Parametric Graph for Unimodal Ranking Bandit Supplementary Materials

 ${\bf Camille\hbox{-}Sovanneary\ Gauthier}^{*\,1\,2}\ \ {\bf Romaric\ Gaudel}^{*\,3}\ \ {\bf Elisa\ Fromont}^{4\,5\,2}\ \ {\bf Boammani\ Aser\ Lompo}^{\,6}$

The appendix is organized as follows. We first list most of the notations used in the paper in Appendix A. Lemma 1 is proved in Appendix B. In Appendix C, we recall a Lemma from (Combes & Proutière, 2014) used by our own Lemmas and Theorems, and then in Appendices D to F we respectively prove Theorem 2, Lemma 2, and Lemma 3. In Appendix G we define KL-CombUCB and discuss its regret and its relation to GRAB. Finally in Appendix H we introduce and discuss S-GRAB.

A. Notations

The following table summarize the notations used through the paper and the appendix.

Symbol	MEANING
T	TIME HORIZON
t	ITERATION
L	NUMBER OF ITEMS
i	INDEX OF AN ITEM
K	NUMBER OF POSITIONS IN A RECOMMENDATION
k	INDEX OF A POSITION
[n]	SET OF INTEGERS $\{1,\ldots,n\}$
\mathcal{P}_K^L	SET OF PERMUTATIONS OF K DISTINCT ITEMS AMONG L
θ	VECTORS OF PROBABILITIES OF CLICK
$ heta_i$	PROBABILITY OF CLICK ON ITEM i
κ	VECTORS OF PROBABILITIES OF VIEW
κ_k	PROBABILITY OF VIEW AT POSITION k
$\mathcal A$	SET OF BANDIT ARMS
\boldsymbol{a}	AN ARM IN ${\cal A}$
$egin{aligned} oldsymbol{a}(t) \ oldsymbol{a}^* \ G \end{aligned}$	THE ARM CHOSEN AT ITERATION t
$\tilde{\boldsymbol{a}}(t)$	BEST ARM AT ITERATION t GIVEN THE PREVIOUS CHOICES AND FEEDBACKS (CALLED LEADER)
\boldsymbol{a}^*	BEST ARM
G	GRAPH CARRYING A PARTIAL ORDER ON ${\cal A}$
γ	maximum degree of G
$\mathcal{N}_G(ilde{m{a}}(t))$	NEIGHBORHOOD OF $ ilde{a}(t)$ GIVEN G
$ ho_{i,k}$	PROBABILITY OF CLICK ON ITEM i DISPLAYED AT POSITION k
$\boldsymbol{c}(t)$	CLICKS VECTOR AT ITERATION t
r(t)	REWARD COLLECTED AT ITERATION $t, r(t) = \sum_{k=1}^{K} c_k(t)$ EXPECTATION OF $r(t)$ WHILE RECOMMENDING ${m a}, \mu_{m a} = \sum_{k=1}^{K} \rho_{a_k,k}$
$\mu_{m{a}}$	EXPECTATION OF $r(t)$ WHILE RECOMMENDING $a, \mu_a = \sum_{k=1}^K \rho_{a_k,k}$
$\mu_{m{a}} \ \mu^*$	HIGHEST EXPECTED REWARD, $\mu^* = \max_{\boldsymbol{a} \in \mathcal{P}_{K}^{L}} \mu_{\boldsymbol{a}}$
Δ_a	GAP BETWEEN μ_a AND μ^*
Δ_{min}	MINIMAL VALUE FOR Δ_a
Δ	GENERIC REWARD GAP BETWEEN ONE OF THE SUB-OPTIMAL ARMS AND ONE OF THE BEST ARMS

CONTINUED ON NEXT PAGE

Proceedings of the 38th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

^{*}Equal contribution ¹Louis Vuitton, F-75001 Paris, France ²IRISA UMR 6074 / INRIA rba, F-35000 Rennes, France ³Univ Rennes, Ensai, CNRS, CREST - UMR 9194, F-35000 Rennes, France ⁴Univ. Rennes 1, F-35000 Rennes, France ⁵Institut Universitaire de France, M.E.S.R.I., F-75231 Paris ⁶ENS Rennes, F-35000 Rennes, France. Correspondence to: Camille-Sovanneary Gauthier <camille-sovanneary.gauthier@louisvuitton.com>.

Symbol	MEANING
R(T)	CUMULATIVE (PSEUDO-)REGRET, $R(T) = T\mu^* - \mathbb{E}\left[\sum_{t=1}^T \mu_{m{a}(t)}\right]$
$\Pi_{\boldsymbol{\rho}}(\boldsymbol{a})$	SET OF PERMUTATIONS IN \mathcal{P}_K^K ORDERING THE POSITIONS S.T. $\rho_{a_{\pi_1},\pi_1}\geqslant \rho_{a_{\pi_2},\pi_2}\geqslant \cdots \geqslant \rho_{a_{\pi_K},\pi_K}$
π	ELEMENT OF $\Pi_{oldsymbol{ ho}}(oldsymbol{a})$
$ ilde{m{\pi}}$	ESTIMATION OF π
$\boldsymbol{a} \circ (\pi_k, \pi_{k+1})$	PERMUTATION SWAPPING ITEMS IN POSITIONS π_k AND π_{k+1}
$\boldsymbol{a}[\pi_K := i]$	PERMUTATION LEAVING a THE SAME FOR ANY POSITION EXCEPT π_K FOR WHICH ${m a}[\pi_K:=i]_{\pi_K}=i$
${\cal F}$	RANKINGS OF POSITIONS RESPECTING $\Pi_{m{ ho}}$, $\mathcal{F}=(m{\pi_a})_{m{a}\in\mathcal{P}_K^L}$ S.T. $orall m{a}\in\mathcal{P}_K^L, m{\pi_a}\in\Pi_{m{ ho}}(m{a})$
$T_{i,k}(t)$	NUMBER OF ITERATIONS S.T. ITEM i has been displayed at position k , $T_{i,k}(t) = \sum_{s=1}^{t-1} \mathbb{1}\{a_k(s) = i\}$
$\tilde{T}_{m{a}}(t)$	Number of iterations s.t. the leader was $m{a}$, $ ilde{T}_{m{a}}(t) \stackrel{def}{=} \sum_{s=1}^{t-1} \mathbb{1}\{ ilde{m{a}}(s) = m{a}\}$
$T_{\boldsymbol{a}}(t)$	NUMBER OF ITERATIONS S.T. THE CHOSEN ARM WAS $m{a}$, $T_{m{a}}(t) = \sum_{s=1}^{t-1} \mathbb{1}\{m{a}(s) = m{a}\}$
$T_{\boldsymbol{a}}^{\tilde{\boldsymbol{a}}}(t)$	NUMBER OF ITERATIONS S.T. THE LEADER WAS $ ilde{m{a}}$, THE CHOSEN ARM WAS $m{a}$, AND $m{a}$ WAS CHOSEN
	By the argmax on $\sum_{k=1}^K b_{a_k,k}(t)$: $T^{\tilde{m{a}}}_{m{a}}(t) = \sum_{s=1}^{t-1} \mathbb{1} \left\{ \tilde{m{a}}(s) = \tilde{m{a}}, m{a}(s) = m{a}, \tilde{T}_{\tilde{m{a}}}(s)/L \notin \mathbb{N} \right\}$
$\hat{\rho}_{i,k}(t)$	ESTIMATION OF $ ho_{i,k}$ AT ITERATION $t,$ $\hat{ ho}_{i,k}(t)=rac{1}{T_{i,k}(t)}\sum_{s=1}^{t-1}\mathbb{1}\{a_k(s)=i\}c_k(s)$
$b_{i,k}(t)$	Kullback-Leibler index of $\hat{ ho}_{i,k}(t)$, $b_{i,k}(t)=f\left(\hat{ ho}_{i,k}(t),T_{i,k}(t), ilde{T}_{ ilde{m{a}}(t)}(t)+1 ight)$
$f \\ kl(p,q)$	Kullback-Leibler index function, $f(\hat{\rho}, s, t) = \sup\{p \in [\hat{\rho}, 1] : s \times \text{kl}(\hat{\rho}, p) \leq \log(t) + 3\log(\log(t))\}$, Kullback-Leibler divergence from a Bernoulli distribution of mean p
(· · · · · · · · · · · · · · · · · · ·	to a Bernoulli distribution of mean q , $\mathrm{kl}(p,q) = p\log\left(rac{p}{q} ight) + (1-p)\log\left(rac{1-p}{1-q} ight)$
$B_{\boldsymbol{a}}(t)$	PSEUDO-SUM OF INDICES OF $m{a}$ AT ITERATION T, $B_{m{a}}(t) = \sum_{k=1}^K b_{a_k,k}(t) - \sum_{k=1}^K b_{\tilde{a}_k(t),k}(t)$
$\mathcal{N}_{\pi^*}(a^*)$	NEIGHBORHOOD OF THE BEST ARM
$K_{\boldsymbol{a}}$	(WITH COMBINATORIAL BANDIT SETTING) NUMBER OF ELEMENTS IN $m{a}$ BUT NOT IN $m{a}^*$,
K_{max}	$K_{m a} = \min_{m a^* \in \mathcal{A}: \mu_{m a^*} = \mu^*} m a \setminus m a^* $ (WITH COMBINATORIAL BANDIT SETTING) MAXIMAL NUMBER OF ELEMENTS IN A SUB-OPTIMAL ARM $m a$
Λ_{max}	BUT NOT IN AN OPTIMAL ARM a^* , $K_{max} = \max_{\boldsymbol{a} \in \mathcal{A}: \mu_{\boldsymbol{a}} \neq \mu^*} K_{\boldsymbol{a}}$
$c^*\left(oldsymbol{ heta},oldsymbol{\kappa} ight)$	COEFFICIENT IN THE REGRET BOUND OF PMED
c $(0, \mathbf{n})$	(IN ε_n -GREEDY) PARAMETER CONTROLLING THE PROBABILITY OF EXPLORATION
c	(IN PB-MHB) PARAMETER CONTROLLING SIZE OF THE STEP IN THE METROPOLIS HASTING INFERENCE
m	(IN PB-MHB) NUMBER OF STEP IN THE METROPOLIS HASTING INFERENCE

References to Theorems

Lemma 1 (PBM Fulfills Assumption 1).

Theorem 1 (Upper-Bound on the Regret of GRAB).

Theorem 2 (Upper-Bound on the Regret of KL-CombUCB).

Lemma 2 (Upper-Bound on the Number of Iterations of GRAB for which $\tilde{a}(t) = \tilde{a} \neq a^*$).

Lemma 3 (Upper-Bound on the Number of Iterations of GRAB for which $\tilde{\pi}(t) \notin \Pi_{\rho}(\tilde{a})$).

B. Proof of Lemma 1 (PBM Fulfills Assumption 1)

Proof of Lemma 1. Let $(L, K, (\rho_{i,k})_{(i,k) \in [L] \times [K]})$ be an online learning to rank (OLR) problem with users following PBM, with positive probabilities of looking at a given position. Therefore, there exists $\boldsymbol{\theta} \in [0,1]^L$ and $\boldsymbol{\kappa} \in (0,1]^K$ such that for any item i and any position k, $\rho_{i,k} = \theta_i \kappa_k$.

Let $\mathbf{a} \in \mathcal{P}_{K}^{L}$ be a recommendation, and let $\mathbf{\pi} \in \Pi_{\boldsymbol{\rho}}\left(\mathbf{a}\right)$ be an appropriate ranking of positions. One of the four following

properties is satisfied:

$$\exists k \in [K-1] \text{ s.t. } \theta_{a_{\pi_k}} < \theta_{a_{\pi_{k+1}}}, \tag{7}$$

$$\exists k \in [K-1] \text{ s.t. } \kappa_{\pi_k} < \kappa_{\pi_{k+1}}, \tag{8}$$

$$\exists i \in [L] \setminus \boldsymbol{a}([K]) \text{ s.t. } \theta_{a_{\pi_{K}}} < \theta_{i},$$
 (9)

$$\begin{cases} \forall k \in [K-1], \theta_{a_{\pi_k}} \geqslant \theta_{a_{\pi_{k+1}}} \\ \forall k \in [K-1], \kappa_{\pi_k} \geqslant \kappa_{\pi_{k+1}} \end{cases}$$

$$\forall i \in [L] \setminus \boldsymbol{a}([K]), \theta_{a_{\pi_K}} \geqslant \theta_i$$

$$(10)$$

Let prove, by considering each of these properties one by one, that a is either one of the best arms, or a fulfills either Property (2) or Property (3) of Assumption 1.

If Property (7) is satisfied and $\theta_{a_{\pi_k}} = 0$, then by definition of π and $\Pi_{\rho}(a)$, $0 = \theta_{a_{\pi_k}} \kappa_{\pi_k} \geqslant \theta_{a_{\pi_{k+1}}} \kappa_{\pi_{k+1}} > 0$ which is absurd.

Therefore, If Property (7) is satisfied, $\frac{\theta_{a_{\pi_k+1}}}{\theta_{a_{\pi_k}}} > 1$.

Note that by definition of π and $\Pi_{\rho}(a)$, and as $\rho_{i,k} = \theta_i \kappa_k$, $\theta_{a_{\pi_k}} \kappa_{\pi_k} \geqslant \theta_{a_{\pi_{k+1}}} \kappa_{\pi_{k+1}}$.

Hence
$$\kappa_{\pi_k}\geqslant rac{ heta_{a_{\pi_{k+1}}}}{ heta_{a_{\pi_k}}}\kappa_{\pi_{k+1}}>\kappa_{\pi_{k+1}},$$
 and

$$\mu_{\mathbf{a}} - \mu_{\mathbf{a} \circ (\pi_{k}, \pi_{k+1})} = \theta_{a_{\pi_{k}}} \kappa_{\pi_{k}} + \theta_{a_{\pi_{k+1}}} \kappa_{\pi_{k+1}} - \left(\theta_{a_{\pi_{k+1}}} \kappa_{\pi_{k}} + \theta_{a_{\pi_{k}}} \kappa_{\pi_{k+1}}\right)$$

$$= \left(\theta_{a_{\pi_{k}}} - \theta_{a_{\pi_{k+1}}}\right) \left(\kappa_{\pi_{k}} - \kappa_{\pi_{k+1}}\right)$$

$$< 0.$$

meaning $\mu_{\mathbf{a}} < \mu_{\mathbf{a} \circ (\pi_k, \pi_{k+1})}$, which corresponds to Property (2) of Assumption 1.

Similarly, if Property (8) is satisfied, then Property (2) of Assumption 1 is fulfilled.

If Property (9) is satisfied,

$$\mu_{\mathbf{a}} - \mu_{\mathbf{a}[\pi_K := i]} = \theta_{a_{\pi_K}} \kappa_{\pi_K} - \theta_i \kappa_{\pi_K}$$
$$= \left(\theta_{a_{\pi_K}} - \theta_i\right) \kappa_{\pi_K}$$
$$< 0.$$

Hence $\mu_{\boldsymbol{a}} < \mu_{\boldsymbol{a}[\pi_K:=i]}$, which corresponds to Property (3) of Assumption 1.

Finally, if Property (10) is satisfied, $\mu_{\mathbf{a}} = \mu^*$.

Overall, either a is one of the best arms, or a fulfills Property (2) of Assumption 1, or a fulfills Property (3) of Assumption 1, which concludes the proof.

C. Preliminary to the Analysis of GRAB

The analysis of GRAB requires a control of the number of high deviations, as expressed by Lemma B.1 of (Combes & Proutière, 2014). Let us recall this lemma, which we denote Lemma 4 in current paper.

Lemma 4 (Lemma B.1 of (Combes & Proutière, 2014)). Let $i \in [L]$, $k \in [K]$, $\epsilon > 0$. Define $\mathcal{F}(T)$ the σ -algebra generated by $(\mathbf{c}(t))_{t \in [T]}$. Let $\Lambda \subseteq \mathbb{N}$ be a random set of instants. Assume that there exists a sequence of random sets $(\Lambda(s))_{s \geq 1}$ such that (i) $\Lambda \subseteq \bigcup_{s \geq 1} \Lambda(s)$, (ii) for all $s \geq 1$ and all $t \in \Lambda(s)$, $T_{i,k}(t) \geq \epsilon s$, (iii) $|\Lambda(s)| \leq 1$, and (iv) the event $t \in \Lambda(s)$ is \mathcal{F}_t -measurable. Then for all $\delta > 0$,

$$\mathbb{E}\left[\sum_{t\geq 1}\mathbb{1}\left\{t\in\Lambda, |\hat{\rho}_{i,k}(t)-\rho_{i,k}|\geqslant \delta\right\}\right]\leqslant \frac{1}{\epsilon\delta^2}$$

D. Proof of Theorem 2 (Upper-bound on the Regret of KL-CombUCB)

Proof of Theorem 2. Let $\mathbf{a} \in \mathcal{A}$ be a sub-optimal arm. Let $\mathbf{a}^* \in \mathcal{A}$ be an optimal arm such that $|\mathbf{a} \setminus \mathbf{a}^*| = K_{\mathbf{a}}$.

We denote $\bar{K}_{\pmb{a}} \stackrel{def}{=} |\pmb{a}^* \setminus \pmb{a}|$, $T_{\pmb{a}}(t) \stackrel{def}{=} \sum_{s=1}^{t-1} \mathbb{1}\{\pmb{a}(s) = \pmb{a}\}$ the number of time the arm \pmb{a} has been drawn, and $T_e(t) \stackrel{def}{=} \sum_{s=1}^{t-1} \mathbb{1}\{e \in \pmb{a}(s)\}$ the number of time the element e was in the drawn arm.

Let decompose the expected number of iterations at which the permutation a is recommended:

$$\begin{split} \mathbb{E}\left[\sum_{t=1}^{T}\mathbbm{1}\{\pmb{a}(t)=\pmb{a}\}\right] \leqslant \sum_{e\in\pmb{a}\backslash\pmb{a}^*}\mathbb{E}\left[\sum_{t=1}^{T}\mathbbm{1}\left\{\pmb{a}(t)=\pmb{a},|\hat{\rho}_e(t)-\rho_e|\geqslant \frac{\Delta_{\pmb{a}}}{2K_{\pmb{a}}}\right\}\right] \\ + \sum_{e\in\pmb{a}^*\backslash\pmb{a}}\mathbb{E}\left[\sum_{t=1}^{T}\mathbbm{1}\{b_e(t)\leqslant\rho_e\}\right] \\ + \mathbb{E}\left[\sum_{t=|E|}^{T}\mathbbm{1}\left\{\pmb{a}(t)=\pmb{a},\forall e\in\pmb{a}\backslash\pmb{a}^*,|\hat{\rho}_e(t)-\rho_e|<\frac{\Delta_{\pmb{a}}}{2K_{\pmb{a}}},\forall e\in\pmb{a}^*\backslash\pmb{a},b_e(t)>\rho_e\right\}\right] \\ + |E|. \end{split}$$

The proof consists in upper-bounding each term on the right-hand side.

First Term Let $e \in \boldsymbol{a} \setminus \boldsymbol{a}^*$, and denote $A_e = \left\{ t \in [T] : \boldsymbol{a}(t) = \boldsymbol{a}, |\hat{\rho}_e(t) - \rho_e| \geqslant \frac{\Delta_a}{2K_{\boldsymbol{a}}} \right\}$.

 $A_e\subseteq\bigcup_{s\in\mathbb{N}}\Lambda_k(s)$, where $\Lambda_k(s)\stackrel{def}{=}\{t\in A_e:T_{\pmb{a}}(t)=s\}$. For any integer value s, $|\Lambda_k(s)|\leqslant 1$ as $T_{\pmb{a}}(t)$ increases for each $t\in A_e$. Note that for each $s\in\mathbb{N}$ and $n\in\Lambda_k(s),T_e(n)\geqslant T_{\pmb{a}}(n)=s$. Then, by Lemma 4

$$\mathbb{E}\left[|A_e|\right] \leq \mathbb{E}\left[\sum_{t=1}^T \mathbb{1}\left\{t \in A_e\right\}\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^T \mathbb{1}\left\{t \in A_e, |\hat{\rho}_e(t) - \rho_e| \geqslant \frac{\Delta_a}{2K_a}\right\}\right]$$

$$\leq \frac{4K_a^2}{\Delta_a^2}.$$

Hence, $\sum_{e \in \pmb{a} \backslash \pmb{a}^*} \mathbb{E}\left[\sum_{t=1}^T \mathbb{1}\left\{\pmb{a}(t) = \pmb{a}, |\hat{\rho}_e(t) - \rho_e| \geqslant \frac{\Delta_a}{2K_a}\right\}\right] = \sum_{e \in \pmb{a} \backslash \pmb{a}^*} \mathbb{E}\left[|A_e|\right] \leqslant \frac{4K_a^2}{\Delta_a^2}$.

Second Term Let $e \in \mathbf{a}^* \setminus \mathbf{a}$, and denote $B_e \stackrel{def}{=} \{t \in [T] : b_e(t) \leqslant \rho_e\}$.

By Theorem 10 of (Garivier & Cappé, 2011), $\mathbb{E}[|B_e|] = O(\log \log T)$, so $\sum_{e \in \mathbf{a}^* \setminus \mathbf{a}} \mathbb{E}\left[\sum_{t=1}^T \mathbb{1}\{b_e(t) \leqslant \rho_e\}\right] = \mathcal{O}(\bar{K}_{\mathbf{a}} \log \log T)$.

Third Term Let note $C \stackrel{def}{=} \Big\{ t \in [T] \setminus [|E|] : \boldsymbol{a}(t) = \boldsymbol{a}, \forall e \in \boldsymbol{a} \setminus \boldsymbol{a}^*, |\hat{\rho}_e(t) - \rho_e| < \frac{\Delta_{\boldsymbol{a}}}{2K_{\boldsymbol{a}}}, \forall e \in \boldsymbol{a}^* \setminus \boldsymbol{a}, b_e(t) > \rho_e \Big\}.$ Let $t \in C$.

At each step of the initialization phase, the algorithm removes at least one element e of the set \tilde{E} of unseen elements. Therefore, the initialization lasts at most |E| iterations. Hence, at iteration t, $\mathbf{a}(t) = \mathbf{a}$ is chosen as $\sum_{e \in \mathbf{a}} b_e(t) = \max_{\mathbf{a}' \in \mathcal{A}} \sum_{e \in \mathbf{a}'} b_e(t)$.

Then, by Pinsker's inequality and the fact that $t \leq T$, and $T_e(t) \geqslant T_a(t)$ for any e in a,

$$\begin{split} 0 \leqslant & \sum_{e \in \boldsymbol{a}} b_e(t) - \sum_{e \in \boldsymbol{a}^*} b_e(t) \\ &= \sum_{e \in \boldsymbol{a} \backslash \boldsymbol{a}^*} b_e(t) - \sum_{e \in \boldsymbol{a}^* \backslash \boldsymbol{a}} b_e(t) \\ \leqslant & \sum_{e \in \boldsymbol{a} \backslash \boldsymbol{a}^*} \hat{\rho}_e(t) + \sqrt{\frac{\log(t) + 3\log(\log(t))}{2T_e(t)}} - \sum_{e \in \boldsymbol{a}^* \backslash \boldsymbol{a}} b_e(t) \\ &< \sum_{e \in \boldsymbol{a} \backslash \boldsymbol{a}^*} \rho_e + \frac{\Delta_{\boldsymbol{a}}}{2K_{\boldsymbol{a}}} + \sqrt{\frac{\log(T) + 3\log(\log(T))}{2T_{\boldsymbol{a}}(t)}} - \sum_{e \in \boldsymbol{a}^* \backslash \boldsymbol{a}} \rho_e \\ \leqslant & \sum_{e \in \boldsymbol{a}} \rho_e - \sum_{e \in \boldsymbol{a}^*} \rho_e + K_{\boldsymbol{a}} \frac{\Delta_{\boldsymbol{a}}}{2K_{\boldsymbol{a}}} + K_{\boldsymbol{a}} \sqrt{\frac{\log(T) + 3\log(\log(T))}{2T_{\boldsymbol{a}}(t)}} \\ &= -\Delta_{\boldsymbol{a}} + \frac{2\Delta_{\boldsymbol{a}}}{2} + K_{\boldsymbol{a}} \sqrt{\frac{\log(T) + 3\log(\log(T))}{2T_{\boldsymbol{a}}(t)}}. \\ &= -\frac{\Delta_{\boldsymbol{a}}}{2} + K_{\boldsymbol{a}} \sqrt{\frac{\log(T) + 3\log(\log(T))}{2T_{\boldsymbol{a}}(t)}}. \end{split}$$

Hence, $T_{\pmb{a}}(t) < K_{\pmb{a}}^2 \frac{2\log(T) + 6\log(\log(T))}{\Delta_{\pmb{a}}^2}$. Therefore, $C \subseteq \left\{ t \in [T] \setminus [|E|] : \pmb{a}(t) = \pmb{a}, T_{\pmb{a}}(t) < K_{\pmb{a}}^2 \frac{2\log(T) + 6\log(\log(T))}{\Delta_{\pmb{a}}^2} \right\}$, and

$$\mathbb{E}\left[\sum_{t=|E|}^{T} \mathbb{1}\left\{\boldsymbol{a}(t) = \boldsymbol{a}, \forall e \in \boldsymbol{a} \setminus \boldsymbol{a}^*, |\hat{\rho}_e(t) - \rho_e| < \frac{\Delta_{\boldsymbol{a}}}{2K_{\boldsymbol{a}}}, \forall e \in \boldsymbol{a}^* \setminus \boldsymbol{a}, b_e(t) > \rho_e\right\}\right]$$

$$= \mathbb{E}\left[|C|\right]$$

$$\leqslant \mathbb{E}\left[\left|\left\{t \in [T] \setminus [|E|] : \boldsymbol{a}(t) = \boldsymbol{a}, T_{\boldsymbol{a}}(t) < K_{\boldsymbol{a}}^2 \frac{2\log(T) + 6\log(\log(T))}{\Delta_{\boldsymbol{a}}^2}\right\}\right|\right]$$

$$\leqslant K_{\boldsymbol{a}}^2 \frac{2\log(T) + 6\log(\log(T))}{\Delta_{\boldsymbol{a}}^2}.$$

Regret upper-bound Overall,

$$\begin{split} \mathbb{E}\left[\sum_{t=1}^{T}\mathbb{1}\{\pmb{a}(t) = \pmb{a}\}\right] &\leqslant \frac{4K_{\pmb{a}}^3}{\Delta_{\pmb{a}}^2} + \mathcal{O}(\bar{K}_{\pmb{a}}\log\log T) + K_{\pmb{a}}^2\frac{2\log(T) + 6\log(\log(T))}{\Delta_{\pmb{a}}^2} + |E| \\ &= \frac{2K_{\pmb{a}}^2}{\Delta_{\pmb{a}}^2}\log(T) + \mathcal{O}\left(\left(\bar{K}_{\pmb{a}} + \frac{K_{\pmb{a}}^2}{\Delta_{\pmb{a}}^2}\right)\log\log T\right) \end{split}$$

and

$$\begin{split} R(T) &= \sum_{\boldsymbol{a} \in \mathcal{A}: \mu_{\boldsymbol{a}} \neq \mu^*} \Delta_{\boldsymbol{a}} \mathbb{E} \left[\sum_{t=1}^T \mathbb{1} \{ \boldsymbol{a}(t) = \boldsymbol{a} \} \right] \\ &\leqslant \sum_{\boldsymbol{a} \in \mathcal{A}: \mu_{\boldsymbol{a}} \neq \mu^*} \frac{2K_{\boldsymbol{a}}^2}{\Delta_{\boldsymbol{a}}} \log(T) + \mathcal{O} \left(\left(\bar{K}_{\boldsymbol{a}} \Delta_{\boldsymbol{a}} + \frac{K_{\boldsymbol{a}}^2}{\Delta_{\boldsymbol{a}}} \right) \log \log T \right) \\ &= \mathcal{O} \left(\frac{|\mathcal{A}| K_{max}^2}{\Delta_{\min}} \log T \right), \end{split}$$

which concludes the proof.

E. Proof of Lemma 2 (Upper-bound on the Number of Iterations of GRAB for which

$$\tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}} \neq \boldsymbol{a}^*$$

Proof of Lemma 2. Let $\tilde{\pmb{a}} \in \mathcal{P}_K^L \setminus \{\pmb{a}^*\}$ and prove that $\mathbb{E}\left[\sum_{t=1}^T \mathbb{1}\{\tilde{\pmb{a}}(t) = \tilde{\pmb{a}}\}\right] = \mathcal{O}\left(\log\log T\right)$.

The proof requires notations related to the neighborhood of \tilde{a} . Let $\mathcal{N} \stackrel{def}{=} \bigcup_{\pi \in \mathcal{P}_K^K} \mathcal{N}_{\pi}(\tilde{a})$ be the set of all the potential neighbors of \tilde{a} . By definition of the neighborhoods,

$$\mathcal{N} = \{ \tilde{\mathbf{a}} \circ (k, k') : k, k' \in [K]^2, k > k' \} \cup \{ \tilde{\mathbf{a}}[k := i] : k \in [K], i \in [L] \setminus \tilde{\mathbf{a}}([K]) \},$$

and its size is N = K(2L - K - 1)/2. As $\tilde{\boldsymbol{a}}$ is sub-optimal, and due to Assumption 1, for any appropriate ranking of positions $\boldsymbol{\pi} \in \Pi_{\boldsymbol{\rho}}(\tilde{\boldsymbol{a}})$, there exists a recommendation \boldsymbol{a}^+ with a strictly better expected reward than $\tilde{\boldsymbol{a}}$ in the neighborhood $\mathcal{N}_{\boldsymbol{\pi}}(\tilde{\boldsymbol{a}})$. We denote

$$\mathcal{N}^{+} \stackrel{def}{=} \bigcup_{\boldsymbol{\pi} \in \Pi_{\boldsymbol{\rho}}(\tilde{\boldsymbol{a}})} \left\{ \boldsymbol{a}^{+} \in \mathcal{N}_{\boldsymbol{\pi}}(\tilde{\boldsymbol{a}}) : \mu_{\boldsymbol{a}^{+}} = \max_{\boldsymbol{a} \in \mathcal{N}_{\boldsymbol{\pi}}(\tilde{\boldsymbol{a}})} \mu_{\boldsymbol{a}} \right\}$$

the set of such recommendations. We also chose $\epsilon < \min\{1/(2N), 1/L\}$ and note

$$\delta \stackrel{def}{=} \min_{\boldsymbol{\pi} \in \Pi_{\boldsymbol{\rho}}(\tilde{\boldsymbol{a}})} \min_{\boldsymbol{a} \in \mathcal{N}_{\boldsymbol{\pi}}(\tilde{\boldsymbol{a}}) \cup \{\tilde{\boldsymbol{a}}\} \setminus \mathcal{N}^+} \left(\max_{\boldsymbol{a}' \in \mathcal{N}_{\boldsymbol{\pi}}(\tilde{\boldsymbol{a}})} \mu_{\boldsymbol{a}'} - \mu_{\boldsymbol{a}} \right).$$

To bound $\mathbb{E}\left[\mathbb{1}\{\tilde{\boldsymbol{a}}(t)=\tilde{\boldsymbol{a}}\}\right]$, we use the decomposition $\{t\in[T]:\tilde{\boldsymbol{a}}(t)=\tilde{\boldsymbol{a}}\}\subseteq\bigcup_{\boldsymbol{a}^+\in\mathcal{N}^+}A_{\boldsymbol{a}^+}\cup B$ where for any permutation $\boldsymbol{a}^+\in\mathcal{N}^+$,

$$A_{\boldsymbol{a}^+} = \{t: \tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, T_{\boldsymbol{a}^+}(t) \geqslant \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t) \}$$

and

$$B = \{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \forall \pmb{a}^+ \in \mathcal{A}+, T_{\pmb{a}^+}(t) < \epsilon \tilde{T}_{\tilde{\pmb{a}}}(t)\}.$$

Hence.

$$\mathbb{E}\left[\mathbbm{1}\{\tilde{\pmb{a}}(t) = \tilde{\pmb{a}}\}\right] \leqslant \sum_{\pmb{a}^+ \in \mathcal{A}+} \mathbb{E}\left[|A_{\pmb{a}^+}|\right] + \mathbb{E}\left[|B|\right].$$

Bound on $\mathbb{E}\left[|A_{\boldsymbol{a}^+}|\right]$ Let \boldsymbol{a}^+ be a permutation in \mathcal{N}^+ and denote \mathcal{K}^+ the set of positions for which \boldsymbol{a}^+ and $\tilde{\boldsymbol{a}}$ disagree: $\mathcal{K}^+ = \left\{k \in [K] : a_k^+ \neq \tilde{a}_k\right\}$. The permutation \boldsymbol{a}^+ is in the neighborhood of $\tilde{\boldsymbol{a}}$, so either $\boldsymbol{a}^+ = \tilde{\boldsymbol{a}} \circ (k, k')$ or $\boldsymbol{a}^+ = \boldsymbol{a}[k := i]$, with k and k' in [K], and i in [L]. Overall, $|\mathcal{K}^+| \leqslant 2$.

By the design of the algorithm and by definition of ϵ , we have that $\forall t \in A_{\boldsymbol{a}^+}, T_{\tilde{\boldsymbol{a}}}(t) \geqslant \tilde{T}_{\tilde{\boldsymbol{a}}}(t)/L > \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t)$. Moreover, at the considered iterations $\tilde{\boldsymbol{a}}$ is the leader, so

$$\begin{split} A_{\pmb{a}^+} &\subseteq \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{T}_{\tilde{\pmb{a}}}(t) < \frac{1}{\epsilon}\right\} \cup \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \min\{T_{\tilde{\pmb{a}}}(t), T_{\pmb{a}^+}(t)\} \geqslant \epsilon \tilde{T}_{\tilde{\pmb{a}}}(t) \geqslant 1, \sum_{\ell} \hat{\rho}_{\tilde{a}_\ell, \ell}(t) \geqslant \sum_{\ell} \hat{\rho}_{a_\ell^+, \ell}(t)\right\} \\ &\subseteq \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{T}_{\tilde{\pmb{a}}}(t) < \frac{1}{\epsilon}\right\} \cup \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \min\{T_{\tilde{\pmb{a}}}(t), T_{\pmb{a}^+}(t)\} \geqslant \epsilon \tilde{T}_{\tilde{\pmb{a}}}(t), \sum_{k \in \mathcal{K}^+} \hat{\rho}_{\tilde{a}_k, k}(t) \geqslant \sum_{k \in \mathcal{K}^+} \hat{\rho}_{a_k^+, k}(t)\right\} \\ &\subseteq \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{T}_{\tilde{\pmb{a}}}(t) < \frac{1}{\epsilon}\right\} \\ &\cup \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \min\{T_{\tilde{\pmb{a}}}(t), T_{\pmb{a}^+}(t)\} \geqslant \epsilon \tilde{T}_{\tilde{\pmb{a}}}(t), \exists k \in \mathcal{K}^+, |\hat{\rho}_{\tilde{a}_k, k}(t) - \rho_{\tilde{a}_k, k}| \geqslant \frac{\delta}{2|\mathcal{K}^+|} \text{ or } |\hat{\rho}_{a_k^+, k}(t) - \rho_{a_k^+, k}| \geqslant \frac{\delta}{2|\mathcal{K}^+|} \right\} \\ &\subseteq \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{T}_{\tilde{\pmb{a}}}(t) < \frac{1}{\epsilon}\right\} \cup \bigcup_{k \in \mathcal{K}^+} \bigcup_{i \in \left\{\tilde{a}_k, a_k^+\right\}} \Lambda_{i, k}, \end{split}$$

with
$$\Lambda_{i,k} \stackrel{def}{=} \Big\{ t : \tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, \min\{T_{\tilde{\boldsymbol{a}}}(t), T_{\boldsymbol{a}^+}(t)\} \geqslant \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t), |\hat{\rho}_{i,k}(t) - \rho_{i,k}| \geqslant \frac{\delta}{2|\mathcal{K}^+|} \Big\}.$$

Fix k in \mathcal{K}^+ and i in $\left\{\tilde{a}_k, a_k^+\right\}$. $\Lambda_{i,k} \subseteq \bigcup_{s \in \mathbb{N}} \Lambda_{i,k}(s)$, with $\Lambda_{i,k}(s) \stackrel{def}{=} \{t \in \Lambda_{i,k} : \tilde{T}_{\tilde{\boldsymbol{a}}}(t) = s\}$. $|\Lambda_{i,k}(s)| \leqslant 1$ as $\tilde{T}_{\tilde{\boldsymbol{a}}}(t)$ increases for each $t \in \Lambda_{i,k}$. Note that for each $s \in \mathbb{N}$ and $n \in \Lambda_{i,k}(s)$, $T_{i,k}(n) \geqslant \min \{T_{\boldsymbol{a}}(n), T_{\boldsymbol{a}^+}(n)\} \geqslant \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(n) = \epsilon s$. Then, by Lemma 4

$$\mathbb{E}\left[|\Lambda_{i,k}|\right] = \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{t \in \Lambda_{i,k}\right\}\right]$$

$$= \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}\left\{t \in \Lambda_{i,k}, |\hat{\rho}_{i,k}(t) - \rho_{i,k}| > \frac{\delta}{2|\mathcal{K}^{+}|}\right\}\right]$$

$$\leqslant \frac{4|\mathcal{K}^{+}|^{2}}{\epsilon\delta^{2}}$$

Hence, $\mathbb{E}\left[|A_{\boldsymbol{a}^+}|\right] \leqslant \frac{1}{\epsilon} + \sum_{k \in \mathcal{K}^+} \sum_{i \in \left\{\tilde{a}_k, a_k^+\right\}} \mathbb{E}\left[|\Lambda_{i,k}|\right] \leqslant \frac{1}{\epsilon} + \frac{8|\mathcal{K}^+|^3}{\epsilon\delta^2}$.

Bound on $\mathbb{E}\left[|B|\right]$ We first split B in two parts: $B=B^{t_0}\cup B_{t_0}^T$, where $B^{t_0}\stackrel{def}{=}\{t\in B: \tilde{T}_{\bar{\mathbf{a}}}(t)\leqslant t_0\}, B_{t_0}^T\stackrel{def}{=}\{t\in B: \tilde{T}_{\bar{\mathbf{a}}}(t)\leqslant t_0\}, B_{t_0}^T\stackrel{def}{=}\{t\in B: \tilde{T}_{\bar{\mathbf{a}}}(t)\leqslant t_0\}$, and t_0 is chosen as small as possible to satisfy three constraints required in the rest of the proof.

Namely, $t_0 = \max\left\{\frac{1}{\epsilon}, (1+N)(1-\frac{1}{L}-\epsilon N)^{-1}, \inf\left\{t: 2\sqrt{\frac{\log(t+1)+3\log(\log(t+1))}{2\epsilon t}} < \frac{\delta}{8}\right\}\right\}$. Note that t_0 only depends on K, L and δ , and that $(1-\frac{1}{L}-\epsilon N)>0$ (assuming $L\geqslant 2$) as $\epsilon<1/(2N)$.

We also define

- $D \stackrel{def}{=} \bigcup_{(\boldsymbol{a},k) \in (\mathcal{N} \cup \{\tilde{\boldsymbol{a}}\} \setminus \mathcal{N}^+) \times [K]} D_{\boldsymbol{a},k}$, where $D_{\boldsymbol{a},k} \stackrel{def}{=} \{t \in [T] : \tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, \boldsymbol{a}(t) = \boldsymbol{a}, |\hat{\rho}_{a_k,k}(t) \rho_{a_k,k}| \geqslant \frac{\delta}{8} \}$,
- $\bullet \ E \stackrel{def}{=} \textstyle \bigcup_{(\boldsymbol{a}^+,k) \in \mathcal{N}^+ \times [K]} E_{\boldsymbol{a}^+,k} \text{, where } E_{\boldsymbol{a}^+,k} \stackrel{def}{=} \{t \in [T] : \tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, b_{a_k^+,k}(t) \leqslant \rho_{a_k^+,k}\},$
- and $F \stackrel{def}{=} \{t \in [T] : \tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, \tilde{\boldsymbol{\pi}}(t) \notin \Pi_{\boldsymbol{\rho}}(\tilde{\boldsymbol{a}})\}.$

Let $t \in B_{t_0}^T$. By construction, GRAB forces itself to select $\left\lceil \frac{\tilde{T}_{\tilde{a}}(t)}{L} \right\rceil$ times the leader \tilde{a} between iterations 1 and t-1. So,

$$\tilde{T}_{\tilde{\boldsymbol{a}}}(t) = \left\lceil \frac{\tilde{T}_{\tilde{\boldsymbol{a}}}(t)}{L} \right\rceil + \sum_{\boldsymbol{a} \in \mathcal{N} \cup \{\tilde{\boldsymbol{a}}\}} T_{\boldsymbol{a}}^{\tilde{\boldsymbol{a}}}(t)$$

where $T_{\pmb{a}}^{\tilde{\pmb{a}}}(t) = \sum_{s=1}^{t-1} \mathbbm{1}\left\{\tilde{\pmb{a}}(s) = \tilde{\pmb{a}}, \pmb{a}(s) = \pmb{a}, \tilde{T}_{\tilde{\pmb{a}}}(s)/L \notin \mathbbm{N}\right\}$ is the number of times arm $\pmb{a} \in \mathcal{N} \cup \{\tilde{\pmb{a}}\}$ has been played normally (i.e not forced) while $\tilde{\pmb{a}}$ was leader, up to time t-1. Let prove by contradiction that there is at least one recommendation \pmb{a} that has been selected normally more than $\epsilon \tilde{T}_{\tilde{\pmb{a}}}(t) + 1$ times, namely $T_{\pmb{a}}^{\tilde{\pmb{a}}}(t) \geqslant \epsilon \tilde{T}_{\tilde{\pmb{a}}}(t) + 1$.

Assume that for each recommendation ${\pmb a}$ in ${\cal N} \cup \{\tilde{\pmb a}\}$, $T^{\tilde{\pmb a}}_{\pmb a}(t) < \epsilon \tilde T_{\tilde{\pmb a}}(t) + 1$. Then

$$\begin{split} \tilde{T}_{\tilde{\pmb{a}}}(t) &= \left\lceil \frac{\tilde{T}_{\tilde{\pmb{a}}}(t)}{L} \right\rceil + \sum_{\pmb{a} \in \mathcal{N} \cup \{\tilde{\pmb{a}}\}} T_{\pmb{a}}^{\tilde{\pmb{a}}}(t) \\ &< 1 + \frac{\tilde{T}_{\tilde{\pmb{a}}}(t)}{L} + N(\epsilon \tilde{T}_{\tilde{\pmb{a}}}(t) + 1). \end{split}$$

Therefore $\tilde{T}_{\tilde{\mathbf{a}}}(t)(1-\frac{1}{L}-N\epsilon)<1+N$, which contradicts $t\in B_{t_0}^T$.

So, there exists a recommendation \boldsymbol{a} such that $T_{\boldsymbol{a}}^{\tilde{\boldsymbol{a}}}(t) \geqslant \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t) + 1$. Let denote s' the first iteration such that $T_{\boldsymbol{a}}^{\tilde{\boldsymbol{a}}}(s') \geqslant \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t) + 1$. At this iteration, $T_{\boldsymbol{a}}^{\tilde{\boldsymbol{a}}}(s') = T_{\boldsymbol{a}}^{\tilde{\boldsymbol{a}}}(s'-1) + 1$, meaning that $\tilde{\boldsymbol{a}}(s'-1) = \tilde{\boldsymbol{a}}$, $\boldsymbol{a}(s'-1) = \boldsymbol{a}$, $\tilde{T}_{\tilde{\boldsymbol{a}}}(s'-1)/L \notin \mathbb{N}$, and

 $T_{\pmb{a}}^{\tilde{\pmb{a}}}(s'-1)\geqslant \epsilon \tilde{T}_{\tilde{\pmb{a}}}(t)$. Therefore, the set $\{s\in[t]:\tilde{\pmb{a}}(s)=\tilde{\pmb{a}},T_{\pmb{a}(s)}^{\tilde{\pmb{a}}}(s)\geqslant \epsilon \tilde{T}_{\tilde{\pmb{a}}}(t),\tilde{T}_{\tilde{\pmb{a}}}(s)/L\notin\mathbb{N}\}$ is non-empty. We define $\psi(t)$ as the minimum on this set

$$\psi(t) \stackrel{def}{=} \min \left\{ s \in [t] : \tilde{\boldsymbol{a}}(s) = \tilde{\boldsymbol{a}}, T_{\boldsymbol{a}(s)}^{\tilde{\boldsymbol{a}}}(s) \geqslant \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t), \tilde{T}_{\tilde{\boldsymbol{a}}}(s) / L \notin \mathbb{N} \right\}.$$

We note ${\pmb a}$ the recommendation ${\pmb a}(\psi(t))$ at iteration $\psi(t)$. We have ${\pmb a} \notin {\mathcal N}^+$ since for any recommendation ${\pmb a}^+ \in {\mathcal N}^+$, $T_{{\pmb a}^+}^{\tilde{\pmb a}}(\psi(t)) \leqslant T_{{\pmb a}^+}^{\tilde{\pmb a}}(t) \leqslant T_{{\pmb a}^+}(t) < \epsilon \tilde{T}_{\tilde{\pmb a}}(t)$. Let ${\pmb a}^+$ be one of the best recommendations in ${\mathcal N}_{\tilde{\pmb a}(\psi(t))}(\tilde{\pmb a}) \cup \{\tilde{\pmb a}\}$, meaning $\mu_{{\pmb a}^+} = \max_{{\pmb a}' \in {\mathcal N}_{\tilde{\pmb a}(\psi(t))}(\tilde{\pmb a}) \cup \{\tilde{\pmb a}\} \mu_{{\pmb a}'}$, and let ${\mathcal K}$ denote the set of positions for which ${\pmb a}$ and ${\pmb a}^+$ disagree. As both recommendations are in ${\mathcal N}_{\tilde{\pmb a}(\psi(t))}(\tilde{\pmb a}) \cup \{\tilde{\pmb a}\}$, $|{\mathcal K}| \leqslant 4$.

Let prove by contradiction that $\psi(t) \in D \cup E \cup F$. Assume that $\psi(t) \notin D \cup E \cup F$.

Since $\psi(t) \notin F$, $\tilde{\boldsymbol{\pi}}(\psi(t))$ belongs to $\Pi_{\boldsymbol{\rho}}(\tilde{\boldsymbol{a}})$ and hence \boldsymbol{a}^+ is in \mathcal{N}^+ and $\sum_k \rho_{a^+,k} - \sum_k \rho_{a_k,k} = \mu_{\boldsymbol{a}^+} - \mu_{\boldsymbol{a}} \geqslant \delta$.

Moreover, since $\psi(t) \notin D \cup E$, for each position $k \in [K]$, $|\hat{\rho}_{a_k,k}(\psi(t)) - \rho_{a_k,k}| < \frac{\delta}{8}$, and $b_{a_k^+,k}(\psi(t)) > \rho_{a_k^+,k}$.

Finally, $T_{\pmb{a}}(\psi(t)) \geqslant T_{\pmb{a}}^{\tilde{\pmb{a}}}(\psi(t)) \geqslant \epsilon \tilde{T}_{\pmb{a}}(t) \geqslant 1$, and therefore $b_{a_k,k}(\psi(t))$ and $\hat{\rho}_{a_k,k}(\psi(t))$ are properly defined for any position $k \in [K]$.

Then, by Pinsker's inequality and the fact that $\psi(t) \leqslant t$, $\tilde{T}_{\tilde{\boldsymbol{a}}}(s)$ is non-decreasing in s, and $T_{\boldsymbol{a}}(\psi(t)) \geqslant \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t)$,

$$\begin{split} \sum_k b_{a_k,k}(\psi(t)) - \sum_k b_{a_k^+,k}(\psi(t)) &= \sum_{k \in \mathcal{K}} b_{a_k,k}(\psi(t)) - b_{a_k^+,k}(\psi(t)) \\ &\leqslant \sum_{k \in \mathcal{K}} \hat{\rho}_{a_k,k}(\psi(t)) + \sqrt{\frac{\log(\tilde{T}_{\tilde{\boldsymbol{a}}}(\psi(t)) + 1) + 3\log(\log(\tilde{T}_{\tilde{\boldsymbol{a}}}(\psi(t)) + 1))}{2T_{\boldsymbol{a}}(\psi(t))}} - b_{a_k^+,k}(\psi(t)) \\ &\leqslant \sum_{k \in \mathcal{K}} \rho_{a_k,k} + \frac{\delta}{8} + \sqrt{\frac{\log(\tilde{T}_{\tilde{\boldsymbol{a}}}(t) + 1) + 3\log(\log(\tilde{T}_{\tilde{\boldsymbol{a}}}(t) + 1))}{2\epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t)}} - \rho_{a_k^+,k} \\ &\leqslant \sum_{k \in \mathcal{K}} \rho_{a_k,k} + \frac{\delta}{8} + \frac{\delta}{8} - \rho_{a_k^+,k} \\ &\leqslant \sum_k \rho_{a_k,k} - \sum_k \rho_{a_k^+,k} + |\mathcal{K}| \cdot 2\frac{\delta}{8} \\ &\leqslant -\delta + 8\frac{\delta}{8} \\ &= 0, \end{split}$$

which contradicts the fact that **a** is played at iteration $\psi(t)$. So $\psi(t) \in D \cup E \cup F$.

Overall, for any $t \in B_{t_0}^T$, $\psi(t) \in D \cup E \cup F$. So, $B_{t_0}^T \subseteq \bigcup_{n \in D \cup E \cup F} B_{t_0}^T \cap \{t \in [T] : \psi(t) = n\}$. Let n be in $D \cup E \cup F$. For any t in $B_{t_0}^T \cap \{t \in [T] : \psi(t) = n\}$, $T_{\boldsymbol{\tilde{a}}(n)}^{\tilde{a}}(n) = \lceil \epsilon \tilde{T}_{\tilde{\boldsymbol{a}}}(t) \rceil$ and $\tilde{T}_{\tilde{\boldsymbol{a}}}(t+1) = \tilde{T}_{\tilde{\boldsymbol{a}}}(t) + 1$. So $|B_{t_0}^T \cap \{t \in [T] : \psi(t) = n\}| < 1/\epsilon + 1$. Overall,

$$\mathbb{E}\left[|B|\right] \leqslant t_0 + \mathbb{E}\left[|B_{t_0}^T|\right] \leqslant t_0 + (1/\epsilon + 1)\left(\mathbb{E}\left[|D|\right] + \mathbb{E}\left[|E|\right] + \mathbb{E}\left[|F|\right]\right).$$

It remains to upper-bound $\mathbb{E}[|D|]$, $\mathbb{E}[|E|]$, and $\mathbb{E}[|F|]$ to conclude the proof.

Bound on $\mathbb{E}\left[|D|\right]$ The upper-bound on $\mathbb{E}\left[|D|\right]$ is obtained with the same strategy as the last step in the proof of the upper-bound on $\mathbb{E}\left[|A_{\boldsymbol{a}^+}|\right]$. Let \boldsymbol{a} be a recommendation in $\mathcal{N} \cup \{\tilde{\boldsymbol{a}}\} \setminus \mathcal{N}^+$, and $k \in [K]$ be a position. $D_{\boldsymbol{a},k} \subseteq \bigcup_{s \in \mathbb{N}} \Lambda_{\boldsymbol{a},k}(s)$, where $\Lambda_{\boldsymbol{a},k}(s) \stackrel{def}{=} \{t \in D_{\boldsymbol{a},k} : T_{\boldsymbol{a}}(t) = s\}$. $|\Lambda_{\boldsymbol{a},k}(s)| \leqslant 1$ as $T_{\boldsymbol{a}}(t)$ increases for each $t \in D_{\boldsymbol{a},k}$. Note that for each $s \in \mathbb{N}$ and $n \in \Lambda_{\boldsymbol{a},k}(s)$, $T_{a_k,k}(n) \geqslant T_{\boldsymbol{a}}(n) = s$. Then, by Lemma 4

$$\begin{split} \mathbb{E}\left[|D_{\boldsymbol{a},k}|\right] &\leq \mathbb{E}\left[\sum_{t=1}^{T}\mathbb{1}\{t \in D_{\boldsymbol{a},k}\}\right] \\ &= \mathbb{E}\left[\sum_{t=1}^{T}\mathbb{1}\left\{t \in D_{\boldsymbol{a},k}, |\hat{\rho}_{a_k,k}(t) - \rho_{a_k,k}| \geqslant \frac{\delta}{8}\right\}\right] \\ &\leqslant \frac{64}{\delta^2} \end{split}$$

Hence, $\mathbb{E}\left[|D|\right] \leq \sum_{(\boldsymbol{a},k) \in (\mathcal{N} \cup \{\tilde{\boldsymbol{a}}\} \setminus \mathcal{N}^+) \times [K]} \mathbb{E}\left[|D_{\boldsymbol{a},k}|\right] \leqslant \frac{64(N+1)K}{\delta^2}$.

Bound on $\mathbb{E}[|E|]$ By Theorem 10 of (Garivier & Cappé, 2011), $\mathbb{E}\left[|E_{\boldsymbol{a}^+,k}|\right] = O(\log(\log(T)))$, so $\mathbb{E}[|E|] \leqslant \sum_{(\boldsymbol{a}^+,k)\in\mathcal{N}^+\times[K]}\mathbb{E}\left[|E_{\boldsymbol{a}^+,k}|\right] = O(|\mathcal{N}^+|K\log(\log(T)))$.

Bound on
$$\mathbb{E}\left[|F|\right]$$
 By Lemma 3, $\mathbb{E}\left[|F|\right] = \mathbb{E}\left[\sum_{t=1}^{T}\mathbbm{1}\left\{\tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{\pmb{\pi}}(t) \notin \Pi_{\pmb{\rho}}\left(\tilde{\pmb{a}}\right)\right\}\right] = \mathcal{O}\left(1\right)$. Overall $\mathbb{E}\left[\mathbbm{1}\left\{\tilde{\pmb{a}}(t) = \tilde{\pmb{a}}\right\}\right] \leqslant \frac{|\mathcal{K}^+|}{\epsilon} + \frac{8|\mathcal{K}^+|^3|\mathcal{N}^+|}{\epsilon\delta^2} + t_0 + \left(\frac{1}{\epsilon} + 1\right)\frac{64(N+1)K}{\delta^2} + \mathcal{O}\left(\frac{|\mathcal{N}^+|K|}{\epsilon}\log\log T\right) + \mathcal{O}(1) = \mathcal{O}\left(\frac{|\mathcal{N}^+|K|}{\epsilon}\log\log T\right)$, which concludes the proof.

F. Proof of Lemma 3 (Upper-bound on the Number of Iterations of GRAB for which $\tilde{\pi}(t) \notin \Pi_{\rho}(\tilde{a})$)

Proof of Theorem 3. Let $\tilde{\mathbf{a}}$ be a K-permutation of L items. If $\Pi_{\boldsymbol{\rho}}(\tilde{\mathbf{a}})$ contains all the permutations of K elements, the set $\{t: \tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, \tilde{\boldsymbol{\pi}}(t) \notin \Pi_{\boldsymbol{\rho}}(\tilde{\boldsymbol{a}})\}$ is empty.

Otherwise, let denote δ the smallest non-zero gap between the probability of click at position k and the probability of click at position $k' \neq k$: $\delta \stackrel{def}{=} \min \left\{ \rho_{\tilde{a}_k,k} - \rho_{\tilde{a}_{k'},k'} : (k,k') \in [K]^2, \rho_{\tilde{a}_k,k} - \rho_{\tilde{a}_{k'},k'} > 0 \right\}$. The gap δ is the minimum on a finite set, so $\delta > 0$.

By definition of $\tilde{\pi}(t)$, $\hat{\rho}_{\tilde{a}_{\tilde{\pi}_1(t)}(t),\tilde{\pi}_1(t)}(t)\geqslant\hat{\rho}_{\tilde{a}_{\tilde{\pi}_2(t)}(t),\tilde{\pi}_2(t)}(t)\geqslant\cdots\geqslant\hat{\rho}_{\tilde{a}_{\tilde{\pi}_K(t)}(t),\tilde{\pi}_K(t)}(t)$, so,

$$\begin{split} \{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{\pmb{\pi}}(t) \notin \Pi_{\pmb{\rho}}\left(\tilde{\pmb{a}}\right)\} &= \bigcup_{\tilde{\pmb{\pi}} \in \mathcal{P}_K^K} \bigcup_{k \in [K-1]} \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{\pmb{\pi}}(t) = \tilde{\pmb{\pi}}, \rho_{\tilde{a}_{\tilde{\pi}_k}, \tilde{\pi}_k} < \rho_{\tilde{a}_{\tilde{\pi}_{k+1}}, \tilde{\pi}_{k+1}}\right\} \\ &\subseteq \bigcup_{\tilde{\pmb{\pi}} \in \mathcal{P}_K^K} \bigcup_{k \in [K-1]} \left\{t: \tilde{\pmb{a}}(t) = \tilde{\pmb{a}}, \tilde{\pmb{\pi}}(t) = \tilde{\pmb{\pi}}, \inf_{\text{or } |\hat{\rho}_{\tilde{a}_{\tilde{\pi}_k}, \tilde{\pi}_k}(t) - \rho_{\tilde{a}_{\tilde{\pi}_k}, \tilde{\pi}_k}| > \frac{\delta}{2}} \\ &= \bigcup_{\tilde{\pmb{\pi}} \in \mathcal{P}_K^K} \bigcup_{k \in [K]} \Lambda_{\tilde{\pmb{\pi}}, k}, \end{split}$$

with $\Lambda_{\tilde{\boldsymbol{\pi}},k} \stackrel{def}{=} \left\{ t : \tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, \tilde{\boldsymbol{\pi}}(t) = \tilde{\boldsymbol{\pi}}, |\hat{\rho}_{\tilde{a}_{\tilde{\pi}_k},\tilde{\pi}_k}(t) - \rho_{\tilde{a}_{\tilde{\pi}_k},\tilde{\pi}_k}| > \frac{\delta}{2} \right\}$, for any ranking of positions $\tilde{\boldsymbol{\pi}} \in \mathcal{P}_K^L$ and any rank $k \in [K]$.

Let $\tilde{\pi} \in \mathcal{P}^L_K$ be a ranking of positions, and $k \in [K]$ be a rank. $\Lambda_{\tilde{\pi},k} \subseteq \bigcup_{s \in \mathbb{N}} \Lambda_{\tilde{\pi},k}(s)$, with $\Lambda_{\tilde{\pi},k}(s) \stackrel{def}{=} \{t \in \Lambda_{\tilde{\pi},k} : \tilde{T}_{\tilde{a}}(t) = s\}$. $|\Lambda_{\tilde{\pi},k}(s)| \leqslant 1$ as $\tilde{T}_{\tilde{a}}(t)$ increases for each $t \in \Lambda_{\tilde{\pi},k}$. Note that for each $s \in \mathbb{N}$ and $n \in \Lambda_{\tilde{\pi},k}(s)$, $T_{\tilde{a}_{\tilde{\pi}_k},\tilde{\pi}_k}(n) \geqslant 1$

Algorithm 2 KL-ComUCB1 (generic version)

```
Input: set of elements E, set of arms \mathcal{A} t \leftarrow 1 while \{e \in E : T_e(t) = 0\} \neq \varnothing do \tilde{E} \leftarrow \{e \in E : T_e(t) = 0\} \tilde{\mathcal{A}} \leftarrow \{a \in \mathcal{A} : a \cap \tilde{E} \neq \varnothing\} recommend a(t) = \operatorname*{argmax} \sum_{a \in \tilde{\mathcal{A}}} b_e(t) observe the weights [w_e(t) : e \in a] t \leftarrow t + 1 end while t_0 \leftarrow t for t = t_0, t_0 + 1, \ldots do recommend a(t) = \operatorname*{argmax} \sum_{a \in \mathcal{A}} b_e(t) observe the weights [w_e(t) : e \in a] end for
```

 $T_{\tilde{\boldsymbol{a}}}(n) \geqslant \tilde{T}_{\tilde{\boldsymbol{a}}}(n)/L = s/L$. Then, by Lemma 4

$$\begin{split} \mathbb{E}\left[|\Lambda_{\tilde{\pmb{\pi}},k}|\right] &= \mathbb{E}\left[\sum_{t=1}^{T}\mathbbm{1}\{t\in\Lambda_{\tilde{\pmb{\pi}},k}\}\right] \\ &= \mathbb{E}\left[\sum_{t=1}^{T}\mathbbm{1}\left\{t\in\Lambda_{\tilde{\pmb{\pi}},k},|\hat{\rho}_{\tilde{a}_{\tilde{\pi}_k},\tilde{\pi}_k}(t)-\rho_{\tilde{a}_{\tilde{\pi}_k},\tilde{\pi}_k}|>\frac{\delta}{2}\right\}\right] \\ &\leqslant \frac{4L}{\delta^2} \end{split}$$

Hence,

$$\begin{split} \mathbb{E}\left[\sum_{t=1}^{T}\mathbb{1}\{\tilde{\boldsymbol{a}}(t) = \tilde{\boldsymbol{a}}, \tilde{\boldsymbol{\pi}}(t) \notin \Pi_{\boldsymbol{\rho}}\left(\tilde{\boldsymbol{a}}\right)\}\right] \leqslant \sum_{\tilde{\boldsymbol{\pi}} \in \mathcal{P}_{K}^{K}} \sum_{k \in [K]} \mathbb{E}\left[\Lambda_{\tilde{\boldsymbol{\pi}}, k}\right] \\ \leqslant \frac{4LKK!}{\delta^{2}} \\ = \mathcal{O}\left(LKK!\right), \end{split}$$

which concludes the proof.

G. KL-CombUCB and its Application to PBM Setting

In this section we first define the generic combinatorial semi-bandit algorithm KL-CombUCB and we compare two upper-bounds on its regret. Then, we present the application of KL-CombUCB to PBM setting and discuss its relation to GRAB.

G.1. KL-CombUCB for Generic Setting

CombUCB1 (Kveton et al., 2015) is a bandit algorithm handling the following combinatorial setting. Let E be a set of elements and $\mathcal{A} \subseteq \{0,1\}^E$ be a set of arms, where each arm \boldsymbol{a} is a subset of E. Following the terminology used in (Kveton et al., 2015), E is the *ground set* and E the *feasible set*. At each iteration, the bandit algorithm chooses a subset of elements $\boldsymbol{a} \in \mathcal{A}$ and receives the reward $\sum_{e \in \boldsymbol{a}} w_e$, where \boldsymbol{w} is an independent draw of a distribution ν on $[0,1]^E$. Given these assumptions, CombUCB1 chooses an arm $\boldsymbol{a}(t)$ at each iteration, aiming at minimizing the total regret defined as usual.

Algorithm 3 KL-ComUCB1 (applied to PBM)

```
Input: number of items L, number of positions K for t=1,2,\ldots,L do  \text{recommend } \boldsymbol{a}(t) = (((t-1)\%L)+1,(t\%L)+1,\ldots,((t+K-2)\%L)+1)  observe the clicks-vector \boldsymbol{c}(t) end for  \text{for } t=L+1,L+2,\ldots \text{ do}   \text{recommend } \boldsymbol{a}(t) = \underset{\boldsymbol{a}\in\mathcal{P}_K^L}{\operatorname{argmax}} \sum_{k=1}^K b_{a_k,k}(t)  observe the clicks-vector \boldsymbol{c}(t) end for
```

We denote $\rho_e \stackrel{def}{=} \mathbb{E}_{\boldsymbol{w} \sim \nu} \left[w_e \right]$ the expected reward associated to element e, $\mu_{\boldsymbol{a}} \stackrel{def}{=} \mathbb{E}_{\boldsymbol{w} \sim \nu} \left[\sum_{e \in \boldsymbol{a}} w_e \right] = \sum_{e \in \boldsymbol{a}} \rho_e$ the expected reward when choosing the arm $\boldsymbol{a} \in \mathcal{A}$, and $\mu^* \stackrel{def}{=} \max_{\boldsymbol{a} \in \mathcal{A}} \mu_{\boldsymbol{a}}$ the best expected reward. We also denote $\Delta_{\boldsymbol{a}} \stackrel{def}{=} \mu^* - \mu_{\boldsymbol{a}}$ the gap between the best expected reward and the reward of an arm \boldsymbol{a} , and $\Delta_{min} \stackrel{def}{=} \min_{\boldsymbol{a} \in \mathcal{A}: \Delta_{\boldsymbol{a}} > 0} \Delta_{\boldsymbol{a}}$ the smallest gap of a suboptimal arm. Finally, $K \stackrel{def}{=} \max_{\boldsymbol{a} \in \mathcal{A}: \mu_{\boldsymbol{a}^*} = \mu^*} |\boldsymbol{a} \setminus \boldsymbol{a}^*|$ denotes the maximum size of an arm (meaning the maximum number of chosen elements), $K_{\boldsymbol{a}} \stackrel{def}{=} \min_{\boldsymbol{a}^* \in \mathcal{A}: \mu_{\boldsymbol{a}^*} = \mu^*} |\boldsymbol{a} \setminus \boldsymbol{a}^*|$ is the smallest number of elements to remove from \boldsymbol{a} to get an optimal arm, and $K_{max} \stackrel{def}{=} \max_{\boldsymbol{a} \in \mathcal{A}: \mu_{\boldsymbol{a}} \neq \mu^*} K_{\boldsymbol{a}}$ is its lager value.

In our paper, we use the Kullback-Leibler variation of CombUCB1 which chooses the arm based on the index $b_e(t)$ (defined hereafter) instead of the usual confidence upper-bound derived from the Hoeffding's inequality. The corresponding algorithm (KL-CombUCB) also assumes that the weight-vector $\boldsymbol{w}(t)$ is in $\{0,1\}^E$. KL-CombUCB is depicted by Algorithm 2 which uses the following notations. At each iteration t, we denote

$$\hat{\rho}_e(t) \stackrel{def}{=} \frac{1}{T_e(t)} \sum_{s=1}^{t-1} \mathbb{1}\{e \in \boldsymbol{a}(s)\} w_e(s)$$

the average number of clicks obtained by the element e, where

$$T_e(t) \stackrel{def}{=} \sum_{s=1}^{t-1} \mathbb{1}\{e \in \boldsymbol{a}(s)\}$$

is the number of times element e has been selected; $\hat{\rho}_e(t) \stackrel{def}{=} 0$ when $T_e(t) = 0$. The statistics $\hat{\rho}_e(t)$ are paired with their respective *indices*

$$b_e(t) \stackrel{def}{=} f(\hat{\rho}_e(t), T_e(t), t),$$

where $f(\hat{\rho}, s, t)$ stands for

$$\sup\{p \in [\hat{\rho}, 1] : s \times \text{kl}(\hat{\rho}, p) \le \log(t) + 3\log(\log(t))\},\$$

with

$$kl(p,q) \stackrel{def}{=} p \log \left(\frac{p}{q}\right) + (1-p) \log \left(\frac{1-p}{1-q}\right)$$

the *Kullback-Leibler divergence* from a Bernoulli distribution of mean p to a Bernoulli distribution of mean q; $f(\hat{\rho}, s, t) \stackrel{def}{=} 1$ when $\hat{\rho} = 1$, s = 0, or t = 0.

Kveton et al. prove that the regret of CombUCB1 is upper-bounded by $\mathcal{O}(|E|K/\Delta_{min}\log T)$, and a similar proof would lead to the same upper-bound for KL-CombUCB. In our paper we prove in Theorem 2 a completely different regret upper-bound for KL-CombUCB: $\mathcal{O}(|\mathcal{A}|K_{max}^2/\Delta_{min}\log T)$. For most combinatorial bandit settings, this new bound is useless since $|\mathcal{A}|\gg |E|$, and $K_{max}\approx K$. However, the analysis of GRAB involves an application of KL-CombUCB to a setting where the new bound is smaller than the standard one as $|\mathcal{A}|=|E|-1$ and $K_{max}=2$.

Algorithm 4 S-GRAB: Static Graph for unimodal RAnking Bandit

G.2. KL-CombUCB Applied to PBM Setting

In the experiments (Section 6), we apply KL-CombUCB to PBM bandit setting by choosing the *ground set* $E = [L] \times [K]$, the *feasible set* $\Theta = \{\{(a_k, k) : k \in [K]\} : \mathbf{a} \in \mathcal{P}_K^L\}$, and the *expected weights* $\rho_{(i,k)} = \theta_i \kappa_k$ for any "element" $(i,k) \in E$. Note that the observed weights of the generic setting correspond to the clicks-vector in the PBM setting.

The corresponding algorithm, depicted by Algorithm 3, recommends at each iteration t the best permutation given the indices $b_{i,k}(t)$ defined for GRAB. This optimization problem is a *linear sum assignment problem* which is solvable in $\mathcal{O}(K^2(L + \log K))$ time (Ramshaw & Tarjan, 2012). Note the close relationship with GRAB:

- both algorithms solve a linear sum assignment problem, they only differ from the metric to optimize: $\sum_{k=1}^K \hat{\rho}_{a_k,k}(t)$ for GRAB vs. $\sum_{k=1}^K b_{a_k,k}(t)$ for KL-CombUCB;
- both algorithms recommend the best permutation \boldsymbol{a} regarding $\sum_{k=1}^K b_{a_k,k}(t)$, they only differ from the considered set of permutations: $\{\tilde{\boldsymbol{a}}(t)\} \cup \mathcal{N}_{\tilde{\boldsymbol{\pi}}(t)}(\tilde{\boldsymbol{a}}(t))$ for GRAB vs. \mathcal{P}_K^L for KL-CombUCB.

By considering a larger set of permutations, KL-ComUCB1 suffers a $\mathcal{O}(LK^2/\Delta_{min}\log T)$ regret (by applying (Kveton et al., 2015) bound), which is higher than the upper-bound on the regret of GRAB by a factor K^2 .

H. S-GRAB: OSUB on a Static Graph

The algorithm S-GRAB, depicted in Algorithm 4, is similar to GRAB except that it explores a static graph G = (E, V) defined by

$$\begin{split} V &\stackrel{def}{=} \mathcal{P}_K^L, \\ E &\stackrel{def}{=} \left\{ (\boldsymbol{a}, \boldsymbol{a} \circ (k, k')) : k, k' \in [K]^2, k > k' \right\} \cup \left\{ (\boldsymbol{a}, \boldsymbol{a}[k := i]) : k \in [K], i \in [L] \setminus \boldsymbol{a}([K]) \right\}. \end{split}$$

This graph is chosen to ensure that with PBM setting any sub-optimal recommendation has a strictly better recommendation in its neighborhood given G. This graph is fixed and does not require the knowledge of a mapping \mathcal{P} , but its degree is also about K times larger than the degree of the graphs handled by GRAB.

As for GRAB, any recommendation in the neighborhood of the leader given G differs with the leader at, at most two positions. Therefore a proof similar to the one of Theorem 1 ensures that S-GRAB's regret is upper-bounded by $\mathcal{O}\left(LK/\Delta_{min}\log T\right)$. This regret upper-bound is higher than GRAB's one by a factor K due to the larger size of the considered neighborhoods. However, this regret remains smaller than KL-CombUCB's one by a factor K thanks to the bounded number of differences between the leader and the arm played.

References

- Combes, R. and Proutière, A. Unimodal bandits: Regret lower bounds and optimal algorithms. In *proc. of the 31st Int. Conf. on Machine Learning, ICML'14*, 2014.
- Garivier, A. and Cappé, O. The kl-ucb algorithm for bounded stochastic bandits and beyond. In *proc. of the 24th Annual Conf. on Learning Theory*, COLT'11, 2011.
- Kveton, B., Wen, Z., Ashkan, A., and Szepesvari, C. Tight Regret Bounds for Stochastic Combinatorial Semi-Bandits. In proc. of the 18th Int. Conf. on Artificial Intelligence and Statistics, AISTATS'15, 2015.
- Ramshaw, L. and Tarjan, R. E. On minimum-cost assignments in unbalanced bipartite graphs. Technical report, HP research labs, 2012.