$$\nabla E = E\nabla = \Delta$$

$$L \cdot H \cdot \delta = \mathcal{E} \nabla E$$

$$= (I - E^{-1})E$$

$$= E - (E)(E^{-1})$$

$$= E - E^{1+(-1)}$$

$$= E - E^{1}$$

$$= E - E$$

$$\Delta = E - A$$

* EE = 1	-
1.H.,5 = EE"	-
= (D+1)(1-8) :. D= E-T	6
= 0-00+1-0 D+1=E	6
ate after :. $\nabla = 1 - E^{-1}$	-
= (E-1)-(E-1)(1-E) E-1=1-V	6
+7-17-E-1	E-
=(E-1)-(E-1-1+E-1)+1-(1-E-1)	-
= E-1-(E-2+E-1)+X-1=-1	6
= = -1- = + 2 - = 1	12
= -1+2	6
R.H.S = 1	F
Hence ploved	-
EE-1=1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(7
\star $\Delta \nabla = \nabla \Delta$	6
L. H., S = AV	6
$= (E-1)(3-E^{-1})$	-
= E(J-E-1)-1(J-E-1)	-
= E-(E)(E+1)-1+E-1);	6
= E - E1+(-1) - 1 + E-1	
$= E - E_{Y-Y} - 7 + E_{-1}$	-
= E - E o - 7 + E - 7	
	(E)
= E-1-1+E-1	
$=E-2+E^{-1}.$	

$$= \frac{1}{3} \left(E - E^{-1} \right)$$

$$= \frac{1}{3} \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} + E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} + E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} + E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} + E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} + E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} + E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} + E^{-1/3} \right)$$

$$= \left(E^{-1/3} + E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} + E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} + E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} \right) \left(E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} - E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E^{-1/3} - E^{-1/3} - E^{-1/3} - E^{-1/3} \right)$$

$$= \left(E^{-1/3} - E$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial E^{1/4 - 1/4} \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{1}{4} \left(E + E^{-1} + \partial (1) \right)$$

$$= \frac{\left(E' \mid \left(E''\right) + \partial E E'' + E'\right)}{4}$$

$$= \frac{E^{3} + \partial E^{3} + E^{-1}}{4}$$

$$= \frac{E' + \partial E' + E^{-1}}{4}$$

$$= \frac{E + \partial A \mid A \mid E^{-1}}{4}$$

$$= \frac{1}{4} = \frac{1}{4} = \frac{1}{4} = \frac{1}{4}$$

$$= \frac{1}{4} = \frac{1$$