

总线 370 马达模块 使用手册

目 录

序言		3
	历史	
— 、	产品介绍	4
1.1	产品概述	4
1.2	产品特性	4
	产品规格	
	3.1 电 つ 参数	
	电源	
2.2	通信接口	6
2.3	指示灯	6
2.4	多功能接口	7
	三大控制方式	
	式二:总线口-PWM 脉冲控制	
方	式三:PWM 通道控制	10
四、	两种测速方法	12
4.1	方式一: 总线口-串口测速	12
4.2	方式二: AB 口直接读取脉冲叠加	12
	总线驱动接线	
	驱动与本店控制板相连(Zlink 也是同理):	
	驱动与单片机相连: (单片机外部供电需要共 GND)	
	驱动与 ZLink 相连,再与单片机相连:	
六、	Zide 修改 ID 和使用的方法	14
5.1	使用 ZIDE 上位机软件修改驱动 ID。	14
5.2	ZIDE 控制驱动	15
七、	机械尺寸	16
八、	售后服务	16
九、	免责说明	17
附-	录 1∙	18

序言

感谢您使用杭州众灵科技有限公司出品的总线 370 马达模块。

总线 370 马达模块是一款以总线通信驱动为核心,一条指令就能完成电机的速度、转动时间以及转动方向的产品。

本手册提供用产品接口说明、控制指令、相关参数以及相关注意事项。使用之前请认真 耐心阅读本手册,以便您更好的使用产品!

以下为特别注意的事项:

警告

- 1、电路板相关部分,避免接触金属物体或人体,否则容易造成短路或者静电击穿
- 2、当接到自己的控制系统,接口不匹配时接线应注意正负极以及信号不要接错,否则

容易损坏模块。

版本历史

版本号	发布日期	修改记录
V1.0	2020.4.18	初稿发布
V1.1	2021.5.12	详细控制方式
V1.2	2021.7.14	整体更新
V1.3	2022.12.28	优化测速部分

一、产品介绍

1.1 产品概述

总线 370 马达模块是由杭州众灵科技有限公司推出的一款总线马达驱动模块,该模块具备驱动简单,一个 UART 串口信号即可完成电机速度的调速、转动时间以及转动方向的控制;模块可级联(串联到一起),方便拓展更多的模块;单总线通信协议,一根信号即可完成对所有设备的控制,在级联时应注意总线对接线的负载。

1.2 产品特性

- ◆单总线串口通信协议;
- ◆支持修改波特率;
- ◆6-12V 供电;
- ◆闭环控制 (默认开环,可通过指令设置闭环);
- ◆固件终身免费升级;

1.3 产品规格

1.3.1 电气参数

除非特别说明,所列参数一般是在 T=25℃的值

参数名称	参数
额定功率	15W
最大功率	20W
最大电流	3. 5A
工作电压	6-8. 4V

1.3.2 工作温度

参数名称	参数
工作环境温度	−30 [~] 85°C
存储温度	−30 [~] 85°C

二、硬件接口说明

2.1 电源

总线接口既是通信接口又是电源输入接口,输入电源范围 DC: 6-8.4V。

2.2 通信接口

通信接口和电源接口共用一个接口,其中 VCC/GND 表示电源引脚,DATA 是信号引脚。

2.3 指示灯

【工作灯】:输入电源正常工作时,指示灯 1S 闪烁一次即为正产,常亮或者常灭均有问题,需立即拔下电源检查问题所在。

【转向灯】: 当一个灯亮起时的转动定义正向转动时,另一个灯亮起即表示反向转动。

2.4 多功能接口

【多功能接口】: 可闭环控制,接口定义如下

引脚	含义
VCC	(电源+)
В	(测速信 号)
CH1	(驱动信 号)
CH2	(驱动信 号)
А	(测速信号)
GND	(电源-)

三、三大控制方式

3.1 方式一: 总线口-串口控制(含测速功能介绍)

- 1、两路总线串口完全一致,如图所示引脚标注; VCC 接入电源正极 (6-8.4V), GND 接入电源负极, DAT 接单片机的 TX 口,控制波特率 115200;
- 2、若单片机(如 STM32 系列)串口支持半双工模式,可设置串口为半双工模式,这样 既可以实现控制也可以回读总线马达的相关数据,具体指令表可参考附录【1】

3、【测速功能介绍】

若想实现测速,可将图中 A、B 连接到单片机的捕获口,该马达的减速比为 1:30,电极数为 13 对,减速轴转 1 圈则可在 A 获取 390 个脉冲, B 项亦如此; AB 项合计 1 圈可获取 780 个脉冲。

示例代码(以 arduino 代码为例):

初始化:用到了串口,初始化波特率为115200;

大循环: 正转 1000->延时 1 秒-反转 1000->延时 1 秒, 反复循环

3.2 方式二: 总线口-PWM 脉冲控制

- 4、两路总线接口引脚一致,如图所示引脚标注; VCC 接入电源正极(6-8.4V),GND 接入电源负极,DAT 接单片机的 PWM 口,或是用普通 IO 口模拟 PWM;
- 5、代码逻辑和方式一一样,不一样的是这里是用 20ms 的周期,高电平范围 500us-2500us 控制,1500 对应的是停止,大于 1500 正转,小于 1500 反转;

示例代码(以 arduino 代码为例):

初始化: 无

大循环: 正转 1000->延时 1 秒-反转 1000->延时 1 秒, 反复循环

联系电话: 0571-86961586 官方网址: http://www.zl-robot.com

3.3 方式三: PWM 通道控制

此种接线方式和方式一方式二完全不同,这里需要将 VCC GND 连接电池,AB 为测速口,如需测速连接单片机 IO 口,一圈脉冲 780 个; CH1 CH2 连接单片机 IO 口,可直接用高低电平控制就可以实现电机正反转,如需控制测速就需要连接单片机的 PWM 接口,用 1K-10K的方波控制即可。

示例代码(以 arduino 代码为例):

初始化:无需初始化;

大循环: 正转 1000->延时 1 秒-反转 1000->延时 1 秒, 反复循环

四、两种测速方法

4.1 方式一: 总线口-串口测速

通过总线口,发送#000PSPD!(这里 ID 号为 000 的情况下)即可获取串口 100ms 内获取的脉冲信号,正常外围驱动轴转 1圈,则可获取 780 个脉冲(减速比 30,霍尔磁极数 13 对,则霍尔传感器 2个,所以一圈的脉冲数为 30*13*2),得到了这个脉冲数我们就可以计算速度,假设轮子直径是 D,每次读回的脉冲数是 M,则每秒速度计算为: PI*D*M*10/780

4.2 方式二: AB 口直接读取脉冲叠加

如图所示 A,B 口连接的是两个霍尔硬件的信号口,通过读取这个信号口的脉冲值进行叠加,用户可以每 100ms 读取 1 次数据,得到了这个脉冲数我们就可以计算速度,假设轮子直径是 D,每次读回的脉冲数是 M,则每秒速度计算为: PI*D*M*10/780

五、总线驱动接线

5.1 驱动与本店控制板相连(Zlink 也是同理):

此口为总线接口 (本店的总线设备都可以这 样使用)

用总线对接线 两个总线接口相连 可插任意总线接口 本店控制器

5.2 驱动与单片机相连: (单片机外部供电需要共 GND)

没有总线电路的单片机只能够实现 收/发 其中一项,简言之只能够控制,不能够读取数据

此口为总线接口 (本店的总线设备都可以这 样使用)

5.3 驱动与 ZLink 相连, 再与单片机相连:

六、Zide 修改 ID 和使用的方法

6.1 使用 ZIDE 上位机软件修改驱动 ID。

注:修改 ID 的时候,主控板上只能够接一个总线设备,不然会修改多个总线设备的 ID 最后导致无法控制!

【相关的使用工具,可以在资料中相关工具中找到】

1.当插上主控制板并且在【设备管理器】里面能够找到串口后,打开【zide 软件】,选择串口(串口以 CH340 显示的串口号为主),设置波特率为 115200 ,点击【串口连接】,使红灯变成绿灯。(不同的电脑会显示不同的串口名,以实际 CH340 串口来查看,没有的话,可以安装串口驱动试试,先卸载驱动,再安装驱动。)

2.在 Zide 软件中找到【配置】-【总线配置】

总线配置	i>		ē×
	基本功能		
版本:	NULL	读	>>
ID号:	000 _ 改为 000	- 写	读

3.将前面的 ID 改为 255(255 为广播 ID,即所有的 ID 都得被 255 控制),后面改为自己 想修改的 ID,点击【写】。有串口回读的设备,会在下面的回复框,回复已被修改的 ID 号。

6.2 ZIDE 控制驱动

- 1.【电池供电】之后,本店电池最高供电是 8.4V,驱动最高支持 12V10 供电。当电池供电以后,使用【Zide】软件对其进行控制,连接方式和修改 ID 的时候的连接方式一样。
 - 2.【Zide】软件中,有多个小方块,拖动对应 ID 的小方块对其进行控制。

例:

ID号: 000(修改为什么的ID, 就对应什么的模块)

PWM:调节 PWM 值 即调节电机转速

(电机轴朝左 500-1500 逆时针, 1500-2500 顺时针)

TIME: 转动时间(0000 为持续旋转)

七、机械尺寸

八、售后服务

【产品核对】: 收到产品时请及时对照发货清单检查配件是否齐全,以及快递运输过程中产品是否损坏等现象,如有问题请及时联系淘宝客服人员(注:自收到货起三日内没有反应问题,视为产品收货正常)。

【资料索取】: 学习资料以百度云网盘链接形式发送,收到物品时请联系客服索取。

【组装接线】: 散件组装接线时请按照教程进行组装接线,因操作不正确导致产品损坏的, 一切后果由自己承担! 如有问题请及时联系客服或售后技术人员。

【品质服务】: 提供全程有关产品技术支持(可通过电话/QQ/微信等)。

【售后时间】: 10: 00---20: 00 (周一到周六)

【技术支持】: 江工(电话/企业微信:15397061632)

关注微信公众号 获取更多产品信息

九、免责说明

本着为用户提供更好服务的原则,杭州众灵科技有限公司(以下简称"众灵")在本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时效性,众灵不能完全保证该文档在任何时段的时效性与适用性。众灵有权在没有通知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,您可以定时访问众灵官方网站或者与众灵工作人员联系。感谢您的包容与支持!

附录 1:

本店的总线设备均含有主芯片,即在满足设备电压条件的情况下,可通过串口对其发送 串口指令,就能够控制设备。

注: 所有的总线设备都是可以使用 ZIDE 上位机直接对设备进行控制的,也可以使用串口助手,控制板的串口对设备发送串口指令进行控制。

序号	指令	注释
		电机控制指令: 比如#000P1500T1000!
		1) id 相当于每个总线电机的"名字", 其范围是 000~254,
		必须为三位数,不足的位数补 0, 255 为广播 ID,所有
	#idPpwmTtime!	设备都会响应这个指令;
1		2) pwm 的范围是 0500~2500 ,必须为四位数,不足的位
		数补 0,1500 表示停止,大于 1500 为正转,数值越大转速
		越快,小于 1500 为反转,数值越小反向转速越快;
		3) Time 表示旋转时间(单位 s),必须为四位数范围:
		0000-9999,特殊的 0 代表循环执行。
2	WOODING CO.	更改 id 指令: #000PID002!含义是把 ID 号为 000 的总线模
2	#000PID002!	块改成 ID 号为 002。
		读取 ID 指令: 读取当前电机的 ID 号
3	#000PID!	#000PID! 一般读取指令
		#255PID! 广播读取指令
4	#000PVER!	读取固件版本号

	#000PBD5!	波特率设置:设置舵机通信波特率,默认 115200。数字参	
_		数对应关系为: 1-9600,2-19200,3-38400,4-57600,	
5		5-115200,6-128000,7-256000,8-1000000,该指令设置	
		成功后返回#OK!。注:设置后断电重启生效!	
6	#000PSPD!	获取每 100ms 的脉冲数	
7	#000POPN! 开环		
/	#000PCLS! 闭环	370 电机霍尔测速开环,闭环设置,默认开环	