SIMPLICIAL COVERINGS

FRANK MURPHY-HERNANDEZ

Abstract.

Introduction

1. Preliminaries

We recall that, given a topological space X, a covering space on X it's a continuous map $p\colon E\to X$, such that for every $x\in X$, there is an open neighborhood U such that $p^{-1}(U)$ it's a disjoint union of open sets U_λ , $\lambda\in\Lambda$, and $p|_{U_\lambda}:U_\lambda\to U$ it's a homeomorphism. We recommend the book of P. May [1] as reference of covering spaces.

An abstract simplicial complex is a pair (S, \mathcal{K}) where S is a set and \mathcal{K} is a family of non-empty finite subsets of S such that, if $\sigma \subseteq \tau$ and $\tau \in \mathcal{K}$ then $\sigma \in \mathcal{K}$. If $\sigma \in \mathcal{K}$, then the dimension of σ is $|\sigma|-1$, and we denote it by $dim(\sigma)$. The elements of \mathcal{K} of dimension n are called n-simplices, and we denote the set of n-simplices by \mathcal{K}_n . The 0-simplices are called vertices.

The geometric realization of an abstract simplicial complex (S, \mathcal{K}) is the set of all function $\phi \colon S \longrightarrow [0, 1]$ such that:

- $supp(\phi) \in \mathcal{K}$
- $\sum_{s \in S} \phi(s) = 1$

We denote this set by $|(S, \mathcal{K})|$. We may think $[0, 1]^S$ as the direct limit of $[0, 1]^A$ where Aranges over all finite subsets of S. So we give the $|(S, \mathcal{K})|$ the subspace topology.

A morphism between abstract simplicial complexes (S_1, \mathcal{K}_1) and (S_2, \mathcal{K}_2) is a map $f: S_1 \longrightarrow S_2$ such that $f(\sigma) \in \mathcal{K}_2$ for any $\sigma \in \mathcal{K}_2$.

2. Abstract Simplicial Coverings

Definition 2.1. Let (S, \mathcal{K}) be an abstract simplicial complex. An abstract simplicial covering of (S, \mathcal{K}) is a pair $((T, \mathcal{L}), p)$ where (T, \mathcal{L}) is a abstract simplicial complex and $p: T \longrightarrow S$ is a morphism of abstract simplicial complexes such that...

Proposition 2.1. Let (S, \mathcal{K}) be an abstract simplicial complex and $((T, \mathcal{L}), p)$ an abstract simplicial covering of (S, \mathcal{K}) . Then $(|(T, \mathcal{L})|, |p|)$ is covering of $|(S, \mathcal{K})|$.

Proof.

Date: October 15, 2019.

²⁰⁰⁰ Mathematics Subject Classification. Primary ****, ****; Secondary ****, ****.

Key words and phrases. Simplicial Sets, Coverings.

References

 $[1]\ \ {\rm J}\ {\rm Peter}\ {\rm May}.\ A\ concise\ course\ in\ algebraic\ topology.\ University\ of\ Chicago\ press,\ 1999.$

Facultad de Ciencias, UNAM, Mexico City $Email\ address: murphy@ciencias.unam.mx$