Series and Differential Equations

- 1. Consider the differential equation y' = -5y with initial condition y(0) = 1.
 - (a) Which of these slope fields fits this differential equation? Why?

- (b) Sketch a solution with y(0) = 1 on the correct slope field.
- (c) Let $y(x) = c_0 + c_1 x + c_2 x^2 + \dots = \sum_{k=0}^{\infty} c_k x^k$ be a series solution to this equation. Find c_0 through c_3 .

(d)	Do you see a pattern in the c_k ? If so write down the series as a single sum. If not, find c_4 , and beyond if necessary.
(e)	Do you recognize this answer as the Taylor Series for a function that you know? Identify
. ,	the function, and verify that it is a solution to the differential equation.
(f)	Graph your solution to check that it fits with your answer to (b). Yes?

2.	Let's try this process on a second order differential equation, $y'' = -y$ with initial conditions
	y(0) = 1 and y'(0) = 0.

(a) Start with the same general form of a series solution $y(x) = c_0 + c_1 x + c_2 x^2 + \dots$ and find c_0 through c_4 using whatever method makes sense to you.

(b) Use the pattern you've found to write your answer as a single sum.

(c) You should recognize this series as belonging to a known function. Write down that function and verify that it satisfies y'' = -y.