Competition and space structure in an efficient population genetics model of carcinogenesis

Tommaso Tarchi September 24, 2023

University of Trieste

Introduction

Original paper

Title: Efficient simulation under a population genetics model of

carcinogenesis

Authors: Zhu Tianqi, Hu Yucheng, Ma Zhi-Ming, Zhang De-Xing, Li

Tiejun, Yang Ziheng

Year: 2011

Journal: Bioinformatics

Volume: 27

Number: 6

Pages: 837-843

Genotypic space

From the paper: "It is now generally accepted that the rate-limiting step in the process of carcinogenesis is the accumulation of new mutations. [...] Here we develop a hybrid algorithm that can efficiently simulate the evolutionary processes of large populations."

Genotypic space

From the paper: "It is now generally accepted that the rate-limiting step in the process of carcinogenesis is the accumulation of new mutations. [...] Here we develop a hybrid algorithm that can efficiently simulate the evolutionary processes of large populations."

Figure 1: example of population distribution in the genotypic space at t=0 (left) and t= waiting time (right).

· Fixed population.

- · Fixed population.
- Fitness landscape: $f_i = 1.01^i$.

- · Fixed population.
- Fitness landscape: $f_i = 1.01^i$.
- Constant and uniform mutation rate (μ).

- · Fixed population.
- Fitness landscape: $f_i = 1.01^i$.
- Constant and uniform mutation rate (μ).
- · Possible events:
 - 1. a type j cell is replaced by a type j' one, with rate:

$$a_{jj'} = \frac{x_j f_{j'} x_{j'}}{\sum_{l=0}^{m-1} f_l x_l};$$

2. a type j cell mutates into a type j + 1 one, with rate:

$$a_j = \mu x_j$$
.

· Variable population.

- · Variable population.
- Fitness landscape: $f_i = 1.01^i$.

- · Variable population.
- Fitness landscape: $f_i = 1.01^i$.
- Constant and uniform mutation rate (μ).

- · Variable population.
- Fitness landscape: $f_i = 1.01^i$.
- Constant and uniform mutation rate (μ).
- · Possible events:
 - 1. a type *j* cell is born, with rate:

$$a_j^b = \frac{\tilde{N}(t)f_jx_j}{\sum_{l=0}^{m-1}f_lx_l},$$

where $\tilde{N}(t)$ is a parameter capable of controlling the population size:

2. a type *j* cell dies, with rate:

$$a_j^d = x_j;$$

3. a type j cell mutates into a type j + 1 one, with rate:

$$a_j^m = \mu x_j.$$

Exact algorithm

Pseudocode:

- 1. Compute events rates.
- Apply Gillespie algorithm to sample time to next event e and next event.
- 3. Update time to t' = t + e and system's state.
- 4. If population of the m-th genotypic class is different from zero, set waiting time to t' and stop, otherwise go back to step 1.

Hybrid algorithm

Pseudocode:

- 1. Compute events rates.
- 2. Partition events in critical and non-critical ones.
- 3. Determine tau-leaping step length τ .
- 4. Determine (by Gillespie's method) time to next critical event e.
- 5. If $e < \tau$, update system's state according to Gillespie algorithm, otherwise go directly to next step.
- 6. Let $h = min(e, \tau)$; apdate system's state applying tau-leaping algorithm over time h.
- 7. Update time to t' = t + h.
- 8. If population of the m-th genotypic class is different from zero, set waiting time to t' and stop, otherwise go back to step 1.

6

My humble contribute

1. Flat: $f_i = 1$

- 1. Flat: $f_i = 1$
- 2. Static increasing: $f_i = 1.01^i$

- 1. Flat: $f_i = 1$
- 2. Static increasing: $f_i = 1.01^i$
- 3. Static decreasing: $f_i = 1.01^{m-i-1}$

- 1. Flat: $f_i = 1$
- 2. Static increasing: $f_i = 1.01^i$
- 3. Static decreasing: $f_i = 1.01^{m-i-1}$
- 4. Static 'mountain': $f_i = 1.01^{m-|m-2i|}$

Modelling competition

Two assumptions:

- the closer two organisms in the phenotypic space, the more the competition for resources
- the phenotype is strongly correlated to the genotype

Modelling competition

Two assumptions:

- the closer two organisms in the phenotypic space, the more the competition for resources
- the phenotype is strongly correlated to the genotype

Result:

The more 'crowded' a portion of the genotypic space, the lower the fitness of the organisms in that region.

- 1. Flat: $f_i = 1$
- 2. Static increasing: $f_i = 1.01^i$
- 3. Static decreasing: $f_i = 1.01^{m-i-1}$
- 4. Static 'mountain': $f_i = 1.01^{m-|m-2i|}$
- 5. Static 'mountain' + dynamic: $f_i = 1.01^{m |m-2i|} \sum_{j=0}^{m-1} \frac{x_j}{N} \frac{|i-j|}{m}$
- 6. static decreasing + dynamic: $f_i = 1.01^{m-i-1} \sum_{j=0}^{m-1} \frac{x_j}{N} \frac{|i-j|}{m}$

Spatial structure (naive)

Figure 2: 'world' of the spatial model with resolution=16.

Spatial structure (less naive)

Figure 3: 'world' of the spatial model with resolution=16.

Spatial structure (less naive)

Three possible events:

1. a type *j* cell is born, with rate:

$$a_{j}^{b} = a_{j}^{b} = \frac{\tilde{N}'(t)f_{j}x_{j}'}{\sum_{l=0}^{m-1}f_{l}x_{l}'},$$

$$\tilde{N}'(t) = \frac{\tilde{N}(t)}{res} \left(1 + \frac{\#ngb}{4}\right), X_i' = X_i + \frac{1}{4} \sum_{\#ngb} X_k$$

where *res* is the resolution and #ngb is the number of neighbour areas;

2. a type *j* cell dies, with rate:

$$a_j^d = x_j';$$

3. a type j cell mutates into a type j + 1 one, with rate:

$$a_j^m = \mu x_j'$$

Simulation results

Reproducing results of the original paper

Figure 4: comparison of waiting time obtained with fixed-population exact and hybrid algorithms in original paper (left) and our work (right); parameters: $N = 10^3$, m = 20, $\mu = 10^{-3}$, fitness: static increasing.

Reproducing results of the original paper

Figure 5: behaviour of *N* and *N_tilde* in time in our dynamic-population model with constant (**left**) and increasing (**right**) *N_tilde*; parameters: $N = 10^4$, m = 4, $\mu = 10^{-4}$, fitness: static increasing.

Changing the fitness landscape

Figure 6: waiting time obtained with fixed-population hybrid model for different fitness landscapes; parameters: $N=10^4$, m=4, $\mu=10^{-4}$; note: static *increasing* fitness did not converge within an acceptable time.

Changing the fitness landscape

Figure 7: final state obtained with fixed-population hybrid model for different fitness landscapes; parameters: $N = 10^4$, m = 4, $\mu = 10^{-4}$.

Waiting time in spatial model

Figure 8: waiting time obtained with spatial model for different resolutions (from 1 to 100); parameters: $N_{-}tilde = 10^{6}$ (constant), m = 4, $\mu = 10^{-6}$, fitness: static increasing.

Population in spatial model

Figure 9: *N*'s behaviour in time for four simulations of the same spatial model; parameters: $N_{tilde} = 10^{4}$, m = 4, $\mu = 10^{-4}$, resolution = 16, fitness: static increasing.

An efficiency study

Figure 10: efficiency (in seconds) for fixed-population exact and hybrid models; parameters: $N=10^3$, m=20, $\mu=10^{-3}$, fitness: static increasing.

Figure 11: efficiency (in seconds) for fixed-population and dynamic-population hybrid models; parameters: $N\left(N_tilde\right) = 10^3$, m = 20, $\mu = 10^{-3}$, fitness: static increasing.

An efficiency study

Figure 12: efficiency (in seconds) of spatial model for different resolutions (from 1 to 100); parameters: $N_{-}tilde = 10^{6}$ (constant), m = 4, $\mu = 10^{-6}$, fitness: static increasing.

References