Statistical methods for machine learning

Mauro Tellaroli

Indice

	Intr	ntroduzione						
	1.1	1 Definizioni fondamentali						
		1.1.1 <i>I</i>	Label set $\mathcal Y$					
			Loss function ℓ					
			Data domain $\mathcal X$					
			Predittori f					
		1.1.5 E	Esempi					
			Test set e test error					
			Learning algorithm A					
			Training error ℓ_S					
	1.2		al Risk Minimization (ERM)					
			Definizione					
			Predittori con test error elevato					
			Overfitting e underfitting					
			Etichette rumorose					
;	Gli algoritmi Nearest Neighbor							
	2.1	_	Neighbor (NN)					
	2.1		Definizione					
			Efficienza ed efficacia					
	2.2		est Neighbor $(k-NN)$					
	2.2		Definizione					
			Efficienza ed efficacia					
		Z.Z.Z I	Enicienza ed enicacia					
	Tree Predictors							
	3.1	Definizio	one					
	3.2	Costruzi	ione di un tree predictor					
			dea generale					
			Minimizzazione del training error					

1 Introduzione

1.1 Definizioni fondamentali

La data inference è lo studio dei metodi che utilizzano i dati per predirre il futuro. Il Machine Learning è uno strumento potente che può essere usato per risolvere una grossa parte dei problemi di data inference, inclusi i seguenti:

- Clustering: raggruppare i data points in base alle loro similarità;
- Prediction: assegnare delle etichette (label) ai data points;
- **Generation**: generare nuovi data points;
- Control: eseguire una sequenza di azioni in un ambiente con l'obiettivo di massimizzare una nozione di utilità.

Con data point si intende una serie di informazioni legate ad un unico elemento; un'analogia può essere un record in un database.

Gli algoritmi che risolvono una *learning task* in base a dei dati già semanticamente etichettati lavorano in modalità *supervised learning*. A etichettare i dati saranno delle persone o la natura. Un esempio dell'ultimo caso sono le previsioni del meteo. D'altra parte, gli algoritmi che utilizzano i dati senza la presenza di etichette lavorano in modalità *unsupervised learning*.

In questo corso ci si focalizzerà sul *supervised learning* e la progettazione di sistemi di *machine learning* il cui obiettivo è apprendere dei **predittori**, ovvero funzioni che mappano i *data points* alla loro etichetta.

1.1.1 Label set \mathcal{Y}

Verrà usata \mathcal{Y} per indicare il *label set*, ovvero l'insieme di tutte le possibili etichette di un *data* point. Le etichette potranno essere di due tipi differenti:

- 1. Categoriche ($\mathcal{Y} = \{\text{sport}, \text{politica}, \text{economia}\}$): si parlerà di problemi di classificazione;
- 2. Numeriche $(\mathcal{Y} \subseteq \mathbb{R})$: si parlerà di problemi di regressione.

È importante sottolineare come la reale differenza tra le due tipologie di etichetta sia il significato e non la sua rappresentazione in quanto, si potrà sempre codificare un'etichetta categorica in un numero.

A sottolineare ciò è il fatto che nella regressione l'errore è tipicamente una funzione della differenza $|y-\hat{y}|$, dove \hat{y} è la predizione di y. Nella classificazione, invece, l'errore è tipicamente binario: predizione corretta $(\hat{y}=y)$ o errata $(\hat{y}\neq y)$.

Quando ci sono solo due possibili etichette ($|\mathcal{Y}| = 2$), si ha un **problema di classificazione** binario e, convenzionalmente, verrà usata una codifica numerica $\mathcal{Y} = \{-1, 1\}$.

1.1.2 Loss function ℓ

Come già visto precedentemente, si vuole misurare l'errore che un predittore commette su una determinata predizione. Per farlo si userà una **funzione di loss** ℓ non negativa che misurerà la discrepanza $\ell(y,\hat{y})$ tra l'etichetta predetta \hat{y} e quella corretta y. Si assumerà sempre $\ell(y,\hat{y}) = 0$ quando $\hat{y} = y$.

La funzione di loss più semplice per la classificazione è la **zero-one loss**:

$$\ell(y, \hat{y}) = \begin{cases} 0 & y = \hat{y} \\ 1 & \text{altrimenti} \end{cases}$$

Nella regressione, le tipiche funzioni di loss sono:

• la **absolute loss**: $\ell(y, \hat{y}) = |y - \hat{y}|$

• la quadratic loss: $\ell(y, \hat{y}) = (y - \hat{y})^2$

In alcuni casi può essere conveniente scegliere l'etichetta predetta da un insieme \mathcal{Z} diverso da \mathcal{Y} . Per esempio, si consideri il problema di assegnare una probabilità $\hat{y} \in (0,1)$ all'evento y = "pioverà domani". In questo caso, $\mathcal{Y} = \{$ "piove", "non piove" $\}$ e $\mathcal{Z} = (0,1)$. Indicando questi due eventi con 1 (piove) e 0 (non piove), si può usare una funzione di loss per la regressione, come la absolute loss:

$$\ell(y, \hat{y}) = |y - \hat{y}| = \begin{cases} 1 - \hat{y} & y = 1 \\ \hat{y} & y = 0 \end{cases}$$
 (piove) (non piove)

Per penalizzare maggiormente le predizioni che distano troppo dalla realtà, si può usare una *logarithmic loss*:

$$\ell(y, \hat{y}) = \begin{cases} \ln \frac{1}{\hat{y}} & y = 1 & \text{(piove)} \\ \ln \frac{1}{1 - \hat{y}} & y = 0 & \text{(non piove)} \end{cases}$$

Figura 1: Confronto tra absolute loss e logarithmic loss; a sinistra il caso y = 0, a destra y = 1.

Si noti in figura 1 come la *logarithmic loss* tenda ad infinito quando la predizione è opposta all'etichetta reale:

$$\lim_{\hat{y} \to 1^{-}} \ell(0, \hat{y}) = \lim_{\hat{y} \to 0^{+}} \ell(1, \hat{y}) = +\infty$$

In pratica questo previene l'utilizzo di predizioni \hat{y} troppo sicure, quindi troppo vicine a zero o uno.

1.1.3 Data domain X

Verrà usata \mathcal{X} per indicare l'insieme dei data points; ogni suo punto $x \in \mathcal{X}$ è tipicamente un record di un database formato da feature:

$$x = (x_1, \ldots, x_d)$$

Spesso un data point può essere codificato come un vettore i cui elementi sono le sue feature. Questa codifica risulta naturale in presenza di quantità omogenee, come i pixel di un'immagine o una lista di occorrenze di parole in un testo. Quando invece i dati presenti utilizzano unità di misura differenti, come "età" e "altezza", la codifica non risulta più immediata. Ci sarà bisogno di una procedura che codifichi i dati in modo da ottenere uno spazio vettoriale omogeneo e coerente con i dati iniziali.

In questo corso si assumerà che i dati possano essere rappresentati da vettori di numeri:

$$\mathcal{X} \equiv \mathbb{R}^d$$

1.1.4 Predittori f

Un **predittore** è una funzione $f: \mathcal{X} \to \mathcal{Y}$ che mappa i *data points* alle etichette (o $f: \mathcal{X} \to \mathcal{Z}$). Sì può quindi dire che in un problema di predizione l'obiettivo è ottenere una funzione f che genera delle predizioni $\hat{y} = f(x)$ tali che $\ell(y, \hat{y})$ sia basso per il maggior numero di punti $x \in \mathcal{X}$ osservati. In pratica, **la funzione** f è definita da un certo numero di parametri in un dato modello. Un esempio sono i parametri di una rete neurale.

1.1.5 Esempi

Nel supervised learning un **esempio** è una coppia (x, y) dove x è un data point e y la sua reale etichetta.

In alcuni casi x ha un'unica y, come nel caso in cui y rappresenta una proprietà oggettiva di x; in altri casi, invece, x può avere diverse y associate, come quando le y sono soggettivamente assegnate da persone.

1.1.6 Test set e test error

Per poter stimare la qualità di un predittore si usa un insieme di esempi detto test set:

$$\{(x'_1, y'_1), \dots, (x'_n, y'_n)\}$$

Data una loss function ℓ , il test set viene usato per calcolare il test error di un predittore f:

$$\frac{1}{n} \sum_{t=1}^{n} \ell(\underbrace{y'_t}, \overbrace{f(x'_t)})$$

Il test error ha quindi lo scopo di calcolare la prestazione media del predittore su dei dati reali.

1.1.7 Learning algorithm A

Si definisce training set S un insieme di esempi:

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}\$$

che viene usato dal *learning algorithm* A per produrre un predittore A(S). Informalmente, il *learning algorithm* "impara" dal *training set*.

$$\underbrace{\{(x_1,y_1),\ldots,(x_m,y_m)\}}_{S} \longrightarrow \boxed{A} \longrightarrow A(S) = f: \mathcal{X} \to \mathcal{Y}$$

Il test set e il training set vengono solitamente prodotti assieme attraverso un processo di collezione dati e etichettamento. Dato l'insieme di esempi preparati, questo verrà partizionato in test set e training set, tipicamente tramite una divisione casuale. Obiettivo del corso è lo sviluppo di una teoria che ci guidi nella progettazione di learning algorithm che generano predittori con un basso test error.

1.1.8 Training error ℓ_S

Sia $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ il training set; viene definito, equivalentemente al test error, il training error:

$$\ell_S(f) = \frac{1}{m} \sum_{t=1}^{m} \ell(y_t, f(x_t))$$

Un approccio intuitivo alla progettazione di learning algorithm è quello di assumere che il training error $\ell_S(f)$ del predittore f sia correlato con il suo test error.

1.2 Empirical Risk Minimization (ERM)

1.2.1 Definizione

Sia \mathcal{F} un insieme di predittori e ℓ una loss function. L'empirical risk minimizer (ERM) è il learning algorithm A che restituisce un predittore in \mathcal{F} che minimizza il training error:

$$A(S) \in \operatorname*{argmin}_{f \in \mathcal{F}} \ell_S(f)$$

Si noti come A(S) appartenga e non uguagli il minimo; questo perchè ci potrebbero essere più $f \in \mathcal{F}$ che minimizzano $\ell_S(f)$.

1.2.2 Predittori con test error elevato

Quando in \mathcal{F} tutti i predittori hanno un *test error* alto, ERM produrrà un pessimo predittore. Per trovare un buon predittore, ovvero un predittore con un *test error* basso, ci sarà quindi bisogno che \mathcal{F} sia sufficientemente grande.

Tuttavia, se \mathcal{F} è troppo grande, anche in questo caso verrà prodotto un pessimo predittore. Un esempio è il seguente.

Si consideri il seguente problema "giocattolo":

$$\mathcal{Y} = \{-1, 1\}$$
 $\mathcal{X} = \{x_1, x_2, x_3, x_4, x_5\}$

Si prenda l'insieme \mathcal{F} contenente un classificatore $f:\mathcal{X}\to\mathcal{Y}$ per ognuna delle possibili combinazioni di etichettamento dei cinque *data points*. \mathcal{F} sarà quindi formata da $2^5=32$ classificatori:

 $\mathcal{F} = \{f_1, \dots, f_{32}\}$

Si supponga che il training set S contenga solo tre data points qualsiasi e il test set contenga gli altri due. Sia f^* il predittore usato per etichettare i dati che quindi avrà zero test e training error; ogni etichetta y_t sarà quindi ottenuta da f^* :

-1

-1

$$y_t = f^*(x_t) \quad \forall t = 1, \dots, 5$$

Per rendere l'idea, si prenda come esempio:

$$f^* = f_3$$

$$S = \{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}$$

$$= \{(x_1, 1), (x_2, 1), (x_3, 1)\}$$

Nonostante ad avere test error nullo sia solo f_3 , ad avere il training error nullo sono i quattro classificatori che hanno $y_1, y_2, y_3 = 1$ ovvero f_1, f_2, f_3, f_4 . Questo perchè il training set S contiene solo i primi 3 data points.

Siamo quindi nella situazione in cui ERM trova più predittori con ℓ_S minimo e non ha abbastanza informazioni per capire quale di questi sia migliore a livello di $test\ error$.

Il problema dell'esempio appena visto è che \mathcal{F} è troppo grande rispetto al *training* set. La domanda che sorge spontanea è quindi: Quanto deve essere grande \mathcal{F} per poter ottenere un buon predittore tramite ERM?

La teoria dell'informazione ci suggerisce che S debba avere cardinalità $\log_2 |\mathcal{F}|$ o, viceversa, \mathcal{F} debba avere cardinalità 2^m . Quindi, nell'esempio di prima, il training set avrebbe dovuto contenere almeno $\log_2 |\mathcal{F}| = 5$ data points.

1.2.3 Overfitting e underfitting

I due eventi visti nella sezione precedente, che portano alla generazione di un predittore con test set elevato, vengono chiamati:

- Underfitting: si verifica quando il training error è elevato;
- Overfitting: si verifica quando il training error è basso ma il test error è alto.

Quando A è ERM e S ha dimensione fissata |S| = m:

- Ci si aspetta overfitting quando $\log_2 |\mathcal{F}| \gg m$;
- Ci si aspetta underfitting quando $\log_2 |\mathcal{F}| \ll m$.

1.2.4 Etichette rumorose

Il fenomeno dell'overfitting spesso accade quando le etichette sono rumorose, ovvero quando le etichette y non sono deterministicamente associate con i data points x. Questo può accadere per i seguenti motivi (non mutuamente esclusivi tra loro):

- 1. **Incertezza umana**: se ad etichettare S sono delle persone, ci sarà dell' incertezza in quanto persone diverse potrebbero avere opinioni diverse;
- 2. **Incertezza epistemica**: ogni *data point* è rappresentato da un vettore delle *feature* che non contiene abbastanza informazioni per determinare univocamente l'etichetta;
- 3. **Incertezza aleatoria**: il vettore delle *feature* che rappresenta il *data point* è ottenuto attraverso delle misurazioni rumorose.

Le etichette rumorose portano all'overfitting perchè possono ingannare l'algoritmo su quale sia la "vera" etichetta di una certo data point.

2 Gli algoritmi Nearest Neighbor

2.1 Nearest Neighbor (NN)

2.1.1 Definizione

Verrà introdotto ora l'algoritmo di **Nearest Neighbor** (NN) per la classificazione binaria con feature numeriche:

$$\mathcal{X} = \mathbb{R}^d \qquad \qquad \mathcal{Y} = \{-1, 1\}$$

NN non è un'istanza di ERM in quanto non punta a minimizzare ℓ_S .

L'idea di NN è la sueguente:

- Predici ogni punto del training set con la propria etichetta;
- Predici gli altri punti con l'etichetta del punto del *training set* che è più vicino al punto interessato.

Più formalmente, dato un training set:

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}\$$

l'algoritmo $A_{\rm NN}$ genera un classificatore $h_{\rm NN}:\mathbb{R}\to\{-1,1\}$ definito come segue:

$$h_{\text{NN}}(x) = \text{etichetta } y_t \text{ del punto } x_t \in S \text{ più vicino a x}$$

Se a minimizzare la distanza con x sono più punti, si predirrà l'etichetta più presente tra i punti vicini. Se non c'è una maggioranza di etichette tra i punti più vicini si predirrà un valore di default $\in \{-1, 1\}$.

Presi due punti $x=(x_1,\ldots,x_d)$ e $x_t=(x_{t,1},\ldots,x_{t,d})$, la distanza $||x-x_t||$ verrà calcolata tramite la distanza euclidea:

$$||x - x_t|| = \sqrt{\sum_{i=1}^{d} (x_i - x_{t,i})^2}$$

Ogni classificatore binario $f: \mathbb{R}^d \to \{-1,1\}$ partiziona \mathbb{R}^d in due regioni (come mostrato in figura 2):

$${x \in \mathbb{R}^d : f(x) = 1}$$
 , ${x \in \mathbb{R}^d : f(x) = -1}$

Figura 2: Diagramma di Voronoi in \mathbb{R}^2 ; tutti i punti x interni a una cella con centro $\bullet x_t$ sono tali che $h_{\text{NN}}(x) = y_t$

2.1.2 Efficienza ed efficacia

Siccome il funzionamento di NN implica la memorizzazione di tutto il training set, l'algoritmo non scala bene con il numero di |S| = m di training point. Inoltre, calcolare un qualsiasi $h_{\text{NN}}(x)$ è costoso, in quanto richiede di calcolare la distanza tra x e tutti gli altri punti di S; questo in \mathbb{R}^d comporta un costo di $\Theta(dm)$.

Infine, si noti come, vista la completa memorizzazione di S, NN generi sempre un classificatore h_{NN} con training error nullo:

$$\ell_S(h_{\rm NN}) = 0$$

2.2 k-Nearest Neighbor (k-NN)

2.2.1 Definizione

Partendo dagli algoritmi NN, si può ottenere una famiglia di algoritmi detta k-NN; il parametro k assume tipicamente i valori $k=1,3,5,\ldots$ con k<|S|.

Questi algoritmi sono definiti come segue: dato un training set S e un punto $x \in \mathcal{X}$, k-NN genererà un predittore h_{k -NN tale che:

 $h_{k\text{-NN}}(x) =$ etichetta y_t appartenente alla maggioranza dei k punti più vicini a x

Figura 3: Esempi di $h_{k\text{-NN}}$ con $\mathcal{X} = \mathbb{R}^2$; si noti come, con lo stesso training set, la predizione cambia al variare di k.

2.2.2 Efficienza ed efficacia

Complessità di h_{k-NN}

A livello di efficienza k-NN soffre degli stessi problemi di NN vista la memorizzazione dell'intero training set.

Per quanto riguarda la sua efficacia invece, k-NN non ha sempre un $training\ error$ nullo:

$$k = 1$$

$$k = 3$$

$$k = 5$$

$$\ell_S(h_{k\text{-NN}}) \ge 0$$

Figura 4: Esempi di h_{k-NN} con $\mathcal{X} = \mathbb{R}$.

Come si può infatti notare dalla figura 4, nei casi con k=3 e k=5 sono presenti punti errati (evidenziati in grassetto) considerati dal classificatore come *outlier*. Inoltre **al crescere di** k

cresce anche la "semplicità" del classificatore così come il numero di punti errati. L'estremo di ciò è quando k = |S|; in questo caso infatti $h_{k\text{-NN}}$ diventa un classificatore costante che predice sempre l'etichetta più presente in tutto S.

In un generico classificatore $h_{k\text{-NN}}$ tipicamente succede che:

- Se k è troppo basso si ottiene un classificatore che si "fida" troppo del training set, ottenendo quindi overfitting;
- Se k è troppo alto, si ottiene un classificatore troppo semplice, ottenendo underfitting.

Tutti i classificatori introdotti fino ad'ora sono classificatori binari ($|\mathcal{Y}| = 2$). Tuttavia k-NNpuò essere usato anche per:

- problemi di classificazione multiclasse ($|\mathcal{Y}| > 2$): si opera come nel caso binario, predicendo quindi l'etichetta più presente nei k punti più vicini;
- problemi di regressione $(\mathcal{Y} = \mathbb{R})$: si predice la media aritmetice delle etichette dei k punti più vicini.

3 Tree Predictors

3.1 Definizione

Come già visto, mentre alcuni tipi di dato hanno una naturale rappresentazione vettoriale $x \in \mathbb{R}^d$, altri non ce l'hanno. Un esempio possono essere dei record medici, dove i dati contengono i seguenti campi:

```
\begin{split} &\texttt{età} \in \{12,\ldots,90\} \\ &\texttt{fumatore} \in \{s\grave{\textbf{i}},no,ex\} \\ &\texttt{peso} \in [10,200] \\ &\texttt{sesso} \in \{M,F\} \\ &\texttt{terapia} \in \{antibiotici,cortisone,nessuna} \} \end{split}
```

Anche convertendo questi tipi di dato in dati numerici, gli algoritmi basati sulla distanza euclidea, come il k-NN, potrebbero non andare molto bene.

Per poter applicare la *data inference* su dati le cui *feature* variano in insiemi eterogenei $\mathcal{X}_1, \ldots, \mathcal{X}_d$, verrà introdotta una nuova famiglia di predittori: i *tree predictors*.

Un tree predictor è un albero ordinato e radicato dove ogni nodo può essere una **foglia** o un **nodo interno**. È importante sottolineare che in un albero ordinato i figli di ogni nodo sono anch'essi ordinati e quindi numerabili consecutivamente. In figura 5 viene mostrato un esempio di tree predictor binario le cui feature sono:

```
\begin{split} & \texttt{previsione} \in \{sole, nuvole, pioggia} \} \\ & \texttt{umidità} \in [0, 100] \\ & \texttt{vento} \in \{sì, no\} \end{split}
```


Figura 5: Esempio classico di tree classifier per una classificazione binaria.

Sia $\mathcal{X} = \mathcal{X}_1, \dots, \mathcal{X}_d$, dove ogni \mathcal{X}_i rappresenta il dominio dell'*i*-esimo attributo (o *feature*) x_i . Il tree predictor $h_T : \mathcal{X} \to \mathcal{Y}$ è un predittore definito da un albero T i cui nodi interni corrispondono a dei test e le cui foglie corrispondono a delle etichette $y \in \mathcal{Y}$.

Un test su un attributo i su un nodo interno con k figli è una funzione $f: \mathcal{X} \to \{1, \dots, k\}$. f mappa ogni elemento di \mathcal{X}_i a un nodo figlio. Due esempi possono essere i seguenti:

$$\mathcal{X}_{i} = \{a, b, c, d\} \qquad k = 3
f(x_{i}) = \begin{cases} 1 & x_{i} = c \\ 2 & x_{i} = d \\ 3 & x_{i} \in \{a, b\} \end{cases}$$

$$\mathcal{X}_{i} = [0, 100] \qquad k = 2
f(x_{i}) = \begin{cases} 1 & x_{i} \in [0, 70] \\ 2 & x_{i} \in (70, 100] \end{cases}$$

L'esempio di destra è riferito all'attributo umidità di figura 5.

La predizione $h_T(x)$ è calcolata come segue:

- 1. $v \leftarrow r$ $(r \ \text{è la radice di } T)$
- 2. se v è una foglia ℓ , si restituisce l'etichetta $y \in \mathcal{Y}$ associata a ℓ ;
- 3. altrimenti, sia $f: \mathcal{X}_i \to \{1, \dots, k\}$ il test associato a v, assegna $v \leftarrow v_j$ dove $j = f(x_i)$ e v_j indica il j-esimo figlio di v;
- 4. vai al punto 2.

Se $h_T(x)$ restituisce la foglia ℓ , si dirà che l'esempio x è indirizzato a ℓ .

3.2 Costruzione di un tree predictor

3.2.1 Idea generale

Dato un training set S, si vedrà ora come costruire un tree predictor. Per semplicità, si guarderà solo ad una classificazione binaria $\mathcal{Y} = \{-1, 1\}$ e verranno usati solo alberi binari completi, cioè alberi dove ogni nodo interno ha due figli.

L'idea è quella di far crescere l'albero partendo da un singolo nodo (che dovrà essere una foglia). L'etichetta di quest'unica foglia sarà l'etichetta $\hat{y} \in \mathcal{Y}$, ovvero l'etichetta più presente nel training set. Si avrà quindi inizialmente, un classificatore che assegna a tutti i data point l'etichetta \hat{y} . L'albero sarà fatto crescere scegliendo una foglia e rimpiazzandola con un nodo interno e due nuove foglie.

3.2.2 Minimizzazione del training error

Si chiami T l'albero cresciuto fino a un certo punto e h_T il classificatore corrispondente. Obiettivo è calcolare il contributo che ogni foglia dà al training error $\ell_S(h_T)$.

Presa una foglia ℓ , si vuole capire che etichetta assegnarle per minimizzare ℓ_S .

Si definisca:

$$S_{\ell} = \{(x_t, y_t) \in S : x_t \text{ è indirizzato a } \ell\}$$

 S_{ℓ} è quindi l'insieme degli esempi di training che sono indirizzati alla foglia ℓ . Si divida ora S_{ℓ} in due sottoinsiemi:

$$S_{\ell}^{+} = \{(x_t, y_t) \in S_{\ell} : y_t = +1\}$$

$$S_{\ell}^{-} = \{(x_t, y_t) \in S_{\ell} : y_t = -1\}$$

Il primo conterrà tutti gli esempi di training che vengono indirizzati a ℓ con etichetta positiva mentre il secondo con etichetta negativa. Di questi insiemi si prenda il loro numero di elementi:

$$N_{\ell}^{+} = |S_{\ell}^{+}| \qquad N_{\ell}^{-} = |S_{\ell}^{-}| \qquad N_{\ell} = |S_{\ell}|$$

È facile capire che se la maggior parte degli esempi di training che vengono indirizzati alla foglia ℓ hanno etichetta positiva, allora l'etichetta che bisognerà dare a ℓ , per minimizzare il suo errore ℓ_S , sarà l'etichetta positiva (chiaramente lo stesso discorso vale per l'etichetta negativa); questa intuizione può essere quindi usata per assegnare l'etichetta y_{ℓ} alla foglia ℓ nel seguente modo:

$$y_{\ell} = \begin{cases} +1 & N_{\ell}^{+} \ge N_{\ell}^{-} \\ -1 & \text{altrimenti} \end{cases}$$

Di conseguenza la foglia ℓ sbaglierà la sua previsione su min $\{N_{\ell}^+, N_{\ell}^-\}$ esempi di training. Per facilitare delle osservazioni successive moltiplichiamo e dividiamo per N_{ℓ} :

$$\min\left\{N_{\ell}^+,N_{\ell}^-\right\} = \min\left\{\frac{N_{\ell}^+}{N_{\ell}},\frac{N_{\ell}^-}{N_{\ell}}\right\}N_{\ell}$$

Quindi se il valore appena scritto è l'errore che una singola foglia ℓ fa, il training error sarà:

$$\ell_S(h_T) = \frac{1}{m} \sum_{\ell} \min \left\{ \frac{N_{\ell}^+}{N_{\ell}}, \frac{N_{\ell}^-}{N_{\ell}} \right\} N_{\ell}$$
$$= \frac{1}{m} \sum_{\ell} \psi \left(\frac{N_{\ell}^+}{N_{\ell}} \right) N_{\ell}$$

Dove viene introdotta la funzione ψ , definita in [0,1]:

$$\psi(a) = \min\left\{a, 1 - a\right\}$$

Si può facilmente intuire come N_{ℓ}^+/N_{ℓ} e N_{ℓ}^-/N_{ℓ} siano sempre compresi tra 0 e 1 in quanto rappresentano la percentuale di esempi positivi/negativi che raggiungono ℓ rispetto al totale degli esempi (sempre che raggiungono ℓ).

Esempio

Sia T l'albero di figura 6 e S il training set mostrato in tabella 1 (vengono mostrati solo gli esempi di S che sono indirizzati a ℓ' e ℓ''). Si deve decidere che etichette assegnare alle foglie ℓ' e ℓ'' ;

x_t	previsione	umidità	vento	y_t
x_1	sole	85	no	+1
x_2	sole	76	sì	-1
x_3	sole	55	sì	+1
x_4	sole	65	sì	-1
x_5	sole	82	sì	-1
x_6	sole	35	no	+1
x_7	sole	94	no	-1
x_8	sole	66	no	+1
x_9	sole	48	sì	+1

Tabella 1: Esempio di training set

Figura 6: Esempio di *tree classifier* "in costruzione".

Si prenda ℓ' :

$$S_{\ell'} = \{(x_3, +1), (x_4, -1), (x_6, +1), (x_8, +1), (x_9, +1)\} \quad N_{\ell'} = 5$$

$$S_{\ell'}^+ = \{(x_3, +1)(x_6, +1), (x_8, +1), (x_9, +1)\} \quad N_{\ell'}^+ = 4 \quad \frac{N_{\ell'}^+}{N_{\ell'}} = 0.8$$

$$S_{\ell'}^- = \{(x_4, -1)\} \quad N_{\ell'}^- = 1 \quad \frac{N_{\ell'}^-}{N_{\ell'}} = 0.2$$

L'ottanta percento degli esempi che raggiungono ℓ' ha etichetta positiva, si può quindi affermare che l'etichetta $y_{\ell'} = +1$.

Si prenda infine ℓ'' :

$$S_{\ell''} = \{(x_1, +1), (x_2, -1), (x_5, -1), (x_7, -1)\} \quad N_{\ell''} = 4$$

$$S_{\ell''}^+ = \{(x_1, +1)\} \qquad \qquad N_{\ell''}^+ = 1 \qquad \frac{N_{\ell''}^+}{N_{\ell''}} = 0.25$$

$$S_{\ell''}^- = \{(x_2, -1), (x_5, -1), (x_7, -1)\} \qquad \qquad N_{\ell''}^- = 3 \qquad \frac{N_{\ell''}^-}{N_{\ell''}} = 0.75$$

Il settantacinque percento degli esempi che raggiungono ℓ'' ha etichetta negativa, si può quindi affermare che l'etichetta $y_{\ell''} = -1$.