Regime	Impacting phase (i-phase)		Spreading phase (s-phase)	
Inertial i-phase, dissipation in s-phase unbounded: small <i>Oh</i> , small <i>We</i>		$\lambda_i(t) \sim \sqrt{\nu t},$ $\Omega_{\nu,i}(t) \sim D_{\rm f}(t)^2 \lambda_i(t)$	~	$\lambda_s(t) \sim \sqrt{\nu t},$ $\Omega_{\nu,s}(t) \sim D_{\rm f}(t)^2 \lambda_s(t)$
III Inertial i-phase, dissipation in s-phase vertically bounded: small <i>Oh</i> , large <i>We</i>		$\lambda_i(t) \sim \sqrt{\nu t},$ $\Omega_{\nu,i}(t) \sim D_{\rm f}(t)^2 \lambda_i(t)$		$\lambda_s(t < \tau_\rho R e^{1/5}) \sim \sqrt{\nu t},$ $\lambda_s(t > \tau_\rho R e^{1/5}) \sim D_0 R e^{-2/5},$ $\Omega_{\nu,s}(t) \sim D_f(t)^2 \lambda_s(t)$
Inertial i-phase, dissipation in s-phase fully bounded: moderate Oh, large We		$\lambda_i(t) \sim \sqrt{\nu t},$ $\Omega_{\nu,i}(t) \sim D_{\rm f}(t)^2 \lambda_i(t)$		$\lambda_{s}(t < \tau_{\rho}Re^{1/5}) \sim \sqrt{\nu t},$ $\lambda_{s}(t > \tau_{\rho}Re^{1/5}) \sim D_{0}Re^{-2/5},$ $\Omega_{\nu,s}(t < \tau_{\rho}Re^{2/5}) \sim D_{f}(t)^{2}\lambda_{s}(t),$ $\Omega_{\nu,s}(t > \tau_{\rho}Re^{2/5}) \sim D_{0}^{3}$
Viscous i-phase, no s-phase: large Oh		$\lambda_i(t < \tau_{\nu}) \sim \sqrt{\nu t}$ $\lambda_i(t > \tau_{\nu}) \sim D_0$ $\Omega_{\nu,i}(t) \sim D_f(t)^2 \lambda_i(t)$	_	reading phase