Exercise Sheet 12 Linear Algebra (AAI)

Exercise 12.1 (H)

For $A \in \mathbb{R}^{2 \times 2}$ we define $\langle \cdot, \cdot \rangle_A \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by

$$\langle x, y \rangle_A = \langle x, Ay \rangle, \qquad x, y \in \mathbb{R}^2,$$

where $\langle \cdot, \cdot \rangle$ denotes the canonical inner product on \mathbb{R}^2 . If $\langle \cdot, \cdot \rangle_A$ is an inner product, the corresponding induced norm and angles are denoted by $\| \cdot \|_A$ and \mathcal{L}_A , respectively.

a) Let $A_1, A_2, A_3 \in \mathbb{R}^{2 \times 2}$ be given by

$$A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}.$$

Determine for every i = 1, 2, 3 whether $\langle \cdot, \cdot \rangle_{A_i}$ is an inner product on \mathbb{R}^2 .

- b) Compute ||x|| and $||x||_{A_3}$ for $x \in \{(-1,1)^{\top}, (1,0)^{\top}\}$. Moreover, compute $\angle(x,y)$ and $\angle_{A_3}(x,y)$ for $x = (-1,1)^{\top}$ and $y = (1,0)^{\top}$.
- c) Determine the orthogonal complement of $\{(1,0)^{\top}\}$ w.r.t. $\langle \cdot, \cdot \rangle$ and $\langle \cdot, \cdot \rangle_A$.

Exercise 12.2 (H)

Let V = C([0,1]). We define $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ by

$$\langle f, g \rangle = \int_0^1 f(x) \cdot g(x) \, dx, \qquad f, g \in V.$$

- a) Show that $\langle \cdot, \cdot \rangle$ is an inner product on V. Hint: Use ε - δ -characterization of continuity to show positive-definiteness.
- b) Determine an orthonormal basis of the subspace $\Pi_2 \subseteq V$ (where the domain is restricted to [0,1]).
- c) Let $f \in V$ be given by $f(x) = \exp(x)$ for $x \in [0,1]$. Determine the orthogonal projection of f onto Π_2 .

Exercise 12.3 (H)

Prove Remark IV.1.19 and Remark IV.1.27.

Exercise 12.4 (H)

Let $m, n \in \mathbb{N}$, $b \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$ with $n \leq m$.

- a) Show that $\operatorname{rank}(A^{\top}A) = \operatorname{rank} A$. Hint: Use the Rank-Nullity Theorem and show that $\ker A = \ker(A^{\top}A)$. Note that Ax = 0 if and only if $\langle Ax, Ax \rangle = 0$.
- b) Let rank A = n. Show¹ that $\langle x, A^{\top}Ax \rangle > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$. Hint: Is \mathcal{F}_A injective?
- c) Let rank A = n. Show that the function

$$\Delta \colon \mathbb{R}^n \to \mathbb{R}, \quad x \mapsto ||Ax - b||$$

has a unique minimizer $x^* \in \mathbb{R}^n$ satisfying $A^{\top}Ax^* = A^{\top}b$. Hint: The function $f: \mathbb{R}^n \to \mathbb{R}$ given by $f(x) = ||Ax - b||^2$ is differentiable.

d) Consider the following data $(x_i, y_i) \in \mathbb{R}^2$ for i = 1, ..., 4:

Determine $f \in \Pi_1$ such that

$$\left(\tilde{\Delta}(f)\right)^2 = \sum_{i=1}^4 \left(y_i - f(x_i)\right)^2$$

is minimal.

¹A matrix $B \in \mathbb{R}^{n \times n}$ is called *symmetric* if $B = B^{\top}$. Moreover, a symmetric matrix $B \in \mathbb{R}^{n \times n}$ is called *positive-definite* if $\langle x, Bx \rangle > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$.