# 1 Формула Ньютона-Лейбница. Теорема об интеграле с переменным верхним пределом.

#### Опр

$$E \subset \mathbb{R}, \quad F: E \to \mathbb{R} \quad f: E \to \mathbb{R}$$

Тогда F называется первообразной f, если  $F'(x) = f(x) \quad \forall x \in E$ 

#### $y_{TB}$

 $F_1,F_2$  - первообразные f на E, тогда:

$$F(x_1) - F(x_2) = \text{const}$$
 (т. Лагранжа)

#### Теорема (формула Ньютона-Лейбница)

 $f \in R[a,b], \ \mathrm{F}$  -первообразная f, тогда:

$$\int_{a}^{b} f = F(b) - F(a) = F|_{a}^{b}$$

#### Док-во

 $\forall \tau$  на [a,b] по теореме Лагранжа:

$$\exists \xi_k \in [x_k, x_{k+1}]: F(x_{k+1}) - F(x_k) = F'(\xi_k)(x_{k+1} - x_k) = f(\xi_k)\Delta_k$$

Так как  $f \in R[a,b] \Rightarrow \forall \mathcal{E} > 0 \; \exists \delta > 0 : \forall \tau : \; \lambda(\tau) < \delta, \; \forall \xi \; |S(f,\tau,\xi) - I| < \mathcal{E}$  Возьмём оснащение  $\xi$  из теоремы Лагранжа:

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k) \Delta_k = \sum_{k=0}^{n-1} (F(x_{k+1}) - F(x_k)) = F(b) - F(a)$$

### Опр

 $E \subset \mathbb{R}$ , Е - невырожденный промежуток,

$$f: E \to \mathbb{R} \quad \forall \alpha, \beta \in E: \quad \alpha < \beta \quad f \in R[\alpha, \beta] \quad$$
 для  $a \in E$  (фиксированного)

$$F(x) := \int\limits_{0}^{x} f(t) dt$$
 - интеграл с переменным верхним пределом

$$F: E \to \mathbb{R}$$

# Теорема

$$f \in R[a,b], \ F(x) = \int_a^x f(t)dt$$
, тогда:

1. 
$$F \in C[a, b]$$

2. (теорема Барроу) Если 
$$f$$
 - непр. в т.  $x_0 \in [a,b]$ , то  $F'(x_0) = f(x_0)$ 

#### Док-во

$$x\in [a,b],\ h:x+h\in [a,b]$$

1) 
$$F(x+h)-F(x)=\int\limits_a^{x+h}f-\int\limits_a^xf=\int\limits_a^{x+h}f+\int\limits_x^af=\int\limits_x^{x+h}f$$
 Так как  $f\in R[a,b]\Rightarrow \exists M\in\mathbb{R}:|f|< M,$  значит:

$$|F(x+h) - F(x)| \le \left| \int_x^{x+h} f \right| \le \int_x^{x+h} |f| \le M |h|$$

Кроме того,  $\forall \mathcal{E}>0, \ \delta=\frac{\mathcal{E}}{M}$  если  $|h|<\delta\Rightarrow |F(x+h)-F(x)|<\mathcal{E}$ 

2) Рассмотрим 
$$\left| \frac{F(x_0+h)-F(x_0)}{h} - f(x_0) \right| = \left| \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt - f(x_0) \frac{1}{h} \int_{x_0}^{x_0+h} dt \right| =$$

$$= \frac{1}{|h|} \left| \int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt \right| \leqslant \frac{1}{|h|} \left| \int_{x_0}^{x_0+h} \mathcal{E} dt \right| = \mathcal{E}$$
(при  $|h| < \delta \ \forall \mathcal{E} > 0 \ \exists \delta > 0 : |t - x_0| < \delta \Rightarrow |f(t) - f(x_0)| < \mathcal{E}$ )

#### Следствие

$$F \in C[a,b] \Rightarrow \exists F : F'(x) = f(x) \ \forall x \in [a,b]$$

Пример
$$f(x) = |x|, \ F(x) = \int_{0}^{x} |t| dt = \begin{cases} \frac{t^{2}}{2} \Big|_{0}^{x}, & x \geqslant 0 \\ -\frac{t^{2}}{2} \Big|_{0}^{x}, & x < 0 \end{cases}$$

$$\frac{\mathbf{\Pi}\mathbf{pимep}}{f(x)} = \begin{cases} 1, & x \geqslant 0 \\ -1, & x < 0 \end{cases}$$

 $(x) = |x| \ \forall x \neq 0$ , видно что неверно для первообразной, но:

# Опр

F - "почти первообразная", если:

1. 
$$F'(x) = f(x) \ \forall x \in [a, b] \setminus \{t_1, ...t_n\}$$

$$2. F \in C[a, b]$$

# Пример

Пример для "почти первообразной". Найти  $\int\limits_{0}^{2}f(x)$ , для  $f(x)=\max(1,x)$ 

$$F(t) \stackrel{?}{=} \begin{cases} t, & t \in [0, 1] \\ \frac{t^2}{2}, & t \in [1, 2] \end{cases}$$



Попробуем использовать H-Л:  $F(t)\big|_0^2 = F(2) - F(0) = 2$  Неверно, потому что это не первообразная и даже не "почти первообразная". Поправим F(x):

$$F(t) = \begin{cases} t, & t \in [0, 1] \\ \frac{t^2}{2} + \frac{1}{2}, & t \in [1, 2] \end{cases}$$



Это уже "почти первообразная" можно применять Н-Л.

## 2 Формула интегрирования по частям в интеграле Римана. Применение: формула Валлиса.

#### Теорема

$$F,G$$
 - первообразные  $f,g\in R[a,b]$  на  $[a,b]$ , тогда  $\int\limits_a^b Fg=FG|_a^b-\int\limits_a^b fG$  
$$(\int\limits_a^b uv'=uv|_a^b-\int\limits_a^b u'v)$$

$$(FG)' = fG + Fg$$
, по ф-ле Н-Л:  $\int\limits_{a}^{b} (FG)' = FG|_{a}^{b} = \int\limits_{a}^{b} fG + |_{a}^{b} Fg|_{a}^{b}$ 

Пример

Если 
$$I_m:=\int\limits_0^{\frac{\pi}{2}}\sin^mxdx=\int\limits_0^{\frac{\pi}{2}}\cos^mxdx$$
, то: 
$$I_m=\begin{cases} \frac{\pi}{2}\frac{(m-1)!!}{m!!}, & m\text{ - четное} \\ \frac{(m-1)!!}{m!!}, & m\text{ - нечетное} \end{cases}$$

$$I_{m} = \int_{0}^{\frac{\pi}{2}} \sin^{m} x dx = \int_{0}^{\frac{\pi}{2}} (-\cos x)' \sin^{m-1} x dx =$$

$$= -\cos x \sin^{m-1} x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos^{2} x (m-1) \sin^{m-2} x dx =$$

$$= (m-1) \int_{0}^{\frac{\pi}{2}} (\sin^{m-2} x - \sin^{m} x) dx = (m-1)(I_{m-2} - I_{m})$$

$$I_m = \frac{m-1}{m} I_{m-2}, \ I_0 = \frac{\pi}{2}, \ I_1 = 1, \ I_2 = \frac{\pi}{2} \frac{1}{2}, \ I_{2k} = \frac{\pi}{2} \frac{1}{2} \frac{3}{4} \dots \frac{2k-1}{2k} = \frac{\pi}{2} \frac{(2k-1)!!}{(2k)!!}$$

### Теорема (Формула Валлиса)

$$\lim_{n\to\infty}\frac{2*2*4*4*...*(2n)(2n)}{1*3*3*5*5...(2n-1)(2n+1)}=\frac{\pi}{2}$$
 (или 
$$\lim_{n\to\infty}\frac{1}{n}(\frac{(2n)!!}{(2n-1)!!})^2=\pi)$$

$$\frac{(2n)!!}{\forall x \in [0, \frac{\pi}{2}]} \text{ верно } \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \leqslant \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x$$

$$\frac{(2n)!!}{(2n+1)!!} \leqslant \frac{\pi}{2} \frac{(2n-1)!!}{(2n)!!} \leqslant \frac{(2n-2)!!}{(2n-1)!!}$$

$$A_{n} = \frac{((2n)!!)^{2}}{(2n-1)!!(2n+1)!!} \leqslant \frac{\pi}{2} \leqslant \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^{2}} = B_{n}$$

$$\begin{split} B_n - A_n &= \frac{(2n)!!(2n-2)!!}{((2n-1)!!)^2} - \frac{((2n)!!)^2}{(2n-1)!!(2n+1)!!} = \\ &= (\frac{(2n)!!}{(2n-1)!!})^2 (\frac{1}{2n} - \frac{1}{2n+1}) = (\frac{((2n)!!)^2}{(2n-1)!!(2n-1)!!}) \frac{1}{(2n+1)(2n)} = \\ &= A_n \frac{1}{2n} \leqslant \frac{\pi}{2} \frac{1}{2n} \to_{n \to \infty} 0 \Rightarrow \lim_{n \to \infty} A_n = \lim_{n \to \infty} B_n = \frac{\pi}{2} \end{split}$$

#### 3 Формула Тейлора с остаточным членом в интегральной форме.

#### Теорема

$$f \in C^{n+1}([a,b]) \Rightarrow f(b) = \sum_{k=0}^n rac{f^{(k)}(a)}{k!}(b-a)^k + R_n(b,a),$$
 где  $R_n(b,a) = rac{1}{n!} \int\limits_a^b f^{(n+1)}(t)(b-t)^n dt$ 

#### Замечание

$$f \in C^{n+1}([a,b]) \Rightarrow f^{(n+1)} \in C[a,b] \Rightarrow \exists \xi \in [a,b] :$$

$$1_{f(n+1)(\xi)} \int_{(b-t)^n dt}^{b} -f^{(n+1)}(\xi) (b-t)^{n+1} |_{b}^{b} -f^{(n+1)}(\xi) (b-t)^{n+1} |_{b}^{b} = f^{(n+1)}(\xi) (b-t)^{n+1} |_{b$$

$$R_n = \frac{1}{n!} f^{(n+1)}(\xi) \int_a^b (b-t)^n dt = \frac{-f^{(n+1)}(\xi)}{n!} \frac{(b-t)^{n+1}}{n+1} \Big|_a^b = \frac{-f^{(n+1)}(\xi)}{(n+1)!} (b-a)^{n+1}$$

#### Док-во (по индукции)

1) 
$$n=0$$
 
$$f(b)=f(a)+\int\limits_a^bf'(t)dt \text{ - формула H-Л}$$

2) Инд. переход. Пусть для n-1 - доказано,  $f\in C^{n-1}[a,b]\subset C^n[a,b],$  по инд. предположению:

$$f(b) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (b-a)^k + R_{n-1}(*)$$

$$R_{n-1} = \frac{1}{(n-1)!} \int_a^b f^{(n)}(t) (b-t)^{n-1} dt = \begin{bmatrix} u = f^{(n)}(t) \\ dv = (b-t)^{n-1} dt \end{bmatrix} =$$

$$= \frac{1}{(n-1)!} (-f^{(n)}(t) \frac{(b-t)^n}{n} \Big|_a^b + \int_a^b f^{(n+1)}(t) \frac{(b-t)^n}{n} dt) =$$

$$= \frac{1}{(n)!} (f^{(n)}(a)(b-a)^n + \int_a^b f^{(n+1)}(t)(b-t)^n dt) - \text{подставить в (*)}$$

## 4 Формула интегрирования по частям в интеграле Римана. Вторая теорема о среднем.

Формулу интегрирования по частям см. в 12 билете.

# Теорема (Бонне или вторая теорема о среднем)

$$f \in C[a,b], \ g \in C^1[a,b], g$$
 — монотонна

$$\Rightarrow \exists \xi \in [a,b]: \int_{a}^{b} fg = g(a) \int_{a}^{\xi} f + g(b) \int_{\xi}^{b} f$$

$$\frac{K^{\textbf{-BO}}}{(\text{для } g \nearrow)} F(x) := \int_{a}^{x} f \Rightarrow F' = f$$
 
$$\int_{a}^{b} fg = \int_{a}^{b} F'g = Fg|_{a}^{b} - \int_{a}^{b} Fg' = F(b)g(b) - F(a)g(a) - \int_{a}^{b} Fg' =$$
 
$$(\text{т.к. } g \nearrow g \geqslant 0 \Rightarrow \text{по т. o среднем } \exists \xi \in [a,b]:)$$
 
$$= F(b)g(b) - g(a)F(a) - F(\xi) \int_{a}^{b} g' = g(b)(F(b) - F(\xi)) + g(a)(F(\xi) - F(a))$$

# 5 Замена переменной в определенном интеграле (две формулировки, доказательство одной).

#### Теорема

$$\varphi \subset C^1[\alpha,\beta], \ f \in C(\varphi([\alpha,\beta])), \ ext{тогда} \int\limits_{\varphi(\alpha)}^{\varphi(\beta)} f = \int\limits_{\alpha}^{\beta} (f \circ \varphi) \varphi'$$

#### Док-во

$$f \in C(\varphi([\alpha, \beta])) \Rightarrow \exists F : F' = f$$

$$(F \circ \varphi)' = (F' \circ \varphi)\varphi' = (f \circ \varphi)\varphi' \Rightarrow \int_{\alpha}^{\beta} (f \circ \varphi)\varphi' = (F \circ \varphi)(\beta) - (F \circ \varphi)(\alpha)$$

$$\int\limits_{\varphi(\alpha)}^{\varphi(\beta)} f = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int\limits_{\alpha}^{\beta} (f \circ \varphi) \varphi'$$

#### Теорема

 $f \in R[a,b], \ \varphi \in C^1[\alpha,\beta], \ \varphi$  - строго возрастает,

$$arphi(lpha)=a, \quad arphi(eta)=b, ext{ тогда } \int\limits_{lpha}^{b}f=\int\limits_{lpha}^{eta}(f\circarphi)arphi'$$

# Пример

$$\int_{0}^{1} \sqrt{1 - x^2} dx, \quad \varphi(t) = \cos t, \quad \varphi(\alpha) = 0$$

$$, \, \phi(\beta) = 1$$

$$\int\limits_{0}^{1} \sqrt{1-x^{2}} dx = -\int\limits_{\frac{\pi}{2}}^{0} \sqrt{1-\cos^{2}t} \sin t dt = -\int\limits_{\frac{\pi}{2}}^{0} \frac{1-\cos 2t}{2} dt = \left(-\frac{t}{2} + \frac{\sin 2t}{4}\right)\Big|_{\frac{\pi}{2}}^{0} = \frac{\pi}{4}$$

# Напоминание (про ряды)

Опр

Числовой ряд из элементов  $\{a_j\}_{j\in\mathbb{N}}$  - это  $\sum\limits_{j=1}^\infty a_j$ 

Опр

Частичная сумма ряда  $S_n = \sum_{j=1}^n a_j$ 

Опр

Говорят, что сумма ряда  $S = \sum\limits_{j=1}^{\infty} a_j = \lim\limits_{n \to \infty} S_n$ 

Замечание

Ряд  $\sum_{j=1}^{\infty} a_j$  сходится или расходится одновременно с рядом  $\sum_{j=N}^{\infty} a_j$ 

Теорема (необходимое условие сходимости)

Если 
$$\sum_{j=1}^{\infty} a_j$$
 - сходится, то  $\lim_{j \to \infty} a_j = 0$ 

Опр

Ряд Лейбница 
$$\sum\limits_{j=0}^{\infty}(-1)^{j}a_{j},\,a_{j}>0,$$
 где  $\lim\limits_{j
ightarrow\infty}a_{j}=0,\,a_{j}\searrow$ 

Теорема

Пусть  $\sum\limits_{j=0}^{\infty}(-1)^{j}a_{j}$  - ряд Лейбница, тогда:

- 1. Ряд Лейбница сходится
- 2.  $S_{2n} \setminus S_{2n-1} \nearrow$
- 3.  $|S S_n| < a_{n+1}$

# Теорема

Критерий Коши для числовых последовательностей.

$$\sum_{j=1}^{\infty} a_j - \operatorname{cx} \Leftrightarrow \forall \mathcal{E} > 0 \ \exists N : \forall m > n > N \ |S_m - S_n| < \mathcal{E}$$

9

#### 6 Признаки сравнения для положительных рядов.

#### Опр

Если 
$$a_j\geqslant 0$$
, то  $\sum\limits_{j=1}^{\infty}a_j$  - положительный ряд

# Теорема

Положительный ряд сходится  $\Leftrightarrow S_n$  - ограничены

#### Следствие

Пусть  $0 \leqslant a_i \leqslant b_i$ , тогда:

- 1.  $\sum b_i$  cx  $\Rightarrow \sum a_i$  cx (первый признак сходимости)
- 2.  $\sum a_j$  расх  $\Rightarrow \sum b_j$  расх (первый признак сравнения)

#### Следствие

$$a_k \geqslant 0, \ b_k \geqslant 0, \ \exists c, d > 0 \ \exists N : \forall n > N \ 0 < c \leqslant \frac{a_n}{b_n} \leqslant d \leqslant \infty$$

Тогда  $\sum a_k$  и  $\sum b_k$  сх. или расх. одновременно

# Док-во

(T.e. 
$$\sum a_k$$
 -  $\operatorname{cx} \Leftrightarrow \sum b_k$  -  $\operatorname{cx}$ )  
( $\Leftarrow$ )  $0 \leqslant a_n \leqslant db_n$  T.K.  $db_n$  -  $\operatorname{cx} \Rightarrow a_n$  -  $\operatorname{cx}$   
( $\Rightarrow$ )  $0 \leqslant cb_n \leqslant a_n$  T.K.  $a_n$  -  $\operatorname{cx} \Rightarrow cb_n$  -  $\operatorname{cx} \Rightarrow b_n$  -  $\operatorname{cx}$ 

# Следствие (второй признак сравнения)

Пусть 
$$a_n,b_n\geqslant 0$$
, тогда если  $\exists\lim_{n\to\infty} \frac{a_n}{b_n}=L\in(0,+\infty)$ , то  $\sum a_n$  и  $\sum b_n$  сх или расх одновременно

Возьмём 
$$\mathcal{E}:=\frac{L}{2}\Rightarrow\exists N:\forall n>N\; \left|\frac{a_n}{b_n}-L\right|<\frac{L}{2}\Rightarrow$$
  $0<\frac{L}{2}<\frac{a_n}{b_n}<\frac{3L}{2}<+\infty\Rightarrow$  по предыдущему следствию верно

#### 7 Признаки Даламбера и Коши для положительных рядов.

### Теорема (радикальный признак Коши для положительных рядов)

$$a_k\geqslant 0,\,c:=\overline{\lim_{k o\infty}}\sqrt[k]{a_k}$$
 Если  $c<1$ , то  $\sum a_k$  - сх Если  $c>1$ , то  $\sum a_k$  - расх

#### Док-во

a) 
$$0 \le c < 1$$



$$q:=rac{c+1}{2},\ c< q<1,\$$
по характеристике  $\overline{\lim}:\exists N: \forall n>N$   $\sqrt[n]{a_n}< q$  т.к.  $0\leqslant a_n< q^n$  и  $\sum q^n$  - cx  $\Rightarrow \sum a_n$  - cx 6)  $c>1$ 

 $q:=\frac{c+1}{2},\,1< q< c,\,$  по характеристике  $\varlimsup:\forall N:\exists n>N$   $\sqrt[n]{a_n}>q$  т.е.  $\exists$  бесконечное мн-во  $\sqrt[n_k]{a_{n_k}}>q,\,a_{n_k}>q^{n_k}>1$   $\Rightarrow \lim a_{n_k}\neq 0 \Rightarrow \sum a_n$  - расх

# Теорема (признак Даламбера сходимости положительных рядов)

$$a_k\geqslant 0,\, \mathcal{D}:=\lim_{k o\infty}rac{a_{k+1}}{a_k}$$
 Если  $\mathcal{D}<1,\, ext{то }\sum a_k$  - cx Если  $\mathcal{D}>1,\, ext{то }\sum a_k$  - pacx

#### Док-во

a) 
$$\mathcal{D} < 1$$
,  $q := \frac{\mathcal{D}+1}{2} \mathcal{E} := \frac{1-\mathcal{D}}{2}$ 



 $\exists N: \forall k>N \ \mathcal{D}-\mathcal{E}<rac{a_{k+1}}{a_k}<\mathcal{D}+\mathcal{E}=q$  - геом пр. q<1  $a_{k+1}< qa_k< q^2a_{k-1}<\ldots< q^{k-N+1}a_N, \sum q^{k-N+1}a_k$  -  $\operatorname{cx}\Rightarrow\sum a_{k+1}$  -  $\operatorname{cx}$  по первому пр. сходимости 6)  $\mathcal{D}<1,\ q:=rac{\mathcal{D}+1}{2}\ \mathcal{E}:=rac{\mathcal{D}-1}{2}$ 

 $\exists N: \forall k>N \ q=\mathcal{D}-\mathcal{E}<rac{a_{k+1}}{a_k}<\mathcal{D}+\mathcal{E}, \ q>1$   $a_{k+1}>qa_k>q^2a_{k-1}>...>q^{k-N+1}a_N, \ \sum q^{k-N+1}a_N$  - расх  $\Rightarrow \sum a_{k+1}$  - расх по первому пр. сравнения

# 8 Абсолютная и условная сходимость рядов. Сходимость следует из абсолютной сходимости.

Опр

$$\sum\limits_{j=1}^{\infty} a_j$$
 - сх абсолютно, если  $\sum\limits_{j=1}^{\infty} |a_j|$  - сх

#### Опр

Ряд сходится условно если сходится, но не абсолютно

#### Теорема

Если ряд сходится абсолютно, то он сходится

## Док-во

$$\sum\limits_{j=1}^{\infty}|a_j|$$
 - cx, по критерию Коши  $\forall \mathcal{E}>0\ \exists N: \forall m>n>N:$ 

 $||a_{n+1}| + ... + |a_m|| < \mathcal{E}$ , по неравенству треугольника:

$$|a_{n+1} + \dots + a_m| < \mathcal{E} \Rightarrow \sum_{i=1}^{\infty} a_i - cx.$$

# 9 Абсолютная и условная сходимость. Пример: $\sum\limits_{n=1}^{\infty} rac{(-1)^{n-1}}{n}$

Определения см. в предыдущем билете.

Ряд не сходится абсолютно, т.к.  $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$  - расх. ряд, т.к.:

#### Теорема (критерий Коши сходимости последовательности)

 $x_n$  -  $\operatorname{cx} \Leftrightarrow x_n$  -  $\operatorname{cx}$  в себе.

Покажем, что для  $S_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$   $\exists \mathcal{E}>0: \forall N\ \exists m,n\geqslant N: |x_m-x_n|>\mathcal{E}$ :

Возьмём 
$$\mathcal{E} = \frac{1}{4}$$
 n  $= N, m = 2N$ :

$$|S_{2N} - S_N| = \left| \frac{1}{N+1} + \dots + \frac{1}{2N} \right| > N \frac{1}{2N} = \frac{1}{2} > \mathcal{E}$$

Но ряд сходится (значит условно сходится) по признаку Лейбница (или это можно показать прямо, доказав что  $S_{2n}\nearrow$  и ограничена сверху единицей, а  $S_{2n+1}=S_{2n}$  в пределе)

# 10 Перестановка абсолютно сходящегося ряда. Теорема Римана (6/д).

#### Опр

Пусть есть ряд  $\sum\limits_{k=1}^\infty a_k$  и биективная функция  $\varphi:\mathbb{N}\to\mathbb{N},$  тогда ряд  $\sum\limits_{k=1}^\infty a_{\varphi(k)}$  называется перестановкой ряда  $\sum\limits_{k=1}^\infty a_k$ 

### Теорема (Римана v1)

Пусть ряд  $\sum a_n$  - условно сходится, тогда:

$$\forall S \in \overline{\mathbb{R}} \ \exists \varphi : \mathbb{N} \to \mathbb{N} : \sum a_{\varphi(k)} = S$$

### Опр

$$a_k^+ = \max\{a_k, 0\}, a_k^- = \max\{-a_k, 0\}$$

# Теорема (Дирихле, о перестановке абсолютно сходящегося ряда)

Если 
$$\sum\limits_{n=1}^\infty a_n=S$$
 сх абсолютно, то  $\forall \varphi:\mathbb{N} o \mathbb{N},$  где  $\varphi$  - биекция  $\Rightarrow \sum\limits_{n=1}^\infty a_{\varphi(n)}=S$ 

# Док-во

а) Пусть  $a_n \geqslant 0 \ \forall n \in \mathbb{N}$ 

$$S:=\sum\limits_{n=1}^{\infty}a_n$$
 - cx  $\Leftrightarrow$  все частичные суммы ограничены,  $S_n\leqslant S\ \forall n\in\mathbb{N}$ 

Частичные суммы  $\sum\limits_{k=1}^n a_{\phi(k)}$  обозначим перестановками ряда  $T_n:=\sum\limits_{k=1}^n a_{\phi(k)}$ 

Пусть  $m := \max\{\varphi(1), \varphi(2), ..., \varphi(n)\}$ 

$$T_n \leqslant S_m := \sum_{n=1}^m a_{\varphi(a_n)} \leqslant S \Rightarrow T_n \nearrow$$
 - огр  $\Leftrightarrow$  ряд  $T := \sum_{n=1}^\infty a_{\varphi(a_n)}$  сходится.

Предельный переход даёт  $T\leqslant S,$  но так как S - тоже перестаовка  $T\Rightarrow S\leqslant T$ 

Значит 
$$S=T$$
, то есть  $\sum\limits_{n=1}^{\infty}a_n=\sum\limits_{n=1}^{\infty}a_{\varphi(a_n)}$ 

б) Общий случай,  $a_k \in \mathbb{R}$ 

Общии случай, 
$$a_k \in \mathbb{R}$$
  $a_k = a_k^+ - a_k^-, |a_k| = a_k^+ + a_k^- \Rightarrow a_k^+ = \frac{a_k + |a_k|}{2}, \ a_k^- = \frac{|a_k| - a_k}{2}$  т.к.  $\sum a_k$  - сх абсолютно  $\Rightarrow \sum |a_k|$  - сх  $\Rightarrow \sum a_k^+, \sum a_k^-$  - сх (причем абсолютно)

$$\sum_{k=0}^{\infty} a_{\varphi(k)} = \sum_{k=0}^{\infty} (a_{\varphi(k)}^+ - a_{\varphi(k)}^-) = \sum_{k=0}^{\infty} a_{\varphi(k)}^+ - \sum_{k=0}^{\infty} a_{\varphi(k)}^- = \text{ (ii. a) } \sum_{k=0}^{\infty} (a_k^+ - a_k^-) = \sum_{k=0}^{\infty} a_k$$

# Теорема (Римана v2)

Пусть ряд  $\sum a_n$  - условно сходится. Тогда  $\sum a_n^+ - \sum a_n^- = +\infty$ 

# Док-во

Можно доказать одну из теорем