Analysis of Algorithms Binary Search Trees

Andres Mendez-Vazquez

September 30, 2018

1/49

Outline

- Deletion in Binary Search Trees
 Examples of Deletion

Notes			
Notes			

Why Binary Search Trees?

Compared them with an array representation

Ouch!!! Insertion, Search and Deletion are quite expensive with the O(n).

Instead Binary Search Trees

Since they are node based the cost of moving an element either into the collection or out of the collection is faster.

4 / 49

Binary Search Tree Concepts

Definition

A binary search tree (BST) is a data structure where each node posses three fields left, right and p.

- They represent its left child, right child and parent.
- In addition, each node has the field key.

Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $key[y] \le key[x]$.
- Similarly, if y is a node in the right subree of x, then $key[x] \leq key[y]$.

Notes			
Notes			

In Order Walk

This walk allows to print the keys in sorted order!

Inorder-tree-walk(x)

- if $x \neq NIL$
- 2 Inorder-tree-walk(x.left)
- Inorder-tree-walk(x.right)

7 / 49

Cost of inorder walk

Theorem 12.1

If x is the root of an n-node subtree, then the call Inorder-tree-walk(x) takes $\Theta\left(n\right)$ time.

Proof:

Let T(n) denote the time taken by Inorder-tree-walk(x) when called at the root.

First

- \bullet Since Inorder-tree-walk (x) visit all the nodes then we have that $T\left(n\right) =\Omega \left(n\right) .$
- Thus, you need to prove $T\left(n\right)=O\left(n\right)$?

Notes Notes

Proof of inorder walk, T(n) = O(n)

First

For n=0, the method takes a constant time T(0)=c for some c>0.

Now for n > 0

We have the following situation:

- lacktriangle Left subtree has k nodes
- **2** Right subtree has n-k-1 nodes

9/49

Substitution Method

We have finally

$$T(n) = T(k) + T(n - k - 1) + d$$

- lacksquare T(k) is the amount of work done in the left
- $\ensuremath{ ext{@}}\ensuremath{T(n-k-1)}$ is the amount of work done in the right
- $\ \, \mbox{\ensuremath{\mathfrak{g}}} \ \, d>0$ reflects an upper bound for the in-between work done for the print.

We use the substitution method to prove that T(n) = O(n)

This can be done if we can bound T(n) by bounding it by

$$(c+d)n+c$$

(1)

Votes			
Notos			
Notes			
Votes			
Notes			

For
$$n = 0$$

$$T\left(0\right) = c = (c+d) \times 0 + c$$

(2)

11 / 49

Now, By Substitution Method

For n > 0

$$T(n) \le T(k) + T(n - k - 1) + d$$

$$= ((c + d) k + c) + ((c + d) (n - k - 1) + c) + d$$

$$= (c + d) n + c - (c + d) + c + d$$

$$= (c + d) n + c$$

Thus

$$T\left(n\right) =\Theta \left(n\right)$$

(3)

Votes			

Notes			

What may we use for a search?

Given a key k, we have the following Trichotomy Law

- 2 x.key > k
- 3 x.key < k

This allows us to take decisions

Go to the left or go to the right down the tree!!!

14 / 4

Case 1

Return Payload

if (x.key == k) return x.payload

Notes			

Notes			

Searching

Searching

Tree-search(x, k)

- if x == NIL or k == x.key
- eturn x
- \bullet if k < x.key
- return Tree-search(x.left, k)
- \odot else return Tree-search(x.right, k)

Complexity

O(h)

(4)

where h is the height of the tree \Rightarrow we look for well balanced trees.

ninvestav

16 / 49

Minimum and Maximum

Minimum and Maximum

 $\mathsf{Tree\text{-}minimum}(x)$

- while $x.left \neq NIL$
- \odot return x

Complexity

 $O\left(h\right)$

(5)

where h is the height of the tree \Rightarrow we look for well balanced trees.

Notes			
Notes			

Ouch!!!

At the End We Delete

- Thus, we have a problem!!!
- We need to maintain the Binary Search Property.

A simple idea

Move the previous or next element to the deleted position!!!

We want to do the following	
We have then	
Node To Be Deleted Nodes than can replace it	
	citryestay
	21 / 49

Motos			
Notes			
Votes			
Notes			
Notes			
Votes			
Votes			
Notes			

Tree-Delete

TREE-DELETE(T,z)

Case 1

 Basically if the element z to be deleted has a NIL left child simply replace z with that child!!!

Case 2

 Basically if the element z to be deleted has a NIL right child simply replace z with that child!!!

Case 3

• The z element has not empty children you need to find the successor of it.

2 Transplant
$$(T, z, z.right)$$

elseif
$$z.right == NIL$$

6

$$y = \mathsf{Tree\text{-}minimum}(z.right)$$

if
$$y.p \neq z$$

Support Operations: Transplant

$\mathsf{Transplant}(T,u,v)$

 $\mathbf{0}$ if $u.p == \mathsf{NIL}$

v.p = u.p

Case 1

 $\bullet \ \ \text{If} \ u \ \ \text{is the root then make the} \\ \text{root equal to} \ v \\$

Case 2

• if u is the left child make the left child of the parent of u equal to v

Case 3

 Similar to the second case, but for right child

Case 4

• If $v \neq \text{NIL}$ then make the parent of v

Notes			
Votes			
Notes			

Notes			
Notes			

Votes			
Votes			

Votes		
Notes		

Another Example: Deletion in BST	
Case $z.left \neq NIL$ and $z.right \neq NIL$	
	dinventary

Votes			
Votes			

What do we need? Tree Height To describe AVL trees we need the concept of tree height

The maximal length of a path from the root to a leaf.

Definition

Example			
Height = 3	(10	0)	
	(5)	(15)	
	(2) (7)	(13) (32)	

Notes			
Notes			

We want the following

Height Invariant

At any node in the tree, the heights of the left and right sub-trees differs by at most 1.

37 / 40

Thus, it is necessary to add an extra field to the Node Structure

The Code

```
class Node():
    def ___init___():
        self.key = None
        self.height = 0
        self.Val = None
        self.left = None
        self.right = None
```


Notes			
Votes			

Notes			

Insertion

Similar to the Insertion in a BST

With a Fix-up at the end of the insertion

We have the following cases

- $oldsymbol{0}$ Right Subtree is of height h+1 and the left subtree is of height h
- $\ensuremath{\mathbf{Q}}$ Right Subtree is of height h and the left subtree is of height h+1

100 PM
4
6
cinvestav

Notes			

Right Subtree is of height h+1 and the left subtree is of height h

Now, if we are unlucky

- Now, we insert in the **right subtree** of the right subtree.
- ullet The result of inserting into the **right subtree** will give us a new right subtree of height h+2.

This is how the tree looks like

42 / 49

Then

This

Which raises the height of the overall tree to $\ensuremath{h} + 3$

In addition

In the new right subtree has height $h+2\,$

 \bullet Either its right or the left subtree must be of height $h\!+\!1$

B
cinvestav

Votes			

Votes			
Notes			

Notes		
Notes		

Excercises From Cormen's book, chapters 11 and 12 • 11.1-2 • 11.2-1 • 11.2-2 • 11.2-3 • 11.3-1 • 11.3-3 • 12.1-3 • 12.1-5 • 12.2-5 • 12.2-7 • 12.2-9 • 12.3-3

Votes			
Votes			
Notes			
Notes			
lotes			
Votes			
lotes			
lotes			
Notes			