ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Dataset

ImageNet

- Over 15 million images
- 22000 image categories (types of objects)
- Labeled by humans
 - using Amazon's Mechanical Turk

ILSVRC

- Subset of ImageNet
- 1000 objects with about 1000 images each
- 1.2 million training images, 50k validation images
- 100k test images (no labels)
- Resized to 256x256

NN Architecture

ReLU (Rectified Linear Unit) Neuron

$$\varphi(x) = \max(0, x)$$

Converges faster than logit or tanh

NN Architecture

- Convolutional layers
 - Convolve input with a "kernel" of weights
- Max-pooling layer
 - Find local max on a local neighborhood

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.

Reducing Overfitting

NN has 60 million parameters!

Two main approaches

- Data Augmentation
 - Cropping 224x224 random patches of the images
 - and their reflection
 - Changing the RGB colors of the images
 - Using PCA to find main modes of color variation
- Dropout layer
 - Setting to zero each neuron output with probability 0.5
 - Those neurons are not part of backpropagation
 - Makes the network not rely on any neuron output too much
 - Doubles the number of iterations to converge

Training Details

- Batch size 128 examples
- Momentum 0.9
- Shrinkage 0.0005

- Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images.
- Equal learning rate for all layers
 - Adjusted manually
 - Initially 0.01
 - Divided by 10 when no improvement with current rate
 - Three such reductions done

Results

- Training takes about 5 days
- Result on ImageNet 2009:
 - 8.9 million images
 - 10,184 categories
 - Top 1:67.4%, top 5:40.9%
 - Next best results are 78.1%, 60.9%

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

Results

Closest Images in Last Layer

ILSVRC 2012

Classification task:

- 1000 object categories
- 1.2 million images train, 50k validation, 100k test
- Error= top 5 error

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]		_	26.2%
1 CNN	40.7%	18.2%	_
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release.

ILSVRC 2014-2017

- Classification task:
 - Same data as ILSVRC-2012
 - 1000 object categories
 - 1.2 million images train,50k validation, 100k test
 - Error= top 5 error
- Deep networks:
 - 16-150 layers

Team Name	Error %	Layers
2017		
WMW	2.25	
2016		
Trimps-Soushen	2.99	
2015		
MSRA	3.56	150+
Trimps-Soushen	4.58	
Qualcomm	4.87	
2014		
GoogLeNet	6.66	22-27
VGG	7.33	16-19
MSRA	8.06	

Other Recent Layers

- Maxout layer
 - Maximum between different channels
 - Like an "OR" i.e. alternative representations
- Distance Transform Layer
 - A generalization of the max pooling layer
 - Penalizes parts that are far from prescribed locations
- Inception Layer
 - Parallel channels with different complexities
- Batch Normalization Layer
 - Normalize the responses of each batch
- Lorenz loss layer
 - More robust to labeling noise
 - Easier to train than softmax

Popular CNN Packages

- Matconvnet (Oxford, Matlab)
 - Easy to use and modify
- Tensorflow (Google, Python)
 - Scalable, but hard to modify
- Caffe (Berkeley, C++)
 - Very popular in the vision community
- CNTK (Microsoft, C++)
 - Fast and scalable to multi-CPU
- Theano (Montreal, Python)
 - Symbolic differentiation, steep learning curve
- MxNet
 - Python, Matlab, R
- Torch (Facebook)

Conclusions

- Deep Neural Network
 - ReLU neuron for fast convergence
 - GPU implementation for speed
 - Tricks to avoid overfitting:
 - Data augmentation
 - Dropout
 - Inception
- Results
 - Large datasets with millions of images and thousands of categories
 - Training takes a few days on a single machine
 - Results better every year