1ª Lista de Exercícios – Cálculo Numérico Computacional

Assunto: Representação numérica e zeros de funções

Professor: Fabricio Alves Oliveira Curso: Engenharia Elétrica

1- Converta os seguintes números decimais para sua forma binária:

- a) 39
- b) 1500
- c) 65.023

2- Converta os seguintes números binários para sua forma decimal:

- a) $(101111101)_2$
- b) $(0.1101)_2$
- c) $(11011.01)_2$

3- Escreva, se possível, a representação por arredondamento e por truncamento dos números a seguir, no sistema de ponto flutuante F(10, 3, -4, 4).

a)
$$x_1 = 1.25$$

d)
$$x_4 = 2.71828 \dots$$

b)
$$x_2 = 10.053$$

e)
$$x_5 = 0.000007$$

c)
$$x_3 = -238.15$$

c)
$$x_3 = -238.15$$
 f) $x_6 = 718235.82$

4- Considere uma máquina cujo sistema de representação de ponto flutuante é F(10, 4, -5, 5). Pede-se:

- a) Qual o menor e o maior número em valor absoluto representados nesta máquina?
- b) Como será representado o número 73.758 nesta máquina, se for usado o arredondamento? E se for usado o truncamento?
- c) Se a = 42450 e b = 3, qual é o resultado de a + b nesta máquina?

5- Seja o sistema F(2,3,-1,2). Exiba todos os números representáveis neste sistema e coloque-os sobre um eixo ordenado.

6- Seja um sistema de aritmética de ponto flutuante de quatro dígitos e base decimal. Dados os números: $x = 0.7237 \times 10^4$, $y = 0.2145 \times 10^{-3}$ e $z = 0.2585 \times 10^{-1}$ efetue as operações:

a)
$$x + y + z$$

b)
$$\frac{xy}{z}$$
.

7- Calcule o erro absoluto e o erro relativo envolvidos nos seguintes cálculos numéricos, onde o valor preciso da solução é dado por x e o valor aproximado é dado por \bar{x} .

a)
$$x = 0.0020 \text{ e } \bar{x} = 0.0021$$

b)
$$x = 530000 \text{ e } \bar{x} = 529400$$

8- Localize graficamente e dê intervalos de amplitude 1 que contenha as raízes das equações:

a)
$$\ln x - 2x + 2 = 0$$

b)
$$e^x - sen x = 0$$

c)
$$\ln x + 2 - 2^x = 0$$

d)
$$2\cos x + x = 0$$

9- Para cada equação a seguir, utilize o Método da Bissecção e aproxime a menor raiz positiva com erro menor que $\varepsilon=10^{-1}$.

a)
$$2\cos x - \frac{e^x}{2} = 0$$

b)
$$3 \ln x - \frac{x^2}{2} = 0$$

10- Qual o número mínimo de iterações necessárias para que o erro seja menor que 0.5×10^{-6} no cálculo das aproximações do exercício anterior?

11- A função real $f(x)=x^2+x-\frac{1}{4}$ possui um zero no intervalo [-0.4,0.4]. Utilize o Método do Ponto Fixo até obter uma aproximação para esse zero com erro absoluto inferior a 0.5×10^{-2} .

12- Mostre que para determinar a raiz quadrada de um número positivo a, o MPF com função de iteração $\varphi(x)=\frac{a}{x}$ não convergirá, qualquer que seja a aproximação inicial.

13- Considere a função $f(x) = x^3 - 0.5x^2 - 2.5x - 1.5$.

- a) Obtenha um intervalo de amplitude 1 que contenha a menor raiz real positiva de f.
- b) Determine uma função de iteração para MPF que seja convergente para aproximar essa raiz. Em seguida, execute os 4 primeiros passos do MPF, partindo do ponto médio do intervalo obtido no item anterior.

14- Seja $f(x)=e^x-4x^2$ e r sua raiz no intervalo (0,1). Tomando $x_0=0.5$, encontre r com $\varepsilon=10^{-4}$, usando: (Considere como critério de parada $|f(x_k)|<\varepsilon$.)

a) o MPF, com
$$\varphi(x) = \frac{1}{2}e^{x/2}$$

b) o Método de Newton.

15- O valor de π pode ser obtido através da resolução das seguintes equações:

a)
$$sen x = 0$$

b)
$$\cos x + 1 = 0$$

Aplique o Método de Newton com $x_0=3$ e precisão 0.5×10^{-7} e compare os resultados obtidos.

2