EE1005 Digital Logic Design

Wednesday, March 16, 2022

Course Instructor		Total Marks: 40					
Dr. Adil Zulfiqar, Engr. Umer Faro	ooq and						
Engr. Muhammad Sajid Iqbal							
		Signature of Invigilator					
Roll No	Section	Cionotturo					
ROII NO	Section	Signature					

Serial No:

1st Mid Term Exam

Total Time: 1 Hour

DO NOT OPEN THE QUESTION BOOK OR START UNTIL INSTRUCTED. Instructions:

- 1. Verify at the start of the exam that you have a total of four (4) questions printed on six (6) pages including this title page.
- 2. Attempt all questions on the question-book and in the given order.
- 3. The exam is closed books, closed notes. Please see that the area in your threshold is free of any material classified as 'useful in the paper' or else there may a charge of cheating.
- 4. The use of Scientific Calculator is not allowed.
- 5. Read the questions carefully for clarity of context and understanding of meaning and make assumptions wherever required, for neither the invigilator will address your queries, nor the teacher/examiner will come to the examination hall for any assistance.
- 6. Fit in all your answers in the provided space. You may use extra space on the last page if required. If you do so, clearly mark question/part number on that page to avoid confusion.
- 7. Use only your own stationery and calculator. If you do not have your own calculator, use manual calculations.
- 8. Use only permanent ink-pens. Only the questions attempted with permanent ink-pens will be considered. Any part of paper done in lead pencil cannot be claimed for checking/rechecking.

	Q-1	Q-2	Q-3	Q-4	Total
Total Marks	5	5	20	10	40
Marks Obtained					

Vetted By:			V	etter Sigi	nature: _	
University Ans	swer Sheet Re	equired:	No X] Y	es 🗌	

Department of Computer Science

Chiniot-Faisalabad Campus

Question Number 1

(2 + 2 + 1 = 5 Marks)

Given the two numbers

$$A = (11101110)_2$$
 $B = (10111000)_2$

Find A + B if:

- i. Both the numbers are signed and represented in 2's complement form.
- ii. Both the numbers are unsigned and there is no limitation on number of bits.
- iii. In both cases verify that your answers are correct by carrying the same calculations in decimal.

Numbers are Signed									Numbers are Unsigned												
A B A+B	B 1 0 1 1 1 0 0 0											B 1 0 1 1 1 0 0 0) —) —	
		V	erifi	icat	ion								Ve	rifi	icat	ion	l				
A = $(11101110)_2$ B = $(10111000)_2$ Both in A and B the MSB is 1, so both the numbers are negative. 2's complement of A is 00010010 2's complement of B is 01001000 A = $16 + 2 = (18)_{10}$ B = $64 + 8 = (72)_{10}$ Thus A = $(-18)_{10}$ and B = $(-72)_{10}$								A = (11101 B = (101114 Converting A = 128 + 6 B = 128 + 3 A + B = 236	$(000)_2$ to de $(54 + 3)_2$	ecir 32 - 16 -	+ 8 + 8	+ 4 = (184		(2:	38);	10				
A + B = (-18) + (-72) = $(-90)_{10}$ Now MSB in A+B is also 1, so 2's complement of A + B is 01011010 A + B = 64 + 16 + 8 + 2 = 90 Thus A + B = $(-90)_{10}$ Hence Proved.								$A + B = (110100110)_2$ $A + B = 256 + 128 + 32 + 4 + 2 = (422)_{10}$ Hence Proved.													

Department of Computer Science

Chiniot-Faisalabad Campus

Question Number 2

(1.5 + 1 + 2.5 = 5 Marks)

i. Write the gray codes for the following numbers.

a) $(55)_{10}$

b) (00101101)₂

	Par	t (a)		Part (b)						
By usir	no the reneate	d division me	thod		Binary bit	Gray Bit]			
•	$= (110111)_2$	a arvision me	unou		0	0	-			
, ,			-		0	0 + 0 0				
	Binary bit	Gray Bit			1	1 + 0 1				
	1	1			0	0 + 1 1				
	1	1 + 1 = 0			1	1 + 0 1				
	0	0 + 1 1			1	1 + 1 0				
	1	1 + 0 1			0	0+1 1				
	1	1 + 1 = 0			1	1 + 0 1				
	1	1 + 1 = 0					_			
			_	Thus, t	the gray cod	e of (001011	$101)_2$ is			
Thus, th	he gray code	of (55) ₁₀ is 10	1100	001110	_		•			

ii. Formulate a weighted code system for the given decimal digits by using 6, 4, 2, -3 weights.

Decimal Number	BCD Code	6, 4, 2, -3 Code
0	0000	0000
1	0001	0101
2	0010	0010
3	0011	1001 OR 0111
4	0100	0100
5	0101	1011
6	0110	1000 OR 0110
7	0111	1101
8	1000	1010
9	1001	1111

1st Mid Term Spring 2022 Page **3** of **6**

Department of Computer Science

Chiniot-Faisalabad Campus

Question Number 3

$$(3+3+6+6+2=20 \text{ Marks})$$

Consider the following Boolean function given as sum of minterms.

$$F(w, x, y, z) = \Sigma(2, 3, 12, 13, 14, 15)$$

- i. Write the Boolean expression in the form of inputs w, x, y, and z.
- ii. By considering the fact that there are no limitations to inputs of a gate, identify the total number of gates and inputs to each gate required to implement the function F.
- iii. Use Boolean algebra to simplify the function.
- iv. Construct the truth table and logic diagram of the simplified function.
- v. By considering the fact that there are no limitations to inputs of a gate, identify the total number of gates and inputs to each gate required to implement the simplified function F.
 - i. F = w'x'yz' + w'x'yz + wxy'z' + wxyz' + wxyz' + wxyz
 - ii. We need 6 AND gates (each gate having 4 inputs), 1 OR gate with 6 inputs and 4 NOT gates to implement this function.

iii.
$$F = w'x'yz' + w'x'yz + wxy'z' + wxy'z + wxyz' + wxyz$$

$$F = w'x'y(z' + z) + wxy'(z' + z) + wxy(z' + z)$$

$$F = w'x'yz' + xyyz' + xyyz' + xyyz'$$

$$F = w'x'y + wxy' + wxy$$

$$F = w'x'y + wx(y + y')$$

$$F = w'x'y + wx$$

iv. Truth table of simplified function is

								$\overline{}$
w	X	y	Z	w'	x'	w'x'y	WX	F
0	0	0	0	1	1	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	0	1	1	1	0	1
0	0	1	1	1	7	1	0	1
0	1	0	0	1	0	0	0	0
0	1	0	1	1	0	0	0	0
0	1	1	0	1	0	0	0	0
0	1	1	1	1	0	0	0	0
1	0	0	0	0	1	0	0	0
1	0	0	1	0	1	0	0	0
1	0	1	0	0	1	0	0	0
1	0	1	1	0	1	0	0	0
1	1	0	0	0	0	0	1	1
1	1	0	1	0	0	0	1	1
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	0	1	1

Logic Diagram

v. We need 2 AND gates with 3 and 2 inputs respectively, 1 OR gate with 2 inputs and 2 NOT gates to implement the simplified function.

Department of Computer Science

Chiniot-Faisalabad Campus

Question Number 4

(4 + 6 = 10 Marks)

i. Simplify the following Boolean Function by using K – Map.

$$F(w, x, y, z) = x'z + w'xy' + w(x'y + xy')$$

$$F(w, x, y, z) = x'z + w'xy' + w(x'y + xy')$$

$$F(w, x, y, z) = x'z + w'xy' + wx'y + wxy'$$

After completing the minterms we will get

$$F(w,x,y,z) = \Sigma(1,3,4,5,9,10,11,12,13)$$

Department of Computer Science

Chiniot-Faisalabad Campus

ii. Use the k-map to obtain all the prime implicants and essentials in the following function.

$$F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$$

From the above solutions we can notice that x'z' and xz are essential prime implicants. All other terms are prime implicants.