Biology BY1

Ques	tion					Mark
						Scheme
1		Feati	ure	Bacterium	Virus	3
		Poss	ess nucleic acid	✓	✓	
		Surro	ounded by a protein coat	Х	✓	
		Ribos	somes in cytoplasm	✓	Х	
		(not:	hybrid ticks ¥)			
		(i)	Fibrous;			1
2	(a)					
		(ii)	Polypeptide chains; (not: proteins) Three chains; (not: strands) (Three) alpha helices;			(3 max)
			Tightly/closely bound;			
			Held together by hydrogen bonds:			
		(iii)	Structural/relevant example e.g. tendons or nan (not: strength or name of tissue unqual./tensile		engthened.	1
	(b)	(i)	Four chains vs. three; Iron/prosthetic/haem group vs. none;			(3 max)
			Compact vs. non-compact/long fibres vs spheric			
			3 polypeptide chains the same vs 2 different po	• • •		
			Secondary structure vs. quaternary structure: (r	not: more com	plex)	
		(ii)	Hormones/enzyme/ antibodies/plasma proteins	(not: specific		1
			examples)			
						9 MARKS

Question				
3	(a)	(i)	At higher temperature/60° enzyme/substrate has more kinetic	3
			energy/vibrates more; (not: ref. movement)	
			More Enzyme substrate complexes formed/ more <u>successful</u> collisions;	
			More product formed/greater rate of reaction.	
		(ii)	At 60°C enzyme reacts rapidly;	3
			(Gradual) denaturation of enzyme occurs or description;	
			All substrate not reacted;	
	(b)	All sub	ostrate converted to product.	1
		(not: a	active sites full)	
	(c)	Lower	temperature, less kinetic energy/fewer vibrations;	(3 max)
		Fewer	enzyme substrate complexes formed/fewer <u>successful</u> collisions;	
		Some	substrate remains after 60 minutes; (not: reaction has not ended)	
		Maxim	num product formation not yet achieved.	

Question				Mark Scheme
4	(a)	(i)	Can be re-used;	(2 max)
			Greater stability;	
			Despite variations in temperature/pH;	
			Easy to remove product/product not contaminated with enzyme;	
			More than 1 enzyme can be used/enzymes added or removed easily.	
			Can be used in a continuous production system	
		(ii)	Colour change only/can only indicate if its present or absent;	2
			Subjective nature of judgement of colour/qualitative rather than	
			quantitative.	
	(b)	(i)	Measures metabolite/named substance;	2
			By converting chemical signal/energy into an electrical signal/energy.	
		(ii)	Combines with substrate/glucose;	(2 max)
			At active site;	
			To produce product.	
		(iii)	Glucose from blood diffuses into gel;	(4 max)
			Acted on by glucose oxidase;	
			Amount of product released proportional to glucose concentration;	
			Electrode activated by product;	
			Generates electrical potential/signal;	
			Size of potential directly proportional to mass of product.	

Question				
5	(a)	Cell X	Cell Y	(3 max)
		Large number of vesicles	No/small number vesicles;	
		(not: lysosomes)		
		Large amount of RER/ribosomes	Little RER/ribosomes;	
		Few mitochondria	Large number of mitochondria;	
		No microvilli	Microvilli; (not: villi /membrane folds)	
		More nuclear pores	Fewer nuclear pores.	
		(not: ref. cell size)		
	(b)	A = Transport substances to plasma/ce	II membrane;	3
		B = Protein synthesis;		
		C = <u>ATP</u> synthesis (not: produce energy	y/ref. respiration).	
	(c)	Exocytosis;		(2 max)
		Transport vesicle fuses with plasma me	embrane;	
		Break in membrane to allow expulsion of	of secretion.	

Question				Mark Scheme
6	(a)	Mitocl	hondrion.	1
	(b)	(i)	Advantage:	2
			*Higher energy yield <u>per unit mass</u> /higher yield <u>per g</u> .	
			Disadvantage:	
			More oxygen required for respiration.	
		(ii)	Heat/thermal/electrical insulation; (not: insulation unqual.)	(2 max)
			*Better source of metabolic water;	
			Buoyancy;	
			Protection against knocks (not: protection unqual.)	
		(point	s marked * are interchangeable and could be credited in either (i) or (ii)	
		but no	ot credited in both)	
	(c)	(i)	New tissue manufacture/growth qualified/repair;	2
			Enzyme manufacture.	
		(ii)	Breaking a bond; (not: molecule broken down)	2
			Insertion of a molecule of water/chemical addition of water	
			(not: adding water)	
		(iii)	Glucose; (not: beta glucose)	2
			Amino acids.	

Question				
7	(a)	(i)	Blood clots/infection.	1
		(ii)	Water has highest water potential/0 compared with -476/-896kPa;	3
			Water passes down water potential gradient/from high to low water	
			potential;	
			Passes into cell by osmosis.	
		(not: r	ef. water concentration)	
	(b)	Diagra	am showing <u>crinkled</u> cells; (not: showing plant cell or nucleus)	3
		Highe	r water potential inside cell;	
		Water	passes out of cell (causing shrinkage/distortion).	

Question				Mark Scheme
8	(a)	Α	Interphase, replication of DNA; (not: DNA doubles)	
		В	Also replication of organelles;	
		С	Synthesis of rRNA/proteins/ATP; (not: metabolic activity)	
		D	Prophase chromosomes appear as two chromatids/ ref, condensation;	
		Е	Joined at centromere;	
		F	Nuclear membrane disappears;	
		G	Chromosomes line up at equator during metaphase;	
		Н	Spindle formation;	
		I	Centromere divides at anaphase;	
		J	Chromatids/chromosomes to opposite poles at anaphase;	
		K	Contraction/shortening of spindle fibres;	
		L	Nuclear membrane reforms during telophase;	
		М	Cytokinesis/cell division occurs by furrowing of membrane/cleavage;	
		N	Cytoplasm splits/divides;	
		Ο	Centrioles replicate / move to poles.	

Note: ref. to each event must take place in correct stage

Question				Mark Scheme
8	(b)	Α	Both contain the elements CHON;	
		В	Both can link to form larger molecules/polymers/ref. monomers;	
		С	Nucleotides consist of nitrogenous base;	
		D	plus pentose and phosphate; (not: 5C sugar)	
		Е	bases are pyrimidines and purines;	
		F	Amino acids possess an amine/NH ₂ group/carboxylic group;	
		G	Variable R group;	
		Н	More/20 types of amino acid;	
		I	Amino acids link together by peptide bond formation/sugar phosphate	
			backbone;	
		J	Five different bases in nucleotides/5 named; (not: letters only)	
		K	Bases can undergo complementary base pairing;	
		L	Adenine with thymine or uracil and guanine with cytosine;	
		М	By hydrogen bonds;	
		N	Nucleotides carry genetic information;	
		0	Sulphur containing vs. phosphate containing.	