ is the first application of the rule $S \to B$, the derivation $S \stackrel{*}{\Rightarrow} t$ is obtained by applying 0 or more times of the rule $S \to aSa \mid aSb \mid bSa \mid bSb$, let m be the number of applications of this rule, we have $t = f^m S f^m$ such that $f \in \{a,b\}$, thus after applying the rule $S \to B$, our derivation becomes

$$S \stackrel{*}{\Rightarrow} t = f^m S f^m \Rightarrow y = f^m B f^m \stackrel{*}{\Rightarrow} x = u B v \Rightarrow u v = w$$

For the derivation $y = f^m B f^m \stackrel{*}{\Rightarrow} u B v$, we notice that every application of a rule whose left-hand side is B to a string that contains B does not increase the number of B in the string and also does not introduce variables other than B into the string. Also, applying the rule $B \to Bcc$ yields a string containing exactly one B, while applying the rule $B \to \varepsilon$ can eliminate this occurrence of B. Since $y = f^m B f^m$ and x = u B v both contain one B, the derivation of $f^m B f^m \stackrel{*}{\Rightarrow} u B v$ consists only applications of the rule $B \to Bcc$. Thus, let a non-negative integer n be the number of times the rule $B \to Bcc$ is applied, we can have

$$uBv = f^m B(cc)^n f^m = f^m Bc^{2n} f^m$$

thus $u = f^m$ and $v = c^{2n} f^m$, and

$$w = uv = f^m c^{2n} f^m \in L$$