Representation Learning of Knowledge Graphs with Entity Descriptions AAAI 2016

谢若冰,刘知远,贾珈, Huanbo Luan,孙茂松

Tsinghua University

outline

- ▶ 作者简介
- ▶ 论文简介
- ► 相关工作: transXXX, socher.NTN
- ▶ 模型
- ▶ 实验内容、效果
- ▶ 手动对比

作者简介

谢若冰

图: 贾珈

▶ 情感计算、语音交互...

图: 刘知远

▶ KG, 语义计算, "社会 计算"...

图: 孙茂松

▶ 计算语言学,汉语切词...

Huanbo Luan

1. 以前的词向量从 KB/KG 学习, 但是 KG 是非常稀疏的

- 1. 以前的词向量从 KB/KG 学习, 但是 KG 是非常稀疏的
- 2. KB 中对应三元组少的、没有三元组对应(zero-shot)的实体的词向量很不好

- 1. 以前的词向量从 KB/KG 学习, 但是 KG 是非常稀疏的
- 2. KB 中对应三元组少的、没有三元组对应(zero-shot)的实体的词向量很不好
- 3. 实体可能没有三元组, 但一般都有维基百科页面正文
- 4. 我要把 KB 和自然语言 text 结合,放在一起训练,生成一个更好的词向量

- 1. 以前的词向量从 KB/KG 学习, 但是 KG 是非常稀疏的
- 2. KB 中对应三元组少的、没有三元组对应(zero-shot)的实体的词向量很不好
- 3. 实体可能没有三元组, 但一般都有维基百科页面正文
- 4. 我要把 KB 和自然语言 text 结合,放在一起训练,生成一个更好的词向量

什么叫更好?

比 transE 好就可以叫更好了

$$f(e_i, r_k, e_j) = \|\mathbf{e}_i + \mathbf{r}_k - \mathbf{e}_j\|_1$$

相关工作

相关工作-1

transE,transR,

图: PTransE

NTN (neural tensor network, socher)

使用组成当前短语的单词的词向量的平均值能一定程度代表

相关工作-2

KB+WikipediaAnchor

利用 Wikipedia Anchor([[迈克尔·乔丹 | 乔丹]]?) 来增大单词之间的联系

KB+Description

- ▶ 和上一个同一个作者
- ▶ 构造一个复杂的目标函数: KB 的目标(h+r-t 小)+ 文本相似(文本中距离近的单词距离小)+description 相似(一个实体的文本中的单词和他距离进)
- ► 本文作者认为: 上述模型没有考虑文本顺序,模型没有考虑/无法避免 文本的歧义

模型

模型

- $(h, r, t) \in T, h, t \in E, r \in R$
- ▶ 每个实体 (h 或 t) 同时训练 2 个向量 h_s (从triple中学习的向量), h_d (从正文中学习的向量)
- $_{
 ightharpoonup}$ 目标函数 $E = E_S + E_D$, $E_D = E_{DD} + E_{DS} + E_{SD}$,
 - $\mathbf{E}_{DD} = ||\mathbf{h_d} + \mathbf{r} \mathbf{t_d}||$
 - $E_{DS} = ||\mathbf{h_d} + \mathbf{r} \mathbf{t_s}||$ and $E_{SD} = ||\mathbf{h_s} + \mathbf{r} \mathbf{t_d}||$,

模型-Encoder

▶ 2 种 Encoder 生成从正文中学习的文本向量: CBOW、CNN

CBOW

- 1. 根据 tf-idf 值,在每个实体页面中取 最重要的 20 个单词作为他的文本特 征
- 2. 将这 20 个单词的词向量的平均值作 为该实体的文本向量的值

CNN

- 1. (1->2).1 对将连续的 2 个单词的词向量拼接得到 一个长的词向量 *x'*;
- 2. (1->2).2 卷一下: $\mathbf{z}_i^{(l)} = \sigma(\mathbf{W}^{(l)}\mathbf{x}_i^{\prime(l)} + \mathbf{b}_i^{(l)}),$
- 3. (2->3) max-pooling: $\mathbf{x}_i^{(2)} = \max(\mathbf{z}_{n \cdot i}^{(1)}, \cdots, \mathbf{z}_{n \cdot (i+1)-1}^{(1)}).$
- 4. (3->4) 卷一下: 同 $z_i^{(1)}$, 得到 $z_i^{(2)}$
- 5. (4->5) mean-pooling: $\mathbf{x}^{(3)} = \sum_{i=1,\dots,m} \frac{\mathbf{z}_i^{(2)}}{m}$,

模型-训练

目标函数

$$L = \sum_{(h,r,t) \in T} \sum_{(h',r',t') \in T'} \max(\gamma + d(h+r,t))$$

$$-d(h'+r',t'),0), \quad \text{for } T' = \{(h',r,t)|h' \in E\} \cup \{(h,r,t')|t' \in E\}$$

$$\cup \{(h,r',t)|r' \in R\}$$

- ▶ 距离函数 d 为 L1 范式 (绝对值相加, 又称曼哈顿距离)
- ▶ 负样本中的新实体向量既可以使用 triple 向量,也可以使用文本向量
- ▶ 待训练的参数集合为(X,W⁽¹⁾,W⁽²⁾,E,R): 文本向量、2 个卷积矩阵、 实体向量、关系向量
- ▶ X 由 word2vec 在维基百科上先跑好,E, R 可以随机初始化,也可以使用 transE 的结果

实验

实验-数据集、参数

DATA SET	WN	FB15K
ENTITIES	40,943	14,951
RELATIONSHIPS	18	1,345
TRAIN. EX.	141,442	483,142
VALID EX.	5,000	50,000
TEST EX.	5,000	59,071

Dataset	#Rel	#Ent	#Train	#Valid	#Test
FB15K	1,341	14,904	472,860	48,991	57,803
Dataset	#Ent	#e - e	#d - e	#e-d	#d - d
FB20K	19,923	57,803	18,753	11,586	151

图: 原始的 FB15k

图: 本实验的数据集

- ▶ 作者去除了正文过短的实体(<3 个单词)
- ▶ 为了验证 Zero-shot, 作者将 fb15k 扩充成 fb20k:
 - ► 从 freebase 中随机选和 fb15k 有 triple 关系的新点加进来,最后把新点和集合中其他实体的 triple 边加进来
- ▶ 参数: 学习率 $\lambda = 0.001$ margin: $\gamma = 1$ 卷积初始合并 k = 2 个连续单词词向量 n = 100 维, $n_w = 100$, $n_f = 100$

实验-KBC-1

补全三元组,<mark>预测实体: (h, r, t):</mark> 给 定 r, t, 求 h; 或者给定 h, r, 求 t

			- 1	
Madella	. Mean Rank			10(%)
Metric	Raw	Filter	Raw	Filter
TransE	210	119	48.5	66.1
DKRL(CBOW)	236	151	38.3	51.8
DKRL(CNN)	200	113	44.3	57.6
DKRL(CNN)+TransE	181	91	49.6	67.4

- ▶ filter 指的是把预测结果中在训练集、测试集中出现的三元组删掉之后的效果
 - ▶ 理论上在训练集中出现的三元组不会在测试集中出现,不可能是答案
- ▶ transE 原论文提供的 HIT@10 数据是 34.9.47.1
 - ▶ 作者强调他自己实现了 transE, 比原论文效果好(实验结果没问题)
 - ▶ 结论说自己的方法比 transE 有明显提升

实验-KBC-1

补全三元组,<mark>预测实体: (h, r, t):</mark> 给 定 r, t, 求 h; 或者给定 h, r, 求 t

			- 1	
Metric	Mear	n Rank	Hits@	10(%)
Metric	Raw	Filter	Raw	Filter
TransE	210	119	48.5	66.1
DKRL(CBOW)	236	151	38.3	51.8
DKRL(CNN)	200	113	44.3	57.6
DKRL(CNN)+TransE	181	91	49.6	67.4

- ▶ filter 指的是把预测结果中在训练集、测试集中出现的三元组删掉之后的效果
 - ▶ 理论上在训练集中出现的三元组不会在测试集中出现,不可能是答案
- ▶ transE 原论文提供的 HIT@10 数据是 34.9.47.1
 - ▶ 作者强调他自己实现了 transE, 比原论文效果好(实验结果没问题)
 - ▶ 结论说自己的方法比 transE 有明显提升
 - ▶ 有点自相矛盾

实验-KBC-2

Metric	Mear	Rank	Hits@	21(%)
Metric	Raw	Filter	Raw	Filter
TransE	2.91	2.53	69.5	90.2
DKRL(CBOW)	2.85	2.51	65.3	82.7
DKRL(CNN)	2.91	2.55	69.8	89.0
DKRL(CNN)+TransE	2.41	2.03	69.8	90.8

实验-分类

1. 取 FB15K 中实体的所有类别并统计频率,取出现频率最高的 50 个作为分类的候选

Metric	FB15K	FB20K
TransE	87.9	-
BOW	86.3	57.5 52.0
DKRL(CBOW) DKRL(CNN)	89.3 90.1	52.0 61.9

- ▶ BOW: 词袋模型, 一个 one-hot 的超大 vector, 长度为词典大小
- ▶ 文本信息对于预测类别有相对明显的提升

实验-zero-shot

- ▶ 如果测试集中的实体在训练集中没有出现,则不可能训练出词向量,更不可能找 到答案
- ▶ 在 FB20K 上看看本文效果 (FB15K 的测试集中大多数实体都出现过了)
- ▶ 使用 FB15K 的训练集,测试集改成 FB20K 多的那 5K 个实体引入的新三元组

1. 预测实体

Metric	d-e	e-d	d-d	Total
Partial-CBOW	26.5	20.9	67.2	24.6
CBOW	27.1	21.7	66.6	25.3
Partial-CNN	26.8	20.8	69.5	24.8
CNN	31.2	26.1	72.5	29.5

- ▶ d e 表示 head 是新的实体, tail 是原来 FB15K 训练集中的实体
- ▶ Partial-XX 表示测试数据的时候在训练集中出现的实体用 triple 向量表示: 否则,所有数据都用文本向量表示

实验-zero-shot

- ▶ 如果测试集中的实体在训练集中没有出现,则不可能训练出词向量,更不可能找 到答案
- ▶ 在 FB20K 上看看本文效果 (FB15K 的测试集中大多数实体都出现过了)
- ▶ 使用 FB15K 的训练集,测试集改成 FB20K 多的那 5K 个实体引入的新三元组

1. 预测关系

Metric	d-e	e-d	d-d	Total
Partial-CBOW	49.0	42.2	0.0	46.2
CBOW	52.2	47.9	0.0	50.3
Partial-CNN	56.6	52.4	4.0	54.8
CNN	60.4	55.5	7.3	58.2

手工对比

手工对比

- ▶ 原始的文章到 zero-shot 实验之后就结束了,开始总结
- ▶ 没有对比

Aligning knowledge and text embeddings by entity descriptions

- ► EMNLP 2015
- ▶ 构造一个复杂的目标函数: KB 的目标 (h+r-t 小) + 文本相似 (文本中距离近的单词距离小) +description 相似 (一个实体的文本中的单词和他距离进)

Representing Text for Joint Embedding of Text and Knowledge Bases

- ► EMNLP 2015
- ▶ 用 CNN encode 文本中的 d-path

手工对比-Aligning knowledge and text embeddings by entity descriptions

- ▶ 中山大学 + 微软
- ▶ 目标函数 3 方面: $\mathcal{L}(\{\mathbf{e}_i\}, \{\mathbf{r}_j\}, \{\mathbf{w}_l\}) = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A$
 - ► KB 的优化目标(h+r-t 小)+ 文本相似(文本中距离近的单词距离小)+description 相似 (一个实体的文本中的单词和他距离进)
 - ▶ 以第一方面为例: $z(h,r,t) = b 0.5 \cdot \|\mathbf{h} + \mathbf{r} \mathbf{t}\|_{2}^{2}$. $\Pr(h|r,t) = \frac{\exp\{z(h,r,t)\}}{\sum_{\tilde{h} \in \mathcal{I}} \exp\{z(\tilde{h},r,t)\}} \mathcal{L}_{K} = -\sum_{\substack{(h,r,t) \ + \log \Pr(t|h,r) + \log \Pr(r|h,t)}} [\log \Pr(r|h,t)]$

▶ 对数据没有做过清洗

36	l M	EAN	HITS@10		
Metric	Raw	Filtered	Raw	Filtered	
TransE	243	125	34.9	47.1	
Jointly(anchor)	166	47	49.9	72.0	
Jointly(desp)	167	39	51.7	77.3	

			- 1	
Metric	Mear Raw	Rank Filter	Hits@ Raw	10(%) Filter
TransE	210	119	48.5	66.1
DKRL(CBOW)	236	151	38.3	51.8
DKRL(CNN)	200	113	44.3	57.6
DKRL(CNN)+TransE	181	91	49.6	67.4

手工对比-Aligning knowledge and text embeddings by entity descriptions

- ▶ 中山大学 + 微软
- ▶ 目标函数 3 方面: $\mathcal{L}(\{\mathbf{e}_i\}, \{\mathbf{r}_j\}, \{\mathbf{w}_l\}) = \mathcal{L}_K + \mathcal{L}_T + \mathcal{L}_A$
 - ► KB 的优化目标(h+r-t 小)+ 文本相似(文本中距离近的单词距离小)+description 相似 (一个实体的文本中的单词和他距离进)
 - 以第一方面为例: $z(h, r, t) = b 0.5 \cdot \|\mathbf{h} + \mathbf{r} \mathbf{t}\|_{2}^{2}$. $\Pr(h|r, t) = \frac{\exp\{z(h, r, t)\}}{\sum_{\tilde{h} \in \mathcal{I}} \exp\{z(\tilde{h}, r, t)\}} \mathcal{L}_{K} = -\sum_{\substack{(h, r, t) \\ + \log \Pr(t|h, r) + \log \Pr(r|h, t)}} [\log \Pr(r|h, t)]$
- ▶ 对数据没有做过清洗
- ▶ 优点:效果好
- ▶ 缺点: 归一化的概率计算复杂度大?

手工对比-Representing Text for Joint Embedding of Text and Knowledge Bases

- ▶ Stanford+ 微软
- ▶ 不同于 transE, 提出 E 模型, DISTMULT 模型来衡量三元组的可靠性
- ▶ 作者提取文本中的依存关系作为 relation 和 entity 的关联关系来训练 relation 向量

22 / 24

手工对比-Representing Text for Joint Embedding of Text and Knowledge Bases

- ▶ Stanford+ 微软
- ▶ 不同于 transE,提出 E 模型,DISTMULT 模型来衡量三元组的可靠性
- ► 作者提取文本中的依存关系作为 relation 和 entity 的关联关系来训练 relation 向量

CONT BIOTHERIN (1 - 0.20)	20.0	00.0
E + DISTMULT ($\tau = 0.01$)	37.7	55.7
Conv-E + Conv-DistMult ($\tau = 0.25$)	40.1	58.1

Metric	Mear	n Rank	Hits@	Hits@10(%)	
Metric	Raw	Filter	Raw	Filter	
TransE	210	119	48.5	66.1	
DKRL(CBOW)	236	151	38.3	51.8	
DKRL(CNN)	200	113	44.3	57.6	
DKRL(CNN)+TransE	181	91	49.6	67.4	

- ▶ 这篇文章作者使用 FB15K-237, 更小/好的一个 FB15K 的子集
- ▶ 最后的效果并不比本文好
- ▶ TransE 其实已经是一个很好的模型了 (?)

总结

- ▶ text + KB 训练词向量,有提升,但很依赖怎么从文本中提取信息
 - ▶ CNN 模型一般有小量提升, CBOW 模型一般没有提升
 - ▶ 怎么表示 text 中的信息很重要
- ▶ TransE 模型已经很好了,工程使用应该够?

问题?