Extending Flexible Boolean Semantics for the Language of Mathematics

Investigating the Semantics of Mathematical Language

Shashank Pathak <u>shashank.pathak@manchester.ac.uk</u> Department of Computer Science

The University of Manchester, UK

MCLP, EuroProofNet Symposium 17 September, 2025 Institut Pascal, Orsay France (Shorter version presented at ESSLLI 2025, Student session)

A Mathematico-Linguistic Puzzle

- (1) A. x and y are prime.
 - B. x is prime.
- (2) A. x and y are coprime.
 - B. # x is coprime.
- (3) A. P and Q are countable.
 - B. P is countable.
- (4) A. P and Q are equinumerous.
 - B. # P is equinumerous.

Why does A entail B in (1) and (3), but not in (2) and (4)?

1. Linguistic Phenomena in Question

2. Flexible Boolean Semantics and Problems

3. Winter's Solution and its Problems

4. A Typing Fix

Linguistic Phenomena in Question

X and Y are P

Definite Descriptions

The integers
The set X

Coordination

2 and 3, The integers and the rationals, The set X and the set Y **Distributivity**Prime, countable

Collectivity
Coprime,
equinumerous

Selectional Restrictions

Countable, equinumerous

Prime, coprime

Flexible Boolean Semantics and Problems

Montague Semantics: Building Meaning from Parts

Montague Semantics in Action: Types

e t et tt e(et) (et)t ...

Linguistic Expression	Туре
2 is prime	t
2	е
prime	et

Montague Semantics in Action: Composition

Boolean Extensions of Montague Semantics

Sentence	Syntactic Category Coordinated	Types
2 is prime and 3 is prime	Sentence	t
2 and 3 are prime	Noun Phrase	е
2 is prime and even	Adjective	et

Boolean Semantics:

Domains = Boolean algebras and = meet

∧ for t

 \cap for σ t

[[2 is prime and 3 is prime]]

= $[2 \text{ is prime}]_{t} \land [3 \text{ is prime}]_{t}$

= prime'(2) Λ prime'(3)

[[2 is prime and even]]

= $[[prime and even]]_{et}[[2]]_{e}$

= 2 ∈ [[prime and even]]_{et}

= 2 ∈ prime' ∩ even'

Boolean Operation on Entities?

Sentence	Syntactic Category Coordinated	Туре
2 and 3 are prime	Noun Phrase	е

Boolean Semantics:

Domains = Boolean algebras

And = meet

 Λ for t

 \cap for σ t

??? for e

$$\mathbf{M}_{e(et)t} = \lambda x_e \{ P_{et} \mid P(x) \}$$

[[2 and 3]]_{(et)t} =
$$\mathbf{M}(2)_{(et)t} \cap \mathbf{M}(3)_{(et)t}$$

= { P | P(2) } \cap { Q | Q(3) }

Winter, Y.: Flexibility Principles in Boolean Semantics: The Interpretation of Coordination, Plurality, and Scope in Natural Language, chap. Coordination and Collectivity. The MIT Press (02 2002).

Flexible Boolean Semantics

$$\mathbf{M}_{e(et)t} = \lambda x_e \{ P_{et} \mid P(x) \}$$

[[2 and 3]]_{(et)t} =
$$M(2) \cap M(3)$$

= { P | P(2) } \cap { Q | Q(3) }
[[2 and 3 are prime]] = prime' \subseteq [[2 and 3]]_{(et)t}
= prime' \subseteq { P | P(2) } \cap { Q | Q(3) }
= prime'(2) \wedge prime'(3)
= [[2 is prime]]_t \wedge [[3 is prime]]_t
= [[2 is prime and 3 is prime]]

Flexible!

Sets as Subjects

The integers are countable

- [[-S]]
- [[the]]
- [[integer]]
- [[countable]]

Plural Forming -s

$$[[integer]]_{et} = Z$$

$$[[-s]]_{(et)(et)t} = \lambda P_{et} \lambda Q_{et} (Q \neq \emptyset \land Q \subseteq P)$$

[[integers]]_{(et)t} = [[-s]] [[integer]]
=
$$\lambda Q_{et}(Q \neq \emptyset \land Q \subseteq Z)$$

Link, G.: The logical analysis of plurals and mass terms: A lattice-theoretical approach. In: Bäuerle, R., Schwarze, C., von Stechow, A. (eds.) Meaning, Use, and Interpretation of Language, pp. 302–323. De Gruyter, Berlin, Boston (1983).

Sharvy, R.: A more general theory of definite descriptions. The Philosophical Review 89(4), 607-624 (1980),

Plural Definite Article

[[the]]
$$_{((et)t)et} = \lambda P_{(et)t}$$
 (unique largest A_{et} s.t. $P(A)$)

[[integers]]_{(et)t} =
$$\lambda Q_{et}(Q \neq \emptyset \land Q \subseteq Z)$$

[[the integers]] = [[the]] [[integers]] =
$$Z$$

$$[[the reals]]_{et} = R$$

Sets as Subjects: Revisited

countable : (et)t

countable'(Z), countable'(Q)

countable'(R)

False

[[the integers are countable]]
[[countable]]_{(et)t} [[the integers]]_{et}
= countable'(Z)

[[the reals are countable]]
[[countable]]_{(et)t} [[the reals]]_{et}
= countable'(R)

Where Conventional Typing Goes Wrong

Both sets and properties have type et

```
[The integers and the reals]] = [[the integers]]<sub>et</sub> \cap [[the reals]]<sub>et</sub> = Z \cap R = 7
```

[The integers and the reals are countable]

- = countable'(Z)
- = [[The integers are countable]]


```
[[prime and even]] = [[prime]]_{et} \cap [[even]]_{et}
```

- x is prime and even
- x belongs to the intersection of prime integers and even integers
- x is prime and x is even
- prime'(x) \land even'(x)

Winter's Solution and its Problems

Winter's Solution

[[the]]
$$_{((et)t)(et)t} = \lambda P_{(et)t}$$
. {unique largest A_{et} s.t. $P(A)$ }

[[the integers]]_{(et)t} = [[the]] [[integers]]
=
$$\{Z\}$$

countable : (et)t, [[the integers]]: (et)t

$$\mathbf{E}_{(\sigma t)(\sigma t)t} = \lambda A_{\sigma t} \lambda B_{\sigma t} \exists X_{\sigma} (A(X) \land B(X))$$

[[the integers are countable]]

= **E**(countable')([[the integers]])

= **E**(countable')({Z})

= $\exists X_{et}(countable(X) \land X \in \{Z\})$

= countable'(Z)

Winter, Y.: Flexibility Principles in Boolean Semantics: The Interpretation of Coordination, Plurality, and Scope in Natural Language, chap. Coordination and Collectivity. The MIT Press (02 2002).

Partee, B.H.: Noun phrase interpretation and type-shifting principles. In: J. Groenendijk, D. de Jongh, M. Stokhof (eds.) Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers, pp. 115–144. De Gruyter, Berlin, Boston (1986)

Problem with Winter's Solution

the integers and the reals

- E([[the integers]] ∩ [[the reals]])(countable')
 - = $\exists X_{et}(X \in \{Z\} \cap \{R\}) \land countable'(X))$
 - $=\exists X_{et}(X \in \emptyset) \land countable'(X))$

- 2. $(\mathbf{E}[[\text{the integers}]]) \cap (\mathbf{E}[[\text{the reals}]]))$
 - = countable'(Z) \wedge countable'(R)

A Typing Fix

A Typing Fix

Core issue: Sets and properties behave differently when coordinated

Fix: 1. Change the type system by adding a unary constructor S

e t S(e) et S(e)t (et)t S(S(e))t ...

2. Ensure "the integers" and "the reals" have type S(e) instead of et.

[[-s]] : (et)S(e)t and **not** [[-s]] : (et)(et)t [[the]] : (S(e)t)S(e) and **not** [[the]] : ((et)t)et

3. Do **not** define "and" as \cap for S(e)

Typing Fix and Flexibility for Correct Derivations

Fix: 4. Extend M

$$\mathbf{M} = \lambda x_{e}.\{ P_{et} | P(x) \}$$

 $\mathbf{M'} = \lambda A_{S(e)}.\{ P_{S(e)t} | P(A) \}$

```
[[The integers and the reals]] = \mathbf{M'}([[the integers]]) \cap \mathbf{M'}([[the reals]]) = \mathbf{M'}(Z) \cap \mathbf{M'}(R) = \{P_{S(e)t} \mid P(Z)\} \cap \{Q_{S(e)t} \mid Q(R)\}
```

[The integers and the reals are countable]

- = [[The integers and the reals]] $_{(S(e)t)t}$ [[countable]] $_{S(e)t}$
- = countable' $\in \{P_{S(e)t} \mid P(Z)\} \cap \{Q_{S(e)t} \mid Q(R)\}$
- = countable′(Z) ∧ countable′(R)
- = [[The integers are countable and the reals are countable]]

Conclusion, Limitations and Future Work

- Flexible Boolean Semantics
- Coordination of sets differs from coordination of properties
- Typing fix which distinguishes between sets and properties

- Quantificational vs predicative NPs
- Atom (be numerous) vs Set Predicates (gather)
- Generalized Quantifier Theory
 - All primes more than y are odd.
 - 6 has exactly m factors.

"The integers and reals are countable" is true.

Winter, Yoad. Flexibility principles in Boolean semantics: The interpretation of coordination, plurality, and scope in natural language. MIT press, 2002.

Dowty, David. "Collective predicates, distributive predicates, and all." Proceedings of the 3rd ESCOL. Ohio: Ohio State University, 1987.