Tandon Bridge Program - Extended - Homework 3

- a) Exercise 3.1.1, sections a-g
 - $A = \{x \in \mathbb{Z} : x \text{ is an integer multiple of } 3\}$
 - $B = \{x \in \mathbb{Z} : x \text{ is a perfect square}\}\$
 - $C = \{4, 5, 9, 10\}$
 - $D = \{2, 4, 11, 14\}$
 - $E = \{3, 6, 9\}$
 - $F = \{4, 6, 16\}$
 - (a.) $27 \in A$

True, since A is the set of all integer multiples of 3 and 27 is an integer multiple of 3 (3*9 = 27).

(b.) $27 \in B$

False, since B is the set of all integer perfect squares, and 27 is not a perfect square.

(c.) $100 \in B$

True, since B is the set of all integer perfect squares and 100 is a perfect square of 10, which is an integer.

(d.) $E \subseteq C$ or $C \subseteq E$

False. E is not the subset of C, because it contains 3 and 6, which are not in C. C is not a subset of E, because it contains 4, 5, 10, which are not in E.

(e.) $E \subseteq A$

True. A is the set of all integer multiples of three, and 3, 6, 9 are all multiples of three.

(f.) $A \subseteq E$

False, since A includes all integers multiples of 3 while E contains only 3 integer multiples of 3 (3, 6 and 9).

(g.) $E \in A$

False. While the elements in E are included in A, the set E is not.

- b) Exercise 3.1.2, sections a-e
 - $A = \{x \in \mathbb{Z} : x \text{ is an integer multiple of } 3\}$
 - $B = \{x \in \mathbb{Z} : x \text{ is a perfect square}\}\$
 - $C = \{4, 5, 9, 10\}$
 - $D = \{2, 4, 11, 14\}$
 - $E = \{3, 6, 9\}$
 - $F = \{4, 6, 16\}$
 - (a.) $15 \subset A$

False. $15 \in A$, but is not a subset of A, as it is not a set.

(b.) $\{15\} \subset A$

True. For A to be a subset of B, all elements in A should be contained in B. The set in question here has a single element 15 and 15 is also an element in A. We also know it's a perfect subset, because A contains every other integer multiple of 3 in addition to 15.

(c.) $\emptyset \subset C$

True. \emptyset is a subset of all sets. We also learned that $A \subset B$ if B contains an element that is not in A. An example of an element in C not in \emptyset is A.

(d.) $D \subseteq D$

True. A set can be a subset of itself. It is, however, not a perfect subset, because they contain the exact same elements.

- (e.) $\emptyset \in B$ False. $\emptyset \notin B$, but it is a subset of B.
- c) Exercise 3.1.5, sections b, d Express each set using set builder notation. Then if the set is finite, give its cardinality. Otherwise, indicate that the set is infinite
 - (b.) $\{3, 6, 9, 12, ...\}$ Builder notation: $A = \{x \in \mathbb{Z}^+ : x \text{ is an integer multiple of } 3\}$ Infinite set, so not including cardinality.
 - (d.) $\{0,10,20,30,...1000\}$ Builder notation: $A=\{x\in\mathbb{Z}:0\leq x\leq 1000\text{ and }x\text{ is an integer multiple of }10\}$ Finite set. |A|=101
- d) Exercise 3.2.1, sections a-k Let $X = \{1, \{1\}, \{1, 2\}, 2, \{3\}, 4\}$. Which statements are true?
 - (a.) $2 \in X$ True. 2 is an element in X.
 - (b.) $\{2\} \subseteq X$ True. All elements in $\{2\}$, that is 2 is also an element in X, satisfying the condition for a subset.
 - (c.) $\{2\} \in X$ False. 2 is an element of X, but the set $\{2\}$ is not an element of X.
 - (d.) $3 \in X$ False. 3 is not an element of X, the set $\{3\}$ is.
 - (e.) $\{1,2\} \in X$ True. The set $\{1,2\}$ is an element of X.

- (f.) $\{1,2\}\subseteq X$ True. Both 1 and 2 are elements of X, so they would make up one subset of X.
- (g.) $\{2,4\}\subseteq X$ True. Both 2 and 4 are elements of X, so they would make up one subset of X.
- (h.) $\{2,4\} \in X$ False. The set $\{2,4\}$ does not belong to X.
- (i.) $\{2,3\}\subseteq X$ False. The set $\{2,3\}$ is not a subset of X because 3 is not an element in X.
- (j.) $\{2,3\} \in X$ False. The set $\{2,3\}$ does not belong to X
- (k.) |X| = 7 False. The cardinality of X is 6, as there are 6 elements in the set.

Question 8 Solve Exercise 3.2.4, section b

```
b . Let A=\{1,2,3\}. What is \{X\in P(A):2\in X\}? Answer: \{X\in P(A):2\in X\}=\{\{2\},\{1,2\},\{2,3\},\{1,2,3\}\}
```

Rationale: For $\{X \in P(A) : 2 \in X\}$, we need to find those elements in P(A) that contain the element 2.

 $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$. We identify those elements of P(A) that contain 2, resulting in the answer above.

a) Exercise 3.3.1, sections c-e

$$A = \{-3, 0, 1, 4, 17\}$$

$$B = \{-12, -5, 1, 4, 6\}$$

$$C = \{ x \in \mathbb{Z} : x \text{ is odd} \}$$

$$D = \{x \in \mathbb{Z} : x \text{ is positive}\}\$$

(c.) $A \cap C$

C contains all odd integers while $A = \{-3, 0, 1, 4, 17\}.$

 $A \cap C$ contains all elements common to both A and C, essentially all odd integers in A.

$$A \cap C = \{-3, 1, 17\}$$

(d.) $A \cup (B \cap C)$

Here $(B \cap C)$ is tabulated using the same logic as the previous question: $(B \cap C) = \{-5, 1\}$

 $A \cup (B \cap C)$ contains all the elements present in either A or $\{B \cap C\}$.

$$A \cup (B \cap C) = \{-3, -5, 0, 1, 4, 17\}$$

(e.) $A \cap B \cap C$

 $A \cap B \cap C$ or the intersection of A, B and C contains all the elements common to A, B and C. There is only one element that is common to the three sets: 1

$$\therefore A \cap B \cap C = \{1\}$$

b) Exercise 3.3.3, sections a, b, e, f

$$A_i = \{i^0, i^1, i^2\}$$

$$C_i = \{x \in \mathbb{R} : \frac{-1}{i} \leqslant x \leqslant \frac{1}{i}\}$$

(a.) $\bigcap_{i=2}^{5} A_i$

$$A_2 = \{2^0, 2^1, 2^2\} = \{1, 2, 4\}$$

$$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$$

$$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$$

$$A_3 = \{3^0, 3^1, 3^2\} = \{1, 3, 9\}$$

$$A_4 = \{4^0, 4^1, 4^2\} = \{1, 4, 16\}$$

$$A_5 = \{5^0, 5^1, 5^2\} = \{1, 5, 25\}$$

$$\bigcap_{i=2}^{5} A_i = A_2 \cap A_3 \cap A_4 \cap A_5$$
$$\bigcap_{i=2}^{5} A_i = \{1\}$$

(b.)
$$\bigcup_{i=2}^{5} A_i$$

We use A_2, A_3, A_4, A_5 from the previous question

$$\bigcup_{i=2}^5 A_i = A_2 \cup A_3 \cup A_4 \cup A_5$$

$$\bigcup_{i=2}^{5} A_i = \{1, 2, 3, 4, 5, 9, 16, 25\}$$

(e.)
$$\bigcap_{i=1}^{100} C_i$$

$$C_1 = \{ x \in \mathbb{R} : \frac{-1}{1} \leqslant x \leqslant \frac{1}{1} \}$$

$$C_2 = \{ x \in \mathbb{R} : \frac{-1}{2} \leqslant x \leqslant \frac{1}{2} \}$$

.

$$C_{99} = \{ x \in \mathbb{R} : \frac{-1}{99} \leqslant x \leqslant \frac{1}{99} \}$$

$$C_{100} = \{ x \in \mathbb{R} : \frac{-1}{100} \leqslant x \leqslant \frac{1}{100} \}$$

The range of x reduces as we go from C_1 to C_{100} . It starts with all the elements where $x \in [-1,1]$ and reduces all the way to only those elements where $x \in [\frac{-1}{100},\frac{1}{100}]$.

Here each larger set includes all smaller sets that succeed it. $\therefore x \in \left[\frac{-1}{100}, \frac{1}{100}\right]$ which is the smallest set in the sequence of $C_1, C_2, C_{99}, C_{100}$ has all the elements that are common to the bigger sets that precede it.

$$\therefore \bigcap_{i=1}^{100} C_i = \{ x \in \mathbb{R} : \frac{-1}{100} \leqslant x \leqslant \frac{1}{100} \}$$

(f.)
$$\bigcup_{i=1}^{100} C_i$$

We use the same values for C_1 to C_{100} as the previous question. We know that C_2 to C_{100} are all proper subsets of C_1 .

In this case, union of all sets will be C_1 as it contains all the elements of its subsets C_2 to C_{100} in addition to its own elements.

$$\therefore \bigcup_{i=1}^{100} C_i = \{ x \in \mathbb{R} : -1 \leqslant x \leqslant 1 \}$$

c) Exercise 3.3.4, sections b, d

$$A = \{a, b\}$$

$$B=\{b,\,c\}$$

- (b.) $P(A \cup B)$ $A \cup B = \{a, b\} \cup \{b, c\}$ $A \cup B = \{a, b, c\}$ $P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
- $$\begin{split} \text{(d.)} \ \ P(A) \cup P(B) \\ P(A) &= \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \\ P(B) &= \{\emptyset, \{b\}, \{c\}, \{b, c\}\} \\ P(A) \cup P(B) &= \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\} \end{split}$$

- a) Exercise 3.5.1, sections b, c
 - $A = \{tall, grande, venti\}$
 - $B = \{foam, no foam\}$
 - $C = \{non fat, whole\}$
 - (b.) (foam, tall, non-fat)
 - (c.) $B \times C = \{(foam, non fat), (foam, whole), (no foam, non foam, non$ fat), (no - foam, whole)}
- b) Exercise 3.5.3, sections b, c, e
 - (b.) $\mathbb{Z}^2 \subseteq \mathbb{R}^2$

True.

Rationale: \mathbb{Z} is a subset of \mathbb{R} and both \mathbb{Z}^2 and \mathbb{R}^2 are made up of ordered pairs.

(c.) $\mathbb{Z}^2 \cap \mathbb{Z}^3 = \emptyset$

True.

Rationale: \mathbb{Z}^2 contains ordered pairs whereas \mathbb{Z}^3 contains triples.

(e.) For any three sets, A, B, and C, if $A \subseteq B$, then $A * C \subseteq B * C$ True.

Rationale: If all elements of A are in B, then we know $x \in A$ and $x \in B$. We also know that the ordered pair in A * C would be (x, y)(where $y \in C$). Thus we know (x, y) would also be in B * C.

- c) Exercise 3.5.6, sections d, e
 - (d.) $\{xy : \text{where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\}$ $x \in \{0\} \cup \{0\}^2; x \in \{0,00\}$

 $y \in \{1\} \cup \{1\}^2; y \in \{1, 11\}$

 $\{xy : \text{where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\} = \{01, 011, 001, 0011\}$

(e.) $\{xy : \text{where } x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$

 $y \in \{a\} \cup \{a\}^2; y \in \{a, aa\}$

 $\{xy : \text{where } x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\} = \{aaa, aaaa, aba, abaa\}$

d) Exercise 3.5.7, sections c, f, g

$$A = \{a\}$$

$$B = \{b, c\}$$

 $C = \{a, b, d\}$

(c.) $(A \times B) \cup (A \times C)$

$$A \times B = \{ab, ac\}$$

 $A \times C = \{aa, ab, ad\}$

 $(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$

```
\begin{split} &\text{(f.)}\ \ P(A\times B)\\ &\quad A\times B=\{ab,ac\}\\ &\quad P(A\times B)=\{\emptyset,\{ab\},\{ac\},\{ab,ac\}\}\\ &\text{(g.)}\ \ P(A)\times P(B)\\ &\quad P(A)=\{\emptyset,\{a\}\}\\ &\quad P(B)=\{\emptyset,\{b\},\{c\},\{bc\}\}\\ &\quad P(A)\times P(B)=\{(\emptyset,\emptyset),(\emptyset,\{b\}),(\emptyset,\{c\}),(\{a\},\emptyset),(\{a\},\{b\}),(\{a\},\{c\}),(\{a\},\{bc\})\}\\ \end{split}
```

- a) Exercise 3.6.2, sections b, c
 - (b.) $(B \cup A) \cap (\overline{B} \cup A) = A$

$$\begin{array}{lll} 1 & (B \cup A) \cap (\overline{B} \cup A) & \text{Premise} \\ 2 & (A \cup B) \cap (\overline{B} \cup A) & \text{Commutative law, 1} \\ 3 & (A \cup B) \cap (A \cup \overline{B}) & \text{Commutative law, 2} \\ 4 & A \cup (B \cap \overline{B}) & \text{Distributive law, 3} \\ 5 & A \cup \emptyset & \text{Complement law 4} \\ 6 & A & \text{Identity law, 5} \end{array}$$

We started from the premise and arrived at the conclusion using valid laws of logic, proving the identity.

- (c.) $\overline{A \cap \overline{B}} = \overline{A} \cup B$
 - 1 $(\overline{A \cap \overline{B}})$ Premise
 - $2 \quad \overline{A} \cup \overline{\overline{B}}$ De Morgan's Law, 1
 - $3 \quad \overline{A} \cup B$ Double complement law, 2

We started from the premise and arrived at the conclusion using valid laws of logic, proving the identity.

- b) Exercise 3.6.3, sections b, d
 - (b.) $A (B \cap A) = A$

Say $A = \{1, 2\}$ and $B = \{1\}$.

Here $B \cap A = \{1\}$, because there is only one element: 1, that is part of both A and B

Plugging $B \cap A = \{1\}$ into the left hand side of the question, you get: $\{1,2\} - \{1\}$.

This is equal to $\{2\}$, which is not equal to $\{A\}$ or $\{1,2\}$.

$$\therefore A - (B \cap A) = A$$
 is not a set identity.

(d.) $(B-A) \cup A = A$

Say
$$A = \{1, 2\}$$
 and $B = \{1, 2, 3\}$.

Here $B - A = \{3\}$, because 3 is the only element only in B, not A. Plugging $B - A = \{3\}$ and $A = \{1, 2\}$ into the left hand side of the question, you get:

$$(B-A)\cup A$$

$${3} \cup {1,2}$$

 $\{1, 2, 3\}.$

Since
$$\{1, 2, 3\} \neq \{1, 2\}, \{1, 2, 3\} \neq A$$

 $\therefore (B - A) \cup A = A$ is not a set identity.

- c) Exercise 3.6.4, sections b, c
 - (b.) $A \cap (B A) = \emptyset$

We start with the left hand side and arrive at the right hand side.

$$\begin{array}{lll} 1 & A \cap (B-A) & \text{Premise} \\ 2 & A \cap (B \cap \overline{A}) & \text{Set subtraction law, 1} \\ 3 & A \cap (\overline{A} \cap B) & \text{Commutative law, 2} \\ 4 & (A \cap \overline{A}) \cap B & \text{Associative law, 3} \\ 5 & \emptyset \cap B & \text{Complement law, 4} \\ 6 & \emptyset & \text{Domination law, 5} \\ \therefore A \cap (B-A) = \emptyset \end{array}$$

(c.)
$$A \cup (B - A) = A \cup B$$

We start with the left hand side and arrive at the right hand side.

$$\begin{array}{lll} 1 & A \cup (B-A) & \text{Premise} \\ 2 & A \cup (B \cap \overline{A} & \text{Set subtraction law, 1} \\ 3 & (A \cup B) \cap (A \cup \overline{A}) & \text{Distributive law, 2} \\ 4 & (A \cup B) \cap U) & \text{Complement law, 3} \\ 5 & (A \cup B) & \text{Identity law, 4} \\ \therefore A \cup (B-A) = A \cup B \\ \end{array}$$