

You are now entering the Murchison Radio-Astronomy Observatory

Please switch off and do not use your mobile and satellite phones or CB radio while inside the Observatory.

Please only use these devices in case of Emergency.

Your co-operation is appreciated

Radio Frequency Interference and Mitigation

Dr. Aaron Chippendale

CASS Radio School 2017

CSIRO

Australian radiofrequency spectrum

Australian radiofrequency spectrum

Communications and Media Authority

Can't we get away from it all?

Propagation can bring it to you

Proliferating satellites

Populous sites

Outline

- 1. Radio-frequency interference
 - (a) Understand, measure and calculate impact on astronomy
 - (b) Categories of mitigation techniques
- 2. Spatial nulling with phased array feeds
 - (a) Subspace projection method
 - (b) Demonstrations on ASKAP and Parkes

 Hellbourg et al., RFI2016; Bannister et al., ACES Memo 12

 Chippendale & Hellbourg, ICEAA 2017

Murchison Radio-astronomy Observatory: Pristine

Population 113

Allison et al., PASA 2015

Discovery of neutral hydrogen gas in a young radio galaxy

PKS B1740-517

MPIfR PAF on Parkes: Highly Occupied

Population 15,000

MPIfR PAF on Parkes: Nonlinear

How do we assess the impact of RFI on astronomy?

Chippendale & Wormnes, APEMC 2013

Viability of telescope hardware

- 1. Total RFI Power
- 2. Interference-to-Noise Power Ratio

Availability of spectrum for sensitive astronomy

3. Time-Frequency Occupancy

RFI survey composition

Low-sensitivity spectrograms

Short integration (<1 s), peak detection, rapid scan, high headroom

High-sensitivity spectrograms

Long integration (>1 hr), large instantaneous bandwidth

Raw-voltage recordings

Nyquist rate (<0.5 ns), large instantaneous bandwidth, triggered

What are the impacts of discarding data and undetected RFI?

Low sensitivity spectra

Swept-tuned spectrum analyser

High sensitivity spectra

Digital receiver with firmware FFT

Credit - SKA Site Survey Team: R. Beresford, A. Boonstra, W. Cheng, A. Chippendale, R. Millenar, L. Sofeya, A. Tiplady & K. Wormnes.

Comparing total RFI power at MRO and Parkes

12 hr duration, Δf =10 kHz, τ =0.5 s

Chippendale & Wormnes, APEMC 2013
Parkes Data: R. Beresford, A. Chippendale, A. Hotan, A. Chippendale, R. Manchester & P. Roberts

Resources for assessing impact on astronomy

Observatory Websites RFI notes, monitoring and reporting

https://www.narrabri.atnf.csiro.au/observing/

https://www.parkes.atnf.csiro.au/observing/

Australian Radiofrequency Spectrum Plan

https://www.acma.gov.au/theacma/australian-radiofrequency-spectrum-plan-spectrum-planning-acma

ACMA Register of Radiocommunications Licenses

https://web.acma.gov.au/rrl

ITU Recommendations

ITU-R P.372-13: Radio noise

ITU-R P.526: Propagation by diffraction

ITU-R P.676-11: Attenuation by atmospheric gasses

ITU-R RA.769-2: Protection criteria used for radio astronomical measurements

Thompson 1982: Response of a Radio-Astronomy Synthesis Array to Interfering Signals

doi:10.1109/TAP.1982.1142799

RFI conference proceedings 2001, 2004, 2010, 2016

EIRP-weighted transmitter density 50-300 MHz, 44 km scale

Received flux density 50-300 MHz, 44 km scale

Mitigating RFI in radio astronomy

Categories of RFI mitigation (ITU-R RA.2126-1)

- 1. Pro-active: turn it off, run away, put it in a box, change band, legislate
- 2. Spatial nulling: beamforming of array antennas to direct nulls at RFI
- 3. Waveform subtraction: estimate parameters, synthesise and subtract
- 4. Anti-coincidence: multiple antennas, identical astronomy, different RFI
- 5. Excision in time & frequency domain: notching, blanking & flagging

Techniques to improve RFI estimates

- direct copies
- reference antennas
- demodulation
- cyclostationarity
- subspace tracking
- polarisation and more ...

Spatial nulling with phased array feeds

Successful live interference mitigation with ASKAP's PAF system

- Suppressed RFI by up to 20 dB in real time
 - will improve with faster mitigation cycles
- Immediately useful on narrow-band, stationary self-interference
- Recovered beam weights at interference-affected channels
 - prevents freezing RFI into beam weights
 - required to suppress RFI and not the desired signal

Viable now on all CSIRO PAF systems: Effelsberg, Lovell, Parkes & ASKAP

Black et al., SP/SPE 2015 ASKAP simulations with 5 s update period

Hellbourg et al., RFI 2016 ASKAP BETA 6-antenna imaging experiment

Chippendale & Hellbourg, ICEAA 2017 MPIfR PAF on Parkes experiment

Spatial nulling

Subspace projection method

Covariance decomposision

$$\mathbf{R} = \langle \mathbf{x} \mathbf{x}^H \rangle = \mathbf{U} \Lambda \mathbf{U}^H$$

$$\mathbf{U} = [\mathbf{U}_{\mathsf{RFI}} | \mathbf{U}_{\mathsf{S+N}}]$$

$$= [\mathbf{u}_1 \dots \mathbf{u}_d | \mathbf{u}_{d+1} \dots \mathbf{u}_{\mathsf{M}}]$$

Orthogonal projector

$$\mathbf{P} = \mathbf{I} - \mathbf{U}_{\mathsf{RFI}} \mathbf{U}_{\mathsf{RFI}}^H$$

Oblique projector

$$\mathbf{P} = \mathbf{w}_0 \mathbf{w}_0^H \left(\mathbf{I} - \mathbf{U}_{\mathsf{BFI}} \mathbf{U}_{\mathsf{BFI}}^H \right)$$

Projection operation

$$\mathbf{R}_{\text{proj}} = \mathbf{P}\mathbf{R}\mathbf{P}$$

$$\mathbf{w}_{\mathsf{proj}} = \mathbf{P}\mathbf{w}_0$$

Mitigation on versus off (ASKAP BETA)

PKS B1934-638 and GPS L2 at 1225 MHz (1 MHz BW)

Hellbourg et al., RFI2016; Bannister et al., ACES Memo 12

Mitigation on versus off (MPIfR PAF on Parkes)

Suppression versus dimension (MPIfR PAF at Parkes)

Suppression versus antenna motion (MPIfR PAF on Parkes)

120 s update period

Removing interference from DSP clock (MPIfR PAF on Parkes)

ASKAP pulsar observation

Original weights

Interpolated weights

Measurement by Dr. R. Shannon

Conclusion Challenge

- 1. Learn to live with RFI because humanity relies on it.
- 2. Be vigilant and proactive.
- 3. Collaborate to make RFI-affected data useful.

Thank You

CSIRO Astronomy and Space Science

Dr. Aaron Chippendale

- t +61 2 9372 4296
- e Aaron.Chippendale@csiro.au
- w www.atnf.csiro.au

We acknowledge the Wajarri Yamatji people as the traditional owners of the Murchison Radio-astronomy Observatory site.

