一、选择题(每小题1分,共10分。)

1. 逻辑函数 $F = A\overline{B} + \overline{B}DEG + \overline{A}\overline{B} + B$ 的最简式为 ()。
A. $\mathbf{F} = \overline{\mathbf{B}}$ B. F=B C. F=0 D. F=1
2. 逻辑函数 F(ABC)=A⊙C 的最小项标准式为()。
A. $F = \Sigma (0, 3)$ B. $\mathbf{F} = \overline{\mathbf{A}} \mathbf{C} + \mathbf{A} \overline{\mathbf{C}}$ C. $F = m_0 + m_2 + m_5 + m_7$ D. $F = \Sigma (0, 1, 6, 7)$
3. 八进制数 (573. 4) 8 的十六进制数是 ()。 A. (17C. 4) 16 B. (16B. 4) 16 C. (17B. 8) 16 D. (17B. 5) 16
4. 在下列电路中,不是组合逻辑电路的是 ()。 A. 编码器 B. 锁存器 C. 全加器 D. 比较器
5. 八路数据分配器, 其数据输入端有 () 个。 A. 1 B. 2 C. 3 D. 8
6. n 个触发器构成的扭环计数器中,无效状态有() 个。 A. n B. 2n C. 2 ⁿ⁻¹ D. 2 ⁿ -2n
7. 构成数字系统必不可少的逻辑执行部件为 ()。 A. 控制器
8. 电路如图 1 所示,其中完成 $Q^{n+1} = \overline{Q^n} + A$ 电路是()。 $\mathbf{CP} = \mathbf{CP} + \mathbf{A} = \mathbf{CP} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

9. 使用 256×4 位 EPROM 芯片构成 2K×32 位存储器, 共需 EPROM 芯片() 片。

图 1

В

A

10. 在 ispLSI1032 中, 巨块是 ()。

A. 逻辑宏单元 B. 输出布线 C. 时钟设置网络 D. GLB 及其对应的 ORP, IOC 等的总称

二、填空题(每小题2分,共20分)

1. 用卡诺图判断函数 F = AB + BC + AC 和 $G = \overline{AB} + \overline{BC} + \overline{AC}$ 之间的逻辑关系是

一组 之和表达式。

3. 在 ABEL HDL 语言中,等式 A = D \$ (B = = C)的两个结果分别是

4. 奇偶校验可以检测出 (几)位错。若有一个七位二进制数为 1000110,

其监督码元(奇偶校验位)是 时为偶校验。

5. 一个由 3:8 译码器构成的逻辑电路如图 2 所示,函数 F 的最小项表达式为

6. 某移位寄存器的时钟脉冲频率为 100KHz, 欲将存放在该寄存器中的数左移 16 位,完成

该操作需要 μS。

7. 用计数器产生 110010 序列, 至少需要 个触发器。

8. 控制器的控制过程可以用 图表示出来,它能和实现它的

很好地对应起来。

9. 1M×4 位的 RAM 芯片, 其地址线是_____条; 数据线是____条。

三、简答题(每小题5分,共10分)

1. 描述米里型和摩尔型时序电路的定义。

2. 比较定序型控制器和计数型控制器的特点。

四、简单分析题(每小题5分,共10分)

1. 分析图 3 所示逻辑电路的功能。

2、分析由 74LS90 异步计数器构成的电路图 4,写出电路采用什么编码?为模几计数器?功能表如下:

R ₀₁	R ₀₂	R ₉₁	R ₉₂	CP ₁	CP ₂	Q_{D}	Qc	Q _B	QA	说明
1	1	0	X	X	X	0	0	0	0	异步置 0
1	1	X	0	X	X	0	0	0	0	异步置 0
0	X	1	1	X	X	1	0	0	1	异步置 9
X	0	1	1	X	X	1	0	0	1	异步置 9
X	0	X	0	↓	0		二进制	引计数		由 Q _A 输出
X	0	0	X	0	↓	五进制计数		由 Q _D Q _C Q _B 输出		
0	X	X	0	↓	Q_{A}	8421 码十进制计数		Q _D Q _C Q _B Q _A 输出		
0	X	0	X	Q_{D}	\	542	1码十	进制计	十数	Q _A Q _D Q _C Q _B 输出

五、组合电路设计(10分)

设 A、B、C 为保密锁的 3 个按键,当 A 键单独按下时,锁既不打开也不报警;只有当 A、B、C 或者 A、B 或者 A、C 分别同时按下时,锁才能被打开,当不符合上述组合状态时,将发出报警信息,请设计此保密锁的逻辑电路。

- ① 列真值表。
- ② 求最简逻辑表达式。(卡诺图)
- ③ 画出用与非门实现的电路图。

六、时序电路设计(12分)

某计数器的输出波形如图 5 所示。

- ① 试确定该计数器的计数循环中有几个状态?
- ② 列出状态转移真值表、画出状态转移图。
- ③ 若使用 D 触发器,写出激励方程表达式。
- ④ 画出计数器电路图。

七、硬件描述语言设计(14分)

一位十进制计数器七段数字显示系统如图 6 所示。计数器是 8421BCD 码同步计数器,其输出 $Q_0^*Q_0$ 作为七段译码器的输入,译码器的输出送到七段发光二极管显示器,它能显示 0,1,2,…… 9 十个字符。采用 ABEL-HDL 语言设计一位十进制计数器和七段译码器,写出完整的设计源程序。

	8421BCD 七段显示译码真值表										
Q_3	Q_2	Q_1	Q_0	a	b	c	d	e	f	g	显示
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	0	1	1	1	1	1	6
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	1	0	1	1	9

八、小型控制器设计(14分)

有一个数字比较系统,它能连续对两个八位二进制数据进行比较,操作过程如下:先将两个数存入寄存器 A 和寄存器 B,然后进行比较,最后将大数移入寄存器 B 中。其方框图如图 7 所示。其中 Y 为输入数据,LDA 和 LDB 为打入控制信号,COMP 是三态门使能控制信号,X 是比较器输出信号。假设状态发生变化在 T_1 节拍时间,打入寄存器操作发生在 T_2 节拍时间,状态周期 $T=T_1+T_2$ 。

- ① 画出 ASM 流程图。
- ② 列出状态转移真值表
- ③ 设计多路选择器型控制器电路。

图 7

试题标准答案

- 一、选择题(每小题1分,共10分)
 - 1. D
 - 2. C
 - 3. C
 - 4. B
 - 5. A
 - 6. D
 - 7. C
 - 8. A
 - 9. A
 - 10. D
- 二、填空题(每小题2分,共20分)
- 1.. $F = \overline{G}$
- 2.2ⁿ, 最小项
- 3. $A = \overline{D}$, A=D
- 4. 1位(奇数位), 1
- 5.

$$F = \sum (1,2,3,7)$$

- 6, 160
- 7.3
- 8. ASM 图, 硬件
- 9. 20, 4
- 10. 可编程,固定

三、简答题

1、(5分,每个概念各占2.5分)

同步时序逻辑电路按其输入与输出的关系不同,可分为米里型和摩尔型两类。在输出表达式中包含输入变量和状态变量时,称之为米里型时序逻辑电路。 在输出表达式中只包含状态变量时,称之为摩尔型时序逻辑电路。

2、(5分,每个概念各占2分,特点1分)

将所要求的控制状态按一定原则进行编码分配,从而设计的状态计数型的

控制器称之为计数器型控制器。这种方法的优点是对于控制状态数较多时,为了节省触发器数目,采用编码方式组成状态。对 n 个触发器进行编码最多可代表 2°个状态,也就是可以构成 2°个状态编码。缺点是算法流程图中的微小变化,都要重新逐一计算生成次态激励函数。

定序型控制器需要较多数量的触发器,其基本思想是一对一法,即触发器的数目代表了状态数,并依赖最新的代码实现状态转换。这种方法的优点是设计简单,不需要状态译码。

四、简单分析题(每小题5分,共10分)

1. ①真值表(2分)

A	В	С	Y2	Y1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

②表达式(2分)

$$Y_1 = AB + (A \oplus B)C$$

$$Y_2 = A \oplus B \oplus C$$

- ③该电路为全加器(1分)
- 2. ①5421 码 (2 分),②当 $Q_AQ_DQ_CQ_B=1010(7)$ 时置 9。从 9 到 0 需要一个时钟脉冲,即

$$(0) \to (1) \to (2) \to (3) \to (4) \to (5) \to (6) \to (7)(9) \to (0)$$

因此为模 8 计数器 $(3 分)$

五、组合电路设计(10分)①真值表(3分)

A	В	С	F	G
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	0
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

②表达式 (3分)

$$F = AB + AC$$
$$G = \overline{A}B + \overline{A}C$$

AB	00	01	11	10
0	0	0	1	0
1	0	0	1	1

③画电路图(4分)

$$F = \overline{AB} \cdot \overline{AC}$$

$$G = \overline{\overline{\overline{A}B} \cdot \overline{\overline{A}C}}$$

六、时序电路设计(12分)

- ① 该计数器的计数循环中7个状态。(2分)
- ② 列出状态转移真值表、画出状态转移图。(4分)

$$1 \rightarrow 3 \rightarrow 7 \rightarrow 6 \rightarrow 4 \rightarrow 2 \rightarrow 5$$

Q_2^{n}	Q_1^{n}	Q_0^{n}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	1	0	1	1
0	1	1	1	1	1
1	1	1	1	1	0
1	1	0	1	0	0
1	0	0	0	1	0
0	1	0	1	0	1
1	0	1	0	0	1
0	0	0			

③ 若使用 D 触发器,写出激励方程表达式。 $(3 \, \%)$ Q_2^{n+1}

$$D_2 = Q_1$$

$$Q_1^{\ n+1}$$

$$D_1 = \overline{Q}_2 Q_0 + Q_1 Q_0 + \overline{Q}_1 \overline{Q}_0$$

$$Q_0^{\ n+1}$$

Q_2Q_1	00	01	11	10
0	X	1	0	0
1	1	1	0	1

$$\boldsymbol{D}_{\boldsymbol{\theta}} = \overline{\boldsymbol{Q}}_2 + \overline{\boldsymbol{Q}}_1 \boldsymbol{Q}_{\boldsymbol{\theta}}$$

④ 画出计数器电路图。(3分)

七、硬件描述语言设计(14分)

①程序结构 (3分)

2

MODULE 8421BCD_LED

TITLE 'output 8421bcd code and 7 LED code'

Declarations

(2分)

Q0,Q1,Q2,Q3 node istype 'reg';

clk pin;

a,b,c,d,e,f,g pin;

Q=[Q0..Q3];

Equations (4分)

Q := (Q+1) & !(Q==9);

Q:=0&(Q==9);

Q.clk=clk;

TRUTH_TABLE

(5分)

 $([Q3, Q2, Q1, Q0] \rightarrow [a, b, c, d, e, f, g])$

[0,0,0,0] ->[1,1,1,1,1,1,0];

 $[0,0,0,1] \rightarrow [0,1,1,0,0,0,0];$

 $[0,0,1,0] \rightarrow [1,1,0,1,1,0,1];$

[0,0,1,1] ->[1,1,1,1,0,0,1]; [0,1,0,0] ->[0,1,1,0,0,1,1]; [0,1,0,1] ->[1,0,1,1,0,1,1]; [0,1,1,0] ->[1,0,1,1,1,1,1]; [0,1,1,1] ->[1,1,1,0,0,0]; [1,0,0,0] ->[1,1,1,1,1,1]; [1,0,0,1] ->[1,1,1,0,0,1,1];

END

八、小型控制器设计(14分)

① ASM 流程图 (3分)

② 列出状态转移真值表(4分)

	现态		次态		
	编码		Q_2^{n+1}	Q_1^{n+1}	转移条件
а	0	h	0	1	
b	1	С	1	0	
С	2.	d	1	1	
d	3	С	1	0	X
		b	0	1	X

③ 设计多路选择器型控制器电路。(7分)

