Quantifying Uncertainty

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

8 Mar 2016

Outline

- Probability Theory
 - Probability Basics
 - Prior, Joint and Conditional Probabilities
- Probability Distributions
 - Probability Distribution Basics
 - Inference from Joint Distributions
- 3 Using Independence
 - Independence
 - Bayes' Rule
 - Wumpus World Example

Outline

- Probability Theory
 - Probability Basics
 - Prior, Joint and Conditional Probabilities
- Probability Distributions
 - Probability Distribution Basics
 - Inference from Joint Distributions
- 3 Using Independence
 - Independence
 - Bayes' Rule
 - Wumpus World Example

Goal

Look out window - is it warm?

Rules

 $\forall d \ Sunny(d) \Rightarrow Warm(d)$

Wrong; it can be sunny but cold

 $\forall d \ Warm(d) \Rightarrow Sunny(d)$

Wrong; it can be warm and cloudy

Problem

Goal

Look out window - is it warm?

Rules

 $\forall d \ Sunny(d) \Rightarrow Warm(d)$

Wrong; it can be sunny but cold

 $\forall d \ Warm(d) \Rightarrow Sunny(d)$

Wrong; it can be warm and cloudy

Problem

Goal

Look out window - is it warm?

Rules

 $\forall d \ Sunny(d) \Rightarrow Warm(d)$

Wrong; it can be sunny but cold

 $\forall d \ Warm(d) \Rightarrow Sunnv(d)$

Wrong; it can be warm and cloudy

Problem

Goal

Look out window - is it warm?

Rules

 $\forall d \ Sunny(d) \Rightarrow Warm(d)$

Wrong; it can be sunny but cold

 $\forall d \ Warm(d) \Rightarrow Sunny(d)$

Problem

Goal

Look out window - is it warm?

Rules

 $\forall d \ Sunny(d) \Rightarrow Warm(d)$

Wrong; it can be sunny but cold

 $\forall d \ Warm(d) \Rightarrow Sunny(d)$

Wrong; it can be warm and cloudy

Problem

Goal

Look out window - is it warm?

Rules

 $\forall d \ Sunny(d) \Rightarrow Warm(d)$

Wrong; it can be sunny but cold

 $\forall d \ Warm(d) \Rightarrow Sunny(d)$

Wrong; it can be warm and cloudy

Problem

Key Idea

Measure degrees of belief in propositions

```
Random Variable An interesting part of the world e.g. Sky or Temp

Domain Possible values of a random variable e.g. domain(Temp) = \langle warm, cold, ... \rangle

Proposition A statement, like propositional logic e.g. Sky = sunny \land Temp = warm

Probability The degree of belief in a proposition
```

Key Idea

Measure degrees of belief in propositions

Random Variable An interesting part of the world e.g. *Sky* or *Temp*

Domain Possible values of a random variable e.g. $domain(Temp) = \langle warm, cold, \dots \rangle$

Proposition A statement, like propositional logic e.g. $Sky = sunny \wedge Temp = warm$

Probability The degree of belief in a proposition e.g. P(Temp = warm) = 0.7

Key Idea

Measure degrees of belief in propositions

```
Random Variable An interesting part of the world
e.g. Sky or Temp

Domain Possible values of a random variable
e.g. domain(Temp) = ⟨warm, cold, . . . ⟩
```

Proposition A statement, like propositional logic e.g. $Sky = sunny \land Temp = warm$ Probability The degree of belief in a proposition e.g. P(Temp = warm) = 0.7

Key Idea

Measure degrees of belief in propositions

```
Random Variable An interesting part of the world e.g. Sky or Temp

Domain Possible values of a random variable e.g. domain(Temp) = \langle warm, cold, ... \rangle

Proposition A statement, like propositional logic e.g. Sky = sunny \land Temp = warm
```

Key Idea

Measure degrees of belief in propositions

```
Random Variable An interesting part of the world
                   e.g. Sky or Temp
         Domain Possible values of a random variable
                   e.g. domain(Temp) = \langle warm, cold, \ldots \rangle
      Proposition A statement, like propositional logic
                   e.g. Sky = sunny \wedge Temp = warm
      Probability The degree of belief in a proposition
                   e.g. P(Temp = warm) = 0.7
```

Probability Theory

- Propositions are believed to a certain degree
- Belief values range from [0, 1]

Fuzzy Logic

- Propositions are *true* to a certain degree
- \blacksquare *Truth* values range from [0, 1]

For example:

- T(Tall(Steve)) = 0.5
- T(Fat(Steve)) = 0.1

Better for describing indefinite classes than for reasoning

Probability Theory

- Propositions are believed to a certain degree
- Belief values range from [0, 1]

Fuzzy Logic

- Propositions are *true* to a certain degree
- *Truth* values range from [0, 1]

For example:

- T(Tall(Steve)) = 0.5
- T(Fat(Steve)) = 0.1

Better for describing indefinite classes than for reasoning

Probability Theory

- Propositions are believed to a certain degree
- Belief values range from [0, 1]

Fuzzy Logic

- Propositions are *true* to a certain degree
- *Truth* values range from [0, 1]

For example:

- T(Tall(Steve)) = 0.5
- T(Fat(Steve)) = 0.1

Probability Theory

- Propositions are believed to a certain degree
- Belief values range from [0, 1]

Fuzzy Logic

- Propositions are *true* to a certain degree
- *Truth* values range from [0, 1]

For example:

- T(Tall(Steve)) = 0.5
- T(Fat(Steve)) = 0.1

Better for describing indefinite classes than for reasoning

Range of Probabilities

$$0 \le P(a) \le 1$$

Propositions Known to be True or False

$$P(true) = 1$$

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Range of Probabilities

$$0 \le P(a) \le 1$$

Propositions Known to be True or False

$$P(true) = 1$$

 $P(false) = 0$

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Range of Probabilities

$$0 \le P(a) \le 1$$

Propositions Known to be True or False

$$P(true) = 1$$

$$P(false) = 0$$

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Range of Probabilities

$$0 \le P(a) \le 1$$

Propositions Known to be True or False

$$P(true) = 1$$

$$P(false) = 0$$

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Random Variables

Boolean Random Variables

Have the domain $\langle true, false \rangle$, e.g.

■ IsSunny

Discrete Random Variables

Have a countable domain, e.g.

- \bullet domain(Sky) = $\langle sunny, cloudy, \ldots \rangle$
- $domain(DieRoll) = \langle 1, 2, 3, 4, 5, 6 \rangle$

Continuous Random Variables

Have a real-valued domain, e.g.

 $domain(Temperature) = \langle \dots, -40^{\circ}, \dots, 98.6^{\circ}, \dots \rangle$

Random Variables

Boolean Random Variables

Have the domain $\langle true, false \rangle$, e.g.

■ IsSunny

Discrete Random Variables

Have a countable domain, e.g.

- \bullet domain(Sky) = $\langle sunny, cloudy, \ldots \rangle$
- $domain(DieRoll) = \langle 1, 2, 3, 4, 5, 6 \rangle$

Continuous Random Variables

Have a real-valued domain, e.g.

 $domain(Temperature) = \langle \dots, -40^{\circ}, \dots, 98.6^{\circ}, \dots \rangle$

Random Variables

Boolean Random Variables

Have the domain $\langle true, false \rangle$, e.g.

■ IsSunny

Discrete Random Variables

Have a countable domain, e.g.

- \bullet domain(Sky) = $\langle sunny, cloudy, \ldots \rangle$
- \bullet *domain*(*DieRoll*) = $\langle 1, 2, 3, 4, 5, 6 \rangle$

Continuous Random Variables

Have a real-valued domain, e.g.

■ $domain(Temperature) = \langle ..., -40^{\circ}, ..., 98.6^{\circ}, ... \rangle$

Definition

The unconditional or prior probability of a P(a) proposition a is the degree of belief in that proposition given no other information

Definition

The unconditional or prior probability of a P(a) proposition a is the degree of belief in that proposition given no other information

$$P(DieRoll = 5)$$

Definition

The unconditional or prior probability of a P(a) proposition a is the degree of belief in that proposition given no other information

$$P(DieRoll = 5)$$
 = 1/6

Definition

The unconditional or prior probability of a P(a) proposition a is the degree of belief in that proposition given no other information

$$P(DieRoll = 5)$$
 = 1/6

$$P(CardDrawn = A \spadesuit)$$

Definition

The unconditional or prior probability of a P(a) proposition a is the degree of belief in that proposition given no other information

$$P(DieRoll = 5) = 1/6$$

$$P(CardDrawn = A \spadesuit)$$
 = 1/52

Definition

The unconditional or prior probability of a P(a) proposition a is the degree of belief in that proposition given no other information

```
P(DieRoll = 5) = 1/6

P(CardDrawn = A \spadesuit) = 1/52

P(SkyInBirmingham = sunny) =
```

Definition

The unconditional or prior probability of a P(a) proposition a is the degree of belief in that proposition given no other information

```
P(DieRoll = 5) = 1/6

P(CardDrawn = A \spadesuit) = 1/52

P(SkyInBirmingham = sunny) = 210/365
```

Joint Probability

Definition

$$P(a_1,\ldots,a_n)$$

The joint probability of propositions a_1, \ldots, a_n is the degree of belief in the proposition $a_1 \wedge \ldots \wedge a_n$

Joint Probability

Definition

$$P(a_1,\ldots,a_n)$$

The joint probability of propositions a_1, \ldots, a_n is the degree of belief in the proposition $a_1 \wedge \ldots \wedge a_n$

$$P(DieRoll_1 = 4, DieRoll_2 = 6)$$

= $P(DieRoll_1 = 4 \land DieRoll_2 = 6)$
=

Joint Probability

Definition

$$P(a_1,\ldots,a_n)$$

The joint probability of propositions a_1, \ldots, a_n is the degree of belief in the proposition $a_1 \wedge \ldots \wedge a_n$

Example

$$P(DieRoll_1 = 4, DieRoll_2 = 6)$$

$$= P(DieRoll_1 = 4 \land DieRoll_2 = 6)$$

= 1/36

Conditional Probability

Definition

P(a|b)

The posterior or conditional probability of a proposition *a* given a proposition *b* is the degree of belief in *a*, given that we know only *b*

Definition

P(a|b)

The posterior or conditional probability of a proposition *a* given a proposition *b* is the degree of belief in *a*, given that we know only *b*

$$P(Card = A | CardSuit = A) =$$

Definition

P(a|b)

The posterior or conditional probability of a proposition a given a proposition b is the degree of belief in a, given that we know only b

$$P(Card = A | CardSuit = A) = 1/13$$

Definition

P(a|b)

The posterior or conditional probability of a proposition a given a proposition b is the degree of belief in a, given that we know only b

$$P(Card = A | CardSuit = A) = 1/13$$

 $P(DieRoll_2 = 5 | DieRoll_1 = 5) = 1/13$

Definition

P(a|b)

The posterior or conditional probability of a proposition *a* given a proposition *b* is the degree of belief in *a*, given that we know only *b*

$$P(Card = A | CardSuit = A) = 1/13$$

 $P(DieRoll_2 = 5 | DieRoll_1 = 5) = 1/6$

- Probability of a having a cavity?
 - Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm|Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm | Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy?
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm|Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm|Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm|Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm | Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm | Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm | Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen?
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm | Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm | Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Probability of car being stolen? Prior, P(CarStolen = true)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm|Sky = cloudy)

- Probability of a having a cavity? Prior, P(Cavity = true)
- Probability of it being warm and cloudy? Joint, P(Temp = warm, Sky = cloudy)
- Prior, *P*(*CarStolen* = *true*)
- Probability of car being stolen and being in Alabama? Joint, P(CarStolen = true, InAlabama = true)
- The car is in Alabama. Probability of car being stolen? Conditional, P(CarStolen = true | InAlabama = true)
- It's cloudy. Probability of it being warm? Conditional, P(Temp = warm | Sky = cloudy)

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$

or

 $P(a|b) = P(a \wedge b)/P(b)$

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit) =$$

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit) = 1/52$$

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit) = 1/52$$

 $P(A|\spadesuit) =$

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit) = 1/52$$

 $P(A|\spadesuit) = 1/13$

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit)$$
 = 1/52
 $P(A|\spadesuit)$ = 1/13
 $P(\spadesuit)$ =

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit)$$
 = 1/52
 $P(A|\spadesuit)$ = 1/13
 $P(\spadesuit)$ = 1/4

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit) = 1/52$$

 $P(A|\spadesuit) = 1/13$
 $P(\spadesuit) = 1/4$
 $P(A|\spadesuit)P(\spadesuit) =$

Product Rule

$$P(a \wedge b) = P(a|b)P(b)$$
 or $P(a|b) = P(a \wedge b)/P(b)$

Intuition

To have $a \wedge b$ true, we need b true, and a true given b

$$P(A \land \spadesuit)$$
 = 1/52
 $P(A|\spadesuit)$ = 1/13
 $P(\spadesuit)$ = 1/4
 $P(A|\spadesuit)P(\spadesuit)$ = 1/13 · 1/4 = 1/52

Key Ideas

- Repeatedly apply product rule, P(a, b) = P(a|b)P(b)
- Joint probability → conditional probabilities

Key Ideas

- Repeatedly apply product rule, P(a, b) = P(a|b)P(b)
- Joint probability → conditional probabilities

Example

P(sunny, dry, warm)

Key Ideas

- Repeatedly apply product rule, P(a, b) = P(a|b)P(b)
- Joint probability → conditional probabilities

Example

P(sunny, dry, warm)

= P(sunny|dry, warm)P(dry, warm)

Key Ideas

- Repeatedly apply product rule, P(a, b) = P(a|b)P(b)
- Joint probability → conditional probabilities

Example

P(*sunny*, *dry*, *warm*)

- = P(sunny|dry, warm)P(dry, warm)
- = P(sunny|dry, warm)P(dry|warm)P(warm)

Outline

- Probability Theory
 - Probability Basics
 - Prior, Joint and Conditional Probabilities
- 2 Probability Distributions
 - Probability Distribution Basics
 - Inference from Joint Distributions
- 3 Using Independence
 - Independence
 - Bayes' Rule
 - Wumpus World Example

Definition

P(X)

The probability distribution of a random variable *X* is a list of probabilities for each domain value

Definition

P(X) The probability distribution of a random variable X is a list of probabilities for each domain value

```
P(SkyInBirmingham) = \langle 210/365, 155/365 \rangle means P(SkyInBirmingham = sunny) = 210/365 P(SkyInBirmingham = cloudy) = 155/365
```

Definition

P(X) The probability distribution of a random variable X is a list of probabilities for each domain value

Example

```
P(SkyInBirmingham) = \langle 210/365, 155/365 \rangle means
```

```
P(SkyInBirmingham = sunny) = 210/365
```

$$P(SkyInBirmingham = cloudy) = 155/365$$

Notation Warning

- P(a) or P(X = a) means prior probability
- \blacksquare **P**(*X*) means probability distribution

Key Idea

$$\sum_{i}^{d} P(X = X_i) = 1$$

The sum of the probabilities for all possible value assignments of the random variable is always 1

Key Idea

$$\sum_{i}^{d} P(X = X_i) = 1$$

The sum of the probabilities for all possible value assignments of the random variable is always 1

$$\sum_{x} P(Die = x)$$

Probability Distributions

Key Idea

$$\sum_{i}^{d} P(X = X_i) = 1$$

The sum of the probabilities for all possible value assignments of the random variable is always 1

$$\sum_{x} P(Die = x)$$
= $P(Die = 1) + P(Die = 2) + P(Die = 3) + P(Die = 4) + P(Die = 5) + P(Die = 6)$

Probability Distributions

Key Idea

$$\sum_{i}^{d} P(X = X_i) = 1$$

The sum of the probabilities for all possible value assignments of the random variable is always 1

$$\sum_{x} P(Die = x)$$
= $P(Die = 1) + P(Die = 2) + P(Die = 3) + P(Die = 4) + P(Die = 5) + P(Die = 6)$
= $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$

Probability Distributions

Key Idea

$$\sum_{i}^{d} P(X = X_i) = 1$$

The sum of the probabilities for all possible value assignments of the random variable is always 1

$$\sum_{x} P(Die = x)$$
= $P(Die = 1) + P(Die = 2) + P(Die = 3) + P(Die = 4) + P(Die = 5) + P(Die = 6)$
= $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$
= 1

Continuous Variable Probability Distributions

Definition

A probability density function is a probability distribution over a continuous variable

Key Idea

Function assigns a probability to all possible values

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Continuous Variable Probability Distributions

Definition

A probability density function is a probability distribution over a continuous variable

Key Idea

Function assigns a probability to all possible values

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Continuous Variable Probability Distributions

Definition

A probability density function is a probability distribution over a continuous variable

Key Idea

Function assigns a probability to all possible values

$$P(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Joint Probability Distributions

Definition

$$\mathbf{P}(X_1,\ldots,X_n)$$

The joint probability distribution of random variables $X_1, ..., X_n$ is a table of probabilities for each combination of values in the variable domains

$$P(Sex, Smoker) =$$

$$Smoker = true$$

$$Smoker = false$$

$$Sex = male$$
 $Sex = female$

Joint Probability Distributions

Definition

$$\mathbf{P}(X_1,\ldots,X_n)$$

The joint probability distribution of random variables $X_1, ..., X_n$ is a table of probabilities for each combination of values in the variable domains

$$P(Sex, Smoker) =$$

$$Sex = male$$
 $Sex = female$
 $Smoker = true$ 0.113 0.107
 $Smoker = false$ 0.377 0.403

Key Idea

Sum entries in joint distribution where proposition is true

Key Idea

Sum entries in joint distribution where proposition is true

Example: $P(Sex = female \lor Smoker = false)$

$$Sex = male$$
 $Sex = female$
 $Smoker = true$ 0.113 0.107
 $Smoker = false$ 0.377 0.403

Key Idea

Sum entries in joint distribution where proposition is true

Example: $P(Sex = female \lor Smoker = false)$

```
Sex = male Sex = female

Smoker = true 0.113 0.107

Smoker = false 0.377 0.403
```

$$P(Sex = female \lor Smoker = false)$$

Key Idea

Sum entries in joint distribution where proposition is true

Example: $P(Sex = female \lor Smoker = false)$

```
Sex = male Sex = female

Smoker = true 0.113 0.107

Smoker = false 0.377 0.403

P(Sex = female \lor Smoker = false)

= P(Sex = male, Smoker = false) +

P(Sex = female, Smoker = true) +

P(Sex = female, Smoker = false)
```

Key Idea

Sum entries in joint distribution where proposition is true

Example: $P(Sex = female \lor Smoker = false)$

```
Sex = male Sex = female

Smoker = true 0.113 0.107

Smoker = false 0.377 0.403
```

$$P(Sex = female \lor Smoker = false)$$

$$= P(Sex = male, Smoker = false) +$$

$$P(Sex = female, Smoker = true) +$$

$$P(Sex = female, Smoker = false)$$

= 0.377 + 0.107 + 0.403

Key Idea

Sum entries in joint distribution where proposition is true

Example: $P(Sex = female \lor Smoker = false)$

$$Sex = male$$
 $Sex = female$
 $Smoker = true$ 0.113 0.107
 $Smoker = false$ 0.377 0.403

$$P(Sex = female \lor Smoker = false)$$

$$= P(Sex = male, Smoker = false) + P(Sex = female, Smoker = true) + P(Sex = female, Smoker = false)$$

= 0.377 + 0.107 + 0.403 = 0.887

Key Idea

$$\mathbf{P}(Y) = \sum_{z} \mathbf{P}(Y, z)$$

Marginalization removes all variables but **Y** by summing over the values of the other variables

Key Idea

$$\mathbf{P}(Y) = \sum_{z} \mathbf{P}(Y, z)$$

Marginalization removes all variables but **Y** by summing over the values of the other variables

Example: P(Sex = female)

$$P(Sex = female)$$

Key Idea

$$\mathbf{P}(Y) = \sum_{z} \mathbf{P}(Y, z)$$

Marginalization removes all vari- $P(Y) = \sum_{z} P(Y, z)$ ables but Y by summing over the values of the other variables

Example: P(Sex = female)

$$P(Sex = female)$$

= $P(Sex = female, Smoker = true) +$

$$P(Sex = female, Smoker = false)$$

Key Idea

$$\mathbf{P}(Y) = \sum_{z} \mathbf{P}(Y, z)$$

Marginalization removes all vari- $P(Y) = \sum_{z} P(Y, z)$ ables but Y by summing over the values of the other variables

Example: P(Sex = female)

$$P(Sex = female)$$

$$= P(Sex = female, Smoker = true) +$$

$$P(Sex = female, Smoker = false)$$

$$= 0.107 + 0.403$$

Key Idea

$$\mathbf{P}(Y) = \sum_{z} \mathbf{P}(Y, z)$$

Marginalization removes all vari- $P(Y) = \sum_{z} P(Y, z)$ ables but Y by summing over the values of the other variables

Example: P(Sex = female)

$$P(Sex = female)$$

$$= P(Sex = female, Smoker = true) +$$

$$P(Sex = female, Smoker = false)$$

$$= 0.107 + 0.403 = 0.51$$

Key Idea

$$\mathbf{P}(Y|z) = \frac{\mathbf{P}(Y,z)}{P(z)} = \frac{\mathbf{P}(Y,z)}{\sum_{y} P(y,z)} = \alpha \mathbf{P}(Y,z)$$

Key Idea

$$\mathbf{P}(Y|z) = \frac{\mathbf{P}(Y,z)}{P(z)} = \frac{\mathbf{P}(Y,z)}{\sum\limits_{y} P(y,z)} = \alpha \mathbf{P}(Y,z)$$

Calculating a Normalizing Constant

$$P(\spadesuit, A) = \frac{1}{52}$$

$$P(\clubsuit, A) = \frac{1}{52}$$

$$P(\diamondsuit, A) = \frac{1}{52}$$

$$P(\heartsuit, A) = \frac{1}{52}$$

Key Idea

$$\mathbf{P}(Y|z) = \frac{\mathbf{P}(Y,z)}{P(z)} = \frac{\mathbf{P}(Y,z)}{\sum\limits_{y} P(y,z)} = \alpha \mathbf{P}(Y,z)$$

Calculating a Normalizing Constant

$$P(\clubsuit, A) = \frac{1}{52}$$

$$P(\clubsuit, A) = \frac{1}{52}$$

$$P(\diamondsuit, A) = \frac{1}{52}$$

$$P(\heartsuit, A) = \frac{1}{52}$$

Key Idea

$$\mathbf{P}(Y|z) = \frac{\mathbf{P}(Y,z)}{P(z)} = \frac{\mathbf{P}(Y,z)}{\sum\limits_{y} P(y,z)} = \alpha \mathbf{P}(Y,z)$$

Calculating a Normalizing Constant

$$P(\clubsuit, A) = \frac{1}{52}$$

$$P(\clubsuit, A) = \frac{1}{52}$$

$$P(\diamondsuit, A) = \frac{1}{52}$$

$$P(\heartsuit, A) = \frac{1}{52}$$

$$\alpha = \frac{1}{\frac{1}{52} + \frac{1}{52} + \frac{1}{52} + \frac{1}{52}} = 13$$

Key Idea

$$\mathbf{P}(Y|z) = \frac{\mathbf{P}(Y,z)}{P(z)} = \frac{\mathbf{P}(Y,z)}{\sum_{y} P(y,z)} = \alpha \mathbf{P}(Y,z)$$

Calculating a Normalizing Constant

$$P(\diamondsuit, A) = \frac{1}{52}$$

$$P(\diamondsuit, A) = \frac{1}{52}$$

$$P(\diamondsuit, A) = \frac{1}{52}$$

$$P(\heartsuit, A) = \frac{1}{52}$$

$$\alpha = \frac{1}{\frac{1}{52} + \frac{1}{52} + \frac{1}{52} + \frac{1}{52}} = 13$$

 $P(Suit|A) = \langle \frac{13}{52}, \frac{13}{52}, \frac{13}{52} \rangle = \langle \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \rangle$

Inference Exercises

sunny	warm	snow	0.01
sunny	warm	$\neg snow$	0.59
sunny	cold	snow	0.08
sunny	cold	$\neg snow$	0.14
cloudy	warm	snow	0.03
cloudy	warm	$\neg snow$	0.07
cloudy	cold	snow	0.06
cloudy	cold	$\neg snow$	0.02

- P(sunny) =
- P(warm) =
- P(snow) =
- $P(sunny \lor \neg snow) =$
- P(sunny|snow) =
- (snow|sunny, cold) =

Inference Exercises

sunny	warm	snow	0.01
sunny	warm	$\neg snow$	0.59
sunny	cold	snow	0.08
sunny	cold	$\neg snow$	0.14
cloudy	warm	snow	0.03
cloudy	warm	$\neg snow$	0.07
cloudy	cold	snow	0.06
cloudy	cold	$\neg snow$	0.02

- P(sunny) = 0.82
- P(warm) = 0.70
- P(snow) = 0.18
- $P(sunny \lor \neg snow) = 0.91$
- P(sunny|snow) = 0.50
- 6 P(snow|sunny, cold) = 0.36

Properties

Given *n* random variables with maximum domain size *d*:

Time Complexity? $O(d^n)$

Space Complexity? O(d')

Biggest Problem

Properties

Given *n* random variables with maximum domain size *d*:

Time Complexity? $O(d^n)$

Space Complexity? O(d')

Biggest Problem

Properties

Given *n* random variables with maximum domain size *d*:

Time Complexity? $O(d^n)$

Space Complexity? $O(d^n)$

Biggest Problem

Properties

Given *n* random variables with maximum domain size *d*:

Time Complexity? $O(d^n)$

Space Complexity? $O(d^n)$

Biggest Problem

Outline

- Probability Theory
 - Probability Basics
 - Prior, Joint and Conditional Probabilities
- Probability Distributions
 - Probability Distribution Basics
 - Inference from Joint Distributions
- Using Independence
 - Independence
 - Bayes' Rule
 - Wumpus World Example

Key Ideas

- Sometimes no connection exists between variables
- Such independence determined by world knowledge

```
Formal Independence

P(a,b) = P(a)P(b) or P(a|b) = P(a)P(b)
```

```
P(EyeColor, Gender) = P(EyeColor)P(Gender)

P(Cavity, BlazersWon) = P(Cavity)P(BlazersWon)

P(DieRoll_1, DieRoll_2) = P(DieRoll_1)P(DieRoll_2)
```

Key Ideas

- Sometimes no connection exists between variables
- Such independence determined by world knowledge

Formal Independence

$$P(a,b) = P(a)P(b)$$
 or $P(a|b) = P(a)$

```
P(EyeColor, Gender) = P(EyeColor)P(Gender)

P(Cavity, BlazersWon) = P(Cavity)P(BlazersWon)

P(DieRoll_1, DieRoll_2) = P(DieRoll_1)P(DieRoll_2)
```

Key Ideas

- Sometimes no connection exists between variables
- Such independence determined by world knowledge

Formal Independence

```
P(a,b) = P(a)P(b) or P(a|b) = P(a)
```

```
P(EyeColor, Gender) = P(EyeColor)P(Gender)
```

$$P(Cavity, BlazersWon) = P(Cavity)P(BlazersWon)$$

$$P(DieRoll_1, DieRoll_2) = P(DieRoll_1)P(DieRoll_2)$$

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

 $P(DieRoll_1, DieRoll_2)$

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

 $P(DieRoll_1, DieRoll_2)$ 6 · 6 = 36

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

 $\textbf{P}(\textit{DieRoll}_1, \textit{DieRoll}_2)$

 $6 \cdot 6 = 36$

 $\textbf{P}(\textit{DieRoll}_1)\textbf{P}(\textit{DieRoll}_2)$

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

$$P(DieRoll_1, DieRoll_2)$$

$$6 \cdot 6 = 36$$

$$P(DieRoll_1)P(DieRoll_2)$$

$$6 + 6 = 12$$

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

 $P(\mathit{DieRoll}_1, \mathit{DieRoll}_2)$

 $6 \cdot 6 = 36$

 $\textbf{P}(\textit{DieRoll}_1)\textbf{P}(\textit{DieRoll}_2)$

6 + 6 = 12

P(Age, Sex, BlazersWon)

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

 $P(DieRoll_1, DieRoll_2)$

 $6 \cdot 6 = 36$

 $\textbf{P}(\textit{DieRoll}_1)\textbf{P}(\textit{DieRoll}_2)$

6 + 6 = 12

P(Age, Sex, BlazersWon)

 $125 \cdot 2 \cdot 2 = 500$

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

 $P(DieRoll_1, DieRoll_2)$

 $6 \cdot 6 = 36$

 $P(DieRoll_1)P(DieRoll_2)$

6 + 6 = 12

P(Age, Sex, BlazersWon)

 $125 \cdot 2 \cdot 2 = 500$

P(Age, Sex)P(BlazersWon)

Using Independence

- No need to store entire joint probability table
- Can store several smaller independent tables

Examples

Table Size

 $P(DieRoll_1, DieRoll_2)$ 6 · 6 = 36

 $P(DieRoll_1)P(DieRoll_2)$ 6 + 6 = 12

 $P(Age, Sex, BlazersWon) 125 \cdot 2 \cdot 2 = 500$

P(Age, Sex)P(BlazersWon) 125 · 2 + 2 = 252

Conditional Independence

Key Idea

Two variables can sometimes become independent after the value of a third variable is observed

Definition

A random variable *X* is conditionally independent of random variable *Y* given the random variable *Z* if:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

or

$$P(X|Y,Z) = P(X|Z)$$

Is *GrayHair* indpendent of *Bifocals*?

No, we expect the two to often come together, e.g.:

P(gray-hair, bifocals) > P(gray-hair)P(bifocals)

Is *GreyHair* independent of *Bifocals* given *Age*?

Yes, the bifocals add nothing if we know the age, e.g.:

$$P(gray-hair|bifocals, Age = x) = P(gray-hair|Age = x)$$

Is *GrayHair* indpendent of *Bifocals*?

No, we expect the two to often come together, e.g.:

P(gray-hair, bifocals) > P(gray-hair)P(bifocals)

Is *GreyHair* independent of *Bifocals* given *Age*?

Yes, the bifocals add nothing if we know the age, e.g.:

P(gray-hair|bifocals, Age = x) = P(gray-hair|Age = x)

Is *GrayHair* indpendent of *Bifocals*?

No, we expect the two to often come together, e.g.:

P(gray-hair, bifocals) > P(gray-hair)P(bifocals)

Is *GreyHair* independent of *Bifocals* given *Age*?

Yes, the bifocals add nothing if we know the age, e.g.:

P(gray-hair|bifocals, Age = x) = P(gray-hair|Age = x)

Is *GrayHair* indpendent of *Bifocals*?

No, we expect the two to often come together, e.g.:

P(gray-hair, bifocals) > P(gray-hair)P(bifocals)

Is *GreyHair* independent of *Bifocals* given *Age*?

Yes, the bifocals add nothing if we know the age, e.g.:

P(gray-hair|bifocals, Age = x) = P(gray-hair|Age = x)

Noisy Phone

- Adam calls Betty and Charlie and says a number N_A
- Betty hears N_B and Charlie hears N_C

Are N_B and N_C independent?

No, we expect the numbers to be similar, e.g.:

$$P(N_B = 1, N_C = 1) > P(N_B = 1)P(N_C = 1)$$

Are N_B and N_C independent given N_A ?

Yes, Betty's number adds nothing if we know Adam's, e.g.:

$$P(N_C = 1|N_B = 2, N_A = 1) = P(N_C = 1|N_A = 1)$$

Noisy Phone

- Adam calls Betty and Charlie and says a number N_A
- Betty hears N_B and Charlie hears N_C

Are N_B and N_C independent?

No, we expect the numbers to be similar, e.g.:

 $P(N_B = 1, N_C = 1) > P(N_B = 1)P(N_C = 1)$

Are N_B and N_C independent given N_A ?

Yes, Betty's number adds nothing if we know Adam's, e.g.

$$P(N_C = 1|N_B = 2, N_A = 1) = P(N_C = 1|N_A = 1)$$

Noisy Phone

- Adam calls Betty and Charlie and says a number N_A
- Betty hears N_B and Charlie hears N_C

Are N_B and N_C independent?

No, we expect the numbers to be similar, e.g.:

$$P(N_B = 1, N_C = 1) > P(N_B = 1)P(N_C = 1)$$

Are N_B and N_C independent given N_A ?

Yes, Betty's number adds nothing if we know Adam's, e.g.:

$$P(N_C = 1|N_B = 2, N_A = 1) = P(N_C = 1|N_A = 1)$$

Noisy Phone

- Adam calls Betty and Charlie and says a number N_A
- Betty hears N_B and Charlie hears N_C

Are N_B and N_C independent?

No, we expect the numbers to be similar, e.g.:

$$P(N_B = 1, N_C = 1) > P(N_B = 1)P(N_C = 1)$$

Are N_B and N_C independent given N_A ?

Noisy Phone

- Adam calls Betty and Charlie and says a number N_A
- Betty hears N_B and Charlie hears N_C

Are N_B and N_C independent?

No, we expect the numbers to be similar, e.g.:

$$P(N_B = 1, N_C = 1) > P(N_B = 1)P(N_C = 1)$$

Are N_B and N_C independent given N_A ?

Yes, Betty's number adds nothing if we know Adam's, e.g.:

$$P(N_C = 1|N_B = 2, N_A = 1) = P(N_C = 1|N_A = 1)$$

Bayes' Rule

Key Idea

Swap the conditioned and conditioning variables

Bayes' Rule

$$P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$

Derivation

$$P(b|a) = \frac{P(a \land b)}{P(a)}$$
 Definition
= $\frac{P(a|b)P(b)}{P(a)}$ Product Ru

Bayes' Rule

Key Idea

Swap the conditioned and conditioning variables

Bayes' Rule

$$P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$

Derivation

$$P(b|a) = \frac{P(a \land b)}{P(a)}$$
 Definition
= $\frac{P(a|b)P(b)}{P(a)}$ Product Rule

Why Use Bayes' Rule?

Making Diagnoses Based on Causal Knowledge

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

Example

$$P(meningitis|stiff-neck) = \frac{P(stiff-neck|meningitis)P(meningitis)}{P(stiff-neck)}$$

In an epidemic, where P(meningitis) rises:

- +Bayes *P*(*meningitis*|*stiff-neck*) rises proportionally
- -Bayes Collect data, re-estimate *P*(*meningitis*|*stiff-neck*)

Why Use Bayes' Rule?

Making Diagnoses Based on Causal Knowledge

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

Example

$$P(meningitis|stiff-neck) = \frac{P(stiff-neck|meningitis)P(meningitis)}{P(stiff-neck)}$$

In an epidemic, where P(meningitis) rises:

+Bayes P(meningitis|stiff-neck) rises proportionally

Why Use Bayes' Rule?

Making Diagnoses Based on Causal Knowledge

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

Example

$$P(meningitis|stiff-neck) = \frac{P(stiff-neck|meningitis)P(meningitis)}{P(stiff-neck)}$$

In an epidemic, where P(meningitis) rises:

- +Bayes *P*(*meningitis*|*stiff-neck*) rises proportionally
- -Bayes Collect data, re-estimate *P*(*meningitis*|*stiff-neck*)

Deriving More Manageable Models

P(*Cavity*|*toothache*, *catch*)

Deriving More Manageable Models

```
P(Cavity | toothache, catch)
```

= $\alpha P(toothache, catch|Cavity)P(Cavity)$

Deriving More Manageable Models

```
P(Cavity|toothache, catch)
```

- = $\alpha P(toothache, catch|Cavity)P(Cavity)$
- $= \alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity)$

Deriving More Manageable Models

- *P*(*Cavity*|*toothache*, *catch*)
 - = $\alpha P(toothache, catch|Cavity)P(Cavity)$
 - = $\alpha P(toothache|Cavity)P(catch|Cavity)P(Cavity)$

Naive Bayes Models

```
P(Cause, Effect_1, ..., Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)
```

- All effects conditionally independent given cause
- Common class of machine learning models

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
B (¬P)	(2,2)	(3,2)	(4,2)
(1,1)	B (¬P)	(3,1)	(4,1)

Query

 $P_{1,3}$?

- Calculate full joint distribution
- Sum all rows where $p_{1,3}$, $\neg p_{1,1}$, $\neg p_{1,2}$, $\neg p_{2,1}$, $b_{1,2}$, $b_{2,1}$
- \blacksquare Result is $P(p_{1,3})$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
B (¬P) (1,2)	(2,2)	(3,2)	(4,2)
(1,1)	B (¬P)	(3,1)	(4,1)

Query

 $P_{1,3}$?

- Calculate full joint distribution
- Sum all rows where $p_{1,3}$, $\neg p_{1,1}$, $\neg p_{1,2}$, $\neg p_{2,1}$, $b_{1,2}$, $b_{2,1}$
- \blacksquare Result is $P(p_{1,3})$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	B (¬P) (2,1)	(3,1)	(4,1)

Query

 $P_{1,3}$?

- Calculate full joint distribution
- Sum all rows where: $p_{1,3}$, $\neg p_{1,1}$, $\neg p_{1,2}$, $\neg p_{2,1}$, $b_{1,2}$, $b_{2,1}$
- \blacksquare Result is $P(p_{1,3})$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
B (¬P) (1,2)	(2,2)	(3,2)	(4,2)
(1,1)	B (¬P)	(3,1)	(4,1)

Query

 $P_{1,3}$?

- Calculate full joint distribution
- Sum all rows where: $p_{1,3}$, $\neg p_{1,1}$, $\neg p_{1,2}$, $\neg p_{2,1}$, $b_{1,2}$, $b_{2,1}$
- Result is $P(p_{1,3})$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	(2,1)	(3,1)	(4,1)

Full Joint Distribution

 $P(P_{11},\ldots,P_{44},B_{11},\ldots,B_{44})$

Total Rows?

 $2^{16+16} = 2^{32}$

Rows Selected?

Assume:

 $p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}$

 $2^{12+14} = 2^{28}$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	(2,1)	(3,1)	(4,1)

Full Joint Distribution

 $\mathbf{P}(P_{11},\ldots,P_{44},B_{11},\ldots,B_{44})$

Total Rows?

 $2^{16+16} = 2^{32}$

Rows Selected?

Assume:

 $p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}$

 $2^{12+14} = 2^{28}$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	(2,1)	(3,1)	(4,1)

Full Joint Distribution

 $\mathbf{P}(P_{11},\ldots,P_{44},B_{11},\ldots,B_{44})$

Total Rows?

 $2^{16+16} = 2^{32}$

Rows Selected?

Assume:

 p_{13} , $\neg p_{11}$, $\neg p_{12}$, $\neg p_{21}$, b_{12} , b_{21}

 $2^{12+14} = 2^{28}$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	(2,1)	(3,1)	(4,1)

Full Joint Distribution

 $\mathbf{P}(P_{11},\ldots,P_{44},B_{11},\ldots,B_{44})$

Total Rows?

 $2^{16+16} = 2^{32}$

Rows Selected?

Assume:

 p_{13} , $\neg p_{11}$, $\neg p_{12}$, $\neg p_{21}$, b_{12} , b_{21}

 $2^{12+14} = 2^{28}$

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	(2,1)	(3,1)	(4,1)

Full Joint Distribution

 $\mathbf{P}(P_{11},\ldots,P_{44},B_{11},\ldots,B_{44})$

Total Rows?

 $2^{16+16} = 2^{32}$

Rows Selected?

Assume:

 p_{13} , $\neg p_{11}$, $\neg p_{12}$, $\neg p_{21}$, b_{12} , b_{21}

 $2^{12+14} = 2^{28}$

Wumpus World Brute Force

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	(2,1)	(3,1)	(4,1)

Full Joint Distribution

 $\mathbf{P}(P_{11},\ldots,P_{44},B_{11},\ldots,B_{44})$

Total Rows?

 $2^{16+16} = 2^{32}$

Rows Selected?

Assume:

 p_{13} , $\neg p_{11}$, $\neg p_{12}$, $\neg p_{21}$, b_{12} , b_{21}

 $2^{12+14} = 2^{28}$

There must be a better way!

Wumpus World Brute Force

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
(1,2)	(2,2)	(3,2)	(4,2)
(1,1)	(2,1)	(3,1)	(4,1)

Full Joint Distribution

 $\mathbf{P}(P_{11},\ldots,P_{44},B_{11},\ldots,B_{44})$

Total Rows?

 $2^{16+16} = 2^{32}$

Rows Selected?

Assume:

 p_{13} , $\neg p_{11}$, $\neg p_{12}$, $\neg p_{21}$, b_{12} , b_{21}

 $2^{12+14} = 2^{28}$

There must be a better way!

(1,4)	(2,4)	(3,4)	(4,4)
(1,3)	(2,3)	(3,3)	(4,3)
B ⟨¬P⟩ (1,2)	(2,2)	(3,2)	(4,2)
(1,1)	B (¬P) (2,1)	(3,1)	(4,1)

Key Idea

Observations conditionally independent of other squares given neighbors

Goal

Manipulate equation until we can apply conditional independence formula

$$\mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe}, P_{other}) = \\ \mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe})$$

Other	Other	Other	Other
(1,4)	(2,4)	(3,4)	(4,4)
Query	Other	Other	Other
(1,3)	(2,3)	(3,3)	(4,3)
B (¬P)	Fringe	Other	Other
(1,2)	(2,2)	(3,2)	(4,2)
$\left(\neg P \right)$	B (¬P)	Fringe	Other
(1,1)	(2,1)	(3,1)	(4,1)

Key Idea

Observations conditionally independent of other squares given neighbors

Goal

Manipulate equation until we can apply conditional independence formula

 $\mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe}, P_{other}) = \\ \mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe})$

Other	Other	Other	Other
(1,4)	(2,4)	(3,4)	(4,4)
Query	Other	Other	Other
(1,3)	(2,3)	(3,3)	(4,3)
B (¬P)	Fringe	Other	Other
(1,2)	(2,2)	(3,2)	(4,2)
$\left(\neg P \right)$	B (¬P)	Fringe	Other
(1,1)	(2,1)	(3,1)	(4,1)

Key Idea

Observations conditionally independent of other squares given neighbors

Goal

Manipulate equation until we can apply conditional independence formula

$$\mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe}, P_{other}) = \mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe})$$

Other	Other	Other	Other
(1,4)	(2,4)	(3,4)	(4,4)
Query	Other	Other	Other
(1,3)	(2,3)	(3,3)	(4,3)
B (¬P)	Fringe	Other	Other
(1,2)	(2,2)	(3,2)	(4,2)
$\left(\neg P \right)$	B (¬P)	Fringe	Other
(1,1)	(2,1)	(3,1)	(4,1)

Key Idea

Observations conditionally independent of other squares given neighbors

Goal

Manipulate equation until we can apply conditional independence formula

$$\mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe}, P_{other}) = \mathbf{P}(b_{12}, b_{21} | \neg p_{11}, \neg p_{12}, \neg p_{21}, P_{13}, P_{fringe})$$

$$P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})$$

$$P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) = \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})$$

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) = \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) = \alpha P(p_{13}, p_{known}, b_{12}, b_{21})
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
= \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})

= \alpha P(p_{13}, p_{known}, b_{12}, b_{21})

= \alpha \sum_{fringe+other} P(p_{13}, p_{known}, p_{fringe+other}, b_{12}, b_{21})
```

$$P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})$$

$$= \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})$$

$$= \alpha P(p_{13}, p_{known}, b_{12}, b_{21})$$

$$= \alpha \sum_{fringe+other} P(p_{13}, p_{known}, p_{fringe+other}, b_{12}, b_{21})$$

$$= \alpha \sum_{fringe other} P(p_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21})$$

$$\begin{split} &P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, p_{known}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe+other} P(p_{13}, p_{known}, p_{fringe+other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe} \sum_{other} P(p_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe} \sum_{other} P(b_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe} \sum_{other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}, p_{other}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \end{split}$$

$$\begin{split} &P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, p_{known}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe+other} P(p_{13}, p_{known}, p_{fringe+other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe other} P(p_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe other} P(b_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}, p_{other}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \\ &= \alpha \sum_{fringe other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \end{split}$$

$$\begin{split} &P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, p_{known}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe+other} P(p_{13}, p_{known}, p_{fringe+other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe-other} P(p_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe-other} P(b_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}, p_{other}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}, p_{known}, p_{fringe}) P(p_{other}) \end{split}$$

$$\begin{split} &P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, p_{known}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe-other} P(p_{13}, p_{known}, p_{fringe+other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe-other} P(p_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}, p_{other}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) \sum_{other} P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) \sum_{other} P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) \sum_{other} P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) \sum_{other} P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) \sum_{other} P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(b_{13}) P(b_{known}) P(p_{fringe}) P(p_{other}) \\ &= \alpha \sum_{fringe-other} P(b_{13}, b_{13}, b$$

$$\begin{split} &P(p_{13}|\neg p_{11},\neg p_{12},\neg p_{21},b_{12},b_{21})\\ &=& \alpha P(p_{13},\neg p_{11},\neg p_{12},\neg p_{21},b_{12},b_{21})\\ &=& \alpha P(p_{13},p_{known},b_{12},b_{21})\\ &=& \alpha \sum_{fringe+other} P(p_{13},p_{known},p_{fringe+other},b_{12},b_{21})\\ &=& \alpha \sum_{fringe} \sum_{other} P(p_{13},p_{known},p_{fringe},p_{other},b_{12},b_{21})\\ &=& \alpha \sum_{fringe} \sum_{other} P(b_{12},b_{21}|p_{13},p_{known},p_{fringe},p_{other})P(p_{13},p_{known},p_{fringe},p_{other})\\ &=& \alpha \sum_{fringe} \sum_{other} P(b_{12},b_{21}|p_{13},p_{known},p_{fringe})P(p_{13},p_{known},p_{fringe},p_{other})\\ &=& \alpha \sum_{fringe} \sum_{other} P(b_{12},b_{21}|p_{13},p_{known},p_{fringe})P(p_{13})P(p_{known})P(p_{fringe})P(p_{other})\\ &=& \alpha \sum_{fringe} \sum_{other} P(b_{12},b_{21}|p_{13},p_{known},p_{fringe})P(p_{13})P(p_{known})P(p_{fringe})\sum_{other} P(p_{other})\\ &=& \alpha \sum_{fringe} P(b_{12},b_{21}|p_{13},p_{known},p_{fringe})P(p_{13})P(p_{known})P(p_{fringe})\sum_{other} P(p_{other})\\ &=& \alpha \sum_{fringe} P(b_{12},b_{21}|p_{13},p_{known},p_{fringe})P(p_{13})P(p_{known})P(p_{fringe})\\ &=& \alpha \sum_{fringe} P(b_{12},b_{21}|p_{13},p_{known},p_{fringe})P$$

$$\begin{split} &P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, \neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) \\ &= \alpha P(p_{13}, p_{known}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe+other} P(p_{13}, p_{known}, p_{fringe+other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe other} P(p_{13}, p_{known}, p_{fringe}, p_{other}, b_{12}, b_{21}) \\ &= \alpha \sum_{fringe other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}, p_{other}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \\ &= \alpha \sum_{fringe other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}, p_{known}, p_{fringe}, p_{other}) \\ &= \alpha \sum_{fringe other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) P(p_{other}) \\ &= \alpha \sum_{fringe other} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) \sum_{other} P(p_{other}) \\ &= \alpha \sum_{fringe} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}) P(p_{known}) P(p_{fringe}) \sum_{other} P(p_{other}) \\ &= \alpha P(p_{13}) P(p_{known}) \sum_{fringe} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{13}, p_{known}, p_{fringe}) P(p_{fringe}) \\ &= \alpha P(p_{13}) P(p_{known}) \sum_{fringe} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{fringe}) P(p_{fringe}) \\ &= \alpha P(p_{13}) P(p_{known}) \sum_{fringe} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{fringe}) P(p_{fringe}) \\ &= \alpha P(p_{13}) P(p_{known}) \sum_{fringe} P(b_{12}, b_{21}|p_{13}, p_{known}, p_{fringe}) P(p_{fringe}) P(p_{fringe}) \\ &= \alpha P(p_{13}) P(p_{known}) P(p_{fringe}) P($$

Goal: Calculate the Summation

 $\sum_{p_{22},p_{31}} P(b_{12},b_{21}|p_{13},\neg p_{11},\neg p_{12},\neg p_{21},P_{22},P_{31})P(P_{22},P_{31})$

Key Ideas

- First term is 1 if observed breezes are beside pits
- First term is 0 if observed breezes are not beside pitst
- So find worlds consistent with observations
- And sum $P(P_{22}, P_{31})$ over these worlds

Goal: Calculate the Summation

 $\sum_{p_{22},p_{31}} P(b_{12},b_{21}|p_{13},\neg p_{11},\neg p_{12},\neg p_{21},P_{22},P_{31})P(P_{22},P_{31})$

Key Ideas

- First term is 1 if observed breezes are beside pits
- First term is 0 if observed breezes are not beside pits
- So find worlds consistent with observations
- \blacksquare And sum $P(P_{22}, P_{31})$ over these worlds

Goal: Calculate the Summation

 $\sum_{p_{22},p_{31}} P(b_{12},b_{21}|p_{13},\neg p_{11},\neg p_{12},\neg p_{21},P_{22},P_{31})P(P_{22},P_{31})$

Key Ideas

- First term is 1 if observed breezes are beside pits
- First term is 0 if observed breezes are not beside pits
- So find worlds consistent with observations
- And sum $P(P_{22}, P_{31})$ over these worlds

Worlds Consistent with Observations

Worlds Consistent with Observations

Worlds Consistent with Observations

$$.2 \times .2 = .04$$

Worlds Consistent with Observations

$$.2 \times .2 = .04$$

$$.2 \times .8 = .16$$

Worlds Consistent with Observations

$$.2 \times .2 = .04$$

$$.2 \times .8 = .16$$

$$.8 \times .2 = .16$$

Worlds Consistent with Observations

$$.2 \times .2 = .04$$

$$.2 \times .8 = .16$$

$$.8 \times .2 = .16$$

$$.2 \times .2 = .04$$

Worlds Consistent with Observations

$$.2 \times .2 = .04$$

$$.2 \times .8 = .16$$

$$.8 \times .2 = .16$$

$$.2 \times .2 = .04$$

$$.2 \times .8 = .16$$

Worlds Consistent with Observations

$$.2 \times .2 = .04$$

$$.2 \times .8 = .16$$

$$.8 \times .2 = .16$$

$$.2 \times .2 = .04$$

$$.2 \times .8 = .16$$

Calculating $P(P_{22}, P_{31})$, assuming pit probability is 0.2

Final Calculation

$$\sum_{p_{22},p_{31}} P(b_{12},b_{21}|p_{13},\ldots)P(P_{22},P_{31}) = 0.04 + 0.16 + 0.16$$

$$\sum_{p_{22},p_{31}} P(b_{12},b_{21}|\neg p_{13},\ldots)P(P_{22},P_{31}) = 0.04 + 0.16$$

 $P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})$

$$P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21}) = \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots$$

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
= \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots

= \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
= \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots

= \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots

= \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \dots p_{13} \dots
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
= \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots

= \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots

= \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots

= \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
= \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots

= \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots

= \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots

= \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)

= 0.036864\alpha
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
= \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
= \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
= \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots
= \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)
= 0.036864\alpha
P(\neg p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum ... p_{13} ...
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)
   = 0.036864\alpha
P(\neg p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(\neg p_{13}) P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum ... \neg p_{13} ...
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum ... p_{13} ...
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)
   = 0.036864\alpha
P(\neg p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(\neg p_{13}) P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum ... \neg p_{13} ...
   = \alpha \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16)
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum ... p_{13} ...
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)
   = 0.036864\alpha
P(\neg p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(\neg p_{13}) P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum ... \neg p_{13} ...
   = \alpha \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16)
   = 0.08192\alpha
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots
   = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)
   = 0.036864\alpha
P(\neg p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
   = \alpha P(\neg p_{13}) P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum_{\ldots} \neg p_{13} \ldots
   = \alpha \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16)
   = 0.08192\alpha
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
```

```
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
  = \alpha P(p_{13})P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
  = \alpha \times 0.2 \times P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum \dots p_{13} \dots
  = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times \sum \dots p_{13} \dots
  = \alpha \times 0.2 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16 + 0.16)
   = 0.036864\alpha
P(\neg p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
  = \alpha P(\neg p_{13}) P(\neg p_{11}, \neg p_{12}, \neg p_{21}) \sum_{\ldots} \neg p_{13} \ldots
  = \alpha \times 0.8 \times 0.8 \times 0.8 \times 0.8 \times (0.04 + 0.16)
   = 0.08192\alpha
P(p_{13}|\neg p_{11}, \neg p_{12}, \neg p_{21}, b_{12}, b_{21})
  = 0.036864/(0.036864 + 0.08192) \approx 0.31
```

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

$$P(a|b,c) = P(a|c)$$

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

$$P(a|b,c) = P(a|c)$$

$$P(a|b,c) = P(a|c)$$

Given: w indep. x, y, zx indep. z given y

Show:

P(w, x, y, z) = P(w)P(x|y)P(z, y)

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

$$P(a|b,c) = P(a|c)$$

$$P(a|b,c) = P(a|c)$$

Given: w indep. x, y, zx indep. z given y

Show:

P(w, x, y, z) = P(w)P(x|y)P(z, y)

Proof:

P(w, x, y, z)

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

$$P(a|b,c) = P(a|c)$$

Given: w indep. x, y, zx indep. z given y

Show:

P(w, x, y, z) = P(w)P(x|y)P(z, y)

Proof:

P(w, x, y, z)= P(w)P(x, y, z)

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

$$P(a|b,c) = P(a|c)$$

Given: w indep. x, y, zx indep. z given y

Show:

P(w, x, y, z) = P(w)P(x|y)P(z, y)

Proof:

P(w, x, y, z) = P(w)P(x, y, z) = P(w)P(x, z|y)P(y)

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

$$P(a|b,c) = P(a|c)$$

Given: w indep. x, y, zx indep. z given y

Show:

$$P(w, x, y, z) = P(w)P(x|y)P(z, y)$$

Proof:

$$P(w, x, y, z)$$

$$= P(w)P(x, y, z)$$

$$= P(w)P(x, z|y)P(y)$$

$$= P(w)P(x|y)P(z|y)P(y)$$

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

$$P(a|b,c) = P(a|c)$$

Given: w indep. x, y, zx indep. z given y

Show:

$$P(w, x, y, z) = P(w)P(x|y)P(z, y)$$

Proof:

$$P(w, x, y, z)$$

$$= P(w)P(x, y, z)$$

$$= P(w)P(x, z|y)P(y)$$

$$= P(w)P(x|y)P(z|y)P(y)$$

$$= P(w)P(x|y)P(z, y)$$

Probability Rule Exercises

Product Rule

$$P(a,b) = P(a|b)P(b)$$

Independence

$$P(a,b) = P(a)P(b)$$

Conditional Independence

$$P(a,b|c) = P(a|c)P(b|c)$$

P(a|b,c) = P(a|c)

Given:

z indep. w, x, y w indep. x given y

Show:

$$P(w, z|x, y) = P(w|y)P(z)$$

Given:

w indep. y, z given x x indep. z given y y indep. z

Show:

$$P(w, x, y, z) = P(w|x)P(x|y)P(y)P(z)$$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Complements

$$P(\neg a) + P(a) = 1$$

Given: $P(X|y,z) = \alpha(0.1, 0.3)$ Show: P(X|y,z) = (0.25, 0.75)

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Complements

$$P(\neg a) + P(a) = 1$$

Given: $\mathbf{P}(X|y,z) = \alpha \langle 0.1, 0.3 \rangle$

Show: $P(X|y,z) = \langle 0.25, 0.75 \rangle$

$$P(y,z) = P(x,y,z) + P(\neg x, y, z)$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Given:
$$\mathbf{P}(X|y,z) = \alpha \langle 0.1, 0.3 \rangle$$

Show:
$$P(X|y,z) = \langle 0.25, 0.75 \rangle$$

$$P(y,z) = P(x, y, z) + P(\neg x, y, z) 1 = \frac{P(x, y, z) + P(\neg x, y, c)}{P(y, z)}$$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Given: **P**(
$$X|y,z$$
) = $\alpha (0.1, 0.3)$

Show:
$$\mathbf{P}(X|y,z) = \langle 0.25, 0.75 \rangle$$

$$P(y,z) = P(x,y,z) + P(\neg x, y, z)$$

$$1 = \frac{P(x,y,z) + P(\neg x, y, c)}{P(y,z)}$$

$$1 = \frac{P(x,y,z)}{P(y,z)} + \frac{P(\neg x, y, z)}{P(y,z)}$$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Given:
$$\mathbf{P}(X|y,z) = \alpha \langle 0.1, 0.3 \rangle$$

Show:
$$P(X|y,z) = \langle 0.25, 0.75 \rangle$$

$$P(y,z) = P(x,y,z) + P(\neg x, y, z)$$

$$1 = \frac{P(x,y,z) + P(\neg x, y, c)}{P(y,z)}$$

$$1 = \frac{P(x,y,z)}{P(y,z)} + \frac{P(\neg x, y, z)}{P(y,z)}$$

$$1 = P(x|y,z) + P(\neg x|y,z)$$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Given:
$$\mathbf{P}(X|y,z) = \alpha \langle 0.1, 0.3 \rangle$$

Show: $\mathbf{P}(X|y,z) = \langle 0.25, 0.75 \rangle$

$$P(y,z) = P(x,y,z) + P(\neg x, y, z)$$

$$1 = \frac{P(x,y,z) + P(\neg x, y, c)}{P(y,z)}$$

$$1 = \frac{P(x,y,z)}{P(y,z)} + \frac{P(\neg x, y, z)}{P(y,z)}$$

$$1 = P(x|y,z) + P(\neg x|y,z)$$

$$1 = 0.1\alpha + 0.3\alpha$$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Given:
$$\mathbf{P}(X|y,z) = \alpha \langle 0.1, 0.3 \rangle$$

Show: $\mathbf{P}(X|y,z) = \langle 0.25, 0.75 \rangle$
 $P(y,z) = P(x,y,z) + P(\neg x,y,z)$
 $1 = \frac{P(x,y,z) + P(\neg x,y,c)}{P(y,z)}$
 $1 = \frac{P(x,y,z)}{P(y,z)} + \frac{P(\neg x,y,z)}{P(y,z)}$
 $1 = P(x|y,z) + P(\neg x|y,z)$
 $1 = 0.1\alpha + 0.3\alpha$
 $1 = 0.4\alpha$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

Distributions

$$\sum_{i}^{d} P(X = x_i) = 1$$

Given:
$$\mathbf{P}(X|y,z) = \alpha \langle 0.1, 0.3 \rangle$$

Show: $\mathbf{P}(X|y,z) = \langle 0.25, 0.75 \rangle$
 $P(y,z) = P(x,y,z) + P(\neg x,y,z)$
 $1 = \frac{P(x,y,z) + P(\neg x,y,c)}{P(y,z)}$
 $1 = \frac{P(x,y,z)}{P(y,z)} + \frac{P(\neg x,y,z)}{P(y,z)}$
 $1 = P(x|y,z) + P(\neg x|y,z)$
 $1 = 0.1\alpha + 0.3\alpha$

 $1 = 0.4\alpha$

 $2.5 = \alpha$

Complements

$$P(\neg a) + P(a) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Given:
$$\mathbf{P}(X|y,z) = \alpha \langle 0.1, 0.3 \rangle$$

Show: $\mathbf{P}(X|y,z) = \langle 0.25, 0.75 \rangle$
 $P(y,z) = P(x,y,z) + P(\neg x,y,z)$
 $1 = \frac{P(x,y,z) + P(\neg x,y,c)}{P(y,z)}$
 $1 = \frac{P(x,y,z)}{P(y,z)} + \frac{P(\neg x,y,z)}{P(y,z)}$
 $1 = P(x|y,z) + P(\neg x|y,z)$
 $1 = 0.1\alpha + 0.3\alpha$
 $1 = 0.4\alpha$
 $2.5 = \alpha$

Normalization Rule Practice

Complements

$$P(\neg a) + P(a) = 1$$

$$P(a|b) + P(\neg a|b) = 1$$

Summing Out

$$P(a,b) + P(\neg a,b) = P(b)$$

Given:

$$P(y|x) = 0.4$$

 $P(y|\neg x) = 0.9$
 $P(x) = 0.2$
 $P(\neg x) = 0.8$

Show: **P**(
$$X|y$$
) = $\langle 0.1, 0.9 \rangle$

$$\sum_{i}^{d} P(X = x_i) = 1$$

Key Ideas

Probability Measures Belief

$$P(false) = 0$$
 $P(true) = 1$ $\sum_{x} P(X = x) = 1$

Types of probabilities

- Prior, P(X = x)
- Joint, P(X = x, Y = y)
- lacksquare Conditional, P(X = x | Y = y)

Inference

- Sums over full joint distribution
- Conditional independence + product and Bayes' rule