

Exercice 1 SABCD est une pyramide régulière à base carrée ABCD dont toutes les arêtes ont la même longueur. Le point I est le centre du carré ABCD.

On suppose que : IC = IB = IS = 1.

Les points K, L et M sont les milieux respectifs des arêtes [SD], [SC] et [SB].

- 1. Parmi les couples de droites suivantes, lequelles ne sont pas coplanaires :
 - **a.** (DK) et (SD)
- **b.** (AS) et (IC)
- **c.** (AC) et (SB)
- **d.** (LM) et (AD)

- **2.** Calculer \overrightarrow{IM} en fonction des vecteurs \overrightarrow{IC} , \overrightarrow{IB} et \overrightarrow{IS} .
- **3.** Calculer \overrightarrow{IK} en fonction des vecteurs \overrightarrow{IC} , \overrightarrow{IB} et \overrightarrow{IS} .
- **4.** Calculer \overrightarrow{IL} en fonction des vecteurs \overrightarrow{IC} , \overrightarrow{IB} et \overrightarrow{IS} .
- **5.** Pour les questions suivantes, on se place dans le repère orthonormé de l'espace $(I; \overrightarrow{IC}, \overrightarrow{IB}, \overrightarrow{IS})$.
 - a. Donner les coordonnées de chacun des points du dessin.
 - \pmb{b} . Déterminer les coordonnées du milieu N de [KL].
 - c. Déterminer les coordonnées du vecteur \overrightarrow{AS} .
 - **d.** Montrer ques les vecteurs \overrightarrow{IC} et \overrightarrow{IC} son colinéaires. Que peut-on en déduire sur les droites (KM) et (DB)?
- **Exercice 2** 1. La limite en $+\infty$ de la fonction $f(x) = \frac{2x^2+3}{x+3}$ est :
 - **a.** 0

 \boldsymbol{b} . $+\infty$

 $c. -\infty$

d. 2

- **2.** La limite en $+\infty$ de la fonction $f(x) = \frac{2x^2+3}{x^2+3}$ est :
 - **a.** 0

 $b. +\infty$

 $c. -\infty$

d. 2

3. Déterminer la limite en $+\infty$ de $f(x) = \sqrt{x+1} - \sqrt{x}$. Justifier.

10

Exercice 3 La suite (u_n) est définie sur \mathbb{N} par $u_0 = 1$ et pour tout entier naturel n,

$$u_{n+1} = \frac{3}{4}u_n + \frac{1}{4}n + 1.$$

1. Calculer, en détaillant les calculs, u_1 et u_2 sous forme de fraction irréductible.

L'extrait, reproduit ci-contre, d'une feuille de calcul réalisée avec un tableur présente les valeurs des premiers termes de la suite (u_n) .

	A	В
1	n	u_n
2	0	1
3	1	1,75
4	2	2,5625
5	3	3,421875
6	4	4,31640625

- **2.** *a.* Quelle formule, étirée ensuite vers le bas, peut-on écrire dans la cellule B3 de la feuille de calcul pour obtenir les termes successifs de (u_n) dans la colonne B?
 - **b.** Conjecturer le sens de variation de la suite (u_n) .
- **3.** *a.* Démontrer par récurrence que, pour tout entier naturel n, on $a: n \le u_n \le n+1$.
 - **b.** En déduire, en justifiant la réponse, le sens de variation et la limite de la suite (u_n) .
 - c. Démontrer que :

$$\lim_{n\to+\infty}\frac{u_n}{n}=1.$$

2

- **4.** On désigne par (v_n) la suite définie sur \mathbb{N} par $v_n = u_n n$
 - **a.** Démontrer que la suite (v_n) est géométrique de raison $\frac{3}{4}$.
 - **b.** En déduire que, pour tout entier naturel n,on $a: u_n = \left(\frac{3}{4}\right)^n + n$.