Recitation #18: Comparison Tests and Alternating Series - Solutions

Warm up:

For each of the following, answer **True** or **False**, and explain why.

- (a) If $a_n \ge 0$ and $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} a_n^2$ converges.
- (b) If $a_n, b_n \ge 0$ and both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge, then $\sum_{n=0}^{\infty} a_n b_n$ converges.

Solution: (a) True

> Since $\sum_{n=0}^{\infty} a_n$ converges, $\lim_{n\to\infty} a_n = 0$. So, in particular, there exists an integer N such that $a_k < 1$ for all $k \ge N$. Then for all $k \ge N$, $a_k^2 < a_k$,

and therefore we have that

$$\sum_{n=N}^{\infty} a_n^2 < \sum_{n=N}^{\infty} a_n.$$

Thus, by the Comparison Test, $\sum_{n=0}^{\infty} a_n^2$ is convergent.

(b) True

Just as in part (a) there exists an integer N such that $a_k < 1$ for all $k \ge N$. Then

$$\sum_{n=N}^{\infty} a_n b_n < \sum_{n=N}^{\infty} b_n$$

and thus, by the Comparison Test, $\sum_{n=0}^{\infty} a_n b_n$ is convergent.

Learning outcomes:

Group work:

- **Problem 1** (a) Why can we not use the Comparison test with $\sum_{k=1}^{\infty} \frac{1}{k^2}$ to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 5}$ converges?
- (b) Adjust $\sum_{k=1}^{\infty} \frac{1}{k^2}$ to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 5}$ converges via the Comparison Test.
- (c) Give a convergent series we can use in the Limit Comparison Test to show that $\sum_{k=1}^{\infty} \frac{1}{k^2 5}$ converges.

Solution: (a) We cannot use the Comparison Test here because

$$\frac{1}{k^2} < \frac{1}{k^2 - 5}$$

for all $k \geq 1$. So we would just be showing the the series in question is greater than a series which converges, which does not give us any information.

(b) Notice that

$$\frac{2}{k^2} > \frac{1}{k^2 - 5}$$

for all $k \ge 4$. Since $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, $\sum_{k=1}^{\infty} \frac{2}{k^2} = 2 \sum_{k=1}^{\infty} \frac{1}{k^2}$. Thus, $\sum_{k=1}^{\infty} \frac{2}{k^2}$ converges.

Therefore, the Comparison Test with $\sum_{k=1}^{\infty} \frac{2}{k^2}$ shows that $\sum_{k=0}^{\infty} \frac{1}{k^2 - 5}$ converges.

(c) For the Limit Comparison Test, we can use $\sum_{k=1}^{\infty} \frac{1}{k^2}$.

$$\lim_{k \to \infty} \frac{\frac{1}{k^2 - 5}}{\frac{1}{k^2}} = \lim_{k \to \infty} \frac{k^2}{k^2 - 5}$$
= 1.

Thus, since $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, by the Limit Comparison Test we know that $\sum_{k=0}^{\infty} \frac{1}{k^2-5}$ converges.

Problem 2 Determine if the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^3 + 1}$$

(c)
$$\sum_{n=0}^{\infty} \frac{\cos^2 n}{n^3 + 1}$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^4 + 1}$$

(d)
$$\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^2 e^{-n} \right]$$

Solution: (a) Use the **Limit Comparison Test** with $\sum_{n=1}^{\infty} \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{3n^3 + 1} \cdot \frac{n}{1}$$
$$= \frac{1}{3}.$$

Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, by the Limit Comparison Test we know that $\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^3 + 1}$ diverges.

(b) Use the **Limit Comparison Test** with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{3n^4 + 1} \cdot \frac{n^2}{1}$$
$$= \frac{1}{2}.$$

Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by the Limit Comparison Test we know that $\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^4 + 1}$ converges.

(c) Use the **Comparison Test** with $\sum_{n=1}^{\infty} \frac{1}{n^3}$.

Since we always have that $0 < \cos^2(n) < 1$, we know that

$$\frac{\cos^2(n)}{n^3+1} \le \frac{1}{n^3+1} < \frac{1}{n^3}.$$

Therefore, by the Comparison Test, we have that $\sum_{n=0}^{\infty} \frac{\cos^2 n}{n^3 + 1}$ converges.

Recitation #18: Comparison Tests and Alternating Series - Solutions

(d) Use the **Comparison Test** with $\sum_{n=0}^{\infty} 2 \cdot e^{-n}$.

First, notice that for all $n \geq 3$,

$$\left(1 + \frac{1}{n}\right)^2 < 2.$$

Also, notice that $\sum_{n=1}^{\infty} e^{-n}$ is a convergent geometric series. Therefore $\sum_{n=1}^{\infty} 2$. e^{-n} converges, and so $\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^2 e^{-n} \right]$ converges by the Comparison Test.

Problem 3 Determine if the following series absolutely converge, conditionally converge, or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+3}$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+3}$$
 (c) $\sum_{n=1}^{\infty} (-1)^{n+1} n^2 e^{\frac{-n^3}{3}}$ (e) $\sum_{n=4}^{\infty} \frac{(-2)^n}{n}$

(e)
$$\sum_{n=4}^{\infty} \frac{(-2)^n}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$$
 (d) $\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{3^n + 3^{-n}}$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{3^n + 3^{-n}}$$

(a) Since $\frac{1}{n+3}$ is positive and decreasing, the Alternating Series Solution:Test applies. Thus, this series converges. But we know that $\sum_{n=1}^{\infty} \frac{1}{n+3}$ diverges (Harmonic Series) and so $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+3}$ is conditionally convergent.

(b) Let $a_n = \frac{(n+1)^n}{(2n)^n}$. Applying the Root Test, we see that

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{n+1}{2n}$$
$$= \frac{1}{2} < 1.$$

So $\sum_{n=1}^{\infty} \frac{(n+1)^n}{(2n)^n}$ converges, and therefore $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$ is absolutely

Recitation #18: Comparison Tests and Alternating Series - Solutions

(c) Let $f(x)=x^2e^{\frac{-x^3}{3}}$. The function f(x) is continuous, positive, and decreasing. So we apply the integral test

$$\begin{split} \int_{1}^{\infty} x^{2} e^{\frac{-x^{3}}{3}} \, dx &= \lim_{b \to \infty} \int_{1}^{b} x^{2} e^{\frac{-x^{3}}{3}} \, dx \\ &= \lim_{b \to \infty} \int_{\frac{1}{3}}^{\frac{b^{3}}{3}} e^{-u} \, du \qquad \mathbf{u} = \frac{x^{3}}{3}, \ d\mathbf{u} = x^{2} \, dx \\ &= \lim_{b \to \infty} \left[-e^{\frac{-b^{3}}{3}} + e^{\frac{-1}{3}} \right] \\ &= 0 + e^{\frac{-1}{3}} = e^{\frac{-1}{3}}. \end{split}$$

So, by the Integral Test, $\sum_{n=1}^{\infty} n^2 e^{\frac{-n^3}{3}}$ converges. Therefore, $\sum_{n=1}^{\infty} (-1)^{n+1} n^2 e^{\frac{-n^3}{3}}$ is absolutely convergent.

(d) First, notice that

$$\frac{5}{3^n} > \frac{5}{3^n + 3^{-n}}.$$

Then since $\sum_{n=0}^{\infty} \frac{5}{3^n}$ converges (geometric series with $r=\frac{1}{3}<1$), we know that $\sum_{n=0}^{\infty} \frac{5}{3^n+3^{-n}}$ converges by the Comparison Test. Thus, the series $\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{3^n+3^{-n}}$ is absolutely convergent.

(e) Since the sequence $\left\{\frac{(-2)^n}{n}\right\}$ diverges, the series $\sum_{n=4}^{\infty} \frac{(-2)^n}{n}$ diverges by the Divergence Test.

Problem 4 (a) Find an upper bound for how close $\sum_{k=0}^{4} \frac{(-1)^k k}{4^k}$ is to the value of $\sum_{k=0}^{\infty} \frac{(-1)^k k}{4^k}$.

(b) How many terms are needed to estimate $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n!}$ to within 10^{-6} ?

Solution: (a) Recall from the lesson that the remainder R_n is given by

$$R_n = |S - S_n| \le a_{n+1}.$$

Recitation #18: Comparison Tests and Alternating Series - Solutions

Also notice that

$$\sum_{k=0}^{\infty} \frac{(-1)^k k}{4^k} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (k-1)}{4^{k-1}}$$

and

$$\sum_{k=0}^{4} \frac{(-1)^k k}{4^k} = \sum_{k=1}^{5} \frac{(-1)^{k-1} (k-1)}{4^{k-1}}.$$

So

$$\left| \sum_{k=0}^{\infty} \frac{(-1)^k k}{4^k} - \sum_{k=0}^{4} \frac{(-1)^k k}{4^k} \right|$$

$$= \left| \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (k-1)}{4^{k-1}} - \sum_{k=1}^{5} \frac{(-1)^{k-1} (k-1)}{4^{k-1}} \right|$$

$$= |S - S_5|$$

$$= R_6 \le a_6 = \boxed{\frac{5}{4^5}}$$

(b) Since $R_n \leq a_{n+1}$, we need to find n so that

$$a_{n+1} \le 10^{-6}$$

$$\iff \frac{\ln(n+1)}{(n+1)!} \le 10^{-6}$$

$$\iff \frac{(n+1)!}{\ln(n+1)} \ge 10^{6}$$

Using a calculator, we see that this inequality holds for $n \approx 8.8$. So for $\lceil n \geq 9 \rceil$, $R_n < 10^{-6}$.