BIOSTAT 704 - Homework 6

Austin Allen

Problem 1

BE Exercise 10.5

Let $X_1,...,X_n$ be a random sample from a gamma distribution, $X_i \sim GAM(\theta,2)$. Show that $S = \sum_{i=1}^n X - i$ is sufficient for θ

Part (a): by using equation (10.2.1)

Part (b): by the factorization criterion of equation (10.2.3)

BE Exercise 10.7

Let $X_1,...,X_n$ be independent with $X_i \sim NB(r_i,p).$ Find a sufficient statistic for p.

BE Exercise 10.16

For the random variables $X_1, ..., X_n$ in exercise 6, find the MLE of p by maximizing the pdf of the sufficient statistic. Is this the same as the usual MLE? Explain why this result is expected.

Problem 2

BE Exercise 10.11

Consider a random sample of size n from a uniform distribution, $X_i \sim UNIF(\theta_1, \theta_2)$.

Part (a): Show that $X_{1:n}$ is a sufficient statistic for θ_1 if θ_2 is known.

Part (b): Show that $X_{1:n}$ and $X_{n:n}$ are jointly sufficient for θ_1 and θ_2 .

BE Exercise 10.12

Let $X_1, ..., X_n$ be a random sample from a two parameter exponential distribution, $X_i \sim EXP(\theta, \eta)$. Show that $X_{1:n}$ and \bar{X}_n are jointly sufficient for θ and η .

BE Exercise 10.20

Show that the following families of distributions belong to the regular exponential class, and for each cae use this information to find complete sufficient statistics based on a random sample $X_1, ..., X_n$.

Part (a): BIN(1,p); 0, p < 1 Part (b): $POI(\mu); \mu > 0$ Part (c): NB(r,p); r known, $0 Part (d): <math>N(\mu, \sigma^2); -\infty < \mu < \infty, \sigma^2 > 0$ Part (e): $EXP(\theta); \theta > 0$ Part (f): $GAM(\theta, \kappa); \theta > 0, \kappa > 0$ Part (g): $BETA(\theta_1, \theta_2); \theta_1 > 0, \theta_2 > 0$ Part (h): $WEI(\theta, \beta); \beta$ known, $\theta > 0$

BE Exercise 10.25

Consider a random sample of size n from a distribution with pdf $f(x;\theta) = \theta x^{\theta-1}$ if 0 < x < 1 and zero otherwise; $\theta > 0$.

Part (a): Find the UMBUE of $1/\theta$. Hint: $E[-lnX] = 1/\theta$.

Part (b): Find the UMVUE of θ .

Problem 3

Let $X_1,...,X_n$ be a random sample from the Normal distribution $N(\ ,\ 1).$

Part (a): Find a complete and sufficient statistic for θ .

Part (b): Show that $\bar{X_n^2} - \frac{1}{n}$ is a UMVUE for θ^2 .