1 Posets and losets, lattices, proposition about losets and lattices. Boolean lattices, examples of Boolean lattice

Определение

Пусть \leq - частичный порядок на множестве A. Тогда пара (A, \leq) называется **частично упорядоченным множеством**, сокращённо **чум**.

Определение

Пусть $\mathcal{A}(A, \leq)$ - чум. Если \leq - линейный порядок на A, то \mathcal{A} называется **линейно упорядоченным множеством**, сокращённо **лум**.

Определение

Пусть $\mathcal{A} = (A, \leq)$ - чум. Тогда \mathcal{A} называется **решёткой**, тогда и только тогда, когда для любых двух элементов $a, b \in A$ существуют $\sup_A (\{a, b\})$ и $\inf_A (\{a, b\})$.

Определение

Если $\mathcal{A}=(A,\leq)$ - решётка, тогда для любых двух $a,b\in A$

- $a \cup^{\mathcal{A}} b \rightleftharpoons \sup_{A} (\{a, b\})$
- $a \cap^{\mathcal{A}} b \rightleftharpoons \inf_{A}(\{a,b\})$

Если из контекста понятно, какая решётка имеется в виду, верхний индекс \mathcal{A} можно опустить: вместо $\cup^{\mathcal{A}}$ можно писать \cup , а вместо $\cap^{\mathcal{A}}$ - \cap .

Предложение

Любой лум является решёткой.

Доказательство

Пусть (A, \leq) - лум, возьмём два элемента $a, b \in A$. Так как \leq - линейный порядок, $a \leq b$ или $b \leq a$. В первом случае $\min(\{a,b\}) = a$ и $\max(\{a,b\}) = b$, во втором случае $\min(\{a,b\}) = b$ и $\max(\{a,b\}) = a$. В обоих случаях

для $X = \{a, b\}$ существуют min и max, следовательно, по лемме о sup и inf, sup и inf существуют.

Определение

Пусть $\mathcal{A} = (A, \leq)$ - решётка. Тогда \mathcal{A} называется **дистрибутивной** решёткой, тогда и только тогда, когда для любых $a, b, c \in A$ верно, что

$$a \cup^{\mathcal{A}} (b \cap^{\mathcal{A}} c) = (a \cup^{\mathcal{A}} b) \cap^{\mathcal{A}} (a \cup^{\mathcal{A}} c)$$

$$a \cap^{\mathcal{A}} (b \cup^{\mathcal{A}} c) = (a \cap^{\mathcal{A}} b) \cup^{\mathcal{A}} (a \cap^{\mathcal{A}} c)$$

Определение

Дистрибутивная решётка $\mathcal{A}=(A,\leq)$ называется **булевой алгеброй**, тогда и только тогда, когда

- ullet существует наибольший элемент $1^{\mathcal{A}}$ из A
- ullet существует наименьший элемент $0^{\mathcal{A}}$ из A
- для любого элемента $a\in A$ существует такой $\bar a\in A$, что $a\cup^{\mathcal A}\bar a=1^{\mathcal A}$ и $a\cap^{\mathcal A}\bar a=0^{\mathcal A}$

пример

Рассмотрим частичный порядок \subseteq_A на множестве $A: \subseteq_A \subseteq \mathcal{P}(A)$. Тогда чум $(\mathcal{P}(A), \subseteq_A)$ является булевой алгеброй.

Доказательство

Для доказательства этого утверждения достаточно заметить, что для любых $X,Y\subseteq A$

- ullet $\sup(X,Y)=X\cup Y$ всегда существует
- $\bullet \ \inf(X,Y) = X \cap Y$ всегда существует
- $1 = A, 0 = \emptyset$
- $\bullet \ \bar{X} = A \setminus X$

Дистрибутивность следует из дистрибутивности операций \cap и \cup на множествах.

2 Combinatory terms, combinatory calculus, theorem about completeness of SKI basis

Определение

Напомним, что **комбинатор** - это λ -терм без констант и свободных переменных.

SKI - комбинаторный базис

Следующие три комбинатора называются комбинаторным базисом:

- $I = \lambda x.x$
- $K = \lambda xy.x$
- $S = \lambda xyz.(xz)(yz)$

Комбинаторный терм определяется по индукции:

- комбинатор из комбинаторного базиса I, K, S является комбинаторным термом.
- если a, b два комбинаторных терма, то (ab) также является комбинаторным термом.

Таким образом, в **комбинаторном исчислении** используется только один оператор: аппликация, без оператора абстракции и каких-либо переменных.

Теорема (полнота комбинаторного исчисления)

Для любого комбинатора c существует такой комбинаторный терм T что

$$c \equiv T$$

Эта теорема означает, что комбинаторного базиса I, K, S достаточно для получения всех комбинаторов, выражаемых в λ -исчислении, используя только оператор аппликации.

Замечание

На самом деле достаточно рассматривать только K и S в качестве комбинаторного базиса, потому что можно выразить I как комбинаторный терм от K и S:

$$I \equiv (SKK)$$

Доказательство

Дан комбинатор s, построим соответствующий комбинаторный терм C(s) по индукции:

- C(x) = x, если s = x переменная,
- C((st)) = (C(s)C(t)), аппликация
- $C(\lambda x.x) = I$ для любой переменной x
- $C(\lambda x.y) = Ky$, если $x \neq y$
- $C(\lambda x.\lambda ys) = C(\lambda x.C(\lambda y.s))$
- $C(\lambda x.(st)) = SC(\lambda x.s)C(\lambda x.t)$

Этот алгоритм называется исключением абстракции. Теперь, индукцией по строению λ -терма докажем, что $C(s) \equiv s$. Случаи C((st)) = (C(s)C(t)) и $C(\lambda x.\lambda ys) = C(\lambda x.C(\lambda y.s))$ доказываются непосредственно по предположению индукции. Пусть $s \equiv C(s)$ и $t \equiv C(t)$, т.е. $C(s), s \Rightarrow p$ и $C(t), t \Rightarrow q$ для некоторых p и q. Тогда

$$C(st) = C(s)C(t) \Rightarrow pC(t) \Rightarrow (pq)$$

. Рассмотрим случай $C(\lambda x.y) = Ky$, когда $x \neq y$. Действительно:

$$Ky = (\lambda a.(\lambda b.a))y \Rightarrow_{\beta} \lambda b.y \Rightarrow_{\alpha} \lambda x.y$$

. Последний случай, если $C(s), s \Rightarrow p$ и $C(t), t \Rightarrow q$ для некоторых p и q:

$$SC(\lambda x.s)C(\lambda x.t) = (\lambda xyz.xz(yz))\lambda x.p\lambda x.q \Rightarrow$$

$$\Rightarrow \lambda z.((\lambda x.p)z)((\lambda x.q)z) \Rightarrow$$

$$\Rightarrow \lambda z.(p[x=z]q[x=z]) \Rightarrow_{\alpha} \lambda x.(pq) \Leftarrow \lambda x.(st)$$

.

3 Kernel of a homomorphism, theorem about homomorphisms

Определение

Пусть $\mathcal{M} \xrightarrow{f} \mathcal{N}$ - гомоморфизм. Тогда **ядром** гомоморфизма f является бинарное отношение $\ker(f) = \{(a,b)|a,b \in M,\ f(a) = f(b)\}.$

Замечание

- 1) Пусть \mathcal{M} структура \sim_{θ} некоторая конгруэнция на \mathcal{M} . Тогда отображение $\nu_{\theta}: M \to M/\sim_{\theta}$, определённое как $\nu_{\theta}(a) \rightleftharpoons [a]_{\sim_{\theta}}$ эпиморфизм из $\mathcal{M} \to \mathcal{M}/\sim_{\theta}$. Отображение ν_{θ} называется **натуральным эпиморфизмом**.
- 2) Для любого гомоморфизма $\mathcal{M} \xrightarrow{f} \mathcal{N}$ его ядро $\ker(f)$ является конгруэнцией на \mathcal{M} .

Доказательство

Следует из определения конгруэнции.

Определение

Пусть $\mathcal{M}=(M,\sigma)$ - структура. Отношение эквивалентности \sim_{θ} на множестве M называется **конгруэнцией**, тогда и только тогда, когда для любого функционального символа $f^n \in \sigma$ и для любой пары кортежей $\bar{a}, \bar{b} \in M^n$

$$((a_1 \sim_{\theta} b_1) \land \ldots \land (a_n \sim_{\theta} b_n)) \Rightarrow f(\bar{a}) \sim_{\theta} f(\bar{b})$$

Определение

Структура \mathcal{M} называется **алгеброй**, тогда и только тогда, когда её сигнатура σ не содержит предикатных символов.

Теорема (гомоморфизм)

Пусть $\mathcal{M} \stackrel{\phi}{\to} \mathcal{N}$ - эпиморфизм алгебр. Тогда существует такой изоморфизм $\psi : \mathcal{M} / \sim_{\ker(\phi)} \stackrel{\cong}{\to} \mathcal{N}$, что $\phi = \nu_{\ker(\phi)} \circ \psi$.

Доказательство

Определим отображение ψ следующим образом. Пусть $[a]_{\sim_{\ker(\phi)}}$ - некоторый класс эквивалентности из $M/\sim_{\ker(\phi)}$. Отметим, что для любого другого $a'\in M$ такого, что $[a]_{\sim_{\ker(\phi)}}=[a']_{\sim_{\ker(\phi)}}$, верно, что $a\sim_{\ker(\phi)}a'$, следовательно, $\phi(a)=\phi(a')$, т.е. Значение $\phi(a)$ для класса $[a]_{\sim_{\ker(\phi)}}$ определяется однозначно. Пусть $g([a]_{\sim_{\ker(\phi)}})=\phi(a)$. Тогда по определению $\nu_{\ker(\phi)}\circ\psi(a)=\phi(a)$. Проверим, что ψ является биективным отображением. Сюръективность ψ очевидна. Инъективность ψ : если $\psi([a]_{\sim_{\ker(\phi)}})=\psi([b]_{\sim_{\ker(\phi)}})$, то, по определению $g, \phi(a)=\phi(b)$, тогда $a\sim_{\ker(\phi)}b$, следовательно, $[a]_{\sim_{\ker(\phi)}}=[b]_{\sim_{\ker(\phi)}}$. Условия гомоморфизма. Пусть $f^n\in\sigma$ - функциональный символ $[a_1]_{\sim_{\ker(\phi)}},\ldots,[a_n]_{\sim_{\ker(\phi)}}\in M/\sim_{\ker(\phi)}$. Тогда

$$\psi(f^{\mathcal{M}/\sim_{\ker(\phi)}}([a_1]_{\sim_{\ker(\phi)}},\ldots,[a_n]_{\sim_{\ker(\phi)}})) = \phi(b)$$

где $b \in X = [f^{\mathcal{M}/\sim_{\ker(\phi)}}([a_1]_{\sim_{\ker(\phi)}}, \dots, [a_n]_{\sim_{\ker(\phi)}})]_{\sim_{\ker(\phi)}}$ поскольку $f^{\mathcal{M}}(a_1, \dots, a_n) \in X$,

$$\phi(b) = \phi(f^{\mathcal{M}}(a_1, \dots, a_n)) =$$

$$f^{\mathcal{N}}(\phi(a_1), \dots, \phi(a_n)) =$$

$$f^{\mathcal{N}}(\psi([a_1]_{\sim_{\ker(\phi)}}), \dots, \psi([a_n]_{\sim_{\ker(\phi)}}))$$