Package 'btml'

May 19, 2025

Type Package
Title Bayesian Treed Machine Learning for Personalized Prediction and Precision Diagnostics
Version 0.1.0
Date 2025-05-12
Description Generalization of the Bayesian classification and regression tree (CART) model that partitions subjects into terminal nodes and tailors machine learning model to each terminal node.
License GPL (>= 2)
Depends R (>= 4.5.0), glmnet, randomForest, e1071, pROC, stats, graphics
NeedsCompilation no
Author Yunro Chung [aut, cre] (ORCID: https://orcid.org/0000-0001-9125-9277), Yaliang Zhang [aut]
Maintainer Yunro Chung <yunro.chung@asu.edu></yunro.chung@asu.edu>
Repository CRAN
Date/Publication 2025-05-19 08:50:02 UTC
Contents
btml
Index
btml Bayeisan Treed Machine Learning
Description

node.

The treed model generalizes the Bayesian classification and regression tree (BCART) model by partitioning subjects into terminal nodes and tailoring machine learning model to each terminal

Usage

btml(y,x,z,ynew,xnew,MLlist,sparse,nwarm,niter,minsample,base,power)

Arguments

У	Response vector. If a factor codied as 0 or 1, classification is assumed. Otherwise, regression is assumed.
x	Data.frame or matrix of predictors that is used to estimate a tree structure.
Z	Data.frame or matrix of predictors that is used in terminal node specific ML models. See the description below about the difference between x and z.
ynew	Response vector for the test set corresponding to y (default ynew=NULL).
xnew	Data.frame or matrix for the test set corresponding to x (default xnew=NULL).
znew	Data.frame or matrix for the test set corresponding to z (default znew=NULL).
MLlist	Candidate ML models that can be assigned to each terminal node (default ML-list=c("lasso","rf","svm")). Any other ML models can be included. See the details below.
sparse	Whether to perform variable and machine learning model selections based on a sparse Dirichlet prior rather than simply uniform (default sparse=TRUE).
nwarm	Number of warm-up (default nwarm=1000).
niter	Number of iteration (defaut niter=1000).
minsample	The number of minimum sample size per each node, i.e., length(y)>min_sample if y is continuous and min(length(y==1),length(y==0))>min_sample (default min_sample=20).
base	Base parameter for tree prior (default base=0.95).
power	Power parameter for tree prior (default power=0.8).

Details

This treed model uses stochastic search to find the optimal decision-tree based rule that partitions subjects into distinct terminal nodes and assigns the most effective ML model to each terminal node. For high-dimensional variables, increase nwarm=10000 and niter=10000, or more; and increase minsample.

Ideally, there are two sets of predictors, x and z, e.g., demographic variables and biomarkers, where x is used to split trees, and z is assigned to each terminal node. However, if this is not possible, it allows us to use the same x and z in the btml function, e.g., btml(y=y, x=x, z=x, ...).

Regarding the node numbers, an internal node s has left and right child nodes 2*s and 2*s+1, respectively, where node 1 is a root node; nodes 2 and 3 are left and right child nodes of node 1; nodes 4 and 5 are left and right nodes of node 2; and so on.

Currently, lasso(), randomForest(), and svm(...,kernel="radial") functions from R packages cv.glmnet, randomForest, and e1071 are supported, but any ML models can be flexibly added to terminal nodes, e.g., see the example #3 below.

Value

An object of class btml, which is a list with the following components:

terminal Node numbers in terminal nodes.
internal Node numbers in internal nodes.

splitVariable Variable (i.e., x[,u] if splitVariable[k]=u) used to split the internal node k.

cutoff cutoff[k] is the cutoff value to split the internal node k.

selML ML model assigned to the terminal node t.

fitML fitML[[t]] is the fitted ML model at the terminal node $t \in \text{terminal}$.

y.hat Estimated y (or estimated probability) on the training set if y is continuous (or

binary).

node.hat Estimated node on the training set.

mse Training MSE.

bs Training Brier Score.
roc Training ROC curve.

auc Training AUC.

y.hat.new Estimated y (or estimated probability) on the test set if y is continuous (or bi-

nary).

node.hat.new Estimated node on the test set.

mse.new Test MSE.

bs.new Test Brier Score.
roc.new Test ROC curve.

auc.new Test AUC.

Author(s)

Yaliang Zhang [aut], Yunro Chung [aut, cre]

References

Yaliang Zhang and Yunro Chung, Bayesian treed machine learning model (in preperation)

Examples

```
set.seed(123)
###
#1. continuous y
###
n=200*2 #n=200 & 200 for training & test sets

x=matrix(rnorm(n*10),n,10) #10 predictors
z=matrix(rnorm(n*10),n,10) #10 biomarkers

xcut=median(x[,1])
subgr=1*(x[,1]<xcut)+2*(x[,1]>=xcut) #2 subgroups
```

```
lp=rep(NA,n)
for(i in 1:n)
  lp[i]=1+3*z[i,subgr[i]]
y=lp+rnorm(n,0,1)
idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]
y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]
fit1=btml(y,x,z,ynew=ynew,xnew=xnew,znew=znew)
fit1$mse.new
plot(fit1$y.hat.new~ynew,ylab="Predicted y",xlab="ynew")
###
#2. binary y
x=matrix(rnorm(n*10),n,10) #10 predictors
z=matrix(rnorm(n*10),n,10) #10 biomarkers
xcut=median(x[,1])
subgr=1*(x[,1]<xcut)+2*(x[,1]>=xcut) #2 subgroups
lp=rep(NA,n)
for(i in 1:n)
  lp[i]=1+3*z[i,subgr[i]]
prob=1/(1+exp(-lp))
y=rbinom(n,1,prob)
y=as.factor(y)
idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]
y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]
fit2=btml(y,x,z,ynew=ynew,xnew=xnew,znew=znew)
fit2$auc.new
plot(fit2$roc.new)
#3. add new ML models
   1) write two functions:
       c_xx & c_xx_predict if y is continuous or
       b_xx & b_xx.predict if y is binary
```

```
2) MLlist includes xx, not c.xx nor b.xx.
   3) run btml using the updated MLlist.
   The below is an example of adding ridge regression.
###
#3.1. ridge regression for continuous y.
c_ridge=function(y,x){
  x=data.matrix(x)
  fit=NULL
  suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=0),silent=TRUE))</pre>
  return(fit)
}
c_ridge_predict=function(fit,xnew){
  y.hat=rep(NA,nrow(xnew))
  if(!is.null(fit)){
    xnew=data.matrix(xnew)
    y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))
  return(y.hat)
}
#3.2. ridge regression for binary y.
b_ridge=function(y,x){
  x=data.matrix(x)
  fit=NULL
 suppress Warnings (try(fit <- glmnet::cv.glmnet(x,y,alpha=1,family="binomial"),silent=TRUE))
  return(fit)
b_ridge_predict=function(fit,xnew){
  y.hat=rep(NA,nrow(xnew))
  if(!is.null(fit)){
   xnew=data.matrix(xnew)
   y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))
  }
  return(y.hat)
}
#3.3. update MLlist
MLlist=c("lasso","ridge")
fit3=btml(y,x,z,ynew=ynew,xnew=xnew,znew=znew,MLlist=MLlist)
fit3$auc.new
plot(fit3$roc.new)
```

Index

btml, 1