Capstone Project 2

Prediction of board game ratings based on their reviews

Problem Statement

➤ Board games have regained popularity in recent years

➤ Purpose: build a model with machine learning and natural language processing to predict the ratings of board games considering the reviews of players, the number of players, the average time of a game, the number of rates......

Dataset

- > Scraping and APIs on the website: https://boardgamegeek.com
- For each of the 50 most rated boardgames:
 - ID
 - Name
 - Year of design
 - Minimum and maximum number of players required
 - Minimum and maximum number of minutes required to complete the game
 - Minimum age required
 - Category
 - Number of rates
 - Username of players
 - Reviews
 - Ratings (score out of 10)
- Dataset with 304864 raws

Distribution of all the rates

Relationship between year of design and mean rates per game

Positive correlation between the year of the design of a game and the mean of ratings of this game. More a boardgame is recent and more it seems to have higher mean ratings.

Relationship between the mean rates per boardgame and the number of rates per games

- No correlation between the number of ratings of a game and the mean of ratings of this game.
- ➤ No bias in the rates related to the fact we took the 50 most rated games from boardgamegeek.com.

Linear Regression Model

New dataset: per boardgames without the "review" column

→ Predict the **mean rating** of boardgames

$$R^2 = 0.636$$

Most significant features (p < 0.05):

Features	+/-	Coefficients
Year	+	0.043
Max_play	-	0.099
Min_age	+	0.095
Nb_rate	+	8.42 ^{e-06}

Predict ratings of boardgames

FIRST STEP

SECOND STEP

Convert only "review" column to a matrix of token counts:

Predict ratings of boardgames with all the columns of dataset:

Natural Language Processing

Machine Learning Algorithm

- Random Forest Regressor
- Support Vector Regressor

Predict ratings of boardgames

FIRST STEP

SECOND STEP

Convert only "review" column to a matrix of token counts:

Predict ratings of boardgames with all the columns of dataset:

Natural Language Processing

Machine Learning Algorithm

In a pipeline and using a cross-validation with 5 folds:

R² training data = 0.21 R² test data = 0.21

Best predictor words

=> New model with only reviews as features

'Good words'	'Bad words'	
Love	Precio	
Favorite	Better	
Great	Long	
Best	Like	
Perfect	Felt	
Excellent	Bad	
Fantastic	Maybe	
Amazing	Wa	
Awesome	Random	
Firm	Boring	

Conclusion

→ We choose the model with TfidfVectorizer to process the 'review' column and Random Forest Regressor as machine learning algorithm.

→ Managers of gaming shops or department stores should focus on more recently created games, games with a minimum age not too low and a maximum number of players not too high.

→ We need to improve the natural language processing of the 'review' column with a more powerful computer to improve the model.