I			
ŀ			
ŀ			_
r	_		_
H	-	_	-
L			
ſ			Ī
H			i
ı			
	_	_	÷
	_	_	
	_		
	140		
	NO.		

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20CV101

AUGUST 2021: END SEMESTER ASSESSMENT B Tech II SEMESTER

UE20CV101 - ENGINEERING MECHANICS - STATICS

8	63	04	90	07			40	80
Is Max Marks: 100	a force	The y-component of the force F which a person exerts on the handle of the box wrench is known to be 320 N. Determine the x-component and the magnitude of F as shown in figure 1.b	The force F acts along line MA, where M is the midpoint of the radius along the x-axis. Determine the equivalent force- couple system at O if θ = 40° as shown in figure 1.c	Four people are attempting to move a stage platform across the floor. If they exert the horizontal forces shown, determine (a) the equivalent force- couple system at O and (b) the points on the x- and y-axes through which the line of action of the single resultant force R passes as shown in figure 1.d	350 N A B 45° 320 N O C C - x	Figure 1. d	State and explain the conditions of equilibrium required for a system of coplanar, non-concurrent forces	A woman is holding a 3.6-kg sphere in her hand with the entire arm held horizontally as shown in the figure 2.b. A tensile force in the deltoid muscle prevents the arm from rotating about the shoulder joint 0; this force acts at the 21° angle shown. Determine the force exerted by the deltoid muscle on the upper arm at A and the x and y-components of the force reaction at the shoulder joint 0. The mass of the upper arm is mu = 1.9 kg, the mass of the lower arm is m _L = 1.1 kg, and the mass of the hand is m _H = 0.4 kg; all the corresponding weights act at the locations shown in the figure.
Answer All Questions	he Transmissibility of	ce F which a person N. Determine the x-co	MA, where M is the ment force-couple sys	to move a stage platfe, determine (a) the ec x- and y-axes througses as shown in figure	S S S S S S S S S S S S S S S S S S S	Figure 1. c	tions of equilibrium re	3.6-kg sphere in her hand with the the figure 2.b. A tensile force in the ating about the shoulder joint 0; this force the force exerted by the deltoid muscle oponents of the force reaction at the shomus = 1.9 kg, the mass of the lower arm is m _H = 0.4 kg; all the corresponding vore.
Hrs	With a neat sketch explain the Transmissibility of a force	The y-component of the forwrench is known to be 320 as shown in figure 1.b	The force F acts along line axis. Determine the equiva figure 1.c	Four people are attempting to move a stage platform the horizontal forces shown, determine (a) the equiva O and (b) the points on the x- and y-axes through we single resultant force R passes as shown in figure 1.d		Figure 1. b	State and explain the condinon-concurrent forces	A woman is holding a 3.6 horizontally as shown in th prevents the arm from rotatin angle shown. Determine the at A and the x and y-compormass of the upper arm is mu and the mass of the hand is locations shown in the figure.
Time: 3 Hrs	a)	(q	(5)	б			a	(q
Tin	_						2	

80 The right-angle uniform slender bar AOB has mass m. If friction at the pivot O is neglected, determine the magnitude of the normal force at A and the magnitude of the pin reaction at O as shown in figure 2.c

 \odot

State	4 a) State and prove the parallel axis theorem.	94
Deteri	b) Determine the x - and y-coordinates of the centroid of the shaded area as shown 08	80
in fig	in figure 4.b	
Calci	c) Calculate the moments of inertia of the shaded area about the x- and y-axes as 08	80
show	shown in figure 4.c	

9 08 80 = 0.05 as shown in figure 5.b. The fixed motor which drives the gear wheel is not The rack has a mass m = 75 kg. What moment M must be exerted by the gear wheel in order to (a) lower and (b) raise the rack at a slow steady speed on the greased 60° rail? The coefficients of static and kinetic friction are $\mu s = 0.10$ and μk The coefficient of static friction for both wedge surfaces is 0.40 and that between Explain the theory of Dry (Coulomb) friction, with the help of sketches shown. Q a S 2

the 27-kg concrete block begins to move down the 20° incline is 0.70. Determine the minimum value of the force P required to begin moving the block down the

