Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 1

Ž. Butković, J. Divković Pukšec, A. Barić

5. Unipolarni tranzistori

Unipolarni tranzistor

Aktivni element s tri priključka

- ulazni, izlazni i zajednički priključak
- promjenom napona u ulaznom krugu upravlja se struja u izlaznom krugu
- primjena: pojačalo, sklopka
- prednost: beskonačan ulazni otpor upravljanje bez potroška snage

Nazivi i tipovi

Nazivi

- unipolarni tranzistor struju vodi samo jedan tip nosilaca
- tranzistor s efektom polja električkim poljem (naponom) u ulaznom krugu modulira se poluvodički otpornik u izlaznom krugu
- □ FET skraćenica engleskog naziva Field Effect Transistor

Tipovi

- MOSFET Metal-Oxide-Semiconductor FET
- JFET spojni FET (od Junction FET)
- MESFET Metal-Semiconductor FET

Struktura MOSFET-a (1)

Struktura *n*-kanalnog MOSFET-a

Priključci

- □ uvod S (engl. Source)
- odvod D (engl. Drain)
- upravljačka elektroda –G (engl. Gate)
- □ podloga B (engl. Body)

Dimenzije budućeg kanala

- \Box $L \rightarrow dužina$
- \square $W \rightarrow$ širina

Struktura MOSFET-a (2)

za n-kanal $\rightarrow p$ -podloga

osnovni dio strukture - MOS

- M metal (engl. Metal)
- O − oksid SiO2 (engl. Oxide)
- S poluvodič (engl. Semiconductor) struja MOS strukture $I_G = 0$

n⁺ područja – kontakti uvoda i odvoda

Podloga (B) se najčešće kratko spaja s uvodom (S)

Priključak malog napona U_{DS}

Napon $U_{DS}\!>\!0$ \to zaporno polarizira pn-spoj odvod-podloga Između odvoda i uvoda ne teče struja

Uz mali $U_{DS}
ightarrow$ jednake širine osiromašenih slojeva na stranama uvoda i odvoda

Utjecaj napona *U_{GS}* – formiranje kanala

Napon $U_{GS} > 0$ na površinu podloge ispod oksida privlači elektrone i odbija šupljine

Uz dovoljno velik $U_{GS} > 0$ površina postaje n-tip \rightarrow inverzijski sloj - n-kanal

Stvaranjem *n*-kanala → između uvoda i odvoda formira se poluvodički otpornik *n*-tipa

Granica stvaranja kanala: $U_{GS} = U_{GS0} \rightarrow$ koncentracija elektrona u kanalu jednaka je koncentraciji šupljina u podlozi

$$U_{GS0} \equiv$$
 napon praga

Rad uz mali napon U_{DS}

$$U_{GS0} = 1 \text{ V}$$

Za $U_{GS} > U_{GS0}$ i za mali napon $U_{DS} > 0$ teče struja odvoda I_D

Za mali napon $U_{DS} > 0$ pad napona u kanalu je zanemariv; MOSFET je linearni otpornik

Povećanjem napona U_{GS} raste koncentracija elektrona u kanalu i vodljivost kanala; MOSFET je naponom upravljani linearni otpornik

Rad uz veći napon U_{DS} – sužavanje kanala

Povećanjem napona U_{DS} nastaje pad napona u kanalu

Koncentraciju elektrona u kanalu određuje: $\text{na strani uvoda} \rightarrow U_{GS}$ $\text{na strani odvoda} \rightarrow U_{GD} = U_{GS} - U_{DS}$

Kanal se prema odvodu sužava → otpor kanala raste

Rad uz veći napon U_{DS} – zatvaranje kanala

Za napon $U_{DSS}=U_{GS}-U_{GS0}
ightarrow$ $U_{GD}=U_{GS0}
ightarrow$ na strani odvoda kanal se zatvara

Promjena struje I_D s naponom U_{DS}

Za male napone $U_{DS} \rightarrow \text{struja } I_D$ raste linearno s $U_{DS} \rightarrow \text{linearno područje}$

Za veće napone $U_{DS} < U_{GS} - U_{GS0} \rightarrow$ otpor kanala raste; struja I_D raste sporije s $U_{DS} \rightarrow$ triodno područje

Za $U_{DS}=U_{GS}-U_{GS0}
ightarrow$ kanal se zatvara; struja postiže maksimalnu vrijednost I_{DS}

Za $U_{DS} > U_{GS} - U_{GS0} \rightarrow$ kanal je zatvoren; struja ostaje konstantna $I_D = I_{DS} \rightarrow$ područje zasićenja

Izvod strujno-naponske karakteristike (1)

$$U_{GS} > U_{GS0}, \ U_{DS} < U_{GS} - U_{GS0}$$

Kapacitet oksida po jedinici površine:

$$C_{ox} = \varepsilon_{ox}/t_{ox}$$

Naboj elektrona:

$$dQ = -C_{ox}(dy \cdot W)[U_{GS} - U_{GS0} - U(y)]$$

Driftna struja:

$$I_{Fn} = \frac{dQ}{dt} = \frac{dQ}{dy} \frac{dy}{dt} = \frac{dQ}{dy} v_{dn}(y)$$

$$v_{dn}(y) = -\mu_n F(y) = \mu_n dU(y)/dy$$

$$I_{Fn} = -\mu_n C_{ox} W [U_{GS} - U_{GS0} - U(y)] \frac{dU(y)}{dy}$$

Struja odvoda: $I_D = -I_{Fn}$

Izvod strujno-naponske karakteristike (2)

Diferencijalna jednadžba:

$$I_D dy = \mu_n C_{ox} W [U_{GS} - U_{GS0} - U(y)] dU(y)$$

Integriranjem po kanalu: od y = 0 do y = L; od U(0) = 0 do $U(L) = U_{DS}$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right] \rightarrow \text{struja } I_D \text{ u triodnom području}$$

$$K = \mu_n C_{ox} \frac{W}{L}$$
 \rightarrow strujni koeficijent

$$\mathbf{Za}\ U_{DS} = U_{DSS} = U_{GS} - U_{GS0}$$

$$I_D = I_{DS} = \frac{K}{2}(U_{GS} - U_{GS0})^2 \rightarrow \text{struja } I_D \text{ u području zasićenja}$$

Izlazne karakteristike

obogaćeni tip $\rightarrow U_{GS0} = 1 \text{ V}$

triodno područje

$${\rm za}\ 0 \leq U_{DS} \leq U_{GS} - U_{GS0}$$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right]$$

područje zasićenja

$$\mathbf{Za}\ U_{\!D\!S}\!\geq U_{\!G\!S}-U_{\!G\!S\!0}$$

$$I_D = I_{DS} = \frac{K}{2}(U_{GS} - U_{GS0})^2$$

linearno područje za mali U_{DS}

$$I_D \approx K(U_{GS} - U_{GS0})U_{DS}$$

područje zapiranja za $U_{GS} < U_{GS0}$

$$I_D = 0$$

Prijenosne karakteristike

za U_{DS} = 3 V \rightarrow područje zasićenja

za U_{DS} = 1 V \rightarrow područje zasićenja i triodno područje

za područje zasićenja – nelinearna prijenosna karakteristika → izlazne karakteristike nisu ekvidistantne

Veza prijenosnih i izlaznih karakteristika

Prijenosne karakteristike mogu se konstruirati iz izlaznih karakteristika

5. Unipolarni tranzistori

Tipovi n-kanalnog MOSFET-a

obogaćeni tip \rightarrow kanal se stvara pozitivnim naponom $U_{GS} = U_{GS0}$

osiromašeni tip \rightarrow vodi struju uz U_{GS} = 0 V; kanal se zatvara negativnim naponom U_{GS} = U_{GS0}

n-kanalni MOSFET \rightarrow vodi struju uz $U_{GS} > U_{GS0}$

Električki simboli *n*-kanalnog MOSFET-a

obogaćeni tip

puna crta između uvoda i odvoda ightarrow postojanje kanala uz U_{GS} = 0 V isprekidana crta između uvoda i odvoda ightarrow izostanak kanala uz U_{GS} = 0 V strelica ightarrow od p-podloge prema n-kanalu

5. Unipolarni tranzistori

Primjer 5.1

Prijenosna karakteristika MOSFET-a području zasićenja prikazana je na slici. Debljina sloja SiO₂ iznad kanala je 20 nm, a pokretljivost većinskih nosilaca u kanalu je $400 \text{ cm}^2/\text{Vs}$

- a) Koliki je omjer širine i dužine kanala *W/L*?
- b) Kolika je dužina kanala L ako kapacitet upravljačke elektrode prema kanalu mora biti $C_G \le 20 \text{ fF?}$

5. Unipolarni tranzistori

p-kanalni MOSFET

tehnološki presjek → jednak presjeku n-kanalnog MOSFET-a uz zamjenu tipova primjesa

za p-kanal $\rightarrow n$ -podloga

n⁺ područja – kontakti uvoda i odvoda

Električki simboli *p*-kanalnog MOSFET-a

obogaćeni tip

puna crta između uvoda i odvoda ightarrow postojanje kanala uz U_{GS} = 0 V isprekidana crta između uvoda i odvoda ightarrow izostanak kanala uz U_{GS} = 0 V strelica ightarrow od p-kanala prema n-podlozi

5. Unipolarni tranzistori

Tipovi p-kanalnog MOSFET-a

struja je I_D negativna

obogaćeni tip \rightarrow kanal se stvara negativnim naponom U_{GS} = U_{GS0}

osiromašeni tip \rightarrow vodi struju uz U_{GS} = 0 V; kanal se zatvara pozitivnim naponom U_{GS} = U_{GS0}

 $p\text{-kanalni MOSFET} \rightarrow \text{vodi struju}$ uz $U_{GS} \! < \! U_{GS0}$

Izlazne karakteristike p-kanalnog MOSFETa

obogaćeni tip $\rightarrow U_{GS0} = -1 \text{ V}$

triodno područje

za
$$U_{GS}-U_{GS0} \leq U_{DS} \leq 0$$

$$I_D = K \left[(U_{GS} - U_{GS0})U_{DS} - \frac{U_{DS}^2}{2} \right]$$

područje zasićenja

za
$$U_{DS} \le U_{GS} - U_{GS0}$$

$$I_D = \frac{K}{2} (U_{GS} - U_{GS0})^2$$

koeficijent struje

$$K = -\mu_p C_{ox} \frac{W}{L}$$

područje zapiranja za $U_{GS} > U_{GS0}$

$$I_D = 0$$

CMOS struktura

nMOS → na *p*-podlozi

pMOS → u zasebnom *n*-otoku

Zbog električke izolacije *p*-podloga se spaja na najniži, a *n*-otok na najviši potencijal u sklopu

Primjer 5.2 (1)

MOSFET ima strujni koeficijent K iznosa $0,4~\rm mA/V^2$ i napon praga $U_{GS0}=-1~\rm V$. Nacrtati izlazne karakteristike ako je MOSFET

- a) *n*-kanalni,
- b) p-kanalni.

a)

U_{GS}, V	– 1	0	1	2	3
$U_{GS} - U_{GS0}, V$	0	1	2	3	4
I_D , mA	0	0,2	0,8	1,8	3,2

b)

$U_{\mathit{GS}}, \mathrm{V}$	– 1	-2	- 3	-4	- 5
U_{GS} – U_{GS0} , V	0	- 1	- 2	- 3	- 4
I_D,mA	0	- 0,2	- 0,8	- 1,8	- 3,2

Primjer 5.2 (2)

5. Unipolarni tranzistori

Porast struje u zasićenju

n-kanalni MOSFET obogaćenog tipa \rightarrow U_{GS0} = 1 V

Modulacija dužine kanala

Točka dodira pomiče se prema uvodu

Kanal se skraćuje

U kanalu elektroni se ubrzavaju naponom $U_{DS} = U_{DSS} = U_{GS} - U_{GS0}$

U području zasićenja struja I_D raste s naponom U_{DS}

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L - \Delta L} (U_{GS} - U_{GS0})^2 = I_{DS} \frac{1}{1 - (\Delta L/L)}$$

Struktura spojnog FET-a

Struktura *n*-kanalnog JFET-a

Priključci

- \square uvod S
- □ odvod D
- □ upravljačka elektroda G
- ☐ druga upravljačka elektroda G₂

Kanal

- ☐ *L* dužina
- W širina
- □ 2a tehnološka debljina

Električki simboli JFET-a

strelica \rightarrow od p-tipa prema n-tipu poluvodiča za n-kanalni \rightarrow od p-upravljačke elektrode prema n-kanalu za p-kanalni \rightarrow od p-kanala prema n-upravljačkoj elektrodi

Napon dodira i linearno područje rada

 $U_{GS} < 0 \rightarrow$ zaporno polarizira *pn*-spoj upravljačka elektroda-kanal

Uz mali $U_{DS} \rightarrow z$ anemariv pad napona u kanalu

Povećanjem iznosa $U_{GS} o$ osiromašena područja se šire o kanal se sužava

Za $U_{GS} = U_P \rightarrow \text{kanal se zatvara}$

 $U_P \equiv$ napon dodira

Za mali napon U_{DS} JFET je linearni otpornik

$$I_D = G_0 \left[1 - \left(\frac{U_K - U_{GS}}{U_K - U_P} \right)^{1/2} \right] U_{DS}$$

 $U_K \rightarrow$ kontaktni potencijal upravljačka elektroda-kanal

 $G_0 \rightarrow \text{vodljivost potpuno otvorenog kanala}$

Rad uz veći napon U_{DS}

Povećanjem napona U_{DS} nastaje pad napona u kanalu

pn-spoj upravljačka elektroda-kanal jače se zaporno polarizira na strani odvoda

Kanal se prema odvodu sužava → otpor kanala raste

$$I_{D} = G_{0} \frac{U_{K} - U_{P}}{3} \left\{ 3 \frac{U_{DS}}{U_{K} - U_{P}} - 2 \left[\left(\frac{U_{K} - U_{GS} + U_{DS}}{U_{K} - U_{P}} \right)^{3/2} - \left(\frac{U_{K} - U_{GS}}{U_{K} - U_{P}} \right)^{3/2} \right] \right\}$$

Struja I_D mijenja se s naponima U_{DS} i U_{GS}

Zatvaranje kanala

Za napon $U_{DSS} = U_{GS} - U_P \rightarrow U_{GD} = U_P$ \rightarrow kanal se na strani odvoda zatvara

Struja postiže maksimalnu vrijednost $I_D = I_{DS} \rightarrow \mathsf{područje}$ zasićenja

$$I_D = I_{DS} = G_0 \frac{U_K - U_P}{3} \left[1 - 3 \frac{U_K - U_{GS}}{U_K - U_P} + 2 \left(\frac{U_K - U_{GS}}{U_K - U_P} \right)^{3/2} \right]$$

Struja I_D mijenja se samo s naponom U_{GS}

Modulacija dužine kanala

Točka dodira pomiče se prema uvodu Kanal se skraćuje U kanalu elektroni se ubrzavaju naponom $U_{DS} = U_{DSS} = U_{GS} - U_{P}$

U području zasićenja struja I_{D} raste s naponom U_{DS}

$$I_D = I_{DS} \frac{L}{L - \Delta L}$$

Karakteristike JFET-a

prijenosna karakteristika

izlazne karakteristike

 $I_{DSS} \rightarrow$ maksimalna struja JFET-a

za
$$U_{DS} = U_{DSS} \le U_{GS} - U_P \longrightarrow {\rm triodno\ područje}$$

za
$$U_{DS} = U_{DSS} > U_{GS} - U_P \rightarrow \text{područje zasićenja}$$

5. Unipolarni tranzistori

JFET u području zasićenja

JFET se najviše koristi u pojačalima – radi u području zasićenja

puna crta – točan izraz crtkano – jednostavniji izraz Umjesto točnog i nepraktičnog izraza u sklopovskoj analizi koristi se jednostavniji izraz

$$I_D = I_{DS} = I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2$$

MESFET

Radi se u galij-arsenidu – velika brzina rada Sličan JFET-u Upravljačka elektroda- kanal je ispravljački spoj metal-poluvodič Za ispravan rad $\to U_{GS} < 0$

Temperaturna svojstva FET-ova

MOSFET – porastom temperature smanjuju se K i U_{GS0}

JFET - porastom temperature smanjuje se pokretljivost i sužavaju osiromašeni slojevi

Kod obje vrste FET-ova \rightarrow porastom temperature pri manjim strujama struja I_D se povećava, a pri većim strujama se smanjuje

Proboji FET-ova

MOSFET

- lavinski proboj spoja odvod-podloga
- prohvat
- proboj oksida

JFET

lavinski proboj spoja odvod-kanal; uz probojni napon U_B proboj nastupa uz $U_{DS} = U_B + U_{GS}$

Dinamički parametri FET-a

Opisuju odnose malih izmjeničnih veličina u režimu malog signala Uz mali signal: $i_D = f(u_{GS}, u_{DS})$

$$di_D = \frac{\partial i_D}{\partial u_{GS}} du_{GS} + \frac{\partial i_D}{\partial u_{DS}} du_{DS} \rightarrow i_d = g_m u_{gs} + g_d u_{ds}$$

Dinamički parametri:

strmina

$$g_m = \frac{\mathrm{d}i_D}{\mathrm{d}u_{GS}}\bigg|_{U_{DS} = \text{konst}} = \frac{i_d}{u_{gs}}\bigg|_{u_{ds} = 0}$$

☐ izlazna dinamička vodljivost

$$g_d = \frac{\mathrm{d}i_D}{\mathrm{d}u_{DS}}\Big|_{U_{GS} = \mathrm{konst}} = \frac{i_d}{u_{ds}}\Big|_{u_{gs} = 0}$$
 $r_d = \frac{1}{g_d}$

izlazni dinamički otpor

$$r_d = \frac{1}{g_d}$$

Model FET-a za mali signal

Koristi se u području zasićenja

Slijedi iz: $i_d = g_m u_{gs} + u_{ds}/r_d$

Drugi oblik

$$u_{ds} = -\mu u_{gs} + r_d i_d, \ \mu = g_m r_d$$

faktor naponskog pojačanja

$$\mu = -\frac{\mathrm{d}u_{DS}}{\mathrm{d}u_{GS}}\bigg|_{I_D = \text{konst}} = -\frac{u_{ds}}{u_{gs}}\bigg|_{u_{ds} = 0}$$

Za neopterećen izlaz $\rightarrow i_d = 0$ $u_{ds} = -g_m r_d u_{gs} = -\mu u_{gs}$ maksimalno naponsko pojačanje FET-a

Model za visoke frekvencije

Kapaciteti C_{gs} i C_{gd} :

za MOSFET → kapacitet MOS strukture

za JFET → kapacitet zaporno polariziranih *pn*-spojeva

za MESFET → kapacitet zaporno polariziranog spoja metal-poluvodič

Grafičko određivanje dinamičkih parametara (1)

Strmina:

$$g_m = \frac{\Delta i_D}{\Delta u_{GS}} \bigg|_{U_{DS} = \text{konst}}$$

Grafičko određivanje dinamičkih parametara (2)

Izlazni dinamički otpor:

$$r_d = \frac{\Delta u_{DS}}{\Delta i_D} \bigg|_{U_{GS} = \text{konst}}$$

Analitičko određivanje dinamičkih parametara (1)

Strmina:

MOSFET

$$i_D = \frac{K}{2} (u_{GS} - U_{GS0})^2$$

$$g_m = \frac{di_D}{du_{GS}} = K (U_{GS} - U_{GS0}) = \sqrt{2KI_D}$$

JFET

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2$$

$$g_m = \frac{\mathrm{d}i_D}{\mathrm{d}u_{GS}} = \frac{2I_{DSS}}{-U_P} \left(1 - \frac{U_{GS}}{U_P} \right) = \frac{2}{-U_P} \sqrt{I_{DSS} I_D}$$

Analitičko određivanje dinamičkih parametara (2)

Izlazni dinamički otpor:

model nagiba izlaznih

karakteristika u području zasićenja

MOSFET

$$i_{D} = \frac{K}{2} (u_{GS} - U_{GS0})^{2} (1 + \lambda u_{DS})$$

$$g_{d} = \frac{di_{D}}{du_{DS}} = \lambda \frac{K}{2} (U_{GS} - U_{GS0})^{2}$$

JFET

$$i_D = I_{DSS} \left(1 - \frac{u_{GS}}{U_P} \right)^2 \left(1 + \lambda u_{DS} \right)$$

$$g_d = \frac{\mathrm{d}i_D}{\mathrm{d}u_{DS}} = \lambda I_{DSS} \left(1 - \frac{U_{GS}}{U_P} \right)^2$$

za oba FET-a
$$r_d = \frac{1}{g_d} = \frac{1 + \lambda U_{DS}}{\lambda I_D} \approx \frac{1}{\lambda I_D}$$

Primjer 5.3

Parametri n-kanalnog MOSFET-a su konstanta $K=80~\mu\text{A/V}^2$, napon praga $U_{GS0}=2~\text{V}$ i faktor modulacije dužine kanala $\lambda=0{,}005~\text{V}^{-1}$. FET radi s naponom $U_{GS}=5~\text{V}$. Izračunati struju odvoda I_D , strminu g_m , izlazni dinamički otpor r_d i faktor naponskog pojačanja μ uz:

a)
$$U_{DS1} = (U_{GS} - U_{GS0})/2$$
,

b)
$$U_{DS2} = 2(U_{GS} - U_{GS0}).$$

Primjer 5.4

Napon praga p-kanalnog MOSFET-a je $U_{GS0} = -1.5 \text{ V}$. Kada MOSFET radi u području zasićenja pri naponu $U_{GS} = -4 \text{ V}$ vodi struju od 1 mA. Koliki su napon U_{GS} i strmina g_m tog FET-a u području zasićenja uz struju od 4 mA? Zanemariti porast struje odvoda u području zasićenja.

Primjer 5.5

Izlazne karakteristike nekog realnog MOSFET-a, dobivene mjerenjem, prikazane su na slici.

- a) U radnoj točki A odrediti dinamičke parametre: strminu g_m , izlazni dinamički otpor r_d i faktor naponskog pojačanja μ .
- b) Odrediti parametar modulacije dužine kanala λ koji aproksimira nagib izlaznih karakteristika u području zasićenja.
- c) Korištenjem parametra λ izračunati izlazni dinamički otpor za U_{DS} = 7 V i za sva tri napona U_{GS} sa slike.

