Аналитическая геометрия – Решение задач № 1

ФИ______ Номер группы _____

		Кат. А – 2 балла	Кат. B – 1 балл	Кат. C – 1 балл	Кат. D – 2 балла	
	Номера					Сумма
	заданий					баллов
•	Баллы					
	~	1	1	1		_1

Отметки о верном решении

×

Задачи для решения поделены по категориям (А, В, ...). Внутри каждой категории задачи сгруппированы в блоки (один или несколько).

Выберите категорию → в каждом блоке выберите по одной задаче → решите выбранные задачи → сверьтесь с ответами.

Дата ____

Если ответы совпали во всех выбранных задачах, запишите их номера (и их подпунктов) в соответствующее поле на отрывном корешке. Ниже запишите набранный балл (количество баллов для каждой категории указано на отрывном корешке).

Затем выберите другую категорию и повторите процедуру. При этом каждая категория может быть выбрана не более одного раза.

После завершения работы отрежьте отрывной корешок по пунктирной линии и сдайте преподавателю. Лист с заданиями можете оставить себе для самоподготовки.

Категория А.

ФИ преподавателя

Блок 1. Δ ABC задан уравнениями сторон AC и BC. Координаты вершин A и B входят в запись этих уравнений. Найдите: а) координаты вершины C, б) косинус угла при вершине C, в) площадь S треугольника ABC г) общее уравнение высоты CH, д) уравнение в отрезках для средней линии, параллельной стороне AC

1)
$$AC: \frac{x+2}{1} = \frac{y-3}{1}, BC: \begin{cases} x = 5t + 6 \\ y = -4t + 2 \end{cases}$$

Ответы: a)
$$C(1;6)$$
, б) $\cos \angle C = \frac{1}{\sqrt{82}}$, в) $S = 13.5$ г) $8x - y - 2 = 0$ д) $\frac{x}{-0.5} + \frac{y}{0.5} = 1$

2)
$$AC: \frac{x+4}{1} = \frac{y+1}{2}, BC: \begin{cases} x = t+1 \\ y = -2t-3 \end{cases}$$

Ответы: a)
$$C(-2;2)$$
, б) $\cos \angle C = \frac{3}{5}$, в) $S = 12$ г) $5x - 2y + 16 = 0$ д) $\frac{x}{-0.5} + \frac{y}{1} = 1$

3)
$$AC: \frac{x+2}{3} = \frac{y-1}{-4}, BC: \begin{cases} x = 2t+5 \\ y = t-1 \end{cases}$$

Ответы: a)
$$C(1;-3)$$
, б) $\cos \angle C = -\frac{2}{5\sqrt{5}}$, в) $S = 11$ г) $7x - 2y - 13 = 0$ д) $\frac{x}{1.5} + \frac{y}{2} = 1$

Категория В.

Блок 2. Составьте уравнение плоскости, проходящей через точку M и данную координатную ось:

Блок 3. Определите, какой координатной оси параллельна пряма	Я
пересечения плоскостей $lpha$ и eta , заданных уравнениями:	

4)
$$M(0; -2; 3)$$
, Ox

Ответ:
$$3y + 2z = 0$$

Ответ: 3x - 4z = 0

пересечения плоскостей
$$\alpha$$
 и β , заданных уравнениями 7) α : $y+z=1$, β : $z=2$

5)
$$M(2; -4; 3)$$
, Oz

Otbet:
$$2x + y = 0$$
 8) α : $x + z = 1$, β : $x - z = 1$

6)
$$M(4; 0; 3)$$
, Oy

9)
$$\alpha$$
: $v + z = 0$. β : $v - z = 1$

Категория С.

Блок 4. Плоскость отсекает на осях Ox, Oy и Oz отрезки a, b и с соответственно. Найдите общее уравнение этой плоскости и единичный вектор \vec{n} её нормали, который составляет острый угол с осью Oz.

Блок 5. Найдите уравнения плоскости, проходящей через точку
$$M$$
 перпендикулярно плоскостям α и β , заданным уравнениями:

10)
$$a = 6$$
, $b = 4$, $c = -2$ Otbet: $2x + 3y - 6z - 12 = 0$, $\vec{n} = \left(-\frac{2}{7}; -\frac{3}{7}; \frac{6}{7}\right)$

10)
$$a = 0$$
, $b = 4$, $c = -2$ Other: $2x + 3y = 02 - 12 = 0$, $n = \left(-\frac{4}{7}, -\frac{4}{7}, -\frac{4}{9}\right)$
11) $a = -4$, $b = 7$, $c = 7$ Other: $7x - 4y - 4z + 28 = 0$, $\vec{n} = \left(\frac{7}{9}; -\frac{4}{9}; -\frac{4}{9}\right)$

12)
$$a = 7$$
, $b = -6$, $c = -7$ OTBET: $6x - 7y - 6z - 42 = 0$, $\vec{n} = \left(-\frac{6}{11}; \frac{7}{11}; \frac{6}{11}\right)$

13)
$$\alpha$$
: $2x + y + z - 7 = 0$, β : $3x + y + 5 = 0$, $M(1; -1; 5)$

OTBET:
$$x - 3y + z - 9 = 0$$

14)
$$\alpha$$
: $x + 4y - 6 = 0$, β : $2x + 5y + 3z - 1 = 0$, $M(-2; -3; 0)$

OTBET:
$$4x - y - z + 5 = 0$$

15)
$$\alpha$$
: $3x + y + 5z - 3 = 0$, β : $2x - z + 4 = 0$, $M(6; 1; 2)$

Ответ:
$$x - 13y + 2z + 3 = 0$$

 \gg

Ответ: (-3; 1; 0)

Категория D.

пересечения плоскостей α	и β . В уравнении прямой						
используйте точку $M_0(x_0,y_0,z_0)$ с указанной							
координатой.							
16) α : $2x + y - 5 = 0$, β :	$x - 3z + 1 = 0$, $x_0 = 2$						
	OTBET: $\frac{x-2}{3} = \frac{y-1}{-6} = \frac{z-1}{1}$						

Блок 6. Составьте каноническое уравнение прямой

17)
$$\alpha$$
: $2y - 3z + 1 = 0$, β : $4x + z - 3 = 0$, $y_0 = 4$
Other: $\frac{x}{1} = \frac{y - 4}{-6} = \frac{z - 3}{-4}$

18)
$$\alpha$$
: $x + 5y - 2 = 0$, β : $3y + 2z - 7 = 0$, $z_0 = 2$
Otbet: $\frac{x+3}{10} = \frac{y-1}{-2} = \frac{z-2}{3}$

Блок 7. Найдите точку пересечения прямой, проходящей через начало координат и перпендикулярной плоскости α , с плоскостью α .

19)
$$\alpha$$
: $x - 2y + z + 5 = 0$

20)
$$\alpha$$
: $3x - y + z - 18 = 0$ OTBET: (5; 2; 5)

21)
$$\alpha$$
: $2x - 2y + z - 8 = 0$ OTBET: $(-1; -3; 4)$

Блок 8. Определите взаимное расположение прямых l и p (параллельны / пересекаются / скрещиваются). Если прямые параллельны или пересекаются, найдите уравнение их общей плоскости, если скрещиваются — уравнение плоскости, в которой лежит l, а p ей параллельна.

22)
$$l: x = 1 + 2t, y = 7 + t, z = 3 + 4t$$

 $p: x = 6 + 3t, y = -1 - 2t, z = -2 + t$
Otbet: $l \cap p, 9x + 10y - 7z - 58 = 0$

23)
$$l: x = -1 + t, y = t, z = 1 + 2t$$

 $p: x = t, y = -1 + 3t, z = 2 + 4t$
ОТВЕТ: $l - p, x + y - z + 2 = 0$

24) *l*:
$$x = 2 + 4t$$
, $y = -6t$, $z = -1 - 8t$
 p : $x = 7 - 6t$, $y = 2 + 9t$, $z = 12t$
Ответ: $l \parallel p$, $5x - 22y + 19z + 9 = 0$

Составили: Далевская О.П., Правдин К.В.