Ferienkurs Analysis 1: Übungsblatt 1

Marta Krawczyk, Andreas Schindewolf, Simon Filser

15.3.2010

1 Aufgaben zur vollständigen Induktion

1.1 Verallgemeinerte geometrische Summenformel

1. Zeigen Sie mittels vollständiger Induktion, dass für $a, b \in \mathbb{R}, a \neq b$ und $n \in \mathbb{N}$ die verallgemeinerte geometrische Summenformel gilt:

$$\sum_{k=0}^{n} a^k b^{n-k} = \frac{a^{n+1} + b^{n+1}}{a - b}.$$
 (1)

2. Zeigen Sie, dass für jedes $n \in \mathbb{N}$ die Zahl $7^n - 1$ durch 6 teilbar ist.

1.2 Zwei weitere Summenformeln

1. Zeigen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2. \tag{2}$$

2. Zeigen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{(n+1)}.$$
(3)

2 Aufgaben zu Intervallschachtelungen und Abzählbarkeit

2.1 Direkte und indirekte Beweise.

Beweisen Sie folgende Aussagen:

- a) Wenn $n \in \mathbb{N}$ gerade ist, dann auch n^2 .
- b) $n \in \mathbb{N}$ ist gerade, wenn n^2 gerade ist.
- c) Für alle $n \in \mathbb{N}$ gibt es
n aufeinanderfolgende Zahlen, die keine Primzahlen sind.
- d)Es gibt unendlich viele Primzahlen.

2.2 Intervallschachtelung.

Es sei 0 < a < b. Man definiere Intervalle $[a_n; b_n], n \in \mathbb{N}$, rekursiv durch $[a_0; b_0] := [a; b]$, sowie durch $a_{n+1} := G(a_n, b_n)$ und $b_{n+1} := A(a_n, b_n)$, wobei $G(a, b) := \sqrt{ab}, A(a, b) := \frac{a+b}{2}$. Man zeige, dass sie eine Intervallschachtelung bilden. Gehen Sie wie folgt vor:

- a) Beweisen Sie a < G(a, b) < A(a, b) < b.
- b) Beweisen Sie $a_n < b_n, n \in \mathbb{N}_0$.
- c) Zeigen, dass die Intervalle I_n : = $[a_n; b_n]$ eine Intervallschachtelung bilden.

2.3 Injektivität und Surjektivität bei der Komposition von Abbildungen.

Es seien $f: X \to Y$ und $g: Y \to Z$ Abbildungen. Untersuchen Sie, welche der nachfolgenden Implikationen zutreffen und welche nicht.

- a) $g \circ f$ injektiv \Rightarrow f injektiv
- b) g injektiv $\Rightarrow g \circ f$ injektiv

Injektivität und Surjektivität

Gegeben sei das folgende kommutierende Diagramm (siehe Bild 1), d. h. für Abbildungen $f: A \to B, g: X \to Y, \alpha: A \to X$ und $\beta \colon B \to Y$ gelte $g \circ \alpha = \beta \circ f$. Ferner werde vorausgesetzt, dass α, β bijektiv sind. Zeigen Sie: g ist genau dann injektiv, wenn f injektiv ist.

Hinweis: Benutzen Sie folgenden Satz (ohne Beweis): Seien $\varphi \colon K \to L$ und $\psi \colon L \to M$ Abbildungen, es gilt:

- a) Sind beide Abbildungen injektiv, so ist auch $\psi \circ \varphi$ injektiv.
- b) Sind beide Abbildungen surjektiv, so ist auch $\psi \circ \varphi$ surjektiv.

Abbildung 1: Aufgabe 4

2.5Abzählbarkeit der rationalen Zahlen

Zeigen Sie, dass Q abzählbar/überabzählbar ist.

$\mathbf{3}$ Aufgaben zu komplexen Zahlen

Nullstellen 3.1

a) Prüfen Sie, für welche $\gamma \in \mathbb{C}$ der Bruch B gekürzt werden kann:

$$B(x) = \frac{2x^4 + x^3 + 22x^2 + 9x + 36}{x^2 + \gamma}$$

b) Finden Sie die Nullstellen von $2x^4 + x^3 + 22x^2 + 9x + 36$.

3.2Rechenübungen

Wandeln Sie in karthesische Darstellung um:

- b) $4exp(i\frac{\pi}{3})$

 $c)\pi^i$

Wandeln Sie in Polardarstellung um:

- d) 4 + 8i
- e) i^e
- f) $\sqrt{3} 3i$
- g) Berechnen Sie: $\sqrt[4]{16i}$
- h) Berechnen Sie: $(\sqrt{3}+i)^{12}$

3.3 Quadratische Gleichung

Lösen Sie die Gleichung $z^2 = 3 + 4i$.

n-te Wurzel 3.4

a) Zeigen Sie, dass für $n \in \mathbb{N}$ die Gleichung

$$z^n = 1 \tag{4}$$

genau n Lösungen hat und geben Sie diese an.

b) Man nennt die Lösungen der Gleichung (4) n-te Einheitswurzeln. Zeigen Sie, dass für eine n-te Einheitswurzel ρ gilt:

$$\sum_{k=0}^{n-1} \rho^k = \begin{cases} n, & \rho = 1\\ 0, & sonst \end{cases}$$
 (5)