Interventions

Martin Thoma

X. August 2015

Inhalt

Einführung

2 Interventions

3 Ende

- Kristalline Ablagerungen
- 2-4 mm unkritisch, ab 10 mm operative Entfernung
- 2 Methoden des Entfernens:
 - A: Offene Operation
 - B: PCNL (Percutaneous nephrolithotomy): Entfernung durch ca 1cm große Punktuierung der Haut

- Kristalline Ablagerungen
- 2-4 mm unkritisch, ab 10 mm operative Entfernung
- 2 Methoden des Entfernens:
 - A: Offene Operation
 - B: PCNL (Percutaneous nephrolithotomy): Entfernung durch ca 1cm große Punktuierung der Haut

Was ist besser: A oder B?

- Kristalline Ablagerungen
- 2-4 mm unkritisch, ab 10 mm operative Entfernung
- 2 Methoden des Entfernens:
 - A: Offene Operation
 - B: PCNL (Percutaneous nephrolithotomy): Entfernung durch ca 1cm große Punktuierung der Haut

Was ist besser: A oder B?

Ist die Entscheidung abhängig von der Größe?

Simpson-Paradoxon

	Behandlungserfolg	
	Α	В
Kleine Nierensteine	93% (81/ 87)	87% (234/270)
Große Nierensteine	73% (192/263)	69% (55/ 80)
Gesamt	78% (273/350)	83% (289/350)

Tabelle: Nierensteine durch (A) offene Operation oder (B) PCNL entfernen.

Quelle: Causality, 2015. Jonas Peters.

Aufstellen eines SEM

```
Z \in \{ \text{ klein}, \text{groß} \}: Größe des Nierensteins
```

 $T \in \{A, B\}$: Behandlung (Treatment)

 $R \in \{ \text{ erfolg, misserfolg } \}$: Behandlungserfolg (Recovery)

Sei das wahre SEM:

Interventionsverteilung

Sei $\mathbb{P}^{\mathbf{X}}$ die zu einer SEM $\mathcal{S}:=(\mathcal{S},\mathbb{P}^N)$ gehörende Verteilung. Dann kann eine (oder mehr) Strukturgleichungen aus \mathcal{S} entfernt werden ohne einen Zyklus im Graphen zu erzeugen. Die Verteilung des neuen SEM $\tilde{\mathcal{S}}$ heißt dann *Interventionsverteilung*.

Bei den Variablen, deren Strukturgleichungen ersetzt wurden, sagt man, wurde *interveniert*.

Die neue Verteilung wird mit

$$\mathbb{P}_{ ilde{\mathcal{S}}}^{ extsf{X}} = \mathbb{P}_{ ilde{\mathcal{S}}}^{ extsf{X}|do(X_j = ilde{f}(ilde{ extsf{PA}}_j, ilde{ extsf{N}}_j))}$$

beschrieben.

Die Menge der Rauschvariablen in \mathcal{S} beinhaltet nun einige "neue" und einige "alte" N's. \mathcal{S} muss paarweise unabhängig sein.

Modell A

Modell B

Quellen

• Causality, 2015. Jonas Peters.