2019 年第十一届全国大学生数学竞赛

数学专业竞赛 (B 卷) 试题

一、(本题 15 分) 设 L_1 和 L_2 是空间中的两条不垂直的异面直线,点 B 是它们公垂线段的中点。点 A_1 和 A_2 分别在 L_1 和 L_2 上滑动,使得 A_1B \perp A_2B . 证明直线 A_1A_2 的轨迹是单叶双曲面。

二、(本题 10 分)计算
$$\int_0^{+\infty} \frac{\mathrm{d}\,x}{\left(1+x^2\right)\left(1+x^{2019}\right)}$$
.

三、(本题 15 分)设数列 $\left\{x_n\right\}$ 满足: $x_1>0, x_{n+1}=\ln\left(1+x_n\right), n=1,2,\cdots$. 证明: $\left\{x_n\right\}$ 收敛并求其极限值.

四、(本题 15 分)设 $\left\{\epsilon_1,\cdots,\epsilon_n\right\}$ 是n维实线性空间V的一组基,令

$$\epsilon_1 + \epsilon_2 + \dots + \epsilon_n + \epsilon_{n+1} = 0$$

证明: (1) 对 $i=1,2,\cdots,n+1,\left\{\epsilon_1,\cdots,\epsilon_{i-1},\epsilon_{i+1},\cdots,\epsilon_{n+1}\right\}$ 都构成 V 的基;

- (2) $\forall \alpha \in V$,在 (1) 中的 n+1 组基中,必存在一组基使 α 在此基下的坐标分量均非负;
- (3) 若 $\alpha=a_1\epsilon_1+a_2\epsilon_2+\cdots+a_n\epsilon_n$,且 $\left|a_i\right|(i=1,2,\cdots,n)$ 互不相同,则在(1)中的n+1组基中,满足(2)中非负坐标表示的基是唯一的.

五、(本题 20 分)设 A 是数域 F 上的 n 阶矩阵,若 $A^2=I_n\left(I_n$ 表示单位矩阵),则称 A 为对合矩阵. 试证:

(1) 若A是n 阶对合矩阵,则

$$\operatorname{rank}(I_n + A) + \operatorname{rank}(I_n - A) = n;$$

(2) n 阶对合矩阵 A 一定可以对角化,其相似对角形为 $egin{pmatrix} I_r & 0 \\ 0 & -I_{n-r} \end{pmatrix}$,其中

$$r = \operatorname{rank}\left(I_n + A\right)$$
 ;

(3) 若A,B均是n 阶对合矩阵,且AB=BA,则存在可逆矩阵P,使得 $P^{-1}AP$ 和 $P^{-1}BP$ 同时为对角矩阵.

六、(本题 15 分)设函数 $f\left(x\right)$ 为闭区间 $\left[a,b\right]$ 上的连续凹函数,满足 $f\left(a\right)=0,f\left(b\right)>0$ 且 $f\left(x\right)$ 在 x=a 处存在非零的右导数.对 $n\geq 2$,记

$$\boldsymbol{S}_n = \left\{ \sum_{k=1}^n k \boldsymbol{x}_k : \sum_{k=1}^n k \boldsymbol{f} \left(\boldsymbol{x}_k \right) = \boldsymbol{f}(b), \boldsymbol{x}_k \in [a,b] \right\}$$

- (1) 证明对 $orall lpha \in (0,f(b))$,存在唯一 $x \in (a,b)$ 使得 $f\Big(x\Big) = lpha$;
- (2) 求 $\lim_{n \to \infty} (\sup S_n \inf S_n)$.
- 七、(本题 10 分)设正项级数 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛. 证明级数 $\sum_{n=1}^{\infty} \frac{n^2 a_n}{S_n^2}$ 收敛,其中 $S_n = \sum_{k=1}^n a_k$.

开音寒数学(xwmath