Entraînement au calcul de dérivées : corrigé bloc 2.

 $\mathbf{1}^{\circ}$) f_1 est définie et dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$:

$$f_1'(x) = \cosh(x) \exp(\sinh(x))$$
.

2°) f_2 est dérivable là où elle est définie (par somme, produit et quotient), et pour tout x dans son domaine de définition :

$$f_2'(x) = \frac{-\sin x \left(\sin x - x \cos x\right) - \cos x \left(\cos x + x \sin x - 1 \times \cos x\right)}{\left(\sin x - x \cos x\right)^2}$$
$$= \left[\frac{-\sin^2 x}{\left(\sin x - x \cos x\right)^2}\right]$$

3°) f_3 est définie et dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$,

$$f_4'(x) = \boxed{4(3x^2+1)(x^3+x-2)^3}$$

4°) Pour tout réel $x, 2-x>0 \iff x<2$. Donc f_4 est définie sur $]-\infty,2[$. $x\mapsto 2-x$ est dérivable sur $]-\infty,2[$ et à valeurs dans \mathbb{R}_+^* sur cet intervalle; et $x\mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* ; donc par composition, $x\mapsto \sqrt{2-x}$ est dérivable sur $]-\infty,2[$. Par quotient $(x\mapsto x$ est dérivable sur $]-\infty,2[$, f_4 est dérivable sur $]-\infty,2[$. Pour tout $x\in]-\infty,2[$,

$$f_4'(x) = \frac{1 \times \sqrt{2 - x} - x \frac{-1}{2\sqrt{2 - x}}}{\sqrt{2 - x^2}} = \frac{2(2 - x) + x}{2\sqrt{2 - x}(2 - x)} = \boxed{\frac{4 - x}{2\sqrt{2 - x}(2 - x)}}$$

Autre manière de faire le calcul : en écrivant $f_4(x) = x(2-x)^{-\frac{1}{2}}$,

$$f_4'(x) = 1 \times (2-x)^{-\frac{1}{2}} + x \times \left(-\frac{1}{2}\right) \times (-1) \times (2-x)^{-\frac{1}{2}-1}$$

$$= (2-x) \times (2-x)^{-\frac{3}{2}} + \frac{x}{2}(2-x)^{-\frac{3}{2}}$$

$$= \frac{2(2-x) + x}{2}(2-x)^{-\frac{3}{2}}$$

$$= \left[\frac{4-x}{2}(2-x)^{-\frac{3}{2}}\right]$$

5°) Pour tout $x \in \mathbb{R}$, $-x^2 \le 0$ donc $0 < e^{-x^2} \le 1$, autrement dit $x \mapsto e^{-x^2}$ est à valeurs dans]0,1]. Comme Arcsin est définie sur [-1,1] qui contient]0,1], f_5 est définie sur \mathbb{R} . Pour tout réel x, $e^{-x^2} = 1 \iff -x^2 = 0 \iff x = 0$. donc, pour tout $x \in \mathbb{R}^*$, $e^{-x^2} \in]0,1[$, et $x \mapsto e^{-x^2}$ est dérivable sur \mathbb{R}^* par composition.

Par ailleurs, Arcsin est dérivable sur]-1, 1[et donc sur]0, 1[. Par composition, f_5 est dérivable sur \mathbb{R}^*]. Pour tout $x \in \mathbb{R}^*$,

$$f_5'(x) = (-2x)e^{-x^2} \times \frac{1}{\sqrt{1 - (e^{-x^2})^2}} = \boxed{\frac{-2xe^{-x^2}}{\sqrt{1 - e^{-2x^2}}}}$$