STAT 542 Homework 6

Yifan Zhu

October 18, 2016

- 1. (a) When θ is the location parameter, denote F(x) is the cdf with $\theta = 0$, i.e. F(x) = F(x|0). Then $F(x|\theta) = F(x-\theta)$. cdf is non-decreasing, thus for $\theta_1 > \theta_2$ and any $x \in \mathbb{R}$, we have $x \theta_1 < x \theta_2$ and $F(x \theta_1) \le F(x \theta_2)$. Hence, $F(x|\theta_1) \le F(x|\theta_2)$, a location family is stochastically ordered in terms of location family.
 - (b) When θ is the scale parameter, denote F(x) is the cdf with $\theta = 0$, i.e. F(x) = F(x|0). Then $F(x|\theta) = F(x/\theta)$. cdf is non-decreasing, thus for $\theta_1 > \theta_2 > 0$ and any $x \in [0, \infty)$, we have $x/\theta_1 < x \theta_2$ and $F(x/\theta_1) \le F(x/\theta_2)$. For x < 0, we have F(x) = 0, thus $F(x/\theta_1) = F(x/\theta_2) = 0$. Hence, $F(x|\theta_1) \le F(x|\theta_2)$, $x \in \mathbb{R}$, a scale family is stochastically ordered in terms of location family.
- **2.** (a) Let $D = \{(x,y)|x^2 + y^2 < 1\} \cap (-1,1) \times (-1,1) = \{(x,y)|x^2 + y^2 < 1\}$. Then

$$P(X^2 + Y^2 < 1) = \iint_D \frac{1}{4} dx dy = \frac{\pi}{4}$$

(b) Let $D = \{(x,y)|2x-y>0\} \cap (-1,1) \times (-1,1)$. Then by symmetric

$$P(2X - Y > 0) = \iint_D \frac{1}{4} dx dy = \frac{1}{2}$$

Let $D = \{(x,y)|x+y<2\} \cap \{(x,y)|x+y>-2\} \cap (-1,1) \times (-1,1) = (-1,1) \times (-1,1)$. Then

$$P(|X + Y| < 2) = \iint_D \frac{1}{4} dx dy = 1$$

3. (a)

$$\int_0^1 \int_0^2 C(x+2y) dx dy$$

$$= C \left(\frac{1}{2}x^2 + 2yx\Big|_0^2\right) dy$$

$$= C \left(2+4y\right) dy$$

$$= C \left(2y+2y^2\Big|_0^1\right)$$

$$= 4C = 1 \qquad \Rightarrow C = \frac{1}{4}$$

(b)

$$f_X(x) = \int_0^1 \frac{1}{4} (x + 2y) dy$$
$$= \frac{1}{4} \left(xy + y^2 \Big|_0^1 \right)$$
$$= \frac{1}{4} (x + 1)$$

(c) For $(x,y) \in \{(x,y)|x \le 0\} \cup \{(x,y)|y \le 0\}, F(x,y) = 0.$

For $(x,y) \in \{(x,y)|x \ge 2\} \cup \{(x,y)|y \ge 1\}, F(x,y) = 1.$

For $(x,y) \in \{(x,y)|0 < x < 2\} \cap \{(x,y)|0 < y < 1\}$, $F(x,y) = \int_0^y \int_0^x \frac{1}{4}(s+2t) ds dt = \frac{1}{8}x^2y + \frac{1}{4}xy^2$.

For $(x,y) \in \{(x,y) | 0 < x < 2\} \cap \{(x,y) | y \ge 1\}, F(x,y) = \int_0^1 \int_0^x \frac{1}{4}(s+2t) ds dt = \frac{1}{8}x^2 + \frac{1}{4}x.$

For $(x,y) \in \{(x,y)|x \ge 2\} \cap \{(x,y)|0 < y < 1\}$, $F(x,y) = \int_0^y \int_0^2 \frac{1}{4}(s+2t) ds dt = \frac{1}{2}y^2 + \frac{1}{2}y$.

(d) $g(x) = \frac{9}{(x+1)^2}$ is monotone on (0,2). Support of Z is then (1,9). $g^{-1}(z) = \frac{3}{\sqrt{z}} - 1$, $\left| \frac{\mathrm{d}}{\mathrm{d}z} g^{-1}(z) \right| = \frac{3}{2} z^{-3/2}$. Thus

$$f_Z(z) = f_X(g^{-1}(z)) \left| \frac{\mathrm{d}}{\mathrm{d}z} g^{-1}(z) \right| = \frac{9}{8} z^{-2}, \ 1 < z < 9$$

4. (a)

$$P(X > \sqrt{Y}) = \int_0^1 \int_0^{x^2} (x+y) dy dx$$
$$= \int_0^1 (x^3 + \frac{1}{2}x^4) dx$$
$$= \frac{1}{4}x^4 + \frac{1}{10}x^5 \Big|_0^1$$
$$= \frac{7}{20}$$

(b)

$$P(X^{2} < Y < X) = \int_{0}^{1} \int_{x^{2}}^{x} 2x dy dx$$

$$= \int_{0}^{1} 2x(x - x^{2}) dx$$

$$= \frac{2}{3}x^{3} + \frac{1}{2}x^{4} \Big|_{0}^{1}$$

$$= \frac{1}{6}$$

5. (a) f(x,y) = P(X = x, Y = y). Then f(1,3) = 1/12, f(1,5) = 1/12, f(1,8) = 1/12, f(3,3) = 1/12, f(3,5) = 1/12, f(3,8) = 1/12, f(5,5) = 2/12 = 1/6, f(5,8) = 1/12, f(8,8) = 3/12 = 1/4. For other (x,y), f(x,y) = 0.

	x				
		1	3	5	8
	3	1/12	1/12	0	0
y	5	1/12	1/12	1/6	0
	8	1/12	1/12 $1/12$ $1/12$	1/12	1/4

(b)
$$f_X(1) = f(1,3) + f(1,5) + f(1,8) = 3/12 = 1/4$$
, $f_X(3) = f(3,3) + f(3,5) + f(3,8) = 3/12 = 1/4$, $f_X(5) = f(5,5) + f(5,8) = 1/6 + 1/12 = 1/4$, $f_X(8) = 1/4$. For other x , $f_X(x) = 0$.

$$f_Y(3) = f(1,3) + f(3,3) = 2/12 = 1/6, f_X(5) = f(1,5) + f(3,5) + f(5,5) = 2/12 + 1/6 = 1/3, f_X(8) = f(1,8) + f(3,8) + f(5,8) + f(5,8) = 3/12 + 1/4 = 1/2.$$
 For other $f_Y(3) = 0$.

(c)
$$E(X) = 1 \cdot f_X(1) + 3 \cdot f_X(3) + 5 \cdot f_X(5) + 8 \cdot f_X(8) = \frac{17}{4}$$
.
 $E(Y - X) = 2 \cdot f(1, 3) + 4 \cdot f(1, 5) + 7 \cdot f(1, 8) + 2 \cdot f(3, 5) + 5 \cdot f(3, 8) + 3 \cdot f(5, 8) = \frac{23}{12}$

(d)
$$E(Y) = 3f_Y(3) + 5f_Y(5) + 8f_Y(8) = 1/2 + 5/3 + 4 = \frac{37}{6}$$
.
 $E(XY) = 3f(1,3) + 5f(1,5) + 8f(1,8) + 9f(3,3) + 15f(3,5) + 24f(3,8) + 25f(5,5) + 40f(5,8) + 64f(8,8) = \frac{173}{6}$.

Then
$$Cov(X,Y) = E(XY) - E(X)E(Y) = 173/6 - (37/6) \cdot (17/4) = \frac{21}{8} = 2.625$$

6.

$$Cov(X_1 - 2X_2 + 8, 3X_1 + X_2)$$

$$=3Cov(X_1, X_1) + Cov(X_1, X_2) - 6Cov(X_1, X_2) - 2Cov(X_2, X_2)$$

$$=3\sigma_1^2 - 5\sigma_{12} - 2\sigma_2^2$$

- 7. (a) If P(X > Y) = 0, then $E(X Y) = \iint_{\mathbb{R}^2} (x y) f(x, y) dx dy = \iint_{\{(x,y)|x \le y\}} (x y) f(x, y) dx dy \le 0$. This contradicts the assumption that EX > EY. Thus when EX > EY, we have P(X > Y) > 0.
 - (b) $F(x,y) = \max\{F_X(x), F_Y(y)\}$ is not a legistimate cdf. From the definition, we have $F(x,y) \geq F_X(x)$, $F(x,y) \geq F_Y(y)$. For a fixed y such that $F_Y(y) > 0$, let $x \to -\infty$, $\lim_{x \to -\infty} F(x,y) \geq \lim_{x \to -\infty} F_Y(y) = F_Y(y) > 0$. Thus F(x,y) is not a legistimate cdf.
 - (c) $F(x,y) = \min\{F_X(x), F_Y(y)\}$ is a legistimate cdf. $g(x,y) = \min\{x,y\}$ is a continuous function for (x,y) in \mathbb{R}^2 . Thus we can take the limit inside.
 - i. $\lim_{x \to -\infty} F(x,y) = \lim_{x \to -\infty} \min\{F_X(x), F_Y(y)\} = \min\{\lim_{x \to -\infty} F_X(x), \lim_{x \to -\infty} F_Y(y)\} = \min\{0, F_Y(y)\} = 0.$ $\lim_{y \to -\infty} F(x,y) = \lim_{y \to -\infty} \min\{F_X(x), F_Y(y)\} = \min\{\lim_{y \to -\infty} F_X(x), \lim_{y \to -\infty} F_Y(y)\} = \min\{F_X(x), 0\} = 0.$
 - ii. $\lim_{x,y\to\infty} F(x,y) = \lim_{x,y\to\infty} \min\{F_X(x), F_Y(y)\} = \min\{\lim_{x,y\to\infty} F_X(x), \lim_{x,y\to\infty} F_Y(y)\} = \min\{1,1\} = 1.$
 - iii. $\lim_{h\to 0^+} F(x+h,y) = \lim_{h\to 0^+} \min\{F_X(x+h), F_Y(y)\} = \min\{\lim_{h\to 0^+} F_X(x+h), \lim_{h\to 0^+} F_Y(y)\} = \min\{F_X(x), F_Y(y)\} = F(x,y)$. In the same way, we can prove $\lim_{h\to 0^+} F(x,y+h) = F(x,y)$.
 - iv. When $F_Y(y) \leq F_X(x) \leq F_X(x + \Delta_1) \leq F_Y(y + \Delta_2)$, $F(x + \Delta_1, y + \Delta_2) F(x + \Delta_1, y) F(x, y + \Delta_2) + F(x, y) = F_X(x + \Delta_1) F_Y(y) F_X(x) + F_Y(y) = F_X(x + \Delta_1) F_X(x) \geq 0$.

When
$$F_X(x) \leq F_Y(y) \leq F_Y(y + \Delta_2) \leq F_X(x + \Delta_1)$$
,
 $F(x + \Delta_1, y + \Delta_2) - F(x + \Delta_1, y) - F(x, y + \Delta_2) + F(x, y) = F_Y(y + \Delta_2) - F_Y(y) - F_X(x) + F_X(x) = F_Y(y + \Delta_2) - F_Y(y) \geq 0$.

When
$$F_X(x) \leq F_Y(y) \leq F_X(x + \Delta_1) \leq F_Y(y + \Delta_2)$$
,
 $F(x + \Delta_1, y + \Delta_2) - F(x + \Delta_1, y) - F(x, y + \Delta_2) + F(x, y) = F_X(x + \Delta_1) - F_Y(y) - F_X(x) + F_X(x) = F_X(x + \Delta_1) - F_Y(y) \geq 0$.

When
$$F_Y(y) \le F_X(x) \le F_Y(y + \Delta_2) \le F_X(x + \Delta_1)$$
, $F(x + \Delta_1, y + \Delta_2) - F(x + \Delta_1, y) - F(x, y + \Delta_2) + F(x, y) = F_Y(y + \Delta_2) - F_Y(y) - F_X(x) + F_Y(y) = F_Y(y + \Delta_2) - F_X(x) \ge 0$.

When
$$F_Y(y) \leq F_Y(y + \Delta_2) \leq F_X(x) \leq F_X(x + \Delta_1)$$
, $F(x + \Delta_1, y + \Delta_2) - F(x + \Delta_1, y) - F(x, y + \Delta_2) + F(x, y) = F_Y(y + \Delta_2) - F_Y(y) - F_Y(y + \Delta_2) + F_Y(y) = 0$.

When
$$F_X(x) \leq F_X(x + \Delta_1) \leq F_Y(y) \leq F_Y(y + \Delta_2)$$
, $F(x + \Delta_1, y + \Delta_2) - F(x + \Delta_1, y) - F(x, y + \Delta_2) + F(x, y) = F_X(x + \Delta_1) - F_X(x) - F_X(x + \Delta_1) + F_X(x) = 0$.

$$F(x + \Delta_1, y + \Delta_2) - F(x + \Delta_1, y) - F(x, y + \Delta_2) + F(x, y) = F_X(x + \Delta_1) - F_X(x) - F_X(x + \Delta_1) + F_X(x) \ge 0$$

Thus $F(x,y) = \min\{F_X(x), F_Y(y)\}\$ is a legistimate cdf.