Modern Cryptography

Agenda

- Block Ciphers
- Public-Key Encryption
- Other Uses for Cryptography
- Summary
- Exercises

Block Ciphers

- The message is broken into blocks that are encrypted separately
- Allows easy streaming
- Allows efficient memory management

Substitution-Permutation Networks

Substitution-Permutation Networks

- S-box: Combines part of a block with part of the key
- P-box: Rearranges the bits in the entire block

AES

- The Advanced Encryption Standard (AES) uses a substitution-permutation
- It uses a block size of 128 bits and a key size of 128, 192, or 256 bits, depending on the level of security you want
- # Rounds:
 - 10 rounds for 128-bit keys
 - 12 rounds for 192-bit keys
 - 14 rounds for 256-bit keys

Feistel Ciphers

- Named after cryptographer Horst Feistel
- 1. Split the plaintext into two halves, L_0 and R_0
- 2. Repeat:
 - a. Set $L_i + 1 = R_i$
 - b. Set $R_i+1 = L_i \oplus F(R_i, K_i)$
- 3. Ciphertext is L_{i+1} together with R_{i+1}

K_i is the key for round i

F is some function

Decrypting Feistel Ciphers

- 1. Split the ciphertext into halves, L_{i+1} and R_{i+1}
- 2. Repeat:
 - a. Set $R_i = L_{i+1}$
 - b. Set $L_i = R_{i+1} \oplus F(L_{i+1}, K_i)$

DES

- The Data Encryption Standard (DES) is a Feistel cipher
- No longer considered secure enough, largely due to its relatively short 56-bit key
- A variation of this method called Triple DES simply applies DES three times to each block
- Triple DES is believed to be secure in practice, although most highly secure applications now use AES instead

Public-Key Encryption

- The sender uses the public key (known to everyone) to encrypt messages
- The receiver uses the private key (known only to the receiver) to decrypt messages

RSA

 Uses the fact that multiplying two numbers is easy but factoring large numbers is hard

Generating Keys

- 1. Pick two large prime numbers p and q
- 2. Compute $n = p \times q$. Release n as the public key modulus.
- Compute φ(n), where φ is Euler's totient function (more about this later). Pick integer e where 1 ≤ e ≤ φ(n) and e and φ(n) are relatively prime. Release n as the public key exponent.
- 4. Find d, the multiplicative inverse of e modulo $\phi(n)$. In other words, $e \times d \equiv 1 \mod \phi(n)$. The value d is the private key.

Encrypting and Decrypting

The public key consists of the values n and e

- To encrypt message M, the sender uses the formula C = M^e mod n
- To decrypt a message, the receiver simply calculates C^d mod n

Euler's Totient Function

- φ(n) gives the number of positive integers less than n that are relatively prime to n
- Example: φ(12) = 4 because 1, 5, 7, and 11 are relatively prime to 12

Euler's Totient Function (continued)

- A prime number is relatively prime to every number less than itself so $\phi(p) = p - 1$
- If p and q are relatively prime,

$$\varphi(p \times q) = \varphi(p) \times \varphi(p)$$

• If p and q are both primes, they are relatively prime, so in step 3 it is easy to compute:

$$\phi(n) = \phi(p \times q) = \phi(p) \times \phi(q) = (p-1) \times (q-1)$$

Euler's Totient Function Example

- Suppose p = 3 and q = 5
- $\phi(15) = \phi(3) \times \phi(5)$ = $(3-1) \times (5-1)$ = 2×4 = 8
- The positive integers smaller than 15 that are relatively prime to 15 are:

1, 2, 4, 7, 8, 11, 13, and 14

Multiplicative Inverses

- Method 1:
 - Compute:

```
(1 \times d) \mod \phi(n)
```

$$(2 \times d) \mod \phi(n)$$

$$(3 \times d) \mod \phi(n)$$

...

until you find a value that makes the result 1

- Method 2:
 - Use an extended GCD algorithm

```
(See http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm)
```

RSA Example – Finding Keys

1. Pick two large prime numbers p and q. Let p = 17 and q = 29

- 2. Compute the public key modulus $n = p \times q$ $n = 17 \times 29 = 493$
- 3. Compute $\phi(n)$ where ϕ is Euler's totient function

$$\phi(n) = (p-1) \times (q-1) = 16 \times 28 = 448$$

RSA Example – Finding Keys (continued)

 Pick an integer e where 1 ≤ e ≤ φ(n) and e and φ(n) are relatively prime

Need $1 \le e \le 448$, relatively prime to 448

 $448 = 2^6 \times 7$ so no factors of 2 or 7

Let e = $3 \times 5 \times 11 = 165$

5. Find d, the multiplicative inverse of e modulo $\phi(n)$. In other words, $d \times 165 \equiv 1 \mod 448$.

$$d = 429$$

RSA Example – Encryption

- Public exponent e = 165
- Public modulus n = 493
- Secret key d = 429

- Encrypt the message M = 321
- $C = M^e \mod n = 321^{165} \mod 493 = 359$

RSA Example – Decryption

- Public exponent e = 165
- Public modulus n = 493
- Secret key d = 429

- Decrypt the message C = 359
- $M = C^d \mod n = 359^{429} \mod 493 = 321$

Other Uses for Cryptography

- Hashing
- Digital signatures
- Document signing

Summary

- Block Ciphers
 - Substitution-Permutation Networks (AES)
 - Feistel Ciphers (DES)
- Public-Key Encryption
 - RSA
- Other Uses for Cryptography

Exercises

- Chapter 16 Exercise 15.
- Read Essential Algorithms, 2e Chapter 17
 pages 543 560. (All of Chapter 17.)