Physics 5403 Homework #5Spring 2022

Instructor Bruno Uchoa

Due date: April 6, 2022

March 29, 2022

1 Harmonic Oscillator

A one dimensional quantum oscillator with frequency ω has the unperturbed Hamiltonian

$$\mathcal{H} = \hbar\omega \left(a^{\dagger} a + \frac{1}{2} \right),$$

where a and a^{\dagger} are creation and annihilation operators. At t=0, we turn on a time dependent perturbation

$$V(t) = \lambda \left[f(t)a + f^*(t)a^{\dagger} \right],$$

where f(t) is some integrable function, such that $f(t \to \infty) = 0$.

a) Find the time dependence of the creation and annihilation operators in the interaction picture. Use the fact that

$$e^{-B}Ae^{B} = \sum_{n=0}^{\infty} \frac{1}{n!} [A, B]_n = A + [A, B] + \frac{1}{2!} [[A, B], B] + \dots$$

where $[A, B]_{n+1} \equiv [[A, B]_n, B]$ and $[A, B]_0 \equiv A$. This relation is known as the Baker-Hausdorff identity.

- b) At t=0 the quantum oscillator is in the ground state $|0\rangle$. Using leading order of perturbation theory, find the probability for the transition $|0\rangle \to |n\rangle$ at $t\to \infty$ for n=1 and 2
- c) Suppose now that instead of the perturbed potential (1), we turn on a potential of the form:

$$V(t) = \lambda x^3 e^{-\tau t}$$

at t=0 ($\tau>0$). Find the transition probability to the third excited state, $|0\rangle \rightarrow |3\rangle$ in perturbation theory at $t\to\infty$.

2 Three level system

Consider a system of three levels with the Hamiltonian

$$\begin{pmatrix}
\epsilon_1 & 0 & \Delta(t) \\
0 & \epsilon_2 & \Delta(t) \\
\Delta^*(t) & \Delta^*(t) & \epsilon_3
\end{pmatrix}$$

where

$$\Delta(t) = \Delta e^{i\omega t},$$

with Δ real. Find the transition probability between levels ϵ_1 and ϵ_2 in leading order of perturbation theory where the result is non-trivial, when $|\Delta(t)| \ll |\epsilon_i - \epsilon_j|$, with i, j = 1, 2, 3, and $i \neq j$. Interpret your result.

3 Particle in a box

A non-relativistic electron with energy dispersion

$$E_k = \frac{k^2}{2m}$$

is confined to a 1-dimensional square cavity of size L centered at x = 0.

- a) Write the wavefunctions of the particle in the box and their corresponding energy levels.
- b) If the system is perturbed by a weak electric field \mathcal{E}_0 with potential $V(x) = -\mathcal{E}_0 x$, calculate the first non zero correction to the energy of the ground state. Hint: use the fact that:

$$\sum_{n=1}^{\infty} \left[\frac{1}{(4n^2-1)^3} + \frac{4}{(4n^2-1)^4} + \frac{4}{(4n^2-1)^5} \right] = \frac{1}{2} - \frac{\pi^2}{64} \left(\frac{7}{4} + \frac{\pi^2}{12} \right).$$

- c) Using your result in b), find the corresponding correction to the ground state *ket*. Assume now that the particle is prepared in that state. Find the probability of measuring the particle in the first excited state of the unperturbed system.
 - d) Suppose now the electric field is time dependent,

$$\mathcal{E}(t) = \mathcal{E}_0 e^{-t/\tau},$$

and is turned on at t = 0 ($\tau > 0$). If the particle is in the ground state at t < 0, find the probability of a transition to the first excited level at times $t \gg \tau$.