無機化学

6.3 一酸化二窒素(笑気ガス)

10

		6.4	一酸化窒素	10 11
		6.6		11
非金属元素	2	3.0		
> 1	_	7	リン	12
水素	2	7.1	リン	12
性質	2	7.2	十酸化四リン	12
同位体	2	7.3	リン酸	12
製法	2	Ω	出表	13
反応	2			13
告ガフ	2	_		13
				13
	_	0.0		10
		9	ケイ素	13
		9.1	二酸化ケイ素	13
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	│ │ 第Ⅱ部	曲型金属	14
ハロゲン	3	N3 11 Ells		
単体	3	10	アルカリ金属	14
ハロゲン化水素	4	10.1	単体	14
ハロゲン化銀	5	10.2	水酸化ナトリウム(苛性ソーダ)	14
次亜塩素酸塩	5	10.3	炭酸ナトリウム・炭酸水素ナトリウム	15
水素酸カリウム	5	11	2. 佐二丰	16
	c			16 16
	•	11.1	里 (4	10
		第Ⅲ音	B APPENDIX	17
	7	10	生体の乾燥 剤	17
	7	12	文(中の名/朱月)	17
	1			
硫黄	8			
硫黄	8			
硫化水素	8			
二酸化硫黄(亜硫酸ガス)	8			
硫酸	9			
チオ硫酸ナトリウム(ハイポ)	9			
重金属の硫化物	10			
	10			
	10			
アンモニア	10			
	性質 同位体 製法 反応 貴ガス 性質 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	水素 2 性質 2 同位体 2 製法 2 反応 2 貴ガス 2 性質 2 生成 2 ハリウム 2 ネオン 2 アルゴン 3 単体 3 ハロゲン化水素 4 ハロゲン化銀 5 次亜塩素酸塩 5 水素酸カリウム 5 酸素 6 酸素原子 6 酸素 6 酸水 6 水ブン 6 酸化物 7 水 7 硫黄 8 硫化水素 8 二酸化硫黄(亜硫酸ガス) 8 硫酸 9 チオ硫酸ナトリウム (ハイポ) 9 重金属の硫化物 10 窒素 10 窒素 10	非金属元素 2 7.1 水素 2 7.1 性質 2 7.2 同位体 2 7.3 製法 2 8 最ガス 2 8.1 カカス 2 8.2 性質 2 8.3 生成 2 9.1 アルゴン 2 第 II 部 単体 3 10 ハロゲン化水素 4 10.1 ハロゲン化水素 4 10.1 ハロゲン化銀 5 10.2 次亜塩素酸塩 5 10.3 水素酸カリウム 5 11 酸素 6 第 II 11.1 酸素 6 第 III 11.1 酸素 6 第 III 11.1 酸素 6 9 年 II 11.1	#金属元素 2

第I部

非金属元素

1 水素

1.1 性質

- ①無色②無臭の③気体
- 最も4軽い
- 水に溶け(5)にくい

1.2 同位体

 1 H 99% 以上 2 H (6D)0.015% 3 H (7T) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- 赤熱した 8コークス に 9水蒸気を吹き付ける 工業的製法

 $C + H_2O \longrightarrow H_2 + CO$

- 10水 (11水酸化ナトリウム水溶液) の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- 12 イオン化傾向 が 13 H₂ より大きい 金属と希薄強酸

• 水酸化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

1.4 反応

• 水素と酸素 (爆鳴気の燃焼)

 $2 H_2 + O_2 \longrightarrow H_2O$

加熱した酸化銅(Ⅱ)と水素
 CuO + H₂ → Cu + H₂O

2 貴ガス

(14)He, (15)Ne, (16)Ar, (17)Kr, Xe, Rn

2.1 性質

- <u>18無</u>色<u>19無</u>臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が 20 極めて小さい
- 電気陰性度が[21]<mark>定義されない</mark>

2.2 牛成

 40 K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い (約 1%)。

無機化学

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2 Br_2		I_2		
分子量	小			大		
分子間力	弱					
反応性	強					
沸点・融点	低			高		
常温での状態	22)気体	23)気体	24)液体	25 固体		
色	26)淡黄 色	<u>[27]黄緑</u> 色	28]赤褐 色	29 黒紫 色		
特徴	30 <mark>特異</mark> 臭	31)刺激_臭	揮発性	32 昇華 性		
H ₂ との反応	33)冷暗所 でも	34 常温でも 35 光で	36 <mark>加熱</mark> して	高温で平衡状態		
112 2 07/2/10	爆発的に反応	爆発的に反応	37 <u>触媒</u> により反応	[38] <mark>加熱</mark> して[39] <u>触媒</u> により一部原		
水との反応	水を酸化して酸素と	(41)一部とけて反応	(42)一部とけて反応	43 反応しない		
水との灰心	<u>40激しく</u> 反応		(42)—高2 (7) (1 <u>以)心</u>	[44]Klaq には可溶		
用途	保存が困難	<u>45 CIO </u> による	C=C ♣	47]ヨウ素デンプン 反応で		
/ 17/25	Kr や Xe と反応	(46) <mark>殺菌・漂白</mark> 作用	C≡C の検出	48)青紫 色		

3.1.2 製法

 ● フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液 の電気分解 工業的製法

 $\mathrm{KHF}_2 \longrightarrow \mathrm{KF} + \mathrm{HF}$

- $\boxed{49}$ 塩化ナトリウム の電気分解 塩素 $\boxed{\textbf{工業的製法}}$ $2\,\mathrm{NaCl} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Cl}_2 + \mathrm{H}_2 + 2\,\mathrm{NaOH}$
- <u>50酸化マンガン(IV)</u>に <u>51)濃硫酸</u> を加えて加熱 塩素

 $MnO_2 + 4 HCl \xrightarrow{\Lambda} MnCl_2 + Cl_2 \uparrow + 2 H_2O$

- 52高度さらし粉 と 53塩酸 塩素 $Ca(ClO)_2 \cdot 2 H_2 O + 4 HCl \longrightarrow CaCl_2 + 2 Cl_2 \uparrow + 4 H_2 O$
- 54 さらし粉 と 55 塩酸 塩素 $CaCl(ClO) \cdot H_2O + 2 HCl \longrightarrow CaCl_2 + Cl_2 \uparrow + 2 H_2O$
- 臭化マグネシウムと塩素 臭素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

フッ素と水素

 $H_2+F_2 \xrightarrow{$ 常温で爆発的に反応 $} 2 HF$

• 塩素と水素 $H_2 + \operatorname{Cl}_2 \xrightarrow{\mathcal{H}_{\text{E}} \text{bital R}} 2\operatorname{HCl}$

• ヨウ素と水素 $H_2+I_2 \stackrel{\overline{\text{Blacry}}}{\longleftarrow} 2\,\text{HI}$

• フッ素と水 $2F_2 + 2H_2O \longrightarrow 4HF + O_2$

 塩素と水 Cl₂ + H₂O ⇒ HCl + HClO

● 臭素と水

 $Br_2 + H_2O \Longrightarrow HBr + HBrO$

ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応

 $I_2 + I^- \longrightarrow I_3^-$

無機化学 3/17

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $MnO_2 + 4HCl \xrightarrow{\Lambda} MnCl_2 + Cl_2 \uparrow + 2H_2O Cl_2,HCl,H_2O$ ↓ **56** 水 に通す (HClの除去) Cl_2,H_2O \downarrow 57 <u>濃硫酸</u> に通す $(H_2O \ の除去)$

3.1.5 塩素のオキソ酸

 Cl_2

オキソ酸・・・ [58]酸素を含む酸性物質

ハロゲン化水素 3.2

3.2.1 性質

化学式	HF	HCl	HBr	HI				
色・臭い		67 <u>無</u> 色 68 <u>刺激</u> 臭						
沸点	20°C	−85°C	−67°C	−35°C				
水との反応		69)よく溶ける						
水溶液	70フッ化水素酸	[71]塩酸	72 臭化水素酸	73 ヨウ化水素酸				
(強弱)	74]弱酸	≪ 75強酸 < 7	6]強酸 < [77]	<u>強酸</u>				
用途	78 ガラス と反応	[79] <mark>アンモニア</mark> の検出	半導体加工	インジウムスズ				
	⇒ ポリエチレン瓶	各種工業	一等件加工	酸化物の加工				

3.2.2 製法

- 80 ホタル石 に 81 濃硫酸 を加えて加熱 (82 弱酸遊離) フッ化水素 $CaF_2 + H_2SO_4 \xrightarrow{\Lambda} CaSO_4 + 2HF \uparrow$
- [83]水素 と [84]塩素 塩化水素 工業的製法

 $H_2 + Cl_2 \longrightarrow 2 HCl \uparrow$

• <u>85 塩化ナトリウム</u> に <u>86 濃硫酸</u> に加えて加熱 <u>塩化水素</u> (<u>87 弱</u> 酸・<u>88 揮発性</u> 酸の追い出し) $NaCl + H_2SO_4 \xrightarrow{\Lambda} NaHSO_4 + HCl \uparrow$

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $SiO_2 + 4 HF(g) \longrightarrow SiF_4 \uparrow + 2 H_2O$
- フッ化水素酸(水溶液)がガラスを侵食する反応 $SiO_2 + 6 HF(aq) \longrightarrow H_2SiF_6 \uparrow + 2 H_2O$
- <u>89 塩化水素</u> による <u>90 アンモニア</u> の検出 $HCl + NH_3 \longrightarrow NH_4Cl$

無機化学 4/17 3.3 ハロゲン化銀 3 ハロゲン

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	AgBr	AgI	
固体の色	91 黄褐 色	92 白 色	93 淡黄 色	94黄色	
水との反応	95よく溶ける	96 ほとんど溶けない			
光との反応	97感光				

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮

$$Ag_2O + 2HF \longrightarrow 2AgF + H_2O$$

● ハロゲン化水素イオンを含む水溶液と 99 硝酸銀水溶液

$$Ag^+ + X^- \longrightarrow AgX \downarrow$$

3.4 次亜塩素酸塩

3.4.1 性質

[100]酸化 剤として反応([101]殺菌 ・ [102]漂白 作用)
$$ClO^- + 2H^+ + 2e^- \longrightarrow Cl^- + H_2O$$

3.4.2 製法

• 水酸化ナトリウム水溶液と塩素

$$2\,NaOH + Cl_2 \longrightarrow NaCl + NaClO + H_2O$$

• 水酸化カルシウムと塩素

 $\mathrm{Ca}(\mathrm{OH})_2 + \mathrm{Cl}_2 \longrightarrow \mathrm{Ca}\mathrm{Cl}(\mathrm{ClO}) \cdot \mathrm{H}_2\mathrm{O}$

3.5 水素酸カリウム

化学式: [103]KCIO₃

3.5.1 性質

```
 104  酸素 の生成( 105  工酸化マンガン を触媒に加熱)  2 \, \mathrm{KClO}_3 \xrightarrow{\mathrm{MnO}_2} 2 \, \mathrm{KClO} + 2 \, \mathrm{O}_2 \, \uparrow
```

無機化学 5/17

4 酸素

4.1 酸素原子

同(106)位 体:酸素 (O_2) 、(107)オゾン (O_3) 地球の地殻に(108)最も多く 存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式:O2

4.2.1 性質

- [121]無 色[122]無 臭の[123]気体
- 沸点 -183°C

4.2.2 製法

- [124]液体空気の分留 工業的製法
- 125<u>水</u> (126<u>水酸化ナトリウム水溶液</u>) の 127<u>電気分解</u>

 $2\,H_2O \longrightarrow 2\,H_2\,\uparrow + O_2\,\uparrow$

- 128 過酸化水素水 (129 オキシドール) の分解 $2 H_2 O_2 \xrightarrow{\operatorname{MnO}_2} O_2 \uparrow + 2 H_2 O$
- 130 塩素酸カリウム 0 熱分解 $2 \text{ KClO}_3 \xrightarrow{\text{MnO}_2} 2 \text{ KClO} + 3 \text{ O}_2 \uparrow$

4.2.3 反応

[131]酸化 剤としての反応 $O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$

4.3 オゾン

化学式: 132 03

4.3.1 性質

- (133)ニンニク 臭((134)特異 臭)を持つ(135)淡青 色の(136)気体 (常温)
- 水に(137)少し溶ける
- 138 <mark>殺菌</mark>・139 脱臭 作用

・オゾンにおける酸素原子の運動 -

4.3.2 製法

酸素中で $\boxed{146 \underline{\texttt{m = km}}}$ /強い $\boxed{147 \underline{\texttt{紫 h } \$}}$ を当てる $3\,\mathrm{O}_2 \longrightarrow 2\,\mathrm{O}_3$

4.3.3 反応

- $\boxed{148}$ 酸化 剤としての反応 $O_3 + 2 \, \mathrm{H}^+ + 2 \, \mathrm{e}^- \longrightarrow O_2 + \mathrm{H}_2\mathrm{O}$
- 湿らせた [149] ヨウ化カリウムでんぷん紙 を [150] 青色に変色

$$O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	[151]陽性の大きい金属 元素	[152]陽性の小さい金属 元素	
水との反応	[154]塩基性	[155]ほとんど溶けない	[156]酸性 ([157]オキソ酸)
中和	[158]酸 と反応	[159]酸・塩基 と反応	<u>[160]塩基</u> と反応

両性酸化物 · · · (161)アルミニウム ((162)AI),(163)亜鉛 ((164)Zn),(165)スズ ((166)Sn),(167)鉛 ((168)Pb)*1

- $\bigcirc M$ $CO_2 + H_2O \longrightarrow H_2CO_3$
- $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}_3$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素

 $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

 酸化アルミニウムと水酸化ナトリウム水溶液 Al₂O₃ + 2 NaOH ----→ 3 H₂O + 2 Na[Al(OH)⁺]

4.5 水

4.5.1 性質

- 169 極性 分子
- 周りの4つの分子と[170]水素 結合
- 異常に 171 高い 沸点
- 172 隙間の多い 結晶構造(密度:固体 173 < 液体)
- 特異な 174 融解曲線

4.5.2 反応

● 酸化カルシウムと水

 $CaO + H_2O \longrightarrow Ca(OH)_2$

• 二酸化窒素と水

 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

無機化学 7/17

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

5.2.3 反応

• 硫化水素とヨウ素

$$H_2S + I_2 \longrightarrow S + 2 HI$$

● 酢酸鉛(Ⅱ)水溶液と硫化水素(200 H₂S の検出)

 $(CH_3COO)_2Pb + H_2S \longrightarrow 2CH_3COOH + PbS \downarrow$

名称	〔175〕 <mark>斜方</mark> 硫黄	〔176〕 <mark>単斜</mark> 硫黄	[177] 二
化学式	178]S ₈	179 <mark>S₈</mark>	□180 5-3 土酸化硫黄(亜硫酸ガス)
色	<u>[181]黄</u> 色	<u>[182]黄</u> 色	[183] 黄 色
構造	<u>184) 塊状</u> 結晶	185)針状 結晶	186 不定化
融点	113°C	119°C	
構造	SSS	S S S	S 5.3 d 性質 S • <u>\$202</u> m 色、 <u>203</u> 刺激 臭の <u>204</u> 気体 … S - \$ 水に 205 溶けやすい
CS ₂ との反応	[187] <mark>溶ける</mark>	[188]溶ける	[189]溶けない● [206]弱酸 性

CS₂··· 無色・芳香性・揮発性 ⇒ 190 無極性 触媒

5.1.2 反応

- 高温で多くの金属(Au、Ptを除く)との反応 $Fe + S \longrightarrow FeS$
- 空気中で 191 青 色の炎を上げて燃焼 $S + O_2 \longrightarrow SO_2$

5.2 硫化水素

化学式: 192 H₂S

5.2.1 性質

- [193]無 色[194]腐卵 臭
- [195]弱酸 性

 \int 196 $H_2S \iff H^+ + HS^ K_1 = 9.5 \times 10^{-8} \text{ mol/L } 5.3.3$ 反応 197) $HS^- \rightleftharpoons H^+ + S^{2-}$ $K_2 = 1.3 \times 10^{-14} \text{ mol/L}$

- [198]還元 剤としての反応 $H_2S \longrightarrow S + 2H^+ + 2e^-$
- 重金属イオン M₂⁺ と 199 難容性の塩 を生成 $M_2^+ + S^{2-} \Longrightarrow MS \downarrow$

5.2.2 製法

- 酸化鉄(Ⅱ)と希塩酸 $FeS + 2 HCl \longrightarrow FeCl_2 + H_2S \uparrow$
- 酸化鉄(Ⅱ)と希硫酸 $\mathrm{FeS} + \mathrm{H_2SO_4} \longrightarrow \mathrm{FeSO_4} + \mathrm{H_2S} \!\uparrow$

 $(207)SO_2 + H_2O \Longrightarrow H^+ + HSO_3^ K_1 = 1.4 \times 10^{-2} \text{ mol/}$

- 208 還元 剤(209 漂白 作用) $SO_2 + 2H_2O \longrightarrow SO_4^{2-} + 4H^+ + 2e^-$
- [210]酸化 剤([211]H₂S_などの強い還元剤に対して) $SO_2 + 4H^+ + 4e^- \longrightarrow S + 2H_2O$

5.3.2 製法

- ・ 硫黄や硫化物の 212 燃焼 工業的製法 $2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$
- [213] 亜硫酸ナトリウム と希硫酸 $Na_2SO_3 + H_2SO_4 \xrightarrow{\wedge} NaHSO_4 + SO_2 \uparrow + H_2O$
- (214)銅 と (215)熱濃硫酸 $Cu + 2 H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2 H_2O$

- 二酸化硫黄の水への溶解 $SO_2 + H_2O \longrightarrow H_2SO_3$
- 二酸化硫黄と硫化水素 $SO_2 + 2H_2S \longrightarrow 3S + 3H_2O$
- 硫酸酸性で過マンガン酸カリウムと二酸化硫黄 $2 \text{ KMnO}_4 + 5 \text{ SO}_2 + 2 \text{ H}_2 \text{O} \longrightarrow 2 \text{ MnSO}_4 +$ $2 H_2 SO_4 + K_2 SO_4$

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216無 色 217無 臭の 218液体
- 水に 219 非常によく溶ける
- 溶解熱が 220 非常に大きい
- 221 水に濃硫酸 を加えて希釈
- <u>[222]不揮発</u>性で密度が <u>[223]大き</u> く、<u>[224]粘度</u>が大きい <u>濃硫酸</u>
- [225]<mark>吸湿</mark> 性・[226]脱水 作用 濃硫酸
- 227 強酸性 希硫酸

(228)H₂SO₄ \Longrightarrow H⁺ + HSO₄⁻ $K_1 > 10^8$ mol/L

- [229] <u>弱酸性</u> <u>濃硫酸</u> ([230] 水が少なく 、[231] H₃O⁺ の濃度が小さい)
- [232]酸化 剤として働く 熱濃硫酸

 $(233)H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_4 + 2H_2O$

②34)アルカリ性土類金属 (②35)Ca ,②36)Be)、②37)Pb と難容性の塩を生成 希硫酸

5.4.2 製法

238 接触 法工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

(S + O₂ \longrightarrow SO₂)

- 2. 239酸化バナジウム 触媒で酸化 $2 SO_2 + O_2 \xrightarrow{V_2O_5} 2 SO_3$
- 3. 240 濃硫酸 に吸収させて 241 発煙硫酸 とした 後、希硫酸を加えて希釈 $SO_3 + H_2O \longrightarrow H_2SO_4$

5.4.3 反応

- 硝酸カリウムに濃硫酸を加えて加熱 ${
 m KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4}$
- スクロースと濃硫酸 ${\rm C_{12}H_{22}O_{11}} \xrightarrow{\rm H_{2}SO_{4}} 12\,{\rm C} + 11\,{\rm H_{2}O}$
- 水酸化ナトリウムと希硫酸 ${\rm H_2SO_4 + 2\,NaOH \longrightarrow Na_2SO_4 + 2\,H_2O}$
- 銀と熱濃硫酸

 $2\,\mathrm{Ag} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{Ag}_2\mathrm{SO}_4 + \mathrm{SO}_2 + 2\,\mathrm{H}_2\mathrm{O}$

• 塩化バリウム水溶液と希硫酸 $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$

5.5 チオ硫酸ナトリウム (ハイポ)

化学式:[242]Na₂S₂O₃

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- [245]還元 剤として反応

例水道水の脱塩素剤 (カルキ抜き)

$$246$$
 2 S_2 O_3 $^{2-}$ \longrightarrow S_4 O_6 $+$ 2 e^-

$$\begin{array}{c} : \overset{\circ}{\mathrm{O}} : \overset{\circ}{\mathrm{O}$$

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱 $Na_2SO_4 + S_n \longrightarrow Na_2S_2O_3$

5.5.3 反応

ョウ素とチオ硫酸ナトリウム $I_2 + 2\,\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3 \longrightarrow 2\,\mathrm{NaI} + \mathrm{Na}_2\mathrm{S}_4\mathrm{O}_6$

5.6 重金属の硫化物

酸性でも沈澱(全液性で沈澱)					中性	:・塩基性で洗	※ 一般性では	溶解)	
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
247黒 色	248 黒 色	249黒 色	250黒 色	251 褐 色	252黒 色	253黒 色	254 黑 色	255 白 色	256)淡赤

[257]低

イオン化傾向

[258] 高

[259]極小 塩の溶解度積 (K_{sp}) [260]小

6 窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- (261)無 色(262)無 臭の(263)気体
- 空気の 78% を占める
- 水に溶け(264)にくい (265)無極性 分子)
- 常温で (266) 不活性 (食品などの (267) 酸化防止)
- 高エネルギー状態([268]高温 · [269]放電)では反応

6.1.2 製法

- 270 液体窒素の分留 工業的製法
- 271 亜硝酸アンモニウム の 272 熱分解 $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

$$N_2 + 2 O_2 \longrightarrow 2 NO_2$$
 $\begin{cases} N_2 + O_2 \longrightarrow 2 NO \\ 2 NO + O_2 \longrightarrow 2 NO_2 \end{cases}$

• 窒素とマグネシウム $3 \operatorname{Mg} + \operatorname{N}_2 \longrightarrow \operatorname{Mg}_3 \operatorname{N}_2$

6.2 アンモニア

化学式: [273]NH₃

6.2.1 性質

- [274]無 色[275]刺激 臭の[276]気体
- [277]水素 結合
- ・ 水に (278) 非常によく溶ける (279) 上方 置換)
- (280)塩基 性 ($281)NH_3 + H_2O \Longrightarrow NH_4^+ + OH^ K_1 = 1.7 \times 10^{-5} \text{ mol/L}$
- [282]塩素 の検出
- 高温・高圧で二酸化炭素と反応して、 283 尿素 を 生成

6.2.2 製法

284 ハーバーボッシュ法 工業的製法

[285]低温 [286]高圧で、 [287]四酸化三鉄 (

[288]Fe₃O₄) 触媒

 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$

• [289]塩化アンモニウム と [290]水酸化カルシウム を混 ぜて加熱

 $2 \text{ NH}_4 \text{Cl} + \text{Ca}(\text{OH})_2 \longrightarrow 2 \text{ NH}_3 \uparrow + \text{Ca}(\text{Cl}_2 + 2 \text{ H}_2\text{O})$

6.2.3 反応

• 硫酸とアンモニア

 $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$

● 塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$

• アンモニアと二酸化炭素

 $2 \text{ NH}_3 + \text{CO}_2 \longrightarrow (\text{NH}_2)_2 \text{CO} + \text{H}_2 \text{O}$

6.3 一酸化二窒素(笑気ガス)

化学式: [291]N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 292 麻酔 効果

6.3.2 製法

[293]硝酸アンモニウム の熱分解 $NH_4NO_2 \xrightarrow{\Lambda} N_2O + 2H_2O$

6.4 一酸化窒素

化学式:[294]NO

6.4.1 性質

- [295]無 色[296]無 臭の[297]気体
- 中性で水に溶けにくい
- 空気中では 298 酸素 とすぐに反応

6.5 二酸化窒素 6 窒素

• 血管拡張作用·神経伝達物質

6.4.2 製法

299銅 と 300 希硝酸

 $3 \operatorname{Cu} + 8 \operatorname{HNO}_3 \longrightarrow 3 \operatorname{Cu}(\operatorname{NO}_3)_2 + 2 \operatorname{NO} + 4 \operatorname{H}_2 \operatorname{O}$

6.4.3 反応

酸素と反応

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

6.5 二酸化窒素

化学式: 301 NO₂

6.5.1 性質

- 302 赤褐 色 303 刺激 臭の 304 気体
- ・ 水と反応して(305)強酸性(306)酸性雨の原因)
- 常温では <u>307四酸化二窒素</u> (<u>308)無</u>色)と <u>309)平衡状態</u>

 $2 \text{ NO}_2 \Longrightarrow \text{N}_2 \text{O}_4$

• 140°C 以上で熱分解 $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{ O}_2$

6.5.2 製法

310銅 と 311 濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.6 硝酸

化学式: [312] HNO₃

6.6.1 性質

- 313無 色 314刺激 臭で 315 揮発 性の 316 液体
- 水に(317)よく溶ける
- [318]強酸 性

(319)HNO₃ \Longrightarrow H⁺ + NO₃⁻ $K_1 = 6.3 \times 10^1$ mol/L)

- 320 褐色瓶 に保存(321)光分解)
- [322]酸化 剤としての反応 希硝酸

 $HNO_3 + H^+ + e^- \longrightarrow NO_2 + H_2O$

323酸化 剤としての反応 濃硝酸
 HNO₃ + 3 H⁺ + 3 e⁻ → NO + 2 H₂O

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- 324AI , 325Cr , 326Fe , 327Co , 328Ni は
 329酸化皮膜 が生じて不溶 濃硝酸
 = 330不動態
- <u>331] 王水</u> (<u>332] 濃塩酸</u>:1 <u>333] 濃硝酸</u>=3:1) は、 Pt,Au も溶解

• NO₃ は (334) 沈殿を作らない ⇒ (335) 褐輪反応 で検出

6.6.2 製法

336 オストワルト法

 $NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$

- 1. (337) 白金 触媒で(338) アンモニア を(339) 酸化 $4 \text{ NH}_3 + 5 \text{ O}_2 \longrightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{O}$
- 2. [340]空気酸化

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

- 3. $\boxed{341$ 水 と反応 $3 \operatorname{NO}_2 + \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{HNO}_3 + \operatorname{NO}$
- 342 硝酸塩 に343 濃硫酸 を加えて加熱 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$

6.6.3 反応

- アンモニアと硝酸 $NH_3 + HNO_3 \longrightarrow NH_4NO_3$
- 硝酸の光分解 $4 \, \text{HNO}_3 \xrightarrow{\mathcal{H}} 4 \, \text{NO}_2 + 2 \, \text{H}_2 \text{O} + \text{O}_2$
- 亜鉛と希硝酸 ${\rm Zn} + 2\,{\rm HNO_3} \longrightarrow {\rm Zn}({\rm NO_3})_2 + {\rm H_2} \uparrow$
- 銀と濃硝酸Ag + 2 HNO₃ → AgNO₃ + H₂O + NO₂↑

無機化学 11/17

7 リン

7.1 リン

化学式:[344]P₄O₁₀

7.1.1 性質

三種類の同 345 素 体がある

- 作及の内(J+J)	* My 10 0		
名称	346黄 リン	347赤 リン	黒リン
化学式	348)P ₄	(349)P _x	P_4
融点	44°C	590°C*2	610°C
発火点	35°C	260°C	
光八点	350 <mark>水中</mark> に保存	351マッチの側薬	-
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$
毒性	352)猛毒	353)微毒	(354)微毒
構造	P	P - P - P - P - P - P - P - P - P - P -	略
CS ₂ への溶解	(355)溶ける	356)溶けない	357 溶けない

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法
- ・ 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: (358)P₄O₁₀_

7.2.1 性質

- 白色で昇華性のある固体
- 359 潮解性 (水との親和性が 360 非常に高い)
- 乾燥剤
- ・ 水を加えて加熱すると反応(361)加水分解

7.2.2 製法

362 リンの燃焼

7.2.3 反応

水を加えて加熱

7.3 リン酸

化学式: [363] H₃PO₄

7.3.1 性質

364)中酸性

7.3.2 反応

- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成
- リン酸カルシウムと硫酸が反応して過リン酸石灰が 生成

8 炭素

8.1 炭素

8.1.1 性質

炭素の同(366)素 体は、(367)ダイアモンド 、(368)黒鉛 ((369)グラファイト) etc...

名称	370ダイアモンド	371]黒鉛
特徴	372 <u>無</u> 色 373 透明 で屈折率が大きい固体	374 <u>黒</u> 色で 375 光沢 がある固体
密度	$3.5\mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	376 <u>正四面体</u> 方向の <u>377 共有結合</u> 結晶	[378]ズレた層状 構造
電気伝導性	<u>379)なし</u>	<u> </u>
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

8.3 二酸化炭素

9 ケイ素

9.1 二酸化ケイ素

無機化学 13/17

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で [381]柔らかい 金属
- 全体的に反応性が高く、382<u>灯油</u>中に保存
- 原子一個粗利の自由電子が [383]1 個 ([384]弱 い [385]金属 結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	К	Rb	Cs	
融点	181°C	98°C	64°C	39°C	28°C	
密度	0.53	0.97	0.86	1.53	1.87	
構造	(386) <u>体心立方</u> 格子((387)軽金属)					
イオン化エネルギー	大					
反応力	小 —				二 大	
炎色反応	388 赤 色	<u>389</u> 色	390 赤紫 色	391)深赤 色	392]青紫 色	
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料(K ⁺)	光電池 年代測定	光電管 電子時計 (一秒の基準)	

10.1.2 製法

水酸化物や塩化物の 393 溶融塩電解 (394) ダウンズ 法) 工業的製法

395]CaCl₂ 添加(396]凝固点降下)

 $2 \operatorname{NaCl} \longrightarrow 2 \operatorname{Na} + \operatorname{Cl}_2 \uparrow$

10.1.3 反応

• ナトリウムと酸素

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$

• ナトリウムと塩素

 $2\,\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{NaCl}$

ナトリウムと水

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2\!\uparrow$

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: (397) NaOH

10.2.1 性質

- 398 台 色の固体
- [399]潮解 性
- ・ 水によくとける(水との親和性が(400)非常に高い)
- 401 乾燥 剤

無機化学 14/17

• 強塩基性

$$\left(\begin{array}{c} \text{(402)} \text{NaOH} \Longrightarrow \text{Na}^+ + \text{OH}^- & K_1 = 1.0 \times 10^{-1} \text{mol/L} \end{array} \right)$$

空気中の (403) 二酸化炭素 と反応して、純度が不明
 酸の標準溶液 (404)シュウ酸) を用いた中和滴定で濃度決定
 (COOH)₂ + 2 NaOH → (COONa)₂ + 2 H₂O)

10.2.2 製法

(405)水酸化ナトリウム水溶液 0 (406)電気分解 (47) (イオン交換膜法) 工業的製法 $2 \text{ NaCl} + 2 \text{ H}_2 \text{ O} \longrightarrow 2 \text{ NaOH} + \text{H}_2 \uparrow + \text{Cl}_2 \uparrow$

10.2.3 反応

塩酸と水酸化ナトリウム HCl+NaOH → NaCl+H₂O

塩素と水酸化ナトリウム2 NaOH + Cl₂ → NaCl + NaClO + H₂O

• 二酸化硫黄と水酸化ナトリウム $SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$

• 酸化亜鉛と水酸化ナトリウム水溶液 ${
m ZnO} + 2\,{
m NaOH} + {
m H_2O} \longrightarrow {
m Na_2}[{
m Zn(OH)_4}]$

• 二酸化炭素と水酸化ナトリウム $2 \operatorname{NaOH} + \operatorname{CO}_2 \longrightarrow \operatorname{Na_2CO_3} + \operatorname{H_2O}$

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	407 Na ₂ CO ₃	408 NaHCO ₃
色	409 白 色	410 白 色
融点	850°C	[411]熱分解
液性	<u>412</u> <u>塩基</u> 性	413 弱塩基 性
用途	<u>(414) ガラス</u> や石鹸の原料	胃腸薬・ふくらし粉

10.3.2 製法

無機化学 15/17

10.3.3 反応

• Na₂CO₃
$$\boxed{417\text{CO}_3^{2^-} + \text{H}_2\text{O} \Longrightarrow \text{HCO}_3^- + \text{OH}^-}}$$
 $K_1 = 1.8 \times 10^{-4}$
• NaHCO₃ $\begin{cases} \boxed{418\text{HCO}_3^- + \text{H}^+ \Longrightarrow \text{CO}_3^{2^-}} & K_1 = 5.6 \times 10^{-11} \\ \boxed{419\text{HCO}_3^- + \text{H}_2\text{O} \Longrightarrow \text{CO}_2 + \text{OH}^- + \text{H}_2\text{O}} & K_2 = 2.3 \times 10^{-8} \end{cases}$

11 2 族元素

11.1 単体

11.1.1 性質

化学式	420 Be	(421)Mg	(422)Ca	423 <mark>Sr</mark>	(424)Ba
融点	1282°C	649°C	839°C	769°C	729°C
密度 (g/cm ³)	1.85	1.74	1.55	2.54	3.59
425 還元 力		小 ——		大	
水との反応	(426)反応しない	(427) <mark>熱水</mark> と反応	428 <mark>冷水</mark> と反応	429 <mark>冷水</mark> と反応	(430)冷水 と反応
M(OH) ₂ の水溶性	(431)難溶 性((432) 弱塩基 性)	[433] <mark>可溶</mark> 性([434]強塩基 性)		
難溶性の塩	(435)N	MCO ₃		(436)MCO ₃ , MSO ₄	
炎色反応	(437)示さない	(438)示さない	[439]橙赤	(440) <u>紅</u>	[441]黄緑
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター

11.1.2 製法

塩化物の [442] 溶融塩電解 工業的製法

11.1.3 反応

• マグネシウムの燃焼

$$2 \,\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{MgO}$$

• マグネシウムと二酸化炭素

$$2 \,\mathrm{Mg} + \mathrm{CO}_2 \longrightarrow 2 \,\mathrm{MgO} + \mathrm{C}$$

● カルシウムと水

$$\mathrm{Ca} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_2 + \mathrm{H}_2 \,\uparrow$$

無機化学 16/17

第Ⅲ部

APPENDIX

12 気体の乾燥剤

固体の乾燥剤は 443 U字管 につめて、液体の乾燥剤は 444 洗気瓶 に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	(445)十酸化四リン	446)P ₄ O ₁₀	・酸性・中性	塩基性の気体(〔447 <mark>NH₃</mark>)
	[448] 濃硫酸	449)H ₂ SO ₄		+ 450 H ₂ S (451)還元剤
中性	452 塩化カルシウム	453 CaCl ₂	・ほとんど全て	454)NH ₃
	(455)シリカゲル	[456]SiO ₂ · n H ₂ O		特になし
塩基性	457酸化カルシウム	458 CaO	中性・塩基性	酸性の気体
	(459)ソーダ石灰	460 CaO と NaOH		$ \overline{(461)^{\hbox{\scriptsize Cl}_2}}, \overline{(462)^{\hbox{\scriptsize HCl}}}, \overline{(463)^{\hbox{\scriptsize H}_2\hbox{\scriptsize S}}}, \overline{(464)^{\hbox{\scriptsize SO}_2}}, \overline{(465)^{\hbox{\scriptsize CO}_2}}, \overline{(466)^{\hbox{\scriptsize N}}} $

無機化学 17/17