Labs

Optimization for Machine LearningSpring 2024

Saarland University

CISPA Helmholtz Center for Information Security **Sebastian Stich**

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 6 — Solutions (Mini-batch and Async)

1 Tuning the Stepsize

Let $A,B,C\geq 0$ and D>0 be given parameters. Consider the expression

$$\Psi(T,\gamma) := \frac{A}{\gamma T} + B\gamma + C\gamma^2$$

depending on T and γ . Show that for any $T \geq 1$

$$\min_{\gamma \leq \frac{1}{D}} \Psi(T,\gamma) \leq 2 \left(\frac{AB}{T}\right)^{1/2} + 2C^{1/3} \left(\frac{A}{T}\right)^{2/3} + \frac{AD}{T} \,.$$

Hint: Prove the result first for the special case C=0.

Proof. Choosing $\gamma = \min\left\{\left(\frac{A}{BT}\right)^{\frac{1}{2}}, \left(\frac{A}{CT}\right)^{\frac{1}{3}}, \frac{1}{D}\right\} \leq \frac{1}{D}$ we have three cases

 \bullet $\gamma=\frac{1}{D}$ and is smaller than both $\left(\frac{A}{BT}\right)^{\frac{1}{2}}$ and $\left(\frac{A}{CT}\right)^{\frac{1}{3}}$, then

$$\Psi(T,\gamma) \le \frac{AD}{T} + \frac{B}{D} + \frac{C}{D^2} \le \left(\frac{BA}{T}\right)^{\frac{1}{2}} + \frac{DA}{T} + C^{1/3} \left(\frac{A}{T}\right)^{\frac{2}{3}}$$

• $\gamma = \left(\frac{A}{BT}\right)^{\frac{1}{2}} < \left(\frac{A}{CT}\right)^{\frac{1}{3}}$, then

$$\Psi(T,\gamma) \leq 2\left(\frac{AB}{T}\right)^{\frac{1}{2}} + C\left(\frac{A}{BT}\right) \leq 2\left(\frac{AB}{T}\right)^{\frac{1}{2}} + C^{\frac{1}{3}}\left(\frac{A}{T}\right)^{\frac{2}{3}},$$

 \bullet The last case, $\gamma = \left(\frac{A}{CT}\right)^{\frac{1}{3}} < \left(\frac{A}{BT}\right)^{\frac{1}{2}}$

$$\Psi(T,\gamma) \leq 2C^{\frac{1}{3}} \left(\frac{A}{T}\right)^{\frac{2}{3}} + B\left(\frac{A}{CT}\right)^{\frac{1}{3}} \leq 2C^{\frac{1}{3}} \left(\frac{A}{T}\right)^{\frac{2}{3}} + \left(\frac{AB}{T}\right)^{\frac{1}{2}} \,. \qquad \qquad \Box$$

2 Bias-Variance Decomposition

Let $f \colon \mathbb{R}^d \to \mathbb{R}$ be a differentiable function and $\mathbf{g}(\mathbf{x})$ a gradient oracle $\mathbf{g} \colon \mathbb{R}^d \to \mathbb{R}^d$ with $\mathbb{E}[\mathbf{g}(\mathbf{x})] = \nabla f(\mathbf{x})$, $\mathbb{E} \|\mathbf{g}(\mathbf{x}) - \nabla f(\mathbf{x})\|^2 \le M \|\nabla f(\mathbf{x})\|^2 + \sigma^2$, $\forall \mathbf{x} \in \mathbb{R}^d$. Show that

$$\mathbb{E} \|\mathbf{g}(\mathbf{x})\|^{2} \leq (M+1) \|\nabla f(\mathbf{x})\|^{2} + \sigma^{2}.$$

Proof. We prove that for a random variable X it holds $\mathbb{E} \|X - \mathbb{E}[X]\|^2 = \mathbb{E} \|X\|^2 - \|\mathbb{E}[X]\|^2$. Note that

$$\mathbb{E} \|X - \mathbb{E}[X]\|^2 = \mathbb{E} \|X\|^2 - 2 \underbrace{\mathbb{E}[X]^{\top} E[X]}_{=\|\mathbb{E}[X]\|^2} + \|\mathbb{E}[X]\|^2 = \mathbb{E} \|X\|^2 - \|\mathbb{E}[X]\|^2 .$$

The statement of the exercise question follows by setting $X = \mathbf{g}(\mathbf{x}), \ \mathbb{E}[X] = \nabla f(\mathbf{x}).$

3 Hogwild!

Consider the Howild! algorithm from the lecture. We want to prove its convergence under atomic coordinate-writes (in contrasts to atomic vector-writes as studied in the lecture).

3.1 Notation

Suppose we want to express the iterates of the algorithm as

$$\mathbf{x}_t = \mathbf{x}_0 - \gamma \sum_{k=0}^{t-1} \mathbf{J}_k^t \mathbf{g}_k$$

for matrices $\mathbf{J}_k^t \in \mathbb{R}^{d \times d}$, k < t. Define \mathbf{J}_k^t .

Hint: Considering diagonal matrices suffices.

Proof. We can consider

$$(\mathbf{J}_k^t)_{vv} = \begin{cases} 1 & \text{if } [\mathbf{g}_k]_v \text{ written before } [\mathbf{x}_t]_v \text{ was read,} \\ 0 & \text{otherwise.} \end{cases}$$

3.2 "Difference" Lemma

Prove that the difference Lemma still holds (under the same assumptions on f and $\gamma_{\rm crit}$ as in the lecture):

$$\mathbb{E} \|\mathbf{x}_{t} - \tilde{\mathbf{x}}_{t}\|^{2} \leq \frac{1}{50L^{2}\tau} \sum_{k=(t-\tau)}^{t-1} \mathbb{E} \|\nabla f(\mathbf{x}_{k})\|^{2} + \frac{\gamma}{5L}\sigma^{2}.$$

Proof. First, we observe that by definition of x_t and \tilde{x}_t and the maximal overlap τ , we can write

$$\|\mathbf{x}_t - \tilde{\mathbf{x}}_t\|^2 := \left\| \gamma \sum_{k < t} (\mathbf{J}_k^t - \mathbf{I}_d) \mathbf{g}_k \right\|^2 = \left\| \gamma \sum_{k = (t - \tau)_+}^{t - 1} (\mathbf{J}_k^t - \mathbf{I}_d) \mathbf{g}_k \right\|^2,$$

where $\mathbf{g}_k := \nabla f(\mathbf{x}_k) + \boldsymbol{\xi}_k$ for zero-mean noise terms. Therefore

$$\mathbb{E} \|\mathbf{x}_{t} - \tilde{\mathbf{x}}_{t}\|^{2} \stackrel{\text{\tiny{d}}}{\leq} 2\gamma^{2} \left(\mathbb{E} \left\| \sum_{k=(t-\tau)_{+}}^{t-1} (\mathbf{J}_{k}^{t} - \mathbf{I}_{d}) \nabla f(\mathbf{x}_{k}) \right\|^{2} + \mathbb{E} \left\| \sum_{k=(t-\tau)_{+}}^{t-1} (\mathbf{J}_{k}^{t} - \mathbf{I}_{d}) \boldsymbol{\xi}_{k} \right\|^{2} \right)$$

$$\stackrel{\text{\tiny{d}}}{\leq} 2\gamma^{2} \left(\tau \sum_{k=(t-\tau)_{+}}^{t-1} \mathbb{E} \left\| (\mathbf{J}_{k}^{t} - \mathbf{I}_{d}) \nabla f(\mathbf{x}_{k}) \right\|^{2} + \sum_{k=(t-\tau)_{+}}^{t-1} \mathbb{E} \left\| (\mathbf{J}_{k}^{t} - \mathbf{I}_{d}) \boldsymbol{\xi}_{k} \right\|^{2} \right)$$

$$\stackrel{\text{\tiny{d}}}{\leq} 2\gamma^{2} \left(\tau \sum_{k=(t-\tau)_{+}}^{t-1} \mathbb{E} \left\| \nabla f(\mathbf{x}_{k}) \right\|^{2} + \sum_{k=(t-\tau)_{+}}^{t-1} \mathbb{E} \left\| \boldsymbol{\xi}_{k} \right\|^{2} \right)$$

$$\stackrel{\text{\tiny{d}}}{\leq} 2\gamma^{2} \left((\tau + M) \sum_{k=(t-\tau)_{+}}^{t-1} \mathbb{E} \left\| \nabla f(\mathbf{x}_{k}) \right\|^{2} + \tau \sigma^{2} \right),$$

where we used $\textcircled{1} \|\mathbf{a} + \mathbf{b}\|^2 \le 2 \|\mathbf{a}\|^2 + 2 \|\mathbf{b}\|^2$, $\textcircled{2} \|\sum_{i=1}^{\tau} \mathbf{a}_i\|^2 \le \tau \sum_{i=1}^{\tau} \|\mathbf{a}_i\|^2$, and $\mathbb{E} \|\sum_{i=1}^{\tau} \boldsymbol{\xi}_i\|^2 = \sum_{i=1}^{\tau} \mathbb{E} \|\boldsymbol{\xi}_k\|^2$, $\textcircled{3} \|(\mathbf{J}_k^t - \mathbf{I}_d)\nabla f(\mathbf{x}_k)\|^2 \le \|\mathbf{J}_k^t - \mathbf{I}_d\|^2 \|\mathbf{g}_k\|^2 \le \|\nabla f(\mathbf{x}_k)\|^2$, $\textcircled{4} \mathbb{E} \|\boldsymbol{\xi}_k\|^2 \le M \|\nabla f(\mathbf{x}_k)\|^2 + \sigma^2$.