Data Science(Machine Learning, Deep Learning)

- 실습 소스 깃 참고

〈심층 신경망 - DNN〉

[심층 회귀]

좀 더 쉽고 수월한 최적화 및 성능향상 - 표준 스케일링 입력값 정규화

[렐루(ReLU)와 리키 렐루(Leaky ReLU)]

렐루(ReLU)는 기존 활성 함수(시그모이드 함수) 단점 보완하기 위한 활성 함수 리키 렐루(Leaky ReLU)는 인공 신경망의 활성 함수 중 하나로, ReLU(Rectified Linear Unit) 함수의 변형 버전입니다.

마지막 계층에는 활성 함수를 쓰지 않게 주의

<확률적 경사 하강법 - SGD>

SGD(Stochastic Gradient Descent)는 머신 러닝과 딥 러닝에서 사용되는 최적화 알고리즘 중하나입니다. 이 알고리즘은 모델의 가중치와 편향을 조정하여 손실 함수를 최소화하는 방향으로모델을 학습시키는 데 사용됩니다. SGD는 일반적으로 경사 하강법(Gradient Descent)의 한 변종으로 간주됩니다.

미니 배치

미니 배치(Mini-batch)는 머신 러닝 및 딥 러닝에서 학습 데이터를 나누어 처리하는 방법 중하나입니다. 미니 배치 학습은 전체 학습 데이터셋을 작은 묶음으로 나누고 각 미니 배치를 사용하여 모델을 업데이트하는 방식입니다. 이 방법은 전체 데이터셋을 한 번에 처리하는 것보다 연산량이 적고, 메모리 효율적으로 학습할 수 있는 장점이 있습니다.

SGD optimizer(최적화 작업)

최적화

<하이퍼파라미터>

모델의 가중치 파라미터는 보통 경사하강법을 통해 데이터를 기반으로 자동으로 최적화 모델의 성능에 영향을 끼치지만 자동으로 최적화되지 않는 파라미터가 하이퍼파라미터다. 사용자가 직접 실험을 통해 성능을 지켜보면서 값을 튜닝해야 합니다.

〈파이프라인 구축〉

문제 정의 \rightarrow 데이터 수집 \rightarrow 데이터 전처리 및 분석 \rightarrow 알고리즘 적용 \rightarrow 평가 \rightarrow 배포

문제 정의

- 단계를 나누고 단순화(simplify), x와 y를 정의

데이터 수집

- 문제 정의에 따른 수집, 필요에 따라 레이블링

데이터 전처리 및 분석

- 형태를 가공, 필요에 따라 EDA(탐색적 자료 분석) 수행
- 탐색적 자료 분석(EDA) 이란?

데이터를 분석하고 결과를 내는 과정에 있어서 지속적으로 해당 데이터에 대한 '탐색과 이해'를 기본으로 가져야 한다는 것을 의미한다.

알고리즘 적용

- 가설을 세우고 구현/ 적용

평가

- 실험 설계, 테스트셋 구성

배포

- Restful API를 통한 배포, 상황에 따라 유지/보수

Adam(Adaptive Moment Estimation)은 최적화 알고리즘 중 하나로, 신경망 및 머신 러닝 모델의학습에 널리 사용되는 알고리즘 중 하나입니다. Adam은 경사 하강법(Gradient Descent)의 변형으로, 모멘텀(Momentum) 및 RMSProp(Root Mean Square Propagation) 기법을 결합한 것입니다.

오버 피팅 모델 평가 및 수정