EXERCICE

Soit $n \in \mathbb{N}$. Pour $k \in [0, n]$, on note I_n^k le nombre de permutations d'un ensemble E à n éléments qui laissent invariants exactement k éléments.

- **1.** Calculer I_n^n , I_n^{n-1} (pour $n \ge 1$) et I_n^{n-2} (pour $n \ge 2$).
- **2.** Calculer $\sum_{k=0}^{n} I_n^k$.
- 3. a) Montrer que $\forall k \in [0, n], I_n^k = \binom{n}{k} I_{n-k}^0$.
 - b) En déduire la table des I_n^k pour n allant de 0 à 6 (expliquer un peu la démarche).
- 4. a) Combien y a-t-il de permutations laissant invariant un élément donné.
 - b) En déduire que $\sum_{k=0}^{n} kI_n^k = n!$

Indication: on pourra compter de deux manières la somme de tous les invariants des permutations de E.

- 5. Montrer que $\sum_{k=0}^{n} \binom{n}{k} I_k^0 = n!$
- **6.** En déduire que $\forall n \in \mathbb{N}^*$, $I_n^0 = nI_{n-1}^0 + (-1)^n$.
- 7. Montrer que $\forall n \in \mathbb{N}, \ I_n^0 = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$
- **8.** a) Soit $x \in \mathbb{R}$. Montrer que $e^x = \sum_{k=0}^n \frac{x^k}{k!} + \int_0^x \frac{(x-t)^n}{n!} e^t dt$.
 - b) En déduire la limite de $\frac{I_n^0}{n!}$ (on pourra majorer l'intégrale précédente) et interpréter.

PROBLEME

PARTIE 1

1. Nombre d'involutions : soit $n \in \mathbb{N}^*$ et E un ensemble à n éléments.

On appelle **involution de** E toute bijection s de E sur E vérifiant $s \circ s = \mathrm{id}_E$.

On note t_n le nombre d'involutions de E. On admet qu'il ne dépend que de n, le cardinal de E.

- a) Calculer t_1 , t_2 et t_3 .
- b) On fixe un entier $k \in [1, n-1]$. Calculer en fonction de t_i , où $1 \le i < n$:
 - i. Le nombre d'involutions s de [1, n] vérifiant s(n) = n.
 - ii. Le nombre d'involutions s de [1, n] vérifiant s(n) = k.
- c) En déduire la relation : $t_n = t_{n-1} + (n-1)t_{n-2}$. On soignera la rédaction.
- 2. Expression à l'aide d'une suite de polynômes.

Soit $u: x \mapsto e^{x^2/2}$. Pour $n \in \mathbb{N}$, on note $u^{(n)}$ sa dérivée d'ordre n, et H_n la fonction définie par :

$$\forall x \in \mathbb{R}, \ u^{(n)}(x) = H_n(x) u(x) \quad (*)$$

- a) Pour tout x réel, exprimer u'(x) à l'aide de u(x) et en déduire la relation entre $u^{(n)}(x)$, $u^{(n-1)}(x)$ et $u^{(n-2)}(x)$ pour $n \geqslant 2$
- b) Calculer H_0 et H_1 , puis déduire de la question précédente la formule :

$$\forall n \geq 2, \ \forall x \in \mathbb{R}, \ H_n(x)(x) = xH_{n-1}(x) + (n-1)H_{n-2}(x)$$

PCSI 1 2019/2020

- c) Montrer que H_n est un polynôme dont on précisera le degré et le coefficient dominant.
- d) Montrer que $\forall n \in \mathbb{N}, \ \forall x \geqslant 0, \ H_n(x) \geqslant 0$
- e) Comparer t_n et $H_n(1)$

3. Etude des deux derniers coefficients de \mathcal{H}_n

- a) Pour $n \in \mathbb{N}$, on pose $h_n = H_n(0)$. Exprimer h_n en fonction de h_{n-2} pour $n \ge 2$. En déduire h_{2p+1} pour $p \in \mathbb{N}$.
- b) Déterminer une expression de h_{2p} en fonction de $p \in \mathbb{N}$. On l'exprimera à l'aide de factorielles.
- c) A l'aide des relations de la question 2., montrer que $\forall n \ge 1, H'_n = nH_{n-1}$
- d) Pour $n\in\mathbb{N},$ on pose $h_n'=H_n'(0)$. Donner une expression de h_n' en distinguant suivant la parité de n.

Partie 2

On se propose de trouver un équivalent de t_n . On admettra la célèbre relation de Stirling :

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

1. Un lemme préliminaire : soit f une fonction de classe C^2 strictement positive sur [0,1].

On suppose qu'il existe trois constantes strictement positives a, α et β telles que

$$f(0) = a, \ f'(0) = 0, \ \text{et} \ \forall x \in [0, 1], \ \alpha^2 f(x) \leqslant f''(x) \leqslant \beta^2 f(x)$$

- On se propose de montrer que $\forall x \in [0,1]$, $\frac{a}{2} e^{\alpha x} \leqslant f(x) \leqslant \frac{a}{2} \left(e^{\beta x} + 1\right)$ a) Exprimer à l'aide de la fonction ch l'unique solution φ de l'équation différentielle $y'' = \beta^2 y$ avec les conditions initiales y(0) = a et y'(0) = 0.
- b) On pose $\omega = f\varphi' f'\varphi$. En étudiant ω sur [0,1] montrer que $\forall x \in [0,1]$, $\omega(x) \ge 0$.
- c) En déduire que $\forall x \in [0,1]$, $f(x) \leqslant \varphi(x)$ (envisager le quotient) puis que $f(x) \leqslant \frac{a}{2} \left(e^{\beta x} + 1\right)$
- d) En utilisant une démarche analogue, démontrer que $\forall x \in [0,1], f(x) \geqslant \frac{a}{2} e^{\alpha x}$

2. Un encadrement: on fixe $n \in \mathbb{N}$, et on pose $v_n : x \mapsto H_n(x) e^{x^2/4}$.

- a) Etudier le signe de v_n et de v_n' sur \mathbb{R}_+^* , et calculer $v_n(0)$ et $v_n'(0)$.
- b) En dérivant deux fois la relation (*), établir $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ H_n''(x) + xH_n'(x) nH_n(x) = 0$
- c) Exprimer $v_{n}^{\prime\prime}\left(x\right)$ en fonction de $v_{n}\left(x\right)$, n et x , et en déduire que

$$\forall x \in [0, 1], (n + \frac{1}{2}) v_n(x) \leq v''_n(x) \leq (n + \frac{3}{4}) v_n(x)$$

On pose pour la suite $\alpha_n = \sqrt{n + \frac{1}{2}}$ et $\beta_n = \sqrt{n + \frac{3}{4}}$ pour tout entier n.

3. Cas où n est pair.

a) A l'aide du lemme préliminaire, montrer que pour tout entier $p \in \mathbb{N}$

$$\frac{e^{-1/4}h_{2p}}{2} e^{\alpha_{2p}} \leqslant H_{2p}(1) \leqslant \frac{e^{-1/4}h_{2p}}{2} \left(e^{\beta_{2p}} + 1\right)$$

- b) A l'aide de la formule de Stirling, calculer un équivalent de h_{2p} (commencer par un équivalent de (2p)!)
- c) Déduire des deux questions précédentes que $t_{2p} \sim \frac{e^{-1/4}}{\sqrt{2}} e^{\sqrt{2p}} \left(\frac{2p}{e}\right)^p$
- **4.** Avec des techniques analogues, on pourrait démontrer que $t_{2p+1} \sim \frac{e^{-1/4}}{\sqrt{2}} e^{\sqrt{2p+1}} \left(\frac{2p+1}{e}\right)^{p+1/2}$ (ce n'est pas demandé ici). Conclure sur un équivalent de t_n .