CS 321- Quiz 1

Email address * maheeth2000@gmail.com	
Assume variables x, f, and d are of type int, float, and double, respectively. Their values are arbitrary, except that neither f nor d equals +∞, -∞, or NaN. For the following C expression, check whether it will always be true: d == (double)(float) d Always True Not Always Other:	2/2
Name * Maheeth Reddy	
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for 5/8 is (give answer in binary eg: 11000001) 00110010	3/3

Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The write the binary value of 2.25 is (give binary without space eg. 1 1000001) 01000001	2/2
QXX1: 32-bit unsigned number representation of 478 is 000000000000000000000111011110	2/2
QXX3: 32-bit signed number representation of -478 is 10000000000000000000111011110	/2
Suppose we have a 6-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 3 exponent bits, and 2 fraction bits. Total number useful representation is (give answer as integer eg. 64)	/3
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for -1.01 is (give answer in decimal: X.XX) 10111000	/3

Assume variables x, f, and d are of type int, float, and double, respectively. Their values are arbitrary, except that neither f nor d equals +∞, -∞, or NaN. For the following C expression, check whether it will always be true: x == (int)(float) x Always True Not Always Other:	2/2
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The write the binary value of Smallest positive normalized number is (give binary without space eg. 1 1000001) 00001000	2/2
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for 12.25 is (give answer in decimal: X.XX) 01010100	/3
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for the sum of sum (2.01 +2.00) is (give answer in binary eg: 11000001)	/3

Assume variables x, f, and d are of type int, float, and double, respectively. Their values are arbitrary, except that neither f nor d equals +∞, -∞, or NaN. For the following C expression, check whether it will always be true: x == (int)(double) x Always True Not Always Other:
Q8 Nine_ints are 9-bit signed two's complement integers. Nine_floats are 9- 2/2 bit floating point numbers with 4 bits for the exponent, 4 bits for the fraction, and 1 bit for the sign. Nine_floats are similar to IEEE floating point as far as layout of sign, exponent and fraction and represent special values (e.g. 0, pos and neg infinity, NAN) similar to how they are represented in 32 bit IEEE floating point.
8. It is possible to lose precision when converting from Nine_ints to
8. It is possible to lose precision when converting from Nine_ints to Nine_floats.
Application of the property of
Nine_floats.
Nine_floats. TRUE
Nine_floats. TRUE
Nine_floats. TRUE FALSE Assume variables x, f, and d are of type int, float, and double, respectively. Their values are arbitrary, except that neither f nor d equals $+\infty$, $-\infty$, or NaN. For the following C expression, check whether it will always be true: $d*d >=$
Nine_floats. TRUE FALSE Assume variables x, f, and d are of type int, float, and double, respectively. Their values are arbitrary, except that neither f nor d equals +∞, -∞, or NaN. For the following C expression, check whether it will always be true: d*d >= 0.0

Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The value of Largest positive De- normalized number is (give answer in binary eg:11000001) 00000001	/3
Assume variables x, f, and d are of type int, float, and double, respectively. Their values are arbitrary, except that neither f nor d equals +∞, -∞, or NaN. For the following C expression, check whether it will always be true: f == (float)(double) f Always True Not Always Other:	0/2
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The write value of Largest positive normalized number < ∞ (give answer in Decimal eg: 14)	2/2
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The write the binary value of -80 is (give binary without space eg. 1 1000001) 11101010	2/2

Q6	3/3
6. In IEEE 754 standard the number 0x415e0000 (hex) is equivalent to	
15.875	
15.75	
13.875	
1.875	
Q2	0/2
In a hypothetical 10 bit processor uses 10 bit Floating point representation and assumes format	the following
format	the following
format	
format 1bit sign 4 bit Exponent 5 bit Mantissa 2. The minimum Normalized number that can be represented in the system is?	
format 1bit sign 4 bit Exponent 5 bit Mantissa 2. The minimum Normalized number that can be represented in the system is? Chaica:	
1bit sign 4 bit Exponent 5 bit Mantissa 2. The minimum Normalized number that can be represented in the system is? Chaica: 0.015625	
1bit sign 4 bit Exponent 5 bit Mantissa 2. The minimum Normalized number that can be represented in the system is? Chaica: 0.015625 0.03125	

Q7 Nine_ints are 9-bit signed two's complement integers. Nine_floats are 9- 0/3 bit floating point numbers with 4 bits for the exponent, 4 bits for the fraction, and 1 bit for the sign. Nine_floats are similar to IEEE floating point as far as layout of sign, exponent and fraction and represent special values (e.g. 0, pos and neg infinity, NAN) similar to how they are represented in 32 bit IEEE floating point.

7.	The	largest	positive	number	we can	represent	with	Nine	ints?
		INITOUT	PODICIO	1101111001	THE CHILL	COLCOCITE			

- 255
- 511
- 256
- none of these

Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic 2/2 where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The value of Smallest positive De- normalized number is (give answer in Decimal eg: 0.0003125)

0.001953125

3/3
to
2/2
2/2

Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic 2/2 where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The write the binary value of 2.25 is (give binary without space eg. 1 1000001)
01000001
Q10 Nine_ints are 9-bit signed two's complement integers. Nine_floats are 9- ···/3 bit floating point numbers with 4 bits for the exponent, 4 bits for the fraction, and 1 bit for the sign. Nine_floats are similar to IEEE floating point as far as layout of sign, exponent and fraction and represent special values (e.g. 0, pos and neg infinity, NAN) similar to how they are represented in 32 bit IEEE floating point.
10. The smallest negative number representable as a Nine int < The smallest negative number representable as a Nine float.
● TRUE
○ FALSE
Assume variables x, f, and d are of type int, float, and double, respectively. 2/2 Their values are arbitrary, except that neither f nor d equals $+\infty$, $-\infty$, or NaN. For the following C expression, check whether it will always be true: $(f+d)-f=d$
Always True
Not Always
Other:

Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The value of Smallest positive normalized number is (give answer in Decimal eg: 0.03125)			
00001000			
Assume variables x, f, and d are of type int, float, and double, respectively. Their values are arbitrary, except that neither f nor d equals $+\infty$, $-\infty$, or NaN. For the following C expression, check whether it will always be true: f == -(-f)	0/2		
Always True			
Not Always			
Other:			
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for 5/8 is (give answer in decimal: -X.XX) 00110010	3/3		
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The write the binary value of largest positive normalized number $< \infty$ is (give binary without space eg. 1 1000001)	2/2		
QXX1: 32-bit sign magnitude representation of -478 is	2/2		

1000000000000000000000111011110

output is 4/4 -126 QXX1 In C, type char is a signed, 8-bit integer. With that in mind, what does this output? char a = 100; char b= 30; char c= a + b; printf("%d\n", c); // Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic 3/3 where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for 12.25 is (give answer in binary eg: 11000001) 01010100 Q3 2/2 In a hypothetical 10 bit processor uses 10 bit Floating point representation and assumes the following format 1bit sign 4 bit Exponent 5 bit Mantissa 3. The maximum De-normalized number that can be represented in the system is? 0.015625 0.01513671875 0.0146484375 non of these

Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The write the binary value of 1/32 is (give binary without space eg. 1 1000001) 00010000	2/2
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for the sum of sum (2.01 +2.00) is (give answer in decimal: -X.XX) 4.00	/3
QXX2 32-bit signed number representation of 478 is 100000000000000000000111011110	/2
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The representation for -1.01 is (give answer in binary eg:11000001) 10111000	3/3
Suppose we have a 8-bit computer that uses IEEE floating-point arithmetic where a floating point number has 1 sign bit, 4 exponent bits, and 3 fraction bits. The value of Smallest positive De-normalized number is (give answer in binary eg:11000001)	3/3

Q4		2/2
In a hypothetical 10 bit processor uses 10 bit Floating format	point representation and assumes the following	
1bit sign 4 bit Exponent	5 bit Mantissa	
4. The minimum De-normalized number that car	be represented in the system is?	
0.00048828125		
0.0009765625		
0.001953125		
None of these		
Roll Number *		
1801CS31		

This content is neither created nor endorsed by Google. - <u>Terms of Service</u> - <u>Privacy Policy</u>

Google Forms