FMAT3888 - Projects in Financial Mathematics

Portfolio Optimisation

2024S2 - Group 6

Members: Sofia Tran, Davin Najanurdin, Gregory Manu, Anabel Geraldine

28th Oct 2024

Team Member

ANABEL SID:520360707

DAVIN SID: 520332416

SOFIA SID: 510462716

GREGORY SID: 520525166

Q1. Parameters a and B

Parameters a and B

Mean Values for Periods A and B

	Mean A	Mean B
AEQ	0.009147	0.006502
ILE_H	0.011787	0.009373
ALP	0.015114	0.004852
ILP	0.011509	0.002054
ILI	0.010477	0.006713
AFI	0.004437	0.004045
IFI	0.005130	0.003575
CASH	0.002433	0.001144

Covariance Matrix - Period A

	AEQ	ILE_H	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	0.001203	0.000659	0.000872	0.000691	0.000491	0.000016	0.000073	0.000003
ILE_H	0.000659	0.000870	0.000329	0.000458	0.000467	-0.000043	0.000016	0.000001
ALP	0.000872	0.000329	0.001129	0.000782	0.000503	0.000091	0.000119	0.000004
ILP	0.000691	0.000458	0.000782	0.001139	0.000712	0.000098	0.000161	0.000002
ILI	0.000491	0.000467	0.000503	0.000712	0.000688	0.000050	0.000091	0.000002
AFI	0.000016	-0.000043	0.000091	0.000098	0.000050	0.000063	0.000039	0.000002
IFI	0.000073	0.000016	0.000119	0.000161	0.000091	0.000039	0.000055	0.000001
CASH	0.000003	0.000001	0.000004	0.000002	0.000002	0.000002	0.000001	0.000000

Period A = January 2012 to December 2015

Period B = January 2016 to December 2019

Parameters a and B

Covariance Matrix - Period B

	AEQ	ILE_H	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	0.002288	0.001634	0.003199	0.001970	0.001194	0.000026	0.000120	-0.000002
ILE_H	0.001634	0.001927	0.002226	0.001777	0.001176	-0.000083	0.000029	-0.000004
ALP	0.003199	0.002226	0.005668	0.003333	0.001910	0.000122	0.000302	-0.000003
ILP	0.001970	0.001777	0.003333	0.002667	0.001508	0.000012	0.000163	-0.000001
ILI	0.001194	0.001176	0.001910	0.001508	0.001196	0.000020	0.000091	0.000001
AFI	0.000026	-0.000083	0.000122	0.000012	0.000020	0.000056	0.000038	0.000001
IFI	0.000120	0.000029	0.000302	0.000163	0.000091	0.000038	0.000057	-0.000001
CASH	-0.000002	-0.000004	-0.000003	-0.000001	0.000001	0.000001	-0.000001	0.000000

Parameters a and B

Mean, covariance, correlation

Mean, covariance, correlation

$$R_i^{(j)} = e^{Y_i} - 1$$
 with $Y_i \sim \mathcal{N}(12ja_i, 12jb_{ii})$ for values of $j = 1, 2$.

The expected value can be computed by:

$$\mathbb{E}[e^{Y_i} - 1] = \mathbb{E}[e^{Y_i}] - 1 = e^{12ja_i - \frac{1}{2}12jb_{ii}} - 1.$$

The covariance can be computed by:

$$Cov(e^{Y_i} - 1, e^{Y_l} - 1) = Cov(e^{Y_i}, e^{Y_l}) = \mathbb{E}[e^{Y_i + Y_l}] - \mathbb{E}[e^{Y_i}]\mathbb{E}[e^{Y_l}].$$

This gives us:

$$\mathbb{E}[e^{Y_i+Y_l}] = e^{12j(a_i+a_l-\frac{1}{2}(b_{ii}+b_{ll}))}.$$

Thus, the covariance is equal to:

$$Cov(e^{Y_i} - 1, e^{Y_l} - 1) = e^{12j(a_i + a_l - \frac{1}{2}(b_{ii} + b_{ll}))} (e^{-12jb_{il}} - 1).$$

Mean

Mean Values for Each Data Set

	Mean R1 for A	Mean R2 for A	Mean R1 for B	Mean R2 for B
AEQ	0.107991	0.227643	0.066410	0.137231
ILE_H	0.145933	0.313162	0.106173	0.223620
ALP	0.190769	0.417931	0.024513	0.049627
ILP	0.140273	0.300222	0.008683	0.017442
ILI	0.129300	0.275319	0.076146	0.158091
AFI	0.054294	0.111537	0.049389	0.101217
IFI	0.063146	0.130278	0.043481	0.088852
CASH	0.029625	0.060129	0.013825	0.027840

Covariance

Covariance Matrix - R1 for dataset A

	AEQ	ILE_H	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	-0.017602	-0.010000	-0.013727	-0.010437	-0.007357	-0.000228	-0.001034	-0.000039
ILE_H	-0.010000	-0.013643	-0.005369	-0.007157	-0.007228	0.000625	-0.000227	-0.000017
ALP	-0.013727	-0.005369	-0.019077	-0.012690	-0.008096	-0.001367	-0.001806	-0.000062
ILP	-0.010437	-0.007157	-0.012690	-0.017651	-0.010953	-0.001412	-0.002340	-0.000031
ILI	-0.007357	-0.007228	-0.008096	-0.010953	-0.010482	-0.000711	-0.001311	-0.000023
AFI	-0.000228	0.000625	-0.001367	-0.001412	-0.000711	-0.000836	-0.000530	-0.000020
IFI	-0.001034	-0.000227	-0.001806	-0.002340	-0.001311	-0.000530	-0.000748	-0.000015
CASH	-0.000039	-0.000017	-0.000062	-0.000031	-0.000023	-0.000020	-0.000015	-0.000004

Covariance Matrix - R1 for dataset B

	AEQ	ILE_H	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	-0.030805	-0.022899	-0.041150	-0.025135	-0.016321	-0.000353	-0.001599	0.000028
ILE_H	-0.022899	-0.027975	-0.029870	-0.023540	-0.016681	0.001159	-0.000408	0.000051
ALP	-0.041150	-0.029870	-0.069019	-0.040513	-0.024982	-0.001569	-0.003872	0.000043
ILP	-0.025135	-0.023540	-0.040513	-0.032048	-0.019472	-0.000151	-0.002053	0.000011
ILI	-0.016321	-0.016681	-0.024982	-0.019472	-0.016498	-0.000266	-0.001231	-0.000010
AFI	-0.000353	0.001159	-0.001569	-0.000151	-0.000266	-0.000740	-0.000497	-0.000010
IFI	-0.001599	-0.000408	-0.003872	-0.002053	-0.001231	-0.000497	-0.000743	0.000001
CASH	0.000028	0.000051	0.000043	0.000011	-0.000010	-0.000010	0.000001	-0.000004

Covariance Matrix - R2 for dataset A

	AEQ	ILE_H	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	-0.042908	-0.025293	-0.036032	-0.026264	-0.018356	-0.000533	-0.002435	-0.000088
ILE_H	-0.025293	-0.035645	-0.014625	-0.018652	-0.018654	0.001511	-0.000554	-0.000040
ALP	-0.036032	-0.014625	-0.053735	-0.034300	-0.021708	-0.003430	-0.004570	-0.000153
ILP	-0.026264	-0.018652	-0.034300	-0.045590	-0.028087	-0.003392	-0.005667	-0.000073
ILI	-0.018356	-0.018654	-0.021708	-0.028087	-0.026625	-0.001692	-0.003147	-0.000054
AFI	-0.000533	0.001511	-0.003430	-0.003392	-0.001692	-0.001857	-0.001187	-0.000044
IFI	-0.002435	-0.000554	-0.004570	-0.005667	-0.003147	-0.001187	-0.001690	-0.000033
CASH	-0.000088	-0.000040	-0.000153	-0.000073	-0.000054	-0.000044	-0.000033	-0.000009

Covariance Matrix - R2 for dataset B

	AEQ	ILE_H	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	-0.069115	-0.053500	-0.088223	-0.053442	-0.037195	-0.000790	-0.003557	0.000060
ILE_H	-0.053500	-0.067678	-0.066809	-0.051978	-0.039436	0.002692	-0.000941	0.000115
ALP	-0.088223	-0.066809	-0.140125	-0.082092	-0.054461	-0.003371	-0.008264	0.000089
ILP	-0.053442	-0.051978	-0.082092	-0.064186	-0.041895	-0.000319	-0.004318	0.000023
ILI	-0.037195	-0.039436	-0.054461	-0.041895	-0.037940	-0.000600	-0.002764	-0.000022
AFI	-0.000790	0.002692	-0.003371	-0.000319	-0.000600	-0.001629	-0.001089	-0.000021
IFI	-0.003557	-0.000941	-0.008264	-0.004318	-0.002764	-0.001089	-0.001618	0.000003
CASH	0.000060	0.000115	0.000089	0.000023	-0.000022	-0.000021	0.000003	-0.000008

The main objective is to maximize:

$$\mathbb{E}[U(R^{(2)}w)] = -\mathbb{E}\left[e^{-aR^{(2)}w}\right].$$

As mentioned previously, this is equivalent to:

$$-\mathbb{E}\left[e^{-aR^{(2)}w}\right] = -e^{-aR^{(2)}w + \frac{1}{2}w^TBR^{(2)}w}.$$

Solving the equation can be done by minimizing the following equation:

$$-aR^{(2)}w + \frac{1}{2}w^T BR^{(2)}w.$$

By setting the boundaries to 0 and 1 with gamma = 1, we got:

```
Optimal Weights for Period A:
AEQ: 0.0000
ILE_H: 0.0000
ALP: 1.0000
ILP: 0.0000
ILI: 0.0000
AFI: 0.0000
IFI: 0.0000
Optimal Weights for Period B:
AEQ: 0.0000
ILE_H: 1.0000
ALP: 0.0000
ILP: 0.0000
ILI: 0.0000
AFI: 0.0000
IFI: 0.0000
```

Utility Function Dynamics: The risk-averse utility function, constrained to keep asset weights between 0 and 1, often results in concentrated investments in select assets rather than diversified portfolios.

Optimization Goals: The ideal strategy involves finding an equilibrium between risk mitigation and return maximization in fluctuating market conditions.

To Adjust: Strategies should include broadening investment diversification, adjusting the risk aversion parameters to suit different market scenarios, and evaluating various utility functions to cater to diverse investor needs.

For period C (January 2020 to December 2021)

```
Maximum utility Period C:
2.77555756e-17
1.0
2.77555756e-17
0.0
0.0
5.55111512e-17
0.0

Maximum utility returns Period C:
0.300563543
```

Extension

Extension - varying \(\chi \)

Extension - adding ILE_UH

Mean Values for Periods A and B - with IEH_UH

	Mean A	Mean B
AEQ	0.009147	0.006502
ILE_H	0.011787	0.009373
ILE_UH	0.015248	0.009411
ALP	0.015114	0.004852
ILP	0.011509	0.002054
ILI	0.010477	0.006713
AFI	0.004437	0.004045
IFI	0.005130	0.003575
CASH	0.002433	0.001144

Covariance Matrix - Period A (New Data)

	AEQ	ILE_H	ILE_UH	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	0.001203	0.000659	0.000316	0.000872	0.000691	0.000491	0.000016	0.000073	0.000003
ILE_H	0.000659	0.000870	0.000524	0.000329	0.000458	0.000467	-0.000043	0.000016	0.000001
ILE_UH	0.000316	0.000524	0.000807	0.000084	0.000142	0.000216	0.000018	-0.000020	0.000002
ALP	0.000872	0.000329	0.000084	0.001129	0.000782	0.000503	0.000091	0.000119	0.000004
ILP	0.000691	0.000458	0.000142	0.000782	0.001139	0.000712	0.000098	0.000161	0.000002
ILI	0.000491	0.000467	0.000216	0.000503	0.000712	0.000688	0.000050	0.000091	0.000002
AFI	0.000016	-0.000043	0.000018	0.000091	0.000098	0.000050	0.000063	0.000039	0.000002
IFI	0.000073	0.000016	-0.000020	0.000119	0.000161	0.000091	0.000039	0.000055	0.000001
CASH	0.000003	0.000001	0.000002	0.000004	0.000002	0.000002	0.000002	0.000001	0.000000

Covariance Matrix - Period B (New Data)

	AEQ	ILE_H	ILE_UH	ALP	ILP	ILI	AFI	IFI	CASH
AEQ	0.002288	0.001634	0.001134	0.003199	0.001970	0.001194	0.000026	0.000120	-0.000002
ILE_H	0.001634	0.001927	0.001112	0.002226	0.001777	0.001176	-0.000083	0.000029	-0.000004
ILE_UH	0.001134	0.001112	0.000959	0.001555	0.001015	0.000783	0.000019	0.000037	-0.000001
ALP	0.003199	0.002226	0.001555	0.005668	0.003333	0.001910	0.000122	0.000302	-0.000003
ILP	0.001970	0.001777	0.001015	0.003333	0.002667	0.001508	0.000012	0.000163	-0.000001
ILI	0.001194	0.001176	0.000783	0.001910	0.001508	0.001196	0.000020	0.000091	0.000001
AFI	0.000026	-0.000083	0.000019	0.000122	0.000012	0.000020	0.000056	0.000038	0.000001
IFI	0.000120	0.000029	0.000037	0.000302	0.000163	0.000091	0.000038	0.000057	-0.000001
CASH	-0.000002	-0.000004	-0.000001	-0.000003	-0.000001	0.000001	0.000001	-0.000001	0.000000

Extension - adding ILE_UH

```
Optimal Weights for Period A:
Using gamma = 1,
                                  AEO: 0.0000
                                  ILE H: 0.0000
                                  ILE UH: 0.5235
                                  ALP: 0.4765
                                  ILP: 0.0000
                                  ILI: 0.0000
                                  AFI: 0.0000
                                  IFI: 0.0000
                                  CASH: 0.0000
                                  Optimal Weights for Period B:
                                  AEO: 0.0000
                                  ILE H: 0.4559
                                  ILE UH: 0.5441
                                  ALP: 0.0000
```

ILP: 0.0000 ILI: 0.0000 AFI: 0.0000 IFI: 0.0000 CASH: 0.0000

Extension - adding ILE_UH and varying \(\chi^2 \)

Extension - adding ILE_UH and varying \(\chi^2 \)

- 1. Creating an EF and finding the portfolio with minimum variance that yields a set level of return.
- 2. Adjusting the portfolio to still yield set returns without short selling.

Period A using both portfolio theory and simulated portfolios:

Period A - Minimized variance for 6% returns: (SD = 0.002891)

Assets	Optimal Weights
Australian Equities (AEQ)	-0.007
International Listed Equity - Hedged (ILE)	0.006
Australian Listed Property (ALP)	0.004
International Listed Property (ILP)	-0.001
International Listed Infrastructure (ILP)	0
Australian Fixed Income	-0.016
International Fixed Income	0.015
CASH	0.999

These are the expected returns for all assets under A

These are the expected returns for every asset when using possible portfolios along the efficient frontier.

There's no scenario without short selling on the EF.

Note: Cash is what you want to get rid of the most when choosing a riskier portfolio.

Period B using both portfolio theory and simulated portfolios:

Period B - Minimized variance for 6% returns: (SD = 0.008661)

Assets	Optimal Weights
Australian Equities (AEQ)	0.029
International Listed Equity - Hedged (ILE)	0.027
Australian Listed Property (ALP)	-0.02
International Listed Property (ILP)	-0.044
International Listed Infrastructure (ILI)	0.058
Australian Fixed Income (AFI)	0.083
International Fixed Income (IFI)	0.123
CASH	0.744

Approximating a portfolio:

For these assets, the efficient frontier always has short selling.

We can adjust the EF portfolio to have no short selling, giving us a feasible portfolio close to the EF.

Adjusting for no short selling (moving weight from cash)

Assets	Optimal Weights (A)	Optimal Weights (B)
Australian Equities (AEQ)	0	0.029
International Listed Equity - Hedged (ILE)	0.006	0.027
Australian Listed Property (ALP)	0.004	0
International Listed Property (ILP)	0	0
International Listed Infrastructure (ILI)	0	0.058
Australian Fixed Income (AFI)	0	0.083
International Fixed Income (IFI)	0.015	0.123
CASH	0.975	0.68

Whilst it wouldn't be the exact minimum variance (but still close), moving the weight from cash ensures the portfolio yields 6% returns.

This strategy gives returns of 6.19% and 6.84% respectively.

Dynamic portfolio optimization

Finite Markov Decision Process

- An MDP is a 4-tuple (S, A, P, R)
- Issue is the model environment is not known

Setup for the Constant-a MC

<u>Variable</u>	<u>Value</u>
a	0.0002
3	0.1
M	10000

- Results are for the period Jan 2016 to Dec 2017
- 50 Portfolios generated at time 1 and time 2

Results (Max Utility) [risk-aversion = 1]

Optimal dynamic portfolio generated using Constant-a MC was:

- Year 1: [0.52, 0.08, 0.02, 0.06, 0.11, 0.07, 0.11, 0.02]
- Year 2: [0.08, 0.19, 0.13, 0.07, 0.01, 0.02, 0.24, 0.24]
- Expected returns = 0.10924

(weights rounded to 2 d.p)

Conclusion: the optimal static portfolio for this time period yielded greater returns (0. 2236).

Results (Min Variance)

Optimal dynamic portfolio generated using Constant-a MC was:

- Year 1: [0.02, 0.03, 0.09, 0.01, 0.09, 0.21, 0.43, 0.13]
- Year 2: [0.03, 0.11, 0.15, 0.05, 0.21, 0.42, 0.03, 0.01]
- Expected returns: 0.10187

(weights rounded to 2 d.p)

Conclusion: yielded greater returns than the static portfolio optimisation.

Conclusion

- We constructed static portfolios with maximum utility.
 - Ext: We demonstrated with differing values of gamma for the utility function
 - Ext: We also included the unhedged International Listed Equity
- We constructed static portfolios on the EF at 6% returns and then adjusted for no short selling.
- Our dynamic portfolio gave the greatest returns with the lowest volatility, therefore giving us our best portfolio.

Thank You!

