

Chapter 2: Classification

Supervised Learning: Logistic Regression

Logistic regression: Introduction

• In classification, we seek to identify the categorical class C_k associate with a given input vector \mathbf{x} .

Vehicle features / budget: Buy / Not ? $y \in \{0,1\}$ 0: "Negative Class" Online Transactions: Fraudulent (Yes / No)? $y \in \{0,1\}$ 1: "Positive Class"

- In order to predict correct value of Y for a given value of X.
 - 1. Data (samples, combination of X and Y)
 - 2. Model (function to represent relationship X & Y)
 - 3. Cost function (how well our model approximates training samples)
 - 4. Optimization (find parameters of model to minimize cost function)

Logistic regression- data

• In univariate logistic regression the number of independent variables is one and there is a linear relationship between the independent(x) and dependent(y) variable.

Marks scored in entrance examination	Admitted / Not admitted to University
20	Not Admitted
60	Admitted
36	Admitted
32	Not Admitted
30	Not Admitted
80	Admitted
38	Admitted

Logistic regression: Hypothesis

 Hypothesis used in Linear Regression predicts the continuous values and Logistic regression hypothesis should predict discrete values.

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundaries

Logistic regression - hypothesis

• The sigmoid function is also called a squashing function as its domain is the set of all real numbers, and its range is (0, 1).

$$h_{\theta}(x) = \theta^{T} x$$

$$h_{\theta}(x) = g(\theta^{T} x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Need
$$0 \le h_{\theta}(x) \le 1$$

• For given input, hypothesis always predicts value which is between 0 & 1.

if
$$h_{\theta}(x) < 0.5$$
 then consider $h_{\theta}(x) = 0$

else if
$$h_{\theta}(x) >= 0.5$$
 then consider $h_{\theta}(x) = 1$

Logistic regression – hypothesis

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

"probability that y = 1, given x, parameterized by θ "

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

 $P(y = 0|x; \theta) = 1 - P(y = 1|x; \theta)$

Logistic regression – cost function

If Y = 1 then, -log(z) will be zero at $h_{\theta}(x) = 1$

 $-\log(z) \qquad \qquad -(\log(1-z)$

Logistic regression – cost function

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note: y = 0 or 1 always

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(simultaneously update all $heta_j$)

Repeat {

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update all $heta_j$)

Email foldering/tagging: Work, Friends, Family, Hobby

Medical diagrams: Not ill, Cold, Flu

Weather: Sunny, Cloudy, Rain, Snow

Binary classification:

Multi-class classification:

One-vs-all (one-vs-rest):

Class 3: X

$$h_{\theta}^{(i)}(x) = P(y = i|x;\theta) \qquad (i = 1, 2, 3)$$

$$(i = 1, 2, 3)$$

One-vs-all

Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.

On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

Regularization - Introduction

High training error High test error

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

(g = sigmoid function)

Optimum

Low training error Low test error

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

Overfit (high variance)

Low training error High test error

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

Regularization – address overfitting

Options:

- 1. Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm.
- 2. Regularization.
 - Keep all the features, but reduce magnitude/values of parameters.
 - Works well when we have a lot of features, each of which contributes a bit to predicting.

Regularization – bias-variance tradeoff

Regularized Logistic regression

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \dots)$$

Cost function:
$$J(\theta) = \left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log (h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

• SVM algorithms are used in classification task of separating classes in feature space.

- Here we select 3 Support Vectors to start with.
- They are S₁, S₂ and S₃.

$$S_1 = {2 \choose 1}$$

$$S_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$S_3 = \binom{4}{0}$$

 Here we will use vectors augmented with a 1 as a bias input, and for clarity we will differentiate these with an over-tilde.

That is:

$$S_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$S_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$S_3 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

• Now we need to find 3 parameters α_1 , α_2 , and α_3 based on the following 3 linear equations:

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_1} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_1} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_1} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_2} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_2} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_2} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_3} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_3} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_3} = +1 \ (+ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_1} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_1} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_1} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_2} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_2} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_2} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_3} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_3} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_3} = +1 \ (+ve \ class)$$

• Let's substitute the values for $\widetilde{S_1}$, $\widetilde{S_2}$ and $\widetilde{S_3}$ in the above equations. (2) (2) (4)

$$\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$
 $\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ $\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$

$$\alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = +1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = +1$$

After simplification we get:

$$6\alpha_1 + 4\alpha_2 + 9\alpha_3 = -1$$

$$4\alpha_1 + 6\alpha_2 + 9\alpha_3 = -1$$

$$9\alpha_1 + 9\alpha_2 + 17\alpha_3 = +1$$

• Simplifying the above 3 simultaneous equations we get: $\alpha_1 = \alpha_2 = -3.25$ and $\alpha_3 = 3.5$.

$$\alpha_1 = \alpha_2 = -3.25$$
 and $\alpha_3 = 3.5$

• The hyper plane that discriminates the positive class from the negative class is give by: $\widetilde{w} = \sum \alpha_i \widetilde{S}_i$

$$\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

Substituting the values we get:

$$\widetilde{w} = \alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

$$\widetilde{w} = (-3.25). \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + (-3.25). \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + (3.5). \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

$$\widetilde{w} = (-3.25). \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + (-3.25). \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + (3.5). \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

- Our vectors are augmented with a bias.
- Hence we can equate the entry in \widetilde{w} as the hyper plane with an offset b.
- Therefore the separating hyper plane equation

$$y = wx + b$$
 with $w = {1 \choose 0}$ and offset $b = -3$.

Support Vector Machines

• y = wx + b with $w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and offset b = -3.

- LDA is dimensionality reduction technique that is commonly used for supervised classification problems.
- It is used for modelling differences in groups i.e. separating two or more classes.
- It is used to project the features in higher dimension space into a lower dimension space.
- If we have two classes with multiple features and need to separate them efficiently. When we classify them using a single feature, then it may show overlapping.

• Let us assume we have to classify two different classes having two sets of data points in a 2-dimensional plane.

• It is impossible to draw a straight line in a 2-d plane that can separate these data points efficiently but using LDA we can dimensionally reduce

the 2-D plane into the 1-D plane.

- LDA uses an X-Y axis to create a new axis by separating them using a straight line and projecting data onto a new axis.
- Hence we can maximize the separation between these classes and reduce the 2-D plane into 1-D.
- To create a new axis, Linear Discriminant Analysis uses the following criteria:
 - maximizes the distance between means of two classes.
 - minimizes the variance within the individual class.

- Applications of LDA:
 - Face Recognition
 - Medical
 - Customer Identification
 - Predictions
 - Learning

Thank you