Optimization Solutions Final Project

Manufacturing Optimization

Group 7:

Nicholas Petr

Whitney Schreiber

Goal: Maximize profits and minimize production & labor costs

Our Client: Car Engine Manufacturer

Operates in one production plant and produces one type of engine

Business Problem: *Maximize Profit*

- 1. Several parts, raw materials, and laborers are required to produce one engine
- 2. The client wants to determine the profit maximizing quantities of parts and engines to produce and the resulting levels of raw materials and labor required

Opportunity: Determine how to maximize profits and minimize cost/labor across a number of environmental changes the client is facing

Mixed Integer programming problem with multiple variations

Optimization Problem:

1. Mixed Integer programming

- Objective function is linear in the arguments
- Constraints include linear equalities and linear inequalities
- Arguments can only take on integer values

2. Test multiple variations of the base problem to understand how outputs are impacted

- Supply chain shortages
- COVID restrictions
- Liquidity constraints

3. Required packages and solver

- JuMP: allows for a linear class of optimization problems with easy-to-read code
- o **GLPK**: wrapper for the GNU Linear Programming Kit library (solver)

Manufacturing Base Problem Setup

Manufacturing Requirements

One <u>engine</u> requires

- two unique subcomponents (fan belt and piston)
- two different raw materials (steel and oil)
- five employees

Variables

INPUTS

Raw Material

STEEL raw material 1

a₁: quantity r₁: cost/unit

OIL

a₂: quantity r₂: cost/unit

Production

FAN BELT part A

w_A: machinery cost/unit PISTON part B

w_B: machinery cost/unit

LABORER person

2

w_L: wages/shift per person

OUTPUTS

Selling Price

FAN BELT part A

p_A: market price

PISTON part B

p_R: market price

ENGINE final product

p_F: market price

JECISIONS

Production & Allocation of Fan Belts and Pistons

FAN BELT part A

x₁: quantity in final engine production

FAN BELT part A

x₂: quantity sold individually

PISTON part B

x₃: quantity in final engine production

PISTON part B

x₄: quantity sold individually

FAN BELT, PISTON & ENGINE

Production Costs

Fan Belt

Labor + *Steel* + *Oil* + *Machinery*

$$c_{A} = 7.85$$

Fan Belt $w_A = 0.15

 $w_L = 1.70

 $r_1 = \$0.10$

 $r_2 = \$0.20$

Piston

Labor + *Steel* + *Oil* + *Machinery*

$$c_B = 5.55$$

Piston

$$w_B = $0.25$$

 $r_1 = \$0.10$

 $r_2 = 0.20

 $w_L = 1.70

Engine

5 * Fan Belt Cost + 4 * Piston Cost

$$c_{E} = 61.45$$

Objective Function

Objective: Maximize Profit

@objective (model, Max, $(p_E - c_E) * (((x_1/5) + (x_2/4))/2) + (p_A - c_A) * x_3 + (p_B - c_B) * x_4)$

$$\pi = \pi_{\text{Engine}} + \pi_{\text{Fan Belt}} + \pi_{\text{Piston}}$$

$$\frac{\text{Fan Belt}}{\mathbf{\pi}_{\text{Fan Belt}}} = (p_A - c_A) * x_3$$

$$\mathbf{\pi_{Piston}} = (p_B - c_B) * x_4$$

 $C_{\Delta} = 7.85

 $C_{\rm B} = 5.55

Constraints

Raw Material:

• Required units of **steel** (a1)

```
@constraint(model, 8*x1 + 7*x2 + 8*x3 + 7*x4 \le a1)
```

• Required units of **oil** (a2)

```
@constraint(model, 9*x1 + 6*x2 + 9*x3 + 6*x4 \le a2)
```

• *Unlimited* supply of steel (a1) and oil (a2) available for purchase

```
@variable(model, a1 \geq 0.0) @variable(model, a2 \geq 0.0)
```


Factory Personale Capacity:

• **250 laborers** can work at a given time

```
@constraint(model, 3*x1 + 2*x2 + 3*x3 + 2*x4 \le 250)
```

近沙 Production Requirements:

• Final engine requires **5 Fan Belts** (x1) and **4 Pistons** (x2)

```
@constraint(model, (x1/5) - (x2/4) == 0.0)
```

No manufacturing cost constraint

Basic Solution

Model

Objective Function:

• Maximize 5.4 x1+6.7x2+1.15x3+1.4x4

Subject to:

- 0.2x1-0.25x2=0.0
- $8x1+7x2+8x3+7x4-a1 \le 0.0$
- $9x1+6x2+9x3+6x4-a2 \le 0.0$
- $3x1+2x2+3x3+2x4 \le 250.0$
- $x1, x2, x3, x4, a1, a2 \ge 0.0$
- $x1 \in \mathbb{Z}$, $x2 \in \mathbb{Z}$, $x3 \in \mathbb{Z}$, $x4 \in \mathbb{Z}$

Results

Maximal Profit: **\$550**

Engines Produced: 10

Fan Belts Produced: 50

Pistons Produced: 50

Basic Solution Outputs

Raw Material

Oil

Fan Belt Production

Piston Production

50 units produced +

- Used in engines: 40
- Sold individually: **10**

Allocated Costs

- Wages: \$170 for 100 laborers
- Raw material: \$95
- Total variable cost: \$277.50

Total Production

10 engines produced

Revenues

Fan Belt sales: **\$0** Piston sales: \$70 Engine sales: **\$1150**

Total Costs

Total variable cost: \$670

Maximal profit: \$550

Key Insight: With no constraint on raw material availability and production cost, we see a profit of \$550, with 10 engines produced

Variation I. Supply Chain Disruption

Variation 1

Constraints: Supply Chain Impact

Business Problem:

Supply chain shortages have caused a **reduction** in the **availability of raw materials** (steel & oil)

Raw Material:

- Property Required units of steel (a1)
 @constraint(model, 8*x1 + 7*x2 + 8*x3 + 7*x4 <= a1)</pre>
- Required units of oil (a2)
 @constraint(model, 9*x1 + 6*x2 + 9*x3 + 6*x4 <= a2)
- Availability of steel (a1) is 56 units
 @variable(model, 0.0 <= a1 <= 56)</pre>
- Availability of oil (a2) is 54 units @variable(model, 0.0 <= a1 <= 54)</p>

Factory Personale Capacity:

• 250 laborers can work at a given time

@constraint(model, 3*x1 + 2*x2 + 3*x3 + 2*x4 <= 250)

ትርኞችን Production Requirements:

- Final engine requires 5 Fan Belts (x1) and 4 Pistons (x2)
 @constraint(model, (x1/5) (x2/4) == 0.0)
- No manufacturing cost constraint

Model: Supply Chain Impact

Business Problem:

Supply chain shortages have caused a reduction in the availability of raw materials

Problem Adjustments

Limited Raw Materials

- Availability of steel (a1) is 56 units @variable (model, 0.0 <= a1 <=</pre> 56)
- Availability of oil (a2) is 54 units @variable (model, 0.0 <= a2 <=</pre> 54)

Objective Function:

Maximize 5.4 x1+6.7x2+1.15x3+1.4x4

Subject to:

- 0.2x1-0.25x2=0.0
- $8x1+7x2+8x3+7x4-a1 \le 0.0$
- $9x1+6x2+9x3+6x4-a2\leq 0.0$
- $3x1+2x2+3x3+2x4 \le 250.0$
- $x1, x2, x3, x4, a1, a2 \ge 0.0$
- $x1 \in \mathbb{Z}$, $x2 \in \mathbb{Z}$, $x3 \in \mathbb{Z}$, $x4 \in \mathbb{Z}$
- **a1**≤56.0
- **a2**≤54.0

Model

Results

Maximal Profit: \$11.60

Engines Produced: 0

Fan Belts Produced: O

Pistons Produced: 8

Variation 1

Solution Outputs: Supply Chain Impact

Raw Material

Steel

56 units for \$5.6

Oil

48 units for \$9.6

Fan Belt Production

0 units produced

- Used in engines: 0
- Sold individually: 0

Allocated Costs

- Wages: \$0 for 0 laborers
- Raw material: \$0
- Total variable cost: \$0

Piston Production

8 units produced

- Used in engines: 0
- Sold individually: 8

Allocated Costs

- Wages: \$27.20 for 16 laborers
- Raw material: \$15.20
- Total variable cost: \$44.40

Total Production

0 engines produced

Revenues

Fan Belt sales: **\$0**Piston sales: **\$56**Engine sales: **\$0**

Total Costs

Total variable cost: \$44.40

Maximal profit: \$11.60

Key Insight: Supply chain constraints led to the optimizer focussing on production of pistons to maximize profit, producing 8 pistons and no engines

Variation II. COVID Restrictions

Variation 2

Constraints: COVID Restrictions Impact

Business Problem:

Along with the supply chain shortages, COVID restrictions have caused factory capacity to shrink

Raw Material:

- Property Required units of steel (a1)
 @constraint(model, 8*x1 + 7*x2 + 8*x3 + 7*x4 <= a1)</pre>
- Required units of oil (a2)
 @constraint(model, 9*x1 + 6*x2 + 9*x3 + 6*x4 <= a2)
- Availability of steel (a1) is 56 units
 @variable(model, 0.0 <= a1 <= 56)</pre>
- Availability of oil (a2) is 54 units
 @variable(model, 0.0 <= a1 <= 54)</pre>

Factory Personale Capacity:

• 47 laborers can work at a given time

@constraint(model, 3*x1 + 2*x2 + 3*x3 + 2*x4 <= 47)

ቸውን Production Requirements:

- Final engine requires 5 Fan Belts (x1) and 4 Pistons (x2)
 @constraint(model, (x1/5) (x2/4) == 0.0)
- No manufacturing cost constraint

Model: COVID Restrictions Impact

Business Problem:

Along with the supply chain shortages, COVID restrictions have caused factory capacity to shrink

Problem Adjustments

Limited Raw Materials

- Availability of steel (a1) is 56 units @variable (model, 0.0 <= a1 <=</pre> 56)
- Availability of oil (a2) is 54 units @variable (model, 0.0 <= a2 <=</pre> 54)

COVID Restrictions

Only 47 laborers can be in the factory at a given time

```
@constraint (model,
3*x1+2*x2+3*x3+2*x4 <= 47)
```

Model

Objective Function:

Maximize 5.4 x1+6.7x2+1.15x3+1.4x4

Subject to:

- 0.2x1-0.25x2=0.0
- $8x1+7x2+8x3+7x4-a1 \le 0.0$
- $9x1+6x2+9x3+6x4-a2\leq 0.0$
- $3x1+2x2+3x3+2x4 \le 47.0$
- $x1, x2, x3, x4, a1, a2 \ge 0.0$
- $x1 \in \mathbb{Z}$, $x2 \in \mathbb{Z}$, $x3 \in \mathbb{Z}$, $x4 \in \mathbb{Z}$
- *a*1≤56.0
- $a2 \le 54.0$

Results

Maximal Profit: \$11.60

Fan Belts Produced: O

Pistons Produced: 8

Variation 2

Solution Outputs: COVID Restrictions Impact

Raw Material

Steel

56 units for \$5.6

Oil

48 units for \$9.6

Fan Belt Production

O units produced

- Used in engines: 0
- Sold individually: 0

Allocated Costs

- Wages: \$0 for 0 laborers
- Raw material: \$0
- Total variable cost: \$0

Piston Production

8 units produced

- Used in engines: **0**
- Sold individually: 8

Allocated Costs

- Wages: \$27.20 for 16 laborers
- Raw material: \$15.20
- Total variable cost: \$44.40

Total Production

0 engines produced

Revenues

Fan Belt sales: **\$0**Piston sales: **\$56**Engine sales: **\$0**

Total Costs

• Total variable cost: \$44.40

Maximal profit: \$11.60

Key Insight: The supply chain shortages limited the number of laborers needed for production, meaning labor is already in compliance with COVID restrictions

Variation III. Liquidity Limits

Variation 3

Constraints: Liquidity Limits

Business Problem:

Supply chain shortages and COVID labor restrictions have led to liquidity constraints. The company must **limit total production costs**

Raw Material:

- Pequired units of steel (a1)
 @constraint(model, 8*x1 + 7*x2 + 8*x3 + 7*x4 <= a1)</pre>
- Required units of oil (a2)
 @constraint(model, 9*x1 + 6*x2 + 9*x3 + 6*x4 <= a2)
- Availability of steel (a1) is 56 units
 @variable(model, 0.0 <= a1 <= 56)</pre>
- Availability of oil (a2) is 54 units
 @variable(model, 0.0 <= a1 <= 54)</pre>

Factory Personale Capacity:

• 47 laborers can work at a given time

@constraint(model, 3*x1 + 2*x2 + 3*x3 + 2*x4 <= 47)

ተኞጋ Production Requirements:

- Final engine requires 5 Fan Belts (x1) and 4 Pistons (x2) @constraint(model, (x1/5) (x2/4) == 0.0)
- Total production cost must not exceed \$45
 @constraint(model, cA*(x1+x3) + cB*(x2+x4) <= 45)</pre>

Model: Liquidity Limits

Business Problem:

Supply chain shortages and COVID labor restrictions have led to liquidity constraints. The company must limit total production costs

Problem Adjustments

Limited Raw Materials

- Availability of steel (a1) is 56 units @variable (model, 0.0 <= a1 <=</pre>
- Availability of oil (a2) is 54 units @variable (model, 0.0 <= a2 <=</pre> 54)

COVID Restrictions

Only 47 laborers can be in the factory at a given time

```
@constraint (model,
3*x1+2*x2+3*x3+2*x4 <= 47)
```

Liquidity Limit:

Production costs cannot exceed \$45 @constraint (model,

 $cA^*(x1+x3)+cB^*(x2+x4) \le 45$

Model

Objective Function:

Maximize 5.4 x1+6.7x2+1.15x3+1.4x4

Subject to:

- $x1, x2, x3, x4, a1, a2 \ge 0.0$
- $x1 \in \mathbb{Z}$, $x2 \in \mathbb{Z}$, $x3 \in \mathbb{Z}$, $x4 \in \mathbb{Z}$
- $7.9x1+5.5x2+7.9x3+5.5x4 \le 45.0$
- $a2 \le 54.0$

Results

Fan Belts Produced: O

Pistons Produced: 8

- $a1 \le 56.0$

Variation 3

Solution Outputs: Liquidity Limits

Raw Material

Steel

56 units for \$5.60

Oil

48 units for \$9.60

Fan Belt Production

0 units pro

- Used in engines: 0
- Sold individually: 0

Allocated Costs

- Wages: \$0 for 0 laborers
- Raw material: \$0
- Total variable cost: \$0

Piston Production

8 units produced

- Used in engines: **0**
- Sold individually: 8

Allocated Costs

- Wages: \$27.20 for 16 laborers
- Raw material: \$15.20
- Total variable cost: \$44.40

Total Production

0 engines produced

Revenues

Fan Belt sales: **\$0**Piston sales: **\$56**Engine sales: **\$0**

Total Costs

Total variable cost: \$44.40

Maximal profit: \$11.60

Key Insight: Liquidity constraints can ensure there is a cap on associated cost. It does not impact production and profit in this instance given material constraints

Production Curve

Optimal production quantity

Two optimal levels of production

- Produce zero when price < marginal cost
- Produce at full capacity (10 engines) when price ≥ marginal cost
- \rightarrow No fixed costs
- → Constant marginal cost

Key Takeaways

Key takeaways

Downstream Impacts:

- 1. Steel and oil are required in the production of both fan belts and pistons, which are both required to produce engines. **Limitations to steel** and **oil** can have a severe impact on production and profit maximization
- 2. The impacts of COVID on the factory were downplayed because **labor needs were already reduced** from raw material shortages
- 3. Limiting production costs is a good way to manage liquidity, but it will put a cap on profits and production outputs

Production Takeaways:

1. Profits are maximized when **Fan Belts** and **Pistons** are **used in engines** and not sold individually. But, given material constraints, pistons should be prioritized

Additional Considerations

Future work

Inclusion of ...

- 1. Penalty coefficients for multiple optimization opportunities
- 2. Additional constraints
- 3. Stochastic program
- 4. Fixed costs
- 5. Changes to production capabilities (opening additional facility)
- 6. Product line expansion

Appendix

Github and References

- References
 - Ceramics Manufacturing Problem
 - https://bibliotekanauki.pl/articles/406208.pdf