

Comparisons of permanent magnet and field winding synchronous machines with inductions machines as traction drives for full electric vehicles

Martin Doppelbauer

Univ.-Prof. Dr.-Ing.

Elektrotechnisches Institut (ETI) – Professur für Hybridelektrische Fahrzeuge (HEV)

Contents

- 0 Introduction / Motivation
- 1 Comparison of 85 kW Drives
- 2 Comparison of 45 kW Drives
- 3 Production and Safety Aspects
- 4 Conclusion

Introduction

Karlsruhe Institute of Technology

KIT = Technical University of Karlsruhe + Research Center Karlsruhe

Teaching: 364 Professors

International 844 Foreign attractiveness: Researchers

Einnahmen in Mio. € (2011)	789
Bundesmittel	229
Landesmittel	250
Drittmittel	310

Excellent education: 445 Apprentices

21.031 Students

Stand 2012

Introduction

Institute of Electrical Engineering (ETI) at KIT

Engelbert Arnold (Founder 1895)

Test hall around 1899

Martin Doppelbauer

Univ.-Prof. Dr.-Ing.

- App. 40 employees in total, 30 are scientific staff
- Cooperation with OEMs, industry and research cooperation
- Design and testing of power electronics up to 250 KW
- Design and testing of machines up to 200 kW / 30.000 /min

Elektrotechnisches Institut

Introduction

Institute of Electrical Engineering (ETI) at KIT

Prof. Dr.-Ing.

Michael

Braun

Electric Drives and Power Electronics

Tel.: +49 (721) 608-42472 Michael.Braun@kit.edu Campus Süd, Geb. 11.10 Raum 111

- Power converter design
- Modular multi level converter
- New converter topologies
- Machine control

Prof. Dr.-Ing.

Martin Doppelbauer

Professorship for Hybrid Electric Vehicles

Tel.: +49 (721) 608-46250 Martin.Doppelbauer@kit.edu Campus Süd, Geb. 11.10 Raum 114

- Electromagnetic design
- Mechanical design and construction
- Industrial drive systems
- Electric vehicles

Motivation

Types of hybrid and electric vehicles

	Micro- Hybrid MCHEV	Mild- Hybrid _{MHEV}	Full-Hybrid FHEV	Plug-In Hybrid	Battery Elec. Vehicle	Fuel-Cell Elec. Vehicle	
E-Maschine	< 2 kW	10 – 15 kW	15 – 60+ kW	30 – 120+ kW	30 – 120+ kW	30 – 120+ kW	
Batterie	< 1 kWh	0,5 – 1,5 kWh	1,5 – 2,5 kWh	5 – 15 kWh	15 – 35 kWh	< 1 kWh	
	Start/Stopp	Start/Stopp	Start/Stopp	Start/Stopp			
	Rekuperation < 2 kW	Rekuperation 1015 kW	Rekuperation > 15 kW	Rekuperation > 15 kW			
		Lastpunkt- Verschiebung	Lastpunkt- Verschiebung	Lastpunkt- Verschiebung			
		Boosten < 15 kW	Boosten > 15 kW	Boosten > 30 kW		E-Fahren	
			E-Fahren 1 – 3 km	E-Fahren 20 – 60 km	E-Fahren 80 – 160+ km	400+ km	
	Gearbox	GEM integrated machines	TEM Traction machines				

Motivation

Examples of GEM and TEM machines

GEM Gearbox integrated machines

TEM Traction machines

Motivation

Base-speed and field-weakening range

Ideal machine

Actual machine

with $L_{q} > L_{d}$

 $n_{\rm cutoff}$

Technical Data

Fixed technical data:

Inner housing diameter: 220 mm
 Inner housing length: 270 mm (iron length plus winding overhang)

Inverter max. current: 425 A ACBattery max. current: 650 A DC

Gearbox ratio (fixed): 9,7(12.000/min = 160 km/h)

Performance requirements:

Rated torque (S1-operation): 160NmPeak torque (short time): 270Nm

Rated power (S1 operation)
 Peak power (short time)
 U_{DC}=216 / 320V: 50 / 65 kW
 U_{DC}=216 / 320V: 85 / 110 kW

Top Speed: 12.000/min

Image source: Volkswagen AG

Karlsruher Intilitut für Technologie

All machines same housing diameter and length

Source: SEW Eurodrive

All machines same housing diameter and length

Source: SEW Eurodrive

All machines same housing diameter and length

Source: SEW Eurodrive

All machines same housing diameter and length

	Required	PMSM	FESM	ASM
Iron length	-	175 mm	140 mm	160 mm
Motor mass	< 80 kg	78 kg	61 kg	73 kg
Cont. torque U _{DC} =320 V	160 Nm	180 Nm	115 Nm	110 Nm
Peak torque UDC=320 V	270 Nm	270 Nm	290 Nm	215 Nm
Cont. power U _{DC} =216 V	50 kW	70 kW	38 kW	50 kW
Cont. power U _{DC} =320 V	65 kW	94 kW	48 kW	63 kW
Peak power U _{DC} =216 V	85 kW	84 kW	84 kW	81 kW
Peak power U _{DC} =320 V	110 kW	125 kW	125 kW	122 kW
Power density continuous	-	1,21 kW/kg	0,79 kW/kg	0,86 kW/kg
Best-point efficiency	-	97 %	96 %	96 %
FTP72 efficiency	-	80,2 %	86,2 %	86,6 %
Total losses FTP72	-	0,127 kWh	0,082 kWh	0,079 kWh

Source: SEW Eurodrive

16.05.14

Technical Data

Fixed technical data:

Iron stack diameter: 200 mmIron stack length: 200 mm

Battery max. Volt: 400 V DCInverter (SVM) max. Volt: 282 V AC

Gearbox ratio (fixed): 12

Performance requirements:

Peak torque (short time): 130 Nm
Rated power (S1 operation): 45 kW
Rated torque (S1 operation): 86 Nm

Top Speed: 12.000/min

Image source: Daimler AG

All machines identical stator and optimized rotor

All machines identical stator and optimized rotor

All machines identical stator and optimized rotor

Area of highest efficiency (96...97%)

Driving Cycles

Sarisruher Inditut für Technologie

Synthetical and real-world road situations

Driving cycles:

- NEFZ (New European Driving Cycle)
- CADC (Common Artemis Driving Cycle: urban/road/motor130)
- HEV Karlsruhe Cycle

Typical driving situations (Karlsruhe region with Opel Ampera test car):

- Traffic light stop
- Roundabout
- Entrance / exit of highway
- Traffic congestion

Karlaruher Institut für Technologie

Average motor efficiency

Fahrsituation	$\eta_{ m ges,\ PSM}$	$\eta_{ m ges,\;FESM}$	$\eta_{ m ges,\ ASM}$
Kreisverkehr	96.56	96.25	94.72
Ampel 30 km h	96.26	93.4	89.95
Ampel 50 km h	96.89	94.85	92.33
Ampel 60 km	97.03	95.59	93.17
Auffahrt auf Schnellstraßen	95.73	96.62	95.55
Abfahrt von Schnellstraßen	93.56	96.08	95.3
Überholvorgang	88.01	96.56	96.23
Parken	95.21	89.92	85.14
Stau	95.11	89.34	84.07
Testfahrt	93.22	96.07	94.94
NEFZ	91.73	95.94	94.73
CADC urban	96.04	94.78	92.19
CADC road	93.55	96.34	95.37
CADC motor 130	84.6	96.2	95.66

NEFZ=
Neuer Europäischer
Fahrzyklus

CADC=
Common Artemis
Driving Cycle

Production Aspects

Stator

Distributed winding

- Wide variety of pole numbers
 - → Suited for all sizes of machines
 - ➤ Suited for slow and high speed
- Very smooth air gap field
 - ➤ Suited for all machine types (ASM, PMSM, FESM)
- Complex construction
 - → Manual work required

Single-tooth winding

 $q \ge 1$

- No. of poles app. equal to no. of teeth
 - ➤ No. of poles grows with diameter
 - ➤ Supply frequency grows with diam.
 - → Only for small or slow machines
- High amount of spatial air gap waves
 - → Additional losses, noise, vibration
 - ➤ Not suited for induction machines
 - **→** Reduced efficiency
- Simple construction
 - **→** Fully automatable production

Production Aspects

Rotor

PMSM

- Simple construction⇒ Fully automatable
- Rare earth magnets⇒ Very high material costs

FESM

- Complex construction→ Automization difficult
- Lots of copper wire plus slip-rings/transformer
 - → High material and production costs

ASM

- Simple construction, much experience
 ➤ Fully automatable
- Cheap material but copper die casting
 - **→** Medium costs

Safety Aspects

Functional Safety

	PMSM	FESM	ASM
Torque pulsation	⊖*	\odot	\oplus
Torque build-up time	\oplus	Θ	\odot
External short-circuit (back EMF)	⊖*	\oplus	$\oplus \oplus$
External short-circuit (braking torque)	⊖*	\oplus	$\oplus \oplus$

^{*} depending on design

16.05.14

Machine Types

Development of power-density

Alle Angaben für Dauerbetrieb / Dauerleistung; Spitzenleistung je nach Leistungselektronik ca. 1,5 ... 3-fach höher

Machine Types

Summary of findings

	PMSM	FESM	ASM
Power density	$\oplus \oplus$	\odot	\oplus
Best-point efficiency	$\oplus \oplus$	\oplus	\odot
Driving-cycle efficiency	\odot	$\oplus \oplus$	\oplus
Manufacturing cost	*	\ominus	⊙**
Material cost	Θ	\odot	\oplus
Intrinsic safety	Θ	\oplus	$\oplus \oplus$
Technical maturity	\oplus	\odot	$\oplus \oplus$

- good
- neutral
- Θ bad
- $\ominus\ominus$ very bad

Renault Kangoo Tesla BMW i3 Chevy Volt Renault Zoe

Daimler B-class ED

^{⊕⊕} very good

^{*} distributed winding ** die-cast copper rotor

Thank you for your interest **Questions?**

Martin Doppelbauer

Univ.-Prof. Dr.-Ing.

Elektrotechnisches Institut (ETI) – Professur für Hybridelektrische Fahrzeuge (HEV)

