Example of gate-level RTL Delta Cycle

Input change at t=0: first delta event

Event	Time
δ_1	0

Processing δ_1 : propagation

Event	Time
δ_2	0
δ_3	0
δ_4	0

Processing $\delta2$: propagation

Event	Time
δ_3	0
δ_4	0
δ ₅	0

Processing $\delta 3$: absorption

Event	Time
δ ₅	0

Processing $\delta4$: end of simulation

Flip-Flop: propagation in time

Flip-Flop: propagation in time

Event	Time
δ6	10ns

...after δ propagation at time 10...

Event	Time
δχ	20 ns

VHDL Delta Cycle

```
Signal A_int, B_int, C_int,

O A. result:
         std_logic_vector(1 downto 0);
O B. Begin;

Cin. A_int <= '0' &A;
         B_int <= '0' &A;
         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;

         C_int <= '0' &A;
```

Event

None

VHDL FF: propagation in time

Watch out for combinatorial loops!

```
Signal A int, B int, C int,
   1 A. result:
            std_logic_vector(1 downto 0);
\delta_{\epsilon} 0 Begin;
  Cin. A_int <= '0'&A;
B_int <= '0'&A;
         C int <= '0'&A;
         result <= A int+ B int+ C int;
         S \le result(0);
                                                 · Cout
         Cout<= result(1);</pre>
         B int <= result(0);</pre>
         end ;
```


Time did not change: infinite loop!

Static Timing Analysys: gate transversal

Base cells: Xor: 4ns, AND: 2ns, OR: 2 ns;

Path #	Delay
1	8ns
2	8ns
3	4ns
4	4ns
5	4ns
6	4ns
7	8ns
8	8ns

Critical Path 8ns => F_{MAX}=125 Mhz

Post synthesis: gate delay

Event	Time
δ_2	4
δ_3	4
	7

Gate delays from synthesis:
Standard Delay Format (SDF) file

Processing $\delta2$: propagation

Event	Time
δ_3	4
δ_4	8

End of timed simulation

Three times steps instead of one!