Introduction to Topology

General Topology, Lecture 8,9

Haoming Wang

07 July 2019

This is the Lecture note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

Metric space

Definition 1 (Metric Space). Let $X \times X \xrightarrow{d} \mathbb{R}$ be a function, we cay that d is a metric on X or (X,d) is a metric space if for $\forall x, x', x'' \in X$ have

- 1. Positivity: $d(x, x') \ge 0$ and d(x, x'') = 0 iff x = x';
- 2. Symmetry: d(x, x') = d(x', x);
- 3. Triangle inequality: $d(x, x') \le d(x, x'') + d(x'', x')$.

Exercise 1. Show that the triangle inequality is equivalent with for $\forall x, x', x'' \in X$

$$d(x, x') \ge |d(x, x'') - d(x', x'')|.$$

Proof. ≥⇒≤: since $d(x, x') \ge |d(x, x'') - d(x', x'')| \ge d(x, x'') - d(x', x'')$, we have that $d(x, x'') \le d(x, x') + d(x', x'')$.

 $\leq \Rightarrow \geq$: if $\exists x, x', x''$ such that d(x, x') < |d(x, x'') - d(x', x'')|, then

$$d(x,x') < |d(x,x'') - d(x',x'')|$$

$$\leq |d(x,x') + d(x',x'') - d(x',x'')|$$

$$\leq d(x,x')$$

thus d(x, x') < d(x, x'), which leads to a contradiction.

Example 1. Here are some metric examples:

- 1. define $d_2(x,y) := (\sum_i^m |x_i y_m|^2)^{1/2}$, $x,y \in \mathbb{R}^m$. Then d_2 is a metric on \mathbb{R}^m by cauchy inequality.
- 2. define $d_1(x,y) := \sum_{i=1}^m |x_i y_i|$, $x,y \in \mathbb{R}^m$. Then d_1 is a metric on \mathbb{R}^m .
- 3. define $d_{\infty}(x,y) := \max\{|x_i y_i|\}, i \in \{1,2,\cdots,m\}, x,y \in \mathbb{R}^m$. Then d_{∞} is a metric on \mathbb{R}^m .

 d_2 can be proved to be a metric by Cauchy inequality:

Exercise 2 (Cauchy inequality). For any $(x_1, \dots, x_n), (y_1, \dots, y_n) \in \mathbb{R}^n$, show that

$$(x_1y_1 + \cdots, x_ny_n)^2 \le (x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2)$$

CONTENT:

- 1. Metric space
- 2. Open set on metric space

and "=" holds iff $\exists a, b \in \mathbb{R}$ which are not all 0.

Proof. Consider the polynomial $p(t) = \sum_{i=1}^{n} (x_i t + y)^2 = t^2 \sum_{i=1}^{n} x_i^2 + t^2 \sum_{i$ $2\sum_{i=1}^{n} x_{i}y_{i} + \sum_{i=1}^{n} y_{i}^{2} \ge 0, \text{ thus } \Delta = 4\left(\sum_{i=1}^{n} x_{i}y_{i}\right)^{2} - 4\sum_{i=1}^{n} x_{i}^{2}\sum_{i=1}^{n} y_{i}^{2} \le 0$ $0 \Rightarrow \left(\sum_{i=1}^{n} x_{i}y_{i}\right)^{2} \le \sum_{i=1}^{n} x_{i}^{2}\sum_{i=1}^{n} y_{i}^{2}.$

Example 2 (p-adic). If p is a prime number, $x \in \mathbb{Q}$, define

$$|x|_{p-adic} := \begin{cases} p^{-m}, & x = \frac{a}{b} \cdot p^m, x \neq 0, \\ 0, & x = 0, \end{cases}$$

where $a, b, m \in \mathbb{Z}$, (a, p) = (b, p) = 1. For $\forall x, y \in \mathbb{Q}$, define $d_{p-adic}(x,y) = |x-y|_{p-adic}$, then d_{p-adic} is a metric on \mathbb{Q} .

Assume $x = (a/b)p^m$, $y = (s/t)p^n \in \mathbb{Q}$ where $a, b, s, t, m, n \in$ \mathbb{Z} , (a, p) = (b, p) = (s, p) = (t, p) = 1, m > n, then $|x|_{p-adic} = p^{-m} < 1$ $|y|_{p-adic} = p^{-n}$, and

$$\begin{split} |x-y|_{p-adic} &= \left| (a/b)p^m - (s/t)p^n \right|_{p-adic} \\ &= \left| \frac{adp^{m-n} - bc}{bd} p^n \right|_{p-adic}. \end{split}$$

it is easy to check $adp^{m-n} - bc$, $bd \in \mathbb{Z}$ and $(adp^{m-n} - bc$, p) =(bd, p) = 1, thus

$$|x-y|_{p-adic} = p^{-n} = |y|_{p-adic} = \max\{|x|_{p-adic}, |y|_{p-adic}\}.$$

Thus for any $x, y, z \in \mathbb{Q}$, we have that

$$\begin{split} d_{p-adic}(x,y) &= \max\{|x|_{p-adic}, |y|_{p-adic}\} \\ &\leq \max\{|x|_{p-adic}, |z|_{p-adic}\} + \max\{|z|_{p-adic}, |y|_{p-adic}\} \\ &= d_{p-adic}(x,z) + d_{p-adic}(y,z), \end{split}$$

which follows the triangle inequality, the other two conditions is trivial.

Open set on metric space

Definition 2 (Open Ball). Let (X, d) be a metric space, for $\forall r > 0$ and $x_0 \in X$, we let

$$B_r(x_0) := \{x \in X | d(x, x_0) < r\},\$$

and call it the open ball with center x_0 and radius r; let

$$\overline{B_r(x_0)} := \{ x \in X | d(x, x_0) \le r \},$$

and call it the close ball with center x_0 and radius r.

Example 3 (discrete metric). For $\forall x, x' \in \mathbb{R}^2$, define metric d(x, x') =0 if x = x', and d(x, x') = 1 if $x \neq x'$, then $B_1(x) = \{x\}$, $\overline{B_1(x)} = \mathbb{R}^2$, $B_{1,1}(x) = \mathbb{R}^2$.

Definition 3 (Open Set). $S(\subseteq X)$ is called an Open Set of X with respect to d, if $\forall x_0 \in S$, $\exists r > 0$ such that $B_r(x_0) \subseteq S$; $F(\subseteq X)$ is Close Set of *X* w.r.t. *d* if $X \setminus F$ is open set of *X* w.r.t. *d*.

Exercise 3. Prove that $B_r(x)$ is open set and $B_r(x)$ is close.

Proof. For $\forall x' \in B_r(x)$, we have d(x, x') < r, donate r - d(x, x') by s, then for $\forall x'' \in B_{s/2}(x')$ satisfy

$$d(x,x'') \le d(x,x') + d(x',x'')$$

$$\le d(x,x') + \frac{s}{2}$$

$$< r,$$

thus $x'' \in B_r(x)$ and $B_{s/2}(x') \subseteq B_r(x)$ and $B_r(x)$ is a open set. For $\forall x' \in X \setminus \overline{B_r(x)}$ has d(x,x') > r. Denote d(x,x') - r by t, then for $\forall x'' \in B_{t/2}(x')$ satisfy

$$d(x,x'') \ge |d(x,x') - d(x',x'')|$$

$$\ge d(x,x') - d(x',x'')$$

$$\ge d(x,x;) - \frac{t}{2}$$
> r

Thus $B_{t/2}(x') \subseteq X \setminus \overline{B_r}$ and $X \setminus \overline{B_r}$ is an open set, thus $\overline{B_r}$ is a close set.

Exercise 4. Let (X, d) be a metric space. show that

- 1. $X, \emptyset \subseteq_{open} X$;
- 2. $O_1, O_2 \subseteq_{open} X \Rightarrow O_1 \cap O_2 \subseteq_{open} X$;
- 3. $O_{\alpha} \subseteq_{open} X$, $(\alpha \in A) \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \subseteq_{open} X$ (α not necessarily be integral or countable);
- 4. All above corresponding statements for close set are true.
- *Proof.* 1. Obviously X is an Open set thus \emptyset is a close set. If \emptyset is not an open set, then $\exists x \in \emptyset$, $\forall r > 0$ such that $B_r(x) \not\subseteq \emptyset$, which is impossible. Thus \emptyset is an open set (logically) and X is a close set;
- 2. $\forall x \in O_1 \cap O_2$, $\exists r_1, r_2 > 0$, s.t. $B_{r_1}(x) \subseteq O_1$ and $B_{r_2}(x) \subseteq O_2$. Thus $\forall x' \in B_{\min\{r_1, r_2\}}(x) = B_{r_1}(x) \cap B_{r_2}(x) \Rightarrow x' \in O_1 \cap O_2 \Rightarrow$ $B_{\min\{r_1,r_2\}}(x) \subseteq O_1 \cap O_2$, thus $O_1 \cap O_2$ is open. Collectively, the intersection of any finite open sets is an open set;
- 3. For $\forall x \in \bigcup_{\alpha \in A} O_{\alpha}$, \exists at least one $\alpha' \in A$, s.t. $x \in O_{\alpha'}$, then $\exists r > A$ 0, s.t. $B_r(x) \subseteq O_{\alpha'} \subseteq \bigcup_{\alpha \in A} O_{\alpha}$, thus $\bigcup_{\alpha \in A} O_{\alpha}$ is an open set;
- 4. Suppose F_1 , $F_2 \subseteq_{close} X$, then $X \setminus F_1$, $X \setminus F_2 \subseteq_{open} X$, thus $(X \setminus F_1) \cup$ $(X \backslash F_2) = X \backslash (F_1 \cap F_2) \subseteq_{open} X \text{ and } F_1 \cap F_2 \subseteq_{close} X.$

Note 1. First 3 statements are the essential intuition for the definition of

5. Suppose $F_{\alpha}(\alpha \in A)$ is (an arbitrary family of) close set, for any $x \in$ $X \setminus \bigcup_{\alpha \in A} F_{\alpha} \Rightarrow x \notin \bigcup_{\alpha \in A} F_{\alpha} \Rightarrow x \notin F_{\alpha}(\forall \alpha \in A) \Rightarrow x \in X \setminus F_{\alpha}(\alpha \in A).$ Since F_{α} is close, there exists $r_{\alpha} > 0$, s.t. $B_{r_{\alpha}}(x) \subseteq X \backslash F_{\alpha}(\forall \alpha \in A)$, and $B_{\min r_{\alpha}}(x) = \bigcap_{\alpha \in A} B_{r_{\alpha}}(x) \subseteq \bigcap_{\alpha \in A} X \backslash F_{\alpha} = X \backslash \bigcup_{\alpha \in A} F_{\alpha}$, thus $X \setminus \bigcup_{\alpha \in A} F_{\alpha}$ is open, and $\bigcup_{\alpha \in A} F_{\alpha}$ is close.

Definition 4 (Convergence). Let (X,d) be a metric space, $a_n \in X$, $(n \in$ \mathbb{N}), $L \in X$, define $\lim_{n \to \infty} a_n = L$ w.r.t. d, if $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq 0$ *N* s.t. $d(a_n, L) < \epsilon$, that is $a_n \in B_{\epsilon}(L)$.

Exercise 5. Show that

- 1. $\lim_{n\to\infty} a_n = L \Leftrightarrow \lim_{n\to\infty} d(a_n, L) = 0$;
- 2. $\lim_{n\to\infty} a_n = L \Leftrightarrow \forall L \in U \subseteq_{open} X, \exists N \in \mathbb{N}, \forall n \geq N \text{ s.t. } a_n \in U.$

Proof. (1) Trivial; (2) \Rightarrow : Suppose that $\lim_{n\to\infty} a_n = L$, for $\forall U$ that $L \in U$, $\exists r > 0$, s.t. $B_r(L) \subseteq U$, and $\exists N \in \mathbb{N}$ such that $\forall n \geq 0$ N, s.t. $a_n \in B_r(L) \subseteq U$; \Leftarrow : Suppose $L \in U \subseteq_{open} X$, then $\exists r > 0$ such that $B_r(L) \subseteq U$. Since $B_r(L)$ is also an open set, then $\exists N \in \mathbb{N}$, for $\forall n \geq N$, s.t. $a_n \in B_r(L) \subseteq U$.

We say $S \subseteq X$ is bounded w.r.t. d, if $\exists r > 0$ and $x_0 \in X$, s.t. $S \subseteq$ $B_r(x_0)$.

Theorem 1 (Bolzano-Weierstrass theorem). *If* $a_n \in \mathbb{R}^m (n \in \mathbb{N})$ *is* bounded w.r.t. d_2 , then \exists a subsequence $a_{n_m} (m \in \mathbb{N})$ which converges.

Proof. We only prove \mathbb{R}^2 case. If we want to prove that the vector $a=(a_1,\cdots,a_m)\in\mathbb{R}^m\to L=(l_1,\cdots,l_m)\in\mathbb{R}^m$, all we need to prove is $\lim_{n\to\infty} a_i = l_i$, $(i = 1, \dots, m)$.

Choose M > 0, s.t. $a_n \in Q = [-M, M] \times [-M, M]$ for all $n \in \mathbb{N}$. Divide Q into 4 squares with equal size and choose one, say Q_1 , such that $|\{n|a_n \in Q\}| = \infty$. Select $n_1 \in \mathbb{N}$, such that $a_{n_1} \in Q_1$. Repeat this and we have $\bigcap_{k=1}^{\infty} Q_k = \{a\}$. By theorem of nested interval we have that $\lim_{k\to\infty} a_{n_k} = a$.

Exercise 6. Let (X,d) be a metric space, $F \subseteq X$ show that $F \subseteq_{close}$ $X \Leftrightarrow \forall a_n \in F(n \in \mathbb{N}) \text{ and } \lim_{n \to \infty} a_n = a \in X \text{ then } a \in F.$

Proof. \Rightarrow : Assume that F is close and $a_n \in F$. If $a_n \to a \in X \backslash F$, then $\exists r > 0$, s.t. $B_r(a) \in X \backslash F$. Since $\lim_{n \to \infty} a_n = a$, for r, there exists $N \in \mathbb{N}$, $\forall n \geq N$, s.t. $d(a_n, a) < r$, i.e. $a_n \in B_r(a) \subseteq X \backslash F$, which leads to a contradiction. \Leftarrow : Suppose that $\forall a_n \in F(n \in \mathbb{N})$ and $\lim_{n\to\infty} a_n = a \in X$ then $a \in F$, and F is not close, which means $X \setminus F$ is not open, and $\exists x \in X \backslash F, \forall r > 0, B_r(x) \cap F \neq \emptyset$. Select $n \in \mathbb{N}$ such that $a_n = B_1(x) \cap F$. Thus $\lim_{n\to\infty} a_n = x \notin F$, which leads to a contradiction.

Note 2. Set family of sets as $\{B_{1/n}(x)\}_{n\in\mathbb{N}}$ is a very useful skill. **Definition 5** (Open cover, Compact set). Let (X, d) be a metric space, $S \subseteq X$, $O_{\alpha} \in X(\alpha \in A)$, we say that $O_{\alpha}(\alpha \in A)$ form an open cover of S, if $S \subseteq \bigcup_{\alpha \in A} O_{\alpha}$. S is called a compact set if \forall open cover $O_{\alpha}(\alpha \in A)$ of S, $\exists \alpha_1, \dots, \alpha_m \in A$, s.t. $S \subseteq \bigcup_{i=1}^m O_{\alpha_i}$, where $\bigcup_{i=1}^m O_{\alpha_i}$ is called a finite subcover.

If there exists an open cover of *F* whose any finite subcover can not cover it, then F is not a compact set. for instance, let $F = (0,1), O_n =$ $(1/n,2), n \in \mathbb{N}$, then O_n is an open cover of F, however any finite subcover of O_n can not cover F.

Theorem 2 (Heine-Borel theorem). Let $S \subseteq \mathbb{R}^n$, then S is compact $\Leftrightarrow S$ is bounded and closed.

Proof. \Rightarrow : Suppose that *S* is compact, select a point $s \in S$ arbitrarily, define $O_i = B_i(s)$, it is easy to check that $S \subseteq \bigcup_{i \in \mathbb{N}} O_i$, since for any $s' \in S$, we have that $s' \in B_{2d(s,s')}(s) \subseteq O_{\lceil 2d(s,s') \rceil}$. Since S is compact, there exists a finite subcover, thus *S* is bounded.

Suppose *S* is compact, but *S* is not closed, which means $X \setminus S$ is not open and $\exists x \in X \backslash S$, s.t. $\forall r > 0, B_r(x) \cap S \neq 0$. Since S is bounded, define $\iota = \sup_{s \in S} d(s, x)$, define open cover

$$O_n = B_{\frac{l}{n}}(x) - B_{\frac{l}{n+1}}(x),$$

thus $O_i \cap O_j = \emptyset(i \neq j)$ and $O_i \cap S \neq \emptyset(\forall i)$. Thus O_n has no finite subcover, which leads to a contradiction and *S* is closed.

 \Leftarrow : Suppose that S is bounded and closed, and \exists an open cover $O_{\alpha}(\alpha \in A)$ of *S* which admits no finite subcover. Choose a cube *Q* containing S (S is bounded), divide Q into 4 equal-sized cubes and select one of them denoted by Q_1 , s.t. $Q_1 \cap S$ can not be covered by finitely many Q_{α} , select a point such that $s_1 \in Q_1 \cap S$. Repeat.

Obviously, $\lim_{n\to\infty} s_n = a$, notice that $s_n \in Q_n \cap S \subseteq S$, thus $\lim_{n\to\infty} s_n = a \in S$ for S is closed. Thus there exist O_i such that $a \in O_i$. Since O_i is open, $\exists r > 0$, s.t. $B_r(a) \subseteq O_i$. Then $\exists N \in \mathbb{N}, \forall n \geq 0$ N, s.t. $Q_n \subseteq B_r(a) \subseteq O_i$. Since $Q_n \cap S$ can not be covered by finitely many O_{α} , but could be covered by O_i , which leads to a contradiction.

Figure 1: Heine-Borel theorem