XIV - Nombres complexes

Le plan est muni d'un repère orthonormé $(O, \overrightarrow{\imath}, \overrightarrow{\jmath})$.

I - L'ensemble des nombres complexes

I.1 - Définition et Opérations

Définition 1 - Nombre complexe

On admet l'existence d'un ensemble noté $\mathbb C$, appelé ensemble des nombres complexes, muni d'une addition et d'une multiplication, tel que :

- \mathbb{C} contient un nombre noté i tel que $i^2 = -1$.
- pour tout élément $z \in \mathbb{C}$, il existe un unique couple $(a,b) \in \mathbb{R}^2$ tel que z = a + b i. Cette écriture est la forme algébrique de z.
 - \star Le réel a est la partie réelle de z, noté $a = \Re(z)$.
 - * Le réel b est la partie imaginaire de z, noté $b = \mathcal{I}m(z)$.

Deux nombres complexes $z_1 = a + bi$ et $z_2 = \alpha + \beta i$ sont égaux si et seulement si $(a = \alpha \text{ et } b = \beta)$.

Exemple 1 - Quelques nombres complexes

Le réel 12 = 12 + 0 i est un nombre complexe.

Les nombres 3 + 2i ou $\sqrt{3} + \sqrt{2}i$ sont des nombres complexes.

Définition 2 - Affixe, Image

Soit M un point du plan de coordonnées (a,b). L'affixe du point M est le nombre complexe a+b i.

Soit z = x + y i un nombre complexe sous forme algébrique. Le point de coordonnées (x, y) est l'image du nombre complexe z. Soit \overrightarrow{u} un vecteur du plan de coordonnées (x, y). L'affixe du vecteur \overrightarrow{u} est le nombre complexe x + y i.

Exemple 2 - Le plan complexe

Soit $a=1,\,b=\mathrm{i}$ et $c=1+\mathrm{i}$. On note A (resp. $B,\,C$) l'image de a (resp. $b,\,c$). Alors,

Définition 3 - Opérations sur les nombres complexes

Soit $z_1 = a + b$ i, $z_2 = \alpha + \beta$ i deux nombres complexes sous forme algébrique et $\lambda \in \mathbb{R}$.

- Addition. $z_1 + z_2 = (a + \alpha) + (b + \beta) i$.
- Multiplication. $z_1z_2 = (a\alpha b\beta) + (a\beta + b\alpha)i$.
- Inverse. Si $z_1 \neq 0$, alors $\frac{1}{z_1} = \frac{a-bi}{a^2+b^2}$.

Exemple 3 - Opérations

En utilisant les définitions précédentes,

$$(1+2i) + 4(-1+3i) = (1+2i) + (-4+12i)$$

= $(1-4) + (2+12)i$
= $-3+14i$.

$$(1+i)(3-2i) = 3-2i+3i+i(-2i)$$

= $(3+2)+(3-2)i$
= $5+i$.

$$\frac{1+i}{2-3i} = (1+i)\frac{2+3i}{4+9}$$
$$= \frac{2+3i+2i+3i^2}{13}$$
$$= \frac{-1+5i}{13}.$$

Proposition 1 - Interprétation géométrique

Soit \overrightarrow{u} , \overrightarrow{v} deux vecteurs du plan d'affixes respectifs u, v. Pour tous λ , μ réels, le vecteur $\lambda \overrightarrow{u} + \mu \overrightarrow{v}$ a pour affixe $\lambda u + \mu v$.

Addition de vecteurs

Soit $\overrightarrow{u_1}$ un vecteur d'affixe z_1 et $\overrightarrow{u_2}$ un vecteur d'affixe z_2 . Alors, $z_1 + z_2$ a pour image le vecteur $\overrightarrow{v} = \overrightarrow{u_1} + \overrightarrow{u_2}$:

Théorème 1 - Propriétés des opérations

Soit $z_1, z_2, z_3 \in \mathbb{C}$.

- Propriétés de l'addition.
 - * Associativité : $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$.
 - \star Commutativité : $z_1 + z_2 = z_2 + z_1$.
 - \star Élément neutre : $z_1 + 0 = z_1$.
 - * Opposé : $z_1 + (-z_1) = 0$.
- Propriétés de la multiplication.
 - * Associativité : $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$.
 - \star Commutativité : $z_1 \cdot z_2 = z_2 \cdot z_1$.
 - \star Élément neutre : $z_1 \cdot 1 = z_1$.

- * Inverse : Si $z_1 \neq 0$, alors $z_1 \cdot \frac{1}{z_1} = 1$.
- **Distributivité**: $z_1 \cdot (z_2 + z_3) = (z_1 \cdot z_2) + (z_1 \cdot z_3)$.

Exemple 4 - Identité remarquable

En utilisant les propriétés précédentes.

$$(2+3i)^2 = 2^2 + 2 \times 2 \times 3i + (3i)^2$$
$$= 4 + 12i - 9$$
$$= -5 + 12i.$$

Plus généralement, si z_1 , z_2 sont des nombres complexes et n est un entier naturel, on peut montrer la formule du binôme de Newton :

$$(z_1 + z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k}.$$

I.2 - Équations du second degré

Proposition 2 - Trinômes

Soit a, b, c trois réels tels que $a \neq 0$. L'équation $ax^2 + bx + c = 0$ admet toujours des solutions sur \mathbb{C} . Posons $\Delta = b^2 - 4ac$ le discriminant de cette équation.

- Si $\Delta = 0$, l'équation possède une unique solution $x_0 = -\frac{b}{2a}$.
- \bullet Si $\Delta>0,$ l'équation possède deux solutions

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

• Si $\Delta < 0$, l'équation possède deux solutions

$$x_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$
 et $x_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$.

105

Exemple 5 - Résolution d'équation

Soit z une solution de $z^2+3z+4=0$. Le discriminant de ce trinôme vaut $\Delta=3^2-4\times 4=-7$. Ainsi,

$$z \in \left\{ \frac{-3 - i\sqrt{7}}{2}, \frac{-3 + i\sqrt{7}}{2} \right\}.$$

Proposition 3 - Relations coefficients / racines

Soit z_1 , z_2 les solutions de l'équation $ax^2 + bx + c = 0$. Alors,

$$z_1 z_2 = \frac{c}{a}$$
 et $z_1 + z_2 = -\frac{b}{a}$.

I.3 - Conjugaison

Définition 4 - Conjugué

Soit a, b deux réels et z = a + b i $\in \mathbb{C}$. Le nombre complexe $\overline{z} = a - b$ i est le *conjugué* de z.

Exemple 6 - Conjugués

$$\bar{i} = -i, \, \bar{2} = 2, \, \overline{\sqrt{3} + 2i} = \sqrt{3} - 2i.$$

Proposition 4 - Interprétation géométrique

Soit M un point du plan d'affixe z. Le point d'affixe \overline{z} est le symétrique de M par rapport à l'axe des abscisses.

Conjugués

Proposition 5 - Proptiétés du conjugué

Soit z un nombre complexe.

- $\bullet \ \overline{(\overline{z})} = z.$
- $\Re(z) = \frac{z+\overline{z}}{2}$, $\Im(z) = \frac{z-\overline{z}}{2i}$.
- z est réel si et seulement si $z = \overline{z}$.
- z est imaginaire pur si et seulement si $z = -\overline{z}$.
- $z\overline{z} \in \mathbb{R}_+$. De plus, $z\overline{z} = 0$ si et seulement si z = 0.

Proposition 6 - Conjugué et Opérations

Soit z_1 , z_2 deux nombres complexes.

- $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}.$
- $\bullet \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}.$

II - Cercle trigonométrique

II.1 - Cosinus et Sinus

Pour tout x réel, on lit les valeurs de ses sinus et cosinus sur le cercle trigonométrique.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Proposition 7 - Théorème de Thales

Soit ABC un triangle rectangle en A. On note a (resp. b, c) la longueur du segment [BC] (resp. [AC], [AB]) et β l'angle non orienté \widehat{CBA} . Alors,

$$\cos(\beta) = \frac{c}{a} \text{ et } \sin(\beta) = \frac{b}{a}.$$

Illustration graphique

Proposition 8 - Formules d'addition

Pour tous a, b réels,

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b),$$

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a).$$

Pour tout $x \in \mathbb{R}$,								
$\cos(-x)$	=	$\cos(x)$	$\sin(-x)$	=	$-\sin(x)$			
$\cos(\pi-x)$	=	$-\cos(x)$	$\sin(\pi-x)$	=	$\sin(x)$			
$\cos(\pi + x)$	=	$-\cos(x)$	$\sin(\pi+x)$	=	$-\sin(x)$			
$\cos\left(\frac{\pi}{2} + x\right)$	=	$-\sin(x)$	$\sin\left(\frac{\pi}{2} + x\right)$	=	$\cos(x)$			

Exemple 7 - Formules d'addition

Nous pouvons généraliser les expressions précédentes :

$$\cos(a - b) = \cos(a)\cos(-b) - \sin(a)\sin(-b)$$

$$= \cos(a)\cos(b) + \sin(a)\sin(b),$$

$$\sin(a - b) = \sin(a)\cos(-b) + \sin(-b)\cos(a)$$

$$= \sin(a)\cos(b) - \sin(b)\cos(a).$$

Théorème 2 - Théorème de Pythagore

Pour tout $x \in \mathbb{R}$, $\cos^2(x) + \sin^2(x) = 1$.

II.2 - Équations trigonométriques

Définition 5 - Modulo

Pour tous x, y, v réels, la relation $x \equiv y$ [v] se lit x est congru à y modulo v et signifie qu'il existe un entier relatif k tel que x = y + kv.

Proposition 9

Pour tout couple de réels (x, y),

• $\sin(x) = \sin(y)$ si et seulement si

$$x \equiv y \ [2\pi] \text{ ou } x \equiv \pi - y \ [2\pi].$$

• cos(x) = cos(y) si et seulement si

$$x \equiv y \ [2\pi] \text{ ou } x \equiv -y \ [2\pi].$$

• cos(x) = cos(y) et sin(x) = sin(y) si et seulement si

$$x \equiv y \ [2\pi]$$
.

Exemple 8 - Résolution d'équation

Soit x tel que $\cos(x) = \frac{\sqrt{2}}{2}$. Alors,

$$\cos(x) = \cos\left(\frac{\pi}{4}\right)$$
$$x \equiv \frac{\pi}{4} [2\pi] \text{ ou } x \equiv -\frac{\pi}{4} [2\pi].$$

Lemme 1 - Paramétrisation du cercle unité

Pour tous x, y réels tels que $x^2 + y^2 = 1$, il existe un réel θ tel que

$$x = \cos(\theta), y = \sin(\theta).$$

III - Module et Argument

III.1 - Module

Définition 6 - Module

Pour tout nombre complexe z = a+b i écrit sous forme algébrique, le module de z, noté |z|, est le réel

$$|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}.$$

Exemple 9 - Calculs de modules

$$|2| = \sqrt{2 \times 2} = 2,$$

$$|-3| = \sqrt{(-3) \times (-3)} = 3,$$

$$|i| = \sqrt{i \times (-i)} = 1,$$

$$|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2},$$

$$\left|3 - \sqrt{2}i\right| = \sqrt{9 + 2} = \sqrt{11}.$$

Proposition 10 - Interprétation géométrique

Soit M un point du plan d'affixe z. La distance OM du point M à l'origine est égale au module |z|.

Soit A, B deux points du plan d'affixes respectifs a, b. Le vecteur \overrightarrow{AB} a pour affixe (b-a). Ainsi, la longueur AB est égale au module du nombre complexe b-a.

Module

Représentation de l'image d'un nombre complexe ainsi que de son module :

Proposition 11 - Module

Soit z un nombre complexe.

- |z| = 0 si et seulement si z = 0.
- $\bullet |\overline{z}| = |z|.$
- $|\Re(z)| \leq |z|$ et $|\Im(z)| \leq |z|$.
- Si z est non nul, alors $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Proposition 12 - Module et Opérations

Soit z_1 , z_2 deux nombres complexes.

- $\bullet |z_1 z_2| = |z_1| |z_2|.$
- Inégalité triangulaire : $|z_1 + z_2| \leq |z_1| + |z_2|$ avec égalité si et seulement s'il existe λ réel positif tel que $z_1 = \lambda z_2$ ou $z_2 = \lambda z_1$.

III.2 - Exponentielle complexe

Définition 7 - Exponentielle complexe

Soit z=x+y i un nombre complexe sous forme algébrique. On note ${\rm e}^z={\rm e}^x\,(\cos(y)+\sin(y)\,{\rm i}).$

Exemple 10 - Exponentielles complexes

$$e^{2} = e^{2+0i} = e^{2}$$

$$e^{\frac{\pi}{2}i} = e^{0} \left(\cos \left(\frac{\pi}{2} \right) + \sin \left(\frac{\pi}{2} \right) i \right) = i$$

$$e^{i\pi} = e^{0} \left(\cos(\pi) + \sin(\pi) i \right)$$

$$= -1.$$

Définition 8 - Argument, Forme trigonométrique

Soit z un nombre complexe non nul.

- Tout réel θ tel que $z = |z| e^{\theta i}$ est **un** argument de z.
- L'unique réel $\theta \in]-\pi;\pi]$ tel que $z=|z| e^{\theta i}$ est l'argument principal de z, noté $\arg(z)$.
- Le nombre complexe z s'écrit sous la forme $z=|z|\,\mathrm{e}^{\arg(z)\,\mathrm{i}}$. Cette écriture est la forme trigonométrique du nombre complexe z.

Module & Argument

Représentation de l'image d'un nombre complexe ainsi que de son module :

Exemple 11 - Formes trigonométriques

Mise sous forme trigonométrique en factorisant par le module puis en reconnaissant un argument classique :

$$2 = 2e^{0i},$$

$$-3 = 3e^{i\pi},$$

$$i = e^{i\frac{\pi}{2}},$$

$$1 + i = \sqrt{2}\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = \sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)i\right)$$

$$= \sqrt{2}e^{i\frac{\pi}{4}}.$$

Proposition 13 - Exponentielle et Opérations

- $\forall z, z' \in \mathbb{C}, e^{z+z'} = e^z \cdot e^{z'}$.
- Pour tout $z \in \mathbb{C}$, $e^z \neq 0$.

Exemple 12 - Forme trigonométrique

En utilisant le calcul précédent,

$$(1+i)^2 = \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^2 = 2e^{i\frac{\pi}{2}} = 2i.$$
$$(1+i)^4 = \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^4 = 4e^{i\pi} = -4.$$

IV - Transformations géométriques

Proposition 14 - Translations, Homothéties, Rotations

- Soit \overrightarrow{u} un vecteur d'affixe b. L'image d'un point M d'affixe z par la translation de vecteur \overrightarrow{u} a pour affixe z + b.
- Soit $\theta \in \mathbb{R}$ et $\omega \in \mathbb{C}$. L'image d'un point M d'affixe z par la rotation d'angle θ et de centre d'affixe ω a pour affixe $\mathrm{e}^{\mathrm{i}\,\theta}(z-\omega)+\omega$.

• Soit $k \in \mathbb{R}^*$ et $\omega \in \mathbb{C}$. L'image d'un point M d'affixe z par l'homothétie de centre d'affixe ω et de rapport k a pour affixe $k(z-\omega)+\omega$.

Transformations du plan complexe

• Soit $t: z \mapsto z + (1+i)$ et \overrightarrow{u} le vecteur d'affixe 1+i.

• Soit $r: z \mapsto e^{i\frac{\pi}{4}} (z - (2+i)) + (2+i)$, Ω le point d'affixe 2+i et $\alpha = \frac{\pi}{4}$.

• Soit $h: z \mapsto 3(z - (2 + i)) + (2 + i)$, Ω le point d'affixe 2 + i et k = 3.

