TWO-WAY ANOVA

COHEN - CHAPTER 13 TEXTBOOK EXAMPLE

3 X 4 TWO-WAY ANOVA, COMPLEX MOTOR TASKS

DV (dependent variable)

• score on a video game that simulates driving a large truck at night

IV (categorical independent variables)

- Sleep deprivation (subjects spend four days in a sleep lab)
 - (I) Control: allowed to follow their own sleep schedule
 - (2) Jet Lag: keep usual amount, but not allow any during I lpm-7am
 - (3) Interrupted: usual amount, but no more that 2 hours at a time, separated by I+ hours awake
 - (4) Total Deprivation: total lack of any sleep

Stimulant

- (I) placebo: sugar pill, but told it is caffeine
- (2) caffeine: caffeine pill, told it is caffeine
- (3) reward: mild electric shocks for mistakes & money for good performance

Subjects

- 5 per sleep x stimulant combination... $5 \times (4 \times 3) = 5 \times 12 = 60$

DATA

	Placebo	Caffeine	Reward
	24	26	28
<u> </u>	20	22	23
Control	29	20	24
Ŭ	20	30	30
	28	27	33
	22	25	26
ag Se	18	31	20
Jet Lag	16	24	32
) Je	25	27	23
	27	21	30
77	16	23	16
pte	20	28	13
Interrupted	Ш	26	12
Inte	19	17	18
	14	19	19
	14	23	15
Total Lack	17	16	- 11
	12	26	19
Tot	18	18	- 11
	10	24	17

```
= c(24, 20, 29, 20, 28),
data_wide <- data.frame(control_placebo</pre>
                        control_caffeine = c(26, 22, 20, 30, 27),
                         control_reward
                                           = c(28, 23, 24, 30, 33),
                         jetlag_placebo
                                           = c(22, 18, 16, 25, 27),
                         jetlag_caffeine
                                           = c(25, 31, 24, 27, 21),
                         jetlag_reward
                                           = c(26, 20, 32, 23, 30),
                         interrup_placebo = c(26, 20, 11, 19, 14),
                         interrup_caffeine = c(23, 28, 26, 17, 19),
                         interrup_reward
                                           = c(16, 13, 12, 18, 19),
                         totlack_placebo
                                           = c(14, 17, 12, 18, 10),
                         totlack_caffeine = c(23, 16, 26, 18, 24),
                        totlack_reward
                                           = c(15, 11, 19, 11, 17))
data_long <- data_wide %>%
  tidyr::gather(key = variable,
                value = score) %>%
  tidyr::separate(col = variable,
                 into = c("sleep", "stimulant")) %>%
  dplyr::mutate(sleep = factor(sleep,
                               levels = c("control",
                                           'jetlag",
                                          "interrup",
                                          "totlack"),
                               labels = c("Own Schedule",
                                          "Jet Lag",
                                          "Interruped",
                                          "Total Lack"))) %>%
  dplyr::mutate(stimulant = factor(stimulant,
                                   levels = c("placebo",
                                              'caffeine",
                                              "reward").
                                   labels = c("Sugar Pill",
                                              "Caffeine Pill".
                                              "Electric Shock"))) %>%
  dplyr::mutate(id = row_number()) %>%
  dplyr::select(id, sleep, stimulant, score)
```

```
`{r}
data_long
   sleep
<fctr>
                                 stimulant
                                                                           score
<dbl>
   Own Schedule
                                 Sugar Pill
                                                                              24
   Own Schedule
                                 Sugar Pill
                                                                              20
   Own Schedule
                                 Sugar Pill
                                                                              29
   Own Schedule
                                 Sugar Pill
                                                                              20
   Own Schedule
                                 Sugar Pill
                                                                              28
   Own Schedule
                                 Caffeine Pill
                                                                              26
   Own Schedule
                                 Caffeine Pill
                                                                              22
   Own Schedule
                                 Caffeine Pill
                                                                              20
                                 Caffeine Pill
   Own Schedule
                                                                              30
   Own Schedule
                                 Caffeine Pill
                                                                              27
  1-10 of 60 rows
```

*	sleep ‡	stimulant ‡	score ‡
1	Own Schedule	Sugar Pill	24
2	Own Schedule	Sugar Pill	20
3	Own Schedule	Sugar Pill	29
4	Own Schedule	Sugar Pill	20
5	Own Schedule	Sugar Pill	28
6	Own Schedule	Caffeine Pill	26
7	Own Schedule	Caffeine Pill	22
8	Own Schedule	Caffeine Pill	20
9	Own Schedule	Caffeine Pill	30
10	Own Schedule	Caffeine Pill	27
11	Own Schedule	Electric Shock	28
12	Own Schedule	Electric Shock	23
13	Own Schedule	Electric Shock	24
14	Own Schedule	Electric Shock	30
15	Own Schedule	Electric Shock	33
16	Jet Lag	Sugar Pill	22
17	Jet Lag	Sugar Pill	18
18	Jet Lag	Sugar Pill	16
19	Jet Lag	Sugar Pill	25
20	Jet Lag	Sugar Pill	27

MARGINAL MEAN'S

	Placebo	Caffeine	Reward	
Control	24.2	25.0	27.6	25.6
Jet Lag	21.6	25.6	26.2	24.47
Interrupted	16.0	22.6	15.6	18.07
Total Lack	14.2	21.4	14.6	16.73
	19.0	23.65	21.0	21.217

```
data_long %>%
  dplyr::group_by(sleep) %>%
  furniture::table1(score)
```

```
sleep
Own Schedule Jet Lag Interruped Total Lack
n = 15 n = 15 n = 15 n = 15
score
25.60 (4.12) 24.47 (4.63) 18.07 (4.86) 16.73 (4.86)
```

```
data_long %>%
  dplyr::group_by(stimulant) %>%
  furniture::table1(score)
```

sleep <fctr></fctr>	Sugar Pill <dbl></dbl>	Caffeine Pill <dbl></dbl>	Electric Shock «dbl»
Own Schedule	24.2	25.0	27.6
Jet Lag	21.6	25.6	26.2
Interruped	16.0	22.6	15.6
Total Lack	14.2	21.4	14.6

PLOT OF MEAN'S

DEGREES OF FREEDOM

2-WAY ANOVA

	SS	Df	MS	F	p
Between-Cells	1309.38	11			
SLEEP Row Groups	896.98	3	298.99	18.241	<.001
STIM Column Groups	217.63	2	108.82	6.639	.003
INTER (Row x Col)	197.77	6	32.46	1.980	.087
Within-Cells (Residual)	786.80	48	16.39		
Total	2096.18	59			

IF THE INTERACTION IS SIGNIFICANT...

MAIN EFFECTS
SHOULD NOT BE
INTERPRETED IN
ISOLATION

```
`{r}
aov_2way$Anova
Anova Table (Type III tests)
Response: dv
                           F value
                 Sum Sq Df
                                       Pr(>F)
 (Intercept)
                27008.8 1 1647.7163 < 2.2e-16 ***
sleep
                  897.0 3
                            18.2406 4.896e-08 ***
stimulant
                  217.6 2
                             6.6385 0.002849 **
sleep:stimulant 194.8 6
                             1.9803 0.087003 .
Residuals
                  786.8 48
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

INTERACTION CONTRASTS

 $2x2: df_{con} = (r-1)(c-1) = 1$

If the interaction is significant... pick TWO PAIRS to Dara laytrama

compare (extreme)							
Placebo Caffeine Reward							
Norm	24.2	25.0	27.6	25.6			
Lag	21.6	25.6	26.2	24.47			
lnt	16.0	22.6	15.6	18.07			
None	14.2	21.4	14.6	16.73			

23.65

19.0

21.0 21.217

Does CAFFEINE have the same effect in NO SLEEP

$$c_i = 1$$
, -1, -1, 1

$$\sum c_i^2 = 4$$

$$L = (\bar{X}_{11} - \bar{X}_{12}) + (\bar{X}_{21} - \bar{X}_{22})$$

$$L = \overline{\overline{X}}_{11} - \overline{X}_{12} - \overline{X}_{21} + \overline{X}_{22}$$

$$L = \mathbf{1} \cdot \bar{X}_{11} + -\mathbf{1} \cdot \bar{X}_{12} + -\mathbf{1} \cdot \bar{X}_{21} + \mathbf{1} \cdot \bar{X}_{22}$$

$$L = \mathbf{1} \cdot + -\mathbf{1} \cdot + + \mathbf{1} \cdot$$

$$L = 24.2 - 25.0 - 14.2 + 21.4 = 6.4$$

24.2 25.0
$$SS_{con} = \frac{n \cdot L^2}{\sum c_i^2}$$

$$F_{con} = \frac{SS_{con}}{MS_W}$$

$$SS_{con} = \frac{5 \cdot 6.4^2}{1 + 1 + 1 + 1} = \frac{5 \cdot 40.96}{4} = \frac{204.8}{4} = 51.2$$

$$F_{Scheffe} = df_{int} \cdot F(df_{int}, df_W)$$
 $F_{con} = \frac{51.2}{16.39} = 3.12$

$$F_{con} = \frac{51.2}{16.39} = 3.12$$

$$F_{Scheffe} = 6 \cdot F(6, 48) = 6 \cdot F_{.05}(6, 40) = 6 \cdot 2.34 = 14.04$$

INTERACTION CONTRASTS

Does CAFFEINE have the same effect in NO SLEEP as NORMAL SLEEP?

	Placebo Caffeine Reward						
Norm	24.2	25.0	27.6	25.6			
Lag	21.6	25.6	26.2	24.47			
Int	16.0	22.6	15.6	18.07			
None	14.2	21.4	14.6	16.73			
	19.0	23.65	21.0	21.217			

 $F_{contrast} = 3.12$

Vs

 $F_{Scheffe} = 14.04$

This provides no evidence

that CAFFEINE has a different effect

in NORMAL SLEEP vs TOTAL DEPRIVATION.