Práctica 2

Aprendizaje Automático

Redes de Neuronas Convolucionales.

Enunciado de la práctica

El objetivo de esta práctica es diseñar, configurar y entrenar un modelo Redes de Neuronas Convolucionales.

- La práctica se realizará en los grupos que ya están creados.
- El entregable será el fichero Jupyter Notebook que habréis trabajado en Google Colab) con el que habréis estado trabajando en la práctica. Ahí estará tanto el código como las explicaciones en formato Markdown embebido. Tenéis un útil manual de Markdown en https://colab.research.google.com/notebooks/markdown_guide.ipynb. Os aconsejo que documentéis todo lo que hagáis, aunque sean pruebas que no os hayan salido bien. El objetivo es que contéis una historia. El Jupyter Notebook
 - GRUPO < NºGRUPO >

deberá comenzar con tres líneas:

- o Una línea con el Nombre y Apellidos de cada integrante del grupo.
- La práctica deberá subirse a un repositorio de vuestra cuenta personal de GitHub llamada AA_PRACTICA2_GRUPO_NºGRUPO. (Por ejemplo, si sois el grupo 3, vuestra entrega estará en el repositorio de GitHub de alguno de vosotros dos con el nombre AA_PRACTICA2_GRUPO_3). Tenéis que usar el mismo número de grupo que el que usasteis durante la practica 1. No se admiten entregas fuera de fecha y recordar que GitHub guarda fecha y hora de subida del fichero
- El nombre de este repositorio deberá estar en el entregable entregado en CANVAS
- No sólo se evaluará el resultado final sino todo el proceso hasta completarla, la documentación aportada donde se justificarán todas las decisiones de diseño y se explicaciones detalladas de los resultados y su razonamiento.
- Se evaluará positivamente todo el contenido adicional a la asignatura contenido en la práctica, siempre que guarde relación y aporte valor al objetivo de esta.
- Es importante demostrar todo el conocimiento adquirido durante las clases teóricas.

Enunciado

Crea un modelo de Red de Neuronas **Convolucionales** que sea capaz de **reconocer** y **clasificar imágenes de ropa** en sus diferentes **tipologías**. Este modelo será **definido**, **configurado**, **entrenado**, **evaluado** y **mejorado** para posteriormente usarlo para hacer **predicciones**.

Para ello tendréis que crear un modelo en **Keras** aplicando de una tirada todos los pasos al conjunto de datos **Fashion-MNIST**, precargado en Keras y que ya habéis utilizado para la práctica 1.

Fashion-MNIST es un conjunto de datos de las imágenes de los artículos de Zalando (<u>www.zalando.com</u>), una tienda de moda online alemana especializada en ventas de ropa y zapatos. El conjunto de datos contiene 70K imágenes en escala de grises en 10 categorías. Estas imágenes muestran prendas individuales de ropa en baja resolución (28 x 28 píxeles):

Se usan 60K imágenes para entrenar la red y 10K imágenes para evaluar la **precisión** con la que la red aprende a clasificar las imágenes

Cuestiones a tener en cuenta

- Antes de empezar a programar vuestra red neuronal deberéis importar todas las librerías que vais a requerir.
- Aseguraos que estáis ejecutando la versión 2.0.0 (o superior) de TensorFlow en vuestro Google Colab
- Cargar los datos de entrenamiento y de Test a partir de keras.datasets.fashion_mnist
- La clasificación corresponde, según el código numérico de clase, a:

Label	Class
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

- Es una buena práctica analizar si los datos tienen la forma esperada
- Durante una posible fase de pre procesado de datos, analizar el uso de la función de keras keras.layers.Flatten()

Cuestiones para implementar y responder

1. Configurar y entrenar los siguientes modelos de red de neuronas convolucionales, analizando y reflexionando sobre los resultados:

CASO 1				
Número de filtros 1º capa convolucional	32			
Tamaño ventana 1ª capa convolucional	5 x 5			
Función activación 1ª capa convolucional	relu			
Ventana 1ª capa pooling	2 x 2			
Número de filtros 2ª capa convolucional	64			
Tamaño ventana 2ª capa convolucional	5 x 5			
Función activación 2ª capa convolucional	relu			
Ventana 2ª capa pooling	2 x 2			
Capa Flatten				

Función activación ultima capa Densa	softmax
Optimizador	sgd
Función de Pérdida	sparse_categorical_crossentropy
Métrica	accuracy
Número de iteraciones	5

CASO 2			
Número de filtros 1º capa convolucional	64		
Tamaño ventana 1º capa convolucional	7 x 7		
Función activación 1ª capa convolucional	relu		
Padding	same		
Ventana 1ª capa pooling	2 x 2		
Número de filtros 2ª capa convolucional	128		
Tamaño ventana 2ª capa convolucional	3 x 3		
Función activación 2ª capa convolucional	relu		
Padding	same		
Ventana 2ª capa pooling	2 x 2		
Capa Flatten			
Función activación penult. capa densa	65 neuronas ReLU		
Función activación ultima capa densa	softmax		
Optimizador	sgd		
Función de Pérdida	sparse_categorical_crossentropy		
Métrica	accuracy		
Número de iteraciones	5		

CASO 3				
Número de filtros 1º capa convolucional	64			
Tamaño ventana 1º capa convolucional	7 x 7			
Función activación 1ª capa convolucional	relu			
Padding	same			
Ventana 1ª capa pooling	2 x 2			
Número de filtros 2ª capa convolucional	128			
Tamaño ventana 2ª capa convolucional	3 x 3			
Función activación 2ª capa convolucional	relu			
Padding	same			
Ventana 2ª capa pooling	2 x 2			
Capa Flatten				
Función activación penult. capa densa	65 neuronas ReLU			
Función activación ultima capa densa	softmax			

Optimizador	adam
Función de Pérdida	sparse_categorical_crosentropy
Métrica	accuracy
Número de iteraciones	5

- 2. Explicar la salida de la llamada model.summary() de cada uno de los 3 casos
- 3. Analizar e interpretar los resultados del caso 1 frente a su original si se multiplica por 5 las épocas de entrenamiento (25)
- 4. Analiza el resultado del caso 1 si en lugar de ReLU usas tanh en la función de activación de las dos capas convolucionales.
- 5. Evaluar cada uno de los 3 modelos comparando el rendimiento del modelo en el conjunto de datos de prueba
- 6. Usar cada uno de los 3 modelos para hacer predicciones sobre la 6ª imagen de test (test images[5])
- 7. Utilice el siguiente código para graficar cómo de bien o de mal se comporta el modelo para cada uno de los 3 casos con las 14 primeras imágenes del conjunto de test. Reflexione y comente las diferencias que observa.

```
1 def plot_image(i, predictions_array, true_label, img):
 predictions_array, true_label, img = predictions_array, true_label[i], img[i]
 3 plt.grid(False)
   plt.xticks([])
   plt.yticks([])
7
    plt.imshow(img, cmap=plt.cm.binary)
    predicted_label = np.argmax(predictions_array)
9
10
    if predicted_label == true_label:
     color = 'blue'
11
12
    else:
    color = 'red'
13
14
    plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
15
                                  100*np.max(predictions_array),
16
17
                                  class_names[true_label]),
18
                                  color=color)
```

```
20 def plot value array(i, predictions array, true label):
21
    predictions array, true label = predictions array, true label[i]
22
    plt.grid(False)
23
    plt.xticks(range(10))
24
    plt.yticks([])
    thisplot = plt.bar(range(10), predictions array, color="#00FF00")
25
26
    plt.ylim([0, 1])
27
    predicted label = np.argmax(predictions array)
28
    thisplot[predicted_label].set_color('red')
29
    thisplot[true_label].set_color('black')
```

Ejemplo de uso para ver la predicción de la 6º figura de las imágenes de test.

```
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
```


- 8. Hacer comparativa con los resultados que obtuvisteis en la práctica 1, con las capas Dense.
- 9. Ver los conceptos de batch_normalization y dropout y ver si se podría mejorar el modelo con ello.
 - https://keras.io/api/layers/normalization_layers/batch_normalization/ https://keras.io/api/layers/regularization_layers/dropout/
- 10. Ver los conceptos de callbacks (Decaimiento del ratio de aprendizaje) y ver si se podría mejorar el modelo con ello.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/Learning RateScheduler y https://keras.io/api/callbacks/

Memoria

- Es necesario generar una memoria en la que recogeréis los distintos pasos que habéis realizado para resolver la práctica.
- La memoria debe estar correctamente redactada, sin faltas de ortografía y contener puntos como la introducción y las conclusiones, entre otros.
- Debéis explicar cómo habéis afrontado la solución de la práctica, cómo se ha dividido el trabajo y cómo se ha gestionado el equipo para trabajar en ella.
- Podéis adjuntar imágenes en la que deseáis mostrar algún comportamiento particular o relevante que os haya surgido.

IMPORTANTE: Todo esto, como hemos comentado anteriormente, estará integrado en el Jupyter Notebook dentro de Google Colab

Entregables

El único entregable subir a la tarea de Canvas es el siguientes:

 Vuestro usuario de GitHub (el de la persona del grupo de 2 personas a través del cual queráis tener el código de la práctica) diciendo a que grupo pertenecéis

La fecha tope de entrega de esta práctica es el día 25 de noviembre a las 23:59.

Rúbrica de evaluación

La siguiente rúbrica será para evaluar la práctica anteriormente descrita. El desarrollo/código es el 40% y la memoria con las reflexiones y conclusiones son el 60% del total de la práctica.

Cuestiones para implementar (desarrollo/código) 40%

	VALORACIÓN			
DIMENSIÓN	0 puntos			10 puntos
Diseña, configura y	Le falta por	Le falta alguna fase	Utiliza las	Utiliza todas las
optimiza los 3	diseñar,	por completar a no	funcionalidades	funcionalidades
modelos de redes	configurar u	más de 2 modelos	justas de forma	estudiadas de
neuronales	optimizar al	de Redes de	correcta para todos	forma correcta para
planteados	menos 1 modelo.	Neuronas	los modelos	todos los modelos
Hace las	Le falta predecir	Le falta predecir en al menos 1 modelos.		Hay predicciones
predicciones	en al menos 2			para los 3 modelos
solicitadas para cada	modelos.			
uno de los modelos				
Grafica el	Le falta graficar	Le falta graficar en al menos 1 modelos.		Hay gráficos de
comportamiento de	en al menos 2			comportamiento
los modelos	modelos.			para los 3 modelos

Memoria 60%

	VALORACIÓN			
DIMENSIÓN	0 puntos			10 puntos
Redacta	La memoria	La memoria no	La memoria	La memoria está
adecuadamente la	contiene	expresa con un	expresa con	libre de errores
memoria del	numerosas faltas	lenguaje propio del	lenguaje propio del	ortográficos o
proyecto	de ortografía o	ámbito de	ámbito de	gramaticales y
	gramaticales, con	conocimiento los	conocimiento los	expresa con
	una expresión	conceptos clave	conceptos clave,	lenguaje propio del
	poco formal, que		pero contiene	ámbito de
	dificulta su		algunos errores	conocimiento los
	entendimiento		ortográficos y	conceptos
			gramaticales	
Detalle del	El contenido de la	La memoria	La memoria	La memoria
contenido de la	memoria es el	contiene el	contiene toda la	contiene todo lo
memoria	visto en clase	contenido visto en	información	anterior, además
		clase,	anterior además de	de conclusiones por

		complementado	ventajas/desventaj	cada sección
		con información, y	as de los elementos	estudiadas y
		otras secciones	estudiados y/o	probadas.
		investigadas por el	otras secciones	
		alumno.	relevantes	
Presenta una	Los diagramas de	Existen	Existen	El código y la
memoria cuyos	flujo y las	incoherencias	incoherencias entre	memoria están
contenidos son	explicaciones no	graves entre el	el código y el	perfectamente
correctos y	son coherentes	código y el	contenido de la	alineados.
coherentes con el	con el código.	contenido de la	memoria.	
proyecto		memoria.		
desarrollado				
Introduce, explica y	La introducción	La introducción no	La introducción y	La introducción, las
concluye	no permite	permite	las explicaciones	explicaciones y las
adecuadamente y	contextualizar	contextualizar	son relevantes, y	conclusiones son
con rigor académico	adecuadamente	adecuadamente el	están bien	relevantes, y están
	el trabajo, no está	trabajo y las	argumentadas y	bien argumentadas
	bien explicado el	conclusiones no	ajustadas al	y ajustadas al
	diseño y	son relevantes,	proyecto y al	proyecto y al
	desarrollo del	pero está bien	ámbito de	ámbito de
	proyecto y las	explicado el diseño	conocimiento, pero	conocimiento
	conclusiones no	y desarrollo del	no hay	
	son relevantes	proyecto	conclusiones o no	
			son relevantes	