武汉大学计算机学院

2020-2021 学年第一学期 2019 级《计算机组成与设计》

期末考试试题 B 卷 (闭卷)

学号	班级		成绩	
注意: 所有	答题内容必须写在答题约	纸上,凡写在	试题或草稿纸上的-	一律无效。
一、单项选择	题(每小题 2 分,共	20分)	,	7
1、下列部件中实	识指令执行控制的是()。		—
A、存储器	B、数据通路	C、控制器	D、输入/输出部	件
2、对给定的应用],若增加多个处理器来	分别处理独立	1的任务,则将对()产生影响。
(A)			7/	
A、响应时间	J	B、吞吐率		
C、响应时间	和吞吐率	D、以上都不	对	
3、设\$s0的内容为	为0x10010010 _{,则指令}	> lw \$t0, -12(\$	is0) 读内存数据使用	目的地址为()
A., $0x10010$	0014 B 0x10020004	4 $_{\rm C}$, 0.	x1000 ffe0 D.	0x10010004
4、关于 MIPS 指	令格式,下列说法中正码	角的是()		
A、所有指令	令都有 funct 字段	$X \setminus X$		
B、所有指	令都有 rd 字段			
C、所有指令	令都有 rs 字段	1		
D、所有指	令都有 op 字段			
5、-32的8位二	进制补码表示形式为()		
A、1101111	1 B、00100000 C、	11100000 [)、11100001	
6、-32的8位二	进制补码表示形式为()		
A、11011111	B、00100000 C、1	1100000 D	11100001	
7、MIPS的单周期	月数据通路如下图所示,	下面给出了相]应部件的延时,在	这个数据通路上
执行MIPS指令集	的最小时钟周期是多少?	'(不考虑JA	L指令)。假设没有?	列出的部件延时
为Ons。()				
ALU: 5ns				
数据存储器	(读或者写): 10ns			
指令存储器	(读或者写): 10ns			
寄存器文件资	卖写: 3ns			
地址加法器	(non-ALU): 1ns			

- A、26ns B、28ns
- C、29ns
- D, 31ns
- 8、假设流水线处理器中增加流水的级数,将对()产生的影响。
 - A、时钟周期将变短
 - B、每个程序的指令数将减少
 - C、CPI将变小
 - D、以上所有情况都会发生
- 9、下列有关存储器的说法正确的是(
- A.、存储器层次结构中,存储器的容量、访问时间和单位成本都随着离处理器距离的 增加而增加。
- B.、主存储器一般由 SRAM (静态随机存取存储器)来实现,它的特点是每比特占用 的存储空间较少,因此等量的硅制造的 SRAM 的容量比 DRAM 的大。
 - C.、相对于服务器,嵌入式系统的存储器通常设计的容量比较小和简单,以降低功耗。
 - D.、具有相同复杂度的算法,在同一机器上运行的时间也会基本一致。
- 10、一台有完整的层次储存器的 MIPS 计算机,执行一条 LW 指令访问主存的可能最多次 数为()。

A, 0 B, 1 C, 2 D, 3

二、性能计算(每小题5分,共10分)

有 3 种不同的处理器 P1、P2 和 P3 执行同样的指令集,有如表所示性能特点

处理器	时钟频率	CPI
P1	3GHz	1.5
P2	2.5GHz	1.0

P3 3.6GHz	2.0
-----------	-----

- (1) 以每秒钟执行的指令数目为标准,那个处理器性能最高?
- (2) 如果每个处理器执行一个程序都花费 10 秒, 求它们的时钟周期数和指令数。

三、指令系统(每个空1分,共15分)

对如下 C 语言程序:

```
for (i=0; i<a; i++) {
    j=0;
    while (j<b) {
        D[4*j]=i+j;
        j+=1;
    }
```

下面的代码是其对应的 MIPS 程序,假设值 a、b、i 和 j 分别存放在寄存器\$s0、\$s1、\$t0 和\$t1 中,寄存器\$s2 中存放着数组 D 的基地址,将其中的空填写完整。

```
addi $t0, $0, 0
       slt $t2, ( (1) ),$s0
TEST1:
       ( (2)) $t2, $0, exit
       addi $t1, $0, 0
TEST2: slt $t2, $t1, ( (3) )
       ((4))
                $t2, $0, LOOP1
       add $t3, $t0, ((5))
       sll $t2, ((6)), ((7) 4)
       add $t2, $t2, ((8))
       sw ((9)), ((10))
       addi $t1, ((11)), ((12)
       J ((13))
LOOP1: addi ( (14) ), $t0, ( (15)
       J
           TEST1
  EXIT:
```

四、运算器(共10分)

用二进制浮点数加法计算 12.7510+6.510 之值 (保留 7 位精度); 并把计算结果转换成 IEEE754 单精度浮点数的二进制位模式和十六进制数。

五、CPU(共 23 分)

1、(8分)根据上图的数据通路,其中指令存储器、加法器、多选器、ALU、寄存器堆、数据存储器和控制单元的延迟分别为 400ps, 100ps, 30ps, 120ps, 200ps, 350ps 和 100ps, 相应成本分别为 100, 30, 10, 100, 200, 2000 和 500。考虑给 ALU 增加一个乘法, 这将使 ALU 的延迟增加到 200ps, 同时 ALU 的成本增加 500, 这样做的好处是需要执行的指令数减少了 5%, 因为不需要再模拟 MUL 指令。

- (1) 改进前后的时钟周期分别是多少?
- (2) 改进后获得多大的加速比?
- (3) 改进前后的性价比是多少?
- 2、(共15分)流水线示意图如下:

Datapath with Hazard Detection

在此流水线上执行下面的指令序列:

add \$10,\$0,\$0

addi \$11,\$0,100

lw \$10,0(\$11)

addi \$10,\$11,-1

add \$10,\$11,\$11

beq \$11,\$10,exit

从取第一条指令开始计时,请在下面的表格中填写各时钟周期转发单元的输入输出信号 状态值:

时钟周期	Clk5	Clk6	Clk7	Clk8	Clk9
ID/EX.Rs			7/		
ID/EX.Rt			7		
EX/MEM.Rd					
EX/MEM.RegWrite					
MEM/WB.Rd					
MEM/WB.RegWrite					
ForwardA					
ForwardB	4				

六、 (本题 22 分)

1、(6分) 直接映射 cache 的索引方法是用 (块地址) mod (cache 中的块数)。假设 cache 地址为 32 位,有 256 个块,块大小为 64 字节。考虑一个不同的索引函数:

(块地址)[31:24] XOR 块地址[23:16]

- 即,块地址的第 24~31 位异或块地址的第 16~23 位。是否可以用这个索引函数来索引直接映射 cache? 如果可以,请解释原因,并讨论可能需要对 cache 做的修改,和原策略相比有什么好处?。如果不可以,请解释原因。
- 2、(16 分)假设虚拟存储器的页面为 8KB, TLB 和页表(按列顺序)初始状态如下,访问的虚拟地址流如下(十六进制): A4EC、C5A6、E8F4、9100,说明每个地址的访问过程并列出访问 4 个数据之后 TLB 的状态,在 TLB 表后面增加一列说明其命中情况(设TLB 命中表示为 H、TLB 不命中但页表命中表示为 M,发生缺页表示为 PF)。如果要从磁盘中取回页,设物理页面 8、10 可用。

TLB								
有 效	标记位	物理页号						
位	(十进制)	(十进制)						
1	11	12						
1	5	11						
1	7	4						
0	4	9						

页表											
有	效	物	理	有	效	物	理	有	效	物	理
位		页		位		页		位		页	
1		5		1		9		1		8	
0		磁盘	甲件	1		11		0		磁组	计
0		磁盘	計	0		磁盘	<u></u>	1		3	
1		6		1		4		1		12	

- (1) 如果 TLB 采取全相联映射方式;
- (2) 如果 TLB 采取直接映射方式;
- (3) 如果 TLB 采取两路组相联映射方式(原 TLB 的四块分别为: 0组 0块、1组 0块、0组 1块、1组 1块、)。