

Basics of Parallel Computing 2024S Assignment 2

May 25, 2024

2 Person Group 13

- 1: Pia SCHWARZINGER, ???
- 2: Yahya JABARY, 11912007

1 Exercise 1

```
1 #include <stdio.h>
2 #include <omp.h>
3 #include <stdlib.h>
4
5 int main(int argc, char *argv[]) {
      int n_threads = omp_get_num_procs();
6
7
      n_threads = 4;
8
9
      #pragma omp parallel num_threads(n_threads)
10
11
          printf("child id: %d\n", omp_get_thread_num());
12
      }
13 }
```

./demo/test.c

- 1.1 What do a and t count?
- 1.2 Values for all elements in a and t
- 2 Exercise 2
- 2.1 Optimal Schedule
- 2.2 Schedule static, 3
- 2.3 Schedule dynamic, 2
- 3 Exercise 3
- 3.1 Fix the problems with this OpenMP code
- 4 Exercise 4
- 4.1 What is the output of the three different versions?
- 4.2 How often is the function omp_tasks called?
- 5 Exercise 5
- 5.1 Parallelize the pixel computation
- 5.2 Running time analysis
- 5.3 Influence of schedule parameter
- 6 Exercise 6
- 6.1 Parallelize the filter computation
- 6.2 Strong scaling analysis
- 6.3 Weak scaling analysis
- 7 Exercise 7
- 7.1 Convert OpenMP code to CUDA
- 7.2 Running time analysis
- 7.3 Impact of block size
- 7.4 Running time: CPU vs GPU code

8 Addendum: Raw Data

1168	1	1	0.0603872	
1168	1	1	0.0607409	
1168	1	1	0.0600319	
1168	2	1	0.196807	
1168	2	1	0.2452	
1168	2	1	0.19003	
1168	4	1	3.45923	
1168	4	1	3.90704	
1168	4	1	3.45583	
1168	8	1	5.395	
1168	8	1	5.45436	
1168	8	1	4.53896	
1168	16	1	10.7055	
1168	16	1	10.5507	
1168	16	1	10.2593	
1168	24	1	17.3402	
1168	24	1	18.5362	
1168	24	1	17.2604	
1168	32	1	26.1056	
1168	32	1	25.1663	
1168	32	1	27.9486	

Figure 1: Raw output from "filter strong" job.

1168	1	1	0.060196
1168	1	1 0.0609	
1168	1	1 0.060195	
1168	2	2	0.401089
1168	2	2	0.635222
1168	2	2	1.18221
1168	4	4	14.4383
1168	4	4	13.3359
1168	4	4	9.2267
1168	8	8	44.0875
1168	8	8	44.8141
1168	8	8	42.5354

Figure 2: Raw output from "weak scaling" job. Timed out on *slurmstepd* due to time out / time limit.

90	1	0.110155
90	1	0.109749
90	1	0.109885
90	2	0.056617
90	2	0.056599
90	2	0.056612
90	4	0.045880
90	4	0.045966
90	4	0.045863
90	8	0.031120
90	8	0.031132
90	8	0.031170
90	16	0.018182
90	16	0.018227
90	16	0.018220
90	24	0.013238
90	24	0.013257
90	24	0.013180
90	32	0.014816
90	32	0.017296
90	32	0.014814
1100	1	16.306608
1100	1	16.316588
1100	1	16.284397
1100	2	8.175213
1100	2	8.178992
1100	2	8.170321
1100	4	6.621239
1100	4	6.678632
1100	4	6.639713
1100	8	4.557337
1100	8	4.554004
1100	8	4.586490
1100	16	2.447131
1100	16	2.448894
1100	16	2.447200
1100	24	1.731222
1100	24	1.718731
1100	24	1.718424
1100	32	1.710424
1100	32	1.313263
1100	32	1.320209
1100	52	1.320209

Figure 3: Raw output from "juliap" job.

"static"	1100	16	2.450491
"static"	1100	16	2.448260
"static"	1100	16	2.449136

Figure 4: Raw output from "juliap2" job.