EQUIVALENT STATEMENTS PART III

Let A be a $n \times n$ matrix. The following statements are equivalent.

- 1) A is invertible.
- 2) Ax = 0 has only the trivial solution.
- 3) The rref of A is I.

- 4) A can be expressed as
 - a product of elementary matrices.
- 5) $\det(A) \neq 0$.

Established in a previous unit

- 6) The rows of A forms a basis for \mathbb{R}^n .
- 7) The columns of A forms a basis for \mathbb{R}^n .

Proof:

We first prove that Ax = 0 has only the trivial solution

 \Leftrightarrow The columns of A forms a basis for \mathbb{R}^n .

Let $A = (c_1 \ c_2 \ ... \ c_n)$, that is c_i is the i-th column of A.

Since dim(\mathbb{R}^n) = n, to show that the columns of A forms a basis for \mathbb{R}^n , it suffices to show that the columns of A are linearly independent.

$$\mathbf{A}\mathbf{x} = \mathbf{0} \iff (\mathbf{c}_1 \quad \mathbf{c}_2 \quad \dots \quad \mathbf{c}_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \iff x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + \dots + x_n\mathbf{c}_n = \mathbf{0}$$

Proof:

We first prove that Ax = 0 has only the trivial solution

 \Leftrightarrow The columns of A forms a basis for \mathbb{R}^n .

Done!

$$\mathbf{A}\mathbf{x} = \mathbf{0} \iff (\mathbf{c}_1 \quad \mathbf{c}_2 \quad \dots \quad \mathbf{c}_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \iff \mathbf{x}_1 \mathbf{c}_1 + \mathbf{x}_2 \mathbf{c}_2 + \dots + \mathbf{x}_n \mathbf{c}_n = \mathbf{0}$$

 $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution

- $\Leftrightarrow x_1 c_1 + x_2 c_2 + ... + x_n c_n = 0$ has only the trivial solution
- $\Leftrightarrow c_1, c_2, ..., c_n$ are linearly independent
- \Leftrightarrow The columns of A forms a basis for \mathbb{R}^n .

Proof:

We first prove that Ax = 0 has only the trivial solution

 \Leftrightarrow The columns of A forms a basis for \mathbb{R}^n .

Done!

We now prove that $det(A) \neq 0$

Done!

 \Leftrightarrow The rows of A forms a basis for \mathbb{R}^n .

 $\det(A) \neq 0 \Leftrightarrow \text{The columns of } A \text{ forms a basis for } \mathbb{R}^n$.

 $\det(A^T) \neq 0 \Leftrightarrow \text{The columns of } A^T \text{ forms a basis for } \mathbb{R}^n.$

 $\overset{\frown}{\longrightarrow}$ det(A) $\neq 0 \Leftrightarrow$ The rows of A forms a basis for \mathbb{R}^n .

Let A be a $n \times n$ matrix. The following statements are equivalent.

1) A is invertible.

4) A can be expressed as

2) Ax = 0 has only

a product of elementary matrices.

the trivial solution.

5) $\det(A) \neq 0$.

- 3) The rref of A is I.
- 6) The rows of A forms a basis for \mathbb{R}^n .
- 7) The columns of A forms a basis for \mathbb{R}^n .

Example

Is
$$\{(1,1,1),(-1,0,2),(3,1,3)\}$$
 a basis for \mathbb{R}^3 ? Yes!

Compute
$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & 2 \\ 3 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix} - \begin{vmatrix} -1 & 2 \\ 3 & 3 \end{vmatrix} + \begin{vmatrix} -1 & 0 \\ 3 & 1 \end{vmatrix} \neq 0$$

Is $\{(1,1,1,1),(-1,1,-1,1),(0,1,-1,0),(2,1,1,0)\}$ a basis for \mathbb{R}^4 ?

Compute
$$\begin{vmatrix} 1 & -1 & 0 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix} = 0$$

No!

Summary

1) Two more equivalent statements to "A is invertible".