

第二十七讲 随机变量的数学期望

分布函数能完整地描述随机变量的统计特性, 但实际应用中并不都需要知道分布函数,而只需知道 随机变量的某些特征.

例如:

判断棉花质量时,既看纤维的平均长度, 又要看纤维长度与平均长度的偏离程度, 平均长度越长,偏离程度越小,质量就越好;

■随机变量的数字特征:

- ◆ 数学期望
- ◆ 方差
 - ◆ 协方差与相关系数
 - ◆ 其它数字特征
 - ◆ 多元正态分布的性质

例1:甲、乙两射手,他们的某次射击成绩分别为:

试比较:

哪位射手

的技术比

较好?

甲射手

击中环数	8	9	10
次数	10	80	10

乙射手

击中环数	8	9	10
次数	20	65	15

解: 甲的平均成绩为

$$\frac{8 \times 10 + 9 \times 80 + 10 \times 10}{100} = 8 \times \frac{10}{100} + 9 \times \frac{80}{100} + 10 \times \frac{10}{100} = 9;$$

乙的平均成绩为

$$\frac{8 \times 20 + 9 \times 65 + 10 \times 15}{100} = 8 \times \frac{20}{100} + 9 \times \frac{65}{100} + 10 \times \frac{15}{100} = 8.95.$$

记平均击中的环数为x,则

若记射手击中的环数为X,在第4讲中,曾提到过,当n充分大时,频率 f_k 的稳定值为概率 $p_k = P(X = x_k)$.

因此 \bar{x} 的稳定值为 $\sum_{k} x_{k} p_{k}$,它反映了射手的平均水平.

 $\langle \langle \rangle \rangle$

定义:设离散型随机变量X的分布律为: $P(X = x_k) = p_k, k = 1, 2, \cdots$

若级数 $\sum_{k=1}^{+\infty} x_k p_k$ 绝对收敛,则称级数 $\sum_{k=1}^{+\infty} x_k p_k$ 的值为随机变量X的 级数 $\sum_{k=1}^{x_k p_k}$ 数学期望,记为E(X),即 $E(X) = \sum_{k=1}^{+\infty} x_k p_k$

$$E(X) = \sum_{k=1}^{+\infty} x_k p_k$$

注: p_k 可以理解成为"加权平均"中 x_k 的权重. 数学期望简称期望,又称均值 (mean).

定义:设连续型随机变量X的概率密度函数为f(x),

若积分
$$\int_{-\infty}^{+\infty} xf(x)dx$$
 绝对收敛 (即 $\int_{-\infty}^{+\infty} |x|f(x)dx < +\infty$

则称积分 $\int_{-\infty}^{+\infty} xf(x)dx$ 的值为随机变量X的数学期望,即

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

数学期望的本质 —— 加权平均 它是一个数不再是随机变量

 $\langle \langle \rangle \rangle$

"期望"名称的起源——分赌本问题

例2: 17世纪中叶,有甲乙两赌徒,赌技相同,各出赌注50法郎.约定无平局,谁先赢3局,则获全部赌注.当甲赢2局、乙赢1局时,中止了赌博.问如何分赌本才算公平?

均分,对甲不公平, 全部归甲,对乙不公平!

<u>\(\) \</u>

按已赌局数和再赌下去的"期望"分:

因为最多再赌两局必分胜负, 共三种情况:

- ① 第三局甲贏; (P=1/2)
- ② 第三局乙赢,第四局甲赢; (P=1/4)
- ③ 第三局乙赢,第四局乙赢; (P=1/4) 由于赌技相同,所以甲获得100法郎的可能性为3/4,乙 获得100法郎的可能性为1/4.

费马

则根据以上分析: 乙的所得 X 是一个可能取值为0 或100的随机变量, 其分布律为:

X	0	100
P	3/4	1/4

乙的"期望"所得是:

 $0 \times 3/4 + 100 \times 1/4 = 25$.

所以甲分总赌本的3/4、乙分总赌本的1/4.

这种分法既考虑了已赌局数,又包含了再赌下去的"期望",因此更为合理一些.

由上例可知,若随机变量X具有0-1分布,其分布律为:

$$P(X=0)=1-p, P(X=1)=p,$$

M
$$E(X) = 0 \times (1-p) + 1 \times p = p$$
.

即 0-1分布的期望即为它的参数p.

例3: 设 $X \sim \pi(\lambda)$, $\lambda > 0$, 求 E(X).

解: X的分布律为:

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad k = 0, 1, \dots, \quad \lambda > 0.$$

则X的数学期望为:

$$E(X) = \sum_{k=0}^{+\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{+\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=1}^{+\infty} \frac{\lambda^k e^{-\lambda}}{(k-1)!}$$
$$= \lambda \sum_{k=1}^{+\infty} \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!} = \lambda \sum_{i=0}^{+\infty} \frac{\lambda^i e^{-\lambda}}{i!} = \lambda$$
必然事件。概率为1

即 泊松分布的期望即为它的参数礼

例4: 设 $Z \sim N(0,1)$, 求 E(Z).

解: Z的概率密度为 $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, 是一个偶函数.

故
$$E(Z) = \int_{-\infty}^{+\infty} x \varphi(x) dx = 0$$
 是一个奇函数

若 $X \sim N(\mu, \sigma^2)$, 其概率密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

则 $E(X) = \mu$.

另外, 也可以得到:

- •二项分布B(n,p)的期望为np;
- •参数为p的几何分布为1/p;
- •均匀分布U(a,b)的期望为(a+b)/2.

 $\langle \langle \rangle$

注意: 不是所有的随机变量都有数学期望

例如:柯西(Cauchy)分布的密度函数为

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad -\infty < x < +\infty$$

但
$$\int_{-\infty}^{+\infty} |x| f(x) dx = \int_{-\infty}^{+\infty} \frac{|x|}{\pi (1+x^2)} dx$$
 发散

它的数学期望不存在.

