复变函数

复数项级数与复函数项级数

主讲: 赵国亮

内蒙古大学电子信息工程学院

November 25, 2020

目录

- 1 孤立奇点
 - 孤立奇点
- 2 极点与零点的关系
- 3 本性奇点
 - 函数在无穷远点的性态
- 4 课堂小结
 - 布置作业

- - 1 孤立奇点 ■ 孤立奇点
 - 2 极点与零点的关系
 - 3 本性奇点 ■ 函数在无穷远点的性态
 - 4 课堂小结
 - 布置作业

孤立奇点

定义.1

孤立奇点的分类方式 孤立奇点的分类主要是根据函数 f(z) 在 z_0 处展开成的罗朗级数 $f(z)=\sum\limits_{n=-\infty}^{\infty}c_n(z-z_0)^n$ 中所含的正幂项和 负幂项的项数来分类的.

可去奇点

定义.3

可去奇点 如果在 f(z) 展开成的罗朗级数中不含 $z-z_0$ 的负幂项, 则称 z_0 为函数 f(z) 的可去奇点.

$$f(z) = \frac{\sin z}{z} = \frac{1}{z}(z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 + \cdots) = 1 - \frac{1}{3!}z^2 + \frac{1}{5!}z^4 - \cdots$$
, $z = 0$ 是函数 $f(z) = \frac{\sin z}{z}$ 的可去奇点, 即展开成罗朗级数后, 不含有负幂项, 所以 $z = 0$ 是函数的可去奇点.

判别方法: 若 z_0 为函数 f(z) 的可去奇点, 则有 $\lim_{z\to z_0} f(z)=c_0$. 如上例中 $\lim_{z\to 0} \frac{\sin z}{z}=1=c_0$.

定义 .4

极点 如果 f(z) 展开成的罗朗级数中所含 $z-z_0$ 的负幂项是有限的, 即

$$\begin{split} f(z) &= \sum_{n=1}^m c_{-n} (z-z_0)^{-n} + \sum_{n=0}^\infty c_n (z-z_0)^n \\ &= \frac{c_{-m}}{(z-z_0)^m} + \dots + \frac{c_{-1}}{z-z_0} + \sum_{n=0}^\infty c_n (z-z_0)^n, \end{split}$$

则称 z_0 为函数 f(z) 的 m 阶极点, $m \ge 1$, $c_{-m} \ne 0$.

$$f(z)=\frac{1}{z^2}, m=2, z=0$$
 为其二阶极点. 若 z_0 为函数 $f(z)$ 的 m 阶极点, 则必有 $f(z)=\frac{1}{(z-z_0)^m}g(z)$, 其中 $g(z)=0$ $c_{-m}+c_{-m+1}(z-z_0)+\cdots+c_0(z-z_0)^m+\cdots$, $g(z)$ 在 z_0 处解析, 且 $g(z_0)\neq 0$.

判别方法: 若 z_0 为函数 f(z) 的 m 阶极点, 则必有 $\lim_{z\to z_0} f(z)=\infty$. 例 $f(z)=\frac{1}{z^2},\lim_{z\to 0}\frac{1}{z^2}=\infty$.

目录

- 1 孤立奇点 • 孤立奇点
- 2 极点与零点的关系
- 3 本性奇点
 - 函数在无穷远点的性态
- 4 课堂小结 - 左军佐
 - 布置作业

若 z_0 为函数 f(z) 的 m 阶极点, 则必为 $\frac{1}{f(z)}$ 的 m 阶零点. 这说明求函 数 $\frac{1}{\sqrt{2}}$ 点问题可以转化为 $\frac{1}{\sqrt{2}}$ 的 m 阶零点问题.

极点与零点的关系 000000

若
$$z_0$$
 为函数 $Q(z) = \frac{1}{f(z)}$ 的 m 阶零点, 必有 $Q(z_0) = Q'(z_0) = Q''(z_0) = Q''(z_0) = \cdots = Q^{(m-1)}(z_0) = 0$, 而 $Q^{(m)}(z_0) \neq 0$.

比如对 $f(z) = \frac{1}{z^2}, \frac{1}{f(z)} = z^2, 显然,$

$$\mathbf{z}^{2}\big|_{\mathbf{z}=0} = 0, (\mathbf{z}^{2})^{'} = 2\mathbf{z}|_{\mathbf{z}=0} = 0, (\mathbf{z}^{2})^{"}\Big|_{\mathbf{z}=0} = 2 \neq 0.$$

有时要注意, z_0 为函数 f(z) 的 m 阶极点, 应有 $f(z) = \frac{1}{(z-z_0)^m} g(z)$ 的形 式.

17.3 4.5

 $f(z)=rac{1-e^z}{z^2}$, z^2 看似是 f(z) 的二阶极点, 但

$$\begin{split} f(z) &= \frac{1-e^z}{z^2} = \frac{1}{z^2} \left(1 - 1 - z - \frac{1}{2!} z^2 - \cdots \right) \\ &= \frac{1}{z} \left(-1 - \frac{1}{2!} z - \frac{1}{3!} z^2 - \cdots - \frac{1}{n!} z^{n-1} - \cdots \right) \\ &= \frac{1}{z} g(z), \end{split}$$

因此, z = 0 是 f(z) 的 1 阶极点.

函数 🔒 有些什么奇点? 如果是极点, 指出它的级数.

解: 函数的奇点是使 $\sin z = 0$ 的点, 这些奇点是 $z = k\pi$ (k = 0, ± 1 , $\pm 2 \cdots$), 是孤立奇点. 这是因为

$$(\sin z)'|_{z=k\pi} = \cos z|_{z=k\pi} = (-1)^k \neq 0,$$

所以 $z = k\pi$ 是 $\sin z$ 的一级零点, 是 $\frac{1}{\sin z}$ 的一级极点.

(思考题) 问 z = 0 是 $\frac{\sinh z}{z^3}$ 的几级极点?

解:

$$\mbox{sinh}\, \mbox{z} = \frac{\mbox{e}^{\mbox{z}} - \mbox{e}^{-\mbox{z}}}{2}, \mbox{e}^{\mbox{z}} = \sum_{n=0}^{\infty} \frac{(\mbox{z})^n}{n!}, \mbox{e}^{-\mbox{z}} = \sum_{n=0}^{\infty} \frac{(-\mbox{z})^n}{n!},$$

$$e^{z} - e^{-z} = \sum_{n=0}^{\infty} \frac{(z)^{n} - (-z)^{n}}{2n!} = \sum_{n=0}^{\infty} \frac{2z^{2n+1}}{(2n+1)!},$$

$$\frac{\sinh z}{z^3} = \frac{1}{z^3} \sum_{n=0}^{\infty} \frac{2(-1)^{2n+1}}{(2n+1)!} z^{2n+1} = \sum_{n=0}^{\infty} \frac{2(-1)^{2n+1}}{(2n+1)!} z^{2(n-1)}.$$

z = 0 是 $\frac{\sinh z}{z^3}$ 的 2 级极点.

注意: 不能以函数的表面形式给出一点的奇点阶数是几阶奇点的结论.

求 $\frac{1}{z^3-z^2-z+1}$ 的奇点, 如果是极点, 指出它的级数.

解:由于

$$\frac{1}{{\sf z}^3-{\sf z}^2-{\sf z}+1}=\frac{1}{({\sf z}+1)({\sf z}-1)^2},$$

所以 z = -1 是函数的一级极点; z = 1 是函数的二级极点.

- 1 孤立奇点 ■ 孤立奇点
- 2 极点与零点的关系
- 3 本性奇点
 - 函数在无穷远点的性态
- 4 课堂小结
 - 布置作业

定义.5

(本性奇点) 如果 f(z) 展开成的罗朗级数所含 $z-z_0$ 的负幂项有无限多项, 即 $f(z) = \cdots + \frac{c_{-n}}{(z-z_0)^n} + \cdots + \frac{c_1}{z-z_0} + \sum_{n=0}^{\infty} c_n (z-z_0)^n$, 则 称 z_0 为 f(z) 的本性奇点.

例.1

判别方法: 若 z_0 为函数 f(z) 的本性奇点, 则必有 $\lim_{z\to z_0} f(z)$ 不存在 (也不等于 ∞).

$$z = 0$$
 为 $e^{\frac{1}{z}}$ 的本性奇点, $\lim_{z \to 0^{-}} e^{\frac{1}{z}} = 0$, $\lim_{z \to 0^{+}} e^{\frac{1}{z}} = \infty$, 所以 $\lim_{z \to 0} e^{\frac{1}{z}}$ 不存在.

设函数 f(z) 在无穷远点 $z = \infty$ 的 (去心) 邻域 $R < |z| < +\infty$ 内解 析, 则称点 $z = \infty$ 为 f(z) 的一个孤立奇点.

环域的变换

作变换 $\zeta=\frac{1}{z},$ $f(z)=f(\frac{1}{\zeta})=g(\zeta),$ 并规定变换 ζ 把 z 平面上的无穷远点 $z=\infty$ 映射成 ζ 平面上的原点 $\zeta=0$, 将 z 平面上的区域 $R<|z|<+\infty$ 映射成 ζ 平面上的区域 $0<|\zeta|<\frac{1}{R}$.

显然, $\mathbf{g}(\zeta)$ 在邻域 $0<|\zeta|<\frac{1}{\mathsf{R}}$ 内解析, 所以 $\zeta=0$ 是 $\mathbf{g}(\zeta)$ 的孤立奇点.

规定

如果 $\zeta = 0$ 是 $g(\zeta)$ 的可去奇点、m 阶极点或本性奇点, 那么点 $z = \infty$ 是 f(z) 的可去奇点、m 阶极点或本性奇点.

$$\begin{split} f(z) &= \sum_{n=1}^{\infty} c_{-n} z^{-n} + \sum_{n=0}^{\infty} c_n z^n \\ &= \sum_{n=1}^{\infty} c_{-n} z^{-n} + c_0 + \sum_{n=1}^{\infty} c_n z^n, \end{split} \tag{1}$$

$$c_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta, (n = 0, \pm 1, \pm 2, \cdots),$$
 (2)

其中 C 为在圆环域 R < |z| $< \infty$ 内绕原点的任一条正向简单闭曲线.

对应地, $\mathbf{q}(\zeta)$ 在环域 $0 < |\zeta| < \frac{1}{6}$ 内解析, 所以 $\mathbf{q}(\zeta)$ 展开成罗朗级数

$$g(\zeta) = \sum_{n=1}^{\infty} c_{-n} \zeta^n + c_0 + \sum_{n=1}^{\infty} c_n \zeta^{-n}.$$
 (3)

由公式(3)中的级数,对于下列情形

- a) 不含负幂项, 则 $\zeta = 0$ 就是 $\mathbf{q}(\zeta)$ 的可去奇点,
- b) 含有有限多的负幂项, 且 ζ^{-m} 为最高负幂, 则 $\zeta = 0$ 就是 $\mathbf{q}(\zeta)$ 的 m 阶极点,
- c) 含有无限多的负幂项, 则 $\zeta = 0$ 就是 $\mathbf{q}(\zeta)$ 的本性奇点.

- a) 不含正幂项, 那么 $z = \infty$ 就是 f(z) 的可去奇点,
- b) 含有有限多的正幂项, 且 z^m 为最高正幂, 那么 $z = \infty$ 就是 f(z) 的 m 阶极点,
- c) 含有无限多的正幂项, 那么 $z = \infty$ 就是 f(z) 的本性奇点.

函数 $f(z) = \frac{z}{1+z}$ 在环域 $1 < |z| < \infty$ 内可以展开成

$$f(z) = \frac{1}{1 + \frac{1}{z}} = 1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots + (-1)^n \frac{1}{z^n} + \dots.$$

Ç

$$g(\zeta) = \frac{1}{1+\zeta} = 1-\zeta+\zeta^2-\zeta^3+\cdots+(-1)^n\zeta^n+\cdots, \zeta = \frac{1}{z}.$$

 $g(\zeta)$ 有无穷多项正幂项, 即 $\zeta = 0$ 为 $g(\zeta)$ 的可去奇点, 也即 f(z) 有无穷多项负幂项, 所以 ∞ 是 f(z) 的可去奇点.

函数 $f(z) = z + \frac{1}{7}$, 含有正幂项, 且 z 为最高正幂项, 所以 ∞ 为它的一级极点.

例.5

函数 sinz 的展开式:

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots$$

含有 z 的无穷多项的正幂项, 所以 ∞ 是它的本性奇点.

说出函数 $f(z) = z + e^{\frac{1}{z}}$ 的所有奇点及其类型.

解: 函数 $f(z) = z + e^{\frac{1}{z}}$ 的奇点是 $z = 0, z = \infty$, 且

$$f(z)=z+e^{\frac{1}{z}}=z+\sum_{n=1}^{\infty}\frac{1}{n!z^{n}}\underline{\frac{\zeta=\frac{1}{z}}{\zeta}}+\sum_{n=1}^{\infty}\frac{1}{n!}\zeta^{n},$$

 $z = \infty$ 是一级极点, z = 0 是本性奇点.

函数 $f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$ 在扩充复平面内有些什么类型的 奇点? 如果是极点, 指出它的级数.

解: 函数 f(z) 除点 $z = 0, \pm 1, \pm 2, \cdots$ 外, 在 $|z| < +\infty$ 内解析.

因为 $(\sin \pi z)' = \cos \pi z$ 在 $z = 0, \pm 1, \pm 2, \cdots$ 处均不为 0, 所以 这些点都是 $\sin \pi z$ 的一级零点, 故这些点中除 1, -1, 2 外, 都是 f(z) 的三级极点.

因为 $z^2 - 1 = (z - 1)(z + 1)$, 以 1 和 -1 为一级零点, 所以 1 和 -1 是 f(z) 的二级极点.

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ 夕久(*)

当 z=2 时, 因为 $\lim_{z\to 2} f(z) = \lim_{z\to 2} \frac{(z^2-1)(z-2)^3}{(\sin\pi z)^3} = \frac{3}{\pi^3}$, z=2 是 f(z) 的可去奇点.

当 $z = \infty$ 时, 因为

$$f\left(\frac{1}{\zeta}\right) = \frac{(1-\zeta^2)(1-2\zeta)^3}{\zeta^5 \sin^3 \frac{\pi}{\zeta}},$$

∞ 点对于 f(z) 的奇点情况

 $\zeta_n=\frac{1}{n}$ 使 $f\left(\frac{1}{\zeta}\right)$ 的分母为 0, $\zeta_n=\frac{1}{n}$ 为 $f\left(\frac{1}{\zeta}\right)$ 的极点. $\zeta=1,1/2\Leftrightarrow z=1,2$, 前面已讨论过其极点情况. 当 $n>2,n\to\infty$ 时, $\zeta_n\to 0$, 故 $\zeta=0$ 不是 $f\left(\frac{1}{\zeta}\right)$ 的孤立奇点. 所以 $z=\infty$ 不是 f(z) 的孤立奇点.

例 .8

确定 $f(z) = \frac{1}{z^3(e^{z^3}-1)}$ 的孤立奇点的类型.

解: z = 0 是分母 $z^3(e^{z^3} - 1) = z^3 \sum_{n=1}^{\infty} \frac{z^{3n}}{n!}$ 的 6 级零点, 也即函数的 6 级极点.

目录

- 1 孤立奇点
 - 孤立奇点
- 2 极点与零点的关系
- 3 本性奇点
 - 函数在无穷远点的性态
- 4 课堂小结
 - 布置作业

理解孤立奇点的概念及其分类; 掌握可去奇点、极点与本性奇点的特征; 熟悉零点与极点的关系.

■ 教材习题—习题五 P183: 1 1)、4)、7)、8)、9); 3; 4; 8; 9 1)、2)、3)、6); 11 2); 12 2); 13 1)、3)、4)、5).