Analyse I – Série 2

Remarque générale:

Les Exercices 1 et 5 (au verso) consistent de questions de type Vrai ou Faux (V/F). Ce type de questions réapparaîtra tout au long du semestre. Pour chaque question, répondre par VRAI si l'affirmation est toujours vraie ou par FAUX si elle n'est pas toujours vraie.

Echauffement 1. (Notion de couple)

Soient les ensembles $X = \{1, 2\}, Y = \{3, 4\}, Z = \{5, 6\}.$

- i) Est-ce que le couple (3,2) est un élément du produit cartésien $X \times Y$?
- ii) Montrer que le produit cartésien n'est pas associatif, c'est-à-dire que $(X \times Y) \times Z \neq X \times (Y \times Z)$.

Echauffement 2. (Raisonnement par récurrence)

Montrer que pour $n \in \mathbb{N}^*$

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
.

Exercice 1. (V/F: Ensembles)

Soient $A, B, C \subset \mathbb{R}$ des ensembles non vides.

On note $A \setminus B$ pour la différence des ensembles A et B, et $A \cap B$ pour leur intersetion, c.-à-d.

$$A \setminus B = \{x \in A : x \notin B\}$$
 et $A \cap B = \{x : x \in A \text{ et } x \in B\}.$

Q1: $\mathbb{R} \setminus (A \cap B) = (\mathbb{R} \setminus A) \cap (\mathbb{R} \setminus B)$

Q2: $A \times B = B \times A \Leftrightarrow A = B$

Q3: $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Exercice 2. (Relation d'équivalence)

Soit X un ensemble. Montrer que les relations suivantes sont des relations d'équivalence. Quels sont dans les deux cas les ensembles quotient $X/_{\sim}$?

- i) $x \sim y$ si x = y, pour tout $x, y \in X$;
- ii) $x \sim y$, pour tout $x, y \in X$.

Exercice 3. (Relation d'équivalence)

- i) Montrer que $x \sim y$ si xy > 0, définit une relation d'équivalence sur \mathbb{Z}^* . Quel est l'ensemble quotient?
- ii) Montrer que $x \sim y$ si x-y est pair, définit une relation d'équivalence sur \mathbb{Z} . Quel est l'ensemble quotient?
- iii) Est-ce que $x \sim y$ si x y est impair, définit une relation d'équivalence sur \mathbb{Z} ?

Exercice 4. (Graphe, fonctions)

Soient les ensembles $X = \{1, 2\}, Y = \{3, 4\}.$

- i) Trouver tous les sous-ensembles de $X \times Y$ qui sont le graphe d'une fonction $f: X \to Y$.
- ii) Combien de ces fonctions sont injectives, surjectives, bijectives?
- iii) Pour les fonctions bijectives, trouver le graphe de la fonction réciproque correspondante.

Exercice 5. (V/F: Fonctions)

Soit $X = \{0, 1\}$ et $f, g: X \to X$ deux fonctions.

- Q1: $f \circ g = g \circ f \Leftrightarrow f = g$.
- Q2: Si f et g sont injectives, alors $f \circ g$ est injective.
- Q3: Si $f \circ f$ est injective, alors f est injective.
- Q4: Si $f \circ g$ est injective, alors g est injective.
- Q5: Si $f \circ g$ est injective, alors f est injective.
- Q6: Si $f \circ q$ est surjective, alors f est surjective.

Exercice 6. (p.g.c.d., algorithme de Joseph Stein)

Trouver le plus grand commun diviseur de

i)
$$a = 2796203$$
 et $b = 1046527$;

$$ii)$$
 $a = 132316$ et $b = 24092$.

Exercice 7. (Raisonnement par récurrence)

Démontrer par récurrence que pour tout $n \in \mathbb{N}^*$

i)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 (somme de carrés d'entiers);

$$ii)$$
 $\sum_{k=1}^{n} (-1)^{n-k} k^2 = \frac{n(n+1)}{2}$ (somme alternée de carrés d'entiers);

$$iii)$$
 $\sum_{k=1}^{n} k^3 = \left(\frac{1}{2}n(n+1)\right)^2$ (somme de cubes d'entiers).

Calculer
$$n = \sum_{k=0}^{1000} (k+1)(3k+2)$$
.

Exercice 8. (Raisonnement par récurrence)

Soit pour $n \in \mathbb{N}$ le nombre de Fermat $F_n := 2^{(2^n)} + 1$. Démontrer, pour $n \in \mathbb{N}^*$, la relation de récurrence

$$F_n = \left(\prod_{k=0}^{n-1} F_k\right) + 2 \ .$$

2