VERIFICATION OF TRANSLATION

I, Ryo Iwatani, of 15-15, Kamikotoen 3-chome, Nishinomiya-shi, HYOGO 662-0813 JAPAN, state the following:

I am fluent in both the English and Japanese languages and capable of translating documents from one into the other of these languages.

The attached document is a true and accurate English translation to the best of my knowledge and belief of the Test Method 8.11.A of JIS L1013 (1999).

I state that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true.

Signature: Ryo IWATANI

Date: May 23, 2003

8.11 Stretchability

Method A (Every yarn measurement) Fix the upper end of the test specimen with a clamp, hang it by applying 0.176mN x indicated tex as the initial load* and 30 seconds later, mark the point accurately 20 cm (a) distant from the upper clamp. Thereafter, apply the load* that is 8.82mN x indicated tex, and 30 seconds later, measure the length (b) of the test specimen. After removing the load, leave the specimen still for 2 minutes, apply the initial load again, and, 30 seconds later, measure the length (c) of the test specimen. Calculate the elongation percentage (%) of and the elastic modulus (%) of stretchability according to the following formula. Repeat this test 20 times, and express the average down to one place of decimal.

Elongation percentage (%) of stretchability =
$$\frac{b-a}{a} \times 100$$

Elastic modulus (%) of stretchability = $\frac{b-c}{b-a} \times 100$

Remark (*): If this specified initial load is inappropriate, alter it to other suitable load, provided that is shall be appended in the test report.

図6 荷黛-伸長曲線

備考1. 試験の種類及び試験条件(つかみ間隔、引張速度、伸長率)を記録に付記する。

- 2. 記録紙の荷重範囲は、一定伸びのときの荷重が、少なくとも全目盛の50 %になることが望ましい。
- 3. 記録紙の速度は、一定伸びが記録紙上で少なくとも5 cmに相当するように決める。
- 4. A注はすべての繊維に適用し、B法は主として合成繊維に適用する。

8.10 初期引張抵抗度 初期引張抵抗度は、試料を8.5.1と同じ方法で試験を行って、図7のように荷里-伸長曲線を振き、この図から原点の近くで伸星変化に対する荷重変化の最大点A(接線角の最大点)を求め、次の式によって初期引張抵抗度(N/tex)を算出し、10回の平均値をJIS 2 8401によって整数位に丸める。

$$T_{ri} = \frac{P}{\frac{P}{I} \times F_{0}}$$

ここに、 Tel: 初期引張抵抗度 (N/tex)

P:接線角の最大点Aにおける荷里 (N)

Fa: 正系越度 (tex) 1: 試験长 (mm)

l':THの長さ (mm)

(Hは垂戯の足、Tは接線の横動との交点)

図7 荷董-伸長由線

備考1. 脚定誤差を少なくするために、初期の荷里-伸長曲線のA点における接線が、伸び軸に対して約45 になるようにチャートスピードを調節するのがよい。

2. 初期引張抵抗党と見掛ヤング率との関係は、次の式のとおりである。

 $Y_m = 1000 \times \rho \times T_m$

ここに、Ya: 見掛ヤング率 (N/mm²)

ρ: 繊維の新度 (g/cm³)

7n:初期引張抵抗農 (N/wx)

8.11 (伸離性)

A) A法 (1本ずつ別定する場合) 試料の上端をクランプで固定し、0.176 mN×表示テックス数の荷豆(**)をかけて乗でし、30秒接上部クランプから正しく20 cm (a) を初って印を付け、次に8.82 mN×表示テックス数の荷重をかけて50秒後の試料の長さ(b)を割り、除風後、2分間放振して再び0.176 mN×表示テックス数の荷重を(**)かけて30秒後の試料の長さ(c)を剥り、次の式によって仲給伸長率(%)及び伸縮弾任率(%)を算出する。試験閉数は20回とし、その平均値をJIS Z 8401によって小粒点以下1けたに丸める。

$$S_c = \frac{b-\alpha}{\alpha} \times 100$$

--ピ 1013ー

 $E = \frac{b-c}{b-a} \times 100$

ここに, 5.: 仲紹仲長率 (%)

E:仲紀弾性率(%)

a:0.176 mN×表示テックス数の荷型をかけて30秒後に、試料に付けた印の、 上部クランプからの距離 (20 cm)

b:8.82 mN×交ぶテックス数の荷重をかけて30秒後の試料の長さ (cm)

c:0.176 mN×表示テックス数の荷魚をかけて30秒後の試料の長さ (cm)

、注('º) 荷重が不適切な場合は適切な荷取を用い、それを記録に付記する。

b) B法 (10本東ねて測定する場合) 試料を図8 a) のように、試料に損傷を与えないような棒にかけて論にしたものを5個作り、それぞれ8.82 mN × 2×表示テックス数の償棄をかける。

この5個の試料を図8 b) のようにひとまとめにして、約50 cmの間隔を置いて上下を締糸でしっかり結んだ後、直ちに荷重を除く。

このようにして作った10木1束の収料を図9のように0.176 mN×10×30分テックス数の荷収 (10) をかけた状態で、試験長が約20 cmになるように試料上部をクランプで固定し、30秒後の試料の長さ (a) を正しく飼る。

⅓₩

图9

、次に、8.82 mN×10×表示デックス数の個面をかけて30fV後の試料の長さ(b)を調り、除重後2分間放置して再び 個面('')をかけて50秒後の試料の設さ(c)を割り、A法(1本ずつ側定する場合)と同様の式によって仲級仲長率(%)及び仲均弱性率(%)を採出する。試験回数は10回とし、その平均値をJIS Z 8401によって小数点以下1分たに上める。

- c) C法(簡便法) 適切なテンション調整装置をもつ教尺機を用い、巻き数10回のかせ(")を作り、0.176 mN×20 × 投ポテックス数の荷重(")をかけ、80秒後の長さ(a)を刺る。次に8.82 mN×20×表示テックス数の荷頭をかけて30 秒後の投き(b)を削り、荷道を除いた後2分間放配して再び0.176 mN×炭茶テックス数の荷重(")をかけて30 秒後の批料の投き(c)を削り、A法(1本ずつ割定する場合)と同様の式によって伸縮伸長率(%)及び伸続弾性 水(%)を算出する。試験回数は10回とし、その平均値をJIS 2 8401によって小数点以下1けたに丸める。
 - 注(**) 武村のかせの調整で、湿熱処理を行う場合は、かせが乱れないように2か所を取ねてくくり、8の半状にして二つに折り取れて給にすることを2回繰り返し、ガーゼに包んだまま処理する。

体号 合成繊維の仲総性かざ高加工糸に週間する。

1.12 伸縮復元率 0.176mN×表示テックス数の荷電をかけてかせ良約40 cm, 巻き数10回の小かせを作る。この試料を図10のように、0.176 mN×20×表示テックス数の荷取(1º)(1²)と、逆に8.82mN×20×投ポテックス数の荷取(1º)を加えて温度20±2 で(1º)の水中(1º)に2分間設せをした後、かせ長を測り。直ちに8.82 mN×20×投ポテックス数の荷取を除いて2 分間放置後、再びかせ長を測り、次の式によって仲鉛復元率(%)を禁止する。試験回数は5 回上し、その平均航をJIS 2 8401によって小数点以下1けたに丸める。

$$E = \frac{a - b}{a} \times 100$$

ここに、左:仲総復元率(%)

a:0.176 mN×20×表示テックス数の荷重に、 単に 8.82 mN×20×起示テックス数の荷重をかけたときのかせ長(mm)

ð:0,176 mN×20×要示テックス数の荷派をかけたときのかせ良 (mm)

注(11) 水中での添力を補正した荷盤とする。

- (11) 20+2 ℃と異なる温度を用いた場合は、その温度を記録に付記する。
- (**) 糸の衣師のぬれをよくするため、非イオン界質低性剤を2、3筒、水中に促入してもよい。

-- 750 --

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.