Introduction aux Bases de données

Cours 2: Modèle relationnel-Passage E/A vers le modèle relationnel

Rappel: construction d'une BD

- structuré + structuré

Rappel: construction d'une BD

Modèle conceptuel des données (MCD): description de l'application dans un langage de haut niveau (Entité-Association) qui ne tient pas compte du SGBD

Modèle logique des données (MLD): description des données dans un formalisme compatible avec un SGBD (schemas, tables, colonnes, clés primaires et étrangères)

Modèle physique des données (MPD): implémentation du modèle logique dans le SGBD (affiner le MLD en un schéma pour un SGBD spécifique), utilisation de SQL (create TABLE..), types des attributs, index, dénormalisation Sorbonne Université-LU2IN009

Transformation MCD ⁷ MLD

Le modèle relationnel

Basé sur la définition et la manipulation de **relations**:

- Données: organisées dans des relations (**perçues par** l'utilisateur comme tables)
- *Table* (*relation*) = **ensemble** de **n-uplets** avec mêmes attributs, représentée sous la forme d'un tableau à deux dimensions:
 - Evaluation Chaque colonne correspond à un attribut A_i
 - Chaque *ligne* (tuple, n-uplet) est une séquence de n valeurs atomiques (v₁, ..., v_n) où chaque v_i est la valeur (nombre, chaine de caractères, date, ...) d'un attribut A_i ou NULL (absence de valeur).

Relation et attribut

La table (relation) **Etudiants** = ensemble de lignes (tuples ou n-uplets)

{1753, Smith, Joe, 11 CP NYC}, {2410, Hersh, Dan, 22 Rd NJ}, {0148, Clay, Maissa, **NULL**}

Les attributs ou colonnes

Valeur de l'attribut adresse non spécifiée (pas connue)

Attributs

Attribut : un nom qui décrit une propriété

• Exemple : le propriétés matricule, nom, prénom, adresse d'un étudiant

Domaine d'un attribut :

- l'ensemble des *valeurs atomiques* de l'attribut
- *Exemple :* **matricule** ∈{'1753', '2410', '0148'}, **adresse** est une chaîne de 20 caractères

Valeur NULL : l'absence temporaire de valeur (inconnu) ou l'inapplicabilité d'une valeur pour un attribut dans un tuple

Sous-ensemble du domaine de valeurs de prénom Sorbonne Université-LU2IN009

Clés

- Plus petit sous-ensemble d'attributs qui identifient chaque ligne de *manière* unique. ⁷ il n'existe pas deux lignes avec les mêmes valeurs pour l'ensemble de ces attributs
- Exemple: l'attribut <u>matricule</u> pour la relation Étudiant

	<u>matricule</u>	nom	prénom	dateNaiss	adresse
Chaque ligne a une valeur de matricule différente	1753	Smith	Joe	1992-01-12	11 CP NYC
	9832	Smith	Dan	1989-04-03	22 Rd NJ
	4755	Smith	Joe	1994-11-29	7 HW NJ
	6842	Roy	Ian	1992-05-18	NULL

- Est-ce que les ensembles suivants peuvent être des clés?
 - {nom, prénom}
 - {nom, prénom, dateNaiss}

Clé primaire et clé candidate

- Chaque relation doit posséder au moins une clé
- Une relation a au moins une clé candidate (chacun des attributs est renseigné, pas de valeurs NULL)
 - on choisit *une seule* comme <u>clé primaire</u>

Exemple: <u>matricule</u> est clé primaire, {nom, prenom, dateNaiss} est clé

(an	uı	uai	.e	

Chaque ligne a une valeur ———
de matricule et de l'ensemble
{nom, prénom, dateNaiss} différente

	<u>matricule</u>	nom	prénom	dateNaiss	adresse
•	1753	Smith	Joe	1992-01-12	11 CP NYC
	9832	Smith	Dan	1989-04-03	22 Rd NJ
	4755	Smith	Joe	1994-11-29	7 HW NJ
	6842	Roy	Ian	1992-05-18	NULL

Notation: la clé primaire est soulignée, les clés candidates sont mentionnées en langage naturel

Clé primaire et clé candidate

- Contraintes de l'application:
 - Chaque module doit avoir un code différent
 - Il n'existe pas deux modules avec le même intitulé pour un niveau donné
 - Un enseignant ne peut pas être responsable de plus d'un module par niveau

La table **Modules**

code	intitulé	niveau	responsable
2I009	Bases de Données	L2	Smith
MI005	Bases de Données	M1	Roy
3I004	Programmation	L ₃	Smith

- Quelles sont les clés candidates?
- Quelle est la clé primaire?
- Les tuples suivants peuvent-ils exister dans la table Modules?
 - {'2I009', 'BD Web', 'L3', 'Roy'}
 - {'MIoo6', 'Crypto', 'M1', 'Roy'}
 - {'3I009', 'Bases de Données', 'L2', 'Roy'}

Clés étrangères

Clé étrangère:

- <u>sous-ensemble d'attributs</u> dont les valeurs proviennent des clés candidates de la même table ou d'autre table
- mécanisme de référencement des n-uplets

Le nom d'une clé étrangère n'est pas nécessairement le même que celui de la clé référencée

Clés étrangères : autre exemple

- La table **Module** contient *deux clés étrangères*:
 - salle : fait référence à l'attribut numéro de la table Salle
 - suit: fait référence à l'attribut code de la table Module

- Valeurs permises pour une clé étrangère:
 - Valeurs déjà existantes des clés candidates ou NULL (inconnu)

Clés étrangères : exemple

- Des clés étrangères peuvent composer la clé candidate/primaire d'une relation:
 - Exemple: la clé {etud, module} de la table Inscriptions

Schéma relationnel: aperçu

Schéma d'une relation:

Nom de la relation + Liste de ses attributs avec leur domaines (nombre, chaîne de caractères, date...) + Clés des tables et contraintes d'intégrité (cf. partie III)

Instance d'une relation:

Ensemble des n-uplets de la table

Schéma d'une base de données:

Ensemble des schémas des relations qui la composent

1753	Smith	Joe	11 CP NYC
2410	Hersh	Dan	22 Rd NJ
0148	Clay	Maissa	7 HW NJ

O1/	•	•
Clé	nrim	iaire
Cic	PIIII	ulic

<u>matricule</u>	nom	prénom	adresse
numérique	caractères	caractères	caractères

Instance Etudiants={3 n-uplets}

Schéma Etudiants

Notations

- Schéma d'une BD = ensemble des schémas de relation $S = \{R1, R2, ..., Rn\}$ où Ri est un schéma de relation
- Schéma de relation = ensemble des attributs avec leurs domaines respectifs et les contraintes R(A1:D1, A2:D2, ..., Am:Dm), A1 est clé primaire: relation d'arité m

Exemple:

Etudiants(<u>matricule</u> :*Number*, nom : *Varchar*, prenom : *Varchar*, adresse : *Varchar*)

Modules(code : *Number*, intitule : *Varchar*, niveau : *Varchar*, salle : *Number*)

Salles(<u>numero</u> : *Number*, capacite : *Number*)

Schéma de la Base de Données: {Etudiants, Modules, Salle}

★ Number=numérique, Varchar=chaîne de caractères de longueur variable

Simplification des notations

- Convention de notation:
 - Clé primaire : soulignement
 - Clés étrangères : astérisque et désignation de la table référencée
 - On omet les domaines des attributs
- Exemple:

Etudiants(matricule, nom, prenom, adresse, collaborateur*)

→ collaborateur fait référence à (la clé primaire de) Etudiants

Modules(<u>code</u>, intitule, niveau, salle*)

→ salle fait référence à Salles

Salles(<u>numero</u>, capacite, précédente *, suivante*)

→ précédente et suivante font chacune référence à Salles

Avantages du modèle relationnel

- Proche de la réalité et simple
 - La plupart des entités du monde réel partagent les mêmes attributs
 - Familiarité des utilisateurs avec les tableaux
- Repose sur des fondements solides
 - Théorie des Ensembles
 - Logique du Premier Ordre
- Doté de langages de requêtes puissant
 - Algèbre relationnelle, Calcul des Prédicats
 - SQL (Structured Query Language)

Traduction E/A – modèle relationnel

- Règles de transformation des Entités:
 - Une entité devient une relation
 - Les attributs d'une entité deviennent les attributs de la relation
 - Tout ensemble d'attributs identifiant une entité devient la clé primaire de la relation
 - Tout ensemble d'attributs susceptibles de jouer le rôle d'identifiant d'entité devient clé candidate de la relation

Exemple

Etudiant(<u>matricule</u>, nom, prenom, adresse)

Module(code, intitulé, niveau)

{nom, prénom} est second identifiant de l'entité Étudiant ⁷ {nom, prénom} est clé candidate dans la relation **Etudiant**

Règles de transformation d'une association

- Traitement différent en fonction des cardinalités:
- Cas 1 : Association n-aire avec cardinalités (x,y) et au moins une cardinalité (1,1), où (x,y) peut être: (0,n), (1,n), (0,1)
 - La table obtenue pour l'entité correspondante à la cardinalité (1,1) contiendra aussi les attributs de l'assciation ⁷ si plusieurs cardinalités (1,1), modifier seulement la table correspondante à l'une de ces entités
 - Cas 2 : Association n-aire avec cardinalités (x, n) (x:{0,1})
 - Créer une table ayant comme attributs tous les attributs de l'association et comme identifiants les identifiants de l'association
 - Cas 3 : Associations n-aire avec cardinalités (x, y) et (0,1), où $(x, y) \neq (1,1)$, (x, y) peut être $\{(0, n), (1, n), (0,1)\}$. Transformations possibles:
 - Similaire à celle pour le Cas 1 7 problème: valeurs NULL possibles
 - Similaire à celle pour le Cas 2 7 préférable car élimination des valeurs
 NULL Sorbonne Université-LU2IN009 20

Cası: Association n-aire (x, y) et (1,1)

Rappel: attributs de l'association {code, numéro, heureDebut, durée}

Module(<u>code</u>, intitule, niveau, numéroSalle*, heureDebut, duree)

NuméroSalle référence numéro de la table Salle
 Salle(numéro, nbrePlaces)

Cası: Association n-aire (x, y) et (1,1)

Si plusieurs cardinalités 1:1, modifier la table de seulement une des relations correspondantes

Compte(numéro, type)

Client(code, Nom, DateN, NumeroCompte*, depuis)

- ⁷ NumeroCompte référence numéro de la table Compte
- La table Compte peut être enlevée si l'entité Compte n'est associé à aucune autre entité, tous ses attributs seront stockés dans la relation Client

Sorbonne Université-LU2IN009

Cas 2 : Association n-aire (x, n)

Etudiant(matricule, nom, prenom, adresse) Module(code, intitulé, niveau)

Inscriptions(matricule*, code*, anneeUniv)

Exercice: traduction d'une association ternaire (x,n)

Cas 3: Association n-aire (x, y) et (0,1)

Première possibilité : même transformation que pour le Cas 1

Etudiant(matricule, ..., promo*)

Promotion(nom)

⁷ promo clé étrangère fait référence à nom de Promotion

<u>matricule</u>	nom	••••	promo
1753	Smith		M.Curie
2410	Hersh		NULL

nom M. Curie J. Fourrier

Problème : possibilité d'avoir des valeurs NULL

Cas 3: Association n-aire (x, y) et (0,1)

Etudiant(matricule, ..., promo*)

Promotion(nom)

Etud-Promo(matEtu*, promo*)

<u>matricule</u>	nom	••••
1753	Smith	
2410	Hersh	

<u>matEtu</u>	promo
1753	M. Curie

nom	
M. Curie	
J. Fourrier	

Avantage : stocker uniquement les paires (étudiant, promo) qui existent
 7 (évite les valeurs NULL)

Règle de transformation des entités faibles

- Transformation des entités faibles:
 - Créer une relation pour l'entité faible
 - Clé de la relation correpondante à une entité faible = concaténation de l'identifiant de l'entité faible et celui de l'entité dont elle dépend
 - les attributs constituant l'identifiant de l'entité forte contituent une clé étrangère (qui fait aussi partie de la clé primaire)
- ⁷ Transformation similaire à celle pour le Cas 1, en incluant en plus la clé étrangère dans la clé primaire

Transformation des entités faibles

Collection (<u>référence</u>, titre, éditeur)

Livre (référence*, numVolume, intitulé, NB_pages)

référence est une clé étrangère qui fait référence à la clé primaire de Collection Clé primaire Livre:{référence, numVolume, intitulé}

Règle de transformation de la spécialisation

- Transformation de la spécialisation:
 - Créer une relation (table) pour chaque entité soustype, les attributs de la relation sont ceux de l'entité sous-type
 - Clé de la relation: l'identifiant de l'entité sur-type
- Cas particulier, si l'entité sur-type est abstraite (il n'existe pas d'instance de cette entité dans l'application):
 - supprimer la table correspondante à l'entité sur-type
 - rajouter tous ses attributs dans toutes les tables correspondantes aux entités sous-type

Exemple

Etudiant(matricule, nom)
EtudiantMaster(matricule*, semestre)
Thesard(matricule*, debutThese)

Dans **EtudiantMaster** et **Thesard** matricule est clé primaire et étrangère (référence matricule de la table **Etudiant**) en même temps!

Exemple

Il n'existe pas d'étudiants autres que les étudiants inscrits en master ou en thèse : ⁷ on supprime la table **Etudiant**

Etudiant(matricule, nom)

EtudiantMaster(<u>matricule</u>, nom, semestre)

Dans **EtudiantMaster** et T**hesard** matricule est la clé primaire, elle n'est pas clé étrangère.

Thesard(matricule, nom, debutThese)

Exercice de rétro-ingénierie : 1

Soit le schéma relationnel suivant. En déduire un schéma /EA correspondant.

- ARTICLE (<u>Aid</u>)
- CATEGORIE (<u>Cid</u>)
- REFERENCE (<u>Aid*, Cid*</u>)
- PERSONNE (<u>Pid</u>, NomP, Prenom, Email)
- ArticleLangue(<u>Aid, Langue, Titre</u>, Contenu)
- CatégorieLangue(<u>Cid</u>, <u>Langue</u>, <u>NomCat</u>)
- ECRIT (<u>Pid*, Aid*, Langue, Titre</u>)

Exercice de rétro-ingénierie : 2

Soit le schéma relationnel suivant. En déduire un schéma EA correspondant.

SPORTIF (SID, Nom, DateNaiss, Manager)

MANAGER (MID, Tarif, Experience)

CLUB (<u>CID</u>, DateCreation, Budget, Division)

CONTRAT (SID, CID, SAISON-DEBUT, NBSais, Salaire, Augmentation)

RENCONTRE (LOCAL, VISITEUR, SAISON, Vainqueur)

Corrigé

- · Traduction EA \rightarrow relationnel
 - A(<u>a1,a2</u> a3) commun aux 4 exercices
 - Ex1: immédiat
 - Ex2 : B(<u>b1</u>,b2,b3) P(<u>a1*,a2*,b1*,</u>p1) C(<u>c1</u>,c2, a1*,a2*,b1*,p1)
 - ou bien A et B idem, C(<u>c1</u>, c2) rajouter à P c1*
 - Ex3: $B(\underline{b_1},\underline{b_2},\underline{b_3})$ $S(a_1^*,a_2^*,\underline{b_1^*},s_1,s_2)$
 - Ex4 : B(<u>b1</u>, a1*,a2*,b2, b3, t1), C(<u>c1</u>,c2), P(<u>b1*</u>, a1*,a2*,c1*,p1)