

Semoga Tuhan memberi berkah pada kelas ini.

Relencanaan pembelalakan

TUJUAN

Memberikan pemahaman kepada mahasiswa tentang bagaimana komputer dibentuk oleh komponen-komponen pendukungnya, agar mahasiswa memahami relasi inti perangkat keras dan perangkat lunaknya.

Arsitektur Komputer

Pertemuan	Pokok Bahasan	Keterangan
ke-		
1	Evolusi Komputer	
2	Bus-bus Sistem	
3	Internal Memori	
4	External Memori	
5	Input / Output	
6	Input / Output	
7	Review Materi / Kuis (Soal-Soal Essay)	
8	Ujian Tengah Semester (UTS)	
9	Central Processing Unit Dan Unit Control	
10	Set Instruksi Mode Dan Format	
11	Struktur dan Fungsi CPU	
12	Reduced Instruction Set Computers (RISC)	
13	Reduced Instruction Set Architecture (RISA)	
14	Quiz and Review	
15	Ujian Akhir Semester (UAS)	

DAFTAR PUSTAKA

- 1. Stallings, William.1998.Organisasi dan Arsitektur Komputer. Jilid 1. PT Prenhalindo.Jakarta.
- 2. Stallings, William.1998.Organisasi dan Arsitektur Komputer. Jilid 2. PT Prenhalindo.Jakarta.
- 3. Tanenbaum, Andrew S. 2001. Organisasi Komputer Terstruktur. Jilid 1. Salemba Teknika. Jakarta.
- 4. Tanenbaum, Andrew S. 2001. Organisasi Komputer Terstruktur. Jilid 2. Salemba Teknika. Jakarta
- 5. Soepono, S.1995.Organisasi Komputer. STMIK Guna Darma. Jakarta.
- 6. Stalling, W. 2002. Organisasi dan Arsitektur Komputer, Edisi 6. Jakarta: PT. Indeks, Kelompok Gramedia.

RETCANA PEMBELAJARAN

- Pertemuan 1 s.d 14 disampaikan dengan Metode Ceramah, Metode Diskusi dan Latihan Soal.
- Pada akhir pertemuan akan dilakukan latihan soal (quiz) yang nilainya akan dijadikan "Nilai Tugas".

Sistem Penilaian

Prosentase

DESKRIPSI SINGKAT TUGAS

Mahasiswa harus menjawab beberapa pertanyaan dalam soal yang diberikan oleh dosen yang bersangkutan.

Soal diambil dari pertemuan yang telah diajarkan oleh dosen.

PERTEMUAN

EVOLUSI KOMPUTER

Organisasi Komputer

Organisasi Komputer berkaitan dengan unit-unit operasional dan interkoneksinya yang merealisasikan spesifikasi arsitektural.

Contoh atribut organisasional: signal-signal kontrol, interface komputer dan pheriperal dan teknologi memori yang digunakan.

Arsitektur Komputer

Arsitektur berkaitan dengan atribut-atribut sebuah sistem yang tampak (visible) bagi seorang pemrogram, yaitu atribut-atribut yang memiliki dampak langsung pada eksekusi logis sebuah program.

Contoh atribut arsitektural:

Set instruksi, jumlah bit, mekanisme I/O, teknik pengalamatan memori

Struktur Dan Fungsi Komputer

- Struktur adalah cara komponen-komponen dalam sebuah komputer saling terkait
- Fungsi adalah operasi pada masing-masing komponen sebagai bagian dari struktur

Fungsi Komputer

Sebuah komputer dapat melakukan fungsi pengolahan data, penyimpanan data, pemindahan data dan kontrol

Struktur Komputer

- CPU (Cental Processing Unit)
 Mengontrol operasi komputer dan membentuk fungsi-fungsi pengolahan datanya
- Main Memory
 Tempat menyimpan data
- Input Output (I/O)
 Memindahkan data antara komputer dengan lingkungan luarnya.
- System Interconections
 Beberapa mekanisme komunikasi antara CPU, main memory dan I/O

Komponen-komponen CPU

- Control Unit (CU)
 Mengontrol operasi CPU dan pada gilirannya mengontrol komputer
- Arithmetic and Logic Unit (ALU)
 Membentuk fungsi-fungsi pengolahan data komputer
- Register
 Penyimpan internal bagi CPU
- CPU Interconnections
 Mekanisme komunikasi antara CU, ALU dan register-register

Evolusi dan Kinerja Komputer

Generasi Pertama

Ciri umum komputer generasi pertama:

- Menggunakan tabung hampa (Vaccum Tube)
- Program dibuat dalam bahasa mesin
- Memori utama dibuat dengan teknologi magnetic core storage
- Ukuran fisik komputer besar
- Membutuhkan daya listrik besar

ENIAC (Electronic Numerical Integrator And Computer)

- Dirancang oleh John Mauchly dan John Presper Enkert di Universitas Pennsylvania
- Berat 30 ton, volume 15000 kaki persegi, berisi lebih dari 18000 tabung vakum, membutuhkan daya 140 KW, melakukan operasi penambahan 5000 operasi/detik
- Memori terdiri dari 20 accumulator, masingmasing accumulator menampung 10 digit

ENIAC

Mesin Von Newmann (Komputer IAS)

- Memori komputer IAS (Computer of Institute for Advanced Studies) terdiri dari 1000 lokasi penyimpanan yang di sebut word
- Satu word terdiri dari 40 binary digit
- Satu word dapat juga terdiri dari 20 bit instruksi, masing-masing instruksi terdiri dari 8 bit kode operasi dan 12 bit alamat
- Memiliki 21 buah instruksi
- Instruksi-instruksi dibagi menjadi 5 kelompok, yaitu : Data transfer, Unconditional branch, Conditional branch, Arthmetic dan address modify

Struktur Komputer IAS

Struktur IAS

UNIVAC (Universal Automatic Computer)

- Dirancang oleh Mauchly dan Eckert
- Produk pertama yang dihasilkan oleh The Eckert-Mauchly Computer Company
- Komputer komersial pertama yang dipasarkan

Gambar Komputer IAS & UNIVAC

IAS

UNIVAC

Generasi Kedua

Ciri umum komputer generasi kedua:

- Teknologi dasar rangkaiannya berupa transistor
- Menggunakan bahasa pemrograman fortran, cobol, Algol
- Menggunakan memori sekunder berupa magnetic tape
- Ukuran fisik komputer lebih kecil dari komputer generasi pertama
- Membutuhkan daya listrik yang lebih kecil

Generasi Ke Dua

Generasi Ketiga

Ciri umum komputer generasi ketiga:

- Teknologi dasar pembangun rangkaian yang digunakan adalah IC (Integrated Circuit)
- Layar monitor dapat menampilkan gambar dan grafik
- Menggunakan magnetic tape sebagai memori sekunder
- Memiliki fitur jaringan
- Penggunaan daya listrik lebih hemat

Generasi Ketiga dan Generasi Keempat

Generasi Ketiga

Generasi Keempat

Generasi-generasi Selanjutnya

Setelah generasi ketiga perkembangan komputer didasarkan pada perkembangan IC (integrated Circuit)

- SSI (Small Scale Integration)
 Sampai 100 komponen elektronik per chip
- MSI (Medium Scale Integration)
 100-3000 komponen elektronik per chip
- LSI (Large Scale Integration)
 3000-100000 komponen elektronik per chip
- VLSI (Very Large Scale Integration)
 100000-1 juta komponen per chip
- ULSI (Ultra Large Scale Integration)
 Lebih dari 1 juta komponen per chip

Perancangan Dan Kinerja Komputer

Kinerja sebuah sistem komputer merupakan hasil proses dari seluruh komponen komputer, yang melibatkan CPU, memori utama, memori sekunder, bus, peripheral.

Teknik-teknik yang dikembangkan untuk meningkatkan kinerja komputer, antara lain :

- Branch Prediction, teknik dimana prosesor memungkinkan mengamati terlebih dahulu di dalam software dan melakukan prediksi percabangan atau kelompok instruksi yang akan dieksekusi berikutnya
- Data Flow Analysis, prosesor akan menganalisa instruksi-instruksi yang tidak tergantung pada hasil atau data lainnya untuk membuat penjadwalan yang optimum dalam eksekusi
- Speculative Execution, dengan modal prediksi cabang dan analisis data, maka prosesor dapat melakukan eksekusi spekulatif terlebih dahulu sebelum waktunya.

Evolusi Pentium

Feature	8008	8080	8086	80386	80486
Tahun	1972	1974	1978	1985	1989
Jml Instruksi	66	111	133	154	235
Lebar bus alamat	8	16	20	32	32
Lebar bus data	8	8	16	32	32
Jumlah Flag	4	5	9	14	14
J <u>umlah</u> Register	8	8	16	8	8
Kemampuan memori	16KB	64KB	1MB	4GB	4GB
I/O Port	24	256	64K	64K	4GB
Bus bandwidth	-	0.75MB/dt	5MB/dt	32MB/dt	32MB/dt
Waktu menambah register-register	-	1,3µdt	0.3μdet	0.125µdt	0.006 _{µdt}

Karakteristik

Karakteristik	286	386	486	Pentium	P6	P7
Mulai	1978	1982	1986	1989	1990	1993
Resmi	1982	1985	1989	1993	1995	1997
Pengiriman	1983	1986	1990	1994	1996	1998
Transistor	130.000	275.000	1,2 juta	3,1 juta	5,5 juta	10+ juta
Laju awal (MIPS)	1	5	20	100	250	500

Selesai