Dr. Tushar Sandhan

Introduction

Color of the Universe

Introduction

Introduction

Color of the Universe MICRO-GAMMA INFRA-X-RAYS U-V RADIO T-V RAYS RED WAVES 100 ft .0001 ft ---- .01 ft ULTRAVIOLET VISIBLE SPECTRUM INFRARED 300 400 600 nm 700 1000

Visible light (dispersion)

Spectra of objects

Light source spectra

Spectra of objects

Light source spectra

Reflectance spectra of surfaces

credit: E. Palmer

Human Luminance sensitivity

credit: Efros

Light spectrum is continuous, then why are images RGB?

Light spectrum is continuous, then why are images RGB?

Light spectrum is continuous, then why are images RGB?

Evolutionary cones (6 million)

- Light spectrum is continuous, then why are images RGB?
- ▲ Evolutionary cones (6 million)

- Light spectrum is continuous, then why are images RGB?
- ▲ Evolutionary cones (6 million)

- Characterization of cone cells & understanding visual process in the eye.
 - Ragnar Granit, Haldan Keffer Hartline and George Wald
 - Nobel Prize 1967

HVS retina display

HVS retina display

HVS retina display

HVS retina display

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Reptiles : 5 types of cones
- Mantis shrimp: 12 types of cones

- Cones (Long:L, Medium:M, Short:S) & Rods:R
- S: blue (most sensitive)
- M, L on chromosome X (some women are tetrachromatic)

- Reptiles : 5 types of cones
- Mantis shrimp: 12 types of cones

What is it?

- What is it?
- psychophysical: physiological sequence of sensory processing
- perceptual: cognitive representation of a physical reality

- What is it?
- psychophysical: physiological sequence of sensory processing
- perceptual: cognitive representation of a physical reality

Imagination of the illuminated retina!

Sensing

Sensing

Estimate the color

Representation

- o for graphics & displays
 - CIE chromaticity diagram
 - Commission Internationale de l'éclairage-1931
 - inks, displays, cameras
 - X mix of RGB
 - Y illuminance
 - Z close to blue
- o for computational analysis
 - color spaces
 - processing the color images

Representation

- o for graphics & displays
 - CIE chromaticity diagram
 - Commission Internationale de l'éclairage-1931
 - inks, displays, cameras
 - X mix of RGB
 - Y illuminance
 - Z close to blue
- o for computational analysis
 - color spaces
 - processing the color images

Hunt-Pointer-Estevez matrix

- cone responses to XYZ mapping
- LMS: cone responses of human eye
- Z ←→ S
- Y brightness
- X, Z chromaticity

Representation

- o for graphics & displays
 - CIE chromaticity diagram
 - Commission Internationale de l'éclairage-1931
 - inks, displays, cameras
 - X mix of RGB
 - Y illuminance
 - Z close to blue
- o for computational analysis
 - color spaces
 - processing the color images

Hunt-Pointer-Estevez matrix

- cone responses to XYZ mapping
- LMS: cone responses of human eye
- Z ←→ S
- Y brightness
- X, Z chromaticity

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 1.910\,20 & -1.112\,12 & 0.201\,91 \\ 0.370\,95 & 0.629\,05 & 0 \\ 0 & 0 & 1.000\,00 \end{bmatrix} \begin{bmatrix} L \\ M \\ S \end{bmatrix}_{\text{HPE}}$$

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z

$$x=rac{X}{X+Y+Z}$$
 $y=rac{Y}{X+Y+Z}$ $z=rac{Z}{X+Y+Z}=1-x-y$

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z

$$x=rac{X}{X+Y+Z}$$
 $y=rac{Y}{X+Y+Z}$ $z=rac{Z}{X+Y+Z}=1-x-y$

$$X = rac{Y}{y}x, \ Z = rac{Y}{y}(1-x-y).$$

- CIE Chromaticity diagram
 - concept of color for computations
 - brightness (white > grey)
 - chromaticity (white = grey)
 - derived parameters for chromaticity
 - x, y
 - normalized function of all tristimulus values
 - Tristimulus: a color is represented by its trichromatic coefficients X, Y, Z
 - specifies how human eye will experience light with a given spectrum

$$x=rac{X}{X+Y+Z}$$
 $y=rac{Y}{X+Y+Z}$ $z=rac{Z}{X+Y+Z}=1-x-y$

$$X=rac{Y}{y}x, \ Z=rac{Y}{y}(1-x-y).$$

- CIE Chromaticity diagram
 - all the colors that human eye can see, represented as color gamut

- CIE Chromaticity diagram
 - all the colors that human eye can see, represented as color gamut

Traffic light specifications

Color spaces: RGB cube

- Normalize to float values (0.0 to 1.0)
- How many possible colors in computer with 3 bytes?
- You can manipulate image inside this cube

Color spaces: RGB cube

- Normalize to float values (0.0 to 1.0)
- How many possible colors in computer with 3 bytes?
- You can manipulate image inside this cube

Color spaces: CMYK

- Printer vs display
- CMY = 1 RGB (vector notation)
- what is C + M + Y = ?
- to compensate muddy black, 'K' is added: CMYK
 K = 1 max(r,g,b)
 find out other components?
- hint: C = (1-r-K)/(1-K)

Color spaces: CMYK

- Printer vs display
- CMY = 1 RGB (vector notation)
- what is C + M + Y = ?
- to compensate muddy black, 'K' is added: CMYK
 K = 1 max(r,g,b)
 find out other components?
 MIXTURES
- hint: C = (1-r-K)/(1-K)

CMY

Color spaces: CMYK

- Printer vs display
- CMY = 1 RGB (vector notation)
- what is C + M + Y = ?
- to compensate muddy black, 'K' is added: CMYK
 K = 1 max(r,g,b)
 find out other components?
- hint: C = (1-r-K)/(1-K)

CMY

CMYK

Color spaces: HSV

Hue:

- o dominant wavelength in the mixture of light waves
- o dominant color as perceived by us

Saturation:

- o relative purity
- o amount of white light mixed in hue to get a color

Value:

- o also called brightness
- o achromatic notion of intensity

Color spaces: HSV

Hue:

- o dominant wavelength in the mixture of light waves
- o dominant color as perceived by us

Saturation:

- o relative purity
- o amount of white light mixed in hue to get a color

Value:

- o also called brightness
- o achromatic notion of intensity

Travelling inter-spaces

It's nothing but converting image from one space to another

$$I = \frac{1}{3} (R + G + B)$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$H = \begin{cases} \theta & B \le G \\ 360 - \theta & B > G \end{cases}$$

where

$$\cos\theta = \frac{\frac{1}{2}[(R-G)+(R-B)]}{[(R-G)^2+(R-B)(G-B)]^{1/2}}$$

Travelling inter-spaces

It's nothing but converting image from one space to another

$$I = \frac{1}{3} (R + G + B)$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$H = \begin{cases} \theta & B \le G \\ 360 - \theta & B > G \end{cases}$$

where

$$\cos\theta = \frac{\frac{1}{2}[(R-G)+(R-B)]}{[(R-G)^2+(R-B)(G-B)]^{1/2}}$$

Online converter
 https://www.rapidtables.com/convert/color/rgb-to-hsv.html

Travelling inter-spaces

It's nothing but converting image from one space to another

$$I = \frac{1}{3} (R + G + B)$$

$$S = 1 - \frac{3}{R + G + B} \min(R, G, B)$$

$$H = \begin{cases} \theta & B \le G \\ 360 - \theta & B > G \end{cases}$$

where

$$\cos \theta = \frac{\frac{1}{2} [(R-G) + (R-B)]}{[(R-G)^2 + (R-B)(G-B)]^{1/2}}$$

Online converter
 https://www.rapidtables.com/convert/color/rgb-to-hsv.html

RGB to HSV color conversion

Enter 6 digits hex code or enter red, green and blue color levels (0..255) and press the Convert button:

Enter RGB hex code (#):	FFFF00
or	
Enter red color (R):	255
Enter green color (G):	255
Enter blue color (B):	0
	Convert Reset
Hue (H):	60 °
Saturation (S):	100.0 %
Value (V):	100.0 %
Color preview:	

Color correction

Acquired image might be in different illumination or in shadow

$$\begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix} = \begin{bmatrix} \alpha_r & 0 & 0 \\ 0 & \alpha_g & 0 \\ 0 & 0 & \alpha_b \end{bmatrix} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

Color correction

Acquired image might be in different illumination or in shadow

$$\begin{bmatrix} \tilde{r} \\ \tilde{g} \\ \tilde{b} \end{bmatrix} = \begin{bmatrix} \alpha_r & 0 & 0 \\ 0 & \alpha_g & 0 \\ 0 & 0 & \alpha_b \end{bmatrix} \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

- White world assumption: brightest pixel should be white
 - divide by max value
- Gray world assumption: average value should look like grey
 - o m = avg over image[(r+g+b)/3]
 - $\tilde{r} = r * avg(r)/m$
- Histogram equalization on color channels

Color constancy

• Interpret object surface in terms of albedo or true color, instead of observed intensity

Contextual phenomenon

• e.g. banana appears yellow even in blue light

Color constancy

• Interpret object surface in terms of albedo or true color, instead of observed intensity

Contextual phenomenon

• e.g. banana appears yellow even in blue light

Color constancy

• Interpret object surface in terms of albedo or true color, instead of observed intensity

Contextual phenomenon

• e.g. banana appears yellow even in blue light

- assign colors to grey values (e.g. via intensity slicing)
- Note: different from image colorization
 (estimate underlying true color for a given grey image)

- assign colors to grey values (e.g. via intensity slicing)
- Note: different from image colorization
 (estimate underlying true color for a given grey image)

satellite

satellite

X-ray

satellite

X-ray

Multi-sensors

Transformation functions

Input X-ray image

Transformation functions

Input X-ray image

Transformation functions

Input X-ray image

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Transformation functions
 - o with different transformation functions

Credit: K. Dmitruk et al.

- Color fundamentals
- Color spaces

- Color fundamentals
- Color spaces

- ☐ Light sources
 - Spectra to retina sensing
- Color
 - Cones
 - Color spaces
 - Pseudocolor images

- Color fundamentals
- Color spaces

- ☐ Light sources
 - Spectra to retina sensing
- Color
 - Cones
 - Color spaces
 - Pseudocolor images

- Color fundamentals
- Color spaces

- ☐ Light sources
 - Spectra to retina sensing
- Color
 - Cones
 - Color spaces
 - Pseudocolor images

"Blurring the pseudocolors in friendships, reduces the relational spaces & life becomes Colorful."

-TS

