

Soal

- $\boxed{\textbf{1}} \text{ Carilah solusi dari } x^4+i=0.$
- $\fbox{\fill}$ Carilah bilangan komplekszyang memenuhi $z^n=1$ jikan bilangan asli.
- **3** Tentukan hasil transformasi bidang kompleks z oleh fungsi linier w = z + 1 2i.

Carilah solusi dari $x^4 + i = 0$.

Solusi:

Tulis $x=|x|\mathrm{cis}(\theta)$ di mana $\theta\in\mathbb{R}$. Tinjau bahwa persamaan ekuivalen dengan $x^4=-i$, maka $1=|-i|=\left|x^4\right|=|x|^4$ sehingga |x|=1. Dari sini diperoleh $x=\mathrm{cis}(\theta)$, maka $-i=x^4=(\mathrm{cis}(\theta))^4=\mathrm{cis}(4\theta)$. Tinjau $-i=\mathrm{cis}\left(\frac{3\pi}{2}\right)$, ini berarti $\mathrm{cis}(4\theta)=\mathrm{cis}\left(\frac{3\pi}{2}\right)$, maka

$$4\theta = \frac{3\pi}{2} + 2\pi k, \quad k = 0, 1, 2, 3 \implies \theta = \frac{3+4k}{8}\pi, \quad k = 0, 1, 2, 3.$$

Diperoleh semua solusinya adalah $x \in \left\{ \operatorname{cis}\left(\frac{3\pi}{8}\right), \operatorname{cis}\left(\frac{7\pi}{8}\right), \operatorname{cis}\left(\frac{11\pi}{8}\right), \operatorname{cis}\left(\frac{15\pi}{8}\right) \right\}$

Carilah bilangan kompleks z yang memenuhi $z^n=1$ jika n bilangan asli.

Solusi:

Tulis $x=|x|\mathrm{cis}(\theta)$ di mana $\theta\in\mathbb{R}$. Tinjau bahwa persamaan ekuivalen dengan $x^4=-i$, maka $1=|-i|=\left|x^4\right|=|x|^4$ sehingga |x|=1. Dari sini diperoleh $x=\mathrm{cis}(\theta)$, maka $-i=x^4=(\mathrm{cis}(\theta))^4=\mathrm{cis}(4\theta)$. Tinjau $-i=\mathrm{cis}\left(\frac{3\pi}{2}\right)$, ini berarti $\mathrm{cis}(4\theta)=\mathrm{cis}\left(\frac{3\pi}{2}\right)$, maka

$$4\theta = \frac{3\pi}{2} + 2\pi k, \quad k = 0, 1, 2, 3 \implies \theta = \frac{3 + 4k}{8}\pi, \quad k = 0, 1, 2, 3.$$

Diperoleh semua solusinya adalah $x \in \left\{ \operatorname{cis}\left(\frac{3\pi}{8}\right), \operatorname{cis}\left(\frac{7\pi}{8}\right), \operatorname{cis}\left(\frac{11\pi}{8}\right), \operatorname{cis}\left(\frac{15\pi}{8}\right) \right\}$

Tentukan hasil transformasi bidang kompleks z oleh fungsi linier w = z + 1 - 2i.

Solusi:

Misalkan hasil transformasinya adalah w=u(x,y)+iv(x,y) di mana $u,v\in\mathbb{R}$ dan z=x+iy di mana $x,y\in\mathbb{R}$. Maka

$$u + iv = (x + iy) + 1 - 2i = (x + 1) + (y - 2)i \implies u = x + 1, \quad v = y - 2.$$

Dari sini diperoleh bahwa apabila titik (x_0, y_0) di bidang z ditransformasikan oleh w = z + 1 - 2i menjadi $(x_0 + 1, y_0 - 2)$. Dengan kata lain, hasil transformasi diperoleh dari translasi dari bidang z sejauh 1 satuan ke arah kanan dan 2 satuan ke arah bawah.