CATEDRA INFORMATICA CBI FACET – UNT

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACION

CARRERAS:

ING INFORMATICA
ING AZUCARERA
ING QUIMICA
ING INDUSTRIAL
ING MECANICA
AGRIMENSURA
ING GEODESICA Y GEOFISICA

PRUEBA DE ESCRITORIO

MODO DE APLICACION

CATEDRA INFORMATICA CBI FACET - UNT

OBJETIVOS

- □ LA PRUEBA DE ESCRITORIO ES LA HERRAMIENTA ADECUADA PARA PROBAR EL FUNCIONAMIENTO DEL ALGORITMO EN EL DIAGRAMA DE FLUJO.
- □ PERMITE AJUSTAR LAS PREGUNTAS LOGICAS PARA QUE EL DIAGRAMA DE FLUJO HAGA LA TAREA QUE PRETENDEMOS.
- □ PERMITE REVISAR VISUALMENTE EL ORDENAMIENTO DE LAS TAREAS

CATEDRA INFORMATICA CBI FACET - UNT PASOS PARA DESARROLLAR LA PRUEBA DE ESCRITORIO

PASO 1: ANALIZAR EL PROBLEMA. ARMAR UN EJEMPLO SENCILLO. Y TOMAR NOTA DE CÓMO RESOLVEMOS EL PROBLEMA EN PAPEL Y LAPIZ.

PASO 2: PROPONER UN DIAGRAMA DE FLUJO PARA RESOLVER EL PROBLEMA.

PASO 3: ARMAR UNA TABLA (PRUEBA DE ESCRITORIO) PARA PROBAR EL FUNCIONAMIENTO DEL DIAGRAMA DE FLUJO.

- ACOMODAR TODAS LAS VARIABLES QUE VAMOS ENCONTRANDO EN EL DIAGRAMA DE FLUJO, EN FORMA HORIZONTAL EN LA TABLA.
- > APLICAR AL DIAGRAMA DE FLUJO, EL MISMO EJEMPLO QUE USAMOS EN LA RESOLUCIÓN EN PAPEL Y LAPIZ.
- EN LAS VARIABLES VAN VALORES Y EN LAS PREGUNTAS VA VERDADERO O FALSO.
- ENNUMERE LAS VUELTAS DE LAS ESTRUCTURAS DE REPETICION

CATEDRA INFORMATICA CBI FACET - UNT PASOS PARA DESARROLLAR LA PRUEBA DE ESCRITORIO

PASO 4: SEGUIR LAS INSTRUCCIONES DEL DIAGRAMA DE FLUJO. VER SI LLEGAMOS AL RESULTADO PREVISTO.

- CADA VUELTA DE LA ESTRUCTURA DE REPETICION, ES UN RENGLON HORIZONTAL.
- > LOS EJEMPLOS SE ELIGEN PARA QUE HAYA POCAS REPETICIONES.
- LOS EJEMPLOS DEBEN TESTEAR TODAS LAS POSIBILIDADES DE CADA SITUACIÓN CONTEMPLADA.

PASO 5: CON "SALE" SE EXPRESA LA SALIDA DE LA ESTRUCTURA DE REPETICIÓN QUE RESUELVE EL PROBLEMA. OSEA: EL RESULTADO DEL ALGORITMO.

CATEDRA INFORMATICA CBI FACET - UNT EJEMPLO DE APLICACION

P1. Se pide por teclado el ingreso de dos números enteros positivos N1 y N2, encuentre la suma de los números impares comprendidos entre N1 y N2, incluyendo a N1 y a N2.

ANALISIS DEL PROBLEMA
INVENTAMOS UN EJEMPLO CON N1=5 Y N2=15

La suma incluye los extremos porque son impares.

Ordenamos de menor a mayor y sumamos los impares.

Necesitamos un acumulador y barrer el intervalo entre N1 y N2

CATEDRA INFORMATICA CBI FACET - UNT DIAGRAMA DE FLUJO PROPUESTO Y SUS BLOQUES

INGRESO DE VALORES PARA N1 Y N2

DETERMINA
CUAL ES EL
MAYOR ENTRE
N1 Y N2

BARRE EL
INTERVALO
ENTRE N1 Y N2,
MIENTRAS
SUMA LOS
IMPARES

MUESTRA LA SUMA ACUMULADA

CATEDRA INFORMATICA CBI FACET - UNT PRUEBA DE ESCRITORIO

☐ EN LA PRUEBA DE ESCRITORIO, LAS VARIABLES Y LAS PREGUNTAS APARECEN EN FORMA HORIZONTAL, EN EL MISMO ORDEN QUE APARECEN VERTICALMENTE EN EL DIAGRAMA DE FLUJO. ■ NO PONEMOS EN LA PRUEBA DE ESCRITORIO EL INGRESO DE LOS DATOS. SOLO PONEMOS LOS DATOS DEL EJEMPLO **ELEGIDO** ☐ LA PRIMERA LINEA HORIZONTAL TIENE LOS VALORES **INICIALES DE LAS VARIABLES.** □ CADA LINEA HORIZONTAL REPRESENTA LA EVOLUCION DE LOS VALORES DE LAS VARIABLES EN CADA REPETICION. LAS VARIABLES TIENEN VALORES NUMERICOS Y LAS PREGUNTAS LOGICAS TIENEN V(VERDADERO) O F(FALSO)

CATEDRA INFORMATICA CBI FACET - UNT PARTES DE LA PRUEBA DE ESCRITORIO

VALORES INICIALES |
DE LAS VARIABLES

4			_		100 0							
N1	N2	N1>N2?	N2>N1?	N	C	vuelta	C	C MOD 2 ≠ 0?	SUMA	C=C+1	C<=N?	SALE
				0	0	19	0		0			
5	15	F	V	15	5	1	5	V	5	6	V	
						2	6	F	5	7	V	
				8	806 80 805 70	3	7	V	12	8	V	
						4	8	F	12	9	V	
30				5		5	9	V	21	10	V	
						6	10	F	21	11	V	
						7	11	V	32	12	V	
						8	12	F	32	13	V	
						9	13	V	45	14	V	
						10	14	F	45	15	V	
					86 8 64 5	11	15	V	60	16	F	60
						A						

REPETICIONES

RESULTADO DEL ALGORITMO

CATEDRA INFORMATICA CBI FACET - UNT PRUEBA DE ESCRITORIO - CONCLUSIONES

☐ SÓLO CON LA PRUEBA DE ESCRITORIO SE PUEDE PROBAR, CORREGIR, AJUSTAR Y VALIDAR UN DIAGRAMA DE FLUJO. ☐ CON UN DIAGRAMA DE FLUJO VALIDADO, SE PUEDE CODIFICAR EL ALGORITMO EN CUALQUIER LENGUAJE ESTRUCTURADO. ☐ ÉSTE MÉTODO ES EL MÁS ADECUADO PARA DISEÑAR PROGRAMAS DE COMPUTACIÓN Y PARA RESOLVER PROBLEMAS EN GENERAL. ☐ ÉSTE METODO EVITA PERDER TIEMPO PROBANDO SIN UN PLAN DETERMINADO. ☐ CON LA PRÁCTICA FRECUENTE, SE CONVIERTE EN EL MEJOR HÁBITO DEL INGENIERO.