Homework 10: Limits of Functions (Due April 14, 2023)

Assignments should be **stapled** and written clearly and legibly. For problems 1, 3, and 4, you must use the $\epsilon - \delta$ definition of a limit.

- 1. §5.1, #7(a), #13 (the Squeeze Theorem).
- 2. Use the Squeeze Theorem to prove that $\lim_{x\to 0} \left(x \sin\left(\frac{1}{x}\right)\right) = 0$. Make sure to state what D is.
- 3. Let $f: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}$, and let a be a limit point of D. Suppose that $\lim_{x \to a} f(x) > 0$. Prove that there exists a deleted neighborhood $N_{\delta}^*(a)$ of a such that f(x) > 0 for all $x \in N_{\delta}^*(a) \cap D$.
- 4. Let a > 0. Use the definition of limit to prove that $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.

Hint: Use the inequality $|\sqrt{x} - \sqrt{a}| = \frac{|x - a|}{\sqrt{x} + \sqrt{a}} \le \frac{|x - a|}{\sqrt{a}}$