

Marco Listanti

Lo strato di collegamento Parte 6

"Wireless LAN"
"Il protocollo IEEE 802.11"

Caratteristiche ambiente wireless

- Il Bit Error Rate (BER) è molto più elevato rispetto ad un ambiente "wired"
- Le operazioni di Collision Detection sono difficili perchè una stazione non è in grado di ascoltare le proprie trasmissioni e quindi rivelare eventuali collisioni
- Problema del terminale nascosto (Hidden Terminal)
- Altri problemi:
 - Gestione della mobilità, variazioni della qualità del link, limitazione delle batterie, sicurezza ecc.

IEEE 802.11 standards

Protocol	Date	Frequency	Date Rate (Typical)	Date Rate (Max)	Range (indoor)
802.11a	1999	5 GHz	25 Mbit/s	54 Mbit/s	~30 metri
802.11b	1999	2.4 – 2.5 GHz	6.5 Mbit/s	11 Mbit/s	~50 metri
802.11g	2003	2.4 – 2.5 GHz	11 Mbit/s	54 Mbit/s	~30 metri
802.11n	2009	2.4 GHz o 5 GHz	200 Mbit/s	540 Mbit/s	~100 metri
802.11ac	2014	5 GHz	500 Mbit/s	1 Gbit/s	~100 metri

Topologie di rete (1)

- Le comunicazioni avvengono esclusivamente tra i terminali e l'Access Point (AP) e non direttamente tra i terminali
- L'AP gestisce l'accesso al mezzo trasmissivo e si comporta da bridge verso altre reti
- Basic Service Set (BSS)
 - Terminali e AP all'interno della stessa area di copertura
- Extended Service Set (ESS)
 - Diverse BSS connesse tra loro

Topologie di rete (2)

Extended Service Set (ESS)

Topologie di rete (3)

Ad-hoc network

- Nessun AP
- Ogni terminale comunica direttamente con gli altri
- I nodi comunicano tra loro se questi sono all'interno della copertura radio reciproca
- Complessità più elevata

Strato MAC

- Sono definiti due modalità di accesso
 - Distributed Coordination Function (DCF) basato su un protocollo CSMA/Collision Avoidance (CSMA/CA)
 - Metodo opzionale RTS/CTS per superare il problema dell'hidden terminal
 - Point Coordination Function (PCF)
 - Metodo di polling di tipo contention-free polling adatto a servizi con requisiti stringenti di ritardo
 - L'AP interroga i terminali terminals in accordo ad una lista
- Il DCF offre un servizio di trasferimento asincrono, mentre il PCF offre sia un servizio asincrono sia un servizio timebounded
- La configurazione ad-hoc network mode offre solo il trasferimento asincrono

Distributed Coordination Function (DCF)

- I nodi non possono rivelare le collisioni quindi una frame sarà trasmessa sempre per intero
- Funzionamento base CSMA/CA
 - Se il mezzo è libero
 - il terminale attende un intervallo di tempo denominato DIFS
 - dopo l'intervallo DIFS trasmette la frame
 - Se il mezzo è occupato
 - il terminale effettua il backoff della trasmissione
 - backoff prima della collisione

Interframe Spacing (IFS) e priorità

- Time slot
 - 9 μs (802.11g)
- SIFS (Short IFS)
 - 10 μs (802.11g)
 - Tempo tra frame del tipo: ACK, CTS, Poll Messages, Poll responses, CF-End
- PIFS (PCF IFS)
 - 19 μs (802.11g)
 - PCF operation mode, including Beacon, Retransmitted poll messages
- DIFS (DCF IFS)
 - 28 μs (802.11g)
 - DCF operation mode, including back-off, RTS

ligh to low priority

ONetworking Group

Shorter to longer time

Collision Avoidance (1)

- Lo scopo è quello di ridurre la probabilità di collisione quando il mezzo ritorna libero
 - è probabile che ci siano molti nodi in attesa di trasmettere
- Se il mezzo è rivelato libero, il nodo continuo a testare il mezzo per un intervallo uguale a DIFS
 - Si effettua la trasmissione solo se il mezzo rimane libero per l'intero intervallo DIFS
- Se il mezzo è rivelato occupato, un nodo deve attendere che per un intero intervallo DIFS il mezzo sia libero, inoltre deve attendere un back-off time (Contention Window), se il mezzo si è mantenuto libero per DIFS+CW, il nodo effettua la trasmissione
 - La durata della Congestion Window varia con il carico della rete
- Se un altro nodo trasmette durante la congestion window, the back-off timer viene fermato, il timer sarà riattivato durante la fase successiva (priorità implicita)

Collision Avoidance (2)

Collision Avoidance (3)

- Un nodo deve attendere un DIFS prima di emettere una frame
- Il receiver può emettere il riscontro (ACK) dopo un tempo inferiore Short Inter-Frame Space (SIFS)

Congestion Window

- Il valore della Contention Window (CW) varia in funzione del carico
 - Lo scopo è quello di ridurre al minimo le collisioni
- Nel caso di collisione, la durata della CW è progressivamente raddoppiata: 15, 31, 63,...1023, fino a che avviene con successo un trasmissione
 - Dopo un trasmissione la CW viene riportata al valore minimo (CW=15 slot)
 - 1 slot ha durata 9 μs (802.11g)
- Dato il valore della CW (= 15, 31 ... 1023 slots), un terminale calcola il random backoff come valore uniformemente distribuito nell'intervallo (0, CW)
- Lo standard 802.11 non fissa il minimo ed il massimo valore della CW
 - Sono consigliati un valore minimo uguale a 15 slot ed un valore massimo uguale a 1023 slot

Hidden Terminal Problem

Hidden terminals

- I nodi A e C non possono ascoltarsi (fuori dalle rispettive aree di copertura radio)
- A emette una frame verso B, C non può ascoltare la trasmissione di A
- C vuole emettere una frame verso B, C "ascolta" a "free" medium (CS commette un errore)
- Si verifica una collisone in B
- A non può rivelare la collisione (il meccanismo CD non funziona)

Soluzione

- Il problema dell'hidden terminal è specifico dell'ambiente wireless
- Occorre effettuare l'operazione di Carrier Sensing al nodo "receiver" non al nodo "sender"
- "Virtual Carrier Sensing"
 - Il Sender "chiede" al receiver se il canale è libero

Meccanismo RTS/CTS (1)

- Meccanismo di "prenotazione" del canale (opzionale)
 - Permette al sender di "prenotare" il canale invece competere per il suo utilizzo attraverso un accesso casuale
 - Si evitano completamente le collisioni
- Il "sender", prima di emettere una frame, trasmette verso il receiver (o l'AP) un pacchetto, di lunghezza molto breve, denominato "Request-To-Send" (RTS)
 - Il pacchetto RTS è trasmesso usando il meccanismo CSMA
 - Il pacchetto RTS può subire collisioni con altri pachetti RTS, le collisioni sono poco probabili perchè il pacchetto RTS è breve
- Il "receiver" (o l'AP) quando riceve l'RTS emette un pacchetto "clear-tosend" (CTS)
 - Il pacchetto CTS è ricevuto da tutti i nodi
- Il sender quando riceve il pacchetto CTS può trasmettere la frame
 - Gli altri terminali posticipano le proprie trasmissioni (per quanto rempo ?)

Meccanismo RTS/CTS (2)

- All'interno dei pacchetti RTS e CTS è indicato l'intervallo di tempo in cui il canale sarà occupato per la trasmissione della frame
- Net Allocation Vector (NAV)
 - È un temporizzatore che indica l'intervallo di tempo che le altre stazioni devono attendere per effettuare il test del canale e verificare se il canale libero
 - Ogni nodo alla ricezione dell'RTS inizializza il proprio NAV che specifica l'istante in cui il nodo può tentare nuovamente di accedere al mezzo
 - Virtual Carrier Sensing

DIET Dept

Networking Group

Formato delle frame (1)

Frame control (FC) (2 byte)

Definisce il tipo di frame e contiene alcune informazioni di controllo

Duration (D) (2 byte)

- Nella maggioranza delle frame indica la durata della trasmissione
- E' usato dagli altri nodi per definire il NAV

Addresses (4 x 6 Byte)

- Ci sono 4 campi di indirizzo MAC ognuno di lunghezza 6 byte (48 bit)
- Il significato di questi indirizzi dipende dai flag "To DS" e "From DS" contenuti nel campo FC

Formato delle frame (2)

- Sequence control (SC) (2 byte)
 - Numero di sequenza della frame
 - Usato per la funzione di flow control
- Frame body (0 2312 byte)
 - Contiene le informazioni d'utente (payload)
- Frame Check Sequence (FCS) (4 byte)
 - Contiene un CRC-32 per la rivelazione di errore

Tipo di frame

Field	Explanation
Version	Current version is 0
Туре	Type of information: management (00), control (01), or data (10)
Subtype	Subtype of each type (see Table 14.2)
To DS	Defined later
From DS	Defined later
More flag	When set to 1, means more fragments
Retry	When set to 1, means retransmitted frame
Pwr mgt	When set to 1, means station is in power management mode
More data	When set to 1, means station has more data to send
WEP	Wired equivalent privacy (encryption implemented)
Rsvd	Reserved

Subtype	Meaning
1011	Request to send (RTS)
1100	Clear to send (CTS)
1101	Acknowledgment (ACK)

Addressing (1)

Il meccanismo di indirizzamento specifica quattro casi

I quattro casi sono individuati dal valore dei due flag "To D5" e "From D5" contenuti nel campo FC

DS (Distribution System)

infrastruttura di interconnessione tra gli AP e con il router di accesso alla rete fissa

Addressing (2)

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSS ID	N/A
0	1	Destination	Sending AP	Source	N/A
1	0	Receiving AP	Source	Destination	N/A
1	1	Receiving AP	Sending AP	Destination	Source

- Caso 1 (00): "To DS"=0, "From DS"=0
 - La frame non proviene da e non è diretta verso il Distribution System
 - I nodi sorgente e destinazione sono interni allo stesso Basic Service Set (BSS)
 - Address 1: Destination Address
 - Address 2: Source Address
 - Address 3: Identificatore del BSS a cui appartengono i nodi sorgente e destinazione (indirizzo dell'AP del BSS)
 - Address 4: non usato
 - Il riscontro ACK deve essere inviato direttamente al nodo sorgente

Addressing (3)

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSS ID	N/A
0	1	Destination	Sending AP	Source	N/A
1	0	Receiving AP	Source	Destination	N/A
1	1	Receiving AP	Sending AP	Destination	Source

- Caso 2 (01): "To D5"=0, "From D5"=1
 - La frame proviene dal Distribution System
 - La frame è emessa dall'Access Point (AP)
 - Address 1: Destination Address
 - Address 2: Identificatore del BSS a cui appartiene l'AP sorgente (AP address)
 - Address 3: Source address (indirizzo del nodo sorgente che si trova in un altro BSS)
 - Address 4: non usato
 - Il riscontro ACK deve essere inviato all'AP

Addressing (4)

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSS ID	N/A
0	1	Destination	Sending AP	Source	N/A
1	0	Receiving AP	Source	Destination	N/A
1	1	Receiving AP	Sending AP	Destination	Source

- Caso 3 (10) : "To DS"=1 , "From DS"=0
 - La frame è diretta verso il Distribution System
 - La frame è diretta verso un AP diverso rispetto a quello del BSS a cui appartiene il nodo sorgente
 - Address 1: identificatore del BSS a cui appartiene il nodo di destinazione (AP address di destinazione)
 - Address 2: Source Address
 - Address 3: Destination address (indirizzo del nodo destinazione che si trova in un altro BSS)
 - Address 4: non usato
 - Il riscontro ACK deve essere inviato al nodo sorgente

Addressing (5)

To DS	From DS	Address 1	Address 2	Address 3	Address 4
0	0	Destination	Source	BSS ID	N/A
0	1	Destination	Sending AP	Source	N/A
1	0	Receiving AP	Source	Destination	N/A
1	1	Receiving AP	Sending AP	Destination	Source

- Caso 4 (11): "To DS"=1, "From DS"=1
 - E' il caso in cui una frame è emessa da un AP ed è diretta verso un altro AP dello stesso BSS
 - I nodi sorgente e destinazione sono interni allo stesso Basic Service Set (BSS)
 - Address 1: Receiving Address (Indirizzo dell'AP di destinazione)
 - Address 2: Transmitting Address (Indirizzo dell'AP di origine)
 - Address 3: Destination Address (indirizzo dell'effettivo nodo di destinazione)
 - Address 4: Source Address (indirizzo dell'effettivo nodo sorgente)

Esempi (1)

Caso 2 (01)

Campo	Valore	Significato
Address 1	11-22-33-01-01-01	DA
Address 2	11-22-33-02-02-02	SA
Address 3	xx.xx.xx.xx	BSS ID
Address 4		

Campo	Valore	Significato
Address 1	11-22-33-01-01-01	DA
Address 2	99-88-77-09-09-09	Sending AP
Address 3	11-22-33-02-02-02	SA
Address 4		

Esempi (2)

Caso 3 (10)

Caso 4 (11)

wireless
802.11

11-22-33-01-01-01
99-88-77-08-08-08
11-22-33-01-01-01
99-88-77-09-09-09
11-22-33-02-02-02

Campo	Valore	Significato
Address 1	99-88-77-09-09-09	Receiving AP
Address 2	11-22-33-01-01-01	SA
Address 3	11-22-33-02-02-02	DA
Address 4		

Campo	Valore	Significato
Address 1	99-88-77-08-08-08	Receiving AP
Address 2	99-88-77-09-09-09	Sending AP
Address 3	11-22-33-02-02-02	DA
Address 4	11-22-33-01-01-01	SA

Roaming

- Un nodo può migrare da una BSS ad un altra, da un'area coperta da un AP ad un area coperta da un altro AP
- Procedura di "Re-association"
 - Un nodo decide che il collegamento verso l'AP non è affidabile
 - Il nodo esegue la funzione di "scanning" del mezzo radio per trovare un altro AP
 - In caso di esito positivo, il nodo emette una "Re-association Request" verso il nuovo AP
 - Se la "Re-association Response" è positiva il nodo entra a far parte della BSS gestita dal nuovo AP (roaming), altrimenti cerca un ulteriore AP
 - Se un AP accetta una "Re-association Request"
 - Indica la riassociazione al Distributed System (DS)
 - Le informazioni del DS sono aggiornate

