目次

- 考える状況
- 定式化
- 具体例

AiTachi, GitHub: tcbn-ai, Twitter: @tcbn_ai

1. 考える状況

- $\mathcal{H}=(\mathcal{V},\mathcal{E})$ で重み付きグラフが定義される。
 - $egin{aligned} \circ \ v \in \mathcal{V}:$ ホスト、 $(u,v) \in \mathcal{E}:$ ホスト間の接続関係 $(u,v \in \mathcal{V})$
 - \circ 重み $w_{u,v}\in\mathbb{R}$:エッジの影響度 (1 で正規化) $((u,v)\in\mathcal{E})$

AiTachi, GitHub: tcbn-ai, Twitter: @tcbn_ai

• あるホスト $v_0 \in \mathcal{V}$ からのパスの集合 S_A が与えられている。

$$\circ \ S_A = \{p_1, \ldots, p_n\}$$

• $p_i = \{(v_0, v_1), \ldots, (v_{\ell-1}, v_\ell)\}$ $(v_0 \in \mathcal{V}$ からのパス)

- 2人のプレイヤー A, D が存在し、以下のように振舞う。
 - 。 *D* は**パスを達成させないための**戦略をとる
 - 例:ファイアウォールなどのセキュリティ上の対策を選ぶ
 - \circ A は D の戦略の下で『一番良い』パスを選択する
 - 例:考えられる攻撃経路を選択する
- \Rightarrow A と D の間の相互作用は**ゲーム** $G=(\{A,D\},S_A imes S_D,U)$ として表現される。
- $S_A:A$ の戦略集合、 $S_D:D$ の戦略集合
- $ullet \ U(s)=(U_A(s),U_D(s)),\ s=(s_A,s_D)\in S_A imes S_D$

2. 定式化

2.1 戦略集合

A の戦略集合 S_A と D の戦略集合 S_D を

$$S_A = \{p_1, p_2, \ldots, p_n\}$$

$$S_D = \{d_1, d_2, \ldots, d_m\}$$

とする。ただし、 $p_i \in S_A$ はホスト $v_0 \in \mathcal{V}$ からのパス $\{(v_0,v_1),\ldots,(v_{\ell-1},v_\ell)\}$ とする。

2.2 利得

 $p_i \in S_A, d_i \in S_D$ に対して、 $U_A: S_A imes S_D o \mathbb{R}$ を以下で定義。

$$U_A(p_i,d_j)=f_A(p_i)-g_A(p_i,d_j)$$

- $f_A:S_A o\mathbb{R}:$ パスの深刻さ
 - 例:(重みの総和)/(パスの長さ)+(定数)
- $g_A:S_A\times S_D\to\mathbb{R}:$ 対策のパスへの影響
 - \circ 例: $g_A(p_i,d_j)>0\ \forall p_i\in S_A, orall d_j\in S_D$ で、より早く検知・遮断されると値が大きい

$$p_i \in S_A, d_i \in S_D$$
 に対して、 $U_D: S_A imes S_D o \mathbb{R}$ を以下で定義。

$$U_D(p_i,d_j)=f_D(p_i,d_j)-g_D(d_j)$$

- $f_D:S_A\times S_D\to\mathbb{R}$:対策の効果(パスを防ぐことができたか)
 - 例:より早く検知・遮断できると値が大きい
- $g_D:S_D o \mathbb{R}:$ 対策のコスト
 - \circ 例: $g_D(d_i)>0 \ orall d_i\in S_D$ で、コストが高いほど値が大きい

3. 具体例

グラフ $\mathcal{H}=(\mathcal{V},\mathcal{E})$ とパス p_1,p_2,p_3 が与えられているとする。

- $\mathcal{V} = \{1, 2, 3, 4, 5, 6\}$
- $\mathcal{E} = \{(1,2), (1,3), (2,4), (2,5), (3,6), (4,6), (5,6)\}$
- $ullet w_{1,2}=0.5, w_{1,3}=0.9, w_{2,4}=0.3, w_{2,5}=0.2, w_{3,6}=0.4, w_{4,6}=0.7, w_{5,6}=0.8$

- $p_1 = \{(1,2), (2,4), (4,6)\}$
- $p_2 = \{(1,2), (2,5), (5,6)\}$
- $p_3 = \{(1,3),(3,6)\}$

このグラフおよびパスは、以下のように図示される。

AiTachi, GitHub:<u>tcbn-ai</u>, Twitter: <u>@tcbn_ai</u>

プレイヤー A の戦略集合を、 $S_A = \{p_1, p_2, p_3\}$ とし、プレイヤー D の戦略集合を $S_D = \{d_1, d_2, d_3, d_4\}$ とする。 $p_i \in S_A$ に対して $f_A(p_i)$ を以下のように定義する。

$$f_A(p_1) = rac{0.5 + 0.3 + 0.7}{3} + 1 = 1.5$$

$$f_A(p_2) = rac{0.5 + 0.2 + 0.8}{3} + 1 = 1.5$$

$$f_A(p_3) = rac{0.9 + 0.4}{2} + 1 = 1.65$$

また、 $p_i \in S_A, d_j \in S_D$ に対して $g_A(p_i, d_j)$ および $f_D(p_i, d_j)$ を以下の表のように定義する。

$A \setminus D$	d_1	d_2	d_3	d_4
p_1	0	0.5	1.25	2.25
p_2	0	0.25	0.75	1.5
p_3	0	0.5	1.5	2.0

さらに、 $d_j \in S_D$ に対して $g_D(d_j)$ を以下のように定義する。

$$g_D(d_1) = 0$$

$$g_D(d_2)=0.25$$

$$g_D(d_3) = 0.75$$

$$g_D(d_4) = 2.0$$

以上より、利得は以下の表で表される。

	d_1	d_2	d_3	d_4
p_1	(1.5, 0)	(1.0, 0.25)	(0.25, 0.5)	(-0.75, 0.25)
p_2	(1.5, 0)	(1.25, 0)	(0.75, 0)	(0, -0.5)
p_3	(1.65, 0)	(1.15, 0.25)	(0.15, 0.75)	(-0.35, 0)

プレイヤーA,Dの利得行列 M_A,M_D は、

$$M_A = \left(egin{array}{cccc} 1.5 & 1.0 & 0.25 & -0.75 \ 1.5 & 1.25 & 0.75 & 0 \ 1.65 & 1.15 & 0.15 & -0.35 \ \end{array}
ight)$$

$$M_D = \left(egin{array}{cccc} 0 & 0.25 & 0.5 & 0.25 \ 0 & 0 & 0 & -0.5 \ 0 & 0.25 & 0.75 & 0 \end{array}
ight)$$

数値計算より、ナッシュ均衡は以下の4つ。

$$\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}\right), \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}\right), \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}\right), \left(\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}\right), \begin{pmatrix} 0.8\\0\\0.2\\0 \end{pmatrix}\right), \left(\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0.4\\0.6\\0\\0\\0 \end{pmatrix}\right).$$

結果

- プレイヤーAの最適な行動は、確率1で p_2 を選ぶこと
- プレイヤー D の最適な行動は以下。
 - 確率1でd₃を選ぶ
 - 確率 1 で d₂ を選ぶ
 - \circ 確率 0.8 で d_1 、確率 0.2 で d_3 を選ぶ
 - \circ 確率 0.4 で d_1 、確率 0.6 で d_2 を選ぶ

考察

- 対策によって防ぐのが難しいという点で p_2 がクリティカルなパスになっている。
- 対策 d_4 はコストの観点で良い対策とは言えない。同程度の性能でより安価なものを選定するべき。
- 対策 d_3 は比較的安価である程度有効だが、 p_2 に対する効果は薄い。

参考文献

[1] B. Wang, J. Cai, S. Zhang and J. Li, "A network security assessment model based on attack-defense game theory," 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), 2010, pp. V3-639-V3-643.