Devoir surveillé nº 7

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

Problème 1 —

Partie I -

Notons E le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} de classe C^{∞} et $D: f \in E \mapsto f'$. Il est clair que D est un endomorphisme de E.

1. Déterminer le noyau et l'image de D.

$$\mathrm{Soient}\ f_1:t\in\mathbb{R}\mapsto e^t,\ f_2:t\in\mathbb{R}\mapsto e^{-t/2}\sin\left(\frac{t\sqrt{3}}{2}\right)\ \mathrm{et}\ f_3:t\in\mathbb{R}\mapsto e^{-t/2}\cos\left(\frac{t\sqrt{3}}{2}\right).$$

Nous noterons $\mathcal{B}=(f_1,f_2,f_3)$ et G le sous-espace vectoriel de E engendré par $\mathcal{B}.$

Nous allons montrer que \mathcal{B} est une famille libre de vecteurs de $\mathsf{E}.$

Soient a, b et c des réels tels que $af_1 + bf_2 + cf_3$ soit la fonction nulle.

2. L'étudiante Antoinette observe que $\mathfrak{af}_1(t) + \mathfrak{bf}_2(t) + \mathfrak{cf}_3(t) = 0$ pour tout réel t. Elle choisit (adroitement) trois valeurs de t, obtient un système de trois équations à trois inconnues \mathfrak{a} , \mathfrak{b} et \mathfrak{c} , qu'elle résout ; il ne lui reste plus qu'à conclure.

Faites comme elle!

3. L'étudiante Lucie propose d'exploiter le développement limité à l'ordre 2 de la fonction $\mathfrak{af}_1 + \mathfrak{bf}_2 + \mathfrak{cf}_3$ au voisinage de 0.

Faites comme elle!

4. L'étudiante Nicole décide de s'intéresser au comportement de $\mathfrak{af}_1(t) + \mathfrak{bf}_2(t) + \mathfrak{cf}_3(t)$ lorsque t tend vers $+\infty$.

Faites comme elle!

La famille \mathcal{B} est donc une base de G et ce sous-espace est de dimension 3.

5. Montrer que G est stable par D c'est-à-dire que $D(G) \subset G$.

Nous noterons \widehat{D} l'endomorphisme de G induit par D, c'est-à-dire l'endomorphisme de G défini par $\widehat{D}(f) = D(f)$ pour $f \in G$.

- **6.** Montrer que $\widehat{D}^3 = \operatorname{Id}_G$.
- 7. En déduire que \widehat{D} est un automorphisme de G et exprimer $(\widehat{D})^{-1}$ en fonction de \widehat{D} .

Partie II -

Nous nous intéressons dans cette partie à l'équation différentielle y'''=y, que nous noterons (\mathcal{E}) . Une solution sur \mathbb{R} de (\mathcal{E}) est une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} , trois fois dérivable sur \mathbb{R} , vérifiant f'''(t)=f(t) pour tout $t\in\mathbb{R}$.

1. Montrer que toute solution f de (\mathcal{E}) est C^{∞} .

Notons $T = D^3 - \mathrm{Id}_F$, où Id_F est l'identité de E, et $D^3 = D \circ D \circ D$.

Le noyau de T est donc l'ensemble des solutions de (\mathcal{E})

2. Montrer que G est contenu dans le noyau de T.

Nous allons établir l'inclusion inverse; ainsi, G sera exactement l'ensemble des solutions de (\mathcal{E}) .

Soit f une solution de (\mathcal{E}) ; nous noterons g = f'' + f' + f.

- 3. Montrer que q est solution de l'équation différentielle y' = y.
- 4. Décrivez rapidement l'ensemble des solutions à valeurs réelles de l'équation différentielle y' y = 0.
- 5. Résolvez l'équation différentielle y'' + y' + y = 0. Vous donnerez une base de l'ensemble des solutions à valeurs réelles.
- 6. Soit $\lambda \in \mathbb{R}$. Décrivez l'ensemble des solutions à valeurs réelles de l'équation différentielle $y'' + y' + y = \lambda e^t$.
- 7. Et maintenant, concluez!

Exercice 1.★

Soit E un \mathbb{R} -espace vectoriel de dimension $n \ge 2$. On dit qu'un sous-espace vectoriel F de E est stable par un endomorphisme f de E si $f(F) \subset F$.

- 1. Soit $f \in \mathcal{L}(E)$ tel que $f^{n-1} \neq 0$ et $f^n = 0$ où 0 désigne l'endomorphisme nul de E.
 - a. Montrer qu'il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Montrer que, pour un tel vecteur x, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est une base de E.

Dans toute la suite de l'exercice, f est un endomorphisme de E tel que $f^{n-1} \neq 0$ et $f^n = 0$ et x un vecteur de E tel que $f^{n-1}(x) \neq 0$.

- 2. Pour k un entier tel que $1 \leqslant k \leqslant n$, on pose $F_k = \mathrm{vect}\left((f^{n-i}(x))_{1 \leqslant i \leqslant k}\right)$.
 - a. Déterminer la dimension de F_k .
 - **b.** Montrer que $F_k = \text{Ker}(f^k) = \text{Im}(f^{n-k})$.
 - ${f c.}$ Montrer que ${\sf F}_k$ est stable par f.
- 3. Soit F un sous-espace vectoriel stable par f. On suppose que F est de dimension k avec $1 \le k \le n-1$. On note \tilde{f} l'endomorphisme de F défini par : $\forall y \in F$, $\tilde{f}(y) = f(y)$.
 - a. Montrer qu'il existe un entier $p \ge 1$ tel que $\tilde{f}^{p-1} \ne \tilde{0}$ et $\tilde{f}^p = \tilde{0}$ où $\tilde{0}$ désigne l'endomorphisme nul de F.
 - **b.** Soit $y \in F$ tel que $\tilde{f}^{p-1}(y) \neq 0$. Que peut-on dire de la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$? En déduire que $\tilde{f}^k = \tilde{0}$.
 - **c.** Montrer que $F = \text{Ker } f^k$.
 - d. Déterminer tous les sous-espaces vectoriels stables par f.
- 4. On veut déterminer tous les endomorphismes g de E qui commutent avec f, c'est-à-dire tels que $f \circ g = g \circ f$.
 - a. Soit g un endomorphisme de E. Montrer qu'il existe un unique n-uplet de nombres réels $(\alpha_0, \alpha_1, \dots, \alpha_{n-1})$ tel que :

$$q(x) = \alpha_0 x + \alpha_1 f(x) + \cdots + \alpha_{n-1} f^{n-1}(x)$$

b. En déduire que si **g** commute avec **f** alors,

$$g = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \cdots + \alpha_{n-1} f^{n-1}$$

- où $\alpha_0,\alpha_1,\dots,\alpha_{n-1}$ sont les réels définis à la question précédente.
- c. Montrer que l'ensemble des endomorphismes qui commutent avec f est un sous-espace vectoriel de $\mathcal{L}(E)$ et préciser sa dimension.