

MOSFET - N-Channel Shielded Gate POWERTRENCH®

80 V, 84 A, 6.7 m Ω

FDMS007N08LC

Description

This N-Channel MV MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 6.7 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 21 \text{ A}$
- Max $r_{DS(on)} = 9.9 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 17 \text{ A}$
- 50% Lower Q_{rr} than Other MOSFET Suppliers
- Lowers Switching Noise/EMI
- MSL1 Robust Package Design
- 100% UIL Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Primary DC-DC MOSFET
- Synchronous Rectifier in DC-DC and AC-DC
- Motor Drive
- Solar

V _{DS}	r _{DS(on)} MAX	I _{D MAX}
80 V	6.7 m Ω @ 10 V	84 A

N-Channel

PQFN8 5×6, 1.27P (Power 56) CASE 483AE

MARKING DIAGRAM

\$Y = onsemi Logo &Z = Assembly Plant Code &3 = Numeric Date Code &K = Lot Code

FDMS007N08LC = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMS007N08LC	PQFN-8 (Pb-Free)	000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\textbf{MOSFET MAXIMUM RATINGS} \ (T_A = 25^{\circ}C, \ Unless \ otherwise \ specified)$

Symbol		Para	meter	Ratings	Unit
V_{DS}	Drain to Source Voltage			80	V
V _{GS}	Gate to Source Voltag	je		±20	V
I _D	Drain Current -	Continuous	T _C = 25°C (Note 5)	84	Α
	_	Continuous	T _C = 100°C (Note 5)	53	
	_	Continuous	T _A = 25°C (Note 1a)	14	
	_	Pulsed (Note 4)		345	
E _{AS}	Single Pulse Avalanch	ne Energy (Note 3)	181.5	mJ
P_{D}	P_D Power Dissipation $T_C = 25^{\circ}C$		T _C = 25°C	92.6	W
	Power Dissipation		T _A = 25°C (Note 1a)	2.5	
T _J , T _{STG}	Operating and Storage	e Junction Temper	ature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.35	°C/W
$R_{ hetaJA}$	R _{0JA} Thermal Resistance, Junction to Ambient (Note 1a)		

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS	•		•		•
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	80	-	_	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	32	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	μΑ
N CHARA	CTERISTICS	•				
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 120 \mu A$	1.0	1.4	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 120 μ A, referenced to 25°C	-	-5.6	-	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 21 A	-	4.9	6.7	mΩ
		V _{GS} = 4.5 V, I _D = 17 A	-	6.7	9.9	
		V _{GS} = 10 V, I _D = 21 A, T _J = 125°C	-	8.5	11.6	
9FS	Forward Transconductance	V _{DD} = 5 V, I _D = 21 A	-	84	_	S
YNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz	-	2227	3100	pF
C _{oss}	Output Capacitance	1	-	520	760	pF
C _{rss}	Reverse Transfer Capacitance	1	-	27	40	pF
R _G	Gate Resistance		0.1	0.4	0.8	Ω

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-on Delay Time	$V_{DD} = 40 \text{ V}, I_D = 21 \text{ A}, V_{GS} = 10 \text{ V},$	_	10	21	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	_	3	10	
t _{d(off)}	Turn-off Delay Time		_	38	61	
t _f	Fall Time		_	8	16	
Q_g	Total Gate Charge	$V_{GS} = 0V \text{ to } 10 \text{ V}, V_{DD} = 40 \text{ V}, I_D = 21 \text{ A}$	_	33	46	nC
Q_g	Total Gate Charge	$V_{GS} = 0V \text{ to } 4.5 \text{ V}, V_{DD} = 40 \text{ V}, I_D = 21 \text{ A}$	_	16	22	nC
Q_{gs}	Gate to Source Charge	V _{DD} = 40 V, I _D = 21 A	-	5	_	nC
Q_{gd}	Gate to Drain "Miller" Charge	V _{DD} = 40 V, I _D = 21 A	_	4	_	nC
Q _{oss}	Output Charge	V _{DD} = 40 V, V _{GS} = 0 V	_	30	_	nC
Q _{sync}	Total Gate Charge Sync	V _{DS} = 0 V, I _D = 21 A	-	35	_	nC

DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.1 A (Note 2)	-	0.7	1.2	V
		V _{GS} = 0 V, I _S = 21 A (Note 2)	-	8.0	1.3	V
t _{rr}	Reverse Recovery Time	I_F = 10 A, di/dt = 300 A/ μ s	-	18	32	ns
Q _{rr}	Reverse Recovery Charge		-	24	28	nC
t _{rr}	Reverse Recovery Time	I_F = 10 A, di/dt = 1000 A/ μ s	-	13	23	ns
Q _{rr}	Reverse Recovery Charge		-	58	92	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

a) 50°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 181 mJ is based on starting T_J = 25°C; L = 3 mH, I_{AS} = 11 A, V_{DD} = 80 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 35 A. 4. Pulsed I_D please refer to Fig. 11 SOA graph for more details.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Figure 1. On Region Characteristics

Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

Figure 3. Normalized On Resistance vs. Junction Temperature

Figure 4. On-Resistance vs. Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs. Drain to Source Voltage

Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

Figure 13. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH are registered trademark of Semiconductor Components Industries, LLC dba" **onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON13655G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 5X6, 1.27P		PAGE 1 OF 1	

MANUAL, SOLDERRM/D.

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales