Indexability, concentration, and VC theory

Vladimir Pestov

Department of Mathematics and Statistics University of Ottawa Ottawa, Ontario, Canada

SISAP'2010, Istanbul, Sept. 18-19, 2010

Origins of the curse of dimensionality?

Suppose the indexing scheme = family of 1-Lipschitz functions $f_i \colon \Omega \to \mathbb{R}, \ i \in I$ (fully or partially defined):

$$|f_i(\mathbf{x}) - f_i(\mathbf{y})| \leq \rho(\mathbf{x}, \mathbf{y}).$$

Given $q \in \Omega$ and $\varepsilon > 0$, the algorithm chooses recursively $f_{i_1}, f_{i_2}, \ldots, f_{i_m}$, where i_{m+1} is determined by $f_{i_1}(q), f_{i_2}(q), \ldots, f_{i_m}(q)$.

All $x \in X$ with $|f_i(q) - f_i(x)| > \varepsilon$ are discarded.

Points $x \in X$ that are not discarded are returned.

Space complexity: |I|

Time complexity: # of function evaluations at q + # of points returned.

Using 1-Lipschitz condition

The datapoint *x* can be discarded.

Empty space paradox

Normalized average NN distance in $X \sim$ gaussian distribution in \mathbb{R}^d .

1-Lipschitz functions concentrate around their mean

Distances to a random pivot in a dataset X of $n=10^5$ points \sim gaussian distribution in \mathbb{R}^{14} :

∴ few points are discarded, → degrading performance.

Concentration phenomenon

On a typical "high-dimensional" structure, the variance of every 1-Lipschitz function is small.

 (Ω, ρ) is a metric space, carrying a probability distribution, μ . (forget datapoints for the moment).

Concentration function

$$\alpha_{\Omega}(\varepsilon) = \left\{ \begin{array}{ll} \frac{1}{2}, & \text{if } \varepsilon = 0, \\ 1 - \inf\left\{\mu\left(A_{\varepsilon}\right) : A \subseteq \Omega, \ \mu_{\sharp}(A) \geq \frac{1}{2} \right\}, & \text{if } \varepsilon > 0. \end{array} \right.$$

Value $\alpha_{\Omega}(\varepsilon)$ = upper bound of sizes of $\Omega \setminus A_{\varepsilon}$.

Typically, $\alpha(\varepsilon) \leq \exp(-O(\varepsilon^2 d))$

Concentration function of the Hamming cube $\{0,1\}^{100}$:

Concentration of 1-Lipschitz functions

Let $f: \Omega \to \mathbb{R}$ be 1-Lipschitz, $\varepsilon > 0$. Then:

$$\mu\{x \in \Omega \colon |f(x) - M_f| > \varepsilon\} \le 2\alpha_{\Omega}(\varepsilon),$$
 (1)

where M_f is the median value of f:

$$\mu[f \geq M_f] \geq 1/2$$
,

$$\mu[f \leq M_f] \geq 1/2.$$

Note: $M_f \approx \mathbb{E}(f)$ as $d \to \infty$.

Random projection of cubes

Random projection of cubes

High-dimensional domains

High dimensional objects are all alike to a low-dimensional observer.

- \mathbb{R}^d , gaussian measure
- [0, 1]^d, uniform measure
- \mathbb{S}^d , sphere with the Lebesgue measure
- $\{0,1\}^d$, Hamming cube.

Asymptotic assumptions

- datapoints are drawn from $\Omega = (\Omega, \rho, \mu)$ in an i.i.d. fashion;
- ρ is normalized:

CharSize(
$$\Omega$$
) = $\mathbb{E}_{\mu \otimes \mu}(\rho) = \Theta(1)$;

• Ω "has concentration dimension" d:

$$\alpha_{\Omega}(\varepsilon) = \exp(-\Omega(\varepsilon^2 d));$$

• n = |X| grows faster than any polynomial in d, but slower than any exponential function in d:

$$n = d^{\omega(1)}, \quad d = \omega(\log n).$$

Distance to NN

$$\varepsilon_{NN}(q) = d(q, X)$$
, a real function on Ω .

- Highly concentrated around the median, ε_M .
- With high confidence, ε_{NN} converges to "characteristic size" $\mathbb{E}_{\mu\otimes\mu}(d)$ as $d\to\infty$.

Pivot tables and concentration

For every $p \in \Omega$, the distance function $\rho(p, -)$ concentrates around its median, M_p . And ε_M is large.

∴ Spherical shell $\varepsilon_M \pm \varepsilon$ has measure $1 - \exp(-\Omega(d)\varepsilon^2)$.

Intersections of spherical shells

Same goes for intersection, S, of O(n) spherical shells:

If q and x belong to S, and $\varepsilon_{NN}(q) \ge \varepsilon_M$ (true for half of query points), then x cannot be discarded.

Can we infer that since S is big, it contains lots of datapoints?

Shattering

 \mathscr{C} : a family of subsets of Ω .

Finite $A \subseteq \Omega$ is *shattered* by \mathscr{C} if for every $B \subseteq A$

$$B = A \cap C$$

for a suitable $C \in \mathscr{C}$.

 $VC(\mathscr{C})$: the largest size of $A \subseteq \Omega$ shattered by \mathscr{C} .

Vapnik–Chervonenkis dimension: examples

Family of sets	VC dimension
Intervals in $\mathbb R$	2
Half-spaces in \mathbb{R}^d	d+1
Euclidean balls of all radii in \mathbb{R}^d	d+1
Parallelepipeds in \mathbb{R}^d	2d + 2
Family of <i>n</i> sets	$\leq \lg_2 n$
Balls in the Hamming d-cube	$\leq d + \lg_2 d$
Finite unions of intervals in ${\mathbb R}$	∞
Convex polygons in \mathbb{R}^d	∞
$\{\Omega \setminus C \colon C \in \mathscr{C}\}$	$\operatorname{VC}(\mathscr{C})$
$\mathscr{C}\cup\mathscr{D}$	$\leq VC(\mathscr{C}) + VC(\mathscr{D}) + 1$
k -fold intersections of els of $\mathscr C$	$\leq 2k \lg(ek) VC(\mathscr{C})$

Empirical measures

$$\mu_n(\mathbf{C}) = \frac{|\{i \colon \mathbf{x}_i \in \mathbf{C}\}|}{n}.$$

Law of Large Numbers $\rightsquigarrow \mu_n(C) \rightarrow \mu(C)$ as $n \rightarrow \infty$.

If $VC(\mathscr{C}) < \infty$, the same happens for *every* $C \in \mathscr{C}$, uniformly.

Uniform convergence of empirical measures

A class $\mathscr C$ on Ω has UCEM property if there is a function $s(\delta,\varepsilon)$ so that, given $\varepsilon>0$ (precision) and $\delta>0$ (risk), whenever $n\geq s(\delta,\varepsilon)$, one has

$$P\left\{\sup_{C\in\mathscr{C}}|\mu(C)-\mu_{n}(C)|\geq \varepsilon
ight\}<\delta,$$

for every μ on Ω . Here $\mu_n(C) = \sharp \{i \colon x_i \in C\}/n$ is the empirical measure on the sample \bar{x} .

thm. (Vapnik–Chervonenkis) $\mathscr C$ has UCEM property if and only if $d=\mathrm{VC}(\mathscr C)<\infty$. In this case,

$$s(\delta, \varepsilon) = O(d\varepsilon^{-1}(-\log \varepsilon - \log \delta)).$$

Curse of dimensionality for pivot tables

 \therefore The class $\mathscr C$ of all possible k-fold intersections of spherical shells in Ω has VC dimension $\leq 2k \lg(ek) O(d)$.

If $k = o(n/d \log n)$, this is o(n). It follows that, with high confidence $1 - \delta$, the proportion of datapoints in *every k*-fold intersection of shells is close to its measure.

Apply to giant intersections to get:

thm. (Pestov–Volnyansky) For Ω Hamming cube, Euclidean cube, ..., the average total complexity of the performance of any pivot table is Ω ($n/d \log n$).

Metric trees

- a finite binary rooted tree T,
- an assignment of a function $f_t \in \mathscr{F}$ (a pruning, or decision function) to every inner node $t \in I(T)$, and
- a collection of subsets $B_t \subseteq \Omega$, $t \in L(T)$ (bins), covering the dataset: $X \subseteq \bigcup_{t \in L(T)} B_t$.

Curse of dimensionality for metric trees

thm. Let \mathscr{F} be the class of 1-Lipschitz functions used to construct a particular type of metric tree. If the VC dimension of the class θf , $f \in \mathscr{F}$ is $\operatorname{poly}(d)$, then the expected average performance of the metric tree is superpolynomial in d.

Theorem of Goldberg and Jerrum

How sensible is the assumption $VC(\mathscr{F}) = poly(d)$?

thm. Consider the parametrized class

$$\mathscr{F} = \{ \mathbf{x} \mapsto f(\theta, \mathbf{x}) \colon \theta \in \mathbb{R}^{s} \}$$

for some $\{0,1\}$ -valued function f.

Suppose for each $x \in \mathbb{R}^n$, there is an algorithm that computes $f(\theta, x)$ in no more than t operations of the following types:

- \bullet arithmetic operations $+,-,\times$ and / on real numbers,
- jumps conditioned on >, \ge , <, \le , =, and \ne comparisons of real numbers, and
- output 0 or 1.

Then
$$VC(\mathscr{F}) \leq 4s(t+2)$$
.

Curse of dimensionality conjecture

Let X be a dataset with n points in the Hamming cube $\{0,1\}^n$. Suppose $d=n^{o(1)}$ and $d=\omega(\log n)$. Then any data structure for exact nearest neighbour search in X, with $d^{O(1)}$ query time, must use $n^{\omega(1)}$ space.

Cell probe model

- functions f_t indexed with inner nodes of a rooted tree T,
- cells C_i, indexed with a set I, and
- a mapping $t \mapsto i(t)$ from T to I (not necessarily one-to-one).

 f_t is defined on (a subset of) Ω and takes a b-bit string σ as a parameter, except if t=0 is the root.

 $f_t(\sigma; q)$ is a pair (τ, s) , with τ a *b*-bit string and s a child of t.

If i = i(t) where t is an inner node, C_i can hold a b-bit string.

If i = i(t) where t is a leaf, then C_i can hold a datapoint $x \in X$.

Initialization: memory image of cells. Reaching leaf, read off x contained in $C_{i(s)}$.

Best results to date

Best lower bound currently known:

$$O\left(d/\log\frac{sd}{n}\right)$$
,

where s = number of cells (Pătrascu and M. Thorup 2006).

 \rightsquigarrow earlier bound $\Omega(d/\log n)$ for polynomial space data structures (Barkol and Rabani 2000), and

 \rightarrow lower bound $\Omega(d/\log d)$ for "near linear space" $n\log^{O(1)} n$.

thm. (Gonzalo Navarro) If X is a finite metric space, $x, y \in X$, then one can embed X into a metric space Ω where x, y are Delaunay-adjacent.

In fact: X can be embedded into a metric space (Urysohn metric space \mathbb{U}) in which every two distinct x, y are Dalaunay—adjacent.

Even better: under our assumptions, for *d* large enough every two points in *X* are Delaunay-adjacent for all common domains.

The curse of dimensionality is present, but apparently for different reasons. How to give a common proof?

Approximate NN search

 (r,ε) -ANN search: given r and $\varepsilon > 0$, for a $q \in \Omega$, if $\varepsilon_{NN}(q) \le r$, then return a datapoint $x \in X$ at a distance $d(q,x) < (1+\varepsilon)r$.

Often said: "free from the curse of dimensionality".

Not quite true... yet, much more efficient algorithms are known. Often randomized.

Expected distortion of a random projection

The expected distortion of one-dimensional projection of the d-dimensional sphere \mathbb{S}^{d-1} over all pairs of points.

Geometry of random projections

Johnson-Lindenstrauss lemma

Renormalized projection:

$$f(x) = C\sqrt{n}\pi(x).$$

is approximately 1-Lipschitz for a finite fraction of pairs.

To achieve distortion in the range $1 \pm \varepsilon$ with high confidence, combine $k = O(\log n/\varepsilon^2)$ mutually orthogonal projections as above, that is, project on a randomly chosen k-dimensional subspace.

(Johnson-Lindenstrauss lemma.)

Indyk–Motwani: combined such a projection on $\mathbb{R}^{O(\log n/\varepsilon^2)}$ with an indexing scheme in a low-dimensional space.

→ LSH for ANN search.

Scheme of Kushilevitz, Ostrovsky and Rabani

Let $\Omega = \{0,1\}^d$, $X \subseteq \{0,1\}^d$ a dataset.

Turn things on their head: take as the domain

$$\Omega = [d] = \{1, 2, 3, \dots, d\},$$

and view datapoints x as concepts (subsets of [d]):

$$x \mapsto \{i \colon x_i = 1\} \subseteq [d].$$

 $VC(X) \leq \lg n$.

If $\varepsilon > 0$, by VC theory, pairwise distances in X are within $\pm \varepsilon$ of distances in the Hamming cube on $O(\varepsilon^{-2} \lg n)$ randomly sampled coordinates (with high confidence!) Same holds for $X \cup \{q\}$ for most q.

Hash table for NN in $\{0,1\}^{O(\varepsilon^{-2} \lg n)}$ (size: $n^{O(\varepsilon^{-2})}$) \leadsto efficient (r,ε) -ANN search for r is a "reasonable" range.

Illustration to Kushilevitz-Ostrovsky-Rabani

Distortions of all pairwise distances in a random dataset of n = 3,000 points in the d = 500 Hamming cube under a projection to a Hamming cube on k = 25 randomly chosen bits.

Discussion: query stability

An NN query with centre q is ε -unstable (Beyer–Golsdtein–Ramakrishnan–Shaft) if the $(1+\varepsilon)\varepsilon_{NN}(q)$ -ball around q contains $\geq n/2$ datapoints.

Asymptotically, under our assumptions, most queries are ε -unstable.

In particular, (r, ε) -ANN search becomes meaningless for ε -unstable queries: pick x at random, and with high confidence, the result is correct.

The curse of dimensionality conjecture \approx "unstable queries are impossible to answer." (believable, yes; relevant, ?; unproven.)

Discussion: intrinsic dimension

Empirical density histogram of distances from a pivot having the highest found value of dissipation for the NASA dataset.

Lines: the mean \pm tolerance range $\varepsilon = 0.275$.

Discussion: derandomization

Wigderson and others: if $P \neq NP$, then one can use any hard function as a source of random bits, and this turns randomized algorithms (correct with high confidence) into deterministic (provably correct).

Say NN query is *stable* if the $(1 + \varepsilon)\varepsilon_{NN}(q)$ -ball around q contains a manageable number of data (say, poly (d)).

Derandomizing Kushilevitz—Ostrovsky—Rabani, one would be able to answer *stable* queries (the ones worth answering...) in poly(d) time.

(Won't contradict the curse of dimensionality conjecture which is all about impossibility to answer *unstable* queries).

Discussion: hyperbolicity

A metric space is *hyperbolic* if there is $\delta > 0$ so that for each geodesic triangle a, b, c the side [a, b] is contained in the δ -neighbourhood of $[b, c] \cup [a, c]$.

Alain Connes suggested that long-term memory uses Delaunay graph of a hyperbolic simplicial complex.

