

Análisis del Mercado Inmobiliario en México 2013 - 2016

Diplomado en Ciencia de Datos FES Acatlán

Introducción

- Los objetivos principales del proyecto son analizar el mercado inmobiliario en México de 2013 a 2016 y construir un modelo predictivo del precio del inmueble.
- Para conocer las tendencias del sector y construir el modelo se utilizaron publicaciones de venta y renta en internet.
- El conjunto de datos se obtuvo de la página web https://data.world/, el cual contiene información de inmuebles dentro del territorio nacional.

Conteo de Publicaciones por Mes

Número de Publicaciones por Estado Limpios

Análisis Exploratorio

Publicaciones

Mediana en Precio por Mes

Mediana de Precios por Estado Limpio

Análisis Exploratorio

Precio

Mediana de Superficien por Tipo de Inmueble en m2 Limpio

Mediana de Superficien por Estado en m2 Limpio

Análisis Exploratorio

Superficie

Perfilamiento de Inmuebles

- Se encontraron 6 perfiles de inmuebles en venta en México, de los cuales destacan los siguientes:
- Las casas se encuentran en zonas industriales, cuentan con superficie y precio promedio, por lo que están al alcance de los trabajadores en el Bajío.
- Inmuebles residenciales cerca de la costa del Golfo de México y el Caribe, cuentan con una mayor superficie que el promedio pero con un precio acorde a la media nacional.
- 3. Casas en zona fronteriza con EUA en Nuevo León y Tamaulipas, tiene la mayor superficie y precio de todos los inmuebles.

Venta

Modelo de Regresión	Métrica R2	MAE
Regresión Lineal	0.562	854,091.5
Ridge	0.562	854,083.3
Decision Tree	0.547	774,320.3
Red Neuronal	0.659	710,153.1
Random Forest	0.75	599,425.25
XGBoost	0.77	578,222.16
Voting Regressor (RandomForest, XGBoost)	0.769	572,575.66

Renta

Modelo de Regresión	Métrica R2	MAE
Regresión Lineal	0.419	5,930.13
Ridge	0.419	5,932.83
Decision Tree	0.436	5,447.92
Red Neuronal	0.556	5,013.16
Random Forest	0.594	4,834.75
XGBoost	0.634	4,504.10
Voting Regressor (RandomForest, XGBoost)	0.626	4,580.12

Final

Modelo de Regresión Final	Métrica R2	MAE
Modelo de Regresión en Conjunto	0.824	457,544.02

Modelo Predictivo

Conclusiones

- Con el modelo final es posible determinar el precio de un inmueble con información histórica del mercado, lo que puede ayudar a encontrar oportunidades dentro del sector.
- Las variables tanto socioeconómicas, superficie, y número de publicaciones son importantes para el valor del inmueble.
- Para mejorar los modelos es necesario recolectar más información (distintos años, estados, tipo de operación, páginas).
- La creación de modelos individuales para cada perfil de inmueble y tipo de operación puede mejorar los resultados finales.

