Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec

2º Semestre de 2006/2007

6^a Aula Prática

- 1. Determine funções inversas das seguintes funções, especificando os respectivos domínios (e contradomínios):
 - a) $f(x) = e^{x^2 2}, x > 0,$
 - b) $f(x) = 2 \operatorname{sen} x, x \in]-\frac{\pi}{2}, \frac{\pi}{2}[,$
 - c) $f(x) = \cos(2x), x \in]0, \frac{\pi}{2}[,$
 - d) $f(x) = \operatorname{tg}(x-1), x \in]1 \frac{\pi}{2}, 1 + \frac{\pi}{2}[.$
- 3. Exprima as soluções da equação sen x=a em termos de arcsen a. Faça o mesmo para a equação $\cos x=a$ em termos de arcos a e para tg x=a em termos de arctg a.
- 4. Deduza as seguintes identidades:
 - a) $\cos(\arccos x) = x$,
 - b) sen(arcsen x) = x,
 - c) $\cos(\arcsin x) = \sqrt{1 x^2}$,
 - d) $\operatorname{sen}(\operatorname{arcos} x) = \sqrt{1 x^2}$,
 - e) $\operatorname{tg}(\operatorname{arcsen} x) = \frac{x}{\sqrt{1-x^2}} \operatorname{para} x \neq \pm 1,$
 - f) $\operatorname{tg}(\operatorname{arcos} x) = \frac{\sqrt{1-x^2}}{x}$, para $x \neq 0$.
- 5. Seja $f:D\to\mathbb{R}$ uma função injectiva e $g:f(D)\to D$ a sua inversa (ou seja, g(y)=x sse y=f(x), para quaisquer $x\in D,\,y\in f(D)$). Mostre que
 - a) Se f é crescente/decrescente, então g é crescente/decrescente.
 - b) Se f é impar, então q é impar.
 - c) arcsen, arctg são crescentes e impares, arcos é decrescente.
- 6. Determine o domínio das funções seguintes:
 - a) $f(x) = \frac{x}{\sqrt{4-x^2}}$,
 - b) $f(x) = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x}$,

- c) $f(x) = \operatorname{tg} x + \operatorname{cotg} x$,
- d) $f(x) = \log(\log x)$,
- e) $f(x) = \log(1 x^{\frac{3}{2}}),$
- f) $f(x) = \arctan\left(\frac{1}{1-x^2}\right)$,
- g) $f(x) = \arccos\left(\frac{1}{x}\right)$,
- h) $f(x) = \arcsin(e^x)$,
- i) $f(x) = \log(1 \arcsin x)$.
- 7. (Exercício 3.17 de [2]) Mostre que se (u_n) é uma sucessão monótona, (arctg u_n) é uma sucessão convergente.
- 8. Mostre, recorrendo à definição de continuidade, que as funções definidas em \mathbb{R} por $f(x) = x^2 + 1$ e g(x) = |x| são contínuas em qualquer $x \in \mathbb{R}$.
- 9. Seja (x_n) uma sucessão real, com $\lim x_n = 1$, $x_n > 1$ para qualquer $n \in \mathbb{N}$. Calcule, se existir, $\lim f(x_n)$ nos casos seguintes:
 - a) $f(x) = \frac{1}{x}, x \neq 0.$
 - b) $f(x) = \log x, x > 0.$
 - c) $f(x) = \frac{1}{x-1}$, para $x \neq 1$.
- 10. (Exercício 3.5 de [2]) Seja $\phi : [a,b] \to \mathbb{R}$ uma função contínua (com $a,b \in \mathbb{R}$ e a < b). Supondo que existe uma sucessão (x_n) de termos em [a,b] tal que $\lim \phi(x_n) = 0$, prove que ϕ tem pelo menos um zero em [a,b].
- 11. (Exercício 3.14 de [2]) Sendo $g:[0,1]\to\mathbb{R}$ uma função contínua, mostre que:
 - a) Não existe nenhuma sucessão (x_n) de termos em [0,1] tal que $g(x_n) = n$ para todo o $n \in \mathbb{N}_1$.
 - b) Se existir uma sucessão (x_n) de termos em [0,1] tal que $g(x_n) = \frac{1}{n}$ para todo o $n \in \mathbb{N}_1$, então existe $c \in [0,1]$ tal que g(c) = 0.
- 12. (Exercício III.2 de [1]) Para cada uma das funções definidas pelas expressões seguintes, determine os pontos de continuidade e descontinuidade:
 - a) $\frac{x+1}{x^3+x}$;
 - b) $\frac{x+1}{x^4+3x^3+2x^2}$;
 - c) $\sqrt{x} \frac{1}{x^2 + x}$;
 - d) sen $(\cos\sqrt{1-x^2})$;
 - e) $\cos \frac{1}{\sqrt{1-x^2}};$

- f) $\sqrt[3]{\tan 2x \cot 2x}$;
- g) $\frac{1}{\sqrt{x^2+1}} + \frac{1}{\sqrt[3]{x^3-1}}$;
- h) $\frac{|x^2-1|}{x^2-1}$;
- i) $\sqrt{-\sin^2 x}$;
- 13. (Exercício 3.15 de [2]) Sendo $f: \mathbb{R} \to \mathbb{R}$ uma função contínua no ponto 1, em que ponto(s) será necessariamente contínua a função $g(x) = f(\operatorname{sen} x)$? Justifique.
- 14. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua no ponto 0. Em que ponto(s) será necessariamente contínua a função $g(x) = f(\operatorname{tg} x \operatorname{cotg} x)$? (Relembre que $\operatorname{cotg} x = \frac{1}{\operatorname{tg} x}$).
- 15. Mostre que a função $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = xd(x), em que $d: \mathbb{R} \to \mathbb{R}$ é a função de Dirichlet, é apenas contínua em x = 0.
- 16. Use a definição de limite de função em $\overline{\mathbb{R}}$ para mostrar que
 - a) $\lim_{x\to 0} \frac{1}{r^2} = +\infty$,
 - b) $\lim_{x\to+\infty}\frac{1}{x}=0$
 - c) $\lim_{x\to+\infty} \sqrt{x} = +\infty$.
- 17. Determine, se existir, cada um dos seguintes limites, justificando o cálculo ou a não existência de limite.
 - a) $\lim_{x\to 0} \frac{x^3 x^2 + x 1}{x^2 1}$,
 - b) $\lim_{x\to 1} \frac{x^3 x^2 + x 1}{x^2 1}$,
 - c) $\lim_{x\to 0} \frac{e^{x^2}-1}{x}$,
 - d) $\lim_{x\to 0} \left[x^2 (1 \cos \frac{1}{x}) \right]$,
 - e) $\lim_{x\to 0} \operatorname{sen} \frac{1}{x}$,
 - f) $\lim_{x\to+\infty} \operatorname{sen} \frac{1}{x}$,
 - g) $\lim_{x\to 0} x \operatorname{sen} \frac{1}{x}$.
- 18. (Exercício 3.20 de [2]) Calcule
 - a) $\lim_{x\to 1} \frac{x^2-x}{x^2-3x+2}$,
 - b) $\lim_{x\to 0} \frac{\operatorname{tg} 5x}{x \operatorname{arcos} x}$.

 $\underline{\text{Outros exercícios}};\ 3.3,\ 3.8,\ 3.9,\ 3.10,\ 3.12,\ 3.13\ \text{de [2]}.$

- [1] J. Campos Ferreira. Introdução à Análise Matemática, Fundação Calouste Gulbenkian, 8ª ed., 2005.
 - [2] Exercícios de Análise Matemática I e II, IST Press, 2003.