

Define the problem

- -Laser marking break down
- -Take long time to repair > 7 day

Root Cause Analysis -Water leak from

connector and water tube

HTM2500LF

Temperature and Relative Humidity Module

SPECIFICATIONS

- Hermetic Housing
- Humidity calibrated within +/-2% @55%RH
- Temperature measurement through NTC 10kOhms
- +/-1% direct output
- Typical 1 to 4 Volt DC output for 0 to 100%RH at 5Vdc

Based on the rugged HTS2035SMD humidity / temperature sensor, HTM2500LF is a dedicated humidity and temperature transducer designed for OEM applications where a reliable and accurate measurement is needed. Direct interface with a microcontroller is made possible with the module's humidity linear voltage output.

TYPICAL PERFORMANCE CURVES

HUMIDITY SENSOR

Typical response look-up table (Vs = 5V)

RH (%)	Vout (mV)	RH (%)	Vout (mV)
10	1235	55	2480
15	1390	60	2605
20	1540	65	2730
25	1685	70	2860
30	1825	75	2990
35	1960	80	3125
40	2090	85	3260
45	2220	90	3405
50	2350	95	3555

Modeled linear voltage output (Vs = 5V)

Linear Equations

Vout = 26.65 * RH + 1006 RH = 0.0375 * Vout - 37.7 with Vout in mV and RH in %

Polynomial Equations

Vout = 1.05E⁻³ * RH³ - 1.76E⁻¹ * RH² + 35.2 * RH + 898.6 RH = -1.92E⁻⁹ * Vout³ + 1.44E⁻⁵ * Vout² + 3.4E⁻³ * Vout - 12.4 with Vout in mV and RH in %

Domae Line 2 M01 Laser marking

3-Feb-2020

75

50 25

100

200

300

```
In [16]: import numpy as np
         import pandas as pd
          from matplotlib import pyplot
          #data = read csv('Insight Data 20200128 132638.csv')
          #print(data.head())
         #data.plot()
                                                    Get data from Could
         #pyplot.show()
         data = pd.read_csv('Insight Data 20200128_132638_data_train.csv')
         #data.head()
         # Convert the dictionary into DataFrame
                                                           X a
         df = pd.DataFrame(data)
         # select two columns
                                                       Microsoft Excel
         df[['DateTime', 'Value']]
                                                       ma Separated Valu
         df.plot()
         pyplot.legend(loc='upper left')
         pyplot.show()
           200
                 State
          175 -
                Value
                — Quality
          150
                — QualityStatus
          125
           100
```

500

600

```
In [6]: pyplot.hist(df["Value"],bins=20)
    pyplot.xlabel("Value")
    pyplot.ylabel("Frequency")
```

Out[6]: Text(0, 0.5, 'Frequency')


```
In [7]:
    rolling_mean = df.Value.rolling(window=12).mean()
    rolling_mean2 = df.Value.rolling(window=24).mean()
    pyplot.plot(df.DateTime, df.Value, label='%RH')
    pyplot.plot(df.DateTime, rolling_mean, label='%RH 1 hr SMA', color='orange')
    pyplot.plot(df.DateTime, rolling_mean2, label='%RH 2 hr SMA', color='red')
    pyplot.legend(loc='upper left')
    pyplot.show()
```

