Klaudia Janicka, 262268, Julia Mazur, 262296 grupa nr 6

Pomiar pojemności kondensatora

20 kwietnia 2022r.

1. Cele

- Obserwacja naładowania i rozładowania kondensatorów w czasie;
- Analiza dokładności otrzymanych wartości pojemności kondensatorów podczas mierzenia czasu ładowania i rozładowania;
- Analiza wpływu zmiany parametrów α i β na dokładność otrzymanych pojemności kondensatora;
- Badanie wpływu wartości rezystorów na czas ładowania/rozładowania.

2. Wstęp teoretyczny

Aby wyprowadzić równanie różniczkowe i następnie wyznaczyć czasy ładowania i rozładowania, korzystamy z:

- prawa Ohma
- I prawa Kirchhoffa
- II prawa Kirchhoffa

Dzięki nim otrzymujemy, że

$$\frac{\mathrm{d}U_c}{\mathrm{d}t} + \frac{1}{RC}U_c = \frac{U}{RC},\tag{1}$$

gdzie U_c to napięcie na kondensatorze [V], R, to opór $[\Omega]$, C to pojemność kondensatora [F], a t to czas. Czas ładowania możemy wyznaczyć na podstawie rozwiązania równania (1), przyjmując początkowy stan naładowania kondensatora jako αU a końcowy jako βU , zakładając, że $0 < \alpha < \beta < 1$. Wtedy możemy wyznaczyć pojemność kondensatora jako

 $C = \frac{t_c}{R \ln\left(\frac{1-\alpha}{1-\beta}\right)}.$

Aby rozładować kondensator nie dostarczamy mu już napięcia, zatem U=0, a wtedy równanie (1) staje się równaniem jednorodnym

$$\frac{\mathrm{d}U_c}{\mathrm{d}t} + \frac{1}{RC}U_c = 0. \tag{2}$$

Czas rozładowania wyznaczamy z równania (2), przyjmując początkowy stan naładowania kondensatora jako βU a końcowy jako αU . Wtedy możemy wyznaczyć pojemność kondensatora jako

$$C = \frac{t_d}{R \ln\left(\frac{\beta}{\alpha}\right)}.$$

Z symetrii czasów rozładowania i ładowania otrzymujemy $\alpha + \beta = 1$ i w ten sposób dobierane są parametry przy pomiarach.

3. Przebieg pomiarów

Pomiary wykonane zostały za pomocą układu RC, którego schemat ukazany jest na zdjęciu:

Rysunek 1: Układ RC wykorzystywany do przeprowadzenia pomiarów

Wykorzystane rezystory miały opory: 220Ω i $10k\Omega$. Zostało wykonanych 12. pomiarów, cztery dla każdego z trzech kondensatorów o pojemnościach: $10\mu F$, $100\mu F$ oraz $470\mu F$. Użyte zostały konkretne wartości parametrów α i β tak, by $\alpha + \beta = 1$:

α	β
0.1	0.9
0.125	0.875
0.25	0.75
0.45	0.55

Dla dokładniejszego przedstawienia zależności napięcia od czasu na badanych kondensatorach, został wykonany wykres przy użyciu oscyloskopu.

4. Wyniki

4.1. Pomiary dla kondensatora o $C=10\mu F$.

L.p.	С	α	β	С	Ē	u(C)	α	β	С	Ē	<i>u(C)</i>	α	β	С	Ē	u(C)	α	β	С	Ē	<i>u</i> (<i>C</i>)
_	[µF]	10000		[µF]	[μ <i>F</i>]	[µF]	9		[µF]	[µF]	[µF]	2		[µF]	[µF]	[µF]	0300		[µF]	[µF]	[µF]
1	10	0,1	0,9	10,57000	10,53211	0,00097	0,25	0,75	10,4000	10,4400	0,0038	0,45	0,55	10,0500	10,0700	0,0062	0,125	0,875	10,4900	10,6100	0,0012
2				10,54000					10,3700					10,0500					10,6300		
3				10,53000					10,4500					9,9900					10,6100		
4				10,52000					10,4800					10,0500					10,6000		
5				10,55000					10,3900					9,9300					10,6300		
6				10,52000					10,4600					10,2300					10,6000		
7				10,54000					10,3900					9,9900					10,5800		
8	3			10,55000					10,5100					9,8700					10,6100		
9	2			10,53000					10,4300					10,0500					10,6400		
10	8			10,55000					10,4800					10,1100					10,6300		
152				10,52000					10,4800					10,1100					10,6300		
153				10,52000					10,3700					10,1100					10,6200		
154				10,52000					10,5000					10,1700					10,6500		
155				10,54000					10,4300					9,9300					10,6000		
156				10,52000					10,5100					10,1100					10,6000		
157				10,51000					10,5000					10,1100					10,5900		
158				10,54000					10,2900					10,2300					10,6100		
159				10,52000					10,3500					10,0500					10,6200		
160				10,52000					10,4000					9,9300					10,6500		
161				10,54000					10,4300					10,1700					10,6300		
:									10 4200					:					10.6300		
383 384								1	10,4300					9,9300 10,1700					10,6300 10,6300		
385									10,5000					10,1700					10,6100		
386									10,3500					9,9900					10,5700		
387									10,4600					10,2300					10,5900		
388									10,2500					9,8700					10,6300		
389									10,0000					10,1100					10,6000		
390									10,6500					10,0500					10,6100		
391									10,9300					10,2900					10,5900		
392									10,2300					10,0500					10,6000		
																			- 1		
514														10,0500					10,6000		
515														10,1700					10,6000		
516 517														10,0500 9,2700					10,6300 10,6100		
518														10,2300					10,5700		
519														8,9100					10,6000		
520														10,5200					10,6100		
521														10,2900					10,6100		
522														9,2100					10,5800		
523														10,1000					10,6000		
														127					- 1		
595																			10,6100		
596																			10,6300		
597																			10,6000		
598																			10,6300		
599																			10,6300		
600																			10,6100		
601 602																			10,6000		
603																			10,5900		
604																			10,4500		
	72		I	(d)															1.200		0 0

Rysunek 2: Tabela pomiarów pojemności kondensatora $10\mu F$ w zależności od parametrów α i $\beta.$

4.2. Pomiary dla kondensatora o $C=100 \mu F$.

L.p	С	α	β	С	Ē	u(C)	α	β	С	Ē	u(C)	α	β	С	Ē	<i>u</i> (<i>C</i>)	α	β	С	Ē	<i>u</i> (<i>C</i>)
	[µF]			[µF]	[µF]	[µF]			[µF]	[µF]	[µF]			[µF]	[µF]	[µF]			[µF]	[µF]	[µF]
1	100	0,1	0,9	98,470	1.00001.000.00		0,25	0,75	0.5%	0.077	7.01	0,45	0,55	9.783	27.97	7/1	0,125	0,875	110,75	100	
2		1 14		98,370	0	0 1			98,78		38	8	8) 1	116,43	220	7%	189		111,16	18	
3				98,470					99,09					114,64					111,01		
4				98,370					99,29					116,07					109,84		
5				98,360					99,58					118,76					110,61		
6				98,420					99,18					116,43					111,35		
7				98,300					98,95					116,19					110,14		
8				98,380					99,27					119,84					105,85		
9				98,380					99,19					115,30					111,20		
10				98,270					98,10					116,19					110,65		
:									100.40					145.74					100.00		
84				98,310					100,49					115,71					109,28		
85 86				98,330 98,240					100,07 100,50					114,58					108,84 108,13		
87				98,240					100,50					115,12 117,63					107,76		
88				98,150					100,37					117,87					107,73		
89				98,000					99,61					114,70					104,63		
90				97,730					99,53					115,54					108,33		
91				98,360					100,62					117,57					108,14		
92				98,250					100,52					117,15					108,79		
93				98,250					100,58					114,58					107,09		
:									:					:					8		
102				98,040					99,65					113,50							
103	1			98,110					100,42					119,36							
104	1			98,210					100,49					117,98							
105				98,030					100,56					113,44							
106				98,280					100,30		3			114,46	8						
107				98,360					100,32					114,70							
108 109	1			98,180 98,240					100,48					118,28 118,40							
110				98,180					100,04					114,70							
111				97,950					100,21					114,76							
112	1			51,550					:					:							
266	1								107,52					120,26							
267	1								107,27					119,66							
268	1								107,71					121,88							
269	1								108,47					122,59							
270									106,16					121,28							
271	1								106,75					123,49							
272	1								107,86					122,05							
273	1								107,31					120,79							
274	1								107,25					122,35							
275	1								108,01					115,60							
276									106,22												
277									108,77												

Rysunek 3: Tabela pomiarów pojemności kondensatora $100\mu F$ w zależności od parametrów α i $\beta.$

4.3. Pomiary dla kondensatora o $C=470 \mu F$.

L.p.	С	α	β	С	Ē	u(C)	α	β	С	Ē	<i>u</i> (<i>C</i>)	α	β	С	Ē	u(C)	α	β	С	Ē	u(C)
•	[µF]		8	[µF]	[µF]	[µF]			[µF]	[µF]	[µF]			[µF]	[µF]	[µF]			[µF]	[µF]	[µF]
1		0,1	0,9				0,25	0,75	470,250	467,471	0,084	0,45	0,55	464,76	451,27		0,125	0,875	473,33	470,92	0,10
2				472,15					467,140					463,45					472,67		
3				471,43	6				468,520					463,09					473,73		
4				471,16					467,000					462,85					474,00		
5				471,15					467,130					462,61					473,73		
6				470,66					468,360					456,09					472,96		
7				471,64					466,940					455,08					470,35		
8				471,12					468,210					461,95					473,79		
9	8			471,43					468,480					454,90					471,67		
10				471,30					466,810					452,92					471,74		
:				170 50					165.010					:					151.54		
44				470,53					465,910					454,24					471,76		
45				470,49					465,120					453,22					470,37		
46	8			470,68					468,470					453,28					468,70		
47	8			470,93 469,52					468,450 467,840					453,46 453,16					471,30 468,51		
49				470,87					465,980					453,65					469,65		
50	8			470,91					466,350					454,36					469,47		
51				471,13					466,730					452,98					470,52		
52	8			470,81				1	468,060					453,64					469,19		
53	6			471,06					468,010					452,81					469,02		
:				171,00					:					+52,01					100,02		
199									464,450					447,43					470,08		
200									467,150					453,28					469,68		
201									468,230					443,54					470,82		
202									467,990					449,10					470,40		
203									468,010					455,14					471,64		
204									468,140					447,19					472,42		
205									468,150					449,15					469,39		
206									469,410					447,43					469,27		
207									464,600					449,58					469,41		
208									467,210					452,22					470,86		
1														- 1					- ;		
270														449,18					468,50		
271														448,08					472,45		
272	3													453,46					471,50		
273														442,99					468,10		
274	ş													454,12					469,08		
275														450,60					470,46		
276														447,55					468,44		
277	8													448,93					469,57		
278 279														447,62 448,99					469,24 470,15		
:														448,99					4/0,13		
301														452,69							
302														452,09							
303														454,43							
304														449,52							
305														447,43							
306														449,04							
307														449,58							
308														442,93							
309														455,80							
310											l III			450,43							
														-,				1			

Rysunek 4: Tabela pomiarów pojemności kondensatora 470 μF w zależności od parametrów α i $\beta.$

5. Obliczenia

5.1. Średnia

5.1.1. Wzór

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

gdzie $i=1,2,3,\ldots,n;~X_i$, to pojedyncza obserwacja, a n to ilość/liczba obserwacji

5.1.2. Przykładowe obliczenia

dla
$$C = 470\mu F$$
, $\alpha = 0.1$, $\beta = 0.9$, $n = 53$

$$\bar{C} = \frac{1}{53} \sum_{i=1}^{53} C_i = \frac{476,23\mu F + 472,15\mu F + 471,43\mu F + \dots + 471,06\mu F}{53} \approx 471,01\mu F$$

5.2. Niepewność typu A

5.2.1. Wzór

$$u_A(X) = \sqrt{\frac{\sum\limits_{i=1}^{n} (X_i - \bar{X})^2}{n(n-1)}}$$

5.2.2. Przykładowe obliczenia

dla
$$C = 470\mu F$$
, $\alpha = 0.1$, $\beta = 0.9$, $n = 53$, $\bar{C} = 471.01\mu F$

$$u_A(C) = \sqrt{\frac{\sum_{i=1}^{53} \left(C_i - \bar{C}\right)^2}{53(53 - 1)}} = \sqrt{\frac{(476,23\mu F - 471,01\mu F)^2 + (472,15\mu F - 471,01\mu F)^2 + \dots + (476,23\mu F - 471,06\mu F)^2}{53 \cdot 52}} \approx 0,13\mu F$$

5.3. Porównanie empirycznych i teoretycznych pojemności kondensatora

:

• dla $\alpha = 0.1$ i $\beta = 0.9$:

C teoretyczne	C empiryczne
μF	μF
10	$10,53211 \pm 0,00097$
100	$98,216 \pm 0,012$
470	$471,01 \pm 0,13$

• dla $\alpha = 0.125$ i $\beta = 0.875$:

C teoretyczne	C empiryczne
μF	μF
10	$10,6100 \pm 0,0012$
100	$109,21 \pm 0,14$
470	$470,92 \pm 0,10$

• dla $\alpha = 0.25$ i $\beta = 0.75$:

C teoretyczne	C empiryczne
μF	μF
10	$10,4400 \pm 0,0038$
100	$101,84 \pm 0,17$
470	$467,471 \pm 0,084$

• dla $\alpha = 0.45$ i $\beta = 0.55$:

C teoretyczne	C empiryczne
μF	μF
10	$10,0700 \pm 0,0062$
100	$117,34 \pm 0,16$
470	$451,27 \pm 0,24$

6. Wykresy

6.1. Naładowanie i rozładowanie kondensatora:

Wykres został wykonany dla kondensatora o pojemności $C=470\mu F$ i przedstawia zależność napięcia na nim od czasu ładowania. Parametry α i β to odpowiednio 0,1 i 0,9. Funkcja wzrasta i opada wykładniczo.

Rysunek 5: Naładowanie i rozładowanie kondensatora na oscyloskopie

6.2. Pojemność kondensatora: $10\mu F$

6.3. Pojemność kondensatora: $100 \mu F$

6.4. Pojemność kondensatora: $470 \mu F$

7. Wnioski

- Możemy zauważyć, że dla kondensatorów o teoretycznych pojemnościach wynoszących $470\mu F$ i $10\mu F$ pojemność empiryczna zwiększa się wraz ze wzrostem odległości między α i β ;
- Niedokładność obliczonej średniej nie jest w pełni wiarygodna, ponieważ pomijamy niedokładność przyrządów, a także przyjmujemy wstępne dane jako dokładne;
- Pomiary i obliczenia dla kondensatorów o teoretycznych pojemnościach wynoszących $470\mu F$ i $10\mu F$ można uznać za sensowne, ponieważ ich niepewności są niewielkie oraz wartości średnich nieznacznie odbiegają od teoretycznych;
- Operacje na kondensatorze o pojemności teoretycznej $100\mu F$ były zdecydowanie bardziej rozbieżne, jednak dla $\alpha = 0.25$ i $\beta = 0.75$ udało się uzyskać satysfakcjonujące wyniki;
- Analizując wykresy z punkcie (6) możemy zauważyć, że jeśli wraz ze wzrostem pojemności teoretycznej zmniejszamy α to znajdujemy się najbliżej oczekiwanych wyników;
- Dodatkowo widzimy, że wyniki pomiarów dla kondensatora o mniejszej pojemności oscylują wokół jednej wartości, co wskazuje na niedokładność urządzenia pomiarowego;
- Gdy kondensatory i rezystory są połączone razem, rezystor opiera się przepływowi prądu, który może ładować lub rozładowywać kondensator. Im większy rezystor, tym wolniejsze tempo ładowania/rozładowania;
- Czas ładowania i rozładowania zależy też od wartości pojemnośći kondensatora. Im większy kondensator, tym wolniejsze tempo ładowania/rozładowania.