Universidad Simón Bolívar
Departamento de Matemáticas
Puras y Aplicadas
Abril - Julio 2001

Nombre:	
Carnet:	Sección:

MA-1116—Tercer Parcial —

1. Sea la matriz

$$A = \left(\begin{array}{rrr} 3 & 1 & -1 \\ 1 & 3 & -3 \\ 2 & 2 & 4 \end{array}\right).$$

- a) Diga, justificando su respuesta, si la matriz A es diagonalizable.
- b) En caso de ser diagonalizable, determine una matriz diagonal D y una matriz invertible P tal que $D=P^{'}AP$.

(10 puntos)

2. En P_2 se define el siguiente producto interno: Si $p(t), q(t) \in P_2$, entonces

$$\langle p(t), q(t) \rangle = \int_{-1}^{1} p(t)q(t)dt$$

- a) Halle una base ortonormal de ω^1 (8 puntos)
- b) Determine la distancia entre r(t) y ω (4 puntos)
- 3. Sea $T: P_2 \to \mathbb{R}^2$ una transformación lineal definida por:

$$T(at^2 + bt + c) = (a, b)$$

- a) Demuestre que T es una trasformación lineal. (3 puntos)
- b) Halle una base para el núcleo de T. (3 puntos)
- c) Halle una base para la imagen de T (3 puntos)
- 4. Demuestre que si A es diagonalizable entonces A^t es diagonalizable. (4 puntos)