Contrôle continu 2

Exercice 1. (Question de cours) Soit E et F deux espaces vectoriels normés et $a \in E$.

- 1. Donner la définition de la dérivée directionnelle d'une fonction $f: E \to F$. Une fonction qui admet des dérivées partielles en a est-elle nécessairement continue en a (justifier)?
 - (a) Soient \mathcal{U} un ouvert de E et soit $a \in \mathcal{U}$ et $v \in E$ avec $v \neq 0$. On dit que f admet une dérivée en a suivant la direction v si l'application $t \mapsto f(a+tv)$ est dérivable en v. Dans ce cas on note :

$$D_v f(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}.$$

- (b) Non, prendre $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{si } (x,y) = (0,0) \end{cases}$ qui admet des dérivées partielles en a = (0,0) mais n'est pas continue en (0,0).
- 2. Donner la définition d'un C^1 -difféomorphisme de E sur F. En donner une caractérisation (autrement dit, énoncer le "théorème d'inversion globale").
 - (a) Soient \mathcal{U} un ouvert de E et \mathcal{V} un ouvert de F. On dit que f est un \mathcal{C}^1 -difféomorphisme de \mathcal{U} vers \mathcal{V} si f est une bijection de classe \mathcal{C}^1 de \mathcal{U} sur \mathcal{V} dont la réciproque f^{-1} est de classe \mathcal{C}^1 sur \mathcal{V} .
 - (b) Soit \mathcal{U} un ouvert de E et $f: \mathcal{U} \to F$ une application injective de classe \mathcal{C}^1 . Alors f définit un \mathcal{C}^1 difféomorphisme du \mathcal{U} sur $f(\mathcal{U})$ si et seulement si $d_a f$ est un isomorphisme pour tout $a \in \mathcal{U}$.

Exercice 2. Forme quadratique Les formes quadratiques suivantes sont elles positives? sont elles définies? : $1. \ q(x,y,z,t) = 2xz + 2xy + x^2 + 2tx$

$$q(x, y, z, t) = (x^{2} + 2x(z + y + t) + (z + y + t)^{2}) - (z + y + t)^{2}$$
$$= (x + y + z + t)^{2} - (z + y + t)^{2}$$

N'est pas définie car q(0,1,0,-1) = 0 et n'est pas positive car q(3,-1,-1,-1) < 0 < q(1,0,0,0).

2.
$$q(x,y,z) = -2(x+y)^2 + (x+y+z)^2 + (x+y-z)^2$$

Attention, la décomposition n'est pas en somme de carrée de formes linéaires indépendantes. Il faut développer :

$$q(x, y, z) = 2z^2$$

C'est donc clairement un forme quadratique positive. Mais elle n'est pas définie car q(1,0,0)=0.

3.
$$q(x,y) = e^{\sqrt{\pi}x^2} + \ln(1+e)y^2 - xy$$

On peut utiliser la méthode des mineurs pour éviter des calculs fastidieux. La matrice associée à q est

$$\begin{pmatrix} e^{\sqrt{\pi}} & -1/2 \\ -1/2 & \ln(1+e) \end{pmatrix}$$

Avec les notations du cours : on a $\Delta_1 = e^{\sqrt{\pi}}x^2 > 0$ et $\Delta_2 = e^{\sqrt{\pi}}\ln(1+e) - 1/4 > 0$ (car $\sqrt{\pi} > 0$ implique $e^{\sqrt{\pi}} > 1$ et 1+e>e implique $\ln(1+e) > 1$) et q est définie positive.

Exercice 3. (Étude de fonctions de plusieurs variables) Soit $m \in \mathbb{N} \setminus \{0\}$ et $f : \mathbb{R}^2 \to \mathbb{R}$ la fonction définie comme suit :

$$f(x,y) = \begin{cases} \frac{x^m y^2}{x^2 + y^2} & \text{si } \mathbb{R}^2 \setminus \{(0,0)\} \\ 0 & \text{sinon.} \end{cases}$$

1. Étude de la fonction sur $\mathbb{R}^2 \setminus \{(0,0)\}$:

- (a) Montrer que f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$ pour tout $m \in \mathbb{N} \setminus \{0\}$ f est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$ car quotient de fonctions continues dont le dénominateur ne s'annule
- (b) Calculer le gradient de f pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ pour tout $m \in \mathbb{N} \setminus \{0\}$;

$$\frac{\partial f}{\partial x}(x,y) = \frac{x^{m-1}y^2 \left(mx^2 + my^2 - 2x^2\right)}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{2x^{m+2}y}{(x^2 + y^2)^2}$$

(c) Montrer que f est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ pour tout $m \in \mathbb{N} \setminus \{0\}$;

f est continue et dérivable sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Ses dérivées partielles sont continues sur $\mathbb{R}^2 \setminus \{(0,0)\}$ car quotients de fonctions continues dont les dénominateurs ne s'annulent pas. Alors f est de classe $\mathcal{C}^1(\mathbb{R}^2\setminus\{(0,0)\}).$

(d) Que peut-on conclure sur la différentiabilité de f sur $\mathbb{R}^2 \setminus \{(0,0)\}$?

Comme f est de classe $C^1(\mathbb{R}^2 \setminus \{(0,0)\})$ alors f est différentiable sur sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

- 2. Étude de la fonction en (0,0):
 - (a) Pour quelles valeurs de $m \in \mathbb{N} \setminus \{0\}$ la fonction f est-elle continue en (0,0)?

Pour que f soit continue en (0,0) il faut que $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. En passant en coordonnées polaires on a

$$|f(x,y)| \le r^m$$

Le membre de droite de l'inégalité $r^m \xrightarrow[(x,y)\to(0,0)]{} 0$ pour tout $m\in\mathbb{N}^*$. Donc (théorème des gendarmes) f est continue en (0,0) pour tout $m \in \mathbb{N}^*$.

(b) La fonction f admet-elle des dérivées partielles en (0,0) pour tout $m \in \mathbb{N} \setminus \{0\}$? si oui, les calculer.

Le gradient de f en (0,0) est le vecteur de composantes

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0$$

(c) Pour quelles valeurs de $m \in \mathbb{N} \setminus \{0\}$ la fonction f est-elle différentiable en (0,0)?

 $\begin{array}{l} f \text{ est différentiable en } (0,\,0) \text{ si et seulement si } \lim_{(h,k)\to(0,0)} \frac{f(h,k)-f(0,0)-\frac{\partial f}{\partial x}(0,0)h-\frac{\partial f}{\partial y}(0,0)k}{\sqrt{h^2+k^2}} = 0. \text{ On note } r(h,k) = \frac{f(h,k)-f(0,0)-\frac{\partial f}{\partial x}(0,0)h-\frac{\partial f}{\partial y}(0,0)k}{\sqrt{h^2+k^2}} = \frac{h^m k^2}{(h^2+k^2)^{3/2}}. \\ \text{i. Si } m=1: r(k,k) = 1/2^{3/2} \neq 0 \text{ et } f \text{ n'est pas différentiable en } (0,0). \\ \text{ii. Si } m>1: |r(h,k)| \leq r^{m-1} \xrightarrow{(x,y)\to(0,0)} 0 \text{ et } f \text{ est bien différentiable en } (0,0). \end{array}$

(d) Pour quelles valeurs de $m \in \mathbb{N} \setminus \{0\}$ la fonction f est-elle de classe \mathcal{C}^1 en (0,0)?

i. si m=1, f n'est pas différentiable en (0,0) donc elle n'est pas de classe \mathcal{C}^1 .

ii. si m > 1, on vérifie que les dérivées partielles sont continues en (0,0). En passant en coordonnées polaires on a:

 $\left| \frac{\partial f}{\partial x}(x,y) \right| \le mr^{m-1} \text{ et } \left| \frac{\partial f}{\partial y}(x,y) \right| \le 2r^{m-1}$

On en déduit (théorème des gendarmes) que $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial x}(x,y) = 0$ et $\lim_{(x,y)\to(0,0)} \frac{\partial f}{\partial y}(x,y) = 0$ 0. La fonction f est donc de classe \mathcal{C}^1 sur \mathbb{R}^2 .

2