1. 设 <i>n</i> 阶方四	$\notin A$ 满足 $ A \neq 0$, k	$\neq 0$,则 $(kA)^* = ($)	
$(A) kA^*$	$(B) k^n A^*$	$(C) k^{n-1} A^*$	$(D) A^*.$	
$2. \mathbf{ \ddot{y} } \ A = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$	1 0 0 1 2 1 2, 则下列	向量中可作为 A	的对应于特征值	λ = 0 的特征向量的是
()				
$(A) (0,0,0)^T$;		(B) $(0,2,-1)^T$; (D) $(0,1,1)^T$.		
(C) $(1,0,-1)$	$\left(1\right) ^{T};$	(D) $(0,1,1)$	$)^{T}$.	
3. 己知 $_{A}=\left(\begin{array}{c} \end{array} \right)$	$egin{array}{cccc} a & rac{1}{\sqrt{2}} & 0 \ rac{1}{\sqrt{2}} & b & 0 \ 0 & 0 & 1 \ \end{array} $ 是正	交矩阵,则 <i>a</i> + <i>b</i> f	的值为()	
(A) $\sqrt{2}$;	$(B)-\sqrt{2}$;	(<i>C</i>) 0;	(D)	1.
4. 已知 <i>A</i> 为 <i>n</i>	阶方阵且满足 $R(A)$	() < n, 则下列说》	去一定正确的是()
(A) A 中必有	有一列元素全为0;	(B) A	中必有一列向量是	其余列向量的线性合;
(C) 齐次线性	性方程组 $Ax = 0$ 只有	有零解; (D)	非齐次线性方程组	Ax = b一定有无穷解.
5. 设向量组 a_1, a_2, a_3 线性无关,则下列向量组中线性无关的是()				
$(A) a_1 - a_2$	$a_1, a_2 - a_3, a_3 - a_1$;	(B)	$a_1, a_2, a_3 + a_1;$	
(C) $a_1, a_2, 2$	$2a_1 - 3a_2$;	(D)	$a_2, a_3, 2a_2 + a_3$	3.
6. 设三阶矩阵	年 A 的特征值为 1 ,	2, 3, 则 A 一定 7	下与 () 相似	o
$(\mathbf{A}) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 3 \end{pmatrix}; (B) \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} $	$\begin{pmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 1 \end{pmatrix}; (C)$	$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix};$	$ (D) \begin{pmatrix} -1 & 0 & -1 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} $
7. 设矩阵 A =	$=(a_{ij})_{m\times n}$,则齐	次线性方程组 AX	=0仅有零解的充	医要条件是 ()。
(A) A 的行	向量组线性无关;	(B)	A 的行向量组线性	组关;

(C) A 的列向量组线性无关; (D) A 的列向量组线性相关.

- **8.** 若 X0 是非齐次线性方程组 AX=b(b≠0)的解, X1 是导出组 AX=0 的解, 则 2X⁰+3X¹ 是线性方程组()的解。
- A. AX=b; B. AX=2b; C. AX=3b; D. AX=0
- 9. 已知 β_1 、 β_2 是非齐次线性方程组 Ax=b 的两个不同的解, α_1 、 α_2 是其导出组 Ax=0 的一个基础解系,k1、k2 为任意常数,则方程组 Ax=b 的通解可表成

A.
$$k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 - \beta_2}{2}$$
; B. $k_1\alpha_1 + k_2(\beta_1 + \beta_2) + \frac{\beta_1 + \beta_2}{2}$

C.
$$k_1\alpha_1 + k_2\alpha_2 + \frac{\beta_1 - \beta_2}{2}$$
; D. $k_1\alpha_1 + k_2\alpha_2 + \frac{\beta_1 + \beta_2}{2}$

- **10.** 已知四元齐次线性方程组 AX=0,若系数矩阵 A 的秩 r(A)=3,则其基础解系包含解向量的个数是 ()
- A. 1; B. 2; C. 3; D. 4
- 11. 设 3 阶方阵 A 的特征多项式为 $|A \lambda E| = (\lambda + 2)(\lambda + 3)^2$,则 $|A| = _____.$

12. 设
$$A$$
与 B 相似且 $A = \begin{bmatrix} 6 & a \\ -1 & b \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, 则 $a =$ ______, $b =$ ______.

13. 设
$$A$$
为 2 阶方阵,矩阵 $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,且 $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$,则 $P^{-1} = _$, $A^n = _$.

14. 设A 是 3 阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 是 3 维非零列向量,如果 $A\alpha_i = i\alpha_i$ (i = 1, 2, 3) ,则下列结论正确的是(

(A) 若
$$P = [\alpha_1, 2\alpha_2, 3\alpha_3]$$
,则有 $P^{-1}AP = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$;

(*B*) 若
$$P = [\alpha_1, \alpha_1 + \alpha_2, 3\alpha_3]$$
,则有 $P^{-1}AP = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}$;

(C) 若
$$P = [2\alpha_1, -\alpha_2, 5\alpha_3]$$
,则有 $P^{-1}AP = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}$;

(D) 若
$$P = [\alpha_3, \alpha_2, \alpha_1]$$
,则有 $P^{-1}AP = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}$

15.设向量 $\alpha_1 = (\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3})^T$, $\alpha_2 = (-\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})^T$, $\alpha_3 = (-\frac{2}{3}, -\frac{2}{3}, \frac{1}{3})^T$ 为 R^3 的一个标准正交基,

16. 若
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = 1$$
,则 $\begin{vmatrix} a_{11} & 3a_{12} & 0 \\ a_{21} & 3a_{22} & 0 \\ 0 & 6 & 1 \end{vmatrix} = \underline{\qquad}$.

17. 设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2+a & 0 \\ 0 & 0 & 1-a \end{pmatrix}$$
是正定矩阵,则 a 的取值范围是_______.

19. 设矩阵
$$A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 1 & 2 & 5 & 3 \\ -2 & 1 & 0 & -1 \\ 3 & 2 & 7 & 5 \\ -1 & -2 & -5 & -3 \\ 2 & -3 & -4 & -1 \end{pmatrix}$$
.利用初等行变换

- (1) 证明向量组 α_1, α_2 与向量组 α_3, α_4 等价;
- (2) 证明齐次线性方程组 Ax = 0 有非零解;
- (3) 求 A 的列向量组的一个最大无关组,并把其余列向量用该最大线性无关组表示.
- 20. 当k为何值时,线性方程组

$$\begin{cases} x_1 - x_2 + 2x_3 = -4 \\ x_1 + x_2 + kx_3 = 4 \\ -x_1 + kx_2 + x_3 = k^2 \end{cases}$$

有唯一解、无解、无穷多解?并在有无穷多解时,求出通解(**要求用其特解及对应的齐** 次线性方程组的基础解系表示).

解: 法 1:
$$|A| = (k+1)(4-k)$$

当k≠-1且k≠4时,由克拉默法则得方程组有唯一解;

当
$$k=-1$$
时, $(A,\beta)=\begin{pmatrix} 1 & -1 & 2 & -4 \\ 1 & 1 & -1 & 4 \\ -1 & -1 & 1 & 1 \end{pmatrix}$ \xrightarrow{r} $\begin{pmatrix} 1 & -1 & 2 & -4 \\ 0 & 2 & 3 & 8 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

由 $R(A) = 2 < 3 = R(A, \beta)$ 得方程组无解;

由 $R(A) = R(A,\beta) = 2 < 3$ 得方程组有无穷多解,

取 x_3 为自由未知量得特解为 $\gamma_0 = (0,4,0)^T$

对应齐次线性方程组的基础解系为 ξ = $\left(-3,-1,1\right)^{T}$

方程组的通解为 $x = \gamma_0 + c\xi$, (其中c为任意常数).

$$\underset{\text{$\frac{1}{2}$:}}{} (A,\beta) = \begin{pmatrix} 1 & -1 & 2 & -4 \\ 1 & 1 & k & 4 \\ -1 & k & 1 & k^2 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & -1 & 2 & -4 \\ 0 & 2 & k-2 & 8 \\ 0 & 0 & -(k-4)(k+1) & 2k(k-4) \end{pmatrix}$$

当 $k \neq -1$ 且 $k \neq 4$ 时,由 $R(A) = R(A, \beta) = 3$ 得方程组有唯一解;

由 $R(A) = 2 < 3 = R(A, \beta)$ 得方程组无解;

由 $R(A) = R(A,\beta) = 2 < 3$ 得方程组有无穷多解,

取 x_3 为自由未知量得特解为 $\gamma_0 = (0,4,0)^T$

对应齐次线性方程组的基础解系为 ξ = $\left(-3,-1,1\right)^T$

方程组的通解为 $x = \gamma_0 + c\xi$, (其中c为任意常数).

21.设二次型
$$f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + x_3^2 - 4x_1x_2 - 8x_1x_3 - 4x_2x_3$$
.

- (1) 写出二次型f 的矩阵A,并求出A 的全部特征值和特征向量;
- (2) 求一个正交变换 x = Ty 把二次型 f 化成标准形,并写出标准形.