Şiruri

Tănase Ramona Elena

Universitatea Ovidius Constanta Facultatea de Matematică și Informatică Specializarea:Matematică - Informatică

Iulie, 2021

Cuprins

- 1. Şiruri
- 2. Şiruri convergente de numere reale
- 3. Şiruri mărginite
- 4. Şiruri recurente şi asimtote oblice
- 5. Bibliografie

Siruri

Definiție

Fie X o mulțime. O funcție $f: \mathbb{N} \to X$ se numește șir de elemente din mulțimea X, sau sub o altă formulare: se numește șir de elemente din multimea X o functie $f: \mathbb{N} \to X$. în mod uzual, se notează

$$f_1 = x_1 \in X, f_2 = x_2 \in X, \dots, f_n = x_n \in X, \dots$$

Teorie

Definition

Un şir $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$, se numeşte convergent dacă există $x\in\mathbb{R}$ astfel încât: $\forall_{\varepsilon}>0,\in n_{\varepsilon}\in\mathbb{N}$ astfel încât este satisfacută inegalitatea: $|x_n-x|\leq \varepsilon$.

Propoziție

Unicitatea limitei unui șir de numere reale Fie $(x_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Dacă

$$\begin{cases} x_n \to x \\ x_n \to y \end{cases}$$

atunci x = y.

Demonstrație

Să presupunem, prin absurd, că $x \neq y$. Cum suntem pe \mathbb{R} înseamnă că avem una din situațiile x < y sau y < x. Pentru a face o alegere, fie x < y atunci yx > 0 și din definiție pentru $\varepsilon = \frac{y-x}{2} > 0$ rezultă că, $\exists n_1 \in \mathbb{N}$ astfel încât $|x_n - x| < \frac{y-x}{2}, \forall n \geq n_1$ și $\exists n_2 \in \mathbb{N}$ astfel încât $|x_n - y| < \frac{y-x}{2}, \forall n \geq n_2$ Fie $n = \max(n_1, n_2) \geq n_1, n_2$. Atunci: $|x_n - x| < \frac{y-x}{2}$ și $|x_n - y| < \frac{y-x}{2}$ de unde

$$y-x = |y-x| = |(y-x_n) + (x_n-x)| \le |y-x_n| + |x_n-x| < \frac{y-x}{2} + \frac{y-x}{2}$$

Aşadar, y - x < y - x, contradicție!

Exercitii

Calculați

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^4 + 1}} + \frac{2}{\sqrt{n^4 + 2}} + \frac{3}{\sqrt{n^4 + 3}} + \dots + \frac{n}{\sqrt{n^4 + n}} \right)$$

Rezolvare

Notăm
$$x_n = \frac{1}{\sqrt{n^4+1}} + \frac{2}{\sqrt{n^4+2}} + \frac{3}{\sqrt{n^4+3}} + \dots + \frac{n}{\sqrt{n^4+n}}$$
. Adică $x_n = \sum_{k=1}^n \frac{k}{n^4+k}$.

Adică
$$x_n = \sum_{k=1}^n \frac{k}{n^4 + k}$$
.

în continuare procedăm astfel. De numărător nu ne atingem. Vom lucra cu numitorul, ideea fiind de a se avea același numitor peste tot.

Avem
$$1 \le k \le n$$
 de unde $n^4 + 1 \le n^4 + k \le n^4 + n$ de unde $\sqrt{n^4 + 1} < \sqrt{n^4 + k} < \sqrt{n^4 + 1}$ de unde

$$\frac{1}{\sqrt{n^4+1}} \ge \frac{1}{\sqrt{n^4+k}} \ge \frac{1}{\sqrt{n^4+n}}.$$

Acum înmulțind cu k obținem

$$\frac{k}{\sqrt{n^4 + 1}} \ge \frac{k}{\sqrt{n^4 + k}} \ge \frac{k}{\sqrt{n^4 + n}} \tag{1.1}$$

în continuare în relația 1.1 dam lui k valorile 1, 2,, n.

Pentru
$$k=1$$
 rezultă $\frac{1}{\sqrt{n_4^4+1}} \geq \frac{1}{\sqrt{n_4^4+1}} \geq \frac{1}{\sqrt{n_4^4+n}}$

Pentru
$$k=2$$
 rezultă $\frac{2}{\sqrt{n^4+1}} \ge \frac{2}{\sqrt{n^4+2}} \ge \frac{2}{\sqrt{n^4+n}}$

Adunând inegalitățile de mai sus obținem

$$\frac{1}{\sqrt{n^4 + 1}} + \frac{2}{\sqrt{n^4 + 1}} + \dots + \frac{n}{\sqrt{n^4 + 1}} \ge$$

$$\ge \frac{1}{\sqrt{n^4 + 1}} + \frac{2}{\sqrt{n^4 + 2}} + \dots + \frac{n}{\sqrt{n^4 + n}} \ge$$

$$\ge \frac{1}{\sqrt{n^4 + n}} + \frac{2}{\sqrt{n^4 + n}} + \dots + \frac{n}{\sqrt{n^4 + n}}$$

Sau $\frac{1+2+...+n}{\sqrt{n^4+1}} \ge x_n \ge \frac{1+2+....+n}{\sqrt{n^4+n}}$ Dar ştim că $1+2+...+n=\frac{n(n+1)}{2}$, deci vom obține

$$\frac{n(n+1)}{2\sqrt{n^4+1}} \ge x_n \ge \frac{n(n+1)}{2\sqrt{n^4+n}} \tag{1.2}$$

Acum

$$\lim_{n\to\infty}\frac{n(n+1)}{2\sqrt{n^4+1}}=\frac{1}{2}$$

şi

$$\lim_{n \to \infty} \frac{n(n+1)}{2\sqrt{n^4 + n}} = \frac{1}{2} \tag{1.3}$$

Vom da la ambele factor comun forțat. Din 1.2 și 1.3 și teorema cleștelui rezultă că

$$\lim_{n\to\infty}x_n=\frac{1}{2}$$

Teorie

Definiție

Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. şirul $(x_n)_{n\in\mathbb{N}}$ se numeşte mărginit dacă şi numai dacă $\exists a,b\in\mathbb{R}$, aj b astfel încât $\forall n\in\mathbb{N}$ este satisfacută inegalitatea $x_n\in[a,b]$, sau echivalent $\exists M>0$ astefle încât $\forall n\in\mathbb{N}$ este satisfacută inegalitatea $|x_n|< M$.

Definiție

Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Spunem că $\lim_{n\to\infty}x_n=\infty$ dacă, $\forall \varepsilon>0, \exists n_\varepsilon\in\mathbb{N}$ astfel încât pentru $\forall n\geq n_\varepsilon$ este satisfacută inegalitatea $x_n>\varepsilon$.

Sau $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}$ astfel încât $x_n > \varepsilon, \forall n \geq n_{\varepsilon}$.

Exerciții

Calculați

Fie $\alpha > 0$ să se calculeze

$$\lim_{n\to\infty}\frac{1^\alpha+2^\alpha+\ldots\ldots+n^\alpha}{n^{\alpha+1}}$$

Demonstrație

Fie $x_n = 1^{\alpha} + 2^{\alpha} + + n^{\alpha}$, $a_n = n^{\alpha}$. Decarece $\alpha > 0$, $\alpha \uparrow \infty$.

Din lema Stolz-Cesaro, cazul $\left[\frac{1}{\infty}\right]$,

$$\lim_{n \to \infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}} = \lim_{n \to \infty} \frac{x_n}{\alpha_n} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{\alpha_{n+1} - n} =$$

$$= \lim_{n \to \infty} \frac{(n+1)^{\alpha}}{(n+1)^{\alpha+1} - n^{\alpha+1}}$$

$$\lim_{n\to\infty}\frac{(n+1)^{\alpha+1}-n^{\alpha+1}}{(n+1)^{\alpha}}$$

Dăm factor comun forțat la numărător pe $n^{\alpha+1}$.

Avem

$$\lim_{n \to \infty} \frac{(n+1)^{\alpha+1} - n^{\alpha+1}}{(n+1)^{\alpha}} = \lim_{n \to \infty} \frac{n^{\alpha+1} \left[\frac{(n+1)^{\alpha+1}}{n^{\alpha+1}} - 1 \right]}{(n+1)^{\alpha}} =$$

$$= \lim_{n \to \infty} \frac{n^{\alpha}}{(n+1)^{\alpha}} \cdot n \left[\left(\frac{n+1}{n} \right)^{\alpha+1} - 1 \right] =$$

$$= \lim_{n \to \infty} \frac{n^{\alpha}}{(n+1)^{\alpha}} \cdot \lim_{n \to \infty} n \left[\left(\frac{n+1}{n} \right)^{\alpha+1} - 1 \right] =$$

$$= \lim_{n \to \infty} n \left[\left(1 + \frac{1}{n} \right)^{\alpha+1} - 1 \right] =$$

$$= \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^{\alpha + 1} - 1}{\frac{1}{n}} =$$

$$= \lim_{n \to \infty} \frac{\left(1 + n\right)^{\alpha + 1} - 1}{n} = \alpha + 1 =$$

Am folosit limita fundamentală

$$\lim_{x \to \infty} \frac{(1+x)^{\gamma} - 1}{x} = \gamma, \gamma \in \mathbb{R}$$

întorcându-ne la problemă, obținem:

$$\lim_{n\to\infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}} = \frac{1}{\alpha+1}$$

Şiruri recurente şi asimtote oblice

Teorie

Teoremă

Fie $a \in \mathbb{R}$ și $f: (\alpha, \infty)$ $n \to \mathbb{R}$ o funcție continuă cu proprietatea că $f_{(x)} > x, \forall x > a$. Definim șirul de numere reale $(x_n)_{n \ge 1}$ prin condiția inițială $x_1 > \alpha$ și relația de recurență $x_{n+1} = f_{(x_n)}$ pentruoricen ≥ 1 . Atunci

$$\lim_{x\to\infty} x_n = \infty$$

Dacă există $b_0 \in \mathbb{R}$ astfel încât $y=x+b_0$ este asimtotă oblică la graficul funcției f, atunci $\lim_{x \to \infty} \frac{x_n}{n} = b_0$

Şiruri recurente şi asimtote oblice

Dacă există
$$b_0, b_1 \in \mathbb{R}, b_0 \neq 0$$
 astfel încât $\lim_{n \to \infty} x(f(x) - x - b_0) = b_1, \lim_{n \to \infty} \frac{n}{\ln n} \left(\frac{x_n}{n} - b_0 \right) = \frac{b_1}{b_0}$

Şiruri recurente și asimtote oblice

Exerciții

Calculați

$$\lim_{n \to \infty} \frac{\sum_{k=1}^{n} k \left(\sqrt[n]{n+k} - 1 \right)}{n \ln n} = \frac{1}{2}$$

Demonstrație

Să notăm $x_n = \frac{1}{n} \sum_{k=1}^n k \ln(n+k), n \ge 1.$

$$\sum_{k=1}^{n} k \left(\sqrt[n]{n+k} - 1 \right) \sim x_n. \tag{2.1}$$

Şiruri recurente şi asimtote oblice

Fie $n \ge 2$.

Avem
$$\ln(n+1) \le \ln(n+k) \le \ln(n+n)$$
, $\forall 1 \le k \le n$, de unde

$$\sum_{k=1}^{n} k \ln (n+1) \le \sum_{k=1}^{n} k \ln (n+k) \le \sum_{k=1}^{n} k \ln (n+n), \frac{\ln (n+1)}{\ln n}$$

$$\frac{\sum_{k=1}^{n} k}{n^{2}} \le \frac{x_{n}}{n \ln n} \le \frac{\ln (n+n)}{\ln n}$$

$$\frac{\sum_{k=1}^{n} k}{n^{2}},$$

sau încă

Şiruri recurente și asimtote oblice

$$\frac{\ln(n+1)}{\ln n} \cdot \frac{n+1}{2n} \le \frac{x_n}{n \ln n} \le \frac{\ln(n+n)}{\ln n} \cdot \frac{n+1}{2n} \tag{2.2}$$

Din relația 2.2 și teorema cleștelui rezultă că $\lim_{n\to\infty} \frac{x_n}{n \ln n} = \frac{1}{2}$. Astfel spus

$$x_{n\sim} \frac{n \ln n}{2} \tag{2.3}$$

Din relațiile 2.1 și 2.3 rezultă că $\sum_{k=1}^n k \left(\sqrt[n]{n+k} - 1 \right) \sim \frac{n \ln n}{2}$, adică egalitatea din enunț.

Bibliografie

(1) Popa, Dumitru, Curs Matematică didactică Analiză Capitole speciale de analiză matematică pentru pregătirea profesorilor , 2020-2021

Multumiri

Vă mulțumesc pentru atenție!