

East West University Department of Computer Science and Engineering Course Outline of CSE302 Fall 2024 Semester

Course: CSE302 Database Systems

Credits and Teaching Scheme

	Theory	Laboratory	Total
Credits	3	1.5	4.5
Contact	5 Hours/Week for 8 Weeks	4 Hours/Week	9 Hours/Week for 8 Weeks
Hours	+ Final Exam in the 9th	for 8 Weeks	+ Final Exam in the 9th
	Week		Week

Prerequisite

CSE106 Discrete Mathematics

Instructor Information

Instructor: Mahmuda Rawnak Jahan

Lecturer, Department of Computer Science and Engineering

Office: Room # 215

E-mail: mahmuda.jahan@ewubd.edu

Course Objective

This course introduces the fundamental concepts and practices of designing and implementing database systems. It also enables the student to design and perform complex query operations on relational databases. It builds the capability of optimizing the databases efficiently by applying different techniques. Knowledge of this course will be needed as prerequisite knowledge for future courses such as CSE 411 Software Engineering and Information System Design, CSE 435 Software Quality Assurance, CSE 436 Multimedia Design and Development, CSE464 Advanced Database System, CSE480 Web Database Programming.

Knowledge Profile

K4: Forefront engineering specialist knowledge for practice

K5: Engineering design

K6: Engineering practice (technology)

Learning Domains

Cognitive - C3: Applying, C4: Analyzing, C6: Creating

Psychomotor – P2: Manipulation, P3: Precision, P4: Articulation

Affective - A2: Responding

Program Outcomes (POs)

PO1: Engineering Knowledge

PO3: Design/Development of Solutions

PO5: Modern Tool Usage PO10: Communication

Complex Engineering Problem Solution

EP1: Depth of knowledge required

EP2: Range of conflicting requirements

EP3: Depth of analysis required

Complex Engineering Activities

EA1: Range of resources EA2: Level of interaction

Course Outcomes (COs) with Mappings

After completion of this course students will be able to:

СО	CO Description	PO	Learning Domains	Knowledge Profile	Complex Engineering Problem Solving/ Engineering Activities
CO1	Apply the basic concepts of relational database systems and formulate algebraic expressions for representing relations.	PO1	C3	K4	
CO2	Perform and analyze a wide range of data manipulation activities using a query language for solving database queries.	PO1	C3, C4	K4	
CO3	Create a relational data model using appropriate tools and justify the goodness of the model using other optimization techniques for database-oriented application.	PO3	C4, C6 A2	K5	EP1, EP2, EP3
CO4	Choose and justify appropriate tools for building a relational data model and create real-life, complex database applications.	PO5	P2, P3 C3, C4, C6	K6	EP1, EP2, EP3
CO5	Demonstrate skills, present concepts, and write reports to design, build and test a real-life, complex database application.	PO10	P3, P4 A2 C3, C6	K4, K5	EA1, EA2

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topics, Teaching	Teaching-	СО	Mark			СО	Assessment
	Learning			Learning Levels			(Mark)
	Method		C3	C4	C6		
Introduction to	Lectures	CO1				3	Mid Term
Database	and						Assessment
Management	discussions						(20)
Systems and	inside and						
Relational Model	outside the						
	class						
Writing Basic and	Do	CO1				7	1
Advanced Relational							
Algebra							
Writing Basic and	Do	CO2				5]
DDL and DML							
Queries, Aggregate							
Queries using SQL							
(Structured Query							
Language)							
Intermediate and	Do	CO2				5	
Advanced SQL							
Queries such as Join,							
nested subqueries,							
views, authorization.							
Designing a	Do	CO3				10	Final
Database using ER							Exam
and EER Model							(30)
Database	Do	CO3				7	
Normalization based							
on Functional							
Dependency,							
Boyce-Codd Normal							
Form		<u> </u>					
Database Indexing	Do	CO3				5	
and Hashing							
Techniques]
Transaction	Do	CO3				8	
Management and							
Concurrency Control							
Protocols							

Laboratory Experiments and Assessment Scheme

Experiment	Teaching-Le arning Method	CO	Mark of Cognitive Learning Levels		Mar Psycho O Lear	omo-t r	CO Mark	
						Levels		
			C3	C4	C6	P2	P3	
Introduction to oracle, SQL, simple DDL Commands	Lab Experiment and Result Analysis, Post-Lab Report	CO4						
Basic query pattern, single row function, Simple DML queries	Do	CO4						
Introduction to group by clause, aggregate function	Do	CO4						
Introduction to sub-query, Including constraints	Do	CO4						
Joining Multiple Tables, Introduction to view & sequence	Do	CO4						
Designing a Database using an ER model	Do	CO4						
Transforming an ER model into a Relational Schema	Do	C04						
User Access Control & Project template discussion	Do	CO4						
Lab Exercises (Total)		CO4						5
Final Lab Exam		CO4						10
Sessional (Lab) VIVA	Individual Lab VIVA	CO4						5
	Tot	al						20

Mini Projects

Mini Project	Teaching-Le arning Method	СО	Mark of Cognitive Learning Level		Mark of Psychomotor Learning Levels		Mark of Affective Learning Level	CO Mar k
			C3	C6	Р3	P4	A2	
Lab-based Mini Project Implementation Report and Presentation	Group-based moderately complex design project with	CO 4						10
Mini Project Reporting and Presentation	report writing and oral/poster presentation	CO 5						5
		To	tal					15

Overall Assessment Scheme

	CO-wise Breakdown					PO-wise Breakdown				
	CO 1	CO 2	CO 3	CO 4	CO 5	PO 1	PO 3	PO 5	PO1 0	Total
Class Test	2.5	2.5	5	0	0	5	5	0	0	10
Mid Term Assessment	10	10	0	0	0	20	0	0	0	20
Final Exam	0	0	30	0	0	0	30	0	0	30
Lab Performance, Lab Exam and Mini Project Implementatio n	0	0	0	30	0	0	0	30	0	30
Mini Project Presentation	0	0	0	0	5	0	0	0	5	5
Assignments	0	0	5	0	0	0	5	0	0	5
Total	12.5	12.5	35	30	10	25	40	30	5	100

Teaching Materials/Equipment

Text Book:

Avi Silberschatz, Henry F. Korth, S. Sudarshan, *Database System Concepts*, Seventh Edition, McGraw-Hill, ISBN 0-07-352332-1

Link: https://www.db-book.com/

Reference Book:

- Hector Garcia-Molina. Jeffrey D. Ullman and Jennifer Widom, *Database Systems: The Complete Book*, Stanford InfoLab (2nd edition)
- Thomas Connolly, Carolyn Begg, Database Systems: *A Practical Approach to Design, Implementation and Management*, Perason (6th edition)

Software/Tools:

- Oracle Database https://www.oracle.com/database/
- MySQL Database https://www.mysql.com/
- Other appropriate tools to design and develop a database application.

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
80 and above	A+	4.00	55-59	B-	2.75
75-79	A	3.75	50-54	C+	2.50
70-74	A-	3.50	45-49	С	2.25
65-69	B+	3.25	40-44	D	2.00
60-64	В	3.00	Below 40	F	0.00

Exam Dates

As per the schedule provided by the university.

Academic Code of Conduct

Academic Integrity:

Any form of cheating (physical/online), plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 10 minutes of the starting time.

^{*} Lecture Slides and Lab Manuals will be made available to the students during the class.

- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be NO make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss any exam, the student MUST get approval of makeup exam by written application to the Chairperson through the Course Instructor within 48 hours of the exam time. Proper supporting documents in favor of the reason of missing the exam have to be presented with the application.
- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. Students caught with cheat sheets in their possession, whether used or not; writing on the palm of hand, back of calculators, chairs or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee, etc. would be treated as cheating in the exam hall. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.