

Hijack a Kubernetes Cluster – a Walkthrough

Continuous Lifecycle / Container Conf 2022

Nico Meisenzahl

- Head of DevOps Consulting & Operations at white duck
- Microsoft MVP, GitLab Hero

Cloud Native, Kubernetes & Azure

Email: <u>nico.meisenzahl@whiteduck.de</u>

Twitter: @nmeisenzahl

LinkedIn: https://www.linkedin.com/in/nicomeisenzahl

Blog: https://meisenzahl.org

About this talk

- this is not an in-depth security talk
- it should make you aware of common attack vectors and how to prevent them
 - you will see demos on how to hijack a cluster
 - you will learn how to prevent those with common best practices
- three more slide, then we will start hijacking
 - https://github.com/nmeisenzahl/hijack-kubernetes

Why do we need to care about security?

In the past 12 months, what security incidents or issues related to containers and/or Kubernetes have you experienced? (pick as many as apply)

In the last 12 months, have you experienced revenue/customer loss due to a container/Kubernetes security or compliance issue/incident?

69% No 31% Yes

What we will do

Log4Shell

https://www.splunk.com/en_us/surge/log4shell-log4j-response-overview.html

Think about

- ensure secure application / deployment code
- build secure container images
- implement Kubernetes policies
- introduce Kubernetes Network policies
- rely on Container Runtime Security
- many more...

Security quick wins through the DevOps cycle

Ensure secure application code

- automate and enforce code checks
- schedule dependency scanning
 - Software Bill of Materials (SBOM)
 - Dependabot / Renovate
- enforce Static Application Security Testing (SAST) in PRs
 - scans your code to identify potential security vulnerabilities
 - more details: https://owasp.org/www-community/Source Code Analysis Tools

Build secure container images

- build secure/small container images less is more
 - do only include required dependencies (no debugging tools!)
 - use self-contained binaries, "distroless" or "(Un)distro" if possible
 - https://github.com/GoogleContainerTools/distroless
 - https://github.com/wolfi-dev/os
 - otherwise, use a small and secure Linux distro
- use and enforce SAST for validating your Dockerfiles
- scan your container images (on build and regularly)

Build secure container images

- build secure/small container images less
 - do only include required dependencies (no de
 - use self-contained binaries, "distroless" or "(Unit possible
 - https://github.com/GoogleContainerTools/distroless
 - https://github.com/wolfi-dev/os
 - otherwise, use a small and secure Linux distro
- use and enforce SAST for validating y
- scan your container images (on build and

Would have made it much harder to hijack the container and further expend

Would have shown the possibility of code injection

Ensure secure deployment code

- as important as secure application code and Dockerfiles
- validate your deployment manifests using SAST
 - and enforce them via PRs
- can help you to implement best practices like denying
 - containers running as root
 - mounting hostPath

• ...

Ensure secure deployment code

- as important as secure application code and Dockerfiles
- validate your deployment manifests using SAST
 - and enforce them via PRs
- can help you to implement best practices like denying
 - containers running as root
 - mounting hostPath

•

Would have made it much harder to hijack the node

Tooling

- Source code
 - https://codeql.github.com
 - https://security-code-scan.github.io
 - https://securego.io
- SBOM
 - https://github.com/anchore/syft
 - https://github.com/anchore/grype
- Dockerfiles
 - https://github.com/aquasecurity/trivy
 - https://github.com/bridgecrewio/checkov

Kubernetes manifests

- https://kubesec.io
- https://github.com/aquasecurity/trivy
- https://github.com/bridgecrewio/checkov
- https://github.com/Checkmarx/kics
- Terraform
 - https://github.com/tfsec/tfsec
 - https://github.com/aquasecurity/trivy
 - https://github.com/bridgecrewio/checkov

Kubernetes policies

- enforce compliance and governance within clusters
 - verifying manifests is not enough!
- examples include enforcement of
 - read-only filesystems
 - denying hostPath mounts
 - denying containers running as root
 - •

Kubernetes policies

- enforce compliance and governance within clusters
 - verifying manifests is not enough!
- examples include enforcement of
 - read-only filesystems
 - denying hostPath mounts
 - denying containers running as root

• ...

Would have made it much harder to further hijack the nodes and cloud resources

Kubernetes policy tooling

- Pod Security Admission
 - stable since 1.25
 - https://kubernetes.io/docs/concepts/security/pod-securityadmission
- Open Policy Agent Gatekeeper
 - https://github.com/open-policy-agent/gatekeeper
- Kyverno
 - https://kyverno.io

Network Policies

- granular deny or explicitly allow between containers and ingress/egress of the cluster
 - limit egress access to the internet
 - limit access between applications/namespaces
 - deny access to the Cloud provider metadata service
- https://kubernetes.io/docs/concepts/servicesnetworking/network-policies

Network Policies

- granular deny or explicitly allow be ingress/egress of the cluster
 - limit egress access to the internet
 - limit access between applications/namespaces
 - deny access to the Cloud provider metadata service
- https://kubernetes.io/docs/concepts/services-networking/network-policies

Would have denied network connections (reverse shell, Redis, Internet, metadata service)

and

Container Runtime Security

- helps to detect malicious threads and workloads
 - untrusted process within container
 - a shell is running inside a container
 - container process mounting a sensitive path
 - a process making outbound network connections
- container runtime security tools like Falco of Tetragon can help
 - https://github.com/falcosecurity
 - https://github.com/cilium/tetragon

Container Runtime Security

- helps to detect malicious threads and \ Would have detect all
 - untrusted process within container
 - a shell is running inside a container
 - container process mounting a sensitive path
 - a process making outbound network connections
- container runtime security tools like Falco of Tetragon can help
 - https://github.com/falcosecurity
 - https://github.com/cilium/tetragon

Would have detect all our "work" within the containers

Further best practises

- do not
 - share service accounts between applications
 - enable higher access levels for the default service account if not required
 - mount service account token if not required
 - https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
 - changed with 1.24
- review all third-party snippets before applying them
- implement a Web Application Firewall (WAF) to further secure your application

Further best practises

Wouldn't have allowed us to talk to the API server

- do not
 - share service accounts between applications
 - enable higher access levels for the default service account if not required
 - mount service account token if not required
 - https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/#use-the-default-service-account-to-access-the-api-server
 - changed with 1.24
- review all third-party snippets before applying them
- implement a Web Application Firewall (WAF) to further secure your application

Would have denied our code injection

Questions?

Slides: https://www.slideshare.net/nmeisenzahl

Demo: https://github.com/nmeisenzahl/hijack-kubernetes

Email: <u>nico.meisenzahl@whiteduck.de</u>

Twitter: @nmeisenzahl

LinkedIn: https://www.linkedin.com/in/nicomeisenzahl

Blog: https://meisenzahl.org

