Квиз #4D

15 декабря 2020 г.

В каждом вопросе выберите все верные ответы.

Рассмотрим выборку независимых одинаково распределённых случайных величин $X_1, X_2, ..., X_N$ из нормального распределения $\mathcal{N}(\mu, 15)$. Предположим, что априорное распределение μ является нормальным $\mathcal{N}(1, 1)$.

- 1. На основе условия задачи можно сделать вывод, что
 - A. $f(\mu|X) = \prod_{i} ce^{-\frac{(\mu-1)^2}{2}}$.
 - B. $f(X|\mu) = \prod_i ce^{-\frac{(X_i \mu)^2}{15}}$.
 - C. $f(X|\mu) = ce^{-\frac{(X_i \mu)^2}{2}}$.
 - D. $f(\mu|X) = ce^{-\frac{(\mu-1)^2}{2}}$.
 - Е. Нет верного ответа.
- 2. Для простоты далее рассмотрим только наблюдение X_1 . Оказалось, что $X_1=7$. Апостериорное распределение параметра μ задаётся как
 - A. $f(X_1|\mu) = Ce^{\frac{(7-\mu)^2}{30} + \frac{(\mu-7)^2}{30}}$.
 - B. $f(\mu|X_1) = Ce^{-\frac{(7-\mu)^2}{30} \frac{(\mu-1)^2}{2}}$.
 - C. $f(\mu|X_1) = Ce^{-\frac{(7-\mu)^2}{2} \frac{(\mu-7)^2}{30}}$
 - D. $f(X_1|\mu) = Ce^{-\frac{\mu^2}{30} + \frac{(7-\mu)^2}{60}}$.
 - Е. Нет верного ответа.
- 3. Апостериорное распределение μ с точностью до константы является
 - А. Стандартным нормальным.
 - В. Имеющим конечное математическое ожидание.
 - С. Экспоненциальным распределением.
 - D. Нормальным, имеющим бесконечную дисперсию.
 - Е. Нет верного ответа.
- 4. Константа C
 - А. Обычно принимается равной \bar{X} .
 - В. Не вычисляется даже приблизительно.
 - С. Иногда вычисляется путём угадывания вида апостериорного распределения.
 - D. Обычно получается отрицательной.
 - Е. Нет верного ответа.
- 5. Выражение $\mathbb{P}(\mu \in (c,d)|X_5) = 0.9$

- А. Является формулой 95%-го байесовского доверительного интервала.
- В. Является формулой 90%-го частотного доверительного интервала.
- С. Не может быть вычислено за конечное число итераций.
- D. Может быть вычислено при помощи симуляций.
- Е. Нет верного ответа.
- 6. Точечная байесовская оценка μ
 - А. Может быть получена из анализа гистограммы апостериорного распределения.
 - B. Равна медиане $f(\mu)$.
 - С. Всегда совпадает с точечной частотной оценкой μ .
 - D. Не может быть равна моде апостериорного распределения.
 - Е. Нет верного ответа.

Далее будем рассуждать в терминах частотного подхода и считать, что μ – константа.

- 7. Пусть тестируется гипотеза $H_0: \mu = 20$ против $H_1: \mu > 20$. Тогда
 - A. Если p-value окажется равным 0.01, то 10%-ом уровне значимости тест Вальда отвергнет нулевую гипотезу.
 - B. Если p-value окажется равным 0.01, то 10%-ом уровне значимости LR-тест не отвергнет нулевую гипотезу.
 - С. Если при использовании Z-теста p-value окажется 0.99, то H_0 будет отвергнута на любом разумном уровне значимости.
 - D. Если используется LR-тест, но p-value не существует.
 - Е. Нет верного ответа.
- 8. Пусть тестируется гипотеза $H_0: \mu=12$ против $H_1: \mu \neq 12$. Тогда
 - A. p-value обязательно лежит в границах [0.000, 0.12].
 - В. Если p-value равно 0.5, то нулевая гипотеза не отвергается на уровне значимости 51%.
 - C. p-value обязательно лежит в границах [0.000, 1.000].
 - D. Если p-value равно 0.000, то существует разумный уровень значимости, на котором нулевая гипотеза не отвергается.
 - Е. Нет верного ответа.

При тестировании трёх видов лекарств против плацебо ($H_{0,i}:p_i=p_{plac}$) оказалось, что соответствующие p-value равны 1.000, 1.000, 0.000.

- 1. На основании условия задачи можно сделать вывод, что на уровне значимости 5%
 - А. Только третье лекарство статистически неотличимо от плацебо.
 - В. Первое лекарство статистически отлично от плацебо на уровне значимости 10%.
 - С. Все лекарства статистически неотличимы от плацебо.
 - D. Только первые два лекарства статистически отличны от плацебо.
 - Е. Нет верного ответа.
- 2. При проведении множественного тестирования методом Бонферрони
 - А. Только первое лекарство статистически неотличимо от плацебо.
 - В. Только первое лекарство статистически отлично от плацебо.
 - С. Только третье лекарство статистически отлично от плацебо.
 - D. Первое и второе лекарство статистически отличны от плацебо на уровне значимости 5%.

- Е. Нет верного ответа.
- 3. При проведении множественного тестирования методом Бенджамини-Хохберга
 - А. На первом шаге p-value следует упорядочить как 1.000, 1.000, 0.000.
 - В. Окажется невозможным сравнить $p_{(1)}$ и $\ell_{(1)}$.
 - С. Результаты тестирования (i-ая гипотеза отвергается/не отвергается) не будут совпадать с результатами метода Бонферрони.
 - D. Результаты тестирования (i-ая гипотеза отвергается/не отвергается) будут совпадать с результатами без корректировки.
 - Е. Нет верного ответа.
- 4. При проведении множественного тестирования методов Бенджамини-Хохберга на уровне значимости 5%
 - А. Ровно два лекарства статистически неотличимы от плацебо.
 - В. Ровно одно лекарство статистически неотличимо от плацебо.
 - С. Все три лекарства статистически неотличимы от плацебо.
 - D. Все три лекарства статистически отличны от плацебо.
 - Е. Нет верного ответа.