1. TABLAS

1.1. p=2

h	Error Norma 2	Error Norma infinito	Tiempo de ejecución(ns)
10	1,2305e - 04	5,5000e - 05	1150300
20	1,1180e - 05	4,0000e - 06	1979700
40	2,8284e - 06	1,0000e - 06	3639500
80	1,4142e - 06	1,0000e - 06	5977700

1.2. p=3

IMPORTANTE: puntos de control no exactos, limitan la convergencia.

h	Norma 2	Norma infinito	Tiempo de ejecución(ns)
10	3,4581e - 04	1,5000e - 04	1162900
20	4,8552e - 04	1,6100e - 04	1996300
40	6,8807e - 04	1,6100e - 04	3986400

1.3. p=4

h	Norma 2	Norma infinito	Tiempo de ejecución(ns)
10	1,4142e - 06	1,0000e - 06	1409000
20	1,4142e - 06	1,0000e - 06	3111600
40	1,2247e - 16	1,2247e - 16	4555700
80	1,2247e - 16	1,2247e - 16	9696100

2. CAMBIO DE VARIABLE 1D

2.1. Formulación clasica

Espacio parametrico:

$$-u''(x) = f(x), \quad x \in \Omega.$$

Espacio fisico:

$$-\frac{1}{J(\xi)}\frac{d}{d\xi}\left(\frac{1}{J(\xi)}u(r(\xi))\right) = f(r(\xi)), \quad \xi \in \Omega^{\xi}.$$

Equivalentemente:

$$-\frac{d}{d\xi}\left(\frac{1}{J(\xi)}u'(r(\xi))\right) = f(r(\xi))J(\xi), \quad \xi \in \Omega^{\xi}.$$

2.2. Formulación variacional

suponemos $\Omega = (0,L)$, spg Espacio parametrico:

$$\int_{\Omega} u'(x)v'(x)dx - u'(L)v(L) + u'(0)v(0) = \int_{\Omega} f(x)v(x)dx, \quad x \in \Omega.$$

Espacio fisico:

$$\int_{\Omega^{\xi}} \frac{1}{J(\xi)} u'(r(\xi)) \frac{1}{J(\xi)} v'(r(\xi)) J(\xi) d\xi x - \frac{1}{J(L)} u'(r(L)) v(r(L)) + \frac{1}{J(0)} u'(r(0)) v(r(0)) =$$

$$= \int_{\Omega^{\xi}} f(r(\xi)) v(r(\xi)) J(\xi) d\xi, \quad \xi \in \Omega^{\xi}.$$

Simplificando obtenemos:

$$\begin{split} & \int_{\Omega^{\xi}} \frac{1}{J(\xi)} u'(r(\xi)) v'(r(\xi)) d\xi x - \frac{1}{J(L)} u'(r(L)) v(r(L)) + \frac{1}{J(0)} u'(r(0)) v(r(0)) = \\ & = \int_{\Omega^{\xi}} f(r(\xi)) v(r(\xi)) J(\xi) d\xi, \quad \xi \in \Omega^{\xi}. \end{split}$$

Donde
$$J(\xi) = |r'(\xi)|_2$$
.