Limbaje Formale, Automate și Compilatoare

Curs 2

2013-14

Curs 2

- lacktriangle Proprietăți de închidere pentru \mathcal{L}_3
- 2 Lema Bar-Hillel
- 3 Automate finite deterministe
- Automate finite nedeterministe
- 5 Automate finite cu ε-tranziţii

Fie L, L_1, L_2 limbaje regulate: există gramaticile G, G_1, G_2 de tip 3 astfel ca $L = L(G), L_1 = L(G_1)$ și $L_2 = L(G_2)$.

Atunci, următoarele limbaje sunt de asemenea regulate:

- $0 L_1 \cup L_2$
- $2 L_1 \cdot L_2$
- 3 L*
- 4 LR
- $L_1 \cap L_2$

Închiderea la intersecție

Gramatica $G = (N_1 \times N_2, T_1 \cap T_2, (S_1, S_2), P)$, unde P constă din:

- ullet $(S_1,S_2)
 ightarrow \epsilon$, dacă $S_1
 ightarrow \epsilon \in P_1$ și $S_2
 ightarrow \epsilon \in P_2$
- ullet $(A_1,B_1)
 ightarrow a(A_2,B_2)$, dacă $A_1
 ightarrow aA_2 \in P_1$ și $B_1
 ightarrow aB_2 \in P_2$
- ullet $(A_1,A_2)
 ightarrow a$, dacă $A_1
 ightarrow a \in P_1$ și $A_2
 ightarrow a \in P_2$

este de tip 3 şi generează limbajul $L_1 \cap L_2$

Închiderea la operația de oglindire

Fie
$$G = (N, T, S, P)$$
 care generează $L(L = L(G))$

Gramatica G = (N, T, S', P') unde P' constă din

- reguli $S' \rightarrow aA$, pentru orice regulă $A \rightarrow a$ din P
- reguli B → aA pentru orice regulă A → aB din P
- ullet regula $S
 ightarrow \epsilon$
- ullet regula $\mathcal{S}' o a$, pentru orice regulă $\mathcal{S} o a$ din P $(a \in \mathcal{T} \cup \{\epsilon\})$

este de tip 3 şi generează LR

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- Lema Bar-Hillel
- 3 Automate finite deterministe
- Automate finite nedeterministe
- $\boxed{5}$ Automate finite cu ϵ -tranziţii

Lema Bar-Hillel (lema de pompare)

Lema 2.1

Fie L un limbaj de tip 3. Există un număr m astfel încât oricare ar fi cuvântul $w \in L$ cu $|w| \ge m$, acesta are o descompunere de forma w = xyz, unde $0 < |y| \le m$, şi $xy^iz \in L$ oricare ar fi $i \ge 0$.

Fie G=(N,T,S,P) astfel ca L(G)=L. Dacă |N| este numărul simbolurilor din N, m=|N|+1, se arată că are loc proprietatea enunţată: Fie $w=a_1a_2\ldots a_n, n\geq m\Rightarrow n\geq |N|+1$ $S\Rightarrow a_1A_1\Rightarrow a_1a_2A_2\Rightarrow \ldots\Rightarrow a_1a_2\ldots a_k\underline{A_k}\Rightarrow \ldots\Rightarrow a_1a_2\ldots a_ka_{k+1}\ldots a_s\underline{A_s}\Rightarrow \ldots\Rightarrow a_1a_2\ldots a_ka_{k+1}\ldots a_sa_{s+1}\ldots a_{n-1}a_n$ $A_k=A_s$

Demonstrație

$$w = a_1 a_2 \dots a_n, n \geq m$$

$$S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \ldots \Rightarrow a_1 a_2 \ldots a_k A_k \Rightarrow \ldots \Rightarrow a_k A_k \Rightarrow$$

$$a_1a_2 \dots a_k a_{k+1} \dots a_s A_k \Rightarrow \dots \Rightarrow a_1a_2 \dots a_k a_{k+1} \dots a_s a_{s+1} \dots a_{n-1} a_n$$

Atunci:

- $S \Rightarrow^* a_1 a_2 \dots a_k A_k$
- $A_k \Rightarrow^* a_{k+1} \dots a_s A_k$ şi
- \bullet $A_k \Rightarrow^* a_{s+1} \dots a_{n-1} a_n$

Fie
$$x = a_1 a_2 \dots a_k$$
, $y = a_{k+1} \dots a_s$ şi $z = a_{s+1} \dots a_{n-1} a_n$

• $S \Rightarrow^* xA_k, A_k \Rightarrow^* yA_k \text{ si } A_k \Rightarrow^* z$

Demonstraţie

Fie
$$x = a_1 a_2 \dots a_k$$
, $y = a_{k+1} \dots a_s$ şi $z = a_{s+1} \dots a_{n-1} a_n$

- $S \Rightarrow^* xA_k$
- $A_k \Rightarrow^* yA_k$ şi
- $A_k \Rightarrow^* Z$
- Pentru $i = 0, xz \in L(G)$: $S \Rightarrow^* xA_k \Rightarrow^* xz$
- Pentru i > 0, $xy^iz \in L(G)$: $S \Rightarrow^* xA_k \Rightarrow^* xyA_k \Rightarrow^* xyyA_k \Rightarrow^* \dots \Rightarrow^* xyy \dots yA_k \Rightarrow^* xyy \dots yz = xy^iz$

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- 2 Lema Bar-Hillel
- Automate finite deterministe
- Automate finite nedeterministe
- $\boxed{5}$ Automate finite cu ϵ -tranziţii

Automate finite

- Mecanism de recunoaştere (acceptare) pentru limbaje
- Limbaje de tip 3
- Mulţime finită de stări

Automate finite

Definiție 1

Un automat finit determinist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q şi Σ sunt mulţimi finite, nevide, numite mulţimea stărilor respectiv alfabetul de intrare
- q₀ ∈ Q este starea iniţială
- F ⊆ Q este mulţimea stărilor finale
- δ este o funcție , δ : $Q \times \Sigma \to Q$, numită funcția de tranziție

Stare iniţială:

Reprezentare prin diagrame(grafuri) de tranziție

Stări:

Stări finale:

Funcția de tranziție:

Reprezentare prin matricea de tranziție

$$A = (\{q_0, q_1\}, \{a, b\}, \delta, q_0, \{q_1\})$$

Intrare	а	b
Stare δ		
q0	q0	q1
q1	q1	q1

Limbajul acceptat

- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to Q$
 - $\hat{\delta}(q,\epsilon) = q, \forall q \in \mathsf{Q};$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a)), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$
- Observaţii:
 - $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
 - $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*$

Limbajul acceptat

Definiție 2

Limbajul acceptat (recunoscut) de automatul $A = (Q, \delta, \Sigma, q_0, F)$ este multimea :

$$L(A) = \{w | w \in \Sigma^*, \hat{\delta}(q_0, w) \in F\}.$$

- Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) ajunge într-o stare finală.
- δ̂(q, a) = δ(q, a), ∀q ∈ Q, ∀a ∈ Σ. Din acest motiv, δ̂ va fi notată de asemenea cu δ.
- Două automate A și A' sunt echivalente, dacă L(A) = L(A')

Exemple

$$L(A) = \{a^n b^m | n \ge 0, m \ge 1\}$$

$$L(A) = ?$$

Exemple

Automate deterministe pentru:

- $L = \{w \in \{0,1\}^* | w \text{ conține un număr par de } 0\}$
- $L = \{w \in \{0,1\}^* | w \text{ se termina cu } 11\}$

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- 2 Lema Bar-Hillel
- 3 Automate finite deterministe
- Automate finite nedeterministe
- 5 Automate finite cu ∈-tranziţii

Automate finite nedeterministe

Definiție 3

Un automat finit nedeterminist este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q, Σ, q₀ şi F sunt definite ca în cazul automatelor finite deterministe
- δ este o funcție, $\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$, numită funcția de tranziție

Observaţie:

A este automat determinist, dacă

$$|\delta(q, a)| = 1, \forall q \in Q, \forall a \in \Sigma$$

Exemple

Intrare	а	b	С
Stare			
0	{0}	{1,3}	Φ
1	Φ	{2}	Φ
2	Φ	{4}	Φ
3	Φ	{4}	Φ
4	Φ	Φ	{4}

- Fie S mulţime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$

 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$

- Fie S mulţime de stări. Notăm $\delta(S, a) = \bigcup_{q \in S} \delta(q, a)$.
- Extensia lui δ la cuvinte $\hat{\delta}: Q \times \Sigma^* \to 2^Q$
 - $\hat{\delta}(q,\epsilon) = \{q\}, \forall q \in \mathsf{Q};$
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$

Observaţii:

- $\hat{\delta}(q, a) = \delta(q, a), \forall q \in Q, \forall a \in \Sigma$
- $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v)$, $\forall q \in Q, \forall u, v \in \Sigma^*$.

Limbajul acceptat

Definiție 4

Limbajul acceptat (recunoscut) de automatul finit nedeterminist $A = (Q, \Sigma, \delta, q_0, F)$ este mulţimea :

$$L(A) = \{ w | w \in \Sigma^*, \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

 Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) poate să ajungă într-o stare finală.

Teorema 1

Pentru orice automat nedeterminist A, există unul determinist A' echivalent.

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) \ (= \delta(S, a)), \ \forall S \in 2^Q$
- Pentru aplicaţii se construiesc doar stările accesibile din starea initială

Exemplu

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

•
$$\delta'(S, w) = \bigcup_{s \in S} \delta(s, w) = \delta(S, w), \forall w \in \Sigma^*$$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w) = \delta(S, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \delta(q_0, w)$

Dacă $A = (Q, \Sigma, \delta, q_0, F)$ atunci $A' = (2^Q, \Sigma, \delta', Q_0, F')$ unde:

- $Q_0 = \{q_0\}$
- $F' = \{S | S \subseteq Q, S \cap F \neq \emptyset\}$
- $\delta'(S, a) = \bigcup_{s \in S} \delta(s, a) = \delta(S, a)$

- $\delta'(S, w) = \bigcup_{s \in S} \delta(s, w) = \delta(S, w), \forall w \in \Sigma^*$
- $\delta'(Q_0, w) = \delta'(\{q_0\}, w) = \delta(q_0, w)$
- $w \in L(A') \Leftrightarrow$ $\delta'(Q_0, w) \in F' \Leftrightarrow \delta'(Q_0, w) \cap F \neq \emptyset \Leftrightarrow \delta(q_0, w) \cap F \neq \emptyset$ $\Leftrightarrow w \in L(A)$

Curs 2

- \bigcirc Proprietăți de închidere pentru \mathcal{L}_3
- 2 Lema Bar-Hillel
- 3 Automate finite deterministe
- Automate finite nedeterministe
- $oldsymbol{oldsymbol{5}}$ Automate finite cu ϵ -tranziţii

Automate finite cu ϵ -tranziţii

Definiție 5

Un automat finit cu ϵ -tranziții este un 5-uplu $A = (Q, \Sigma, \delta, q_0, F)$, unde:

- Q, Σ, q₀ şi F sunt definite ca în cazul automatelor finite deterministe
- δ este o funcție , $\delta: \mathbb{Q} \times (\Sigma \cup \{\epsilon\}) \to 2^{\mathbb{Q}}$, numită funcția de tranziție

Observație:

- A este automat nedeterminist, dacă $\delta(q, \epsilon) = \emptyset, \forall q \in Q$
- A este automat determinist, dacă, în plus:

$$|\delta(q, a)| = 1, \forall q \in Q, \forall a \in \Sigma$$

Exemplu

Intrare	a	b	С	3
Stare				
0	{0}	Φ	Φ	{1}
1	Φ	{1}	Φ	{2}
2	Φ	Φ	{2}	Φ

Cl(q)

 $=\{q'|q'\in Q, \text{ in graful automatului A exista un drum de la q la q' de lungime }k\geq 0$ ale carui arce sunt etichetate cu $\epsilon\}$.

$$q \in Cl(q)$$

CI(q)

 $=\{q'|q'\in Q, \text{ in graful automatului A exista un drum de la q la q' de lungime }k\geq 0$ ale carui arce sunt etichetate cu $\epsilon\}$.

$$q \in CI(q)$$

■ Dacă S ⊆ Q, atunci notăm:

$$CI(S) = \bigcup_{q \in S} CI(q)$$

• Cl(q)= $\{q'|q' \in Q$, in graful automatului A exista un drum de la q la q' de lungime $k \ge 0$ ale carui arce sunt etichetate cu ϵ }. $q \in Cl(q)$

■ Dacă S ⊆ Q, atunci notăm:

$$CI(S) = \bigcup_{q \in S} CI(q)$$

• Extensia lui δ la cuvinte: $\hat{\delta}: Q \times \Sigma^* \to 2^Q$

- Cl(q)= $\{q'|q' \in Q$, in graful automatului A exista un drum de la q la q' de lungime $k \ge 0$ ale carui arce sunt etichetate cu ϵ }. $q \in Cl(q)$
- Dacă S ⊆ Q, atunci notăm:

$$CI(S) = \bigcup_{q \in S} CI(q)$$

- Extensia lui δ la cuvinte: $\hat{\delta}: Q \times \Sigma^* \to 2^Q$
 - $\hat{\delta}(q,\epsilon) = Cl(q), \forall q \in \mathsf{Q};$

- Cl(q)= $\{q'|q' \in Q$, in graful automatului A exista un drum de la q la q' de lungime $k \ge 0$ ale carui arce sunt etichetate cu $\epsilon\}$. $q \in Cl(q)$
- Dacă S ⊆ Q, atunci notăm:

$$CI(S) = \bigcup_{q \in S} CI(q)$$

- Extensia lui δ la cuvinte: $\hat{\delta}: Q \times \Sigma^* \to 2^Q$

 - $\hat{\delta}(q, ua) = CI(\delta(\hat{\delta}(q, u), a))), \forall q \in Q, \forall u \in \Sigma^*, \forall a \in \Sigma.$

• $\hat{\delta}(q, a) = CI(\delta(CI(q), a)), \forall q \in Q, \forall a \in \Sigma$

- În cazul automatelor cu ϵ tranziţii vom păstra notaţia $\hat{\delta}$ pentru extensie pentru că, în general, $\hat{\delta}(q,\epsilon) \neq \delta(q,\epsilon)$ şi $\hat{\delta}(q,a) \neq \delta(q,a), a \in \Sigma$.
- $\hat{\delta}(q, uv) = \hat{\delta}(\hat{\delta}(q, u), v), \forall q \in Q, \forall u, v \in \Sigma^*$

Limbajul acceptat

Definiție 6

Limbajul acceptat (recunoscut) de automatul cu ϵ -tranziţii

 $A = (Q, \Sigma, \delta, q_0, F)$ este mulţimea :

$$L(A) = \{ w | w \in \Sigma^*, \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

 Un cuvânt w este recunoscut de un automat A dacă, după citirea în întregime a cuvântului w, automatul (pornind din starea iniţială q₀) poate să ajungă într-o stare finală.