

www.stats-lab.com

twitter: @statslabdublin

Interval	Midpoint (x)	Frequency (f)	
350 to 400	375	14	
400 to 450	425	19	
450 to 500	475	31	
500 to 550	525	18	
550 to 600	575	18	
	$\sum f =$	100	

$$\bar{x} = 478.5$$

The variance of the grouped data is computed as follows:

$$s^{2} = \left[\frac{\sum f_{i} x_{i}^{2}}{\sum f} - \left(\frac{\sum f_{i} x_{i}}{\sum f} \right)^{2} \right]$$

 f_i is the frequency for interval i, x_i is the midpoint for interval i.

Interval	Midpt.		Freq.	
	X	x^2	f	$f \times x^2$
350 to 400	375		14	
400 to 450	425		19	
450 to 500	475		31	
500 to 550	525		18	
550 to 600	575		18	
			$\sum fx^2$	

$$s^{2} = \left[\frac{\sum f_{i} x_{i}^{2}}{\sum f} - \left(\frac{\sum f_{i} x_{i}}{\sum f} \right)^{2} \right]$$

Standard Deviation of Grouped Data:

To compute the standard deviation of the grouped data, simply compute the square root of the variance.