Privacy Preserving Distributed ID3 Algorithm

Chen Yuechen Fung Divine Nan Meng

April 27, 2016

Overview

- * Introduction
- * Problem Definition
- * Solution
- * Result
- * Conclusion

Privacy Preserving Data Mining

• Mining while protecting the privacy of data.

Figure : Lindell's definition

Figure: Agrawal's definition

ID3 Algorithm

- ID3 is an algorithm used to generate a decision tree from a dataset, and is typically used in the data mining.
 - 1. Calculate the **entropy** of every attribute using the data set S.
 - Split the set S into subsets using the attribute for which entropy is minimum
 - 3. Make a decision tree node containing that attribute
 - 4. Recurse on subsets using remaining attributes.

Distributed ID3 Algorithm

Table: Play Golf Dataset

Outlook	Temp	Humidity	Windy	Play Golf		
Rainy	Hot	High	FALSE	No		
Rainy	Hot	High	TRUE	No		
Overcast	Hot	High	FALSE	Yes	\Rightarrow	Alice
Sunny	Mild	High	FALSE	Yes	7	Alloc
Rainy	Mild	Normal	TRUE	Yes		
Overcast	Cool	Normal	TRUE	Yes		
Rainy	Mild	High	FALSE	No	\Rightarrow	Bob
Rainy	Cool	Normal	FALSE	Yes	\rightarrow	БОБ
Sunny	Mild	Normal	FALSE	Yes		

Distributed ID3 Algorithm

Data is distributed in two or more parties

Table: Alice

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

Table: Bob

O 11 1	-		\ A (*	DI 0 1/
Outlook	Temp	Humidity	Windy	Play Golf
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes

Combine data together and get a decision tree

Problem Definition

However, data is privacy.

Table: Alice

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

Table: Bob

Outlook Overcast	Temp	Humidity Normal	Windy	Play Golf Yes
Overcast Rainy	Cool Mild	Normal High	TRUE FALSE	Yes No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes

How to share data in a safe way in distributed ID3 algorithm?

 Here we use a example of Distributed ID3 algorithm to clearly define the problem. For example, Compute the entropy of Rainy.

Table : Alice

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

Table: My caption

Outlook	Temp	Humidity	Windy	Play Golf
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes

3 records, 2 No, 1 Yes

$$Entropy(Rainy) = -\underbrace{\frac{2+1}{3+2}log_2(\frac{2+1}{3+2})}_{PlayGolf=No} - \underbrace{\frac{1+1}{3+2}log_2(\frac{1+1}{3+2})}_{PlayGolf=Yes}$$
$$= -\frac{3}{5}log_2(\frac{3}{5}) - \frac{2}{5}log_2(\frac{2}{5})$$

For example, Compute the entropy of Rainy.

Table : Alice

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

Table: My caption

Outlook	Temp	Humidity	Windy	Play Golf
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes

3 records, 2 No, 1 Yes

$$Entropy(Rainy) = \begin{bmatrix} -\frac{2+1}{3+2}log_2(\frac{2+1}{3+2}) & -\frac{1+1}{3+2}log_2(\frac{1+1}{3+2}) \\ = -\frac{3}{5}log_2(\frac{3}{5}) - \frac{2}{5}log_2(\frac{2}{5}) \end{bmatrix}$$

For example, Compute the entropy of Rainy.

Table: Alice

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

3 records, 2 No, 1 Yes

Table: My caption

Outlook	Temp	Humidity	Windy	Play Golf
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes

$$-\frac{2+1}{3+2}log_2(\frac{2+1}{3+2})$$

For example, Compute the entropy of Rainy.

Table: Alice

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

Table: My caption

Outlook	Temp	Humidity	Windy	Play Golf
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes

3 records, 2 No. 1 Yes

$$-\frac{2+1}{3+2}log_2\left(\frac{2+1}{3+2}\right)$$

For example, Compute the entropy of Rainy.

Table : Alice

Temp	Humidity	Windy	Play Golf
Hot	High	FALSE	No
Hot	High	TRUE	No
Hot	High	FALSE	Yes
Mild	High	FALSE	Yes
Mild	Normal	TRUE	Yes
	Hot Hot Hot Mild	Hot High Hot High Hot High Mild High	Hot High FALSE Hot High TRUE Hot High FALSE Mild High FALSE

3 records, 2 No, 1 Yes

Table: My caption

i	Outlook	Temp	Humidity	Windy	Play Golf
	Overcast	Cool	Normal	TRUE	Yes
	Rainy	Mild	High	FALSE	No
	Rainy	Cool	Normal	FALSE	Yes
	Sunny	Mild	Normal	FALSE	Yes

2 records, 1 No, 1 Yes

 $\frac{2+1}{3+2}$

For example, Compute the entropy of Rainy.

Table: Alice

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

a records, x No, 1 Yes

Table: My caption

Outlo	ook Ter	np Humid	ity Windy	Play Golf
Over	cast Co	ol Norma	ı TRUE	Yes
Rain	y Mil	d High	FALSI	E No
Rain	y Co	ol Norma	ıl FALSI	Yes
Sunr	ny Mil	d Norma	ıl FALSI	E Yes

b records, y No, 1 Yes

 $\frac{x+y}{a+b}$

Problem Definition

- Compute $\frac{x+y}{a+b}$ without reveal a, x, b, y.
- Realize Privacy Preserving Distributed ID3 algorithm.

 $Enc(\cdot)$ – Encryption Algorithm

Solution

PPWAP

- PPWAP: Privacy Preserving Weight Average Protocol
- In this project, we choose PPWAP by Pailier Encryption.

Pailier Encryption

- KeyGeneration(): Generate public key PK, and secret key SK.
- Encryption(m, PK): Using PK to encrypt message m, output Enc(m).

• Decryption(Enc(m), SK): Using SK to decrypt Enc(m), output m.

Pailier Encryption

- Property: Addition Homomorphism
- Given two messages m1 and m2, $Enc(m1 + m2) = Enc(m1) \cdot Enc(m2)$.
- The encryption of m1 + m2 can be computerd by Enc(m1) and Enc(m2).

PPWAP based on Pailier Encryption

Privacy Preserving Weighted Average Protocol

• Within the help of Paillier, build PPWAP scheme.

```
Alice Bob

Enc(a) Enc(x) Enc(b) Enc(y)

x+y
a+b
```

Alice

1. KeyGeneration() : SK, PK Encryption(a, PK) : Enc(a)Encryption(x, PK) : Enc(x) Bob

 $\Rightarrow \begin{array}{c} Enc(a) \\ Enc(x) \end{array}$

2.

Random integer z $Enc(a)^z, Enc(x)^z$

Alice

1. KeyGeneration() : SK, PK Encryption(a, PK) : Enc(a)Encryption(x, PK) : Enc(x)

Bob

$$\Longrightarrow \begin{array}{c} Enc(a) \\ Enc(x) \end{array}$$

2.

Random integer
$$z$$

 $Enc(a)^z, Enc(x)^z$

$$\operatorname{Enc}(a)^{z} = \operatorname{Enc}(a)...\operatorname{Enc}(a) = \operatorname{Enc}(a+a+...+a) = \operatorname{Enc}(za)$$

Alice

1. KeyGeneration() : SK, PK Encryption(a, PK) : Enc(a)Encryption(x, PK) : Enc(x)

Bob

 $\Rightarrow Enc(a) \\ Enc(x)$

2.

Random integer z $Enc(a)^z, Enc(x)^z$ Enc(za), Enc(zx)

Alice

Bob

3.
$$Enc(za + zb)$$

 $Enc(zx + zy)$

$$Encryption(b, PK) : Enc(b) \Rightarrow Enc(zb)$$

$$Encryption(y, PK) : Enc(y) \Rightarrow Enc(zy)$$

$$Enc(za + zb) = Enc(za)$$

$$Enc(zb)Enc(zx + zy) = Enc(zx)Enc(zy)$$

4. Decryption(Enc(za + zb), SK) : za + zb

$$\Rightarrow$$

Decryption(Enc(zx+zy),SK):

$$zx + zy$$

$$\frac{zx+zy}{za+zb} = \frac{x+y}{a+b} \quad \Rightarrow \quad \frac{x+y}{a+b}$$

Algorithm

```
Algorithm 1 Two-party jointly decision tree algorithm

    procedure PrivacyID3(D, Attribute, transInfo, T)

        ct \leftarrow createNode()
        label(ct) = mostCommonClass(D, transInfo, T)
        IF \forall \langle \mathbf{x}, c(\mathbf{x}) \rangle \in D : c(\mathbf{x}) = c THEN
             return(t)
         ENDIF
         IF Attributes = \emptyset THEN
              return(t)
         ENDIF
 9:
         \tilde{A} = aramax (InformationGain(D, A, transInfo))
10.
               A \in Attributes
         for a \in \widetilde{A} do
11:
12:
             D_a = \{(\mathbf{x}, c(\mathbf{x})) \in D : \mathbf{x} \mid_{\tilde{s}} = a\}
13.
            IF D = \emptyset THEN
                  ct' = createNode()
14:
15:
                  label(ct') = mostCommonClass(D, transInfo, T)
16:
                  createEdge(ct, a, ct')
17-
            ELSE
            transInfo^* = TransInfo(B, Attributes \setminus \{\widetilde{A}\}, T^*)
18:
            createEdge(ct, a, PrivacuID3(D_a, Attributes \setminus \{\widetilde{A}\})
19:
                           , transInfo^*, T))
20:
21.
             ENDIE
22:
         return combinedtree
```

Figure: Two-party Jointly Decision Tree Algorithm.

Result

- Demo
- Efficiency: The runtime depend on 3 factors.
 - * Dataset size
 - * Length of Key in encryption algorithm
 - * Number of parties

Algorithm Implement

Figure: Welcome Graphical User Interface.

Algorithm Implement

Figure: Result of single-party ID3 algorithm on tic-tac-toe2 dataset.

Conclusion

- The PPWAP scheme is purposed in 2005 in PP K-means.
 - * PPWAP can be extend to multi-party, supports Multi-party distributed ID3 algorithm.
- Further research focus on improving the security level.
 - * The scheme became safer and more complex.
- Current research focus on preventing malicious attack.

Conclusion

- Select two large primes, p and q.
- Calculate the product $n=p\times q$, such that $gcd(n,\Phi(n))=1$, where $\Phi(n)$ is (p-1)(q-1).
- Choose a random number g, where g has order multiple of n or $gcd(L(g^{\lambda}mod\ n^2),n)=1$, where L(t)=(t-1)/n and $\lambda(n)=lcm(p-1,q-1)$.
- The public key is composed of (g, n), while the private key is composed of (p, q, λ) .
- The Encryption of a message m < n is given by:
 - $c = g^m \cdot r^n \mod n^2$
- The Decryption of ciphertext c is given by: The Decryption of ciphertext c is given by:
 - $m = (L(g^{\lambda} mod n^2)/L(g^{\lambda} mod n^2)) mod n$

The End