Diversity Maximization in the Presence of Outliers (Supplementary File)

Daichi Amagata

Osaka University amagata.daichi@ist.osaka-u.ac.jp

Space Complexity

GREEDY. As it always maintains X and S, its space complexity is O(n).

STREAMING. As it can maintain only S, its space complexity is O(k). (We can input X' in a streaming manner.)

<u>CORESET.</u> As with STREAMING, its space complexity is O(k). If it maintains C, where $|C| = O(z) \ge z + k$, its space complexity becomes O(z).

Additional Experiment

Result obtained by STREAMING. Figure 1(a) illustrates an example of X consisting of points including outliers¹, whereas Figure 1(b) shows a diverse set obtained by STREAMING. (As this X contains a small number of points, CORESET returns the same solution.) From Figure 1, STREAMING also returns only inliers, different from GMM (see Figure 2 of our main paper).

Figure 1: Result set obtained by STREAMING (k = 10)

Result of GMM and PODS19. Table 1 clearly shows that most points in S computed by GMM and PODS19 are outliers. This result demonstrates that simply running an existing algorithm for the problem of Max-Min diversification without outliers does not work.

<u>Standard deviation result.</u> Table 2 reports the standard deviation w.r.t. div(S) of GREEDY, STREAMING, and CORE-

Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Table 1: Average number of outliers in S (k = 100)

Algorithm	FCT Household		KDD99	Mirai	
GMM	99.00	99.00	99.00	99.00	
PODS19	92.35	91.55	87.40	84.05	

Table 2: Standard deviation of div(S)

Algorithm	FCT	Household	KDD99	Mirai
GREEDY	0.483	0.460	1.211	1.639
STREAMING	0.217	0.240	0.564	5.344
CORESET	2.345	1.506	4.307	4.444

SET. We used the default parameter setting. CORESET has a larger standard deviation than the others, and this result is actually reasonable. The coreset C has a much smaller number of points than n=|X|, thus $\operatorname{div}(S)$ of CORESET tends to depend on the first random point of S. Since GREEDY and STREAMING use X, they do not have this tendency.

Impact of success probability p. Table 3 shows the average $\overline{div(S)} = \min_{x,x' \in S} \overline{dist(x,x')}$ and running time [msec] of CORESET with different p. (Note that CORESET did not return any outliers for these values of p.)

We see that div(S) with p=0.9 is smaller than those with p=0.95 and p=0.99. On the other hand, the running time becomes longer as p becomes larger. For the running time, this result is reasonable, since a smaller p constructs a coreset with a smaller size. (Recall that the time complexity of COREST is O(kc), where c is the coreset size.) This result is also reasonable for div(S). Given a larger p, a coreset contains more points in X, so $\min_{x,x'\in S} dist(x,x')$ tends to be larger.

¹This is the same set as that in Figure 2 of our main paper.

Table 3: Coreset's average div(S) and running time [msec] $(k=100 \ {\rm and} \ z=200)$

p	FCT		Household		KDD99		Mirai	
	div(S)	Time	div(S)	Time	div(S)	Time	div(S)	Time
0.90 0.95	48.996 50.158	1.369 5.323	36.916 38.369	1.553 5.823	73.690 77.064	3.253 8.523	101.880 106.352	30.500 97.760
0.93	51.425	13.422	39.294	27.239	80.153	54.130	100.332	476.063