Physique des particules – TD7

www.antoinebourget.org/teaching/particules/

Exercice 1

On souhaite utiliser la symétrie d'isospin pour les quarks u et d pour montrer que

$$\begin{split} \Gamma(\Delta^- \to \pi^- n) : \Gamma(\Delta^0 \to \pi^0 n) : \Gamma(\Delta^0 \to \pi^- p) : \Gamma(\Delta^+ \to \pi^0 p) \\ : \Gamma(\Delta^+ \to \pi^+ n) : \Gamma(\Delta^{++} \to \pi^+ p) \approx 3 : 2 : 1 : 2 : 1 : 3 \,. \end{split}$$

1. Justifier qu'il suffit de prouver que

$$T(\Delta^{-} \to \pi^{-} \mathbf{n}) : T(\Delta^{0} \to \pi^{0} \mathbf{n}) : T(\Delta^{0} \to \pi^{-} \mathbf{p}) : T(\Delta^{+} \to \pi^{0} \mathbf{p})$$

: $T(\Delta^{+} \to \pi^{+} \mathbf{n}) : T(\Delta^{++} \to \pi^{+} \mathbf{p}) \approx \sqrt{3} : \sqrt{2} : 1 : \sqrt{2} : 1 : \sqrt{3}$

où $T(i \to f) = T_{fi}$ est un élément de la matrice de transition.

Hadron	p	n	π^0	π^{-}, π^{+}	$\Delta^-, \Delta^0, \Delta^+, \Delta^{++}$
Masse (en MeV)	938,3	939,6	135,0	139,6	1232

2. Si on appelle \hat{H}_{strong} le hamiltonien d'interaction pour l'interaction forte, justifier que l'on peut écrire

$$\hat{H}_{strong}|\Delta^{-}\rangle = A|\pi^{-}\rangle \otimes |\mathrm{n}\rangle + \varphi$$

avec $A \in \mathbb{C}$ et φ un vecteur ne contenant aucun état à un pion et un nucléon (c'est-à-dire que φ est orthogonal à $\mathrm{Vect}_{\mathbb{C}}(|\pi^-\rangle, |\pi^0\rangle, |\pi^+\rangle) \otimes \mathrm{Vect}_{\mathbb{C}}(|\mathrm{n}\rangle, |\mathrm{p}\rangle))$.

- 3. Exprimer $|\Delta^0\rangle$, $|\Delta^+\rangle$ et $|\Delta^{++}\rangle$ en fonction de $|\Delta^-\rangle$ et des opérateurs d'échelle de la symétrie d'isospin.
- 4. En déduire le résultat annoncé.

Exercice 2

- 1. Montrer que l'équation de Klein-Gordon $(\partial^{\mu}\partial_{\mu} m^2)\varphi = 0$ pour un champ scalaire φ complexe est invariante sous la transformation $\varphi \to e^{i\alpha}\varphi$ où α est une constante réelle (c'est-à-dire que cette transformation envoie une solution de l'équation sur une solution de l'équation).
- 2. On voudrait maintenant que l'équation soit aussi invariante sous la transformation $\varphi \to e^{i\alpha}\varphi$, avec cette fois $\alpha=\alpha(x)$ une fonction réelle de l'espace-temps. Montrer que cela n'est pas le cas pour l'équation initiale, mais que c'est le cas si on ajoute un champ A_{μ} , que l'on prend à la place l'équation $(D^{\mu}D_{\mu}-m^2)\varphi=0$ avec $D_{\mu}=\partial_{\mu}-igA_{\mu}$ et la transformation $A_{\mu}\to A_{\mu}+\frac{1}{q}\partial_{\mu}\alpha$. On dit que l'équation est invariante de jauge.

3. On définit

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \,. \tag{1}$$

Montrer que $F_{\mu\nu}$ est invariant de jauge. Donner l'interprétation électromagnétique.

- 4. Vérifier que les résultats des questions précédentes peuvent s'écrire sous la forme suivante:
 - Transformation de jauge

$$\varphi \to U\varphi$$
, $A_{\mu} \to U\left(A_{\mu} + \frac{i}{g}\partial_{\mu}\right)U^{\dagger}$ (2)

avec $U = U(x) \in G$;

• Dérivée covariante et tenseur F:

$$\boxed{D_{\mu} = \partial_{\mu} - igA_{\mu}, \qquad [D_{\mu}, D_{\nu}] = -igF_{\mu\nu}}, \tag{3}$$

avec le groupe G = U(1).

- 5. On veut maintenant faire de même avec le groupe G = SU(3). On peut écrire $U(x) = e^{i\alpha(x)}$ avec $\alpha(x) = \sum_{a=1}^8 \alpha^a(x) \hat{T}^a$, et on utilise les équations (2) et (3). Dans quelles représentations se transforment φ et A_μ dans le cas où α ne dépend pas de x? Donner les transformations explicites des composantes A_μ^a de $A_\mu = A_\mu^a \hat{T}^a$.
- 6. Calculer explicitement les composantes de $F_{\mu\nu}$ selon la définition (3) et comparer à l'expression (1) obtenue dans le cas G = U(1).
- 7. Montrer que le Lagrangien

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + (D^{\mu}\varphi)^{\dagger}(D_{\mu}\varphi) - m^{2}\varphi^{\dagger}\varphi \tag{4}$$

est invariant de jauge.