实验报告四

一、实验原理图及数据

1. 串联谐振原理图及数据

表4-2

f U Io UR Url Uc

fo 5V 7.34mm 2.923.673.11

2. 并联联谐振原理图及数据

表4-3	1	THE REAL PROPERTY.	AMERICA	the fell	THE OF
读数	f(Hz)	200 250	f.= 320	350	400
	I(mA)	10.98 8.7	7 6.60	6.78	7.87
计算	$ z (\Omega)$	455.4 270	1737.6	737.5	635.3

27

3. 功率因数的提高原理图及数据

f(Hz)	U(V)	C	I(mA)	In(mA)	Ic(mA
200	5	未接	9.67	9.69	/
200	5	3HE	4.7	3.66	7.50
200	5	10µF	24 P	9.68	32.56

二、实验报告要求

- 1. 完成所有表格中规定的数据。
- 2. 根据表 4-2 的数据, 画出串联谐振时各电压相量图并计算电感元件中所含的
- 3. 画出串联谐振时串联支路总电压和电流波形图。
- 4.思考并回答如下问题:
 - (1) 串联谐振、并联谐振电路各有什么特点?
 - (2) 串联谐振时 I 最大,这时串联电路的总电压和电流从波形上看是否同相?
 - (3) 在图 4-3 中, 当在感性负载上并联 2 μ F 电容后, 线路的功率因数是否提 高了?功率因数提高的意义是什么?当将并联电容由2µF改为10µF时, 功率因数提高了吗? 为什么?

,电感的感抗 4 /1) 辛联谐振时阻抗最小电流最大 和电容的客抗相等,电路表现为纯电阻特性

并联谐振时阻抗最大电流最小,电感的导纳和电客的导 纳、这时电路表现为纯电导

12) 是同相的

(3) 并联 1山下电客后,端口总电流减少,从相量图上看,端 口电压和端口电流的38头角减小,功率因数程高,功率因 数提高可以提高油能利用中 降低线路电能损耗 改为4.745时,功平因致为可望自、因为社会宗堂过大,发生了 过礼绘