Can one hear the shape of a drum?

浦川 肇

東北大学大学院情報科学研究科

講演では、放送大学大学院文化科学研究科の印刷教材

熊原啓作、砂田利一編、「数理システム科学」 日本放送協会、2002年 において、小生が担当した

「第II部 連続システム」の「第8章 等スペクトル問題」(133-143頁) について行った。

第8章 等スペクトル問題

8.1 カッツの問題

1966年に、次の論文によって提起されたカッツの問題とは、次のような問題である。

M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 73 (1966), 1-23.

 \mathbf{R}^n 内の区分的に滑らかな境界 $\partial\Omega$ を持つ有界領域 Ω について, Ω に対するディリクレ固有値問題とノイマン固有値問題の,重複度を込めて,大きさの順に数え上げた固有値全体をそれぞれ.

$$Spec_D(\Omega) = \{\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_i \leq \cdots \}$$

$$Spec_N(\Omega) = \{\mu_1 \leq \mu_2 \leq \cdots \leq \mu_i \leq \cdots \}$$

と書き、それぞれ Ω のディリクレ固有値問題のスペクトル、ノイマン固有値問題のスペクトルと呼ぶ、これらスペクトルは、 Ω を「太鼓」と思って、太鼓を鳴らしたときの「太鼓の音」を表している、このとき、

カッツの問題 \mathbb{R}^n 内の2つの領域 Ω_1 と Ω_2 に対して,

(#) $\operatorname{Spec}_D(\Omega_1) = \operatorname{Spec}_D(\Omega_2)$ または $\operatorname{Spec}_N(\Omega_1) = \operatorname{Spec}_N(\Omega_2)$ とする. このとき Ω_1 と Ω_2 は等長的(合同)となるか? すなわち,2 つの太鼓 Ω_1 と Ω_2 を鳴らしたとき,同じ音がするけれども,形が異なる太鼓が存在するであろうか?

同様の問題は、コンパクト・リーマン多様体の場合にも考えられ、多くの結果が得られているが、これらについては残念ながら、ここでは割愛する.

このとき、(#)の仮定の下で、2つの領域 Ω_1 と Ω_2 は、

$$\mathrm{Vol}_n(\Omega_1) = \mathrm{Vol}_n(\Omega_2)$$
 かつ $\mathrm{Vol}_{n-1}(\partial\Omega_1) = \mathrm{Vol}_{n-1}(\partial\Omega_2)$ でなければならないことが知られている(例えば、上記のカッツの論文を見よ)。

ここで $\operatorname{Vol}_n(\Omega)$ は Ω の n 次元体積であり、 $\operatorname{Vol}_{n-1}(\partial\Omega)$ は境界 $\partial\Omega$ の n-1 次元体積(表面積)を表す.

さて、1982年に私が、下記の論文で得た解答は次のようなものである。

H. Urakawa, Bounded domains which are isospectral but not congruent, Ann. scient. Éc. Norm. Sup., 15 (1982), 441-456.

定理 8.1 $n \ge 4$ とする. このとき \mathbf{R}^n の 2 つの領域 Ω_1 と Ω_2 で,

 $\operatorname{Spec}_D(\Omega_1) = \operatorname{Spec}_D(\Omega_2)$ $\text{from } \operatorname{Spec}_N(\Omega_1) = \operatorname{Spec}_N(\Omega_2)$

であるが、 Ω_1 と Ω_2 の形は互いに異なるものを構成できる.

n=4 のとき、このような Ω_1 、 Ω_2 は次のように構成できる。

 \mathbf{R}^4 内の 4 個の 1 次独立なベクトルの 2 つの組 ω_1 , ω_2 , ω_3 , ω_4 と η_1 , η_2 , η_3 , η_4 を次のように定める.

(1) ω_4 は ω_1 , ω_2 , ω_3 すべてと垂直になるように取り, ω_1 , ω_2 と ω_3 は図 8.1 のように取る. ただし図に

おいて各辺の長さが1の2 つの立方体より成るものと する.

(2) η_1 , η_2 と η_3 , η_4 とは垂直になるように取り, η_1 と η_2 がなす角度は 60° , η_3 が η_4 となす角度は 45° となるように取る.

そこで $0 < \epsilon < 1$ に対して,

$$\Omega_1^{\varepsilon} = \left\{ \left. x = \sum_{i=1}^4 x_i \omega_i \in \mathbf{R}^4 \right| \varepsilon < |x| < 1 \right\},$$

$$\Omega_2^{\varepsilon} = \left\{ y = \sum_{i=1}^4 y_i \eta_i \in \mathbf{R}^4 \middle| \varepsilon < |y| < 1 \right\}$$

とする. このとき各 $0 < \epsilon < 1$ について,

Spec_D $(\Omega_1^{\varepsilon}) = \operatorname{Spec}_D(\Omega_2^{\varepsilon})$ $\text{the Spec}_N(\Omega_1^{\varepsilon}) = \operatorname{Spec}_N(\Omega_2^{\varepsilon})$ であるが、 Ω_1^{ϵ} と Ω_2^{ϵ} の形は互いに異なっている.

これらの結果とメビウスの球面の三角形分割との関連については、下記の記 事も参考にせよ.

浦川肇,あなたは太鼓の音を聴いてその形がわかりますか? (上)(下), 数学セミナー, 1983年, 3月号, 20-28;4月号, 72-77.

10 年後の 1992 年になって、3 人の下記の論文により、2 次元の平面領域で、 すなわち,本当の太鼓で、同じ音がするが、互いに形の異なる太鼓が得られた。

C. Gordon, D. Webb and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbits, Invent. math., 110 (1992), 1-22.

その後,1995年に、下記の興味深い論文により、決定的な改良が加えられ、 上記の答えを含む極めて簡明で初等的な方法による答えが得られた.以下の節 において、この論文の仕事を紹介する.

S. J. Chapman, Drums that sound the same, Amer. Math. Monthly, **102** (1995), 124-138.

8.2 チャップマンの等スペクトル領域

チャップマンの得た等スペクトル領域は、下図の Ω_1 と Ω_2 であり、ゴルド

ン-ウェッブ-ウォルパートの等スペクトル領域 Ω_1' と Ω_2' は,図 8.3 を単位に図 8.2 を使った図 8.4 より得られる.

このとき、いずれも Ω_1 、 Ω_2 および Ω_1' 、 Ω_2' は

$$\begin{cases} \operatorname{Spec}_D(\Omega_1) = \operatorname{Spec}_D(\Omega_2) & \text{in} \supset & \operatorname{Spec}_N(\Omega_1) = \operatorname{Spec}_N(\Omega_2), \\ \operatorname{Spec}_D(\Omega_1') = \operatorname{Spec}_D(\Omega_2') & \text{in} \supset & \operatorname{Spec}_N(\Omega_1') = \operatorname{Spec}_N(\Omega_2') \end{cases}$$

を満たす.これらはいかなる理由によるのであろうか.以下の節で解き明か そう.

8.3 折り紙操作

始めに、折り紙を図 8.2 における Ω_1 と Ω_2 の形に切り取ったものを、それぞれ 3 枚ずつ用意しよう。

操作(a) Ω_1 の形に切り取った 3 枚の折り紙について,表にある 7 つの三角形に順に A, B, \dots, G のローマ字を書き記し,裏面には,ちょうど表と対応する三角形に, $\bar{A}, \bar{B}, \dots, \bar{G}$ を書き記す.

I の折り紙 Ω_1 を,実線——部分が山となるように折り,次に破線---部分が谷となるように折って,I' を作る.

II の折り紙 Ω_1 を、破線----が谷になるように折り、次に実線----が山になるように折って、90°右回りに廻して、裏返して、 Π' を作る.

皿の折り紙 Ω_1 の 2 つの実線 — を山になるように折り,裏返して \mathbf{II}' を作る.こうしてできた \mathbf{I}' , \mathbf{II}' , \mathbf{II}' を,図 8.6 の左図のように合体する.その結果, Ω_2 を得る.この Ω_2 を構成している 7 つの三角形はすべて折り紙が三重に重なり合ってできている.図 8.6 の右図には,表または裏の三角形の現れる様子が書かれている.

操作(b) 今度は逆に、 Ω_2 の形に切り取った 3 枚の折り紙について、表にある 7 つの三角形に順に a,b,\dots,g のローマ字を書き記し、裏面には、表と対応する三角形に、 $\bar{a},\bar{b},\dots,\bar{g}$ を書き記す.

IVの折り紙 Ω_2 を,実線——が山になるように折り,次に破線---が谷になるように折って,90° 左回りに廻して,裏返して,IV' を作る.

Vの折り紙 Ω_2 を,実線——が山となるように折り,次に破線----を谷に折って,V'を作る.

VIの折り紙 Ω_2 を,実線——を山となるように折り,破線---を谷に折って,裏返してVI'を作る(図 8.7).

こうしてできた \mathbb{N}' , \mathbb{N}' を,図 8.8 の左図のように合体する.その結果, Ω_1 を得る.この Ω_1 を構成している 7 つの三角形はすべて三重に折り紙が重なり合っている.図 8.8 の右図には表または裏の三角形の現れる様子が書かれている.

8.4 移植操作と等スペクトル性

定義 8.1 (移植操作(a)) 領域 Ω_1 上のディリクレ固有値問題

$$\begin{cases} \Delta u = \lambda u & (\Omega_1 \perp) \\ u = 0 & (\partial \Omega_1 \perp) \end{cases}$$

の固有値 λ の固有関数uから、折り紙操作(a)を用いて、 Ω_2 上の関数 \tilde{u} を、次のように定義する:

関数uの, Ω_1 を構成する A, B, …, G のうちの1つの三角形(それを Δ と書く)への制限を u_Δ と書くこととする。さて, Ω_2 内の点 \tilde{x} が,折り紙操作(a) によって作られた図 8.6 の右図の三角形の1つ,例えば,3 枚の折り紙 \bar{G} , A, \bar{B} からなるもの(これを三角形 (\bar{G} , A, \bar{B}) と呼ぶこととする)の上にあるとき,

$$\tilde{u}(\tilde{x}) = -u_{\bar{G}}(x_{\bar{G}}) + u_{A}(x_{A}) - u_{\bar{B}}(x_{\bar{B}})$$
 (8.1)

と定義する. ここで、 $x_{\bar{G}} \in \bar{G}$ 、 $x_{A} \in A$, $x_{\bar{B}} \in \bar{B}$ はそれぞれ、点 \bar{x} に針を突き通して穴のあいた \bar{G} , A, \bar{B} の点とする. 図 8.6 の右図の他の三角形の上に点 \bar{x} があるときも同様に定義するものとする(すなわち、 \pm の符号はA, B, \dots のときは+. \bar{A} , \bar{B} , \dots のときは- を取ることに注意せよ).

(移植操作(b)) 領域 Ω_2 上のディリクレ固有値問題

$$\begin{cases} \Delta \tilde{u} = \lambda \tilde{u} & (\Omega_2 \perp) \\ \tilde{u} = 0 & (\partial \Omega_2 \perp) \end{cases}$$

の固有値 λ の固有関数 \tilde{u} から、折り紙操作(b)を用いて、 Ω_1 上の関数uを、同様に定義することができる。

命題 8.1 u を Ω_1 上のディリクレ固有値問題の固有値 λ の固有関数とする. このとき移植操作(a) により定義される Ω_2 上の関数 \tilde{u} は, Ω_2 上のディリクレ固有値問題の固有値 λ の固有関数となる.

逆に、 \tilde{u} を Ω_2 上のディリクレ固有値問題の固有値 λ の固有関数とするとき、移植操作(b) により定義される Ω_1 上の関数 u は、 Ω_1 上のディリクレ固有値問題の固有値 λ の固有関数となる.

証明 移植操作(a)の場合のみ示す. 移植操作(b)の場合も同様である.

(第2段) \tilde{u} が $\partial\Omega_2$ 上0となること:例えば、図8.6における三角形 (\bar{G} , A, \bar{B}) の $\partial\Omega_2$ にある2つの辺の上で \tilde{u} が0となることを見てみよう.

$$\tilde{u} = -u_{\bar{G}} + u_{A} - u_{\bar{B}} = -u_{\bar{G}} + (u_{A} - u_{\bar{B}}).$$

 $u_{\bar{G}}$ は Π' から来たものであるが, Π' における \bar{G} の対応する 2 つの辺は共に $\partial\Omega_1$ にあるので,この 2 つの辺上では $u_{\bar{G}}=0$ となっている.他方, $u_A-u_{\bar{B}}$ では,1 つの辺は, Π から Π' を作る際に,三角形 A と B が共有する辺において折って得たものなので,この辺の上では, $u_A-u_{\bar{B}}=0$ となる.残りの辺は三角形 A, \bar{B} の $\partial\Omega_1$ の上にある辺であるので,やはり $u_A=u_{\bar{B}}=0$ となっている.従っ

 $\tau \tilde{u}$ が上の 2 つの辺の上で 0 となることが示された. $\partial \Omega_0$ 上の他の辺の場合に も同様に $\tilde{u}=0$ となることが示される.

(第3段) \tilde{u} の 1 階偏微分について、 Ω_2 の各三角形の辺上においては、各辺 の垂直方向微分が連続となること:例えば,三角形(\bar{G} , A, \bar{B})と三角形(\bar{A} , \bar{E} , \bar{C}) が共有する辺e上で、 \tilde{u} のeに垂直な方向微分が連続であることを見よう、 \tilde{u} = $-u_{\bar{G}} + u_{A} - u_{\bar{B}}$ (三角形 (\bar{G} , A, \bar{B}) 上), $\tilde{u} = -u_{\bar{A}} - u_{\bar{E}} - u_{\bar{C}}$ (三角形 (\bar{A} , \bar{E} , \bar{C}) 上) であるが、 $-u_{\bar{c}}$ と $-u_{\bar{c}}$ とは同じ折り紙 Π の隣り合う2つの三角形から来 たものであるので滑らかにつながっている. $-u_{\bar{c}}$ と $-u_{\bar{c}}$ も折り紙 \mathbf{III} の隣り合 う2つの三角形から来たものなのでやはり滑らかにつながっている. 残るは u_A と $-u_{\bar{A}}$ の垂直方向微分の関係についてであるが,この 2 つ $u_{\bar{A}}$ と $u_{\bar{A}}$ の垂直方 向微分は Ω_1 の三角形 Λ の $\partial\Omega_1$ 上にある同じ点における垂直方向微分で,一 方は三角形 A から垂直に出る方向微分で、他方は垂直に入る方向微分である. ゆえに u_A と $-u_{\bar{A}}$ の垂直方向微分は一致している.以上より,辺e上で, \bar{u} の e に垂直な方向微分が連続となることがわかった.Ω2 の他の辺においても同様 に示される.

(第4段) \tilde{u} は、 Ω_2 上の微分方程式 $\Delta \tilde{u} = \lambda \tilde{u}$ の弱解となる、従って、楕円 型方程式の解の滑らかさ(例えば [浦川],付録 B,系(B8)256頁)により, \tilde{u} は Ω_2 上の C^{∞} 関数で、 $\Delta \tilde{u} = \lambda \tilde{u}$ (Ω_2 上) を満たすことがわかる.

実際,弱解となることを示そう.

arrho arrho arrho の内部にある $arOmega_2$ の三角形の辺全体の和集合とする. 得られた関数 \tilde{u} は Ξ の Ω_2 における補集合 $\Omega_2 \setminus \Xi$ 上で C^{∞} で, $\Delta \tilde{u} = \lambda \tilde{u}$ を満たし, $\tilde{u} = 0$ $(\partial\Omega_2\; 上)$ で,ar u の Ξ 上で, Ξ に対する垂直方向微分は連続となっている.こ れらの条件の下で、任意の $\varphi \in C_c^{\infty}(\Omega_2)$ に対して、

$$\int_{\Omega_2} \tilde{u}(\Delta \varphi - \lambda \varphi) dx \, dy = 0 \tag{8.2}$$

を示せばよい. $\Omega_2 \setminus \mathcal{Z} = igcup_{i=1}^n \mathring{\Delta}_i$, ここで, $\mathring{\Delta}_i$ は三角形 Δ_i の内部を表す. ここ で $i \neq j$ に対して、 $\Delta_i \cap \Delta_j = \emptyset$ かまたは $\Delta_i \cap \Delta_j$ は 2 つの三角形 Δ_i と Δ_j が 共有する辺となっている.

(8.2) の左辺 =
$$\sum_{i=1}^{n} \int_{\Delta_{i}} \tilde{u}(\Delta \varphi - \lambda \varphi) dx dy$$

= $\sum_{i=1}^{n} \left\{ \int_{\Delta_{i}} (\Delta \tilde{u} - \lambda \tilde{u}) \varphi dx dy + \int_{\partial \Delta_{i}} \left\{ \tilde{u} \frac{\partial \varphi}{\partial \boldsymbol{n}} - \frac{\partial \tilde{u}}{\partial \boldsymbol{n}} \varphi \right\} d\sigma \right\}.$

ここでグリーンの定理 5.1 (4)を使った. ここで各 Δ_i の内部 Δ_i においては, $\Delta \tilde{u} = \lambda \tilde{u}$ を満たすので,第 1 項 = 0.従って

となる. というのは、 $\tilde{u}=\varphi=0$ ($\partial \Delta_i \cap \partial \Omega_2$ 上)となるので、ここで、三角形 Δ_i と Δ_j が辺 e を共有しているとする、このとき、

$$\int_{\partial \Delta_i \cap \mathbf{e}} \left\{ \tilde{u} \frac{\partial \varphi}{\partial \mathbf{n}} - \frac{\partial \tilde{u}}{\partial \mathbf{n}} \varphi \right\} d\sigma + \int_{\partial \Delta_i \cap \mathbf{e}} \left\{ \tilde{u} \frac{\partial \varphi}{\partial \mathbf{n}} - \frac{\partial \tilde{u}}{\partial \mathbf{n}} \varphi \right\} d\sigma = 0$$

となる。実は $\partial \Delta_i \cap e = \partial \Delta_j \cap e$ なのであるが, $\frac{\partial \varphi}{\partial n}$ は $\partial \Delta_i \cap e$ と考えたときと、 $\partial \Delta_j \cap e$ と考えたときとでは符号のみが異なるだけであり, $\frac{\partial \tilde{u}}{\partial n}$ も同様である ($\frac{\partial \tilde{u}}{\partial n}$ は連続であるので).従って,(8.3) = 0 となり,(8.2)が成り立つことが示された.以上により,命題 8.1 が示された.

命題 8.1 により、移植操作(a)により、 Ω_1 の固有値 λ の固有関数は、同じ固有値 λ を持つ固有関数に写ることが示された。このことから、

$$\operatorname{Spec}_{\mathcal{D}}(\Omega_1) \subset \operatorname{Spec}_{\mathcal{D}}(\Omega_2)$$

となることがいえた. 逆に移植操作(b)を考えると,

$$\operatorname{Spec}_{\mathcal{D}}(\Omega_2) \subset \operatorname{Spec}_{\mathcal{D}}(\Omega_1)$$

を得る. 従って次を得る:

$$\operatorname{Spec}_D(\Omega_1) = \operatorname{Spec}_D(\Omega_2).$$

ノイマン固有値問題の場合には, $v \in \Omega_1$ 上の固有値 μ の固有関数, すなわち,

$$\begin{cases} \Delta v = \mu v & (\Omega_1 \perp) \\ \frac{\partial v}{\partial n} = 0 & (\partial \Omega_1 \perp) \end{cases}$$

を満たしているとき, Ω_2 上の関数 \bar{v} を, (8.1) の代わりに, 例えば三角形 (\bar{G}, A, \bar{B}) の上の点 \tilde{x} に対して.

$$\tilde{v}(\tilde{x}) = v_{\bar{\mathbf{G}}}(x_{\bar{\mathbf{G}}}) + v_{\mathbf{A}}(x_{\mathbf{A}}) + v_{\bar{\mathbf{B}}}(x_{\bar{\mathbf{B}}}) \tag{8.4}$$

と定義する. この Ω_2 上の関数 \tilde{v} を得る操作を移植操作(a')と呼び. 逆に Ω_2 上 の固有値 μ のノイマン固有値問題の固有関数 \tilde{v} から同様に、 Ω_1 上の関数 v を 得ることができ,この操作を移植操作(b')と呼ぶ.このとき.これらの移植操 作(a'), (b')によって、命題 8.1 と同様のことが、ノイマン固有値問題について 成り立つことがわかる.

以上により、次の定理が得られる.

定理 8.2 チャップマンの与えた 2 つの領域 Ω_1 と Ω_2 (図 8.2) は等スペク トル領域である.すなわち, $\operatorname{Spec}_D(\Omega_1) = \operatorname{Spec}_D(\Omega_2)$ かつ $\operatorname{Spec}_N(\Omega_1) = \operatorname{Spec}_N(\Omega_2)$

$$\operatorname{Spec}_D(\Omega_1) = \operatorname{Spec}_D(\Omega_2)$$
 $\text{ in } \operatorname{Spec}_N(\Omega_1) = \operatorname{Spec}_N(\Omega_2)$

が成り立つ.

注意 定理8.1の証明と図8.4からわかるように、ゴルドン-ウェッブ-ウォルパー トらの与えた 2 つの領域 Ω_1' と Ω_2' もまた、等スペクトル領域となることがわかる.

最近,次の大きな進展があった.次の2つの論文を見られたい.

- · C. S. Gordon, Isospectral deformations of metrics on spheres, Inventiones math., 145 (2001), 317-331.
- · Z. I. Szabó, Isospectral pairs of metrics on balls, spheres and other manifolds with different local geometries, Ann. Math., 154 (2001), 437-475.