2024 秋季学期偏微分方程期中考试

命题人: 考试时间: 2024 年 11 月 14 日 8:00-9: 整理人: Aut

4010 points) Write down an explicit formula for a function u solving the initial value problem

$$\begin{cases} u_t + b \cdot Du + cu = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

Here, $c \in \mathbb{R}$ and $b \in \mathbb{R}^n$ are constants.

(10分)写出下面初值问题解的具体表达式

$$\begin{cases} u_t + b \cdot Du + cu = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\}. \end{cases}$$

其中, $c \in \mathbb{R}$ 和 $b \in \mathbb{R}^n$ 是常数.

2.(10 points) Use Poisson's formula for the ball to prove

$$r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} u(0) \leqslant u(x) \leqslant r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} u(0), \quad x \in B^0(0, r)$$

whenever u is positive and harmonic in $B^0(0, r)$.

(10分)利用球的 Poisson 公式证明

$$r^{n-2} \frac{r - |x|}{(r + |x|)^{n-1}} u(0) \leqslant u(x) \leqslant r^{n-2} \frac{r + |x|}{(r - |x|)^{n-1}} u(0), \quad x \in B^0(0, r)$$

其中 u 在开球 $B^0(0,r)$ 中是正的并且是调和的.

3.(30 points) Recall that the Poisson's kernel for the ball B(0,r) is given by

$$K(x,y) = \frac{r^2 - |x|^2}{n\alpha(n)r} \cdot \frac{1}{|x-y|^n}, \quad x \in B^0(0,r), y \in \partial B(0,r).$$

- (1) Show that for each fixed $y \in \partial B(0,r)$, the mapping $x \mapsto K(x,y)$ is harmonic in $B^0(0,r)$.
- (2) Define $v(x) = \int_{\partial B(0,r)} K(x,y) dS(y), x \in B^0(0,r)$. Show that $v_{x_i}(y) = \int_{\partial B(0,r)} K_{x_i}(x,y) dS(y), x \in B^0(0,r)$ and then conclude that v is harmonic in $B^0(0,r)$.
- (3) Show that $v \equiv 1$ in $B^0(0, r)$.
- (30 分) 回顾球 B(0,r) 上的 Poisson 核由下列表达式给出

$$K(x,y) = \frac{r^2 - |x|^2}{n\alpha(n)r} \cdot \frac{1}{|x-y|^n}, \quad x \in B^0(0,r), y \in \partial B(0,r).$$

- (1) 证明对于每个固定的 $y \in \partial B(0,r)$, 映射 $x \mapsto K(x,y)$ 在开球 $B^0(0,r)$ 中是调和的.
- (2) 定义 $v(x) = \int_{\partial B(0,r)} K(x,y) dS(y), x \in B^0(0,r)$. 证明 $v_{x_i}(y) = \int_{\partial B(0,r)} K_{x_i}(x,y) dS(y), x \in B^0(0,r)$ 并且得出 v 在 $B^0(0,r)$ 中是调和的.
- (3) 证明 v 在 $B^0(0,r)$ 中恒等于 1.

4.(10 points) Suppose u is smooth and solves $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$. Show that $u_{\lambda}(x, t) := u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.

(10 分) 假设 u 是光滑的并且满足 $\mathbb{R}^n \times (0, \infty)$ 上的热方程 $u_t - \Delta u = 0$. 证明对每一个 $\lambda \in \mathbb{R}, u_\lambda(x,t) := u(\lambda x, \lambda^2 t)$ 也满足热方程.

5.(20 points) Assume n=1 and $u(x,t)=v(\frac{x}{\sqrt{t}})$. Show $u_t=u_{xx}$ if and only if

$$v'' + \frac{z}{2}v' = 0. \tag{*}$$

Show that the general solution of (\star) is

$$v(z) = c \int_0^z e^{-s^2/4} ds + d.$$

(20 分) 令 n=1 以及 $u(x,t)=v(\frac{x}{\sqrt{t}})$. 证明 $u_t=u_{xx}$ 当且仅当

$$v'' + \frac{z}{2}v' = 0. \tag{*}$$

证明(*)的一般解是

$$v(z) = c \int_0^z e^{-s^2/4} ds + d.$$

6. (20 points) (1) Show that the general solution of the PDE $u_{xy} = 0$ is u(x, y) = F(x) + G(y) for arbitrary functions F, G.

(2) Using the change of variables $\xi = x + t$, $\eta = x - t$, show $u_{tt} - u_{xx} = 0$ if and only if $u_{\xi\eta} = 0$.

 $(20\ \mathcal{G})(1)$ 证明 PDE $u_{xy}=0$ 的一般解是 u(x,y)=F(x)+G(y), 其中 F,G 为任意函数.

(2) 利用变量替换 $\xi = x + t, \eta = x - t$, 证明 $u_{tt} - u_{xx} = 0$ 当且仅当 $u_{\xi\eta} = 0$.