Chemistry 304B, Spring 1999

Lecture Notes 12

Review sessions:

Saturday: 3 pm Rm 124 Sunday: 8 pm Rm 324

Exam: 7:30 pm-9:30 pm "Open book"

Anything that is not alive.

From last time:

Resonance effects:

Inductive effects:

Ortho and para position activated by resonance donation from -OMe

Ortho position deactivated by (1) inductive withdrawal and

(2) steric hindrance in the approach of the electrophile

What about rate effects?

-OMe gives strong acceleration.

TS energy for para/ortho is lowered by resonance interaction of cation with -OMe

Inductive and resonance effects oppose each other in the case of a -OMe substituent-how to know which dominates?

Do the experiment and memorize the result Strong rate acceleration, strong o/p director resonance dominates for -OMe

Methyl (toluene):

Note: Me has no inductive effect. Ortho is still <u>disfavored</u> relative to para. Must be a <u>steric effect</u>.

"Extra" resonance structures for para and ortho substitution (hyperconjugation).

Accelerate the reaction moderately

Trimethylammonium Ion

⁺NMe₃ is a strong meta director. More precisely, it is a strong inhibitor of substitution o/p Overall <u>reduction</u> in rate of substitution.

Also:see Table 14.1

+NMe3, -NO2, -CN, SO2OH, acyl, -CF3 reduce the rate and prefer META addition Inductive withdrawing (all)
Resonance withdrawing (some of them)

-NH₂, -NMe₂, -OH, -alkyl increase the rate and prefer ORTHO/PARA addition.

Halides: Dominant inductive effect reduce the rate of addition

BUT: the halide atoms (F > Cl > Br > I) show (weak) resonance donation. Addition at all positions is slowed by the general inductive effect, but addition at ortho/para is selectively increased (partially compensated) by resonance donation.

Reverse of the effect with -OMe.

The halides slow the rate of addition of electrophiles BUT show ortho/para selectivity.

Acyl groups:

OMe
$$CO_2Me$$
 CO_2Me CO_2Me

Why both META and ORTHO?

Multiple Substituents: Balancing effects.

Easy ones:

Conflicting:

Read pp 665-670 for more examples and control strategies.

What about the reverse reactivity? Nucleophilic Aromatic Substitution

Need to stabilize the anionic intermediate (and TS leading to it)

Nitro group is strongly activating:

$$\begin{array}{c}
CI \\
+ MeO
\end{array}$$

$$\begin{array}{c}
MeOH \\
\hline
50 °C
\end{array}$$

$$\begin{array}{c}
CI \\
OMe \\
\hline
NO_2
\end{array}$$

$$\begin{array}{c}
NO_2
\end{array}$$

$$\begin{array}{c|c} CI & & \\ \hline O_2N & & \\ \end{array} \begin{array}{c} O_2N & \\$$

$$O_2N$$
 O_2N O_2N

Other electron withdrawing groups can also activate aryl halides toward nuclophilic addition, but often the group itself reacts with the nucleophile. Nitro is the most common successful one.

Summary: S_NAr is possible if one (or more) strongly electron withdrawing groups is present and oriented ortho or para to a good leaving group (halide).

"Site specific substitution--direct replacement of a leaving group.

Odd case:

$$CI \longrightarrow + H_2N^{\Theta} \longrightarrow \left[\begin{array}{c} \\ \\ \end{array} \right] + \left[\begin{array}{c} \\ \\ \end{array} \right]$$