# On Commonsense Domains within the Winograd Schema Challenge

Research Project

Aneta Koleva

Supervisors: Prof. Sebastian Rudolph

28-03-2019

Dresden University of Technology

Dr. Emmanuelle Dietz

#### Motivation

• Winograd Schema Challenge (Levesque et. al, 2012)

S: The trophy does not fit into the brown suitcase because it is too [small/large].

Q: What is too [small/large]?

A: The suitcase/the trophy.

#### Motivation

- Winograd Schema Challenge (Levesque et. al, 2012)
  - S: The trophy does not fit into the brown suitcase because it is too [small/large].
  - Q: What is too [small/large]?
  - A: The suitcase/the trophy.



#### **Outline**

Description

Previous Approaches

Methodology

Conclusion

### Description

### Winograd Schema Challenge

S: The trophy does not fit into the brown suitcase because it is too [small/large].

Q: What is too [small/large]?

A: The suitcase/the trophy

### Winograd Schema Challenge

S: The trophy does not fit into the brown suitcase because it is too [small/large].

Q: What is too [small/large]?

A: The suitcase/the trophy

- Winograd Schema:
  - Sentence containing two nouns, one ambiguous pronoun and a special word
  - Question asking about the referent of the pronoun
  - Two possible answers corresponding to the noun phrases in the sentence

### Winograd Schema Challenge

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy
  - Winograd Schema:
    - Sentence containing two nouns, one ambiguous pronoun and a special word
    - Question asking about the referent of the pronoun
    - Two possible answers corresponding to the noun phrases in the sentence
  - Characteristics:
    - Easy to answer for an adult English speaker
    - Always contains special word
    - Google proof

#### Competition

- Competition in 2016 at IJCAI-16
  - Two time-constraint rounds 210 min. each
    - Pronoun Disambiguation Problems (PDPs) 60
    - Parts of Winograd Schemas 150
  - Four competitors
  - Best result: 58% correctly resolved PDPs
  - There was no second round
- Current state-of-the-art (Radford et. al, 2019) achieves 70.7% accuracy
  on the WSs dataset

### **Previous Approaches**

### **Previous Approaches**

- Machine learning and deep learning
  - Supervised ranking SVM
  - Supervised classification Task
  - Knowledge enhanced embeddings
  - Google's language models
  - Open Al language model
- Knowledge-based
  - Knowledge graphs with Relevance Theory
  - Semantic parsing and knowledge hunting
  - Parsing query results and assigning scores
  - Knowledge types identification

• Language models trained on unlabeled data

- Language models trained on unlabeled data
  - Recurrent Neural Networks
  - Trained on large datasets and on a dataset customized for WSC

- Language models trained on unlabeled data
  - Recurrent Neural Networks
  - Trained on large datasets and on a dataset customized for WSC
- Substitution ambiguous pronoun
  - The trophy doesn't fit in the suitcase because the trophy is too big
  - The trophy doesn't fit in the suitcase because the suitcase is too big

- Language models trained on unlabeled data
  - Recurrent Neural Networks
  - Trained on large datasets and on a dataset customized for WSC
- Substitution ambiguous pronoun
  - The trophy doesn't fit in the suitcase because the trophy is too big
  - The trophy doesn't fit in the suitcase because the suitcase is too big
- Language models assign probabilities to both sentences

- Language models trained on unlabeled data
  - Recurrent Neural Networks
  - Trained on large datasets and on a dataset customized for WSC
- Substitution ambiguous pronoun
  - The trophy doesn't fit in the suitcase because the trophy is too big
  - The trophy doesn't fit in the suitcase because the suitcase is too big
- Language models assign probabilities to both sentences
- Evaluation and results
  - PDPs 70% accuracy
  - WSC 63.7% accuracy

# Knowledge Types Identification and Reasoning (Anonymous Authors, 2019)

- Identified 12 knowledge types which cover the entire WSC dataset
- Developed a logical reasoning algorithm
- Evaluated on 100 problems from WSC and achieved 100% accuracy

<sup>&</sup>lt;sup>1</sup>kparser.org

# Knowledge Types Identification and Reasoning (Anonymous Authors, 2019)

- Identified 12 knowledge types which cover the entire WSC dataset
- Developed a logical reasoning algorithm
- Evaluated on 100 problems from WSC and achieved 100% accuracy
- Solver
  - 1. Semantic graph<sup>1</sup> of the input sentence and question
  - 2. Semantic graph representation of background knowledge
  - 3. Graph merging
  - 4. Project question graph on the merged graph
  - 5. Answer the node from the merged graph which is from the same domain as the unknown node from the question graph

<sup>&</sup>lt;sup>1</sup>kparser.org

• Representation of the knowledge "weak y prevents y lifts"



## Methodology

### **Categorization of Winograd Schemas**

- Motivation
  - Current state-of-the-art has a poor performance
  - Background knowledge is crucial for predicting the correct answer

### **Categorization of Winograd Schemas**

#### Motivation

- Current state-of-the-art has a poor performance
- Background knowledge is crucial for predicting the correct answer
- Idea
  - Analyze the input Winograd Schema and identify the domain
  - 2. Search for knowledge specific to this domain
  - 3. Apply reasoning procedure

### **Identified Categories**

| Category              | Example                                                                                  |  |  |
|-----------------------|------------------------------------------------------------------------------------------|--|--|
| 1. Physical           | S: John couldn't see the stage with Billy in front of him because he is so [short/tall]. |  |  |
|                       | Q: Who is so [short/tall]?                                                               |  |  |
| 2. Emotions           | S: Frank felt [vindicated/crushed] when his longtime rival Bill                          |  |  |
|                       | revealed that he was the winner of the competition.                                      |  |  |
|                       | Q: Who was the winner of the competition?                                                |  |  |
| 3. Interactions       | S: Joan made sure to thank Susan for all the help she had [given/received].              |  |  |
|                       | Q: Who had [given/received] help?                                                        |  |  |
| 4. Comparison         | S: Joe's uncle can still beat him at tennis, even though he is 30 years [older/younge    |  |  |
|                       | Q: Who is [older/younger]?                                                               |  |  |
| 5. Causal             | S: Pete envies Martin [because/although] he is very successful.                          |  |  |
|                       | Q: Who is very successful?                                                               |  |  |
| 6. Multiple knowledge | S: Sam and Amy are passionately in love, but Amy's parents are unhappy about it,         |  |  |
|                       | because they are [snobs/fifteen].                                                        |  |  |
|                       | Q: Who are [snobs/fifteen]?                                                              |  |  |

### **Annotation of Winograd Schemas**

- Strong agreement between the annotators Cohen's kappa score 0.66
- Annotation Results

| Category           | Annotator 1 | Annotator 2 |
|--------------------|-------------|-------------|
| Physical           | 36          | 39          |
| Emotions           | 7           | 9           |
| Interactions       | 44          | 24          |
| Comparison         | 19          | 26          |
| Causal             | 16          | 18          |
| Multiple knowledge | 28          | 34          |

### **Graph Representation for Physical Category**

- 1. The man couldn't lift his son because he was so weak.
- 2. The trophy doesn't fit into the brown suitcase because it's too small.

### **Graph Representation for Physical Category**

- 1. The man couldn't lift his son because he was so weak.
- 2. The trophy doesn't fit into the brown suitcase because it's too small.



### Reasoning

- Knowledge required for both examples is about physical features
- Similar reasoning rules for categorizing the traits
  - 1. weak(X) := lift(X,Y), not lift(modifier, could).
  - $2. \ small(Y) :- fit(X,Y), \ not \ fit(modifier, \ could).$

### Reasoning

- Knowledge required for both examples is about physical features
- Similar reasoning rules for categorizing the traits
  - 1. weak(X) := lift(X,Y), not lift(modifier, could).
  - 2. small(Y) := fit(X,Y), not fit(modifier, could).
- Reasoning Algorithm
- Change of background knowledge
  - has\_k(weak,prevents,lift).

### Conclusion

#### **Contributions**

- Overview of different approaches towards WSC
- None achieves close to 90% accuracy
- We analyzed the entire WSC corpus and identified 6 categories
- We identified a mistake in the Reasoning Algorithm and proposed a correction

#### **Future Work**

- Better Reasoning Algorithm
- Knowledge Graphs (RDF) representation
- Knowledge-injection neural networks

Thank you!