7-Day Sales Forecasting for Superstore

Optimizing Inventory Through Time Series Modeling

Maria Suarez

The Problem

 Superstore often runs out of items or over-orders.

 Goal: Forecast daily sales for the next 7 days to reduce stockouts and overstocking.

Why it matters:

Support data-driven supply chain strategy

Optimize inventory decisions

Reduce stockouts & overstocking

Enable proactive regional response to demand shifts

Who might care?

- Regional Manager
- Inventory & Supply Chain Teams
- Finance & Strategy Teams
- Merchandising & Sales Teams
- Data is & Analytics Team

Data Overview

Source

Kaggle Superstore Dataset

https://www.kaggle.com/da tasets/rohitsahoo/sales-for ecasting

Time Range

- 2015-2019
- Granularity:Daily

Focus:

Sales per Category

- Office Supplies
- Technology
- Furniture

Processing Steps

:		Order ID	Order Date	Ship Date	Ship Mode	Customer ID	S
	0	CA- 2017- 152156	2017- 11-08	2017- 11-11	Second Class	CG-12520	C
	1	CA- 2017- 152156		2017- 11-11	Second Class	CG-12520	Ci
	2	CA- 2017- 138688	2017- 06-12	2017- 06- 16	Second Class	DV-13045	С
	3	US- 2016- 108966	2016- 10-11	2016- 10-18	Standard Class	\$Q- 20335	C
	4	US- 2016- 108966	2016- 10-11	2016- 10-18	Standard Class	SO- 20335	C

Parsed and set 'Order Date' as datetime index

Feature Engineering

- Extract day, month year from Order Date
- Aggregate sales per day or region for time series modeling
- Filtering for top product categories

Exploratory Analysis

Office Supplies: Stable daily sales with few outliers

 Technology: High volatility; sales spikes from big-ticket items (e.g., Copiers)

• Furniture: Moderate volume; weekly patterns observed

Modeling Approach:

- Model: Seasonal ARIMA (SARIMA)
- Parameters: (1,1,1)(1,1,1,7)
- Applied separately for each category
- Used log transformation to stabilize
 - variance
- Forecasted sales for next 7 calendar days

Model Candidates

Model Description

Lag-Based LinearUses past 1-day and 7-day sales to predictRegressionthe next day (simple + interpretable)

SARIMA Captures both trend and weekly seasonality using statistical time series modeling

Model	MAE	RMSE	Strengths
Lag Regression	1,716.42	2,509.28	Simple, accurate for daily planning
SARIMA	1,761.55	2,452.65	Better at handling sales spikes

Final Model Justification

Despite SARIMA's strong performance on RMSE and its ability to capture weekly patterns:

- We selected the Lag-Based Regression model as the final forecasting solution due to:
 - Lowest MAE key for routine inventory decisions
 - Simplicity and interpretability
 - Ease of daily updates with minimal compute or retraining

3 Simple Recommendations

- Run weekly forecasts
- Order based on predictions
- Train teams to act on trends

Future Scope

Add more helpful data like promotions, holidays, and weather to improve predictions Make forecasts more detailed by going down to the product level instead of just categories Build a dashboard so store managers can easily see trends and forecasts in real time Set up an automated system that keeps updating the model with new sales data every day

Final Conclusions

- Lag-Based Regression was the best overall model
 It had the lowest average error (MAE), making it reliable for daily sales forecasting.
- SARIMA performed well during sales spikes
 It captured weekly patterns but was more complex and less practical for fast updates.
- 3. **Daily sales in Superstore show short-term trends**Using recent sales (lags) is an effective way to forecast the next 7 days.
- 4. **Rolling MAE revealed stability differences**The Lag model had more consistent performance over time, while SARIMA fluctuated.
- 5. The chosen model supports smarter inventory decisions
 It helps reduce stockouts and overstocking, enabling managers to act proactively.