

Chem 132A

Shane Flynr

Exam Overview
Logistics
Material Summary
Post-Exam

Examples

Themochemistry
Free Expansion
Phase Diagram

Conclusi

Physical Chemistry (Chem 132A)

Presentation By: Shane Flynn

Department of Chemistry, University of California, Irvine, 2208 Natural Sciences II

October 23, 2017

Exam Wednesday (10/25/17)!

Chem 132A

Shane Flynn

Exam Overviev
Logistics
Material Summar
Post-Exam

Examples
Themochemistry
Free Expansion
Phase Diagram

- 45 Minute Exam
- Try to be here at 10:50am
- Bring your I.D. and Sit in YOUR seat!
- Do not bring excess 'stuff' to the exam.
- Questions, Comments, Concerns, Raise your hand!
- You CANNOT leave early!
- Bring a calculator (nothing that can access internet, etc).

One 8.5 by 11 (in.) piece of paper with HAND-WRITTEN notes (equations and text). You can use both sides of the paper and write whatever you want!

Everything is on the Exam

Chem 132A

Shane Flynn

Exam Overview
Logistics
Material Summar
Post-Exam

Examples
Themochemistr
Free Expansion
Phase Diagram
Conclusion

- Yes! You should read the book.
- Yes! The lecture material is on the exam.
- Yes! The Webassign is on the exam.
- Yes! The discussion problems are on the exam.
- Yes! Everything covered in Chapters 2, 3, and 4, or topics from discussion and lecture are on the exam.
- STOP! Asking what you should study... I do not know you!
- Stop! Asking for our office/office hours (until after the exam)!
- Consider looking at the Github!

The Story So Far

Chem 132A

Exam Overview
Logistics
Material Summary
Post-Exam

Examples
Themochemistry
Free Expansion
Phase Diagram
Conclusion

- Terms: Reversible, Adiabatic, Isochoric, Open,
- The Laws of Thermodynamics

The First Law, The Second Law, and The Third Law.

Thermodynamic Potentials

Internal Energy, Enthalpy, Helmholtz, Gibbs.

- State Functions, Path Functions, Equations of State.
- Total Differentials and Partial Derivatives.

Heat Capacity, Expansion Coefficient, Joule-Thomson Coefficient.

Deviations from Perfect (Ideal) Behavior.

The Story So Far (Part 2)

Chem 132A

Exam Overview
Logistics
Material Summary
Post-Exam

Themochemis
Free Expansion
Phase Diagram

Gibbs Free Energy:

- Characteristic variables: G(T,P)
- As a function of Temperature only \Rightarrow Gibbs-Helmholtz Equation.
- As a function of Pressure only \Rightarrow fugacity.
- Chemical Potential!

Phases:

- $\mu \equiv G_m$ (single component system).
- Phase Diagrams!
- solid, liquid, gas, supercritical fluid, triple point, phase line.
- Phase Rule
- First Order Phase Transition
- Second Order Phase Transition
- Clapeyron equation $(\mu(\alpha) = \mu(\beta))$

Relax!

Chem 132A

Post-Exam

- Feel Free to attend discussion Tuesday. Come ready to discuss, bring conceptual questions!
- No Discussion Wednesday!
- Thursday and Friday discussions will review the exam.
- Wait until we report back on grades before panicking.
- Come speak to the TAs or Professor Hemminger before taking 'drastic measures'.

Enthalpy

Chem 132A

Exam Overviev

Post-Exam

Examples

Themochemistry

Free Expansion

Phase Diagram

Conclusion

Consider the following chemical reaction.

$$CH_4(g) + O_2(g) \rightleftharpoons CO_2(g) + H_2O(l)$$
 (1)

Calculate the Enthalpy of Reaction for this reaction using standard Enthalpy of Formation values from the book.

SOLUTION: Start by Balancing The Equation!

$$CH_4(g) + 2O_2(g) \rightleftharpoons CO_2(g) + 2H_2O(l)$$
 (2)

Now **Algebraically** solve the question.

$$\Delta H_{\rm rxn}^0[298] = \tag{3}$$

$$\Delta H_f^0(CO_{2,g}) + \Delta 2H_f^0(H_2O_{,l}) - \Delta H_f^0(CH_{4,g}) - \Delta 2H_f^0(O_{2,g})$$
 (4)

$$\Delta H_{\rm rxn}^0[298] = -890.36 \text{ kJ/mol}$$
 (5)

Entropy

Chem 132A

Free Expansion

Consider the free expansion of one mole of a perfect gas that doubles its volume. Accounting for PV work only, determine the change in Internal Energy, work, heat, and Entropy for this process.

Entropy Solution:

Chem 132A

Shane Flynr

 $leepsilon \Delta U$

$$U(T), \Rightarrow \Delta U = 0 \tag{6}$$

■ W

w = 0, by definition of Free Expansion.

■ q

$$\Delta U = q + w \Rightarrow q = 0 \tag{7}$$

 ΔS

$$S = \frac{q_r}{T} \tag{8}$$

Logistics
Material Summar
Post-Exam

Examples

Examples
Themochemistry
Free Expansion
Phase Diagram

Entropy Solution (Part 2):

Chem 132A

Consider: A reversible isothermal expansion, from V_1 to V_2 .

$$U = q + w, \Rightarrow q = -w \tag{9}$$

$$w = \int_{V_1}^{V_2} -P_{\text{ext}} dV$$

$$w = \int_{V_1}^{V_2} -P_{\text{g}} dV$$

$$w = -nRT \int_{V_1}^{V_2} \frac{dV}{V}$$

$$w = -RT \ln(2)$$

$$\Delta S_{\text{univ}} = \Delta S + \Delta S_{\text{surr}}$$

$$\Delta S_{\text{univ}} = \Delta S = R \ln(2) > 0$$
(11)

$$> 0$$
 (11)

Free Expansion

Sulfur

Chem 132A

Phase Diagram

■ Describe the Phase Diagram of Sulfur provided below (be sure to assign each letter).

Sulfur Solution:

Chem 132A

Exam Overvie Logistics Material Summa Post-Exam

Examples
Themochemistr
Free Expansion
Phase Diagram

Phases:

P-T Phase Diagram with: two solid phases (rhombic, monoclinic), a liquid, and a gas phase (would assume if we keep heating we could get supercritical, but not on graph).

Triple Points:

F: $\mu_{\text{rhombic}} = \mu_{\text{monoclinic}} = \mu_{\text{gas}}$

E: $μ_{\text{liquid}} = μ_{\text{monoclinic}} = μ_{\text{gas}}$

B: $\mu_{\text{rhombic}} = \mu_{\text{monoclinic}} = \mu_{\text{liquid}}$

Transition Points:

• A: $\mu_{\text{rhombic}} = \mu_{\text{monoclinic}}$

• C: $\mu_{\text{monoclinic}} = \mu_{\text{liquid}}$

Will an increase in Pressure raise or lower the melting point of sulfur? Raise!

Summary

Chem 132A

Shane Flynn

Exam Overviev Logistics Material Summar Post-Exam

Examples
Themochemistry
Free Expansion
Phase Diagram

Conclusion

- Read/Understand the book (hint try Google).
- Try the Discussion Problems (don't use solutions as a crutch).
- Look at Webassign (maybe focus on interesting problems).
- Look online or other books for inspiration.
- Make your 'cheat sheet'!
- Learn where your seat is!