МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» Обнинский институт атомной энергетики Отделение интеллектуальных кибернетических систем

Лабораторная работа №1

Выполнила студентка Группы ИС-Б17 Отделения ИКС Петренко В. Ю. Проверила: профессор, д.т.н. Гулина О. М.

```
1. Алгоритм
```

Использовала метод середины квадратов. Формула заполнения массива псевдослучайными числами: $\gamma_{i+1} = 10^{-k} \coprod \left(10^k \coprod \left((1 - y_i)^3 10^k \right) \right)$ Формула хи-квадрат распределения (критерий Пирсона):X²⁼ (Использовала python 3.6) k=2500 #число элементов r=12 #кол-во интервалов p=1/r #теоретическая вероятность попадания в каждый интервал array=[] #массив псевдослучайных чисел I aper=0 #длина апериодичности I per=0 #длина периода р і =[] #количество попаданий в каждый интервал $X2 = 0 \; #$ хи-вквадрат def fraction(x): # функция для расчета дробной части return x - int(x)def fillArray(): # функция для заполнения массива y0=float(input("Введите гамма-нулевое: ")) accrs=int(input("Введите количество знаков после запятой: ")) for i in range(k): array.append(y0) y0=(10 ** -accrs)*int((10 ** accrs)*fraction(float(((1-y0) ** 3)*(10 ** accrs)))) #метод середины квадратов print("Массив заполнен псевдослучайными числами.") def periodLength(): global I aper, I per print("Определение длины периода и апериодичности.") flag=True #пока в последовательности будут одинаковые элементы for i in range(k): for j in range(i+1, k):

```
if(abs(array[i]-array[j])<0.0000001):#сравниваем
          print("Совпадение в ", i, "-ом и ", j, "-ом элементах: ",
array[i], " и ", array[j])
          I aper = j
          I per = j-i
          flag=False
       if not flag:
          break
     if flag:
        #если нет одинаковых элементов, длина
апериодичности = длине последовательности
       I aper=k
       I per=0
     if not flag:
        break
  print("Период: ", I per)
  print("Апериодичность: ", I aper)
def calc pi():
  print("Рассчет количества попаданий в каждый интервал.")
  for i in range(r):
     p i.append(0)
  print("[ ", end = ' ')
  for i in range(r):
     for j in range(l aper):
       if (array[i]>(i*p) and array[i]<((i+1)*p)):
          p i[i] += 1
  for i in range(r):
     print(p_i[i], end = ' ')
  print(" ] ")
def calc X2():
  print("Рассчет X2.")
  X2 = 0
  for i in range(r):
     X2+=((p i[i]-(l aper*p)) ** 2)/(l aper*p)
  print("X2 = ", X2)
def show():
  n=int(input("Вывести последовательность до: "))
  if n>k:
```

```
n=k
for i in range(n):
    print(array[i], end = ', ')

fillArray()
periodLength()
calc_pi()
calc_X2()
show()
```

2. Результаты

k=2

№ эксперимен та	γο	Р	L
1	0,12	1	22
2	0,34	1	15
3	0,56	1	12
4	0,63	1	6
5	0,88	1	2

k=4

№ эксперимен та	Yo	Р	L
1	0,1234	102	124
2	0,1111	102	118
3	0,1222	102	159
4	0,8765	102	127
5	0,5678	102	130

k=6

Nº	γ ₀	Р	L
эксперимен			
та			
1	0.234567	1414	1739
2	0.342365	1414	1631
3	0.236790	1414	1704
4	0.456456	1414	1734
5	0.512345	1414	1692

k=7

№ эксперимен та	γο	Р	L
1	0.1234567	0	2500
2	0.2312453	0	2500
3	0.2457654	0	2500
4	0.4562853	0	2500
5	0.8673945	0	2500

k=8

Nº	γ ₀	Р	L
эксперимен			
та			
1	0.13243546	0	2500
2	0,45347234	0	2500
3	0,54657629	0	2500
4	0,56428546	0	2500

5	0,96542378	0	2500

Проверка по критерию X-квадрат. Возьмем гамма-нулевое, равное 0.45864863~(k=8).

Для выбранного гамма-нулевого длина периода P=0, а длина апериодичности L=2500.

Рассчет количества попаданий в каждый интервал.

Интервал	1	2	3	4	5	6	7	8	9	10	11	12
Значение	208	206	220	225	200	214	203	198	208	213	202	203

 $X^2 = 3.5840000000000005$

При 11 степенях свободы (по формуле 12-1) и доверительной вероятности 0.95 теоретическое значение X^2 равно 4.58. Так как экспериментальное значение X^2 меньше, можно сделать вывод, что распределение расвномерное.

3. Выводы: При увеличении количества знаков после запятой растут длины периода и апериодичности. Гипотеза о соответствии равномерному закону распределения по значениям X^2 подтвердилась при гамма нулевом, равном 0.45864863, с доверительной вероятностью 0.95.