

DEPARTMENT OF INFORMATION TECHNOLOGY

Assignment for Slow Learners

Automata and Compiler Design (IT3202)

B. Tech (IT), VI sem., Even 2023-24

Due Date: Complete and submit 5 days before ETE exam

- **1.** Find out the following over $\Sigma = \{0, 1\}$
 - a. A DFA for the set of all strings that don't include substring "000".
 - b. An NFA for the set of all strings of language L, where L = $\{aw_1aa w_2a: w_1, w_2 \in \{0, 1\}^*\}$.
 - c. A Regular Expression for the set of all strings that contains substring "10" exactly once.
 - d. Grammar G for the set of all strings of language L such that L (G) = $\{0^n1^n, n \ge 0\}$.
- **2.** Prove that for every NFA, there exists a DFA, which simulates the behavior of NFA. Convert the following NFA into an equivalent DFA over $\Sigma = \{0, 1\}$.

δ	0	1
→p	{p, r}	{q}
q	{r, s}	{p}
*r	{p, s}	{r}
*s	{q, r}	Φ

3. Consider the following ε – NFA M over Σ = {0, 1}.

- i. Compute the ε Closure of each state.
- ii. Convert the automaton M to a DFA.
- iii. Show the processing of the input string "00111".
- **4.** Prove that the language *pal* of palindromes over $\Sigma = \{0,1\}$ cannot be accepted by any FA, and it is therefore not regular.
- 5. Compare 2 DFA's M1 and M2 over $\Sigma = \{c, d\}$ and design the final DFA if possible.

6. Construct the minimum state automaton equivalent to the DFA over $\Sigma = \{a, b\}$ whose transition table is given below.

δ	a	b
\rightarrow q ₁	q_2	q_1
q_2	q_1	q_3
q_3	q_4	q_2
*q ₄	q_4	q_1
q ₅	q_4	q_6
q_6	\mathbf{q}_7	q_5
\mathbf{q}_7	q_6	\mathbf{q}_7
q8	q 7	q4

7. Find the Regular Expression of given NFA M1 over $\Sigma = \{a, b\}$ using ARDEN's Theorem –

8. Consider the grammar of simple expressions –

$$E \rightarrow I \mid E+E \mid E*E \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

Solve the expression (a101 + b1) * (a + b) using Rightmost Derivation.