

<u>Course</u> > <u>Unit 6 Linear Regression</u> > <u>Lecture 20: Linear Regression 2</u> > 11. Significance Tests

11. Significance Tests **Significance Tests**

A geneticist at the Broad Institute wishes to study the relationship between a collection of five genes and obesity. In particular, he suspects that the number of mutations in these five genes $\mathbf{X}=(X_1,\ldots,X_5)$ is correlated to the blood sugar level Y, when all other factors such as diet are kept identical.

A dataset consisting of measurements obtained from n=125 patients is obtained from a nearby hospital. As statisticians, we attempt to perform linear regression with the assumption that the relationship of Y given \mathbf{X} is linear.

All problems on this page refers to this setup.

Building a hypothesis test

2/2 points (graded)

Let's say we suspect that the number of mutations in gene 1 has some (non-zero) correlation with blood sugar level. To test this, we beign by defining the null hypothesis $H_0: \beta_1 = 0$, and the alternative hypothesis $H_1: \beta_1 \neq 0$.

Using the setup given above, what is an appropriate choice for the unit column vector $\mathbf{u} \in \mathbb{R}^5$? That is, what \mathbf{u} gives $\mathbf{u}^T \beta = \beta_1$?

(For convenience, enter your answers to all answer boxes in this problem as a row vector to represent \mathbf{u}^T . For instance, if your answer is $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, type "[1,2]". Do not round; enter exact fractional values if applicable.)

$$\mathbf{u}^T = \boxed{ \begin{tabular}{c} \cite{1,0,0,0,0} \end{tabular} } lacksquare{1,0,0,0,0} \lacksquare{1,0,0,0,0} \end{tabular}$$

Alternatively, we could also test whether gene 2 has a more positive correlation than gene 3. In this scenario, we setup the null hypothesis $H_0: \beta_2 \leq \beta_3$ and $H_1: \beta_2 > \beta_3$. Alternatively, we could write this as $H_0: \beta_2 - \beta_3 \leq 0$ and $H_1: \beta_2 - \beta_3 > 0$.

What choice of unit vector **u** satisfies $\mathbf{u}^T \beta \leq 0 \iff \beta_2 - \beta_3 \leq 0$?

$$\mathbf{u}^T = \begin{bmatrix} 0,1/\text{sqrt}(2),-1/\text{sqrt}(2),0,0 \end{bmatrix}$$
 \checkmark Answer: $[0,1/\text{sqrt}(2),-1/\text{sqrt}(2),0,0]$

Solution:

For the first setup, $\mathbf{u} = (1, 0, 0, 0, 0)$ is the right choice, since we just want the first coordinate β_1 . In the second setup, we want the second coordinate minus the third. Therefore, we ought to normalize the vector (0,1,-1,0,0). Therefore, $\mathbf{u}=(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0,0)$ is the correct choice.

Submit

You have used 2 of 3 attempts

• Answers are displayed within the problem

Statistics for the LSE

1/1 point (graded)

Again, use the setup as in the previous problem.

We assume that the model is homoscedastic; i.e. $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_{125})$, so that $\mathbf{Y} = \mathbb{X}\beta^* + \varepsilon$.

In the linear regression model, we derived $\hat{eta}=eta^*+\left(\mathbb{X}^T\mathbb{X}\right)^{-1}\mathbb{X}^T\epsilon$, so \hat{eta} is a p-dimensional Gaussian. We saw previously that $\hat{\sigma}^2 = \frac{1}{n-n} \|\mathbf{Y} - \mathbb{X}\hat{eta}\|_2^2$ is an unbiased estimator of σ^2 .

Let \mathbf{u} be a unit vector in \mathbb{R}^5 . What distribution does the quantity $S = \frac{\mathbf{u}^T \beta - \mathbf{u}^T \beta}{\hat{\sigma} \sqrt{\mathbf{u}^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{u}}}$ obey?

- $\mathcal{N}(0,1)$, the standard normal distribution.
- lacksquare t_{120} , a t-distribution with n-p=120 degrees of freedom.
- χ^2_{120} , a chi-squared distribution with 120 degrees of freedom.

Solution:

The correct answer is " t_{120} , a t-distribution with n-p=120 degrees of freedom."

The formula provided gives $\mathbf{u}^T \hat{\beta} - \mathbf{u}^T \beta^* = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \epsilon$, which obeys the Gaussian distribution $\mathcal{N}(0, \sigma^2 \mathbf{u}^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{u})$.

To see why, note that the covariance must be $(\mathbf{u}^T(\mathbb{X}^T\mathbb{X})^{-1})(\sigma^2 I)(\mathbf{u}^T(\mathbb{X}^T\mathbb{X})^{-1})^T = \sigma^2 \mathbf{u}^T(\mathbb{X}^T\mathbb{X})^{-1}\mathbf{u}$.

From the definition of the t-distribution, we conclude that S obeys the law t_{120} , since S uses the unbiased estimate $\hat{\sigma}$ in place of σ .

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

Designing the test

1/1 point (graded)

Let us work with the first scenario from the previous problem. We have the two-tailed hypotheses test $H_0: \beta_1 = 0$, $H_1: \beta_1 \neq 0$. Consider the test statistic

$$T := rac{\mathbf{u}^T \hat{eta}}{\hat{\sigma} \sqrt{\mathbf{u}^T (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{u}}}$$

where ${\bf u}$ is the appropriate **unit vector** (a vector of length 1) such that ${\bf u}^T \beta = \beta_1$.

Keep in mind the following intuition: we ought to reject H_0 if $\hat{\beta}_1$ is far away from zero, the presumed value of β_1 under the null **hypothesis**. How far is "far"? We studied this previously in the Hypothesis Testing unit, and we now apply that knowledge to this setting.

We design the two-sided test with level lpha

$$\psi\!:=\!\mathbf{1}\left(|T|\geq q_{lpha/2}
ight).$$

where q_{α} is the $(1-\alpha)$ quantile of the distribution of T, which has a certain distribution under H_0 (refer to the solution to the previous problem, which asks for the distribution of a certain random variable S). If we decide to test at the level $\alpha=0.001$, what is the numerical value of $q_{\alpha/2}$? Round to the nearest 10^{-3} .

$$q_{lpha/2} = \boxed{ 3.373454}$$
 \checkmark Answer: 3.374

Solution:

We saw previously that the statistic T, under the null hypothesis $\beta_1=0$, obeys the t-distribution with n-p=125-5=120 degrees of freedom. Since we are doing a two-tailed test at significance level $\alpha=0.001$, we wish to compute $q_{\alpha/2}$ such that $\Pr\left(|T|>q_{\alpha/2}\right)=0.001$. Plugging this into a calculator (or looking the values up in a t-distribution table) gives $q_{\alpha/2} \approx 3.373$. (Note that this is very different from the quantile function q_{α} for a normal distribution!)

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Discussion

Topic: Unit 6 Linear Regression:Lecture 20: Linear Regression 2 / 11. Significance Tests

Add a Post

Hide Discussion

		//
Preview		

© All Rights Reserved