Progetto Compilatori

A.A. 2020/2021

Gaetano Antonucci

Alessio Romano

$19~{\rm gennaio}~2021$

Indice

1	Reg	gole di Type Checking implementate
	1.1	Tipi Primitivi
	1.2	Dichiarazioni di Variabili
	1.3	Operazioni Unarie
	1.4	Operazioni Binarie
	1.5	Chiamata a Procedura
	1.6	Statement
		1.6.1 if-then
		1.6.2 if-then-else
		1.6.3 if-then-elif-else
		1.6.4 while
		1.6.5 while-return
		1.6.6 readln
		1.6.7 write
		1.6.8 assign

1 Regole di Type Checking implementate

1.1 Tipi Primitivi

 $\Gamma \vdash null : null \qquad \Gamma \vdash true : boolean \qquad \Gamma \vdash false : boolean$

 $\Gamma \vdash int : int$ $\Gamma \vdash float : float$ $\Gamma \vdash string : string$ $\Gamma \vdash bool : boolean$

1.2 Dichiarazioni di Variabili

$$\frac{(x\colon\tau)\in\Gamma}{\Gamma\vdash x\colon\tau}$$

1.3 Operazioni Unarie

$$\frac{\Gamma \vdash e \colon \tau_1 \quad optype1(op, \tau_1) = \tau}{\Gamma \vdash (op \ e) \colon \tau}$$

1.4 Operazioni Binarie

$$\frac{\Gamma \vdash e_1 \colon \tau_1 \quad \Gamma \vdash e_2 \colon \tau_2 \quad optype2(op, \tau_1, \tau_2) = \tau}{\Gamma \vdash (e_1 \ op \ e_2) \colon \tau}$$

1.5 Chiamata a Procedura

$$\frac{\Gamma \vdash f \colon \tau_i^{i \in 1 \dots n} \to \tau_j^{j \in 1 \dots m} \quad \Gamma \vdash e_i \colon \tau_i^{i \in 1 \dots n}}{\Gamma \vdash f(e_i^{i \in 1 \dots n}) \colon \tau_i^{j \in 1 \dots m}}$$

1.6 Statement

1.6.1 if-then

$$\frac{\Gamma \vdash e : boolean \quad \Gamma \vdash stmt}{\Gamma \vdash \text{if } e \text{ then } stmt \text{ fi}}$$

1.6.2 if-then-else

$$\frac{\Gamma \vdash e \colon boolean \quad \Gamma \vdash stmt_1 \quad \Gamma \vdash stmt_2}{\Gamma \vdash \mathtt{if} \ e \ \mathtt{then} \ stmt_1 \ \mathtt{else} \ stmt_2 \ \mathtt{fi}}$$

1.6.3 if-then-elif-else

$$\frac{\Gamma \vdash e_j^{\ j \in 1 \dots m} \colon boolean \quad \Gamma \vdash stmt_i^{i \in 1 \dots 3}}{\Gamma \vdash \text{if } e_1 \text{ then } stmt_1 \, (\text{elif } e_j^{\ j \in 2 \dots m} \text{ then } stmt_2 \,)_t^{t \in 1 \dots k} \, \text{else } stmt_3 \, \text{fi}}$$

1.6.4 while

$$\frac{\Gamma \vdash e : boolean \quad \Gamma \vdash stmt}{\Gamma \vdash \text{while } e \text{ do } stmt \text{ od}}$$

1.6.5 while-return

$$\frac{\Gamma \vdash e \colon boolean \quad \Gamma \vdash stmt_1 \quad \Gamma \vdash stmt_2}{\Gamma \vdash \mathtt{while} \ stmt_1 -> e \ \mathtt{do} \ stmt_2 \ \mathtt{od}}$$

$$\frac{(x_i^{i\in 1\dots n}\colon \tau_i^{i\in 1\dots n})\in \Gamma}{\Gamma\vdash \mathtt{readln}(x_i^{i\in 1\dots n})}$$

1.6.7 write

$$\frac{\Gamma \vdash e \colon \tau}{\Gamma \vdash \mathtt{write}(e \colon \tau)}$$

1.6.8 assign

$$\frac{(x\colon\tau)\in\Gamma\quad\Gamma\vdash e\colon\tau}{\Gamma\vdash x:=e}$$