Informacioni inženjering

predmet: Verovatnoća i slučajni procesi

datum: 8. maj 2021.

BROJ INDEKSA:

	_ 0\
4(1)=6,4	P(C)=0,6

Predispitne obaveze 1 20 poena

PREZIME I IME:

1. [3 poena] Verovatnoća da Pera u toku jednog dana jede sladoled od vanile je 0.7, a verovatnoća da u toku jednog dana jede sladoled od čokolade je 0.6. Verovatnoća da jede bar jednu (od navedenih) vrstu sladoleda je 0.9.

Da li je događaj u toku jednog dana Pera jede sladoled od vanile i sladoled od čokolade nemoguć događaj? Objasniti odgovor!

 V/\mathcal{F}

Izračunati verovatnoću da u toku jednog dana Pera jede tačno jednu vrstu sladoleda.

Ako Pera jednog dana jede jednu vrstu sladoleda izračunati verovatnoću da je to sladoled od vanile.

2. [3 poena] Ako su događaji A i B nezavisni, onda su i događaji \overline{A} i \overline{B} nezavisni. Dokazati!

BACK: P(AB) =PUNP(B) (*)

TREBA: P(AB) =P(A)P(B)

P(AB) = P(A)P(B) - 1- (P(A)+P(B) - P(AB)

P(AB) = P(AB) - P(AB) = 1- (P(A)+P(B) - P(AB)

((A) - P(B) + P(B) = (1-P(A)) - P(B) (1-P(A)) $= (1-\Re(B)) (1-\Re(B)) = \Re(A) \Re(B)$ 3. [1 poen] Neka je (Ω, \mathcal{F}, P) prostor verovatnoće i $A_1, A_2, \dots \mathcal{F}$. Definisati nezavisnost dogajaja u parovima i nezavisnost

događaja u ukupnosti (totalnu nezavisnost). Objasniti vezu između ovde dve vrste nezavisnosti.

PULLY = P(A)P(A) Hity had y Tap

1) yeyar. P(hon hor. hix) = P(hin). P(hin) 17? ig = 12 m 16 226. y yeyaro au u -> 1636. y aapol.

4. [4 poena] Slučajna promenljiva X ima eksponencijalnu $\mathcal{E}(2)$ raspodelu.

Napisati standardizovanu slučajnu promenljivu $X^* = \frac{1}{2}$ Napisati standardizovanu slučajnu promenljivu $X^* = \frac{1}{2}$

Izračunati $P(X \leq 3) = \dots$

Na grafiku funkcije gustine i funkcije raspodele eksponencijalne $\mathcal{E}(2)$ raspodele predstaviti $P(X \leq 3)$. (0) 2 = 0 (0) 2 = 0 (0) 3 = 0

9x62)=(a.eax, oc70 Odrediti parametar $a \in \mathbb{R}$ takav da je $P(X \ge \mathbf{k}) = 0.5$.

$$1 - P(X < A) = 0.5$$

1-Fx60=0,5

-05 =

Odrediti matematičko očekivanje E(Y|X=x)slučajne promenljive Y|X=x.

Informacioni inženjering

predmet: Verovatnoća i slučajni procesi

datum: 8. maj 2021.

PREZIME I IME:		
	BROJ INDEKSA:	

Deo završnog ispita 1 40 poena

Zadaci – Raditi u svesci!

- 1. [7 poena] Na stolu se nalaze kutije bele, crne i crvene boje. U beloj kutiji se nalazi jedna kuglica sa brojem 1, jedna kuglica sa brojem 2 i dve kuglice sa brojem 3. U crnoj kutiji se nalaze dve kuglice sa brojem 1, jedna kuglica sa brojem 2 i dve kuglice sa brojem 4. U crvenoj kutiji se nalaze četri kuglice i to po jedna kuglica sa brojevima 1, 2, 3 i 4. Veca prvo bira kutiju i zatim iz izabrane kutije izvlači dve kuglice odjednom. Veca tri puta verovatnije bira kutiju bele boje nego što bira kutiju crne boje, dok kutije crne i crvene boje bira sa jednakim verovatnoćama.
 - a) Izračunati verovatnoću da je zbir izvučenih brojeva na kuglicama deljiv sa 3.
 - b) Ako zbir izvučenih brojeva na kuglicama 5, izračunati verovatnoću da je Veca izabrala kutiju crne ili crvene boje.
- 2. [7 poena] Kockica se baca tri puta i ako bar jednom padne paran broj, izvodi se još jedno bacanje. Slučajna promenljiva X predstavlja broj palih parnih brojeva, a slučajna promenljiva Y broj izvedenih bacanja.
 - a) Naći zakon raspodele slučajne promenljive (X, Y).
 - b) Naći zakon rapodele slučajne promenljive X|Y=4.
 - c) Izračunati koeficijent korelacije ρ_{XY} .
- 3. [8 poena] Slučajna promenljiva X je data funkcijom gustine $\varphi_X(x) = ae^{-|x|}, x \in \mathbb{R}$ i a > 0.
 - a) Odrediti konstantu a.
 - b) Odrediti raspodelu slučajne promenljive Y = 3X 1.
 - c) Odrediti matematičko očekivanje slučajne promenljive Y = 3X 1.
- 4. [8 poena] Neka su X i Y nezavisne slučajne promenljive, pri čemu X ima eksponencijalnu $\mathcal{E}(2)$ raspodelu, a Y uniformnu $\mathcal{U}(1,2)$ raspodelu. Naći raspodelu slučajne promenljive Z=X-Y.

Teorijska pitanja – Raditi na ovom papiru!

- 1. [4 poena] Formula totalne verovatnoće (formulisati teoremu i dokazati je).
- 2. [3 poena] Matematičko očekivanje (definicija i dokaz jedne osobine po izboru).
- 3. [3 poena] Definicija i osobine funkcije raspodele dvodimenzionalne slučajne promenljive (X, Y).