Chapter 4 Network Layer

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- * If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

© All material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved

KUROSE ROSS

Networking: A
Top Down
Approach
6th edition
Jim Kurose, Keith
Ross
Addison-Wesley
March 2012

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

nte<u>rplay between routing and forwarding</u>

routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address

Datagram forwarding table

4 billion IP addresses, so rather than list individual destination address list *range* of addresses (aggregate table entries)

Datagram forwarding table

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2
otherwise	3

but what happens if ranges don't divide up so nicely?

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** ******	2
otherwise	3

examples:

DA: 11001000 00010111 0001<mark>0110 10100001</mark>

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

Router architecture overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

The Internet network layer

host, router network layer functions:

IP datagram format

IP protocol version
number
header length
(bytes)
"type" of data
max number
remaining hops
(decremented at
each router)
upper layer protocol

	,		10
now	much	overhea	ad?

to deliver payload to

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

IP fragmentation, reassembly

- network links have MTU (max.transfer size) largest possible linklevel frame
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP fragmentation, reassembly

IP addressing: introduction

* IP address: 32-bit identifier for host, router interface

 interface: connection between host/router and physical link

- router's typically have multiple interfaces
- host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- * IP addresses associated with each interface

IP addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about 223.1.1.2 that in chapter 5, 6.

A: wired Ethernet interfaces connected by Ethernet switches

For now: don't need to worry about how one interface is connected to another (with no intervening router)

A: wireless WiFi interfaces connected by WiFi base station

Subnets

*IP address:

- subnet part high order bits
- host part low order bits

* what's a subnet ?

- device interfaces with same subnet part of IP address
- •can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

subnet mask: /24

Subnets

how many?

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

200.23.16.0/23

IP addresses: how to get one?

Q: How does a *host* get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: allow host to *dynamically* obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on ")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

DHCP client-server scenario

DHCP client-server

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

DHCP: example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- running DHCP server
 Ethernet demuxed to
 IP demuxed, UDP
 demuxed to DHCP

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DSN server, IP address of its firsthop router

DHCP: Wireshark output (home LAN)

Message type: Boot Request (1)

Hardware type: Ethernet Hardware address length: 6

Hops: 0

Transaction ID: 0x6b3a11b7

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast) Client IP address: 0.0.0.0 (0.0.0.0) Your (client) IP address: 0.0.0.0 (0.0.0.0) Next server IP address: 0.0.0.0 (0.0.0.0) Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

request

Server host name not given Boot file name not given

Magic cookie: (OK)

Option: (t=53,l=1) **DHCP Message Type = DHCP Request**

Option: (61) Client identifier

Length: 7; Value: 010016D323688A;

Hardware type: Ethernet

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Option: (t=50,l=4) Requested IP Address = 192.168.1.101

Option: (t=12,l=5) Host Name = "nomad"
Option: (55) Parameter Request List

Length: 11; Value: 010F03062C2E2F1F21F92B

1 = Subnet Mask; 15 = Domain Name 3 = Router; 6 = Domain Name Server 44 = NetBIOS over TCP/IP Name Server

.

Message type: Boot Reply (2)

Hardware type: Ethernet Hardware address length: 6

Hops: 0

Transaction ID: 0x6b3a11b7

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast)

Client IP address: 192.168.1.101 (192.168.1.101)

Your (client) IP address: 0.0.0.0 (0.0.0.0)

Next server IP address: 192.168.1.1 (192.168.1.1)

Relay agent IP address: 0.0.0.0 (0.0.0.0)

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Server host name not given Boot file name not given

Magic cookie: (OK)

Option: (t=53,l=1) DHCP Message Type = DHCP ACK

Option: (t=54,l=4) Server Identifier = 192.168.1.1 Option: (t=1,l=4) Subnet Mask = 255.255.255.0

Option: (t=3,l=4) Router = 192.168.1.1

Option: (6) Domain Name Server

Length: 12; Value: 445747E2445749F244574092;

IP Address: 68.87.71.226; IP Address: 68.87.73.242; IP Address: 68.87.64.146

Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."

reply

IP addresses: how to get one?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP's address space

ISP's block	11001000	00010111	00010000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2	11001000	00010111	<u>0001001</u> 0	00000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

erarchical addressing allows efficient advertisement of routing formation:

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

IP addressing: the last word...

Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

Names and Numbers http://www.icann.org/

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

all datagrams leaving datagrams with source or local destination in this network network have same have 10.0.0/24 address for single source NAT IPsource, destination (as usual) address:

138.76.29.7, different

motivation: local network uses just one IP address as far as outside world is concerned:

- range of addresses not needed from ISP: just one IP address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- devices inside local net not explicitly addressable, visible by outside world (a security plus)

implementation: NAT router must:

- outgoing datagrams: replace (source IP address, port #)
 of every outgoing datagram to (NAT IP address, new port
 #)
 - . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr
- remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- * NAT is controversial:
 - routers should only process up to layer3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

NAT traversal problem

- client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
 - only one externally visible NATed address: 138.76.29.7
- solution1: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000

NAT traversal problem

- * solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)
 - i.e., automate static NAT port map configuration

NAT traversal problem

- * solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - external client connects to relay
 - relay bridges packets between to connections
 - 2. connection to relay initiated by client

client

ICMP: internet control message protocol

*	used by hosts & routers			
	to communicate	<u>Type</u>	<u>Code</u>	description
	network-level	0	0	echo reply (ping)
	information	3	0	dest. network unreachable
	error reporting:	3	1	dest host unreachable
	unreachable host,	3	2	dest protocol unreachable
	network, port, protocol	3	3	dest port unreachable
	echo request/reply (used	3	6	dest network unknown
	by ping)	3	7	dest host unknown
*	network-layer "above"	4	0	source quench (congestion
	IP:			control - not used)
	ICMP msgs carried in IP	8	0	echo request (ping)
	datagrams	9	0	route advertisement
*	ICMP message: type,	10	0	router discovery
	code plus first 8 bytes of	11	0	TTL expired
	IP datagram causing	12	0	bad IP header
	error		J	Dad II IICadoi

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL =1
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

Interplay between routing, forwarding

<u>routing</u> algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Graph abstraction

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

cey question: what is the least-cost path between u and z couting algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- * "link state" algorithms decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- * c(x,y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
1 Initialization:
   N' = \{u\}
   for all nodes v
     if v adjacent to u
5
       then D(v) = c(u,v)
     else D(v) = \infty
6
   Loop
    find w not in N' such that D(w) is a minimum
10 add w to N'
    update D(v) for all v adjacent to w and not in N':
12
      D(v) = \min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

		D(v)	D(w)	D(x)	D(y)	D(z)
Step) N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5,u	11,W	∞
2	uwx	6,w			11,W	14,X
3	UWXV				10,V	14,X
4	uwxvy					12,y
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

Ste	ep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy <mark>←</mark>	2,U	3,y			4,y
	3	uxyv 🔨		3,y			4,y
	4	uxyvw 🕶					4,y
	5	uxyvwz 🗲					

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- * each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)

oscillations possible:

e.g., support link cost equals amount of carried traffic:

given these costs, given these costs, given these costs, find new routing.... find new routing....find new routing in new costsulting in new costs

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Bellman-Ford equation (dynamic programming)

```
let
d_{x}(y) := \text{cost of least-cost path from } x \text{ to}
y
then
d_{x}(y) = \min_{x \in X} \{e(x) \text{ for neighbor} x \text{ to destination } cost \text{ to neighbor} x \text{ to destination } cost \text{ to neighbor} x \text{ of } x
```

Bellman-Ford example

clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= min \{2 + 5, 1 + 3, 5 + 3\} = 4$$

ode achieving minimum is next op in shortest path, used in forwarding table

- * $D_x(y)$ = estimate of least cost from x to y
 - * x maintains distance vector $\mathbf{D}_{x} = [D_{x}(y): y \in \mathbb{N}]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

```
\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]
```

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

 $D_x(y) \leftarrow min_v\{c(x,v) + D_v(y)\}\$ for each node $y \in N$

 under minor, natural conditions, the estimate D_x(y) converge to the actual least cost d_x(y)

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

$$D_x(y) = min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\}$$

= $min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$

time

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector

if DV changes, notify neighbors

"good news travels fast" t_o : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do *not* change, so y does *not* send a message to z.

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- * bad news travels slow -"count to infinity" problem!
- * 44 iterations before algorithm stabilizes: see text poisoned reverse:
- If Z routes through Y to get to X :
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires O(nE) msgs
 - may have oscillations
- * DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect *link* cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Hierarchical routing

our routing study thus far - idealization

- all routers identical
- network "flat"
- ... not true in practice

scale: with 600 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Hierarchical routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - routers in different AS can run different intra-AS routing protocol

gateway router:

- at "edge" of its own AS
- has link to router in another AS

Interconnected ASes

 forwarding table configured by both intra- and inter-AS routing algorithm

- intra-AS sets entries for internal dests
- inter-AS & intra-AS sets entries for external dests

Inter-AS tasks

- suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

AS1 must:

- learn which dests are reachable through AS2, which through AS3
- propagate this reachability info to all routers in AS1

job of inter-AS routing!

Example: setting forwarding table in router 1d

- suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c), but not via AS2
 - inter-AS protocol propagates reachability info to all internal routers
- router 1d determines from intra-AS routing info that its interface / is on the least cost path to 1c
 - installs forwarding table entry (x,I)

Example: choosing among multiple ASes

- now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine which gateway it should forward packets towards for dest x
 - this is also job of inter-AS routing protocol!

Example: choosing among multiple

ASes

- now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x
 - this is also job of inter-AS routing protocol!
- * hot potato routing: send packet towards closest of two routers.

Intra-AS Routing

- also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

RIP (Routing Information Protocol)

- included in BSD-UNIX distribution in 1982
- distance vector algorithm
 - distance metric: # hops (max = 15 hops), each link has cost 1
 - DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
 - each advertisement: list of up to 25 destination subnets (in IP addressing sense)

from router A to destination subnets:

<u>subnet</u>	<u>hops</u>
u	1
V	2
W	2
X	3
У	3
Z	2

RIP: example

routing table in router D

destination subnet	next router	# hops to dest
W	Α	2
у	В	2
Z	В	7
X		1

RIP: example

routing table in router D

destination subnet	next router	# hops to dest
W	Α	2
У	В	2 5
Z	BA	7
X		1

RIP: link failure, recovery

if no advertisement heard after 180 sec --> neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP table processing

RIP routing tables managed by application-level process called route-d (daemon)

advertisements sent in UDP packets,

periodically repeated routed

OSPF (Open Shortest Path First)

- "open": publicly available
- uses link state algorithm
 - LS packet dissemination
 - topology map at each node
 - route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor
- advertisements flooded to entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP
- * *IS-IS routing* protocol: nearly identical to OSPF

OSPF "advanced" features (not in RIP)

- security: all OSPF messages authenticated (to prevent malicious intrusion)
- multiple same-cost paths allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort ToS; high for real time ToS)
- integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

Hierarchical OSPF

Hierarchical OSPF

- * two-level hierarchy: local area, backbone.
 - link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- * area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- * backbone routers: run OSPF routing limited to backbone.
- * boundary routers: connect to other AS's.

Internet inter-AS routing: BGP

- * BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all AS-internal routers.
 - determine "good" routes to other networks based on reachability information and policy.
- * allows subnet to advertise its existence to rest of Internet: "I am here"

BGP basics

- * BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to AS1:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use iBGP do distribute new prefix info to all routers in AS1
 - 1b can then re-advertise new reachability info to AS2 over 1bto-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

Path attributes and BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

BGP route selection

- router may learn about more than 1 route to destination AS, selects route based on:
 - local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Putting it Altogether: How Does an Entry Get Into a Router's Forwarding Table?

- Answer is complicated!
- * Ties together hierarchical routing (Section 4.5.3) with BGP (4.6.3) and OSPF (4.6.2).
- Provides nice overview of BGP!

How does entry get in forwarding

How does entry get in forwarding table?

High-level overview

- Router becomes aware of prefix
- 2. Router determines output port for prefix
- 3. Router enters prefix-port in forwarding table

Router becomes aware of prefix

- BGP message contains "routes"
- "route" is a prefix and attributes: AS-PATH, NEXT-HOP, ...
- Example: route:
 - Prefix:138.16.64/22; AS-PATH: AS3 AS131; NEXT-HOP: 201.44.13.125

Router may receive multiple routes

- Router may receive multiple routes for <u>same</u> prefix
- Has to select one route

Select best BGP route to prefix

 Router selects route based on shortest AS-PATH

select

- * Example:
 - * AS2 AS17 to 138.16.64/22
 - * AS3 AS131 AS201 to 138.16.64/22
- What if there is a tie? We'll come back to that!

Find best intra-route to BGP

route

- Use selected route's NEXT-HOP attribute
 - Route's NEXT-HOP attribute is the IP address of the router interface that begins the AS PATH.
- Example:
 - * AS-PATH: AS2 AS17; NEXT-HOP: 111.99.86.55
- Router uses OSPF to find shortest path from 1c to 111.99.86.55

Router identifies port for route

- Identifies port along the OSPF shortest path
- Adds prefix-port entry to its forwarding table:
 - (138.16.64/22 , port 4)

Hot Potato Routing

- Suppose there two or more best interroutes.
- Then choose route with closest NEXT-HOP
 - Use OSPF to determine which gateway is closest
 - Q: From 1c, chose AS3 AS131 or AS2 AS17?
 - A: route AS3 AS201 since it is closer

How does entry get in forwarding table?

Summary

- 1. Router becomes aware of prefix
 - via BGP route advertisements from other routers
- 2. Determine router output port for prefix
 - Use BGP route selection to find best inter-AS route
 - Use OSPF to find best intra-AS route leading to best inter-AS route
 - Router identifies router port for that best route
- 3. Enter prefix-port entry in forwarding table

BGP routing policy

- * A,B,C are *provider networks*
- X,W,Y are customer (of provider networks)
- * X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

BGP routing policy (2)

- A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route only to/from its customers!

Why different Intra-, Inter-AS

routing?

policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

scale:

hierarchical routing saves table size, reduced update traffic

performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Broadcast routing

- deliver packets from source to all other nodes
- source duplication is inefficient:

* source duplication: how does source determine recipient addresses?

In-network duplication

- * *flooding:* when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadacsted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- * spanning tree:
 - no redundant packets received by any node

Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree

(a) broadcast initiated at A

(b) broadcast initiated at D

Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(a) stepwise construction of spanning tree (center: E)

(b) constructed spanning tree