АиГ. ДЗ к 2023-04-07. Вариант №14

Студент группы 2305 Александр Макурин 06 апреля 2023

1 Запишите матрицу линейного оператора L в базисе u, если известно: $L(u_1)=2u_1+u_2+u_3$; $L(u_2)=u_2$; $L(u_3)=u_2+u_3$.

Ответ:
$$L_u = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

2 В стандартном базисе пространства ${\bf R}^3$ найдите матрицу оператора L, если $L(v)=v-2\frac{(a,v)}{(a,a)}a$, где $a=(-3,2,5)^T$, а $(\ ,\)$ обозначает скалярное произведение

Пусть
$$V_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
; $V_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$; $V_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.
$$L(V_1) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 2\frac{-3}{38} \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 20 \\ 12 \\ 30 \end{pmatrix} = \frac{1}{38} (20V_1 + 12V_2 + 30V_3)$$

$$L(V_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2\frac{2}{38} \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 12 \\ 30 \\ -20 \end{pmatrix} = \frac{1}{38} (12V_1 + 30V_2 - 20V_3)$$

$$L(V_3) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - 2\frac{5}{38} \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} = \frac{1}{38} \begin{pmatrix} 30 \\ -20 \\ -12 \end{pmatrix} = \frac{1}{38} (30V_1 - 20V_2 - 12V_3)$$
 Ответ: $L_V = \frac{1}{38} \begin{pmatrix} 20 & 12 & 30 \\ 12 & 30 & -20 \\ 30 & -20 & -12 \end{pmatrix}$

3 Пусть V — линейное пространство всех вещественных матриц 2×2 . Выберите базис в пространстве V и найдите матрицу оператора L в этом базисе, если $L(A) = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} \cdot A$.

Пусть
$$V_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; V_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; V_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; V_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$L(V_1) = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} = -V_3$$

$$L(V_2) = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} = -V_4$$

$$L(V_3) = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix} = -V_1 + 2V_3$$

$$L(V_4) = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 2 \end{pmatrix} = -V_2 + 2V_4$$

Otbet:
$$L_V = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix}$$