Apoorv Kishore

■ apoorvkishore4@gmail.com | Inlinkedin.com/in/apoorv-kishore | # final-singularity.github.io | G github.com/Final-Singularity

EDUCATION

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY | M.Tech and B.Tech

Electrical Engineering | GPA: 8.9/10

Courses: Microprocessors, Digital Systems, Digital Signal Processing, Neuromorphic Engineering

Recipient of Undergraduate Research Award

PUBLICATIONS

A. Kishore, V. Saraswat, U. Ganguly: **Simplified Klinokinesis using Spiking Neural Networks for Resource-Constrained Navigation on the Neuromorphic Processor Loihi.** *The International Joint Conference on Neural Networks*, 2021; in press [Link]

[Jul'21]

[Jun'16-Jun'21]

A. Kishore, B. Dasgupta: A Novel Clock-Path Programming Algorithm to enhance IP-DVFS Design and Verification tasks. Samsung Semiconductor India RnD TechCon, 2023 (White Paper)

[Mar'23]

WORK EXPERIENCE

SAMSUNG SEMICONDUCTOR INDIA R&D

SoC RTL Design: Power Management and Clock Architecture

ASSOCIATE STAFF ENGINEER

[Mar'23-Present]

- Complete ownership of design for Power Management IP in Samsung Mobile & Generative AI Accelarator SoCs
- Implemented hardware algorithms to reduce sleep mode power consumption of Samsung Exynos chips by ~40%
- Experienced in Functional ECOs, Verification debugging, Scandump analysis and Silicon Bring-up for Exynos chips
- Worked on booting & initialization sequences for the SoC including ARM V8/V9 CPU Core, and GPUs/NPUs

SENIOR ENGINEER [Jul'21-Mar'23]

- Implemented hardware mechanisms like HW Automatic Clock/Power Gating to reduce turn on/off latency by ~75%
- Designed and executed an algorithm in **Python** to engineer the clock-tree design and verification process successfully reducing the combined process timeline by more than 60% as well as improving the architecture robustness

RESEARCH EXPERIENCE

RESOURCE-CONSTRAINED NAVIGATION ON INTEL'S NEUROMORPHIC CHIP LOIHI

Guide: Prof. Udayan Ganguly | Master's Thesis

[Jun'20-Mar'21]

- · Developed a fully spike-based navigational algorithm by approximating numerical functions in neuronal spikes
- Demonstrated comparability to the Python implementation with 1.92% error establishing performance reliability

PERFORMANCE PREDICTION FOR SPEECH RECOGNITION TASKS ON LIQUID STATE MACHINES

Guide: Prof. Udayan Ganguly | Research Project

[Aug'19-Apr'20]

- Executed analysis of Memory Metric, Network Criticality and Kernel Quality for performance prediction in MATLAB
- Demonstrated maximum outperformance of memory metric by 40.63% for low error regimes on TI-46 speech data

KEY PROJECTS

PIPELINED RISC MICROPROCESSOR

Course: Microprocessors | IIT Bombay

- Designed a pipelined RISC Microprocessor from scratch in VHDL to implement custom Instruction Set Architecture
- · Verified the design for functional scenarios, proofed it against hazards and implemented the system on an FPGA

SCENE RECOGNITION USING BAG OF WORDS AND SCALE INVARIANT FEATURE TRANSFORM

- Performed vocabulary detection using K-means clustering and Principle Component Analysis on the SIFT of images.
- Trained a Multi-class Support Vector Machine to classify scenes into one of the 15 classes obtaining 89% accuracy

COMPARISON OF PCA AND FISHER'S LINEAR DISCRIMINANT FOR FACE RECOGNITION

Course: Fundamentals of Digital Image Processing | IIT Bombay

· Showed PCA's error rates vary with image light intensity in face recognition, unlike Fisher's Linear Discriminant

TECHNICAL SKILLS

COMPETENCIES

Clock and Power Design, SDC, FECOs, Silicon debugging, Deep Learning Python, C, C++, C#, Assembly, SQL, PyTorch, OpenCV, Git, MATLAB, Spyglass, Xcelium, Magellan, Verilog, VHDL, Quartus, Spice, Perforce, Unix

TOOLS/LIBRARIES/LANGUAGES