برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

تاریخ در نگی: 12 مئی <u>2020</u>

عنوان

ix		ديباچه
1	عا كنّ	1 بنیادی<
1	ينيادى اكائياں	1.1
1	غيرستى	1.2
2	سمتير	1.3
3		1.4
3	1.4.1 كار تىبى محددى نظام	
5	1.4.2 نگلی محددی نظام	
7	سمتيررقبر	1.5
9	ر قبه عمودی تراش	1.6
10	برقی اور مقناطیسی میدان	1.7
10	1.7.1 برقی میدان اور برقی میدان کی شدت	
11	1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

11	سطحی اور تحجی کثاف ت	1.8	
11	1.8.1 سطی کثافت		
12	حجى ڭافت	1.9	
13	صلیبی خرب اور ضرب نقطه	1.10	
13	1.10.1 صلیبی ضرب		
15	1.10.2 نقطی ضرب		
18	تفرق اور جزوی تفرق	1.11	
18	خطی تکمل	1.12	
19	سطح تکمل	1.13	
20	دوری سمتیہ	1.14	
25) اد وار	مقناطيسو	2
2525	ماد وار مز احمت اور پیچکیا ہٹ	, -	2
25	····•	2.1	2
2526	مزاحمت اور نیکچابٹ	2.1	2
252628	مزاحمت اور نیچکیا پٹ	2.1	2
25 26 28 30	مزاحمت اور نیکچابث کثافت بر تی رواور برتی میدان کی شدت برتی ادوار متناطبیسی دور حصد اول	2.12.22.3	2
25 26 28 30 32	مزاحمت اور نیجگیا پت کثافت ِ برقی رواور برقی میدان کی شدت برقی ادوار متناطیسی دور حصه اول کثافت ِ مقناطیسی بهاواور مقناطیسی میدان کی شدت	2.1 2.2 2.3 2.4	2
25 26 28 30 32 34	مزاحمت اور آنچکوابت کثافت برقی رواور برقی میدان کی شدت برقی ادوار	2.1 2.2 2.3 2.4 2.5 2.6	2
25 26 28 30 32 34 38	مزاحمت اور نیجگیا په بل کثافت برتی رواور برتی میدان کی شدت برتی او وار متناطیسی دور حصه اول کثافت ِمتناطیسی بهاواور متناطیسی میدان کی شدت متناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

55																												رمر	ثرانسفاه	;	3
56		 •	•																				ت	ااتمير	رکی	نارم	ٹرانسف	ļ.	3.1		
59		 •	•																				سام	کےاقہ	_,	نارم	لرانسة	b	3.2		
59										•															باو	ي قى	امالی بر	I	3.3		
61		 •	•																	إع	ياضب	قالبو	واور	قىر	1.)	انگيز	بيجان		3.4		
64																		اص	لے خوا	و_	فی	لەبر	رتباد	إواور) د با	برق	تبادله	;	3.5		
68		 •																	ژ .	با	اجانه	زائی	كاابتا	وجھ	ب	جانر	ثانوى	•	3.6	,	
69		 •	•							•								٠.	طلب	كالمر	طول	پر نق ^و	ىت	اعلام	رکی	نارم	لرانسة	ŀ	3.7	,	
70																								لہ .	تباد	ك كا	ركاور	,	3.8		
75																				. ,	ىدىر بېيىم	-l-	الث	کے وو	_,	نارم	ٹرانسف	;	3.9)	
77		 •																	ر .)اد وا	اوی	ر مس	لهاو	کے اما	_,	نارم	ٹرانسف	3	3.10)	
77		•			•	•					•		ţ	کر:	نده	, عليح	عامله	کی متنا	اس	اور	ثمت	مزاد	ہے کی	\$	3	.1	0.1				
79																						٠ ،	ناامال	ږــٰ	3	.1	0.2				
80																ت	ثرار	کےا	ب.	ر قال	رواو	رقی	ئى	ثانو	3	.1	0.3				
81																		و .	ياد با	ؠڔۊٙ	اامالح	يھے ک	ب ئ ^ی ی۔	ثانو	3	.1	0.4				
81														ات	اثر	کے	مامليه	ر متع	تاو	إحمد	لىمز	<u>کھے</u> کھ	بر ای	ثانو	3	.1	0.5				
83																إدله	بتبا	اجانبه	نوی	<u>ل</u> ياثا	بتداؤ	:16.	وط	رکا	3	.1	0.6				
85															ار	ادوا	اوی	نمس	اتري	ساده	کے	ر مر	نسفاء	ٹرا	3	.1	0.7	,			
86																				ائنه	رمعا	ردوا	ر قص	نهاو	عائ	ورم	کطے د	. 3	3.11		
87																					ئنه	معا	إدور	كھلا	3	.1	1.1				
89																					ئنہ	رمعا	ردور	قص	3	.1	1.2				
93		 •																				٠,	ر مر	أنسفا	باٹرا	وري	تين	. 3	3.12		
101																زر	وكا	قىر	کی بر	ه محر	زياده	لمحه ز	يت	لوكر	رجا	نارم	_{ٹرانس} ف	; ;	3.13		

vi

ميكاني توانا في كا با جمي تبادليه	بر تی اور	4
مقناطيسي نظام ميں قوت اور قوت مر وڑ	4.1	
تبادلة توانا كى والدايك لچھے كانظام	4.2	
توانائی اور مم-توانائی	4.3	
متعدد کچھوں کامقناطیسی نظام	4.4	
مثين كے بنيادى اصول	گھومتے	5
قانون فيراۋك	5.1	
معاصر مثنین	5.2	
محرک برقی دباو	5.3	
ت کیلے کچھے اور سائن نمامقناطیسی دیاو	5.4	
5.4.1 برلتارومشين		
مقناطيسي د باو کی گھومتی امواج	5.5	
5.5.1 ایک دورکی لپٹی مثنین		
5.5.2 تين دورکي لپڻي مشين کا تحليلي تجربي		
5.5.3 تين دوركي لپڻي مشين کاتر سيمي تجربير		
محرک برتی دباو	5.6	
5.6.1 برلاروبر تی جزیر		
5.6.2 يک ست روبر تي جزيئر		
بموار قطب مشينول مين قوت مروڑ	5.7	
5.7.1 ميكاني قوت مر وژبذريعه تركيب توانائي		
5.7.2 ميكاني قوت مر وژبذريعه متناطيسي بهاو		

vii

چالومعاصر مشين	6 كيسال حال، بر قرار
رى معاصر مشين	6.1 متعددرو
شين كي اماله	6.2 معاصر م
) خوداماله	6.2.1
) مشتر که اماله	6.2.2
) معاصراءاله	6.2.3
شین کامساوی دوریاریاضی نمونه	6.3 معاصر ^
ت کی شتلی	6.4 برتی طاق
ال، بر قرار چالومشین کے خواص	6.5 كيسال حا
196 معاصر جنزیٹر: برقی یو جھ ہالنقابل I_m کے خط I_m معاصر جنزیٹر: برقی یو جھ ہالنقابل	6.5.1
I_a معاصر موٹر: I_a بالنقابل I_a خط I_a خط ،	6.5.2
ور قصر دور معائنه	6.6 كھلادوراه
) کھلادور معائنہ	5.6.1
) قصر دور معائنه	6.6.2

211	امالی مشیرز	7
ساكن كچھوں كى گھومتى مقناطىيى موج	7.1	
مشين كاسر كاواور گھومتى امواج پر تبعرہ	7.2	
ساكن كچھول ميں امالي برقى دياو	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی برقی دباو	7.4	
گھومتے کچھوں کی گھومتے متناطبی دیاو کی موج ہے۔	7.5	
گھومتے کیچھوں کے مساوی فرضی ساکن کیچھے ۔	7.6	
المالي موشر كا مساوى برقى دور	7.7	
مىاوى برقى دورېرغور	7.8	
المالي موشر كا مسادى تقونن دوريارياضي نمونه	7.9	
پنجره نماامالی موٹر	7.10	
بے پوچھ موٹراور جامد موٹر کے معائنہ	7.11	
7.11.1 بي بوجه موثر كامعائنه		
7.11.2 جامد موثر کا معاتند		
رومشين	يك سمت	8
ميكاني ست كاركي بنيادى كاركروگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
يك ست جزيرً كابر تي د باو	8.2	
قوت مرور الله الله الله الله الله الله الله الل	8.3	
بير وني بيجان اور خود بيجان يك سمت جزير	8.4	
يک ست مشين کي کار کرد گي کے خط	8.5	
8.5.1 حاصل برقی د باو بالقابل برقی بوجھ		
8.5.2 رفتار بالمقابل قوت مرور شرور شرور شرور شرور شرور شرور شرور		
271	ئ	فرہنًا

باب3

ٹرانسفار مر

ٹرانسفار مر وہ آلہ ہے جو بدلتا برقی دباو کو تبدیل کرتا ہے۔ یہ دویا دوسے زیادہ کچھوں پر مشمل ہوتا ہے جو مقناطیسی قالب اپر لیٹے ہوتے ہیں۔ یہ کچھے عموماً آپس میں جڑے ہوئے نہیں ہوتے ہیں۔ شکل 3.1-الف میں ٹرانسفار مرکی علامت دکھائی گئی ہے۔ دو کچھوں کے درمیان متوازی لکیریں مقناطیسی قالب کو ظاہر کرتی ہیں۔

دستیاب برقی د باو² پر ٹرانسفار مر کے ایک کچھے کو برقی طاقت فراہم کی جاتی ہے اور باقی کچھوں سے مختلف برقی د باو پر یہی برقی طاقت حاصل کی جاتی ہے۔ جس کچھے پر برقی د باو لا گو کیا جائے اسے ابتدائیے کچھا³ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو ابتدائی جانب⁴ کہتے ہیں۔اس طرح جس کچھے (کچھوں) سے برقی طاقت حاصل کی جاتی ہے اسے (انہیں) اگونوںے کچھا³ (کچھے) کہتے ہیں اور اس جانب کو اگونوںے جانب⁶ کہتے ہیں۔اییا شکل 3.1-ب میں دکھایا گیا ہے۔ٹرانسفار مرکی علامت میں ابتدائی جانب کو ہائیں طرف اور ٹانوی جانب کو دائیں طرف دکھایا جاتا ہے۔

بڑے ٹرانسفار مر عموماً صرف دو کچھوں پر مشمثل ہوتے ہیں۔اس کتاب میں مقناطیسی قالب پر لیٹے ہوئے دو کچھوں کے قوی ٹرانسفار مر پر تبحرہ کیا جائے گا۔

magnetic core¹

² بدلتا برقی دیاو کی علامت میں مثبت اور منفی نشان وقت صفر پر برقی دیاو کی مثبت اور منفی سرے ظاہر کرتے ہیں۔

primary coil³

primary side⁴

secondary coil⁵

secondary side⁶

56 باب. 3. ٹرانسفار مسم

شكل 3.1: ٹرانسفار مركى علامت۔

ٹرانسفار مر کے کم برقی دباو کے لچھے کو کم برقی دباو کا لچھا⁷ کہتے ہیں اور ٹرانسفار مر کی اس جانب کو کم برقی دباو والی جانب کہتے ہیں جبکہ ٹرانسفار مر کے زیادہ برقی دباو کے لچھے کو زیادہ برقی دباو کا لچھا⁸ کہتے ہیں اور ٹرانسفار مرکی اس جانب کو زیادہ برقی دباو والی جانب کہتے ہیں۔

یوں اگر ٹرانسفار مرکے کم برقی دباو جانب برقی دباو لاگو کیا جائے اور زیادہ برقی دباو جانب سے برقی دباو حاصل کیا جائے تو ٹرانسفار مرکی کم برقی دباو جانب کو ابتدائی جانب کہیں گے اور اس کی زیادہ برقی دباو جانب کو ثانوی جانب کہیں گے۔ کہیں گے۔

3.1 ٹرانسفار مرکی اہمیت

برلتے روکی برقی طاقت ایک مقام سے دوسرے مقام با آسانی اور نہایت کم برقی طاقت کی ضیاع سے منتقل کی جاسکتی ہے۔ یہی اس کی متبولیت کا راز ہے۔ٹرانسفار مر کے تبادلہ برقی دباو⁹ کی خاصیت ایبا کرنے میں کلیدی کردار ادا کرتی ہے جسے درج ذیل مثال کی مدو سے سیجھتے ہیں۔

مثال 3.1: شكل 3.2 سے رجوع كريں۔ برقى دباو اور برقى روكا حاصل ضرب برقى طاقت ہو گا:

$$p = v_1 i_1 = v_2 i_2$$

low voltage coil⁷ high voltage coil⁸

voltage transformation property⁹

3.1. ٹرانسفار مسر کی اہمیت

شكل 3.2: برقى طاقت كى منتقلي_

تصور کریں کہ تربیلا ڈیم سے 400 MW برقی طاقت لاہور 10 شہر کے گھریلو صارفین کو 220 وولٹ پر مہیا کرنی ہے۔اگر ہم اس طاقت کو 220 وولٹ پر ہی منتقل کرنا چاہیں تب برقی رو

$$i = \frac{p}{v} = \frac{500\,000\,000}{220} = 2\,272\,727\,\mathrm{A}$$

ہو گی۔ برقی تار میں کثافتِ برقی رو J_{au} تقریباً 5 ایمپیئر فی مربع ملی میٹر $\frac{A}{mm^2}$ کی مربع ملی میٹر $J_{au}=5$ ممکن ہوتی ہے۔ یہ ایک مخفوظ کثافتِ برقی رو ہے۔ اگر برقی تار میں اس سے زیادہ برقی رو گزاری جائے تو اس کی مزاحمت میں برقی طاقت کے ضیاع سے یہ گرم ہو کر پگھل سکتی ہے۔ اس طرح صفحہ 12 پر مساوات 1.23 سے برقی تار کا رقبہ عمودی تراش

$$A = \frac{i}{J_{av}} = \frac{2272727}{5} = 454545 \,\mathrm{mm}^2$$

ہو گا۔ گول تار تصور کریں تو اس کا رداس درج ذیل ہو گا۔

$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{454545}{\pi}} = 380 \,\mathrm{mm} = 0.38 \,\mathrm{m}$$

ا تنی موٹی برتی تار کہیں نہیں پائی جاتی ہے 11 اگریہ تار الموٹیم کی بنی ہو جس کی کثافت $\frac{\mathrm{kg}}{\mathrm{m}^3}$ ہوتی ہے تب ایک میٹر کمی تار کی کمیت

$$m = 2700 \times \pi \times 0.38^2 \times 1 = 1224 \,\mathrm{kg}$$

10 شلع صوابی میں بھی لاہورایک تحصیل ہے لیکن اس شہر کواتنی طاقت نہیں در کار 11 آپ انیں پانیمانیں، آپ نے بھی اتنی موٹی بر تی تاریجی نہیں دیکھی ہوگی۔

_

58 باب 3. ٹرانسفار مسر

یعنی 1.2 ٹن ہو گی۔المونیم اتنی مہنگی ہے کہ اس صورت میں اتنی برقی طاقت کو لاہور پہنچانا ممکن نہیں ہو گا¹²۔

آئیں اب ٹرانسفار مر استعال کر کے دیکھتے ہیں۔ ڈیم پر ایک ٹرانسفار مر نسب کر کے برقی دباو کو بڑھا کر 000 132 وولٹ یعنی 132 کلو وولٹ کیا جاتا ہے۔ یوں برقی رو درج ذیل ہو گا

$$i = \frac{p}{v} = \frac{500\,000\,000}{132\,000} = 3788\,\mathrm{A}$$

جس کے لئے درکار برقی تار

$$A = \frac{i}{J_{au}} = \frac{3788}{5} = 758 \,\text{mm}^2$$
$$r = \sqrt{\frac{A}{\pi}} = \sqrt{\frac{1667}{\pi}} = 15.5 \,\text{mm}$$

صرف 15.5 ملی میٹر رداس کی ہو گ۔

اس مثال میں اگر تربیلا ڈیم میں نسب جزیٹر 11000 وولٹ برقی دباو پیدا کر رہا ہو تو تربیلا ڈیم پر نسب ٹرانسفار مر برقی دباو کو 11000 وولٹ سے بڑھا کر 132 کلو وولٹ کرے گا جبکہ لاہور شہر میں نسب ٹرانسفار مر 132 کلو وولٹ کو واپس 11000 وولٹ کرے گا۔

اسی مثال کو بڑھاتے ہیں۔شہر میں 220 وولٹ کی بجائے 11000 وولٹ صارف کے قریب پہنچا کر محلہ میں نسب ٹرانسفار مرکی مدد سے 11000 وولٹ کو مزید گھٹا کر 220 وولٹ کیا جائے گا جو صارف کو فراہم کیے جائیں گئے۔

شکل 3.2 میں ڈیم سے شہر تک کا نظام د کھایا گیا ہے جہاں ڈیم پر نسب ٹرانسفار مر کو برقی دباو بڑھا ٹرانسفار مر¹³ اور لاہور میں نسب ٹرانسفار مر کو برقی دباو گھٹا ٹرانسفار م¹⁴ کہا گیا ہے۔

برتی طاقت عموماً 11 کلو وولٹ اور 25 کلو وولٹ کے مابین پیدا کی جاتی ہے۔اس کی منتقلی 110 کلو وولٹ اور 1000 کلو وولٹ سے کم پر کیا جاتا ہے۔

¹² ج کل لاہور میں بجلی کی معطلی اس وجہ سے نہیں ہے۔ و م

step up transformer¹³

step down transformer¹⁴

3.2. ٹرانسفار مسرکے اقسام

3.2 ٹرانسفار مرکے اقسام

گھروں اور کارخانوں کو برقی طاقت فراہم کرنے والے ٹرانسفار مر مقناطیسی قالب پر کپیٹے جاتے ہیں۔ یہ عموماً تیریخ دوری 15 ہوتے ہیں جنہیں لوہے کے قالب والے تیریخ مرملہ قوبی ٹرانسفار م¹⁶ کہتے ہیں۔

نہایت جھوٹے ٹرانسفار مر عموماً لوہے کے قالب پر بنائے جاتے ہیں اور یکے دوری 17 ہوتے ہیں۔یہ گھر ملو استعال کے برقی مثین، مثلاً موبائل چار جر، وغیرہ میں نب ہوتے ہیں اور 220 وولٹ سے برقی دباو مزید گھٹاتے ہیں۔

برقی دباوکی پیائش کے لئے مستعمل ٹرانسفار مر، جو دباو کے ٹرانسفارم ¹⁸ کہلاتے ہیں، کے ثانوی اور ابتدائی برقی دباو کی تناسب پر خاص توجہ دی جاتی ہے۔اسی طرح برقی روکی پیائش کے لئے مستعمل ٹرانسفار مر، جو روکے ٹرانسفارم ¹⁹ کہلاتے ہیں، کے ثانوی اور ابتدائی روکی تناسب پر خاص توجہ دی جاتی ہے۔ ویسے تو ہر ٹرانسفار مرکسی تناسب سے برقی دباویا برقی روکم یا زیادہ کرتا ہے لیکن جیسا پہلے ذکر کیا گیا، ان دو اقسام کے ٹرانسفار مروں میں کم اور زیادہ کرنے کی تناسب پر خاص توجہ دی جاتی ہے۔ان دو اقسام کے ٹرانسفار مروں کی برقی سکت²⁰ نہایت کم ²¹ ہوتی ہے۔

ٹرانسفار مر کے کچھوں کے مابین مشتر کہ مقناطیسی بہاو خلاء کے ذریعہ بھی ممکن ہے۔انہیں ظلائمے قالب ٹرانسفار مروں کہتے ہیں۔ ایسے ٹرانسفار مر ذرائع ابلاغ ²³ کے ادوار، لیعنی ریڈیو، ٹی وی وغیرہ میں پائے جاتے ہیں۔ان ٹرانسفار مروں کی علامت شکل 3.3 میں دکھائی گئی ہے جس میں قالب ظاہر کرنے والی متوازی کلیریں نہیں پائی جاتی ہیں۔

3.3 امالى برتى دباو

اس جھے کا بنیادی مقصد بیرونی برقی دباو v اور اندرونی امالی برقی دباو e میں فرق واضح کرنا اور ان سے متعلق سمنیکی اصطلاحات کا تعارف ہے۔

three $phase^{15}$

iron core, three phase power $transformer^{16}$

single phase¹⁷

 $potential\ transformer^{18}$

current transformer 19

electrical rating 20

²¹ پير عموماً تقريباً پچيس وولٺ -ايمپيئر سکت رکھتے ہيں۔

air core transformer²²

 $communication\ transformer^{23}$

60 باب. 3. ٹرانسفار مسم

شکل 3.4 میں بے بو جھ 24 ٹرانسفار مر دکھایا گیا ہے، یعنی اس کا ثانوی کچھا کھلے دور رکھا گیا ہے۔ ابتدائی کچھے کی مزاحمت R_1 ہے جس کو بیرونی جزو دکھایا گیا ہے۔ابتدائی کچھے پر v_1 برقی دباو لا گو کرنے سے ابتدائی کچھے میں بیجان انگیز برقی رو سے پیدا مقناطیسی دباو N_1i_{φ} قالب میں مقناطیسی بہاو φ پیدا کے گا۔ یہ بداتا مقناطیسی بہاو ابتدائی کچھے میں امالی برقی دباو e_1 پیدا کرتا ہے جسے درج ذیل مساوات پیش کرتی ہے۔

(3.1)
$$e_1 = \frac{\mathrm{d}\lambda}{\mathrm{d}t} = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

اس مساوات میں

- λ ابتدائی کیجے کی مقناطیسی بہاو کے ساتھ ارتباط بہاو ہے،
- φ مقناطیسی قالب میں مقناطیسی بہاو جو دونوں کیھوں میں سے گزرتی ہے،
 - ابتدائی کھھے کے چکر ہیں۔ N_1

ابتدائی کچھے کی مزاحمت R_1 صفر نہ ہونے کی صورت میں کرخوف کے قانون برائے برقی دباو کے تحت درج ذیل ہو گا۔

$$(3.2) v_1 = i_{\varphi} R_1 + e_1$$

 $\begin{array}{c} unloaded^{24} \\ excitation \ current^{25} \end{array}$

شکل 3.4 میں اس مزاحت کو بطور بیرونی جزو، ٹرانسفار مر کے باہر، دکھایا گیا ہے۔اس کچھے کی رستا متعاملہ بھی ہو گی جے نظرانداز کیا گیا ہے۔ عموماً طاقت کے ٹرانسفار مروں اور موٹروں میں $i_{\varphi}R_1$ کی قیمتوں سے بہت کم ہوتی ہے لہذا اسے نظرانداز کیا جا سکتا ہے۔ ایسا کرتے ہوئے درج ذیل لکھا جا سکتا ہے۔

$$(3.3) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t}$$

مساوات 3.2 سے ثابت ہوتا ہے کہ بیرونی لاگو برقی دباو v_1 اور اندرونی امالی برقی دباو e_1 دو علیحدہ برقی دباو ہیں۔ یہ بات سمجھ لینا بہت ضروری ہے۔ مساوات 3.3 کے تحت v_1 اور e_1 کی مطلق قیمتیں (تقریباً) ایک دوسرے کے برابر ہوتی ہیں v_1

لچھا ہیجارے ²⁷ کرنے سے مراد اس پر بیرونی برتی دباو لا گو کرنا ہے جبکہ کچھ پر لا گو بیرونی برتی دباو کو ہیجارے انگیز برتھے دباو²⁸ کہتے ہیں۔کچھے کو ہیجارج شدہ کچھا²⁹ جبکہ اس میں رواں برتی رو کو ہیجارے انگیزبرتھے رو³⁰ کہتے ہیں۔

کچھے میں گزرتی مقناطیسی بہاو کی تبدیلی سے برقی دباو حاصل کیا جا سکتا ہے۔ ٹرانسفار مروں میں ساکن کچھا سے برقی دباو کا امالی برقی دباو ³¹ کہتے ہیں۔ برقی دباو کا حصول مقناطیسی میدان میں کچھے کی حرکت سے بھی ممکن ہے۔ ایسے برقی دباو کو محرکھے برقی دباو³² کہتے ہیں۔ یاد رہے ان برقی دباو میں کسی قشم کا فرق نہیں ہوتا۔ انہیں مختلف نام صرف بہچان کی خاطر دئے جاتے ہیں۔

3.4 ميجان انگيز برقى رواور قالبى ضياع

جہاں مقناطیسی قالب میں بدلتا مقناطیسی بہاو ثانوی لیھوں میں فائدہ مند برقی دباو پیدا کرتا ہے وہاں یہ مقناطیسی قالب میں نقصان دہ برقی دباو کو بھی جنم دیتا ہے جس سے مقناطیسی قالب میں بھورنما برقی رو³³ پیدا ہوتا ہے۔ بھنور نما برقی

²⁶ جس سے طلبہ کی ذبن میں بیر غلط منجی پیدا ہوتی ہے کہ بیدا یک ہی برتی دیاو کے دو مختلف نام ہیں۔ 27 -

 $[\]begin{array}{c} {\rm excitation~voltage^{28}} \\ {\rm excited~coil^{29}} \end{array}$

excitation current³⁰

induced voltage³¹

electromotive force, emf³² eddy currents³³

62 باب. 3. ٹرانسفار مسم

شکل 5. 3: قالبی پتری کے اشکال اور ان کو تہہ در تہہ رکھنے کاطریقہ۔

رو مقناطیسی قالب میں برقی طاقت کے ضیاع کا سبب بنتا ہے جسے بھور نما برقی رو کا ضیاع 36 یا مخضراً قالبھ ضیاع 35 کہتے ہیں۔ قالبی ضیاع کو کم سے کم کرنے کے لئے مقناطیسی قالب کو باریک لوہے کی پتریاس 36 تہہ در تہہ رکھ کر بنایا جاتا ہے۔ان پتریوں پر غیر موصل روغن 37 کی تہہ لگائی جاتی ہے تا کہ بھنور نما برقی روکو روکا جا سکے۔آپ ویکھیں گے کہ برقی مشین کا قالب عموماً اس طرح بنایا جاتا ہے۔شکل 2.15 اور جدول 2.1 میں 3048 میں میٹر موثی کا کہ برقی مشین کا قالب عموماً اس طرح بنایا جاتا ہے۔شکل 2.15 اور جدول 35 میں 3048 کے مواد دیا گیا ہے۔

شکل 5.5-الف میں قالبی پتر یوں کے دو اشکال دکھائے گئے ہیں۔ان کی شکل و صورت کی بنا انہیں ایک اور تاہیں ہیں ہے۔ان دو تاہین پکارتے ہیں۔ شکل 5.5-ب میں ایک پتر یوں اور تین پتر یوں کو دو طرح آپس میں رکھا گیا ہے۔ان دو طریقوں سے انہیں تہہ در تہہ رکھا جاتا ہے۔لندا اگر پہلی تہہ میں ایک دائیں جانب اور تین بائیں جانب رکھا جائے تو اس کے اوپر دوسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جانب رکھا جائے گا۔ تیسری تہہ میں ایک کو بائیں جانب اور تین کو دائیں جوڑ کر شکل 5.5-پ میں دکھایا گیا قالب حاصل دائیں اور تین کو بائیں جانب رکھا جائے گا، وغیرہ۔اسی طرح انہیں جوڑ کر شکل 5.5-پ میں دکھایا گیا قالب حاصل کیا جاتا ہے۔

پیدا e_1 کی مزاحمت کو شکل 3.4 میں نظر انداز کرتے ہیں۔ بیجان انگیز برتی رو i_{φ} کی بنا امالی برتی دباو e_1 ہوتا ہے جو ہر صورت لاگو برتی دباو v_1 کے برابر ہو گا۔ چونکہ بوجھ کی بنا v_1 تبدیل نہیں ہوتا ہے لہذا بوجھ کی بنا e_1 اور بیجان انگیز برتی رو بھی تبدیل نہیں ہوں گے۔ یوں بے بوجھ اور بوجھ بردار ٹرانسفار مر میں بیجان انگیز برتی رو بھی تا e_1 میں دکھایا گیا ہے، توی ٹرانسفار مر اور موٹروں میں برتی دباو اور مقاطبی برتی رو کیاں ہوتا ہے۔ جبیبا شکل 2.18 میں دکھایا گیا ہے، توی ٹرانسفار مر اور موٹروں میں برتی دباو اور مقاطبی

eddy current loss³⁴

core loss³⁵

 $laminations^{36} \\$

 $enamel^{37}$

 $[\]mathrm{E.I}^{38}$

بہاو سائن نما ہوتے ہیں جبکہ ان میں ہیجان انگیز برقی رو غیر سائن نما ہوتا ہے۔ یوں اگر

(3.4)
$$\varphi = \phi_0 \sin \omega t = \phi_0 \cos (\omega t - 90^\circ)$$
$$\hat{\varphi} = \phi_0 / -90^\circ$$

ہو تب

(3.5)
$$e_1 = N_1 \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \omega N_1 \phi_0 \cos \omega t$$
$$\hat{E_1} = \omega N_1 \phi_0 / 0$$

ہو 39 گا۔ یہاں ϕ_0 مقناطیسی بہاو کے حیطہ کو ظاہر کرتی ہے اور ω زاویائی تعداد ارتعاش لیعنی $2\pi f$ کو ظاہر کرتی ہے ϕ_0 اور ϕ_0 گا۔ یہاں ϕ_0 تعداد ارتعاش ہے جسے ہر ٹر ϕ_0 میں ناپا جاتا ہے۔ جیسا شکل ϕ_0 میں دکھایا گیا ہے ϕ_0 اور ϕ_0 کے بھی ϕ_0 کا زاوبیہ ہو گا۔ ϕ_0 برتی دباو کی موثر قیت ϕ_0

(3.6)
$$E_{rms} = \frac{\omega N_1 \phi_0}{\sqrt{2}} = 4.44 f N_1 \phi_0$$

ہے جس سے درج ذیل لکھا جا سکتا ہے۔

(3.7)
$$\phi_0 = \frac{E_{rms}}{4.44f N_1 \phi_0}$$

یہاں رکھ کر دوبارہ نظر ثانی کرتے ہیں۔ اگر ایک کچھ پر E_{rms} موثر برتی دباو لا گو کیا جائے تو یہ کچھا اتنا بیجان انگیز برتی رو i_{φ} گزرنے دیتا ہے جس سے نمودار ہونے والا مقناطیسی بہاو مساوات 3.7 میں دیے گئے مقناطیسی بہاو i_{φ} کے برابر ہو۔ یہ حقیقت نہ صرف ٹرانسفار مر بلکہ کسی بھی مقناطیسی دور کے لئے درست اور لازم ہے۔ ϕ_0

نغیر سائن نما میجان انگیز برقی رو
$$i_{\varphi}$$
 کو فوریئر تسلسل ⁴⁰ سے درج ذیل لکھا جا سکتا ہے۔
$$i_{\varphi} = \sum_{n} (a_{n} \cos n\omega t + b_{n} \sin n\omega t)$$
(3.8)

اس سلسل میں $(a_1 \cos \omega t + b_1 \sin \omega t)$ کو بنیادی جزو اللہ جبکہ باقی حصہ کو موسیقائی اجزاء 42 ہیں۔ بنیادی جزو میں سلسل میں $(a_1 \cos \omega t + b_1 \sin \omega t)$ کہ جم قدم ہے اور میں میں میں مین جود میں آنے والے امالی برقی دباو، $(a_1 \cos \omega t + b_1 \sin \omega t)$ کہ جم قدم ہے اور دونوں ایک ساتھ بڑھتے اور گھٹے ہیں جبکہ $(a_1 \cos \omega t + b_1 \sin \omega t)$ نوے درجہ تاخیری زاویہ پر رہتا ہے۔ قالب میں مختلف وجوہات کی بنا پیدا برقی طاقت کی ضائع کو $(a_1 \cos \omega t + b_1 \sin \omega t)$ خوا کے جو جوہات کی بنا پیدا برقی طاقت کی ضائع کو $(a_1 \cos \omega t + b_1 \sin \omega t)$

³⁹س مساوات میں اور اس کے بعد پوری کتاب میں امالی برقی دیاو کے ساتھ منفی علامت نہیں لگائی گئی ہے۔

Fourier series⁴⁰

fundamental component⁴¹ harmonic components⁴²

core loss component⁴³

با___ 3. ٹرانسفارمس 64

شکل6.3: مختلف دوری سمتسوں کے زاویے۔

کتے ہیں۔ پیجان انگیز برقی رو $a_1\cos\omega t=a_1\cos\omega t$ منفی کر کے مقناطیس بنانے والا برقی رویا مقناطیب ہر قرقہ رو $a_1\cos\omega t$ حاصل ہو گا۔ تسلسل کی تیسرا موسیقائی جزوسب سے زیادہ اہم ہے۔ قوی ٹرانسفار مرول میں تیسرا موسیقائی جزو عموماً کل ہیجان انگیز برقی رو کا 40 فی صد ہوتا ہے۔

ماسوائے جب بیجان انگیز برقی رو کے اثرات پر غور کیا جا رہا ہو، ہم بیجان انگیز برقی رو کے غیر سائن نما ہونے کو نظرانداز کرتے ہیں۔ قوی ٹرانسفارم کا بیجان انگیز برقی رواس کے کل برقی رو⁴⁵ کا تقریباً 5 فی صد ہوتا ہے للذا اس کا اثر بہت کم ہوتا ہے۔ یوں ہم بیجان انگیز برقی رو کو سائن نما تصور کر کے اس کے اثرات پر غور کرتے ہیں۔ایسا $I_{arphi,rms}$ کرنے سے مسکلہ پر غور کرنا آسان ہو جاتا ہے۔ اس فرضی سائن نما پیجان انگیز برقی رو \hat{I}_{arphi} کی موثر قیمت ، اصل جیجان انگیز برقی رو کی موثر قیمت کے برابر رکھی جاتی ہے جبکہ اس کا زاویہ $heta_c$ یوں رکھا جاتا ہے کہ اس سے حاصل برقی ضاع اصل برقی ضاع کے برابر ہو۔ شکل 3.6 کی مدد سے یہ بات مسجھنی زیادہ آسان ہے۔ قالبی ضاع ہونے کی صورت میں $heta_c$ کی قیت بوں منتخب کی جائے گی کہ درج ذیل مساوات درست ہو۔ p_c

 $p_c = E_{rms} I_{\varphi,rms} \cos \theta_c$

(3.9)

رباو \hat{I}_{ω} و باو \hat{I}_{ω} سے \hat{I}_{ω} تاخیر کی ہو گا۔

3.5 تبادله برقی د باواور تبادله برقی روکے خواص

 N_2 ہم شکل 3.7 کی مدد سے ٹرانسفار مرکا مطالعہ کرتے ہیں۔ ہم فرض کرتے ہیں کہ ابتدائی کیھا N_1 اور ثانوی کیھا چکر کا ہے اور دونوں کچھوں کی مزاحمتیں صفر ہیں۔ ہم مزید فرض کرتے ہیں کہ پورا مقناطیسی بہاو قالب میں رہتا

magnevizing current ⁴⁵کل بر قی روہے مرادوہ بر قی روہے جو کل بر قی بوچھ لادنے سے حاصل ہوتا ہے۔

اکھتے ہیں \hat{i}_{o} کواب دوری سمتہ کی مددسے \hat{i}_{o} کا کھتے ہیں \hat{i}_{o}

شكل 3.7: بوجھ بردار كامل ٹرانسفار مر۔

اور دونوں کچھوں سے گزرتا ہے، قالب میں برقی توانائی ضائع نہیں ہوتی ہے اور قالب کا مقناطیسی مستقل اتنا بڑا ہے کہ بیجان انگیز برقی رو قابل نظر انداز ہے۔ برقی رو i_1 اور i_2 کے رخ یوں رکھے گئے ہیں کہ ان سے پیدا مقناطیسی بہاو ایک دوسرے کے مخالف رخ ہیں۔ اصل ٹرانسفار مر ان باتوں پر تقریباً پورا اترتا ہے۔ ایسے ٹرانسفار مر کو کامل ٹرانسفار مر 47 کہتے ہیں۔

کامل ٹرانسفار مر کے ابتدائی کچھے پر بدلتا برتی دباو v_1 لاگو کرنے سے قالب میں بدلتا مقناطیسی بہاو φ_m پیدا ہو گا جو ابتدائی کچھے میں ، لاگو برتی دباو v_1 براب، امالی برتی دباو e_1 پیدا کرتا ہے۔

$$(3.10) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

یمی مقناطیسی بہاو دوسرے کیجے سے بھی گزرے گا اور اس میں e_2 امالی برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو پیدا کرے گا جو ثانوی سروں پر برقی دباو v_2 کی صورت میں نمودار ہو گا۔

$$(3.11) v_2 = e_2 = N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

مساوات 3.10 کو مساوات 3.11 سے تقیم کرتے ہوئے درج ذیل رشتہ حاصل ہوتا ہے

$$\frac{v_1}{v_2} = \frac{N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}}{N_2 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}} = \frac{N_1}{N_2}$$

جس کے تحت کامل ٹرانسفار مر دونوں لیجھوں کے چکروں کی نسبت سے تبادلہ برقی دباو⁴⁸ کرتا ہے۔

کامل ٹرانسفار مر میں طاقت کا ضیاع نہیں ہوتا ہے لہذا اس کو ابتدائی جانب جنتی برقی طاقت فراہم کی جائے وہ اتنی برقی طاقت ثانوی جانب دے گا:

$$(3.13) p = v_1 i_1 = v_2 i_2$$

 $ideal\ transformer^{47}$ voltage transformation⁴⁸

66 باب. 3. ٹرانسفار مسر

درج بالا مساوات سے

$$\frac{v_1}{v_2} = \frac{i_2}{i_1}$$

کھا جا سکتا ہے جس کو مساوات 3.12 کے ساتھ ملا کر درج ذیل حاصل ہوتا ہے۔

$$\frac{v_1}{v_2} = \frac{i_2}{i_1} = \frac{N_1}{N_2}$$

مساوات 3.15 ٹرانسفار مر کی تبادلہ برتی دباو اور تبادلہ برقی رو⁴⁹ کی خاصیت پیش کرتی ہے جیے عموماً دو حصوں میں ککھا جاتا ہے:

$$(3.16)$$
 $rac{v_1}{v_2}=rac{N_1}{N_2}$ تبادلہ برتی ریاو $rac{i_1}{i_2}=rac{N_2}{N_1}$ تبادلہ برتی رو

اس مساوات کا پہلی جزو کہتا ہے کہ ٹرانسفار مرکی دونوں جانب برقی دباو دونوں اطراف کے چکروں کا راست متناسب ہوگا جبکہ مساوات کا دوسری جزو کہتا ہے کہ ٹرانسفار مرکے دونوں اطراف برقی رو چکروں کا بالعکس متناسب ہوگا۔

مثال 3.2: شکل 3.7 میں درج ذیل لیتے ہوئے ٹرانسفار مرکی دونوں جانب برقی دباو اور برقی رو معلوم کریں۔

$$\hat{V}_1 = 220/0$$
 $N_1 : N_2 = 220 : 22$
 $Z = R = 10 \Omega$

حل: اہتدائی جانب برقی دباو 220 وولٹ دیا گیا ہے۔ ہم ثانوی جانب برقی دباو کو مساوات 3.16 کے پہلی جزو کی مدد سے حاصل کرتے ہیں۔

$$\hat{V}_2 = \frac{N_2}{N_1} \hat{V}_1 = \frac{22}{220} \times 220 / 0 = 22 / 0$$

ثانوی دباو 22 وولٹ ہے جو ابتدائی دباو کے ہم قدم ہے۔ ثانوی برقی دباو 10 اوہم کی مزاحمت میں برقی رو پیدا کرے گا جے اوہم کے قانون سے حاصل کرتے ہیں:

$$\hat{I}_2 = \frac{22/0}{10} = 2.2/0$$

current transformation⁴⁹

ثانوی رو 2.2 ایمپیئر ہے۔ ابتدائی رو مساوات 3.16 کے دوسری جزو سے حاصل کرتے ہیں۔

$$\hat{I}_1 = \frac{N_2}{N_1} \hat{I}_2 = \frac{22}{220} \times 2.2 / 0 = 0.22 / 0$$

اس مثال کے نتائج ایک جگہ لکھ کر ان پر غور کرتے ہیں۔

$$\hat{V}_1 = 220/0$$
, $\hat{V}_2 = 22/0$, $\hat{I}_1 = 0.22/0$, $\hat{I}_2 = 2.2/0$

ابتدائی دباو ثانوی دباو کے دس گنا ہے جبکہ برقی رو میں قصہ الٹ ہے۔ ثانوی رو ابتدائی رو کے دس گنا ہے۔ طاقت دونوں اطراف برابر ہے۔ یہاں رک کر اس بات کو اچھی طرح سمجھ لیں کہ جس جانب برقی دباو زیادہ ہوتا ہے اس جانب برقی رو کم ہو گا۔ یوں زیادہ دباو لچھا کے چکر زیادہ ہوں گے اور اس لچھے میں نسبتاً باریک برقی تار استعال ہو گی جبکہ کم دباو لچھا کم چکر کا ہو گا اور اس میں نسبتاً موٹی برقی تار استعال ہو گی۔ موٹی تار زیادہ رو گزارنے کی سکت رکھتی ہے۔

مثال 3.3: صفحہ 72 پر شکل 3.10-الف میں رکاوٹ Z_2 کو بدلتے برقی دباو \hat{V}_1 کے ساتھ ایک ٹرانسفار مرکے ذریعہ جوڑا گیا ہے۔درج ذیل معلومات کی روشنی میں رکاوٹ میں برقی رو اور طاقت کا ضیاع دریافت کریں۔

$$\hat{V}_1 = 110 / 0$$
, $Z_2 = R + jX = 3 + j2$, $N_1 : N_2 = 220 : 22$

حل: ٹرانسفار مرکی تبادلہ برقی دباوکی خاصیت کے تحت ابتدائی 110 وولٹ دباو ٹانوی جانب درج ذیل دباو \hat{V}_s دے گا۔

$$\hat{V_s} = \frac{N_2}{N_1} \hat{V_1} = \frac{22}{220} \times 110 / 0 = 11 / 0$$

یوں ثانوی رو

$$\hat{I}_2 = \frac{\hat{V}_s}{Z} = \frac{11\underline{/0}}{3+i2} = 3.05\underline{/-33.69}^{\circ}$$

اور رکاوٹ میں برقی طاقت کا ضیاع p_z درج ذیل ہو گا۔

$$p_z = I_2^2 R = 3.05^2 \times 3 = 27.9 \,\mathrm{W}$$

68 باب. 3. ٹرانسفار مسم

3.6 ثانوى جانب بوجھ كاابتدائي جانب اثر

شکل 3.8 میں ابتدائی کچھے کی تارکی مزاحمت کو R سے ظاہر کیا گیا ہے جبکہ ثانوی جانب بوجھ Z ہے۔ فرض کریں ہم Z آتار کر ٹرانسفار مر کے ثانوی سرے کھلے دور کرتے ہیں۔ بے بوجھ ٹرانسفار مرکی ابتدائی جانب بدلتا برقی دباو v_1 قالب میں گھڑی کے رخ بیق دباو v_1 قالب میں گھڑی کے رخ مقاطیسی دباو v_2 پیدا کرے گا۔ بہاو v_3 ابتدائی کچھے میں v_4 امالی برقی دباو پیدا کرتا ہے۔

$$(3.17) e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

ابتدائی رو، فراہم کردہ دباو اور ابتدا امالی دباو کا تعلق قانون اہم سے لکھا جا سکتا ہے۔

$$(3.18) i_{\varphi} = \frac{v_1 - e_1}{R}$$

اب ہم ثانوی جانب برتی ہو جھ Z لادتے ہیں۔ ہو جھ بردار ٹرانسفار مر i_1 کے ثانوی جانب برتی رو i_2 رواں ہو گا جس کی وجہ سے N_2i_2 مقناطیسی دباو وجود میں آئے گا۔ یہ مقناطیسی دباو قالب میں گھڑی کے مخالف رخ مقناطیسی بہاو جہ یہاو جہ سے وہ سے ایندائی کے میں اور ابتدائی کھے میں امالی دباو گھٹ کر $\varphi_m - \varphi_0 = i_2$ اور ابتدائی کھے میں امالی دباو گھٹ کی وجہ سے ابتدائی رو بڑھے گا۔

آپ نے دیکھا کہ ثانوی جانب کا رو قالب میں مقناطیسی بہاو تبدیل کر کے ابتدائی کچھے کو بوچھ کے بارے میں خبر دار کرتا ہے۔

اگیاہے۔ φ_m کو یہاں φ_m کہا گیاہے۔ loaded transformer 51

آئیں R کی قیمت کو نظرانداز کرتے ہوئے ہے بار ٹرانسفار مرسے شروع کر کے اس عمل کو زیادہ باریکی سے دیکھیں۔ٹرانسفار مرکو v_1 فراہم کرنے سے ابتدائی کچھے میں بیجان انگیز رو i_{φ} پیدا ہوگا جو قالب پر e_1 فراہم کرنے سے ابتدائی کچھے میں بیجان انگیز رو e_1 پیدا کرتا متناطیسی دباو مسلط کر کے اس میں گھڑی کے رخ بہاو φ_m پیدا کرتا v_1 ہوگا لہذا مساوات v_1 درج ذیل صورت اختیار کرتے ہوئے v_1 ہوگا لہذا مساوات v_1 درج ذیل صورت اختیار کرتی ہوئے کے مزاحمت نظرانداز کرتے ہوئے ہوئے میں میں گرتی ہے۔

$$(3.19) v_1 = e_1 = N_1 \frac{\mathrm{d}\varphi_m}{\mathrm{d}t}$$

اب ٹرانسفار مر پر Z ہوجھ ڈالتے ہیں۔ اس ہوجھ کی بنا ثانوی کچھے میں i_2 رو پیدا ہو گا جو قالب پر گھڑی کے مخالف رخ مقناطیسی دباو N_2i_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو φ_2 پیدا کرے گا۔ اگر φ_2 مسلط کر کے اس میں گھڑی کے مخالف رخ بہاو ہو جائے گا اور ابتدائی کچھے میں امالی دباو گھٹ نہ کیا جائے تب قالب میں کل مقناطیسی بہاو گھٹ کر $\varphi_m - \varphi_2$ ہو جائے گا۔ مساوات v_1 کے تحت یہ ایک ناممکن صورت حال ہے چونکہ v_1 کو جم صورت v_1 کے برابر مونا ہو گا (یاد رہ ہ کی قیت جوں کی توں ہے)۔ لہذا φ_2 کے اثر کو ختم کرنے کے لئے ابتدائی کچھے میں برقی رو نامورار ہو گا جس سے پیدا مقناطیسی دباو v_1 مقناطیسی دباو v_1 مقناطیسی دباو صفر ہو گا۔ اور v_1 کا مجموعی مقناطیسی دباو صفر ہو گا۔

$$(3.20) N_1 i_1 - N_2 i_2 = 0$$

درج بالا مساوات میں دونوں دباو ایک دوسرے کے مخالف رخ ہیں للذا ان کا مجموعہ در حقیقت ان کے فرق کے برابر ہوگا۔ مقناطیسی دباو N_1i_1 اور N_2i_2 قالب میں ایک دوسرے کے مخالف رخ ہیں للذا یہ ایک دوسرے کے اثر کو مکمل طور پر ختم کرتے ہیں۔ یوں بے بوجھ اور بوجھ بردار ٹرانسفار مر دونوں میں مقناطیسی بہاو φ_m کے برابر ہوگا۔ مساوات 3.20 سے تنادلہ رو کا کلیہ اخذ کیا جا سکتا ہے:

$$\frac{i_1}{i_2} = \frac{N_2}{N_1}$$

3.7 ٹرانسفار مرکی علامت پر نقطوں کا مطلب

شکل 3.9 میں جس لمحہ پر ابتدائی کچھے کا بالائی سر مثبت برقی دباو پر ہو، اس لمحہ پر ثانوی کچھے کا بالائی سر مثبت دباو پر ہے۔ اس حقیقت کو کچھوں پر نقطوں سے ظاہر کیا گیا ہے۔ یول نقطی سروں پر دباو ہم قدم ہوں گے۔ 70 باب. 3. ٹرانسفار مسر

شكل 9. 3: ٹرانسفار مركى علامت ميں نقطوں كامفہوم۔

مزید ابتدائی کیچے کے نقطی سرسے مثبت برتی رو کیچے میں داخل جبکہ ثانوی کیچے کے نقطی سرسے مثبت برتی رو کیچے سے خارج ہو گی۔

3.8 ركاوك كاتبادله

اس حصہ میں کامل ٹرانسفار مر میں رکاوٹ کے تبادلہ پر غور کیا جائے گا۔ شکل 3.10-الف میں ایک ٹرانسفار مر دکھایا گیا ہے جس کی ابتدائی جانب سائن نما برقی دباو $V_1 = V_1 / \theta$ لاگو کیا گیا ہے۔ یہاں دوری سمتیہ استعمال کئے جائیں گے۔ ٹرانسفار مر پر نقطے ہم قدم سروں کی نشاندہی کرتے ہیں۔

جیسے اوپر ذکر ہوا، برقی دباو \hat{V}_1 اور \hat{V}_2 آپس میں ہم قدم ہیں اور اسی طرح برقی رو \hat{I}_1 اور \hat{I}_2 آپس میں ہم قدم ہیں۔ سیاوات 3.12 اور مساوات 3.21 کو دوری سمتیہ کی مدد سے لکھتے ہیں۔

$$(3.22) \qquad \hat{V_1} = \left(\frac{N_1}{N_2}\right) \hat{V_2}$$

$$\hat{I_1} = \left(\frac{N_2}{N_1}\right) \hat{I_2}$$

خارجی د باو، رو اور رکاوٹ کا تعلق قانون اہم سے لکھتے ہیں۔

$$(3.23) Z_2 = \frac{\hat{V_2}}{\hat{I_2}} = |Z_2| \underline{/\theta_z}$$

مساوات 3.22 سے درج ذیل لکھا جا سکتا ہے جہاں آخری قدم پر رکاوٹ کی قیمت پر کی گئی ہے۔

(3.24)
$$\frac{\hat{V_1}}{\hat{I_1}} = \left(\frac{N_1}{N_2}\right)^2 \frac{\hat{V_2}}{\hat{I_2}} = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

3.8 رکاوٹ کاتب دلہ

یوں داخلی رو درج ذیل ہو گا۔

$$\hat{I}_1 = \frac{\hat{V}_1}{(N_1/N_2)^2 Z_2}$$

 Z_2' کو فراہم کیا گیا ہے۔ \hat{V}_1 ورج ذیل قیت کے رکاوٹ Z_2' کو فراہم کیا گیا ہے۔

(3.26)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

آپ تىلى كر كين كە اس دور مين تجى \hat{V}_1 كا برقى رو مساوات 3.25 دىتى ہے۔

ماوات 3.25 سے نبیت $\frac{\hat{V_1}}{\hat{I_1}}$ کھتے ہیں جو شکل 3.10-ب کے تحت Z_2' کے برابر ہے۔

(3.27)
$$\frac{\hat{V_1}}{\hat{I_1}} = Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

دونوں ادوار سے \hat{V}_1 کی طاقت درج ذیل حاصل ہوتی ہے۔

(3.28)
$$p = \hat{V_1} \cdot \hat{I_1} = \frac{V_1^2 \cos \theta_z}{\left(\frac{N_1}{N_2}\right)^2 |Z_2|}$$

یوں حساب کرنے کے نقطہ نظر سے ہم $\hat{V_1}$ کو مساوات 3.26 میں دی گئی قیمت کے رکاوٹ Z_2' پر لا گو کرتے ہوئے $\hat{V_1}$ کا برتی رو اور طاقت جان سکتے ہیں۔

 Z_2 منبع \hat{V}_1 کو شکل Z_2 -الف اور ب میں کوئی فرق نظر نہیں آتا ہے۔اس کے ساتھ ٹرانسفار مرکے ذریعہ جوڑنا یا بغیر ٹرانسفار مر Z_2 جوڑنا ایک برابر ہے۔ ٹرانسفار مر Z_2 کو یوں تبدیل کرتا ہے کہ \hat{V}_1 کو رکاوٹ Z_2' نظر آتا ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2' کی خاصیت کہتے ہیں جس کو درج ذیل مساوات بیان کرتی ہے۔ ٹرانسفار مرکی اس خاصیت کو تبادلہ رکاوہے Z_2'

(3.29)
$$Z_2' = \left(\frac{N_1}{N_2}\right)^2 Z_2$$

ہم حماب کرنے کی خاطر رکاوٹ کوٹرانسفار مرکی ایک جانب سے دوسری جانب منتقل کر سکتے ہیں۔

شكل 3.11: برقى طاقت كى منتقلى ـ

3.8 رکاوٹ کاتب دلہ

شكل3.12: ٹرانسفار مرقدم باقدم حل كرنے كاطريقه۔

مثال 3.4: شکل 3.11-الف میں رکاوٹ Z_B کا برقی بوجھ ایک جزیٹر پر لدا ہے۔ بوجھ تک برقی طاقت دو برقی تاروں کے ذریعہ منتقل کیا گیا ہے۔ ان تاروں کا مجموعہ رکاوٹ Z_t ہے۔

شکل-ب میں جزیٹر کے قریب نسب برقی دباو بڑھانے والا ٹرانسفار مر برقی دباو کو دس گنا بڑھاتا ہے اور برقی بوجھ کے قریب نسب برقی دباو گھٹانے والا ٹرانسفار مر برقی دباو کو دس گنا گھٹاتا ہے۔دونوں ٹرانسفار مروں کے بچ تاروں کا مجموعہ رکاوٹ Z_t ہے جبکہ باقی مستعمل تاروں کی رکاوٹ قابل نظر انداز ہے۔دونوں اشکال میں

$$Z_B = 2 + j4$$
, $Z_t = 0.1 + j0.15$, $\hat{V} = 415/0$

لیتے ہوئے

- برقی بوجھ پر برقی دباو معلوم کریں،
- برقی تارول میں برقی طاقت کا ضیاع معلوم کریں۔

impedance transformation 52

74 باب 3. ٹرانسفار مسر

حل الف:

$$\begin{split} \hat{I}_t &= \frac{\hat{V}}{Z_t + Z_B} = \frac{415/0}{0.1 + j0.15 + 2 + j4} \\ &= \frac{415/0}{2.1 + j4.15} = 89.23 / -63.159^{\circ} \\ &= 40.3 - j79.6 \end{split}$$

يوں رکاوٹ پر برقی د باو

$$\hat{V}_B = \hat{I}_B Z_B = (40.3 - j79.6) (2 + j4)$$

= 399 + j2 = 399/0.287°

اور برقی تاروں میں برقی طاقت کا ضیاع درج ذیل ہو گا۔

$$p_t = I_t^2 R_t = 89.23^2 \times 0.1 = 796 \,\mathrm{W}$$

حل ب: شکل 3.11 اور شکل 3.12 سے رجوع کریں۔ شکل 3.11 میں ٹرانسفار مر T_2 گانوی رکاوٹ کو مساوات 3.26 کی مدد سے ابتدائی جانب منتقل کرتے ہیں۔

$$Z_B' = \left(\frac{N_3}{N_4}\right)^2 Z_B = \left(\frac{10}{1}\right)^2 (2+j4) = 200 + j400$$

یوں شکل 3.12-الف حاصل ہوتا ہے جس میں برقی تار کا رکاوٹ اور تبادلہ شدہ رکاوٹ سلسلہ وار جڑے ہیں۔ان کے مجموعہ کو Z

$$Z' = Z_t + Z_B' = 0.1 + j0.15 + 200 + j400 = 200.1 + j400.15$$

لکھتے ہوئے شکل 3.12-ب حاصل ہوتا ہے۔ایک مرتبہ دوبارہ مساوات 3.26 استعال کرتے ہوئے کا کو گرانسفار مرکے ابتدائی جانب منتقل کرتے ہوئے

$$Z'' = \left(\frac{N_1}{N_2}\right)^2 Z' = \left(\frac{1}{10}\right)^2 (200.1 + j400.15) = 2.001 + j4.0015$$

شکل 3.12-پ ماصل ہو گا جس سے جزیر کا برتی رو درج زیل ہو گا۔

$$\hat{I}_G = \frac{\hat{V}}{Z''} = \frac{415/0}{2.001 + i4.0015} = 92.76/-63.432^{\circ}$$

 $\hat{I}_t = \hat{I}_t$ عاصل کرتے ہیں۔ $\hat{I}_t = \hat{I}_t$ عاصل کرتے ہیں۔ $\hat{I}_t = \left(\frac{N_1}{N_2}\right)\hat{I}_G = \left(\frac{1}{10}\right)92.76 - 63.432^\circ = 9.276 - 63.432^\circ$

یوں برقی تار میں طاقت کا ضاع درج ذمل ہو گا۔

 $p_t = I_t^2 R_t = 9.276^2 \times 0.1 = 8.6 \,\mathrm{W}$

اسی طرح شکل 3.11 میں \hat{I}_t جانتے ہوئے تبادلہ برقی روسے

 $\hat{I}_B = \left(\frac{N_3}{N_4}\right) \hat{I}_t = \left(\frac{10}{1}\right) 9.276 / -63.432^{\circ}$ $= 92.76 / -63.432^{\circ} = 41.5 - j82.9$

حاصل کیا جا سکتا ہے۔رکاوٹ پر برقی دباو درج ذیل ہو گا۔

$$\hat{V}_B = \hat{I}_B Z_B = (41.5 - j82.9)(2 + j4) = 414 + j0.2$$

بغیر ٹرانسفار مر استعال کیے برقی تاروں میں طاقت کا ضیاع 796 واٹ جبکہ ٹرانسفار مر استعال کرتے ہوئے صرف 8.6 ا واٹ یعنی 92 گنا کم ہے۔اسی میں ٹرانسفار مر کی مقبولیت کا راز ہے۔

3.9 ٹرانسفار مر کے وولٹ-ایمبیئر

ٹرانسفار مرکی دونوں جانب برقی دباو کچھوں کے چکروں پر مخصر ہوتا ہے۔ٹرانسفار مر ایک مخصوص برقی دباو اور برقی رو کے لئے بنایا جاتا ہے۔ٹرانسفار مر بناوٹی برقی دباو پر بھی استعال کیا جا سکتا ہے اگرچہ عموماً اسے بناوٹی برقی دباو پر بھی جلایا جاتا ہے۔اسی طرح ٹرانسفار مر بناوٹی برقی رویا سے کم برقی روپر بھی استعال کیا جا سکتا ہے۔ حقیقی استعال میں ٹرانسفار مرکا برقی رو عموماً بناوٹی قیت سے کم ہوتا ہے۔

ٹرانسفار مرکی ایک جانب کے برقی دباو اور برقی رو کا حاصل ضرب دوسری جانب کے برقی دباو اور برقی رو کا حاصل ضرب کا برابر ہوتا ہے۔

$$(3.30) V_1 I_1 = V_2 I_2$$

76 باب. 3. ٹرانسفار مسر

برقی دباہ اور برقی رو کے حاصل ضرب، V_1I_1 یا V_2I_2 ، کو ٹرانسفار مر کے وولٹ ضرب ایمپیئر یا مختفراً وولٹ المپیئر 53 کہتے ہیں 54 جو ٹرانسفار مر کے برقی سکت کا ناپ ہے۔ٹرانسفار مر اور دیگر برقی مشین، مثلاً موٹر اور جزیئر جو ٹرانسفار مر کے بنیادی اصولوں پر کام کرتے ہیں ، پر نسب معلوماتی شختی پر ان کا سکت، بناوٹی برقی دباہ اور بناوٹی تعداد کھھا جاتا ہے۔یوں ٹرانسفار مر کے وولٹ-ایمپیئر درج ذیل ہوں گے۔

$$(3.31) V_1 I_1 = V_2 I_2$$

مثال 3.5: ایک 25000 وولٹ-ایمپیئر اور 220 : 11000 وولٹ برقی سکت کے ٹرانسفار مر کے زیادہ برقی دباو کی جانب 11000 وولٹ لا گو ہیں۔

- اس کی ثانوی جانب زیادہ سے زیادہ کتنا برقی بوجھ ڈالا جا سکتا ہے؟
- زیادہ سے زیادہ برقی بوجھ پر ٹرانسفار مر کا ابتدائی برقی رو حاصل کریں۔

حل: اس ٹرانسفار مرکی معلومات درج ذیل ہیں۔

 $25 \,\mathrm{kV} \,\mathrm{A}$, $11000 : 220 \,\mathrm{V}$

تبادلہ برقی دباوکی مساوات سے ثانوی برقی دباو 220 وولٹ حاصل ہوتا ہے۔ ثانوی لیعنی کم برقی دباو جانب زیادہ سے زیادہ برقی رو مساوات 3.31 سے حاصل ہو گا۔

$$I_2 = \frac{25000}{220} = 113.636 \,\mathrm{A}$$

اسی طرح ابتدائی جانب زیادہ سے زیادہ برقی رو اسی مساوات سے حاصل ہو گا۔

$$I_1 = \frac{25000}{11000} = 2.27 \,\mathrm{A}$$

П

ٹرانسفار مرکی دونوں جانب کچھوں میں استعال برقی تارکی موٹائی یوں رکھی جاتی ہے کہ ان میں کثافتِ برقی رو 55 کیساں ہو۔ کچھوں کی مزاحمت میں برقی رو گزرنے سے برقی طاقت کا ضیاع ہوتا ہے جس سے تار گرم ہوتی

volt-ampere, VA⁵³

⁶⁴ ووك-ايمپيئر كو عموماً كلو ووك-اليمپيئر يعني 4 kV مليس بيان كياجاتا ہے۔

¹⁰⁰⁰ kV A⁵⁵ کی جاتی ہے اللہ انسفار مرکی کیچھوں میں کثافت برتی رو تقریباً A/mm²کی جاتی ہے

ہے۔ٹرانسفار مر کے برقی رو کی حد کچھوں کی گرمائش پر منحصر ہوتی ہے۔تار کی زیادہ سے زیادہ درجہ حرارت کو محفوظ حد کے اندر رکھا جاتا ہے۔زیادہ درجہ حرارت سے تار پر لگا روغن خراب ہو گا اور تار کا ایک چکر دوسرے چکر کے ساتھ قصر دور ہو گا۔اییا ہونے سے ٹرانسفار مر جل کر خراب ہو جاتا ہے۔

ٹرانسفار مرتیل گرم ہو کر پھیلتا ہے جس کی بنا اس کی کثافت کم ہوتی ہے۔ یوں ٹینکی میں گرم تیل اوپر اور ٹھنڈا تیل نینچ مسلسل منتقل ہو گا۔ گرم تیل کو ٹھنڈا کرنے کے لئے ٹینکی کے ساتھ بہت سارے پائپ منسلک کئے جاتے 57 جن میں گرم تیل اوپر سے داخل ہوتا ہے۔ پائپ کا سطحی رقبہ زیادہ ہونے کی بنا ہوا اسے جلد ٹھنڈا کرتی ہے، اس میں تیل کا درجہ حرارت گھٹتا اور کثافت بڑھتی ہے۔ ٹھنڈا تیل پائپ میں پنچ حرکت کرتے ہوئے دوبارہ ٹینکی میں داخل ہوتا ہے۔

3.10 ٹرانسفار مرکے امالہ اور مساوی ادوار

3.10.1 لحصے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا

ٹرانسفار مر کے ابتدائی کچھے کی مزاحمت R₁ پر حصہ 3.3، مساوات 3.2 میں بات کی گئی جہاں مزاحمت کو کچھے سے باہر سلسلہ وار جڑا دکھایا گیا تھا۔ آئیں دیکھیں ہم حساب کی خاطر کیسے مزاحمت کو کچھے سے علیحدہ کر سکتے ہیں۔

شکل 3.13-الف میں ایک کچھے پر بدلتا برقی دباو لاگو کیا گیا ہے۔اگر کچھے کی برقی تار کو چھوٹے ککڑوں میں تقسیم کیا جائے تب ہر ککڑے کی ایک چھوٹی مزاحمت ΔR اور ایک چھوٹا متعاملہ $j\Delta X$ ہو گا۔تار کا ایسا ایک

78 باب. 3. ٹرانسفار مسسر

شكل 3.13: لجھے كى مزاحت اور متعاملہ۔

گلڑا شکل-ب میں دکھایا گیا ہے۔چونکہ کچھا ان سب کلڑوں کے سلسلہ وار جڑنے سے بنتا ہے للذا شکل-الف کو ہم شکل-پ کی طرح بنا سکتے ہیں جہال کچھے کے n ککڑے کیے گئے ہیں۔

اس دور کی مساوات

$$\hat{V}_1 = \hat{I}_1 \left(\Delta R_1 + j \Delta X_1 + \Delta R_2 + j \Delta X_2 + \dots \Delta R_n + j \Delta X_n \right)$$

$$= \hat{I}_1 \left(\Delta R_1 + \Delta R_2 + \dots \Delta R_n \right) + \hat{I}_1 \left(j \Delta X_1 + j \Delta X_2 + \dots j \Delta X_n \right)$$

ہے جس میں

$$R = \Delta R_1 + \Delta R_2 + \cdots \Delta R_n$$
$$X = \Delta X_1 + \Delta X_2 + \cdots \Delta X_n$$

لکھ کر درج ذیل حاصل ہوتا ہے۔

(3.32)
$$\hat{V}_1 = \hat{I}_1 (R + jX)$$

شکل 3.14 سے بھی مساوات 3.32 لکھی جا سکتی ہے۔ یوں حساب کی خاطر کچھے کی مزاحمت اور متعاملہ علیحدہ کیے جا سکتے ہیں۔

 ${\rm transformer~oil^{56}}$

⁵⁷ وایڈا کے ٹرانسفار مر کابیر ونی حصدانہیں بائیوں پر مشتمل ہوتاہے۔

شكل 3.14: لحصے كى مزاحمت اور متعامله كى عليجد گا۔

3.10.2 رستااماله

یہاں تک ہم کامل ٹرانسفار مر پر بحث کرتے رہے ہیں۔ اب ہم ٹرانسفار مر میں ان عناصر کا ذکر کرتے ہیں جن کی وجہ سے ٹرانسفار مر غیر کامل ہوتا ہے۔ بہت سی جگہول پر ٹرانسفار مر استعال کرتے وقت ان عناصر کو مدِ نظر رکھنا ضرور ی ہوتا ہے۔ ان عناصر کے اثرات کو شامل کرنے کے لئے ہم ٹرانسفار مر کا مساوی دور بناتے ہیں۔

ابتدائی کچھے کے مقناطیسی بہاو کو دو حصول میں تقسیم کیا جا سکتا ہے۔ پہلا حصہ وہ جو قالب سے گزر کر ابتدائی اور ثانوی کچھے کے مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور ثانوی کچھے دونوں کے اندر سے گزرتا ہے۔ یہ مشتر کہ مقناطیسی بہاو ہے۔ دوسرا حصہ وہ جو صرف ابتدائی کچھے سے گزرتا ہے اور زیادہ تر قالب کے باہر خلاء میں رہتا ہے۔ اس کو رستا مقناطیسی بہاو اقتدائی کچھے کے برقی رو کا راست مستقل μ_0 اٹل ہے للذا یہاں بچکچاہٹ بھی اٹل ہو گی۔ یوں رستا مقناطیسی بہاو ابتدائی کچھے کے برقی رو کا راست متناسب ہو گا۔

 $X_1=2\pi f L_1$ 60 یارتا متعاملہ کے اثر کو بالکل کچھے کی مزاحمت کی طرح کچھے سے باہر رستا امالہ کا L_1 کیا جاتا ہے۔ سے ظاہر کیا جاتا ہے۔

ٹرانسفار مر کے ابتدائی کیچے میں برتی رو \hat{I}_1 گزرنے سے رستا متعاملہ میں $\hat{V}_{X1}=j\hat{I}_1X_1$ برتی دباو اور کیچے کے تار کی مزاحمت میں $\hat{V}_{R1}=\hat{I}_1R_1$ برتی دباو گھٹتا ہے۔

جیسا شکل 3.15 میں دکھایا گیا ہے، ابتدائی کچھ پر لا گو دباہ \hat{V}_1 ، مزاحمت R_1 اور متعاملہ X_1 میں گھٹاہ اور ابتدائی امالی دباہ \hat{E}_1 کا مجموعہ ہو گا۔

leakage magnetic flux 58 leakage inductance 59

leakage reactance 60

80 باب. 3. ٹرانسفار مسسر

3.10.3 ثانوی برقی رواور قالب کے اثرات

قالب میں دونوں کچھوں کا مشتر کہ مقناطیسی بہاو ان کے مجموعی مقناطیسی دباو کی وجہ سے وجود میں آتا ہے۔ اس حقیقت کو ایک مختلف اور بہتر انداز میں بیان کیا جا سکتا ہے۔ ہم کہتے ہیں کہ ابتدائی برتی رو کو دو شرائط مطمئن کرنے ہوں گے۔ اول اسے قالب میں بیجانی مقناطیسی بہاو وجود میں لانا ہو گا اور دوم اسے ثانوی کچھے کے پیدا کردہ مقناطیسی بہاو کو ختم کرنا ہو گا۔ لہذا ابتدائی برتی رو کو ہم دو حصوں میں تقسیم کر سکتے ہیں۔ ایک حصہ $_{\varphi}$ ، جو بیجانی مقناطیسی بہاو کیدا کرتا ہے۔ اور دوم را $_{2}$ جو ثانوی کچھے کے مقناطیسی دباو کا اثر ختم کرتا ہے۔ یوں $_{2}$ درج ذیل ہو گا۔

$$\hat{I}_2' = \frac{N_2}{N_1} \hat{I}_2$$

ثانوی کچھے کے مقناطیسی بہاو کے اثر کو ختم کرنے پر حصہ 3.6 میں غور کیا گیا ہے۔

اگرچہ برقی رو i_{arphi} فیر سائن نما ہوتا ہے ہم اسے سائن نما \hat{I}_{arphi} تصور کر کے دو حصول، \hat{I}_{c} اور \hat{I}_{m} ، میں تقسیم کرتے ہیں۔

$$\hat{I}_{\varphi} = \hat{I}_c + \hat{I}_m$$

مذکورہ بالا مساوات میں برقی رو کو دوری سمتیات کی صورت میں لکھا گیا ہے۔ان میں \hat{I}_c ابتدائی کچھے کے امالی برقی دباو بور گیا ہم قدم ہے اور قالب میں برقی توانائی کے ضیاع کو ظاہر کرتا ہے جبکہ \hat{I}_m وہ حصہ ہے جو \hat{E}_1 سے نوے درجہ ماخیری \hat{E}_1 زاویہ پر رہتا اور کچھے میں مقناطیسی بہاو پیدا کرتا ہے۔

 $\rm lagging^{61}$

شکل3.16:ٹرانسفار مر مساوی دور، حصه دوم۔

ہو لینی jX_m کی مقدار اتنی رکھی جاتی ہے $R_c=E_{1,rms}^2/p_c$ کی مقدار اتنی رکھی جاتی ہے که بین دیاو اور تعدد پر حاصل کئے جاتے ہیں۔ R_c اور jX_m اور jX_m اور jX_m کے مقدار اصل برقی دیاو اور تعدد پر حاصل کئے جاتے ہیں۔

3.10.4 ثانوي لجھے کالمالی برقی دیاو

قالب میں مشتر کہ مقاطیسی بہاو ثانوی کھیے میں امالی برتی دباو \hat{E}_2 پیدا کرے گا۔ چونکہ یہی مقاطیسی بہاو ابتدائی کیھے میں \hat{E}_1 امالی پیدا کرتا ہے للذا درج ذیل لکھا جا سکتا ہے۔

$$\frac{\hat{E}_1}{\hat{E}_2} = \frac{N_1}{N_2}$$

مباوات 3.34 اور مباوات 3.35 کو ایک کامل ٹرانسفار مرسے ظاہر کیا جا سکتا ہے جے شکل 3.17 میں و کھایا گیا

3.10.5 ثانوی کھے کی مزاحت اور متعاملہ کے اثرات

ثانوی کیھے میں امالی دباو \hat{E}_2 پیدا ہو گا۔ابتدائی کیھے کی طرح، ثانوی کیھے کی مزاحمت R_2 اور متعاملہ jX_2 ہوں گ جن میں ثانوی برتی رو \hat{V}_2 کی بنا برتی دباو گھٹے گا۔ یوں ثانوی کیھے کے سروں پر برتی دباو \hat{V}_2 تدرِ کم ہو گا:

$$\hat{V}_2 = \hat{E}_2 - \hat{I}_2 R_2 - j \hat{I}_2 X_2$$

یوں حاصل ٹرانسفار مر کا مکمل مساوی دور یا ریاضی نمونہ 62 شکل 3.18 میں دکھایا گیا ہے۔

 $^{{\}rm mathematical\ model}^{62}$

82 باب. 3. ٹرانسفار مسبر

شكل 3.19: ثانوى جانب ر كاوٹ كاابتدائى جانب تبادله كيا گياہے۔

شكل 3.20: ابتدائي جانب ركاوٹ كاثانوي جانب تبادله كيا گياہے۔

3.10.6 ركاوك كاابتدائي باثانوي حانب تبادليه

شکل 3.18 میں تمام اجزاء کا تبادلہ ابتدائی یا ثانوی جانب کیا جا سکتا ہے۔ ایبا کرتے ہوئے کامل ٹرانسفار مر کو مساوی دور کی بائیں یا دائیں جانب رکھا جا سکتا ہے۔شکل 3.19 میں ثانوی رکاوٹ کو ابتدائی جانب منتقل کیا گیا ہے جبکہ شکل 3.20 میں ابتدائی رکاوٹوں کا تبادلہ ثانوی جانب کیا گیا ہے۔جیسا شکل 3.20 میں دکھایا گیا ہے، ایسے مساوی ادوار میں کامل ٹرانسفار مرعموماً دکھایا نہیں جاتا ہے۔

تبادلہ شدہ رکاوٹ Z کو Z سے ظاہر کیا جاتا ہے۔ یوں تبادلہ شدہ R_2 کو R_2 سے ظاہر کیا گیا ہے۔ ایسا دور استعال کرتے وقت یاد رکھنا ہو گا کہ مساوی دور میں اجزاء کس جانب منتقل کیے گئے ہیں۔

مثال 3.6: ایک 50 کلو وولٹ-ایمپیئر اور 220: 220 وولٹ برقی سکت کے ٹرانسفار مرکی زیادہ برقی دباو جانب رستا رکاوٹ $Z_1=0.0089+j0.011$ اوہم کم برقی دباو جانب رستا رکاوٹ $Z_1=0.099+j0.011$

، $R_c = 6.4\,\mathrm{k}$ اور $X_m = 47\,\mathrm{k}$ ہیں۔ اس کے لئے شکل $R_c = 3.20$ اور $X_m = 47\,\mathrm{k}$ ہونے والے اجزاء معلوم کریں۔

حل الف: معلومات:

 $50 \,\mathrm{kV} \,\mathrm{A}, \quad 50 \,\mathrm{Hz}, \quad 2200 : 220 \,\mathrm{V}$

ر انسفار مر کے برقی و باو سے کچھوں کے چکر کا تناسب حاصل کرتے ہیں۔ $\frac{N_1}{N_2} = \frac{2200}{220} = \frac{10}{1}$

زیادہ برقی دباو جانب تبادلہ شدہ اجزاء درج ذیل ہوں گے۔

$$R'_{2} + jX'_{2} = \left(\frac{N_{1}}{N_{2}}\right)^{2} (R_{2} + jX_{2})$$

$$= \left(\frac{10}{1}\right)^{2} (0.0089 + j0.011)$$

$$= 0.89 + j1.1$$

مساوی دور میں باقی رکاوٹ پہلے سے زیادہ برقی دباو جانب ہیں للذا یہ تبدیل نہیں ہوں گے۔یوں شکل 3.19 کے جزو حاصل ہوئے۔

حل ب: مساوی دور کے اجزاء کا تبادلہ کم دباو جانب کرتے ہیں۔

$$R'_1 + jX'_1 = \left(\frac{N_2}{N_1}\right)^2 (R_1 + jX_1)$$
$$= \left(\frac{1}{10}\right)^2 (0.9 + j1.2)$$
$$= 0.009 + j0.012$$

اسی طرح درج ذیل حاصل ہوں گے

$$R'_c = \left(\frac{N_2}{N_1}\right)^2 R_c = 64$$

$$X'_m = \left(\frac{N_2}{N_1}\right)^2 X_m = 470$$

П

جبہ Z_2 پہلے سے کم برقی دباہ جانب ہے للذااس کی قیت تبدیل نہیں ہو گا۔

3.10.7 ٹرانسفار مرکے سادہ ترین مساوی ادوار

ایک انجنیئر ٹرانسفار مر استعال وقت حساب کی خاطر شکل 3.19 یا شکل 3.20 کے ادوار استعال کر سکتا ہے۔ یہ ادوار حقیق ٹرانسفار مر کی بہت اچھی عکاسی کرتے ہیں۔ البتہ جہاں بہت صحیح جوابات مطلوب نہ ہوں وہاں ان ادوار کی سادہ اشکال بھی استعال کی جا سکتی ہیں۔ اس حصہ میں ہم ایسے سادہ مساوی ادوار حاصل کرتے ہیں۔

 $R_2' + j X_2'$ اور X_m کو X_m کو بائیں منتقل کرنے سے شکل 3.21 اور X_m کو X_m کا 1.20 اور X_m کے دائیں منتقل کرنے سے شکل 3.22 حاصل ہوتے ہیں۔ چونکہ پاُ کی مقدار نہایت کم X_m ہوتی ہے للذا ایبا کرنے سے نتائج پر خاص فرق نہیں پڑتا ہے۔

 X_2' اور شکل $X_1 = X_1$ اور شکل $X_1 = X_2$ سلسلہ وار جڑے $X_1 = X_1$ اور $X_2 = X_2$ ہوتے ہیں۔ $X_1 = X_1$ اور جڑے $X_2 = X_2$ ادوار شکل $X_2 = X_3$ حاصل ہوتے ہیں۔

ر انسفار مرکے کل برقی ہوجھ کا صرف دوسے چھ فی صد ہوتا ہے۔ $\hat{I}_{arphi}{}^{63}$

شکل 3.23:ٹرانسفار مرکے سادہ مساوی ادوار۔

شکل R_1 میں R_2 اور R_m رکاوٹ R_1+jX_1 اور R_1+jX_2 کے نہیں۔اییا دور حل کرنا مشکل ہوتا ہے۔ اس کے برعکس شکل 3.21 اور شکل 3.22 میں یہ اجزاء باقی دور کے بائیں یا دائیں ہاتھ ہیں اور ایسے ادوار کا حل نسبتاً زیادہ آسان ہوتا ہے۔

 R_c مزید سادہ دور حاصل کرنے کی خاطر \hat{I}_{φ} کو صفر تصور کر کے نظر انداز کیا جا سکتا ہے۔ یوں مساوی دور میں دور اور میں دور اور کیا ہے۔ اس دور jX_m کو کھلے دور تصور کرتے ہوئے دور سے ہٹایا جا سکتا ہے۔ شکل 3.23-الف میں ایبا کیا گیا ہے۔ اس دور میں قالب کے اثرات کو مکمل طور پر نظر انداز کیا گیا ہے۔

بیشتر وقت اس سے بھی کم در نگلی کے نتائج مطلوب ہوتے ہے۔ یوں $X_{ms}\gg R_{ms}$ کی بنا R_{ms} کو نظرانداز کرتے ہوئے شکل N_{ms} کرتے ہوئے شکل N_{ms} کی بنا گیا ہے۔ اس شکل میں N_{ms} کو بھی نظرانداز کرنے سے کامل ٹرانسفار مرحاصل ہوگا جو N_{ms} کی بیر پورا اتر تا ہے۔ حاصل ہوگا جو N_{ms} کی بیر پورا اتر تا ہے۔

3.11 كطيح دور معائنه اور قصر دور معائنه

گزشتہ حصہ میں ٹرانسفار مر کے مساوی ادوار پر بات کی گئ۔ان مساوی ادوار کے اجزاء ٹرانسفار مر کے دو معا ننول سے حاصل کئے جا سکتے ہیں جنہیں کھلا دور معائنہ اور قصر دور معائنہ کہتے ہیں۔اس حصہ میں ان معائنوں پر خور کیا گیا ہے۔

3.11.1 كطلاد ورمعائنه

کھلا دور معائنہ 64، جیسا کہ نام سے واضح ہے، ٹرانسفار مرکی ایک جانب کچھے کے سروں کو آزاد رکھ کر کیا جاتا ہے۔ یہ معائنہ ٹرانسفار مرکی بناوٹی 65 برقی دباو اور تعدد یا ان کے قریب قیمتوں پر کیا جاتا ہے۔ اگرچہ ٹرانسفار مرکے کسی بھی جانب کچھے پر کھلے دور معائنہ سرانجام دیا جا سکتا ہے، حقیقت میں ایسا کم برقی دباو کچھے پر کرنا زیادہ آسان اور کم خطرناک ہوتا ہے۔یہ بات ایک مثال سے بہتر سمجھ آئے گی۔

مثال کے طور پر ہم A 25 kV A، 220 V : 50 Hz ،11000 نیک دوری ٹرانسفار مرکا معائنہ کرنا چاہتے ہیں۔
یہ معائنہ گیارہ ہزار کچھ پر کرتے ہوئے گیارہ ہزار وولٹ کے لگ بھگ برقی دباو استعال ہو گا جبکہ دو سو بیس برقی
دباو کچھ پر معائنہ کرنے سے دو سو بیس وولٹ کے لگ بھگ برقی دباو استعال کرنا ہو گا۔ دونوں صورتوں میں تعدد
50 Hz بر محائنہ کم برقی دباو کچھ پر کیا جاتا ہے۔
کھلا دور معائنہ کم برقی دباو کچھ پر کیا جاتا ہے۔

 p_t کھلے دور معائنہ میں کم برقی دباو کچھے پر بناوٹی برقی دباویا اس کا قریب دباو V_t لاگو کر کے کھلا دور برقی طاقت p_t اور کھلا دور برقی رو برقی را ناپا جاتا ہے۔بناوٹی برقی دباو کے قریب دباو پر معائنہ کرنے سے بہتر نتائج حاصل ہوں گے۔ ٹرانسفار مرکی دوسری جانب کچھے کے سرے چونکہ آزاد رکھے جاتے ہیں المذا اس میں برقی رو صفر ہو گا۔ اس طرح ناپا گیا برقی رو صرف ہیجان انگیز برقی رو گا۔ ہیجان انگیز برقی رو ٹرانسفار مرکے بناوٹی روکا دو سے چھ فی صد ہوتا ہے۔

یاد رہے $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ اور $\hat{I}_t = I_t / \frac{\phi_i}{\psi_v}$ اور $\hat{V}_t = V_t / \frac{\phi_v}{\psi_v}$ مطلق قیمتوں، V_t اور V_t ، V_t ، V_t ، V_t ، V_t ،

شکل 3.19 میں بائیں ہاتھ کو کم برتی دباو والا جانب تصور کریں۔ یوں V_t مقام V_t پر فراہم کیا جائے گا جبکہ پیائٹی رو غیر سمتی 66 رو I_1 ہو گا۔ خارجی لچھا کھلا دور ہونے کی بنا I_2' صفر ہو گا لہذا I_1 در حقیقت \hat{I}_c کی مطلق قیمت I_2 کے برابر ہو گا۔

 $I_t = I_1 = I_{\varphi}$

open circuit $ext{test}^{64}$ $ext{design}^{65}$ $ext{scalar}^{66}$

اتنى كم برقى روسے لچھے كے ركاوٹ ميں بہت كم برقى دباو گھٹتا ہے للذا اسے نظر انداز كيا جاتا ہے:

$$V_{R1} = I_t R_1 = I_{\varphi} R_1 \approx 0$$

 $V_{X1} = I_1 X_1 = I_{\varphi} X_1 \approx 0$

یوں جیسا شکل 3.19 سے ظاہر ہے R_c اور X_m پر تقریباً V_t برتی دیاہ چائے گا۔ ان حقائق کو مد نظر رکھتے ہوئے شکل 3.24 صول زیادہ آسان ہے۔

برتی طاقت کا ضیاع صرف مزاحمت میں ممکن ہے لہذا p_t صرف R_c میں ضائع ہو گا۔ یوں درج ذیل ہو گا۔

$$p_t = \frac{V_t^2}{R_c}$$

اس سے ٹرانسفار مر کے مساوی دور کا جزو R_c حاصل ہوتا ہے۔

$$(3.37) R_c = \frac{V_t^2}{n_t}$$

درج ذیل کی بنا

$$Z_t=rac{\hat{V}_t}{\hat{I}_t}=rac{V_t/\phi_v}{I_t/\phi_i}=rac{V_t}{I_t}/\phi_v-\phi_i$$
 فراہم کردہ دباہ اور پیائتی رو کا تناسب درج ذیل ہو گا۔ $|Z_t|=rac{V_t}{I_t}$

اب شكل 3.24 سے درج ذيل واضح ہے

$$\frac{1}{Z_t} = \frac{1}{R_c} + \frac{1}{jX_m}$$

للذا

$$Z_t = \frac{jR_c X_m}{R_c + jX_m}$$
$$|Z_t| = \frac{R_c X_m}{\sqrt{R_c^2 + X_m^2}}$$

ہو گا۔یوں ٹرانسفار مر کے مساوی دور کا جزو X_m حاصل ہوتا ہے۔

(3.38)
$$X_{m} = \frac{R_{c}|Z_{t}|}{\sqrt{R_{c}^{2} - |Z_{t}|^{2}}}$$

ماوات R_c سے ماصل ہوتی ہیں۔ X_m ماوات R_c ماوات R_c ماوات کا ہوتی ہیں۔

یاد رہے حاصل کردہ R_c اور X_m ٹرانسفار مر کے پیائش جانب کے لئے درست ہوں گے۔ تبادلہ رکاوٹ سے دوسری جانب کی قیمتیں حاصل کی جاسکتی ہیں۔

3.11.2 قصر دور معائنه

قصر دور معائنہ بھی کھلے دور معائنہ کی طرح ٹرانسفار مر کے کئی بھی طرف ممکن ہے لیکن حقیقت میں اسے زیادہ برقی دباو کچھے پر کرنا آسان ہوتا ہے۔ یہ معائنہ ٹرانسفار مر کے بناوٹی برقی رویا اس کے قریب رو پر کیا جاتا ہے۔

کھلے دور معائنہ میں مستعمل ٹرانسفار مرکی بات آگے بڑھاتے ہوئے زیادہ برقی دباو کچھے کا بناوٹی رو A 2.2727 موئے دور معائنہ کم برقی دباو کچھے پر کرتے ہوئے A 113.63 جبکہ زیادہ برقی دباو کچھے پر کرتے ہوئے A 2.2727 جبکہ زیادہ برقی دباو کچھے پر کرتے ہوئے 2.2727 معائنہ زیادہ آسان ہو گا۔

اس معائنہ میں کم برقی دباو کچھے کے سروں کو آپس میں جوڑ کر قصر دور کیا جاتا ہے جبکہ زیادہ برقی دباو کچھے پر کچھے کے بناوٹی دباو کا دوسے بارہ فی صد دباو V_t لاگو کر کے اس کچھے کا برقی رو I_t اور فراہم کردہ طاقت p_t ناپا جاتا

شكل 3.25: قصر دور معائنه _

ہے جنہیں بالترتیب قصر دور رو اور قصر دور طاقت کہتے ہیں۔ قصر دور کچھے میں گزرتے برقی رو کا عکس دوسری جانب موجود ہو گا۔ یہ برقی روٹرانسفار مر کے بناوٹی برقی رو کے لگ بھگ ہوتا ہے۔

چونکہ یہ معائنہ بہت کم برتی دباو پر سرانجام دیا جاتا ہے للذا بیجان انگیز برتی رو کو مکمل طور پر نظرانداز کیا جا سکتا ہے۔ اس معائنہ کا دور شکل 3.25 میں دکھایا گیا ہے جہاں بیجان انگیز رو کو نظرانداز کرتے ہوئے R_c اور V_t کو کھلے دور کیا گیا ہے۔ قصر دور معائنہ میں شکل 3.20 کے بائیں ہاتھ کو کم برتی دباو جانب تصور کرتے ہوئے V_t کو کیا۔ کا جگہ لاگو کرنا ہو گا۔

قصر دور برقی رو اور قصر برقی دباو سے

$$|Z_t| = \frac{V_t}{I_t}$$

جببه شكل 3.25 سے درج ذیل لکھا جا سكتا ہے۔

$$Z_t = R_{ms} + jX_{ms}$$
$$|Z_t| = \sqrt{R_{ms}^2 + X_{ms}^2}$$

یوں X_{ms} کی قیمت مساوات 3.39 سے جانتے ہوئے R_{ms} حاصل ہوتا ہے۔

$$(3.40) X_{ms} = \sqrt{|Z_t|^2 - R_{ms}^2}$$

مساوات 3.39 کل مزاحمت دیتا ہے البتہ اس سے R_1 یا R_2 حاصل نہیں کیا جا سکتا۔ اس طرح مساوات 3.40 سے X_1 اور X_2 علیحدہ نہیں کئے جا سکتے۔ قصر دور معائنہ سے اتنی ہی معلومات حاصل کرنا ممکن ہے جو حقیقت میں کافی ثابت ہوتا ہے۔ جہاں ان اجزاء کی علیحدہ قیمتیں درکار ہوں وہاں درج ذیل تصور کیا جا سکتا ہے

$$R'_1 = R_2 = \frac{R_{ms}}{2}$$

 $X'_1 = X_2 = \frac{X_{ms}}{2}$

ٹرانسفار مر معائنے اسی مقام پر کیے جاتے ہیں جہال ٹرانسفار مر نسب ہو۔ یوں وہی برتی دباو استعمال کرنا ہو گا جو وہاں موجود ہو۔ ہاں ضروری ہے کہ قصر دور معائنہ میں ٹرانسفار مر کو ڈیزائن برتی دباو کا دو سے بارہ فی صد دیا جائے۔ مثلاً $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$ میں استعمال کریں گے۔ اسی طرح دستیاب $000 \times \frac{12}{100} = 1320 \, \text{V}$

یاد رہے کہ ٹرانسفار مرکی ایک جانب کچھ کے سرے آپس میں جوڑ کر، یعنی قصر دور کر کے، دوسری جانب کچھ پر کسی بھی صورت اس جانب کی پوری برقی دباو لا گو نہیں کیجھے گا۔ ایسا کرنا شدید خطرناک اور جان لیوا ثابت ہو سکتا ہے۔

یاد رہے کہ ان معائنوں سے حاصل مساوی دور کے اجزاء اسی جانب کے لئے درست ہوں گے جس جانب انہیں حاصل کیا گیا ہو۔ان کی قیمتیں دوسری جانب تبادلہ رکاوٹ سے حاصل کی جاسکتی ہیں۔

مثال 3.7: ایک 25 کلو وولٹ-ایمپیئر، 220 : 11000 وولٹ اور 50 ہرٹز پر چلنے والے ٹرانسفار مر کے کھلے دور اور قصر دور معائنے کیے جاتے ہیں جن کے نتائج درج ذیل ہیں۔ ٹرانسفار مر مساوی دور کے اجزاء تلاش کریں۔

• کھلا دور معائنہ میں کم برقی دباو جانب V 220 لا گو کیا جاتا ہے۔اسی جانب برقی رو A 39.64 اور طاقت کا ضیاع W 600 ناپے جاتے ہیں۔

• قصر دور معائنه میں زیادہ برتی دباو جانب V 440 لا گو کیا جاتا ہے۔اسی جانب برتی رو A 2.27 اور طاقت کا ضیاع W 560 نایے جاتے ہیں۔

حل كھلا دور:

$$\begin{split} |Z_t| &= \frac{220}{39.64} = 5.55\,\Omega \\ R_c &= \frac{220^2}{600} = 80.67\,\Omega \\ X_m &= \frac{80.67\times5.55}{\sqrt{80.67^2-5.55^2}} = 5.56\,\Omega \end{split}$$

حل قصر دور:

$$Z_t = \frac{440}{2.27} = 193.83 \,\Omega$$

$$R_{ms} = \frac{560}{2 \times 2.27^2} = 108.68 \,\Omega$$

$$X_{ms} = \sqrt{193.83^2 - 108.68^2} = 160 \,\Omega$$

$$Z=1$$
 اور $Z=1$ کو کم برقی و باو جانب منتقل کرتے ہوئے R_{ms} $\left(rac{220}{11000}
ight)^2 imes 108.68 = 43.47\,\mathrm{m}\Omega$ $\left(rac{220}{11000}
ight)^2 imes 160 = 64\,\mathrm{m}\Omega$

لعيني

$$R_1 = R_2' = \frac{43.47 \,\mathrm{m}\Omega}{2} = 21.7 \,\mathrm{m}\Omega$$

 $X_1 = X_2' = \frac{64 \,\mathrm{m}\Omega}{2} = 32 \,\mathrm{m}\Omega$

حاصل ہو گا۔ان نتائج سے حاصل کم برقی دباو جانب مساوی دور شکل 3.26 میں دکھایا گیا ہے۔

3.12. تين دوري ٹرانسفار مسسر

شکل 3.26: کھلے دوراور کسرِ دور معائنہ سے کم برقی دباوجانب مساوی دور۔

شكل3.27: ايك ہى قالب پر تين ٹرانسفار مر۔

3.12 تین دوری ٹرانسفار مر

اب تک ہم یکے دور کو 67 ٹرانسفار مر پر غور کرتے رہے ہیں۔ حقیقت میں برقی طاقت کی منتقلی میں عموماً تیہ ورور وور ورائی انسفار مر استعال ہوتے ہیں۔ تین دور کی ٹرانسفار مر انسفار مر انسفار مر انسفار مر استعال ہوتے ہیں۔ تین دور کی ٹرانسفار مر خراب ہونے کی صورت میں اس کو ہٹا کر ٹھیک کرنے کے دوران باقی دو ٹرانسفار مر استعال کئے جا سکتے ہیں۔ تین دور کی ٹرانسفار مر بنانے کا اس سے بہتر طریقہ شکل 3.27 میں دکھایا گیا ہے جہاں ایک ہی مقاطیسی قالب پر تینوں ٹرانسفار مر کے کچھے لیلئے گئے ہیں۔ اس شکل میں \hat{V}_{i1} پہلے ٹرانسفار مر کا ابتدائی کچھا اور \hat{V}_{s1} میں اس کا ثانوی کچھا ہوں قرر کی ٹرانسفار مر کے تین دور کی ٹرانسفار مر سستے، ملک اور چھوٹے ہونے کی وجہ سے عام ہو گئے ہیں اور آپ کو روز مرہ زندگی میں یہی نظر آئیں گے۔ ان میں برقی ضیاع بھی نسبتاً کم ہوتا ہے۔

شکل 3.28-الف میں تین ٹرانسفار مر د کھائے گئے ہیں۔ان ٹرانسفار مروں کے ابتدائی کیھے آپی میں دو طریقوں

 $[\]begin{array}{c} \text{single phase}^{67} \\ \text{three phase}^{68} \end{array}$

سے جوڑے جا سکتے ہیں۔ایک کو ستارہ نما جوڑ Y^{69} اور دوسرے کو تکونی جوڑ 70 کہتے ہیں۔ای طرح ان ٹرانسفار مروں کے ثانوی کچھے بھی انہیں دو طریقوں سے جوڑے جا سکتے ہیں۔یوں انہیں درج ذیل چار مختلف طریقوں سے جوڑا جا سکتا ہے۔

- $Y:\Delta$ ستاره: تکونی •
- Y:Y ساره: ساره •
- $\Delta:\Delta$ $\exists \lambda$
- $\Delta: Y$ $\exists z$

شکل 3.28 میں $\Delta: Y$ ٹرانسفار مر دکھایا گیا ہے جس میں بایاں ہاتھ Y اور دایاں ہاتھ $\Delta: Y$ ٹرانسفار مر $\Delta: Y$ کھتے ہوئے X: Y کو بائیں اور X: Y کو دائیں کھا جاتا ہے۔جیسا پہلے ذکر ہو چکا ہے ہم اشکال میں ٹرانسفار مر کا ابتدائی طرف بائیں جانب رکھتے ہیں للذا X: Y: Y ابتدائی اور X: Y: X ثانوی طرف ہے۔ روائگی سے پڑھتے ہوئے ابتدائی کو پہلے اور ثانوی کو بعد میں پڑھا جاتا ہے للذا اس کو X: Y: X ککھ کر ستارہ۔ تکونی پڑھیں گے۔

شکل 3.28-الف میں تین ٹرانسفار مرول کے ابتدائی کیھوں کو ستارہ نما جوڑا گیا ہے جبکہ ان کی ٹانوی کیھوں کو سارہ نما جوڑا گیا ہے۔اسی طرح ٹانوی کیھوں کو تکونی جوڑا گیا ہے۔شکل-ب میں تینوں ٹرانسفار مر کے ابتدائی کیھوں کو ستارہ نما دکھایا گیا ہے۔اس طرح ٹانوی کیھوں کو تکونی دکھایا گیا ہے۔ان اشکال کی وجہ سے اس طرز کے جوڑ کو ستارہ نما جوڑ اور تکونی جوڑ کہتے ہیں۔

اییا شکل بناتے ہوئے ہر ٹرانسفار مر کے ابتدائی اور ثانوی کچھے کو ایک ہی زاویہ پر دکھایا جاتا ہے۔۔یوں شکل 3.28-الف میں بالائی ٹرانسفار مر، جس کے ابتدائی سرے an اور ثانوی سرے a'n' ہیں، کو شکل 3.28-ب میں صفر زاویہ پر دکھایا گیا ہے۔ تین مرحلہ ٹرانسفار مرول کو اس طرح کی علامتوں سے ظاہر کیا جاتا ہے اور ان میں قالب نہیں دکھایا جاتا۔

ٹرانسفار مر کے جوڑ بیان کرتے وقت باعیں جوڑ کو پہلے اور دائیں جوڑ کو بعد میں پکارتے ہیں۔یوں شکل 3.28-ب میں ٹرانسفار مر کو ستارہ- تکونی جڑا ٹرانسفار مر یا مخضراً ستارہ- تکونی ٹرانسفار مر کہیں گے۔اسی طرح ابتدائی جانب کو بائیں اور ثانوی جانب کو دائیں ہاتھ بنایا جاتا ہے۔یوں اس شکل میں ابتدائی جانب ستارہ نما ہے جبکہ ثانوی جانب تکونی ہے۔

> star connected⁶⁹ delta connected⁷⁰

3.12. تين دوري ٹرانسفار مسسر

شكل 3.28: تين دوري ستاره- تكوني ٹرانسفار مر

ستارہ نما سے چار برقی تاریں نکلتی ہیں۔ ان میں مشترک تار n کو عموماً ٹرانسفار مر کے نزدیک زمین میں گہرائی تک دھنسا جاتا ہے۔ اس تار کو زمینی تار 73 یا صرف زمین 72 کہتے ہیں۔ عام فہم میں اسے ٹھنڈی تار 73 کہتے ہیں۔ باقی تین تارین a,b,c کہلاتے ہیں۔

ٹرانسفار مر کے کچھے پر برقی دباو کو یکے دور ہے برقی دباو_{کہ مل}⁷⁵ کہتے ہیں اور کچھے میں برقی رو کو یکے دور ہے برقی رو کر ہے۔ اور کے برقی دباو کو کار کا برقی دباو ہار⁷⁷ کہتے ہیں۔ بہر ⁷⁶ کہتے ہیں۔ بہر ⁷⁶ کہتے ہیں۔ نینی تاریس برقی رو کو زمینی برقی رو کو آرگا کہتے ہیں۔ زمینی تاریس برقی رو کو زمینی برقی رو کو آری⁷⁹ کہتے ہیں۔ نمینی تاریس برقی رو کو زمینی برقی رو کو آرین کا برقی رو کو آرین کے بیں۔ نمین تاریس برقی رو کو زمینی برقی رو کو آرین کا برقی رو برقی رو کو آرین کا برقی رو کو زمینی برقی رو کو آرین کی برقی رو کو آرین کا برقی رو کو آرین کا برقی رو کو زمینی برقی رو کو زمین کی برقی رو کو آرین کی کو کو کی کر کو کر کو کر کو کر کو کر کو کر کو کر کی کو کو کو کر کو کر

 $ground^{71}$

ground, earth, neutral⁷²

 $neutral^{73}$

live wires⁷⁴

phase voltage⁷⁵

phase current⁷⁶

line to line voltage⁷⁷

line current⁷⁸

 $^{{\}rm ground}\ {\rm current}^{79}$

سارہ Y جانب یک دوری مقداروں اور تار کے مقداروں کا تعلق درج ذیل ہو گا۔

(3.41)
$$V_{J\tau} = \sqrt{3}V_{\lambda \tau}$$

$$I_{J\tau} = I_{\lambda \tau}$$

کلونی ∆ جانب یک دوری اور تار کی مقداروں کا تعلق درج ہے۔

$$V_{\text{J}} = V_{\text{J}}$$

$$I_{\text{J}} = \sqrt{3}I_{\text{J}}$$

$$2J_{\text{J}} = \sqrt{3}I_{\text{J}}$$

مساوات 3.41 اور مساوات 3.42 دوری سمتیہ کے رشتے نہیں بلکہ غیر سمتی مطلق قیمتوں کے رشتے دیتی ہیں۔ان رشتوں کو شکل 3.29 میں دکھایا گیا ہے۔مساوات 3.41 اور مساوات 3.42 سے درج ذیل حاصل ہوتا ہے۔

$$(3.43) V_{J\tau}I_{J\tau} = \sqrt{3}V_{z_1}I_{z_2}I_{z_3}$$

یک دوری ٹرانسفار مر کے وولٹ-ایمپیئر کیر ملہ V ہوتے ہیں اور ایسے تین ٹرانسفار مر مل کر ایک عدد تین دوری ٹرانسفار مر بناتے ہیں لہذا تین مرحلہ ٹرانسفار مر کے وولٹ-ایمپیئر تین گنّا ذیل ہوں گے۔

(3.44)
$$3V_{\rm JL}I_{\rm JL} = 3 \times \frac{V_{\rm JL}I_{\rm JL}}{\sqrt{3}} = \sqrt{3}V_{\rm JL}I_{\rm JL}$$

یہ مساوات تاہین دوری ادوار میں کثرت سے استعال ہوتی ہے۔

ٹرانسفار مرجس طرح بھی جوڑے جائیں وہ اپنی بنیادی کار کردگی تبدیل نہیں کرتے ہیں للذا انہیں سارہ نما یا تکونی جوڑنے کے بعد بھی ان میں ہر ایک ٹرانسفار مر انفرادی طور پر صفحہ 66 پر دے مساوات 3.16 اور صفحہ 17 پر دے مساوات 3.26 پر پورا اترے گا۔ انہیں استعال کر کے شکل 3.29 میں دیے گئے ٹرانسفار مروں کے ابتدائی اور ثانوی جانب کی یک دوری اور تارکی مقداروں کے رشتے حاصل کئے جا سکتے ہیں۔ اس شکل میں N_1/N_2 ہے جہاں جہاں $N_1:N_2$ ان میں ایک دوری ٹرانسفار مرکے چکر کا تناسب ہے۔ تین دوری ٹرانسفار مرپر لگی شختی پر دونوں جانب تارکے برقی دباوکا تناسب کھا جاتا ہے۔

شكل 3.29 مين ستاره- تكونى شرانسفار مركى تارير برقى دباو كا تناسب

(3.45)
$$\frac{V_{\acute{\mathcal{S}}^{|\mathcal{F}|}}}{V_{\mathcal{S}^{|\mathcal{F}|}}} = \sqrt{3}a = \sqrt{3}\left(\frac{N_1}{N_2}\right)$$

3.12. تين دوري ٹرانسفار مسسر

شکل 3.29: ابتدائی اور ثانوی جانب تار اوریک دوری مقدار وں کے رشتے۔

جبکه ستاره-ستاره کا

(3.46)
$$\frac{V_{\mathring{\mathcal{S}}|\mathcal{F}|}}{V_{\mathcal{S}|\mathfrak{F}}} = a = \left(\frac{N_1}{N_2}\right)$$

تکونی-ستاره کا

(3.47)
$$\frac{V_{\hat{\mathcal{G}},\hat{\mathcal{E}}}}{V_{\hat{\mathcal{G}},\hat{\mathcal{E}}}} = \frac{a}{\sqrt{3}} = \frac{1}{\sqrt{3}} \left(\frac{N_1}{N_2}\right)$$

اور تکونی- تکونی کا درج ذیل ہو گا۔

$$\frac{V_{\dot{\mathcal{G}}|\mathcal{F}|}}{V_{\mathcal{G}\dot{\mathcal{F}}}} = a = \left(\frac{N_1}{N_2}\right)$$

مثال 3.8: کی دوری تین کیساں ٹرانسفار مروں کو ستارہ-تکونی کے $Y:\Delta$ جوڑ کر تین دوری ٹرانسفار مر بنایا گیا ہے۔ یک دوری ٹرانسفار مر کی برقی سکھے 80 درج ذیل ہے:

 $50\,\mathrm{kV\,A}, \quad 6350:440\,\mathrm{V}, \quad 50\,\mathrm{Hz}$

ستارہ- تکونی ٹرانسفار مر کی اہتدائی جانب 11000 وولٹ تین دوری دباو تار لا گو کیا گیا۔اس تین دوری ٹرانسفار مر کی ثانوی جانب دباو تار معلوم کریں۔

rating⁸⁰

حل: حل کرتے وقت ہم ایک عدد یک دوری ٹرانسفار مر پر نظر رکھیں گے۔ یک دوری ٹرانسفار مر کے چکر کا تناسب درج ذیل ہو گا۔

$$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{6350}{440}$$

مساوات 3.41 سے دباو تار درج ذیل حاصل ہوتا ہے۔

$$V_{\rm span} = \sqrt{3} \times 6350 \approx 11\,000\,{
m V}$$

یک دوری ٹرانسفار مرکی ثانوی جانب ط40 V ہوں گے جس کو مساوات 3.16 کی مدد سے بھی حاصل کیا جا سکتا ہے۔

$$V_{\mathcal{G}_{\mathcal{F}}} = \frac{N_2}{N_1} V_{\mathcal{G}_{\mathcal{F}}} = \frac{440}{6350} \times 6350 = 440 \,\mathrm{V}$$

ثانوی جانب تین یک دوری ٹرانسفار مروں کو تکونی جوڑا گیا ہے۔ یوں مساوات 3.42 کی مدد سے ثانوی دباو تاریبی ہو گا۔ تین دوری ٹرانسفار مر کے دباو تار کا تناسب درج ذیل ہو گا۔

$$\frac{V_{\text{ji,i,i,i,j}}}{V_{\text{ji,i,j}}} = \frac{11000}{440}$$

یک دوری ٹرانسفار مر 50 کلو وولٹ-ایمپیئر کا ہے للذا تین دوری ٹرانسفار مر 150 کلو وولٹ-ایمپیئر کا ہو گا۔یوں تین دوری ٹرانسفار مرکی سکت 81 درج ذیل ہو گی۔

 $150 \,\mathrm{kV} \,\mathrm{A}$, $11000 : 440 \,\mathrm{V}$, $50 \,\mathrm{Hz}$

ٹرانسفار مر شختی ⁸² پر ٹرانسفار مر کی سکت بیان ہوتی ہے۔ اس شختی پر تین دوری ٹرانسفار مر کے دونوں جانب دباو تار ککھا جاتا ہے نہ کہ کچھوں کے چکر۔

ستارہ-ستارہ ٹرانسفار مر میں تین دوری برقی دباو کے بنیادی اجزاء آپس میں °120 زاویائی فاصلے پر جبکہ تیسرے موسیقائی اجزاء آپس میں ہم قدم ہوتے ہیں۔ قالب کی غیر تدریجی خاصیت کی بنا ٹرانسفار مر میں ہر صورت تیسری موسیقائی اجزاء پائے جاتے ہیں۔ تیسری موسیقائی اجزاء ہم قدم ہونے کی وجہ سے جمع ہو کر برقی دباوکا ایک بڑا موج

rating⁸¹ name plate⁸²

3.12. تين دوري ٹرانسفار مسسر

شکل3.30 نرانسفار مر تکونی متوازن بوجھ کوطاقت فراہم کررہاہے۔

پیدا کرتے ہیں جو تبھی کھار برقی دباو کے بنیادی جزو سے بھی زیادہ بڑھا ہوتا ہے۔اس وجہ سے ستارہ-ستارہ ٹرانسفار مر عام طور استعال نہیں ہوتا ہے۔

باقی تین قسم جڑے ٹرانسفار مروں میں تکونی جوڑ پایا جاتا ہے جس میں تیسری موسیقائی اجزاء کی موج گرد ثی رو پیدا کرتی ہے۔ یہ گرد ثی رو تیسری موسیقائی اجزاء کی موج کے اثر کو ختم کرتا ہے۔

تین دوری ٹرانسفار مر کے متوازن دور حل کرتے وقت ہم تصور کرتے ہیں کہ ٹرانسفار مرستارہ جڑا ہے۔یوں ی
دوری برقی رو، تار کا برقی رو ہو گا اور یک دوری لا گو برقی دباو، یک دوری برقی دباو ہو گا۔اسی طرح ہم اس پر لدے
برقی بوجھ کو بھی ستارہ جڑا تصور کرتے ہے۔یوں تین دوری دور کی بجائے ہم نسبتاً آسان یک دوری دور حل کرتے
ہیں۔ ایسا کرنے سے مسلہ پر غور کرنا آسان ہو جاتا ہے۔آئیں ایک مثال سے اس عمل کو سمجھیں۔

مثال 3.9: شکل 3.30 میں تین دوری $\Delta: Y: 2000$ کلو وولٹ-ایمپیئر، 600: 11000 وولٹ اور 50 ہر ٹز y جانب ورک متوازن تکونی ہو جھ کو طاقت مہیا کر رہا ہے۔ بو جھ کا ہر حصہ y وارک متوازن تکونی ہو جھ کو طاقت مہیا کر رہا ہے۔ بو جھ کا ہر حصہ y وارک متوازن تکونی ہو جھ کو طاقت مہیا کر رہا ہے۔ بوجھ کا ہر حصہ y وارک ہے۔ کے برابر ہے۔

- اس شکل میں تمام برقی رو معلوم کریں۔
- برقی بوجه 83 کو در کار طاقت معلوم کریں۔

حل: پہلے تکونی بوجھ کو سارہ بوجھ میں تبدیل کرتے ہیں:

$$Z_Y = \frac{Z_\Delta}{3} = \frac{0.504 + j0.1917}{3} = 0.168 + j0.0639$$

electrical load 83

شكل 3.31: تكونى بوجھ كومساوى ستاره بوجھ ميں تبديل كيا گياہے۔

ستارہ بوجھ کو شکل 3.31 میں دکھایا گیا ہے جہال ایک برقی تار جسے نقطہ دار لکیر سے ظاہر کیا گیا ہے کو ٹرانسفار مرک زمینی نقطہ سے بوجھ کے مشتر کہ سرے کے در میان جڑا دکھایا گیا ہے۔ متوازن دور میں اس تار میں برقی رو صفر ہو گا۔ حل کرنے کی نیت سے ہم اس متوازن دور سے یک دوری حصہ لے کر حل کرتے ہیں۔

مساوی ستاره بوجه میں برقی رو

$$I = \frac{346.41}{0.168 + j0.0639} = 1927.262 / -20.825^{\circ}$$

اور یک دوری طاقت درج ذیل ہو گی۔

$$p = 346.41 \times 1927.262 \times \cos(-20.825^\circ) = 624\,007\,\mathrm{W}$$

کل طاقت تین گنا ہو گی لیعنی 1872 kW جس بوجھ کا جزو طاقت ⁸⁴ درج ذیل ہو گا۔

$$\cos(-20.825^{\circ}) = 0.93467$$

تکونی بوجھ میں برتی رو 1112.7 $=rac{1927.262}{\sqrt{3}}$ ایمپیئر ہو گا۔ ٹرانسفار مرکی ابتدائی جانب برتی تاروں میں برتی رو درج ذیل ہو گا۔

$$\left(\frac{600}{11000}\right)\times1927.262=105.12\,\mathrm{A}$$

 $power\ factor^{84}$

اس مثال میں جزو طاقت 0.93467 ہے۔اس کتاب کے لکھتے وقت پاکستان میں اگر صنعتی کارخانوں کی برقی بوجھ کی جزو طاقت 0.9 سے کم ہو جائے تو برقی طاقت فراہم کرنے والا ادارہ (واپڈا) جرمانہ نافذ کرتا ہے۔

3.13 ٹرانسفار مرچالو کرتے لمحہ زیادہ محرکی برقی روکا گزر

ہم دیکھ کچے ہیں کہ اگر ٹرانسفار مرکے قالب میں کثافتِ مقناطیسی بہاو سائن نما ہو لیعنی $B=B_0\sin\omega t$ تو اس کے لئے ہم لکھ سکتے ہیں

$$v = e = N \frac{\partial \varphi}{\partial t} = N A_c \frac{\partial B}{\partial t}$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= V_0 \cos \omega t$$

لعيني

$$(3.49) B_0 = \frac{V_0}{\omega N A_c}$$

یہ مساوات برقرار چالو85 ٹرانسفار مر کے لئے درست ہے۔

تصور کریں کہ ایک ٹرانسفار مر کو چالو کیا جا رہا ہے۔ چالو ہونے سے پہلے قالب میں مقناطیسی بہاو صفر ہے اور جس لمحہ اسے چالو کیا جائے اس لمحہ بھی یہ صفر ہی رہتا ہے۔

جس لمحه ٹرانسفار مر کو چالو کیا جائے اس لمحہ لا گو برقی دباو

$$v = V_0 \cos(\omega t + \theta)$$

ہے۔اگر $\pi/2$ یہ لمحہ ہو تو آدھے دوری عرصہ $\pi/2$ بعد قالب میں کثافتِ مقناطیسی بہاو $heta=\pi/2$

$$B = \frac{1}{NA_c} \int_0^{\pi/\omega} V_0 \cos(\omega t + \pi/2) dt$$
$$= \frac{V_0}{\omega NA_c} \sin(\omega t + \pi/2)_0^{\pi/\omega}$$
$$= -\left(\frac{2V_0}{\omega NA_c}\right)$$

steady state 85 time period 86

یعنی کثافتِ مقناطیسی بہاو کا طول معمول سے دگنا ہو گا۔ اگر یہی حساب $\theta=\theta$ لحمہ کے لئے کیا جائے تو زیادہ سے زیادہ کثافتِ مقناطیسی بہاو بالکل مساوات 3.49 کے عین مطابق ہو گا۔ ان دو زاویوں کے مابین زیادہ سے زیادہ کثافتِ مقناطیسی بہاو ان دو حدول کے در میان رہتا ہے۔

قالب کی B-H خط غیر بندر تک بڑھتا ہے۔ لہذا B دگنا کرنے کی خاطر H کو کئی گنا بڑھانا ہو گا جو کچھے میں محرک برتی رو بڑھانے سے ہوتا ہے 88 یہاں صفحہ 52 پر دکھائے شکل 2.17 سے رجوع کریں۔ قومی ٹرانسفار مروں میں بیجانی کثافتِ مقناطیسی بہاو کی چوٹی 1.3 1.3 1.3 1.3 ہوتی ہے۔ ٹرانسفار مر چالو کرتے لمحہ یوں کثافتِ مقناطیسی بہاو کے سے 1.3 ٹیز برتی رو نہایت زیادہ ہو گی۔

2000⁸⁷ کلووولٹ -ایمپیئرٹرانسفار مرسے چالو کرتے وقت تھر تھراہٹ کی آواز آتی ہے

فرہنگ

earth, 95	ampere-turn, 33
eddy current loss, 62	armature coil, 135, 255
eddy currents, 61, 130	
electric field	capacitor, 198
intensity, 10	carbon bush, 181
electrical rating, 59	cartesian system, 4
electromagnet, 135	charge, 10, 141
electromotive force, 61, 142	circuit breaker, 183
electronics	coercivity, 46
power, 211	coil
emf, 142	high voltage, 56
enamel, 62	low voltage, 56
energy, 44	primary, 55
co, 115	secondary, 55
Euler, 20	commutator, 170, 245
excitation current, 52, 60, 61	conductivity, 25
excitation voltage, 61	conservative field, 111
excite, 61	core, 55, 130
excited coil, 61	core loss, 62
	core loss component, 64
Faraday's law, 38, 129	Coulomb's law, 10
field coil, 135, 255	cross product, 13
flux, 30	cross section, 9
Fourier series, 63, 146	current
frequency, 134	transformation, 66
fundamental, 147	cylindrical coordinates, 5
fundamental component, 64	
	delta connected, 94
generator	differentiation, 18
ac, 165	dot product, 15
ground current, 95	
ground wire, 95	E,I, 62

Ohm's law, 26	harmonic, 147
open circuit test, 87	harmonic components, 64
orthonormal, 3	Henry, 40
	hunting, 182
parallel connected, 258	hysteresis loop, 47
permeability, 26	
relative, 26	impedance transformation, 71
phase current, 95	induced voltage, 38, 50, 61
phase difference, 22	inductance, 40
phase voltage, 95	leakage, 187
phasor, 21	induction
pole	motor, 211
non-salient, 144	
salient, 144	Joule, 44
power, 44	
power factor, 22	lagging, 22
lagging, 22	laminations, 31, 62, 130
leading, 22	leading, 22
power factor angle, 22	leakage inductance, 79
power-angle law, 192	leakage reactance, 79
primary	line current, 95
side, 55	line voltage, 95
	linear circuit, 230
rating, 97, 98	load, 99
rectifier, 170	Lorentz law, 141
relative permeability, 26	Lorenz equation, 104
relay, 103	
reluctance, 25	magnetic constant, 26
residual magnetic flux, 46	magnetic core, 31
resistance, 25	magnetic field
rms, 19, 50, 169	intensity, 11, 33
rotor, 37	magnetic flux
rotor coil, 106	density, 33
rpm, 161	leakage, 79
	magnetizing current, 64
saturation, 47	mmf, 30
scalar, 1	model, 81, 211
self excited, 255	mutual flux linkage, 43
self flux linkage, 43	mutual inductance, 43
self inductance, 43	
separately excited, 255	name plate, 98
side	non-salient poles, 181

ف رہنگ

transformer	secondary, 55
air core, 59	single phase, 23, 59
communication, 59	slip, 213
ideal, 65	slip rings, 181, 233
oil, 77	squirrel cage, 236
transient state, 179	star connected, 94
turbine, 181	stator, 37
unit vector, 2	stator coil, 106, 131 steady state, 179
VA, 76 vector, 2 volt, 141 volt-ampere, 76 voltage, 141 DC, 170	step down transformer, 58 step up transformer, 58 surface density, 11 synchronous, 134 synchronous inductance, 188 synchronous speed, 160, 161, 180
transformation, 65	Tesla, 33
Watt, 44 Weber, 33 winding distributed, 144 winding factor, 152	theorem maximum power transfer, 233 Thevenin theorem, 230 three phase, 59, 93 time period, 101, 146 torque, 170, 213 pull out, 182

ئنربنگ 274

بھنور نمابر قی رو،130	ابتدائی
بے بوجھ، 60	جانب،55
	کیچھا، 55
پترى،31،310	ارتباط بهاو،39
پتریال،62	اضافی
پیش زاویه ،22	زاویائی رفتار،216
	اکائی سمتیه ، 2
تاخيري،80	امالی
تاخیر ی زاویه ،22 مربر قدمه تام	برتی د باو، 50
تار کابر قي د باو، 95	اماله،40
تار کابر تی رو، 95	رىتا،187
تانبا، 28	امالى برتى دباو، 38، 61
تبادله رکاوٹ،71	ایک، تین پتریاں، 62
ر دوث ۱۱/ تختی ،98	ايمپيئر-چكر، 33
ن،98 تعدد،134	
عدد،134 تعقب،182	بار، 141
- منتب، 182 - تفرق، 18	بر قرار چالو، 101، 179
سرن،18 جزوی،18	ىرق گىير،198
برون. تکونی جوڙ،94	برقیات
ون.ور.بهر توانائی،44	قوى، 211
ورون. ہمہ،115	برقي بار،141،10
برين دوري، 93،59	بر تی د باو، 28، 141
, c c , 0 , , , , o	تبادِله،65،56
ٹرانسفار مر	محرب 142
برُ قي د باووالا، 59	يجاني، 189
بوجھ بردار،68	يك سمت،170
تيل،77	بر ټیرو،28
خلائی قالب،59	بصنور نما، 130
د باوبرِ هاتا، 58	تبادله،66 گ
د باوِ گھٹاتا،58	يجان انگيز، 52
ذرائع ابلاغ، 59	ىرتى ئىت.59
رووالاء59	بر فی میدان،10 شد 20.10
كال 65،	شرت،10،28 لا 181
ئىلا،33	بش، 181 مارين 27
ھنڈی تار،95	بناوٹ، 87 بنیاد کی جزو، 147،64
55 11 130	بيون برومه ۱47،04،7 پوچه، 99
ثانوی جانب، 55	. بوره به جود بهنی، 117
جاول،44	۶ کار ۱۱۲ جعنور نما
غون، 44 جزو	بور س بر تی رو، 61
برو پھيلاو،152	رن (17.9 ضیاغ،62
10200.	02. 0

<u>ـــرہگ</u>ــــ

95. رئي برق روي و رئي و		
عاني رئي رئي روردي المنطقة ال	زاويه جزوطاقت،22	جزوطاقت، 22
المراد ا		
الم برال و 105 ما كول الم 106 ما كول الم 106 ما كول الم 131 ما 106 ما كول الم 131 ما 106 ما كول الم 131 ما 106 ما كول الم الم 132 من الم الم 131 من الم الم 131 من ا		
المن المناه الم	زيلني تار،95	<i>جزير</i>
المناده المنا	27 . 5	
عاره نهاجو در مها		<i>is</i> .
المرابعة ا		
الله 181، عالى الله 130 الله الله 185، كان من الله 130، كان من الله 170، كان		94(108)1
المرقى من المنان المنا	· · · · · · · · · · · · · · · · · · ·	چرخاب،181
ال المناق المنا		چکر نی منٹ،130
ال 150،03 مارض، 179، مال المدادار، 150، 179 مال المدادار، 170، 245 مارض، 179، مت المدادار، 170، 245 مرتبال المرادار، 170، 230 مرتبال المرادار، 170، 258 مرتبال المرادار، 170، 258 مرتبال المرادار، 182 مرتبال المرادار، 182 مرتبال المرادار، 183 مرتبال المرادار، 190، 183 مرتبال المرادار، 183		پولى،215
المناد وارد في المناد ورد في المناد وارد وارد وارد وارد وارد وارد وارد وا		دال .
245.00 است کار، 170 170، تا		عل ضي ، 179
المحتوان ال		
روار تباط بهاو، 230، ودار تباط بهاو، 230، ودار تباط بهاو، 230، ودار تباط بهاو، 24 مودى اكانى، 3 مودى اكانى، 3 مودى اكانى، 43 مودى اكانى، 43 مودى المالية، 258 مناسبة، 258 من		
ودار تباط بهاو، 18 موری اکائی، 3 میر است، 47 منز این الله الله الله 13 منز این الله 13 منز این الله 13 منز این الله 13 منز این الله 13 منز		•
وداماله، 43 متى د فار، 104 فار مار 104 فار 104 فار 104 فار 125 فار 104 فار 125 فار 12		
اظلى يَجَان عبر ابيت، 47 عبر ابيت، 258 متوازى، 258 متوازى، 258 متوازى، 258 مترب صليبى، 32 ورشامر كب، 258 ورشام كب، 258 ورشام كب، 258 ورشام، 180 ورشام كب، 258 ورشام، 190 عددى تراش، 9 عددى تراش، 9 متا الد، 79 الد، 79 متا الد، 79 متا الد، 210 متا متعالمية، 79 متا متعالمية، 221 متا متعالمية، 210 متا متا متعالمية ورسامية متا متا متعالمية ورسامية متا متا متعالمية ورسامية متا متا متعالمية ورسامية		
ا کی پیجان سلسله دار، 258 متران ، 258 مرکب، 258 مرکب، 258 در جزامر کب، 328 در جزامر کب، 348 در جنامر کب، 348 در جنامر کب، 183 در جنامر کب، 1902 در جنامر کب، 1903 در جنامر کب، 1903 در جنامر کب، 1903 در جنامر کب، 1903 مناملہ، 79 ستا ملد، 79 ستا ملد، 79 ستا ملد، 79 ستا مناملہ تا متعالمیت، 210 فیر معاصر، 182		خوداماله، 43
عرب المسلد وار، 258 فرب متوازی، 258 فرب متوازی، 258 فرب متوازی، 258 فرب صلیبی، 13 فقط، 15 فقط، 15 فتط، 258 فرب صلیبی، 258 فرب تراخر، 258 فرب تراخر، 259 فرب تراخر، 259 فربی ت	سيرابيت،47	داخلي بيجان
عرب صليبى، 258 ور جزامر كب، 258 ور شكن، 183 ور شكن، 183 ورى سمته، 190،21 ورى عرصه، 146،101 عنالم 190 عنالم 190 متعالمه 79 ستا متعالمه 210 شتا متعالمه 210 شتا متعالمه 210	ض .	
عرب صليبي، 13 ورجزامر كب، 258 ورشان، 183 ورشان، 183 ورئ سمتي، 190،21 ورئ سمتي، 190،21 ورئ عرصه، 146،101 ستا الله، 79 ستا مليه، 79 ستا منعامليت، 122 منابل الريائي، 182	رب نقطه،15	
ورجُرام رَب 4258 ورغني 183، 183 وري سمتيه 190،21 وري سمتي 190،21 وري عرصه 146،101 الماد 79 الماله 79 متامله 79 متامله 79 متامله 221 متامله 182 فار	ضرب صليبي، 13	
ورى سمتىي ، 190،21 طاقت بالقابل زاويه ، 192 ورى عرصه ، 146،101 طول موجى ، 18 ستا عمودى تراش ، 9 ساله ، 79 سالمة ، 94 متعامله ، 79 سامتعامليت ، 221 فار غير معاصر ، 182		
ورى عرصة، 146،101، طول مونى، 18 شام مونى، 18 شام مونى، 18 شام مونى، 19 شام مونى، 19 شام مونى، 19 شام مونى، 19 شام مونى، 10 شام تعامليت، 221 شام تعامليت، 182 شام فير معاصر، 182 شام فير معاصر، 182 شام فير معاصر، 216 شام فير		
ستا معودی تراش، 9 اماله، 79 متعامله، 79 ستامتعاملیت، 221 شتامتعاملیت، 182 فتار غیر معاصر، 182 اضافی زادیائی، 216		
الله، 79 متعامله، 79 ستامتعاملیت، 221 شار غیر معاصر، 182 فار فیر معاصر، 182 اضافی زادیائی، 216	طول موج،18	دوری عرصه، 146،101
الله، 79 متعامله، 79 ستامتعاملیت، 221 شار غیر معاصر، 182 فار فیر معاصر، 182 اضافی زادیائی، 216	عمودې تراش ي	ربتا
متعامله، 79 ستامتعاملیت، 221 فتار غیر معاصر، 182 اضافی زادیائی، 216		اماله،79
فمار فمار غير معاصر، 182 اضافی زاديا کی، 216		متعامله، 79
اضافی زاویا کی ، 216		رستامتعامليت، 221
_ · · · · · · · · · · · · · · · · · · ·	غير معاصر ،182	ر فآر
وريبر، 62	254 4 1	•
02.0)		رو ^ع ن،62
		روک،232 افغه نیر . 11 211
· · · · · · · · · · · · · · · · · · ·		رياضى نمونە، 211،81 ريلے، 103
103/2	127.30.030	رچے،103
اويائي فرق،22	قالب،130	زاويائي فرق،22

محدد	قالبي ضياع، 62
كار تيسي،4	64.9%
ىكى، 5	قانون
محرک برتی د باو، 61	اوټم ،26
محوري	كولمب،10
لىبائى،166	لورينز، 141
مخلوط عدد ،196	قدامت پیند میدان، 111
مر کب جزیٹر، 258	قریب جڑامر کب،258
مزاحمت،25	قصر دور ، 39
مزاحمت بيا، 241	قطب
مساوات لورينز،104	ابحرے،184،184
مسئلہ	بموار،144،181
تھونن،230	قوت مر وڑ،213،170
زیادہ طاقت کی ^{منتق} لی ، 233	انتہائی،182
مشتر كه ارتباط اماله ، 43	قوى برقيات، 245
مشتر كه اماليه، 43	قوى <u>لىچ</u> ے،255
معاصر،134	*
مشين،180	كاربن بش، 181
معاصر اماليه، 188	کار گزاری،204
معاصرر فتار،160،161،180	كثافت
معائنه کھلاد ور، 87 متناطیس متناطیس	برتی رو، 28
گھلادور،87	كثافت مقناطيسي بهاو
مقناطيس	بقايا،46
برتی،135	•
چال کادائره، 47	گرم تار،95
خاتم شدت،46	گومتاحصه، 37
مقناطیسی بر قی رو،64	گھومتالچھا،106
مقناطيسي بهاو،30	1000
رىتا،79	ليجا
كثافت،33	پىق ابتدائى،55
مقناطيسي چال، 52	بيرون. ي <u>صل</u> ے،144
مقناطیسی دیاو، 30	نين ار ، 41 چيورار ، 41
رخ،146	ئىچىراد- ئانوى، 55
مقناطیسی قالب، 55،31	رځ،137
متناطيسي متقل،171،26	زیاده برقی د باو،56 زیاده برقی د باو،56
31,26,9%	مورون ميرون ساكن، 106
برو،31،20 مقناطیسی میدان	تىن،00،6 قى،135
مفعاً به مامیدان شدت،33،11	ون. کم بر تی د باو، 56
سنت 35،11، موٹر	بر ن روار دوران گومتا، 106
مور امالي، 211	مورن،135 میدانی،135
Z11'00	ميدان، د د ۱

ف رہنگ

بيجان انگيز	پنجره نما،236
بر تی د باو، 61	موژ،19،50
بر تی رو، 61	موثر قیت،169
ہیجابٰا نگیز برقی رو،60	موسيقائي جزو،64،147
ىيجانى بر تى د باو، 189	موصلیت، 25
	ميداني لچھے،255
يک دوري، 59،23	
يك دوري بر تي د باو، 95	واث،44
يك دوري برقي رو،95	وولٹ، 141
یک ست رو	وولٹ-ایمپیئر،76
مشین، 245	ويېر، 33
يولرمساوات،20	ويبر- چکر، 39
	^{بې} کيابث، 30،25
	ىپ
	يېښون. 255
	255.0 <i>5</i> 2.
	لچھا، 61