Projektgruppe FastSense

Meilenstein 2 Hardware Accelerated TSDF SLAM

28. Oktober 2020

Inhalt

```
Ziele und Anforderungen
   Ziele für MS2
   Funktionale Anforderungen
   Nicht-Funktionale Anforderungen
Hauptspeise
   Algorithmus
   Recap: Prototyping Demo
   Hardware Implementierung
   FastSense Prototyp
   Kommunikation
Evaluation
   Strom
   7eit
Fazit
   Bisherige Verbesserungen
   Verbesserungspotenzial
   Projektmanagement
```

Ausblick / MS3

Ziele und Anforderungen

Ziele für MS2

- Implementation von inkrementellem SLAM mit TSDF in "autarker" Box
- Vorimplementation in Software
- Implementation von Bottleneck-Komponenten in Hardware
- Speicherung von Pose-Graph und TSDF-Karte zur Rekonstruktion des kompletten explorierten Bereichs
- Evaluation durch Zeit- und Strommessung

Funktionale Anforderungen

- Lokale TSDF-Map ausgeben
- Aktuelle 6D-Pose ausgeben
- Map auf Basis der IMU und Velodyne-Daten
- Trajektorie und TDSF-Map für jede Pose speichern
- Parameter zur Laufzeit anpassbar

Nicht-Funktionale Anforderungen

- HW-Plattform: Trenz-Board, SW-Plattform: Vitis
- FPGA-Beschleunigung der Algorithmen
- Sensoren direkt am Board
- Unit-Tests
- Testbench
 - Integration, Strommessung, Zeitmessung, Visualisierung
- Logging

Hauptspeise

Algorithmus

TODO: gute visuelle Darstellung, möglichst kein unnötiger Text

Recap: Prototyping Demo

- Registrierung mithilfe von IMU
- Gute Parameterkombination herausgefunden
- Geplante Funktionalität war vorhanden und in RViz darstellbar
- Erkannte Probleme / Bottlenecks:
 - Laufzeit stark abhängig von der Auflösung der Karte
 - Probleme mit Orientierung (kurz nach Demo gefixt)
 - Insgesamt noch recht langsam (\sim 0.5s/Scan auf Glumanda, 2-5s/Scan in Testwelt)
 - Bottlenecks Registrierung und TSDF-Update (dachten wir)

Hardware Implementierung

TODO: infos zu reg und tsdf, wie visuell darstellen?

FastSense Prototyp

FastSense Prototyp

Kommunikation

TODO: Kommunikation von Julian

Evaluation

Strom

Strom

 $\mathsf{TODO} \colon \mathsf{Ergebnisse}$

Zeit

Zeitmessung (ms)				
Abschnitt	Durchschnitt	Min	Max	
Preprocessing	???	???	???	
Registrierung	???	???	???	
TSDF Update	???	???	???	
Map Shift	???	???	???	

Zeit

Vergleich Vitis – Realität				
Abschnitt	Vitis	Gemessen		
Registrierung	$0.9 \mathrm{ms} \cdot 100 = 90 \mathrm{ms}$???		
TSDF Update	477ms	???		

Zeit

Vergleich (Durchschnitt, ms)				
Programm	FastSense	Prototyp	Prototyp	
System	Board	Board	NUC	
Preprocessing	???	???	???	
Registrierung	???	???	???	
TSDF Update	???	???	???	
Map Shift	???	???	???	

Fazit

Bisherige Verbesserungen

- Registrierung
 - Auslagerung von Point to TSDF auf Hardware
 - Auslagerung von Pointcloud Transformation auf Hardware
- TSDF

Verbesserungspotenzial

- Registrierung
 - Drift entfernen (aktuell noch leichter Drift (1cm/s) in alle 3 Richtungen)
 - Komplett in Hardware (Overhead ist fast dreimal so hoch wie der eigentliche Aufruf)

Projektmanagement

Projektmanagement

Ausblick / MS3

- Aufbau einer SLAM-Box mittels CAD
 - Nutzung als Sensor
 - Einfache Portierung zwischen Drohne, Roboter, Rucksack etc.
 - Festes Interface, einfache Bedienung, Kapselung
- Verbesserung und Optimierung des Algorithmus
- Mesh-Generierung auf Basis der TSDF Werte
- Loop Closing
- ???

TODO: Mehr Ideen für MS3?