Міністерство освіти і науки України Національний лісотехнічний університет України

Кафедра інформаційних технологій

ЛАБОРАТОРНА РОБОТА № 2

з навчальної дисципліни

«Алгоритмізація та програмування»

на тему:

«Прості математичні обчислення»

Мета: Придбання практичних навиків з підготовки, відладки та виконання лінійних програм.

Порядок виконання роботи

та методичні рекомендації до її виконання:

- створити новий консольний проект (Win32 Console Application) для виконання лабораторної роботи та зберегти його на власному мережевому диску;
- написати програмний код лінійної програми для виконання поставленого завдання згідно індивідуального варіанту;
- провести тестування програми з різним набором вхідних даних;
- побудувати блок-схему до написаної програми;
- оформити звіт до лабораторної роботи.

Теоретичні відомості

Типи даних

Кожна програма обробляє певну інформацію. У С++ дані мають один з базових типів:

- char (символьний тип);
- int (цілі числа);
- float (числа з плаваючою комою одинарної точності);
- double (числа з плаваючою комою подвійної точності);
- void (порожні значення),;
- bool (логічні значення).

Текстом (тип даних char) ϵ послідовність символів, які можуть бути розділені пропусками. Зазвичай кожен символ займа ϵ 8 біт або один байт з діапазоном значень від 0 до 255.

Цілі числа (тип даних int) знаходяться в діапазоні від -32768 до 32767 і займають 16 біт, тобто два байти або одне слово. У сучасних версіях операційних систем використовуються 32-розрядні цілі числа, що дозволяє розширити діапазон значень від -2147483648 до 2147483647.

У С++ підтримуються три типи цілих чисел. Разом із стандартним типом int існують типи short int (коротке ціле) і long int (довге ціле). Допускається скорочений запис short і long.

Числа з плаваючою комою одинарної точності (тип даних float) можуть бути представлені як у фіксованому форматі, так і в експоненціальному. Діапазон значень — від \pm 3.4E-38 до \pm 3.4E+38, розмірність — 32 біта, тобто 4 байти або 2 слова.

Числа з плаваючою комою подвійної точності (тип даних double) мають діапазон значень від \pm 1.7E-308 до \pm 1.7E+308 і розмірності 64 біт, тобто 8 байтів або 4 слова. Раніше існував тип long double з розмірністю 80 біт і діапазоном від \pm 1.18E-4932 до \pm 1.18E+4932. У нових 32-розрядних версіях компіляторів він еквівалентний типу double і підтримується з міркувань зворотної сумісності з написаними раніше додатками.

Тип даних void, як правило, застосовується у функціях, що не повертають ніякого значення.

Змінні логічного типу даних bool в C++ можуть містити тільки одну з двох констант: true(1) або false(0).

Таблиця 1. Цілочисельні типи

Тип	Розмір (біт)	Діапазон
usigned int (ціле без знаку)	16	$0 \div 65535$
short (коротке)	16	-32768 ÷ 32767
int (ціле)	16 або	-32768 ÷ 32767 або -2147483648 ÷
	32	2147483847
long (довге ціле)	32	-2147483648 ÷ 2147483847
usigned long	32	0 ÷ 4294967295
(довге ціле без знаку)		

Тип	Розмір (біт)	Діапазон
float	32	$\pm 3,4 \cdot 10^{-38} \div \pm 3,4 \cdot 10^{38}$
double	64	$\pm 1,7 \cdot 10^{-308} \div \pm 1,7 \cdot 10^{308}$
long double	80	$\pm 1,18 \cdot 10^{-4932} \div \pm 1,18 \cdot 10^{4932}$

Арифметичні операції

Арифметичні операції застосовуються до виразів - операндів. Більшість операцій мають два операнди, один з яких поміщається перед знаком операції, а інший - після. Наприклад, операція складання "+" має два операнди: X + Y і складає їх. Такі операції називаються бінарними. Існують і унарні операції, що мають тільки один операнд, що поміщається після знаку операції. Наприклад, запис -Х означає застосування до операнду X операції унарного мінуса "-".

У складних виразах послідовність виконання операцій визначається дужками, старшинством операцій, а при однаковому старшинстві - асоціативністю операцій.

Арифметичні операції застосовуються до дійсних чисел, цілих чисел і вказівників. Визначено такі бінарні арифметичні операції:

Таблиця 3. Арифметичні операції

Позначення	Операція	Типи операндів та результата	Приклад
+	додавання	арифметичний,	X + Y
		вказівник	
-	віднімання	арифметичний,	X - Y
		вказівник	
*	множення	арифметичний	X * Y
/	ділення	арифметичний	X / Y
%	залишок	цілий	X % 6
	цілочисельного		
	ділення		
+	унарний плюс	арифметичний	+ 7
	(підтвердження		
	знака)		
-	унарний мінус	арифметичний	-X
	(зміна знака)		

++	інкремент	арифметичний, вказівник	i++; ++i
	декремент арифметичний, i ; i вказівник		

При різних типах операндів застосовуються стандартні правила автоматичного приведення типів. В операції обчислення залишку від ділення (%) обидва операнда мають бути цілими числами. В операціях ділення і обчислення залишку другий операнд не може дорівнювати нулю.

Унарні операції инкремента (++) і декремента (--) зводяться до збільшення (++) або зменшення (--) операнда на одиницю. Операції застосовуються до операндів, що представляють собою вирази будь-яких арифметичних типів або типу вказівника. Причому вираз повинен бути модифікованим L-значенням, тобто повинен допускати зміну. Наприклад, помилковим ϵ вираз ++(a+b), оскільки (a+b) не ϵ змінною, яку можна модифікувати.

Операції інкременту і декременту виконуються швидше, ніж звичайне додавання і віднімання. Тому, якщо змінна a повинна бути збільшена на 1, краще застосувати операцію (++), ніж вираз a = a+1.

У складних виразах, що містять кілька операцій, послідовність їх виконання визначається насамперед пріоритетом операцій.

Рівні пріоритету наведено нижче у таблиці 2. Найвищий рівень мають операції, наведені в першому рядку таблиці, нижчий - в останньому. Операції, зазначені в одному рядку, мають однаковий рівень старшинства.

Якщо у виразі зустрічаються записані підряд операції одного рівня старшинства, то послідовність їх виконання визначається асоціативністю, яка може бути зліва направо або справа наліво.

Таблиця 4. Пріоритети операцій

Операції	Асоціативність
(),[]	зліва направо
-(унарний) +(унарний) ++	справа наліво
* / %	зліва направо
+ -	зліва направо
=	

Наприклад, вираз a + b * c / d буде виконуватися як a + ((b * c) / d). Спочатку виконаються операції множення і ділення, що мають більш високий пріоритет, ніж операція складання. Оскільки асоціативність операцій множення і ділення зліва направо, то перш за все буде виконано множення b * c, а потім результат розділиться на c. Насамкінець результат цього поділу добавиться до a. Ви можете легко змінювати послідовність дій, застосовуючи дужки, які мають дуже високий пріоритет.

Стандартні математичні функції

При роботі з математичними функціями треба мати на увазі, що файли math.h та stdlib.h в C + + Builder автоматично не приєднуються до модуля вашої програми. Тому для використання описаних у цих файлах функцій необхідно вручну вводити директиви

#include <math.h>

#include < stdlib.h >

Таблиця 5. Константи, що використовуються в математичних виразах

Константа	Опис	Значення
M_1_PI	$1/\pi$	0.318309886183790671538
M_1_SQRTPI	корінь квадратний з $1/\pi$	0.564189583547756286948
M_2_PI	$2/\pi$	0.636619772367581343076
M_2_SQRTPI	2 / корінь квадратний з π	1.12837916709551257390
M_E	число е	2.71828182845904523536
M_LN10	ln(10) - логарифм натуральний від 10	2.30258509299404568402
M_LN2	ln (2) - логарифм натуральний від 2	0.693147180559945309417
M_LOG10E	$\log_{10}(e)$ - логарифм десятковий від e	0.434294481903251827651
M_LOG2E	$\log_2(e)$ - логарифм за основою 2 від e	1 .44269504088896340736
M_PI	π	3.14159265358979323846
M_PI_2	$\pi/2$	1.57079632679489661923
M_PI_4	$\pi/4$	0.785398163397448309616
M_SQRT_2	корінь з 2, поділений на 2	0.707106781186547524401
M_SQRT2	корінь з 2	1 .41421356237309504880

Функція	Синтаксис	Опис	Файл бібліотеки
abs	int abs(int x)	абсолютне значення	stdlib.h
ceil	double ceil(double x)	округлення вгору: найменше ціле, що не менше Х	math.h
div	div_t div(int numer, hit denom) typedef struct { int quot; // частное int rem; // остаток } div_t;	цілочисельне ділення numer / denom	math.h
exp	double exp(double x)	експонента	math.h
fabs	double fabs(double x)	абсолютне значення	math.h
floor	double floor(double x)	округлення вниз: найбільше ціле, що не більше х	math.h
fmod	double fmod(double x, double y)	залишок від ділення x / y	math.h
Idexp	double ldexp(double x, int exp)	x • 2exp	math.h
log	double log(double x)	натуральний логарифм	math.h
log10	double log10(double x)	десятковий логарифм	math.h
max	max(a, b)	макрос повертає максимальне значення з а та b будь-яких типів	stdlib.h
min	min(a, b)	макрос повертає мінімальне значення з а та b будь-яких типів	stdlib.h
pow	double pow(double x, double y)	X ^y	math.h
sqrt	double sqrt(double x)	корінь квадратний	math.h

У всіх тригонометричних функціях кут задається в радіанах. Перерахунок кута в радіани із значення, заданого в градусах, дозволяє здійснити функція

$$\propto_{\rm pag} = \propto^{\circ} \frac{\pi}{180^{\circ}}$$
.

Результат повертається в радіанах. Перерахунок кута в радіанах у значення градусів дозволяє здійснити функція

$$\propto^{\circ} = \propto_{\text{рад}} \frac{180^{\circ}}{\pi}.$$

Всі зворотні тригонометричні функції обчислюють головні значення: acos - в діапазоні $[0,\pi]$, asin, atan - в діапазоні $[-\pi/2,\pi/2]$.

Таблиця 7. Тригонометричні функції

Функція	Синтаксис	Опис	Файл бібліотеки
acos	double acos(double x)	арккосинус	math.h
asin	double asin(double x)	арксинус	math.h
atan	double atan(double x)	арктангенс	math.h
atan2	double atan2(double y,double x)	арктангенс у / х	math.h
cos	double cos(double x)	косинус	math.h
cosh	double cosh(double x)	косинус гіперболічний	math.h
sin	double sin(double x)	синус	math.h
sinh	double sinh(double x)	синус гіперболічний	math.h
tan	double tan(double x)	тангенс	math.h
tanh	double tanh(double x)	тангенс гіперболічний	math.h

Зразок виконання завдання

Необхідно написати програму для обчислення значення функції

$$f = \frac{e^{\sin x} + \sqrt[4]{x + y}}{\ln^3 zy} \quad ,$$

якщо

 $x \in [5,8; 10,6];$

y = 17.3,

z=0.36.

Програмний код для виконання даного завдання матиме наступний вигляд:

```
□#include <stdio.h>
 #include <iostream>
 #include <math.h>
 using namespace std;
□int main()
     //Встановлюємо локацію Україна (дозволяє виводити в консоль кирилицю, окрім букви "i")
     setlocale( LC_ALL, "Ukrainian" );
    cout<<"\n-----\n\n";
     //оголошуємо змінні, які зберігатимуть дані необхідні для обчислення (x,y,z)
     float x,y,z;
     //оголошуємо змінну для збереження результату обчислення
     float f;
     //вводимо значення х, у, z
     cout<<"Введіть значення x,y,z:"<<endl;
     cout<<"\tx=";
     cin>>x;
     cout<<"\ty=";
     cin>>y;
     cout<<"\tz=";
     cin>>z;
     //Обчислюємо математичний вираз ()
    f=(exp(sin(y))+pow(x+y,1./4))/pow(log(z*y),3);
     //Виводимо результат обчислення
     cout<<"\nPesynьтat обчислення:\n\tf(x,y,z)="<<f<<endl;
     cout<<"-----\n";
     getchar();
    return 0;
}
```

Результати виконання програми:

Індивідуальні завдання

Розробити блок-схему та програмний додаток для обчислення таких математичних функцій

№ варіанту	Вираз	Вхідін дані
1	$y = \frac{e^{\sin\mu} + \sqrt[4]{a + \mu}}{\ln^3 b\mu}$	$\mu \in [5,8; 10,6]$; a =17,3, b=0,36.
2	$y = \frac{\ln^4 b\xi + 0.85}{\sqrt[3]{a + b\xi^3}}$	$\xi \in [0,4; 6,3]$; $a = 46, b=1,85$.
3	$y = \frac{\sqrt[4]{1 + \sqrt{a\omega + b}}}{\sin^2 b\omega + \omega}$	$\omega \in [4,3; 13]; 1,2. a = 1,35, b = 8,4.$
4	$y = \frac{tg^{2}(\gamma - a) + \sqrt{\ln \gamma}}{e^{-b\gamma}}$	$\gamma \in [1,3; 6]$; a =1,8, b=0,56.
5	$y = \frac{\sqrt[3]{a^3 + \lambda^3}}{tg^3b\lambda + 1,6}$	$\lambda \in [0,15;1,5]$; a =1,25, b=0,86.
6	$y = \frac{\sqrt[3]{e^{a\eta}} + b}{0,25\ln^2 a\eta}$	$\eta \in [10,5;27]$; $a = 0,3$, $b=9,5$.
7	$y = \frac{\ln^2(a^3 + \chi^3)}{\sqrt{a^3 + \chi^3} + \sqrt[3]{b}}$	$\chi \in [8,2; 100]$; a=43, b=205.
8	$y = \frac{1 + \cos^2(a^3 + v^3)}{v^2 + \sqrt[3]{tgbv}}$	$v \in [0,5; 1,9]$; a =0,84, b=0,63.
9	$y = \frac{a^{\mu} + e^{-b\mu}}{\sin^2 b\mu + 1{,}24}$	$\mu \in [0,3; 1,25]; a = 0,5, b = 0,16.$
10	$y = \sqrt[3]{\frac{ b\kappa }{arctg \frac{b^2}{a^2 + \kappa^2}}}$	$\kappa \in [-10; 1]; a = 2,8, b=1,5.$
11	$y = \frac{(v^2 + 1)^{-\frac{1}{\sin bv}}}{\sqrt[3]{\frac{v}{a} - 0.39}}$	υ∈[0,2; 1,6] ; a =0,36, b=0,74.
12	$y = \frac{e^{v^2 + 1}}{\sqrt[5]{v - a} + \ln^2 b v}$	$v \in [1,2;3]$; a =4,6, b=6,8.
13	$y = \frac{e^{\sin^2 a\eta} + \operatorname{arctgb} \eta}{\sqrt[3]{(\eta + b)}^2}$	$\eta \in [1,5; 14]$; a =0,45, b=8,8.
14	$y = \frac{\sin^2 a\rho + \sqrt[3]{ \rho - b }}{ \rho - b ^3}$	$\rho \in [16; 22]$; $a = 0,28, b = 19,3$.
15	$y = \frac{\omega^{\frac{a}{b}} - \sqrt[3]{\frac{\omega + b}{a}}}{1,1 + \cos^2 a\omega}$	$\omega \in [6,8;20]$; a =3,5, b=6,4.