Detecting Condescension

DSI 17 Capstone Project - Sarah Lim Kai Hua

Project Goals

- Identify what condescension is
 - Not much existing research
 - Difficult to identify
- Make a model that can detect it

Stakeholders

- Social media platforms trying to detect condescension
- Social scientists analyzing how people converse
- People trying to not be condescending

Data Source

- 5200 Posts/Reply pairs from Reddit (50/50 split)
- Labelled by people (on Amazon)
- Corpus created by researchers in order to help research into condescension

```
@inproceedings{wang2019talkdown,
  author = {Wang, Zijian and Potts, Christopher}
  title = {{TalkDown}: A Corpus for Condescension Detection in Context},
  booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
  url = {https://www.aclweb.org/anthology/D19-1385},
  year = {2019}
}
```

Exploratory Data Analysis

- Best way to classify condescending text is by looking at the reply
 - Most common responses to condescending text are the word "condescending" and swear words.
 - Least condescending words are "don't mean", "stay", "took" (hard to find a pattern here)
- If the original post (not the reply) has the word 'condescending', it is **less** likely to be condescending
- Using the reply gives a much higher level of accuracy (0.77)
- Not using reply: 0.57 ROC AUC

Measuring Topic Changes

- Creators of corpus suggest that condescension causes a change in the topic of conversation, so I tried to measure this.
- How can we determine the topic of a block of text?
 - We can use sentence embeddings
 - BERT is a way of generating these embeddings.

—

Word and Sentence Embeddings

- Word embedding: representing words so that similar words have similar representations
- Words are converted into vectors
- Sentence embedding converts sentences into vectors based on their meaning.
- BERT is able to do this (using a pre-trained model)

How does BERT work?

- Neural network trained on a lot of text
- Trained by randomly removing words from a sentence and making the model fill the blanks in.
- It is able to determine the context of a word (by looking at the other words)
- The model also returns a vector (size 768) for sentence embeddings. This is what we will use.

More BERT (if needed)

- Based on 'transformer' model by Google
- For each word, model looks at all other words in the sentence (like a CNN), and creates an embedding. This means the words are more accurately represented, like so:
 - "I sat on a log"
 - "The log book was on the shelf" (different embedding)
- By stacking these transformers we can get BERT
- In addition, there is a hidden 'word' (token) at the start of every sentence that has the embeddings of the entire sentence. This is the 'sentence embedding'

_

Condescension is a cycle

- Embeddings have size 768. The exact meaning of each element is not easily explainable but we can still use it.
- For each of the 768 embeddings, how well does it correlate with condescension?
 - We can use a statistical test to check this
 - Plot the results of this statistical test
- Conclusion: replies to condescending posts exhibit condescending behavior

2. Are **also** highly correlated with condescension in the reply (in fact, even more correlated, since the slope is > 1)

1. Embeddings highly correlated with condescension in posts

Condescension changes the topic

- As mentioned earlier the corpus' authors believe that condescension changes the topic of the conversation
- To plot the similarity between 2 things, we can use cosine similarity
- Condescending posts have more similarity (?)

Condescending posts tend to lock in the topic

Types of Condescension

- People reply to condescension with:
 - The word "condescending"
 - Insults/swear words
- Can this reply be grouped?
- In addition, can we group condescending text into different categories?
 - Perhaps there are different ways of being condescending
- Apply unsupervised learning to the sentence embeddings

Predicting Condescension Using Embeddings

- Basically, take these embeddings and stick them into various models
- ROC AUC for models:
 - Logistic Regression: 0.78
 - Random Forest: 0.73
 - Neural net: 0.76
- It's quite close and probably comes down to tuning hyperparameters more precisely. Logistic regression is fast so that seems like a good choice.

BERT again

- We would still like to create a model that can detect condescension directly
 - Basic models don't work very well without the reply
 - Most findings still have to do with reply, or interaction between post and reply
 - Reply is not always available, or long enough to be useful
- Directly apply a NLP model to the post only
 - Use BERT again, but this time use transfer learning
 - This step is at the end since it loses most explainability

O.7 (AUCROC)

- This only uses the post, not the reply
- Model has somewhat high false negatives (36%)
- Earlier models (not BERT) had ~0.57 AUC ROC
- Still not accurate enough to reliably replace a human

Conclusions

- Condescending text is still difficult to classify
 - Models perform better with access to the reply (0.78 vs 0.7 AUC ROC)
- Condescending speech is replied to with more condescension
- People who are condescending tend to change the topic of the conversation
- The most condescending feature is when someone replies with 'condescending'
 - However, "condescending" (when used in the post) is very related to being not condescending
- I had a very hard time spelling 'condescension'

Conclusions (for stakeholders)

- Social platform moderators: responses to condescension are also condescending, at least to our model
 - If they are taking action (e.g. issuing warnings) against condescending people, should the responses be included in this group too?
- For social scientists: it might be worth looking at sentence embeddings
 - For longer chains of conversations
 - For other types of behavior that they might want to study (e.g. misinformation)

Further steps

- Corpus only consists of one post and 1 reply
 - Since condescension leads to more condescension, it may be worth analyzing entire chains of comments
 - Can also analyze how different types of replies to condescension affect the conversation (e.g. does being nice help steer conversation back on track?)

_

 Requires labelled data for longer chains, which is why I didn't do it

Q & A

(Also this is the last presentation so it's finally over)