

算法的由来

算法的定义

算法的性质

算法的表示

算法的分析

• 如何表示一个算法?

• 如何表示一个算法?

- 如何表示一个算法?
 - 自然语言

算法的设计者 依靠自然语言交流和表达

- 自然语言
 - 方法优势
 - 。 贴近人类思维,易于理解主旨

选择排序

- 。 第一次遍历找到最小元素
- 。 第二次在剩余数组中遍历找到次小元素
- 0
- 第n次在剩余数组中遍历找到第n小元素

• 自然语言

- 方法优势
 - 。 贴近人类思维,易于理解主旨
- 不便之处
 - 语言描述繁琐,容易产生歧义
 - 使用了"…"等不严谨的描述

选择排序

- 。 第一次遍历找到最小元素
- 第二次在剩余数组中遍历找到次小元素
- 0
- 第n次在剩余数组中遍历找到第n小元素

- 如何表示一个算法?
 - 自然语言
 - 编程语言

算法的执行者 需要详细具体的执行代码

- 编程语言
 - 方法优势
 - 精准表达逻辑,规避表述歧义

选择排序

C语言

```
def select_sort(a, n):
    for i in range(0, n-1):
        for j in range(i+1,n):
        if a[i] > a[j]:
            tem = a[i]
            a[i] = a[j]
        a[j] = tem
```

Python语言

- 编程语言
 - 方法优势
 - 精准表达逻辑,规避表述歧义
 - 不便之处
 - 不同编程语言间语法存在差异
 - 。 过于关注算法实现的细枝末节

选择排序

C语言

```
def select_sort(a, n):
    for i in range(0, n-1):
        for j in range(i+1,n):
        if a[i] > a[j]:
            tem = a[i]
        a[i] = a[j]
        a[j] = tem
```

Python语言

• 如何表示一个算法?

• 自然语言: 贴近人类思维,易于理解主旨

• 编程语言: 精准表达逻辑,规避表述歧义

问题: 可否同时兼顾两类表示方法的优势?

• 如何表示一个算法?

• 自然语言: 贴近人类思维, 易于理解主旨

• 编程语言: 精准表达逻辑,规避表述歧义

问题: 可否同时兼顾两类表示方法的优势?

- 伪代码
 - 非正式语言
 - 移植编程语言书写形式作为基础和框架
 - 。 按照接近自然语言的形式表达算法过程

选择排序

• 伪代码

- 非正式语言
 - 移植编程语言书写形式作为基础和框架
 - 按照接近自然语言的形式表达算法过程
- 兼顾自然语言与编程语言优势
 - 简洁表达算法本质,不拘泥于实现细节
 - 。 准确反映算法过程,不产生矛盾和歧义

选择排序

- 伪代码
 - 书写约定

选择排序

- 伪代码
 - 书写约定

选择排序

- 伪代码
 - 书写约定

选择排序

- 伪代码
 - 书写约定

选择排序

- 伪代码
 - 书写约定

选择排序

- 伪代码
 - 书写约定

选择排序

- 伪代码
 - 书写约定

```
输入: 数组A[a_1,a_2,...,a_n]
输出: 升序数组A'[a_1',a_2',...,a_n'],满足 a_1' \leq a_2' \leq ... \leq a_n'
for i \leftarrow 1 to n-1 do | for j \leftarrow i+1 to n do | //如果 A[i] 大于A[j],则交换二者位置 | if A[i] > A[j] then | 交换 A[i] 和 A[j] end | end | end
```

选择排序

- 伪代码
 - 书写约定

选择排序

之后出现的算法均使用伪代码描述

- 伪代码
 - 示例解读

24	17	40	28	13	14	22	32	40	21	48	4	47	8	37	18	
----	----	----	----	----	----	----	----	----	----	----	---	----	---	----	----	--

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

选择排序

• 伪代码

选择排序

18

- 伪代码
 - 示例解读

选择排序

• 伪代码

选择排序

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

选择排序

end

• 伪代码

选择排序

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

```
48
24
      40
            28
                              22
                                     32
                                           40
                                                 21
                                                             13
                                                                    47
                                                                                 37
                                                                                       18
                  17
                        14
     输入: 数组A[a_1, a_2, ..., a_n]
    输出: 升序数组A'[a'_1,a'_2,...,a'_n],满足 a'_1 \leq a'_2 \leq ... \leq a'_n for i \leftarrow 1 to n-1 do
                                                                     继续枚举i
        for j \leftarrow i+1 to n do
            //如果 A[i] 大于A[j],则交换二者位置
            if A[i] > A[j] then
                交換 A[i] 和 A[j]
            \mathbf{end}
         \mathbf{end}
     end
```

选择排序

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

选择排序

- 伪代码
 - 示例解读

4 8 13 14 17 18 21 22 24 28 32 37 40 40 47 48

选择排序

- 伪代码
 - 示例解读

17	24	28	40	13	14	22	32	40	21	48	4	47	8	37	18	
----	----	----	----	----	----	----	----	----	----	----	---	----	---	----	----	--

```
输入: 数组A[a_1, a_2, ..., a_n]
输出: 升序数组A'[a'_1, a'_2, ..., a'_n],满足 a'_1 \leq a'_2 \leq ... \leq a'_n
for j \leftarrow 2 to n do
key \leftarrow A[j]
//将 A[j] 插入到已排序的数组A[1...j-1]中
i \leftarrow j-1
while i > 0 and A[i] > \text{key do}
A[i+1] \leftarrow A[i]
i \leftarrow i-1
end
A[i+1] \leftarrow key
end
```


18

- 伪代码
 - 示例解读

插入排序

- 伪代码
 - 示例解读

$$key = 13$$

插入排序

- 伪代码
 - 示例解读


```
i > 0
A[i] > key
```

插入排序

- 伪代码
 - 示例解读

插入排序

- 伪代码
 - 示例解读

$$key = 13$$

插入排序

伪代码

i > 0

示例解读

• 伪代码

示例解读

插入排序

- 伪代码
 - 示例解读

输出: 升序数组 $A'[a_1,a_2,...,a_n]$ 输出: 升序数组 $A'[a_1,a_2,...,a_n]$,满足 $a_1' \le a_2' \le ... \le a_n'$ for $j \leftarrow 2$ to n do $key \leftarrow A[j]$ //将 A[j] 插入到已排序的数组A[1...j-1]中 $i \leftarrow j-1$ while i > 0 and A[i] > key do $A[i+1] \leftarrow A[i]$ end $A[i+1] \leftarrow key$

end

将i左移一步

插入排序

- 伪代码
 - 示例解读


```
i > 0
A[i] > key
```

```
输入: 数组A[a_1,a_2,...,a_n]
输出: 升序数组A'[a'_1,a'_2,...,a'_n],满足 a'_1 \leq a'_2 \leq ... \leq a'_n
for j \leftarrow 2 to n do key \leftarrow A[j] //将 A[j] 插入到已排序的数组A[1..j-1]中 i \leftarrow j-1 while i > 0 and A[i] > key do 判断循环条件 A[i+1] \leftarrow A[i] i \leftarrow i-1 end A[i+1] \leftarrow key end
```

插入排序

• 伪代码

插入排序

- 伪代码
 - 示例解读

$$key = 13$$

插入排序

- 伪代码
 - 示例解读


```
i > 0
A[i] > key
```

插入排序

• 伪代码

插入排序

- 伪代码
 - 示例解读

$$key = 13$$

插入排序

- 伪代码
 - 示例解读

$$key = 13$$

i=0不满足循环条件

插入排序

- 伪代码
 - 示例解读

插入排序

- 伪代码
 - 示例解读

插入排序

算法的表示方式比较

表示方式	语言特点
自然语言	贴近人类思维,易于理解主旨 表述不够精准,存在模糊歧义
编程语言	精准表达逻辑,规避表述歧义 受限语法细节,增大理解难度
伪代码	关注算法本质,便于书写阅读