

一. 椭圆偏振光和圆偏振光的获得

1. 晶片: 光轴平行表面的晶体薄片。

线偏振光垂直入射

线偏振光垂直入射,晶体中会出现一快一慢的o光和e光。

原理图:迎着光看,入射到晶片上的光振幅一般可分解为o 光和e光两个振幅。

晶片——相位延迟器

o、e光振幅关系:

通过厚度为d的晶片,o、e光产生相位差:

$$\begin{cases} A_o = A \sin \alpha \\ A_e = A \cos \alpha \end{cases}$$

$$|\delta| = |\eta_e - \eta_o| \cdot d \cdot \frac{2\pi}{\lambda}$$

- 从晶片出射的是两个传播方向相同、振动方向相互垂直、频率相等、有恒定相位差δ的线偏振光分量。
- 它们一般可以合成为椭圆偏振光,特殊情况下可以合成为圆偏振光,线偏振光。
- 所以,椭圆(圆)偏振光可用适当的晶片来获得。

$$\left|\delta\right| = \left|\eta_e - \eta_o\right| \cdot d \cdot \frac{2\pi}{\lambda}$$

2. 波片: 特殊厚度的晶片

对某个波长 λ 而言,当 o、e光在晶片中的光程差为 λ 的某个特定倍数时,这样的晶片叫波晶片,简称波片。

① 1/4波片(λ/4片)

光程差
$$|\boldsymbol{n}_e - \boldsymbol{n}_o| \cdot d = \frac{\lambda}{4}$$

产生相位差
$$|\delta| = \frac{\pi}{2}$$

入射光为线偏振光时(同时参看下页slide),

$$\alpha = \frac{\pi}{4}$$
 ——得圆偏振光(o光, e光分量的振幅相等)

$$\alpha = 0$$
 线偏振光(只有平行于光轴的e分量,不分解)

$$\alpha = \frac{\pi}{2}$$
 线偏振光(只有垂直于光轴的o分量,不分解)

$$\alpha \neq 0, \frac{\pi}{4}, \frac{\pi}{2}$$
 ——椭圆偏振 (如下页图, 初态: a, 末态: c)

入射光为圆偏振光时,出射光为线偏振光。因为合成圆偏振光的两个垂直分量已经有了相位差 $\pi/2$,经1/4波片以后,又有土 $\pi/2$ 的相位差,所以出来的就是0或 π 的相位差,是线偏振光。

入射光为椭圆偏振光时,出射光为线偏振光(如下页图, c&e)或椭圆偏振光(如下页图, b&d) (列表归纳见P309表6-3)

$$\phi = 0$$

$$\phi = \pi/4$$

$$\phi = \pi/2$$

$$\phi = 0$$
 $\phi = \pi/4$ $\phi = \pi/2$ $\phi = 3\pi/4$ $\phi = \pi$

$$\phi = \pi$$

$$\phi = \pi$$

$$\phi = 5\pi/4$$

$$\phi = 3\pi/2$$

$$\phi = \pi$$
 $\phi = 5\pi/4$ $\phi = 3\pi/2$ $\phi = 7\pi/4$ $\phi = 2\pi$

$$\phi = 2\pi$$

λ/4片:线偏振光变成圆偏振光

birefringent λ I/4 plate

② 1/2波片 (λ/2片)

光程差
$$|n_e - n_o| \cdot d = \frac{\lambda}{2}$$
 产生相位差 $|\delta| = \pi$

作用: 可使线偏振光的振动面转过一个角度:

◆ 若入射点处线偏振光分解的o、e 光同相,则出射点处o、e 光反相,仍是线偏振光。 光轴o o o0 光反相,仍是线偏振光。

只是振动方向转过 2α 角。

当
$$\alpha = \frac{\pi}{4}$$
时,转过 $\frac{\pi}{2}$

◆ <u>若入射的是圆偏振光</u>(已有 π /2相差), 经 1/2波片(又有± π),出来相位差为 π /2± π =3 π /2, - π / 2,仍是圆偏 振光,但是

左旋⇔右旋

◆<u>若入射的是椭圆偏振光</u>,经 1/2 波片, 出来 仍是椭圆偏振光,

左旋⇔右旋

而且椭圆的长轴转过 2α角。

7/2片:线偏振光的偏振面转90度

它对波长为λ 的光并没有影响(相位延迟了2π),可以用它对别的波长的光产生影响。

总之,用λ/4波片可以获得<u>椭圆偏振光或圆偏振光</u>,用λ/2波片可以使椭圆偏振光或圆偏振光 左旋⇔右旋 而且椭圆的长轴转过 2α 角。

线偏光垂直通过波片后的偏振态

d	α	出射光的偏振态
λ片	任意	与入射光偏振态相同
任意	00或900	与入射光偏振态相同
1/2波片	α	出射线偏光振动方向与入射光
		振动方向对于光轴对称,两者间夹角2α
1/4波片	45 ⁰ 0 ⁰ 或90 ⁰	圆偏振光 线偏光
	$\alpha \neq 90^{\circ} \alpha \neq 45^{\circ}$	长短轴之比为tanα或Ctanα 的正椭圆偏光
非治治	$\alpha \neq 0^0$ $\alpha \neq 45^0$ $\alpha \neq 90^0$	椭圆偏振光
非波片非光波片非光波片非1/4波片	α=450	椭圆偏振光

二. 椭圆偏振光与圆偏振光的检偏

用1/4 波片和偏振片 P可区分出 自然光和圆偏振光:

I 不变一?为自然光 I 变,有消光一?为圆偏振光

用1/4 波片和偏振片 P 也可区分出 部分偏振光和椭圆偏振光:

(光轴平行于最大光强或最小光强的方向放置)

七种偏振态的检验

把检偏器对着被检光旋转一周,若得到								
两明两零	光强不变			两明两 暗				
				在光路中插入1/4波片,并使光轴与检得的暗方位相重合,再旋转检偏器,若				
线偏振光	两明 两零 则为	光强不变则为	两明 两暗 则为	两明 两零 则为	两明两暗 但暗方位 与未插入 1/4波片时 相同则为	两明两暗 但暗程度 与前不同 则为		
	圆偏光	自然光	部分 圆偏 光	椭圆偏光	部分 线偏 光	部分 椭圆 偏光 16		

Homework 14 (submit on June 12)

1. 思考题6-29 左列, |δ|=π/2,不要求分旋向