Predict Diabetes From Medical Records - Neural Network model investigation

Deirdre Boland 28 Feb 2025

Dataset and Objective

Dataset

 Several medical features given with the output of whether patient is diabetic or not.

Objective

- Compare performance of an artificial neural network (ANN) to other supervised classification models to predict diabetic or not
- Reference Kaggle: https://www.kaggle.com/code/paultimothymooney/predict-diabetes-from-medical-records/input?select=diabetes.csv

Data exploration and cleaning

1 target Outcome:

- ~2:1 ratio non-diabetic (0) to diabetic (1)
- 8 predictor features no nulls
- Initial assessment:
 - Illogical 0 values for several features -> likely missing data -> 0 values made null
 - Glucose: Plasma glucose concentration after 2 hours in an oral glucose tolerance test
 - Blood Pressure: Diastolic blood pressure (mm Hg)
 - Skin Thickness: Triceps skin fold thickness (mm)
 - Insulin: 2-Hour serum insulin (mu U/ml)
 - BMI: Body mass index (weight in kg/(height in m)^2)
 - No changes made to values:
 - Pregnancies state number of times pregnant but can't distinguish 0 values into male or female or missing data
 - Diabetes Pedigree function assess the genetic predisposition of an individual to diabetes based on their family history of disease.
 - Age
- Compared non-logged and logged of skewed features
- Replaced nulls with median/mean depending on skew post logging if applicable:
 - A lot of replacements affected correlation

nulls

Correlation matrix	Original data Outcome		Some Features Logged Outcome	
	nulls	nulls filled	nulls	nulls filled
Pregnancies	0.22	0.22	0.18	0.18
Glucose	0.49	0.49	0.49	0.49
BloodPressure	0.17	0.17	0.17	0.17
SkinThickness	0.26	0.21	0.26	0.22
Insulin	0.30	0.20	0.35	0.25
ВМІ	0.31	0.31	0.32	0.32
Diabetes Pedigree Function		0.17	0.18	0.18
Age	0.24	0.24	0.27	0.27
Outcome	1.00	1.00	1.00	1.00

Nulls filled

Data visualisation

- Features by 0 non-diabetic and 1 diabetic:
 - Diabetic data tends to skew higher

Model performance metrics

- Model performance comparison AUC score
 - Area under ROC curve (AUC) plots the sensitivity /recall (true positive = TP/(TP+FN)] and the specificity (false positive = TN/TN+FP).
 - 0 (poor) to 1 (perfect).
- Data Z- scaled before modelling
- 70/30 train/test split
- Supervised classification models:
 - Logistic regression (LR) model:
 - Null filled logged features (AUC: 0.754) better than null filled non-logged (AUC: 0.729)
 - LR better than null filled logged features SVM (AUC linear: 0.749 AUC, sigmoid: 0.699 AUC, rbf: 0.691)

Logistic regression model evaluation:

Do neural networks predict better?

- Logistic regression (LR) model AUC: 0.754
- Sequential ANN models:

most ->-----> least complex

3 hidden layers [8 - (50-20-4) - 1] 1 hidden layer [8 - (16) - 1] Binary preceptron

Total params: 29 (120.00 B)

Trainable params: 9 (36.00 B)

Exploring an ANN prediction

- 1 hidden layer [8 (16) 1] Epoch 13 AUC: 0.767
- Forced model to give consistent output with random seed

Comparing model predictions

- · Pregnancy impacts performance for models shown:
 - without pregnancy ANN more similar to logistic regression (2 models above)
- Predicting non-diabetic (0 outcome) 2 models above better:
 - almost perfect layover predicted and actual for some features vs. model on left, see more blue
- Predicting diabetic (1) model to left best:
 - Less red predicted above the overlap (purple)on the 1 outcome (right) vs. 2 models above

Conclusion

Conclusion

- Simple neural network models with early stopping generally better prediction than linear regression/SVM
 - Takes longer time to compute for not too major an improvement
- Prediction performance could be further improved:
 - Best models will give 20-25% false positive or false negative

Future work

- Better way to handle illogical 0 data e.g. Glucose, insulin?
- Pregnancy data appeared to improve one ANN model:
 - More runs to confirm
 - More data on gender as there are differences in BMI and hormone regulation
- Tweak parameters of ANN models to improve accuracy

Q&A

>>> Thanks for your attention!