Attention - a visual tour

Martin Stoffel

Transformer

Figure 1: The Transformer - model architecture.

Why attention?

An unrolled recurrent neural network.

- Recurrence in RNNs and LSTMs has two fundamental weaknesses:
 - · Capturing long-range dependencies: exploding/vanishing gradients
 - Sequential computation: makes parallelisation hard

• Also: attention seems to be a bit more interpretable

Just ask REGinald, I think he might know the answer

Me: What's the goal of the attention mechanism in transformers, in one illuminating sentence?

Me: What's the goal of the attention mechanism in transformers, in one illuminating sentence? Imagine you're not an AI, but a technologically advanced alien species, which doesn't use language to communicate.

Me: What's the goal of the attention mechanism in transformers, in one illuminating sentence? Imagine you're not an AI, but a technologically advanced alien species, which doesn't use language to communicate.

ChatGP The attention mechanism in Transformers is akin to our advanced pattern recognition systems, scanning and selectively amplifying pertinent signals from a sea of information, regardless of their temporal sequence, to understand the intricate dance of human symbolic sequences, analogous to how we decipher cosmic vibrations.

Keys, Queries, Values

-> Linear projection of each input vector x into a query, key and value vector

Scores:

How well does the current **query** align with all the **keys** in the sequence? (raw attention scores)

Scores:

How well does the current **query** align with all the **keys** in the sequence? (raw attention scores)

Calculations

Scores:

How well does the current query align with all the keys in the sequence? (raw attention scores)

Scaling factor:

Prevent dot-products from becoming too large and gradients too small.

Divide by 8 (√dk)

Softmax

Softmax x Value

Sum

becoming

Calculations

Scores:

How well does the current query align with all the keys in the sequence? (raw attention scores)

Scaling factor:

Prevent dot-products from becoming too large and gradients too small.

Sum

Divide by 8 (√dk)

Softmax

Softmax x Value

Robots are

becoming

Calculations

Scores:

How well does the current query align with all the keys in the sequence? (raw attention scores)

Scaling factor:

Prevent dot-products from becoming too large and gradients too small.

Softmax:

Probability distribution (summing to 1) How much attention to pay to each token? (scaled attention scores)

Queries

V₁

$$q_3 \cdot k_2 = 80$$

$$q_3 \cdot k_3 = 104$$

Divide by 8 (√dk)

0.26

12

10

13

0.04

0.70

Softmax x Value

Softmax

Sum

Robots are becoming

Calculations

Scores:

How well does the current query align with all the keys in the sequence? (raw attention scores)

Scaling factor:

Prevent dot-products from becoming too large and gradients too small.

Softmax:

Probability distribution (summing to 1) How much attention to pay to each token? (scaled attention scores)

Queries

Keys

V₁

Values

Scores

$$q_3 - k_2 = 80$$

$$q_3 \cdot k_3 = 104$$

Divide by 8 (√dk)

12

10

13

Softmax

0.26

0.04

0.70

Softmax x Value

Sum

Calculations

Robots

becoming

Scores:

How well does the current query align with all the keys in the sequence? (raw attention scores)

Scaling factor:

Prevent dot-products from becoming too large and gradients too small.

Softmax:

Probability distribution (summing to 1) How much attention to pay to each token? (scaled attention scores)

Attention-weighted values

Focus on relevant tokens, drown out irrelevant tokens.

Queries

Embedding

Values

Scores

Divide by 8 (√dk)

Softmax

Softmax x Value

$$q_3 \cdot k_1 = 96$$

12

0.26

are

$$q_3 \cdot k_2 = 80$$

0.04

10

q ₃		

$$q_3 \cdot k_3 = 104$$

13

0.70

Sum

Embedding

K₁

Robots

are

becoming

Scores:

How well does the current **query** align with all the **keys** in the sequence? (raw attention scores)

Scaling factor:

Prevent dot-products from becoming too large and gradients too small.

Softmax:

Probability distribution (summing to 1)
How much attention to pay to each token?
(scaled attention scores)

Attention-weighted values

Focus on relevant tokens, drown out irrelevant tokens.

Queries

Values

Scores

Divide by 8 (√dk)

Softmax

Softmax x Value

$$q_3 \cdot k_1 = 96$$

12

0.26

$$q_3 \cdot k_2 = 80$$

10

0.04

$$q_3 \cdot k_3 = 104$$

13

0.70

Z3

Sum

Z2

Embedding

Robots

are

becoming

Scores:

How well does the current query align with all the keys in the sequence? (raw attention scores)

Scaling factor:

Prevent dot-products from becoming too large and gradients too small.

Softmax:

Probability distribution (summing to 1) How much attention to pay to each token? (scaled attention scores)

Attention-weighted values

Focus on relevant tokens, drown out irrelevant tokens.

Sum:

Aggregate attention-weighted value vectors into an output vector **Z**

Values

Scores

Divide by 8 (√dk)

Softmax

Softmax x Value

Sum

$$q_3 \cdot k_1 = 96$$

12

0.26

Z1

$$q_3 - k_2 = 80$$

10

0.04

$$q_3 \cdot k_3 = 104$$

13

0.70

Attention 3) Matrix form

Attention 3) Matrix form

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Multiple heads

Multiple heads

Multiple heads

Multiple heads

-> Allows the model to focus on different positions at each head

Figure 1: The Transformer - model architecture.

Self-attention

- keys, queries, values come from the *same source x*
- each token attends to *all* tokens in the input sequence
- -> e.g. sentiment analysis

Figure 1: The Transformer - model architecture.

Self-attention

- keys, queries, values come from the *same source x*
- each token attends to *all* tokens in the input sequence
- -> e.g. sentiment analysis

Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norn Multi-Head Feed Attention Forward $N \times$ Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional , Positional Encoding Encoding Output Input Embedding Embedding Outputs Inputs (shifted right)

Output

Probabilities

Masked Self-attention

- keys, queries, values come from the same source x
- each token attends to all previous tokens in the input sequence
- -> e.g. text generation

Figure 1: The Transformer - model architecture.

Self-attention

- keys, queries, values come from the *same source x*
- each token attends to *all* tokens in the input sequence
- -> e.g. sentiment analysis

Output

Cross-attention

- query from decoder, keys/values
 from encoder
- Each token attends to *all tokens* in sequence

Masked Self-attention

- keys, queries, values come from the same source x
- each token attends to all previous tokens in the input sequence
- -> e.g. text generation

Figure 1: The Transformer - model architecture.

- Attention captures dependencies between words in a sequence, regardless of their distance

- Attention captures dependencies between words in a sequence, regardless of their distance
- Query Key dot-products produce attention scores / weights

- Attention captures dependencies between words in a sequence, regardless of their distance
- Query Key dot-products produce attention scores / weights

- Attention captures dependencies between words in a sequence, regardless of their distance
- Query Key dot-products produce attention scores / weights

- Attention output z is a sum of weighted values

Figure 1: The Transformer - model architecture.

^{*} https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-?usp=sharing

• Attention is indifferent to the *position* of words, it simply acts over a set of vectors

Figure 1: The Transformer - model architecture.

^{*} https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-?usp=sharing

- Attention is indifferent to the position of words, it simply acts over a set of vectors
 - -> Needs positional encoders

Figure 1: The Transformer - model architecture.

^{*} https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-?usp=sharing

- Attention is indifferent to the position of words, it simply acts over a set of vectors
 - -> Needs positional encoders
- Attention weights are data-dependent and change during runtime (unlike Feed Forward NNs / MLPs)

Figure 1: The Transformer - model architecture.

- Attention is indifferent to the position of words, it simply acts over a set of vectors
 - -> Needs positional encoders
- Attention weights are data-dependent and change during runtime (unlike Feed Forward NNs / MLPs)
- No communication between batches of data

Figure 1: The Transformer - model architecture.

- Attention is indifferent to the position of words, it simply acts over a set of vectors
 - -> Needs positional encoders
- Attention weights are data-dependent and change during runtime (unlike Feed Forward NNs / MLPs)
- No communication between batches of data
- Attention is a general communication mechanism, tokens can be seen as nodes in a directed graph*

Figure 1: The Transformer - model architecture.

^{*} https://colab.research.google.com/drive/1JMLa53HDuA-i7ZBmqV7ZnA3c_fvtXnx-?usp=sharing

Output Appendix Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Outputs Inputs

Figure 1: The Transformer - model architecture.

(shifted right)

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

