

Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação Curso de Ciência da Computação

Redes de Computadores I (parte 2)

Prof^a:Raquel Mini raquelmini@pucminas.br

2º semestre de 2020

Camada de Rede

Camada de Aplicação

Camada de Transporte

Camada de Rede

Camada de Enlace

Camada Física

Camada de Rede

- A camada de enlace tem o objetivo de mover quadros de uma extremidade de um fio até a outra
- A camada de rede tem o objetivo de fazer a transferência de pacotes da origem para o destino
- A camada de rede deve conhecer a topologia da sub-rede de comunicações e escolher os caminhos mais apropriados através dela

Camada de Rede

A Camada de Rede da Internet

A Camada de Rede da Internet

A Camada de Rede da Internet

- Comutação de pacotes store-and-forward
- O elemento que mantém a Internet unida é o protocolo IP (*Internet Protocol*)
 - Foi projetado tendo como objetivo a interconexão de redes
 - Fornece a melhor forma possível de transportar pacotes da origem para o destino, independentemente das máquinas estarem na mesma rede ou de haver outras redes entre elas

O Protocolo IP

- Entrega será feita com o "melhor esforço" (best-effort delivery)
- No IP não há garantia:
 - de que a temporização entre pacotes seja preservada;
 - de que os pacotes sejam recebidos na ordem em que foram enviados;
 - da eventual entrega dos pacotes transmitidos;
- Protocolos de outros níveis devem tratar desses problemas

O Protocolo IP

- IPv4, ou simplesmente IP, permite um pacote de até 64 Kbytes
- O pacote IP consiste:
 - Cabeçalho
 - Fixa: 20 bytes
 - Opcional: tamanho variável
 - Carga útil

O Protocolo IP

O cabeçalho IPv4

- Version (4 bits):
 - Indica o número da versão corrente
 - Permite uma transição "suave" entre versões

- IHL (4 bits):
 - Informa o tamanho do cabeçalho em palavras de 32 bits
 - Mínimo: 5 (sem nenhuma opção)
 - Máximo: 15 (60 bytes sendo 40 bytes no campo Options)

- Type of service (6 bits):
 - Fazer a distinção entre diferentes classes de serviço
 - Indica o que é mais importante para a aplicação: menor atraso, maior vazão, maior confiabilidade
 - Na prática, os roteadores tendem a ignorar este campo

- Total Length (16 bits):
 - Tamanho, em bytes, de todo o pacote: cabeçalho e dados
 - Valor máximo 65535

- Identification (16 bits), Bit DF, Bit MF e Fragment Offset (13 bits)
 - Usados na fragmentação e remontagem de pacotes
 IP

- Fragmentação:
 - Nem todos os protocolos da camada de enlace podem carregar pacotes do mesmo tamanho
 - Exemplo: Ethernet n\u00e3o podem carregar mais do que 1500 bytes de carga \u00eatil
 - Os pacotes para muitos enlaces de longa distância não podem carregar mais do que 576 bytes
 - A quantidade máxima de dados que um pacote da camada de enlace pode carregar é chamada de unidade máxima de transferência (MTU)

- Pacotes IP grandes devem ser divididos dentro da rede (fragmentados)
 - Um pacote dá origem a vários pacotes (fragmentos)
 - "Remontagem" ocorre apenas no destino final
 - O cabeçalho IP é usado para identificar e ordenar pacotes relacionados
 - Se um ou mais fragmentos não chegarem ao destino, o pacote será descartado e não será passado à camada de transporte

- Cada pacote criado é marcado pelo hospedeiro remetente com um número de identificação
- O hospedeiro remetente incrementa o número de identificação para cada pacote que envia

- Identification (16 bits):
 - Identifica o pacote ou o fragmento de um pacote
 - Usado pelo destinatário para remontagem
 - Todos os fragmentos de um pacote contêm o mesmo valor de Identification

- Bit DF (don't fragment):
 - Indica que o pacote n\u00e3o deve ser fragmentado
- Bit MF (more fragments):
 - Todos os fragmentos de um pacote, exceto o último, marcam este bit

- Fragment Offset (13 bits):
 - Indica onde (byte igual ao seu conteúdo multiplicado por 8) o fragmento se encaixa dentro do pacote
 - A carga útil de cada fragmento, exceto o último, deve ser múltiplo de 8
 - Existem no máximo 8.192 fragmentos por pacote, resultando em um tamanho máximo de pacote igual a 65.536 bytes

Fragmentação de Pacotes IP – Exemplo

 Segmento de 3.980 bytes em uma rede com MTU de 1500 bytes

- A fragmentação e a remontagem colocam uma carga adicional sobre os roteadores da Internet (fazem a fragmentação) e sobre os hospedeiros (fazem a remontagem)
 - É desejável que se minimize a quantidade de fragmentação
 - Limita-se os segmentos TCP e UDP a tamanhos relativamente pequenos de modo que a fragmentação dos pacotes seja pouco provável
 - Todos os protocolos suportados pelo IP têm MTU de, no mínimo,
 576 bytes
 - Na prática, o TCP e o UDP passam para o IP segmentos de no máximo 556 bytes

Exercício

1. Suponha que o host A esteja conectado a um roteador R1, que R1 esteja conectado a outro roteador R2, e que R2 esteja conectado ao host B. Suponha que uma mensagem TCP contendo 900 bytes de dados e 20 bytes de cabeçalho TCP seja repassada ao código IP do host A para ser entregue a B. Mostre os campos Total length, Identification, DF, MF e Fragment offset do cabeçalho IP em cada pacote transmitido pelos três enlaces. Suponha que o enlace A-R1 possa admitir um tamanho máximo de quadro de 1.024 bytes, incluindo um cabeçalho de quadro de 14 bytes, que o enlace R1-R2 possa admitir um tamanho máximo de quadro de 512 bytes, incluindo um cabeçalho de quadro de 8 bytes, e que o enlace R2-B possa admitir um tamanho máximo de quadro de 512 bytes, incluindo um cabeçalho de quadro de 12 bytes.

- Time To Live (8 bits):
 - Contador usado para limitar a vida útil dos pacotes
 - Indica o número máximo de roteadores (hops) que pode passar
 - Quando chega a zero, o pacote é descartado e um pacote de advertência é enviado ao computador de origem

- Protocolo (8 bits):
 - Indica o protocolo para o qual deve-se passar o pacote (TCP ou UDP)

- Header Checksum (16 bits):
 - Total de verificação do cabeçalho
 - Deve ser calculado novamente em cada roteador porque o campo Time To Live sempre se altera

- Source Address (32 bits) e Destination Address (32 bits)
 - Endereços IP dos computadores origem e destino

- Options:
 - Forma de incluir informações não presentes na versão

- Na Internet, cada hospedeiro e cada roteador tem um endereço IP
- Endereço IP de um computador:
 - Número binário único de 32 bits (teoricamente 4.294.967.296 endereços)
 - Usados nos campos Source Address e Destination Address dos pacotes IP
 - Auxilia no roteamento
- Um endereço IP identifica uma interface de rede (se um hospedeiro tiver duas interfaces de redes, ele precisará de dois endereços IP)

- escolhidos de qualquer maneira
- Um endereço IP será determinado pela "rede" na qual o hospedeiro está conectado

- E endereço IP é dividido em duas partes:
 - Prefixo:
 - Identifica a rede física na qual o computador se encontra (número de rede)
 - Controlado globalmente
 - Sufixo:
 - Identifica o hospedeiro na rede
 - Controlado localmente

- Máscara da rede:
 - Mostra a divisão entre endereço de rede e endereço de computador

Endereços IP 223.1.1. 223.1.1.4 Rede 223.1.1.0/24 223.1.1.3 223.1.7.0 223.1.9.2 Rede 223.1.9.0/24 Rede 223.1.7.0/24 223.1.9.1 223.1.7.1 223.1.8.1 223.1.8.0 Rede 223.1.2.0/24 223.1.2.6 223.1.3.27 223.1.2.1 223.1.2.2 223.1.3.1 223.1.3.2 Rede 223.1.3.3/24 Rede 223.1.8.0/24

Endereçamento de Classe Completo

 A arquitetura de endereçamento original da Internet definia classes de endereços

Endereçamento de Classe Completo

Espaço de endereçamento:

Classe	Nº de Bits no Prefixo	Nº Máximo de Redes	Nº de Bits no Sufixo	Nº Máximo de Hosts por Rede
Α	7	128	24	16.777.216
В	14	16.384	16	65.536
С	21	2.097.152	8	256

Exercícios

- 2. Suponha que, em vez de serem utilizados 16 bits na parte de rede de um endereço da classe B, tenham sido usados 20 bits. Nesse caso, quantas redes da classe B existiriam?
- 3. A máscara de sub-rede de uma rede na Internet é 255.255.240.0. Qual é o número máximo de hospedeiros que ela pode manipular?

- Todos os hospedeiros de uma rede devem ter o mesmo endereço de rede
- Inicialmente:
 - Um único endereço da classe A, B ou C se refere a uma única rede
- À medida que mais e mais organizações se conectavam à rede:
 - Foi necessário permitir que uma rede fosse dividida em diversas partes para uso interno, mas externamente continuasse a funcionar como uma única rede

Uma rede de campus consistindo em LANs para vários departamentos

- Uma rede pode ser dividida em diversas partes
- As partes da rede são chamadas sub-redes
 - Alguns bits são retirados do número do hospedeiro para criar um número de sub-rede
 - Número de bits em uma rede Classe B:

	Sem Sub-rede	Com Sub-rede
Fixo	2	2
Rede	14	14
Sub-rede	0	X
Host	16	16-X

- Exemplo de uma Universidade
 - Classe B
 - 35 departamentos
 - 64 redes Ethernet, cada uma com o máximo de 1022 hots (0 e −1 não estão disponíveis)

- Uma máscara (netmask) indica a divisão entre o número de rede + sub-rede e o hospedeiro
- Exemplo:

Máscara: 255.255.252.0 ou /22

- Exemplo: rede 130.50.0.0 e máscara de sub-rede 255.255.252.0 ou /22
 - Sub-rede 0: 130.50.0.1 a 130.50.3.254
 10000010 00110010 000000|00 00000001 a 10000010 00110010 000000|11 111111110
 - Sub-rede 1: 130.50.4.1 a 130.50.7.254
 10000010 00110010 000001 00 00000001 a
 10000010 00110010 000001 11 111111110
 - Sub-rede 2: 130.50.8.1 a 130.50.11.254
 10000010 00110010 000010|00 00000001 a 10000010 00110010 000010|11 111111110
 - Sub-rede 3: 130.50.12.1 a 130.50.15.254
 10000010 00110010 000011 00 00000001 a 10000010 00110010 000011 11 11111110

Exercício

- 4. Um ISP possui o seguinte bloco de endereços: 150.164.192.0/18. Ele deseja dividir esse espaço de endereçamento igualmente entre 4 organizações. Informe a quantidade de endereços IP cada organização terá, o endereço inicial, final e a máscara de cada organização.
- 5. Se o endereço IP 201.40.12.231/26 faz parte de uma rede local, quais são os outros endereços dessa rede? E os endereços de broadcast e o de rede? Justifique sua resposta e mostre todos os cálculos.

Exercício

 Quantas redes diferentes com máscara 255.255.255.240 podem ser alocadas dentro da faixa de IP 172.16.0.0/16?

- Fora da rede, a divisão em sub-redes não é visível
- A alocação de uma nova sub-rede não exige a mudança de quaisquer bancos de dados externos
- Como os pacotes IP são processados em um roteador?

Roteamento de Pacotes IP

- Cada roteador mantém uma tabela de roteamento
 - A tabela é inicializada quando o roteador é ligado e deve ser atualizada se a topologia muda ou há uma falha de hardware
 - Cada entrada da tabela especifica um destino e o próximo roteador a ser usado para alcançar esse destino
 - Cada roteador só precisa manter entradas para as outras redes e para os hospedeiros locais

Roteamento de Pacotes IP

- Quando um pacote IP é recebido, procura-se pela entrada cujo endereço case com o AND entre a sua máscara e o endereço de destino do pacote IP
 - Se o destino for de uma rede distante, o pacote será encaminhado para o próximo roteador da interface fornecida na tabela
 - Se o destino for um hospedeiro local, o pacote será enviado diretamente
 - Se a rede do destino não estiver presente na tabela, o pacote será enviado para um roteador predefinido que tenha tabelas maiores (default gateway)

Roteamento de Pacotes IP

- Endereço de destino x Next-hop
 - Endereço de destino indica para quem deve ser entregue o pacote
 - Endereço de Next-hop indica para que roteador o pacote deve ser enviado
 - Next-hop n\u00e3o aparece no pacote

A deseja enviar uma mensagem para B

pacote IP:

 Os endereços do pacote não mudam ao viajar da fonte ao destino

outros	222111	223.1.1.3	dadas
campos	223.1.1.1	223.1.1.3	uuuus

- Começando em A, levar pacote IP para B:
 - 223.1.1.3 AND 255.255.255.0 casa com 223.1.1.0
 - B está na mesma rede de A
 - Camada de enlace envia pacote diretamente para B em um quadro da camada de enlace

Tabela de roteamento em A Rede destino próx. roteador Núm. saltos 223.1.1.0/24 223.1.2.0/24 223.1.1.4 223.1.3.0/24 223.1.1.4 223.1.1.1 223.1.2. 223.1.1.2 223.1.2.9 223.1.1.4 223.1.2 223.1.3.27 223.1.1.3 223.1.3.2 223.1.3.1

A deseja enviar uma mensagem para E

loutros		223.1.2.2	
1001103	222111	222122	dadae
compod	223.1.1.1	223.1.2.2	uuuus
campos			

outros	222111	222122	dadaa
campos	223.1.1.1	223.1.2.2	dados

- Começando em A:
 - 223.1.2.2 AND 255.255.255.0 casa com 223.1.2.0
 - Próximo roteador para E é 223.1.1.4
 - Pacote chega em 223.1.1.4

Tabela de roteamento no roteador

Rede destino	Próx. roteador	Núm. saltos	Endereço Interface
223.1.1.0/24	-	1	223.1.1.4
223.1.2.0/24	-	1	223.1.2.9
223.1.3.0/24	-	1	223.1.3.27

No roteador

- 223.1.2.2 AND 255.255.255.0 casa com 223.1.2.0
- Está na mesma rede da interface 223.1.2.9 do roteador
 - Roteador e E estão diretamente ligados
- Envia o pacote para 223.1.2.2 através da interface 223.1.2.9₅₆

Exercício

5. Um roteador tem as seguintes entradas em sua tabela de roteamento:

Endereço/máscara	Próximo hop
135.46.56.0/22	Interface 0
135.46.60.0/22	Interface 1
192.53.40.0/23	Roteador 1
padrão	Roteador 2

Para cada um dos endereços IP a seguir, o que o roteador fará se chegar um pacote com esse endereço?

a) 135.46.63.10

b) 135.46.57.14

c) 135.46.52.2

d) 192.53.40.7

e) 192.53.56.7

- A Internet está esgotando com rapidez os endereços IP disponíveis
- A prática de organizar o espaço de endereços por classes faz com que milhões deles sejam desperdiçados
 - Organização em classes:
 - Classe A: 128 redes de 16.777.216 hospedeiros
 - Classe B: 16.384 redes de 65.536 hospedeiros
 - Classe C: 2.097.152 redes de 256 hospedeiros
 - Um endereço classe B é grande demais para a maioria das organizações e um classe C é pequeno demais
 - Mais da metade de todas as redes da classe B tem menos de 50 hospedeiros

- Solução é usar endereçamento sem classes:
 CIDR (Classless Interdomain Routing)
 - Alocar os endereços IP restantes em blocos de tamanho variável, sem levar em consideração as classes
 - A parcela da rede de um endereço IP pode ter qualquer comprimento de bits, não ficando mais limitada a 8, 16 ou 24 bits
 - Se alguém precisar de 2.000 endereços, ele receberá um bloco de 2.048 endereços

• Exemplo:

- Existem endereços disponível na rede 194.24.0.0
- Universidade de Cambridge solicita 2.048 endereços
- Universidade de Oxford solicita 4.096 endereços
- Universidade de Edinburgh solicita 1.024 endereços

Universidade	Primeiro endereço	Último endereço	Quantidade	Escritos como
Cambridge	194.24.0.0	194.24.7.255	2.048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1.024	194.24.8.0/22
(Disponível)	194.24.12.0	194.24.15.255	1.024	194.24.12.0/22
Oxford	194.24.16.0	194.24.31.255	4.096	194.24.16.0/20

	Endereço	Máscara
Cam.	11000010 00011000 00000000 00000000	11111111 11111111 111111000 000000000
Edi.	11000010 00011000 00001000 00000000	11111111 11111111 11111100 00000000
Oxf.	11000010 00011000 00010000 00000000	11111111 11111111 11110000 00000000

- Roteamento para 194.24.17.4
 - 11000010 00011000 00010001 00000100
- Endereço AND Máscara de Cambridge
 - 11000010 00011000 00010000 00000000 (não casa com endereço de Cambridge)
- Endereço AND Máscara de Edinburgh
 - 11000010 00011000 00010000 00000000 (não casa com endereço de Edinburgh)

- Endereço AND Máscara de Oxford
 - 11000010 00011000 00010000 00000000 (casa com endereço de Oxford)
- Se não for encontrada nenhuma outra correspondência que utilize uma máscara com mais bits, o pacote será enviado para Oxford

Agregação de Endereços IP

 Em roteadores distantes, endereços associados à mesma linha de saída são agregados

	Endereço	Máscara
Cam.	11000010 00011000 00000000 00000000	11111111 11111111 11111000 00000000
Edi.	11000010 00011000 00001000 00000000	11111111 11111111 11111100 00000000
Oxf.	11000010 00011000 00010000 00000000	11111111 11111111 11110000 00000000

- Estas três entradas podem ser agrupadas em 194.24.0.0/19:
 - Endereço: 11000010 00011000 00000000 00000000
 - Máscara: 11111111 11111111 11100000 00000000
- Agregação é muito utilizada em toda a Internet para reduzir o tamanho das tabelas de roteamento

Exercício

6. Um grande número de endereços IP consecutivos está disponível a partir de 198.16.0.0. Suponha que quatro organizações, A, B, C e D, solicitem 4.000, 2.000, 4.000 e 8.000 endereços, respectivamente, e nessa ordem. Para cada uma delas, forneça o primeiro endereço IP atribuído, o último endereço IP atribuído e a máscara na notação w.x.y.z/s.

Escassez de Endereços IP

- O IP está ficando sem endereços
- Solução:
 - NAT: Network Address Translation
 - Atribuir a cada empresa um único endereço IP (ou, no máximo, um número pequeno deles) para tráfego na Internet
 - Dentro da empresa, todo computador obtém um endereço IP exclusivo, usado para roteamento interno
 - Quando um pacote sai da empresa e vai para o ISP, ocorre uma conversão de endereço

- Para tornar o NAT possível, três intervalos de endereços IP foram declarados como privativos:
 - 10.0.0.0 a 10.255.255.255/8 (16.777.216 hosts)
 - 172.16.0.0 a 172.31.255.255/12 (1.048.576 hosts)
 - 192.168.0.0 a 192.168.255.255/16 (65.536 hosts)
- As empresas podem utilizar esta faixa de endereços internamente

- Funcionamento do NAT:
 - Dentro das instalações da empresa, toda máquina tem um endereço exclusivo da forma 10.x.y.z
 - Quando um pacote deixa as instalações da empresa, ele passa por uma caixa NAT que converte o endereço interno (exemplo 10.0.0.1) no endereço IP verdadeiro da empresa (exemplo 198.60.42.12)
 - Quando a resposta volta, ela é endereçada ao IP verdadeiro (198.60.42.12), como a caixa NAT sabe por qual endereço deve substituir o endereço da resposta?

- Portas do TCP e UDP:
 - Quando um processo deseja estabelecer uma conexão TCP com um processo remoto, ele se associa a uma porta TCP não utilizada
 - As portas são inteiros de 16 bits
 - Essa porta é chamada porta de origem e informa ao código do TCP para onde devem ser enviados os pacotes que chegarem pertencentes a essa conexão
 - O processo também fornece uma porta de destino para informar a quem devem ser entregues os pacotes no lado remoto

- Funcionamento do NAT:
 - Utilizam o campo de porta do UDP e do TCP
 - Sempre que um pacote de saída entra na caixa NAT, o endereço de origem 10.x.y.z é substituído pelo endereço IP verdadeiro da empresa
 - O campo porta de origem do TCP é substituído por um índice para a tabela de conversão de 65.536 entradas da caixa NAT
 - Essa entrada de tabela contém a porta de origem e o endereço IP original

- Funcionamento:
 - Quando um pacote chega ao NAT vindo do ISP, o campo porta de destino do cabeçalho do TCP é extraído e usado como índice para a tabela de mapeamento da caixa NAT
 - A partir da entrada localizada, o endereço IP interno e o campo porta de origem do TCP original são extraídos e inseridos no pacote como endereço IP e porta de destino

NAT

Desvantagens:

- A NAT viola o modelo arquitetônico do IP que estabelece que todo endereço IP identifica de forma exclusiva uma única máquina em todo o mundo
- A NAT faz a Internet mudar suas características de rede sem conexões para uma espécie de rede orientada a conexões (NAT mantém informações sobre as conexões)
- Os processos na Internet não são obrigados a usar o TCP ou o UDP

NAT

Desvantagens

- A NAT viola a regra mais fundamental da distribuição de protocolos em camadas: a camada k não pode fazer quaisquer suposições sobre o que a camada k+1 inseriu no campo de carga útil
- Algumas aplicações inserem endereços IP ou números de porta no corpo do texto (FTP)
- No máximo 61.440 (65.536 4.096 portas reservadas) máquinas podem ser mapeadas em um endereço IP

Exercício

- 7. Tanto o NAT quanto o endereçamento sem classes da Internet (CIDR) foram projetados devido à escassez de endereços IP disponíveis Explique o funcionamento básico destas duas técnicas e a principal diferença entre elas.
- 8. Suponha que uma empresa recebeu o endereço 192.214.11.0/24 e ela necessita criar 3 subredes: 1 subrede com 126 hosts e 2 subredes com 62 hosts cada. Como você organizaria internamente a rede? Indique a máscara e os endereços de rede e de broadcast de cada subrede criada.

Exercício

- 9. Uma rede na Internet tem uma máscara de subrede 255.255.240.0 e possui um computador com IP 200.20.88.9 conectado a ela. Qual é o número máximo de computadores que podemos conectar nesta rede? Qual é o endereço de broadcast desta rede? Qual é o seu endereço de rede?
- 10. Ao subdividir uma rede de máscara 255.255.255.128, quais novas máscaras seriam possíveis criar para no mínimo 9 endereços em cada subrede? Considere que todas as subredes terão o mesmo número de hosts.

Camada de Transporte

Camada de Aplicação

Camada de Transporte

Camada de Rede

Camada de Enlace

Camada Física

A Camada de Transporte

- A unidade de dados trocada entre entidades da camada de transporte é chamada de segmento
- Aninhamento de segmentos, pacotes e quadros:

A Camada de Transporte

- Fornece comunicação lógica entre processos de aplicação em hospedeiros diferentes (multiplexação/demultiplexação de aplicação)
- Os protocolos de transporte são executados nos sistemas finais da rede

Camada de Rede	Camada de Transporte
Transferência de dados entre sistemas finais	Transferência de dados entre processos
Funciona principalmente nos roteadores	Funciona inteiramente nas máquinas dos usuários

A Camada de Transporte

Multiplexação e Demultiplexação de Aplicações

- Objetivo:
 - Ampliar a entrega hospedeiro a hospedeiro para entrega aplicação a aplicação
- <u>Multiplexação</u>: reunir os dados provenientes de diferentes processos de aplicação (ocorre no hospedeiro de origem)
- <u>Demultiplexação</u>: entrega dos dados contidos em um segmento da camada de transporte ao processo de aplicação correto (ocorre no hospedeiro de destino)

Multiplexação e Demultiplexação de Aplicações

Multiplexação e Demultiplexação de Aplicações

Multiplexação / Demultiplexação:

- Baseada nos número de porta da origem, número de porta do destino e endereços IP
- Os números de porta entre 0 e 1023 são chamados de números de porta bem conhecidos (reservados para uso por protocolos de aplicação bem conhecidos como HTTP e FTP)

formato do segmento TCP/UDP

Multiplexação e Demultiplexação de Aplicações: Exemplos

Protocolos da Camada de Transporte da Internet

- A Internet tem dois protocolos principais na camada de transporte
 - UDP
 - Sem conexões
 - Transferência não confiável de dados
 - TCP
 - Orientado à conexões
 - Transferência confiável de dados
 - Controle de congestionamento
 - Controle de fluxo

User Datagram Protocol [RFC 768]

- Protocolo de transporte n\u00e3o confi\u00e1vel
- Não há estabelecimento de conexão
 - Não há apresentação entre o UDP transmissor e o receptor
 - Cada segmento UDP é tratado de forma independente dos outros
- Serviço best-effort, segmentos UDP podem ser:
 - Perdidos
 - Entregues fora de ordem para a aplicação

Estrutura do Segmento UDP

Estrutura do Segmento UDP

- Source Port e Destination Port.
 - Identificam os pontos extremos (processos) nas máquinas de origem e destino
 - Quando um pacote UDP chega, sua carga útil é entregue ao processo associado à porta destino
- UDP length:
 - Tamanho total do segmento (incluindo o cabeçalho) em bytes
- UDP checksum:
 - Campo opcional, armazenado como 0 se não for calculado

Estrutura do Segmento UDP

UDP checksum :

- Transmissor:
 - Calcula o complemento de 1 da soma de todas as palavras de 16 bits do segmento
- Receptor:
 - Computa o total de verificação do segmento recebido
 - Verifica se o total de verificação é igual ao valor do campo no cabeçalho
 - Não: erro detectado
 - Sim: não há erros

- O UDP não faz:
 - Controle de fluxo
 - Controle de erros
 - Retransmissão após a recepção de um segmento incorreto
- O UDP apenas fornece uma interface para o protocolo IP com o recurso adicional de multiplexação/demultiplexação de vários processos que utilizam as portas

- Porque existe um UDP?
 - Não há estabelecimento de conexão e portanto não introduz nenhum atraso
 - Não há estado de conexão nem no transmissor e nem no receptor
 - Pequeno overhead no cabeçalho do pacote
 - Taxa de envio n\u00e3o regulada (n\u00e3o h\u00e3 controle de congestionamento)

- Onde é usado?
 - Aplicações cliente-servidor onde existem apenas uma requisição e uma resposta
 - O custo para estabelecer uma conexão é alto quando comparado com a transferência de dados
 - Aplicações de multimídia contínua (streaming)
 - Tolerantes à perda
 - Sensíveis à taxa

Exercícios

- 11. Por que o UDP existe? Não teria sido suficiente deixar que os processos dos usuários enviassem pacotes IP brutos?
- 12. Ao subdividir uma rede de máscara 255.255.255.128, quais novas máscaras seriam possíveis criar para no mínimo 14 máquinas em cada sub-rede?

Transport Control Protocol

RFCs: 793, 1122, 1323, 2018, 2581

- Fornece um fluxo de bytes fim-a-fim confiável em uma sub-rede não confiável
- Foi projetado para se adaptar dinamicamente às propriedades da sub-rede e ser robusto diante dos muitos tipos de falhas que podem ocorrer
- Principal protocolo de transporte da arquitetura TCP/IP
 - A maior parte das aplicações na Internet são baseadas no TCP

- Características
 - 1. Transferência confiável de dados
 - TCP garante que os dados serão entregues da forma que foram enviados
 - 2. Orientado à conexões
 - Conexões são gerenciadas nos sistemas finais
 - 3. Controle de fluxo
 - Transmissor n\u00e3o esgota a capacidade do receptor

- Características
 - 4. Controle de congestionamento
 - Transmissor não esgota os recursos da rede
 - 5. Gerenciamento de *timers*
 - O TCP necessita de vários timers para realizar seu trabalho

- A camada TCP aceita fluxos de dados das aplicações, dividi-os em partes de no máximo 65.495 bytes (fluxo de bytes e não fluxo de mensagens)
 - Na prática, com frequência, temos 1.460 bytes de dados, para que ele possa caber em um único quadro Ethernet com os cabeçalhos IP e TCP
- Envia cada parte para a camada IP como um segmento distinto
- Ao chegar à camada IP da máquina destino, os dados são entregues à entidade TCP, que restaura os fluxos de bytes originais

- A entidade TCP receptora retorna um segmento (com ou sem dados) com um número de confirmação igual ao próximo número de sequência que espera receber
- Se o timer do transmissor expirar antes de a confirmação ser recebida, o segmento será retransmitido

- Usa um serviço não confiável para prover um serviço de entrega de dados confiável para as aplicações
- Deve ser capaz de compensar perdas e atrasos na sub-rede de comunicação de tal forma a prover o transporte de dados fim-a-fim de forma eficiente
- Deve ser capaz de executar essas tarefas sem sobrecarregar a sub-rede de comunicação e os roteadores

- O serviço TCP é obtido quando tanto o transmissor quanto o receptor criam pontos extremos chamados soquetes
 - Identificação do soquete = endereço IP do host (32 bits) + número de porta (16 bits)
 - As portas abaixo de 1024 são denominadas portas bem conhecidas (well-known ports) e são reservadas para serviços padrão

- O serviço TCP necessita que uma conexão seja explicitamente estabelecida entre um soquete da máquina transmissora e um soquete da máquina receptora
 - Estabelecimento da conexão
 - Transferência de dados
 - Término da conexão

- As conexões são identificadas pelos soquetes das máquinas transmissora e receptora, ou seja, cada conexão é identificada por:
 - Endereço IP origem
 - Porta origem
 - Endereço IP destino
 - Porta destino
- Um soquete pode ser utilizado por várias conexões ao mesmo tempo (duas ou mais conexões podem terminar no mesmo soquete)

- Todas as conexões TCP são full-duplex e ponto a ponto
 - Tráfego pode ser feito em ambas as direções ao mesmo tempo
 - Cada conexão possui exatamente dois pontos terminais
 - TCP não admite multidifusão e difusão

O Segmento TCP contagem por bytes de dados (não segmentos!) Source port Destination port URG: dados urgentes Sequence number (pouco usado) Acknowledgement number bytes U A P R S F R & S S Y I G K H T N N TCP Window size header ACK: campo de ACK ength é válido Checksum Urgent pointer Options (0 or more 32-bit words) PSH: produz envio de dados (pouco usado) Data (optional) RST, SYN, FIN: estabelecimento número de bytes que Total de verificação de conexão (comandos de o receptor está do segmento criação e término) pronto para aceitar

O Segmento TCP

- Source port (16 bits) e Destination port (16 bits):
 - Identificam os pontos terminais locais da conexão (portas)

O Segmento TCP

- Sequence number (32 bits) e
 Acknowledgement number (32 bits):
 - Transferência confiável de dados

- TCP header length (4 bits):
 - Informa quantas palavras de 32 bits existem no cabeçalho TCP

Seis Flags (URG, ACK, PSH, PST, SYN e FIN):

- Bit URG e *Urgent pointer* (16 bits):
 - URG = 1, se *Urgent pointer* estiver sendo usado
 - Urgent pointer indica o deslocamento de bytes para os dados urgentes (mensagens de interrupção)

- Bit ACK:
 - ACK = 1, se o campo Acknowledgement number é válido
 - Se ACK = 0, o segmento n\u00e3o cont\u00e9m uma confirma\u00e7\u00e3o

- Bit PSH (pouco utilizado):
 - Informa ao TCP para não retardar a transmissão
 - O receptor é solicitado a entregar os dados à aplicação imediatamente

- Bits RST, SYN e FIN:
 - Gerenciamento de conexões

- Window size (16 bits):
 - Controle de fluxo

- Checksum (16 bits):
 - Total de verificação do segmento

- Options (no máximo 40 bytes):
 - Forma de oferecer recursos que não foram previstos pelo cabeçalho comum (exemplo: negociação entre os hosts para estipular o máximo de carga útil do TCP)

Exercício

13. Qual é a quantidade máxima de carga útil que o TCP e o UDP podem colocar em um segmento de forma que ele não seja fragmentado? Considere um MTU na camada de enlace de 576 bytes.

- Garante que a cadeia de dados que um processo lê a partir de seu buffer de recebimento TCP:
 - Não está corrompida
 - Não tem lacunas
 - Não possui duplicações
 - Está em sequência
- A cadeia de bytes é exatamente a mesma cadeia de dados enviada pelo sistema final que está do outro lado da conexão

- O TCP vê os dados como uma cadeia de bytes desestruturada, mas ordenada
- Cada byte em uma conexão TCP tem seu próprio número de sequência de 32 bits

- Sequence number:
 - Número do primeiro byte no segmento de dados
 - Aplicados sobre a cadeia de bytes transmitidos e não sobre a série de segmentos transmitidos

- Acknowledgement number :
 - Especifica o número do próximo byte esperado e não o último byte recebido corretamente

 Utilizam os bits RST, SYN e FIN do cabeçalho TCP

- Bit RST:
 - Recusar uma tentativa de conexão
- Bit SYN:
 - Estabelecer conexões
- Bit FIN:
 - Finalizar a conexão

- TCP transmissor estabelece uma conexão com o receptor antes de trocar segmentos de dados
- As conexões são estabelecidas no TCP por meio do handshake de três vias (3-way handshake)
- Inicialização de variáveis:
 - Números de sequência
 - Buffers, controle de fluxo

- Estabelecimento da conexão TCP:
 - Passo 1: cliente envia um segmento com SYN=1 e ACK=0 ao servidor
 - Especifica o número de sequência inicial
 - <u>Passo 2</u>: servidor responde com o segmento SYNACK (SYN=1, ACK=1)
 - Reconhece o SYN recebido
 - Aloca buffers
 - Especifica o número de sequência inicial do servidor
 - Passo 3: cliente recebe o SYNACK

Estabelecimento da conexão TCP

- Término da conexão TCP:
 - Apesar de as conexões TCP serem full-duplex, fica mais fácil compreender como as conexões são encerradas se as considerarmos um par de conexões simplex
 - Cada conexão simplex é encerrada de modo independente de sua parceira

- Término da conexão TCP:
 - Passo 1: host 1 envia o segmento TCP FIN ao host 2
 - Passo 2: host 2 recebe o FIN, responde com ACK, fecha a conexão no sentido host 1 – host 2 (dados podem continuar a fluir indefinidamente no sentido host 2 – host 1)
 - Passo 3: host 1 recebe o ACK e fecha a conexão no sentido host 1 – host 2
 - Passo 4: host 2 envia o segmento TCP FIN ao host 1
 - Passo 5: host 1 recebe o FIN, responde com ACK e fecha a conexão no sentido host 2 – host 1
 - Passo 6: host 2 recebe ACK e fecha a conexão no sentido host 2 – host 1

Exercício

- 14. Um processo no host 1 foi atribuído à porta *p*, e um processo no host 2 foi atribuído à porta *q*. É possível haver duas ou mais conexões TCP entre essas duas portas ao mesmo tempo?
- 15. A fragmentação e a remontagem de pacotes são tratadas pelo IP e são invisíveis para o TCP. Isso quer dizer que o TCP não tem de se preocupar com a chegada de dados na ordem errada?

3. Controle de Fluxo

- Evitar que o transmissor esgote a capacidade do receptor
- No momento do estabelecimento da conexão, um buffer de recepção é alocado e seu tamanho é informado para a entidade par no campo Window size do segmento TCP
- Em toda confirmação é enviado o espaço disponível nesse buffer
 - Esse espaço é chamado de janela

3. Controle de Fluxo

- Transmissor não deve esgotar os buffers de recepção enviando dados rápido demais
 - <u>Receptor</u>: explicitamente informa ao transmissor a área livre no buffer no campo *Windows size* no segmento TCP
 - <u>Transmissor</u>: mantém a quantidade de dados transmitidos mas não reconhecidos menor que o último *Windows size* recebido

3. Controle de Fluxo

- Window size:
 - Indica quantos bytes podem ser enviados a partir do byte confirmado

- Quando a carga oferecida a qualquer rede é maior que sua capacidade, acontece um congestionamento
- Diferente de controle de fluxo!
- Sintomas:
 - Perda de pacotes (saturação de buffer nos roteadores)
 - Atrasos grandes (filas nos buffers dos roteadores)
- Um dos 10 problemas mais importantes na Internet!

- Congestionamento da rede pode ser piorado se a camada de transporte retransmite pacotes que n\u00e3o foram perdidos
 - Esse problema pode causar até um colapso da rede

- Como detectar o congestionamento?
 - TCP usa a quantidade de pacotes perdidos (pacotes com timeout) como uma medida de congestionamento
 - Reduz a taxa de retransmissão a medida que esse valor aumenta

- Antigamente, um timeout causado por um pacote perdido podia ter sido provocado por
 - Ruído em uma linha de transmissão, ou
 - O pacote foi descartado em um roteador congestionado
- Hoje em dia, a perda de pacotes devido a erros de transmissão é relativamente rara
- A maioria dos timeouts de transmissão na Internet se deve a congestionamentos

- Na Internet, existem dois problemas potenciais:
 - A capacidade da rede ⇒ Controle de Congestionamento
 - A capacidade do receptor ⇒ Controle de Fluxo

Controle de fluxo

- Cada transmissor mantém duas janelas:
 - A janela fornecida pelo receptor (controle de fluxo)
 - A janela de congestionamento (controle de congestionamento)
- O número de bytes que podem ser transmitidos é o valor mínimo entre as duas janelas

- Algoritmo de inicialização lenta:
 - Quando uma conexão é estabelecida, a janela de congestionamento é igual ao tamanho do segmento máximo em uso na conexão
 - Cada rajada confirmada duplica a janela de congestionamento
- A janela de congestionamento mantém seu crescimento exponencial até que:
 - Um limiar seja atingido,
 - Aconteça um timeout, ou
 - A janela do receptor seja alcançada

- Um limiar é atingido:
 - As transmissões bem-sucedidas proporcionam um crescimento linear à janela de congestionamento
- Acontece um timeout:
 - O limiar é definido como a metade da janela de congestionamento atual
 - Janela de congestionamento ← segmento máximo
 - Inicialização lenta é usada
- A janela de recepção é alcançada:
 - Janela de congestionamento pára de crescer e permanece constante

A transmissão de mensagens é feita de forma exponencial até atingir um dado valor, quando passa a aumentar mais lentamente

Exercício

16. Considere o efeito de usar o início lento em uma linha com um tempo de percurso de ida e volta de 10 ms e sem congestionamento. A janela de recepção tem 24 KB e o tamanho máximo do segmento é 2 KB. Quanto tempo é necessário para que a primeira janela completa possa ser enviada?

- O TCP utiliza um timer de retransmissão:
 - Quando um segmento é enviado, um timer é ativado
 - Se o segmento for confirmado antes do timer expirar, ele será interrompido
 - Se o timer expirar antes da confirmação chegar, o segmento será retransmitido e o timer será disparado novamente

- Tempo de viagem de ida e volta (RTT): tempo transcorrido desde o instante em que um segmento é enviado até o instante em que ele é reconhecido
- Para cada conexão, o TCP mantém uma variável, RTT, que é a melhor estimativa no momento para o tempo de percurso de ida e volta até o destino em questão

- Como escolher o valor do timer do TCP?
 - Maior que o RTT (RTT varia)
 - Muito curto:
 - Retransmissões desnecessárias, sobrecarregando a Internet com pacotes inúteis
 - Muito longo:
 - O desempenho será prejudicado devido ao longo retardo de retransmissão sempre que um pacote se perder

 O TCP atualiza a variável RTT de acordo com a fórmula:

$$RTT = \alpha RTT + (1 - \alpha)M$$

onde:

- M último RTT medido
- α é um fator de suavização que determina o peso dado ao antigo valor

- O TCP estima o timer de retransmissão como sendo β RTT, onde β é proporcional ao desvio-padrão da função de densidade de probabilidades de tempos de chegada de confirmações
 - Grande variância \Rightarrow alto valor de β
 - Pequena variância \Rightarrow pequeno valor de β