FOR THE ALPERIN-MCKAY CONJECTURE

- . G finite group, l prime l/G/ . (K, O, k) l-modular system, buge enough

$$\sim$$
 OG = $\bigoplus_{i=1}^{n}$ B; dec. into l -books

$$J_{K}(G) = I_{K}(G) = I_{K}(G) = I_{K}(G)$$

- $\frac{\text{Brower}}{*}: \text{ to an l-block B associates}\\ * \text{ a defect group D, l-group, usigne up to say,}\\ * \text{ an l-block b of $N_G(D)$ of defect D}$

Conjecture [Brove] if Disabelian then
$$D^b(B-mod) = D^b(b-mod)$$

Conjecture [Alpein-McKay] There exists a bijection In B (1:1) In b

Boal In B = { x ∈ InB x(1) e = [G:D]e }
Thm [Spath 13] The AM-conjecture holds for all finite simple groups if the inductive AM-conjecture (iAM) holds for all finite simple groups
Let S be a finite non-abelian simple group and G its universal covering group. Then (iAM) holds for a black Bof G if there exists an $Aut(G)_{B,D}$ -equivariant bijection. $\Delta: Ir B \xrightarrow{\nu} Ir b$
"preserving the Clifford theory" wrt G 4 G x Aut (G)B
extendibility of characters on both sides is preserved $X \in Ir_{G}(B')$ extends to $G \times X$, $X \subseteq Aut(G)_{X}$ = $\Omega(X)$ $\Omega(X)$ $\Omega(X)$ $\Omega(D) \times X$. The openerally : cocycle in $H^{2}(X/G, K^{X})$ given by $X \cap \Omega(X)$ coincide
difficulty: need to explicitly construct projective representations.

II - Representation theory of groups of Lie type
From now on: G connected reductive / Fp p # l (e.g. Gln(Fp),) F: G -> G Frakenius endomorphism
Aim: understand rep. theory of GF
[Broxé-Michel '89] let (G*, F*) be in duality with (G, F). Then
GGF = (5) GGFegF
where (s) runs over G*F*conjugacy classes of semisimple elements of G*F*of l'order
Aim: understand the representations of GGFest For a fixed (s).
Deligne-lusztig varieties: Pparabolic P=LXU with F(L)=L
$Y_{U}^{G}:=\{gU\mid g^{-1}F(g)\in U.F(U)\}\subseteq G/U$
$Y_{U}^{G}:=\{gU\mid g^{-1}F(g)\in U.F(U)\} \subseteq G/U$ G^{F} (resp. U^{F}) acts by left (resp. right) multiplication

~ Hic (YG, O) is an OG-OLF-bimodule Let L* be the minimal F-stable levi-subgroup such that L* ⊇ G*(s)

w. L in duality with L* Thm [Bonnafé-Rouquier 03] The bimodule
How YG (YG, 6) est induas a Movita equivalence blu GGE and Offer def: a back B of OGES is called grass-isobated T if $C_{G*}(s)$ is not contained in a proper low of G^* Thin yields a reduction to quari-replated blocks. III - Applications to the (iAM) - condition

From now on: G simple, simply-connected s.t. GF/Z(Gr) is a non-obelian simple sp with universal caseing group GF (e.g. G=Sh, for n, q not to small.)

Lemmer: There exists a "nice" subgroup $E \subseteq Aut(G^F)$ s.t.

The image of $(Diag(G^F), E)$ in $Out(G^F)$ is $Out(G^F)_{L,e}G^F$.

Thm A: if l >>0 Her OLFEes-mod = OGFEes-mod

Thm B: Assume that every garsi-isolated black of a finite quasi-nimple group of lie type satisfies (iAM) then if G is not of type D the (iAM) holds for S = GF/Z(GF).

"only need to check (iFM) for grani-isolated blocks".