재정정책과 생애주기 노동시장 미스매치

강신혁 1

한국노동연구원 (KLI) Preliminary

2021. 03. 19

¹본 연구는 한국조세재정연구원의「2020년 재정전문가 네트워크」사업의 일환으로 수행한 연구며, 연구결과는 연구자 개인의 의견일 뿐임을 밝힙니다.

서론

- 미스매치: 주어진 제약에서 현재 근로자와 사업체 간 매칭 분포보다 더 효율적인 매칭분포가 존재할 경우 기술적 표현
 - Becker(1973): 근로자 기술과 사업체 생산성 간에 보완관계가 존재시 → 높은 기술의 근로자와 높은 생산성의 사업체 간 매칭이 효율적(PAM)
 PAM 에서 NAM 에서
 - 탐색적 마찰로 인한 미스매치 존재시엔 재정정책을 통해 사회후생 뿐만 아니라 효율성 개선까지 가능할 수 있음

○ 여구배경 및 필요성

- 실증연구: 한국의 경우 네이터 세약으로 인해 Abowd, Kramarz and Margolis(AKM, 1999)와 같은 연구가 제한적이었음
- 이론연구: Eeckhout and Sepahsalari(2020)이 PAM이 존재하는 균형에서 실업급여가 생산효율성에 미치는 효과를 분석. 노동시장에 진입하는 소 득/자산이 상대적으로 부족한 청년을 위한 구직활동지원금과 전연령에 대한 관대한 실업급여 등의 다양한 정책부석 역시 필요함

서론

- 미스매치: 주어진 제약에서 현재 근로자와 사업체 간 매칭 분포보다 더 효율적인 매칭분포가 존재할 경우 기술적 표현
 - Becker(1973): 근로자 기술과 사업체 생산성 간에 보완관계가 존재시 → 높은 기술의 근로자와 높은 생산성의 사업체 간 매칭이 효율적(PAM)
 PAM 에서 NAM 에서
 - 탐색적 마찰로 인한 미스매치 존재시엔 재정정책을 통해 사회후생 뿐만 아니라 효율성 개선까지 가능할 수 있음
- 연구배경 및 필요성
 - 실증연구: 한국의 경우 데이터 제약으로 인해 Abowd, Kramarz and Margolis(AKM, 1999)와 같은 연구가 제한적이었음
 - 이론연구: Eeckhout and Sepahsalari(2020)이 PAM이 존재하는 균형에서 실업급여가 생산효율성에 미치는 효과를 분석. 노동시장에 진입하는 소 득/자산이 상대적으로 부족한 청년을 위한 구직활동지원금과 전연령에 대한 관대한 실업급여 등의 다양한 정책분석 역시 필요함

답하고자 질문

- 한국에서 근로자의 기술과 사업체의 생산성 간에 보완(대체) 관계가 존재하는가? → 균형에서 어떤 근로자와 사업체가 매칭되어 생산이 이뤄지고 있는
 - ightarrow 균형에서 어떤 근로자와 사업체가 매칭되어 생산이 이뤄지고 있는 가?
- 미스매치가 존재하는 근로자의 생애주기에서, 어떤 종류의 재정정책이 효율적인가?
 - ightarrow 재정정책의 시점 의존성이 존재하는가? 존재한다면 언제 지원하는 것이 더 효율적인가?

본 연구

- 실증분석
 - 국세통계 EEMP(Employer Employee Matched Panel Data)를 활용해 근로자 고정효과와 사업체 고정효과 추정 및 그들의 상관관계 분석
- 이론분석
 - 생애주기 노동시장 탐색모형을 활용해 연령별로 다른 구직활동지원/실 업급여가 어떤 효과를 가지는지 분석

주요 결과(in progress)

- 실증분석 결과
 - 근로자 고정효과와 사업체 고정효과 간 상관관계: ∈ [-0.1923, -0.1062]
 - 사업체 규모와 역U자형 관계를 가짐
 - 연령그룹별 근로자 숙련 간 상관관계: 20대와 30대 간 양(+)의 상관관계, 나머진 음(-)의 상관관계
 - 본 결과는 보완/대체 관계를 식별하지 못하나 후속연구의 참고자료로 활용 가능
- 이론분석의 잠정적 결과
 - 지원금의 시기보다 양이 중요
 - ullet 기존 문헌 결과와 일치: 관대한 실업급여 o 실업률 $\uparrow > 1$ 인당 생산량 \uparrow
 - One side search model → Two side search model 분석작업중

관련 문헌

• 선택적 매칭

- Abowd, Kramarz and Margolis(AKM, 1999), Goux and Maurin(1999), Abowd et al.(2003), Andrews, Schank and Upward(2008), Eeckhout and Kircher(2011), Bartolucci, Devicienti and Monzón(2018), 성재민(2018), 허재준&강신혁(2020) and etc.
- 본 연구: 한국 국세통계 EEMP를 활용한 연구
- 미스매치와 재정정책
 - Krusell, Mukoyama and Sahin(2010), Lise, Meghir and Robin(2016), 박 진희, 이시균 & 김두순(2016), Lise and Postel-Vinay(2020), Lindenlaub and Postel-Vinay(2020, a and b), Guvenen et al.(2020), Eeckhout and Sepahsalari(2020)
 - 본 연구: 시점 의존적 재정정책이 미스매치에 미치는 효과를 분석

Data

- 국세통계 EEMP(10% 샘플링)
 - 행정 근로소득 자료
 - 패널화된 연도: 2015 2018(현재는 2019년까지 패널화 완료)
- 활용한 변수
 - EEMP 측면: 비식별처리된 납세자 id(주민등록번호 기준)와 사업장 id(사 업자등록번호 기준)
 - 소득과 인적정보: 총급여, 결정세액, 차감징수액, 출생연도, 성별, 거주지
- 표본선택
 - 26 60세 남성만 고려(가구주 여부는 식별불가)
 - 외국인 근로자 제외
 - Balanced Panel: 4년 모두 표본에 등록된 경우만을 고려
 - 명목 연소득이 최저임금 이상
 - 표본 기준 31인 이상 사업체만을 고려

Empirical Framework

• 추정회귀식: AKM(1999)

$$y_{ijt} = x'_{ijt}\beta + \alpha_i + \psi_j + \varepsilon_{ijt}$$

$$\rightarrow Y_{N^* \times 1} = X_{N^* \times K_{K \times 1}} \beta + D_{\alpha} \alpha_1 + D_{\psi} \psi + \varepsilon_{N^* \times JJ \times 1}$$

$$(1)$$

where Y: 로그실질임금

- 통제변수
 - ① 모형1: 나이, 나이²
 - ② 모형2: 나이, 나이², 연도별 이직횟수
 - ③ 모형3: 나이, 나이², 연도별 이직횟수, 종사자수
- 이원고정효과(Two-Way fixed effect) 추정: Mittagg(2019)
 - $Corr(\hat{\alpha}_i, \hat{\psi}_j)$ 직접 추정

추정결과 1: 통제변수

국세통계 EEMP 추정결과				
	모형1	모형2	모형3	
나이	0.1363***	0.1363***	0.1341***	
나이 ²	-0.0012***	-0.0012***	-0.0012***	
각 연도별 이직 횟수		-0.1900***	-0.1900***	
종사 근로자수			-0.00003***	
근로자 고정효과	Yes	Yes	Yes	
사업체 고정효과	Yes	Yes	Yes	
조정된 <i>R</i> ²	0.9122	0.9122	0.9123	
<u> 표본수</u>	667,524	667,524	667,524	

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

추정결과 2: 상관관계

국세통계 EEMP 추정결과				
 모형1		모형2	모형3	
$Corr(\hat{\alpha}_i, \hat{\psi}_j)$ -0.1923**		-0.1923**	-0.1062**	
*		0.001		

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

모형1: 연령 집단 & 사업체 규모별

	모형 1 Corr $(\hat{lpha}_i,\hat{\psi}_i)$			
	26 — 29세	30 — 39세	40 — 49세	50 — 60세
31 — 50인	-0.5562**	-0.4581**	-0.4295**	-0.3681**
51 — 100인	-0.4163**	-0.3778**	-0.3591**	-0.3202**
101 — 300인	-0.3158**	-0.2382**	-0.2803**	-0.3029**
301 — 500인	0.2034**	0.0759**	-0.0247**	-0.0436**
501 — 1000인	0.2804**	0.1548**	-0.0098	-0.0906**
1001인 이상	0.1462**	0.0078	-0.0904**	-0.2401**

Bonferroni 상관계수, *: p < 0.1, **: p < 0.05, ***: p < 0.01, ****: p < 0.001

모형2: 연령집단 & 사업체 규모별 $Corr(\hat{\alpha}_i, \hat{\psi}_j)$

	모형2 $\mathit{Corr}(\hat{lpha}_i, \hat{\psi}_i)$			
	26 — 29세	30 — 39세	40 — 49세	50 — 60세
31 — 50인	-0.5562**	-0.4587**	-0.4297**	-0.3702**
51 — 100인	-0.4155**	-0.3773**	-0.3602**	-0.3227**
101 — 300인	-0.3109**	-0.2326**	-0.2761**	-0.2988**
301 — 500인	0.2104**	0.0813**	-0.0167**	-0.0381**
501 — 1000인	0.2829**	0.1647**	-0.0027	-0.0897**
1001인 이상	0.1370**	0.0029	-0.0920**	-0.2368**

Bonferroni 상관계수, *: p < 0.1, **: p < 0.05, ***: p < 0.01, ****: p < 0.001

모형3: 연령집단 & 사업체 규모별 $Corr(\hat{\alpha}_i, \hat{\psi}_j)$

	모형3 $\mathit{Corr}(\hat{lpha}_i,\hat{\psi}_i)$			
	26 — 29세	30 — 39세	40 — 49세	50 — 60세
31 — 50인	-0.5566**	-0.4597**	-0.4302**	-0.3707**
51 — 100인	-0.4159**	-0.3781**	-0.3602**	-0.3225**
101 — 300인	-0.3100**	-0.2339**	-0.2757**	-0.2981**
301 — 500인	0.2098**	0.0803**	-0.0176**	-0.0385**
501 — 1000인	0.2920**	0.1627**	-0.0034	-0.0898**
1001인 이상	0.0959**	0.1337**	-0.0594**	-0.1431**

Bonferroni 상관계수, *: p < 0.1, **: p < 0.05, ***: p < 0.01, ****: p < 0.001

연령 그룹간 보완.대체 관계

모형 1 Corr $(\hat{lpha}_i,\hat{lpha}_i)$				
	26 — 29세	30 — 39세	40 — 49세	50 — 60세
26 — 29세	1.000			
30 — 39세	0.5345**	1.0000		
40 — 49세	-0.2576**	-0.1961**		
50 — 60세	-0.3426**	-0.4509**	-0.0962**	1.0000
Bonferroni	Bonferroni 상관계수, *: p < 0.1, **: p < 0.05, ***: p < 0.01, ****: p < 0.001			

생애주기 탐색모형: 모형 설정

- 경제주체
 - 위험회피적, 근로자 또는 실업구직자
 - 상태(state): 무위험자산 a, 본인의 기술수준 x 그리고 근무하고 있는 사업체의 생산성 y
 - t = 1, ..., T기까지 경제활동. t = 1엔 모두가 실업구직자라고 가정
- 시장구조
 - 노동시장: McCall 일방향 탐색마찰이 존재하는 노동시장
 - 자산시장: 불완비시장, 무위험이자율 r로 무위험자산 거래 가능. $a \in [a_{min}, a_{max}]$. 현재 계산에선 $a_{min} = 0$

모형 설정: 생산함수, 임금결정과 효용함수

• 생산함수: Lise, Meghir and Robin (2016) CES 생산함수

$$f(x,y) = A \left[\alpha x^{\rho} + (1-\alpha)y^{\rho}\right]^{\frac{1}{\rho}} \tag{2}$$

• 임금결정: 축약된 형태의 Nash Bargaining.

$$w(a, x, y) = \underset{w}{\operatorname{argmax}} (W(a, x, y) - U(a, x))^{\sigma} (f(x, y) - w)^{1 - \sigma}$$
 (3)

where W: Value of Employment, and U: Value of Unemployment

• 효용함수: CRRA

Exogenous arrival rate:
$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

$$\rightarrow \text{Endogenous search intensity: } u(c,s) = \frac{c^{1-\gamma}}{1-\gamma} - \kappa_i \frac{s^{1+\eta}}{1+\eta} \tag{4}$$

가치함수: 실업구직자

t기에 자산 a와 기술 x를 가진 실업구직자 (a, x)는 다음 가치함수 U(a, x, t)를 최적화한다.

$$U(a, x, t) = \max_{c, a'} \left\{ u(c) + \beta \left[\lambda_u \int_{y_*}^{\bar{y}} \left\{ W(a', x, y, t+1) - U(a', x, t+1) \right\} d\Gamma_y(y) + U(a', x, t+1) \right] \right\}$$
(5)

subject to

$$c + a' = f(x, b_t) + (1 + r)a$$
 (6)

가치함수: 근로자

t기에 자산 a와 기술 x를 가지고 생산성 y를 가진 사업체에서 일하는 근로자 (a, x, y)는 다음 가치함수 W(a, x, y, t)를 최적화한다.

$$W(a, x, y, t) = \max_{c, a'} \{ u(c) + \beta [(1 - \delta) + \beta (a, x, y, t + 1)] \} d\Gamma_{y}(y')$$

$$= \{ W(a, x, y, t + 1) - W(a, x, y, t + 1) \} d\Gamma_{y}(y')$$

$$+ W(a, x, y, t + 1) + \delta U(a', x, t + 1) \}$$
(7)

subject to

$$c + a' = w(a, x, y) + (1 + r)a$$
 (8)

모수화

	Parametrization				
Parameter	Value	Description	Target/Reference		
Α	7.541	총요소생산성	Lise, Meghir & Robin(2016)		
α	0.607	근로자 기술의 비중	Lise, Meghir & Robin(2016)		
ho	-0.895	대체탄력성	Lise, Meghir & Robin(2016)		
x_{α}	0.891	x 베타분포 모수	Lise, Meghir & Robin(2016)		
x_{β}	0.616	x 베타분포 모수	Lise, Meghir & Robin(2016)		
y_{α}	1.034	y 베타분포 모수	Lise, Meghir & Robin(2016)		
y_{β}	1.147	<i>y</i> 베타분포 모수	Lise, Meghir & Robin(2016)		
δ	0.012	매칭이 깨질 확률	Faberman, Mueller, Sahin & Topa (2020)		
σ	0.272	근로자의 협상력	Lise, Meghir & Robin(2016)		
λ_{u}	0.962	구직자가 채용 제안을 받을 확률	1990-2019년 평균 청년 실업률 7.72%		
λ_{e}	$\{0.3, 0.03\}$	근로자가 이직 제안을 받을 확률	2017년 전체 평균 이직률 4.7%		
γ	2	위험 회피도	미국 데이터 기준 문헌에서 흔히 쓰이는 값		
r	0.038	연간 무위험 이자율	2000-2019년 국고채 3년 연평균 시장금리 평균		
β	0.963	시간 할인율	1/(1+r)		
T	4	4기간 모형	이직을 고려할 수 있는 기간을 설정		

정책실험

Figure: 재정정책 실험. 파란 실선은 정책1: 노동시장에 진입하는 구직자에게 지원이 없는 경우, 빨간 점선은 정책2: 노동시장에 진입하는 구직자에게 1/3 지원금이 있는 경우, 노란 다이아몬드는 정책3: 모든 생애기간 동안 동일한 실업급여를 지원하는 정책인 경우, 그리고 보라색 실선과 점선이 공존하는 선은 정책4: 노동시장에 진입하는 구직자에게 3배의 지원금이 있는 경우.

결과: 1인당 생산량과 매칭의 질

Figure: 1인당 생산량

Figure: 매칭의 질

결과: 실업률과 매칭의 잉여

Figure: 실업률

Figure: 매칭의 잉여

결과: 선택적 매칭과 소비

Figure: Corr(x, y)

Figure: 소비

결과: 생산함수에서 보완성 정도가 커진 경우($\rho = -1.5$)

Figure: Corr(x, y)

Figure: 매칭의 질

결과: 이직의 기회가 적은 경우($\rho = -0.895 \& \lambda_e = 0.03$)

Figure: 1인당 생산량

Figure: 매칭의 질

잠정적 결론

• 실증분석 결과:

더 나아가야 할 부분

- 실증연구적 측면: EEMP를 지속적으로 활용해 추가 분석 필요
- 정량모형적 측면: Lindenlaub and Postel-Vinay(2020 a and b)와 같이 다차원적 선택적 매칭 고려 필요(Multidimensional Sorting)
- 현재 작업중: McCall model → Bils, Chang and Kim(2011)+Lise and Postel-Vinay (2020)
- 필요시 Eeckhoout and Sepahsalari(2020)에서처럼 Directed search도 고려 가능

Appendix

Mathematical Representation

Definition

Let $\Gamma_x(x)$ and $\Gamma_y(y)$ be the distribution function of worker skill x and workplace productivity y. Given $\Gamma_x(x)$ and $\Gamma_y(y)$, suppose that H(x,y) be the joint distribution of x and y for some equilibrium. H(x,y) is a mismatch if there exists Q(x,y) such that

$$\int \int f(x,y)dQ(x,y) \ge \int \int f(x,y)dH(x,y)$$

Example: Positive Sorting

Assume that there is a set of worker skill $\mathcal{X}=\{1,2,3\}$ and a set of firm productivity $\mathcal{Y}=\{1,2,3\}$. Let the match surplus function be f(x,y)=xy when the worker who has the skill level x meet with the firm who has the productivity level y. Then the possible set of match surplus is

$$f(x,y) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$

Then the optimal allocation $y = \mu(x) = x$. This is called the positive assortative matching (PAM).

Example: Negative Sorting

Let the match surplus function be f(x,y) = x(3-y) + 3y when the worker who has the skill level x meet with the firm who has the productivity level y. Then the possible set of match surplus is

$$f(x,y) = \begin{pmatrix} 5 & 7 & \mathbf{9} \\ 7 & \mathbf{8} & 9 \\ \mathbf{9} & 9 & 9 \end{pmatrix}$$

Then the optimal allocation $y = \mu(x) = 4 - x$. This is called the negative assortative matching (NAM).

