Einführung in Sage - Einheit 2

Grundlagen, Symbolisches Rechnen, Gleichungen

Jochen Schulz

Georg-August Universität Göttingen

9. Februar 2010

Aufbau

1 Grundlagen von Sage

2 Symbolisches Rechnen I

Gleichungen

Aufbau

1 Grundlagen von Sage

2 Symbolisches Rechnen I

Gleichungen

3

Beispiel

Betrachte:

$$f = x^2-3*x-18$$

- Wie geht Sage mit der Unbekannten x um?
- Welchen Datentyp hat f?
- Was kann ich mit f machen?

Bezeichner

- Bezeichner sind Namen, wie z.B. x oder f. Sie können im mathematischen Kontext sowohl Variablen als auch Unbestimmte repräsentieren.
- Bezeichner sind aus Buchstaben, Ziffern und Unterstrich _ zusammengesetzt.
- Sage unterscheidet zwischen Groß- und Kleinschreibung.
- Bezeichner dürfen nicht mit einer Ziffer beginnen

Beispiele

- zulässige Bezeichner: x, f, x23, _x_1
- unzulässige Bezeichner: 12x, p~, x>y, Das System

5

Wert eines Bezeichners

- Der Wert eines Bezeichners ist ein Objekt eines bestimmten Datentyps.
- Ein Datentyp ist durch seine Eigenschaften gegeben.
 Beispiel: Natürliche Zahlen, rationale Zahlen, Bezeichner,
 Zeichenketten, ...
- Ein Objekt ist eine Instanz (Einheit) eines Datentyps.

Zuweisungsoperator =

- Die Operation bez=wert weist dem Bezeichner bez den Wert wert zu.
- func(arg)=expr(arg) definiert die Funktion func mit dem Argument arg und weist dieser den Ausdruck expr zu, der von arg abhängen sollte
- Warnung: Unterscheiden Sie stets zwischen dem Zuweisungsoperator
 und dem logischen Operator
- Löschen von Zuweisungen/Variablen: reset('bezeichner')

Beispiele: Zuweisung

```
N=6; N
```

6

$$x,y = var('x,y'); f = x+2*x*x-y; g(x) = x^2; f,g$$

$$(2*x^2 + x - y, x \mid --> x^2)$$

$$(pi, -1)$$

Beispiele: Auswertung

```
var('a'); f(x) = x*x-3*x-a

x \mid --> x^2 - a - 3*x
```

```
f(1)
```

```
f(1,a=2)
```

-4

Auswertung

- Der *Bezeichner* ist der Name einer Unbekannten.
- Die Auswertung eines Bezeichners erfolgt ohne die Benutzung von bekannten Zuweisungen.
- Der Wert bezeichnet die Auswertung zum Zeitpunkt der Zuweisung.

Beispiele für Datentypen

```
type (5)
   <type 'sage.rings.integer.Integer'>
f = x^2-3*x-18; type(f)
   <type 'sage.symbolic.expression.Expression'>
type(x)
   <type 'sage.symbolic.expression.Expression'>
f+f
2*x^2 - 6*x - 36
```

Einige Datentypen

Тур	Bedeutung	Beispiel
integer	ganze Zahlen	-3,0,100
rational	rationale Zahlen	7/11
float	Gleitpunktzahl	0.123
complex	komplexe Zahlen	complex(1,3)
expression	symbolische Ausdrücke	x+y
bool	logische Werte: true/false	bool(1<2)

Operatoren

- Typische Operatoren sind +,-,*,/,...
- In Sage werden Objekte immer durch Funktionen miteinander verbunden.
- Bei Kombination verschiedener Operatoren gelten die üblichen Regeln der Bindungsstärke (Punktrechnung vor Strichrechnung); Die Ordnung kann durch Klammersetzung geändert werden.

Wichtige mathematische Operatoren

Operator/Funktion	Erklärung	
+	Addition	
-	Subtraktion	
*	Multiplikation	
/	Division	
^	Potenz	
%	Rest bei Division	
<pre>factorial()</pre>	Fakultät	

Zerlegen von Ausdrücken

- Viele Ausdrücke sind zusammengesetzt. Ihre Bausteine heißen Operanden.
- Durch Ausdruck.nops() erhält man die Anzahl der Operanden.
- Durch Ausdruck.operands() erhält man alle Operanden
- Mittels Ausdruck.has(a) kann untersucht werden, ob a ein Operand vom Ausdruck ist.
- Die Befehle beziehen sich jeweils auf die automatisch vereinfachten Objekte.

Beispiele I ???

```
f := plus(a,b,c)
   a + b + c
nops(f), op(f), op(f,2)
   3, a, b, c, b
op(f,0)
   _plus
has(f,a), has(f,a+b)
```

TRUE, FALSE

Beispiele II

```
([x*z, 3*x, sqrt(y)], 3*x, 2)
```

python grundlagen (lists, sets, for, while, if)

Automatische Vereinfachung

Sage führt oft automatische Vereinfachungen durch. Ansonsten muß der Benutzer gezielt Vereinfachungen anfordern.

```
sin(15*pi), exp(0)
```

(0, 1)

```
2*Infinity-5
```

+Infinity

$$y = (-4*x+x^2+4)*(7*x+x^2+12); y$$

$$(x^2 - 4*x + 4)*(x^2 + 7*x + 12)$$

y.full_simplify()

$$x^4 + 3*x^3 - 12*x^2 - 20*x + 48$$

Aufbau

Grundlagen von Sage

2 Symbolisches Rechnen I

Gleichungen

Verbinden von Ausdrücken

Ausdrücke können beliebig addiert, subtrahiert, multipliziert und dividiert werden.

Definition

$$var('x,y'); f = x*x+3*x+y; g = x-y$$

Potenz

f^g

$$(x^2 + 3*x + y)^(x - y)$$

Verbinden von Ausdrücken II

Addition / Subtraktion

$$(x^2 + 4*x, x^2 + 2*x + 2*y)$$

Multiplikation / Division

```
f*g, f/g
((x - y)*(x^2 + 3*x + y), (x^2 + 3*x + y)/(x - y))
```

collect()

Durch a.collect(Unbestimmte) wird der Ausdruck a bzgl. der Unbestimmten sortiert.

```
f = a*x^2+a*x+x^3+sin(x)+b*x+4*x+x*sin(x):
f.collect(x)
```

$$a*x^2 + x^3 + (a + b + sin(x) + 4)*x + sin(x)$$

```
f.collect(x*sin(x))
```

$$a*x^2 + x^3 + a*x + b*x + x*sin(x) + 4*x + sin(x)$$

Durch a.combine() wird der Ausdruck durch die Potenzgesetze zusammengefaßt.

$$x^(a + b)$$

expand()

Ausmultiplizieren von Ausdrücken erfolgt durch a.expand() und a.expand_trig().

```
expand((x+2)^4)
```

$$x^4 + 8*x^3 + 24*x^2 + 32*x + 16$$

```
(sin(x+y)).expand_trig()
```

```
sin(x)*cos(y) + sin(y)*cos(x)
```

expand() bei Gleichungen

```
a = (16*x-13)^2 == (3*x+5)^2/2
a.expand()
```

$$256*x^2 - 416*x + 169 == 9/2*x^2 + 15*x + 25/2$$

$$256*x^2 - 416*x + 169 == 1/2*(3*x + 5)^2$$

$$(16*x - 13)^2 == 9/2*x^2 + 15*x + 25/2$$

factor()

Der Befehl factor(Ausdruck) faktorisiert Polynome und Ausdrücke.

- Sage faktorisiert nur, wenn die resultierenden Koeffizienten rationale Zahlen sind.
- Auch anwendbar auf rationale Funktionen. Es wird ein gemeinsamer Hauptnenner gesucht.

```
factor(x^2-2), factor(x^2-9/4)
```

$$(x^2 - 2, 1/4*(2*x - 3)*(2*x + 3))$$

factor(2 -
$$2/(x^2-1)$$
)

$$2*(x^2 - 2)/((x - 1)*(x + 1))$$

partial_fraction()

Durch a.partial_fraction() wird ein rationaler Ausdruck in eine Summe rationaler Terme zerlegt, in denen jeweils der Zählergrad kleiner als der Nennergrad ist. (Partialbruchzerlegung)

```
f = x^2/(x^2-1); f.partial_fraction()

1/2/(x-1) - 1/2/(x+1) + 1
```

```
1/2/(x - 1) - 1/2/(x + 1) + 1
f = (x^2+2*x+3)/(x^3+4*x^2+5*x+2); f
(x^2 + 2*x + 3)/(x^3 + 4*x^2 + 5*x + 2)
```

Simplify

- Durch simplify_<target>(f) wird versucht den Ausdruck f zu vereinfachen. target entspricht verschiedenen Vereinfachungen.
- Mögliche target sind trig, rational, radical, factorial, full

$$2*(x^2 - 2)/(x^2 - 1)$$

Beispiele - Simplify I

```
f = x/(x+y)+y/(x+y)-\sin(x)^2-\cos(x)^2
f.simplify()
```

```
-\sin(x)^2 - \cos(x)^2 + x/(x + y) + y/(x + y)
```

```
g = sqrt(997)-(997^3)^(1/6)
g.simplify()
```

0

Beispiele - Simplify II

```
(tan(x)).simplify_trig()
```

```
sin(x)/cos(x)
```

```
a = (2^{(1/3)}+4^{(1/3)})^3-6*(2^{(1/3)}+4^{(1/3)})-6
a.simplify_full()
```

0

Aufbau

Grundlagen von Sage

2 Symbolisches Rechnen I

Gleichungen

Gleichungen

lineares Beispiel

```
var('x,y')
Gleichungen = [x+y == 1, x-y == 1]
solve(Gleichungen,x,y)
```

```
[[x == 1, y == 0]]
```

nichtlineares Beispiel

```
Gleichungen1 = [x+y == 1,(x-y)^2 == 1]
solve(Gleichungen1,x,y)
```

```
[[x == 0, y == 1], [x == 1, y == 0]]
```

Vergleiche

- Der Operator == vergleicht zwei Objekte.
- a==b ist wahr (richtig), wenn a und b die gleichen Auswertungen besitzen (und vom gleichen Typ sind).
- Zur Überprüfung von Aussagen gibt es die Funktion bool(Ausdruck). Sie liefert als Ergebnis True oder False.
- Die inverse Operation zu '==' ist '<>', also a<>b ist True, falls a nicht gleich b ist.

Beispiele - Vergleiche I

```
bool(4-3==1)
```

True

```
bool(4*x==x); x=0; bool(4*x==x)
```

False True

```
bool(x==0); bool(x<>0)
```

True False

Beispiele - Vergleiche II

```
bool(0.5==1/2)
```

True

??

??

Lösen von Gleichungssystemen

- solve ist der Befehl zum Lösen von Gleichungen und Gleichungssystemen.
- Der Befehl ist von der Form solve(Gleichungen, Variablen, solution_dict).
- Gleichungen kann ein System von Gleichungen sein.
- Variablen gibt an, wonach aufgelöst wird.
- Bei einzelnen Gleichungen wird der Lösungswert zurückgegeben. Bei mehreren Gleichungen wird ein System äquivalenter Gleichungen zurückgegeben.
- Mit multiplicities=True erhält man alle möglichen Lösungen.
- solution_dict=true gibt die Lösung als Dictonary zurück (Dazu später mehr)

Beispiele - Solve I

solve($x^2+x == y/4,x$)

```
[x == -1/2*sqrt(y + 1) - 1/2, x == 1/2*sqrt(y + 1) -
    1/27
solve(f == 0, x)
 [x == -I, x == I, x == 1]
solve(f == 0, x, multiplicities=True)
 ([x == -I, x == I, x == 1], [1, 1, 5])
```

Beispiele - Solve II

```
assume(x>0); solve(x^2+x == y/4, y)
  [y == 4*x^2 + 4*x]
solve([x^2-y^2 == 0],[x,y])
 ([x == -y, x == y], [1, 1])
solve([x^2-y^2 == 0, x+y == 1],x,y)
   \{[x = 1/2, y = 1/2]\}
```

Numerisches Lösen von Gleichungssystemen

```
(x == sin(x)).find_root(-2,2)
0.0
```