

DIÁRIO DO PROJETO

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

TUTOR: EDUARDO FURLAN DE MIRANDA

SÃO PAULO - SÃO PAULO 2025

SUMÁRIO

PLANEJAMENTO INICIAL	2
MONTAGEM E CONSTRUÇÃO	3
TESTES E AJUSTES	5
TESTES FINAIS E DOCUMENTAÇÕES	7

Planejamento Inicial - (25/08/2025 - 13h00)

Objetivo: construir um robô-carro autônomo conforme solicitado pelo professor Eduardo Furlan, responsável pelo projeto.

Componentes

Estrutura do Robô:

- 1 chassi Carro Robótico 4 rodas
- 14 porcas (especificar os tamanhos)
- 10 parafusos longos (especificar os tamanhos)
- 4 porcas e parafusos curtos (especificar os tamanhos)

Circuitos Lógicos:

- 1 Arduino Uno
- 1 Ponte H L298n
- 2 sensores de linha infravermelho modelo IR

Montagem e Alimentação:

- 12 jumpers fêmea-macho
- 1 suporte de bateria
- 1 bateria 12 V para motores
- 1 bateria 9 V para Arduino
- 4 rodas 66 mm para motor DC
- 4 motores DC 3-6 V com redução
- 1 rabicho para bateria 9 V

Montagem e Construção

Desenho do Chassi - (02/09/2025 - 10h00)

Material: base plástica resistente e leve, compatível com quatro rodas de

66mm.

Justificativa: facilidade de usinagem e baixo peso para melhor desempenho.

Fixação dos Componentes - (05/09/2025 -14h00)

Separar chassi, rodas, motores, parafusos e porcas.

Montar a base e prender:

- roda auxiliar
- suportes de motor nos dois motores

Dificuldades encontradas:

- Furos muito apertados \rightarrow lixar levemente as peças
- Desalinhamento dos motores \rightarrow reaperto de parafusos e uso de espaçadores.

Ligação Elétrica - (07/09/2025 - 16h00)

Conexões Arduino → Ponte H L298n

- Porta $5 \rightarrow IN1$
- Porta $6 \rightarrow IN2$
- Porta $10 \rightarrow IN3$
- Porta $11 \rightarrow IN4$

Conexões Arduino → Sensores IR

- Porta $4 \rightarrow D0$ (sensor 1)
- Porta $12 \rightarrow D0$ (sensor 2)

Alimentação e GND

- Arduino GND \rightarrow Ponte H GND
- Arduino VIN \rightarrow Ponte H 12 V
- Sensores VCC \rightarrow Arduino 5 V
- Sensores GND → Arduino GND

$Motores \rightarrow Ponte H$

- Motor $1 \rightarrow OUT1 / OUT2$
- Motor $2 \rightarrow OUT3 / OUT4$

Testes e Ajustes

Teste de Leitura de Sensores - (09/09/2025)

Procedimento: leitura contínua sobre faixa preta de 2 cm em superfície branca, via monitor serial.

Dificuldades

- Ruído elétrico dos motores
- Variação de altura em pisos irregulares
- Reflexos laterais

Mitigações

- Filtro RC (10 k Ω + 0,1 μ F) nos sinais dos sensores
- Suporte ajustável por parafuso para regular altura
- Aplicação de fita preta mate ao redor do sensor

Teste de Locomoção e Calibragem Fina - (11/09/2025)

Procedimento: deslocamento sobre linha para avaliar alinhamento e velocidade.

Ajustes

- Recalibrar tempo de giro para curvas suaves.
- Afinar tensões de PWM para equilíbrio de forças nos motores.

Teste de Desvio de Obstáculos - (12/09/2025)

Procedimento: Ao detectar bloco de 2–5 cm de altura, girar 90° à direita, avançar 20 cm, girar 90° à esquerda e retomar a linha.

Dificuldades

- Leitura tardia em blocos próximos
- Tempo de resposta elevado pelo debouncing
- Perda momentânea da linha pós-manobra

Mitigações

- Ajuste do ângulo do sensor em $\sim 15^{\circ}$
- Redução do filtro RC para 1 k Ω + 0,1 μ F
- Implementação de lógica de busca em "Z" para reencontro da faixa

Teste de Autonomia de Bateria - (13/09/2025)

Procedimento: deslocamento contínuo em loop até parada por descarga completa.

Dificuldades

- Queda brusca de tensão no fim da descarga
- Instabilidade momentânea no barramento de 5 V do Arduino.

Mitigação proposta

- Uso de bateria LiPo 2 000 mAh com proteção de circuito.
- Adição de supercapacitor de 2,2 F no barramento de 5 V.

Testes Finais e Documentação - (29/09/2025)

- •Testes de desempenho e revisão dos processos explicados.
- •Conclusão das documentações.