Haskell: A Universe of Types Tom Schrijvers

Leuven Haskell User Group

一年のは というない ことのの	Data	Recursion		DSLs
	Expression Problem	Monads	Type Families	Classes
	Rank-N Poly- morphism	Effect Handlers	Theorems	

Data	Recursion	CADIS	DSLs
Expression Problem	Monads	Type Families	Classes
Rank-N Poly- morphism	Effect Handlers	Theorems	

The Structure of Types

```
type constructor

data Tree a

= Empty
| Leaf a
| Node (Tree a) (Tree a)
```

```
type constructor type parameter

data Tree a
= Empty
| Leaf a
| Node (Tree a) (Tree a)
```

```
type constructor type parameter
        data Tree a
            Empty
alternatives →
            Leaf a
            Node (Tree a) (Tree a)
         (data) constructor
```

```
type constructor
                                type parameter
         data Tree
               Empty
                                   fields
              Leaf a Node (Tree a) (Tree a)
alternatives →
           (data) constructor
```

Today we learn...

...what happens when you derive a type class.

Modelling Exercise

Create a datatype for people that have a name and an age.

Solutions

```
-Solution 1—data Person = P String Int
```

Solutions

```
_Solution 2
data Human = H Int String
```

Solutions

```
Solution 2

data Human = H Int String
```

are these the same?

The same in Haskell?

```
data Person = P String Int
```

```
data Human = H Int String
```

```
p :: Person
p = H 42 "Haskell Curry"
```

The same in Haskell?

```
data Person = P String Int
```

```
data Human = H Int String
```

```
p :: Person
p = H 42 "Haskell Curry"
```

```
Couldn't match expected type 'Person' with actual type 'Human'
```

Same Structure

Same Structure

ισος μορφη

Same Structure

lsomorphism

ισος μορφη

```
data a <~> b = Iso { from :: a -> b
   , to :: b -> a }
```



```
from iso . to iso = id to iso . from iso = id
```

```
data a <~> b = Iso { to :: a -> b
    , from :: b -> a }
```

isoPH :: Person <~> Human

```
data a <~> b = Iso { to :: a -> b
                     , from :: b -> a }
isoPH :: Person <~> Human
isoPH = Iso (\(P n a) -> H a n)
             (\ (\ H \ a \ n) \ -> \ P \ n \ a)
p:: Person
p = from isoPH (H 39 "Haskell Curry")
```

```
data a <~> b = Iso { to :: a -> b
                     , from :: b -> a }
isoPH :: Person <~> Human
isoPH = Iso (\(P n a) -> H a n)
             (\ (\ H \ a \ n) \ -> \ P \ n \ a)
p:: Person
p = from isoPH (H 39 "Haskell Curry")
       coercion
```

The Algebra of Types

The algebra of natural numbers

Guiseppe Peano

```
0 : N
```

1 : N

+ : $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$

* : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$

0 : N

```
0 : N
```

data Zero — no constructors

```
0: N
data Zero — no constructors
```

1 : N

```
0: N
data Zero — no constructors
```

```
1: N
data One = One
```

```
+: N \rightarrow N \rightarrow N
```

```
0 : N
data Zero — no constructors
1 : N
data One = One
+: N \rightarrow N \rightarrow N
data x + y = Inl x | Inr y
```

```
0 : N
data Zero — no constructors
1 : N
data One = One
+: N \rightarrow N \rightarrow N
data x + y = Inl x | Inr y
* : N \rightarrow N \rightarrow N
```

```
0 : N
data Zero — no constructors
1 : N
data One = One
+: N \rightarrow N \rightarrow N
data x + y = Inl x | Inr y
*: N \rightarrow N \rightarrow N
data x * y = x :*: y
```

Commutativity of +

$$x + y = y + x$$

Commutativity of +

```
x + y = y + x
commPlus :: (x + y) < \sim > (y + x)
```

Commutativity of +

```
x + y = y + x
commPlus :: (x + y) < \sim > (y + x)
commPlus = Iso f f
  where
    f :: (a + b) \rightarrow (b + a)
    f(Inl x) = Inr x
    f (Inr y) = Inl y
```

More Arithmetic Laws?

Have we got them all?

$$0 + x = x$$

$$x + y = y + x$$

$$x+(y+z) = (x+y)+z$$

$$1 * x = x$$

$$x * y = y * x$$

$$x*(y*z) = (x*y)*z$$

$$x*(y+z) = (x*y)+(x*z)$$

```
[Zero] = {}
```

```
[Zero] = {}
[One] = {One}
```

```
[Zero] = {}
[One] = {One}
[x+y] = {Inl v | v ∈ [x]}
U {Inr w | w ∈ [y]}
```

```
[Zero] = {}
[One] = {One}
[x+y] = {Inl v | v ∈ [x]}

U {Inr w | w ∈ [y]}
[x*y] = {v :*: w | v ∈ [x], w∈ [y]}
```

Size of set = natural number

```
# [Zero] = 0
# [One] = 1
# [x+y] = # [x] + # [y]
# [x*y] = # [x] * # [y]
```

Challenge

```
# [Zero] = 0
# [One] = 1
# [x+y] = # [x] + # [y]
# [x*y] = # [x] * # [y]
# [x->y] = ???
```

Solution

```
# [Zero] = 0
# [One] = 1
# [x+y] = # [x] + # [y]
# [x*y] = # [x] * # [y]
# [x->y] = # [y] ^ # [x]
```

$$0^{x} = 0$$
 $x^{0} = 1$
 $1^{x} = 1$
 $x^{1} = x$
 $x^{(y+z)} = (x^{y})*(x^{z})$
 $x^{(y+z)} = (x^{y})^{z} \begin{cases} \frac{\text{curry}}{\text{uncurry}} \end{cases}$
 $(x*y)^{z} = (x^{z})*(y^{z})$

A Universe of Types

User-Friendly Representation

User-Friendly Representation

Bool

User-Friendly Representation

Generic Representation

Haskell types

Generic Universe

Bool

User-Friendly Representation

Generic Representation

Haskell types

Generic Universe

Bool

One + One

User-Friendly Representation Generic Representation

Bool

One + One

User-Friendly Generic Representation

Generic Generic Generic Generic Function Universe

Bool

One + One

User-Friendly Generic Representation

Generic Generic Generic Generic Function Universe

Bool

One + One

geq

User-Friendly Generic Representation

Function Haskell types

Generic Generic Generic Function

Generic Generic Function

Generic Function

Generic Function

Bool

One + One

geq

$$(==)$$

Bool

One + One

geq

Generic Building Blocks

```
data Zero
data One = One
data x + y = Inl x | Inr y
data x * y = x :*: y
```

Generic Building Blocks

```
data Zero
data One = One
data x + y = Inl x | Inr y
data x * y = x :*: y
```

Universe: all types representable with the building blocks

Generically Representable

class Representable a where

type Rep a

repIso :: a <~> Rep a

Generically Representable

class Representable a where

type Rep a associated type (*)

repIso :: a <~> Rep a

(*) Type Checking with Open Type Functions.

T. Schrijvers et al. ICFP 2008

Representable Infrastructure

```
data Bool = True | False
instance Representable Bool where
 type Rep Bool = One + One
 repIso = Iso t f
  where
   t True = Inl One
   t False = Inr One
    f (Inl One) = True
   f (Inr One) = False
```

```
data Maybe a = Nothing | Just a
instance Representable (Maybe a)
where
  type Rep (Maybe a) = One + a
  repIso = Iso t f
  where
   t Nothing = Inl One
    t (Just x) = Inr x
    f (Inl One) = Nothing
    f (Inr x) = Just x
```

```
data Maybe a = Nothing | Just a
instance Representable (Maybe a)
where
  type Rep (Maybe a) = One + a
  repIso = Iso t f
  where
   t Nothing = Inl One
    t (Just x) = Inr x
    f (Inl One) = Nothing
            = Just x
    f (Inr x)
```

```
instance Representable [a] where
 type Rep [a] = One + (a * [a])
 repIso = Iso t f
  where
   t [] = Inl One
   t (x:xs) = Inr (x :*: xs)
   f (Inl One) = []
   f (Inr (x:*:xs)) = (x:xs)
```

```
instance Representable [a] where
 type Rep [a] = One + (a * [a])
 repIso = Iso t f
  where
   t [] = Inl One
   t (x:xs) = Inr (x :*: xs)
   f (Inl One) =
   f (Inr (x:*:xs)) = (x:xs)
```

Generic Equality

```
class GEq a where
  geq :: a -> a -> Bool
```

type class for equality

Derived Equality

```
instance GEq Bool where
  geq b1 b2 =
  geq (toRep b1) (toRep b2)
```

delegate to generic definition

Derived Equality

```
deriveGEq :: (Representable a, GEq (Rep a))
          => a -> a -> Bool
deriveGEq x y = geq (toRep x) (toRep y)
                                 This happens
instance GEq Bool where
                               when you derive
  geq = deriveGEq
                                 a type class.
instance GEq a => GEq (Maybe a) where
  geq = deriveGEq
```

instance GEq a => GEq [a] where

geq = deriveGEq

Generic Definition

```
once for the
instance GEq One where
                           whole universe
 geq One One = True
instance (GEq x, GEq y) => GEq (x + y)
where
 geq (Inl x1) (Inl x2) = geq x1 x2
 geq (Inr y1) (Inr y2) = geq y1 y2
                        = False
 geq
instance (GEq x, GEq y) => GEq (x * y)
where
 geq(x1:*:y1)(x2:*:y2) = geq x1 x2
                             && geq y1 y2
```

Primitive Types

Datatype Generic Programming

- ★ Structural view of datatypes
- **★** Structure-based functions
 - equality, comparison
 - (de)serialisation
 - enumeration of values

Datatype Generic Programming

- ★ Structural view of datatypes
- **★** Structure-based functions
 - equality, comparison
 - (de)serialisation
 - enumeration of values

Typed Reflection

More to Learn

- **★** Many different universes
 - fixpoints of functors
 - containers
 - **+** ...
- ★ Many different libraries regular, uniplate, syb, genericderiving, multirec, ...

Next time: 17/3/2015

Cenericity	Recursion	CADIS	
Expression Problem	Monads	Type Families	Classes
Rank-N Poly- morphism	Effect Handlers	Theorems	

Data	Recursion Schemes	CADTS	
Expression Problem	Monads	Type Families	Classes
Rank-N	Effect Handlers	Theorems	

Join the Google Group: Leuven Haskell User Group