Devoir surveillé n°07

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 E3A MP 2021

Dans tout l'exercice, I est le segment [0,1] et f la fonction définie sur I par :

$$x \mapsto \begin{cases} x^{-x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$$

On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur I par :

- $\forall x \in I, f_0(x) = 1.$
- $\forall n \in \mathbb{N}^*, \forall x \in I, f_n(x) = \begin{cases} 0 & \text{si } x = 0\\ \frac{(-1)^n}{n!} (x \ln(x))^n & \text{sinon} \end{cases}$
- 1. Montrer que f et toutes les fonctions f_n sont continues sur I.
- 2. On considère la série de fonctions $\sum_{n\geq 0} f_n$. Démontrer que cette série de fonctions converge simplement sur I vers une fonction que l'on déterminera.
- **3.** Etudier les variations de la fonction φ continue sur I, définie pour tout $t \in]0,1]$ par $\varphi(t)=t\ln(t)$.
- 4. Représenter graphiquement la fonction φ sur I en précisant les tangentes aux bornes.
- 5. Démontrer que la série de fonctions $\sum_{n\geq 0} f_n$ converge normalement sur I.
- 6. On pose pour tout réel x et lorsque cela est possible $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} d$.
 - **a.** Déterminer l'ensemble de définition de la fonction Γ .
 - **b.** Soit $n \in \mathbb{N}$. Calculer $\Gamma(n+1)$.
- 7. Soit $n \in \mathbb{N}^*$. Calculer l'intégrale $J_n = \int_0^1 f_n(t) dt$.

 On pourra effectuer le changement de variable $u = -\ln(t)$.
- **8.** On pose $J = \int_0^1 f(t) dt$. Montrer que l'on a : $J = \sum_{n=1}^{+\infty} n^{-n}$.
- **9.** Trouver un rang n_0 pour lequel la somme partielle d'ordre n_0 sera une valeur approchée de J à 10^{-6} près.

Exercice 2 ★★ E3A PSI 2020

Pour tout entier naturel n, on définit sur l'intervalle $J = [1, +\infty[$, la fonction f_n par :

$$f_n(x) = \frac{(-1)^n}{\sqrt{1+nx}}$$

1. Déterminer que la série de fonctions $\sum_{n\in\mathbb{N}} f_n$ converge simplement sur J.

On note alors $\varphi(x) = \sum_{n=0}^{+\infty} f_n(x)$ pour tout $x \in J$..

- 2. Montrer que $\sum_{n\in\mathbb{N}} f_n$ ne converge pas normalement sur J.
- 3. Etudier alors sa convergence uniforme sur J.
- **4.** Déterminer $\ell = \lim_{x \to +\infty} \varphi(x)$.
- 5. Pour $n \in \mathbb{N}^*$, on note $u_n = \frac{(-1)^n}{\sqrt{n}}$.
 - **a.** Justifier la convergence de la série $\sum u_n$. On note $a=\sum_{n=1}^{+\infty}u_n$ sa somme.
 - **b.** Montrer que l'on a au voisinage de l'infini :

$$\varphi(x) = \ell + \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x^{3/2}}\right)$$

Exercice 3 E31 MP 2020

Pour tout réel x et tout entier naturel n non nul, on pose :

$$P_n(x) = \prod_{k=1}^n \operatorname{ch}\left(\frac{x}{k}\right)$$

où $\forall t \in \mathbb{R}$, $\operatorname{ch}(t) = \frac{e^t + e^{-t}}{2}$.

- 1. Montrer que, pour tout x réel, la suite $(P_n(x))_{n \in \mathbb{N}^*}$ est croissante.
- **2.** Déterminer l'ensemble J des réels x pour lesquels la suite $(P_n(x))_{n \in \mathbb{N}^*}$ est convergente. On pourra utiliser la suite $(\ln(P_n(x)))_{n \in \mathbb{N}^*}$.
- **3.** Soit $x \in J$. On note $\varphi(x)$ la limite de la suite $(P_n(x))_{n \in \mathbb{N}^*}$.
 - a. Etudier la parité et la monotonie de la fonction φ sur J.
 - **b.** Démontrer que la fonction φ est continue sur J.
- **4. a.** Prouver que la fonction $t \mapsto \frac{1}{\operatorname{ch}(t)}$ est intégrable sur \mathbb{R} et calculer $\int_{\mathbb{R}} \frac{1}{\operatorname{ch}}$. On pourra utiliser un changement de variable.
 - **b.** En déduire l'intégrabilité sur \mathbb{R} de la fonction $\frac{1}{\varphi}$.

© Laurent Garcin MP Dumont d'Urville

Exercice 4 CCP MP 2018

On note E l'espae vectoriel des applications continues sur le segment [-1, 1] et à valeurs réelles.

1. Démontrer que l'on définit un produit scalaire sur E en posant pour f et g éléments de E

$$(f \mid g) = \int_{-1}^{1} f(t)g(t) dt$$

- **2.** On note $u: t \mapsto 1, v: t \mapsto t$ et F = vect(u, v). Déterminer une base orthonormée de F.
- 3. Déterminer le projeté orthogonal de la fonction $w: t \mapsto e^t$ sur le sous-espace F et en déduire la valeur du réel $\inf_{(a,b)\in\mathbb{R}^2}\left[\int_{-1}^1(e^t-(a+bt))^2\,\mathrm{d}t\right]$. On pourra simplifier les calculs en utilisant le théorème de Pythagore.

Exercice 5 E3A MP 2020

Pour tout entier naturel *n* supérieur ou égal à 2, on note $E = \mathbb{R}_n[X]$ et on pose, pour tout couple $(P, Q) \in E^2$:

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t) dt$$

- 1. Démontrer que l'on définit ainsi sur E un produit scalaire. Dans la suite de cet exercice, E est l'espace euclidien $\mathbb{R}_n[X]$ muni de ce produit scalaire.
- **2.** Soit F un sous-espace vectoriel de E de dimension p. Donner sans démonstration la dimension de F^{\perp} .
- 3. On prend dans cette question n = 2Déterminer une base du sous-espace $(\mathbb{R}_1[X])^{\perp}$.
- **4.** On revient au cas général : $n \ge 2$ et soit $L \in (\mathbb{R}_{n-1}[X])^{\perp}$ non nul.
 - a. Déterminer le degré de L.
 - **b.** On pose, lorsque cela est possible, pour x réel : $\varphi(x) = \int_0^1 L(t)t^x dt$.
 - i. Montrer que φ est une fonction rationnelle.
 - ii. Déterminer les zéros et les pôles de φ . Donner pour chacun l'ordre de multiplicité. On pourra examiner les degrés du dénominateur et du numérateur de la fonction rationnelle φ .
 - iii. En déduire une expression de φ , à une constante multiplicative près, faisant apparaître le numérateur et le dénominateur sous forme factorisée.
 - c. En utilisant une décomposition en éléments simples de la fonction rationnelle φ , donner une base de $(\mathbb{R}_{n-1}[X])^{\perp}$.