

Bachelor: Automated Engine Mapping for DTU Roadrunners

Irene Danvy (s163905), Frederik Ettrup Larsen (s163920)

DTU Electrical Engineering, Technical University of Denmark (DTU)

DTU Electrical Engineering
Department of Electrical Engineering

What is DTU Roadrunner's

- Shell Ecocar Marathon
- Energy efficient driving
- Internal combustion engine

UN World Goals

- Energy efficiency
- Increase mileage
- Reduced fuel consumption

Engine Tuning

In general

- Adjust or modify internal parameters of engine calculations
- Can be used to optimize the output of the engine

In our case

- Tune for fuel efficiency
- Injection lengths are changed
- Linear interpolation is used to find injection lengths between indices
- Done by measuring air/fuel ratio (lambda) and manually adjusting the injection times for each index

RPM	Injection 1 Length [µs]
0	6000
250	6000
500	6000
750	6000
1000	4500
1250	4500
1500	4500
1750	4000
2000	4100
2250	3900
2500	3700
2750	3750
3000	3850
3250	3900
3500	3950
3750	3900

Goals of our project

- Improving quality of Map
- Improving ease of Engine Tuning

Improving quality of Map - method

Possibilities of automated alternatives to engine map:

- Multi-dimensional LUT based on engine measurements
- Software based engine model
- Multi-dimensional LUT based on outputs of engine model

Restrictions of the project:

- No precise engine model
- Only two vectors of control: ignition timing and injection length
- Only measured/measurable variables: Lambda (air/fuel ratio in exhaust) and temperature (intake air, oil, water (coolant), exhaust)

Choice: expanding injection length LUT to 2 dimensions, crank rotation speed and water temperature

Improving ease of Engine Tuning

Previous manual tuning setup

Two aspects of improved functionality:

- Simple: Press button on ECU, brake when prompted, car will tune itself and stop when done
- Complicated: Connect to UI on computer, start and stop Tuning and see live graphs from in there.

Engine mapping and Tuning

Challenges

- Engine modelling
- Hardware restrictions
- Continuing software projects
- Mechanical problems
- Controlled testing

Results I

Figure: Example of injection times as they change during an ordinary tuning

Figure: Example of lambda values as they change during an ordinary tuning

Results II

Figure: How lambda changes, when we try to keep the oil temperature constant, without changing the injection times

Figure: How lambda changes, when we try to keep the water temperature constant, without changing the injection times

DTI

Conclusion and final month of work

- 19-22/6 Finalizing implementation and first tests of the temperature and rotational speed of the engine crank
 - 23/6 Full system test of the car on Sjællandsringen
- 24-27/6 Final adjustments and tests, final implementation of UI
- 28/6-6/7 Shell Eco-marathon in London (data gathering and documentation)
 - 7-14/7 Finalizing writing of Bachelor
 - 15-22/7 Defense preparation
 - 23/7 Defense

Thanks for your time

