

**RECEIVED
CENTRAL FAX CENTER
JAN 16 2009**

Application No. 10/551,244
Amendment dated
Reply to Office Action of September 16, 2008

Docket No.: 215384-101174

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A transmitter apparatus comprising:

an input receiving section that receives inputs of multiple synchronized signals r_1, \dots, r_N ;
 an synchronizing section that delays the multiple input received synchronized signals r_1, \dots, r_N by times t_1, \dots, t_N , respectively, to output multiple asynchronous signals v_1, \dots, v_N ;
 a modulating section that modulates the output multiple asynchronous signals v_1, \dots, v_N to output modulated signals w_1, \dots, w_L ($1 \leq L \leq N$); and
 a transmitting section that transmits the output modulated signals w_1, \dots, w_L , and wherein the delay times t_1, \dots, t_N are respectively proportional to values u_1, \dots, u_N which are computed from a prestored integer value a , a predetermined nonlinear transformation $f(\cdot)$ over a finite field, and the equations:

$$u_1 = a;$$

$$u_{j+1} = f(u_j) \quad (1 \leq j \leq N).$$

{~~the delay time t_1, \dots, t_N is shorter than a reciprocal number of a minimum value of clock rates of the multiple input received synchronized signals r_1, \dots, r_N }~~}

2. (Currently Amended) The transmitter apparatus according to claim 1, further comprising:

a storing section that stores the delay times t_1, \dots, t_N in advance, wherein the synchronizing section delays the respective multiple synchronized signals r_1, \dots, r_N by the time t_1, \dots, t_N stored in the storing section.

3. (Currently Amended) The transmitter apparatus according to claim 1, wherein the modulating section classifies the asynchronous signals v_1, \dots, v_N into L ($L \leq N$) signal groups to send the respective classified L signal groups to any one of L spread spectrum modulators not to be overlapped with one another to output the modulated signals $w_1, \dots, \{v_L\} w_L$.

4. (Original) The transmitter apparatus according to claim 3, wherein the transmitting section radio-transmits the respective modulated signals w_1, \dots, w_L by L radio frequency modulators each using a different carrier frequency.

5. (Original) The transmitter apparatus according to claim 3, wherein the transmitting section

Application No. 10/551,244
 Amendment dated
 Reply to Office Action of September 16, 2008

Docket No.: 215384-101174

sends the modulated signals w_1, \dots, w_L to I-channels and Q-channels of each of L/2 radio frequency modulators each using a different carrier frequency not to be overlapped with one another to radio-transmit the respective obtained transmitting signals.

6. (Original) The transmitter apparatus according to claim 3, wherein $L = 2$ is established.

7. (Currently Amended) The transmitter apparatus according to claim 1, wherein the delay times t_1, \dots, t_N are shorter than the clock period of the signals r_1, \dots, r_N . [wherein the delay time t_1, \dots, t_N is proportional to u_1, \dots, u_N , that is determined by the following equation by a prestored integer value a and a predetermined nonlinear transformation $f(\cdot)$ over a finite field.]

$$\{u_1 = a\}$$

$$\{u_{j+1} = f(u_j) \quad (1 \leq j < N)\}$$

8. (Currently Amended) The transmitter apparatus according to claim [7] 1, wherein the prestored value a is updated to $a = f(u_N)$ every time when predetermined time passes, and thereby the delay times t_1, \dots, t_N is updated.

9. (Currently Amended) The transmitter apparatus according to claim [7] 1, wherein the predetermined nonlinear transformation $f(\cdot)$ over a finite field corresponds to any one of the following (a) to (e):

- (a) transformation using a Chebyshev polynomial of second or more degree,
- (b) transformation using Bernoulli mapping,
- (c) transformation $f(x) = 2x^2 - px + q \pmod{2^w}$ defined using integers p, q ($p \pmod{4} = 1$, $0 \leq q \leq 2^{w-1}$),
- (d) transformation using a remainder obtained by dividing any one of transformation results of (a) to (c) by a predetermined integer, and
- (e) transformation that is the same form as any one of the above (a) to (d) by a linear coordinate transformation.

10. (Currently Amended) A receiver apparatus comprising:

a receiving section that receives multiple signals as a_1, \dots, a_L ($1 \leq L$);

Application No. 10/551,244

Docket No.: 215384-101174

Amendment dated

Reply to Office Action of September 16, 2008

a delaying section that delays the respective multiple received signals a_1, \dots, a_L by time $T - t_1, \dots, T - t_N$ ($L \leq N$) where T is predetermined constant time without being overlapped with one another to output multiple intermediate signals p_1, \dots, p_N ;

a demodulating section that demodulates the multiple output intermediate signals p_1, \dots, p_N to output demodulated signals r_1, \dots, r_N ; and

an outputting section that outputs the multiple output demodulated signals r_1, \dots, r_N as multiple transmitted synchronized signals, and

wherein the delay times t_1, \dots, t_N are respectively proportional to values u_1, \dots, u_N which are computed from a prestored integer value a , a predetermined nonlinear transformation $f(\cdot)$ over a finite field, and the equations:

$$u_1 = a;$$

$$u_{j+1} = f(u_j) \quad (1 \leq j \leq N).$$

11. (Currently Amended) The receiver apparatus according to claim 10, further comprising:

a storing section that stores the predetermined constant time T and times t_1, \dots, t_N in advance,

wherein the delaying section obtains delay times of the respective multiple synchronized signals r_1, \dots, r_N from time stored in the storing section and delays the synchronized signals by times $T - t_1, \dots, T - t_N$.

12. (Currently Amended) The receiver apparatus according to claim 10, wherein the delaying section classifies the delay times $T - t_1, \dots, T - t_N$ into L delay time groups, and uses the respective classified L delay time groups not to be overlapped with the received signals a_1, \dots, a_L to output the intermediate signals p_1, \dots, p_N .

13. (Original) The receiver apparatus according to claim 12, where the receiving section obtains the respective received signals a_1, \dots, a_L from L radio frequency modulators each using a different carrier frequency.

14. (Original) The receiver apparatus according to claim 12, wherein the receiving section obtains the received signals a_1, \dots, a_L from I-channels and Q-channels of each of $L/2$ radio

Application No. 10/551,244
Amendment dated
Reply to Office Action of September 16, 2008

Docket No.: 215384-101174

frequency modulators each using a different carrier frequency not to be overlapped with one another.

15. (Original) The receiver apparatus according to claim 14, wherein $L = 2$ is established.

16. (Currently Amended) The receiver apparatus according to claim 10, wherein the delay times t_1, \dots, t_N are shorter than the clock period of the signals r_1, \dots, r_N , wherein the time t_1, \dots, t_N is proportional to u_1, \dots, u_N , that is determined by the following equation by a prestored integer value a and a predetermined nonlinear transformation $f(\cdot)$ over a finite field:

$$\{u_1 = a\}$$

$$\{u_{j+1} = f(u_j) \quad (1 \leq j < N)\}$$

17. (Currently Amended) The receiver apparatus according to claim ~~16~~ 10, wherein the prestored value a is updated to $a = f(u_N)$ every time when predetermined time passes, and thereby the delay times t_1, \dots, t_N is updated.

18. (Currently amended) The receiver apparatus according to claim ~~16~~ 10, wherein the predetermined nonlinear transformation $f(\cdot)$ over a finite field corresponds to any one of the following (a) to (e):

- (a) transformation using a Chebyshev polynomial of second or more degree,
- (b) transformation using Bernoulli mapping,
- (c) transformation $f(x) = 2x^2 - px + q \pmod{2^w}$ defined using integers p, q ($p \pmod{4} = 1$, $0 \leq q \leq 2^{w-1}$),
- (d) transformation using a remainder obtained by dividing any one of transformation results of (a) to (c) by a predetermined integer, and
- (e) transformation that is the same form as any one of the above (a) to (d) by a linear coordinate transformation.

19. (Currently Amended) A transmission method comprising:

the input receiving step of receiving inputs of multiple synchronized signals r_1, \dots, r_N ;
the asynchronizing step of delaying the multiple input received synchronized signals $r_1,$

Application No. 10/551,244
 Amendment dated
 Rcply to Office Action of September 16, 2008

Docket No.: 215384-101174

..., r_N by times t_1, \dots, t_N , respectively, to output multiple asynchronized signals v_1, \dots, v_N ;
 the modulating step of modulating the output multiple asynchronized signals v_1, \dots, v_N
 to output modulated signals w_1, \dots, w_L ($1 \leq L \leq N$); and
 the transmitting step of transmitting the output modulated signals w_1, \dots, w_L , and
 wherein the delay times t_1, \dots, t_N are respectively proportional to values u_1, \dots, u_N
which are computed from a prestored integer value a, a predetermined nonlinear
transformation f(·) over a finite field, and the equations:

$$u_1 = a;$$

$$u_{j+1} = f(u_j) \quad (1 \leq j \leq N).$$

[the delay time t_1, \dots, t_N is shorter than a reciprocal number of a minimum value of clock
 rates of the multiple input received synchronized signals r_1, \dots, r_N .]

20. (Currently Amended) The transmission method according to claim 19,
 wherein a storing section that stores the delay times t_1, \dots, t_N in advance is used; and
 wherein the respective multiple synchronized signals r_1, \dots, r_N are delayed by the time t_1, \dots, t_N stored in the storing section in the synchronizing step.
21. (Original) The transmission method according to claim 19, wherein the asynchronized
 signals v_1, \dots, v_N are classified into L ($L \leq N$) signal groups and the respective classified L signal
 groups are sent to any one of L spread spectrum modulators not to be overlapped with one
 another to output the modulated signals w_1, \dots, w_L in the modulating step.
22. (Original) The transmission method according to claim 21, wherein the respective modulated
 signals w_1, \dots, w_L are radio-transmitted by L radio frequency modulators each using a different
 carrier frequency in the transmitting step.
23. (Original) The transmission method according to claim 21, wherein the modulated signals
 w_1, \dots, w_L are sent to I-channels and Q-channels of each of $L/2$ radio frequency modulators each
 using a different carrier frequency not to be overlapped with one another to radio-transmit each
 of the obtained transmitting signals in the transmitting step.
24. (Original) The transmission method according to claim 23, wherein $L = 2$ is established.

Application No. 10/551,244

Docket No.: 215384-101174

Amendment dated

Reply to Office Action of September 16, 2008

25. (Currently Amended) The transmission method according to claim 19, wherein the delay times t_1, \dots, t_N are shorter than the clock period of the signals r_1, \dots, r_N . [wherein the delay time t_1, \dots, t_N is proportional to u_1, \dots, u_N , that is determined by the following equation by a prestored integer value a and a predetermined nonlinear transformation $f(\cdot)$ over a finite field.]

$$\{u_1 = a\}$$

$$\{u_{j+1} = f(u_j) \quad (1 \leq j \leq N)\}.$$

26. (Currently Amended) The transmission method according to claim [25] 19, wherein the prestored value a is updated to $a = f(u_N)$ every time when predetermined time passes, and thereby the delay times t_1, \dots, t_N is updated.

27. (Currently Amended) The transmission method according to claim [25] 19, wherein the predetermined nonlinear transformation $f(\cdot)$ over a finite field corresponds to any one of the following (a) to (e):

- (a) transformation using a Chebyshev polynomial of second or more degree,
- (b) transformation using Bernoulli mapping,
- (c) transformation $f(x) = 2x^2 - px + q \pmod{2^w}$ defined using integers p, q ($p \pmod{4} = 1$, $0 \leq q \leq 2^{w-1}$),
- (d) transformation using a remainder obtained by dividing any one of transformation results of (a) to (c) by a predetermined integer, and
- (e) transformation that is the same form as any one of the above (a) to (d) by a linear coordinate transformation.

28. (Currently Amended) A reception method comprising:

- the receiving step of receiving multiple signals as a_1, \dots, a_L ($1 \leq L$);
- the delaying step of delaying the respective multiple received signals a_1, \dots, a_L by time $T - t_1, \dots, T - t_N$ ($L \leq N$) where T is predetermined constant time without being overlapped with one another to output multiple intermediate signals p_1, \dots, p_N ;
- the demodulating step of demodulating the multiple output intermediate signals p_1, \dots, p_N to output demodulated signals r_1, \dots, r_N ; and

Application No. 10/551,244

Docket No.: 215384-101174

Amendment dated

Reply to Office Action of September 16, 2008

the outputting step of outputting the multiple output demodulated signals r_1, \dots, r_N as multiple transmitted synchronized signals, and

wherein the delay times t_1, \dots, t_N are respectively proportional to values u_1, \dots, u_N which are computed from a prestored integer value a , a predetermined nonlinear transformation $f(\cdot)$ over a finite field, and the equations:

$$u_1 = a;$$

$$u_{j+1} = f(u_j) \quad (1 \leq j \leq N).$$

29. (Currently Amended) The reception method according to claim 28,

wherein a storing section that stores the predetermined constant time T and times t_1, \dots, t_N in advance is used; and

wherein delay times of the respective multiple synchronized signals r_1, \dots, r_N is obtained from time stored in the storing section and the synchronized signals are delayed by the time $T - t_1, \dots, T - t_N$ in the delaying step.

30. (Currently Amended) The reception method according to claim 28, wherein the delay times $T - t_1, \dots, T - t_N$ are classified into L delay time groups, and the respective classified L delay time groups are used not to be overlapped with the received signal a_1, \dots, a_L to output the intermediate signals p_1, \dots, p_N in the delaying step.

31. (Original) The reception method according to claim 30, where the respective received signals a_1, \dots, a_L are obtained from L radio frequency modulators each using a different carrier frequency in the receiving step.

32. (Original) The reception method according to claim 30, wherein the received signals a_1, \dots, a_L are obtained from I-channels and Q-channels of each of $L/2$ radio frequency modulators each using a different carrier frequency not to be overlapped with one another in the receiving step.

33. (Original) The reception method according to claim 32, wherein $L = 2$ is established.

34. (Currently Amended) The reception method according to claim 28, wherein the delay times

Application No. 10/551,244

Docket No.: 215384-101174

Amendment dated

Reply to Office Action of September 16, 2008

t₁, ..., t_N are shorter than the clock period of the signals r₁, ..., r_N. [wherein the time t₁, ..., t_N is proportional to u₁, ..., u_N that is determined by the following equation by a prestored integer value a and a predetermined nonlinear transformation f(·) over a finite field:]

$$\{u_1 = a;\}$$

$$\{u_{j+1} = f(u_j) \quad (1 \leq j < N).\}$$

35. (Currently Amended) The reception method according to claim [34] 28, wherein the prestored value a is updated to a = f(u_N) every time when predetermined time passes, and thereby the delay times t₁, ..., t_N is updated.

36. (Currently Amended) The reception method according to claim [34] 28, wherein the predetermined nonlinear transformation f(·) over a finite field corresponds to any one of the following (a) to (e):

- (a) transformation using a Chebyshev polynomial of second or more degree,
- (b) transformation using Bernoulli mapping,
- (c) transformation $f(x) = 2x^2 - px + q \pmod{2^w}$ defined using integers p, q ($p \pmod{4} = 1$, $0 \leq q \leq 2^{w-1}$),
- (d) transformation using a remainder obtained by dividing any one of transformation results of (a) to (c) by a predetermined integer, and
- (e) transformation that is the same form as any one of the above (a) to (d) by a linear coordinate transformation.

37. (Currently Amended) A computer-readable storage device, having stored thereon instructions for execution by program causing a computer, {including FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit)} to carry out the functions recited in claim 1. function as the respective sections described in any one of claims 1 to 9.

38. (Currently Amended) A computer-readable storage device, having stored thereon instructions for execution by program causing a computer, {including FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific

Application No. 10/551,244
Amendment dated
Reply to Office Action of September 16, 2008

Docket No.: 215384-101174

Integrated Circuit) } to carry out the functions recited in claim 10. function as the respective
sections described in any one of claims 10 to 18.