Лабораторная работа № 3

ПРЯМЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Цель работы: получить навык численного решения систем линейных алгебраических уравнений (СЛАУ) с использованием различных прямых методов.

Задания на лабораторную работу

Задача 1. (2 балла)

- 1) Написать вычислительную программу на языке программирования С++ для решения СЛАУ методом Гаусса с выбором ведущего элемента.
- 2) С использованием написанной программы решить задачу о рациональной интерполяции: выполнить приближение функции y(x), заданной таблично, рациональной функцией вида

$$f(x) = \frac{P_n(x)}{Q_m(x)}, \quad n \le m,$$

где $P_n(x)$ и $Q_m(x)$ — многочлены степени n и m, соответственно. При этом требуется также определить значения n и m.

3) Построить график интерполирующей функции и исходных данных.

Задача 2. (З балла)

- 1) Написать вычислительную программу на языке программирования C++ для решения СЛАУ методом LU-разложения. Задачи 1 для квадратурной формулы Симпсона.
- 2) Выполнить п. 2), 3) Задачи 1.

Задача 3. (3 балла)

- 1) Написать вычислительную программу на языке программирования C++ для решения СЛАУ с симметричной матрицей методом квадратного корня.
- 2) С использованием написанной программы решить задачу об аппроксимации функции из первой лабораторной работы, заданной на равномерной сетке из 20 узлов, многочленами степени $1 \le n \le 12$ с использованием метода наименьших квадратов.
- 3) Построить графики аппроксимирующих многочленов и исходных данных.
- 4) Определить степень многочлена, обеспечивающего наилучшее приближение (соответствующее наименьшему значению суммы квадратов отклонений значений многочлена в узлах сетки от исходных данных).

Задача 4. (2 балла)

1) Написать вычислительную программу на языке программирования С++ для решения методом прогонки СЛАУ с 5-диагональной матрицей следующего вида:

ощего вида:
$$\begin{pmatrix} c_1 & d_1 & e_1 & 0 & 0 & 0 \\ b_2 & c_2 & d_2 & e_2 & 0 & 0 \\ a_3 & b_3 & c_3 & d_3 & e_3 & 0 \\ 0 & a_4 & b_4 & c_4 & d_4 & e_4 \\ & \vdots & & \ddots & \vdots \\ & & & & c_{n-2} & d_{n-2} & e_{n-2} \\ & & & & & & c_{n-1} & d_{n-1} \\ a_n & b_n & c_n \end{pmatrix}$$
 гладки программы написать генератор случайных веществанного вида с диагональным преобладанием.

2) Для отладки программы написать генератор случайных вещественных матриц данного вида с диагональным преобладанием.

Теоретическая часть

Номер задачи	Литература			
1	[1] (Глава 6, §1), [2] (Глава V, §1, п.2), [3] (Глава 2, §2.1)			
2	[3] (Глава 2, §2.3, 2.4)			
3	[1] (Глава 6, §1), [2] (Глава V, §1, п.6), [3] (Глава 2, §2.5)			
4	[4] (Добавления, §3).			

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.
- 2. Калиткин Н.Н. Численные методы.
- 3. Вержбицкий В.М. Основы численных методов.
- 4. Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайнфункций.

Индивидуальные задания для выполнения задач 1 и 2 лабораторной работы №3

Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5
x y(x)	x y(x)	x y(x)	x y(x)	x y(x)
-2. 0.30564	-2. 0.39163	0. 31.000	-0.3 9.5877	-0.6 37.921
-1.2 0.79377	-1.4 0.29580	0.40 0.78825	-0.060 2.3573	-0.280 6.0685
-0.40 1.5901	-0.80 0.014601	0.80 0.66407	0.180 0.96132	0.040 2.3978
0.40 -0.50436	-0.20 -0.43415	1.2 0.84878	0.420 0.23783	0.360 1.1048
1.2 -1.2492	0.40 -0.47425	1.6 1.3389	0.660 -0.57656	0.68 0.24992
21.3828	1. 19.000	2. 3.1099	0.90 -6.6876	1.00 -1.4062
Вариант 6	Вариант 7	Вариант 8	Вариант 9	Вариант 10
x y(x)	x y(x)	x y(x)	x y(x)	x y(x)
-3.5 -2.0709	-2.5 -0.81098	-0.5 -2.8276	-3.5 34.971	-2.25 0.29422
-2.10 -0.73400	-1.90 -1.2382	-0.100 -0.24862	-2.90 4.1854	-1.65 0.18737
-0.70 -0.60998	-1.30 -2.0801	0.300 -0.72244	-2.30 2.2568	-1.05 -1.0215
0.70 0.34831	-0.70 -2.9141	0.70 -1.9749	-1.70 1.5133	-0.45 -5.4471
2.10 0.28276	-0.10 -2.1555	1.10 -1.1225	-1.10 0.93821	0.15 -1.4440
3.50 0.16644	0.50 -3.4419	1.50 -0.59738	-0.50 -1.0294	0.75 2.5873
Вариант 11	Вариант 12	Вариант 13	Вариант 14	Вариант 15
x y(x)	x y(x)	x y(x)	x y(x)	x y(x)
-0.6 0.16834	-2. 0.28205	-2.2 1.0376	-0.8 9.8625	-0.65 0.88859
01.1500	-1.20 1.0452	-1.40 1.7626	-0.320 0.32951	-0.250 -0.21365
0.60 -1.5108	-0.400 2.5052	-0.60 1.8672	0.160 0.019156	0.150 -0.58221
1.20 -0.64991	0.400 1.1723	0.20 0.39294	0.64 0.11379	0.55 -0.58775
1.80 0.30722	1.20 -0.20842	1.00 0.35333	1.12 0.60825	0.95 -0.42995
2.40 38.534	20.28661	1.80 4.0173	1.60 178.33	1.35 2.7151

По каждой решенной задаче в обязательном порядке оформляется отчет. Лабораторная работа считается выполненной, если набрано 6 и более баллов.