Московский Физико-Технический Институт (государственный университет)

Лабораторная работа 2.1.6 Эффект Джоуля-Томсона

Овсянников Михаил Б01-001

ФРКТ Долгопрудный, 2021

Работа 2.1.6

Эффект Джоуля-Томсона

Цель работы: 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно проте кающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рисунок 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после нее). Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 .Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$, Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right) \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right).$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля–Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если

макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

Используем выражение:

$$\mu_{\text{A-T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_p} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается $(\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших a велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

При температуре T_i коэффициент $\mu_{\text{д-т}}$ обращается в нуль. Используя связь между коэффициентами a и b и критической температурой, найдем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny Kp}}.\tag{4}$$

При достижении температуры $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{д-т}} < 0$, газ нагревается).

Температура инверсии у всех газов лежит значительно выше критической. Для большинства газов $T_{\rm инв}/T_{\rm кp}=5-8$. Например, для гелия $T_{\rm инв}=46$ K, $T_{\rm кp}=5,2$ K; для водорода $T_{\rm инв}=205$ K, $T_{\rm кp}=33$ K; для азота $T_{\rm инв}=604$ K, $T_{\rm kp}=126$ K; для воздуха $T_{\rm инв}=650$ K, $T_{\rm kp}=132,6$ K; для углекислого газа $T_{\rm инв}=2050$ K, $T_{\rm kp}=304$ K. Температура инверсии у гелия и водорода значительно ниже комнатной, поэтому при обычных температурах эти газы при расширении нагреваются. Температура инверсии остальных газов выше комнатной, и при нормальных условиях температура при расширении газа падает.

Сравнивая приведенные значения $T_{\text{инв}}$ и $T_{\text{кр}}$, можно убедиться в том, что предсказания, следующие из формулы Ван-дер-Ваальса, у реальных газов выполняются не очень хорошо. Правильно передавая качественную картину поведения реальных газов, формула Вандер-Ваальса не претендует на хорошее количественное описание этой картины.

При больших изменениях давления, например, при дросселировании от 200 до 1 атм (интегральный эффект Джоуля–Томсона), как это нередко бывает в промышленных установках, и приходится прибегать к общему соотношению. При этом связь между температурой и давлением находится с помощью специальных диаграмм, например, кривых $H={\rm const},$ проведенных в координатах температура – давление или температура – энтропия. Такие диаграммы строятся по экспериментальным данным и широко используются в технике.

Вернемся к влиянию правой части уравнения (2) на изменение температуры расширяющегося газа. Для этого сравним изменение температуры, происходящее вследствие эффекта Джоуля—Томсона, с изменением температуры, возникающим из-за изменения кинетической энергии газа. Увеличение кинетической энергии газа вызывает заметное и приблизительно одинаковое понижение его температуры как у реальных, так и у идеальных газов. Поэтому при оценках нет смысла пользоваться сложными формулами для газа Ван-дер-Ваальса.

Заменяя в формуле (2) U через $C_V T$ и PV через RT, найдем

$$(R + C_V)(T_1 - T_2) = \mu(v_2^2 - v_1^2)/2,$$

или

$$\Delta T = \frac{\mu}{2C_p} (v_2^2 - v_1^2).$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10~{\rm cm}^3/{\rm c}$, а диаметр трубки равен $3~{\rm mm}$. Поэтому

$$v_2 \leqslant \frac{4Q}{\pi d^2} = \frac{4 \cdot 10 \text{ cm}^3/\text{c}}{3,14 \cdot (0,3)^2 \text{ cm}^2} \approx 140 \text{ cm/c}.$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из нее как давление P_2 относится к P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$v_1 = \frac{P_2}{P_1} v_2 = \frac{1 \text{ atm}}{4 \text{ atm}} \cdot 140 \text{ cm/c} = 35 \text{ cm/c}.$$

Для углекислого газа $\mu = 44$ г/моль, $C_p = 40$ Дж/(моль · K); имеем

$$\Delta T = \frac{\mu}{2C_p}(v_2^2 - v_1^2) = \frac{44 \cdot 10^{-3}}{2 \cdot 40}(1, 4^2 - 0, 35^2) = 7 \cdot 10^{-4} \text{ K}.$$

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

В данной лабораторной работе исследуется коэффициент дифференциального эффекта Джоуля—Томсона для углекислого газа. По экспериментальным результатам оценивается коэффициент теплового расширения, постоянные в уравнении Ван-дер-Ваальса и температура инверсии углекислого газа. Начальная температура газа T_1 задается термостатом. Измерения проводятся при трех температурах: комнатной, $30^{\circ}C$ и $50^{\circ}C$.

Экспериментальная установка. Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рисунке. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P \leqslant 4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля—Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента при помощи контактного термометра $T_{\rm K}$.

Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_1 Давление газа в трубке измеряется манометром M и регулируется вентилем B (при открывании вентиля B, т. е. при повороте ручки против часовой стрелки, давление P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной

термопарой медь — константан. Константановая проволок а диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

Ход работы

- 1. Перед началом работы убедимся в том, что термостат залит водой, а все электрические приборы заземлены. Следует помнить, что при используемых в работе перепадах давления ($\Delta P \leqslant 4$ атм) величина эффекта не превышает 5°C (200 мкВ по показаниям вольтметра), так что установка весьма чувствительна к электрическим и тепловым помехам.
- 2. Установим на контактном термометре T_{κ} температуру регулирования, близкую к комнатной, и включим термостат.
- 3. На вольтметре 7 выключатель «Сеть» 11 поставим в положение «Вкл». Убедимся, что на вольтметре нажаты кнопки «АВП» 12 (автоматический выбор предела) и «U=» 13 (род работы). Запишем величину показаний вольтметра при $\Delta P=0$ атм в таблицу 1 (они могут быть ненулевыми из-за различных паразитных ЭДС). Будем использовать эту величину для корректировки показаний вольтметра в дальнейших измерениях: E=U(P)-U(0).
 - Откроем регулирующий вентиль B настолько, чтобы избыточное давление составило $\Delta P \approx 4$ атм.
- 4. Через 10–15 минут после подачи давления, когда полностью затухнут переходные процессы, запишем показания вольтметра в таблицу 1.
- 5. При помощи вентиля В установим давление на 0,5 атм меньше первоначального. Через 5 минут, когда установятся давление и разность температур, вновь запишем показания манометра и вольтметра в таблицу 1.
- 6. Проведем в сумме 6 таких измерений значений давления при комнатной температуре и запишем результаты в таблицу 1.

$t = 20^{\circ}C$			U(0) = 4,0 мкB				
ΔP , atm	3,95	3,5	3,0	2,5	2,0	1,5	
U, мкВ	-116,0	-100,9	-79,0	-57,9	-38,9	-26,1	
ΔU_{\pm} , мкВ	-120,0	-104,9	-83,0	-61,9	-42,9	-30,1	
$\Delta T_{\pm}, {}^{\circ}C$	-2,95	-2,58	-2,04	-1,52	-1,05	-0,74	
$\Delta U = \Delta U_{\pm} , \text{ MKB}$	120,0	104,9	83,0	61,9	42,9	30,1	
$\Delta T = \Delta T_{\pm} , ^{\circ} C$	2,95	2,58	2,04	1,52	1,05	0,74	
$t = 30^{\circ}C$			U(0) = -6.1 MKB				
ΔP , atm	4,0	3,5	3,0	2,5	2,0	1,5	
U, мкВ	-110,0	-93,0	-75,0	-57,1	-36,1	-23,0	
ΔU_{\pm} , мкВ	-103,9	-86,9	-68,9	-51,0	-30,0	-16,9	
$\Delta T_{\pm}, {}^{\circ}C$	-2,50	-2,09	-1,66	-1,23	-0,72	-0,41	
$\Delta U = \Delta U_{\pm} , \text{ MKB}$	103,9	86,9	68,9	51,0	30,0	16,9	
$\Delta T = \Delta T_{\pm} , ^{\circ} C$	2,50	2,09	1,66	1,23	0,72	0,41	
$t = 50^{\circ}C$			U(0) = -4.0 мкB				
ΔP , atm	4,0		3,5	3,0	2,5	2,0	
U, мкВ	-100,0		-82,9	-68,9	-48,1	-36,0	
ΔU_{\pm} , мкВ	-96,0		-78,9	-64,9	-44,1	-32,0	
$\Delta T_{\pm}, {}^{\circ}C$	-2,26		-1,86	-1,53	-1,04	-0,75	
$\Delta U = \Delta U_{\pm} , \text{ MKB}$	96,0		78,9	64,9	44,1	32,0	
$\Delta T = \Delta T_{\pm} , {}^{\circ}C$	2,26		1,86	1,53	1,04	0,75	

Таблица 1

При
$$t=20^{\circ}C$$
 используем $\Delta T=\Delta U\cdot \frac{1}{40,7}\cdot \frac{^{\circ}C}{\mathrm{B}};$ При $t=30^{\circ}C$ используем $\Delta T=\Delta U\cdot \frac{1}{41,6}\cdot \frac{^{\circ}C}{\mathrm{B}};$

При
$$t=50^{\circ}C$$
 используем $\Delta T=\Delta U\cdot \frac{1}{42.5}\cdot \frac{^{\circ}C}{\mathrm{B}}.$

7. Построим график $\Delta T(\Delta P)$ и по наклону определим коэффициент Джоуля-Томсона $\mu_{\text{д-т}}$ при данной температуре:

$$\Delta T = \mu_{\rm A-T} \Delta P$$

Используя МНК, находим:

$$\mu_{\rm д-т}=0{,}68$$
 $\frac{^{\circ}C}{^{\rm atm}}$

$$\sigma_{\mu_{\rm M-T}}=0.03~\tfrac{\circ C}{\rm atm}$$

- 8. Окончив измерения при комнатной температуре, закроем регулирующий вентиль В и установим на контактном термометре температуру $30^{\circ}C$.
- 9. Когда температура установится и установка войдет в стационарный режим, повторим измерения, как указано в пунктах 3–7 и запишем результаты в таблицу 1. При обработке результатов учтем, что чувствительность термопары медь константан зависит от температуры:

Температура, °С	0-10	10-20	20-30	30-40	40-50
мк $\mathrm{B}/^{\circ}C$	38,9	39,8	40,7	41,6	42,5
Температура, °С	50-60	60-70	70-80	80-90	90-100
мкВ/°С	43,3	44,1	44,9	45,6	46,4

Строим график $\Delta T(\Delta P)$:

$$\Delta T = \mu_{\text{\tiny M-T}} \Delta P$$

Используя МНК, получаем:

$$\begin{split} &\mu_{\text{\tiny Д-T}} = 0.55 \; \frac{^{\circ}C}{^{\text{atm}}} \\ &\sigma_{\mu_{\text{\tiny Д-T}}} = 0.04 \; \frac{^{\circ}C}{^{\text{atm}}} \end{split}$$

10. Окончив измерения при 30 °C , проделаем такие же измерения, как указано в пунктах 3–7, для температуры 50 °C. Результаты записываем в таблицу 1.

Строим график $\Delta T(\Delta P)$:

$$\Delta T = \mu_{\rm A-T} \Delta P$$

Используя МНК, получаем:

$$\mu_{\rm д-т}=0{,}51~\frac{^{\circ}C}{^{\rm atm}}$$

$$\sigma_{\mu_{\text{д-т}}} = 0.03 \; \frac{^{\circ}C}{^{\text{atm}}}$$

11. Используя формулу (3) и экспериментальные данные, полученные при трех значениях температуры, определите постоянные a и b для углекислого газа по двум парам температур: комнатной и $30^{\circ}C$, а также $30^{\circ}C$ и $50^{\circ}C$.

1-2):

$$\begin{cases} \mu_{\text{Д-Т}_1} = \frac{\frac{2a}{RT_1} - b}{C_p} \\ \mu_{\text{Д-Т}_2} = \frac{\frac{2a}{RT_2} - b}{C_p} \end{cases}$$

Решая систему относительно a и b, получаем:

$$\begin{cases} a = \frac{(\mu_{A-T_1} - \mu_{A-T_2})RC_pT_1T_2}{2(T_2 - T_1)} \\ b = \frac{C_p(\mu_{A-T_1}T_1 - \mu_{A-T_2}T_2)}{T_2 - T_1} \end{cases}$$

$$a = \frac{(0.68 - 0.55) \cdot 10^{-5} \cdot 8.314 \cdot 40 \cdot 293 \cdot 303}{2(303 - 293)} \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\mathbf{mоль}^2} \approx 1.92 \ \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\mathbf{mоль}^2}$$

$$b = \frac{40 \cdot (0.68 \cdot 293 - 0.55 \cdot 303) \cdot 10^{-5}}{303 - 293} \frac{\text{м}^3}{\text{моль}} \approx 1.30 \cdot 10^{-3} \frac{\text{м}^3}{\text{моль}}$$

2-3):

$$\begin{cases} a = \frac{(\mu_{\text{A-T}_2} - \mu_{\text{A-T}_3})RC_pT_2T_3}{2(T_3 - T_2)} \\ b = \frac{C_p(\mu_{\text{A-T}_2}T_2 - \mu_{\text{A-T}_3}T_3)}{T_3 - T_2} \end{cases}$$

$$a = \frac{(0.55 - 0.51) \cdot 10^{-5} \cdot 8.314 \cdot 40 \cdot 303 \cdot 323}{2(323 - 303)} \frac{\Pi \text{a} \cdot \text{м}^6}{\text{моль}^2} \approx 0.33 \frac{\Pi \text{a} \cdot \text{м}^6}{\text{моль}^2}$$

$$b = \frac{40 \cdot (0.55 \cdot 303 - 0.51 \cdot 323) \cdot 10^{-5}}{323 - 303} \frac{\text{м}^3}{\text{моль}} \approx 3.84 \cdot 10^{-5} \frac{\text{м}^3}{\text{моль}}$$

При помощи формулы (4) и формулы $T_{\text{инв}} = \frac{27}{4} T_{\text{кр}}$ найдем температуру инверсии углекислого газа и его критическую температуру:

$$T_{\text{инв}} = \frac{2a}{Rh}$$

$$T_{\text{KP}} = \frac{4}{27} T_{\text{ИНВ}} = \frac{8}{27} \frac{a}{Rb}$$

(1-2):

$$T_{\text{инв}} = \frac{2 \cdot 1,92}{8.314 \cdot 1.3 \cdot 10^{-3}} \text{ K} \approx 355 \text{ K}$$

$$T_{\rm Kp} = \frac{8}{27} \cdot \frac{1.92}{8.314 \cdot 1.3 \cdot 10^{-3}} \text{ K} \approx 53 \text{ K}$$

2-3):

$$T_{\text{инв}} = \frac{2 \cdot 0.33}{8.314 \cdot 3.84 \cdot 10^{-5}} \text{ K} \approx 2067 \text{ K}$$

$$T_{\text{KP}} = \frac{8}{27} \cdot \frac{0.33}{8.314 \cdot 3.84 \cdot 10^{-5}} \text{ K} \approx 306 \text{ K}$$

12. Сравним полученные значения с табличными.

Видно, что результаты пары 2-3) гораздо точнее 1-2). У пары 2-3) ошибка измерения a и b составляет $\sim 10-15\%$ по сравнению с табличными значениями. Это потому, что измерения пары 2-3) проводились при температуре, что ближе к $T_{\rm kp}$, чем пары 1-2).

Таким образом, точность уравнения Ван-дер-Ваальса невысока. Она описывает газы лучше, чем уравнение идеального газа, однако все еще очень неточно.

13. Оценим ошибки измерений:

$$a = \frac{(\mu_{R-T_1} - \mu_{R-T_2})RC_pT_1T_2}{2(T_2 - T_1)}$$

$$\sigma_a = \frac{RC_pT_1T_2}{2(T_2 - T_1)}\sqrt{\sigma_{\mu_{R-T_1}}^2 + \sigma_{\mu_{R-T_2}}^2}$$

$$b = \frac{C_p(\mu_{R-T_1}T_1 - \mu_{R-T_2}T_2)}{T_2 - T_1}$$

$$\sigma_b = \frac{C_p}{T_2 - T_1}\sqrt{T_1^2\sigma_{\mu_{R-T_1}}^2 + T_2^2\sigma_{\mu_{R-T_2}}^2}$$

$$T_{\text{HHB}} = \frac{2a}{Rb}$$

$$\sigma_{T_{\text{HHB}}} = T_{\text{HHB}}\sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2}$$

$$T_{\text{KP}} = \frac{8}{27}\frac{a}{Rb}$$

$$\sigma_{T_{\text{KP}}} = T_{\text{KP}}\sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2}$$

$$1-2):$$

$$\sigma_a = 0.73 \frac{\Pi_{A-M}^6}{MOJID^2}$$

$$\sigma_b = 0.6 \cdot 10^{-3} \frac{M^3}{MOJID}$$

Как видим, погрешности сравнимы с самими значениями, следовательно, используемая модель достаточно плохо описывает поведение газа при данных условиях.

2-3):
$$\sigma_a = 0.07 \frac{\text{IIa·M}^6}{\text{MOJIb}^2}$$

$$\sigma_b = 0.23 \cdot 10^{-5} \frac{\text{M}^3}{\text{MOJIb}}$$

$$\sigma_{T_{\text{HHB}}} = 310 \text{ K}$$

$$\sigma_{T_{\text{KP}}} = 46 \text{ K}$$

 $\sigma_{T_{\text{инв}}} = 212 \text{ K}$

 $\sigma_{T_{\rm KD}} = 31 \; {\rm K}$

На этот раз погрешности гораздо меньше самих значений. Они составляют $\sim 15-20\%$ от самих результатов, что говорит о том, что используемая модель описывает газ очень неплохо при данных условиях, хотя и с ошибками.

Вывод: в работе было определено изменение температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры. Также в работе были вычислены коэффициенты Ван-дер-Ваальса a и b для углекислого газа:

$$a = (0.33 \pm 0.07) \frac{\Pi \text{а·м}^6}{\text{моль}^2}$$

$$b = (3.84 \pm 0.23) \cdot 10^{-5} \frac{\text{M}^3}{\text{Моль}}$$

Помимо этого была определена температура инверсии и критическая температура для углекислого газа:

$$T_{\text{инв}} = (2067 \pm 310) \text{ K}$$

$$T_{\rm \kappa p} = (306 \pm 46) \text{ K}.$$