Linear Algebra Finals Questions Bank

Mostafa Hassanein

14 January 2024

Proofs

Theorem 1 (2023.S(1.A.i)).

- i. Disprove: W is a subspace of the vector space V and $v \in V$. Then, the set defined by $v + W = \{v + w : w \in W\}$, is a subspace of V.
 - ii. Under what condition is v + W a subspace of V?

Proof.

i. By counterexample:

Let
$$V = R^2$$
, $W = \{w \in V : w = (x,0)\}$, and $v = (0,1)$.
 $\Rightarrow v + W = \{u \in V : u = (x,1)\}$.
 $\Rightarrow 0_v = (0,0) \notin v + W$
 $\Rightarrow v+W$ is not a subspace.

- ii. It's clear that if $v \in W$, then v + W = W, which is a subspace of V as desired.
- If, however, $v \notin W$, then, by the counterexample provided, v+W is not a subspace of V.

Therefore, the sufficient and necessary condition is: $v \in W$.

Note: The transformation $v+W=\{v+w:w\in W\}$ is an <u>affine transformation</u>, which is not—necessarily—linear.

Theorem 2 (2023.S(1.A.ii)).

Let x_1, \ldots, x_{n+1} be distinct elements of F. Then, the functions $f_i(x) = \prod_{k=1, k \neq i}^{n+1} \frac{(x-x_k)}{(x_i-x_k)}$ for $i=1,\ldots,n+1$ form a basis for $P_n(F)$.

Note to self: A possible source of confusion here is that F is not an infinite field, rather it's a finite field given by $F = \{x_1, \ldots, x_n\}$.

Proof.

Since $dim(P_n) = n+1$ and we have n+1 functions/vectors, then it's sufficient to check either one of the following conditions:

- i. The n+1 functions/vectors span P_n
- ii. The n+1 functions/vectors are linearly independent.

We check (ii). Let $x_j \in \{x_1, \dots, x_{n+1}\}$, then:

$$0_v = \sum_{i=1}^{n+1} a_i f_i(x_j)$$

$$= \sum_{i=1}^{n+1} a_i \Pi_{k=1, k \neq i}^{n+1} \frac{x_j - x_k}{x_i - x_k}$$

$$= \sum_{i=1}^{n+1} a_i \delta_{ij}$$

$$= a_j.$$

- $\implies \forall j \in \{1, \dots, n+1\}: a_j = 0.$
- $\implies (f_1, \ldots, f_n)$ are linearly independent.
- $\implies (f_1,\ldots,f_n)$ is a basis for P_n .

Notes:

- The tricky part in this question is to realize that the complicated form of f_i reduces to δ_{ij} .

- This result can be generalized to all function spaces (not just polynomials) over a finite field. The generalization can be stated as follows: Any function space over a finite field of cardinality n has a basis given by the functions f_i where $f_i(x_j) := \delta_{ij}$ for $i, j \in \{1, \ldots, n\}$.

```
Theorem 3 (2023.S(1.A.iii)).
```

If $T \in Hom(V)$, W is a T-invariant subspace of V, and $V = R(T) \oplus W$, then $W \subseteq N(T)$.

Proof. (By contradiction)

Suppose that $W \not\subseteq N(T)$

- $\implies \exists w \in W \text{ s.t. } w \notin N(T)$
- $\implies Tw \in R(T)$
- $\implies Tw \in R(T) \text{ and } Tw \in W \text{ (Because } W \text{ is } T\text{-invariant)}$
- $\implies \exists v = Tw \in V \text{ s.t. } v \text{ is not uniquely represented as a sum from } R(T) \text{ and } W.$

This is a contradiction. Therefore, we must conclude that $W \subseteq N(T)$.

Theorem 4 (2023.S(1.A.iv)).

 $\label{linear operator on an infinite-dimensional vector space \ has \ no \ eigenvectors.$

Proof. (By counterexample)

Consider the vector space $V = \mathbb{R}^{\infty}$ over \mathbb{R} .

Let T be a linear operator on V defined by $T := \lambda I_{\infty}$, where $\lambda \in \mathbb{R}$.

Then, all vectors in V are eigenvectors with eigenvalue = λ .

Theorem 5 (2023.S(1.A.v)).

If S is a <u>subset</u> of an inner product space V, then Span(S) is a <u>subspace</u> of $(S^{\perp})^{\perp}$.

Proof.

We will show that $(S^{\perp})^{\perp} = Span(S)$, thus, concluding that Span(S) is a subspace (an improper subspace) of $(S^{\perp})^{\perp}$.

We start from the fact (given by another theorem) that if U is a subspace, then $U=(U^\perp)^\perp$. So, now we need only show that $Span(S)^\perp=S^\perp$. This amounts to showing that $(i)Span(S)^\perp\subseteq S^\perp$ and $(ii)S^\perp\subseteq Span(S)^\perp$.

(i) Is true since any vector that is orthogonal to all vectors in Span(S) must also be orthogonal to all vectors in S.

```
(ii) Let s_o \in S^{\perp} and s \in Span(S).

\implies s = \sum a_i s_i, \ \forall s_i \in S

\implies < \sum a_i s_i, s_o >= \sum < a_i s_i, s_o >= \sum a_i < s_i, s_o >= \sum a_i * 0 = 0.

\implies s_o \in Span(S)^{\perp}

\implies S^{\perp} \subseteq Span(S)^{\perp}.
```

Theorem 6 (2023.S(1.B), 2022.S(1.A.ii)).

Let V be an n-dimensional vector space and $T \in Hom(V, W)$. Prove that: i. nullity(T) + rank(T) = n.

ii. T is injective iff T carries linearly independent subsets of V onto linearly independent subsets of W. In other words:

T is injective \iff If (v_1, \ldots, v_k) are linearly independent, then (Tv_1, \ldots, Tv_k) are linearly independent.

Proof. Part i

Let nullity(T) = m, $0 \le m \le n$, and $B_N = (u_1, \ldots, u_m)$ be a basis for N(T).

Extend B_N to a basis for V: $B_V = (u_1, \ldots, u_m, u_{m+1}, \ldots, u_n)$.

Let $v \in V$, then $v = \sum_{i=1}^{n} a_i u_i$. Apply T to both sides:

$$T(v) = T(\sum_{i=1}^{n} a_i u_i)$$

$$= \sum_{i=1}^{n} a_i T(u_i)$$

$$= \sum_{i=m+1}^{n} a_i T(u_i)$$

This shows that (Tv_{m+1}, \ldots, Tv_n) spans R(T). Next, we show that it is also linearly independent:

$$0_v = \sum_{i=m+1}^n a_i T(u_i)$$
$$= T(\sum_{i=m+1}^n a_i u_i)$$

$$\Longrightarrow \sum_{i=m+1}^{n} a_i u_i \in N(T)$$

 $\Rightarrow \sum_{i=m+1}^{n} a_i u_i \in N(T)$ $\Rightarrow \sum_{i=1}^{m} a_i u_i = \sum_{i=m+1}^{n} a_i u_i$ $\Rightarrow a_i = 0, \text{ for } i = 1, ..., n.$ (Because (u_1, \ldots, u_n) is linearly independent)

 $\implies (Tu_{m+1}, \dots, Tu_n)$ is linearly independent and hence is a bsis for range T.

Proof. Part ii

Forward direction: Assume T is injective and (v_1, \ldots, v_n) is linearly independent, then:

$$0_v = a_1 T v_1 + \ldots + a_n T v_n$$

= $T(a_1 v_1 + \ldots + a_n v_n)$

- $\implies a1, \dots, a_n = 0$ (Because T is injection of Tv_1, \dots, Tv_n) is linearly independent. (Because T is injective)

Converse direction: Assume (v_1, \ldots, v_n) and (Tv_1, \ldots, Tv_n) are both linearly independent.

- $\implies \text{If } a_1Tv_1 + \ldots + a_nTv_n = 0_v, \text{ then } a_1, \ldots, a_n = 0.$ $\implies \text{If } T(a_1v_1 + \ldots + a_nv_n) = 0, \text{ then } a_1, \ldots, a_n = 0.$
- $\implies N(T) = \{0_v\}.$
- $\implies T$ is injective.

```
Theorem 7 (2023.S(2.A)).

Let T: P_n(R) \to R^{n+1} be such that:

T(\sum_{i=0}^n c_i t^i) = (x_0, x_1, \dots, x_n)

where: x_k = \int_0^1 f(t) dt for k = 0, \dots, n.
```

Show that T is invertible.

Question to self: What is f(t)? Also, is it "for some f(t)" or "for all f(t)"? It cannot be "for all f(t), because it's obviously false for f(t) = 0. So it has to be for some f(t).

Proof.

Theorem 8 (2023.S(2.B), 2021.F(2.A)). Let V and W be n-dimensional vector spaces with order bases α and β respectively. If T is an isomorphism from V onto W with $[T]^{\beta}_{\alpha} = A$, show that $[T^{-1}]^{\alpha}_{\beta} = A^{-1}$

Proof.

Theorem 9 (2023.S(2.C)).

Let $V = M_{2x2}(R)$ and $T(A) = A^t + 2tr(A)I_2$, where $A \in V$ and A^t is the transpose of A.

Find an ordered Basis β for V so that $[T]\beta$ is a diagonal matrix.

Theorem 10 (2023.S(3.B)).

Let $V = W \oplus W^{\perp}$ and T be the projection on W along W^{\perp} . Show that $T^* = T$.

Theorem 11 (2023.S(3.C)).

Let T be a linear operator on the inner product space V. Show that: $\langle T(u), T(v) \rangle = \langle u, v \rangle \quad \forall u, v \in V \iff ||T(u)|| = ||u|| \quad \forall u \in V.$

Theorem 12 (2022.S(1.A.i)).

If V is a vector space and $S_1, S_2 \subseteq V$ with $S_1 \subseteq S_2$, then S_2^{\perp} is a <u>subspace</u> of S_1^{\perp} .

Theorem 13 (2022.S(1.B)).

Let $V = M_{2x2}(R)$.

 $\it i.\ Show\ that\ V\ has\ a\ basis\ that\ contains\ bases\ for\ its\ subspaces\ U\ and\ W\ ,$ where:

$$U = \{A \in V : A^T = A\} \ and \ W = \{A \in V : A^T = -A\}.$$

ii. Show that $V = U \oplus W$.

Theorem 14 (2022.S(1.D)).

Let V be the vector space of complex numbers over the field \mathbb{R} , i.e. C^1 over \mathbb{R} .

Let $T: V \to V$ be defined by $T(z) = \bar{z}$, the complex conjugate of z.

- i. Show that T is linear.
- ii. Show that T is not linear if V is redefined to be over the complex field \mathbb{C} .

Theorem 15 (2022.S(2.A)).

Let V be an n-dimensional vector space with bases $\alpha = \{\alpha_i\}$ and $\beta = \{\beta_i\}$. If $P \in Hom(V)$, such that $P(\alpha_i) = \beta_i \quad \forall i$, derive the relation between $[V]_{\alpha}$ and $[V]_{\beta}$ for $v \in V$.

Theorem 16 (2022.S(2.B)).

TODO: Reformulate from a problem to a statement.

Let
$$T: P_2(R) \to P_2(R)$$
 be such that:

$$T(a+bt+ct^{2}) = -2b - 3c + (a+3b+3c)t + ct^{2}.$$

- i. Find a basis for for the eigenspace E_1 .
- ii. Is T diagonalizable?
- iii. Is there an operator on $P_2(R)$ whose null space is E_1 ?

Theorem 17 (2022.S(3.B), 2021.F(3.D)).

Let V be an inner product space, and $T \in Hom(V)$.

- i. Show that $N(T^*T) = N(T)$.
- ii. [Prove or Disprove] $rank(T^*T) = rank(T)$.

Theorem 18 (2021.F(1.A.i)).

 $\begin{array}{c} V \ is \ an \ inner \ product \ vector \ space \ and \ S \subseteq V \ \land \ S \neq \emptyset \\ \Longrightarrow \ S^{\perp} \ is \ a \ subspace \ of \ V \, . \end{array}$

Theorem 19 (2021.F(1.A.ii)).

[Disprove] If $T \in Hom(V, W)$, dim(V) = dim(W) = 2, and $\{v_1, v_2\}$ is a basis for V, then $\{T(v_1 - v_2), T(v_1)\}$ is a basis for W.

Theorem 20 (2021.F(3.B)).

Let V be an inner product space, and W be a finite-dimensional subspace of V.

Show that: $w \in W \implies \exists v \in V \ni v \in W^{\perp} \land \langle v, u \rangle \neq 0$.

Theorem 21 (2021.F(3.B)).

Let V be an inner product space, and W be a finite-dimensional subspace of V.

Show that: $w \in W \implies \exists v \in V \ni v \in W^{\perp} \land \langle v, u \rangle \neq 0$.

Theorem 22 (2012.F(1.B)).

Let $V = M_{2x2}(R)$,

 $B \in V \text{ such that } B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix},$

 $W_1 = \{ A \in V : AB = BA \},$

 $W_2 = \{A \in V : A^T = A\}.$

i. Show that W_1 is a subspace of of V.

ii. Find $dim(W_1)$.

iii. [Prove or Disprove] $V = W_1 \oplus W_2$.

Theorem 23 (2012.F(1.D)).

Let $T_1, T_2 \in Hom(V, W)$.

Show that: $rank(T_1 + T_2) \leq rank(T_1) + rank(T_2)$.

Problems

1.

[2023.S(3.A)]

Let V = C([-1,1]) with the inner product $\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt$ $\forall f,g \in V$.

- i. Find an orthonormal basis for $P_2(R)$ as a subspace of V and use it to compute the best quadratic approximation of $f(t) = e^t$ on [-1, 1].
- ii. For $T \in Hom(P_1(R))$ with $P_1(R)$ as a subspace of V and T(f) = f' + 3f, evaluate $T^* = 1 + 3t$.

2.

```
[2022.S(1.C), 2021.F(1.B)]
```

Let $V = R^3$.

- i. Suggest two 2-dimensional subspaces W_1 and W_2 of V such that $V=W_1+W_2$.
- ii. With $W_1 = \{v \in V : v = (x, y, 0)\}$, define two projections <u>on</u> W_1 <u>along</u> two distinct subspaces W_2 amd W_3 of V.

3.

[2022.S(3.A), 2021.F(3.A)]

Let $V = P_1(R) = Span(\{1, t\})$ with the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$, $\forall f, g \in V$.

- i. Find an orthonormal basis for V.
- ii. Find the orthogonal projection of $f(t) = t^2$ on V.
- iii. Let T(f) = f'(t) + 3f(t) be a linear operator on V. Is (t-2) an eigenvector for T?
 - iv. Evaluate $T^*(2t-1)$.

4.

[2021.F(1.C)]

Let $T: P_2(R) \to R^2$ be such that $T(a_0 + a_1t + a_2t^2) = (a_1 + a_2, a_0 - a_1)$.

i. Find a basis for ker(T). ii. Is T surjective? iii. Find a two-dimensional subspace of of $P_2(R)$ such that its image under T is a one-dimensional subspace of R^3 . iv. Find the matrix representation of T relative to $\{1, t-1, t^2+1\}$ as a basis for $P_2(R)$ and $\{(0,1), (1,1)\}$ as a basis for R^2 .

5.

[2021.F(2.B)]

T is a linear operator on $P_2(R)$ defined by: T(f(x) = xf'(x) + f(2) + f(3)).

- i. Is T diagonalizable?
- ii. Find an eigenpair for T.

6.

[2021 F(3 C)]

Let $V = \mathbb{C}^2$ and $T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1)$. Evaluate $T^*(3 - i, 1 + 2i)$.

6.

[2012.F(4.B)]

Find the minimal l_2 -norm solution to the system:

$$x + 2y - z = 1$$

$$2x + 3y + z = 2$$

$$4x + 7y - z = 4.$$