## Image Manipulation

Original Image



Scaled Image



Rotated Image



## **Comparison of Blurring Techniques**



| Techniques         | Blurring | Noise     | Edge         | Artistic Effects | Sharpening |
|--------------------|----------|-----------|--------------|------------------|------------|
|                    |          | Reduction | Preservation |                  |            |
| Gaussian Blur      | 80%      | 80%       | 50%          | 50%              | 20%        |
| Median blur        | 90%      | 85%       | 70%          | 90%              | 30%        |
| Bilateral Filter   | 35%      | 80%       | 85%          | 50%              | 30%        |
| Box Filter         | 60%      | 70%       | 85%          | 80%              | 20%        |
| <b>Motion Blur</b> | 50%      | 50%       | 40%          | 30%              | 30%        |
| Unsharp mask       | 30%      | 90%       | 75%          | 20%              | 85%        |

Blurring and filtering techniques vary in their effects and uses. **Gaussian blur** provides general smoothing by averaging pixel values, reducing noise but softening edges. **Median blur** is effective for removing salt-and-pepper noise while preserving edges. **Bilateral filter** smooths images while retaining sharp edges, making it ideal for noise reduction without losing detail, though it's computationally heavy. **Box filter** offers simple, fast blurring but may introduce artifacts. **Motion blur** simulates directional movement, often used for creating motion effects. Lastly, **Unsharp mask** enhances edge sharpness and detail, commonly used in photography to increase image clarity.

## Comparison of Edge Detection



| Techniques                | Sensitivity to<br>Noise | Edge Thinness | Edge Continuity | Computational<br>Efficiency |
|---------------------------|-------------------------|---------------|-----------------|-----------------------------|
| Canny Edge Detection      | 50%                     | 90%           | 90%             | 60%                         |
| Sobel Edge<br>Detection   | 80%                     | 60%           | 60%             | 80%                         |
| Laplacian Edge Detection  | 90%                     | 40%           | 40%             | 90%                         |
| Prewitt Edge<br>Detection | 80%                     | 60%           | 60%             | 80%                         |

Edge detection techniques differ in precision and complexity. **Canny edge detection** is highly accurate, providing sharp, well-defined edges with minimal noise but is computationally intensive. **Sobel** and **Prewitt** methods detect horizontal and vertical edges, producing thicker, less precise edges with moderate noise resistance. **Laplacian edge detection** highlights intensity changes without edge direction but is prone to noise, resulting in thicker, noisier edges. Overall, **Canny** is best for detailed tasks, while **Sobel**, **Prewitt**, and **Laplacian** are simpler and better suited for basic edge detection.