Формула Остроградского-Гаусса

Формула Остроградского—Гаусса связывает поверхностный интеграл II рода и тройной интеграл.

Теорема Остроградского-Гаусса:

Пусть $\sigma \in \mathbb{R}^3$ — кусочно-гладкая, ограниченная, замкнутая, двухсторонняя поверхность, ограничивающая тело \mathbb{T}

Пусть P(x,y,z); Q(x,y,z); R(x,y,z); $P_x'(x,y,z)$; $Q_y'(x,y,z)$; $R_z'(x,y,z)$ - непрерывны $\forall (x,y,z) \in \mathbb{T} \cup \sigma$.

Тогда

$$\iint_{\sigma_{\text{BHeIII}}} P(x, y, z) dy dz + Q(x, y, z) dx dz + R(x, y, z) dx dy =$$

$$= \iiint_{\mathbb{T}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

– формула Остроградского–Гаусса.

Замечание.

При смене стороны поверхности в формуле Остроградского –Гаусса перед тройным интегралом ставится знак « - «, т.е.

$$\oint_{\sigma_{\text{BHyTP}}} P(x, y, z) dy dz + Q(x, y, z) dx dz + R(x, y, z) dx dy =$$

$$= - \iiint_{\mathbb{T}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

Формула Стокса

Формула Стокса является обобщением формулы Грина на \mathbb{R}^3 и связывает

поверхностный интеграл II рода и криволинейный интеграл II рода.

Теорема Стокса:

Пусть $\sigma \subset \mathbb{R}^3$; σ — кусочно-гладкая, двухсторонняя, однозначно проецируемая на плоскость ХОУ, ограниченная поверхность, имеющая границу Γ

Пусть
$$\sigma$$
: $z = f(x, y) \forall (x, y) \in \mathbb{D}_{xy} = \Pi p_{xy} \sigma$

Пусть
$$\Gamma$$
:
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \ \forall t \in [a, b] \\ z = \lambda(t) \end{cases}$$

Пусть функции $\varphi(t)$, $\psi(t)$, $\lambda(t) \in C^1([a,b])$

Пусть функции P(x, y, z); Q(x, y, z); $R(x, y, z) \in C^1(\sigma)$

Тогда

$$\iint_{\sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy \, dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dx \, dz + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy =$$

$$= \begin{vmatrix} dy \, dz & dx \, dz & dx \, dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} =$$

$$= \oint_{\Gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz,$$

где контур Γ обходится так, что наблюдатель, у которого направление от ног к голове совпадает с направлением нормали \bar{n} , обходит Γ так, что σ остаётся слева (правило правого винта)

– формула Стокса

СКАЛЯРНОЕ ПОЛЕ

Определение

Множество $B \subset \mathbb{R}^3$, для которого выполняется равенство, что f(M) = C (C = const), называется *поверхностью уровня* или эквипотенциальной поверхностью.

Множество $B \subset \mathbb{R}^2$, для которого выполняется равенство, что f(M) = C (C = const), называется линией уровня или эквипотенциальной линией

Производня по напрвлению

Определение (производная скалярного поля в направлении)

Пусть f(M) — скалярное поле для всякой точки $M \in A$.

Пусть $M_0 \in A$ и $\bar{l} \uparrow \uparrow \overline{M_0 M}$.

Производной скалярного поля f(M) в точке $M_{\scriptscriptstyle 0}$ в направлении \bar{l} называется

$$\lim_{\left|\overline{M_0M}\right|\to 0}\frac{f(M)-f(M_0)}{\left|\overline{M_0M}\right|}\,.$$

Обозначение: $\frac{\partial f(M_0)}{\partial \bar{l}}$

Замечание:

Если $\frac{\partial f(M_0)}{\partial \bar{l}}>0 \Rightarrow f(M)>f(M_0) \Rightarrow$ скалярное поле f(M) при переходе через точку M_0 возрастает.

Если $\frac{\partial f(M_0)}{\partial \bar{l}}$ < $0 \Rightarrow f(M)$ < $f(M_0) \Rightarrow$ скалярное поле f(M) при переходе через точку M_0 убывает.

Теорема (о вычислении производной по направлению в ПДСК).

Пусть скалярное поле f(x,y,z) определено $\forall (x,y,z) \in A \subset R^3$ и дифференцируемо в точке $(x_0,y_0,z_0) \in A$.

Пусть \bar{l} – направление на множестве A.

Пусть
$$\angle \alpha = \begin{pmatrix} \hat{\bar{l}}; \hat{\bar{l}} \end{pmatrix}$$
, $\angle \beta = \begin{pmatrix} \bar{\bar{l}}; \hat{\bar{j}} \end{pmatrix}$, $\angle \gamma = \begin{pmatrix} \hat{\bar{l}}; \hat{\bar{k}} \end{pmatrix}$.

Тогда

$$\frac{\partial f(M_0)}{\partial \bar{l}} = f_x'(x_0, y_0, z_0) \cdot \cos \alpha + f_y'(x_0, y_0, z_0) \cdot \cos \beta + f_z'(x_0, y_0, z_0) \cdot \cos \gamma. \tag{1}$$

Градиент скалярного поля

Определение 1

Градиентом скалярного поля f(M) в точке M_0 называется **вектор,** направленный из точки M_0 в сторону наибольшего возрастания скалярного поля и имеющий длину, равную производной от скалярного поля f(M), вычисленной по этому направлению.

<u>Обозначение</u>: $gradf(M_0)$

Замечание:

Градиент скалярного поля указывает **направление наибольшего изменения скалярного поля.** Наибольшая скорость изменения скалярного поля равно модулю градиента.

Определение 2

Градиентом скалярного поля f(M) в точке M_0 называется вектор, имеющий координаты $\{f_x'(M_0), f_y'(M_0), f_z'(M_0)\}$, т.е.

$$grad f(M_0) = \{f'_x(M_0), f'_y(M_0), f'_z(M_0)\} = f'_x(M_0) \cdot \bar{i} + f'_y(M_0) \cdot \bar{j} + f'_z(M_0) \cdot \bar{k}$$
 (2)

Связь градиента и производной по направлению

$$1) \quad \frac{\partial f(\mathit{M}_0)}{\partial \overline{l}} = gradf(\mathit{M}_0) \cdot \overline{l_0} = \frac{\partial f(\mathit{M}_0)}{\partial \overline{l}} = gradf(\mathit{M}_0) \cdot \frac{\overline{l}}{|\overline{l}|},$$
 где $\overline{l_0} = \frac{\overline{l}}{|\overline{l}|} = \{cos\alpha; cos\beta, cos\gamma\}$

2)
$$\max \left| \frac{\partial f(M_0)}{\partial \bar{l}} \right| = \left| \operatorname{grad} f(M_0) \right| \Leftrightarrow \operatorname{grad} f(M_0)$$
 коллинеарен \bar{l} ;

3)
$$\frac{\partial f(M_0)}{\partial \bar{l}} = 0 \Leftrightarrow grad \ f(M_0)$$
 перпендикулярен \bar{l} ;

4) Во всех остальных случаях взаимного расположения $\operatorname{grad} f(M_0)$ и \bar{l} :

$$0 < \left| \frac{\partial f(M_0)}{\partial \bar{l}} \right| < \left| \operatorname{grad} f(M_0) \right|$$

Свойства градиента скалярного поля

- 1) grad f(M)в точке M_0 перпендикулярен поверхности уровня скалярного поля f(M), проходящей через точку M_0 .
- 2) $\operatorname{grad} f(M_0) = \overline{0} \iff f(M_0) = \operatorname{const};$
- 3) $grad(\alpha \cdot f(M)) = \alpha \cdot grad f(M)$.
- 4) $grad(f(M) \pm g(M)) = grad f(M) \pm grad g(M)$

5) $grad(f(M) \cdot g(M)) = g(M) \cdot grad f(M) + f(M) \cdot grad g(M)$