

ULSAM: Ultra-Lightweight Subspace Attention Module for Compact Convolutional Neural Networks

Rajat Saini^{1*}, Nandan Kumar Jha^{1*}, Bedanta Das¹, Sparsh Mittal², C. Krishna Mohan¹

¹Indian Institute of Technology Hyderabad,

²Indian Institute of Technology Roorkee (*equal contribution)

INTRODUCTION AND MOTIVATION

- The **locality** of convolution in deep networks offers a theoretical guarantee to avoid the *curse of dimensionality* for approximating the hierarchically local compositional functions.
- To capture **global dependencies** networks are made deeper (that enlarge the effective receptive field size) and incur **higher #FLOPs** and **#parameters**.
- Convolution is a **linear** operator and to capture non-linear abstractions in input CNNs employed large number of filters which **increases** computational complexity and parameter overhead.
- Self-attention mechanism offers *infinite receptive field size* and captures global dependencies in a **compute efficient manner** hence remove the inefficiencies of convolution operation.

CHALLENGES

• State-of-the-art attention mechanisms incur **higher compute overhead** due to 1×1 conv (for generating attention maps) and/or **parameter overhead** due to the use of MLP (which learns the cross-channel interaction) and **undesirable** for compact CNNs such as MobileNet-V1/V2.

(Comparison with m=512, $t=\frac{m}{8}$, r=16, $h\times w=14\times 14$, and dilation rate is 4 in BAM)

` 1	,	8 '	,	,		,
Attention module	MLP 1 × 1 #Params #FLOPs		#Params	#FLOPs		
Attention module		conv		π 1'LO1'S	$(\times 10^3)$	$(\times 10^6)$
Non-local [Wang, CVPR'18]	×	\checkmark	$2m^2$	$2m^2hw$	524	102.76
A ² - Net [Chen, NeurIPS'18]	×	\checkmark	2mt	2mthw	66	12.85
SE-Net [Hu, CVPR'18]	\checkmark	×	$\frac{2m^2}{r}$	$\frac{2m^2}{r}$	33	0.03
BAM [Park, BMVC'18]	\checkmark	\checkmark	$\frac{4m^2}{r} + \frac{18m^2}{r^2}$	$\frac{2m^2}{r} + (\frac{4m^2}{r} + \frac{18m^2}{r^2})hw$	84	16.49
CBAM [Woo, ECCV'18]	\checkmark	×	$\frac{2m^2}{r} + 98$	$\frac{2m^2}{r} + 98hw$	33	0.05

PROPOSED METHOD: SUBSPACE ATTENTION MODULE

SALIENT FEATURES OF ULSAM

- ULSAM exploits the *linear relationship* between feature map subspace and avoids the use of **parameter-heavy** MLP.
- Generating separate attention maps for different parts of feature map space enable **multi-scale** (desirable for object detections with objects of different scale) and **multi-frequency** (desirable for fine-grained image classification tasks) feature representation.

Attention module	subspace attention	MLP	1×1 conv	#Params (×10³)	#FLOPs (×10 ⁶)	#Params (norm.)	#FLOPs (norm.)
Non-local [Wang, CVPR'18]	×	×	\checkmark	524	102.76	512×	512×
A^2 - Net[Chen, NeurIPS'18]	×	×	\checkmark	66	12.85	64×	64×
SE-Net [Hu, CVPR'18]	×	\checkmark	×	33	0.03	$33 \times$	0.16×
BAM [Park, BMVC'18]	×	\checkmark	\checkmark	84	16.49	82×	82.16×
CBAM [Woo, ECCV'18]	×	\checkmark	×	33	0.05	$33 \times$	0.26×
ULSAM (ours)	√	×	×	1	0.2	1×	1×

ULSAM reduces both the **computational complexity** and the **number of parameters** and hence suitable for deployment in compact CNNs.

RESULTS ON IMAGENET1K

	Model	#Params	#FLOPs	g = 1(%)	g = 2(%)	g = 4(%)	g = 8(%)	g = 16(%)
	1.0 MV1 (vanilla)	4.2M	569M		r	Top-1 = 70.6	55	
	1.0 MV1 + ULSAM	4.2M	569.2M	70.69	70.84	70.77	70.59	70.89
	1.0 MV1 + ULSAM	4.2M	569.2M	70.62	70.88	70.61	70.92	70.73
_	1.0 MV1 + ULSAM	4.2M	569.1M	70.63	70.85	70.86	70.74	70.82
	MV2 (vanilla)	3.4M	300M		,	Top-1 = 71.2	25	
	MV2 + ULSAM	3.4M	300.01M	71.31	71.39	71.64	71.35	71.42

@g = 4, top-1 accuracy of MV1(MV2) increased by **0.27%** (**0.39%**) with negligible compute overhead.

FINE-GRAINED CLASSIFICATION

MobileNet-V1 or	MobileNet-VI on Food-101, Birds, and Dogs dataset						
Models	#Params	#FLOPs	Food-101	Birds	Dogs		
MV1 (vanilla)	4.2M	569M	81.31	62.88	62.20		
MV1 + ULSAM (g = 1)	3.9M	517M	81.28	62.46	62.73		
MV1 + ULSAM (g = 4)	3.9M	517M	81.30	63.52	63.06		
MV1 + ULSAM (g = 8)	3.9M	517M	81.19	64.44	63.30		
MV1 + ULSAM (g = 16)	3.9M	517M	81.62	63.47	62.75		

MobileNet-V2 on Birds dataset Model g = 4 g = 8 | g = 16**#Params** MV2 (vanilla) 3.4M 300M Top-1 = 62.94277.34M MV2 + ULSAM3.28M63.01 64.32 63.05 3.08M MV2 + ULSAM284.54M 63.98 64.44 65.03 63.47 3.23M 267.06M 63.47 62.21 MV2 + ULSAM63.43 63.10 2.77M 269.08M MV2 + ULSAM64.19 64.57 64.61 65.03 MV2 + ULSAM2.97M 261.88M 64.70 65.41 63.31 MV2 + ULSAM2.54M224.16M 64.15 63.22

ABLATION STUDY ON IMAGENET1K

Models	#Params	#FLOPs	Top-1	Top-5
1.0 MV1 (vanilla)	4.2M	569M	70.65	89.76
1.0 MV1 + ULSAM (g = 1)	3.9M	517M	69.92	89.25
1.0 MV1 + ULSAM (g = 2)	3.9M	517M	70.14	89.67
1.0 MV1 + ULSAM (g = 4)	3.9M	517M	70.43	89.92
1.0 MV1 + ULSAM (g = 8)	3.9M	517M	70.29	89.96
1.0 MV1 + ULSAM (g = 16)	3.9M	517M	70.04	89.98
0.75 MV1 (vanilla)	2.6M	325M	67.48	88.00
0.75 MV1 + ULSAM (g = 1)	2.4M	296M	67.98	88.06
0.75 MV1 + ULSAM (g = 4)	2.4M	296M	67.81	88.43
0.50 MV1 (vanilla)	1.3M	149M	63.22	84.63
0.50 MV1 + ULSAM (g = 1)	1.2M	136M	63.42	84.70
0.50 MV1 + ULSAM (g = 4)	1.2M	136M	63.25	84.81
MV2 (Vanilla)	3.4M	300M	71.25	90.19
MV2 + ULSAM (g = 4)	2.96M	261.88M	71.52	90.25
MV2 + ULSAM(g = 4)	2.77M	269.07M	70.74	89.15
MV2 + ULSAM (g = 4)	2.54M	223.77M	69.72	87.79

MV2 achieves a **25**% **(13**%) reduction in #parameters (#FLOPs) with **0.27**% improvement in top-1 accuracy.

ATTENTION VISUALIZATION

CONCLUSION

- Single attention map for entire feature space **does not capture** the interaction between the different feature map subspace.
- Optimum number of attention maps are required to **maximize** the predictive performance of networks.

CONTACT

cs17mtech11010 [at] iith [dot] ac [dot] in