Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра	Систем управления и информа	тики	Группа_	P4235
ЛАБОРАТОРНАЯ РАБОТА №2				
по курсу: «Адаптивное и робастное управление нелинейными системами»				
<u>Принцип построения систем адаптивного и робастного управления</u> <u>возмущенными объектами</u>				
Вариант №2				
Авторы	работы:		нтонов Е.О отемов К. <i>А</i>	•
Препода	аватель:	Ге	расимов Д	Į.Н.
« <u>08</u> » сен	нтября 2017 г.			
Работа в	выполнена с оценкой			

Санкт-Петербург 2017 г.

Дата защиты «___» _____ 2017 г.

1 Цель работы

Освоение принципов построения систем адаптивного и робастного управления на примере задачи слежения выхода скалярного объекта за эталонным сигналом.

2 Теоретические сведения

Рассматриваемый объект управления:

$$\dot{x} = \theta x + u + \delta,\tag{1}$$

где x — переменная состояния объекта, u — сигнал управления, θ — неизвестный постоянный параметр, δ — ограниченное внешнее возмущение, удовлетворяющее неравенству $|\delta(t)| \leq \overline{\delta}$.

Возмущающее воздействие $\delta(t)$ имеет вид:

$$\delta(t) = (1+t)^{-\frac{1}{8}} \left[1 - \theta(1+t)^{-\frac{1}{4}} - \frac{3}{8} (1+t)^{-\frac{5}{4}} \right]. \tag{2}$$

Цель управления заключается построении такого закона управления, чтобы обеспечивалось неравенство :

$$|x_m(t) - x(t)| = |\varepsilon(t)| \le \overline{\Delta}, \forall t \ge T,$$
(3)

где $\varepsilon = x_m - x$ — ошибка управления, x_m — эталонный сигнал, являющийся выходом динамической модели вида (т.н. эталонной модели)

$$\dot{x}_m = -\lambda x_m + \lambda g,\tag{4}$$

где g — сигнал задания, λ — параметр, задающий желаемое время переходного процесса.

Для решение поставленной задачи используется настраиваемый регулятор:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{5}$$

совместно с тремя анализируемыми алгоритма адаптации:

а) Алгоритм адаптации (АА), использованный для невозмущенного ОУ:

$$\dot{\hat{\theta}} = -\gamma x \varepsilon, \tag{6}$$

б) Модификация АА из п.1:

$$\hat{\theta} = -\gamma x \varepsilon, \tag{7}$$

в) АА из п.1 с обратной связью по величине настраиваемого параметра:

$$\dot{\hat{\theta}} = -\sigma \hat{\theta} - \gamma x \varepsilon. \tag{8}$$

3 Исходные данные

Варианту №2 соответствует следующий набор исходных данных:

$$\theta = 2, \qquad \lambda = 2, \qquad g(t) = \cos 4t.$$
 (9)

4 Результаты экспериментов

См. рисунки 1-11 и подписи к ним.

Рисунок 1 – Схема моделирования процесса управления с помощью настраиваемого регулятора из п.1 в условиях действия на ОУ возмущения 2

Рисунок 2 — Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.1

Рисунок 3 — Схема моделирования процесса управления с помощью настраиваемого регулятора из п.2 в условиях действия на ОУ возмущения 2

Рисунок 4 — Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.2

Рисунок 5 — Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.2

Рисунок 6 — Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.2

Рисунок 7 – Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.2 при отсутствии возмущения

Рисунок 8 – Схема моделирования процесса управления с помощью настраиваемого регулятора из п.3 в условиях действия на ОУ возмущения 2

Рисунок 9 — Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.3

Рисунок 10 — Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.3

Рисунок 11 — Результаты моделирования процесса управления с помощью настраиваемого регулятора с AA из п.3

5 Выводы по работе

В результате проделанной работы экспериментальным путем было установлено, что

- настраиваемый регулятор с AA (6) обеспечивает устойчивость замкнутой системы, но в общем случае не обеспечивает ограниченности оценки параметра при наличии ограниченного внешнего возмущения 2;
- настраиваемый регулятор с AA (7) добавляет системе свойства робастности по отношению к внешнему воздействию, но увеличивает амплитуду управляющего воздействия до x^2 и не позволяет избавиться от ненулевой установившейся ошибки даже при отсутствии внешнего возмущения. Увеличение значения коэффициента адаптации увеличивает скорость (время) сходимости оценки $\hat{\theta}$ к истинному значению параметра θ ОУ и точность системы, но увеличивает амплитуду управляющего сигнала;
- настраиваемый регулятор с AA (8) обеспечивает устойчивость замкнутой системы и является робастным по отношению к внешнему возмущению. В то же время позволяет парировать недостатки робастного алгоритма управления. Так, при отсутствии внешнего возмущения точность системы может быть увеличена засчет уменьшения коэффициента σ .