視訊處理作業報告

HW2 Full and Fast Motion Estimation Algorithms

授課教授:柳金章

學 生:楊憲閔

學 號:613410047

Due date: 2024/04/30

Date hand in: 2024/05/08

目錄

Technical description	3
Experimental results	7
Discussions	13
References and Appendix	14

Technical description

Motion Estimation 是視訊壓縮技術中的核心技術,主要透過「區塊比對」(Block Matching)來估計前後 frame 間像素的移動情形,藉由 motion vector 進行預測與壓縮。在本次作業中,我們實作了三種常見的 motion estimation 演算法,並針對不同 block 大小與搜尋範圍進行比較,方法如下:

1. Full search algorithm:

Full Search 是最精確但計算量最大的區塊比對方法。對每個 8×8 或 16×16 的區塊,會在 reference frame 的整個搜尋範圍 (±8 或 ±16 像素)中搜尋所有可能的位置,計算每個候選區塊與 current block 的 Mean Absolute Difference (MAD),以找出最佳 匹配點。其優點是能找到最小誤差的 motion vector,但缺點是運 算時間非常長。實作流程如下:

- (1) 準備前一個 frame(reference frame)與現在的 frame(target frame)。
- (2) 將 target frame 和 reference frame 中的每個 mini block 拆 分出來(大小依需求,例如說題目要求為 8x8 或 16x16)。
- (3) 以當前 mini block 為中心,定義一個正方形的搜索範圍(大小

也依需求,例如說題目要求為8或16)

- (4) 對 target frame 中的每個 mini block,在 reference frame 中的搜索範圍內搜尋所有可能的 reference block。並對每個 reference block 計算它和當前 mini block 之間的平均絕對誤 差 (mean absolute differences, MAD)。
- (5) 重複步驟(4), 直到搜尋完 target frame 中所有的 mini block。並紀錄所有的 motion vector 傳送給編碼器,以便將它們壓縮並傳送到解碼器。
- (6) 在解碼器使用 motion vector 和 reference frame 來重建 frame。

圖(1) Full search algorithm 示例圖。

- 2. 2D logarithm search algorithm:
- 2D Logarithmic Search 為一種快速搜尋方法,使用十字形範圍來遞迴縮小搜尋區域。每輪搜尋會以目前的最佳位置為中心,使用step size 搜尋上下左右 4 個點,計算 MAD 並更新中心位置。當step size 降為 1 時停止。此法大幅減少搜尋次數,提升效率,但可能錯過全域最佳解。步驟如下:
- (1) 透過 step size 找出候選位置(4點加中心),並計算個別的MAD。
- (2) 利用 MAD 更新中心點,即中心點更新為 MAD 最小的候選點。
- (3) 計算新的中心點與舊中心點的差距作為 motion vector。
- (4) 重複步驟(1)至(3),直到找到最佳點並回傳 motion vector。

圖(2) 2D logarithm search algorithm 示例圖。

3. 3-step search algorithm:

3-Step Search 是另一種快速搜尋法,以中心點利用 step size 搜尋九宮格周圍點,找出誤差最小的位置作為新中心,並將步長減半後繼續搜尋。相比於 2D Log Search, 3-Step Search 在搜尋範圍內覆蓋更全面,因此在精度與效率間取得較佳平衡。步驟如下:

- (1) 定義搜尋區域(依據 block size 與 search size)並設定 step size,此決定了每次搜尋時 block 移動的距離。step 越大,搜尋速度就越快,但準確度則會降低。
- (2) 以搜尋區域中心為起始點,按照設定好的 step size 選出 9 個 候選點,計算 MAD 來得到兩個 block 的相似度。
- (3) 利用 MAD 更新中心點,並將 step size 減半。
- (4) 重複步驟(2)至(3),直到找到最佳點並回傳 motion vector。

圖(3) 3-step search algorithm 示例圖。

Experimental results

1. 程式執行流程:

(1) 確保已安裝相關 module,本次作業使用 module 如下所示:

```
import cv2
import numpy as np
import os
import time
```

圖(4) 會使用到的 module

- (2) 進到作業的目錄底下,會看到 HW2_test_sequence 資料 夾、main.py 檔及此 pdf 檔。點右鍵按在終端中開啟,輸入 python main.py,程式即開始執行。
- (3) 程式會讀取兩個 sequence 的資料並進行作業要求的 algorithm,並會一一進行不同的 block size、search range 等等測試,並輸出於各自的輸出資料夾中。

2. 程式執行結果:

(1) 輸出形式:

階層式架構,例如說現在我對 sl 做 full search, block size 為 16、search range 為 8,則輸出結果(重建回來的 frame)會放置

於./sl/full_search/search_range_8_block_size_16 底下,依此類推。並該次的所有 PSNR 結果會放置於對應的資料夾底下。

(2) 結果比較:

以下進行不同 motion estimation 和 search range 的 PSNR 比較(四捨五入至小數點第 2 位,單位為 db)。

表(1) Search range 為 8, block 大小為 8×8, 不同方法對 s1 做 motion estimation 之 PSNR。

	1.bmp	25. bmp	50. bmp	75. bmp	90. bmp
Full search	38. 19	33. 48	32. 10	32. 21	31.00
2D logarithm search	34. 82	31.11	30. 37	30. 35	29. 68
3-step search	36. 18	31.69	31.06	30. 95	30.16

表(2) Search range 為 8, block 大小為 16×16, 不同方法對 s1 做 motion estimation 之 PSNR。

	1.bmp	25. bmp	50. bmp	75. bmp	90. bmp
Full search	36. 90	30. 15	28. 87	29. 00	28. 49
2D logarithm search	34. 22	28. 68	27. 70	27. 87	27. 48
3-step search	36. 27	29. 49	28. 56	28. 45	28. 15

表(3) Search range 為 16, block 大小為 8x8, 不同方法對 sl 做 motion estimation 之 PSNR。

	1.bmp	25. bmp	50. bmp	75. bmp	90. bmp
Full search	38. 27	33. 53	32. 25	32. 33	31.06
2D logarithm search	34. 65	30. 77	30. 27	30. 19	29. 48
3-step search	35. 59	31.81	30.89	30. 95	30.19

表(4) Search range 為 16, block 大小為 16×16, 不同方法對 sl 做

motion estimation \gtrsim PSNR \circ

	1.bmp	25. bmp	50. bmp	75. bmp	90.bmp
Full search	36. 99	30. 42	29. 40	29. 04	28. 75
2D logarithm search	34. 18	28. 73	27. 75	27. 95	27. 59
3-step search	36.04	29. 59	28. 62	28. 43	28. 12

(s2 之 frame 非 0 起始,因此結果取於 PSNR 輸出中的 i-1. bmp 之結果,例如 2. bmp 就是看 Reconstructed frame 1 PSNR 這個項目)

表(5) Search range 為 8, block 大小為 8x8, 不同方法對 s2 做 motion estimation 之 PSNR。

	2.bmp	15.bmp	30. bmp
Full search	36. 46	30. 03	30. 72
2D logarithm search	34. 70	28. 44	29. 43
3-step search	35. 70	28. 38	29. 75

表(6) Search range 為 8, block 大小為 16×16, 不同方法對 s2 做 motion estimation 之 PSNR。

	2.bmp	15. bmp	30. bmp
Full search	35. 40	26. 92	27. 73
2D logarithm search	34. 00	25. 96	27. 10
3-step search	34. 85	26. 40	27. 04

表(7) Search range 為 16, block 大小為 8×8, 不同方法對 s2 做 motion estimation 之 PSNR。

	2.bmp	15. bmp	30. bmp
Full search	36. 54	30. 96	31.03
2D logarithm search	34. 53	29. 27	29. 65
3-step search	35. 53	29. 22	29. 98

表(8) Search range 為 16, block 大小為 16×16, 不同方法對 s2 做 motion estimation 之 PSNR。

	2.bmp	15.bmp	30. bmp
Full search	35. 43	27. 59	27. 89
2D logarithm search	33. 85	27.14	27. 17
3-step search	34. 81	26. 65	27. 04

表(9) 不同 motion estimation 和 search range 與 block size 在 sl 的執行時間(示例:(block size, search range))(四捨五入至 小數點第2位)。

	(8, 8)	(8, 16)	(16, 8)	(16, 16)
Full search	160.69 s	641.30 s	47.44 s	181.37 s
2D logarithm search	12.33 s	17. 22 s	3.76 s	4.30 s
3-step search	17.87 s	26.92 s	5.31 s	7.60 s

表(9) 不同 motion estimation 和 search range 與 block size 在 s2 的執行時間(示例:(block size, search range))(四捨五入至

小數點第2位)。

	(8, 8)	(8, 16)	(16, 8)	(16, 16)
Full search	64.30 s	236.16 s	17.99 s	65.76 s
2D logarithm search	4.58 s	6.41 s	1.25 s	1.50 s
3-step search	6.93 s	9.56 s	1.85 s	2.60 s

Discussions

Full search algorithm 考慮到所有可能的點,以此找到最佳 匹配點,但缺點為計算量非常大,執行時間會很久。

2D logarithm search algorithm 採用十字形搜尋,只抓同水平垂直方向的 4點,搜尋用的 window size 從大範圍的搜尋逐漸縮小搜尋範圍。好處是計算量少,執行時間短,但缺點是這種十字形搜尋有時只能找到靠近最佳點的點,而不一定可以找到最佳點。

3-step search algorithm 類似於 2D logarithm search algorithm,只是不同之處在於它是採用九宮搜尋,每步搜尋完後 window size 會減半,從大範圍的搜尋逐漸縮小搜尋範圍。計算量 和執行時間比 2D logarithm search algorithm 略長一些(因為多抓了一些候選點),但比依然比 Full search algorithm 短上許多,且 和 2D logarithm search algorithm, 3-step search algorithm 找到最佳點的機會比較大(因為有更多的候選點做選擇)。

若從 search range 來比較,+/- 8 pixels 的計算量較少,但在快速移動的場景,也就是兩張連續影像之間有明顯變化的情況下,其計算上容易無法找到最佳點,影像還原的效果較差。+/- 16 pixels 雖然計算量較大,但在快速移動的場景中容易找到最佳匹

配,影像還原效果較好。

若從 block size 來比較,8×8 在高細節區中可以得到較好的 motion estimation,但計算量大,其還原影像沒有平滑效果但容易有缺陷。16×16 在低細節區進行 motion estimation 時計算量較小,其還原影像不易有缺陷但在高細節區中容易有過度平滑的現象。

References and Appendix

https://www.youtube.com/watch?v=jRrs90xLTYM

https://www.youtube.com/watch?v=8eZ2EA1q7As