CSE-233 : Section A Summer 2020

Introduction to Finite Automata

Reference: Book2 Chapter 1.1

Previous Class (1)

- 1. States = ?
- 2. Accepted Inputs (Alphabets)?
- 3. Initial/Starting State = ?
- 4. Transition Function = ?
- 5. Final State = ?
- 6. Language = ?

Previous Class (2)

- 1. States = ?
- 2. Accepted Inputs (Alphabets)?
- 3. Initial/Starting State = ?
- 4. Transition Function = ?
- 5. Final State = ?
- 6. Language = ?

Note

How a DFA Processes Strings

Let us build an automaton that accepts the words that contain 01 as a subword

$$\Sigma = \{0, 1\}$$

$$L = \{x01y \mid x, y \in \Sigma^*\}$$

We use the following states

A: start

B: the most recent input was 1 (but not 01 yet)

C: the most recent input was 0 (so if we get a 1 next we should go to the accepting state D)

D: we have encountered 01 (accepting state)

Minimization

The same language may be represented by different DFA

and

Making a useful machine

EXAMPLE 1.13 -----

Figure 1.14 shows machine M_5 , which has a four-symbol input alphabet, $\Sigma = \{\langle RESET \rangle, 0, 1, 2\}$. We treat $\langle RESET \rangle$ as a single symbol.

FIGURE 1.14

Finite automaton M_5

Can you tell what this machine does?

Some more examples

Sample Question

1.1 The following are the state diagrams of two DFAs, M₁ and M₂. Answer the following questions about each of these machines.

- a. What is the start state?
- b. What is the set of accept states?
- c. What sequence of states does the machine go through on input aabb?
- d. Does the machine accept the string aabb?
- e. Does the machine accept the string ε?
- 1.2 Give the formal description of the machines M₁ and M₂ pictured in Exercise 1.1.

Sample Question

1.3 The formal description of a DFA M is $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$, where δ is given by the following table. Give the state diagram of this machine.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Designing an DFA

Typical Problem

Problem

Given a language L, design a DFA M that accepts L, i.e., $\mathbf{L}(M) = L$.

Methodology

- Imagine yourself in the place of the machine, reading symbols of the input, and trying to determine if it should be accepted.
- Remember at any point you have only seen a part of the input, and you don't know when it ends.
- Figure out what to keep in memory. It cannot be all the symbols seen so far: it must fit into a finite number of bits.

Designing an DFA

Strings containing 0

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that contain at least one 0.

Designing an DFA

Strings containing 0

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that contain at least one 0.

Solution

What do you need to remember? Whether you have seen a 0 so far or not!

Figure 10: Automaton accepting strings with at least one 0.

Designing an DFA (2)

Even length strings

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have an even length.

Designing an DFA (2)

Even length strings

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have an even length.

Solution

What do you need to remember? Whether you have seen an odd or an even number of symbols.

Figure 11: Automaton accepting strings of even length.

Designing an DFA (3)

Pattern Recognition

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have 001 as a substring, where u is a substring of w if there are w_1 and w_2 such that $w = w_1 u w_2$.

Designing an DFA (3)

Pattern Recognition

Problem

Design an automaton that accepts all strings over $\{0,1\}$ that have 001 as a substring, where u is a substring of w if there are w_1 and w_2 such that $w = w_1 u w_2$.

Solution

What do you need to remember? Whether you

- haven't seen any symbols of the pattern
- have just seen 0
- have just seen 00
- have seen the entire pattern 001

Automaton accepting strings having 001 as substring.

More Design Examples (Set – A)

Draw a DFA for the language accepting strings-

- 1. Starting with 'a' over input alphabet = {a, b}
- 2. Starting with 'ab' over input alphabet = {a, b}
- 3. Starting with '101' over input alphabet = {0, 1}
- 4. Starting with '00' over input alphabet = {0, 1}
- 5. Starting with 'aba' over input alphabet = {a, b}

Solution (Set A)

Solution (Set A)

Solution (Set A)

More Design Examples (Set – B)

Draw a DFA for the language accepting strings-

- 1. Ending with '01' over input alphabet = {0, 1}
- 2. Ending with 'abb' over input alphabet = {a, b}
- 3. Ending with 'abba' over input alphabet = {a, b}
- 4. Starting with '0011' over input alphabet = {0, 1}

Solution (Set B)

Solution (Set B)

More Design Examples (Set – C)

Draw a DFA for the language accepting strings-

- 1. With substring 'aab' over input alphabet = {a, b, c}
- 2. With substring 'aababb' over input alphabet = {a, b, c}

More Design Examples (Set – D)

Draw a DFA for the language accepting strings-

1. Containing any number of 0's, 1's or empty string over alphabet {0, 1}