Functions of Linear Regression

Xueyuan Gong
Department of Computer and Information Science
Faculty of Science and Technology
University of Macau
Macau, China
{yb47453}@umac.mo

Given a data set $X \in \mathbb{R}^{n \times (m-1)}$ and a label set $Y \in \mathbb{R}^{n \times 1}$. Let two indices i and j be subject to $1 \leq i \leq n$ and $2 \leq j \leq m$ respectively. Thus, a data value is denoted as X^i_j and a label value is denoted as Y^i . For all X^i , insert $X^i_1 = 1$ so that $X \in \mathbb{R}^{n \times m}$ and $1 \leq j \leq m$. Initialize weight matrix $W \in \mathbb{R}^{1 \times m}$ and thus a weight value is denoted as W_j .

Hypothesis function is defined in Equation (1).

$$H(X^{i}) = \sum_{j=1}^{m} W_{j} X_{j}^{i}$$
 (1)

Loss function is defined in Equation (2).

$$C(X^i) = H(X^i) - Y^i \tag{2}$$

Cost function is defined in Equation (3).

$$J(W) = \frac{1}{2n} \sum_{i=1}^{n} C^{2}(X^{i})$$

$$= \frac{1}{2n} \sum_{i=1}^{n} (\sum_{j=1}^{m} W_{j} X_{j}^{i} - Y^{i})^{2}$$
(3)

The partial derivative of J(W) with respect to W_j is given as follows:

$$\begin{split} \frac{\partial J(W)}{\partial W_j} &= \frac{1}{2n} \sum_{i=1}^n \frac{\partial C^2(X^i)}{\partial W_j} \\ &= \frac{1}{2n} \sum_{i=1}^n \frac{\partial C^2(X^i)}{\partial C(X^i)} \cdot \frac{\partial C(X^i)}{\partial H(X^i)} \cdot \frac{\partial H(X^i)}{\partial W_j} \\ &= \frac{1}{2n} \sum_{i=1}^n 2C(X^i) \cdot 1 \cdot X_j^i \\ &= \frac{1}{n} \sum_{i=1}^n (H(X^i) - Y^i) X_j^i \end{split}$$

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...\$15.00.

Thus, for all W_j , the update function is given as follows:

$$W_{j} = W_{j} - \frac{\gamma}{n} \sum_{i=1}^{n} (H(X^{i}) - Y^{i}) X_{j}^{i}$$

where γ is the learning rate given by users.