1.9. Třída \mathcal{NPC} [140321-1158] 27

1.9 Třída \mathcal{NPC}

1.9.1 Redukce a polynomiální redukce úloh. Jsou dány dvě rozhodovací úlohy \mathcal{U} a \mathcal{V} . Řekneme, že úloha \mathcal{U} se redukuje na úlohu \mathcal{V} , jestliže existuje algoritmus (program pro RAM, Turingův stroj) M, který pro každou instanci I úlohy \mathcal{U} zkonstruuje instanci I' úlohy \mathcal{V} a to tak, že

I je ANO-instance \mathcal{U} iff I' je ANO-instance \mathcal{V} .

Fakt, že úloha $\mathcal U$ se redukuje na úlohy $\mathcal V$ značíme

$$\mathcal{U} \triangleleft \mathcal{V}$$
.

Jestliže navíc, algoritmus M pracuje v polynomiálním čase, říkáme, že $\mathcal U$ se polynomiálně redukuje na $\mathcal V$ a značíme

$$\mathcal{U} \triangleleft_{p} \mathcal{V}$$
.

Fakt, že se úloha $\mathcal U$ redukuje na úlohu $\mathcal V$ zhruba řečeno znamená, že $\mathcal U$ není obtížnější než $\mathcal V$.

1.9.2 Tvrzení. Jsou dány tři rozhodovací úlohy \mathcal{U} , \mathcal{V} a \mathcal{W} . Jestliže platí

$$\mathcal{U} \triangleleft_p \mathcal{V} \text{ a } \mathcal{V} \triangleleft_p \mathcal{W}, \text{ pak } \mathcal{U} \triangleleft_p \mathcal{W}.$$

- 1.9.3 \mathcal{NP} úplné úlohy. Řekneme, že rozhodovací úloha \mathcal{U} je \mathcal{NP} úplná, jestliže
 - 1. \mathcal{U} je ve třídě \mathcal{NP} ;
 - 2. každá \mathcal{NP} úloha se polynomiálně redukuje na \mathcal{U} .

Třída všech \mathcal{NP} úplných úloh se značí \mathcal{NPC} .

Zhruba řečeno, \mathcal{NP} úplné úlohy jsou ty "nejtěžší" mezi všemi \mathcal{NP} úlohami.

- **1.9.4** Tvrzení. Jsou dány dvě \mathcal{NP} úlohy \mathcal{U} a \mathcal{V} , pro které platí $\mathcal{U} \lhd_p \mathcal{V}$. Pak
 - 1. jestliže \mathcal{V} je ve třídě \mathcal{P} , pak také \mathcal{U} je ve třídě \mathcal{P} ;
 - 2. jestliže $\mathcal U$ je $\mathcal {NP}$ úplná úloha, pak také $\mathcal V$ je $\mathcal {NP}$ úplná úloha.
- **1.9.5** Tvrzení. Kdyby by některá \mathcal{NP} úplná úloha patřila do třídy \mathcal{P} (tj. byla by polynomiálně řešitelná), pak $\mathcal{P} = \mathcal{NP}$. Jinými slovy, každá \mathcal{NP} úloha by byla polynomiálně řešitelná.
- **1.9.6** \mathcal{NP} obtížné úlohy. Jestliže o některé úloze \mathcal{U} pouze víme, že se na ní polynomiálně redukuje některá \mathcal{NP} úplná úloha, pak říkáme, že \mathcal{U} je \mathcal{NP} těžká, nebo též \mathcal{NP} obtížná. Poznamenejme, že to vlastně znamená, že \mathcal{U} je alespoň tak těžká jako všechny \mathcal{NP} úlohy.
- **1.9.7** Cookova věta. Úloha SAT, splňování formulí v konjunktivním normálním tvaru, je \mathcal{NP} úplná úloha.

1.9.8 Myšlenka důkazu. Není těžké se přesvědiít, že úloha SAT je ve třídě \mathcal{NP} . První fáze nedeterministického algoritmu vygeneruje ohodnocení logických proměnných a na základě tohoto ohodnocení jsme schopni v polynomiálním čase ověřit, zda je v tomto ohodnocení formule pravdivá nebo ne.

Druhá část důkazu spočívá v popisu práce Turingova stroje formulí výrokové logiky. Načrtneme základní myšlenku tohoto popisu.

Je dán nedeterministický Turingův stroj M s množinou stavů Q, vstupní abecedou Σ , páskovou abecedou Γ , přechodovou funkcí δ , počátečním stavem q_0 a koncovým stavem q_f . Předpokládejme, že M příjímá slovo w a potřebuje přitom p(n) kroků.

Zavedeme logické proměnné:

$$h_{i,j}, i = 0, 1, \dots, p(n), j = 1, 2, \dots, p(n);$$

fakt, že hodnota proměnné $h_{i,j}$ je rovna 1 znamená, že hlava Turingova stroje v čase i čte j-té pole pásky.

$$s_i^q$$
, $i = 0, 1, \dots, p(n)$, $q \in Q$;

fakt, že hodnota proměnné s_i^q je rovna 1 znamená, že Turingův stroj v čase ije ve stavu q.

$$t_{i,j}^A$$
, $i = 0, 1, \dots, p(n), j = 1, 2, \dots, p(n), A \in \Gamma$;

fakt, že hodnota proměnné $t_{i,j}^A$ rovna 1 znamená, že v čase i v j-tém poli pásky je páskový symbol A.

Nyní je třeba formulemi popsat následující fakta:

- 1. V každém okamžiku je Turingův stroj v právě jednom stavu.
- 2. V každém okamžiku čte hlava Turingova stroje právě jedno pole vstupní pásky.
- 3. V každém okamžiku je na každém poli pásky Turingova stroje právě jeden páskový symbol.
- 4. Na začátku práce (tj. v čase 0) je Turingův stroj ve stavu q_0 , hlava čte první pole pásky a na pásce je na prvních n polích vstupní slovo, ostatní pole pásky obsahují B.
- 5. Krok Turingova stroje je určen přechodovou funkcí, tj. stav stroje, obsah čteného pole a poloha hlavy v čase i+1 je dána přechodovou funkcí.
- 6. V polích pásky, které v čase i hlava nečte, je obsah v čase i+1 stejný jako v i.
- 7. Na konci práce Turingova stroje, tj. v čase p(n), je stroj ve stavu q_f .

Ukážeme jak utvořit formule pro body 1, 4, 5, 6 a 7.

Bod 1. V okamžiku i je Turingův stroj v aspoň jednom stavu:

$$\bigvee_{q \in Q} s_i^q.$$

V okamžiku i Turingův stroj není ve dvou různých stavech:

$$\bigwedge_{q \neq q'} (\neg s_i^q \vee \neg s_i^{q'}).$$

Nyní fakt, že Turingův stroj je v okamžíku i právě jednom stavu je konjunkce obou výše uvedených formulí:

$$(\bigvee_{q \in Q} s_i^q) \wedge \bigwedge_{q \neq q'} (\neg s_i^q \vee \neg s_i^{q'}).$$

Bod 4. Na začátku práce (tj. v čase 0) je Turingův stroj ve stavu q_0 , hlava čte první pole pásky a na pásce je na prvních n polích vstupní slovo $a_1a_2 \ldots a_n$, ostatní pole obsahují B.

$$s_0^{q_0} \wedge h_{0,1} \wedge t_{0,1}^{a_1} \wedge \ldots \wedge t_{0,n}^{a_n} \wedge t_{0,n+1}^{B} \wedge \ldots \wedge t_{0,p(n)}^{B}.$$

Bod 5. Jestliže Turingův stroj je v čase i ve stavu q, hlava je na j-tém poli pásky, hlava čte páskový symbol A a $\delta(q,A)$ se skládá z trojic (p,C,D) (zde D=1 znamená posun hlavy doprava, D=-1 znamená posun hlavy doleva), pak formule má tvar:

$$\bigwedge_{i} \bigwedge_{A \in \Gamma} ((s_{i}^{q} \wedge h_{i,j} \wedge t_{i,j}^{A}) \Rightarrow \bigvee (s_{i+1}^{p} \wedge t_{i+1,j}^{C} \wedge h_{i+1,j+D})).$$

Bod 6. Obsah polí kromě j-tého zůstává v čase i + 1 stejný:

$$\bigwedge_{i} \bigwedge_{A \in \Gamma} ((\neg h_{i,j} \wedge t_{i,j}^A) \Rightarrow t_{i+1,j}^A).$$

Bod 7. Na konci práce Turingova stroje, tj. v čase p(n) je stroj ve stavu q_f .

$$s_{p(n)}^{q_f}$$
.

Výslednou formuli dostaneme jako konjunkci všech dílčích formulí pro všechny časové okamžiky $i=0,1,\ldots,p(n)$.

1.10 Převody úloh

1.10.1 Na základě tvrzení 1.9.4 víme: K důkazu, že rozhodovací úloha $\mathcal U$ ze třídy $\mathcal N\mathcal P$ je $\mathcal N\mathcal P$ úplná stačí, abychom ukázali, že se na $\mathcal U$ polynomiálně redukuje některá $\mathcal N\mathcal P$ úplná úloha. Zatím jediná $\mathcal N\mathcal P$ úplná úloha, kterou známe, je SAT, splňování booleovských formulí v konjunktivním normálním tvaru. Ukážeme řadu polynomiálních redukcí a tím ukážeme, že i další rozhodovací úlohy jsou $\mathcal N\mathcal P$ úplné.

1.10.2 3-CNF SAT. Úloha: Je dána formule φ v konjunktivním normálním tvaru, kde každá klasusule má 3 literály. Otázka: Je formule φ splnitelná?

1.10.3 Tvrzení. Platí

$$SAT \vartriangleleft_p 3 - CNF SAT.$$

- **1.10.4 Nástin převodu** SAT na 3-CNF SAT. Je dána formule φ v konjunktivním normálním tvaru. Zkonstruujeme formuli ψ , která
 - 1. je v konjunktivním normálním tvaru, kde každá klausule obsahuje maximálně 3 literály;
 - 2. je splnitelná právě tehdy, když je splnitelná formule φ .

Označme C_1, C_2, \ldots, C_k všechny klausule formule φ . Jestliže každá z klausulí obsahuje nejvýše 3 literály, nemusíme nic konstruovat, v tomto případě je $\psi = \varphi$.

Pro každou klausuli C, která obsahuje víc než 3 literály, sestrojíme formuli ψ_C takto: Nechť $C = l_1 \vee l_2 \vee \ldots \vee l_s$, kde l_i jsou literály. Zavedeme nové logické proměnné $x_1, x_2, \ldots, x_{s-3}$ a položíme

$$\psi_C = (l_1 \vee l_2 \vee x_1) \wedge (\neg x_1 \vee l_3 \vee x_2) \wedge (\neg x_2 \vee l_4 \vee x_3) \wedge \ldots \wedge (\neg x_{s-3} \vee l_{s-1} \vee l_s).$$

Platí: Formule ψ_C je splnitelná iff C je splnitelná.

Formuli ψ dostaneme jako konjunkci všech klasusulí formule φ , které mají nejvýše 3 literály a formulí ψ_C pro klausule C o více než 3 literálech.

Předpokládejme, že formule φ má k klausulí a nejdelší klausule má s literálů. Pak v konstrukci ψ jsme přidali maximálně (s-3)k nových logických proměnných (rovnost nastává v případě, že každá z klausulí formule φ obsahuje přesně s>3 literálů). Navíc jsme formuli prodloužili o maximálně o 2(s-3)k literálů (každá nová logická proměnná se ve formuli ψ objevuje přesně dvakrát). Tedy délka formule ψ se pouze polynomiálně zvětšila vzhledem k délce formule φ .

- **1.10.5 Důsledek.** Protože úloha 3-CNF SAT je ve třídě \mathcal{NP} , jedná se o \mathcal{NP} úplnou úlohu.
- **1.10.6** Obarvení vrcholů grafu. Je dán prostý neorientovaný graf bez smyček G=(V,E). obarvení vrcholů grafu G je přiřazení, které každému vrcholu v grafu G přiřazuje jeho barvu b(v), b(v) je prvek množiny (barev) B, pro které platí, že žádné dva vrcholy spojené hranou nemají stejnou barvu. (Jinými slovy, jestliže $\{u,v\}$ je hrana grafu G, pak $b(u) \neq b(v)$.)

GrafGse nazývá k-barevný, jestliže jeho vrcholy je možné obarvit kbarvami (tj. množina B má k prvků).

1.10.7 k-barevnost. Úloha: Je dán prostý neorientovaný graf G bez smyček a číslo k.

Otázka: Je graf G k-barevný?

1.10.8 Tvrzení. Platí

$$3 - CNF SAT \vartriangleleft_p 3$$
-barevnost.

1.10.9 Základní myšlenka převodu. Je dána formule φ , která je v CNF a každá klausule má 3 literály. K důkazu je třeba zkonstruovat prostý neorientovaný graf G bez smyček takový, že φ je splnitelná právě tehdy, když G je 3-barevný. Konstrukce využívá pomocný graf o pěti vcholech $\{1,2,3,4,5\}$ a pěti hranách s touto vlastností:

Marie Demlová: Teorie algoritmů

- $\bullet\,$ Jestliže vrcholy 1 a 2 mají stejnou barvu, pak tuto barvu musí mít i vrchol5
- \bullet Jestliže jeden z vrcholů 1 a 2 má barvu z, pak lze tento graf obarvit tak, aby i vrchol 5 měl barvu z.

 $\bf 1.10.10$ Důsledek. Protože 3-barevnost je ve třídě $\mathcal{NP},$ jedná se o \mathcal{NP} úplnou úlohu.

1.10.11 Tvrzení. Platí

3-barevnost $\lhd_p ILP$.

31