Exercises from Real Mathematical Analysis by Charles Pugh

Exercise 2.12a Let (p_n) be a sequence and $f: \mathbb{N} \to \mathbb{N}$. The sequence $(q_k)_{k \in \mathbb{N}}$ with $q_k = p_{f(k)}$ is called a rearrangement of (p_n) . Show that if f is an injection, the limit of a sequence is unaffected by rearrangement.

Exercise 2.12b Let (p_n) be a sequence and $f: \mathbb{N} \to \mathbb{N}$. The sequence $(q_k)_{k \in \mathbb{N}}$ with $q_k = p_{f(k)}$ is called a rearrangement of (p_n) . Show that if f is a surjection, the limit of a sequence is unaffected by rearrangement.

Exercise 2.26 Prove that a set $U \subset M$ is open if and only if none of its points are limits of its complement.

Exercise 2.29 Let \mathcal{T} be the collection of open subsets of a metric space M, and \mathcal{K} the collection of closed subsets. Show that there is a bijection from \mathcal{T} onto \mathcal{K} .

Exercise 2.32a Show that every subset of \mathbb{N} is clopen.

Exercise 2.41 Let $\|\cdot\|$ be any norm on \mathbb{R}^m and let $B = \{x \in \mathbb{R}^m : \|x\| \le 1\}$. Prove that B is compact.

Exercise 2.46 Assume that A, B are compact, disjoint, nonempty subsets of M. Prove that there are $a_0 \in A$ and $b_0 \in B$ such that for all $a \in A$ and $b \in B$ we have $d(a_0, b_0) \leq d(a, b)$.

Exercise 2.48 Prove that there is an embedding of the line as a closed subset of the plane, and there is an embedding of the line as a bounded subset of the plane, but there is no embedding of the line as a closed and bounded subset of the plane.

Exercise 2.56 Prove that the 2-sphere is not homeomorphic to the plane.

Exercise 2.57 Show that if S is connected, it is not true in general that its interior is connected.

Exercise 2.79 Prove that if M is nonempty compact, locally path-connected and connected then it is path-connected.

Exercise 2.85 Suppose that M is compact and that \mathcal{U} is an open covering of M which is redundant in the sense that each $p \in M$ is contained in at least two members of \mathcal{U} . Show that \mathcal{U} reduces to a finite subcovering with the same property.

Exercise 2.92 Give a direct proof that the nested decreasing intersection of nonempty covering compact sets is nonempty.

Exercise 2.109 A metric on M is an ultrametric if for all $x, y, z \in M$, $d(x, z) \leq \max\{d(x, y), d(y, z)\}$. Show that a metric space with an ultrametric is totally disconnected.

Exercise 2.126 Suppose that E is an uncountable subset of \mathbb{R} . Prove that there exists a point $p \in \mathbb{R}$ at which E condenses.

Exercise 2.137 Let P be a closed perfect subset of a separable complete metric space M. Prove that each point of P is a condensation point of P.

Exercise 2.138 Given a Cantor space $M \subset R^2$, given a line segment $[p,q] \subset R^2$ with $p,q \notin M$, and given an $\epsilon > 0$, prove that there exists a path A in the ϵ -neighborhood of [p,q] that joins p to q and is disjoint from M.

Exercise 3.1 Assume that $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f(t) - f(x)| \le |t - x|^2$ for all t, x. Prove that f is constant.

Exercise 3.4 Prove that $\sqrt{n+1} - \sqrt{n} \to 0$ as $n \to \infty$.

Exercise 3.11a Let $f:(a,b)\to\mathbb{R}$ be given. If f''(x) exists, prove that

$$\lim_{h \to 0} \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} = f''(x).$$

Exercise 3.17c-i Show that the bump function $\beta(x) = e^2 e(1-x) \cdot e(x+1)$ is smooth.

Exercise 3.17c-ii Show that the bump function $\beta(x) = e^2 e(1-x) \cdot e(x+1)$ is identically 0 outside the interval (-1,1).

Exercise 3.18 Let L be any closed set in \mathbb{R} . Prove that there is a smooth function $f: \mathbb{R} \to [0,1]$ such that f(x) = 0 if and only if $x \in L$.

Exercise 3.43a Let $\psi(x) = x \sin 1/x$ for $0 < x \le 1$ and $\psi(0) = 0$. If $f: [-1,1] \to \mathbb{R}$ is Riemann integrable, prove that $f \circ \psi$ is Riemann integrable.

Exercise 3.53 Given $f, g \in \mathcal{R}$, prove that $\max(f, g)$ and $\min(f, g)$ are Riemann integrable, where $\max(f, g)(x) = \max(f(x), g(x))$ and $\min(f, g)(x) = \min(f(x), g(x))$.

Exercise 3.63a Prove that $\sum 1/k(\log(k))^p$ converges when p > 1.

Exercise 3.63b Prove that $\sum 1/k(\log(k))^p$ diverges when $p \le 1$.

Exercise 4.15a A continuous, strictly increasing function $\mu \colon (0, \infty) \to (0, \infty)$ is a modulus of continuity if $\mu(s) \to 0$ as $s \to 0$. A function $f \colon [a, b] \to \mathbb{R}$ has modulus of continuity μ if $|f(s) - f(t)| \le \mu(|s - t|)$ for all $s, t \in [a, b]$. Prove that a function is uniformly continuous if and only if it has a modulus of continuity.

Exercise 4.15b A continuous, strictly increasing function $\mu \colon (0,\infty) \to (0,\infty)$ is a modulus of continuity if $\mu(s) \to 0$ as $s \to 0$. A function $f \colon [a,b] \to \mathbb{R}$ has modulus of continuity μ if $|f(s) - f(t)| \le \mu(|s-t|)$ for all $s,t \in [a,b]$. Prove that a family of functions is equicontinuous if and only if its members have a common modulus of continuity.

Exercise 4.19 If M is compact and A is dense in M, prove that for each $\delta > 0$ there is a finite subset $\{a_1, \ldots, a_k\} \subset A$ which is δ -dense in M in the sense that each $x \in M$ lies within distance δ of at least one of the points a_1, \ldots, a_k .

Exercise 4.36a Suppose that the ODE x' = f(x) on \mathbb{R} is bounded, $|f(x)| \leq M$ for all x. Prove that no solution of the ODE escapes to infinity in finite time.

Exercise 4.42 Prove that \mathbb{R} cannot be expressed as the countable union of Cantor sets.

Exercise 5.2 Let L be the vector space of continuous linear transformations from a normed space V to a normed space W. Show that the operator norm makes L a normed space.

Exercise 5.20 Assume that U is a connected open subset of \mathbb{R}^n and $f: U \to \mathbb{R}^m$ is differentiable everywhere on U. If $(Df)_p = 0$ for all $p \in U$, show that f is constant.

Exercise 5.22 If Y is a metric space and $f:[a,b]\times Y\to\mathbb{R}$ is continuous, show that $F(y)=\int_a^b f(x,y)dx$ is continuous.

Exercise 5.43a Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ has rank k. Show there exists a $\delta > 0$ such that if $S: \mathbb{R}^n \to \mathbb{R}^m$ and $||S - T|| < \delta$ then S has rank $\geq k$.

Exercise 6.38 If f and g are integrable prove that their maximum and minimum are integrable.

Exercise 6.39 Suppose that f and g are measurable and their squares are integrable. Prove that fg is measurable, integrable, and $\int fg \leq \sqrt{\int f^2} \sqrt{\int g^2}$.

Exercise 6.43 Prove that $g(y) = \int_0^\infty e^{-x} \sin(x+y) dx$ is differentiable and find g'(y).

Exercise 6.49a Prove that $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable if and only if the preimage of every Borel set is a Lebesgue measurable.