Bachelor Project 1

Designing RS Decoder for DVB-T Receivers

Sajjad Akherati

June 13, 2021

1 DVB-T

- 2 RS Decoder
 - DVB-T Structure
 - Decoder Structure
- 3 Different Algorithms
- 4 Results
- 5 Refrences

DVB-T

Figure: Functional Block Diagram of DVB-T System

RS Decoder

DVB-T Structure

- 1 DVB-T
- 2 RS Decoder
 - DVB-T Structure
 - Decoder Structure
- 3 Different Algorithms
- 4 Results
- 5 Refrences

- o using RS(255, 239)
- DVB-T Structure of RS Decoder

Figure: DVB-T Structure

- every 188 bytes of data is followe by 51 zero bytes in TX side
- Now the coding is done by Trnasmitter

RS Decoder

Decoder Structure

- 1 DVB-T
- 2 RS Decoder
 - DVB-T Structure
 - Decoder Structure
- 3 Different Algorithms
- 4 Results
- 5 Refrences

Decoder Structure

Figure: Decoder Structure

Syndrom

• in Rx side we have the following polynomial:

$$f(x) = a_{254}x^{254} + a_{253}x^{253} + \dots + a_0x^0$$

- $S_1 = f(\alpha^1), S_2 = f(\alpha^2), \dots, S_{16} = f(\alpha^{16})$
- all + and . operations is done in $GF(2^8)$
- o If all S are zero, it means that there is no error in frame

8 / 21

Error Locator $(\sigma(x))$

- we calculate sigma(x) using S_1, S_2, \dots, S_16
- It is a polynomial at least dergree 8:

$$\sigma(x) = \sigma_8 x^8 + \sigma_7 x^7 + \dots + \sigma_1 x + 1$$

- the degree of Sigma(x) shows the number of error in a frame
- so decoder can just correct 8 bytes of error in each frame.
- the performance of the system increase using outer interleaver. now there is possible that 100 sequential frames becomes noisy and the decoder can correct all of them!!!

- calculate the location of errors using $\sigma(x)$
- if α^w is a root of $\sigma(x)$, it means the the w.th of the frame is noisy.
- we just need to calculate $\sigma(\alpha^1), \sigma(\alpha^2), \ldots, \sigma(\alpha^{255})$

z(x) & Error Magnitude

- we calculate z(x) with S_1, S_2, \ldots, S_{16} and $\sigma(x)$ and also error locations.
- if the bytes in locations $l_1, l_2, l_3, \dots l_8$ are noisy, ther the error magnitude for the byte in location l_1 is:

$$EM(l_1) = \frac{z(\alpha^{l_1})}{(1 + \alpha^{l_1 - l_2})(1 + \alpha^{l_1 - l_3}) \dots (1 + \alpha^{l_1 - l_8})}$$

• the correct byte at location l_1 is:

$$corrected(I_1) = EM(I_1) + received(I_1)$$

o all operations are done in $GF(2^8)$

Diffrent Algorithms

- 1 DVB-T
- 2 RS Decoder
 - DVB-T Structure
 - Decoder Structure
- 3 Different Algorithms
- 4 Results
- 5 Refrences

- On designing every digital system:
 - power
 - 2 speed
 - 3 area
- Different algorithms
 - 1 GZP Algorithm
 - a parallel algorithm
 - high speed
 - use large area
 - BM algorithm
 - a serial algorithm
 - satisfy speed we need
 - use smaller area than GZP

Spartan6 Family, XC6SLX45 Device, XSG324 Package

- 1 DVB-T
- 2 RS Decoder
 - DVB-T Structure
 - Decoder Structure
- 3 Different Algorithms
- 4 Results
- 5 Refrences

Device Utilization Summary					[-
Slice Logic Utilization	Used	Available	Utilization	Note(s)	
Number of Slice Registers	1,498	54,576	2%		
Number used as Flip Flops	1,485				
Number used as Latches	0				
Number used as Latch-thrus	0				
Number used as AND/OR logics	13				
Number of Slice LUTs	9,646	27,288	35%		
Number used as logic	4,192	27,288	15%		
Number using O6 output only	3,417				
Number using O5 output only	37				
Number using O5 and O6	738				
Number used as ROM	0				
Number used as Memory	5,420	6,408	84%		

Number used as Memory	5,420	6,408	84%	
Number used as Dual Port RAM	5,216			
Number using O6 output only	5,216			
Number using O5 output only	0			
Number using O5 and O6	0			
Number used as Single Port RAM	144			
Number using O6 output only	144			
Number using O5 output only	0			
Number using O5 and O6	0			
Number used as Shift Register	60			
Number using O6 output only	0			
Number using O5 output only	0			
Number using O5 and O6	60			
Number used exclusively as route-thrus	34			

•				
Number used exclusively as route-thrus	34			
Number with same-slice register load	14			
Number with same-slice carry load	20			
Number with other load	0			
Number of occupied Slices	3,047	6,822	44%	
Number of MUXCYs used	688	13,644	5%	
Number of LUT Flip Flop pairs used	10,002			
Number with an unused Flip Flop	8,619	10,002	86%	
Number with an unused LUT	356	10,002	3%	
Number of fully used LUT-FF pairs	1,027	10,002	10%	
Number of unique control sets	32			
Number of slice register sites lost to control set restrictions	91	54,576	1%	
Number of bonded IOBs	18	218	8%	

Number of RAMB16BWERs	0	116	0%	
Number of RAMB8BWERs	0	232	0%	
Number of BUFIO2/BUFIO2_2CLKs	0	32	0%	
Number of BUFIO2FB/BUFIO2FB_2CLKs	0	32	0%	
Number of BUFG/BUFGMUXs	1	16	6%	
Number used as BUFGs	1			
Number used as BUFGMUX	0			
Number of DCM/DCM_CLKGENs	0	8	0%	
Number of ILOGIC2/ISERDES2s	0	376	0%	
Number of IODELAY2/IODRP2/IODRP2_MCBs	0	376	0%	
Number of OLOGIC2/OSERDES2s	0	376	0%	
Number of BSCANs	0	4	0%	
Number of BUFHs	0	256	0%	
Number of BUFPLLs	0	8	0%	

Number of BUFHs	0	256	0%	
Number of BUFPLLs	0	8	0%	
Number of BUFPLL_MCBs	0	4	0%	
Number of DSP48A1s	0	58	0%	
Number of ICAPs	0	1	0%	
Number of MCBs	0	2	0%	
Number of PCILOGICSEs	0	2	0%	
Number of PLL_ADVs	0	4	0%	
Number of PMVs	0	1	0%	
Number of STARTUPs	0	1	0%	
Number of SUSPEND_SYNCs	0	1	0%	
Average Fanout of Non-Clock Nets	7.17			

Refrences

- DVB-T Standard
- Error Control Coding: fundamental and applications, SHU LIN \
 DANIEL J.COSTELLO, Jr.
- Reed Solomon.pdf
- Master Thesis.pdf
- GENERIC REES SOLOMON ENCODER.pdf
- FPGA implementation of Reed Solomon codec for 40Gbps Forward Erro.pdf
- o 10.1.1.403.6859.pdf
- o 08.4_3.pdf

