

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION (ONLINE) SEMESTER I **SESSION 2020/2021**

COURSE NAME

IMAGE PROCESSING

COURSE CODE

BEC 42203

PROGRAMME CODE

BEJ

EXAMINATION DATE

JANUARY / FEBRUARY 2021

DURATION

3 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS.

OPEN BOOK EXAMINATION

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGE RBUK

CONFIDENTIAL

Referring to **Figure Q1**, propose a new set of pixel values for original image, f(x,y). Compute the output of the 3 × 3 Prewitt edge detector as shown in **Figure Q1** at pixel location (2,2).

1	1	0
1	0	1
()	1	1

(i) Original image, f(x,y)

(ii) Prewitt edge detector

Figure Q1

(15 marks)

Q2 Referring to Figure Q2, propose a new set of pixel values for original image, f(x,y).

Original image, f(x,y)

Figure Q2

- (a) Calculate the outputs of a 3×3 minimum filter using zero padding technique at location:
 - (i) (1,1), and
 - (ii) (2,3)

(13 marks)

(b) Identify the effects of applying minimum filter to the new pixel value at (2,3).

(2 marks)

Q3 Referring to Figure Q3, propose a new set of pixel values for original image, f(x,y). Distinguish the output of a 5×5 average filter at (3,3).

Original image, f(x,y)

Figure Q3

(10 marks)

Q4 Referring to **Figure Q3**, perform a global thresholding to **Figure Q3**, where T=3. Generate the new image pixel values matrix, g(x,y). Given the equation is as follows:

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) < T \end{cases}$$

Equation Q4

3

9

(25 marks)

Q5 Referring to Figure Q5, propose a new set of pixel values for original image, f(x,y).

			y						y
		1	2	3				1	2
	1	?	?	?			1	1	2
x	2	?	?	?		x	2	4	5
	3	?	?	?			3	7	8
()rıgı	nal i	mage	e, f(.x	,y')		J		R

Figure Q5

(a) Find the output pixel value for the erosion of A and B for pixel location at location at (1,1) with using padding technique.

(19 marks)

(b) If ind the output pixel value for the erosion of Λ and B for pixel location at (1,1) without using padding technique.

(10 marks)

(c) Based on result in Q5(a) and Q5(b), which of technique provide darker image result? Justify your answer.

-END OF QUESTIONS – TERBUKA (6 marks)