Задачник по эконометрике-1

(с шахматами и поэтэссами)

Дмитрий Борзых, Борис Демешев

20 ноября 2012 г.

Неклассифицировано 1

1. Регрессионная модель задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta=(\beta_1,\beta_2,\beta_3)'$. Известно, что $\mathbb{E}(\varepsilon)=0$ и $\mathrm{Var}(\varepsilon)=\sigma^2\cdot I$. Известно также, что

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Для удобства расчетов приведены матрицы
$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 и $(X'X)^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 4 & -3 \\ 0 & -3 & 6 \end{pmatrix}$.

- (а) Укажите число наблюдений.
- (b) Укажите число регрессоров с учетом свободного члена.
- (с) Запишите модель в скалярном виде
- (d) Рассчитайте $TSS = \sum (y_i \bar{y})^2$, $RSS = \sum (y_i \hat{y}_i)^2$ и $ESS = \sum (\hat{y}_i \bar{y})^2$.
- (e) Рассчитайте при помощи метода наименьших квадратов $\hat{\beta}$, оценку для вектора неизвестных коэффициентов.
- (f) Чему равен $\hat{\varepsilon}_5$, МНК-остаток регрессии, соответствующий 5-ому наблюдению?
- (g) Чему равен R^2 в модели? Прокомментируйте полученное значение с точки зрения качества оцененного уравнения регрессии.
- (h) Используя приведенные выше данные, рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- (i) Рассчитайте $\widehat{\mathrm{Var}}(\hat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов
- (j) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_1$.
- (k) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_2)$, несмещенную оценку дисперсии МНК-коэффициента $\hat{\beta}_2$.
- (l) Найдите $\widehat{\mathrm{Cov}}(\hat{\beta}_1,\hat{\beta}_2)$, несмещенную оценку ковариации МНК-коэффициентов $\hat{\beta}_1$ и $\hat{\beta}_2$.
- (m) Найдите $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1-\hat{\beta}_2)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2+\hat{\beta}_3)$, $\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2-2\hat{\beta}_3)$
- (n) Найдите $\widehat{\mathrm{Corr}}(\hat{\beta}_1,\hat{\beta}_2)$, оценку коэффициента корреляции МНК-коэффициентов $\hat{\beta}_1$ и
- (о) Найдите $s_{\hat{\beta}_1}$, стандартную ошибку МНК-коэффициента $\hat{\beta}_1$.

- (р) Рассчитайте выборочную ковариацию y и \hat{y} .
- (q) Найдите выборочную дисперсию y, выборочную дисперсию \hat{y} .
- 2. Априори известно, что парная регрессия должна проходить через точку (x_0, y_0) .
 - (а) Выведите формулы МНК оценок;
 - (b) В предположениях теоремы Гаусса-Маркова найдите дисперсии и средние оценок
- 3. Слитки-вариант. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Предположим, что ошибки взвешивания независимые одинаково распределенные случайные величины с нулевым средним.
 - (а) Найдите несмещеную оценку веса первого шара, обладающую наименьшей дисперсией.
 - (b) Как можно проинтерпретировать нулевое математическое ожидание ошибки взвешивания?
- 4. Вася считает, что $\mathrm{sCov}(y,\hat{y}) = \frac{\sum (y_i \bar{y})(\hat{y}_i \bar{y})}{n-1}$ это неплохая оценка для $\mathrm{Cov}(y_i,\hat{y}_i)$. Прав ли он?
- 5. Сгенерировать набор данных, обладающий следующим свойством. Если попытаться сразу выкинуть регрессоры x и z, то гипотеза о их совместной незначимости отвергается. Если вместо этого попытаться выкинуть отдельно x, или отдельно z, то гипотеза о незначимости не отвергается.
- 6. Сгенерировать набор данных, обладающий следующим свойством. Если попытаться сразу выкинуть регрессоры x и z, то гипотеза о их совместной незначимости отвергается. Если вместо сначала выкинуть отдельно x, то гипотеза о незначимости не отвергается. Если затем выкинуть z, то гипотезы о незначимости тоже не отвергается.
- 7. К эконометристу Вовочке в распоряжение попали данные с результатами контрольной работы студентов по эконометрике. В данных есть результаты по каждой задаче, переменные p_1 , p_2 , p_3 , p_4 и p_5 , и суммарный результат за контрольную, переменная kr. Чему будут равны оценки коэффициентов, их стандартные ошибки, t-статистики, P-значения, R^2 , RSS, если
 - (a) Вовочка построит регрессию kr на константу, p_1, p_2, p_3, p_4 и p_5
 - (b) Вовочка построит регрессию kr на p_1, p_2, p_3, p_4 и p_5 без константы
- 8. Как построить доверительный интервал для вершины параболы? ...
- 9. Про R_{adi}^2
 - (a) Может ли в модели с константой R_{adi}^2 быть отрицательным?
 - (b) Что больше, R^2 или R^2_{adi} в модели с константой?
 - (c) Вася оценил модель A, а затем выкинул из нее регрессор z и оценил получившуюся модель B. В моделях A и B оказались равные R^2_{adj} . Чему равна t-статистика коэффициента при z в модели A?
 - (d) Есть две модели с одной и той же зависимой переменной, но с разными объясняющими переменными, модель A и модель B. В модели A коэффициент R^2_{adj} больше, чем в модели B. В какой из моделей больше коэффициент $\hat{\sigma^2}$?
- 10. В классической линейной регрессионной модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, дисперсия зависимой переменной не зависит от номера наблюдения, $\mathrm{Var}(y_i) = \sigma^2$. Почему для оценки σ^2 вместо известной из курса математической статистики формулы $\sum (y_i \bar{y})^2/(n-1)$ используют $\sum \hat{\varepsilon}_i^2/(n-2)$?
- 11. Оценка регрессии имеет вид $\hat{y}_i = 3 2x_i$. Выборочная дисперсия x равна 9, выборочная дисперсия y равна 40. Найдите R^2 и выборочные корреляции sCorr(x, y), $sCorr(y, \hat{y})$.

- 12. У эконометриста Вовочки есть переменная 1_f , которая равна 1, если i-ый человек в выборке женщина, и 0, если мужчина. Есть переменная 1_m , которая равна 1, если i-ый человек в выборке мужчина, и 0, если женщина. Какие \hat{y} получатся, если Вовочка попытается построить регрессии:
 - (a) y на константу и 1_f
 - (b) y на константу и 1_m
 - (c) y на 1_f и 1_m без константы
 - (d) y на константу, 1_f и 1_m
- 13. У эконометриста Вовочки есть три переменных: r_i доход i-го человека в выборке, m_i пол (1 мальчик, 0 девочка) и f_i пол (1 девочка, 0 мальчик). Вовочка оценил две модели

Модель А $m_i = \beta_1 + \beta_2 r_i + \varepsilon_i$

Модель В $f_i = \gamma_1 + \gamma_2 r_i + u_i$

- (а) Как связаны между собой оценки $\hat{\beta}_1$ и $\hat{\gamma}_1$?
- (b) Как связаны между собой оценки $\hat{\beta}_2$ и $\hat{\gamma}_2$?
- 14. Эконометрист Вовочка оценил линейную регрессионную модель, где y измерялся в тугриках. Затем он оценил ту же модель, но измерял y в мунгу (1 тугрик = 100 мунгу). Как изменятся оценки коэффициентов?
- 15. Возможно ли, что при оценке парной регрессии $y = \beta_1 + \beta_2 x + \varepsilon$ оказывается, что $\hat{\beta}_2 > 0$, а при оценке регрессии без константы, $y = \gamma x + \varepsilon$, оказывается, что $\hat{\gamma} < 0$?
- 16. Эконометрист Вовочка оценил регрессию y только на константу. Какой коэффициент \mathbb{R}^2 он получит?
- 17. Эконометрист Вовочка оценил методом наименьших квадратов модель 1, $y = \beta_1 + \beta_2 x + \beta_3 z + \varepsilon$, а затем модель 2, $y = \beta_1 + \beta_2 x + \beta_3 z + \beta_4 w + \varepsilon$. Сравните полученные ESS, RSS, TSS и R^2 .
- 18. Случайные величины w_1 и w_2 независимы и нормально распределены, N(0,1). Из них составлено два вектора, $w=\left(\begin{array}{c}w_1\\w_2\end{array}\right)$ и $z=\left(\begin{array}{c}-w_2\\w_1\end{array}\right)$
 - (a) Являются ли векторы w и z перпендикулярными?
 - (b) Найдите $\mathbb{E}(w)$, $\mathbb{E}(z)$
 - (c) Найдите Var(w), Var(z), Cov(w, z)
 - (d) Рассмотрим классическую линейную модель. Являются ли векторы $\hat{\varepsilon}$ и \hat{y} перпендикулярными? Найдите $\mathrm{Cov}(\hat{\varepsilon},\hat{y})$.
- 19. Мы предполагаем, что y_t растёт с линейным трендом, т.е. $y_t = \beta_1 + \beta_2 t + \varepsilon_t$. Все предпосылки теоремы Гаусса-Маркова выполнены. В качестве оценки $\hat{\beta}_2$ предлагается $\hat{\beta}_2 = \frac{Y_T 1}{T 1}$, где T общее количество наблюдений.
 - (a) Найдите $\mathbb{E}(\hat{\beta}_2)$ и $\mathrm{Var}(\hat{\beta}_2)$
 - (b) Совпадает ли оценка $\hat{\beta}_2$ с классической мнк-оценкой?
 - (c) У какой оценки дисперсия выше, у $\hat{\beta}_2$ или классической мнк-оценки?

2 МНК без матриц и вероятностей

1. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta} x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов.

- 2. Даны n чисел: y_1, \ldots, y_n . Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}$. Найдите $\hat{\beta}$ методом наименьших квадратов.
- 3. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$. Найдите $\hat{\beta}_1$ и $\hat{\beta}_2$ методом наименьших квадратов.
- 4. Даны n пар чисел: $(x_1, y_1), \ldots, (x_n, y_n)$. Мы прогнозируем y_i по формуле $\hat{y}_i = 1 + \hat{\beta}x_i$. Найдите $\hat{\beta}$ методом наименьших квадратов.
- 5. Перед нами два золотых слитка и весы, производящие взвешивания с ошибками. Взвесив первый слиток, мы получили результат 300 грамм, взвесив второй слиток 200 грамм, взвесив оба слитка 400 грамм. Оцените вес каждого слитка методом наименьших квадратов.
- 6. Аня и Настя утверждают, что лектор опоздал на 10 минут. Таня считает, что лектор опоздал на 3 минуты. С помощью мнк оцените на сколько опоздал лектор.
- 7. Регрессия на дамми-переменную...
- 8. Функция f(x) дифференциируема на отрезке [0; 1]. Найдите аналог МНК-оценок для регрессии без свободного члена в непрерывном случае. Более подробно: найдите минимум по $\hat{\beta}$ для функции

$$Q(\hat{\beta}) = \int_0^1 (f(x) - \hat{\beta}x)^2 dx$$
 (1)

- 9. Есть двести наблюдений. Вовочка оценил модель $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$ по первой сотне наблюдений. Петечка оценил модель $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x$ по второй сотне наблюдений. Машенька оценила модель $\hat{y} = \hat{m}_1 + \hat{m}_2 x$ по всем наблюдениям.
 - (a) Возможно ли, что $\hat{\beta}_2 > 0, \, \hat{\gamma}_2 > 0,$ но $\hat{m}_2 < 0$?
 - (b) Возможно ли, что $\hat{\beta}_1 > 0$, $\hat{\gamma}_1 > 0$, но $\hat{m}_1 < 0$?
 - (с) Возможно ли одновременное выполнение всех упомянутых условий?
- 10. Вася оценил модель $y=\beta_1+\beta_2d+\beta_3x+\varepsilon$. Дамми-переменная d обозначает пол, 1 для мужчин и 0 для женщин. Оказалось, что $\hat{\beta}_2>0$. Означает ли это, что для мужчин \bar{y} больше, чем \bar{y} для женщин?
- 11. Какие из указанные моделей можно представить в линейном виде?

(a)
$$y_i = \beta_1 + \frac{\beta_2}{r_i} + \varepsilon_i$$

(b)
$$y_i = \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)$$

(c)
$$y_i = 1 + \frac{1}{\exp(\beta_1 + \beta_2 x_i + \varepsilon_i)}$$

(d)
$$y_i = \frac{1}{1 + \exp(\beta_1 + \beta_2 x_i + \varepsilon_i)}$$

(e)
$$y_i = x_i^{\beta_2} e^{\beta_1 + \varepsilon_i}$$

3 Инструментальные переменные

Экзогенность, $\mathbb{E}(\varepsilon \mid x) = 0$

Предопределённость, $\mathbb{E}(\varepsilon_t \mid x_t) = 0$ для всех t

- 1. Табличка 2 на 2. Найдите $\mathbb{E}(\varepsilon)$, $\mathbb{E}(\varepsilon|x)$, $\mathrm{Cov}(\varepsilon,x)$.
- 2. Приведите примеры дискретных случайных величин ε и x, таких, что
 - (a) $\mathbb{E}(\varepsilon)=0,\,\mathbb{E}(\varepsilon\mid x)=0,$ но величины зависимы. Чему в этом случае равно $\mathrm{Cov}(\varepsilon,x)$?
 - (b) $\mathbb{E}(\varepsilon)=0$, $\mathrm{Cov}(\varepsilon,x)=0$, но $\mathbb{E}(\varepsilon\mid x)\neq 0$. Зависимы ли эти случайные величины?

3. Все предпосылки классической линейной модели выполнены, $y = \beta_1 + \beta_2 x + \varepsilon$. Рассмотрим альтернативную оценку коэффициента β_2 ,

$$\hat{\beta}_{2,IV} = \frac{\sum z_i (y_i - \bar{y})}{\sum z_i (x_i - \bar{x})} \tag{2}$$

- (а) Является ли оценка несмещенной?
- (b) Любые ли z_i можно брать?
- (c) Найдите $\operatorname{Var}(\hat{\beta}_{2,IV})$

4.

Проекция, Картинка 4

- 1. Найдите на Картинке четыре прямоугольных треугольника. Сформулируйте четыре теоремы Пифагора.
- 2. Покажите на Картинке TSS, ESS, RSS, R^2 , sCov (\hat{y}, y)
- 3. Предложите аналог R^2 для случая, когда константа среди регрессоров отсутствует. Аналог должен быть всегда в диапазоне [0;1], совпадать с обычным \mathbb{R}^2 , когда среди регрессоров есть константа, равняться единице в случае нулевого $\hat{\varepsilon}$.
- 4. Вася оценил регрессию y на константу, x и z. А затем, делать ему нечего, регрессию y на константу и полученный \hat{y} . Какие оценки коэффициентов у него получатся? Чему будет равна оценка дисперсии коэффицента при \hat{y} ? Почему оценка коэффициента неслучайна, а оценка её дисперсии положительна?
- 5. При каких условиях TSS = ESS + RSS?

5 МЕГАМАТРИЦА

- 1. В рамках классической линейной модели найдите все математические ожидания и все ковариационные матрицы всех пар случайных векторов: ε , y, \hat{g} , $\hat{\varepsilon}$, $\hat{\beta}$. Т.е. найдите $\mathbb{E}(\varepsilon)$, $\mathbb{E}(y)$, ...и $Cov(\varepsilon, y)$, $Cov(\varepsilon, \hat{y})$, ...
- 2. Найдите $\mathbb{E}(\sum (\varepsilon_i \bar{\varepsilon})^2)$, $\mathbb{E}(RSS)$
- 3. Используя матрицы $P = X(X'X)^{-1}X'$ и $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$ запишите RSS, TSS и ESS в матричной форме
- 4. $\mathbb{E}(TSS)$, $\mathbb{E}(ESS)$ громоздкие
- 5. Вася строит регрессию y на некий набор объясняющих переменных и константу. А на самом деле $y_i = \beta_1 + \varepsilon_i$. Чему равно $\mathbb{E}(TSS)$, $\mathbb{E}(RSS)$, $\mathbb{E}(ESS)$ в этом случае?

6 Голая линейная алгебра

Здесь будет собран минимум задач по линейной алгебре.

- 1. Приведите пример таких A и B, что $\det(AB) \neq \det(BA)$. 2. Для матриц-проекторов $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$ и $P = X(X'X)^{-1}X'$ найдите $\operatorname{tr}(\pi)$, $\operatorname{tr}(P)$, $\operatorname{tr}(I-\pi)$,
- 3. Выпишите в явном виде матрицы $X'X,\,(X'X)^{-1}$ и $X'y,\,$ если

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
и $X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$

4. Выпишите в явном виде матрицы π , πy , $\pi \varepsilon$, $I - \pi$, если $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$.

7 Парадигма случайных величин

- 1. Найдите E(Y|X)
- 2. Про многомерное нормальное распределение

3.

8 Гетероскедастичность

- 1. По наблюдениям x = (1, 2, 3)', y = (2, -1, 3)' оценивается модель $y = \beta_1 + \beta_2 x + \varepsilon$. Ошибки ε гетероскедастичны и известно, что $Var(\varepsilon_i) = \sigma^2 \cdot x_i^2$.
 - (a) Найдите оценки $\hat{\beta}_{ols}$ с помощью МНК и их ковариационную матрицу
 - (b) Найдите оценки $\hat{\beta}_{gls}$ с помощью обобщенного МНК и их ковариационную матрицу

9 Компьютерные упражнения

Все наборы данных доступны по ссылке https://github.com/bdemeshev/em301/wiki/Datasets.

- 1. Скачайте результаты двух контрольных работ по теории вероятностей, с описанием данных, . Наша задача попытаться предсказать результат второй контрольной работы зная позадачный результат первой контрольной, пол и группу студента.
 - (а) Какая задача из первой контрольной работы наиболее существенно влияет на результат второй контрольной?
 - (b) Влияет ли пол на результат второй контрольной?
 - (с) Влияет ли редкость имени на результат второй контрольной?
 - (d) Что можно сказать про влияние группы, в которой учится студент?
- 2. Задача Макар-Лиманова. У торговца 55 пустых стаканчиков, разложенных в несколько стопок. Пока нет покупателей он развлекается: берет верхний стаканчик из каждой стопки и формирует из них новую стопку. Потом снова берет верхний стаканчик из каждой стопки и формирует из них новую стопку и т.д.
 - (a) Напишите функцию 'makar_step'. На вход функции подаётся вектор количества стаканчиков в каждой стопке до перекладывания. На выходе функция возвращает количества стаканчиков в каждой стопке после одного перекладывания.
 - (b) Изначально стаканчики были разложены в две стопки, из 25 и 30 стаканчиков. Как разложатся стаканчики если покупателей не будет достаточно долго?
- 3. Напишите функцию, которая бы оценивала регрессию методом наименьших квадратов. На вход функции должны подаваться вектор зависимых переменных y и матрица регрессоров X. На выходе функция должна выдавать список из $\hat{\beta}$, $\widehat{\mathrm{Var}}(\hat{\beta})$, \hat{y} , $\hat{\varepsilon}$, ESS, RSS и TSS. По возможности функция должна проверять корректность аргументов, например, что в y и X одинаковое число наблюдений и т.д.
- 4. Сгенерируйте вектор y из 300 независимых нормальных N(10,1) случайных величин. Сгенерируйте 40 «объясняющих» переменных, по 300 наблюдений в каждой, каждое наблюдение независимая нормальная N(5,1) случайная величина. Постройте регрессию y на все 40 регрессоров и константу.
 - (а) Сколько регрессоров оказалось значимо на 5% уровне?

- (b) Сколько регрессоров в среднем значимо на 5% уровне?
- (c) Эконометрист Вовочка всегда использует следующий подход: строит регрессию зависимой переменной на все имеющиеся регрессоры, а затем выкидывает из модели те регрессоры, которые оказались незначимы. Прокомментируйте Вовочкин эконометрический подход.
- 5. (?) Создайте набор данных с тремя переменными y, x и z со следующими свойствами. При оценке модели $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$ получается $\hat{\beta}_2 > 0$. При оценке модели $\hat{y} = \hat{\gamma}_1 + \hat{\gamma}_2 x + \hat{\gamma}_3 z$ получается $\hat{\gamma}_2 < 0$. Объясните принцип, руководствуясь которым легко создать такой набор данных.
- 6. (?) У меня есть набор данных с выборочным средним \bar{y} и выборочной дисперсией s^2 . Как нужно преобразовать данные, чтобы выборочное среднее равнялось 7, а выборочная дисперсия 9?
- 7. Мы попытаемся понять, как введение в регрессию лишнего регрессора влияет на оценки уже имеющихся. В регрессии будет 100 наблюдений. Возьмем $\rho = 0.5$. Сгенерим выборку совместных нормальных x_i и z_i с корреляцией ρ . Настоящий y_i задаётся формулой $y_i = 5 + 6x_i + \varepsilon_i$. Однако мы будем оценивать модель $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i + \hat{\beta}_3 z_i$.
 - (a) Повторите указанный эксперимент 500 раз и постройте оценку для функции плотности $\hat{\beta}_1.$
 - (b) Повторите указанный эксперимент 500 раз для каждого ρ от -1 до 1 с шагом в 0.05. Каждый раз сохраняйте полученные 500 значений $\hat{\beta}_1$. В осях $(\rho, \hat{\beta}_1)$ постройте 95%-ый предиктивный интервал для $\hat{\beta}_1$. Прокомментируйте.

10 Вопросы теоретического характера

- 1. Что означают слова автокорреляция, гетероскедастичность, гомоскедастичность?
- 2. Напишите формулу для оценок коэффициентов в парной регрессии без матриц
- 3. Напишите формулу для оценок коэффициентов в множественной регрессии
- 4. Аналогично для дисперсий
- 5. Сформулируйте теорему Гаусса-Маркова