Grafuri

SD 2014/2015

Conținut

Grafuri

- tipul abstract Graf;
- tipul abstract Digraf;
- implementarea cu matrici de adiacenţă;
- implementarea cu liste de adiacenţă înlănţuite;
- algoritmi de parcurgere (DFS, BFS);
- determinarea componentelor (tare) conexe.

Grafuri

- G = (V, E)
 - V mulţime de vârfuri
 - E mulţime de muchii; o muchie = o pereche neordonată de vârfuri distincte

$$V = \{0, 1, 2, 3\}$$

$$E = \{\{0,1\}, \{0,2\}, \{1,2\}, \{2,3\}\}\}$$

$$u = \{0,1\} = \{1,0\}$$

0, 1 - extremitățile lui uu este incidentă în 0 și 10 și 1 sunt adiacente (vecine)

Grafuri

- Mers de la u la v: $u = i_0$, $\{i_0, i_1\}$, i_1, \ldots , $\{i_{k-1}, i_k\}$, $i_k = v$. 3, $\{3,2\}$, 2, $\{2,0\}$, 0, $\{0,1\}$, 1, $\{1,3\}$,3, $\{3,2\}$,2
- parcurs: mers în care oricare două muchii sunt distincte.
- drum: mers în care oricare două vârfuri sunt distincte
- mers închis: i₀ = i_k
- circuit = mers închis în care oricare două vârfuri intermediare sunt distincte.

Subgraf indus

- G = (V, E) graf
- W submulţime a lui V
- Subgraf indus de W: G'(W,E'), unde
 E'={{i,j} | {i,j}∈E și i∈W, j∈W}

Grafuri - Conexitate

- i R j dacă și numai dacă există drum de la i la j
- R este relaţie de echivalenţă
- V₁, ..., V_p clasele de echivalenţă
- $G_i = (V_i, E_i)$ subgraful indus de V_i
- G₁, ..., G_p componente conexe
- graf conex = graf cu o singură componentă

Tipul de date abstract Graf

objecte:

```
- grafuri G = (V, E), V = \{0, 1, ..., n-1\}
```

operaţii:

- grafVid()
 - intrare: nimic
 - ieşire: graful vid (∅, ∅)
- esteGrafVid()
 - intrare: G = (V, E),
 - ieşire: true daca $G = (\emptyset, \emptyset)$, false în caz contrar
- insereazaMuchie()
 - intrare: G = (V, E), i, j ∈ V
 - ieşire: $G = (V, E \cup \{i, j\})$
- insereazaVarf()
 - intrare: $G = (V, E), V = \{0, 1, ..., n-1\}$
 - ieşire: $G = (V', E), V' = \{0, 1, ..., n-1, n\}$

Tipul de date abstract Graf

- eliminaMuchie()
 - intrare: G = (V, E), i, j ∈ V
 - ieşire: G = (V, E {i, j})
- eliminaVarf()
 - intrare: $G = (V, E), V = \{0, 1, ..., n-1\}, k$
 - ieşire: G = (V', E'), V' = {0, 1, ..., n-2}

$$\{i', j'\} \in E' \Leftrightarrow (\exists \{i, j\} \in E) \mid \neq k, j \neq k$$

$$i' = if (i < k)$$
 then i else $i-1$,

$$j' = if(j < k)$$
 then j else $j-1$

Tipul de date abstract Graf

- listaDeAdiacenta()

- intrare: G = (V, E), i ∈ V
- ieşire: lista vârfurilor adiacente cu i

- listaVarfurilorAccesibile()

- intrare: G = (V, E), i ∈ V
- ieşire: lista vârfurilor accesibile din i

Digraf (graf orientat)

- D = (V, A)
 - V mulţime de vârfuri
 - A mulţime de arce; un arc = o pereche ordonată de vârfuri distincte

$$V = \{0, 1, 2, 3\}$$

$$A = \{(0,1), (2,0), (1,2), (3, 2)\}$$

$$a = (0,1) \neq (1,0)$$

$$0 \quad 0 \quad 1$$

$$0 - sursa lui a$$

1 – destinația lui a

Digraf

- mers: i₀, (i₀,i₁), i₁, ..., (i_{k-1},i_k), i_k.
 3, (3,2), 2, (2,0), 0, (0,1), 1, (1,2), 2, (2,0), 0
- parcurs: mers în care oricare două arce sunt distincte.
- drum: mers în care oricare două vârfuri sunt distincte.
- mers închis: $i_0 = i_k$
- circuit = mers închis în care oricare două vârfuri intermediare sunt distincte.

Digraf. Conexitate

- i R j dacă și numai dacă există drum de la i la j și drum de la j la i.
- R este relaţie de echivalenţă.
- V₁, ..., V_p clasele de echivalenţă.
- $G_i = (V_i, A_i)$ subdigraful indus de V_i
- G₁, ..., G_p componente tare conexe
- digraf tare conex = digraf cu o singură componentă tare conexă.

$$V1 = \{0, 1, 2\}$$

$$A1 = \{(0, 1), (1, 2), (2, 0)\}$$

$$V2 = \{3\}$$

$$A2 = \emptyset$$

Tipul de date abstract Digraf

- obiecte: digrafuri D = (V, A)
- operaţii:
 - digrafVid()
 - intrare: nimic
 - ieşire: digraful vid (∅, ∅)
 - esteDigrafVid()
 - intrare: D = (V, A),
 - ieşire: true dacă D =(\emptyset , \emptyset), false în caz contrar
 - insereazaArc()
 - intrare: D = (V, A), i, j ∈ V
 - ieşire: D = $(V, A \cup (i, j))$
 - insereazaVarf()
 - intrare: $D = (V, A), V = \{0, 1, ..., n-1\}$
 - iesire: $D = (V', A), V' = \{0, 1, ..., n-1, n\}$

Tipul de date abstract Digraf

- eliminaArc()

- intrare: D = (V, A), i, j ∈ V
- ieşire: D = (V, A (i, j))

- eliminaVarf()

```
intrare: D = (V, A), V = {0, 1, ..., n-1}, k
ieşire: D = (V', A'), V' = {0, 1, ..., n-2}
(i', j') ∈ A' ⇔
(∃(i, j) ∈ A) i ≠ k, j ≠ k,
i' = if (i < k) then i else i-1,</li>
```

j' = if(j < k) then j else j-1

Structuri de date

Tipul de date abstract Digraf

listaDeAdiacentaExterioara()

- intrare: D = (V, A), $i \in V$
- ieşire: lista vârfurilor destinatare ale arcelor care pleacă din i

listaDeAdiacentaInterioara()

- intrare: D = (V, A), $i \in V$
- ieşire: lista vârfurilor sursă ale arcelor care sosesc în i

listaVarfurilorAccesibile()

- intrare: D = (V, A), $i \in V$
- ieşire: lista vârfurilor accesibile din i

Reprezentarea grafurilor ca digrafuri

$$G = (V, E) \Rightarrow D(G) = (V, A)$$
$$\{i,j\} \in E \Rightarrow (i,j), (j,i) \in A$$

- topologia este păstrată
 - lista de adiacenţă a lui i în G = lista de adiacenţă exterioară (=interioară) a lui i în D

Structuri de date

Implementarea cu matrici de adiacență a digrafurilor

- reprezentarea digrafurilor
 - n numărul de vârfuri
 - m numărul de arce (opţional)
 - o matrice $(a[i,j] | 0 \le i, j < n)$ $a[i,j] = if(i,j) \in A then 1 else 0$
 - dacă digraful reprezintă un graf, atunci a[i,j] este simetrică
 - lista de adiacență exterioară a lui i ⊆ linia i
 - lista de adiacenţă interioară a lui i ⊆ coloana i

Implementarea cu matrici de adiacență

	0	1	2	3
0	0	1	0	0
1	0	0	1	0
2	1	0	0	0
3	0	1	1	0

Implementarea cu matrici de adiacenţă

operaţii

```
digrafVid
n ←0; m ← 0
insereazaVarf: O(n)
insereazaArc: O(1)
eliminaArc: O(1)
```

Implementarea cu matrici de adiacenţă

- eliminaVarf()

```
procedure eliminaVirf(a, n, k)

begin

for i \leftarrow 0 to n-1 do

for j \leftarrow 0 to n-1 do

if (i > k) then a[i-1, j] \leftarrow a[i,j]

if (j > k) then a[i, j-1] \leftarrow a[i,j]

n \leftarrow n-1

end
```

• timp de execuţie: O(n²)

Implementarea cu matrici de adiacență

- listaVarfurilorAccesibile()

```
procedure inchReflTranz(a, n, b) // (Warshall, 1962)
  for i \leftarrow 0 to n-1 do
        for j \leftarrow 0 to n-1 do
           b[i,j] \leftarrow a[i,j]
            if (i == j) then b[i,j] \leftarrow 1
    for k \leftarrow 0 to n-1 do
        for i \leftarrow 0 to n-1 do
            if (b[i,k] == 1)
            then for j \leftarrow 0 to n-1 do
                    if (b[k,j] == 1)
                    then b[i,j] \leftarrow 1
end
    • timp de executie: O(n<sup>3</sup>)
```

Implementarea cu liste de adiacență

• reprezentarea digrafurilor cu liste de adiacență

exterioară

- un tablou a [0..n-1] de liste înlănțuite (pointeri)
- •a[i] este lista de adiacență exterioară corespunzătoare lui i

Implementarea cu liste de adiacență

operaţii

- digrafVid
- insereazaVarf: O(1)
- insereazaArc: O(1)
- eliminaVarf: O(n+m)

- eliminaArc: O(m)

Digrafuri: explorare sistematică

- se gestionează două mulţimi
 - S = mulţimea vârfurilor vizitate deja
 - SB ⊆ S submulţimea vârfurilor pentru care există şanse să găsim vecini nevizitaţi încă
- lista de adiacenţă (exterioară) a lui i este divizată în două:

Digrafuri: explorare sistematică

pasul curent

- citeşte un vârf i din SB
- extrage un j din lista de "aşteptare" a lui i (dacă este nevidă)
- dacă j nu este în S, atunci îl adaugă la S şi la SB
- dacă lista de "aşteptare" a lui i este vidă, atunci elimină i din SB

iniţial

- $-S = SB = \{i_0\}$
- lista de "aşteptare a lui i" = lista de adiacenta a lui i
- terminare $SB = \emptyset$

Digrafuri: explorare sistematică

```
procedure explorare(a, n, i0, S)
    for i \leftarrow 0 to n-1 do p[i] \leftarrow a[i]
    SB \leftarrow (i0); S \leftarrow (i0);
    viziteaza(i0)
    while (SB !=\emptyset) do
        i \leftarrow citeste(SB)
        if (p[i] == NULL) then SB \leftarrow SB-\{i\}
        else j \leftarrow p[i] \rightarrow varf
               p[i] \leftarrow p[i] -> succ
               if (j \notin S)
                then SB \leftarrow SB \cup \{j\}
                        S \leftarrow S \cup \{j\}
                        viziteaza(j)
```

end

Explorare sistematică: complexitate

Teoremă

În ipoteza că operaţiile peste S şi SB precum şi viziteaza() se realizează în O(1), complexitatea timp, în cazul cel mai nefavorabil, a algoritmului explorare este O(n+m).

Explorarea DFS (Depth First Search)

• SB este implementată ca stivă:

```
SB \leftarrow (i0) \Leftrightarrow SB \leftarrow stivaVida()
push(SB, i0)
i \leftarrow citeste(SB) \Leftrightarrow i \leftarrow top(SB)
SB \leftarrow SB-\{i\} \Leftrightarrow pop(SB)
SB \leftarrow SB \cup \{j\} \Leftrightarrow push(SB, j)
```

Explorarea DFS: exemplu

Structuri de date

Explorarea BFS (Breadth First Search)

SB este implementată ca o coadă

Explorarea BFS: exemplu

Arborele BFS

Determinarea componentelor conexe (grafuri neorientate)

```
function CompConexeDFS(G)
begin
  for i ← 0 to n-1 do culoare[i] ← 0
  k ← 0
  for i ← 0 to n-1 do
    if (culoare[i] == 0)
    then k ← k+1
        DfsRecCompConexe(i, k)
  return k
end
```

Determinarea componentelor conexe (grafuri neorientate)

Componente tare conexe (digrafuri)

Structuri de date 34

Componente tare conexe: exemplu

Determinarea componentelor tare conexe

```
procedure DfsCompTareConexe(D)
begin
   for i \leftarrow 0 to n-1 do
      culoare[i] \leftarrow 0
      tata[i] \leftarrow -1
   timp \leftarrow 0
   for i \leftarrow 0 to n-1 do
      if (culoare[i] == 0)
      then DfsRecCompTareConexe(i)
end
```

Determinarea componentelor tare conexe

```
procedure DfsRecCompTareConexe(i)
begin
   timp \leftarrow timp + 1
   culoare[i] \leftarrow 1
   for (fiecare virf j in listaDeAdiac(i)) do
      if (culoare[j] == 0)
      then tata[j] \leftarrow i
            DfsRecCompTareConexe(j)
   timp \leftarrow timp + 1
   timpFinal[i] ← timp
end
```

Determinarea componentelor Notatie: tare conexe

$$D^{T} = (V, A^{T}), (i, j) \in A \Leftrightarrow (j, i) \in A^{T}$$

procedure CompTareConexe(D)

begin

- 1. DFSCompTareConexe(D)
- calculeaza p[™]
- 3. DFSCompTareConexe (D^T) dar considerând în bucla for principală vârfurile în ordinea descrescătoare a timpilor finali de vizitare timpFinal[i]
- 4. returnează fiecare arbore calculat la pasul 3 ca fiind o componentă tare conexă separată

end

Determinarea componentelor tare conexe: complexitate

- DFSCompTareConexe(D): O(n + m)
- ➤ calculeaza D^T: O(m)
- > DFSCompTareConexe(DT): O(n + m)
- \succ Total: O(n + m)