

Higgs to 4 Gamma Update

Tanvi Wamorkar¹
Toyoko Orimoto¹
Andrea Massironi²

¹Northeastern University

²INFN Milano-Bicocca

20th February 2018
NEU Meeting

MOTIVATION

- Explore Beyond the Standard model scenario using final state with 4γ
- Exotic decays of the Higgs Boson are of great interest and are well motivated within many extensions of the SM
- In these models, (pseudo) scalar a→yy can be suppressed (low branching ratios)
 - Non-trivial extensions SM extensions can change that picture by suppressing a→fermions
 See summary at Exotic Higgs Decays website
 - The 4χ state is basically SM background free
 - We can take advantage of high γ online/offline reconstruction and identification efficiency

• This analysis considers a non-SM decay of a Higgs Boson (h) decaying to a pair of light pseudoscalars (a), each of which subsequently decays into 2 χ's each

DATA & MC SAMPLES

Data

- Double EG reMiniAOD dataset
- 36 fb-1 for 2016

Signal MC

- Generate using Pythia 8
- Officially produced Summer16 samples
- m(a) = 100 MeV, 1 GeV to 60 GeV in steps of 5 GeV

Background MC

DiPhotons + Jets

DiPhotonJetsBox_M40_80-Sherpa

DiPhotonJetsBox_MGG-80toInf_13TeV-Sherpa

Photons + Jets

GJet_Pt-20toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8 GJet_Pt-20to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 GJet_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8

• QCD

QCD_Pt-30to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-30toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8

ANALYSIS STRATEGY

- h(125)→aa→xxxx
- Probing mass region ranging from 100 MeV < m(a) < 60 GeV
- Highly boosted "a's"
 - Collimated products of "a" decays
- Depending on m(a) we will have different topologies
- Higher the m(a), lower the boost of "a" and better isolated are the decay product photons, i.e large values of ΔR

CATEGORIES

4 Isolated Photons

- "a" is not boosted, the decay products are well isolated
- Select events with at least 4 γ 's and then select the 4 highest P_T γ 's

- Boosted "a" case
- Select events with exactly 3 γ's
- Can be further split into 2 sub-categories
 - 2 Isolated + 2 merged γ's
 - 3 Isolated γ's + 1 missing γ (due to P_T or η cut):

2 Pairs of Merged Photons

- Highly boosted "a" scenario
- Select events with exactly 2 γ's
- Heavily polluted by H->γγ events
 - Need to develop a custom MVA ID

TRIGGER & PRESELECTION

- Online selection identical to low mass h→xx search
- Passing the OR of the two Low mass HLT paths
 - OR Path

HLT_Diphoton30EB_18EB_R9Id_OR_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55

AND Path

HLT_Diphoton30PV_18PV_R9Id_AND_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55

Pre-Selection

- Loose Photon ID > -0.9
- Trigger strategy on MC based on offline selection similar to online
- Different kind of photon pairs being considered according to their η and R9 values

Offline Trigger like requirements

Category		R9	H/E	σ _{iηiη}	Pho Iso	Trk Iso
Both photons in EB		> 0.5	< 0.07	< 0.0105	< 4 GeV	< 6 GeV
At least one Photon in EE	Second photon in EB	> 0.85	< 0.07	< 0.0105	< 4 GeV	< 6 GeV
At least one Photon in EE	Second photon in EE	> 0.9	< 0.035	< 0.0275	< 4 GeV	< 6 GeV

• $m_{\chi\chi} > 55$ GeV, P_T lead $\chi > 30$ GeV, P_T sub-lead $\chi > 18$ GeV, Pixel Veto applied

OF SURVIVING EVENTS

- Number of events that survive in each of the 3 categories
- Have been split into events that pass the acceptance P_T > 15
 GeV and |n| < 2.5
- Events that pass the loose
 Photon MVA > -0.9
- Events that pass pre-selections

SIGNAL & BACKGROUND COMPARISON

- Plots showing Background and Signal MC comparison
- Are only being used as a guide to determine the fitting and blinding range for the 4 photon, 3 photon and 2 photon categories

Signal shape modeled by a sum of 3 gaussians

Fit of signal shape

4x Category

MC: h→aa→γγγγ

:m(a) = 60 GeV

The 3 Gaussian components of the final Signal model are shown here

- For the 4 Photon category, consider the mass points from m(a) = 15 to 60 GeV
- The signal fits for these are shown on the next slide

For the <u>4γ Category</u>

Fit of signal shape for 3x Category

:m(a) = 10 GeV, 5 GeV

The 3 Gaussian components of the final Signal model are shown here

- 1.Events with just 3γ's (with the 4th γ being lost due to Pt or eta cut)
- 2.Events with 2 Isolated + 1 Fat photon (=2 merged Photons)
- Work is on-going to do gen-reco level matching

:Fit of signal shape for :2x Category

m(a) = 0.1 GeV

The 3 Gaussiancomponents of the finalSignal model are shown here

BACKGROUND MODELING

- Discrete Profiling ("Envelope") method adapted
- The background is modeled by fitting analytic functions to the observed tetra photon mass distributions
- Consider different families of functions
 - Family of Bernstein Polynomials
 - Chebychev Polynomial
 - Sum of Power Law functions

Work ongoing for the
determination of representative
set of functions from within a
family using F-test

- Blinding range:
 - 4 Photon category → [115,135] GeV
 - 3 Photon category → [95,135] GeV
 - 2 Photon category → [115,135] GeV

Fit range still to be optimized

BACKGROUND MODELING

Family of Polynomials in Bernstein Basis

Chebychev Polynomial

Sums of Power Law functions

:4x Category

Functions considered:

- Family of Berstein Polynomials
- Chebychev Polynomial
- Sum of Power Law
- Cuts applied on Diphoton mass window:
 - dp1_mass/tp_mass < 0.55
 - dp2_mass/tp_mass < 0.50

BACKGROUND MODELING

:3x Category

Functions considered:

Family of Bernstein Polynomials

2γ Category

:Functions considered:

- Family of Berstein Polynomials
- Sum of Power Law

CUSTOM ID FOR 2 PHOTON CATEGORY

- The Photon MVA being used right now was developed for h->gg and low mass h->gg analysis.
- This MVA will discard the merged photons that look like pi0's
- So the idea is to develop an MVA based on kinematic + ECAL variables that can help us distinguish between the merged and unmerged cas
- Preliminary stage variables being identified
- First results on the next slide

CUSTOM ID FOR 2 PHOTON CATEGORY

Abs(eta) < 1.5 ECAL Barrel

Input Variables

17

CUSTOM ID FOR 2 PHOTON CATEGORY

Abs(eta) > 1.5 ECAL Endcap

Input Variables

SUMMARY & OUTLOOK

- Presented h(125)→aa→χχχχ analysis strategy
- Given the many different ongoing studies and possibilities...

• The first aim is to have the analysis completely ready for the 4 photon category

BACKUP

Yields in each category

Yield = #of events after selection * (L* σ_{yy} / W)

m(a) GeV	4 Photon Cat	3 Photon Cat			2 Photon Cat	
0.1	0.006	0.037	0.159	0.193	8.52	1.57
1	0.002	0.023	0.034	0.089	1.19	0.54
5	0.002	0.022	0.015	0.060	0.57	0.37
10	0.835	0.452	2.788	0.847	2.40	0.78
15	1.674	0.639				
20	1.801	0.664				
25	1.894	0.682				
30	1.841	0.672				
35	1.877	0.679				
40	2.017	0.705				
45	2.263	0.753				
50	2.753	0.831	4.321			
55	3.989	1.019				
60	5.766	1.255				

