Lernkontrolle: Lineare Algebra I

1 Aussagenlogik

Seien A, B und C Aussagen, für die $A \implies B$ und $B \implies C$ gilt. Welche der folgenden Aussagen ist dann richtig?

#	Aussage	Wahr	Falsch	Begründung
1	$A \implies C$	✓		
	$\neg A \implies C$		✓	
3	$\neg A \implies \neg C$		✓	
4	$C \implies A$		✓	
5	$\neg B \implies A$		✓	
6	$\neg B \implies \neg A$	✓		
7	$\neg C \implies A$		✓	
8	$\neg C \implies \neg A$	√		

2 Mengen

Seien A und B Mengen.

#	Aussage	Wahr	Falsch	Begründung bzw. Gegenbeispiel
9	$ A \cup B = A + B $		✓	$A := \{1, 2\}$ $B := \{1\}$ $A \cup B = A = \{1, 2\}$
10	$ A \cup B = A + B $		✓	siehe Frage 9
	falls A und B endlich sind			
11	$A \cap B$ endlich \Longrightarrow		✓	$A := \{ n \in \mathbb{N} n \text{ is gerade} \}$
	A, B endlich			$B := \{ n \in \mathbb{N} n \text{ is ungerade} \} A \cap B = \emptyset$
12	$A \setminus B = \emptyset \implies A = B$		✓	$A := \{\} B := \{1\} A \setminus B = \{\}$
13	$A \setminus B = \emptyset \implies A = B \text{ falls A}$		✓	siehe Frage 12
	und B endlich sind			
14	$\forall x \in A : x \notin B \implies A \neq B$		√	$A := \{\} =: B$

3 Äquivalenzrelationen

Geben Sie, falls möglich, jeweils ein Beispiel für eine Menge X und eine Relation R an, für die folgende Eigenschaften gelten. Falls es nicht möglich ist, begründen Sie warum.

Ordnen Sie zusätzlich die Symbole =, \neq , \leq , < , \geq , > , \Rightarrow , \Leftrightarrow , \equiv ein.

#	Aussage	Beispiele
15	R ist reflexiv, symmetrisch und transi-	$=, \Leftrightarrow, \equiv, isEqual(), istVerwandtMit, ==$
	tiv	
16	R ist reflexiv und symmetrisch, aber	\neq
	nicht transitiv	
17	R ist reflexiv und transitiv, aber nicht	\leq, \geq, \Rightarrow
	symmetrisch	
18	R ist symmetrisch und transitiv, aber	existiertVerbindung(Knoten A, Knoten B) in schlingenfreien Graphen
	nicht reflexiv	
19	R ist reflexiv, antisymmetrisch und	≤,≥
	transitiv	
20	R ist reflexiv, symmetrisch, antisymme-	=
	trisch und transitiv	
21	R ist reflexiv und antisymmetrisch,	Hat jemand hier Beispiele?
	aber nicht transitiv	
22	R ist antisymmetrisch und transitiv,	<,>
	aber nicht reflexiv	

4 Abbildungen

Welche der folgenden Abbildungen ist surjektiv, welche injektiv?

#	Abbildung	sur	inj	Begründung
23	$f: \mathbb{R} \to \mathbb{R}, f(x) := x$	√	✓	
24	$f: \mathbb{R} \to \mathbb{R}, f(x) := x^2$			$f(-1) = f(1) \text{ und } \forall x \in \mathbb{R} : x^2 \neq -1$
25	$f: \mathbb{R} \to \mathbb{R}, f(x) := x^3$	✓	✓	
26	$f: \mathbb{R}^+ \to \mathbb{R}, f(x) := x^2$		✓	$\forall x \in \mathbb{R}^+ : x^2 \neq -1$
27	$f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) := x^2$	✓	✓	
28	$f: \mathbb{R} \to \mathbb{R}, f(x) := e^x$		✓	$\forall x, y \text{ mit } x \neq y : f(x) \neq f(y) \ \forall x \in \mathbb{R} : e^x \neq -1$
29	$f: \mathbb{R}^+ \to \mathbb{R}, f(x) := log(x)$	✓	✓	Umkehrfunktion zu $\mathbb{R} \to \mathbb{R}^+, f(x) = e^x$
30	$f: \left(-\frac{1}{2}\pi, +\frac{1}{2}\pi\right) \to \mathbb{R}$	✓	√	
	f(x) := tan(x)			
31	$f: \text{Hauskatzen} \to \text{Mensch}$			Manche Menschen haben keine Katzen
	f(x) := Besitzer(x)			Manche Menschen haben mehrere Katzen

5 Körper

#	Aussage	Wahr	Falsch	Begründung
32	$\forall n \in \mathbb{N} \text{ mit } n \geq 2$:		✓	Nein, es gibt keinen Körper mit 6 Elementen (siehe Lineare
	Es gibt einen Körper mit n Ele-			Algebra von Albrecht Beutelspacher, S. 45, Frage 13)
	menten.			
33	$\forall p \in \mathbb{N} \text{ mit } p \geq 2 \text{ und } p \text{ ist prim:}$	✓		$\mathbb{Z}/p\mathbb{Z}$
	Es gibt einen Körper mit p Ele-			
34	menten.			(7/x7)2 mit Addition / Multiplilation "bolish au des
34	$\forall p \in \mathbb{N} \text{ mit } p \geq 2 \text{ und } p \text{ ist prim:}$ Es gibt einen Körper mit p^2 Ele-		√	$(\mathbb{Z}/p\mathbb{Z})^2$, mit Addition / Multiplikation ähnlich zu den Komplexen Zahlen \mathbb{C}
	menten.			Kompiezen Zamen C
	menom.			(1. Assoziativgesetz
				2. Kommutativgesetz
35	$(\mathbb{R}, +, \cdot)$ ist ein Körper.	✓		Additive ragenschatten (
				3. neutrales Element
				(4. Inverse
				5. Assoziativgesetz
				Multiplikative Eigenschaften 6. Kommutativgesetz
				7. neutrales Element
				8. Inverse
				9. Distributivgesetze
36	$(\mathbb{R},\cdot,+)$ ist ein Körper.			? Hier bin ich mir noch nicht sicher
37	$(\mathbb{N}, +, \cdot)$ ist ein Körper.		✓	Inverse bzgl. Addition fehlen
38	$(\mathbb{Z}, +, \cdot)$ ist ein Körper.		✓	Inverse bzgl. Multiplikation fehlen
39	$(\mathbb{Q},+,\cdot)$ ist ein Körper.	✓		
40	$(\mathbb{C}, +, \cdot)$ ist ein Körper.	✓		

6 Vektorräume

Im Folgenden wird Vektorraum mit VR abgekürzt. Sei V ein beliebiger VR, \mathbb{K} ein beliebiger Körper und $m, n \in \mathbb{N}$ beliebige natürliche Zahlen.

#	Aussage	Wahr	Falsch	Begründung
41	\mathbb{R}^3 ist ein VR.	√		
42	\mathbb{K}^n ist ein VR.	✓		
43	Die Menge aller $m \times n$ Matrizen mit der üblichen Addition und Multiplikation ist ein VR $(\mathbb{K}^{m \times n}, +, \cdot)$	√		
44	Sei V die Menge aller unendlicher Folgen. Die Addition und Multiplikation seien komponentenweise definiert. $(V, +, \cdot)$ ist ein Körper.			Auch hier bin ich mir nicht sicher. Weiß das jemand?
45	Für alle VR existiert eine Basis.	✓		
46	Für alle VR existiert genau eine Basis.		√	
47	Es existiert ein VR, für den genau eine Basis existiert.	√		$\mathbb{Z}/2\mathbb{Z}$. Basis: $\{1\}$
48	Es existiert ein VR, für den un- endlich viele Basisen existieren.	✓		z.B. der \mathbb{R}^3
49	Es existiert eine Basis, die un- endlich viele Vektoren hat.	✓		
50	Sei V eindimensional. $\forall x \in V : x \text{ ist eine Basis von V}.$		√	Null-Element
51	Eine Basis ist ein Erzeugendensystem.	√		
52	Basis und Erzeugendensystem sind Synonyme.		√	Eine Basis ist ein minimales Erzeugendensystem.
53	Basis und Erzeugendensystem sind Synonyme, falls der VR nicht endlichdimensional ist.		✓	Der Vektorraum der Polynome ist unendlichdimensional. Dennoch kann man zwei mal den selben Vektor in die basis stecken und hat somit kein linear unabhängiges Erzeugen- densystem.
54	Eine Basis ist eine maximal linear unabhängige Menge.	√		
55	$\forall u, v, w \in V \text{ gilt:}$ $u \cdot (v \cdot w) = (u \cdot v) \cdot w$	√		Lineare Algebra von Albrecht Beutelspacher, S. 77.
56	Jeder Vektor der Form (x, x, x) kann zu einer Basis ergänzt werden.		✓	x = 0

7 Lineare Abbildungen

Seien V, W Vektorräume. Sei $\Phi:V\to W$ eine lineare Abbildung.

#	Aussage	Wahr	Falsch	Begründung
57	Φ ist ein VR-Homomorphismus.			$1. \ \Phi(x+y) = \Phi(x) + \Phi(y)$
				$2. \ \Phi(\lambda x) = \lambda \Phi(x)$
				Die Begriffe "lineare Abbildung" und "VR-
				Homomorphismus" sind Synomyme.
58	Jeder Isomorphismus ist ein Au-		✓	Isomorphismus := Bijektiver Homomorphismus
	tomorphismus.			
59	Jeder Automorphismus ist ein	✓		Automorphismus := Bijektiver Endomorphismus
	Isomorphismus.			
60	Jeder Endomorphismus ist ein		✓	Endomorphismus := $\Phi: V \to V$
	Isomorphismus.			
61	$\Phi'V \to V$ ist ein Automorphis-		✓	Kann stimmen, ist im Allgemeinen jedoch falsch.
	mus			

8 Dies und Das

Seien V, W Vektorräume. Sei $\Phi:V\to W$ eine lineare Abbildung.

#	Aussage	Wahr	Falsch	Begründung
62	Jeder Vektorraum hat min. einen		√	Lineare Algebra, S.221, Frage 1.7
	Eigenwert bzgl. jeder beliebigen			
	linearen Abbildung.			
63	Zu jedem Eigenwert hat jeder	✓		
	Vektorraum min. einen Eigen-			
	vektor.			