1

Assignment 3 Linear Programming

Swati Mohanty (EE20RESCH11007)

I. PROBLEM

Minimise and Maximise Z=x+2y subject to $x+2y\geq 100;\ 2x-y\leq 0;\ 2x+y\leq 200;\ x,y\leq 0.$

II. SOLUTION

In order to obtain the maximum and minimum value we need to solve the system of inequalities by adding slack variables. The equations now become:

$$x + 2y - Z = 0 \tag{1}$$

$$x + 2y - S_1 = 100 (2)$$

$$2x - y + S_2 = 0 (3)$$

$$2x + y + S_3 = 200 (4)$$

The simplex table can be formed as

$$\begin{pmatrix}
x & y & s_1 & s_2 & s_3 & b \\
1 & 2 & -1 & 0 & 0 & 50 \\
2 & -1 & 0 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 200 \\
1 & 2 & 0 & 0 & 0 & 0
\end{pmatrix}$$
(5)

The pivot element is 2 as the minimum ratio 50 occurs for y as the entering variable. Now reducing the simplex matrix we get

$$\begin{pmatrix}
x & y & s_1 & s_2 & s_3 & b \\
\frac{1}{2} & 1 & \frac{-1}{2} & 0 & 0 & 50 \\
\frac{5}{2} & 0 & \frac{-1}{2} & 1 & 0 & 50 \\
\frac{3}{2} & 0 & \frac{1}{2} & 0 & 1 & 150 \\
1 & 2 & 0 & 0 & 0 & 0
\end{pmatrix}$$
(6)

This can be expressed in the form of matrix inequality for maximization and minimization respectively as:

$$\max_{\{x\}} \mathbf{c}^T \mathbf{x} \tag{7}$$

$$s.t \quad \mathbf{A}\mathbf{x} < \mathbf{b}; \mathbf{x} > 0 \tag{8}$$

$$\min_{\{x\}} \mathbf{c}^T \mathbf{x} \tag{9}$$

$$s.t \quad \mathbf{A}\mathbf{x} \ge \mathbf{b}; \mathbf{x} \ge 0 \tag{10}$$

where

$$\mathbf{c} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{11}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 2 & 1 \end{pmatrix} \tag{12}$$

$$\mathbf{b} = \begin{pmatrix} 100\\0\\200 \end{pmatrix} \tag{13}$$

Solving for Z by this reduction method we get

$$MaxZ = 400 (14)$$

$$MinZ = 100 (15)$$

This can be solved in Python which generates the result as below:

The following python code generates the maxima and minima values

Link : https://github.com/Swati-Mohanty/EE5600/blob/master/Assignment