

微视推荐系统性能优化之路

腾讯-在线视频BU-流量生态部-高级工程师 张想

见证微视推荐从无到有,目前为微视推荐召回系统负责人,性能与稳定性负责人

Part1.业务面临的挑战

Part2.微视推荐架构简介

Part3.可观测性建设

Part4.业务优化措施

Part5.防衰退机制

Part6.总结

背景

推荐业务不断发展,架构规模提升,业务逻辑复杂度升高

- 推荐系统全链路耗时大幅上涨
- ➤ 外网用户体验刷feed有迟钝
- ▶ 推荐上游团队反馈性能衰退严重

经验表明, 链路耗时对产品的指标有影响

Google: +500ms, -20% 流量 Amazon: +100ms, -1% 销售量

- 提升业务指标
- 改善系统稳定性
- 为更复杂策略提供可能

- 系统规模大,访问关系复杂(线上主要服务30+)
- 迭代变更频繁(研发人员120+, 每天 发布变更100+)
- 代码质量持续恶化

1

建立完备 监控体系

7

架构升级 细致优化 改善部署 3

制定规范严防退化

- 从架构/服务/算子多层次看待延时问题并建立立体化监控体系
- 在线服务集成性能分析工具
- 结合业界经验设置合理的耗时 优化目标
- 从架构/服务/算子/ 策略/运维/代码<mark>多</mark> 角度分析系统瓶颈 并优化

- 退化治理
- 规范建设

Part1.业务面临的挑战

Part2.微视推荐架构简介

Part3.可观测性建设

Part4.业务优化措施

Part5.防衰退机制

Part6.总结

微视推荐架构简介

Part1.业务面临的挑战

Part2.微视推荐架构简介

Part3.可观测性建设

Part4.业务优化措施

Part5.防衰退机制

Part6.总结

1 推荐类业务研发模式特点

- 不断追求更高的业务指标,需要频繁迭代算法策略,服务变更多
- 算法工程师是策略迭代的主要角色,由于技术栈差异,保障研发质量非常关键

2 对业务框架的要求

- 从研发效率角度,线上逻辑单元可复用,避免重复开发
- 从实验效率角度,需支持方便的abtest实验机制
- 从系统稳定性和耗时角度,需方便定位问题,利于优化

推荐工程团队研发了一套DAG框架,具备以下能力

- 算子托管
- 拖拽式配置业务流程
- 实验管理
- 服务变更流程管理

Step4

可观测性建设

服务级别监控

算子级别监控

日期	service	ip	set	container	phase	当日count	对比日count	当日success	对比日success	当日failed	对比日failed	当日exception	对比日exception	当日latency 🌡	对比日latency
20201219	96	96	client.sh.1	%	VideoRecall					0.00%	0.00%	0.00%	0.00%	266.228	267.275
20201219	%	96	client.sh.1	%	recmd_rank					0.00%	0.00%	0.00%	0.00%	89.811	89.645
20201219	96	96	client.sh.1	%	recmd_recall_multi_layer_cb					0.00%	0.00%	0.01%	0.13%	68.439	69.078
20201219	%	%	client.sh.1	%	recmd_recall_multi_layer			~		0.00%	0.00%	0.01%	0.07%	63.336	64.649
20201219	96	96	client.sh.1	%	recmd_recall_multi_layer_emb					0.00%	0.00%	0.01%	0.01%	61.143	63.325
20201219	%	%	client.sh.1	%	recmd_recall_multi_layer_direct					0.00%	0.00%	0.03%	0.08%	60.388	61.506
20201219	96	96	client.sh.1	%	simple_basic_rank_boost_v2		10000000			1.32%	0.82%	0.00%	0.00%	57.538	57.646
20201219	%	%	client.sh.1	%	recmd_recall_async				,,	0.00%	0.00%	0.01%	0.02%	40.255	40.465
20201219	96	96	client.sh.1	%	recmd_recall					0.00%	0.00%	0.01%	0.02%	38.288	38.467
20201219	96	%	client.sh.1	%	recmd_recall_direct		-			0.00%	0.00%	0.01%	0.03%	37.875	37.809
20201219	96	96	client.sh.1	%	recmd_recall_other	U.,				0.00%	0.00%	0.01%	0.01%	37.783	37.063

算子内分阶段监控

日期	set	container	phase	phase_stage	当日count	对比日 count	当日 latency(ms)	对比日 latency(ms)
20201219	client.sh.1	%	simple_basic_rank_boost_v2	TOTAL	4 -		57.863	57.908
20201219	client.sh.1	%	simple_basic_rank_boost_v2	boost_func			2.175	2.041
20201219	client.sh.1	%	simple_basic_rank_boost_v2	cate2_interests			0.034	0.034
20201219	client.sh.1	%	simple_basic_rank_boost_v2	get_params			0.016	0.016
20201219	client.sh.1	%	simple_basic_rank_boost_v2	get_video_detail	Minn Till		8.268	9.376
20201219	client.sh.1	%	simple_basic_rank_boost_v2	simple_predictor			40.328	39.590
20201219	client.sh.1	%	simple_basic_rank_boost_v2	stable_sort	- Mad		5.307	5.119
20201219	client.sh.1	%	simple_basic_rank_boost_v2	trace			1.779	1.727

Part1.业务面临的挑战

Part2.微视推荐架构简介

Part3.可观测性建设

Part4.业务优化措施

Part5.防衰退机制

Part6.总结

	服务	目标耗时(P80)(ms)	上海set优化前(P80)(ms)	广州set优化前(P80)(ms)
	接入	400	490	485
	画像	55	80	80
	召回	160	250	240
	粗排	16	20	18
	精排	50	52	51
	策略	55	59	57

梳理依赖,解除不合理串行,降低画像服务在系统中的层级

✓ 平响优化20ms, P80平响优化25ms

1.改善木桶效应

- 微服务成为瓶颈,CB/EMB/Direct拖慢 召回中控
- 数据倾斜问题,CB/EMB召回数量多, 队列展现率低,同质化高
- CB/EMB/Direct内部存在耗时高的队列 拖慢微服务

2. 消除共性问题

- 热点函数:正排数据填充、队列过滤器
- 正排同步访问: 异步化, 减少阻塞

服务优化

召回服务负责过滤,我们实现了插件化的过滤器,优化过滤复杂度、过滤下沉至队列提高并行度、过滤算法设置优先级,<mark>累计优化19ms</mark>

正排数据in-place读取,避免拷贝中间结构,累计优化14ms

服务优化

隐式召回服务优化举例

item2item召回场景下的cache化

- 近邻拉链更新不频繁,约10min~30min更新索引
- 重复拉取计算平响高, 128维向量, 平均10ms的耗时
- i2i类召回存在头部效应,因此cache命中率有一定保证

实验结论:

某个百万级向量索引,当cache条数10000,过期时间为3min时,缓存命中率达50%以上,通路平响下降8ms,后端集群负载减半

服务优化

隐式召回索引优化举例

✓ 索引精度的评价指标——召回率R@100 对于一个向量x,暴力计算100条近邻拉链L,通过索引计算的100条近邻拉链M,计 算L与M的交集大小为n,召回率R@100=n% 为了更准确往往计算一批向量取均值

这里以hnsw索引为例

hnsw索引参数	含义				
m	友点数量,影响索引大小				
efc	索引构建阶段动态列表长度,影响索引构建速度				
efs	索引查询阶段动态列表长度,影响索引查询速度				

索引参数	索引大小 (100W数据,dim=64)	查询耗时(ms)	R@100,distance=cosine
m=16, efc=200, efs=200	351MB	1.9ms	79.1%
m=16, efc=2000, efs=200	351MB	2ms	85.3%
m=32, efc=2000, efs=200	483MB	2.5ms	92.1%
m=32, efc=2000, efs=2000	483MB	5ms	95.4%

注重索引精度和耗时的平衡, 给出合理的索引参数

减包优化

实验框架升级

背景: 推荐请求头携带小流量信息全局透传, 随着业务复杂度提升 实验层数增多至100多层, 占用大小60KB

✓ 减少推荐全链路实验信息透传成本, 平响优化约14ms

部署优化

解决跨机房访问, 降低跨机房带宽

测试发现:机房内ping延迟仅0.2ms,跨机房ping延迟达3ms,甚至遇到过30ms的情况

方案A:

- 直接部署在一个机房中
- 问题:
- 单机房资源无法满足
- 不满足容灾要求

方案B:

- 每个机房都部署全流程,流量只在同一个机房内穿梭问题:
- 对OP容量规划要求较高,流量划分遵循容量比例,如果失衡可能引发线上问题

比较理想,有实施难度 仍在小规模尝试

部署优化

解决跨机房访问, 降低跨机房带宽

城市--上海

城市——广州

采用了LA负载均衡取代Round-Robin LA不要求同机房,能够适应下游集群的变化自动调整流量

LA视角下会优先选择耗时低的下游,也就是同机房,然后选择跨机房的下游也就是调整了下游节点的权重

注意:

处理好业务的错误码, 避免异常情况被误认为是低延时

特殊优化——Dynamic Backup Request

常规的backup-request

Response_A和Response_B,以先回来的包为准

发送的backup-request可能提前回包,因此可以改善对下游服务访问的耗时

特殊优化——Dynamic Backup Request

服务耗时的cdf曲线

左图中的服务,使用backup-request获得性能提升的潜力要大于右图

当设置backup-request的耗时为40ms时

左图有80%的概率能40ms内回包 右图有23%的概率能40ms内回包

特殊优化——Dynamic Backup Request

动态的backup-request

普通的backup-request存在问题,无法有效设置一个准确的时延

动态的backup-request的延迟t是动态计算而来,通过定时统计时间窗口内的耗时来设置

t值由统计 计算最近的时间窗口T内指定分位值作为t,如P80

该值的选择需综合考虑latency-cdf曲线和服务负载

✔ 可以有效提高下游服务成功率,降低更高分位耗时

其他方案汇总

结果一览

—SH平均响应时间(80分位)(ms) —GZ平均响应时间(80分位)(ms)

在业务迭代<mark>退化累积40项</mark>,造成<mark>衰退接近100ms</mark>的基础上全链路优化100余项,累积优化75ms,系统稳定性也得到了增强截至今年1月微视推荐P80耗时上海415ms(未开启同机房+未开启LA)广州358ms (开启同机房+开启LA)

Part1.业务面临的挑战

Part2.微视推荐架构简介

Part3.可观测性建设

Part4.业务优化措施

Part5.防衰退机制

Part6.总结

衰退预防

日常巡查

- 关注服务质量日报
- 清理业务代码实验
- 功在平时

Part1.业务面临的挑战

Part2.微视推荐架构简介

Part3.可观测性建设

Part4.业务优化措施

Part5.防衰退机制

Part6.总结

- 构建完善的指标体系,保障系统可观测性
- 多层次多粒度的优化
 - 架构上消除不合理调用链
 - 服务上消除短板链路
 - 代码上改善热点函数、计算复杂度、异步化、cache、优化索引
 - 部署上改善跨机房调用
 - 网络调用减少包体大小,降低传输成本
 - LA、Dynamic Backup-Request改善耗时

• • •

- 衰退避免机制
 - 设定严格的上线规范
 - 实验变更需观测小流量耗时增长情况
 - 定期review清理策略,避免堆积

欢迎讨论交流 谢谢

麦思博(msup)有限公司是一家面向技术型企业的培训咨询机构,携手2000余位中外客座导师,服务于技术团队的能力提升、软件工程效能和产品创新迭代,超过3000余家企业续约学习,是科技领域占有率第1的客座导师品牌,msup以整合全球领先经验实践为己任,为中国产业快速发展提供智库。

高可用架构公众号主要关注互联网架构及高可用、可扩展及高性能领域的知识传播。订阅用户覆盖主流互联网及软件领域系统架构技术从业人员。 高可用架构系列社群是一个社区组织,其精神是"分享+交流",提倡社区的人人参与,同时从社区获得高质量的内容。