电场与磁场的对比

东郊中学 王春生 **2006-10**

电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较"疏远",后者比较"亲近"。究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。

为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:(1)、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;(2)、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。现选择性对比如下:

一、 研究对象、思路和方法对比: 表1

内容项目	研究对象	研究思路	研究方法、途径	研究问题
电场	静止电荷	力-(功)-能	直观化、模拟实验;	静电现象及本质规律(力与能的性质)
磁场	运动电荷	カ	间接(引入检验电荷、电流元等)	静磁场、稳恒磁场 现象及本质(力的 性质)

二、 概念对比: 表 2

项目 量	定义		公式	单位	方向	意义	矢标性	决定因素
电场强度		检验电 荷	$E = \frac{F}{q}$	1N/C = 1V/m	与正电荷 受力同向	表征电场 强弱和方 向		场源电荷 及场点位 置
	引	电流元	$B = \frac{F_m}{IL}$	$1T = 1N / A \cdot m$	1、小磁针 静止时 N 极指向 2、垂直于 磁元所平 定的平面	矢量 (叠加 遵从平 表征磁场 行四边 强弱和方 形定 向 则)		
	入	运动电 荷	$B = \frac{f_{m}}{q\upsilon}$	$1T = 1N \cdot S / C \cdot m$			行四边 形定	磁体或载 流导体及 场点位置
		面积元	$B = \frac{\Phi}{S_{\perp}}$	$1B = 1Web/m^2$			747	沙洲压耳

注意 1.用"比值"定义的物理量的共同特点是被定义的量与用来定义的量均无关; 2.磁感应强度三种定义的条件。

表 3

概念	定义	性质					意义
电场线		1、不闭合(有 源场)	2 不知六	3、不中断	4、不存在 (直观手	5、疏密表示 场的(相对)	表征电场的强 弱和方向
磁感线		1、闭合曲线 (无源场)	2、不相交	3、个中国	段)	强弱,切向表 示场的方向	表征磁场的强 弱和方向

注:电场线、磁感线是描写场这一抽象物质的直观手段,且均可用实验模拟。沿电场线方向电势逐渐(点)降低;电场线与等势面处处正交。

三、 对比规律、公式

I、电场力

(1)、F=qE (q>0时 F 与 E 同向),此式具有一般性,可计算点电荷在任何电场中的受到的电场力。在 n 个点电荷形成的静电场中 $E=\sum_{i=1}^n E_i$ (矢量式)。在真空中,点电荷场强 $E_i=k\frac{Q_i}{r_i^2}$;在匀强电场中 $E=\frac{U}{d}=\frac{4\pi kQ}{\varepsilon S}$ (Q 为电容器的电量, ε 为介电常数)。

(2)、库仑定律 $F=k\frac{Q_1Q_2}{r^2}$ (Q_1 与 Q_2 同号相斥,异号相吸),可计算真空中两个点电荷间的静电力。 \mathbf{n} 个点电荷之一q 所受库仑力大小 $F=\sum_{i=1}^{n-1}k\frac{qQ_i}{r^2}$ (矢量式)

注:对于电场力与磁场力的比较不要只停留在概念或性质、特点上,而应侧重于两者的本质区别。

II、磁场力

- (1)、洛伦兹力 $f_L = q \upsilon B \sin \theta$ (f_L 、 υ 、B 三者方向关系遵从左手定则, f_L 垂直于 υ 和B 所决定的平面), f_L 与电荷运动相联系。当 υ 与B 同向或反向时, $f_L=0$,当 υ 与B 垂直时 $f_L=q \upsilon B$ 。
- (2)、安培力 $F_A = ILB\sin\theta$ (F_A 、I、B 三者方向关系遵从左手定则, F_A 垂直于I与B所决定的平面)。当I与B同向或反向时, $F_A=0$,当I与B垂直时 $F_A=ILB$ 。
- 注:E 为未引入q 时的场强;B 为未置入载流导体时的磁感强度。 F_A 与 f_L 的关系: F_A 是 f_L 的合力。 III、做功对比

力	项目	公式	适用性	实质/原因	特点	
电场力		$W_{AB} = qU_{AB}$	普适	电势能 ⇔ 动能 (电势能+动能=恒	与路径无关	
		$W_C = F_C S \cos \theta$ 匀强电场		量)	374 127670	
磁场	安培力	$*W_{A} = I\Delta\Phi$	常用于匀强磁场(直线恒定电流)	电能⇔机械能	*与路径有关	
力	洛伦兹力	$f_L = 0$	普适	$f_{\scriptscriptstyle L}{}_{\perp}{}_{\scriptscriptstyle U}$	*与路径无关	

注:中学物理涉及安培力的定量分析、计算问题大多为力平衡类问题,关于安培力做功(含功率)的讨论与计算题目并不多,一般仅限于简单(恒力)情况,运用功的公式 $W = Fs\cos\theta$ 即可解决之,故可不给出上面的公式。至于安培力做功的特点教材从未述及,所见习题一般也不涉及此问题,若想阐明之,可以通电线圈在辐向分布磁场中转动为例论证之。对于能量转换情况可举实例(如电动机、发电机等)阐明之。

IV、冲量对比:不论电场力、磁场力是否恒力,其冲量均可依据动量定理 $I_{c} = \Delta p$ 处理(已知初、末动量的话);对于恒定电场力、磁场力,还可应用冲量公式 I = Ft 直接确定其冲量。此类题目也不多,教师可据学情适当补充之,特别是安培力的瞬时冲量问题。