

SERRE D'INTÉRIEUR AUTONOME ET CONNECTÉE

SOMMAIRE

Objectifs et motivations

Démonstration

Fonctionnement: capteurs, code, application et circuit

Matériel

Organisation

Conclusion

OBJECTIFS & MOTIVATIONS

- Qui ? Pour un utilisateur qui veut garder en vie une plante, faire pousser des aromates, ou même étudier la croissance d'une plante en ayant le contrôle sur les différents paramètres physiques.
- Pourquoi ? Aider l'utilisateur à prendre soin de sa plante

DÉMONSTRATION

https://youtu.be/IywrB6E-ej0

Fonctionnement

Capteur d'humidité et de température de l'air DHT22

Ventilateur

Capteur d'humidité du sol YL-69

Pompe péristaltique

Capteur de luminosité (photorésistance LDR)

Bandes de lumières LED

CODE ARDUINO

```
AmicaPlantV1
 /**** Automatisation de la serre : quand on allume la serre OU quand on active l'automatisation
if (mess==54 | |mess==0) {
  /**** Ventilateur *****/
  if(t>18){ // SI temp > 18 degrés : ventilateur ON
    digitalWrite(ventilateurPIN, HIGH);
  } else{ // SI la temp <= 18 degrés : ventilateur OFF
    digitalWrite(ventilateurPIN, LOW);
   /********
  /****** Lumière ******/
  if(niveauLum>10){
      for(int led = 0; led < NUM LEDS; led = led + 1) {</pre>
        leds[led].setRGB( 0, 204, 51);
        FastLED.show();
        delay(100);
  } else{ //on éteint
    for (int led = 0; led < NUM LEDS; led = led + 1) { //éteint ttes les lumières
      leds[led].setRGB( 0, 0, 0);
      delay(100);
      FastLED.show();
```

```
AmicaPlantV1
/*************************** Contrôle manuel de la serre par applicatiion ***********
/****** Ventilateur : l'appli envoie 49 = allumer, 48 = éteindre *******/
if (mess==49) { // ventilateur ON
 digitalWrite (ventilateurPIN, HIGH);
if (mess==48) {// ventilateur OFF
 digitalWrite(ventilateurPIN, LOW);
/****************************
/***** Pompe : l'appli envoie 51 = activer la pompe durant 0.4 secondes *******/
if (mess==51) { //pump ON
 digitalWrite(pumpPin, HIGH);
 delay(400);
 digitalWrite(pumpPin, LOW);
 mess=1;
/***********************
/***** Lumière : l'appli envoie 55 = allumer, 56 = éteindre *******/
if(mess==55){
 for(int led = 0; led < NUM_LEDS; led = led + 1) {</pre>
   leds[led].setRGB( 0, 204, 51);
   FastLED.show();
```

Deux parties principales:

- Automatisation de la serre
- Contrôle manuel de la serre par application

APPLICATION AMICA PLANT

- Créée grâce au MIT App Inventor
- Programmation par blocs

Blocs utilisés pour contrôler les boutons

Interface pour personnaliser l'aspect visuel de l'application

RÉSULTAT FINAL

CIRCUIT ÉLECTRIQUE

Matériel

Ecran LCD I2C

Carte type Arduino UNO R3

Bois (découpe laser)

Impression 3D

Plexiglas

ORGANISATION

La serre en construction

- Planning
- Recherche d'informations
- Travail supplémentaire
- Estimation de temps pour une tâche
- Construction de la serre

CONCLUSION

- Apprendre à gérer un projet, de l'idée jusqu'au produit final
- Travail d'équipe et organisation
- Autonomie et savoir trouver ses erreurs

Premier schéma de notre serre

