PCP - Huji Course, Ex 2.

David Ponarovsky

July 28, 2023

1 Ex 1. Sumchecking with coefficients.

We would like to verify that a given polynomial box P satisfies that $\sum_{x \in [d]^m} \varphi(x) f_P(x) = 0$ by accessing to at most O(md) variables. For any function $\varphi: [d]^m \to \mathbb{F}_q$. Denote by $\varphi': \mathbb{F}_q^m \to \mathbb{F}_q$ the extension of φ into a polynomial over \mathbb{F}_q^m . We saw in that lectures (and also in the previews assignment) that there is such a uinq extension.

We are going to split the section into three, first we are going to show how to verify that $\sum_{x\in[d]^m} f_P(x) = 0$. When the polynomial is a function into \mathbb{F}_q . (I think, but not sure, that in the lecture we saw only the case when q=2). Then in the second part we will show how can one redact the coefficients case into the non-coefficients case. Finally, in the last part, we combine all together to show that the construction achieve the requirements.

1.1 Over non binary field.

Let's define a series of polynomial boxes f_i such that:

$$f_0 = f$$

$$f_{i+1}(x_1, ..., x_{m-i}) = \sum_{y \in [d]} f_i(x_1, ..., x_{m-i}, x_{m-i+1} = y)$$

Our verifier will ask for a proof which is a list of $f_0, f_1, f_2..., f_m$. Now, notice that if f is an honest assignment then f_m is just the summation of f over the cube $[d]^m$. So it sufficient to show the existences of verifier that reject with heigh probability any string far from been encoded by the previews structure.

- 1 Sample a line and a point and use them to test any of the polynomails f_i by the line vrsus point test consuming $\Theta(m \cdot d)$ of randomness. (Not necessary if we can assume the validity of each of the polynomials boxes)
- **2** $r_1, r_2..., r_m \leftarrow \text{sample uniformly } m \text{ points of } [d]$
- з for $i \in [1, m]$ do
- Check if $f_{i+1}(r_1,..,r_{m-i-1},x_{m-i}) \sum_{y \in [d]} f_i(r_1,r_2,..,r_{m-i-1},x_{m-i},y)$ is the zero polynomial by a random test that uses at most single query. (Here $x_{m-i} \in [d]$ is the only variable)
- 6 If not then reject.
- 7 end
- **8** Accept if $f_m = 0$

Proof. For convenient let's denote by $g_i(x_{m-i})$ the difference that been queried in line number 4.

1. Compeletnce. Easy. If the assignment is honest then by definition $g_i = 0$ for any $i \in [m]$ and therefore for any x_{m-i} we will have that $g_i(x_{m-i}) = 0$. So, in that case iteration will pass. And whole proof will be aspected with probability 1.

2. Soundness. Assume an adversiray input in which $f_m = 0$ but $\sum_{\mathbf{x} \in [d]^m} f_0(x) \neq 0$. (The case which $f_m \neq 0$ is not intersting). Now, observers that this can happens only if either at least one the f_i dosn't setted according the definetion above or at least of the f_i is not pass the $m \cdot d$ -degree polynomial test with probability grater than $1 - \frac{m \cdot d}{q}$.

In the first case, there exsists at least one i such that $g_i \neq 0$: Now the probability to reject the proof is greater than the probability to catch a nonzero point when probing g_i . As we are assuming that all the f_i are pass with probability grater than $1 - \frac{m \cdot d}{q}$ the polynomails test (the second case, in which they aren't, is treated next) it follows that there exists a polynomial \tilde{f}_i at degree at most md that close to f_i in the sense that we can assume that with probability $1 - \Theta(\frac{md}{q})$ we query only points from \tilde{f}_i .

The same holds for f_{i+1} and therefore we can say that with probability at least $1 - \Theta(\frac{md}{q})$ difference g_i is also with a polynomial at degree at most $m \cdot d$ and therefore the probability to fall on non zero point is at least $1 - \frac{m \cdot d}{q} \Rightarrow$ with probability at most

$$1 - \mathbf{Pr}\left[\left\{\text{ quering points from } \tilde{f}_i, \tilde{f}_{i+1}\right\} \cap \left\{g_i(x) \neq 0\right\}\right] = 1 - \left(1 - \Theta\left(\frac{m \cdot d}{q}\right)\right)^2 = \Theta\left(\frac{m \cdot d}{q}\right)$$

the test accept.

We use similar arguments to treat the case in which one of the functions f_i is not a polynomail (Or close enough to polynomial, such that it can use as a noisy proof). As it given in the question that the validily of f_P can be assumed, we guess that intent was not to dig down into a multivariable polynomails verification. Thus we just mention without a proof that probability for rejecting is grater than the probability that f_i fail in a low degree polynomial test and that also happens with probability at least $1 - \frac{m \cdot d}{q}$.

1.2 Coefficients \mapsto non-coefficients.

By the fact that for any pair of polynomials f,g the degree of their product is at most the sum of their degrees $\deg f \cdot g \leq \deg f + \deg g$ we can reduct the problem of verifying whether the weight summation is zero by considering the summation of the polynomial $\varphi' \cdot f$ over the cube $[d]^m$. When φ' is the extansion of φ to $\mathbb{F}_q^m \to \mathbb{F}_q$.

Let's denote by $\xi = f \cdot \varphi$ and the corresponding polynomial box by $\xi_P = f_P \cdot \varphi_P$. Note that by

Let's denote by $\xi = f \cdot \varphi$ and the corresponding polynomial box by $\xi_P = f_P \cdot \varphi_P$. Note that by the uniquis of the extansion of both φ and f into $\mathbb{F}_q^m \to \mathbb{F}_q$ we get also that the extansion of ξ is uniq and ξ_P is well defined.

Our verfier will take as proof:

- 1. The polynomials f, φ, ξ
- 2. Their corresponding polynomial boxes f_P, φ_P, ξ_P
- 3. The polynimails boxes correspond to $\xi_0, \xi_1...\xi_m$ as defined in the previous section.
- 1 Sample uniformly random $x \sim [d]^m$ and check that $\varphi'(x) = \varphi(x)$
- **2** Check that φ is a polynomial at degree at most $d \cdot m$.
- **3** Check that the degree of ξ is at most 2md by quering the ξ_P .
- 4 Check that the polynomial $f \cdot \varphi' \xi$ is the zero polynomial by quering the boxes f_P, φ_P, ξ_P .
- 5 Using the sumcheck verifier on $\xi, \xi_1, \xi_2...\xi_m$, accept if the summation of ξ over the cube $[d]^m$ is zero.

Proof.

1. Compeletnce. The key point here is the fact that the extansion $\xi_P = \varphi_P \cdot f_P$ is unique and agrees with $\varphi \cdot f$ on all pointes in the cube $[d]^m$. If the proof is honest then all validity of the input check at lines 1-4 are pass with probability 1. Then we get by the compeletnce of the sumcheck verification that if indeed $\sum_{x \in [d]^m} \xi(x) = \sum_{x \in [d]^m} \varphi(x) f_P(x) = 0$ then line numer 5 also passes with probability 1.

2. Soundness. If there is a fault in one of the

2 Ex 2.

The question concerns with the following test: [COMMENT] rewrite again.

- 1 Choose $x, y \in \{\pm 1\}^k$ independently.
- **2** Choose $\mu \in \{\pm\}$.
- **3** Choose a random noise $z \in \{\pm\}^k$ such that z_i gets +1 with probability 1ε .
- 4 Accept if $\mu f(\mu x) \cdot g(y) = f(z \cdot xc^{-1}(y))$

2.1 2.a.

Let $f = \chi_{\{i\}}, g = \chi_{\{j\}}$ and j = c(i). In that case it holds that:

$$\mu f(\mu x) \cdot g(y) = \mu \chi_{\{i\}}(\mu x) \chi_{\{j\}}(y) = \mu^2 x_i y_j = x_i y_j$$
$$f(z \cdot x c^{-1}(y)) = \chi_{\{i\}}(z x c^{-1}(y)) = z_i x_i y_j$$

Thus, the test pass only if $z_i = 1$ and it given that this event happens with probability $1 - \varepsilon$.

2.2 2.b.

Denote by $\alpha_I \in \mathbb{R}$ and $\beta_I \in \mathbb{R}$ the coefficients of f, g over the character $\chi_{\{I\}}$.

$$\mathbf{E} \left[\mu f \left(\mu x \right) \cdot g \left(y \right) f \left(z \cdot x c^{-1} \left(y \right) \right) \right]$$

$$= \sum_{I,J,K} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\mu \chi_{\{I\}} \left(\mu x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(z x c^{-1} (y) \right) \right]$$

$$= \sum_{I,J,K} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\mathbf{E} \left[\mu \chi_{\{I\}} \left(\mu x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(z x c^{-1} (y) \right) |\mu \right] \right]$$

$$= \sum_{I,J,K} \alpha_{I} \alpha_{K} \beta_{J} \frac{1}{2} \left((-1)^{|I|+1} + 1 \right) \mathbf{E} \left[\chi_{\{I\}} \left(x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(z x c^{-1} (y) \right) \right]$$

Thus, all the elements in which |I| is even contribute zero for the exception. Now, let's apply the conditional expectation formula again conditioning over I, J, K, x, y:

$$\begin{split} &= \sum_{I,J,K,|I| \text{is odd}} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\mathbf{E} \left[\chi_{\{I\}} \left(x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(zxc^{-1}(y) \right) | I,J,K \right] \right] \\ &= \sum_{I,J,K,|I| \text{is odd}} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\sum_{\xi=0}^{|K|} \binom{|K|}{\xi} \left(-\varepsilon \right)^{\xi} \left(1-\varepsilon \right)^{|K|-\xi} \chi_{\{I\}} \left(x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(xc^{-1}(y) \right) \right] \\ &= \sum_{I,J,K,|I| \text{is odd}} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\left(1-2\varepsilon \right)^{|K|} \chi_{\{I\}} \left(x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(xc^{-1}(y) \right) \right] \end{split}$$

Let us denote by $C^{-1}(K)$ the indices $C^{-1}(K) = \{j : \exists i \in K, c(i) = j\}$. Then we get that:

$$\chi_{\{K\}} \left(xc^{-1}(y) \right) = \prod_{i \in K} x_i y_{c_i} = \chi_{\{K\}} \left(K \right) \chi_{\{C^{-1}(K)\}} \left(y \right)$$

Recall that for any $I, J \subset [n]$ it holds that:

$$\mathbf{E}\left[\chi_{\{I\}}(x)\chi_{\{J\}}(x)\right] = \mathbf{E}\left[\chi_{\{I\Delta J\}}(x)\right] = \mathbf{1}_{I=J}$$

And therefore the above can be simplified into:

$$\sum_{|I| \text{is odd}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon \right)^{|I|}$$

2.3 2.c

First let's bound from below the exception by the given that f and g pass the test with probability at least $\frac{1}{2} + \delta$:

$$\mathbf{E}\left[\mu f\left(\mu x\right) \cdot g\left(y\right) f\left(z \cdot x c^{-1}\left(y\right)\right)\right]$$

$$= \mathbf{Pr}\left[\mu f\left(\mu x\right) \cdot g\left(y\right) = f\left(z \cdot x c^{-1}\left(y\right)\right)\right] - \mathbf{Pr}\left[\mu f\left(\mu x\right) \cdot g\left(y\right) \neq f\left(z \cdot x c^{-1}\left(y\right)\right)\right]$$

$$\geq \frac{1}{2} + \delta - \left(\frac{1}{2} - \delta\right) = 2\delta$$

Thus in total the inequality of the above section becomes:

$$\sum_{|I| \text{ is odd}} \alpha_I^2 \beta_{C^{-1}(I)} (1 - 2\varepsilon)^{|I|} \ge 2\delta$$

Using Cauchy-Schwartz to bound from above, we obtain:

$$4\delta^{2} \leq \left(\sum_{|I| \text{is odd}} \alpha_{I}^{2} \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|}\right)^{2} \leq \sum_{|I| \text{is odd}} \alpha_{I}^{2} \cdot \sum_{|I| \text{is odd}} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} \left(1 - 2\varepsilon\right)^{2|I|}$$

$$\leq \sum_{|I| \text{is odd}} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} \left(1 - 2\varepsilon\right)^{2|I|}$$

Now let's denote by $\eta \in (0,1)$ a threshold parameter and separate the above summation into two part, when the first part sums up the elements in which $|I| \leq \eta n$ and the seconed sums elements in which $|I| \geq \eta n$:

$$\begin{split} &4\delta^{2} \leq \sum_{|I| \text{ is odd}, |I| \leq \eta n} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} \left(1 - 2\varepsilon\right)^{2|I|} + \sum_{|I| \text{ is odd}, |I| \geq \eta n} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} \left(1 - 2\varepsilon\right)^{2|I|} \\ &\leq \sum_{|I| \text{ is odd}, |I| \leq \eta n} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} \left(1 - 2\varepsilon\right)^{2|I|} + \left(1 - 2\varepsilon\right)^{2\eta n} \sum_{|I| \text{ is odd}, |I| \geq \eta n} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} \\ &\leq \sum_{|I| \text{ is odd}, |I| \leq \eta n} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} + \left(1 - 2\varepsilon\right)^{2\eta n} \sum_{|I| \text{ is odd}, |I| \geq \eta n} \alpha_{I}^{2} \beta_{C^{-1}(I)}^{2} \end{split}$$

When in the last transition we use the fact that $1-2\varepsilon < 1$. By picking η such that $(1-2\varepsilon)^{2\eta n} = \Theta\left(\delta^3\right)$ we have that for a family of tests:

$$3\delta^2 \le \sum_{|I| \text{is odd}, |I| \le \eta n} \alpha_I^2 \beta_{C^{-1}(I)}^2 \tag{1}$$

As the sumantion is over I at odd size, the empty set is not conunted in the summation, namly there must be a non empty I such that $|I| \leq \frac{1}{2} \log_{1-2\varepsilon} \left(\delta^3\right)$ and $\alpha_I \beta_{C^{-1}(I)}$ have non zero weight. Thus we can define:

$$L_f = \left\{ I : |I| \le \frac{1}{2} \log_{1-2\varepsilon} \left(\delta^3 \right) \text{ and } |I| \text{ is odd } \right\}$$

$$M_g = \left\{ C^{-1}(I) : |I| \le \frac{1}{2} \log_{1-2\varepsilon} \left(\delta^3 \right) \text{ and } |I| \text{ is odd } \right\}$$

2.4 Ex 3. The label cover problem.

The reduction. Let $\langle G = (V, E), \{c_e\}\rangle$ be a given instance of the Label cover problem. For each edge $e = \{v, u\} \in E$ define the test $T_{\varepsilon}(c_e)$ as defined above, Thus in total we define a |E| tests, denote them by T. Consider the language L such that a test collection T is in L if there exists function $f \times V$ such that the probability:

$$\Pr\left[T_{\varepsilon}(c_{\{v,u\}}) \text{ accepts on } f_v, f_u\right] \geq \frac{1}{2} + \delta$$

For every $\{v,u\} \in E$. A probabilistic verifier takes a candidate $f \times V : \pm \times V \to \pm$, picks a random edge $e \in E$ and then check $T_{\varepsilon}(c_e)$ over the functions f_v, f_u .

Compeletnce. Suppose that $\langle G = (V, E), \{c_e\} \rangle \in (\mu, 1)$ -Label Cover then either there exists a labeling A such that $c_{vu}(A(v)) = A_u$ for any $\{v, u\} \in E$ or that any labeling satisfies at most μ constraints. For compeletnce, let's assume the first case, and denote by A the satisfying labeling. Consider the function $f \times V : \pm \times V \to \pm$ defined as follow: $f_v = \chi_{\{A(v)\}}$, So by the first section of part 2 we have that any of the test accepts with probability $1 - \varepsilon$. That it, as we pick a test uniformly random, the existences of satisfying labeling for the label cover problem give a function that pass the test with probability $1 - \varepsilon$.

Soundness. Now, assume the second case, namely that any labeling satisfies at most μ constraints. Also assume through contridiction that there exists an assignment that satisfies more than $\frac{1}{2} + \delta$ equations, so by the same arguments we use in section 2.b we have that the expection of the product $\mathbf{E}\left[\mu f_v(\mu x) f_u(y) f_v(zxc^{-1}(y))\right] \geq 2\delta$ when here, in addition for taking the expection over the x, y, z, μ we also suming on the edges $\{v, u\} \in E$.

Now we are about to show that for at least δ of tests the product $\mathbf{E}\left[\mu f_v(\mu x)f_u(y)f_v(zxc^{-1}(y))|u,v\right]$ conditioned on the test is greater than δ . For convinent let's use the notation $\mathbf{E}\left[\cdot\right] \geq \delta$ for referring to tests that the avereing in on their product is grater than δ , and by the same manner let's use the notatin $\mathbf{E}\left[\cdot\right] \leq \delta$. So:

$$2\delta \leq \mathbf{E} \left[\mu f_v(\mu x) f_u(y) f_v(zxc^{-1}(y)) \right] =$$

$$\mathbf{Pr} \left[u, v \text{ s.t } \mathbf{E} \left[\cdot \right] \geq \delta \right] \mathbf{E} \left[\mu f_v(\mu x) f_u(y) f_v(zxc^{-1}(y)) | u, v \text{ s.t } \mathbf{E} \left[\cdot \right] \geq \delta \right] +$$

$$\mathbf{Pr} \left[u, v \text{ s.t } \mathbf{E} \left[\cdot \right] \leq \delta \right] \mathbf{E} \left[\mu f_v(\mu x) f_u(y) f_v(zxc^{-1}(y)) | u, v \text{ s.t } \mathbf{E} \left[\cdot \right] \leq \delta \right]$$

$$\leq \mathbf{Pr} \left[u, v \text{ s.t } \mathbf{E} \left[\cdot \right] \geq \delta \right] \cdot 1 + \mathbf{Pr} \left[u, v \text{ s.t } \mathbf{E} \left[\cdot \right] \leq \delta \right] \cdot \delta$$

$$\leq \mathbf{Pr} \left[u, v \text{ s.t } \mathbf{E} \left[\cdot \right] \geq \delta \right] + \delta$$

Thus for at least δ fraction of the tests equation 1 holds. Now consider the follow probablistic assignment, for any vertex v we choose a set $I \subset [n]$ at probability that equals to the projection of f_v on $\chi_{\{I\}}$ square, namely $|\langle f_v, \chi_{\{I\}} \rangle|^2$ then picking uniformly form the support of I a label for v. Therfore for any tests assoicate with u, v satisfies $\mathbf{E}[\cdot] \geq \delta$ we have that the probability that $c_{v,u}A(v) = A(u)$ is at least:

$$\sum_{|I| \text{ is odd}, |I| \leq \eta n} |\langle f_v, \chi_{\{I\}} \rangle|^2 |\langle f_{ru}, \chi_{\{c^{-1}(I)\}} \rangle|^2 \cdot \mathbf{Pr} \left[\text{ pick } i \in I, j \in C^{-1}(I), c(i) = j \right]$$

$$\geq \sum_{|I| \text{ is odd}, |I| \leq \eta n} |\langle f_v, \chi_{\{I\}} \rangle|^2 |\langle f_{ru}, \chi_{\{c^{-1}(I)\}} \rangle|^2 \cdot \frac{1}{|I| |C^{-1}(I)|}$$

$$\geq \left(\frac{1}{2} \log_{1-2\varepsilon} \left(\delta^3 \right) \right)^{-2} \cdot \sum_{|I| \text{ is odd}, |I| \leq \eta n} |\langle f_v, \chi_{\{I\}} \rangle|^2 |\langle f_{ru}, \chi_{\{c^{-1}(I)\}} \rangle|^2$$

$$\geq \left(\frac{1}{2} \log_{1-2\varepsilon} \left(\delta^3 \right) \right)^{-2} \cdot 3 \left(\frac{\delta}{2} \right)^2$$

Thus in total the labeling satisfies $\delta \cdot \left(\frac{1}{2} \log_{1-2\varepsilon} \left(\delta^3\right)\right)^{-2} \cdot 3 \left(\frac{\delta}{2}\right)^2$ of the constraints. That it, setting that number to η obtains the requested.

3 Part 3.

Label cover when the aleph-bet depends on the vertex. Instead of showing reduction into the general label cover we will show a reduction to a similar problem in which vertices can have an additional restriction on the valid charters that one can sets on. In formal, we will say that $\langle G, \{\Sigma_v : v \in V\}, \{c_e : e \in E\} \rangle$ instance of Generalized-Label-Cover if there is an labeling $A : V \to \Sigma$ such that for any $\{v, u\} \in E$ it holds that $c_e A(v) = A(u)$ and in addition for any $v \in V$ we have that $A(v) \in \Sigma_v \subset \Sigma$.

The reduction. Define the Bipartite graph G = (L, R, E). Associate the left vertices with the variables and the right with the closures. Define $\{u, v\}$ to be an edge if the literal which associate with the vertex u is in the closure associate with vertex v. For the alphabet take $\Sigma = \mathbb{Z}_2^3$. For any right vertex $v \in R$ define Σ_v be all the assignments for which the v-closures is satisfied and for any left vertex u define $\Sigma_u = \{(1,0,0),(0,0,0)\}$. Finally define c_e for $e = \{v \in R, u \in L\}$ to be the projection of $\sigma \in \Sigma$, setted on v, to the coordinate corresponding with u. For example, assume that v associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and assume that $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ and let $v \in \mathbb{Z}_2$ be the vertex associate with $v \in \mathbb{Z}_2$ be the vertex $v \in \mathbb{Z}_2$ be

Compeletnce. Suppose that $\varphi \in \text{E3-CNF-SAT}$ and let $x \in \mathbb{F}_2^*$ be the assignment that satisfies φ . That it, $\varphi(x) = \text{True}$. Let A be the labeling that sets for any vertex on the left the bit matched to that literal by x follows by zeros padding. And for any right vertex the triple of the bits corresponding to literals involving in the associated closure. By the fact that x satisfies φ any closure in φ is satisfied by x and therefore each of the right vertices (closures) see on his local view a character of Σ_v . In addition by the definition of the construction any pair of connected vertices satisfies the edge restriction.

Soundness. Suppose that $\varphi \in \text{E3-CNF-SAT}$ but not satisfiable and $\langle G, \{\Sigma_v : v \in V\}, \{c_e : e \in E\} \rangle$ is an instance obtained by the reduction above. Assume throawds contradiction that there exists labeling A such that more than $\mu' = 6\mu$ of the restriction $\{c_e\}$ are satisfied.

Define by α_i to be the number of right vertices which satisfy exactly i edges, that it,

$$\alpha_i = |\{|\{c_e A(v) = A(u) : u \in L\}| = i : v \in R\}|$$

Claim 1. For any labeling A such that $\alpha_3 \geq \mu$ there exists an assignment $x \in \mathbb{F}_2^*$ satisfies at least μ portion of the restrictions.

Proof. The proof is trivial. \Box

Claim 2. For any labeling A that satisfy ξ constraints, there exists labeling A' such that any constraint that satisfied by A also satisfied by A' and in addition $\alpha_0 = \alpha_1 = 0$. Put it differently, we can assume that $\alpha_0 = \alpha_1 = 0$.

Proof. Let $v \in R$ be a vertex that satisfies less than two edges. Recall that Σ_v contains all the triple that satisfy the closure associated with v. By the fact that for any 3-CNF closure there is exactly one assignment which does not satisfy it, It follows that $|\Sigma_v| = 2^3 - 1 = 7 \ge 2^2$. Therefore, we can replace A(v) by a triple that agree with the first two vertices connected to it.

Using the above claim we can infer that $\alpha_2 + \alpha_3 = |R|$ and in addition $2 \cdot \alpha_2 + 3 \cdot \alpha_3 \ge \mu' \cdot 3|R|$. Thus, $\alpha_3 \ge (3\mu' - 2)|R|$. Particularly if $\mu' \ge \frac{\mu + 2}{3}$ then $\alpha_3 \ge \mu|R|$, Combining the claim above we get a contradiction to the fact that $\varphi \in (\mu, 1)$ gap-3E-CNF-SAT and not satisfiable.