$12n_{0306} \ (K12n_{0306})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^{25} - 12u^{24} + \dots + 2b + 3, \ u^{25} + 10u^{24} + \dots + 4a + 11, \ u^{26} + 4u^{25} + \dots - u - 1 \rangle$$

$$I_2^u = \langle b, \ u^2 + a - u, \ u^3 - u^2 + 1 \rangle$$

$$I_3^u = \langle b, \ -u^2a + a^2 + 2au + u^2 - a - 2u + 2, \ u^3 - u^2 + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{25} - 12u^{24} + \dots + 2b + 3, \ u^{25} + 10u^{24} + \dots + 4a + 11, \ u^{26} + 4u^{25} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{4}u^{25} - \frac{5}{2}u^{24} + \dots - \frac{13}{2}u - \frac{11}{4} \\ \frac{3}{2}u^{25} + 6u^{24} + \dots + u - \frac{3}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{25} - \frac{9}{4}u^{24} + \dots - \frac{15}{2}u - \frac{17}{4} \\ \frac{1}{4}u^{24} + \frac{5}{4}u^{23} + \dots + \frac{7}{4}u^{2} + \frac{3}{4}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{7}{4}u^{25} - \frac{17}{2}u^{24} + \dots - \frac{15}{2}u - \frac{5}{4} \\ \frac{3}{2}u^{25} + 6u^{24} + \dots + u - \frac{3}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} - 2u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{3}{4}u^{25} - \frac{13}{4}u^{24} + \dots - \frac{7}{4}u + \frac{1}{4} \\ \frac{1}{4}u^{25} + u^{24} + \dots + 3u^{2} - \frac{1}{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{4}u^{23} + \frac{3}{4}u^{22} + \dots + \frac{9}{4}u + \frac{5}{4} \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{11}{4}u^{25} + \frac{21}{2}u^{24} + \dots + \frac{17}{4}u \frac{35}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{26} + 4u^{25} + \dots + 15u + 1$
c_2, c_5	$u^{26} + 4u^{25} + \dots - u - 1$
<i>c</i> ₃	$u^{26} - 4u^{25} + \dots - 103464u - 31428$
c_4, c_9	$u^{26} - u^{25} + \dots - 3456u^2 + 512$
c_7, c_8, c_{11}	$u^{26} - 4u^{25} + \dots + 7u - 1$
c_{10}	$u^{26} + 4u^{25} + \dots + 889u - 193$
c_{12}	$u^{26} + 28u^{24} + \dots + 25u + 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{26} + 40y^{25} + \dots - 15y + 1$
c_2, c_5	$y^{26} - 4y^{25} + \dots - 15y + 1$
<i>c</i> ₃	$y^{26} + 124y^{25} + \dots - 27391370184y + 987719184$
c_4, c_9	$y^{26} - 49y^{25} + \dots - 3538944y + 262144$
c_7, c_8, c_{11}	$y^{26} + 28y^{25} + \dots - 23y + 1$
c_{10}	$y^{26} + 28y^{25} + \dots - 417831y + 37249$
c_{12}	$y^{26} + 56y^{25} + \dots - 1231y + 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.927978 + 0.281302I		
a = -0.892022 + 0.688694I	2.80822 + 0.17134I	-6.35112 - 1.45434I
b = -0.624177 + 0.789814I		
u = -0.927978 - 0.281302I		
a = -0.892022 - 0.688694I	2.80822 - 0.17134I	-6.35112 + 1.45434I
b = -0.624177 - 0.789814I		
u = 0.736454 + 0.746707I		
a = 0.855774 + 0.275171I	3.28913 - 1.44124I	-2.49548 + 1.39542I
b = -0.860539 + 0.488199I		
u = 0.736454 - 0.746707I		
a = 0.855774 - 0.275171I	3.28913 + 1.44124I	-2.49548 - 1.39542I
b = -0.860539 - 0.488199I		
u = 0.930739 + 0.665116I		
a = -0.109280 - 0.822401I	2.63703 - 3.89810I	-3.35232 + 6.23910I
b = 0.882348 + 0.149927I		
u = 0.930739 - 0.665116I		
a = -0.109280 + 0.822401I	2.63703 + 3.89810I	-3.35232 - 6.23910I
b = 0.882348 - 0.149927I		
u = -0.828014		
a = 0.505037	-1.35925	-5.94650
b = 0.430120		
u = 0.670758 + 0.970438I		
a = -1.198940 - 0.023490I	10.51200 - 0.45901I	-0.702444 + 1.109804I
b = 1.59537 - 1.11430I		
u = 0.670758 - 0.970438I		
a = -1.198940 + 0.023490I	10.51200 + 0.45901I	-0.702444 - 1.109804I
b = 1.59537 + 1.11430I		
u = -0.437740 + 0.645989I		
a = -0.332493 + 0.449600I	4.72486 + 3.33852I	-2.36603 - 3.49962I
b = 0.029303 + 1.123950I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.437740 - 0.645989I		
a = -0.332493 - 0.449600I	4.72486 - 3.33852I	-2.36603 + 3.49962I
b = 0.029303 - 1.123950I		
u = 1.079900 + 0.695708I		
a = -0.362002 + 1.203280I	9.04679 - 5.69366I	-2.13177 + 3.88502I
b = -1.56097 - 0.59580I		
u = 1.079900 - 0.695708I		
a = -0.362002 - 1.203280I	9.04679 + 5.69366I	-2.13177 - 3.88502I
b = -1.56097 + 0.59580I		
u = -0.953135 + 0.981373I		
a = 1.41685 - 1.08331I	14.7661 + 0.7496I	-4.35446 + 0.19083I
b = -2.31682 + 0.09546I		
u = -0.953135 - 0.981373I		
a = 1.41685 + 1.08331I	14.7661 - 0.7496I	-4.35446 - 0.19083I
b = -2.31682 - 0.09546I		
u = -0.996483 + 0.952652I		
a = -1.54076 + 1.18418I	14.6174 + 6.3423I	-4.67499 - 4.46303I
b = 2.26473 + 0.34444I		
u = -0.996483 - 0.952652I		
a = -1.54076 - 1.18418I	14.6174 - 6.3423I	-4.67499 + 4.46303I
b = 2.26473 - 0.34444I		
u = -0.918139 + 1.031730I		
a = -1.21694 + 1.06831I	-17.5237 - 3.4354I	-1.66037 + 0.61088I
b = 2.52632 - 0.56908I		
u = -0.918139 - 1.031730I		
a = -1.21694 - 1.06831I	-17.5237 + 3.4354I	-1.66037 - 0.61088I
b = 2.52632 + 0.56908I		
u = -1.046110 + 0.939916I		
a = 1.58869 - 1.30078I	-17.9709 + 10.6421I	-2.17770 - 4.87168I
b = -2.33420 - 0.78739I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.046110 - 0.939916I		
a = 1.58869 + 1.30078I	-17.9709 - 10.6421I	-2.17770 + 4.87168I
b = -2.33420 + 0.78739I		
u = 0.547038 + 0.202189I		
a = 2.44519 + 0.75423I	2.36049 - 3.21762I	0.10564 + 7.29080I
b = -0.603638 + 0.076459I		
u = 0.547038 - 0.202189I		
a = 2.44519 - 0.75423I	2.36049 + 3.21762I	0.10564 - 7.29080I
b = -0.603638 - 0.076459I		
u = -0.482360 + 0.313885I		
a = 0.443368 - 0.835553I	-0.662371 + 1.026000I	-7.80706 - 6.48797I
b = 0.021358 - 0.703916I		
u = -0.482360 - 0.313885I		
a = 0.443368 + 0.835553I	-0.662371 - 1.026000I	-7.80706 + 6.48797I
b = 0.021358 + 0.703916I		
u = 0.422126		
a = -2.69989	-1.56806	-4.11730
b = 0.531699		

II.
$$I_2^u = \langle b, u^2 + a - u, u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + u \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{2} + 2u + 1 \\ u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + u \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{2} - u \\ u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} - 2 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 + 9u 11$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_8	$u^3 - u^2 + 2u - 1$
c_2	$u^3 + u^2 - 1$
c_4, c_9	u^3
c_5, c_{10}, c_{12}	$u^3 - u^2 + 1$
c_6, c_{11}	$u^3 + u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_8, c_{11}$	$y^3 + 3y^2 + 2y - 1$
c_2, c_5, c_{10} c_{12}	$y^3 - y^2 + 2y - 1$
c_4, c_9	y^3

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I		
a = 0.662359 - 0.562280I	6.04826 - 5.65624I	-3.31813 + 5.39661I
b = 0		
u = 0.877439 - 0.744862I		
a = 0.662359 + 0.562280I	6.04826 + 5.65624I	-3.31813 - 5.39661I
b = 0		
u = -0.754878		
a = -1.32472	-2.22691	-18.3640
b = 0		

III.
$$I_3^u = \langle b, -u^2a + a^2 + 2au + u^2 - a - 2u + 2, u^3 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} au + 2a \\ u^{2}a - au - a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2}a + au + u^{2} - a - 2u + 3 \\ -u^{2}a + u^{2} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} au + 2u^{2} - a - u \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^2a + au a + 3u 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_7 c_8	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4, c_9	u^6
c_5, c_{10}, c_{12}	$(u^3 - u^2 + 1)^2$
c_6, c_{11}	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_6 \\ c_7, c_8, c_{11}$	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5, c_{10} c_{12}	$(y^3 - y^2 + 2y - 1)^2$
c_4, c_9	y^6

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.877439 + 0.744862I $a = -0.447279 - 0.744862I$	e 0499e	2.00217 + 0.502007
a = -0.447279 - 0.7448027 $b = 0$	6.04826	-2.00317 + 0.50299I
u = 0.877439 + 0.744862I		
a = -0.092519 + 0.562280I	1.91067 - 2.82812I	-6.28492 + 2.09676I
b = 0		
u = 0.877439 - 0.744862I $a = -0.447279 + 0.744862I$	6.04826	-2.00317 - 0.50299I
b = 0		
u = 0.877439 - 0.744862I		
a = -0.092519 - 0.562280I	1.91067 + 2.82812I	-6.28492 - 2.09676I
b = 0		
u = -0.754878		
a = 1.53980 + 1.30714I	1.91067 - 2.82812I	-10.21191 - 0.80415I
b = 0		
u = -0.754878		
a = 1.53980 - 1.30714I	1.91067 + 2.82812I	-10.21191 + 0.80415I
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^3)(u^{26} + 4u^{25} + \dots + 15u + 1)$
c_2	$((u^3 + u^2 - 1)^3)(u^{26} + 4u^{25} + \dots - u - 1)$
<i>c</i> ₃	$((u^3 - u^2 + 2u - 1)^3)(u^{26} - 4u^{25} + \dots - 103464u - 31428)$
c_4, c_9	$u^9(u^{26} - u^{25} + \dots - 3456u^2 + 512)$
<i>C</i> ₅	$((u^3 - u^2 + 1)^3)(u^{26} + 4u^{25} + \dots - u - 1)$
<i>C</i> ₆	$((u^3 + u^2 + 2u + 1)^3)(u^{26} + 4u^{25} + \dots + 15u + 1)$
c_7, c_8	$((u^3 - u^2 + 2u - 1)^3)(u^{26} - 4u^{25} + \dots + 7u - 1)$
c_{10}	$((u^3 - u^2 + 1)^3)(u^{26} + 4u^{25} + \dots + 889u - 193)$
c_{11}	$((u^3 + u^2 + 2u + 1)^3)(u^{26} - 4u^{25} + \dots + 7u - 1)$
c_{12}	$((u^3 - u^2 + 1)^3)(u^{26} + 28u^{24} + \dots + 25u + 3)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$((y^3 + 3y^2 + 2y - 1)^3)(y^{26} + 40y^{25} + \dots - 15y + 1)$
c_2,c_5	$((y^3 - y^2 + 2y - 1)^3)(y^{26} - 4y^{25} + \dots - 15y + 1)$
<i>c</i> ₃	$(y^3 + 3y^2 + 2y - 1)^3$ $\cdot (y^{26} + 124y^{25} + \dots - 27391370184y + 987719184)$
c_4, c_9	$y^9(y^{26} - 49y^{25} + \dots - 3538944y + 262144)$
c_7, c_8, c_{11}	$((y^3 + 3y^2 + 2y - 1)^3)(y^{26} + 28y^{25} + \dots - 23y + 1)$
c_{10}	$((y^3 - y^2 + 2y - 1)^3)(y^{26} + 28y^{25} + \dots - 417831y + 37249)$
c_{12}	$((y^3 - y^2 + 2y - 1)^3)(y^{26} + 56y^{25} + \dots - 1231y + 9)$