Analisi e progettazione di algoritmi

(III anno Laurea Triennale - a.a. 2021/22)

Esempio di prova scritta

Esercizio 1 Si esegua, sul seguente grafo:

l'algoritmo di Prim a partire dal nodo A. Inizialmente quindi si avrà dist(A)=0, $dist(B)=\infty$, $dist(C)=\infty$, $dist(D)=\infty$, $dist(E)=\infty$, $dist(F)=\infty$, $dist(G)=\infty$. Per ogni iterazione del ciclo while si dia:

- il nodo che viene estratto con la getMin
- $\bullet\,$ i nodi per i quali viene modificata ${\tt dist}$ e come
- il minimo albero ricoprente alla fine dell'iterazione, evidenziando chiaramente la parte di albero definitiva.

Non dovete disegnare lo heap.

Soluzione La seguente tabella mostra per ogni iterazione: nella prima colonna il nodo che viene estratto; nelle successive i nodi per i quali viene modificata dist e come; nell'ultima gli archi dell'albero ricoprente (in grassetto quelli definitivi).

estratto	A	B	C	D	E	F	G	albero
A	_	7	∞	5	∞	∞	∞	(A,B),(A,D)
D	_	7	∞	_	15	6	∞	$(A,B), (\mathbf{A},\mathbf{D}), (D,E), (D,F)$
F	_	7	∞		8	_	11	(A, B), (A,D), (D,F), (F,E), (F,G)
B	_	_	8		7	_	11	(A,B), (A,D), (D,F), (B,C), (B,E), (B,G)
E	_	_	5	-	_	_	9	(A,B), (A,D), (D,F), (B,E), (E,C), (E,G)
C	_	_	_	-	_	_	9	(A,B), (A,D), (D,F), (B,E), (E,C), (E,G)
G	-	_	_	_	_	_	_	(A,B), (A,D), (D,F), (B,E), (E,C), (E,G)

Esercizio 2 Si consideri la seguente istanza ϕ del problema 3SAT:

$$(\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_1 \lor x_2 \lor x_4)$$

- 1. Si dia la corrispondente istanza del problema *CLIQUE*, ottenuta attraverso la riduzione vista a lezione.
- 2. Si dia un'assegnazione di valori di verità che rende vera ϕ e si mostri la corrispondente clique.
- 3. Come potremmo ottenere in modo semplice una riduzione da SAT a CLIQUE?

Soluzione

1. La corrispondente istanza del problema CLIQUE, ottenuta attraverso la riduzione vista a lezione, è data dalla coppia (G, 2) dove G è il grafo seguente:

2. Un'assegnazione di valori di verità che rende vera ϕ è, per esempio, $x_1 = T$, $x_2 = F$, $x_3 = T$, $x_4 = F$. La corrispondente clique è evidenziata sotto.

3. Una riduzione da SAT a CLIQUE si ottiene come composizione della riduzione da 3SAT a CLIQUE con l'altra riduzione da SAT a 3SAT vista a lezione.

Esercizio 3 Poni $\ell = 8$ e costruisci due stringhe a e b di 8 bit con $a \neq b$ per via di un solo bit. Campiona un numero primo a caso tra 2 e 64 e confronta le due *fingerprint* ottenute. Determina tutti i numeri primi tra 2 e 64 per i quali le *fingerprint* sono uguali.

Che cosa puoi dire della probabilità di errore di questa procedura? Come cambia se invece di 8 i bit fossero 2^{40} ?