CS & IT

ENGINEERING

OPERATING SYSTEM

Process Concepts

Lecture No. 03

By- Dr. Khaleel Khan Sir

Process State Transition Diag.

Scheduling Queues

Dispatcher

Pointer

Process State

Process number (id

Process counter

Registers

Memory Limits

List of open files

Procens Control Block (PCB)

Process CONTEXT Environment

Process States & State-Diagram

- 1) New: gets created; Resource Allocation
- 2) Ready: Ready to run on cpy
- (3) (Running): Executing Instris on cpu
- (4) Block wait: Needs to Perform IO Sys.
 - (5) Terminate: Resource seallocation

Process State Transition viagram N.PY M. Pr. 0.5 Suspend Ready Surpend Suspend Ready resume create Schedule Completed IO Compl. Dispatch Nem Ready Running Serminate (P) Pre: time + Prio ID Sys. Call & Resource Pre To Completion Block/wait Sys. Cell 4 resume Suspend SuspendBlock

(1. As Long as Process is in Ready + Running + Block States, it is in Main Memory 2. There can be many Ready, Block Rocesses; 3. Man # of Running Processes defends on No. of Cpu's; Process State Transition Diagram of UNI-PROG. 0.5

(New + Running + Block + Jerminate)

creeted Completion Running New Terminated Block wait

Scheduling Queues

Q.1

Consider a System having 'n' CPUs ($n \ge 1$) and 'k' Processes (k > n).

Calculate lower bound and upper bound of the number of Processes that can be in the Ready, Running and Block states

	Min	Mare	
	L.B	U.B	
Ready	0	K	
Running	0	2	2-1
Block	0	K	Recdy

	L.B	4.B
Recdy	0	K
Running	0	K
Block	0	K

The Process state Transition diagram given below is representative of

- A Batch O.S. (INI) X
- B An O.S. with a preemptive scheduler
- C An O.S with a non-preemptive scheduler
- D A Uniprogrammed O.S.

In the following process state transition diagram for a uniprocessor system, assume that there are always some processes in the ready state:

Now consider the following statements:

- If a process makes a transition D, it would result in another process making transition A immediately.
- /(II) A process P2 in blocked state can make transition E while another process P1 is in running state.
- √(III) The OS uses preemptive scheduling. ✓
 - (IV) The OS uses non-preemptive scheduling. X
 Which of the above statements are TRUE?

A I and II

II and III

B I and III

D II and IV

Which combination of the following feature will suffice to characterize an OS as a multi-programmed OS?

- (a) More than one program may be loaded into main memory at the same time for execution.
- (b) If a program waits for certain events such as I/O, another program is immediately scheduled for execution,
- (c) If the execution of program terminates, another program is immediately scheduled for execution

A a

B a and b

c a and c

D) a, b and c

Ready Runny Block Pra The maximum number of processes that can be in Ready state for a computer system with n CPUs is :

| Running | Ready |

m=

- C 2
- D Independent of n Ready + Block)

Consider the following statements about process state transitions for a system using preemptive scheduling.

- I. A running process can move to ready state.
- II. A ready process can move to running state. >
- III. A blocked process can move to running state. X
- IV. A blocked process can move to ready state.

Which of the above statements are TRUE?

A I, II, and III only

B II, and III only

C I, II, and IV only

I, II, III and IV

