Arquitectura de Computadores

Yadran Eterovic S. (yadran@ing.puc.cl)

2021-2 IIC2343

La inceíblemente vital industria de la tecnología de la la información

En los últimos 40 años, el desempeño de los computadores ha aumentado unas 50 mil veces:

 comparando el VAX 11/780 de 5 MHz con el Intel Core i7 de 4 núcleos de 4.2 GHz

Un teléfono celular que hoy cuesta menos de 500 dólares tiene el mismo desempeño que el computador más rápido del mundo de hace 25 años y que costaba 50 millones de dólares

Si la industria del transporte hubiera progresado a la misma tasa que la industria de la computación, hoy podríamos viajar de Nueva York a Londres en un segundo y por 10 pesos

La tercera revolución de la civilización

La tercera revolución de la civilización:

la revolución de la agricultura (circa 10,000 a.C.) la revolución industrial (1760–1840) la "revolución de la información", liderada por los computadores (actualmente)

La investigación científica:

científicos teóricos científicos experimentales científicos computacionales

En los últimos 25 – 30 años:

la *Web*los motores de búsqueda
los teléfonos celulares/smartphones

... y estamos "ahí" de:

anteojos para realidad aumentada autos que se conducen a sí mismos la desaparición del dinero en efectivo Los computadores son usados en varias clases disímiles de aplicaciones

Computadores personales (PCs)

Servidores

Computadores embebidos

Dispositivos móviles personales (PMDs: smart phones, tablets)

Computación "en la nube"

El computador personal (PC) —notebook o laptop— es el tipo de computador más comúnmente reconocible

Sistemas embebidos

Examples of Embedded Systems

Cloud
computing
(computación
en la nube):

- Amazon
- Google
- Microsoft

El hardware de todo computador ejecuta cuatro funciones básicas

Ingresar o recibir (input de) datos

Emitir o enviar (output de) datos

Procesar datos

Almacenar datos

En este curso estudiaremos cómo se llevan a cabo estas funciones

Componentes clásicas de un computador:

- CPU
- control
- datapath
- memoria
- input/output

Von Neumann Architecture

Una aplicación típica:

- millones de líneas de código
- + librerías de software que implementan funciones complejas

Pero ... el hardware de un computador sólo puede ejecutar instrucciones de "bajo nivel" muy simples:

- sumar dos números
- revisar un número para ver si es cero
- copiar datos desde una parte de la memoria a otra

Para "hablarle" al hardware electrónico, hay que enviarle señales eléctricas

Las señales más simples y fáciles de distinguir son *on* y *off* :

...

el alfabeto del computador tiene solo dos letras, cuyos símbolos son los números 0 y 1

... -> cada letra es un dígito binario, o bit

Los comandos — instrucciones de máquina — son secuencias de bits que el computador entiende y obedece:

• p.ej., 1000110010100000 le dice al computador que sume dos números

Los primeros programadores se comunicaban con los computadores usando directamente estas secuencias de dígitos binarios

El lenguaje simbólico es el lenguaje de ensamble, o assembly

El lenguaje binario es el **lenguaje de máquina** Luego, los programadores inventaron notaciones más cercanas a nuestra forma de pensar; p.ej.:

 add A,B podría ser la representación simbólica de la instrucción anterior

... e inventaron programas —el ensamblador o *assembler*— para traducir de esta notación simbólica a la binaria:

• el assembler traduce **add A,B** a 1000110010100000

Es decir, los programadores usaron el computador para que los ayudara a programar el propio computador

El compilador traduce un programa escrito en un lenguaje de alto nivel a instrucciones que el hardware puede ejecutar

```
swap(size_t v[], size_t k):
   size t temp
                                         compilador
   temp = v[k]
   v[k] = v[k+1]
   v[k+1] = temp
         programa
                                             swap:
         en lenguaje
                                                slli x6,x11,3
         de alto nivel
                                                add x6, x10, x6
                                                 1d x5,0(x6)
                              programa en
                                                 1d x7,8(x6)
                                 lenguaje
programa en
                                                 x7,0(x6)
                        assembly RISC-V
lenguaje de
                                                 x5,8(x6)
máquina binario
                                                jalr x0,0(x1)
0000 ... 1000
0000 ... 0001
1000 ... 0000
                                  assembler
1000 ... 0100
1010 ... 0000
1010 ... 0100
0000 ... 1000
```

En la actualidad, varias capas de software organizadas jerárquicamente interpretan o traducen las operaciones de "alto nivel" a las instrucciones simples del computador:

- las capas de más "arriba": aplicaciones, directamente disponibles para nosotros los usarios
- las capas intermedias: software de sistemas, en particular, sistemas operativos, compiladores, *loaders*, y *assemblers*
- · la capa de más "abajo": hardware

El sistema operativo

Es la interfaz entre los programas de los usuarios y el hardware:

• p.ej., Linux, iOS, Windows

Proporciona servicios y funciones de supervisión:

- manejo de operaciones básicas de i/o
- · asignación de almacenamiento y memoria
- compartimiento protegido del computador entre muchas aplicaciones que lo usan simultáneamente

Contenido

Números enteros y de punto flotante: representación y operaciones

Lógica digital, circuitos combinacionales y la ALU

Circuitos secuenciales, registros y memoria

El computador básico: componentes, instrucciones y el datapath

La arquitectura del set de instrucciones (ISA)

Pipelining

Memoria principal, caches y memoria virtual

Input/output

Las clases

Para terminar la clase puntualmente, avísenme cuando falten 3-5 minutos (para las 9.40)

Todo el material de clases (y la clase misma) será subido a la página del curso en Github

Estamos aprendiendo a hacer clases híbridas: cualquier sugerencia (herramienta, metodología, etc.) es bienvenida

Evaluación

Tres pruebas, cada una vale 20%:

- I1: martes 28 sept., desde las 8.30 am
- I2: martes 16 nov., desde las 8.30 am
- I3: viernes 10 dic. (presencial), de 8.30 am a 11.30 am
- no hay exmen

Dos tareas, cada una vale 20%:

- los enunciados se publicarán las semanas del 20 sept. y del 8 nov., respectivamente
- cada una tendrá un plazo de 2 a 3 semanas

Este curso suscribe el Código de Honor de la universidad

http://www.uc.cl/codigo-de-honor/

Copias y otras faltas a la honestidad académica serán sancionados con nota final **NF** = **1.1** en el curso

Bibliografía

"Apuntes", de Alejandro Echeverría y Hans Löbel, "Clases" y otros, disponibles en el sitio del curso

D.A. Patterson, J.L. Hennessy, *Computer Organization and Design: The Hardware/Software Interface* (RISC-V ed.), Morgan Kaufmann (Elsevier) 2018

A.S. Tanenbaum, T. Austin, *Structured Computer Organization* (6th ed.), Pearson Education Limited 2013