Paul Schrimpf

Introduction

Model

dentificatio

Estimation

Examples

Dunne et al. (201 Lin (2015)

Generalization

extensions

References

Dynamic Oligopoly

Paul Schrimpf

UBC Economics 567

March 22, 2022

Paul Schrimpf

Introduction

Model

dentification

Estimatio

Dunne et al. (201)

Generalization and

CALCITSIONS

Reference

References

• Reviews:

- Aguirregabiria (2019) chapters
- Ackerberg, Caves, and Frazer (2015) section 3
- Aguirregabiria and Mira (2010)
- Doraszelski and Pakes (2007)
- My notes from 628

Key papers:

 Ericson and Pakes (1995), Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007)

Paul Schrimpf

Introduction

Model

Identification

Estimation

Dunne et al. (2013

Generalization

and extensions

Reference

- 1 Introduction
- 2 Model
- 3 Identification
- 4 Estimation
- 5 Examples
 Dunne et al. (2013)
 Lin (2015)
- 6 Generalizations and extensions

Paul Schrimpf

Introduction

Model

dentification

Estimatio

Examples

Dunne et al. (201 Lin (2015)

Generalization and

extensions

References

Section 1

Introduction

Paul Schrimpf

Introduction

Model

dentification

Estimation

Dunne et al. (2013

Generalization and

extension

References

Introduction

Paul Schrimpf

Introductio

Model

dentification

Estimation

xamples

Lin (2015)

Generalization and

extensions

References

Section 2

Model

Identificati

Estimation

Examples

Dunne et al. (2013 Lin (2015)

and extensions

extensions

Reference

Model primitives 1

- N players indexed by i
- Discrete time index by t
- Player *i* chooses action $a_{it} \in A$; actions of all players $a_t = (a_{1t}, ..., a_{Nt})$
- State $x_t = (x_{1t}, ..., x_{Nt}) \in X$ observed by econometrician and all players at time t
- Private shock $\epsilon_{it} \in \mathcal{E}$
- Payoff of player *i* is $U_i(a_t, x_t, \epsilon_{it})$
- Discount factor β

Paul Schrimpf

Introduction

Model

Identification

Estimation

Dunne et al. (2013 Lin (2015)

Generalization and

References

Assumptions 1

- 1 A is a finite set
- **2** Payoffs additively separable in ϵ_{it} ,

$$U_i(a_t, x_t, \epsilon_{it}) = u(a_t, x_t) + \epsilon_{it}(a_{it})$$

 \mathfrak{S} x_t follows a controlled Markov process

$$F(x_{t+1}| \underbrace{\mathcal{I}_t}) = F(x_{t+1}|a_t, x_t)$$
 all information at time t

- The observed data is generated by a single Markov Perfect equilibrium
- β is known
- **6** ϵ_{it} i.i.d. with CDF *G*, which is known up to a finite dimensional parameter

Paul Schrimpf

Introduction

Model

dentificatio

Estimation

Dunne et al. (201

Generalizati

and extensions

Reference

Assumptions 2

Each of these assumptions could be (and in some papers has been) relaxed; relaxing 6 is probably most important empirically

Identificatio

Estimation

Examples
Dunne et al. (2013

Generalization

extensions

Reference

Value function 1

- Strategies $\alpha: (X \times \mathcal{E})^N \rightarrow A^N$
 - α_i is the strategy of player i
 - α_{-i} is the strategy of other players
- "Value" functions
 - Value function given strategies: $V_i^{\alpha}(x_t, \epsilon_{it})$
 - Integrated (over ϵ) value function

$$\begin{split} \bar{V}^{\alpha}(x) &= \int V_{i}^{\alpha}(x_{t}, \epsilon_{it}) dG(\epsilon_{it}) \\ &= \int \left(\max_{a_{it} \in A} V_{i}^{\alpha}(x_{t}, a_{it}) + \epsilon_{it}(a_{it}) \right) dG(\epsilon_{it}) \end{split}$$

Choice specific value function

$$v_i^{\alpha}(a_{it}, x_t) = \mathbb{E}_{\epsilon_{-i}} \begin{bmatrix} u(a_{it}, \alpha_{-i}(x_t, \epsilon_{-it}), x_t) + \\ +\beta \mathbb{E}_x[\bar{V}_i^{\alpha}(x_{t+1}) | a_{it}, \alpha_{-i}(x_t, \epsilon_{-it}), x_t] \end{bmatrix}$$

Paul Schrimpf

Model

Equilibrium

Markov perfect equilibrium: given α_{-i} , α_i maximizes v_i

$$\alpha_i(x_t, \epsilon_{it}) \in \arg\max_{a_i} \mathbb{E}_{\epsilon_{-i}} \left[u(a_i, \alpha_{-i}(x_t, \epsilon_{-it}), x_t) + \epsilon_{it}(a_i) + \right. \\ \left. + \beta \mathbb{E}_x \left[\bar{V}_i^{\alpha}(x_{t+1}) | a_{it}, \alpha_{-i}(x_t, \epsilon_{-it}), x_t \right] \right]$$

Paul Schrimpf

Introduction

Model

dentification

Estimation

Estimation

Dunne et al. (201

Generalizatio and

extensions

Reference

Equilibrium in conditional choice probabilities 1

Conditional choice probabilities

$$P_{i}^{\alpha}(a_{i}|x) = P\left(a_{i} = \arg\max_{j \in A} v_{i}^{\alpha}(j, x) + \epsilon_{it}(j)|x\right)$$
$$= \int 1\left\{a_{i} = \arg\max_{j \in A} v_{i}^{\alpha}(j, x) + \epsilon_{it}(j)\right\} dG(\epsilon_{it}).$$

• Choice specific value function with $\mathsf{E}_{\epsilon_{-i}}$ replaced with $\mathsf{E}_{a_{-i}}$

$$v_i^{p}(a_{it}, x_t) = \sum_{\substack{a_{i:\in A^{N-1}}}} P_{-i}(a_{-i}|x_t) \begin{pmatrix} u(a_{it}, a_{-i}, x_t) + \\ +\beta \mathbb{E}_x[\bar{V}_i^{\alpha}(x_{t+1})|a_{it}, a_{-i}, x_t] \end{pmatrix}$$

Paul Schrimpf

Introduct

Model

dentificatio

Estimation

Examples

Dunne et al. (2013 Lin (2015)

Generalization and

extensions

Reference

Equilibrium in conditional choice probabilities 2

where

$$P_{-i}(a_{-i}|x) = \prod_{j\neq i}^{N} P(a_j|x).$$

Paul Schrimpf

Introduction

Model

Identification

Estimation

Dunne et al. (2013)

Generalization and

References

Equilibrium in conditional choice probabilities

Let

$$\Lambda(a|v_i^P(\cdot,x_t)) = \int 1\left\{a_i = \arg\max_{j \in A} v_i^P(j,x) + \epsilon_{it}(j)\right\} dG(\epsilon_{it}).$$

Then the equilibrium condition is that

$$P_i(a|x) = \Lambda(a|v_i^p(\cdot,x))$$

or in vector form $\mathbf{P} = \mathbf{\Lambda}(\mathbf{v}^{\mathbf{P}})$

- Fixed point equation in **P**
- Generally not a contraction mapping, so existence and computation more difficult than in single agent models
- Equilibrium existence:
 - If $\Lambda : [0,1]^{N|X|} \rightarrow [0,1]^{N|X|}$ is continuous, then by Brouwer's fixed point theorem, there exists at least one equilibrium
 - Λ need not be continuous, see Gowrisankaran (1999) and Doraszelski and Satterthwaite (2010)

Paul Schrimpf

Introduction

Model

Identification

Estimatio

Examples

Dunne et al. (2013) Lin (2015)

Generalization and

extension

References

Section 3

Identification

Estimatio

Dunne et al. (2013 Lin (2015)

Generalization and

Reference

Identification – expected payoff

• As in single-agent dynamic decision problems given G, β , and $E_{\epsilon}[u(0, \alpha_{-i}(x, \epsilon_{-i}), x_t)] = 0$, we can identify the expectation over other player's actions of the payoff function,

$$\mathsf{E}_{\epsilon}[u(a_i,\alpha_{-i}(x,\epsilon_{-i}),x)] = \sum_{a_{-i}} \mathsf{P}(a_{-i}|x)u(a_i,a_{-i},x)$$

 See Bajari et al. (2009), which builds on Hotz and Miller (1993) and Magnac and Thesmar (2002)

Paul Schrimpf

Introduction

Model

Identification

Estimation

Dunne et al. (201

Lin (2015)

and

References

Identification – expected payoff (details) 1

Hotz and Miller (1993) inversion shows

$$v_i^{\alpha^*}(a,x) - v_i^{\alpha^*}(0,x) = q(a, P(\cdot|x); G)$$

for some known function q

• Use normalization and Bellman equation to recover $v_i^{lpha^*}$

$$v_{i}^{\alpha^{*}}(0, x) = \underbrace{\mathbb{E}[u(0, \alpha_{-i}^{*}(x, \epsilon_{-i}), x)]}_{=0} + \beta \mathbb{E}[\max_{a' \in A} v_{i}^{\alpha^{*}}(a', x') + \epsilon(a')|a, x]$$

$$= \underbrace{\beta \mathbb{E}[\max_{a' \in A} v_{i}^{\alpha^{*}}(a', x') - v_{i}^{\alpha^{*}}(0, x') + \epsilon(a')|0, x]}_{\equiv q(x, P(\cdot|x), G)} + \beta \mathbb{E}[v_{i}^{\alpha^{*}}(0, x')|0, x]$$

Paul Schrimpf

Introduction

IIItroductioi

Identification

Estimation

Estimation

Dunne et al. (201

Generalization and

extensions

References

Identification – expected payoff (details) 2

q is known; can solve this equation for $v_i^{\alpha^*}(0, x)$, then

$$v_i^{\alpha^*}(a,x) = v_i^{\alpha^*}(0,x) + q(a, P(\cdot|x); G)$$

• Recover $E[u(a_i, \alpha_{-i}^*(x, \epsilon_{-i}), x)]$ from $v_i^{\alpha^*}$ using Bellman equation

$$E[u(a_i, \alpha_{-i}^*(x, \epsilon_{-i}), x)] = v_i^{\alpha^*}(a_i, x) -$$

$$-\beta E\left[\max_{a' \in A} v_i^{\alpha^*}(a', x') + \epsilon(a')|a, x\right]$$

Paul Schrimpf

Introduction

Mod

Identification

Estimation

Dunne et al. (2013 Lin (2015)

and extensions

Reference

Identification of u(a, x)

- Separating u(a, x) from $E_{\epsilon}[u(a_i, \alpha_{-i}(x, \epsilon_{-i}), x)]$ is new step compared to single-agent model
- Need exclusion to identify u(a, x)
- Without exclusion order condition fails

$$\mathsf{E}_{\epsilon}[u(a_i,\alpha_{-i}(x,\epsilon_{-i}),x)] = \sum_{a_{-i}} \mathsf{P}(a_{-i}|x)u(a_i,a_{-i},x)$$

Left side takes on |A||X| identified values, but u(a, x) has $|A|^N|X|$ possible values

 Assume u(a, x) = u(a, x_i) where x_i is some sub-vector of x. u identified if

$$\mathsf{E}_{\epsilon}[u(a_i,\alpha_{-i}(x,\epsilon_{-i}),x)] = \sum_{a_{-i}} \mathsf{P}(a_{-i}|x)u(a_i,a_{-i},x_i)$$

has a unique solution for u

Paul Schrimpf

Introduction

Model

dentification

Estimation

xamples

Dunne et al. (2013) Lin (2015)

Generalization and

extensions

References

Section 4

Estimation

Paul Schrimpf

Introduction

Mode

Identificatio

Estimation

Examples

Dunne et al. (201

Ceneralizatio

and extensions

Reference

Estimation 1

- Can use similar methods as in single agent dynamic models
- Maximum likelihood

$$\max_{\theta \in \Theta, \mathbf{P} \in [0,1]^N} \sum_{m=1}^M \sum_{t=1}^{T_m} \sum_{i=1}^N \log \Lambda \left(a_{imt} | v_i^{\mathbf{P}}(\cdot, x_{mt}; \theta) \right)$$

$$\text{s.t.} \mathbf{P} = \mathbf{\Lambda}(v^{\mathbf{P}}(\theta))$$

- Nested fixed point: substitute constraint into objective and maximize only over $\boldsymbol{\theta}$
 - For each θ must solve for equilibrium computationally challenging
 - A not a contraction
 - What to do when equilibrium not unique?

Paul Schrimpf

Introduction

Model

dentification

Estimation

Examples

Dunne et al. (2013 Lin (2015)

and extensions

Reference

Estimation approaches

 MPEC (Su and Judd, 2012): use high quality optimization software to solve constrained optimization problem Generalization and extensions

Reference

Estimation approaches

• 2-step estimators: estimate $\hat{P}(a|x)$ from observed actions and then

$$\max_{\theta \in \Theta} \sum_{m=1}^{M} \sum_{t=1}^{T_m} \sum_{i=1}^{N} \log \Lambda(a_{imt} | v_i^{\hat{\mathbf{p}}}(\cdot, x_{mt}; \theta))$$

- Can replace pseudo-likelihood with GMM (Bajari, Benkard, and Levin, 2007) or least squares (Pesendorfer and Schmidt-Dengler, 2008) objective
- Unlike single agent case, efficient 2-step estimators do not have same asymptotic distribution as MLE¹

¹In single agent models efficient 2-step and ML estimators have the same asymptotic distribution but different finite sample properties.

Paul Schrimpf

Introduction

Model

dentification

Estimation

Dunne et al. (2013 Lin (2015)

Generalization and extensions

Reference

Estimation approaches

- Nested pseudo likelihood (Aguirregabiria and Mira, 2007): after 2-step estimator update $\hat{\mathbf{P}}^{(k)} = \mathbf{\Lambda}(v^{\hat{\mathbf{p}}^{(k-1)}}(\hat{\boldsymbol{\theta}}^{(k-1)})), \text{ re-maximize pseudo likelihood to get } \hat{\boldsymbol{\theta}}^{(k)}$
 - Asymptotic distribution depends on number of iterations; if iterate to convergence, then equal to MLE

Paul Schrimpf

Introduction

Mode

dentificatio

Estimation

Dunne et al. (201; Lin (2015)

and extensions

Reference

Incorporating static parameters

- Often some portion of payoffs can be estimated without estimating the full dynamic model
 - E.g. Holmes (2011) estimates demand and revenue from sales data, costs from local wages, and only uses dynamic model to estimate fixed costs and sales
- Bajari, Benkard, and Levin (2007) and Pakes, Ostrovsky, and Berry (2007) incorporate a similar ideas

Paul Schrimpf

Introduction

Model

dentification

Estimation

Examples

Dunne et al. (2013) Lin (2015)

Generalization and

References

Section 5

Examples

Paul Schrimpf

Introduction

Mode

Identificatio

Estimation

Dunne et al. (2013)

and

Reference

Dunne et al. (2013) "Entry, Exit and the Determinants of Market Structure" 1

- Market structure = number and relative size of firms
- Classic question in IO: how does market structure affect competition?
- Here: how is market structure determined? Entry and exit
 - Sunk entry costs
 - Fixed operating costs
 - Expectations of profits (nature of competition)
 - Like Bresnahan and Reiss (1991) summarize with profits as a function of number of firms, $\pi(n)$
- Estimate dynamic model of entry and exit to determine relative importance of factors affecting market structure
- Context: dentists and chiropractors

identificatio

Estimation

Dunne et al. (2013)

and

extensions

References

- Similar to Pakes, Ostrovsky, and Berry (2007)
- State variables s = (n, z)
 - n = number of firms, z = exogenous profit shifters
 - Follow a finite state Markov process
- Parameters θ
- Profit $\pi(s; \theta)$ (leave θ implicit henceforth)
- Fixed cost $\lambda_i \sim G^{\lambda} = 1 e^{-\lambda_i/\sigma}$
- Discount factor δ
- Value function

$$V(s; \lambda_i) = \pi(s) + \max\{\delta VC(s) - \delta \lambda_i, 0\}$$

where VC is expected next period's value function

dentificatio

Estimation

Dunne et al. (2013) Lin (2015)

Generalization and extensions

Reference

· Probability of exit:

$$p^{x}(s) = P(\lambda_{i} > VC(s)) = 1 - G^{\lambda}(VC(s)).$$

• Assume λ exponential, $G^{\lambda} = 1 - e^{-(1/\sigma)\lambda}$, then

$$VC(s) = \mathsf{E}_{s'}^{c} \left[\pi(s') + \delta VC(s') - \delta \sigma \left(1 - p^{x}(s') \right) | s \right]$$

• Let M_c be the transition matrix, then

$$VC = M_c [\pi + \delta VC - \delta \sigma (1 - \mathbf{p}^{x})]$$

$$VC = (I - \delta M_c)^{-1} M_c [\pi - \delta \sigma (1 - \mathbf{p}^{x})]$$
(1)

 Pakes, Ostrovsky, and Berry (2007): use non parametric estimates of M_c and p^x in (1) to form VC Idontification

Estimation

LJUITIALIOI

Dunne et al. (2013) Lin (2015)

Generalization and

extensions

Reference

Model 3

 Here: use non parametric estimate of M_c and form VC by solving

$$VC = M_c \left[\pi + \delta VC - \delta \sigma G^{\lambda}(VC) \right]$$

- Potential entrants:
 - Expected value after entering

$$VE(s) = \mathsf{E}_{s'}^{e} \left[\pi(s') + \delta VC(s') - \delta \sigma \left(1 - p^{\mathsf{x}}(s') \right) | s \right]$$

- Cost of entry $\kappa_i \sim G^{\kappa}$
- Entry probability

$$p^{e}(s) = P(\kappa_{i} < \delta VE(s)) = G^{\kappa}(\delta VE(s))$$

 As before can use Bellman equation in matrix form to solve for VE

Paul Schrimpf

Introduction

Mode

dentification

Estimatio

Examples

Dunne et al. (2013) Lin (2015)

and extensions

Reference

Empirical specification 1

- Data: U.S. Census of Service Industries and Longitudinal Business Database
 - 5 periods 5 year intervals from 1982-2002
 - 639 geographic markets for dentists; 410 for chiropractors
 - Observed average market-level profits π_{mt}
 - Number of firms n_{mt} , entrants, e_{mt} , exits x_{mt} , potential entrants p_{mt}
 - Market characteristics $z_{mt} = (pop_{mt}, w_{mt}, inc_{mt})$

Dunne et al. (2013)

Profit function

$$\pi_{mt} = \theta_0 + \sum_{k=1}^{5} \theta_k 1\{n_{mt} = k\} + \theta_6 n_{mt} + \theta_7 n_{mt}^2 +$$
+ quadratic polynimal in $z_{mt} +$
+ $f_m + \epsilon_{mt}$

Empirical specification 1

Key assumption: ϵ_{mt} independent over time

- Transition matrix M_c
 - Define \hat{z}_{mt} = estimate value polynomial in z_{mt} in profit function
 - Discretize \hat{z}_{mt} into 10 categories and use sample averages to estimate transition probabilities
- Fixed (G^{λ}) and entry costs (G^{κ})
 - $\widehat{VC}(\sigma)$ and $\widehat{VE}(\sigma)$ as described above

Paul Schrimpf

Introduction

Model

dentificatio

Estimation

Dunne et al. (2013)

Lin (2015)

and

CALCITSION

Reference

Empirical specification 2

Log-likelihood

$$(n_{mt} - x_{mt}) \log \left(G^{\lambda} \left(\widehat{VC}_{mt}(\sigma); \sigma \right) \right) +$$

$$L(\sigma, \alpha) = \sum_{m,t} + x_{mt} \log \left(1 - G^{\lambda} \left(\widehat{VC}_{mt}(\sigma); \sigma \right) \right) +$$

$$+ e_{mt} \log \left(G^{\kappa} \left(\widehat{VE}_{mt}(\sigma); \alpha \right) \right) +$$

$$+ (p_{mn} - e_{mt}) \log \left(1 - G^{\kappa} \left(\widehat{VE}_{mt}(\sigma); \alpha \right) \right)$$

Paul Schrimpf

Introduction

Mode

Identificatio

Estimation

Examples

Dunne et al. (2013)

Lin (2015)

and extensions

References

Results

Profit function:

- Decreasing with n increasing in w, inc, pop
- Compare fixed effects and OLS estimates
 - •
 - More relevant concern is assumption of ϵ_{mt} independent over time this is empirically testable, but they do not do anything about it

dentificatio

Estimation

_

Dunne et al. (2013) Lin (2015)

and

References

Paul Schrimpf

Model

Dunne et al. (2013)

Generalizations

References

TABLE 4	Fixed Cost and	Entry Cost Para	meter Estimates (s	tandard errors i	n parentheses)	
	Maximum Lil	kelihood Estimato	r	GMM Estimator		
Panel A. De	ntist (all markets	;)				
Entry Pool	σ	α		σ	α	
Internal	0.373 (0.006)	2.003 (0.013)		0.362 (0.004)	2.073 (0.031)	
External	0.375 (0.006)	3.299 (0.039)		0.362 (0.004)	2.644 (0.067)	
Panel B. De	ntist (HPSA vers	us non-HPSA ma	arkets)			
Entry Pool	σ	α (HPSA)	α (non-HPSA)	σ	α (HPSA)	α (non-HPSA)
Internal	0.366 (0.009)	1.797 (0.069)	2.019 (0.041)	0.351 (0.005)	1.877 (0.076)	2.098 (0.032)
External	0.368 (0.008)	3.083 (0.169)	3.376 (0.079)	0.351 (0.005)	1.943 (0.213)	2.695 (0.092)
Panel C. Ch	iropractor					
Entry Pool	σ	α		σ	α	
Internal	0.275 (0.005)	1.367 (0.015)		0.254 (0.004)	1.337 (0.023)	
External	0.274 (0.005)	1.302 (0.022)		0.254 (0.004)	1.302 (0.028)	

Paul Schrimpf

Introduction

minoductio

Identificatio

Estimation

Examples

Dunne et al. (2013) Lin (2015)

and

CALCITSIONS

References

TABLE 7 Distribution of the Number of Dental Establishments

	non-HPS	A Markets	HPSA Markets		
Number of Establishments	Data	Model	Data	Model	
n = 1	.018	.043	.034	.059	
n = (2,3)	.166	.162	.314	.268	
n = (4,5)	.223	.209	.275	.251	
n = (6,7,8,9,10)	.376	.382	.305	.340	
n > 10	.217	.204	.072	.081	

Paul Schrimpf

IIILIOUUCLIOII

Identification

_

Dunne et al. (2013)

Generalization and

References

TABLE 6 Predicted Probabilities of Exit and Entry (evaluated at different values of the state variables)

	Prob	ability of Exit — D	Dentist	Probability of Entry — Dentist				
	Low(z, f)	Mid(z, f)	$\operatorname{High}(z, f)$	Low(z, f)	Mid(z, f)	High(z, f)		
n = 1	0.313	0.129	0.032	0.141	0.216	0.382		
n = 2	0.358	0.148	0.036	0.126	0.204	0.371		
n = 3	0.412	0.170	0.042	0.110	0.191	0.360		
n = 4	0.451	0.186	0.046	0.100	0.182	0.352		
n = 5	0.497	0.205	0.050	0.088	0.173	0.344		
n = 6	0.531	0.219	0.054	0.080	0.166	0.338		
n = 8	0.593	0.244	0.060	0.067	0.155	0.328		
n = 12	0.713	0.294	0.072	0.044	0.136	0.312		
n = 16	0.787	0.324	0.080	0.032	0.124	0.303		
n = 20	0.836	0.345	0.085	0.024	0.117	0.297		
	Prob	pability of Exit — 0	Chiro	Prob	ability of Entry —	Chiro		
n = 1	0.524	0.286	0.129	0.133	0.245	0.371		
n = 2	0.547	0.299	0.135	0.127	0.239	0.367		
n = 3	0.569	0.311	0.141	0.119	0.233	0.362		
n = 4	0.585	0.319	0.144	0.114	0.228	0.358		
n = 5	0.606	0.331	0.150	0.107	0.222	0.352		
n = 6	0.620	0.339	0.153	0.103	0.219	0.350		
n = 7	0.629	0.344	0.155	0.101	0.217	0.348		
n = 8	0.639	0.349	0.158	0.098	0.215	0.346		

Paul Schrimpf

Introduction

Mode

dentification

Estimation

Estimation

Dunne et al. (2013)

Lin (2015)

extensions

CACCITATOTTA

References

Value of Continuation- VC(n, z,f)

Paul Schrimpf

Introduction

Mode

Identification

Estimation

Dunne et al. (2013)

and

Reference

Subsidies to entry and fixed costs

- Health Professional Shortage Areas (HPSA) have entry subsidies
- Entry cost subsidy = change distribution of entry costs for all markets to the distribution estimated for HPSA markets
- Fixed cost subsidy = reduce mean of fixed cost by 8% (chosen to generate similar number of firms as HPSA subsidy)

Paul Schrimpf

Dunne et al. (2013)

References

TABLE 11 Cost-Benefit Comparison of Alternative Policies

Impact on Market Structure	Benchmark non-HPSA costs	Entry Cost Reduction	Fixed Cost Reduction	Expand Program
$\Pr(n=1)$	0.062	0.055	0.056	0.034
$Pr(n \le 3)$	0.338	0.313	0.319	0.246
$Pr(n \le 5)$	0.592	0.562	0.571	0.475
Average number of entrants/market	1.396	1.657	1.423	2.563
Average number of exits/market	1.029	1.131	0.950	1.477
Net change in establishments/market	0.367	0.526	0.473	1.086
Cost/additional entrant (millions 1983 \$)		0.103		0.075
Cost/additional establishment (millions 1983 \$)		0.170	0.503	0.140

Introduction

Model

dentificatio

20011114010

Dunne et al. (201) Lin (2015)

and extensions

Reference

Quality choice and market structure: a dynamic analysis of nursing home oligopolies

- Poor quality common in nursing homes
 - 30% of nursing homes violated federal regulations in 2006
- Policies designed to inform consumers about nursing home quality
 - Nursing Home Quality Initiative began in 2002 in US
 - NPR: Rule Change Could Push Hospitals To Tell Patients About Nursing Home Quality
 - Performance of 1,000 Canadian long-term care facilities now publicly available
 - Ontario nursing homes feed seniors on \$8.33 a day

Introduction

Mode

dentificatio

Estimation

Dunne et al. (201 Lin (2015)

and

References

- Dynamic model of quality choice
- Effect of eliminating low quality nursing homes
 - Raises quality, but reduces supply and alters competition
- Effect of competition

Introduction

Model

Identificatio

Estimation

Dunne et al. (2013 Lin (2015)

Generalization and

extensions

Reference

- 1996-2005 Online Survey Certification and Reporting System (OSCAR)
- Not his paper, but if you wanted similar, more recent data see Provider of Services (POS) files from CMS
 - Annual (possibly quarterly) 2006-2016
 - Very detailed staff and service information
- Market = county
- Limit sample to counties with 6 or fewer nursing homes
- Quality = nurses/beds above or below median

Paul Schrimpf

Introduction

Model

dentificatio

Estimation

200

Dunne et al. (2013 Lin (2015)

and

extensions

References

 $\label{table 1} Table~1$ facility attributes for low- and high-quality nursing homes

	Low	Quality	High Quality		
	Mean	Std. Dev.	Mean	Std. Dev	
Number of beds	96.76	41.86	90.86	50.40	
For-profit ownership	0.73	0.45	0.54	0.50	
Occupacy rate	0.83	0.16	0.84	0.18	
Proportion of non-Medicaid patients	0.28	0.16	0.37	0.20	
Total observations	24,413		24,733		

 $\label{eq:table 2} \text{Table 2}$ entry, exit, and quality adjustment

Count	Entry	Exit	Continue	Transition
Low quality	822	763	18,552	4,171
High quality	599	499	19,464	4,276
Total	1,421	1,262	38,016	8,447

1110461

Identificatio

Estimation

Dunne et al. (2013 Lin (2015)

and

References

• Common knowledge state

$$x_t = (\underbrace{M_t}_{marketsize \ marketincome \ markettype \ firmstates}^{\tau}, \underbrace{s_t}_{marketsize \ marketincome \ markettype \ firmstates}^{\tau})$$

 All variables are market (county) specific, but suppressed from notation

•
$$s_{it} = \begin{cases} 0 & \text{if out of market} \\ 1 & \text{if low quality} \\ 2 & \text{if high quality} \end{cases}$$

- Private info of firm i, ϵ_{it}
- Action $a_{it} = s_{it+1}$
- Assumptions (same as general setup):
 - **1** Additive separability: $\pi_{it}(x_t, a_t, \epsilon_t) = \pi_{it}(x_t, a_t) + \epsilon_{it}(a_{it})$

$$F(x_{t+1}, \epsilon_{t+1}|x_t, \epsilon_t, a_t) = F_t(x_{t+1}|x_t, a_t)F_{\epsilon}(\epsilon_{t+1})$$

Identificatio

Estimation

LJUITIGUIOI

Dunne et al. (201 Lin (2015)

and extensions

Reference

Market type

- Market type used to capture unobserved market heterogeneity
- Market type estimation:
 - Fixed effects regressions

$$\begin{aligned} N_{highquality,mt} &= \theta_{m,H} + \beta_{1,H} M_{mt} + \beta_{2,H} I_{mt} + u_{mt} \\ N_{lowquality,mt} &= \theta_{m,L} + \beta_{1,L} M_{mt} + \beta_{2,L} I_{mt} + u_{mt} \end{aligned}$$

- Market m, type H_L if $\hat{\theta}m$, H below its median
- Similarly define H_H , L_L , L_H , to get 4 types
- Ad-hoc? similar to Collard-Wexler (2013)
 - Method of Bonhomme and Manresa (2015) could be better way to capture similar idea

Oligopo Paul Schr

Lin (2015)

Table 3 Dynamic

		BLE 3 TINOMIAL LOGIT MODEL		
Variables	I Low	II High	III Low	IV High
State low	7.63***	6.54***	7.37***	6.50***
	(0.052)	(0.058)	(0.052)	(0.060)
State high	6.72***	8.34***	6.73***	8.18***
	(0.061)	(0.062)	(0.063)	(0.062)
Log elderly population	0.66***	0.66***	0.92***	0.40***
	(0.030)	(0.031)	(0.033)	(0.034)
Log per-capita income	-0.08	0.91***	0.05	0.53***
	(0.115)	(0.116)	(0.119)	(0.120)
First low competitor	-0.30***	-0.65***	-0.82***	-0.71***
-	(0.050)	(0.051)	(0.054)	(0.055)
Second low competitor	0.12**	-0.15**	-0.38***	-0.27***
•	(0.060)	(0.063)	(0.063)	(0.066)
No. of additional low comp	petitors 0.19***	0.01	0.01	-0.04
	(0.054)	(0.058)	(0.052)	(0.057)
First high competitor	-0.72***	-0.36***	-0.86***	-0.93***
	(0.051)	(0.053)	(0.058)	(0.060)
Second high competitor	-0.17***	0.08	-0.33***	-0.03
	(0.065)	(0.065)	(0.066)	(0.065)
No. of additional high com	petitors -0.19***	-0.05	-0.21***	0.03
	(0.055)	(0.053)	(0.055)	(0.052)
Market type II (L, H)			0.36***	1.46***
			(0.090)	(0.090)
Market type III (H, L)			1.58***	0.15*
** * * * *			(0.080)	(0.084)
Market type IV (H, H)			1.96***	1.79***
71			(0.092)	(0.095)
Constant	-8.44***	-18.56***	-12.29***	-13.34***
	(1.129)	(1.151)	(1.193)	(1.207)
	()	()	()	()

Reference

low- and high-quality firms. Standard errors are in parentheses. ***p < 0.01, **p < 0.05.

Notes: This table reports results from a multinomial logit model of choosing quality levels with (columns III and IV) and without (columns I and II) the inclusion of market-specific dummies. Each group type is characterized by the profitability for being low- and high-quality firms. The omitted market type (type I) refers to low profitability for both

Lin (2015)

Payoff function

$$\begin{split} \pi_{it}(x_t, a_t | \theta) &= I(a_{it} = 1) \cdot \left[\theta_L^1 + \theta_L^2 M_t + \theta_L^3 I_t + g_L(a_{1t}, a_{2t}, ..., a_{Nt}) \cdot \theta_L \right] \\ &+ I(a_{it} = 2) \cdot \left[\theta_H^1 + \theta_H^2 M_t + \theta_H^3 I_t + g_H(a_{1t}, a_{2t}, ..., a_{Nt}) \cdot \theta_H \right] \\ &+ I(s_{it} = 0, a_{it} = 1) \theta_{0L} + I(s_{it} = 0, a_{it} = 2) \theta_{0H} \\ &+ I(s_{it} = 1, a_{it} = 2) \theta_{LH} + I(s_{it} = 2, a_{it} = 1) \theta_{HL}. \end{split}$$

with

with
$$g_L \cdot \theta_L = \theta_L^{L1} \times \text{(presence of the 1st low competitor)}$$
 $+ \theta_L^{L2} \times \text{(presence of the 2nd low competitor)}$ $+ \theta_L^{LA} \times \text{(no. of additional low competitors)}$ $+ \theta_L^{HA} \times \text{(no. of additional high competitor | with low competitors)}$ $+ \theta_L^{HA} \times \text{(no. of additional high competitors | with low competitors)}$ $+ \theta_L^{HA} \times \text{(presence of the first high competitor | without low competitors)}$ $+ \theta_L^{HAA} \times \text{(no. of additional high competitors | without low competitors)}$.

and similar for g_H

Paul Schrimpf

Introduction

Mode

dentification

Estimation

Examples
Dunne et al. (2013

Lin (2015)
Generalization

extensions

Reference

Estimation

- Estimate $\tilde{P}(a|x)$ by multinomial logit
- Form value function

$$\hat{V}(x, a; \theta, \tilde{P}) = \pi(x, a; \theta) + (I - \beta F^{\tilde{P}})^{-1} \left(\sum_{a} \tilde{P}(a|x) \pi(x, a; \theta) \right) + (I - \beta F^{\tilde{P}})^{-1} \left(\sum_{a} \tilde{P}(a|x) \mathbb{E}[\epsilon | a, x] \right)$$

 π linear in θ , so

$$\hat{V}(x, a; \theta, \tilde{P}) = Z(a)\theta + \hat{\epsilon}(a|\tilde{P})$$

• Model predicted probabilities:

$$\hat{P}(a|x;\theta,\tilde{P}) = \frac{e^{Z(a)\theta+\hat{\epsilon}(a|\tilde{P})}}{\sum_{a'}e^{Z(a')\theta+\hat{\epsilon}(a'|\tilde{P})}}$$

• Moments:

$$\mathbb{E}\left[\left(\hat{P}(a|X;\,\theta,\tilde{P})-P^{0}(a|X)\right)X\right]=0$$

• Estimate θ by GMM

Paul Schrimpf

Variables

Log elderly population

Lin (2015)

References

Table 4 ESTIMATES OF THE MAIN MODEL Entry, Exit, and Quality Adjustment

0.18***

(0.006)

Low quality

Log ciderry population	Low quanty	0.10	(0.000)
	High quality	0.11***	(0.007)
Log per-capita income	Low quality	0.05***	(0.020)
	High quality	0.11***	(0.028)
	First low competitor	-0.35***	(0.029)
	Second low competitor	-0.22***	(0.019)
Competition effect on low	No. of additional low competitors	-0.07***	(0.007)
-	First high low competitor	-0.15**	(0.065)
	No. of additional high low competitor	-0.03	(0.038)
	First high no low competitor	-0.28***	(0.037)
	No. of additional high no low competitor	-0.03	(0.039)
	First high competitor	-0.66***	(0.034)
	Second high competitor	-0.17***	(0.041)
Competition effect on high	No. of additional high competitors	-0.03	(0.041)
	First low high competitor	-0.04	(0.053)
	No. of additional low high competitor	-0.02	(0.017)
	First low no high competitor	-0.53***	(0.037)
	No. of additional low no high competitor	-0.28***	(0.012)
Markets type I	Low	-1.98***	(0.198)
	High	-2.03***	(0.284)
Markets type II	Low	-2.04***	(0.199)
	High	-1.62***	(0.286)
Markets type III	Low	-1.56***	(0.197)
	High	-2.08***	(0.282)
Markets type IV	Low	-1.56***	(0.194)
	High	-1.46***	(0.281)
Quality adjustment	Low to high	-1.42***	(0.083)
	High to low	-0.76***	(0.083)
Sunken entry cost	Low	-7.06***	(0.109)
	High	-8.17***	(0.160)
Number of observations		132,138	

Paul Schrimpf

Introduction

muoductio

Identificatio

...

Estimation

Examples
Dunne et al. (2013)

Lin (2015)

and

References

Kelelelice

Table 5 monopoly profits for low- and high-quality nursing homes

	Type I (L_L, H_L)	Type II (L_L, H_H)	Type III (L_H, H_L)	Type IV (L _H , H _H)
Low	0.14	0.08	0.56	0.56
	(0.048)	(0.053)	(0.052)	(0.058)
High	0.26	0.67	0.21	0.82
	(0.064)	(0.065)	(0.072)	(0.073)

Paul Schrimpf

Introduction

Model

Identification

Examples

Dunne et al. (2013) Lin (2015)

C-------

and

extensions

References

Table 6 model fit

	Data	Simulated Data
% of Low Quality	49.39%	50.50%
% of entry and exit	5.60%	6.44%
% of Low to High	8.71%	8.95%
% of High to Low	8.93%	8.92%
% of Low Quality		
Markets Type I	49.39%	50.76%
Markets Type II	15.44%	15.91%
Markets Type III	88.41%	88.33%
Markets Type IV	53.47%	56.15%
% of Markets with Number of Homes		
Zero	7.80%	9.59%
One	32.38%	33.56%
Two	24.13%	24.81%
Three	16.45%	15.27%
More	19.24%	16.76%

Paul Schrimpf

Introduction

Mode

dentificatio

Estimation

Dunne et al. (2013 Lin (2015)

Generalizati and

extensions

Reference

Counterfactuals

- Simulate beginning in 2000 for markets with 4 or fewer firms (2195 markets)
- I Baseline
- II Elderly populations grows 3% faster years 6-15
- III Low quality forbidden
- IV Lower entry cost

Paul Schrimpf

Introduction

Model

Identification

Latination

Examples

Dunne et al. (201) Lin (2015)

and

References

TABLE 8 SUMMARY OF COUNTERFACTUALS

			SUMMA	X I OF COUNTER	PACICALS					
		0			I				II	
	Year 0	Year 5	Year 1	Year 5	Year 15	Year 25	Year 1	Year 5	Year 15	Year 25
Total	4,227	4,185	4,275	4,342	4,342	4,352	4,449	4,945	5,454	5,480
Low quality	1,991	2,209	2,112	2,191	2,214	2,242	2,306	2,834	3,242	3,285
High quality % of low quality	2,236	1,976	2,163	2,151	2,128	2,110	2,143	2,111	2,212	2,195
Overall	47.10%	52.78%	49.40%	50.46%	50,99%	51.52%	51.83%	57.31%	59.44%	59.95%
Markets type I	45.82%	49.05%	47.53%	51.13%	53,38%	48.33%	47.58%	48.13%	42.75%	46.20%
Markets type II	11.68%	18.97%	16.02%	15.51%	15.69%	17.16%	17.14%	22.46%	24.43%	24.18%
Markets type III	86.81%	89,65%	88.09%	88.83%	86.82%	88.58%	87.94%	88.75%	88.55%	90.12%
Markets type IV	48.98%	52.78%	49.68%	53.39%	52.44%	54.05%	55.97%	63.58%	67.80%	66.02%
% of markets with number of homes	40.7074	22.7070	43.00 /4	20.07 70	52.4410	54.0570	2017170	0012070	07.0070	00.0270
Zero	7.84%	8.25%	8.25%	8,38%	9.61%	9.02%	5.42%	1.46%	0.27%	0.27%
One	34.67%	35,31%	34.21%	34,17%	33.12%	33.94%	34,35%	32,39%	26,47%	26.83%
Two	26.74%	26.92%	25.97%	26,29%	27,47%	26.65%	27.24%	28.97%	31,34%	30.98%
Three	18.59%	18.00%	18.82%	17.13%	15.13%	15.54%	19,73%	21.64%	22.64%	22.55%
More	12.16%	11.53%	12.76%	14.03%	14.67%	14.85%	13.26%	15.54%	19.27%	19.36%
					ш				IV	
			Year 1	Year 5	Year 15	Year 25	Year 1	Year 5	Year 15	Year 25
Total			3,479	3,228	3,121	3,124	5,028	5.763	5.911	5,865
Low quality							2,846	3,632	3.756	3,753
High quality							2,182	2,131	2,155	2,112
% of low quality										
Overall							56.60%	63.02%	63.54%	63.99%
Markets type I							60.16%	71.39%	73.25%	69.65%
Markets type II							24.08%	30.20%	27.92%	30.29%
Markets type III							86.65%	88.07%	88.78%	88.81%
Markets type IV							54.78%	60.64%	61.16%	62.22%
% of markets with number of homes										
Zero			15.63%	20.23%	25.56%	27.70%	7.15%	4.87%	3.83%	4.56%
One			41.37%	41.46%	38.50%	37.72%	23.55%	16.67%	16.86%	17.72%
Two			20.36%	18.54%	17.86%	16.95%	27.65%	29.02%	27.70%	25.88%
Three			14.40%	12.48%	9.70%	7.38%	22.32%	23.78%	24.37%	25.10%
More			8.25%	7.29%	8.38%	10.25%	19.32%	25.65%	27.24%	26.74%

Notes: This table summarizes industry structure for various scenarios: 0 for raw data; I for simulation based on equilibrium policy function; II for a 10-year positive growth of the elderly population starting in year 6; III for low-quality firms being prohibited; and IV for a 20% reduction in entry costs.

Paul Schrimpf

Introductio

Model

dentification

Estimation

Dunne et al. (20

Generalizations and extensions

CALCITSIONS

References

Section 6

Generalizations and extensions

Paul Schrimpf

Introduction

Model

dentification

Estimation

Examples
Dunne et al. (2013

Generalizations

and extensions

Reference

Generalizations and extensions

- Unobserved state variables
- Multiple equilibria
- Continuous time

Identificatio

Estimatio

Dunne et al. (201)

and

References

Ackerberg, Daniel A., Kevin Caves, and Garth Frazer. 2015. "Identification Properties of Recent Production Function Estimators." *Econometrica* 83 (6):2411–2451. URL http://dx.doi.org/10.3982/ECTA13408.

Aguirregabiria, Victor. 2019. "Empirical Industrial Organization: Models, Methods, and Applications." URL http:

//aguirregabiria.net/wpapers/book_dynamic_io.pdf.

Aguirregabiria, Victor and Pedro Mira. 2007. "Sequential Estimation of Dynamic Discrete Games." *Econometrica* 75 (1):pp. 1–53. URL http://www.jstor.org/stable/4123107.

---. 2010. "Dynamic discrete choice structural models: A survey." Journal of Econometrics 156 (1):38 - 67. URL http://www.sciencedirect.com/science/article/ pii/S0304407609001985.

Paul Schrimpf

Introduction

Model

Identificatio

Estimatio

Examples
Dunne et al. (201
Lin (2015)

and extensions

References

- Bajari, Patrick, C. Lanier Benkard, and Jonathan Levin. 2007. "Estimating Dynamic Models of Imperfect Competition." *Econometrica* 75 (5):pp. 1331–1370. URL http://www.jstor.org/stable/4502033.
- Bajari, Patrick, Victor Chernozhukov, Han Hong, and Denis Nekipelov. 2009. "Nonparametric and Semiparametric Analysis of a Dynamic Discrete Game." Tech. rep. URL http://www.econ.yale.edu/seminars/apmicro/am09/bajari-090423.pdf.
- Bonhomme, Stéphane and Elena Manresa. 2015. "Grouped Patterns of Heterogeneity in Panel Data." *Econometrica* 83 (3):1147–1184. URL https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA11319.
- Bresnahan, Timothy F. and Peter C. Reiss. 1991. "Entry and Competition in Concentrated Markets." *Journal of Political Economy* 99 (5):pp. 977–1009. URL http://www.jstor.org/stable/2937655.

Paul Schrimpf

References

Collard-Wexler, Allan. 2013. "Demand Fluctuations in the Ready-Mix Concrete Industry." Econometrica 81 (3):1003-1037. URL

http://dx.doi.org/10.3982/ECTA6877.

Doraszelski, Ulrich and Ariel Pakes. 2007. "Chapter 30 A Framework for Applied Dynamic Analysis in IO." In Handbook of Industrial Organization, Handbook of Industrial Organization, vol. 3, edited by M. Armstrong and R. Porter. Elsevier, 1887 - 1966. URL http://www.sciencedirect. com/science/article/pii/S1573448X06030305.

Doraszelski, Ulrich and Mark Satterthwaite, 2010. "Computable Markov-perfect industry dynamics." The RAND Journal of Economics 41 (2):215-243. URL http://onlinelibrary.wiley.com/doi/10.1111/j. 1756-2171.2010.00097.x/full.

Paul Schrimpf

Introduction

.....

identificatio

Estimatio

Examples
Dunne et al. (201
Lin (2015)

and extensions

References

Dunne, Timothy, Shawn D. Klimek, Mark J. Roberts, and Daniel Yi Xu. 2013. "Entry, exit, and the determinants of market structure." *The RAND Journal of Economics* 44 (3):462–487. URL

http://dx.doi.org/10.1111/1756-2171.12027.

Ericson, Richard and Ariel Pakes. 1995. "Markov-perfect industry dynamics: A framework for empirical work." *The Review of Economic Studies* 62 (1):53–82. URL http://restud.oxfordjournals.org/content/62/1/53.short.

Gowrisankaran, Gautam. 1999. "A dynamic model of endogenous horizontal mergers." *The RAND Journal of Economics*:56–83URL

http://www.jstor.org/stable/10.2307/2556046.

Holmes, T.J. 2011. "The Diffusion of Wal-Mart and Economies of Density." *Econometrica* 79 (1):253-302. URL http://onlinelibrary.wiley.com/doi/10.3982/ECTA7699/abstract.

Paul Schrimpf

Introduction

Model

Identificatio

Estimatio

Dunne et al. (201 Lin (2015)

Generalizatio and extensions

References

Hotz, V. Joseph and Robert A. Miller. 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models." *The Review of Economic Studies* 60 (3):pp. 497-529. URL http://www.jstor.org/stable/2298122.

Lin, Haizhen. 2015. "Quality choice and market structure: a dynamic analysis of nursing home oligopolies."

International Economic Review 56 (4):1261–1290. URL http://dx.doi.org/10.1111/iere.12137.

Magnac, Thierry and David Thesmar. 2002. "Identifying Dynamic Discrete Decision Processes." *Econometrica* 70 (2):801–816. URL http:

//www.jstor.org.libproxy.mit.edu/stable/2692293.

Pakes, Ariel, Michael Ostrovsky, and Steven Berry. 2007. "Simple Estimators for the Parameters of Discrete Dynamic Games (With Entry/Exit Examples)." *The RAND Journal of Economics* 38 (2):pp. 373–399. URL http://www.jstor.org/stable/25046311. Identification

Estimation

Examples

Dunne et al. (2013 Lin (2015)

and extensions

References

Pesendorfer, Martin and Philipp Schmidt-Dengler. 2008. "Asymptotic Least Squares Estimators for Dynamic Games1." Review of Economic Studies 75 (3):901–928. URL http:

//dx.doi.org/10.1111/j.1467-937X.2008.00496.x.

Su, C.L. and K.L. Judd. 2012. "Constrained optimization approaches to estimation of structural models." *Econometrica* 80 (5):2213–2230. URL http://onlinelibrary.wiley.com/doi/10.3982/ECTA7925/abstract.