3 HISTOGRAMA

3.1 Construção de Histograma

Exemplo (Adaptado de Werkema, cap. 6, pág. 167) Uma fábrica de azulejos recentemente começou a receber reclamações de seus clientes. A maioria das reclamações era relativa aos seguintes problemas:

- Os azulejos, ao serem manuseados, quebravam-se facilmente.
- O assentamento dos azulejos não produzia um resultado uniforme em relação ao nível da parede.

Em vista dessa situação, o gerente de vendas da indústria decidiu formar um grupo de trabalho para estudar estes problemas. Na primeira fase do estudo, o grupo de trabalho concluiu que a produção de azulejos com espessura inadequada poderia ser a causa dos problemas relatados pelos clientes. Esta conclusão resultou do conhecimento dos seguintes fatos:

- Azulejos com espessura muito fina quebram-se facilmente.
- A falta de uniformidade na espessura dos azulejos provoca dificuldades durante o seu assentamento.

Sabe-se que os limites de especificação para a espessura dos azulejos são 5.0 ± 1.5 mm, ou seja, a espessura dos azulejos pode variar entre 3.5 e 6.5 mm, sendo o valor nominal de especificação igual a 5.0 mm. Para avaliar se estavam ocorrendo problemas com a espessura dos azulejos produzidos, o grupo decidiu retirar uma amostra aleatória dos azulejos fabricados pela empresa, medir a espessura destes azulejos e comparar os resultados obtidos com as especificações. Como a indústria emprega duas turmas de trabalho (turmas A e B) e pode haver diferença na qualidade dos azulejos produzidos por cada turma, foi utilizada uma estratificação, sendo então retirada uma amostra de 80 azulejos produzidos pela turma A e 80 pela turma B. Os dados coletados estão digitados no arquivo **Hist ex.mtw**.

a)	Responda: Quais as reclamações dos Clientes?					
	Os azulejos aceitáveis devem ter uma espessura de a mm. Estes são os valores de especificação: LIE (Limite Inferior de Especificação) e LSE (Limite Superior de Especificação).					
	Os azulejos são fabricados por turmas de trabalho.					
	O plano amostral utilizado pelo grupo de trabalho foi amostragem estratificada de igual tamanho.					

b) Abra o arquivo Hist_ex. mtw.

File → Open worksheet → em Examinar, siga as orientações do seu professor → Hist_ex. mtw → Abrir → Ok.

A primeira coluna (C1) contém todas as medidas de espessura. A coluna seguinte (C2) serve para identificar a turma que produziu cada azulejo.

C)	Calcule as medidas descritivas utilizando todos os dados de espessura e complete: Tamanho da amostra:* Média aritmética: mm; Desvio padrão: mm; Coeficiente de variação: %; Menor valor: mm; Primeiro quartil: mm; Mediana: mm; Terceiro quartil: mm; Valor máximo: mm; Moda: mm. Este valor repetiu vezes.				
d)	Construa um gráfico de pontos utilizando todos os dados e responda: Qual é a forma da distribuição das medidas de espessura dos azulejos produzidos pela fábrica?				
e)	e) Construa um histograma utilizando os dados de espessura dos 160 azulejos. Mos as freqüências acima de cada coluna e exiba no gráfico os limites de especificação Para isso, siga os passos:				
	 Selecione Graph → Histogram → Mantenha a opção Simple → Ok. Selecione a variável Espessura para o quadro Graph variables. 				
	 Dando um título ao gráfico e mostrando a freqüência absoluta de cada classe Selecione Labels; Digite no quadro Title um título apropriado para o seu gráfico; Selecione Data Labels → assinale Use y-value labels em Label Type; Clique Ok. 				
	Traçando os limites de especificação				
	 Selecione Scale; Selecione Reference Lines → Digite 3,5 6,5 na caixa referente à Show references lines at data values; Clique Ok. → Ok. 				
	Responda: e1) O histograma possui classes; e2) O ponto médio da primeira classe é de mm. A freqüência desta classe é de azulejo. Os limites desta classe são: e mm (posicione o mouse em cima da primeira coluna do histograma e solte) e3) O ponto médio da última classe é de mm; e4) A largura da classe (diferença entre dois pontos médios consecutivos ou diferença entre o limite superior e inferior de qualquer classe) é de mm.				
f)	O histograma não ficou da maneira desejada. Serão necessárias algumas modificações para que ele apresente um formato mais útil para a análise dos dados. Essas modificações serão feitas diretamente no gráfico.				
	Modifique o histograma fazendo exibir os limites de classe em vez dos pontos médios. Inicie a primeira classe com o limite inferior de 2 mm e faça a última classe				

3 - Histograma

© DME/2010-02

23

exibir o limite superior de 7,5 mm, com a largura de cada classe de 0,5 mm. Dê nome às linhas de referencia: LIE e LSE. Para isso, siga os passos:

Definindo os limites de classe

- No histograma pronto, posicione o cursor em qualquer valor do eixo dos x`s. Clique com o botão direito do mouse e abra Edit x Scale → Binning;
- Selecione Cutpoint em Interval Type e dentre as opções de Interval Definition, selecione Midpoint/cutpoint positions e digite 2:7,5/0,5 no quadro correspondente → Ok;.
- 3. Se desejar saber os limites inferior e superior de uma determinada classe basta posicionar o cursor na classe desejada (retângulo) e esperar que sejam exibidos os limites do eixo dos x´s;
- 4. Para apresentar todos os limites no gráfico, clique uma vez com o botão direito do mouse em cima de qualquer valor do eixo dos x's. Na caixa Edit X Scale, selecione Scale, e em Major Tick Positions, selecione Position of ticks e digite 2:7,5/0,5 no quadro correspondente → Ok.

Nomeando os limites de especificação:

LIE (Limite Inferior de Especificação) e LSE (Limite Superior de Especificação)

Clique uma vez, com o botão direito do mouse, em cima da referência 3,5 (número que aparece acima da linha vertical traçada). Selecione: Edit X line Label:3,5;
 Selecione Text e digite LIE (que significa Limite Inferior de Especificação) no lugar de

 $3,5 \rightarrow Ok$;

- 3. Repita os processos acima para a referência 6,5 e digite LSE no quadro correspondente ao 6,5;
- 4. Clique Ok.

	esponda:
) O histograma anterior possuía 20 classes, o atual possui classes.
f2	e) A classe com maior número de azulejos possui o limite inferior de mm e o
	superior de mm.
f3	d) A primeira classe possui os limites: e, enquanto que a última
	possui e mm.
f4	Abaixo do limite inferior de especificação (LIE) temos azulejos e acima do
	limite superior de especificação (LSE) temos
f5	 A proporção de azulejos abaixo do limite inferior de especificação é de % e a
	proporção de azulejos acima do limite superior de especificação é de %.
f6	A proporção de azulejos fora da especificação é de %.
f7	A proporção de azulejos fabricados de acordo com a especificação é de %.
f8	A "espessura não adequada dos azulejos" pode ser considerada como uma causa
	influente dos problemas detectados? (Sim/Não).
f9) Justifique sua resposta.
g) (Calcule as medidas descritivas usuais para a espessura dos azulejos separada por

turma e faça os respectivos histogramas (com os limites de especificação, com os valores das freqüências exibidos em cima de cada coluna e com os mesmos limites de

classe do histograma anterior). Siga os passos:

- Selecione Stat → Basic Statistics;
- 2. Em *Display Descriptive Statistics*, selecione **Espessura** em *Variables* e Turma em *By variables (optional)*;
- 3. Selecione Graphs e marque a opção Histogram of data \rightarrow Ok \rightarrow Ok;
- 4. Clique uma vez com o botão direito do mouse em cima de qualquer valor do eixo dos x 's no histograma pronto. Selecione Edit X Scale → Binning. Escolha Cutpoint em Interval Type e dentre as opções de Interval Definition, selecione Midpoint/Cutpoint positions e digite 2:7,5/0,5 no quadro correspondente → Ok;
- 5. Caso deseje exibir os limites de cada classe, clique uma vez, com o botão direito do mouse, no eixo dos x's do histograma. Dentro da caixa Edit Scale selecione Scale, e em Major Tick Positions selecione Position of Ticks e digite 2:7,5/0,5 no quadro correspondente → Ok.
- 6. Para adicionar as linhas de especificação, clique com o botão direito do mouse no gráfico e selecione Add → Reference lines. Digite separando com espaço os valores 3,5 e 6,5 em Show reference lines at data values → Ok. Clique uma vez, com o botão direito do mouse, em cima da referência 3,5. Selecione Edit X line Label: 3,5. Selecione Text e digite LIE no lugar de 3,5 → Ok. Repita os processos anteriores para a referência 6,5 e digite LSE no quadro correspondente ao valor 6,5 → Ok.
- Clique novamente com o botão direito no gráfico e selecione Add → Data labels.
 Mantenha a opção Use y-value labels em Label Type → Ok.

Complete o quadro abaixo e responda às questões (lembre-se que as medidas estão na *Session*):

Quadro 3.1 Sumário das medidas de espessura para as turmas A e B

	Espessuras para as turmas				
Medidas	A	В			
Número de observações	80				
Menor valor	2,3				
1° Quartil	3,1				
Mediana	3,8				
3° Quartil	4,475				
Maior valor	5,9				
Média aritmética	3,8575				
Moda	3,1; 3,5				
Desvio padrão	0,8706				
Coeficiente de variação	22,57 %				

•	Em média, qual turma produz azulejos com espessura maior?
•	Qual turma produz azulejos mais homogêneos em torno da respectiva média? Justifique:
•	Compare a espessura dos azulejos produzidos pelas duas turmas levando em consideração a proporção de azulejos fora de especificação produzidos por cada turma. A turma A produz% abaixo do limite inferior de especificação e a turma B produz% acima do limite superior de especificação.

26

•	Você considera que as duas turmas trabalham do mesmo modo ou existe diferença entre a qualidade dos azulejos produzidos pelas duas turmas? Justifique sua resposta.
•	O problema de quebra dos azulejos parece ser comum aos azulejos produzidos pelas duas turmas de trabalho da empresa ou parece estar associado a uma turma específica? Por quê?

3.2 Exercitando o que você aprendeu

Resolva o exercício

3 - Histograma

Apresentamos a seguir as notas finais de uma turma de Estatística, do semestre passado, com 60 alunos.

68	63	51	60	65	73	60	60	67	60
62	49	60	52	61	79	41	60	60	64
27	47	60	85	68	72	75	60	49	26
65	68	70	65	60	75	49	29	74	61
65	38	39	80	42	82	65	38	52	57
53	70	82	76	82	97	31	96	77	75

- a) Abra o arquivo **Hist_exp.mtw** que contém os dados.
- complete:
 As notas finais dos ____ alunos variaram de um mínimo de ____ a um máximo de ____, com média de ____, mediana de ____ e desvio padrão de ____ pontos. Os 25% melhores alunos ficaram com nota maior ou igual ____ e os 25% piores ficaram com nota menor ou igual a ____ pontos.

b) Sintetize as notas finais desta turma calculando as medidas descritivas usuais e

c) Construa e analise um gráfico de pontos para a variável nota de Estatística.

d) Construa um Ramo-e-folhas com um incremento de 10 pontos.

Stem-and-Leaf Display: Notas

(24) 6 00000000011234555557888

18 7 00234555679

7 8 02225

2 9 67

e) Construa um histograma com o limite inferior da primeira classe igual a 20 pontos e a amplitude de classe igual a 10 pontos. Considerando que a nota mínima de aprovação é 60, coloque este limite de especificação no gráfico e calcule a porcentagem de alunos reprovados nessa disciplina de Estatística. Porcentagem de reprovação: ____%

Obs.: Caso você tenha concluído o histograma sem usar a opção *Data Labels* dentro de *Labels*, para exibir as freqüências acima de cada coluna, você pode clicar na barra de ferramentas em: *Editor* → *Add* → *Data Labels* → *Ok*.