Stock market predictions and observations

By: Nadav Schneider Dolev Gelbert Or Flazar

Purpose of the project

Making predictions and observations about stock market behavior stocks prices and trends.

By collecting historic and up to date data about different stocks throughout the years, we will try to predict future stocks prices and behavior.

We will develop models to help us predict the following:

- The price of a specific stock in the near future.
- If a market is to go up or down the following month
- Is a stock a good long term- medium term (2 years-3 years) investment.

Sources

Wikipedia:

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

https://en.wikipedia.org/wiki/Nasdaq-100

https://en.wikipedia.org/wiki/TA-125 Index

Wallstreetzen:

https://www.wallstreetzen.com/stock-screener/stock-forecast

Yhaoo Finance API

Data Collection Process

We combined the use of crawlers and api to create different data frames, from which we explored viable prediction problems, tested different methods and models, made observations and trained our machine learning models.

At first we collected lists of stocks names and ticker symbols of stocks bundled in major indexes by crawlers.

Using Yhaoo finance API we retrieved historical and current data about those stocks.

We also collected data of a wider range of stocks (not necessarily of big companies) using a crawler and collected experts recommendations about those stocks to use as a reference point.

	0						3M		MMM	1]	:	Open	High	Low	Close	Adj Close	Valuma	increased
	1				A. O. Smith		AOS				Date		nign	Low	Close	Adj Close	volume	Increased		
	2						Abbott		ABT	-			1972-02-01	0.000000	107.160004	103.099998	106.570000	106.570000	376260000	1
	3					_	AbbVie		ABBV	,			1972-03-01	0.000000	109.750000	105.860001	107.199997	107.199997	403650000	1
													1972-04-01	0.000000	111.110001	106.180000	107.669998	107.669998	367990000	1
	4					Ab	iomed		ABMD)			1972-05-01	0.000000	111.480003	103.830002	109.529999	109.529999	335850000	-1
										-			1972-06-01	0.000000	110.510002	105.940002	107.139999	107.139999	314510000	0
	727			Lev	instein	Properti	es Ltd.		LVPR	2			2020-08-01	3288 260010	3514.770020	3284.530029	3500.310059	3500.310059	84402300000	
	728				Had	lera Pap	er Ltd.		HAF)			2020-09-01	3507.439941	3588.110107	3209.449951	3363.000000	3363.000000	92084120000	0
	729			EMS		ses Migi			FBRT	-			2020-10-01	3385.870117	3549.850098	3233.939941	3269.959961	3269.959961	89737600000	0
					1.30	100							2020-11-01	3296.199951	3645.989990	3279.739990	3621.629883	3621.629883	100977880000	1
	730 D	oral Gro	oup Rene	ewable E	nergy I	Resource	es Ltd.		DORL	-			2020-12-01	3645.870117	3760.199951	3633.399902	3756.070068	3756.070068	96056410000	1
	731			Gilat	Satellite	Networ	ks Ltd.		GILT				587 rows ×	7 columns						
Date	AAPL	ABC	ABT	ADI	ADM	ADP	ADSK	AEP	AES	AIG		VTRS	VZ							
999- 2-01	0.917969	3.796875	16.300713	46.500000	10.997732	42.726330	8.437500	32.125000	37.375000	1441.666626	11.1	94444	55.364555 2							
000- I-01	0.926339	4.531250	14.617335	46.750000	10.657596	37.620979	7.640625	33.500000	40.062500	1391.666626	11.8	33333 5	55.701801 3							
000- 2-01	1.023438	3.640625	14.813729	78.625000	9.126984	34.547855	11.171875	28.125000	41.906250	1179.166626	10.2	222222 4	44.010609 4							
000- 3-01	1.212612	3.750000	15.795700	80.500000	9.353741	38.265343	11.375000	29.812500	39.375000	1460.000000	12.2	22222	54.971104 4							
000- 1-01	1.107701	5.000000	17.254627	76.812500	9.013605	42.676762	9.593750	36.625000	44.968750	1462.500000	12.	611111	53.959366 4							
					(2.25)				377											
21-	151.830002	122.209999	126.370003	162.949997	60.000000	209.039993	310.089996	89.570000	23.870001	54.560001	14.6	30000 8	55.000000 41							
021- 3-01 021-		122.209999		162.949997 167.479996		209.039993 199.919998	310.089996 285.170013			54.560001 54.889999			55.000000 41 54.009998 35							
021-	141.500000		118.129997	167.479996	60.009998	199.919998	285.170013	81.180000	22.830000		13.5	50000 5								
021- 3-01 021- 9-01	141.500000 149.800003	119.449997 122.019997	118.129997 128.889999	167.479996 173.490005	60.009998 64.239998	199.919998 224.490005	285.170013	81.180000 84.709999	22.830000 25.129999	54.889999	13.5	550000 8 850000 8	54.009998 35							

]:

Data cleaning and sorting

Each machine learning model we created imposed different needs, for each of those we manipulated our data to fit our needs.

At first, not all of the stocks we were trying to collect data about had the relevant or sufficient information, on top of that data from some specific dates wasnt available. We removed dates and stocks that didnt contain sufficient data for our research.

For making an assessment If a market is to go up or down the following month, we had to manipulate our data some more, we added columns containing labels used a more detailed version of our dataframe.

Data manipulating

For creating the assessment Is a stock a good long term- medium term (2 years-3 years) investment, We had to manipulate all our data, accumulate stocks prices, compute monthly change in stocks and average changes, we created a focused df out of our main df for the purpose of creating this model. We then normalized and labeled all of the data.

For the logistic regression model we had

to extract certain stock info from our

df insert it into new df label all of our data and

Convert categorical variable into dummy/indicator variables.

	change	last_price	label
AAPL	-0.075878	0.031505	Strong Buy
MSFT	-0.037939	0.024409	Strong Buy
GOOGL	0.203997	0.065108	Strong Buy
AMZN	-0.392740	0.096976	Strong Buy
TSM	-0.061825	0.026200	Buy
		1202	600
ARW	0.089382	0.038809	Hold
GGB	0.674426	0.007119	Buy
WF	0.031507	0.016615	Hold
CLF	0.340034	0.126557	Buy
ALV	0.540749	0.011979	Buy

665 rows × 3 columns

EDA - visualization and conclusions

the graph below visualize the ratio between amounts of stocks the increase and decrease their value over the years in increasing time periods, as we can see, in long time periods most stocks will increase their values, so we decided to create a model able to identifying those stocks you should stay away from and not get in for a long term investment.

400 - increase decrease 350 - 250 - 200 - 150 - 100 - 50 - 0 5 - 17 - 29 - 41 - 53 - 65 - 77 - 89 - 101 - 113 - 125 - 137 - 149 - 161 - 173 - 17

The graph below shows the nasdaq market Change in price over the years, as you can see the grow when looking long term is almost Linear, so we decided to create a linear model that will Predict future stock prices. Aside from these graph we used graph as a tool to visualize and help Us implementing and testing our

machine learning models.

Graph to determine the best k value to use in KNN model

Machine Learning Models

We used 3 machine learning models in our project:

- LogisticRegrssion
- LinearRegression
- KNN

Logistic Regression

We used logistic regression model to determine if a market is to go up or down the following month, by labeling and analyzing data from 1985 till today about NASDAQ. We included opening price, closing price, low price, high price, and volum from 35 years in 1 month intervals.

Eventually we came up with a model that is able to predict with a 0.7 certainty

a markets behavior for the next month.

```
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
```

LogisticRegression()

```
log_reg.score(X_test,y_test)
```

0.6944444444444444

KNN

We used knn model to predict if a stock is a solid long-medium term investment. By accumulating an labeling data from over 650 stocks on the course of over 3000 different sampling dates in the past we were able to determine in an underwhelming accuracy of 0.48 if a stock will rise significantly over the next 3 years.

Linear Regression

We used linear regression model to predict a specific stocks price. We tested the data on different stock with different time intervals and found out the in monthly intervals for the course of a few years most stocks grow in an almost linear manner.

