Let $F = A_0 A_1 \dots A_n$ be a convex polygon in the plane. Define for all $1 \le k \le n-1$ the operation f_k which replaces F with the new polygon

$$f_k(F) = A_0 \dots A_{k-1} A'_k A_{k+1} \dots A_n,$$

where A_k' is the point symmetric to A_k with respect to the perpendicular bisector of $A_{k-1}A_{k+1}$. Prove that $(f_1 \circ f_2 \circ \cdots \circ f_{n-1})^n(F) = F$. We suppose that all operations are well-defined on the polygons, to which they are applied, i.e. results are convex polygons again. (A_0, A_1, \ldots, A_n) are the vertices of F in consecutive order.)