

0-1规划模型

《美国数学建模竞赛》 完整课程请长按下方二维码

目录 CONTENTS

- 1. 0-1规划模型
- 2./ 案例分析
- 3. 小结

1. 0-1规划模型

整数
$$min z = \sum_{j=1}^{n} c_j x_j$$

$$S_{i}t\left\{\sum_{j=1}^{n}a_{ij}x_{j} \leq b_{i}, i=1,\cdots,m\right\}$$

$$x_j \geq 0$$
,整数, $j = 1, \dots, n$

若决策变量

$$x_j = \begin{cases} 1 & 被选 \\ 0 & 没选 \end{cases}$$

"1"表示被选中, "0"表示没选中,

$$0 \le x_j \le 1$$
,整数, $j = 1, \dots, n$

称为0-1整数规划。

1. 0-1规划模型

$$\min z = \sum_{j=1}^n c_j x_j$$

$$x_j = \begin{cases} 1 & 被选 \\ 0 & 没选 \end{cases}$$

$$\begin{aligned}
s.t \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, i = 1, \dots, m \\ 0 \leq x_{j} \leq 1, 整数, \quad j = 1, \dots, n \end{cases}
\end{aligned}$$

决策变量 x_j 称为0-1型变量,或二进制变量。

2. 案例分析--指派问题

某班准备从5名队员中选4人组成接力队,参加学校的4×100m 混合泳接力比赛,5名队员4种泳姿的百米平均成绩如表,问如何 选拔队员组成4×100m接力队。

队员 项目	甲	Z	丙	丁	戊
蝶泳	1'06"8	57"2	1'18"	1'10"	1'07"4
仰泳	1'15"6	1'06"	1'14"2	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'09"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

《美国数学建模竞赛》 完整课程请长按下方二维码

决策变量及符号:

c_{i,j}: 队员 i选择第 j个泳姿的成绩**,** i=1, 2, 3, 4, 5**;** j=1, 2, 3, 4

c_{ij}	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3	i =4	<i>i</i> =5
<i>j</i> =1	66.8	57.2	78	70	67.4
<i>j</i> =2	75.6	66	74.2	74.2	71
<i>j</i> =3	87	66.4	69.6	69.6	83.8
j=4	58.6	53	59.4	57.2	62.4

$$x_{ij} = \begin{cases} 1 & \text{队员}i$$
选择第 j 个泳姿 $0 & \text{队员}i$ 不选第 j 个泳姿

模型建立:

目标函数: 总成绩 f 最好 ϕ 游泳耗时最短

$$\min f = \sum_{i=1}^{3} \sum_{j=1}^{3} c_{ij} x_{ij} \quad c_{i1} x_{i1} + c_{i2} x_{i2} + c_{i3} x_{i3} + c_{i4} x_{i4}$$

约束条件:

1. 每个队员最多选择一种泳姿:注意:这个地方与视频不一样,但都是对的

$$x_{11} + x_{21} + x_{31} + x_{41} \le 1$$

$$x_{12} + x_{22} + x_{32} + x_{42} \le 1$$

$$x_{13} + x_{23} + x_{33} + x_{43} \le 1$$

$$x_{14} + x_{24} + x_{34} + x_{44} \le 1$$

$$x_{15} + x_{25} + x_{35} + x_{45} \le 1$$

$$\sum_{i=1}^{4} x_{ij} \le 1, \quad j = 1, 2, 3, 4, 5$$

模型建立:

每种泳姿有且仅有一人:

$$x_{11} + x_{12} + x_{13} + x_{14} + x_{15} = 1$$

$$x_{21} + x_{22} + x_{23} + x_{24} + x_{25} = 1$$

$$x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = 1$$

$$x_{41} + x_{42} + x_{43} + x_{44} + x_{45} = 1$$

$$\sum_{j=1}^{5} x_{ij} = 1, \quad i = 1, 2, 3, 4$$

模型建立:

$$\min f = \sum_{i=1}^{4} \sum_{j=1}^{5} c_{ij} x_{ij}$$

$$s.t.$$

$$\begin{cases} \sum_{j=1}^{5} x_{ij} = 1 \\ \sum_{i=1}^{4} x_{ij} \leq 1 \\ x_{ij} = 0$$
 或1,整数
$$i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5.$$

《美国数学建模竞赛》 完整课程请长按下方二维码

模型求解 (Lingo软件):

集合段:

sets:

swim/1..4/;

member/1..5/;

match(member,swim):c,x;

endsets

数据段:

data:

uata.			
c=66.8	57.2	78	70
75.6	67.4 66	74.2	74.2
75.0	71	77.2	/ 7.2
87	66.4	69.6	69.6
	83.8		
58.6	53	59.4	57.2
	62.4		

enddata

(美国数学建模竞赛) 完整课程请长按下方二维码

模型求解 (Lingo软件):

程序段:

- min=@sum(match:c*x);
- @for(swim(i): @sum(member(j):x(i,j))=1);
- @for(member(j):@sum(swim(i):x(i,j))<1);
- @for(match:@bin(x));

最优解: $x_{14} = x_{21} = x_{32} = x_{43} = 1$, 其它变量为0。

总成绩 f=253.2秒=4'13"2。

模型求解 (Lingo软件):

甲"自由泳,乙"蝶泳,丙"仰泳,丁"蛙泳。

队员	甲	Z	丙	丁	戊
蝶泳	1'06"8	57"2	1'18"	1'10"	1'07"4
仰泳	1'15"6	1'06"	1'14"2	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'09"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

3. 小结

若干项任务,每项任务必须有且有一人承担,每人只能承担一项,不同成员承担不同的任务效益(或者成本不同),怎样分配各项任务使总效益最大(成本最低)。

人员数量和任务数量相等;

人员数量多于任务数量; (本例)

人员数量少于任务数量。

建立0-1整数规划模型是常用的方法。

