

RC 正弦波振荡电路

正弦波振荡电路用来产生一定频率和幅度的交流信号。常用的正弦波振荡电路有 *LC* 振荡电路和 *RC* 振荡电路两种。*RC* 振荡电路的输出功率小,频率较低; *LC* 振荡电路的输出功率较大,频率也较高。工业上的高频感应炉、超声波发生器、正弦波信号发生器、半导体接近开关等,都是振荡电路的应用。

1. 电路结构

RC 正弦波振荡电路如图 1 所示。它由放大电路(同相比例运算电路),RC 串并联网络(既是正反馈网络,又是选频网络)和二极管限幅电路构成。输出电压 u_0 经 RC 串并联网络分压后,在 RC 并联电路上得出反馈电压 u_f ,加在同相比例运算放大器的同相输入端,作为它的输入电压 u_i , R_F 和 R_1 构成负反馈网络,并利用二极管 D_1 、 D_2 正向特性的非线性实现自动稳幅。

图 1 RC 正弦波振荡电路

2. RC 串并联选频网络的选频特性

由图可求得传输系数:

$$F = \frac{\dot{U}_0}{\dot{U}_f} = \frac{R / \frac{1}{j\omega C}}{R + \frac{1}{j\omega C} + R / \frac{1}{j\omega C}} = \frac{1}{3 + j(\omega RC - \frac{1}{\omega RC})}$$
$$= \frac{1}{3 + j(\frac{\omega}{\omega_o} - \frac{\omega_o}{\omega})}$$

分析可知: 仅当 $\omega = \omega_0$ 时, $\frac{U_0}{U_{\rm f}} = \frac{1}{3}$ 最大值,且 u_0 与 $u_{\rm F}$ 同相,即网络具

有选频特性,而且, $R = \frac{1}{\omega_0 C}$,即 $\omega_0 = \frac{1}{RC}$, $f_0 = \frac{1}{2\pi RC}$ 。

3. 工作原理

输出电压 u_0 经正反馈(兼选频)网络分压后,取 $u_{\rm f}$ 作为同相比例电路的输入信号 $u_{\rm i}$ 。

(1) 起振过程

当满足|AF|>1的起振条件,可得如图 2 所示振荡波形。

(2) 稳定振荡稳幅振荡波形如图 3 所示。

图 3 稳幅振荡波形

(3) 振荡频率

振荡频率由相位平衡条件决定。 $\varphi_{\rm A}=0$,只有在 f_0 处, $\varphi_{\rm F}=0$,满足相位平衡条件, $\varphi_{\rm A}+\varphi_{\rm F}=0$, 所以振荡频率

$$f_0 = \frac{1}{2\pi RC}$$

改变 R、C 可改变振荡频率

由运算放大器构成的 RC 振荡电路的振荡频率一般不超过 1MHz。

(4) 起振及稳定振荡的条件起振条件|AF|>1,因为 |F|=1/3,则 $A_u=1+\frac{R_F}{R_1}>3$ 稳定振荡条件|AF|=1,|F|=1/3,则 $A_u=1+\frac{R_F}{R_1}=3$

考虑到起振条件|AF|>1,一般应选取 R_F 略大 $2R_1$ 。如果这个比值取得过大,会引起振荡波形严重失真。(5) 稳幅环节

由运放构成的*RC*串并联正弦波振荡电路不是靠运放内部的晶体管进入非线性区稳幅,而是通过在外部引入负反馈来达到稳幅的目的。

图 1 电路是利用二极管正向伏安特性的非线性来自动稳幅的。图中, R_F 分为两部分。在 R_{F1} 上正反并联两个二极管,它们在输出电压 u_O 的正负半周内分别导通。在起振之初,由于 u_O 幅值很小,尚不足以使二极管导通,正反向二极管近于开路,此时, $R_F > 2$ R_1 。而后,随着振荡幅度的增大,正反向二极管导通,其导通电阻逐渐减小,直到 $R_F = 2$ R_1 ,振荡稳定。