SOLUTIONS HW 1

1 Problem 1

- 1. f is continuous, S_1 is compact (closed and bounded). Hence, according to Weierstrass Theorem, f achieves its min and max over S_1 .
- 2. Since $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$, f is coercive. Also, \mathbb{R}^4 is closed. Hence, by Corollary to Weierstrass Theorem, f achieves its min over \mathbb{R}^4 , but not its max since $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$.
- 3. S_2 is closed and f is coercive. Hence, by Corollary to Weierstrass Theorem, f achieves its min over S_2 , but not its max since $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$.

2 Problem 2

- 1. No. Consider $f(x) = (1-x)^3$. Note that for x = 1, we have f'(1) = 0, $f''(1) \ge 0$. However, f(2) = -1 < 0 = f(1), which shows that x = 1 is not a local min.
- 2. $\nabla f(x) = 0 \Rightarrow [2(x_1 2x_2), -4(x_1 2x_2)]^T = 0$. The stationary points are the points of the line $\{(x_1, x_2) : x_1 = 2x_2\}$. Since $f(x_1, x_2) = (x_1 2x_2)^2 \geq 0$ and the zero value of f is attained by and only by the stationary points $\{(x_1, x_2) : x_1 = 2x_2\}$, all stationary points are global minima.

An alternative way to solve this problem is to use the positive semidefiniteness of the Hessian matrix to show f is convex. Hence any stationary point is a global min.

3 Problem 3

- 1. $f'(x) = 0 \Rightarrow x_1 = 0$, $x_2 = 2\sqrt{2}$, $x_3 = -2\sqrt{2}$ are the stationary points.
- 2. Since $f''(x_1) = -32 < 0$, x_1 is a local max. Since, $f''(x_2) = f(x_3) = 64 > 0$, the x_2 , x_3 are a local minima.
- 3. Since, $f(\mathbf{x}) \to +\infty$ as $\|\mathbf{x}\| \to +\infty$ the global max does not exist. Function f is coercive and \mathbb{R} is closed, thus by Corollary to Weierstrass Theorem a global min exists and since $f(x_2) = f(x_3) = 0$ both x_2, x_3 are global minima.

4 Problem 4

- 1. The eigenvalues are 0 and 5. Hence, A is PSD.
- 2. The eigenvalues are -1 and 3. Hence, B is indefinite.
- 3. det([4]) = 4 > 0, det(A) = -5 < 0. Hence, C is not PSD. We can use a similar argument to show C is not NSD. Hence C is indefinite.
- 4. The eigenvalues of D are $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 4$. Hence, D is PD.
- 5. $\det([3]) = 3 > 0$, $\det\begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} = 6 > 0$, $\det(-E) = 45 > 0$. Hence, -E is PD, and E is ND.

5 Problem 5

1. Let us consider $f(x) = -x^2$ and $\alpha = -1$, then $\mathcal{S} = (-\infty, -1] \cup [1, +\infty)$. The \mathcal{S} is not convex, because although $-1, 1 \in \mathcal{S}$, we have $(-1+1)/2 = 0 \notin \mathcal{S}$.

p=1: convex

p=2: convex

(2) We show the plot of the sets, and they are both convex.

Bonus (5pts): Mathematical Proof of the convexity.

Denote $S_p = \{x \in \mathbb{R}^2 : ||x||_p \le 1\}$. For any $x, y \in S_1$ and arbitrary $t \in [0, 1]$, we know $tx + (1 - t)y \in S_1$, since

$$||tx + (1 - t)y||_1 = \sum_{i=1}^n |tx_i + (1 - t)y_i| \le \sum_{i=1}^n t|x_i| + (1 - t)|y_i|$$

$$= t \sum_{i=1}^n |x_i| + (1 - t) \sum_{i=1}^n |y_i|$$

$$= t||x||_1 + (1 - t)||y||_1$$

$$\le t + (1 - t) \le 1$$

where we used the triangle inequality. Thus, S_1 is a convex set.

Similarly, any $x, y \in \mathcal{S}_2$ and arbitrary $t \in [0, 1]$, we know $tx + (1 - t)y \in \mathcal{S}_2$, since

$$||tx + (1-t)y||_{2}^{2} = \sum_{i=1}^{n} ||tx_{i} + (1-t)y_{i}||_{2}^{2} \le \sum_{i=1}^{n} t||x_{i}||_{2}^{2} + (1-t)||y_{i}||_{2}^{2}$$

$$= t \sum_{i=1}^{n} ||x_{i}||_{2}^{2} + (1-t) \sum_{i=1}^{n} ||y_{i}||_{2}^{2}$$

$$= t||x||_{2}^{2} + (1-t)||y||_{2}^{2}$$

$$\le t + (1-t) \le 1,$$

which indicating

$$||tx + (1-t)y||_2 \le 1$$
.

Thus S_2 is a convex set.

3. We observe that f can be rewritten as

$$f(x_1, x_2, x_3) = \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^T \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 3 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 2$$

Therefore, we can directly get

$$\nabla^2 f = \begin{bmatrix} 4 & 0 & 2 \\ 0 & 4 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \ \forall x$$

Since $\det([4]) = 4 > 0$, $\det\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = 16 > 0$ and $\det(\nabla^2 f) = -36 < 0$, we know $\nabla^2 f$ is not PSD. Since $\det(-[4]) = -4 < 0$, $\det\begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix} = 16 > 0$ and $\det(-\nabla^2 f) = 36 > 0$, we know $\nabla^2 f$ is not NSD. Therefore, $\nabla^2 f$ is indefinite. We can conclude that f is neither convex nor concave.