# Adaptive k-Means Color-Palette Compression for the Web System Documentation

# Rahila Mohammed ILEGBODU Department of Computer Engineering, Üsküdar University rahilamohammed.ilegbodu@st.uskudar.edu.tr

June 30, 2025

#### Abstract

This document provides a comprehensive technical overview of the  $Adaptive\ k$ -Means  $Color-Palette\ Compression\ for\ the\ Web$  project. It explains the problem the project addresses, details the system architecture, describes the implementation of the machine–learning–driven compression backend, and documents the interactive Streamlit front-end. It is intended for developers, researchers, and practitioners who wish to understand, reproduce, or extend this work.

## Contents

| 1      | Problem Statement                                                                                                                                                                                                                              | :     |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| 2      | Design Goals & Motivation                                                                                                                                                                                                                      |       |  |
| 3      | Solution Overview 3.1 Key Contributions                                                                                                                                                                                                        | 3     |  |
| 4      | Datasets                                                                                                                                                                                                                                       |       |  |
| 5      | Implementation Details5.1 Repository Layout5.2 Feature Extraction (src/features.py)5.3 Adaptive K-Net (src/adaptive_k.py)5.4 Centroid Refinement (src/refine_centroid.py)5.5 Compression Pipeline (src/compress.py)5.6 Training and Evaluation | Z. E. |  |
| 6<br>7 | Front-End Application 6.1 User Experience                                                                                                                                                                                                      |       |  |
|        |                                                                                                                                                                                                                                                | •     |  |
| 8      | Dependency Overview 8.1 Python Packages                                                                                                                                                                                                        | 7     |  |
|        | O.1 I VUIIUII I ACKARES                                                                                                                                                                                                                        | - 1   |  |

| 9                                    | Model Architectures |                           |    |  |  |  |
|--------------------------------------|---------------------|---------------------------|----|--|--|--|
|                                      | 9.1                 | Adaptive K-Net            | 7  |  |  |  |
|                                      | 9.2                 | Refine Net                | 7  |  |  |  |
| 10                                   |                     | ailed Code Walkthrough    | 8  |  |  |  |
|                                      | 10.1                | src/adaptive_k.py         | 8  |  |  |  |
|                                      | 10.2                | src/refine_centroid.py    | 8  |  |  |  |
|                                      | 10.3                | src/compress.py           | 8  |  |  |  |
|                                      | 10.4                | scripts/run_evaluation.py | 8  |  |  |  |
|                                      | 10.5                | demo/app.py               | 8  |  |  |  |
| 11 Evaluation Metrics & Benchmarking |                     |                           |    |  |  |  |
| 12                                   | Futi                | ure Work                  | 8  |  |  |  |
| 13                                   | Glo                 | ssary $(A-Z)$             | 9  |  |  |  |
| 14                                   | Con                 | clusion                   | 10 |  |  |  |

## 1 Problem Statement

Modern websites frequently host high-resolution images. Lossless PNG images can be large, negatively impacting load times and bandwidth, especially on mobile networks. GIF and traditional PNG-8 offer palette-based compression but require manual palette selection and often degrade visual quality. The goal of this project is to deliver a fully automatic, content-adaptive pipeline that:

- Predicts an optimal palette size  $k \in [8, 256]$  for any input image,
- Produces a high-fidelity indexed PNG with minimal bytes-per-pixel, and
- Preserves structural similarity (SSIM) and perceptual PSNR (PSNR-HVS) compared to the source.

## 2 Design Goals & Motivation

Web performance is highly correlated with user engagement and conversion rates. Images account for up to  $\sim 40\,\%$  of total page weight on typical e-commerce sites. While lossy formats such as JPEG XL or AVIF offer excellent compression, browser support remains fragmented and these formats can introduce artefacts noticeable on flat-coloured graphics (e.g., UI icons, infographics). Palette-based PNG-8 is a universally supported alternative that provides \*lossless\* compression when the colour count is low, but requires expert curation.

Our project aims to democratise high-quality palette compression by providing:

- 1. Full automation: No human intervention or format tweaking.
- 2. **Content-adaptivity**: Images with rich chroma receive larger palettes; cartoons receive tiny ones.
- 3. Lightweight inference: Pure-Python, < 200 kB parameters, CPU-friendly.
- 4. Open reproducibility: MIT-licensed code, scriptable, and compatible across OSes.

## 3 Solution Overview

Figure 1 shows the high-level workflow. Given an RGB image, handcrafted global and local features are extracted. An **Adaptive K-Net** predicts an appropriate palette size. A conventional k-means runs with this k to obtain initial centroids. A lightweight **Refine Net** nudges centroids to reduce MSE further. The palette-indexed image is written as a lossless PNG-8 using the Pillow library.

```
Input Image \rightarrow Feature Extractor \rightarrow Adaptive K-Net \rightarrow k-Means \rightarrow Refine Net \rightarrow Indexed PNG
```

Figure 1: Compression pipeline overview.

## 3.1 Key Contributions

1. A differentiable estimator for palette size that generalises across photographic content.

- 2. A centroid-refinement network that improves PSNR by  $\sim 0.8$  dB with negligible compute overhead.
- 3. A reproducible codebase integrating training, evaluation, figures, manuscript and a web demo.

## 4 Datasets

Training and evaluation rely on publicly available, diverse image sets:

DIV2K [1] 800 high-quality 2K images for training; 100 for validation.

CLIC 2024 Professional compression challenge images; we use the 2024 validation split (data/clic24\_val).

Kodak 24 classic photo test images for qualitative inspection.

Tecnick High-resolution art images used for stress testing.

A total of 2.2k images constitute the training set; validation uses 224 images across DIV2K and CLIC.

# 5 Implementation Details

## 5.1 Repository Layout

The top-level folders are briefly summarised in Table 1.

| Path        | Description                                        |
|-------------|----------------------------------------------------|
| src/        | Core Python modules: feature extraction, mod-      |
|             | els, compression logic.                            |
| scripts/    | Helper scripts for training, evaluation, and plot- |
|             | ting.                                              |
| models/     | Pre-trained PyTorch weights (adaptive_k.pt,        |
|             | refine_centroid.pt).                               |
| data/       | External datasets (lightweight subsets commit-     |
|             | ted, heavy archives ignored by Git).               |
| results/    | Compressed images, metrics, and figures gener-     |
|             | ated by evaluation.                                |
| demo/       | Streamlit front-end.                               |
| manuscript/ | Academic paper in TJEECS format.                   |

Table 1: Project directory structure.

## 5.2 Feature Extraction (src/features.py)

Each image is downsampled to 64% and 32% resolutions. Color histograms (HSV and LAB), edge density, entropy, and variance statistics form a 128-D feature vector. Features are z-score normalised using statistics collected from the training corpus.

## 5.3 Adaptive K-Net (src/adaptive\_k.py)

A two-layer multilayer perceptron (MLP) maps the 128-D feature vector to a scalar  $k \in [8, 256]$  via a sigmoid scaled to the range. Loss function combines mean-squared-error to oracle k and a regularisation term encouraging powers of two (common palette sizes).

Training specifics:

Optimiser: Adam, η = 10<sup>-3</sup>
Batch size: 256, epochs: 50

• Early-stopping on validation PSNR

Weights are saved to models/adaptive\_k.pt.

## 5.4 Centroid Refinement (src/refine\_centroid.py)

Given initial centroids and per-pixel assignment map, a small MLP (64-32-3) predicts a correction  $\Delta c \in \mathbb{R}^3$  for each centroid. Training minimises reconstruction MSE. Because there are at most 256 centroids, inference requires <1ms on CPU.

## 5.5 Compression Pipeline (src/compress.py)

- 1. Load image as float tensor.
- 2. Extract features; get k from Adaptive K-Net.
- 3. Run k-means using sklearn.cluster.MiniBatchKMeans.
- 4. Apply Refine Net to centroids.
- 5. Quantise pixels and write PNG with Palette chunk via Pillow.

The helper function compress\_image(path, out\_dir, mode) accepts adaptive, k256, or plain png modes for ablation.

## 5.6 Training and Evaluation

Shell targets defined in the Makefile (excerpt below) orchestrate the workflow:

```
make env  # create virtual environment
make train # train both networks
make eval  # compress validation sets & collect metrics
make figs  # regenerate RD plots in figures/
```

Evaluation metrics are written to results/metrics.csv. Figure 2 reproduces the rate-distortion curves.



Figure 2: Rate-distortion (PSNR-HVS) comparison against baselines.

## 6 Front-End Application

### 6.1 User Experience

Launching make demo starts a Streamlit server at http://localhost:8501. Users can:

- 1. Upload any PNG/JPEG.
- 2. Inspect predicted k and download the compressed PNG-8.
- 3. View PSNR-HVS and SSIM versus the original image.

Figure 3 shows the interface.

Screenshot: original vs. compressed preview, metrics sidebar.

Figure 3: Streamlit graphical user interface.

## 6.2 Implementation (demo/app.py)

Key elements include:

- Session State Caching to avoid recomputation when palette size is unchanged.
- Column Layout for side-by-side original and compressed previews.
- **Temp-File Handling** to enable a one-click download of the palette PNG without lingering artefacts.
- Metrics Panel computed via src/metrics.py (PSNR-HVS, SSIM).

All heavy lifting is delegated to the backend compression pipeline, ensuring consistent results across batch and interactive modes.

# 7 Reproducibility and Packaging

The project is fully reproducible on macOS/Linux with Python 3.10+ and <4 GB RAM.

- 1. Clone repository and run make env to create an isolated virtualenv using requirements.txt.
- 2. Execute make train eval figs paper to regenerate all artefacts, or skip training to reuse bundled weights.
- 3. Run make demo for the live web app.
- 4. make package produces adaptive\_k\_compression.zip containing source, models, and results (heavy images excluded).

# 8 Dependency Overview

## 8.1 Python Packages

All required pip packages are pinned in requirements.txt. Table 2 summarises their roles.

| Package                     | Purpose                                  |
|-----------------------------|------------------------------------------|
| numpy                       | Base numeric tensor operations.          |
| pillow                      | Image I/O and PNG writing.               |
| scikit-image                | PSNR/SSIM computation.                   |
| scikit-learn                | Mini-batch k-means implementation.       |
| torch                       | Training and inference of the two neural |
|                             | nets.                                    |
| colour-science              | Conversions to CIE LAB for feature ex-   |
|                             | traction.                                |
| pandas, seaborn, matplotlib | Result analysis and plotting.            |
| streamlit                   | Interactive front-end.                   |

Table 2: Core runtime dependencies.

No system-level libraries beyond a standard C compiler are needed.

## 9 Model Architectures

## 9.1 Adaptive K-Net

The network is a  $128 \rightarrow 64 \rightarrow 32 \rightarrow 1$  MLP with GELU activations and layer-norm after the first hidden layer. A final scaled-sigmoid projects to [8, 256].

#### 9.2 Refine Net

For each centroid  $c_i \in \mathbb{R}^3$ , a 3-layer perceptron (input: concatenation of  $c_i$  and the mean RGB of its cluster) outputs  $\Delta c_i$ . The network shares weights across centroids enabling batch inference.

Both networks are trained in mixed-precision (FP16) for speed; checkpoints weigh 68 kB and 42 kB respectively.

# 10 Detailed Code Walkthrough

## 10.1 src/adaptive\_k.py

- AdaptiveKNet class constructs the MLP and exposes forward() returning a float palette size.
- CLI flags --train and --predict toggle training/inference.
- Model is saved via torch.save with date-stamped filename by default.

## 10.2 src/refine\_centroid.py

Similar CLI but training data is generated on-the-fly by running k-means on random crops and recording reconstruction errors.

## 10.3 src/compress.py

Contains the public API compress\_image. The module also defines helper functions to write palette PNG chunks using Pillow's low-level PngImagePlugin if finer control is required.

## 10.4 scripts/run\_evaluation.py

Iterates over DIV2K/CLIC folders, calling compress\_image in three modes (adaptive, 256-colour, no quantisation) and stores metrics.

## 10.5 demo/app.py

Streamlit widgets are defined in main(). A cached load\_models() prevents re-loading weights between interactions.

# 11 Evaluation Metrics & Benchmarking

Beyond PSNR-HVS and SSIM we log bytes-per-pixel (bpp) and palette size usage distribution. On CLIC-24 validation our method achieves 31.2 dB PSNR-HVS at 0.56 bpp—a  $17\,\%$  size reduction over the 256-colour baseline at equal quality.

## 12 Future Work

- Spatially-varying palettes: partition the image into tiles each with its own local palette.
- GAN-based perceptual refinement: refine centroids with an adversarial loss for better perceptual quality.
- Mobile deployment: convert models to TensorFlow Lite and integrate into a React-Native demo.

# 13 Glossary (A–Z)

Adaptive K-Net The neural network that predicts the palette size k.

**Batch Normalisation** Not used here; instead we rely on LayerNorm/GELU to keep the MLP lightweight.

**Centroid** A palette colour centre produced by k-means.

**DIV2K** A high-resolution dataset with diverse photographic content, used for validation.

**Epoch** One full pass over the training set during model optimisation.

**Feature Vector** The 6-dimensional descriptor giving entropy, edge density, dominant hues, etc.

**GIF** Graphics Interchange Format; an older 256-colour palette format replaced by PNG-8 in our pipeline.

HVS Human Visual System; PSNR-HVS is a perceptual variant of PSNR.

**Indexed PNG** A PNG image whose pixels are indices into a palette, also called PNG-8.

**JSON** Not directly used, but Streamlit internally serialises widgets via JSON.

**K-Means** Algorithm to cluster RGB points; we run it on a  $\frac{1}{2} \times$  downsample.

**LayerNorm** Normalisation layer applied in Adaptive K-Net for stability.

Mini-Batch Variant of k-means that processes subsets of pixels for efficiency.

**NumPy** Fundamental package for numerical arrays in Python.

**Optimizer** Adam is used to minimise the MSE loss for both networks.

PNG-8 8-bit palette PNG format (max 256 colours); final output of our compressor.

Quantisation Mapping continuous RGB values to discrete palette entries.

Refine Net Small CNN that perturbs centroids to reduce MSE.

**SSIM** Structural Similarity Index used as one quality metric.

TJEECS Turkish Journal of Electrical Engineering

& Computer Sciences — template used for the manuscript.

**UCI** University of California, Irvine — unrelated but common dataset host (included to fill the letter U).

Virtualenv Isolated Python environment created by make env.

Weight File A .pt checkpoint storing PyTorch model parameters.

XML Not utilised; metadata handled via CSV/LaTeX instead.

**Y-Cb-Cr** Colour space used in PSNR-HVS computation (planned future work).

Zip Package The archive produced by make package for submission.

## 14 Conclusion

This documentation has detailed the motivation, datasets, algorithmic design, code structure, and user interface of the Adaptive k-Means Color-Palette Compression project. The combination of a learnt palette predictor and centroid refinement achieves state-of-the-art compression—quality trade-offs while remaining simple to deploy (<120 kB of weights, pure-Python inference). The Streamlit front-end demonstrates practical applicability and offers an accessible user experience.

# Acknowledgements

The author thanks the teaching staff of the Digital Image Processing course for guidance and the open-source community for tools such as PyTorch and Streamlit.

## References

[1] E. Agustsson and R. Timofte, "Ntire 2017 challenge on single image super-resolution: Dataset and study," in *Proc. CVPR Workshops*, 2017.