	ECEDCIZI TCD
	ESERCIZI TSB
1	Una termo resistenza metallica con R_1 = 150 Ω ad una temperatura T_0 = 25°C e coefficiente termico a= 0,4%/°C è inserita all'interno di un ponte di Wheatstone compensato in temperatura. Sapendo che R_3 = 300 Ω e R_4 = 600 Ω , dimensionare R_2 in modo da bilanciare il ponte alla temperatura T_0 . Infine, calcolare la tensione di uscita del ponte V_0 , alimentato con una tensione V_{in} = 9V, quando la termo resistenza si trova alla temperatura T_1 = 39°C.
2	Un estensimetro è inserito all'interno del ponte di Wheatstone in figura ed è caratterizzato da un fattore di guadagno $G=4$ e presenta, in condizioni di riposo, una resistenza $R_1=200\Omega$ ed una lunghezza di $I=10$ mm. Sapendo che $R_3=100\Omega$ e $R_4=200\Omega$, dimensionare R_2 in modo da bilanciare il ponte quando l'estensimetro è in condizioni di riposo. Infine, calcolare la tensione di uscita del ponte V_0 , alimentato con la tenzione $V_{in}=9V$, quando l'estensimetro subisce un allungamento $\Delta I=0.5$ mm.
3	Un estensimetro è inserito all'interno del ponte di Wheatstone in figura ed è caratterizzato da un fattore di guadagno $G=2$ e presenta, in condizioni di riposo, una resistenza $R_1=100\Omega$ ed una lunghezza di $I=20$ mm. Sapendo che $R_3=100\Omega$ e $R_4=400\Omega$, dimensionare R_2 in modo da bilanciare il ponte quando l'estensimetro è in condizioni di riposo. Infine, calcolare la tensione di uscita del ponte V_0 , alimentato con la tenzione $V_{in}=20V$, quando l'estensimetro subisce un allungamento $\Delta I=1$ mm.
4	Calcolare il potenziale rilevato nella derivazione unipolare aumentata aVR in mV con k $ H $ = 1mV e θ = -30°.
5	Calcolare il potenziale rilevato nella derivazione unipolare aumentata aVR in mV con k $ H $ = 1mV e θ = -90°.
6	Calcolare il potenziale rilevato nella derivazione unipolare aumentata aVR in mV con k $ H $ = 1mV e θ = -150°.
7	Gli echi di due riflettori distanti tra loro 1 cm vengono separati da un intervallo
8	Gli echi di due riflettori distanti tra loro 2,5 cm vengono separati da un intervallo
9	Gli echi di due riflettori distanti tra loro 4 cm vengono separati da un intervallo
10	Gli echi di due riflettori vengono ricevuti separati da un intervallo di 20 microsecondi. Di quanto sono separati i due riflettori?
11	Un traduttore ad US deve raggiungere un riflettore posto a 10cm. Qual è il massimo valore (Hz) che può assumere la PRF?
12	Un traduttore ad US deve raggiungere un riflettore posto a 15cm. Qual è il massimo valore (Hz) che può assumere la PRF?
13	In un traduttore ad US dal diametro di 4mm l'ultimo massimo di intensità nella zona di Fresnel si osserva a $Z_m = 3$ cm. A quale frequenza (MHz) sta funzionando il trasduttore?
14	Un trasduttore ha un diametro di 7mm e funziona alla frequenza di 10MHz, con c = 1540m/s. A quale distanza (cm) è posizionato l'ultimo massimo?
15	Un trasduttore ad US è utilizzato con F_R di 7000Hz. Qual è la distanza massima a cui può trovarsi un riflettore che non crei artefatti negli echi ricevuti?
16	Un trasduttore ad US con grado di focalizzazione $g = Z_m/F = 2$ e raggio di curvatura di $F = 100$ mm funziona a 3,5MHz. Quanto vale la larghezza della zona di focalizzazione in (mm)?
17	Si supponga di aver applicato ad un sistema di MRI un campo a radiofrequenza B_1 che abbia portato $ M_2 =0$ e $ M_{xy} =1$ (impulso a $\pi/2$). Dopo aver spento l'impulso a radiofrequenza a $t=0$ si osserva il rilassamento T_1 e T_2 . Ipotizzando $T_1=240$ ms e $T_2=85$ ms che angolo α avrà la magnetizzazione M con l'asse z al tempo $t=70$ ms?
18	Si supponga di aver applicato ad un sistema di MRI un campo a radiofrequenza B_1 che abbia portato $ M_2 =0$ e $ M_{xy} =1$ (impulso a $\pi/2$). Dopo aver spento l'impulso a radiofrequenza a $t=0$ si osserva il rilassamento T_1 e T_2 . Ipotizzando $T_1=240$ ms e $T_2=45$ ms che angolo α avrà la magnetizzazione M con l'asse z al tempo $t=80$ ms?

19	Si supponga di aver applicato ad un sistema di MRI un campo a radiofrequenza B_1 che abbia portato $ M_2 =0$ e $ M_{xy} =1$ (impulso a $\pi/2$). Dopo aver spento l'impulso a radiofrequenza a t= 0 si osserva il rilassamento T_1 e T_2 . Ipotizzando T_1 = 810 ms e T_2 = 100ms che angolo α avrà la magnetizzazione M con l'asse z al tempo t= 100 ms?
20	Data una MRI con B_0 = 3T, si supponga di voler applicare un $B_1(t)$ per un tempo tale da ottenere un flip angle di α = $\pi/4$. Considerando $ M_0 $ = 1 Am ² e T_2 = 5ms, che valore si ottiene per $M_{xy}(t)$ quando t = 50ms?
21	Data una MRI con B_0 = 3T, si supponga di voler applicare un $B_1(t)$ per un tempo tale da ottenere un flip angle di α = $\pi/4$. Considerando $ M_0 $ = 1Am² e T_2 = 10ms, che valore si ottiene per $M_{xy}(t)$ quando t = 50ms?
22	Data una MRI con B_0 = 3T, si supponga di voler applicare un B_1 (t) per un tempo tale da ottenere un flip angle di α = $\pi/4$. Considerando $ M_0 $ = 1Am² e T_2 = 50ms, che valore si ottiene per M_{xy} (t) quando t = 50ms?