MPSI² 2023-24 Lycée Berthollet

Feuille d'exercices sur les dérivées

Exercice 1 Montrer que pour tout x > -1, $\ln(1+x) \le x$.

Exercice 2 Montrer que pour tout $x \in \mathbb{R}$, $|\sin x| \le |x|$.

Exercice 3 Montrer que la fonction $x \mapsto \operatorname{Arccos} x + \operatorname{Arcsin} x$ est constante et déterminer la valeur de la constante.

Exercice 4 Donner une expression simple de $\operatorname{Arctan} x + \operatorname{Arctan} \frac{1}{x}$ pour $x \neq 0$.

Exercice 5 Déterminer le domaine de définition, les intervalles de dérivabilité et la dérivée des

fonctions définies par :
$$f_1(x) = \sqrt{3x + \sqrt{2 + x^2}}$$
, $f_2(x) = \sqrt{(x^2 - 2x + 1)^3}$, $f_3(x) = \sqrt{\frac{1 + x + x^2}{1 - x + x^2}}$,

$$f_4(x) = \left(1 + \frac{1}{x}\right)^x, f_5(x) = (x^2 - x)^{\frac{1}{3}}, f_6(x) = \frac{x + \ln x}{x - \ln x}, f_7(x) = \sqrt{1 + x^2 \cos^2 x}, f_8(x) = \frac{e^{\frac{1}{x}} + 1}{e^{\frac{1}{x}} - 1},$$

$$f_9(x) = (\cos x)^{\sin x}, f_{10}(x) = \ln\left(\sin\frac{x^2 - 1}{x^2 + 1}\right).$$

Exercice 6 Pour $n \in \mathbb{N} \setminus \{0\}$, calculer la dérivée n-ième de $x \longmapsto \frac{1-x}{1-x}$.

Exercice 7 Déterminer le domaine de définition, les intervalles de dérivabilité et la dérivée de la fonction $x \mapsto \operatorname{Arcsin}(2x-1) + 2\operatorname{Arctan}\sqrt{\frac{1-x}{x}}$ et en déduire une expression plus simple de cette fonction.

Exercice 8 Déterminer le domaine de définition, les intervalles de dérivabilité et la dérivée de la fonction $x \longmapsto \operatorname{Arcsin} \frac{2x}{1+x^2} + \operatorname{Arccos} \frac{1-x^2}{1+x^2}$ et en déduire une expression plus simple de cette fonction.

Exercice 9 Déterminer le domaine de définition, les intervalles de dérivabilité, la dérivée, les variations et les limites aux bornes de la fonction $x \mapsto \sqrt[3]{x^3 + 3x^2 - 4}$. Que se passe-t-il aux points d'abscisses -2 et 1?

Exercice 10 Pour $n \in \mathbb{N}$, on définit la fonction f_n sur I =]-1,1[par

$$f_n(x) = (1 - x^2)^{n - \frac{1}{2}}.$$

1. Justifier la dérivabilité de f sur I.

Montrer les résultats suivants :

2.
$$\forall n \in \mathbb{N}, \forall x \in I, (1-x^2)f'_n(x) + (2n-1)xf_n(x) = 0$$

3.
$$\forall n \ge 2, \forall x \in I, (1-x^2)f_n^{(n)}(x) + xf_n^{(n-1)}(x) + (n^2-1)f_n^{(n-2)}(x) = 0.$$

2.
$$\forall n \in \mathbb{N}, \forall x \in I, (1-x^2)f_n'(x) + (2n-1)xf_n(x) = 0.$$

3. $\forall n \geq 2, \forall x \in I, (1-x^2)f_n^{(n)}(x) + xf_n^{(n-1)}(x) + (n^2-1)f_n^{(n-2)}(x) = 0.$
4. $\forall n \geq 1, \forall x \in I, f_{n+1}^{(n)}(x) = \frac{2n+1}{n+1} \left((1-x^2)f_n^{(n)}(x) - nxf_n^{(n-1)}(x) \right).$

5.
$$\forall n \ge 1, \forall x \in I, f_n^{(n-1)}(x) = (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{n} \sin(n \operatorname{Arccos} x).$$