Лекция 8 - 2022

- 1. Намагниченность вещества
- Вектор напряженности магнитного поля и его связь с векторами индукции и намагниченности.
- 3. Магнитная восприимчивость и магнитная проницаемость вещества
- 4. Теоремы о циркуляции векторов напряженности и намагниченности в интегральной и дифференциальной формах.
- 5. Диамагнетики, парамагнетики, ферромагнетики.
- 6. Поле на границе раздела магнетиков

То, что мы знаем, - ограничено, а то, что не знаем, - бесконечно

П. Лаплас

Магнитный момент

$$\vec{p}_{m} = I S \vec{n}$$

Намагниченность – объемная плотность суммарного магнитного дипольного момента

$$\vec{\mathbf{J}} = \frac{1}{\Delta V} \sum_{i=1}^{n} \vec{\mathbf{P}}_{m i}$$

Намагниченность вещества

$$\vec{J} = \frac{1}{\Delta V} \sum_{m} \vec{p}_{m}$$

$$\vec{\mathbf{J}} = n \langle \vec{\mathbf{p}}_{m} \rangle$$
,

Намагниченность веществ

Намагниченность веществ

Однородная намагниченность

Неоднородная намагниченность

Неоднородная намагниченность

Теорема о циркуляции вектора **J**

$$\oint \vec{\mathbf{J}} \, d\vec{\mathbf{l}} = I',$$

Иродов, стр. 181.

 $dV = S_{m} \cos \alpha dl$

 $\mathrm{d}I' = I_{\mathrm{M}} n \, \mathrm{d}V$, где n — концентрация молекул. $\mathrm{d}I' = I_{\mathrm{M}} S_{\mathrm{M}} n \cos \alpha \, \mathrm{d}l = J \cos \alpha \, \mathrm{d}l = \overset{\rightarrow}{\mathbf{J}} \overset{\rightarrow}{\mathrm{d}l}$

 $I_{\rm m}S_{\rm m}=p_{\rm m}$ — магнитный момент отдельного молекулярного тока. $I_{\rm m}S_{\rm m}n$ — магнитный момент единицы объема вещества.

Теорема Стокса

• Циркуляция поля по замкнутому контуру равна потоку ротора этого поля через поверхность, ограниченную этим контуром.

Подобные иллюстрации из учебника Савельева

$$\int_{S} \vec{j}_{MO,T} d\vec{S} = \oint_{\Gamma} \vec{J} d\vec{I}.$$

 $\int\limits_{S} \vec{j}_{\text{мол}} \, d\vec{S} = \oint\limits_{\Gamma} \vec{J} \, d\vec{l}$. - суммарный молекулярный ток у края контура, равный силе тока намагничивания

$$\int_{S} \vec{j}_{\text{мол}} d\vec{S} = \int_{S} [\vec{\nabla} \vec{J}] d\vec{S}$$
. - выражение этого тока по теореме Стокса.

$$rot J = j'$$

- из равенства интегральных выражений. Ротор вектора намагничивания = плотности поверхностного молекулярного тока.

Граничное условие для вектора **Ј**

Циркуляция вектора намагниченности равна силе поверхностного молекулярного тока.

$$\oint \vec{\mathbf{J}} \ d\vec{\mathbf{l}} = I'.$$

Из циркуляция вектора намагниченности:

$$Il = i'l$$

$$i' = J$$
.

Линейная плотность поверхностного молекулярного тока численно равна приповерхностной намагниченности

12

Намагниченность численно равна поверхностной плотности тока намагничивания (молекулярного тока)

$$i' = J$$
.

векторы \vec{i}' и \vec{J} взаимно перпендикулярны:

$$\vec{i}' \perp \vec{J}$$
.

$$\overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}}_0 + \overrightarrow{\mathbf{B}'}.$$

$$\oint \overrightarrow{\mathbf{B}} \, d\overrightarrow{\mathbf{S}} = 0.$$

$$\vec{J} = \frac{1}{\Delta V} \sum \vec{P}_{mi}$$

Циркуляция вектора **В**

$$\oint_{L} \vec{\mathbf{B}} d\vec{\mathbf{I}} = \mu_0 (I_{\text{макро}} + I_{\text{микро}}).$$

 $I_{\mathrm{микро}}$ и $I_{\mathrm{макро}}$ – алгебраическая сумма макро- и микротоков сквозь поверхность, натянутую на замкнутый контур L.

Реакция ферромагнетиков на внешнее однородное магнитное поле

Традиционное представление **H** – суммарный вектор

Учебник Матвеева, стр.

149

Магнитное поле в присутствин ферромагнетика

Реакция ферромагнетиков на внешнее однородное магнитное поле

Из учебника Матвеева

Рассмотрим для примера постоянный магнит в виде плоской пластины конечной толщины и бесконечной площади (рис. 149). Постоянная намагниченность \mathbf{J}_{n} направлена перпендикулярно поверхности постоянного магнита. Диа- и парамагнитные свойства постоянного магнита не учитываем.

Пусть вне постоянного магнита имеется магнитное поле с напряженностью H_0 , направленной перпендикулярно его поверхности. Индукция поля одинакова как вне магнита, так и внутри него и равна $B = \mu_0 H_0$. Тогда [см. (38.31в)] $\mu_0 H_0 = \mu_0 H + \mu_0 J_{\pi}$. Отсюда напряженность поля внутри постоянного магнита равна (см. рис. 149):

$$H = H_0 - J_{\text{II}}$$

Однако это очень сомнительно.

Вектор напряженности магнитного поля Н

Термин *напряженность* появился самым первым. Закон Био-Савара-Лапласа изначально был сформулирован для *H*, но после открытия *намагниченности*, ввели понятие *магнитной индукции*, обозначив ее буквой *B*

$$B = \mu \mu_0 H$$

μ – определяетсятипом материала

Для вакуума
$$B = \mu_0 H$$

В системе СГС, где значение μ_0 принято безразмерным и равным единице, магнитная индукция считается макроскопическим полем, а напряженность микроскопическим (атомно-молекулярным) магнитным полем, т.е., по сути, различий нет.

Вектор **H** стали определять токами проводимости, а вектор **J** определять молекулярными токами. Тогда получается, что вектор В суммарный вектор (*но это не всеми признается*).

Интегральная теорема о циркуляции вектора Н

Используя теорему Стокса, можем записать

$$\oint_{\Gamma} Hdl = \int_{S} rotHdS$$

Учитывая, что:
$$I = \int\limits_{S} j dS$$
 получим: $\mathrm{rot} H = j$

Ротор вектора **H** равен вектору плотности тока проводимости (A/м²)

Иная форма записи:

Дифференциальная форма теоремы о циркуляции вектора Н:

$$\nabla \times \mathbf{H} = \mathbf{j},$$

А.С. Чуев, 2022

20

Вариант теоремы о циркуляции вектора Н (по Иродову)

$$\oint \overrightarrow{\mathbf{B}} \, d\mathbf{l} = \mu_0 (I + I'),$$

где I и I' — токи проводимости и намагничивания, охватываемые заданным контуром Г.

C учетом:
$$\oint \overrightarrow{J} d\overrightarrow{l} = I'$$
.

$$\oint \overrightarrow{\mathbf{J}} \, d\overrightarrow{\mathbf{I}} = I'.$$

Можно записать:
$$\oint \left(\frac{\overrightarrow{B}}{\mu_0} - \overrightarrow{J}\right) \overrightarrow{dI} = I$$
.

$$\overrightarrow{\mathbf{H}} = \frac{\overrightarrow{\mathbf{B}}}{\mu_0} - \overrightarrow{\mathbf{J}},$$

$$\oint \vec{\mathbf{H}} \, d\vec{\mathbf{l}} = I.$$

Связь между векторами Ј и Н.

$$J = \chi H$$
,

где χ — магнитная восприимчивость,

Связь между В и Н.

$$\mathbf{H} = \frac{\mathbf{B}}{\mu_0} - \mathbf{J}$$
, преобразуем в $(1 + \chi) \mathbf{H} = \mathbf{B}/\mu_0$. Отсюда

$$\mathbf{B} = \mu \mu_0 \mathbf{H},$$

где µ — магнитная проницаемость среды.

$$\mu = 1 + \chi.$$

Магнитная восприимчивость и магнитная проницаемость веществ

$$J = \chi H$$

$$\frac{B}{\mu_0} = H + J$$

$$B = \mu \mu_0 H = \mu_0 (H + J)$$

$$J = (\mu - 1)H$$

$$\chi = (\mu - 1)$$

Диамагнетики, парамагнетики, ферромагнетики

$$\chi \leq 0 \qquad \chi \geq 0 \qquad \chi \rangle \rangle 0$$

Диамагнетиками называются вещества, магнитные моменты атомов которых в отсутствии внешнего поля равны нулю, т.к. магнитные моменты всех электронов атома взаимно скомпенсированы (например инертные газы, водород, азот, NaCl и др.).

При внесении диамагнитного вещества в магнитное поле его атомы приобретают наведенные магнитные моменты. В пределах малого объема ΔV изотропного диамагнетика наведенные магнитные моменты всех атомов одинаковы и направлены *противоположно вектору В*.

Парамагнетиками называются вещества, атомы которых имеют, в отсутствие внешнего магнитного поля, отличный от нуля магнитный момент .

К *парамагнетикам* относятся многие щелочные металлы, кислород, оксид азота NO, хлорное железо FeCl₂ и др.

Магнитная восприимчивость элементов и соединений при 20 °C ($B = \mu_0(1 + \chi)H$)

Вещество	$\chi, 10^{-6}$	Вещество	χ , 10^{-6}
Алюминий	23	Серебро	-26,25
Висмут	-176	Стекло	-12,6
Вода	-9	Цинк	-12,3
Вольфрам	176	Эбонит	14,0
Золото	-36,7		9.8
Калий	5,6	Газы	
Каменная соль	-12,6	Азот	0,013
Кварц	-15,1	Водород	-0,063
Кислород жидкий	3400	Воздух	0,38
Медь	-10,3	Гелий	-1,1
Платина	360	Кислород	1,9

Орбитальный магнитный момент электрона в атоме

$$M = mvr$$

$$p_m = IS = ev\pi r^2$$

$$p_m = \frac{evr}{2}$$

Гиромагнитное соотношение

$$\frac{p_m}{M} = -\frac{e}{2m}$$

Физическая природа диамагнетизма

За время dt вектор \mathbf{M} получает приращение $d\mathbf{M}$, равное

$$dM = N dt$$
.

Вектор dM, как и вектор N, перпендикулярен к плоскости, проходящей через векторы B и M; его модуль равен

$$|d\mathbf{M}| = p_m B \sin \alpha dt$$
,

где α — угол между \mathbf{p}_m и \mathbf{B} .

За время dt плоскость, в которой лежит вектор \mathbf{M} , повернется вокруг направления \mathbf{B} на угол

$$d\vartheta = \frac{|d\mathbf{M}|}{M\sin\alpha} = \frac{\rho_m B\sin\alpha \, dt}{M\sin\alpha} = \frac{\rho_m}{M} B \, dt.$$

Разделив этот угол на время dt, найдем угловую скорость прецессии:

$$\omega_L = \frac{d\vartheta}{dt} = \frac{p_m}{M} B.$$

Подставив значение (56.3) отношения магнитного и механического моментов электрона, получим

$$\omega_L = \frac{eB}{2m}$$
. A.C. Yyes, 2022

$$\omega_L = \frac{eB}{2m} . \tag{57.1}$$

Частоту (57.1) называют частотой ларморовой прецессии или просто ларморовой частотой. Она не зависит ни от угла наклона орбиты по отношению к направлению магнитного поля, ни от радиуса орбиты или скорости электрона и, следовательно, для всех электронов, входящих в состав атома, одинакова.

Теорема Лармора:

единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора – орбитального магнитного момента электрона с угловой скоростью ω_i вокруг оси, проходящей через ядро атома параллельно вектору индукции магнитного поля.

Ларморовские частоты некоторых атомных ядер

ядро	Ларморовская частота в МГц при 0,5 Тесла	Ларморовская частота в МГц при 1 Тесла	Ларморовская частота в МГц при 7,05 Тесла
¹ Н (Водород)	21,29	42,58	300.18
² D (Дейтерий)	3,27	6,53	46,08
¹³ С (Углерод)	5,36	10,71	75,51
²³ Na (Натрий)	5,63	11,26	79.40
³⁹ К (Калий)	1,00	1,99	

Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м)^[4].

Прецессия вращающегося волчка. J – момент импульса, P – сила тяжести, R – реакция опоры, M – вращающий момент.

Ферромагнетизм

Особый класс магнетиков образуют вещества, способные обладать намагниченностью в отсутствие внешнего магнитного поля. По своему наиболее распространенному представителю — железу они получили название ферромагнетиков. К их числу кроме железа принадлежат никель, кобальт, гадолиний, их сплавы и соединения, а также некоторые сплавы и соединения марганца и хрома с неферромагнитными элементами. Ферромагнетизм присущ всем этим веществам только в кристаллическом состоянии.

Ферромагнетики являются сильномагнитными веществами. Их намагниченность в огромное (до 10^{10}) число раз превосходит намагниченность диа- и парамагнетиков, принадлежащих к категории

слабомагнитных веществ.

Ферромагнитные свойства веществ обусловлены наличием собственного (спинового) момента у электронов атомов.

Соотношения магнитных векторов внутри магнетиков

Вектор В - суммарный вектор

$$B = \mu \mu_0 H = \mu_0 (H + J)$$

$$\oint \vec{\mathbf{B}} \, d\vec{\mathbf{l}} = \mu_0 (I + I'),$$

$$rotB = \mu \mu_0 j = \mu_0 (j + j')$$

$$\vec{B}/\mu_0 = (1+\chi)\vec{H} = \mu \vec{H}$$

$$\vec{J}=\chi\vec{H}$$

$$(1+\chi)=\mu$$

B₁ B₁ H₁

B₁ B₁ H₁

Puc. 7.18

0-1 основная кривая намагничивания

 $B=\mu_0(H+J)$. Поэтому по достижении насыщения B продолжает расти с H по линейному закону: $B=\mu_0H+{\rm const}$, где ${\rm const}=\mu_0J_{\rm nac}$.

Классическое представление о поведении векторов **H** и **B** на границе двух сред

$$\frac{\operatorname{tg}\alpha_{\mathrm{f}}}{\operatorname{tg}\alpha_{2}} = \frac{B_{1\tau}/B_{1n}}{B_{2\tau}/B_{2n}}$$

$$\frac{\operatorname{tg}\alpha_{1}}{\operatorname{tg}\alpha_{2}} = \frac{\mu_{1}}{\mu_{2}}$$

Для сравнения: классическое представление о поведении вектора **D** на границе двух сред

Закон преломления векторов электрической индукции **D** и магнитной индукции **B** оказывается одинаковым!!!

ФАКУЛЬТАТИВНЫЙ МАТЕРИАЛ ЛЕКЦИИ

вектор **В** (точнее, **В**/ μ_{o}) составной, он включает в себя векторы **Н** и **Ј**

Реакция ферромагнетиков на внешнее однородное магнитное поле

Внешнее магнитное поле намагниченных тел

А.С. Чуев, 2022 45

Внешнее магнитное поле цилиндрического магнита (намагниченного стержня)

Есть ли поле Н?

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{3e_r(e_r \cdot p_m) - p_m}{r^3}$$

$$\frac{B}{\mu_0} = \frac{V_M}{4/3 \pi r^3} \left(e_r(e_r \cdot J) - \frac{J}{3} \right)$$

Линии вектора *Е*

$$\vec{p}_e = q\vec{l}$$

$$\varphi = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{\vec{p}_e \cdot \vec{e}_r}{r^2}$$

$$\vec{p}_e' = -\vec{p}_e$$

$$\vec{p}'_e = -\vec{p}_e \qquad \vec{E} = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{\vec{p}'_e - 3\vec{e}_r(\vec{e}_r \cdot \vec{p}'_e)}{r^3}$$

$$E = \frac{1}{\varepsilon \varepsilon_0} \frac{p_e}{4\pi r^3} \sqrt{1 + 3\cos^2\theta}$$

$$\vec{A} = \frac{\mu \mu_0}{4\pi} \frac{\vec{p}_m \times \vec{e}_r}{r^2}$$

$$\vec{B} = \frac{\mu \mu_0}{4\pi} \frac{3\vec{e}_r(\vec{e}_r \cdot \vec{p}_m) - \vec{p}_m}{r^3}$$

$$B = \frac{\mu \mu_0}{4\pi} \frac{p_m}{r^3} \sqrt{1 + 3\cos^2\theta}$$

 $\vec{p}_{\scriptscriptstyle m} = IS\vec{n}$

Магнитное поле свободного диполя и диполя, находящегося во внешнем поле H_e большой совокупности диполей

Размагничивающее поле

$$H_{\otimes} = H_{\tau} = -NJ$$

48

А.С. Чуев, 2022

Рис 162. Железные проволоки порознь намагничиваются сильнее, чем толстый стержень, составленный из этих проволок

Внешнее поле намагниченных проволок ослабляет внутреннее магнитное поле соседних с ними проволок

Картина магнитного поля намагниченного стержня (по Зоммерфельду). Поле вектора H создается магнитными зарядами.

Фиг. 15. Распределение поля и намагниченности однородно намагниченного стержня.

Иное изображение намагниченности **М** и магнитного поля **В** намагниченного стержня

Получается, что намагниченность части пространства внутри вещества противоположна намагниченности пространства, свободного от вещества. И картина становится в какой-то степени похожей на зоммерфельдовскую.

Возможное изображение намагниченности **М** и магнитного поля **В** намагниченного стержня

J - непонятная составляющая намагниченности материала.
 Возможно, это ослабление намагниченности из-за поворота магнитных диполей на краю магнита, что не наблюдается.

Вариант изображения намагниченности **J** и магнитного поля **B** намагниченного стержня

Внутри магнита намагниченность пространства уменьшается

A.C. Чуев, 2022 53

Наиболее вероятное изображение переменной намагниченности *М* внутри стержня и и магнитного поля *В* у торцов вне стержня

На торцах стержня магнитное поле **В**, делённое на мю нулевое примерно в два раза меньше намагниченности в центре стержня

Подтверждающие опыты

А.С. Чуев, 2022

Приводимое изображение противоречит известному соотношению div**B** = 0

А.С. Чуев, 2022 56

Парадокс изображения магнитных полей

$$dB = \frac{\mu\mu_0}{4\pi} \frac{I[dl,r]}{r^3}$$
 Закон Б-С-Л не выполняется при любом r .

А.С. Чуев, 2022

57

Верные изображения магнитных полей от проводника с током на границе 2-х сред

Несоответствие сегодняшней теории:

 $div B \neq 0$

Магнитные поля от проводника с током на границе вакуум-парамагнетик и вакуум-ферромагнетик

Магнитные поля от проводника с током на границе вакуум-диамагнетик

А.С. Чуев, 2022

59

Вектор **Н** не может прерываться и преломляться на границе двух сред

В данном случае становится невыполнимой известная на практике теорема о циркуляции вектора *H*

Парадокс изображения магнитных векторов в теле кольцевого магнита с щелевым зазором

Рис. 7.22

Рис. 7.23

7.6. Постоянный магнит имеет вид кольца с узким зазором между полюсами. Средний диаметр кольца равен d. Ширина зазора b, маг-

Рис. 7.22

нитная индукция поля в зазоре В. Пренебрегая рассеянием поля на краях зазора, найти модули векторов Н и Ј внутри вещества.

Решение. Воспользовавшись теоремой о циркуляции вектора \mathbf{H} по пунктирной окружности диаметром d (рис. 7.22) и учитывая, что токов проводимости нет, запишем

$$(\pi d - b)H_{\tau} + bB/\mu_0 = 0,$$

где H_{τ} — проекция вектора **H** на направление обхода контура (оно взято совпадающим с направлением вектора **B** в зазоре). Отсюда

$$H_{\tau} = -\frac{bB}{\mu_0 \left(\pi d - b\right)} \approx -\frac{bB}{\mu_0 \pi d}.$$
 (1)

Знак минус показывает, что направление вектора ${\bf H}$ внутри вещества магнита противоположно вектору ${\bf B}$ в той же точке. Заметим, что при $b \to 0$ и $H \to 0$.

Модуль намагниченности **J** найдем по формуле (7.11), используя результат (1):

$$J = \frac{B/\mu_0}{1 - b/\pi d} \approx \frac{B}{\mu_0} .$$

Соотношение между векторами **В**/µ₀, **Н** и **Ј** в любой точке вещества магнита показано на рис. 7.23.

Рис. 7.23

Катушка индуктивности с током, внутри намагничиваемый стержень. Внутри стержня поле **H** и поле намагниченности **J**.

Поле В/µ суммарное поле внутри стержня.

А.С. Чуев, 2022

$$div J = - div B/\mu_0$$

$$\oint Hdl = 0; \oint Jdl \neq 0; \oint Bdl \neq 0$$

Ток катушки выключен, внутри стержня поле намагниченности ${m J}$

$$\frac{B}{\mu_0} = H + J$$

Магнитное поле внутри намагниченного стержня

$$\operatorname{div}B/\mu_0 = -\operatorname{div}J$$

Поле вне стержня:
$$\frac{B_0}{\mu_0} = \frac{P_{\rm m}}{4\pi r^3} \sqrt{1 + 3\cos^2\theta}$$
,

А.С. Чуев, 2022 66

$$\overrightarrow{H} + J = \frac{B}{\mu_0}$$

$$\frac{B}{\mu\mu_0} + J = \frac{B}{\mu_0};$$

$$B + \mu \mu_0 J = \mu B;$$

$$\mu\mu_0 J = (\mu - 1)B;$$

Преобразуем в выражение:

$$\frac{\mu J}{\mu - 1} = \frac{B}{\mu_0}$$

Для ферромагнетиков

$$\mu >> 1$$
,

тогда

$$\mu \approx \mu - 1$$

и на торцах намагниченного стержня

$$J \approx \frac{B}{\mu_0}$$

Это означает, что на торцах стержня вектор ${\it J}$ переходит в вектор ${\it H}_0$ а вектор ${\it H}$ отсутствует .

В отсутствие токов проводимости на торцах магнита поле намагниченности переходит во внешнее поле $B/\mu_{\scriptscriptstyle 0}$

A.C. YyeB, 2022 68

Примечания Чуева, выделены рамкой красного цвета

$$ec{D} = rac{\sum ec{p}_{
m e}^{\;\; {
m BUPT}}}{V}$$

$$D_{\rm n1} = D_{\rm n2}; \quad D_{\rm \tau 1} = D_{\rm \tau 2}.$$

На границе двух диэлектриков, возможно

$$\oint \vec{E} d\vec{l} \neq 0$$

 $_{\rm H} \quad {\rm rot} \vec{E} \neq 0$

$$ec{H} = rac{\sum ec{p}_{
m m}^{
m \ BИРТ}}{V}$$
 $H_{ au 1} = H_{ au 2}$; $H_{ au 1} = H_{ au 1}$; $H_{ au 1} = H_{ au 1$

Соотношения, выделенные рамкой красного цвета, не являются общепризнанными.

Примеры, подтверждающие приводимые выше формулы

Пример из ДЗ

$$\oint_{L} (\vec{H}, d\vec{l}) = I$$

 $\oint_L (\vec{H}, d\vec{l}) = \int_S (\vec{j}, d\vec{s}).$

 $H2\pi r_a = j(\pi r_a^2 - \pi R^2)$

 $B = \mu \mu_0 H$

$$\vec{J}=\chi\vec{H}$$

$$\chi = \mu - 1$$

$$\oint_L (\vec{J}, d\vec{l}) = I'.$$

$$\operatorname{rot} \vec{J} = \vec{j}'$$

$$\int B dl = \mu \mu_0 \sum I = \mu_0 \sum (I + I')$$

$$I_{\text{сум}}' = \int_{0}^{\infty} i_{nos}' dl + \int_{S} j' dS = 0$$
 Проверка правильности решения

А.С. Чуев, 2022

73

 \vec{N} — единичный вектор нормали к элементу поверхности раздела двух магнетиков (в рассматриваемой задаче это поверхность раздела «магнетик — вакуум») в окрестности точки наблюдения M, \vec{t} — единичный вектор, лежащий в касательной плоскости к поверхности раздела в точке наблюдения; единичный вектор \vec{v} также лежит в этой касательной плоскости и является ортогональным к вектору нормали \vec{N} и выбранному касательному направлению — вектору \vec{t} . Легко заметить, что в условиях рассматриваемой задачи вектор \vec{v} перпендикулярен плоскости элементарного контура ABCD и обусловливает положительное направление обхода этого контура, циркуляция вектора намагниченности \vec{J} по которому лежит в основе вывода локального соотношения для касательных компонент вектора \vec{J} на границе раздела двух магнетиков. Это соотношение выполняется в каждой точке поверхности раздела S.

Конец лекции 8