MTAT.07.003 CRYPTOLOGY II

Commitment Schemes

Sven Laur University of Tartu

Formal Syntax

Canonical use case

- ▷ A randomised key generation algorithm Gen outputs a *public parameters* pk that must be authentically transferred all participants.
- ightharpoonup A commitment function $\mathsf{Com}_{\mathsf{pk}}: \mathcal{M} \to \mathcal{C} \times \mathcal{D}$ takes in a *plaintext* and outputs a corresponding *digest* c and decommitment string d.
- \triangleright A commitment can be opened with $\mathsf{Open}_{\mathsf{pk}}: \mathcal{C} \times \mathcal{D} \to \mathcal{M} \cup \{\bot\}$.
- \triangleright The commitment primitive is *functional* if for all $pk \leftarrow Gen$ and $m \in \mathcal{M}$:

$$\mathsf{Open}_{\mathsf{pk}}(\mathsf{Com}_{\mathsf{pk}}(m)) = m$$
 .

Binding property

A commitment scheme is (t, ε) -binding if for any t-time adversary A:

$$\mathsf{Adv}^{\mathsf{bind}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \le \varepsilon ,$$

where the challenge game is following

Collision resistant hash functions

A function family \mathcal{H} is (t, ε) -collision resistant if for any t-time adversary \mathcal{A} :

$$\mathsf{Adv}^{\mathsf{cr}}_{\mathcal{H}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon$$
,

where the challenge game is following

Hash commitments

Let \mathcal{H} be (t, ε) -collision resistant hash function family. Then we can construct a binding commitment:

- \triangleright To commit m, return h(m) as digest and m as a decommitment string.
- \triangleright The message m is a valid opening of c if h(m) = c.

Usage

- ▷ Integrity check for files and file systems in general.
- ▶ Minimisation of memory footprint in servers:
 - 1. A server stores the hash $c \leftarrow h(m)$ of an initial application data m.
 - 2. Data is stored by potentially malicious clients.
 - 3. Provided data m' is correct if h(m') = c.

Hiding property

A commitment scheme is (t, ε) -hiding if for any t-time adversary A:

$$\mathsf{Adv}^{\mathsf{hid}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \le \varepsilon ,$$

where

$$\mathcal{G}_0^{\mathcal{A}} \qquad \qquad \mathcal{G}_1^{\mathcal{A}} \\ \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} & & & \\ (m_0, m_1) \leftarrow \mathcal{A}(\mathsf{pk}) & & \\ (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m_0) & & \\ return \ \mathcal{A}(c) & & \\ \end{bmatrix} \begin{array}{l} \mathsf{pk} \leftarrow \mathsf{Gen} \\ (m_0, m_1) \leftarrow \mathcal{A}(\mathsf{pk}) \\ (c, d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m_1) \\ \\ return \ \mathcal{A}(c) & \\ \end{bmatrix}$$

Any cryptosystem is a commitment scheme

Setup:

Compute $(pk, sk) \leftarrow Gen$ and delete sk and output pk.

Commitment:

To commit m, sample necessary randomness $r \leftarrow \mathcal{R}$ and output:

$$\begin{cases} c \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m;r) \\ d \leftarrow (m,r) \end{cases},$$

Opening:

A tuple (c, m, r) is a valid decommitment of m if $c = \operatorname{Enc}_{\mathsf{pk}}(m; r)$.

Security guarantees

If a cryptosystem is (t, ε) -IND-CPA secure and functional, then the resulting commitment scheme is (t, ε) -hiding and perfectly binding.

- We can construct commitment schemes from the ElGamal and Goldwasser-Micali cryptosystems.
- ⋄ For the ElGamal cryptosystem, one can create public parameters pk without the knowledge of the secret key sk.
- ♦ The knowledge of the secret key sk allows a participant to extract messages from the commitments.
- The extractability property is useful in security proofs.

Simple Commitment Schemes

Modified Naor commitment scheme

Setup:

Choose a random n-bit string $pk \leftarrow \{0,1\}^n$.

Let $f: \{0,1\}^k \to \{0,1\}^n$ be a pseudorandom generator.

Commitment:

To commit $m \in \{0,1\}$, generate $d \leftarrow \{0,1\}^k$ and compute digest

$$c \leftarrow \begin{cases} f(d), & \text{if } m = 0, \\ f(d) \oplus \text{pk}, & \text{if } m = 1. \end{cases}$$

Opening:

Given (c,d) check whether c=f(d) or $c=f(d)\oplus pk$.

Security guarantees

If $f:\{0,1\}^k \to \{0,1\}^n$ is (t,ε) -secure pseudorandom generator, then the modified Naor commitment scheme is $(t,2\varepsilon)$ -hiding and 2^{2k-n} -binding.

Proof

Hiding claim is obvious, since we can change f(d) with uniform distribution. For the binding bound note that

$$|\mathcal{PK}_{\mathrm{bad}}| = \# \{ \mathsf{pk} : \exists d_0, d_1 : \ f(d_0) \oplus f(d_1) = \mathsf{pk} \} \le 2^{2k}$$
 $|\mathcal{PK}_{\mathrm{all}}| = \# \{0, 1\}^n = 2^n$

and thus

$$\mathsf{Adv}^{\mathsf{bind}}(\mathcal{A}) \leq \Pr\left[\mathsf{pk} \in \mathcal{PK}_{\mathrm{bad}}\right] \leq 2^{2k-n}$$

Discrete logarithm

Let $\mathbb{G} = \langle g \rangle$ be a q-element group that is generated by a single element g. Then for any $y \in \mathbb{G}$ there exists a minimal value $0 \le x \le q$ such that

$$g^x = y \quad \Leftrightarrow \quad x = \log_g y$$
.

A group \mathbb{G} is (t, ε) -secure *DL* group if for any t-time adversary \mathcal{A}

$$\mathsf{Adv}^{\mathsf{dl}}_{\mathbb{G}}(\mathcal{A}) = \Pr\left[\mathcal{G}^{\mathcal{A}} = 1\right] \leq \varepsilon$$
,

where

$$\begin{cases} y \leftarrow \mathbb{G} \\ x \leftarrow \mathcal{A}(y) \\ \text{return } [q^x \stackrel{?}{=} y] \end{cases}$$

Pedersen commitment scheme

Setup:

Let q be a prime and let $\mathbb{G} = \langle g \rangle$ be a q-element DL-group. Choose y uniformly from $\mathbb{G} \setminus \{1\}$ and set $\mathsf{pk} \leftarrow (g,y)$.

Commitment:

To commit $m \in \mathbb{Z}_q$, choose $r \leftarrow \mathbb{Z}_q$ and output

$$\begin{cases} c \leftarrow g^m y^r , \\ d \leftarrow (m, r) . \end{cases}$$

Opening:

A tuple (c, m, r) is a valid decommitment for m if $c = g^m y^r$.

Security guarantees

Assume that \mathbb{G} is (t,ε) -secure discrete logarithm group. Then the Pedersen commitment is perfectly hiding and (t,ε) -binding commitment scheme.

Proof

- $ightharpoonup \operatorname{HIDING}$. The factor y^r has uniform distribution over \mathbb{G} , since $y^r = g^{xr}$ for $x \neq 0$ and \mathbb{Z}_q is simple ring: $x \cdot \mathbb{Z}_q = \mathbb{Z}_q$.
- \triangleright BINDING. A valid double opening reveals a discrete logarithm of y:

$$g^{m_0}y^{r_0} = g^{m_1}y^{r_1} \quad \Leftrightarrow \quad \log_g y = \frac{m_1 - m_0}{r_0 - r_1} .$$

Note that $r_0 \neq r_1$ for valid double opening. Hence, a double opener \mathcal{A} can be converted to a discrete logarithm finder.

Other Useful Properties

Extractability

A commitment scheme is (t, ε) -extractable if there exists a modified setup procedure $(pk, sk) \leftarrow Gen^*$ such that

- b the distribution of public parameters pk coincides with the original setup;
- ightharpoonup there exists an efficient extraction function $\operatorname{Extr}_{\sf sk}:\mathcal{C}\to\mathcal{M}$ such that for any t-time adversary $\operatorname{Adv}^{\sf ext}(\mathcal{A})=\Pr\left[\mathcal{G}^{\mathcal{A}}=1\right]\leq \varepsilon$ where

```
\begin{split} \mathcal{G}^{\mathcal{A}} \\ & \left[ \begin{array}{l} (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}^* \\ (c, d) \leftarrow \mathcal{A}(\mathsf{pk}) \\ & \mathsf{if} \ \mathsf{Open}_{\mathsf{pk}}(c, d) = \bot \ \mathsf{then} \ \mathbf{return} \ 0 \\ & \mathsf{else} \ \mathbf{return} \ \neg [\mathsf{Open}_{\mathsf{pk}}(c, d) \stackrel{?}{=} \mathsf{Extr}_{\mathsf{sk}}(c)] \\ \end{split}
```

Equivocability

A commitment scheme is *equivocable* if there exists

- \triangleright a modified setup procedure (pk, sk) \leftarrow Gen*
- \triangleright a modified fake commitment procedure $(\hat{c}, \sigma) \leftarrow \mathsf{Com}^*_{\mathsf{sk}}$

such that

- b the distribution of public parameters pk coincides with the original setup;
- \triangleright fake commitments \hat{c} are indistinguishable from real commitments
- ightharpoonup fake commitments \hat{c} can be opened to arbitrary values

$$\forall m \in \mathcal{M}, (\hat{c}, \sigma) \leftarrow \mathsf{Com}^*_{\mathsf{sk}}, \hat{d} \leftarrow \mathsf{Equiv}_{\mathsf{sk}}(\hat{c}, \sigma, m) : \mathsf{Open}_{\mathsf{pk}}(\hat{c}, \hat{d}) \equiv m \ .$$

> opening fake and real commitments are indistinguishable.

Formal security definition

A commitment scheme is (t, ε) -equivocable if for any t-time adversary $\mathcal A$

$$\mathsf{Adv}^{\mathsf{eqv}}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \leq \varepsilon ,$$

where

$$\mathcal{G}_0^{\mathcal{A}} \qquad \qquad \mathcal{G}_1^{\mathcal{A}} \\ \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} & & & & & \\ \mathsf{repeat} & & & & \\ m_i \leftarrow \mathcal{A} & & & & \\ (c,d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m_i) & & & & \\ \mathsf{Give}\;(c,d)\;\mathsf{to}\;\mathcal{A} & & & & \\ \mathsf{until}\;m_i = \bot & & & & \\ \mathsf{return}\;\mathcal{A} & & & & \mathsf{return}\;\mathcal{A} \\ \end{bmatrix}$$

A famous example

The Pedersen is perfectly equivocable commitment.

- \triangleright **Setup.** Generate $x \leftarrow \mathbb{Z}_q^*$ and set $y \leftarrow g^x$.
- \triangleright Fake commitment. Generate $s \leftarrow \mathbb{Z}_q$ and output $\hat{c} \leftarrow g^s$.
- \triangleright **Equivocation.** To open \hat{c} , compute $r \leftarrow (s-m) \cdot x^{-1}$.

Proof

- \triangleright Commitment value c has uniform distribution.
- \triangleright For fixed c and m, there exists a unique value of r.

Equivocation leads to perfect simulation of (c, d) pairs.

Homomorphic commitments

A commitment scheme is \otimes -homomorphic if there exists an efficient coordinate-wise multiplication operation \cdot defined over $\mathcal C$ and $\mathcal D$ such that

$$Com_{pk}(m_1) \cdot Com_{pk}(m_2) \equiv Com_{pk}(m_1 \otimes m_2)$$
,

where the distributions coincide even if $Com_{pk}(m_1)$ is fixed.

Examples

- ▷ ElGamal commitment scheme
- ▶ Pedersen commitment scheme

Active Attacks

Non-malleability wrt opening

A commitment scheme is non-malleable wrt. opening if an adversary who knows the input distribution \mathcal{M}_0 cannot alter commitment and decommitment values c,d on the fly so that

 $\triangleright \mathcal{A}$ cannot *efficiently* open the altered commitment value \overline{c} to a message \overline{m} that is related to original message m.

Commitment c does not help the adversary to create other commitments.

Formal definition

$$\mathcal{G}_0^{\mathcal{A}}$$

$$\begin{cases}
\mathsf{pk} \leftarrow \mathsf{Gen} \\
\mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\
m \leftarrow \mathcal{M}_0 \\
(c,d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m) \\
\pi(\cdot), \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(c) \\
\hat{d}_1, \dots \hat{d}_n \leftarrow \mathcal{A}(d) \\
\mathsf{if} \ c \in \{\hat{c}_1, \dots, \hat{c}_n\} \ \mathsf{then} \ \mathsf{return} \ 0 \\
\hat{m}_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(\hat{c}_i, \hat{d}_i) \ \mathsf{for} \ i = 1, \dots, n \\
\mathsf{return} \ \pi(m, \hat{m}_1, \dots, \hat{m}_n)
\end{cases}$$

$$\begin{array}{ll} \mathcal{G}_0^{\mathcal{A}} & \mathcal{G}_1^{\mathcal{A}} \\ \hline \mathsf{pk} \leftarrow \mathsf{Gen} \\ \mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\ m \leftarrow \mathcal{M}_0 \\ (c,d) \leftarrow \mathsf{Com}_{\mathsf{pk}}(m) \\ \pi(\cdot), \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(c) \\ \hat{d}_1, \dots \hat{d}_n \leftarrow \mathcal{A}(d) \\ \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then } \mathbf{return} \ 0 \\ \hat{m}_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \dots, n \\ \mathbf{return} \ \pi(m, \hat{m}_1, \dots, \hat{m}_n) \\ \hline \end{array} \begin{array}{ll} \mathsf{pk} \leftarrow \mathsf{Gen} \\ \mathcal{M}_0 \leftarrow \mathcal{A}(\mathsf{pk}) \\ m \leftarrow \mathcal{M}_0, \ \overline{m} \leftarrow \mathcal{M}_0 \\ \hline (\overline{c}, \overline{d}) \leftarrow \mathsf{Com}_{\mathsf{pk}}(\overline{m}) \\ \hline \pi(\cdot), \hat{c}_1, \dots, \hat{c}_n \leftarrow \mathcal{A}(\overline{c}) \\ \hat{d}_1, \dots \hat{d}_n \leftarrow \mathcal{A}(\overline{d}) \\ \text{if } c \in \{\hat{c}_1, \dots, \hat{c}_n\} \text{ then } \mathbf{return} \ 0 \\ \hline \hat{m}_i \leftarrow \mathsf{Open}_{\mathsf{pk}}(\hat{c}_i, \hat{d}_i) \text{ for } i = 1, \dots, n \\ \hline \mathbf{return} \ \pi(m, \hat{m}_1, \dots, \hat{m}_n) \\ \hline \end{array}$$

Non-malleability wrt commitment

A commitment scheme is non-malleable wrt commitment if an adversary \mathcal{A}_1 who knows the input distribution \mathcal{M}_0 cannot alter the commitment value c on the fly so that

 \triangleright an unbounded adversary \mathcal{A}_2 cannot open the altered commitment value \overline{c} to a message \overline{m} that is related to original message m.

Commitment c does not help the adversary to create other commitments even if some secret values are leaked after the creation of c and \overline{c} .

Homological classification

Can we define decommitment oracles such that the graph depicted above captures relations between various notions where

- ▷ NM1-XXX denotes non-malleability wrt opening,
- ▷ NM2-XXX denotes non-malleability wrt commitment.