VMLS Cheatsheet[1-9] - meanmachin3	• Additivity: For any n-vectors x and y,		They are normalized if $ a_i = 1$ for $i=1,,k$	6.4 Matrix-vector multiplication
	f(x+y) = f(x) + f(y) Affine functions $f: R_n \to R$ is affine if	$\theta = 0$: $a^T b = a b $	orthonormal if orthogonal & normalizedcan be expressed using inner products	A is an $m \times n$ matrix and x is an n-vector, then the matrix-vector product $y = Ax$
1 Vectors	and only if it can be expressed as $f(x) =$	$\theta = \pi = 180^{\circ} : a b = -\ a\ \ b\ $ $\theta \le \pi/2 = 90^{\circ} = a^{T} b \ge 0$	$a_i^T a_j = \begin{cases} 1, & \text{if } i = j \\ 0, & i \neq j \end{cases}$	$y_i = \sum_{k=1}^{n} A_{ik} x_k = A_{i1} x_1 + + A_{in} x_n$ for
Vectors	$a^T x + b$ for some n-vector a and scalar b,		$a_i a_j - 0, i \neq j$	i = 1m
•An ordered finite list of numbers.	which is sometimes called the <i>offset</i> •Any	Correlation Coeficient $\rho = \frac{\tilde{a}^T \tilde{b}}{\ \tilde{a}\ \ \tilde{b}\ }$	•orthonormal sets of vectors are linearly independent	•Row and column interpretations.
•Block or stacked vectors($a = [b, c, d]$), Subvectors ($a_{r:s} = (a_r,, a_s)$), Zero vec-	affine scalar-valued function satisfies the		• $a_1,,a_n$ is an orthonormal basis, we ha-	$y = Ax$ can be expressed as $y_i = b_i^T x$, $i =$
tors (all elements equal to zero), Unit	following variation on the super-position property: $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$, whe-	With $u = \tilde{a}/\mathbf{std}(a) \& u = \tilde{b}/\mathbf{std}(b)$,	ve for any n-vector $x = (a_1^T x)a_1 + +$	$1,,m$ where $b_1^T,,b_m^T$ are rows of A
$vectors((e_i = 1)), Ones vector(1_n) &$	re $\alpha + \beta = 1$	$\rho = u^T v/n \text{ where } u = v = n$	$(a_n^T x)a_n$	• $y = Ax$ could also be expressd in terms
Sparsity $(nnz(x))$	2.2 Taylor approximation	3.5 Complexity Todo	5.4 Gram-Schmidt(orthogonalization)	of column $y = x_1 a_1 + x_2 a_2 + + x_n a_n$
Vector addition	The (first-order) Taylor approximation of	4 Clustering	An algorithm to check if $a_1,,a_k$ are li-	6.5 Complexity
•Commutative: $a + b = b + a$ •Associative: $(a + b) + c = a + (b + c)$	f near (or at) the point z:	4.1 Clustering	nearly independent	addition: mn vector multiplication: $m(2n-1) \approx 2mn$
• $a + 0 = 0 + a = a$	$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$	4.2 A clustering Objective	given n-vectors a_1,a_n	7 Matrix examples
$\bullet a - a = 0$	Alternatively, $\hat{f}(x) = f(z) + \nabla f(z)^T (x - z)$	$G_j = \{i c_i = j\}$ where G_j is set of all	for $i = 1,,k$	7.1 Geometric transformations
1.1 Scalar-vector multiplication $(-2)(1, 9, 6) = (-2, -18, -12)$	2.3 Regression model	indices i for which $c_i = j$ Group representatives: We want each rep	1.Orthogonalization:	• Scaling: $y = Ax$ with $A = aI$ stretches a
• Commutative: $\alpha a = a\alpha$	Regression model is (the affine function of	to be close to the vectors, i.e $ x_i - z_{c_i} $	$\tilde{q}_i = a_i - (q_1^T a_i)q_1 - \dots - (q_{i-1}^T a_i)q_{i-1}$	vector by the factor $ a $ (or shrinks it when
• Left-distributive: $(\beta + \gamma)a = \beta a + \gamma a$	$\mathbf{x})\ \hat{\mathbf{y}} = \mathbf{x}^T \mathbf{\beta} + \mathbf{v}$	where x_i is in group $j = c_i$ so z_{c_i} is the	2. Test for linear dependence:	a < 1), and it flips the vector (reverses its
• Right-distributive: $a(\beta + \gamma) = a\beta + a\gamma$	3 Norm and distance	representative vector associated with	if $\tilde{q} = 0$, quit 3.Normalization: $q_i = \tilde{q}_i / \tilde{q}_i $	direction) if $a < 0$ • Dilation: $y = Dx$, where D is a diagonal
Linear combinations: $\beta_1 a_1 + + \beta_m a_m$	3.1 Norm Euclidean norm (or just norm) is	data vector x_i		matrix, $D = diag(d1, d2)$. Stretches the
• With Unit vectors: $b = b_1 e_1 + + b_n e_n$		$J^{clust} = (\ x_1 - z_{c_1}\ ^2 + \dots + \ x_N - z_{c_N}\ ^2)/N$	•if G-S does not stop early (in step 2),	vector x by different factors along the two
• If $\beta_1 + + \beta_m = 1$, linear combination is	$ x = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$	Partitioning vectors with representatives	$a_1,,a_k$ are linearly independent •if G–S stops early in iteration $i = j$, then	different axes. (Or shrinks, if $ d_i < 1$, and
said to be affine combination	Properties	fixed: $ x_i - z_{c_i} = \min_{j=1,\dots,k} x_i - z_j $	a_j is a linear combination of $a_1,,a_{j-1}$ (so	flips, if $di < 0$.) • Rotation Matrix:
1.2 Inner product	•homogeneity: $ \beta x = \beta x $ •triangle inequality: $ x + y \le x + y $	$Iclust = \left(\min_{x_1, x_2, \dots, x_n} \ x_1 - x_2\ ^2 + \dots + \dots \right)$	$a_1,,a_k$ are linearly dependent)	Notation Watter.
$a^Tb = a_1b_1 + a_2b_2 + + a_nb_n$ Properties: •Commutativity: $a^Tb = b^Ta$	•non negativity: $ x \ge 0$	$J^{clust} = \left(\min_{j=1,,k} x_1 - z_j ^2 + + \right)$	Complexity: $2nk^2$	$y = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} x$
•Commutativity:a · b = b · a •Scalar multiplication Associativity:	•definiteness: $ x = 0$ only if $x = 0$	$\min_{i} x_N - z_i ^2 / N$	6 Matrices	$y = [sin\theta cos\theta]^{x}$
$(\gamma a)^T b = \gamma (a^T b)$	<i>positive definiteness</i> = non negativity + de-	j=1,,k	6.1 Matrices	• Reflection Suppose that y is the vector
•Vector addition Distributivity:	finiteness $\frac{x^2 + x^2}{x^2 + x^2}$	Optimizing group representatives with	The set of real m \times n matrices is denoted	obtained by reflecting x through the line
$(a+b)^T c = a^T c + b^T c.$	$\mathbf{rms}(\mathbf{x}) = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{\ \mathbf{x}\ }{\sqrt{n}}$	assignment fixed: $J^{clust} = J_1 + + J_k$	R ^{m×n} 6.2 Zero and identity matrices	that passes through the origin, inclined
General examples:	Norm of block vectors $ (a,b,c) =$	where $J_{j} = (1/N) \sum_{i \in G_{i}} x_{i} - z_{j} ^{2}$	• Zero: All elements equals 0.	θ radians with respect to horizontal.
•Unit vector: $e_i^T a = a_i$	$\sqrt{ a ^2 + b ^2 + c ^2} = (a , b , c) $	To minimize mean square distance	• Identity: All elements equals 0 and dia-	$[\cos(2\theta) \sin(2\theta)]$
•Sum: $1^T a = a^1 + + a^n$	Chebyshev inequality Todo	$z_j = (1/ G_j) \sum x_i$ where $ G_j $ is stan-	gonal element equals 1.	$y = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} x$
• Average: $(1/n)^T a = (a^1 + + a^n)/n$	3.2 Distance	$\sum_{i \in G_i} x_i \text{ where } S_j \text{ is stain}$	• Sparse: If many entries are 0 • Diagonal: off-diagonal entries are zero	
•Sum of squares: $a^T a = a_1^2 + + a_n^2$	dist(a, b) = a - b Triangle Inequality: $ a - c = (a - b) + (b - a) $	dard notation for number of elements in	• Triangular: upper triangular if $A_{ij} =$	7.2 Selectors
•Selective sum: If $b_i = 1 \text{ or } 0$, $b^T a$ is the sum of elements for which $b_i = 1$,	$ a-b \le a-b + b-c $	set G_j		An $m \times n$ selector matrix A is one in which
Block vectors	z_i is the nearest neighbor of x if	4.3 The k-means algorithm	$A_{ij} = 0 $ for $i < j$	each row is a unit vector (transposed):
$a^T b = a_1^T b_1 + \dots + a_k^T b_k$	$ x - z_j \le x - z_i , i = 1,, m$	4.4 Examples 4.5 Applications	6.3 Transpose, addition and norm	Γ T \exists
1.3 Complexity of vector computations	3.3 Standard Deviation	5 Linear Independence	Block matrix Transpose	$ e_{k_1}^i $
Space: 8n bytes	de-meaned vector: $\tilde{x} = x - \mathbf{avg}(x)1$	$(a_1,,a_k)$ is linearly dependent if	[A D]T [AT CT]	
Complexity of vector operations: $x^Ty = 2n - 1$ flops (n scalar multiplications and	standard deviation: $\mathbf{std}(\mathbf{x}) = \mathbf{rms}(\tilde{\mathbf{x}}) =$	$\beta_1 a_1 + + \beta_k a_k = 0$, some β_1, β_k , that are not all zero	$ \begin{bmatrix} A & B \\ C & D \end{bmatrix}^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix} $	$\left\lfloor e_{k_m}^T ight floor$
2n-1 nops (<i>n</i> scalar multiplications and $n-1$ scalar additions)	$ x-(1^Tx/n)1 $	are not all zero 5.1 Linear Independence	$\begin{bmatrix} C & D \end{bmatrix} \begin{bmatrix} D_1 & D_2 \end{bmatrix}$	$L^{K_m}J$
2 Linear functions	\sqrt{n}	$(a_1,,a_k)$ is linearly independent if	Symmetric matrix: $A = A^T$ Properties	When it multiplies a vector, it simply co-
2.1 Linear functions	$rms(x)^2 = avg(x)^2 + std(x)^2$	$\beta_1 a_1 + + \beta_k a_k = 0 \& \beta_1 = = \beta_k = 0$	of matrix addition •Commutativity: A +	pies the k_i th entry of x into the <i>i</i> th entry
$f: \mathbb{R}^n \to \mathbb{R}$ means f is a function mapping	By Chebyshev inequality, $ x_i - \mathbf{avg}(x) \ge \frac{1}{2}$	5.2 Basis	B = B + A	of $y = Ax$:
n-vectors to numbers Superposition & linearity: $f(\alpha x + \beta y) =$	α std (x) is no more than $1/\alpha^2$ (for $\alpha > 1$)	basis: A collection of n linearly in- dependent n-vectors Independence -	•Associativity: $(A + B) + C = A + (B + C)$ •Addition with zero matrix: $A + 0 = 0 + A = 0$	$y = (x_{k_1}, x_{k_2},, x_{k_m})$
$\alpha f(x) + \beta f(y)$	Cauchy–Schwarz inequality: $ a^Tb \le a b $ 3.4 Angle	dimension inequality a linearly indepen-	A	7.3 Incidence matrix Directed graph: A directed graph consists
$\bullet f(\alpha_1 x_1 + + \alpha_k x_k) = \alpha_1 f(x_1) + +$	angle between two nonzero vectors a, b	dent set of n-vectors can have at most n	•Transpose of sum: $(A + B)^T = A^T + B^T$	of a set of <i>vertices</i> (or nodes), labeled
$\alpha_k f(x_k)$	defined as	elements any set of $n + 1$ or more n -vectors is linearly	If A is a matrix and β , γ are scalars	1,,n, and a set of directed edges (or
A function that satisfies superposition is called <i>linear</i>	$\angle(a,b) = \arccos(\frac{a^T b}{\ a\ \ b\ })$	dependent	$(\beta + \gamma)A = \beta A + \gamma A, (\beta \gamma)A = \beta(\gamma A)$	branches), labeled 1,,m.
Linear function satisfies	$a^{T}b = a b \cos(\angle(a,b))$	5.3 Orthonomal Vectors	Matrix norm $ A = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij}^2}$ ma-	(1, edge j points to node i
• <i>Homogeneity</i> : For any n-vector x and any	Classification of angles	$a_1,,a_k$ are (mutually) <i>orthogonal</i> if $a_i \perp$	trix norm satisfies the properties of any	$A_{ij} = \begin{cases} -1, & \text{edge j points from node i} \\ 0, & \text{otherwise} \end{cases}$
$scalar \ \alpha, f(\alpha x) = \alpha f(x)$		a_j for i!= j	norm	(o, otherwise

VMLS Cheatsheet[1-9] - meanmachin3

7.4 Convolution

8 Linear equations

8.1 Linear and affine functions

```
Superposition condition: f(\alpha x + \beta y) =
\alpha f(x) + \beta f(y)
Such an f is called Linear
Matrix vector product function: A is mXn
matrix such that f(x) = Ax and f is linear
f(\alpha x + \beta y) = A(\alpha x + \beta y) = \alpha f(x) + \beta f(y)
Converse is true: If f: \mathbb{R}^n \mapsto \mathbb{R}^m is linear,
then f(x) = f(x_1e_1 + x_2e_2 + ...x_ne_n)
= x_1 f(e_1) + x_2 f(e_2) + ... x_n f(e_n)
= Ax with A = [f(e_1) + f(e_2) + ... f(e_n)]
Affine Functions: f: \mathbb{R}^n \mapsto \mathbb{R}^m is affine if it is a linear function plus a constant
i.e f(x) = Ax + b same as f(\alpha x + \beta y) =
\alpha f(x) + \beta f(y) holds for all x, y and \alpha, \beta
such that \alpha + \beta = 1
A and B can be calculated as
A = [f(e_1) - f(0) \ f(e_2) - f(0)...f(e_n) -
f(0)]; b = f(0)
Affine functions sometimes incorrectly
called linear functions
```

8.2 Linear function models

```
Price elasticity of demand \delta_i^{price} = (p_i^{new} - p_i)/p_i: fractional changes in prices \delta_i^{dem} = (d_i^{new} - d_i)/d_i: fractional change in demand Price demand elasticity model: \delta_i^{dem} = E\delta_i^{price}
Taylor series approximation Regression
```

8.3 Systems of linear equations

9 Linear dynamical systems

- 9.1 Linear dynamical systems
- 9.2 Population dynamics
- 9.3 Epidemic dynamics
- 9.4 Motion of a mass
- 9.5 Supply chain dynamics