Exercise 27

a

 $\mathfrak A$: The automaton $\mathfrak A$ does both, Büchi- and co-Büchi-recognize L.

 \mathbf{b}

Assume \mathfrak{A}' E-recognizes L. So for $\rho(i)=q_f$ and $q_f\in F$ for $i\in\mathbb{N}$. So the read letter before the accepting state is reached are final. Let the read word be $w=a^{1+n_1}b^{n_2}$. So \mathfrak{A}' would recognize w but $w\notin L$. Contradiction \mathfrak{A}' does not recognize L.

Assume \mathfrak{A}'' A-recognizes L. Let $w=a^ub^\omega$. So $\rho(i)=q_f$ where $q_f\in F$ and $i\leq u$. By repeating the letter a the automaton must allways reach a final state. So $w=a^\omega$ leads to a final state. This means \mathfrak{A}'' recognizes $w=a^\omega\not\in L$. Contradiction \mathfrak{A}'' does not recognize L.

 \mathbf{c}

 \mathfrak{A}_A :

Exercise 28

 \mathbf{a}

 ${\mathfrak A}_{SW}$:

 $\mathcal{F} = \{\{q_0\}, \{q_0, q_2\}, \{q_0, q_3\}, \{q_0, q_1, q_3\}, \{q_0, q_2, q_3\}, \{q_0, q_1, q_2, q_3\}\}$

 \mathbf{b}

 \mathfrak{A}'_{SW} :


```
\mathcal{F} = \{ \{q_0\}, \\ \{q_0, q_1\}, \{q_0, q_2\}, \{q_0, q_4\}, \\ \{q_0, q_1, q_2\}, \{q_0, q_1, q_4\}, \{q_0, q_2, q_4\}, \{q_0, q_4, q_5\}, \\ \{q_0, q_1, q_2, q_4\}, \{q_0, q_1, q_4, q_5\}, \{q_0, q_2, q_4, q_5\}, \\ \{q_0, q_1, q_2, q_4, q_5\} \}
```

Exercise 29

Let $F_i \in \mathcal{F}$ be the set of states that recognize the word $w = a_i^{\omega}$. It is obvious that \mathcal{A} recognizes L_n .

Assume that \mathcal{A}' L_n with $|\mathcal{F}| < n$ also recognize L_n . So there must be an i such that the set F_i recognizes both a_i^{ω} and $a_j^{\omega}, j \neq i$, otherwise some word $a_j^{\omega} \in L_n$ would not be recognized. Because \mathcal{A} is Staiger-Wagner recognize L_n , recognizing a_i^{ω} means to find a $F \in \mathcal{F}$, with $Occ(\rho) = F$ for a deterministic run ρ on a_i^{ω} . Let be $F' = F_i \cup F_j$, $F' \in \mathcal{F}$ and $F_i, F_j \notin \mathcal{F}$. So $Occ(\rho) \stackrel{!}{=} F'$ for the word $w = a_i^{\omega}$. But $Occ(\rho) \neq F'$ for $w = a_i^{\omega}$, otherwise would words of the form $(a_i + a_j)^{\omega}$ also be recognized, which are obviously not in L_n . So $Occ(\rho) \notin \mathcal{F}$. Contradiction!

Exercise 30

Proof. Let $S_1, ..., S_n \subseteq Q$ be all possible non-accepting loops in \mathcal{M} for the deterministic Muller automaton. For the deterministic Büchi automaton this means that all states used during this loops cannot be part of F.

$$q \in \bigcup_{i=1}^n S_i \Leftrightarrow q \not\in F$$

If this would not hold, there would exist a non-accepting run S_j on the word $\alpha \notin L(\mathcal{M})$ that visits an accepting state of the deterministic Büchi automaton infently often. So the Büchi automaton would accept it which is a contradiction because $a \notin L(\mathcal{M})$. It follows:

$$F = Q \setminus \bigcup_{i=1}^{n} S_i$$

Finding every non-accepting run can be done with the powerset $\mathcal{P}(Q)$ and the set of accepting loops \mathcal{F} which are given by the Muller automaton.

$$\mathcal{P}(Q)\backslash \mathcal{F} = \bigcup_{i=1}^{n} \{S_i\}$$