§ 2 Das Lebesguemaß

In diesem Kapitel sei X eine Menge, $X \neq \emptyset$.

Definition

Sei $\emptyset \neq \mathfrak{R} \subseteq \mathcal{P}(X)$. \mathfrak{R} heißt ein **Ring** (auf X), genau dann wenn gilt:

- $(1) \varnothing \in \mathfrak{R}$
- (2) $A, B \in \mathfrak{R} \implies A \cup B, B \setminus A \in \mathfrak{R}$

Definition

Sei $d \in \mathbb{N}$.

(1)
$$\mathcal{I}_d := \{(a, b] \mid a, b \in \mathbb{R}^d, a \leq b\}$$
. Seien $a = (a_1, \dots, a_d), b = (b_1, \dots, b_d) \in \mathbb{R}^d$ und $I := (a, b] \in \mathcal{I}_d$

$$\lambda_d(I) = \begin{cases} 0 & \text{falls } I = \emptyset \\ (b_1 - a_1)(b_2 - a_2) \cdots (b_d - a_d) & \text{falls } I \neq \emptyset \end{cases}$$
 (Elementarvolumen)

(2)
$$\mathcal{F}_d := \left\{ \bigcup_{j=1}^n I_j \mid n \in \mathbb{N}, I_1, \dots, I_n \in \mathcal{I}_d \right\}$$
 (Menge der Figuren)

Ziel dieses Kapitels: Fortsetzung von λ_d auf \mathcal{F}_d und dann auf \mathfrak{B}_d (\sim Lebesguemaß)

Beachte: $\mathcal{I}_d \subseteq \mathcal{F}_d \subseteq \mathfrak{B}_d \stackrel{1.4}{\Longrightarrow} \mathfrak{B}_d = \sigma(\mathcal{I}_d) = \sigma(\mathcal{F}_d)$

Lemma 2.1

Seien $I, I' \in \mathcal{I}_d$ und $A \in \mathcal{F}_d$. Dann:

- (1) $I \cap I' \in \mathcal{I}_d$
- (2) $I \setminus I' \in \mathcal{F}_d$. Genauer: $\exists \{I'_1, \dots, I'_l\} \subseteq \mathcal{I}_d$ disjunkt: $I \setminus I' = \bigcup_{j=1}^l I'_j$
- (3) $\exists \{I'_1, \dots, I'_l\} \subseteq \mathcal{I}_d$ disjunkt: $A = \bigcup_{j=1}^l I'_j$
- (4) \mathcal{F}_d ist ein Ring.

Beweis

(1) Sei
$$I = \prod_{k=1}^d (a_k, b_k]$$
, $I' = \prod_{k=1}^d (\alpha_k, \beta_k]$; $\alpha'_k := \max\{\alpha_k, a_k\}$, $\beta'_k := \min\{\beta_k, b_k\}$
Ist $\alpha'_k \geq \beta'_k$ für ein $k \in \{1, \dots, d\}$, so ist $I \cap I' = \emptyset \in \mathcal{I}_d$. Sei $\alpha'_k < \beta'_k \forall k \in \{1, \dots, d\}$, so ist $I \cap I' = \prod_{k=1}^d (\alpha'_k, \beta'_k] \in \mathcal{I}_d$

- (2) Induktion nach d:
 - I.A. Klar \checkmark
 - I.V. Die Behauptung gelte für ein $d \ge 1$
 - I.S. Seien $I, I' \in \mathcal{I}_{d+1}$. Es existieren $I_1, I'_1 \in \mathcal{I}_1$ und $I_2, I'_2 \in \mathcal{I}_d$ mit: $I = I_1 \times I_2$, $I' = I'_1 \times I'_2$ Nachrechnen:

$$I \setminus I' = (I_1 \setminus I_1') \times I_2 \dot{\cup} (I_1 \cap I_1') \times (I_2 \setminus I_2')$$

I.A. $\Longrightarrow I_1 \setminus I_1' =$ endliche disjunkte Vereinigung von Elementen aus \mathcal{I}_1 I.V. $\Longrightarrow I_2 \setminus I_2' =$ endliche disjunkte Vereinigung von Elementen aus \mathcal{I}_d Daraus folgt die Behauptung für d+1

- (3) Wir zeigen mit Induktion nach n: ist $A = \bigcup_{j=1}^n I_j$ mit $I_1, \ldots, I_d \in \mathcal{I}_d$, so existiert $\{I'_1, \ldots, I'_l\} \subseteq \mathcal{I}_d$ disjunkt: $A = \bigcup_{j=1}^l I'_j$
 - I.A. $n = 1 : A = I_1 \checkmark$
 - I.V. Die Behauptung gelte für ein $n \ge 1$
 - I.S. Sei $A = \bigcup_{j=1}^{n+1} I_j \quad (I_1, \dots, I_{n+1} \in \mathcal{I}_d)$

IV
$$\implies \exists \{I'_1, \dots, I'_l\} \subseteq \mathcal{I}_d \text{ disjunkt: } \bigcup_{i=1}^n I_i = \bigcup_{i=1}^l I'_i$$

Dann:
$$A = I_{n+1} \cup \bigcup_{j=1}^{l} I'_{j} = I_{n+1} \cup \bigcup_{j=1}^{l} (I'_{j} \setminus I_{n+1})$$

Wende (2) auf jedes $I'_j \setminus I_{n+1}$ an (j = 1, ..., l): $I'_j \setminus I_{n+1} = \bigcup_{j=1}^{l_j} I''_j \quad (I''_j \in \mathcal{I}_d)$

Damit folgt:

$$A = I_{n+1} \cup \bigcup_{j=1}^{l} \left(\bigcup_{j=1}^{l_j} I_j'' \right)$$

Daraus folgt die Behauptung für n + 1.

(4) $(a,a] = \varnothing \implies \varnothing \in \mathcal{F}_d$

Seien $A, B \in \mathcal{F}_d$. Klar: $A \cup B \in \mathcal{F}_d$

Sei
$$A = \bigcup_{i=1}^n I_i$$
, $B = \bigcup_{j=1}^n I_i'$ $(I_j, I_i' \in \mathcal{I}_d)$. Zu zeigen: $B \setminus A \in \mathcal{F}_d$

I.A. n = 1: $A = I_1 \implies B \setminus A = \bigcup_{j=1}^n (\underbrace{I'_j \setminus I_j})$. Wende (2) auf jedes $I'_j \setminus I_1$ an. Aus (2)

folgt dann $B \setminus A \in \mathcal{F}_d$.

- I.V. Die Behauptung gelte für ein $n \in \mathbb{N}$
- I.S. Sei $A' = A \cup I_{n+1}$ $(I_{n+1} \in \mathcal{I}_d)$. Dann:

$$B \setminus A' = \underbrace{(B \setminus A)}_{\in \mathcal{F}_d} \setminus \underbrace{I_{n+1}}_{\in \mathcal{F}_d} \in \mathcal{F}_d$$

Lemma 2.2

Sei $A \in \mathcal{F}_d$ und $\{I_1, \ldots, I_n\} \subseteq \mathcal{I}_d$ disjunkt und $\{I'_1, \ldots, I'_m\} \subseteq \mathcal{I}_d$ disjunkt mit $\bigcup_{j=1}^n I_j = A = \bigcup_{j=1}^m I'_j$. Dann:

$$\sum_{j=1}^{n} \lambda_d(I_j) = \sum_{j=1}^{m} \lambda_d(I_j')$$

Definition

Sei $A \in \mathcal{F}_d$ und $A = \bigcup_{i=1}^n I_i$ mit $\{I_1, \dots, I_n\} \subseteq \mathcal{I}_d$ disjunkt (beachte Lemma 2.1, Punkt 3).

$$\lambda_d(A) := \sum_{j=1}^n \lambda_d(I_j)$$

Wegen Lemma 2.2 ist $\lambda_d : \mathcal{F}_d \to [0, \infty)$ wohldefiniert.

Satz 2.3

Seien $A, B \in \mathcal{F}_d$ und (B_n) sei eine Folge in \mathcal{F}_d .

- (1) $A \cap B = \emptyset \implies \lambda_d(A \cup B) = \lambda_d(A) + \lambda_d(B)$
- (2) $A \subseteq B \implies \lambda_d(A) \le \lambda_d(B)$
- (3) $\lambda_d(A \cup B) \le \lambda_d(A) + \lambda_d(B)$
- (4) Sei $\delta > 0$. Es existiert $C \in \mathcal{F}_d : \overline{C} \subseteq B$ und $\lambda_d(B \setminus C) \leq \delta$.
- (5) Ist $B_{n+1} \subseteq B_n \forall n \in \mathbb{N} \text{ und } \bigcap B_n = \emptyset$, so gilt: $\lambda_d(B_n) \to 0 \ (n \to \infty)$

Beweis

- (1) Aus Lemma 2.1 folgt: Es existiert $\{I_1, \ldots, I_n\} \subseteq \mathcal{I}_d$ disjunkt und es existiert $\{I'_1, \ldots, I'_m\} \subseteq \mathcal{I}_d$ disjunkt: $A = \bigcup_{j=1}^n I_j$, $B = \bigcup_{j=1}^m I'_j$.
 - $J:=\{I_1,\dots,I_n,I_1',\dots,I_m'\}\subseteq\mathcal{I}_d.$ Aus $A\cap B=\varnothing$ folgt: Jist disjunkt. Dann: $A\cup B=\bigcup_{I\in J}I$

Also:

$$\lambda_d(A \cup B) = \sum_{I \in J} \lambda_d(I)$$

$$= \sum_{j=1}^n \lambda_d(I_j) + \sum_{j=1}^m \lambda_d(I'_j)$$

$$= \lambda_d(A) + \lambda_d(B)$$

(2) wie bei Satz 1.7

(3)
$$\lambda_d(A \cup B) = \lambda(A \cup (B \setminus A)) \stackrel{(1)}{=} \lambda_d(A) + \lambda_d(B \setminus A) \stackrel{(2)}{\leq} \lambda_d(A) + \lambda_d(B)$$

- (4) Übung; es genügt zu betrachten: $B \in \mathcal{I}_d$
- (5) Sei $\varepsilon > 0$. Aus (4) folgt: Zu jedem B_n existiert ein $C_n \in \mathcal{F}_d : \overline{C}_n \subseteq B_n$ und

$$\lambda_d(B_n \setminus C_n) \le \frac{\varepsilon}{2^n}$$
Dann: $\bigcap \overline{C}_n \subseteq \bigcap B_n = \emptyset \implies \bigcup \overline{C}_n^c = \mathbb{R}^d \implies \underbrace{\overline{B}_1}_{\text{kompakt}} \subseteq \bigcup \underbrace{\overline{C}_n^c}_{\text{offen}}$

$$(2.1)$$

Aus der Definition von Kompaktheit (Analysis II, §2) folgt: $\exists m \in \mathbb{N} : \bigcup_{j=1}^m \overline{C}_j^c \supseteq \overline{B}_1$ Dann: $\bigcap_{j=1}^m \overline{C}_j \subseteq \overline{B}_1^c$. Andererseits: $\bigcap_{j=1}^m \overline{C}_j \subseteq \bigcap_{j=1}^m B_j \subseteq B_1 \subseteq \overline{B}_1$.

Also:
$$\bigcap_{j=1}^m \overline{C}_j = \emptyset$$
. Das heißt: $\bigcap_{j=1}^n \overline{C}_j = \emptyset \, \forall n \geq m$

$$D_n := \bigcap_{j=1}^n C_j$$
. Dann: $D_n = \emptyset \ \forall n \geq m$

Behauptung: $\lambda_d(B_n \setminus D_n) \leq (1 - \frac{1}{2^n}) \varepsilon \, \forall n \in \mathbb{N}$

Beweis

I.A.
$$\lambda_d(B_1 \setminus D_1) = \lambda_d(B_1 \setminus C_1) \stackrel{(2.1)}{\leq} \frac{\varepsilon}{2} = \left(1 - \frac{1}{2}\right) \varepsilon \checkmark$$

I.V. Die Behauptung gelte für ein $n \in \mathbb{N}$.

I.S.

$$\lambda_{d}(B_{n+1} \setminus D_{n+1}) = \lambda_{d} \left((B_{n+1} \setminus D_{n}) \cup (B_{n+1} \setminus C_{n+1}) \right)$$

$$\stackrel{(3)}{\leq} \lambda_{d} \underbrace{\left(\underbrace{B_{n+1} \setminus D_{n}} \right)}_{\subseteq B_{n} \setminus D_{n}} + \underbrace{\lambda_{d}(B_{n+1} \setminus C_{n+1})}_{\stackrel{(2,1)}{\leq} \frac{\varepsilon}{2^{n+1}}}$$

$$\stackrel{(2)}{\leq} \lambda_{d}(B_{n} \setminus D_{n}) + \frac{\varepsilon}{2^{n+1}}$$

$$\stackrel{\text{I.V.}}{\leq} \left(1 - \frac{1}{2^{n}} \right) \varepsilon + \frac{\varepsilon}{2^{n+1}}$$

$$= \left(1 - \frac{1}{2^{n+1}} \right) \varepsilon$$

Für
$$n \ge m$$
: $D_n = \emptyset \implies \lambda_d(B_n) = \lambda_d(B_n \setminus D_n) \le \left(1 - \frac{1}{2^n}\right) \varepsilon \le \varepsilon$

Definition

Es sei \mathfrak{R} ein Ring auf X. Eine Abbildung $\mu:\mathfrak{R}\to[0,\infty]$ heißt ein **Prämaß** auf \mathfrak{R} , wenn gilt:

- (1) $\mu(\emptyset) = 0$
- (2) Ist A_j eine disjunkte Folge in \mathfrak{R} und $\bigcup A_j \in \mathfrak{R}$, so ist $\mu(\bigcup A_j) = \sum \mu(A_j)$.

Satz 2.4

 $\lambda_d: \mathcal{F}_d \to [0, \infty]$ ist ein Prämaß.

Beweis

(1) Klar: $\lambda_d(\varnothing) = 0$

(2) Sei A_j eine disjunkte Folge in \mathcal{F}_d und $A := \bigcup A_j \in \mathcal{F}_d$.

 $B_n:=\bigcup_{j=n}^\infty A_j\ (n\in\mathbb{N});\ (B_n)$ hat die Eigenschaften aus 2.3, Punkt 5. Also: $\lambda_d(B_n)\to 0$. Für $n\geq 2$:

$$\lambda_d(A) = \lambda_d(A_1 \cup \dots \cup A_{n-1} \cup B_n) \stackrel{2.3.(1)}{=} \sum_{j=1}^{n-1} \lambda_d(A_j) + \lambda_d(B_n)$$

Daraus folgt:

$$\sum_{j=1}^{n-1} \lambda_d(A_j) = \lambda_d(A) - \lambda_d(B_n) \quad \forall n \ge 2$$

Mit $n \to \infty$ folgt die Behauptung.

Satz 2.5 (Fortsetzungssatz von Carathéodory)

Sei $\mathfrak R$ ein Ring auf X und $\mu:\mathfrak R\to [0,\infty]$ ein Prämaß. Dann existiert ein Maßraum $(X,\mathfrak A(\mu),\overline\mu)$ mit

(1) $\sigma(\mathfrak{R}) \subseteq \mathfrak{A}(\mu)$

(2) $\overline{\mu}(A) = \mu(A) \, \forall A \in \mathfrak{R}$

Insbesondere: $\overline{\mu}$ ist ein Maß auf $\sigma(\mathfrak{R})$.

Satz 2.6 (Eindeutigkeitssatz)

Sei $\emptyset \neq \mathcal{E} \subseteq \mathcal{P}(X)$, es seien ν , μ Maße auf $\sigma(\mathcal{E})$ und es gelte: $\mu(E) = \nu(E) \forall E \in \mathcal{E}$.

Weiter gelten:

- (1) $E, F \in \mathcal{E} \implies E \cap F \in \mathcal{E}$ (durchschnittstabil)
- (2) Es existiert eine Folge (E_n) in \mathcal{E} : $\bigcup E_n = X$ und $\mu(E_n) < \infty \forall n \in \mathbb{N}$.

Dann: $\mu = \nu$ auf $\sigma(\mathcal{E})$.

Satz 2.7

Es gibt genau eine Fortsetzung von $\lambda_d : \mathcal{F}_d \to [0, \infty]$ auf \mathfrak{B}_d zu einem Maß. Diese Fortsetzung heißt **Lebesguemaß** (L-Maß) und wird ebenfalls mit λ_d bezeichnet.

Beweis

Aus Lemma 2.1 und Satz 2.4 folgt: λ_d ist ein Prämaß auf $\mathfrak{R} := \mathcal{F}_d$; es ist $\sigma(\mathfrak{R}) = \mathfrak{B}_d$.

Aus Satz 2.5 folgt: λ_d kann zu einem Maß auf \mathfrak{B}_d fortgesetzt werden.

Sei ν ein weiteres Maß auf \mathfrak{B}_d mit: $\nu(A) = \lambda_d(A) \, \forall A \in \mathcal{F}_d$. $\mathcal{E} := \mathcal{I}_d$. Dann: $\sigma(\mathcal{E}) \stackrel{1.4}{=} \mathfrak{B}_d$.

- (1) $E, F \in \mathcal{E} \stackrel{2.1}{\Longrightarrow} E \cap F \in \mathcal{E}$
- (2) $E_n := (-n, n]^d$

Klar:

$$\bigcup E_n = \mathbb{R}^d$$
$$\lambda_d(E_n) = (2n)^d < \infty$$

Klar: $\nu(E) = \lambda_d(E) \, \forall E \in \mathcal{E}$. Mit Satz 2.6 folgt dann: $\nu = \lambda_d$ auf \mathfrak{B}_d .

Bemerkung: Sei $X \in \mathfrak{B}_d$. Aus 1.6 folgt: $\mathfrak{B}(X) = \{A \in \mathfrak{B}_d \mid A \subseteq X\}$. Die Einschränkung von λ_d auf $\mathfrak{B}(X)$ heißt ebenfalls L-Maß und wird mit λ_d bezeichnet.

Beispiele:

(1) Seien $a = (a_1, \dots, a_d), b = (b_1, \dots, b_d) \in \mathbb{R}^d, a \le b \text{ und } I = [a, b].$

Behauptung

$$\lambda_d([a,b]) = (b_1 - a_1) \cdots (b_d - a_d)$$
 (Entsprechendes gilt für (a,b) und $[a,b)$)

Beweis

$$I_n := (a_1 - \frac{1}{n}, b_1] \times \cdots \times (a_d - \frac{1}{n}, b_d]; I_1 \supset I_2 \supset \cdots; \bigcap I_n = I, \lambda_d(I_1) < \infty$$

Aus Satz 1.7, Punkt 5, folgt:

$$\lambda_d(I) = \lim_{n \to \infty} \lambda_d(I_n)$$

$$= \lim_{n \to \infty} (b_1 - a_1 + \frac{1}{n}) \cdots (b_d - a_d + \frac{1}{n})$$

$$= (b_1 - a_1) \cdots (b_d - a_d)$$

- (2) Sei $a \in \mathbb{R}^d$, $\{a\} = [a, a] \in \mathfrak{B}_d$. Aus obigem Beispiel (1) folgt: $\lambda_d(\{a\}) = 0$.
- (3) \mathbb{Q}^d ist abzählbar, also: $\mathbb{Q}^d = \{a_1, a_2, \ldots\}$ mit $a_j \neq a_i \ (i \neq j)$. Dann: $\mathbb{Q}^d = \bigcup \{a_j\}$ Dann gilt: $\mathbb{Q}^d \in \mathfrak{B}_d$ und $\lambda_d(\mathbb{Q}^d) = \sum \lambda_d(\{a_j\}) = 0$.
- (4) Wie in Beispiel (3): Ist $A \subseteq \mathbb{R}^d$ abzählbar, so ist $A \in \mathfrak{B}_d$ und $\lambda_d(A) = 0$.
- (5) Sei $j \in \{1, \ldots, d\}$ und $H_j := \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_j = 0\}$. H_j ist abgeschlossen, damit folgt: $H_j \in \mathfrak{B}_d$.

Ohne Beschränkung der Allgemeinheit sei j=d. Dann: $I_n:=\underbrace{[-n,n]\times\cdots\times[-n,n]}_{(d-1)-\mathrm{mal}}\times\{0\}.$

Aus Beispiel (1) folgt: $\lambda_d(I_n) = 0$.

Aus $H_d = \bigcup I_n$ folgt: $\lambda_d(H_d) \leq \sum \lambda_d(I_n) = 0$. Also: $\lambda_d(H_j) = 0$.

Definition

Sei $x \in \mathbb{R}^d$, $B \subseteq \mathbb{R}^d$. Definiere:

$$x + B := \{x + b \mid b \in B\}$$

Beispiel

Ist $I \in \mathcal{I}_d$, so gilt $x + I \in \mathcal{I}_d$ und $\lambda_d(x + I) = \lambda_d(I)$.

Satz 2.8

Sei $x \in \mathbb{R}^d, \mathfrak{A} := \{B \in \mathfrak{B}_d : x + B \in \mathfrak{B}_d\}$ und $\mu : \mathfrak{A} \to [0, \infty]$ sei definiert durch $\mu(A) := \lambda_d(x + A)$. Dann gilt:

- (1) $(\mathbb{R}^d, \mathfrak{A}, \mu)$ ist ein Maßraum.
- (2) Es ist $\mathfrak{A} = \mathfrak{B}_d$ und $\mu = \lambda_d$ auf \mathfrak{B}_d . D.h. für alle $A \in \mathfrak{B}_d$ ist $x + A \in \mathfrak{B}_d$ und $\lambda_d(x + A) = \lambda_d(A)$ (Translationsinvarianz des Lebesgue-Maßes).

Beweis

- (1) Leichte Übung!
- (2) Es ist klar, dass $\mathfrak{B}_d \supseteq \mathfrak{A}$. Nach dem Beispiel von oben gilt:

$$\mathcal{I}_d \subseteq \mathfrak{A} \subseteq \mathfrak{B}_d = \sigma(\mathcal{I}_d) \subseteq \sigma(\mathfrak{A}) = \mathfrak{A}$$

Setze $\mathcal{E} := \mathcal{I}_d$, dann ist $\sigma(\mathcal{E}) = \mathfrak{B}_d$ und es gilt nach dem Beispiel von oben:

$$\forall E \in \mathcal{E} : \mu(E) = \lambda_d(E)$$

 \mathcal{E} hat die Eigenschaften (1) und (2) aus Satz 2.6, daraus folgt dann, dass $\mu = \lambda_d$ auf \mathfrak{B}_d ist.

Satz 2.9

Sei μ ein Maß auf \mathfrak{B}_d mit der Eigenschaft:

$$\forall x \in \mathbb{R}^d, A \in \mathfrak{B}_d : \mu(A) = \mu(x+A)$$

Weiter sei $c := \mu((0,1]^d) < \infty$. Dann gilt:

$$\mu = c \cdot \lambda_d$$

Satz 2.10 (Regularität des Lebesgue-Maßes)

Sei $A \in \mathfrak{B}_d$, dann gilt:

(1)
$$\lambda_d(A) = \inf \left\{ \lambda_d(G) \mid G \subseteq \mathbb{R}^d \text{ offen und } A \subseteq G \right\}$$

= $\inf \left\{ \lambda_d(V) \mid V = \bigcup_{j=1}^{\infty} I_j, I_j \subseteq \mathbb{R}^d \text{ offenes Intervall }, A \subseteq V \right\}$

(2)
$$\lambda_d(A) = \sup \{ \lambda_d(K) \mid K \subseteq \mathbb{R}^d \text{ kompakt }, K \subseteq A \}$$

Beweis

- (1) Ohne Beweis.
- (2) Setze $\beta := \sup\{\lambda_d(K) \mid K \subseteq \mathbb{R}^d \text{ kompakt }, K \subseteq A\}$. Sei K kompakt und $K \subseteq A$, dann gilt $\lambda_d(K) \leq \lambda_d(A)$, also ist auch $\beta \leq \lambda_d(A)$.

Fall 1: Sei A zusätzlich beschränkt.

Sei $\varepsilon > 0$. Es existiert ein r > 0, sodass $A \subseteq B := \overline{U_r(0)} \subseteq [-r, r]^d$ ist, dann gilt:

$$\lambda_d(A) \le \lambda_d([-r,r]^d) = (2r)^d < \infty$$

Aus (1) folgt, dass eine offene Menge $G \supseteq B \setminus A$ existiert mit $\lambda_d(G) \leq \lambda_d(B \setminus A) + \varepsilon$. Dann gilt nach 1.7:

$$\lambda_d(B \setminus A) = \lambda_d(B) - \lambda_d(A)$$

Setze nun $K := B \setminus G = B \cap G^c$, dann ist K kompakt und $K \subseteq B \setminus (B \setminus A) = A$. Da $B \subseteq G \cup K$ ist, gilt:

$$\lambda_d(B) \le \lambda_d(G \cup K) \le \lambda_d(B) - \lambda_d(A) + \varepsilon + \lambda_d(K)$$

Woraus folgt:

$$\lambda_d(A) \le \lambda_d(K) + \varepsilon$$

Fall 2: Sei $A \in \mathfrak{B}_d$ beliebig.

Setze $A_n := A \cap U_n(0)$. Dann ist A_n für alle $n \in \mathbb{N}$ beschränkt, $A_n \subseteq A_{n+1}$ und $A = \bigcup_{n \in \mathbb{N}} A_n$. Nach 1.7 gilt:

$$\lambda_d(A) = \lim \lambda_d(A_n)$$

Aus Fall 1 folgt, dass für alle $n \in \mathbb{N}$ ein kompaktes $K_n \subseteq A_n$ mit $\lambda_d(A_n) \leq \lambda_d(K_n) + \frac{1}{n}$ existiert. Dann gilt:

$$\lambda_d(A_n) \le \lambda_d(K_n) + \frac{1}{n} \le \lambda_d(A) + \frac{1}{n}$$

Also auch:

$$\lambda_d(A) = \lim \lambda(K_n) \le \beta$$

Auswahlaxiom:

Sei $\emptyset \neq \Omega$ Indexmenge, es sei $\{X_{\omega} \mid \omega \in \Omega\}$ ein disjunktes System von nichtleeren Mengen X_{ω} . Dann existiert ein $C \subseteq \bigcup_{\omega \in \Omega} X_{\omega}$, sodass C mit jedem X_j genau ein Element gemeinsam hat.

Satz 2.11 (Satz von Vitali)

Es existiert ein $C \subseteq \mathbb{R}^d$ sodass $C \notin \mathfrak{B}_d$.

Beweis

Wir definieren auf $[0,1]^d$ eine Äquivalenzrelation \sim , durch:

$$\forall x, y \in [0, 1]^d : x \sim y \iff x - y \in \mathbb{Q}^d$$
$$\forall x \in [0, 1]^d : [x] := \{ y \in [0, 1]^d \mid x \sim y \}$$

Nach dem Auswahlaxiom existiert ein $C \subseteq [0,1]^d$, sodass C mit jedem [x] genau ein Element gemeinsam hat. Es ist $\mathbb{Q}^d \cap [-1,1]^d = \{q_1,q_2,\ldots\}$ mit $q_i \neq q_j$ für $(i \neq j)$. Dann gilt:

$$\bigcup_{n=1}^{\infty} (q_n + C) \subseteq [-1, 2]^d \tag{1}$$

$$[0,1]^d \subseteq \bigcup_{n=1}^{\infty} (q_n + C) \tag{2}$$

Beweis

Sei $x \in [0,1]^d$. Wähle $y \in C$ mit $y \in [x]$, dann ist $x \sim y$, also $x-y \in \mathbb{Q}^d \cap [-1,1]^d$. D.h.:

$$\exists n \in \mathbb{N} : x - y = q_n \implies x = q_n + y \in q_n + C$$

Außerdem ist $\{q_n + C \mid n \in \mathbb{N}\}$ disjunkt.

Beweis

Sei $z \in (q_n + C) \cap (q_m + C)$, dann existieren $a, b \in \mathbb{Q}^d$, sodass gilt:

$$(q_n + a = z = q_m + b) \implies (b - a = q_m - q_n \in \mathbb{Q}^d)$$

$$\implies (a \sim b) \implies ([a] = [b])$$

$$\implies (a = b) \implies (q_n = q_m)$$

Annahme: $C \in \mathfrak{B}_d$, dann gilt nach (1):

$$3^{d} = \lambda_{d}([-2, 1]^{d})$$

$$\geq \lambda_{d}(\bigcup (q_{n} + C))$$

$$= \sum \lambda_{d}(q_{n} + C)$$

$$= \sum \lambda_{d}(C)$$

Also ist $\lambda_d(C) = 0$. Damit folgt aus (2):

$$1 = \lambda_d([0, 1]^d)$$

$$\leq \lambda_d(\bigcup (q_n + C))$$

$$= \sum_{n = 0} \lambda_d(C)$$