Algebraic Inequalities Vasile Cirtoaje

Chapter 1: Warm-Up Problem Set

1.1 Applications

- 1. Cho $a,b,c,d \in R$ thỏa : $a^2 + b^2 + c^2 + d^2 = 4$. CMR : $a^3 + b^3 + c^3 + d^3 \le 8$
- 2. Cho $a,b,c \ge 0$. CMR: $a^3 + b^3 + c^3 3abc \ge 2\left(\frac{b+c}{2} a\right)^3$
- 3. Cho a,b,c > 0 thỏa abc = 1. CMR: $\frac{a+b+c}{3} \ge \sqrt[5]{\frac{a^2+b^2+c^2}{3}}$
- 4. Cho $a,b,c \ge 0$ thỏa $a^3 + b^3 + c^3 = 3$. CMR: $a^4b^4 + b^4c^4 + c^4a^4 \le 3$
- 5. Cho $a,b,c \ge 0$. CMR: $a^2 + b^2 + c^2 + 2abc + 1 \ge 2(ab + bc + ca)$
- 6. Cho $a,b,c \in R$ khác nhau đôi một . CMR : $\left(\frac{a}{b-c}\right)^2 + \left(\frac{b}{c-a}\right)^2 + \left(\frac{c}{a-b}\right)^2 \ge 2$
- 7. Cho $a, b, c \ge 0$. CMR: $(a^2 bc)\sqrt{b + c} + (b^2 ca)\sqrt{c + a} + (c^2 ab)\sqrt{a + b} \ge 0$
- 8. Cho $a,b,c,d \ge 0$. CMR: $\frac{a-b}{a+2b+c} + \frac{b-c}{b+2c+d} + \frac{c-d}{c+2d+a} + \frac{d-a}{d+2a+b} \ge 0$
- 9. Cho $a,b,c \ge 0$ thỏa $a^2 + b^2 + c^2 = a + b + c$. CMR: $a^2b^2 + b^2c^2 + c^2a^2 \le ab + bc + ca$
- 10. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a^2}{a^2 + ab + b^2} + \frac{b^2}{b^2 + bc + c^2} + \frac{c^2}{c^2 + ca + a^2} \ge 1$$

11. Cho
$$a,b,c \ge 0$$
. CMR: $\sqrt{\frac{a^3}{a^3 + (b+c)^3}} + \sqrt{\frac{b^3}{b^3 + (c+a)^3}} + \sqrt{\frac{c^3}{c^3 + (a+b)^3}} \ge 1$

12. Đặt:
$$E(a,b,c) = a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b)$$

CMR: a) $(a+b+c)E(a,b,c) \ge ab(a-b)^2 + bc(b-c)^2 + ca(c-a)^2$
b) $2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)E(a,b,c) \ge (a-b)^2 + (b-c)^2 + (c-a)^2$

13. Cho
$$a,b,c,x,y,z \in R$$
 thỏa : $a+x \ge b+y \ge c+z \ge 0$ và $a+b+c=x+y+z$.
CMR : $ay+bx \ge ac+xz$

14. Cho
$$a,b,c \in \left[\frac{1}{3},3\right]$$
. CMR: $\frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+a} \ge \frac{7}{5}$

15. Cho
$$a,b,c,x,y,z \ge 0$$
 thỏa $a+b+c = x+y+z$.
CMR: $ax(a+x)+by(b+y)+cz(c+z) \ge 3(abc+xyz)$

16. Cho
$$a,b,c \ge 0$$
. CMR: $4(a+b+c)^3 \ge 27(ab^2+bc^2+ca^2+abc)$

17. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c=3$. CMR: $\frac{1}{2ab^2+1} + \frac{1}{2bc^2+1} + \frac{1}{2ca^2+1} \ge 1$

18. Cho
$$a,b,c,d > 0$$
. CMR: $\frac{1}{a^2 + ab} + \frac{1}{b^2 + bc} + \frac{1}{c^2 + cd} + \frac{1}{d^2 + da} \ge \frac{4}{ac + bd}$

19. Cho
$$a,b,c \in \left[\frac{1}{\sqrt{2}},\sqrt{2}\right]$$
. CMR: $\frac{3}{a+2b} + \frac{3}{b+2c} + \frac{3}{c+2a} \ge \frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a}$

20. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca=3$. CMR: $\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2} \le 1$

21. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca=3$. CMR: $\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1} \ge \frac{3}{2}$

22. Cho
$$a,b,c \ge 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $\frac{a}{a+2} + \frac{b}{b+2} + \frac{c}{c+2} \le 1$

23. Cho
$$a,b,c>0$$
 thỏa $abc=1$. CMR:

a)
$$\frac{a-1}{b} + \frac{b-1}{c} + \frac{c-1}{a} \ge 0$$

b)
$$\frac{a-1}{b+c} + \frac{b-1}{c+a} + \frac{c-1}{a+b} \ge 0$$

24. Cho
$$a,b,c,d \ge 0$$
 thỏa $a^2 - ab + b^2 = c^2 - cd + d^2$. CMR: $(a+b)(c+d) \ge 2(ab+cd)$

25. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$. CMR :
$$\frac{1}{1 + (n-1)a_1} + \frac{1}{1 + (n-1)a_2} + ... + \frac{1}{1 + (n-1)a_n} \ge 1$$

26. Cho
$$a,b,c,d \ge 0$$
 thỏa $a^2 + b^2 + c^2 + d^2 = 1$. CMR: $(1-a)(1-b)(1-c)(1-d) \ge abcd$

27. Cho
$$a,b,c > 0$$
. CMR: $\sqrt{\frac{2a}{a+b}} + \sqrt{\frac{2b}{b+c}} + \sqrt{\frac{2c}{c+a}} \le 3$

28. Cho
$$a,b,c,d \ge 0$$
. CMR: $\left(\frac{a}{a+b}\right)^2 + \left(\frac{b}{b+c}\right)^2 + \left(\frac{c}{c+a}\right)^2 + \left(\frac{d}{d+a}\right)^2 \ge 1$

29. Cho
$$a,b,c > 0$$
 thỏa $a+b+c = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$. Nếu $a \le b \le c$ thì : $ab^2c^3 \ge 1$

CMR:
$$\frac{a^2}{b^2+c^2} + \frac{b^2}{c^2+a^2} + \frac{c^2}{a^2+b^2} \ge \frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b}$$

31. Cho
$$a,b,c \ge 0$$
 . CMR: $2(a^2+1)(b^2+1)(c^2+1) \ge (a+1)(b+1)(c+1)(abc+1)$

32. Cho
$$a,b,c \ge 0$$
. CMR: $3(1-a+a^2)(1-b+b^2)(1-c+c^2) \ge 1+abc+a^2b^2c^2$

33. Cho
$$a,b,c,d \ge 0$$
. CMR: $(1-a+a^2)(1-b+b^2)(1-c+c^2)(1-d+d^2) \ge \left(\frac{1+abcd}{2}\right)^2$

34. Cho
$$a,b,c \ge 0$$
. CMR: $(a^2 + ab + b^2)(b^2 + bc + c^2)(c^2 + ca + a^2) \ge (ab + bc + ca)^3$

35. Cho a,b,c,d > 0 thỏa abcd = 1.

$$\text{CMR}: \frac{1}{1+ab+bc+ca} + \frac{1}{1+bc+cd+db} + \frac{1}{1+cd+da+ac} + \frac{1}{1+da+ab+bd} \leq 1$$

36. Cho
$$a,b,c,x,y,z \in R$$
. CMR: $4(a^2+x^2)(b^2+y^2)(c^2+z^2) \ge 3(bcx+cay+abz)^2$

37. Nếu
$$a \ge b \ge c \ge d \ge e$$
 thì $(a+b+c+d+e)^2 \ge 8(ac+bd+ce)$
Cho $e \ge 0$. Xác định dấu "=" xảy ra?

38. Cho
$$a,b,c,d \in R$$
. CMR: $6(a^2+b^2+c^2+d^2)+(a+b+c+d)^2 \ge 12(ab+bc+cd)$

39. Cho
$$a,b,c>0$$
. CMR: $\sqrt{(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)} \ge 1 + \sqrt{1 + \sqrt{(a^2+b^2+c^2)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}}$

40. Cho
$$a,b,c > 0$$
. CMR: $5 + \sqrt{2(a^2 + b^2 + c^2)(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}) - 2} \ge (a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$

41. Cho
$$a,b,c,d > 0$$
. CMR: $\frac{a-b}{b+c} + \frac{b-c}{c+d} + \frac{c-d}{d+a} + \frac{d-a}{a+b} \ge 0$

42. Nếu
$$a,b,c > -1$$
 thì : $\frac{1+a^2}{1+b+c^2} + \frac{1+b^2}{1+c+a^2} + \frac{1+c^2}{1+a+b^2} \ge 2$

43. Cho
$$a,b,c,x,y,z > 0$$
 thỏa $(a+b+c)(x+y+z) = (a^2+b^2+c^2)(x^2+y^2+z^2) = 4$.
CMR: $abcxyz < \frac{1}{36}$

44. Cho
$$a,b,c > 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $\frac{a^2 + b^2}{a+b} + \frac{b^2 + c^2}{b+c} + \frac{c^2 + a^2}{c+a} \ge 3$

CMR:
$$\frac{1}{a^2 + bc} + \frac{1}{b^2 + ca} + \frac{1}{c^2 + ab} \ge \frac{3}{ab + bc + ca}$$

46. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{1}{b^2 - bc + c^2} + \frac{1}{c^2 - ca + a^2} + \frac{1}{a^2 - ab + b^2} \ge \frac{3}{ab + bc + ca}$$

47. Cho
$$a,b,c > 0$$
 thỏa $a+b+c=3$. CMR: $abc + \frac{12}{ab+bc+ca} \ge 5$

48. Cho
$$a,b,c \ge 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $12 + 9abc \ge 7(ab + bc + ca)$

49. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca = 3$. CMR: $a^3+b^3+c^3+7abc \ge 10$

50. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $(a+b)(b+c)(c+a) + 7 \ge 5(a+b+c)$

51. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)} + \frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)} + \frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)} \le \frac{1}{a+b+c}$$

52. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c \ge 3$. CMR: $\frac{1}{a^2+b+c} + \frac{1}{a+b^2+c} + \frac{1}{a+b+c^2} \le 1$

53. Cho $a,b,c \ge 0$ thỏa ab+bc+ca=3.

Nếu
$$r \ge 1$$
 thì : $\frac{1}{r+a^2+b^2} + \frac{1}{r+b^2+c^2} + \frac{1}{r+c^2+a^2} \le \frac{3}{r+2}$

54. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $\frac{1}{(1+a)^3} + \frac{1}{(1+b)^3} + \frac{1}{(1+c)^3} + \frac{5}{(1+a)(1+b)(1+c)} \ge 1$

55. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $\frac{2}{a+b+c} + \frac{1}{3} \ge \frac{3}{ab+bc+ca}$

56. Cho
$$a,b,c \in R$$
 . CMR: $2(1+abc)+\sqrt{2(1+a^2)(1+b^2)(1+c^2)} \ge (1+a)(1+b)(1+c)$

CMR:
$$\frac{a(b+c)}{a^2+bc} + \frac{b(c+a)}{b^2+ca} + \frac{c(a+b)}{c^2+ab} \ge 2$$

58. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\sqrt{\frac{a(b+c)}{a^2+bc}} + \sqrt{\frac{b(c+a)}{b^2+ca}} + \sqrt{\frac{c(a+b)}{c^2+ab}} \ge 2$$

59. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \ge \frac{a}{a^2+bc} + \frac{b}{b^2+ca} + \frac{c}{c^2+ab}$$

60. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \ge \frac{2a}{3a^2 + bc} + \frac{2b}{3b^2 + ca} + \frac{2c}{3c^2 + ab}$$

61. Cho
$$a,b,c > 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $5(a+b+c) + \frac{3}{abc} \ge 18$

62. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c=3$. CMR: $\frac{1}{6-ab} + \frac{1}{6-bc} + \frac{1}{6-ca} \le \frac{3}{5}$

63. Cho
$$a_1, a_2, ..., a_n \in R, n \ge 4$$
 thỏa $a_1 + a_2 + ... + a_n \ge n$ và $a_1^2 + a_2^2 + ... + a_n^2 \ge n^2$.
CMR: $\max \{a_1, a_2, ..., a_n\} \ge 2$

64. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \ge \frac{13}{6} - \frac{2(ab+bc+ca)}{3(a^2+b^2+c^2)}$$

CMR:
$$\frac{a^2(b+c)}{b^2+c^2} + \frac{b^2(c+a)}{c^2+a^2} + \frac{c^2(a+b)}{a^2+b^2} \ge a+b+c$$

66. Cho
$$a,b,c \ge 0$$
 thỏa $(a+b)(b+c)(c+a) = 2$. CMR: $(a^2+bc)(b^2+ca)(c^2+ab) \le 1$

Chapter 2: Starting From Some Special Fourth Degree Inequalities

2.1 Main results

1. Cho
$$x, y, z \in R$$
 . CMR: $(x^2 + y^2 + z^2)^2 \ge 3(x^3y + y^3z + z^3x)$

2. Cho
$$x, y, z, r \in R$$
 . CMR: $\sum x^4 + (3r^2 - 1)\sum x^2y^2 + 3r(1 - r)xyz\sum x \ge 3r\sum x^3y$

3. Cho
$$x, y, z \in R$$
 . CMR: $x^4 + y^4 + z^4 + xy^3 + yz^3 + zx^3 \ge 2(x^3y + y^3z + z^3x)$

4. Cho
$$x, y, z \ge 0$$
 . CMR: $x^4 + y^4 + z^4 - x^2y^2 - y^2z^2 - z^2x^2 \ge 2(x^3y + y^3z + z^3x - xy^3 - yz^3 - zx^3)$

5. Cho
$$x, y, z, r \in R$$
 . CMR : $\sum (x - ry)(x - rz)(x - y)(x - z) \ge 0$, (với $\sum x = x + y + z$)

6. Cho
$$x, y, z \ge 0$$
. Đặt: $S_i = \sum x^i (x - y)(x - z)$. Với mọi $p, q \in R : pq > 0$:
$$CMR: S_0 S_{n+q} \ge S_n S_q$$

7. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 3$.
Nếu $m = \frac{\ln 3}{\ln 9 - \ln 4} \approx 1{,}355$ và $0 < r \le m$ thì : $x^r y^r + y^r z^r + z^r x^r \le 3$

8. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 2$. Nếu $2 \le r \le 3$ thì : $x^r(y+z) + y^r(z+x) + z^r(x+y) \le 2$

9. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 1$.

Nếu
$$0 < p$$
 và $q \le \frac{(p-1)(2p+1)}{4}$ thì : $\frac{yz+q}{x+p} + \frac{zx+q}{y+p} + \frac{xy+q}{z+p} \le \frac{1+9q}{1+3p}$

10. Cho
$$x, y, z > 0$$
. Nếu $1 \le r \le 3$ thì : $x^r y^{4-r} + y^r z^{4-r} + z^r x^{4-r} \le \frac{1}{3} (x^2 + y^2 + z^2)^2$

11. Cho
$$x, y, z > 0$$

a) Nếu
$$x + y + z = 3$$
 và $0 < r \le \frac{1}{2}$ thì : $x^{1+r}y^r + y^{1+r}z^r + z^{1+r}x^r \le 3$

b) Nếu
$$x+y+z=1+2r$$
 và $r \ge 1$ thì : $x^{1+r}y^r+y^{1+r}z^r+z^{1+r}x^r \le r^r (1+r)^{1+r}$

12. Cho
$$x, y, z > 0$$

a) Nếu
$$x + y + z = 3$$
 và $0 < r \le \frac{3}{2}$ thì : $x^r y + y^r z + z^r x \le 3$

b) Nếu
$$x+y+z=1+r$$
 và $r \ge 2$ thì : $x^ry+y^rz+z^rx \le r^r$

13. Cho
$$x, y, z > 0$$
 thỏa $x^{m+n} + y^{m+n} + z^{m+n} = 3$, với $m > n > 0$. CMR: $\frac{x^m}{y^n} + \frac{y^m}{z^n} + \frac{z^m}{z^n} \ge 3$

14. Cho
$$a, b, c, d \ge 0$$
. Nếu $p > 0$ thì : $\left(1 + p \frac{a}{b+c}\right) \left(1 + p \frac{b}{c+d}\right) \left(1 + p \frac{c}{d+a}\right) \left(1 + p \frac{d}{a+b}\right) \ge \left(1 + p\right)^2$

15. Cho
$$a,b,c>0$$
. CMR: $\frac{1}{4a} + \frac{1}{4b} + \frac{1}{4c} + \frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge 3\left(\frac{1}{3a+b} + \frac{1}{3b+c} + \frac{1}{3c+a}\right)$

16. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 3$. CMR: $\frac{x}{xy + 1} + \frac{y}{yz + 3} + \frac{z}{zx + 3} \ge \frac{3}{2}$

17. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 3$. CMR: $\frac{x}{y^2 + 3} + \frac{y}{z^2 + 3} + \frac{z}{x^2 + 3} \ge \frac{3}{4}$

18. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $\sqrt{\frac{a}{b+8}} + \sqrt{\frac{b}{c+8}} + \sqrt{\frac{c}{a+8}} \ge 1$

19. Cho a,b,c là độ dài 3 cạnh của tam giác .

a)
$$3(a^3b+b^3c+c^3a) \ge (ab+bc+ca)(a^2+b^2+c^2)$$

b)
$$9(ab+bc+ca)(a^2+b^2+c^2) \ge (a+b+c)^4$$

20. Cho a,b,c là độ dài 3 cạnh của tam giác .

Nếu
$$r \ge 2$$
 thì : $3(a^rb + b^rc + c^ra) \ge (a+b+c)(a^{r-1}b + b^{r-1}c + c^{r-1}a)$

21. Cho a,b,c là độ dài 3 cạnh của tam giác .

Nếu
$$r \ge 2$$
 thì : $a^r b(a-b) + b^r c(b-c) + c^r a(c-a) \ge 0$

22. Cho a,b,c là độ dài 3 cạnh của tam giác .

Nếu
$$0 < r \le 1$$
 thì : $a^2 b(a^r - b^r) + b^2 c(b^r - c^r) + c^2 a(c^r - a^r) \ge 0$

23. Cho a,b,c là độ dài 3 cạnh của tam giác và $x,y,z \in R$.

CMR:
$$(ya^2 + zb^2 + xc^2)(za^2 + xb^2 + yc^2) \ge (xy + yz + zx)(a^2b^2 + b^2c^2 + c^2a^2)$$

Chapter 2: Starting From Some Special Fourth Degree Inequalities

2.3 Another related inequalities

1. Cho $x, y, z \ge 0$. Với $0 \le r \le \sqrt{2}$.

CMR: $\sqrt{x^4 + y^4 + z^4} + r\sqrt{x^2y^2 + y^2z^2 + z^2x^2} \ge (1+r)\sqrt{x^3y + y^3z + z^3x}$

2. Cho
$$x, y, z \in R$$
. Với $-1 \le r \le 2$.

CMR:
$$x^2(x-y)(x-ry) + y^2(y-z)(y-rz) + z^2(z-x)(z-rx) \ge 0$$

3. Cho
$$x, y, z \ge 0$$
. Với $-2 \le r \le 2$.

CMR:
$$x(x-y)(x^2-ry^2)+y(y-z)(y^2-rz^2)+z(z-x)(z^2-rx^2)\geq 0$$

4. Cho
$$x, y, z \in R$$
. CMR: $(x-y)(2x+y)^3 + (y-z)(2y+z)^3 + (z-x)(2z+x)^3 \ge 0$

5. Cho
$$x_1, x_2, ..., x_n \in R$$
.

CMR:
$$(x_1 - x_2)(2x_1 + x_2)^3 + (x_2 - x_3)(3x_2 + x_3)^3 + \dots + (x_n - x_1)(3x_n + x_1)^3 \ge 0$$

6. Cho
$$x, y, z \ge 0$$
. CMR: $(x-y)(3x+2y)^3 + (y-z)(3y+2z)^3 + (z-x)(3z+2x)^3 \ge 0$

7. Cho
$$x_1, x_2, ..., x_n \ge 0$$
. Với $r \ge \frac{1}{\sqrt[3]{4} - 1} \approx 1,7024$

CMR:
$$(x_1 - x_2)(rx_1 + x_2)^3 + (x_2 - x_3)(rx_2 + x_3)^3 + \dots + (x_n - x_1)(rx_n + x_1)^3 \ge 0$$

8. Cho
$$x, y, z \in R$$
. CMR: $(x-y)\sqrt[3]{2x+y} + (y-z)\sqrt[3]{2y+z} + (z-x)\sqrt[3]{2z+x} \ge 0$

9. Cho
$$x, y, z \in R$$
. CMR: $(x-y)(x+2z)^3 + (y-z)(y+2x)^3 + (z-x)(z+2y)^3 \ge 0$

10. Cho
$$x, y, z \in R$$
. CMR: $(x-y)\sqrt[3]{x+2z} + (y-z)\sqrt[3]{y+2x} + (z-x)\sqrt[3]{z+2y} \ge 0$

11. Cho
$$x_1, x_2, ..., x_n \in R$$
. Với $0 \le r \le \frac{\sqrt{3} - 1}{2}$

CMR:
$$x_1^4 + x_2^4 + ... + x_n^4 + r(x_1x_2^3 + x_2x_3^3 + ... + x_nx_1^3) \ge (1+r)(x_1^3x_2 + x_2^3x_3 + ... + x_n^3x_1)$$

12. Cho $x_1, x_2, ..., x_n \ge 0$.

CMR:
$$x_1^4 + x_2^4 + ... + x_n^4 + \frac{1}{2} (x_1 x_2^3 + x_2 x_3^3 + ... + x_n x_1^3) \ge \frac{3}{2} (x_1^3 x_2 + x_2^3 x_3 + ... + x_n^3 x_1)$$

13. Cho
$$x, y, z \in R$$
. CMR: $x(x+y)^3 + y(y+z)^3 + z(z+x)^3 \ge 0$

14. Cho a,b,c > 0 . CMR :

$$\frac{1}{2a} + \frac{1}{2b} + \frac{1}{2c} - \frac{1}{a+b} - \frac{1}{b+c} - \frac{1}{c+a} \ge 4\left(\frac{1}{3a+b} + \frac{1}{3b+c} + \frac{1}{3c+a} - \frac{1}{a+3b} - \frac{1}{b+3c} - \frac{1}{c+3a}\right)$$

15. Cho
$$x, y, z \in \left[\frac{1}{2}, 2\right]$$
. CMR: $8\left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}\right) \ge 5\left(\frac{y}{x} + \frac{z}{y} + \frac{x}{z}\right) + 9$

16. Cho
$$x, y, z \in \left[\frac{1}{p}, p\right], p = \sqrt{4 + 3\sqrt{2}}$$
. CMR: $9(xy + yz + zx)(x^2 + y^2 + z^2) \ge (x + y + z)^4$

17. Cho
$$x, y, z \ge \frac{2}{3}$$
 thỏa $x + y + z = 3$. CMR: $x^2y^2 + y^2z^2 + z^2x^2 \ge xy + yz + zx$

18. Cho
$$x, y, z \in R$$
. CMR: $3(x^4 + y^4 + z^4 - x^3y - y^3z - z^3x) \ge x^2(y-z)^2 + y(z-x)^2 + z(x-y)^2$

19. Cho
$$x, y, z \in R$$
. CMR: $x^4 + y^4 + z^4 - xyz(x + y + z) \ge 2\sqrt{2}(x^3y + y^3z + z^3x - xy^3 - yz^3 - zx^3)$

20. Cho
$$x, y, z \ge 0$$
. CMR: $x^4 + y^4 + z^4 + 17(x^2y^2 + y^2z^2 + z^2x^2) \ge 6(x + y + z)(x^2y + y^2z + z^2x)$

21. Cho
$$x, y, z \ge 0$$
. CMR: $\sum (x^2 - yz)^2 \ge \sqrt{6} \sum xy(z-x)^2$ (với $\sum x = x + y + z$)

22. Cho
$$x, y, z \ge 0$$
. CMR: $x^4 + y^4 + z^4 + 5(x^3y + y^3z + z^3x) \ge 6(x^2y^2 + y^2z^2 + z^2x^2)$

CMR:
$$\frac{x^2 - yz}{x + y} + \frac{y^2 - zx}{y + z} + \frac{z^2 - xy}{z + x} \ge 0$$

24. Cho
$$x, y, z \in R$$
. CMR: $3(x^4 + y^4 + z^4) + 4(x^3y + y^3z + z^3x) \ge 0$

25. Cho
$$x, y, z > 0$$
 thỏa $x + y + z = 3$. CMR: $\frac{x}{1+y^3} + \frac{y}{1+z^3} + \frac{z}{1+x^3} \ge \frac{3}{2}$

26. Cho
$$a,b,c,d \ge 0$$
 thỏa $a+b+c+d=4$. CMR: $3(a^2+b^2+c^2+d^2)+4abcd \ge 16$

27. Cho
$$a,b,c,d > 0$$
 thỏa $a+b+c+d=4$. CMR: $\frac{a}{1+b^2} + \frac{b}{1+c^2} + \frac{c}{1+d^2} + \frac{d}{1+a^2} \ge 2$

28. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c=1$. CMR: $\frac{2bc+3}{a+1} + \frac{2ca+3}{b+1} + \frac{2ab+3}{c+1} \le \frac{15}{2}$

29. Cho a,b,c là độ dài 3 cạnh của tam giác .

CMR:
$$a^2(a+b)(b-c)+b^2(b+c)(c-a)+c^2(c+a)(a-b) \ge 0$$

30. Cho *a,b,c* là độ dài 3 cạnh của tam giác không đều

CMR:
$$\frac{a^3b + b^3c + c^3a - a^2b^2 - b^2c^2 - c^2a^2}{a^3 + b^3 + c^3 - 3abc} \ge \min\{b + c - a, c + a - b, a + b - c\}$$

31. Cho a,b,c là độ dài 3 cạnh của tam giác và $x,y,z \in R, x+y+z=1$.

CMR:
$$yza(b+c-a)+zxb(c+a-b)+xyc(a+b-c) \le 0$$

32. Cho a,b,c là độ dài 3 cạnh của tam giác .

CMR:
$$(2a^2-bc)(b-c)^2+(2b^2-ca)(c-a)^2+(2c^2-ab)(a-b)^2 \ge 0$$

33. Cho $x, y, z \ge 0$. Với $0 < r \le m \approx 1,558$ là nghiệm của phương trình $(1+m)^{1+m} = (3m)^m$.

CMR:
$$\frac{x^r y + y^r z + z^r x}{3} \le \left(\frac{x + y + z}{3}\right)^{r+1}$$

Chapter 3: Inequalities With Right Convex And Left Concave Functions

3.4 Applications

- 1. Cho $x_1, x_2, ..., x_n \ge 0$ thỏa $x_1 + x_2 + ... + x_n = n$ $CMR: (n-1)(x_1^3 + x_2^3 + ... + x_n^3) + n^2 \ge (2n-1)(x_1^2 + x_2^2 + ... + x_n^2)$
- 2. Cho $x_1, x_2, ..., x_n \ge 0$ thỏa $x_1 + x_2 + ... + x_n = n$ CMR: $x_1^3 + x_2^3 + ... + x_n^3 + n^2 \le (n+1)(x_1^2 + x_2^2 + ... + x_n^2)$
- 3. Cho $x_1, x_2, ..., x_n \ge 0$ thỏa $\frac{x_1 + x_2 + ... + x_n}{n} = r \ge \sqrt{\frac{n-1}{n}}$ $CMR: \frac{1}{1 + x_1^2} + \frac{1}{1 + x_2^2} + ... + \frac{1}{1 + x_n^2} \ge \frac{n}{1 + r^2}$
- 4. Cho $x_1, x_2, ..., x_n \ge 0$ thỏa $\frac{x_1 + x_2 + ... + x_n}{n} = r \le \sqrt{\frac{n-1}{n^2 n + 1}}$ $CMR : \frac{1}{1 + x_1^2} + \frac{1}{1 + x_2^2} + ... + \frac{1}{1 + x_n^2} \le \frac{n}{1 + r^2}$
- 5. Cho $x_1, x_2, ..., x_n > 0$ thỏa $x_1 + x_2 + ... + x_n = 1$ $CMR: \frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n} \ge (n-2)^2 + 4n(n-1)(x_1^2 + x_2^2 + ... + x_n^2)$
- 6. Cho $x_1, x_2, ..., x_n \ge 0$ thỏa $\frac{x_1 + x_2 + ... + x_n}{n} = r \le \frac{n-1}{\left(n + \sqrt{n-1}\right)^2}$ $CMR: \frac{1}{1 \sqrt{x_1}} + \frac{1}{1 \sqrt{x_2}} + ... + \frac{1}{1 \sqrt{x_n}} \le \frac{n}{1 \sqrt{r}}$

7. Cho
$$0 \le x_1, x_2, ..., x_n < 1$$
 thỏa $\frac{x_1 + x_2 + ... + x_n}{n} = r \ge \frac{n - 1}{\left(n + \sqrt{n - 1}\right)^2}$

$$CMR : \frac{1}{1 - \sqrt{x_1}} + \frac{1}{1 - \sqrt{x_2}} + ... + \frac{1}{1 - \sqrt{x_n}} \ge \frac{n}{1 - \sqrt{r}}$$

8. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $\frac{x_1 + x_2 + ... + x_n}{n} = r \le 1 + \frac{2\sqrt{n-1}}{n}$

$$CMR: \left(x_1 + \frac{1}{x_1}\right) \left(x_2 + \frac{1}{x_2}\right) ... \left(x_n + \frac{1}{x_n}\right) \ge \left(r + \frac{1}{r}\right)^n$$

9. Cho
$$x_1, x_2, ..., x_n > 0 (n \ge 3)$$
 thỏa $x_1 + x_2 + ... + x_n = 1$

CMR:
$$\left(\frac{1}{\sqrt{x_1}} - \sqrt{x_1}\right) \left(\frac{1}{\sqrt{x_2}} - \sqrt{x_2}\right) ... \left(\frac{1}{\sqrt{x_n}} - \sqrt{x_n}\right) \ge \left(\sqrt{n} - \frac{1}{\sqrt{n}}\right)^n$$

CMR:
$$\sqrt{1 + \frac{48x}{y+z}} + \sqrt{1 + \frac{48y}{z+x}} + \sqrt{1 + \frac{48z}{x+y}} \ge 15$$

11. Cho $x, y, z \ge 0$ và 2 trong chúng không đồng thời bằng 0. Với $r \ge r_0 = \frac{\ln 3}{\ln 2} - 1 \approx 0,585$

CMR:
$$\left(\frac{2x}{y+z}\right)^r + \left(\frac{2y}{z+x}\right)^r + \left(\frac{2z}{x+y}\right)^r \ge 3$$

12. Cho $x, y, z \ge 0$ thỏa x + y + z = 3.

Nếu
$$0 < r \le r_0 = \frac{\ln 2}{\ln 3 - \ln 2} \approx 1,71 \text{ thi} : x^r (y+z) + y^r (z+x) + z^r (x+y) \le 6$$

13. Cho
$$0 \le x_1, x_2, ..., x_n < 1$$
 thỏa $\frac{x_1 + x_2 + ... + x_n}{n} = r \ge \frac{1}{3}$

$$CMR: \frac{\sqrt{x_1}}{1 - x} + \frac{\sqrt{x_2}}{1 - x} + ... + \frac{\sqrt{x_n}}{1 - x} \ge \frac{n\sqrt{r}}{1 - r}$$

14. Cho
$$a,b,c>0$$
 thỏa $a+b+c=3$. CMR: $(1-a+a^2)(1-b+b^2)(1-c+c^2) \ge 1$

15. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = n$.

CMR:
$$\frac{1}{n-x_1+x_1^2} + \frac{1}{n-x_2+x_2^2} + \dots + \frac{1}{n-x_n+x_n^2} \le 1$$

16. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $1 + a + b + c \ge 2\sqrt{1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$

17. Cho
$$a,b,c,d > 0$$
 thỏa $abcd = 1$.

CMR:
$$(a-1)(a-2)+(b-1)(b-2)+(c-1)(c-2)+(d-1)(d-2) \ge 0$$

18. Cho
$$a_1, a_2, ..., a_n > 0 (n \ge 4)$$
 thỏa $a_1 a_2 ... a_n = 1$

CMR:
$$(n-1)(a_1^2 + a_2^2 + ... + a_n^2) + n(n+3) \ge (2n+2)(a_1 + a_2 + ... + a_n)$$

19*. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$

CMR:
$$a_1^{n-1} + a_2^{n-1} + ... + a_n^{n-1} + n(n-2) \ge (n-1) \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right)$$

20. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$. Với $m \ge n$:

CMR:
$$a_1^m + a_2^m + ... + a_n^m + mn \ge (m+1) \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right)$$

21. Cho
$$a_1, a_2, ..., a_n > 0 (n \ge 3)$$
 thỏa $\sqrt[n]{a_1 a_2 ... a_n} = p \ge \sqrt{n} - 1$

CMR:
$$\frac{1}{(1+a_1)^2} + \frac{1}{(1+a_2)^2} + \dots + \frac{1}{(1+a_n)^2} \ge \frac{n}{(1+p)^2}$$

22. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $\sqrt[n]{a_1 a_2 ... a_n} = p \ge n^2 - 1$

CMR:
$$\frac{1}{\sqrt{1+a_1}} + \frac{1}{\sqrt{1+a_2}} + ... + \frac{1}{\sqrt{1+a_n}} \ge \frac{n}{\sqrt{1+p}}$$

23*. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $\sqrt[n]{a_1 a_2 ... a_n} = p \le \sqrt{\frac{n}{n-1}} - 1$

CMR:
$$\frac{1}{(1+a_1)^2} + \frac{1}{(1+a_2)^2} + ... + \frac{1}{(1+a_n)^2} \le \frac{n}{(1+p)^2}$$

24. Cho
$$a_1, a_2, ..., a_n > 0 (n \ge 3)$$
 thỏa $\sqrt[n]{a_1 a_2 ... a_n} = p \le \frac{2n-1}{(n-1)^2}$

CMR:
$$\frac{1}{\sqrt{1+a_1}} + \frac{1}{\sqrt{1+a_2}} + \dots + \frac{1}{\sqrt{1+a_n}} \le \frac{n}{\sqrt{1+p}}$$

25. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $\sqrt[n]{a_1 a_2 ... a_n} = p \ge 1$

CMR:
$$\frac{1}{1+a_1+...+a_1^{n-1}} + \frac{1}{1+a_2+...+a_2^{n-1}} + ... + \frac{1}{1+a_n+...+a_n^{n-1}} \ge \frac{1}{1+p+...+p^{n-1}}$$

26. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n \ge 1$.

CMR:
$$a_1 + a_2 + ... + a_n - \sqrt[n]{a_1 a_2 ... a_n} \ge \frac{1}{2n^2} \sum_{1 \le i \le j \le n} \left(\ln a_i - \ln a_j \right)^2$$

27. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$

CMR:
$$\left(1 - \frac{1}{n}\right)^{a_1} + \left(1 - \frac{1}{n}\right)^{a_2} + \dots + \left(1 - \frac{1}{n}\right)^{a_n} \le n - 1$$

28. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = n$.

CMR:
$$n^{-x_1^2} + n^{-x_2^2} + ... + n^{-x_n^2} \ge 1$$

29. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = n$.

CMR:
$$2(x_1^3 + x_2^3 + ... + x_n^3) + n^2 \le (2n+1)(x_1^2 + x_2^2 + ... + x_n^2)$$

30. Cho
$$x, y, z > 0$$
 thỏa $x + y + z = 3$. CMR: $8\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) + 9 \ge 10\left(x^2 + y^2 + z^2\right)$

Chapter 4: On Popoviciu's Inequality

4.2 Applications

1*. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$

CMR:
$$a_1^{n-1} + a_2^{n-1} + ... + a_n^{n-1} + n(n-2) \ge (n-1) \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right)$$

2. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$

CMR:
$$a_1^{n-1} + a_2^{n-1} + ... + a_n^{n-1} + n(n-2) \ge \frac{n-1}{2} \left(a_1 + a_2 + ... + a_n + \frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right)$$

3. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 + a_2 + ... + a_n = n$

CMR:
$$(n-a_1)(n-a_2)...(n-a_n) \ge (n-1)^n \sqrt[n-1]{a_1 a_2...a_n}$$

4. Cho
$$a_1, a_2, ..., a_n > 0$$
 và $b_i = \frac{1}{n-1} \sum_{j \neq i} a_i, \forall i$. CMR: $\frac{b_1}{a_1} + \frac{b_2}{a_2} + ... + \frac{b_n}{a_n} \ge \frac{a_1}{b_1} + \frac{a_2}{b_2} + ... + \frac{a_n}{b_n}$

5*. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 + x_2 + ... + x_n = \frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n}$.

a)*
$$\frac{1}{1+(n-1)x} + \frac{1}{1+(n-1)x_2} + \dots + \frac{1}{1+(n-1)x_n} \ge 1$$

b)
$$\frac{1}{n-1+x_1} + \frac{1}{n-1+x_2} + \dots + \frac{1}{n-1+x_n} \le 1$$

6. Cho
$$a_1, a_2, ..., a_n > 0 (n \ge 3)$$
 thỏa $a_1 + a_2 + ... + a_n = 1$

CMR:
$$\left(a_1 + \frac{1}{a_1} - 2\right) \left(a_2 + \frac{1}{a_2} - 2\right) ... \left(a_n + \frac{1}{a_n} - 2\right) \ge \left(n + \frac{1}{n} - 2\right)^n$$

7. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 + x_2 + ... + x_n = \frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n} = ns$

CMR:
$$\frac{1}{x_1+n-1} + \frac{1}{x_2+n-1} + \dots + \frac{1}{x_n+n-1} \ge \frac{1}{ns-x_1+1} + \frac{1}{ns-x_2+1} + \dots + \frac{1}{ns-x_n+1}$$

8. Cho
$$x_1, x_2, ..., x_n > 0 (n \ge 3)$$
 thỏa $x_1 x_2 ... x_n = 1$. Với 0

CMR:
$$\frac{1}{\sqrt{1+px_1}} + \frac{1}{\sqrt{1+px_2}} + \dots + \frac{1}{\sqrt{1+px_n}} \le \frac{n}{\sqrt{1+p}}$$

9. Cho
$$x_1, x_2, ..., x_n > 0$$
. CMR: $(n-1)(x_1^2 + x_2^2 + ... + x_n^2) + n\sqrt[n]{x_1^2 x_2^2 ... x_n^2} \ge (x_1 + x_2 + ... + x_n)^2$

10. Cho
$$a,b,c,d > 0$$
 thỏa $ab + bc + cd + da = 4$.

CMR:
$$\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{d}\right)\left(1+\frac{d}{a}\right) \ge \left(a+b+c+d\right)^2$$

Chapter 5: Inequalities Involving EV-Theorem

5.2 Applications

1. Cho
$$a,b,c \ge 0$$
. CMR: $x^4(y+z) + y^4(z+x) + z^4(x+y) \le \frac{1}{12}(x+y+z)^5$

2. Cho
$$x, y, z \ge 0$$
 thỏa $xy + yz + zx = 1$. CMR: $x + y + z + 3(2\sqrt{3} - 3)xyz \ge 2$

3. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca=1$. CMR: $\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} - \frac{1}{a+b+c} \ge 2$

4. Cho
$$x, y, z, t \ge 0$$
 thỏa $x + y + z + t = 3$. CMR: $x^2y^2z^2 + y^2z^2t^2 + z^2t^2x^2 + t^2x^2y^2 \le 1$

5. Cho
$$x, y, z, t \ge 0$$
 thỏa $x + y + z + t = 4$.
CMR: $xyz + yzt + ztx + txy + x^2y^2z^2 + y^2z^2t^2 + z^2t^2x^2 + t^2x^2y^2 \le 8$

6. Cho
$$x, y, z \ge 0$$
 thỏa $xy + yz + zx = 3$. CMR: $\sqrt{\frac{1+2x}{3}} + \sqrt{\frac{1+2y}{3}} + \sqrt{\frac{1+2z}{3}} \ge 3$

CMR:
$$\frac{1}{(x+y)^2} + \frac{1}{(y+z)^2} + \frac{1}{(z+x)^2} \ge \frac{9}{4(xy+yz+zx)}$$

8. Cho
$$x, y, z \ge 0$$
 và 2 trong chúng không đồng thời bằng 0. Với $0 \le r \le \frac{5}{2}$.

CMR:
$$\sum \frac{1}{y^2 + yz + z^2} \ge \frac{3(1+r)}{x^2 + y^2 + z^2 + r(xy + yz + zx)}$$

9. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 3$. Với $r \ge \frac{8}{5}$.

CMR: $\frac{1}{r + x^2 + y^2} + \frac{1}{r + y^2 + z^2} + \frac{1}{r + z^2 + x^2} \le \frac{3}{r + 2}$

10. Cho
$$x, y, z \ge 0$$
 thỏa $x^2 + y^2 + z^2 = 3$. Với $r \ge 10$.

CMR:
$$\frac{1}{r-(x+y)^2} + \frac{1}{r-(y+z)^2} + \frac{1}{r-(z+x)^2} \le \frac{3}{r-4}$$

11. Cho
$$x, y, z \ge 0$$
. CMR: $\frac{yz}{3x^2 + y^2 + z^2} + \frac{zx}{3y^2 + z^2 + x^2} + \frac{xy}{3z^2 + x^2 + y^2} \le \frac{3}{5}$

12. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 2$. CMR: $\frac{yz}{x^2 + 1} + \frac{zx}{y^2 + 1} + \frac{xy}{z^2 + 1} \le 1$

13. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 3$.

Nếu
$$\frac{\ln 2}{\ln 3 - \ln 2} \approx 1,71 = r_0 \le r \le 3$$
 thì : $x^r (y+z) + y^r (z+x) + z^r (x+y) \le 2$

14. Cho
$$x, y, z \ge 0$$
 thỏa $xy + yz + zx = 3$.

Nếu
$$1 < r \le 2$$
 thì : $x^r (y+z) + y^r (z+x) + z^r (x+y) \ge 6$

15*. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 + x_2 + ... + x_n = \frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x}$.

CMR:
$$\frac{1}{1+(n-1)x} + \frac{1}{1+(n-1)x_2} + \dots + \frac{1}{1+(n-1)x_n} \ge 1$$

16. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $a^3 + b^3 + c^3 + 15 \ge 6 \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$

17. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏ
a $a_1 a_2 ... a_n = 1$. Với $m \ge n - 1$:

CMR:
$$a_1^m + a_2^m + ... + a_n^m + (m-1)n \ge m \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n}\right)$$

18. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = n$. Với $k \in \mathbb{Z}^+, 2 \le k \le n + 2, r = \left(\frac{n}{n-1}\right)^{k-1} - 1$:

CMR: $x_1^k + x_2^k + ... + x_n^k - n \ge nr(1 - x_1 x_2 ... x_n)$

19. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n} = n$. Với $e_{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1} < e$

$$CMR: x_1 + x_2 + ... + x_n - n \le e_{n-1} \left(x_1 x_2 ... x_n - 1\right)$$

20. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = n$. Với $k \in \mathbb{Z}^+, 3 \le k, r = \frac{n^{k-1} - 1}{n-1}$:

CMR: $x_1^k + x_2^k + ... + x_n^k - n \ge r(x_1^2 + x_2^2 + ... + x_n^2 - n)$

21. Cho
$$x_1, x_2, ..., x_n > 0$$
.

CMR:
$$x_1^n + x_2^n + ... + x_n^n + n(n-1)x_1x_2...x_n \ge x_1x_2...x_n(x_1 + x_2 + ... + x_n)\left(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n}\right)$$

22. Cho
$$x_1, x_2, ..., x_n \ge 0$$
.
$$CMR: (n-1)(x_1^n + x_2^n + ... + x_n^n) + nx_1x_2...x_n \ge (x_1 + x_2 + ... + x_n)(x_1^{n-1} + x_2^{n-1} + ... + x_n^{n-1})$$

23. Cho
$$x_1, x_2, ..., x_n \ge 0$$
.
$$CMR: (n-1)(x_1^{n+1} + x_2^{n+1} + ... + x_n^{n+1}) \ge (x_1 + x_2 + ... + x_n)(x_1^n + x_2^n + ... + x_n^n - x_2 x_2 ... x_n)$$

24. Cho
$$x_1, x_2, ..., x_n > 0$$
.

CMR:
$$(x_1 + x_2 + ... + x_n - n) \left(\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n} - n \right) + x_1 x_2 ... x_n + \frac{1}{x_1 x_2 ... x_n} \ge 2$$

25. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 x_2 ... x_n = 1$. CMR:
$$\left| \frac{1}{\sqrt{x_1 + x_2 + ... + x_n - n}} - \frac{1}{\sqrt{\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n} - n}} \right| < 1$$

26. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = n$. CMR: $(x_2 x_2 ... x_n)^{\frac{1}{\sqrt{n-1}}} (x_1^2 + x_2^2 + ... + x_n^2) \le n$

27. Cho
$$x, y, z \ge 0$$
 thỏa $xy + yz + zx = 3$.

Nếu
$$p \ge \frac{\ln 9 - \ln 4}{\ln 3} \approx 0,738 \text{ th} : x^p + y^p + z^p \ge 3$$

28. Cho
$$x, y, z \ge 0$$
 thỏa $x + y + z = 3$.

Nếu
$$p \ge \frac{\ln 9 - \ln 8}{\ln 3 - \ln 2} \approx 0,29$$
 thì : $x^p + y^p + z^p \ge xy + yz + zx$

29. Cho $x_1, x_2, ..., x_n \ge 0$ thỏa $x_1 + x_2 + ... + x_n = n$.

CMR:
$$\frac{1}{n+1-x_2x_3...x_n} + \frac{1}{n+1-x_3x_4...x_nx_1} + ... + \frac{1}{n+1-x_1x_2...x_{n-1}} \le 1$$

30*. Cho
$$a,b,c>0$$
 thỏa $abc=1$. CMR: $\frac{1}{\left(1+a\right)^2} + \frac{1}{\left(1+b\right)^2} + \frac{1}{\left(1+c\right)^2} + \frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)} \ge 1$

- 31. Cho $a,b,c \ge 0$ thỏa $a+b+c \ge 2$ và $ab+bc+ca \ge 1$ Nếu 0 < r < 1 thì : $a^r + b^r + c^r \ge 2$
- 32. Cho a,b,c > 0 thỏa $(a+b+c)^3 = 32abc$. Tìm GTLN và GTNN của : $E = \frac{a^4 + b^4 + c^4}{(a+b+c)^4}$.
- 33. Cho $x_1, x_2, ..., x_n \ge 0 (n \ge 3)$ thỏa $\sum x_1 = 1$. Với $m \in \{3, 4, ..., n\}$: $CMR: 1 + \frac{3m}{m-2} \sum x_1 x_2 x_3 \ge \frac{3m-1}{m-1} \sum x_1 x_2$
- 34. Cho $x, y, z, t \ge 0$ thỏa $x^2 + y^2 + z^2 + t^2 = 1$. CMR: $x^3 + y^3 + z^3 + t^3 + xyz + yzt + ztx + txy \le 1$

Chapter 6: Arithmetic / Geometric Compensation Method

6.3 Applications

1. Cho $a,b,c,d \ge 0$ thỏa a+b+c+d=4. CMR:

a)
$$\frac{1}{5-abc} + \frac{1}{5-bcd} + \frac{1}{5-cda} + \frac{1}{5-dab} \le 1$$

b)
$$\frac{1}{4-abc} + \frac{1}{4-bcd} + \frac{1}{4-cda} + \frac{1}{4-dab} \le \frac{15}{11}$$

2. Cho $x_1, x_2, ..., x_n \ge 0$ ($3 \le n \in Z$) thỏa $x_1 + x_2 + ... + x_n = n$. Với $1 < m < n, p > \left(\frac{n}{m}\right)^m$ Thì $F(x_1, x_2, ..., x_n) = \sum_{1 \le i_1 < ... < i_n} \frac{1}{p - x_i \cdot x_i \cdot ... \cdot x_n}$ đạt max tại $x_1 = x_2 = ... = x_k = \frac{n}{k}$ và

$$x_{k+1} = x_{k+2} = \dots = x_n = 0 . \ \mathring{\text{O}} \ \mathring{\text{day}} \ k \in \left\{ m.m+1, \dots, n \right\}.$$

3. Cho $a,b,c,d \ge 0$ thỏa a+b+c+d=1. CMR:

a)
$$4(a^3+b^3+c^3+d^3)+15(abc+bcd+cda+dab) \ge 1$$

b)
$$11(a^3+b^3+c^3+d^3)+21(abc+bcd+cda+dab) \ge 2$$

4. Cho $x_1, x_2, ..., x_n \ge 0 (n \ge 3)$.CMR:

a)
$$\sum x_1^3 + 3\sum x_1x_2x_3 \ge \sum x_1x_2(x_1 + x_2)$$

b)
$$\frac{n-1}{2} \sum x_1^3 + \frac{3}{n-2} \sum x_1 x_2 x_3 \ge \sum x_1 x_2 (x_1 + x_2)$$

5. Cho
$$a,b,c,d \ge 0$$

a) Nếu
$$a^2 + b^2 + c^2 + d^2 = 2$$
 thì : $a^3 + b^3 + c^3 + d^3 + abc + bcd + cda + dab \ge 2$

b) Nếu
$$a^2 + b^2 + c^2 + d^2 = 3$$
 thì : $3(a^3 + b^3 + c^3 + d^3) + 2(abc + bcd + cda + dab) \ge 11$

6. Cho
$$a,b,c,d \ge 0$$
 thỏa $a+b+c+d=2$. CMR: $\frac{1}{1+3a^2} + \frac{1}{1+3b^2} + \frac{1}{1+3c^2} + \frac{1}{1+3d^2} \ge \frac{16}{7}$

7. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = s$. CMR: $\frac{1}{1 + x_1^2} + \frac{1}{1 + x_2^2} + ... + \frac{1}{1 + x_2^2} \ge n - \max_{1 \le k \le n} \frac{ks^2}{k^2 + s^2}$

8. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = s > 0$.

CMR:
$$(1+x_1^2)(1+x_2^2)...(1+x_n^2) \le \max_{1 \le k \le n} \left(1+\frac{s^2}{k^2}\right)^k$$

9. Cho
$$a,b,c,d \ge 0$$
 thỏa $a+b+c+d=1$. CMR:
$$\frac{(1+2a)(1+2b)(1+2c)(1+2d)}{(1-a)(1-b)(1-c)(1-d)} \ge \frac{125}{8}$$

10. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = 1$. Với $m > -1$. CMR:
$$\prod_{i=1}^{n} \frac{1 + mx_i}{1 - x_i} \ge \min_{1 \le k \le n} \left(\frac{k + m}{k - 1} \right)^k$$

11. Cho
$$x_1, x_2, ..., x_n \ge 0$$
 thỏa $x_1 + x_2 + ... + x_n = \frac{2}{3}$. CMR:
$$\sum_{1 \le i < j \le n} \frac{x_i x_j}{(1 - x_i)(1 - x_j)} \le \frac{1}{4}$$

12. Cho $x_1, x_2, ..., x_n \ge 0$ thỏ
a $x_1 + x_2 + ... + x_n = 1$ và n-1 số trong chúng không đồng thời bằng 0 .

CMR:
$$\sum_{1 \le i < j \le n} \frac{x_i x_j}{(1 - x_i)(1 - x_j)} \ge \frac{n}{2(n - 1)}$$

13. Cho
$$a,b,c,d \ge 0$$
 thỏa $a+b+c+d=4$. CMR: $(1+3a)(1+3b)(1+3c)(1+3d) \le 125+131abcd$

14. Cho
$$a, b, c, d \ge 0$$
 thỏa $a + b + c + d = 4$.

CMR:
$$(1+3a^2)(1+3b^2)(1+3c^2)(1+3d^2) \le 255+a^2b^2c^2d^2$$

15. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $\sqrt[n]{x_1 x_2 ... x_n} = p \le \frac{1}{n-1}$

CMR:
$$\frac{1}{1+x_1} + \frac{1}{1+x_2} + \dots + \frac{1}{1+x_n} \le \frac{n}{1+p}$$

16*. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $\sqrt[n]{a_1 a_2 ... a_n} = p \le \sqrt{\frac{n}{n-1}} - 1$

CMR:
$$\frac{1}{(1+a_1)^2} + \frac{1}{(1+a_2)^2} + ... + \frac{1}{(1+a_n)^2} \le \frac{n}{(1+p)^2}$$

Chapter 7: Symmetric Inequalities With Three Variables Involving Fractions

$$\begin{split} E_1 &= \frac{a \left(b+c\right) + pbc}{b^2 + rbc + c^2} + \frac{b \left(c+a\right) + pca}{c^2 + rca + a^2} + \frac{c \left(a+b\right) + pab}{a^2 + rab + b^2} \\ E_2 &= \frac{a^2 + qbc}{b^2 + rbc + c^2} + \frac{b^2 + qca}{c^2 + rca + a^2} + \frac{c^2 + qab}{a^2 + rab + b^2} \\ \mathring{\mathbf{O}} & \mathring{\mathbf{d}} \mathring{\mathbf{a}} \mathbf{y} : \ a,b,c \geq 0, r > -2, p,q \in R \,. \end{split}$$

7.1 Inequalities Involving E_1

1. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a(b+c)}{b^2+bc+c^2} + \frac{b(c+a)}{c^2+rca+a^2} + \frac{c(a+b)}{a^2+ab+b^2} \ge 2$$

2. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{ab-bc+ca}{b^2+c^2} + \frac{bc-ca+ab}{c^2+a^2} + \frac{ca-ab+bc}{a^2+b^2} \ge \frac{3}{2}$$

3. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{ab-2bc+ca}{b^2-bc+c^2} + \frac{bc-2ca+ab}{c^2-ca+a^2} + \frac{ca-2ab+bc}{a^2-ab+b^2} \ge 0$$

4. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{1}{(b+c)^2} + \frac{1}{(c+a)^2} + \frac{1}{(a+b)^2} \ge \frac{9}{4(ab+bc+ca)}$$

5. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0 . Với r > -2

CMR:
$$\sum \frac{ab + (r-1)bc + ca}{b^2 + rbc + c^2} \ge \frac{3(r+1)}{r+2}$$

6. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

$$CMR: \sum \frac{ab+4bc+ca}{b^2+c^2} \ge 4$$

7. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0 . Với r > -2

CMR:
$$\sum \frac{ab + (r+2)^2 bc + ca}{b^2 + rbc + c^2} \ge r + 4$$

8 Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0. Với r > -2, $p,r \in R$

Ðặt :
$$E = \sum \frac{ab + pbc + ca}{b^2 + rbc + c^2}$$

a) CMR : $E(a,b,c) \ge \frac{3(p+2)}{r+2}$, $p \le r-1$

b) CMR:
$$E(a,b,c) \ge \frac{p}{r+2} + 2, r-1 \le p \le (r+2)^2$$

c) CMR:
$$E(a,b,c) \ge 2\sqrt{p} - r, p \ge (r+2)^2$$

7.3 Inequalities Involving E_2

1. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{2a^2 + bc}{b^2 + c^2} + \frac{2b^2 + ca}{c^2 + a^2} + \frac{2c^2 + ab}{a^2 + b^2} \ge \frac{9}{2}$$

2. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a^2 + bc}{b^2 + bc + c^2} + \frac{b^2 + ca}{c^2 + ca + a^2} + \frac{c^2 + ab}{a^2 + ab + b^2} \ge \frac{9}{2}$$

3. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

a) CMR:
$$\frac{a^2 + 2bc}{b+c} + \frac{b^2 + 2ca}{c+a} + \frac{c^2 + 2ab}{a+b} \ge \frac{3}{2}(a+b+c)$$

b) CMR:
$$\frac{a^2 + 2bc}{(b+c)^2} + \frac{b^2 + 2ca}{(c+a)^2} + \frac{c^2 + 2ab}{(a+b)^2} \ge \frac{9}{4}$$

c) CMR:
$$\frac{2a^2 + 5bc}{(b+c)^2} + \frac{2b^2 + 5ca}{(c+a)^2} + \frac{2c^2 + 5ab}{(a+b)^2} \ge \frac{21}{4}$$

4. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a^2 - bc}{2b^2 - 3bc + 2c^2} + \frac{b^2 - ca}{2c^2 - 3ca + 2a^2} + \frac{c^2 - ab}{2a^2 - 3ab + 2b^2} \ge 0$$

5. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a^2}{2b^2 - bc + 2c^2} + \frac{b^2}{2c^2 - ca + 2a^2} + \frac{c^2}{2a^2 - ab + 2b^2} \ge 1$$

6. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{2a^2 - bc}{b^2 - bc + c^2} + \frac{2b^2 - ca}{c^2 - ca + a^2} + \frac{2c^2 - ab}{a^2 - ab + b^2} \ge 3$$

7. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0. Với r > -2

CMR:
$$\sum \frac{2a^2 + (2r+1)bc}{b^2 + rbc + c^2} \ge \frac{3(2r+3)}{r+2}$$

CMR:
$$\frac{a^2 + 16bc}{b^2 + c^2} + \frac{b^2 + 16ca}{c^2 + a^2} + \frac{c^2 + 16ab}{a^2 + b^2} \ge 10$$

CMR:
$$\sum \frac{a^2 + 4(r+2)^2 bc}{b^2 + rbc + c^2} \ge 4r + 10$$

10. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0 . Với $r > -2, q, r \in R$

$$\text{D} \tilde{a} t : E = \sum \frac{a^2 + qbc}{b^2 + rbc + c^2}$$

a) CMR:
$$E(a,b,c) \ge \frac{3(q+2)}{r+2}, q \le \frac{2r+1}{2}$$

b) CMR:
$$E(a,b,c) \ge \frac{q}{r+2} + 2, \frac{2r+1}{2} \le q \le 4(r+2)^2$$

c) CMR:
$$E(a,b,c) \ge 4kr + 12k^2 - 2, q = 4k(r+2k)^2, k \ge 1$$

7.5 Inequalities Involving E_1 and E_2

1. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0. Với $r > -2, a \ge 0, a(1-r) + b = \frac{2r+1}{2}$

CMR:
$$\sum \frac{a^2 + aa(b+c) + bbc}{b^2 + rbc + c^2} \ge \frac{3(1+2a+b)}{r+2}$$

2. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

Với
$$r > -2, a \ge 0, \frac{2r+1}{2} + a(1-r) \le b \le 4(r+2)^2 + a(r-1)$$

CMR:
$$\sum \frac{a^2 + aa(b+c) + bbc}{b^2 + rbc + c^2} \ge 2 + 2a + \frac{b}{r+2}$$

7.7 Other Related Inequalities

1. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a^2(b+c)^2}{b^2+c^2} + \frac{b^2(c+a)^2}{c^2+a^2} + \frac{c^2(a+b)^2}{a^2+b^2} \ge 2(ab+bc+ca)$$

2. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca=1$. CMR: $\frac{\left(1+ab\right)^2}{a^2+b^2+4ab} + \frac{\left(1+bc\right)^2}{b^2+c^2+4bc} + \frac{\left(1+ca\right)^2}{c^2+a^2+4ca} \ge \frac{8}{3}$

3. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca = 1$. Với : $r \ge 0$. CMR : $\sum \frac{(1-bc)^2 + rbc}{b^2 + rbc + c^2} \ge \frac{3r+4}{r+2}$

CMR:
$$\frac{\sqrt{bc+4a(b+c)}}{b+c} + \frac{\sqrt{ca+4b(c+a)}}{c+a} + \frac{\sqrt{ab+4c(a+b)}}{a+b} \ge \frac{9}{2}$$

5. Cho
$$a,b,c > 0$$
. CMR: $\frac{\sqrt{a^2 + bc}}{b^2 + c^2} + \frac{\sqrt{b^2 + ca}}{c^2 + a^2} + \frac{\sqrt{c^2 + ab}}{a^2 + b^2} \ge \frac{3\sqrt{2}}{2}$

CMR:
$$\sqrt{\frac{2a(b+c)}{(2b+c)(b+2c)}} + \sqrt{\frac{2b(c+a)}{(2c+a)(c+2a)}} + \sqrt{\frac{2c(a+b)}{(2a+b)(a+2b)}} \ge 2$$

7. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

a) CMR:
$$\frac{a^3 + 3abc}{b+c} + \frac{b^3 + 3abc}{c+a} + \frac{b^3 + 3abc}{a+b} \ge 2(ab+bc+ca)$$

b) CMR:
$$\frac{a^3 + 3abc}{(b+c)^3} + \frac{b^3 + 3abc}{(c+a)^3} + \frac{b^3 + 3abc}{(a+b)^3} \ge \frac{3}{2}$$

8. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

a) CMR:
$$\frac{a^2 + 2bc}{b+c} + \frac{b^2 + 2ca}{c+a} + \frac{c^2 + 2ab}{a+b} \ge \frac{3}{2}(a+b+c)$$

b) CMR:
$$\frac{a^3 + 2abc}{b+c} + \frac{b^3 + 2abc}{c+a} + \frac{c^3 + 2abc}{a+b} \ge \frac{1}{2} (a+b+c)^2$$

9. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a\sqrt{a^2 + 3bc}}{b + c} + \frac{b\sqrt{b^2 + 3ca}}{c + a} + \frac{c\sqrt{c^2 + 3ab}}{a + b} \ge a + b + c$$

10. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0 . Với $r \ge 3 + \sqrt{7}$

CMR:
$$\frac{1}{ra^2 + bc} + \frac{1}{rb^2 + ca} + \frac{1}{rc^2 + ab} \ge \frac{9}{(r+1)(ab+bc+ca)}$$

11. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0 . Với $\frac{2}{3} \le r \le 3 + \sqrt{7}$

CMR:
$$\frac{1}{ra^2 + bc} + \frac{1}{rb^2 + ca} + \frac{1}{rc^2 + ab} \ge \frac{r+2}{r(ab+bc+ca)}$$

12. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{1}{2a^2+bc} + \frac{1}{2b^2+ca} + \frac{1}{2c^2+ab} \ge \frac{6}{a^2+b^2+c^2+ab+bc+ca}$$

13. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{1}{22a^2 + 5bc} + \frac{1}{22b^2 + 5ca} + \frac{1}{22c^2 + 5ab} \ge \frac{1}{(a+b+c)^2}$$

CMR:
$$\frac{1}{2a^2+bc} + \frac{1}{2b^2+ca} + \frac{1}{2c^2+ab} \ge \frac{8}{(a+b+c)^2}$$

CMR:
$$\frac{1}{a^2 + bc} + \frac{1}{b^2 + ca} + \frac{1}{c^2 + ab} \ge \frac{12}{(a+b+c)^2}$$

16. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c=2$. CMR: $(a^2+bc)(b^2+ca)(c^2+ab) \le 1$

17. Cho $a, b, c \ge 0$

a) CMR:
$$\frac{a^2 - bc}{2a^2 + b^2 + c^2} + \frac{b^2 - ca}{2b^2 + c^2 + a^2} + \frac{c^2 - ab}{2c^2 + a^2 + b^2} \ge 0$$
b) CMR:
$$\frac{a^2 - bc}{\sqrt{2a^2 + b^2 + c^2}} + \frac{b^2 - ca}{\sqrt{2b^2 + c^2 + a^2}} + \frac{c^2 - ab}{\sqrt{2c^2 + a^2 + b^2}} \ge 0$$

18. Cho
$$a,b,c$$
 là độ dài 3 cạnh tam giác .CMR :
$$\frac{a^2 - bc}{3a^2 + b^2 + c^2} + \frac{b^2 - ca}{3b^2 + c^2 + a^2} + \frac{c^2 - ab}{3c^2 + a^2 + b^2} \le 0$$

Chapter 8: Final Problem Set

8.1 Applications

1. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $\sqrt{\frac{a+b}{b+1}} + \sqrt{\frac{b+c}{c+1}} + \sqrt{\frac{c+a}{a+1}} \ge 3$

2. Cho
$$a,b,c > 0$$
 thỏa $abc = 1$. CMR: $\sqrt{\frac{a}{b+3}} + \sqrt{\frac{b}{c+3}} + \sqrt{\frac{c}{a+3}} \ge \frac{3}{2}$

3. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c=1$. CMR: $\frac{5-3bc}{1+a} + \frac{5-3ca}{1+b} + \frac{5-3ab}{1+c} \ge ab+bc+ca$

4. Cho
$$a,b,c,d \ge 0$$
 thỏa $a^2 + b^2 + c^2 + d^2 = 4$. CMR: $(abc)^3 + (bcd)^3 + (cda)^3 + (dab)^3 \le 4$

5. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\sqrt{\frac{a}{4a+5b}} + \sqrt{\frac{b}{4b+5c}} + \sqrt{\frac{c}{4c+5a}} \le 1$$

6. Cho $a_1, a_2, ..., a_n > 0$.

a) CMR:
$$\frac{\left(a_1 + a_2 + \dots + a_n\right)^2}{\left(a_1^2 + 1\right)\left(a_2^2 + 1\right)\dots\left(a_n^2 + 1\right)} \le \frac{\left(n - 1\right)^{n-1}}{n^{n-2}}$$

b) CMR:
$$\frac{a_1 + a_2 + ... + a_n}{(a_1^2 + 1)(a_2^2 + 1)...(a_n^2 + 1)} \le \frac{(2n - 1)^{n - \frac{1}{2}}}{2^n n^{n - 1}}$$

7. Cho
$$a_1, a_2, ..., a_n \in R$$
 và $b_1, b_2, ..., b_n \in R$. CMR:
$$\sum_{i=1}^n a_i b_i + \sqrt{\left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)} \ge \frac{2}{n} \left(\sum_{i=1}^n a_i\right) \left(\sum_{i=1}^n b_i\right)$$

8. Cho
$$a_1, a_2, ..., a_n \in R$$
 thỏ
a $a_1 \le a_2 \le ... \le a_n$. Với $k, n \in \mathbb{Z}^+, k < n$

CMR:
$$(a_1 + a_2 + ... + a_n)^2 \ge n(a_1 a_{k+1} + a_2 a_{k+2} + + a_n a_k)$$

Trong trường hợp : a) n = 2k

b)
$$n = 4k$$

9. Cho a,b,c,d > 0 thỏa abcd = 1

CMR:
$$\frac{1}{1+a+a^2+a^3} + \frac{1}{1+b+b^2+b^3} + \frac{1}{1+c+c^2+c^3} + \frac{1}{1+d+d^2+d^3} \ge 1$$

10. Cho
$$a,b,c \ge 0$$
 . CMR: $9(a^4+1)(b^4+1)(c^4+1) \ge 8(a^2b^2c^2+abc+1)^2$

11. Cho
$$a,b,c,d \ge 0$$
. CMR: $\frac{(1+a^3)(1+b^3)(1+c^3)(1+d^3)}{(1+a^2)(1+b^2)(1+c^2)(1+d^2)} \ge \frac{1+abcd}{2}$

12. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{1}{a^2 + ab + b^2} + \frac{1}{b^2 + bc + c^2} + \frac{1}{c^2 + ca + a^2} \ge \frac{9}{(a + b + c)^2}$$

13. Cho
$$a,b,c > 0$$
. Đặt $x = a + \frac{1}{b} - 1$, $y = b + \frac{1}{c} - 1$, $z = c + \frac{1}{a} - 1$. CMR: $xy + yz + zx \ge 3$

14. Cho a,b,c>0 và 2 trong chúng không đồng thời bằng 0 . Với $n \in Z^+$:

CMR:
$$\frac{2a^n - b^n - c^n}{b^2 - bc + c^2} + \frac{2b^n - c^n - a^n}{c^2 - ca + a^2} + \frac{2c^n - a^n - b^n}{a^2 - ab + b^2} \ge 0$$

15. Cho
$$0 \le a < b, a_1, a_2, ..., a_n \in [a, b]$$
. CMR: $a_1 + a_2 + ... + a_n - n\sqrt[n]{a_1 a_2 ... a_n} \le (n-1)(\sqrt{b} - \sqrt{a})^2$

16. Cho
$$a,b,c,x,y,z > 0$$
 thỏa $x + y + z = a + b + c$. CMR: $ax^2 + by^2 + cz^2 + xyz \ge 4abc$

17. Cho
$$a,b,c,x,y,z > 0$$
 thỏa $x + y + z = a + b + c$. CMR: $\frac{x(3x+a)}{bc} + \frac{y(3y+a)}{ca} + \frac{z(3z+a)}{ab} \ge 12$

18. Cho
$$a,b,c > 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge \frac{9}{a+b+c}$

19. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$. CMR: $\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} + \frac{4n}{n + a_1 + a_2 + ... + a_n} \ge n + 2$

20. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 a_2 ... a_n = 1$. CMR: $a_1 + a_2 + ... + a_n - n + 1 \ge \sqrt[n-1]{\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} - n + 1}$

21. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca = 3$. Với $r > 1$. CMR: $a^{r}(b+c)+b^{r}(c+a)+c^{r}(a+b) \ge 6$

22. Cho a,b,c>0 thỏa $abc \ge 1$.

a) CMR:
$$a^{\frac{a}{b}}b^{\frac{b}{c}}c^{\frac{c}{a}} \ge 1$$

b) CMR:
$$a^{\frac{a}{b}}b^{\frac{b}{c}}c^{c} \ge 1$$

23. Cho
$$a,b,c,d \ge 0$$
. CMR: $4(a^3+b^3+c^3+d^3)+15(abc+bcd+cda+dab) \ge (a+b+c+d)^2$

24. Cho
$$a,b,c > 0$$
 thỏa $(a+b-c)\left(\frac{1}{a} + \frac{1}{b} - \frac{1}{c}\right) = 4$. CMR: $(a^4 + b^4 - c^4)\left(\frac{1}{a^4} + \frac{1}{b^4} - \frac{1}{c^4}\right) \ge 2304$

25. Cho
$$a,b,c>0$$
 . CMR: $\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}>\frac{2}{ab+bc+ca}$

26. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a(b+c)}{a^2+2bc} + \frac{b(c+a)}{b^2+2ca} + \frac{c(a+b)}{c^2+2ab} \ge 1 + \frac{ab+bc+ca}{a^2+b^2+c^2}$$

27. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{(b+c)^2}{a^2+bc} + \frac{(c+a)^2}{b^2+ca} + \frac{(a+b)^2}{c^2+ab} \ge 6$$

CMR:
$$\frac{b+c}{2a^2+bc} + \frac{c+a}{2b^2+ca} + \frac{a+b}{2c^2+ab} \ge \frac{6}{a+b+c}$$

29. Cho
$$a,b,c \ge 0$$
 . CMR: $a\sqrt{a^2 + 3bc} + b\sqrt{b^2 + 3ca} + c\sqrt{c^2 + 3ab} \ge 2(ab + bc + ca)$

30. Cho
$$a,b,c \ge 0$$
 . CMR: $\frac{a^2 - bc}{\sqrt{a^2 + bc}} + \frac{b^2 - ca}{\sqrt{b^2 + ca}} + \frac{c^2 - ab}{\sqrt{c^2 + ab}} \ge 0$

31. Cho
$$a,b,c \ge 0$$
 . CMR: $(a^2-bc)\sqrt{a^2+4bc}+(b^2-ca)\sqrt{b^2+4ca}+(c^2-ab)\sqrt{c^2+4ab} \ge 0$

32. Cho
$$a,b,c>0$$
 . CMR:
$$\frac{a^2-bc}{\sqrt{8a^2+(b+c)^2}} + \frac{b^2-ca}{\sqrt{8b^2+(c+a)^2}} + \frac{c^2-ab}{\sqrt{8c^2+(a+b)^2}} \ge 0$$

33. Cho
$$a,b,c \ge 0$$
 . CMR: $\sqrt{a^2 + bc} + \sqrt{b^2 + ca} + \sqrt{c^2 + ab} \le \frac{3}{2}(a + b + c)$

34. Cho
$$a,b,c \ge 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $21 + 18abc \ge 13(ab + bc + ca)$

35. Cho
$$a,b,c \ge 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $\frac{1}{5 - 2ab} + \frac{1}{5 - 2bc} + \frac{1}{5 - 2ca} \le 1$

36. Cho
$$a,b,c \ge 0$$
 thỏa $a^2 + b^2 + c^2 = 3$. CMR: $(2-ab)(2-bc)(2-ca) \ge 1$

37. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c=2$. CMR: $\frac{bc}{a^2+1} + \frac{ca}{b^2+1} + \frac{ab}{c^2+1} \le 1$

CMR:
$$\frac{a^3 + 3abc}{(b+c)^2} + \frac{b^3 + 3abc}{(c+a)^2} + \frac{c^3 + 3abc}{(a+b)^2} \ge a+b+c$$

39. Cho
$$a,b,c > 0$$
 thỏa $a^4 + b^4 + c^4 = 3$.

a) CMR:
$$\frac{a^2}{b} + \frac{b^2}{c} + \frac{c^2}{a} \ge 3$$

b) CMR:
$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{3}{2}$$

40. Cho
$$a,b,c>0$$
 . CMR: $\frac{a^3-b^3}{a+b} + \frac{b^3-c^3}{b+c} + \frac{c^3-a^3}{c+a} \le \frac{\left(a-b\right)^2 + \left(b-c\right)^2 + \left(c-a\right)^2}{8}$

41. Cho $a,b,c \ge 0$ và 2 trong chúng không đồng thời bằng 0.

CMR:
$$\frac{a^2}{(2a+b)(2a+c)} + \frac{b^2}{(2b+c)(2b+a)} + \frac{c^2}{(2c+a)(2c+b)} \le \frac{1}{3}$$

CMR:
$$\frac{1}{5(a^2+b^2)-ab} + \frac{1}{5(b^2+c^2)-bc} + \frac{1}{5(c^2+a^2)-ca} \ge \frac{1}{a^2+b^2+c^2}$$

43. Cho
$$a,b,c \ge 0$$
 thỏa $a^2 + b^2 + c^2 = 1$. CMR: $\frac{bc}{a^2 + 1} + \frac{ca}{b^2 + 1} + \frac{ab}{c^2 + 1} \le \frac{3}{4}$

44. Cho
$$a,b,c \ge 0$$
 thỏa $a^2 + b^2 + c^2 = 1$. CMR: $\frac{1}{3+a^2-2bc} + \frac{1}{3+b^2-2ca} + \frac{1}{3+c^2-2ab} \le \frac{9}{8}$

45. Cho
$$a,b,c>0$$
 . CMR: $\frac{4a^2-b^2-c^2}{a(b+c)} + \frac{4b^2-c^2-a^2}{b(c+a)} + \frac{4c^2-a^2-b^2}{c(a+b)} \le 3$

46. Cho
$$a,b,c>0$$
 thỏa $abc=1$. CMR: $a^2+b^2+c^2+6 \ge \frac{3}{2} \left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

47. Cho
$$a_1, a_2, ..., a_n > 0$$
 thỏa $a_1 + a_2 + ... + a_n = n$. CMR: $a_1 a_2 ... a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} - n + 3 \right) \le 3$

48. Cho
$$a,b,c$$
 là độ dài 3 cạnh tam giác . Nếu $a^2+b^2+c^2=3$ thì $ab+bc+ca \ge 1+2abc$

49. Cho
$$a,b,c$$
 là độ dài 3 cạnh tam giác . Nếu $a^2+b^2+c^2=3$ thì $a+b+c \ge 2+abc$

50. Cho a,b,c là độ dài 3 cạnh tam giác không cân .

a)
$$\left| \frac{a+b}{a-b} + \frac{b+c}{b-c} + \frac{c+a}{c-a} \right| > 5$$

b)
$$\left| \frac{a^2 + b^2}{a^2 - b^2} + \frac{b^2 + c^2}{b^2 - c^2} + \frac{c^2 + a^2}{c^2 - a^2} \right| > 3$$

51. Cho
$$a,b,c$$
 là độ dài 3 cạnh tam giác . CMR : $a^2 \left(\frac{b}{c} - 1\right) + b \left(\frac{c}{a} - 1\right) + c \left(\frac{a}{b} - 1\right) \ge 0$

52. Cho
$$a,b,c$$
 là độ dài 3 cạnh tam giác . CMR : $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 6\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)$

53. Cho
$$a_1, a_2, a_3, a_4, a_5, a_6 \in \left[\frac{1}{\sqrt{3}}, \sqrt{3}\right]$$
. CMR: $\frac{a_1 - a_2}{a_2 + a_3} + \frac{a_2 - a_3}{a_3 + a_4} + \dots + \frac{a_6 - a_1}{a_1 + a_2} \ge 0$

54. Cho
$$a,b,c > 0$$
 thỏa $a^2 + b^2 + c^2 \ge 3$. CMR: $\frac{a^5 - a^2}{a^5 + b^2 + c^2} + \frac{b^5 - b^2}{b^5 + c^2 + a^2} + \frac{c^5 - c^2}{c^5 + a^2 + b^2} \ge 0$

55. Cho
$$x, y, z > 0$$
 thỏa $x + y + z \ge 3$. CMR: $\frac{1}{x^3 + y + z} + \frac{1}{y^3 + z + x} + \frac{1}{z^3 + x + y} \le 1$

56. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 x_2 ... x_n \ge 1$. Với $a > 1$. CMR : $\sum \frac{x_1^a}{x_1^a + x_2 + ... + x_n} \ge 1$

57. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 x_2 ... x_n \ge 1$. Với $n \ge 3, \frac{-2}{n-2} \le a < 1$. CMR: $\sum \frac{x_1^a}{x_1^a + x_2 + ... + x_n} \le 1$

58. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 x_2 ... x_n \ge 1$. Với $a > 1$. CMR : $\sum \frac{x_1}{x_1^a + x_2 + ... + x_n} \le 1$

59. Cho
$$x_1, x_2, ..., x_n > 0$$
 thỏa $x_1 x_2 ... x_n \ge 1$. Với $-1 - \frac{2}{n-2} \le a < 1$. CMR: $\sum \frac{x_1}{x_1^a + x_2 + ... + x_n} \ge 1$

60. Cho
$$0 < x_1, x_2, ..., x_n \le \frac{pn - p - 1}{p(n - p - 1)}$$
 thỏa $x_1 x_2 ... x_n = 1$, Với $3 \le n \in \mathbb{Z}$, $p \in \mathbb{R}, 1 .$

CMR:
$$\frac{1}{1+px_1} + \frac{1}{1+px_2} + \dots + \frac{1}{1+px_n} \ge \frac{n}{1+p}$$

61*. Cho
$$a,b,c>0$$
 thỏa $abc=1$. CMR:
$$\frac{1}{\left(1+a\right)^2} + \frac{1}{\left(1+b\right)^2} + \frac{1}{\left(1+c\right)^2} + \frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)} \ge 1$$

62. Cho
$$a,b,c>0$$
 thỏa $abc=1$. CMR: $a^2+b^2+c^2+9(ab+bc+ca)\geq 10(a+b+c)$

63. Cho
$$a,b,c \ge 0$$
 thỏa $ab+bc+ca=3$. CMR: $\frac{a(b^2+c^2)}{a^2+bc} + \frac{b(c^2+a^2)}{b^2+ca} + \frac{c(a^2+b^2)}{c^2+ab} \ge 3$

64. Cho
$$a,b,c > 0$$
. CMR: $a+b+c+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a} \ge \frac{6(a^2+b^2+c^2)}{a+b+c}$

65. Cho
$$a,b,c > 0$$
. CMR: $\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{3(a^3 + b^3 + c^3)}{2(a^2 + b^2 + c^2)}$

66. Cho
$$a,b,c \ge 0$$
. Tìm GTNN của biểu thức $E(a,b,c) = \frac{ax}{y+z} + \frac{by}{z+x} + \frac{cz}{x+y}$, với mọi $x,y,z > 0$.

67. Cho
$$a,b,c > 0$$
 thỏa $a+b+c=3$. CMR: $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge a^2 + b^2 + c^2$

68. Cho
$$a,b,c \ge 0$$
 thỏa $a+b+c=3$. CMR: $(a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2) \le 12$

69. Cho
$$a,b,c \ge 0$$
 thỏ
a $a+b+c=1$. CMR : $\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\ge 2$

70. Cho
$$a,b,c \ge 0$$
 . CMR: $a^3 + b^3 + c^3 + 3abc \ge \sum bc\sqrt{2(b^2 + c^2)}$

71. Cho
$$a,b,c \ge 0$$
 . CMR: $(1+a^2)(1+b^2)(1+c^2) \ge \frac{15}{16}(a+b+c)^2$

72. Cho.
$$a,b,c,d > 0$$
 thỏa $abcd = 1$. CMR: $(1+a^2)(1+b^2)(1+c^2)(1+d^2) \ge (a+b+c+d)^2$

73. Cho
$$x_1, x_2, ..., x_n \ge 0$$
. CMR: $x_1 + x_2 + ... + x_n \ge (n-1) \sqrt[n]{x_1 x_2 x_n} + \sqrt{\frac{x_1^2 + x_2^2 + ... + x_n^2}{n}}$

74. Cho
$$x_1, x_2, ..., x_n > 0$$
. Với $k \in R$. CMR:
$$(n-1)(x_1^{n+k} + x_2^{n+k} + ... + x_n^{n+k}) + x_1 x_2 ... x_n (x_1^k + x_2^k + ... + x_n^k) \ge (x_1 + x_2 + ... + x_n)(x_1^{n+k-1} + x_2^{n+k-1} + ... + x_n^{n+k-1})$$

CMR:
$$\frac{a^4}{a^3+b^3} + \frac{b^4}{b^3+c^3} + \frac{c^4}{c^3+a^3} \ge \frac{a+b+c}{2}$$