PROJETO

Requisitos da disciplina Modelagem de Software e Arquitetura de Sistemas

INTEGRANTES DO PROJETO e RA'S

André de Sousa Pereira: 25027905

Felipe Nunes: 252027941

Gregory: 25027942

Icaro Souza: 25027842

São Paulo

2025

Sumário

1 INTRODUÇÃO

- 2. DOCUMENTO DE ABERTURA DO PROJETOS..
 - 2.1 Project Charter
 - 2.2 Histórias do Usuário.
- 3. DESIGN SPRINT Ideação e prototipação do desafio..
 - 3.1 Desafio.
 - 3.2 Entender Mapear
 - 3.3 Ideação desenho da solução (trilha do usuário)
 - 3.4 Prototipagem..
 - 4.REQUISITOS DE SISTEMA..
 - 4.1 REQUISITOS FUNCIONAIS DE SOFTWARE...
- 4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE..
 - 5. CASOS DE USO...
 - 6. DIAGRAMA DE CLASSE..
 - 7. ARQUITETURA DO SISTEMA..
 - 8. REFERÊNCIAS BIBLIOGRÁFICAS..

1 INTRODUÇÃO

Problemas de Smart Cities

Smart Cities/Smart House

Nome da Instituição: Flex Automation

Objetivo da Aplicação:

ADS1 O objetivo do desafio é gerar um dashboard de uma cidade/casa inteligente que

permita o controle de sensores e atuadores.

Este desafio busca, de forma modular, introduzir como uma cidade/casa inteligente pode ser controlada, tratando seus dados de forma a aprimorar o sistema e otimizando a

sustentabilidade.

Seu dashboard deverá receber e enviar sinais de/para um simulador de casa/cidade

inteligente, provenientes da rede/internet. O servidor será fornecido pelos professores.

Desafio:

O projeto da Flex Automation, assim como outras iniciativas, trabalha para poder criar

cidades inteligentes buscando a sustentabilidade, o melhor uso dos recursos planetários

e o menor impacto na natureza. Para que isso ocorra é necessário ter uma alta

capacidade de mensuração e controle para a otimização da vida na cidade, desde

recursos até o tráfego de pedestres. Também, a conscientização da população de como

uma cidade inteligente funciona e/ou é controlada, de forma a instruir sobre as melhores

maneiras para a cidade ser sustentável.

Personas a Serem Atendidas:

-Usuário final do sistema, que deseja controlar sua casa de forma a gastar menos e

otimizar os recursos da cidade. Considere que o usuário possui conhecimento básico

para utilizar dispositivos mobile.

-Controlador da cidade, um funcionário da cidade que deve acompanhar um

dashboard/mapa/painel informativo da cidade, tratando situações inesperadas,

acompanhando os dados dos sensores e acionando os programas da cidade. Considere que ele tem um conhecimento médio para avançado de tecnologia.

Recursos:

https://store.steampowered.com/app/949230/Cities_Skylines_II/ https://store.steampowered.com/app/2741560/SimCity_3000_Unlimited/ https://planetsmartcity.com/ https://flexautomation.com.br

2. DOCUMENTO DE ABERTURA DO PROJETOS

2.1 – Project Charter

Prefácio

Este projeto foi desenvolvido para moradores de casas inteligentes que desejam ter mais controle e consciência sobre seus gastos do dia a dia. A proposta é criar um dashboard simples, intuitivo e visualmente agradável, que centralize as informações de consumo da casa, como energia, água e gás.

Introdução

Este trabalho tem como objetivo o desenvolvimento de um dashboard para controle de uma casa inteligente, reunindo funções como controle de iluminação, climatização, segurança, consumo de energia e automações programadas. A interface será projetada para ser intuitiva, permitindo ações como ligar/desligar dispositivos, monitorar temperatura e segurança, além de exibir dados em tempo real.

Glossário

Casa inteligente, Dashboard, Consumo energético, Gasto hídrico, Automação residencial, IoT (Internet das Coisas), Eficiência energética, Interface amigável

Definição de requisitos de usuário

Arquitetura do sistema

- Módulo de Sensoriamento (Coleta de Dados)
 Responsável por captar os dados dos dispositivos físicos instalados na residência:
- Sensores de consumo de energia elétrica (medidores inteligentes).
- Sensores de presença ou luminosidade para controle automatizado da luz.
- Relógio em tempo real (RTC) e Temporizadores para registrar padrões de consumo por hora/dia/semana.
- Controladores embarcados fazem a leitura dos sensores e enviam os dados para o sistema.

Módulo de Comunicação

Realiza a transmissão dos dados dos sensores para o servidor:

- Protocolos como MQTT ou HTTP s\u00e3o utilizados para comunica\u00e7\u00e3o leve e eficiente.
- Pode usar Wi-Fi ou Zigbee, dependendo do ambiente da casa.

Módulo de Processamento e Armazenamento

- Os dados recebidos são armazenados em banco de dados (SQL ou NoSQL).
- Um serviço de backend realiza o processamento dos dados, gera relatórios, identifica padrões e envia comandos automatizados (ex: desligar luzes após determinado horário).

Módulo de Visualização (Dashboard)

- Interface web responsiva acessível via navegador ou app móvel.
- Exibe gráficos de consumo, alertas de uso excessivo e permite o controle remoto das luzes.
- Mostra o status em tempo real de cada cômodo (luz acesa/apagada, consumo atual etc).
- sistema de missões diárias para o menor consumo
- sistema de pontuação

Módulo de Controle e Alarme

- Gera alertas visuais caso haja consumo anormal ou falha nos dispositivos.
- Integra com sistemas de notificação (push).

Fonte de Energia

• Todos os módulos físicos são alimentados energia solar

Especificação de requisitos do sistema

Desempenho e Tempo de Resposta: O sistema deve apresentar alto desempenho, garantindo que as operações executadas sejam rápidas, fluidas e sem travamentos perceptíveis ao usuário. O tempo de resposta para ações críticas, como a atualização de dados dos sensores, comandos do usuário e alterações na interface, deve ser minimizado.

Exibir Consumo Energético por Cômodo: A plataforma deve permitir ao usuário visualizar o consumo de energia elétrica detalhado por cômodo da residência. Essas informações devem ser apresentadas de forma clara, gráfica e intuitiva.

Monitorar Dados dos Sensores em Tempo Real: Os dados provenientes dos sensores (temperatura, umidade, presença, luminosidade, entre outros) devem ser monitorados e exibidos em tempo real na interface do sistema, permitindo ao usuário acompanhar o estado atual de cada ambiente da casa.

Interface Responsiva e Compatibilidade Cross-Device: A interface do sistema deve ser responsiva, adaptando-se automaticamente a diferentes tamanhos e resoluções de tela, garantindo uma boa experiência de uso tanto em desktops quanto em dispositivos móveis (smartphones, tablets).

Especificações de Hardware

Requisitos Mínimos do Sistema

Para garantir o funcionamento eficiente do Dashboard da SmartHouse, recomenda-se a seguinte configuração mínima de hardware:

Processador: Intel Core i5 ou equivalente ARM (para sistemas embarcados)

Memória RAM: 8 GB

Armazenamento: SSD de 120 GB

Placa de Rede: Suporte a Wi-Fi 802.11ac e Ethernet 10/100/1000

• Sistema Operacional: Ubuntu Server 20.04 LTS / Windows 10

Sistema de notificações: O sistema deve emitir alertas visuais quando o consumo de energia ou água ultrapassar uma média pré definida, deve notificar o usuário caso um sensor esteja desconectado ou apresente falha e deve alertar sobre consumo atípico com sugestões de economia através do "premios"

Reinicialização e Recuperação

O sistema deve retomar a operação automaticamente após queda de energia ou reinício certificando-se a restauração e a recuperação dos dados mais recentes disponíveis após falha ou reinício.

Modelos do sistema

Este sistema utiliza modelos gráficos para representar visualmente os relacionamentos entre os componentes internos da dashboard de casa inteligente e a forma como ela interage com o ambiente físico da residência. Tais modelos auxiliam na compreensão da arquitetura, do fluxo de informações e das conexões entre sensores, interface de usuário e controle dos dispositivos.

Evolução do sistema

A aplicação foi projetada com base em pressupostos fundamentais relacionados ao ambiente doméstico atual, composto por dois moradores e cinco ambientes monitorados por sensores inteligentes (quartos, sala, cozinha e piscina). O sistema assume uma infraestrutura de sensores compatível com envio contínuo de dados, bem como uma conexão estável à internet para comunicação entre os dispositivos físicos e a dashboard.

2.2 - Histórias do Usuário

Alguns detalhes sobre a casa inteligente que cujos dados estão no arquivo anexo:

-2 Pessoas vivem nesta casa

-A casa possuí 2 quartos, 1 sala, 1 cozinha e 1 piscina e são identificados respectivamente pelos sensores de ID: 1, 2, 3, 4, 5.

-O gasto energético médio para deixar cada local ligado é:

Quartos (ID 1 e 2) – 1,5KWatts/Hora (Considerando 1 TV,1 lâmpada e um ar-condicionado)

Sala (ID 3) – 50Watts/Hora (Considerando 1 TV e 5 lâmpadas)

Cozinha (ID 4) – 3KWatts/Hora (Considerando 1 Micro-ondas, 1 máquina de lavar louça e 3 lâmpadas)

Piscina (ID 5) – 7KWatts/Hora (Bomba + Aquecedor)

Você tem a possibilidade de adicionar comandos separados para controlar cada um dos elementos descritos acima.

EXEMPLO DA BASE DOS SENSORES

TimeStamp	ID_Sensor	Temperatura	Umidade	Movimento
28/4/25 0:18	3	39	71	0
22/5/25 4:43	4	19	82	0
20/4/25 20:38	3	24	71	0
12/2/25 0:03	1	22	22	0
14/4/25 1:33	2	19	46	1
27/1/25 14:21	2	37	27	0
30/5/25 7:19	1	10	87	0
21/7/25 6:17	1	34	88	0
21/1/25 9:20	3	39	28	0

2/2/25 23:55	4	28	33	0
22/6/25 14:15	3	17	32	0
24/6/25 15:22	2	38	29	0
30/4/25 0:32	2	18	88	1
26/6/25 2:00	2	26	63	0
26/6/25 10:09	2	21	50	0
1/3/25 7:15	5	40	30	1
27/6/25 7:02	3	15	28	1

3. DESIGN SPRINT – Ideação e prototipação do desafio

3.1 Desafio

3.2 Entender Mapear

3.3 Ideação – desenho da solução (trilha do usuário)

3.4 Prototipagem

4.REQUISITOS DE SISTEMA

4.1 REQUISITOS FUNCIONAIS DE SOFTWARE

	RFS01
Função	Monitorar dados dos sensores em tempo real
Descrição	O sistema deve capturar e exibir em tempo real as informações enviadas pelos sensores da casa (temperatura, umidade e movimento).
Entradas	Sensor
Fonte	Sensores instalados nos cômodos da casa inteligente
	Painel com dados atualizados por ambiente
Saídas	
Ação	
	Exibir os dados em cartões visuais na tela inicial e na aba de sensores, com atualização automática ou manual.

RFS02		
Função	Exibir consumo energético por cômodo	
Descrição	O sistema deve calcular e apresentar o consumo energético estimado de cada ambiente com base nos sensores ativos e nos valores pré-definidos de consumo por local.	
	Consumo energético	
Entradas		
Fonte	Banco de dados interno + Sensores de movimento	
Saídas	Gráficos de barra e linha	

Ação	
	Apresentar visualmente o consumo atual e histórico (últimas 24h) por meio de gráficos interativos.

RFS03		
Função	Visualização de consumo energético por ambiente	
Descrição	O sistema deve permitir que o usuário visualize o consumo energético individual de cada ambiente da casa (quartos, sala, cozinha, piscina), em tempo real ou por período selecionado.	
Entradas	Intervalo de tempo selecionado pelo usuário	
Fonte	Leituras dos sensores associadas a cada ambiente	
Saídas	Gráfico de consumo energético específico por ambiente	
Ação	Mostrar visualmente, através de gráficos, o consumo energético por local, permitindo comparações e análises detalhadas.	

	RFS04
Função	Controle manual de dispositivos por ambiente
	O sistema deve permitir que o usuário ligue ou
Descrição	desligue dispositivos (TV, lâmpadas, ar-condicionado,

	bomba da piscina, etc.) de cada ambiente diretamente pela interface da dashboard.
Entradas	Botão ou switch de controle do dispositivo
Fonte	Comando de usuário via dashboard
Saídas	Estado atualizado do dispositivo (ligado/desligado)
Ação	Enviar comando ao sistema para alterar o estado do dispositivo selecionado, atualizando a visualização correspondente.

RFS05		
Função	Geração de relatórios históricos de consumo energético	
Descrição	O sistema deve permitir que o usuário gere relatórios em PDF com o histórico de consumo energético geral e por ambiente, em períodos configuráveis.	
Entradas	Data inicial e final selecionadas pelo usuário	
Fonte	Dados armazenados no banco de dados	
Saídas	Documento PDF com gráficos e dados consolidados	
Ação		
	Coletar dados históricos e gerar relatório visual em PDF, com opção de download ou envio por e-mail.	

RFS06		
Função	Detecção de presença e exibição em tempo real	

Descrição	O sistema deve exibir em tempo real a presença de pessoas nos ambientes da casa com base nos dados do sensor de movimento.
Entradas	Leituras do sensor de movimento (0 ou 1)
Fonte	Sensores instalados em cada ambiente
Saídas	Indicador visual de presença (ícones ou cores nos ambientes)
Ação	Exibir visualmente a presença ou ausência de pessoas em cada ambiente, de forma intuitiva e em tempo real.

4.2 REQUISITOS NÃO FUNCIONAIS DE SOFTWARE

RFS01		
Função	Desempenho e tempo de resposta	
Descrição	O sistema deve apresentar tempo de resposta inferior a 1 segundo para ações críticas, como a atualização dos dados de sensores e execução de comandos de controle.	
Entradas	Comandos enviados via dashboard	
Fonte	Solicitações dos usuários e atualizações dos sensores	
Saídas	Dados exibidos na interface	

Ação	Assegurar que as ações do usuário e os dados dos sensores sejam processados rapidamente, garantindo fluidez e experiência positiva.
	garantinao halaez e experientia positiva.

RFS02	
Função	Interface responsiva e compatibilidade cross-device
Descrição	A aplicação deve ser responsiva e adaptável a diferentes dispositivos (computadores, tablets e smartphones), mantendo usabilidade e leitura clara em todas as resoluções.
Entradas	Comportamento de interação (toque, clique, arrastar)
Fonte	Dispositivo de acesso do usuário
Saídas	Interface redimensionada e reordenada automaticamente
Ação	
	Utilizar frameworks modernos de frontend (ex: Tailwind, Bootstrap ou CSS Grid) para garantir que todos os elementos da dashboard se adaptem corretamente a qualquer tela.

RFS03	
Função	Responsividade da Interface
Descrição	A dashboard deve adaptar-se automaticamente a diferentes tamanhos de tela (computadores, tablets e smartphones), garantindo boa usabilidade em qualquer dispositivo.
Entradas	Acesso do usuário por diferentes tipos de dispositivos
Fonte	Requisitos de design responsivo (CSS, frameworks como Tailwind, Bootstrap, etc.)

	Interface ajustada corretamente ao tamanho do dispositivo
Saídas	
Ação	Aplicar práticas de design responsivo para manter a legibilidade, navegação e usabilidade em qualquer tela.

RFS04	
Função	Tempo de Resposta em Tempo Real
Descrição	O sistema deve atualizar os dados em tempo real com um tempo de resposta inferior a 2 segundos após o recebimento das informações dos sensores.
Fonte	Sistema de sensores loT da casa inteligente Dados atualizados na interface do usuário
Saídas	Dados atualizados ha interiace do usuano
Ação	
	Renderizar os dados recebidos quase instantaneamente para garantir precisão e confiabilidade na visualização.

RFS05	
Função	Escalabilidade do Sistema
Descrição	O sistema deve ser escalável, permitindo a inclusão de novos sensores, ambientes ou funcionalidades sem comprometer a performance ou exigir grandes reestruturações.
	Dados de novos sensores ou funcionalidades adicionadas
Entradas	
Fonte	Administração ou evolução da infraestrutura física e lógica da casa
	Integração e visualização fluida dos novos dados
Saídas	

Ação	
	Utilizar arquitetura modular para permitir crescimento contínuo sem comprometer o desempenho.

RFS06	
Função	Armazenamento Seguro de Dados
Descrição	O sistema deve armazenar dados de sensores e interações do usuário de forma segura, com backups automáticos e controle de acesso baseado em autenticação.
Entradas	O sistema deve armazenar dados de sensores e interações do usuário de forma segura, com backups automáticos e controle de acesso baseado em autenticação.
Fonte	Fluxos de entrada do sistema
	Dados protegidos contra perdas ou acessos não autorizados
Saídas	
Ação	
	Implementar políticas de backup regular, criptografia e autenticação para garantir a integridade e privacidade das informações.

5. CASOS DE USO

Imagens

Exemplo de Caso de uso Imagem 1

Exemplo de Caso de uso Imagem 2

Exemplo de Caso de uso Imagem 3

Caso de Uso 01: Visualizar Consumo de Energia por Ambiente

Identificador: C.U 01

Visualizar consumo energético por ambiente

Atores: Usuário autenticado

Descrição: O usuário acessa a dashboard e visualiza gráficos atualizados com o consumo

de energia de cada ambiente da casa (quartos, sala, cozinha, piscina).

Pré-condições: Usuário deve estar autenticado no sistema.

Fluxo principal:

1. Usuário acessa a aba "Consumo de Energia".

- 2. O sistema carrega os dados em tempo real dos sensores.
- 3. Os dados são agrupados por ambiente com base no ID do sensor.
- 4. O sistema exibe os gráficos de consumo individual e total.
- 5. O usuário pode filtrar os dados por período (dia, semana, mês).

Pós-condições: Os gráficos são atualizados com base nos filtros aplicados. Exceções:

- Falha na conexão com os sensores → exibir mensagem de erro.
- Falta de dados para o período → exibir aviso informando ausência de dados.

Caso de Uso 02: Controlar Dispositivos da Casa

Identificador: C.U 02

Nome: Ativar ou desativar dispositivos por ambiente

Atores: Usuário autenticado

Descrição: O usuário pode controlar dispositivos dos ambientes (luz, ar-condicionado,

bomba da piscina) diretamente pela dashboard.

Pré-condições: O usuário deve estar logado e o ambiente deve possuir dispositivos integrados ao sistema.

Fluxo principal:

- 1. Usuário acessa a aba "Controles".
- 2. O sistema exibe os ambientes com seus dispositivos disponíveis.
- 3. Usuário ativa ou desativa um dispositivo com um botão.
- 4. O sistema envia o comando ao dispositivo correspondente.

5. O status é atualizado visualmente na interface.

Pós-condições: O dispositivo responde ao comando e o status fica visível. Exceções:

- Dispositivo sem conexão → exibir status "offline" e bloquear ação.
- Comando falhou → exibir notificação de erro.

Caso de Uso 03: Monitorar Temperatura e Movimento

Identificador: C.U 03

Nome: Acompanhar dados ambientais

Atores: Usuário autenticado

Descrição: O usuário visualiza, em tempo real, os dados de temperatura, umidade e

detecção de movimento em cada ambiente.

Pré-condições: Usuário autenticado e sensores ativos.

Fluxo principal:

1. Usuário acessa a aba "Ambientes".

- 2. O sistema exibe a lista de ambientes com temperatura, umidade e status de movimento.
- 3. O sistema atualiza os dados automaticamente.
- 4. O usuário pode expandir um ambiente para ver o histórico.

Pós-condições: Dados atualizados constantemente e acessíveis. Exceções:

- Sensor desconectado → exibir último valor registrado e alerta.
- Dados corrompidos → ocultar valor e registrar erro no backend.

6. DIAGRAMA DE CLASSE

7. ARQUITETURA DO SISTEMA

A arquitetura do sistema de monitoramento e controle para casa inteligente foi projetada com foco em modularidade, escalabilidade e facilidade de integração com sensores físicos, bancos de dados em nuvem e interface de usuário amigável.

7.1 Visão Geral da Arquitetura

O sistema adota uma arquitetura bas,

eada em camadas, com os seguintes componentes principais:

Camada de Sensoriamento (IoT):

Conjunto de sensores distribuídos pelos ambientes da casa (quartos, sala, cozinha, piscina), responsáveis pela coleta de dados de temperatura, umidade, movimento e consumo de energia.

• Camada de Comunicação:

Os sensores transmitem os dados por meio de protocolo MQTT/HTTP para um gateway local ou diretamente para a nuvem.

• Backend (Servidor / Banco de Dados):

Utiliza uma API central (por exemplo, hospedada no Supabase ou MongoDB) que armazena os dados recebidos e fornece endpoints para consultas e comandos.

- Banco de dados relacional armazena os registros de sensores, consumo energético, controle de dispositivos e dados dos usuários.
- Serviços de autenticação e autorização.

Frontend (Dashboard Web):

Desenvolvido com tecnologias modernas como, React, Vue.js, TailWind. Responsável por exibir:

- Gráficos de consumo por ambiente.
- o Controles de dispositivos (liga/desliga).
- Visualização de temperatura, umidade e movimento.
- Menu lateral com navegação entre módulos.

Camada de Controle:

Permite que comandos do usuário sejam convertidos em ações nos dispositivos da casa (ex: ligar ar-condicionado, desativar bomba da piscina).

8. REFERÊNCIAS BIBLIOGRÁFICAS

SOMMERVILLE, I. **Engenharia de Software.** 11ª Edição. São Paulo: Pearson Addison-Wesley, 2017.

ANDRADE, Joheván de Gois. Estudo e projeto de transformação de uma casa tradicional numa casa inteligente, baseada em IoT. 2024. Dissertação (Mestrado) — Universidade da Madeira, Portugal, 2024. Disponível em: ProQuest Dissertations & Theses. Acesso em: 12 abr. 2025.

INTELBRAS. Casa inteligente: entenda o conceito e como funciona. Disponível em: https://blog.intelbras.com.br/casa-inteligente/. Acesso em: 12 abr. 2025.

COSTA, Arthur Linhares; ALCANTARA, Lucas Laranja; ZIPINOTTI, Rafael Loss; ALMEIDA, Rayne Cruz de; PEREIRA, Victor Oliveira; SOUZA, Francisca Katia de Barbosa de; FERREIRA, Jamilli Ricarto. Casa inteligente. Vila Velha - ES: Centro Estadual de Educação Técnica Vasco Coutinho, [s.d.]. Trabalho acadêmico – Segundo Módulo do Ensino Técnico em Informática.