MTH3011 Partial differential equations

Exercise sheet 3 — The heat equation

1. Properties of solutions of the heat equation: Show that if u(x,t) is a solution of the heat equation

$$\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial x^2}$$
 over $-\infty < x < \infty$, for $t > 0$

with constant thermal conductivity K > 0, then:

- (a) w(x,t) = u(-x,t), $\frac{\partial u}{\partial t}(x,t)$, $\frac{\partial u}{\partial x}(x,t)$ and $u(x-x_0,t-t_0)$ are also solutions of the heat equation.
- (b) $\int_{-\infty}^{\infty} u(x,t) dx$ is independent of t provided u approaches zero as $x \to \pm \infty$.
- (c) $\int_{-\infty}^{\infty} u^2(x,t) dx$ is a decreasing function of t provided u approaches zero as $x \to \pm \infty$ (and *strictly* decreasing unless u is zero everywhere).
- 2. Linearity of solutions of the heat equation: Show that if $u_1(x,t)$ and $u_2(x,t)$ are both solutions of the heat equation in question 1 for all x over $-\infty < x < \infty$, then the linear combination

$$u(x,t) = c_1 u_1(x,t) + c_2 u_2(x,t)$$

is also solution of that equation, for any values of the constants c_1 and c_2 .

3. A solution of the heat equation: Show by differentiation and evaluation that the function

$$u(x,t) = \frac{1}{\sqrt{4Kt+1}} \exp\left[-\frac{x^2}{4Kt+1}\right]$$

satisfies the heat equation for all x over $-\infty < x < \infty$, and the initial condition $u(x,0) = \exp(-x^2)$.

4. Solutions of the heat equation with given initial conditions: Use the general solution

$$u(x,t) = \frac{1}{\sqrt{4\pi Kt}} \int_{-\infty}^{\infty} g(\bar{x}) \exp\left[-(\bar{x} - x)^2/4Kt\right] d\bar{x}$$

over $-\infty < x < \infty$, or otherwise, to determine the solutions that satisfy the following initial conditions:

(a) u(x,0) = 1; (b) u(x,0) = x; (c) u(x,0) = ax + b for constants a, b:

given that for any p > 0 then $\int_{-\infty}^{\infty} \exp(-p^2\bar{x}^2) d\bar{x} = \sqrt{\pi}/p$ and $\int_{-\infty}^{\infty} \bar{x} \exp(-\bar{x}^2) d\bar{x} = 0$.

[Answers: (a) change the variable of integration to $\bar{x}' = \bar{x} - x$ and then use $p = 1/\sqrt{4Kt}$ in the given integral to obtain that u(x,t) = 1, (b) similarly u(x,t) = x, (c) using linearity, u(x,t) = ax + b.]

- 5. Use appropriate changes of variable in the general solution for u(x,t) in question 4 to show
 - (a) If g is an even function of x, with g(x) = g(-x), then u(x,t) is also an even function
 - (b) If g is an odd function of x, with g(x) = -g(-x), then u(x,t) is also an odd function
- 6. Solutions of the heat equation with given initial conditions: As in question 4 above, use the general solution of the heat equation to determine the solutions that satisfy the following initial conditions:
 - (a) $u(x,0) = \exp(-x);$ (c) $u(x,0) = \sinh x;$ (e) $u(x,0) = \sin x;$ (b) $u(x,0) = \exp(x);$ (d) $u(x,0) = \exp(-\frac{1}{2}x^2);$

given that for any p>0 then $\int_{-\infty}^{\infty} \exp(-p^2\bar{x}^2\pm q\bar{x})\,d\bar{x} = \sqrt{\pi}/p\exp(\frac{1}{4}q^2/p^2)$ and $\int_{-\infty}^{\infty} \cos(q\bar{x})\exp(-p^2\bar{x}^2)\,d\bar{x} = \sqrt{\pi}/p\exp(-\frac{1}{4}q^2/p^2)$ and noting that since sine is an odd function, then $\int_{-\infty}^{\infty} \sin(q\bar{x})\exp(-p^2\bar{x}^2)\,d\bar{x} = 0$.

[Answers: (a) collect coefficient of \bar{x} and \bar{x}^2 in the power of e, define p and q appropriately, then use the first given integral to evaluate the result, obtaining that $u(x,t) = e^{Kt-x}$, (b) similarly $u(x,t) = e^{Kt+x}$, or note that u(-x,t) is also a solution and so the sign of x can be changed in the answer to (a), (c) using linearity, $u(x,t) = e^{Kt} \sinh x$, (d) similarly $u(x,t) = e^{-x^2/(4Kt+2)}/\sqrt{2Kt+1}$, (e) use the second given integral (and sine summation formula) to obtain that $u(x,t) = e^{-Kt} \sin x$.

7. Solutions of the heat equation with one 'insulated' boundary: Consider the solution of the heat equation in a semi-infinite domain $0 < x < \infty$ with the 'insulating' boundary condition

$$\frac{\partial u}{\partial x}(0,t) = 0$$

for all t > 0. Write down the corresponding function g(x) for $-\infty < x < \infty$ that must be used in the general solution of the heat equation for each of the following initial conditions:

(a)
$$u(x,0) = 1;$$
 (b) $u(x,0) = \cos x;$ (c) $u(x,0) = x$ for $x > 0$.

Use this (along with your results from questions 4-6) to determine u(x,t) for all t>0. Confirm that the boundary condition above is satisfied by this solution.

[Answers: (a)
$$u(x,t) = 1$$
, (b) $u(x,t) = e^{-Kt} \cos x$, (c) $u(x,t) = \frac{x}{\sqrt{\pi K t}} \int_0^x e^{-\bar{x}^2/4Kt} d\bar{x} + 2\sqrt{\frac{Kt}{\pi}} e^{-x^2/4Kt}$.]

8. The heat equation in a finite domain: The general solution of the heat equation

$$\frac{\partial u}{\partial t} = K \frac{\partial^2 u}{\partial x^2}$$
 over $0 < x < L$ for $t > 0$,

with constant diffusivity K > 0, that satisfies the boundary conditions u(0,t) = u(L,t) = 0

$$u(x,t) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{L}\right) \exp\left[-K\left(\frac{n\pi}{L}\right)^2 t\right].$$

Derive this solution without using your lecture notes. Use this general solution to determine the solution that satisfies each of the initial conditions for 0 < x < L:

(a)
$$u(x,0) = \sin\left(\frac{\pi x}{L}\right);$$
 (c) $u(x,0) = 1;$

(b)
$$u(x,0) = 2\sin\left(\frac{3\pi x}{L}\right) - 4\sin\left(\frac{5\pi x}{L}\right);$$
 (d) $u(x,0) = x(L-x).$

[Answers: (a) $u(x,t) = \sin\left(\frac{\pi x}{L}\right) \exp\left[-K\left(\frac{\pi}{L}\right)^2 t\right]$, (b) deduce that $A_3 = 2$, $A_5 = -4$ and other $A_n = 0$, so $u(x,t) = 2\sin\left(\frac{3\pi x}{L}\right)\exp\left[-K\left(\frac{3\pi}{L}\right)^2t\right] - 4\sin\left(\frac{5\pi x}{L}\right)\exp\left[-K\left(\frac{5\pi}{L}\right)^2t\right]$, (c) $A_n = 4/(n\pi)$ for n odd, $A_n = 0$ for n even, (d) $A_n = 8L^2/(n\pi)^3$ for n odd, $A_n = 0$ for n

9. The heat equation with insulating boundary conditions: Use the method of 'separation of variables' to show that the general solution of the heat equation in question 8 that satisfies the insulating boundary conditions

$$\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(L,t) = 0$$

is $u(x,t) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{L}\right) \exp\left[-K\left(\frac{n\pi}{L}\right)^2 t\right]$. Indicate how the coefficients A_n are determined when the initial conditions are u(x,0) = f(x) and then determine the solution for each of the following cases:

(a)
$$u(x,0) = 1;$$
 (c) $u(x,0) = 1 - \cos\left(\frac{2\pi x}{L}\right);$

(b)
$$u(x,0) = \cos\left(\frac{2\pi x}{L}\right);$$
 (d) $u(x,0) = \sin\left(\frac{\pi x}{L}\right).$

[Answers:
$$A_0 = \frac{1}{L} \int_0^L f(x) dx$$
 and $A_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$ for $n = 1, 2, 3, ...$ in general.
(a) $u(x,t) = 1$, (b) $u(x,t) = \cos\left(\frac{2\pi x}{L}\right) \exp\left[-K\left(\frac{2\pi}{L}\right)^2 t\right]$, (c) $u(x,t) = 1 - \cos\left(\frac{2\pi x}{L}\right) \exp\left[-K\left(\frac{2\pi}{L}\right)^2 t\right]$, (d) $A_0 = 2/\pi$, $A_n = 4/(\pi(1-n^2))$ for n even and nonzero, and $A_n = 0$ for n odd.]

(d)
$$A_0 = 2/\pi$$
, $A_n = 4/(\pi(1-n^2))$ for n even and nonzero, and $A_n = 0$ for n odd.]

10. The heat equation with mixed boundary conditions: Use the method of 'separation of variables' to determine the (series) form of the general solution u(x,t) of the heat equation in question 8 that satisfies the *mixed* boundary conditions with

$$u(0,t) = 0$$
 and $\frac{\partial u}{\partial x}(L,t) = 0$.

Indicate how the coefficients A_n are determined for initial conditions u(x,0) = f(x). Find the coefficients A_n for each of the cases: (a) $u(x,0) = \sin(\frac{\pi x}{2L})$, and (b) u(x,0) = 1.

[Answers: (a) as for 8(a) with L replaced by 2L, (b) as for 8(c) with L replaced by 2L.]

11. The heat equation with a source: Consider the solution of the heat equation with a source term

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 1$$
 over $0 < x < 1$ for $t > 0$

that satisfies the boundary conditions u(0,t) = u(1,t) = 0 and the initial condition u(x,0) = 0

Determine the solution as $t \to \infty$ by assuming that the system reaches a steady state solution U(x) and solve for that function which satisfies the given boundary conditions.

Now write $u(x,t) = U(x) + \bar{u}(x,t)$ and show that $\bar{u}(x,t)$ satisfies the heat equation without a source, but with initial condition $\bar{u}(x,0) = -U(x)$. Find the solution for $\bar{u}(x,t)$ and hence for u(x,t). Sketch the form of u(x,t) for several values of t.

[Answer: $u(x,t) = \frac{1}{2}x(1-x) - \frac{4}{\pi^3} \sum_{m=0}^{\infty} \frac{1}{(2m+1)^3} \sin[(2m+1)\pi x] \exp[-(2m+1)^2\pi^2 t]$, using 8(d).

12. **The heat equation with nonzero boundary conditions:** Consider the solution of the heat equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 over $0 < x < 1$ for $t > 0$

that satisfies the initial condition u(x,0)=0, the boundary condition u(0,t)=0 and the nonzero boundary condition u(1,t)=1. As in question 11, determine the solution as $t\to\infty$ by assuming that the system reaches a steady state solution U(x) which satisfies the given boundary conditions. Use a similar process to that in question 11 to define $\bar{u}(x,t)$ and determine it for all t. Hence determine the full unsteady solution u(x,t) and sketch it for several values of t.

[Answer: Use integration by parts $A_n = 2(-1)^{n+1}/n\pi$, so $u(x,t) = x + \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n}{n} \sin(n\pi x) \exp(-n^2 \pi^2 t)$.]

13. For experts — other parabolic PDEs: Consider a constant-coefficient linear parabolic PDE with:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial t} + C\frac{\partial^2 u}{\partial t^2} = a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial t},$$

where A, B, C, a and b are constants with A > 0, and show that it can be written in the form

$$A^{2} \frac{\partial^{2} u}{\partial x^{2}} + AB \frac{\partial^{2} u}{\partial x \partial t} + \frac{1}{4} B^{2} \frac{\partial^{2} u}{\partial t^{2}} = Aa \frac{\partial u}{\partial x} + Ab \frac{\partial u}{\partial t}.$$

Write this as

$$\left(A\frac{\partial}{\partial x} + \frac{1}{2}B\frac{\partial}{\partial t}\right)^2 u = a\left(A\frac{\partial}{\partial x} + \frac{1}{2}B\frac{\partial}{\partial t}\right) + (Ab - \frac{1}{2}Ba)\frac{\partial u}{\partial t},$$

introduce the new independent variables (ξ, τ) such that $x = A\xi$ and $t = \frac{1}{2}B\xi + (Ab - \frac{1}{2}Ba)\tau$ and show that the corresponding solution $U(\xi, \tau)$ satisfies the advection-diffusion equation of the form

$$\frac{\partial U}{\partial \tau} + a \frac{\partial U}{\partial \xi} = \frac{\partial^2 U}{\partial \xi^2}$$

when $(Ab - \frac{1}{2}Ba) > 0$. Given some solution $U(\xi, \tau)$ of this equation, rewrite this as a solution u(x,t) in terms of the original variables (x,t).

With a different choice of (x,t) in terms of (ξ,τ) , could this become a heat equation for $U(\xi,\tau)$?

MAP/src 12/3/18