Probeklausur Algorithmen (Prof. Kaufmann/Bekos/Schneck, Sommersemester 2018)

- Die Bearbeitungszeit beträgt 90 Minuten, elektronische Hilfmittel sind verboten, nur ein handbeschriebenes DIN-A4-Blatt mit Notizen ist erlaubt.
- Von den 6 Aufgaben mit jeweils 6 möglichen Punkten werden 5 bewertet. Geben Sie an, welche Aufgabe nicht bewertet werden soll.

Viel Erfolg!

Name:	 	
MatrNr.:		
Studiengang:	 	
Angestr. Abschluss:		

- 2	Punkte	max
1		6
2		6
3	The second	6
4		6
5		6
6		6
Σ		30

Betrachten Sie folgende Rekursionsgleichung: Ist n eine Dreierpotenz, so ist

$$T(n) = 2 \cdot T(n/3) + 5n$$

$$T(1) = 5$$

Geben Sie eine geschlossene Form für T(n) an und benutzen Sie dabei nicht das Mastertheorem. Beweisen Sie die Korrektheit Ihrer Antwort.

Aufgabe 2: (Dynamische Programmierung)

(6 Punkte)

Betrachten Sie folgende Variante des Rucksack-Problems: Gegeben seien n Objekte o_1,\ldots,o_n . Jedes Objekt o_j $(1 \leq j \leq n)$ hat ein Gewicht w_j . Nun soll ein Rucksack mit einer **minimalen** Anzahl an Objekten gefüllt werden, so dass das Gesamtgewicht des Rucksacks genau W ist. Gehen Sie davon aus, dass w_1,\ldots,w_n und W natürliche Zahlen größer 0 sind.

- a) Geben Sie einen Algorithmus in Psuedocode an, der die minimale Anzahl an Elementen im Rucksack berechnet. Verwenden Sie dabei **Dynamische Programmierung**.
- b) Begründen Sie die Korrektheit Ihres Programms.
- c) Geben Sie die Laufzeit Ihres Programms an.

Aufgabe 3: (Suchbäume)

(6 Punkte)

Wir betrachten eine spezielle Klasse von Bäumen, die wir 1-3-Bäume nennen. Diese Bäume mit Wurzel haben die Eigenschaft, dass jeder innere Knoten entweder 1 oder 3 Kinder hat, aber niemals 2.

- a) Geben Sie an, wie viele Blätter ein 1-3-Baum mit n inneren Knoten mindestens und höchstens haben kann.
- b) Wir wollen 1-3-Bäume als Suchbäume mit knotenorientierter Speicherung benutzen. Für 1-3-Suchbäume sollen nun entsprechende Regeln entworfen werden.
 - i. Wie sind die Regeln für eine Suchoperation nach einem Schlüssel x?
 - ii. Welche Schwierigkeit ergibt sich bei einer Einfügeoperation und wie könnten Sie diese beseitigen?

Aufgabe 4: (Billigste Wege)

(6 Punkte)

Betrachten Sie den unten dargestellten gerichteten Graphen G=(V,E) mit Kantenkosten $c\colon E\to \mathbb{Z}.$

Führen Sie den Dijkstra Algorithmus auf G aus, gestartet am Knoten a.

a) Tragen Sie dazu die entsprechenden Paare in folgende Tabelle ein. Für einen Knoten $v \in V$ ist dabei d'(v) die vorläufig berechnete Distanz und d(v) die endgültige Distanz von Knoten a zu Knoten v. Spalte S enthält den zuletzt zur Lösung hinzugenommenen Knoten v zusammen mit d(v). Spalte S' enthält die Knoten v, die Kandidaten für die nächste Iteration sind, jeweils zusammen mit d'(v).

Schritt	S: $(v, d(v))$	S': $(v, d'(v))$
1	(a, 0)	
2		
3		
4		
5		
6		

- b) Für welche Knoten berechnet der Dijkstra-Algorithmus eine falsche kürzeste Distanz?
- c) Warum? Wie sind die richtigen Distanzen?
- d) Gibt es einen Algorithmus, der dieses Problem umgeht? Welcher ist das?

Sei $B = \{0, 1\}^*$ die Menge aller endlichen Bitstrings und $T = \{x \in \mathbb{Q} \mid 0 \le x \le 1\}$ das rationale Intervall zwischen 0 und 1. Betrachten Sie folgende Funktion:

$$\iota \colon B \to T,$$

$$\iota(w_1 \cdots w_n) := \sum_{i=1}^n w_i \cdot 2^{-i}$$

Diese Funktion bildet also einen Bitstring $w_1 \cdots w_n$ auf die binäre Fließkommazahl $0, w_1 \cdots w_n$ ab. Seien außerdem für jedes $m \in \mathbb{N}$

$$h_m \colon B \to T$$

$$h_m(w_1 \cdots w_n) := \begin{cases} \iota(w_1 \cdots w_m) & m < n \\ \iota(w_1 \cdots w_n) & m \ge n \end{cases}$$

jeweils eine Hashfunktion.

- a) Berechnen Sie $\iota(101010)$. Berechnen Sie außerdem $\iota(1100)$, sowie $h_2(1100)$ und $h_{42}(1100)$.
- b) Geben Sie in Abhängigkeit von $m \in \mathbb{N}$ die Menge C_m aller Bitstrings an, die mit dem Bitstring w=101 kollidieren.
- c) Beschreiben Sie $\iota(C_m) \subseteq T$ in Abhängigkeit von $m \in \mathbb{N}$.

Aufgabe 6: (Tiefensuche und transitive Hülle)

(6 Punkte)

Sei G=(V,E) ein ungerichteter Graph in Adjazenzlistendarstellung mit |V|=n und |E|=m. Die transitive Hülle $G^*=(V,E^*)$ von G ist definiert durch

 $E^* = \{\{v,w\} \mid v \neq w \text{ und es gibt einen Pfad von } v \text{ nach } w \text{ in } G\}$.

- a) Mit welchen Knoten ist ein Knoten $v \in V$ in der transitiven Hülle G^* verbunden?
- b) Beschreiben Sie, wie der Graph G^* der transitiven Hülle aussieht.
- c) Sei ein Knoten $v \in V$ gegeben. Zeigen Sie, dass Sie mit Hilfe der Tiefensuche in Zeit O(n+m) die Adjazenzliste von v in G^* bestimmen können.