Linear Algebra I – Midterm Exam

Junwoo Yang

April 5, 2018

- 1. Mark each of the following true or false.
 - (1) Let $W = \{(a, b) \in \mathbb{R}^2 \mid ab \ge 0\}$, then $W \ge \mathbb{R}^2$.
 - (2) Let S_1 and S_2 be subsets of V. If $\langle S_1 \rangle = \langle S_2 \rangle$, then $S_1 = S_2$.
 - (3) $\{x^3 2x^2 + 1, 4x^2 x + 3, x + 1, x 5\}$ is a basis of $P_3(\mathbb{R})$.
 - (4) $\dim(U+W) = \dim(U) + \dim(W)$ for $U, W \leq V$.
 - (5) Let $T: V \to W$ be a linear transformation. If $\{v_1, \dots, v_k\} \subset V$ is linearly independent, then $\{T(v_1), \dots, T(v_k)\}$ is linearly independent.
- **2.** Prove or disprove that if $T: V \to W$ is a linear transformation, then $\ker(T)$ is a subspace of V.
- **3.** Prove or disprove that if U, W are subspaces of V, then $U \cup W$ is a subspace of V.
- **4.** Let U, W be subspaces of V. Prove or disprove that if $U \cap W = \{0\}$, then there exists unique $u \in U$ and unique $w \in W$ such that v = u + w for $v \in U + W$.
- **5.** Let U, V and W be subspaces of \mathbb{R}^5 and dim W = 4. Prove or disprove that if $U \oplus W = \mathbb{R}^5 = V \oplus W$, then U = V.
- **6.** Let $\{v, w\}$ be a basis of \mathbb{R}^2 . Prove or disprove that if $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that T(v) = 2v + 3w and T(w) = v + 2w, then T is injective.
- 7. Let $V = \operatorname{Mat}_{2\times 2}(\mathbb{R})$, $W_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$ and $W_2 = \left\{ \begin{pmatrix} 0 & a \\ -a & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}$. Find a basis of $W_1 + W_2$ which contains a basis of $W_1 \cap W_2$. (Explain why the set is a basis.)
- **8.** If linear transformation $T: V \to W$ is injective, then there is a linear transformation $S: W \to V$ such that $S \circ T$ is bijective.
- **9.** Let $T:V\to V$ be a linear transformation and $\dim(\operatorname{im}(T))=\dim(\operatorname{im}(T\circ T))$. Show that $V=\operatorname{im}(T)\oplus\ker(T)$.
- 10. Let $T: V \to W$ be a linear transformation. Show that $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T))$.