Lista 2, Exercício 8

Observaram-se os gastos mensais com alimentação (Y, em centenas de reais), a renda mensal (X_1 , em centenas de reais) e a distância da residência ao supermercado mais próximo (X_2 , em km) de quatro domicílios:

Y	X_1	X_2
4	10	2
2	20	3
3	20	3
6	30	2

Admite-se que a relação existente entre o gasto (Y), a renda familiar (X_1) e a distância ao supermercado (X_2) seja dada pelo modelo: $Y_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \mu_i$, em que os μ_i são erros independentes com distribuição normal de média zero e variância σ^2 . À luz do modelo proposto, pede-se:

- a) Estime <u>e interprete</u> os coeficientes de regressão do modelo proposto.
- b) Construa a tabela ANOVA e conduza o teste *F*, interpretando o resultado obtido.
- c) Calcule <u>e interprete</u> o coeficiente de determinação. Calcule também o coeficiente de determinação ajustado.

Teste de hipóteses envolvendo combinação linear dos parâmetros

d) Há evidência significativa, ao nível de 5%, para afirmar que o efeito conjunto de um aumento de uma centena de reais na renda familiar e de 1 km adicional de distância em relação ao supermercado mais próximo sobre os gastos mensais com alimentação seja negativo?

depois:
$$gasto_i = \alpha + \beta_1 (renda_i + 1) + \beta_2 (dist_i + 1) + \mu_i$$

antes:
$$gasto_i = \alpha + \beta_1 renda_i + \beta_2 dist_i + \mu_i$$

efeito:
$$\Delta gasto_i = \beta_1 + \beta_2$$

eleito:
$$\Delta gasto_i = \beta_1 + \beta_2$$

Hipótese nula:
$$\beta_1 + \beta_2 = 0$$

Hipótese alternativa:
$$\beta_1 + \beta_2 < 0$$

Note que não é mesmo que testar H_0 : $\beta_1 = \beta_2 = 0$

Não é um teste F!!!

O teste deve ser reescrito como

$$\begin{cases} H_0: 0 \cdot \alpha + 1 \cdot \beta_1 + 1 \cdot \beta_2 = 0 \\ H_A: 0 \cdot \alpha + 1 \cdot \beta_1 + 1 \cdot \beta_2 < 0 \end{cases} \begin{cases} H_0: \mathbf{c}' \mathbf{\beta} = \mathbf{\theta} \\ H_A: \mathbf{c}' \mathbf{\beta} < \mathbf{\theta} \end{cases}$$

A estatística de teste a ser calculada é $t = \frac{\mathbf{c'b} - \mathbf{\theta}}{\sqrt{\hat{\mathbf{V}}(\mathbf{c'b})}}$.

A matriz \mathbf{c}' é formada pelas constantes que multiplicam α , β_1 e β_2 na hipótese de teste. Assim, $\mathbf{c}' = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$.

Matriz
$$\mathbf{b} = \begin{pmatrix} 8 \\ 0,1 \\ -2,5 \end{pmatrix}$$

Logo,
$$\mathbf{c'b} = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 8 \\ 0,1 \\ -2.5 \end{pmatrix} = -2,4$$
.

O valor de θ corresponde à constante que aparece no membro direito da hipótese nula (ou da hip. alternativa, já que se trata do mesmo valor) depois que ela foi reorganizada. Como neste exercício $H_0: 0 \cdot \alpha + 1 \cdot \beta_1 + 1 \cdot \beta_2 = 0$, $\theta = 0$.

Assim, temos
$$t = \frac{\mathbf{c'b} - \mathbf{\theta}}{\sqrt{\hat{\mathbf{V}}(\mathbf{c'b})}} = \frac{-2, 4 - 0}{\sqrt{\hat{\mathbf{V}}(\mathbf{c'b})}}.$$

Para calcular $\hat{V}(\mathbf{c}'\mathbf{b})$ devemos utilizar a fórmula $\hat{V}(\mathbf{c}'\mathbf{b}) = \mathbf{c}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{c} \cdot s^2$.

No item (a) do exercício obtivemos
$$(\mathbf{X}'\mathbf{X})^{-1} = \begin{pmatrix} 8,5 & -0,1 & -2,5 \\ -0,1 & 0,005 & 0 \\ -2,5 & 0 & 1 \end{pmatrix}$$
 e, no item (b), OMResíduos = $s^2 = 0.5$.

Logo,
$$\hat{\mathbf{V}}(\mathbf{c'b}) = \mathbf{c'}(\mathbf{X'X})^{-1}\mathbf{c} \cdot s^2 = (0 \ 1 \ 1) \cdot \begin{pmatrix} 8,5 & -0,1 & -2,5 \\ -0,1 & 0,005 & 0 \\ -2,5 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \cdot 0,5 = 0,5025.$$

Assim,
$$t = \frac{\mathbf{c'b} - \mathbf{\theta}}{\sqrt{\hat{\mathbf{V}}(\mathbf{c'b})}} = \frac{-2, 4 - 0}{\sqrt{0,5025}} = -3,386$$
.

O valor crítico de t a 1 gl e $\alpha = 5\%$ é 6,314. É necessário fazer a consulta da tabela considerando 2α , pois o teste é unilateral.

Logo,
$$RC =]-\infty, -6,314]$$
.

Como a estatística de teste calculada não pertence à RC, o teste não é significativo e não se rejeita H_0 .

Intervalo de confiança para um E(Y_h)

e) Estabeleça uma estimativa por intervalo com 90% de confiança para os gastos esperados de uma família com renda mensal de 50 (em centenas de reais) e que reside a dois quilômetros do supermercado mais próximo.

O modelo estimado no item (a) é $ga\hat{s}to = 8 + 0, 1 \cdot renda - 2, 5dist$.

Então, para $renda_h = 50$ e $dist_h = 2$, temos $gasto_h = 8 + 0.1 \cdot 50 - 2.5 \cdot 2 = 8$.

O IC para essa estimativa é dado por
$$\hat{Y}_h \pm \underbrace{t_0 \cdot \sqrt{\hat{V}(\hat{Y}_h)}}_{\text{Erro padrão de }\hat{Y}_h}$$
.

Primeiramente calculemos $\hat{\mathbf{V}}(\hat{Y}_h) = \mathbf{x}_h'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_h s^2$.

$$\mathbf{x_h} = \begin{pmatrix} 1 \\ X_{1h} \\ X_{2h} \end{pmatrix} = \begin{pmatrix} 1 \\ 50 \\ 2 \end{pmatrix}$$

Assim,
$$\hat{\mathbf{V}}(\hat{Y}_h) = \mathbf{x}_h' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_h s^2 = \begin{pmatrix} 1 & 50 & 2 \end{pmatrix} \cdot \begin{pmatrix} 8,5 & -0,1 & -2,5 \\ -0,1 & 0,005 & 0 \\ -2,5 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 50 \\ 2 \end{pmatrix} \cdot 0,5$$

$$\hat{\mathbf{V}}(\hat{Y}_h) = \begin{pmatrix} -1.5 & 0.15 & -0.5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 50 \\ 2 \end{pmatrix} \cdot 0.5$$

$$\hat{\mathbf{V}}\left(\hat{Y}_{h}\right) = 5 \cdot 0.5 \qquad \qquad \therefore \hat{\mathbf{V}}\left(\hat{Y}_{h}\right) = 2.5.$$

Então, o IC será
$$8 \pm t_0 \cdot \sqrt{2.5}$$
.

Considerando 1 gl (referente aos resíduos) e C=90% (o que implica que $\alpha = 10\%$), obtemos $t_0 = 6,314$.

Assim, o IC
$$\acute{e}$$
 8 \pm 9,98

Contribuição de um regressor para a SQRegressão

f) Determine o valor da contribuição da distância com relação ao supermercado sobre os gastos com alimentação.

Causas de Variação	Graus de liberdade (gl)	Soma de Quadrados (SQ)	Quadrados Médios (QM)			
Regressão	2	8,25	4,125			
Resíduo	1	0,50	0,50			
Total	3	8,75				
X_{I} renda familiar X_{2} distância Interação entre X_{I} e X_{2}						

Renda familiar

Distância

Como calcular o valor da contribuição da distância com relação ao supermercado sobre os gastos com alimentação?

Contribuição da distância (X_2) = SQRegressão $Y|X_1, X_2$ - SQRegressão $Y|X_1$

Regressão $Y|X_1$:

Y	X_1	у	x_1	$x_1 y$	x_1^2
4	10	+0,25 -1,75 -0,75 +2,25	-10	-2,5	100
2	20	-1,75	0	0	0
3	20	-0,75	0	0	0
6	30	+2,25	10	22,5	100
$\overline{Y} = 3,75$	$\overline{X}_1 = 20$			$\Sigma = 20$	$\Sigma = 200$

$$b = \frac{\sum x_1 y}{\sum x_1^2} = \frac{20}{200} = 0.1$$

$$\therefore$$
 SQRegressão $Y|X_1 = b \cdot \sum x_1 y = 0, 1 \cdot 20 = 2$

Então,

Contribuição da distância
$$(X_2)$$
 = SQRegressão $Y|X_1, X_2$ - SQRegressão $Y|X_1$ = 6,25

A contribuição da renda familiar sobre os gastos com alimentação é dada por:

Contribuição da renda familiar (X_1) = SQRegressão $Y|X_1, X_2$ - SQRegressão $Y|X_2$

Regressão $Y|X_2$:

Y	X_2	у	\mathcal{X}_2	x_2y	x_2^2
4	2	+0,25	-0,50	-0,125	0,25
2	3	-1,75	+0,50	-0,875	0,25
3	3	-0,75	+0,50	-0,375	0,25
6	2	+2,25	-0,50	-1,125	0,25
$\overline{Y} = 3,75$	$\overline{X}_2 = 2,5$			$\Sigma = -2.5$	$\sum = 1$

$$b = \frac{\sum x_2 y}{\sum x_2^2} = \frac{-2.5}{1} = -2.5$$

:. SQRegressão
$$Y|X_2 = b \cdot \sum x_2 y = -2.5 \cdot (-2.5) = +6.25$$

Então,

Contribuição da renda
$$(X_1) = \underbrace{\text{SQRegressão } Y | X_1, X_2}_{8.25} - \underbrace{\text{SQRegressão } Y | X_2}_{6.25} = 2$$

Para obter a contribuição que resulta da interação entre X_1 e X_2 , descontamos da SQRegressão $Y|X_1,X_2$ a contribuição direta de X_1 e de X_2 :

Contribuição resultante da interação entre
$$X_1$$
 e X_2 =
$$\underbrace{\text{SQRegressão } Y \big| X_1, X_2}_{8.25} - \underbrace{\text{Contribuição de } X_1}_{2} - \underbrace{\text{Contribuição de } X_2}_{6.25} = 0$$

De fato, calculando o coeficiente de correlação de linear entre X_1 e X_2 neste exercício, verificamos que este é igual a zero. Assim, se X_1 e X_2 não guardam associação linear entre si, não há como X_1 afetar linearmente Y por meio de X_2 , e nem de X_2 afetar linearmente Y por meio de X_1 .

Como proceder caso o modelo tenha mais regressores?

(Lista 2 – Exercício 7) Admite-se que as variáveis estão relacionadas de acordo com o modelo $Y_j = \alpha + \beta_1 X_{1j} + \beta_2 X_{2j} + \beta_3 X_{3j} + \mu_j$, em que os μ_j são variáveis aleatórias independentes, homocedásticas, com média zero e distribuição normal.

g) Determine a contribuição de cada variável para a soma de quadrados de regressão.

Contribuição de $X_1 = \text{SQRegressão } Y | X_1, X_2, X_3 - \text{SQRegressão } Y | X_2, X_3$

Contribuição de X_2 = SQRegressão $Y|X_1, X_2, X_3$ - SQRegressão $Y|X_1, X_3$

Contribuição de X_3 = SQRegressão $Y|X_1, X_2, X_3$ - SQRegressão $Y|X_1, X_2$

Contribuição resultante da interação entre X_1 , X_2 e X_3 =

SQRegressão $Y|X_1,X_2,X_3$ – Contrib. de X_1 – Contrib. de X_2 – Contrib. de X_3