Guided Projects: Unsupervised Learning Adaptive Thresholding: Edge Detection in Images

Name	Lakshmi Thirunavukkarasu
Course	AI and ML (Batch 5)
Problem	Edges define the boundaries between different regions
Statement	in an image, which helps in matching the pattern,
	segment, and recognize an object. Detects edges by
	applying various thresholds. Once best result is
	obtained, use the obtained edge detection result as a
	mask to give color to all the edges

Software requirements perquisites

- 1. Anaconda
- 2. Python 3.8
- 3. Python Packages
 - NumPy
 - OpenCV
 - Matplotlib

Steps

1. Read the image from the scripts folder.

Read the image

```
In [2]: #Read the image
  img = cv2.imread("Lenna.png")
  print(img.shape)
  plt.imshow(img,'viridis')
  (330, 330, 3)
```

2. Convert the image into gray scale image.

```
In [3]: #Convert the image into Gray Scale
gray_img =cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(gray_img, "gray")
```

3. Apply different thresholds on the image.

4. Display image with different thresholds

5. Apply the edge detection as a mask on the original image to color the edges.

```
In [6]: import numpy as np
import numpy.ma as ma
masked_img = cv2.cvtColor(canny_edge, cv2.COLOR_GRAY2RGB)
pos_index = np.where((masked_img == [255,255,255]).all(axis=2))
masked_img[pos_index] = img[pos_index]
plt.imshow(masked_img,'viridis')
```