NRES 776 Lecture 19

GLM - multiple variables and Simpson's paradox

Sunny Tseng

Our schedule today

- Announcement (3 min)
 - zoom recording
 - topic for next week's lab
- Binomial regression with multiple variables (30 min)
- Wrap up (5 min)

UCB Admission data set

Aggregate data on applicants to graduate school at Berkeley for the six largest departments in 1973 classified by admission and sex.

Exploratory data visualization

```
1 apply(UCBAdmissions,
2          c(1, 2),
3          sum)

Gender

Admit         Male Female
    Admitted 1198     557
    Rejected 1493     1278
```

```
1 mosaicplot(apply(UCBAdmissions, c(1, 2), sum),
2 main = "Student admissions at UC Berkeley")
```

Student admissions at UC Berkeley

Model formulation (glm_1)

 $logit(admission_i) = \beta_0 + \beta_1 gender M_i$

```
1 glm 1 <- glm (formula = cbind (Admitted, Rejected) ~ Gender,
            data = UCBAdmissions clean,
              family = "binomial")
 5 glm 1 %>% summary
Call:
glm(formula = cbind(Admitted, Rejected) ~ Gender, family = "binomial",
   data = UCBAdmissions clean)
Deviance Residuals:
    Min 1Q Median 3Q
                                          Max
-16.7915 -4.7613 -0.4365 5.1025 11.2022
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.83049 0.05077 -16.357 <2e-16 ***
GenderMale 0.61035 0.06389 9.553 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 877.06 on 11 degrees of freedom
Residual deviance: 783.61 on 10 degrees of freedom
AIC: 856.55
```

Model goodness of fit

Coef. interpretation

$$logit(p_i) = eta_0 + eta_1 gender M_i \ eta_1 = -0.83 \ eta_1 = 0.61$$

For female applicants:

$$egin{split} logit(p_F) &= log(rac{p_F}{1-p_F}) = eta_0 \ & rac{p_F}{1-p_F} = exp(eta_0) = 0.43 \end{split}$$

Coef. interpretation (con'd)

For male applicants:

$$egin{split} logit(p_M) &= log(rac{p_M}{1-p_M}) = eta_0 + eta_1 \ &rac{p_M}{1-p_M} = exp(eta_0 + eta_1) \ &rac{Odd(p_M)}{Odd(p_F)} = exp(eta_1) = 1.84 \end{split}$$

- Male students has 1.84 times higher odds in getting admitted in the university
- Evidence of sex bias in admission practices!

Model formulation (glm_2)

 $logit(admission_i) = eta_0 + eta_1 gender M_i + eta_2 dept B_i + eta_3 dept C_i + eta_4 dept D_i + beta_5 dept E_i + beta_6 dept E_$

```
1 glm 2 <- glm (formula = cbind (Admitted, Rejected) ~ Gender + Dept,
                  data = UCBAdmissions clean,
                family = "binomial")
 4 glm 2 %>% summary()
Call:
glm(formula = cbind(Admitted, Rejected) ~ Gender + Dept, family = "binomial",
   data = UCBAdmissions clean)
Deviance Residuals:
-1.2487 3.7189 -0.0560 0.2706 1.2533 -0.9243 0.0826 -0.0858
                    11 12
     9 10
1.2205 -0.8509 -0.2076 0.2052
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
                     0.09911 6.880 5.97e-12 ***
(Intercept) 0.68192
GenderMale -0.09987 0.08085 -1.235 0.217
      -0.04340 0.10984 -0.395 0.693
DeptB
      -1.26260 0.10663 -11.841 < 2e-16 ***
DeptC
      -1.29461 0.10582 -12.234 < 2e-16 ***
DeptD
      -1.73931 0.12611 -13.792 < 2e-16 ***
DeptE
DeptF
      -3.30648 0.16998 -19.452 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 877.056 on 11 degrees of freedom Residual deviance: 20.204 on 5 degrees of freedom

AIC: 103.14

Model goodness of fit

Coef. interpretation

$$logit(admission_i) = eta_0 + eta_1 gender M_i + eta_2 dept B_i + eta_3 dept C_i + eta_4 dept D_i + beta_5 dept E_i + beta_6 dept B_i + eta_5 dept B_i + eta_6 dept B_$$

$$\beta_0 = 0.6$$

$$\beta_1 = -0.09$$

$$\beta_2 = -0.04$$

For female student in dept B:

$$logit(p_{FB}) = log(rac{p_{FB}}{1-p_{FB}}) = eta_0 + eta_2$$

$$rac{p_{FB}}{1-p_{FB}} = exp(eta_0 + eta_2) = 1.89$$

Coef. interpretation (con'd)

For male student in dept B:

$$egin{split} logit(p_{MB}) &= log(rac{p_{MB}}{1-p_{MB}}) = eta_0 + eta_1 + eta_2 \ &rac{p_{MB}}{1-p_{MB}} = exp(eta_0 + eta_1 + eta_2) \end{split}$$

$$rac{Odd(p_{MB})}{Odd(p_{FB})} = exp(eta_1) = 0.9$$

- Male students has 0.9 times less odds in getting admitted in the department B
- In general, male students has 0.9 times less odds in getting admitted in the university
- Evidence of sex bias in admission practices! <- no!

Comparison between models

- glm_null: null model
- glm_1: include Gender
- glm_2: include Gender and Dept
- glm_3: include Dept

Compare AIC values

GLM model	AIC
glm_null	948
glm_1	856
glm_2	103
glm_3	102

Comparison between models

Use likelihood ratio test for nested models

```
1 lrtest(glm 1, glm 2) # select glm 2
Likelihood ratio test
Model 1: cbind (Admitted, Rejected) ~ Gender
Model 2: cbind (Admitted, Rejected) ~ Gender + Dept
 #Df LogLik Df Chisq Pr(>Chisq)
1 2 -426.27
2 7 -44.57 5 763.4 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 1 lrtest(glm 2, glm 3) # select glm 3
Likelihood ratio test
Model 1: cbind (Admitted, Rejected) ~ Gender + Dept
Model 2: cbind (Admitted, Rejected) ~ Dept
 #Df LogLik Df Chisq Pr(>Chisq)
1 7 -44.572
2 6 -45.338 -1 1.5312 0.2159
```

What is actually going on

- Admission rate is actually influenced by department, not gender
- Just happen to be that more male students applied to the department with higher admission rate

Student admissions at UC Berkeley

Simpson's Paradox

A phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined.

Which means, in a easier language, missing of important variable in a model.

Wrap up

What we learned today

- Multiple GLM with Binomial regression
- Compare models using AIC and likelihood ratio test
- The importance of including critical variable in the model

Next time

- Next Tuesday in person lecture with Lisa
- Next Thursday lab 10, virtual on zoom