Algorithms I

Tutorial 2

August 19, 2016

Problem 1

You are given an array a containing n distinct integers. You are also given multiple integers x_i . For each x_i , you need to find number of indices i such that a[i] < x. You are allowed to do pre-computation of $O(n \log n)$, but for each i, you should be able to answer in $O(\log n)$. You are not allowed to use sorting.

Problem 2

Suppose that $\{(a_1,b_1),(a_2,b_2)\dots(a_n,b_n)\}$ is a set of n pairs of integers. Assume that all a_i and b_i values are distinct. Formally, for any i,j such that $1 \leq i,j \leq n$ and $i \neq j$, all a_i,b_i,a_j and b_j are distinct. You need to create a data structure to support search, insert and deletion in $O(\log n)$ time. Each search or deletion can be with respect the first component (a_i) or second component (b_i) . i.e. Given an integer x, you need to find whether there exists a pair (a_i,b_i) with $a_i=x$ or $b_i=x$. Likewise for the second component.

Problem 3

Suppose that $\{(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)\}$ is a set of n pairs of integers. Assume that all a_i values are distinct and so are all the b_i values. For each (a_i, b_i) , you need to find number of indices j such that $a_j < a_i$ and $b_j < b_i$. Your algorithm should run in $O(n \log n)$ overall.

Problem 4

You are given an array a of size n indexed as $1, 2, 3 \dots n$. You are also given an integer k. You need to create array b such that $b[i] = max\{a[j] \mid max(i-k+1,1) \leq j \leq i\}$ in $O(n \log k)$.

Problem 5

Let $a_1, a_2 \dots a_n$ be a sequence of integers with at most k distinct values. Design an $O(n \log k)$ algorithm to sort the sequence.

Problem 6

An array of size n with at most k distinct elements. Find m most frequent elements in $O(n \log k)$ using O(k) additional space. Assume $m \leq k$. You are not allowed to use sorting. e.g. in array [1, 2, 1, 1, 2, 3] if m = 2, the output will be [1, 2]

Problem 7

You are given k sorted arrays $A_1, A_2 ... A_k$. You need to merge these arrays to form another sorted array A. You should do it in $O(n \log k)$ where $n = \sum_{i=0}^{k} |A_i|$.

Problem 8

You are given with keys 10, 22, 31, 4, 15, 28, 17, 88, 59. You need to insert these keys into a hash table of length m = 11 using open addressing with the auxiliary hash function h'(k) = k. Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$ and $c_2 = 3$, and using double hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k mod(m-1))$. Now, repeat the same procedure for m = 22.

Note: In the next two problems, you can assume that you have a hash table that supports search, insert and delete in expected O(1)

Problem 9

You are given an array a of n positive integers, and a target sum s. Your task is to find whether there exist distinct indices i, j such that a[i] + a[j] = s in expected O(n).

Problem 10

You are given an array a of n integers. Your task is to find the number of sub-arrays $a[i \dots j]$ such that $\sum_{k=i}^{j} a[k] = 0$ in expected O(n).