Project Proposal eng

December 12, 2024

0.0.1 1. Topic

0.0.2 "Analysis of the Correlation Between Regional Electric Vehicle Adoption Rates and PM2.5"

0.0.3 2. Research Background

A. Health Impacts of PM2.5

- PM2.5 refers to fine particulate matter with a diameter of 2.5 micrometers or less.
- According to OECD data, as of 2020, South Korea's PM2.5 concentration stands at 25.3 $\mu g/m^3$, over five times worse than Finland, the least polluted country (4.9 $\mu g/m^3$).
- WHO identifies PM2.5 as a major pollutant linked directly to cardiovascular disease, respiratory illness, and premature death.
- [Ref] How Much Can EVs Reduce Air Pollution?

B. Direct Link to Vehicle Emissions

- PM2.5 is a primary pollutant emitted by internal combustion engine vehicles (diesel). By 2050, a projected EV adoption rate of 54% is expected to reduce pollutant emissions by 77% compared to 2016 levels.
- However, while increasing EV adoption is expected to reduce PM2.5 levels, secondary contributors such as tire and brake wear must also be considered.
- [Ref] The Real Culprits of Vehicle-Related Fine Dust

C. Policy Priorities

- South Korea's 'Seasonal Fine Dust Management Policy' aims to improve air quality by targeting PM2.5.
- PM2.5, classified as ultrafine dust, has greater adverse effects on human health compared to PM10, making it a key indicator for assessing air quality improvements.
- [Ref] Lowest PM2.5 Levels Recorded Over the Past Five Years During the 5th Seasonal Management Period

0.0.4 3. Data Overview

A. Data Sources

- Monthly regional air pollution data for 2023 (Air Korea, https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123)
- Regional EV statistics (KEPCO, https://www.data.go.kr/data/15039554/fileData.do)
 - To address timeline inconsistencies, the analysis will use December 2023 data instead of the latest July 2024 data.

B. Key Variables

- Regional EV ownership ratio: {(Number of EVs in a region / Total number of EVs nationwide)
 * 100}
- Air pollution variables: PM2.5, PM10, NO (vehicle emissions-related), SO (industrial emissions-related), CO (traffic congestion-related).
- Time variable: Monthly data for time-series analysis.

0.0.5 4. Analysis Process

A. Data Preprocessing

- Check for outliers and missing values in the "2023 Monthly Regional Air Pollution Data."
 - Normalize using mean and max values for each pollutant.
 - [Ref] Data_Analysis.ipynb_Analysis 2
- Process the "Regional EV Statistics" as of December 31, 2023, to derive basic descriptive statistics.
 - [Ref] Data_Analysis.ipynb_Analysis 5

B. Correlation Analysis

- Compute Pearson and Spearman correlations between EV ownership ratios and PM2.5 concentrations
- Compare air pollution levels between regions with high and low EV adoption rates.

C. Final Visualization

0.0.6 5. Final Visualization Plan

A. Scatter Plot

- [FINAL] Scatter Plot: EV Ownership Ratio vs. PM2.5
- Purpose: Visualize the correlation between EV ownership ratios and PM2.5 concentrations.
- Components:
 - X-axis: EV Ownership Ratio (%)
 - Y-axis: PM2.5 Concentration (μg/m³)
 - Each point represents a region, with region names labeled.

B. Composite Heatmap

• $final_ev_pm25_heatmap.html$

- Purpose: Provide a visual representation of regional EV ownership ratios and PM2.5 concentrations.
- Components:
 - PM2.5 Concentration Heatmap:
 - * Visualization: Display PM2.5 concentrations for each region using a heatmap (color gradient: red to green).
 - * Interpretation: Higher PM2.5 levels are represented in red, while lower levels are shown in green.
 - EV Ownership Ratio Circle Marker:
 - * Visualization: Represent regional EV ownership ratios using circle markers' size and opacity.
 - * Interpretation: Larger, more opaque circles indicate higher EV ownership ratios.
 - Interactive Pop-Up:
 - $\ast\,$ Display regional PM2.5 concentrations and EV ownership ratios upon hover.