Proof

a) Independent!

- \rightarrow Singe LHS has no x^m , but RHS has one x^m term, $q_m = 0$.
- since LHS has no x^{m-1} , but RHS has one x^{m-1} term, $q_{m-1}=0$
 - a proceed, the same way, and we'll obtain $a_0 = a_1 = \dots = a_m = 0$

Since dim Pm (R) = m+1,

and the hist above has renegth m+1,

it is a basis. Cby 2.39 Axteri.