學號:B02123456 系級: 電機四 姓名:法拉利

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

RMSE \ epoch	5000	10000	50000	100000	500000
feature (1)	7.118263438	6.7657952	6.4792726	6.47488070	6.50424812
feature (2)	6.596453407	6.59624142	6.59624142	6.59624142	6.59624142

由上述數據可知因為前 9 小時的 PM2.5 與第 10 小時的 PM2.5 有很大的關聯性,所以當訓練初期(epoch=5000、10000),只採用 feature (1) 可以較準確的預測第 10 小時的 PM2.5。但同時因為參數量很少,所以 feature (1) 在 epoch 小於 10000 的時候就已收斂,RMSE 的值不再因 epoch 增加而改變。當 epoch 逐漸增加,feature (2)的 RMSE 的值逐漸小於 feature (1),可以得知 PM2.5 會受到其他 feature 影響,當訓練的誤差減小,也越來越能預測第 10 小時的 PM2.5。而根據設定的 learning rate,feature (2)在 epoch 等於 100000 附近可以得到最低的 RMSE。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

RMSE \ epoch	5000	10000	50000	100000	500000
feature (1)	6.814779223	6.66054603	6.60113733	6.6014402	6.62059975
feature (2)	6.744909392	6.74490939	6.74490939	6.74490939	6.74490939

由數據可知當 feature 變成抽取 5 個小時,參數量會變少但資料量會變多,所以 feature (1) 在 epoch 小於 5000 就收斂。但因為只能看到前 5 個小時的 feature、資訊量變少,所以無論是 feature (1) 或 feature (2) 的 RMSE 都比 問題 1. 大。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

lambda	0	0.1	0.01	0.001
AII_5000	7.118263	7.118263	7.118263	7.118263
All_100000	6.948976	6.948976	6.948976	6.948976
PM2.5_5000	6.474881	6.474881	6.474881	6.474881
PM2.5_100000	6.61103	6.611036	6.61103	6.61103

Regularization 這次的作業幾乎沒有影響,無論 model 是否收斂。另外印出 gradient 與 weight 出來發現,兩者約差了約三個數量級,所以 weight 的值乘上 learning rate 再除以每個 epoch 的 gradient 之和(實做 adagrad)後,得到的值約落在 $10^{-4} \sim 10^{-6}$ 次方,所以對參數的更新影響不大,上傳 kaggle 後再跟正確答案做 MRSE 影響就更微弱。故將取全部 feature 並跑 5000 epoch 的 model lambda 調成 100 後得到的 MRSE = 7.119134,即產生不同,但會造成 model 變差。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]^\mathsf{T}$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^\mathsf{T}$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^\mathsf{T}\mathbf{X}$ 為 invertible)

$$\sum_{n=1}^{N} (y^n - x^n \cdot w)^2 = (y - Xw)^T (y - Xw)$$

$$\frac{\partial}{\partial w}(y - Xw)^T(y - Xw) = \frac{\partial}{\partial w}(y^Ty - y^TXw - w^TX^Ty + w^TX^TXw) = -2X^T(y - Xw) = 0$$

$$X^{T}Xw = X^{T}y$$
, $\therefore w = (X^{T}X)^{-1}X^{T}y \Rightarrow (C)$