Building High-Performance Systolic Arrays with HeteroCL

Yi-Hsiang Lai, Shaojie Xiang, Zhiru Zhang

05/12/2021

HeteroCL Overview

- A Python-based programming framework for FPGA-targeted compute acceleration
 - Productive: Succinct yet flexible programming abstraction
 - Performant: Efficient mapping to highly efficient spatial architectures
 - Portable: Clean decoupling of algorithm & hardware customizations

Y.-H. Lai, et al., HeteroCL: A Multi-Paradigm Programming Infrastructure for Software-Defined Reconfigurable Computing, FPGA'2019 (Best Paper Award)

Essential Techniques for Hardware Acceleration

Compute customization

(Parallelism)

• Pipelining, Unrolling, ...

Essential Techniques for Hardware Acceleration

Compute customization (Parallelism)

• Pipelining, Unrolling, ...

Data type customization (Precision)

Low-bitwidth integer,
 Fixed point, ...

Essential Techniques for Hardware Acceleration

Compute customization (Parallelism)

Pipelining, Unrolling, ...

Data type customization (Precision)

Low-bitwidth integer,
 Fixed point, ...

Memory customization (Data placement)

 Banking, Data reuse, Streaming ...

FPGA Programming with HLS

Example: convolution

```
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
out[x, y] += image[x+r, y+c] * filter[r, c]</pre>
```

Algorithm#1

Compute Customization

Algorithm#2

Data Type Customization

Memory Customization

Algorithm#3

Entangled hardware customization and algorithm

- Less portable
- Less readable
- Less productive

```
#pragma HLS array partition variable=filter dim=0
 hls::LineBuffer<3, N, ap fixed<8,4> > buf;
 hls::Window<3, 3, ap fixed<8,4>> window;
 for(int y = 0; y < N; y++) {
  for(int xo = 0; xo < N/M; xo++) {
                                   Custom compute
#pragma HLS pipeline II=1
                                   (Loop tiling)
   for(int xi = 0; xi < M; xi++) {
    int x = xo*M + xi;
                                   Custom data type
    ap fixed<8,4> acc = 0;
    ap_fixed<8,4> in = image[y][x]; (Quantization)
    buf.shift up(x);
                                   Custom memory
    buf.insert top(in, x);
    window.shift_left();
                                   (Reuse buffers)
    for(int r = 0; r < 2; r++)
     window.insert(buf.getval(r,x), i, 2);
    window.insert(in, 2, 2);
    if (y \ge 2 \&\& x \ge 2) {
     for(int r = 0; r < 3; r++) {
      for(int c = 0; c < 3; c++) {
       acc += window.getval(r,c) * filter[r][c];
     out[y-2][x-2] = acc;
}}}
```

Decoupling Algorithm from Hardware Customizations

HLS C/C++

Algorithm#1

Compute Customization

Algorithm#2

Data Type Customization

Memory Customization

Algorithm#3

Entangled algorithm specification and customization schemes

HeteroCL

Algorithm#1-3

Compute Customization

Data Type Customization

Memory Customization

Fully decoupled customization schemes (More Productive & Portable)

Hardware Customizations in HeteroCL

HeteroCL code r = hcl.reduce_axis(0, 3) c = hcl.reduce_axis(0, 3) **Declarative code** (based on TVM) out = hcl.compute(N, N), Algorithm lambda y, x: hcl.sum(image[x+r, y+c]*kernel[r, c], axis=[r, c])) s = hcl.create_schedule() Custom s[out].unroll([r,c]) Compute for i in range(2, 8): Custom s.quantize([out], Fixed(i, i-2)) Data Type linebuf = s[image].reuse_at(out, out.y) **Custom** winbuf = s[linebuf].reuse_at(out, out.x) Memory

Corresponding C code

```
for (int y = 0; y < N; y++)
    for (int x = 0; x < N; x++)
    for (int r = 0; r < 3; r++)
        for (int c = 0; c < 3; c++)
Unroll    out[x, y] += image[x+r, y+c] * kernel[r, c]
inner loops</pre>
```

32-bit Floating-point

Exploring the Interdependence amongst Customizations

Decoupled Compute Customization

HeteroCL code

Algorithm

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
    axis=[r, c]))
```

Decoupled customization

```
s = hcl.create_schedule()
xo, xi = s[out].split(out.x, factor=M)
s[out].reorder(xi, xo, out.y)
```

Customization primitives

Portable, less error-prone

HLS code

```
for (int y = 0; y < N; y++)
  for (int x = 0; x < N; x++)
  for (int r = 0; r < 3; r++)
    for (int c = 0; c < 3; c++)
    out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```

```
for (int xi = 0; xi < M; xi++)
    for (int xo = 0; xo < N/M; xo++)
    for (int y = 0; y < N; y++)
        for (int r = 0; r < 3; r++)
        for (int c = 0; c < 3; c++)
        out[xi+xo*M, y] +=
        image[xi+xo*M+r, y+c] * kernel[r, c]</pre>
```

Decoupled Data Type Customization

- Bit-accurate data type support (e.g., Int(15), Fixed(7,4))
 - WIP: custom floating-point types (e.g., bfloat16)
- Decoupled customization primitives: downsize & quantize

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
        axis=[r, c]))

for i in range(2, 8):
    s = hcl.create_scheme()
    s.quantize([out], Fixed(i, i-2))
```

32-bit Floating-point Sign Exponent Mantissa 23b 1h 8b **16-bit Brain Floating-point (bfloat)** Sign Exponent Mantissa 1b 8b 7b 8-bit Fixed-point Fixed(8, 6) Quantize/downsize Fraction Int 2b 6b 2-bit Integer Int(2) Int 2b

Case Study: Simple Convolutional Neural Network

- Digit recognition with MNIST dataset
 - Train the model in Keras
 - Run the inference in HeteroCL
- Goal: (Partially) deploy the model to FPGA for acceleration

Imperative Programming in HeteroCL

- HeteroCL further provides an embedded imperative DSL
 - Not all algorithms can be described in declarative tensor-style code

```
def reshape():
    with hcl.for_(0, I) as i:
    with hcl.for_(0, J) as j:
    with hcl.for_(0, K) as k:
        B[(i * J + j) * K + k] = A[i, j, k]
```

Imperative & declarative programs share a unified interface for customization primitives

```
s = hcl.create_schedule()
s[reshape].unroll(reshape.k)
s.quantize([reshape.B], Fixed(6, 4))
```

Demo 1: Syntax & Data Quantization

- Basic components of a HeteroCL program
 - Placeholder: tensors served as inputs/outputs
 - 2. Algorithm definition
 - 3. Hardware customization
 - 4. Function implementing #2 and #3
 - 5. Input data in NumPy arrays

Main program can contain both imperative and declarative code

```
import heterocl as hcl
import numpy as np
img = hcl.placeholder(input_size)
conv_w1 = hcl.placeholder((16,1,3,3))
conv w2 = hcl.placeholder((64,16,3,3))
dense w = hcl.placeholder((64*26*26,10))
def top(img, conv_w1, conv_w2, dense_w):
    output1 = conv2d(img, conv_w1)
    output2 = conv2d(output1, conv w2)
    output3 = reshape(relu(output2))
    return dense(output3, dense_w)
s = hcl.create schedule(
      [img, conv_w1, conv_w2, dense_w], top)
f = hcl.build(s, target=p)
with open('convnet.npy', 'rb') as fp:
    w1 = np.load(fp)
    w2 = np.load(fp)
    w3 = np.load(fp)
    conv_w1 = ...
    conv_w2 = ...
```

Demo 1: Syntax & Data Quantization

- Post-training quantization for smaller model size and higher throughput
 - Analyze the output range to determine the integer bitwidth
 - Quantize output of second layer (i.e., ReLU)
- Easily try out different quantization schemes in HeteroCL

Demo 1: Code & Results Review

- Easily explore the trade-off between accuracy & resource with .quantize()
 - The integer is set to 2 bits

```
def ConvNet(dtype quant, quantize=True):
                                                                  98
    # A three layer ConvNet example
    def top(img, conv_w1, conv_w2, dense_w):
                                                                  96
        # ...
                                                                 accuracy
92
    # Data tyepe customization
    scheme = hcl.create scheme(...)
    if quantize:
      scheme.quantize([top.relu], dtype_quant)
    s = hcl.create_schedule_from_scheme(scheme)
                                                                  86
   name == " main ":
                                                                  84
    args = parser.parse args()
    if args.quantize:
        if args.dse:
            integer bits = 2
            for frac_bits in range(7):
                dtype = hcl.Fixed(integer_bits+frac_bits, frac_bits)
                ConvNet(dtype, quantize)
```


Decoupled Memory Customization

Inferring custom on-chip storage with the reuse_at primitive

```
r = hcl.reduce_axis(0, 3)
c = hcl.reduce_axis(0, 3)
out = hcl.compute(N, N),
lambda y, x:
    hcl.sum(image[x+r, y+c]*kernel[r, c],
        axis=[r, c]))

s = hcl.create_schedule()
linebuf = s[image].reuse_at(out, out.y)
winbuf = s[linebuf].reuse_at(out, out.x)
```

```
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
  out[x, y] += image[x+r, y+c] * kernel[r, c]</pre>
```


Host-Device Data Placement

.to(): A unified programming interface for specifying data flow between

1. Host and accelerator (i.e., device)

```
from heterocl import platform

conv1 = conv(image, weight1, "conv1")
conv2 = conv(conv1, weight2, "conv2")
out = relu(conv2, "relu")

# decoupled customizations
s = hcl.create_schedule()
p = platform.xilinx_u280
# specify data placement
s.to([conv1, weight2], p.xcel)
s.to(out, p.host)
```


Kernel-Kernel Data Placement

- .to(): A unified programming interface for specifying data flow between
 - 1. Host and accelerator (i.e., device)
 - 2. Sub-modules of the accelerator (i.e., kernels)

```
from heterocl import platform
conv1 = conv(image, weight1, "conv1")
conv2 = conv(conv1, weight2, "conv2")
out = relu(conv2, "relu")
# decoupled customizations
s = hcl.create_schedule()
p = platform.xilinx u280
# specify data placement
s.to([conv1, weight2], p.xcel)
s.to(out, p.host)
s.to(conv2, relu)
```


Demo 2: Data Placement & Data Reuse

- Identify compute-intensive parts and offload them to FPGA
 - Calculate the number of multiply-accumulate (MAC) operations of each layer
 - Specify data placement with .to()

Demo 2: Data Placement & Data Reuse

- Apply .reuse_at() between the first and second conv layer
 - Data can now be streamed in serial from host to FPGA with reuse buffers
 - Further improve the performance by streaming between Conv 2 and Dense with .to()

Demo 2: Code & Results Review

Use .to() to specify dataflow between host and FPGA

```
p = hcl.Platform.xilinx_u280
s.to([top.conv1, conv_w2, dense_w], p.xcel)
s.to(top.dense, p.host)
```

Use .to() to specify dataflow between on-chip submodules

```
s.to(top.conv2, top.relu)
s.to(top.relu, top.reshape)
s.to(top.reshape, top.dense)
```

Use .reuse_at() to insert reuse buffers

```
LB = s.reuse_at(top.conv1, s[top.conv2], top.conv2.axis[1])
WB = s.reuse_at(LB, s[top.conv2], top.conv2.axis[2])
```

Demo 2: Code & Results Review

Use .config() to specify HLS tool options

```
p.config(compile="vivado_hls", mode="csyn", project="hcl_prj_reuse_hls")
```

Use .report() to retrieve the loop information (e.g., pipeline II)

Before Applying Data Reuse

top
	Trip Count	Latency	Pipeline II	Pipeline Depth
conv2_i_conv2_i1_conv2_i2	43264	13022464	N/A	N/A
+ conv2_i3	16	298	18	29
relu_args2_relu_args01_relu_args11	43264	43265	1] 3
reshape_i6_reshape_i7_reshape_i8	43264	43264	1	2

After Applying Data Reuse

	+			+
conv2_oc_conv2_h_reuse_conv2_w_reuse	•	002007	1	53
* Units in clock cycles				•

Current List of Customization Primitives

Compute customization

C.split(i, v)	Split loop i of operation C into a two-level nest loop with v as the factor of the inner loop.
C.fuse(i, j)	Fuse two sub-loops i and j of operation C in the same nest loop into one.
C.reorder(i, j)	Switch the order of sub-loops i and j of operation C in the same nest loop.
P.compute_at(C, i)	Merge loop i of the operation P to the corresponding loop level in operation C.
C.unroll(i, v)	Unroll loop i of operation C by factor v.
C.parallel(i)	Schedule loop i of operation C in parallel.
C.pipeline(i, v)	Schedule loop i of operation C in pipeline manner with a target initiation interval v.

Data type customization

downsize(t, d)	Downsize a list of tensors t to type d.		
quantize(t, d)	Quantize a list of tensors t to type d.		

Memory customization

C.partition(i, v)	Partition dimension i of tensor C with a factor v.
C.reshape(i, v)	Pack dimension i of tensor C into words with a factor v.
memmap(t, m)	Map a list of tensors t with mode m to new tensors. The mode m can be either vertical or horizontal.
P.reuse_at(C, i)	Create a reuse buffer storing the values of tensor P, where the values are reused at dimension i of operation C.
to(t, d, m)	Move a list of tensors t to device d with mode m.

Macros for spatial architecture templates

C.stencil()	Specify operation C to be implemented with stencil with dataow architectures using the SODA framework.
C.systolic()	Specify operation C to be implemented with systolic arrays using the PolySA framework.

Targeting Spatial Architectures in HeteroCL

- HeteroCL compiler generates highly efficient spatial architectures with
 - 1. **SODA** for **stencil code** (data elements on a tensor accessed based on a fixed pattern)
 - 2. AutoSA for systolic arrays (a homogeneous array of locally connected compute units)

- SODA backend [J. Cong, et al. ICCAD'18]
 - Datalfow architecture that guarantees full data reuse without banking conflict

- AutoSA backend [J. Wang, et al. FGPA'21]
 - Produces a variety of systolic arrays with polyhedral transformation
 - Incorporates additional architecture optimizations (banking, SIMD, latency hiding, etc.)

More on AutoSA Integration

- Make it possible to connect systolic array kernels with other kernels
 - Use .systolic() to map a kernel to systolic arrays generated by AutoSA
 - Use .to() to connect the generated systolic arrays with other kernels

More on AutoSA Integration

- Provide default configuration for AutoSA to generate systolic arrays
 - Size is selected according to the shape of the loop (default 8 x 8)
 - Tile/Flatten the loop if necessary
 - Can also be configured by users explicitly via .systolic(params)

Input Program

```
for (int y = 0; y < 26; y++)
for (int x = 0; x < 26; x++)
for (int r = 0; r < 64; r++)
for (int c = 0; c < 10; c++)
// compute ...
```


HeteroCL Transformed Program

```
for (int t = 0; t < 26*26*8*2; t++)
for (int s1 = 0; s1 < 8; s1++)
for (int s2 = 0; s2 < 5; s2++)
// compute ...
```


AutoSA

Future work: Integrate T2S

Demo 3: AutoSA Integration

- Map Conv 2 and Dense to AutoSA generated systolic arrays
 - Conv 2: 8 x 13 (Loop shape: 26x26x16x64x3x3)
 - Dense: 5 x 8 (Loop shape: 26x26x64x10)
- Connect two systolic arrays with FIFO via .to()

Demo 3: Code & Results Review

Use .systolic() to map kernels to systolic arrays generated by AutoSA

```
s[top.conv2].systolic()
s[top.dense].systolic()
```

Use .to() to specify dataflow between systolic arrays and other kernels

```
s.to(top.conv2, top.relu)
s.to(top.relu, top.reshape)
s.to(top.reshape, top.dense)
```

- Performance comparison
 - Baseline (with only pipelining):
 - Applying data reuse and data movement:
 - Mapping to AutoSA generated systolic arrays:

Portability Evaluation with Realistic Designs

Target: Xilinx Alveo U280 (Vivado HLS + Vitis)

Application	LOC (vs. HLS C++)	LUT#	FF#	DSP#	BRAM#	Fmax (MHz)	Runtime (ms)
DigitRec	58 (vs. 243)	8,914	8,850	0	2	300	1.82
3D Rendering	187 (vs. 375)	6,670	8,326	13	38	300	2.56
Optical Flow	206 (vs. 742)	23,812	32,906	182	64	300	3.62

Target: Intel Stratix 10 (AOCL*, vLab)

Application	LOC (vs. HLS C++)	ALUT#	FF#	DSP#	BRAM#	Fmax (MHz)	Runtime (ms)
DigitRec	33 (vs. 422)	6,282	11,835	0	51	296.29	4.01
3D Rendering	160 (vs. 611)	11,745	22,067	22	283	329.48	7.78
Optical Flow	206 (vs.628)	29,490	58,130	106	484	386	3.82

^{*} Intel AOCL currently does not support fixed point type

A single HeteroCL source can be retargeted to different FPGA devices with only a few changes

Portable Compilation Flow

More Examples

github.com/cornell-zhang/heterocl

More Examples

https://github.com/cornell-zhang/heterocl/tree/master/samples

Design	Compute	Data Type	Memory	Imperative	Macros
KNN Digit Rec.	✓	✓		✓	
K-Means	\checkmark	\checkmark		\checkmark	
Smith-Waterman	✓	✓		✓	
Cordic		\checkmark			
Sobel	✓		✓		
Optical Flow	\checkmark		\checkmark		
3D Rendering	✓		✓	✓	
Seidel	\checkmark	\checkmark	\checkmark		\checkmark
Gaussian	✓	✓	✓		✓
Jacobi	✓	✓	✓		√
GEMM		✓			✓

More designs (e.g., BNN) will be added soon!

Concluding Remarks

HeteroCL offers a new high-level programming framework for building FPGA accelerators

- Productive: <u>Ease-of-programming</u> with Python-based interface and support of high-level DSL
- Performant: Competitive QoR against HLS expert designs with efficient mapping to spatial architectures
- Portable: <u>Target-neutral algorithm specification</u> with decoupled hardware customizations

github.com/cornell-zhang/heterocl

