Efficient Attention And the Chronicles of LoRA the Transformer

Sahil Chaudhary* Mrigank Pawagi* Rohit Jorige* Nagasai Jajapuram*

WorthYourAttention

* Equal contribution.

Indian Institute of Science

12 April 2024

Introduction

A long long time ago... RNN's and LSTM's were the go-to model for sequence to sequence models. But they had a few flaws:

- Sequential Processing
- They do not accurately capture long term dependencies (not LSTM)
- They were slow
- Hard to parallelize
- Past information retained through past hidden states
- Vanishing gradients

Attention in Transformers

Overview of the architecture

Key Innovations in Transformers:

- Non-sequential Processing:
 Sentences are processed as a whole, not word by word.
- **Self Attention:** A new 'unit' for computing word similarity scores within a sentence.
- Positional Embeddings:
 Replaces recurrence with fixed or learned weights encoding token position information.

Attention in Transformers

Attention Mechanism

Scaled Dot-Product Attention

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(rac{QK^T}{\sqrt{D}}
ight)V$$

Multi-Head Attention

 $MultiHead(Q, K, V) = Concat(Head_1, ..., Head_h)W_O$

English to Kannada Translation

English Prompt	Kannada translation	Correct Kannada Translation
I cannot stand this smell	ನಾನು ಅಂತರ ಸಂಗತಿ ನಾನು ಕೊಡುವುದಿಲ್ಲ	ನಾನು ಈ ವಾಸನೆಯನ್ನು ಸಹಿಸುವುದಿಲ್ಲ
I am here.	ನಾನು ಕೇಳಿದ್ದೇನೆ	ನಾನು ಇಲ್ಲಿದ್ದೇನೆ
what should we do?	ಏನು ಮಾಡಬೇಕು?	-

Transformer Formal Definition

Let $x \in \mathbb{R}^{N \times F}$ denote a sequence of N feature vectors of dimensions F. A transformer is a function $T : \mathbb{R}^{N \times F} \to \mathbb{R}^{N \times F}$ defined by the composition of L transformer layers $T_1(\cdot), \ldots, T_L(\cdot)$, where

$$T_i(x) = f_i(A_i(x) + x)$$

Here $f_i(\cdot)$ is usually implemented using a feed-forward network, A_i is a self-attention function.

Formal Definition

Formally, the input sequence x is projected by three matrices $W_Q \in \mathbb{R}^{F \times D}$, $W_K \in \mathbb{R}^{F \times D}$ and $W_V \in \mathbb{R}^{F \times F}$ to corresponding representations Q, K and V. The output for all positions, $A_i(x) = V'$, is computed as follows,

$$Q = xW_Q,$$

 $K = xW_K,$
 $V = xW_V,$

The output $A_i(x)$ is computed as follows:

$$A_i(x) = V' = \operatorname{softmax}\left(rac{QK^T}{\sqrt{D}}
ight)V.$$

Similarity Function

Attention on a closer look is nothing but a weighted average of the values, where the weight assigned to each value is computed by similarity function of the corresponding key.

$$A_i(x) = V' = \left[\frac{\sum_{j=1}^N sim(Q_k, K_j)V_j}{\sum_{j=1}^N sim(Q_k, K_j)}\right]_{k=1}^N$$

Similarity Function

What are the properties we wish to have on similarity function?

Similarity Function

What are the properties we wish to have on similarity function?

Note that this includes all kernels $K(x,y): \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}_+$

Introduce Kernels

Thus, attention can be written as,

$$V' = \left[\frac{\sum_{j=1}^{N} K(Q_k, K_j) V_j}{\sum_{j=1}^{N} K(Q_k, K_j)}\right]$$
(1)

Introduce Kernels

Thus, attention can be written as,

$$V' = \left[\frac{\sum_{j=1}^{N} K(Q_k, K_j) V_j}{\sum_{j=1}^{N} K(Q_k, K_j)}\right]$$

Let's look at each row of this matrix.

$$V'_{k} = \frac{\sum_{j=1}^{N} K(Q_{k}, K_{j}) V_{j}}{\sum_{j=1}^{N} K(Q_{k}, K_{j})}$$

Given a kernel with a feature representation $\phi(x)$, we can rewrite this as

$$V'_{k} = \frac{\sum_{j=1}^{N} \phi(Q_{k})^{T} \phi(K_{j}) V_{j}}{\sum_{j=1}^{N} \phi(Q_{k})^{T} \phi(K_{j})}$$

Given a kernel with a feature representation $\phi(x)$, we can rewrite eq^n-3 as follows,

$$V'_{k} = \frac{\sum_{j=1}^{N} \phi(Q_{k})^{T} \phi(K_{j}) V_{j}}{\sum_{j=1}^{N} \phi(Q_{k})^{T} \phi(K_{j})}$$
$$V'_{k} = \frac{\phi(Q_{k})^{T} \sum_{j=1}^{N} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{k})^{T} \sum_{j=1}^{N} \phi(K_{j})}$$

Given a kernel with a feature representation $\phi(x)$, we can rewrite eq^n-3 as follows,

$$V'_{k} = \frac{\sum_{j=1}^{N} \phi(Q_{k})^{T} \phi(K_{j}) V_{j}}{\sum_{j=1}^{N} \phi(Q_{k})^{T} \phi(K_{j})}$$
$$V'_{k} = \frac{\phi(Q_{k})^{T} \sum_{j=1}^{N} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{k})^{T} \sum_{j=1}^{N} \phi(K_{j})}$$

Since $\sum_{j=1}^{N} \phi(K_j) V_j^T$ and $\sum_{j=1}^{N} \phi(K_j)$ can be computed once and reused for every query, this formulation has $\mathcal{O}(N)$ time and memory complexity

The transformer architecture can be used to efficiently train autoregressive models by masking the attention computation. i.e.

$$V_k' = \frac{\sum_{j=1}^k sim(Q_k, K_j)V_j}{\sum_{j=1}^k sim(Q_k, K_j)}$$

The transformer architecture can be used to efficiently train autoregressive models by masking the attention computation. i.e.

$$V'_{k} = \frac{\sum_{j=1}^{k} \phi(Q_{k})^{T} \phi(K_{j}) V_{j}^{T}}{\sum_{j=1}^{k} \phi(Q_{k})^{T} \phi(K_{j})}$$
$$V'_{k} = \frac{\phi(Q_{k})^{T} \sum_{j=1}^{k} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{k})^{T} \sum_{j=1}^{k} \phi(K_{j})}$$

Let
$$S_k = \sum_{j=1}^k \phi(K_j) V_j^T$$
 and $Z_k = \sum_{j=1}^k \phi(K_j)$.
$$V_k' = \frac{\phi(Q_k) S_k}{\phi(Q_k) Z_k}$$

Note that, S_i and Z_i can be computed from S_{i-1} and Z_{i-1} in constant time.

This enables the transformer to be formulated as an RNN using the following recurrence relations. We set, and for all $i \ge 1$,

$$S_{0} = 0$$

$$Z_{0} = 0$$

$$S_{i} = S_{i-1} + \phi(K_{i})V_{i}^{T} = S_{i-1} + \phi(x_{i}W_{K})(x_{i}W_{V})^{T}$$

$$Z_{i} = Z_{i-1} + \phi(K_{i}) = z_{i-1} + \phi(x_{i}W_{K})$$

Experiments

Performance on random sequences

Time taken by attention layer

Time taken for one pass

Image Completion

Image Completion

The linear transformer achieved faster image completion on occluded inputs in comparison to the softmax transformer.

The accuracies were 87% and 86.3% on images generated by the linear and the softmax transformers respectively.

Image Generation

Number of images	Linear	Softmax
100	33.45s	367.91s
200	67.76s	811.99s
300	76.46s	1248.12

Table: Time taken for image completion

- Quadratic nature of self-attention is clearly visible in the plots shown above.
- As expected, linear self-attention is way faster than softmax self-attention.

LoRA

LoRA uses a simple property that, a matrix $M \in \mathbb{R}^{n \times m}$ can be rank decomposed as M = UV where $U \in \mathbb{R}^{n \times r}$, $V \in \mathbb{R}^{r \times m}$ and r is the rank of M. This reduces the number of trainable parameters from mn to r(n+m). Note that $r(n+m) \ll nm$ for small r.

Application of LoRA on Neural Networks

We have trained a feed forward neural network for an image classification task using the MNIST dataset. Our base model was composed of three linear layers which together had 55.1K trainable parameters.

Image Variations

We create variations of the MNIST dataset to finetune and test the robustness of the model.

MNIST

Quantized MNIST Rotated MNIST

Inverted MNIST

Base Model Performance on Various Datasets

After training, our base model achieved a test accuracy of approximately 93.2% on the original MNIST dataset. The performance of the model on modified datasets is presented in the table below.

Dataset	Accuracy	
Original MNIST	93.2%	
Quantized MNIST	85.58%	
Rotated MNIST	12.38%	
Inverted MNIST	5.52%	

Fine-tuning the model on the variants of the MNIST dataset

We fine-tuned our base model on three variants.

Dataset Accuracy	Accuracy	Trainable Parameters
Quantized MNIST	93.57%	55.1K
Rotated MNIST	91.97%	55.1K
Inverted MNIST	76.41%	55.1K

Applying LoRA during fine-tuning

We found that our fine-tuned models achieved accuracies comparable to their full fine-tuned counterparts with fewer trainable parameters.

r	Trainable Params	Quant. MNIST	Rot. MNIST	Inv. MNIST
1	1.1K	91.20%	37.53%	16.23%
2	2.1K	91.30%	49.01%	17.92%
4	4.2K	91.42%	69.10%	16.32%
8	8.4K	91.39%	77.49%	32.19%
16	16.8K	91.72%	86.95%	62.26%
32	33.6K	92.31%	89.50%	68.06%
64	67.2K	93.19%	90.41%	71.88%

Applying LoRA during fine-tuning

Applying LoRA during fine-tuning

Applying LoRA during fine-tuning

Training with LoRA from scratch

We trained the model from scratch with LoRA applied to the 3 layers in our neural network. The accuracy of the models are presented in the table below.

r	Trainable Params	MNIST	Quant. MNIST	Rot. MNIST	Inv. MNIST
1	1.1K	56.79%	23.50%	25.91%	22.21%
2	2.1K	71.90%	37.48%	43.96%	45.81%
4	4.2K	84.44%	64.87%	62.60%	69.67%
8	8.4K	89.12%	77.96%	82.39%	83.11%
16	16.8K	92.64%	88.2%	86.76%	87.38%
32	33.6K	93.98%	90.13%	90.62%	90.25%
64	67.2K	94.85%	91.66%	91.85%	86.01%

Thank You For Your Attention!

References

- [1] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. "Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning". In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Ed. by Chengqing Zong et al. Online: Association for Computational Linguistics, Aug. 2021, pp. 7319–7328. DOI: 10.18653/v1/2021.acl-long.568. URL: https://aclanthology.org/2021.acl-long.568.
- [2] Edward J Hu et al. "LoRA: Low-Rank Adaptation of Large Language Models". In: International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=nZeVKeeFYf9.
- [3] Angelos Katharopoulos et al. "Transformers are RNNs: fast autoregressive transformers with linear attention". In: Proceedings of the 37th International Conference on Machine Learning. ICML'20. JMLR.org, 2020.
- [4] Yann LeCun, Corinna Cortes, and CJ Burges. "MNIST handwritten digit database". In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
- [5] Chunyuan Li et al. "Measuring the Intrinsic Dimension of Objective Landscapes". In: International Conference on Learning Representations. 2018.
- [6] Ashish Vaswani et al. "Attention is All you Need". In: Advances in Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. URL: https: //proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.