Variables aleatòries més usuals

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Altres propietats
Binomial $B(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	si $x \in \Omega_X$	np	np(1-p)	
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$			
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	si $x \in \Omega_X$	λ	λ	
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
Geomètrica $Ge(p)$	$(1-p)^{x-1}p$	si $x \in \Omega_X$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	
$\Omega_X = \{1, 2, \cdots\}$	0	si $x \notin \Omega_X$	1	<u>r</u>	
					$\int 1 - (1-p)^{k+1} x \in [k, k+1),$
Geomètrica $Ge(p)$	$(1-p)^{x}p$	si $x \in \Omega_X$	$\frac{1-p}{n}$	$\frac{1-p}{n^2}$	$F_X(x) = \begin{cases} 1 - (1-p)^{k+1} & x \in [k, k+1), \\ k \in \Omega_X \\ 0 & x < 0 \end{cases}$
			P	P	0 x < 0
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
				_	$\begin{cases} \frac{x-a}{b-a} & x \in [a,b] \end{cases}$
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$
			_		$1 \qquad x > b$
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$			`
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estàndar
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$

Altres fòrmules d'interés:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \qquad \text{si } r < 1$$

$$\sum_{n=1}^{\infty} nr^{n-1} = \frac{1}{(1-r)^2} \quad \text{si } r < 1$$