

In the name of GOD

A MULTI-OBJECTIVE PROBLEM FOR PRACTICAL PORTFOLIO OPTIMIZATION

Zahra Eftekhari & Milad Samimifar

02 Model

03 Multi Objective Optimization Problem

Portfolio Optimization

02 Model

03 Multi Objective Optimization Problem

Model

Return on n assets:

	Period 1	Period 2		Period m
Asset 1	r_{11}	r_{12}	• • •	r_{1m}
Asset 2	r_{21}	r_{22}		r_{2m}
:	÷	i i	·	
Asset n	r_{n1}	r_{n2}		r_{nm}

Mean-Variance model

Markowitz model

Maximize
$$R = \sum_{i=1}^{n} \overline{r_i} y_i = \overline{r}^T y$$

Minimize $V = y^T Q y$

Subject to
$$1^T y = 1$$

 $0 \le y_i$ for $i = 1,2,...,n$

$$Q = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{pmatrix} \qquad \sigma_{ik} = \frac{\sum_{j=1}^{m} (r_{ij} - \bar{r}_i)(r_{kj} - \bar{r}_k)}{m}$$

Multi Objective Optimization Problem

Minimize/Maximize
$$f_s(\mathbf{x})$$
 $s = 1, 2, ..., S$
subject to $g_j(\mathbf{x}) \ge 0$ $j = 1, 2, ..., J$
 $h_c(\mathbf{x}) = 0$ $c = 1, 2, ..., C$
 $x_i^{min} \le x_i \le x_i^{max}$ $i = 1, 2, ..., n$

How to solve this problems?

Multi Objective Optimization Problem

Solution x1 dominates x2 if:

- solution x1 is no worse than x2 in all objectives
- and solution x1 is strictly better than x2 in at least one objective

Pareto-optimal: The non-dominated set of the entire feasible decision space is called

Solving Multi Objective Optimization Problem

Weighted Sum Method

Simplest way

$$\begin{array}{ll} \text{Minimize} & \sum_{s=1}^S w_s f_s(\mathbf{x}) \\ \text{subject to} & g_j(\mathbf{x}) \geq 0 & j=1,2,...,J \\ & h_c(\mathbf{x}) = 0 & c=1,2,...,C \\ & x_i^{min} \leq x_i \leq x_i^{max} & i=1,2,...,n \end{array}$$

Evolutionary algorithms: NSGA-II, SMS-EMOA

02 Model

03 Multi Objective Optimization Problem

- Algorithm:
- 1. NSGA-II: Non-dominated Sorting Genetic Algorithm

 Based on genetic algorithm

- Algorithm:
- 2. SMS-EMOA

 Data: Daily profit of 24 shares at USA stock market collected from Jan 2018 to Dec 2020 (Three years)

1. NSGA-II

2. SMS-EMOA

Sharpe ratio:

$$S = \left(\frac{R_p - R_f}{\sigma_p}\right)$$

	NSGA-II	SMS-EMOA	Equal weights
Time(s)	18.7	7.72	-
Return	0.422	0.417	0.184
Volatility	0.236	0.233	0.220

Weights:

References

- [1] Cornuejols, G., T¨ut¨unc¨u, R., *Optimization Methods in Finance*, Cambridge Univ ersity Press, 2007.
- [2] Crama, Y. and Schyns, M., "Simulated Annealing for Complex Portfolio Selection P roblems", *European Journal of Operational Research* 150 (2003), 546 571.
- [3] Ertenlice, O. and Kalayci, C.B., "A Survey of Swarm Intelligence For Portfolio Opti mization: Algorithms and Applications", *Swarm and Evolutionary Computation*, 39 (2 018), 36 52.
- [4] Goldberg, D.E., Genetic Algorithms in Search, Optimisation and Machine Learning, Reading, Mass.: Addison Wesley, 1989.
- [5] Lazulfa, I. and Saputro, P.H., "Portfolio Optimization With Buy-in Thresholds Const raint Using Simulated Annealing Algorithm", *Proceeding of Seminar Nasional Integra si Matematika dan Nilai Islami* 1 (2017), 370 377.

THANK YOU FOR YOUR ATTENTION

