

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT

For

MAXWEST INTERNATIONAL LIMITED

No.1, Longgang Road, Buji, Longgang, Shenzhen City, Guangdong Province, P.R. China

FCC ID: 2AEN3NITRO55S

Report Type: Product Type:
Original Report Mobile Phone

Test Engineer: Dean Liu

Report Number: RDG150717003-00C

Report Date: 2015-08-10

Sula Huang

Reviewed By: RF Leader

Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan)

No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	
CONFIGURATION OF TEST SETUPBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §1.1310 & §2.1093- RF EXPOSURE	
APPLICABLE STANDARD	
TEST RESULT	
FCC §2.1047 - MODULATION CHARACTERISTIC	
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	10
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §2.1051, §22.917(A) & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS	36
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
FCC §22.917(A) & §24.238(A) - BAND EDGES	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	39
Test Data	39

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	48
APPLICABLE STANDARD	48
TEST PROCEDURE	48
TEST EQUIPMENT LIST AND DETAILS.	49
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The MAXWEST INTERNATIONAL LIMITED's product, model number: Nitro 5.5s (FCC ID: 2AEN3NITRO55S) (the "EUT") in this report was a Mobile Phone (named Nitro 5.5s by applicant), which was measured approximately: 15.4 cm (L) x 7.8 cm (W) x 0.8 cm (H), rated input voltage: DC3.7V rechargeable Li-ion battery or DC5.0V charging from adapter.

Report No.: RDG150717003-00C

All measurement and test data in this report was gathered from production sample serial number: 150717003 (Assigned by applicant). The EUT was received on 2015-07-31.

Objective

This report is prepared on behalf of *MAXWEST INTERNATIONAL LIMITED* in accordance with Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2AEN3NITRO55S. FCC Part 15C DSS submissions with FCC ID: 2AEN3NITRO55S. FCC Part 15C DTS submissions with FCC ID: 2AEN3NITRO55S.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services Part 24 Subpart E - Personal Communication Services

Applicable Standards: TIA/EIA 603-D-2010.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 06, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 22H/24E Page 4 of 53

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D-2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universal Radio Communication Tester	CMU200	109038
N/A	ANTENNA	N/A	N/A

Report No.: RDG150717003-00C

Configuration of Test Setup

FCC Part 22H/24E Page 5 of 53

Block Diagram of Test Setup

Report No.: RDG150717003-00C

FCC Part 22H/24E Page 6 of 53

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
§1.1310, §2.1093	RF Exposure	Compliance	
\$2.1046; \$ 22.913 (a); \$ 24.232 (c)	RF Output Power	Compliance	
§ 2.1047	Modulation Characteristics	Not Applicable	
§ 2.1049; § 22.905 § 22.917; § 24.238	Occupied Bandwidth	Compliance	
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance	
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance	
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance	
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance	

Report No.: RDG150717003-00C

FCC Part 22H/24E Page 7 of 53

FCC §1.1310 & §2.1093- RF EXPOSURE

Report No.: RDG150717003-00C

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG150717003-20.

According to FCC \S 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Report No.: RDG150717003-00C

FCC Part 22H/24E Page 9 of 53

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

Report No.: RDG150717003-00C

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications..

Test Procedure

GSM/GPRS

Function: Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots

and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850 > 30 dBm for GPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel]

Channel Type > Off P0 > 4 dB

Slot Config > Unchanged (if already set under MS signal)

TCH > choose desired test channel

Hopping > Off Main Timeslot > 3

Network Coding Scheme > CS4 (GPRS)

Bit Stream > 2E9-1 PSR Bit Stream

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input

Connection Press Signal on to turn on the signal and change settings

FCC Part 22H/24E Page 10 of 53

WCDMA-Release 99

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification. The EUT has a nominal maximum output power of 24dBm (+1.7/-3.7).

Report No.: RDG150717003-00C

	Loopback Mode	Test Mode 1
WCDMA	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	β c / βd	8/15

WCDMA HSDPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSDPA	HSDPA	HSDPA	HSDPA		
	Subset	1	2	3	4		
	Loopback Mode			Test Mode			
	Rel99 RMC			12.2kbps RM	IC		
	HSDPA FRC			H-Set1	, and the second		
WCDMA	Power Control Algorithm		Algorithm2				
WCDMA	βс	2/15	12/15	15/15	15/15		
General Settings	βd	15/15	15/15	8/15	4/15		
Settings	βd(SF)	64					
	β c/ β d	2/15	12/15	15/8	15/4		
	βhs	4/15	24/15	30/15	30/15		
	MPR(dB)	0	0	0.5	0.5		
	DACK			8			
	DNAK	8					
HCDDA	DCQI			8			
HSDPA Specific	Ack-Nack repetition factor	3					
Settings	CQI Feedback			4ms			
	CQI Repetition Factor			2			
	Ahs= β hs/ β c			30/15			

FCC Part 22H/24E Page 11 of 53

WCDMA HSUPA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

Report No.: RDG150717003-00C

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA			
	Subset	1	2	3	4	5			
	Loopback Mode			Test Mode 1					
	Rel99 RMC		1	2.2kbps RM	C				
	HSDPA FRC			H-Set1					
	HSUPA Test	HSUPA Loopback							
WCDM	Power Control			Algorithm2					
A	Algorithm	11/15	(/1.5		2/15	15/15			
General	β c β d	11/15	6/15	15/15	2/15	15/15			
Settings		15/15	15/15	9/15	15/15	0			
	β ec	209/225	12/15	30/15	2/15	5/15			
	β c/ β d	11/15	6/15	15/9	2/15	- 5 /1.5			
	βhs	22/15	12/15	30/15	4/15	5/15			
	CM(dB)	1.0	3.0	2.0	3.0	1.0			
	MPR(dB)	0	2	1	2	0			
	DACK			8					
	DNAK			8					
TIOD D A	DCQI			8					
HSDPA	Ack-Nack repetition			3					
Specific	factor								
Settings	CQI Feedback	4ms							
	CQI Repetition Factor	2							
	Ahs= β hs/ β c			30/15					
	DE-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	21			
	ETFCI	75	67	92	71	81			
	Associated Max UL								
	Data Rate kbps	242.1	174.9	482.8	205.8	308.9			
		E-TFC	I 11 E	E-TFCI		I 11 E			
HSUPA		E-TFC		11		CI PO 4			
Specific		E-TF		E-TFCI		CI 67			
Settings		E-TFCI		PO4		I PO 18			
Settings	D.C. E.ECI	E-TFO		E-TFCI	E-TF				
	Reference E_FCls	E-TFC E-TF		92 E-TFCI		I PO23 CI 75			
		E-TFC		PO 18		I PO26			
		E-TFC		10 18	E-TF				
		E-TFCI				I PO 27			
			1021						

FCC Part 22H/24E Page 12 of 53

HSPA+

The following tests were conducted according to the test requirements in Table C.11.1.4 of 3GPP TS 34 121-1

Sub- test	β _c (Note3)	β _d	βнs (Note1)	β_{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	E-TFCI (Note 5)	E-TFCI (boost)
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105
Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_{e} .											
Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0). Note 3: DPDCH is not configured, therefore the β_c is set to 1 and β_d = 0 by default.											
Note 4: β _{ed} can not be set directly; it is set by Absolute Grant Value.											
Note 5	Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-										

Report No.: RDG150717003-00C

DC-HSDPA

The following tests were conducted according to the test requirements in Table C.8.1.12 of 3GPP TS 34.121-1

configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value		
Nominal	Avg. Inf. Bit Rate	kbps	60		
Inter-TTI	Distance	TTI's	1		
Number	of HARQ Processes	Proces	6		
		ses	0		
Informati	on Bit Payload (N_{INF})	Bits	120		
Number	Code Blocks	Blocks	1		
Binary C	hannel Bits Per TTI	Bits	960		
Total Ava	ailable SML's in UE	SML's	19200		
Number	of SML's per HARQ Proc.	SML's	3200		
Coding F	Rate		0.15		
Number	of Physical Channel Codes	Codes	1		
Modulati			QPSK		
Note 1:	The RMC is intended to be used	for DC-HSD)PA		
	mode and both cells shall transmit with identical				
	parameters as listed in the table.				
Note 2:	Note 2: Maximum number of transmission is limited to 1, i.e.,				
	retransmission is not allowed. T	he redundar	cy and		

constellation version 0 shall be used.

Radiated method:

ANSI/TIA 603-D section 2.2.17

FCC Part 22H/24E Page 13 of 53

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-05-09	2016-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2015-02-19	2016-02-19
Giga	Signal Generator	1026	320408	2015-05-09	2016-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

Report No.: RDG150717003-00C

Test Data

Environmental Conditions

Temperature:	29 °C
Relative Humidity:	64 %
ATM Pressure:	100 kPa

The testing was performed by Dean Liu on 2015-08-06.

Conducted Power

Cellular Band (Part 22H) & PCS Band (Part 24E)

Band	Channel		Peak Ou	tput Powe	r (dBm)	
	Channel No.	GSM	GPRS 1 TX Slot	GPRS 2 TX Slot	GPRS 3 TX Slot	GPRS 4 TX Slot
	128	32.31	32.12	30.93	29.13	28.29
Cellular	190	32.43	32.07	30.85	29.29	28.43
	251	32.20	31.89	30.80	29.00	28.10
	512	29.81	28.96	28.02	25.95	25.07
PCS	661	29.96	29.11	28.33	26.06	25.05
	810	29.72	29.01	27.88	25.89	24.97

FCC Part 22H/24E Page 14 of 53

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

WCDMA Band II

Report No.: RDG150717003-00C

			Avei	age Output	Power (dB	m)	
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)
Rel 99	1	22.32	2.88	22.12	2.64	22.02	2.36
	1	22.22	2.81	22.25	2.72	21.95	2.51
HSDPA	2	22.11	2.76	22.19	2.83	21.89	2.49
HSDPA	3	22.08	2.66	22.12	2.81	21.81	2.43
	4	22.03	2.69	22.06	2.82	21.77	2.46
	1	22.16	2.73	22.12	2.79	21.90	2.53
DC HCDDA	2	22.03	2.75	22.05	2.74	21.79	2.47
DC-HSDPA	3	22.06	2.78	22.08	2.75	21.66	2.54
	4	21.97	2.76	21.92	2.76	21.64	2.53
	1	21.86	2.74	21.88	2.81	21.55	2.51
	2	21.40	2.73	21.83	2.79	21.62	2.44
HSUPA	3	21.42	2.76	21.74	2.83	21.57	2.46
	4	21.26	2.78	21.68	2.81	21.55	2.48
	5	21.35	2.68	21.61	2.77	21.65	2.47
HSPA+	1	20.55	2.69	20.83	2.78	20.62	2.49

FCC Part 22H/24E Page 15 of 53

WCDMA Band V

Report No.: RDG150717003-00C

		Average Output Power (dBm)						
Mode	3GPP Sub Test	Low Channel (Ave. Power)	Low Channel (PAR)	Middle Channel (Ave. Power)	Middle Channel (PAR)	High Channel (Ave. Power)	High Channel (PAR)	
Rel 99	1	22.09	2.76	22.13	2.84	21.85	3.64	
	1	22.14	2.93	22.10	2.66	21.66	3.59	
HCDDA	2	22.06	2.89	21.92	2.71	21.78	3.56	
HSDPA	3	21.98	2.94	22.01	2.61	21.71	3.57	
	4	21.90	2.95	21.84	2.66	21.80	3.54	
	1	22.08	2.85	22.00	2.65	21.71	3.58	
DC-HSDPA	2	21.97	2.86	21.77	2.64	21.64	3.61	
DC-HSDPA	3	21.91	2.87	21.89	2.62	21.84	3.62	
	4	21.93	2.91	21.95	2.63	21.81	3.63	
	1	21.83	2.93	21.81	2.65	21.73	3.57	
	2	21.97	2.94	21.78	2.66	22.11	3.59	
HSUPA	3	22.02	2.89	21.77	2.62	22.17	3.61	
	4	21.93	2.87	21.69	2.69	22.03	3.62	
	5	21.94	2.91	21.73	2.61	22.20	3.59	
HSPA+	1	21.07	2.96	20.86	2.62	21.12	3.59	

FCC Part 22H/24E Page 16 of 53

Peak-to-average ratio (PAR)

WCDMA Band II

Low Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 21.05 dBm
Peak 24.27 dBm
Crest 3.22 dB

10 % 1.68 dB 1 % 2.48 dB .1 % 2.88 dB .01 % 3.12 dB

Date: 6.AUG.2015 19:25:33

Middle Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 21.22 dBm
Peak 24.13 dBm
Crest 2.92 dB

10 % 1.60 dB
1 % 2.28 dB
.1 % 2.64 dB

2.80 dB

Date: 6.AUG.2015 19:26:20

.01 %

FCC Part 22H/24E Page 17 of 53

High Channel

Report No.: RDG150717003-00C

Date: 6.AUG.2015 19:27:18

WCDMA Band V

Low Channel

Date: 6.AUG.2015 19:21:44

FCC Part 22H/24E Page 18 of 53

Middle Channel

Report No.: RDG150717003-00C

Mean 21.63 dBm Peak 24.77 dBm Crest 3.14 dB

10 % 1.76 dB 1 % 2.48 dB .1 % 2.84 dB .01 % 3.04 dB

Date: 6.AUG.2015 19:23:14

High Channel

Complementary Cumulative Distribution Function (100000 samples)

Trace 1
Mean 22.07 dBm
Peak 25.83 dBm
Crest 3.75 dB

10 % 1.92 dB 1 % 2.92 dB .1 % 3.40 dB .01 % 3.64 dB

Date: 6.AUG.2015 19:24:23

FCC Part 22H/24E Page 19 of 53

		Desir	Sı	ubstituted Me	thod	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
Frequency Polar (H/V)		Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)				
	GSM 850_Middle Channel								
836.600	Н	102.12	27.2	0.0	1.0	26.2	38.5	12.3	
836.600	V	104.63	32.8	0.0	1.0	31.8	38.5	6.7	
			WCDMA	Band V_ Lov	v Channel				
836.600	Н	93.15	18.2	0.0	1.0	17.2	38.5	21.3	
836.600	V	94.36	22.6	0.0	1.0	21.6	38.5	16.9	
			PCS 1	1900_ Low Cl	annel				
1880.000	Н	89.32	17.7	11.7	1.4	28.0	33.0	5.0	
1880.000	V	89.88	18.4	11.7	1.4	28.7	33.0	4.3	
	WCDMA Band II_ Middle Channel								
1880.000	Н	83.76	12.2	11.7	1.4	22.5	33.0	10.5	
1880.000	V	83.83	12.4	11.7	1.4	22.7	33.0	10.3	

FCC Part 22H/24E Page 20 of 53

FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH

Report No.: RDG150717003-00C

Applicable Standard

FCC §2.1049, §22.917, §22.905 and §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The 26 dB & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.4-29 °C
Relative Humidity:	64-65 %
ATM Pressure:	100-100.4 kPa

The testing was performed by Dean Liu on 2015-08-02 and 2015-08-06.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

FCC Part 22H/24E Page 21 of 53

	Channel No.	Mode	99% Occupied Bandwidth (kHz)	26 dB Occupied Bandwidth (kHz)
Cellular	190	GSM	246	308
PCS	661	PCS	244	316
W.GD. ()	9400	Rel 99	4188	4743
WCDMA Band II	9400	HSDPA	4188	4723
Dana 11	9400	HSUPA	4168	4770
WCDM	4183	Rel 99	4148	4729
WCDMA Band V	4183	HSDPA	4148	4743
	4183	HSUPA	4168	4723

GMSK 850 Cellular Band

FCC Part 22H/24E Page 22 of 53

GMSK PCS Band

Report No.: RDG150717003-00C

REL99 Band II

FCC Part 22H/24E Page 23 of 53

HSDPA Band II

Report No.: RDG150717003-00C

HSUPA Band II

FCC Part 22H/24E Page 24 of 53

REL99 Band V

Report No.: RDG150717003-00C

HSDPA Band V

FCC Part 22H/24E Page 25 of 53

HSUPA Band V

Report No.: RDG150717003-00C

FCC Part 22H/24E Page 26 of 53

FCC §2.1051, §22.917(a) & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RDG150717003-00C

Applicable Standard

FCC §2.1051, §22.917(a) and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.4-29 °C
Relative Humidity:	64-65 %
ATM Pressure:	100-100.4 kPa

The testing was performed by Dean Liu on 2015-08-02 and 2015-08-06.

Please refer to the following plots.

FCC Part 22H/24E Page 27 of 53

GSM850_Middle Channel

FCC Part 22H/24E Page 28 of 53

FCC Part 22H/24E Page 29 of 53

REL99 Band II_ Middle Channel

FCC Part 22H/24E Page 30 of 53

HSDPA Band II _Middle Channel

FCC Part 22H/24E Page 31 of 53

FCC Part 22H/24E Page 32 of 53

REL99 Band $V_{\rm M}$ Middle Channel

FCC Part 22H/24E Page 33 of 53

FCC Part 22H/24E Page 34 of 53

HSUPA Band V_Middle Channel

FCC Part 22H/24E Page 35 of 53

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Report No.: RDG150717003-00C

Applicable Standard

FCC § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

		Alcielator.	The state of the s		
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-05-09	2016-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2015-02-19	2016-02-19
Giga	Signal Generator	1026	320408	2015-05-09	2016-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 22H/24E Page 36 of 53

Test Data

Environmental Conditions

Temperature:	27.7 °C	
Relative Humidity:	53 %	
ATM Pressure:	100kPa	

The testing was performed by Dean Liu on 2015-08-06.

EUT Operation Mode: Transmitting

Cellular Band

Report No.: RDG150717003-00C

30 MHz-10 GHz:

		D:	S	ubstituted Me	thod	Alexalests		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
Middle Channel								
1673.200	Н	54.83	-46.2	10.6	1.5	-37.1	-13.0	24.1
1673.200	V	55.25	-46.1	10.6	1.5	-37.0	-13.0	24.0
2509.800	Н	57.13	-40.9	13.1	2.8	-30.6	-13.0	17.6
2509.800	V	54.06	-43	13.1	2.8	-32.7	-13.0	19.7
327.790	Н	47.31	-56.8	0.0	0.5	-57.3	-13.0	44.3
325.850	V	48.62	-53.2	0.0	0.5	-53.7	-13.0	40.7

WCDMA Band V

		n	Sı	ubstituted Me	thod	Almal 4		Margin (dB)
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	
	Middle Channel							
1673.200	Н	36.34	-64.7	10.6	1.5	-55.6	-13.0	42.6
1673.200	V	37.18	-64.2	10.6	1.5	-55.1	-13.0	42.1
327.790	Н	46.89	-57.2	0.0	0.5	-57.7	-13.0	44.7
325.850	V	48.21	-53.6	0.0	0.5	-54.1	-13.0	41.1

FCC Part 22H/24E Page 37 of 53

30 MHz-20 GHz:

PCS Band

Report No.: RDG150717003-00C

		Dansiron	Sı	ubstituted Me	thod	Al ad A		
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
Middle Channel								
3760.000	Н	35.85	-58.4	13.8	2.9	-47.5	-13.0	34.5
3760.000	V	36.30	-56.8	13.8	2.9	-45.9	-13.0	32.9
327.790	Н	46.37	-57.7	0.0	0.5	-58.2	-13.0	45.2
325.850	V	47.81	-54	0.0	0.5	-54.5	-13.0	41.5

WCDMA Band II

		D	S	ubstituted Me	thod	Absolute			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Antenna Cable Loss		cnna in Cable Loss Level		Limit (dBm)	Margin (dB)	
	Middle Channel								
3760.000	Н	33.75	-60.5	13.8	2.9	-49.6	-13.0	36.6	
3760.000	V	35.86	-57.2	13.8	2.9	-46.3	-13.0	33.3	
327.790	Н	46.29	-57.8	0.0	0.5	-58.3	-13.0	45.3	
325.850	V	47.77	-54	0.0	0.5	-54.5	-13.0	41.5	

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = SG Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

FCC Part 22H/24E Page 38 of 53

FCC §22.917(a) & §24.238(a) - BAND EDGES

Applicable Standard

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

Report No.: RDG150717003-00C

According to $\S24.238(a)$, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.4-29 °C
Relative Humidity:	64-65 %
ATM Pressure:	100-100.4 kPa

The testing was performed by Dean Liu on 2015-08-02 and 2015-08-06.

 $Test\ Mode:\ Transmitting$

Test Result: Compliant. Please refer to the following plots.

FCC Part 22H/24E Page 39 of 53

GSM 850, Left Band Edge

Report No.: RDG150717003-00C

GSM 850, Right Band Edge

FCC Part 22H/24E Page 40 of 53

GSM 1900, Left Band Edge

Report No.: RDG150717003-00C

GSM 1900, Right Band Edge

FCC Part 22H/24E Page 41 of 53

REL99 Band II, Left Band Edge

Report No.: RDG150717003-00C

REL99 Band II, Right Band Edge

FCC Part 22H/24E Page 42 of 53

HSDPA Band II, Left Band Edge

Report No.: RDG150717003-00C

HSDPA Band II, Right Band Edge

FCC Part 22H/24E Page 43 of 53

HSUPA Band II, Left Band Edge

Report No.: RDG150717003-00C

HSUPA Band II, Right Band Edge

FCC Part 22H/24E Page 44 of 53

REL99 Band V, Left Band Edge

Report No.: RDG150717003-00C

REL99 Band V, Right Band Edge

FCC Part 22H/24E Page 45 of 53

HSDPA Band V, Left Band Edge

Report No.: RDG150717003-00C

HSDPA Band V, Right Band Edge

FCC Part 22H/24E Page 46 of 53

HSUPA Band V, Left Band Edge

Report No.: RDG150717003-00C

HSUPA Band V, Right Band Edge

FCC Part 22H/24E Page 47 of 53

FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a), § 2.1055 (d), §22.355, §24.235

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public Mobile Ser	
	rvices

Report No.: RDG150717003-00C

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

FCC Part 22H/24E Page 48 of 53

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Dongzhixu	High Temperature Test Chamber	DP1000	201105083-3	2014-08-01	2015-08-01
R&S	Universal Radio Communication Tester	CMU200	109 038	2015-05-09	2016-05-09

Report No.: RDG150717003-00C

Test Data

Environmental Conditions

Temperature:	29.4 °C		
Relative Humidity:	54 %		
ATM Pressure:	100.2kPa		

The testing was performed by Dean Liu on 2015-08-05.

Cellular Band (Part 22H)

G	GMSK, Middle Channel, f _c = 836.6 MHz							
Temperature	Voltage	Voltage Frequency Error		Limit				
℃	V_{DC}	Hz	ppm	ppm				
-30	3.7	26	0.031	2.5				
-20	3.7	22	0.026	2.5				
-10	3.7	33	0.039	2.5				
0	3.7	25	0.030	2.5				
10	3.7	31	0.037	2.5				
20	3.7	26	0.031	2.5				
30	3.7	28	0.033	2.5				
40	3.7	23	0.027	2.5				
50	3.7	25	0.030	2.5				
25	3.5	30	0.036	2.5				
25	4.2	29	0.035	2.5				

FCC Part 22H/24E Page 49 of 53

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
°C	V_{DC}	Hz	ppm	ppm
-30	3.7	15	0.018	2.5
-20	3.7	20	0.024	2.5
-10	3.7	16	0.019	2.5
0	3.7	17	0.020	2.5
10	3.7	11	0.013	2.5
20	3.7	16	0.019	2.5
30	3.7	20	0.024	2.5
40	3.7	18	0.022	2.5
50	3.7	19	0.023	2.5
25	3.5	17	0.020	2.5
25	4.2	16	0.019	2.5

Report No.: RDG150717003-00C

WCDMA Band V: HSDPA

		The state of the s			
Middle Channel, f _c = 836.6 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Limit	
${\mathfrak C}$	V _{DC}	Hz	ppm	ppm	
-30	3.7	35	0.042	2.5	
-20	3.7	26	0.031	2.5	
-10	3.7	25	0.030	2.5	
0	3.7	37	0.044	2.5	
10	3.7	30	0.036	2.5	
20	3.7	22	0.026	2.5	
30	3.7	24	0.029	2.5	
40	3.7	26	0.031	2.5	
50	3.7	28	0.033	2.5	
25	3.5	31	0.037	2.5	
25	4.2	32	0.038	2.5	

FCC Part 22H/24E Page 50 of 53

WCDMA Band V: HSUPA

Middle Channel, f _c = 836.6 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Limit
°C	V _{DC}	Hz	ppm	ppm
-30	3.7	32	0.038	2.5
-20	3.7	27	0.032	2.5
-10	3.7	29	0.035	2.5
0	3.7	33	0.039	2.5
10	3.7	28	0.033	2.5
20	3.7	25	0.030	2.5
30	3.7	20	0.024	2.5
40	3.7	24	0.029	2.5
50	3.7	26	0.031	2.5
25	3.5	27	0.032	2.5
25	4.2	23	0.027	2.5

Report No.: RDG150717003-00C

PCS Band (Part 24E)

GMSK, Middle Channel, f _c = 1880.0 MHz					
Temperature	Voltage	Frequency Error	Frequency Error	Result	
℃	V_{DC}	Hz	ppm		
-30	3.7	22	0.012	Pass	
-20	3.7	15	0.008	Pass	
-10	3.7	17	0.009	Pass	
0	3.7	24	0.013	Pass	
10	3.7	26	0.014	Pass	
20	3.7	20	0.011	Pass	
30	3.7	19	0.010	Pass	
40	3.7	21	0.011	Pass	
50	3.7	23	0.012	Pass	
25	3.5	24	0.013	Pass	
25	4.2	20	0.011	Pass	

FCC Part 22H/24E Page 51 of 53

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
ပ	V _{DC}	Hz	ppm	
-30	3.7	23	0.012	Pass
-20	3.7	26	0.014	Pass
-10	3.7	28	0.015	Pass
0	3.7	24	0.013	Pass
10	3.7	20	0.011	Pass
20	3.7	22	0.012	Pass
30	3.7	18	0.010	Pass
40	3.7	27	0.014	Pass
50	3.7	25	0.013	Pass
25	3.5	17	0.009	Pass
25	4.2	20	0.011	Pass

Report No.: RDG150717003-00C

WCDMA Band II: HSDPA

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
°C	V_{DC}	Hz	ppm	
-30	3.7	38	0.020	Pass
-20	3.7	43	0.023	Pass
-10	3.7	45	0.024	Pass
0	3.7	34	0.018	Pass
10	3.7	35	0.019	Pass
20	3.7	39	0.021	Pass
30	3.7	31	0.016	Pass
40	3.7	47	0.025	Pass
50	3.7	45	0.024	Pass
25	3.5	44	0.023	Pass
25	4.2	43	0.023	Pass

FCC Part 22H/24E Page 52 of 53

Middle Channel, f _c = 1880.0 MHz				
Temperature	Voltage	Frequency Error	Frequency Error	Result
ဗ	V _{DC}	Hz	ppm	'
-30	3.7	27	0.014	Pass
-20	3.7	31	0.016	Pass
-10	3.7	28	0.015	Pass
0	3.7	24	0.013	Pass
10	3.7	29	0.015	Pass
20	3.7	20	0.011	Pass
30	3.7	21	0.011	Pass
40	3.7	29	0.015	Pass
50	3.7	22	0.012	Pass
25	3.5	21	0.011	Pass
25	4.2	28	0.015	Pass

Report No.: RDG150717003-00C

*****END OF REPORT****

FCC Part 22H/24E Page 53 of 53