计算机组成原理考试模拟试题-20

一、填空题

- 1 双端口存储器和多模块交叉存储器属于()存储器结构,前者采用()技术,后者采用()技术。
- 2 移码表示法主要用于表示()数的阶码,以便于比较两个()的大小和()操作。
- 3 堆栈是一种特殊的数据寻址方式,它采用()原理。按结构不同,分为()堆栈和()堆栈。
- 4 总线仲裁部件通过采用()策略和()策略,选择一个主设备作为总 线的下一次主控方,接管()权
- 5 并行处理技术已经成为计算机发展的主流,它可以贯穿于信息加工的各个步骤和阶段。概括起来,主要有三种形式:()并行、()并行、()并行。(
- **6** 直接使用西文键盘输入汉字,进行处理,并显示打印汉字,是一项重大成就。为此要解决汉字的()编码。
- 7 多媒体 CPU 是带 () 技术的处理器。它是一种 (), () 技术, 特别适用干 () 处理。
- 8 衡量总线性能的重要指标是(),它定义为总线本身所能达到的最高() 速率。PCI 总线的总线带宽可达()。
- 9 光盘是多媒体计算机不可缺少的外存设备。按读写性质分,光盘有(),(),()型三类光盘。
- 10 DMA 技术的出现,使得()可以通过()直接访问(),同时, CPU 可以继续执行程序。

二、简答题

指令和数据都用二进制代码存放在主存中,CPU 如何区分读出的代码是指令还是数据。

三、证明题

用定量分析方法证明多模块交叉存储器带宽大于顺序存储器带宽。

四、分析题

某机的指令格式如下所示:

15	10	9	8	7	0
操作码	OP	X		位和	多量 D

X 为寻址特征位: X=00: 直接寻址; X=01: 用变址寄存器 R_{x1} 寻址; X=10: 用变址寄存器 R_{x2} 寻址; X=11: 相对寻址

设(PC)=5431H,(R_{x1})=3515H,(R_{x2})=6766H(H代表十六进制数),请确定下列指令中的有效地址。

(1) 8341H

(2) 1438H

(3) 8134H

(4) 6228H

五、分析题

如图所示的系统中,A、B、C、D 四个设备构成单级中断结构,它要求 CPU 在执行完当前指令时转向对中断请求进行服务。

图 1

现假设:

- (1)T_{DC} 为查询链中每个设备的延迟时间;
- $(2)T_A$ 、 T_B 、 T_C 、 T_D 分别为设备 A、B、C、D 的服务程序所需的执行时间;
- $(3)T_S$ 、 T_R 分别为保存现场和恢复现场所需的时间;
- (4)主存工作周期为 T_M:
- (5)中断批准机构在确认一个新中断之前,先要让即将被中断的程序的一条指令 执行完毕。

试问:在确保请求服务的四个设备都不会丢失信息的条件下,中断饱和的最小时间是多少?中断极限频率是多少?

六、设计题

某计算机有如图所示的功能部件,其中 M 为主存,MDR 为主存数据寄存器,MAR 为主存地址寄存器, R_0 ~ R_3 为通用寄存器,IR 为指令寄存器,PC 为程序计数器(具有自动加 1 功能),C,D 为暂存器,ALU 为算术逻辑单元,移位器可以左移、右移、直通传送。

(1)将功能部件连接起来,组成完整的数据通路,并用单向或者双向箭头表示信息传送方向。

(2)画出"ADD R1,(R2)"指令周期流程图。该指令的含义是将 R_1 中的数与(R_2)指示的主存单元中的数相加,相加的结果直接传送至 R_1 中。

(3)画出 "ADD R1, R2" 指令周期流程图。该指令的含义是将 R_1 中的数与 R_2 中的数相加,相加的结果直通传送至 R_1 中。

移位器	IR	R_0	MDR
ALU	PC	R_1	M
	С	R_2	
	D	R_3	MAR