RAPPELS 2

Exercice 1 (Convergences). Soit $\{X_i\}_{i\geq 1}$ une suite de variables aléatoires indépendantes uniformes sur $\{-1,+1\}$. Donner un équivalent simple de $\mathbb{E}[|X_1+\cdots+X_n|]$ lorsque $n\to\infty$.

On sait par le TCL que $\frac{1}{\sqrt{n}}(X_1+\cdots+X_n)$ converge en loi vers une variable N(0,1). Par ailleurs comme la variance converge aussi, il est facile de voir que $\frac{1}{\sqrt{n}}\mathbb{E}[|X_1+\cdots+X_n|]$ converge vers $\mathbb{E}|N|$ où N est une variable N(0,1), ce qui conclue. Une méthode par exemple pour contrôler l'espérance d'une variable à partir de sa variance est l'inégalité $\mathbb{E}(Y^21_{|Y|\geq y})\geq y\mathbb{E}(|Y|1_{|Y|>y})$ qui est valable pour toute variable Y et tout réel positif y.

Exercice 2 (Classes monotones). Soient \mathbb{P} et \mathbb{Q} deux mesures de probabilité sur un espace mesurable (Ω, \mathcal{A}) .

- 1. Vérifier que l'ensemble $\mathcal{M} = \{A \in \mathcal{A}, \ \mathbb{P}(A) = \mathbb{Q}(A)\}$ est une classe monotone.
 - Il faut vérifier la stabilité par différence, par union croissante et que Ω est inclus. Pour le premier point, c'est la formule $\mathbb{P}(A \setminus B) = \mathbb{P}(A) \mathbb{P}(B)$ si $A \supset B$. Le deuxième point est la continuité croissante des mesures de probas et le dernier point est trivial.
- 2. En déduire que si \mathbb{P} et \mathbb{Q} coïncident sur un π -système engendreant \mathcal{A} , alors $\mathbb{P}=\mathbb{Q}$. Si \mathbb{P} et \mathbb{Q} coïncident sur un π -système, alors elles coïncident aussi sur la classe monotone engendrée et donc sur la tribus engendrée.
- 3. Montrer que la fonction de répartition d'une variable aléatoire réelle caractérise sa loi. Les intervalles semi-infinis forment un π -système dont on sait qu'il engendre la tribus borélienne.
- 4. Soient X et Y deux variables aléatoires réelles intégrables sur $(\Omega, \mathcal{A}, \mathbb{P})$, telles que

$$\forall A \in \mathcal{C}, \qquad \mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[Y\mathbf{1}_A],$$

où \mathcal{C} est un π -système vérifiant $\Omega \in \mathcal{C}$ et $\sigma(\mathcal{C}) = \mathcal{A}$. Que peut-on conclure?

Comme ci-dessus, l'ensemble des A où l'égalité est satisfaite est une classe monotone donc l'égalité doit s'étendre à tout ensemble A mesurable. En particulier on peut prendre $A=1_{X>Y}$ et obtenir que $\mathbb{P}(X>Y)=0$. En raisonnant symétriquement on déduit que X=Y p.s.

5. Soient C_1, \ldots, C_n des π -systèmes inclus dans A et contenant l'élément Ω . On suppose que pour tout $(A_1, \ldots, A_n) \in C_1 \times \cdots \times C_n$,

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \times \cdots \times \mathbb{P}(A_n).$$

Montrer que les tribus $\sigma(\mathcal{C}_1), \ldots, \sigma(\mathcal{C}_n)$ sont indépendantes.

On applique le théorème des classes monotones coordonnée par coordonnée pour étendre l'égalité à tous les $A_i \in \sigma(C_i)$.

Exercice 3 (Marche aléatoire). Soit $\{X_n\}_{n\geq 1}$ une suite de variables indépendantes uniformes sur $\{-1,+1\}$ et soit $\{\mathcal{F}_n\}_{n\geq 0}$ sa filtration naturelle. On pose $S_0:=0$ et pour tout $n\in\mathbb{N}$,

$$S_n := X_1 + \dots + X_n.$$

- 1. Vérifier que $\{S_n\}_{n\geq 0}$ est une martingale de carré intégrable et expliciter son crochet. Le fait que c'est une martingale de carré intégrable est trivial. Le calcul du crochet donne $\langle S \rangle_n = n$.
- 2. Pour $a \in \mathbb{Z}$, on note $T_a = \inf\{n \in \mathbb{N} \colon S_n = a\}$. Pour a, b > 0, calculer $\mathbb{E}[T_{-a} \wedge T_b]$ et $\mathbb{P}(T_{-a} < T_b)$. En déduire que presque-sûrement, la marche visite tous les sites.

Premièrement il est facile de voir que $T_{-a} \wedge T_b$ est fini presque sûrement et a même une queue de distribution exponentielle. Comme S_n est borné jusqu'à $T_{-a} \wedge T_b$ on peut appliquer le théorème d'arrêt et on obtient $0 = -a\mathbb{P}(T_{-a} < T_b) + b(1 - \mathbb{P}(T_{-a} < T_n))$ ce qui donne $\mathbb{P}(T_{-a} < T_b) = \frac{b}{a+b}$. En considérant la martingale $S_n^2 - n$, on montre de manière similaire que $\mathbb{E}(T_{-a} \wedge T_b) = ab$.

3. Construire une martingale à partir de $e^{\lambda S_n}$ pour $\lambda \in \mathbb{R}$.

On peut prendre $M_n = e^{\lambda S_n}/\cosh(\lambda)^n$ et en fait rien n'oblige à garder $\lambda \in \mathbb{R}$.

Exercice 4 Dans cet exercice on identifie un nombre $x \in [0,1]$ avec son développement en base 2. On appelle motif une suite finie de 0 et de 1 pour un motif m on note N(m,x,k) le nombre de fois que le motif m apparaît dans les k premières décimales de x. On dit que x est un nombre parfait si pour tout motif

$$\lim_{k \to \infty} N(m, x, k)/k = 2^{-|m|},$$

où |m| est la longueur de m. Montrer qu'il existe un nombre parfait.

Soit X une variable uniforme sur [0,1]. Pour un m fixé, on peut voir N(m,X,k) comme le nombre de fois qu'une chaîne de Markov sur les motifs de longueur |m| est passé par m et le théorème ergodique montre que $\mathbb{P}(\lim_{k\to\infty}N(m,X,k)/k=2^{-|m|})=1$. Comme il y a un nombre dénombrable de motifs, on a donc par borne d'union $\mathbb{P}(\forall m \lim_{k\to\infty}N(m,X,k)/k=2^{-|m|})=1$. Les nombre parfaits ont donc mesure de Lebesgue 1 dans [0,1] et en particulier il en existe.

Exercice 5 (Implication et contre exemple) Rappeler le tableau d'implication entre convergence L^p pour $p \ge 1$, convergence en probabilité, convergence en loi et convergence ps. Pour chaque implication fausse, donner un contre exemple.

Exercice 6 (Espérance conditionnelle) Soit X une variable aléatoire réelle intégrable et de densité f strictement positive sur \mathbb{R} . Déterminer $\mathbb{E}(X|\ |X|)$.

Tout d'abords, avec un petit abus de notation on va noter la fonction de |X| que l'on cherche sous la forme $\mathbb{E}(X|\ |X|=a)$ pour $x\geq 0$. Ensuite, en réfléchissant quelques instants, on devine facilement qu'on devrait avoir $\mathbb{E}(X|\ |X|=a)=\frac{af(a)+(-a)f(-a)}{f(a)+f(-a)}$.

Pour vérifier cette formule, soit $g: \mathbb{R}_+ \to \mathbb{R}$ bornée, on a

$$\mathbb{E}(Xg(|X|)) = \int_{-\infty}^{\infty} xg(|x|)f(x)dx = \int_{0}^{\infty} a(f(a) - f(-a))g(a)da$$
$$= \int_{0}^{\infty} \frac{af(a) - af(-a)}{f(a) + f(-a)}g(a)(f(a + f(-a)))da$$

et f(a) + f(-a) est bien la densité de |X|.