Chapter 4

Homework 21935004 谭焱

Exercise 4.1. 证 φ 是自然, 即 $h:(X,x_0)\to (Y,y_0)$ 连续, 则有交换图表

$$\begin{array}{ccc}
\pi_1(X, x_0) & \xrightarrow{\varphi} & \mathrm{H}_1(X) \\
\downarrow h_* & & \downarrow h_\# \\
\pi_1(Y, y_0) & \xrightarrow{\varphi} & \mathrm{H}_1(Y)
\end{array}$$

Solution. 令 $f: I \to X$ 是 X 中 x_0 处一条闭道路, $\eta: \Delta^1 \to I$ 是同胚 $(1-t)e_0 + te_1 \mapsto t$. 则

$$\varphi \circ h_*([f]) = \varphi([h \circ f]) = \operatorname{cls} h \circ f \circ \eta$$
$$h_\# \circ \varphi([f]) = h_\#(\operatorname{cls} f \circ \eta) = \operatorname{cls} h \circ f \circ \eta$$

所以交换图表成立.

Exercise 4.2. 如果 f 是 X 上一条道路, f^{-1} 是逆道路, 则存在 $\zeta \in S_2(X)$

使
$$\partial \zeta = f \circ \eta + f^{-1} \circ \eta$$

Solution. 定义 $\Delta^2 \to X$ 上的 σ 满足 $\sigma(1-t,t,0) = f(t), \sigma(0,1-t,t) = f^{-1}(t), \sigma(1-t,0,t) = (f*f^{-1})(t).$ 然后在 Δ 任一点定义 σ , φ σ 在点 a=a(t)=(1-t,t,0) 和点 b=b(t)=((2-t)/2,0,t/2) 之间是常数, 在点 c=c(t)=(0,1-t,t) 和点 d=d(t)=((1-t)/2,0,(1+t)/2) 之间是常数. 因为 $f(1)=f^{-1}(0)$,可以检验如此定义的 $\sigma:\Delta^2 \to X$ 是连续的, 所以 $\sigma \in S_2(X)$. 并且由于 $[f*f^{-1}]=[i_p](p$ 是路径f的终点),因此令 $\zeta=\sigma$

$$\partial \zeta = \zeta \varepsilon_0 - \zeta \varepsilon_1 + \zeta \varepsilon_2 = f \circ \eta + f^{-1} \circ \eta - i_p \circ \eta = f \circ \eta + f^{-1} \circ \eta$$

Exercise 4.3. 设 X 是拓扑空间, α, β 是两道路且 $\alpha(1) = \beta(0), \alpha(0) = \beta(1), 则 <math>\varphi([a * \beta]) = \operatorname{cls}(\alpha \circ \eta + \beta \circ \eta).$

Solution. 类似 Exercise 4.2 定义 $\sigma: \Delta^2 \to X$, 使得 $\sigma(1-t,t,0) = \alpha(t), \sigma(0,1-t,t) = \beta(t), \sigma(1-t,0,t) = (\alpha*\beta)(t)$. 并且令 σ 在点 a=a(t)=(1-t,t,0) 和点 b=b(t)=((2-t)/2,0,t/2) 之间是常数, 在点 c=c(t)=(0,1-t,t) 和点 d=d(t)=((1-t)/2,0,(1+t)/2) 之间是常数. 因为 $\alpha(1)=\beta(0)$, 验证可得 σ 连续. 取边界 $\partial\sigma=\sigma\varepsilon_0-\sigma\varepsilon_1+\sigma\varepsilon_2=\alpha\circ\eta-(\alpha*\beta)\circ\eta+\beta\circ\eta$. 又因为 $\partial\sigma\in B_1(X)$ 和 $\alpha(0)=\beta(1),\beta(0)=\alpha(1)$ 可得 $\alpha*\beta$ 是 X 上闭道路, 即 $[\alpha*\beta]\in\pi_1(X,x_0),x_0=\alpha(0)$. 综上

$$\varphi([\alpha * \beta]) = \varphi([\alpha * \beta]) + \partial \sigma = \operatorname{cls}((\alpha * \beta) \circ \eta + \alpha \circ \eta - (\alpha * \beta) \circ \eta + \beta \circ \eta) = \operatorname{cls}(\alpha \circ \eta + \beta \circ \eta)$$