Základní konfigurace síťových zařízení a analýza síťového provozu programem Wireshark

ISA - Laboratorní cvičení č.1

Vysoké učení technické v Brně

https://github.com/nesfit/ISA/tree/master/wireshark_ip_konfigurace_online

Cíle cvičení

- Seznámení se se základní prací v OS Linux.
- Seznámení se se základními nástroji pro zjišťování konfigurace zařízení.
- Analýza síťového provozu pomocí programu Wireshark.
- Seznámení se s manuální konfigurací IPv4 a IPv6 na OS Linux.

Pokyny

- Pro práci v cvičení budeme používat virtuální stroje v programu VirtualBox¹.
- Odpovědí pište do odpovědního archu protokol.md který odevzdáte do WIS-u. Dostupný je na adrese https://github.com/nesfit/ISA/blob/master/wireshark_ip_konfigurace_online/protokol.md.
- Do WIS-u budete také odevzdávat všechny zachycené pcap soubory.
- Uživatelé a hesla pro přihlášení: user user4lab, root root4lab.
- Přihlaste se jako uživatel user. Veškeré potřebné příkazy následně spouštějte jako root.

Příprava laboratoře

Importujte stroj ISA2020. ova do programu VirtualBox. Při importu nastavte generaci nových MAC adres pro síťová rozhraní (MAC Address Policy: Generate new MAC addresses for all network adapters). Ve virtuálním stroji budete pracovat s rozhraním enp0s3.

Instalace Guest Additions

Tento krok je volitelný.

Pro pohodlnější práci s virtuálním strojem je možno nainstalovat vlastní verzi VirtualBox Guest Additions (doporučený virtuální stroj může obsahovat verzi nekompatibilní s vaší verzí VirtualBoxu). V menu VirtualBox zvolte $Devices \rightarrow Insert\ Guest\ Additions\ CD\ image...$ a spusť te instalaci tlačítkem Run. Po zadání hesla uživatele root by měla proběhnout instalace; po jejím ukončení restartujte virtuální stroj.

¹http://nes.fit.vutbr.cz/isa/ISA2020.ova

Vytvoření snapshotu

Před zahájením cvičení si vytvořte snapshot za pomoci menu $Machine \to Take \ snapshot$ pro snadný návrat k výchozímu stavu. Následující cvičení budete řešit ve stejném virtuálním počítači, budeme očekávat, že použijete výchozí stav s volitelně nainstalovanými $Guest \ Additions$.

1 Zjišťování konfigurace

V případě, že se v OS Linux úplně neorientujete, přečtěte si kapitolu 3 v laboratorním manuálu — Základní konfigurace linuxového serveru. V této části cvičení se budeme zabývat převážně zjišťováním síťové konfigurace systému. Veškeré potřebné informace, které budete potřebovat ke splnění této části cvičení, naleznete v sekci 3.3 laboratorního manuálu — Konfigurace síťových zařízení. V případě, že si nejste jistí některým příkazem, neváhejte nahlédnout do manuálové stránky.

- 1. Vypište konfiguraci vašeho stroje (MAC adresu, IPv4 adresu, masku, síť, broadcastovou adresu).
- 2. Zobrazte si záznamy v routovací a ARP tabulce. Zapište IPv4 adresu výchozí brány a přiřaď te k ní MAC adresu.
- 3. Otestujte konektivitu k výchozí bráně a následně konektivitu do Internetu.
- 4. Vypište implicitní servery DNS a název souboru, ve kterém jste tuto informaci nalezli.
- 5. Upravte patřičný soubor tak, aby po spuštění příkazu ping gw, byl ping proveden vůči IPv4 adrese výchozí brány. Zapište jak a který soubor jste upravili a jaký záznam jste přidali.
- 6. Vypište aktivní TCP spojení, vyberte jeden záznam, zapište si ho a popište význam jednotlivých položek. Pokud se žádné TCP spojení nezobrazuje, nějaké vygenerujte, například pomocí webového prohlížeče.
- 7. Zobrazte systémové události pomocí programu journalctl.
- 8. Zobrazte pouze události týkající se NetworkManager.
- 9. Pokuste se jako uživatel user spustit Wireshark s pomocí programu sudo. Následně nalezněte v logu zprávu, která byla zaznamenána v případě správně zadaného hesla, ale odepřeného přístupu.

2 Wireshark

V této části cvičení se budeme zabývat analýzou a zachytáváním provozu v programu Wireshark. Spuštění Wireshark provedete příkazem wireshark pod uživatelem root. Veškeré potřebné informace, které budete potřebovat k této části cvičení, naleznete v kapitole 4 laboratorního manuálu — Analýza síťového provozu programem Wireshark.

- 1. Pomocí programu Wireshark začněte zachytávat pouze HTTP komunikaci na výchozím portě (výchozí porty je možné nalézt např. v /etc/services). Zapište použitý capture filter do odpovědního archu. Spusťte si prohlížeč a načtěte stránku http://cphoto.fit.vutbr.cz (po zapnutí zachytávání provozu). Zachycený provoz uložte do souboru cv1-http.pcap který budete odevzdávat.
- 2. Vypište zdrojovou a cílovou IPv4 adresu a MAC adresu odeslaného a přijatého paketu. Zamyslete se nad tím, co vypsané MAC adresy a IPv4 adresy identifikují nalezené identifikátory porovnejte s identifikátory vypsanými v předchozích bodech zadání.

- 3. Zahajte znovu zachytávání komunikace, nyní bez použití filtru pro HTTP. V příkazové řádce odstraňte ARP záznamy (příkaz ip neighbor ...). Ve wiresharku zobrazte veškerou komunikaci, následně vyfiltrujte pouze ARP a ICMP pakety. Vygenerujte ICMP komunikaci. Analyzujte obsah ARP paketů. Zapište, co jste zadali do filtru. Zachycený provoz uložte do souboru cv1-arp.pcap který budete odevzdávat.
- 4. Zachyťte pouze HTTP a DNS provoz (na výchozích portech). Ve webovém prohlížeči zkuste otevřít několik stránek na různých URL adresách. Analyzujte obsah a posloupnost DNS paketů a následných HTTP paketů. Zachycený provoz uložte do souboru cv1-dns.pcap který budete odevzdávat.
- 5. Znovu si otevřete dříve uložený soubor s nešifrovanou komunikaci pomocí HTTP (cv1-http.pcap), zobrazte si TCP stream této komunikace (Follow TCP stream). Najděte dotaz, který odpovídá stránce zobrazené v prohlížeči. Pokuste se zachytit šifrovanou komunikaci HTTPS na libovolnou stránku, analyzujte zachycenou komunikaci, zaměřte se také na provoz DNS; využijte funkci Follow TCP stream.
- 6. Do odpovědního archu slovně popište význam funkce Follow TCP stream, zamyslete se nad formátem zobrazených dat funkcí Follow TCP stream a rozdílem oproti výchozímu pohledu na data ve formě paketů.

3 Konfigurace IPv4 a IPv6

Příprava virtuálních strojů

Vypňete virtuální stroj. V nastavení stroje zapňete druhé síťové rozhraní ($Network \rightarrow Adapter 2$) a nastavte jej do módu $Internal\ Network$ s názvem isa. Naklonujte stroj a opět nastavte generaci nových MAC adres. Použijte $Linked\ clone$. Nastartujte oba stroje a na jedném z nich spusťe záchyt na rozhraní enp0s8.

3.1 Manuální konfigurace IPv4

Teorie *IPv4 adresování* je popsaná v sekci 1 laboratorního manuálu — Adresy v IPv4 síti. Možnosti manuální konfigurace IP adres jsou v sekci 5 — Konfigurace síťování koncových zařízení.

- 1. Zvolte nejdelší možnou masku sítě 192.168.0.0 tak, aby síť obsahovala prostor pro 100 koncových stanic.
- 2. Jako adresu sítě použijte 192.168.0.0. Na obou strojích nastavte libovolné adresy z dané síťe na novém rozhraní enp0s8.
- 3. Správnou konfiguraci si ověřte příkazem ping.

3.2 Manuální konfigurace IPv6

Teorie *IPv6 adresování* je popsaná v sekci 2 — Adresy v IPv6 síti. Možnosti manuální konfigurace IP adres jsou stejné jako pro IPv4.

1. Zvolte si adresu sítě vhodnou pro použití v privátních lokálních sítích, s prefixem délky 64 bitů. Prvních 48 bitů zvolte podle popisu v sekci 2, pro vygenerování unikátního Global ID můžete použít web https://cd34.com/rfc4193/, zbývajících 16 bitů (Subnet ID) si můžete zvolit libovolně.

- 2. Pro zajímavost si můžete unikátnost vygenerovaného Global ID zkontrolovat na https://www.sixxs.net/tools/grh/ula/list.
- 3. Na obou strojích nastavte libovolné adresy z dané síťe na novém rozhraní enp0s8.
- 4. Správnou konfiguraci si ověřte příkazem ping6.

Uložení zachycené komunikace

Uložte zachycenou komunikaci ping a ping6 do souboru cv1-ping.pcap.

Odevzdávané soubory

Zkontrolujte, zda máte všechny soubory které se budou odevzdávat:

- protokol.md
- cv1-http.pcap
- cv1-arp.pcap
- cv1-dns.pcap
- cv1-ping.pcap

4 Ukončení cvičení

Do WIS-u odevzdejte vyplněný protokol.md a všechny zachycené pcap soubory. Vypňete virtuální stroje a obnovte snapshot ze začátku.