Week Four

Siva Sundar, EE23B151 July 2024

16th July

Section 11

- "A Set has the potentiality to carry all sorts of structure with the help of maps."

 Sets lack **structure** and can be mapped to any other set. However, introducing a map between two sets creates a notion of structure. In category theory, this "structure" can be **preserved** or **destroyed** by mappings between categories, highlighting a **key difference** between categories (sets+maps) and sets.
- An automorphism of a finite set is also known as a **permutation** of the set.
- Suppose A^{\bigcirc}^{α} and B^{\bigcirc}^{β} have A isomorphic to B as sets, we **cannot** conclude that A^{\bigcirc}^{α} is isomorphic to B^{\bigcirc}^{β} . (Page 159, Ex.3 and Ex.4)

Section 12

- * The category S^{\triangleright} has **practical uses:** Dynamical systems/Automata. We have the set X (in S^{\triangleright}) of all the different **possible states** of the system, and the endomap α of X which takes each state x to the state in which the system will be one unit of time later.
- In a **finite** dynamical system, every state eventually **settles** into a cycle.
- "Family Trees" are categories of sets with two endomaps, namely, 'mother' and 'father'.

Section 13: Monoids

- A category with exactly **one object** is a **monoid**.
- 'Structure-preserving' interpretation of one category into another is a functor.
- A discrete-time dynamical system is just a functor from a 'monoid' (whose mappings are natural numbers) to the 'category of sets'. For **continuous-time**, use real numbers for mappings in the monoid. (Page 168,169)

19th July

Section 14:

• "Although certain important properties are 'preserved' by f, they are not necessarily 'reflected'." For example, if X^{\bigcirc} contains a point x which is 'not a fixed point' of α , y = f(x) (in Y^{\bigcirc}) 'can be a fixed point' of β . (Page: 171, Ex.4)

Author: Siva Sundar Roll No: EE23B151

• A functor f **preserves** the property of being in a small cycle, but the 'size of the cycle' **may decrease**. (Page 171, Ex.5)

- Accessibility: the *(positive)* property states that any point x in X^{\bigcirc} , has a point \bar{x} such that $x = \alpha(\bar{x})$. This property is preserved by the map S^{\bigcirc} , ie, if x is a value of α , then f(x) is a value of β (in Y^{\bigcirc}).
- A negative property of x is **not** being a fixed point. **Negative properties** tend **not** to be 'preserved', but instead they tend to be **reflected**. (Page 171 Ex.4)

A map $X^{\bigcirc} \xrightarrow{f} Y^{\bigcirc}$ in S^{\bigcirc} 'reflects' a property means that if the value of f at x has the property, then x itself has the property.

- Naming the elements that have a given period by maps using an object called "the cycle of length n (denoted by C_n)", whose elements are in the set $\{0, 1, 2, ..., n-1\}$, which is a 'successor endomap' where successor to 'n-1' is 0.
- The maps from this cycle C_n to any object $Y^{\triangleright^{\beta}}$ 'name' exactly the elements of period n in $Y^{\triangleright^{\beta}}$.
- Another object we can you to study dynamical systems besides C_n is $N = \mathbb{N}^{\bigcap^{\sigma}}{}^{\beta}$ $(\sigma(n) = n + 1)$, where any mapping f from this object to another object $Y^{\bigcap^{\sigma}}{}^{\beta}$ always follows $f(n) = \beta^n(y)$,

 This allows us to avoid using the map β on Y and instead, precompose the map σ on the mapping from N to Y for getting the **next state**.
- Presentations of Dynamical systems:
 - * In an endomap X^{\triangleright} , the points which start a loop are called **generators**. (Page 183)
 - * Using these generators and the mapping, we can 'name' all the other points in the endomap. This creates a **list of labels (L)** for each point in the endomap.
 - * While finding these labels, we come across equations (R) which relates the 'generator points'.
 - * Applying $f \circ \alpha = \beta \circ f$ on equation set (**R**), we see that the other enodmap Y^{β} must contain points which follow the equation set (**R**) where α is replaced by β , so that there exist a 'structure-preserving' map f.
 - * Both (L) and (R) are collectively called **presentation** of X^{\bigcirc} , and this can be used to **find the number of maps** (structure-preserving) between the two objects. (Page 183,184)
 - * Even infinite dynamical systems may have finite presentations. For example, $N^{\supset \sigma}$ is presented by one *generator*, 0, and **no equations!**