1st EAI International Conference on Intelligent Systems and Machine Learning (ICISML-2022) Organized

by

Department of Electronics & Communication Engineering, Vardhman College of Engineering, (Autonomous), Hyderabad, India, 16th -17th December, 2022

Paper Title: Pattern Discovery and Forecasting of Attrition using Time Series Analysis

Authors: Saumyadip Sarkar, Dr. Rashmi Agarwal

REVA Academy for Corporate Excellence, REVA University, Bangalore, Karnataka, India

Paper id: 325176

Plan of Presentation

Introduction

Related work

Methodology

Results & Discussion

Future scope

Conclusion

References

Introduction

Forecast Attrition in advance

Plan workload management

Reduce Penalties

Transportation Line of Business

Related work

20+ research papers and article are researched to understand employee attrition & timeseries forecasting related work.

Key Findings

Attrition is a very costly affair for any industry. The direct costs of workforce turnover include the cost of hiring new employees, the cost of training new employees, the time it takes to transition, the cost of temporary employees, the cost of lost expertise, and the cost of the job itself (Chakraborty et al., 2021).

In the study (Kumar Jain et al., 123 C.E.), several machine learning algorithms like Decision Tree, SVM, Random Forests have been used to estimate if an employee will leave or not.

There is one study that stands out from the rest is the use of Ensemble Model Based on Machine Learning Algorithms for automated employee attrition prediction (Alsheref et al., 2022).

In another study (Fallucchi et al., 2020), Gaussian Naïve Bayes classifier has been used to classify if an employee will attrit or not. XGBoost classifier has also been used to classify employee attrition (Jain & Nayyar, 2018).

Time series analysis and forecasting are important for a variety of applications, including business, the stock market and exchange, the weather, electricity demand, cost, and usages of goods like fuels and electricity, etc., and in any setting where there are periodic, seasonal variations seen (Mahalakshmi et al., 2016).

As seen in most of the studies related to attrition predictions, classification is the go-to approach. However, using time-series techniques to forecast future attrition has not been explored enough based on the observations during the literature review. This establishes a unique opportunity for this study.

CRISP-DM

Business Understanding – Transportation Line of Business

Data Understanding – Attrition Data of last 14 months

Data Preparation – Creating subsets by introducing various categories

Modeling – Explore various timeseries forecasting models

Evaluation – Compare results of various modeling techniques to identify the best one

Deployment – Suggest a deployment strategy

Key Findings

Top 6 contracts which representing 15% of overall contracts are contributing to more than 80% of attrition and 50% penalties

 $^{\sim}$ 90% of attrition is happening at the junior most level (C01). Top 6 contracts remained constant.

Top 11 cities representing 27 % contributed to 80% of attritions

Salary ranging from \$20k to \$40k contribute to more than 80% attrition

Strong correlation of 0.93 exists between contract level attrition numbers and missed SLAs

Strong correlation of 0.92 is observed between Missed SLAs and Penalties paid at contract levels

Upward trend across all datasets contradicts Dickey-Fuller test

Following timeseries model are tested to validate both Stationary & Trend in the datasets

Modeling
Technique
Used
using MS
Excel

Moving Average

Ratio to Moving Average

Exponential Smoothing

Modeling Technique Used using Python

ARIMA

LSTM

Holt-Winters

Moving Average

A 3 months moving average is considered as the data is divided into quarters consisting of 3 months

It is an empirical methods for smoothing and forecasting time-series

Ratio to Moving Average

Building on Moving Average, some additional steps are added like deseasonalizing the data, building regression model on the deseasonalized data to forecast

This method is frequently used to show the data's overall movement without taking seasonal effects into account.

Exponential Smoothing

MS Excel's FORECAST.ETS function is used It uses AAA version of Exponential Smoothing This method is based on three smoothing equations: stationary component, trend, and seasonal.

Auto ARIMA is used to find The best order found was This order was used for all the best combination of **ARIMA** (1,0,0).other datasets the order (p,d,q) The model is the run 50 The data is divided into The Sequential, Dense, train and test data and LSTM learns using epoch to understand the and LSTM classes are LSTM MinMax preprocessing "TimeSeriesGenerator" called from the Keras technique is used on function with input as 2. lowest for it to learn on library both the datasets its own Double HWES is tried Single HWES is used as next with both additive Holt-Winters the first technique. and multiplicative for trend

Linear Regression

Given forecasted attrition, missed SLAs are predicted using a linear regression model.

Similarly, with forecasted missed SLAs, the penalties are predicted using a linear regression model.

Regression Formulae

Predicted Missed SLAs = (0.07958 * Forecasted Attrition) + 3.7954

Predicted Penalties = (7.45942 * Predicted Missed SLAs) + 0.20933

Results & Discussion

ETS or Moving Average has the best MAPE across all the datasets.

MAPE TS Models C01 Employee Top 6 Contracts at Overall Data Top 6 Contracts Top Salary Range Top Cities Level (C01)9% 6% Moving Average (3) 7% 7% 7% 6% 9% Ratio to Moving Average 12% 11% 13% 12% 12% **Exponential Triple Smoothing** 6% 10% 4% 4% 2% 4% (ETS) **ARIMA** 14% 14% 15% 19% 13% 15% Holt Winters ES1 25% 26% 28% 29% 25% 29% Holt Winters ES2 ADD 13% 12% 13% 12% 19% 13% Holt Winters ES2 MUL 18% 25% 15% 25% 23% 27% Holt Winters ES3 ADD 15% 16% 14% 19% 16% 15% Holt Winters ES3 MUL 17% 18% 18% 20% 24% 19%

Results & Discussion

The forecasting techniques were tested on the actual attrition data of the following two months.

Model Performance on Test Data

Dataset	Forecasting Technique	MAD	RMSE	MAPE	MAPE during
					training
Overall Data	Moving Average	25.8	28.6	17%	9%
	ETS	14.0	17.5	9%	10%
Top 6 Contracts	Moving Average	6.3	8.6	5%	6%
	ETS	7.1	7.6	6%	6%
C01 Employee Level	ETS	7.7	9.1	6%	4%
Top 6 contracts at (C01)	ETS	7.5	7.5	7%	4%
Top Salary Bucket	ETS	4.6	4.8	4%	2%
Top Cities	ETS	4.1	5.0	3%	4%

Results & Discussion

Forecasted attrition numbers are used for predicting Missed SLAs and Predicted Missed SLAs are used for predicting Penalties.

Regression Formulae
Predicted Missed SLAs = (0.07958 * Forecasted Attrition) + 3.7954
Predicted Penalties = (7.45942 * Predicted Missed SLAs) + 0.20933

Regression Formulae
Predicted Missed SLAs = (0.07958 * Forecasted Attrition) + 3.7954
Predicted Penalties = (7.45942 * Predicted Missed SLAs) + 0.20933

Regression Statistics (Y = Missed SLAs, X = Attrition)		
Multiple R	0.93	
R Square	0.86	
Adjusted R Square	0.86	
Standard Error	2.75	

Month	ETS (Forecast)	Predicted Missed	Predicted Penalties in (\$
		SLAs	k)
Month 1	128.7	14	104.9
Month 2	133.4	14	107.7
Month 3	138.2	15	110.6
Total		43	323.2

Overall Data

Regression Statistics (Y = Penalties, X = Missed SLAs)				
Multiple R	0.92			
R Square	0.85			
Adjusted R Square	0.85			
Standard Error	23.18			

Future scope

Conclusion

Given only attrition data, future attrition can be predicted with greater accuracy.

As with any modeling technique, continuous training with future attrition is recommended.

References

Chakraborty, R., Mridha, K., Nath Shaw, R., & Ghosh, A. (2021). Study and Prediction Analysis of the Employee Turnover using Machine Learning Approaches; Study and Prediction Analysis of the Employee Turnover using Machine Learning Approaches. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). https://doi.org/10.1109/GUCON50781.2021.9573759

Alsheref, F. K., Fattoh, I. E., & M.Ead, W. (2022). Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms. *Computational Intelligence and Neuroscience*, 2022, 1–9. https://doi.org/10.1155/2022/7728668

Fallucchi, F., Coladangelo, M., Giuliano, R., & de Luca, E. W. (2020). *Predicting Employee Attrition Using Machine Learning Techniques*. https://doi.org/10.3390/computers9040086

Mahalakshmi, G., Sridevi, S., & Rajaram, S. (2016). A survey on forecasting of time series data; A survey on forecasting of time series data. https://doi.org/10.1109/ICCTIDE.2016.7725358

Kumar Jain, P., Jain, M., & Pamula, R. (123 C.E.). Explaining and predicting employees' attrition: a machine learning approach. https://doi.org/10.1007/s42452-020-2519-4

Thank you