Optimierung Blatt 07 zum 02.12.2013

Paul Bienkowski, Nils Rokita, Arne Struck

2. Dezember 2013

1. a)
$$P_1: \quad \frac{33}{4} + 0 + 3 \cdot \frac{3}{2} = 12\frac{3}{4} < 30$$

$$P_2: \quad 2 \cdot \frac{33}{4} + 2 \cdot 0 + 5 \cdot \frac{3}{2} = 24$$

$$P_3: \quad 4 \cdot \frac{33}{4} + 0 + 2 \cdot \frac{3}{2} = 36$$

Die Ungleichung P_2 und P_3 sind mit Gleichheit erfüllt, daher muss $y_1^*=0$ gelten. Aus $x_1\neq 0, x_3\neq 0$ folgt, dass D_1 und D_3 mit Gleichheit erfüllt sein müssen:

$$y_1 + 2y_2 + 4y_3 = 3$$

 $3y_1 + 5y_2 + 2y_3 = 2$

Durch Einsetzen von $y_1=0$ und Auflösen erhält man:

$$y^* = (0, \frac{1}{8}, \frac{11}{16})$$

Dies muss eine gültige Lösung für (D) sein, allerdings erhält man in D_2 :

$$0+2\cdot\frac{1}{8}+\frac{11}{16}=\frac{15}{16}\geq 1$$

Damit ist dies keine gültige Lösung für (D), die vorgeschlagene Lösung kann daher nicht optimal sein.

b) Duales Problem (D):

minimiere $7y_1 + 8y_2 + 12y_3$ unter den Nebenbedingungen

$$y_1 + y_2 + 2y_3 \ge 2$$

 $y_1 + y_2 + y_3 \ge 3$
 $y_2 \ge 2$
 $y_{1..3} \ge 0$

Einsetzen von $x^* = (5, 2, 6)$ in (P) erfüllt alle Ungleichungen mit Gleichheit, also können wir keine Aussage über $y_{1...3}^*$ treffen:

$$5 + 2 = 7$$
 $2 + 6 = 8$
 $2 \cdot 5 + 2 = 12$

Da $x_1, x_2, x_3 \neq 0$ sind, müssen $D_{1..3}$ mit Gleichheit erfüllt sein:

$$y1$$
 + $2y_3$ = 2
 $y1$ + y_2 + y_3 = 3
 y_2 = 2

Die eindeutige Lösung für dieses Gleichungssystem ist $y^* = (0, 2, 1)$. Da alle Ungleichungen am Gleichungssystem beteiligt sind, ist dies ebenfalls eine zulässige Lösung für (D). Damit ist die vorgeschlagene Lösung optimal.

2. Der Index 1 bezieht sich auf einfache Einheiten, der Index 2 gibt die in regulärer Arbeitszeit veredelten Einheiten, Index 3 in Überstunden veredelten Einheiten.

Die vorgeschlagene Lösung lautet: $a^* = (0, 400, 0), b^* = (440, 10, 30), c^* = (0, 10, 220).$

Primales Problem (P):

maximiere $5a_1 + 13a_2 + 8a_3 + 9b_1 + 15b_2 + 12b_3 + 5c_1 + 14c_2 + 10c_3$ unter den Nebenbedingungen

$$a_{1} + a_{2} + a_{3} \leq 400$$

$$-a_{1} - a_{2} - a_{3} \leq -400$$

$$b_{1} + b_{2} + b_{3} \leq 480$$

$$-b_{1} - b_{2} - b_{3} \leq -480$$

$$c_{1} + c_{2} + c_{3} \leq 230$$

$$-c_{1} - c_{2} - c_{3} \leq -230$$

$$a_{2} + b_{2} + c_{2} \leq 420$$

$$a_{3} + b_{3} + c_{3} \leq 250$$

$$a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3} \geq 0$$

Duales Problem (D):

minimiere $400y_1 - 400y_2 + 480y_3 - 480y_4 + 230y_5 - 230y_6 + 420y_7 + 250y_8$ unter den Nebenbedingungen

Aus $a_2, b_{1..3}, c_{2..3} \neq 0$ folgt, dass $D_{2,4,5,6,8,9}$ mit Gleichheit erfüllt sein müssen. Schaut man sich nur $D_{4,5,8,9}$ an, erhält man:

$$y_3 - y_4 = 9$$

 $y_3 - y_4 + y_7 = 15$
 $y_5 - y_6 = 5$
 $y_5 - y_6 + y_7 = 14$

Die ersten 2 Gleichungen hiervon ergeben $y_7 = 6$, die letzten den im Widerspruch stehenden Wert $y_7 = 9$. Damit gibt es keine gültige Lösung y^* für das duale Problem, die vorgeschlagene Lösung ist nicht optimal.