

Deep Learning on Sports Recognition

Group 3

Jingxi Liu (jliu238)

Yuetong Liu (yliu390)

Yingkun Wang (ywang601)

Jiaqian Zhong (jzhong16)

INTRODUCTION

- Video Classification Problem & Supervised learning
- Goal → Classify actions related to sports
- Method → 2D & 3D CNN

O1 Data Insight

O2 CNN Models

O3 Result and Discussion

UCF101 --- the largest dataset of human actions

- -Over 13k clips and 27 hours of video data
- -101 classes of human actions
- -Fixed frame rate of 25 FPS and resolution of 320 × 240 pixels

Actions	101
Clips	13320
Groups per Action	25
Clips per Group	4-7
Mean Clip Length	7.21 sec
Total Duration	1600 mins
Min Clip Length	1.06 sec
Max Clip Length	71.04 sec
Frame Rate	25 fps
Resolution	320×240
Audio	Yes (51 actions)

Table 1. Summary of Characteristics of UCF101

Bench Press	Biking	Billiard	Bowling
Cricket Bowling	Cricket Shot	Diving	Fencing
Hammer Throw	High Jump	Horse Race	Horse Riding
Pole Vault	Pommel Horse	Punch	Rafting

Data selected in our study ⇒

- -1250 videos in 50 classes of sports actions
- -Extract 1 video for each group and 25 video for each action
- -Preprocess →

Turn to black and white 20 frames average for each video Compress to 256×256

2D-Dense NN

Pre-trained VGG16

1000 Classes 90% Accuracy

Dropout

Prevent Overfit

Dense

Layers

512, 256, 128, 64

Activation

Relu Sigmond

2D-Dense NN

Visualization

Accuracy

54%

3D-CNN

4 Conv3D layers

Preserve the temporal information

Output predicted sports

Cross Entropy Loss

Learning rate 0.0001

Batch size 20

Epoch 70

Result & Discussion

Results

	Training Epoch	Testing Accu
2D-CNN	200	54%
3D-CNN	70	72.49%

Needs Improve

Input Size

Select more frames

No crop
(320x240) -> (256x256)

Colors

Include colors

Layers

Add more layers

Future Work

Winner Prediction
01

Predict which team wins the competition

Detect Violations

02

Check if athletes violate rules

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

from theano import *

What I actually do

THANK YOU

Do you have any questions?

