Определение

Пусть K — коммутативное кольцо. Множество $I \subset K$ — *идеал* в K, если I — подкольцо K и выполнено следующее условие:

$$\forall x \in K \text{ u } \forall a \in I \qquad ax \in I.$$

ullet В любом кольце K есть два "неинетересных" идеала: это $\{0\}$ и K.

Лемма 6

Пусть K — коммутативное кольцо, $I \subset K$. Пусть выполнены следующие условия:

- 1° Замкнутость по + \forall a, b ∈ I a+b ∈ I.
- $2^{\circ} \exists$ обратного элемента по $+ \forall a \in I \quad \exists (-a) \in I$.
- 3° Замкнутость по · на элементы $K \ \forall x \in K \ u \ \forall a \in I$ ах ∈ I Тогда I идеал в K.

Доказательство. • По Лемме 1, I — подкольцо K.

• Теперь по условию 3° несложно понять, что *I* — идеал.
Из определения

Примеры идеалов:

Пусть наше коммутативное кольцо это \mathbb{Z} , а подкольцо I - все числа кратные 5: $\{\ldots, -15, -10, -5, 0, 5, 10, 15, \ldots\}$. Это множество является идеалом потому, что и сумма любых двух таких чисел, и произведение любого из них на любое целое число сами входят в это множество. При этом то же самое множество не будет идеалом в кольце \mathbb{R} вещественных чисел, так как результат умножения какого-либо из этих чисел на произвольное вещественное число в общем случае не входит в это множество (если взять число 0,2 то получится число 1, а оно не принадлежит подкольцу I).

Напоминание что такое ker(F) и im(F):

Ядро гомоморфизма
$$f$$
 — это $\mathrm{Ker}(f) = \{x \in K \ : \ f(x) = 0\}.$

Образ гомоморфизма f — это

$$Im(f) = \{ y \in L : \exists x \in K : f(x) = y \}.$$

Напоминание что такое гомоморфизм колец:

Пусть $K, L - кольца, f : K \to L - гомоморфизм колец.$ Тогда:

- 1) $\operatorname{Ker}(f)$ подкольцо K.
- 2) $\operatorname{Im}(f)$ подкольцо L.

Лемма 7

Пусть K — коммутативное кольцо, $\varphi: K \to L$ — гомоморфизм колец. Тогда $\ker(\varphi)$ — идеал в K.

Доказательство. • По Лемме 3, $\ker(\varphi)$ — подкольцо K.

- ullet Пусть $a\in \ker(arphi)$ и $x\in K$. Тогда $arphi(ax)=arphi(a)\cdotarphi(x)=0\cdotarphi(x)=0$, а значит, $ax\in \ker(arphi)$
- \bullet По Лемме 6, $\ker(\varphi)$ идеал в K.

Подкольцо из определения гомоморфизма колец.

Это из определения гомоморфизма Аналогично проверяем все пункты из леммы 3

ullet Пусть K,L- кольца. Отображение f:K o L называется гомоморфизмом, если \forall $a,b\in K$:

П

$$f(a+b)=f(a)+f(b)$$
 u $f(ab)=f(a)f(b)$.

Билет 9. Идеал и обратимые элементы. Идеалы в поле. Гомоморфизм из поля — инъекция.

Лемма 8

Пусть K — коммутативное кольцо с 1, I — идеал в K, а $x \in I$ — обратимый элемент кольца K. Тогда I = K.

Доказательство. \bullet Так как $x^{-1} \in K$ и $x \in I$, мы имеем $1 = x \cdot x^{-1} \in I$.

$$\bullet \ \forall y \in K$$
 имеем $y = y \cdot 1 \in I$. Значит, $I = K$.

Грубо говоря мы можем получить все числа из K в I как раз с помощью 1 (и даже саму 1).

Следствие 1

Пусть K — поле, а I — идеал в K. Тогда I = K или I = $\{0\}$.

Доказательство. • Предположим, что $I \neq \{0\}$. Тогда $\exists a \in I$, $a \neq 0$. Так как a — обратимый элемент (как все ненулевые элементы поля), I = K по Лемме 8.

Следствие 2

Пусть K — поле, L — кольцо, a f : $K \to L$ — гомоморфизм колец. Тогда либо $\mathrm{Im}(f) = \{0\}$, либо f — мономорфизм.

Доказательство. • По Лемме 7 $\ker(f)$ — идеал в поле K.

- ullet Тогда по Следствию 1 либо $\ker(f) = K$, либо $\ker(f) = \{0\}$.
- Если ker(f) = K, то $Im(f) = \{0\}$.

$$ullet$$
 Если $\ker(f)=\{0\}$, то f — мономорфизм.

По лемме 4

Билет 10. Идеал, порожденный множеством элементов. Главный идеал.

Давайте попробуем сами построить идеал на каком-нибудь множестве. Возьмем его подмножество $T = \{t_i i \in Ind\} \subseteq K$, где Ind - это просто индексы и их не обязательно конечное количество.

Тогда определим идеал - множество всех линейных комбинаций Т $I = \{a_1t_{i,1} + \ldots + a_kt_{i,k} : a_i \in K\}$ при этом сумма конечная.

Множество всех таких линейных комбинаций - это идеал. Проверить это легко: нужно убедиться что есть замкнутость по сложению и «засасывание» (оно будет красиво и приятно работать только в коммутаторном кольце, поэтому мы их и рассматриваем).

Легко видеть что I - наименьший идеал, содержащий данное подмножество Т. Почему так? Рассмотрим все идеалы содержащие Т. Их много например все кольцо К. Тогда пересечем их и получим как раз I.

Если множество Т конечно, то запись будет такая же но без двойного индекса. $I = \{a_1t_1 + \ldots + a_kt_k : a_i \in K\}.$

Пусть K — коммутативное кольцо, $M \subset K$. Тогда $\langle M \rangle := \{ m_1 x_1 + \dots + m_s x_s : m_1, \dots, m_s \in M, x_1, \dots, x_s \in K \} -$ идеал, порожденный множеством M (здесь количество элементов s не фиксировано и может быть любым натуральным числом).

• Идеал, порожденный M — множество всех линейных комбинаций элементов из M.

Если идеал I порождается одним элементом, то это главный идеал.

Определение. Пусть K — коммутативное кольцо.

- 1) Пусть $m \in K$. Тогда $mK = \{mx : x \in K\}$ главный идеал.
- 2) Если все идеалы в кольце K главные, то K кольцо главных идеалов.

Лемма 9

Пусть K — коммутативное кольцо, $M \subset K$. Тогда $\langle M \rangle$ — идеал в K.

Доказательство. • Нужно проверить условия из Леммы 6.

- Пусть $a, b \in \langle M \rangle$. Тогда существуют такие $m_1, \ldots, m_s \in M$, $a_1, \ldots, a_s, b_1, \ldots, b_s \in K$, что $a = a_1 m_1 + \cdots + a_s m_s$ и $b = b_1 m_1 + \cdots + b_s m_s$ (можно считать, что a и b линейные комбинации одних и тех же элементов M, при необходимости добавив слагаемые с нулевыми коэффициентами).
- $\bullet -a = (-a_1)m_1 + \cdots + (-a_s)m_s \in \langle M \rangle.$
- ullet Тогда $a+b=(a_1+b_1)m_1+\cdots+(a_s+b_s)m_s\in\langle M
 angle$.
- ullet Для любого $x\in K$, $ax=(a_1x)m_1+\cdots+(a_sx)m_s\in \langle M
 angle$.
- ullet Условия Леммы 6 проверены, а значит, $\langle M \rangle$ идеал в K.