Métodos numéricos - Lista 1

João Vitor Dias Gonçalves

 1° trimestre 2023

Question 1

For the Tauchen discretization method I created a function that receives ρ , σ , m (with 3 as default), N (the number of states) and μ (with 0 as default). The output of the function is a list with two elements. The first is the transition matrix and the second the finite state grid. Here is the output for Julia using $\mu = 0$, $\rho = 0.95$, $\sigma = 0.007$, m = 3 and N = 9. Since the R table is the same I opted to omit it.

0.76442	0.23469	0.0009	0.0	0.0	0.0	0.0	0.0	0.0
0.05923	0.7405	0.19967	0.00059	0.0	0.0	0.0	0.0	0.0
6.0e - 5	0.07471	0.7569	0.16795	0.00039	0.0	0.0	0.0	0.0
0.0	0.0001	0.09314	0.76688	0.13963	0.00025	0.0	0.0	0.0
0.0	0.0	0.00016	0.11473	0.77023	0.11473	0.00016	0.0	0.0
0.0	0.0	0.0	0.00025	0.13963	0.76688	0.09314	0.0001	0.0
0.0	0.0	0.0	0.0	0.00039	0.16795	0.7569	0.07471	6.0e - 5
0.0	0.0	0.0	0.0	0.0	0.00059	0.19967	0.7405	0.05923
0.0	0.0	0.0	0.0	0.0	0.0	0.0009	0.23469	0.76442

-0.05044
-0.03363
-0.01681
0.0
0.01681
0.03363
0.05044
0.06725

Tauchen - Julia

Question 2

For the Rouwenhorst method I did a new function, but this time the m was not necessary as an input. The output is in the same format as the function before. Here I print just the Julia output again. I am using the same parameters.

0.81665	0.16752	0.01503	0.00077	2.0e - 5	0.0	0.0	0.0	0.0	l
0.02094	0.82041	0.14687	0.01129	0.00048	1.0e - 5	0.0	0.0	0.0	ĺ
0.00054	0.04196	0.8231	0.12605	0.00807	0.00028	1.0e - 5	0.0	0.0	İ
1.0e - 5	0.00161	0.06303	0.82472	0.10511	0.00538	0.00014	0.0	0.0	ĺ
0.0	6.0e - 5	0.00323	0.08409	0.82526	0.08409	0.00323	6.0e - 5	0.0	ĺ
0.0	0.0	0.00014	0.00538	0.10511	0.82472	0.06303	0.00161	1.0e - 5	ĺ
0.0	0.0	1.0e - 5	0.00028	0.00807	0.12605	0.8231	0.04196	0.00054	ĺ
0.0	0.0	0.0	1.0e - 5	0.00048	0.01129	0.14687	0.82041	0.02094	ĺ
0.0	0.0	0.0	0.0	2.0e - 5	0.00077	0.01503	0.16752	0.81665	ĺ

 $\begin{bmatrix} -0.06341 \\ -0.04756 \\ -0.0317 \\ -0.01585 \\ 0.0 \\ 0.01585 \\ 0.0317 \\ 0.04756 \\ 0.06341 \end{bmatrix}$

Rouwenhorst - Julia

Question 3

For the simulation of the discrete process I created a new the function that receives the parameters of the Tauchen function and z0, that is the initial state (with the median of the grid as default), and a true or false parameter, where true is the default and the simulation will use the Tauchen method.

Here I present the graphs for the Tauchen and Rouwenhorst methods for both Julia and R.

Figure 1: Tauchen - Julia ($\rho=0.95)$

Figure 2: Rouwenhorst - Julia ($\rho=0.95)$

rho = 0.95

Figure 3: Tauchen - R $(\rho=0.95)$

rho = 0.95

Figure 4: Rouwenhorst - R $(\rho=0.95)$

Question 4

In this question I constructed a new series lagging the discrete simulation from the previous item and did the estimation. I had, for both Julia and R, a very similar result and for both Tauchen and Rouwenhorst I found a parameter close to 0.95, the real one.

Julia	Tauchen	Rouwenhorst
ρ	0.952***	0.951***
sd	(0.003)	(0.003)
N	10000	10000
R^2	0.907	0.904
R	Tauchen	Rouwenhorst
ρ	0.94582***	0.950216 ***
sd	(0.003)	(0.003)
N	10000	10000
R^2	0.8944	0.9029

Question 5

Finally I did the same thing as in questions 3 and 4, but now using $\rho = 0.99$. In the estimation, once more I found a parameter really close to the real one.

material, office more results a parameter really cross to the						
Julia	Tauchen	Rouwenhorst				
ρ	0.999***	0.991***				
sd	(0.0005)	(0.001)				
N	10000	10000				
R^2	0.997	0.983				
R	Tauchen	Rouwenhorst				
ρ	0.9985079***	0.991816***				
sd	(0.0005)	(0.001)				
N	10000	10000				
R^2	0.997	0.9837				

Figure 5: Tauchen - Julia R $(\rho=0.99)$

Figure 6: Rouwenhorst - Julia R $(\rho=0.99)$

Figure 7: Tauchen - R
 R $(\rho=0.99)$

Figure 8: Rouwenhorst - R $(\rho=0.99)$