Global PCA of Local Moments

With Applications to MRI Segmentation

Jacob M. Maronge^{1, 2}, John Muschelli³, Ciprian M. Crainiceanu³

¹University of Wisconsin - Madison, Department of Statistics

²University of Wisconsin - Madison, Department of Biostatistics and Medical Informatics

³Johns Hopkins Bloomberg School of Public Health, Department of Biostatistics

Abstrac

We are interested in describing the information contained in local neighborhoods, and higher moments of local neighborhoods, of complex multimodal imaging techniques at the population level. This is problematic because of the size of medical imaging data. We propose a simple, computationally-efficient approach for representing the variation in multimodal images using the spatial information contained in all local neighborhoods across multiple subjects. This method achieves 3 goals: 1) decomposes the observed variability images at the population level; 2) describes and quantifies the main directions of variation; 3) uses these directions of variation to improve segmentation and studies of association with health outcomes. To achieve this, we efficiently decompose the observed variation in local neighborhood moments. In order to assess the quality of this method we show results using the 2015 Ischemic Stroke Lesion Segmentation (ISLES) Challenge.

Introduction

Every image can be vectorized. However, its meaning, interpretation, and complexity is encapsulated in the collection of all neighborhoods of all locations. More precisely, every image with V voxels can be represented as a $V \times V$ matrix, where every row represents a location in the image and every column reprents a particular position in the neighborhood of that location; e.g., the first column could be the neighbor just above the location, the second column could be the neighbor to the left. Such matrices are very large and store information inefficiently, but they provide a useful theoretical framework for representation of imaging information. Here we propose to exploit this theoretical framework to introduce simple methods to quantify the variation in multimodal images based on the shared information across local spatial neighborhoods and subjects.

$$X_j = (0.34, 0.58, -0.73, 1.74, -0.69, -1.34, 0.71, -1.87, -1.97, 0.11, 0.34, 0.53, 3.03, 0.48, 1.81, 0.50, 3.48, 3.89, 0.04, 0.19, -0.39, 5.28, -0.33, -2.43, 0.35, -6.50, -7.68, 0.01, 0.11, 0.28, 9.19, 0.23, 3.27, 0.25, 12.13, 15.16).$$

Figure 1: Figure caption

Main Objectives

- 1. Decompose observed variability images at the population level
- 2. Describe and quantify the main directions of variation
- 3. Use these directions of variation to improve segmentation and studies of association with health outcomes.

Materials and Methods

Fusce magna risus, molestie ut porttitor in, consectetur sed mi. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque consectetur blandit pellentesque. Sed odio justo, viverra nec porttitor vel, lacinia a nunc. Suspendisse pulvinar euismod

arcu, sit amet accumsan enim fermentum quis. In id mauris ut dui feugiat egestas. Vestibulum ac turpis lacinia nisl commodo sagittis eget sit amet sapien. Phasellus imperdiet, tortor vitae congue bibendum, felis enim sagittis lorem, et volutpat ante orci sagittis mi. Morbi rutrum laoreet semper. Morbi accumsan enim nec tortor consectetur non commodo nisi sollicitudin. Proin sollicitudin. Pellentesque eget orci eros. Fusce ultricies, tellus et pellentesque fringilla, ante massa luctus libero, quis tristique purus urna nec nibh. Proin sollicitudin. Pellentesque eget orci eros. Fusce ultricies, tellus et pellentesque eget orci eros. Fusce ultricies, tellus et pellentesque fringilla, ante massa luctus libero, quis tristique purus urna nec

Mathematical Section

Nulla vel nisl sed mauris auctor mollis non sed.

$$E = mc^2 (1)$$

Curabitur mi sem, pulvinar quis aliquam rutrum. (1) edf (2), $\Omega = [-1, 1]^3$, maecenas leo est, ornare at. z = -1 edf z = 1 sed interdum felis dapibus sem. x set y ytruem. Turpis j amet accumsan enim y-lacina; ref k-viverra nec porttitor x-lacina.

Vestibulum ac diam a odio tempus congue. Vivamus id enim nisi:

$$\cos \bar{\phi}_{k} Q_{j,k+1,t} + Q_{j,k+1,x} + \frac{\sin^{2} \bar{\phi}_{k}}{T \cos \bar{\phi}_{k}} Q_{j,k+1} = -\cos \phi_{k} Q_{j,k,t} + Q_{j,k,x} - \frac{\sin^{2} \phi_{k}}{T \cos \phi_{k}} Q_{j,k}$$
(2)

and

$$\cos \bar{\phi}_{j} Q_{j+1,k,t} + Q_{j+1,k,y} + \frac{\sin^{2} \bar{\phi}_{j}}{T \cos \bar{\phi}_{j}} Q_{j+1,k} = -\cos \phi_{j} Q_{j,k,t} + Q_{j,k,y} - \frac{\sin^{2} \phi_{j}}{T \cos \phi_{j}} Q_{j,k}.$$
(3)

Nulla sed arcu arcu. Duis et ante gravida orci venenatis tincidunt. Fusce vitae lacinia metus. Pellentesque habitant morbi. $\mathbf{A}\underline{\xi} = \underline{\beta}$ Vim $\underline{\xi}$ enum nidi $3(P+2)^2$ lacina. Id feugain \mathbf{A} nun quis; magno. Fusce convallis rutrum turpis, quis aliquet enim accumsan id. Vestibulum ullamcorper porttitor convallis. Integer sagittis interdum malesuada. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Sed adipiscing tristique orci at ullamcorper. Morbi accumsan, urna et porttitor pulvinar, lacus risus dignissim massa. Proin sollicitudin. Pellentesque eget orci eros. Fusce ultricies, tellus et pellentesque fringilla, ante massa luctus libero, quis tristique purus urna nec nibh.

Results

Donec faucibus purus at tortor egestas eu fermentum dolor facilisis. Maecenas tempor dui eu neque fringilla rutrum. Mauris *lobortis* nisl accumsan. Aenean vitae risus ante. Pellentesque condimentum dui. Etiam sagittis purus non tellus tempor volutpat. Donec et dui non massa tristique adipiscing.

Treatments Response 1 Response 2 Treatment 1 0.0003262 0.562 Treatment 2 0.0015681 0.910

 Table 1: Table caption

Treatment 3 0.0009271 0.296

felis enim sagittis lorem, et volutpat ante orci sagittis mi. Morbi rutrum laoreet semper. Morbi accumsan enim nec tortor consectetur non commodo nisi sollicitudin. Proin sollicitudin. Pellentesque eget orci eros. Fusce ultricies, tellus et pellentesque fringilla, ante massa luctus libero, quis tristique purus urna nec

Phasellus imperdiet, tortor vitae congue bibendum,

Contact Information:

Jacob M. Maronge
Department of Statistics
University of Wisconsin - Madison
1300 University Ave, Madison, WI, 53706

Email: jmmaronge@gmail.com

Website: https://jmmaronge.github.io

Nulla ut porttitor enim. Suspendisse venenatis dui eget eros gravida tempor. Mauris feugiat elit et augue placerat ultrices. Morbi accumsan enim nec tortor consectetur non commodo. Pellentesque condimentum dui. Etiam sagittis purus non tellus tempor volutpat. Donec et dui non massa tristique adipiscing. Quisque vestibulum eros eu. Phasellus imperdiet, tortor vitae congue bibendum, felis enim sagittis lorem, et volutpat ante orci sagittis mi. Morbi rutrum laoreet semper. Morbi accumsan enim nec tortor consectetur non commodo nisi sollicitudin.

Placeholder

Image

Figure 2: Figure caption

In hac habitasse platea dictumst. Etiam placerat, risus ac. Adipiscing lectus in magna blandit:

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

 Table 2: Table caption

Vivamus sed nibh ac metus tristique tristique a vitae ante. Sed lobortis mi ut arcu fringilla et adipiscing ligula rutrum. Aenean turpis velit, placerat eget tincidunt nec, ornare in nisl. In placerat.

Placeholder

Image

Figure 3: Figure caption

Conclusions

- Pellentesque eget orci eros. Fusce ultricies, tellus et pellentesque fringilla, ante massa luctus libero, quis tristique purus urna nec nibh. Phasellus fermentum rutrum elementum. Nam quis justo lectus.
- Vestibulum sem ante, hendrerit a gravida ac, blandit quis magna.
- Donec sem metus, facilisis at condimentum eget, vehicula ut massa. Morbi consequat, diam sed convallis tincidunt, arcu nunc.
- Nunc at convallis urna. isus ante. Pellentesque condimentum dui. Etiam sagittis purus non tellus tempor volutpat. Donec et dui non massa tristique adipiscing.

Forthcoming Research

Vivamus molestie, risus tempor vehicula mattis, libero arcu volutpat purus, sed blandit sem nibh eget turpis. Maecenas rutrum dui blandit lorem vulputate gravida. Praesent venenatis mi vel lorem

tempor at varius diam sagittis. Nam eu leo id turpis interdum luctus a sed augue. Nam tellus.

Acknowledgements

Etiam fermentum, arcu ut gravida fringilla, dolor arcu laoreet justo, ut imperdiet urna arcu a arcu. Donec nec ante a dui tempus consectetur. Cras nisi turpis, dapibus sit amet mattis sed, laoreet.