Hierarchical Clustering

Basics

 hierarchical clustering works by grouping data objects into a tree of clusters

• clusters \rightarrow subclusters \rightarrow subsubclusters $\rightarrow \cdots$

Why do we need hierarchies?

Example

Biology, library book categorization, web directories

Basics

- use a similarity or distance (dissimilarity) matrix
- merge/split one cluster at a time
- can be graphically displayed by
 - dendrograms
 - nested cluster diagrams

Dendrogram

- given any two samples x and x', at some level they will be grouped together in the same cluster
- if two samples are in the same cluster at some level $c \to \text{they}$ remain together at all higher levels (> c)

Example: Dendrogram of 39 English Sounds

Agglomerative vs Divisive

Two types of hierarchical clustering methods:

- agglomerative (bottom-up)
 - start with the points as individual clusters
 - at each step, merge the <u>closest</u> pair of clusters until only one cluster (or k clusters) left

- divisive (top-down)
 - start with one, all-inclusive cluster
 - at each step, split a cluster until each cluster contains a point (or there are k clusters)

Divisive Hierarchical Clustering: Example

final result

Agglomerative Hierarchical Clustering

input: dataset *D* of points **output:** tree of clusters

- 1. compute the distance matrix over D
- 2. initialize each data point as a different cluster
- 3. repeat
- 4. merge the two closest clusters
- 5. update the distance matrix
- 6. until only one cluster remains

Example

Initial setting

• start with the initial dataset *D* and compute the distance matrix that records distances between data points

Example...

After some steps

- several clusters have been formed
- also a new distance matrix has been computed, which records distances between clusters

Example...

Merging two closest clusters

• suppose we merge clusters C_2 with C_5 in the figure below

How to update the distance matrix?

Distance between Clusters

- involve computing distances between clusters
 - each cluster is a set of points
- different definitions of the distance between clusters leads to different clustering behavior
- we will explore the following distances:
 - single-link distance
 - complete-link distance
 - group average distance

Single-Link Distance

• let C_1 and C_2 be two clusters

• single-link distance: the minimum distance between any object in C_1 and any object in C_2

$$\textit{dist}_{\textit{single}}(\textit{C}_1,\textit{C}_2) = \mathsf{min}_{x_1,x_2}\{\textit{dist}(x_1,x_2) \mid x_1 \in \textit{C}_1, x_2 \in \textit{C}_2\}$$

- i.e., defined by the most similar pair of objects
- depends on a distance metric, such as Euclidean distance

Example

• tends to produce long clusters

Limitation

Sensitive to noise or slight changes in positions of the data points

• single-link

Complete-Link Distance

• complete-link distance: the maximum distance between any object in C_1 and any object in C_2

$$dist_{complete}(C_1, C_2) = \max_{x_1, x_2} \{ dist(x_1, x_2) \mid x_1 \in C_1, x_2 \in C_2 \}$$

- i.e., defined by the most dissimilar pair of objects
- again depends on a distance metric

Example

- at each iteration, the size (largest diameter) of the partition is increased as little as possible
 - tends to produce very tight clusters
 - problematic if the true clusters are elongated

Group Average Distance

• let C_1 and C_2 be two clusters, with cardinality N_1 and N_2 , respectively

• group average distance: the average distance between any object in C_1 and any object in C_2

$$\textit{dist}_{\textit{avg}}(\textit{C}_1, \textit{C}_2) = \frac{1}{\textit{N}_1 \cdot \textit{N}_2} \Sigma_{\textit{x}_1 \in \textit{C}_1, \textit{x}_2 \in \textit{C}_2} \textit{dist}(\textit{x}_1, \textit{x}_2)$$

• i.e., defined by all the objects in the union of the two clusters

Group Average Distance...

Comparison of Different Results

