1. kernel 这个东西在 SVM 中真的只是一少部分,为了面试的话大概了解一下就可以了,面试 官也很少有懂的。并不是说大家不爱学习,而是做 kernel 的人根本不关心 SVM 是什么,做 SVM 的人也根本不用关心 kernel 是个什么鬼。
2. kernel 和 SVM 是两个完全没有关系的概念。 实际上在 SVM 提出以前,人们就提出了再生核希尔伯特空间(reproducing kernel Hilbert space,RKHS)这个概念,并且把它应用在信号处理中。如:在信号检测(signal detection)问题中,对于一条时间序列(time series),我如何知道它是一个随机步行(random walk)的噪音序列呢?还是有一个特定的模式(pattern)在里面呢?在这个情景下,RKHS 理论就给出了一个通过求解似然率(likelihood ratio)的假设检验方案,其中的 kernel 是某个随机过程在两个不同时间点的相关性(correlation)。
另外,核方法可以用在 逻辑斯谛回归(logistic regression)、最小二乘法(least square)、降维(dimension reduction)等多处地方,也不是只和 SVM 这个概念绑定的。

$\Phi(x)$,所以就变成需要计算 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 。 为了不让计算变得很困难,我们就可以找到一个核函数 K ,满足 K 可以生成 Φ 所形成的高维空		m ³ V, (i
维空间上的数据映射到高维空间,这样数据集就有可能变得可分了。 但是在考虑优化问题的对偶问题时,需要计算 $\langle x_i, x_j \rangle$,请注意到,我们已经把所有的 x 换成了 $\Phi(x)$,所以就变成需要计算 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 。 为了不让计算变得很困难,我们就可以找到一个核函数 K ,满足 K 可以生成 Φ 所形成的高维空间,这样 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 就可以简单的用 $K(x_i, x_j)$ 代替了。而 K 往往定义成和 x 的内积有关的式子,这样在低维空间中计算内积就很简单。 如:径向基函数里有 $\ x-y\ ^2$,展开以后其实就含有两个范数项(注意范数就是内积)和一个内		简单说几句,公式太难写了(笑)。
维空间上的数据映射到高维空间,这样数据集就有可能变得可分了。 但是在考虑优化问题的对偶问题时,需要计算 $\langle x_i, x_j \rangle$,请注意到,我们已经把所有的 x 换成了 $\Phi(x)$,所以就变成需要计算 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 。 为了不让计算变得很困难,我们就可以找到一个核函数 K ,满足 K 可以生成 Φ 所形成的高维空间,这样 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 就可以简单的用 $K(x_i, x_j)$ 代替了。而 K 往往定义成和 x 的内积有关的式子,这样在低维空间中计算内积就很简单。 如:径向基函数里有 $\ x-y\ ^2$,展开以后其实就含有两个范数项(注意范数就是内积)和一个内		我们在使用原始数据 x 的时候发现数据并不可分,所以就寄希望于一个映射 $\Phi(x)$,这个映射把低
$\Phi(x)$,所以就变成需要计算 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 。 为了不让计算变得很困难,我们就可以找到一个核函数 K ,满足 K 可以生成 Φ 所形成的高维空间,这样 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 就可以简单的用 $K(x_i, x_j)$ 代替了。而 K 往往定义成和 x 的内积有关的式子,这样在低维空间中计算内积就很简单。 如:径向基函数里有 $\ x-y\ ^2$,展开以后其实就含有两个范数项(注意范数就是内积)和一个内		
为了不让计算变得很困难,我们就可以找到一个核函数 K ,满足 K 可以生成 Φ 所形成的高维空间,这样 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 就可以简单的用 $K(x_i, x_j)$ 代替了。而 K 往往定义成和 x 的内积有关的式子,这样在低维空间中计算内积就很简单。 如:径向基函数里有 $\ x-y\ ^2$,展开以后其实就含有两个范数项(注意范数就是内积)和一个内	-	但是在考虑优化问题的对偶问题时,需要计算 $\left\langle x_i, x_j \right angle$,请注意到,我们已经把所有的 x 换成了
间,这样 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 就可以简单的用 $K(x_i, x_j)$ 代替了。而 K 往往定义成和 x 的内积有关的式子,这样在低维空间中计算内积就很简单。 如:径向基函数里有 $\ x-y\ ^2$,展开以后其实就含有两个范数项(注意范数就是内积)和一个内		$\Phi(x)$,所以就变成需要计算 $\left\langle \Phi(x_i), \Phi(x_j) ight angle$ 。
		为了不让计算变得很困难,我们就可以找到一个核函数 K ,满足 K 可以生成 Φ 所形成的高维空间,这样 $\langle \Phi(x_i), \Phi(x_j) \rangle$ 就可以简单的用 $K(x_i, x_j)$ 代替了。而 K 往往定义成和 x 的内积有关的式子,这样在低维空间中计算内积就很简单。
	+	
	-	
	-	
	-	
	-	

SVM

门地

$$\underline{\qquad}$$
 $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$

213
$$L = \frac{1}{2} W^T w + 2 \alpha_i \left[1 - 4 i \left(W^T b_i + b \right) + \alpha_i^2 \right]$$

$$\begin{cases} \frac{\partial L}{\partial w} = w + \sum_{i} (x_{i} y_{i} x_{i}) = 0 \implies w = \sum_{i} J_{i} J_{i} b_{i} \\ \frac{\partial L}{\partial a_{i}} = 2 J_{i} a_{i} = 0 \implies \text{diai} = 0 \end{cases}$$

$$\frac{\partial L}{\partial b} = \sum di (-y_i) = 0 \qquad \Rightarrow \sum di y_i = 0$$

$$W^TW = \left[\sum_{i} d_i y_i \chi_i \right]^T \left(\sum_{i} d_j y_j \chi_j^T \chi_j \right) = \sum_{i} d_i d_j y_i y_j \chi_i^T \chi_j$$

本弘 SVM

	ntin型为 mgs $W(d) = \Xi di - \frac{1}{2} \Xi Z didj 4i 4j \Lambdai \Lambdaj$
	St. 豆dish=0
	√核化
	mat $W(d) = \sum di - \frac{1}{2} \sum Z didj yi yj K(xi, xj)$
SV	· 1年多 L** 为 O,
	_ 核將何量。
	W= E Yi di Ni
	y= w x+b = \(\Sigma\text{iding}\tag{7}\tag{4}\tag{b}
	$t^{2}_{\mathcal{A}}(k) = \sum y_{i} d_{i} k(\eta_{i}, \chi) + b$
b	· 在支指问量有
	$W^{T}X+b=y$
	$\Xi y_i x_i \chi_i^T \chi + b = y \Rightarrow b^* = y - \Sigma y_i x_i \chi_i^T \chi$

Prediction

reaction.
ynew = sign(=diyi k(xi, xnew)+b)

