LiDAR alapú mobil robot lokalizáció Daum-Huang-szűrő eljárással

Csuzdi Domonkos ¹ Törő Olivér ²

¹Szerző, VIK MSc. I. év

²Konzulens, KJIT tud. sgmts.

2021. november

Tartalomjegyzék

Bevezetés

Szenzormodell

Daum-Huang-szűrő

Eredmények

Összegzés

Motiváció

Bevezetés •00

- Daum és Huang (2008): újfajta nemlineáris szűrőeljárás: Daum-Huang-szűrő (DHF), majd 2010-ben: Exact Flow Daum-Huang-szűrő (EDH)
- Egy megoldási javaslat a részecskeszűrők problémáira

Motiváció

Bevezetés 000

- Daum és Huang (2008): újfajta nemlineáris szűrőeljárás: Daum-Huang-szűrő (DHF), majd 2010-ben: Exact Flow Daum-Huang-szűrő (EDH)
- Egy megoldási javaslat a részecskeszűrők problémáira
- Mobil robotok lokalizációja: gyakran Adaptive Monte Carlo Localization (AMCL) algoritmussal (részecskeszűrő)
- Egy lokalizációs probléma esetén is jobb-e az EDH?

Motiváció

Bevezetés 000

- Daum és Huang (2008): újfajta nemlineáris szűrőeljárás: Daum-Huang-szűrő (DHF), majd 2010-ben: Exact Flow Daum-Huang-szűrő (EDH)
- Egy megoldási javaslat a részecskeszűrők problémáira
- Mobil robotok lokalizációja: gyakran Adaptive Monte Carlo Localization (AMCL) algoritmussal (részecskeszűrő)
- Egy lokalizációs probléma esetén is jobb-e az EDH?
- Nem vizsgáltak még EDH alapú mobil robot lokalizációt a szakirodalomban
- ► A munkám egy ilyen algoritmus kifejlesztéséről szól

Lokalizáció I.

Egy ismert térképen követni egy objektumot (ismerni a pozíciót és orientációt)

Lokalizáció I.

Bevezetés 000

- Egy ismert térképen követni egy objektumot (ismerni a pozíciót és orientációt)
- ▶ Jelen esetben csak 2D: $\mathbf{x} = [x \ y \ \theta]^{\top}$ → állapotbecslés szenzorfúzióval: pl. LiDAR és kerék enkóder

Bevezetés 000

- Egy ismert térképen követni egy objektumot (ismerni a pozíciót és orientációt)
- ▶ Jelen esetben csak 2D: $\mathbf{x} = \begin{bmatrix} x & y & \theta \end{bmatrix}^{\top}$ → állapotbecslés szenzorfúzióval: pl. LiDAR és kerék enkóder
- Eredendően hibával terhelt mérések: sosem tudjuk pontosan a pózt → valószínűségi eloszlásként kezeljük

S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press, 2005.

Lokalizáció II.

Bevezetés 000

Bayes-féle rekurzív becslés:

predikció:

$$\overline{bel}(\mathbf{x}_t) = \int \underbrace{p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{u}_t)}_{\text{mozgásmodell}} bel(\mathbf{x}_{t-1}) d\mathbf{x}_{t-1}, \qquad (1)$$

korrekció:

$$bel(\mathbf{x}_t) = \eta \underbrace{p(\mathbf{z}_t|\mathbf{x}_t)}_{\text{szenzormodell}} \overline{bel}(\mathbf{x}_t). \tag{2}$$

□ > 4륜 > 4분 > 분분 위

Hagyományos modell

•0

- Pásztázó távolságmérőkhöz
- ► Nem folytonos:
 - \rightarrow részecskeszűrőhöz (AMCL) jó, EDH-hoz nem

Hagyományos modell

- Pásztázó távolságmérőkhöz
- ► Nem folytonos: → részecskeszűrőhöz (AMCL) jó, EDH-hoz nem

Távolság-transzformáció alapú modell

- Dantanarayana és mtsai. 2016-ban
- Eredetileg EKF-hez
- ► Foglaltsági hálón alapuló térkép + pásztázó távolságmérő (pl. LiDAR)
- ► Alapgondolat: távolság-transzformáció (képfeldolgozás)

Távolság-transzformáció alapú mérési modell I.

► Távolság transzformáció: átlagos eltérés mérhető két ponthalmaz között

Távolság-transzformáció alapú mérési modell I.

- Távolság transzformáció: átlagos eltérés mérhető két ponthalmaz között
- Két ponthalmaz: foglalt cellák a térképen és a LiDAR sugarak "végpontjai"

- ► Távolság transzformáció: átlagos eltérés mérhető két ponthalmaz között
- Két ponthalmaz: foglalt cellák a térképen és a LiDAR sugarak "végpontjai"
- ightharpoonup Eltérés számítása (skalár): $\psi(\mathbf{x}, \mathbf{z}, \mathbf{m})$

Távolság-transzformáció alapú mérési modell I.

- Távolság transzformáció: átlagos eltérés mérhető két ponthalmaz között
- Két ponthalmaz: foglalt cellák a térképen és a LiDAR sugarak "végpontjai"
- ightharpoonup Eltérés számítása (skalár): $\psi(\mathbf{x}, \mathbf{z}, \mathbf{m})$
- ldeális eset (minden végpont foglalt cellán): $\psi(\mathbf{x}, \mathbf{z}, \mathbf{m}) = 0$

- ► Távolság transzformáció: átlagos eltérés mérhető két ponthalmaz között
- Két ponthalmaz: foglalt cellák a térképen és a LiDAR sugarak "végpontjai"
- ightharpoonup Eltérés számítása (skalár): $\psi(\mathbf{x}, \mathbf{z}, \mathbf{m})$
- ▶ Ideális eset (minden végpont foglalt cellán): $\psi(\mathbf{x}, \mathbf{z}, \mathbf{m}) = 0$
- \blacktriangleright ψ deriváltjai már számíthatóak: megfelel az Exact Flow Daum–Huang (EDH) szűrőhöz

- ► Távolság transzformáció: átlagos eltérés mérhető két ponthalmaz között
- Két ponthalmaz: foglalt cellák a térképen és a LiDAR sugarak "végpontjai"
- ightharpoonup Eltérés számítása (skalár): $\psi(\mathbf{x}, \mathbf{z}, \mathbf{m})$
- ▶ Ideális eset (minden végpont foglalt cellán): $\psi(\mathbf{x}, \mathbf{z}, \mathbf{m}) = 0$
- $\blacktriangleright \ \psi$ deriváltjai már számíthatóak: megfelel az Exact Flow Daum–Huang (EDH) szűrőhöz
- Az EDH-t módosítani kellett, hogy kezeljen implicit mérési egyenletet (eredetileg z = h(x) alak)

- Korrigálás (priorból poszteriorba)
 - részecskeszűrő: újramintavételezés (egyfajta "ugrás")
 - DHF: "ugrás" helyett részecskefolyam

- Korrigálás (priorból poszteriorba)
 - részecskeszűrő: újramintavételezés (egyfajta "ugrás")
 - DHF: "ugrás" helyett részecskefolyam
- Folytonos átmenet (homotópia) priorból poszteriorba:

$$\log p(\mathbf{x}, \lambda) = \log \underbrace{g(\mathbf{x})}_{\text{prior}} + \lambda \log \underbrace{h(\mathbf{x})}_{\text{szenzormodell}} - \log \underbrace{K(\lambda)}_{\text{norm. konstans}}$$

 $\lambda = 0$: prior, $\lambda = 1$: poszterior

- Korrigálás (priorból poszteriorba)
 - részecskeszűrő: újramintavételezés (egyfajta "ugrás")
 - ▶ DHF: "ugrás" helyett **részecskefolyam**
- Folytonos átmenet (homotópia) priorból poszteriorba:

$$\log p(\mathbf{x}, \lambda) = \log \underbrace{g(\mathbf{x})}_{\text{prior}} + \lambda \log \underbrace{h(\mathbf{x})}_{\text{szenzormodell}} - \log \underbrace{K(\lambda)}_{\text{norm. konstans}}$$

- $\lambda = 0$: prior, $\lambda = 1$: poszterior
- ightharpoonup Részecskék mozgását egy SDE írja le (λ : pszeudoidő):

$$d\mathbf{x}_i = \mathbf{f}(\mathbf{x}_i, \lambda) d\lambda + \boldsymbol{\sigma}(\mathbf{x}_i, \lambda) d\mathbf{W}_{\lambda}, \tag{3}$$

- Korrigálás (priorból poszteriorba)
 - részecskeszűrő: újramintavételezés (egyfajta "ugrás")
 - DHF: "ugrás" helyett részecskefolyam
- Folytonos átmenet (homotópia) priorból poszteriorba:

$$\log p(\mathbf{x}, \lambda) = \log \underbrace{g(\mathbf{x})}_{\text{prior}} + \lambda \log \underbrace{h(\mathbf{x})}_{\text{szenzormodell}} - \log \underbrace{K(\lambda)}_{\text{norm. konstans}}.$$

- $\lambda = 0$: prior, $\lambda = 1$: poszterior
- \triangleright Részecskék mozgását egy SDE írja le (λ : pszeudoidő):

$$d\mathbf{x}_i = \mathbf{f}(\mathbf{x}_i, \lambda) d\lambda + \boldsymbol{\sigma}(\mathbf{x}_i, \lambda) d\mathbf{W}_{\lambda}, \tag{3}$$

- \blacktriangleright Kérdés: mi **f**, (mi σ)?
- Különböző Daum–Huang-szűrő variációk más-más megoldást adnak. <ロ > < 母 > < 量 > < 量 > ● | ● | ● | ● | ● | ● | 9 < 0 × 8/21

Exact Flow Daum-Huang-szűrő (EDH)

Hanyagoljuk el a sztochasztikus részt, így

$$\frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}\lambda} = \mathbf{f}(\mathbf{x}_i, \lambda). \tag{4}$$

Exact Flow Daum-Huang-szűrő (EDH)

Hanyagoljuk el a sztochasztikus részt, így

$$\frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}\lambda} = \mathbf{f}(\mathbf{x}_i, \lambda). \tag{4}$$

Legyen f alakja

$$\mathbf{f}(\mathbf{x}_i, \lambda) = \mathbf{C}(\lambda)\mathbf{x}_i + \mathbf{c}(\lambda). \tag{5}$$

Exact Flow Daum-Huang-szűrő (EDH)

Hanyagoljuk el a sztochasztikus részt, így

$$\frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}\lambda} = \mathbf{f}(\mathbf{x}_i, \lambda). \tag{4}$$

Legyen f alakja

$$\mathbf{f}(\mathbf{x}_i, \lambda) = \mathbf{C}(\lambda)\mathbf{x}_i + \mathbf{c}(\lambda). \tag{5}$$

Együtthatók meghatározása:

$$\mathbf{C}(\lambda) = -\frac{1}{2} \overline{\mathbf{\Sigma}} \nabla \psi_x^{\top} \left(\lambda \nabla \psi_x \overline{\mathbf{\Sigma}} \nabla \psi_x^{\top} + \mathbf{R} \right)^{-1} \nabla \psi_x, \tag{6}$$

$$\mathbf{c}(\lambda) = (\mathbf{I} + 2\lambda \mathbf{C}) \left[(\mathbf{I} + \lambda \mathbf{C}) \, \overline{\Sigma} \nabla \psi_x^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{z}' + \mathbf{C} \overline{\mathbf{x}} \right]. \tag{7}$$

Hanyagoljuk el a sztochasztikus részt, így

$$\frac{\mathrm{d}\mathbf{x}_i}{\mathrm{d}\lambda} = \mathbf{f}(\mathbf{x}_i, \lambda). \tag{4}$$

Legyen f alakja

$$\mathbf{f}(\mathbf{x}_i, \lambda) = \mathbf{C}(\lambda)\mathbf{x}_i + \mathbf{c}(\lambda). \tag{5}$$

Egvütthatók meghatározása:

$$\mathbf{C}(\lambda) = -\frac{1}{2} \overline{\mathbf{\Sigma}} \nabla \psi_x^{\top} \left(\lambda \nabla \psi_x \overline{\mathbf{\Sigma}} \nabla \psi_x^{\top} + \mathbf{R} \right)^{-1} \nabla \psi_x, \tag{6}$$

$$\mathbf{c}(\lambda) = (\mathbf{I} + 2\lambda \mathbf{C}) \left[(\mathbf{I} + \lambda \mathbf{C}) \, \overline{\Sigma} \nabla \psi_x^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{z}' + \mathbf{C} \overline{\mathbf{x}} \right]. \tag{7}$$

Innentől adott a részecskék mozgása: Euler integrálása (4)-nek

- ► ROBOTIS Turtlebot3 Burger
- ► Gazebo szimulátor + Robot Operating System (ROS)

- ROBOTIS Turtlebot3 Burger
- Gazebo szimulátor + Robot Operating System (ROS)
- Környezet: Turtlebot3 House

Eredmények •0000

- ► ROBOTIS Turtlebot3 Burger
- ➤ Gazebo szimulátor + Robot Operating System (ROS)
- ► Környezet: Turtlebot3 House
- ► Kb. 7-8 percnyi barangolás (manuálisan)

- ROBOTIS Turtlebot3 Burger
- Gazebo szimulátor + Robot Operating System (ROS)
- Környezet: Turtlebot3 House
- Kb. 7-8 percnyi barangolás (manuálisan)
- Valós póz és becsült póz összehasonlítása

- ► ROBOTIS Turtlebot3 Burger
- ► Gazebo szimulátor + Robot Operating System (ROS)
- ► Környezet: Turtlebot3 House
- ► Kb. 7-8 percnyi barangolás (manuálisan)
- Valós póz és becsült póz összehasonlítása
- ► Algoritmusok: AMCL, és a készített EDH alapú

Algoritmus	κ	Részecske		an Squared Error	Mean Absolute Error	
	(m)	szám	pozíció	orientáció	pozíció	orientáció
			(m)	(rad)	(m)	(rad)
AMCL	10^{-4}	adaptív	0.0816	0.0708	0.0672	0.0547
		10	0.0439	0.0205	0.0381	0.0188
EDH	10^{-4}	100	0.0437	0.0206	0.0383	0.0190
		500	0.0438	0.0206	0.0382	0.0190

Algoritmus	κ	Részecske		an Squared Error	Mean Absolute Error		
	(m)	szám	pozíció orientáció		pozíció	orientáció	
			(m)	(rad)	(m)	(rad)	
AMCL	10^{-4}	adaptív	0.0816	0.0708	0.0672	0.0547	
EDH	10-4	10	0.0439	0.0205	0.0381	0.0188	
		100	0.0437	0.0206	0.0383	0.0190	
		500	0.0438	0.0206	0.0382	0.0190	

- ▶ Magabiztosan jobb eredmények, mint az AMCL esetén
- Képes valós idejű futásra: 439 s-nyi mérési adatra 40.4 s

Osszegzés

- Magabiztosan jobb eredmények, mint az AMCL esetén
- Képes valós idejű futásra: 439 s-nyi mérési adatra 40.4 s
- Jövőben:
 - ► Robusztusság tesztelése (pl. "elrabolt robot" probléma)
 - Egyéb DHF variációk (pl. sztochasztikus rész)
 - Futásidő csökkentése
 - Futtatás valós mérési adatokon
 - Az eredmények publikálása

Köszönöm a figyelmet!

LiDAR mérések projekciója

Részecske degeneráció

Részletes eredmények

A1. 51	κ	Particle	Root Mea	an Squared Error	Mean Absolute Error		
Algorithm	(m)	num.	position orientation		position	orientation	
			(m) (rad)		(m)	(rad)	
EKF	10^{-6}	-	0.0559	559 0.0212 0.0492 0.		0.0168	
AMCL	10^{-6}	adaptive	0.0529	0.0233 0.0453 0.0		0.0177	
EDH		10	0.0504	0.0228	0.0449	0.0183	
	10-6	100	0.0504	0.0229	0.0447	0.0183	
		500	0.0498	0.0231	0.0441	0.0185	
EKF	10^{-4}	-	0.0497	0.0186	0.0428	0.0159	
AMCL	10^{-4}	adaptive	0.0816	0.0708	0.0672	0.0547	
EDH	10-4	10	0.0439	0.0205	0.0381	0.0188	
		100	0.0437	0.0206	0.0383	0.0190	
		500	0.0438	0.0206	0.0382	0.0190	
EKF	$5 \cdot 10^{-3}$	-	0.0732	0.0297	0.0610	0.0256	
AMCL	$5 \cdot 10^{-3}$	adaptive	0.5261	0.4940	0.3533	0.3841	
EDH	$5 \cdot 10^{-3}$	10	0.0587	0.0401	0.0494	0.0372	
		100	0.0616	0.0403	0.0503	0.0374	
		500	0.0617	0.0402	0.0503	0.0373	

Távolság-transzformáció alapú mérési modell (kieg.)

4.5	3.6	2.8	2.2	2	2.2	2.8	3.6	4.5	5.4
4.1	3.2	2.2				2.2	3.2	4.1	5
4	3	2				2	3	3.6	4.2
4	3	2				2	2.2	2.8	3.6
4	3	2						2.2	3.2
4	3	2						2	3
4.1	3.2	2.2						2.2	3.2
4.5	3.6	2.8	2.2	2	2	2	2.2	2.8	3.6

$$DF(\mathbf{x}, \mathbf{m}) = \min_{\mathbf{v_i} \in V} \|\mathbf{x} - \mathbf{v_j}\|,$$
 (8)

$$\mathbf{x}_{oi} = \begin{bmatrix} x_{oi} \\ y_{oi} \end{bmatrix} = \begin{bmatrix} x + r_i \cos(\varphi_i + \theta) \\ y + r_i \sin(\varphi_i + \theta) \end{bmatrix}, \quad (9)$$

$$\psi(\mathbf{x}, \mathbf{z}, \mathbf{m}) = \frac{1}{n} \sum_{i=1}^{n} DF(\mathbf{x}_{0i}, \mathbf{m}).$$
 (10)