Company Name AkerSolution Project Title Group/Team Name Subtitle Designer Amar Gajjam Job Number

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Design Conclusion

Finplate Pass

Finplate

Connection Properties

Connection

Connection Title Single Finplate **Shear Connection** Connection Type

Connection Category

Connectivity Column flange-Beam web

Bolted Beam Connection Column Connection Welded

Loading (Factored Load)

Shear Force (kN) 200

Components

Column Section **ISSC 200** Material Fe 410 Beam Section **ISMB 400** Material Fe 410 Hole STD Plate Section 330X80X16

Thickness (mm) 16 Width (mm) 80 Depth (mm) 330 STD Hole

Weld

Type Double Fillet

Size (mm) 13

Bolts

Type **HSFG** Grade 8.8 Diameter (mm) 12 **Bolt Numbers** 7 Columns (Vertical Lines) 1 Bolts Per Column 7 Gauge (mm) 0 Pitch (mm) 45 End Distance (mm) 30 30 Edge Distance (mm)

Assembly

Column-Beam Clearance (mm) 20

Created with

Company Name AkerSolution Project Title Subtitle Group/Team Name Designer Amar Gajjam Job Number

05 /06 /2016 Method Date Limit State Design (No Earthquake Load)

Design Check

Bolt shear capacity (kN)

Bolt bearing capacity (kN)

Check Required Provided Remark

 $V_{\rm dsb} = (800*0.6126*12*12)/(\sqrt{3}*1.25*1000) =$

[cl. 10.3.3]

 $V_{\rm dpb} = (2.5*0.519*12*8.9*410)/(1.25*1000) =$

45.452 [cl. 10.3.4]

31.223

Bolt capacity (kN) Min (31.223, 45.452) = 31.223

No. of bolts 200/31.223 = 6.4**Pass**

No.of column(s)	≤ 2	1	
No. of bolts per column		7	
Bolt pitch (mm)	$\geq 2.5* 12 = 30, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]	45	Pass
Bolt gauge (mm)	$\geq 2.5*12 = 30, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]	0	
End distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Edge distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	\geq 200	$V_{\rm db} = 696$	Pass
Plate thickness (mm)	(5*200*1000)/(330*250) = 12.12 [Owens and Cheal, 1989]	16	Pass
Plate height (mm)	≥ 0.6*400=240.0, ≤ 400-16-14-10=330.0 [cl. 10.2.4, Insdag Detailing Manual, 2002]	330	Pass
Plate width (mm)		100	
Plate moment capacity (kNm)	$(2*31.223*45^2)/(45*1000) = 16.86$	$M_{\rm d} = (1.2*250*Z)/(1000*1.1) = 79.2$ [cl. 8.2.1.2]	Pass
Effective weld length (mm)		330-2*16 = 298	
Weld strength (kN/mm)	$\sqrt{[(16860*6)/(2*298^2)]^2 + [200/(2*298)]^2}$ = 0.661	$f_{\rm V} = (0.7*13*410)/(\sqrt{3}*1.25)$ = 2.121 [cl. 10.5.7]	Pass
Weld thickness (mm)	Max($(0.661*1000*\sqrt{3}*1.25)/(0.7*410),16*0.8$) = 12.8 [cl. 10.5.7, Insdag Detailing Manual, 2002]	13	Pass

Created with

Company Name AkerSolution Project Title
Group/Team Name Subtitle
Designer Amar Gajjam Job Number

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Views

Created with

Company Name AkerSolution Project Title
Group/Team Name Subtitle
Designer Amar Gajjam Job Number

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Additional Comments