Conditions on Relations

The Clowder Project Authors

July 21, 2025

This chapter contains some material about reflexive, symmetric, transitive, equivalence, and apartness relations.

Contents

10.1	Functional and Total Relations	2
	10.1.1 Functional Relations	
	10.1.2 Total Relations	3
10.2	Reflexive Relations	3
	10.2.1 Foundations	3
	10.2.2 The Reflexive Closure of a Relation	
10.3	Symmetric Relations	6
	10.3.1 Foundations	6
	10.3.2 The Symmetric Closure of a Relation	7
10.4	Transitive Relations	8
	10.4.1 Foundations	8
	10.4.2 The Transitive Closure of a Relation	9
10.5	Equivalence Relations	12
	10.5.1 Foundations	
	10.5.2 The Equivalence Closure of a Relation	12

10.6	Quotients by Equivalence Relations		
	10.6.1	Equivalence Classes	14
	10.6.2	Quotients of Sets by Equivalence Relations	14
Δ	Other	Chanters	19

10.1 Functional and Total Relations

10.1.1 Functional Relations

Let A and B be sets.

Definition 10.1.1.1.1. A relation $R: A \rightarrow B$ is **functional** if, for each $a \in A$, the set R(a) is either empty or a singleton.

Proposition 10.1.1.1.2. Let $R: A \rightarrow B$ be a relation.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The relation *R* is functional.
 - (b) We have $R \diamond R^{\dagger} \subset \chi_B$.

Proof. Item 1, *Characterisations*: We claim that Items 1a and 1b are indeed equivalent:

· Item 1a \Longrightarrow Item 1b: Let $(b, b') \in B \times B$. We need to show that

$$[R \diamond R^{\dagger}](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

i.e. that if there exists some $a \in A$ such that $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b'$, then b = b'. But since $b \sim_{R^{\dagger}} a$ is the same as $a \sim_{R} b$, we have both $a \sim_{R} b$ and $a \sim_{R} b'$ at the same time, which implies b = b' since R is functional.

- · Item 1b \Longrightarrow Item 1a: Suppose that we have $a \sim_R b$ and $a \sim_R b'$ for $b, b' \in B$. We claim that b = b':
 - Since $a \sim_R b$, we have $b \sim_{R^{\dagger}} a$.
 - Since $R \diamond R^{\dagger} \subset \chi_B$, we have

$$[R \diamond R^{\dagger}](b,b') \preceq_{\{\mathsf{t},\mathsf{f}\}} \chi_B(b,b'),$$

and since $b \sim_{R^{\dagger}} a$ and $a \sim_{R} b'$, it follows that $\left[R \diamond R^{\dagger}\right](b,b') = \text{true}$, and thus $\chi_{B}(b,b') = \text{true}$ as well, i.e. b = b'.

This finishes the proof.

10.1.2 Total Relations 3

10.1.2 Total Relations

Let A and B be sets.

Definition 10.1.2.1.1. A relation $R: A \rightarrow B$ is **total** if, for each $a \in A$, we have $R(a) \neq \emptyset$.

Proposition 10.1.2.1.2. Let $R: A \rightarrow B$ be a relation.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The relation R is total.
 - (b) We have $\chi_A \subset R^{\dagger} \diamond R$.

Proof. Item 1, Characterisations: We claim that Items 1a and 1b are indeed equivalent:

· Item 1a \Longrightarrow Item 1b: We have to show that, for each $(a, a') \in A$, we have

$$\chi_A(a,a') \preceq_{\{\mathsf{t},\mathsf{f}\}} \left[R^{\dagger} \diamond R \right] (a,a'),$$

i.e. that if a=a', then there exists some $b\in B$ such that $a\sim_R b$ and $b\sim_{R^\dagger} a'$ (i.e. $a\sim_R b$ again), which follows from the totality of R.

· Item 1b \Longrightarrow Item 1a: Given $a \in A$, since $\chi_A \subset R^{\dagger} \diamond R$, we must have

$${a} \subset [R^{\dagger} \diamond R](a),$$

implying that there must exist some $b \in B$ such that $a \sim_R b$ and $b \sim_{R^{\dagger}} a$ (i.e. $a \sim_R b$) and thus $R(a) \neq \emptyset$, as $b \in R(a)$.

This finishes the proof.

10.2 Reflexive Relations

10.2.1 Foundations

Let A be a set.

Definition 10.2.1.1.1. A **reflexive relation** is equivalently:

 $^{^{1}}$ Note that since $\mathbf{Rel}(A,A)$ is posetal, reflexivity is a property of a relation, rather than extra structure.

- · An \mathbb{E}_0 -monoid in $(N_{\bullet}(\text{Rel}(A, A)), \gamma_A)$.
- · A pointed object in ($Rel(A, A), \gamma_A$).

Remark 10.2.1.1.2. In detail, a relation *R* on *A* is **reflexive** if we have an inclusion

$$\eta_R \colon \chi_A \subset R$$

of relations in $\operatorname{Rel}(A, A)$, i.e. if, for each $a \in A$, we have $a \sim_R a$.

Definition 10.2.1.1.3. Let *A* be a set.

- 1. The **set of reflexive relations on** A is the subset $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.
- 2. The **poset of relations on** A is is the subposet $Rel^{refl}(A, A)$ of Rel(A, A) spanned by the reflexive relations.

Proposition 10.2.1.1.4. Let R and S be relations on A.

- 1. *Interaction With Inverses.* If R is reflexive, then so is R^{\dagger} .
- 2. *Interaction With Composition.* If R and S are reflexive, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

10.2.2 The Reflexive Closure of a Relation

Let R be a relation on A.

Definition 10.2.2.1.1. The **reflexive closure** of \sim_R is the relation $\sim_R^{\text{refl}_2}$ satisfying the following universal property:³

 (\star) Given another reflexive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\mathsf{refl}} \subset \sim_S$.

Construction 10.2.2.1.2. Concretely, \sim_R^{refl} is the free pointed object on R in $(\text{Rel}(A, A), \chi_A)^4$,

² Further Notation: Also written R^{refl} .

³ Slogan: The reflexive closure of R is the smallest reflexive relation containing R.

⁴Or, equivalently, the free \mathbb{E}_0 -monoid on R in $(N_{\bullet}(\mathbf{Rel}(A, A)), \chi_A)$.

being given by

$$R^{\mathrm{refl}} \stackrel{\mathrm{def}}{=} R \coprod^{\mathrm{Rel}(A,A)} \Delta_A$$

= $R \cup \Delta_A$
= $\{(a,b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } a = b\}.$

Proof. Clear.

Proposition 10.2.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$\left((-)^{\text{refl}} \dashv \stackrel{\leftarrow}{\sim}\right): \quad \text{Rel}(A, A) \underbrace{\stackrel{(-)^{\text{refl}}}{\stackrel{\leftarrow}{\sim}}}_{\stackrel{\leftarrow}{\sim}} \text{Rel}^{\text{refl}}(A, A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{refl}}(R^{\mathsf{refl}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\text{refl}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 2. The Reflexive Closure of a Reflexive Relation. If R is reflexive, then $R^{\text{refl}} = R$.
- 3. Idempotency. We have

$$\left(R^{\text{refl}}\right)^{\text{refl}} = R^{\text{refl}}.$$

4. Interaction With Inverses. We have

$$(R^{\dagger})^{\text{refl}} = (R^{\text{refl}})^{\dagger}, \qquad (-)^{\dagger} \downarrow \qquad \qquad \downarrow^{(-)^{\dagger}}$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{refl}}} \text{Rel}(A, A).$$

$$\text{Rel}(A, A) \xrightarrow{(-)^{\text{refl}}} \text{Rel}(A, A).$$

5. Interaction With Composition. We have

$$(S \diamond R)^{\mathsf{refl}} = S^{\mathsf{refl}} \diamond R^{\mathsf{refl}}, \qquad (-)^{\mathsf{refl}} \times (-)^{\mathsf{refl}} \downarrow \qquad \qquad \downarrow (-)^{\mathsf{refl}}$$

$$\mathsf{Rel}(A, A) \times \mathsf{Rel}(A, A) \xrightarrow{\diamond} \mathsf{Rel}(A, A).$$

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the reflexive closure of a relation, stated in Definition 10.2.2.1.1.

Item 2, The Reflexive Closure of a Reflexive Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Definition 10.2.1.1.4.

10.3 Symmetric Relations

10.3.1 Foundations

Let *A* be a set.

Definition 10.3.1.1.1. A relation R on A is **symmetric** if we have $R^{\dagger} = R$.

Remark 10.3.1.1.2. In detail, a relation R is symmetric if it satisfies the following condition:

 (\star) For each $a, b \in A$, if $a \sim_R b$, then $b \sim_R a$.

Definition 10.3.1.1.3. Let *A* be a set.

- 1. The **set of symmetric relations on** A is the subset $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.
- 2. The **poset of relations on** A is is the subposet $Rel^{symm}(A, A)$ of Rel(A, A) spanned by the symmetric relations.

Proposition 10.3.1.1.4. Let R and S be relations on A.

- 1. Interaction With Inverses. If R is symmetric, then so is R^{\dagger} .
- 2. *Interaction With Composition.* If R and S are symmetric, then so is $S \diamond R$.

Proof. Item 1, Interaction With Inverses: Clear. Item 2, Interaction With Composition: Clear.

10.3.2 The Symmetric Closure of a Relation

Let R be a relation on A.

Definition 10.3.2.1.1. The **symmetric closure** of \sim_R is the relation $\sim_R^{\text{symm}_5}$ satisfying the following universal property:⁶

(*) Given another symmetric relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{symm}} \subset \sim_S$.

Construction 10.3.2.1.2. Concretely, \sim_R^{symm} is the symmetric relation on A defined by

$$R^{\text{symm}} \stackrel{\text{def}}{=} R \cup R^{\dagger}$$

= $\{(a, b) \in A \times A \mid \text{we have } a \sim_R b \text{ or } b \sim_R a\}.$

Proof. Clear.

Proposition 10.3.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{\operatorname{symm}} \dashv \overline{\Xi}): \operatorname{Rel}(A, A) \underbrace{\bot}_{\Xi} \operatorname{Rel}^{\operatorname{symm}}(A, A),$$

witnessed by a bijection of sets

$$Rel^{symm}(R^{symm}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{\mathsf{symm}}(A, A))$ and $S \in \text{Obj}(\mathbf{Rel}(A, A))$.

- 2. The Symmetric Closure of a Symmetric Relation. If R is symmetric, then $R^{\text{symm}} = R$.
- 3. Idempotency. We have

$$(R^{\text{symm}})^{\text{symm}} = R^{\text{symm}}.$$

⁵ Further Notation: Also written R^{symm} .

⁶ Slogan: The symmetric closure of R is the smallest symmetric relation containing R.

4. Interaction With Inverses. We have

$$\left(R^{\dagger}\right)^{\operatorname{symm}} = \left(R^{\operatorname{symm}}\right)^{\dagger}, \qquad \stackrel{(-)^{\operatorname{symm}}}{\bigoplus} \ \operatorname{Rel}(A,A) \\ \operatorname{Rel}(A,A) \xrightarrow[(-)^{\operatorname{symm}}]{} \operatorname{Rel}(A,A).$$

5. Interaction With Composition. We have

$$\mathsf{Rel}(A,A) \times \mathsf{Rel}(A,A) \xrightarrow{\diamond} \mathsf{Rel}(A,A)$$

$$(S \diamond R)^{\mathsf{symm}} = S^{\mathsf{symm}} \diamond R^{\mathsf{symm}}, \qquad \underset{(-)^{\mathsf{symm}} \times (-)^{\mathsf{symm}}}{\underbrace{\downarrow}} \qquad \qquad \underset{(-)^{\mathsf{symm}}}{\underbrace{\downarrow}} \qquad \qquad \underset{(-)^{\mathsf{symm}}}{\underbrace{\downarrow}} \qquad \qquad \underset{(-)^{\mathsf{symm}}}{\underbrace{\downarrow}} \qquad \qquad \underset{(-)^{\mathsf{symm}}}{\underbrace{\downarrow}} \qquad \qquad \mathsf{Rel}(A,A).$$

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the symmetric closure of a relation, stated in Definition 10.3.2.1.1.

Item 2, The Symmetric Closure of a Symmetric Relation: Clear.

Item 3, *Idempotency*: This follows from Item 2.

Item 4, Interaction With Inverses: Clear.

Item 5, Interaction With Composition: This follows from Item 2 of Definition 10.3.1.1.4.

10.4 Transitive Relations

10.4.1 Foundations

Let A be a set.

Definition 10.4.1.1.1. A transitive relation is equivalently:⁷

- · A non-unital \mathbb{E}_1 -monoid in $(N_{\bullet}(\text{Rel}(A, A)), \diamond)$.
- · A non-unital monoid in ($\mathbf{Rel}(A, A), \diamond$).

⁷Note that since Rel(A, A) is posetal, transitivity is a property of a relation, rather than extra structure.

Remark 10.4.1.1.2. In detail, a relation *R* on *A* is **transitive** if we have an inclusion

$$\mu_R: R \diamond R \subset R$$

of relations in $\operatorname{Rel}(A, A)$, i.e. if, for each $a, c \in A$, the following condition is satisfied:

 (\star) If there exists some $b \in A$ such that $a \sim_R b$ and $b \sim_R c$, then $a \sim_R c$.

Definition 10.4.1.1.3. Let *A* be a set.

- 1. The **set of transitive relations from** A **to** B is the subset $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.
- 2. The **poset of relations from** A **to** B is is the subposet $Rel^{trans}(A)$ of Rel(A, A) spanned by the transitive relations.

Proposition 10.4.1.1.4. Let *R* and *S* be relations on *A*.

- 1. *Interaction With Inverses.* If R is transitive, then so is R^{\dagger} .
- 2. Interaction With Composition. If R and S are transitive, then $S \diamond R$ may fail to be transitive.

Proof. Item 1, Interaction With Inverses: Clear.

Item 2, Interaction With Composition: See [MSE 2096272].8

10.4.2 The Transitive Closure of a Relation

Let R be a relation on A.

- There is some $b \in A$ such that:

*
$$a \sim_R b$$
;

*
$$b \sim_S c$$
;

- There is some $d \in A$ such that:

*
$$c \sim_R d$$
;

⁸ *Intuition*: Transitivity for R and S fails to imply that of $S \diamond R$ because the composition operation for relations intertwines R and S in an incompatible way:

[·] If $a \sim_{S \diamond R} c$ and $c \sim_{S \diamond r} e$, then:

^{*} $d \sim_S e$.

Definition 10.4.2.1.1. The **transitive closure** of \sim_R is the relation \sim_R^{trans9} satisfying the following universal property:¹⁰

 (\star) Given another transitive relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\mathsf{trans}} \subset \sim_S$.

Construction 10.4.2.1.2. Concretely, \sim_R^{trans} is the free non-unital monoid on R in $(\text{Rel}(A,A),\diamond)^{11}$, being given by

$$R^{\text{trans}} \stackrel{\text{def}}{=} \coprod_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \bigcup_{n=1}^{\infty} R^{\diamond n}$$

$$\stackrel{\text{def}}{=} \left\{ (a,b) \in A \times B \middle| \text{ there exists some } (x_1,\ldots,x_n) \in R^{\times n} \\ \text{such that } a \sim_R x_1 \sim_R \cdots \sim_R x_n \sim_R b \right\}.$$

Proof. Clear.

Proposition 10.4.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{\text{trans}} \dashv \overline{\Xi}): \text{Rel}(A, A) \underbrace{\downarrow}_{\Xi} \text{Rel}^{\text{trans}}(A, A),$$

witnessed by a bijection of sets

$$\mathbf{Rel}^{\mathsf{trans}}(R^{\mathsf{trans}}, S) \cong \mathbf{Rel}(R, S),$$

natural in $R \in \text{Obj}(\text{Rel}^{\text{trans}}(A, A))$ and $S \in \text{Obj}(\text{Rel}(A, B))$.

- 2. The Transitive Closure of a Transitive Relation. If R is transitive, then $R^{\text{trans}} = R$.
- 3. Idempotency. We have

$$(R^{\text{trans}})^{\text{trans}} = R^{\text{trans}}.$$

⁹ Further Notation: Also written R^{trans}.

 $^{^{10}}$ Slogan: The transitive closure of R is the smallest transitive relation containing R.

¹¹Or, equivalently, the free non-unital \mathbb{E}_1 -monoid on R in $(N_{\bullet}(Rel(A, A)), \diamond)$.

4. Interaction With Inverses. We have

$$\left(R^{\dagger}\right)^{\text{trans}} = \left(R^{\text{trans}}\right)^{\dagger}, \qquad \underset{(-)^{\dagger}}{\stackrel{(-)^{\text{trans}}}{\bigoplus}} \ \operatorname{Rel}(A,A) \\ \operatorname{Rel}(A,A) \xrightarrow{(-)^{\text{trans}}} \ \operatorname{Rel}(A,A).$$

5. Interaction With Composition. We have

$$(S \diamond R)^{\mathrm{trans}} \overset{\mathrm{poss.}}{\neq} S^{\mathrm{trans}} \diamond R^{\mathrm{trans}}, \qquad (-)^{\mathrm{trans}} \times (-)^{\mathrm{$$

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 10.4.2.1.1.

Item 2, The Transitive Closure of a Transitive Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

Item 4, Interaction With Inverses: We have

$$(R^{\dagger})^{\text{trans}} = \bigcup_{n=1}^{\infty} (R^{\dagger})^{\diamond n}$$

$$= \bigcup_{n=1}^{\infty} (R^{\diamond n})^{\dagger}$$

$$= (R^{\text{trans}})^{\dagger},$$

where we have used, respectively:

- Definition 10.4.2.1.2.
- · Constructions With Relations, ?? of ??.
- · Constructions With Relations, ?? of Definition 9.2.3.1.2.

Definition 10.4.2.1.2.

This finishes the proof.

Item 5, Interaction With Composition: This follows from Item 2 of Definition 10.4.1.1.4.

10.5 Equivalence Relations

10.5.1 Foundations

Let A be a set.

Definition 10.5.1.1.1. A relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive. ¹²

Example 10.5.1.1.2. The **kernel of a function** $f: A \to B$ is the equivalence relation $\sim_{\mathsf{Ker}(f)}$ on A obtained by declaring $a \sim_{\mathsf{Ker}(f)} b$ iff f(a) = f(b).

Definition 10.5.1.1.3. Let *A* and *B* be sets.

- 1. The **set of equivalence relations from** A **to** B is the subset $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.
- 2. The **poset of relations from** A **to** B is is the subposet $Rel^{eq}(A, B)$ of Rel(A, B) spanned by the equivalence relations.

10.5.2 The Equivalence Closure of a Relation

Let R be a relation on A.

Definition 10.5.2.1.1. The **equivalence closure**¹⁴ of \sim_R is the relation $\sim_R^{\text{eq}_{15}}$ satisfying the following universal property:¹⁶

¹² Further Terminology: If instead R is just symmetric and transitive, then it is called a **partial equivalence relation**.

¹³The kernel $Ker(f): A \rightarrow A$ of f is the underlying functor of the monad induced by the adjunction $Cr(f) \dashv f^{-1}: A \rightleftharpoons B$ in **Rel** of Constructions With Relations, ?? of ??.

¹⁴ Further Terminology: Also called the **equivalence relation associated to** \sim_R .

¹⁵ Further Notation: Also written R^{eq} .

 $^{^{16}}$ Slogan: The equivalence closure of R is the smallest equivalence relation containing R.

 (\star) Given another equivalence relation \sim_S on A such that $R \subset S$, there exists an inclusion $\sim_R^{\text{eq}} \subset \sim_S$.

Construction 10.5.2.1.2. Concretely, \sim_R^{eq} is the equivalence relation on A defined by

$$R^{\text{eq}} \stackrel{\text{def}}{=} \left(\left(R^{\text{refl}} \right)^{\text{symm}} \right)^{\text{trans}}$$

$$= \left(\left(R^{\text{symm}} \right)^{\text{trans}} \right)^{\text{refl}}$$

$$= \left\{ (a,b) \in A \times B \middle| \begin{array}{c} \text{there exists } (x_1,\ldots,x_n) \in R^{\times n} \text{ satisfying at least one of the following conditions:} \\ 1. \text{ The following conditions are satisfied:} \\ (a) \text{ We have } a \sim_R x_1 \text{ or } x_1 \sim_R a; \\ (b) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ (c) \text{ We have } b \sim_R x_n \text{ or } x_n \sim_R b; \\ 2. \text{ We have } a = b. \end{array} \right\}.$$
The following conditions are satisfied:
$$(a) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ (c) \text{ We have } b \sim_R x_n \text{ or } x_n \sim_R b; \\ 2. \text{ We have } a = b.$$
The following conditions are satisfied:
$$(a) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ \text{ (c) We have } a = b.$$
The following conditions are satisfied:
$$(a) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ \text{ (c) We have } a = b.$$
The following conditions are satisfied:
$$(a) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_{i+1} \sim_R x_i \\ \text{ for each } 1 \leq i \leq n-1; \\ \text{ (c) We have } a = b.$$
The following conditions are satisfied:
$$(a) \text{ We have } x_i \sim_R x_{i+1} \text{ or } x_i \sim_R x_i \\ \text{ (c) We have } x_i \sim_R x_i \sim_R x_i \\ \text{ (c) We have } x_i \sim_R x_i \sim_R x_i <_R x_$$

Proof. From the universal properties of the reflexive, symmetric, and transitive closures of a relation (Definitions 10.2.2.1.1, 10.3.2.1.1 and 10.4.2.1.1), we see that it suffices to prove that:

- 1. The symmetric closure of a reflexive relation is still reflexive.
- 2. The transitive closure of a symmetric relation is still symmetric.

which are both clear.

Proposition 10.5.2.1.3. Let R be a relation on A.

1. Adjointness. We have an adjunction

$$((-)^{eq} + \overline{k}): \operatorname{Rel}(A, B) \underbrace{\downarrow}_{\overline{k}} \operatorname{Rel}^{eq}(A, B),$$

witnessed by a bijection of sets

$$Rel^{eq}(R^{eq}, S) \cong Rel(R, S),$$

natural in $R \in \text{Obj}(\mathbf{Rel}^{eq}(A, B))$ and $S \in \text{Obj}(\mathbf{Rel}(A, B))$.

- 2. The Equivalence Closure of an Equivalence Relation. If R is an equivalence relation, then $R^{eq} = R$.
- 3. Idempotency. We have

$$(R^{eq})^{eq} = R^{eq}$$
.

Proof. Item 1, *Adjointness*: This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 10.5.2.1.1.

Item 2, The Equivalence Closure of an Equivalence Relation: Clear.

Item 3, Idempotency: This follows from Item 2.

10.6 Quotients by Equivalence Relations

10.6.1 Equivalence Classes

Let A be a set, let R be a relation on A, and let $a \in A$.

Definition 10.6.1.1.1. The **equivalence class associated to** a is the set [a] defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\}$$

$$= \{x \in X \mid a \sim_R x\}.$$
 (since *R* is symmetric)

10.6.2 Quotients of Sets by Equivalence Relations

Let *A* be a set and let *R* be a relation on *A*.

Definition 10.6.2.1.1. The **quotient of** X **by** R is the set X/\sim_R defined by

$$X/\sim_R \stackrel{\text{def}}{=} \{[a] \in \mathcal{P}(X) \mid a \in X\}.$$

Remark 10.6.2.1.2. The reason we define quotient sets for equivalence relations only is that each of the properties of being an equivalence relation—reflexivity, symmetry, and transitivity—ensures that the equivalences classes [a] of X under R are well-behaved:

· Reflexivity. If R is reflexive, then, for each $a \in X$, we have $a \in [a]$.

· Symmetry. The equivalence class [a] of an element a of X is defined by

$$[a] \stackrel{\text{def}}{=} \{x \in X \mid x \sim_R a\},\$$

but we could equally well define

$$[a]' \stackrel{\text{def}}{=} \{x \in X \mid a \sim_R x\}$$

instead. This is not a problem when R is symmetric, as we then have [a] = [a]'.¹⁷

• Transitivity. If R is transitive, then [a] and [b] are disjoint iff $a \not\sim_R b$, and equal otherwise.

Proposition 10.6.2.1.3. Let $f: X \to Y$ be a function and let R be a relation on X.

1. As a Coequaliser. We have an isomorphism of sets

$$X/\sim_R^{\operatorname{eq}}\cong\operatorname{CoEq}\Biggl(R\hookrightarrow X imes X\overset{\operatorname{pr}_1}{\underset{\operatorname{pr}_2}{ o}}X\Biggr),$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

2. As a Pushout. We have an isomorphism of sets¹⁸

$$X/\sim_R^{\operatorname{eq}} \cong X \coprod_{\operatorname{Eq}(\operatorname{pr}_1,\operatorname{pr}_2)} X, \qquad \bigwedge^{\operatorname{rq}} \qquad X$$

$$X/\sim_R^{\operatorname{eq}} \hookrightarrow X \qquad \bigwedge \qquad \bigwedge \qquad X \leftarrow \operatorname{Eq}(\operatorname{pr}_1,\operatorname{pr}_2).$$

where \sim_R^{eq} is the equivalence relation generated by \sim_R .

$$\operatorname{Eq}(\operatorname{pr}_1,\operatorname{pr}_2)\cong X\times_{X/\sim_R^{\operatorname{eq}}}X, \qquad \qquad \bigcup_{\stackrel{\,\,\smile}{}} \qquad \qquad \bigcup_{\stackrel{\,\,\smile}{}} \qquad \qquad \downarrow$$

$$X\longrightarrow X/\sim_R^{\operatorname{eq}}$$

¹⁷When categorifying equivalence relations, one finds that [a] and [a]' correspond to presheaves and copresheaves; see Constructions With Categories, ??.

¹⁸Dually, we also have an isomorphism of sets

3. The First Isomorphism Theorem for Sets. We have an isomorphism of sets 19,20

$$X/\sim_{\mathsf{Ker}(f)} \cong \mathsf{Im}(f).$$

- 4. Descending Functions to Quotient Sets, I. Let R be an equivalence relation on X. The following conditions are equivalent:
 - (a) There exists a map

$$\overline{f}: X/\sim_R \to Y$$

making the diagram

commute.

- (b) We have $R \subset \text{Ker}(f)$.
- (c) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).
- 5. Descending Functions to Quotient Sets, II. Let R be an equivalence relation on

$$\operatorname{Ker}(f): X \to X,$$

 $\operatorname{Im}(f) \subset Y$

of f are the underlying functors of (respectively) the induced monad and comonad of the adjunction

$$(\operatorname{Gr}(f) \dashv f^{-1}): A \xrightarrow{\operatorname{Gr}(f)} B$$

of Constructions With Relations, ?? of ??.

¹⁹ Further Terminology: The set $X/\sim_{\mathsf{Ker}(f)}$ is often called the **coimage of** f, and denoted by $\mathsf{Colm}(f)$.

 $^{^{\}rm 20}$ In a sense this is a result relating the monad in $\bf ReI$ induced by f with the comonad in $\bf ReI$ induced by f , as the kernel and image

X. If the conditions of Item 4 hold, then \overline{f} is the unique map making the diagram

commute.

6. Descending Functions to Quotient Sets, III. Let R be an equivalence relation on X. We have a bijection

$$\operatorname{\mathsf{Hom}}_{\mathsf{Sets}}(X/{\sim_R},Y) \cong \operatorname{\mathsf{Hom}}^R_{\mathsf{Sets}}(X,Y),$$

natural in $X,Y\in {\rm Obj}({\rm Sets})$, given by the assignment $f\mapsto \overline{f}$ of Items 4 and 5, where ${\rm Hom}_{{\rm Sets}}^R(X,Y)$ is the set defined by

$$\operatorname{Hom}_{\mathsf{Sets}}^R(X,Y) \stackrel{\mathrm{def}}{=} \left\{ f \in \operatorname{Hom}_{\mathsf{Sets}}(X,Y) \middle| \begin{array}{l} \text{for each } x,y \in X, \\ \text{if } x \sim_R y, \text{ then} \\ f(x) = f(y) \end{array} \right\}.$$

- 7. Descending Functions to Quotient Sets, IV. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:
 - (a) The map \overline{f} is an injection.
 - (b) We have R = Ker(f).
 - (c) For each $x, y \in X$, we have $x \sim_R y$ iff f(x) = f(y).
- 8. Descending Functions to Quotient Sets, V. Let R be an equivalence relation on X. If the conditions of Item 4 hold, then the following conditions are equivalent:
 - (a) The map $f: X \to Y$ is surjective.
 - (b) The map $\overline{f}: X/\sim_R \to Y$ is surjective.
- 9. Descending Functions to Quotient Sets, VI. Let R be a relation on X and let \sim_R^{eq} be the equivalence relation associated to R. The following conditions are equivalent:
 - (a) The map f satisfies the equivalent conditions of Item 4:

· There exists a map

$$\overline{f}: X/\sim_R^{\mathsf{eq}} \to Y$$

making the diagram

commute.

- · For each $x, y \in X$, if $x \sim_R^{eq} y$, then f(x) = f(y).
- (b) For each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y).

Proof. Item 1, As a Coequaliser: Omitted.

Item 2, As a Pushout: Omitted.

Item 3, The First Isomorphism Theorem for Sets: Clear.

Item 4, Descending Functions to Quotient Sets, I: See [Pro25c].

Item 5, Descending Functions to Quotient Sets, II: See [Pro25d].

Item 6, Descending Functions to Quotient Sets, III: This follows from Items 5 and 6.

Item 7, Descending Functions to Quotient Sets, IV: See [Pro25b].

Item 8, Descending Functions to Quotient Sets, V: See [Pro25a].

Item 9, Descending Functions to Quotient Sets, VI: The implication Item 8a \implies Item 8b is clear.

Conversely, suppose that, for each $x, y \in X$, if $x \sim_R y$, then f(x) = f(y). Spelling out the definition of the equivalence closure of R, we see that the condition $x \sim_R^{\text{eq}} y$ unwinds to the following:

- (*) There exist $(x_1, \ldots, x_n) \in R^{\times n}$ satisfying at least one of the following conditions:
 - The following conditions are satisfied:
 - * We have $x \sim_R x_1$ or $x_1 \sim_R x$;
 - * We have $x_i \sim_R x_{i+1}$ or $x_{i+1} \sim_R x_i$ for each $1 \leq i \leq n-1$;
 - * We have $y \sim_R x_n$ or $x_n \sim_R y$;
 - We have x = y.

Now, if x = y, then f(x) = f(y) trivially; otherwise, we have

$$f(x) = f(x_1),$$

$$f(x_1) = f(x_2),$$

$$\vdots$$

$$f(x_{n-1}) = f(x_n),$$

$$f(x_n) = f(y),$$

and f(x) = f(y), as we wanted to show.

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

- 3. Sets
- 4. Constructions With Sets
- Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

Categories

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

Monoidal Categories

Constructions With Monoidal Categories

Bicategories

 Types of Morphisms in Bicategories

Extra Part

15. Notes

References 20

References

[MSE 2096272] Akiva Weinberger. Is composition of two transitive relations transi-

tive? If not, can you give me a counterexample? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/

2096272 (cit. on p. 9).

[Pro25a] Proof Wiki Contributors. Condition For Mapping from Quotient Set

To Be A Surjection — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_

Set_to_be_Surjection (cit. on p. 18).

[Pro25b] Proof Wiki Contributors. Condition For Mapping From Quotient Set

To Be An Injection—Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_

Set_to_be_Injection (cit. on p. 18).

[Pro25c] Proof Wiki Contributors. Condition For Mapping From Quotient Set

To Be Well-Defined—ProofWiki.2025.URL:https://proofwiki.org/wiki/Condition_for_Mapping_from_Quotient_

Set_to_be_Well-Defined (cit. on p. 18).

[Pro25d] Proof Wiki Contributors. Mapping From Quotient Set When Defined

Is Unique — Proof Wiki. 2025. URL: https://proofwiki.org/ wiki/Mapping_from_Quotient_Set_when_Defined_is_

Unique (cit. on p. 18).