

第13章 投资项目 经济评价

- 投资者角度:项目分为建设和运营两个阶段。
 - □(1)投资建设阶段——项目管理:投资人(甲方) 支出成本,项目团队(乙方)承担建设任务完成 项目建设(如建造工厂、基础设施、写字楼);
 - □(2)项目运营阶段——运营管理:通过提供产品、服务或销售项目成果赚取利润,补偿投资人的投资支出。
- 总收益是否能补偿全部投资支出: 技术经济评价。

- □所谓技术经济评价,就是运用工程经济学理论与方法,对各种投资建设项目、技术方案、措施、政策等的<u>经济效益</u>进行分析、计算、评价和比较,选择技术上先进、经济上合理、实践上可行、社会上相容的最优方案的过程。
- □只有当获取的总利润能补偿全部投资时,项目在 经济上才被认为是可行的。
- □经济评价的基础数据来源:投资和收益核算。

第一节 投资与收益

一、投资

- □考虑建设一家企业,用 3 年建成,投资 1000 万元, 预计运行 20 年,每年销售产品获得的利润为10万 元。
- □在建设期投入的 1000 万元,是为实现项目建设而 预先垫付的资金,称为<u>投资</u>。
- □建设期投入的资金根据用途不同,形成不同资产。

(一) 固定资产

- □固定资产是指通过投入资本所形成的,使用期限 较长,单位价值较高,能在使用过程中保持原有 物质形态,并能为<u>多个生产周期服务</u>的资产(与 运营期投入的流动资产区分开)。
 - ■投资建设的厂房、购买的机器等
- □固定资产在生产经营过程中因使用损耗而造成<u>折</u> <u>旧</u>,导致价值减少;
- □所减少的价值转移到产品中形成了产品价值的一 部分(通过会计核算)。

(二) 无形资产

- □企业持有的、不具有实物形态、能为企业<u>长期使</u> <u>用</u>并为企业提供某些权利或利益的资产,称为<u>无</u> <u>形资产</u>。
 - ■购买专利/非专利技术(如某种特殊生产技术)、商标、 著作权、特许权(如加盟店)、土地使用权、商誉等。
- □为取得无形资产而投入的成本,在运营期间会计核算时以"无形资产摊销"作为"管理费用"计入成本,通过收益补偿回来。

(三) 递延资产

- □在项目建设过程中,用于谈判、调研、评估、项目管理等支出,相当于企业开办期间发生的管理 费用,统称为开办费。
- □这些支出结果是无形的,但也是集中发生的、用 于服务以后多个生产周期,称为<u>递延资产</u>。
- □另外,对固定资产的短期技术改造支出(但可能 服务于多个生产周期)等,也属于递延资产。
 - 递延资产在运营期间形成"递延资产摊销",做为管理 费用计入成本而通过收益再补偿回来。

(四)流动资产

- □为单个营业周期准备的资金/资产,称为流动资产。
 - ■企业在<u>每个经营周期</u>购买原料、燃料、发工资所筹措的 资金/实物,所有权属于企业,是企业的流动资产;
- □流动资产在每个经营周期用于生产支出,但通过 销售收入再回收,进出差价产生利润。
 - ■若流动资产通过贷款获得,则每周期还要支付利息;
 - ■若使用自有资金承担全部或部分,则自有资金所占部分就不必偿还利息。

二、收益

- □收益主要产生在项目投资建成之后的生产运营期 间,通过销售产品、提供服务回收资金。
- □若用利润衡量收益,一般有:

利润=销售收入-总成本

□若忽略税金、假设价格不变,则

销售收入=销售量×单价

总成本 = 生产成本 + 期间费用

(一) 生产成本

生产成本 = 直接成本/变动成本 + 制造费用

- 1、直接成本/变动成本
- □产出产品/服务会<u>直接消耗</u>原料、燃料、材料,支付生产工人的工资等,对应的费用归为直接成本。
- □由于这类费用随着产品量或服务量的增加而增加, 因而也称为变动成本。
- □为简单起见,一般假设单位产品的变动成本不变, 因此总变动成本与产品产量成线性比例关系。

2、制造费用

(1) 折旧

- □生产不光消耗原料等变动成本,所使用的机器、 厂房等固定资产也需要计算成本。
 - ■例,1000万固定资产运行20年,销售收入200万/年, 总变动成本40万/年,忽略其他成本,求年利润?

□如果将这1000万投资成本统统分摊给第 4 年,则 企业第4年利润为

200万 - 40万 - 1000万 = -840万

□其余各年的利润为

200万 - 40万 = 160万

- □显然,这对负责第 4 年经营的企业管理者而言是 不公平的。
- □由于固定资产是为以后<u>多个期间</u>共同服务的,那 么在成本核算时也应由所有运营期间共同分担。

◇❶直线折旧法

□直线折旧,是将 1000 万的固定投资按照企业运营的总寿命 20 年,平摊到每年:

1000 万/20年 = 50 万/年

□每年分摊的 50 万固定成本就是固定资产的<u>折旧</u>, 若不考虑其他成本,则此时年利润为

利润=销售收入-固定成本(折旧)-变动成本

= 200万-50万-40万

= 110万/年

> 折旧的定义

- □<u>折旧</u>是固定资产由于使用磨损或陈旧等因素的价值降低,这部分价值随着固定资产的磨损而逐渐转移到产品成本中,是固定资产投资的回收方式,是固定资产投资归集到产品中的费用。
 - 所谓的回收固定资产,是将固定资产以折旧方式作为每期固定成本,由此提高产品价值(反映到产品价格和营业收入的提升,如果不计固定成本,产品价格肯定要比真实的低)。
 - 固定资产可用于多种产品的生产,因而每个经营期的折旧费还应 该按照一定标准在各产品之间进行分摊。
 - 由于不能将折旧费直接和某产品对应,因此折旧费是一种间接费用(可理解为无论如何都得发生的成本);

> 残值与折旧

- □如果固定资产在使用年限到期时,还具有一定价值,则该价值称为固定资产残值。
- □若考虑残值,则直线折旧为

■例,原值1000万,预计残值50万,使用20年,则: 折旧 = (1000万 - 50万) / 20年 = 47.5万/年

>残值与账面价值

- □固定资产原值减去已经计提的折旧费, 称为固定 资产<u>账面价值</u>。
- □例,按直线法,年折旧47.5万,20年寿命期的 1000万固定资产,在第15年年末,账面价值为:

1000万 - 15 × 47.5万 = 287.5万元

- □固定资产<u>残值</u>也定义为项目运行<u>寿命期末</u>的剩余 账面价值(减去处理费用)。
- □固定资产也可能没有任何残值,即残值为0。

◆ 2工作量折旧法

- □有些产品,按时间折旧不是很合适
 - ■如汽车的磨损和折旧主要与行驶里程有关系,因此也使用行驶里程来核算折旧费用。
- □设某汽车购买成本(裸车+各种税费等)为20万, 预计寿命40万公里,无残值,则每公里折旧为

折旧 = 20万/40万公里 = 0.5元/公里

□对于其他设备,如果有类似情况,也可以基于工作量来线性分摊固定资产。

♦ 3加速折旧法

- □根据一些法律规定,可以不在所有经营周期之间 平均分摊折旧,比如可以在期初提取更多折旧, 以尽早收回固定资产投资,这称为加速折旧法。
- □加速折旧法包括年限总和法、余额递减法、双倍 余额递减法等。
 - ■加速折旧法在初期折旧多,因此最初几个时期的成本偏高,利润会受到影响;
 - ■但因初期核算的利润较低(会计意义上的"利润低"), 企业向国家缴纳的所得税会少一些,有利于企业在初创 时期的成长。

(2) 其他制造费用

- □<u>车间管理人员</u>的工资、设备的日常维护费等,有一定的固定性,与产品产量没有明确的线性增长 关系;
- □当一个车间加工很多种产品时,上述各种制造费用(包括折旧)并不能直接明确地对应到具体某种产品,而需要按照一定规则在产品之间进行分摊,因此这类制造费用也是一种间接费用。

(二)期间费用

非直接生产部门的费用,包括:

- □(1)管理费用:公司高层办公费、高层人员的工资、递延资产和无形资产摊销等;
- □ (2) 财务费用:贷款利息、汇兑损失等;
- □ (3) 销售费用:市场销售发生的费用,如广告、 促销活动等。

这类费用按会计期间核算,而不按照产品归集,称为期间费用。

利润=销售收入-总成本

三、现金流

- □项目经济评价,需要知道每个时间点上投资多少 钱,收回多少钱,这要使用现金流表示。
- □现金流量是指项目/工程技术方案在寿命期内各支 付周期收入和支出的<u>货币量</u>。
- □<u>净现金流量</u>:某支付周期的收入和支出的代数和 (收入—支出)。
 - ■投资过程是现金流出(负现金流),经营过程应有现金流入(正现金流)。

(一)投资过程

□在投资过程中,投入的钱用于购买各种建设材料、 设备、支付建设费用等,基本都是支出项目,现 金流量(负)用向下的箭头表示。

(二)运营过程

(1) 利润与净现金流

- □例: 企业固定投资 1000 万(不考虑无形资产和递延资产),运行 20 年,无残值,按直线法每年折旧费为 50 万;
- □除折旧之外的成本总共为 40 万,年销售额 200 万;
- □不考虑其他成本和费用,则运营期间每年的利润 和净现金流各为多少?

✓ 利润:

- □第一,销售收入为总利润贡献了+200万。
- □第二,成本中的 40 万:支付给供应商的材料费、 员工的工资、支付给银行的财务费、支付给广告 商的销售费等,为总利润"贡献"-40 万。
- □第三,50万折旧,为总利润"贡献"-50万。

总利润 = 200 万 - 40 万 - 50 万 = 110 万

问题: 净现金流=利润?

✓ 净现金流:

□第一,销售收入为总现金流贡献+200万。

- □第二,40万成本:支付给供应商的材料费、员工的工资、支付给银行的财务费、支付给广告商的销售费等,为现金流"贡献"-40万。
- □第三,50万折旧支付给谁?

✓ 50 万折旧支付给谁?

□折旧并不涉及另一方,因此实际上 折旧并未支付出去!

所以: 净现金流 = 200 万 - 40 万 = 160 万

或者: 净现金流 = 利润+折旧

= 110万 + 50万 = 160万

- □第一: 折旧只是<u>名义上</u>提留出来作为利润的扣减项,但它并不涉及另一方,实际上并没有被真正 支付出去,因此不是现金流的扣减项。
- □第二: <u>折旧对应的是固定资产投资</u>,而项目建设期的投资现金流已经计算了这笔支出,若在运营期间的现金流中再减去折旧,就相当于<u>重复计算</u>了投资成本,这是不正确的。
- □因此,若估算出了利润,那么:

净现金流=利润+折旧

(2) 递延资产、无形资产摊销

- □在项目运行期间,递延资产和无形资产会被摊销 为管理费用,在核算利润时,要从销售收入中扣 减掉。
- □而递延资产和无形资产是在投资建设阶段发生的, 因此若从现金流角度看,这部分资产对应的投资 现金流(对现金流的负"贡献")已发生在了投 资建设阶段,那么在运营阶段也应该避免重复计 算。

- □和折旧类似,为避免现金流被重复扣减,需要在 利润的基础上,将递延资产和无形资产形成的摊 销再加回来,才能得到净现金流。
- □实际上,如果基于利润计算净现金流,只要出现 了资产类摊销*,则都应该加回来:

净现金流=利润+折旧+资产类摊销

——*折旧、递延/无形资产摊销对应的管理费,实质上就是固定投资阶段形成的资产摊销在了多个经营周期上,广义上都属于"资产类摊销"。

(3) 经营成本

企业总成本,一方面由投资决定:投资越大,则 通过折旧、资产类摊销等分摊的成本就越高;

另一方面,其他成本,如变动成本、期间费用等,主要由企业在经营过程中的成本控制水平决定,和投资关系不大,因此合起来称为经营成本(实际发生的现金"流失")。

□除资产类摊销外的成本称为经营成本/运营成本

经营成本 = 总成本 - 折旧 - 资产类摊销 净现金流 = 销售收入 - 经营成本

(三) 现金流量图

- □将项目各时间点上的现金流按顺序画在图上,就 形成现金流量图。
- □第0年:长度为0的起始"年"。

- □约定: 支出一般发生在年初,收入发生在年末。
- □例: 第 0 年初投资 100 万, 第 1 年净现金流入200 万。

- □例:项目建设期 3 年,第一年投 500 万,后两年 每年投 200 万。建成后投产运行10年(按直线折旧无残值),年利润20万,确定净现金流量图。
- □解,
- □折旧为 900万/10 = 90万/年, 净现金流即为 净现金流 = 折旧+利润 = 90万+20万 = 110万/年

第二节 资金的时间价值

一、资金价值

(一) 基本概念

- □资金在周转使用过程中随着时间因素而形成的价值差额称为资金的<u>时间价值</u>。
 - 随着时间推进,正确使用,资金会增值。
 - ■静止存放不做任何投资,则随着时间推移出现通货膨胀, 它又会贬值。
 - ■资金价值既体现在额度上,同时也体现在发生的时间上。

- □<u>资金等值</u>:资金价值会随着时间发生变化,因此 在不同时间点上,不同额度的资金可能价值相等。
- □衡量不同时间点上资金的价值,可以将其等价换 算到现在的时间点上,称为<u>折现</u>。
- □未来时点上的资金折现到现在时点的等额资金价值,称为现在值/现值(present value)。
- □与现在值等价的未来某时间点上的资金价值称为 将来值(future value)。

(二)利息

- □资金通过一定时间的生产经营活动以后的增值部 分或投资的收益额称为利息。
- □<u>利率</u>:一定时间(年、月)所得到的利息与原资 金额(本金)之比,通常用百分数表示。
- □<u>计息周期</u>: 计算利息的时间单位。
 - 计息周期越短,则同样利率下经过同样时间,得到的利息越多(月利率6% vs. 年利率6%)。

(1) 单利

□只计本金利息,利息本身不再作为计息的基础:

P—本金 n—计息期数 i—利率

I—利息总额 F—本利和

□则 n 个计息周期之后有

$$F = P + I = P \times (1 + ni) = P + Pni$$

□例,第 0 年存入银行 1000 元,年利6%。银行一般按单利为储户结算,第4年末可得多少钱?

年 末	年末利息	年末本利和	
0	0	1000	
1	1000×6%=60	1060	
2	1000 × 6%=60	1120	
3	1000 × 6%=60	1180	
4	1000 × 6%=60	1240	

(2) 复利

- □除本金以外,利息也作为计算下个计息期利息的 基础,即利滚利。
- □ *n* 个计息周期之后有

$$F = P + I = P \times (1 + i)^n$$

□例,银行第 0 年放出贷款 1000 元,<u>复利</u>年利率 6 %,若按年计息,则第 4 年将收回多少钱?

年 末	年末利息	年末本利和
0	0	1000
1	$1000 \times 6\% = 60$	1060
2	$1060 \times 6\% = 63.60$	1123.60
3	$1123.60 \times 6\% = 67.42$	1191.02
4	$1191.02 \times 6\% = 71.46$	1262.48

- ▼本金越大,利率越高,年数越多时,则单利和复 利两者的差距就越大。
 - 一相当于一个是直线增加,一个是指数增加。

二、资金的等值计算(复利条件下)

□不同时点上、不同资金额,其实际价值可能是相等的,因此时间点 t_1 处的资金 X 就可以等值换算为价值相等的时间点 t_2 处的资金 Y。

□符号:

P- 现值

F - 将来值

i - 年利率

n - 计息期数

A— 年金/年值:每个计息期末等额发生的现金流量

(1) 一次支付终值公式

□期初价值额度为P的资金,换算为期末等值的金额F(假设计算复利):

(2) 一次支付现值公式

 \square 已知期末价值为F的资金,换算为等值的现值P:

(3) 等额支付系列终值公式

□ <u>每期末</u>存入价值为 A 的资金,第 n 期末,相当于未来值 F 是多少?

$$F = A + A(1+i) + A(1+i)^2 + ... + A(1+i)^{n-1}$$

□按照等比数列求和的方法,两边同乘 (1+ i),有

$$F = A + A(1+i) + A(1+i)^2 + ... + A(1+i)^{n-1} \longrightarrow$$

$$F(1+i) = A(1+i) + A(1+i)^2 + A(1+i)^3 + ... + A(1+i)^n$$

□两式相减,得到

$$F(1+i) - F = A(1+i)^n - A$$

□即,

$$F = A \cdot \frac{(1+i)^n - 1}{i}$$

(4) 等额支付系列偿债基金公式

□ 想要在第n期末得到资金额F,则每年末应该存入多少钱?

$$F = A \cdot \frac{(1+i)^n - 1}{i} \longrightarrow A = F \cdot \frac{i}{(1+i)^n - 1}$$

(5) 等额支付系列资金回收公式

□设期初存入资金 P,以后每期末取用资金 A,要求可连续取 n 年,则 A 是多少?

□先使用(4)的公式,将年值A用未来值F表示:

■ 再使用(1)的公式: $F = P(1 + i)^n$, 得到:

$$A = P \cdot \frac{i (1+i)^n}{(1+i)^n - 1}$$

(6) 等额支付系列现值公式

□要求每期末取用资金为A,可连续取n年,则期初需要存入多少资金P?

$$P = A \cdot \sum_{t=1,...,n} (1+i)^{-t} = A \cdot \frac{(1+i)^n - 1}{i(1+i)^n}$$

- 资金等值计算小结:
 - □<u>资金等值</u>:同一系统中不同时点发生的相关资金,数额不等但价值可能相等,称为资金等值。
- 决定资金等值的因素有三个:
 - √① 资金的金额大小
 - √② 资金金额发生的时间
 - √③ 利率的大小
- <u>性质</u>: <u>如果两个现金流等值,则它们在任何时间</u> 点折算的相应价值必定相等。

第三节 经济可行性分析

- □项目在投资阶段支出建设资金,净现金流为<u>负值</u>; 在运营阶段产生收益,净现金流为<u>正值</u>。
- □如果项目可行,则意味着在正、负现金流的综合 作用下,项目的某种指标能达到行业要求。
- □从收回投资的角度,有时间指标、利润指标、效 率指标等多种评价形式;从是否考虑资金时间价 值角度,有静态指标和动态指标。

一、投资回收期

- (一)静态投资回收期
 - □不考虑资金时间价值,在项目投产后,以每年取 得的净收益,收回全部投资所需的时间。
 - □即累积净现金流为 0: $\sum_{t=0}^{n} F_{t} = 0$ 的 n 值,其中 F_{t} 为时间点 t 的净现金流。
 - 适用于:
 - ■①寿命周期较短且每期现金流量分布均匀;
 - ■②处在方案初选阶段的项目。

□例,某项目各年净现金流和静态投资回收期

年末	$oldsymbol{F}_t$	$\sum F_t$
0	-1000	-1000
1	500	-500
2	300	-200
3	200	0
4	200	200
5	200	400
6	200	600

静态投资回收期 n=3

□例,非整数年的情况

年末	$oldsymbol{F}_t$	$\sum F_t$
0	-1000	-1000
1	500	-500
2	300	-200
3	300	100
4	0	100
5	0	100
6	0	100

$$n = T - 1 + |\sum_{t=0,...,T-1} F_t|/F_T$$
$$= 3 - 1 + |-200|/300$$
$$= 2.67$$

静态投资回收期 n = 2.67年 其中 T 为<u>累积净现金流刚好</u> 为正的年份。

56

□ 当项目的投资回收期 n 小于/短于基准投资回收期

 n_0 , 即: $n \le n_0$ 时,就认为项目是可行的。

一些行业的基准投资回收期 n_0 (年)

			 		
大型钢铁	14.3	自动化仪表	8.0	日用化工	8.7
中型钢铁	13.3	工业锅炉	7.0	制盐	10.5
特殊钢铁	12.0	汽车	9.0	食品	8.3
矿井开采	8.0	农药	9.0	塑料制品	7.8
邮政业	19.0	原油加工	10.0	家用电器	6.8
市内电话	13.0	棉毛纺织	10.1	烟草	9.7
大型拖拉机	13.0	合成纤维	10.6	水泥	13.0
小型拖拉机	10.0	日用机械	7.1	平板玻璃	11.0

- 影响基准投资回收期的因素有投资结构、成本结构、技术进步等。
- 静态投资回收期方法的优点:
 - □①简单、清晰
 - □②反映投资风险和一定程度上的经济性
- <u>缺点:</u>
 - □①不反映资金的时间价值
 - □②不考虑整个寿命期,仅反映前几年的经济性

(二) 动态投资回收期

- □为了弥补静态投资回收期"未考虑资金时间价值"的缺点,可使用动态投资回收期 n_d 。
- 口将各时间点上的净现金流统一折现之后再计算投资回收期,即满足下式的 n_d ,称为动态投资回收期(其中 i_0 为行业基准贴现率):

$$\sum_{t=0}^{n_d} \mathbf{F}_t (1 + \mathbf{i}_0)^{-t} = 0$$

59

例,某项目各年净现金流如下表,折现率为10%

年末	\boldsymbol{F}_t	现值 P_t	ΣP_t
0	-1000	-1000	-1000
1	500	454	-546
2	200	165	-381
3	200	150	-231
4	200	136	-95
5	200	124	29
6	200	113	142

$$n_d = T - 1 + |\sum_{t=0,...,T-1} P_t|/P_T$$

= 5 - 1 + |-95|/124
= 4.77

动态投资回收期为4.77年,其中 T 为<u>累积现值刚好为正</u>的年份。

二、净现值法

- □ 净现值(net present value,NPV):不同时间上发生的净现金流量,通过某个规定的利率 i_0 统一折算为第 0 年的现在值,然后求代数和。

$$NPV(i) = \sum_{t=0}^{n} F_{t} (1+i_{0})^{-t}$$
 F_{t} ——第 t 年末的净现金流量
 n ——项目寿命期
 i_{0} ——基准折现率

- □<u>净现值</u>反映了项目在整个评价期(寿命期)内的 总体盈利水平。
- □以净现值法判断项目可行的标准是

$$NPV(i_0) \ge 0$$

□其中基准折现率不是由项目评价者自己确定,而 是由国家或行业根据投资政策、经济条件等调整 确定,在经济评价的相关国家标准中给出。

一些行业的基准贴现率 i_0 (%)

水泥制造	12	移动通信	12	日用化工	13
玻璃制造	12	电子器件	15	棉纺化纤	12
原油加工	12	火力发电	8	化学药品	15
合成纤维	12	钢铁冶炼	12	机械设备	12
化肥	10	有色金属	12	公路建设	6
农药	13	卷烟制造	16	房地产开发	12
橡胶制品	12	家电制造	12	商业性教育	10
固定通信	6	家具制造	13	娱乐设施	12

例,某项目各年现金流如下表,用NPV评价经济可行性(基准折现率 $i_0 = 10\%$,期末残值为100)。

年份	0	1	2	3	4-10
①投资支出	30	500	100		
②运营成本				300	450
③营业收入				450	800
净现金流量: ③-①-②	-30	-500	-100	150	350

解,确定项目的净现金流量图,注意期末残值是一项收入(亦即期末的设备是可以回收资金的):

$$NPV(10\%) = -30 - 500 \cdot (1 + 0.1)^{-1} - 100 \cdot (1 + 0.1)^{-2}$$

$$+150 \cdot (1 + 0.1)^{-3} + 350 \cdot \sum_{t=4}^{10} (1 + 0.1)^{-t}$$

$$+100 \cdot (1 + 0.1)^{-10}$$

$$= 498.51 > 0 \Rightarrow 项目可行$$

上节课主要内容回顾

- ■利润公式、总成本构成
 - □折旧计入生产成本,摊销计入期间费用
- 资金的时间价值和现金流量图
 - □流出计入期初,流入计入期末
 - □资金的等值计算公式(至少记住4个)
- ■项目的经济可行性评价
 - □投资回收期法(已知基准折现率/贴现率/收益率、基准投资回收期)——仅反映项目前期收益水平
 - □净现值法(已知基准折现率/贴现率/收益率)

三、内部收益率法

- □净现值NPV是折现率 *i* 的函数,那么使NPV恰好等于 0 的折现率就称为<u>内部收益率</u>,或称<u>内部报</u>酬率 (internal rate of return,IRR) 。
- \Box 设内部收益率为i*,项目寿命期为n,则有

$$NPV(i^*) = \sum_{t=0}^{n} F_t (1 + i^*)^{-t} = 0$$

□判据: $i^* > i_0$,则项目可行(代表项目的收益率大于行业平均收益率, i_0 为基准贴现率)。

♦ 内部收益率IRR 的经济含义

- □IRR 所反映的项目的资金恢复能力完全取决于项目内部的生产经营状况,和外部利率(行业情况)无关,因而称为内部收益率。
- □IRR 是在寿命期末全部收回资金的利率,是维持净现值不小于0所能承受的最大"折现强度", 反映了项目的资金恢复能力或收益能力。

当基准折现率不太容易获得时,可用内部收益率评估项目自身的盈利能力。

□例,假设取折现率 i = 10%

$$NPV(10\%) = -1000 + \frac{400}{1+10\%} + \frac{370}{1+10\%}^{2}$$

$$+\frac{240}{1+10\%}^3+\frac{220}{1+10\%}^4=0$$

- □ NPV(10%) = 0,所以内部收益率 $i^* = 10\%$ 。
- □当实际折现率 i < 10%,项目有收益,若 i 刚好等于10%,收益刚好为 0。

年末	年末结算
1	$-1000 + (-1000 \times 10\%) + 400 = -700$
2	$-700 + (-700 \times 10\%) + 370 = -400$
3	$-400 + (-400 \times 10\%) + 240 = -200$
4	$-200 + (-200 \times 10\%) + 220 = 0$

◇内插法求解内部收益率IRR

□内部收益率,需要求解关于 i 的一元高次方程

$$NPV(i) = \sum_{t=0}^{n} F_t (1+i)^{-t} = 0$$

- □如果 $t \ge 5$,一般就没有初等求根公式,需要使用一些数值算法来近似求解,常用方法包括内插法、Newton法。
- □如果精度要求不高,可使用内插法。

 \Box 内插法(带入试值法): NPV(i) 是 i 的减函数,

■ 取折现率 i_1 和 i_2 ,满足: $|i_1-i_2| \le 0.05$ (5%),且,NPV(i_1) × NPV(i_2) < 0,由插值线方程(求解相似三角形),有

$$\frac{NPV(i_1) - NPV(i^*)}{i_1 - i^*} = \frac{NPV(i^*) - NPV(i_2)}{i^* - i_2}$$

□注意到 $NPV(i^*)$ = 0,由此得到内部收益率 IRR

$$IRR \approx i^* = \frac{NPV(i_1) \cdot i_2 - NPV(i_2) \cdot i_1}{NPV(i_1) - NPV(i_2)}$$

例,某项目方案净现金流量如下表,设基准收益率为 10%,用 IRR 确定方案是否可行。

年份	0	1	2	3	4	5
净现金流 F_t	-2000	300	500	500	500	1200

解得

第四节 项目方案的经济比较

- □当项目面临<u>多个可行的投资方案</u>、且受资金限制 只允许选择其中之一时,就需要进行项目方案的 经济比较。
- □项目方案比较的最基本思路,就是考察两个项目 之间的现金流差异。
 - 如果项目寿命期相同,则直接寻找现金流差异;如果项目寿命期不同,则需要使用最小公倍数处理之后,再考察现金流差异。

一、寿命期相同方案的比较

□设两个同寿命的项目 I 和 II 净现金流如下

□两个方案的现金流量之差的净现值称为<u>投资增额</u> 净现值。

- 假设第二个方案比第一个方案投资大,即 $K_{II} > K_I$,则 应有 $A_{II} > A_I$;否则, II 显然不如 I。
- □具体来说,可用投资增额净现值等指标,来考查表示增量和差异的<u>"虚拟"项目</u>,该虚拟项目的经济可行性,决定了两个原始项目的优劣。

◇虚拟项目:

- □对虚拟项目运用经济可行性评价方法:
 - ■情况1: 若虚拟项目通过了可行性评价,则说明投资从 K_{II} 增加为 K_{II} 是合算的,因此方案 II 更好;
 - ■情况2:反之,如果虚拟项目不能通过可行性评价,则 方案 I 较优。

□例,要选购两个机床,寿命期均为6年,其投资和 收益如下表,基准折现率10%,选哪一个?

机床	A	В
价格	7000	5000
产值	2000	1500
残值	0	500

■解,首先增加0方案(投资和收益均为0,也称为 "全不投资方案"):

机床	$\mathbf{A_0}$	A	В
价格	0	7000	5000
产值	0	2000	1500
残值	0	0	500

- 投资最少的 0 方案 A_0 作为临时最优方案,从低投资开始比较,考察方案: $B A_0$ 。
- 容易知道 NPV_{B-A0} = 2418.75 > 0,于是方案B成为 当前最优方案。

■ 再用方案A 减去方案B:

年份	A	В	增量净现金流
第0年	7000	5000	7000 - 5000 = 2000
1-5年	2000	1500	2000 - 1500 = 500
第6年	残值0	残值500	2000 - 1500 - 500 = 0

相比于方案 B, 方案 A 增加的投资并不划算, 所以 B 优于 A, 应选 B。

- □注①: 也可直接比较各自的 *NPV*,结果与上述"投资增额净现值"法等价。
- □注②:实际中存在某些情况,只能知道投资或收益差额,不能确定具体值,此时就只能使用"投资增额净现值"法。
- □注③:参与比较的候选项目本身必须是可行的, 结果才有意义(所以加入了一个0投资的"全不投 资方案"起筛选作用)。
 - ■如果第一个候选项目就不可行,用投资增额净现值法就没有意义了,因为即便"增量项目"可行,第二个候选项目也可能不可行。

二、寿命期不同方案的比较

- □ 当寿命期不同时,直接使用增量净现金流对于寿 命期较短的项目是不公平的。
 - 寿命期较短项目已经结束,但寿命期较长项目还能源源不断产生现金流, 因此不能直接算差值。
 - 直接计算各自NPV比较也不合理,因为存在这样的情况:寿命期较短项目NPV虽然低于寿命期较长项目,但差距很小,而寿命期较短项目能够更快回收资金。
- □为公平起见,常用的处理方法有最小公倍(重复) 法和研究期法。
 - ■研究期法是指定一个评估期限,在这个期限内,两个参与比较的项目还未到寿命期末。

- □<u>最小公倍法</u>,或称重复法,是以两个方案服务寿命的最小公倍数作为共同期限,并假定这两个方案在这个期限内各自可以重复实施若干次。
 - ■实质上就是把寿命期不同的项目转化为寿命期相同的项目来比较。
- □例,某企业扩建厂房,有两个方案可供选择,各 方案的有关数据如下表,求在基准折现率为 8% 的条件下的最优方案。

■ A、B 方案的净现金流量

方案	投资额/万元	年净收益/万元	寿命期/年
A	1200	600	4
В	2200	800	6

□解,两个方案寿命期的最小公倍数为12年,在12年内,方案 A 建设3 次,方案 B 建设2 次,各自的净现金流为:

■ 直接使用净现值:

$$NPV_{A-\text{重复}} = -1200 \cdot \left(1 + (1 + 8\%)^{-4} + (1 + 8\%)^{-8}\right)$$
$$+600 \cdot \sum_{t=1}^{12} (1 + 8\%)^{-t} = 1791.30(万元)$$

$$NPV_{B-重复} = -2200 - 2200 \cdot (1 + 8\%)^{-6}$$

+800 · $\sum_{t=1}^{12} (1 + 8\%)^{-t} = 2442.44(万元)$

■ $NPV_{B-\overline{\underline{a}}\underline{g}} > NPV_{A-\overline{\underline{a}}\underline{g}}$,因此方案 B 更优。

三、非常规投资项目

(1) 常规(投资)项目

大部分项目具备两个特点:

- □①净现金流从负变正只一次;
- □②全部净现金流量代数和为正。

符合上述两个标准的项目称为常规(投资)项目。

(2) 非常规(投资)项目

□只有投入没有收益、或只有收益没有投入、或现金流多次变号、或者净现金流代数和小于 0 等项目, 统称为非常规(投资)项目。

纯投资项目的净现金流

纯收益项目的净现金流

现金流多次变号的项目

非常规项目,也可使用 净现值 NPV 等方法来评估, 但在使用内部收益率方法时, 可能会出现异常。

笛卡尔规则: 方程实根的数目不大于系数正负变号的次数。

常规投资项目必存在一个IRR。

纯投资/纯收益项目,不存在内部收益率IRR。

现金流多次变号的项目可能有多个IRR,也可能不存在

IRR——多个或不存在IRR时,就无法使用内部收益率法。

- ■本章小结
 - □投资的构成
 - □成本构成、利润核算
 - □净现金流
 - □资金的时间价值
 - □投资回收期、净现值NPV、内部收益率IRR
 - □多方案比较的增量现金流
 - □最小公倍数法