Lecture 28: Greedy Algorithms I

2023/10/19

詹博华 (中国科学院软件研究所)

Greedy Algorithms

- An alternative to dynamic programming for solving optimization problems.
- Make the choice that is locally optimal at each step, yielding a globally optimal solution.

Example: Activity-selection problem

- Suppose we have a set of activities $S = \{a_1, a_2, ..., a_n\}$. Each activity has a start time s_i and finish time f_i , where $0 \le s_i < f_i$.
- Activity a_i takes place in the half-open interval $[s_i, f_i)$.
- Two activities a_i and a_j are compatible if $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap. That is, if $s_i \ge f_i$ or $s_j \ge f_i$.
- Activity-selection problem: select a maximum-size subset of mutually compatible activities.
- To start: sort the activities by their finish time.

Activity-selection problem: example

Consider the following example:

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2 14	12
f_i	4	5	6	7	9	9	10	11	12	14	16

Activity-selection problem: example

• Possible choice of subset: $\{a_3, a_9, a_{11}\}$ (not maximum).

Activity-selection problem: example

• An maximum solution: $\{a_1, a_4, a_8, a_{11}\}$. Note there are several alternative maximum solutions.

 At each step, choose the activity with the earliest finishing time that can be added to the subset.

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1  n = s.length

2  A = \{a_1\}

3  k = 1

4  \mathbf{for} \ m = 2 \mathbf{to} \ n

5  \mathbf{if} \ s[m] \ge f[k]

6  A = A \cup \{a_m\}

7  k = m

8  \mathbf{return} \ A
```

• Step 1: add a_1 , which finishes at time 4.

• Step 2: neither a_2 and a_3 can be added. The next task that can be added is a_4 , which finishes at time 7.

• Step 3: neither a_5 , a_6 , a_7 cannot be added. The next task that can be added is a_8 , which finishes at time 11.

• Step 4: neither a_9 and a_{10} can be added, so the final task to be added is a_{11} .

Proof of correctness

- Why is the above algorithm correct?
- Consider the subproblem: what is the earliest time to finish n tasks, for each $n \ge 1$? Denote this by t_n .
- Solution for n=1: pick the task that finishes earliest (that is, a_1).

Proof of correctness

- Solution for n = k + 1: start from the solution for n = k, then pick the next task (according to finish time) that can be added. Suppose this is $a_m = [s_m, f_m)$.
- If any other solution can do better, then its last task $a_{m'} = [s_{m'}, f_{m'})$ must satisfy $s_{m'} \ge t_k$ and $f_{m'} < f_m$. But then $a_{m'}$ would be chosen rather than a_m in the algorithm, contradiction.

Greedy vs. Dynamic Programming

- When to use greedy algorithm vs. dynamic programming?
- Use greedy algorithm when it works: when it can be shown that making locally optimal choices gives the optimal global choice.
- Otherwise, consider dynamic programming.
- Whether greedy algorithm works can be very subtle.

Example: knapsack problem

- Given a list of n items, the i^{th} item is worth v_i dollars and weights w_i pounds. You can carry a bag (a knapsack) with at most W pounds. What is the most value you can carry?
- 0-1 knapsack problem: either take the item or leave it behind.
- Fractional knapsack problem: can take a fraction of an item.

Knapsack problem: examples

- (a): available items.
- (b): optimal solution and two suboptimal solutions for 0-1 knapsack problem.
- (c): optimal solution for the fractional knapsack problem.

Fractional knapsack problem: greedy solution

- Sort the items by their value per pound.
- Start filling the bag with most valuable item per pound, then the next, etc.
- Example: with the items given previously: (\$60, 10lbs), (\$100, 20lbs), (\$120, 30lbs), knapsack: 50lbs
- Their values per pound are:

\$6/lbs, \$5/lbs, \$4/lbs

• So fill in item 1 first, then item 2, and use the remaining weight for part of item 3, yielding the solution shown in (c).

0-1 knapsack problem: greedy does not work

- For the 0-1 knapsack problem, we cannot follow the same approach.
- Example: with the items given previously: (\$60, 10lbs), (\$100, 20lbs), (\$120, 30lbs), knapsack: 50lbs
- The optimal solution is to put the second and third item, even though the first item has the best value per pound.
- Dynamic programming should be used for the 0-1 knapsack problem (obtain algorithm with complexity O(nW)).