NeuroMem technology for IoT and Big Data

- Pattern recognition on silicon
- In-situ learning with intrinsic de-duplication
- Parallel processing performance
- Low-power, low-voltage

Collect data source

Extract features or signatures

ASCII

SURF/SIFT

NeuroMem

classifier and trainable neural network

Category

Produce insights, meta data and decisions

How is NeuroMem different?

- Pattern recognition chip:
 - Radial Basis Function and K-Nearest Neighbor
- Match 1 among N in 500 ns to 2.5 μsec
- Highly scalable due to natively parallel architecture

NeuroMem CM1K

- Regular architecture, just neurons
- No fetch and decode
- Patented WTA bus (no cross bar)
- Low power (<0.5 watts)
- Self trainable
- Orthogonal inter-chip connectivity
- Commercially available (IC, Source and FPGA IP)

← 1024 identical neuromorphic memories, all interconnected (intra & inter hip)

Use Models

Application Deployment

How many neurons do I need?

• Depends on the application, the variability of the data, etc. Examples:

Application	Description	Estimated Neurons /Object	Total neurons
Fish sorting	Classification of herrings (Accept, Reject,		≈200
	Recycle) passing on an in-line conveyor belt		
Glass Inspection	Detection of anomalies of texture in patterned		≈800
	solar glass passing on a conveyor		
Inkjet OCR	Reading of date code or serial numbers printed	1-3 /digit	
	on a packaging		
Cooperative face	Identifying a person facing front, positioned at a	5/person	
recognition	known distance of the camera, willing to remove		
	her glasses if needed to be recognized		
Semantic analysis	Counting the occurrences of words from a	1/word	
	dictionary in live tweets, posts and other text		
	streams.		
Motion classification	Intel Curie module is intended for motion		<128 ?
using MEMS	classification and features 128 neurons		

The pillars of Neuromorphic ...

- Broadcast Mode: Queries/stimuli are broadcasted to all neurons simultaneously
- Deterministic search time: Firing time does not increase with the scaling of the network
- Winner takes all: Autonomous inhibition of the weak responders
- Uncertain response: Autonomous sorting of the responders in order of "lesser confidence"
- Unknown response: Awareness of the Unknown enabling the dynamic addition of new knowledge
- Back propagation of error: Autonomous inhibition of erroneous firing neurons
- No fetch and decode of program instruction: Software is definitively contrary to the biological model, else it's simulation, not neuromorphic...
- Beyond biology: Fast upload download enabling knowledge proliferation (<u>some</u> dream of it).

All implemented in the NeuroMem CM1K IC (continued...)

CM₁K seen as a 3-layer NN

Input pattern (up to 256 bytes) broadcasted to the network

Single neuron view:

- 256 bytes RAM
- 3000 logic gates

CM1K= 1024 neurons with 256 synapses per neuron = 262,144 synaptic connections of 8-bits

Select

DCI

WTA

The multiple functional facets of the NeuroMem memories

Speed Performance

What's in this object?

Scalability and Power Consumption

Context segmentation

Neurons can be assigned to different contexts for Sensor fusion, Feature fusion and robust decision

The Genesis

