INSTITUTO FEDERAL DO RIO GRANDE DO SUL

GABRIEL H. SCHAEFFER

LIVRO DE ANÁLISE E PROJETO OO: RESUMO DO TRECHO QUE SE ESTENDE DAS PÁGINAS 1 ATÉ 8

ERECHIM 2025

1. Introdução

Em um contexto onde a informação se configura como ferramenta estratégica no mundo corporativo, gerenciar esses dados de forma eficiente se torna essencial, inaugurando os *sistemas de informações*.

2. Sistemas de Informações

Um sistema de informações combina pessoas, dados, processos, interfaces, redes de comunicação e tecnologia. Esses componentes interagem entre si visando melhorar o processo de negócio de uma organização empresarial.

Ademais, tendo em vista o caráter estratégico dos dados atualmente, os sistemas de informações representam, sobretudo, uma forma de obter vantagens competitivas no mercado.

O principal objetivo de um sistema de informações é agregar valor à organização onde será utilizado, ou seja, a produtividade da empresa nos processos afetados pelo sistema deve aumentar significativamente, de tal modo que os gastos tidos com desenvolvimento deste sejam compensados.

3. Sistemas de software

Um sistema de software é um componente de um sistema de informações. Ele compreende os módulos funcionais computadorizados que interagem entre si para proporcionar ao usuário a automatização de tarefas. É extremamente complexo e para gerenciar tal complexidade, surge a modelagem de sistemas de software.

3.1 Modelagem de Sistemas de software

Assim como na construção civil, onde antes de construir uma casa é feita uma planta do projeto, no desenvolvimento de sistemas de software é feito um planejamento através de um **modelo**. Um modelo é uma representação idealizada de um sistema que permite gerenciar a complexidade, facilitar a comunicação entre os envolvidos, identificar e corrigir erros de forma mais barata e simular e prever comportamentos do sistema.

Geralmente, um modelo é representado por diagramas; desenhos gráficos que modelam o sistema em conjunto com informações textuais quando necessário. O diagrama de um modelo em conjunto com a informação textual associada formam a **documentação** desse modelo.

Em suma, a modelagem de sistemas de software consiste em utilizar de elementos gráficos e textuais para representar as partes essenciais de um sistema.

4. Paradigma de Orientação a objetos

Um paradigma é uma forma de abordar um problema. Hoje em dia, o modelo de orientação a objetos é a forma mais comum de modelar um sistema. Essa abordagem organiza o sistema como uma coleção de objetos autônomos que interagem.

Esse paradigma visualiza um sistema de software como uma coleção de agentes interconectados que recebem o nome de **objetos**. Cada objeto realiza uma tarefa específica; e uma tarefa é realizada através da interação entre objetos.

4.1 Princípios da Orientação a objetos de Alan Kay

- 1. Qualquer coisa é um objeto
- 2. Objetos realizam tarefas através da requisição de serviços a outros objetos
- 3. Cada objeto pertence a uma determinada classe. Uma classe agrupa objetos similares
- 4. A classe é um repositório para comportamento associado ao objeto
- 5. Classes são organizadas em hierarquias

4.2 Objetos

Um objeto pode ser visto como uma representação de uma entidade do mundo real. Por exemplo, coisas do mundo real como uma loja ou um fornecedor são denominados *objetos* na terminologia de Orientação a objetos.

4.3 Classes

Uma classe é um molde através do qual os objetos são construídos. É uma forma de abstração que representa atributos e serviços relevantes comuns a um grupo de objetos; características estas extraídas do mundo real.

A título de exemplo, é muito mais fácil entender a *ideia* do que é um cavalo, a entender todos os diferentes tipos de cavalos que existem.

Quando pensamos em um cavalo, a imagem que vêm em mente é sempre um animal de quatro patas, com uma cauda, crina, etc. Pode ser que alguns cavalos tenham crinas menores; ou rabos maiores; ou sejam mais baixos que outros; ou de cores diferentes; mas a ideia (classe) *cavalo* já está bem estabelecida em nossas mentes, permitindo identificar os diferentes exemplares (objetos) de cavalos como cavalos (ideia).

4.4 Mensagens

Para que uma operação seja executada por um objeto, deve haver um estímulo que ocasione tal ação. Quando esse estímulo ocorre, diz-se que o objeto em questão está recebendo uma **mensagem,** que solicita que ele realize alguma operação.

A colaboração entre objetos por meio de mensagens permite a realização de tarefas complexas.