# **MARKET BASKET INSIGHTS**

**TEAM MEMBER: N.DHIVYA (922121106010)** 

# PHASE 2 SUBMISSION DOCUMENT

**PROJECT:** Market basket insights



**INTRODUCTION** Market basket analysis is a datamining technique used by retailers to increase sales by better understanding customer purchasing patterns. It involves analyzing large data sets, such as purchase

history, to reveal product groupings, as well as products that are likely to be purchased together.

# <u>DATA SOURCE</u> https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis

#### **PROGRAM**

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import style
style.use("ggplot")
sns.set_palette("bright")
from warnings import filterwarnings
filterwarnings("ignore")
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
   for filename in filenames:
        print(os.path.join(dirname, filename))
/kaggle/input/market-basket-analysis/Assignment-1_Data.xlsx
/kaggle/input/market-basket-analysis/Assignment-1_Data.csv
df = pd.read_csv("../input/market-basket-analysis/Assignment-1_Data.csv",
sep=';')
df.head()
```

### Out[3]:

|   | BillNo | Itemname                                        | Quantity | Date                | Price | CustomerID | Country           |
|---|--------|-------------------------------------------------|----------|---------------------|-------|------------|-------------------|
| 0 | 536365 | WHITE<br>HANGING<br>HEART T-<br>LIGHT<br>HOLDER | 6        | 01.12.2010<br>08:26 | 2,55  | 17850.0    | United<br>Kingdom |
| 1 | 536365 | WHITE<br>METAL<br>LANTERN                       | 6        | 01.12.2010<br>08:26 | 3,39  | 17850.0    | United<br>Kingdom |

| 2 | 536365 | CREAM<br>CUPID<br>HEARTS<br>COAT<br>HANGER   | 8 | 01.12.2010<br>08:26 | 2,75 | 17850.0 | United<br>Kingdom |
|---|--------|----------------------------------------------|---|---------------------|------|---------|-------------------|
| 3 | 536365 | KNITTED<br>UNION FLAG<br>HOT WATER<br>BOTTLE | 6 | 01.12.2010<br>08:26 | 3,39 | 17850.0 | United<br>Kingdom |
| 4 | 536365 | RED<br>WOOLLY<br>HOTTIE<br>WHITE<br>HEART.   | 6 | 01.12.2010<br>08:26 | 3,39 | 17850.0 | United<br>Kingdom |

In [4]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 522064 entries, 0 to 522063
Data columns (total 7 columns):
    Column
                Non-Null Count
                                 Dtype
--- -----
                _____
                                 ____
0
    BillNo
                522064 non-null object
1
    Itemname
                520609 non-null object
    Quantity
                522064 non-null int64
    Date
                522064 non-null object
4
    Price
                522064 non-null object
5
    CustomerID 388023 non-null float64
    Country
                522064 non-null object
dtypes: float64(1), int64(1), object(5)
memory usage: 27.9+ MB
df["Price"] = df["Price"].str.replace(",",".")
df["Price"] = df["Price"].astype("float64")
df.Date.unique()
array(['01.12.2010 08:26', '01.12.2010 08:28', '01.12.2010 08:34', ...,
       '09.12.2011 12:31', '09.12.2011 12:49', '09.12.2011 12:50'],
     dtype=object)
today = "2012-01-01"
today = pd.to_datetime(today)
df["Date"] = pd.to_datetime(df["Date"])
```

### RFM ANALYSIS

```
rec_table = df.groupby(["CustomerID"]).agg({"Date": lambda x: ((today -
x.max()).days)})
rec_table.columns = ["Recency"]
In [9]rec_table.head()
```

|            | Recency |
|------------|---------|
| CustomerID |         |
| 12346.0    | 347     |
| 12347.0    | 61      |
| 12349.0    | 40      |
| 12350.0    | 332     |
| 12352.0    | 94      |

# Frequency

### Out[10]:

|            | Frequency |
|------------|-----------|
| CustomerID |           |
| 12346.0    | 1         |
| 12347.0    | 7         |
| 12349.0    | 1         |
| 12350.0    | 1         |
| 12352.0    | 8         |

# Monetary

```
In [11]:
df["Total_Price"] = df["Quantity"] * df["Price"]
In [12]:
```

```
monetary_table = df.groupby(["CustomerID"])[["Total_Price"]].sum()
monetary_table.columns = ["Monetary"]
monetary_table.head()
```

### Out[12]:

|            | Monetary |
|------------|----------|
| CustomerID |          |
| 12346.0    | 77183.60 |
| 12347.0    | 4310.00  |
| 12349.0    | 1757.55  |
| 12350.0    | 334.40   |
| 12352.0    | 2506.04  |

In [13]:

rfm\_data = pd.concat([rec\_table, freq\_table, monetary\_table], axis = 1)
rfm\_data.head()

### Out[13]:

|            | Recency | Frequency | Monetary |
|------------|---------|-----------|----------|
| CustomerID |         |           |          |
| 12346.0    | 347     | 1         | 77183.60 |
| 12347.0    | 61      | 7         | 4310.00  |
| 12349.0    | 40      | 1         | 1757.55  |
| 12350.0    | 332     | 1         | 334.40   |
| 12352.0    | 94      | 8         | 2506.04  |

In [14]:

rfm\_data.describe()

### Out[14]:

|       | Recency     | Frequency   | Monetary    |
|-------|-------------|-------------|-------------|
| count | 4297.000000 | 4297.000000 | 4297.000000 |
| mean  | 126.545264  | 4.227368    | 1993.140888 |
| std   | 115.234387  | 7.091298    | 8588.143093 |
| min   | 21.000000   | 1.000000    | 0.000000    |

| 25% | 43.000000  | 1.000000   | 306.720000    |
|-----|------------|------------|---------------|
| 50% | 82.000000  | 2.000000   | 668.580000    |
| 75% | 183.000000 | 5.000000   | 1652.580000   |
| max | 718.000000 | 210.000000 | 280206.020000 |

Scaling the data for clustering.

# **CLUSTERING**

In [15]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
rfm_scaled = scaler.<u>fit_transform(rfm_data)</u>
```

#### Let's determine a cluster number

```
inertia = []

from sklearn.cluster import KMeans
for i in np.arange(1,6):
    kmeans = KMeans(n_clusters = i)
    kmeans.fit(rfm_scaled)
    inertia.append(kmeans.inertia_)

plt.figure(figsize = (12,8))
plt.plot(inertia, marker = "o")
plt.title("KMeans - Elbow", fontsize = 18);
```



Best cluster number is 3. Let's create a clustering model.

```
kmeans = KMeans(n_clusters = 3)
kmeans.fit(rfm_scaled)
rfm_data["Cluster_No"] = (kmeans.labels_ + 1)
rfm_data.head()
```

|            | Recency | Frequency | Monetary | Cluster_No |
|------------|---------|-----------|----------|------------|
| CustomerID |         |           |          |            |
| 12346.0    | 347     | 1         | 77183.60 | 3          |
| 12347.0    | 61      | 7         | 4310.00  | 2          |
| 12349.0    | 40      | 1         | 1757.55  | 2          |
| 12350.0    | 332     | 1         | 334.40   | 1          |
| 12352.0    | 94      | 8         | 2506.04  | 2          |

# **Analyzing of Clustering**

```
In [19]:
rfm_data.groupby(["Cluster_No"])[["Recency", "Frequency",
"Monetary"]].mean()
```

#### Out[19]:

|            | Recency    | Frequency | Monetary     |
|------------|------------|-----------|--------------|
| Cluster_No |            |           |              |
| 1          | 281.745299 | 1.545299  | 495.484189   |
| 2          | 68.634429  | 4.797872  | 1913.384218  |
| 3          | 48.760000  | 58.960000 | 81979.682000 |

Hmm. Our model determine 3 clusters that

- **Cluster 1** --> Customers who haven't been here in a long time. We need to do some discount for them. We can still turn them back.
- Cluster 2 --> Middle-level customers.
- **Cluster 3** --> Premium customers. We don't want to lose them. They spend a lot of money for us, and their recency is good.

In [20]:

```
plt.figure(figsize = (12,8))
ax = sns.countplot(rfm_data.Cluster_No)
plt.title("Number of Clusters", fontsize = 20);
for bars in ax.containers:
    ax.bar_label(bars)
```



- As we can see, only 25 people are premium customers,
- 3102 people are middle-level customers
- 1170 people are customers that we can turn back.

Let's visualize them with scatterplot.

```
In [21]:
from sklearn.decomposition import PCA

pca = PCA(n_components = 2)
pca = pca.fit_transform(rfm_scaled)

In [22]:
plt.figure(figsize = (12,8))
plt.scatter(pca[:,0], pca[:,1], c = kmeans.labels_)
plt.title("Clusters of Customers", fontsize = 20);
```



### **ASSOCIATION ANALYSIS**

**Association analysis** is the task of finding interesting relationships in large datasets. These interesting relationships can take two forms: frequent item sets or association rules. Frequent item sets are a collection of items that frequently occur together. The second way to view interesting relationships is association rules. Association rules suggest that a strong relationship exists between two items.

Now, we will take a look at which items are related to each other.

```
In [23]:
data_apr = df.groupby(["BillNo", "Itemname"])[["Quantity"]].sum(
).unstack().reset_index().fillna(0).set_index("BillNo")

In [24]:
data_apr.head()

def num(x):
    if x <= 0:
        return 0
    elif x >=1:
        return 1
basket_new = data_apr.applymap(num)

In [26]:
basket_new.nunique()
```

#### Itemname Quantity \*Boombox Ipod Classic 2 \*USB Office Mirror Ball 2 10 COLOUR SPACEBOY PEN 2 12 COLOURED PARTY BALLOONS 2 12 DAISY PEGS IN WOOD BOX 2 wrongly marked carton 22804 1 wrongly marked. 23343 in box 1 wrongly sold (22719) barcode wrongly sold as sets 1 wrongly sold sets 1 Length: 4185, dtype: int64

#!pip install mlxtend

In [28]:

In [27]:

from mlxtend.frequent\_patterns import apriori

```
apr = apriori(basket_new, min_support = 0.02, use_colnames = <u>True</u>)
apr.<u>sort_values(by = "support", ascending = False)</u>
```

/opt/conda/lib/python3.7/site-

packages/mlxtend/frequent\_patterns/fpcommon.py:115: DeprecationWarning: DataFrames with non-bool types result in worse computationalperformance and their support might be discontinued in the future.Please use a DataFrame with bool type

DeprecationWarning,

#### 0ut[28]

| _   | Out[26]. |                                                      |  |
|-----|----------|------------------------------------------------------|--|
|     | support  | itemsets                                             |  |
| 263 | 0.108956 | ((Quantity, WHITE HANGING HEART T-<br>LIGHT HOLDER)) |  |
| 97  | 0.102128 | ((Quantity, JUMBO BAG RED<br>RETROSPOT))             |  |
| 190 | 0.094211 | ((Quantity, REGENCY CAKESTAND 3<br>TIER))            |  |
| 151 | 0.081940 | ((Quantity, PARTY BUNTING))                          |  |
| 122 | 0.076249 | ((Quantity, LUNCH BAG RED<br>RETROSPOT))             |  |
|     |          |                                                      |  |

| 274 | 0.020139 | ((Quantity, WOODEN UNION JACK<br>BUNTING))          |
|-----|----------|-----------------------------------------------------|
| 245 | 0.020139 | ((Quantity, STRAWBERRY SHOPPER<br>BAG))             |
| 219 | 0.020139 | ((Quantity, SET OF 60 I LOVE LONDON<br>CAKE CASES)) |
| 195 | 0.020040 | ((Quantity, RIBBON REEL STRIPES<br>DESIGN))         |
| 354 | 0.020040 | ((Quantity, WOODEN PICTURE FRAME<br>WHITE FINISH)   |

358 rows  $\times$  2 columns

In [29]:

```
from mlxtend.frequent_patterns import association_rules
end = association_rules(apr, metric = "lift", min_threshold = 1)
end.sort_values(by = "confidence", ascending = False)
```

### Out[29]:

|         | antecedents                                                | consequents                                               | antecede<br>nt<br>support | conseque<br>nt<br>support | support      | confiden<br>ce | lift          | leverag<br>e | convicti<br>on |
|---------|------------------------------------------------------------|-----------------------------------------------------------|---------------------------|---------------------------|--------------|----------------|---------------|--------------|----------------|
| 15<br>4 | ((Quantity,<br>ROSES<br>REGENCY<br>TEACUP AND<br>SAUCER),  | ((Quantity,<br>GREEN<br>REGENCY<br>TEACUP AND<br>SAUCER)) | 0.028204                  | 0.048243                  | 0.02548      | 0.903509       | 18.7281<br>15 | 0.02412      | 9.86365<br>9   |
| 15<br>3 | ((Quantity,<br>PINK<br>REGENCY<br>TEACUP AND<br>SAUCER), ( | ((Quantity,<br>ROSES<br>REGENCY<br>TEACUP AND<br>SAUCER)) | 0.029936                  | 0.050124                  | 0.02548      | 0.851240       | 16.9827<br>78 | 0.02398      | 6.38528<br>0   |
| 25      | ((Quantity,<br>PINK<br>REGENCY<br>TEACUP AND<br>SAUCER))   | ((Quantity,<br>GREEN<br>REGENCY<br>TEACUP AND<br>SAUCER)) | 0.036418                  | 0.048243                  | 0.02993<br>6 | 0.822011       | 17.0388<br>10 | 0.02817<br>9 | 5.34727<br>3   |
| 16<br>0 | ((Quantity,<br>JUMBO<br>STORAGE<br>BAG SUKI),<br>(Quantity | ((Quantity,<br>JUMBO BAG<br>RED<br>RETROSPOT))            | 0.025433                  | 0.102128                  | 0.02038<br>6 | 0.801556       | 7.84857<br>3  | 0.01778<br>9 | 4.52457<br>2   |
| 13<br>9 | ((Quantity,<br>PINK<br>REGENCY<br>TEACUP AND<br>SAUCER))   | ((Quantity,<br>ROSES<br>REGENCY<br>TEACUP AND<br>SAUCER)) | 0.036418                  | 0.050124                  | 0.02820<br>4 | 0.774457       | 15.4509<br>05 | 0.02637<br>8 | 4.21150<br>0   |
|         |                                                            |                                                           |                           |                           |              |                |               |              |                |

| 70      | ((Quantity,<br>JUMBO BAG<br>RED<br>RETROSPOT))                   | ((Quantity,<br>JUMBO<br>STORAGE BAG<br>SKULLS))             | 0.102128 | 0.034785 | 0.02043<br>5 | 0.200097 | 5.75243<br>0 | 0.01688<br>3 | 1.20666<br>5 |
|---------|------------------------------------------------------------------|-------------------------------------------------------------|----------|----------|--------------|----------|--------------|--------------|--------------|
| 16<br>1 | ((Quantity,<br>JUMBO BAG<br>RED<br>RETROSPOT))                   | ((Quantity,<br>JUMBO<br>STORAGE BAG<br>SUKI),<br>(Quantity  | 0.102128 | 0.025433 | 0.02038<br>6 | 0.199612 | 7.84857<br>3 | 0.01778<br>9 | 1.21761<br>9 |
| 42      | ((Quantity,<br>JUMBO BAG<br>RED<br>RETROSPOT))                   | ((Quantity,<br>JUMBO BAG<br>ALPHABET))                      | 0.102128 | 0.043790 | 0.02033<br>6 | 0.199128 | 4.54731<br>6 | 0.01586<br>4 | 1.19396<br>1 |
| 13      | ((Quantity,<br>WHITE<br>HANGING<br>HEART T-<br>LIGHT<br>HOLDER)) | ((Quantity,<br>NATURAL<br>SLATE HEART<br>CHALKBOARD)        | 0.108956 | 0.060960 | 0.02033<br>6 | 0.186649 | 3.06182<br>3 | 0.01369<br>5 | 1.15453<br>2 |
| 14<br>9 | ((Quantity,<br>WHITE<br>HANGING<br>HEART T-<br>LIGHT<br>HOLDER)) | ((Quantity,<br>WOODEN<br>PICTURE<br>FRAME WHITE<br>FINISH)) | 0.108956 | 0.054033 | 0.02004<br>0 | 0.183924 | 3.40393<br>6 | 0.01415<br>2 | 1.15916<br>5 |

164 rows  $\times$  9 columns

## **CONCLUSION**

Look at the confidences, it indicates the possibility that customers buying the X product will buy the Y product. We need to make a decision for them. Maybe in our website, when the customer click on first one, we need to show them the other item.

For example: When our customer clicks on PINK REGENCY TEACUP AND SAUCER, we need to show them GREEN REGENCY TEACUP AND SAUCER and maximize our profit.

#### Out[30]:

|     |                                                   |                                                  | 0 4 5 [ 5 5 ] . |
|-----|---------------------------------------------------|--------------------------------------------------|-----------------|
|     | antecedents                                       | consequents                                      | confidence      |
| 154 | ((Quantity, ROSES REGENCY<br>TEACUP AND SAUCER),  | ((Quantity, GREEN REGENCY<br>TEACUP AND SAUCER)) | 0.903509        |
| 153 | ((Quantity, PINK REGENCY<br>TEACUP AND SAUCER), ( | ((Quantity, ROSES REGENCY<br>TEACUP AND SAUCER)) | 0.851240        |

| 25  | ((Quantity, PINK REGENCY<br>TEACUP AND SAUCER))       | ((Quantity, GREEN REGENCY<br>TEACUP AND SAUCER))  | 0.822011 |
|-----|-------------------------------------------------------|---------------------------------------------------|----------|
| 160 | ((Quantity, JUMBO<br>STORAGE BAG SUKI),<br>(Quantity  | ((Quantity, JUMBO BAG RED<br>RETROSPOT))          | 0.801556 |
| 139 | ((Quantity, PINK REGENCY<br>TEACUP AND SAUCER))       | ((Quantity, ROSES REGENCY TEACUP AND SAUCER))     | 0.774457 |
| 29  | ((Quantity, GREEN REGENCY<br>TEACUP AND SAUCER))      | ((Quantity, ROSES REGENCY<br>TEACUP AND SAUCER))  | 0.749744 |
| 28  | ((Quantity, ROSES REGENCY<br>TEACUP AND SAUCER))      | ((Quantity, GREEN REGENCY<br>TEACUP AND SAUCER))  | 0.721619 |
| 23  | ((Quantity, GARDENERS<br>KNEELING PAD CUP OF<br>TEA)) | ((Quantity, GARDENERS<br>KNEELING PAD KEEP CALM)) | 0.721485 |
| 10  | ((Quantity, CHARLOTTE BAG<br>PINK POLKADOT))          | ((Quantity, RED RETROSPOT CHARLOTTE BAG))         | 0.704607 |
| 152 | ((Quantity, ROSES REGENCY<br>TEACUP AND SAUCER),      | ((Quantity, PINK REGENCY<br>TEACUP AND SAUCER))   | 0.704514 |