7.7 Classwork: "Onto" mappings, symmetry

1. What is the smallest non-zero angle of rotation about its center that would map the pentagon onto itself?

$$5x = 360$$

$$x = 72^{\circ}$$

- 2. Circle YES or NO to indicate whether the given transformation maps the hexagon onto itself.
 - No A reflection over \overrightarrow{AD}
 - No A rotation of 60° clockise around the hexagon's center.
 - (c) (Yes) No A reflection over a line through the midpoints of \overline{BC} , \overline{EF} .
 - (No) A rotation of 120° counterclockwise around point D.

3. The figure shows a rectangle (not a square).

Which transformations carries the rectangle onto itself? Mark each True or False.

(a) A reflection over the solid diagonal

True

(b) A reflection over the dashed diagonal

True

False

- (c) A clockwise rotation of 90° about the intersection of the diagonals True
- (d) A clockwise rotation of 180° about the intersection of the diagonals True,

- 4. A transformation maps $\triangle ABC \rightarrow \triangle DEC$, shown below.
 - (a) Fully specify the transformation.

(b) Identify each corresponding object.

iii.
$$C \rightarrow \underline{\hspace{1cm}} C$$

iv.
$$\angle ACB \cong \angle DC E$$

v.
$$AB \cong \overline{DE}$$

- 5. Check those transformations that are rigid motions.
 - ☐ Dilation

Translation

Reflection

- Rotation
- An isometry
- ☐ Horizontal stretch
- 6. In the diagram below, $\triangle ABC$ with sides of 13, 15, and 17, is mapped onto $\triangle DEF$ after a clockwise rotation of 90° about point P.
 - (a) What is A mapped to? $A \rightarrow \rangle$
 - (b) What corresponds to F?

(c) Given DF = 2x + 1. Find x.

7. Reflect $\triangle TRS$ across the y-axis, labeling the image $\triangle T'R'S'$. Check those properties that are maintained by reflection.

Length

- Angle measures
- ☐ Orientation
- Parallel relationships

8. Draw the line of reflection that would map $\triangle ABC$ onto $\triangle A'B'C'$.

9. An isometry maps $\triangle JKL \to \triangle MNO$. $m \angle K = 40^\circ$ and $m \angle M = 100^\circ$. Find the measure of $\angle L$.

mLL = 40°

10. Translate $\triangle DEF$ by $(x,y) \rightarrow (x+3,y-5)$. Label the image $\triangle D'E'F'$.

11. A translation maps triangle PQR onto triangle STU.

Write each corresponding object.

(a)
$$Q \rightarrow \underline{\hspace{1cm}}$$

(a)
$$Q \rightarrow I$$

(b) $\angle QRP \cong IUS$

(c)
$$Pa \cong \overline{ST}$$

(d) Justify $\triangle PQR \cong \triangle STU$. Use the words "rigid motion".

Translation is a rigid motion That maintains length. The triangles are congruent (SSS) 12. Translate $\triangle XYZ$ with X(-1,2), Y(3,4), Z(1,-3) by $(x,y) \rightarrow (x-6,y-1)$, labeling

the image $\triangle X'Y'Z'$.

