Data Science: Supervision 1 (Additional Exercises)

The following questions are intended for further practice.

Maximum Likelihood Estimate (MLE)

Exercise 1: A very inexperienced archer shoots an arrow n times at a disc of (unknown) radius θ . The disc is hit every time, but at completely random places. Let r_1, \ldots, r_n be the distances of the various hits to the center of the disck.

- 1. Show that given heta the pdf is $f_{ heta}(r)=rac{2r}{ heta^2}$.
- 2. Determine the Maximum Likelihood estimate for θ .

Exercise 2 : Suppose that x_1,\ldots,x_n is a dataset, which is a realisation of a random sample from a Rayleigh distribution, which is the continuous distribution with pdf $f_{\theta}(x)=\frac{x}{\theta^2}\exp\left\{-\frac{1}{2}\frac{x^2}{\theta^2}\right\}$ for $x\geq 0$. Determine the maximum likelihood estimator for θ .

Exercise 3 : Suppose that x_1, \ldots, x_n is a dataset, which is a realisation of a random sample from a distribution with pdf

$$f_{ heta}(x) = rac{ heta}{(x+1)^{ heta+1}} ext{ for } x > 0$$

Determine the MLE for θ .

Exercise 4 : Suppose that x_1, \ldots, x_n is a dataset, which is a realisation of a random sample from a distribution with pdf

$$f_{ heta}(x) = \left\{egin{array}{ll} e^{ heta - x} & ext{for } x > heta \ 0 & ext{for } x \leq heta \end{array}
ight.$$

- 1. Determine the MLE for θ .
- 2. Is there anything weird with this distribution?

Exercise 5: (+) Suppose that x_1, \ldots, x_n is a dataset, which is a realisation of a random sample from a distribution with pdf

$$f_{ heta}(x) = rac{1}{2} e^{-|x- heta|} ext{ for } -\infty < x < \infty.$$

Determine the maximum likelihood estimator for θ .

Exercise 6 : Suppose that x_1, \ldots, x_n is a dataset, which is a realisation of a random sample from a distribution with pdf

$$f_{\mu,\lambda}(x)=\left(rac{\lambda}{2\pi x^3}
ight)^{1/2}\exp\left\{-\lambda(x-\mu)^2/(2\mu^2x)
ight\} ext{ for } x>0$$

Determine the maximum likelihood estimator for μ and λ .

Exercise 7: Suppose that x_1, \ldots, x_n is a dataset, which is a realisation of a random sample from a binomial distribution with parameters (k, p), where p is known and k is unknown. (For example, this could correspond to flipping a coin with a known probability, but not knowing how many times the coin was flipped).

- 1. Write an expression $L(k|\mathbf{x},p)$ for the likelihood.
- 2. Show that $L(k|\mathbf{x},p) = 0$ for $k < \max_i x_i$.
- 3. Explain why if the MLE is k, then

$$rac{L(k,|\mathbf{x},p)}{L(k-1,|\mathbf{x},p)} \geq 1 ext{ and } rac{L(k+1,|\mathbf{x},p)}{L(k,|\mathbf{x},p)} < 1$$

4. (+++) Show that there is a unique k that satisfies this. [Do not spend too much time on this]

Exercise 8 : (+) The unigram model in natural language processing models the probability of a sentence as s as $\mathbb{P}(s) = p_{s_1} \cdot p_{s_2} \cdot \ldots \cdot p_{s_n}$ where s_1, \ldots, s_n are the n words of the sentence. Given M sentences $s^1, \ldots s^M$, show that the MLE for the parameters p_w are $\frac{c_w}{W}$, where c_w is the number of times w occurs in all sentences and W is the total number of words in all sentences.

Linear independence

Exercise 9 : Are the following vectors independent?

1.
$$v_1=(1,2)$$
 and $v_2=(-5,3)$
2. $v_1=(1,2)$ and $v_2=(-4,-8)$
3. $v_1=(2,-1,1)$, $v_2=(3,-4,2)$ and $v_3=(5,-10,-8)$

Exercise 10: Show that the if a vector v belongs to the span of vectors v_1, v_2, v_3 then $\{v, v_1, v_2, v_3\}$ are not linearly independent.

Exercise 11 : Given n+1 vectors in \mathbb{R}^n , can they be independent? (Do not give a proof for this).

Exercise 12 : What is the minimum number k of vectors in \mathbb{R}^n that can be linearly dependent?

Exercise 13 : Give n vectors in \mathbb{R}^n which are linearly independent.

Variable transformations

Exercise 14: Explain why the softmax transformation solves Exercise 1.6. Find a different transformation that also solves this problem.

Exercise 15 : (Optional +) Find a linear time algorithm to find the shortest distance between a pair of points in 2D, given that the distance between (x_1,y_1) and (x_2,y_2) is given by $|x_1-x_2|+|y_1-y_2|$.