Enhancement of local embeddings for event sequences data models

Data Science

April, 2024

Student: Maria Kovaleva

Research Advisor: Alexey Zaytsev

Problem Statement

General problem: building of embeddings h_t for event sequence data

Gaps: self-supervised models for representation learning ignore external information

Idea: the external information is contained in sequences themselves and can be represented as their aggregations

Aim and Objectives

The aim of the work: to enhance the embeddings for event sequences data models using aggregation of external information

Objectives:

- 1. Study of existing models for event sequence representation learning
- 2. Development of a method for aggregation
- 3. Validation of developed methods on bank transaction data

Methods. Basic approach.

Set of *n* sequences $D = \{S^i\}_{i=1}^n$

Each sequence: $S^i = \{(t^i_j, \mathbf{Z}^i_j)\}_{i=0}^{T^i}$, where $t^i_j \in [\mathbf{0}, \mathbf{T}^i]$ - time of event, $\mathbf{Z}^i_j \in \mathbf{R}^d$ description of the event

Embeddings construction: $e(S^i) = H^i$

- e is encoder: usually dense NN for event description encoding + recurrent NN
- $H^i = \overline{\{(t^i_j, \boldsymbol{h}^i_j)\}_{i=0}^{T^i}}$ <u>embeddings</u>, $\boldsymbol{h}^i_j \in \boldsymbol{R}^{d'}$

Contrastive learning for encoder: $L_{km} = I_{k=m} \frac{1}{2} d(\mathbf{h}^k, \mathbf{h}^l)^2 + (1 - I_{k=m}) \frac{1}{2} \max\{0, \rho - d(\mathbf{h}^k, \mathbf{h}^l)\}^2, \text{ where } d \text{ is a}$ distance between embeddings and ρ is a hyperparameter

Autoregressive learning for encoder:

A loss consists of the cross-entropy for the categorical features and mean squared error for the continuous features

Methods. Aggregations.

 ${m b}_{\tau}^c$ - vector of external information for user c at the time point τ

Classic:

- Mean: $oldsymbol{b}_{ au}^c = rac{1}{n} \sum_{i=1}^n oldsymbol{h}_{t< au}^i$
- Max: $\boldsymbol{b}_{\tau}^{c} = \max(H)$

Attention based:

- Attention: $\boldsymbol{b}_{\tau}^{c} = H \operatorname{softmax}(H^{T} \boldsymbol{h}_{\tau}^{c})$
- Learnable attention:

$$\boldsymbol{b}_{\tau}^{c} = H \operatorname{softmax}(H^{T}A \boldsymbol{h}_{\tau}^{c})$$

Symmetrical attention:

$$\boldsymbol{b}_{\tau}^{c} = H \operatorname{softmax}(H^{T}S^{T}S \boldsymbol{h}_{\tau}^{c})$$

Kernel attention:

$$\boldsymbol{b}_{\tau}^{c} = H \operatorname{softmax}(\varphi(H^{T}) \varphi(\boldsymbol{h}_{\tau}^{c}))$$

Common pipeline for different aggregations

where $H = [h_{t<\tau}^1, \dots, h_{t<\tau}^n]$ - matrix with embeddings of all sequences at current time, A, S - matrices with learnable parameters, φ - learnable transformation (two-layer NN)

Methods. Aggregations.

Aggregations inspired by Hawkes process:

- Exp Hawkes: $\boldsymbol{b}_{\tau}^{c} = H \exp(-(\tau \cdot \overline{1} T))$
- Exp learnable Hawkes:

$$\boldsymbol{b}_{\tau}^{c} = \varphi_{NN}(\operatorname{concat}(H, \boldsymbol{h}_{\tau}^{c})) \exp(-(\tau \cdot \overline{\mathbf{1}} - T))$$

Attention Hawkes:

$$\boldsymbol{b}_{\tau}^{c} = X \operatorname{softmax}(H^{T} \boldsymbol{h}_{\tau}^{c}) \exp(-(\tau \cdot \overline{\mathbf{1}} - T))$$

where $H = [\boldsymbol{h}_{t<\tau}^1, \ldots, \boldsymbol{h}_{t<\tau}^n]$ - matrix with embeddings of all sequences at current time, $T = [t_{t<\tau}^1, \ldots, t_{t<\tau}^n]$ - vector of last event times for all embeddings $\boldsymbol{h}_{t<\tau}^1, \ldots, \boldsymbol{h}_{t<\tau}^n$, φ_{NN} -learnable transformation (two-layer NN)

Methods. Validation and Datasets.

Dataset of bank transactions:

- Each sequence S^i : one bank client transactions
- Each event Z_i^i : transaction (merchant category code + amount)
- Target: whether the client left the bank

Validation:

- Global the model inference on the whole sequence to check its global patterns.
 - binary downstream task
 - one output vector for a boosting model
 - ROC AUC
- Local the model inference on sliding windows to check local properties.
 - a. next event type prediction
 - b. local target prediction
 - MLP head for prediction
 - ROC AUC

Results

1st results				
2 nd results				
3 rd results				

	Global target								
		Contrastiv	e learning	Autoregressive learning					
		ROC-AUC	PR-AUC	ROC-AUC	PR-AUC				
	Without context	0.743 ± 0.009	0.792 ± 0.014	0.692 ± 0.025	0.734 ± 0.032				
\rightarrow	Mean	0.773 ± 0.004	0.828 ± 0.003	0.722 ± 0.007	0.776 ± 0.005				
\rightarrow	Max	0.774 ± 0.021	0.818 ± 0.032	0.725 ± 0.005	0.777 ± 0.002				
	Attention	0.760 ± 0.014	0.808 ± 0.017	0.696 ± 0.014	0.744 ± 0.017				
\Rightarrow	Learn. attention	0.777 ± 0.013	0.830 ± 0.013	0.704 ± 0.026	0.751 ± 0.020				
>	Sym. attention	0.785 ± 0.010	0.835 ± 0.005	0.722 ± 0.010	0.769 ± 0.004				
	Kernel attention	0.775 ± 0.003	0.824 ± 0.002	0.709 ± 0.019	0.760 ± 0.003				
	Exp Hawkes	0.765 ± 0.008	0.814 ± 0.009	0.716 ± 0.005	0.767 ± 0.013				
	Exp learn. Hawkes	0.764 ± 0.008	0.812 ± 0.008	0.714 ± 0.025	0.758 ± 0.020				
	Attention Hawkes	0.761 ± 0.007	0.796 ± 0.009	0.717 ± 0.014	0.751 ± 0.023				

		Local target						
		Contrastiv	e learning	Autoregressive learning				
		ROC-AUC	PR-AUC	ROC-AUC	PR-AUC			
	Without context	0.569 ± 0.008	0.321 ± 0.003	0.535 ± 0.008	0.299 ± 0.011			
	Mean	0.592 ± 0.005	0.342 ± 0.005	0.543 ± 0.006	0.312 ± 0.006			
\longrightarrow	Max	0.640 ± 0.005	0.400 ± 0.006	0.621 ± 0.006	0.256 ± 0.008			
	Attention	0.600 ± 0.009	0.348 ± 0.010	0.534 ± 0.016	0.301 ± 0.007			
	Learn. attention	0.583 ± 0.007	0.330 ± 0.008	0.590 ± 0.035	0.338 ± 0.025			
\longrightarrow	Sym. attention	0.583 ± 0.007	0.329 ± 0.007	0.605 ± 0.027	0.350 ± 0.020			
	Kernel attention	0.582 ± 0.007	0.329 ± 0.007	0.572 ± 0.021	0.330 ± 0.023			
\longrightarrow	Exp Hawkes	0.649 ± 0.000	0.366 ± 0.003	0.638 ± 0.001	0.351 ± 0.001			
	Exp learn. Hawkes	0.581 ± 0.012	0.322 ± 0.013	0.539 ± 0.034	0.293 ± 0.025			
\longrightarrow	Attention Hawkes	0.635 ± 0.004	0.359 ± 0.005	0.598 ± 0.003	0.331 ± 0.001			

Results

- External information enhances metrics
- Exp Hawkes method is the best for the local task
- Classical methods are the best for the global task
- Attention-based aggregations help to highlight local patterns in sequences

Conclusions

- External information addition improves the embeddings of event sequences
- Aggregation of all sequences at the current time point can represent the external information
- We propose new methods of aggregation of external information
- Experiments with bank transactions data show the impact of the proposed methods

Outcomes

Paper: Bazarova, A.*, <u>Kovaleva, M.*</u>, Kuleshov, I.*, Romanenkova, E.*, Stepikin, A.*, Yugay, A.*, Mollaev, D., Kireev, I., Savchenko, A., and Zaytsev, A*. Universal representations for financial transactional data: embracing local, global, and external contexts. arXiv preprint arXiv:2404.02047 (2024)

Contribution: The article contains an overview of various methods for obtaining embeddings for transactional data. I was responsible for the part dedicated to the aggregation of external information.

*equal contribution

Acknowledgements

Alexander Stepikin

Alexander Zaytsev

Evgenia Romanenkova

Ilya Kulesov

Alexander Yugai

Alexandra Bazarova

Alexander Stepikin

Hawkes process

Hawkes process is a self-exciting temporal point process whose conditional intensity function $\lambda = \lambda(t)$ is defined to be:

$$\lambda(t) = \mu(t) + \sum_{i:\tau_i < t} \nu(t - \tau_i)$$

where $\mu(t)$ is the background rate of the process, τ_i are the points in time occurring prior to time t, and where ν is a function which defines the density of the process.

Laub, Patrick J., Thomas Taimre, and Philip K. Pollett. "Hawkes processes." arXiv preprint arXiv:1507.02822 (2015).

Datasets details

Churn:

- ~500k transactions, 5000 users
- target flag: a binary label, whether the client has stopped doing business with this bank
- 10 fields

Default:

- ~2.1m transactions, 7080 users
- 5 fields
- target: binary label, whether a client will default
- all transaction lengths are equal to 300

Additional results. Churn.

Additional results. Default.

Additional results. Default.

Results. Default.

Global target									
	C	ontrastive learni	ng	Autoregressive learning					
	ROC-AUC PR-		-AUC Accuracy		PR-AUC	Accuracy			
Without context	0.743 ± 0.009	0.792 ± 0.014	0.689 ± 0.005	0.692 ± 0.025	0.734 ± 0.032	0.657 ± 0.013			
Mean	0.773 ± 0.004	0.828 ± 0.003	0.715 ± 0.010	0.722 ± 0.007	0.776 ± 0.005	0.653 ± 0.008			
Max	0.774 ± 0.021 0.818 ± 0.032		0.701 ± 0.004		0.777 ± 0.002	0.664 ± 0.012			
Attention	0.760 ± 0.014		0.691 ± 0.010	0.696 ± 0.014	0.744 ± 0.017	0.644 ± 0.022			
Learn. attention	0.777 ± 0.013	0.777 ± 0.013		0.699 ± 0.006 0.704 ± 0.026		0.655 ± 0.009			
Sym. attention	0.785 ± 0.010	0.835 ± 0.005	0.703 ± 0.017	0.722 ± 0.010	0.769 ± 0.004	0.671 ± 0.009			
Kernel attention	0.775 ± 0.003	0.824 ± 0.002	0.693 ± 0.009	0.709 ± 0.019	0.760 ± 0.003	0.655 ± 0.014			
Exp hawkes	0.765 ± 0.008	0.814 ± 0.009	0.699 ± 0.012	0.716 ± 0.005	0.767 ± 0.013	0.661 ± 0.011			
Exp learn. hawkes	Exp learn. hawkes 0.764 ± 0.008 0.812 ± 0.008		0.703 ± 0.006 0.714 ± 0.025		0.758 ± 0.020	0.665 ± 0.024			
Attention hawkes	Attention hawkes 0.761 ± 0.007 0.796 ± 0.009		0.702 ± 0.007	0.717 ± 0.014	0.751 ± 0.023	0.667 ± 0.006			

1st results
2 nd results
3 rd results

	Local target				Event type					
	Contrastive learning		Autoregressive learning		Contrastive learning			Autoregressive learning		
	ROC-AUC	PR-AUC	ROC-AUC	PR-AUC	ROC-AUC	PR-AUC	Accuracy	ROC-AUC	PR-AUC	Accuracy
Without context	0.569 ± 0.008	0.321 ± 0.003	0.535 ± 0.008	0.299 ± 0.011	0.653 ± 0.002	0.168 ± 0.001	0.239 ± 0.003	0.561 ± 0.002	0.111 ± 0.002	0.237 ± 0.002
Mean	0.592 ± 0.005	0.342 ± 0.005	0.543 ± 0.006	0.312 ± 0.006	0.688 ± 0.004	0.193 ± 0.003	0.242 ± 0.001	0.572 ± 0.003	0.119 ± 0.003	0.238 ± 0.004
Max	0.640 ± 0.005	0.400 ± 0.006	0.621 ± 0.006	0.256 ± 0.008	0.692 ± 0.003	0.192 ± 0.001	0.239 ± 0.002	0.570 ± 0.002	0.115 ± 0.001	0.231 ± 0.002
Attention	0.600 ± 0.009	0.348 ± 0.010	0.534 ± 0.016	0.301 ± 0.007	0.691 ± 0.004	0.194 ± 0.004	0.243 ± 0.001	0.571 ± 0.004	0.117 ± 0.002	0.236 ± 0.005
Learn. attention	0.583 ± 0.007	0.330 ± 0.008	0.590 ± 0.035	0.338 ± 0.025	0.690 ± 0.003	0.194 ± 0.004	0.241 ± 0.001	0.567 ± 0.004	0.116 ± 0.001	0.238 ± 0.003
Sym. attention	0.583 ± 0.007	0.329 ± 0.007	0.605 ± 0.027	0.350 ± 0.020	0.689 ± 0.003	0.193 ± 0.004	0.241± 0.0004	0.566 ± 0.000	0.115 ± 0.002	0.238 ± 0.003
Kernel attention	0.582 ± 0.007	0.329 ± 0.007	0.572 ± 0.021	0.330 ± 0.023	0.689 ± 0.003	0.193 ± 0.004	0.241 ± 0.000	0.566 ± 0.004	0.115 ± 0.001	0.238 ± 0.002
Exp hawkes	0.649 ± 0.000	0.366 ± 0.003	0.638 ± 0.001	0.351 ± 0.001	0.635 ± 0.003	0.161 ± 0.002	0.244 ± 0.002	0.575 ± 0.002	0.122 ± 0.001	0.244 ± 0.001
Exp learn. hawkes	0.581 ± 0.012	0.322 ± 0.013	0.539 ± 0.034	0.293 ± 0.025	0.613 ± 0.012	0.153 ± 0.007	0.257 ± 0.011	0.549 ± 0.001	0.113 ± 0.002	0.241 ± 0.005
Attention hawkes	0.635 ± 0.004	0.359 ± 0.005	0.598 ± 0.003	0.331 ± 0.001	0.635 ± 0.001	0.159 ± 0.002	0.246 ± 0.001	0.569 ± 0.002	0.118 ± 0.001	0.241 ± 0.003