

What is it?

Takes XYZ input

Fits the best fit plane to the points

 Measures strike, dip, and dip direction from the resulting plane

How is this useful?

- Geologic mapping with satellite images
- Seismic fault interpretations
- Water table determination

 I don't know. Use your head and think of other applications. I'm not your mom.

Assumptions:

- This calculator assumes the surface can be approximated by a linear plane. If it cannot, break up the segments of the surface that you believe are linear planes and insert them separately.
- This calculator also assumes you have added in good data. Garbage in, garbage out as they say. I'll be adding an r^2 value and 3D plotting capabilities in the future to check the accuracy of your results.

Example Use #1:

*It's important to note that Z decreases value with depth. So in this example, which is above sea level, Z would be positive. Seismic software often exports TVDSS values as positive, so make sure to check this!

Mapping in Google Earth or other satellite imagery is a great way to supplement field mapping.

Strike and dip of faults can be determined by taking XYZ points of the fault exposure on the surface and plugging them into the calculator.

Note that Google Earth has very, very poor resolution when it comes to Z values. Probably better off using a DEM to get more accurate values, but Google Earth works for most class-based mapping projects.

Example Use #2:

After exporting a fault data from seismic, edit the ASCII output to be X, Y, Z, faultname.

Note the Z value should decrease with depth. For example, if this fault were 20,000 ft below sea level, the Z value should be -20000.

Also note the input data was all referenced to the original point. This is not necessary.

Output Data:

Name	Strike	Dip	Direction
Original	70.2	47.3	Southeast

Input Data:

0	0	0	Original
-1311	3484	4466	Original
-1611	23	792	Original
-2580	2598	4099	Original
-1156	233	825	Original
-2085	2703	3960	Original
-1980	-84	865	Original
-3094	2445	4156	Original
-2438	-285	898	Original
-3633	2427	4189	Original
-2921	-428	931	Original
-4045	2123	4115	Original
-3364	-663	808	Original
-4267	1387	3462	Original
-273	3566	4115	Original
932	362	-65	Original
366	4485	4736	Original
2017	792	335	Original
2479	983	555	Original
909	4495	4474	Original
2679	2987	2125	Original
1861	4816	4452	Original
2166	2908	2239	Original
1312	4818	4680	Original
2298	2613	2182	Original
2888	1295	557	Original
2786	2748	2190	Original
3268	1668	1014	Original
2246	5139	4313	Original
2997	3525	2647	Original
2663	5428	4485	Original
3556	3509	2329	Original
3633	5712	4517	Original
4490	3873	2321	Original
4484	6237	4493	Original
5422	4257	2329	Original
5527	6370	4476	Original
6311	4717	2517	Original
7274	5019	2754	Original
6501	6651	4582	Original
8663	5591	2794	Original
8103	6773	4436	Original
9647	5849	2925	Original
9034	7143	4542	Original
10104	6054	3039	Original
9656	6999	4182	Original

Input Data:

0	0	0	Origina
-1311	3484		Origina
-1611	23		Origina
-2580	2598	4099	Origina
-1156	233		Origina
-2085	2703		Origina
-1980	-84		Origina
-3094	2445		Origina
-2438	-285		Origina
-3633	2427		Origina
-2921	-428		Origina
-4045	2123		Origina
-3364	-663		Origina
-4267	1387		Origina
-273	3566		Origina
932	362		Origina
366	4485		Origina
2017	792		Origina
2479	983		Origina
909	4495		Origina
2679	2987		Origina
1861	4816		Origina
2166	2908		Origina
1312	4818		Origina
2298	2613		Origina
2888	1295		Origina
2786	2748		Origina
3268	1668		Origina
2246	5139		Origina
2997	3525		Origina
2663	5428		Origina
3556	3509		Origina
3633	5712		Origina
4490	3873		Origina
4484	6237		Origina
5422	4257		Origina
5527	6370		
6311	4717		Origina Origina
7274	5019		Origina
6501	6651		
			Origina Origina
8663	5591 6772		Origina Origina
8103	6773		Origina Origina
9647	5849 7143		Origina Origina
9034			Origina Origina
10104 9656	6054 6999		Origina Origina
9036	0999	4182	Origina

Accuracy:

THE RESERVE THE PERSON NAMED IN			THE R. P. LEWIS CO., LANSING, MICH.
Name	Strike	Dip	Direction
Original	70.2	47.3	Southeast
TPP9	68.3	47.3	Southeast
TPP8	66.4	50.3	Southeast
TPP10	73.6	48.8	Southeast
TPP5	69.1	45.6	Southeast
TPP4	71.0	48.7	Southeast
TPP7	66.7	49.6	Southeast
TPP6	70.3	50.2	Southeast
TPP1	69.1	60.4	Southeast
TPP3	68.4	50.6	Southeast
TPP2	72.5	51.6	Southeast

Taking three random points from the original input data and performing a three point problem (TPP) on them yields similar results, but can be off by 13° or more in this case. The best fit plane method yields more accurate results.

Rick
Allmendinger's
Stereonet 9.
Orange is original
data using best fit
plane method,
blue is 10
iterations of three
point problems.

Acknowledgements:

This program was created as a response to:

- Being annoyed that this didn't already exist
- 2. Wanting to learn to program. This is my first program. Cut me some slack.

Thanks to **Phillip McFarland** for his mathematical explanations and **Matthew Lenz** for all his programming support and putting up with my stupidity.

If you've got any questions or suggestions, shoot me an email at noahmcdougall@email.arizona.edu

Noah McDougall
Creator of this program and bad motivational posters