

Privacy II. Network Anonymity and Secure Multiparty Computation

Bo Luo

Associate Professor, EECS
Director, Information Assurance Lab, ITTC
The University of Kansas, Lawrence, KS, USA
bluo@ku.edu; http://www.ittc.ku.edu/~bluo

Anonymity

- Data anonymity
 - Unidentifiability
 - Database and data mining
 - Privacy-preserving data publishing
- Network anonymity

网络匿名

- Unobservability
- Unlinkability
- Sender anonymity
- Receiver anonymity

Anonymous Network

- Chaum's MIX
- Onion Routing
- Crowds

Chaum's MIX

- Presented first in 1981 by David Chaum
- Uses public key cryptography for anonymous e-mail
- Basic Idea:
 - E-mails would be sent to a "Mix" which would then forward them onto recipients
 - Unlinkability: The adversary knows all the senders and receivers but cannot link senders to receivers
- Key building block for anonymity systems

Chaum's MIX

Alice sent email to Bob

Chaum's MIX

MIX Cascade

- What if some of the mixes are controlled by adversaries?
- A cascade of mixes can be used to handle compromised mixes

- How many adversaries can this withstand?
 - N-1

Anonymity via Random Routing

- Hide message source through random routing
- Routers don't know for sure who the source of the message is

Anonymity via Random Routing

- Chaum's Mix (Chaum 1981)
 - Decryption and re-encryption, and reorder
- Onion routing (Syverson et al. 1997)
 - Layered encryption using pair-wise symmetric keys
- Crowds (Reiter et al. 1998)
 - Probabilistic random walk with pf
- P5 (Sherwood et al. 2001)
 - Dining cryptographer network
- Tarzan, MorphMix, Freedom, Tor, Cashmere, Salsa, ...

Anonymizing network

- Sender chooses a random sequence of routers
 - Some are honest, some aren't
 - Similar to mix cascade

Anonymizing network

- An anonymizing network is an overlay with relay nodes
 - Server-based or peer-to-peer
- Selecting a set of nodes from available relays to construct a circuit to relay the packets
- Packets are encrypted along the anonymous path
 - Goal: Hostile routers shouldn't learn Alice is talking to Bob

Onion routing

Crowds

不考

- Routers form a random path
 - Different than onion routing because the routers choose path, not sender
- After receiving a message router flips a biased coin
 - With probability p, the router forwards the message to another router
 - With probability 1-p, the router forwards the message to the recipient

Crowds

Problems

- Static paths suffer from node failures
 - Node failure → Path failure
 - Detection of a node failure is slow
 - Reconstructing an anonymous path is expensive
 - Frequent path reformations increase the vulnerability to the predecessor attack
 - The problem gets worse in P2P anonymizing networks

Secure Multiparty Computation

- Participants: $p_1, p_2, ..., p_N$
- Private inputs, d_1 , d_2 , ..., d_N
- Objective: compute the value of a public function

$$F(d_1, d_2, ..., d_N)$$

while keeping the private inputs secret.

- Introduced by Chaum
- To release a public message in a perfectly untraceable manner
 - N cryptographers are having dinner
 - Waiter tells them that the dinner has been paid for but they want to know whether it was one of them that paid or the NSA agent in the corner

- The Protocol
 - Each diner flips a coin and shows it to his left neighbor
 - Each diner announces whether he and his neighbor's coin flips are the same or different. The payer lies.
 - Even number of "different" => no one lied => NSA paid
 Odd number of "different" => one the diners paid

Problems with DC

- Very Impractical
 - Only one bit sent at a time
 - Each party has to have pairwise secure channels
 - Massive communication overhead
 - For N 'diners'
 - N messages sent to share coins
 - N broadcast messages to share
 - All this for 1 bit

Secure two-party computation

Yao's Millionaires' problem: two millionaires are interested in knowing which of them is richer without revealing their actual wealth.

- 2-party Secure Function Evaluation (SFE)
 - Alice has $\{x_1, x_2, ... x_n\}$
 - Bob has $\{y_1, y_2, ... y_n\}$
 - They want to learn f(x,y) without revealing their own values.

FairPlay

- Yao's construction is about 20 years old. There were no known implementations (?).
- FairPlay a full fledged secure two-party computation system, implementing Yao's "garbled circuit" protocol.
- Nisan, Malkhi, Pinkas, Sella USENIX Security 2004

Record Linkage

 Record linkage is to identify related records associated with the same entity from multiple databases

Privacy-Preserving Record Linkage

- Privacy becomes an issue when data is sensitive.
 - I will only share with you on the "linked records"
 - I will not give you the plain text of my primary keys.
- Secure multi-party set intersection problem
 - Solutions based on commutative encryption
 - Solutions based on homomorphic encryption

Privacy-Preserving Record Linkage

- A Naïve Solution
 - Citi hashes its records
 - BOA hashes its records
 - They exchange the hashes
 - Identical hash → shared record
 - What is wrong here?

Agrawal's method

 Commutative encryption: using the same set of commutative keys, the encrypted content can be recovered in any arbitrary order.

$$f(g(v)) = g(f(v))$$

Agrawal's method

- Protocol
 - Hashing
 - Encryption
 - Exchange
 - Encryption
 - Compare
 - Decryption

Commutative Encryption

 Commutative Encryption: using the same set of commutative keys, the encrypted content can be recovered in any arbitrary order.

• AES Protocol [Agrawa et. al., SIGMOD 2003]:

Alice compares

