

ING. ROBERTO ISAAC SUASTE MARTINEZ

CONTENIDO

• CONFIGURACIÓN DEL ADC DEL PIC16F1827

Subrutina de Inicialización

Diagrama de Bloques del ADC

Note: When ADON = 0, all multiplexer inputs are disconnected.

CONFIGURACIÓN DEL ADC

Para configurar y poder usar el ADC, es necesario considerar los siguientes requerimientos:

- Configuración de Puertos
- Selección del Canal
- Selección del Voltaje de Referencia del ADC
- Selección de la Fuente de Reloj para la Conversión
- Control de Interrupción
- Selección del Formato del Resultado

Configuración de Puertos

Habilitar los Pines de los Puertos A y B como Analógicos

REGISTROS ASOCIADOS

Puerto A: ANSELA y TRISA

Puerto B: ANSELB y TRISB

Configuración del Registro ANSELA

REGISTER 12-7: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
_	_	_	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 ANSA<4:0>: Analog Select between Analog or Digital Function on pins RA<4:0>, respectively

0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

0	0	0	1	1	1	1	1

Configuración del Registro ANSELB

REGISTER 12-12: ANSELB: PORTB ANALOG SELECT REGISTER

R/W-1/1	U-0						
ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	_
bit 7	•	•	•	•			bit 0

bit 7-1 ANSB<7:1>: Analog Select between Analog or Digital Function on Pins RB<7:1>, respectively

0 = Digital I/O. Pin is assigned to port or digital special function.

 $1 = \text{Analog input. Pin is assigned as analog input}^{(1)}$. Digital input buffer disabled.

bit 0 Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

1	1	1	1	1	1	1	0
•	•	•	•	•	•	•	

Configuración del Registro TRISA

REGISTER 12-4: TRISA: PORTA TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

bit 7-6	TRISA<7:6>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 5	TRISA5: RA5 Port Tri-State Control bit This bit is always '1' as RA5 is an input only
bit 4-0	TRISA<4:0>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

	0	0	0	1	1	1	1	1
--	---	---	---	---	---	---	---	---

Configuración del Registro TRISB

REGISTER 12-9: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

1	1	1	1	1	1	1	0

Selección del Canal

Existen 14 selecciones de canal disponibles:

- Pines Analógicos AN<11:0>
- Salida DAC (Convertidor Digital Analógico)
- Salida FVR (Voltaje de Referencia Fijo)

Los bits CHS del Registro ADCONO determinan que canal esta conectado al circuito de muestreo:

**Cuando se cambian los canales, un retardo es requerido antes de la siguiente conversión.

Configuración del Registro ADCON0

REGISTER 15-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

0 0 0 0 0 1

Configuración del Registro ADCONO

```
bit 7
              Unimplemented: Read as '0'
              CHS<4:0>: Analog Channel Select bits
bit 6-2
              00000 = AN0
              00001 = AN1
              00010 = AN2
              00011 = AN3
              00100 = AN4
              00101 = AN5
              00110 = AN6
              00111 = AN7
              01000 = AN8
              01001 = AN9
              01010 = AN10
              01011 = AN11
              01100 = Reserved. No channel connected.
              11101 = Reserved. No channel connected.
              11110 = DAC output(1)
              11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(2)
```

		0	0	0	0	0	0		
--	--	---	---	---	---	---	---	--	--

Configuración del Registro ADCONO

bit 1 GO/DONE: A/D Conversion Status bit

1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed.

0 = A/D conversion completed/not in progress

bit 0 ADON: ADC Enable bit

1 = ADC is enabled

0 = ADC is disabled and consumes no operating current

0 0 0 0 0 1

Selección del Voltaje de Referencia

El Voltaje de Referencia del ADC puede ser generado internamente por software o externamente suministrado.

En esta ocasión se trabajará con el voltaje externamente suministrado por el programador.

 Para manejar generar internamente un voltaje, vea la seccion 14.0 "FRV (Voltaje de Referencia Fijo)

- Los Bits ADPREF del registro ADCON1 proporcionan el control del Voltaje de Referencia Positivo. El cual puede ser:
- VREF + Pin
- VDD
- FVR 2.028V
- FVR 4.096V
- Los Bits ADNREF del registro ADCON1 proporcionan el control del Voltaje de Referencia Negativo. El cual puede ser:
- VREF + Pin
- VSS

Configuración del Registro ADCON1 Voltaje de Referencia

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>
bit 7							bit 0

		O	U	U	U

Configuración del Registro ADCON1 Voltaje de Referencia

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
ADFM	ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>			
bit 7	•			•			bit 0		
	bit 3	Unimplem	ented: Read as '	0'					
	bit 2	bit 2 ADNREF: A/D Negative Voltage Reference Configuration bit 0 = VREF- is connected to Vss 1 = VREF- is connected to external VREF- pin ⁽¹⁾							
	bit 1-0	•							

		0	0	0	0	

Selección de la Fuente de Reloj para la Conversión

La Fuente de Reloj de Conversión es ajustable por software a través de los bits ADCS del registro ADCON1. Existen 7 posibles opciones de Reloj.

- FOSC/2
- FOSC/4
- FOSC/8
- FOSC/16
- FOSC/32
- FOSC/64
- FRC (Oscilador Interno Dedicado)

- El tiempo para completar una conversión de bits se define como TAD.
- Una conversión de 10 bits requiere 11.5 periodos TAD.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)			Device Frequ	uency (Fosc)						
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz				
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs				
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs				
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾				
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾				
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾				
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾				
Frc	x11	1.0-6.0 μs ^(1,4)									

- Las celdas sombreadas están fuera del rango recomendado.
- La fuente FRC tiene un tiempo TAD típico de 1.6 s por VDD.
- Para tiempos de conversiones mas rápidas se recomienda la selección de otra fuente de reloj.

Configuración del Registro ADCON1 Fuente de Reloj del ADC

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>
bit 7							bit 0

bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits

000 = Fosc/2

001 = Fosc/8

010 = Fosc/32

011 = FRC (clock supplied from a dedicated RC oscillator)

100 = Fosc/4

101 = Fosc/16

110 = Fosc/64

111 = FRC (clock supplied from a dedicated RC oscillator)

1 1	1 0	0	0	0
-----	-----	---	---	---

Selección del Formato del Resultado

- El resultado de la conversión analógica a digital de 10 bits, puede ser suministrada en 2 formatos:
- Justificación a la Izquierda
- Justificación a la Derecha

▶ El bit ADFM del registro ADCON1 controla el formato de salida

FIGURE 15-3: 10-BIT A/D CONVERSION RESULT FORMAT

Configuración del Registro ADCON1 Selección del Formato de Resultado

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

- 1 = Right justified. Six Most Significant bits of ADRESH are set to '0' when the conversion result is loaded.
- 0 = Left justified. Six Least Significant bits of ADRESL are set to '0' when the conversion result is loaded.

0 1 1 1 0 0 0

Configuración del Registro ADCON1 Valor Final

REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	F<1:0>
bit 7							bit 0

0 1 1 1 0 0 0

GRACIAS POR SU ATENCION