Amendments to the claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) An integrated circuit card, comprising:

an integrated circuit having a biometric voice sensor integrated into a portion of the integrated circuit, the biometric voice sensor comprising a pressure sensor and wherein the voice sensor is configured to detect the speech of a user and to produce a signal responsive to the speech of the user; and wherein the voice sensor is configured to detect the speech of a user and to produce a signal responsive to the speech of the user;

a memory for storing information indicative of at least one user's voice characteristics; and

a voice processing circuit integrated into a portion of the integrated circuit, wherein the voice processing circuit is configured to receive the signal from the biometric voice sensor—and to process the signal to extract the voice-characteristics representative of the user, to process the signal to detect characteristics of the at least one user's voice and to use a voice recognition technique to compare the detected voice characteristics with information stored in the memory, and to perform at least one task selected from the set including authenticating the user, identifying the user, executing a voice-transmitted command, encrypting a user's voice, and speech recognition.

2. (cancel)

3. (Currently Amended) The integrated circuit card of claim 21, further comprising means for establishing a data link to download data from which

the stored information is derived.

4. (Currently Amended) The integrated circuit card of claim 21, wherein the

integrated circuit card uses the stored information to authenticate the user.

 $5.\,$ (Previously Presented) The integrated circuit card of claim 4, wherein the

information is indicative of the voice characteristics of multiple users and

wherein the integrated circuit card is configured to authenticate each of the

multiple users.

6. (Previously Presented) The integrated circuit card of claim 5, wherein the

integrated circuit card contains user specific profile information for each of

the multiple users that enables user specific device functionality.

7. (Previously Presented) The integrated circuit card of claim 4, wherein the

integrated circuit is configured to authenticate a user of the integrated circuit card by comparing the characteristics of the voice sensor signal to

information stored in memory indicative of a predetermined password.

8. (Previously Cancelled)

9. (Previously Cancelled)

10. (Currently Amended) The integrated circuit card of claim $2\underline{1}$, wherein the

integrated circuit is configured to execute a voice-transmitted command from

the at least one user by comparing the characteristics of the voice sensor

Page 3 of 16

signal to information stored in the memory indicative of the voice

characteristics of the at least one user speaking the command.

11. (Currently Amended) The integrated circuit card of claim $2\underline{1}$, wherein the

integrated circuit is further configured to encrypt the voice sensor signal

using an algorithm.

12. (Currently Amended) The integrated circuit card of claim $2\underline{1}$, wherein the

integrated circuit is configured to recognize the content of the at least one

user's speech.

13. (Previously Presented) The integrated circuit card of claim 12, wherein

the recognized content is used to classify the at least one user's speech by

keywords.

14. (Previously Cancelled)

15. (Previously Cancelled)

16. (Currently Amended) The integrated circuit card of claim $4\underline{52}$, wherein

the pressure sensor includes a membrane that responds to a voice pressure

wave.

17. (Currently Amended) The integrated circuit card of claim $\pm \underline{16}$ wherein

the pressure sensor comprises a set of piezoelectric gauges arranged in

proximity to the membrane portion and configured to detect resistivity

changes induced by the voice pressure waves.

Page 4 of 16

- 18. (Previously Presented) The integrated circuit card of claim 17, wherein the gauges are connected in a Wheatstone bridge configuration.
- 19. (Currently Amended) The integrated circuit card of claim 152, wherein the pressure sensor comprises a first ring oscillator comprising an odd number of CMOS inverters and configured such that its output frequency increases when the pressure increases.
- 20. (Previously Presented) The integrated circuit card of claim 19, wherein the pressure sensor comprises a second ring oscillator comprising an odd number of CMOS inverter and configured such that its output frequency decreases when the pressure increases.
- 21. (Previously Presented) The integrated circuit card of claim 20, wherein the ratio of the first ring oscillator frequency and the second ring oscillator frequency is used to minimize temperature effects and optimize pressure sensitivity.
- 22. (Currently Amended) The integrated circuit card of claim 452, wherein the pressure sensor comprises a first capacitor and second capacitor.
- 23. (Previously Presented) The integrated circuit card of claim 22, wherein the capacitance of the first capacitor varies responsive to voice pressure waves and the capacitance of the second capacitor remains substantially constant responsive to voice pressure waves.
- 24. (Previously Presented) The integrated circuit card of claim 22, wherein first capacitor and second capacitor are connected in a half bridge

configuration and connected to a signal processing unit configured to produce a voltage signal indicative of the change in capacitance of first capacitor.

- 25. (Currently Amended) The integrated circuit card of claim 452, further comprising a compound in contact with the active layer wherein the compound transfers voice pressure waves to the sensitivity element of the pressure sensor.
- 26. (Previously Presented) The integrated circuit card of claim 25, wherein the compound comprises room temperature vulcanized silicon.
- 27. (Previously Presented) The integrated circuit card of claim 1, further comprising a communication interface unit comprising a portion of the integrated circuit and connected to the voice processing circuit, wherein the interface unit includes a serial interface for communicating information through contacts according to an at least one of an ISO and USB protocol.
- 28. (Previously Presented) The integrated circuit card of claim 1, further comprising a battery power source to power The device integrated circuit card.
- 29. (Previously Presented) The integrated circuit card of claim 1, further comprising a wireless port configured to receive an electromagnetic signal to power The device integrated circuit card.
- 30. (Currently Amended) The integrated circuit card of claim 1, wherein the communication interface unit further includes a wireless port for communicating information to and from The device the integrated circuit card in contactless applications.

31. (Currently Amended) A method of processing voice waves with an

integrated circuit card, comprising:

generating an electrical signal with a voice sensor of the integrated

circuit card responsive to speech spoken into the voice sensor, the voice sensor comprising a pressure sensor, and wherein generating the

electrical signal includes measuring variations in an electrical

parameter caused by a voice pressure wave modifying an electrical

characteristic of the pressure sensor of the integrated circuit;

analyzing the electrical signal with a signal processing circuit of the

integrated circuit card to detect characteristics of a user's voice; and

using a voice recognition technique to comparecomparing the detected

voice characteristics with information stored in a memory of the integrated circuit card and indicative of the user's voice, and to

perform an action selected from the set including authenticating the

user, identifying the user, executing a voice-transmitted command,

encrypting a user's voice, and speech recognition.

32. (Cancel)

33. (Cancel)

34. (Currently Amended) The method of claim 3331, wherein the action is

authenticating the user and wherein authenticating the user includes

comparing the characteristics of the voice sensor signal to information stored

in the memory indicative of the user speaking a password.

Page 7 of 16

- 35. (Cancel)
- 36. (Previously Cancelled)
- 37. (Cancel)
- 38. (Previously Cancelled)
- 39. (Previously Presented) The method of claim 31, wherein generating the electrical signal comprises using a first electrical parameter that increases with the voice pressure wave and a second electrical parameter that decrease or remains constant with the pressure wave and comparing the first and second parameters to determine the magnitude of the pressure wave.
- 40. (Original) The method of claim 39, wherein the first and second electrical signals comprise the voltage across first and second piezo resistors respectively.
- 41. (Original) The method of claim 39, wherein the first and second electrical signals are the capacitance of a first capacitor and the capacitance of a second capacitor respectively.
- 42. (Original) The method of claim 39, wherein the first and second electrical signals are the frequencies of first and second ring oscillators respectively.
- 43. (Original) The method of claim 31, further comprising, responsive to the comparison between the detected voice characteristics and the stored

information, enabling communication between the integrated circuit card and the external data processing system.

44. (Original) The method of claim 43, wherein communication between the processing system and the smart card is done via at least one of an ISO port, a USB port, and a wireless port.

45. (Previously Presented) The integrated circuit card of claim 16, wherein the membrane is micro-machined into the integrated circuit.

46. (Previously Presented) The integrated circuit card of claim 16 wherein the membrane has a thickness in the range of 10.0 to 25.0 micrometers.

47. (Previously Presented) The integrated circuit card of claim 15 wherein the pressure sensor comprising a set of pressure transducer.

48. (Previously Presented) The integrated circuit card of claim 47 wherein the pressure transducer is a piezoelectric gauge comprising of polysilicon resistors in the vicinity of the membrane.

49. (Cancel)

50. (new) The integrated circuit card of Claim 1, wherein the information stored in the memory is indicative of a user speaking a password and the integrated circuit is configured to authenticate a user by comparing the characteristics of the voice sensor signal to the information stored thereby determining whether the user is speaking the password.

51. (new) The integrated circuit card of Claim 1, wherein the stored

information identifies the user.

52. (new) The integrated circuit card of Claim 1, wherein the voice sensor

comprises a pressure sensor.

53. (new) The method of Claim 31, wherein generating the electrical signal

includes measuring variations in an electrical parameter caused by the voice

pressure wave modifying an electrical characteristic of a pressure sensor of

the integrated circuit.

54. (new) A portable device, comprising:

an integrated circuit having a biometric voice sensor integrated into a

portion of the integrated circuit, the biometric voice sensor comprising

a pressure sensor including a membrane that responds to a voice

pressure wave and wherein the voice sensor is configured to detect the

speech of a user and to produce a signal responsive to the speech of the

user; and

a voice processing circuit integrated into a portion of the integrated

circuit, wherein the voice processing circuit is configured to receive the signal from the biometric voice sensor and to process the signal to

extract the voice characteristics representative of the user.

55. (new) The portable device of Claim 54, wherein the portable device is an

integrated circuit card comprising a plastic frame in which the integrated

circuit is embedded.

Page 10 of 16