Splitting Problems for Vector Bundles. Part III Splitting algebraic vector bundles

Tariq Syed, Heinrich-Heine-Universität Düsseldorf

October 6, 2025

Theorem

Let T be a paracompact topological space (e.g., a CW complex). Then there are natural bijections

$$\mathcal{V}_r^{\mathbb{R}}(T) \cong [T, Gr_r(\mathbb{R})]$$

and

$$\mathcal{V}_r^{\mathbb{C}}(T) \cong [T, \mathit{Gr}_r(\mathbb{C})]$$

for all $r \ge 0$.

Theorem

Let T be a paracompact topological space (e.g., a CW complex). Then there are natural bijections

$$\mathcal{V}_r^{\mathbb{R}}(T) \cong [T, Gr_r(\mathbb{R})]$$

and

$$\mathcal{V}_r^{\mathbb{C}}(T) \cong [T, \mathit{Gr}_r(\mathbb{C})]$$

for all $r \ge 0$. In particular, if T is contractible, then all real/complex topological vector bundles over T are trivial.

Theorem

Let T be a paracompact topological space (e.g., a CW complex). Then there are natural bijections

$$\mathcal{V}_r^{\mathbb{R}}(T) \cong [T, Gr_r(\mathbb{R})]$$

and

$$\mathcal{V}_r^{\mathbb{C}}(T) \cong [T, Gr_r(\mathbb{C})]$$

for all $r \ge 0$. In particular, if T is contractible, then all real/complex topological vector bundles over T are trivial.

Corollary

Let T be a paracompact topological space (e.g., a CW complex). Then the maps

$$\mathcal{V}_r^{\mathbb{K}}(T) \to \mathcal{V}_r^{\mathbb{K}}(T \times [0,1])$$

are bijections for all $r \ge 0$ and $\mathbb{K} = \mathbb{R}, \mathbb{C}$.

$$\mathbb{A}^n \coloneqq Spec(\mathbb{Z}[t_1,...,t_n])$$
 affine spaces

$$\mathbb{A}^n \coloneqq Spec(\mathbb{Z}[t_1,...,t_n])$$
 affine spaces

 $\mathbb{A}^n_S := \mathbb{A}^n \times S$ affine spaces over S (for S a scheme)

$$\mathbb{A}^n \coloneqq Spec(\mathbb{Z}[t_1,...,t_n])$$
 affine spaces

$$\mathbb{A}^n_S \coloneqq \mathbb{A}^n \times S$$
 affine spaces over S (for S a scheme)

Notation. $\mathbb{A}^n_R := \mathbb{A}^n \times S$ for an affine scheme S = Spec(R)

$$\mathbb{A}^n \coloneqq Spec(\mathbb{Z}[t_1,...,t_n])$$
 affine spaces

 $\mathbb{A}^n_S \coloneqq \mathbb{A}^n \times S$ affine spaces over S (for S a scheme)

Notation. $\mathbb{A}^n_R := \mathbb{A}^n \times S$ for an affine scheme S = Spec(R)

Serre's problem (1955)

Let k be a field. Are all algebraic vector bundles over \mathbb{A}_k^n trivial?

$$\mathbb{A}^n \coloneqq Spec(\mathbb{Z}[t_1,...,t_n])$$
 affine spaces

 $\mathbb{A}^n_S := \mathbb{A}^n \times S$ affine spaces over S (for S a scheme)

Notation. $\mathbb{A}^n_R := \mathbb{A}^n \times S$ for an affine scheme S = Spec(R)

Serre's problem (1955)

Let k be a field. Are all algebraic vector bundles over \mathbb{A}_k^n trivial?

Theorem (Quillen, Suslin, 1976)

Let k be a field. Then all algebraic vector bundles over \mathbb{A}^n_k are trivial.

 \mathbb{A}^1 -invariance for vector bundles

A¹-invariance for vector bundles

Bass-Quillen conjecture (1972/1976)

Let X be a regular Noetherian affine scheme of finite Krull dimension. Then the maps

$$\mathcal{V}_r(X) \to \mathcal{V}_r(X \times \mathbb{A}^1)$$

are bijections for all $r \ge 0$.

A¹-invariance for vector bundles

Bass-Quillen conjecture (1972/1976)

Let X be a regular Noetherian affine scheme of finite Krull dimension. Then the maps

$$\mathcal{V}_r(X) \to \mathcal{V}_r(X \times \mathbb{A}^1)$$

are bijections for all $r \ge 0$.

Theorem (Lindel, 1982)

The Bass-Quillen conjecture holds for any smooth affine scheme X over Spec(k), where k is a field.

A¹-invariance for vector bundles

Bass-Quillen conjecture (1972/1976)

Let X be a regular Noetherian affine scheme of finite Krull dimension. Then the maps

$$\mathcal{V}_r(X) \to \mathcal{V}_r(X \times \mathbb{A}^1)$$

are bijections for all $r \ge 0$.

Theorem (Lindel, 1982)

The Bass-Quillen conjecture holds for any smooth affine scheme X over Spec(k), where k is a field.

Theorem (Popescu, 1989)

The Bass-Quillen conjecture holds for any smooth affine scheme X over $Spec(\mathbb{Z})$.

A¹-homotopy theory or motivic homotopy theory

A¹-homotopy theory or motivic homotopy theory

S - a quasi-compact and quasi-separated base scheme (e.g., S = Spec(k) for some field k or $S = Spec(\mathbb{Z})$)

S - a quasi-compact and quasi-separated base scheme (e.g., S = Spec(k) for some field k or $S = Spec(\mathbb{Z})$)

 Sm_S - category of smooth S-schemes

A¹-homotopy theory or motivic homotopy theory

S - a quasi-compact and quasi-separated base scheme (e.g., S = Spec(k) for some field k or $S = Spec(\mathbb{Z})$)

 Sm_S - category of smooth S-schemes

Now embed this category into a larger category

A¹-homotopy theory or motivic homotopy theory

S - a quasi-compact and quasi-separated base scheme (e.g., S = Spec(k) for some field k or $S = Spec(\mathbb{Z})$)

 Sm_S - category of smooth S-schemes

Now embed this category into a larger category called

 $\mathit{Spc}_{\mathcal{S}}$ - the category of spaces over \mathcal{S}

S - a quasi-compact and quasi-separated base scheme (e.g., S = Spec(k) for some field k or $S = Spec(\mathbb{Z})$)

 Sm_S - category of smooth S-schemes

Now embed this category into a larger category called

 Spc_S - the category of spaces over S (the category of simplicial Nisnevich sheaves of sets over Sm_S)

S - a quasi-compact and quasi-separated base scheme (e.g., S = Spec(k) for some field k or $S = Spec(\mathbb{Z})$)

 Sm_S - category of smooth S-schemes

Now embed this category into a larger category called

 Spc_S - the category of spaces over S (the category of simplicial Nisnevich sheaves of sets over Sm_S)

Formally invert all the projections $\mathcal{X} \times \mathbb{A}^1_S \to \mathcal{X}$ for any space \mathcal{X} .

S - a quasi-compact and quasi-separated base scheme (e.g., S = Spec(k) for some field k or $S = Spec(\mathbb{Z})$)

 Sm_S - category of smooth S-schemes

Now embed this category into a larger category called

 Spc_S - the category of spaces over S (the category of simplicial Nisnevich sheaves of sets over Sm_S)

Formally invert all the projections $\mathcal{X} \times \mathbb{A}^1_S \to \mathcal{X}$ for any space \mathcal{X} .

The category obtained in this form is called

 $\mathcal{H}(S)$ - the unstable \mathbb{A}^1 -homotopy category over S

Objects of $\mathcal{H}(S)$ are spaces (i.e., the objects of the category Spc_S)

Objects of $\mathcal{H}(S)$ are spaces (i.e., the objects of the category Spc_S)

Morphisms in $\mathcal{H}(S)$ are interpreted as **homotopy classes**

Objects of $\mathcal{H}(S)$ are spaces (i.e., the objects of the category Spc_S)

Morphisms in $\mathcal{H}(S)$ are interpreted as **homotopy classes**

Notation. For spaces \mathcal{X}, \mathcal{Y} , we let $[\mathcal{X}, \mathcal{Y}] := Hom_{\mathcal{H}(S)}(\mathcal{X}, \mathcal{Y})$.

Objects of $\mathcal{H}(S)$ are spaces (i.e., the objects of the category Spc_S)

Morphisms in $\mathcal{H}(S)$ are interpreted as homotopy classes

Notation. For spaces \mathcal{X}, \mathcal{Y} , we let $[\mathcal{X}, \mathcal{Y}] \coloneqq \mathit{Hom}_{\mathcal{H}(S)}(\mathcal{X}, \mathcal{Y})$.

Let
$$i_0: S \to \mathbb{A}^1_S, s \mapsto (0, s)$$
 and $i_1: S \to \mathbb{A}^1_S, s \mapsto (1, s)$.

Objects of $\mathcal{H}(S)$ are spaces (i.e., the objects of the category Spc_S)

Morphisms in $\mathcal{H}(S)$ are interpreted as **homotopy classes**

Notation. For spaces \mathcal{X}, \mathcal{Y} , we let $[\mathcal{X}, \mathcal{Y}] \coloneqq \mathit{Hom}_{\mathcal{H}(S)}(\mathcal{X}, \mathcal{Y})$.

Let $i_0: S \hookrightarrow \mathbb{A}^1_S, s \mapsto (0, s)$ and $i_1: S \hookrightarrow \mathbb{A}^1_S, s \mapsto (1, s)$.

Definition

Let $X, Y \in Sm_S$. Two morphisms $f, g: X \to Y$ are called naively \mathbb{A}^1 -homotopic if there is a morphism $H: X \times \mathbb{A}^1_S \to Y$ with $H \circ (id_X \times i_0) = f$ and $H \circ (id_X \times i_1) = g$.

Objects of $\mathcal{H}(S)$ are spaces (i.e., the objects of the category Spc_S)

Morphisms in $\mathcal{H}(S)$ are interpreted as **homotopy classes**

Notation. For spaces \mathcal{X}, \mathcal{Y} , we let $[\mathcal{X}, \mathcal{Y}] \coloneqq \mathit{Hom}_{\mathcal{H}(S)}(\mathcal{X}, \mathcal{Y})$.

Let $i_0: S \hookrightarrow \mathbb{A}^1_S, s \mapsto (0, s)$ and $i_1: S \hookrightarrow \mathbb{A}^1_S, s \mapsto (1, s)$.

Definition

Let $X, Y \in Sm_S$. Two morphisms $f, g: X \to Y$ are called naively \mathbb{A}^1 -homotopic if there is a morphism $H: X \times \mathbb{A}^1_S \to Y$ with $H \circ (id_X \times i_0) = f$ and $H \circ (id_X \times i_1) = g$.

One obtains a well-defined map $Hom_{Sm_S}(X,Y)/_{\sim_{naive}} \to [X,Y]$.

Objects of $\mathcal{H}(S)$ are spaces (i.e., the objects of the category Spc_S)

Morphisms in $\mathcal{H}(S)$ are interpreted as **homotopy classes**

Notation. For spaces \mathcal{X}, \mathcal{Y} , we let $[\mathcal{X}, \mathcal{Y}] \coloneqq \mathit{Hom}_{\mathcal{H}(S)}(\mathcal{X}, \mathcal{Y})$.

Let $i_0: S \hookrightarrow \mathbb{A}^1_S, s \mapsto (0, s)$ and $i_1: S \hookrightarrow \mathbb{A}^1_S, s \mapsto (1, s)$.

Definition

Let $X, Y \in Sm_S$. Two morphisms $f, g: X \to Y$ are called naively \mathbb{A}^1 -homotopic if there is a morphism $H: X \times \mathbb{A}^1_S \to Y$ with $H \circ (id_X \times i_0) = f$ and $H \circ (id_X \times i_1) = g$.

One obtains a well-defined map $Hom_{Sm_S}(X,Y)/_{\sim_{naive}} \to [X,Y]$.

Caveat: This map is not bijective in general!

Theorem (Morel, Schlichting, Asok-Hoyois-Wendt)

Let S be either Spec(k) for some field k or $Spec(\mathbb{Z})$ and $r \ge 0$. Then there are natural bijections

$$\mathcal{V}_r(X) \cong [X, Gr_r]$$

for all **affine** $X \in Sm_S$.

Theorem (Morel, Schlichting, Asok-Hoyois-Wendt)

Let S be either Spec(k) for some field k or $Spec(\mathbb{Z})$ and $r \ge 0$. Then there are natural bijections

$$\mathcal{V}_r(X) \cong [X, Gr_r]$$

for all **affine** $X \in Sm_S$.

• Morel (2006): $r \neq 2$, S = Spec(k), k perfect field

Theorem (Morel, Schlichting, Asok-Hoyois-Wendt)

Let S be either Spec(k) for some field k or $Spec(\mathbb{Z})$ and $r \ge 0$. Then there are natural bijections

$$\mathcal{V}_r(X) \cong [X, Gr_r]$$

for all **affine** $X \in Sm_S$.

- Morel (2006): $r \neq 2$, S = Spec(k), k perfect field
- Schlichting (2015): arbitrary r, S = Spec(k), k perfect field

Theorem (Morel, Schlichting, Asok-Hoyois-Wendt)

Let S be either Spec(k) for some field k or $Spec(\mathbb{Z})$ and $r \ge 0$. Then there are natural bijections

$$\mathcal{V}_r(X) \cong [X, Gr_r]$$

for all **affine** $X \in Sm_S$.

- Morel (2006): $r \neq 2$, S = Spec(k), k perfect field
- Schlichting (2015): arbitrary r, S = Spec(k), k perfect field
- Asok-Hoyois-Wendt (2015): as above

Affine representability for algebraic vector bundles

Theorem (Morel, Schlichting, Asok-Hoyois-Wendt)

Let S be either Spec(k) for some field k or $Spec(\mathbb{Z})$ and $r \ge 0$. Then there are natural bijections

$$\mathcal{V}_r(X) \cong [X, Gr_r]$$

for all **affine** $X \in Sm_S$.

- Morel (2006): $r \neq 2$, S = Spec(k), k perfect field
- Schlichting (2015): arbitrary r, S = Spec(k), k perfect field
- Asok-Hoyois-Wendt (2015): as above (in essence, theorem is equivalent to the Bass-Quillen conjecture for all affine X ∈ Sm_S)

Let k be a perfect field and X a smooth affine k-scheme.

Let k be a perfect field and X a smooth affine k-scheme.

The splitting problem for algebraic vector bundles

When does an algebraic vector bundle \mathcal{E} over X of rank r admit an isomorphism $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$ for some vector bundle \mathcal{E}' ?

Let k be a perfect field and X a smooth affine k-scheme.

The splitting problem for algebraic vector bundles

When does an algebraic vector bundle \mathcal{E} over X of rank r admit an isomorphism $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$ for some vector bundle \mathcal{E}' ?

In other words:

Let k be a perfect field and X a smooth affine k-scheme.

The splitting problem for algebraic vector bundles

When does an algebraic vector bundle \mathcal{E} over X of rank r admit an isomorphism $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$ for some vector bundle \mathcal{E}' ?

In other words: When does $[\mathcal{E}]$ lie in the image of the map $s_{r-1}: \mathcal{V}_{r-1}(X) \to \mathcal{V}_r(X), [\mathcal{E}'] \mapsto [\mathcal{E}' \oplus \underline{1}]$?

Let k be a perfect field and X a smooth affine k-scheme.

The splitting problem for algebraic vector bundles

When does an algebraic vector bundle \mathcal{E} over X of rank r admit an isomorphism $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$ for some vector bundle \mathcal{E}' ?

In other words: When does $[\mathcal{E}]$ lie in the image of the map $s_{r-1}: \mathcal{V}_{r-1}(X) \to \mathcal{V}_r(X), [\mathcal{E}'] \mapsto [\mathcal{E}' \oplus \underline{1}]$?

The inclusion $\xi_{r-1}: Gr_{r-1} \hookrightarrow Gr_r$ induces a commutative diagram

$$\begin{array}{c}
\mathcal{V}_{r-1}(X) \xrightarrow{s_{r-1}} \mathcal{V}_r(X) \\
\downarrow \cong \qquad \qquad \downarrow \cong \\
[X, Gr_{r-1}] \xrightarrow{(\xi_{r-1})_*} [X, Gr_r].
\end{array}$$

The splitting problem reduces to the following lifting problem in $\mathcal{H}(k)$:

$$\begin{array}{c|c}
Gr_{r-1} \\
\exists? & & \\
\downarrow \xi_{r-1} \\
X \xrightarrow{\theta} Gr_r
\end{array}$$

The splitting problem reduces to the following lifting problem in $\mathcal{H}(k)$:

$$\begin{array}{c|c}
Gr_{r-1} \\
\exists ? & & \\
\downarrow \xi_{r-1} \\
X \xrightarrow{\theta} Gr_{r}
\end{array}$$

There exists a version of **Moore-Postnikov factorizations** in \mathbb{A}^1 -homotopy theory.

The splitting problem reduces to the following lifting problem in $\mathcal{H}(k)$:

$$\begin{array}{c}
Gr_{r-1} \\
\exists ? \qquad \qquad \downarrow \xi_{r-1} \\
X \xrightarrow{\theta} Gr_{r}
\end{array}$$

There exists a version of **Moore-Postnikov factorizations** in \mathbb{A}^1 -homotopy theory.

The morphism of spaces $\xi_{r-1}: Gr_{r-1} \to Gr_r$ can be factored as a sequence of simpler lifting problems.

The splitting problem reduces to the following lifting problem in $\mathcal{H}(k)$:

$$\begin{array}{c}
Gr_{r-1} \\
\exists ? \qquad \qquad \downarrow \xi_{r-1} \\
X \xrightarrow{\theta} Gr_{r}
\end{array}$$

There exists a version of **Moore-Postnikov factorizations** in \mathbb{A}^1 -homotopy theory.

The morphism of spaces $\xi_{r-1}: Gr_{r-1} \to Gr_r$ can be factored as a sequence of simpler lifting problems.

Each of these simpler lifting problems can be reduced to studying cohomology.

The morphism ξ_{r-1} fits into a fiber sequence

$$\mathbb{A}_k^r \smallsetminus 0 \to Gr_{r-1} \xrightarrow{\xi_{r-1}} Gr_r$$

measuring the failure of ξ_{r-1} to be an isomorphism in $\mathcal{H}(k)$.

The morphism ξ_{r-1} fits into a fiber sequence

$$\mathbb{A}_k^r \setminus 0 \to Gr_{r-1} \xrightarrow{\xi_{r-1}} Gr_r$$

measuring the failure of ξ_{r-1} to be an isomorphism in $\mathcal{H}(k)$.

For a space $\mathcal X$ with a chosen basepoint $x:Spec(k)\to \mathcal X$, one defines $\mathbb A^1$ -homotopy sheaves $\pi_i^{\mathbb A^1}(\mathcal X,x):Sm_k^{op}\to Sets$ for $i\ge 0$.

The morphism ξ_{r-1} fits into a fiber sequence

$$\mathbb{A}_{k}^{r} \setminus 0 \to Gr_{r-1} \xrightarrow{\xi_{r-1}} Gr_{r}$$

measuring the failure of ξ_{r-1} to be an isomorphism in $\mathcal{H}(k)$.

For a space $\mathcal X$ with a chosen basepoint $x:Spec(k)\to \mathcal X$, one defines $\mathbb A^1$ -homotopy sheaves $\pi_i^{\mathbb A^1}(\mathcal X,x):Sm_k^{op}\to Sets$ for $i\ge 0$.

For i = 1, these are sheaves of groups, for $i \ge 2$ sheaves of abelian groups.

The morphism ξ_{r-1} fits into a fiber sequence

$$\mathbb{A}_{k}^{r} \setminus 0 \to Gr_{r-1} \xrightarrow{\xi_{r-1}} Gr_{r}$$

measuring the failure of ξ_{r-1} to be an isomorphism in $\mathcal{H}(k)$.

For a space \mathcal{X} with a chosen basepoint $x:Spec(k)\to\mathcal{X}$, one defines \mathbb{A}^1 -homotopy sheaves $\pi_i^{\mathbb{A}^1}(\mathcal{X},x):Sm_k^{op}\to Sets$ for $i\geq 0$.

For i = 1, these are sheaves of groups, for $i \ge 2$ sheaves of abelian groups.

Using the motivic Moore-Postnikov factorization, one obtains for $i \ge 0$ cohomological obstructions

$$o_i \in H^{i+1}_{Nis}(X, \pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *)(\det \theta))$$

for a lift of $\theta: X \to Gr_r$ along ξ_{r-1} .

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem

Let X be a smooth affine k-scheme of dimension $d \ge 1$. Any vector bundle \mathcal{E} over X of rank r > d admits a decomposition $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$.

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

$\mathsf{Theorem}$

Let X be a smooth affine k-scheme of dimension $d \ge 1$. Any vector bundle \mathcal{E} over X of rank r > d admits a decomposition $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$.

Proof.

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

$\mathsf{Theorem}$

Let X be a smooth affine k-scheme of dimension $d \ge 1$. Any vector bundle \mathcal{E} over X of rank r > d admits a decomposition $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$.

Proof.

All obstructions o_i are zero, as $H^{i+1}_{Nis}(X, \pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *)(\det \theta)) = 0$

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem

Let X be a smooth affine k-scheme of dimension $d \ge 1$. Any vector bundle \mathcal{E} over X of rank r > d admits a decomposition $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$.

Proof.

All obstructions o_i are zero, as $H_{Nis}^{i+1}(X, \pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *)(\det \theta)) = 0$

• for $i \ge d$ by dimension reasons

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem

Let X be a smooth affine k-scheme of dimension $d \ge 1$. Any vector bundle \mathcal{E} over X of rank r > d admits a decomposition $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$.

Proof.

All obstructions o_i are zero, as $H_{Nis}^{i+1}(X, \pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *)(\det \theta)) = 0$

- for $i \ge d$ by dimension reasons
- for i < d by Morel's computations above.

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem (Morel, 2006)

Let X be a smooth affine k-scheme of dimension $d \geq 2$. A vector bundle \mathcal{E} over X of rank d admits a decomposition $\mathcal{E} \cong \mathcal{E}' \oplus \underline{1}$ if and only if the **Euler class** $o_{d-1} \in H^d_{Nis}(X, \mathbf{K}^{MW}_d(\det \theta))$ is zero.

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbf{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem (Morel, 2006)

Let X be a smooth affine k-scheme of dimension $d \geq 2$. A vector bundle $\mathcal E$ over X of rank d admits a decomposition $\mathcal E \cong \mathcal E' \oplus \underline{1}$ if and only if the **Euler class** $o_{d-1} \in H^d_{Nis}(X, \mathbf K^{MW}_d(\det \theta))$ is zero.

Proof.

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem (Morel, 2006)

Let X be a smooth affine k-scheme of dimension $d \geq 2$. A vector bundle $\mathcal E$ over X of rank d admits a decomposition $\mathcal E \cong \mathcal E' \oplus \underline{1}$ if and only if the **Euler class** $o_{d-1} \in H^d_{Nis}(X, \mathbf K^{MW}_d(\det \theta))$ is zero.

Proof.

$$H_{Nis}^{i+1}(X, \pi_i^{\mathbb{A}^1}(\mathbb{A}_k^d \setminus 0, *)(\det \theta)) = 0$$

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem (Morel, 2006)

Let X be a smooth affine k-scheme of dimension $d \geq 2$. A vector bundle $\mathcal E$ over X of rank d admits a decomposition $\mathcal E \cong \mathcal E' \oplus \underline{1}$ if and only if the **Euler class** $o_{d-1} \in H^d_{Nis}(X, \mathbf K^{MW}_d(\det \theta))$ is zero.

Proof.

$$H^{i+1}_{Nis}(X,\pi_i^{\mathbb{A}^1}(\mathbb{A}^d_k \setminus 0,\star)(\det\theta)) = 0$$

• for $i \ge d$ by dimension reasons

Theorem (Morel, 2006)

For
$$r \ge 2$$
, one has $\pi_i^{\mathbb{A}^1}(\mathbb{A}_k^r \setminus 0, *) \cong \begin{cases} 0 & \text{if } i \le r-2 \\ \mathbb{K}_r^{MW} & \text{if } i = r-1. \end{cases}$

Theorem (Morel, 2006)

Let X be a smooth affine k-scheme of dimension $d \geq 2$. A vector bundle $\mathcal E$ over X of rank d admits a decomposition $\mathcal E \cong \mathcal E' \oplus \underline{1}$ if and only if the **Euler class** $o_{d-1} \in H^d_{Nis}(X, \mathbf K^{MW}_d(\det \theta))$ is zero.

Proof.

$$H^{i+1}_{Nis}(X,\pi_i^{\mathbb{A}^1}(\mathbb{A}^d_k \setminus 0,*)(\det \theta)) = 0$$

- for $i \ge d$ by dimension reasons
- for i < d 1 by Morel's computations.

Thank you!