Apunts de teoria de la probabilitat

ALEIX TORRES I CAMPS

Anna de Mier (anna.de.mier@upc.edu), Guillem Perearnau i Sonia Perez

1 Espais de probabilitat

1.1 Motivació

1.2 Experiments i probabilitat

Definició 1. Un experiment és un parell (Ω, \mathscr{A}) on Ω és un conjunt i $\mathscr{A} \subset \mathscr{P}(\Omega)$ tal que:

- 1. $\emptyset \in \mathscr{A}$
- $2. A \in \mathscr{A} \implies A^c \in \mathscr{A}$
- 3. Si $\{A_n\}_{n\geq 1}$ és una col·lecció numerables d'elements de $\mathscr{A}\implies\bigcup_{n\geq 1}A_n\in\mathscr{A}$

Exemple 1. Uns quants exemples...

Volem una funció que assigni probabilitats de successos, és a dir, $P: \mathcal{A} \to \mathbf{R}$. Llavors definim:

Definició 2. Un espai de probabilitat és una terna (Ω, \mathcal{A}, P) on:

- 1. (Ω, \mathscr{A}) és un experiment.
- 2. $P: \mathscr{A} \to R$ tal que: $P(\emptyset) = 0, \ P(A) \le 0, \ \forall A \in \mathscr{A}$. Si $\{A_n\}_{n \ge 1}$ és una col·lecció de successos dos a dos dijunts $\implies P(\bigcup_{n \ge 1} A_n) = \sum_{n \ge 1} P(A_n)$.
- 3. $P(\Omega) = 1$.

Per tant, la probabilitat és una mesura a (Ω, \mathscr{A}) normalitzada a 1. A P se l'anomena funció de probabilitat.

Exemple 2. Espia discret, si Ω és numerable i $\mathscr{A} = \mathscr{P}(\Omega)$. Si $\Omega = \{w_1, w_2, w_3, \ldots\}$ prenem $\sum_{i \geq 1} p_i = 1$ (amb $p_i \geq 0$) i definim $\mathscr{P}(A) = \sum_{w_i \in A} P(\{w_i\})$, alleugerint la notació podem fer servir $P(\{w_i\}) = P(w_i) = p_i$.

Exemple 3. Espai clàssic, és un éspai discret amb $|\Omega| = N$ i $p_i = 1/N$. Çassos favorables entre cassos possibles": $P(A) = \frac{|A|}{N}$.

Exemple 4. Espais clàssics amb monedes o daus, tot ben repartit.

Exemple 5. Durada d'un mòbil? $\Omega=(0,\infty)$ o bé, (0,L]. Si $\mathscr{A}=\mathscr{P}(\Omega)$ sabem que no podem assignar-hi una mesura. Però com ens interessen els intervals com (a,b), agafe, la σ -àlgebra que conté tots els intervals (oberts). Aquí apareixen els burelians $\mathcal{B}=\sigma(I)$ i podem agafar la mesura de Lebesque a \mathbf{R} . En resum, $\Omega=(0,L)$, $\mathbf{B}=\sigma(I)$ i $P(B)=\frac{\mu(B)}{L}$. On $\mu(B)$ és la seva mesura de Lebesque. Tot i així, no és realistic perquè és massa uniforme.

Proposició 3. Propietats d'espais de probabilitat. Sigui (Ω, \mathcal{A}, P) :

- 1. Per $r \geq 2$, si $A_1, \ldots, A_r \in \mathcal{A}$, $A_i \cap A_j = \emptyset$ si $i \neq j$ llavors $P(\bigcup_{i=0}^r a_i) = \sum_{i=1}^r P(A_i)$
- 2. $Su\ A, B \in \mathcal{A}\ i\ A \subset B \implies P(B \setminus A) = P(B) P(A)\ i\ P(A) \leq P(B)$.
- 3. $P(A^c) = 1 P(A) \forall A \in \mathcal{A}$
- 4. (Designated de Boole) Si $A_1, \ldots, A_r \in \mathcal{A} \implies P(\bigcap_{i=1}^r A_i) \leq P(A_i) + \cdots + P(A_r)$

- 2 Variables aleatòries
- 3 V.a Discretes
- 4 V.a Contínues
- 5 Funcions característiques i famílies exponencials
- 6 Convergència de variables aleatòries