

D^2C **Drone Didactique Contrôlé**

Fiche d'information

Fonctionnalités du pupitre et de L'IHM

- 1 : zone d'affichage du graphe « temps réel », des grandeurs sélectionnées dans les onglets (9) ;
- 2 : réglage de l'échelle du graphe ;
- 3 : mise en place de la connexion pour commande et acquisition (avec le système D2C ou l'Arduino-Box)
- 4 : réglage configuration d'affichage (les options « professeur » et « DMS » ont des options (réglage et sauvegarde) en plus)
- 5 : sauvegarde des graphes et traitement déporté ;
- 6 : génération de consignes standard et acquisition ;
- 7 : choix de la configuration d'asservissement ;
- 8 : affichage numérique en temps réel des grandeurs sélectionnées dans les onglets (9) ;
- 9 : sélection des grandeurs à afficher (monitoring), et des commandes temps réel à générer.

Les possibilités offertes par l'option (7) : choix de boucle

- Final Administration Securitaries and Securitaries Securi
- Lorsque le bouton BO / BF du pupitre est sur « BO » (boucle ouverte), toutes les options conduisent à ce schéma-bloc simplifié :
- Lorsque le bouton BO / BF du pupitre est sur « BF » (boucle fermée), les autres options sont disponibles :

FC 2 boucles : boucle interne par gyro + boucle de position réalisée avec Filtre Complémentaire (gyro intégré + filtre passe haut) et (accéléro + filtre passe-bas)

| Consigne | Filtre | Filtr

B- Fonctionnalités du pupitre

B1- Fonctionnalités du pupitre pour l'alimentation et la mise en service

N°	Désignation	Fonctionnalité	
1-1	alimentation	Branchement de l'alimentation externe 12V ; alimentée en 220V secteur.	
1-2	Fusible	A; protection contre courts-circuits	
1-3	Bouton de mise en service	Bouton à 2 positions ; Coupe ou établit l'alimentation générale	
1-4	Bouton d'arrêt d'urgence	Coupe ou établit l'alimentation générale. Après enclenchement, à déclencher par rotation dans le sens horaire pour rétablir le circuit d'alimentation électrique.	
1-5	Connecteur USB	Liaison USB pour communication avec le PC; utilisé pour: - le contrôle du drone didactique en mode « commande par le PC »; - le retour des informations des différents capteurs vers le PC pour les acquisitions des TP; - le chargement de programmes dans le micro-contrôleur DS-Pic (maintenance seulement).	
1-6	Diode « programme prêt »	Est en éclairement continu lorsque le système est prêt à l'utilisation ; Clignote pendant la procédure de mise en service	
1-7	Diodes de contrôle :	Allumage total à la mise en service ; puis extinction successive des diodes supérieures lors de la procédure d'initialisation ; En fonctionnement normal, les deux diodes inférieures caractérisent l'état du balancier par rapport à la position horizontale : - diode sup éclairée = balancier tourné à gauche ; - diode inf éclairée = balancier tourné à droite.	
1-8	Micro-contrôleur	Fenêtre pour visualisation du micro-contrôleur DsPic 30F	

B2- Fonctionnalités du pupitre pour la commande

N°	Désignation	Fonctionnalité	
2-1	Chaîne directe	Représentation symbolisée des composants de la chaîne directe de la commande : (de gauche à droite : consigne, comparateur, générateur de commandes, bornes jaunes avec cavalier pour manips élèves, moteurs et balancier, sorties « angle de tangage » et « vitesse de tangage »).	
2-2	Boucle de retour	Représentation symbolisée des composants de la boucle de retour d'informations : (de droite à gauche : capteurs accéléromètre et gyromètre, prises d'informations bleues pour manips élèves, traitement des informations, symbole du sélecteur « boucle ouverte » ou « boucle fermée »).	
2-3	symbole du sélecteur BO_BF	symbole du sélecteur « boucle ouverte » ou « boucle fermée » associé au bouton sélecteur 2-6	
2-4	Sélecteur de commande PC / MANU	Permet de choisir le moyen de pilotage du drone didactique : - en mode PC : c'est l'ordinateur et l'interface graphique qui permet la commande ; - en mode MANU : c'est le pupitre qui est l'interface de pilotage. Attention : le basculement d'un mode à l'autre n'est effectif que si le bouton gauche (commande moteurs) est à zéro.	
2-5	Bouton potentiomètre gauche	Ce bouton a deux fonctions différentes selon la position du sélecteur BO / BF: - si le sélecteur est en position BO (Boucle ouverte), le bouton commande la vitesse du moteur gauche, sur une échelle de 0 à 100 % si le sélecteur est en position BF (Boucle fermée), le bouton commande la vitesse nominale de fonctionnement des deux moteurs, sur l'échelle de 0 à 100.	

		Attention, ce bouton doit être remis en position 0
		- pour permettre le démarrage après initialisation ;
		- pour que le sélecteur de commande PC/MANU soit actif ;
		- pour que le sélecteur BO/BF soit actif.
2-6	Sélecteur BO / BF	Ce sélecteur permet de faire basculer la commande de tangage entre les modes
	(Boucle-ouverte /	« Boucle ouverte » et « Boucle fermée ».
	Boucle-fermée)	Attention : le basculement d'un mode à l'autre n'est effectif que si le bouton
		gauche (commande moteurs) est à zéro.
2-7	Bouton potentiomètre	Ce bouton a deux fonctions différentes selon la position du sélecteur BO / BF :
	droit	- si le sélecteur est en position BO (Boucle ouverte), le bouton commande la
		vitesse du moteur droit, sur une échelle de 0 à 100 %.
		- si le sélecteur est en position BF (Boucle fermée), le bouton commande la
		position angulaire de tangage du balancier, sur une échelle de -30° à 30°.
2-8	Commande bloqueur	Ce bouton a trois positions commande le blocage ou non du balancier en position
	•	horizontale.
		- position « bloqué » = tangage bloqué ;
		- position « limité » = tangage avec débattement limité ;
		- position « libre » = tangage avec débattement maximal.
2-9	Cavalier commande	Ce cavalier permet le passage des signaux de commande (5V – 10mA environ)
	servo-bloqueur	vers le servo-moteur bloqueur du balancier – les signaux sont de type PPM (Pulse
	·	Position Modulation). En enlevant ce cavalier et en connectant un fil de
		commande sur la broche supérieure, on peut commander le mouvement du
		servo-bloqueur (par exemple avec une carte Arduino); l'angle à commander doit
		évoluer entre 45° et 135°.
		On veillera à raccorder la masse du pupitre avec celle de la commande externe.
2-10	Cavalier alimentation	Ce cavalier permet le passage du courant de puissance (12V - 4A max environ)
	moteur droit	vers le contrôleur du moteur droit.
2-11	Cavalier alimentation	Ce cavalier permet le passage du courant de puissance (12V - 4A max environ)
	moteur gauche	vers le contrôleur du moteur gauche
2-12	Cavalier commande	Ce cavalier permet le passage des signaux de commande (5V – 10mA environ)
	moteur gauche	vers le contrôleur du moteur gauche – les signaux sont de type PPM (Pulse
	S .	Position Modulation).
		En enlevant ce cavalier et en connectant un fil de commande sur la broche de
		droite, on peut commander la rotation du moteur gauche (par exemple avec une
		carte Arduino).
		On veillera à raccorder la masse du pupitre avec celle de la commande externe.
2-13	Cavalier commande	Ce cavalier permet le passage des signaux de commande (5V – 10mA environ)
	moteur droit	vers le contrôleur du moteur droit – les signaux sont de type PPM (Pulse Position
		Modulation)
		En enlevant ce cavalier et en connectant un fil de commande sur la broche de
		droite, on peut commander la rotation du moteur droit (par exemple avec une
		carte Arduino).
		On veillera à raccorder la masse du pupitre avec celle de la commande externe.

B3- Fonctionnalités du pupitre pour l'acquisition de données

N°	Désignation	Fonctionnalité
3-1	Borne de masse	Ce connecteur de masse est prévu pour raccorder les masses de modules externes comme celle d'une carte arduino.
3-2	Cavalier commande moteur droit	Ce cavalier permet le passage et l'analyse des signaux de commande (5V – 10mA environ) vers le contrôleur du moteur droit – les signaux sont de type PPM (Pulse Position Modulation).
3-3	Cavalier commande moteur gauche	Ce cavalier permet le passage et l'analyse des signaux de commande (5V – 10mA environ) vers le contrôleur du moteur gauche – les signaux sont de type PPM (Pulse Position Modulation).
3-4	Cavalier alimentation moteur gauche	Ce cavalier permet le passage du courant de puissance (12V - 4A max environ) vers le contrôleur du moteur gauche. Le remplacement de ce cavalier par un ampèremètre permet la mesure du courant qui alimente le moteur gauche.
3-5	Borne « capteur gauche »	Cette Borne est associée au capteur de prise d'information de la vitesse de l'hélice du moteur gauche ; le capteur est un capteur à réflexion qui génère une impulsion à chaque passe de pale.
3-6	Cavalier alimentation moteur droit	Ce cavalier permet le passage du courant de puissance (12V - 4A max environ) vers le contrôleur du moteur droit. Le remplacement de ce cavalier par un ampèremètre permet la mesure du courant qui alimente le moteur droit.
3-7	Borne « capteur droit »	Cette Borne est associée au capteur de prise d'information de la vitesse de l'hélice du moteur droit ; le capteur est un capteur à réflexion qui génère une impulsion à chaque passe de pale.
3-8	Borne « capteur de force »	Cette Borne est associée au capteur de force qui mesure l'effort généré par un moteur et son hélice.

		La tiga de ligione deit être installée entre le contour et le balancier nour que l'effort	
		La tige de liaison doit être installée entre le capteur et le balancier pour que l'effort puisse se transmettre au capteur.	
3-9	Borne « mesure angle tangage »	Cette Borne est associée au capteur de position angulaire présent dans la liaison pivot du balancier.	
3-10	Support de tige du capteur de force	Ce support reçoit la tige de liaison prévue pour être installée entre le capteur et le balancier, pour la mesure de l'effort de poussée généré par un moteur et son hélice.	
3-11	Port série	Connexion au port série du micro-contrôleur DsPic, prévue pour gérer les communications externes avec des modules sans fils (XBee, Bluetooth)	
3-12	Borne_1	Permet de récupérer les informations de commande du bouton du servo-bloqueur	
3-13	Borne_2	Permet de récupérer les informations de commande du bouton du servo-bloqueur La combinaison est la suivante : Borne 1 Borne 2 Tangage Libre : 1 Tangage Limité : 0 Tangage Bloqué : 1	
3-14	Borne « tension du potentiomètre droit »	Cette Borne permet d'utiliser le potentiomètre associé au bouton de commande droit ; tension entre 0 et 5V.	
3-15	Borne « tension du potentiomètre gauche »	Cette Borne permet d'utiliser le potentiomètre associé au bouton de commande gauche ; tension entre 0 et 5V.	
3-16	Pavé « acquérir - Ugyr, Uax, Uay ».	Permet de mesurer les signaux analogiques de la centrale inertielle : La Borne « Ugyr » permet de mesurer la tension générée par le capteur gyromètre ; La Borne « Uax » permet de mesurer la tension générée par le senseur horizontal du capteur accéléromètre ; La Borne « Uay » permet de mesurer la tension générée par le senseur vertical du capteur accéléromètre ;	
3-17	Pavé « acquérir - bus SPI ».	Permet de mesurer un signal numérique de la centrale inertielle : Les Borne SS, SCLK, MOSI, MISO permettent de recevoir selon le protocole SPI, la vitesse angulaire mesurée par le gyromètre de la centrale inertielle.	

B4- connexion avec un boîtier à micro-contrôleur « Arduino-box »

les figures montrent les connexions pour l'asservissement de tangage avec le programme « _1_asservit_boucle_position_sur_fusion_et_biblio_servo_avec_PID.ino »

connexions à réaliser :

Borne du D2C	Broche de l'Arduino-Box
masse	GND
potentiomètre gauche	entrée analogique A1
potentiomètre droit	entrée analogique A0
accéléromètre « Uax »	entrée analogique A2
gyromètre « Ugyr »	entrée analogique A3
commande du moteur droit	sortie numérique 2
commande du moteur gauche	sortie numérique 4

2 Cavaliers « commande moteurs » à retirer !

