Multivariate Statistics

Lecture 06

Fudan University

Efficiency

- Efficiency
- 2 Consistency

- Efficiency
- 2 Consistency
- Asymptotic Normality

- Efficiency
- 2 Consistency
- Asymptotic Normality
- 4 Decision Theory

- Efficiency
- Consistency
- 3 Asymptotic Normality
- 4 Decision Theory
- The Biased Estimator

- Efficiency
- Consistency
- Asymptotic Normality
- 4 Decision Theory
- The Biased Estimator
- Chi-Squared Distribution

- Efficiency
- Consistency
- Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator
- 6 Chi-Squared Distribution

If a p-component random vector \mathbf{y} has mean vector $\mathbb{E}[\mathbf{y}] = \nu$ and covariance matrix $\mathbb{E}\left[(\mathbf{y} - \nu)(\mathbf{y} - \nu)^{\top}\right] = \mathbf{\Psi} \succ \mathbf{0}$, then

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\nu})^{\top} \boldsymbol{\Psi}^{-1} (\mathbf{z} - \boldsymbol{\nu}) = p + 2\right\}$$

is called the concentration ellipsoid of y.

Let θ be a vector of p parameters in a distribution, and let \mathbf{t} be a vector of unbiased estimators (that is, $\mathbb{E}[\mathbf{t}] = \theta$) based on N observations from that distribution with covariance matrix Ψ . Then the ellipsoid

$$\left\{ \mathbf{z} : N(\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$

lies entirely within the ellipsoid of concentration of \mathbf{t} , where f is the density of the distribution (or probability function) with respect to the components of θ .

The ellipsoid

$$\left\{\mathbf{z}: N(\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$

lies entirely within the ellipsoid of concentration of t

$$\left\{ \mathbf{z} : (\mathbf{z} - \boldsymbol{\theta})^{\top} \left(\mathbb{E} \left[(\mathbf{t} - \boldsymbol{\theta}) (\mathbf{t} - \boldsymbol{\theta})^{\top} \right] \right)^{-1} (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\},\,$$

that is

$$\left(N\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1} \leq \mathbb{E}\left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top}\right].$$

Let θ be a vector of p parameters in a distribution, and let \mathbf{t} be a vector of unbiased estimators (that is, $\mathbb{E}[\mathbf{t}] = \theta$) based on N observations from that distribution with covariance matrix Ψ . Then the ellipsoid

$$\left\{\mathbf{z}: N(\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\} \quad (1)$$

lies entirely within the ellipsoid of concentration of \mathbf{t} , where f is the density of the distribution (or probability function) with respect to the components of $\boldsymbol{\theta}$.

- If the ellipsoid (1) is the ellipsoid of concentration of **t**, then **t** is said to be efficient.
- ② In general, the ratio of the volume of (1) to that of the ellipsoid of concentration defines the efficiency of t.

Consider the case of the multivariate normal distribution.

- **1** If $\theta = \mu$, then $\bar{\mathbf{x}}$ is efficient.
- ② If θ includes both μ and Σ , then $\bar{\mathbf{x}}$ and \mathbf{S} have efficiency $((N-1)/N)^{p(p+1)/2}$.
- If the normal distribution is non-singular, we have

$$\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right] = -\mathbb{E}\left[\frac{\partial^2 \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}}\right].$$

Multivariate Cramer-Rao Inequality

Theorem 2

Under the regularity condition (everything is well-defined, integration and differentiation can be swapped), we have

$$N\mathbb{E}\left[(\mathbf{t} - oldsymbol{ heta})(\mathbf{t} - oldsymbol{ heta})^{ op}
ight] \succeq \left(\mathbb{E}\left[rac{\partial \ln f(\mathbf{x}, oldsymbol{ heta})}{\partial oldsymbol{ heta}} \left(rac{\partial \ln f(\mathbf{x}, oldsymbol{ heta})}{\partial oldsymbol{ heta}}
ight)^{ op}
ight]
ight)^{-1},$$

where $\mathbb{E}[\mathbf{t}] = \boldsymbol{\theta}$ and $f(\mathbf{x}, \boldsymbol{\theta})$ is the density of the distribution with respect to the components of $\boldsymbol{\theta}$.

- **1** Let $\mathbf{s} = \frac{\partial \ln g(\mathbf{X}, \theta)}{\partial \theta}$, where g is the density on N samples and $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- ② For unbiased estimator \mathbf{t} of $\boldsymbol{\theta}$, we have $Cov[\mathbf{t}, \mathbf{s}] = \mathbf{I}$.

◆ロト ◆母 ト ◆ 重 ト ◆ 重 ・ 釣 Q ②

- Efficiency
- 2 Consistency
- Asymptotic Normality
- 4 Decision Theory
- The Biased Estimator
- 6 Chi-Squared Distribution

Consistency

A sequence of vectors $\mathbf{t}_n = [t_{1n}, \dots, t_{pn}]^{\top}$ for $n = 1, 2, \dots$, is a consistent estimator of $\boldsymbol{\theta} = [\theta_1, \dots, \theta_p]^{\top}$ if

$$\lim_{n\to\infty}t_{in}=\theta_i$$

for i = 1, ..., p.

- ① By the law of large numbers, the sample mean $\bar{\mathbf{x}}$ is a consistent estimator of μ if the observations are i.i.d with mean μ (normality is not involved).
- The sample covariance matrix is also consistent since

$$\mathbf{S} = rac{1}{N-1} \sum_{lpha=1}^N (\mathbf{x}_lpha - oldsymbol{\mu}) (\mathbf{x}_lpha - oldsymbol{\mu})^ op - rac{N}{N-1} (ar{\mathbf{x}} - oldsymbol{\mu}) (ar{\mathbf{x}} - oldsymbol{\mu})^ op.$$

- Efficiency
- 2 Consistency
- 3 Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator
- 6 Chi-Squared Distribution

Asymptotic Normality

Let X_1, \ldots, X_n be independent and identically distributed random variables with the same arbitrary distribution, mean μ , and variance σ^2 .

Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then the random variable

$$Z = \lim_{n \to \infty} \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right)$$

is a standard normal distribution.

What about multivariate case?

Asymptotic Normality

Multivariate central limit theorem.

Theorem 3

Let *p*-component vectors $\mathbf{y}_1, \mathbf{y}_2, \ldots$ be i.i.d with means $\mathbb{E}[\mathbf{y}_{\alpha}] = \boldsymbol{\nu}$ and covariance matrices $\mathbb{E}[(\mathbf{y}_{\alpha} - \boldsymbol{\nu})(\mathbf{y}_{\alpha} - \boldsymbol{\nu})^{\top}] = \mathbf{T}$. Then the limiting distribution of

$$rac{1}{\sqrt{n}}\sum_{lpha=1}^n (\mathbf{y}_lpha-oldsymbol{
u})$$

as $n \to +\infty$ is $\mathcal{N}(\mathbf{0}, \mathbf{T})$.

Characteristic Function and Probability

If x does not have a density, the characteristic function uniquely defines the probability of any continuity interval.

Theorem 5

Let $\{F_j(\mathbf{x})\}$ be a sequence of cdfs, and let $\{\phi_j(\mathbf{t})\}$ be the sequence of corresponding characteristic functions. A necessary and sufficient condition for $F_j(\mathbf{x})$ to converge to a cdf $F(\mathbf{x})$ is that, for every \mathbf{t} , $\phi_j(\mathbf{t})$ converges to a limit $\phi(\mathbf{t})$ that is continuous at $\mathbf{t} = \mathbf{0}$. When this condition is satisfied, the limit $\phi(\mathbf{t})$ is identical with the characteristic function of the limiting distribution $F(\mathbf{x})$.

See the proof in Section 10.7 of "Cramer, H. (1946). Mathematical Methods of Statistics. Princeton University Press"

Asymptotic Normality

Let

$$\mathbf{A}(n) = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}_{N})^{\top},$$

where x_1, \ldots, x_N are independently distributed according to $\mathcal{N}_p(\mu, \Sigma)$ and n = N - 1. Then the limiting distribution of

$$\mathbf{B}(n) = \frac{1}{\sqrt{n}} (\mathbf{A}(n) - n\mathbf{\Sigma})$$

is normal with mean $\mathbf{0}$ and covariance $\mathbb{E}\big[b_{ij}(n)b_{kl}(n)\big] = \sigma_{ik}\sigma_{jl} + \sigma_{il}\sigma_{jk}$.

- Efficiency
- 2 Consistency
- Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator
- 6 Chi-Squared Distribution

Decision Theory

- **1** An observation random vector \mathbf{x} whose distribution P_{θ} depends on a parameter θ which is an element of a set $\boldsymbol{\Theta}$.
- 2 The statistician is to make a decision \mathbf{d} in a set \mathcal{D} .
- **3** A decision procedure is a function $\delta(\cdot)$ whose domain is the set of values of **x** and whose range is \mathcal{D} .
- **9** The loss in making decision **d** for the distribution of **x** is a nonnegative function $L(\theta, \mathbf{d})$.
- **⑤** The evaluation of a procedure $\delta(x)$ is on the basis of the risk function

$$R(\theta, \delta) = \mathbb{E}_{\mathbf{x} \sim P_{\theta}} [L(\theta, \delta(\mathbf{x}))].$$

For example, the risk can be the mean squared error for univariate case

$$R(\theta, \delta) = \mathbb{E}_{\mathbf{x} \sim P_{\boldsymbol{\theta}}} \left[(\delta(\mathbf{x}) - \theta)^2 \right]$$

Decision Theory

① A decision procedure $\delta(\mathbf{x})$ is as good as a procedure $\delta^*(\mathbf{x})$ if

$$R(\boldsymbol{\theta}, \boldsymbol{\delta}) \leq R(\boldsymbol{\theta}, \boldsymbol{\delta}^*),$$

and $\delta(x)$ is better than $\delta^*(x)$ if it holds with a strict inequality for at least one value of θ .

- ② A procedure $\delta^*(\mathbf{x})$ is inadmissible if there exists another procedure $\delta(\mathbf{x})$ that is better than $\delta^*(\mathbf{x})$.
- A procedure is admissible if it is not inadmissible (i.e., if there is no procedure better than it) in terms of the given loss function.

If the parameter θ can be assigned an a prior distribution, say, with density $\rho(\theta)$, then the average loss from use of a decision procedure $\delta(\mathbf{x})$ is

$$r(\rho, \delta) = \mathbb{E}_{\rho} [R(\theta, \delta)] = \mathbb{E}_{\theta \sim \rho} [\mathbb{E}_{\mathbf{x} \sim P_{\theta}} [L(\theta, \delta(\mathbf{x}))]].$$

Given the a prior density ρ , the decision procedure $\delta(\mathbf{x})$ that minimizes $r(\rho, \delta)$ is the Bayes procedure, and the resulting minimum of $r(\rho, \delta)$ is the Bayes risk.

If the density of \mathbf{x} given $\boldsymbol{\theta}$ is $f(\mathbf{x} \mid \boldsymbol{\theta})$, the joint density of \mathbf{x} and $\boldsymbol{\theta}$ is $f(\mathbf{x} \mid \boldsymbol{\theta})\rho(\boldsymbol{\theta})$ and the average risk of a procedure $\delta(\mathbf{x})$ is

$$r(\rho, \delta) = \int_{\Theta} \int_{\mathcal{X}} L(\theta, \delta(\mathbf{x})) f(\mathbf{x} \mid \theta) \rho(\theta) \, d\mathbf{x} \, d\theta$$
$$= \int_{\mathcal{X}} \left(\int_{\Theta} L(\theta, \delta(\mathbf{x})) g(\theta \mid \mathbf{x}) \, d\theta \right) f(\mathbf{x}) \, d\mathbf{x},$$
(2)

where

$$f(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \boldsymbol{\theta}) \rho(\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta} \quad \text{and} \quad g(\boldsymbol{\theta} \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \boldsymbol{\theta}) \rho(\boldsymbol{\theta})}{f(\mathbf{x})}$$

are the marginal density of x and the a posterior density of θ given x.

The procedure that minimizes $r(\rho, \delta)$ is one that for each $\mathbf x$ minimizes the expression in braces on the right-hand side of (2), that is, the expectation of $L(\theta, \delta(\mathbf x))$ with respect to the a posterior distribution.

If θ and δ are vectors and $L(\theta, \delta(\mathbf{x})) = (\theta - \delta(\mathbf{x}))^{\top} \mathbf{Q}(\theta - \delta(\mathbf{x}))$, where \mathbf{Q} is positive definite. Then we have

$$\begin{split} \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[L(\boldsymbol{\theta}, \boldsymbol{\delta}(\mathbf{x})) \right] = & \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \boldsymbol{\delta}(\mathbf{x}))^{\top} \mathbf{Q} (\boldsymbol{\theta} - \boldsymbol{\delta}(\mathbf{x})) \right] \\ = & \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}])^{\top} \mathbf{Q} (\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}])^{\top} \mathbf{Q} (\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x})) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x}))^{\top} \mathbf{Q} (\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x}))^{\top} \mathbf{Q} (\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x})) \right] \\ = & \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}])^{\top} \mathbf{Q} (\boldsymbol{\theta} - \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]) \right] \\ & + \mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}} \left[(\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x}))^{\top} \mathbf{Q} (\mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}] - \boldsymbol{\delta}(\mathbf{x})) \right] \end{split}$$

and the minimum occurs at $\delta(\mathbf{x}) = \mathbb{E}[\boldsymbol{\theta} \mid \mathbf{x}]$ the mean of the a posterior distribution.

If $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are independently distributed, each \mathbf{x}_α according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, and if $\boldsymbol{\mu}$ has an a prior distribution $\mathcal{N}(\boldsymbol{\nu}, \boldsymbol{\Phi})$, then the a posterior distribution of $\boldsymbol{\mu}$ given $\mathbf{x}_1, \ldots, \mathbf{x}_N$ is normal with mean

$$\mathbf{\Phi} \left(\mathbf{\Phi} + \frac{1}{N} \mathbf{\Sigma} \right)^{-1} \bar{\mathbf{x}} + \frac{1}{N} \mathbf{\Sigma} \left(\mathbf{\Phi} + \frac{1}{N} \mathbf{\Sigma} \right)^{-1} \nu \tag{3}$$

and covariance matrix

$$\mathbf{\Phi} - \mathbf{\Phi} \left(\mathbf{\Phi} + \frac{1}{N} \mathbf{\Sigma} \right)^{-1} \mathbf{\Phi}.$$

If the loss function is

$$L(\theta, \delta(\mathsf{x})) = (\theta - \delta(\mathsf{x}))^{\top} \mathsf{Q}(\theta - \delta(\mathsf{x}))$$

then the Bayes estimator of μ is (3).

- Efficiency
- 2 Consistency
- 3 Asymptotic Normality
- 4 Decision Theory
- The Biased Estimator
- 6 Chi-Squared Distribution

The sample mean $\bar{\mathbf{x}}$ seems the natural estimator of the population mean μ based on a sample from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$.

However, Stein (1956) showed $\bar{\mathbf{x}}$ is not admissible with respect to the mean squared loss when $p \geq 3$.

Consider the loss function

$$L(\boldsymbol{\mu}, \mathbf{m}) = \|\boldsymbol{\mu} - \mathbf{m}\|_2^2,$$

where ${f m}$ is an estimator of the mean ${m \mu}$.

If $\mathbf{x}_1,\ldots,\mathbf{x}_N$ are independently distributed to $\mathcal{N}_p(\mu,N\mathbf{I})$, we have

$$\mathbb{E}\left[\|\bar{\mathbf{x}}-\boldsymbol{\mu}\|_2^2\right] = \sum_{\alpha=1}^p \operatorname{Var}(\bar{x}_\alpha) = p.$$

The estimator proposed by James and Stein is

$$\mathbf{m}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}$$

where ν is an arbitrary fixed vector and $p \ge 3$.

It holds that
$$\mathbb{E}\left[\left\|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\right\|_2^2\right] < \mathbb{E}\left[\left\|\bar{\mathbf{x}} - \boldsymbol{\mu}\right\|_2^2\right]$$
.

For small values of $\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2$, the multiplier of $(\bar{\mathbf{x}} - \boldsymbol{\nu})$ is negative; that is, the estimator $m(\bar{\mathbf{x}})$ is in the direction from $\boldsymbol{\nu}$ opposite to that of $\bar{\mathbf{x}}$.

Table 3.2 gives values of the risk for p=10 and $\sigma^2=1$. For example, if $\tau^2 = \|\mu - \nu\|^2$ is 5, the mean squared error of the James-Stein estimator is 8.86, compared to 10 for the natural estimator; this is the case if $\mu_i - \nu_i = 1/\sqrt{2} = 0.707$, i = 1, ..., 10, for instance.

Table 3.2[†]. Average Mean Squared Error of the James-Stein Estimator for p = 10 and $\sigma^2 = 1$

Omnies Seems	section for p	~ una o ~
$\tau^2 = \mu $	- ν∥² <i>&</i>	$ m(Y) - \mu ^2$
0.0		2,00
0.5		4.78
1.0		6.21
2.0		7.51
3.0		8.24
4.0		8.62
5.0		.8.86
6.0		9.03
0.5 1.0 2.0 3.0 4.0 5.0		4.78 6.21 7.51 8.24 8.62 8.86

[†]From Efron and Morris (1977).

The estimator proposed by James and Stein is

$$\mathbf{m}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}.$$

For small values of $\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2$, the multiplier of $(\bar{\mathbf{x}} - \boldsymbol{\nu})$ is negative; that is, the estimator $m(\bar{\mathbf{x}})$ is in the direction from $\boldsymbol{\nu}$ opposite to that of $\bar{\mathbf{x}}$.

We can improve $\mathbf{m}(\bar{\mathbf{x}})$ by using

$$\widetilde{\mathbf{m}}(\overline{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\overline{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)^+ (\overline{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu},$$

which holds that $\mathbb{E}\left[\|\tilde{\mathbf{m}}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\|_2^2\right] \leq \mathbb{E}\left[\|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\|_2^2\right]$.

- Efficiency
- Consistency
- Asymptotic Normality
- 4 Decision Theory
- 5 The Biased Estimator
- 6 Chi-Squared Distribution

Chi-Squared Distribution

If x_1, \ldots, x_n are independent, standard normal random variables, then the sum of their squares,

$$y = \sum_{i=1}^{n} x_i^2,$$

is distributed according to the (central) chi-squared distribution (χ^2 -distribution) with n degrees of freedom.

We have $\mathbb{E}[y] = n$ and Var[y] = 2n.

Chi-Squared Distribution

The probability density function of the (central) chi-squared distribution is

$$f(y; n) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2}-1} \exp\left(-\frac{y}{2}\right), & y > 0; \\ 0, & \text{otherwise,} \end{cases}$$

where

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} \exp(-t) \, \mathrm{d}t.$$

Chi-Squared Distribution

The derivation for the density is based on

- **1** We have $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
- ② For $y_1 = x^2$ with $x \sim \mathcal{N}(0,1)$, the density function of y_1 is

$$\frac{1}{\sqrt{2\pi y_1}} \exp\left(-\frac{1}{2}y_1\right).$$

3 For beta function $B(\alpha,\beta) = \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$, we have

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

1 If $F(z) = \int_{a(z)}^{b(z)} f(y, z) \, dy$, then

$$F'(z) = \int_{a(z)}^{b(z)} \frac{\partial f(y,z)}{\partial z} dx + f(b(z),z)b'(z) - f(a(z),z)a'(z).$$

Noncentral Chi-Squared Distribution

If x_1, \ldots, x_n are independent and each x_i are normally distributed random variables with means μ_i and unit variances, then the sum of their squares,

$$y = \sum_{i=1}^{n} x_i^2,$$

is distributed according to the noncentral Chi-squared distribution with n degrees of freedom and noncentrality parameter

$$\lambda = \sum_{i=1}^{n} \mu_i^2.$$

We have $\mathbb{E}[y] = n + \lambda$ and $Var[y] = 2n + 4\lambda$.

Noncentral Chi-Squared Distribution

If y_1, \ldots, y_k are independent and each y_i is distributed according to the noncentral chi-squared distribution with n_i degrees of freedom and noncentrality parameter λ_i , then

$$\sum_{i=1}^k y_i \sim \chi^2_{n_1 + \dots + n_k} \left(\sum_{i=1}^k \lambda_i \right).$$

Theorem 4

If the *n*-component vector ${\bf y}$ is distributed according to ${\cal N}({m
u},{f T})$ with ${f T}\succ {f 0},$ then

$$\mathbf{y}^{ op}\mathbf{T}^{-1}\mathbf{y} \sim \chi_n^2 \left(oldsymbol{
u}^{ op}\mathbf{T}^{-1}oldsymbol{
u}
ight).$$

If $\nu = \mathbf{0}$, the distribution is the central χ^2 -distribution.