Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ КАФЕДРА «ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ»

Отчет по домашнему заданию № 3

		В	ыполнила:	студентка 4 курса Группы 171-34
		Реш	іетникова ,	Дарья Алексеевна
				Преподаватель
		Недо	огарок Ант	он Александрович
Куратор прое	кта:		/	
	подпись		ФИО, уч.	 звание и степени
Студент:		/		
		_		
		подпись		ФИО группа

Вариант №13

Решение

- 1. Найти и привести в отчёте фрагмент кода, в котором происходит перенос введённого пользователем ключа в память crackme.
 - а. Пометить начало и конец фрагмента комментариями в дизассемблере.

```
rcx, cs:?cout@std(
                                        ostream@DU?$char traits@D@std@@@1@A; std::basic ostream<char,std::char traits<char>> std::cout
mov
        rdx, aEnterKey ; "Enter key:\t" - начало переноса введённого пользователем ключа в память crackme
lea
        sub_7FF60FDD1280
call
        rcx. cs:?cin@std@
                            )3V?$basic_istream@DU?$char_traits@D@std@@@1@A ; std::basic_istream<char,std::char_traits<char>> std::cin
mov
        buffer_key, [rsp+258h+var_118]
lea
lea
        rdx, [rbx-1]
                          ; конец
call
        input_key
        xmm0, xmm0
xorps
        [rsp+258h+var_19], bl
rax, a68086871 ; "68-08-68-71"
mov
lea
        [rsp+258h+var_228], xmm0
r9. a12941365 ; "12-94-13-65"
movsd
lea
        [rsp+258h+var_238], rax
mov
lea
        buffer key, [rsp+258h+var 118]
```

b. Присвоить переменной, хранящей введённый ключ, название buffer_key.

Запускаю отладку и смотрю, в переменной r8 содержится введенный key, значит это и есть buffer_key.

```
Moscow Polytechnic University
Reverse Engineering Exam
Serial: 207-780
Enter key:
                    111222333
    xor
            edx, edx
                           ; Val
            rcx, [rsp+258h+var_118] ; Dst
    lea
    mov
            r8d, 100h
    call
            memset
    mov
            rcx, cs:?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::basic_ostream<c
    lea
            rdx, aEnterKey ; "Enter key:\t"
    call
            sub_7FF60FDD1280
            rcx, cs:?cin@std@
                             მ3V?$basic istream@DU?$char traits@D@std@@@1@A ; std::basic istream<ch
    mov
    lea
            n8, [rsp+258h+var_118]
    lea
            rdx, [rbx-1]
    call
            sub_r8=Stack[000056E8]:0000008E518FF630
    xorps
            xmm@
                               db 31h; 1
    mov
            [rsp
                               db 31h; 1
    lea
            rax
                               db 31h;
                                        1
            [rsp
                               db 32h; 2
    movsd
    lea
            r9,
                               db 32h; 2
    mov
            [rsp
                               db 32h; 2
    lea
            r8,
                               db 33h; 3
    lea
            rdx
                               db 33h; 3
    lea
            rcx
                               db 33h; 3
    call
            sub
                               db
            cs:byte_7FF60FDD6110, bl
    cmp
            short loc_7FF60FDD1C36
    jnz
```

Переименовываю:

```
lea rax, a68086871; "68-08-68-71"
movsd [rsp+258h+var_228], xmm0
lea r9, a12941365; "12-94-13-65"
mov [rsp+258h+var_238], rax
lea buffer_key, [rsp+258h+var_118]
lea rdx, [rsp+258h+Dst]
lea rcx, aKeyCtf; "key = ***{CTF}***"

call sub_7FF60FDD1010
cmp cs:byte_7FF60FDD1C36
```

std::cout

- с. Привести снимок экрана дизассемблера в отчёте.
- 2. Найти и привести в отчёте фрагмент кода, в котором происходит проверка корректности ключа.
 - а. Пометить начало и конец фрагмента комментариями в дизассемблере.

Проверка корректности ключа начинается здесь и заканчивается при JNZ (если сравнение не равно (JNZ) оно переносит к Activation failed =(. Exit, a если равно, то переносит к Successful key check!):

```
[rsp+258h+var_228], xmm0
       r9, a12941365 ; '
                          "12-94-13-65"
lea
        [rsp+258h+var_238], rax
mov
       buffer_key, [rsp+258h+var_118]
lea
lea
       rdx, [rsp+258h+Dst]
                          "key = ***{CTF}***" - начало проверки корректности ключа
       rcx, aKeyCtf
lea
       sub 7FF60FDD1010
call
       cs:byte 7FF60FDD6110, bl
cmp
jnz
       short loc 7FF60FDD1C36; конец
```

В этом фрагменте находится функция, открываем ее и убеждаемся, что именно этот фрагмент кода отвечает за проверку корректности ключа:

- Б. Привести снимок экрана дизассемблера в отчёте.
- 3. Найти и привести в отчёте фрагмент кода (ветку условного перехода), которая выполняется, если ключ верен.
 - а. Пометить начало и конец фрагмента комментариями в дизассемблере.

По словам "Successful key check!" выясняем, что это именно этот фрагмент. И выполняется он, если сравнение равно. Далее запускается алгоритм для расчёта математической функции:

```
<u></u>
                                                                           loc_7FF60FDD1C36:
                                                                                   rcx, aSuccessfulKeyC ; "Successful key check!"
printf
                                                                           1ea
                                                                           call
                                                                                               ut@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::basic_ostream<c
                                                                                   rdx, sub_7FF60FDD1600
ts<char>> & (*)(std::basic ostream<char,std::char traits<char>> &))
                                                                           1ea
                                                                                          5?$basic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV01@P6AAEAV01@AEAV010@Z@Z ; s
                                                                           call
                                                                                   rdx, aTypeDoubleX ; "Type double X: '
sub_7FF60FDD1280
                                                                           lea
                                                                           call
                                                                                                       )3V?$basic_istream@DU?$char_traits@D@std@@@1@A ; std::basic_istream<ch</pre>
                                                                           lea
                                                                                   rdx, [rsp+258h+var_228]
                                                                           call
                                                                                                                Schar_traits@D@std@@@std@@QEAAAEAV01@AEAN@Z ; std::basic_istre
                                                                           movsd
lea
                                                                                   xmm2, cs:qword_7FF60FDD38E0
                                                                                   rcx, aWrooong ; "WROOOI xmm1, [rsp+258h+var_228]
                                                                           movsd
                                                                           call
                                                                                    sub_7FF60FDD1060
                                                                           movaps
                                                                                   xmm1, xmm0
                                                                           lea
                                                                                    rcx, aMathEquationRe ; "Math equation result:\t%f"
                                                                           movq
call
                                                                                   rdx, xmm0
                                                                                   printf
                                                                                    rcx, cs:?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::basic_ostream<c
                                                                           lea
                                                                                   rdx, sub_7FF60FDD1600
                                                                           call
                                                                                   cs:?
                                                                                                           DU?$char traits@D@std@@@std@@OEAAAEAV01@P6AAEAV01@AEAV01@@Z@Z : s
                                                                                    rcx, Command
                                                                                                   ; "pause'
                                                                           call
                                                                                   cs:
                                                                           xor
                                                                                   eax, eax
```

- Б. Привести снимок экрана дизассемблера в отчёте.
- 4. Найти и привести в отчёте фрагмент кода (ветку условного перехода), которая выполняется, если ключ не верен.
 - а. Пометить начало и конец фрагмента комментариями в дизассемблере.

По словам "Activation failed =(. Exit" выясняем, что это именно этот фрагмент. И выполняется он, если сравнение не равно:

- Привести снимок экрана дизассемблера в отчёте.
- 5. Описать в виде текста алгоритм, по которому происходит сверка ключа и серийного номера (обнаруженному в п.2). Развернуто прокомментировать фрагменты алгоритма сверки в дизассемблере и привести снимок экрана дизассемблера в отчёте.

Для выяснения правильной комбинации воспользуемся отладкой. Ставим точку останова в начале функции и запускаем отладку:

Введем рандомные значения:

```
Moscow Polytechnic University
Reverse Engineering Exam
Serial: 643-350
Enter key: 11223344
```

Видим, что регистр есх = 61:

A edx (значения, которые мы вводили в key) = 31

Edx сравнивается с нашим введенным key:

И нас выкидывает из функции, так как первое значение, очевидно, неверное.

Выходит "Activation failed =(. Exit":

```
Moscow Polytechnic University
Reverse Engineering Exam
Serial: 643-350
Enter key: 11223344
Activation failed =(. Exit_
```

Делаем вывод, что если нас выкидывает в loc_7FF779EC1042 - значит пароль неверный. Рассмотрим другую ветку

Тут мы видим, что гах сравнивается с 7, скорее всего в пароле будет 7 символов.

```
inc rax;; rax + 1 - порядок числа, а не само число dec r9; r9 - 1 cmp rax, 7 jl short loc_7FF779EC1020; если меньше
```

Рассмотрим алгоритм поподробнее, очевидно, что преобразование происходит в этой части кода:

Число 30h (в шестнадцатеричной системе)/ 0 (в десятичной) записывается в есх. А потом к этому числу прибавляется 31h.

Получается 30h+31h=61h. Обратимся к таблице символов ASCII:

Hex	Char	Γ
Hex 20 21 22		T
21	!	T
22	"	Γ
23	# \$ % &	Γ
24 25 26 27 28 29	\$	Γ
25	%	
26	&	
27	•	
28	(
29)	
2A	*	
2B	+	
2C	,	
2D	-	
2E		
2F	0	
30	0	
31	1	
32	2	
33	3	L
34	4	L
35	5	L
36	6	L
2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38	7	L
	1 2 3 4 5 6 7 8	L
39	9	L
3A	:	L

Видим, что 30 в Hex = 0 в ASCII-символах (Char). Смотрим чему равен

Hex	Char
60	,
61	a

символ 61h: $\frac{61}{a}$. Следовательно, в key используются ASCII-символы.

Попробуем запустить программу еще раз, в key на этот раз введем ASCII-символы, соответствующие каждой цифре в шестнадцатеричном пароле.

Dec	Hex	Char	Cmd
96	60	,	
97	61	a	
98	62	b	
99	63	c	
100	64	d	
101	65	e	
102	66	f	
103	67	g	
104	68	h	
105	69	h i j	
106	6A	j	
107	6B	k	
108	6C	1	
109	6D	m	
110	6E	n	
111	6F	0	
112	70	p	
113	71	q	
114	72	r	
115	73	S	
116	74	t	
117	75	**	

44	2C	,	
45	2D	-	
4.0	OT:		

93	SD		
94	5E	^	l
95	5E		

Однако попытка не увенчалась успехом =(.

```
Moscow Polytechnic University
Reverse Engineering Exam
Serial: 938-130
Enter key: jdi^bda
Activation failed =(. Exit
Для продолжения нажмите любую клавишу . . . _
```

Смотрим дальше. Обратила внимание, что есх сначала всегда равен 0. Нулю также равна всегда последняя цифра серийника. Можно попробовать написать первым символом а, а потом случайные цифры:

```
Moscow Polytechnic University
Reverse Engineering Exam

Serial: 979-860
Enter key: a111111
```

При отладке я обнаружила, что

```
ecx, 31h
                         ; сложение
         edx, ecx
         short loc_7FF779EC1042
jnz
              edx=00000000000000061
                                                                                         И
add
         ecx, 31h
                          ; сложение
cmp
         e<mark>dx</mark>, ecx
jnz
         short loc_7FF779EC1042
                    ecx=000000000000000061
                     · 🔟 🏄 🖼
                                                  равны.
```

И действительно, у меня получилось войти в зацикленную ветку:

И при этом после в r9 (а это то, с чем сравнивается key) занесена 6. Точно также, как и в serial. Возможно, нужно перевернуть key задом наперед.

Пробую:

```
Moscow Polytechnic University
Reverse Engineering Exam

Serial: 043-650
Enter key: afg^dea
Successful key check!
Type double X:
```

И действительно получилось.

Алгоритм: key - это ASCII-символы перевернутого шестнадцатеричного serial. Каждая цифра извлекается отдельно.

6. Привести как минимум 3 пары "ключ-серийный номер", подобранные по алгоритму п.5, распознаваемые приложением как верные. Изменять код приложения (патчить) запрещено. Привести снимки экрана, подтверждающие корректную проверку пар "ключ-серийный номер".

Moscow Polytechnic University
Reverse Engineering Exam

Serial: 469-740
Enter key: aeh^jge
Successful key check!
Type double X:

Moscow Polytechnic University Reverse Engineering Exam Serial: 486-600 Enter key: aag^gie Successful key check! Type double X:

```
Moscow Polytechnic University
Reverse Engineering Exam
Serial: 500-400
Enter key: aae^aaf
Successful key check!
Type double X: _
```

7. Задание на дополнительные баллы. По восстановленному алгоритму (п.5) написать на языке высокого уровня (рекомендуется С++ или Python) программу-кеудеп для подбора ключа по серийному номеру, предоставляемому самим crackme. Привести текст программы в отчёте. Рекомендуется реализовать кеудеп в как можно более простом коде (консольная программа, состоящая из одной функции и с использованием стандартных библиотек), чтобы проверить его функциональность можно было всего лишь скопировав текст кеудеп из отчёта в среду разработки.

```
1 key=input()[::-1]
2 for i in key:
3 j=ord(i)+49
4 i=+1
5 print(chr(j))
6
7
```

key=input()[::-1]
for i in key:
 j=ord(i)+49
 i=+1
 print(chr(j))

Проверка:

```
Moscow Polytechnic University
Reverse Engineering Exam
Serial: 582-570
Enter key:
```

```
582-570

a
h
f
Moscow Polytechnic University
Reverse Engineering Exam

Serial: 582-570

i Enter key: ahf^cif
Successful key check!
Type double X: __
```

- 8. *Задание на дополнительные баллы*. В crackme также присутствует код для расчёта математической функции. Необходимо:
 - а. Пометить начало и конец фрагмента комментариями в дизассемблере.

```
loc_7FF779EC1CB6:
                          rcx, aSuccessfulKeyC ; "Successful key check!"
                 lea
                          rdx, sub_7FF779EC1600
                                    asic_ostream@DU?$char_traits@D@std@@@std@@QEAAAEAV01@P6AAEAV01@AEAV01@@Z@Z ; std::basic_ostream<char,std::char_tra
                 call.
                          rcx, rax
                 mov
                          rdx, aTypeDoubleX ; "Type double X: " - начало математической функции sub_7FF779EC1280
                 call.
                                              @3V?$basic_istream@DU?$char_traits@D@std@@@1@A ; std::basic_istream<char,std::char_traits<char>>> std::cin
                 mov
                 lea
                          rdx, [rsp+258h+var_228]
                 call
                                                      $char_traits@D@std@@@std@@QEAAAEAV01@AEAN@Z ; std::basic_istream<char,std::char_traits<char>>::ope
                 movsd
                          хтт2, сs:qword_7FF779EC38E0 ; начало расчёта математической функции (до этого был ввод значения)
                          rcx, aWrooong; "WROOONG =) xmm1, [rsp+258h+var_228]
                 lea
                          sub 7FF779EC1060
                 call
                          xmm1, xmm0; Переслать выровненные упакованные короткие вещественные значения xmm1=xmm0 (а также конец самого расчета) rcx, aMathEquationRe; "Math equation result:\t%f" rdx, xmm0
                 movaps
                 lea
                 movq
                          printf ; конец
                                                       s<mark>ic_ostream@DU?$char_traits@D@std@@@1@A</mark> ; std::basic_ostream<char,std::char_traits<char>>> std::cou
                 lea
                                                   |DU?$char_traits@D@std@@@std@@QEAAAEAV01@P6AAEAV01@AEAV01@@Z@Z ; std::basic_ostream<char,std::char_tra
                 call
                          rcx, Command ; "pause"
                 call
                          eax, eax
```

Очевидно, что все основные действия происходят в функции:

```
movsu xmm1, cs:qworu_/гг//эссэосө; rcx, aWrooong; "WROOONG =)"
movsd xmm1, [rsp+258h+var_228]
call sub_7FF779EC1060
movaps xmm1, xmm0; Переслать выровненее rcx, aMathEquationRe; "Math ecmovq rdx, xmm0
```

Переименую:

```
lea rcx, aWrooong; "WROOONG =)"
movsd xmm1, [rsp+258h+var_228]
call math_function
movaps xmm1, xmm0; Переслать выровноси, aMathEquationRe; "Math
```

Функция выглядит так:

Преобразую числа:

Также преобразую и остальные числа.

Ү также преобразуется:

```
|movaps xmm0, xmm1
movsd xmm1, cs:Y
addsd
         xmm0, cs:aword 14000339
   .rdata:000000014000337E
                                               db
                                                     Ø
    .rdata:000000014000337F
                                              db
    .rdata:0000000140003380 qword_140003380 dq 0.066666666666667 ; DATA XREF: math_function+37fr
                                                                         ; math_function+4C1r
    .rdata:0000000140003380
    .rdata:0000000140003388 qword_140003388 dq 1.0
                                                                         ; DATA XREF: math_function+221r
    .rdata:0000000140003390 qword_140003390 dq 3.0
                                                                         ; DATA XREF: math_function+F1r
    .rdata:0000000140003398 ; double Y
                                                                        ; DATA XREF: math_function+71r
   .rdata:0000000140003398 Y
                                               dq 5.0
                                               db '
                                                               ..::::.. ',0
    .rdata:00000001400033A0 asc 1400033A0
    .rdata:00000001400033A0
                                                                       ; DATA XREF: sub 140001990+1F1o
     -4-+-.0000000140002200
                                    🔟 🚄
                                     math_function proc near
                                           rsp, 28h
                                     sub
                                     movaps xmm0, xmm1
                                           xmm1, cs:Y
                                     addsd
                                           xmm0, cs:qword_140003390 ; X, 3.0
                                     call
                                           xmm1, xmm0
                                     movaps
                                     xorps
                                           xmm0, xmm0
                                           xmm1, cs:qword_140003388 ; 1.0
                                     ucomisd xmm0, xmm1
ja short loc_1400010A4
                                     ja
                                                       <u></u>
        xorps
        sqrtsd
              xmm0, xmm1
                                                       movaps xmm0, xmm1 call sqrt
              xmm0, cs:qword_140003380 ; 0.0666666666666666
        add
              rsp, 28h
                                                       nulsd
                                                             xmm0, cs:qword_140003380 ; 0.0666666666666667
                                                       add
                                                             rsp, 28h
                                                       retn
                                                       math_function endp
```

b. Записать функцию в отчёте в виде математического выражения.

(X+3.0)^5-1 0 > (X+3.0)^5-1 Если нет, то:

sqrt((X+3.0)^5-1)*0.06666666666666667

Если да, то sqrt((X+3.0)^5-1)*0.06666666666666666

с. Пометить в дизассемблере в комментариях, каким именно образом строки диизассемблированного кода соотносятся с найденным математическим выражением. Должно быть наглядно и очевидно, как именно из кода на ассемблере получено выведенное математическое выражение.

Эта картинка есть в хорошем качестве называется "Math.png".

d. Привести снимок экрана дизассемблера с кодом математической функции в отчёте.

```
Moscow Polytechnic University
Reverse Engineering Exam
Serial: 927-180
Enter key: aib^hcj
Successful key check!
Type double X: 9
Math equation result: 33.255309
Для продолжения нажмите любую клавишу . . .
```

 $(9+3)^5-1=248831$

sqrt(248 831) * 0.066666666666666 = 33,2553088

```
.
```

```
<u></u>
loc_7FF606CC1C36:
lea rcx, a5uccessfulKeyC ; "Successful key check!"
call sub_7FF606CC1CF0
                                           3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::basic_ostream<char,std::char_traits<char>> std::cout
mov
lea
call
mov
lea
call
             rcx, cs:?cout
            cs:??6?$basic_ostream@DU?$char_traits@D@std@@QEAAAEAV01@P6AAEAV01@AEAV01@Z@Z; std::basic_ostream<a href="mailto:char_traits@D@std@@QEAAAEAV01@P6AAEAV01@BZ@Z">cs:??6?$basic_ostream@DU?$char_traits@D@std@@QEAAAEAV01@P6AAEAV01@BZ@Z; std::basic_ostream</a>
           cs:??5?$basic_istream@cu?$char_traits@O@std@@@std@@QEAAAEAV01@AEAN@Z; std::basic_istream<char,std::char_traits<char>>>:operator>
xmm2, cs:qword_7FF606CC38E0; a xmm2 nomewwaerca 15.1
rcx, aWrooong; "WROOONG =)"
xmm1, [rsp+258h+var_228]
math_function
xmm1, xmm0
rcx, aMathEnuetics
            rcx, rax
rdx, aTypeDoubleX; "Type double X: "
sub_7FF606CC1280
mov
lea
call
movsd
lea
movsd
call
movaps
lea
            rcx, aMathEquationRe; "Math equation result:\t%f" rdx, xmm0 ; Переслать 64 бита sub_7FF606CC1CF0
movq
call
mov
lea
call
lea
call
                                        @3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ; std::basic_ostream<char,std::char_traits<char>> std::cout
             rcx, cs:?c
             rdx, sub_7FF606CC1600
                                             @DU?$char_traits@D@std@@@std@@QEAAAEAV01@P6AAEAV01@AEAV01@@Z@Z ; std::basic_ostream<char,std::char_traits<ch
            cs:?
                                c_ostream@DU?
; "pause"
            rcx, Command cs:system
xor
            eax, eax
```