Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №1 з дисципліни: «Схемотехніка-2. Цифрова схемотехніка»

ЕЛЕКТРОННІ КЛЮЧІ

Виконавець:		
Студент 4-го курсу	(підпис)	А.С. Мнацаканов
Перевірила:	(підпис)	Г.С. Порева

ПЕРЕМИКАЧ НАПРУГИ НА БІПОЛЯРНОМУ ТРАНЗИСТОРІ

Рис. 1: Перемикачі напруги на біполярному транзисторі та на МДН-транзисторі з індукованим каналом.

Мета роботи - дослідити статичні та динамічні характеристики електронного ключа на біполярному транзисторі (БТ) та схемні прийоми покращення параметрів цього типу електронного ключа.

Рис. 2: Перемикачі напруги на біполярному транзисторі.

Робоче завдання

Встановити лабораторний стенд «ИМПУЛЬС-М» в режим «ЛАБ-1» за допомогою перемикача лабораторних робіт, який знаходиться на задній панелі стенда. Ввімкнути кнопку «СЕТЬ».

I. За допомогою генератора Ген. подати на вхід ключа позитивний прямокутний імпульс тривалістю 200 мкс з частотою 1кГц. Зняти й побудувати передавальну характеристику. За допомогою цієї характеристики визначити статичні

параметри ключа: U_2^0 та U_1^2 . Для цього потрібно змінювати амплітуду вхідного імпульсу U_1 та визначати відповідну амплітуду сигналу на виході U_2 . Виконати вимірювання для наступних режимів роботи:

- 1. Схемі із відключеними компонентами: діодом , конденсаторами і та опором ($\Pi 1$ - $\Pi 4$).
- 2. Схема із підключеним діодом (натиснути П1).
- 3. Схема із підключеним конденсатором (натиснути $\Pi 2$).
- 4. Схема із підключеним резистором (натиснути П4).

Результати зазначений вимірювань занести в табл. 1 та відобразити на рис. 5.

U_1, B	1,8	2,4	2,6	2,8	2,9	3	3,2
U_2, B	5	4,8	4	2	1	0,5	0,5
(П1-П4↑)	5	4,0	4		1	0,5	0,5
U_2, B	5	4,8	4	2	2.5	2,5	2
для VD_1 (П1 \downarrow)	5	4,0	4	<i>\(\)</i>	۷,5	۷,5	2
U_2,B	5	4,8	4	2	1	0,5	0,4
для C_1 (П $2\downarrow$)		4,0	4	<i>\(\alpha \)</i>	1	0,0	0,4
U_2, B	5	4,9	15	3,8	3	0,5	0,5
для R_7 (П4↓)	J	4,3	4,0	9,0	J	0,0	0,0

Табл. 1: Результати вимірювання передавальної характеристики перемикача напруги на біполярному транзисторі для різних модифікацій схеми.

II За допомогою генератора Ген. подати на вхід ключа позитивний прямокутний імпульс із амплітудою $U_1^1=5$ В, тривалістю $t_{\rm Bx}=40$ мкс та частотою $f_{\rm Bx}=10$ к Γ ц.

Рис. 3: Результати вимірювання передавальної характеристики $U_2 = f(U_1)$ перемикача напруги на біполярному транзисторі для різних модифікацій схеми.

При вимірюваннях потрібно використати зовнішню синхронізацію осцилографа від генератора прямокутних імпульсів.

Визначити перехідну характеристику $U_2(t)$ транзисторного ключа при його вмиканні та розмиканні. З урахуванням масштабів замалювати діаграми вхідного $U_1(t)$ та вихідного $U_2(t)$ імпульсів за шаблоном, наведеним на рис. 1.5

тривалість фронтів вихідного сигналу t_{Φ}^{10} , t_{Φ}^{01} та тривалість затримок поширення вихідного сигналу відносно вхідного $t_{3\pi}^{10}$, $t_{3\pi}^{01}$. При виконанні вимірювань осцилограф потрібно налаштувати таким чином, щоб масштаб часу дозволяв визначити ці параметри максимально точно. Виконати вимірювання для наступних режимів роботи:

- 1. Схемі із відключеними компонентами: діодом VD_1 , конденсаторами C_1 і C_2 та опором R_7 (П1-П4).
- 2. Схема із підключеним діодом 1VD (натиснути П1).

- 3. Схема із підключеним конденсатором C_1 (натиснути $\Pi 2$).
- 4. Схема із підключеним конденсатором C_2 (натиснути $\Pi 3$).
- 5. Схема із підключеним резистором R_7 (натиснути $\Pi 4$).

	$t_{\Phi}^{10},{ m MKC}$	$t_{\Phi}^{01},{ m MKC}$	$t_{\scriptscriptstyle 3\Pi}^{10},{ m MKC}$	$t_{\scriptscriptstyle 3\Pi}^{01},{ m MKC}$
R_6				
(П1-П4)				
VD_1				
(П1)				
(Π2)				
R_7				
(Π4)				
C_3				
C_3 ($\Pi 3$)				

Табл. 2: Результати вимірювання фронтів вихідного сигналу t_{Φ}^{10} , t_{Φ}^{01} затримок поширення вихідного сигналу відносно вхідного $t_{\text{зп}}^{10}$, мкс $t_{\text{зп}}^{01}$ перемикача напруги на біполярному транзисторі для різних модифікацій схеми.

 рисунок рисунок

ПЕРЕМИКАЧ НАПРУГИ НА МДН – ТРАНЗИСТОРІ С ІНДУКОВАНИМ КАНАЛОІ

Мета роботи - дослідити статичні і динамічні параметри перемикача напруги на МДН - транзисторі з індукованим каналом.

Робоче завдання

I. За допомогою генератора Ген. подати на вхід ключа позитивний прямокутний імпульс тривалістю $t_{\rm вx}$ =200мкс з частотою $f_{\rm вx}$ =1 к Γ ц.

Рис. 4: Перемикачі напруги на МДН-транзисторі з індукованим каналом.

Зняти й побудувати передавальну характеристику . За допомогою цієї характеристики визначити статичні параметри ключа: U_2^0 та U_2^1 . Для цього потрібно змінювати амплітуду вхідного імпульсу U_1 та визначати відповідну амплітуду сигналу на виході U_2 .

Результати вимірювань звести до табл. 3 та відобразити за шаблоном, наведеним на рис. 5.

U_1 , B	2	2,2	2,4	2,5	2,6	2,61	2,7
U_2 , B	5	4,8	3	2	0,9	0,2	0,1

Табл. 3: Результати вимірювання передавальної характеристики $U_2 = f(U_1)$ перемикача напруги на МДН-транзисторі з індукованим каналом

II За допомогою генератора Ген. подати на вхід ключа позитивний прямокутний імпульс із амплітудою U_1^1 =5B, тривалістю $t_{\rm ex}$ =40мкс та частотою $f_{\rm ex}$ =10кГц. При вимірюваннях потрібно використати зовнішню синхронізацію осцилографа від генератора прямокутних імпульсів. Визначити перехідну характеристику $U_2(t)$ транзисторного ключа при його вмиканні та розмиканні. З урахуванням масштабів замалювати діаграми вхідного $U_1(t)$ та вихідного $U_2(t)$ імпульсів за шаблоном. За допомогою осцилографа визначити динамічні параметри ключа: тривалість фронтів вихідного сигналу t_{Φ}^{10} , t_{Φ}^{01} та тривалість затримок поширення вихідного сигналу відносно вхідного $t_{\rm 3B}^{10}$. При виконанні вимірювань осцилограф потрібно

Рис. 5: Передавальна характеристика $U_2 = f(U_1)$ перемикача напруги на МДНтранзисторі з індукованим каналом.

налаштувати таким чином, щоб масштаб часу дозволяв визначити ці параметри максимально точно.

t_{Φ}^{10} , MKC	t_{Φ}^{01} , MKC	$t_{\scriptscriptstyle 3B}^{10}$, MKC	$t_{\scriptscriptstyle 3B}^{01}$, MKC
0,75	0,5	1	1

Табл. 4: Результати вимірювання фронтів вихідного сигналу, та затримок поширення вихідного сигналу відносно вхідного, перемикача напруги на МДНтранзисторі з індукованим каналом.