第一次作业答案

解答题

1. 如下表。

	 驻点	 单调递增区间	单调递减区间	拐点	凹区间	凸区间
(a)	无	$(0,+\infty)$	无	无	$(0,+\infty)$	无
(b)	x = 0, 2	$(-\infty,0)$ 和 $(2,+\infty)$	(0,2)	x = 1	$(-\infty,1)$	$(1,+\infty)$
(c)	x = -1	$(-1, +\infty)$	$(-\infty, -1)$	x = -2	$(-\infty, -2)$	$(-2,+\infty)$
(d)	$x = \frac{1}{e}$	$(\frac{1}{e}, +\infty)$	$(0,\frac{1}{e})$	无	无	$(0,+\infty)$
(e)	x = 1	$(-\infty,1)$	$(1, +\infty)$	x = 2	$(-\infty,2)$	$(2,+\infty)$
(f)	$x = \pm 1$	(-1, 1)	$(-\infty, -1)$ 和 $(1, +\infty)$	$x = 0, \pm \sqrt{3}$	$(-\infty, -\sqrt{3})$ 和 $(0, \sqrt{3})$	$(-\sqrt{3},0)$ 和 $(\sqrt{3},+\infty)$

函数草图如下:

2. (a) 斜渐近线: y = x 垂直渐近线: x = 0

(b) 斜渐近线: y = x - 2 垂直渐近线: x = -2

(c) 水平渐近线: y = 0

3.
$$a = -2$$
, $b = 0$

4. (a)
$$f(x) = -x^4$$
, $c = 0$

(b)
$$f(x) = x^4$$
, $c = 0$

(c)
$$f(x) = x^3$$
, $c = 0$

证明题

1. $\diamondsuit g(x) = f(x) - f'(x_0)(x - x_0) - f(x_0), \quad \text{III} g'(x) = f'(x) - f'(x_0).$

1

由于 $f''(x) \ge 0$,则f'(x)单调递增。

则当 $x \ge x_0$ 时, $f'(x) \ge f'(x_0)$,则 $g'(x) \ge 0$,g(x)单调递增。则当 $x \le x_0$ 时, $f'(x) \le f'(x_0)$,则 $g'(x) \le 0$,g(x)单调递减。

则g(x)在 $x = x_0$ 有最小值,则 $g(x) \ge g(x_0) = 0$,原题得证。

2. (a)
$$\diamondsuit x = x_2, x_0 = \frac{x_1 + x_2}{2}$$
, \emptyset

$$f(x_2) \ge f(\frac{x_1 + x_2}{2}) + f'(\frac{x_1 + x_2}{2}) \cdot (x_2 - \frac{x_1 + x_2}{2}) = f(\frac{x_1 + x_2}{2}) + f'(\frac{x_1 + x_2}{2}) \cdot \frac{x_2 - x_1}{2}$$

$$f(x_1) \ge f(\frac{x_1 + x_2}{2}) + f'(\frac{x_1 + x_2}{2}) \cdot (x_1 - \frac{x_1 + x_2}{2}) = f(\frac{x_1 + x_2}{2}) + f'(\frac{x_1 + x_2}{2}) \cdot \frac{x_1 - x_2}{2}$$

(c) 将(a),(b)中的不等式相加,可得

$$f(x_2) + f(x_1) \ge 2f(\frac{x_1 + x_2}{2})$$

即

$$\frac{f(x_1) + f(x_2)}{2} \ge f(\frac{x_1 + x_2}{2})$$

(d) 对于任何一个凸函数图像,其上有两点A,B,则线段AB的中点始终在函数图像的上方,如图所示:

$$\frac{x_1^2 + x_2^2}{2} \ge \left(\frac{x_1 + x_2}{2}\right)^2$$

即

$$x_1^2 + x_2^2 \ge \frac{1}{2}(x_1 + x_2)^2$$

(b) $\diamondsuit f(x) = e^x$, 则由第2题有

$$\frac{e^{x_1} + e^{x_2}}{2} \ge e^{\frac{x_1 + x_2}{2}}$$

(c)
$$\Rightarrow t_1 = e^{x_1}, t_2 = e^{x_2}, \quad \mathbb{M}e^{\frac{x_1 + x_2}{2}} = (e^{x_1}e^{x_2})^{\frac{1}{2}} = \sqrt{t_1 t_2} \, \mathbb{M}$$

$$\frac{t_1 + t_2}{2} \ge \sqrt{t_1 t_2}$$

4. 由于f是凹函数,则对任意 x, x_0 ,都有

$$f(x) \le f(x_0) + f'(x_0)(x - x_0)$$

令
$$g(x) = -f(x)$$
,则 $g'(x) = -f'(x)$,则

$$g(x) = -f(x) \ge -f(x_0) - f'(x_0)(x - x_0) = g(x_0) + g'(x_0)(x - x_0)$$

则
$$g(x) = -f(x)$$
是凸函数