Group: Panduranga-Sood

Custom Logic IP Implementation on Hardware

Custom IP Hardware Implementation Software Used Flow

Vivado HLS

Vivado HLS Implementation Steps

Vivado HLS Outputs

• C Simulation:

```
Vivado HLS 2019.1 - ack (D:\Ackermann_function\ack)
File Edit Project Solution Run Window Help
%|i→ - - - | (x)• V
* Debug Explorer
 c <terminated>ack.Debug [C/C++ Application]

√ < terminated, exit value: 0 > gdb (8.0.1)

                                                                                                                 <
 16= void ack(hls:: streamkint_side_ch> &inStream , hls:: streamkint_side_ch> &outStream)
17 {
18 #pragma HLS INTERFACE axis port=inStream
 ack.cpp ack_test.cpp all Implementation(solution1)(ack_export.rpt) all Synthesis(solution1)(ack_csynth.rpt)
          #pragma HLS INTERFACE axis port=outStream
 20
21
22
23
24
25
26
27
28
29
30
          #pragma HLS INTERFACE s_axilite port=return bundle=CRTL_BUS
          int_side_ch val_in;
          int_side_ch val_out;
          int x,y;
val_in= inStream.read();
x=(unsigned int)val_in.data;
val_in= inStream.read();
          y=(unsigned int)val_in.data;
cout<<"X is "<<x<<endl;
cout<<"Y is "<<y<endl;
          int value[30000];
          size t size = 0:
□ Console ☑ ② Tasks 🗈 Problems ② Executables 🖫 Debugger Console 🗓 Memory
<terminated> (exit value: 0) ack.Debug [C/C++ Application] csim.exe
X is 3
Y is 11
Ackermann of X and Y is = 16381
```

C Synthesis:

☐ Timing (ns)

□ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	6.774	1.25

■ Latency (clock cycles)

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	356	-
FIFO	-	-	-	-	-
Instance	0	-	36	40	-
Memory	64	-	0	0	0
Multiplexer	-	-	-	270	-
Register	-	-	290	-	-
Total	64	0	326	666	0
Available	100	66	28800	14400	0
Utilization (%)	64	0	1	4	0

C/RTL Cosimulation:

Cosimulation Report for 'ack'

Result							
		Latency			Interval		
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	89396668	89396668	89396668	NA	NA	NA

Export the report(.html) using the Export Wizard

Vivado Design

Vivado Design Implementation Steps

Vivado Design design blocks

M00_ARESETNM01_ACLKM01_ARESETN

AXI Interconnect

Block Design

Schematic Design

LUTs used in the Design

Vivado Design Outputs

· Timing Report:

Design Timing Summary

Setup	Hold	Pulse Width
Worst Negative Slack (WNS): 8.153 ns	Worst Hold Slack (WHS): 0.010 ns	Worst Pulse Width Slack (WPWS): 8.750 ns
Total Negative Slack (TNS): 0.000 ns	Total Hold Slack (THS): 0.000 ns	Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0	Number of Failing Endpoints: 0	Number of Failing Endpoints: 0
Total Number of Endpoints: 11096	Total Number of Endpoints: 11096	Total Number of Endpoints: 4281
All user specified timing constraints are n	net.	

• Power Summary:

Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

1.407 W **Total On-Chip Power: Design Power Budget: Not Specified Power Budget Margin:** N/A 41.2°C Junction Temperature: 43.8°C (3.7 W) Thermal Margin: Effective ϑJA : 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Medium Launch Power Constraint Advisor to find and fix invalid switching activity

3 ,

• Utilization Report:

Summary

Software Development Kit

Software Development Kit Implementation Steps

Software Development Kit Output

Custom Logic Implementation on Software

Custom Logic Software Implementation Flow

Software Development Kit Output

Hardware vs Software Performance Comparison

Clock cycles taken by Hardware: 9304459643

Clock cycles taken by Software: 592339039

Zybo Board Clock Period: 10ns

Therefore,

Time taken by Hardware Implementation: 9304459643 * 10ns = 93044.59643 ms

Time taken by Software Implementation: 592339039* 10ns = 5923.39039 ms

Hence,

Hardware is slower than Software by a factor of ~83 for the Ackermann logic implementation