

Getting more value from your models

Pieter Schmal – Application Engineer

Batch processes

- Batch/semi-batch processes contribute substantially to several key sectors
 - Specialty and fine chemicals
 - Agrochemicals
 - Pharmaceutical APIs
 - Consumer products and food
 - ...

Advantages

- A single multipurpose facility can manufacture many products
- Higher operating flexibility than continuous manufacturing plants
- Ability to respond to fluctuating markets and rapidly advancing technologies
- New products may be introduced to existing facilities without significant capital investment

Challenges – Design

- Determine the physical configuration of the plant
- Minimise capital cost
- Scale up with confidence
 - reduce pilot plant experimentation
- Optimise recipe e.g.
 - maximise production/yield
 - maximise quality
 - minimise raw material, energy consumption
 - manage impurities

Challenges – Operational

- Training of operators
- Troubleshooting
- Reacting to changes in raw material
- Increase asset utilisation
- Minimise batch to batch variability
- Lower maintenance and operating costs
- Consideration of environmental or safety issues

Modelling needs

- Intrinsically transient processes → dynamic models
- Complex recipes → modelling of operating procedures
- Large number of time-varying degrees of freedom + many constraints → dynamic optimisation

→ Benefits

- accelerate time-to-market
- reduce technological risk
- increase profitability
- gain better understanding of the process

So what is the difference with steady-state optimization?

- Dynamic optimization requires specification of the control profile
 - Control vector parameterization
 - Type of approximation
 - Number of control intervals
 - -> tougher problem to solve, but not so much for a gPROMS user
- Batch operation frequently based on heuristic recipes.
- Two bridges to cross in an organization
 - Mathematical modelling
 - Optimization

Two bridges

- Mathematical modelling
 - ProcessBuilder gives you a wide range of unit operations that can be readily used
 - If needed custom models can be developed
 - Parameter estimation can be used to increase fidelity in the models
- gPROMS platform does rigorous optimization that can handle:
 - Any type of objective
 - Both discrete and continuous decision variables
 - Different type of constraints
 - Equality and inequality constraints
 - End-point, interior-point and path constraints
 - Both steady-state and dynamic problems

Once you have crossed the first bridge...

You can use the model for

- In a flowsheet to investigate the bigger picture
- Operator training
- Scenario testing
- Soft-sensing
- Better understanding the process
- Other processes/products
- A web-interface for non-modellers/flowsheeters
- Optimization
 - Operational
 - Design
 - Safety
 - ...

Models contain a lot of information and therefore value that can best be extracted by using rigorous optimization

Case Study #1: Chemicals Batch esterification reaction

Overview

Recipe step #1 – Charging material

Charge reactor with materials

Time =0:07 (h:m)

Recipe step #2 – Esterification

Esterification driven by heat

Reflux of reactant B is driven by pressure reduction

Feed A

Catalyst

Continue until intermediate C is consumed

Time = 3:20 (h:m)

Recipe step #3 – Stripping

Once reaction is complete, reflux reactant B into storage

Pressure drives recovery

Feed A

Catalyst

Time = 6:35 (h:m)

Recipe step #4 – Cooling of reactor

Recipe step #5 – Killing of catalyst

Recipe step #6 - Dehydration

Remaining water is boiled off via Condenser external heating Recycled feed B **Reflux Drum** Stage separator Recovered **Waste Water** Feed B Feed B Storage Storage Feed A tank tank Catalyst Heater Water **Steam** Time = 6:11 (h:m)

Reactor

Recipe step #7 – Vacuum stripping

 Steam is sparged to remove all remaining water and reactant B

Reactor contents are cooled

Feed A

Catalyst

Water

Sparged_ steam

Reactor

Time = 7:08 (h:m)

Recipe step #8 – Complete

Reactor is emptied

Batch esterification reaction

Recipe – Summary

Activity	Duration [s]	Cumulative Time [s]	Feed A [kmol/s]	Feed B [kmol/s]	Catalyst [kmol/s]	Water [kmol/s]	Low Steam [kg/s]	High Steam [kg/s]	Cooling Water [kg/s]	Pressure [bar]
 Charging	420	420		0.84	,	,	[kg/3]			0.89
	480	900	0.092							0.89
Esterification	1,020	1,920	0.092					0.11		0.89
	60	1,980	0.092		4.5x10 ⁻³			0.11		0.89
	120	2,100	0.092					0.11		0.89
	540	2,640						0.11		0.89
	2,040	4,680		0.046				0.11		0.89
	6,180	10,860						0.11		0.89
	1 223	12.002						0.11		0.40
	W ha	t can we	e do wit	th this i	nforma	tion in a	a mode	lling en	vironm	ent? L
Stripping										
	1,104	21,204								0.03
Cooling reactor	403	21,607							0.079	0.03
Killing catalyst	600	22,207				0.14				0.03
	61	22,268						0.12		0.03
Dehydration	3,442	25,710					0.4	0.12		0.03
Vacuum stripping	2,192	27,902					0.4		0.079	0.03
Empty reactor	1,589	29,499								1

	Duration		Feed A Feed B Catalyst		Water Low Steam		High Steam	Cooling Water		
		[h:m]		[kmol]	[kmol]	[kmol]	[kmol]	[kg]	[kg]	[kg]
Total		8:11		154.56	446.64	0.27	84	2,253.6	2,499.4	205

Key insights from simulation

Key insights from simulation

Key insights from simulation

Case Study #1: Chemicals Batch esterification reaction

Optimising the recipe

- minimise batch time, maximise throughput
- minimise cost of raw materials & utilities
- maximise profitability
- •••

Decision variables

Constraints – throughout the batch

Constraints – at the end of the batch

Process improvement via trial-and-error simulations

- Idea: increase temperature within the esterification stage up to the maximum limit to complete batch faster
 - achieve via incremental increases in the flowrate of high-pressure steam

Process improvement via trial-and-error simulations

Iteratively, we can somewhat improve from the base case

Simulation	Ave. Reactor	Max Reactor	High pressure	0 1	Product purity	Batch time
	temperature	temperature	steam flowrate	steam quantity		
	[°C]	[°C]	[kg/s]	[kg]	[wt.%]	[S]
Base case	167.22	185.76	0.11	2,126	96.2	29,499
Run 1	169.38	189.44	0.121	2,339	96.8	30,524
Run 2	172.39	201.44	0.132	2,552	97.2	32,195
Run 3	174.29	210.35	0.1375	2,658	97.3	33,286
Run 4	176.45	220.22	0.143	2,764	97.4	34,355

However, is detrimental to duration of stripping stage

NEED RIGOROUS MATHEMATICAL OPTIMISATION

need to consider multiple degrees of freedom simultaneously

Dynamic optimisation of batch recipe

Key insights

Comparing to the approach of trial and error simulations

Simulation	Ave. Reactor	Max Reactor	High pressure	High pressure	Product purity	Batch time
	temperature	temperature	steam flowrate	steam quantity		
	[°C]	[°C]	[kg/s]	[kg]	[wt.%]	[s]
Base case	167.22	185.76	0.11	2,126	96.2	29,499
Trial & error	176.45	220.22	0.143	2,764	97.4	34,355
simulations						
Optimisation approach	176.96	201.36	0.125	2,321	97.6	27,346

Could we do even better?

 gPROMS supplies information on the solution that can help improve the process with respect to the constraints that are on their bounds

Feed_Cataly	st → F		Type: piecewise constant					
Control	Final	Initial	Lower E	Bound	Upper Bound			
Interval	Value	Guess	Value	Lagrange Multiplier	Value	Lagrange Multiplier		
Interval # 1	0.0000	0.0000	0.0000 *	-1.0000×10 ³⁰	0.0000 *	1.0000×10 ³⁰		
Interval # 2	0.0000	0.0000	0.0000 *	-1.0000×10 ³⁰	0.0000 *	1.0000×10 ³⁰		
Interval # 3	0.0000	0.0000	0.0000 *	-1.0000×10 ³⁰	0.0000 *	1.0000×10 ³⁰		
Interval # 4	5.0000×10 ⁻³ 4	.5000×10 ⁻³	1.0000×10 ⁻³	0.0000	5.0000×10 ⁻³ *	1.8207×10		

Could we do even better?

Further increase in the margin of feed material/utilities benefits greatly

Simulation	Ave. Reactor temperature		- '	High pressure steam quantity	Product purity	Batch time
	[°C]	[°C]	[kg/s]	[kg]	[wt.%]	[s]
Base case	167.22	185.76	0.11	2,126	96.2	29,499
Constrained Optimisation approach	176.96	201.36	0.125	2,321	97.6	27,346
Relaxed Optimisation approach	168.72	183.03	0.112	1,792	97.1	25,421

...however, recipe requires validation through experimental analysis

Case Study #2: Pharmaceuticals Batch crystallization process

gPROMS product family

General mathematical modelling

Advanced process modelling environment

Sector-focused modelling tools

Chemicals & Petrochemicals

Process flowsheeting

Advanced model libraries for reaction & separation

Life Sciences, Consumer, Food, Spec & Agrochem

Solids process optimisation

Crystallization process optimisation

Oral absorption

Power & CCS

CCS system modelling

Fuel Cells & Batteries

Fuel cell stack & system design

Oil & Gas

Flare networks & depressurisation

Wastewater Treatment

Wastewater systems optimisation

The gPROMS platform

Equation-oriented modelling & solution engine

Materials modelling

INFOCHEM **Multiflash**

Model deployment tools

Enterprise

Deploy models in common engineering software2014

Modelling a batch crystallization process in gCRYSTAL

Lactose production - Aims

 An application by Friesland Foods Domo for reducing batch time without degrading the crystal size distribution and purity

Lactose crystallization

Lactose production - Activity

Process optimisation

 Determination of optimal process conditions for existing <u>and</u> new customer product specifications

Lactose production - Optimisation

- Objective
 - minimise batch time
- Decision variable
 - temperature profile during batch
- **Constraints**
 - same median size
 - no increase in impurities

T.295. 19.82.0

44 % reduction in batch time

As a result, DOMO is now successfully able to meet specific customer demands. regarding functional properties of lactose

Conclusions

Conclusions

- Model-based engineering of batch processes:
 - dynamic modelling through high-fidelity model libraries or customized models
 - 2. modelling complex operational sequences
 - 3. dynamic optimisation of recipes within the degrees of freedom available to maximise a given objective
- Widely applicable workflow:
 - for batch reaction, distillation, crystallization, ...
- All within the scope of state-of-the-art process modelling technology
 - challenges addressed in an efficient and user-friendly way

