CLAIM AMENDMENTS

- 1. (currently amended) A process for preparing
- cabergoline (I)

cabergoline (I)

- 4 comprising the following steps:
- a) reacting the compound of formula (XIII)

wherein $\mathbf{R}_{\!\scriptscriptstyle 1}$ is a $\mathbf{C}_{\!\scriptscriptstyle 1\text{--}4}$ alkyl group, in the presence of a 7 catalyst 8 i) with a compound of formula (XIV), X-COOR₂ (XIV) 9 wherein \mathbf{R}_{2} is an optionally substituted straight or 10 branched C_{1-6} alkyl group, 11 12 X represents a bromine or chlorine atom, or (ii) with a compound of formula (XV), O(COOR₂)₂ (XV) 13 wherein R_2 is a group as defined above for formula (XIV); 14 b) reacting the obtained carbamate derivative of formula 15 (XVI) 16

20

21

wherein R_1 and R_2 is a group as defined above, with 3
(dimethylamino) propylamine in the presence of a catalyst;

c) reacting the obtained ergoline-8 β -carboxamide derivative of formula (XVII)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ H & & \\ R_2 \text{OOC-N} & & \\ \end{array}$$

22

- **4** - 23685AM4.WPD

wherein R_2 is a group as defined above, with ethyl isocyanate in the presence of ligand(s) and Ib and IIb metal group salt catalyst;

d) reacting the obtained protected N-acylurea derivative of formula (XVIII)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

27

25

26

- wherein R_2 is a group as defined above, with a strong aqueous inorganic acid; and
- e) reacting the obtained secondary amine of formula (XIX)

- with an electrophyl electrophilic allyl alcohol derivative in the presence of a palladium or nickel containing catalyst and optionally in the presence of ligand(s) to form cabergoline (I).
- 2. (previously presented) A process according to claim 1 wherein R_1 is methyl and R_2 is tert-butyl.
- 3. (previously presented) A process according to claim 1
 wherein step (a) is carried out at a temperature of from 0°C to 50°C
 in the presence of 4-dimethylaminopyridine catalyst in a
 hydrocarbon halide solvent.

2

3

1

2

3

4

5

- 4. (previously presented) A process according to claim 1 wherein step (b) is carried out at a temperature of from 50° C to 70°C in an C_{1-6} alkyl alcohol solvent in the presence of 2-hydroxypyridine catalyst.
- 5. (previously presented) A process according to claim 1 wherein step c) is carried out in hydrocarbon halide solvent, in the presence of copper(I) chloride and/or copper(II) chloride and/or copper(I) bromide and/or copper(I) iodide catalysts and triphenylphosphine or tri-p-tolylphophine ligand at a temperature of from 30°C to 50°C.
 - 6. (previously presented) A process according to claim 1 wherein step (d) is carried out at a temperature of from 40°C to 80°C in aqueous hydrochloric acid.
 - 7. (currently amended) A process according to claim 1 wherein at step (e) the electrophyl electrophilic allyl alcohol derivative is allyl acetate, the catalyst is tetrakis (triphenyl-phosphine) palladium(0), and the reaction is carried out in an aromatic hydrocarbon solvent at a temperature of from 20°C to 50°C.

Claims 8 through 17 (canceled)

- 18. (new) A process according to claim 1 which further comprises the following steps:
- (f) chromatographically purifying the Cabergoline of the Formula (I) to obtain Cabergoline as an oily solid product;
- (g) dissolving the Cabergoline obtained as an oily solid product in an organic solvent; and
- (h) partially removing the organic solvent from the
 Cabergoline in several steps under vacuum at a temperature of from
 O°C to 30°C, to obtain a non-oily solid Cabergoline product.
- 1 19. (new) A process according to claim 18 wherein the
 2 organic solvent employed during step (g) is acetone, methyl acetate
 3 or dichloromethane.