Proyecto final

Sistemas embebidos 2022

Iurman Franco Graff Javier Mazzarello Nicolas Miguel Agustín

Índice

•	Introducción	3
•	<u>Funcionamiento</u>	4
•	Hardware utilizado	5
•	Software utilizado	6
•	Inconvenientes y decisiones de diseño	. 7
•	Conclusiones	8

Introducción

Motivación del proyecto:

- Utilizar los conocimientos vistos en la cátedra en un ambiente de desarrollo más profesional que académico.
- Experimentar con nuevas tecnologías para saber si estamos a la altura de nuevos desafíos
- Desarrollar un proyecto íntegramente de inicio a fin con nuestras propias decisiones de diseño, ideas y desarrollo.

Funcionamiento

- Vehículo
 - Arduino
 - Sensor de proximidad
 - Raspberry
- Pulsera
- Comunicación

Hardware utilizado

Vehículo:

- Arduino UNO
- Raspberry pi 4
- Camara para raspberry pi 4 (Sony IMX219 de 8 megapíxeles)
- Sensor de proximidad HC-SR04
- Chasis (Motores, ruedas)
- Baterias (power bank, 1 baterias 9v)
- Receptor RF 433 MHz
- Módulo controlador de Motor L298N
- Motores Dc 3v a 6v

Pulsera:

- Arduino Nano
- Transmisor RF 433 MHz
- Bateria 9v
- Giroscopio/Acelerómetro MPU6050
- Switch/pulsador

Software utilizado

- Arduino IDE
- Hostapd
- VNC: Conexión de escritorio remoto para Raspberry
- Conexión SSH con la Raspberry
- Python

Inconvenientes y decisiones de diseño

- Librerías
- Comunicación
- Alimentación

Conclusiones

- Comunicación
- Cosas a mejorar