Curso Avanzado de Topología: Teoría de Nudos Prof: Mario Eudave Muñoz Semestre 2018 - II Instituto de Matemáticas, UNAM Tarea 2

- 1. Sea K un nudo o enlace orientado, y sea -K el nudo o enlace con la orientación opuesta (si es un enlace, cambiamos la orientación a todas las componentes de K). Sean V_K y V_{-K} matrices de Seifert para K y -K. Probar que V_{-K} es S-equivalente a V_K^T , donde V_K^T es la transpuesta de V_K .
- **2.** Sea K un nudo o enlace orientado y sea K^* la imagen especular de K. Sean V_K y V_{K^*} matrices de Seifert de K y K^* . Probar que V_{K^*} es S-equivalente a $-V_K^T$.
- **3.** Sea K un nudo o enlace orientado, -K el nudo o enlace con la orientación opuesta, y K^* la imagen especular de K. Probar que $\Delta_K(t) = \Delta_{-K}(t) = \Delta_{K^*}(t)$.
- 4. Calcular el polinomio de Alexander de los siguientes nudos usando matrices de Seifert:

5. Calcular el polinomio de Alexander del siguiente nudo usando matrices de Seifert:

6. Usando matrices de Seifert calcular el polinomio de Alexander de los dos enlaces orientados mostrados abajo (nótese que $K \neq -K$, aunque como enlaces no orientados son el mismo).

7. Determinar como está relacionado el polinomio de Alexander de los siguientes enlaces con el polinomio de Alexander de los nudos K_1 y K_2 .

8. Usando la fórmula skein del polinomio de Conway probar que los siguientes nudos tienen polinomio de Conway trivial, donde d, q, q+1 representan hileras de d, q, q+1 cruces respectivamente, y suponemos que d es un número par.

9. Probar que cualquier nudo se puede desanudar aplicando varias veces la siguiente movida:

10. Sea \mathcal{L} el látice entero en \mathbb{R}^3 (o sea el conjunto que consiste de todos los puntos con sus 3 coordenadas enteras y las rectas paralelas a los ejes coordenados que unen estos puntos). Sea K cualquier nudo. Probar que K se puede isotopar de manera que se encuentre sobre la látice \mathcal{L} , o sea que está formado de aristas contenidas en \mathcal{L} .

Una sombra de K es una proyección de K a uno de los planos coordenados. Entonces todo nudo en la látice tiene 3 sombras (claro que estas proyecciones no son regulares).

- a) Probar que el nudo trivial tiene un representante en la látice de modo que las 3-sombras son árboles, es decir gráficas sin ciclos.
- b) Probar que el nudo trébol también tiene un representante en la látice de modo que las 3-sombras son árboles.
- c) Probar o dar un algoritmo que muestre que cualquier nudo tiene un representante en la látice de modo que las 3-sombras son árboles.