CSECE 8735 Fall 2015 Unsupervised Learning

Assignment 4

due Thursday 11/12/2015

Problem 1 Carry out spectral clustering on the dataset Circle.dat, with the parameters $\sigma^2 = 2$, and $\varepsilon = 1.5$. Use the median value of the vector y's components as the threshold for partitioning data into two clusters: assign x_i to C_1 if $y_i < median(y)$, otherwise assign x_i to C_2 .

- (a) Show the smallest 5 eigenvalues.
- (b) Make a plot of the data samples with their assigned clusters shown by different colors or different symbols.
- (c) Include your MATLAB code in the report.

Problem 2 Carry out latent sematic analysis on the following four commends: (c.f. class notes of 10/27/15, 10/29/15, and the papers of LSA-LM and SemanticClassification)

d-1: what is the time

d-2: what is the day

d-3: what time is the meeting

d-4: cancel the meeting

(a) Build the matrix W (word by document), with the words arranges as

w-1: what

w-2: is

w-3: the

w-4: time

w-5: day

w-6: meeting

w-7: cancel

w-8: when

Please use log with base 2 for computing the normalized entropy ε_i , and set ε_i = 0 if the word w-*i* does not exist in the training documents (e.g., the word when).

- (b) Perform SVD decomposition on W (svd() in MATLAB) and report the values of your U, S, V matrices.
- (c) Keep the eigenvectors corresponding to the largest two eigenvalues, and compute the scaled document vectors for the four documents. Report their values.
- (d) For the following new test commend

d-5: when is the meeting

use the fold-in method to compute its scaled document vector.

- (e) Compute the Euclidean distance between the test commend d-5 and the training commends d-1, d-2, d-3, d-4 by using their scaled document vector. Determine the 1st, 2nd, 3rd, and 4th nearest neighbors of d-5.
- (f) Include your MATLAB code in the report.

Problem 3 A Euclidean distance matrix of five data samples is given below:

$$D = \begin{bmatrix} 0 & 1 & \sqrt{5} & \sqrt{5} & 2 \\ 1 & 0 & \sqrt{2} & 2 & \sqrt{5} \\ \sqrt{5} & \sqrt{2} & 0 & \sqrt{2} & \sqrt{5} \\ \sqrt{5} & 2 & \sqrt{2} & 0 & 1 \\ 2 & \sqrt{5} & \sqrt{5} & 1 & 0 \end{bmatrix}$$

- (a) Use the classical multidimensional scaling algorithm (MDS) to estimate the 2-D coordinates of the five data samples (include in your report the eigenvalue matrix, the eigenvector matrix, the estimated data coordinates, and the MATLAB code).
- (b) Verify that the estimated data coordinates are centered, i.e., $\frac{1}{5}\sum_{i=1}^{5}x_{i}=0$, and the distance matrix D is completely recovered by the Euclidean distance between the estimated data samples.

Problem 4 Three different clusterings (a,b, and c) have been generated for 12 data samples, shown in the table below:

Data samples	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂
Class labels	1	1	1	1	1	2	2	2	2	2	2	2
Cluster labels (a)	2	2	2	2	2	1	1	1	1	1	1	1
Cluster labels (b)	2	2	1	1	1	2	2	2	2	2	2	2
Cluster labels (c)	1	1	1	2	2	2	2	2	2	2	1	1

Evaluate the quality of the three clusterings by using the measure of normalized mutual information (NMI) as defined on page 5 of the random projection paper (and discussed in class on 10/15/2015). Specifically, do the following three parts:

- (a) For each clustering, compute the probability distributions Pij, Pi, and Pj, where i represents the class labels, and j represents the cluster labels.
- (b) For each clustering, compute the mutual information and normalized mutual information.
- (c) Comment on your results.

This assignment is complete.