Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №7 "Анализ точности систем управления" Вариант - 25

Выполнил		(подпись
	(фамилия, и.о.)	
Проверил	(фамилия, и.о.)	(подпись)
"" 20г.	Санкт-Петербург,	20г.
Работа выполнена с оценкой		
Дата защиты ""	20г.	

Цель работы Исследование точностных свойств систем управления.

1 Исследование системы с астатизмом нулевого порядка

Даны передаточная функция объекта управления и характеристики задающего воздействия:

$$W(s) = \frac{2}{3s+1}$$

$$g(t) = 1$$

$$g(t) = 0.5t$$

Построим схему моделирования системы с астатизмом нулевого порядка, находящейся в стационарном режиме работы (g(t)=1), где H(s)=k:

Рисунок 1 — Схема моделирования системы с астатизмом нулевого порядка с g(t) = 1

Промоделируем данную систему и получим переходные процессы для k = 1, 5, 10:

Рисунок 2 — Схема моделирования системы с астатизмом нулевого порядка с g(t)=1 и k=1

Рисунок 3 — Схема моделирования системы с астатизмом нулевого порядка с g(t)=1 и k=5

Рисунок 4 — Схема моделирования системы с астатизмом нулевого порядка с g(t)=1 и k=10

Из графиков переходных процессов определим предельное значение установившейся ошибки ε :

- а) $\varepsilon = 0.34$ при k = 1
- b) $\varepsilon = 0.09$ при k = 5
- c) $\varepsilon = 0.05$ при k = 10

Выведем завимость предельного значения установившейся ошибки ε от k. На основе анализа структурной схемы системы можно записать:

$$y = kW(s)e$$

Учитывая, что y = kW(s)e

$$e(1 + kW(s)) = g$$

$$e = \frac{g}{1 + kW(s)} = \frac{(3s+1)g}{3s+2k+1}$$

В соответствии с теоремой о предельном переходе во временной области, с учётом, что $G(s)=rac{1}{s},$ имеем:

$$\varepsilon = \lim_{s \to 0} \frac{(3s+1)\frac{1}{s}s}{3s+2k+1} = \frac{1}{2k+1}$$

Выведем экспериментальный и расчётный графики зависимости $\varepsilon(k)$:

Рисунок 5 — Экспериментальный и расчётный графики зависимости $\varepsilon(k)$

Построим схему моделирования системы с астатизмом нулевого порядка, находящейся в режиме движения с постояной скоростью g(t) = 0.5t, где H(s) = k:

Рисунок 6 — Схема моделирования системы с астатизмом нулевого порядка, движущейся с постоянной скоростью

Промоделируем данную систему и получим переходные процессы для k=1,5,10 на интервале времени t=30c:

Рисунок 7 — График переходного процесса при g(t)=0.5t и k=1

Рисунок 8 — График переходного процесса при g(t)=0.5t и k=5

Рисунок 9 — График переходного процесса при g(t)=0.5t и k=10

2 Исследование системы с астатизмом первого порядка

Даны передаточная функция объекта управления и характеристики задающего воздействия:

$$W(s) = \frac{2}{3s+1}$$
$$g(t) = 1$$

$$g(t) = 0.5t$$

$$g(t) = 0.25t^2$$

Построим схему моделирования системы с астатизмом первого порядка, находящейся в стационарном режиме работы g(t)=1, где $H(s)=\frac{k}{s}$:

Рисунок 10 — Схема моделирования системы с астатизмом первого порядка, находящейся в стационарном режиме работы

Промоделируем данную систему и получим переходные процессы для k=1,5,10:

Рисунок 11 — График переходного процесса при g(t)=1 и k=1

Рисунок 12 — График переходного процесса при g(t)=1 и k=5

Рисунок 13 — График переходного процесса при g(t) = 1 и k = 10

Из графиков переходных процессов определим предельное значение установившейся ошибки ε :

$$\varepsilon=0$$
 при $k=1,\,k=5$ и $k=10$

Выведем зависимость предельного значения установившейся ошибки ε от k. На основе анализа структурной схемы системы можно записать:

$$y = W(s)\frac{k}{s}e$$

руктурной схемы системы можно запи
$$y=W(s)\frac{k}{s}e$$
 Учитывая, что $y=g\ e$, преобразуем: $g-e=W(s)\frac{k}{s}e$

$$e(1+W(s)\frac{k}{s}) = g$$

$$e(1+W(s)\frac{k}{s}) = g$$

$$e = \frac{g}{1+W(s)\frac{k}{s}} = \frac{(3s^2+s)g}{3s^2+s+2k}$$

В соответствии с теоремой о предельном переходе во временной области, с учетом, что G(s) =1/s, имеем:

$$\varepsilon = \lim_{s \to 0} \frac{(3s^2 + s)\frac{1}{s}s}{3s^2 + s + 2k} = 0$$

Выведем экспериментальный и расчетный графики зависимости $\varepsilon(k)$:

Рисунок 14 — Экспериментальный и расчетный графики зависимости $\varepsilon(k)$:

Построим схему моделирования системы с астатизмом первого порядка, движущейся с постоянной скоростью g(t)=0.5t, где H(s)=k/s:

Рисунок 15 — Схема моделирования системы с астатизмом первого порядка, движущейся с постоянной скоростью

Промоделируем данную систему и получим переходные процессы для k=1,5,10 на интервале времени t=30c:

Рисунок 16 — График переходного процесса при g(t)=0.5t и k=1

Рисунок 17 — График переходного процесса при g(t)=0.5t и k=5

Рисунок 18 — График переходного процесса при g(t)=0.5t и k=10

Из графиков переходных процессов определим предельное значение установившейся ошибки ε :

- а) $\varepsilon = 0.24$ при k = 1
- b) $\varepsilon = 0.049$ при k = 5
- c) $\varepsilon = 0.025$ при k = 10

Выведем зависимость предельного значения установившейся ошибки ε от k. На основе выводов, сделанных при анализе стационарного режима, получаем:

$$e = \frac{g}{1 + W(s)^{\frac{k}{2}}} = \frac{(3s^2 + s)g}{3s^2 + s + 2k}$$

 $e=rac{g}{1+W(s)rac{k}{s}}=rac{(3s^2+s)g}{3s^2+s+2k}$ В соответствии с теоремой о предельном переходе во временной области, с учетом, что G(s)= $\frac{0.5}{s^2}$, имеем:

$$\varepsilon = \lim_{s \to 0} \frac{(3s^2 + s)\frac{0.5}{s^2}s}{3s^2 + s + 2k} = \frac{0.5}{2k}$$

Выведем экспериментальный и расчетный графики зависимости $\varepsilon(k)$:

Рисунок 19 — Экспериментальный и расчетный графики зависимости $\varepsilon(k)$

Построим схему моделирования системы с астатизмом первого порядка, движущейся с постоянным ускорением $g(t)=0.25t^2$, где $H(s)=\frac{k}{s}$:

Рисунок 20 — Схема моделирования системы с астатизмом первого порядка, движущейся с постоянным ускорением

Промоделируем данную систему и получим переходные процессы для k=1,5,10 на интервале времени t=30c:

Рисунок 21 — График переходного процесса при $g(t)=0.25t^2$ и k=1

Рисунок 22 — График переходного процесса при $g(t)=0.25t^2$ и k=5

Рисунок 23 — График переходного процесса при $g(t)=0.25t^2$ и k=10

3 Исследование влияний внешних возмущений

Построим схему моделирования возмущенной системы со следующими параметрами: 2

$$W(s) = \frac{2}{(3s+1)}$$

$$f_1 = 1$$

$$f_2 = -0.5$$

Рисунок 24 — Схема моделирования возмущенной системы

Промоделируем данную систему, полагая g(t)=1(t) и $f_2=0,$ и получим переходный процесс:

Рисунок 25 — График переходного процесса при g(t)=1(t) и $f_2=0$

Выведем график ошибки слежения:

Рисунок $26-\Gamma$ рафик ошибки слежения e(t) при g(t)=1(t) и $f_2=0$

Из графика ошибки слежения определяем предельное значение установившейся ошибки: $\varepsilon=0$ при g(t) = 1(t) и $f_2 = 0$.

Произведем аналитический расчет установившейся ошибки ε при g(t)=1(t) и $f_2=0.$ На основе анализа структурной схемы системы можно записать: $y = W(s)(f_1 + \frac{1}{s}e)$ Выразим e, предварительно заменив y = g - e:

$$y = W(s)(f_1 + \frac{1}{\epsilon}e)$$

$$g - e = W(s)(f_1 + \frac{1}{s}e)$$

$$e(1+W(s)\frac{1}{s}) = g - W(s)f_1$$

$$e = \frac{g}{1 + W(s)\frac{1}{s}} - \frac{W(s)f_1}{1 + W(s)\frac{1}{s}}$$
$$(3s^2 + s)g - 2sf_1$$

$$e = \frac{(3s^2 + s)g}{3s^2 + s + 2} - \frac{2sf_1}{3s^2 + s + 2}$$

 $e(1+W(s)\frac{1}{s})=g-W(s)f_1$ $e=\frac{g}{1+W(s)\frac{1}{s}}-\frac{W(s)f_1}{1+W(s)\frac{1}{s}}$ $e=\frac{(3s^2+s)g}{3s^2+s+2}-\frac{2sf_1}{3s^2+s+2}$ В соответствии с теоремой о предельном переходе во временной области, с учетом, что $G(s)=\frac{1}{s}$ $\frac{1}{s}$, $F1=\frac{1}{s}$ имеем: $\varepsilon=\lim_{s \ to0}\frac{(3s^2+s)\frac{1}{s}s}{3s^2+s+2}-\frac{2s\frac{1}{s}s}{3s^2+s+2}=0$ Промоделируем данную систему, полагая g(t)=1(t) и $f_1=0$, и получим переходный процесс:

$$\varepsilon = \lim_{s \to 0} \frac{(3s^2 + s)\frac{1}{s}s}{3s^2 + s + 2} - \frac{2s\frac{1}{s}s}{3s^2 + s + 2} = 0$$

Рисунок 27 — График переходного процесса при g(t)=1(t) и $f_1=0$

Выведем график ошибки слежения:

Рисунок 28 — График ошибки слежения e(t) при g(t)=1(t) и $f_1=0$

Из графика переходного процесса определяем предельное значение установившейся ошибки: $\varepsilon=0.5$ при g(t)=1(t) и $f_1=0$.

Произведем аналитический расчет установившейся ошибки ε при g(t)=1(t) и $f_1=0$. На основе анализа структурной схемы системы можно записать:

$$y = W(s)\frac{1}{s}(f_2 + e)$$

$$g - e = W(s)\frac{1}{s}f_2$$

$$e(W(s)\frac{1}{s}+1) = g - W(s)\frac{1}{s}f_2$$

$$e = \frac{g}{W(s)\frac{1}{s} + 1} - \frac{W(s)\frac{1}{s}f_2}{W(s)\frac{1}{s} + 1}$$

$$e = \frac{(3s^2 + s)g}{3s^2 + s + 2} - \frac{2f_2}{3s^2 + s + 2}$$

 $y=W(s)\frac{1}{s}(f_2+e)$ Выразим e, предварительно заменив y=g e: $g-e=W(s)\frac{1}{s}f_2$ $e(W(s)\frac{1}{s}+1)=g-W(s)\frac{1}{s}f_2$ $e=\frac{g}{W(s)\frac{1}{s}+1}-\frac{W(s)\frac{1}{s}f_2}{W(s)\frac{1}{s}+1}$ $e=\frac{(3s^2+s)g}{3s^2+s+2}-\frac{2f_2}{3s^2+s+2}$ В соответствии с теоремой о предельном переходе во временной области, с учетом, что $G(s)=\frac{1}{s},\,F1=\frac{-0.5}{s}$ имеем: $\varepsilon=\lim_{s\to 0}\frac{(3s^2+s)\frac{1}{s}s}{3s^2+s+2}-\frac{2\frac{-0.5}{s}s}{3s^2+s+2}=0.5$

$$\varepsilon = \lim_{s \to 0} \frac{(3s^2 + s)\frac{1}{s}s}{3s^2 + s + 2} - \frac{2\frac{-0.5}{s}s}{3s^2 + s + 2} = 0.5$$

4 Исследование установившейся ошибки при произвольном входном воздействии

Построим схему моделирования системы с отрицательной обратной связью со следующими параметрами: $\hat{\ }$

$$W(s) = \frac{2}{3s+1}$$

$$g(t) = 2 + 3sin(0.5t)$$

$$H(s) = 1$$

Рисунок 29 — Схема моделирования системы с отрицательной обратной связью

Промоделируем данную систему и получим графики переходного процесса и установившейся ошибки $e_y(t)$:

Рисунок 30 — График переходного процесса

Рисунок $31 - \Gamma$ рафик установившейся ошибки $e_u(t)$

Получим приближенное аналитическое выражение для $e_y(t)$. Выходная переменная и ошибка связаны следующим выражением:

$$y(t) = W(s)_0 e_y(t)$$

$$W(s)_0 = H(s)W(s)$$

Так как в нашем случае H(s) = 1, то:

$$W(s)_0 = H(s)W(s)$$

Пользуясь тем, что

$$e_y(t) = g(t) - y(t)$$

получим:

$$y(t) = W(s)(g(t) - y(t))$$

$$y(t) = W(s)(g(t) - y(t))$$
$$y(t) = \frac{W(s)}{1 + W(s)}g(t)$$

Обозначим
$$\phi(s) = \frac{W(s)}{1 + W(s)} = \frac{2}{3s + 1} * \frac{1}{1 + \frac{2}{3s + 1}}$$

$$\phi(s) = \frac{2}{3(s+1)}$$

 $\phi(s) = \frac{2}{3(s+1)}$ Функцию $\phi(s)$ можно разложим в ряд Маклорена, ограничившись первыми тремя членами:

$$\phi(s) = \phi(0) + \phi(0)^{(1)}s + \frac{\phi(0)^{(2)}s^2}{2!}$$

$$\phi(0) = c_0 = \frac{2}{3}$$

$$\phi(0)^{(1)} = c_1 = \frac{-2}{3(s+1)^2} = -\frac{2}{3}$$

$$\phi(0)^{(2)}=c_2=\frac{4}{3(s+1)^3}=rac{4}{3}$$
В итоге окончательно получаем:

$$e_y(t) = g(t) - y(t) = g(t) - (\phi(0) + \phi(0)^{(1)}s + \frac{\phi(0)^{(2)}s^2}{2!})g(t)$$

$$e_y(t) = (1 - \phi(0))g(t) - \phi(0)^{(1)}sg(t) - \frac{\phi(0)^{(2)}s^2}{2!})g(t)$$

$$e_y(t) = (1 - \phi(0))g(t) - \phi(0)^{(1)}sg(t) - \frac{\phi(0)^{(2)}s^2}{2!}g(t)$$

Или, переходя к записи через производные:
$$e_y(t) = (1-c_0)g(t) - c_1g(t)^{(1)} - \frac{c_2}{2}g(t)^{(2)}$$

Вычислим производные входного воздействия:

$$g(t) = 2 + 3\sin(0.5t)$$

$$a(t)^{(1)} = 1.5\cos(0.5t)$$

$$g(t)^{(1)} = 1.5cos(0.5t)$$

$$g(t)^{(2)} = -0.75sin(0.5t)$$

Получим приближенное аналитическое выражение для $e_y(t)$: $e_y(t) \approx \frac{2}{3} + 1.5 sin(0.5t) + cos(0.5t)$ Построим по полученному выражению график:

Рисунок 32 — График, построенный на основе приближенного выражения для установившейся ошибки $e_y(t)$

Вывод

В ходе проведения данной лабораторной работы были исследованы такие режимы работы систем с астатизмом нулевого и первого порядков, как стационарный, режим движения с постоянной скоростью и режим движения с постоянным ускорением, и построены графики переходных процессов для каждого из режимов. Причем для стационарного режима работы систем с астатизмом нулевого и первого порядков и для режима движения системы первого порядка с постоянной скоростью были получены предельные значения установившейся ошибки є при различных значениях параметра k передаточной функции регулятора H(s), а также сделан аналитический вывод зависимости $\varepsilon(k)$ для проверки правильности проведения эксперимента. Проверка показала полное соответствие экспериментальных данных расчетным. Аналогичные выкладки были сделаны и при исследовании возмущенной системы, где также были получены графики переходных процессов и предельные значения установившейся ошибки ε при различных значениях параметра kпередаточной функции регулятора H(s). Аналитический расчет полностью подтверждают данные эксперимента. На последнем этапе данной лабораторной работы было произведено исследование установившейся ошибки $e_u(t)$ при синусоидальном входном воздействии и возможность при аналитическом выводе выражение для $e_u(t)$ ограничиться тремя членами ряда Маклорена. Сравнение графика расчетной $e_{y}(t)$ с графиком экспериментальной $e_{y}(t)$ показало, что ограничение возможно с учетом той погрешности, которая возникает при отбрасывании остальных членов.