## MovieLens Recommender System

Mohammed Minhaas B S <sup>†</sup>
Computer Engineering
New York University
New York City, NY, USA
mb7979@nyu.edu

Prithvi S Naidu Computer Engineering New York University New York City, NY, USA psn5377@nyu.edu Prajwal Suresh Naidu Computer Engineering New York University New York City, NY, USA pn2140@nyu.edu

## INTRODUCTION

With the advent in technology and the rise in web services such as Netflix, Amazon, Youtube, Disney etc recommendation systems have begun to play an important role in our lives. Recommender systems aim at suggesting similar items to users from their past search interests and ratings. There are many ways in which a recommender system can be developed such as collaborative filtering, content based filtering, demographic based, knowledge based and hybrid recommender systems. We have implemented a recommender system based on collaborative filtering using the movieLens dataset. The ALS Model is used to create the RANK matrix.

## **DATASET**

For the recommender system we use the MovieLens dataset which consists of unique users and unique movies. The dataset has four csv files namely links.csv, movies.csv, ratings.csv and tags.csv which contain numeric and alphanumeric data. Rows in the dataset show the interaction between the user and the movie. Using this data we build a popularity model and a collaborative model.

The spliting of the data was performed by means of stratified sampling by using the pyspark sampleBy() function. This function takes three parameters namely, i) a column that defines a strata ii) fracions – a sampling fraction for each stratum iii) a seed value which is random. This function returns a stratified sample without replacement based on the fraction given to each stratum.

```
ratings = ratings.join(movies, "movield", "inner").select("userld", "movield", "rating", "genres")
fractions_init = ratings.select("userld").distinct().withColumn("fraction", lit(0.8)).rdd.collectAsMap()
seed = 1231
train_init = ratings.stat.sampleBy("userld", fractions_init, seed)
test = ratings.subtract(train_init)
fractions_fin = train_init.select("userld").distinct().withColumn("fraction", lit(0.8)).rdd.collectAsMap()
train = train_init.stat.sampleBy("userld").fractions_fin, seed)
val = train_init.subtract(train)
```

To implement the UMAP extension movies.csv and ratings.csv were joined on movieId.

## **DATA PREPROCESSING**

The HDFS cluster was used for efficient processing of the large dataset. After splitting of the csv files they were converted to parquet format and sorted based on userId before being processed on the cluster.

## MODEL IMPLEMENTATION

Our model was implemented using the spark framework which has several predefined recommender functions. Collaborative filtering technique in recommender systems uses a small set of latent factors to predict missing entries in the utility matrix. The ALS or Alternating Least Squares algorithm was used to fit our model. The ALS algorithm factorizes the utility matrix into two matrices 1)user matrix and 2)item matrix. The latent factors are uncovered by the algorithm which explains user to item ratings and the algorithm tries to minimize the least squares between predicted and actual ratings.

The baseline model implementation was based on the popularity model. The popularity model works on the principle of popularity. The system recommends a movie which is popular or in trend based on the user rating. However a key observation from the above implementation is that the recommended movie is not personalized for a particular user.

#### **PARAMETERS**

Collaborative filtering using spark.ml aims to predict missing values by describing a set of latent factors based on the user and items association matrix. Implementing ALS in spark.ml requires the following parameters:

- 1. rank the number of independent rows and columns of user and item matrices, or the number of latent factors in the model (defaults to 10). We did choose a higher rank value as it was time computationally heavy to run. However we understood that higher the rank value better is the accuracy.
- 2. numBlocks defines the number of blocks the users and items will be partitioned into in order to parallelize computation (defaults to 10).

- 3. maxIter the maximum number of iterations to run (defaults to 10). We have set the maxIter value to 5.
- 4. regParam- the regularization parameter in ALS (defaults to 1.0). We have set the regParam value to 0.1.
- 5. implicitPrefs- TRUE for implicit feedback Collaborative filtering (our case)
- 6. alpha- applicable to the implicit feedback variant of ALS that governs the baseline confidence in preference observations (defaults to 1.0)

#### RANKING METRICS

The ranking metric we used is MAP (Mean Average Precision). This metric gives us the mean of average precision scores and tells us how a single sorted prediction compares with our ground truth. The mAP score is calculated by taking the mean AP over all classes and/or overall IoU thresholds,

#### HYPERPARAMETER TUNING

We have run our base model on the small and large dataset. To increase the performance of the ALS model we decided to tune some of the hyperparameters. We experimented with various ranges and values of rank, maxIter and regularization parameters. We ran several models having different values of these hyperparameters on our subsamples,loosely basing our code on the code pprovided here and the parameters that gave us the max MAP score. The metric scores were always greater for higher rank models, but with increase in rank, the runtimes also increased. We got our best results for the subsample datasets with rank= 250, regParam= 0.1, maxIter= 10. So, we ran our model on the entire movielens dataset using these values for our hyperparameters. All results for our larger datasets are available in the results section .

## **EXTENSION 1 – Lenskit**

LensKit is an open-source set of tools for building recommender systems. We used the biased matrix factorization trained with alternating least squares. This is a prediction-oriented algorithm suitable for explicit feedback data, using the ALS approach to compute P and Q to minimize the regularized squared reconstruction error of the ratings matrix. We also used the item-item nearest-neighbor collaborative filtering with ratings. This implementation is based on the description of item-based Collaborative Filtering.

For evalution purposes the NDCG values were computed for each of the above mentioned algorithms. In our lenskit implementation we have used KNN algorithm to compute the ItemItem similarity and compared it to the ALS results computed from the biased matrix factorization. The evaluation results are available in the results section

## **EXTENSION 2 – UMAP**

UMAP is an algorithm for dimension reduction based on manifold learning techniques and ideas from topological data analysis. It provides a very general framework for approaching manifold learning and dimension reduction, but can also provide specific concrete realizations. For implementation purposes of UMAP the standard scalar library from sklearn.preprocessing was used on a dataframe which had id, genre and itemFactor from the ALS model. PyArrow optimiation was used for conversion of spark RDD to Pandas dataframe, such as the above standard scalr method from sklearn could be implemented. The result generated was passed to np.vstack to vertically stack the features of the dataframe and this was passed to the UMAP.fit function to generate the data for the UMAP visualization. The UMAP plots generated on itemfactor and userfactor is available in the results section.

## **RESULTS**

# i) Popularity model on large\_validation data output

| ++-                                                      |                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| userId                                                   | collect_list(movieId)                                                                                                                                                                                                                                                    |
| 1 1 2 3 4 4 5 6 7 7 8 8 9 1 10 11 11 12 13 13 1 14 15 15 | [592, 3793, 780,] [46970, 333, 1228] [2018, 2105, 1263] [759, 2683, 4226,] [36, 589, 344, 34] [455, 1049, 708,] [5378, 2012, 2023] [5378, 2012, 2023] [54286, 64969, 19] [1608, 1704, 356,] [1876, 2581, 2694] [1876, 2581, 2694] [1879, 593, 351, 1] [79132, 260, 4995] |
| 16 <br>  17                                              | [79132, 1214, 119 <br>[2959, 2194, 593,                                                                                                                                                                                                                                  |
| 18 <br>  19                                              | [36, 79132, 318,]<br>[380, 19, 455, 53]                                                                                                                                                                                                                                  |
| 20 <br>+                                                 | [6333, 3793, 4226                                                                                                                                                                                                                                                        |

only showing top 20 rows

# ii) Popularity model on large\_training data output

| +                  | +       |        |
|--------------------|---------|--------|
| avg(rating)        | movieId | count  |
| 4.5454545454546    | 1235    | 11     |
| 4.5                | 1245    | 10     |
| 4.433333333333334  | 720     | 15     |
| 4.409090909090909  | 162     | 11     |
| 4.402597402597403  | 1221    | 77     |
| 1 4.4              | 7156    | 10     |
| 4.394594594594595  | 318     | 185    |
| 4.3888888888888    | 922     | 18     |
| 1 4.38             | 1204    | 25     |
| 4.375              | 306     | 12     |
| 4.36666666666666   | 246     | 15     |
| 4.363636363636363  | 3836    | 11     |
| 4.35               | 176     | 10     |
| 4.35               | 1217    | j 10 j |
| 4.346153846153846  | 3468    | 13     |
| 4.346153846153846  | 951     | 13     |
| 4.333333333333333  | 898     | 15     |
| 4.318181818181818  | 1209    | 11     |
| 4.3161764705882355 | 912     | 68     |
| 4.307017543859649  | 904     | 57     |
| +                  | +       | ++     |

only showing top 20 rows

## v) Parameters after Hyper Parameter Tuning

the MAP@100 is 0.0001887275696532505
the MAP is 0.00018866923713971927
regularization parameter 0.1
For maxIter 10, rank 250,

## vi) Hyper Parameter tuning plot

## iii) Popularity model for small data set

The evaluation metrics are:
MAP: 0.0022187831743455187
MAP@100: 0.0022717636549604344
NDCG@10: 0.013184839275035077
MAPRecall@1: 0.0007791340844148057
MAPRecall@5: 0.00344770396828737
MAPRecall@100: 0.018735340498202326

## iv) Predictions of ALS for large data set

| +      | +       | +      | +          | ++         |
|--------|---------|--------|------------|------------|
| userId | movieId | rating | timestamp  | prediction |
| +      | +       | +      | +          | ++         |
| 53271  | 148     | 4.0    | 828462479  | 2.961468   |
| 175332 | 148     | 4.0    | 1027003224 | 2.9144454  |
| 115125 | 148     | 2.0    | 839178196  | 2.4205523  |
| 115912 | 148     | 3.0    | 837602927  | 2.8614     |
| 107574 | 148     | 1.0    | 1013115063 | 2.9103389  |
| 216371 | 148     | 2.0    | 843990753  | 2.282261   |
| 67319  | 148     | 2.5    | 1120729036 | 2.5252223  |
| 204845 | 148     | 3.0    | 859547410  | 3.1017025  |
| 12020  | 148     | 2.0    | 835601960  | 2.4031582  |
| 67910  | 148     | 3.5    | 1151344374 | 2.837632   |
| 74196  | 148     | 2.0    | 833173771  | 2.9567418  |
| 10059  | 148     | 2.0    | 838308516  | 3.0243287  |
| 8697   | 148     | 2.0    | 835094487  | 2.6787274  |
| 232608 | 148     | 3.0    | 833165538  | 3.4541924  |
| 45531  | 148     | 3.0    | 946918370  | 2.8021808  |
| 8350   | 148     | 4.0    | 1062945923 | 2.692477   |
| 182536 | 148     | 2.0    | 834483114  | 2.8176963  |
| 91374  | 148     | 3.0    | 837773116  | 2.3697858  |
| 8264   | 148     | 1.0    | 837520195  | 1.9592471  |
| 82425  | 148     | 3.0    | 860111242  | 3.0085444  |
| +      | +       | +      | +          | ++         |



vii) userFactors plot for UMAP



# ix) UMAP for small-dataset (latent\_users)610 data points



# viii) UMAP for Small dataset( latent\_items) 400 data points



## x) Extension 1 – Lenskit

|           |      | nrecs | ndcg     |
|-----------|------|-------|----------|
| Algorithm | user |       |          |
| ItemItem  | 2    | 500   | 0.043685 |
|           | 12   | 500   | 0.000000 |
|           | 14   | 500   | 0.028729 |
|           | 23   | 500   | 0.025802 |
|           | 24   | 500   | 0.037843 |
|           | 28   | 500   | 0.083357 |
|           | 29   | 500   | 0.054352 |
|           | 31   | 500   | 0.000000 |
|           | 33   | 500   | 0.055952 |
|           | 45   | 500   | 0.050593 |

Figure - NDCG values ItemItem score for each user for first 500 nrecs

## xi) NDCG mean value for ALS and ItemItem

Algorithm

ALS 0.096304 ItemItem 0.037733

Name: ndcg, dtype: float64

## xii) Evaluation of lenskit for ndcg mean value - ALS and ItemItem



Algorithm

## **CONTRIBUTIONS**

ALS Model - Minhaas, Prithvi, Prajwal

Popularity Model – Prithvi, Prajwal Extension1 - Minhaas, Prajwal

Extension2 - Prithvi, Minhaas

Report - Prajwal, Prithvi , Minhaas

## **GITHUB REPOSITORY**

https://github.com/nyu-big-data/final-project-group\_69

## **REFERENCES**

- [1] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4: 19:1–19:19. <a href="https://doi.org/10.1145/2827872">https://doi.org/10.1145/2827872</a>
- [2] https://spark.apache.org/docs/2.2.0/ml-collaborative-filtering.html
- [3]https://queirozf.com/entries/evaluation-metrics-for-rankingproblems-introduction-and-examplesmap-mean-averageprecision
- [4]https://analyticsindiamag.com/how-to-build-recommender systems-using-lenskit/
- [5] https://spark.apache.org/docs/latest/api/python/