

INTRODUCTION TO DATABASES USING ORACLE 420-983-VA

NORMALIZATION

Given a relation schema, we need to decide whether it is a good design or we need to decompose it into smaller relations. Such a decision must be guided by an understanding of what problems, if any, arise from the current schema. To provide such guidance, several normal forms have been proposed. If a relation schema is in one of these normal forms, we know that certain kinds of problems cannot arise.

First Normal Form (INF)

A relation is in first normal form if every field contains only atomic values, that is, no lists or sets or other composite types. This requirement is implicit in the definition of the relational model. Some of the newer database systems are relaxing this requirement.

Example of relation not in 1NF:

employeelD	department	office
1	IT	3A-100
2	ЯН	2B-102, 3A-099
3	IT	3A-098

Office columns contains a set of atomic values for employee with ID 2.

Decomposing First Normal Form (INF)

Each element of the list is considered for each row where it occurred. Relation will not allow lists or sets for any of its attributes.

Example

employeeID	department	office
1	IT	3A-100
n	HR	2B-102,
Z	אח	
3	IT	3A-098

employeeID	department	office
1	IT	3A-100
2	HR	2B-102
2	HR	3A-099
3	ΙΤ	3A-098

Second Normal Form (2NF)

A database is in second normal form if for every FD $X\rightarrow A$ one of the following is true:

- a) $X \rightarrow A$ is a trivial FD (i.e. $A \in X$), or.
- b) X is a superkey, or
- c) A is a subkey, or
- d) X is not a subkey.

Example of relation that is not in 2NF:

Orders(productId, clientId, date, quantity, productName)

prodID	clientld	date	qty	prodName
4033	1	3 Jan 20	1	Lemon
4011	2	4 Mar 20	2	Banana
4051	1	9 Jun 20	1	Mango
4051	2	12 Jun 20	1	Mango

Primary key = $\{\text{productId}, \text{clientId}, \text{date}\}\$ and $\{\text{productid}\} \longrightarrow \text{productName}$

Decomposing into Second Normal Form (2NF)

Decompose into 1NF, then each attribute that is functional dependent by subset of a key is removed from the relation and a new relation is created with the subset of the key and the removed attribute.

Example:

Orders(productId, clientId, date, quantity, productName)

prodID	clientld	date	qty	prodName
4033	1	3 Jan 20	1	Lemon
4011	2	4 Mar 20	2	Banana
4051	1	9 Jun 20	1	Mango
4051	2	12 Jun 20	1	Mango

2NF
Orders(productId, clientId, date, quantity)
Products(productId, productName)

prodID	clientld	date	qty
4033	1	3 Jan 20	1
4011	2	4 Mar 20	2
4051	1	9 Jun 20	1
4051	2	12 Jun 20	1

prodID	prodName	
1033	Lemon	
¥011	Banana	
i051	Mango	

Boyce-Codd Normal Form (BCNF)

A database is in the Boyce-Codd normal form if for any FD $X\rightarrow A$ (X set of attributes, A one attribute – recall FD splitting) we have one of the following:

- a) $X \rightarrow A$ is a trivial FD (i.e. $A \in X$), or.
- b) X is a superkey.

(<u>oneta@vaniercollege.qc.ca</u>)

NORMAL FORMS

Boyce-Codd Normal Form (BCNF)

Example:

Consider following relation:

Grading(studentId, subjectCode, subjectName, exam#, score, grade)

Which are the keys?

Boyce-Codd Normal Form (BCNF)

Example:

Consider following relation:

Grading(studentId, subjectCode, subjectName, exam#, score, grade)

KEYS

{studentld, subjectCode, exam#}

{studentId, subjectName, exam#}

Boyce-Codd Normal Form (BCNF)

Example:

Consider following relation:

Grading(studentId, subjectCode, subjectName, exam#, score, grade)

KEYS How about FDs?

{studentld, subjectCode, exam#}

{studentId, subjectName, exam#}

Boyce-Codd Normal Form (BCNF)

Example:

Consider following relation:

Grading(studentId, subjectCode, subjectName, exam#, score, grade)

```
KEYS

Functional Dependencies (FDs)

subjectCode \rightarrow subjectName

subjectCode \rightarrow subjectName

subjectName \rightarrow subjectCode

subjectName \rightarrow subjectCode

subjectCode, exam# \rightarrow score

subjectCode, exam# \rightarrow score

subjectCode, exam# \rightarrow score

subjectName, exam# \rightarrow grade

score \rightarrow grade

... more other trivial and key based FDs
```

Boyce-Codd Normal Form (BCNF)

Example:

Consider following relation:

Grading(studentId, subjectCode, subjectName, exam#, score, grade)

KEYS

Functional Dependencies (FDs) $\{\text{studentld, subjectCode, exam#}\}$ $\{\text{studentld, subjectName, exam#}\}$ $\{\text{studentld, subjectName, exam#}\}$ $\{\text{studentld, subjectCode, exam#}\rightarrow \text{score}\}$ $\{\text{studentld, subjectCode, exam#}\rightarrow \text{score}\}$ $\{\text{studentld, subjectName, exam#}\rightarrow \text{score}\}$

 $score \rightarrow grade$

... more other trivial and key based FDs

Key FDs

Boyce-Codd Normal Form (BCNF)

Example:

Consider following relation:

Grading(studentId, subjectCode, subjectName, exam#, score, grade)

Boyce-Codd Normal Form (BCNF)

Example:

Consider following relation:

Grading(studentId, subjectCode, subjectName, exam#, score, grade)

Remember (in BCNF):

 $\forall FD X \rightarrow A \text{ we have:}$

- a) $X \rightarrow A$ is a trivial FD (i.e. $A \in X$), or.
- b) X is a superkey.

Decomposing into Boyce-Codd Normal Form (BCNF)

Repeatedly apply decomposition until all resulted relations are in BCNF. That is for each non-trivial FD $X \to A$ that violates BCNF for relation R we decompose R in two relations:

- R₀ containing attributes in X and all attributes from R that are not in X⁺.
- R₁ containing all attributes from X⁺.

Dependency Preservation in Boyce-Codd Normal Form (BCNF)

Consider relation: Bookings(movieTitle, theater, city)

We assume that each movie is playing in a single theater in a given city. Each theater may show multiple movies (multiplex). Theater names are unique.

For this relation we have following FD's:

theater \rightarrow city

movieTitle, city \rightarrow theater

Can you find the keys?

Dependency Preservation in Boyce-Codd Normal Form (BCNF)

Consider relation: Bookings(movieTitle, theater, city)

We assume that each movie is playing in a single theater in a given city. Each theater may show multiple movies (multiplex). Theater names are unique.

For this relation we have following FD's:

```
theater \rightarrow city

movieTitle, city \rightarrow theater

Keys:

{movieTitle, city}

{movieTitle, theater}
```

Dependency Preservation in Boyce-Codd Normal Form (BCNF)

Consider relation: Bookings(movieTitle, theater, city)

We assume that each movie is playing in a single theater in a given city. Each theater may show multiple movies (multiplex). Theater names are unique.

For this relation we have following FD's:

```
theater \rightarrow city \rightarrow Violates BCNF movieTitle, city \rightarrow theater
```

Keys:

```
{movieTitle, city}
{movieTitle, theater}
```

Dependency Preservation in Boyce-Codd Normal Form (BCNF)

Consider relation: Bookings(movieTitle, theater, city)

We assume that each movie is playing in a single theater in a given city. Each theater may show multiple movies (multiplex). Theater names are unique.

For this relation we have following FD's:

theater → city
Violates BCNF

movieTitle, city \rightarrow theater

Decompose Bookings into:

Theaters(theater, city)
Bookings(movieTitle, theater)

Dependency Preservation in Boyce-Codd Normal Form (BCNF)

Consider relation: Bookings(movieTitle, theater, city)

We assume that each movie is playing in a single theater in a given city. Each theater may show multiple movies (multiplex). Theater names are unique.

For this relation we have following FD's:

theater \rightarrow city

movieTitle, city \rightarrow theater

Is this FD satisfied?

Decompose Bookings into:

Theaters(theater, city)
Bookings(movieTitle, theater)

Dependency Preservation in Boyce-Codd Normal Form (BCNF)

Consider relation: Bookings(movieTitle, theater, city)

We assume that each movie is playing in a single theater in a given city. Each theater may show multiple movies (multiplex). Theater names are unique.

For this relation we have following FD's:

theater \rightarrow city

movieTitle, city \rightarrow theater

Is this FD satisfied?

Decompose Bookings into:

Theaters(theater, city)
Bookings(movieTitle, theater)

Dependency Preservation in Boyce-Codd Normal Form (BCNF)

Consider relation: Bookings(movieTitle, theater, city)

We assume that each movie is playing in a single theater in a given city. Each theater may show multiple movies (multiplex). Theater names

are unique.

For this relation we have following FD's:

theater \rightarrow city

movieTitle, city \rightarrow theater

Decompose Bookings into:

Theaters(theater, city)
Bookings(movieTitle, theater)

Based on the decomposition the following two relations are allowed.

theater	city		theater	movieTitle	
Guild	Menlo Park		Guild	Antz	
Park	Menlo Park		Park	Antz	
		—			
	theater	city	movie	Title	
	Guild	Menlo Park	Antz		
	Park	Menlo Park	Antz		

But this violates our initial FD assumption movieTitle, city → theater

Third Normal Form (3NF)

The solution for the dependency preservation problem observed before is to relax BCNF. A relation is in third normal form (3NF) if for any FD $X\rightarrow A$ we have one of the following:

- a) $X \rightarrow A$ is a trivial FD (i.e. $A \in X$), or.
- b) X is a superkey, or
- c) A is a member of some key.

Third Normal Form (3NF)

The solution for the dependency preservation problem observed before is to relax BCNF. A relation is in third normal form (3NF) if for any FD $X\rightarrow A$ we have one of the following:

- a) $X \rightarrow A$ is a trivial FD (i.e. $A \in X$), or.
- b) X is a superkey, or
- c) A is a member of some key.

city is part of a key, thus does not violate 3NF theater \rightarrow city is in 3NF. movieTitle, city \rightarrow theater

In this case Bookings(movieTitle, theater, city) with

Third Normal Form (3NF)

Example:

Consider relation for regional list of telephone numbers: TEL(place, area, number where place represents the location (e.g. town) for this phone. Area represents the area code and number the phone number.

For this we have the following FD's:

area, number \longrightarrow place

place \rightarrow area

In this case TEL(place, area, number) is in 3NF

Third Normal Form (3NF)

Example:

Consider relation for regional list of telephone numbers: TEL(place, area, number where place represents the location (e.g. town) for this phone. Area represents the area code and number the phone number.

For this we have the following FD's:

area, number \longrightarrow place

place \rightarrow area

In this case TEL(place, area, number) is in 3NF

But does not preserve place \rightarrow area, i.e. we may add records with the same place but different area codes.

Third Normal Form (3NF)

Example:

Consider relation for regional list of telephone numbers: TEL(place, area, number where place represents the location (e.g. town) for this phone. Area represents the area code and number the phone number.

For this we have the following FD's:

area, number
$$\longrightarrow$$
 place place \longrightarrow area

If we decompose it (according to BCNF) in TELI(place, area) and TEL2(place, number)

Does not preserve FD area, number → place

How should we decompose this relation?

Third Normal Form (3NF)

Example:

Consider relation for regional list of telephone numbers: TEL(place, area, number where place represents the location (e.g. town) for this phone. Area represents the area code and number the phone number.

For this we have the following FD's:

area, number \longrightarrow place

place \rightarrow area