STK1110 Høsten 2021

Hypotesetesting og konfidensintervaller for to utvalg

Tilsvarer Avsnitt 10.1 og 10.2

Ingrid Hobæk Haff Matematisk institutt Universitetet i Oslo

Eksempel

I et forsøk ble 22 rotter utsatt for ozon (behandlede), mens 23 andre ikke ble det (kontroll). Så registrerte en rottenes vektøkning i gram i løpet av en uke.

- Kan vi med rimelig grad av sikkerhet si at det er en forskjell i vektøkning mellom behandlede og ubehandlede rotter?
- Kan vi gi et anslag på forskjellen i vektøkning?
- Og hvor sikkert er dette anslaget?

Hypotesetester og konfidensintervaller for $\mu_1 - \mu_2$

- Vi antar at X_1, \ldots, X_m er uif med forventning μ_1 og varians $\sigma_1^2, Y_1, \ldots, Y_n$ er uif med forventning μ_2 og varians σ_2^2 , og at X_i -ene og Y_i -ene er uavhengige.
- Vi er interessert i å lage konfidensintervaller for og teste hypoteser knyttet til $\mu_1 \mu_2$.
- Vi skal se på tre forskjellige tilfeller: normalfordelte data med kjente varianser, store utvalg med ukjente varianser og små normalfordelte utvalg med ukjente varianser.

Konfidensintervall for $\mu_1 - \mu_2$, normalfordelte data med kient varians

- Anta at $X_1, \ldots, X_m \stackrel{uif}{\sim} N(\mu_1, \sigma_1^2)$ og $Y_1, \ldots, Y_n \stackrel{uif}{\sim} N(\mu_2, \sigma_2^2)$, med σ_1 og σ_2 kjent.
- En naturlig estimator for $\mu_1 \mu_2$ er $\bar{X} \bar{Y}$.
- Vi har

$$\begin{split} \mathsf{E}(\bar{X} - \bar{Y}) = & \mathsf{E}(\bar{X}) - \mathsf{E}(\bar{Y}) = \mu_1 - \mu_2 \\ \mathsf{V}(\bar{X} - \bar{Y}) & \stackrel{\textit{uavh.}}{=} \mathsf{V}(\bar{X}) + (-1)^2 \cdot \mathsf{V}(\bar{Y}) = \frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n} \end{split}$$

ullet Da $ar{X}$ og $ar{Y}$ er normalfordelt, må $ar{X} - ar{Y}$ også være det, slik at

$$ar{X} - ar{Y} \sim N\left(\mu_1 - \mu_2, rac{\sigma_1^2}{m} + rac{\sigma_2^2}{n}
ight)$$

og

$$rac{ar{X} - ar{Y} - (\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{m} + rac{\sigma_2^2}{n}}} \sim \mathcal{N}(0,1).$$

Vi får:

$$\mathsf{P}\left(-\mathsf{z}_{\alpha/2} \leq \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \leq \mathsf{z}_{\alpha/2}\right) = 1 - \alpha$$

slik at

$$\begin{split} \mathsf{P}\left(\bar{X}-\bar{Y}-z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}} \leq \mu_1-\mu_2 \leq \bar{X}-\bar{Y}+z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}\right) \\ &=1-\alpha. \end{split}$$

• Et $100 \cdot (1-\alpha)\%$ konfidensintervall for $\mu_1 - \mu_2$ er da

$$\bar{x} - \bar{y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}.$$

Konfidensintervall for $\mu_1 - \mu_2$, store utvalg med ukjente varianser

- Anta at X_1, \ldots, X_m er uif med forventning μ_1 og varians σ_1^2 , Y_1, \ldots, Y_n er uif med forventning μ_2 og varians σ_2^2 , med σ_1 og σ_2 ukjent.
- Anta videre at m og n er så store at vi ikke trenger å anta normalfordeling for X_i -ene og Y_i -ene.
- Vi trenger å estimere σ_1^2 og σ_2^2 , og forventningsrette estimatorer for disse er

$$S_1^2 = \frac{1}{m-1} \sum_{i=1}^m (X_i - \bar{X})^2$$
 og $S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$.

Store utvalg med ukjente varianser (forts.)

Nå er

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}} \stackrel{tiln.}{\sim} N(0, 1).$$

• Et tilnærmet $100 \cdot (1-\alpha)\%$ konfidensintervall for $\mu_1 - \mu_2$ er da

$$\bar{x} - \bar{y} \pm z_{\alpha/2} \sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}.$$

Eksempel

Eks. 10.5 i boka.

Konfidensintervall for $\mu_1 - \mu_2$, normalfordelte data med ukjente, like varianser

- Anta at X_1, \ldots, X_m er uif med forventning μ_1 og varians σ_1^2 , Y_1, \ldots, Y_n er uif med forventning μ_2 og varians σ_2^2 , med σ_1 og σ_2 ukjent.
- Anta videre at m og n ikke er store nok til å bruke resultatene for store utvalg.
- Da trenger vi i tillegg å anta normalfordeling, altså $X_1, \ldots, X_m \stackrel{uif}{\sim} N(\mu_1, \sigma_1^2)$ og $Y_1, \ldots, Y_n \stackrel{uif}{\sim} N(\mu_2, \sigma_2^2)$.
- Først antar vi at $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
- La

$$S_p^2 = \frac{m-1}{m+n-2}S_1^2 + \frac{n-1}{m+n-2}S_2^2.$$

• $\bar{X} - \bar{Y}$ og S_p^2 er uavhengige, S_p^2 er forventningsrett for σ^2 og $\frac{(m+n-2)}{2}S_p^2 \sim \chi_{m+n-2}^2$.

Da er

$$T = rac{ar{X} - ar{Y} - (\mu_1 - \mu_2)}{S_p \sqrt{rac{1}{m} + rac{1}{n}}} \sim t_{m+n-2}.$$

Det gir

$$\mathsf{P}\left(-t_{\alpha/2,m+n-2} \le \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}} \le t_{\alpha/2,m+n-2}\right) = 1 - \alpha.$$

• Et $100 \cdot (1-\alpha)\%$ konfidensintervall for $\mu_1 - \mu_2$ er da

$$ar x - ar y \pm t_{lpha/2,m+n-2} s_
ho \sqrt{rac{1}{m} + rac{1}{n}}.$$

Normalfordelte data med ukjente, ulike varianser

- Anta nå at $\sigma_1^2 \neq \sigma_2^2$.
- Vi lar

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}} = \frac{(\bar{X} - \bar{Y} - (\mu_1 - \mu_2))/\sqrt{\sigma_1^2/m + \sigma_2^2/n}}{\sqrt{\left(\frac{S_1^2}{m} + \frac{S_2^2}{n}\right)/\left(\sigma_1^2/m + \sigma_2^2/n\right)}}$$
$$= \frac{Z}{\sqrt{U/\nu}},$$

der
$$Z=(ar{X}-ar{Y}-(\mu_1-\mu_2))/\sqrt{\sigma_1^2/m+\sigma_2^2/n}\sim N(0,1)$$
 og $U/
u=\left(\frac{S_1^2}{m}+\frac{S_2^2}{n}\right)/\left(\sigma_1^2/m+\sigma_2^2/n\right)$ er uavhengige, men U er ikke $\chi^2_
u$ -fordelt.

Normalfordelte data med ukjente, ulike varianser (forts.)

- Vi kan imidlertid tilnærme U med en χ^2_{ν} -fordeling, der parameteren ν justeres slik at U/ν får riktig forventning og varians.
- Det gjør vi ved å la

$$\nu = \frac{\left(\sigma_1^2/m + \sigma_2^2/n\right)^2}{\left(\frac{\sigma_1^2}{m}\right)^2/(m-1) + \left(\frac{\sigma_2^2}{n}\right)^2/(n-1)}.$$

• Da σ_1^2 og σ_2^2 er ukjent, tilnærmes denne med

$$\nu = \frac{\left(s_1^2/m + s_2^2/n\right)^2}{\left(\frac{s_1^2}{m}\right)^2/(m-1) + \left(\frac{s_2^2}{n}\right)^2/(n-1)}.$$
 (1)

Normalfordelte data med ukjente, ulike varianser (forts.)

Dermed er

$$rac{ar{X}-ar{Y}-\left(\mu_1-\mu_2
ight)}{\sqrt{rac{S_1^2}{m}+rac{S_2^2}{n}}}\stackrel{tiln.}{\sim}t_
u,$$

der ν er gitt ved (1).

• Et tilnærmet $100 \cdot (1-\alpha)\%$ konfidensintervall for $\mu_1 - \mu_2$ er da

$$\bar{x}-\bar{y}\pm t_{\alpha/2,\nu}\sqrt{\frac{s_1^2}{m}+\frac{s_2^2}{n}}.$$

Eksempel

Vektøkning for rotter.

Hypotesetester ang. $\mu_1-\mu_2$, normalfordelte data med kjent varians

- Vi ønsker å teste hypoteser av typen
 - $H_0: \mu_1 \mu_2 \leq \Delta_0 \mod H_a: \mu_1 \mu_2 > \Delta_0$
 - $H_0: \mu_1 \mu_2 \ge \Delta_0 \text{ mot } H_a: \mu_1 \mu_2 < \Delta_0$
 - $H_0: \mu_1 \mu_2 = \Delta_0 \mod H_a: \mu_1 \mu_2 \neq \Delta_0.$
- Som regel er $\Delta_0 = 0$.
- Anta at $X_1, \ldots, X_m \stackrel{uif}{\sim} N(\mu_1, \sigma_1^2)$ og $Y_1, \ldots, Y_n \stackrel{uif}{\sim} N(\mu_2, \sigma_2^2)$, med σ_1 og σ_2 kjent.
- Vi begynner med å se på tester av typen $H_0: \mu_1 \mu_2 \leq \Delta_0$ mot $H_a: \mu_1 \mu_2 > \Delta_0$.
- Da forkaster vi H_0 dersom $\bar{X} \bar{Y} \ge k$, som tilsvarer

$$Z = \frac{\bar{X} - \bar{Y} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \ge \frac{k - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} = \tilde{k}.$$

- Det gjenstår å finne \tilde{k} slik at testen får signifikansnivå α .
- Vi får

P(Feil av type I)
$$\leq$$
 P($Z \geq \tilde{k} | \mu_1 - \mu_2 = \Delta_0$) = $1 - \Phi(\tilde{k}) = \alpha$.

- Det gir $\tilde{k} = \Phi^{-1}(1 \alpha) = z_{\alpha}$, og vi forkaster dermed H_0 dersom $Z \geq z_{\alpha}$.
- En test for $H_0: \mu_1 \mu_2 \geq \Delta_0$ mot $H_a: \mu_1 \mu_2 < \Delta_0$ med signifikansnivå α får vi tilsvarende ved å forkaste H_0 dersom $Z \leq -z_{\alpha}$.
- En test for $H_0: \mu_1 \mu_2 = \Delta_0$ mot $H_a: \mu_1 \mu_2 \neq \Delta_0$ med signifikansnivå α får vi ved å forkaste H_0 dersom $Z \leq -z_{\alpha/2}$ eller $Z \geq z_{\alpha/2}$.

• Vi går tilbake til testen for $H_0: \mu_1 - \mu_2 \leq \Delta_0$ mot $H_a: \mu_1 - \mu_2 > \Delta_0$. Da er styrkefunksjonen gitt ved:

$$\gamma(\Delta) = 1 - \Phi\left(z_{\alpha} - \frac{\Delta - \Delta_0}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}\right), \quad \Delta = \mu_1 - \mu_2.$$

- Vi ønsker nå å bestemme m og n slik at sannsynligheten for feil av type II blir høyst β for $\Delta = \Delta' > \Delta_0$.
- Vi skal altså løse $\beta=1-\gamma(\Delta')=\Phi\left(z_{\alpha}-\frac{\Delta'-\Delta_{0}}{\sqrt{\sigma_{1}^{2}/m+\sigma_{2}^{2}/n}}\right)$ for m og n.
- Hvis vi lar m=n, får vi $m=n=\left(\frac{z_{\alpha}+z_{\beta}}{\Delta'-\Delta_0}\right)^2(\sigma_1^2+\sigma_2^2)$.

• For tester av typen $H_0: \mu_1 - \mu_2 \ge \Delta_0 \mod H_a: \mu_1 - \mu_2 < \Delta_0$ blir styrkefunksjonen:

$$\gamma(\Delta) = \Phi\left(-z_{\alpha} - \frac{\Delta - \Delta_0}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}\right).$$

• De m og n, med m=n, som er slik at sannsynligheten for feil av type II blir høyst β for $\Delta=\Delta'<\Delta_0$ blir gitt ved samme formel som på forrige foil.

• For tester av typen $H_0: \mu_1 - \mu_2 = \Delta_0 \mod H_a: \mu_1 - \mu_2 \neq \Delta_0$ blir styrkefunksjonen:

$$egin{split} \gamma(\Delta) = & \Phi\left(-z_{lpha/2} - rac{\Delta - \Delta_0}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}
ight) \ & + 1 - \Phi\left(z_{lpha/2} - rac{\Delta - \Delta_0}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}
ight). \end{split}$$

• For a sannsynligheten for feil av type II blir høyst β for $\Delta = \Delta' \neq \Delta_0$ setter en $m = n = \left(\frac{z_{\alpha/2} + z_{\beta}}{\Delta' - \Delta_0}\right)^2 (\sigma_1^2 + \sigma_2^2)$.

Hypotesetester ang. $\mu_1 - \mu_2$, store utvalg med ukjente varianser

- Anta at X_1, \ldots, X_m er uif med forventning μ_1 og varians σ_1^2 , Y_1, \ldots, Y_n er uif med forventning μ_2 og varians σ_2^2 , med σ_1 og σ_2 ukjent.
- Anta videre at m og n er så store at vi ikke trenger å anta normalfordeling for X_i -ene og Y_i -ene.
- For å teste hypoteser ang. $\mu_1 \mu_2$ kan vi da bruke samme tester som for normalfordelte data med kjente varianser, bare at σ_1^2 og σ_2^2 byttes ut med S_1^2 og S_2^2 .
- For å finne m og n slik at sannsynlighet for feil av type II blir høyst β for $\Delta = \Delta'$ i samsvar med H_a bruker en samme formler som for normalfordelte data med kjente varianser, der en bruker anslag for σ_1^2 og σ_2^2 , f.eks. basert på en pilotstudie eller lignende studier.

Eksempel

Eks. 10.4 fra boka.

Hypotesetester ang. $\mu_1 - \mu_2$, normalfordelte data med ukjente varianser

- Anta nå at m og n ikke er store nok til å bruke resultatene for store utvalg.
- Da trenger vi å anta normalfordeling, altså $X_1, \ldots, X_m \stackrel{uif}{\sim} N(\mu_1, \sigma_1^2)$ og $Y_1, \ldots, Y_n \stackrel{uif}{\sim} N(\mu_2, \sigma_2^2)$.
- Vi vil se på de to tilfellene $\sigma_1^2 \neq \sigma_2^2$ og $\sigma_1^2 = \sigma_2^2 = \sigma^2$.
- I begge tilfeller har vi en observator på formen $T=rac{ar{X}-ar{Y}-\Delta_0}{V}$, der $T\stackrel{(tiln.)}{\sim}t_{
 u}$ når $\mu_1-\mu_2=\Delta_0$.
- I begge tilfeller får vi følgende tester med (tilnærmet) signifikansnivå α:
 - $H_0: \mu_1 \mu_2 \leq \Delta_0 \mod H_a: \mu_1 \mu_2 > \Delta_0$: Forkast H_0 dersom $T \geq t_{\alpha,\nu}$
 - $H_0: \mu_1 \mu_2 \ge \Delta_0 \mod H_a: \mu_1 \mu_2 < \Delta_0$: Forkast H_0 dersom $T < -t_{\alpha, \nu}$
 - $H_0: \mu_1 \mu_2 = \Delta_0 \mod H_a: \mu_1 \mu_2 \neq \Delta_0$: Forkast H_0 dersom $T \leq -t_{\alpha/2,\nu}$ eller $T \geq t_{\alpha/2,\nu}$.

- Når $\sigma_1^2 \neq \sigma_2^2$, lar vi $V = \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}$.
- Når $\mu_1 \mu_2 = \Delta_0$, er da T tilnærmet $t_{
 u}$ -fordelt med $\nu = \frac{\left(s_1^2/m + s_2^2/n\right)^2}{\left(\frac{s_1^2}{m}\right)^2/(m-1) + \left(\frac{s_2^2}{n}\right)^2/(n-1)}.$
- Når $\sigma_1^2 = \sigma_2^2 = \sigma^2$, lar vi $V = S_p \sqrt{\frac{1}{m} + \frac{1}{n}}$, med $S_p^2 = \frac{m-1}{m+n-2} S_1^2 + \frac{n-1}{m+n-2} S_2^2$.
- Når $\mu_1 \mu_2 = \Delta_0$, er da $T \sim t_{m+n-2}$.

Eksempel

Vektøkning for rotter.

- For å beregne styrkefunksjonen til testene når $\sigma_1^2 = \sigma_2^2 = \sigma^2$ trenger vi fordelingen til $T = \frac{\bar{X} \bar{Y} \Delta_0}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}}$ når $\mu_1 \mu_2 \neq \Delta_0$.
- Dette er en såkalt ikke-sentral t-fordeling, som vi ikke skal gå nærmere inn på i dette kurset.
- I stedet kan vi bruke R-funksjonen power.t.test().
- Denne kan gi oss styrkefunksjonen, sannsynlighet for feil av type II, samt m og n slik at sannsynligheten for feil av type II blir høyst β for en Δ i samsvar med H_a .