6. A classic unsolved problem in number theory asks if there are infinitely many pairs of 'twin primes', pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime triple (i.e. three primes, each 2 from the next) is 3, 5, 7.

Definitions:

 $n \in \mathbb{N}$ is prime iff $\forall d \in \mathbb{N} [1 < d < n \Rightarrow d \nmid n]$

 $m,n \in \mathbb{N}$ are twin primes iff m and n are primes and n=m+2.

 $m,n,o \in \mathbb{N}$ are a prime triple iff m and n are twin primes and n and o are twin primes too.

Exercise 5 claim: $\forall n \in \mathbb{Z}[3|n \vee 3|n+2 \vee 3|n+4]$

Claim: ∃!a,b,c∈N[a,b,c are a prime triple]

Proof: By contradiction. We know that 3,5,7 is the first prime triple. By way of contradiction, suppose you can pick a,b,c such that they are a prime triple with 3 < a < b < c. Since a,b,c are primes $3 \nmid a$,b,c. We know that b = a + 2 and c = a + 4. By Exercise 5 we know that $\forall n \in \mathbb{Z}[3 \mid n \lor 3 \mid n + 2 \lor 3 \mid n + 4]$. Set n = a. So $3 \mid a$ or $3 \mid a + 2$ or $3 \mid a + 4$, i.e., $3 \mid a$ or $3 \mid b$ or $3 \mid c$, i.e., at least one of a, b or c is not prime, contradicting the assumption. Therefore, the only prime triple is 3,5,7 proving the original claim. \Box