CLUSTERING

DBSCAN

DBSCAN

- DBSCAN ≡ Density Based Spatial Clustering of Applications with Noise
- Originally proposal to handle spatial data
- It uses the idea of density
- Density = number of points within a specified radius (Epsilon ε)
- Idea: a cluster has a much higher density of points than outside of the cluster

- outliers are points in low dense areas
- number of clusters is not a parameter

Definitions

epsilon

• The ε -neighborhood of a point p is the set of points whose distance from p is at most ε

i.e.,
$$N_{\varepsilon}(p) = \{q \in D \mid dist(p,q) \le \varepsilon\}$$

• Point p is a core point if the ϵ -neighborhood of p contains at least a minimum number, MinPts, of points

i.e.,
$$|N_{\varepsilon}(p)| \geq \text{MinPts}$$

- Two parameters:
 - ε(epsilon)
 - MinPts

Example

• M, P, O, and R are core point since each is in an Eps neighborhood containing at least 3 points

MinPts = 3 (self counts)

Eps=radius of the circles

Types of Points: Core, Border & Outlier

 $\varepsilon = 1$ unit, MinPts = 5

Given sand MinPts, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps. These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Points inside a cluster

Directly Density-Reachability

- A point q is directly density-reachable from point p if
 - 1) p is a core point, and
 - 2) q is in the ε -neighborhood of p.

MinPts = 4

- q is directly density-reachable from p
- p is not directly density- reachable from q?

Density-Reachability

- Density-reachable (directly and indirectly):
- Def: A point q is **density-reachable** from point p with respect to ε and MinPts if there is a chain of points $p_1, p_2, ..., p_n$ such that

$$p_{1} = p, p_{n} = q, and$$

 p_{i+1} is directly density-reachable from p_i wrt ϵ and MinPts , for $1 \le i \le n-1$

- Is q density-reachable from p?
- Is p density- reachable from q?

Density Connectivity

- Not all points in a cluster are density-reachable from each other
- So, density-reachable is not good enough to describe clusters
- Def: A point p is density-connected to point q (wrt ϵ and MinPts) if there is a point o such that both p and q are density-reachable from o (wrt ϵ and MinPts)

i.e., two points p and q are density-connected if they are both density-reachable from a given point o.

Formal Description of Cluster

- DBSCAN defines a cluster as a set of density-connected points which is maximal wrt density-reachability
- Noise is any point in the dataset which does not belong to any of the clusters
- Def. (cluster): Given a data set D, parameter ε and threshold MinPts. A cluster C is a subset of D satisfying the two conditions:
 - 1. \forall p, q \in C, p and q are density-connected. (**connectivity**)
 - 2. \forall p, q \in D, if p \in C and q is <u>density-reachable from p</u>, then q \in C. (maximal-ity)

p is a core point.

Review of Concepts

Outline of the DBSCAN Algorithm

```
Input: The data set D
Parameter: ε, MinPts
For each object p in D
  if p is a core object and not processed then
     C = retrieve all objects density-reachable from p
     mark all objects in C as processed
     report C as a cluster
  end if
End For
```

DBSCAN: The Algorithm

- Arbitrarily select a point p
- Retrieve all points density-reachable from p wrt Eps and MinPts.
- If *p* is a core point, a cluster is formed.
- If *p* is a border point, no points are density-reachable from *p* and DBSCAN visits the next point of the dataset
- Continue the process until all of the points have been processed.

DBSCAN Algorithm – Example

- Parameter
 - *E* = 2 cm
 - *MinPts* = 3

- Arbitrarily select a point p
- Retrieve all points density-reachable from p
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the dataset
- Continue the process until all of the points have been processed.

DBSCAN Algorithm – Example

- Parameter
 - *E* = 2 cm
 - *MinPts* = 3

- Arbitrarily select a point p
- Retrieve all points density-reachable from p
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the dataset
- Continue the process until all of the points have been processed.

DBSCAN Algorithm – Example

- Parameter
 - *E* = 2 cm
 - *MinPts* = 3

- Arbitrarily select a point p
- Retrieve all points density-reachable from p
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the dataset
- Continue the process until all of the points have been processed.

When DBSCAN Works Well

Clusters

- DBSCAN works well when cluster **densities** do not vary a lot.
- Can handle clusters of different shapes and sizes

Resistant to Noise

Performance Evaluation compared with CLARANS

• DBSCAN outperformed CLARANS by a factor of more than 100

Accuracy

CLARANS:

database 1 database 2

DBSCAN:

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4 Eps=large value).

(MinPts=4, Eps=small value; min density increases) 18

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

DBSCAN: Heuristics for determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor (e.g., k=4)
- Find the distance d where there is a "knee" in the curve
 - \triangleright Eps = d, MinPts = k

Summary

- Advantages
 - clusters can have arbitrary shape and size
 - number of clusters is determined automatically
 - not very sensitive to noise
 - supports outlier detection
 - the second most used clustering algorithm after K-means
- Disadvantages
 - parameters selection can be tricky
 - can be sensitive to input parameter setting
 - has problems of identifying clusters of varying densities
 - does not work well in high-dimensional datasets