Week5 monday

Warmup: Design a CFG to generate the language $\{a^ib^j\mid j\geq i\geq 0\}$

Sample derivation:

Design a PDA to recognize the language $\{a^ib^j\mid j\geq i\geq 0\}$

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by some push-down automaton.

Definition: a language is called **context-free** if it is the language generated by a context-free grammar. The class of all context-free language over a given alphabet Σ is called **CFL**.

Consequences:

- Quick proof that every regular language is context free
- To prove closure of the class of context-free languages under a given operation, we can choose either of two modes of proof (via CFGs or PDAs) depending on which is easier
- To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet, stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of how its computations would process input strings; the reader should be able to reconstruct the state diagram or formal definition precisely from such a descripton. The informal description of a PDA can refer to some common modules or subroutines that are computable by PDAs:
 - PDAs can "test for emptiness of stack" without providing details. *How?* We can always push a special end-of-stack symbol, \$, at the start, before processing any input, and then use this symbol as a flag.
 - PDAs can "test for end of input" without providing details. *How?* We can transform a PDA to one where accepting states are only those reachable when there are no more input symbols.

Suppose L_1 and L_2 are context-free languages over Σ . Goal: $L_1 \cup L_2$ is also context-free.

Approach 1: with PDAs

Let $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, F_2)$ be PDAs with $L(M_1) = L_1$ and $L(M_2) = L_2$.

Define M =

 $Approach\ 2:\ with\ CFGs$

Let $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ be CFGs with $L(G_1) = L_1$ and $L(G_2) = L_2$.

Define G =

Suppose L_1 and L_2 are context-free languages over Σ . Goal: $L_1 \circ L_2$ is also context-free.

Approach 1: with PDAs

Let $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, F_2)$ be PDAs with $L(M_1) = L_1$ and $L(M_2) = L_2$.

Define M =

 $Approach \ 2: \ with \ CFGs$

Let $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ be CFGs with $L(G_1) = L_1$ and $L(G_2) = L_2$.

Define G =

Week4 friday

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language described by a regular expression is built up recursively according to the expression's syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle, beginning, or end of the final string as the derivation proceeds.

Definitions below are on pages 101-102.

Term	Typical symbol	Meaning
	or Notation	
Context-free grammar (CFG)	G	$G = (V, \Sigma, R, S)$
The set of variables	V	Finite set of symbols that represent phases in pro-
		duction pattern
The set of terminals	Σ	Alphabet of symbols of strings generated by CFG
	_	$V \cap \Sigma = \emptyset$
The set of rules	R	Each rule is $A \to u$ with $A \in V$ and $u \in (V \cup \Sigma)^*$
The start variable	S	Usually on left-hand-side of first/ topmost rule
Derivation	$S \Rightarrow \cdots \Rightarrow w$	Sequence of substitutions in a CFG (also written $S \Rightarrow^* w$). At each step, we can apply one rule to one occurrence of a variable in the current string by substituting that occurrence of the variable with the right-hand-side of the rule. The derivation must end when the current string has only terminals (no variables) because then there are no instances of variables to apply a rule to.
Language generated by the context-free grammar G	L(G)	The set of strings for which there is a derivation in G . Symbolically: $\{w \in \Sigma^* \mid S \Rightarrow^* w\}$ i.e.
		$\{w \in \Sigma^* \mid \text{there is derivation in } G \text{ that ends in } w\}$
Context-free language		A language that is the language generated by some context-free grammar

Examples of context-free grammars, derivations in those grammars, and the languages generated by those grammars

$$G_1 = (\{S\}, \{0\}, R, S)$$
 with rules

$$S \to 0 S$$

$$S \to 0$$

In
$$L(G_1)$$
 ...

Not in $L(G_1)$...

 $S \to 0S \mid 1S \mid \varepsilon$

In $L(G_2)$...

Not in $L(G_2)$...

 $(\{S, T\}, \{0, 1\}, R, S)$ with rules

$$\begin{split} S &\to T1T1T1T \\ T &\to 0T \mid 1T \mid \varepsilon \end{split}$$

In $L(G_3)$...

Not in $L(G_3)$...

 $G_4 = (\{A, B\}, \{0, 1\}, R, A)$ with rules

 $A \rightarrow 0A0 \mid 0A1 \mid 1A0 \mid 1A1 \mid 1$

In $L(G_4)$...

Not in $L(G_4)$...

Design a CFG to generate the language $\{a^nb^n\mid n\geq 0\}$		
Sample derivation:		