

Ourapproach

- → Programming language: Java
- → Standard Java, Streams, no external libraries
- → Python for creating plots
- → Object-oriented implementation:
 - → Every node is an Object
 - → Each node holds the information about it's outgoing neighbors

```
class Node
{
     String label;
     List<Node> outNeighbors;
}
```

Ourapproach

- → Solver class that executes the main algorithm
- → One class for each algorithm:
 - ightarrow Is the graph a DAG?
 - → Find first cycle
 - → Preprocessing
- → Log class for printing the result and debug information
- → All of these classes offer static methods

Ourapproach

→ Nodes are not actually deleted, only labeled:

```
for(Node node: cycle)
{
    node.delete();
    List<Node> S = dfvsBranch(graph, k - 1);
    node.unDelete();
    if(S != null)
    {
        S.add(node);
        return S;
    }
}
```

- → Algorithm traverses the graph recursively
- → Visited nodes get marked with an index
- → If a new visited node is already marked, a cycle is found
- \rightarrow Running time is O(|V|²) in the worst case, when the graph is an acyclic line
- → Can easily be improved to O(|V|), so that each node is visited only once

```
int index = 0;
for(Node node: nodes)
{
    List<Node> cycle = visitNode(node);
    if(cycle != null)
    {
        return cycle;
    }
}
```

```
visitNode(): if(node.visitIndex!= -1)
                    Node[] cycle = [];
                    cycle.add(node);
                    cycleStartIndex = node.visitIndex;
                    return cycle;
               } else {
                    node.visitIndex = index;
                    index++;
                    for(Node neighbor: outNeighbors)
                         List<Node> cycle = visitNode(neighbor);
                         if(cycle)
                              if(node.visitIndex > cycleStartIndex) cycle.add(node);
                              return cycle;
                    return null;
```


cycleStartIndex: -1

cycleStartIndex: 1

cycle: B

cycleStartIndex: 1

cycle: B

cycleStartIndex: 1

cycle: B, D

cycleStartIndex: 1

cycle: B, D

cycleStartIndex: 1

cycle: B, D, C

cycleStartIndex: 1

cycle: B, D, C

cycleStartIndex: 1

cycle: B, D, C

- → Algorithm finds cyclic components in the graph
- → Cyclic component: all nodes, which have any cyclic connection
- \rightarrow Linear running time: O(|V| + |E|)
- → The preprocessing allows us to split the graph into cyclic subgraphs

- → What is the worst case graph?
- → A fully connected graph
- → In fact, a fully connected graph is not the worst case:

```
if(m == n * (n + 1))
{
    return k = n - 1;
}
```

- \rightarrow Removing a single edge (a,b) => k = n 2
- → Can we rule out even more cases with this approach?
- → Idea for min k: add as many edges as possible to a graph without creating a cycle

В

V	=	4
E	=	C
k =	: 0	

E	k
0	0
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

k
0
0

ĮΕĮ	k
0	0
1	0
2	0
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

k
0
0
0
0

$\overline{Calculation}$ of min k

ĮΕĮ	k
0	0
1	0
2	0
3	0
4	0
5	
6	
7	
8	
9	
10	
11	
12	

$\overline{Calculation}$ of min k

E	k
0	0
1	0
2	0
3	0
4	0
5	0
6	
7	
8	
9	
10	
11	
12	

$\overline{Calculation}$ of min k

E	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	
8	
9	
10	
11	
12	

E	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	
9	
10	
11	
12	

$$|V| = 4$$

 $|E| = 8$
 $k = 1$

E	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	
10	
11	
12	

E	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	1
10	
11	
12	

$$|V| = 4$$
$$|E| = 10$$
$$k = 2$$

ΙΕΙ	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	1
10	2
11	
12	

E	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	1
10	2
11	2
12	

$$|V| = 4$$

 $|E| = 12$
 $k = 3$

E	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	1
10	2
11	2
12	3

$\overline{\textit{Calculation of min } k}$

- 1. max m = n * (n 1)
- 2. $\min k = 0$ if m < n * (n 1) / 2

ΙΕΙ	k
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	1
8	1
9	1
10	2
11	2 2 3
12	3

$\overline{\textit{Calculation of } max \, k}$

→ The max value for k can be calculated:

$$max k = m / 2$$

$\overline{Calculation\ of\ max\ k}$

→ The max value for k can be calculated:

max k = m / 2

Performance-k

- → We set a timeout after 60 seconds for the plots
- \rightarrow Graphs with k > 20 are excluded
- → We only plotted the complex cases

Performance - k

→ Looking at the optimal solution, the algorithm seems to struggle at k = 10 without using the algorithm of Tarjan

Performance - k

 \rightarrow With Tarjan's algorithm we also managed to solve some k = 13 graphs

Performance - n

→ The runtime in general seems to increase with higher number of nodes, but there is some variation

Performance - n

→ The runtime in general seems to increase with higher number of nodes, but there is some variation

Do you have any questions?