Sorting Exercise

Jonas Schenke 28.01.2019

Concept

1.Stream data in:

Read Data	Read Data	Read Data	Read Data	
	Quicksort	Quicksort	Quicksort	Quicksort

2. Synchronize threads

3.Stream data out:

Merge Lists	Merge Lists	Merge Lists	Merge Lists	
	Wirte Block	Wirte Block	Wirte Block	Wirte Block

4.Flush file

Current Implementation

- Implementation in C++
- Everything loaded to RAM (has to fit!)
- Each Quicksort executed in seperate thread
- Select smallest element from lists
 - → create output blocks for streaming
- Single threaded merging

Configuration

- Block size ~ 610MiBi
- Input file size ~1.9GiBi (20 mio. Entries)
- Test System:
 - Ryzen 1700 (16*3.2GHz)
 - 16 GiBi RAM
 - 240GB Corsair MP500 NVMe SSD (read:~3GB/s)
 - ==> ~10s runtime / 2 mio. entries/s

Further Notes

- Time for input * 2 = (ca.) time for output
- ~140% CPU usage
 - Input multithreaded
 - Output single threaded → improvable
- Potential speedup with parallel input sorting algorithm
- Merging algorithm improvable
- Code adaptable using template metaprogramming