A Book of Abstract Algebra (2nd Edition)

Chapter 17, Problem 1EA

3 Bookmarks

Show all steps: ON

ON

Problem

In each of the following, a set A with operations of addition and multiplication is given. Prove that A satisfies all the axioms to be a commutative ring with unity. Indicate the zero element, the unity, and the negative of an arbitrary a.

A is the set $\mathbb Z$ of the integers, with the following "addition" \oplus and "multiplication" \odot :

$$a \oplus b = a + b - 1$$
 $a \odot b = ab - (a + b) + 2$

Step-by-step solution

Step 1 of 5

Consider that the set A is the set of integers, with the following addition and multiplication:

$$a \oplus b = a+b-1$$
,
 $a \otimes b = ab-(a+b)+2$.

Objective is to show that A satisfies all the axioms to be a commutative ring with unity.

Write explicitly the zero element, the unity, and the negative of an arbitrary a.

First show that (A, \oplus) is an abelian group.

- (1) Since sum of integers is integers, therefore $a \oplus b$ is closed in A.
- (2) Associative: Let $a, b, c \in A$. Then

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$
$$(a+b-1) \oplus c = a \oplus (b+c-1)$$
$$(a+b-1)+c-1 = a+(b+c-1)-1$$
$$a+b+c-2 = a+b+c-2.$$

Since both the sides are equals, so addition is associative in *A*.

(3) Since addition is commutative in integers, so

$$a \oplus b = a+b-1$$
$$= b+a-1$$
$$= b \oplus a.$$

(4) Additive identity or zero element:

$$a \oplus e = a$$

 $a + e - 1 = a$
 $e = 1$.

Thus, zero element of A will be 1.

(5) Let for every a in A, the negative of a is b then

$$a \oplus b = 1$$
$$a + b - 1 = 1$$
$$b = 2 - a.$$

Thus, negative of a will be 2-a.

And from here it conclude that, A is an abelian group.

Comment

Step 2 of 5

Now, show that \otimes is associative. Let $a, b, c \in A$. Then

$$(a \otimes b) \otimes c = (ab - (a+b)+2) \otimes c$$

= $(ab - (a+b)+2)c - (ab - (a+b)+2+c)+2$
= $abc - ac - bc + 2c - ab + a + b + c$
= $abc - ac - bc - ab + a + b + c$,

and

$$a \otimes (b \otimes c) = a \otimes (bc - (b+c) + 2)$$

$$= a(bc - (b+c) + 2) - (a+bc - (b+c) + 2) + 2$$

$$= abc - ab - ac + 2a - a - bc + b + c$$

$$= abc - ac - bc - ab + a + b + c.$$

Since both the sides are equals, so multiplication is associative in A.

.....

Comment

Step 3 of 5

Next is distributive law:

$$a \otimes (b \oplus c) = a \otimes (b+c-1)$$

$$= a(b+c-1) - (a+b+c-1) + 2$$

$$= ab + ac - a - a - b - c + 3$$

$$= ab + ac - 2a - b - c + 3$$

And

$$(a \otimes b) \oplus (a \otimes c) = (ab - (a+b) + 2) \oplus (ac - (a+c) + 2)$$

= $ab - (a+b) + 2 + ac - (a+c) + 2 - 1$
= $ab + ac - 2a - b - c + 3$.

Next, show that \otimes is commutative. Let $a,b\in A$. Then
$a \otimes b = ab - (a+b) + 2$
=ba-(b+a)+2
$=b\otimes a$.
Since addition ⊕, multiplication ⊗ both are commutative, therefore
$(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$ automatically holds.
Comment
Step 4 of 5
Let the unity of non-identity element a in A is b then,
$a \otimes b = a$
ab - (a+b) + 2 = a
ab-b=2a-2
b(a-1)=2(a-1)
Since a is non-identity element, so $b = 2$. Thus, $a \otimes 2 = a$.
Comment
Step 5 of 5
Hence, (A, \oplus, \otimes) form a commutative ring with the zero element 1, the unity is 2, and the negative of an arbitrary a is $2-a$.
Comment