TEOREMI di TRIGONOMETRIA

In un triangolo rettangolo se conosciamo l'*ipotenusa* e uno degli angoli acuti possiamo utilizzare il:

PRIMO TEOREMA DEI TRIANGOLI RETTANGOLI

In un triangolo rettangolo la misura di un cateto è uguale a quella dell'*ipotenusa* moltiplicata per il *seno* dell'angolo opposto al cateto o per il coseno dell'angolo (acuto) adiacente al cateto.

cateto = ipotenusa · seno dell'angolo opposto

$$b = c \cdot \cos \alpha$$
 oppure $a = c \cdot \cos \beta$

cateto = ipotenusa · coseno dell'angolo adiacente

NB: Per aiutare la memoria REGOLA del "CASO" (Coseno Adiacente Seno Opposto)

In un triangolo rettangolo se conosciamo un *cateto* e l'angolo acuto adiacente possiamo utilizzare il:

SECONDO TEOREMA DEI TRIANGOLI RETTANGOLI

In un triangolo rettangolo la misura di un *cateto* è uguale a quella dell'*altro cateto* moltiplicata per la *tangente dell'angolo opposto al primo cateto*.

$$\underline{a = b \cdot \tan \alpha}$$
 oppure $\underline{b = \alpha \cdot \tan \beta}$

cateto = altro cateto · tangente dell'angolo opposto al cateto cercato

Un altro importante risultato è la formula per il calcolo dell'area di un generico triangolo:

TEOREMA: AREA DI UN TRIANGOLO

La misura dell'area di un triangolo è uguale al *semiprodotto* delle misure di due *lati* e del *seno dell'angolo compreso* fra essi.

$$Area = \frac{1}{2} bc \sin \alpha$$

$$Area = \frac{1}{2} \cdot lato_1 \cdot lato_2 \cdot seno \ dell'angolo \ compreso$$

Ci sono, infine, altri due importanti teoremi che riguardano le relazioni che legano le misure dei lati di un triangolo qualunque ai valori delle funzioni goniometriche degli angoli.

TEOREMA DEI SENI

In un triangolo le misure dei lati sono proporzionali ai seni degli angoli opposti.

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

TEOREMA DI CARNOT (o TEOREMA DEL COSENO)

In un triangolo il quadrato della misura di un lato è uguale alla somma dei quadrati delle misure degli altri due lati diminuita del doppio prodotto della misura di questi due lati per il coseno dell'angolo compreso fra essi.

$$a^2 = b^2 + c^2 - 2bc \cdot \cos \alpha$$

Analogamente:

$$b^2 = a^2 + c^2 - 2ac \cdot \cos b$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$$

OSSERVAZIONE: Il teorema di Carnot è anche detto *Teorema di Pitagora Generalizzato*. Questo perché, se il triangolo è rettangolo, il teorema del coseno non è altro che il teorema di Pitagora.

Infatti, se ad esempio $\gamma = 90^{\circ}$, si ottiene $\cos \gamma = \cos 90^{\circ} = 0$ quindi:

$$c^2 = a^2 + b^2 - 2ab \cdot \cos y = a^2 + b^2 - 2ab \cdot \cos 90^\circ = a^2 + b^2$$

e abbiamo così ritrovato il Teorema di Pitagora.

