DSE, ICEF, Fall 2023 HA-01, theory

Note: you may use calculator or computer to find extremum points if you can't solve FOC by hand, but you should clearly state the functions that you optimize.

- 1. You are guessing the value of binomial random variable X with n=3 and real probability of success p=0.3.
 - (a) Find the entropy H(X).
 - (b) Now imagine that you wrongly assume that X has binomial distribution with n=3 and q=0.5. Find the cross-entropy CE(Bin(n=3,p=0.3)||Bin(n=3,q=0.5)).
- 2. You may play a favorable game infinitely many times. Your bet in round n is multiplied by a random varibales K_n with distribution given by

x	0	5	10
$\mathbb{P}(K_n = x)$	1/2	1/4	1/4

The random variables K_n are independent. You optimize the long-term interest rate. Which proportion of you current wellfare should you bet in every round of this game?

3. There is a race with three horses, A, B or C and you may receive one of the two signals: S=1 or S=2. The joint distribution of the signal and winning horse is given by:

	W = A	W = B	W = C
S=1	0.1	0.2	0.3
S=2	0.2	0.1	0.1

If the horse wins your bet on this horse is multiplied by inverse unconditional probability that this horse wins, for example a bet on a horse A is multiplied by 1/0.3 if A wins.

You optimize the long-term interest rate and you can bet infinitely many times.

- (a) For each signal find the optimal proportions to divide your bet.
- (b) Calculate the conditional entropy H(W|S).
- (c) What is the highest long-term interest rate that you can achieve?