Poglavje 2

Predikatni račun

2.1 Motivacija

Hitro lahko opazimo, da izjavni račun ne zadošča za analizo sklepanja.

Zgled 1 1. Oglejmo si naslednji sklep:

Vsak zajec ljubi korenje. Feliks je zajec.

Torej Feliks ljubi korenje.

Ta sklep se zdi pravilen. Formalizirajmo ga v izjavnem računu:

p ... vsak zajec ljubi korenje

q ... Feliks je zajec

r ... Feliks ljubi korenje

Ali velja

$$p,q \models r?$$

Seveda ne: če izberemo vrednosti v(p) = v(q) = 1 in v(r) = 0, sta obe predpostavki resnični, zaključek pa je lažen. Očitno ta formalizacija ni ustrezna, saj v izjavnem računu med izjavnimi spremenljivkami p, q in r ni nobene povezave, medtem ko v naravnem jeziku prvi dve povedi povezuje lastnost biti zajec, drugi dve individuum Feliks, prvo in tretjo pa lastnost $ljubiti\ korenje$.

V predikatnem računu (PR) razširimo jezik IR z dodatnimi simboli, npr.:

Z(x) ... x je zajec

K(x) ... x ljubi korenje

a ... Feliks $\forall x$... za vsak x

Zdaj lahko gornji sklep formaliziramo takole:

$$\frac{\forall x : (Z(x) \Rightarrow K(x))}{Z(a)}$$

$$K(a)$$

Vrste uporabljenih simbolov:

x ... individualna spremenljivka a ... individualna konstanta Z, K ... enomestna predikata $\forall x$... univerzalni kvantifikator \Rightarrow ... izjavni veznik : () ... ločila

Videli bomo, da je to pravilen sklep v PR.

- 2. Preden se lahko lotimo analize sklepanja v predikatnem računu, moramo dobro spoznati jezik, ki ga predikatni račun uporablja. Zato prevedimo še nekaj izjav iz naravnega jezika (slovenščine) v jezik PR, npr.:
- a) Vsi gasilci so hrabri.
- b) Nekateri gasilci so hrabri.
- c) Nekateri gasilci niso hrabri.
- d) Noben gasilec ni hraber.

Uvedimo simbole

G(x) ... x je gasilec H(x) ... x je hraber $\exists x$... obstaja x

Gornje izjave lahko zdaj zapišemo takole:

- a) $\forall x : (G(x) \Rightarrow H(x))$ b) $\exists x : (G(x) \land H(x))$ c) $\exists x : (G(x) \land \neg H(x))$
- d) $\forall x : (G(x) \Rightarrow \neg H(x))$

Vrste uporabljenih simbolov:

x ... individualna spremenljivka G, H ... enomestna predikata $\forall x$... univerzalni kvantifikator $\exists x$... eksistenčni kvantifikator \Rightarrow, \land, \neg ... izjavni vezniki : () ... ločila

2.1. MOTIVACIJA 3

3. Oglejmo si še kak primer iz matematike, saj nas ti najbolj zanimajo.

Evklidov izrek. Praštevil je neskončno mnogo.

Kako bi slavni Evklidov izrek prevedli v predikatni račun? Najprej ga povejmo drugače, npr.

- obstaja poljubno veliko praštevilo, ali natančneje
- za vsako naravno število obstaja večje naravno število, ki je praštevilo.

Ta oblika je primerna za prevod v PR. Da si prihranimo nekaj dela, se dogovorimo, da je področje našega pogovora v tem primeru množica naravnih števil. Potem lahko izjavo vsako naravno število ima lastnost L zapišemo na kratko $\forall x : L(x)$, sicer bi morali povsod pisati $\forall x : (x \in \mathbb{N} \Longrightarrow L(x))$ ali vsaj $\forall x \in \mathbb{N} : L(x)$.

Uvedimo simbola

$$P(x)$$
 ... x je praštevilo $V(x,y)$... $x>y$

Zdaj lahko Evklidov izrek v jeziku PR zapišemo takole:

$$\forall x \,\exists y \colon (V(y,x) \wedge P(y))$$

Vrste uporabljenih simbolov:

x,y ... individualni spremenljivki P ... enomesten predikat V ... dvomesten predikat $\forall x$... univerzalni kvantifikator $\exists y$... eksistenčni kvantifikator

∧ ... izjavni veznik

: () , ... ločila

Enomestni predikati izražajo lastnosti individuov, dvomestni predikati pa relacije med individui. V splošnem so predikati lahko n-mestni, kjer je $n \in \mathbb{N}, n \geq 1$, in izražajo n-mestne relacije med individui. Podobno kot pri dvomestnih izjavnih veznikih tudi dvomestne predikate pogosto namesto v funkcijskem zapisu R(x,y) pišemo s simbolom predikata med obema argumentoma, torej x R y. Če za dvomestno relacijo, ki jo tak predikat izraža, obstaja uveljavljen simbol, ga lahko uporabimo namesto imena predikata. Tako bomo npr. namesto V(x,y) in E(x,y) pisali kar x > y oziroma x = y, kot smo navajeni.

4. V zadnjem primeru tega zgleda se bomo srečali še z eno vrsto simbolov predikatnega računa. Vzemimo definicijo praštevila in jo prepišimo v jeziku PR.

Definicija. Naravno število n je praštevilo, če in samo če ima natanko dva naravna delitelja.

Delitelja, o katerih govori definicija, sta seveda p in 1. Da bosta dva, mora biti $p \neq 1$ (kar pomeni, da število 1 ni praštevilo). Uvedimo simbola

$$P(x)$$
 ... x je praštevilo $f(x,y)$... $x \cdot y$ $(x \text{ krat } y)$

Definicijo praštevila lahko zdaj v PR zapišemo npr. takole:

$$\forall x : (P(x) \iff x > 1 \land \forall u \forall v : (x = f(u, v) \implies u = 1 \lor v = 1))$$

Vrste uporabljenih simbolov:

x, u, v ... individualne spremenljivke 1 ... individualna konstanta P ... enomesten predikat >, = ... dvomestna predikata f ... dvomesten funkcijski simbol $\forall x, \forall u, \forall v$... univerzalni kvantifikatorji \Leftrightarrow , \wedge , \Rightarrow ... izjavni vezniki : () , ... ločila

Dvomestni funkcijski simboli izražajo dvočlene operacije z individui. V splošnem n-mestni funkcijski simbol, kjer je $n \in \mathbb{N}, n \geq 1$, predstavlja neko funkcijo n spremenljivk na množici individuov. Podobno kot pri dvomestnih izjavnih veznikih tudi dvomestne funkcijske simbole običajno namesto v funkcijskem zapisu f(x,y) pišemo med obema argumentoma, torej x f y. Tako bomo namesto f(u,v) v gornjem primeru pisali kar $u \cdot v$ ali $u \cdot v$, kot smo navajeni.

2.2 Sintaksa (skladnja) predikatnega računa

V tem razdelku sistematično naštejemo simbole, ki jih uporabljamo v PR, in opišemo, kako iz njih sestavljamo terme in izjavne formule. Predpostavljamo, da govorimo o elementih nekega področja pogovora D. Pomen teh simbolov bomo definirali v naslednjem razdelku, a za lažje razumevanje ga bomo nakazali že tu.

A. Simboli PR

- 1. $individualne\ konstante:\ a,b,c,\ldots,a_1,a_2,a_3,\ldots$ (predstavljajo $konkretne\ individue\ iz\ D$ oziroma so imena posameznih individuov iz D)
- 2. individualne spremenljivke: $x, y, z, \ldots, x_1, x_2, x_3, \ldots$ (predstavljajo poljubne individue iz D)

- 3. predikati: $P, Q, R, \ldots, P_1, P_2, P_3, \ldots$ (so lahko eno-, dvo-, \ldots, n -mestni in predstavljajo n-mestne relacije med individui iz D, oziroma (če je n=1) lastnosti individuov iz D)
- 4. $funkcijski \ simboli: \ f, g, h, \ldots, f_1, f_2, f_3, \ldots$ (so lahko eno-, dvo-, ..., n-mestni in predstavljajo funkcije, ki vsaki urejeni n-terici individuov iz D priredijo točno določen individuum iz D)
 - 5. *izjavni vezniki*: kot v izjavnem računu
 - 6. simbola kvantifikacije: ∀ (univerzalni) in ∃ (eksistenčni)
 - 7. ločila: : (),

B. Termi PR (lahko predstavljajo *individue* iz D)

Terme definiramo induktivno.

Definicija 1

- O1. Vsaka individualna konstanta je term.
- O2. Vsaka individualna spremenljivka je term.
- S. Če je f neki n-mesten funkcijski simbol in so t_1, t_2, \ldots, t_n termi, potem je tudi $f(t_1, t_2, \ldots, t_n)$ term.

Definicija 2 Term t je zaprt, če ne vsebuje individualnih spremenljivk.

 $\mathbf{Zgled}\ \mathbf{2}\ \mathrm{Naj}\ \mathrm{bo}\ f$ enomesten in g dvomesten funkcijski simbol. Potem je

$$a, x, y, f(a), f(x), g(a, a), g(x, y), f(g(x, f(y))), g(f(f(f(a))), g(f(a), a))$$

devet različnih termov. Od teh so $a, f(a), g(a, a)$ in $g(f(f(f(a))), g(f(a), a))$ zaprti.

C. Izjavne formule PR (lahko predstavljajo izjave o individuih iz D)

Tudi izjavne formule definiramo induktivno.

Definicija 3

- O. Če je P neki n-mesten predikat in so t_1, t_2, \ldots, t_n termi, je $P(t_1, t_2, \ldots, t_n)$ atomarna izjavna formula.
- S1. Če je F neki n-mesten izjavni veznik in so $\varphi_1, \varphi_2, \ldots, \varphi_n$ izjavne formule, je $F(\varphi_1, \varphi_2, \ldots, \varphi_n)$ izjavna formula.
- S2. Če je φ izjavna formula in x poljubna individualna spremenljivka, sta $(\forall x : \varphi)$ in $(\exists x : \varphi)$ izjavni formuli. Pri tem je:
 - $\forall x$... univerzalni kvantifikator,
 - $\exists x \quad \dots \quad \text{eksistenčni kvantifikator, } in$
 - φ ... doseg kvantifikatorja $\forall x$ oziroma $\exists x$.

Da bi zmanjšali število ločil v izjavnih formulah, podobno kot pri izjavnih izrazih sprejmemo dogovor o prednostnem redu kvantifikatorjev in izjavnih veznikov ter opuščanju ločil:

- 1. Za izjavne veznike in za zunanje oklepaje velja dogovor iz IR.
- 2. Kvantifikatorji imajo prednost pred izjavnimi vezniki.
- 3. Ločila med zaporednimi kvantifikatorji izpuščamo.

Zgled 3

```
Z(x), K(x), Z(a), K(a), V(y,x), \neg H(x), \forall x : (Z(x) \Rightarrow K(x)),

\forall x : (G(x) \Rightarrow H(x)), \exists x : (G(x) \land H(x)), \exists x : (G(x) \land \neg H(x)),

\forall x : (G(x) \Rightarrow \neg H(x)), \forall x \exists y : R(x,y), \forall x \exists y : (V(y,x) \land P(y)),

\forall x : (P(x) \iff x > 1 \land \forall u \forall v : (x = f(u,v) \implies u = 1 \lor v = 1))
```

so izjavne formule. Od teh je prvih pet atomarnih, ostalih devet pa ne.

Definicija 4 Nastop individualne spremenljivke v izjavni formuli je vezan, če je del kvantifikatorja ali če leži v dosegu kvantifikatorja, ki vsebuje isto spremenljivko. Sicer je to prost nastop.

Izjavna formula je zaprta, če so vsi nastopi individualnih spremenljivk v njej vezani.

Zgled 4 1. Izjavne formule P(a), $\forall x : P(x)$ in $\forall x \exists y : R(x,y)$ so zaprte.

2. Izjavne formule $P(\underline{x})$, $\exists y : R(\underline{x}, y)$ in $\forall x : (R(x, \underline{y}) \Rightarrow \exists y : P(y))$ niso zaprte. Prosti nastopi individualnih spremenljivk v njih so podčrtani in zapisani rdeče.

Substitucija ali zamenjava

Včasih izjavno formulo φ zapišemo v obliki $\varphi(x)$, kjer je x individualna spremenljivka. Če je t term, potem s $\varphi(t)$ označimo izjavno formulo, ki jo dobimo iz $\varphi(x)$, če v njej vse proste nastope spremenljivke x zamenjamo s termom t. Rečemo, da smo $\varphi(t)$ dobili iz $\varphi(x)$ s substitucijo ali zamenjavo spremenljivke x s termom t.

Podobno lahko φ zapišemo v obliki $\varphi(x_1, x_2, \ldots, x_k)$, kjer so x_1, x_2, \ldots, x_k različne individualne spremenljivke. Če so t_1, t_2, \ldots, t_k termi, potem s $\varphi(t_1, t_2, \ldots, t_k)$ označimo izjavno formulo, ki jo dobimo iz $\varphi(x_1, x_2, \ldots, x_k)$, če v njej vse proste nastope spremenljivke x_i zamenjamo s termom t_i za $i = 1, 2, \ldots, k$.

Zgled 5 Če je
$$\varphi(x)=\exists y\colon R(x,y)$$
 in $t=f(a)$, je
$$\varphi(t)=\exists y\colon R(f(a),y),$$

$$\varphi(y)=\exists y\colon R(y,y).$$

2.3 Semantika (pomenoslovje) predikat. računa

Izjavne formule same po sebi nimajo pomena, dokler ne določimo, kaj predstavljajo individualne konstante, predikati in funkcijski simboli, ki v njih nastopajo, in o katerih objektih sploh govorimo.

Definicija 5 Naj bo \mathcal{F} neka množica izjavnih formul. Interpretacijo I množice formul \mathcal{F} podamo tako, da:

- 1. izberemo neprazen razred objektov D, ki ga imenujemo področje pogovora ali domena interpretacije,
- 2. vsaki individualni konstanti a, ki nastopa v formulah iz \mathcal{F} , priredimo neki element $\bar{a} \in D$,
- 3. vsakemu n-mestnemu predikatu P, ki nastopa v formulah iz \mathcal{F} , priredimo neko n-mestno relacijo \bar{P} med n elementi razreda D,
- 4. vsakemu n-mestnemu funkcijskemu simbolu f, ki nastopa v formulah iz \mathcal{F} , priredimo neko funkcijo (preslikavo) \bar{f} , ki vsako urejeno n-terico elementov razreda D preslika v točno določen element iz D.

Izjavne veznike v formulah iz \mathcal{F} interpretiramo enako kot v izjavnem računu. Univerzalni kvantifikator $\forall x$ v formulah iz \mathcal{F} interpretiramo kot "za vsak $x \in D$ ". Eksistenčni kvantifikator $\exists x$ v formulah iz \mathcal{F} interpretiramo kot "obstaja $x \in D$ ".