Extreme Value Theorm

Bolgano, IVT

A continuous functions on a closed interval { is bounded range 16,00,1<B

f: [a, b] → R

Vx e domain (a,b)

mange (f) bounded s R

Escamples

 $f: (-1,1) \to \mathbb{R}$ $f: [-1,1] \to \mathbb{R}$

lim fix = 1 not attained

lim f(x) = 1

not attained f(x) > 0, $\lim_{x \to 20} f(x) = 0$

Founded above by 1= fco)

Extreme Value Theorn

If f:[a,b] → R is continues then if allains is bounds.

More explicitly: let $\underline{m} = GLB$ (range (P) | & let $\overline{m} = (range(f))$ then $\exists c, d \in [\alpha, b]$ $\underline{m} \leq f(\infty) \leq \overline{m}$ $\forall x \in [\alpha, b]$

fcc) = m s fcx) < m = fcd)

Proof by Contradition

Suppose fix) 7 m Her [a,b]

 $d(x) = f(x) - m > 0 , g(x) = \frac{1}{d(x)} > 0$ $f, d, g : [a, b] \rightarrow R$

g bounded as ils continuous on [a, b]

 $O(g(x))(B) \forall x \in [a,b]$ $d(x) > \frac{1}{R} \forall x \in [a,b]$

 $f(x)-m>\frac{1}{B}$, $f(x)>m+\frac{1}{B}$ contradiction greater lower bound there m

So if m = GLB (range (F))

] x = c e [a, b] such that for) = m

Leave the existence of d s.E. F(d) = LVB proof for the rudents