技术路线

○ 任务1: 实现边缘检测技术 (简易版)

任务2:实现边缘检测技术实现图书分块划分

任务3:实现边缘检测的运动识别任务4:实现边缘检测+RFID的定位

任务5:与机器臂的整体对接主体技术方案:python (OpenCV)

• 技术难点

。 精准化确定图书位置

。 动态环境下噪声过多导致边缘检测算法出现问题

o RFID标签定位点可能处在边缘上时如何选取

计划

6月	第一阶段 (6.1-6.15)	完成对OpenCV算法的学习与应用,写出简易的demo	边缘检测项目基础框架的搭建
	第二阶段 (6.16-6.30)	完善代码,给出一个精细的、有接口的项目	
7月	第一阶段 (7.1-7.15)	深入学习相关技术,实现图书分块	由边缘检测到实现图书分块真正的功能
	第二阶段 (7.16-7.31)	完善代码,提高图书分块准确度	
8月	第一阶段 (8.1-8.15)	学习ROS技术,添加与摄像头对接的模块	对接摄像头与RFID,实现最终目标
	第二阶段 (8.16-8.31)	添加RFID的定位信息,实现图书的选取	
9月	第一阶段 (9.1-9.15)	完善代码	调试修改代码,提高准确度(机动时间)
	第二阶段 (9.16-9.30)	完善代码	
10月	第一阶段(10.1-10.15)	与机器臂对接, 根据结果继续调试	与机器臂对接
	第二阶段(10.16-10.31)	动态完善代码	
11月	第一阶段(11.1-11.15)		
	第二阶段(11.16-11.30)		