

Unidade 1 Contextualização

Vinícius de Freitas Soares

Objetivos da Unidade

- Compreender a importância da análise e do projeto no desenvolvimento de softwares.
- 2. Identificar os diferentes modelos e diagramas da UML.

Modelo: representação em pequena escala de algo que se pretende executar em grande.

Dicionário Aurélio da Língua Portuguesa

Artefato: objeto que sofreu alteração provocada pelo homem, em oposição àquele que é resultado de fenômeno natural.

Dicionário Online da Língua Portuguesa Michaelis UOL

Modelos e artefatos permitem uma visão do sistema antes que ele seja implementado, de modo que clientes e profissionais de TI consigam expressar suas necessidades e projetar como elas serão atendidas com o novo sistema.

Modelos e artefatos devem ser usados para **projetar** o **FUTURO** e não para documentar o PASSADO.

O desenvolvimento de software, há tempos, deixou de ser visto como uma atividade artesanal e, cada vez mais, técnicas de engenharia vem sendo introduzidas para que o produto final atenda a custo, prazo e qualidade desejados.

Projeto Nenhum

Projeto com Técnicas Antiquadas

Analogia Arquitetura x Desenvolvimento de Software Projeto com Tácnicas Atu

Projeto com Técnicas Atuais

ABNT-Associação Brasileira de Normas Técnicas

Sede:
Rio de Janeiro
Av. Treze de Maio, 13 - 28º andar
CEP 20003-900 - Caixa Postal 1680
Rio de Janeiro - RJ
Tel.: PABX (021) 210-3122
Telex: (021) 34333 ABNT - BR
Endereço Telegráfico:
NORMATÉCNICA

Copyright © 1995, ABNT-Associação Brasileira de Normas Técnicas Printed in Brazil/ Impresso no Brasil Todos os direitos reservados NOV 1995 | NBR 13532

Elaboração de projetos de edificações -Arquitetura

Procedimento

Origem: Projeto 02:002.42-002/1994

CB-02 - Comitê Brasileiro de Construção Civil

CE-02:002.42 - Comissão de Estudo de Elaboração de Projetos de Arquitetura

NBR 13532 - Architecture - Elaboration of buildings projects - Procedure

Descriptors: Building, Architecture

Esta Norma cancela e substitui a NBR 5679/1977

Válida a partir de 29.12.1995

Palavras-chave: Edificação. Arquitetura. Obra de engenharia

8 páginas

Analogia Arquitetura x Desenvolvimento de Software Projeto com Recursos que Tenho e Conheço

Analogia Arquitetura x Desenvolvimento de Software Projeto com Recursos que Tenho e Conheço

Revisão de Engenharia de Software

Processo de Software

Um processo de desenvolvimento de software (ou processo de software) é formado por um conjunto de fases que devem ser seguidas para que o produto (software) seja produzido.

Etapas Clássicas

Revisão de Engenharia de Software

Processo de Software - Não é fixo

[http://www.criandobits.com.br/programacao/etapas-processo-desenvolvimento-de-sistemas]

Revisão de Engenharia de Software Processo de

Processo de Software

- Conjunto de passos previsíveis.
- Contém atividades, controles e artefatos.
- Estabelecimento de um fluxo de processo.
- Uso de padrões. Exemplo: padrões de interface.

Revisão de Engenharia de Software Atividades Metodológica

Atividades Metodológicas Padrão

- 1. Comunicação
- 2. Planejamento
- 3. Modelagem
- 4. Construção
- 5. Entrega

Revisão de Engenharia de Software Atividades

Atividades de Apoio

- 1. Acompanhamento e controle do projeto.
- 2. Administração de risco.
- 3. Garantia da qualidade.
- 4. Gerenciamento de configuração.
- 5. Revisões técnicas etc.

Revisão de Engenharia de

Softwer Ge Ciclo de Vida ou Modelos de Processo

- Modelo em Cascata
- 2. Modelo em V
- 3. Modelo Incremental
- 4. Modelo RAD
- 5. Modelo Espiral
- 6. Prototipação

Modelo em Cascata

Modelo em V

Modelo Incremental

Modelo RAD

Modelo Espiral

Prototipação

Definição

Unified Modeling Language (Linguagem de Modelagem Unificada) é um metamodelo que tem como objetivo fornecer ferramentas para análise, projeto e implementação de sistemas baseados em software, bem para modelar negócios e processos similares.

A Guerra dos Métodos

- Programação Orientado a Objetos existe deste 1967 (Simula 67 e Smalltalk-71).
- Não havia Modelagem Orientada a Objeto.
- Vários pesquisadores propuseram linguagens de modelagem de 1988 a 1992: Grady **Booch** (OOAD); Peter Coad (OOA e OOD); Ivar **Jacobson** (OOSE); Jim Odell; **Rumbaugh** (OMT); dentre outros.
- Em 1995, Rumbaugh e Booch passaram a trabalhar juntos na Rational Software (IBM).
 - Jacobson se uniu aos dois.

A Unificação (UML)

A Unificação (UML)

A Unificação (UML)

grady booch

ivar jacobson

james rumbaugh

Evolução 2002 **UML 2.0** Muitas revisões 2001 **UML 1.4** Poucas revisões 1999 **UML 1.3** 1997 **UML1.1** Aceitação OMG Apresentação Final para OMG Apresentação Final para OMG UML1.0 Parceiros UML 1996 **UML 0.9** Web - Junho 1995 Método Unificado 0.8 OOPSLA 95 Other Booch OMT OOSE Methods Methods

Versão Atual

An OMG® Unified Modeling Language® Publication

OMG® Unified Modeling Language® (OMG UML®)

Version 2.5.1

OMG Document Number: formal/2017-12-05

Date: December 2017

Normative URL: https/www.omg.org/spec/UML/

Os Elementos

Blocos de Construção

Elementos em UML

Os Diagramas (Classificação)

Digramas Estruturais

- 1.Diagrama de Classes
- 2.Diagrama de Objetos
- 3.Diagrama de Componentes
- 4.Diagrama de Estrutura Composta
- 5.Diagrama de Implantação (*Deployment*)
- 6.Diagrama de Pacotes

Diagramas Comportamentais

- 7.Diagrama de Casos de Uso
- 8.Diagrama de Atividades
- 9. Diagrama de Máquina de Estados

Diagramas de Interação

- 10Diagrama de Sequência
- 11Diagrama de Comunicação

Os Diagramas

- 1. Diagrama de Casos de Uso
- 2. Diagrama de Classes
- 3. Diagrama de Objetos
- 4. Diagrama de Estrutura Composta
- 5. Diagrama de Sequência
- 6. Diagrama de Comunicação
- 7. Diagrama de Máquina de Estados
- 8. Diagrama de Atividades
- 9. Diagrama de Interação
- 10 Diagrama de Componentes
- 11.Diagrama de Implantação
- 12.Diagrama de Pacotes

Pra que tantos Diagramas?

- Para fornecer múltiplas visões do sistema a ser modelado.
- Cada diagrama da UML analisa o sistema, ou parte dele, por uma determina óptica; é como se o sistema fosse modelado em camadas.
- O mais importante: Se um diagrama estiver atrapalhando o desenvolvimento de um sistema de informação (perda de tempo, ambiguidade, não compreensão por parte de quem o aprove, etc.), ao invés de estar contribuindo, NÃO O USE ou o abandone.

Diagrama de Casos de Uso

Figura 1.1 – Exemplo de Diagrama de Casos de Uso.

Diagrama de Casos de Uso

Diagrama de Classes

Figura 1.2 – Exemplo de Diagrama de Classes.

Diagrama de Classes

Diagrama de Objetos

Diagrama de Estrutura Composta

Diagrama de Sequência

Diagrama de Comunicação

Diagrama de Máquina de Estados

Diagrama de Atividades

Figura 1.8 – Exemplo de Diagrama de Atividade.

Diagrama de Atividades

Diagrama de Atividades (Esse o usuário entende

bem)

Diagrama de Interação

Diagrama de Componentes

Diagrama de Implantação

Diagrama de Pacotes

The Entity-Relationship Model—Toward a Unified View of Data

PETER PIN-SHAN CHEN

Massachusetts Institute of Technology

A data model, called the entity-relationship model, is proposed. This model incorporates some of the important semantic information about the real world. A special diagrammatic technique is introduced as a tool for database design. An example of database design and description using the model and the diagrammatic technique is given. Some implications for data integrity, information retrieval, and data manipulation are discussed.

The entity-relationship model can be used as a basis for unification of different views of data: the network model, the relational model, and the entity set model. Semantic ambiguities in these models are analyzed. Possible ways to derive their views of data from the entity-relationship model are presented.

Key Words and Phrases: database design, logical view of data, semantics of data, data models, entity-relationship model, relational model, Data Base Task Group, network model, entity set model, data definition and manipulation, data integrity and consistency

CR Categories: 3.50, 3.70, 4.33, 4.34

Peter Chen

UML

Modelo de Entidades e Relacionamentos -

Entidade

- Armazena dados;
 Notação
- Um ou mais atributos identificam cada ocorrência da entidade (chave).

- Relaciona duas entidades;
- Os relacionamentos podem ser 1:N, M:N ou 1:1.
- Obedece regras de integridade referencial.

Entidade Fraca Depende de outra entidade para existir.

Business Intelligence – Modelagem

nensional

Modelos para Mineração de Dados KDD (*Knowledge Discovery in Databases*)

L Modelos para Mineração de Dados CRISP-DM (*Cross Industry Standard Process for Data*

Mining)

