Fundamentals of ML Final Project

Team Members: Damian Huerta & Nathan Wang

Methodology

- 32239 Images
- Classifiers
 - K-Means
 - GMM
 - KNN
 - CNN
- Image Resize
 - Initially used torch.resize()
 - Switched to Auto Encoders

Figure 1. Reconstructed training sample image from trained AE

Methodology Cont'd

K-Means

- Used K-Means class in sk-learn python library
- Tested with multiple classes (ended up with 3)

GMMs

- Used GMM class in sklearn python library
- Tested with multiple classes (ended up with 3)
- Tested with different covariances (tied, full, diag, and spherical)
 - Ended up using tied covariance

KNN

- Simple apprach to classify based on K neighbors majority vote
- Utilized 50-feature samples
- Tested over various K values to maximize accuracy
- Improved accuracy over default images

CNN

- Initial approach trained ResNet on OLIVE training set
- Pivoted to custom CNN architecture based on AlexNet
- Experimented with Cross Entropy Loss, MSE, and Focal Loss
- Incorporated dropout to combat overfitting

Results: K-Means

- 43.87% Accuracy
- Predicts 77.9% of samples with true class1 as class 1
- Virtually incapable of predicting class 0 and
- Potential Reason of Inaccuracy
 - One Big Cluster
 - Poor Image Quality/Orientation

Figure 2. Confusion Matrix for K-Means Classifier on Testing data set

Results: GMM

Figure 2. Confusion Matrix for GMM Classifier on Testing data set

- 50.6% Accuracy on Testing Set
- Stability Issues when using flattened images
 - 32x32 resolution
- Predicts True Label 0 accurately
- Struggles to Differentiate True Label1 from 0
- Potential Reason for Inaccuracy:
 - Poor Image Quality

Results: KNN

- Experimentation found that K = 4 performed best with encoded samples
- K>100 resulted in stability issues and decreased accuracy
- Model predicts true label 1 as label 1 with 63.83% accuracy.
- Overall accuracy of 44.71% with encoded samples
 - 38.4% accuracy with flattened images

Figure 3. Confusion Matrix for KNN Classifier on Testing data set

Results: CNN

- 44.94% testing accuracy with ResNet
 - Overfitting issue (75.38% training accuracy) -> O-Net (Custom CNN)

Figure 4. Loss of training and testing dataset during each epoch of training

```
Layer (type:depth-idx)
                                         Output Shape
                                                                    Param #
     Conv2d: 2-1
                                           -1, 64, 55, 55]
                                                                    7,808
     LReLU: 2-2
                                           -1, 64, 55, 55]
     MaxPool2d: 2-3
                                           -1, 64, 27, 27]
     Conv2d: 2-4
                                           -1, 192, 27, 27]
                                                                    307,392
     LReLU: 2-5
                                           -1, 192, 27, 27]
     MaxPool2d: 2-6
                                           -1, 192, 13, 13]
     LConv2d: 2-7
                                           -1, 384, 13, 13]
                                                                    663,936
     LReLU: 2-8
                                           -1, 384, 13, 13]
     └_Conv2d: 2-9
                                           -1, 256, 13, 13]
                                                                    884,992
     LReLU: 2-10
                                           -1, 256, 13, 13]
     └_Conv2d: 2-11
                                          -1, 256, 13, 13]
                                                                    590,080
     LReLU: 2-12
                                          -1, 256, 13, 13]
     LMaxPool2d: 2-13
                                          -1, 256, 6, 6]
 -AdaptiveAvgPool2d: 1-2
                                           -1, 256, 6, 6]
 -Sequential: 1-3
                                           -1, 3]
     Linear: 2-14
                                           -1, 4096
                                                                    37,752,832
     LReLU: 2-15
                                           -1, 4096
     Dropout: 2-16
                                           -1, 4096
     Linear: 2-17
                                          [-1, 4096]
                                                                    16,781,312
     LReLU: 2-18
                                          -1, 4096]
     L-Dropout: 2-19
                                           -1, 4096]
     Linear: 2-20
                                           -1, 3]
                                                                    12,291
Total params: 57,000,643
Trainable params: 57,000,643
Non-trainable params: 0
Total mult-adds (M): 720.24
Input size (MB): 0.19
Forward/backward pass size (MB): 3.76
Params size (MB): 217.44
Estimated Total Size (MB): 221.39
```

Figure 5. O-NET Model summary

Results: CNN

- 51.06% testing accuracy on O-NET
 - .2 dropout, Focal Loss,
 21 layers, Adam Optimizer used for best performing model
 - Still had issue with overfitting despite dropout

Figure 6. Confusion Matrix for CNN Classifier on Testing data set

Conclusion

CORRECTLY PREDICTED SAMPLES PER CLASSIFIER

Figure 7. Correctly predicted samples per classifier

- CNN has the best testing/training accuracy overall
- Different models perform well on different classes
- Potential Reason:
 - Model has better adaptability (K-Means, GMM)
 - Feature space representation

Conclusion

- Dataset is heavily staggered
 - Almost half of data is Class 1
 - Could result in bias towards choosing Class 1 over other classes
- GMM catches 80.77% of highest severity class (2) and 91.09% of lowest severity class (0).
- K-Means catches/performs best for class 1

OLIVE TRAINING DATA CLASS DISTRIBUTION

Figure 8. Olive dataset class distribution

Future Works

- Exploration of Feature Selection
 - PCA, CAE, etc.
- Combination of multiple classifiers
 - Exploit classifier's strong classes
- Data Set Distribution
 - Even Class Distribution and larger sample size
- CNN Architecture
 - · Layers, Custom Loss, Dropout, etc.

