Light and shading

What determines a pixel's intensity?

What can we infer about the scene from pixel intensities?

Image Source: A. Efros

How light is recorded

Digital camera

A digital camera replaces film with a sensor array

Each cell in the array is light-sensitive diode that converts photons to electrons

Two common types: Charge Coupled Device (CCD) and CMOS http://electronics.howstuffworks.com/digital-camera.htm

Sensor Array

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

CMOS sensor

Each sensor cell record a small range of orientations amount of light coming in

Image formation

What determines the brightness of an image pixel?

Intensity and Surface Orientation

Intensity depends on illumination angle because less light comes in at oblique angles.

 ρ = albedo

S =directional source

N =surface normal

I = reflected intensity

$$I(x) = \rho(x)(S \cdot N(x))$$

Slide: Forsyth

Fundamental radiometric relation

L: Radiance emitted from P toward P' (辐射度)

Energy carried by a ray (Watts per sq. meter per steradian)

E: Irradiance falling on P' from the lens (辐照度)

Energy arriving at a surface (Watts per sq. meter)

What is the relationship between *E* and *L*?

Image formation by thin lens

Power captured by the lens

- Power captured by the lens from the surface patch is the product of the following three terms
 - The radiance L of the surface patch in the direction of the lens
 - The foreshortened area (δο cos θ) of the patch in the direction of the lens
 - The solid angle subtended by the aperture of the lens at the surface patch

Square of the distance of the aperture from the patch

Fundamental Radiometric Relation

$$\delta P = L(\delta o \cos \theta) \frac{\pi (d/2)^2 \cos \alpha}{(u/\cos \alpha)^2}$$

$$\frac{\delta o \cos \theta}{(u/\cos \alpha)^2} = \frac{(\delta i \cos \alpha)}{(f/\cos \alpha)^2} = \text{solid angle at the lens}$$

$$\rightarrow \delta P = L \pi (d/2)^2 \cos \alpha \frac{(\delta i \cos \alpha)}{(f/\cos \alpha)^2}$$

Irradiance
$$E = \frac{\delta P}{\delta i} = L \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha$$

Fundamental radiometric relation

$$E = \left[\frac{\pi}{4} \left(\frac{d}{f} \right)^2 \cos^4 \alpha \right] L$$

- Image irradiance is linearly related to scene radiance
- Irradiance is proportional to the area of the lens and inversely proportional to the squared distance between the lens and the image plane
- The irradiance falls off as the angle between the viewing ray and the optical axis increases (natural vignetting)

From light rays to pixel values

- Camera response function: the mapping f from irradiance to pixel values
 - Useful if we want to estimate material properties
 - Enables us to create high dynamic range images
 - For more info: P. E. Debevec and J. Malik, <u>Recovering High</u>
 <u>Dynamic Range Radiance Maps from Photographs</u>, SIGGRAPH 97

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence (荧光)
- Subsurface scattering
- Phosphorescence (磷光)
- Interreflection

Absorption

- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffuse Reflection
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Specular Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

(Specular Interreflection)

Some common effects

When light hits a typical surface

- Some light is absorbed $(1-\rho)$
 - More absorbed for low albedos
- Some light is reflected diffusely
 - Independent of viewing direction
- Some light is reflected specularly
 - Light bounces off (like a mirror), depends on viewing direction

Other possible effects

Diffuse reflection

- Light is reflected equally in all directions
 - Dull, matte surfaces like chalk or latex paint
 - Microfacets scatter incoming light randomly
 - Effect is that light is reflected equally in all directions
- Brightness of the surface depends on the incidence of illumination

Diffuse reflection: Lambert's law

$$B = \rho(\mathbf{N} \cdot \mathbf{S})$$
$$= \rho \|\mathbf{S}\| \cos \theta$$

B: radiosity (total power leaving the surface per unit area)

 ρ : albedo (反射率fraction of incident irradiance reflected by the surface)

N: unit normal

S: source vector (magnitude proportional to intensity of the source)

Photometric stereo (shape from shading)

 Can we reconstruct the shape of an object based on shading cues?

Luca della Robbia, Cantoria, 1438

Photometric stereo

Assume:

- A Lambertian object
- A local shading model (each point on a surface receives light only from sources visible at that point)
- A set of known light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources

Goal: reconstruct object shape and albedo

Example 1

F&P 2nd ed., sec. 2.2.4

Example 2

Input

0.5

0

Recovered albedo

Image model

- **Known:** source vectors S_j and pixel values $I_j(x,y)$
- Unknown: surface normal N(x,y) and albedo $\rho(x,y)$

Image model

- **Known**: source vectors S_j and pixel values $I_j(x,y)$
- Unknown: surface normal N(x,y) and albedo $\rho(x,y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$I_{j}(x,y) = k \rho(x,y) (\mathbf{N}(x,y) \cdot \mathbf{S}_{j})$$
$$= (\rho(x,y) \mathbf{N}(x,y)) \cdot (k\mathbf{S}_{j})$$
$$= \mathbf{g}(x,y) \cdot \mathbf{V}_{j}$$

Least squares problem

For each pixel, set up a linear system:

$$\begin{bmatrix} I_{1}(x,y) \\ I_{2}(x,y) \\ \vdots \\ I_{n}(x,y) \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{1}^{T} \\ \mathbf{V}_{2}^{T} \\ \vdots \\ \mathbf{V}_{n}^{T} \end{bmatrix} \mathbf{g}(x,y)$$

$$\vdots$$

$$(n \times 1) \quad (n \times 3) \quad (3 \times 1)$$
known known unknown

- Obtain least-squares solution for g(x,y) (which we defined as $N(x,y) \rho(x,y)$)
- Since N(x,y) is the unit normal, $\rho(x,y)$ is given by the magnitude of g(x,y)
- Finally, $N(x,y) = g(x,y) / \rho(x,y)$

Synthetic example

Recovering a surface from normals

Recall the surface is written as

This means the normal has the form:

$$\mathbf{N}(x,y) = \frac{1}{\sqrt{f_x^2 + f_y^2 + 1}} \begin{pmatrix} f_x \\ f_y \\ 1 \end{pmatrix}$$
 the surface:

$$f_x(x,y) = g_1(x,y) / g_3(x,y)$$

If we write the estimated vector g as

$$\mathbf{g}(x,y) = \begin{pmatrix} g_1(x,y) \\ g_2(x,y) \\ g_3(x,y) \end{pmatrix}$$

Then we obtain values for the partial derivatives of

$$f_x(x, y) = g_1(x, y) / g_3(x, y)$$

 $f_y(x, y) = g_2(x, y) / g_3(x, y)$

Recovering a surface from normals

We can now recover the surface height at any point by integration along some path, e.g.

$$f(x,y) = \int_0^x f_x(s,0) ds + \int_0^y f_y(x,t) dt + C$$

(for robustness, should take integrals over many different paths and average the results) Integrability: for the surface f to exist, the mixed second partial derivatives must be equal:

$$\frac{\partial}{\partial y}(g_1(x,y)/g_3(x,y)) = \frac{\partial}{\partial x}(g_2(x,y)/g_3(x,y))$$

(in practice, they should at least be similar)

Surface recovered by integration

Limitations

- Simplistic reflectance and lighting model
- No shadows
- No interreflections
- No missing data
- Integration is tricky

Finding the direction of the light source

$$I(x,y) = \mathbf{N}(x,y) \cdot \mathbf{S}(x,y)$$

N
$$S = \begin{pmatrix} N_x(x_1, y_1) & N_y(x_1, y_1) & N_z(x_1, y_1) \\ N_x(x_2, y_2) & N_y(x_2, y_2) & N_z(x_2, y_2) \\ \vdots & \vdots & \vdots \\ N_x(x_n, y_n) & N_y(x_n, y_n) & N_z(x_n, y_n) \end{pmatrix} \begin{pmatrix} S_x \\ S_y \\ S_z \end{pmatrix} = \begin{pmatrix} I(x_1, y_1) \\ I(x_2, y_2) \\ \vdots \\ I(x_n, y_n) \end{pmatrix}$$

For points on the occluding contour:

$$\begin{pmatrix} N_{x}(x_{1}, y_{1}) & N_{y}(x_{1}, y_{1}) \\ N_{x}(x_{2}, y_{2}) & N_{y}(x_{2}, y_{2}) \\ \vdots & \vdots & \\ N_{x}(x_{n}, y_{n}) & N_{y}(x_{n}, y_{n}) \end{pmatrix} \begin{pmatrix} S_{x} \\ S_{y} \end{pmatrix} = \begin{pmatrix} I(x_{1}, y_{1}) \\ I(x_{2}, y_{2}) \\ \vdots \\ I(x_{n}, y_{n}) \end{pmatrix}$$

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Application: Detecting composite photos

Real photo

Fake photo

M. K. Johnson and H. Farid, <u>Exposing Digital Forgeries by Detecting Inconsistencies in Lighting</u>, ACM Multimedia and Security Workshop, 2005.

Exercise (optional, due date: Oct 8)

Input

Use the Extended Yale B dataset and pick one subject randomly