JK Lakshmipat University, Jaipur Institute of Engineering and Technology Mid Term Examination I, September 2025

B. Tech., Odd Semester, 2025-26

Roll No. 2023BTECH

AS1209: Matrix Computations

Time: 1 hour 30 minutes

Max. Marks: 20

Instructions to students:

Do not write anything other than your roll number on the question paper. Mention all the assumptions for your answers clearly.

2.

Use of scientific calculator is allowed.

Q. 1	Which of the following transformations are not linear? For each non-linear case, briefly justify why it fails linearity. (No need to prove linearity for the others.) a. $T: M_{mn} \to M_{nm}$ defined by $T(A) = -A^T$	3.0 (CO 1)
	b. $T: M_{nn} \to M_{nm}$ defined by $T(A) = -A$ c. $T: M_{nn} \to \mathbb{R}$ defined by $T(A) = \det(A)$ d. $T: M_{nn} \to \mathbb{R}$ defined by $T(A) = \det(A)$	
	e. $T: M_{mn} \to \mathbb{R}$ defined by $T(A) = \operatorname{rank}(A)$ f. $T: M_{mn} \to \mathbb{R}$ defined by $T(A) = A _2$.	
Q. 2	Given a diagonal matrix $D = diag\{2, -3, 4, 0, -2\}$. a. Find the rank of D .	0.5+ <u>1.0</u> +
	b. Determine the eigenvalues and singular values of <i>D</i> .	1.5+1.0+
	c. Compute the spectral norm and Frobenius norm of D.	1.0+1.0
1	d. Compute the $cond_2(D)$. Discuss whether D is well-conditioned or ill-conditioned for	(CO 1, 2
	solving systems of equations $Dx = b$.	4)
	e. For $b = [1, 1, 1, 1, 1]^T$, discuss the consistency of the linear system $Dx = b$.	
	f. Consider the perturbed diagonal matrix $D_{\varepsilon} = diag\{2, -3, 4, \varepsilon, -2\}$, $\varepsilon > 0$. Find $cond_2(D_{\varepsilon})$ and analyze its behaviour as $\varepsilon \to 0$.	
Q. 3	Prove the following properties of the Frobenius norm:	3.0
	a. $ A _F^2 = trace(A^T A)$ b. $ AQ _F = A _F$, where Q is an orthogonal matrix (with multiplication defined).	(CO 1)
Q. 4	If the determinant of a matrix is small, does this mean the matrix is close to singular? Justify.	1.0 (CO 1)
Q. 5	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that first performs a horizontal shear that leaves e_1 unchanged and maps e_2 into $e_2 - 2e_1$ and then reflects points through the line $x_2 = -x_1$. Find the standard matrix of T .	3.0 (CO 1)
Q. 6	Let $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ be a matrix with orthonormal columns and $x = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$. Verify that	2.0 (CO 1)
	$ Ux _2 = x _2.$	

	Estimate the upper bound on the relative error in solution x , given by $\frac{\ \delta x\ }{\ x\ }$, of the linear system $Ax = b$. Assume a relative error in b , given by $\frac{\ \delta b\ }{\ b\ } = 10^{-3}$ and $cond(A) = 10^{4}$.	2.0 (CO 1, 2)
g Kirkeya		

:::END:::