For my problem I was given the following properties to match to a continuous and differentiable function:

- f(x) is decreasing at -6
- f(x) has a local minimum at x=-3
- f(x) has a local maximum at x=3

Step one: Finding the first Derivative

From this we know that we have been given two critical points. This means that f'(3) and f'(-3) will equal 0. So we will start with the first derivative to come up with factors that would lead to 0.

(3+x)(3-x) would lead to critical points at -3 and 3.

By expanding, we find the derivative for our chosen factors is $9-x^2$.

 $f'(x) = 9-x^2$ will be our derivative equation.

Step Two: Integration to find the equation of the function

The next step once we have a derivative is integration. Since we know the antiderivative of a number is $(x^{(n+1)})/(n+1) + C$: we know that the antiderivative of $9-x^2 = (x^3/3) + C$.

Finding the antiderivative of 9-x²

The antiderivative of 9 is $9x^{(1)}/1$ or 9x

the antiderivative of x^2 is $x^3/3$

C is any constant, including zero so I am going with zero

So, the antiderivative of $9-x^2$ is $9x-(x^3)/3$ and so

 $f(x) = 9x - (x^3)/3 + C$ is our function f(x) but I will use $f(x) = 9x - (x^3)/3$

The antiderivative gave us our equation for the function f(x) which we will plot in below

Graph of $f(x) = 9x - (x^3)/3$

(Desmos | Let's Learn Together., n.d.)

Intervals of Increase and Decrease

Plugging in values of -6, 0 and 4 into the first derivative, f'(x), we see that the function is decreasing at -6, increasing at 0, and decreasing again at 4. All this, we can verify on the graph.

9-x^2

 $9 - (-6)^2 = -27 < 0$ therefore – so decreasing

 $9 - (0)^2 = 9 = 9$ therefore + so increasing

 $9 - (4)^2 = -7 < 0$ therefore - so decreasing

It decreases at intervals (-infinity, -3) and (3, infinity).

It increases at the interval (-3,3).

Plugging in -3 and 3 into our function f(x), we find the critical points are at (3,18) (-3,-18). Since the function is decreasing at -6 and increasing at 0, we know that (3,18) is a local maximum and (-3,-18) is a local minimum. We can confirm this by finding the concavity intervals from the second derivative.

Additional Characteristics of F(x) Find the Second Derivative:

From our derivative equation, we will calculate our second derivative knowing the derivative of $x^n = nx^{(n-1)}$. We find that:

f''(x) = -2x is our Second Derivative.

We know that the second derivative gives inflection points and concavity intervals. Since we know that x=-3 is a minimum, this means that f(x) should be concave upward at this point. We would need to plug in values smaller than -3 and larger than 3 to verify the signs of the intervals. Likewise, since we know that x=3 is a maximum, f(x) should be concave downward at this point, and we would need to verify this with the signs of the intervals plugged into the second derivative.

- -2(-6) = +12 therefore + and concave up
- -2(0)=0
- -2(4) = -8 therefore and concave down

Now we have verified that F(x) is concave up at (-infinity, 0) and concave down at (0, infinity) this makes sense with what we know about x=3 as a maximum and x=-3 as a minimum.

Is this function a unique solution to the question?

What fits?

No, the function that I found is not unique. There are other functions that would fit the criteria given for this problem. Specifically, any equation that fits the following condition $9x - (x^3)/3 + C$ would work. This means that $9x-x^3/3 + 1$, or $9x-x^3/3 + 2$, or $9x-x^3/3 + 3$, or $9x-x^3/3 + 4$... etc, would work. I simply chose $9x-x^3/3$ (+0) to make the math and explanations easier.

I also checked function with derivative factors of: 9(3-x)(3+x) and this function *does* fill all of the criteria above. The derivative is $f'=81-9x^2$ and the function to match (found via antiderivative) is $f=81x-3x^3+C$. This function has critical points at -3 (local minimum) and 3 (local maximum). It is also decreasing at -6. But, the local minimum here is at (-3,-162) and the maximum point is at (3,162). Visually this graph looks like the $9x - (x^3)/3$ but much taller.

But not only this. Any C(f') also works. For example any 5(3-x)(3+x), or 6(3-x)(3+x), or 7(3-x)(3+x), etc.

What does not fit?

I checked the function with derivative factors of x(3-x)(3+x) and this function does not fit all of the criteria of the question. The derivative factors out to $9x-x^3$ and the function is $(9x^2)/2-((x^4)/4)+C$. This function does have the same critical points but also at 0, and also with a minimum at 0 and a maximum at 3 and -3. Also, it is not decreasing at -6, it is increasing.

I checked (x+3)(x-3) and this does not fit the criteria above either. This derivative factors out to x^2-9 . The function to match is $(x^3/3)-9x+C$. This function has a *minimum* at 3 and a *maximum* at -3. Also, it is not decreasing at -6, it is increasing.

All this I verified in Mobius as well as a part of my process, entering these factors individually to see what might fit and why or why not. Any value that fits the $9x-x^3/3 + C$ did work for mobius including $9x-x^3/3 + 1$, or $9x-x^3/3 + 2$, or $9x-x^3/3 + 3$, or $9x-x^3/3 + 4$... etc and also any C(f') worked including $108x-12x^3/3$, $45x-5x^3/3$, $99x-11x^3/3$, and $63x-7x^3/3$... etc.

Desmos | Let's learn together. (n.d.). Retrieved October 2, 2022, from