Nanoscale Engineering of Heat Transfer and Energy Conversion Processes

Gang Chen

Nanoscale Heat Transfer and Thermoelectrics Laboratory Mechanical and Aerospace Engineering Department University of California at Los Angeles **Los Angeles, CA 90095-1597**

Tel: 310-206-7044

Email: gchen@seas.ucla.edu

URL: www.seas.ucla.edu/~gchen

Thermal Materials Workshop, Cambridge, UK, May 30-June 1, 2001

REPORT DOCUMENTATION PAGE					Form Approved OMB No. 0704-0188	
and reviewing this collection of information. Send commended the Headquarters Services, Directorate for Information Ope	nents regarding this burden estir rations and Reports (0704-0188	mate or any other aspect of this coll), 1215 Jefferson Davis Highway, S	ection of information, incl uite 1204, Arlington, VA	luding suggestions for reducing 22202-4302. Respondents sho	gathering and maintaining the data needed, and completing this burder to Department of Defense, Washington uld be aware that notwithstanding any other provision of FRETURN YOUR FORM TO THE ABOVE ADDRESS.	
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Workshop Presentations				3. DATES COVERED (FROM - TO) 30-05-2001 to 01-06-2001		
4. TITLE AND SUBTITLE Nanoscale Engineering of Heat Transfer and Energy Conversion Processes Unclassified				5a. CONTRACT NUMBER		
				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
Chen, Gang;				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZAT Nanoscale Heat Transfer and The Mechanical and Aerospace Engin University of California at Los A Los Angeles, CA90095-1597	rmoelectrics Labor eering Department	atory		8. PERFORMING NUMBER	G ORGANIZATION REPORT	
9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS				10. SPONSOR/MONITOR'S ACRONYM(S)		
Office of Naval Research International Field Office				11. SPONSOR/MONITOR'S REPORT		
Office of Naval Research				NUMBER(S)		
Washington, DCxxxxx	T TOTAL CONT. TOTAL CONT.	TOP				
12. DISTRIBUTION/AVAILAB APUBLIC RELEASE	ILITY STATEMEN	N1				
, 13. SUPPLEMENTARY NOTES See Also ADM001348, Thermal downloaded from: http://www-me	Materials Worksho		ridge, UK on M	May 30-June 1, 200	1. Additional papers can be	
14. ABSTRACT	1771		. m n	.•		
? What Can Be Engineered? ? Ph	onon and Electron	Transport. ? Engineer	ing Photon Prop	perties.		
15. SUBJECT TERMS 16. SECURITY CLASSIFICAT	ION OE:	17. LIMITATION	18.	NAME OF F	FEDONEIDI F DEDEONI	
10. SECORITI CLASSIFICAT	ION OF.	OF ABSTRACT	 	19. NAME OF RESPONSIBLE PERSON Fenster, Lynn		
		Public Release		lfenster@dtic.mi	1	
			19			
a. REPORT b. ABSTRACT c. THIS PAGE Unclassified Unclassified				19b. TELEPHONE NUMBER International Area Code Area Code Telephone Number 703767-9007 DSN 427-9007		
				_	Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39.18	

OUTLINE

- What Can Be Engineered?
- Phonon and Electron Transport.
- Engineering Photon Properties.

HISTORY OF ENGINEERED STRUCTURES

Photons:

Nature Given:

Engineered:

Free Space Propagating Wave

Interference Filters and Coatings, >100 Years Photonic Crystals, 2D and 3D, ~15 Years

(Baughman et al., 2000)

Electrons:

Nature Given:

Engineered:

Inside Solids, Band Formation, 3D, or Free Space Wave

Quantum Wells, Superlattices, 2D, ~30 Years Quantum Wires, Quantum Dots, 1D, 0D Quantum Dot Superlattices, 3D

Phonons:

Nature Given:

Engineered:

Inside Solids, Band Formation, 3D, or Free Space Wave Phononic Crystals: 3D ~10 Years (Long Wavelength) Phonon Filters: 1D, ~20 Years (Low Temperature)

Quantized Transport, Recent (Very Low Temperature)

CONDITIONS FOR ENGINEERING

WAVE REGIME Phase Preservation

Long Mean Free Path for Phase Preservation Hetero-Interfaces for Phase Addition/Subtraction (a) Wavelength Comparable to Unit Cell (Zero's Order Effect)

(b) Wavelength Much Longer than Atoms: Effective Medium

Energy Separation Larger Than Thermal Fluctuation

PARTICLE REGIME Direction Change

Long Mean Free Path and Hetero-Interfaces

ORDER OF MAGNITUDES IN SOLIDS

Electron/Phonon Mean Free Path: 10 – 1000 Å

Electron Wavelength: 10-100 Å

Dominant Phonon Wavelength: 10-50 $\mbox{\normalfont\AA}$

Photon wavelength and mean free path ~1µm and up

Nanostructures Are the Playground!!!

APPLICATIONS

Utilization of Electronic Energy State Change

Quantum Well Lasers:

Electron Density of States Change

Artificial Energy Levels/Bandgaps Quantum Cascade Lasers: Artificial Energy Levels/Bandgaps Quantum Well Detectors:

Utilization of Photonic Energy State Change

Photonic Fibers, etc.? Mostly Under Investigation but Exciting!

Concurrent Electron-Photon State Change

Quantum Dots as Biological Tags (photoluminescence) Microcavity Lasers, etc. Mostly Under Investigation

Concurrent Electron-Phonon State Change

Relaxation Time of Electrons for Better Lasers, Under Investigation

Transport Properties Nonessential!!! Wavelength Specific Application!!!

ENGINEERING THERMAL ENERGY TRANSPORT

KINETIC FORMULISM

$$\begin{aligned} \mathsf{q}_{\mathsf{X}} &= \mathsf{f} \mathsf{v}_{\mathsf{X}} \bullet \mathsf{E} \bullet \mathsf{f} \bullet \mathsf{d}^{3} \mathsf{k} = \mathsf{f} \mathsf{v}_{\mathsf{X}} \bullet \mathsf{E} \bullet \mathsf{f} \bullet \mathsf{D}(\mathsf{E}) \mathsf{d} \mathsf{E} \\ \uparrow & \uparrow & \uparrow \\ \mathsf{Velocity} \ \, \mathsf{Energy} \ \, \mathsf{Number Density} \end{aligned}$$

$$k = \frac{1}{3} [v \cdot C(E) \cdot \Lambda(E) dE$$
 (Bulk Material)

LANDAUER FORMULISM

$$q_{12} = \int v_x \bullet E \bullet (f_1 - f_2) \bullet \xi \bullet d^3k$$

Transmissivity

Phonon Transmission Cross Interfaces

Chen, J. Heat Transf., 121, 945 (1999).

INTERFACE SCATTERING

NANOSCALE HEAT TRANSFER AND THERMOELECTRICS LABORATORY (Nano-HTTL)

PHONON ENGINEERING IN NANOSTRUCTURES

BULK MATERIALS

$$\mathbf{K} = \frac{1}{3} \int_0^{\omega_{\text{max}}} \mathbf{C}(\omega) \mathbf{v}(\omega) \Lambda(\omega) d\omega$$

To Reduce K in Bulk Materials: Reduce A (Alloys, Rattlers)

NANOSTRUCTURES

$$\mathbf{K} = \frac{1}{4\pi} \int_0^{\omega_{\text{max}}} \left[\int_0^{2\pi} \sin^2 \phi d\phi \Big/ \int_0^{\pi} \mathbf{C}(\omega) \mathbf{v} \ (\omega, \theta, \varphi) \Lambda(\omega, \theta, \varphi) \cos^2 \theta \sin \theta d\theta \Big/ \right] d\omega$$

HEAT FLOW DIRECTION

To Reduce K in Low-Dimensional Structures

- Reduce A: Bulk and Interface Scattering
- Reduce V: Phonon Folding & Standing Waves
- Reduce C: Density of States Change
- Reduce Integration Limits Over Solid Angle

Total Internal Reflection

Reduce Integration Limits Over Frequency

Chen (Semiconductors&Semimetals, v.71, 2001)

Phonon Confinement

EXAMPLES

Si/Ge Superlattice

Thermoelectric Energy Conversion

Ge

and Power Generators Solid-State Coolers **HOT SIDE**

Ge

Nondimensional Figure of Merit

Through Heat Conduction Reverse Heat Leakage

(Dresselhaus, Wang, et al.)

THERMAL ENGINEERING OPPORTUNITIES

Energy Technology

- Heat Conduction, k
- Interface Scattering Nanostructures
- Thermal Radiation, ϵ

Photonic Gap Inhibit Thermal Emission Microstructures

- 1. Porous Media Combustion
- 2. Phononic-Photonic Super Thermal Insulators for Coatings

Thermal+?→Technology

- Thermo-Electric
 Thermoelctric
 Thermionic
 Microelectronics
- Thermo-Optic
 Refractive Index
 IR Coatings
 Telecommunication
- Thermo-Mechanic
- Thermo-Photo-Voltaic

NANOSTRUCTURED THERMAL MATERIALS

NANOPOROUS BISMUTH

NANOCHANNELLED ALUMINA

QUANTUM DOTS

- Low Thermal Conductivity
- Highly Anisotropic Properties

- Coatings for Engines and Turbines
- Thermal Materials for Microdevices

ENGINEERING SCATTERING

Carbon Nanotube Arrays

[from Suh and Lee, Appl. Phys. Lett., 75, 2047, 1999].

Carbon Sheet and Tubes

(http://cnst.rice.edu/pics.html)

Three-Phonon Scattering

$$k_1 = k_2 + k_3 + G$$

IN A SHEET, ONLY // WAVEVECTORS

HEAT CONDUCTION THEORIES

Fourier Law:

Diffusion, Local Equilibrium, Infinite Speed

$$\mathbf{q}(\mathbf{r},t) = -k\nabla T(\mathbf{r},t)$$

Cattaneo Equation: Diffusion, Local Equilibrium, Finite Speed

$$\tau \frac{\partial \mathbf{q}}{\partial t} + \mathbf{q}(\mathbf{r}, t) = -k\nabla T(\mathbf{r}, t)$$

Boltzmann Equation: Dilute Particle Transport, Phase Space

$$\frac{\partial f(\mathbf{r}, \mathbf{v}, t)}{\partial t} + \mathbf{v} \bullet \nabla f = -\frac{f - f_o}{\tau}$$

HEAT CONDUCTION EQUATIONS **BALLISTIC-DIFFUSIVE**

q_m--scattered and emitted carriers q_b---originating from boundary diffusive transport ballistic transport

 $\mathbf{q}_b(t, \mathbf{r}) = \int \int I_{w\omega} (t - (s - s_o)/|\mathbf{v}|, \mathbf{r} - (s - s_o)\hat{\Omega}) \exp\left(-\int_{s_o}^s \frac{ds}{|\mathbf{v}|\tau_{\omega}}\right) \cos\theta d\Omega \, d\omega$

Chen, Phys. Rev. Lett., v. 86, p. 2297 (2001). NANOSCALE HEAT TRANSFER AND THERMOELECTRICS LABORATORY (Nano-HTTL)

ACKNOWLEDGMENTS

Post-Docs

Dr. R. Kumar (Device Modeling, at Allegero) Dr. S.G. Volz (MD, at ENSMA, U. Poitiers) Dr. T. Zeng (at North Carolina State Univ.)

Dr. S.Q. Zhou (k Measurements, at Messon)

Graduate Students

T. Borca-Tasciuc (at Ren. Polytechnique Inst.)

D. Achimov (Nanowires, nanorobotics)

W.L. Liu (k,S Measurements of Si/Ge)

A. Narayanaswamy (Metamaterials)

D. Song (Skutterudites, Bi, nanoparticles) B. Yang (Phonon Modeling, MEMS)

D.-J. Yao (Device Modeling, Fabrication) R.G. Yang (Device modeling, Fabrication)

F. Jianping (Device fabrication)

Visitors

Prof. K. Miyazaki (Kyushu Inst. Tech.)

Mr. A. Jacquot (France)

Mr. Eric Meyer (U. Poitiers, 1999)

Mr. J. Pauwels (U. Poitiers, 2000)

Undergraduate Students

Michelle L. Shaver (Nanowire Fabrication) Janet Tsai (Nano-Template Fabrication) David Sadelli (Nanowire Fabrication)

Collaborators

M.S. & G. Dresselhaus (MIT, Bi Nanowire, Theory)

B. Dunn (UCLA, Nanoporous Bi)

A.C. Ehrlich (NRL, Seebeck Measurements)

N.B. Elsner (Hi-Z, Si/Ge Multilayers)

J.-P. Fleurial (JPL, Device Fabrication)

M.S. Goorsky (UCLA, X-Ray Characterization)

R. Gronsky (Berkeley, TEM Characterization)

H.B. Lyon (Marlow, Device Applications) C.J. Kim (UCLA, Device Fabrication)

J. Meyer (NRL, Mid-IR Lasers)

S.Pei (U. Houston, InAs/AISb Superlattice)

T.D. Sands (Berkeley, PLD of Skutterudites) K.L. Wang (MBE of Si/Ge Superlattices)

X. Zhang (Electromagnetic Metamaterials)

Sponsors: DOD/ONR MURI (TE and EM), NSF, DARPA, JPL, DOE

