

Chapitre 2 : Optimisation avec contraintes

H. Ben Majdouba

Définition

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue,

Un problème d'optimisation avec contraintes consiste à calculer la solution du problème suivant :

$$(P): \min_{x \in K} f(x)$$

Avec K est un sous ensemble de \mathbb{R}^n ,

K est appelé ensemble des solutions admissibles,

Définition

Exemple

Soit
$$f(x, y, z) = x^2 + y^2 + z^2$$

Et soit le problème : (P):
$$\min_{(x,y,z)\in K} f(x,y,z)$$

Dans le cas de contraintes d'égalité:

$$K = \{(x, y, z) \in \mathbb{R}^3 \ tel \ que \ x + y + z = 1\}$$

Dans le cas de contraintes d'inégalité:

$$K = \{(x, y, z) \in \mathbb{R}^3 \ tel \ que \ x + y + z \le 2 \ et \ x + 2z \le 3\}$$

Existence de minimum

Théorème:

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue, et (P): $\min_{x \in K} f(x)$

- 1) Si K est un fermé borné de \mathbb{R}^n alors (P) admet au moins une solution.
- 2) Si *K* est fermé et *f* est coercive alors (*P*) admet au moins une solution.

Rappel:

K est fermé si toute suite convergente d'éléments de *K* sa limite est aussi dans *K*,

Unicité de minimum

Théorème:

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue, et (P): $\min_{x \in K} f(x)$

Si f est strictement convexe et que K est convexe alors le problème (P) admet au plus une solution,

Rappel:

 $K \subset \mathbb{R}^n$ est convexe si et seulement si :

$$\forall x, y \in K , \forall \lambda \in [0,1] , \lambda x + (1 - \lambda)y \in K$$

Exemples:

- Un espace affine $K = \{x \in \mathbb{R}^n , Ax = b\}$ est convexe
- Un demi-espace $K = \{x \in \mathbb{R}^n , a^T x \le c\}$ est convexe
- L'intersection d'ensembles convexes est convexe

Existence et Unicité de minimum

Théorème:

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue et strictement convexe et

$$K$$
 est un convexe fermé de \mathbb{R}^n , et soit (P) : $\min_{x \in K} f(x)$.

Si K est borné ou si f est coercive alors le problème (P) admet une unique solution.

Exemple:

Soit
$$f(x, y, z) = x^2 + y^2 + z^2$$

Et soit le problème
$$(P)$$
: $\min_{(x,y,z)\in K} f(x)$ où $K = \{(x,y,z)\in \mathbb{R}^3 \ tel \ que \ x+y+z=1 \ et \ x^2+y^2 \le 1\}$

Montrer que (P) admet une unique solution.

Existence et Unicité de minimum

- f est continue, strictement convexe (car la matrice hessienne de f est $H_f = 2I_3$ définie positive) et coercive (car $\lim_{\|(x,y,z)\| \to +\infty} f(x,y,z) = +\infty$)
- $K_1 = \{(x, y, z) \in \mathbb{R}^3 \text{ tel que } x + y + z = 1 \}$ est un espace affine donc convexe $K_2 = \{(x, y, z) \in$

Existence et Unicité de minimum

• Soit $(X_n) = (x_n, y_n, z_n)$ une suite de K qui converge vers (a, b, c)

Alors:
$$x_n + y_n + z_n = 1$$
 et $x_n^2 + y_n^2 \le 1$

Donc (par passage à la limite):

$$a + b + c = 1$$
 et $a^2 + b^2 \le 1$

D'où
$$(a, b, c) \in K$$

Donc *K* est fermé

Ainsi le problème (P) admet une unique solution.

Définition:

Soit $f: \mathbb{R}^n \to \mathbb{R}$ et soit le problème $(P): \min_{x \in K} f(x)$ où $K = \{x \in \mathbb{R}^n \ telque \ g_i(x) = 0 \ , \quad i = 1, ..., m\}$ avec $g_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m

Le Lagrangien associé à ce problème est défini par :

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Les λ_i sont les multiplicateurs de Lagrange.

Théorème:

Si x^* est une solution du problème (P) alors il existe un vecteur $\lambda^* \in \mathbb{R}^m$ tel que :

$$\nabla L(x^*, \lambda^*) = 0$$

Exemple:

Résoudre le problème suivant :

$$\min_{(x,y,z)\in K}(2x-y-z)$$

Où
$$K = \{(x, y, z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 = 1 \ et \ x + y + z = 1 \}$$

Soit
$$f(x, y, z) = 2x - y - z$$
, $g_1(x, y, z) = x^2 + y^2 + z^2 - 1$
Et $g_2(x, y, z) = x + y + z - 1$

Le Lagrangien associé à ce problème est définie par :

$$L(x, y, z, \lambda_1, \lambda_2) = f(x, y, z) + \lambda_1 g_1(x, y, z) + \lambda_2 g_2(x, y, z)$$

$$\nabla L = 0 \iff \begin{cases} \frac{dL}{dx} = 0 \\ \frac{dL}{dy} = 0 \\ \frac{dL}{dz} = 0 \\ \frac{dL}{dz} = 0 \\ x^2 + y^2 + z^2 = 1 \\ x + y + z = 1 \end{cases} \Leftrightarrow \begin{cases} 2 + 2x\lambda_1 + \lambda_2 = 0 & (1) \\ -1 + 2y\lambda_1 + \lambda_2 = 0 & (2) \\ -1 + 2z\lambda_1 + \lambda_2 = 0 & (3) \\ x^2 + y^2 + z^2 = 1 & (4) \\ x + y + z = 1 & (5) \end{cases}$$

D'après (1) et (2) on déduit que $\lambda_1 \neq 0$

(2) Et (3) donnent : y = z

$$(1)+(2)+(3)$$
 donne: $2\lambda_1(x+y+z)+3\lambda_2=0$ or $x+y+z=1$

Donc
$$\lambda_2 = -\frac{2}{3}\lambda_1$$

En intégrant cette relation dans le système on aura :

$$\begin{cases} x = \frac{1}{3} - \frac{1}{\lambda_1} \\ y = \frac{1}{3} + \frac{1}{2\lambda_1} \\ z = \frac{1}{3} + \frac{1}{2\lambda_1} \\ x^2 + y^2 + z^2 = 1 \end{cases}$$

Donc
$$\lambda_1^2 = \frac{9}{4} \implies \lambda_1 = \pm \frac{3}{2}$$

Puisque K est un fermé borné donc f admet au moins un minimum et au moins un maximum sur K,

si
$$\lambda_1 = \frac{3}{2}$$
 alors $x = -\frac{1}{3}$, $y = \frac{2}{3}$, $z = \frac{2}{3}$ et $f(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}) = -2$
si $\lambda_1 = -\frac{3}{2}$ alors $x = 1$, $y = 0$, $z = 0$ et $f(1, 0, 0) = 2$

Donc la solution de ce problème est $\left(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$