Lic. Engenharia Informática LÓGICA

Indução e recursão estrutural

José Carlos Costa

Dep. Matemática e Aplicações Universidade do Minho

22 de Fevereiro de 2011

Seja A_3 um subconjunto de \mathbb{R} tal que:

- **1** $3 \in A_3$;
- ② se $k \in A_3$, então $n \cdot k \in A_3$, para qualquer $n \in \mathbb{N}$;
- os elementos de A₃ são obtidos por aplicação das regras 1 e 2, um número finito de vezes.

$$A_3 = \{$$
 ?

Será que existe um conjunto de regras que permite definir o conjunto \mathbb{N}_0 de forma análoga?

Definições

- Chamaremos alfabeto a um conjunto de símbolos e letras aos seus elementos.
- Dado um alfabeto A, chamaremos palavra sobre A a uma sequência finita de letras: ε representa a palavra vazia e e₁e₂···e_n uma palavra de comprimento n ∈ N, para e₁, ..., e_n ∈ A. O conjunto de todas as palavras sobre A representa-se por A*.
- Um subconjunto de A* diz-se uma linguagem.
- Se u e v são palavras então uv é a sequência resultante da concatenação das sequências u e v.

Seja $A = \{a, b\}$ e L o conjunto tal que:

- \bullet $a \in L e b \in L$;
- 2 se $u, v \in L$, então $uv \in L$;
- os elementos de L são obtidos por aplicação das regras 1 e 2, um número finito de vezes.

$$L = \{ \begin{array}{c|c} ? \\ \end{array} \}$$

Seja $A = \{a, b, c\}$ e L o subconjunto A^* tal que:

- $\mathbf{0}$ $c \in L$;
- 2 se $u \in L$, então aua $\in L$;
- 3 se $u \in L$, então $bub \in L$;
- os elementos de L são obtidos por aplicação das regras 1,
 2 e 3, um número finito de vezes.

$$L = \{ ? \}$$

Por definição indutiva de um conjunto I entende-se uma colecção de regras que permite descrever I, indicando um processo de construir os seus elementos. As regras podem ser de vários tipos:

- regras básicas, que indicam que certos objectos pertencem ao conjunto;
- regras indutivas, que permitem construir elementos de I a partir de outros elementos de I já conhecidos;
- regra de fecho, regra única em cada definição, que estabelece que os elementos de I são os construídos a partir da utilização das regras básicas e das indutivas um número finito de vezes.

regra básica
$$\longmapsto$$
 $\underbrace{s \in I}_{\text{conclusão}} \underbrace{s \in I}_{\text{conclusão}} \underbrace{s \in I}_{\text{conclusão}} \underbrace{s \in I}_{\text{conclusão}} \underbrace{s \in I}_{\text{social são}} \underbrace{s \in$

Sejam $A = \{a, b\}$ e L o subconjunto das palavras sobre A definido por:

- **1** a sequência vazia ε é um elemento de L;
- 2 se $w \in L$, então $awb \in L$;
- 3 se $w \in L$, então $bwa \in L$;
- \bullet se $u, w \in L$, então $uw \in L$.

A esta definição corresponde o seguinte conjunto de regras:

$$2 \quad \frac{w \in L}{\mathsf{awb} \in L} i_1 \quad \rightsquigarrow \quad \begin{array}{ccc} f_1 : & L & \to & L \\ & w & \mapsto & \mathsf{awb} \end{array}$$

$$\underbrace{ u \in L \quad w \in L }_{uw \in L} i_3 \quad \leadsto \quad f_3 : \quad L \times L \quad \to \quad L$$

$$\underbrace{ (u, w) \quad \mapsto \quad uw }_{}$$

Definição

Sejam X um conjunto, $\emptyset \neq B \subseteq X$ e \mathcal{O} um conjunto de operações em X. Um subconjunto I de X diz-se indutivo sobre X de base B e conjunto de operações \mathcal{O} se

- \bullet $B \subseteq I$,
- ② I é fechado para as operações do conjunto \mathcal{O} .

Definição

Sejam X um conjunto, $\emptyset \neq B \subseteq X$ e \mathcal{O} um conjunto de operações em X. O menor conjunto indutivo sobre X de base B e conjunto de operações \mathcal{O} diz-se um conjunto definido indutivamente por \mathcal{O} , de base B.

O par (B, \mathcal{O}) designa-se uma definição indutiva sobre o conjunto suporte X.

Recorde-se o exemplo anterior. O conjunto *L* é definido indutivamente:

$$B = \{\varepsilon\}$$

$$\mathcal{O} = \{f_1, f_2, f_3\}$$

Genericamente, a uma definição indutiva (B, \mathcal{O}) de um conjunto I sobre o conjunto suporte X associa-se um conjunto de regras:

$$\overline{x \in I}^{b_x}$$
, para cada $x \in B$,

Sequência de formação

Como conclusão final obtém-se que $b^2aba^2 \in L$. A sequência $(\varepsilon, ab, baba, b^2aba^2)$ diz-se uma sequência de formação de $b^2aba^2 \in L$.

Alternativamente, podemos elaborar a seguinte árvore:

$$b_{a}$$
 $b \in L$ b_{a} b_{a} $b \in L$ b_{a} b_{a} $b \in L$ b_{a} b_{a} $b \in L$ b_{a} $b \in L$ b_{a} $b \in L$ b_{a} $b \in L$ b_{a}

Sequência de formação

A conclusão final é novamente que $b^2aba^2 \in L$, e a sequência $(\varepsilon, ba, baba, b^2aba^2)$ é também uma sequência de formação de $b^2aba^2 \in L$.

A árvore correspondente é:

Definições

Sejam (B, \mathcal{O}) uma definição indutiva de um conjunto I e $x \in I$.

- Sequência de formação de x é uma sequência de elementos de I cujo último elemento é x e em que cada elemento
 - ou pertence a B,
 - ou é imagem de elementos anteriores na sequência por uma função de O.
- Árvore de formação de x é uma árvore construída a partir da aplicação das regras e em que:
 - cada nodo é uma afirmação do tipo s ∈ I;
 - as folhas resultam da aplicação de regras básicas;
 - os restantes nodos resultam da aplicação de regras indutivas;
 - cada aresta representa a relação entre uma premissa e a conclusão de uma regra;
 - a raiz é $x \in I$.

Proposição

Sejam I um conjunto definido indutivamente sobre um conjunto X e $x \in X$. Então, $x \in I$ se e só se x admite uma árvore (ou sequência) de formação.

$$\frac{1}{\varepsilon \in L} b_{\varepsilon} \quad \frac{w \in L}{awb \in L} i_{1} \quad \frac{w \in L}{bwa \in L} i_{2} \quad \frac{u \in L \quad w \in L}{uw \in L} i_{3}$$

Será que $b^2ab \in L$?

Definição

Sejam I um conjunto definido indutivamente sobre um conjunto X e $x \in I$. Os elementos de uma árvore de formação de x designam-se sub-objectos de x.

Definição indutiva determinista

Recorde-se que na linguagem L a palavra b^2aba^2 admite duas árvores de formação:

Definição

Chama-se definição indutiva determinista de um conjunto I a uma definição indutiva de I tal que se existirem duas instâncias de regras com igual conclusão então a regra usada é a mesma e, caso seja uma regra indutiva, as premissas da regra também são as mesmas.

Definição indutiva determinista

Proposição

Uma definição indutiva de um conjunto I é determinista se e só se cada elemento de I admite uma única árvore de formação.