EECS 445

Introduction to Machine Learning

Learning Bayesian Networks

Prof. Kutty

Announcements

Course evaluations are out

- Gradescope assignment to upload proof (screenshot)
 - Please note <u>separate</u> eval and assignment deadlines!!!
 - deadline for the assignment is different from the registrar's deadline
- worth 0.5% of your grade!

HW4 due tomorrow -> please make sure you check lakedays

Sample exam released on Friday:

Review on Monday 4/22 at 6:30pm → includes sample exam solutions review as well as material review

MLE of GMM with known labels: intuition

can also determine relative chance of each Gaussian

Log-Likelihood for GMMs with known labels

Given the training data, find the model parameters that maximize the log-likelihood

Maximum log likelihood objective

kelihood objective
$$\ln P(S_n) = \ln \prod_{i=1}^n \sum_{j=1}^k \delta(j \mid i) (N(\bar{x}^{(i)} \mid \bar{\mu}^{(j)}, \sigma_j^2) \gamma_j)$$

$$= \sum_{i=1}^n \sum_{j=1}^k \delta(j \mid i) \ln (\gamma_j N(\bar{x}^{(i)} \mid \bar{\mu}^{(j)}, \sigma_j^2))$$

Expectation Maximization for GMMs (recap)

Expectation Maximization for GMMs:

Initialize model parameters Iterate until convergence

- E step: use current estimate of mixture model to softly assign examples to clusters
- M step: re-estimate each cluster model separately based on the points assigned to it (similar to the "known label" case)

EM Algorithm in general

EM algorithm idea -> Complete Data is easy

Complete log likelihood

$$l_{\mathcal{C}}(\bar{\theta}; \boldsymbol{X}, \boldsymbol{Z}) = \sum_{i=1}^{n} \log p(\bar{\boldsymbol{x}}^{(i)}, \boldsymbol{z}^{(i)}; \bar{\theta})$$

- Usually simpler to solve: find $ar{ heta}$ by maximizing $l_C(ar{ heta})$
- Issue?
 - $-z^{(i)}$ is unknown in general

EM algorithm idea -> Incomplete Data is hard

Observed data X; Latent variables Z

log likelihood

$$l(\bar{\theta}; X) = \sum_{i=1}^{n} \log p(\bar{x}^{(i)}; \bar{\theta}) = \sum_{i=1}^{n} \log \sum_{z^{(i)}} p(\bar{x}^{(i)}, z^{(i)}; \bar{\theta})$$

Es discrete 1.7.

Goal: find

$$\arg \max_{\overline{\theta}} l(\overline{\theta}; X)$$

- Issues:
 - usually hard to find a closed form solution
 - usually non-concave --> many local optima

EM algorithm, incomplete data

- pcilin initialize parameters
- **E-step**: compute posterior distribution according to current estimate of θ :

$$p(z^{(i)} = j | \bar{x}^{(i)}; \bar{\theta}) \propto p(\bar{x}^{(i)} | z^{(i)} = j; \bar{\theta}) p(z^{(i)} = j; \bar{\theta})$$

M-Step: pick parameters that maximize the *expected* log likelihood: arg
$$\max_{\bar{\theta}} \mathbb{E}\left[\sum_{i=1}^n \log p(\bar{x}^{(i)}, z^{(i)}; \bar{\theta})\right] = \arg \max_{\bar{\theta}} \sum_{i=1}^n \mathbb{E}\left[\log p(\bar{x}^{(i)}, z^{(i)}; \bar{\theta})\right]$$

$$= \arg \max_{\bar{\theta}} \sum_{i=1}^n \sum_{j=1}^k p(z^{(i)} = j | \bar{x}^{(i)}; \bar{\theta}) \log p(\bar{x}^{(i)}, z^{(i)} = j; \bar{\theta})$$

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}$$

Iterate until convergence

$$P(A|B) = P(A|B) P(B)$$

$$P(B|A) = P(B|A) P(A)$$

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$

$$P(B|A) \sim P(A|B) P(B)$$

$$P(B|A) \sim P(A|B) P(B)$$

$$P(B|A) \sim \overline{x}^{(c)}$$

$$\Theta = \begin{bmatrix} x_1, ..., x_k, \mu(i), ..., \mu(k), \sigma_1, ..., \sigma_k \end{bmatrix}$$

$$\rho(3^{(i)} | \overline{x}^{(i)}) \propto \rho(\overline{x}^{(i)} | 3^{(i)}) \rho(3^{(i)})$$

$$\int \rho(3^{(i)} | \overline{x}^{(i)}) | \rho(3^{(i)}) \rho(3^{(i)})$$

$$\int \rho(3^{(i)} | \overline{x}^{(i)}) \rho(3^{(i)}) \rho(3^{(i)})$$

Properties of the EM algorithm

- each iteration improves log-likelihood
 - E step never decreases log-likelihood
 - M step never decreases log-likelihood
- EM converges to a (local) optimum

Expectation Maximization

Model Selection: how to pick k?

Bayesian Information Criterion (BIC)

number of training data $BIC(D; \bar{\theta}) = \overline{l(D; \bar{\theta})} - \overline{\frac{\#param}{2}} log(n)$

model complexity

Here we'd want to maximize the BIC.

Sometimes defined as the negative of above definition. In such cases, we want to minimize.

Model Selection for Mixtures

Bayesian Information Criterion (BIC) Example:

Graphical Models: Bayesian Networks

Bayesian Networks by Example

Factorization based on given graph: $Pr(x_1, x_2, x_3) = Pr(x_1) Pr(x_2) Pr(x_3 | x_1, x_2)$

1

1

0

Н

Factorization: Example

For a given graph, the joint distribution can be written as a product of the conditional probability of each variable given its parents

$$P(X_1, ..., X_d) = \prod_{i=1}^d P(X_i | X_{pa_i})$$

From the chain rule:

$$Pr(x_1, x_2, x_3, x_4, x_5) = Pr(x_1) Pr(x_2|x_1) Pr(x_3|x_1, x_2) Pr(x_4|x_3, x_2, x_1) Pr(x_5|x_4, x_3, x_2, x_1)$$
vs.

From the factorization based on the graph:

$$Pr(x_1, x_2, x_3, x_4, x_5) = Pr(x_1) Pr(x_2|x_1) Pr(x_3|x_1) Pr(x_4|x_3, x_2) Pr(x_5|x_3)$$

Two notions of Independence

Marginal independence

$$Pr(X_1, X_2) = Pr(X_1)Pr(X_2)$$

$$X_1 \perp X_2$$

Alternately,
$$Pr(X_1|X_2) = Pr(X_1)$$

Bayesian Networks encode independencies

Conditional independence

$$Pr(X_1, X_2 | X_3) = Pr(X_1 | X_3) Pr(X_2 | X_3)$$

$$X_1 \perp X_2 \mid X_3$$

Alternately,
$$Pr(X_1|X_2,X_3) = Pr(X_1|X_3)$$

d-separation: Inferring independence

Independence from the Graph (d-separation)

Steps

- 1. keep only "ancestral" graph
- 2a. connect nodes with common child
- 2b. make undirected
- 3. read off property

If there is no path between variables of interest, then they are marginally independent

If all paths between variables of interest go through a particular node, then the variables are independent given that node

intuitively can say that that node "blocks" the influence from the first variable to the second

Note: for $X_1 \perp X_2 | \{X_3, X_4\}$ each path has to go through at least one of the nodes in the set $\{X_3, X_4\}$

d-separation Examples

Does the graph imply $X_1 \perp X_2 \mid X_3$? Does the graph imply $X_1 \perp X_2$?

Marginal Independence: Example

Conditional Independence: Example

However, x_1 and x_2 are conditionally dependent given x_3

To see this, note that if we knew $x_3 = T$ then we know that either $x_1 = x_2 = H$ or $x_1 = x_2 = T$

x_1	н	Т
	0.5	0.5

x_2	н	Т
	0.5	0.5

V	
x	2

x_1	x_2	$\Pr(x_3 = T x_1, x_2)$	$\Pr(x_3 = F x_1, x_2)$
Н	Н	1	0
Т	Н	0	1
Н	Т	0	1
Т	Т	1	0

Learning Bayesian Networks

Learning Bayesian Networks

Two Main Problems

- estimate parameters given graph structure (and data)
- search over possible graph structures (model sel.)

