אוטומט מחסנית

אוטומטים ושפות פורמאליות

תיאור גרפי של אוטומט-מחסנית

דוגמה

$L = \{a^nb^n \mid n \ge 1\}$ אוטומט-מחסנית המקבל את

ראש		הקלט		
המחסנית	המצב	a	b	
-1	q_0	כתוב A (במקום $+$) בראש המחסנית $+$ הישאר ב- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	ייהיתקעותיי	
A	q_0	כתוב A נוסף בראש ; המחסנית המחסנית הישאר ב	מחק A מראש המחסנית ; עבור ל- q_1	
A	q_1	ייהיתקעותיי	מחק A מראש המחסנית ; הישאר ב- q_1	

	המצב	תוכן המחסנית	יתרת הקלט	הפעולה שתתבצע
1)	q_0	4	aabb	וספירתו a אוספירתו
2)	q_0	A	abb	וספירתו a וספירתו
3)	q_0	AA	bb	ומעבר למצב השוואה b
4)	q_1	A	b	קריאת b והשוואה
5)	q_1	$\boldsymbol{\mathcal{E}}$	ε	
			יום הקלט.	קבלה : המחסנית התרוקנה עם סי
1)	q_0	4	abb	וספירתו a קריאת
2)	q_0	A	bb	b זשוואת
3)	q_1	ϵ	b	
			סיום הקלט.	דחייה: המחסנית התרוקנה לפני י
1)	q_0	4	aab	וספירתו <i>a</i> וספירתו
2)	q_0	A	ab	וספירתו a קריאת
3)	q_0	AA	b	b זשוואת
4)	q_1	A	ε	
			'א-ריקה.	רחייה: הקלט נגמר עם מחסנית ל
1)	q_0	+	aaba	וספירתו <i>a</i> וספירתו
2)	q_0	A	aba	וספירתו a אוספירתו
3)	q_0	AA	ba	ומעבר למצב השוואה b
4)	q_1	A	a	

דחייה: האוטומט יינתקעיי ואינו יכול להמשיך בקריאת הקלט.

ראש		הקלט		
המחסנית	המצב	a	b	
4	q_0	(-1) (במקום $-1)$ בראש המחסנית -1 הישאר ב- -1	ייהיתקעותיי	
A	q_0	q_0 כתוב q_0 נוסף בראש ; המחסנית	מחק A מראש זמחסנית ; עבור ל- q_1	
A	q_1	ייהיתקעותיי	מחק A מראש $_{\rm f}$ מחסנית $_{\rm f}$ מישאר ב- $_{\rm f}$	

אוטומט מחסנית – הגדרה פורמאלית

אוטומט-מחסנית M נתון על-ידי ($Q, \Sigma, \Gamma, \delta, q_0, \frac{1}{4}, F$) כאשר מחסנית M

- . קבוצה סופית לא ריקה של מצבים -Q
 - אייב חקלט.
 - אייב המחסנית.
 - . המצב ההתחלתי $q_0 \in Q$
- . האות ההתחלתית במחסנית + $\in \Gamma$
 - . קבוצת המצבים המקבלים $F \subseteq Q$
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$ פונקציית המעברים δ

הערה: ביקות הגדרתן סופיות ולא ריקות מעצם הגדרתן כ-אייב. Γ ו- ביך וו- Γ

פונקציית מעברים

 \cdot אנו נפרש את δ באופן הזה

, $Z\in \Gamma$, $\sigma\in \Sigma$, $q\in Q$ עבור $\delta(q,\sigma,Z)=\{(q_1,\alpha_1),...,(q_k,\alpha_k)\}$ נמצא M נמצא (אז נאמר כי כאשר האוטומט A נמצה (אז נאמר כי כאשר האוטומט A נמצה (אז נאמר כי כאשר האוטומט) ויירואהיי את A בראש המחסנית, הוא באופן לא במצב A קורא את אות הקלט A ויירואהיי את A בראש המחסנית, עבור A כלשהו בין A (עובר למצב A ומחליף את ראש המחסנית A במילה A (במילה A).

$$\delta(q, \varepsilon, Z) = \{(q_1, \alpha_1), ..., (q_k, \alpha_k)\}$$

יוצר אור (q, ε , Z) וגם עבור (q, σ , Z) וגם זה יוצר הייתכן כי δ תהיה מוגדרת גם עבור (q, σ , Z) אי-דטרמיניזם. האוטומט יכול יילהחליטיי אם לקרוא את אות הקלט הבאה במעבר ε .

כתיבה למחסנית - מקרים

- פירושה (Z הנוכחי (Z במקום ראש המחסנית הנוכחי (Q', ε) $\in \delta(q, \sigma, Z)$.1 מחיקה (של ראש המחסנית).
 - .2 במקום אי-שינוי תוכן המחסנית Z במקום Z כתיבת Z כתיבת Z כתיבת $-(q',Z) \in \delta(q,\sigma,Z)$
- באופן . Z באופן . α למחסנית מעל . באופן $\alpha \neq \varepsilon$, α , α (α) α למחסנית מעל . באופן , α , α באופן . α ונכתב שוב. אם . α באופן . α ומתחתיו .
- שים לב למקרה הפרטי (שים לב למקרה הפרטי $\alpha Z'$ במילה ' $\alpha Z'$ (שים לב למקרה הפרטי $\alpha Z'$) (שים לב למקרה הפרטי $\alpha Z'$).

סימונים

דוגמה 1

 $L = \{a^nb^n \mid n \ge 1\}$ אוטומט-מחסנית המקבל את

$$\Gamma = \{ \downarrow, A \} \ , \qquad \Sigma = \{a, b\} \ , \qquad Q = \{q_0, q_1\}$$

$$F = \phi$$

$$\delta(q_0, a, +) = \{(q_0, A)\}$$

$$\delta(q_0, a, A) = \{(q_0, AA)\}$$

$$\delta(q_0, b, A) = \{(q_1, \varepsilon)\}\$$

$$\delta(q_1, b, A) = \{(q_1, \varepsilon)\}\$$

הגדרות

עבור אוטומט-מחסנית M כנזכר לעיל תיאור רגעי (ID) עבור אוטומט-מחסנית שכנזכר לעיל היאור אוטומט-מחסנית ש-

המצב הנוכחי $q \in Q$

יתרת הקלט – $w \in \Sigma^*$

 $\gamma \in \Gamma^*$ תוכן המחסנית.

-למשל בדוגמה 1, אם מילת הקלט היא aabb, המצב הרגעי של אוטומט , למשל בדוגמה (q_0,AA,bb) .

הגדרות

עבור אוטומט-מחסנית M כנזכר לעיל נאמר כי $\mathrm{ID}_2=(p,w,\beta\alpha)$ הוא עוקב (. $a=\varepsilon$ או $a\in\Sigma$) . $(p,\beta)\in\delta(q,a,Z)$ אם ורק אם $\mathrm{ID}_1=(q,aw,Z\alpha)$ ל-

 $(q, aw, Z\alpha) \vdash_{M} (p, w, \beta\alpha)$ -ב זה ב- נסמן יחס זה ב-

נסמן ב- * את הסגור הרפלקסיבי-טרנזיטיבי של ב- לומר, את הסגור הרפלקסיבי של $_M$

$$(q, w, \alpha) \vdash_{M}^{*} (p, x, \beta)$$

השפה של אוטומט מחסנית

השפה המתקבלת על-ידי אוטומט-מחסנית

יהי $M = (Q, \Sigma, \Gamma, \delta, q_0, 1, F)$ אוטומט-מחסנית.

א. השפה המתקבלת על-ידי הגעה למצב מקבל, שנסמנה ב- $L_f(M)$, היא

$$L_{f}(M) = \{ w \in \Sigma^{*} \mid \exists p \in F, \gamma \in \Gamma^{*}, (q_{0}, w, +) \mid_{M}^{*} (p, \varepsilon, \gamma) \}$$

ב. השפה המתקבלת על-ידי ריקון המחסנית, שנסמנה ב- $L_e(M)$, היא

$$L_e(M) = \{ w \in \Sigma^* \mid \exists p \in Q, (q_0, w, \dashv) \mid_M^* (p, \varepsilon, \varepsilon) \}$$

הגדרה

אוטומט ורק אם מתקיימים איקרא איקרא איקרא אוטומט ורק אם מתקיימים $M = (Q, \Sigma, \Gamma, \delta, q_0, \frac{1}{4}, F)$ שני התנאים האלה :

$$Z \in \Gamma$$
 - ו $a \in \Sigma \cup \{\varepsilon\}$, $q \in Q$.1

$$\left| \delta(q, a, Z) \right| \le 1$$

$$Z \in \Gamma$$
-1 $q \in Q$.2

$$\delta(q, \varepsilon, Z) \neq \phi$$
 אם $\delta(q, \varepsilon, Z)$

.
$$\delta(q, \sigma, Z) = \phi$$
 , $\sigma \in \Sigma$ אז לכל

"אוטומט מחסנית ל-"שפה ראי מסומנת

$$\Sigma = \{a, b, c\}$$
 $L_{mp} = \{wcw^R \mid w \in \{a, b\}^*\}$

$$M = (\{q_0, q_1\}, \{a, b, c\}, \{\neg, A, B\}, \delta, q_0, \neg, \phi)$$

העתקת האות הראשונה למחסנית:

$$\delta(q_0, a, +) = (q_0, A)$$

$$\delta(q_0,b,\frac{1}{4})=(q_0,B)$$

העתקת אות נוספת למחסנית:

$$\delta(q_0, a, A) = (q_0, AA)$$

$$\delta(q_0, b, A) = (q_0, BA)$$

$$\delta(q_0, a, B) = (q_0, AB)$$

$$\delta(q_0, b, B) = (q_0, BB)$$

 $w \neq \varepsilon$, א החלפת מצב אחרי קריאת

$$\delta(q_0, c, A) = (q_1, A)$$

$$\delta(q_0,c,B)=(q_1,B)$$

 $w = \varepsilon$ החלפת מצב במקרה

$$\delta(q_0,c,\dot{\,}|\,)=(q_1,\varepsilon)$$

:התאמת a ל-A ומחיקה

$$\delta(q_1,a,A) = (q_1,\varepsilon)$$

:התאמת b ל-B ומחיקה

$$\delta(q_1,b,B) = (q_1,\varepsilon)$$

"אוטומט מחסנית ל-"שפה ראי מסומנת

```
(q_0, baacaab, +) |- (q_0, aacaab, B) |- (q_0, acaab, AB) |- (q_0, caab, AAB) |- (q_1, aab, AAB) |- (q_1, ab, AB) |- (q_1, b, B) |- (q_1, \varepsilon, \varepsilon)
```


"אוטומט מחסנית ל-"שפה ראי בלתי מסומנת

$$\Sigma = \{a, b\} \qquad L_{nmp} = \{ww^R \mid w \in \Sigma^*\}$$

$$M = (\{q_0, q_1\}, \{a, b\}, \{-1, A, B\}, \delta, q_0, -1, \phi)$$

העתקת אות ראשונה למחסנית:

$$\delta(q_0, a, 1) = \{(q_0, A)\}$$

$$\delta(q_0, b, \frac{1}{2}) = \{(q_0, B)\}\$$

בחירה בין העתקה להשוואה:

$$\delta(q_0, a, A) = \{(q_0, AA), (q_1, \varepsilon)\}$$

$$\delta(q_0,b,B) = \{(q_0,BB),(q_1,\varepsilon)\}$$

: העתקה

$$\delta(q_0, b, A) = \{(q_0, BA)\}$$

$$\delta(q_0, a, B) = \{(q_0, AB)\}\$$

: השוואה ומחיקה

$$\delta(q_1, a, A) = \{(q_1, \varepsilon)\}\$$

$$\delta(q_1, b, B) = \{(q_1, \varepsilon)\}\$$

 ε ניחוש ש- ε , וקבלה

$$\delta(q_0, \varepsilon, \frac{1}{2}) = \{(q_1, \varepsilon)\}\$$

"אוטומט מחסנית ל-"שפה ראי בלתי מסומנת

"אוטומט מחסנית ל-"שפת סוגריים מאוזנים

מילה של סוגריים מאוזנים היא למשל מהצורה [[][[]][]. במילה כזו לכל סוגר שמאלי,], יש סוגר ימני, [, "המתאים לו".

 $M = (\{q_0\}, \{[,]\}, \{\downarrow, X\}, \delta, q_0, \downarrow, \phi)$

: כש δ מוגדרת באופן הזה

: המונה מאותחל ל- 1 בקריאת] ראשון

 $\delta(q_0, [, +]) = (q_0, X+])$

המונה עולה ב- 1 בקריאת] נוסף:

 $\delta(q_0, [, X) = (q_0, XX)$

:] המונה יורד ב- 1 בקריאת

 $\delta(q_0,], X) = (q_0, \varepsilon)$

ייניחושיי שמילת הקלט נסתיימה:

 $\delta(q_0, \varepsilon, +) = (q_0, \varepsilon)$

תתחבר לרעיונות גדול

 ϵ נחליט שגם המילה בשפה.

TO A STATE OF THE PARTY OF THE

אוטומט מחסנית עם מצבים מקבלים

$$\Sigma = \{a, b, c\} \quad L = \{wcw' \mid w \in \{a, b\}^+, w' \in \{a, b\}^*, w' \neq w^R\}$$

$$M = (\{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{A, B, \bot\}, \delta, q_0, \bot, \{q_2, q_3\})$$

 $:q_{2}$ מעבר למצב המקבל – מעבר משוויון מופר

$$\delta(q_1, a, B) = (q_2, B)$$

$$\delta(q_1, b, A) = (q_2, A)$$

 q_2 מעבר למצב המקבל – wcw^Rx הקלט מהצורה

$$\delta(q_1, a, 1) = (q_2, 1)$$

$$\delta(q_1, b, 1) = (q_2, 1)$$

 q_2 המשך קריאת הקלט במצב המקבל

$$\delta(q_2,\,\sigma,Z)\,=\,(q_2,Z)$$

 $\sigma \in \{a, b\}$ לכל $Z \in \Gamma$ לכל

 $xycy^R$ ניחוש שאות הקלט הייתה אחרונה, הקלט מהצורה

$$\delta(q_1, \varepsilon, A) = (q_3, A)$$

$$\delta(q_1, \varepsilon, B) = (q_3, B)$$

: העתקת האות הראשונה

$$\delta(q_0, a, 1) = (q_0, A_1)$$

$$\delta(q_0, b, +) = (q_0, B+)$$

: העתקת אות נוספת

$$\delta(q_0, a, A) = (q_0, AA)$$

$$\delta(q_0, a, B) = (q_0, AB)$$

$$\delta(q_0, b, A) = (q_0, BA)$$

$$\delta(q_0, b, B) = (q_0, BB)$$

: מעבר למצב השוואה

$$\delta(q_0, c, A) = (q_1, A)$$

$$\delta(q_0, c, B) = (q_1, B)$$

השוויון נשמר – ממשיכים להשוות:

$$\delta(q_1, a, A) = (q_1, \varepsilon)$$

$$\delta(q_1, b, B) = (q_1, \varepsilon)$$

אוטומט מחסנית עם מצבים מקבלים

משפט 1

 M_2 אם $M_1=(Q,\Sigma,\Gamma,\delta,q_0,\frac{1}{1},F)$ עבור $L=L_f(M_1)$ אם $L=L_f(M_1)$ אם $L=L_e(M_2)$ אם כך ש

<u>הוכחה</u>

הרעיון הכללי הוא ש- M_2 יתנהג כמו M_1 לגבי הקלט, וכאשר וויכנס למצב מקבל ימשיך M_2 וירוקן את המחסנית. אולם, צריך להיזהר מיימוקשיי מסוים בדרך: ייתכן כי M_1 מרוקן את מחסניתו מבלי להגיע למצב מקבל עם סיום הקלט. במקרה ייתכן כי M_1 מרוקן את מחסניתו מבלי להגיע למצב מקבל עם סיום הקלט. במקרה כזה M_2 צריך לדחות, אולם גם מחסניתו ריקה! לכן נשתמש במחסנית בעלת M_2 ייתחתית כפולהיי: בתחילת הפעולה תהיה התחתית M_2 , האות ההתחלתית של M_2

כפעולה ראשונה יכתוב M_2 את M_1 (האות ההתחלתית של M_1) על גבי M_2 ומעתה יוכל להתנהג בביטחון כ- M_1 , מאחר ש- M_1 אינו יכול למחוק את M_1 !

לסימולציה

עם גילוי מצב

מחיקה

מקבל של M_1 יכול

להיכנס למצב M_2

המשך מחיקה עד

ריקון המחסנית.

$$M_2 = \{Q \cup \{q_e, q_0'\}, \Sigma, \Gamma \cup \{\frac{1}{2}\}, \delta', q_0', \frac{1}{2}, \phi\}$$

 $\cdot \mid_2 \notin \Gamma$ וכן $q_e, q_0 \notin Q$ כאשר

 $:\delta'$ להלן הגדרת

א.
$$\delta'(q_0', \varepsilon, \frac{1}{2}) = \{(q_0, \frac{1}{1}, \frac{1}{2})\}$$
 א.
$$\delta'(q_0', \varepsilon, \frac{1}{2}) = \{(q_0, \frac{1}{1}, \frac{1}{2})\}$$
 א.

ב.
$$\delta(q,a,Z)$$
 כולל את כל האיברים של $\delta'(q,a,Z)$ ב. $Z\in\Gamma$, $a\in\Sigma\cup\{\epsilon\}$, $q\in Q$ עבור

$$Z \in \Gamma \cup \{\frac{1}{2}\}$$
 ולכל $q \in F$ ולכל $\beta'(q, \varepsilon, Z)$ $\delta'(q, \varepsilon, Z)$

$$Z\in \Gamma\cup\{\{1_2\}\}$$
 ולכל $q\in F$ ולכל $q\in F$ לכל מצב מקבל $\delta'(q,\varepsilon,Z)$

$$Z \in \Gamma \cup \{ \frac{1}{2} \}$$
 לכל \mathcal{I}

$$\delta'(q_e,\,\varepsilon,\,Z)=\{(q_e,\,\varepsilon)\}$$

<u>משפט 2</u>

 M_2 עבור אוטומט-מחסנית , $M_1=(Q,\,\Sigma,\,\Gamma,\,\delta,\,q_0,\,\frac{1}{4}\,,\,\phi)$ עבור עבור $L=L_e(M_1)$ כך ש- $L=L_f(M_2)$ - כך ש

<u>הוכחה</u>

גם כאן הרעיון הוא ש- M_2 יבצע סימולציה של M_1 , וכאשר M_1 ירוקן את מחסניתו, M_1 ייכנס M_2 למצב מקבל. גם כאן נכניס תחתית כפולה למחסנית, וכאשר ההעתק של ייכנס M_2 למצב מקבל. גם כאן נכניס תחתית הייאמיתיתיי M_2 , אשר תכוון את M_2 ב- M_1 ימחק את M_2 , תתגלה התחתית הייאמיתיתיי M_2 , אשר תכוון את האוטומט למצב המקבל (היחיד!).

$$(q_1 \notin \Gamma, q_0', q_f \notin Q)$$
 (כאשר)

$$M_2 = (Q \cup \{q'_0, q_f\}, \Sigma, \Gamma \cup \{ \downarrow_2 \}, \delta', q'_0, \downarrow_2, \{q_f\})$$

$$\delta'(q'_0, \varepsilon, +_2) = \{(q_0, +_1 +_2)\}$$
 .N

$$M_{
m l}$$
 סימולציה של

,
$$a \in \Sigma \cup \{\varepsilon\}$$
 לכל $\delta'(q, a, Z) = \delta(q, a, Z)$.
 . $Z \in \Gamma$, $q \in Q$

הגעה למצב מקבל עם ריקון מחסנית
$$M_{
m l}$$

$$\delta'(q, \varepsilon, \frac{1}{2}) = \{(q_f, \varepsilon)\}$$

 $q \in Q$ לכל

צורות נורמאליות של דקדוקים חסרי הקשר

הצורה הנורמלית של חומסקי

כל שפה חופשית-הקשר שאינה מכילה את ε אפשר ליצור באמצעות דקדוק שכל כל שפה חופשית-הקשר שאינה מכילה את $A \to BC$ ו- C משתנים ו- $A \to a$ טרמינלי.

הצורה הנורמלית של גרייבך

כל שפה חופשית-הקשר שאינה מכילה את ε אפשר ליצור באמצעות דקדוק שכל כל שפה חופשית-הקשר שאינה מכילה את a כשר ליצור באמצעות מילה המורכבת כלליו הם מהצורה a כשר a כשר a כשר ליו הם מהצורה a כשר ליו השתנים.

שקילות של שפות חסרות הקשר ואוטומט מחסנית

משפט

. $L = L_e(M)$ כך ש- מחסנית M כך ש- לכל שפה חופשית-הקשר ב

הוכחה

 $\varepsilon \notin L$ כדי לפשט את התיאור נניח כי

יהי G = (V, T, P, S) דקדוק חופשי-הקשר בצורה הנורמלית של גרייבך כך ש- . L = L(G)

: נגדיר

$$M = (\{q_0\}, T, V, \delta, q_0, S, \phi)$$

. P-נגדיר את δ בהתאמה לכלליי

 $(q_0,\, lpha)$ תכיל את את $\delta(q_0,\, a,\, A)$ את את את עבור כל כלל

 $, a \in T, A \in V$ לכל

$$\delta(q_0, a, A) = \{(q_0, \alpha) \mid A \to a\alpha \in P, \alpha \in V^*\}$$

כלומר, כל אימת שמופעל כלל גזירה בדקדוק, מעתיק האוטומט את אגף ימין למחסנית, פרט לאות הראשונה שכבר נתגלתה בקלט.

שקילות של שפות חסרות הקשר ואוטומט מחסנית

טענה

לכל
$$S \Rightarrow^* x \alpha : \alpha \in V^*$$
 ו- $X \in T^*$ לכל לכל היירה אם ורק אם ורק אם ורק אם ורק אם ורק אם ורק אם

$$(q_0, x, S) \vdash_{M}^{*} (q_0, \varepsilon, \alpha)$$

דוגמה

:נתבונן בדקדוק G שכלליו הם

$$S \rightarrow a \mid aS \mid aSBS$$

 $B \rightarrow b$

הדקדוק נתון בצורה הנורמלית של גרייבך.

: עבור האוטומט M המתאים נקבל את הכללים האלה

$$\delta(q_0, a, S) = \{(q_0, \varepsilon), (q_0, S), (q_0, SBS)\}\$$

 $\delta(q_0, b, B) = \{(q_0, \varepsilon)\}\$

שקילות של שפות חסרות הקשר ואוטומט מחסנית

עבור הגזירה

$$\begin{array}{cccc} \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ S \Rightarrow aSBS \Rightarrow aaSBS \Rightarrow aaaBS \Rightarrow aaabS \Rightarrow aaaba \end{array}$$

אשר עץ הגזירה שלה הוא

$$S \rightarrow a \mid aS \mid aSBS$$

 $B \rightarrow b$

$$\delta(q_0, a, S) = \{(q_0, \varepsilon), (q_0, S), (q_0, SBS)\}\$$

 $\delta(q_0, b, B) = \{(q_0, \varepsilon)\}$

: נקבל באוטומט את החישוב המקבל הזה

$$(q_0, aaaba, S) \mid - (q_0, aaba, SBS) \mid - (q_0, aba, SBS) \mid - (q_0, ba, BS) \mid - (q_0, a, S) \mid - (q_0, \varepsilon, \varepsilon)$$

שאלה 1

נתונה שפה:

$$L = \{ w^R \overline{w} \mid w \in \{a, b\}^* \}$$

w=abaab כך ש- \overline{w} מתקבל מ-w עייי היפוך של כל ה a-ים ל b-ים וההפך. למשל, אם $\overline{w}=\overline{w}$ אזי $\overline{w}=babba$.

- א. (6 נקי) בנו דקדוק חסר הקשר עבור השפה L.
- ב. בנו אוטומט מחסנית עבור השפה L (יש לבנות אוטומט עם כמות מצבים מינימלי ככל האפשר).
 - (7 נק׳) ציירו את האוטומט. •
 - **(7 נק׳)** הגדירו באופן פורמלי את האוטומט.

פתרון

$$L = \{ w^R \overline{w} \mid w \in \{a, b\}^* \}$$

$$M = (140, 9.5, 140, 5, 140, 14, 16, 14) = (140, 16)$$

שאלה 2

נתונה שפה:

$$L = \{a^n b^m c^k \mid k > n + m\}$$

- א. (6 נקי) בנו דקדוק חסר הקשר עבור השפה L.
- ב. בנו אוטומט מחסנית עבור השפה L (יש לעשות אוטומט עם כמות מצבים מינימלי ככל האפשר).
 - (ז נק׳) ציירו את האוטומט.●
 - (7 נק׳) הגדירו באופן פורמלי את האוטומט.

פתרון

 $L = \{a^n b^m c^k \mid k > n + m\}$

$$G = (15, A, B), \{a, b, c\}, P, S\}$$

$$P: S \Rightarrow aSc \mid A$$

$$A \Rightarrow bAc \mid B$$

$$B \Rightarrow Bc \mid C$$

$$C_1 \times | \xi$$

$$Q_1$$

$$A_1 + | x + b_1 \times | x \times x \times x \times x \times x$$

$$C_1 + | \xi$$

$$Q_2$$

$$A_1 + | x + b_2 \times | x \times x \times x \times x \times x \times x$$

$$C_1 + | \xi$$

$$Q_2$$

$$C_1 + | \xi$$

$$Q_3$$

$$C_1 + | \xi$$

$$Q_3$$

$$C_1 + | \xi$$