

University of Dhaka

Institute of Business Administration (IBA)

Master of Business Administration (MBA)

K501: Quantative Analysis for Business Decision

Last Updated: Wednesday 14th May, 2025

Author Details

Name : Md Hasibul Islam

Student ID : 201-67-011

Program: Master of Business Administration (MBA)Institute: Institute of Business Administration (IBA)

University : University of Dhaka
Email : hasiee8004@gmail.com
LinkedIn : linkedin.com/in/hasib009
GitHub : github.com/HasibRockie
Website : hasibrockie.github.io

Contents

Statistics and Its Fundamental Concepts

21-04-25 Monday

Statistics is the science of collecting, organizing, analyzing, interpreting, and presenting data to support decision-making and problem-solving in business and other domains. It provides a quantitative foundation for managerial decisions by offering meaningful insights from data.

Types of Statistics:

- 1. **Descriptive Statistics:** This involves methods of organizing, summarizing, and displaying data.
 - Examples: Mean, Median, Mode, Standard Deviation, Frequency tables, Pie charts, Histograms.
 - Use Case: A retail manager summarizes last month's sales performance using a bar chart and average daily revenue.
- 2. **Inferential Statistics:** This refers to techniques for making generalizations from a sample to a population using probability theory.
 - Examples: Hypothesis testing, Confidence intervals, Regression analysis.
 - Use Case: A pharmaceutical company tests a new drug on a sample group to infer its effectiveness on the broader population.

Types of Variables:

- Qualitative (Categorical) Variables: Represent categories or labels.
 - Examples: Gender, Brand name, Type of customer (new/returning).
- Quantitative Variables: Represent numeric values.
 - **Discrete Variables:** Countable values (e.g., Number of employees).
 - Continuous Variables: Measurable and can take any value within a range (e.g., Sales revenue, Temperature).

Levels of Measurement:

Other Key Concepts:

- **Population:** The entire group of individuals or instances about whom we hope to learn.
- **Sample:** A subset of the population, selected for analysis.
- **Parameter:** A numerical summary or measure that describes a characteristic of a population (e.g., population mean μ).
- **Statistic:** A numerical summary derived from a sample (e.g., sample mean \bar{x}). Statistics are used to estimate parameters.

Characteristic	Nominal	Ordinal	Interval	Ratio
Definition	Categorical data without	Categorical data with a log-	Numeric data with equal	Numeric data with equal
	any order	ical order	intervals, no true zero	intervals and a true zero
Nature of Data	Labels or names	Ordered categories	Quantitative	Quantitative
Mathematical	Equality only	Comparisons (>, <)	Addition, subtraction	All mathematical opera-
Operations				tions
Meaningful	No	No	No	Yes
Zero				
Can Calculate	No	No (median preferred)	Yes	Yes
Mean?				
Examples	Gender, Blood Type, Prod-	Socioeconomic Status, Edu-	Temperature (Cel-	Height, Weight, Age, Sales
	uct Type	cation Level	sius/Fahrenheit), IQ	Revenue
			Score	
Applicable	Mode, Frequency	Mode, Median, Percentile	Mean, SD, Correlation	All descriptive and inferen-
Statistics				tial statistics
Distance be-	No	Not always	Yes	Yes
tween values is				
meaningful?				
Has absolute	No	No	No	Yes
zero?				

Table 1: Comparison of Levels of Measurement

Classification of Variables with Examples

28-04-25 Monday

Table 2: Classification of Variables — Qualitative vs Quantitative, Discrete vs Continuous

Variable Type	Discrete Examples	Continuous Examples
Qualitative Shirt size (S, M, L)		Skin tone spectrum
	Product category (A, B, C)	Customer feedback scale
	Number of children category (None, One,	Dialect variation
	Two+)	Shade of color preferences
	Room type (Single, Double)	Accent variation
	Education level (High School, UG, PG)	
Quantitative	Number of cars owned	Height (cm)
	Number of transactions	Weight (kg)
	Exam scores (out of 100)	Income (\$)
	Number of employees	Temperature (°C)
	Number of visits	Time spent (hours)

Table 2: Classification of Variables: Qualitative vs Quantitative and Discrete vs Continuous

Table 3: Classification by Levels of Measurement — Nominal, Ordinal, Interval, Ratio with Discrete and Continuous Types

Level of Mea-	Discrete Examples	Continuous Examples
surement		
Nominal	 Jersey number Postal code Nationality Product ID Car model	 Color shade Accent pattern Logo design variation Pattern of speech Ink density
Ordinal	 Customer rating (1–5 stars) Survey rank (Strongly disagree to Agree) Academic grade (A, B, C) Job level (Junior, Mid, Senior) Market tier (Low, Mid, High) 	 Satisfaction level on 0–10 scale Credit score bands Health condition severity Employee performance level Risk tolerance scale
Interval	 Test scores (e.g., IQ, SAT) Temperature recorded hourly Credit scores in discrete brackets Year of birth Calendar dates 	 Temperature (°C or °F) Time of day (without AM/PM) Financial index points Sound intensity Wind speed variation
Ratio	 Number of products sold Number of goals scored Number of books owned Defect counts in production Visitors per day 	IncomeDistance traveledWeightTimeAge

Table 3: 50 Examples Categorized by Level of Measurement and Variable Type

Classification of Interval and Ratio Data

05-05-25 Monday

Table 1: Examples of Interval vs Ratio Data

Interval Examples	Ratio Examples	
Temperature (°C or °F)	Height (cm)	
IQ scores	Weight (kg)	
Calendar years (e.g., 1990, 2000)	Income (\$)	
Time of day (without AM/PM)	Distance (miles, km)	
Standardized test scores (e.g., SAT)	Age (years)	
Body temperature (°C or °F)	Speed (km/h, m/s)	
Elevation (altitude above sea level)	Amount of money in a bank account (\$)	
Scores on a thermometer (not Celsius)	Number of products produced	
Electrical voltage (in volts)	Number of hours worked	
Sea level pressure in hPa	Time spent on an activity (minutes, hours)	
Temperature difference (relative to a base-	Volume of water in a tank (liters)	
line)		
Time intervals (measured in minutes, sec-	Weight of an object (kg)	
onds)		
Age difference between two people (in	Height of a building (meters)	
years)		
Test scores in degrees (e.g., temperature de-	Distance traveled (km)	
grees in a test)		
Time elapsed (counted in minutes or hours)	Duration of an event (seconds, hours)	
Yearly income (adjusted for inflation)	Car mileage (km per liter)	
Currency fluctuation in a day	Number of children in a family	
Dates in history (e.g., 1776, 2000)	Average monthly rent (\$)	
Income tax (as a percentage of income)	Calories burned (kcal)	
Temperature increase over a day	Amount of rainfall (cm)	
Time difference in hours (e.g., time zones)	Number of cups of coffee consumed	
Survey scores (e.g., 1 to 10 scale)	Blood pressure level (mm Hg)	
Duration in seconds (e.g., a stopwatch)	Quantity of goods sold	
Difference in height between two points on	Quantity of raw material processed	
Earth		
Height of a mountain (in meters)	Hours of sleep per night	

Table 4: Examples of Interval and Ratio Data

Table 2: Continuous vs Discrete Examples for Interval and Ratio Data

Continuous Examples	Discrete Examples	
Temperature (°C or °F)	Number of children in a family	
Height (cm)	Number of cars owned	
Weight (kg)	Number of transactions made	
Age (years)	Number of goals scored in a game	
Distance (miles, km)	Number of students in a class	
Speed (km/h, m/s)	Number of employees in a company	
Time spent on a task (minutes, hours)	Number of books in a library	
Amount of money in a bank account (\$)	Number of visitors to a website	
Volume of water in a tank (liters)	Number of rooms in a house	
Duration of an event (seconds, minutes)	Number of items sold in a day	
Calories burned (kcal)	Number of people in a line	
Amount of rainfall (cm)	Number of phone calls received	
Number of cups of coffee consumed	Number of hours worked per week	
Blood pressure level (mm Hg)	Number of students passing an exam	
Height of a building (meters)	Number of cars in a parking lot	
Hours of sleep per night	Number of pets owned	
Monthly rent (\$)	Number of emails sent in a day	
Total income for the year (\$)	Number of tickets sold for an event	
Survey scores (e.g., 1 to 10 scale)	Number of products produced in a factory	
Time intervals (measured in minutes)	Number of patients in a hospital	
Test scores (standardized)	Number of questions answered correctly on	
	a quiz	
Time difference between locations (e.g.,	Number of units produced per hour	
time zone differences)		
Total calories consumed in a day	Number of visitors to a museum	
Survey feedback score (1 to 10)	Number of cups in a cupboard	
Time elapsed in hours (e.g., work hours)	Number of toys in a box	

Table 5: Continuous vs Discrete Examples for Interval and Ratio Data

Frequency Distribution and Mean Classifications

10-04-25 Thursday

Frequency Distribution and Parameters

Frequency Distribution: A frequency distribution is a table that displays the frequency (i.e., how often each value appears) of different values or categories in a dataset. It helps to organize and summarize data, providing insight into the underlying patterns.

Parameters of Frequency Distribution:

- **k** (Number of Classes): The number of categories or intervals that data will be grouped into. It is typically chosen based on the range and size of the dataset.
- N (Total Number of Data Points): The total number of observations or data points in the dataset.
- i (Class Width): The width of each class interval, calculated using the formula:

$$i = \frac{\text{Max} - \text{Min}}{k}$$

where Max and Min represent the maximum and minimum values in the dataset, respectively.

• The rule for selecting k is: $2^k > N$, where k is the number of classes, and N is the total number of observations.

Example: Suppose you have a dataset of 50 data points (N = 50), and the range of the data is from 10 to 100.

To determine the number of classes (*k*) and the class width (*i*):

$$2^k > 50$$
 \Rightarrow $k = 6$ (as $2^6 = 64 > 50$)
$$i = \frac{100 - 10}{6} = 15$$

Thus, the number of classes *k* will be 6, and each class will have a width of 15.

Mean

1. Arithmetic Mean: The arithmetic mean, commonly referred to as the average, is the sum of all values in the dataset divided by the number of values. It is the most widely used measure of central tendency.

Arithmetic Mean
$$(\bar{x}) = \frac{\sum x}{N}$$

Where: - x represents each data point, - N is the number of data points.

Example: For the dataset: 2, 4, 6, 8, 10,

$$\bar{x} = \frac{2+4+6+8+10}{5} = \frac{30}{5} = 6$$

2. Geometric Mean: The geometric mean is the nth root of the product of all values in a dataset, where *n* is the number of values. The geometric mean is often used when comparing values that have different ranges, such as growth rates.

Geometric Mean
$$(GM) = \left(\prod_{i=1}^{N} x_i\right)^{\frac{1}{N}}$$

Where: - x_i represents each data point, - N is the number of data points.

Example: For the dataset: 1, 4, 16, 64,

$$GM = (1 \times 4 \times 16 \times 64)^{\frac{1}{4}} = 1024^{\frac{1}{4}} = 8$$

3. Weighted Mean: The weighted mean is a variation of the arithmetic mean where each data point is assigned a weight that reflects its importance or frequency. The weighted mean is particularly useful when some values in the dataset are more significant than others.

Weighted Mean =
$$\frac{\sum w_i x_i}{\sum w_i}$$

Where: - w_i is the weight associated with data point x_i , - x_i is the value of the data point, - N is the total number of data points.

Example: For the dataset: (value, weight): (2, 3), (4, 2), (6, 5),

Weighted Mean =
$$\frac{(3 \times 2) + (2 \times 4) + (5 \times 6)}{3 + 2 + 5} = \frac{6 + 8 + 30}{10} = \frac{44}{10} = 4.4$$

Measures of Location and Distribution Types

10-04-25 Thursday

Mode, Median, and Common Measures of Location

1. Mode:

The mode is the value that appears most frequently in a data set. It is the only measure of central tendency that can be used for nominal data. A dataset may have no mode, one mode (unimodal), or multiple modes (bimodal or multimodal).

Example:

For the dataset: 3, 3, 4, 5, 6, 6, 6, 7, - Mode = 6 (appears most frequently).

2. Median:

The median is the middle value when the data is arranged in ascending or descending order. If the number of data points is odd, the median is the middle number. If it is even, the median is the average of the two middle numbers.

Example:

For the dataset: 1, 3, 5, 7, 9, - Median = 5 (middle value).

For the dataset: 1, 3, 5, 7, - Median = (3 + 5) / 2 = 4.

3. Other Measures of Location:

In addition to the mode and median, other measures of location include the mean (discussed earlier), quartiles, and percentiles, which divide the data into specific parts: - Quartiles split data into four equal parts. - Percentiles divide the data into 100 equal parts, useful for detailed analysis.

Population Mean and Sample Mean

Population Mean:

The population mean (μ) is the average of all the values in the population. It is calculated by summing all the values and dividing by the total number of values in the population.

$$\mu = \frac{\sum x_i}{N}$$

Where: $-x_i$ represents each individual data point, -N is the total number of data points in the population.

Example:

For the population data: 2, 4, 6, 8, 10,

$$\mu = \frac{2+4+6+8+10}{5} = \frac{30}{5} = 6$$

Sample Mean:

The sample mean (\bar{x}) is the average of a sample taken from the population. It is calculated in the same way as the population mean but uses the sample data.

$$\bar{x} = \frac{\sum x_i}{n}$$

Where: - x_i represents each individual data point in the sample, - n is the number of data points in the sample.

Example:

For the sample data: 1, 3, 5, 7, 9,

$$\bar{x} = \frac{1+3+5+7+9}{5} = \frac{25}{5} = 5$$

Graphs for Symmetric, Negatively Skewed, and Positively Skewed Distributions

The graphs for the three types of distributions can be created using external tools such as Python or pre-generated images. Here's how you would describe and use graphs:

1. **Symmetric Distribution:**

A symmetric distribution has the same shape on both sides of the center. The mean, median, and mode are all at the center. A classic example is the **normal distribution**.

2. **Negatively Skewed Distribution:**

A negatively skewed distribution (or left-skewed distribution) has a longer tail on the left side. The mean is less than the median, and the mode is greater than the median.

3. **Positively Skewed Distribution:**

A positively skewed distribution (or right-skewed distribution) has a longer tail on the right side. The mean is greater than the median, and the mode is less than the median.

To generate the graphs, use the following code in a Python environment or generate similar graphs in other plotting tools:

"'python import numpy as np import matplotlib.pyplot as plt

Create data for symmetric, negatively skewed, and positively skewed distributions np.random.seed(0)

Symmetric (Normal Distribution) symmetric data = np.random.normal(0, 1, 1000)

Negatively Skewed (Lognormal Distribution) negative_s $kew_data = np.random.lognormal(0, 1, 1000)$

Positively Skewed (Lognormal Distribution) positive_s kew_d at a = np.random.lognormal(1, 1, 1000)

Plotting fig, axs = plt.subplots(3, 1, figsize=(6, 12))

Symmetric Distribution axs[0].hist(symmetric_d ata, bins = 30, edgecolor = 'black', alpha = 0.7)axs[0].set_t itle('S₁)

Negatively Skewed Distribution axs[1].hist(negative_s kew_data , bins = 30, edgecolor = black', alpha = 0.7)axs[1]. $set_title('NegativelySkewedDistribution')axs[1]$. $set_tlabel('Value')axs[1]$. $set_vlabel('Frequency')$

Positively Skewed Distribution axs[2].hist(positive_s kew_data , bins = 30, edgecolor = 'black', alpha = 0.7)axs[2].so plt.tight_layout()plt.show()

2025-04-23

Wednesday

Topics Covered: