10-1

1

case1

代换 Sv:

$$\alpha \to \alpha \beta \to pointer(\alpha) \gamma \to \beta \delta \to \beta$$

使得

$$S(a) = S(b) = (pointer(\alpha)) \times (\beta \to \beta)$$

代换 Sv':

$$\alpha \rightarrow int\beta \rightarrow pointer(int)\gamma \rightarrow pointer(int)\delta \rightarrow pointer(int)$$

使得

$$S^{'}(a) = S^{'}(b) = (pointer(int)) \times (pointer(int) \rightarrow pointer(int))$$

所以 Sv 是最一般的合一代换。

case2

此时不存在某个代换 Sv 使得 S(a)=S(b) , 所以这两个表达式 a 和 b 不能合一。

2

编号	定型断言	代换	规则
1	f:α		(Exp Id)
2	1:eta		(Exp Id)
3	map: γ		(Exp Id)
4	$map(f,l)$: δ	$\gamma =$	(Exp
		$\begin{array}{c} (\alpha,\beta) \to \\ \delta \end{array}$	Funcall)
5	null: $list(\alpha_0) \rightarrow boolean$		(Exp Id
	. •		Fresh)
6	null (1): boolean	$\beta =$	(Exp
		$list(\alpha_0)$	Funcall)
			和 (2)
7	$\mathrm{nil}: list(\alpha_1)$		(Exp Id
			Fresh)
8	$1: list(\alpha_0)$		(2)
9	hd: $list(\alpha_2) \rightarrow \alpha_2$		(Exp Id)
			Fresh)
10	hd (l): α_0	$\alpha_2=\alpha_0$	(Exp
			Funcall)
11	$f(hd(1)): \alpha_3$	$\alpha =$	(Exp Id
		$\alpha_0 \rightarrow \alpha_3$)

编号	定型断言	代换	规则
12	f: $\alpha_0 \rightarrow \alpha_3$		(1)
13	tl: $list(\alpha_4) \rightarrow list(\alpha_4)$		(Exp Id Fresh)
14	tl (l): $list(\alpha_0)$	$\alpha_4 = \alpha_0$	(Exp
	() (0)	4 0	Funcall)
15	$\mathrm{map}:((\alpha_0\to\alpha_3)\times list(\alpha_0))\to\delta$		(3)
16	$\mathrm{map}\;(\;\mathrm{f}\;,\;\mathrm{tl}\;(\;\mathrm{l}\;)\;):\;\delta$		(Exp
	1/)		Funcall)
17	$\mathrm{cons:}\alpha_5 \times list(\alpha_5) \to list(\alpha_5)$		(Exp Id
18	cons (f (hd (l)), map (f, tl (l))): $list(\alpha_3)$	$\alpha_5 =$	Fresh) (Exp
10	cons (i (lid (i)), map (i, ti (i)) $).iist(\alpha_3)$	$\alpha_5 = \alpha_3, \delta =$	Funcall)
		$list(\alpha_3)$	r ancan)
19	if : $boolean \times list(\alpha_6) \times list(\alpha_6) \rightarrow list(\alpha_6)$	(3/	(Exp Id
			Fresh)
20	if: $list(\alpha_1)$	$\alpha_6 =$	(Exp
		$\alpha_1,\alpha_3 =$	Funcall)
01	match a control	α_1	(E.m. 1-1
21	$match: \alpha_7 \times \alpha_7 \to \alpha_7$		(Exp Id Fresh)
22	$\mathrm{match} \; : list(\alpha_1)$	$list(\alpha_7) =$,
		α_1	Funcall)