In [1]:

```
#Load Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
print("Done")
```

Done

In [3]:

```
#Load Data
leuanalysisNewdata = pd.read_csv('./leuanalysisNew.csv')
leuanalysisNewdata.head()
```

Out[3]:

	CELL	SMEAR	INFIL	LI	BLAST	TEMP	REMISS
0	0.8	0.83	0.66	1.9	1.10	1.00	1
1	0.9	0.36	0.32	1.4	0.74	0.99	1
2	0.8	0.88	0.70	8.0	0.18	0.98	0
3	1.0	0.87	0.87	0.7	1.05	0.99	0
4	0.9	0.75	0.68	1.3	0.52	0.98	1

In [4]:

```
#Key Statistics
leuanalysisNewdata.describe()
```

Out[4]:

	CELL	SMEAR	INFIL	LI	BLAST	TEMP	REMISS
count	27.000000	27.000000	27.000000	27.000000	27.000000	27.000000	27.000000
mean	0.881481	0.635185	0.570741	1.003704	0.688519	0.997407	0.333333
std	0.186645	0.214052	0.237567	0.467795	0.534960	0.014830	0.480384
min	0.200000	0.320000	0.080000	0.400000	0.000000	0.980000	0.000000
25%	0.825000	0.430000	0.335000	0.650000	0.230000	0.990000	0.000000
50%	0.950000	0.650000	0.630000	0.900000	0.520000	0.990000	0.000000
75%	1.000000	0.835000	0.740000	1.250000	1.060000	1.005000	1.000000
max	1.000000	0.970000	0.920000	1.900000	2.060000	1.040000	1.000000

In [7]:

```
#Identify number of Classes(i.e. Remiss)
leuanalysisNewdata.REMISS.unique()
```

Out[7]:

```
array([1, 0], dtype=int64)
```

In [8]:

```
#Creating x and y variables
X = leuanalysisNewdata.drop('REMISS',axis=1).to_numpy()
y = leuanalysisNewdata['REMISS'].to_numpy()

#Creating Train and Test datasets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,test_size = 0.20,rando)

#Scale the data
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train2 = sc.fit_transform(X_train)
x_test2 = sc.transform(X_test)
print("Done")
```

Done

In [9]:

```
[[3 1]
 [1 1]]
               precision
                             recall f1-score
                                                  support
            0
                     0.75
                               0.75
                                          0.75
                                                         4
            1
                     0.50
                               0.50
                                          0.50
                                                         2
                                          0.67
                                                         6
    accuracy
                     0.62
                               0.62
                                          0.62
                                                         6
   macro avg
weighted avg
                    0.67
                               0.67
                                          0.67
                                                         6
```

In []: