試験開始の合図があるまで、この問題冊子の中を見てはいけません。

2014年度 第2回 全統マーク模試問題

(100点 60分)

2014年8月実施

I 注 意 事 項

1 解答用紙は,第1面(表面)及び第2面(裏面)の両面を使用しなさい。 解答用紙に,正しく記入・マークされていない場合は,採点できないことがあります。特に,解答用紙の**解答科目欄にマークされていない場合又は複数の科目にマークされている場合は、**0点となることがあります。

解答科目については、間違いのないよう十分に注意し、マークしなさい。

2 出題科目、ページ及び選択方法は、下表のとおりです。

〔新教育課程履修者〕

		-					
	出題科目		ページ	選	択	方	法
数	学	\prod	4~14	左の2科	目のうち	から1科目	を選択し,
数当	ዾⅡ・数学	В	15~28	解答しなさ	5675		

[旧教育課程履修者]

出題科目	ページ	選	択	方	法
数 学 Ⅱ	$4 \sim 14$	ナ:の 2 彩	日のみま	5から1科目	な選切し
数学Ⅱ·数学B	15~28			つかり1村日	で医扒し、
旧数学Ⅱ・旧数学B	29~44		V 10		

- 3 試験中に問題冊子の印刷不鮮明,ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、解答する問題を決めたあと、その問題番号の解答欄に解答しなさい。ただし、**指定された問題数をこえて解答してはいけません**。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。

Ⅱ 解答上の注意

解答上の注意は、裏表紙に記載してあるので、この問題冊子を裏返して必ず読みなさい。

河合塾

-1 -

数 学 Ⅱ

(全 問 必 答)

第1問 (配点 30)

[1] a を正の実数とし,x の関数 f(x) を

$$f(x) = 2^{x-2} - a$$

とする。

- (1) a=1 のとき, f(2)= $\overline{\mathcal{P}}$ である。
- (2) a=8 のとき, $f(x) \le 0$ を満たす自然数 x は全部で **1** 個ある。

(数学Ⅲ第1問は次ページに続く。)

(3) xの方程式 f(x)=1 の解は

である。

正の実数 u に対して、a=u のときの f(x)=1 の解を x_1 、 $a=\frac{1}{u}$ のときの f(x)=1 の解を x_2 とおく。

$$x_1 + x_2 = \boxed{7} + \log_2 \left(u + \frac{7}{u} + \boxed{7} \right)$$

であり、u が u>0 の範囲を変化するとき、 x_1+x_2 は u= $\boxed{ 2}$ のとき最小値 $\boxed{ \mathbf{f} }$ をとる。

(数学Ⅲ 第1問 は次ページに続く。)

数学Ⅱ

[2] xの関数 g(x) を

$$g(x) = 2\sin^2 x - 2\sqrt{3}\sin x\cos x + 2\sin x + 2\sqrt{3}\cos x$$
 とする。

(1) $t = \sin x + \sqrt{3} \cos x$ とおくと

$$t^{2} = \sin^{2} x + \boxed{3} \sqrt{\boxed{9}} \sin x \cos x + \boxed{5} \cos^{2} x$$
$$= \boxed{3} + \boxed{3} \sqrt{\boxed{9}} \sin x \cos x + \boxed{7}$$

であるから, g(x)をtを用いて表すと

$$g(x) = \boxed{\mathbf{g}} t^2 + \boxed{\mathbf{f}} t + \boxed{\mathbf{y}}$$

である。

また, tは

$$t = \boxed{\bar{\tau}} \sin\left(x + \frac{\pi}{|h|}\right)$$

と表すことができる。

(数学Ⅲ 第1問 は次ページに続く。)

(2) x が $0 \le x < 2\pi$ の範囲を変化するとき, g(x) のとり得る値の範囲は

$$f$$
 $\leq g(x) \leq \boxed{3}$

である。

(3) b は正の実数とする。x の方程式 g(x)=3 が、 $0 \le x < b$ の範囲において、 ちょうど三つの実数解をもつような b の値の範囲は

である。

数学Ⅱ

第2問 (配点 30)

kを実数とし、xの関数 f(x)を

$$f(x) = x^3 - 3kx^2 + (6k^2 - 3)x - 2k$$

とする。f(x) の導関数 f'(x) は

$$f'(x) = \boxed{P} x^2 - \boxed{1} kx + \boxed{D} k^2 - \boxed{I}$$

である。曲線 y=f(x) を C とする。C 上の点 (2, f(2)) における C の接線 ℓ の傾きは f'(**オ**) であり、 ℓ の傾きが 3 であるときの k の値は **カ** である。このとき、 ℓ の方程式は、y=3x- **キ** である。以下、k= カ とする。

- (1) 関数 f(x) は $\boxed{\mathbf{2}}$ 。 $\boxed{\mathbf{2}}$ に当てはまるものを,次の $\boxed{\mathbf{0}} \sim \boxed{\mathbf{3}}$ のうちから一つ 選べ。
 - ◎ 極大値と極小値をもつ
 - ① 極大値をもち、極小値をもたない
 - ② 極小値をもち、極大値をもたない
 - ③ 極値をもたない

(数学Ⅲ 第 2 問 は次ページに続く。)

(2) xの関数 g(x) を $g(x) = 2x^2 - 5x + 2$ とし、曲線 y = g(x) を D とする。 C と D の共有点は二つあり、それらの座標は $\left(\begin{array}{c} \boldsymbol{f} \end{array}\right)$ 、 $\left(\begin{array}{c} \boldsymbol{J} \end{array}\right)$ である。点 $\left(\begin{array}{c} \boldsymbol{J} \end{array}\right)$ を A とし、点 A を通り ℓ に垂直な直線を m とする。 m の方程式は

である。m とD で囲まれた図形のうち,不等式 $x \ge 2$ ケ の表す領域に含まれる部分の面積は 2 である。

tを実数とし、2点 P, Q を P(t, f(t)), Q(t, g(t)) で定める。t が

最大となる。

数学Ⅱ

第3問 (配点 20)

座標平面上に 2 点 A(3,5), $B\left(\frac{9}{2},2\right)$ があり,線分 AB を 2:1 に内分する点を H とする。

点 H の座標は $\begin{pmatrix} \boxed{P} \end{pmatrix}$ 、 $\boxed{\mathbf{1}}$ であり,直線 AB の傾きは $\boxed{\mathbf{1}}$ であるから,点 H を通り直線 AB に垂直な直線を ℓ とすると, ℓ の方程式は

$$y = \frac{\boxed{1}}{\boxed{1}}x + \boxed{\ddagger}$$

である。また、中心が点 A であり、点 H で直線 ℓ に接する円を C とすると、C の 方程式は

$$(x-3)^2 + (y-5)^2 = \boxed{7}$$

である。

(数学Ⅲ 第3問 は次ページに続く。)

$$d = \frac{\left| \boxed{ \cancel{\tau} } k - \boxed{ } \right|}{\sqrt{ \boxed{ \cancel{y} }}}$$

である。特に,
$$d = \frac{\sqrt{5}}{3}$$
 のとき, $k = \frac{\boxed{\flat}}{\boxed{\lambda}}$ または $\frac{\boxed{\flat}}{\boxed{\flat}}$ である。

るような R はちょうど **ナ** 個ある。

数学Ⅱ

第4問 (配点 20)

a を実数として、x の整式 $f(x) = x^3 + ax^2 + ax - 6a - 8$ を考える。

$$f(2) = \boxed{\mathbf{r}}$$
 $\nabla = \mathbf{r}$ $\nabla = \mathbf{r}$

$$f(x) = (x - \boxed{1})\{x^2 + (a + \boxed{1})x + \boxed{1}a + \boxed{1}\}$$

と因数分解できる。

xの方程式 f(x)=0 の三つの解を α , β , γ とする。

(1)
$$\alpha + \beta + \gamma = \boxed{\mathbf{h}} a, \quad \alpha\beta\gamma = \boxed{\mathbf{f}} a + \boxed{\mathbf{f}}$$

(2) x の方程式 f(x)=0 の異なる実数解の個数が 2 個となるような a の値は

$$a = \frac{\boxed{\text{ray}}}{\boxed{\text{p}}}, \quad \boxed{\text{Z}} \pm \boxed{\text{t}} \sqrt{\boxed{\text{y}}}$$

である。

(数学 II 第 4 問 は次ページに続く。)

(3) x の方程式 f(x)=0 が虚数解をもつような a の値の範囲は

$$\boxed{\textbf{9}} - \boxed{\textbf{f}} \sqrt{\boxed{\textbf{y}}} < a < \boxed{\textbf{9}} + \boxed{\textbf{f}} \sqrt{\boxed{\textbf{y}}} \cdots \cdots (*)$$

である。

(*) が成り立つとき、方程式 f(x)=0 の虚数解の実部が $-\frac{1}{2}$ となるような a

$$\alpha^2 + \beta^2 + \gamma^2 = \boxed{ }$$

$$\alpha^3 + \beta^3 + \gamma^3 = \boxed{\exists \, \mathbf{Z}}$$

である。

(下書き用紙)

数学Ⅱ·数学B

問題	選択方法					
第1問	必答					
第2問	必答					
第3問						
第4問	- いずれか2問を選択し。 解答しなさい。					
第5問						

数学Ⅱ・数学B (注) この科目には、選択問題があります。(15ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] a を正の実数とし、x の関数 f(x) を

$$f(x) = 2^{x-2} - a$$

とする。

- (1) a = 1 のとき, $f(2) = \boxed{P}$ である。
- (2) a=8 のとき, $f(x) \le 0$ を満たす自然数 x は全部で **イ** 個ある。

(数学Ⅱ・数学B第1問は次ページに続く。)

(3) x の方程式 f(x)=1 の解は

である。

正の実数 u に対して、a=u のときの f(x)=1 の解を x_1 、 $a=\frac{1}{u}$ のときの f(x)=1 の解を x_2 とおく。

$$x_1 + x_2 = \boxed{7} + \log_2 \left(u + \frac{7}{u} + \boxed{5} \right)$$

であり、u が u>0 の範囲を変化するとき、 x_1+x_2 は u= ク のとき最小値 をとる。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

数学Ⅱ·数学B

[2] xの関数 q(x) を

$$g(x)=2\sin^2 x-2\sqrt{3}\,\sin x\cos x+2\sin x+2\sqrt{3}\,\cos x$$
とする。

(1) $t = \sin x + \sqrt{3} \cos x$ とおくと

$$t^{2} = \sin^{2} x + \boxed{\boxed{}} \sqrt{\boxed{\boxed{}} + \boxed{}} \sin x \cos x + \boxed{\boxed{}} \cos^{2} x$$
$$= \boxed{\boxed{} \sqrt{\boxed{}} + \boxed{\boxed{}} \sin x \cos x + \boxed{\boxed{}} \sqrt{\boxed{}} + \boxed{\boxed{}} \sin x \cos x + \boxed{\boxed{}} \sqrt{\boxed{}}$$

であるから, g(x)をtを用いて表すと

$$g(x) = \boxed{g} t^2 + \boxed{f} t + \boxed{y}$$

である。

また, tは

$$t = \boxed{\bar{\tau}} \sin\left(x + \frac{\pi}{\boxed{\mathsf{h}}}\right)$$

と表すことができる。

(数学Ⅱ・数学B 第1問 は次ページに続く。)

(2) x が $0 \le x < 2\pi$ の範囲を変化するとき, g(x) のとり得る値の範囲は

$$f$$
 $\leq g(x) \leq \boxed{3}$

である。

(3) b は正の実数とする。x の方程式 g(x)=3 が、 $0 \le x < b$ の範囲において、 ちょうど三つの実数解をもつような b の値の範囲は

$$\frac{\boxed{\dot{x}}}{\boxed{\int}} \pi < b \le \frac{\boxed{\text{NE}}}{\boxed{7}} \pi$$

である。

数学Ⅱ·数学B

第 2 問 (必答問題) (配点 30)

kを実数とし、xの関数 f(x) を

$$f(x) = x^3 - 3kx^2 + (6k^2 - 3)x - 2k$$

とする。f(x) の導関数 f'(x) は

$$f'(x) = \boxed{\mathcal{P}} x^2 - \boxed{1} kx + \boxed{\dot{\mathcal{P}}} k^2 - \boxed{1}$$

である。曲線 y=f(x) を C とする。C 上の点 (2, f(2)) における C の接線 ℓ の傾きは f'(**オ**) であり、 ℓ の傾きが 3 であるときの k の値は **カ** である。このとき、 ℓ の方程式は、y=3x- **キ** である。以下、k= カ とする。

- (1) 関数 f(x) は $\boxed{\mathbf{2}}$ 。 $\boxed{\mathbf{2}}$ に当てはまるものを,次の $\boxed{\mathbf{0}} \sim \boxed{\mathbf{3}}$ のうちから一つ 選べ。
 - ◎ 極大値と極小値をもつ
 - ① 極大値をもち、極小値をもたない
 - ② 極小値をもち、極大値をもたない
 - ③ 極値をもたない

(数学Ⅱ・数学B 第2問 は次ページに続く。)

$$y = \boxed{\begin{array}{c|c} & & & & & \\ \hline \end{array}} x + \boxed{\begin{array}{c|c} & & & \\ \hline & & \\ \hline & & \\ \hline \end{array}}$$

である。m とD で囲まれた図形のうち,不等式 $x \ge 2$ ケ の表す領域に含まれる部分の面積は 2 である。

tを実数とし、2点 P, Q を P(t, f(t)), Q(t, g(t)) で定める。t が

最大となる。

数学Ⅱ・数学B 「第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

数列 $\{a_n\}$ を $a_1+a_2=8$, $a_4=9$ である等差数列とする。

数列
$$\{a_n\}$$
の一般項は、 $a_n=$ \boxed{P} $n+$ $\boxed{1}$ であり

$$\sum_{k=1}^{n} a_k = n^{\frac{k}{2}} + \boxed{I} n \quad (n = 1, 2, 3, \cdots)$$

である。

さらに

$$\frac{1}{a_k a_{k+1}} = \frac{1}{\boxed{\cancel{\dagger}}} \left(\frac{1}{\boxed{\cancel{D}}} k + \boxed{\cancel{\dagger}} - \frac{1}{\boxed{\cancel{D}}} k + \boxed{\cancel{\dagger}} \right)$$

$$(k = 1, 2, 3, \cdots)$$

が成り立つことを利用すると

$$\sum_{k=1}^{n} \frac{1}{a_{k} a_{k+1}} = \frac{n}{\boxed{ } \boxed{ } \boxed{ } (\boxed{ \ \, \forall \ \ \, } n+\boxed{ \ \ \, } \boxed{ } \boxed{ } (n=1,\ 2,\ 3,\ \cdots)$$

である。

数列 $\{a_n\}$ を次のように群に分ける。

$$a_1 \mid a_2, a_3, a_4 \mid a_5, a_6, a_7, a_8, a_9 \mid \cdots$$
 第 1 群 第 2 群 第 3 群

ここで、一般に第n群は (2n-1) 個の項からなるものとする。

(数学Ⅱ・数学B 第3問 は次ページに続く。)

- (2) 自然数nに対し、第n群の小さい方からn番目の項を b_n とすると

$$b_n = \boxed{ \vec{\tau} \quad n^2 - \boxed{ \quad } \quad n + \boxed{ \quad } \vec{\tau}$$

である。

自然数nに対し、 b_n を3で割ったときの余りを r_n とすると

である。

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

三角形 OAB において,辺 OA の中点を M,辺 AB を 2:1 に内分する点を N とする。

$$\overrightarrow{OM} = \frac{\overrightarrow{P}}{\overrightarrow{I}}\overrightarrow{OA}, \quad \overrightarrow{ON} = \frac{\overrightarrow{D}}{\overrightarrow{I}}\overrightarrow{OA} + \frac{\cancel{T}}{\cancel{D}}\overrightarrow{OB}$$

である。

点 P を直線 MN 上にとると、実数 s を用いて $\overrightarrow{MP} = s\overrightarrow{MN}$ と表され

$$\overrightarrow{OP} = \left(\begin{array}{c} \boxed{\ddagger} \\ \boxed{7} \\ \hline \end{array} \right) - \begin{array}{c} \boxed{7} \\ \boxed{3} \\ \hline \end{array} S \overrightarrow{OA} + \begin{array}{c} \boxed{4} \\ \boxed{\flat} \\ \hline \end{array} S \overrightarrow{OB}$$

である。さらに、点 P が直線 OB 上にあるものとする。このとき

$$s = \boxed{\lambda}$$

であり

となる。

以下,
$$\overrightarrow{OP} = \boxed{ t \ \overrightarrow{OB} \ とする}$$
。

(数学Ⅱ・数学B第4問は次ページに続く。)

$$OA=3$$
, $OB=4$, $AB=\sqrt{13}$ とする。

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \boxed{y}$$

である。

点 P を中心とし、点 B を通る円を C とする。直線 OB と円 C の交点のうち B でない方を Q とすると

$$\overrightarrow{OQ} = \boxed{9} \overrightarrow{OB}$$

である。また、直線 AB と円 C の交点のうち B でない方を R とする。実数 t を用いて $\overrightarrow{AR} = t\overrightarrow{AB}$ と表すと

$$t = \frac{\boxed{fy}}{\boxed{fh}}$$

である。三角形 BQR と三角形 OAB の面積比は **ヌネ**:1 である。

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 5 問 (選択問題) (配点 20)

以下,小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入し,解答せよ。途中で割り切れた場合,指定された桁まで**(0)**にマークすること。

赤球が3個、白球が6個入った袋がある。

(1) 袋から5個の球を同時に無作為に取り出したとき、取り出された5個の球のうち、赤球の個数をSとする。このとき

である。

次に、取り出された 5 個の球のうち、赤球 1 個につき 3 点、白球 1 個につき 1 点を与え、5 個の球に対する合計得点を T とする。 T は S を用いて

$$T=$$
 $egin{array}{c} egin{array}{c} egin$

(数学Ⅱ・数学B 第5問 は次ページに続く。)

(2) 袋から球を無作為に復元抽出する試行を 450 回行い,赤球が取り出された回数をXとする。

確率変数 X の平均を m, 標準偏差を σ とすると

$$m = \boxed{ \overline{r} + \overline{r} }, \quad \sigma = \boxed{ \overline{z} \overline{z} }$$

ただし、Zを標準正規分布に従う確率変数とするとき $P(0 \le Z \le 1) = 0.341, \quad P(0 \le Z \le 2) = 0.477$ である。

(下書き用紙)

「旧教育課程履修者」だけが選択できる科目です。 「新教育課程履修者」は、選択してはいけません。

旧数学Ⅱ·旧数学B

問題	選択方法			
第1問	必答			
第2問	必答			
第3問				
第4問	いずれか2問を選択し,			
第5問	} 解答しなさい。 			
第6問				

旧数学Ⅱ・旧数学B (注) この科目には,選択問題があります。(29ページ参照。)

第 1 問 (必答問題) (配点 30)

[1] a を正の実数とし、x の関数 f(x) を

$$f(x) = 2^{x-2} - a$$

とする。

- (1) a=1 のとき, f(2)= $\overline{\mathcal{P}}$ である。
- (2) a=8 のとき, $f(x) \le 0$ を満たす自然数 x は全部で **1** 個ある。

(旧数学Ⅱ・旧数学B 第1問 は次ページに続く。)

(3) x の方程式 f(x)=1 の解は

である。

正の実数uに対して、a=u のときのf(x)=1 の解を x_1 、 $a=\frac{1}{u}$ のときの f(x)=1 の解を x_2 とおく。

$$x_1 + x_2 = \boxed{7} + \log_2 \left(u + \frac{7}{u} + \boxed{5} \right)$$

であり、u が u>0 の範囲を変化するとき、 x_1+x_2 は u= ク のとき最小値 をとる。

(旧数学Ⅱ・旧数学B 第1問は次ページに続く。)

旧数学Ⅱ·旧数学B

[2] xの関数 q(x) を

$$g(x)=2\sin^2 x-2\sqrt{3}\,\sin x\cos x+2\sin x+2\sqrt{3}\,\cos x$$
とする。

(1) $t = \sin x + \sqrt{3} \cos x$ とおくと $t^2 = \sin^2 x + \boxed{\Box} \sqrt{\boxed{\forall}} \sin x \cos x + \boxed{\flat} \cos^2 x$ $= \boxed{\exists \forall} \sin^2 x + \boxed{\Box} \sqrt{\boxed{\forall}} \sin x \cos x + \boxed{\forall}$

であるから, g(x)をtを用いて表すと

$$g(x) = \boxed{g} t^2 + \boxed{f} t + \boxed{y}$$

である。

また、tは

$$t = \boxed{\overline{\tau}} \sin\left(x + \frac{\pi}{\boxed{\mathsf{h}}}\right)$$

と表すことができる。

(旧数学Ⅱ・旧数学B 第1問 は次ページに続く。)

(2) x が $0 \le x < 2\pi$ の範囲を変化するとき, g(x) のとり得る値の範囲は

$$f$$
 $\leq g(x) \leq \boxed{3}$

である。

(3) b は正の実数とする。x の方程式 g(x)=3 が、 $0 \le x < b$ の範囲において、 ちょうど三つの実数解をもつような b の値の範囲は

である。

旧数学Ⅱ·旧数学B

第 2 問 (必答問題) (配点 30)

kを実数とし、xの関数 f(x) を

$$f(x) = x^3 - 3kx^2 + (6k^2 - 3)x - 2k$$

とする。f(x) の導関数 f'(x) は

$$f'(x) = \boxed{\mathcal{P}} x^2 - \boxed{1} kx + \boxed{\dot{\mathcal{P}}} k^2 - \boxed{1}$$

である。曲線 y=f(x) を C とする。C 上の点 (2, f(2)) における C の接線 ℓ の傾きは f'(**オ**) であり、 ℓ の傾きが 3 であるときの k の値は **カ** である。このとき、 ℓ の方程式は、y=3x- **キ** である。以下、k= カ とする。

- (1) 関数 f(x) は $\boxed{\mathbf{2}}$ 。 $\boxed{\mathbf{2}}$ に当てはまるものを,次の $\boxed{\mathbf{0}} \sim \boxed{\mathbf{3}}$ のうちから一つ 選べ。
 - 極大値と極小値をもつ
 - ① 極大値をもち、極小値をもたない
 - ② 極小値をもち、極大値をもたない
 - ③ 極値をもたない

(旧数学Ⅱ・旧数学B 第2問 は次ページに続く。)

(2) xの関数 g(x) を $g(x) = 2x^2 - 5x + 2$ とし、曲線 y = g(x) を D とする。 C と D の共有点は二つあり、それらの座標は $\left(\begin{array}{c} \boldsymbol{f} \end{array}\right)$ 、 $\left(\begin{array}{c} \boldsymbol{J} \end{array}\right)$ である。点 $\left(\begin{array}{c} \boldsymbol{J} \end{array}\right)$ を A とし、点 A を通り ℓ に垂直な直線を m とする。 m の方程式は

$$y = \frac{\boxed{\forall y}}{\boxed{g}} x + \frac{\boxed{f}}{\boxed{y}}$$

である。m とD で囲まれた図形のうち,不等式 $x \ge 2$ ケ の表す領域に含まれる部分の面積は 2 である。

tを実数とし、2点 P, Q を P(t, f(t)), Q(t, g(t)) で定める。t が

f $\leq t \leq 2$ の範囲を変化するとき,線分 PQ の長さは t = 2 f で

最大となる。

旧数学Ⅱ・旧数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

数列 $\{a_n\}$ を $a_1+a_2=8$, $a_4=9$ である等差数列とする。

数列
$$\{a_n\}$$
 の一般項は、 $a_n = \boxed{P} n + \boxed{1}$ であり

$$\sum_{k=1}^{n} a_k = n^{\frac{k}{2}} + \boxed{I} n \quad (n=1, 2, 3, \cdots)$$

である。

さらに

$$\frac{1}{a_k a_{k+1}} = \frac{1}{\boxed{\cancel{\dagger}}} \left(\frac{1}{\boxed{\cancel{D}}} k + \boxed{\cancel{\dagger}} - \frac{1}{\boxed{\cancel{D}}} k + \boxed{\cancel{\dagger}} \right)$$

$$(k = 1, 2, 3, \cdots)$$

が成り立つことを利用すると

$$\sum_{k=1}^{n} \frac{1}{a_{k} a_{k+1}} = \frac{n}{\boxed{ } \boxed{ } \boxed{ } \boxed{ (n=1, 2, 3, \cdots)}$$

である。

数列 $\{a_n\}$ を次のように群に分ける。

$$a_1 \mid a_2, a_3, a_4 \mid a_5, a_6, a_7, a_8, a_9 \mid \cdots$$
 第 1 群 第 2 群 第 3 群

ここで、一般に第n群は (2n-1) 個の項からなるものとする。

(旧数学II・旧数学B 第3問 は次ページに続く。)

- (2) 自然数nに対し、第n群の小さい方からn番目の項を b_n とすると

$$b_n = \boxed{ \vec{\tau} \quad n^2 - \boxed{ \quad } \quad n + \boxed{ \quad }$$

である。

自然数nに対し、 b_n を3で割ったときの余りを r_n とすると

である。

旧数学Ⅱ・旧数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

三角形 OAB において,辺 OA の中点を M,辺 AB を 2:1 に内分する点を N とする。

$$\overrightarrow{OM} = \frac{\overrightarrow{P}}{\overrightarrow{I}}\overrightarrow{OA}, \quad \overrightarrow{ON} = \frac{\overrightarrow{D}}{\overrightarrow{I}}\overrightarrow{OA} + \frac{\cancel{T}}{\cancel{D}}\overrightarrow{OB}$$

である。

点 P を直線 MN 上にとると、実数 s を用いて $\overrightarrow{MP} = s\overrightarrow{MN}$ と表され

$$\overrightarrow{OP} = \left(\begin{array}{c} \boxed{\ddagger} \\ \boxed{7} \\ \hline \end{array} \right) - \begin{array}{c} \boxed{7} \\ \boxed{3} \\ \hline \end{array} S \overrightarrow{OA} + \begin{array}{c} \boxed{9} \\ \boxed{\cancel{\flat}} \\ \hline S \overrightarrow{OB} \\ \end{array}$$

である。さらに、点 P が直線 OB 上にあるものとする。このとき

$$s = \boxed{\lambda}$$

であり

となる。

以下,
$$\overrightarrow{OP} = \boxed{ t } \overrightarrow{OB}$$
 とする。

(旧数学Ⅱ・旧数学B 第4問 は次ページに続く。)

$$OA=3$$
, $OB=4$, $AB=\sqrt{13}$ とする。

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \boxed{y}$$

である。

点 P を中心とし、点 B を通る円を C とする。直線 OB と円 C の交点のうち B でない方を Q とすると

$$\overrightarrow{OQ} = \boxed{9} \overrightarrow{OB}$$

である。また、直線 AB と円 C の交点のうち B でない方を R とする。実数 t を用いて $\overrightarrow{AR} = t\overrightarrow{AB}$ と表すと

$$t = \frac{\boxed{fy}}{\boxed{fh}}$$

旧数学Ⅱ・旧数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第 5 問 (選択問題) (配点 20)

次の資料は、あるサッカーチーム 10 チームについての守備力、攻撃力について、守備力を変量 x (点)、攻撃力を変量 y (点)として、それぞれを 1、2、3、4、5 の 5 段階評価で、5 点を最高点、1 点を最低点としてまとめたものである。

以下,小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入し,解答 せよ。途中で割り切れた場合,指定された桁まで**()**にマークすること。

チーム名	守備力(x)	攻擊力(y)
A	4	3
В	5	3
С	2	1
D	1	a
Е	3	b
F	4	5
G	4	2
Н	3	3
I	5	4
J	4	1

- (1) 変量 x の平均値は $\boxed{\textbf{P}}$. $\boxed{\textbf{1}}$ 点,分散は $\boxed{\textbf{p}}$. $\boxed{\textbf{L}}$ である。また,変量 x において,全体に対する x=2 の相対度数は $\boxed{\textbf{D}}$. $\boxed{\textbf{+}}$ である。
- (2) 変量yの平均値は3点,分散は1.8であり,表中のa,bは $a \le b$ を満たすとすると

$$a = \boxed{7}$$
, $b = \boxed{7}$

である。

(旧数学Ⅱ・旧数学B第5問は次ページに続く。)

このとき、二つの変量 x, y の相関図(散布図)として適切なものは \Box である。

 \Box に当てはまるものを、次の \bigcirc \bigcirc \bigcirc のうちから一つ選べ。

$$r^2 = \boxed{\lambda}$$
. $\boxed{\forall y}$

であるから、二つの変量 $x \ge y$ には に当てはまるものを、次の

- ◎~②のうちから一つ選べ。
- ◎ 強い正の相関関係がある
- ① 強い負の相関関係がある
- ② ほとんど相関関係がない

旧数学Ⅱ・旧数学B 「第3問~第6問は、いずれか2問を選択し、解答しなさい。

第6間 (選択問題) (配点 20)

例えば 18=7+11 のように、2 桁の任意の偶数を二つの素数の和で表すプログラムを考える。

ここで、偶数の素数は2に限られるので、条件を満たす素数は明らかに奇数である。

(1) まず、与えられた 3 以上の自然数 P が素数であるかを判定する部分について、次のような [プログラム 1] を考えた。

[プログラム1]

- 100 INPUT P
- 110 FOR K=2 TO P-1
- 120 IF ア THEN LET P=0
- 130 NEXT K
- 140 PRINT P
- 150 END

 $m{P}$ には、「P は K で割り切れる」を意味する条件式が入るが、次の $m{0} \sim m{3}$ のうちから当てはまるものを一つ選べ。

ここで、INT(X) は X を超えない最大の整数を表す関数である。

() INT (P/K) = 0

(1) INT (K/P) = 0

 \bigcirc INT (P/K)=P/K

(3) INT(K/P) = K/P

正しく作成された [プログラム 1] を実行し、変数 P に対して 3 以上の整数 a を入力すると、出力される P の値は、a が素数ならば $\boxed{1}$ 、素数でないならば $\boxed{1}$ である。

(旧数学Ⅱ・旧数学B 第6問 は次ページに続く。)

(2) (1) のプログラムを使って、最初に意図したプログラムを次の[プログラム 2] のように作成した。

ここで(1)の作業を繰り返し書き込む代わりに、サブルーチンと呼ばれる手法を用いている。この手法によれば、[プログラム 2]の中の命令 GOSUB 300 が実行されると、いったん 300 行以下を実行し、RETURN が実行されると、元の GOSUB 文があった次の行へ戻る。

[プログラム2]

100 INPUT N

110 FOR J=3 TO N/2

120 IF J=INT(J/2)*2 THEN GOTO 210

130 LET P=J

140 GOSUB 300

150 LET Q=P

160 LET P=N-J

170 GOSUB 300

180 IF I THEN

190 PRINT N;"=";Q;"+";P

200 END IF

210 NEXT J

220 GOTO 340

300 FOR K=2 TO P-1

310 IF P THEN LET P=0

320 NEXT K

330 RETURN

340 END

(旧数学Ⅱ・旧数学B 第6問 は次ページに続く。)

旧数学Ⅱ·旧数学B

エ]には,	$\lceil J \succeq N$	$-J \mathcal{O}$	いずれも素	素数である	う」を意	意味する	条件式カ	ぶ入るが,
このプロ	グラム	として	I l	こ入れて 正	しく動作	しない	式を,	欠の ⑥ ~	③のうち
から一つ	選べ。								

P*Q>0

(1) P+Q > 0

2*P*Q-Q*Q>0

(P>0 AND Q>0)

正しく作成した [プログラム 2] を実行し、変数 N に対して 50 を入力すると、

オ 行にわたって出力が得られ、最後の出力は

50= カキ + クケ

である。また、プログラム終了までに 160 行は コサ 回実行される。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例
$$\boxed{\mathbf{P}\mathbf{7}\mathbf{7}}$$
 に $-8a$ と答えたいとき

なお,同一の問題文中に**ア**,**イウ** などが 2 度以上現れる場合, 2 度目以降は, ア , イウ のように細字で表記します。

3 分数形で解答する場合,分数の符号は分子につけ、分母につけてはいけません。

また、それ以上約分できない形で答えなさい。

例えば、 $\frac{3}{4}$ 、 $\frac{2a+1}{3}$ と答えるところを、 $\frac{6}{8}$ 、 $\frac{4a+2}{6}$ のように答えてはいけません。

4 根号を含む形で解答する場合,根号の中に現れる自然数が最小となる形で答えなさい。

例えば、 $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ 、 $6\sqrt{2a}$ と答えるところを、 $2\sqrt{8}$ 、 $\frac{\sqrt{52}}{4}$ 、 $3\sqrt{8a}$ のように答えてはいけません。

問題を解く際には、「問題」冊子にも必ず自分の解答を記録し、試験終了後 に配付される「学習の手引き」にそって自己採点し、再確認しなさい。