# Machine Learning for Visual Computing Aufgabenblock 1

Christian Brändle, Doris Antensteiner

November 25, 2014



## 0.1 Einfaches Perceptron - Datengeneration

Gegeben sind vier Datensets a 100 Beobachtungen von 2-dimensionalen Eingangsdaten, welche normalverteilt sind. Die Figuren in Tabelle  $\,1$  verdeutlichen dies.



Table 1: Iteration distribution over gamma

# 0.2 Einfaches Perceptron - Perceptrontraining

### 0.2.1 Anzahl Iterationen

Die Anzahl der Iterationen hängt maßgeblich von der margin der separierbaren Daten ab. Je kleiner die margin, desto mehr Iterationen sind notwendig, bis der Algorithmus terminiert.

### 0.2.2 Welchen Einfluß hat die Schrittweite

Der Einfluß der Schrittweite hängt sowohl von den Eingangsdaten als auch vom gewählten Algorithmus ab. Es ist zu beobachten, daß der batch-Algorithmus keine großen Abweichungen zeigt, egal welches  $\gamma$  gewählt wird. Beim online-Verfahren ist der Einfluß größer, das heißt die Varianz in den ermittelten It-

erationen ist höher, aber auch hier ist kein eindeutiger Bereich über alle Simulationen auszumachen, wo ein gegebenes  $\gamma$  die Iterationen des Algorithmus wesentlich reduziert. Zu sehen ist die Verteilung der Iterationen über ein  $\gamma$  von 0.1 bis 4 für die jeweiligen unterschiedlichen Datensätze in Tabelle 2.



Table 2: Iteration distribution over gamma

## 0.2.3 Daten und Entscheidungsgrenzen im $\mathbb{R}^2$

Die ermittelten Entscheidungsgrenzen des batch-learning sowie des online-learning Algorithmus sind für die einzelnen Datensätze und ein gegebenes  $\gamma$  von 1 in Tabelle 3 zu sehen.

# 0.2.4 Wie ist das Verhalten bei nicht linear separierbaren Daten

Der Algorithmus terminiert nicht da bei jedem Durchlauf Daten gefunden werden, welche in der falschen Klasse landen.



Table 3: Iteration distribution over gamma

# 0.3 Lineare Regression

Wir erstellen Daten im Bereich von [0,5] mit einer Schrittweite von 0.1 aus der Funkion:

$$y = x^2 - Gx + 1 \tag{1}$$

Des weiteren erstellen wir eine Trainingsmenge aus jedem sechsten Datenpunkt und fügen je einen Zufallswert aus  $N(\mu=0,\Sigma=0.7)$  hinzu.

### 0.3.1 Gewichtsvektor mittels Gradientenabstieg bei quadratischer Fehlerfunktion

### 0.3.2 Optimaler Gewichtsvektor $w^*$

Den optimalen Gewichtsvektor  $w^*$  kann man über die Bestimmung der Pseudoinversen  $A^+$  für die Gleichung  $Aw^* = b$  ermitteln. Die Gleichung  $w^* = A^+b$ 

bestimmt das optimale  $w^*$ . Dabei berechnet sich  $A^+$  wie folgt:

$$A^{+} = (AA^{T})^{-1}$$
 für invertierbare  $AA^{T}$  (2)  
 $A^{+} = (AA^{T})^{-1} + \lambda I$  für nicht invertierbare $AA^{T}$  mit  $\lambda << 1$  (3)

$$A^{+} = (AA^{T})^{-1} + \lambda I$$
 für nicht invertierbare  $AA^{T}$  mit  $\lambda \ll 1$  (3)

Das ermittelte Ergebnis für  $w^*$  mit normalisierten Daten aus dem  $\mathbb{R}^2$  lautet:  $w^* = (1.0106678, -10.0086, 1.8960336, 0.0262634).$ 

#### 0.3.3Konvergenzverhalten in Abhängigkeit von $\gamma$

#### Erwartungswert und Varianz von $w^*$ im Bezug zu 0.3.4Dimensionalitt d von f(x)

Erwartungswert und Varianz von  $w^*$  im Bezug zu Dimensionalitt d von f(x)zeigt, dass je höher die Dimensionalitt d steigt, desto höher auch die Varianz Sigma der ermittelten Werte für  $w^*$  für verrauschte Eingangsdaten wird.

Des weiteren ist festzustellen, dass für höherdimensionale Komponenten für  $w^*$  durch overfitting die Varianz zunimmt.