Due before lecture on Monday, October 21, 2019

1. Construct examples of linear transformation that satisfy the following requirements. If no such examples are possible, explain why. (Hint: Problems #6-8 of Homework 06 help you connect one-to-one or onto linear transformations to properties of matrices.)

	one-to-one but not onto	onto but not one-to-one	both one-to-one and onto
$\mathbb{R}^2 o \mathbb{R}^2$			
$\mathbb{R}^3 \to \mathbb{R}^3$			
$\mathbb{R}^2 o \mathbb{R}^3$			
$\mathbb{R}^3 o \mathbb{R}^2$			

2. (*Strang* §2.1 #2) Which of the following subsets of \mathbb{R}^3 are actually subspaces? For each subspace you find, find a basis for that subspace. Describe your reasoning.

(a) The plane of vectors
$$\vec{b}=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix}$$
 with first component $b_1=0.$

- (b) The plane of vectors \vec{b} with first component $b_1 = 1$.
- (c) The vectors \vec{b} with $b_2b_3=0$ (notice that this is the union of two subspaces, the plane $b_2=0$ and the plane $b_3=0$).
- (d) All linear combinations of two given vectors $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 2\\0\\1 \end{bmatrix}$.
- (e) The plane of vectors \vec{b} that satisfy $b_3 b_2 + 3b_1 = 0$.

3. Determine each of the following statements true or false. Explain your reasoning.

- (a) $\{\vec{0}\}$ is a vector subspace of any \mathbb{R}^n , where $\vec{0}$ has n zeroes as coordinates.
- (b) Any straight line in \mathbb{R}^2 is a vector subspace of \mathbb{R}^2 .
- (c) Any two-dimensional plane going through the origin in \mathbb{R}^3 is a vector subspace of \mathbb{R}^3 .

4. (added on Wednesday) Finish the worksheet in lecture titled "Basis for N(A) and C(A)", a copy of which is posted on CatCourses. Turn in a digital copy of your solution together with the rest of this homework set, and bring a hard copy of your solutions to class on Monday.

5. (revised on Wednesday) The dimension of a vector subspace \mathbf{W} , denote by $\dim \mathbf{W}$, is defined to be the number of vectors in its basis.

(a) For the matrix in the worksheet,
$$A = \begin{bmatrix} 3 & 1 & 0 & -1 \\ 3 & 1 & -7 & 1 \\ 6 & 2 & 0 & -2 \end{bmatrix}$$
. what is $\dim N(A)$? What is $\dim C(A)$?

(b) If A is an m-by-n matrix with rank r. What is $\dim N(A)$? What is $\dim C(A)$. Explain your reasoning. (Hint: review the worksheet.)

6. (postponed to next week) $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

- (a) Is $\ker(T)$ a subspace of \mathbb{R}^n ?. Explain your reasoning. If yes, how can you find a basis for $\ker(T)$?
- (b) Is range(T) a subspace of \mathbb{R}^m ?. Explain your reasoning. If yes, how can you find a basis for range(T)? (Hint: Connect $\ker(T)$ and $\operatorname{range}(T)$ to column space and nullspace of some matrix.)

- 7. Follow the steps below to prove the theorem: If $\{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ is a basis for \mathbb{R}^n , then any vector \vec{x} in \mathbb{R}^n can be written as a linear combination of $\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}$ in a unique way.
 - (a) Which requirement for $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ to be a basis ensures that \vec{x} can be written as *some* linear combination of $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$?
 - (b) Suppose that \vec{x} can be written as a linear combination of $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ in two different ways. That is,

$$\vec{x} = c_1 \vec{e}_1 + c_2 \vec{e}_2 + \dots + c_n \vec{e}_n$$
, and $\vec{x} = d_1 \vec{e}_1 + d_2 \vec{e}_2 + \dots + d_n \vec{e}_n$

where all the c's are not the same as all the d's. By calculating $\vec{x} - \vec{x}$, show that one requirement for $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ to be a basis has been violated.

(c) Explain briefly why putting parts (a) and (b) together leads to a proof of the theorem.