Assinale, em cada alínea, a única opção correcta.

Para cada questão deste grupo, assinale através de uma cruz na tabela qual das quatro respostas é verdadeira.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A			X					X		X		X						X		
В		X		X			X				X					X				
С	X					X							X		X					X
D					X				X					X			X		X	

1. Considere a matriz $A=\left[\begin{array}{cc} 1 & a \\ b & 2 \end{array}\right]$ com $a,b\in\mathbb{R}.$ Os vetores (1,0) e (1,2) são vetores próprios de Ase e só se

- (A) a = b = 0.
- (B) $a = 0 \text{ e } b \in \mathbb{R}$. (C) b = 0 e a = 1/2.
- (D) $a = 1/2 \, e \, b \in \mathbb{R}$.

2. Seja $p(\lambda) = \lambda(\lambda - 1)^2(\lambda - 2)$ o polinómio característico de uma dada matriz A. Então,

- (A) A é invertível e 1 e $\frac{1}{2}$ são valores próprios de A^{-1} .
- (B) o sistema (A 2I)x = 0 é possível e indeterminado.
- (C) os valores próprios de A são 0, 1 e 2, com a mesma multiplicidade algébrica.
- (D) o sistema Ax = 0 tem solução única.

3. Seja $\lambda = 1, 1, 2$ o conjunto dos valores próprios de uma matriz A de ordem 3. Então

- (A) os valores próprios de A^2 são 1, 1, 4 e A^2 é invertível.
- (B) A não é invertível.
- (C) A é invertível e os valores próprios de A^{-1} são -1,-1,-2.
- (D) A^T não é invertível.

4. Considere a matriz $A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$.

- (A) (0,0,0) é um vetor próprio associado ao valor próprio 0.
- (B) (-1, -1, -1) é um vetor próprio associado ao valor próprio 0.
- (C) (1,0,-1) é um vetor próprio associado ao valor próprio 0.
- (D) (2, 2, 2) é um vetor próprio associado ao valor próprio 1.

5. Seja A uma matriz de ordem 3 com valores próprios 0, 1 e 2. Então

(A) o sistema Ax = 0 é possível e determinado.

(B) $det(A^T) \neq 0$.

(C) A invertível.

(D) os valores próprios da matriz 2A - I são -1, 1 e 3.

6. Seja V um espaço vetorial real e (v_1, v_2, v_3) uma base de V.

- (A) O vetor nulo $\mathbf{0}_V$ não pode escrever-se como combinação linear de v_1, v_2 e v_3 .
- (B) $\{v_1, v_2, v_3, 2v_1\}$ não é um conjunto gerador de V. (C) $(2v_1, v_2, v_3)$ também é uma base de V.
- (D) $\{v_1, v_2, v_2 + v_3\}$ é um conjunto linearmente dependente.

7. O seguinte conjunto F é um subespaço vetorial de \mathbb{R}^3 .

(A) $F = \{(x, y, z) \in \mathbb{R}^3 : x = 1, y = z\}.$

(B) $F = \{(x, 2x, z) : x, z \in \mathbb{R}\}.$

(C) $F = \{(0,0,0), (0,2,0), (0,-2,0)\}.$

(D) $F = \{(x, y, z) \in \mathbb{R}^3 : x \ge y\}.$

9.	Considere, em \mathbb{R}^4 , o subespaço $U = \{(a, b, c, d) \in (A) (0, 0, 0, 0), (1, 1, 0, 1), (0, 0, 1, 1).$ (C) $(1, 1, 1, 2), (1, 1, 0, 1), (0, 0, 1, 1).$	(B) $(1,0,0,0), (0,1,0,0)$	
10.	Considere o subespaço vectorial de \mathbb{R}^4 , $F=<$ (2 a F :	(2,1,0,4),(1,1,0,4) > . Assinal	e o vector que pertence
	(A) $v = (0, 0, 0, 0)$ (B) $v = (3, -3, 0, 12)$	(C) $v = (3, 0, 5, 0)$	(D) $v = (-1, -2, 0, 0)$
11.	Seja A uma matriz de ordem 3×4 . (A) $car(A)<3$. (C) As linhas de A são linearmente independent	(B) As colunas de A são lintes. (D) Ax	earmente dependentes. = 0 tem solução única.
12.	O vetor $(2,k,-1)$ é combinação linear dos vetor (A) $k=-\frac{3}{2}$ (B) $k=-\frac{1}{2}$		(D) $k = 1$
13.	Os seguintes vetores formam um conjunto gerad (A) $(1,2,0), (0,1,-1)$ (C) $(1,2,0), (1,0,0), (0,0,2)$	(B) $(1, 2)$	(0, -1), (1, -1, 3), (2, 1, 2), (0, 1, -1), (0, 2, -2)
14.	Considere os subespaços: $S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x $	$x + y = 0$ e $S_2 = \{(x, y, z)$ (C) $(1, 3, 2)$	$\in \mathbb{R}^3 \mid x - y + 2z = 0$ (D) $(-1, 1, 1)$
15.	Seja $f:\mathbb{R}^4 \to \mathbb{R}^3$ uma aplicação linear e M a m (A) f é injetiva. (C) M é uma matriz 3×4 .		ão pode ser sobrejetiva, então dim $Im(f)=1$.
16.	$f: \mathbb{R}^3 \to \mathbb{R}^2$ uma aplicação linear definida por f f relativamente às bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 é		o a matriz da aplicação
	(A) $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ e dim Im(f)=3.	- <u>-</u>	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} e \dim Nuc(f) = 1.$
	(C) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ e dim Im(f)=4.	$(D) A = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} $ e dim Nuc(f)=4.
17.	Considere a aplicação linear f definida por $f(x, (A) \dim(Imf) = 2$. (C) f nem injetiva nem sobrejetiva.	(B) A	(x, y, z) ; $(x, y, z) \in \mathbb{R}^3$. $(x, y, z) \in \mathbb{R}^3$. $(x, y, z) \in \mathbb{R}^3$. $(x, y, z) \in \mathbb{R}^3$.
18.	Encontre os valores de k para a aplicação $A=$	$\begin{bmatrix} 3 & 0 & k \\ 1 & 1 & 1 \\ k & 0 & 3 \end{bmatrix}$ é injetiva.	
	(A) $k \neq \pm 3$ (B) $k = \pm 3$	(C) $k = -3$	(D) $k = 3$
19.	Seja $f:\mathbb{R}^3 \to \mathbb{R}^4$ a aplicação linear definida po $\mathrm{Im}(\mathbf{f}) =$	or $f(x,y,z) = (2x,x+z,y+z)$	(z, -z). A imagem de f
	(A) $Imf = \mathbb{R}^3$ (C) $Imf = \mathbb{R}^4$	(B) $Imf = <(2,0,0), (1,0,0)$ (D) $Imf = <(2,1,0,0), (0,0)$	

(C) $k = {\sqrt{6}, -\sqrt{6}}.$ (D) $k = \sqrt{6}.$

(B) f é injetiva

(D) f é sobrejetiva.

8. Para que valores de k o conjunto ((k,6),(1,k)) é uma base de $\mathbb{R}^2.$

(A) $k = \mathbb{R} \setminus \{\sqrt{6}, -\sqrt{6}\}.$ (B) $k = -\sqrt{6}.$

20. Seja A, de ordem $3\times 4,$ a matriz da aplicação f com caraterística 2. Então

(A) $\dim(Imf) = 3$

(C) $\dim(Nucf) = 2$.