

Computing Theory COMP 147

Chapter 2: Context-Free Languages
CYK algorithm

Notes on CFL and CFG

- 2 definitions for Context Free Languages
 - Languages definable by CFG
 - nondeterministic PDA defines all the CFL's.
- Equivalence between PDA's and CFG's
 - Given a PDA can construct a CFG and vice versa
- Hierarchy of grammars (context-sensitive, unrestricted)

Non-Context Free Languages

- Example: $L = \{0^n 1^n 2^n | n \ge 0\}$
- How to show a language is not context-free?
 - There is a pumping lemma

Pumping Lemma for CFLs

```
If A is a CFL,
then \exists p, such that \forall s \in A,
if |s| \ge p, then \exists u, v, x, y, z, such that
```

- s = uvxyz
- for each $i \ge 0$, $uv^i x y^i z \in A$
- |vy| > 0
- $|vxy| \le p$

PL for CFL: Proof Idea

Consider a parse tree for $s \in A$.

 For a sufficiently deep tree, there must be some repeated variable.

$$R \stackrel{*}{\Longrightarrow} vRy$$

$$R \stackrel{*}{\Longrightarrow} x$$

PL for CFL: Proof Idea

Consider a parse tree for $s \in A$.

- For a sufficiently deep tree, there must be some repeated variable.
- Pumping adds or removes subtrees

$$R \stackrel{*}{\Longrightarrow} vRy$$

$$R \stackrel{*}{\Longrightarrow} x$$

 uv^1xy^1z

Pump up: uv^2xy^2z

Pump down: uv^0xy^0z

CYK Parsing Algorithm

Cocke-Young-Kasami Algorithm for parsing

The CYK Algorithm

- Membership problem:
 - Given grammar and string w, is w in L(G)?
- Bottom-up parsing: start with the string
 - Top-down parsing: Number of subtrees can be exponential
- Dynamic programming:
 - save the results in a table/chart
 re-use these results in finding larger constituents
- Complexity: $O(n^3|G|)$ n: length of string, |G|: size of grammar)
- Presumes G is in CNF

Construct a triangular table

- Each row corresponds to one length of substrings
 - a Bottom Row Strings of length 1
 - Second from Bottom Row Strings of length 2

• Top Row – string 'w'

The CYK Algorithm

- Notation X_{ij}: set of variables that generate symbols starting from symbol i to symbol j
- A -> BC | AB | 1, B-> AA | 0, C -> CB | 1 | 0
- String 110100
- X_{4,4}: {A,C}
- X_{3,3}:{B, C}
- find X_{1,6} and see if it has A
- Compare at most n pairs of previously computed sets:

$$(X_{i, i}, X_{i+1, j}), (X_{i, i+1}, X_{i+2, j}) ... (X_{i, j-1}, X_{j, j})$$

Construct a Triangular Table

X _{1, 5}				
X _{1, 4}	X _{2, 5}			
X _{1, 3}	X _{2, 4}	X _{3,5}		
X _{1, 2}	X _{2, 3}	X _{3, 4}	X _{4, 5}	
X _{1, 1}	X _{2, 2}	X _{3, 3}	X _{4, 4}	X _{5, 5}
w ₁	w ₂	w ₃	w ₄	w ₅

Table for string 'w' that has length 5

Construct a Triangular Table

Looking for pairs to compare

Example CYK Algorithm

- Show the CYK Algorithm with the following example:
 - CNF grammar G
 - S -> AB | BC
 - A -> BA | a
 - B -> CC | b
 - C -> AB | a
 - w is baaba
 - Question Is baaba in L(G)?

Calculating the Bottom ROW

			$S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$	
{S, A}	{B}			
{B}	{A, C}	{A, C}	{B}	{A, C}

		$S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$			
{S, A}	{B}	{S, C}			
{B}	{A, C}	{A, C}	{B}	{A, C}	

		$S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$			
				1	
{S, A}	{B}	{S, C}	{S, A}		
{B}	{A, C}	{A, C}	{B}	{A, C}	

			$S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$	
Ø				
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}

		$S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$			
Ø	{B}				
{S, A}	{B}	{S, C}	{S, A}		
{B}	{A, C}	{A, C}	{B}	{A, C}	

			$S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$	
Ø	{B}	{B}		
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}

Final Triangular Table

{S, A, C}	← X _{1, 5} {S, A, C}		$S \rightarrow AB \mid BC$ $A \rightarrow BA \mid a$ $B \rightarrow CC \mid b$ $C \rightarrow AB \mid a$	
Ø	{B}	{B}		1
{S, A}	{B}	{S, C}	{S, A}	
{B}	{A, C}	{A, C}	{B}	{A, C}
b	a	a	b	a

- Table for string 'w' that has length 5
- The algorithm populates the triangular table