Braking System Optimization

Aditi Singh Vraj Patel Nandha Sri Varma Namburi Vasily Fedotov

December 5, 2022

MECH559: Engineering Systems

Optimization.

Instructor: Dr. Khalil Al Handawi

Summary

Problem statement

Sub-systems

- Vibration
- Machine Element
- Thermal

Results

INTRODUCTION

- Brakes are one of the major components of any system.
- They are used to stop the moving vehicle.
- Brake system analysis has become a major area of study due to the increase in the demand for high safety.

Brake pad Brake pad Brake booster Break pedal

WORKING OF A DISC BRAKE.

1. Problem Statement

The main aim of this project is to minimize the braking distance of the vehicle in response to certain design and manufacturing constraints.

2. Sub-systems

ASSUMPTIONS

1) MATERIAL OF THE ROTOR – CAST IRON

2) VELOCITY – 180 KM/H.

3) 4 STUD BOLT HOLES.

4) BRAKE PAD MATERIAL – CERAMIC

5) NO SLIP CONDITION

6) ROAD GRADIENT IS NOT TAKEN INTO CONSIDERATION.

2.a Vibration Analysis

Following a displacement, minimize settling time of actuator

Constraints:

- Under ABS braking, limit resonant amplitude
- System is slightly underdamped
- Limit power dissipation through damping

Parameters:

- m actuator mass (0.5 kg)
- δ percentage of initial displacement at which actuator is considered settled (2%)
- F₀ amplitude of ABS force (1500 N)
- x_{max} maximum permissible actuator displacement
- P_{max} maximum power dissipated through damping (3000 W)

Optimization Variables:

- k spring stiffness (N/m)
- c effective damping coefficient(N*s/m)

Formulation:

$$egin{aligned} \min f(c,k;\delta,m) &= -\ln\!\left(\delta\sqrt{1-rac{c^2}{4mk}}
ight)\!rac{2m}{c} \ g_1(c,k;m,F_0,x_{max}) &= rac{F_0\sqrt{rac{m}{k}}}{c} - x_{max} \leq 0 \ g_2(c,k;m) &= rac{c}{2\sqrt{mk}} - 1 \leq 0 \ g_2(c,k;m,x_{max},P_{max}) &= rac{x_{max}^2ck}{2m} - P_{max} \leq 0 \end{aligned}$$

Methods:

• KKT points (nonlinear optimization problem)

Results:

- c = 621.4 Ns/m
- k = 193 kN/m

Output:

• $p = 1194 \text{ kN/m}^2$ (brake line pressure)

2.b Machine Element Analysis

Minimize the braking distance of the vehicle subject to a maximum braking force (Fb) and maximum stress.

Calculating braking distance:

• Piston pressure given after the Vibration analysis of 1st sub-system (brake caliper) is used to calculate the normal force exerted by brake pads on the rotor for a given rotor radius -

$$Fn = Pp*Ab$$

Braking force generated due to friction between the rotor and brake pads -

$$Fb = 2\mu Fn$$

Stopping distance -

Work done against friction = Kinetic energy of the vehicle;

$$X = (\frac{1}{2}(m)v^2)/Fb$$

Min X
$$(R_o, R_i, R; r, P_p, \theta)$$

$$= (\frac{1}{2} *m * v^2) / (2 * \mu * P_p * \theta * (R_0^2 - R_i^2))$$

$$= \rho(\Pi * t)(R^2 - r_c^2 - r^2)v^2 / (\mu * Pp * \theta (R_0^2 - R_i^2))$$

$$\begin{split} \text{Such that} &\quad \alpha r < \sigma_y \\ &\quad \sigma r_{_max} = (\ 3+\nu\)\ (\rho^*\omega^2\ /\ \nu)\ (R-r_c)^2 < \sigma_y \\ &\quad \sigma_{t_max} = (\rho^*\omega^2\ /\ 4)\ [(1-\nu)r_c^2 + (3+\nu)R^2\] < \sigma_y \\ &\quad V = -\Pi\ (R^2 - r_c^2 - r^2)t < 0 \\ &\quad R_o\text{-}\ R <= 0 \\ &\quad r_i\ _Ro <= 0 \\ &\quad X,\ w,\ \sigma_{r\ _max},\ \sigma_{t_max} > 0 \end{split}$$

Thickness of rotor

Bolt radius

 $r_{\rm c}$

Inner radius of rotor

Manufacturing Constraints						
Hub bolt tolerances	11.85 mm < 2r < 12.0 mm -> 11.85mm - 2r < 0 2r - 12.0mm < 0					
Rotor thickness tolerance	$t_{min} < t < t_{max}$ $16.95 < t < 17.05$ -> $16.95 - t < 0$ $t - 17.05 < 0$					
Brake pad inner radius	Ri > = 0.0728					
Rotor radius	$R \le 0.12$					

Results				
Initial guesses	Ro = 0.99, Ri = 0.07, R = 0.12			
Results	Ro = 0.1106, Ri = 0.0816, R = 0.1732			

2.c Thermal analysis

- Thermal expansion of the dimensions
- Thermal stress
- Assumptions

Problem formulation and constraints

Rotor under braking

Objective: $\max Q_{transfer}$

Constraints:

 $T_{max} < 343^{\circ}\text{C}$ $LB \leq \delta_{radius} \leq UB$

 $LB \leq \delta_{thickness} \leq UB$

What is the problem?

Trade off

• Relation between Thermal and machine element analysis

Results

Possible problems

- Inconsistent constraints
- Formulation of the problem

MDO

NHATC

Formulation

Book keeping of variables

Index	subproblem	name	coupling type	link	lower bound	upper bound	baseline
1	1	r0(pad)	shared	2	0.099	0.1255	1
2	1	ri(pad)	shared	2	0.07	0.099	1
3	1	omega	shared	2	3.5	6.585	1
4	1	t	shared	2	0.01695	0.01705	1
5	1	rc(centre)	feed forward	2	0.038	0.042	1
6	1	R(rotor)	feedforward	2	0.07	0.1317	1
7	1	r (Bolt)	feedforward	2	0.00722	0.00798	1
8	1	tol	feedback	2	-0.05	0.05	1
9	1	σу	uncoupled	None	1	20000000	1
10	1	rk	uncoupled	None	0.06676	0.0737	1
11	2	r0(pad)	shared	1	0.099	0.1155	1
12	2	ri(pad)	shared	1	0.07	0.099	1
13	2	omega	shared	1	3.5	6.585	1
14	2	t	shared	1	0.01695	0.01705	1
15	2	ΔΤ	uncoupled	None	1	316	1
16	2	rc(centre)	feedback	1	0.038	0.042	1
17	2	R(rotor)	feedback	1	0.07	0.1317	1
18	2	r (Bolt)	feedback	1	0.00722	0.000798	1
19	2	tol	feedforward	1	-0.05	0.05	1

- Improper formulation of black box model
- Inconsistent constraints
- Invalid lower and upper bounds of variables
- Any suggestions?

Thank you

Any Questions?

Acknowledgement

- Dr. Khalil Al Handawi
- Dr. Ahmed Bayoumy

Equations for the calculation

- Heat generation due to friction between rotor and pad $\Rightarrow Q_{gen} = \frac{0.9 \mu R \omega}{2\pi}$
- Heat convection between rotor and environment $\rightarrow Q = hA(T_{rotor} T_{air})$
- Thermal expansion of the material $\rightarrow \alpha \Delta T$
- Equivalent radius $\rightarrow R_{eq} = \frac{2(r_0^3 r_i^3)}{3(r_0^2 r_i^2)}$

Where,

 $r_o = Inner \ radius \ of \ brake \ pad$ $r_i = outer \ radius \ of \ brake \ pad$