Optimization Strategy for Air Bearing Systems in Hard Disk Drives

Damien Kah, Magnetic Head Operation, Simulia RUM 10/29/15

Background: General

- Digital storage industry:
 - Hard Disk Drive
 - SSD

- Exploding digital Universe
 - 2007: 281 × 10¹⁸ (281 Exa) Bytes (about 45 GB per person)
 - 2012: 2.5 × 10²¹ (2.5 Zetta) Bytes
 - More than 95% of the 450 Exa Bytes of storage shipped in 2012 will be magnetic hard disk drives (HDD) (source: IDC)
 - The total amount of data stored (all media) in the world doubles every two years
 - Approximately 390 GB of data are created every second today
 - 500 GB of data created every micro second by 2020

Background: our focus in HDD: ABS = Air.... What ?

Extremely complex technological object

We focus on the read/write head at the extremity of the suspension

The spinning disk drags air
The air flow supports the head

Air Bearing System (Tribology)

Spinning Disk

Background: Challenge of an ABS

- Dynamically controls the interface between the head and the disk
- Same idea as a plane...
 The head is flying above the disk

- ... With much more challenging conditions and requirements
 - In 1974, the head flying height was equivalent to a Boeing 747 airliner flying at 6 inches above the ground
 - In 2006, the 747 has to fly at 0.015 inches (0.4 mm)
 - Air flow much stiffer than atmospheric air
 - Complex set of Tradeoff to satisfy

ABS Design Trade offs

Improved Feature	Ability to follow the disk surface topography	L/UL	ABS TD Stability	Altitude / Humidity Margin	Op-shock Margin	Particle Margin	Servo Seed/Fill RPM sens.
Knobs	■ High (+) TE Pressure ■ High Pitch	Reduced (-) pressure (lower unload force). Retracted Rails	 High Pitch Surface Texture Higher stiffness air bearing (higher +and - pressure) 	 Low Pitch High Crown Reduced Particle Fence Shallow cavity etch depths. 	 Higher stiffness air bearing (higher +and – pressure) Retracted Rails 	Low PitchLow CrownParticle Fence	Deeper cavity etch depths.
Degrades →	Lube Disturbance Particle Margin DFH Efficiency	1. Roll stiffness	1. Altitude / Humidity Margin 2. Particle Margin 3. Op-Shock Margin	 Particle Margin ABS Stability L/UL Servo seed/fill RPM sens. 	1. Lube Disturbance 2. Particle Margin 3. L/UL	 Altitude / Humidity Margin ABS Stability L/UL Op-Shock Margin 	1. Altitude / Humidity Margin

Background: Optimization pattern

Input (ABS Design)

Output (Performance tradeoff)

Optimization

Improved Feature	Ability to follow the disk surface topography	L/UL	ABS TD Stability	Altitude / Humidity Margin	Op-shock Margin	Particle Margin	Servo Seed/Fill RPM sens.
Knobs	High (+) TE Prassure High Plich	Reduced (-) pressure (lower unload force) Retracted Ruits	High Pitch Surface Lex.ure Higher stiffless air bearing (higher +and - pressure)	Low Pitch High Crown Reduced Particle Fends Shallow davily etch depths.	Higher stiffness air bearing in great trand — pressure) Retracted Rails	Low Pitch Low Crown Particle Ferce	 Deeper cavity elich depths.
Degrades →	1 Lube Disturbance 2 Particle Margin 3 DFH Efficiency	1. Roll stiftoss	Altitude / Humidity Mergir Particle Margir Op-Shock Margir	1. Particle Margin 2. A3S Stability 3. L/UL 4. Servo seed/fill RPM sens.	Lupe Disturbance Partice Margin UUL	Alltude / Humidity Margin ABS Stability LVUL Op-Shock Margin	1 Altituce / Humidity Margin

So far, design was done manually

Set up a systematic approach

- Primal flying characteristics:
 - Fly Height (FH): Flying altitude Pitch (P): vertical incline angle

 - Roll (R): horizontal incline angle

Outline of the optimization process

- Optimization Strategy
- Outcome
- Conclusions / Next steps

Optimization steps

Design Space

Generate DOE matrix with designs to investigate

Run all the cases, as fast as possible

Response surface

Compute a function that mimics the solver response

Optimum search

Find the function optimum regarding performance objectives

Points in 2D space Etch depths

Running thousands of jobs Average job time per CPU: 18 min

Page ■

Ingredients for success

Optimization scheme only tells how to optimize, but not how to optimize well

Baking analogy: 4 steps, and good practices

Gather ingredients:

Mix:

Bake:

lcing:

Design Space

DOE computation

Response surface

Optimum search

Ingredients for success

Optimization scheme only tells how to optimize, but not how to optimize well

Baking analogy: 4 steps, and good practices

Gather ingredients: Choose parameters

Set range for each parameter

Design Space

Mix: Combine them

Bake: Get enough computational power

Run all simulations reliably

I Icing: Build a good response surface

Find a good optimum

DOE computation

Response surface

Optimum search

Investments

Hardware:

- Software: Isight®
 - Design generation
 - Response surface
 - Optimum search

- In house post process packages:
 - Iterative process
 - Guidelines to readjust the design space for the next step

Outline of the optimization process

- Optimization Strategy
- Outcome
- Conclusions / Next steps

Simplified optimization DOE example.

DOE setup:

Performances addressed	Count	Runs required	Original		Goals	
FH	3	1				< 1nm (10nm av.)
Crown sens	1	2				Decrease
Pitch	3	0				
Roll	3	0				
Pushback	3	1				
Roll sens	1	4				Preserve
Altitude	3	1				Fiescive
Z-height sens	3	2				
Z crossover	1	5				
Total	21	16				

Goal: Improve FH profile flatness, and crown sensitivity without affecting other parameters.

Assessment of performance profile through the radius spectrum

Some concrete example of improvement

Fly Height

FH flatness preserved

Crown sensitivity

28% improvement at ID: Very significant

Other key performances improved ...

Outline of the optimization process

- Optimization Strategy
- Outcome
- Conclusions / Perspectives

Conclusions / Perspectives

Conclusions:

- Systematic approach to optimize ABS designs.
- Strategy involves Isight® and packages around
- Better tradeoff reached

Some optimized designs are being ordered for testing

Perspectives:

Using Simulia Execution Engine to simplify job submission to remote servers

