

CHEMISTRY Chapter 4

ENLACE QUÍMICO

HELICOMOTIVATION

ENLACE QUÍMICO

Energía

Es el conjunto de fuerzas que mantienen unidos a los átomos, iones o moléculas por interacción de sus electrones de valencia, cada uno en la búsqueda de mayor estabilidad (contener menos energía).

La energía que se emite se denomina energía de enlace y la energía necesaria para romper un enlace se denomina energía de disociación.

Avance del enlace

I. Electrones de valencia

Son los electrones que se ubican en el último nivel de energía. Estos electrones se mueven con mucha facilidad entre un átomo y otro, y de ellos depende el comportamiento químico de los átomos y los enlaces entre ellos.

II.Notación de Lewis

Es la representación abreviada (gráfica) de los electrones de valencia de los átomos de elementos representativos (grupo A).

Se utiliza el símbolo del elemento y los electrones de valencia se representan alrededor del mismo, mediante puntos o aspas.

HELICO | THEORY

Escriba el símbolo de Lewis del magnesio, ₁₂Mg.

Resolución

Escriba el símbolo de Lewis del magnesio, 7N.

Resolución

Tiene cinco e-de

Grupo	1A	2A	3A	4A	5A	6A	7A	8A
Número de electrones de la capa de valencia	1	2	3	4	5	6	7	8 (excepto He)
Periodo 1	H·							He:
Periodo 2	Li·	Be:	В.	C.	N	0:	·F :	:Ne:
Periodo 3	Na·	Mg:	Äl·	Si	· p ·	S	Cl:	:Ar:
Periodo 4	K·	Ca:	Ga·	Ge	·As	· Se:	·Br:	:Kr :
Periodo 5	Rb.	Sr:	İn.	Sn	Sb	Te:	·Į;	:Xe:
Periodo 6	Cs·	Ba:	ïl·	Pb	·Bi·	Po:	·At:	Rn
Periodo 7	Fr·	Ra:						

III. Teoría del octeto

En 1916 el estadounidense Gilbert Lewis y el alemán Walter Kossel propusieron la siguiente teoría, llamada regla del octeto, cuando se forma un enlace químico los átomos reciben, ceden o comparte e- con otros átomos, <u>buscando todos tener 8 e-, en su ultimo nivel de energía para adquirir la configuración del gas noble mas próximo de la tabla periódica</u>.

Todos los gases nobles tienen ocho e-en su último nivel de energía.

El oxígeno **necesita** dos electrones para completar su octeto.

El magnesio debe ceder dos electrones para su octeto.

Completa un octeto

Completa un octeto

IV. Electronegatividad (EN)

Es una medida de la **capacidad** del átomo de **atraer electrones** en un enlace químico. De acuerdo con esto, los elementos pueden ser electronegativos o electropositivos. Una de las principales escalas es la de Pauling, donde utiliza números desde 0,7 a 4.

Aumento de la electronegatividad

	1A	1																8A
	Н																	
Ш	2.1	2A											3A	4A	5A	6A	7A	
	Li	Be											В	С	N	0	F	
Ш	1.0	1.5											2.0	2.5	3.0	3.5	4.0	
	Na	Mg											Al	Si	P	S	Cl	
Ш	0.9	1.2	3B	4B	5B	6B	7B		-8B-		1B	2B	1.5	1.8	2.1	2.5	3.0	
l H															2.1			
		4000	679			20000							The second secon				THE PARTY.	
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	K 0.8	1.0	Sc 1.3	Ti 1.5	V 1.6	1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
											1.9							
	0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.9	1.9		1.6	1.6	1.8	2.0	2.4	2.8	3.0
	0.8 Rb 0.8	1.0 Sr 1.0	1.3 Y 1.2	1.5 Zr 1.4	1.6 Nb 1.6	1.6 Mo	1.5 Tc 1.9	1.8 Ru 2.2	1.9 Rh	1.9 Pd 2.2	1.9 Ag 1.9	1.6 Cd 1.7	1.6 In 1.7	1.8 Sn 1.8	2.0 Sb 1.9	2.4 Te 2.1	2.8 I 2.5	3.0 Xe
	0.8 Rb	1.0 Sr	1.3 Y	1.5 Zr 1.4 Hf	1.6 Nb	1.6 Mo 1.8	1.5 Tc	1.8 Ru	1.9 Rh 2.2	1.9 Pd	1.9 Ag	1.6 Cd	1.6 In	1.8 Sn	2.0 Sb	2.4 Te	2.8 I	3.0 Xe
	0.8 Rb 0.8 Cs 0.7	1.0 Sr 1.0 Ba 0.9	1.3 Y 1.2 La-Lu	1.5 Zr 1.4 Hf	1.6 Nb 1.6 Ta	1.6 Mo 1.8 W	1.5 Tc 1.9 Re	1.8 Ru 2.2 Os	1.9 Rh 2.2 Ir	1.9 Pd 2.2 Pt	1.9 Ag 1.9	1.6 Cd 1.7 Hg	1.6 In 1.7 Tl	1.8 Sn 1.8 Pb	2.0 Sb 1.9 Bi	2.4 Te 2.1 Po	2.8 I 2.5 At	3.0 Xe
	0.8 Rb 0.8 Cs	1.0 Sr 1.0 Ba	1.3 Y 1.2 La-Lu	1.5 Zr 1.4 Hf	1.6 Nb 1.6 Ta	1.6 Mo 1.8 W	1.5 Tc 1.9 Re	1.8 Ru 2.2 Os	1.9 Rh 2.2 Ir	1.9 Pd 2.2 Pt	1.9 Ag 1.9	1.6 Cd 1.7 Hg	1.6 In 1.7 Tl	1.8 Sn 1.8 Pb	2.0 Sb 1.9 Bi	2.4 Te 2.1 Po	2.8 I 2.5 At	3.0 Xe

Valor máximo: EN(Flúor) = 4,0

Valor mínimo: EN(Cesio) = 0,79

EN(Francio) = 0.7

ENLACE IÓNICO (ENLACE ELECTROVALENTE O HETEROPOLAR)

Se produce por las <u>fuerzas de atracción electrostática</u> entre iones que se formaron por la <u>transferencia de electrones</u> originados generalmente entre un metal (ion positivo) y un no metal (ion negativo), donde la diferencia de electronegatividad es elevada.

Características de los compuestos iónicos

- Son duros y quebradizos.
- No existen moléculas sino inmensos cristales (redes cristalinas).
- Son sólidos y cristalinos.
- En estado sólido son malos conductores del calor y la electricidad.
- Son solubles en agua y presentan elevados puntos de fusión y ebullición.
- Fundidos o disueltos en agua conducen la corriente eléctrica.

Con respecto a los enlaces químicos, indique verdadero (V) o falso (F) según corresponda.

Los átomos se enlazan para lograr mayor estabilidad.

(V)

En la formación del enlace químico se libera energía.

(V)

Todos los átomos, al formar un compuesto, cumplen con la regla del octeto.

(**F**)

Con respecto a los enlace iónico, escriba verdadero (V) o falso (F) según corresponda.

▲Se producen por transferencia de electrones.

 \triangle La diferencia de electronegatividad($\triangle EN$) generalmente es

```
mayor o igual que 1,7.
```

▲Atracción generalmente entre átomos de no metales.

Determine el número de electrones de valencia para los siguientes elementos.

```
I. <sub>16</sub>S: _____
```

Determine la notación de Lewis para el átomo de cloro (Z=17)

#e- de valencia =7

Símbolo de Lewis:

A continuación se dan las electronegatividades para algunos elementos.

Cl	Mg	0	C	Н	K
3,0	1,2	3,5	2,4	2,1	0,8

¿Cuántos de los siguientes compuestos presenta enlace iónico?

I. CH₄

II. KCI

III. MgO

RESOLUCIÓN

Diferencia de electronegatividades EN ≥1.7

I. CH₄

II. KCI

III. MgO

EN=(2.4)-(2.1)

EN=(3.0)-(0.8)

EN=(3.5)-(1.2)

EN= 0.3

EN= 2.2

EN= 2.3

Rpta: II y III

El cloruro de sodio se ha utilizado para saborizar y conservar alimentos, el cloruro de sodio tiene otros usos. Por ejemplo, los hospitales usan una solución de cloruro de sodio intravenosa para suministrar agua y sal a los pacientes a fin de aliviar la deshidratación. Realice el diagrama de Lewis para el compuestos cloruro de sodio (NaCl). Datos: Na (IA),Cl (VIIA)

RESOLUCIÓN

La notación o estructura de Lewis es una representación gráfica que muestra la cantidad de electrones de valencia. La cantidad de electrones de valencia se representa con puntos alrededor del elemento químico (símbolo). Si el átomo de un elemento X posee 33 protones, indique cuál es la notación de Lewis.

