Estructuras de Datos

Ayudantía 3

Agenda

- Listas Ligadas
- Grafos

Listas Ligadas

Array

```
tipo[] nombre_variable = new tipo[num_elems]

memoria reservada = tamaño(tipo) x num_elems
```

¿Cómo agregamos elementos cuando ya no quedan espacios?

```
if index > array.length:
  tipo[] new_array = new tipo[index+index/2]
  for i; i < array.length; i++:
     new_array[i] = array[i]
  new_array[index] = item
  index += 1
  array = new_array
else:
  array[index] = item
```

Listas Dinámicas

Ventajas

- Fáciles de usar
- Comportamiento encapsulado

Desvetajas

- Gasto de memoria
- Desventajas de uso del array

Listas Ligadas

¿Por qué preferimos una lista ligada a una lista dinámica?

Eficiencia:)

	Lista Ligada	Array	Lista Dinámica
Insert/delete at beginning	Θ(1)	N/A	Θ (<i>n</i>)
Insert/delete at end	O(n) when last element is unknown; O(1) when last element is known	N/A	Θ(1)
Insert/delete in middle	search time + ⊖(1)	N/A	$\Theta(n)$

Grafos

Estructuras de datos que representan relaciones de pares de objetos

No Dirigidos

Dirigidos

G(V,E)

- V, vértices y E aristas (edges)
- El **orden** es |V|
- El tamaño es |E|
- El grado o valencia de un vértice es el número de aristas conectadas a él

Representación

Lista

incidencia: cada arista es representada como un par ordenado de vértices

adyacencia: cada vértice tiene una lista de los que son incidentes a él

Matriz

incidencia: matriz E x V donde [e, v] es uno si la arista con el vértice están conectados

adyacencia: matriz de V x V donde [v1, v2] es uno si existe una arista entre los vértices