School of Mathematics and Statistics

Te Kura Mātai Tatauranga

STAT 292 Assignment 5: Due Wednesday, 24 June 2020 at 12:00 PM

Note: Solutions must be either typed or written neatly, and questions must be answered in order.

1. Table 1 presents a subset of data collected by Väisänen and Järvinen (1977) on bird species in the Krunnit Islands archipelago of Finland. In particular, they reported on the bird species found on each of the islands in 1949 and how many of those bird species were extinct by 1970. It is of interest to understand whether the area of the island (in km²) is associated with species' survival. The data corresponding to Table 1 are available in the Excel file Extinction.xlsx.

		Exti	nct?
Island	Area (X)	Yes	No
Ulkokrunni	185.80	5	70
Maakrunni	105.80	3	64
Ristikari	30.70	10	56
Isonkivenletto	8.50	6	45
Hietakraasukka	4.80	3	25
Kraasukka	4.50	4	16
Länsiletto	4.30	8	35

Table 1: Extinction of bird species from 1949 to 1970 on seven islands in the Krunnit Islands archipelago, Finland.

Fit the logistic regression model

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

where X denotes island area and p(X) denotes the probability of extinction.

Figure 1 shows relevant SAS output for the logistic regression model.

- (a) Carry out an appropriate goodness-of-fit test to determine whether the model provides a good fit to the data. State the hypotheses, and give the test statistic and the p-value of the test. What do you conclude at the $\alpha=0.05$ significance level?
- (b) Give estimates of β_0 and β_1 (up to 5dp).
- (c) Interpret the association between island area and extinction using the odds ratio. Demonstrate how the odds ratio is calculated from Figure 1. Additionally, provide a 95% confidence interval for the odds ratio.

liho re d	250	Null H Chi-S mum I Stande 0.0	6.181 5.586 5.280 Likeli dard Fror 2155 0290	e DF 3 1 8 1 4 1 hood Chi-5 6	: BETA= Pr > C 0. 0.	242.46 250.17 238.46 =0 hiSq 0129 0181 0216	3 9 13				
estinelihoore d	250 244 ng Global od Ratio is of Maxin Estimate -1.7022 -0.00667	Null H Chi-S mum I Stand 0.0	6.181 5.586 5.280 Likeli dard Error 2155 0290	e DF 3 1 8 1 4 1 hood Chi-S	BETA= Pr > C 0. 0. 0. Estima Wald Square 62.4153 5.2804	242.46 250.17 238.46 =0 hiSq 0129 0181 0216 ates	ChiSc				
estinelihoore d	250 244 ng Global od Ratio is of Maxin Estimate -1.7022 -0.00667	Null H Chi-S mum I Stand 0.0	6.181 5.586 5.280 Likeli dard Error 2155 0290	e DF 3 1 8 1 4 1 hood Chi-\$: BETA= Pr > C 0. 0. 0. Estima Wald Square 52.4153	242.46 250.17 238.46 =0 hiSq 0129 0181 0216 ates	ChiSc				
estinelihoore d	250 244 ng Global od Ratio is of Maxin Estimate -1.7022	Null H Chi-S mum I Stand E	6.181 5.586 5.280 Likeli dard Error 2155	e DF 3 1 8 1 4 1 hood	: BETA= Pr > C 0. 0. 0. Estima Wald Square 52.4153	242.46 250.17 238.46 =0 hiSq 0129 0181 0216 ates	ChiSc				
estir liho re d alys	250 244 ng Global od Ratio is of Maxii	Null H Chi-S	6.181 5.586 5.280 Likeli dard	e DF 3 1 8 1 4 1 hood	BETA= Pr > C 0. 0. 0. Estima Wald Square	242.46 250.17 238.46 =0 thi Sq 0129 0181 0216 ates	Chi So				
estir liho re d	250 244 ng Global od Ratio	.502 .644 Null H Chi-S	quar 6.181 5.586 5.280 Likeli	e DF 3 1 8 1 4 1	: BETA= Pr > C 0. 0. 0.	242.46 250.17 238.46 =0 hiSq 0129 0181 0216	i3 '9				
estir liho re d	250 244 ng Global od Ratio	.502 .644 Null H Chi-S	6.181 5.586 5.280	e DF 3 1 8 1 4 1	: BETA= Pr > C 0. 0.	242.46 250.17 238.46 =0 hiSq 0129 0181 0216	i3 '9				
estir liho re	250 244 ng Global	.502 .644 Null H Chi-S	quar 6.181 5.586	e DF 3 1 8 1	: BETA= Pr > C 0.	242.46 250.17 238.46 =0 :hiSq .0129 .0181	i3 '9				
estir liho	250 244 ng Global	.502 .644 Null H Chi-S	quar 6.181	e DF 3 1	: BETA= Pr > C 0.	242.46 250.17 238.46 =0 hiSq .0129	i3 '9				
estir	250 244 ng Global	.502 .644 Null H	quar	e DF	: BETA= Pr > C	242.46 250.17 238.46 =0 hiSq	i3 '9				
estir	250 244	.502 .644 Null H			: BETA:	242.46 250.17 238.46	i3 '9				
	250 244	.502 .644	lvpot	hesis:		242.46 250.17 238.46	i3 '9				
L	250	.502				242.46 250.17	i3 '9				
	250	.502				242.46 250.17	i3 '9				
						242.46	3				
AIC 246											
n	Intercept C	Only	Inter	cept a	Criterion Intercept Only Intercept and Covariates						
	Mode	el Fit 9	Statis	tics							
Number of unique profiles: 7											
Pearson 3.5477		5		0.709	5	0.616	2				
	3.7326	5									
Criterion Val		DF	Va	lue/DF	F Pr>	ChiS	q				
	ce n	ce 3.7326 n 3.5477 Number o	ce 3.7326 5 n 3.5477 5 Number of uniq	ce 3.7326 5 n 3.5477 5 Number of unique p	Ce	ce 3.7326 5 0.7465 n 3.5477 5 0.7095 Number of unique profiles: 7	ce 3.7326 5 0.7465 0.588 n 3.5477 5 0.7095 0.616				

Figure 1: Summary output for the logistic regression model $\log \left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$.

- (d) Find the predicted probability of extinction for an island with an area of 50 km² (to 4dp).
- (e) Find the fitted count of extinct bird species on the island of <u>Ulkokrunni</u> (to 2dp). Also find the fitted count of non-extinct bird species on <u>Ulkokrunni</u> (to 2dp).
- (f) Test

$$\mathcal{H}_0: \beta_1 = 0$$

$$\mathcal{H}_1: \beta_1 \neq 0$$

using the Wald statistic. Give the test statistic and the p-value of the test. What do you conclude at the $\alpha = 0.05$ significance level?

2. Consider data reported by Gilbert (1981) on the relationship between pre-marital sex (*i.e.*, sexual intercourse before marriage), extra-marital sex (*i.e.*, sexual intercourse with someone other than a spouse whilst married), and whether the person had been divorced for a random sample of heterosexual men and women who had been married at least once. These data are presented in Table 2 and are available in the Excel file Divorce.xlsx.

Gender	Pre-marital	Extra-marital	Divor	$\overline{\operatorname{ced} ? (Z)}$
(W)	Sex(X)	Sex(Y)	No	Yes
	Yes	Yes	4	17
Woman	165	No	25	54
vvoillali	No	Yes	4	36
	NO	No	322	214
	Voc	Yes	11	28
Man	Yes	No	42	60
101411	No	Yes	4	17
		No	130	68

Table 2: Data on reported pre-marital sex, extra-marital sex, and divorce for a random sample of heterosexual men and women.

First, use the backward model selection method to find the simplest model that provides a good fit to the data. Start from the following model, which we will denote by M_2 ,

$$\log\left(\frac{p_{ijk}}{1 - p_{ijk}}\right) = \beta_0 + \beta_i^W + \beta_j^X + \beta_k^Y + \beta_{ij}^{WX} + \beta_{ik}^{WY} + \beta_{jk}^{XY} + \beta_{ijk}^{WXY},$$

where p_{ijk} is the probability of divorce when the gender (W) is at level i, pre-marital sex status (X) is at level j, and extra-marital sex status (Y) is at level k.

Figure 2 shows relevant summary output from SAS.

- (a) Is model M_2 a saturated model? Why or why not?
- (b) What information does **Step 1** provide in the SAS output? Write down the test hypotheses. What do you conclude?

Summary of Backward Elimination									
	Effect Number Wald								
Step	Removed	DF	In	Chi-Square	Pr > ChiSq				
1	GENDER*PREMAR*EXTRAM	1	6	0.1472	0.7012				
2	GENDER*PREMARITAL_SE	1	5	0.1434	0.7050				
3	GENDER*EXTRAMARITAL_	1	4	0.4027	0.5257				

Figure 2: Summary output for the backward selection method applied to the logit model $\log\left(\frac{p_{ijk}}{1-p_{ijk}}\right) = \beta_0 + \beta_i^W + \beta_j^X + \beta_k^Y + \beta_{ij}^{WX} + \beta_{ik}^{WY} + \beta_{jk}^{XY} + \beta_{ijk}^{WXY}.$

(c) What is the final model?

Now consider the logit model, which we will denote by M_1 ,

$$\log\left(\frac{p_{ijk}}{1 - p_{ijk}}\right) = \beta_0 + \beta_i^W + \beta_j^X + \beta_k^Y + \beta_{jk}^{XY}.$$

which uses a reference level parametrisation for all factors.

Figure 3 shows relevant summary output from SAS.

- (d) Carry out an appropriate goodness-of-fit test to determine whether model M_1 provides a good fit to the data. State the hypotheses, and give the test statistic and the p-value of the test. What do you conclude at the $\alpha = 0.05$ significance level?
- (e) Compare the odds of divorce for men with the odds of divorce for women using an odds ratio, and interpret this odds ratio. Give a 95% confidence interval for the odds ratio.

Deviance and Pearson Goodness-of-Fit Statistics						
Criterion Value DF Value/DF Pr > ChiSq						
Deviance	0.6978	3	0.2326	0.8737		
Pearson	0.7013	3	0.2338	0.8729		

Number of unique profiles: 8

Model Fit Statistics							
Criterion Intercept Only Intercept and Covariate							
AIC	1435.976	1336.718					
SC	1440.919	1361.434					
-2 Log L	1433.976	1326.718					

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiS							
Likelihood Ratio	107.2582	4	<.0001				
Score	101.8209	4	<.0001				
Wald	87.3775	4	<.0001				

Analysis of Maximum Likelihood Estimates								
Standard Wald								
Parameter			DF	Estimate	Error	Chi-Square	Pr > ChiSq	
Intercept			1	1.3049	0.3150	17.1594	<.0001	
GENDER	Man		1	-0.3089	0.1458	4.4870	0.0342	
PREMARITAL_SEX	No		1	0.7004	0.4850	2.0851	0.1487	
EXTRAMARITAL_SEX	No		1	-0.5962	0.3366	3.1375	0.0765	
PREMARITA*EXTRAMARIT	No	No	1	-1.7999	0.5130	12.3119	0.0005	

Odds Ratio Estimates						
95% Wald						
Effect	Point Estimate	Confidence Limits				
GENDER Man vs Woman	0.734	0.552	0.977			

Figure 3: Summary output for the logit model $\log \left(\frac{p_{ijk}}{1-p_{ijk}}\right) = \beta_0 + \beta_i^W + \beta_j^X + \beta_k^Y + \beta_{jk}^{XY}$.