MSIT5 Education Forums

RU MSIT5

นอร์มัลไลเซชัน (Normalization)

Posted on September 6, 2013

การทำนอร์มัลไลเซชัน เป็นวิธีการในการกำหนดแอตทริบิวต์ให้กับแต่ละเอนทิตี เพื่อให้ได้โครงสร้างของตารางที่ดี สามารถ ควบคุมความซ้ำซ้อนของข้อมูลหลีกเลี่ยงความผิดปกติของข้อมูล โดยทั่วไปผลลัพธ์ของการนอร์มัลไลเซชัน จะได้ตารางที่มี โครงสร้างซับซ้อนน้อยลง แต่จำนวนของตารางจะมากขึ้น

การทำนอร์มัลไลเซชัน จะประกอบด้วยนอร์มัลฟอร์ม (Normal Form) แบบต่าง ๆ ที่มีเงื่อนไขของการทำให้อยู่ในรูปของนอร์มั ลฟอร์มที่แตกต่างกันไป ขึ้นอยู่กับผู้ออกแบบฐานข้อมูลว่า ต้องการลดความซ้ำซ้อนในฐานข้อมูลให้อยู่ในระดับใด ซึ่งประกอบ ด้วยนอร์มัลฟอร์มแบบต่าง ๆ ดังต่อไปนี้

- นอร์มัลฟอร์มที่ 1 (First Normal Form : 1NF)
- นอร์มัลฟอร์มที่ 2 (Second Normal Form : 2NF)
- นอร์มัลฟอร์มที่ 3 (Third Normal Form : 3NF)
- บอยซ์คอดด์นอร์มัลฟอร์ม (Boyce-Codd Normal Form : BCNF)
- นอร์มัลฟอร์มที่ 4 (Fourth Normal Form : 4NF)
- นอร์มัลฟอร์มที่ 5 (Fifth Normal Form : 5NF)

ถึงแม้ว่าการนอร์มัลไลเซชัน จะเป็นสิ่งสำคัญและจำเป็นที่สุดสำหรับการออกแบบฐานข้อมูล แต่ก็ไม่ได้หมายความว่าจะต้องทำ การนอร์มัลไลเซชันจนถึงระดับนอร์มัลฟอร์มที่ 5 โดยทั่วไปการแสดงผลข้อมูลจากตารางที่อยู่ในนอร์มัลฟอร์มที่ 5 จะมีการเชื่อม ต่อตารางเป็นจำนวนมาก ทำให้การแสดงผลและการโต้ตอบระหว่างระบบฐานข้อมูลกับผู้ใช้กระทำได้ช้า การออกแบบฐาน ข้อมูลที่ดีจึงต้องพิจารณาถึงความต้องการของผู้ใช้และต้องสามารถตอบสนองได้อย่างรวดเร็ว เพราะฉะนั้นในบางกรณีจึงมีการ ลดระดับการนอร์มัลไลเซชันในบางส่วนของการออกแบบฐานข้อมูล เพื่อให้ระบบสามารถตอบสนองได้ตามความต้องการของผู้ ใช้ การลดระดับการนอร์มัลไลเซชัน (Denormalization) เป็นวิธีการลดระดับของนอร์มัลฟอร์มลงมา เช่น การแปลงจาก 3NF มาเป็น 2NF อย่างไรก็ตาม สิ่งที่จะได้รับเพิ่มขึ้นมาจากการลดระดับการนอร์มัลไลเซชัน นอกจากความเร็วที่ดีขึ้นแล้ว ความซ้ำ ซ้อนของข้อมูลก็เพิ่มสูงขึ้นด้วย ซึ่งเป็นสิ่งที่ควรนำมาพิจารณาอย่างระมัดระวัง

1) การแปลงให้อยู่ในรูปนอร์มัลฟอร์มที่ 1 (First Normal Form : 1NF)

คุณสมบัติของรีเลชันของแบบจำลองข้อมูลเชิงสัมพันธ์ ก็คือ ข้อมูลในแต่ละทัปเพิลจะต้องไม่ซ้ำกัน และค่าในแต่ละแอตทริบิวต์ จะต้องไม่สามารถถูกแบ่งแยกย่อยลงไปได้อีกหรือมีความเป็นอะตอมมิค
(Atomic) รวมถึงจะต้องมีค่าเพียงค่าเดียวที่อยู่ในแต่ละแอตทริบิวต์หรือมีความเป็นชิงเกิลแวลู (Single Value) ซึ่งในการทำ นอร์มัลไลเชชันให้อยู่ในนอร์มัลฟอร์ที่ 1 ก็อาศัยคุณสมบัติดังที่กล่าวไว้ข้างต้น

1.1) รีพีทติ้งกรุ๊ป (Repeating Group)

การที่ข้อมูลใน 1 ทัปเพิล สามารถมีค่า ในแต่ละแอตทริบิวต์ได้มากกว่าหนึ่งค่า (Multivalued) จะทำให้เกิดรีพีทติ้งกรุ๊ป ดังตาราง ที่แสดงในภาพข้างล่าง ซึ่งเลขที่ โครงการหนึ่งหมายเลขประกอบด้วยกลุ่มข้อมูลหลายกลุ่ม ซึ่งทำให้รีเลชันดังกล่าว ขาด

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: <u>Cookie Policy</u>

คุณสมบัติซิงเกิลแวลู

การทำงานของพนักงานในโครงการ

เลขที่โครงการ	ชื่อโครงการ	รหัสนักงาน	ชื่อพนักงาน	ตำแหน่งงาน	ค่าแรง/ชม.	จำนวน ชม.
11	RFID	103	สมชาย	Engineer	500	23.8
9		101	วิชา	Programmer	500	19.4
		102	สุรชัย	Administrator	200	12.6

ภาพแสคงการเกิดรีพีทติ้งกรุ๊ป

1.2) นิยามของนอร์มัลฟอร์มที่ 1

รีเลชันจะอยู่ในรูปของนอร์มัลฟอร์มที่ 1 ก็ต่อเมื่อมีคุณสมบัติตามเงื่อนไขดังต่อไปนี้

- 1. มีการกำหนดแอตทริบิวต์ที่เป็นคีย์
- 2. ต้องไม่มีรีพีทติ้งกรุ๊ป แต่ละแถวหรือคอลัมน์จะมีค่าได้เพียง 1 ค่าเท่านั้น
- 3. แอตทริบิวต์ทุกตัวต้องขึ้นอยู่กับคีย์หลัก

จากภาพข้างบน เมื่อการการนอร์มัลไลเชชันให้อยู่ในรูปนอร์มัลฟอร์มที่ 1 จะได้ตารางที่แตกย่อยออกมาเป็น 2 ตาราง ดังภาพ ข้างล่าง ซึ่งมีคุณสมบัติตามนอร์มัลฟอร์มที่ 1 แล้ว

🗫 การทำงานของพนักงาน

Ц,							
	รหัสนักงาน	ชื่อพนักงาน	ตำแหน่งงาน	ค่าแรง/ชม.	จำนวน ชม.		
Ī	103	สมชาย	Engineer	500	23.8		
Ì	101	วิชา	Programmer	500	19.4		
Ì	102	สุรชัย	Administrator	200	12.6		

ชื่อโครงการ

เลขที่โครงการ	ชื่อโครงการ
11	RFID

รีเลชันที่อยในรูปนอร์มัลฟอร์มที่ 1

2) การแปลงให้อยู่ในรูปนอร์มัลฟอร์มที่ 2 (Second Normal Form : 2NF)

ในหนึ่งรีเลชันจะประกอบด้วยแอตทริบิวต์ต่าง ๆ ที่มีความสัมพันธ์ที่ขึ้นต่อกัน ซึ่งความสัมพันธ์ดังกล่าวจะเป็นตัวกำหนดว่า แอตทริบิวต์ใดเป็นตัวกำหนดข้อมูล หรือ คีย์แอตทริบิวต์ (Key Attribute) และและแอตทริบิวต์ใดเป็นข้อมูลที่ถูกกำหนดหรือ นอนคีย์แอตทริบิวต์ (Nonkey Attribute)

2.1) ฟังก์ชันนัลดีเพนเดนซี (Functional Dependency: FD)

ในการทำนอร์มัลไลเซชัน จะต้องมีความเข้าใจหลักการของฟังก์ชันดีเพนเดนซี

(Function Dependency : FD) เสียก่อน โดยมีคำจำกัดความคือ B ขึ้นอยู่กับ A ถ้าทราบค่าของ A ก็จะทำให้รู้ค่าของ B ได้

ฟังก์ชันนัลดีเพนเดนซี สามารถแสดงด้วยการใช้เครื่องหมายลูกศร (->) ตัวอย่างเช่น A->B แสดง B เป็นฟังก์ชันนัลดีเพนเดน ต์กับ A กล่าวคือ ถ้ารู้ค่า A ก็จะทำให้ทราบค่าของ B ด้วย ทุกค่าของ A ที่มีค่าเท่ากัน จะได้ค่า เท่ากันเสมอ

2.2) พาเชียลดีเพนเดนซี (Partial Dependency)

พาร์เชียลดีเพนเดนซี หมายถึง การที่มีแอตทริบิวต์บางแอตทริบิวต์ ที่ขึ้นอย่กับเพียงบางส่วนของคีย์หลักเท่านั้น ตัวอย่างเช่น

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: <u>Cookie Policy</u>

บางส่วนเท่านั้น

พนักงานในแผนก

รหัสนักงาน	ชื่อพนักงาน	รหัสแผนก	ชื่อแผนก
103	สมชาย	501	บัญชี
101	วิชา	601	การตลาด
102	สุรชัย	301	สารสนเทค

รีเลชันที่มีพาร์เชียลดีเพนเดนซี

2.3) นิยามของนอร์มัลฟอร์มที่ 2

รีเลชันจะอยู่ในรูปของนอร์มัลฟอร์มที่ 2 ก็ต่อเมื่อมีคุณสมบัติตามเงื่อนไขดังต่อไปนี้

- 1. รีเลชันนั้นเป็นนอร์มัลฟอร์มที่ 1 อยู่แล้ว
- 2. รีเลชันนั้นไม่มีพาร์เชียลดีเพนเดนซี

ตัวอย่างรีเลชันพนักงานในแผนกในภาพข้างบน เมื่อทำการแตกออกเป็นรีเลชันย่อยที่ไม่มีพาร์เชียลดีเพนเดนซีแล้ว จะได้เป็นรี เลชันสองรีเลชัน คือ รีเลชันพนักงานและ รีเลชันแผนก ซึ่งอยู่ในรูปของนอร์มัลฟอร์มที่ 2 แล้ว ดังภาพข้างล่าง

พนักงาน	
รหัสนักงาน	ชื่อพนักงาน
03	สมชาย
101	วิชา
102	สุรชัย
V 50	†

รหัสแผนก	ชื่อแผนก	
501	บัญชี	
601	การตลาด	
301	สารสนเทศ	

รีเลชันที่อยู่ในรูปนอร์มัลฟอร์มที่ 2 แล้ว

REPORT THIS AI

3) การแปลงให้อยู่ในรูปนอร์มัลฟอร์มที่ 3 (Third Normal Form : 3NF)

ในหนึ่งรีเลชันจะประกอบคีย์แอตทริบิวต์และนอนคีย์แอตทริบิวต์ คีย์แอตทริบิวต์จะต้องเป็นตัวกำหนดความหมายหรือการมีอยู่ ของแอตทริบิวต์อื่น ๆ ที่อยู่ในรีเลชันเสมอ

3.1) ทรานซิทีฟดีเพนเดนซี (Transitive Dependency)

ทรานซิทีฟดีเพนเดนซี หมายถึง การที่มีฟังก์ชันนัลดีเพนเดนซี ระหว่างแอตทริบิวต์ที่ไม่ได้เป็นส่วนของคีย์ใด ๆ แต่มีแอตทริบิวต์ อื่น ๆ มาขึ้นกับแอตทริบิวต์นั้นตัวอย่างเช่น จากตารางในภาพข้างล่าง_ แอตทริบิวต์ชื่อพนักงาน และรหัสตำแหน่งงานจะขึ้นอย่

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: <u>Cookie Policy</u>

ต่อหนึ่งทำ ให้มีทรานซิทีฟดีเพนเดนซีเกิดขึ้น ในรีเลชันนี้

การทำงานของพนักงาน

103 สมชาย 702 500 101 วิชา 704 500 102 สุรชัย 705 200 ↑ ↑ ↑ ↑
102 রুঃর্ম্ট 705 200
+ + +

3.2) นิยามของนอร์มัลฟอร์มที่ 3

รีเลชันจะอยู่ในรูปของนอร์มัลฟอร์มที่ 3 ก็ต่อเมื่อมีคุณสมบัติตามเงื่อนไขดังต่อไปนี้

1. รีเลชันนั้นเป็นนอร์มัลฟอร์มที่ 2 อยู่แล้ว

2. รีเลชันนั้นไม่มีทรานซิทีฟดีเพนเดนซี

ตัวอย่างรีเลชัน การทำงานของพนักงาน ในภาพข้างบน เมื่อทำการแตกออกเป็นรีเลชันย่อยที่ไม่มีทรานชิทีฟดีเพนเดนซีแล้ว จะ ได้เป็นรีเลชันสองรีเลชัน คือรีเลชันพนักงาน และรีเลชันตำแหน่งงาน ซึ่งอยู่ในรูปของนอร์มัลฟอร์มที่ 3 แล้ว ดังภาพข้างล่าง

<u>รหัสนักงาน</u>	ชื่อพนักงาน	<u>รหัสตำแหน่ง</u>	ค่าแรง/ชม
103	สมชาย	702	500
101	วิชา	704	500
102	สุรชัย	705	200
	1		1

ถ้าหน้าท้องใหญ่เหมือนคนท้อง ลองนี้ ลด 35 กก.ใน 10 วัน ก่อน นอนให้

ASIABEAUTY

REPORT THIS AD

4) การแปลงให้อยู่ในรูปบอยซ์คอดด์นอร์มัลฟอร์ม (Boyce-Codd Normal Form : BCNF)

ในหนึ่งรีเลชันอาจจะประกอบด้วยหลายแคนดิเดตคีย์ (Candidate Key) ทุกแอตทริบิวต์ในรีเลชันจะต้องขึ้นอยู่กับแคนดิเดต คีย์เสมอ เราสามารถกำหนดนิยามของรีเลชันที่อยู่ในรูปของบอยซ์คอดด์นอร์มัลฟอร์ม ก็ต่อเมื่อรีเลชันมีคุณสมบัติตามเงื่อนไข ดังต่อไปนี้

1. รีเลชันนั้นเป็นนอร์มัลฟอร์มที่ 3 อยู่แล้ว

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: <u>Cookie Policy</u>

รีเลชันจะอยู่ในรูปบอยซ์คอดด์นอร์มัลฟอร์ม ถ้าทุกแอตทริบิวต์ขึ้นอยู่กับแคนดิเดตคีย์ (Candidate Key) ดังนั้นถ้าใน 1 รีเลชัน มีแคนดิเดตคีย์เพียงตัวเดียวแล้ว นอร์มัลฟอร์มที่ 3 และบอยซ์คอดด์นอร์มัลฟอร์ม จะเหมือนกัน โอกาสที่คุณสมบัติของบอยซ์ คอดด์นอร์มัลฟอร์มจะถูกละเมิดนั้น เกิดขึ้นได้น้อย และจะเกิดได้กับรีเลชันที่มีแคนดิเดตคีย์มากกว่าหนึ่งเท่านั้น ดังตัวอย่างใน ภาพข้างล่าง รีเลชันการลงทะเบียนเรียน รีเลชันดังกล่าวอยู่ในรูปนอร์มัลฟอร์มที่ 3 แล้ว แต่ก็ยังมีบางส่วนมีปัญหาอยู่ ตรงจุด ที่แอตทริบิวต์รหัสวิชาเรียน และผลการเรียนขึ้นอยู่กับคีย์นักศึกษา และคีย์ผู้สอน แต่ในขณะเดียวกันรหัสผู้สอนก็ขึ้นอยู่กับรหัส วิชาเรียน ทำให้ถ้าต้องการเปลี่ยนแปลงผู้สอนในวิชา 301 จะต้องมีการเปลี่ยนแปลงถึง 2 ทัปเพิล ซึ่งผลลัพธ์ที่ได้อาจจะทำให้ เกิดความผิดพลาดหากทำการแก้ไขไม่ครบถ้วน และถ้านักศึกษารหัส 135 ถอนการลงทะเบียนวิชา 280 ข้อมูลของผู้ที่สอนวิชา นี้จะหายไปจากระบบเลย ถ้าเราลบข้อมูลนี้

รหัสนักศึกษา	<u>รหัสผู้สอน</u>	รหัสวิชาเรียน	ผลการเรียน
125	25	201	A
125	20	301	С
135	20	280	В
144	25	270	С
144	20	301	В

รีเลชันที่อยู่ในรูปนอร์มัลฟอร์มที่ 3 แล้วแต่ไม่อยู่ในรูปของบอยซ์คอคค์นอร์มัลฟอร์ม

เราสามารถทำการแตกตารางออกมาให้อยู่ในรูปของบอยซ์คอดด์นอร์มัลฟอร์มได้ โดยการแยกแอตทริบิวต์รหัสวิชาเรียนและ รหัสผู้สอนซึ่งขึ้นอยู่กับแอตทริบิวต์รหัสวิชาเรียน ออกมาเป็นอีกหนึ่งรีเลชัน และแยกแอตทริบิวต์ รหัสนักศึกษา รหัสผู้สอน และ ผลการเรียนออกมาเป็นอีกหนึ่งรีเลชัน ดังแสดงในภาพข้างล่าง

ผู้สอนประจำวิชา

<u>รหัสวิชาเรียน</u>	รหัสผู้สอน
201	25
270	25
280	20
301	20

ผลการเรียน

รหัสนักศึกษา	<u>รหัสผู้สอน</u>	ผลการเรียน
125	25	A
125	20	С
135	20	В
144	25	С
144	20	В
144	20	B

รีเลชันที่ได้รับการนอร์ไลเซชันให้อยู่ในรูปบอยซ์คอคค์นอร์มัลฟอร์มแล้ว

REPORT THIS AD

5) การแปลงให้อยู่ในรูปนอร์มัลฟอร์มที่ 4 (Fourth Normal Form : 4NF)

ในขณะที่การทำให้อยู่ในรูปของนอร์มัลฟอร์มต่าง ๆ ที่ผ่านมา จะเกี่ยวข้องกับการขึ้นตรงต่อกันของข้อมูลในแต่ละแอตทริบิวต์ หรือฟังก์ชันนัลดีเพนเดนซี แต่การทำให้อยู่ในรูปของนอร์มัลฟอร์มที่ 4 จะเกี่ยวข้องกับรูปแบบของการขึ้นตรงต่อกันของข้อมูล ในระดับที่ซับซ้อนกว่า

5.1) มัลติแวลดีเพนเดนซี (Multivalued Dependency)

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: <u>Cookie Policy</u>

(X Multi-Determinse Y) ไม่ว่า Z จะมีค่าเป็นอะไรก็ตาม

โดยปกติ ถ้า R ประกอบด้วย Attribute X, Y และ Z ($Z=R-\{XY\}$) ดังนั้น ถ้า X->>Y แล้ว X->>Z เสมอ สามารถ เขียนใหม่เป็น X->>Y | Z ถ้า Y เป็นสับเซทของ X หรือ X ยูเนี่ยน Y=R แล้ว เราเรียก X->>Y ว่า ทริเวียลมัลติแวลูดี เพนเดนซี (Trivial Multivalued Dependency) ซึ่งจะต่างจากฟังก์ชันนัลดีเพนเดนซี X->Y ที่ X จะสามารถบอกค่า Y ได้แค่เพียงค่าเดียว ดังตัวอย่างภาพข้างล่าง เนื่องจากแอตทริบิวต์ รหัสโครงการ รหัสบริษัท และที่ตั้งโครงการล้วนเป็นคีย์ แอตทริบิวต์ ดังนั้นรีเลชันในภาพ จึงถือว่าอยู่ในรูป BCNF แล้ว แต่ยังไม่อยู่ในรูปของ 4NF เนื่องจากรีเลชันดังกล่าวยังมีทริเวียล มัลติแวลูดีเพนเดนซีอยู่ในรีเลชัน ตัวอย่างเช่นรหัสโครงการAoo1 สามารถบอกค่าของรหัสบริษัทที่เป็นผู้รับผิดชอบได้ มากกว่าหนึ่งบริษัท คือ รหัสบริษัท Boo1 และ Boo2 ในขณะเดียวกันรหัสโครงการ Aoo1 ก็บอกถึงที่ตั้งของโครงการสอง แห่งคือ จันทบุรี และระยอง ซึ่งถ้ามีการเพิ่มบริษัทที่รับผิดชอบโครงการเข้าไปในโครงการ Aoo1 อีกหนึ่งบริษัทก็จะต้องมีการ เพิ่มข้อมูลถึงสองทัปเพิลเนื่องจากโครงการดังกล่าวมีที่ตั้งอยู่ถึงสองแห่งคือ ระยอง และจันทบุรี ส่งผลให้เกิดความซ้ำซ้อนของ ข้อมูลขึ้นในรีเลชันดังกล่าว และอาจจะเกิดความผิดพลาดในการเพิ่มข้อมูลได้ เนื่องจากที่ตั้งโครงการไม่ได้ขึ้นอยู่กับรหัสบริษัทที่ เป็นผู้รับผิดชอบแต่ขึ้นอยู่กับรหัสโครงการ ดังนั้น ถ้าหากมีการเพิ่มบริษัทผู้รับผิดชอบเพิ่มขึ้นอีกหนึ่งบริษัท เราจำเป็นที่จะต้อง ทำการเพิ่มข้อมูลที่ตั้งโครงการเข้าไปอีกสองแห่งด้วยเสมอ ซึ่งเป็นผลจากความสัมพันธ์ในรูปแบบของ ทริเวียลมัลติแวลูดีเพน เดนซี นั่นเอง

โครงการก่อสร้าง

<u>รหัสโครงการ</u>	<u>รหัสบริษัท</u>	<u>ที่ตั้งโครงการ</u>
A001	B001	จันทบุรี
A001	B001	25894
A001	B002	จันทบุรี
A001	B002	25801

รีเลชันที่อยู่ในรูปบอยซ์คอดค์นอร์มัลฟอร์มแล้ว แต่ยังไม่อยู่ในรูปของนอร์มัลฟอร์มที่ 4

นอร์มัลฟอร์มที่ 4

5.2) นิยามของนอร์มัลฟอร์มที่ 4

รีเลชันจะอย่ในรปของนอร์มัลฟอร์มที่ 4 ก็ต่อเมื่อมีคณสมบัติตามเงื่อนไขดังต่อไปนี้

ถ้าหน้าท้องใหญ่เหมือนคนท้อง ลองนี้ ลด 35 กก.ใน 10 วัน ก่อน นอนให้

ASIABEAUTY

REPORT THIS AL

1. รีเลชันนั้นเป็นบอยซ์คอดด์นอร์มัลฟอร์มอยู่แล้ว

2. รีเลชันนั้นไม่มีทริเวียลมัลติแวลูดีเพนเดนซี

จากรีเลชันในภาพข้างบน เราสามารถขจัดทริเวียลมัลติแวลูดีเพนเดนซี โดยการแตกรีเลชันดังกล่าวออกเป็นรีเลชันย่อย 2 รีเล ชัน ซึ่งจะทำให้ทั้งสองรีเลชันอยู่ในรูปของนอร์มัลฟอร์มที่ 4 ดังภาพข้างล่าง

บริษัทในโครงการ

<u>รหัสโครงการ</u>	<u>รหัสบริษัท</u>
A001	B001

ที่ตั้งโครงการ

<u>รหัสโครงการ</u>	ที่ตั้งโครงการ
A001	จันทบุรี

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here: $\underline{\text{Cookie Policy}}$

6) การแปลงให้อยู่ในรูปนอร์มัลฟอร์มที่ 5 (Fifth Normal Form : 5NF)

การแปลงให้อยู่ในรูปของนอร์มัลฟอร์มที่ 5 จะพิจารณาถึงการขึ้นต่อกันของข้อมูลในการแยกข้อมูลในรีเลชันออกเป็นรีเลชัน ย่อย และประกอบรีเลชันย่อยกลับเป็นรีเลชันใหญ่เช่นเดิม ซึ่งเป็นการตรวจสอบว่าเมื่อรวมกันใหม่ด้วยวิธีการจอยน์แล้ว จะได้รี เลชันกลับมาเหมือนเดิมทุกประการหรือไม่

6.1) จอยน์โอเปอรชัน (Join Operation)

ถ้ามี $R_1(X,Y)$ และ $R_2(Y,Z)$ R_1 JOIN $R_2=R_3(X,Y,Z)$ โดยที่ t(x,y,z) อยู่ใน R_3 ก็ต่อเมื่อมี $t_1(x,y)$ อยู่ใน R_1 และ $t_2(y,z)$ อยู่ใน R_2

6.2) จอยน์ดีเพนเดนซี (Join Dependency)

ในการแยกรีเลชันออกเป็นส่วนย่อย (Decomposition) R1, R2, R3, Rn มีคุณสมบัติจอยน์ดีเพนเดนซี ก็ต่อเมื่อ R1 JOIN R2 JOIN R3 ... JOIN Rn = R นั่นคือเมื่อเอารีเลชันย่อยมารวมกันก็ต้องได้รีเลชันเดิม ที่ไม่มีข้อมูลสูญหาย และไม่มีทัปเพิลที่ เกินมา ที่เรียกว่า สพิวเรียสทัปเพิล (Spurious Tuple)

- 6.3) นิยามของ 5NF รีเลชันจะเป็น 5NF ถ้า
- 1. รีเลชันนั้นเป็นนอร์มัลฟอร์มที่ 4 อย่แล้ว

2. การแบ่งแยกรีเลชันมีคุณสมบัติจอยน์ดีเพนเดนซี

จากตัวอย่างในภาพข้างล่าง รีเลชัน วิชาเรียนประจำภาคอยู่ในรูปของนอร์มัลฟอร์มที่ 4 แล้ว เนื่องจากแอตทริบิวต์ภาคการ ศึกษาเป็นตัวกำหนดแอตทริบิวต์รหัสวิชาหลาย ค่า ในขณะที่แอตทริบิวต์รหัสวิชา ก็เป็นตัวกำหนดแอตทริบิวต์รหัสชั้นเรียนหลาย ค่า รีเลชันนี้จึงไม่มีทริเวียลมัลติแวลูดีเพนเดนซี ต่อไปเราจึงทำการทดสอบคุณสมบัตินอร์มัลฟอร์มที่ 5 ของรีเลชันวิชาเรียน ประจำภาค โดยเมื่อนำรีเลชันดังกล่าวมาทำการแตกย่อยออกเป็นสามรีเลชันคือ รีเลชันภาคการศึกษา รีเลชันวิชาเรียนของชั้น เรียน และ รีเลชันชั้นเรียนประจำภาค และทำการจอยน์ทั้งสามรีเลชันรวมกลับเป็นหนึ่งรีเลชันอีกครั้ง จะได้จำนวนข้อมูลเท่ากัน กับรีเลชันก่อนที่จะมีแตกเป็นรีเลชันย่อยทุกประการ ซึ่งก็คือรีเลชันดังกล่าวมีคุณสมบัติจอยน์ดีเพนเดนซีและอยู่ในรูปของนอร์มัลฟอร์มที่ 5 แล้ว

วิชาเรียนประจำภาค

เขียนและเรียบเรียงโดย ชาคริต กุลไกรศรี

ADVERTISEMENT

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: <u>Cookie Policy</u>

Related

Relational Database Concept แนวคิดของฐาน ข้อมูลเชิงสัมพันธ์

In "Database"

E-R Diagram (ตอนที่ 2) หลักการเขียน E-R Diagram ที่ถูกต้อง

In "Database"

Implementation (การจัดสร้างระบบ)

In "System Analysis"

About ชาคริต กุลไกรศรี

ชาคริต กุลไกรศรี่ ประธานนักศึกษาคณะวิทยาศาสตรมหาบัณฑิตสาขาเทคโนโลยีสารสนเทศ มหาวิทยาลัยรามคำแหง รุ่นที่ 5 $\underline{ ext{View all posts by ชาคริต กุลไกรศรี}} o$

This entry was posted in <u>Database</u>. Bookmark the <u>permalink</u>.

MSIT5 Education Forums

Blog at WordPress.com.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. To find out more, including how to control cookies, see here: $\underline{\text{Cookie Policy}}$