Lesson Objectives

- 1. Parent Functions
- 2. Vertical and Horizontal Translations (shifts)

A. Parent Functions

1. Quadratic (or ______) Function: $f(x) = x^2$ or $y = x^2$

Square Function: $f(x) = x^2$

x	-2	-1	0	1	2
$y = x^2$	4	1	0	1	4

$$D=(-\infty,\,\infty)$$

$$R = [0, \infty)$$

2. Function: $f(x) = x^3$ or $y = x^3$

Cube Function: $f(x) = x^3$

x	-2	-1	0	1	2
$y = x^3$	-8	-1	0	1	8

$$D = (-\infty, \infty)$$

$$R = (-\infty, \infty)$$

Square Root Function: $f(x) = \sqrt{x}$

х	0	1	4	9
$y = \sqrt{x}$	0	1	2	3

$$D = [0, \infty)$$

$$R = [0, \infty)$$

4. f(x) = |x| or y = |x| Function:

Absolute Value Function: f(x) = |x|

x	-2	-1	0	1	2
y = x	2	1	0	1	2

$$D = (-\infty, \infty)$$

$R = [0, \infty)$

B. Vertical and Horizontal Shifts

Let f be a function, and let c be a positive number.				
To Graph	Shift the Graph of $y = f(x)$ by c Units	(NOTES below)		
y = f(x) + c $y = f(x) - c$		Adding or subtracting a number OUTSIDE parentheses with y causes aSHIFT in the SAME direction as that number. OUTSIDE — y is "do what you see." (\pm, \pm)		
y = f(x - c) $y = f(x + c)$		Adding or subtracting a number INSIDE parentheses with <i>x</i> causes aSHIFT in the OPPOSITE direction of that number. INSIDE – <i>x</i> goes ! (← , →)		

• **EXAMPLE:** The graph of y = f(x) is shown with dashed (red) lines. Graph y = f(x) + 5. Choose the correct graph in solid (blue). [3.5-31]

_____ – y is "do what you see." + 5 means _____ Graph ___ y = f(x) + 5

EXAMPLE: Determine which graph indicates the shift in the indicated equation. [3.5-6]

y = f(x - 3) - 5

The graph to the left is the given graph of y = f(x).

To graph

$$y = f(x-3) - 5$$

INSIDE parentheses:

x goes OPPOSITE!

y is "do what you see" I see -3 with x, so the shift I see -5 outside parentheses, is to the _____, not the left. so the shift is also ______ 5.

OUTSIDE parentheses:

So, together, the shift for y = f(x - 3) - 5 is

_____. Correct answer is

(go on to the next page)

• **EXAMPLE:** The graph is a translation of one of the basic functions $y = x^2, y = x^3, y = \sqrt{x}, y = |x|$. Find the equation that defines the function. [3.5.1] (Type an expression using x as the variable. Do not simplify).

The graph to the left is a translation of y =_____. The INFLECTION point for $y = x^3$ is normally at the origin. In this graph, though, it has moved: _____

RIGHT 4 is a change in _____, so be sure to _____ the value. (remember: INSIDE – x goes OPPOSITE!) RIGHT 4 is written as _____

UP 1 is a change in _____, so that is written as _____. (remember: **OUTSIDE – y is "do what you see."**)

When $y = x^3$ that goes RIGHT 4, UP 1,

the equation is y =

• **EXAMPLE:** The graph is a translation of one of the basic functions $y = x^2$, $y = x^3$, $y = \sqrt{x}$, y = |x|. Find the equation that defines the function. [3.5.5] (Type an expression using x as the variable. Do not simplify).

The graph to the left is a translation of $y = \underline{\hspace{1cm}}$. The starting point for $y = \sqrt{x}$ is normally at the origin. In this graph, though, it has moved:

LEFT 1 is a change in ____ so be sure to SWITCH the value.

(remember: **INSIDE** – **x** goes **OPPOSITE**!) So, LEFT 1 is written as _____

DOWN 5 is a change in *y*, so that is written as _____. (remember: **OUTSIDE** – *y* is "do what you see.")

When $y = \sqrt{x}$ goes LEFT 1, DOWN 5, The equation is y =

• **EXAMPLE:** The graph is a translation of one of the basic functions $y = x^2, y = x^3, y = \sqrt{x}, y = |x|$. Find the equation that defines the function. [3.5.7] (Type an expression using x as the variable. Do not simplify).

The graph to the left is a translation of y =____. The vertex for y = |x| is normally at the origin. In this graph, though, it has moved: _____

RIGHT 2 is a change in _____, so be sure to SWITCH the value. (remember: **INSIDE** – *x* goes **OPPOSITE**!)
So, RIGHT 2 is written as ______.

UP 5 is a change in ____, so that would be written as ____ (remember: **OUTSIDE** – **y** is "do what you see.")

When y = |x| that goes RIGHT 2, UP 5,

the equation is y = ______

ullet **EXAMPLE:** Find the equation that shifts the graph of f by the indicated amounts.

$$f(x) = x^4$$
 right 8 units, up 7 units [3.5-1]

Right 8 units is a change in _____, so be sure to SWITCH the value.

So, RIGHT 8 is written as ______. (remember: INSIDE – x goes OPPOSITE!)

Up 7 units is a change in _____, so UP 7 is written with _____ at the end. (remember: **OUTSIDE** – **y** is "do what you see.")

- A. $y = -(x 8)^4 + 7$
- B. $y = -(x 8)^4 + 56$
- C. $y = (x 8)^4 + 7$
- D. $y = (x+8)^4 7$

• **EXAMPLE:** Use transformations to explain how the graph of f can be found using the graph of $y = x^2$.

$$f(x) = (x - 3)^2 + 2$$
 [3.5.53]

I see ______ with x, so the shift is to the ______, not the _____. (remember: INSIDE – x goes OPPOSITE!)

So (x-3) means it moves ______3.

I see _____ outside parentheses, so the shift is also _____. (remember: **OUTSIDE** – **y** is "do what you see.")

Together, the shift for $f(x) = (x-3)^2 + 2$ from $y = x^2$ is

• **EXAMPLE:** Use transformations of the graphs of $y = x^2$ or y = |x| to sketch a graph of f by hand.

$$f(x) = |x - 5| - 2$$
 [3.5-11]

I see _____ with ____, so the shift is to the _____, not the ____. (remember: INSIDE – x goes OPPOSITE!)

So |x-5| means it moves ______5.

I see _____ outside parentheses, so the shift is also _____. (remember: **OUTSIDE** – **y** is "do what you see.")

Together, the shift for f(x) = |x - 5| - 2 from y = |x| is _____

EXAMPLE: Find the equation that shifts the graph of f by the desired amounts.

Graph f and the shifted graph in the same xy-plane. [3.5.15]

$$f(x) = x^2 - 2x + 2$$

right 5 units, upward 3 units

Right 5 units is a change in , so be sure to SWITCH the value.

RIGHT 5 is written as: (remember: INSIDE – x goes OPPOSITE!)

Use ______everywhere you see an _____ in the function.

 $x^{2} - 2 x + 2$ changes to $()^{2} - 2() + 2$

Upward 3 units is a change in _____, so jut include a _____ at the end. (remember: OUTSIDE - y is "do what you see.")

 $(x-5)^2-2(x-5)+2$ Combine like terms on the end

Updated: y =_____

(Make sure BOTH sets of parentheses have the SAME value!)

Notice that in all four graphs, one of the graphs is always in the same place, with vertex at about (1,1). Remember that the overall shift is:

right 5 units and upward 3 units, or more simply: _____

(continued on the next page)

(continued from the previous page)

• **EXAMPLE:** Find the equation that shifts the graph of f by the desired amounts. Graph f and the shifted graph in the same xy-plane. [3.5.15]

$$f(x) = x^2 - 2x + 2$$
 right 5 units, upward 3 units

NOTE: You can also verify the graph on your graphing calculator:

Original function	Modified function: right 5, upward 3	
$f(x) = x^2 - 2x + 2$	$y = (x - 5)^2 - 2(x - 5) + 5$	
$Y_1 = x^2 - 2x + 2$	$Y_2 = (x-5)^2 - 2(x-5) + 5$	
Plot1 Plot2 Plot3 \Y10X2-2X+2 \Y20(X-5)2-2(X-5))+5 \Y3= \Y4= \Y5= \Y6=		
The graph on the calculator matches the answer we got on the previous page:	-12 12 12 12 12 12 12 12 12 12 12 12 12 1	

Sources Used:

- 1. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 2. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit