Лабораторная работа № 4

Задача: Вычислить арифметические выражения с использованием одностековой целочисленной вычислительной машины. Вывести на экран вычисленный результат.

Пример для вычисления:

$$x = 15;$$

 $y = 28 - x;$
 $a1b = 387 + y * (26 + x/3) - 6;$

Важно: Лабораторная работа выполняется в три фазы.

Фаза 1 — перевод исходного алфавитно-цифрового текста в массив лексем, соответствующий исходному выражению после символа \ll ».

Фаза 2 — перевод массива лексем, полученного в фазе 1 в массив лексем в виде $\Pi O \Pi H 3$ с помощью $M \Pi$ -автомата.

Фаза 3 — вычисление выражения в виде $\Pi O \Pi U 3$, представленного массивом лексем, с помощью $M \Pi$ -автомата.

Фаза 1. Перевод исходного алфавитно-цифрового текста в массив лексем, соответствующий исходному выражению после символа « = ».

Представим процесс перевода в виде конечного автомата с обрамлением.

Рис.1 Структурная схема фазы 1.

Лексема (от др.-греч. λέξις – лексис – слово) – машинное слово фиксированной длины. Группы символов исходного текста объединяются в единые синтаксические объекты – лексемы в соответствии с их типом.

Обозначим лексемы длиной 32 бита следующих видов для различных групп синтаксических объектов:

- Лексема типа «0» - «Операнд - число».

Для трансляции допускаются только целочисленные операнды.

Пример. При трансляции числа «15» получим следующую лексему:

Тип лексемы	Значение
2 разряда	30 разрядов
0	15

- Лексема типа «1» - «Операнд - идентификатор».

При трансляции идентификатора семантическая программа помещает имя идентификатора в ассоциативный массив (например, в ассоциативный контейнер типа «тар») в качестве ключа, которому присваивается номер, начиная с ноля, в качестве значения. Номер каждого следующего добавленного нового идентификатора увеличивается на единицу по отношению к предыдущему. Если добавляемый идентификатор уже находится в ассоциативном массиве, то повторного добавления его в ассоциативный массив не происходит.

Пример. При трансляции впервые встреченного идентификатора «x1» получим следующую лексему:

Тип лексемы	Номер идентификатора в ассоциативном массиве			
2 разряда 30 разрядов				
1	0			

Впоследствии, когда значение идентификатора будет вычислено, оно будет помещено в одномерный массив под индексом, соответствующим его номеру в ассоциативном массиве. Так, если вычисленное значение идентификатора (x_1) будет равно (57), то в одномерный массив оно запишется под индексом (0) (mas[0] = 57).

- Лексема типа «2» - «Операция или разделитель».

При трансляции операции или разделителя в лексему запишется 8-разрядный ASCII код соответствующей операции или разделителя.

Пример. При трансляции операции «+» получим следующую лексему:

Тип лексемы 2 разряда	Не используется 22 разряда	ASCII код 8 разрядов
2	-	0x2B

Задача: Используя конечный автомат, перевести исходный алфавитноцифровой текст в лексемы. Идентификатор левой части выражения до символа «=» необходимо представить в виде лексемы и занести в ассоциативный массив. В дальнейшем, когда значение идентификатора будет вычислено, необходимо занести его значение в массив по номерам. Правую часть выражения необходимо перевести в массив лексем для дальнейших вычислений в фазах 2 и 3.

Важно: Для выполнения работы необходимо использовать язык программирования C++ и принципы ООП. Для представления лексем необходимо описать соответствующий объект типа «Lexema». Для перевода текста в массив лексем необходимо описать заданный конечный автомат в виде объекта, который также потребуется в фазах 2 и 3. Использование таблицы переходов, таблицы выходов и символов исходного алфавитно-символьного текста в качестве входов обязательно.

Для формирования массива лексем из исходного алфавитно-цифрового текста воспользуемся конечным автоматом.

Конечный автомат построим на основе синтаксической диаграммы представленной на рис. 2.

Рис. 2. Синтаксическая диаграмма для преобразования строки алфавитноцифрового текста в массив лексем.

На рис. 2 применяется условное обозначение «оп», обозначающие символы арифметических операций «+», «-», «+», «/».

Конечный автомат для преобразования строки алфавитно-цифрового текста в массив лексем, соответствующий синтаксической диаграмме — Puc.2, представлен таблицами fs и fy.

Таблица переходов fs:

	S0	S1	S2	S3	S4	S5
б	S 1	S 1	S3	S3	ı	ı
Ц	-	S 1	S4	S 3	S4	-
=	-	S2	-	-	1	-
(-	-	S2	-	-	-
оп	-	-	-	S2	S2	S2
)	-	-	-	S5	S5	S5
;	-	-	-	S0	S0	S 0

Таблица выходов fy:

	S0	S1	S2	S3	S4	S5
б	y1	y1	y1	y1	1	-
Ц	ı	y1	y4	y1	y4	-
=	-	y2	-	-	-	-
(ı	ı	у3	ı	ı	-
οп	ı	ı	ı	у5	у7	у3
)	ı	ı	ı	у5	y7	у3
;	-	-	-	у6	y8	у9

Описание семантических действий для выходов Y:

y1	Добавляем символы к имени идентификатора в соответствующую
	ячейку.
y2	Идентификатор прочитан, заносим его в ассоциативный массив и
	присваиваем номер. Очищаем ячейку для формирования
	идентификатора.
у3	Создаем лексему типа 2 считанной операции или разделителя,
	заносим полученную лексему в массив лексем.
y4 y5	Добавляем символы к значению операнда-числа.
y5	Создаем лексему типа 1 считанного операнда-идентификатора,
	заносим полученную лексему в массив лексем.
	Создаем лексему типа 2 считанной операции или разделителя,
	заносим полученную лексему в массив лексем.
у6	Создаем лексему типа 1 считанного операнда-идентификатора,
	заносим полученную лексему в массив лексем.
	Создаем лексему типа 2 для символа разделителя «; », заносим
	полученную лексему в массив лексем.
	Символьная строка преобразована в массив лексем, переходим к
	преобразованию полученного массива в ПОЛИЗ (Фаза 2).
y7	Создаем лексему типа 0 считанного операнда-числа, заносим
	полученную лексему в массив лексем.
	Создаем лексему типа 2 для считанной операции или разделителя,
	заносим полученную лексему в массив лексем.
y8	Создаем лексему типа 0 считанного операнда-числа, заносим
	полученную лексему в массив лексем.
	Создаем лексему типа 2 для символа разделителя «; », заносим
	полученную лексему в массив лексем.
	Символьная строка преобразована в массив лексем, переходим к
	преобразованию полученного массива в ПОЛИЗ (Фаза 2).

y9	Создаем лексему типа 2 для символа разделителя «; », заносим
	полученную лексему в массив лексем.
	Символьная строка преобразована в массив лексем, переходим к
	преобразованию полученного массива в ПОЛИЗ (Фаза 2).

Фаза 2. Перевод массива лексем, полученного в фазе 1, в массив лексем ПОЛИЗ.

Для перевода массива лексем в ПОЛИЗ воспользуемся МП-автоматом, представленном на рис. 3, который реализует алгоритм Замельсона-Бауэра.

Каждой операции и разделителю присваивается определенный ранг в соответствии со следующей таблицей:

	(+-	*/	;	@
Рл	3	0	1	2	-1	
Рм	-1		1	2		-2

Здесь P_{π} – ранг символа в исходной строке (записанной на ленту МП-автомата), а $P_{\text{м}}$ – ранг символа, записанного в магазинную память, @ -символ, обозначающий конец данных в магазинной памяти.

Задача: Используя конечный автомат, перевести исходный массив лексем в массив лексем ПОЛИЗ. Массив ПОЛИЗ будет использоваться для дальнейших вычислений в фазе 3.

Важно: Для выполнения работы необходимо использовать язык программирования C++ и принципы ООП. Для перевода исходного массива лексем в массив ПОЛИЗ необходимо описать заданный конечный автомат в виде объекта, необходимо использовать объект автомата из фазы 1. Использование таблицы переходов, таблицы выходов и лексем из массива лексем в качестве входов обязательно. В качестве магазинной памяти необходимо использовать контейнерный класс «стек», в который при его инициализации необходимо записать лексему типа 2 с разделителем « @ ».

Процесс перевода исходного массива лексем (фаза 1) в ПОЛИЗ будем осуществлять с помощью МП-автомата, представленного на Рис. 3. Управляющий конечный автомат для МП-автомата — Рис. 4.

Рис. 3. МП-автомат для перевода выражения в ПОЛИЗ.

Рис. 4. Управляющий конечный автомат.

Описание входов и выходов:

		Переписываем текущую лексему из
	Из входного массива лексем	входного массива лексем в массив
x1/y1	прочитан операнд – лексема	ПОЛИЗ, переходим к следующей
	типа 0 или типа 1.	лексеме во входном массиве (сдвиг
		ленты).
	Из входного массива лексем	Переписываем текущую лексему из
	прочитана операция или	входного массива лексем в
x2/y2	разделитель – лексема типа 2,	магазинную память, переходим к
	кроме «) », « ; », при этом Рл >	следующей лексеме во входном
	Рм.	массиве (сдвиг ленты).

x3/y3	Из входного массива лексем	Переписываем текущую лексему из
	прочитана операция или	магазинной памяти в массив ПОЛИЗ,
A3/ y 3	разделитель – лексема типа 2,	удаляем текущую лексему из
	при этом Рл ≤ Рм.	магазинной памяти.
	Из входного массива лексем	Удаляем текущую лексему из
x4/y4	прочитана операция или	магазинной памяти. Переходим к
X4/ y4	разделитель – лексема типа 2	следующей лексеме во входном
	«) », при этом Рл > Рм.	массиве лексем (сдвиг ленты).
	Из вустного массива паксам	Переписываем текущую лексему из
	Из входного массива лексем	входного массива лексем в массив
x5/y5	прочитана операция или	ПОЛИЗ. Конец преобразования –
	разделитель – лексема типа 2	входной массив лексем преобразован
	«; », при этом Рл > Рм.	в ПОЛИЗ.

Фаза 3. Вычисление выражения в виде ПОЛИЗ, представленного массивом лексем, с помощью МП-автомата.

Для вычисления воспользуемся МП-автоматом, представленным на рис. 5, который содержит управляющего автомат без памяти (комбинационная схема) с семантическими действиями – рис. 6.

Рис. 5. МП-автомат для вычисления ПОЛИЗ.

Рис. 6. Управляющий автомат без памяти (комбинационная схема).

Задача: Используя МП-автомат, вычислить выражение, представленное массивом лексем в виде ПОЛИЗ. Результат вычисления присвоить операнду-идентификатору, полученному в фазе 1 до символа «=», и записать в соответствующую ячейку массива по номерам.

Важно: Для выполнения работы необходимо использовать язык программирования C++ и принципы $OO\Pi$. Необходимо описать автомат без памяти (комбинационную схему) и его семантические действия. В качестве магазинной памяти необходимо использовать контейнерный класс «стек», в который при его инициализации необходимо записать лексему типа 2 с разделителем « @ ».

Описание семантических действий для выходов Y:

y1	Загружаем лексему операнда в магазин.
y2	1. Выгружаем из магазина верхнюю лексему в ячейку «Операнд 2»; 2. Выгружаем из магазина следующую лексему в ячейку «Операнд 1»; 3. Вычисляем «Операнд 1» «Операция» «Операнд 2», формируем лексему типа 0 операнда-числа, загружаем её в магазин.
у3	Выгружаем из вершины магазина результат вычисления выражения и присваиваем его операнду-идентификатору из фазы 1, стоящему до символа « = ».