LÖSUNGSVORSCHLÄGE ZU DEN ABGABEAUFGABEN, BLATT 7

Aufgabe 1:" \Leftarrow " Sei Y abgeschlossen und $(x_n) \subset Y$ eine Cauchy-folge bzgl. der induzierten Metrik d_Y , d.h $\forall \epsilon > 0 \exists N \in \mathbb{N} : d_Y(x_n, x_{n+k}) < \epsilon \forall n \geq N, k \in \mathbb{N}$.

Da $d_y(x_n, x_{n+k}) = d(x_n, x_{n+k})$, ist (x_n) ebenfalls eine Cauchy-Folge in X. Da X vollständig ist, existiert ein $x \in X$ mit $x = \lim_{n \to \infty} x_n$ und $d(x, x_n) \to 0$.

Da Y abgeschlossen ist, ist $x \in Y$ und $d_Y(x, x_n) \to 0$. Also konvergiert (x_n) gegen x in Y bzgl. d_Y . $\Rightarrow (Y, d_Y)$ ist vollständig.

" \Rightarrow " Sei (Y, d_Y) vollständig und $(x_n) \subset Y$ eine Folge, die in (X, d) gegen ein $x \in X$ konvergiert. Dann ist (x_n) eine Cauchy-Folge in (X, d) und damit auch in (Y, d_Y) . Wegen der Vollständigkeit von (Y, d_Y) exisitiert ein $y \in Y$ mit $d_Y(x_n, y) \to 0$. Wir haben aber schon $d_Y(x_n, y) = d(x_n, y)$ und $d(x_n, x \to 0)$, also $x = y \in Y$. Also ist Y abgeschlossen.

Aufgabe 2.1: • wohldefiniert:

 $f \in \mathcal{B}(X,Y) \Rightarrow \exists p_1 \in Y, r_1 > 0 \text{ mit } d(f(x),p_1) < r_1 \ \forall x \in X \text{ (d. h. } f(X) \subset K_{r_1}(p_1).$

 $g \in \mathcal{B}(X,Y) \Rightarrow \exists p_2 \in Y, r_2 > 0 \text{ mit } d(g(x),p_2) < r_2 \ \forall x \in X.$ $\forall x \in X \text{ gilt die } \Delta\text{-Ungleichung:}$

$$d(f(x), g(x)) \le d(f(x), p_1) + d(p_1, p_2) + d(p_2, g(x))$$

$$\le r_1 + d(p_1, p_2) + r_2$$

$$\Rightarrow D(f,g) = \sup_{x \in X} d(f(x),g(x)) < \infty$$

D ist wohldefiniert.

- Definitheit: $D \ge 0$: klar, da $d(f(x), g(x)) \ge 0$ $D = 0 \Leftrightarrow f = g$: klar, da $d(f, g) = 0 \Leftrightarrow f = g$.
- Symmetrie: D(f,g) = D(g,f) klar, da d(f,g) = d(g,f).
- Δ -Ungleichung:

$$\begin{split} D(f,g) &= \sup_{x \in X} d(f(x),g(x)) \\ &\overset{\Delta-\text{Ungl. für}d}{\leq} \sup_{x} (d(f(x),h(x)) + d(h(x),g(x))) \\ &\leq \sup_{x} d(f(x),h(x)) + \sup_{x} d(h(x),g(x)) \\ &= D(f,h) + D(h,g) \end{split}$$

 $\Rightarrow D$ ist eine Metrik

Aufgabe 2.2: Sei $(f_n) \subset \mathcal{B}(X,Y)$ eine Cauchy-Folge, also $\forall \epsilon > 0 \exists N \in \sup_x d(f_{\epsilon}(x), f_{n+k}(x)) < \epsilon \ \forall n \geq N, \ k \in \mathbb{N}$ (*)

Dann ist auch $d(f_n(x), f_{n+k}(x)) < \epsilon \ \forall x \Rightarrow \forall x \text{ ist } (f_n(x))_{n \in \mathbb{N}}$ eine Cauchy-Folge in Y. Da Y vollständig ist, $\exists f(x) \in Y \text{ mit } \lim_{n \to \infty} f_n(x) = x. \ x \mapsto f(x)$ ist eine Funktion.

Wir wollen jetzt zeigen, dass $f \in \mathcal{B}(X,Y)$ mit $D(f_n,f) \to 0$.

Dafür betrachte $k \to +\infty$ in (*): $\forall \epsilon > 0 \exists Nin \mathbb{N}$ mit sup $d(f_n(x), f(x)) < \epsilon$ $\forall n \in \mathbb{N}.(**)$

Sei $\epsilon > 0$ und N wie oben. $\exists p \in Y, r > 0$ mit $f_N(x) \in K_r(p) \ \forall x \in X$. Also

$$d(f(x), p) \le d(f(x), f_N(x)) + d(f_N(x), p) \le \epsilon + r$$

 $\Rightarrow f(x) \in K_{\epsilon+r}(p) \forall x \in X$ $\Rightarrow f \in \mathcal{B}(X,Y)$ Dann kann man (**) als $\forall \epsilon > 0 \exists N \in \mathbb{N}$ mit $D(f_n,f) \leq \epsilon$

 $\forall n \in \mathbb{N} \text{ umschreiben.} \Rightarrow f = \lim_{n \to \infty} f_n \text{ in } \mathcal{B}(X, Y).$ **Aufgabe 3.1:** Betrachte $T(x) = \frac{x+2}{x+3} = 1 - \frac{1}{x+3}.$ $T'(x) = \frac{1}{(x+3)^2} \Rightarrow |T'| \leq \frac{1}{9} =: L \text{ für } x \in [0, \infty) \text{ und } T(x) > 0 \text{ für } x \in [0, \infty)$ $\Rightarrow T$ ist eine Kontraktion auf $[0, \infty)$.

> Außerdem ist $[0, \infty)$ als abgeschlossener Unterraum von \mathbb{R} vollständig. $\Rightarrow x = T(x)$ besitzt eine eindeutige Lösung nach dem Banachschen Fixpunktsatz.

Aufgabe 3.2: Iterationen $x_n = T(x_{n-1})$, z. B. mit $x_0 = 0$, $x_1 = \frac{2}{3}$;

$$|x_n - p| \le \frac{L^n}{1 - L} |x_1 - x_0|$$

$$= \frac{1}{9^n} \cdot \frac{9}{8} \cdot \frac{2}{3} = \frac{1}{12 \cdot 9^{n-1}}$$

Also $|x_n - p| \le 0,002 \text{ für } n = 3.$

$$x_0 = 0, x_1 = \frac{2}{3}, x_2 = \frac{\frac{2}{3} + 2}{\frac{2}{3} + 3} = \frac{8}{11}; x_3 = \frac{\frac{8}{11} + 2}{\frac{8}{11} + 3} = \frac{30}{41}.$$
 Also $|p - \frac{30}{41}| \le 0,002$
Vergleiche $\frac{30}{41} = 0,7317073...$ mit der expliziten Lösung $p = \sqrt{3} - 1 = 0,73207508$

Aufgabe 4.1:" \Rightarrow " Sei y stetig differenzierbar mit y(0) = 0 und $y'(x) = y(x) + 1 \ \forall x \in$ (-a,a).

Wir integrieren beide Seiten zwischen 0 und $x \in (-a, a)$:

$$\underbrace{\int_{0}^{x} y'(t)dt}_{=y(x)-y(0)=y(x)} = \int_{0}^{x} y(t) + 1dt$$

$$\Leftrightarrow y(x) = \int_{0}^{x} (y(t) + 1)dt \ \forall x \in (-a, a)$$

Betrachte nun $x \to a^-: y(x) \to y(a)$, da y stetig. Und $\int_0^x \to \int_0^a$, da

$$\left| \int_0^a (y(t) + 1) - \int_0^x (y(t) + 1) \right| \le \int_x^a |y(t) + 1| dt$$

$$\le \|y + 1\|_{\infty} (a - x) \xrightarrow{x \to a^-} 0$$

Also
$$y(x) = \int_0^x (y(t) + 1) dt$$
 auch für $x = a$. Analog für $x = -a$.

$$\Rightarrow y(x) = \int_0^x (y(t) + 1) dt \ \forall x \in [-a, a].$$

$$\Leftarrow : \text{ Sei } y \text{ Lösung von } y(x) = \int_0^x (y(t) + 1) dt, \ x \in [-a, a], \text{ dann ist}$$

$$y(0) = \int_0^0 (y(t) + 1) dt = 0 \text{ und}$$

$$y'(x) = \frac{d}{dx} \left(\int_0^x (y(t) + 1) dt \right)$$
$$= \underbrace{y(x) + 1}_{stetig} \ \forall x \in (-a, a)$$

Und damit y stetig differenzierbar.

Aufgabe 4.2: Wie in der VL:

$$|(T(y_1))(x) - (T(y_2))(x)|$$

$$= \left| \int_0^x (y_1(t) + 1) dt - \int_0^x (y_2(t) + 1) dt \right|$$

$$= \left| \int_0^x (y_1(t) - y_2(t)) dt \right|$$

$$\leq |x| \sup_{t \in [-a,a]} |y_1(t) - y_2(t)|$$

$$\leq a||y_1 - y_2||$$

wobei $\|\cdot\|$ die Supremumsnorm in C^0 ist. $\Rightarrow \sup_{x \in [-a,a]} |T(y_1) - T(y_2)| \le a \|y_1 - y_2\|$ $\Rightarrow \|T(y_1) - T(y_2)\| \le a \|y_1 - y_2\| \text{ mit } a < 1 \Rightarrow \text{Kontraktion.}$

4

Aufgabe 4.3:

$$y_0 \equiv 0$$

$$y_1(x) = \int_0^x (0+1)dt = x$$

$$y_2(x) = \int_0^x (t+1)dt = \frac{x^2}{2} + x$$

$$y_3(x) = \int_0^x (\frac{t^2}{2} + t + 1)dt = \frac{x^3}{6} + \frac{x^2}{2} + x$$

$$\vdots$$

$$y_n(x) = \sum_{k=1}^n \frac{x^k}{k!}$$

 $\Rightarrow y_n(x)$ konvergiert gleichmäßig (d. h. in der Supremumsnorm) gegen $y: x \mapsto e^x - 1.$