7.37 Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}, \quad -\theta < x < \theta, \quad \theta > 0.$$

Find, if one exists, a best unbiased estimator of θ .

- 7.41 Let X_1, \ldots, X_n be a random sample from a population with mean μ and variance σ^2 .
 - (a) Show that the estimator $\sum_{i=1}^{n} a_i X_i$ is an unbiased estimator of μ if $\sum_{i=1}^{n} a_i = 1$.
 - (b) Among all unbiased estimators of this form (called *linear unbiased estimators*) find the one with minimum variance, and calculate the variance.
- 7.45 Let X_1, X_2, \ldots, X_n be iid from a distribution with mean μ and variance σ^2 , and let S^2 be the usual unbiased estimator of σ^2 . In Example 7.3.4 we saw that, under normality, the MLE has smaller MSE than S^2 . In this exercise will explore variance estimates some more.
 - (a) Show that, for any estimator of the form aS^2 , where a is a constant,

$$MSE(aS^2) = E[aS^2 - \sigma^2]^2 = a^2 Var(S^2) + (a-1)^2 \sigma^4.$$

(b) Show that

$$\operatorname{Var}(S^2) = \frac{1}{n} \left(\kappa - \frac{n-3}{n-1} \sigma^4 \right),$$

where $\kappa = \mathrm{E}[X - \mu]^4$ is the *kurtosis*. (You may have already done this in Exercise 5.8(b).)

- (c) Show that, under normality, the kurtosis is $3\sigma^4$ and establish that, in this case, the estimator of the form aS^2 with the minimum MSE is $\frac{n-1}{n+1}S^2$. (Lemma 3.6.5 may be helpful.)
- (d) If normality is not assumed, show that $MSE(aS^2)$ is minimized at

$$a=\frac{n-1}{(n+1)+\frac{(\kappa-1)(n-1)}{n}},$$

which is useless as it depends on a parameter.

- (e) Show that
 - (i) for distributions with $\kappa > 3$, the optimal a will satisfy $a < \frac{n-1}{n+1}$;
 - (ii) for distributions with $\kappa < 3$, the optimal a will satisfy $\frac{n-1}{n+1} < a < 1$.

See Searls and Intarapanich (1990) for more details.

7.47 Suppose that when the radius of a circle is measured, an error is made that has a $n(0, \sigma^2)$ distribution. If n independent measurements are made, find an unbiased estimator of the area of the circle. Is it best unbiased?

- 7.55 For each of the following pdfs, let X_1, \ldots, X_n be a sample from that distribution. In each case, find the best unbiased estimator of θ^r . (See Guenther 1978 for a complete discussion of this problem.)
 - $\begin{array}{ll} \text{(a)} \ f(x|\theta) = \frac{1}{\theta}, \quad 0 < x < \theta, \, r < n \\ \text{(b)} \ f(x|\theta) = e^{-(x-\theta)}, \quad x > \theta \end{array}$

 - (c) $f(x|\theta) = \frac{e^{-x}}{e^{-\theta} e^{-b}}, \quad \theta < x < b, \quad b \text{ known}$
- 7.57 Let X_1, \ldots, X_{n+1} be iid Bernoulli(p), and define the function h(p) by

$$h(p) = P\left(\sum_{i=1}^{n} X_i > X_{n+1} \middle| p\right),\,$$

the probability that the first n observations exceed the (n+1)st.

(a) Show that

$$T(X_1,\ldots,X_{n+1}) = \begin{cases} 1 & \text{if } \sum_{i=1}^n X_i > X_{n+1} \\ 0 & \text{otherwise} \end{cases}$$

is an unbiased estimator of h(p).

- (b) Find the best unbiased estimator of h(p).
- **7.59** Let X_1, \ldots, X_n be iid $n(\mu, \sigma^2)$. Find the best unbiased estimator of σ^p , where p is a known positive constant, not necessarily an integer.