Étale Cohomology Seminar: Cohomology of Curves and Surfaces

Ethan Bottomley-Mason

June 2024

1 Introduction

We will cover the following material:

- 1. Poincaré duality for curves.
- 2. Lefschetz trace formula.
- 3. Lefschetz pencils.
- 4. Picard-Lefschetz formula.

2 Poincaré Duality

Poincaré Duality

Let $k = \overline{k}$ and n, char k coprime. Let X be a smooth projective curve over k. Let $\operatorname{Ext}^r_U(F,F') = \operatorname{Ext}^r_{\mathbf{S}(U_{\acute{e}t},\mathbb{Z}/n\mathbb{Z})}(F,F')$. Then,

- a) For any nonempty open $U \subseteq X$, there is a canonical isomorphism $H_c^2(U, \mu_n) \xrightarrow{\sim} \mathbb{Z}/n\mathbb{Z}$.
- b) For any constructible sheaf F of $\mathbb{Z}/n\mathbb{Z}$ -modules on such a U, the groups $H_c^r(U, F)$ and $\operatorname{Ext}_U^r(F, \mu_n)$ are finite for all r and zero for r > 2; the canonical pairings

$$H_c^r(U,F) \times \operatorname{Ext}_U^{2-r}(F,\mu_n) \to H_c^2(U,\mu_n) = \mathbb{Z}/n\mathbb{Z}$$

are nondegenerate.

We recall the definition of cohomology with compact support and the canonical pairing on Ext. For any separated variety X, suppose we have an embedding $j: X \hookrightarrow \overline{X}$ with \overline{X} a proper variety. Then we define $H_c^r(X, F) = H^r(\overline{X}, j_!F)$. $j_!$ is the extension by 0 functor defined as the left adjoint of j_* . We can equivalently say $j_!F = \ker(j_*F \to i_*i^*j_*F)$ where i is the inclusion of $\overline{X} - X \to \overline{X}$.

We now construct the canonical pairing on Ext groups. Let A be a sheaf of rings on $X_{\acute{e}t}$. Let F,G,R be sheaves of A-modules. Let $\operatorname{Ext}^r = \operatorname{Ext}^r_{S(X_{\acute{e}t},A)}$ be the left derived functors of $\operatorname{Hom}_A(F,-)$. We can describe an element of $\operatorname{Ext}^r(F,G)$ as follows: Let $G\to I^{\bullet}$ be an injective resolution of G by injective A-modules. Let F denote the complex concentrated in degree 0 with F. Let $I^{\bullet}[r]$

be the chain complex with I^{r+s} in degree s and differential $d[r]^s = (-1)^r d^{r+s}$. A morphism of chain complexes $f: F \to I^{\bullet}[r]$ is a morphism $f: F \to I^r$ such that $d[r]^0 f = 0$. It follows that $f \in \ker((d^r)^*)$ where $(d^r)^*: \operatorname{Hom}(F, I^r) \to \operatorname{Hom}(F, I^{r+1})$, therefore f defines an element of $\operatorname{Ext}^r(F,G)$. Similarly any element of $\operatorname{Ext}^r(F,G)$ is a morphism $f: F \to I^r$ such that $d[r]^0 f = 0$ and thus defines a chain morphism. f is chain homotopic to 0 iff $f = d[r]^{-1}s$ for some morphism $s: F \to I^{r-1}$, i.e. iff f is in the image of the map $\operatorname{Hom}(F, I^{r-1}) \to \operatorname{Hom}(F, I^r)$. It follows that Ext is homotopy classes of morphism $f: F \to I^r$ with $d[r]^0 f = 0$.

is homotopy classes of morphism $f: F \to I^r$ with $d[r]^0 f = 0$.

If instead we have a resolution $F \stackrel{\epsilon}{\to} F^{\bullet}$, then a morphism $f^{\bullet}: F^{\bullet} \to I^{\bullet}$ yields a morphism $f = f^0 \epsilon$ such that $d[r]^0 f = f^0 d^0 \epsilon = 0$. Therefore we obtain an element of $\operatorname{Ext}^r(F, G)$. For any $f \in \operatorname{Ext}^r(F, G)$, we have that $f: F \to I^r$, since $\epsilon: F \to F^0$ is injective, then by injectivity of I^r , f lifts to $f^0: F^0 \to I^r$, then since $I^{\bullet}[r]$ is injective, we obtain a morphism $f^{\bullet}: F^{\bullet} \to I^{\bullet}$ with f^0 as before. If $s: F^{\bullet} \to I^{\bullet}[r-1]$ is a chain homotopy, then $f^0 = d[r]^{-1}s^0 + s^1d^0$, so $f = f^0 \epsilon = d[r]^{-1}s^0 \epsilon + s^1d^0 \epsilon = d[r]^{-1}s^0 \epsilon$ is in the image of $(d[r]^{-1})^*$ and thus 0. Therefore $\operatorname{Ext}^r(F,G)$ is homotopy classes of chain maps $f^{\bullet}: F^{\bullet} \to I^{\bullet}[r]$.

Now we define the canonical pairing on Ext. We want a pairing $\operatorname{Ext}^r(F,G) \times \operatorname{Ext}^s(G,R) \to \operatorname{Ext}^{r+s}(F,R)$. Let $G \to G^{\bullet}, R \to R^{\bullet}$ be injective resolutions, the given $f \in \operatorname{Ext}(F,G), g^{\bullet} \in \operatorname{Ext}(G,R), f : F \to G^{\bullet}[r]$, then $g^{\bullet} : G^{\bullet} \to R^{\bullet}[s]$, then $g^{\bullet}[r] : G^{\bullet}[r] \to R^{\bullet}[r+s]$ so we get $g^{\bullet}[r] \circ f : F \to R^{\bullet}[r+s]$ which is an element of $\operatorname{Ext}^{r+s}(F,R)$. One checks that if $f \sim f', g \sim g'$, then $gf \sim g'f'$.

If F = A, then $\operatorname{Hom}_A(A, F)$ is naturally isomorphic to $\Gamma(X, F)$ since any morphism $A \to F$ is determined by global sections (A is a rank 1 free A-module). Since $\operatorname{Ext}^r(A, -)$ and H^r are both derived functors, it follows that $\operatorname{Ext}^{\bullet}(A, -)$ is isomorphic to H^{\bullet} as δ -functors. Therefore we obtain the canonical pairing:

$$H^s(X_{\acute{e}t}, F) \times \operatorname{Ext}^r(F, G) \to H^{r+s}(X_{\acute{e}t}, G)$$

I will now describe the other map in Poincaré duality. We need an isomorphism $\eta: H_c^2(U_{\acute{e}t}, \mu_n) \to \mathbb{Z}/n\mathbb{Z}$. We have a short exact sequence $0 \to \mu_n \to \mathbb{G}_m \xrightarrow{n} \mathbb{G}_m \to 0$. Taking the LES in cohomology we get:

$$H^1(X_{\acute{e}t},\mathbb{G}_m) \xrightarrow{n} H^1(X_{\acute{e}t},\mathbb{G}_m) \to H^2(X_{\acute{e}t},\mu_n) \to H^2(X_{\acute{e}t},\mathbb{G}_m)$$

For curves over algebraically closed fields Tsen's theorem implies that $H^2(X_{\acute{e}t}, G_m) = 0$. Furthermore $H^1(X_{\acute{e}t}, \mathbb{G}_m) = H^1(X_{Zar}, \mathbb{G}_m) = \operatorname{Pic}(X)$ since $H^1(X_{Zar}, \mathbb{G}_m)$ are \mathbb{G}_m -torsor, e.g. line bundles, up to isomorphism. We thus have the following diagram:

$$H^{1}(X_{\acute{e}t}, \mathbb{G}_{m}) \xrightarrow{n} H^{1}(X_{\acute{e}t}, \mathbb{G}_{m}) \longrightarrow H^{2}(X_{\acute{e}t}, \mu_{n}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

And η is given by the quotient map composed with the morphism $H^1 \to \mathbb{Z}$. η is clearly surjective and by the four lemma is an isomorphism.

For $U \subseteq X$ open, let Z = X - U with the reduced induced subscheme structure, so $Z = \coprod_{i=1}^{n} k$. Let $i: U \to X, j: Z \to X$ be the inclusions, then we have a SES:

$$0 \rightarrow i_! i^* \mu_n \rightarrow \mu_n \rightarrow j_* j^* \mu_n \rightarrow 0$$

Taking cohomology we get:

$$H^{r-1}(X_{\acute{e}t}, j_*j^*\mu_n) \to H^r(X_{\acute{e}t}, i_!i^*\mu_n) \to H^r(X_{\acute{e}t}, \mu_n) \to H^r(X_{\acute{e}t}, j_*j^*\mu_n)$$

Since f is affine, then $R^s j_* = 0$ for $s \ge 1$, so $H^r(X_{\acute{e}t}, j_* j^* \mu_n) = H^r(Z_{\acute{e}t}, \mu_n) = 0$ for $r \ge 1$ since Z is a disjoint union of points over a separably closed field (hence the cover $\{x_i\}$ for each point $x_i \in Z$ refines any étale cover). It follows that plugging in r = 2 into our exact sequence, $H^r_c(U_{\acute{e}t}, \mu_n) \cong H^r(X_{\acute{e}t}, \mu_n) \cong \mathbb{Z}/n\mathbb{Z}$.

3 Lefschetz Trace Formula

Let $F = \{F_n\}$ be an l-adic sheaf, then $H^r(X, F \otimes \mathbb{Q}_l) = H^r(X, F) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l$. Furthermore we let $H^r(X, \mathbb{Q}_l) = H^r(X, \mathbb{Z}_l \otimes \mathbb{Q}_l)$ where $\mathbb{Z}_l = \left\{ \underline{\mathbb{Z}/l^n} \underline{\mathbb{Z}} \right\}$ with the natural quotient maps. For any affine morphism $\varphi : X \to Y$, for any sheaf F on Y, we have a map $F \to \varphi_* \varphi^* F$ which yields a morphism $H^r(Y_{\acute{e}t}, Y) \to H^r(Y_{\acute{e}t}, \varphi_* \varphi^* F)$. Since φ is affine, then $R^i \varphi_* = 0$ for i > 0, therefore $H^r(Y, \varphi_* \varphi^* F) = H^r(X, \varphi^* F)$. Now suppose $\varphi : X \to X$ nonconstant with X a curve, then $\varphi^* \mathbb{Z}_l = \mathbb{Z}_l$, so we get a morphism $\varphi^* : H^r(X, \mathbb{Q}_l) \to H^r(X, \mathbb{Q}_l)$. We let $\operatorname{Tr}_l^r(\varphi)$ be the trace of this morphism of finite dimensional \mathbb{Q}_l -vector spaces.

Lefschetz Trace Formula

Let $k = \overline{k}$, X a smooth projective curve over $k, \varphi : X \to X$ nonconstant $\Gamma_{\varphi} \cdot \Delta$ is the number of fixed points of φ . Then for any $l \neq \operatorname{char} k$, we have,

$$\Gamma_{\varphi} \cdot \Delta = \sum_{r=0}^{2} (-1)^r \operatorname{Tr}_{l}^{r}(\varphi)$$

Notice that by definition of φ^* , it is the identity on $H^0(X,\mathbb{Q}_l)=\mathbb{Q}_l$, so $\operatorname{Tr}_l^0(\varphi)=1$. Since k is algebraically closed, we may fix an isomorphism $\mu_{l^n}\to \mathbb{Z}/l^n\mathbb{Z}$ for each n such that $\mathbb{Z}_l(1)=\varprojlim \mu_{l^n}\cong \mathbb{Z}_l$. It follows that $H^r(X,\mathbb{Q}_l(1))=H^r(X,\mathbb{Q}_l)\otimes_{\mathbb{Z}_l}\mathbb{Z}_l(1)\cong H^r(X,\mathbb{Q}_l)$ and this isomorphism leaves the trace intact. According to Milne, $H^1(X,\mathbb{Q}_l(1))\cong V_l(J(k)):=\operatorname{Hom}(\mathbb{Q}_l/\mathbb{Z}_l,J(k))\otimes_{\mathbb{Z}_l}\mathbb{Q}_l$ where J is the Jacobian of X, e.g. the kernel of deg: $\operatorname{Pic}(X)\to\mathbb{Z}$. The map φ^* is the map $J(\varphi)$ under this isomorphism. As for $H^2(X,\mathbb{Q}_l(1))$, we have that $H^2(X_{\acute{et}},\mu_{l^n})\cong \operatorname{Pic}(X)/l^n\operatorname{Pic}(X)$ since we have the exact sequence

$$H^1(X_{\acute{e}t},\mathbb{G}_m) \xrightarrow{l^n} H^1(X_{\acute{e}t},\mathbb{G}_m) \to H^2(X_{\acute{e}t},\mu_n) \to 0$$

Furthermore, according to Mumford, $\operatorname{Pic}_0(X)$ is q-divisible for all q coprime to $\operatorname{char} k$, so in particular, $l^n : \operatorname{Pic}_0(X) \to \operatorname{Pic}_0(X)$ is surjective, therefore $\operatorname{Pic}(X) = \operatorname{Pic}(X) \times \mathbb{Z}$ implies that $\operatorname{Pic}(X)/l^n \operatorname{Pic}(X) \cong \mathbb{Z}/l^n\mathbb{Z}$. Therefore $H^2(X, \mathbb{Q}_l(1)) \cong \mathbb{Q}_l$ and the map φ^* is given by its action on the degree, e.g. φ^* acts by multiplication by $\operatorname{deg} \varphi$ on $H^2(X, \mathbb{Q}_l(1))$. It follows that:

$$\Gamma_{\varphi} \cdot \Delta = 1 - \text{Tr}(J(\varphi)) + \deg \varphi$$

This is very reminiscent of the case for elliptic curves, where $\Gamma_{\varphi} \cdot \Delta = \deg(1 - \varphi) = 1 - \operatorname{Tr}(\varphi_l) + \deg \varphi$ where φ_l is the action on φ on the Tate modules of the elliptic curve.

4 Lefschetz Pencils

Let $\check{\mathbb{P}}^m$ be the dual space of hyperplanes in \mathbb{P}^m . For any line D in $\check{\mathbb{P}}^m$ the axis of D is the intersection $\bigcap_{H\in D} H$ of all hyperplanes in D. Given a line D in $\check{\mathbb{P}}^m$, the family $\{H\cap X\}_{H\in D}$ is called a Lefschetz pencil on $X\hookrightarrow \mathbb{P}^m$ if

- 1. The axis of D intersects X transversely
- 2. There exists a dense open subset U of D such that for all $H \in U$, H intersects X transversely.
- 3. For all H in D-U, $H \cap X$ is smooth except at a single node.

Existence of Lefschetz Pencils

Let X be a smooth projective surface over $k = \overline{k}$. There exists a surface X^* given by a finite sequence of blowups of X and a map $\pi: X^* \to \mathbb{P}^1$ such that π is proper, flat and has a section. The generic fiber of π is a smooth curve and the closed fibers are connected with at most a single node as singularity.

Proof. Embed $X \hookrightarrow \mathbb{P}^m$ and let $V \subseteq X \times \check{\mathbb{P}}^m$ be the subvariety of pairs (x, H) where $x \in X$ and His a hyperplane of \mathbb{P}^m containing the tangent space $T_x X$. Since X is smooth, then this guarantees that $X \cap H$ is singular at x for all $(x, H) \in V$. Let X be the image of Y under the projection $X \times \check{\mathbb{P}}^m \to \check{\mathbb{P}}^m$. \check{X} is irreducible, proper, and of codimension ≥ 1 . The projection $V \to \check{\mathbb{P}}^m$ is unramified at (x,H) iff x is a node on $X \cap H$. We may assume that $V \to \mathbb{P}^m$ is generically unramified, therefore the set F of points of \check{X} where $H \cap X$ has more than a node is codimension ≥ 2 in $\check{\mathbb{P}}^m$. Choose a hyperplane H_0 such that $H_0 \cap X$ is smooth and irreducible (Bertini). There is an open subset of $\check{\mathbb{P}}^m$ intersecting $H_0 \cap X$ transversely. There is an m-1 dimensional collections of lines through H_0 and only an m-2 dimensional collection of lines through H_0 which intersect Fsince F has codimension ≥ 2 , therefore we may choose an H_{∞} such that the line D through H_0 and H_{∞} does not intersect F. The collection $\{H \cap X\}_{H \in D}$ is our Lefschetz pencil. The intersection of any two distinct elements $H, H' \in D$ is the axis of D which is codimension 2, It follows that $X \cap L$ where L is the axis of D is a finite collection of points Q_1, \dots, Q_n . Blowing up at those points we get a surface X* which extends the rational map $X \to D$ given by taking a point $x \in X - L$ and sending it to the unique hyperplane in D containing x. This map is well-defined away from the axis of D, where all hyperplanes in D meet. It follows that upon blowing up, we obtain a well-defined map $X^* \to D$. This is the desired map.

5 Picard-Lefschetz Formula

Let $\pi: X \to \mathbb{P}^1$ be a Lefschetz pencil, e.g. proper, flat, has a section, the generic fiber is a smooth curve and the closed fibers are connected with at most a single node. Let T be the closed subset of \mathbb{P}^1 where the fibers are not smooth.

Let $F = R^1 \pi_* \mu_n$. Then $F_{\overline{s}} = \operatorname{Pic}(X_{\overline{s}})[n]$. Let $V_s = \ker(F_s \to \operatorname{Pic}(X_s'))$ where X_s' is the normalization of X_s . V_s are called the vanishing cycles at s. If $s \notin T$, then $F_{\overline{s}} = \operatorname{Pic}(X_s)$ and X_s is already normal, so $V_s = 0$, therefore $V_s \neq 0$ only for $s \in T$. We have the cospecialization map $\varphi_s : F_{\overline{s}} \to F_{\overline{\eta}}$ where η is the generic point of \mathbb{P}^1 . We may therefore identify V_s and $F_{\overline{s}}$ with their images in $F_{\overline{\eta}}$. In fact, given our embedding $\mathcal{O}_{\mathbb{P}^1,s}^{sh} \to k(\overline{\eta})$ used for the cospecialization map, we get the inertial group $I_s \subseteq \operatorname{Gal}(k(\overline{\eta})/k(\eta))$ and $\varphi_s(F_{\overline{s}}) = F_{\overline{\eta}}^{I_s}$. There is a non-degenerated, skew-symmetric pairing $e_n : F_{\overline{\eta}} \times F_{\overline{\eta}} \to \mu_n(k)$ (I believe this comes from the Weil pairing).

Now suppose that π in fact has irreducible fibers, then for $s \in T$ we get that $V_s = \mu_n(k)$ and so

$$V_s(-1) = \mu_n(k) \otimes_{\mathbb{Z}/n\mathbb{Z}} \mu_n(k) = \mathbb{Z}/n\mathbb{Z}$$

Therefore there is a canonical element $1 \in V_s(-1)$. The map $\varphi_s : F_{\overline{s}} \to F_{\overline{\eta}}$ yields a map $\varphi(-1)_s : F(-1)_{\overline{s}} \to F(-1)_{\overline{\eta}}$. The image of $1 \in V_s(-1)$ under this map is denoted δ_s and is called the canonical

vanishing cycle at s. The pairing e_n yields a pairing $F(-1)_{\overline{\eta}} \times F(-1)_{\overline{\eta}} \to (\mathbb{Z}/n\mathbb{Z})(-1)$. We write

 $(\gamma, \gamma') \mapsto \gamma \cdot \gamma'$. Let t be a uniformizer at s, then for any $\sigma \in I_s$, we have that $\sigma(t^{1/n}) = \varepsilon_s(\sigma)t^{1/n}$. This gives a character $\varepsilon_s: I_s \to \mu_n(k)$.

Picard-Lefschetz Formula

There exists a unit $\lambda_X = (\lambda_X(n)) \in \varprojlim_{p \nmid n} \mathbb{Z}/n\mathbb{Z}$ such that

$$\sigma(\gamma) = \gamma(y) - \lambda_X(n)\varepsilon_s(\sigma)(\gamma \cdot \delta_s)\delta_s$$

for all $\sigma \in I_s, \gamma \in F(-1)_{\overline{\eta}}$.