$HW_02.R$

jairo

2025-09-04

```
# HW_02, Asginación 3 Contraste de medias
# Trabajar con datos en R
# Jairo Alberto Leal Gómez
# Matricula 1723093
# DCOMRN 1 semestre - Estadistica en la Investigación Cientica

# Base de datos iris ------

# La base de datos iris es uno de los conjuntos de datos más utilizados en
# estadística y aprendizaje automático. Fue introducida por el estadístico y
# biólogo Ronald A. Fisher (1936) en su artículo The use of multiple measurements
# in taxonomic problems

iris
```

		a		D . 7	D . 7	a .
##		_	=	Petal.Length		Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa

##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7		rsicolor
##	52	6.4	3.2	4.7		rsicolor
##	53					rsicolor
		6.9	3.1 2.3	4.9		
##	54	5.5		4.0		rsicolor
##	55	6.5	2.8	4.6		rsicolor
##	56	5.7	2.8	4.5		rsicolor
##	57	6.3	3.3	4.7		rsicolor
##	58	4.9	2.4	3.3		rsicolor
##	59	6.6	2.9	4.6		rsicolor
##	60	5.2	2.7	3.9		rsicolor
##	61	5.0	2.0	3.5		rsicolor
##		5.9	3.0	4.2		rsicolor
##		6.0	2.2	4.0		rsicolor
##		6.1	2.9	4.7		rsicolor
##		5.6	2.9	3.6		rsicolor
	66	6.7	3.1	4.4		rsicolor
##	67	5.6	3.0	4.5		rsicolor
	68	5.8	2.7	4.1		rsicolor
##	69	6.2	2.2	4.5		rsicolor
##	70	5.6	2.5	3.9	1.1 ve	rsicolor
##	71	5.9	3.2	4.8		rsicolor
##	72	6.1	2.8	4.0	1.3 ve	rsicolor
##	73	6.3	2.5	4.9	1.5 ve	rsicolor
##	74	6.1	2.8	4.7	1.2 ve	rsicolor
##	75	6.4	2.9	4.3	1.3 ve	rsicolor
##	76	6.6	3.0	4.4	1.4 ve	rsicolor
##	77	6.8	2.8	4.8	1.4 ve	rsicolor
##	78	6.7	3.0	5.0	1.7 ve	rsicolor
##	79	6.0	2.9	4.5	1.5 ve	rsicolor

## 80	5.7	2.6	3.5	1.0 versicolor
## 81	5.5	2.4	3.8	1.1 versicolor
## 82	5.5	2.4	3.7	1.0 versicolor
## 83	5.8	2.7	3.9	1.2 versicolor
## 84	6.0	2.7	5.1	1.6 versicolor
## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 90	5.7	2.9	4.2	1.3 versicolor
## 97 ## 98			4.3	
	6.2	2.9		1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	2.3 virginica
## 120	6.0	2.2	5.0	
## 121	6.9	3.2	5.7	2.3 virginica
## 122	5.6	2.8	4.9	2.0 virginica
## 123	7.7	2.8	6.7	2.0 virginica
## 124	6.3	2.7	4.9	1.8 virginica
## 125	6.7	3.3	5.7	2.1 virginica
## 126	7.2	3.2	6.0	1.8 virginica
## 127	6.2	2.8	4.8	1.8 virginica
## 128	6.1	3.0	4.9	1.8 virginica
## 129	6.4	2.8	5.6	2.1 virginica
## 130	7.2	3.0	5.8	1.6 virginica
## 131	7.4	2.8	6.1	1.9 virginica
## 132	7.9	3.8	6.4	2.0 virginica
## 133	6.4	2.8	5.6	2.2 virginica
				-

```
## 134
              6.3
                           2.8
                                       5.1
                                                   1.5 virginica
## 135
               6.1
                           2.6
                                       5.6
                                                   1.4 virginica
## 136
               7.7
                          3.0
                                       6.1
                                                   2.3 virginica
## 137
               6.3
                          3.4
                                                   2.4 virginica
                                       5.6
## 138
               6.4
                           3.1
                                       5.5
                                                   1.8 virginica
## 139
               6.0
                          3.0
                                       4.8
                                                   1.8 virginica
## 140
               6.9
                          3.1
                                      5.4
                                                   2.1 virginica
## 141
               6.7
                          3.1
                                                   2.4 virginica
                                      5.6
## 142
               6.9
                           3.1
                                       5.1
                                                  2.3 virginica
## 143
              5.8
                          2.7
                                       5.1
                                                  1.9 virginica
## 144
               6.8
                           3.2
                                       5.9
                                                   2.3 virginica
## 145
               6.7
                           3.3
                                       5.7
                                                   2.5 virginica
## 146
               6.7
                           3.0
                                       5.2
                                                   2.3 virginica
## 147
               6.3
                          2.5
                                      5.0
                                                   1.9 virginica
## 148
              6.5
                          3.0
                                      5.2
                                                   2.0 virginica
## 149
              6.2
                          3.4
                                      5.4
                                                   2.3 virginica
## 150
               5.9
                           3.0
                                       5.1
                                                   1.8 virginica
iris <- iris
head(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
             5.1
                        3.5
                                     1.4
                                                 0.2 setosa
## 2
             4.9
                         3.0
                                     1.4
                                                 0.2 setosa
## 3
             4.7
                        3.2
                                     1.3
                                                 0.2 setosa
## 4
             4.6
                        3.1
                                     1.5
                                                 0.2 setosa
## 5
             5.0
                         3.6
                                     1.4
                                                 0.2 setosa
## 6
             5.4
                         3.9
                                     1.7
                                                 0.4 setosa
# Ejercicio -----
# Primer contacto con R
    # Selección de especies: elija las especies versicolor y virginica de la base
    # y enfoque su análisis en la variable Petal.Length
   data_sub <- subset(iris, Species %in% c("versicolor", "virginica"))</pre>
    # Explorar la base de datos iris usando funciones como head(), summary()
   head(data_sub)
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                         Species
## 51
              7.0
                                  4.7
                                                  1.4 versicolor
                          3.2
## 52
              6.4
                          3.2
                                      4.5
                                                  1.5 versicolor
              6.9
                                      4.9
                                                  1.5 versicolor
## 53
                          3.1
## 54
              5.5
                          2.3
                                      4.0
                                                  1.3 versicolor
## 55
              6.5
                          2.8
                                      4.6
                                                  1.5 versicolor
## 56
              5.7
                          2.8
                                      4.5
                                                  1.3 versicolor
   summary(data_sub)
##
   Sepal.Length
                    Sepal.Width
                                   Petal.Length
                                                  Petal.Width
## Min. :4.900
                   Min. :2.000
                                  Min. :3.000
                                                  Min. :1.000
## 1st Qu.:5.800
                 1st Qu.:2.700
                                  1st Qu.:4.375
                                                  1st Qu.:1.300
```

Median :4.900

Median :1.600

Median :6.300 Median :2.900

```
## Mean :6.262 Mean :2.872
                                 Mean
                                      :4.906
                                                Mean :1.676
##
  3rd Qu.:6.700 3rd Qu.:3.025
                                 3rd Qu.:5.525
                                                3rd Qu.:2.000
  Max. :7.900 Max. :3.800 Max. :6.900
##
                                                Max. :2.500
##
         Species
## setosa
           : 0
##
  versicolor:50
## virginica:50
##
##
##
   {\it \# Identificar las variables Petal. Length y determina las estad{\'e}sticas}
    # descriptivas para las dos especies.
   summary(data_sub$Petal.Length)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 3.000 4.375 4.900 4.906 5.525 6.900 data_sub

##		Sepal.Length	Sepal.Width	${\tt Petal.Length}$	${\tt Petal.Width}$	Species
##	51	7.0	3.2	4.7	1.4	versicolor
##	52	6.4	3.2	4.5	1.5	versicolor
##	53	6.9	3.1	4.9	1.5	versicolor
##	54	5.5	2.3	4.0		versicolor
##	55	6.5	2.8	4.6	1.5	versicolor
##	56	5.7	2.8	4.5	1.3	versicolor
##	57	6.3	3.3	4.7	1.6	versicolor
##	58	4.9	2.4	3.3	1.0	versicolor
##	59	6.6	2.9	4.6	1.3	versicolor
##	60	5.2	2.7	3.9	1.4	versicolor
##	61	5.0	2.0	3.5		versicolor
##	62	5.9	3.0	4.2		versicolor
##	63	6.0	2.2	4.0	1.0	versicolor
##	64	6.1	2.9	4.7		versicolor
##	65	5.6	2.9	3.6	1.3	versicolor
##	66	6.7	3.1	4.4	1.4	versicolor
##	67	5.6	3.0	4.5	1.5	versicolor
##	68	5.8	2.7	4.1	1.0	versicolor
##	69	6.2	2.2	4.5	1.5	versicolor
##	70	5.6	2.5	3.9	1.1	versicolor
##	71	5.9	3.2	4.8		versicolor
##	72	6.1	2.8	4.0	1.3	versicolor
##	73	6.3	2.5	4.9	1.5	versicolor
##	74	6.1	2.8	4.7		versicolor
##	75	6.4	2.9	4.3		versicolor
##	76	6.6	3.0	4.4	1.4	versicolor
##	77	6.8	2.8	4.8		versicolor
##	78	6.7	3.0	5.0		versicolor
##	79	6.0	2.9	4.5	1.5	versicolor
##	80	5.7	2.6	3.5		versicolor
##	81	5.5	2.4	3.8	1.1	versicolor
##	82	5.5	2.4	3.7	1.0	versicolor
##	83	5.8	2.7	3.9	1.2	versicolor
##	84	6.0	2.7	5.1	1.6	versicolor

## 85	5.4	3.0	4.5	1.5 versicolor
## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 100	6.3	3.3	6.0	
## 101 ## 102	5.8	2.7	5.1	•
			5.9	1.9 virginica
## 103	7.1	3.0		2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	2.3 virginica
## 120	6.0	2.2	5.0	1.5 virginica
## 121	6.9	3.2	5.7	2.3 virginica
## 122	5.6	2.8	4.9	2.0 virginica
## 123	7.7	2.8	6.7	2.0 virginica
## 124	6.3	2.7	4.9	1.8 virginica
## 125	6.7	3.3	5.7	2.1 virginica
## 126	7.2	3.2	6.0	1.8 virginica
## 127	6.2	2.8	4.8	1.8 virginica
## 128	6.1	3.0	4.9	1.8 virginica
## 129	6.4	2.8	5.6	2.1 virginica
## 130	7.2	3.0	5.8	1.6 virginica
## 131	7.4	2.8	6.1	1.9 virginica
## 132	7.9	3.8	6.4	2.0 virginica
## 133	6.4	2.8	5.6	2.2 virginica
## 134	6.3	2.8	5.1	1.5 virginica
## 135	6.1	2.6	5.6	1.4 virginica
## 136	7.7	3.0	6.1	2.3 virginica
## 137	6.3	3.4	5.6	2.4 virginica
## 138	6.4	3.1	5.5	1.8 virginica
	~··	~··		2.0 711611100

```
## 139
                6.0
                            3.0
                                         4.8
                                                      1.8 virginica
## 140
                6.9
                            3.1
                                         5.4
                                                      2.1 virginica
## 141
                6.7
                            3.1
                                         5.6
                                                      2.4 virginica
## 142
                            3.1
                6.9
                                         5.1
                                                      2.3 virginica
## 143
                5.8
                            2.7
                                         5.1
                                                      1.9 virginica
## 144
                                                      2.3 virginica
                6.8
                            3.2
                                         5.9
## 145
                            3.3
                                                     2.5 virginica
                6.7
                                         5.7
## 146
                                                     2.3 virginica
                6.7
                            3.0
                                         5.2
## 147
                6.3
                            2.5
                                         5.0
                                                     1.9 virginica
## 148
                6.5
                            3.0
                                         5.2
                                                      2.0 virginica
## 149
                6.2
                            3.4
                                         5.4
                                                      2.3 virginica
## 150
                5.9
                            3.0
                                         5.1
                                                      1.8 virginica
    versicolor <- data_sub$Petal.Length[data_sub$Species == "versicolor"]</pre>
   virginica <- data_sub$Petal.Length[data_sub$Species == "virginica"]</pre>
   mean(versicolor)
## [1] 4.26
    summary(versicolor)
      Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
##
      3.00
              4.00
                      4.35
                              4.26
                                      4.60
                                               5.10
   mean(virginica)
## [1] 5.552
    summary(virginica)
##
                              Mean 3rd Qu.
      Min. 1st Qu. Median
                                              Max.
##
     4.500
           5.100
                   5.550
                             5.552
                                     5.875
                                             6.900
# Prueba estadistica
    # Defina una prequnta de investigación sobre la variable Petal.Length
      # ¿Existe una diferencia significativa en la longitud de los pétalos
      # (Petal.Length) entre dos especies de Iris?
    # Plantee formalmente las hipótesis estadísticas para una prueba t
    # de dos muestras independientes (two.sided).
      # Ho = no hay diferencia en la longitud promedio de los pétalos
      # H1 = sí hay diferencia en la longitud promedio de los pétalos
    # Ejecute la prueba en R justificando el tipo de prueba (Welch cuando las
    # varianzas son diferentes o clásica, cuando las varianzas son iquales).
      var.test(versicolor, virginica)
##
## F test to compare two variances
##
## data: versicolor and virginica
## F = 0.72497, num df = 49, denom df = 49, p-value = 0.2637
\#\# alternative hypothesis: true ratio of variances is not equal to 1
```

```
## 95 percent confidence interval:
## 0.411402 1.277530
## sample estimates:
## ratio of variances
            0.7249678
      # Si p-value < 0.05 \rightarrow varianzas diferentes \rightarrow Welch
      # Si \ p-value >= 0.05 \rightarrow varianzas iguales \rightarrow t-test clásico
      t.test(versicolor, virginica, alternative = "two.sided",
             var.equal = T, paired = T)
##
## Paired t-test
##
## data: versicolor and virginica
## t = -12.091, df = 49, p-value = 2.562e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -1.506744 -1.077256
## sample estimates:
## mean difference
##
            -1.292
    # Calcule e interprete el tamaño del efecto (Cohen's d).
      library(effsize)
      help("cohen.d")
## starting httpd help server ... done
      cohen.d(versicolor, virginica, hedges.correction = TRUE)
##
## Hedges's g
##
## g estimate: -2.501415 (large)
## 95 percent confidence interval:
       lower
                 upper
## -3.027189 -1.975641
# Visualización
      # Genere una gráfica comparativa (boxplot, violinplot, etc.) que muestre
      # las diferencias entre especies.
      data <- c("I. versicolor", "I. virginica")</pre>
    boxplot(versicolor, virginica,
              main = "Longitud de petalo (Iris)",
              col= c("purple", "magenta"),
              notch= TRUE,
              ylab = "Longitud (cm)",
              names = data)
```


library(vioplot)


```
# Informe Final

# Planteamiento del problema e hipótesis

# El dataset iris constituye uno de los conjuntos de datos más empleados en análisis

# estadístico y biológico. Una de las variables medidas es la longitud del pétalo

# (Petal.Length), que varía entre las tres especies registradas.

# La pregunta de investigación fue: ¿Existe una diferencia significativa en

# la longitud de los pétalos entre Iris versicolor e Iris virginica?

# Para responderla, se plantearon las siguientes hipótesis estadísticas:

# Ho = no hay diferencia en la longitud promedio de los pétalos

# H1 = sí hay diferencia en la longitud promedio de los pétalos

# Resultados numéricos y gráficos

var.test(versicolor, virginica)

##

##

##

##

F test to compare two variances
```

##

data: versicolor and virginica

F = 0.72497, num df = 49, denom df = 49, p-value = 0.2637

```
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.411402 1.277530
## sample estimates:
## ratio of variances
##
            0.7249678
# Se realizó una prueba F de homogeneidad de varianzas, la cual indicó que
 # las varianzas no son significativamente diferentes entre si (p > 0.05),
  # por lo que se cumple con el supuesto de homogeneidad de varianzas, lo que
  # justifica el hecho de utilizar una prueba clasica de t, asi mismo, se
  # procedio a realizar una prueba de Cohen's
  # A continuación se muestran los valores promedios y resumen estadistico de
  # cada especie, asi como los resultados de las pruebas de t y de Cohen.
      # Longitud promedio del petalo de Iris versicolor: 4.26 cm
          mean(versicolor)
## [1] 4.26
          summary(versicolor)
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
      3.00
              4.00
                      4.35
                              4.26
                                      4.60
                                              5.10
      # Longitud promedio del petalo de Iris virginica: 5.552 cm
          mean(virginica)
## [1] 5.552
          summary(virginica)
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
           5.100 5.550
                             5.552
     4.500
                                     5.875
                                             6.900
      # Resultado prueba t con un p-value < 2.562e-16 (< 0.001)
          t.test(versicolor, virginica, alternative = "two.sided",
                 var.equal = T, paired = T)
##
## Paired t-test
## data: versicolor and virginica
## t = -12.091, df = 49, p-value = 2.562e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -1.506744 -1.077256
## sample estimates:
## mean difference
            -1.292
      # Resutlado prubea de Cohen´s d = -2.501415 (large o diferencia muy grande)
          cohen.d(versicolor, virginica, hedges.correction = TRUE)
```

```
##
## Hedges's g
##
## g estimate: -2.501415 (large)
## 95 percent confidence interval:
       lower
                 upper
## -3.027189 -1.975641
  # Gráficamente, la separación o difrencia ente la longiud del petalo de ambas
  # especies es clara (Figura 1).
     boxplot(versicolor, virginica,
              main = "Longitud de petalo (Iris)",
              col= c("purple","magenta"),
              notch= TRUE,
              ylab = "Longitud (cm)",
              names = data)
```



```
vioplot(versicolor, virginica,
    main = "Longitud de petalo (Iris)",
    col= c("purple", "magenta"),
    ylab = "Longitud (cm)",
    names = data)
```



```
# Interpretación estadística y biológica

# El análisis estadístico mostró diferencias significativas (p < 0.001) en la

# longitud promedio de los pétalos entre Iris versicolor y Iris virginica

# El tamaño del efecto (Cohen's d = -2.5) confirma que la magnitud de esta

# diferencia es muy grande, lo cual implica una clara separación entre las

# especies en este rasgo morfológico.

# Desde una perspectiva biológica, la longitud de pétalos representa un

# carácter floral clave para la atracción de polinizadores y un criterio

# taxonómico robusto para distinguir entre especies. De esta forma, la evidencia

# estadística respalda la importancia de la morfología floral como un rasgo

# diferenciador entre Iris versicolor e Iris virginica.
```