Title

D. Zack Garza

Friday 20th March, 2020

Contents

1 Fri	Frid	iday February 21st		
	1.1	Singularities	1	
	1.2	Singularities at Infinity	2	

1 Friday February 21st

1.1 Singularities

Recall that there are three types of singularities:

- Removable
- Poles
- Essential

Recall that a function g is holomorphic at z_0 iff

$$\lim_{z \to z_0} (z - z_0)g(z) = 0$$

Theorem 1.1(3.2).

An isolated singularity z_0 of f is a pole $\iff \lim_{z \longrightarrow z_0} f(z) = \infty$.

Theorem 1.2(3.3, Casorati-Weierstrass).

If f is holomorphic in $D_r(z_0) \setminus \{z_0\}$ and has an essential singularity z_0 , then there exists a radius r such that $f(D_r(\{z_0\}) \setminus \{z_0\})$ is dense in \mathbb{C} .

Proof.

Proceed by contradiction. Suppose there exists a $w \in \mathbb{C}$ and a $\delta > 0$ such that

$$D_{\delta}(w) \bigcap f(D_r(\{z_0\}) \setminus \{z_0\}) = \emptyset.$$

If
$$z \in D_r(w) \setminus z_0$$
, then $|f(z) - w| > \delta$. Define $g(z) = \frac{1}{f(z) - w}$ on $D_r(z_0) \setminus \{z_0\}$; then $|g(z)| < \frac{1}{\delta}$.

Note that this implies that g(z) is holomorphic on $D_r(z_0) \setminus \{z_0\}$. g(z) being holomorphic here follows from f being holomorphic here.

Then g(z) has a removable singularity at $z = z_0$ by theorem 3.1.

If $g(z_0) \neq 0$, then f(z) - w is holmorphic at z_0 , contradicting the fact that z_0 is an essential singularity.

If instead $g(z_0) = 0$, then z_0 is a pole, again a contradiction.

Note: revisit why this is a contradiction.

1.2 Singularities at Infinity

The point $z = \infty$ can be one of three types of singularities:

1. Removable
$$\iff f(z) = \sum_{k=-1}^{\infty} c_k \frac{1}{z^k}$$
.

- 2. Pole
- 3.