Reading Summary 4.5-4.6

Evan Hughes

March 2023

4.5 Irreduciblity in $\mathbb{Q}[x]$

If $f(x) \equiv [x]$, then cf(x) has integer coefficients for some nonzero integer c.

Example(from the book)

$$\begin{array}{l} f(x) = x^5 + \frac{2}{3}x^4 + \frac{3}{4}x^3 - \frac{1}{6} \\ \text{The least common denominator of the coefficients is } 12 \\ \text{Then } 12f(x) = 12[x^5 + \frac{2}{3}x^4 + \frac{3}{4}x^3 - \frac{1}{6}] = 12x^5 + 8x^4 + 9x^3 - 2 \end{array}$$

Theorem 4.21 Rational Root Test

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial with integer coefficients. If $r \neq 0$ and the rational number r/s is a root of f(x) then $r \mid a_0$ and $s \mid a_n$.

Lemma 4.22

Let $f(x), g(x), h(x) \in \mathbb{Z}[x]$ with f(x) = g(x)h(x). If p is a prime that divides every coefficient of f(x), then either p divides every coefficient of g(x) or p divides every coefficient of h(x).

Theorem 4.23

Let f(x) be a polynomial with integer coefficients. Then f(x) factors as a product of polynomials of degrees m and n in $\mathbb{Q}[x]$ if and only if f(x) factors as a product of polynomials of degree m and n in $\mathbb{Z}[x]$.

Proof of Theorem 4.23

Obviously, if f(x) factors in $\mathbb{Z}[x]$, it factors in $\mathbb{Q}[x]$. Conversely, suppose f(x) = g(x)l(x) in $\mathbb{Q}[x]$. Let c and d be nonzero integers such that cg(x) and dh(x) have integer coefficients. Then cdf(x) = [cg(x)dh(x)] in $\mathbb{Z}[x]$ with deg cg(x) =deg g(x)and deg dh(x) = deg h(x). Let p be any prime divisor of cd. Then p divides every coefficient of the polynomial cdf(x). By Lemma 4.22, p divides either every coefficient of cg(x) or every coefficient of dh(x). Then cg(x) = pk(x) with $k(x) \in \mathbb{Z}[x]$ and deg k(x) =deg g(x). Therefore, ptf(x) = cdf(x) = [cg(x)][dh(x)] = [pk(x)][dh(x)]. Canceling p on each end, we have $tf(x) = k(x)[chh(x)] \in \mathbb{Z}[x]$.

Section 4.6 Irreduciblity in $\mathbb{R}[x]$ and $\mathbb{C}[x]$

Theorem 4.26

Every nonconstant polynomial in $\mathbb{C}[x]$ has a root in \mathbb{C} . This theorem is also stated as \mathbb{C} is algebraically closed.

Corollary 4.27

A polynomial is irreducible in $\mathbb{C}[x]$ if and only if it has degree 1.

Proof

A polynomial f(x) of degree ≥ 2 in $\mathbb{C}[x]$ hence a first degree factor by the Factor Theorem. Therefore f(x) is reducible in $\mathbb{C}[x]$. And every irreducible polynomial in $\mathbb{C}[x]$ has degree 1.

Eisenstein's Criterion

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a non constant polynomial with integer coefficients. If there is a prime p such that it divides each coefficient of f(x) and p does not divide a_n and p^2 does not divide a_0 , then f(x) is irreducible in $\mathbb{Q}[x]$.

Example

The polynomial $x^9 + 5$ is irreducible in $\mathbb{Q}[x]$ with Eisenstein's Criterion p = 5.