Lösungsvorschlag zu Aufgabenblatt 3

Aufgabe 1

(a) **Behauptung:** L_0 ist DEA-Sprache.

```
Beweis: M_0 sei der folgende DEA, mit L_{M_0} = L_0.

\Sigma = \{a, b\}
Q = \{(i, j) \mid 0 \le i \le 3, \ 0 \le j \le 2\}
F = \{(0, 0)\}
S = (0, 0)
\Delta = \{(((i, j), a), \ (i + 1 \ mod \ 4, \ j))\} \cup \{(((i, j), b), \ (i, \ j + 1 \ mod \ 3))\}
```


(b) Vergleiche Übungsblatt 2, Aufgabe 2.5 a)

Behauptung: L_1 ist DEA-Sprache.

Beweis:

Informal:

Wir konstruieren für jede Restklasse bezüglich modulo 6 einen Zustand. Um die Transitionen zu erhalten: Wir "verfolgen" einen Wert von einer Restklasse in eine andere, wenn man den Wert mit 2 multipliziert (d.h. eine 0 nach dem bisher gelesenen Teilwort lesen), bzw. ihn darüber hinaus um 1 erhöht (d.h. es wird eine 1 als nächstes Zeichen gelesen). Das leere Wort ε kann auch als die Kodierung der 0 interpretiert werden, da die leere Summe als 0 definiert ist.

Formal:

Sei M_1 wie folgt definiert und es gilt $L_{M_1} = L_1$.

$$\Sigma = \{0, 1\}$$

$$Q = \{i \mid 0 \le i \le 5\}$$

$$F = \{0\}$$

$$s = 0$$

 Δ , siehe Graph, Transitionsbeschriftung.

Lösungsvorschlag zu Aufgabenblatt 3

(c) Vergleiche Übungsblatt 2, Aufgabe 2.5 b)

Behauptung: L_2 ist keine DEA-Sprache.

Definiere für gerades $n \ge 2$: $w_n := 10^{n-2}1$. Sei x die kleinste Binärzahl ungerader Länge, sodass $w_n x \in L_2$. Wegen $|0^{n-2}1x|$ gerade, existiert ein $k \in \mathbb{N}$ mit $\langle 10^{n-2}1x \rangle = 2^{2k} + a$, wobei $a = \langle 1x \rangle > 0$. Da a minimal gilt:

$$\begin{aligned} 2^{2k} + a &= (2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 \\ \Rightarrow a &= 2^{k+1} + 1 \text{ und } x = 0^k 1 \\ \Rightarrow 2^{n+k} + 2^{k+1} + 1 &= \langle 10^{n-2} 10^k 1 \rangle = 2^{2k} + 2^{k+1} + 1 \\ \Rightarrow n &= k \text{ und } x = 0^n 1 \end{aligned}$$

Damit ist $x = 0^n 1$ das kleinste Element in $F_{L_2}(w_n)$ mit ungerader Länge. Also gibt es unendlich viele Fortsetzungssprachen und L_2 ist nicht regulär.

(d) **Behauptung:** L_3 ist DEA-Sprache.

Beweis:

Wir definieren ein Wort $w \in \Sigma^*$ mit $\langle w \rangle = y$ und y > 2. Des weiteren sei $w_{x_1} \in F_{L_3}(w), \langle w_{x_1} \rangle = x_1$, sodass $\langle ww_{x_1}\rangle = y\cdot 2^{|w_{x_1}|} + x_1$ eine Primzahl ist. Diese Kombination existiert wegen dem Hinweis. Wir definieren

$$\langle w^{(1)} \rangle = y$$

 $\langle w^{(2)} \rangle = y \cdot x_1$
 $\langle w^{(3)} \rangle = y \cdot x_2$

 $\langle w^{(3)} \rangle = y \cdot x_1 \cdot x_2$, mit $x_2 = \langle w_{x_2} \rangle$, sodass $\langle w^{(2)} w_{x_2} \rangle$ Prim ist.

 $\langle w^{(i)} \rangle = y \cdot \prod_{k=1}^{i-1} x_k$, mit $x_k = \langle w_{x_k} \rangle$, sodass $\langle w^{(k)} w_{x_k} \rangle$ Prim ist $\forall j. \ 1 \leq j \leq i-1$. Sei nun $i < j. \ F_{L_3} \left(w^{(i)} \right)$ und $F_{L_3} \left(w^{(j)} \right)$ unterscheiden sich mindest in w_{x_i} , denn $w^{(i)} w_{x_i} \in L_3$, aber:

$$\langle w^{(j)}w_{x_i}\rangle = 2^{|w_{x_i}|} \cdot \langle w^{(j)}\rangle + \langle w_{x_i}\rangle$$

$$= 2^{|w_{x_i}|} \cdot y \cdot x_1 \cdot x_2 \cdot \dots \cdot x_{j-1} + x_i$$

$$= x_i \cdot \left(2^{|w_{x_i}|} \cdot y \cdot x_1 \cdot x_2 \cdot \dots \cdot x_{i-1} \cdot x_{i+1} \cdot \dots \cdot x_{j-1} + 1\right)$$

und damit keine Primzahl. Daraus folgt, dass es unendlich viele Fortsetzungssprachen gibt.

Aufgabe 2

Der entsprechende Automat sieht wie folgt aus (unerreichbare Zustände sind nicht aufgeführt).

Lösungsvorschlag zu Aufgabenblatt 3

Aufgabe 3

Wir verwenden das Algorithmus zur DEA Minimierung aus der Vorlesung.

$$i = 0$$
:

$$i=0:$$

$$U_0=\{(1,i),(6,i)\mid i\in\{2,3,4,5\}\}$$

$$N=\{(1,6),(i,j)\mid i,j\in\{2,3,4,5\}, i\neq j\}$$

$$i=1:$$

$$U_1=\{(2,3),(2,4),(3,5),(4,5)\}$$

$$N=\{(1,6),(2,5),(3,4)\}$$

$$i=2:$$

$$U_2=\{\}$$

$$N=\{(1,6),(2,5),(3,4)\}$$

Die von M akzeptierte Sprache $L = \{a^*(ba^*ba^*ba^*)^*\}$ wird auch von folgendem DEA $M^{'}$ erkannt:

Lösungsvorschlag zu Aufgabenblatt 3

Aufgabe 4

(a) Ein NEA, der L_n erkennt ist gegeben durch:

(b) Seien $w = w_0 w_1 ... w_{n-1} \in \{a,b\}^n$ und $v = v_0 v_1 ... v_{n-1} \in \{a,b\}^n$. Seien $F_{L_n}(w)$ und $F_{L_n}(v)$ die Fortsetzungssprachen zu w und v. Sei $w \neq v$ dann existiert i < n mit $w_i \neq v_i$. Ohne Beschränkung darf angenommen werden, dass $w_i = a$ und $v_i = b$. Dann gilt $b^i \in F_{L_n}(w)$ aber $b^i \notin F_{L_n}(v)$. Damit ist $F_{L_n}(w) \neq F_{L_n}(v)$ für alle unterschiedlichen w und v aus $\{a,b\}^n$. Damit existieren mindestens 2^n Fortsetzungssprachen von L_n . Für jede Fortsetzungssprache muss der DEA mindestens einen anderen Zustand besitzen.