Creating the Perfect Playlist: Content-Based Generation of Spotify Playlists

Sonu Mehta, Laura Ware, Omar Abboud

GOAL

Explore methods for predicting the success of a Spotify-curated playlist, based only on data about the songs that comprise that playlist, and use these models to develop novel processes for curating successful Spotify playlists.

Features:

Predict the success (# of followers) of a given playlist

Identify songs that are acoustically similar to a seed song

Generate a playlist that optimizes the grouping and sequence of tracks

DATASETS

Only a small number of playlists have over 100k followers

Spotify API

Includes data about each Spotify-curated playlist (e.g. total tracks, sequence, no. of followers) and individual tracks (e.g. audio features, popularity)

Raw Audio

30-second samples available from the Spotify API for ~25% of the 20k tracks in our dataset.

MODELS

Random Forest to Predict Number of Playlist Followers

Inputs: Acoustic features (danceability, loudness, energy, liveness, etc.), duration, popularity of songs, track order

Output: No. of playlist followers, divided into 5 bins

Tuning Random Forest Max Depth

Methods for Determining Acoustic Similarity

Manhattan distance with features from Spotify API

Using Raw Audio to Predict Track Popularity

Inputs: MFCCs, Chroma coefficients, Energy at each timestamp

Output: Popularity divided into 6 bins

Performance: Random forest classifier gave 75% accuracy, F-1 score of 1 for the top class

Earth Mover's Distance based on KL Divergence and raw audio features, with vantage points to optimize the search process.

Playlist Generation Algorithm

Input a seed track

Identify candidate tracks from either:
A) top tracks from related artists, B) similar tracks from related artists or C) acoustically similar songs from a vantage point database

3. Perform simulated annealing, starting with a random sample of 30 tracks

4. Return the playlist that optimizes predicted number of followers.

RESULTS

Classification Model Comparison

The mean popularity of a playlist's tracks alone is not sufficient to predict overall playlist followers; this metric is much stronger when combined with acoustic features.

Predictor Set	Classification Accuracy
Mean Popularity Only	0.35
Spotify Acoustic Features Only	0.66
Mean Popularity + Acoustic Features	0.78

Weighting of Top Tracks vs. Performance:

Using a higher percentage of top tracks improves performance but decreases the acoustic similarity of the resulting playlist.

CONCLUSIONS

 Combinations of songs can be reasonably optimized for popularity using simulated annealing supported by raw audio-based similarity metrics and a Random Forest predictive model of popularity.

Simulated Annealing increases optimization performance significantly

Quantile of Predicted # of Followers

Future Work

- Take steps to mitigate the overfitting that affected our random forest classifier, which over-predicted unpopular playlists in the testing set.
- Include more features as predictors of popularity to ensure that the model is not capturing information such as release date or other non-intrinsic characteristics.

REFERENCES

Berenzweig, Adam, Beth Logan, Daniel P.W. Ellis, & Brian Whitman. A Large-Scale Evaluation of Acoustic and Subjective Music Similarity Measures. Proceedings of the ISMIR International Conference on Music Information Retrieval (Baltimore, MD), 2003, pp. 99–105.

Logan, B., "A Content-Based Music Similarity Function," (Report CRL 2001/02) Compaq Computer Corporation Cambridge Research Laboratory, Technical Report Series (Jun. 2001).

