

Course Title: Advanced 3D Computer Vision: Data-driven 3D Object Processing

Course Number EL-GY 9183

Course Description: 3D object processing is an emerging field in computer vision with many applications across areas as diverse as engineering, science and medicine. The advancement in 3D acquisition technology has led to dramatic increase in the size of 3D datasets. We are therefore faced with a dramatic demand for automatic 3D model processing, understanding and analyzing techniques. Traditional works for 3D object processing are focused on the development of handcrafted 3D object feature, which dealt well with individual 3D object or a small-scale 3D object collection. In contrast, datadriven 3D object processing approaches are developed through aggregating the shape information from a collection of 3D objects, reasoning about key features and properties that are common in objects, and exploiting the relationships of objects. This course will introduce students to the techniques of datadriven 3D object processing. The focus of this course will be recent data-driven 3D object processing for 3D shape matching, retrieval, registration, recognition, segmentation, classification and clustering.

Credits 3

Prerequisite Courses EL 9143 (3D Computer Vision) or equivalents (discuss with instructor), and proficiency in programming (Matlab is required and C++ is optional)

Instructor Information

Instructor(s) Prof. Yi Fang

Contact Information: 2 Metrotech Center, 10.084

Email: yfang@nyu.edu

Intended Learning Outcomes: Upon successful completion of this course, students will be able to:

- Describe the representation of 3D image data
- Develop an efficient 3D object search engine
- Develop techniques for 3D object registration and matching
- Develop methods for robust 3D object recognition and segmentation
- Apply knowledge of 3D image data analysis techniques to analyze and model engineering problems to meet desired needs

Course Materials

Textbook: Michael Mortenson, Geometric Modeling, 3rd Edition, 2006 (Optional)

Computer and software: Students should have access to computers (preferably laptop) with the following programs installed: Matlab, Paraview and LaTeX. Discuss with the instructor if you have problems.

Teaching and Learning Methodologies: Students are expected to arrive at class with an understanding of the basic definitions, concepts, and applications of relevant topics. Class time will be devoted to indepth discussions of course topics. Project assignments are dedicated for reinforcing course topics via

solving representative problem sets and holding class discussions.

Assignments and Grades: Students are expected to understand the basic definitions, concepts, and applications of relevant topics in class. Grades will be based on four mini projects, one final project, report and presentation. Project will be assigned after the completion of each specific topic. The distribution of grades is subject to some revision at the discretion of the instructor. Typical weighting values are as follow: First three projects will be worth 15% each and the final project, report, and presentation will be worth 55% of the course grade. The final letter grade is based on a curve.

Course Schedule (tentative): A typical schedule for course topics, projects, and exam dates is given in the table below.

Week	Lecture Topics	Project
Jan. 28	Introduction to 3D Shape Analysis	,
Feb. 4	Introduction to Data-Driven 3D Shape Analysis	
Feb. 11	3D Shape Retrieval	
	 Design of global shape descriptor 	
	 Shape retrieval engine 	
Feb. 18	Data Driven 3D Shape Retrieval	Project One
	 Unsupervised dictionary learning for 3D shape retrieval 	
	 Supervised dictionary learning for 3D Shape retrieval 	
	Deep learning for 3D shape retrieval	
Feb. 25	3D Shape Registration	
	 Introduction of shape registration 	
	Shape registration based on point signature	
Mar. 3	Data Driven 3D Shape Registration	Project Two
	 Learning a better shape signature 	
	Joint-shape registration	
Mar. 10	3D Shape Segmentation	
	 Introduction of shape segmentation 	
	 Shape segmentation based on point 	
	signature	
	 Shape segmentation based on pairwise 	
	distance	
Mar. 17	Spring Break. No Class.	
Mar. 24	Data Driven 3D Shape Segmentation	Project Three
	Joint-Segmentation	
	Deep Learning for Shape Segmentation	
Mar. 31	Deep Cross-modality Analysis	Call For Final Project
	From 2D Sketch to 3D Shape by Deep	
	Pairwise Neural Network	
	From 2D Image to 3D Shape by Convolutional Neural Naturals	
	Convolutional Neural Network	
	From 2.5 Depth Image to 3D Shape by Convolutional Neural Naturals	
Apr. 7	Convolutional Neural Network	
Apr. 7	3D Scene Analysis	

	3D Scene Reconstruction	
	 Object detection & tracking in 3D Scene 	
	 Segmentation in 3D Scene 	
Apr.14	Final Project Discussion (stage 0)	
	Topic determined	
	 Presentation of proposed idea 	
	Classroom discussion	
Apr.21	Final Project Discussion (stage 1)	
	 Project Progress update 	
	 Presentation of updated progress 	
	Classroom discussion	
Apr. 28	Final Project Discussion (stage 2)	
	 Project Progress update 	
	 Presentation of updated progress 	
	Classroom discussion	
May 5	Final Project Demo and Presentation (section I)	Final Project and
	Project Demo	Presentation
	 Presentation 	
May. 12	Final Project Demo and Presentation (section II)	
	Project Demo	
	 Presentation 	
	Final report paper due	

Policy on Academic Dishonesty:

The School of Engineering encourages academic excellence in an environment that promotes honesty, integrity, and fairness. Please see the school's policy on academic dishonesty at our school's website: http://engineering.nyu.edu/academics/code-of-conduct/academic-misconduct and university's policy: https://www.nyu.edu/about/policies-guidelines-compliance/policies-and-guidelines/academic-integrity-for-students-at-nyu.html