**Sciences** 

l'Ingénieur

Industrielles de

Application 1 - Corrigé



# Micromanipulateur compact pour la chirurgie endoscopique (MC<sup>2</sup>E)

Chapitre 1 - Approche énergétique

**Concours Commun Mines Ponts 2016** Savoirs et compétences :

- Mod2.C18.SF1 : Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1: Proposer une démarche permettant la détermination de la loi de mouvement.

## Mise en situation

Objectif Modéliser l'équation de mouvement et la caractériser en fonction des actions mécaniques extérieures, du couple moteur et des grandeurs cinétiques appropriées.

## Équation de mouvement

#### Travail demandé

**Question** 1 Déterminer la relation entre v(t) et  $\omega_m(t)$ . Sous hypothèse de conditions initiales nulles, en déduire la relation entre z(t) et  $\theta_m(t)$ .

#### Correction

On a 
$$\omega_i(t) = r\omega_m(t)$$
. De plus  $\frac{\omega_e(t)}{\omega_i(t)} = \frac{R_i}{R_e} \iff \omega_e(t) = \frac{R_i}{R_e} \omega_i(t)$  et donc :  $\omega_e(t) = \frac{R_i}{R_e} r\omega_m(t)$ . Enfin,  $v(t) = R_g \omega_e(t) = R_g r \frac{R_i}{R_e} \omega_m(t)$ . Les conditions initiales étant nulles,  $z(t) = R_g r \frac{R_i}{R_e} \theta_m(t)$ .

**Question** 2 Réaliser le graphe de structure associé à la translation de la pince.



Question 3 Donner l'expression de l'énergie cinétique de l'ensemble en mouvement par rapport à (0). Définir l'inertie équivalente J ramenée sur l'axe du moteur M4 en fonction, notamment, des moments d'inertie, de m₄ et des

1



données géométriques.

#### Correction

Tous les solides sont en mouvement « simples » par rapport au référentiel galiléen. On a :

$$\mathcal{E}_{c}\left(E/\mathcal{R}_{g}\right) = \frac{1}{2}I_{m}\omega_{m}(t)^{2} + \frac{1}{2}(I_{r} + I_{i})\omega_{i}(t)^{2} + \frac{1}{2}\left(I_{e} + 2I_{p} + 6I_{g}\right)\omega_{e}(t)^{2} + \frac{1}{2}m_{4}\nu(t)^{2}$$

$$\mathcal{E}_{c}\left(E/\mathcal{R}_{g}\right) = \frac{1}{2}I_{m}\omega_{m}(t)^{2} + \frac{1}{2}(I_{r} + I_{i})(r\omega_{m}(t))^{2} + \frac{1}{2}\left(I_{e} + 2I_{p} + 6I_{g}\right)\left(\frac{R_{i}}{R_{e}}r\omega_{m}(t)\right)^{2} + \frac{1}{2}m_{4}\left(R_{g}r\frac{R_{i}}{R_{e}}\omega_{m}(t)\right)^{2}$$

$$\mathcal{E}_{c}\left(E/\mathcal{R}_{g}\right) = \frac{1}{2}\left(I_{m} + (I_{r} + I_{i})r^{2} + \left(I_{e} + 2I_{p} + 6I_{g}\right)\left(\frac{R_{i}}{R_{e}}r\right)^{2} + m_{4}\left(R_{g}r\frac{R_{i}}{R_{e}}\right)^{2}\right)\omega_{m}(t)^{2}$$
On a donc  $J = I_{m} + (I_{r} + I_{i})r^{2} + \left(I_{e} + 2I_{p} + 6I_{g}\right)\left(\frac{R_{i}}{R_{e}}r\right)^{2} + m_{4}\left(R_{g}r\frac{R_{i}}{R_{e}}\right)^{2}.$ 

**Question** 4 Effectuer un bilan des puissances extérieures et intérieures à ce même ensemble. Préciser l'expression analytique de chaque puissance.

#### Correction

On isole l'ensemble.

### Bilan des puissances extérieures

- Action du ressort :  $\mathscr{P}\left(\text{ressort} \to 4/\mathscr{R}_g\right) = -kz(t)v(t) = -kz(t)R_g r \frac{R_i}{R_e}\omega_m(t)$ .
- Action du moteur :  $\mathcal{P}\left(\text{moteur} \to 4/\mathcal{R}_g\right) = C_m \omega_m(t)$ .
- Action de la pesanteur :  $\mathscr{P}$  (pesanteur  $\to E/\mathscr{R}_g$ ) = 0 (La pesanteur est compensée par un système de compensation).

**Bilan des puissances intérieures** Toutes les liaisons étant supposées parfaites,  $\mathcal{P}_{int}(E) = 0$ .

**Question** 5 Par l'application du théorème de l'énergie cinétique à l'ensemble en mouvement par rapport à (0), déterminer l'expression du terme  $C_e(t)$  en fonction des données du problème et de  $\theta_m(t)$ .

## Correction

En appliquant le théorème de l'énergie cinétique on a :  $J\omega_m(t)\omega_m(t) = -kz(t)R_g r \frac{R_i}{R_o}\omega_m(t) + C_m\omega_m(t) \Rightarrow$ 

$$J\dot{\omega}_m(t) = -k\left(R_g r \frac{R_i}{R_o}\right)^2 \theta_m(t) + C_m.$$

En utilisant l'équation différentielle du mouvement on a alors :  $C_e(t) = k \left( R_g r \frac{R_i}{R_e} \right)^2 \theta_m(t)$ .