PROBABILITÉS CONDITIONNELLES E02

EXERCICE N°1 Avec la définition

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne P(A)=0.3 , P(B)=0.4 et $P(A\cap B)=0.1$. Déterminer $P_A(B)$ et $P_B(A)$.
- 2) On donne $P_A(B)=0.6$, P(B)=0.25 et $P(A\cap B)=0.15$. Déterminer P(A) et $P_B(A)$.
- 3) On donne $P_B(A)=0.6$, P(B)=0.15 et P(A)=0.45 . Déterminer $P(A\cap B)$ et $P_A(B)$.

EXERCICE N°2 Avec la propriété en cas d'équiprobabilité

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne $Card(\Omega)=50$, Card(A)=30, Card(B)=15 et $Card(A\cap B)=12$ Déterminer $P_A(B)$ et $P_B(A)$.
- 2) On donne $Card(\Omega)=50$, $P_A(B)=0.525$, Card(B)=40 et $Card(A\cap B)=21$. Déterminer Card(A), P(A) et enfin $P_B(A)$.
- 3) On donne $P_B(A)=0.2$, Card(B)=105 et Card(A)=70. Déterminer $Card(A\cap B)$ et $P_A(B)$.

EXERCICE N°3 Avec un tableau en cas d'équiprobabilité

(Calculatrice non nécessaire mais autorisée)
Inspiré du sésamath 1et Spé

Dans une boulangerie, on dispose d'une réduction si l'on choisit la formule « dessert mystère » pour laquelle le dessert accompagnant le menu est tiré au hasard.

Gérard choisit cette formule alors que les desserts encore disponibles sont répartis comme suit.

	Chocolat	Vanille	Total
Tartelette	8	11	19
Éclair	13	7	20
Total	21	18	39

On considère les événements

E: « Son dessert est un éclair » et

V: « Son dessert est à la vanille ».

- 1) Calculer $P_E(V)$, $P_V(E)$, $P_{\overline{E}}(V)$.
- 2) Gérard voit que son dessert est un éclair. Écrire la probabilité qu'il soit au chocolat comme une probabilité conditionnelle puis la calculer.

PROBABILITÉS CONDITIONNELLES E02

EXERCICE N°1 Avec la définition

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne P(A)=0.3 , P(B)=0.4 et $P(A\cap B)=0.1$. Déterminer $P_A(B)$ et $P_B(A)$.
- 2) On donne $P_A(B)=0.6$, P(B)=0.25 et $P(A\cap B)=0.15$. Déterminer P(A) et $P_B(A)$.
- 3) On donne $P_B(A)=0.6$, P(B)=0.15 et P(A)=0.45 . Déterminer $P(A\cap B)$ et $P_A(B)$.

EXERCICE N°2 Avec la propriété en cas d'équiprobabilité

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne $Card(\Omega)=50$, Card(A)=30, Card(B)=15 et $Card(A\cap B)=12$ Déterminer $P_A(B)$ et $P_B(A)$.
- 2) On donne $Card(\Omega)=50$, $P_A(B)=0.525$, Card(B)=40 et $Card(A\cap B)=21$. Déterminer Card(A), P(A) et enfin $P_B(A)$.
- 3) On donne $P_B(A)=0.2$, Card(B)=105 et Card(A)=70. Déterminer $Card(A\cap B)$ et $P_A(B)$.

EXERCICE N°3 Avec un tableau en cas d'équiprobabilité

(Calculatrice non nécessaire mais autorisée)
Inspiré du sésamath 1et Spé

Dans une boulangerie, on dispose d'une réduction si l'on choisit la formule « dessert mystère » pour laquelle le dessert accompagnant le menu est tiré au hasard.

Gérard choisit cette formule alors que les desserts encore disponibles sont répartis comme suit.

	Chocolat	Vanille	Total
Tartelette	8	11	19
Éclair	13	7	20
Total	21	18	39

On considère les événements

E: « Son dessert est un éclair » et

V: « Son dessert est à la vanille ».

- 1) Calculer $P_E(V)$, $P_V(E)$, $P_{\overline{E}}(V)$.
- 2) Gérard voit que son dessert est un éclair. Écrire la probabilité qu'il soit au chocolat comme une probabilité conditionnelle puis la calculer.