D1 – A DATA PROJECT

AN ARDUINO UNO / WIFI KIT

MICRO SD READER / MICRO SD / LCD / SENSOR

AlbaElektronica

Index

Required hardware & software	1
Inside the box	1
D1 = Arduino Uno / Wifi	2
OLED Display 12864 module	2
Micro SD card adapter	2
A simple sensor	3
Putting all together	3

Required hardware & software

Connect D1 with computer / Raspberry Pi either by wired cable / Wifi

A phone / pad using an Arduino application (not all phones supports)

The Arduino app / software / IoT

Inside the box

Arduino Uno R3	D1 board with WiFi	
Charger Arduino	micro USB / USB	
Liquid Crystical Display	OLED Display 12864 module	
Connectors	male-female / male-male (x 12)	
Micro SD card	32 G (x1)	
Sensor	Photosensitive resistor module (x1)	
MicroSD card adapter	Mini TF card reader / writer	
Manual	Description / Tips	
USB / USBC adapter	USB to USB C adapter	

D1 = Arduino Uno / Wifi

- → Uses the pinout of Arduino Uno!
- → Download software from Arduino.cc; Install
- → Install the D1 board using the Esp8266 library
- → Select the board Wemos D1 R2
- → Select the port of the connection

OLED Display 12864 module

The OLED display has a 128x64 resolution and a I2C SSD1306 LCD interface

- → Connect the pins Arduino ← → I2C LCD module with male / female connectors
- → Install the Arduino library ESP8266 and ESP32 OLED driver for SSD1306 displays
- → Test the module by running the SSD1305DrawingDemo application or another application.

Tips

- → Follow the advise for the pinout from the demo file: $GNC \longleftrightarrow GNC, Vcc \longleftrightarrow 5V, SDA \longleftrightarrow D3, SCL \longleftrightarrow D5$
- → There are a number of libraries for the OLED displays which you could try out

Micro SD card adapter

The MicroSD card adapter has a mini TF card reader module and uses a SPI Interface with level converter

- → Connect the Arduino with the MicroSD card module with the male / female connectors
- → Insert the MicroSD card
- Test the module by running one of the examples of the SD library

Tips

→ Follow the advice for the pinout from the demo file, for example, the read / write file

Albaelectronics.nl

- → GND \longleftrightarrow GND, \lor cc \longleftrightarrow 5V, MOSI \longleftrightarrow D11, MISO \longleftrightarrow D12, CLK \longleftrightarrow D13, CS \longleftrightarrow D4
- → SD uses the SPI interface and is integrated in Arduino

A simple sensor

The KY-018 sensor module has a photosensitive resistor to detect light and intensity

- → Connect the sensor to the Arduino board using the signal on an analog pin, for example A5
- → Use the extra 5V and GND slots from D1 to connect the other two pins $S \leftarrow \rightarrow A5, + \leftarrow \rightarrow +5V, -\leftarrow \rightarrow GND$
- → Test with a simple program reading the analog input A5

Putting all together

The three modules, naming the MicroSD card, OLED display and the sensor, function on a single D1 board using a program combining their functionality

→ Examples of programs and projects you can find on Arduino.