

The Internet: a network of networks

Hosts: the end-point devices

Tens of billions of end-point devices

* Figures (n) refer to 2017, 2022 device share Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

Hundreds of exabytes (10¹⁸ bytes) per month

* Figures (n) refer to 2017, 2022 traffic share Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

Autonomous systems: administrative domains

Service providers

Large companies

Total > 50,000

Maps of the internet (at AS level of detail)

Routers: devices that forward "IP" packets

IPv4: unreliable datagram service

Packet by packet forwarding
Each packet has a destination IP address
Packets may be dropped, delayed, re-ordered, duplicated
End-points use higher-layer protocols (e.g. TCP) to make it reliable

L3 Internet Protocol (IP): datagram service

L4 TCP: reliable end-to-end connections

L7 application protocol: e.g. HTTP, FTP, ...

L2 Ethernet: Local Area Network (LAN)

L1 physical layers: WIFI, electrical, optical...

28-Jun-2019

The OSI reference model

Layer number	Layer name	Responsibility	Examples
Layer 7	Application	End-user functionality	HTTP, FTP, SMTP
Layer 6	Presentation	Encoding	ASN.1, GPB, Thrift
Layer 5	Session	Dialogue control, checkpointing	-
Layer 4	Transport	Reliable end-to-end stream, end-to-end flow control, segmentation	TCP, QUIC, UDP
Layer 3	Network	Global addressing, routing, fragmentation, quality of service.	IPv4, IPv6, IPX
Layer 2	Datalink	MAC: Coordinate access to a shared medium. LLC: Group bits into frames, handle bit errors, point-to-point connections and flow-control	IEEE 802 series (Ethernet) PPP
Layer 1	Physical	Send and receive bits over physical medium.	Ethernet 1000BASE-T SONET/SDH

Each end-point has an IP address (IPv4 or IPv6)

IP addresses have topological significance

IP addresses can be aggregated (= summarized) into IP prefixes

28-Jun-2019

Routers do lookup in forwarding table (FIB)

Looks up the destination IP address for each individual packet

Aggregation and longest prefix match

Use aggregation to reduce forwarding table size Default route is special case

Forwarding table (FIB) of router R1

Destination	Next-hop
10.1.1.2 / 32	Interface 1
10.2.1.2 / 32	Interface 2
10.3.0.0 / 16	Interface 3

Forwarding table (FIB) of router R2

Destination	Next-hop
0.0.0.0 / 0	Interface 1
10.3.1.2 / 32	Interface 2
10.3.2.2 / 32	Interface 3

Addressing

Datalink: Ethernet address

- Just happens to be globally unique
- No topological significance ("flat address space")
- Not managed (burned into chip)

Network: IPv4 address (32 bits) or IPv6 address (128 bits)

- Originally intended to be unique on the Internet
- Private IP addresses (e.g.10/8), NAT, and anycast complicate matters
- Topological significance; allows for aggregation; makes the Internet scale
- Very carefully managed (complex procedures for allocating and assigning IP addresses)

Transport: Port numbers

• Identify service ("socket") running on a particular server

Naming

- Domain name: human readable name
- Identifies a service
- Example: www.google.com (not https://www.google.com/somepage)
- The Domain Name System (DNS) protocol translates a name to an IP address
- One DNS name can map to multiple different IP addresses (for load balancing other mechanisms exist as well)
- The mappings can change over time (for resilience)
- DNS is highly decentralized and scalable

Control plane versus data plane

Control plane

- Discover network topology and resources
- Program the forwarding plane (e.g. forwarding table)
- Flexibility is main concern

Data plane (aka forwarding plane)

- Forward packets
- Using the forwarding table populated by the control plane
- Speed is main concern

Control plane versus data plane

Control plane - data plane interface

Control plane – data plane interface

- Configure networking devices (e.g. set interface address)
- Program forwarding plane (e.g. add entry to forwarding table)
- Send and receive control plane packets ("punting")
- Retrieve statistics
- Historically proprietary (SDK provided by chip vendor)
- Standards: ForCES, OpenFlow, SAI, Netlink, P4 generated...

"Traditional" distributed control plane

SDN: centralized control plane (simplified)

Example forwarding plane chip

Broadcom Tomahawk 3

- 12.8 terrabits per second (Tbps)
- 128 x 100G interfaces
- 8 billion packets per second
- 0.04 nano seconds to forward 1 packet
- Relatively small forwarding tables (480K)
- Shallow buffers (internal shared 64MB)
- Lean feature set

The responsibilities of the forwarding plane

For each packet: layer 3 longest prefix match lookup of destination IP address

Actually, a *lot* more than that:

- Layer 2 exact match lookup of destination Ethernet address
- Buffer packets in case of congestions
- Scheduling for Quality of Service (QoS)
- Lookup of source address for validation and learning
- Compute hash for Equal Cost Multipath (ECMP)
- Apply policies (ACLs)
- Track metrics (counters, thresholds, ...)
- Make copies for multicast and taps
- ... etc. etc. etc.

Example fixed forwarding spipeline

Traditional distributed routing protocols

Intra-domain routing protocols

- Exchange routes inside autonomous system
- All routers owned and operated by same organization
- Higher level of trust, more information available
- Emphasis on shortest path
- Example: OSPF, ISIS, EIGRP, RIP, RIFT, BGP (!),

Inter-domain routing protocols:

- Exchange routes between autonomous systems
- Routers owners by different organizations
- Lower level of trust, less information available, real money is involved
- Emphasis on implementing business policies (customers, transit, peering, ...)
- Only one protocol: BGP version 4

Routing protocol algorithms

Link State Routing

- Every router discovers full topology and computes shortest path
- The dominant algorithm for intra-domain routing
- Open Shortest Path First (OSPF)
- Intermediate-System to Intermediate-System (ISIS)

Vector Routing

- Distance-Vector or Path-Vector
- Routers do not know full topology
- Each router locally choses best path and propagates that path
- Routing Information Protocol (RIP)
- Border Gateway Protocol (BGP)

Intra-domain vs inter-domain (simplified)

Other control plane protocols

- Traffic engineering protocols:
 - Used to
 - RSVP, LDP, BGP-LU, ISIS-TE, OSPF-TE, Segment Routing
- Multicast protocols:
 - IGMP, MLD, PIM (several modes)
- Service protocols:
 - L3VPN, L2VPN, EVPN, ...
- Management protocols:
 - SSH, SNMP, NETCONF, FTP, ...
- Telemetry protocols
 - NetFlow, GPB, ...

Next seminars

Deeper dive into routing protocols

- Open Shortest Path First (OSPF)
- Intermediate System to Intermediate System (ISIS)
- Border Gateway Protocol (BGP)

Traffic engineering

- Multi-Protocol Label Switching (MPLS)
- Resource Reservation Protocol (RSVP)
- Path Computation Element Protocol (PCEP)

Software Defined Networking (SDN)

- SDN motivations and applications
- OpenFlow
- Programming Protocol-independent Packet Processors (P4)