Event Structures and Games

Glynn Winskel

Strathclyde101, 26 November 2020

Event structures, a model based on causal dependency of events - concurrent analogue of trees. Locality → causal dependency.

→ Broad applications, in security protocols, systems biology, weak memory, partial-order model checking, distributed computation, logic, semantics, ...

Distributed games, with behaviour based on event structures, rather than trees. Aim: to generalise domain theory, tackle its anomalies and limitations w.r.t. concurrency and quantitative aspects; repair the divides between denotational vs. operational, semantic vs. algorithmic. Ways to compose winning and optimal strategies \rightsquigarrow structural game theory.

A (basic) Petri net

An occurrence net

An event structure

Event structures - the formal definition of the simplest kind

Definition

An event structure comprises $(E, \leq, \#)$, consisting of a set of events E

- partially ordered by ≤, the causal dependency relation, and
- a binary irreflexive symmetric relation, the conflict relation, which satisfy $\{e' \mid e' \leq e\}$ is finite and $e \# e' \leq e'' \implies e \# e''$.

Two events are concurrent when neither in conflict nor causally related.

Definition

The finite configurations, C(E), of an event structure E consist of those finite subsets $x \subseteq E$ which are

Consistent: $\forall e, e' \in x$. $\neg(e \# e')$ and

Down-closed: $\forall e, e'. e' \leq e \in x \implies e' \in x.$

Maps of event structures

Definition

A map of event structures $f: E \rightarrow E'$ is a partial function on events $f: E \rightarrow E'$ such that

for all $x \in \mathcal{C}(E)$, $fx \in \mathcal{C}(E')$ and if $e_1, e_2 \in x$ and $f(e_1) = f(e_2)$, then $e_1 = e_2$. (local injectivity)

Maps of event structures

Definition

A map of event structures $f: E \rightarrow E'$ is a partial function on events $f: E \rightarrow E'$ such that

for all $x \in C(E)$, $fx \in C(E')$ and if $e_1, e_2 \in x$ and $f(e_1) = f(e_2)$, then $e_1 = e_2$. (local injectivity)

Maps preserve concurrency, and locally reflect causal dependency:

$$\forall x \in \mathcal{C}(E), e_1, e_2 \in x. \ f(e_1) \leqslant f(e_2) \implies e_1 \leqslant e_2.$$

Maps of event structures

Definition

A map of event structures $f: E \rightarrow E'$ is a partial function on events $f: E \rightarrow E'$ such that

```
for all x \in \mathcal{C}(E), fx \in \mathcal{C}(E') and if e_1, e_2 \in x and f(e_1) = f(e_2), then e_1 = e_2. (local injectivity)
```

 \rightsquigarrow

Semantics of synchronising processes [Hoare, Milner] can be expressed in terms of universal constructions on event structures; in games, pullbacks and partial-total factorisation play a central role.

Relations between models via adjunctions.

E.g. the event-structure unfolding of a basic Petri net is a right adjoint. Coreflection of event structures in stable families v useful for constructions.

Strong bisimulation via open maps, defined diagrammatically.

 \rightsquigarrow Preheaf models for concurrency ...

Symmetry as "self bisimulation" helps compensate for the overly-concrete nature of models for concurrency. *E.g.*, unfolding of Petri nets with multiplicities defined universally only up to symmetry.

Remark: Petri nets as containers (Thanks Fredrik!)

A basic Petri net with events E and conditions B can be seen as a pair of containers, one associating Shapes positions events with their preconditions: $(E \rhd Pre)$ where $Pre : E \to \mathcal{P}(B)$

events with their postconditions: $(E \triangleright Post)$ where $Post : E \rightarrow \mathcal{P}(B)$

(Its initial marking identified with the postconds of a distinguished initial event)

A (total) map $(\eta, \beta): N \to N'$ of basic Petri nets can be reformulated as a pair of container maps :

$$(\eta, \beta_1) : (E \rhd Pre) \rightarrow (E' \rhd Pre')$$

$$(\eta, \beta_2) : (E \rhd Post) \rightarrow (E' \rhd Post')$$

(with $\eta: E \to E'$ preserving initial events, ...)

Quantum Petri nets are being used to formalise quantum strategies.

Pullbacks - for composing processes with a common interface

Total maps $f: A \to C$ and $g: B \to C$ have pullbacks in the category of event structures:

Pullbacks - for composing processes with a common interface

Total maps $f: A \to C$ and $g: B \to C$ have pullbacks in the category of event structures:

Finite configurations of $A \wedge B$ correspond to the composite bijections

$$x \wedge y : x \cong fx = gy \cong y$$

between configurations $x \in \mathcal{C}(A)$ and $y \in \mathcal{C}(B)$ s.t. fx = gy which are secured bijections, *i.e.* for which the transitive relation generated on $x \land y$ by

$$(a,b) \leqslant (a',b')$$
 if $a \leqslant_A a'$ or $b \leqslant_B b'$

is a partial order.

Defined part of a map - for hiding

A partial map

$$f: E \to E'$$

of event structures has partial-total factorization as a composition

$$E \xrightarrow{p} D \xrightarrow{t} E'$$

where $t: D \to E'$ is the defined part of f.

Games, a paradigm for interaction [Conway, Joyal]

The dichotomy Player vs. Opponent has many readings: Team of Players vs. Team of Opponents; Allies vs. Enemies; Prover vs. Disprover; Process vs. Environment

Operations on (2-party) games:

Dual game G^{\perp} - interchange the role of Player and Opponent; Counter-strategy = strategy for Opponent = strategy for Player in dual game.

Parallel composition of games $G \| H$.

A strategy (for Player) from a game G to a game H is a strategy in $G^{\perp}\|H$. A strategy (for Player) from a game H to a game K is a strategy in $H^{\perp}\|K$.

Compose by letting them play against each other in the common game H.

The Copycat strategy in $G^{\perp}||G$, so from G to G ...

Games and strategies are represented by event structures with polarity, an event structure where events carry a polarity \boxplus / \boxminus (Player/Opponent).

Maps are those of event structures which preserve polarity.

Dual, B^{\perp} , of an event structure with polarity B is a copy of the event structure B with a reversal of polarities; this switches the roles of Player and Opponent.

(Simple) Parallel composition: $A \parallel B$, by consistent juxtaposition.

A strategy from a game A to a game B is a strategy in $A^{\perp}||B|$, written

$$\sigma: A \longrightarrow B$$

A strategy in a game A is a special total map $\sigma: S \to A$, e.g.

The strategy: answer either move of Opponent by the Player move.

When games are trees

The strategy: force Opponent to get stuck.

Copycat strategy from A to A

Copycat strategy from A to A

Composition of strategies $\sigma: A \longrightarrow B$ and $\tau: B \longrightarrow C$

To compose

synchronise complementary moves over common game B via pullback:

Composition of strategies $\sigma: A \longrightarrow B$ and $\tau: B \longrightarrow C$

To compose

synchronise complementary moves over common game B via pullback; then hide synchronisations via partial-total factorisation:

Conditions on a strategy are those needed to make copycat identity w.r.t. composition.

For copycat to be identity w.r.t. composition

a strategy in a game A has to be $\sigma: S \to A$, a total map of event structures with polarity, which is

(i) whenever $\sigma x \subseteq \overline{\ } y$ in C(A) there is a unique $x' \in C(S)$ s.t.

$$x \subseteq x' \& \sigma x' = y$$
, i.e.

$$\begin{array}{cccc}
x & & & & x' \\
\hline
\sigma & & & & \sigma \\
\hline
\sigma x & \subseteq^{-} & y,
\end{array}$$

A strategy should be receptive to Opponent moves allowed by the game.

(ii) whenever $y \subseteq^+ \sigma x$ in C(A) there is a (necessarily unique) $x' \in C(S)$ s.t.

$$x' \subseteq x \& \sigma x' = y$$
, i.e.

A strategy should only adjoin immediate causal dependencies $\square \rightarrow \square$.

For copycat to be identity w.r.t. composition

a strategy in a game A has to be $\sigma: S \to A$, a total map of event structures with polarity, which is

(i) whenever $\sigma x \subseteq \overline{\ } y$ in C(A) there is a unique $x' \in C(S)$ s.t.

$$x \subseteq x' \& \sigma x' = y$$
, i.e.

$$\begin{array}{cccc}
x & & & & x' \\
\hline
\sigma & & & & \sigma \\
\hline
\sigma x & & & & & \gamma
\end{array}$$

A strategy should be receptive to Opponent moves allowed by the game.

(ii) whenever $y \subseteq^+ \sigma x$ in C(A) there is a (necessarily unique) $x' \in C(S)$ s.t.

$$x' \subseteq x \& \sigma x' = y$$
, i.e.

$$\begin{array}{cccc}
x' & \cdots & & & \\
\hline
\sigma & & & & \\
\hline
\gamma & & & & \\
y & & & & \\
\end{array}$$

$$\begin{array}{cccc}
x & & & \\
\hline
\sigma & & & \\
y & & & \\
\end{array}$$

A strategy should only adjoin immediate causal dependencies $\square \rightarrow \square$.

→ compact-closed bicategory of concurrent games and strategies.

Strategies as profunctors

Defining the Scott order on configurations of A

$$y \sqsubseteq_A x \text{ iff } y \supseteq^- \cdot \subseteq^+ \cdot \supseteq^- \cdots \supseteq^- \cdot \subseteq^+ x$$

we obtain a partial order and a factorization system:

Proposition $z \in C(\mathbb{C}_A)$ iff $z_2 \sqsubseteq_A z_1$.

Theorem Strategies σ correspond to discrete fibrations, i.e.,

$$\exists !x'. \quad x' \quad \neg \sqsubseteq_{S} \neg \neg x \\ \sigma'' \quad & \downarrow \sigma'' \\ y \quad \sqsubseteq_{A} \quad \sigma x ,$$

which preserve \supseteq^- , \subseteq^+ and \varnothing . So strategies $\sigma: A \longrightarrow B$ correspond to (certain) profunctors σ ": $(\mathcal{C}(A), \sqsubseteq_A) \longrightarrow (\mathcal{C}(B), \sqsubseteq_B)$.

→ Lax functors from strategies to profunctors, and to Scott domains ...

A language for concurrent strategies

Types: Games A, B, C, ... with operations A^{\perp} , $A \parallel B$, sums $\sum_{i \in I} A_i$, recursively-defined types, ...

A term

$$x_1: A_1, \cdots, x_m: A_m \vdash t \dashv y_1: B_1, \cdots, y_n: B_n$$

denotes a strategy from $A_1 \| \cdots \| A_m$ to $B_1 \| \cdots \| B_n$.

Idea: t denotes a strategy $S \to \vec{A}^{\perp} || \vec{B}$.

The term t describes witnesses, finite configurations of S, to a relation between finite configurations \vec{x} of \vec{A} and \vec{y} of \vec{B} . Cf. profunctors.

A language for concurrent strategies

Types: Games A, B, C, ... with operations A^{\perp} , $A \parallel B$, sums $\sum_{i \in I} A_i$, recursively-defined types, ...

A term

$$x_1: A_1, \cdots, x_m: A_m \vdash t \dashv y_1: B_1, \cdots, y_n: B_n$$

denotes a strategy from $A_1 \| \cdots \| A_m$ to $B_1 \| \cdots \| B_n$.

Copycat $x : A \vdash y \sqsubseteq_A x \dashv y : A$ and other terms "wiring in" causality.

Types: Games A, B, C, ... with operations A^{\perp} , $A \parallel B$, sums $\sum_{i \in I} A_i$, recursively-defined types, ...

A term

$$x_1: A_1, \cdots, x_m: A_m \vdash t \dashv y_1: B_1, \cdots, y_n: B_n$$

denotes a strategy from $A_1 \| \cdots \| A_m$ to $B_1 \| \cdots \| B_n$.

Copycat $x : A \vdash y \sqsubseteq_A x \dashv y : A$ and other terms "wiring in" causality.

Composition
$$\frac{\Gamma \vdash t \dashv \Delta}{\Gamma \vdash \exists \Delta . [t \parallel u] \dashv H}$$

Duality
$$\frac{A, \Gamma \vdash t \dashv \Delta}{\Gamma \vdash t \dashv A^{\perp}, \Delta}$$

A language for concurrent strategies

Types: Games A, B, C, ... with operations A^{\perp} , $A \parallel B$, sums $\sum_{i \in I} A_i$, recursively-defined types, ...

A term

$$x_1: A_1, \cdots, x_m: A_m \vdash t \dashv y_1: B_1, \cdots, y_n: B_n$$

denotes a strategy from $A_1 \| \cdots \| A_m$ to $B_1 \| \cdots \| B_n$.

$$A_1$$
 B_1 B_2

Copycat $x : A \vdash y \sqsubseteq_A x \dashv y : A$ and other terms "wiring in" causality.

Composition
$$\frac{\Gamma \vdash t \dashv \Delta}{\Gamma \vdash \exists \Delta. [t \parallel u] \dashv H}$$

Duality
$$\frac{A, \Gamma \vdash t \dashv \Delta}{\Gamma \vdash t \dashv A^{\perp}, \Delta}$$

$$\Gamma \vdash \exists x : A, y : A^{\perp} . [x \sqsubseteq_A y \parallel t] \dashv \Delta$$

A language for concurrent strategies

Types: Games A, B, C, ... with operations A^{\perp} , $A \parallel B$, sums $\sum_{i \in I} A_i$, recursively-defined types, ...

A term

$$x_1: A_1, \cdots, x_m: A_m \vdash t \dashv y_1: B_1, \cdots, y_n: B_n$$

denotes a strategy from $A_1 \| \cdots \| A_m$ to $B_1 \| \cdots \| B_n$.

Copycat $x : A \vdash y \sqsubseteq_A x \dashv y : A$ and other terms "wiring in" causality.

Composition
$$\frac{\Gamma \vdash t \dashv \Delta}{\Gamma \vdash \exists \Delta . [t \parallel u] \dashv H}$$

Duality
$$\frac{A, \Gamma \vdash t \dashv \Delta}{\Gamma \vdash t \dashv A^{\perp}, \Delta}$$

Sum $\sum_{i \in I} t_i$

Conjunction $t_1 \wedge t_2$

A concurrent strategy is deterministic when conflicting behaviour of Player implies conflicting behaviour of Opponent.

Stable spans and stable functions The sub-bicategory where the events of games are purely +ve is that of **stable spans** used in nd dataflow; feedback given by trace.

Its deterministic sub-bicategory **Stable** is equivalent to **stable functions between Berry domains** (coherent w.r.t. countable event structures with binary conflict); Girard's **coherence spaces** when causal dependency trivial.

Open games?

Special cases - recovering functions 2

Two tools for recovering functions in **parts** of a game:

1. Projecting a strategy to a parallel component of a game yields a strategy:

2. Imperfect information via an "access order" (Λ, \leq) on moves of the game; causal dependency of the game and additional causal dependencies of the strategy must respect it:

Open games via a dialectica category (thanks Jules!), e.g.

The dialectical category with maps

 $(f,g): {X \choose R} o {Y \choose S}$ where f:X o Y and g:X imes S o R in **Stable** embeds fully and faithfully in the sub-bicategory of strategies comprising deterministic strategies in games

$$(X^+\|R^-) \longrightarrow (Y^+\|S^-) = (X^+\|R^-)^\perp \|(Y^+\|S^-)$$
 with access order
$$X^- < Y^+$$

$$R^+ > S^-$$

Their deterministic counterstrategies correspond to configurations of X paired with $h: Y \to S$ in **Stable**: $X^+ < Y^-$

$$R^- > S^+$$

Now have all the ingredients for open games w.r.t. Stable (and Stable spans).