Université Pierre et Marie Curie 2007–2008

LM110 — Fonctions

Feuille 5 : continuité, dérivabilité

Exercice 1. Donner l'ensemble de définition des fonctions suivantes et dire pourquoi elles y sont continues. Étudier alors leur dérivabilité.

$$f_1(x) = \frac{1}{1+x+x^2}, \quad f_2(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{2x}, \quad f_3(x) = \frac{1}{\ln(1+\sin(x))},$$
$$f_4(x) = \ln(x) + \frac{1}{\cos(x)}, \quad f_5(x) = \sqrt{\sin(2x)}.$$

Exercice 2. Soit $A \subset \mathbf{R}$. On appelle fonction indicatrice de A, la fonction $\mathbf{1}_A \colon \mathbf{R} \to \mathbf{R}$ définie par

 $\mathbf{1}_A(x) = \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A. \end{cases}$

Représenter le graphe de la fonction $\mathbf{1}_{[0;2]}$ en précisant les points où elle n'est pas continue. Faire de même avec la fonction définie par $f = \mathbf{1}_{[0;+\infty[} - \mathbf{1}_{[-1;+1]}$.

Exercice 3.

- 1. Démontrer qu'une fonction dérivable est continue (sans parler de développements limités).
- 2. Une fonction continue est-elle dérivable? Justifier votre réponse.
- 3. Une fonction continue sur $\mathbb{R} \setminus \{0\}$ est-elle prolongeable par continuité en 0?
- 4. Une fonction constante (resp. constante par morceaux) est-elle dérivable sur R?

Exercice 4. La fonction réelle f définie par $f(x) = \sqrt{x(x-1)} - \sqrt{x(x+1)}$ est-elle continue en 0?

Exercice 5.

1. Soient x et y deux réels. Montrer que

$$\max(x, y) = \frac{1}{2}(x + y + |x - y|).$$

2. Soient f et g deux fonctions continues en un point x_0 . On définit la fonction $\max(f,g)$ par $\max(f,g)(x) = \max(f(x),g(x))$. Montrer que $\max(f,g)$ est continue en x_0 .

Exercice 6.

1. Montrer que les fonctions $f,\,g\colon\mathbf{R}\to\mathbf{R}$ définies par

$$f(x) = |x|$$
 et $g(x) = \frac{x}{1 + |x|}$,

sont continues et dérivables sur \mathbb{R}^* .

2. Étudier leur continuité et leur dérivabilité au point 0.

Exercice 7. On considère les fonctions $f(x) = x(\ln|x| - 1)$ et $g(x) = \frac{x}{\ln|x|}$ de \mathbf{R}^* dans \mathbf{R} .

- 1. Montrer que l'on peut prolonger f et g par continuité en 0.
- 2. Étudier la dérivabilité de f et g ainsi prolongées en 0.