Engineering Systems Endsems

- Robotics Case Study
- Emergency Assessment Case Study
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 11
- Climate Change
- Regional Water Management
- Human Factors
- Industrial Wireless
- O IoT
- Mobile Phone voting
- RF Permeability of Bio-Liquids
- Product Architecture
- Product Manager
- System Architecture
- Systems Engineering

Robotics

- Robot degrees of motion kinematic arrangements.
- Definition and feedback control.
- Generations of Robotics
- Types of robots Bionic, Cyborg, Android
- Humanoid details.
- Kinematics.
- Dynamics.
- Planning and Intelligence.
- Wheels.
- Sensors.
- Vision.
- Micro robots.

Emergency Assessment

- Response Modelling Evacuation
- Needs
 - Integration of Data between agencies
 - Better collaboration between agencies
- System Architecture

Climate System

- Definitions
- Climate Models
- Global Circulation Model
 - Limitations
 - Downscaling
- IPCC Assessment Reports
- Scenario
- General Circulation Model
- Hydrological Model through GCM downscaling and observations
- Predictors, predictands and assumptions.
- Statistical Downscaling Methodology
- Mitigation and Adaptive Policies

Water Resource Management

- Problems
- Solutions (3)
- Hydraulic Structures
- Water Resource Management Subsystems
- Components of Hydraulic Structures (Storage, Flow Control, Flow Diversion, Conveyance)
- River Water Quality System
- Environmental Factors

Human Factors in Design

- List of human factors
- Task Analysis Techniques
- Charting Techniques
- Human Error Identification and Analysis

Internet of Things

- IoT as an asset management system.

- 3 tiered implementation
- NCAP (Network Capable Applications Processor)

System Architecture

- Component
- Entity
- System
- Development Models (SSAD)
- Modular Architecture
- Integral Architecture
- Slot Modular Architecture
- Bus Modular Architecture
- Sectional Modular Architecture
- Integral vs Modular
- 5 Phases [Opp, Concept Gen, Concept Eval, Dev, Launch]

Industrial Wireless

- Core requirements for wireless.
- 3 Second Challenge
- ISA100

Chapter 11

- Mission definition.
- Mission Event Timeline.
- Problem identification, Problem Space definition.
- Solution space definition.
- Use Case Attributes
- UML Diagram
- Use Case Sequence Diagram
- SPS, OCD
- Phases, Modes, States.
- Applications.

Chapter 1

- Definition of System
- An integrated set of interoperable elements, each with explicitly specified and bounded capabilities, working synergistically to perform value-added processing to enable a User to satisfy mission-oriented operational needs in a prescribed operating

environment with a specified outcome and probability of success.

- Categories of System

- Hard: Involving simulation
- Soft : Hard to quantify
- Evolutionary: Open, Complex system.
- Systems Thinking: Process of predicting, how something influences other things.
- Systems Engineering: how complex engineering projects should be designed and managed.
- Engineering Systems: study dealing with diverse, complex design problems.

- Characteristics of Engineering Systems

- Tech enabled
- Large Scale
- Socio-Technical Aspect
- Nested Complexity
- Dynamic
- Emergent Properties

Chapter 2

- Systems Approach

- Interdependence
- Goal Seeking
- Holism
- Inputs and Outputs
- Transformation
- Entropy
- Regulation
- Hierarchy
- Differentiation
- Equifinality
- Multi-finality

System vs Product vs Tools

- Product has specific capability.
- Supporting product is tool.

Systems Attributes

- The term *attributes* classifies *functional* or *physical* features of a system.
- **Properties :** Mass properties.

- Characteristics: Behavioural and Physical.
- **System Performance :** Objective and Subjective.
- System Conditions
 - Pre-requisites
 - Initial Operating Condition
 - Static vs Dynamic
 - Stabilisation
 - Balance of Power

Chapter 3

- Stakeholders.
- Measures of a system
 - Measure of Performance (Mo Effectiveness, Suitability)
 - Operational Effectiveness
 - Operational Suitability
 - Cost Effectiveness
- Acceptability of a System
 - Market
 - User perception
 - User mission- System
 - Return of Investment

Chapter 4

- Stages in System's Life Cycle
 - Definition (SWOT)
 - Procurement
 - Development
 - Production
 - Operation and Support
 - Disposal
- System Interface Objectives
 - Link Systems
 - Adapt on incompatible systems
 - Buffer effects of incompatible systems
 - Leverage Human Capabilities
 - Restrain system element's usage.
- Types of Interfaces
 - Active
 - Passive

- Combined
- Logical
- Physical

- Interface Failures

- Disruption
- Intrusion
- Stress Loading
- Physical Destruction

System Architecture - 1

- Diagrams
 - IDEFO
 - FFBD
 - N²
 - Tree
 - ER
 - Context

System Architecture - 2

- Functional Specifications
- Non-Functional Specifications ity
- **Physical Architecture** Divides in Sub-systems
- System Architecture
- The System Architecture identifies all the products (including enabling products) that are necessary to support the system and, by implication, the processes necessary for development, production/construction, deployment, operations, support, disposal, training, and verification.