

2023 Marking Scheme

Grade	Mark Required		% andidates a salaisvina anada	
Awarded	(/ ₁₂₀)	%	% candidates achieving grade	
Α	77+	64.2%	%	
В	62+	51.7%	%	
С	48+	40.0%	%	
D	33+	27.5%	%	
No award	<33	<27.5%	%	

Section:	Multiple Choice	Extended Answer	Project
Average Mark:	15.7 /25	50.4 /95	No Project in 2023

2023 Adv Higher Chemistry Marking Scheme								
MC Qu	Answer	Reasoning						
1	D	 ☑A Aufbau principle states that 4s fills before 3d shells ☑B Aufbau principle states that 4s fills before 3d shells ☑C 4s¹ only occurs when 3d is either half-filled 3d⁵ in Cr or completely full 3d¹o in Cu ☑D 4s is filled before 3d 						
		Linear Tetrahedral Trigonal Pyramidal Trigonal Bips	yramidal					
		electron pairs electron pairs electron						
2	C	2 0 4 0 3 1 5 bonding pairs lone pairs bonding pairs lone pairs bonding pairs lone pairs bonding pairs H Cl	O lone pairs					
		CI — Be — CI H C IIIII H H CI — P III	ını Cl Cl					
3	В	☑A s-block found in groups 1+2 ☑B p-block found in groups 3→0 ☑C d-block forum in transition metals between groups 2+3 ☑D f-block found in bottom 2 rows of Periodic Table						
4	A	 ☑A Heterogeneous catalysis work by adsorption of reactants onto active sites of catalyst and homogeneous catalyst are in same state as catalysts. ☑B an incomplete d-subshell is required for the interaction of the catalyst with reactant(s) ☑C heterogeneous catalyst is in a different state to the reactants ☑D adsorption onto active siters is the mechanism of heterogeneous catalysts 						
5	D	Halfway point of steep vertical region (neutralisation point) of line is approx. pH=6 A acidic pH at start of experiment : alkali is being added to an acid B strong alkali/weak acid gives alkaline pH on neutralisation but pH is acidic at neutralisation C acidic pH at start of experiment : alkali is being added to an acid						
6	D	D pH at neutralisation is acidic weak alkali and strong acid gives acidic pH on neutralisation Term Bronsted-Lowry Definition acid Species which donates H* and becomes conjugate base base Species which accepts H* and becomes conjugate acid conjugate acid Species formed when base accepted an H* ion conjugate base Species formed when acid donated an H* ion H3O* ions being absorbed by conjugate base turning back into acid Weak acid donates H3O* ions and becomes conjugate base in the process.						
7	A	$\square A$ reactions which are feasible have negative values of $\triangle G$ and equilibrium favours products $\square B$ a feasible reaction is one that tends towards the products rather than the reactants $\square C$ a reaction with a positive value for standard free energy ($\triangle G$) is not feasible $\square D$ a reaction with a positive value for standard free energy ($\triangle G$) is not feasible						
8	В	① $\frac{1}{2}$ N ₂ + O ₂ → NO ₂ ΔG° =+51.8 kJ mol ⁻¹ ② N ₂ + 2O ₂ → N ₂ O ₄ ΔG° =+97.7 kJ mol ⁻¹ ① x-2 2NO ₂ → N ₂ + 2O ₂ ΔG° =-103.6 kJ mol ⁻¹ ② N ₂ + 2O ₂ → N ₂ O ₄ ΔG° =+97.7 kJ mol ⁻¹ $\frac{\text{cancel}}{\text{out}} 2\text{NO}_2 \rightarrow \text{N}_2\text{O}_4$ $\frac{\text{Final}}{\text{equation}} 2\text{NO}_2 \rightarrow \text{N}_2\text{O}_4$ ΔG° =-5.9 kJ mol ⁻¹						

		Positive ΔS value means an increase in disorder.						
9	C	 ✓ C liquid ethoxyethane (ether) evaporating into gas is endothermic and increases disorder ✓ D two gases becoming one solid is a disorder and exothermic 						
10	A	Rate = k[X][Y] means that both X and Y are first order and 1 molecule of each appears as reactants in the slow rate determining step. \therefore X + Y \rightarrow intermediate The overall reaction is X + 2Y \rightarrow Z so there must be a second step where the intermediate formed in (slow) rate determining step reacts with a further molecule of Y.						
11	A	The single carbon - carbon bond in alkanes is a sigma bond. Sigma bonds are formed by the end-on overlap of atomic orbitals along the axis of the covalent bond. In a non-polar covalent bond in an alkane, the bonding molecular orbital is symmetrical about the midpoint between two atoms. (Polar covalent bonds result from bonding molecular orbitals that are asymmetric about the midpoint between two atoms.)						
12	С	☑A blue-green light is absorbed and not transmitted. Only red colour is transmitted. ☑B electrons move from HOMO to LUMO to absorb a wavelength of light ☑C electrons move from HOMO to LUMO and blue-green light absorbed and red transmitted ☑D electrons move from HOMO to LUMO to absorb a wavelength of light						
13	۵	 ☑A ethanol contains O-H bonds and has hydrogen bonding between molecules ☑B ethylamine contains N-H bonds and has hydrogen bonding between molecules ☑C ethanoic acid contains O-H bonds and has hydrogen bonding between molecules ☑D ethoxyethane has no N-H, O-H or H-F bonds and no hydrogen bonding in pure substance 						
14	A	H Br H nucleophilic H OHH oxidation						
15	C	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH						
16	В	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

17	Α	Methoxypropane has the structure: H—C—O—C—C—H It has a molecular formula of C ₄ H ₁₀ O H H H ✓ A butanone CH ₃ CH ₂ COCH ₃ has a molecular formula of C ₄ H ₈ O ✓ B ethoxyethane CH ₃ CH ₂ OCH ₂ CH ₃ has a molecular formula of C ₄ H ₁₀ O ✓ C butan-2-ol CH ₃ CH(OH)CH ₂ CH ₃ has a molecular formula of C ₄ H ₁₀ O ✓ D 2-methylpropan-1-ol CH ₃ CH(CH ₃)CH ₂ OH has a molecular formula of C ₄ H ₁₀ O					
		Α		В		С	D
		CH2CHBr	C	:HCICHCH3	CH ₃	3CH2CHCCl2	CH ₃ C(CH ₃)CHCH ₃
18	В	H C=C Br	CI_ H	c=c H	H ₅ C ₂	c=c	CI H ₃ C H CH ₃ C CH ₃
		bromoethane Left end of C=C double bo has two H groups attache This prevents it from bein geometric isomer	nd There of group	5-1-chloropropene are two (non-identico s, one on each end of e C=C double bond. makes it a geometric isomer	Left end has two This pre	chlorobut-1-ened of C=C double both the groups attached vents it from being ometric isomer	nd Left end of C=C double bond d. has two CH3 groups attached.
19	A	· ·	roscopy, inalysis, a	molecule has co a pure substanc	ertain bor e will mel	nds stretched t first but wil	•
	_	Type of Drug Agonist re	Binding ceptor bir	İ	es a respo	Respor	he body's natural response
20	D	Antagonist re	ceptor bii	nding site blocks	ling site blocks the body's natural response		
		L	nzyme ac			of the enzyme	
21	D	☑A As doxepin is on ☑B Molecule B is inc ☑C Doxepin lacks th ☑D Molecule D is co	orrect at e -Cl gro	t bottom the nit up on top left o	rogen pai f molecul	rt is rotatory e ∴ Cl not in c	and will flip round
				Element	V	0	
				Mass or %	61.4%	38.6	
22	В			No. of moles	61.4 50.9 = 1.21	38.6 16 = 2.41	
				Mole ratio (divide through by smallest value)	1.21 1.21 = 1	2.41 1.21 = 1.99 =2	
				Empirical Formula	V	O ₂	

		A primary standard must:			
		be available in a	be stable w		have a reasonably
		high state of purit	y solid and in so	olution soluble	high GFM
		Examples sodi	ım carbonate	hydrated oxalic acid	potassium hydrogen phthalate
		of primary	Na ₂ CO ₃	$H_2C_2O_4\cdot 2H_2O$	KH(C ₈ H ₄ O ₄)
			ver nitrate	potassium iodate	potassium dichromate
23	C	include:	$AgNO_3$	KIO ₃	K₂Cr₂O ₇
		⊠ A calcium carbonate is	insoluble and ther	efore not a primary stai	ndard
		☑B Hydrochloric acid			
		☑ C sodium carbonate m	eets the four crite	ria listed in table above	
		⊠ D Sodium hydroxide is	not a primary star	ndard as it has a relative	ely low GFM, is unstable as a solid
					de solution must be standardised
		before being used in	•		
		4	20 ppm = 420	mg CO₂ per 1kg at	mosphere
		1kg atmosph	iere = 0.42g C	O ₂	
24	B	5.1×10 ¹⁸ kg atmosph	here = $0.42g$ C	$O_2 \times 5.1 \times 10^{18}$	
			= 2.142×1	0 ¹⁸ a CO ₂	
			= 2.1×10 ¹⁵	<i>-</i>	
				CrO ₄ ²⁻ → PbCrO ₄	
			1mol	1mol	
					_
0-			PbCrO ₄ +	$2Cl^{-} \rightarrow PbCl_2 +$	· CrO ₄ ²⁻
25	В		1mol		1mol
		2CrO ₄ ²⁻	+ 6I ⁻ +	16H ⁺ → 2Cr ³⁺ +	- 3I ₂ + 8H ₂ O
		2mol			3mol
		1mol			1.5mol

2023 Adv Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning				
1 a(i)	Answer to include:	1st mark: (Excited) electrons fall to a lower energy level 2nd mark: Difference in energy levels corresponds to $\begin{cases} red \ light \\ light \\ energy \end{cases}$ emitted.				
1a(ii) 1a(iii)A	+7 or VII	Li has electronic configuration of $1s^2$ $2s^1$. Li ⁺ has electronic configuration of $1s^2$ n 1s subshell is in 1^{s^+} shell and has a value for Principal quantum number (n) of n=1 l s subshells have an angular momentum quantum number (l) of l =0 m _l s subshells have a magnetic quantum number (m _l) of -l to +l :: 0 m _s All electrons either have a spin magnetic quantum number of either $+\frac{1}{2}$ or $-\frac{1}{2}$ Oxidation state of $O = -2$:: $4xO$ in ClO_4 - combine to equal -8. Perchlorate ClO_4 - has charge of -1 over whole ion :: the oxidation state of Cl must be +7				
1a(iii)B	9	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
1b(i)A	-1648	$\Delta H^{\circ} = \Sigma \Delta H_{f^{\circ}(products)} - \Sigma \Delta H_{f^{\circ}(reactants)}$ $= (2x-824) - (4x0) + (3x0)$ $= -1648 - 0$ $= -1648 \text{ kJ mol}^{-1}$				
1b(i)B	-549.4	$\Delta S^{\circ} = \Sigma S^{\circ}_{(products)} - \Sigma S^{\circ}_{(reactants)}$ $= (2 \times 87.4) - (4 \times 27.3) + (3 \times 205)$ $= 174.8 - (109.2 + 615)$ $= 174.8 - 724.2$ $= -549.4 \text{ J K}^{-1} \text{ mol}^{-1}$				
1b(i)C	3000	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0$:: $T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-1648 \times 1000 \text{ J mol}^{-1}}{-549.4 \text{ J K}^{-1} \text{ mol}^{-1}} = 3000 \text{ k}$				
1b(ii)	2694g	gfm NaClO3 = (1x23)+(1x35.5)+(3x16) = 23+35.5+48 = 106.5g 1 person in 1 minute uses 0.380litres oxygen 5 persons in 1 minute uses 0.380litres oxygen x 5 = 1.9litres oxygen 5 persons in 1 hour uses 1.9litres oxygen x 60 = 114litres oxygen 5 persons in 8 hours uses 114litres oxygen x 8 = 912litres oxygen 36litres oxygen produced from 1mol NaClO3 912litres oxygen produced from 1mol NaClO3 x 912/36 = 25.3mol NaClO3				
2a(i)	1 st Order	mass = no. of mol x gfm = 25.3 x 106.5 = 2694g Experiments [HgCl ₂] [$C_2O_4^{2-}$] Effect of Rate Order 3+2 x2 same x2 [HgCl ₂] ¹				
2a(ii)	2 nd Order	Experiments $[HgCl_2]$ $[C_2O_4^{2-}]$ Effect of RateOrder1+2samex2x4 $[C_2O_4^{2-}]^2$				

2b	rate = k[HgCl ₂][C ₂ O ₄ ²⁻] ²	rate = k × [l	$HgCl_2]^1 \times [C_2O_4^{2-}]^2 = k[H_1]^2$	gCl ₂][C ₂ O ₄ ²⁻] ²			
2c(i)	$2.56 \times 10^{-4} l^2 mol^{-2} s^{-1}$ Or $0.000256 l^2 mol^{-2} s^{-1}$	Using Experiment 1 (although experiments 2+3 can also be used) $k = \frac{\text{rate}}{[\text{HgCl}_2][C_2O_4^{2-}]^2} = \frac{0.860 \times 10^{-6} \text{ mol } l^{-1} \text{ s}^{-1}}{0.0840 \text{ mol } l^{-1} \times (0.200)^2 \text{ mol}^2 \text{ l}^{-2}} = 2.56 \times 10^{-4} \text{ l}^2 \text{ mol}^{-2} \text{ s}^{-1}$					
2c(ii)	0.508	For experiment 4: Rate = k 2.11×10^{-6} = 2.56×10^{-4} $[C_2 O_4^{2-}]^2 = \frac{2.11}{2.56 \times 10^{-4}}$	$ \begin{array}{ccccc} \times & [HgCl_2] & \times & [C_2O_4^{2-}] \\ \times & 0.0320 & \times & [C_2O_4^{2-}] \\ \times & \times & 10^{-6} \\ 4 \times & 0.0320 & = 0.258 \text{ mol} \\ \hline 8 & \text{mol } l^{-1} & = 0.508 \text{ mol} \end{array} $] ²] ² ² (- ²			
3a(i)	Add more/excess calcium chloride solution (to see if further precipitation occurs)	more reactant is added to showing the reaction is inc	see if there is any further omplete and further reacto	,			
3a(ii)	The precipitate should be dried/heated in an oven and weighed until constant mass	When precipitate is removed from the filtrate by vacuum filtration, some of the water remains in the precipitate residue. Heating the precipitate in an oven will drive off water. When the precipitate is removed from the oven it is cooled in a desiccator and the mass measured in a balance. Heating in oven, cooling in a desiccator and weight on balance is repeated until constant mass is achieved.					
3b	0.59	(COOH) ₂ + 1mol 5.85×10 ⁻⁴ mol gfm (COOH) ₂ = (2×12)+(4× mass = no. c	$ = \frac{\text{mass}}{\text{gfm}} = \frac{0.075}{128.1} = 5.0$ $CaC _2 \longrightarrow Ca(CC)$ $1m$ 5.85×1	85×10 ⁻⁴ mol OO) ₂ + 2HCl nol 10 ⁻⁴ mol 90 = 0.0527g			
3c	One answer from:	Not all oxalic acid extracted out Not enough CaCl ₂ adde	for long enough	t all precipitated out/not gone to completion			
4	Open Question to include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	2 mark answer Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			
5a	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸	Charge in Nickel ion = +2 as H_2O is a neutral ligand so +2 charge on complex comes from Ni^{2+} ion. Ni atom: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$ 4s electrons are removed before 3d electrons					

		Ni ²⁺ ion: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸					
5b	Hexaamminenickel(II)	Hexaamminenickel(II) = [Ni(NH ₃) ₆] ²⁺ no. of NH ₃ metal charge on ligands ligand name metal ion Neutral ligands include: Negative Ligands include: Central Ion: Charge: Ligand Name H ₂ O aqua NH ₃ ammine Chloride Cl ⁻ chlorido Cyanide CN ⁻ cyanido Nitrite NO ₂ nitrito Nitrite NO ₂ nitrito Charge: Charge of central ion is converted into roman numerals and put in brackets					
5c(i)	Bidentate	A bidentate ligand has two parts of the ligand that can donate pairs of electrons to the central metal ion at the centre of the complex.					
5c(ii)	6	6 different pairs of electrons across three bidentate ligands are donated to central metal ion. This gives a co-ordination number of 6.					
5d(i)	Answer to include:	1st mark: Electrons move to higher energy d orbitals purple light 380-400nm light red and blue light complementary colour (to green) absorbed					
5d(ii)	One answer from:	Shorter wavelength Ammonia absorbs higher frequency uv					
6a(i)	$K = \frac{[HI]^2}{[H_2][I_2]}$	For reaction: $aA + bB \Longrightarrow cC + dD$ $K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$					
6 a (ii)	981.8	$I_2 \text{ at start} = 0.25 \text{mol} \qquad \qquad I_2 \text{ at equilibrium} = 0.015 \text{mol}$ $\therefore I_2 \text{ reacted} = 0.25 \text{mol} - 0.015 \text{mol} = 0.235 \text{mol}$ $H_2 + I_2 \qquad \qquad 2HI$ $1 \text{mol} \qquad 1 \text{mol} \qquad 2 \text{mol}$ $0.235 \text{mol} \qquad 0.235 \text{mol} \qquad 0.470 \text{mol}$ $(\text{reacted}) \qquad (\text{reacted}) \qquad (\text{formed})$ $H_2 \text{ remaining at equilibrium} = 0.25 \text{mol} - 0.235 \text{mol} = 0.015 \text{mol}$ $K = \frac{[HI]^2}{[H_2][I_2]} = \frac{(0.470)^2}{0.015 \times 0.015} = 981.8$					
6a(iii)	207.2	$E = \frac{L \times h \times c}{\lambda} = \frac{6.02 \times 10^{23} \text{ mol}^{-1} \times 6.63 \times 10^{-34} \text{ J s} \times 3 \times 10^{8} \text{ m s}^{-1}}{578 \times 10^{-9} \text{m}}$ $= 207159 \text{ J mol}^{-1}$ $= 207.2 \text{ kJ mol}^{-1}$					
6b(i)	Buchner Funnel or Hirsch Funnel or Sintered Glass Funnel	The Buchner funnel allows vacuum filtration to place which speeds up the flow of filtrate through the Buchner funnel. The reduced pressure provides a faster means to separate precipitate from filtrate					

		gfm I2 = (2x126	.9) = 253.8q	
		•	no. of mol $I_2 = \frac{\text{mass}}{\text{gfm}} =$	$\frac{285}{253.8}$ = 1.12mol
6b(ii)	87.4%	I 1m 1,12		2HI + 5 2mol 2.25mol (theoretical)
		gfm HI = (1×1)+	(1×126.9) = 1+126.9 = 127.9g	
			o. of mol HI = $\frac{\text{mass}}{\text{gfm}} = \frac{2}{12}$	51 7.9 = 1.96 mol (actual)
			/ield = actual x100 =	1.96 2.25 ×100 = 87.4%
			yl -OH groups become carbo gle bond between carbons wit	nyl C=O groups h hydroxyl -OH groups splits
			OH turns in C=O COH bond breaks	
6c	O H H H H O H C - C - C - C - C - C - H H H H H H	H C H H	C OH turns in C=O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			н н	straighten H H H O H
7a	ac caulibrium	Reverse reactio	perature favours the endoth n is favoured as reverse read decreases H2CO3(aq) concent	
	Carbonic acid is a	Weak Acid	Kα	pK _α
	weaker acid as it has higher pKa / lower Ka	Carbonic acid	4.5×10 ⁻⁷	6.35
7b(i)	or	Ethanoic acid	1.7×10 ⁻⁵	4.76
	Ethanoic acid is a	Canalinat	Carbonic acid is a lower	Carbonic acid is a lower
	stronger acid as it has lower pKa / higher Ka	Conclusion	strength acid/weaker acid a has a smaller value of Ka	s it strength acid/weaker acid as it has a <i>higher</i> value of pKa
	,	H ₂ CO _{3(aq)}	+ H ₂ O(l) ===	H ₃ O ⁺ (aq) + HCO ₃ ⁻ (aq)
71	Base	Acid	Base	Conjugate Acid Conjugate base
7b(ii)	(or proton acceptor)	loses a proton/H⁺	gains a proton/H⁺	formed when formed when base accepts a acid loses a
		(proton donor)	(proton acceptor)	proton/H* proton/H*
			pH = 8	
7	6.31×10 ⁻⁹		$-\log_{10}[H_3O^+] = 8$	
7c(i)	i 6.31XIU ′	1	$log_{10}[H_3O^{\dagger}] = -8$,
/ C(1)	0.01/10		$[H_3O^+] = 10^-$	

7c(ii)	99.7%	$pH = 7.9$ $-log_{10}[H_3O^+] = 7.9$ $log_{10}[H_3O^+] = -7.9$ $[H_3O^+] = 10^{-7.9}$ $[H_3O^+] = 1.26 \times 10^{-8} \text{ mol } l^{-1}$ % Increase = $\frac{\text{difference in value}}{\text{original value}} \times 100$ % Increase = $\frac{1.26 \times 10^{-8} - 6.31 \times 10^{-9}}{6.31 \times 10^{-9}} \times 100$ % Increase = $\frac{6.29 \times 10^{-9}}{6.31 \times 10^{-9}} \times 100$ % Increase = 99.7%					
7d(i)	Answer to include:	Reacting known mass of seashells mixture is then with an excess volume of a hydrochloric acid of known concentration mixture is then titrated with sodium hydroxide to work out the number of moles of hydrochloric acid in excess The initial number of mumber of moles of hydrochloric acid, the number of mumber of moles used in the number of moles of the calculated. The initial number of moles of the calculate analysed can then be calculated.					
7d(i)	Answer to include: All 4 points = 2 marks 2 or 3 points = 1 mark	React calcium carbonate Known quantity/moles/volume idea of excess HCl/acid with NaOH.					
7d(ii)	Repeat using pure calcium carbonate	In a control experiment, a known mass of pure calcium carbonate can assess the accuracy of the reaction method.					
8a(i)	15-crown-5	In example given 18-crown-6: 18 refers to the number of atoms in the ring and 6 refers to number of oxygens The question: 15 atoms in the ring and 5 oxygen atoms in ring : 15-crown-5					
8a(ii)	Also accepted:	Element Member of Group 1 Number of O in ether Name Li 1st 4 12-crown-4 Na 2nd 5 15-crown-5 K 3rd 6 18-crown-6					
8a(iii)	Can donate lone (non-bonding) pairs of electrons	Ligands have lone pairs of electrons which for dative covalent bonds by donating pairs of electrons to the central metal ion forming dative covalent bonds. In crown ethers, the lone pair electrons are pointing into the centre of the ring where the metal ion is located.					
8b(i)	C ₆ H ₁₄ O ₄	H H H H H H H H H H H H H H H H H H H					
8b(ii)	Condensation or nucleophilic substitution	H from one molecule and Cl from next molecule are removed as the molecules join together forming HCl					
8c	2.43×10 ⁻³ or 0.0024						

		3 mark answer	2 mark answer	1 mark answer		
9	Open Question to include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.		
10a(i)	One answer from:	Adjacent (unhybridised) p orbitals that Electrons delocalised Alternating overlap/form a molecular orbital across a across a number of single and system/number of carbon atoms carbon atoms double bonds				
10a(ii)	sp²	bond down the axis	ontain sp ² hybridisati of the bond and side Is to form the pi bon	on overlap of		
10a (iii)	One from:	H C H C H	CN H C H C H			
10b(i)	Repulsion from pi electrons or double bond		ond are repelled by the this polarises the Cl-Cl	e pi electrons in the bond forming a δ + end		
10b(ii)	+CI	δ - δ - C I δ + C I \bullet		+ + CI + CI -		
10b(iii) <i>A</i>	Restricted rotation/ lack of free rotation (around the single bonds) in the ring	positions for side group if both side group isomer if one side group ring then this is	prevents the rotation so s above and below the riups are above ring then to is above ring and the ot the trans geometric ison has a lack or rotation in the geometric isomers	ng with no rotation. his is the cis geometric ther side group below mer.		

		1				
10b(iii)B	structure drawn of 1,1-dichlorocyclohexane Cl Cl	An optical isomer has a chiral carbon with four different groups attached.				
		1,1-dichlorocyclohexane has no carbons with four different groups. \mathcal{C}_1 has two chlorine atoms and the other carbons each have two hydrogens.				
	or Cl 1,4-dichlorocyclohexane	$1,4$ -dichlorocyclohexane lacks a chiral carbons as \mathcal{C}_1 and \mathcal{C}_4 each have a hydrogen atom and a chlorine atom but the ring of carbons is symmetrical and are identical regardless of which way you go around the ring.				
10c(i)	Diagram showing: 1 mark for curly arrows	δ- δ+ κ Cl H	H ⊕	→ H CI		
	1 mark for correct intermediate		+ Cl-			
10c(ii)	1.08			partial charge = 0.178 0-19 C = 2.848×10 ⁻²⁰ C		
			$\times 10^{-20} C \times 1.27 \times 10^{-10}$	27×10 ⁻⁹ m = 1.27×10 ⁻¹⁰ m m = 3.62×10 ⁻³⁰ Cm		
			$Cm = 1D$ $Cm = 1D \times \frac{3}{3}$	3.62×10 ⁻³⁰ Cm 3.34×10 ⁻³⁰ Cm		
		A32	= 1.08 D			
	NO ₂ ⁺	Nitration electrophilic subs concentrated sulphuric acid				
11a(i)		HNO ₃ + H ₂ SO ₄ concentrated concentrated nitric acid sulphuric acid	\rightarrow NO ₂ ⁺ +			
11a(ii)A	⊕ H — — — — — — — — — — — — — — — — — —					
11a(ii)B	⊕ OH					
	Reduction	Decrease in the oxygen : hydrogen ratio				
11b		Formula	C ₆ H ₄ O ₃	C ₆ H ₇ O		
110	Reduction	0 : H ratio	3 : 4 1 : 1.33	1:7		

11c	Ethar	hanoic aci noic anhyd anoyl chlor	Iride	Amines react with carboxylic acids to form alkylammonium salts and form an amide when heated.										
11d	Answer to include:		2 marks for all 4 points in table. 1 mark for 2 or 3 points in table											
110			minimum/small volume (of solvent) hot water/solvent			vent	cool	filter						
11e(i)A	C=O or Carbonyl													
11e(i)B	Overlap of peaks from different bonds with one example as shown: O-H peak in same region as $\begin{cases} N-H \\ C-H \end{cases}$ or N-H peak in same region as $\begin{cases} O-H \\ C-H \end{cases}$													
	CH3-C=O circled:													
11e(ii)A	Ч , н		Chemical Shift (ppm)	2,1	6.7	7.3	9.1	9.8						
			Height of Curve (mm)	50	33	33	17	17						
			No of Hydrogens in Group	3	2	2	1	1						
			Multiplet	singlet	doublet	doublet	singlet	singlet						
			<u> </u>	No of Hydrogen next door	0	2		0	0					
11e(ii)B	<u> </u>	Doublet		Group	CH₃C=0	ArH?		-HN-C=O	Ar-OH					
		Doublet												
11e(iii)A	Sample is pure with no extra peaks or		The same number of peaks with the same chemical shift indicated the sample is pure as contaminants would add other peaks to the NMR spectrum as they would											
	only 5 (hydrogen) peaks		containing other chemical groups.											
11e(iii)B	Mixed melting point or TLC or Chromatography The melting point of the recrystalised paracetamol is measured using melting point apparatus. Pure paracetamol is added to see if the melting point is the same. If the melting point alters then the sample is not pure.													