ANALISIS CLUSTER

Made Satria Wibawa, M.Eng. 2020

Outline

- Clustering
- Disimilaritas
- K-Means
- K-Medoid
- Evaluasi Cluster
- Implementasi

CLUSTERING

Clustering

Proses **pengelompokan** kumpulan dari objek data ke dalam beberapa **kelompok (cluster)** tertentu, dimana objek data dalam cluster yang sama memiliki tingkat kesamaan **(similaritas)** yang tinggi, namun sangat jauh berbeda dibandingkan dengan objek data/memiliki **disimilaritas** yang tinggi.

disimilaritas dihitung dari jarak antar nilai pada masing-masing atribut objek

Penerapan:

- Deteksi hoax
- Filter spam
- Marketing

- Deteksi aktivitas kriminal atau penipuan
- Analisis dokumen

Clustering

K-Means pada Dataset IRIS

Metode Clustering

Partitioning

Metode ini membentuk data ke dalam partisi, dimana setiap partisi merepresentasikan cluster.

- K-means
- K-medoid
- Fuzzy c-means
- Density-based

Metode ini membentuk cluster dengan mempertimbangkan kerapatan (jumlah data) dalam area terdekat.

- DBSCAN
- Hierarchical

Metode ini membentuk cluster dalam bentuk

dekomposisi hirarki

- BIRCH
- CURE, OPTICS
- Grid-based

Metode ini membentuk cluster ke dalam bentuk struktur jaringan

Model-based

Metode cluster ini memperkenalkan probability cluster, tidak seperti k-means yang membentuk hard-cluster

- SOM
- EM algorithm

DISIMILARITAS

Disimilaritas

- Untuk banyak permasalahan, kita memerlukan kuantifikasi seberapa dekat antara dua buah objek.
- Disimilaritas adalah ketidakmiripan dari suatu objek. Kebalikannya adalah similaritas.
- Disimilaritas memiliki rentang nilai 0-1.
- 0 adalah sangat mirip, 1 adalah tidak mirip
- Contoh:
 - Segmentasi pasar
 - Pencarian dokumen digital
 - Pengecekan transaksi yang ganjil
- Untuk menyelesaikan permasalah ini kita memerlukan definisi disimilaritas atau distance
- Perhitungan similaritas akan berbeda untuk setiap tipe atribut

Disimilaritas: Atribut Nominal

$$d(i,j) = \frac{p-m}{p}$$

- m adalah jumlah atribut yang memiliki nilai yang sama
- d(i,j) adalah distance/jarak antara objek i dan j
- p adalah jumlah keseluruhan atribut

Objek data	domisili	warna rambut	gender
А	Denpasar	Hitam	Pria
В	Gianyar	Hitam	Pria

$$d(A,B) = \frac{p-m}{p} = \frac{3-2}{3} = 0.33$$

Disimilaritas: Atribut Numerik

Euclidean distance

$$d_{(a,b)} = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$
$$= \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

Manhattan distance

$$d_{(a,b)} = \sum_{i=1}^{n} |a_i - b_i|$$

$$= |a_1 - b_1| + |a_2 - b_2| + \dots + |a_n - b_n|$$

Disimilaritas: Atribut Numerik

Objek data	berat	tinggi	umur
Α	75	180	25
В	65	170	23

Euclidean distance

$$d_{(A,B)} = \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2}$$

$$= \sqrt{(A_1 - B_1)^2 + (A_2 - B_2)^2 + (A_3 - B_3)^2}$$

$$= \sqrt{(75 - 65)^2 + (180 - 170)^2 + (25 - 23)^2}$$

$$= \sqrt{(10)^2 + (10)^2 + (2)^2}$$

$$= \sqrt{204} = 14.28$$

Manhattan distance

$$d_{(A,B)} = \sum_{i=1}^{n} |A_i - B_i|$$

$$= |A_1 - B_1| + |A_2 - B_2| + |A_3 - B_3|$$

$$= |75 - 65| + |180 - 170| + |25 - 23|$$

$$= |10| + |10| + |2| = 22$$

note: untuk atribut numerik, seharusnya kita melakukan normalisasi terlebih dahulu. namun, hanya sebagai contoh perhitungan, kita tidak akan melakukannya.

K-MEANS

Algoritma K-Means

Algoritma:

K-Means

Input

k = jumlah cluster

D = dataset yang memiliki n buah objek

Output

sekumpulan cluster

Metode

- 1) tentukan centroid sejumlah cluster
- 2) repeat
- 3) kelompokkan setiap objek ke centroid berdasarkan jarak terdekat
- 4) tentukan posisi centroid baru berdasarkan nilai rerata atribut setiap objek
- 5) until tidak ada perubahan keanggotaan

Contoh: K-Means

Objek Data	X	у
A	1	2
В	2	3
С	4	3
D	5	4

Euclidean

$$k = 2$$

 $C_1 = (1,0)$

$$C_2 = (4,4)$$

$$d(_{A,C1}) = \sqrt{(1-1)^2 + (2-0)^2} = 2$$

$$d(_{A,C2}) = \sqrt{(1-4)^2 + (2-4)^2} = 3.6$$

$$d(_{B,C1}) = \sqrt{(2-1)^2 + (3-0)^2} = 3.2$$

$$d(_{B,C2}) = \sqrt{(2-4)^2 + (3-4)^2} = 2.2$$

$$d(_{C,C1}) = \sqrt{(4-1)^2 + (3-0)^2} = 4.2$$

$$d(_{C,C2}) = \sqrt{(4-4)^2 + (3-4)^2} = 1$$

$$d(_{D,C2}) = \sqrt{(5-1)^2 + (4-0)^2} = 5.7$$

$$d(_{D,C2}) = \sqrt{(5-4)^2 + (4-4)^2} = 1$$

Hitung jarak objek dengan centroid:

Objek Data	$dist ext{-}C_1$	dist-C ₂
A	2	3.6
В	3.2	2.2
С	4.2	1
D	5.7	1

Centroid baru

$$C_1 = \{A\}$$

$$x = 1$$

$$y = 2$$

$$C_2 = \{B, C, D\}$$

$$x = \frac{2+4+5}{3} = 3.6$$

$$y = \frac{3+3+4}{3} = 3.3$$

Contoh: K-Means

Objek Data	X	у
A	1	2
В	2	3
С	4	3
D	5	4

k = 2

$$C_1 = (1,2)$$

$$C_2 = (3.6, 3.3)$$

Euclidean

Hitung jarak objek dengan centroid:

$$d(_{A,C1}) = \sqrt{(1-1)^2 + (2-2)^2} = 0$$

$$d(_{A,C2}) = \sqrt{(1-3.6)^2 + (2-3.3)^2} = 2.9$$

$$d(_{B,C1}) = \sqrt{(2-1)^2 + (3-2)^2} = 1.4$$

$$d(_{B,C2}) = \sqrt{(2-3.6)^2 + (3-3.3)^2} = 1.6$$

$$d(_{C,C1}) = \sqrt{(4-1)^2 + (3-2)^2} = 3.1$$

$$d(_{C,C2}) = \sqrt{(4-3.6)^2 + (3-3.3)^2} = 0.5$$

$$d(_{D,C1}) = \sqrt{(5-1)^2 + (4-2)^2} = 4.5$$

$$d(_{D,C2}) = \sqrt{(5-3.6)^2 + (4-3.3)^2} = 1.5$$

Objek Data	dist-C ₁	dist-C ₂
A	0	2.9
В	1.4	1.6
С	3.1	0.5
D	4.5	1.5

Centroid baru

$$C_1 = \{A, B\}$$

 $x = \frac{1+2}{2} = 1.5$

$$y = \frac{2+3}{2} = 2.5$$

$$C_2 = \{C, D\}$$

 $x = \frac{4+5}{2} = 4.5$

$$y = \frac{3+4}{2} = 3.5$$

Contoh: K-Means

Objek Data	X	у
A	1	2
В	2	3
С	4	3
D	5	4

k = 2

Euclidean

 $C_1 = (1.5, 2.5)$

Hitung jarak objek dengan centroid:

$$C_2 = (4.5, 3.5)$$

$d(_{A,C1}) = \sqrt{(1-1.5)^2 + (2-2.5)^2}$	=	0.7
$d(A,C2) = \sqrt{(1-4.5)^2 + (2-3.5)^2}$	_	3.8
$d(_{B,C1}) = \sqrt{(2-1.5)^2 + (3-2.5)^2}$	=	0.7
$d(_{B,C2}) = \sqrt{(2-4.5)^2 + (3-3.5)^2}$	=	2.5
$d(_{C,C1}) = \sqrt{(4-1.5)^2 + (3-2.5)^2}$	_	2.5
$d(_{C,C2}) = \sqrt{(4-4.5)^2 + (3-3.5)^2}$	_	0.7
$d(D,C1) = \sqrt{(5-1.5)^2 + (4-2.5)^2}$	=	3.8
$d(D.C2) = \sqrt{(5-4.5)^2+(4-3.5)^2}$	=	0.7

Objek Data	$dist ext{-}C_1$	dist-C ₂
A	0.7	3.8
В	0.7	2.5
С	2.5	0.7
D	3.8	0.7

Tidak ada perubahan keanggotaan

FINISH

K-MEDOIDS

Algoritma K-Medoids

Algoritma:

PAM (Partitioning Around Medoids)

Input

k = jumlah cluster

D = dataset yang memiliki n buah objek

Output

sekumpulan cluster

Metode

- 1) pilih secara acak k objek data dari D sebagai pusat cluster (medoid)
- 2) repeat
- 3) kelompokkan setiap objek ke medoid berdasarkan jarak terdekat
- 4) secara acak pilih objek selain medoid sebagai medoid baru, o_{random}
- 5) hitung cost S, pergantian dari o_i dengan o_{random}
- 6) if S < 0 then tukar o_i dengan o_{random}
- 7) until tidak ada perubahan keanggotaan

EVALUASI CLUSTER

Jumlah Cluster Terbaik

bagaimana cara menilai bahwa jumlah cluster yang digunakan adalah yang terbaik?

objek dalam satu cluster harus mirip, namun sangat berbeda dengan objek pada cluster yang lain

Metode Silhoutte

Metode Silhoutte

$$(1) \quad a(i) = \frac{1}{|C_i| - 1} \sum_{j \in C_i, i \neq j} d(i, j)$$

hitung jarak anggota dalam satu cluster

(2)
$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} d(i, j)$$

hitung jarak anggota dalam cluster yang berbeda

(3)
$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

hitung silhouette score

$$s(i) = egin{cases} 1 - a(i)/b(i), & ext{if } a(i) < b(i) \ 0, & ext{if } a(i) = b(i) \ b(i)/a(i) - 1, & ext{if } a(i) > b(i) \end{cases}$$
 $-1 \le s(i) \le 1$

*semakin tinggi nilai silhouette, maka posisi datum/objek dalam cluster semakin tepat

Contoh Perhitungan Silhoutte Score

Objek Data	×	У
А	1	2
В	2	3
С	4	3
D	5	4

Hitung nilai silhouette objek A

$$a_A = \frac{1}{2-1}d_{(A,B)} = \frac{1}{1}\left(\left(\sqrt{(1-2)^2 + (2-3)^2}\right)\right) = 1.4$$

$$b_A = \frac{1}{2}(d_{(A,C)} + d_{(A,D)}) = \frac{1}{2}\left(\left(\sqrt{(1-4)^2 + (2-3)^2}\right) + \left(\sqrt{(1-5)^2 + (2-4)^2}\right)\right) = \frac{1}{2}(3.2 + 4.5) = 3.8$$

$$s_A = \frac{3.8 - 1.4}{\max(3.8, 1.4)} = \frac{2.4}{3.8} = 0.63$$

• Hitung nilai silhouette setiap objek, kemudian cari reratanya

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Pertama: Nilai rata-rata harus sedekat mungkin dengan 1

The silhouette coefficient values

Kedua Plot masing-masing cluster harus di atas nilai ratarata sebanyak mungkin.

Ketiga Lebar plot harus seseragam mungkin.

IMPLEMENTASI

Implementasi di Python

Untuk clustering, Anda dapat menggunakan library pyclustering

github: https://github.com/annoviko/pyclustering

pypi : https://pypi.org/project/pyclustering/

Brief Overview of the Library Content

Clustering algorithms and methods (module pyclustering.cluster):

Algorithm	Python	C++
Agglomerative	✓	✓
BANG	✓	
BIRCH	✓	
BSAS	✓	✓
CLARANS	✓	
CLIQUE	✓	✓
CURE	✓	✓
DBSCAN	✓	✓
Elbow	✓	✓
EMA	✓	
Fuzzy C-Means	✓	✓
GA (Genetic Algorithm)	✓	✓
G-Means	✓	✓
HSyncNet	✓	✓
K-Means	✓	✓
K-Means++	✓	✓
K-Medians	✓	✓
K-Medoids	✓	✓
MBSAS	√	✓
OPTICS	✓	✓
ROCK	✓	✓
Silhouette	✓	√
SOM-SC	√	√
SyncNet	√	✓
Sync-SOM	✓	
TTSAS	✓	✓
X-Means	✓	√

Always The First Made Satria Wibawa

K-Means

```
In [1]:
         1 #import library
         2 from pyclustering.cluster.kmeans import kmeans
         3 from pyclustering.utils.metric import distance_metric, type_metric
In [2]:
         1 #Tentukan data
         2 data = [[1,2],[2,3],[4,3],[5,4]]
         3 print(data)
        [[1, 2], [2, 3], [4, 3], [5, 4]]
          1 #Tentukan centroid awal
In [3]:
         2 start_centroid = [[1,0],[4,4]]
         3 #Tentukan rumus distance
          4 metric = distance_metric(type_metric.EUCLIDEAN)
In [4]:
         1 #buat instance kmeans
         2 kmeans_ = kmeans(data, start_centroid, metric=metric)
         3 #jalankan kmeans
         4 kmeans_.process()
         5 #hitung cluster
         6 cluster_kmeans = kmeans__.get_clusters()
         7 #hitung centroid
         8 final_centroid = kmeans__.get_centers()
In [5]:
         1 print(cluster_kmeans)
         print(final_centroid)
        [[0, 1], [2, 3]]
        [[1.5, 2.5], [4.5, 3.5]]
```

K-Medoids

```
In [1]: 1 from pyclustering.cluster.kmedoids import kmedoids
         2 from pyclustering.utils.metric import distance_metric, type_metric
         1 #Tentukan data
In [2]:
         2 data = [[1,2],[2,3],[4,3],[5,4]]
         3 print(data)
        [[1, 2], [2, 3], [4, 3], [5, 4]]
         1 #Tentukan medoid awal
In [3]:
         2 start medoid = [0,3]
         3 #Tentukan rumus distance
         4 metric = distance metric(type metric.EUCLIDEAN)
In [4]:
         1 #buat instance kmmedoids
         2 kmedoids = kmedoids(data, start medoid, metric=metric)
         3 #jalankan kmeans
         4 kmedoids .process()
         5 #hitung cluster
         6 cluster kmedoids = kmedoids .get clusters()
         7 #hitung centroid
         8 final medoids = kmedoids .get medoids()
         1 print(cluster_kmedoids)
In [5]:
         print(kmedoids__.get_medoids())
        [[0, 1], [3, 2]]
        [0, 3]
```


pertanyaan/troubleshooting silahkan buat di channel Diskusi Teams