Introduction to Time Series

ı

Mathematics & CUBRIC workshop

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Software Sustainability Institute

Superstore Sales

Noise or randomness in the data points

Predictable fluctuations correlated with the calendar

Long term trajectory, positive or negative

Repeating periods that are not related to the calendar

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

@NikoletaGlyn

>>> import <u>pandas</u>

>>> nba = pandas.read_csv("nba_2013.csv")

> library(readr)

> nba <- read_csv("nba_2013.csv")

```
>>> import pandas
>>> nba = pandas.read_csv("nba_2013.csv")

>>> trainRowCount <- floor(0.8 * nrow(nba))
>>> train = nba.sample(frac=0.8, random_state=1)
>>> test = nba.loc["nba.index.isin(train.index)]

>>> train <- nba[trainIndex,]
>>> test <- nba[-trainIndex,]</pre>
```

> fit <- lm(ast ~ fg, data=train)

> predictions <- predict(fit, test)

>>> from sklearn.linear'model import LinearRegression

>>> lr.fit(train[["fg"]], train["ast"])

>>> predictions = lr.predict(test[["fg"]])

>>> lr = LinearRegression()