Convex Hulls, Voronoi Diagrams and Delaunay Triangulations

Jean-Daniel Boissonnat

Winter School on Algorithmic Geometry ENS-Lyon January 2010

Convex hull

Smallest convex set that contains a finite set of points $\ensuremath{\mathcal{P}}$

Set of all possible convex combinations of points in \mathcal{P}

$$\sum \lambda_i \rho_i$$
, $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$

We call polytope the convex hull of a finite set of points

Simplex

The convex hull of k + 1 points that are affinely independent is called a k-simplex

1-simplex = line segment

2-simplex = triangle

3-simplex = tetrahedron

Facial structure of a polytope

Supporting hyperplane

 $H \cap C \neq \emptyset$ and C is entirely contained in one of the two half-spaces defined by H

Faces

The faces of a P are the polytopes $P \cap h$, h support. hyp.

The face complex

The faces of P form a cell complex C

- ▶ $\forall f \in C$, f is a convex polytope
- ▶ $f \in C$, $f \subset g \Rightarrow g \in C$
- ▶ $\forall f, g \in C$, either $f \cap g = \emptyset$ or $f \cap g \in C$

General position

A point set P is said to be in general position iff no subset of k+2 points lie in a k-flat

If $\mathcal P$ is in general position, all the faces of $\mathrm{conv}(\mathcal P)$ are simplices. The boundary of $\mathrm{conv}(\mathcal P)$ is a simplicial complex

Two ways of defining polyhedra

Convex hull of *n* points

Two ways of defining polyhedra

Convex hull of *n* points

Intersection of *n* half-spaces

Duality between points and hyperplanes

hyperplane
$$h: x_d = a \cdot x' - b$$
 of $\mathbb{R}^d \longrightarrow \text{point } h^* = (a, b) \in \mathbb{R}^d$

point $p = (p', p_d) \in \mathbb{R}^d$
 $\longrightarrow \text{hyperplane } p^* \subset \mathbb{R}^d$
 $= \{(a, b) \in \mathbb{R}^d : b = p' \cdot a - p_d\}$

The mapping *

preserves incidences :

$$p \in h \iff p_d = a \cdot p' - b \iff b = p' \cdot a - p_d \iff h^* \in p^*$$

 $p \in h^+ \iff p_d > a \cdot p' - b \iff b > p' \cdot a - p_d \iff h^* \in p^{*+}$

 \blacktriangleright is an involution and thus is bijective : $h^{**} = h$ and $p^{**} = p$

Duality between polytopes

Let h_1, \ldots, h_n be n hyperplanes de \mathbb{R}^d and let $P = \cap h_i^+$

A vertex s of P is the intersection of $k \ge d$ hyperplanes h_1, \ldots, h_k lying above all the other hyperplanes

$$\Rightarrow$$
 s^* is a hyperplane $\ni h_1^*, \dots, h_k^*$ supporting P^* =conv $^-(h_1^*, \dots, h_k^*)$

General position:

s is the intersection of d hyperplanes

$$\implies$$
 s^* is a $(d-1)$ -face (simplex) de P^*

More generally and under the general position assumption, if f is a (d - k)-face of P, $f = \bigcap_{i=1}^{k} h_i$

$$p \in f \Leftrightarrow h_i^* \in p^* \text{ for } i = 1, ..., k$$

 $h_i^* \in p^{*+} \text{ for } i = k + 1, ..., n$

$$\Leftrightarrow$$
 p^* support. hyp. of $P^* = \text{conv}(h_1^*, \dots, h_n^*)$
 $\ni h_1^*, \dots, h_k^*$

$$\Leftrightarrow$$
 $f^* = \operatorname{conv}(h_1^*, \dots, h_k^*)$ is a $(k-1)$ - face of P^*

More generally and under the general position assumption, if f is a (d - k)-face of P, $f = \bigcap_{i=1}^{k} h_i$

$$p \in f \Leftrightarrow h_i^* \in p^* \text{ for } i = 1, \dots, k$$

$$h_i^* \in p^{*+} \text{ for } i = k+1, \dots, n$$

$$\Leftrightarrow p^* \text{ support. hyp. of } P^* = \text{conv}(h_1^*, \dots, h_n^*)$$

$$\ni h_1^*, \dots, h_k^*$$

$$\Leftrightarrow f^* = \text{conv}(h_1^*, \dots, h_k^*) \text{ is a } (k-1) - \text{face of } P^*$$

Duality between P and P*

- ▶ We have defined an involutive correspondence between the faces of P and P^* s.t. $\forall f, g \in P, f \subset g \Rightarrow g^* \subset f^*$
- ► As a consequence, computing P reduces to computing a lower convex hull

Euler's formula

The numbers of vertices s, edges a and facets f of a polytope of \mathbb{R}^3 satisfy

$$s - a + f = 2$$

Schlegel diagram

Euler formula : s - a + f = 2

Incidences edges-facets

$$2a \ge 3f \implies a \le 3s - 6$$

 $f \le 2s - 4$

with equality when all facet are triangles

Beyond the 3rd dimension Upper bound theorem

[McMullen 1970]

If *P* is the intersection of *n* half-spaces of \mathbb{R}^d

nb faces of
$$P = \Theta(n^{\lfloor \frac{d}{2} \rfloor})$$

If *P* is the intersection of *n* half-spaces of \mathbb{R}^d

nb faces of
$$P = \Theta(n^{\lfloor \frac{d}{2} \rfloor})$$

General position

all vertices of P are incident to d edges (in the worst-case) and have distinct x_d

- \Rightarrow the convex hull of k < d edges incident to a vertex p is a k-face of P
- ⇒ any k-face is the intersection of d − k hyperplanes defining P

Proof of the upper bound th.

- 1. $\geq \lceil \frac{d}{2} \rceil$ edges incident to a vertex p are in $h_p^+: x_d \geq x_d(p)$ or in h_p^-
 - \Rightarrow p is a x_d -max or x_d -min vertex of at least one $\lceil \frac{d}{2} \rceil$ -face of P
 - \Rightarrow # vertices of $P \le 2 \times \# \lceil \frac{d}{2} \rceil$ -faces of P
- 2. A k-face is the intersection of d k hyperplanes defining P

$$\Rightarrow \# k\text{-faces} = \binom{n}{d-k} = O(n^{d-k})$$

$$\Rightarrow \# \lceil \frac{d}{n} \rceil \text{-faces} = O(n^{\lfloor \frac{d}{2} \rfloor})$$

3. The number of faces incident to *p* depends on *d* but not on *n*

Representation of a convex hull

Adjacency graph (AG) of the facets

In general position, all the facets are (d-1)-simplexes

Vertex

Face* v_face

Face

Vertex* vertex[d]
Face* neighbor[d]

Incremental algorithm

 P_i : set of the *i* points that have been inserted first

 $conv(\mathcal{P}_i)$: convex hull at step i

 $f = [p_1, ..., p_d]$ is a red facet iff its supporting hyperplane separates p_i from $conv(\mathcal{P}_i)$

$$\iff$$
 orient $(p_1,...,p_d,p_i) \times$ orient $(p_1,...,p_d,O) < 0$

orient
$$(p_0, p_1, ..., p_d) = \begin{vmatrix} 1 & 1 & ... & 1 \\ x_0 & x_1 & ... & x_d \\ y_0 & y_1 & ... & y_d \\ z_0 & z_1 & ... & z_d \end{vmatrix}$$

Update of $conv(\mathcal{P}_i)$

- ► Locate : traverse AG to find the red facets and the (d - 2)-faces on the horizon V
- ▶ Update: replace the red facets by the facets $conv(p_i, e)$, $e \in V$

Update of $conv(\mathcal{P}_i)$

- ► Locate : traverse AG to find the red facets and the (d - 2)-faces on the horizon V
- ▶ Update: replace the red facets by the facets $conv(p_i, e), e \in V$

Correctness

- The AG of the red facets is connected
- The new faces are all obtained as above

Complexity analysis

- update proportionnal to the number of red facets
- # new facets = $O(n^{\lfloor \frac{d-1}{2} \rfloor})$
- fast locate: insert the points in lexicographic order and attach a facet to each point

$$T(n,d) = O(n\log n) + \sum_{i=1}^{n} |\operatorname{conv}(i,d-1)|$$

= $O(n\log n + n \times n^{\left\lfloor \frac{d-1}{2} \right\rfloor}) = O(n\log n + n^{\left\lfloor \frac{d+1}{2} \right\rfloor})$

Complexity analysis

- update proportionnal to the number of red facets
- # new facets = $O(n^{\lfloor \frac{d-1}{2} \rfloor})$
- fast locate: insert the points in lexicographic order and attach a facet to each point

$$T(n,d) = O(n\log n) + \sum_{i=1}^{n} |\operatorname{conv}(i,d-1)|$$

= $O(n\log n + n \times n^{\left\lfloor \frac{d-1}{2} \right\rfloor}) = O(n\log n + n^{\left\lfloor \frac{d+1}{2} \right\rfloor})$

Optimal in even dimensions

Can be improved to $O(n \log n)$ when d = 3

The expected complexity can be improved to $O(n \log n + n^{\lfloor \frac{d}{2} \rfloor})$ by inserting the points in random order (see course 3)

The randomized algorithm can be derandomized [Chazelle 1992]

Delaunay Triangulations

Simplex

The convex hull of k+1 points that are affinely independent is called a k-simplex

```
1-simplex = line segment, 2-simplex = triangle,
```

3-simplex = tetrahedron

Simplex

The convex hull of k+1 points that are affinely independent is called a k-simplex

1-simplex = line segment, 2-simplex = triangle, 3-simplex = tetrahedron

Simplicial complex

A finite collection of simplices C called the faces of C such that

- ▶ $\forall f \in C$, f is a simplex
- ▶ $f \in C$, $f \subset g \Rightarrow g \in C$
- ▶ $\forall f, g \in C$, either $f \cap g = \emptyset$ or $f \cap g \in C$

Triangulation of a finite set of points

A triangulation $T(\mathcal{P})$ of a finite set of points $\mathcal{P} \in \mathbb{R}^d$ is a d-simplicial complex whose vertices are the points of \mathcal{P} and whose domain is $conv(\mathcal{P})$

There exists many triangulations of a given set of points

Delaunay triangulation

 $\mathcal{P} = \{p_1, p_2 \dots p_n\}$ set of points in general position ($\not\exists d+1$ points on a same sphere)

 $t \subset \mathcal{P}$ is a Delaunay simplex iff \exists a sphere σ_t s.t.

$$\sigma_t(p) = 0 \ \forall p \in t
\sigma_t(q) > 0 \ \forall q \in P \setminus t$$

Delaunay triangulation

$$\mathcal{P} = \{p_1, p_2 \dots p_n\}$$
 set of points in general position ($\mathcal{A} d + 1$ points on a same sphere)

 $t \subset \mathcal{P}$ is a Delaunay simplex iff \exists a sphere σ_t s.t.

$$\sigma_t(p) = 0 \ \forall p \in t
\sigma_t(q) > 0 \ \forall q \in P \setminus t$$

Delaunay theorem

The Delaunay simplices form a triangulation of \mathcal{P} , called the Delaunay triangulation of \mathcal{P}

Proof of the theorem

Linearization

$$\sigma(x) = x^2 - 2c \cdot x + s, s = c^2 - r^2$$

$$\sigma(x) < 0 \Leftrightarrow \left\{ \begin{array}{l} z < 2c \cdot x + s \\ z = x^2 \end{array} \right. \tag{h_{σ}^{-}}$$
 $\Leftrightarrow \hat{x} = (x, x^2) \in h_{\sigma}^{-}$

Proof of the theorem

Linearization

$$\sigma(x) = x^2 - 2c \cdot x + s, s = c^2 - r^2$$

$$\sigma(x) < 0 \Leftrightarrow \begin{cases} z < 2c \cdot x + s & (h_{\sigma}^{-}) \\ z = x^{2} & (\mathcal{P}) \end{cases}$$

 $\Leftrightarrow \hat{x} = (x, x^{2}) \in h_{\sigma}^{-}$

Proof of Delaunay's th.

t a simplex, σ_t its circumscribing sphere

$$t \in \text{Del}(\mathcal{P}) \Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma_t}^+$$

 $\Leftrightarrow \hat{t} \text{ is a face of } \text{conv}^-(\hat{\mathcal{P}})$

Proof of the theorem

Lower convex hull Delaunay triangulation

Linearization

$$\sigma(x) = x^2 - 2c \cdot x + s, s = c^2 - r^2$$

$$\sigma(x) < 0 \Leftrightarrow \left\{ egin{array}{ll} z < 2c \cdot x + s & (h_{\sigma}^{-}) \\ z = x^{2} & (\mathcal{P}) \end{array}
ight.$$
 $\Leftrightarrow \hat{x} = (x, x^{2}) \in h_{\sigma}^{-}$

Proof of Delaunay's th.

t a simplex, σ_t its circumscribing sphere

$$t \in \text{Del}(\mathcal{P}) \Leftrightarrow \forall i, \hat{p}_i \in h_{\sigma_t}^+$$

 $\Leftrightarrow \hat{t} \text{ is a face of } \text{conv}^-(\hat{\mathcal{P}})$

$$\mathsf{Del}(\mathcal{P}) = \mathsf{proj}(\mathsf{conv}^-(\hat{\mathcal{P}}))$$

Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation diagram of n points of \mathbb{R}^d is the same as the combinatorial complexity of a convex hull of n points of \mathbb{R}^{d+1}

Hence, by the Upper Bound Theorem it is $\Theta\left(n^{\lfloor\frac{d+1}{2}\rfloor}\right)$

[Mc Mullen 1970]

Algorithm for constructing DT

Input: a set \mathcal{P} of n points of \mathbb{R}^d

- 1 Lift the points of \mathcal{P} onto the paraboloid $x_{d+1} = x^2$ of \mathbb{R}^{d+1} : $p_i \to \hat{p}_i = (p_i, p_i^2)$
- 2 Compute $conv(\{\hat{p}_i\})$
- 3 Project the lower hull $conv^-(\{\hat{p}_i\})$ onto \mathbb{R}^d

Complexity : $\Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

Main predicate

$$\begin{split} \operatorname{insphere}(\rho_0,\dots,\rho_{d+1}) &= \operatorname{orient}(\hat{\rho}_0,\dots,\hat{\rho}_{d+1}) \\ &= \operatorname{sign} \left| \begin{array}{ccc} 1 & \dots & 1 \\ \rho_0 & \dots & \rho_{d+1} \\ \rho_0^2 & \dots & \rho_{d+1}^2 \end{array} \right| \end{split}$$

Local characterization

Pair of regular simplices

$$\sigma_2(q_1) \ge 0$$
 and $\sigma_1(q_2) \ge 0$
 $\Leftrightarrow \hat{c}_1 \in h_{\sigma_2}^+$ and $\hat{c}_2 \in h_{\sigma_1}^+$

Theorem

A triangulation such that all pairs of simplexes are regular is a Delaunay triangulation

Proof

The PL function whose graph is obtained by lifting the triangles is locally convex and has a convex support

Optimality properties of the Delaunay triangulation

Among all possible triangulations of \mathcal{P} , $Del(\mathcal{P})$

1. maximizes the smallest angle (in the plane) [Lawson]

2. minimizes the radius of the maximal smallest ball enclosing a simplex)

[Rajan]

3. minimizes the roughness (Dirichlet's energy)

[Rippa]

Optimizing the angular vector (d = 2)

Angular vector of a triangulation T(P)

$$\operatorname{ang}(T(\mathcal{P})) = (\alpha_1, \ldots, \alpha_{3t}), \, \alpha_1 \leq \ldots \leq \alpha_{3t}$$

Optimality

Any triangulation of a given point set $\mathcal P$ whose angular vector is maximal (for lexicographic order) is a Delaunay triangulation of $\mathcal P$

Affects matrix conditioning in FE methods

Constructive proof using flips

While \exists a non regular pair (t_3, t_4) /* $t_3 \cup t_4$ is convex */ replace (t_3, t_4) by (t_1, t_2)

Constructive proof using flips

While \exists a non regular pair (t_3, t_4) /* $t_3 \cup t_4$ is convex */ replace (t_3, t_4) by (t_1, t_2)

Regularize \Leftrightarrow improve ang (T(P))

$$ang(t_1, t_2) \ge ang(t_3, t_4)$$
 $a_1 = a_3 + a_4, d_2 = d_3 + d_4,$
 $c_1 \ge d_3, b_1 \ge d_4, b_2 \ge a_4, c_2 \ge a_3$

- ▶ The algorithm terminates since the number of triangulations of \mathcal{P} is finite and $ang(\mathcal{T}(\mathcal{P}))$ cannot decrease
- lacktriangleright The obtained triangulation is a Delaunay triangulation of ${\mathcal P}$
- If a triangulation of $\mathcal P$ maximixes the angular vector, all its edges are regular; hence, it is a DT of $\mathcal P$

Minimizing the maximal min-containment radius [Rajan]

 r'_t = radius of the smallest ball containing t

$$Q(T) = \max_{t \in T} r'_t$$

Th. : for a given \mathcal{P} , for all $T(\mathcal{P})$, $Q(\mathrm{Del}(\mathcal{P})) \leq Q(T(\mathcal{P}))$

Minimizing the maximal min-containment radius [Rajan]

 r'_t = radius of the smallest ball containing t

$$Q(T) = \max_{t \in T} r'_t$$

Th. : for a given \mathcal{P} , for all $T(\mathcal{P})$, $Q(Del(\mathcal{P})) \leq Q(T(\mathcal{P}))$

Interpolation error

[Waldron 98]

If g is the linear interpolation of f over a simplex t,

$$||f-g||_{\infty} \leq c_t \frac{r_t^{\prime 2}}{2}$$

 c_t = bound on the absolute curvature of f in t

Minimizing the maximal min-containment radius

$$\max_{t \in \text{Del}} r'_{t \in T} \leq \max_{t \in T} r'_{t}$$

Proof

$$\sigma_t(x) = \|x - c_t\|^2 - r_t^2, \qquad \sigma_T(x) = \sigma_t(x) \text{ if } x \in t \subset T$$

1. $\forall x \in \text{conv}(\mathcal{P}) : 0 > \sigma_{\text{Del}}(x) \geq \sigma_{\mathcal{T}}(x)$

see next slide

2.
$$\min_{x \in t} \sigma_t(x) = -r'_t^2 \iff \text{if } c_t \notin t : \sigma_t(x) \ge \|c_t' - c_t\|^2 - r_t^2 = -r'_t^2$$

3.
$$x_T = \arg\min \sigma_T(x)$$
, $x_{\text{Del}} = \arg\min \sigma_{\text{Del}}(x)$
 $\sigma_T(x_T) = -r'_T^2 \le \sigma_T(x_{\text{Del}}) \le \sigma_{\text{Del}}(x_{\text{Del}}) = -r'_{\text{Del}}^2$

Proof of 1 : $0 > \sigma_{Del}(x) \ge \sigma_T(x)$

$$\sigma_t(x) = x^2 - 2c_t \cdot x + s \ (s = c_t^2 - r_t^2)$$

= $f(x) - g(x)$

where
$$f(x) = x^2$$
 and $g_t(x) = 2c_t \cdot x - s$

Geometric interpretation

 $\sigma_t(x)$ maximal

 $\Leftrightarrow g_t(x)$ minimal

 $\Leftrightarrow \mathcal{G}_t = h_{\sigma_t} \text{ supports } \operatorname{conv}(\hat{\mathcal{P}})$

 $\Leftrightarrow \sigma_t$ is empty

 $\Leftrightarrow t \in \text{Del}(\mathcal{P})$

Proof of 1 : $0 > \sigma_{Del}(x) \ge \sigma_T(x)$

$$\sigma_t(x) = x^2 - 2c_t \cdot x + s \ (s = c_t^2 - r_t^2)$$

= $f(x) - g(x)$

where
$$f(x) = x^2$$
 and $g_t(x) = 2c_t \cdot x - s$

Geometric interpretation

 $\sigma_t(x)$ maximal

 $\Leftrightarrow g_t(x)$ minimal

 $\Leftrightarrow \mathcal{G}_t = h_{\sigma_t} \text{ supports } \operatorname{conv}(\hat{\mathcal{P}})$

 $\Leftrightarrow \sigma_t$ is empty

 $\Leftrightarrow t \in \text{Del}(\mathcal{P})$

Minimum roughness of Delaunay triangulations

Input: n points $p_1,...p_n$ of \mathbb{R}^2 and for each p_j a real f_j

Roughness of a triangulation T(P):

$$R(T) = \sum_{i} \int_{T_{i}} \left(\left(\frac{\partial \phi_{i}}{\partial x} \right)^{2} + \left(\frac{\partial \phi_{i}}{\partial y} \right)^{2} \right) dx dy$$

 ϕ_i = linear interpolation of the f_i over triangle $T_i \in T$

Theorem (Rippa)

Among all possible triangulations of \mathcal{P} , $\mathrm{Del}(\mathcal{P})$ is one with minimum roughness

Voronoi Diagrams

Euclidean Voronoi diagrams

Voronoi cell
$$V(p_i) = \{x : ||x - p_i|| \le ||x - p_i||, \forall j\}$$

Voronoi diagram $(\mathcal{P}) = \{ \text{ cell complex whose cells are the } V(p_i)$ and their faces, $p_i \in \mathcal{P} \}$

Vor $(p_1, ..., p_n)$ is the minimization diagram of the n functions $\delta_i(x) = (x - p_i)^2$

Vor $(p_1, ..., p_n)$ is the minimization diagram of the n functions $\delta_i(x) = (x - p_i)^2$

$$arg min(\delta_i) = arg max(h_i)$$

where $h_{p_i}(x) = 2 p_i \cdot x - p_i^2$

The minimization diagram of the δ_i is also the maximization diagram of the affine functions $h_i(x)$

Vor $(p_1, ..., p_n)$ is the minimization diagram of the n functions $\delta_i(x) = (x - p_i)^2$

$$arg min(\delta_i) = arg max(h_i)$$

where $h_{p_i}(x) = 2 p_i \cdot x - p_i^2$

The minimization diagram of the δ_i is also the maximization diagram of the affine functions $h_i(x)$

Vor $(p_1, ..., p_n)$ is the minimization diagram of the n functions $\delta_i(x) = (x - p_i)^2$

$$arg min(\delta_i) = arg max(h_i)$$

where $h_{p_i}(x) = 2 p_i \cdot x - p_i^2$

The minimization diagram of the δ_i is also the maximization diagram of the affine functions $h_i(x)$

Note!

 $h_{p_i}(x)=0$ is the hyperplane tangent to $\mathcal{Q}:x_{d+1}=x^2$ at (x,x^2)

Dual triangulation

$$\mathcal{V}(\mathcal{P}) = h_{p_1}^+ \cap \ldots \cap h_{p_n}^+ \longleftrightarrow \mathcal{D}(\mathcal{P}) = \operatorname{conv}^-(\{\phi(p_1), \ldots, \phi(p_n)\})$$
 \downarrow
Voronoi Diagram of $\mathcal{P} \longleftrightarrow \operatorname{Delaunay Triangulation of } \mathcal{P}$

Affine Diagrams

Motivations

- To extend Voronoi diagrams to spheres (or weighted points)
 - molecular biology : how to compute a union of balls ?
 - sampling theory: the offset of a set of points captures topological information on the sapled object (see Course F. Chazal)
 - ▶ to improve the quality of a mesh (see Course M. Yvinec)
- To characterize the class of affine diagrams

Power diagrams of spheres

Power of a point to a sphere

$$\sigma(x) = (x - t)^2 = (x - c)^2 - r^2$$

$$\sigma(x) < 0 \Longleftrightarrow x \in \operatorname{int}(\sigma)$$

Bisector of two spheres = hyperplane

$$\sigma_i(x) = \sigma_j(x) \iff x^2 - 2c_i \cdot x + s_i = x^2 - 2c_j \cdot x + s_j$$

Laguerre (power) diagram

Sites: a set S of n spheres $\sigma_1, \ldots, \sigma_n$

Distance of a point
$$x$$
 to σ_i

$$\sigma_i(x) = (x - c_i)^2 - r_i^2$$

Lag(S) is the cell complex whose cells are the

$$Lag(\sigma_i) = \{x : \sigma_i(x) \le \sigma_j(x), \ \forall j\}$$

Laguerre (power) diagram

Sites : a set S of n spheres $\sigma_1, \ldots, \sigma_n$

Distance of a point
$$x$$
 to σ_i

$$\sigma_i(x) = (x - c_i)^2 - r_i^2$$

Lag(S) is the cell complex whose cells are the

$$Lag(\sigma_i) = \{x : \sigma_i(x) \le \sigma_j(x), \ \forall j\}$$

Note!

- ▶ Lag(σ_i) may be empty
- $ightharpoonup c_i$ may not belong to Lag (σ_i)

Laguerre diagrams and polytopes

$$\sigma_{i}(x) = (x - c_{i})^{2} - r_{i}^{2}$$

$$h_{\sigma_{i}}(x) = 2 c_{i} \cdot x - c_{i}^{2} + r_{i}^{2}$$

$$\arg \min \sigma_{i}(x) = \arg \min((x - c_{i})^{2} - r_{i}^{2})$$

$$= \arg \max(h_{\sigma_{i}}(x))$$

$$h_{\sigma_{i}}(x) = 2 c_{i} \cdot x - c_{i}^{2} + r_{i}^{2}$$

 $\operatorname{Lag}(\mathcal{S})$ is the minimization diagram of the σ_i \Leftrightarrow the maximization diagram of the affine functions $h_{\sigma_i}(x)$

► The faces of Lag(S) are the vertical projections of the faces of $\mathcal{L}(S) = \bigcap_i h_{\sigma_i}^+$

Space of spheres

σ hypersphere of \mathbb{R}^d

- \rightarrow point $\hat{\sigma} = (c, s = c^2 r^2) \in \mathbb{R}^{d+1}$
- \rightarrow the polar hyperplane $h_{\sigma} = \hat{\sigma}^* \subset \mathbb{R}^{d+1}$:

$$X_{d+1} = 2c \cdot X - s$$

1. The spheres of radius 0 are mapped onto the paraboloid

$$Q: X_{d+1} = X^2$$

- **2.** The vertical projection of $h_{\sigma_i} \cap \mathcal{Q}$ onto $x_{d+1} = 0$ is σ_i
- 3. $\sigma(x) = x^2 2c \cdot x + s$ is the (signed) vertical distance from the lift of x onto h_{σ} to the lift \hat{x} of x onto Q

4.
$$\sigma(x) < 0 \Leftrightarrow \hat{x} = (x, x^2) \in h_{\sigma}^-$$

Orthogonality between spheres

A distance between spheres

$$d(\sigma_1,\sigma_2) = \sqrt{(c_1-c_2)^2 - r_1^2 - r_2^2}$$

Orthogonality between spheres

A distance between spheres

$$d(\sigma_1, \sigma_2) = \sqrt{(c_1 - c_2)^2 - r_1^2 - r_2^2}$$

Orthogonality

$$d(\sigma_1, \sigma_2) = 0 \Leftrightarrow (c_1 - c_2)^2 = r_1^2 + r_2^2 \Leftrightarrow \sigma_1 \perp \sigma_2$$
 (Pythagore)

Orthogonality between spheres

A distance between spheres

$$d(\sigma_1, \sigma_2) = \sqrt{(c_1 - c_2)^2 - r_1^2 - r_2^2}$$

Orthogonality

$$d(\sigma_1, \sigma_2) = 0 \Leftrightarrow (c_1 - c_2)^2 = r_1^2 + r_2^2 \Leftrightarrow \sigma_1 \perp \sigma_2$$
 (Pythagore)

In the space of spheres

$$d(\sigma_1,\sigma_2)=0 \Leftrightarrow s_2=2c_1\cdot c_2-c_1^2 \Leftrightarrow \hat{\sigma}_2\in h_{\sigma_1} \quad (s_i=c_i^2-r_i^2) < h_{\sigma_1}^{-}$$

The vertical projection of the dual complex $\mathcal{R}(\mathcal{S})$ of $\mathcal{L}(\mathcal{S})$ is called the regular triangulation of \mathcal{S}

$$\mathcal{L}(\mathcal{S}) = h_{\sigma_1}^+ \cap \ldots \cap h_{\sigma_n}^+ \qquad \longleftrightarrow \qquad \mathcal{R}(\mathcal{S}) = \mathsf{conv}^-(\{\hat{\sigma}_1, \ldots, \hat{\sigma}_n\})$$

$$\downarrow \qquad \qquad \downarrow$$
 Laguerre diagram of $\mathcal{S} \qquad \longleftrightarrow \qquad \mathsf{Laguerre\ triangulation\ of\ } \mathcal{S}$
$$(\hat{\sigma}_i = h_{\sigma_i}^* = (c_i, c_i^2 - r_i^2) \in \mathbb{R}^{d+1})$$

 $\mathcal{S}=\{\sigma_1,...\sigma_n\}$ where σ_i is the sphere of center c_i and radius r_i $\mathcal{P}=\{c_1,...,c_n\}$

Characteristic property

 $t \subset \mathcal{P}$ is a simplex of the regular triangulation of \mathcal{S} iff there exists a sphere σ_t s.t.

- ▶ $d(\sigma_t, \sigma_i) = 0 \ \forall c_i \in t$ $(\sigma_t = \text{orthosphere of } t)$
- $d(\sigma_t, \sigma_j) > 0 \ \forall c_j \in \mathcal{P} \setminus t$

Regular triangulation

Regular triangulation

Regular triangulation

Complexity and algorithm

nb of faces
$$=\Theta\left(n^{\lfloor\frac{d+1}{2}\rfloor}\right)$$
 (Upper Bound Th.) can be computed in time $\Theta\left(n\log n + n^{\lfloor\frac{d+1}{2}\rfloor}\right)$

Complexity and algorithm

nb of faces
$$=\Theta\left(n^{\lfloor\frac{d+1}{2}\rfloor}\right)$$
 (Upper Bound Th.) can be computed in time $\Theta\left(n\log n + n^{\lfloor\frac{d+1}{2}\rfloor}\right)$

Main predicate

$$\text{power_test}(\sigma_0, \dots, \sigma_{d+1}) = \text{sign} \begin{vmatrix} 1 & \dots & 1 \\ c_0 & \dots & c_{d+1} \\ c_0^2 - r_0^2 & \dots & c_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$$

Affine diagrams and regular subdivisions

Definition

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions
They are also called regular subdvisions

Affine diagrams and regular subdivisions

Definition

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are also called regular subdvisions

- Voronoi and Laguerre diagrams are affine diagrams
- ▶ Any affine Voronoi diagram of \mathbb{R}^d is the Laguerre diagram of a set of spheres of \mathbb{R}^d
- Delaunay and Laguerre triangulations are regular triangulations
- Any regular triangulation is a Laguerre triangulation, i.e. dual to a Laguerre diagram

Examples of affine diagrams

1. The intersection of a power diagram with an affine subspace

Examples of affine diagrams

- 1. The intersection of a power diagram with an affine subspace
- 2. A Voronoi diagram with the following quadratic distance function

$$||x - a||_Q = (x - a)^t Q(x - a)$$
 $Q = Q^t$

Examples of affine diagrams

- 1. The intersection of a power diagram with an affine subspace
- 2. A Voronoi diagram with the following quadratic distance function

$$||x - a||_Q = (x - a)^t Q(x - a)$$
 $Q = Q^t$

3. k-th order Voronoi diagrams

Order k Voronoi Diagrams

Order 2 Voronoi Diagram

A k-order Voronoi diagram is a power diagram

Let $\mathcal{P}_1, \mathcal{P}_2, \ldots$ denote the subsets of k points of \mathcal{P}

$$\sigma_i(x) = \frac{1}{k} \sum_{j \in \mathcal{P}_i} (x - p_j)^2 = x^2 - \frac{2}{k} \sum_{j \in \mathcal{P}_i} p_j \cdot x + \frac{1}{k} \sum_{j \in \mathcal{P}_i} p_j^2$$

The k nearest neighbors of x are the points of P_i iff

$$\forall j, \quad \sigma_i(x) \leq \sigma_j(x)$$

$$\sigma_i$$
 is the sphere centered at $\frac{1}{k}\sum_{j=1}^k p_{i_j}$ $\sigma_k(0) = \frac{1}{k}\sum_{j=1}^k p_{i_j}^2$

A k-order Voronoi diagram is a power diagram

Let $\mathcal{P}_1, \mathcal{P}_2, \ldots$ denote the subsets of k points of \mathcal{P}

$$\sigma_i(x) = \frac{1}{k} \sum_{j \in \mathcal{P}_i} (x - p_j)^2 = x^2 - \frac{2}{k} \sum_{j \in \mathcal{P}_i} p_j \cdot x + \frac{1}{k} \sum_{j \in \mathcal{P}_i} p_j^2$$

The k nearest neighbors of x are the points of P_i iff

$$\forall j, \quad \sigma_i(x) \leq \sigma_j(x)$$

 σ_i is the sphere centered at $\frac{1}{k}\sum_{j=1}^k p_{i_j}$ $\sigma_k(0) = \frac{1}{k}\sum_{j=1}^k p_{i_j}^2$

Combinatorial complexity

The number of vertices and faces of the *k* first Voronoi diagrams is

$$O\left(k^{\left\lceil \frac{d+1}{2} \right\rceil} n^{\left\lfloor \frac{d+1}{2} \right\rfloor}\right)$$

Molecules

- ▶ The union of n balls of \mathbb{R}^d can be represented as a subcomplex of the regular triangulation called the alpha-shape
- ▶ It can be computed in time $\Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

Molecules

- ▶ The union of n balls of \mathbb{R}^d can be represented as a subcomplex of the regular triangulation called the alpha-shape
- ▶ It can be computed in time $\Theta(n \log n + n^{\lfloor \frac{d+1}{2} \rfloor})$

Interfaces entre protéines

Interface antigène-anticorps

Bregman divergences

 ${\it F}$ a strictly convex and differentiable function defined over a convex set ${\it X}$

$$D_F(\mathbf{p}, \mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle$$

Not a distance but $D_F(\mathbf{x}, \mathbf{y}) \ge 0$ and $D_F(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$

Examples

 $ightharpoonup F(x) = x^2$: Squared Euclidean distance

$$D_F(\mathbf{p}, \mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle$$

= $\mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = ||\mathbf{p} - \mathbf{q}||^2$

Examples

▶ $F(x) = x^2$: Squared Euclidean distance

$$D_F(\mathbf{p}, \mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle$$

= $\mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = ||\mathbf{p} - \mathbf{q}||^2$

►
$$F(p) = \sum p(x) \log_2 p(x)$$
 (Shannon entropy)
 $D_F(p,q) = \sum_x p(x) \log_2 \frac{p(x)}{g(x)}$ (K-L divergence)

Examples

▶ $F(x) = x^2$: Squared Euclidean distance

$$D_F(\mathbf{p}, \mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle$$

= $\mathbf{p}^2 - \mathbf{q}^2 - \langle \mathbf{p} - \mathbf{q}, 2\mathbf{q} \rangle = ||\mathbf{p} - \mathbf{q}||^2$

►
$$F(p) = \sum p(x) \log_2 p(x)$$
 (Shannon entropy)
 $D_F(p,q) = \sum_x p(x) \log_2 \frac{p(x)}{q(x)}$ (K-L divergence)

►
$$F(p) = -\sum_{x} \log p(x)$$
 (Burg entropy)
 $D_F(p,q) = \sum_{x} (\frac{p(x)}{q(x)} \log \frac{p(x)}{q(x)} - 1)$ (Itakura-Saito)

Bisectors

$$D_F(\mathbf{p}, \mathbf{q}) = F(\mathbf{p}) - F(\mathbf{q}) - \langle \mathbf{p} - \mathbf{q}, \nabla_F(\mathbf{q}) \rangle$$

Two types of bisectors

$$H_{pq}: D_F(\mathbf{x}, \mathbf{p}) = D_F(\mathbf{x}, \mathbf{q})$$
 (hyperplane)
 $H_{pq}^*: D_F(\mathbf{p}, \mathbf{x}) = D_F(\mathbf{q}, \mathbf{x})$ (hypersurface)

Bregman diagrams

- Accordingly, we can define two types of Bregman diagrams
- ▶ By Legendre duality : $D_F(\mathbf{x}, \mathbf{y}) = D_{F^*}(\mathbf{y}', \mathbf{x}')$

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ is the minimization diagram of the n functions $D_F(\mathbf{x}, \mathbf{p}_i)$, $i = 1, \dots, n$

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ is the minimization diagram of the n functions $D_F(\mathbf{x}, \mathbf{p}_i)$, $i = 1, \dots, n$

Since $\arg\min(D_F(\mathbf{x}, \mathbf{p}_i)) = \arg\max(h_i(\mathbf{x}) = \langle \mathbf{x} - \mathbf{p}_i, \mathbf{p}_i' \rangle - F(\mathbf{p}_i))$ the Bregman diagram of the first type of a set \mathcal{P} of n points \mathbf{p}_i is affine

Bregman Voronoi diagrams

The 1st type Bregman diagram of $\mathcal{P} = \{\mathbf{p}_1, \dots, \mathbf{p}_n\}$ is the minimization diagram of the n functions $D_F(\mathbf{x}, \mathbf{p}_i)$, $i = 1, \dots, n$

Since $\operatorname{arg\,min}(D_F(\mathbf{x},\mathbf{p}_i)) = \operatorname{arg\,max}(h_i(\mathbf{x}) = \langle \mathbf{x} - \mathbf{p}_i, \mathbf{p}_i' \rangle - F(\mathbf{p}_i))$ the Bregman diagram of the first type of a set \mathcal{P} of n points \mathbf{p}_i is affine

The 2nd type Bregman diagram of \mathcal{P} is the (curved) minimization diagram of the n functions $D_F(\mathbf{p}_i, \mathbf{x}), i = 1, ..., n$

Bregman Voronoi diagrams from Laguerre diagramms

The 1st type Bregman Voronoi diagram of n sites of \mathcal{X} is identical to the Laguerre diagram of n Euclidean hyperspheres centered at the \mathbf{p}'_i

Bregman Voronoi diagrams from Laguerre diagramms

The 1st type Bregman Voronoi diagram of n sites of \mathcal{X} is identical to the Laguerre diagram of n Euclidean hyperspheres centered at the \mathbf{p}'_i

$$\begin{split} &D_F(\mathbf{x},\mathbf{p}_i) \leq D_F(\mathbf{x},\mathbf{p}_j) \\ \iff &-F(\mathbf{p}_i) - \langle \mathbf{x} - \mathbf{p}_i,\mathbf{p}_i' \rangle) \leq -F(\mathbf{p}_j) - \langle \mathbf{x} - \mathbf{p}_j,\mathbf{p}_j' \rangle) \\ \iff &\langle \mathbf{x},\mathbf{x} \rangle - 2\langle \mathbf{x},\mathbf{p}_i' \rangle - 2F(\mathbf{p}_i) + 2\langle \mathbf{p}_i,\mathbf{p}_i' \rangle \leq \langle \mathbf{x},\mathbf{x} \rangle - 2\langle \mathbf{x},\mathbf{p}_j' \rangle - 2F(\mathbf{p}_j) + 2\langle \mathbf{p}_j,\mathbf{p}_j' \rangle \\ \iff &\langle \mathbf{x} - \mathbf{p}_i',\mathbf{x} - \mathbf{p}_i' \rangle - r_i^2 \leq \langle \mathbf{x} - \mathbf{p}_j',\mathbf{x} - \mathbf{p}_j' \rangle - r_j^2 \end{split}$$
 where $r_t^2 = \langle \mathbf{p}_i',\mathbf{p}_i' \rangle + 2\langle F(\mathbf{p}_l) - \langle \mathbf{p}_l,\mathbf{p}_l' \rangle)$

Bregman spheres

$$\sigma(\mathbf{c}, r) = \{\mathbf{x} \in \mathcal{X} \mid D_{F}(\mathbf{x}, \mathbf{c}) = r\}$$

Lemma

The lifted image $\hat{\sigma}$ onto \mathcal{F} of a Bregman sphere σ is contained in a hyperplane H_{σ}

Conversely, the intersection of any hyperplane H with \mathcal{F} projects vertically onto a Bregman sphere

1st and 2nd types Bregman balls

Bregman triangulations

 $\hat{\mathcal{P}}$: the lifted image of \mathcal{P} onto the graph \mathcal{F} of F

 \mathcal{T} the lower convex hull of $\hat{\mathcal{P}}$

The vertical projection of $\mathcal T$ is called the Bregman triangulation $BT_F(\mathcal P)$ of $\mathcal P$

Bregman triangulations

 $\hat{\mathcal{P}}$: the lifted image of \mathcal{P} onto the graph \mathcal{F} of F

T the lower convex hull of \hat{P}

The vertical projection of \mathcal{T} is called the Bregman triangulation $BT_F(\mathcal{P})$ of \mathcal{P}

Characteristic property

The Bregman sphere circumscribing any simplex of $BT_F(\mathcal{P})$ does not enclose any point of \mathcal{P}

Primal space

Gradient space

1st type BVD(P)

=

Laguerre diagram of (\mathcal{P}')

↓ ×

geodesic BT(P)

 \longleftrightarrow

regular triangulation of (\mathcal{P}')

1

 $BT(\mathcal{P})$

Properties of Bregman triangulations

- ▶ BT(P) is the geometric dual of BD(P)
- ▶ Characteristic property : The Bregman sphere circumscribing any simplex of BT(P) is empty
- ▶ Optimality : $BT(\mathcal{P}) = \min_{T \in \mathcal{T}(\mathcal{P})} \max_{\tau \in T} r(\tau)$ $(r(\tau) = \text{radius of the smallest Bregman ball containing } \tau)$ [Rajan]