

COMS 4030A/7047A Adaptive Computation and Machine Learning

Hima Vadapalli

Semester I, 2022

So far: Supervised Learning

Today: Unsupervised Learning

Unsupervised Learning

- Supervised learning used labeled data pairs (\mathbf{x}, \mathbf{y}) to learn a function $f: \mathbf{X} \rightarrow \mathbf{Y}$
 - But, what if we don't have labels?
- No labels = unsupervised learning
- Only some points are labeled = semi-supervised learning
 - Labels may be expensive to obtain, so we only get a few
- **Clustering** is the unsupervised grouping of data points.It can be used for **knowledge discovery**.

Unsupervised Learning

Clustering Data

K-Means (k, X)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each cluster

K-Means (k, X)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each cluster

K-Means (k, X)

- Randomly choose k cluster center locations (centroids)
- Loop until convergence
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each cluster

K-Means Objective Function

 K-means finds a local optimum of the following objective function:

$$\underset{s}{\operatorname{arg min}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathcal{S}_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|_2^2$$

where $S = \{S_1, \dots, S_k\}$ is a partitioning over $X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ s.t. $X = \bigcup_{i=1}^k S_i$ and $\boldsymbol{\mu}_i = \operatorname{mean}(S_i)$

Problems with K–Means

- *Very* sensitive to the initial points
 - Do many runs of K-Means, each with different initial centroids
 - Seed the centroids using a better method than randomly choosing the centroids
 - e.g., Farthest--first sampling
- Must manually choose k
 - Learn the optimal k for the clustering
 - Note that this requires a performance measure

Problems with K–Means

How do you tell it which clustering you want?

Constrained clustering techniques (semi-supervised)

