

Your team today

JustinaData Science Lead,
MSD Animal Health

JosefData Scientist in
Workday

MartinData Scientist in
Workday

Today's structure

- 1 Linear Regression
- 2 Decision Tree Regression
- 3 Random Forest Regression
- 4 How variables are contributing to prediction?
- 5 Performance evaluation
- 6 Regression methods summary

REGRESSION TASKS - INTRODUCTION

Regression vs Classification

Making predictions

Regression - predicts continuous variable

Classification - predicts categorical or discrete variable

Regression

Aim: Predict continuous numerical values.

Regression

Aim: Predict continuous numerical values.

Algorithms: Linear Regression, Polynomial Regression, Support Vector Regression, Decision Trees, Random Forests, Neural Networks, etc.

Regression

Aim: Predict continuous numerical values.

Algorithms: Linear Regression, Polynomial Regression, Support Vector Regression, Decision Trees, Random Forests, Neural Networks, etc.

Evaluation Metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared, etc.

Regression Use Cases

Predicting house selling prices based on location, n. of bedrooms, ..

Predicting **flight delays** based on location, airline, weather conditions, ..

Predicting amount of synthesized protein based on temperature, pH, feeding of cells,...

Predicting **number of sold units** based on location, material, colors, ..

LINEAR REGRESSION

Linear Regression

youtube	sales	47
276.12	26.52	
53.40	12.48	
20.64	11.16	
181.80	22.20	
216.96	15.48	
10.44	8.64	
69.00	14.16	
144.24	15.84	
10.32	5.76	

Linear Regression

youtube	sales	
276.12	26.52	
53.40	12.48	
20.64	11.16	
181.80	22.20	
216.96	15.48	
10.44	8.64	
69.00	14.16	
144.24	15.84	
10.32	5.76	
239.76	?	
79.32	?	
257.64	?	

Linear Regression

youtube	sales
276.12	26.52
53.40	12.48
20.64	11.16
181.80	22.20
216.96	15.48
10.44	8.64
69.00	14.16
144.24	15.84
10.32	5.76
239.76	?
79.32	.5
257.64	?

Split data into train test

Use majority of data for training the model and minority for evaluation of performance

Can the model generalize? Evaluate model on unseen data

L'aluate model on discerruate

Rule of thumb - 70%/30% or 80%/20%

Polynomial regression

Can you draw straight line through this data?

Can you draw straight line through this data?

Now you can

DECISION TREE REGRESSION

Non-linear relationship

Non-linear relationship

Regression tree example

Regression tree example - multiple variables

Dosage	Age	Sex	Etc.	Drug Effect.
10	25	Female		98
20	73	Male		0
35	54	Female		100
5	12	Male		44
etc	etc	etc	etc	etc

Dosage	Drug Effect.
10	58
20	60
35	57
5	44
etc	etc

What condition do we start with?

What condition do we start with?

We try all possible thresholds, and see which threshold gives us the lowest

prediction error.

What condition do we start with?

We try all possible thresholds, and see which threshold gives us the lowest prediction error.

Error = Predicted value - Observed value

Dosage	Drug Effect.
10	58
20	60
35	57
5	44
etc	etc

Then we will look at the difference between prediction (the average) and the observed value - **the residual** (the error).

We want to calculate the sum of all the residuals.

$$(0 - 0)^2 + (0 - 38.8)^2 + (0 - 38.8)^2 + (0 - 38.8)^2$$

+ $(5 - 38.8)^2 + (20 - 38.8)^2 + (100 - 38.8)^2$
+ $(100 - 38.8)^2 + ... + (0 - 38.8)^2$
= 27 469

We can note down the threshold we used and the sum of squared residuals into the plot below.

Sum of Squared Residuals = 27 469

The same way, we can try to use many different thresholds and always calculate the sum of squared residuals.

The dosage of **14.5** had the smallest sum of squared residuals.

The dosage of **14.5** had the smallest sum of squared residuals.

→ This is the first condition in our tree.

Then we continue testing other thresholds to get further conditions.

However, we should set some minimum number of observations in the leaf node.

Predicting effectiveness using multiple variables

Dosage	Age	Sex	Drug Effect.
10	25	Female	98
20	73	Male	0
35	54	Female	6
5	12	Male	44
etc	etc	etc	etc

Usually we have more than one explanatory variables.

In that case, we calculate sum of squared residuals for every threshold of every variable, and we choose the one with the lowest value.

Predicting effectiveness using multiple variables

We select the candidate with the lowest SSR as the root node of our tree:

Predicting effectiveness using multiple variables

We select the candidate with the lowest SSR as the root node of our tree:

Then we continue the same way, and we may end up with a tree like this.

Regression Tree - Summary

Regression tree follows a set of if-else conditions to predict a continuous variable.

Specific conditions are chosen based on the lowest sum of squared residuals.

Decision Tree: Pros and Cons

Advantages

- Interpretable and easy to understand: Decision trees provide a transparent and intuitive representation of the decision-making process.
- Handling both numerical and categorical data: Decision trees can handle both numerical and categorical features without requiring extensive data preprocessing.
- Feature importance estimation
- Robustness to outliers and missing data

Decision Tree: Pros and Cons

Disadvantages

- Overfitting: Decision trees are prone to overfitting, particularly when the tree becomes too deep or complex.
- Biased towards features with high cardinality: Decision trees tend to favor features with high cardinality (many unique values) because they can potentially provide more splits and finer partitions.
- Data imbalance: They may prioritize the majority class and struggle to accurately predict the minority class.
- **High variance:** They can produce different trees and predictions when trained on different subsets of the data.

Quiz 1 Which statement is false?

- **1.** When decision tree is trained, all thresholds per each explanatory variable are tested as a potential condition.
- **2.** Decision tree minimizes the sum of squared residuals when it selects the decision conditions.
- **3.** Decision tree maximizes the sum of squared residuals when it selects the decision conditions.
- **4.** It is good to control the minimum number of observations in the leaf node when specifying the model.

Quiz 1 Which statement is false?

- **1.** When decision tree is trained, all thresholds per each explanatory variable are tested as a potential condition.
- 2. Decision tree minimizes the sum of squared residuals when it selects the decision conditions.
- 3. Decision tree maximizes the sum of squared residuals when it selects the decision conditions.
- **4.** It is good to control the minimum number of observations in the leaf node when specifying the model.

RANDOM FOREST REGRESSION

Regression Tree: The starting algorithm

- Decision tree is a simple algorithm, it has low bias but high variance
- Usually, a large number of decision trees is combined to reduce the variance
- Combining trees is known as an 'ensemble method'
- One of the most widely used ensemble methods is Random Forest

What is Random Forest

- A widely used algorithm, an ensemble method that builds multiple decision trees
- The forest can use for example 50, 100, 200, 500, ... trees → depends on the dataset size
- Can be used both for classification and regression

What is Random Forest

In classification, the prediction is the majority vote of all decision trees' predictions.

What is Random Forest

In regression, the prediction is the average of all decision trees' predictions.

Bootstrapping

Bootstrapping is a resampling technique used in statistics and machine learning to create multiple datasets with replacement from a given dataset.

Random Forest - How it works

 Each tree is build based on a random sample from training data.

Random Forest - How it works

- Each tree is build based on a random sample from training data.
- The algorithm randomly selects a subset of explanatory variables for each split in each decision tree.

Random Forest - How it works

- Each tree is build based on a random sample from training data.
- The algorithm randomly selects a subset of explanatory variables for each split in each decision tree.
- Trees' predictions are averaged to get the final output.

Random Forest - Hyperparameters tuning

- a) Specify the maximum depth of the trees
- a) Increase or decrease the **number** of trees
- a) Specify the maximum number of features to be included at each node split

Random Forest: Pros and Cons

Advantages

- One of the most accurate learning algorithms available
- Efficient with large datasets
- It can handle thousands of input variables without variable deletion
- Gives us variable importance
- Maintains accuracy when a large proportion of the data is missing

Random Forest: Pros and Cons

Disadvantages

- May not get good results for **small data or low-dimensional data** (data with few features) the randomness becomes greatly reduced
- Black box model

Quiz 2 Which statement is false?

- **1.** All explanatory variables are used in each decision tree in the random forest.
- 2. Random forest has a lower variance than a single decision tree.
- 3. Number of trees in a random forest can be as high as 1000, if we have enough data.

Quiz 2 Which statement is false?

- All explanatory variables are used in each decision tree in the random forest.
- 2. Random forest has a lower variance than a single decision tree.
- 3. Number of trees in a random forest can be as high as 1000, if we have enough data.

Bagging vs Boosting

Bagging (Bootstrap Aggregating)

- Bagging involves creating multiple base models, each trained on a random subset of the training data, obtained through bootstrapping (sampling with replacement).
- The base models are typically trained independently and in parallel
- During prediction, the final prediction is made by aggregating the predictions of all the base models, such as by taking the average (for regression) or majority voting (for classification).
- Bagging helps **reduce variance** and overfitting by creating diverse czechitas base models that have different sources of randomness.

Bagging vs Boosting

Boosting

- Boosting involves creating an ensemble of base models sequentially, where each subsequent model is trained to correct the mistakes made by the previous models.
- During prediction, the final prediction is made by **combining the predictions** of all the base models, with each model's contribution weighted based on its performance.
- Boosting helps **reduce bias** and improve the overall performance by iteratively refining the ensemble to focus on the challenging instances in the dataset

Decoding black boxes:

Partial dependence plots & Shapley values

How variables are contributing to final prediction in different algorithms: linear methods

Linear regression?

Straightforward – just look to the estimated formula!!!

crime rate = 29.4 + 2.86 unemployment rate + ε

And often linear models are frowned upon because of being too simple - linear!

How variables are contributing to final prediction in different algorithms: non-linear methods

Random forests

Support vector machine

Neural networks

Conseptual intro

Cross-validation

Model agnostic ways to decode black box: Partial dependence plots, Shapley values

Partial dependence plot shows the marginal effect one or two features have on the predicted outcome of a machine learning model

2 - average

1 - average

0 - average

1 - average

2 - average

Shapley value is the average marginal contribution of a feature value across all possible coalitions

Describes relationship between model inputs and outputs

High level steps

- Understand your dataset
 - What data means
 - How data looks like (plot)
- Build some model (of your choise)
- Apply functions to plot partial dependence plots
- Analyze

Example dataset Boston housing prices

lon ‡	lat ‡	cmedv =	crim =	zn 🌼	indus [‡]	chas	nox =	rm ÷	age ‡	dis =	rad ‡	tax =	ptratio	b ‡	Istat =
-70.9550	42,2550	24.0	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
-70.9500	42.2875	21.6	0.02731	0.0	7.07	0	0,4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
-70.9360	42.2830	34.7	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03

- 1. CRIM per capita crime rate by town
- 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- 3. INDUS proportion of non-retail business acres per town.
- 4. CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- 5. NOX nitric oxides concentration (parts per 10 million)
- 6. RM average number of rooms per dwelling
- 7. AGE proportion of owner-occupied units built prior to 1940
- 8. DIS weighted distances to five Boston employment centres
- 9. RAD index of accessibility to radial highways
- 10. TAX full-value property-tax rate per \$10,000
- 11. PTRATIO pupil-teacher ratio by town
- 12. B 1000(Bk 0.63)² where Bk is the proportion of blacks by town
- 13. LSTAT % lower status of the population
- 14. MEDV Median value of owner-occupied homes in \$1000's
- https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Partial dependence plots

One way – one variable impact to predicted values

Two way – two variables impact to predicted values

lon ‡	lat ‡	cmedv =	crim ‡	zn ‡	indus ‡	chas ‡	nox ‡	rm ÷	age ‡	dis ‡	rad ‡	tax ‡	ptratio =	b ‡	Istat
-70.9550	42.2550	24.0	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
-70.9500	42.2875	21.6	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
-70.9360	42.2830	34.7	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
-70.9280	42,2930	33.4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
-70.9220	42.2980	36.2	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
-70.9165	42.3040	28.7	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7	394.12	5.21
-70.9360	42.2970	22.9	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2	395.60	12.43
-70.9375	42.3100	22.1	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2	396.90	19.15
-70.9330	42.3120	16.5	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93
-70.9290	42.3160	18.9	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2	386.71	17.10
-70.9350	42.3160	15.0	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2	392.52	20.45
-70.9440	42.3170	18.9	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267	5	311	15.2	396.90	13.27
-70.9510	42.3060	21.7	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509	5	311	15.2	390.50	15.71
-70.9645	42.2920	20.4	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26
-70.9720	42.2870	18.2	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	4	307	21.0	380.02	10.26
Propo	rtion o	f popula	tion tha	at is lov	ver statu	1S = 1/3	2 (prop	ortion o	of adult	s witho	out, son	ne	21.0	395.62	8.47
Proportion of population that is lower status = 1/2 (proportion of adults without, some high school education and proportion of male workers classified as laborers). The											21.0	386.85	6.58		
			The second second							ASSOCIATION STREET		- 460	21.0	386.75	14.67
)		pecificat									more ii	i the	21.0	288.99	11.69
upper	bracke	ets of soc	iety tha	an in th	e lower	classes	s. Sourc	e: 1970	U. S. C	ensus					

- Creating grid
 Software can automatically choose some grid
- You can specify over how many equidistant points you want to analyze
- You can pass your own grid

lon ‡	lat ‡	cmedv	crim [©]	zn ‡	indus [‡]	chas ‡	nox ‡	rm ÷	age ‡	dis ‡	rad	tax	ptratio	b ‡	Istat
-70.9550	42.2550	24.0	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
-70.9500	42.2875	21.6	6,92731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	300,50	9.14
-70.9360	42.2830	34.7	0.02729	0.0										392.83	4.03
-70.9280	42,2930	33.4	0.03237	0.6								alue fro	om grid	394.63	2.94
-70.9220	42.2980	36.2	0.06905	0.0			el to ca			ted cn	nedv			396.90	5.33
-70.9165	42.3040	28.7	0.02985	0.0	3. Re		or all ro							394.12	5.21
-70.9360	42.2970	22.9	0.08829	12.5		Calculate mean predicted cmedy over 1 value from grid									12.43
-70.9375	42.3100	22.1	0.14455	12.5	5. Re	Repeat for other values from grid									
-70.9330	42.3120	16.5	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821		311	15.2	386.63	29.93
-70.9290	42.3160	18.9	0.17004	12.5	7.87	0	0.5240	6.004	85.9	6.5921	5	311	15.2	386.71	17.10
-70.9350	42.3160	15.0	0.22489	12.5	7.87	0	0.5240	6.377	94.3	6.3467	5	311	15.2	392.52	20.45
-70.9440	42.3170	18.9	0.11747	12.5	7.87	0	0.5240	6.009	82.9	6.2267		311	15.2	396.90	13.27
-70.9510	42.3060	21.7	0.09378	12.5	7.87	0	0.5240	5.889	39.0	5.4509		311	15.2	390.50	15.71
-70.9645	42.2920	20.4	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26
-70.9720	42.2870	18.2	0.63796	0.0	8.14	0	0.5380	6.096	84.5	4.4619	2	307	21.0	380.02	10.26
-70.9765	42.2940	19.9	0.62739	0.0	8.14	0	0.5380	5.834	56.5	4,4986	4	307	21.0	395.62	8.47
-70.9870	42.2985	23.1	1.05393	0.0	8.14	0	0.5380	5.935	29.3	4,4986	4	307	21.0	386.85	6.58
-70.9780	42.2850	17.5	0.78420	0.0	8.14	0	0.5380	5.990	81.7	4.2579	4	307	21.0	386.75	14.67
-70.9925	42,2825	20.2	0.80271	0.0	8.14	0	0.5380	5.456	36.6	3.7965	4	307	21.0	288.99	11.69

Partial dependence plots – one way – housing dataset example

What is different in these graphs?

Partial dependence plots – one way – housing dataset example

Compute individual conditional expectation (ICE) curves

There are as many as rows in the data used to train the model!

What is the difference between simple scatterplot and partial dependence graph?

Partial Dependence on "Istat"

Partial dependence plots – two way – good to analyze interactions

Logical indicating whether or not to restrict the values of the first two variables in pred.var to lie within the convex hull of their training values; this affects pred.grid. This helps reduce the risk of interpreting the partial dependence plot outside the region of the data (i.e., extrapolating).Default is FALSE.

Partial dependence plots – two way – good to analyze interactions

Logical indicating whether or not to restrict the values of the first two variables in pred.var to lie within the convex chull of their training values; this affects pred.grid. This helps reduce the risk of interpreting the partial dependence plot outside the region of the data (i.e., extrapolating). Default is FALSE.

Disadvantages of partial dependence plots

- 1. Assumes independence of variables
- 2. Artificial dataset created with values which realistically might not exist
- Why choosing average (could be corrected by choosing median or adding confidence interval over the ranges)

Shapley values

In cooperative game theory, the Shapley value is the average marginal contribution of a player across all possible coalitions in a game (Shapley, 1951)

- Game = prediction task for a single observation x0x0
- Players = the feature values of x0x0 that collaborate to receive the gain or payout
- Payout = prediction for x0x0 minus the average prediction for all training observations (i.e., baseline)

Shapley values

https://www.hitachi.com/rd/sc/aiblog/042/index.html

lon ‡	lat ‡	cmedv	crim =	zn 🌼	indus ‡	chas	nox	rm ÷	age ‡	dis	rad ÷	tax =	ptratio +	b	Istat ‡
-70.9550	42.2550	24.0	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
-70.9500	42.2875	21.6	0.02731	0.0	7.07	0	0.4690	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
-70.9360	42.2830	34.7	0.02729	0.0	7.07	0	0.4690	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
-70.9280	42.2930	33.4	0.03237	0.0	2.18	0	0.4580	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
-70.9220	42.2980	36.2	0.06905	0.0	2.18	0	0.4580	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
-70.9165	42.3040	28.7	0.02985	0.0	2.18	0	0.4580	6.430	58.7	6.0622	3	222	18.7	394.12	5.21
-70.9360	42.2970	22.9	0.08829	12.5	7.87	0	0.5240	6.012	66.6	5.5605	5	311	15.2	395.60	12.43
-70.9375	42.3100	22.1	0.14455	12.5	7.87	0	0.5240	6.172	96.1	5.9505	5	311	15.2	396.90	19.15
-70.9330	42.3120	16.5	0.21124	12.5	7.87	0	0.5240	5.631	100.0	6.0821	5	311	15.2	386.63	29.93
-70.9290	42.3160	18.9	0.17004	12.5	7.87	0	0.5240	111-1	How does the value of 19.5 of lstat				386.71	17.10	
-70.9350	42.3160	15.0	0.22489	12.5	7.87	0	0.5240						392.52	20.45	
-70.9440	42.3170	18.9	0.11747	12.5	7.87	0	0.5240						at row	396.90	13.27
-70.9510	42.3060	21.7	0.09378	12.5	7.87	0	0.5240	cor	mpare	d to a	verag	e prec	liction?	390.50	15.71
-70.9645	42.2920	20.4	0.62976	0.0	8.14	0	0.5380	3.949	01.0	4,7075	4	507	21.0	396.90	8.26
-70.9720	42.2870	18.2	0.63796	0.0	8.14	0	0.5380							380.02	10.26
-70.9765	42.2940	19.9	0.62739	0.0	8.14	0	0.5380	Ave	Average prediction = mean(fitted			395.62	8.47		
-70.9870	42.2985	23.1	1.05393	0.0	8.14	0	0.5380			•		າ row)	•	386.85	6.58
-70.9780	42.2850	17.5	0.78420	0.0	8.14	0	0.5380		v c	iluc ic	r caci	11000)		386.75	14.67
-70.9925	42.2825	20.2	0.80271	0.0	8.14	0	0.5380	3,430	30.0	3.7903	-	307	21.0	288.99	11.69

Shapley values

The main point of interpreting Shapley Value is to know that they

- 1. Work with model predictions
- 2. Represent the difference between one particular prediction (one home) versus average prediction across all homes

It is possible to manipulate the sample which is used for obtaining the average prediction:

- 1. In standard case Shapley value describes the improvement compared to other homes if the variable change is implemented
- 2. If we choose as a reference sample alternative strategies for this same home, Shapley value describes the improvement of variable change compared to other possibilities for the same home

Pros and cons of Shapley values

Advantages

- Independent of statistical model used for prescriptions
- Mathematically sound and recognized in the data science community
- Fairly distributes prediction between features

Disadvantages

- Always uses all features
- Might still be a bit complex to explain
- Works with model predictions, so confidence bounds apply

REGRESSION PERFORMANCE

Regression Performance: MAE

How to best compare observed values vs. predicted values?

PersonID	Gender	Years Education	Age	Income - Observed	Income - Predicted
2343	F	17	35	63 000	65 200
1213	М	15	32	35 000	37 300
4533	М	15	53	40 000	38 900
4563	М	19	51	100 000	91 450
7453	М	13	32	34 000	35 600

Dataset: 750 individuals

$$\frac{\sum(|y_{predicted} - y_{actual}|)}{n}$$

Regression Performance: RMSE

How to best compare observed values vs. predicted values?

PersonID	Gender	Years Education	Age	Income - Observed	Income - Predicted
2343	F	17	35	63 000	65 200
1213	М	15	32	35 000	37 300
4533	М	15	53	40 000	38 900
4563	М	19	51	100 000	91 450
7453	М	13	32	34 000	35 600

Dataset: 750 individuals

Root Mean Squared Error (RMSE) =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (Predicted_i - Observed_i)^2}$$

$$RMSE = \sqrt{\frac{(65\ 200 - 63\ 000)^2 + (\ 37\ 300\ - 35\ 000)^2 + \dots}{750}}$$

n – number of observations

Regression Performance: MAPE

How to best compare observed values vs. predicted values?

PersonID	Gender	Years Education	Age	Income - Observed	Income - Predicted
2343	F	17	35	63 000	65 200
1213	М	15	32	35 000	37 300
4533	М	15	53	40 000	38 900
4563	М	19	51	100 000	91 450
7453	М	13	32	34 000	35 600

Dataset: 750 individuals

$$Mean\ Absolute\ Percentage\ Error\ (MAPE) = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{Observed_i - Predicted_i}{Observed_i} \right| \qquad \begin{array}{c} n-n \\ observed_i \end{array}$$

n – number of observations

$$MAPE = \frac{1}{750} \left(\left| \frac{63\,000 - 65\,200}{63\,000} \right| + \left| \frac{35\,000 - 37\,300}{35\,000} \right| + \cdots \right)$$

Regression Performance: Benchmarks

Compare RMSE/MAPE of your favorite model with:

a) a simple model: Linear Regression (is non-linearity better than linearity?)

100 -

0000

20

Drug Dosage (mg)

30

Regression Performance: Benchmarks

Compare RMSE/MAPE of your favorite model with:

b) multiple other models: try 2-3 methods and see which has the lowest prediction errors

TRAIN/TEST DATA SPLIT

CustomerID	Education	Age	Income
2343	17	35	50 000
1213	15	32	35 000
4533	15	53	40 000
4563	19	51	100 000
7554	18	28	50 000
6465	13	25	27 500
7453	13	32	34 000
6775	18	43	72 000
4643	19	47	??
6886	19	37	??
8668	21	39	??
8765	23	46	??
9797	12	29	??

TRAIN DATA

(~60-80% of available data with income values)

TEST DATA

TRAIN/TEST DATA SPLIT

- 1. Find the model using the training data
- 2. Calculate model performance
- Use the same model to predict with testing data
- 4. Calculate model performance

→ We want both training and testing model performance to be similarly good.

TRAIN/TEST DATA SPLIT

1. Find the model using the training data

$$Income = 15000 + 1500 MaleGender + 2100 Education + 560 Age + \varepsilon$$

- 2. Calculate error MAPE = 1.2%
- 3. Using the same model, predict on testing data

PersonID	Gender	Years Education	Age	Income				
8112	F	17	35	???				
Income = 15000 + 1500 * 0 + 2100 * 17 + 560 * 35 = 65 200								

4. Calculate error MAPE = 1.3%

REGRESSION ALGORITHMS - SUMMARY

Regression methods we covered

Regression methods - Summary

- Used for predicting continuous variables
- Linear model used rather as a benchmark
- In practice, we would mostly use **ensemble methods** such as random forest
- Performance metrics include RMSE or MAPE
- Black box models can be made explainable using Partial dependence plots or Shapley values

Next lecture: Classification

Sources

https://www.keboola.com/blog/random-forest-regression

https://www.youtube.com/watch?v=g9c66TUylZ4

https://builtin.com/data-science/random-forest-python

https://www.rebellionresearch.com/what-are-the-disadvantages-of-random-forest

https://www.youtube.com/watch?v=DBApaR2mTg0&ab_channel=AninditaDas

https://scikit-learn.org/stable/modules/partial_dependence.html

https://scikit-learn.org/stable/modules/tree.html

https://www.youtube.com/watch?v=NBg7YirBTN8&ab_channel=ritvikmath

