Algorithms and Their Applications

- Fundamentals of Arithmetic Problem Solving -

Won-Yong Shin

March 16th, 2020

Algorithm

■ A *sequence of unambiguous instructions* for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time

Methods for **gcd**(m, n): Middle-School Version

- Middle-school procedure
 - **Step 1**: Find the prime factorization of m
 - <u>Step 2</u>: Find the prime factorization of *n*
 - Step 3: Find all the common prime factors
 - Step 4: Compute the product of all the common prime factors and return it as gcd(m,n)
 - Example: **gcd**(60, 24)

Methods for **gcd**(m, n): Euclid's Algorithm

Euclid's algorithm

- Based on repeated application of equality $gcd(m,n) = gcd(n, m \mod n)$ until the second number becomes 0, which makes the problem trivial
- Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12
- Step 1: If n = 0, return m and stop; otherwise go to Step 2
- **Step 2**: Divide m by n and assign the value of the remainder to r
- Step 3: Assign the value of n to m and the value of r to n. Go to Step 1.

```
while n \neq 0 do
r \leftarrow m \mod n
m \leftarrow n
n \leftarrow r
return m
```

Pseudocode

Methods for **gcd**(m, n): Consecutive Integer Checking Algorithm

- Consecutive integer checking algorithm
 - Step 1: Assign the value of $min\{m,n\}$ to t
 - Step 2: Divide m by t. If the remainder is 0, go to Step 3; otherwise, go to Step 4
 - <u>Step 3</u>: Divide *n* by *t*. If the remainder is 0, **return** *t* and stop; otherwise, go to Step 4
 - Step 4: Decrease t by 1 and go to Step 2

Algorithm Design Techniques/Strategies

- Algorithms (by Anany Levitin)
 - Brute force
 - Divide and conquer
 - Decrease and conquer
 - Transform and conquer
 - Heaps and heapsort
 - Space and time tradeoffs
 - Dynamic programming
 - Greedy approach
 - Iterative improvement
 - Backtracking
 - Branch and bound

- How good is the algorithm?
 - *Time* efficiency
 - Space efficiency
 - **Example:** algorithms for gcd(m,n)
- Does there exist a better algorithm?
 - Lower bounds
 - Optimality

- Sorting
- Searching
- String processing
 - cf. string matching
- Graph problems
 - Traveling salesman problem: finding the shortest tour through *n* cities that visits every city exactly once
 - Graph-coloring problem: assigning the smallest number of colors to the vertices of a graph so that no two adjacent vertices are the same color
- Combinatorial problems
- Geometric problems
 - Closest-pair problem: finding the closest pair among given n points
 - Convex-hull problem: Finding the smallest convex polygon that would include all the points of a given set
- Numerical problems

Consider the following map:

- a. Explain how we can use the graph-coloring problem to color the map so that no two neighboring regions are colored the same.
- b. Use your answer to part (a) to color the map with the smallest number of colors.

Theoretical Analysis of Time Efficiency

- **Time** efficiency
 - Analyzed by determining the number of repetitions of the <u>basic operation</u> as a function of input size
 - <u>Basic operation</u>: the operation that contributes most towards the running time of the algorithm

Examples: Input Size and Basic Operation

Problem	Input size measure	Basic operation	
Searching for key in a list of <i>n</i> items	Number of list's items, i.e., <i>n</i>	Key comparison	
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers	
Checking primality of a given integer <i>n</i>	Size of n = number of digits (in binary representation)	Division	
Typical graph problem	# of vertices and/or edges	Visiting a vertex or traversing an edge	

Types of Formulas for Basic Operation's Count

Exact formula

e.g.,
$$C(n) = n(n-1)/2$$

- Formula indicating order of growth with *specific* multiplicative constant e.g., $C(n) \approx 0.5 n^2$
- Formula indicating order of growth with *unknown* multiplicative constant e.g., $C(n) \approx cn^2$

- Most important: *order of growth* within a constant multiple as $n \rightarrow \infty$
- Example:
 - How much faster will algorithm run on computer that is twice as fast?
 - How much longer does it take to solve problem of double input size?

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	10^{9}		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Best-Case, Average-Case, Worst-Case

- For some algorithms efficiency depends on form of input:
 - Worst case: $C_{worst}(n)$ maximum over inputs of size n
 - **Best case**: $C_{best}(n)$ minimum over inputs of size n
 - **Average case**: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs


```
ALGORITHM SequentialSearch(A[0..n-1], K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n-1] and a search key K

//Output: The index of the first element of A that matches K

// or -1 if there are no matching elements

i \leftarrow 0

while i < n and A[i] \neq K do

i \leftarrow i + 1

if i < n return i

else return -1
```

Comparison

- Worst-case
- Best-case
- Average-case