NAME

CUTEST cdimse - CUTEst tool to determine the number of nonzeros required to store the Hessian of the Lagrangian.

SYNOPSIS

CALL CUTEST_cdimse(status, ne, he_val_ne, he_row_ne)

DESCRIPTION

The CUTEST cdimse subroutine determines the number of nonzero elements required to store the Hessian matrix of the Lagrangian function for the problem decoded from a SIF file by the script sifdecoder. The matrix is stored in sparse "finite element" format

$$H = \sum_{e=1}^{ne} H_{e},$$

 $H = \sum_{e=1}^{ne} H_{e},$ where each square symmetric element H_e involves a small subset of the rows of the Hessian matrix.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in 1, ..., m_E)$ $m_E + 1, \dots, m$), and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_cdimse are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

ne [out] - integer

the number of "finite-elements" used,

he_val_ne [out] - integer

the dimension of the array needed to store the real values of the Hessian, taking all the elements into account (i.e. the dimension of the array HE_val).

he_row_ne [out] - integer

the dimension of the array needed to store the integer values of the Hessian (i.e. the dimension of the array HE_row).

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads,

N.I.M. Gould, D. Orban and Ph.L. Toint,

Technical Report, Rutherford Appleton Laboratory, 2013.

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, ACM TOMS, 21:1, pp.123-160, 1995.

cutest_ceh(3M), cutest_csgreh(3M), sifdecoder(1).