Diff Geo II: Problem Set II

Youngduck Choi *

Abstract

This work contains solutions for the problem set II.

Question 1-1.

1. In class, we used the fact that the curvature tensor can be expressed in terms of parallel transport. That is, we claimed that if $q \in M$ and if $\alpha \colon \mathbb{R}^2 \to M$ is a smooth map such that $\frac{\partial \alpha}{\partial x} = X$, $\frac{\partial \alpha}{\partial y} = Y$, then for all $Z \in T_qM$, we have

$$R(X,Y)Z = \lim_{s \to 0} \frac{Z - p_{\gamma_s}(Z)}{s^2},$$

where $\gamma_s:[0,4]\to M$ is the image under α of the boundary of an $s\times s$ square, i.e.,

$$\gamma_s(t) = egin{cases} lpha(st,0) & t \in [0,1] \\ lpha(s,s(t-1)) & t \in [1,2] \\ lpha(s(3-t),s) & t \in [2,3] \\ lpha(0,s(4-t)) & t \in [3,4]. \end{cases}$$

Prove this fact.

(Hint: Construct a frame of vector fields $V_1, \ldots, V_m \in \mathbf{V}(\alpha)$ such that $\nabla_X V_i = 0$ and $\nabla_Y V_i(u_1, 0) = 0$. Any vector field W along γ_s can be expressed as a linear combination of the V_i —when is W parallel?)

Solution.

Let s > 0. Set

$$V_i(\alpha(s_1, s_2)) = P_{\alpha(0, s_2), \alpha(s_1, s_2)} \circ P_{q, \alpha(0, s_2)}(V_i(q))$$

for all $1 \le i \le m$ and $(s_1, s_2) \in [0, s] \times [0, s]$. As $\frac{\partial \alpha}{\partial x} = X$, $\frac{\partial \alpha}{\partial y} = Y$, we have

$$\nabla_X V_i = 0$$
 and $\nabla_Y V_i(u_1, 0) = 0$

for all i. Then, we see that any $W \in V(\gamma)$ can only change along 2nd part of the path. We compute

$$\begin{split} V_i(q)(P_{\gamma}W(q)-W(q)) &= &< V_i, W > \gamma_s(2) + < V_i, W > \gamma_s(1) \\ &= & \int_0^s \partial_t < V_i, W > dt = \int_0^s V_i \cdot \nabla_Y W(1,t) dt \\ &= & \int_0^s V_i \cdot \nabla_Y W(1,t) dt - \int_0^s \partial_r (V_i \cdot \nabla_Y W(r,t) dr dt \\ &= & -\int_0^s \int_0^s V_i \cdot \nabla_X \nabla_Y W(r,t) dr dt \end{split}$$

^{*}Department of Mathematics, Courant Institute of Mathematical Sciences, yc1104@nyu.edu; If you find an error and want to share with me, you can reach me via email.

for all i. Now, with W(0,0)=Z, and [X,Y]=0, letting $s\downarrow 0,$ gives

$$\lim_{s\downarrow 0} \frac{\langle Z - P_{\gamma}(Z), V_i \rangle}{s^2} = \langle R(X, Y)Z, V_i \rangle$$

for all i, and hence,

$$R(X,Y)Z = \lim_{s\downarrow 0} \frac{Z - P_{\gamma}(Z)}{s^2}.$$

Question 1-2.

- 2. Suppose that M is a two-dimensional Riemannian manifold with curvature tensor R.
 - (a) Use the symmetries of the curvature tensor to show that if $p \in M$, $V, W \in T_pM$, then

$$K = \frac{\langle R(V,W)W,V\rangle}{\|V\|^2 \|W\|^2 - 2\langle V,W\rangle^2}$$

is independent of V and W.

(b) Prove that if K is as above, then

$$R(X,Y)Z = K(\langle Y,Z\rangle X - \langle X,Z\rangle Y)$$

for all $X, Y, Z \in T_pM$.

Solution.

I believe there is a typo in the problem: 2 in the denominator should be gone.

(a) Let E_1, E_2 be orthonormal frame, so $V = V^1 E_1 + V^2 E_2$ and $W = W^1 E_1 + W^2 E_2$. Then,

$$\langle R(V,W)W,V \rangle = \langle R(V^{1}E_{1} + V^{2}E_{2}, W^{1}E_{1} + W^{2}E_{2})W, V \rangle$$

$$= \langle V^{1}W^{2}R(E_{1}, E_{2})W, V \rangle + \langle V^{2}W^{1}R(E_{2}, E_{1})W, V \rangle$$

$$= (V^{1}W^{2} - V^{2}W^{1})(W^{1}V^{2} \langle R(E_{1}, E_{2})E_{1}, E_{2} \rangle + W^{2}V^{1} \langle R(E_{1}, E_{2})E_{2}, E_{1} \rangle)$$

$$= -(V^{1}W^{2} - V^{2}W^{1})^{2} \langle R(E_{1}, E_{2})E_{1}, E_{2} \rangle$$

$$= -(V^{1}W^{2} - V^{2}W^{1})^{2} \langle R(E_{1}, E_{2})E_{1}, E_{2} \rangle$$

$$(1)$$

where (??), in particular, holds by $R(E_1, E_1)W = R(E_2, E_2)W = 0$. Furthermore,

$$||V||^2||W||^2 - \langle V, W \rangle^2 = (V^1W^2 - V^2W^1)^2$$

and hence

$$K = \frac{-(V^{1}W^{2} - V^{2}W^{1})^{2} < R(E_{1}, E_{2})E_{1}, E_{2} >}{(V^{1}W^{2} - V^{2}W^{1})^{2}}$$

= $< R(E_{1}, E_{2})E_{2}, E_{1} >$

Therefore, we see that K only depend on the chosen frame, so K is independent of V and W.

(b) We compute

$$R(X,Y)Z = \sum_{i,j,k=1}^{2} X^{i}Y^{j}Z^{k}R(E_{i}, E_{j})E_{k}$$

$$= (X^{1}Y^{2}Z^{1} - X^{2}Y^{1}Z^{1})R(E_{1}, E_{2})E_{1} + (X^{1}Y^{2}Z^{2} - X^{2}Y^{1}Z^{2})R(E_{1}, E_{2})E_{2}$$

and

$$\begin{split} K(X-Y) &= < R(E_1,E_2)E_2, E_1 > X(Y^1Z^1+Y^2Z^2) \\ &- < R(E_1,E_2)E_2, E_1 > Y(X^1Z^1+X^2Z^2) \\ &= < R(E_1,E_2)E_2, E_1 > (X^1Y^2Z^2-X^2Z^2Y^1)E_1 \\ &+ < R(E_1,E_2)E_2, E_1 > (Y^1Z^1X^2-X^1Y^2Z^1)E_2 \end{split}$$

Therefore,

$$< R(X,Y)Z, E_1 > = < R(E_1, E_2)E_2, E_1 > (X^1Y^2Z^2 - X^2Y^1Z^2)$$

= $< K(< Y, Z > X - < X, Z > Y), E_1 >$

Similarly,

$$\langle R(X,Y)Z, E_2 \rangle = \langle K(\langle Y,Z \rangle X - \langle X,Z \rangle Y), E_2 \rangle.$$

As the equality holds for the basis elements, we have

$$R(X,Y)Z = K(\langle Y,Z \rangle X - \langle X,Z \rangle Y)$$

as required. \Box

Question 1-3.

3. Find a sequence $\gamma_i \colon [0,1] \to S^2$ of piecewise-smooth curves with the same endpoints such that the γ_i converge to a piecewise-smooth curve γ , but the parallel transport maps $P_{\gamma_i} \colon T_pM \to T_qM$ do not converge to the map P_{γ} .

Solution.

All triangles in the discussion are great circle triangles. From class, we saw that the parellel transport along a path of triangle, starting at a vertex and coming back to the chosen vertex, is given by a rotation of $\theta - \pi$ where θ is the sum of three angles of the triangle, formed by the path. To discuss pointwise convergence, we choose the geodesic distance on S^2 . Let p be the north pole of S^2 . Then, choose a triangle path, starting at p and coming back to p such that $\theta - \pi > 0$. Now, for each $i \in \mathbb{N}$, choose a triangle path, γ_i^* , whose angle sum is θ' , yet $\theta - \pi = k\theta'$ for some $k \in \mathbb{N}$, and the path of the triangle is contained in $B(p, \frac{1}{i})$, and set $\gamma_i = (\gamma_i^*)^k$, which is the standard path composition of γ_i k times. Then, set γ be the trivial path from p to p itself. Then, we see that γ_i converges to γ pointwise, as for any $t \in [0,1]$, for any $\epsilon > 0$, there exists i such that $d(\gamma_i(t), \gamma(t)) < \epsilon$, whenever $n \geq i$. Furthermore, P_{γ_i} is given by a rotation of $\theta - \pi > 0$, yet $P_{\gamma} = I$, so we see that P_{γ_i} does not converge to P_{γ} as a linear map. Hence, we have the desired construction.

Question 1-4.

Let $M \subset \mathbb{R}^3$ be the cone $M = \{(r\cos\theta\sin\phi, r\sin\theta\sin\phi, r\cos\phi) \mid r>0, \theta \in [0,2\pi)\}$ as in the first problem set. 4. Construct an isometry from the complement of the line $\theta=0$ to a subset of \mathbb{R}^2 . Use this isometry to calculate the parallel transport map $P_{0,2\pi}$ from problem 5 of the first problem set.

Solution.

Cutting the cone and unfolding it, and using elementary geometry tell us that, in order to have an isometry, we must satisfy $r \sin(\phi)\theta = r\theta'$, because the radius of the circle changes from $r \sin(\phi)$ to r, by unfolding. As a parellel transport along any curve in \mathbb{R}^2 is an identity, we have that a parellel transport on the image is given by $(\cos(\theta'), -r\sin(\theta); \sin(\theta'), -r\cos(\theta'))$.