WHAT IS CLAIMED IS:

2

3

- 1. A thin film transistor, comprising a source electrode, a drain electrode, a gate electrode, and a semiconductor layer, wherein one of the source electrode, the drain electrode, and the gate electrode comprises an aluminum-based metal layer, a titanium layer, and a diffusion prevention layer interposed between the titanium and the aluminum-based layers.
- 2. The thin film transistor of claim 1, wherein the diffusion prevention layer and the titanium layer are orderly formed on opposite surfaces of the aluminum-based metal layer.
- 3. The thin film transistor of claim 1, wherein the diffusion prevention layer is a titanium nitride layer.
- 4. The thin film transistor of claim 3, wherein the titanium nitride layer contains 5 to 85 wt% of nitrogen.
 - 5. The thin film transistor of claim 3, wherein the titanium nitride layer has a thickness of

2	about	100	to	600Å.

2

2

3

- 6. The thin film transistor of claim 5, wherein the titanium nitride layer has a thickness of about 100 to 400Å.
- 7. The thin film transistor of claim 6, wherein the titanium nitride layer has a thickness of 200 to 400Å.
 - 8. The thin film transistor of claim 7, wherein the titanium nitride layer has a thickness of about 300Å.
 - 9. The thin film transistor of claim 1, wherein the aluminum-based metal layer is made of an aluminum alloy containing about 0.5 to 5 wt% of one element being selected from the group consisting of silicon, copper, neodymium, platinum, and nickel.
 - 10. The thin film transistor of claim 9, wherein the aluminum-based metal layer is made of

an aluminum-silicon alloy containing about 2 wt% of silicon.

2

3

5

1

2

2

- 11. A flat panel display, comprising a plurality of sub-pixels driven by thin film transistors, each of the thin film transistors comprising a source electrode, a drain electrode, a gate electrode, and a semiconductor layer, wherein at least one of the source electrode, the drain electrode, and the gate electrode comprises an aluminum-based metal layer, a titanium layer, and a diffusion prevention layer interposed between the aluminum-based metal layer and the titanium layer.
- 12. The flat panel display of claim 11, wherein the diffusion prevention layer and the titanium layer are orderly formed on opposite sides of the aluminum-based metal layer.
- 13. The flat panel display of claim 11, wherein the diffusion prevention layer is a titanium nitride layer.
- 1 14. The flat panel display of claim 13, wherein the titanium nitride layer contains 5 to 85 wt% of nitrogen.

1	15. The flat panel display of claim 13, wherein the titanium nitride layer has a thickness of
2	about 100 to 600Å.
1	16. The flat panel display of claim 15, wherein the titanium nitride layer has a thickness of
2	about 100 to 400Å.
1	17. The flat panel display of claim 16, wherein the titanium nitride layer has a thickness of
2	200 to 400Å.
1	18. The flat panel display of claim 17, wherein the titanium nitride layer has a thickness of
2	about 300Å.
1	19. The flat panel display of claim 11, wherein the aluminum-based metal layer is made of
2	an aluminum alloy containing about 0.5 to 5 wt% of one element being selected from the group
3	consisting of silicon, copper, neodymium, platinum, and nickel.

1	20. The flat panel display of claim 19, wherein the aluminum-based metal layer is made of
2	an aluminum-silicon alloy containing about 2 wt% of silicon.
1	21. A flat panel display, comprising:
2	driving circuits disposed along edges of said display;
3	a plurality of sub-pixels driven by thin film transistors; and
4	conductive lines connecting the driving circuits disposed along edges of said display to each
5	of said plurality of sub-pixels, wherein said conductive lines comprise an aluminum-based metal
6	layer, a titanium layer, and a diffusion prevention layer interposed between the aluminum-based
7	metal layer and the titanium layer.
1	22. The flat panel display of claim 21, wherein the diffusion prevention layer and the
2	titanium layer are orderly formed on opposite sides of the aluminum-based metal layer.

23. The flat panel display of claim 21, wherein the diffusion prevention layer is a titanium

- · 2 nitride layer.
 - 24. The display of claim 23, said titanium nitride layer is 300 Å thick.
 - 1 25. The display of claim 24, said conductive lines being subjected to a heat treatment of
 - 2 380°C.