DVP in HM II (Analysis 1) für Physik

Prüfer: Prof. Dr. P. Rentrop

16:30 - 18:00 Uhr

10.09.2007

Übersicht der Klausuraufgaben zum Abtrennen

Aufgabe 1 (ca. 13 P)

Gegeben ist die Funktion $f(x) = \left(x + 2 - \frac{1}{x}\right) \exp\left(\frac{1}{x}\right), x \neq 0$.

- a) Man zeige: Die Ableitung von f lautet $f'(x) = \frac{1}{x^3} (x+1) (x-1)^2 \exp\left(\frac{1}{x}\right)$.
- b) Man berechne $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$, $\lim_{x < 0, x \uparrow 0^-} f(x)$, $\lim_{x > 0, x \downarrow 0^+} f(x)$.
- c) Man bestimme von f
 - die Asymptoten für $x \to \pm \infty$,
 - die Nullstellen und die Vorzeichenverteilung,
 - die Monotoniebereiche und stationäre Punkte (mit Klassifizierung).

Aufgabe 2 (ca. 10 P)

Gegeben seien

$$p(x) := x^4 - 2x^3 + 2x - 3, \quad x \in \mathbb{R},$$

$$\psi(x) := x - \frac{p(x)}{x^3 + 2} = 2 - \frac{1}{x^3 + 2}, \quad x \ge 0$$

und die Folge $(x_k)_{k \in \mathbb{N}_0}$ rekursiv definiert durch $x_{k+1} = \psi(x_k)$, $x_0 = 1$.

Man zeige:

- a) Es gibt genau ein $\alpha \in]1,2[$ mit $p(\alpha)=0$.
- b) Die Folge $(x_k)_{k \in \mathbb{N}_0}$ ist streng monoton wachsend mit $x_k \in]1, 2[\forall k \in \mathbb{N}.$
- c) $(x_k)_{k \in \mathbb{N}_0}$ konvergiert gegen α .

d)
$$\left| \frac{x_{k+1} - \alpha}{x_k - \alpha} \right| < \frac{\alpha^2}{2 + \alpha^3}$$
.

<u>Hinweis:</u> Man betrachte $x_{k+1} - \alpha = \psi(x_k) - \psi(\alpha)$.

Aufgabe 3 (ca. 10 P)

Man löse mittels Potenzreihenansatz das Anfangswertproblem

$$y''(x) + x y'(x) + y(x) = 0$$
, $y(0) = 1$, $y'(0) = 0$

und bestimme den Konvergenzradius der Potenzreihe.

Es sind nur die Ergebnisse in die jeweiligen Kästchen einzutragen!

a) Man gebe die folgenden Grenzwerte an:

a1)
$$\lim_{x \to 5} \left(\frac{x^2 - 3x - 10}{x^2 - 4x - 5} \right)$$
,

a2)
$$\lim_{x \to \pi/2} \left(\frac{\sin(\pi - 2x)}{\pi - 2x + \cos x} \right),$$

a3)
$$\lim_{x \to \infty} \left(\frac{1+x^2}{1+x} - \sqrt{x^2-1} \right)$$
.

b) Man gebe die Koeffizienten von x^0 , x^1 , x^2 der Potenzreihe von

$$f(x) = (1+x) \ln(1-x), \quad |x| < 1$$

mit Entwicklungspunkt (Aufpunkt) $x_0 = 0$ an.

c) Man gebe die Konvergenzradien an von

c1)
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{2n-1} x^n,$$

c2)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2}{n}\right)^n x^{4n}$$
.

d) Man gebe an

d
1) Real- und Imaginärteil von
$$\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^{11},$$

d
2) Betrag und Phase von allen Wurzeln/Nullstellen der Gleichung
 $\,z^3+2-2\,\mathrm{i}=0\,.$