JSCC for Semantic Text Transmission: Comm with Built-in Translation

Jason Ning, Joshua Ning zyning@umich.edu joshning@umich.edu

Background

- JSCC is a unified method to combine compression and channel coding
- Deep JSCCs for text capture semantics in sentences
- Current state-of-the-art model [1] uses Transformers
 - Performs well in low SNR environments
 - Suffers from semantic distortion

Motivation

- Semantic text communication is unsatisfactory
 - Most users want to receive accurate text data

- Semantic distortion is tolerable in translation applications
- JSCC can directly decode message to another language
 - Faster than conventional methods (cloud & local)
 - 1 encoder → many language decoder simultaneously
 - A novel application (to the best of our knowledge)

Project Goal

Minimal Viable Product

- Demonstrate translation ability in simulation
- Simple AWGN Channel 🔽
- Demonstrate single encoder working with decoders with different target languages

Reach Goals:

- Implementation on the USRP in conjunction with small GPU
- Mainly due to lack of time, should be easily deployable

System Architecture (DeepSC)

- Encoder: Text -> embedding -> transformer -> Dense layer.
- Decoder: Dense layer -> transformer -> embedding -> Text.
- Additional networks for mutual information estimation between X and Y to help channel encoder converge (implemented but not used)
- Original paper used a single language for the text ie, english -> english

Fig. 2. The proposed neural network structure for the semantic communication system.

Our Architecture

- One encoder to many decoder, each corresponding to a different language
- During inference user can choose which decoder to use
- 1 to many languages should help encoder better capture semantic information

Training Method

- Construct datasets for each language pairs
 - English <-> Spanish, English <-> French, ...
- At the beginning of each epoch:
 - Select a decoder and it's dataset (Round Robin)
 - Train the encoder and selected decoder
 - Send decoder back to CPU
 - Evaluate all models after 1 cycle of RR

Training Method Rationalities

- Initially, we want to train all the decoders at once
 - Pro: Possibly better and faster convergence
 - Con:
 - Require large amounts of compute Require large multilingual dataset
- English

 French

 JSCC Decoder

 JSCC Decoder

 Danish
- Why round robin for decoder per epoch?
 - Tried round robin per batch -> too slow
 - The language trained closest to the evaluation will have advantage

Results

- Our implementation of DeepSC used for translation(1 encoder 1 decoder)
- Our Training Method (1 encoder 3 decoder)
- Our method achieve lower cross entropy loss while obtaining 3 decoders

Results: Sample Translations at SNR 0.1dB

Note: one of the most important word is replaced by a person's name (Erika).

Sentence 1: 100% success (majority)

Results: Sample Translations at SNR 0.1dB

```
Sentence 3:

src lang = <START> put the eu on a diet , and give greater freedom to democracy in our countries !

trg lang = <START> faisons suivre une lomé d ' résout à l ' ue et accordons plus de liberté aux démocraties de nos pays ! <END>

trg lang gt = <START> faisons suivre une cure d ' amaigrissement à l ' ue et accordons plus de liberté aux démocraties de nos pays ! <END>
```

Note: The sentence is grammatically broken and does not make sense. But important info are preserved.

Conclusion

- Text based JSCC still has limitations. Semantics distortion is not the biggest source of error (at least on our dataset)
 - Car -> automobile distortion is rare
 - Word -> gibberish is more common
- Main contribution are:
 - First to demonstrate Deep JSCC works with translation purposes
 - Introduce a new training method that can speed up training process and increase modularity of text JSCC
 - Faster convergence even with multi language training (3x training speed

Challenges

- Compute limitations: train & eval on RTX 4070 12 GB
- Original paper result was somewhat cherry picked
- Can't obtain large multilingual dataset
- Long training time: 5-10 minutes per epoch.
- Multi-decoder architecture require unloading from GPU (tricky to figure out)

Sources

- [1] https://arxiv.org/pdf/2006.10685
- [2] https://ieeexplore.ieee.org/document/9714510

Questions and Discussion