Discrete Mathematics Graphs

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2013

License

©2001-2013 T. Uyar, A. Yayımlı, E. Harmancı

- to Share to copy, distribute at to Remix to adapt the work to Share – to copy, distribute and transmit the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
 Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Topics

Graphs

Introduction

Connectivity

Planar Graphs

Searching Graphs

Trees

Introduction

Rooted Trees

Binary Trees

Decision Trees

Weighted Graphs

Introduction

Shortest Path

Minimum Spanning Tree

Graphs

Definition

graph: G = (V, E)

▶ V: node (or *vertex*) set

▶ $E \subseteq V \times V$: edge set

▶ if $e = (v_1, v_2) \in E$:

 $ightharpoonup v_1$ and v_2 are endnodes of e

• e is incident to v_1 and v_2

v₁ and v₂ are adjacent

▶ node with no incident edge: isolated node

4 / 160

Graph Example

Example

 $= \{a, b, c, d, e, f\}$ $\{(a,b),(a,c),$ (a, d), (a, e),(a, f), (b, c), (d, e), (e, f)

Directed Graphs

Definition

directed graph (or digraph): D = (V, A)

- ▶ $A \subseteq V \times V$: arc set
- origin and terminating nodes

Directed Graph Example

Example

Multigraphs

Definition

parallel edges: edges between the same pair of nodes

loop: an edge starting and ending in the same node

plain graph: a graph without any loops or parallel edges

multigraph: a graph which is not plain

Multigraph Example

Example

- ► parallel edges:
 - (a, b)
- ► loop:
- (e, e)

Subgraph

G' = (V', E') is a subgraph of G = (V, E):

- $V' \subseteq V$
- E' ⊆ E
- $\blacktriangleright \ \forall (v_1,v_2) \in E' \ v_1,v_2 \in V'$

10 / 160

Representation

- ► incidence matrix:
 - ▶ rows represent nodes, columns represent edges
 - ▶ cell: 1 if the edge is incident to the node, 0 otherwise
- ► adjacency matrix:

 - rows and columns represent nodes
 cells represent the number of edges between the nodes

Incidence Matrix Example

Example

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8
v_1	1	1	1	0	1	0	0	0
<i>V</i> 2	1	0	0	1	0	0	0 0 1 0	0
<i>V</i> 3	0	0	1	1	0	0	1	1
<i>V</i> ₄	0	0	0	0	1	1	0	1
V ₅	0	1	0	0	0	1	1	0

Adjacency Matrix Example

Example

	v_1	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> 5
v_1	0	1	1 1	1	1
<i>V</i> 2	1	0	1	0	0
<i>V</i> ₃	1	1	0	1	1
V ₄	1	0	1	0	1
V_5	1	0	1	1	0

Adjacency Matrix Example

Example

	а	Ь	С	d
а	0	0	0	1
a b c d	2	0 1 0	1	0
С	0	0	0	0
А	n	1	1	Λ

Degree

Definition

degree: number of edges incident to the node

Theorem

let d_i be the degree of node v_i

$$|E| = \frac{\sum_i d_i}{2}$$

Degree Example

Example (plain graph)

16 / 160

Degree Example

Example (multigraph)

|E|

15 / 160

Degree in Directed Graphs

- ▶ two types of degree

 - in-degree: d_vⁱ
 out-degree: d_v^o
- ▶ node with in-degree 0: source
- ▶ node with out-degree 0: sink

Degree

Theorem

In an undirected graph, there is an even number of nodes which have an odd degree.

Proof.

 $ightharpoonup t_i$: number of nodes of degree i

$$2|E| = \sum_{i} d_{i} = 1t_{1} + 2t_{2} + 3t_{3} + 4t_{4} + 5t_{5} + \dots$$

$$2|E| - 2t_{2} - 4t_{4} - \dots = t_{1} + t_{3} + \dots + 2t_{3} + 4t_{5} + \dots$$

$$2|E| - 2t_{2} - 4t_{4} - \dots - 2t_{3} - 4t_{5} - \dots = t_{1} + t_{3} + t_{5} + \dots$$

▶ since the left-hand side is even, the right-hand side is also even

П

19 / 160

Regular Graphs

Definition

regular graph: all nodes have the same degree

n-regular: all nodes have degree n

0 / 160

Regular Graph Examples

Example

21 / 160

Completely Connected Graphs

Definition

G = (V, E) is completely connected:

- ▶ $\forall v_1, v_2 \in V (v_1, v_2) \in E$
- ▶ there is an edge between every pair of nodes
- $ightharpoonup K_n$: the completely connected graph with n nodes

22 / 160

Completely Connected Graph Examples

Example (K_4)

Example (K_5)

23 / 160

Bipartite Graphs

Definition

G = (V, E) is bipartite:

- $\blacktriangleright \forall (v_1, v_2) \in E \ v_1 \in V_1 \land v_2 \in V_2$
- $\blacktriangleright \ V_1 \cup V_2 = V, \ V_1 \cap V_2 = \emptyset$
- ▶ complete bipartite: $\forall v_1 \in V_1 \ \forall v_2 \in V_2 \ (v_1, v_2) \in E$
- $ightharpoonup |K_{m,n}: |V_1| = m, |V_2| = n$

Complete Bipartite Graph Examples

Example $(K_{2,3})$

Example $(K_{3,3})$

25 / 160

Isomorphism

Definition

G = (V, E) and $G^* = (V^*, E^*)$ are isomorphic:

- $ightharpoonup \exists f: V \rightarrow V^* \ (u,v) \in E \Rightarrow (f(u),f(v)) \in E^*$
- ▶ *f* is bijective
- ightharpoonup G and G^{\star} can be drawn the same way

6 / 160

Isomorphism Example

Example

 $f = \{(a,d),(b,e),(c,b),(d,c),(e,a)\}$

27 / 160

Isomorphism Example

Example (Petersen graph)

 $f = \{(a,q), (b,v), (c,u), (d,y), (e,r), (f,w), (g,x), (h,t), (i,z), (j,s)\}$

28 / 160

Homeomorphism

Definition

G = (V, E) and $G^* = (V^*, E^*)$ are homeomorphic:

► G and G* are isomorphic except that some edges in E* are divided with additional nodes

Homeomorphism Example

Example

30 / 10

Walk

Definition

walk: a sequence of nodes and edges

from a starting node (v_0) to an ending node (v_n)

$$v_0, e_1, v_1, e_2, v_2, e_3, v_3, \dots, e_{n-1}, v_{n-1}, e_n, v_n$$

where $e_i = (v_{i-1}, v_i)$

- ▶ no need to write the edges
- ▶ length: number of edges in the walk
- if $v_0 \neq v_n$ open, if $v_0 = v_n$ closed

31 / 160

Trail

Definition

trail: a walk where edges are not repeated

- circuit: closed trail
- ▶ spanning trail: a trail that covers all the edges in the graph

Example (c,b),(b,a),(a,e),(e,d),(d,a),(a,f) c,b,a,e,d,a,f

33 / 160

Path

Definition

path: a walk where nodes are not repeated

- ► cycle: closed path
- ▶ spanning path: a path that visits all the nodes in the graph

Connectivity

Definition

connected graph: there is a path between every pair of nodes

► a disconnected graph can be divided into connected components

Example

C

graph is disconnected:
no path between a and c

connected components:
a, d, e
b, c
f

Connected Components Example

37 / 160

Distance

Definition

the distance between nodes v_i and v_j :

ightharpoonup the length of the shortest path between v_i and v_j

Definition

diameter: the largest distance in the graph

Distance Example

Example

- ▶ distance between a and e: 2
- ▶ diameter: 3

39 / 160

Cut-Point

Definition

G - v:

► the graph obtained by deleting the node *v* and all its incident edges from the graph *G*

Definition

v is a cut-point for G:

• G is connected but G - v is disconnected

Cut-Point Example

G

G - d

41 / 16

42 / 16

Directed Walks

- ▶ same as in undirected graphs
- ▶ ignoring the directions on the arcs: semi-walk, semi-trail, semi-path

Weakly Connected Graph

Definition
weakly connected:
there is a semi-path
between every pair of nodes

43 / 160

Unilaterally Connected Graph

Definition unilaterally connected: for every pair of nodes, there is a path from one to the other

45 / 160

Strongly Connected Graph

Definition

strongly connected: there is a path in both directions between every pair of nodes

46 / 160

Bridges of Königsberg

cross each bridge exactly once and return to the starting point Traversable Graphs

Definition

G is traversable: G contains a spanning trail

Traversable Graphs

- ▶ a node with an odd degree must be either the starting node or the ending node of the trail
- ▶ all nodes except the starting node and the ending node must have even degrees

Traversable Graph Example

Example

- ▶ degrees of *a*, *b* and *c* are even
- ightharpoonup degrees of d and e are odd
- ▶ a spanning trail can be formed starting from node d and ending at node e (or vice versa): d, b, a, c, e, d, c, b, e

Definition

Euler Graphs

Euler graph: a graph that contains a closed spanning trail

ightharpoonup G is an Euler graph \Leftrightarrow the degrees of all nodes in G are even

52 / 160

Bridges of Königsberg

▶ all node have odd degrees: not traversable

51 / 160

Euler Graph Examples

Example (Euler graph)

Example (not an Euler graph)

Hamilton Graphs

Definition

Hamilton graph: a graph that contains a closed spanning path

Hamilton Graph Examples

Example (Hamilton graph)

Example (not a Hamilton graph)

55 / 160

Connectivity Matrix

- ▶ if the adjacency matrix of the graph is A, the (i,j) element of A^k shows the number of walks of length k between the nodes i and j
- ightharpoonup in an undirected graph with n nodes, the distance between two nodes is at most n-1
- connectivity matrix: $C = A^1 + A^2 + A^3 + \dots + A^{n-1}$
 - $\,\blacktriangleright\,$ if all elements are non-zero, then the graph is connected

56 / 160

Warshall's Algorithm

- ▶ it is easier to find whether there is a walk between two nodes instead of finding the number of walks
- ▶ for each node:
 - ► from all nodes which can reach the chosen node (the rows that contain 1 in the chosen column)
 - ▶ to the nodes which can be reached from the chosen node (the columns that contain 1 in the chosen row)

57 / 160

Warshall's Algorithm Example

Example

	а	Ь	с	d
а	0	1	0	0
b	0	1	0	0
С	0	0	0	1
d	1	0	0 0 0 1	0

58 / 160

Warshall's Algorithm Example

Example

	а	Ь	с	d
а	0	1	0	0
Ь	0	1	0	0
С	0	0	0	1
d	1	1	1	0

59 / 160

Warshall's Algorithm Example

${\sf Example}$

	а	Ь	с	d
а		1 1 0	0	0
a b c d	0	1	0	0
С	0	0	0	1
d	1	1	1	0

Warshall's Algorithm Example

Example

	a	Ь	с	d
а	0	1	0	0
Ь	0	1 0	0	0
С	0	0	0	1
d	1	1	1	1

61 / 16

Warshall's Algorithm Example

Example

	a	b		d
а	0	1	0	0
a b c	0 0 1	1 1 1	0	0
c	1	1	1	1
А	1	1	1	1

62 / 16

Planar Graphs

Definition

A graph is planar if it can be drawn on a plane without intersecting its edges.

ightharpoonup a map of G: a planar drawing of G

Planar Graph Example

Example (K_4)

64 / 160

Regions

- ▶ a map divides the plane into regions
- the degree of a region: the length of the closed trail that surrounds the region

Theorem

let d_{r_i} be the degree of region r_i

$$|E| = \frac{\sum_i d_{r_i}}{2}$$

Region Example

Example

 $d_{r_1} = 3 ext{ (abda)}$ $d_{r_2} = 3 ext{ (bcdb)}$ $d_{r_3} = 5 ext{ (cdefec)}$ $d_{r_4} = 4 ext{ (abcea)}$ $d_{r_5} = 3 ext{ (adea)}$

 $\sum_{r} d_r = 18$ |E| = 9

66 / 160

55 / 160

Euler's Formula

Theorem (Euler's Formula)

Let G = (V, E) be a planar, connected graph and let R be the set of regions in a map of G:

$$|V| - |E| + |R| = 2$$

Euler's Formula Example

Example

$$|V| = 6$$
, $|E| = 9$, $|R| = 5$

8 / 160

Planar Graph Theorems

Theorem

Let G = (V, E) be a connected, planar graph where $|V| \geq 3$: $|E| \leq 3|V| - 6$

Proof

- ▶ the sum of region degrees: 2|E|
- ▶ degree of a region is at least 3 ⇒ $2|E| \ge 3|R| \Rightarrow |R| \le \frac{2}{3}|E|$
- ► |V| |E| + |R| = 2⇒ $|V| - |E| + \frac{2}{3}|E| \ge 2$ ⇒ $|V| - \frac{1}{3}|E| \ge 2$ ⇒ $3|V| - |E| \ge 6$ ⇒ $|E| \le 3|V| - 6$

69 / 160

Planar Graph Theorems

Theorem

Let G = (V, E) be a connected, planar graph where $|V| \ge 3$: $\exists v \in V \ d_v \le 5$

Proof.

► let $\forall v \in V \ d_v \ge 6$ ⇒ $2|E| \ge 6|V|$ ⇒ $|E| \ge 3|V|$ ⇒ |E| > 3|V| - 6

70 / 160

Nonplanar Graphs

Theorem

 K_5 is not planar.

Proof.

- ▶ |*V*| = 5
- ▶ $3|V| 6 = 3 \cdot 5 6 = 9$
- ▶ $|E| \le 9$ should hold
- $\blacktriangleright \ \mathsf{but} \ |E| = 10$

Nonplanar Graphs

Theorem

 $K_{3,3}$ is not planar.

Proof.

- |V| = 6, |E| = 9
- if planar then |R|=5
- ▶ degree of a region is at least 4 $\Rightarrow \sum_{r \in R} d_r \ge 20$
- ▶ $|E| \ge 10$ should hold
- ▶ but |*E*| = 9

72 / 16

Kuratowski's Theorem

Theorem

 $\begin{tabular}{ll} G contains a subgraph homeomorphic to K_5 or $K_{3,3}$. \\ &\Leftrightarrow & G is not planar. \\ \end{tabular}$

Platonic Solids

- ► regular polyhedron: a 3-dimensional solid where the faces are identical regular polygons
- the projection of a regular polyhedron onto the plane is a planar graph
 - every corner is a node
 - every side is an edge
 - every face is a region

73 / 160

Platonic Solids

Example (cube)

75 / 160

Platonic Solids

- ▶ v: number of corners (nodes)
- e: number of sides (edges)
- ▶ r: number of faces (regions)
- ▶ n: number of faces meeting at a corner (node degree)
- ▶ m: number of sides of a face (region degree)
- **▶** *m*, *n* ≥ 3
- $ightharpoonup 2e = n \cdot v$
- $ightharpoonup 2e = m \cdot r$

76 / 160

Platonic Solids

▶ from Euler's formula:

$$2 = v - e + r = \frac{2e}{n} - e + \frac{2e}{m} = e\left(\frac{2m - mn + 2n}{mn}\right) > 0$$

► *e*, *m*, *n* > 0:

$$2m - mn + 2n > 0 \Rightarrow mn - 2m - 2n < 0$$

 $\Rightarrow mn - 2m - 2n + 4 < 4 \Rightarrow (m-2)(n-2) < 4$

- ▶ the values that satisfy this inequation:
 - 1. m = 3, n = 3
 - 2. m = 4, n = 3
 - 3. m = 3, n = 4
 - 4. m = 5, n = 35. m = 3, n = 5

Graph Coloring

Definition

proper coloring of G = (V, E): $f : V \to C$ where C is a set of colors

- $\blacktriangleright \ \forall (v_i,v_j) \in E \ f(v_i) \neq f(v_j)$
- ► minimizing |*C*|

Graph Coloring Example

Example

- ▶ a company produces chemical compounds
- $\,\blacktriangleright\,$ some compounds cannot be stored together
- ▶ such compounds must be placed in separate storage areas
- ▶ store the compounds using the least number of storage areas

83 / 160

Graph Coloring

Example

- ▶ every compound is a node
- $\,\blacktriangleright\,$ two compounds that cannot be stored together are adjacent

85 / 160

Graph Coloring Example

Example

86 / 16

Graph Coloring Example

Example

87 / 160

Graph Coloring Example

Example

88 / 160

Graph Coloring Example

Example

89 / 160

Chromatic Number

Definition

chromatic number of G: $\chi(G)$

- lacktriangle the minimum number of colors needed to color the graph ${\sf G}$
- lacktriangle calculating $\chi(\mathcal{G})$ is a very difficult problem
- $\chi(K_n) = n$

Chromatic Number Example

Example (Herschel graph)

chromatic number: 2

Graph Coloring Example

Example (Sudoku)

_	_							
15	3			1				
5 6			1	တ	5			
	თ	8					6	
8				6				3
4			8		Ω			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- ▶ every cell is a node
- ► cells of the same row are adjacent
- ► cells of the same column are adjacent
- ightharpoonup cells of the same 3×3 block are adjacent
- ▶ every number is a color
- ▶ problem: properly color a graph that is partially colored

Region Coloring

▶ coloring a map by assigning different colors to adjacent regions

Theorem (Four Color Theorem)

The regions in a map can be colored using four colors.

93 / 160

Searching Graphs

- ightharpoonup searching nodes of graph G = (V, E) starting from node v_1
- depth-first
- ▶ breadth-first

94 / 160

Depth-First Search

- 1. $v \leftarrow v_1, T = \emptyset, D = \{v_1\}$
- 2. find smallest i in $2 \le i \le |V|$ such that $(v, v_i) \in E$ and $v_i \notin D$

 - ▶ if no such i exists: go to step 3 ▶ if found: $T = T \cup \{(v, v_i)\}, D = D \cup \{v_i\}, v \leftarrow v_i$, go to step 2
- 3. if $v = v_1$ then the result is T
- 4. if $v \neq v_1$ then $v \leftarrow parent(v)$, go to step 2

Breadth-First Search

- 1. $T = \emptyset$, $D = \{v_1\}$, $Q = (v_1)$
- 2. if Q is empty: the result is T
- 3. if Q not empty: $v \leftarrow front(Q)$, $Q \leftarrow Q v$ for $2 \le i \le |V|$ check the edges $(v, v_i) \in E$:
 - if $v_i \notin D : Q = Q + v_i$, $T = T \cup \{(v, v_i)\}, D = D \cup \{v_i\}$
 - ▶ go to step 3

References

Required Reading: Grimaldi

- ► Chapter 11: An Introduction to Graph Theory
- ▶ Chapter 7: Relations: The Second Time Around
 - ► 7.2. Computer Recognition: Zero-One Matrices and Directed Graphs

Definition

Tree

tree: a connected graph that contains no cycle

▶ forest: a graph where the connected components are trees

97 / 16

98 / 160

Tree Examples

Example

99 / 160

Tree Theorems

Theorem

In a tree, there is one and only one path between any two distinct nodes.

- ▶ there is at least one path because the tree is connected
- ▶ if there were more than one path, they would form a cycle

100 / 160

Tree Theorems

Theorem

Let T = (V, E) be a tree:

$$|E| = |V| - 1$$

 $\,\blacktriangleright\,$ proof method: induction on the number of edges

Tree Theorems

Proof: base step

- $\blacktriangleright |E| = 0 \Rightarrow |V| = 1$
- $|E|=1 \Rightarrow |V|=2$
- $ightharpoonup |E| = 2 \Rightarrow |V| = 3$
- lacksquare assume that |E|=|V|-1 for $|E|\leq k$

101 / 160

Tree Theorems

Proof: induction step.

▶ |E| = k + 1

let's remove the edge (y, z): $T_1 = (V_1, E_1), T_2 = (V_2, E_2)$

$$|V| = |V_1| + |V_2|$$

$$= |E_1| + 1 + |E_2| + 1$$

$$= (|E_1| + |E_2| + 1) + 1$$

$$= |E| + 1$$

Tree Theorems

Theorem

In a tree, there are at least two nodes with degree 1.

- $ightharpoonup 2|E| = \sum_{v \in V} d_v$
- ▶ assume that there is only 1 node with degree 1:

$$\Rightarrow 2|E| \geq 2(|V|-1)+1$$

$$\Rightarrow 2|E| \geq 2|V| - 1$$

$$\Rightarrow |E| \ge |V| - \frac{1}{2} > |V| - 1$$

Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle).

There is one and only one path between any two distinct nodes in T.

 ${\cal T}$ is connected, but if any edge is removed it will no longer be connected.

T contains no cycle, but if an edge is added between any pair of nodes one and only one cycle will be formed.

Tree Theorems

Theorem

T is a tree (T is connected and contains no cycle).

T is connected and |E| = |V| - 1.

T contains no cycle and |E| = |V| - 1.

106 / 160

105 / 160

Rooted Tree

- ▶ a hierarchy is defined between nodes
- ▶ hierarchy creates a natural direction on edges \Rightarrow in and out degrees
- ▶ node with in-degree 0 (top of the hierarchy): root
- ▶ nodes with out-degree 0: leaf
- ▶ nodes that are not leaves: internal node

Node Level

Definition

level of a node: the distance of the node from the root

- parent: adjacent node in the next upper level
- children: adjacent nodes in the next lower level
- ▶ sibling: nodes which have the same parent

Rooted Tree Example

Example

- ▶ root: *r*
- ▶ leaves: x y z u v
- ▶ internal nodes: r p n t s q w
- ▶ parent of *y*: *w*
- children of w: y and z ▶ y and z are siblings

109 / 160

Rooted Tree Example Example Book ► C1 Book ► S1.1 ► S1.2 Ċ2 ► S3.1 S1.1 S1.2 S3.1 S3.2 S3.3 ► S3.2 ► \$3.2.1 ► \$3.2.2 S3.2.2 S3.2.1 ► S3.3

Ordered Rooted Tree

- ▶ sibling nodes are ordered from left to right
- universal address system
 - ▶ assign the address 0 to the root
 - \blacktriangleright assign the positive integers $1,2,3,\ldots$ to the nodes at level 1, from left to right
 - ▶ let *v* be an internal node with address *a*, assign the addresses *a*.1, *a*.2, *a*.3, . . . to the children of *v* from left to right

Lexicographic Order

Definition

Let b and c be two addresses. b comes before c if one of the following holds:

1.
$$b = a_1 a_2 \dots a_m x_1 \dots$$

 $c = a_1 a_2 \dots a_m x_2 \dots$

 x_1 comes before x_2

2.
$$b = a_1 a_2 \dots a_m$$

 $c=a_1a_2\dots a_ma_{m+1}\dots$

111 / 160

Lexicographic Order Example

Example

Binary Trees

Definition

T = (V, E) is a binary tree: $\forall v \in V \ d_v^{\ o} \in \{0, 1, 2\}$

T = (V, E) is a *complete* binary tree: $\forall v \in V \ d_v^{\ o} \in \{0, 2\}$

114 / 160

Expression Tree

- lacktriangle a binary operation can be represented as a binary tree
 - operator as the root, operands as the children
- every mathematical expression can be represented as a tree
 - operators at internal nodes, variables and values at the leaves

115 / 160

Expression Tree Examples

Example (7 - a)

Example (a + b)

116 /160

Expression Tree Examples

Example ((7 - a)/5)

Example $((a+b)\uparrow 3)$

117 / 160

Expression Tree Examples

Example $(((7 - a)/5) * ((a + b) \uparrow 3))$

118 / 160

Expression Tree Examples

Example $(t + (u * v)/(w + x - y \uparrow z))$

Expression Tree Traversals

- 1. inorder traversal: traverse the left subtree, visit the root, traverse the right subtree
- 2. preorder traversal: visit the root, traverse the left subtree, traverse the right subtree
- 3. postorder traversal: traverse the left subtree, traverse the right subtree, visit the root
 - ► reverse Polish notation

120 / 16

Inorder Traversal Example

Example

$$t + u * v / w + x - v \uparrow z$$

121 / 160

Preorder Traversal Example

Example

$$+t/*uv+w-x\uparrow yz$$

122 / 160

Postorder Traversal Example

Example

$$tuv * wxyz \uparrow - + / +$$

123 / 160

Expression Tree Evaluation

- ▶ inorder traversal requires parantheses for precedence
- preorder and postorder traversals do not require parantheses

124 / 160

Postorder Evaluation Example

Example (
$$t \ u \ v \ * \ w \ x \ y \ z \ \uparrow \ - \ + \ / \ +$$
)
4 2 3 * 1 9 2 3 $\uparrow \ - \ + \ / \ +$

$$4 \ 6 \ 1 \ 1 \ +$$

4 3

Regular Tree

Definition

$$T = (V, E)$$
 is an m-ary tree: $\forall v \in V \ d_v^{\ o} \leq m$

T = (V, E) is a complete m-ary tree: $\forall v \in V \ d_v^{\ o} \in \{0, m\}$

125 / 160

Regular Tree Theorem

Theorem

Let T = (V, E) be a complete m-ary tree.

- ▶ n: number of nodes
- ► 1: number of leaves
- ▶ i: number of internal nodes

Then:

- $I = n i = m \cdot i + 1 i = (m 1) \cdot i + 1$

$$i = \frac{l-1}{m-1}$$

127 / 160

Regular Tree Examples

Example

- ► how many matches are played in a tennis tournament with 27 players?
- every player is a leaf: I = 27
- ightharpoonup every match is an internal node: m=2
- ▶ number of matches: $i = \frac{l-1}{m-1} = \frac{27-1}{2-1} = 26$

128 / 160

Regular Tree Examples

Example

- ► how many extension cords with 4 outlets are required to connect 25 computers to a wall socket?
- every computer is a leaf: I = 25
- lacktriangledown every extension cord is an internal node: m=4
- ▶ number of cords: $i = \frac{l-1}{m-1} = \frac{25-1}{4-1} = 8$

Decision Trees

Example

- ▶ one of 8 coins is counterfeit (it's heavier)
- ▶ find the counterfeit coin using a beam balance

129 / 160

130 / 160

Decision Trees

Example (in 3 weighings)

131 / 160

Decision Trees

Example (in 2 weighings)

References

Required Reading: Grimaldi

- ► Chapter 12: Trees
 - ▶ 12.1. Definitions and Examples
 - ▶ 12.2. Rooted Trees

Weighted Graphs

► assign labels to edges: weight, length, cost, delay, probability, . . .

133 / 16

135 / 160

Shortest Path

► find the shortest paths from a node to all other nodes: Dijkstra's algorithm

Dijkstra's Algorithm Example

Example (initialization)

▶ starting node: *c*

а	$(\infty, -)$
b	$(\infty, -)$
С	(0, -)
f	$(\infty, -)$
g	$(\infty, -)$
h	$(\infty, -)$

136 / 160

Dijkstra's Algorithm Example

Example (from node c - base distance=0)

- $ightharpoonup c
 ightharpoonup f:6,6<\infty$
- $ightharpoonup c
 ightharpoonup h: 11, 11 < \infty$

а	$\mid (\infty, -)$	
b	$(\infty, -)$	
С	(0, -)	
f	(6, cf)	
g	$(\infty, -)$	
h	(11, ch)	

▶ closest node: *f*

Dijkstra's Algorithm Example

Example (from node f - base distance=6)

- ▶ $f \to a : 6 + 11, 17 < \infty$
- $\blacktriangleright \ f \to g: 6+9, 15 < \infty$
- ▶ $f \rightarrow h: 6+4, 10 < 11$

а	(17, cfa)	
b	$(\infty, -)$	
С	(0, -)	
f	(6, cf)	
g	(15, cfg)	
h	(10, cfh)	

► closest node: h

Dijkstra's Algorithm Example

Example (from node h - base distance=10)

 $\blacktriangleright \ h \rightarrow a: 10+11, 21 \not< 17$

а	(17, cfa)	
b	$(\infty, -)$	
С	(0, -)	$\sqrt{}$
f	(6, cf)	$\sqrt{}$
g	(14, cfhg)	
h	(10, cfh)	

▶ closest node: g

Dijkstra's Algorithm Example

Example (from node g - base distance=14)

▶
$$g \rightarrow a: 14 + 17, 31 \nleq 17$$

а	(17, cfa)	
b	$(\infty, -)$	
С	(0, -)	
f	(6, cf)	
g	(14, cfhg)	
h	(10, cfh)	

closest node: a

Dijkstra's Algorithm Example

Example (from node a - base distance=17)

а	(17, cfa)	
b	(22, cfab)	
С	(0, -)	
f	(6, cf)	
g	(14, cfhg)	
h	(10, cfh)	

▶ last node: b

Spanning Tree

Definition

spanning tree:

a subgraph which is a tree and contains all the nodes of the graph

minimum spanning tree:

a spanning tree for which the total weight of edges is minimal

142 / 160

Kruskal's Algorithm

Kruskal's algorithm

- 1. $i \leftarrow 1$, $e_1 \in E$, $wt(e_1)$ is minimal
- 2. for $1 \le i \le n 2$:

the selected edges are e_1, e_2, \ldots, e_i select a new edge e_{i+1} from the remaining edges such that:

- $wt(e_{i+1})$ is minimal
- $lackbox{ } e_1,e_2,\ldots,e_i,e_{i+1}$ contains no cycle
- 3. $i \leftarrow i + 1$
 - $lackbox{ }i=n-1\Rightarrow$ the subgraph \emph{G} containing the edges e_1, e_2, \dots, e_{n-1} is a minimum spanning tree $i < n-1 \Rightarrow$ go to step 2

Kruskal's Algorithm Example

Example (initialization)

- minimum weight: 1 (e,g)
- ▶ $T = \{(e,g)\}$

Kruskal's Algorithm Example

Example (1 < 6)

- ▶ minimum weight: 2
- (d, e), (d, f), (f, g) $T = \{(e, g), (d, f)\}$
- i ← '

145 / 160

Kruskal's Algorithm Example

Example (2 < 6)

- ▶ minimum weight: 2
 - (d,e),(f,g)
- ► $T = \{(e,g), (d,f), (d,e)\}$
- $i \leftarrow 3$

146 / 1

Kruskal's Algorithm Example

Example (3 < 6)

- ▶ minimum weight: 2 (f,g) forms a cycle
- (f,g) forms a cycle▶ minimum weight: 3
- (c,e),(c,g),(d,g)(d,g) forms a cycle
- ► $T = \{(e,g), (d,f), (d,e), (c,e)\}$
- i ← i

147 / 160

Kruskal's Algorithm Example

Example (4 < 6)

- $I = \{ (e,g), (d,f), (d,e), \}$
- (c,e),(b,e)
- · *i* ← 5

148 / 160

Kruskal's Algorithm Example

Example (5 < 6)

- $T = \{ (e,g), (d,f), (d,e), (c,e), (b,e), (a,b) \}$
- i ← 6

Kruskal's Algorithm Example

Example $(6 \nless 6)$

▶ total weight: 17

Prim's Algorithm

Prim's algorithm

1. $i \leftarrow 1, v_1 \in V, P = \{v_1\}, N = V - \{v_1\}, T = \emptyset$

2. for $1 \le i \le n-1$: $P = \{v_1, v_2, \dots, v_i\}$, $T = \{e_1, e_2, \dots, e_{i-1}\}$, N = V - P select a node $v_{i+1} \in N$ such that for a node $x \in P$ $e = (x, v_{i+1}) \notin T$, wt(e) is minimal $P \leftarrow P + \{v_{i+1}\}$, $N \leftarrow N - \{v_{i+1}\}$, $T \leftarrow T + \{e\}$

3. $i \leftarrow i + 1$

 $i=n\Rightarrow$: the subgraph G containing the edges e_1,e_2,\ldots,e_{n-1} is a minimum spanning tree

• $i < n \Rightarrow \text{go to step } 2$

Prim's Algorithm Example

Example (initialization)

i ← 1

 $P = \{a\}$

► $N = \{b, c, d, e, f, g\}$

 $T = \emptyset$

Prim's Algorithm Example

Example (1 < 7)

▶ $T = \{(a, b)\}$

 \triangleright $P = \{a, b\}$

 $N = \{c, d, e, f, g\}$

i ← 2

Prim's Algorithm Example

Example (2 < 7)

▶ $T = \{(a, b), (b, e)\}$

 $P = \{a, b, e\}$

 $N = \{c, d, f, g\}$

i ← 3

154 / 160

Prim's Algorithm Example

Example (3 < 7)

► $T = \{(a, b), (b, e), (e, g)\}$

 $P = \{a, b, e, g\}$

 $N = \{c, d, f\}$

i ← 4

Prim's Algorithm Example

Example (4 < 7)

 $T = \{(a,b), (b,e), (e,g), (d,e)\}$

 $P = \{a, b, e, g, d\}$

▶ $N = \{c, f\}$

▶ *i* ← 5

156 / 160

155 / 160

Prim's Algorithm Example

Example (5 < 7)

- (a, b), (b, e), (e, g),(d,e),(f,g)
- $P = \{a, b, e, g, d, f\}$
- $N = \{c\}$

Prim's Algorithm Example

Example (6 < 7)

- (a, b), (b, e), (e, g),(d,e),(f,g),(c,g)
- ▶ $P = \{a, b, e, g, d, f, c\}$

Prim's Algorithm Example

Example $(7 \nless 7)$

▶ total weight: 17

References

Required Reading: Grimaldi

- ► Chapter 13: Optimization and Matching

 - 13.1. Dijkstra's Shortest Path Algorithm
 13.2. Minimal Spanning Trees:
 The Algorithms of Kruskal and Prim