CLASIFICADORES BASADOS EN INSTANCIAS

Ejercicio 1

${f X}$	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
${f Y}$	-	-	+	+	+	-	-	+	-	-

Apartado a. Clasifica el punto x=5 de acuerdo a los 1-,3-,5- y 9- vecinos más cercanos usando mayoría de votos

Calculamos todas las instancias desde x=5

Distancias	Sorted	Y
D(5,0.5) = 4.5	D(5,4.9) = 0.1	+
D(5.0,3.0) = 2.0	D(5,5.2) = 0.2	-
D(5,4.5) = 0.5	D(5,5.3) = 0.3	-
D(5,4.6) = 0.4	D(5,4.6) = 0.4	+
D(5,4.9) = 0.1	D(5,4.5) = 0.5	+
D(5,5.2) = 0.2	D(5,5.5) = 0.5	+
D(5,5.3) = 0.3	D(5,3) = 2	-
D(5,5.5) = 0.5	D(5,7) = 2	-
D(5,7) = 2	D(5,0.5) = 4.5	-
D(5,9.5) = 4.5	D(5,9.5) = 4.5	-

Obtenemos la clase para los 1-, 3- 5- y 9- vecinos más cercanos

- 1- vecino más cercano \rightarrow d(5,4.9) \rightarrow Clase positiva
- 3- vecino más cercano \rightarrow [d(5,4.9),d(5,5.3)] \rightarrow Clase negativa
- 5- vecino más cercano \rightarrow [d(5,4.9),d(5,4.5)] \rightarrow Clase positiva
- 9- vecino más cercano \rightarrow [d(5,0.5), d(5,9.5)] \rightarrow Clase negativa

Apartado b. Repetir el apartado anterior usando:

$$y = argmaxv \sum_{(xi, yi) \in Dz} (Wi * I(V = yi)), Wi = \frac{1}{d(X', Xi)^2}$$

Calculamos las distancias desde X=5

Distancia	Sorted	Clase	
D(5,0.5) = 0.049	D(5,4.9) = 100	+	
D(5,3.0) = 0.25	D(5,5.2) = 2.5	-	
D(5,4.5) = 4	D(5,5.3) = 11.111	-	
D(5,4.6) = 6.250	D(5,4.6) = 6.25	+	
D(5,4.9) = 100	D(5,4.5) = 4	+	
D(5,5.2) = 25	D(5,5.5) = 4	+	
D(5,5.3) = 11.111	D(5,3) = 0.25	-	
D(5,7) = 0.16	D(5,0.5) = 0.049	-	
D(5,9.5) = 0.049	D(5,9.5) = 0.049	-	

Obtenemos la clase para los vecinos indicados en el ejercicio:

1-nearest neighbor \rightarrow d(5,4.9) = 100 \rightarrow Clase positiva

3-nearest neighbor → [d(5,4.9),d(5,5.3)] = 100 → Clase positiva

5-nearest neighbor → [d(5,4.9),d(5,4.5)] = 100 → Clase positiva

9-nearest neighbor \rightarrow [d(5,4.9),d(5,9.5)] = 100 \rightarrow Clase positiva

Ejercicio 2. Calcula el MVDM measure para (Home Owner, Marital Status)

$$d(V1,V2) = \sum_{i=1}^{K} \left| \frac{ni1}{n1} - \frac{ni2}{n2} \right|$$

TID	HOME OWNER	MARITAL STATUS	ANNUAL INCOME	DEFAULT BORROWER
1	YES	SINGLE	125 K	NO
2	NO	MARITED	100 K	NO
3	NO	SINGLE	70 K	NO
4	YES	MARRIED	120 K	NO
5	NO	DIVORCED	95 K	YES
6	NO	MARRIED	60 K	NO
7	YES	DIVORCED	220 K	NO
8	NO	SINGLE	85 K	YES
9	NO	MARRIED	75 K	NO
10	NO	SINGLE	90 K	YES

Obtenemos el número de cada atributo de Marital Status y Home Owner en función del valor del atributo Default Borrower:

	MARITAL STATUS			HOME OWNER		
	Single	Married	Divorced	Yes	No	
YES	2	0	1	0	3	
No	2	4	1	3	4	

Calculamos las distancias:

d(Single,Married) = 1; d(single,divorced) = 0; d(married,divorced) = 1

d(Refund = yes, Refund = no) =
$$\frac{6}{7}$$