

Обучение с учителем (Supervised Learning, с размеченными данными / метками)

Обучение с учителем

$$X_{\text{train}} = \{(x_1, y_1), \dots, (x_m, y_m)\}$$

$$y: X \to Y$$

$$y(x_1) = y_1$$

• • •

$$y(x_m) = y_m$$

у – целевая функция (переменная)

target/response/outputs/dependent variable

 X_i – объект (наблюдение)

observation, example, instance, object

X – пространство объектов (входов)

Y – пространство меток / значений целевого признака (выхода)

Цели

1. Восстановление целевой зависимости

Уметь восстанавливать метки новых объектов y(x)

- найти зависимость целевой переменной от остальных

2. Интерпретация

Как устроена y(x)

3. Оценка качества полученного решения

(например, как часто ошибаемся, насколько)

Типы задач обучения с учителем

Классификация

$$|Y| = k \ll \infty$$

бинарная

$$Y = \{0, 1\}$$
 или $Y = \{-1, +1\}$

скоринговая бинарная

$$Y = [0, 1]$$

на k непересекающихся классов

$$Y = \{1, 2, ..., k\}$$

на k пересекающихся классов

$$Y = \{0, 1\}^k$$

Регрессия

$$Y = \mathbb{R}$$

многомерная

$$Y = \mathbb{R}^n$$

Прогнозирование – задачи в которых есть признак время, алгоритм обучается на данных из прошлого, а работает на данных из будущего

Ранжирование

$$Y$$
 – чум

Пространство объектов

Практически какое угодно:

- медицинские истории
- тексты
- сигналы / временные ряды / последовательности
- изображения
- векторы / множества / графы
- ...

Для удобства-простоты-теории-практики:

$$X = \mathbb{R}^n$$

п-мерное признаковое пространство

$$X_i = (X_{i1}, ..., X_{in})$$
 – объект в признаком описании

inputs, attributes, repressors, properties, covariates, features, variables

Задача в признаковой постановке матрица «объект-признак» (data matrix)

плохой_клиент	линии	возраст	поведение_30-59_дней	Debt_Ratio	доход	число_кредитов
0	0.111673	46	0	1.329588	800.0	8
0	0.044097	69	0	0.535122	3800.0	10
0	0.047598	77	0	0.169610	3000.0	7
0	0.761149	58	1	2217.000000	NaN	4
0	0.690684	55	0	0.432552	12416.0	7

По строкам – признаковые описания объектов по столбцам – значения конкретных признаков

Извлечение признаков: $X o \mathbb{R}^n$

м.б. производится автоматически чем лучше генерация признаков, тем более простое ML нужно;)

Признаки (features)

Задачи классификации – целевой признак категориальный Задачи регрессии – целевой признак вещественный м.б. графом!

Замечание

Целевой признак «условен».

Часто просто дана матрица

(целевой признак приходится формировать)

```
mmp@cs.msu.ru → длина = 3
доменов = 3
«1 уровень=ru» = 1
«1 уровень=com» = 0
«1 уровень=org» = 0
```

Примеры

Классификация спама

Х - письма

Y = {спам, норма}

признаки = длина письма, число вхождений слова, отправитель, ...

Медицинская диагностика

Х - пациенты

Y – диагнозы

признаки = результаты анализов, возраст, пол и т.п.

вариант постановки: предсказать вероятности болезней $Y = \llbracket 0, 1
rbracket^l$

Прогнозирование цен акций

X - ситуация на рынке

Y – цена на акцию через час

вариант постановки: множественная регрессия -

– цены нескольких акций $Y=\mathbb{R}^l$

Визуализация задач Задача регрессии

Задача классификации

Что значит «восстановление целевой зависимости» (меток)

Строим «алгоритм» (гипотезу) a(x), который выдаёт предполагаемые метки

Формализация качества: L(y,a) – функция ошибки (error / loss function)

ошибка на объекте X

L(y(x),a(x))

a(x) – ответ нашего алгоритма a

Примеры:

в задаче регрессии – $L(y,a) = \mid y-a \mid$ в задаче классификации – L(y,a) = I[y=a]

Что значит «восстановление целевой зависимости» (меток)

Если объекты имеют вероятностную природу, то

$$\int_{X\times Y} L(y(x), a(x)) \partial P \to \min$$

На практике не знаем меры можем вычислить лишь «эмпирический риск»

Обучающая выборка (обучение – не путать с процессом)

$$X_{\text{train}} = \{(x_1, y_1), \dots, (x_m, y_m)\}$$

Ошибка на выборке (один из вариантов):

$$L(a, X_{\text{train}}) = \frac{1}{m} \sum_{i=1}^{m} L(y(x_i), a(x_i))$$

$$a^* = \arg\min L(a, X_{\text{train}})$$

На самом деле, интересна не ошибка на обучении (Training Error)!

Как минимизируется ошибка

Минимизация производится в рамках модели

Модель – параметрическое семейство алгоритмов

$$A=\left\{a(x;w)
ight\}_{w\in W}$$
 пример: $A=\left\{a(x;w)=w^{^{\mathrm{T}}}x:\mathbb{R}
ightarrow\mathbb{R}
ight\}_{w\in \mathbb{R}^n}$

Обучение – определение параметров алгоритма, как правило, производится с помощью оптимизации значения функции ошибки (функционала качества) или их модификаций на обучающей выборке

По сути, интеллектуальный перебор алгоритмов...

Как – дальше!

Обобщающая способность (Generalization)

Какое качество (ошибка) алгоритма на новых данных?

$$L(a, X_{\text{train}}) \vee L(a, X_{\text{test}})$$

Ошибка на тестовой выбороке (Generalization Error / Test Error)

более строго: матожидание ошибки на новых данных

обучение ≠ запоминание

потом: недообучение, переобучение, сложность...

потом: отложенная выборка, контроль и т.п.

Что такое алгоритм

Мы под этим понимаем функцию

$$a(x): X \to Y$$
,

которую можно эффективно реализовать в виде программы

- 1. Допускает вычисление за приемлемое время
 - 2. Использует ограниченный набор ресурсов
- 3. Есть специфика, связанная с вычислениями на компьютере

Требования к модели

• Качество (Predictive Accuracy) см. выше

• Эффективность (Efficiency)

Робастность (Robustness)

• Масштабируемость (Scalability)

• Интерпретируемость (Interpretability)

• Компактность (Compactness)

время обучения и использования

устойчивость к шуму/пропускам ...

использование при увеличении

объёма данных

объяснение результатов модели

затраты на хранение модели

Почему МО не оптимизация

1. Не знаем меру в
$$\int l(y(x), a(x)) \partial P \to \min$$

т.е. решаем «неправильную задачу оптимизации» и правильный выбор неправильности – особое умение (регуляризация, проблемно-ориентированные модели и т.п.)

2. Оптимизация не в классе функций, а в классе алгоритмов дополнительные требования на решение

Схема решения задачи

1. Уточнение и постановка задачи

понимание бизнес-задачи понимание исходных данных подготовка данных для модели

- 2. Выбор
- Алгоритма
 - о модели
- о способа обучения (метапараметры, методы оптимизации)
 - Контроля
 - о функции ошибки
 - о способа контроля (разбиение train/test/valid)
 - Признаков
 - о генерация
 - о селекция
 - 3. Обучение
 - 4. Предсказание → Проверка качества 5. Deploy / Release

(алгоритм переобучается на всех данных)

Схема проверки алгоритма

[Glassner]

Как решаются задачи

Пусть
$$y = f(X_1,...,X_n) + \varepsilon$$

у – продажи,

 $X_{
m 1}$ – затраты на рекламу по TV,

 X_2 – затраты на рекламу в Интернете,

 $X_{\it 3}$ – затраты на рекламу на радио, и т.д.

Надеемся

$$a(X_1,...,X_n) \approx f(X_1,...,X_n),$$

a ~ алгоритм (алгоритмически реализуемая функция)

Ищем в параметризованном семействе $A \in \{A\}$ (модели) \mathcal{E} – неустранимая ошибка (irreducible error)

Подход основанный на близости

$$a(x) = \text{mean}(y_i \mid x_i = x)$$

но если в обучающей выборке нет именно таких объектов

$$a(x) = \text{mean}(y_i \mid x_i \in N(x))$$

N(x) – окрестность (neighborhood) объекта x (похожие на него объекты)

Параметризация может определять размер окрестности

Но что такое окрестность при больших размерностях...

curse of dimensionality (след. лекция)

Параметрические модели

Линейная модель

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

Параметры оцениваются с помощью подгонки на данных обучения (fitting the model to training data)

$$a(x_i) = y_i, i = 1, 2, ..., m$$

 W_i – веса (weights) / параметры (parameters) модели здесь W_0 – смещение (bias)

Линейная модель – простая, можно усложнить – полиномиальная модель.

$$a(X_1,...,X_n) = w_0 + \sum_t w_t X_t + ... + \sum_{i,j} w_{ij} X_i X_j$$

Переобучение

Чем сложнее модель, тем проще настроиться на данные, но возникает проблема – переобучение (overfitting) – качество на контроле существенно ниже чем на обучении

Линейная модель хорошо интерпретируемая

- легко объяснить, как работает
- легко объяснить, почему получен такой ответ
 - **с** простая, небольшое число переменных

простая ⇒ надёжная

(оценка ошибки, как правило, соответствует действительности)

Пример задачи машинного обучения

	x_0	x_1	x_2	x_3	x_4	У
0	1.5	7.4	2.6	5.3	0.1	3.8
1	9.2	9.0	0.3	9.6	1.4	6.2
2	2.8	6.1	9.4	8.5	0.0	6.1
3	5.2	5.5	4.9	7.7	1.6	5.2
4	7.6	0.2	1.4	1.2	3.1	3.1
5	6.7	4.7	8.2	2.9	7.3	6.5
6	7.0	3.3	3.3	9.8	6.2	4.5
7	9.5	7.7	8.3	4.1	4.5	8.5
8	4.0	10.0	1.8	9.6	4.2	5.3
9	4.2	4.6	3.7	4.7	0.4	4.2

Как зависит целевая переменная от остальных?

Дьяконов А.Г. (Москва, МГУ)

Пример задачи машинного обучения

Как определяется класс?

Обучение без учителя (unsupervised Learning) с неразмеченными данными, без меток

Обучение без учителя

$$X_{\text{train}} = \{x_1, \dots, x_m\} \subseteq X$$

Понять «структуру» пространства X

Как на нём распределены объекты?

Можно ли его разделить на подпространства похожих объектов? Можно ли эффективно описать объекты/пространство?

Часто нет понимания, насколько хорошо решается задача

Обучение с частично размеченными данными (Semi-Supervised Learning)

$$X_{\text{train}} = \{(x_1, y_1), \dots, (x_k, y_k), x_k, \dots, x_m\}$$

Если заранее известна контрольная выборка x'_1, \dots, x'_q , то это трансдуктивное обучение (transductive learning)

Обучение с подкреплением (Reinforcement Learning) обучение агента, который взаимодействует со средой и получает награду за взаимодействие

Структурный вывод (Structured output) на выходе набор значений со связями между ними, примеры:

- Грамматический разбор (parsing): текст ightarrow дерево
- Аннотирование изображений (Image Captioning): изображение ightarrow текст
 - Транскрипция (Transcription): X → текст
 - Машинный перевод (Machine translation): текст o текст Синтез: выборка o выборка

Активное обучение (Active Learning) влияем на формирование обучающей выборки

Онлайн-обучение (Online Learning)
в каждый момент времени нам доступна небольшая группа объектов
(м.б. один объект)

Transfer/Multitask Learning решение новых задач с помощью решения старых

Обучение (выучивание) признаков (Feature Learning) автоматическое получение хороших признаков из сырых данных

Заполнение пропусков (Imputation of missing values)

выборка — выборка

Устранение шума (Denoising)

объект ightarrow объект

Сложности в ML

- переобучение основная теоретическая проблема
 - проблема формализации

надо переформулировать бизнес-задачу в математическую задачу выявления зависимости, выбор адекватного функционала качества

• размеры данных

много объектов (низкого уровня – транзакций, высокого – клиентов) много признаков (обработка текстов)

• качество данных

невыполнение всех свойств (полнота, корректность, правдивость, ясность и т.п.)

• несоответствие обучения и контроля

это больше, чем проблема репрезентативности выборки – это проблема прогноза / адаптации (распознавание голоса, спама)

Примеры модельных задач

Примеры модельных задач

«Классификация»

Два месяца

Ручная генерация данных


```
n_samples = 100
np.random.seed(10)
X = np.random.rand(n_samples)
Y = np.sin(5 * X) + 5 * np.log1p(X)
+ 0.1 * np.random.randn(n samples)
```

Классические датасеты


```
from sklearn.datasets import load_digits
digits = load_digits()
X_digits, y_digits = digits.data, digits.target
```

Ссылки

Andrew Glassner Deep Learning, Vol. 1-2: From Basics to Practice // http://www.glassner.com/portfolio/deep-learning-from-basics-to-practice/

использована

• лекция «Библиотека языка Питон Scikit-Learn»

https://github.com/Dyakonov/IML/blob/master/IML2018_06_scikitlearn_10.pdf