Лабораторная работа 10.2. Ядерный магнитный резонанс.

Дмитрий Норкин и Николай Кузнецов

04/10/2018

Цель работы

Наблюдение ЯМР на ядрах водорода и фтора, определение соответствующих g-факторов.

Ход работы

Для каждого из образцов найдем величину магнитного поля, при которой наблюдается резонанс. Рассчитаем по этим данным g-фактор по формуле $g=\frac{2\pi\hbar f}{\mu_B B}$. Рассчитаем также магнитный момент ядер в магнетонах Бора по формуле $\mu=gI$. Для водорода и фтора $I=\frac{1}{2}\Longrightarrow \mu=\frac{g}{2}$.

	Вода	Резина	Тефлон
f, МГц	9.7982	9.7969	9.7850
B, м T л	230	230	243
g	5.589	5.588	5.283
$\mu_{exp}, \ \mu_B$	2.795	2.794	2.641
$\mu_{th}, \ \mu_B$	2.793	2.793	2.627

Таблица 1: Caption

 $\Delta f = 0.0003 {\rm MF}$ ц $\Delta B = 0.01$ мТл. Относительную погрешность g вычислим как сумму квадратов относительных погрешностей f и B: $\Delta g = 0.03 \Longrightarrow \Delta \mu = \frac{\Delta g}{2} = 0.015$.

Выводы

В ходе работы наблюдался ЯМР на ядрах водорода и фтора. Были измерены значения g-факторов и магнитных моментов для каждого из этих веществ. Значения магнитных моментов совпали с теоретическими в пределах погрешности.