Técnicas de Desenho de Algoritmos

Ana Paula Tomás

Desenho e Análise de Algoritmos (CC2001)

Novembro 2019

Técnicas de desenho de algoritmos

- Pesquisa exaustiva ou força-bruta (exhaustive search ou brute-force)
- Pesquisa exaustiva com retrocesso (e, possivelmente, heurísticas)
 (backtracking search)
- Divisão-e-conquista (Divide-and-conquer)
- Estratégias ávidas, gananciosas, gulosas (greedy)
- Programação Dinâmica (dynamic programmimng)
- ...

Problema: Supondo que se tem um número não limitado de moedas de valores 200, 100, 50, 20, 10, 5, 2, e 1, qual é o **número mínimo** de moedas necessário para formar uma quantia Q?

- Abordagem de programação dinâmica é ineficiente.
- Prova-se que a **estratégia greedy** que consiste em começar por **usar a moeda de valor mais alto** $v_k \leq Q$ **o número máximo de vezes que puder** (isto é, $n_k = \lfloor Q/v_k \rfloor$ vezes) e aplicar a mesma estratégia para obter a quantia $Q n_k v_k$ restante, determina a **solução ótima**, em O(m), sendo m o número de tipos de moedas existentes.

Atenção! Para garantir O(m), é necessário usar $Q - n_k v_k$ em vez de dar uma moeda v_k e aplicar a estratégia a

 $Q-v_k$. Note que O(Q) é $O(2^{\log_2 Q})$ e, portanto, é exponencial no tamanho da representação de Q (input) em binário

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_{ν} é o número de moedas que usa de valor ν .
- Se x₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x₁₀₀ ≤ 1.
 Analogamente se conclui que: x₅₀ ≤ 1, x₁₀ ≤ 1, e x₁* ≤ 1.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

NB: A estrategia greedy apresentada nao seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200, A 돌 > 돌 \sim \circ \circ

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se x^{*}₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x^{*}₁₀₀ ≤ 1.
 Analogamente se conclui que: x^{*}₅₀ ≤ 1, x^{*}₁₀ ≤ 1, e x^{*}₁ ≤ 1.
- Se $x_{20}^* > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^* \le 2$. Analogamente, $x_2^* \le 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

NB: A estrategia greedy apresentada nao seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200, $Q\equiv P$

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_{ν} é o número de moedas que usa de valor ν .
- Se x^{*}₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x^{*}₁₀₀ ≤ 1.
 Analogamente se conclui que: x^{*}₅₀ ≤ 1, x^{*}₁₀ ≤ 1, e x^{*}₁ ≤ 1.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

NB: A estratégia greedy apresentada não seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200, Q

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_v é o número de moedas que usa de valor v.
- Se x^{*}₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x^{*}₁₀₀ ≤ 1.
 Analogamente se conclui que: x^{*}₅₀ ≤ 1, x^{*}₁₀ ≤ 1, e x^{*}₁ ≤ 1.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^*=2$ e $x_1^*=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^*+x_1^*\leq 4$. Também não tem simultaneamente $x_{20}^*=2$ e $x_{10}^*=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

NB: A estrategia greedy apresentada nao seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200, A 돌 > 돌 \sim \circ \circ

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_{v} é o número de moedas que usa de valor v.
- Se x^{*}₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x^{*}₁₀₀ ≤ 1.
 Analogamente se conclui que: x^{*}₅₀ ≤ 1, x^{*}₁₀ ≤ 1, e x^{*}₁ ≤ 1.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^\star=2$ e $x_1^\star=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^\star+x_1^\star\leq 4$. Também não tem simultaneamente $x_{20}^\star=2$ e $x_{10}^\star=1$.
- Como $2x_2^{\star} + x_1^{\star} \leq 4$, $x_5^{\star} \leq 1$ e $x_{10}^{\star} \leq 1$ então $5x_5^{\star} + 2x_2^{\star} + x_1^{\star} \leq 9$ e $10x_{10}^{\star} + 5x_5^{\star} + 2x_2^{\star} + x_1^{\star} \leq 19$. Analogamente, se deduz que $20x_{20}^{\star} + 10x_{10}^{\star} + 5x_5^{\star} + 2x_2^{\star} + x_1^{\star} \leq 49$, $50x_{50}^{\star} + 20x_{20}^{\star} + 10x_{10}^{\star} + 5x_5^{\star} + 2x_2^{\star} + x_1^{\star} \leq 99$. $100x_{100}^{\star} + 50x_{50}^{\star} + 20x_{20}^{\star} + 10x_{10}^{\star} + 5x_5^{\star} + 2x_2^{\star} + x_1^{\star} \leq 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^* < v_{k+1}$, para todo k. Portanto, x^* é a solução greedy.

Ana Paula Tomás (DCC-FCUP) CC2001 2019/2020 Novembro 2019 4 / 26

Prova de que a estratégia greedy obtém a solução ótima se $\{200, 100, 50, 20, 10, 5, 2, 1\}$:

- Seja x^* uma solução ótima para a quantia Q. Seja x^*_{v} é o número de moedas que usa de valor v.
- Se x^{*}₁₀₀ > 1, a solução não seria ótima (podia reduzir o número de moedas se substituir duas de 100 por uma de 200). Portanto, x^{*}₁₀₀ ≤ 1.
 Analogamente se conclui que: x^{*}₅₀ ≤ 1, x^{*}₁₀ ≤ 1, e x^{*}₁ ≤ 1.
- Se $x_{20}^{\star} > 2$ então a solução não seria ótima porque podia trocar três moedas de 20 por uma de 50 e uma de 10. Portanto, $x_{20}^{\star} \leq 2$. Analogamente, $x_{2}^{\star} \leq 2$.
- Não pode ter simultaneamente $x_2^\star=2$ e $x_1^\star=1$, pois a solução não seria ótima (podia substituir essas três moedas por uma de 5). Portanto $2x_2^\star+x_1^\star\leq 4$. Também não tem simultaneamente $x_{20}^\star=2$ e $x_{10}^\star=1$.
- Como $2x_2^* + x_1^* \le 4$, $x_5^* \le 1$ e $x_{10}^* \le 1$ então $5x_5^* + 2x_2^* + x_1^* \le 9$ e $10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 19$. Analogamente, se deduz que $20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 49$, $50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 99$. $100x_{100}^* + 50x_{50}^* + 20x_{20}^* + 10x_{10}^* + 5x_5^* + 2x_2^* + x_1^* \le 199$.

Tem-se $\sum_{i=1}^{k} v_i x_{v_i}^{\star} < v_{k+1}$, para todo k. Portanto, x^{\star} é a solução greedy.

NB: A estratégia greedy apresentada não seria correta para, por exemplo, $V=\{1,300,1000\}$, Q=1200. Q=1200

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

maximizar
$$\sum_{i=1}^{n} v_i x_i$$
 sujeito a
$$\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \{0, 1\} \end{cases}$$

maximizar
$$\sum_{i=1}^{n} v_i x_i$$
 sujeito a
$$\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \mathbb{Z}_0^+ \end{cases}$$

$$\begin{array}{lll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ p_i x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

4 D > 4 D > 4 E > 4 E > E 9 Q P

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

maximizar
$$\sum_{i=1}^{n} v_i x_i$$

sujeito a
$$\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \{0, 1\} \end{cases}$$

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^{n} v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ & \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{array}{lll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ p_i x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

Exemplo

p	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	l .				
	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? ($x_2 = 1, x_4 = x_5 = 1$) (b) E, se puder

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

maximizar
$$\sum_{i=1}^{n} v_i x_i$$

sujeito a
$$\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \{0, 1\} \end{cases}$$

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^{n} v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ & \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{array}{lll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ p_i x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

Exemplo

р	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	90	82	37	61	70
	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

maximizar
$$\sum_{i=1}^{n} v_i x_i$$

sujeito a
$$\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \{0, 1\} \end{cases}$$

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{array}{lll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ p_i x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

Exemplo

p	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	l .				
	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder transportar vários idênticos? ($x_3 = 5$, $x_4 = 1$) (c) E, se puder fracioná-los, sendo o valor e o

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

maximizar
$$\sum_{i=1}^{n} v_i x_i$$
 sujeito a
$$\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \{0, 1\} \end{cases}$$

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^{n} v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^{n} p_i x_i \leq L \\ & \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{array}{lll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ p_i x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

Exemplo

р	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	90	82	37	61	70
	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder transportar vários idênticos? ($x_3 = 5$, $x_4 = 1$) (c) E, se puder fracioná-los, sendo o valor e o peso proporcionais à fracção que leva, não podendo exceder um limite máximo dado para cada tipo? $(x_3 = 30/12, x_4 = 25/20, x_5 = 20/27, x_2 = 5/32)$

- a) Knapsack binário
- b) Knapsack inteiro
- c) Knapsack fracionário

maximizar
$$\sum_{i=1}^{n} v_i x_i$$

sujeito a
$$\begin{cases} \sum_{i=1}^{n} p_i x_i \leq L \\ \forall i \quad x_i \in \{0, 1\} \end{cases}$$

$$\begin{aligned} & \text{maximizar} \sum_{i=1}^n v_i x_i \\ & \text{sujeito a} \\ & \left\{ \begin{array}{l} \sum_{i=1}^n p_i x_i \leq L \\ & \forall i \quad x_i \in \mathbb{Z}_0^+ \end{array} \right. \end{aligned}$$

$$\begin{array}{lll} \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i & \text{maximizar} \sum_{i=1}^n v_i x_i \\ \text{sujeito a} & \text{sujeito a} & \text{sujeito a} \\ \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \{0,1\} \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ x_i \in \mathbb{Z}_0^+ \end{array} \right. & \left\{ \begin{array}{ll} \sum_{i=1}^n p_i x_i \leq L \\ \forall i \ p_i x_i \leq u_i \wedge x_i \in \mathbb{R}_0^+ \end{array} \right. \end{array}$$

Exemplo

р	peso (Kg)	42	32	12	20	27
V	valor (u.m.)	90	82	37	61	70
	máximo (Kg)	35	60	30	25	20

(a) Para um limite de carga L = 80 Kg, dados p_i e v_i para cada cada objeto i, que objetos transporta para maximizar o valor total? $(x_2 = 1, x_4 = x_5 = 1)$ (b) E, se puder transportar vários idênticos? ($x_3 = 5$, $x_4 = 1$) (c) E, se puder fracioná-los, sendo o valor e o peso proporcionais à fracção que leva, não podendo exceder um limite máximo dado para cada tipo? $(x_3 = 30/12, x_4 = 25/20, x_5 = 20/27, x_2 = 5/32)$

Problema da mochila fracionário (linear knapsack problem)

Algoritmo greedy que calcula uma solução ótima para knapsack fracionário:

Ordenar os itens por ordem decrescente de valor por unidade de recurso despendida (i.e., por v_i/p_i). Levar a maior quantidade possível do primeiro item, i.e., $x_1 = \min(u_1/p_1, L/p_1)$, e aplicar a mesma estratégia para $i \ge 2$, com peso máximo $L - p_1x_1$.

Ideia da Prova: se em vez de
$$x_j$$
 usar $x_j - \frac{\varepsilon}{\rho_j}$ perde $\frac{v_j}{\rho_j}\varepsilon$ e pode repor no máximo $\frac{v_{j+1}}{\rho_{j+1}}\varepsilon$. Logo, perde $(\frac{v_j}{\rho_j} - \frac{v_{j+1}}{\rho_{j+1}})\varepsilon$.

Exemplo (
$$L = 80$$
, solução ótima: $x_3 = 30/12$, $x_4 = 25/20$, $x_5 = 20/27$, $x_2 = 5/32$)

и	máximo (Kg)	35	60	30	25	20
V	valor (u.m.)	90	82	37	61	70
р	peso (Kg)	42	32	12	20	27

v/p rendimento (u.m/Kg) 2.14 2.56 3.08 3.05 2.59

4 D > 4 B > 4 E > E 900

Uma resposta parcial...

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$. O par (S, \mathcal{F}) designa-se por **matróide** sse satisfizer para todo A e B:

- (Hereditariedade) se $B \in \mathcal{F}$ e $A \subseteq B$ então $A \in \mathcal{F}$.
- (Extensão) Se $A, B \in \mathcal{F}$ e |A| < |B| então $A \cup \{x\} \in \mathcal{F}$, para algum $x \in B$.

Os elementos de ${\mathcal F}$ designam-se por subconjuntos independentes

Propriedade: Os conjuntos independentes **maximais** (para ⊆) têm o mesmo cardinal

Um matróide pesado é um matróide (S, \mathcal{F}) com uma função de peso $w: S \to \mathbb{R}^+$, sendo $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

Teorema

Uma resposta parcial...

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$. O par (S, \mathcal{F}) designa-se por **matróide** sse satisfizer para todo A e B:

- (Hereditariedade) se $B \in \mathcal{F}$ e $A \subseteq B$ então $A \in \mathcal{F}$.
- (Extensão) Se $A, B \in \mathcal{F}$ e |A| < |B| então $A \cup \{x\} \in \mathcal{F}$, para algum $x \in B$.

Os elementos de \mathcal{F} designam-se por *subconjuntos independentes*.

Propriedade: Os conjuntos independentes maximais (para ⊆) têm o mesmo cardinal.

Um matróide pesado é um matróide (S, \mathcal{F}) com uma função de peso $w : S \to \mathbb{R}^+$, sendo $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

Teorema

Uma resposta parcial...

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$. O par (S, \mathcal{F}) designa-se por **matróide** sse satisfizer para todo A e B:

- (Hereditariedade) se $B \in \mathcal{F}$ e $A \subseteq B$ então $A \in \mathcal{F}$.
- (Extensão) Se $A, B \in \mathcal{F}$ e |A| < |B| então $A \cup \{x\} \in \mathcal{F}$, para algum $x \in B$.

Os elementos de \mathcal{F} designam-se por *subconjuntos independentes*.

Propriedade: Os conjuntos independentes maximais (para ⊆) têm o mesmo cardinal.

Um matróide pesado é um matróide (S, \mathcal{F}) com uma função de peso $w : S \to \mathbb{R}^+$, sendo $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

Teorema

Uma resposta parcial...

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$. O par (S, \mathcal{F}) designa-se por **matróide** sse satisfizer para todo A e B:

- (Hereditariedade) se $B \in \mathcal{F}$ e $A \subseteq B$ então $A \in \mathcal{F}$.
- (Extensão) Se $A, B \in \mathcal{F}$ e |A| < |B| então $A \cup \{x\} \in \mathcal{F}$, para algum $x \in B$.

Os elementos de \mathcal{F} designam-se por *subconjuntos independentes*.

Um matróide pesado é um matróide (S, \mathcal{F}) com uma função de peso $w : S \to \mathbb{R}^+$, sendo $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

Teorema

Teorema (Rado 1957 / Gale 1968)

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$, e $w: S \to \mathbb{R}^+$ uma função de peso. Defina-se $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

- Se (S,\mathcal{F}) é um matróide pesado, com função de peso $w:S\to\mathbb{R}^+$, o problema de determinar $A\in\mathcal{F}$ com peso w(A) máximo pode ser resolvido pelo "Algoritmo Greedy Trivial".
- Se o "Algoritmo Greedy Trivial" determinar uma solução ótima para <u>todas</u> as funções de peso w, então (S, \mathcal{F}) é um matróide.

"Algoritmo Greedy Trivial": partir de $A = \emptyset$ e, tomando os elementos $x \in S$ por ordem decrescente de peso, inserir x em A se $A \cup \{x\} \in \mathcal{F}$.

Existem problemas que podem ser resolvidos por estratégias greedy e não têm estrutura de matróide pesado.

or exemplo, "interval scheduling".

Teorema (Rado 1957 / Gale 1968)

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$, e $w: S \to \mathbb{R}^+$ uma função de peso. Defina-se $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

- Se (S, F) é um matróide pesado, com função de peso w : S → R⁺, o problema de determinar A ∈ F com peso w(A) máximo pode ser resolvido pelo "Algoritmo Greedy Trivial".
- Se o "Algoritmo Greedy Trivial" determinar uma solução ótima para <u>todas</u> as funções de peso w, então (S, \mathcal{F}) é um matróide.

"Algoritmo Greedy Trivial": partir de $A = \emptyset$ e, tomando os elementos $x \in S$ por ordem decrescente de peso, inserir x em A se $A \cup \{x\} \in \mathcal{F}$.

Existem problemas que podem ser resolvidos por estratégias greedy e não têm estrutura de matróide pesado.

Teorema (Rado 1957 / Gale 1968)

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$, e $w: S \to \mathbb{R}^+$ uma função de peso. Defina-se $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

- Se (S, F) é um matróide pesado, com função de peso w : S → R⁺, o problema de determinar A ∈ F com peso w(A) máximo pode ser resolvido pelo "Algoritmo Greedy Trivial".
- Se o "Algoritmo Greedy Trivial" determinar uma solução ótima para **todas** as funções de peso w, então (S, \mathcal{F}) é um matróide.

"Algoritmo Greedy Trivial": partir de $A = \emptyset$ e, tomando os elementos $x \in S$ por ordem decrescente de peso, inserir x em A se $A \cup \{x\} \in \mathcal{F}$.

Existem problemas que podem ser resolvidos por estratégias greedy e não têm estrutura de matróide pesado.

Teorema (Rado 1957 / Gale 1968)

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$, e $w: S \to \mathbb{R}^+$ uma função de peso. Defina-se $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

- Se (S, F) é um matróide pesado, com função de peso w : S → R⁺, o problema de determinar A ∈ F com peso w(A) máximo pode ser resolvido pelo "Algoritmo Greedy Trivial".
- Se o "Algoritmo Greedy Trivial" determinar uma solução ótima para <u>todas</u> as funções de peso w, então (S, \mathcal{F}) é um matróide.

"Algoritmo Greedy Trivial": partir de $A = \emptyset$ e, tomando os elementos $x \in S$ por ordem decrescente de peso, inserir x em A se $A \cup \{x\} \in \mathcal{F}$.

Existem problemas que podem ser resolvidos por estratégias greedy e não têm estrutura de matróide pesado.

Teorema (Rado 1957 / Gale 1968)

Seja S um conjunto **finito** e \mathcal{F} uma família de subconjuntos de S tal que $\mathcal{F} \neq \emptyset$, e $w: S \to \mathbb{R}^+$ uma função de peso. Defina-se $w(A) = \sum_{a \in A} w(a)$, para todo $A \subseteq S$.

- Se (S, F) é um matróide pesado, com função de peso w : S → R⁺, o problema de determinar A ∈ F com peso w(A) máximo pode ser resolvido pelo "Algoritmo Greedy Trivial".
- Se o "Algoritmo Greedy Trivial" determinar uma solução ótima para <u>todas</u> as funções de peso w, então (S, \mathcal{F}) é um matróide.

"Algoritmo Greedy Trivial": partir de $A = \emptyset$ e, tomando os elementos $x \in S$ por ordem decrescente de peso, inserir x em A se $A \cup \{x\} \in \mathcal{F}$.

Existem problemas que podem ser resolvidos por estratégias greedy e não têm estrutura de matróide pesado.

Por exemplo, "interval scheduling".

Exemplo 1

```
Seja G = (V, E) um grafo finito não dirigido.
Seja S = E e \mathcal{F} = \{E' \mid G' = (V, E') \text{ é acíclico, } E' \subseteq E\}
```

- Se $B \subseteq E$ tal que $G_B = (V, B)$ é um subgrafo acíclico de G então para todo $A \subseteq B$ também $G_A = (V, A)$ é acíclico.
- Se A e B são subconjuntos de E tais que os subgrafos $G_A = (V, A)$ e $G_B = (V, B)$ são acíclicos e |A| < |B| então existe $e \in B$ tal que $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico porque:
 - Se |A| < |B|, o número de componentes conexas de G_A é maior do que o número de componentes conexas de G_B (pois, G_A e G_B são florestas).
 - Pelo princípio de Pigeonhole, existem nós u e v tais que u e v estão na mesma componente conexa em G_B , a aresta $(u,v) \in B$ e u e v estão em componentes conexas distintas em G_A .
 - Assim, para e = (u, v), o grafo $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico.

4□ > 4□ > 4 = > 4 = > = 9

Exemplo 1

```
Seja G = (V, E) um grafo finito não dirigido.
Seja S = E e \mathcal{F} = \{E' \mid G' = (V, E') \text{ é acíclico, } E' \subseteq E\}
```

- Se $B \subseteq E$ tal que $G_B = (V, B)$ é um subgrafo acíclico de G então para todo $A \subseteq B$ também $G_A = (V, A)$ é acíclico.
- Se A e B são subconjuntos de E tais que os subgrafos $G_A = (V, A)$ e $G_B = (V, B)$ são acíclicos e |A| < |B| então existe $e \in B$ tal que $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico porque:
 - Se |A| < |B|, o número de componentes conexas de G_A é maior do que o número de componentes conexas de G_B (pois, G_A e G_B são florestas).
 - Pelo princípio de Pigeonhole, existem nós u e v tais que u e v estão na mesma componente conexa em G_B, a aresta (u, v) ∈ B e u e v estão em componentes conexas distintas em G_A.
 - Assim, para e = (u, v), o grafo $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico.

4□ > 4□ > 4□ > 4 = > 4 = > 3 = 900

Exemplo 1

```
Seja G = (V, E) um grafo finito não dirigido.
Seja S = E e \mathcal{F} = \{E' \mid G' = (V, E') \text{ é acíclico, } E' \subseteq E\}
```

- Se $B \subseteq E$ tal que $G_B = (V, B)$ é um subgrafo acíclico de G então para todo $A \subseteq B$ também $G_A = (V, A)$ é acíclico.
- Se A e B são subconjuntos de E tais que os subgrafos $G_A = (V, A)$ e $G_B = (V, B)$ são acíclicos e |A| < |B| então existe $e \in B$ tal que $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico porque:
 - Se |A| < |B|, o número de componentes conexas de G_A é maior do que o número de componentes conexas de G_B (pois, G_A e G_B são florestas).
 - Pelo princípio de Pigeonhole, existem nós u e v tais que u e v estão na mesma componente conexa em G_B, a aresta (u, v) ∈ B e u e v estão em componentes conexas distintas em G_A.
 - Assim, para e = (u, v), o grafo $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の Q で

9 / 26

Exemplo 1

```
Seja G = (V, E) um grafo finito não dirigido.
Seja S = E e \mathcal{F} = \{E' \mid G' = (V, E') \text{ é acíclico, } E' \subseteq E\}
```

- Se $B \subseteq E$ tal que $G_B = (V, B)$ é um subgrafo acíclico de G então para todo $A \subseteq B$ também $G_A = (V, A)$ é acíclico.
- Se A e B são subconjuntos de E tais que os subgrafos $G_A = (V, A)$ e $G_B = (V, B)$ são acíclicos e |A| < |B| então existe $e \in B$ tal que $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico porque:
 - Se |A| < |B|, o número de componentes conexas de G_A é maior do que o número de componentes conexas de G_B (pois, G_A e G_B são florestas).
 - Pelo princípio de Pigeonhole, existem nós u e v tais que u e v estão na mesma componente conexa em G_B, a aresta (u, v) ∈ B e u e v estão em componentes conexas distintas em G_A.
 - Assim, para e = (u, v), o grafo $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico.

Exemplo 1

```
Seja G = (V, E) um grafo finito não dirigido.
Seja S = E e \mathcal{F} = \{E' \mid G' = (V, E') \text{ é acíclico, } E' \subseteq E\}
```

- Se $B \subseteq E$ tal que $G_B = (V, B)$ é um subgrafo acíclico de G então para todo $A \subseteq B$ também $G_A = (V, A)$ é acíclico.
- Se A e B são subconjuntos de E tais que os subgrafos $G_A = (V, A)$ e $G_B = (V, B)$ são acíclicos e |A| < |B| então existe $e \in B$ tal que $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico porque:
 - Se |A| < |B|, o número de componentes conexas de G_A é maior do que o número de componentes conexas de G_B (pois, G_A e G_B são florestas).
 - Pelo princípio de Pigeonhole, existem nós u e v tais que u e v estão na mesma componente conexa em G_B, a aresta (u, v) ∈ B e u e v estão em componentes conexas distintas em G_A.
 - Assim, para e = (u, v), o grafo $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico.

□ ► <
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □ <

Exemplo 1

```
Seja G = (V, E) um grafo finito não dirigido.
Seja S = E e \mathcal{F} = \{E' \mid G' = (V, E') \text{ é acíclico, } E' \subseteq E\}
```

- Se $B \subseteq E$ tal que $G_B = (V, B)$ é um subgrafo acíclico de G então para todo $A \subseteq B$ também $G_A = (V, A)$ é acíclico.
- Se A e B são subconjuntos de E tais que os subgrafos $G_A = (V, A)$ e $G_B = (V, B)$ são acíclicos e |A| < |B| então existe $e \in B$ tal que $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico porque:
 - Se |A| < |B|, o número de componentes conexas de G_A é maior do que o número de componentes conexas de G_B (pois, G_A e G_B são florestas).
 - Pelo princípio de Pigeonhole, existem nós u e v tais que u e v estão na mesma componente conexa em G_B, a aresta (u, v) ∈ B e u e v estão em componentes conexas distintas em G_A.
 - Assim, para e = (u, v), o grafo $G_{A \cup \{e\}} = (V, A \cup \{e\})$ é acíclico.

4□ > 4□ > 4□ > 4 = > 4 = > 9 < 0</p>

Exemplo 2

```
S = \{colunas da matriz de coeficientes de um sistema AX = b\}, \mathcal{F} = \{subconjuntos de colunas de A linearmente independentes\}.
```

 (S,\mathcal{F}) é matróide porque é conhecido da Álgebra Linear que:

- Qualquer subconjunto de um conjunto de vetores linearmente independentes de \mathbb{R}^m é linearmente independente.
- Se \mathcal{A} e \mathcal{B} são conjuntos de vetores linearmente independentes de \mathbb{R}^m e $|\mathcal{A}| < |\mathcal{B}|$ então existe $\mathcal{B}_j \in \mathcal{B}$ tal que $\mathcal{A} \cup \{\mathcal{B}_j\}$ é linearmente independente.

Exemplo 2

```
S = \{colunas da matriz de coeficientes de um sistema AX = b\}, \mathcal{F} = \{subconjuntos de colunas de A linearmente independentes\}.
```

 (S, \mathcal{F}) é matróide porque é conhecido da Álgebra Linear que:

- Qualquer subconjunto de um conjunto de vetores linearmente independentes de \mathbb{R}^m é linearmente independente.
- Se \mathcal{A} e \mathcal{B} são conjuntos de vetores linearmente independentes de \mathbb{R}^m e $|\mathcal{A}| < |\mathcal{B}|$ então existe $\mathcal{B}_j \in \mathcal{B}$ tal que $\mathcal{A} \cup \{\mathcal{B}_j\}$ é linearmente independente.

Exemplo 3

```
S = \{ \text{tarefas de duração unitária cada uma com um prazo limite} \}, \mathcal{F} = \{ A \mid A \subseteq S \text{ e é possível executar todas as tarefas em } A \text{ dentro dos prazos} \}.
```

 (S, \mathcal{F}) é matróide

- Se $B \in \mathcal{F}$ então $A \in \mathcal{F}$, para todo $A \subseteq B$. Trivial.
- Se $A \in \mathcal{F}$ e $B \in \mathcal{F}$ e |A| < |B| então existe $b \in \mathcal{B}$ tal que $A \cup \{b\} \in \mathcal{F}$.

Prova: Seja $N_t(X)$ número de tarefas em X com prazo até t.

Tem-se
$$N_0(A) = N_0(B) = 0$$
 e $N_n(A) < N_n(B)$, sendo $n = |S|$

Seja k o maior instante tal que $N_k(B) \le N_k(A)$. Para todo $j \ge k+1$ tem-se $N_j(A) < N_j(B)$. Logo, B tem mais tarefas com prazo limite k+1 do que tem A. Tome-se um $b \in B$ com prazo limite k+1 tal que $b \notin A$. Podemos provar que $A \cup \{b\} \in \mathcal{F}$, pois $N_j(A \cup \{b\}) \le N_j(A) \le j$, para j < k+1. E, $N_j(A \cup \{b\}) = N_j(A) \le j$, para j < k+1. E,

4□ > 4□ > 4□ > 4□ > 4□ > 9

Exemplo 3

```
S = \{ \text{tarefas de duração unitária cada uma com um prazo limite} \}, \mathcal{F} = \{ A \mid A \subseteq S \text{ e é possível executar todas as tarefas em } A \text{ dentro dos prazos} \}.
```

 (S, \mathcal{F}) é matróide:

- Se $B \in \mathcal{F}$ então $A \in \mathcal{F}$, para todo $A \subseteq B$. Trivial.
- Se $\mathcal{A} \in \mathcal{F}$ e $\mathcal{B} \in \mathcal{F}$ e $|\mathcal{A}| < |\mathcal{B}|$ então existe $b \in \mathcal{B}$ tal que $\mathcal{A} \cup \{b\} \in \mathcal{F}$.

Prova: Seja $N_t(X)$ número de tarefas em X com prazo até t.

Tem-se
$$N_0(A) = N_0(B) = 0$$
 e $N_n(A) < N_n(B)$, sendo $n = |S|$.

Seja k o maior instante tal que $N_k(B) \leq N_k(A)$. Para todo $j \geq k+1$ tem-se $N_j(A) < N_j(B)$. Logo, B tem mais tarefas com prazo limite k+1 do que tem A. Tome-se um $b \in B$ com prazo limite k+1 tal que $b \notin A$. Podemos provar que $A \cup \{b\} \in \mathcal{F}$, pois $N_j(A \cup \{b\}) \leq N_j(A) \leq j$, para j < k+1. E, $N_i(A \cup \{b\}) = N_i(A) + 1 \leq N_i(B) \leq j$, para todo $j \geq k+1$.

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ト ・ 差 ・ 夕 Q ©

Exemplos de Aplicação - Otimização em matróides pesados

 Exemplo 1: Determinar uma árvore geradora de peso máximo/mínimo – Algoritmo de Kruskal

Se G for conexo, o "algoritmo greedy trivial" reduz-se ao algoritmo de Kruskal.

• **Exemplo 2:** Localizar observadores em rotundas para determinar os volumes de tráfego q_{ii} , da entrada i para a saída i, para todos os pares (i, j)

São dados os volumes totais O_i e D_j e ainda o que passa frontalmente ao ramo 1 (i.e., F_1). Assume-se que os veículos não estacionam no anel de circulação. Se colocar observador para q_{ij} tem um custo c_{ij} . Minimizar o custo total.

O "algoritmo greedy trivial" pode ser usado para resolver o problema (detalhes à frente).

 Exemplo 3: Dado um conjunto finito de tarefas unitárias cada uma com um prazo limite (deadline) d_j e uma penalização c_j se ultrapassar esse prazo, determinar a ordem pela qual as tarefas serão realizadas de forma a minimizar o custo (penalização) total.

Ana Paula Tomás (DCC-FCUP)

O "algoritmo greedy trivial" pode ser usado para resolver o problema (detalhes à frente).

Exemplos de Aplicação - Otimização em matróides pesados

 Exemplo 1: Determinar uma árvore geradora de peso máximo/mínimo – Algoritmo de Kruskal

Se G for conexo, o "algoritmo greedy trivial" reduz-se ao algoritmo de Kruskal.

• **Exemplo 2:** Localizar observadores em rotundas para determinar os volumes de tráfego q_{ii} , da entrada i para a saída j, para todos os pares (i, j)

São dados os volumes totais O_i e D_j e ainda o que passa frontalmente ao ramo 1 (i.e., F_1). Assume-se que os veículos não estacionam no anel de circulação. Se colocar observador para q_{ij} tem um custo c_{ij} . Minimizar o custo total.

O "algoritmo greedy trivial" pode ser usado para resolver o problema (detalhes à frente).

 Exemplo 3: Dado um conjunto finito de tarefas unitárias cada uma com um prazo limite (deadline) d_j e uma penalização c_j se ultrapassar esse prazo, determinar a ordem pela qual as tarefas serão realizadas de forma a minimizar o custo (penalização) total.

O "algoritmo greedy trivial" pode ser usado para resolver o problema (detalhes à frente)

Ana Paula Tomás (DCC-FCUP)

Exemplos de Aplicação - Otimização em matróides pesados

 Exemplo 1: Determinar uma árvore geradora de peso máximo/mínimo – Algoritmo de Kruskal

Se G for conexo, o "algoritmo greedy trivial" reduz-se ao algoritmo de Kruskal.

• **Exemplo 2:** Localizar observadores em rotundas para determinar os volumes de tráfego q_{ii} , da entrada i para a saída j, para todos os pares (i, j)

São dados os volumes totais O_i e D_j e ainda o que passa frontalmente ao ramo 1 (i.e., F_1). Assume-se que os veículos não estacionam no anel de circulação. Se colocar observador para q_{ij} tem um custo c_{ij} . Minimizar o custo total.

O "algoritmo greedy trivial" pode ser usado para resolver o problema (detalhes à frente).

 Exemplo 3: Dado um conjunto finito de tarefas unitárias cada uma com um prazo limite (deadline) d_j e uma penalização c_j se ultrapassar esse prazo, determinar a ordem pela qual as tarefas serão realizadas de forma a minimizar o custo (penalização) total.

O "algoritmo greedy trivial" pode ser usado para resolver o problema (detalhes à frente).

Unit task scheduling

Dado um conjunto \mathcal{T} de tarefas **com duração 1**, cada uma com um **prazo** d_j (*deadline*) e uma **penalização** c_j , se ultrapassar esse prazo, por que ordem as realizar de forma a minimizar a penalização total?

- Um conjunto A de tarefas é independente se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo k ≥ 0, o número de tarefas em A com deadline até k é menor ou igual a k.
- Resolve-se usando o "Algoritmo greedy trivial": ordenar as tarefas por ordem decrescente de penalização (supor que t₁, t₂,..., t_n traduz essa ordem). No início, S = ∅. Para j de 1 até n, colocar t_j em S desde que S ∪ {t_j} seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de *deadline*). As tarefas em $T \setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

<ロト <個ト < 差ト < 差ト = 一切 < で

Unit task scheduling

Dado um conjunto \mathcal{T} de tarefas **com duração 1**, cada uma com um **prazo** d_j (*deadline*) e uma **penalização** c_j , se ultrapassar esse prazo, por que ordem as realizar de forma a minimizar a penalização total?

- Um conjunto A de tarefas é independente se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo k ≥ 0, o número de tarefas em A com deadline até k é menor ou igual a k.
- Resolve-se usando o "Algoritmo greedy trivial": ordenar as tarefas por ordem decrescente de penalização (supor que t₁, t₂,..., t_n traduz essa ordem). No início, S = ∅. Para j de 1 até n, colocar t_j em S desde que S ∪ {t_j} seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de *deadline*). As tarefas em $T \setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

Unit task scheduling

Dado um conjunto \mathcal{T} de tarefas **com duração 1**, cada uma com um **prazo** d_j (*deadline*) e uma **penalização** c_j , se ultrapassar esse prazo, por que ordem as realizar de forma a minimizar a penalização total?

- Um conjunto A de tarefas é independente se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo k ≥ 0, o número de tarefas em A com deadline até k é menor ou igual a k.
- Resolve-se usando o "Algoritmo greedy trivial": ordenar as tarefas por ordem decrescente de penalização (supor que t₁, t₂,..., t_n traduz essa ordem). No início, S = ∅. Para j de 1 até n, colocar t_j em S desde que S ∪ {t_j} seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de *deadline*). As tarefas em $T \setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

13 / 26

Unit task scheduling

Dado um conjunto \mathcal{T} de tarefas **com duração 1**, cada uma com um **prazo** d_i (deadline) e uma **penalização** c_i , se ultrapassar esse prazo, por que ordem as realizar de forma a minimizar a penalização total?

- Um conjunto A de tarefas é **independente** se todas as tarefas em A podem ser executadas até ao seu deadline. Prova-se que tal acontece se, para todo $k \ge 0$, o número de tarefas em A com deadline até k é menor ou igual a k.
- Resolve-se usando o "Algoritmo greedy trivial": ordenar as tarefas por ordem decrescente de penalização (supor que t_1, t_2, \ldots, t_n traduz essa ordem). No início, $S = \emptyset$. Para *j* de 1 até *n*, colocar t_i em S desde que $S \cup \{t_i\}$ seja independente.
- As tarefas em S podem ser realizadas sem penalização (por exemplo, se as realizar por ordem crescente de deadline). As tarefas em $T \setminus S$ são realizadas por qualquer ordem (têm sempre penalização).

Implementação $O(n^2)$:

- **①** Ordenar o conjunto de tarefas por ordem decrescente de penalização. Seja $\mathcal{T} = \{t_1, \dots, t_n\}$ o conjunto ordenado.
- ② Seja B um array de booleanos tal que B[k] indica se o slot k está livre.
- Para i ← 1 até n, atribuir à tarefa t_i o intervalo de tempo mais tardio que esteja livre e não exceda o deadline d_i, caso exista.

Uma solução mais rápida (com recolha de informação que pode encurtar pesquisas futuras):

- Ordenar o conjunto de tarefas por ordem decrescente de penalização. Seja $\mathcal{T} = \{t_1, \dots, t_n\}$ o conjunto ordenado.
- ② Seja S um array em que S[k] indica o intervalo de tempo mais tardio que pode estar livre e não excede k. Inicialmente, $S[k] \leftarrow k$ para $k \ge 0$.
- **3** Para $i \leftarrow 1$ até n, atribuir à tarefa t_i o intervalo mais tardio com S[k] = kpara $k < d_i$. Para isso:
 - **1** começar com $k \leftarrow d_i$ e enquanto $S[k] \neq k$ fazer $S[k] \leftarrow S[S[k]]$ e $k \leftarrow S[k]$:
 - **Q** o ciclo termina com S[k] = k. Nesse momento, se $k \neq 0$ então t_i fica selecionada e $S[k] \leftarrow S[k-1]$ e $S[d_i] \leftarrow S[k-1]$. Se k=0 então t_i não é selecionada e $S[d_i] \leftarrow 0$.

Invariante: S[0] = 0 em todas as iterações; Se S[k] = k, o slot k está livre. Se $S[k] \neq k$, os slots desde S[S[k]] + 1 até k estão ocupados (logo, se necessitar de agendar uma tarefa com deadline k teria de procurar um slot até S[S[k]]). 4 D > 4 D > 4 E > 4 E > E 9 Q P

Exemplo de execução: Suponhamos que as tarefas estão já ordenadas por ordem decrescente de penalização e que os seus deadlines são:

d		3	3	5	7	3	3	4	5	6	7	8	2	5		6	1							
					•						•		_		_	Ť	_	_						
S	0	1	2	3	4	5	6	7	8]														
S	0	1	2	2	4	5	6	7	8	1	t_1 ficou no slot 3													
S	0	1	1	1	4	5	6	7	8	1	t_2 ficou no slot 2													
S	0	1	1	1	4	4	6	7	8	t ₃ ficou no slot 5														
S	0	1	1	1	4	4	6	6	8	1	t_4 ficou no slot 7													
S	0	0	1	0	4	4	6	6	8	t_5 ficou no slot 1														
S	0	0	1	0	0	4	6	6	8	1	t_6 não entra; t_7 ficou no slot 4													
S	0	0	1	0	0	0	6	6	8	1	t_8 não entra (tinha $S[5]=4$ e $S[4]=0$)													
S	0	0	1	0	0	0	0	6	8	1	t_9 no slot 6													
S	0	0	1	0	0	0	0	0	8	1	t_{10} não entra (tinha $S[7]=6$ e $S[6]=0$)													
S	0	0	1	0	0	0	0	0	0	t_{11} ficou no slot 8														
<i>S</i>	0	0	0	0	0	0	0	0	0	t_{12} não entra (tinha $S[2]=1$ e $S[1]=0$)														

Melhoramento: Se ficar com S[MaxTime] = 0, sendo MaxTime = max(d), então nenhuma das tarefas que restam pode

entrar...o que quer dizer que t_{12} não teria de ser analisada nem as seguintes!

Ana Paula Tomás (DCC-FCUP) CC2001 2019/2020 Novembro 2019 16 / 26

Interval scheduling

 \mathcal{T} é um conjunto de n tarefas. A tarefa t_j teria forçosamente de decorrer no intervalo $[a_j,b_j[$, ou seja, começar no instante a_j e terminar em b_j , para $1 \leq j \leq n$ (notar que $b_j \notin [a_j,b_j[)$). Em cada instante, só uma tarefa pode estar a decorrer. Pretende-se maximizar o número de tarefas realizadas.

Não tem estrutura de matróide. Mas, calculamos uma solução ótima em tempo
 O(n log n) por um algoritmo greedy, usando a estratégia "earliest finish first".

```
Ordenar \mathcal{T} por ordem crescente de tempo de finalização; 
/* Supor que t_1, t_2, \ldots, t_n traduz essa ordem */ S \leftarrow \emptyset; f \leftarrow 0; Para j \leftarrow 1 até n fazer Se a[j] \geq f então S \leftarrow S \cup \{t_i\}; f \leftarrow b[j];
```

Ocorreção: Seja S^* uma solução ótima distinta da solução S calculada pelo algoritmo. Sejam k e j as primeiras duas tarefas que as distinguem. Então, t_j (a escolha greedy) pode substituir t_k em S^* , ou seja, $(S^* \setminus \{t_k\}) \cup \{t_j\}$ é também uma solução ótima (t_j não pode criar conflitos pois $b[j] \le b[k]$). Assim, repetindo, acabamos por conseguir transformar qualquer solução ótima S^* na solução greedy S, pelo que S é ótima.

Interval scheduling

 \mathcal{T} é um conjunto de n tarefas. A tarefa t_j teria forçosamente de decorrer no intervalo $[a_j,b_j[$, ou seja, começar no instante a_j e terminar em b_j , para $1 \leq j \leq n$ (notar que $b_j \notin [a_j,b_j[)$). Em cada instante, só uma tarefa pode estar a decorrer. Pretende-se maximizar o número de tarefas realizadas.

Não tem estrutura de matróide. Mas, calculamos uma solução ótima em tempo
 O(n log n) por um algoritmo greedy, usando a estratégia "earliest finish first".

```
Ordenar \mathcal{T} por ordem crescente de tempo de finalização; /* Supor que t_1, t_2, \ldots, t_n traduz essa ordem */ S \leftarrow \emptyset; f \leftarrow 0; Para j \leftarrow 1 até n fazer Se a[j] \geq f então S \leftarrow S \cup \{t_i\}; f \leftarrow b[j];
```

• Correção: Seja S^* uma solução ótima distinta da solução S calculada pelo algoritmo. Sejam k e j as primeiras duas tarefas que as distinguem. Então, t_j (a escolha greedy) pode substituir t_k em S^* , ou seja, $(S^* \setminus \{t_k\}) \cup \{t_j\}$ é também uma solução ótima (t_j não pode criar conflitos pois $b[j] \leq b[k]$). Assim, repetindo, acabamos por conseguir transformar qualquer solução ótima S^* na solução greedy S, pelo que S é ótima.

Interval scheduling

 \mathcal{T} é um conjunto de n tarefas. A tarefa t_j teria forçosamente de decorrer no intervalo $[a_j,b_j[$, ou seja, começar no instante a_j e terminar em b_j , para $1 \leq j \leq n$ (notar que $b_j \notin [a_j,b_j[)$). Em cada instante, só uma tarefa pode estar a decorrer. Pretende-se maximizar o número de tarefas realizadas.

 Não tem estrutura de matróide. Mas, calculamos uma solução ótima em tempo O(n log n) por um algoritmo greedy, usando a estratégia "earliest finish first".

```
Ordenar \mathcal T por ordem crescente de tempo de finalização; 

/* Supor que t_1, t_2, \ldots, t_n traduz essa ordem */
S \leftarrow \emptyset; f \leftarrow 0;
Para j \leftarrow 1 até n fazer
Se \ a[j] \geq f \ então
S \leftarrow S \cup \{t_i\}; \ f \leftarrow b[j];
```

• Correção: Seja S^* uma solução ótima distinta da solução S calculada pelo algoritmo. Sejam k e j as primeiras duas tarefas que as distinguem. Então, t_j (a escolha greedy) pode substituir t_k em S^* , ou seja, $(S^* \setminus \{t_k\}) \cup \{t_j\}$ é também uma solução ótima $(t_j$ não pode criar conflitos pois $b[j] \leq b[k]$). Assim, repetindo, acabamos por conseguir

Interval scheduling

 \mathcal{T} é um conjunto de n tarefas. A tarefa t_j teria forçosamente de decorrer no intervalo $[a_j,b_j[$, ou seja, começar no instante a_j e terminar em b_j , para $1 \leq j \leq n$ (notar que $b_j \notin [a_j,b_j[)$). Em cada instante, só uma tarefa pode estar a decorrer. Pretende-se maximizar o número de tarefas realizadas.

Não tem estrutura de matróide. Mas, calculamos uma solução ótima em tempo
 O(n log n) por um algoritmo greedy, usando a estratégia "earliest finish first".

```
Ordenar \mathcal T por ordem crescente de tempo de finalização; 

/* Supor que t_1, t_2, \ldots, t_n traduz essa ordem */ 

S \leftarrow \emptyset; f \leftarrow 0; 

Para j \leftarrow 1 até n fazer 

Se a[j] \geq f então 

S \leftarrow S \cup \{t_i\}; f \leftarrow b[j];
```

• Correção: Seja S^* uma solução ótima distinta da solução S calculada pelo algoritmo. Sejam k e j as primeiras duas tarefas que as distinguem. Então, t_j (a escolha greedy) pode substituir t_k em S^* , ou seja, $(S^* \setminus \{t_k\}) \cup \{t_j\}$ é também uma solução ótima (t_j não pode criar conflitos pois $b[j] \leq b[k]$). Assim, repetindo, acabamos por conseguir transformar qualquer solução ótima S^* na solução greedy S, pelo que S é ótima.

Problema: Localizar observadores em rotundas para obter os volumes de tráfego direcionais, q_{ii} , da entrada i para a saída j, para todos os pares (i,j). São dados

$$\sum_{j\in\mathcal{D}}q_{ij}=O_i,\;\mathsf{para}\;i\in\mathcal{O}$$
 $\sum_{i\in\mathcal{O}}q_{ij}=D_j,\;\mathsf{para}\;j\in\mathcal{D}$ $\sum_{i\in\mathcal{O}\setminus\{1\}}\sum_{j\in\mathcal{D},\;1\prec j\preceq i}q_{ij}=F_1$

4□ > 4□ > 4□ > 4□ > 4□ > 90

Problema: Localizar observadores em rotundas para obter os volumes de tráfego direcionais, q_{ii} , da entrada i para a saída j, para todos os pares (i,j). São dados os volumes totais O_i e D_i e ainda o que passa frontalmente ao ramo 1 F_1 .

$$\sum_{j\in\mathcal{D}}q_{ij}=O_i, ext{ para } i\in\mathcal{O}$$
 $\sum_{i\in\mathcal{O}}q_{ij}=D_j, ext{ para } j\in\mathcal{D}$ $\sum_{i\in\mathcal{O}\setminus\{1\}}\sum_{j\in\mathcal{D},\ 1\prec j\preceq i}q_{ij}=F_1$

Problema: Localizar observadores em rotundas para obter os volumes de tráfego direcionais, q_{ii} , da entrada i para a saída j, para todos os pares (i,j). São dados os volumes totais O_i e D_i e ainda o que passa frontalmente ao ramo 1 F_1 . Assume-se que os veículos não estacionam no anel de circulação.

$$\sum_{j\in\mathcal{D}}q_{ij}=O_i,\;\mathsf{para}\;i\in\mathcal{O}$$
 $\sum_{i\in\mathcal{O}}q_{ij}=D_j,\;\mathsf{para}\;j\in\mathcal{D}$ $\sum_{i\in\mathcal{O}\setminus\{1\}}\sum_{j\in\mathcal{D},\;1\prec j\preceq i}q_{ij}=F_1$

Problema: Localizar observadores em rotundas para obter os volumes de tráfego direcionais, q_{ii} , da entrada i para a saída j, para todos os pares (i,j). São dados os volumes totais O_i e D_i e ainda o que passa frontalmente ao ramo 1 F_1 . Assume-se que os veículos não estacionam no anel de circulação.

$$\sum_{j \in \mathcal{D}} q_{ij} = O_i, \; \mathsf{para} \; i \in \mathcal{O}$$
 $\sum_{i \in \mathcal{O} \setminus \{1\}} \sum_{j \in \mathcal{D}, \; 1 \prec j \preceq i} q_{ij} = F_1$

Se colocar observador para q_{ii} tem um custo c_{ii} . Pretendemos minimizar o

Problema: Localizar observadores em rotundas para obter os volumes de tráfego direcionais, q_{ii} , da entrada i para a saída j, para todos os pares (i,j). São dados os volumes totais O_i e D_i e ainda o que passa frontalmente ao ramo 1 F_1 . Assume-se que os veículos não estacionam no anel de circulação.

$$\sum_{j\in\mathcal{D}}q_{ij}=O_i,\;\mathsf{para}\;i\in\mathcal{O}$$
 $\sum_{i\in\mathcal{O}\setminus\{1\}}\sum_{j\in\mathcal{D},\;1\prec j\preceq i}q_{ij}=F_1$

Se colocar observador para q_{ii} tem um custo c_{ii} . Pretendemos minimizar o

Problema: Localizar observadores em rotundas para obter os volumes de tráfego direcionais, q_{ii} , da entrada i para a saída j, para todos os pares (i,j). São dados os volumes totais O_i e D_i e ainda o que passa frontalmente ao ramo 1 F_1 . Assume-se que os veículos não estacionam no anel de circulação.

$$\sum_{j\in\mathcal{D}}q_{ij}=O_i,\;\mathsf{para}\;i\in\mathcal{O}$$
 $\sum_{i\in\mathcal{O}\setminus\{1\}}\sum_{j\in\mathcal{D},\;1\prec j\preceq i}q_{ij}=F_1$

Se colocar observador para q_{ii} tem um custo c_{ii} . Pretendemos minimizar o **custo total.** Quais dos q_{ii} 's não serão obtidos por observação, sendo calculados por resolução do sistema?

Problema: Localizar observadores em rotundas para obter os volumes de tráfego direcionais, q_{ii} , da entrada i para a saída j, para todos os pares (i,j). São dados os volumes totais O_i e D_i e ainda o que passa frontalmente ao ramo 1 F_1 . Assume-se que os veículos não estacionam no anel de circulação.

$$\sum_{j\in\mathcal{D}}q_{ij}=O_i,\;\mathsf{para}\;i\in\mathcal{O}$$
 $\sum_{i\in\mathcal{O}\setminus\{1\}}\sum_{j\in\mathcal{D},1\prec j\prec i}q_{ij}=D_j,\;\mathsf{para}\;j\in\mathcal{D}$

Se colocar observador para q_{ii} tem um custo c_{ii} . Pretendemos minimizar o custo total. Quais dos q_{ii}'s não serão obtidos por observação, sendo calculados por resolução do sistema?

A base ótima pode ser calculada pelo "algoritmo greedy trivial".

Sobre resolução de sistemas de equações. . .

$$\begin{cases} x_1 - 4x_2 + 5x_3 - 10x_4 &= 2\\ -x_1 + 7x_2 + 2x_3 - 4x_4 &= 1\\ 3x_2 + 7x_3 - 14x_4 &= 3\\ x_1, x_2, x_3, x_4 \in \mathbb{R} \end{cases}$$

$$A = \left[\begin{array}{rrrr} 1 & -4 & 5 & -10 \\ -1 & 7 & 2 & -4 \\ 0 & 3 & 7 & -14 \end{array} \right]$$

- A matriz A tem característica 2 porque a terceira equação é redundante.
 car(A) é igual também à dimensão do espaço pelas colunas de A.
- Dos $\binom{n}{2} = \binom{4}{2} = 6$ subconjuntos $\{A_i, A_j\}$, com $i \neq j$, cinco são **bases** do espaço gerado pelas colunas de A. Cada base define uma "forma resolvida".

 Sistema indeterminado. Se se atribuir valores às n – car(A) variáveis livres, admite uma única solução para as restantes car(A) variáveis.

Obter os volumes direcionais q_{ij} , para todos os (i,j), com custo total mínimo.

 O_i : total na entrada i; D_i : total na saída j;

 F_k : total na secção frontal a k; I_k : total na secção intermédia k.

O número de variáveis q_{ii} é $|\mathcal{O}| \times |\mathcal{D}|$ mas a **caraterística da matriz** do sistema é $|\mathcal{O}| + |\mathcal{D}|$ ou $|\mathcal{O}| + |\mathcal{D}| - 1$. Quais dos q_{ii} não serão obtidos por observação, sendo calculados por resolução do sistema?

Ana Paula Tomás (DCC-FCUP) CC2001 2019/2020 Novembro 2019 20 / 26

Obter os volumes direcionais q_{ij} , para todos os (i,j), com custo total mínimo.

- Qualquer uma das equações para os O_i's e D_j's é redundante face às restantes.
 Também, apenas um dos F_k's poderá ser não redundante face aos O_i's e D_j's.
- A caraterística da matriz do sistema é $|\mathcal{O}| + |\mathcal{D}|$ ou $|\mathcal{O}| + |\mathcal{D}| 1$.
- É $|\mathcal{O}| + |\mathcal{D}| 1$ sse a equação que define F_k é $F_k = 0$, para algum k. Isto acontece se a rotunda for do tipo $S^*(D + SE)E^*$, onde S designa saída, E entrada e D sentido duplo.

A.P Tomás, M. Andrade and A. Pires da Costa (2001) Obtaining Origin-Destination Data at Optimal Cost at Urban Roundabouts. In CSOR - EPIA'01.

A.P. Tomás (2002). Solving Optimal Location of Traffic Counting Points at Urban Intersections in CLP(FD). In Proc. MICAl'2002. LNAI 2313, 242-251. http://www.dcc.fc.up.pt/~apt/onlinepapers/micai02.pdf

4D > 4A > 4B > 4B > B 990

Sendo r a caraterística da matriz do sistema, queremos escolher os r volumes direcionais independentes que não serão obtidos por contagem mas deduzidos dos restantes q_{ii} 's e dos volumes totais em secção (O_i 's, D_i 's e F_k 's), de forma a minimizar o custo da recolha.

Exemplos: $custo(q_{ii}) = número de ramos de i para j$

		volumes a observar
SEDE	r=3+2=5	q(4,1)
	$vars = 3 \times 2 = 6$	
DDDE	r=4+3=7	q(1,2) q(2,3) q(3,1) q(4,1) q(4,2)
	nvars $=4 \times 3 = 12$	
DDSE	r = 3 + 3 = 6	q(1,2) q(2,3) q(4,1)
	nvars $=3 \times 3 = 9$	
SSSD	r=1+4-1=4	
	nvars $=1 \times 4 = 4$	

SSSD é do tipo $S^*(D + SE)E^*$

Exemplo: A rotunda SDSDEE, com $c_{o_i d_j} = \text{número de ramos de } o_i \text{ para } d_j$.

- A caraterística da matriz do sistema é $|\mathcal{O}| + |\mathcal{D}| = 8$ e o número de variáveis é 16.
- Considerando os volumes de tráfego O_i 's, D_i 's e F_1 , a matriz de coeficientes é:

q_{21}	q 22	q 23	q 24	q_{41}	q 42	943	944	q_{51}	q 52	953	9 54	q 61	q 62	9 63	964
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0
0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
0	1	0	0	0	1	1	1	0	1	1	1	0	1	1	1

ullet Propriedade da matriz do sistema: a coluna $ullet p'_{o_id_j}$ associada à variável $q_{o_id_j}$ é

$$\mathbf{p}'_{o_id_j}=\mathbf{e}_i+\mathbf{e}_{m+j}+\theta_{o_id_j}\mathbf{e}_{m+n+1}.$$

Os vetores \mathbf{e}_t definem a base canónica de \mathbb{R}^{n+m+1} , $\theta_{o_id_j}$ indica se $q_{o_id_j}$ passa ou não frontalmente ao ramo 1.

• Ordem decrescente de custos: $c_{22} = c_{44} = 6$, $c_{54} = c_{21} = c_{43} = 5$, $c_{64} = c_{53} = c_{42} = 4$, $c_{41} = c_{52} = c_{63} = 3$, $c_{24} = c_{51} = c_{62} = 2$, $c_{23} = c_{61} = 1$. A base ótima pode ser obtida pelo "algoritmo greedy trivial".

Se custo total for dado pela soma dos custos da contagem de cada um dos q_{ii} 's, o problema corresponde à determinação da solução de peso máximo num matróide pesado. A solução ótima pode ser determinada pelo "algoritmo greedy trivial".

A rotunda SDSDEE com $c_{ii} = número de ramos de i para j$

Ordem decrescente de custos:

$$c_{22} = c_{44} = 6$$
, $c_{54} = c_{21} = c_{43} = 5$, $c_{64} = c_{53} = c_{42} = 4$, $c_{41} = c_{52} = c_{63} = 3$, $c_{24} = c_{51} = c_{62} = 2$, $c_{23} = c_{61} = 1$.

Dependências lineares:

$$\mathbf{p}_{53}' = \mathbf{p}_{54}' - \mathbf{p}_{44}' + \mathbf{p}_{43}'$$
 $\mathbf{p}_{41}' = \mathbf{p}_{42}' - \mathbf{p}_{22}' + \mathbf{p}_{21}'$

• $\mathbf{p}'_{o_id_j} = \mathbf{e}_i + \mathbf{e}_{m+j} + \theta_{o_id_j}\mathbf{e}_{m+n+1}$: coluna de q_{ij} no sistema. No subsistema relativo a entradas e saídas, $\mathbf{p}_{o_id_j} = \mathbf{e}_i + \mathbf{e}_{m+j}$ e tem-se a seguinte propriedade.

Propriedade: um conjunto B é independente sse o grafo que se obtém se se ligar por um ramo cada elemento de B aos mais próximos na mesma linha e coluna da tabela for acíclico. Se B for uma base, tem m+n-1 elementos. Cada coluna da matriz do sistema escreve-se de forma única como combinação linear dos elementos da base B. Os coeficientes da combinação são 1, -1 ou 0.

Exemplo anterior: $\mathbf{p}_{53}' = \mathbf{p}_{54}' - \mathbf{p}_{44}' + \mathbf{p}_{43}'$ porque $\mathbf{p}_{53} = \mathbf{p}_{54} - \mathbf{p}_{44} + \mathbf{p}_{43}$ e $\theta_{53} = \theta_{54} - \theta_{44} + \theta_{43}$.

Ciclo de Dependências

Exemplo: Sejam m = 3 e n = 4. O ciclo de dependência para \mathbf{p}_{ij} define a coluna \mathbf{p}_{ij} como combinação linear das colunas da base. Por definição de base, para cada base fixa, tal combinação é única. \therefore o ciclo é único.

$$\mathbf{p}_{11} = \mathbf{p}_{31} - \mathbf{p}_{33} + \mathbf{p}_{23} - \mathbf{p}_{22} + \mathbf{p}_{12}$$

$$\mathbf{p}_{32} = \mathbf{p}_{22} - \mathbf{p}_{23} + \mathbf{p}_{33}$$

Estão representadas duas soluções básicas. Tais combinações resultam de:

$$\begin{array}{lll} \textbf{p}_{11} & = & \textbf{e}_1 + \textbf{e}_{3+1} = (\textbf{e}_3 + \textbf{e}_{3+1}) - (\textbf{e}_3 + \textbf{e}_{3+3}) + (\textbf{e}_2 + \textbf{e}_{3+3}) - (\textbf{e}_2 + \textbf{e}_{3+2}) + (\textbf{e}_1 + \textbf{e}_{3+2}) \\ \\ \textbf{p}_{32} & = & \textbf{e}_3 + \textbf{e}_{3+2} = \underbrace{\left(\textbf{e}_2 + \textbf{e}_{3+2}\right)}_{\textbf{p}_{22}} - \underbrace{\left(\textbf{e}_2 + \textbf{e}_{3+3}\right)}_{\textbf{p}_{23}} + \underbrace{\left(\textbf{e}_3 + \textbf{e}_{3+3}\right)}_{\textbf{p}_{33}} = \textbf{p}_{22} - \textbf{p}_{23} + \textbf{p}_{33} \end{array}$$

Observe o cancelamento de vetores canónicos em termas மைங்கமைங்கை 🕫 🔻 🤊 🤊 🤊

Ciclo de Dependências

Exemplo: Sejam m = 3 e n = 4. O ciclo de dependência para \mathbf{p}_{ij} define a coluna \mathbf{p}_{ij} como combinação linear das colunas da base. Por definição de base, para cada base fixa, tal combinação é única. \therefore o ciclo é único.

$$\mathbf{p}_{11} = \mathbf{p}_{31} - \mathbf{p}_{33} + \mathbf{p}_{23} - \mathbf{p}_{22} + \mathbf{p}_{12}$$

$$\mathbf{p}_{32} = \mathbf{p}_{22} - \mathbf{p}_{23} + \mathbf{p}_{33}$$

26 / 26

Estão representadas duas soluções básicas. Tais combinações resultam de:

$$\mathbf{p}_{11} = \mathbf{e}_1 + \mathbf{e}_{3+1} = (\mathbf{e}_3 + \mathbf{e}_{3+1}) - (\mathbf{e}_3 + \mathbf{e}_{3+3}) + (\mathbf{e}_2 + \mathbf{e}_{3+3}) - (\mathbf{e}_2 + \mathbf{e}_{3+2}) + (\mathbf{e}_1 + \mathbf{e}_{3+2})$$

$$\mathbf{p}_{32} = \mathbf{e}_3 + \mathbf{e}_{3+2} = \underbrace{(\mathbf{e}_2 + \mathbf{e}_{3+2})}_{\mathbf{p}_{22}} - \underbrace{(\mathbf{e}_2 + \mathbf{e}_{3+3})}_{\mathbf{p}_{23}} + \underbrace{(\mathbf{e}_3 + \mathbf{e}_{3+3})}_{\mathbf{p}_{33}} = \mathbf{p}_{22} - \mathbf{p}_{23} + \mathbf{p}_{33}$$

Observe o cancelamento de vetores canónicos em termos comsecutivos. 🚁 🗦 🤌 🤈

Ciclo de Dependências

Exemplo: Sejam m=3 e n=4. O ciclo de dependência para \mathbf{p}_{ii} define a coluna \mathbf{p}_{ii} como combinação linear das colunas da base. Por definição de base, para cada base fixa, tal combinação é única. ... o ciclo é único.

$$\mathbf{p}_{11} = \mathbf{p}_{31} - \mathbf{p}_{33} + \mathbf{p}_{23} - \mathbf{p}_{22} + \mathbf{p}_{12}$$

$$\mathbf{p}_{32} = \mathbf{p}_{22} - \mathbf{p}_{23} + \mathbf{p}_{33}$$

26 / 26

p33

Estão representadas duas soluções básicas. Tais combinações resultam de:

$$\begin{array}{lll} \textbf{p}_{11} & = & \textbf{e}_1 + \textbf{e}_{3+1} = (\textbf{e}_3 + \textbf{e}_{3+1}) - (\textbf{e}_3 + \textbf{e}_{3+3}) + (\textbf{e}_2 + \textbf{e}_{3+3}) - (\textbf{e}_2 + \textbf{e}_{3+2}) + (\textbf{e}_1 + \textbf{e}_{3+2}) \\ \\ \textbf{p}_{32} & = & \textbf{e}_3 + \textbf{e}_{3+2} = \underbrace{\left(\textbf{e}_2 + \textbf{e}_{3+2}\right)} - \underbrace{\left(\textbf{e}_2 + \textbf{e}_{3+3}\right)} + \underbrace{\left(\textbf{e}_3 + \textbf{e}_{3+3}\right)} = \textbf{p}_{22} - \textbf{p}_{23} + \textbf{p}_{33} \end{array}$$

Observe o cancelamento de vetores canónicos em termos consecutivos.

Ana Paula Tomás (DCC-FCUP) CC2001 2019/2020 Novembro 2019