What is the fastest way to travel from Rye town to Playland?

Mihir Bala

Ask Google Maps...

But how did Google compute this route?

Step 1: Model the map as a "graph"

What is a graph?

- Computer science data structure
- A collection of edges and nodes

Step 2: Add "cost" to the edges

Cost is determined by:

- Distance
- Road type
- Traffic congestion

Step 3: Compute the "best" route

Djikstra's algorithm:

 Finds the lowest cost route between two nodes in a graph

What is the fastest way to fly from Rye town to Playland?

Civilian UAVs (drones)

- Monitoring deforestation
- Preventing animal poaching
- Delivering medicine to remote areas
- Topographic mapping

Challenges

- No pre-defined paths (roads)
- Different obstacles
 - Terrain (mountains)
 - Weather (wind)
- Earth's curvature
- Budget

Pentagon's budget:

\$500,000,000,000

- Satellite navigation
- Expensive on-board computers

My budget:

\$5

- GPS waypoints
- Cheap Cloud computing

How civilian drones are routed today

- Manual plotting of 3D route
- Converted to sequence of GPS waypoints
- GPS waypoints uploaded into drone

This is like the world before Google Maps!

Can we build a Google Maps-like service for routing drones?

Cheap, automated, and works anywhere in the world!

Step 1: Overlay a grid on the terrain

Step 2: Use elevation data for cost

Step 3: Use Djikstra's algorithm

Issues

- Grid size makes cost computation prohibitive
 - Example: a 100 km² grid will have 1,000,000 nodes!
- Insight: most of the grid is unused
 - Compute cost on the fly
- Need A* variation of Djikstra's algorithm
 - Dynamically discovers terrain
 - Used to route the Mars Rover
 - Animation showing how A* works

My solution

- Novel extensions to A* routing algorithm:
 - Faster computation of elevation
 - Dynamic conditions (weather data)
- Usability for drone routing
- Accessibility through the Cloud

Demo

http://neon-griffin-788.appspot.com

Citations

- 1. Koh, L. P. and Wich, S. A. 2012. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science Vol. 5(2):121-132.
- 2. Lin, Yi, Juha Hyyppa, and Anttoni Jaakkola. "Mini-UAV-borne LIDAR for fine-scale mapping." *Geoscience and Remote Sensing Letters, IEEE* 8.3 (2011): 426-430.
- 3. Amazon Delivery Drones: http://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
- 4. MA, Yun-hong, and De-yun ZHOU. "A genetic algorithm for path planning of UAV." *Electronics Optics & Control* 5 (2005): 006.
- 5. Eisenbeiss, Henri. "A mini unmanned aerial vehicle (UAV): system overview and image acquisition." *International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences* 36.5/W1 (2004).
- 6. Ny, Jerome Le, Munther Dahleh, and Eric Feron. "Multi-UAV dynamic routing with partial observations using restless bandit allocation indices." *American Control Conference*, 2008. IEEE, 2008.
- 7. Marinakis, Yannis, Magdalene Marinaki, and Georgios Dounias. "Honey bees mating optimization algorithm for the vehicle routing problem." *Nature inspired cooperative strategies for optimization (NICSO 2007)*. Springer Berlin Heidelberg, 2008. 139-148.

Citations cont.

- 8. Google's Elevation API: https://developers.google.com/maps/documentation/elevation/
- 9. Open Weather Map wind and precipitation API: http://openweathermap.org/api
- 10. Conservation Drones: http://conservationdrones.org/
- 11. MapQuest: http://www.mapquest.com/
- 12. APM Mission Planner: http://planner.ardupilot.com/
- 13. National Oceanic and Atmospheric Administration (NOAA) Web Services: https://www.ncdc.noaa.gov/cdo-web/webservices
- 14. The A* algorithm: http://en.wikipedia.org/wiki/A* search algorithm
- 15. Google Maps and Elevation Web Services APIs: https://developers.google.com/maps/documentation/webservices/

Thank you!