Part II

Second-generation *p*-values:
 equivalence tests,
 statistical properties,
 and false discovery rates

Jeffrey D. Blume, and M

and Megan H. Murray,

PhD

almost PhD (July 6^{th} defense)

Department of Biostatistics

School of Data Science
University of Virginia

Vanderbilt University

Course Layout

- Slides Part I: Introduction, applications, and statistical properties
 - Coding Part I
- Lunch (11:30-12:30)
- Slides Part II: Equivalence tests and false discovery rates
 - Coding Part II
- Slides Part III: SGPV Variable Selection
 - Coding Part III
- Questions and Discussion

ASA SGPV Short Course

Blume and Murray, 2022

Outline

- \rightarrow Equivalence Tests
- \rightarrow Two One-Sided Tests (TOST)
- → False Discovery Rates
- → R Packages
- → Code Part 2

ASA SGPV Short Course

Blume and Murray, 2022

Equivalence Tests

- Establish bioequivalence between data and an established range
- Example: A pharmaceutical company tests for drug approval by comparing new drug's performance to an approved drug's performance
- Uses an interval null or equivalence range $\bullet \ H_0 = [\theta^-, \theta^+]$
- Most popular: TOST, Bayesian ROPE, test of Anderson and Hauck, and SGPV

ASA SGPV Short Course

Blume and Murray, 2022

TOST Test

- Two One-Sided Tests (Schuirmann 1987)
- \bullet Tests are ordinary, one-sided, $\alpha\text{-level }t\text{-tests}$
- Flips the null and alternative hypotheses, and tests if the data $I_x=(I_x^-,I_x^+)$ are outside the equivalence range $[\theta^-,\theta^+]$
- $(H_{0_1} \colon \theta \, < \, \theta^-)$ and $(H_{0_2} \colon \theta \, > \, \theta^+)$
- If both one-sided tests reject then conclude the evidence is contained in the equivalence range
- $p_T = max\{p_{T_1}, p_{T_2}\}$

ASA SGPV Short Course

Blume and Murray, 2022

SGPV Definition

Second-generation p-value (SGPV)

$$p_{\delta} = \frac{|I \cap H_0|}{|I|} \times \max \left\{ \frac{|I|}{2|H_0|}, 1 \right\}$$

Proportion of data-supported hypotheses that are also null hypotheses

when $|I| > 2|H_0|$

ASA SGPV Short Course

Blume and Murray, 2022

TOST vs. SGPV comparison						
			s	GPV Outcom	es	
			Consistent with the alternative (SGPV near 0)	Inconclusive (SGPV near ½)	Consistent with the null (SGPV near 1)	
	səı	Consistent with the alternative	Not applicable	Not applicable	Not applicable	
	Equivalence Tests Outcomes	(p-value is unable to indicate this)	A	В	c	
	sts 0	Inconclusive	Can occur	Can occur	Never occurs	
	ice Te	(p-value is non- significant)	D	E	F	
	ivaler	Consistent with the null	Never occurs	Can occur in small samples	Can occur	
	Equi	(p-value is significant)	н	I	1	
ASA SGPW Short Course Blume and Murray, 2022						

TOST vs. SGPV	comparison
TOST	SGPV
2 inference outcomes	3 inference outcomes
Conclusions only about $(1-2\alpha)\%$ confidence interval	Any uncertainty data interval can be used
Type I Error is ultra- conservative (distribution of p_T is non-uniform)	Type I error is accurately assessed (limited by width of data interval)
Not uniformly most powerful	Has additional statistical properties explained in next section
No measure of overlap included in computation	Indicates when data agree with null or alternative without additional testing
ASA SGPV Short Course	Blume and Murray, 20:

Time for Code Part 2a!	
	_
ASA SGPV Short Course Blume and Murray, 2022	
10 Minute Break!	
ASA SGPV Short Course Blume and Murray, 2022	
False Discovery Rates	
• FDR for 5 SGPV=0 findings; computed under various null	
and alternative configurations (w/ flat prior).	
SGPV P- 1/8 SI 1/8 SI	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
kgp4568244_C 1 133 0.10 0.03 0.37 2.9% 17.1% 3.3%	
kgp8051290_G 13 2002 15.58 1.95 124.68 4.3% 30.3% 4.9%	
kgp4497498_A 28 255 4.37 1.80 10.64 2.5% 8.6% 3.1%	
rs3123636_G 423 1 1.39 1.26 1.55 0.01% 0.1% 0.4%	
kgp7460928_G 1443 3310 1.78 1.11 2.87 2.4% 2.0% 3.0%	
ASA SCPV Short Course Blume and Murray, 2022	

False discovery rates

- Impact of α =0.05 vs α =0.05/7128 (7128 comparisons)
- False Discovery Rate (FDR) $P(H_0|p<\alpha) = \left[1 + \frac{(1-\beta)}{\alpha}r\right]^{-1}$
- False Confirmation Rate (FCR)

$$P(H_1|p>\alpha) = \left[1 + \frac{(1-\alpha)1}{\beta}\right]^{-1}$$
Error

 $r = P(H_1)/P(H_0)$

ASA SGPV Short Course Blume and Murray, 2022

False discovery rates

- Second-generation p-values
- False Discovery Rate (FDR)

$$P(H_0|p_{\delta} = 0) = \left[1 + \frac{P(p_{\delta} = 0|H_1)}{P(p_{\delta} = 0|H_0)}r\right]^{-1}$$

• False Confirmation Rate (FCR)

$$P(H_1|p_{\delta}=1) = \left[1 + \frac{P(p_{\delta}=1|H_0)}{P(p_{\delta}=1|H_1)} \frac{1}{r}\right]^{-1}$$

$$\underbrace{\qquad}_{\text{Error Rates}}$$

 $r = P \; (H_1)/P \; (H_0) \label{eq:rate}$ ASA SGPV Short Course

Blume and Murray, 2022

_Error rates

-		-	
v	Am 3	2017	
T	ema	\mathbf{r}	ح.

- Second-generation p-values…
 - Has three "Error" rates
 - Allows Type I and II rate to converge to zero
 - · Control changes of inconclusive results
 - Controls error rate using science
 - Reduces the false discovery rate
- · Anchoring the scale of the effect size...
 - Eliminates most Type I Errors
 - Improves scientific translation of statistical model

ASA SGPV Short Course

Blume and Murray, 2022

FDR R Packages

- SGPVs
 - Valerie Welty
 - sgpv::fdrisk()
 - This function computes the false discovery risk (sometimes called the "empirical bayes FDR") for a second-generation pvalue of 0, or the false confirmation risk for a secondgeneration p-value of 1.
- Raw p-values
 - FDRestimation::p.fdr()
 - \bullet This function computes FDRs and Method Adjusted p-values.
 - Methods include: Benjamini-Hochberg, Benjamini-Yeukateli, Bonferroni, Holm, Hochberg, and Sidak.

ASA SGPV Short Course

Blume and Murray, 2022

Time for Code Part 2b!

ASA SGPV Short Course

Blume and Murray, 2022

		10 Minute Break!	10 Minute Break!	
10 Minute Break!	10 Minute Break!			