```
Introduction
                                                    [ebp+arg_0], esi
                     Malware Analysis
                   CSCI 4976 - Fall 2015
                       Branden Clark
Malware - 09/01/2015
                             Introduction
                              (cc) BY-NC
```

Lecture Overview

- 1. Syllabus
- 2. Course Overview
- 3. Basic Analysis

Course Details

- Malware Analysis
 - Course Number: CSCI 4976
 - Credit Hours: 4
 - Semester / Year: Fall 2015
 - Meeting Days: Tuesday/Friday 12-2PM
 - Room Location: Sage 2112
 - Course Website: TODO
 - http://security.cs.rpi.edu/courses/malware-fall2015/
 - http://rpis.ec/malware
 - Prereqs:
 - CSCI 2500 Computer Organization
 - ECSE 2660 Computer Architecture, Networks, and Operating Systems

```
sub eax, [ebp+var_84]
push esi
push esi
push eax
push edi
mov [ebp+arg_0], eax
call sub_31486A
test eax, eax
jz short loc_31306D
push esi
lea eax, [ebp+arg_0]
push eax
mov esi, 1D0h
push esi
push [ebp+arg_4]
push edi
call sub_314623
test eax, eax
jz short loc_31306D
cmp [ebp+arg_0], esi
```

; CODE XREF: sub_312; sub_312FD8+49

: ; CODE XREF: sub_312F.
call sub_3140F3

Introduction
(cc) BY-NC

Instructor

- Instructor: Dr. Bülent Yener
 - Office: Lally 310
 - Email: yener@cs.rpi.edu

push esi push eax

loc_31307D:

; CODE XREF: sub 312FD

and eax, Offffh or eax, 8007000

Malware Mentors

Branden (Clark)

Introduction (cc) BY-NC

- Good to see lots of familiar faces!
- RPISEC meetings are Friday 5-7 PM in DCC
- Come learn other topics in computer security
 - Web hacking
 - Malware analysis
 - Reverse Engineering
 - **Digital Forensics**
 - So so much more
- Meet people from industry, get internships/jobs
- Read more http://rpis.ec

(cc) BY-NC

Office Hours

- Office hours:
 - Wed 7-10 PM @ Sage 5101

- Come hang out at RPISEC hack nights!
 - Ask questions, get extra help with the class
 - Collaborate on Projects/Labs
 - Work on security projects, challenges, etc

```
test eax, eax
jg short loc_31307D
call sub_3140F3
jmp short loc_31308C

: CODE XREF: sub_312F
```

loc 31306D

Digital Office Hours (Slack)

- The RPISEC Slack
 - rpisec.slack.com
 - Sign up with your RPI email address

Way faster than emailing back and forth

Options of Last Resort

- Email us
 - malware_ta@cs.lists.rpi.edu
 - temporarily down
 - malware_ta@rpis.ec
 - use this for now

Required Textbooks

Practical Malware Analysis by Michael Sikorski and Andrew

Honig

ISBN 978-1593272906

Malware - 09/01/2015

Suggested Textbooks

```
push edi
call sub_314623
test eax, eax
jz short loc_31306D
cmp [ebp+arg_0], ebx
jnz short loc_313066
mov eax, [ebp+var_70]
cmp eax, [ebp+var_84]
jb short loc_313066
sub eax, [ebp+var_84]
push esi
push esi
```

- Practical Reverse Engineering by Dang, Gazet, Bachaalany
 - ISBN 978-1118787311
- Rootkits: Subverting the Windows Kernel by Hoglund, Butler
 - ISBN 978-0321294319

Malware - 09/01/2015

Grade Breakdown

- Labs 48%
 - 12 labs @ 4% each
 - Lab attendance is MANDATORY as the first part is due and must be checked off in person
- Malware Analysis 42%
 - 3 Projects @ 10% each
 - Final Project @ 12%
 - Like a big lab, but over a few weeks
- Quizzes 10%
 - 10 quizzes @ 1% each
 - Small, quick, easy, from the reading

```
sub 3140F3
```

Syllabus

• READ THE SYLLABUS

Well written, full of details

• It's on the course website rpis.ec/malware

Lecture Overview

- 1. Syllabus
- 2. Course Overview
- 3. Basic Analysis

```
14
```

A typical (RPISEC) Class

```
push edi
call sub_314623
test eax, eax
jz short loc_31306D
cmp [ebp+arg_0], ebx
jnz short loc_313066
mov eax, [ebp+var_70]
cmp eax, [ebp+var_84]
jb short loc_313066
sub eax, [ebp+var_84]
push esi
```

Designed and orchestrated by RPISEC (students)

- Other courses
 - CSCI 4968 Modern Binary Exploitation
 - CSCI 4971 Secure Software Principles ** CSCI
 - CSCI 4972 / 6963 Malware Analysis (Spring 2013)
 - CSCI 4974 / 6974 Hardware Reverse Engineering

```
loc_31306D: ; CODE XREF: sub_312FD8
; sub_312FD8+49

call sub_3140F3
test eax, eax
jg short loc_31307D
call sub_3140F3
jmp short loc_31308C
;

loc_31307D: ; CODE XREF: sub_312FD8
call sub_3140F3
and eax, OFFFFh
or eax 80070000h
```

Course Roadmap

- test eax, eax
 jz short loc_31306D
 cmp [ebp+arg_0], ebx
 jnz short loc_313066
 mov eax, [ebp+var_70]
 cmp eax, [ebp+var_84]
 jb short loc_313066
 sub eax, [ebp+var_84]
 push esi
 push eax
 push edi
 vy [ebp+arg_0], eax
 test eax, eax
- Practical Malware Analysis textbook
 - Basic analysis, debugging, reverse engineering, Malware behavior, Windows internals

- Windows Kernel + Rootkits
 - kernel basics, debugging, behavior, stealth
- Modern malware threats
 - APTs (Advanced Persistent threats), nation-state sponsored

Introduction
(cc) BY-NC

```
z short loc_31308F

; CODE XREF: sub_312FD
; sub_312FD8+55

ush ODh
all sub_31411B

; CODE XREF: sub_312FD
; sub_312FD8+49
```

call sub_3140F3
and eax, 0FFFFh
or eax, 8007000

Malware - 09/01/2015

loc_31308C

; CODE XREF: s

Goals for This Course

- This will be a very applied, hands on course
 - No data structures, algorithms, cryptography, or cyber policy
 - Every lecture after this you're expected to bring your laptop!
- We will cover technically challenging material rarely touched upon in other classes
- As an individual you will leave with all the skills necessary to identify, extract, and analyze all features of modern malicious software.

Introduction (cc) BY-NC

Course Terminology

call sub_314623
test eax, eax
jz short loc_31306D
cmp [ebp+arg_0], ebx
jnz short loc_313066
mov eax, [ebp+var_70]
cmp eax, [ebp+var_84]
jb short loc_313066
sub eax, [ebp+var_84]
push esi
push esi
push edi
mov [ebp+arg_0], eax
call sub_31486A
test eax, eax

- Machine
 - A computer, server, sometimes refers to the actual CPU
- Binary
 - An executable such as an .EXE, ELF, MachO or other code containers that run on a machine
 - Other names: program, application, service (sometimes)
- Malware
 - A piece of software that is intended to perform unwanted activities on a machine
- More as we go along!

test eax, eax
jg short loc_31307D
call sub_3140F3
jmp short loc_31308C

loc_31307D:

call sub_3140F3
and eax, OFFFFh
or eax, 800700001

What is malware?

- Some common names...
 - Trojan, virus, worm, RAT, rootkit
 - A piece of software that is intended to perform unwanted activities on a machine

- Some examples of malicious behavior...
 - Serving ads, stealing data, consuming resources
 - Others?

```
test eax, eax

jz short loc_31306D

cmp [ebp+arg_0], esi

jz short loc_31308F

Dehavior... ; code xref: sub 312FD8

sub_312FD8+55

push ODh

sub_31411B

call sub_3140F3

test eax, eax

jg short loc_31307D

call sub_3140F3

jmp short loc_31308C

; code xref: sub_312FD8

; sub_312FD8+49

; sub_312FD8+49

; sub_312FD8+49

; sub_312FD8+49

; sub_312FD8+49

call sub_3140F3

jmp short loc_31308C

; code xref: sub_312FD8

; code xref: sub_312FD8
```

sub 314623

- **Morris Worm**
 - On accident
 - Purpose: "gauge the size of the internet"
 - What happened: Fork bomb

In the 90s

Malware - 09/01/2015

- For the lulz / glory
- Spread to other machines & display a message

Introduction

- Today
 - \$\$\$
- Organizations buy malware
 - Steal passwords, credit cards, bank info, ransoms, intellectual property, trade secrets
 - They can use this info or sell it

```
sub 3140F3
```

- Future?
 - Cyber warfare, intelligence gathering
- Nation-states
 - Stuxnet
 - Highly advanced
 - Multiple Windows 0-days
 - Targeted and physically destroyed Iranian nuclear centrifuges
 - CNO (Computer Network Operations)
 - CND Defense
 - CNE Exploitation
 - CNA Attack

```
sub 3140F3
sub 3140F3
```

100_3130/D

Malware over time

- 1988 Morris Worm exploits use of gets() in finger daemon
- 1990 Mark Washburn develops first polymorphic malware
- 2001 Code Red worm exploits a MS web server vulnerability to hit hundreds of thousands of computers
- 2004 Vundo trojan displays popups and advertising
- 2005 Sony infects CDs with a rootkit to prevent music piracy
- 2008 Koobface RAT spreads via infected Facebook and Myspace profiles
- 2008-2010 Stuxnet employs four Windows Odays to spread through Iranian nuclear refinery control system networks
- 2013 Mandiant publishes evidence on APT1, a Chinese cyber espionage campaign dating as early as 2005
- 2015 Duqu2 targets McAfee with advanced, modularized, in-memory only malware

Why analyze malware?

- Detect and respond to intrusions
 - Threat analysis
 - Host & Network signatures
 - What's the damage?
 - Who/What is infected?
 - Threat prevention
 - Threat removal

25

Additional Material

- Related Readings:
 - Practical Malware Analysis
 - Introduction
 - Chapter 0. Malware Analysis Primer

```
26
```

Lecture Overview

- Syllabus
- Course Overview
- Basic Analysis