

LCD MODULE SPECIFICATION

For Custo Approved	mer's Accep d by	comment					
For Custo	mer's Accep	tance:					
•	Final-Spe	cification for sample approval					
	Pre-Speci	fication for parameter checking					
	Version:	1.0					
	Date:	2024-08-15					
	Module No	o.: TL040HDS31CT-B1623A					

Checked by	Prepared by
Xianren.Zhou	Zaiping.Yang
	·

Table of Contents

Red	cord of Revision	3
	General Specifications	
	Pin Assignment	
	Absolute Maximum Ratings	
	Electrical Characteristics	
5	Timing Chart	<u>7</u>
6	Optical Characteristics	<u>13</u>
7	Environmental / Reliability Test	<u>16</u>
	Mechanical Drawing	
9	Precautions for Use of LCD Modules	18

Record of Revision

Rev.	Date	Description	Editor
1.0	2024-08-15	First release	Zaiping.Yang

1 General Specifications

No.	Item	Specification	Remark
1	LCD Size	4.0 inch (Diagonal)	
2	Driver Element	a-Si TFT active matrix	
3	Resolution	720 (RGB) ×720	
4	Display Mode	Normally Black	
5	Pixel Pitch(mm)	0.0999 (H) × 0.0999 (V)	
6	Display Colors	16.7M	
7	Surface Treatment	AF	
8	Color Arrangement	RGB-Stripe	
9	Interface	MIPI	
10	Viewing Direction	ALL	
11	Gray Scale Inversion Direction		Note 1
12	Outline Dimension (mm)	84.0 (W) × 84.0 (H) × 2.59 (T)	
13	Active Area (mm)	71.93 (W) × 71.93 (H)	
14	Touch Screen	With CTP	
15	Display Driver IC	ST7703	
16	Touch Driver IC	FT6336U	

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180°shift.

Note 2: RoHS compliant.

2 Pin Assignment

2.1 LCD Pin assignment

Match connector: XF2M-3015-1A by OMRON or equivalent

PIN	Symbol	1/0	Description	Remark
1	LEDA	Р	LED ANODE	
2	LEDK1	Р	LED CATHODE	
3	LEDK2	Р	LED CATHODE	
4	VCI	Р	LCD analog power supply (3.3V)	
5	IOVCC	Р	LCD I/O power supply(1.8V)	
6	RESET	_	Reset Signal ,Active Low(1.8V)	
7	TE	0	Tearing effect(1.8V), Not Connect	
8	PWM	ı	Not Connect	
9	GND	Р	Ground	
10	D0P	I/O	MIPI DSI differential data pair (Data lane 0)	
11	D0N	I/O	MIPI DSI differential data pair (Data lane 0)	
12	GND	Р	Ground	
13	D1P	I	MIPI DSI differential data pair (Data lane 1)	
14	D1N	I	MIPI DSI differential data pair (Data lane 1)	
15	GND	Р	Ground	
16	CLKP	I	MIPI DSI differential clock pair	
17	CLKN	I	MIPI DSI differential clock pair	
18	GND	Р	Ground	
19	D2P	I	MIPI DSI differential data pair (Data lane 2)	
20	D2N	I	MIPI DSI differential data pair (Data lane 2)	
21	GND	Р	Ground	
22	D3P	I	MIPI DSI differential data pair (Data lane 3)	
23	D3N	I	MIPI DSI differential data pair (Data lane 3)	
24	GND	Р	Ground	
25	TP_INT	0	Touch Interrupt(1.8V)	
26	TP_SDA	I/O	Touch IIC Data signal(1.8V)	
27	TP_SCL	I	Touch IIC Clock signal(1.8V)	
28	TP_RESET	I	Touch Reset Signal(1.8V)	
29	TP_VCI	Р	Touch IC analog power supply (3.3V)	
30	TP_IOVCC	Р	Touch IC I/O power supply(1.8V~3.3V)	

I---Input, O---Output, P--- Power/Ground

NOTES:

When TP_IOVCC = 1.8 V, the TP I/O signal voltage is 1.8 V; When TP_IOVCC = 2.8 V, the TP I/O signal voltage is 2.8 V.

3 Absolute Maximum Ratings

Ta = 25 ℃

Item	Symbol	Min.	Max.	Unit	Remark
	VCI	-0.50	4.2	V	
	IOVCC	-0.30	+2.2	V	
Power Voltage	TP_VCI	-0.30	+3.6	V	
	TP_IOVCC	-0.30	+3.6	V	
Operating Temperature	Тор	-20.0	70.0	$^{\circ}$	
Storage Temperature	T _{st}	-30.0	80.0	$^{\circ}$	
Operating and Storage Humidity	H _{stg}	10%	90%	%(RH)	

4. Electrical Characteristics

4.1 Recommended Operating Condition

VCI=3.3V, GND=0V, Ta = 25° C

VCI=5.5V) GIVD=6V) IU = 25 C						
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Analog supply Voltage	VCI	2.8	3.0	3.3	V	
Digital supply Voltage	IOVCC	1.65	1.8	1.95	>	
TP Power	TP_VCI	2.8	3.3	3.3	٧	
TP Power	TP_IOVCC	1.8	-	3.3	V	
Input logic high voltage	VIH	0.7 IOVCC	-	IOVCC	V	
Input logic low voltage	VIL	0		0.3 IOVCC	V	
Current of digital supply voltage	l _{iovcc}	-	10	-	mA	
Current of LCM supply Voltage	I _{VCI}		50		mA	VCI=3.3V, color bar pattern

4.2 Backlight Unit Driving Condition

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Forward Current	I _F	-	40	50	mA	0.10
Forward Current Voltage	V _F	-	12.8	14	V	8 LEDs (4 LED Serial, 2 LED
Backlight Power Consumption	W _{BL}	-	512	700	mW	Parallel)
Operating Life Time		30000			hrs	Note 2, Note 3

www.shtdo.com Page 6 of 18 Rev.1.0

Note1: The LED driving condition is defined for each module (4 LED Serial, 2 LED Parallel).

Note2: When LCM is operated, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: Optical performance should be evaluated at $Ta=25^{\circ}C$ When LED is driven at high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Note4: The LED driving condition is defined for each LED module.

5 Timing Chart

5.1 DSI Interface Timing Characteristics

TOFTOLK TOPTOLK
TOPTOL

Rising and falling time on clock and data channel

(VSSA=0V, IOVCC=1.65V to 3.3V, VCI=2.5V to 3.3V, TA = -30 to 70°C)

Signal	Item	Cumbal	Sp	Unit		
Signal	item	Symbol	Min.	Тур.	Max.	Onit
DSI CP/	Double UI instantaneous 2		4LANE: 3.30 3LANE: 2.85 @ VDDD=1.8V	-	25	ns
DSI_CN	UI instantaneous	UINSTA UINSTB	4LANE: 1.67 3LANE: 1.43 @ VDDD=1.8V	-	12.5	ns
DP/DN	Data to clock setup time	Tos	0.15xUI	-	-	ps
DEIDIN	Data to clock hold time	Трн	0.15xUI	-	-	ps
DSI_CP/	Differential rise time for clock	TDRTCLK	150	-	0.3UI	ps
DSI_CN	Differential fall time for clock	TDFTCLK	150	-	0.3UI	ps
DP/DN	Differential rise time for data	TDRTDATA	150	-	0.3UI	ps
DPIDN	Differential fall time for data	TDFTDATA	150	-	0.3UI	ps

www.shtdo.com Page 7 of 18 Rev.1.0

5.2 Low Power Mode

BTA from HOST to Display Module Timing

BTA from Display Module Timing to HOST

(VSSA=0V, IOVCC=1.65V to 3.3V, VCI=2.3V to 3.3V,T_A = -30 to 70°C)

Signal	Item	Symbol		Unit		
Sigilal	item		Min.	Тур.	Max.	Unit
DSI D0P/	Length of LP-00/LP01/LP10/LP11 Host→ Display module	TLPXM	50	•		ns
	Length of LP-00/LP01/LP10/LP11 Display module →Host	TLPXD	50	-	-	ns
DSI_D0P	Time-out before the MPU start driver	T _{TA-SURE}	TLPXD	-	2xTLPXD	ns
	Time to drive LP-00 by display module	T _{TA-GET}	5xTLPXD	•	-	ns
	Time to drive LP-00 after turnaround request Host	Ттадо	4xTLPXD	-	•	ns

DSI Low Power Mode Characteristics

www.shtdo.com Page 8 of 18 Rev.1.0

5.3 Reset input timing

Figure 7-8: Reset input timing

Cumbal	Symbol Parameter		Spec.			Note	Unit
Symbol	Parameter	Pins	Min.	Typ.	Max.	Note	Unit
tRESW	Reset low pulse width(1)	NRESET	10	-	-	-	μs
ADEST Proof complete time/	Poset complete time(2)	-	15	-	-	When reset applied during SLPIN mode	ms
IKESI	REST Reset complete time ⁽²⁾	-	120	-	-	When reset applied during SLPOUT mode	ms

Table 7-8: Reset Input Timing

Note: (1) Spike due to an electrostatic discharge on NRESET line does not cause irregular system reset according to the following table.

NRESET Pulse	Action		
Shorter than 5 µs	Reset Rejected		
Longer than 10 µs	Reset		
Between 5 µs and 10 µs	Reset Start		

- (2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which Maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset.
- (3) During Reset Complete Time, ID and VCOM value in OTP will be latched to internal register during this period. This loading is done every time when there is HW reset complete time (tREST) within 15ms after a rising edge of NRESET.
- (4) Spike Rejection also applies during a valid reset pulse as shown as below:

(5) It is necessary to wait 15msec after releasing NRESET before sending commands. Also Sleep Out command cannot be sent for 120msec.

www.shtdo.com Page 9 of 18 Rev.1.0

5.4 Power On Timing

DSI Power On Sequence

	Min.	Тур.	Max.	Unit
T1	0.01	-	10	ms
T2		No Limit		ms
Т3	0.01	-	10	ms
T4	1	-	•	ms
T5	1	-	-	ms
T6	10	-	•	us
T7		No Limit	ns	
T8	15	-	•	ms
Т9	120	-	•	ms
T10	No Limit			ms
T11	100	150	-	ms

DSI Power On Timing

5.5 Power Off Timing

DSI Power Off Sequence

	Min.	Тур.	Max.	Unit
T12	2	-	-	Frame
T13	2	-	-	Frame
T14	40	100	-	ms
T15	10	-	-	ms
T16		ms		
T17	No Limit			ms
T18	No Limit			ms
T19	No Limit			ms
T20	100			ms

DSI Power Off Timing

Page 11 of 18 Rev.1.0 www.shtdo.com

5.6 Recommended Timing Setting of TCON

TCON (Embedded in Source IC) Input Timing (DCLK, HS, VS, DE)

VCI=3.3V, GND=0V, Ta=25 $^{\circ}$ C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
DCLK	Fclk	-	35	-	MHz	
DCLK	tclk	-	28	-	ns	
	thd	-	720	-	tclk	
HSD	thpw	-	2	-	tclk	
пэр	thb	-	46	-	tclk	
	thfp	-	44	-	tclk	
	tvd	-	720	-	th	
VSD	tvpw	-	2	-	th	
	tvb	-	18	-	th	
	tvfp	-	16	-	th	

Note: For reference only, it needs to be adjusted according to the actual display effect.

www.shtdo.com Page 12 of 18 Rev.1.0

6 Optical Characteristics

Ta=25 ℃

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
		θТ		80	85	-		
		θВ	CD > 10	80	85	-		Note 2
View Angles		θL	CR≧10	80	85	-	Degree	Note 2
		θR		80	85	-		
Contrast Ratio)	CR	θ=0°	800	1000	-		Note1 Note3
		T _{ON}						
Response Tim	Response Time		25℃	25	35	-	ms	Note1 Note4
	White	х	Backlight is	0.261	0.291	0.321		
		У		0.262	0.292	0.322		
		х		0.635	0.650	0.665		
	Red	У		0.303	0.318	0.333		Note1
Chromaticity	Cuaan	х	on	0.248	0.263	0.278		Note5
	Green	У		0.550	0.565	0.580		
	Dlug	х		0.125	0.140	0.155		
	Blue	У		0.071	0.086	0.101		
Uniformity		U		80	85		%	Note1 Note6
NTSC				63	68		%	Note 5
Luminance		L			320		cd/m ²	Note1 Note7

Test Conditions:

- 1. I_F= 40 mA, V_F=12.8 V and the ambient temperature is 25±2 $^{\circ}$ C.humidity is 65±7%
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

Properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Item	Photo detector	Field
Contrast Ratio		
Luminance	BM-7A or	1°
Chromaticity	similar equipment	1
Lum Uniformity		
Response Time	BM-7A	2°

Note 2: Definition of viewing angle range and measurement system.

Viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Vwhite: To be determined Vblack: To be determined.

www.shtdo.com Page 14 of 18 Rev.1.0

[&]quot;White state ": The state is that the LCD should drive by Vwhite.

[&]quot;Black state": The state is that the LCD should drive by Vblack.

Note 4: Definition of response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of luminance uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

L----- Active area length W---- Active area width

Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of luminance:

Measure the luminance of white state at center point.

www.shtdo.com Page 15 of 18 Rev.1.0

7 Environmental / Reliability Test

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts = +70℃, 240 hours	No abnormalities in functions
2	Low Temperature Operation	Ta = -20℃, 240 hours	No abnormalities in functions
3	High Temperature Storage	Ta = +80°C , 240 hours	No abnormalities in functions
4	Low Temperature Storage	Ta = -30°C, 240 hours	No abnormalities in functions
5	Storage at High Temperature and Humidity	Ta = +60°C, 90% RH max,240hours	No abnormalities in functions
6	Thermal Shock (non-operating)	-30 $^{\circ}$ C 30 min $^{\sim}$ +70 $^{\circ}$ C 30 min, Change time: 0.5 hour ← 5 min → 0.5 hour.10 Cycle	Start with cold temperature, End with high temperature,
7	ESD	C=150pF, R=330 Ω ,5point/panel Air: \pm 8Kv, 5times; Contact: \pm 4Kv,5times (Environment:15 $^{\circ}$ C $^{\circ}$ 35 $^{\circ}$ C, 30% $^{\circ}$ 60%.86Kpa $^{\circ}$ 106Kpa)	No abnormalities in functions

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of samples.

8 Mechanical Drawing

9 Precautions for Use of LCD Modules

Handling Precautions

- 9.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 9.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 9.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 9.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 9.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 9.1.6 Do not attempt to disassemble the LCD Module.
- 9.1.7 If the logic circuit power is off, do not apply the input signals.
- 9.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 9.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 9.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 9.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 9.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

Storage Precautions

- 9.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 9.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is: Temperature : 0 $^{\circ}$ C \sim 40 $^{\circ}$ C Relatively humidity: \leq 80%
 - 9.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

Transportation Precautions

9.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.