sino	Time (s) Speed (m s ⁻¹)	0	5	10	15	20	25
sino	Speed (m s ⁻¹)	_					
sino		2	5	10	18	28	42
51115	all of this inform	nation,					
) est	imate the length	of runway	used by the	e jet to take	off.		(3)
iven	that the jet acce	lerated smo	othly in the	ese 25 secon	nds,		(3)
ex)	plain whether yo	our answer t	o part (a) i	s an underes		n overestima	te of the
ler	ngth of runway u	ised by the j	jet to take of	off.			(1)

	continuous c									
	e table show e constants.	s corres	spondin	ıg value	es of x an	nd y for	this cur	ve, whe	ere a and	d <i>b</i>
			x	3	3.2	3.4	3.6	3.8	4	
			у	а	16.8	b	20.2	18.7	13.5	
	e trapezium der the curve					ues in t	he table,	to find	an appı	roximate area
Gi	ven that this	area is	17.59							
(a)	show that a	a + 2b =	= 51							(2)
Gi	ven also that	t the cur	n of all	the 11 x	values in	the tab	1a is 07	2		(3)
	ven also that find the val					me tao	16 18 7/.	<u>~</u>		
(D)	ima the val	iue oi <i>a</i>	and the	e value	01 0					(3)

	re gi	ven to 4 sig	nificant fig	ures.	ı							
	x	0.5	1	1.5	2	2.5						
	У	0.5774	0.7071	0.7746	0.8165	0.8452						
(a) Use the trape	zium	ı rule, with a	_ 2	es of y in the $\int_{5}^{2.5} \sqrt{\frac{x}{1+x}} dx$		nd an estimate	for					
giving your a	nswe	er to 3 signi	ficant figure	es.			(2)					
					$\int_{0.5}^{2.5} \sqrt{9x}$	_	(3)					
(b) Using your ar	1swe	er to part (a)	, deduce an	estimate for	$\int_{0.5} \sqrt{\frac{34}{1+1}}$	– d <i>x</i> x	(1)					
Given that $\int_{0.5}^{2.5} \sqrt{\frac{9x}{1+x}} dx = 4.535 \text{ to 4 significant figures}$												
(c) comment on	the a	ccuracy of	your answer	r to part (b).			(1)					

4. The table below shows corresponding values of x and y for $y = log_3 2x$

The values of y are given to 2 decimal places as appropriate.

x	3	4.5	6	7.5	9
у	1.63	2	2.26	2.46	2.63

(a) Using the trapezium rule with all the values of y in the table, find an estimate for

$$\int_{3}^{9} \log_3 2x \, \mathrm{d}x$$

(3)

Using your answer to part (a) and making your method clear, estimate

(b) (i)
$$\int_{3}^{9} \log_{3}(2x)^{10} dx$$

(ii)
$$\int_3^9 \log_3 18x \, \mathrm{d}x$$

(3)

Figure 1 shows a sketch of part of the curve with equation $y = x^2 \ln x$, $x \ge 1$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 2

The table below shows corresponding values of x and y for $y = x^2 \ln x$

х	1	1.2	1.4	1.6	1.8	2
у	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places.

(1)

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.

(3)

(c) Use integration to find the exact value for the area of R.

(5)

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{6}{(e^x + 2)}$, $x \in \mathbb{R}$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation x = 1

The table below shows corresponding values of x and y for $y = \frac{6}{(e^x + 2)}$

x	0	0.2	0.4	0.6	0.8	1
У	2		1.71830	1.56981	1.41994	1.27165

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) Use the substitution $u = e^x$ to show that the area of R can be given by

$$\int_a^b \frac{6}{u(u+2)} \, \mathrm{d}u$$

where a and b are constants to be determined.

(2)

(d) Hence use calculus to find the exact area of *R*. [Solutions based entirely on graphical or numerical methods are not acceptable.]

(6)

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{10}{2x + 5\sqrt{x}}$, x > 0

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, and the lines with equations x = 1 and x = 4

The table below shows corresponding values of x and y for $y = \frac{10}{2x + 5\sqrt{x}}$

X	1	2	3	4
y	1.42857	0.90326		0.55556

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of R.

(1)

(d) Use the substitution $u = \sqrt{x}$, or otherwise, to find the exact value of

$$\int_{1}^{4} \frac{10}{2x + 5\sqrt{x}} \, \mathrm{d}x$$

(6)

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y = \frac{x}{1 + \sqrt{x}}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line with equation x = 1 and the line with equation x = 4.

(a) Complete the table with the value of y corresponding to x = 3, giving your answer to 4 decimal places.

(1)

X	1	2	3	4
y	0.5	0.8284		1.3333

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate of the area of the region R, giving your answer to 3 decimal places.

(3)

(c) Use the substitution $u = 1 + \sqrt{x}$, to find, by integrating, the exact area of R.

(8)

Figure 3

Figure 3 shows a sketch of the curve with equation
$$y = \frac{2\sin 2x}{(1+\cos x)}$$
, $0 \le x \le \frac{\pi}{2}$.

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for $y = \frac{2\sin 2x}{(1+\cos x)}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
у	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) Using the substitution $u = 1 + \cos x$, or otherwise, show that

$$\int \frac{2\sin 2x}{(1+\cos x)} \, dx = 4\ln(1+\cos x) - 4\cos x + k$$

where k is a constant.

(5)

(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

(3)

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^{\frac{1}{2}} \ln 2x$.

The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines x = 1 and x = 4

(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.

(4)

(b) Find $\int x^{\frac{1}{2}} \ln 2x \, dx$.

(4)

(c) Hence find the exact area of R, giving your answer in the form $a \ln 2 + b$, where a and b are exact constants.

(3)

Figure 4

Figure 4 shows a sketch of part of the curve C with equation

$$y = \frac{x^2 \ln x}{3} - 2x + 5, \quad x > 0$$

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the line with equation x = 1, the x-axis and the line with equation x = 3

The table below shows corresponding values of x and y with the values of y given to 4 decimal places as appropriate.

x	1	1.5	2	2.5	3
y	3	2.3041	1.9242	1.9089	2.2958

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of S, giving your answer to 3 decimal places.

(3)

(b) Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of *S*.

(1)

(c) Show that the exact area of S can be written in the form $\frac{a}{b} + \ln c$, where a, b and c are integers to be found.

(6)

(In part c, solutions based entirely on graphical or numerical methods are not acceptable.)

Figure 2

Figure 2 shows a sketch of part of the curve with equation

$$y = \left(\ln x\right)^2 \qquad x > 0$$

The finite region R, shown shaded in Figure 2, is bounded by the curve, the line with equation x = 2, the x-axis and the line with equation x = 4

The table below shows corresponding values of x and y, with the values of y given to 4 decimal places.

x	2	2.5	3	3.5	4
у	0.4805	0.8396	1.2069	1.5694	1.9218

(a) Use the trapezium rule, with all the values of y in the table, to obtain an estimate for the area of R, giving your answer to 3 significant figures.

(3)

(b) Use algebraic integration to find the exact area of R, giving your answer in the form

$$y = a\left(\ln 2\right)^2 + b\ln 2 + c$$

where a, b and c are integers to be found.

(5)