Name :			· ·			
		• • • • • • • • • • • • • • • • • • • •	1.0			••••
		Signature :			No. e ²²	···
		CS,	/MCA/SI 200	em-1, 9	/M(MCA)-	101/2009-10
		RETE MAT	nema'i	ITCA	•	
Time All	otted	: 3 Hours			F	'ull Marks : 70
	T	he figures in t	he margin	indic	ate full ma	rks.
Candid		are required		eir ans	wers in the	eir own words
		(Multiple (GROUP Choice T		uestions))
	oose owin		t alterna	atives	for any	ten of the $10 \times 1 = 10$
i)	The	e number of a	arrangeme	ents o	f 25 object	ts where 7 are
	,					d, 3 are of the
		rd kind and 4			•	
	a)	25! 7! 2! 3! 4!		b)	25! 7! 2!	given by
	c)	25! 3! 4!		d)	none of t	hese.
ii)	The	e coefficient of	X^{25} in (2)	X ³ + X	$^4+X^5+\ldots)^{!}$	is
	a)	C(9,5)		b)	C(5,9)	•
	c)	C(5,5)		d)	C (9,9).	,
11918						/ [Turn over

- iii) Which one is a singleton
 - a) $\{0, 1\}$

b) {1, 11, 111}

c) {0}

- d) None of these.
- iv) If A is a proper subset of a non-empty set S and two subsets A and A' are non-empty, then which one is true?
 - a) $A \cup A' = S$
- b) $A \cap A' = \phi$
- c) both (a) & (b)
- d) None of these.
- v) In the following graph

 $deg(V_3)$ is

a) 1

b) 0

c) 2

- d) 5.
- vi) If A and B are two subsets, then A and B are said to be disjoint if
 - a) $A \cap B = \phi$
- b) $A \cup B = \phi$
- c) $A-B=\phi$
- d) none of these.
- vii) If a set $S = \{1, 2, 3\}$, then the power set of S is
 - (a) $\{\phi, S\}$

b) $\{\phi\}$

c) {S}

d) none of these.

11918

•		arranged?		s of the word 'LEADE
	a)	72	b)	144
	c)	360	d)	None of these.
ix)	In a	a binary tree, the	parent may	have
	a)	right child		
	b)	left child		
	c)	both right and l	eft childs	
	d)	right or left or b	oth childs.	
x)		e Fuzzy logic is l course to	oased on n	napping the universe
	a)	[0, 1]	b)	(0, 1)
	c)	{0,1}	d)	none of these.
xi)		Prime's Algorithm en as	, the weigh	t of non-existing edge
	a)	0	b)	+ ∞
	c)	1	d)	none of these.
xii)	Let	L be a language g	given by L-	${a^n b^n : n \ge 0}$, then L^2
	equ	al to		
	a)	$\left\{a^n b^n a^m b^m : n \right\}$	$\geq 0, m \geq 0$	
	b)	$\left\{a^n b^n : n \ge 0\right\}$		
	c)	$\left\{a^n b^n a^m b^m : n \right\}$	≥0}	
	d)	none of these.		
8		,	3	[Turn ov

xiii) If n be the number of vertices, e be the number of edges and k be the number of components of a graph G, then

- a) $e \ge n + k$
- b) $e \ge n k$
- c) $e \le n k$
- d) none of these.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. Consider the language $L = \{0^n \ 1^n : n \neq m\}$, find a context free grammar G which generates L.
- 3. Show that the maximum number of edges in a simple graph with n vertices is n(n-1)/2.
- 4. Let A be some fixed 10-element subset of $S = \{1, 2, 3, 4, 5, 50\}$. Show that A possesses two different 5-element subsets, the sums of whose elements are equal.
- 5. Solve the following using generating function : $a_n a_{n-1} = 3(n-1), n \ge 1, \text{ and where } a_0 = 2.$
- 6. Find the coefficient of x^{18} in

$$(x + x^2 + x^3 + x^4 + x^5) (x^2 + x^3 + x^4 + x^5 +)^5$$

- 7. Obtain equivalent disjunctive normal form of $\sim G \land (H \Leftrightarrow G)$.
- 8. Design a finite state machine that performs serial addition.

11918

GROUP - C and M. darif evor

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

9. a) Let $X = \{1, 2, 3, \dots, 7\}$ and

 $R = \{(x, y) : x - y \text{ is divisible by 3}\}$. Prove that R is an equivalence relation and draw the relation graph.

b) Find the transitive closure of a relation R on the set $\{a, b, c\}$, whose relation matrix M_R is given as

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

7 + 8

- 10. a) Prove that 21 divides $4^{n+1} + 5^{2n-1}, \forall n > 0$.
 - b) Let M be the finite state machine with state table appearing in the following table:

	supple gray			g		
SA	а	b	С	а	b	С
S_0	S _o :	So	So	0	1	0
S_1	So	So	So	ia g jen	Prove t	1
S_2	So	So	So	1 100	0	0

- i) Find the input set A, the state set S, the output set O, and initial state of M.
 - ii) Draw the state diagram of M.

Find the output string for the input string aabbcc.

5 + 10

918

5

[Turn over

- 11. a) Prove that if there is one and only path between every pair of vertices in a graph G, then G is a tree.
 - b) Describe Kruskal's algorithm to find the Minimal spanning tree in a graph G. Use this algorithm to find minimal spanning tree for the following graph:

- c) Prove that a simple graph with n vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges. 5+5+5
- a) Prove that a simple graph has a spanning tree iff it is connected.
 - b) Find the sequence $\{y_x\}$ having the generating function G, given by $G(x) = \frac{3}{1-x} + \frac{1}{1-2x}$.
 - c) By mathematical induction prove that $3^{2n+1} + (-1)^n 2 \equiv 0 \pmod{5}$. 5+5+5

11918

13. a) Let $A = \{a, b, c\}$, find L^* and L^* where

$$i) \qquad L = \left\{b^2\right\}$$

ii)
$$L=\{a,b\}$$

b) Prove the following identities:

i)
$$\lambda + 1 * (011)* (1*(011))* = (1+011)*$$

function o as given in the followin

c) Draw the transition diagram of the non-deterministic finite-state automaton whose next state is given below:

S	0	awasaul era
S_0	$\{S_0,S_1\}$	$\{S_2\}$
s_1	Φ with	$\{S_1\}$
S_2	$\{S_1, S_2\}$	Φ

- 4. a) Show that $(p \lor q) \land (-p \land \sim q)$ is a contradiction.
 - b) Show that $R \wedge (P \vee Q)$ is a valid conclusion from the premises $P \vee Q$, $Q \Rightarrow R$, $P \Rightarrow M$ and $\sim M$.

.918

7

[Turn over

c) Determine a DFA from the NDFA $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$, with the state transition function δ as given in the following table:

States	Input		
→ q ₀	$\{q_0,q_1\}$	$\{q_1\}$	
q_1 (Final state)	: followin o identit	$\{q_0,q_1\}$	

5 + 5 + 5

15. a) Prove that a simple graph G(V, E) has a spanning tree iff G(V, E) is connected graph.

(110+H= ((110)*I)*(110)*1+x

- b) Define the following by example:
- Hatte-state automaton whose next stATO giv (i below
 - ii) NDFA
- c) If (A, \le) and (B, \le) are posets, then prove that $\{(A \times B, \le)\}$ is a poset with partial order \le defined as $(a, b) \le (a, b)$, if $a \le a$ in A and $b \le b$ in B. 5 + 5 + 5