Time-Inseparable Utility

George Pennacchi

University of Illinois

George Pennacchi University of Illinois

Introduction

- We consider two types of lifetime utility functions that are not time separable: habit persistence and recursive utility.
- Habit persistence utility allows past consumption to play a role in determining current utility.
- Two examples are the "internal" habit model of Constantinides (1990) and the "external" habit model of Campbell and Cochrane (1999).
- Recursive utility makes current utility depend on expected values of future utility, and we study a continuous-time version of the model by Obstfeld (1994).

George Pennacchi University of Illinois
Time-Inseparable Utility 2/45

Constantinides' Internal Habit Model Assumptions

- Constantinides' internal habit formation model derives a representative individual's consumption and portfolio choices in a simple production economy.
- **Technology**: A single capital-consumption good can be invested in up to two different technologies. The first is a risk-free technology whose output, B_t , follows the process

$$dB/B = r dt (1)$$

ullet The second is a risky technology whose output, η_t , satisfies

$$d\eta/\eta = \mu \, dt + \sigma \, dz \tag{2}$$

where r, μ , and σ are constants so there are constant investment opportunities.

Assumptions (continued)

 Preferences: Representative agents have date t consumption of C_t and maximize

$$E_0 \left[\int_0^\infty e^{-\rho t} u\left(\widehat{C}_t\right) dt \right] \tag{3}$$

where $u\left(\widehat{C}_{t}\right)=\widehat{C}_{t}^{\gamma}/\gamma$, $\gamma<1$, $\widehat{C}_{t}=C_{t}-bx_{t}$, and

$$x_t \equiv e^{-at}x_0 + \int_0^t e^{-a(t-s)}C_s ds$$
 (4)

- \bullet x_t is an exponentially weighted sum of past consumption.
- b=0 is time-separable constant relative risk aversion utility, while b<0 implies "consumption durability."
- When b > 0, bx_t is "subsistence" or "habit" consumption with $\widehat{C}_t = C_t bx_t$ referred to as "surplus" consumption.

Additional Parametric Assumptions

- Let W_0 be the initial wealth of the representative individual.
- The additional parametric assumptions are made:

$$W_0 > \frac{bx_0}{r+a-b} > 0$$
 (5
 $r+a > b > 0$ (6

$$a + a > b > 0 ag{6}$$

$$\rho - \gamma r - \frac{\gamma(\mu - r)^2}{2(1 - \gamma)\sigma^2} > 0$$
 (7)

$$0 \leq m \equiv \frac{\mu - r}{(1 - \gamma)\sigma^2} \leq 1 \quad (8)$$

George Pennacchi

Reasons for Assumptions

- Conditions (5) and (6) ensure that an admissible (feasible) consumption and portfolio choice strategy exists that enables $C_t > bx_t$.
- To see this, note that the individual's wealth dynamics are

$$dW = \{[(\mu - r)\omega_t + r]W - C_t\} dt + \sigma\omega_t W dz \qquad (9)$$

where the risky technology weight satisfies $0 \le \omega_t \le 1$.

• Now if $\omega_t = 0$ for all t and consumption equals a fixed proportion of wealth, $C_t = (r + a - b)W_t$, then

$$dW = \{rW - (r + a - b)W\} dt = (b - a) Wdt$$
 (10)

• Equation (10) implies

$$W_t = W_0 e^{(b-a)t} > 0 (11)$$

Reasons for Assumptions

• This implies $C_t = (r + a - b) W_0 e^{(b-a)t} > 0$ and

$$C_{t} - bx_{t} = (r + a - b)W_{0}e^{(b-a)t}$$

$$-b\left[e^{-at}x_{0} + \int_{0}^{t}e^{-a(t-s)}(r + a - b)W_{0}e^{(b-a)s}ds\right]$$

$$= (r + a - b)W_{0}e^{(b-a)t}$$

$$-\left[e^{-at}bx_{0} + b(r + a - b)W_{0}e^{-at}\int_{0}^{t}e^{bs}ds\right]$$

$$= (r + a - b)W_{0}e^{(b-a)t}$$

$$-\left[e^{-at}bx_{0} + (r + a - b)W_{0}e^{-at}(e^{bt} - 1)\right]$$

$$= e^{-at}\left[(r + a - b)W_{0} - bx_{0}\right]$$
(12)

which is greater than zero by assumption (5).

George Pennacchi University of Illinois

Reasons for Assumptions

- Condition (7) is a transversality condition that ensures that if the individual follows an optimal policy, the expected utility of consumption over an infinite horizon is finite.
- Condition (8) ensures that the individual chooses a nonnegative amount of wealth in the risky and risk-free technologies.
- Note that $m\equiv \frac{\mu-r}{(1-\gamma)\sigma^2}$ is the optimal risky-asset portfolio weight for the time-separable, constant relative-risk-aversion case.

Time-Inseparable Utility

Consumption and Porfolio Choices

• The individual's maximization problem is

$$\max_{\{C_s, \omega_s\}} E_t \left[\int_t^\infty e^{-\rho s} \frac{[C_s - b x_s]^{\gamma}}{\gamma} ds \right] \equiv e^{-\rho t} J(W_t, x_t)$$
 (13)

subject to (4) and (9).

- Given the infinite horizon, we can simplify the indirect utility function $\widehat{J}(W_t, x_t, t) = e^{-\rho t} J(W_t, x_t)$.
- Note from (4) that the dynamics of x(t) are:

$$dx/dt = -ae^{-at}x_0 + C_t - a\int_0^t e^{-a(t-s)}C_s ds$$
, or (14)

$$dx = (C_t - ax_t) dt (15)$$

Time-Inseparable Utility

Bellman Equation

• The Bellman equation is then

10/45

$$0 = \max_{\{C_{t},\omega_{t}\}} \{ U(C_{t}, x_{t}, t) + L[e^{-\rho t}J] \}$$

$$= \max_{\{C_{t},\omega_{t}\}} \{ e^{-\rho t} \gamma^{-1} (C_{t} - bx_{t})^{\gamma} + e^{-\rho t} J_{W}[((\mu - r)\omega_{t} + r)W - C_{t}] + \frac{1}{2} e^{-\rho t} J_{WW} \sigma^{2} \omega_{t}^{2} W^{2} + e^{-\rho t} J_{X} (C_{t} - ax_{t}) - \rho e^{-\rho t}J \}$$

$$(16)$$

George Pennacchi University of Illinois

First Order Conditions

• The first-order condition with respect to C_t is

$$(C_t - bx_t)^{\gamma - 1} = J_W - J_x, \text{ or}$$

$$C_t = bx_t + [J_W - J_x]^{\frac{1}{\gamma - 1}}$$
(17)

ullet The first-order condition with respect to ω_t is

$$(\mu - r)WJ_W + \omega_t \sigma^2 W^2 J_{WW} = 0, \text{ or}$$

$$\omega_t = -\frac{J_W}{J_{WW}W} \frac{\mu - r}{\sigma^2}$$
(18)

Equilibrium Partial Differential Equation

• Substituting (17) and (18) back into (16):

$$0 = \frac{1-\gamma}{\gamma} [J_W - J_X]^{\frac{\gamma}{\gamma-1}} - \frac{J_W^2}{J_{WW}} \frac{(\mu-r)^2}{2\sigma^2} + (rW - bx)J_W + (b-a)xJ_X - \rho J$$
 (19)

• When a=b=x=0, we saw that $J(W)=kW^{\gamma}$, so that $u=C^{\gamma}/\gamma$, $u_c=J_W$, and

$$C_{t}^{*} = (\gamma k)^{\frac{1}{(\gamma - 1)}} W_{t} = W_{t} \left[\rho - r\gamma - \frac{1}{2} (\frac{\gamma}{1 - \gamma}) \frac{(\mu - r)^{2}}{\sigma^{2}} \right] / (1 - \gamma)$$
(20)

and

$$\omega_t^* = m \tag{21}$$

Solution for Derived Utility of Wealth

For the time-inseparable case, we try the form

$$J(W, x) = k_0[W + k_1 x]^{\gamma}$$
 (22)

• Substituting into (19) and setting the coefficients on x and W equal to zero, we find

$$k_0 = \frac{(r+a-b)h^{\gamma-1}}{(r+a)\gamma}$$
 (23)

where

$$h \equiv \frac{r+a-b}{(r+a)(1-\gamma)} \left[\rho - \gamma r - \frac{\gamma(\mu-r)^2}{2(1-\gamma)\sigma^2} \right] > 0 \quad (24)$$

and

$$k_1 = -\frac{b}{r+a-b} < 0. {(25)}$$

Optimal Consumption and Portfolio Weights

• Given the solution for J, (17) and (18) imply

$$C_t^* = bx_t + h\left[W_t - \frac{bx_t}{r+a-b}\right]$$
 (26)

and

$$\omega_t^* = m \left[1 - \frac{bx_t/W_t}{r+a-b} \right] \tag{27}$$

• Since r + a > b, so that $\omega_t^* < m$, agents invest less in the risky asset and wealth has lower volatility compared to the time-separable case.

Dynamics of Consumption

• Consider the dynamics of the term $\left| W_t - \frac{bx_t}{r+a-b} \right|$ in C_t^* :

$$d\left[W_{t} - \frac{bx_{t}}{r+a-b}\right] = \left\{\left[(\mu - r)\omega_{t}^{*} + r\right]W_{t} - C_{t}^{*} - \left(28\right)\right\}$$
$$-b\frac{C_{t}^{*} - ax_{t}}{r+a-b}dt + \sigma\omega_{t}^{*}W_{t}dz$$

• Substituting in for ω_t^* and C_t^* , one obtains

$$d\left[W_{t} - \frac{bx_{t}}{r+a-b}\right] = \left[W_{t} - \frac{bx_{t}}{r+a-b}\right] [ndt + m\sigma dz]$$
(29)

where

$$n \equiv \frac{r - \rho}{1 - \gamma} + \frac{(\mu - r)^2 (2 - \gamma)}{2(1 - \gamma)^2 \sigma^2}$$
 (30)

Time-Inseparable Utility

Equilibrium Consumption Growth

• Using (29) and (26), one can show

$$\frac{dC_t}{C_t} = \left[n + b - \frac{(n+a)bx_t}{C_t} \right] dt + \left(\frac{C_t - bx_t}{C_t} \right) m\sigma dz \quad (31)$$

- From the term $\left(\frac{C_t bx_t}{C_t}\right) m\sigma dz$, consumption growth is smoother than in the case of no habit persistence.
- For a given equity (risky-asset) risk premium, this can imply a relatively smooth consumption path, even though risk aversion, γ , may not be high in magnitude.
- Recall the Hansen-Jagannathan bound for the time-separable case

$$\left| \frac{\mu - r}{\sigma} \right| \le (1 - \gamma) \, \sigma_c \tag{32}$$

Hansen-Jagannathan Bound

• For the current habit persistence case, from (31):

$$\sigma_{c,t} = \left(\frac{C_t - bx_t}{C_t}\right) m\sigma$$

$$= \left(\frac{\widehat{C}_t}{C_t}\right) \left[\frac{\mu - r}{(1 - \gamma)\sigma^2}\right] \sigma$$
(33)

• Define the surplus consumption ratio $S_t \equiv \widehat{C}_t/C_t$ and rearrange (33):

$$\frac{\mu - r}{\sigma} = \frac{(1 - \gamma)\,\sigma_{c,t}}{S_t} \tag{34}$$

• Since $S_t \equiv \frac{C_t - b x_t}{C_t} < 1$ habit persistence may help reconcile the empirical violation of the H-J bound.

Time-Inseparable Utility

The Campbell-Cochrane External Habit Model

- This model has "keeping up with the Joneses" preferences and makes the following assumptions.
- **Technology**: There is a discrete-time endowment economy where date t aggregate consumption output, C_t , follows the lognormal process:

$$\ln(C_{t+1}) - \ln(C_t) = g + \nu_{t+1}$$
 (35)

where $v_{t+1} \sim N\left(0, \sigma^2\right)$ and is independently distributed.

Preferences

Preferences: A representative individual maximizes

$$E_0 \left[\sum_{t=0}^{\infty} \delta^t \frac{(C_t - X_t)^{\gamma} - 1}{\gamma} \right]$$
 (36)

where $\gamma < 1$ and X_t denotes the "habit level" that is related to the surplus consumption ratio, $S_t \equiv \frac{C_t - X_t}{C_t}$, where

$$\ln\left(S_{t+1}\right) = \left(1 - \phi\right) \ln\left(\overline{S}\right) + \phi \ln\left(S_{t}\right) + \lambda \left(S_{t}\right) \nu_{t+1} \tag{37}$$

and where $\lambda(S_t)$ is the sensitivity function

$$\lambda\left(S_{t}\right) = \frac{1}{\overline{S}}\sqrt{1 - 2\left[\ln\left(S_{t}\right) - \ln\left(\overline{S}\right)\right]} - 1 \tag{38}$$

and

$$\overline{S} = \sigma \sqrt{\frac{1 - \gamma}{1 - \phi}} \tag{39}$$

Concept of External Habit

- In Constantinides (1990) an individual's habit depends on her own past consumption, so that when choosing C_t she takes into account how it will affect her future utility.
- In Campbell and Cochrane (1999) an individual's habit depends on everyone else's current and past consumption, so that when choosing C_t she views X_t as exogenous.
- The external habit assumption simplifies the agent's decision making because habit is an exogenous state variable that depends on aggregate, not the individual's, consumption.

George Pennacchi University of Illinois

Equilibrium Asset Prices

• The individual's marginal utility of consumption is

$$u_c(C_t, X_t) = (C_t - X_t)^{\gamma - 1} = C_t^{\gamma - 1} S_t^{\gamma - 1}$$
 (40)

and the representative agent's stochastic discount factor is

$$m_{t,t+1} = \delta \frac{u_c(C_{t+1}, X_{t+1})}{u_c(C_t, X_t)} = \delta \left(\frac{C_{t+1}}{C_t}\right)^{\gamma - 1} \left(\frac{S_{t+1}}{S_t}\right)^{\gamma - 1} \tag{41}$$

George Pennacchi University of Illinois

Risk-free Interest Rate

• Let $r = -\ln(E_t[m_{t,t+1}])$ be the continuously compounded risk-free rate between dates t and t+1:

$$r = -\ln\left(\delta E_{t} \left[e^{-(1-\gamma)\ln(C_{t+1}/C_{t}) - (1-\gamma)\ln(S_{t+1}/S_{t})} \right] \right)$$
(42)

$$= -\ln\left(\delta e^{-(1-\gamma)E_{t}[\ln(C_{t+1}/C_{t})] - (1-\gamma)E_{t}[\ln(S_{t+1}/S_{t})]} \right)$$

$$\times e^{\frac{1}{2}(1-\gamma)^{2}Var_{t}[\ln(C_{t+1}/C_{t}) + \ln(S_{t+1}/S_{t})]} \right)$$

$$= -\ln(\delta) + (1-\gamma)g + (1-\gamma)(1-\phi)(\ln\overline{S} - \ln S_{t})$$

$$-\frac{1}{2}(1-\gamma)^{2}\sigma^{2}[1+\lambda(S_{t})]^{2}$$

• Substituting in for $\lambda(S_t)$ shows that the rate is constant:

$$r = -\ln(\delta) + (1 - \gamma)g - \frac{1}{2}(1 - \gamma)(1 - \phi)$$
 (43)

Price of Market Portfolio

 Aggregate consumption equals the economy's aggregate dividends (output) paid by the market portfolio. Therefore,

$$P_{t} = E_{t} \left[m_{t,t+1} \left(C_{t+1} + P_{t+1} \right) \right] \tag{44}$$

• The price-dividend ratio for the market portfolio is:

$$\frac{P_t}{C_t} = E_t \left[m_{t,t+1} \frac{C_{t+1}}{C_t} \left(1 + \frac{P_{t+1}}{C_{t+1}} \right) \right]$$

$$= \delta E_t \left[\left(\frac{S_{t+1}}{S_t} \right)^{\gamma - 1} \left(\frac{C_{t+1}}{C_t} \right)^{\gamma} \left(1 + \frac{P_{t+1}}{C_{t+1}} \right) \right]$$
(45)

Time-Inseparable Utility

Solution

• Solve forward this difference equation by repeatedly updating and substituting for P_{t+i}/C_{t+i} to obtain:

$$\frac{P_t}{C_t} = E_t \left[\sum_{i=1}^{\infty} \delta^i \left(\frac{S_{t+i}}{S_t} \right)^{\gamma - 1} \left(\frac{C_{t+i}}{C_t} \right)^{\gamma} \right]$$
(46)

- The solution is computed numerically by simulating the lognormal processes for C_t and S_t , noting that S_{t+1}/S_t depends on the current level of S_t .
- P_t/C_t varies only with S_t , so that the portfolio's expected returns and volatility are also functions of S_t .

George Pennacchi University of Illinois

Coefficient of Relative Risk Aversion

Note that the coefficient of relative risk aversion is

$$-\frac{C_t u_{cc}}{u_c} = \frac{1 - \gamma}{S_t} \tag{47}$$

 As shown earlier, when consumption is lognormally distributed the H-J bound is approximately

$$\left| \frac{E[r_i] - r}{\sigma_{r_i}} \right| \le -\frac{C_t u_{cc}}{u_c} \sigma_c = \frac{(1 - \gamma) \sigma_c}{S_t} \tag{48}$$

which is similar to Constantinides' internal habit model except, here, σ_c is a constant and $E[r_i]$ and σ_{r_i} are time-varying functions of S_t .

Model's Match to Data

- The coefficient of relative risk aversion is relatively high when S_t is relatively low, such as during a recession.
- Moreover, the model predicts that the equity risk premium increases during a recession (when $-\frac{C_t u_{cc}}{u_c}$ is high), which seems to be a phenomenon of the postwar U.S. stock market.
- Campbell and Cochrane calibrate the model to U.S. consumption and stock market data and, due to the nonlinear form for S_t , have more success in describing actual asset returns.

Recursive Utility

- Recursive utility is forward looking, and was developed by Kreps and Porteus (1978) and Epstein and Zin (1989).
- We will follow Duffie and Epstein (1992) and study the continuous-time limit of recursive utility.
- Recall that time-separable utility takes the form

$$V_{t} = E_{t} \left[\int_{t}^{T} U(C_{s}, s) ds \right]$$
 (49)

where $U(C_s, s)$ is often specified $U(C_s, s) = e^{-\rho(s-t)}u(C_s)$.

Recursive utility, however, takes the form

$$V_t = E_t \left[\int_t^T f(C_s, V_s) \ ds \right]$$
 (50)

where f is known as an aggregator function.

Time-Inseparable Utility

Features of Recursive Utility

- Utility (50) is recursive since current lifetime utility, V_t , depends on expected values of future lifetime utility, V_s , s > t.
- When f has appropriate properties, Duffie and Epstein (1992) show that a Bellman-type equation can be used to derive optimal consumption and portfolio choices.
- We consider a form of recursive utility that generalizes power (CRRA) utility.
- Unlike CRRA where the elasticity of intertemporal substitution, ϵ , must equal the inverse of the coefficient of relative risk aversion, $1/(1-\gamma)$, recursive utility distinguishes ϵ (an intertemporal consumption-savings choice concept) from $(1-\gamma)$ (an atemporal asset risk choice concept).

Assumptions of the Obstfeld Model

• **Technology**: There is a production economy where a capital-consumption good can be invested in two different technologies. The first is a risk-free technology whose output, B_t , follows the process

$$dB/B = rdt (51)$$

 \bullet The second is a risky technology whose output, $\eta_t,$ follows the process

$$d\eta/\eta = \mu dt + \sigma dz \tag{52}$$

• Since r, μ , and σ are constants, there are constant investment opportunities.

Recursive Preferences

Preferences: Representative, infinitely-lived agents maximize

$$V_t = E_t \int_t^\infty f(C_s, V_s) ds$$
 (53)

where f, the aggregator function, is given by

$$f(C_s, V_s) = \rho \frac{C_s^{1 - \frac{1}{\epsilon}} - \left[\gamma V_s\right]^{\frac{\epsilon - 1}{\epsilon \gamma}}}{\left(1 - \frac{1}{\epsilon}\right) \left[\gamma V_s\right]^{\frac{\epsilon - 1}{\epsilon \gamma} - 1}}$$
(54)

• $\rho>0$ is the agent's rate of time preference; $\epsilon>0$ is the elasticity of intertemporal substitution; and $1-\gamma>0$ is the coefficient of relative risk aversion. When $\epsilon=1/\left(1-\gamma\right)$, (53) and (54) are (ordinally) equivalent to

$$V_t = E_t \int_t^\infty e^{-\rho s} \frac{C_s^{\gamma}}{\gamma} ds \tag{55}$$

Derived Utility of Wealth

• If ω_t is the weight invested in the risky asset (technology), wealth satisfies

$$dW = [\omega(\mu - r)W + rW - C] dt + \omega \sigma W dz \qquad (56)$$

• Define $J(W_t)$ as the maximized lifetime utility at date t:

$$J(W_t) = \max_{\{C_s, \omega_s\}} E_t \int_t^{\infty} f(C_s, V_s) ds$$

$$= \max_{\{C_s, \omega_s\}} E_t \int_t^{\infty} f(C_s, J(W_s)) ds$$
(57)

• Due to the infinite horizon problem with constant investment opportunities, f(C, V) is not an explicit function of calendar time and the only state variable is W.

Bellman Equation

The Bellman equation is

$$0 = \max_{\{C_t, \omega_t\}} f[C_t, J(W_t)] + L[J(W_t)]$$
 (58)

or

$$0 = \max_{\{C_t, \omega_t\}} f[C, J(W)] + J_W [\omega (\mu - r) W + rW - C]$$

$$+ \frac{1}{2} J_{WW} \omega^2 \sigma^2 W^2$$

$$= \max_{\{C_t, \omega_t\}} \rho \frac{C^{1 - \frac{1}{\epsilon}} - [\gamma J]^{\frac{\epsilon - 1}{\epsilon \gamma}}}{(1 - \frac{1}{\epsilon}) [\gamma J]^{\frac{\epsilon - 1}{\epsilon \gamma} - 1}} + J_W [\omega (\mu - r) W + rW - C]$$

$$+ \frac{1}{2} J_{WW} \omega^2 \sigma^2 W^2$$

First-Order Conditions

• The first-order condition with respect to C_t is

$$\rho \frac{C^{-\frac{1}{\epsilon}}}{[\gamma J]^{\frac{\epsilon-1}{\epsilon\gamma}-1}} - J_W = 0 \tag{60}$$

or

$$C = \left(\frac{J_W}{\rho}\right)^{-\epsilon} \left[\gamma J\right]^{\frac{1-\epsilon}{\gamma} + \epsilon} \tag{61}$$

• The first-order condition with respect to ω_t is

$$J_W (\mu - r) W + J_{WW} \omega \sigma^2 W^2 = 0$$
 (62)

or

$$\omega = -\frac{J_W}{J_{WW}W} \frac{\mu - r}{\sigma^2} \tag{63}$$

Equilibrium Partial Differential Equation

• Substituting the optimal values for C and ω into (59):

$$\rho \frac{\left(\frac{J_{W}}{\rho}\right)^{1-\epsilon} \left[\gamma J\right]^{(\epsilon-1)\left[1-\frac{\epsilon-1}{\epsilon\gamma}\right]} - \left[\gamma J\right]^{\frac{1-\epsilon}{\epsilon\gamma}}}{\left(1-\frac{1}{\epsilon}\right) \left[\gamma J\right]^{\frac{\epsilon-1}{\epsilon\gamma}-1}}$$

$$+J_{W} \left[-\frac{J_{W}}{J_{WW}} \frac{(\mu-r)^{2}}{\sigma^{2}} + rW - \left(\frac{J_{W}}{\rho}\right)^{-\epsilon} \left[\gamma J\right]^{\frac{1-\epsilon}{\gamma}+\epsilon}\right]$$

$$+\frac{1}{2} \frac{J_{W}^{2}}{J_{WW}} \frac{(\mu-r)^{2}}{\sigma^{2}} = 0$$

$$(64)$$

George Pennacchi

Equilibrium Partial Differential Equation (continued)

Simplifying, one obtains:

$$\frac{\epsilon \rho}{\epsilon - 1} \left[\left(\frac{J_W}{\rho} \right)^{-\epsilon} \left[\gamma J \right]^{\frac{1 - \epsilon}{\gamma} + \epsilon} - \gamma J \right]$$

$$+ J_W \left[-\frac{J_W}{J_{WW}} \frac{(\mu - r)^2}{\sigma^2} + rW - \left(\frac{J_W}{\rho} \right)^{-\epsilon} \left[\gamma J \right]^{\frac{1 - \epsilon}{\gamma} + \epsilon} \right]$$

$$+ \frac{1}{2} \frac{J_W^2}{J_{WW}} \frac{(\mu - r)^2}{\sigma^2} = 0$$
(65)

Solution

• Guessing a solution of the form $J(W) = (aW)^{\gamma}/\gamma$ and substituting into (65), one finds that $a = \alpha^{1/(1-\epsilon)}$ where

$$\alpha \equiv \rho^{-\epsilon} \left(\epsilon \rho + (1 - \epsilon) \left[r + \frac{(\mu - r)^2}{2(1 - \gamma)\sigma^2} \right] \right)$$
 (66)

• In turn, substituting this value for J into (61), one obtains

$$C = \alpha \rho^{\epsilon} W$$

$$= \left(\epsilon \rho + (1 - \epsilon) \left[r + \frac{(\mu - r)^{2}}{2(1 - \gamma) \sigma^{2}} \right] \right) W$$
(67)

and the optimal portfolio weight of the risky asset is

$$\omega = \frac{\mu - r}{(1 - \gamma)\sigma^2} \tag{68}$$

George Pennacchi

Results

- Bhamra and Uppal (2003) show that when investment opportunities are stochastic, the portfolio weight, ω , can depend on both γ and ϵ .
- Note when $\epsilon=1/\left(1-\gamma\right)$, equation (67) equals $C=\frac{\gamma}{1-\gamma}\left[\frac{\rho}{\gamma}-r-\frac{(\mu-r)^2}{2(1-\gamma)\sigma^2}\right]W$ derived earlier for the CRRA case.
- For an infinite horizon solution to exist, C_t in (67) must be positive, requiring $\rho > \frac{\epsilon 1}{\epsilon} \left(r + \left[\mu r \right]^2 / \left[2 \left(1 \gamma \right) \sigma^2 \right] \right)$, which occurs when ϵ is small.
- For example, when $\rho>0$, the inequality is satisfied when $\epsilon<1$.

Optimal Consumption

• For C^* in (67), the term $r + [\mu - r]^2 / [2(1 - \gamma)\sigma^2]$ can be rewritten by substituting $\omega = (\mu - r) / [(1 - \gamma)\sigma^2]$:

$$r + \frac{(\mu - r)^2}{2(1 - \gamma)\sigma^2} = r + \omega \frac{\mu - r}{2}$$
 (69)

- An increase in (69) raises (reduces) C when $\epsilon < 1$ ($\epsilon > 1$).
- The intuition is that when $\epsilon < 1$, the income effect from an improvement in investment opportunities dominates the substitution effect, so that consumption rises and savings fall.
- The reverse occurs when $\epsilon > 1$: the substitution effect dominates the income effect and savings rise.

Wealth Dynamics

• Assuming $0 < \omega < 1$ and substituting (67) and (68) into (56), wealth follows the geometric Brownian motion:

$$\frac{dW}{W} = \left[\omega^* (\mu - r) + r - \alpha \rho^{\epsilon}\right] dt + \omega^* \sigma dz \tag{70}$$

$$= \left[\frac{(\mu - r)^2}{(1 - \gamma)\sigma^2} + r - \epsilon \rho - (1 - \epsilon)\left(r + \frac{(\mu - r)^2}{2(1 - \gamma)\sigma^2}\right)\right] dt$$

$$+ \frac{\mu - r}{(1 - \gamma)\sigma} dz$$

$$= \left[\epsilon \left(r + \frac{(\mu - r)^2}{2(1 - \gamma)\sigma^2} - \rho\right) + \frac{(\mu - r)^2}{2(1 - \gamma)\sigma^2}\right] dt$$

$$+ \frac{\mu - r}{(1 - \gamma)\sigma} dz$$

Economic Growth

- Note that since $C = \alpha \rho^{\epsilon} W$, then dC/C has the same drift and volatility as wealth in (70).
- Thus, d ln C has a volatility, σ_c , and a mean, g_c , equal to

$$\sigma_c = \frac{\mu - r}{(1 - \gamma)\sigma} \tag{71}$$

and

$$g_{c} = \epsilon \left(r + \frac{(\mu - r)^{2}}{2(1 - \gamma)\sigma^{2}} - \rho \right) + \frac{(\mu - r)^{2}}{2(1 - \gamma)\sigma^{2}} - \frac{1}{2}\sigma_{c}^{2}$$

$$= \epsilon \left(r + \frac{(\mu - r)^{2}}{2(1 - \gamma)\sigma^{2}} - \rho \right) - \frac{\gamma(\mu - r)^{2}}{2(1 - \gamma)^{2}\sigma^{2}}$$
(72)

Time-Inseparable Utility

Comparative Statics

- From (72), if $r + [\mu r]^2 / [2(1 \gamma)\sigma^2] > \rho$, growth rises with ϵ as individuals save more.
- The squared Sharpe ratio, $[\mu-r]^2/\sigma^2$ is a measure of the attractiveness of the risky asset, and the sign of $\partial g_c/\partial \left([\mu-r]^2/\sigma^2\right)$ equals the sign of $\epsilon-\gamma/(1-\gamma)$.
- For the CRRA case of $\epsilon = 1/(1-\gamma)$, the derivative is positive, so that $\partial g_c/\partial \mu > 0$ and $\partial g_c/\partial \sigma < 0$.
- In general, $\partial g_c/\partial \left(\left[\mu-r\right]^2/\sigma^2\right)<0$ if $\epsilon<\gamma/\left(1-\gamma\right)$ since from (68) as agents invest more in the faster-growing risky asset they also raise \mathcal{C}_t (and reduce savings) when $\epsilon<1$.
- Thus, when $\epsilon < \gamma/(1-\gamma)$, less savings dominates the portfolio effect and the economy grows more slowly.

Financial Market Globalization

- Obstfeld points out that the integration of global financial markets that allows residents to hold risky foreign, as well as domestic, investments increases diversification and effectively reduces individuals' portfolio variance, σ^2 .
- The model predicts that if $\epsilon > \gamma/(1-\gamma)$, financial market integration causes countries to grow faster.
- This recursive utility model does not help in explaining the equity premium puzzle since, from (71), the risky-asset Sharpe ratio, $(\mu r)/\sigma$, equals $(1 \gamma)\sigma_c$, the same form as with time-separable utility.

George Pennacchi University of Illinois

Risk-Free Rate Puzzle

• Recursive utility might explain the risk-free rate puzzle: substitute (71) into (72) and solve for *r*:

$$r = \rho + \frac{g_c}{\epsilon} - \left[1 - \gamma - \frac{\gamma}{\epsilon}\right] \frac{\sigma_c^2}{2} \tag{73}$$

ullet Recall that when $\epsilon=1/\left(1-\gamma
ight)$ we have

$$r = \rho + (1 - \gamma) g_c - (1 - \gamma)^2 \frac{\sigma_c^2}{2}$$
 (74)

- Empirically, $g_c \approx 0.018$ is large relative to $\sigma_c^2/2 \approx 0.03^2/2$ = 0.00045, so the net effect of higher risk aversion, 1γ , needed to fit the equity risk premium implies too high a risk-free rate in (74).
- (73) may circumvent this problem because g_c is divided by ϵ .

Estimating the Elasticity of Intertemporal Substitution

- From (70) and (72), if the risky-asset Sharpe ratio, $(\mu r)/\sigma$, is independent of the level of the real interest rate, r, then ϵ can be estimated by regressing consumption growth, $d \ln C$, on the real interest rate, r.
- Tests using aggregate consumption data find that ϵ is small, often close to zero.
- Other tests based on disaggregated consumption data find higher estimates for ϵ , often around 1.
- A value of $\epsilon=1$ makes r independent of γ and, assuming ρ is small, could produce a reasonable value for r.

Summary

- For utility with habit persistence, the standard coefficient of relative risk aversion, $1-\gamma$, is transformed to $(1-\gamma)/S_t$ where $S_t < 1$ is the surplus consumption ratio.
- These models may imply aversion to holding risky assets sufficient to justify a high equity risk premium.
- Recursive utility distinguishes between an individual's level of risk aversion and his elasticity of intertemporal substitution.
- Such utility might allow a high equity risk premium and a low risk-free interest rate that is present in historical data.

George Pennacchi University of Illinois