

Lógica Computacional

Lógica Proposicional Clássica

Índice

01

Conectivos

02

Tabelas de Verdade 03

Equivalência e Implicação

1// }00

04

Regras de Dedução

05

Técnicas de Dedução

Negação

Negação da proposição A. Sendo esta a 'não A'

Exemplos

"O Sol é azul" (Falso - 0). Negação: "O Sol não é azul" (Verdadeiro - 1).

Conjunção

A	В	A∧B		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Exemplos

"O Sol é azul" (Falso - 0). Negação: "O Sol não é azul" (Verdadeiro - 1).

Disjunção

Proposições A e B compostas. Sendo esta a 'A ou B'

A	В	A∨B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Exemplos

"O Sol é azul" (Falso - 0). Negação: "O Sol não é azul" (Verdadeiro - 1).

Condicional

A	В	A→B		
0	0	1		
0	1	1		
1	0	0		
1	1	1		

Exemplos

"O Sol é azul" (Falso - 0). Negação: "O Sol não é azul" (Verdadeiro - 1).

Bicondicional

A	В	A↔B			
0	0	1			
0	1	0			
1	0	0			
1	1	1			

Exemplos

"O Sol é azul" (Falso - 0). Negação: "O Sol não é azul" (Verdadeiro - 1).

Tabelas de Verdade

São feitas a partir das seguintes condições:

- Expressão que envolve a junção de conectivos e proposições;
- A quantidades de linha de uma tabela verdade são todas as possibilidades possíveis de resultados (2 elevado a n), sendo n a quantidade de proposições.

- Exemplo de Tabelas de Verdade ---

$$\mathbf{B} \equiv ((p \lor (\neg r)) \rightarrow (q \land (\neg r))):$$

(p	V	(¬r))	1	(q	Λ	(¬r))
0	1	1	0	0	0	1
0	0	0	1	0	0	0
0	1	1	1	1	1	1
0	0	0	1	1	0	0
1	1	1	0	0	0	1
1	1	0	0	0	0	0
1	1	1	1	1	1	1
1	1	0	0	1	0	0
(1)	(2)	(1)	(3)	(1)	(2)	(1)

— Fazendo na Prática —

Tautologias, Contradições e Contingências

- Tautologia: Coluna final constituída apenas de 1's
- Contradições: Coluna final constituída apenas de 0's
- Contingências: Coluna final constituídas de 0's e 1's, independente das quantidades

Equivalência

Duas proposições são equivalentes quando ambas têm o mesmo resultado de tabela de verdade.

Além disso, P e Q, por exemplo, serão equivalentes somente se P bicondicional Q for uma tautologia.

Exemplo:

Implicação

A proposição P implica uma proposição Q se toda vez que P é verdadeira, temse que Q também é verdadeira.

P implica em Q se, e somente se, P condicional Q for uma tautologia

Exemplo:

Regras de Dedução

Regras de Dedução

$$A \rightarrow B$$
 $A \rightarrow B$
 A

$$A \rightarrow B$$
 $B \rightarrow C$ \rightarrow silogrimo lipoteticio (5H) $C \rightarrow D$
 $A \rightarrow C$
 $A \lor C$
 $B \lor D$
 $A \rightarrow C$
 $A \lor C$
 $B \lor D$
 $A \rightarrow C$

Técnicas deDedução

Assim como a tabela de verdade, o método de técnicas de dedução verifica a validade dos argumentos

Exemplos:

— Fazendo na Prática —

Verifique a validade do seguinte argumento:

