Evaluation Exercises Quantum Computation

Integrated Master degree in Physics Engineering 2017-2018

Work description: Evaluation exercises worksheet

1. Deutsch-Jozsa Algorithm

- (a) Build an oracle for a balanced function with 3 qubits of input and one qubits of output
- (b) Draw the Deutsh-Jozsa circuit, for a system with two qubits of input and two qubits of output
- (c) Show all the calculations of the execution of the algorithm.

2. Grover Algorithm

(a) NP-complete problem

• Given a definition of a 3-SAT problem

$$(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_4)$$

- Consider a search problem with 3 qubits, where $|110\rangle$ corresponds to the correct solution.
- Create an oracle to decide a variable assignment
- $\bullet\,$ Build the entire circuit, using the oracle as a black box
- Calculate the number of necessary iterations to obtain the optimal value for the iteration k in this particular problem.
 Hint: How many solutions satisfy the assignment? One or several?

$$G^{K}\left|\Psi\right\rangle = cos\frac{(2k+1)\theta}{2}\left|\alpha\right\rangle + sin\frac{(2k+1)\theta}{2}\left|y\right\rangle$$

3. Hidden Subgroup problem

	x	1	2	3	4	5	6	7	8	9	10
Г	f(x)	1	2	3	4	0	1	2	3	4	0
	X	11	12	13	14	15	16	17	18	19	20
	f(x)	1	2	3	4	0	1	2	3	4	0

Figure 1: Periodic function

$\rm (a)\,$ Given the periodic function in figure 1, derived from a ciclic additive group

- Identify:
 - i. The cosets the function yeilds
 - ii. The hidden subgroup
 - iii. The subgroup generator
- $\bullet\,$ Design a circuit for the quantum part
 - i. What are the appropriate sizes for the registers?
 - ii. Define a possible oracle that mimics the function.
 - iii. Define a circuit of a Fourier transform for this problem.
 - iv. Design the whole circuit.