find_object_2d

Last update: 23/05/2019 Student name: Kate

Official find-object-2d package http://wiki.ros.org/find_object_2d
http://introlab.github.io/find-object/
Follw the tutorial from husarion docs

https://husarion.com/tutorials/ros-tutorials/4-visual-object-recognition/

Table of Contents

Install find object 2d	1
Run find object 2d	
Add object for detection	
Downside of find object 2d package	
Output of multiple detected objects	
Create own node to work with the data from /objects	
Edit CMakeList.txt to build	
Create launch file to handle both find object 2d and detected_object_node	10
Run the launch file	
Result output should look like this	11
Self memo and draft section	

Install find object 2d

sudo apt-get install ros-kinetic-find-object-2d

Create new package under the workspace

catkin_create_pkg replace_here_with_the_name_you_prefer std_msgs rospy roscpp

cd ~/catkin_ws

catkin build --continue-on-failure

. \sim /catkin_ws/devel/setup.bash

Create folder to store the data

mkdir data

Run find object 2d

rosrun find_object_2d find_object_2d image:=/pepper_robot/camera/front/image_raw

Turn on the parameters pane

View → Parameters

Under the Feature 2D, maksure both Detector and Descriptor are set to BRISK, or SFIT, or ORB Do not use SURF, because once move the object outside of the view, then not be able to detect. The pannle should look like this:

Add object for detection

from Edit → Add objects from scence

Take picture \rightarrow Select region (select only side, try to not include other side view, still experimenting which is best)

Next (more freatures, easire to detect)

End

Save the objects into the desired folder

Downside of find object 2d package

The package is depending on the features of the object heavily instead of both feature and color. Therefore, when the color of the object are too light, or the contrast of the object are too less, and the room light condition which gives large amount of the reflection, then detected features can reduce dramatically. Following is the experiment with teabox that has light color, less contrast, and with reflection of the room light.

The object already added, so it should be able to detect the object no matter move to what direction. However it is not able to detect.

Once use a sheet of paper to cover the light, reduced the reflection, it then be able to detect.

Output of multiple detected objects

See the published data

rostopic echo /objects

According to http://wiki.ros.org/find object 2d

The data array is consist of [object id, object width, object height, h11, h12, h13, h21, h22, h23, h31, h32, h33, object2 id, ...] where hxx is a 3x3 homography matrix

Create own node to work with the data from lobjects

https://husarion.com/tutorials/ros-tutorials/4-visual-object-recognition/