Diffeomorphism Invariance, Exact Sequences

Pullback

Let F: N -> M be a map of manifolds and PEN.

Def. $F: N \to M$ is C^{∞} at $p \in N$ if \exists a chart (D, Φ) of N about p and (V, T) of M about F(p) s.t. $F(U) \subseteq V$ and $T^{\circ} F \circ \Phi^{-1}$ is C^{∞} at $\Phi(p)$.

F: N→M is Co if it is Co at every p∈ N.

Let $F: N \to M$ be a C^{∞} map. The pullback $F^*: S^{t}(M) \to S^{t}(N)$

is defined so that

(i) for g ∈ s2°(M), F*(g) = g°F;

(ii) F* commutes with the sum, scalar multiplication, wedge product, and d.

Def. Let $F: N \rightarrow M$ be C^{∞} . If $F: (U, x', ..., x') \rightarrow (V, y', ..., y')$ and

then

$$F''w = \sum (F''a_1) d F''y'^1 \wedge \cdots \wedge d F''y'^1 \otimes \sum (a_1 \circ F) d F'^1 \wedge \cdots \wedge d F''y'^1 \otimes \sum (a_1 \circ F) d F'^1 \wedge \cdots \wedge d F''y'^1 \otimes \sum (a_1 \circ F) d F'^1 \wedge \cdots \wedge d F'^1 \otimes \sum (a_1 \circ F) d F'^1 \wedge \cdots \wedge d F'^1 \otimes \sum (a_1 \circ F) d F'^1 \otimes F \otimes \sum (a_1 \circ F) d F'^1 \otimes \sum (a_1 \circ F) d F'^1 \otimes \sum (a_1 \circ F) d G'' \otimes \sum ($$

(i)
$$d\omega = 0 \Rightarrow d(F^*\omega) = F^*d\omega = F^*0 = 0$$

(ii) $F^*(d\tau) = d(F^*\tau)$

Since
$$F^*: Z^k(M) \rightarrow Z^k(N)$$
, $F^*(B^k(M)) \subset B^k(N)$, F^* induces a map $F^*: Z^k(M) \longrightarrow Z^k(N)$

$$B^k(M) \longrightarrow B^k(N)$$

$$H^k(M) \longrightarrow H^k(N)$$

Prop. (i)
$$1_{M}^{\#} = 1_{H^{\#}(M)}$$

Cii) $(F \circ G)^{\#} = G^{\#} \circ F^{\#}$

It is customary to write F# also as F*.

Th. A diffeomorphism $F: N \to M$ induces an isomorphis $F^*: H^*(M) \xrightarrow{\sim} H^*(N)$ in Cohomology.

Pf. Let
$$G: M \to N$$
 be the inverse of F .

 $F \circ G = 1_M \Rightarrow (F \circ G)^* = G^* \circ F^* = 1_{H^*(M)}$
 $G \circ F = 1_N \Rightarrow (G \circ F)^* = F^* \circ G^* = 1_{H^*(N)}$.

Hence, F^* is an isom.

Example
$$tan: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$$
 is a diffeomorphism.

Ex. Any open interval (a,b) is diffeomorphic

to $(-\frac{\pi}{2}, \frac{\pi}{2})$.

The pullback of $W \in \mathcal{I}_{c}^{f_{2}}(M)$ does not necessarily have compact support. If $F: N \to M$ is a diffeomorphism, then $F^{*}: \mathcal{I}_{c}^{f_{1}}(M) \to \mathcal{I}_{c}^{f_{2}}(N)$ is defined, so $H_{c}^{*}(M)$ is also a diffeomorphism invariant.

Exact Sequencos of Vector	Spaces
---------------------------	--------

is exact at Vh if ker for = im for. .

The sequence is exact if it is exact at Vh for all h.

Def. A short exact sequence is an exact seq of the form $0 \rightarrow A \stackrel{!}{\rightarrow} B \stackrel{!}{\rightarrow} C \rightarrow 0.$

Exact at A \(\Rightarrow \text{ keri = lin 0 = 0 } \) i is injective

Exact at C \(\alpha \rightarrow \text{ linj = ker 0 = C } \alpha \rightarrow j is sujective

Exact at B \(\alpha \rightarrow \text{ linj = ker j} \)

Th. $0 \rightarrow A \xrightarrow{i} B \xrightarrow{J} C \rightarrow 0$ is exact

iff i is injective, j is surjective, and $13/A \sim C$.

Pf. (=>) B/kerj 2 mij (1st isom. th. of linear algebra)

>> B/ini 2 C (exactness at B, C >>

**Rerj = mi (and inj = C)

>> 13/A 2 C (exact at A >> A=A/o = A/kwi 2 mi)

(=) Exercise.

Exact Sequences of Cochain Complexes

Def A cochain complex (differential complex) is a sequence of vector spaces and linear maps

C: ... > Chi dri dr dr dr ch dr ch

s.t. dp o dp-1 = 0 Y to EZ.

Def.
$$H^{R}(\mathcal{C}) = \frac{\text{for } d_{R}}{\text{sim } d_{R-1}}$$

Def If (a,d) and (B,d') are cochain complexes. a cochain map 9: a > B is a collection of linear maps SG: At > Bt } BEZ St.

is Commutative Y R.

A cochain map $\varphi: a \to B$ induces a linear map $\varphi^* : H^{g}(a) \to H^{g}(B)$ 4*[a] = [4(a)]

Def. A sequence of cochain complexes $0 \rightarrow A \xrightarrow{\iota} B \xrightarrow{3} C \rightarrow 0$,

where i, j are cochain maps, is short-exact if & R. 0 > At i Bt -> Ct -> 0

is a short exact seg. of vector spaces.

A short exact seg of Cochain complexes $0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$

induces

 $\rightarrow H(a) \xrightarrow{i^*} H^{*H}(B) \xrightarrow{j^*} H^{*H}(e)$

 $H^{b}(A) \stackrel{i^{*}}{\rightarrow} H^{b}(B) \stackrel{j^{*}}{\rightarrow} H^{b}(C) -$

, to be continued.

