IN THE CLAIMS:

1	(Currently Amended): A shift control apparatus for a transmission comprising.
2	a gear shift lever configured to undergo movement in a first direction and in a second
3	direction;
4	a plurality of shift lugs disposed within a transmission and configured to realize
5	specific speed ratios according to its longitudinal movement;
6	a housing comprising a first and a second through hole;
7	a control shaft disposed within the housing and provided with at least one control
8	finger at a lower portion thereof, the control shaft configured to be able to move in a
9	longitudinal direction thereof such that the control finger can be positioned on the shift lugs,
10	and the control shaft configured to be able to rotate such that the control shaft can move the
11	shift lugs;
12	a select control assembly connected to the gear shift lever and the control shaft such
13	that the control shaft moves in the longitudinal direction thereof responding to a movement of
14	the gear shift lever in the first direction; and
15	a shift control assembly connected the gear shift lever and the control shaft such that
16	the control shaft rotates responding to a movement of the gear shift lever in the second
17	direction;
18	wherein the select control assembly comprises:
19	a select control shaft rotatably inserted into the first through hole;
20	a select control lever fixedly connected to an upper portion of the select
21	control shaft;
22	a select control cable connecting the gear shift lever and the select control
23	lever together such that the select control lever and the select control shaft rotate responding
24	to the movement of the gear shift lever in the first direction;
25	a connecting plate, one end of which is fixedly connected to a lower portion of
26	the select control shaft;
27	a pin member, an upper portion of which is fixedly connected to the other end
28	of the connecting plate at a lower portion thereof;
29	a select shoe into which a lower portion of the pin member is rotatably
30	inserted; and
31	a select shoe guide fixedly coupled to the control shaft and being provided
32	with a select shoe guide channel within which the select shoe is slidably disposed;

33	and wherein the shift control assembly comprises:	
34	a shift control shaft rotatably inserted into the second through hole;	
35	a shift control lever fixedly connected to an upper portion of the shift control	
36	shaft:	
37	a shift control cable connecting the gear shift lever and the shift control lever	
38	together such that the shift control lever and the shift control shaft rotate responding to the	
39	movement of the gear shift lever in the second direction;	
40	a connecting plate, one end of which is fixedly connected to a lower portion of	<u>)f</u>
41	the shift control shaft;	
42	a ball member, an upper portion of which is fixedly connected to the other en	<u>d</u>
43	of the connecting plate at a lower portion thereof;	
44	a shift shoe into which a lower portion of the ball member is rotatably	
45	inserted; and	
46	a shift shoe guide fixedly coupled to the control shaft and being provided with	<u>h</u>
47	a shift shoe guide channel within which the shift shoe is slidably disposed.	
1	2. (Canceled).	
1	3. (Currently Amended): The shift control apparatus of elaim 2 claim 1, wherein the	
2	select shoe is made of a plastic material.	
1	4. (Currently Amended): The shift control apparatus of claim 2 claim 1, wherein the	
2	select shoe guide channel is formed along a circumferential direction of the control shaft.	
1	5. (Currently Amended): The shift control apparatus of elaim 2 claim 1, wherein the	
2	select control shaft is disposed above the control shaft and away by a predetermined distance	9
3	from a longitudinal center axis of the control shaft	
1	6. (Canceled).	
1	7. (Currently Amended): The shift control apparatus of claim 6 claim 1, wherein the	
2	shift shoe is made of a plastic material.	

- 1 8. (Currently Amended): The shift control apparatus of claim 1, wherein the
- 2 shift shoe guide channel is formed along a longitudinal direction of the control shaft.
- 1 9. (Currently Amended): The shift control apparatus of claim 6 claim 1, wherein the
- 2 shift control shaft is disposed above the control shaft.
- 1 10. (Currently Amended): The shift control apparatus of claim 6 claim 1, wherein the
- 2 control shaft is provided with a forward speed ratio finger and a reverse speed ratio finger,
- and the reverse speed ratio finger is integrated with the shift shoe guide.
- 1 11. (Currently Amended): The shift control apparatus of claim 6 claim 1, wherein the
- 2 shift control assembly further comprises a first mass and a second mass that are respectively
- 3 coupled to ends of the shift control lever.
- 1 12. (Original): The shift control apparatus of claim 11, wherein the shift control cable is
- 2 pivotally connected to the shift control lever near a position where the first mass is coupled to
- 3 the shift control lever, and wherein the shift control shaft is coupled to the shift control lever
- 4 at a position between a position where the first mass is coupled to the shift control lever and a
- 5 position where the second mass is coupled to the shift control lever.
- 1 13. (Original): The shift control apparatus of claim 12, wherein the second mass is
- 2 configured such that a rotating center of the shift control lever is positioned at a position
- 3 where the shift control shaft is coupled to the shift control lever.
- 1 14. (Original): The shift control apparatus of claim 1, further comprising a first elastic
- 2 member and a second elastic member that elastically support the control shaft in opposite
- 3 directions.
- 1 15. (Original): The shift control apparatus of claim 14, wherein the first and second
- 2 elastic members are coil springs.
- 1 16. (Original): The shift control apparatus of claim 1, wherein the plurality of shift lugs
- 2 comprises at least one forward speed ratio shift lug, and wherein the control shaft is provided
- 3 with a forward speed ratio finger for moving the forward speed ratio shift lugs and a reverse
- 4 speed ratio finger for moving the reverse speed ratio shift lug.