

5. Substructuring, reduction, and coupling

Structural Dynamics part of 4DM00

dr.ir. R.H.B. (Rob) Fey, ir. D.W.M. (Daniël) Veldman

Substructuring, reduction, and coupling

Complex mechanical system: 3D Finite Element model with 10⁶ dofs

An accurate, reduced dynamic model of the system in a frequency range of interest can be derived by:

- 1. reducing the system model itself, but also by....
- 2. coupling of **reduced** substructure/component/superelement models

Motivation for distinguishing components

 Main contractor responsible for dynamic behaviour of total system, subcontractors responsible for individual components. Dynamic characteristics of components are required.

- Dynamic properties of optional designs of some components still need to be evaluated to determine the optimal design, whereas designs of other components are already fixed.
- Some components can be modelled theoretically, others need to be identified experimentally (unknown damping characteristics)
- Identical components, e.g. blades of windturbine.

Example

Car can be divided in substructures (car body, back seat, etc)

FE model of car body

FE model of a part of a back seat

Motivation for reducing the number of DOFs

Reduce calculation times for dynamic analyses while retaining accuracy

- 1. Frequency range of interest: limited number of modes active
- 2. Discretization errors increase in higher frequency modes
- 3. Need to reduce computational times increases in case of:
 - a) multiple load cases
 - b) parameter studies
 - c) nonlinear substructure(s)

Substructuring, reduction & coupling can be applied in the:

- 1) time domain
- 2) frequency domain

General reduction procedure (time domain)

Equations of motion of unreduced/original component/system:

$$M\ddot{q}(t) + B\dot{q}(t) + Kq(t) = f(t)$$

q(t): column with the n original DOFs.

Approximate q(t) by linear combination of n_p Ritz columns t_i :

$$q(t) \approx \sum_{i=1}^{n_p} t_i p_i(t) = Tp(t)$$

p(t): column with n_p generalized dof's, $n_p \ll n$. T: Ritz reduction matrix, dimension (n, n_p) .

General reduction procedure (time domain)

Approximate kinetic and elastic energy:

- Kinetic energy: $T_k = \frac{1}{2}\dot{q}^{\mathsf{T}}M\dot{q} \approx \frac{1}{2}\dot{p}^{\mathsf{T}}T^{\mathsf{T}}MT\dot{p} =: \frac{1}{2}\dot{p}^{\mathsf{T}}M^{red}\dot{p}$ Elastic energy: $V_e = \frac{1}{2}q^{\mathsf{T}}Kq \approx \frac{1}{2}p^{\mathsf{T}}T^{\mathsf{T}}KTp =: \frac{1}{2}p^{\mathsf{T}}K^{red}p$
- Virtual work of non-conservative loads:

$$\delta A = \delta q^{\mathsf{T}}(f - B\dot{q}) \approx \delta p^{\mathsf{T}}(T^{\mathsf{T}}f - T^{\mathsf{T}}BT\dot{p}) =: \delta p^{\mathsf{T}}(f^{red} - B^{red}\dot{p})$$

Reduced equations of motion of component/system (Lagrange):

$$M^{red}\ddot{p}(t) + B^{red}\dot{p}(t) + K^{red}p(t) = f^{red}(t)$$

- $M^{red} = T^{\mathsf{T}}MT$
- $R^{red} = T^{\top}RT$
- $K^{red} = T^{\top}KT$
- $f^{red}(t) = T^{\mathsf{T}}f(t)$

Reduction methods in the time domain

- 1. Dynamic reduction using eigenmodes (see 2. Numerical Modal Analysis)
- 2. Guyan reduction or static reduction

Component Mode Synthesis (CMS), dynamic reduction (usually on component level):

- 3. Craig-Bampton
- 4. Rubin

Component 2 of a cantilever beam system will be used in examples:

5b. Guyan reduction or static reduction

Guyan reduction or static reduction

Partition DOFs q(t) as

$$q(t) = \begin{bmatrix} q_m(t) \\ q_l(t) \end{bmatrix}$$

- $q_m(t)$: master DOFs, length n_m
- $q_l(t)$: local DOFs, length n_l

Usually $n_m \ll n_l$

Partition equation of motion accordingly

$$\begin{bmatrix} M_{mm} & M_{ml} \\ M_{lm} & M_{ll} \end{bmatrix} \begin{bmatrix} \ddot{q}_m(t) \\ \ddot{q}_l(t) \end{bmatrix} + \begin{bmatrix} K_{mm} & K_{ml} \\ K_{lm} & K_{ll} \end{bmatrix} \begin{bmatrix} q_m(t) \\ q_l(t) \end{bmatrix} = \begin{bmatrix} f_m(t) \\ f_l(t) \end{bmatrix}$$

Guyan reduction or static reduction

Partitioned equations of motion:

$$\begin{bmatrix} M_{mm} & M_{ml} \\ M_{lm} & M_{ll} \end{bmatrix} \begin{bmatrix} \ddot{q}_m(t) \\ \ddot{q}_l(t) \end{bmatrix} + \begin{bmatrix} K_{mm} & K_{ml} \\ K_{lm} & K_{ll} \end{bmatrix} \begin{bmatrix} q_m(t) \\ q_l(t) \end{bmatrix} = \begin{bmatrix} f_m(t) \\ f_l(t) \end{bmatrix}$$

Assume $|K_{lm}q_m(t) + K_{ll}q_l(t)|$ is much larger than $|f_l(t)|$ and $|M_{lm}\ddot{q}_m(t) + M_{ll}\ddot{q}_l(t)|$.

Therefore,

$$K_{lm}q_m(t) + K_{ll}q_l(t) \approx 0, \qquad \Rightarrow \qquad q_l(t) \approx -K_{ll}^{-1}K_{lm}q_m(t)$$

q(t) is static response for prescribed $q_m(t)$ (external forces at local DOFs are neglected)

Guyan reduction or static reduction

$$q_l(t) \approx -K_{ll}^{-1} K_{lm} q_m(t)$$

Transformation / Ritz matrix:

$$q(t) = \begin{bmatrix} q_m(t) \\ q_l(t) \end{bmatrix} \approx \begin{bmatrix} I \\ -K_{ll}^{-1} K_{lm} \end{bmatrix} q_m(t) =: T_{nm}^G q_m(t)$$

Reduced equations of motion:

$$M_{mm}^G \ddot{q}_m(t) + K_{mm}^G q_m(t) = f_m^G(t)$$

where

$$M_{mm}^G = (T_{nm}^G)^{\mathsf{T}} M T_{nm}^G, \qquad K_{mm}^G = (T_{nm}^G)^{\mathsf{T}} K T_{nm}^G, \qquad f_m^G(t) = (T_{nm}^G)^{\mathsf{T}} f(t)$$

Example: Guyan reduction

Component 2 of cantilever beam model

Select DOF 5-8 as master DOFs in component 2.

Remarks on Guyan reduction

- Easy to implement, present in many FE packages
- Problem: how to select master dof's? What is the influence of a particular selection $q_m(t)$ on model accuracy???
- If $f_l(t) \equiv 0$: reduced model statically equivalent to unreduced model

5c. The CMS-method of Craig-Bampton

CMS-method of Craig-Bampton

Partition

$$q(t) = \begin{bmatrix} q_B(t) \\ q_I(t) \end{bmatrix}$$

- q(t): DOFs of considered component
- $q_B(t)$: boundary DOFs (length n_B) that consist of
 - DOFs at which the reduced component is coupled to other (reduced) components
 - externally loaded DOFs
 - DOFs with prescribed non-zero displacements
- $q_I(t)$: internal DOFs (length n_I , remaining DOFs, non-loaded DOFs)

Partition equation of motion accordingly

$$\begin{bmatrix} M_{BB} & M_{BI} \\ M_{IB} & M_{II} \end{bmatrix} \begin{bmatrix} \ddot{q}_B(t) \\ \ddot{q}_I(t) \end{bmatrix} + \begin{bmatrix} K_{BB} & K_{BI} \\ K_{IB} & K_{II} \end{bmatrix} \begin{bmatrix} q_B(t) \\ q_I(t) \end{bmatrix} = \begin{bmatrix} f_B(t) \\ f_I(t) \end{bmatrix}$$

Example: boundary DOFs of component 2

CMS-method of Craig-Bampton

Approximation:

$$q(t) = \begin{bmatrix} q_B(t) \\ q_I(t) \end{bmatrix} \approx q^S(t) + q^D(t)$$

- $q^{S}(t)$: dynamic response due to linear combination of n_{B} static modes
- $q^D(t)$: dynamic response due to linear combination of limited set of dynamic modes

Static modes:

 $q^{S}(t)$ is the static response resulting from prescribed $q_{B}(t)$.

$$q^{S}(t) = \begin{bmatrix} q_{B}^{S}(t) \\ q_{I}^{S}(t) \end{bmatrix} = \begin{bmatrix} I_{BB} \\ -K_{II}^{-1}K_{IB} \end{bmatrix} q_{B}(t) = \begin{bmatrix} I_{BB} \\ T_{IB} \end{bmatrix} q_{B}(t) =: T_{nb}q_{B}(t)$$

Columns of T_{nh} (size (n, n_B)) contain all constraint modes.

This transformation is analogous to Guyan reduction!

Example: boundary DOFs and static modes

CMS-method of Craig-Bampton

Approximation:

$$q(t) = \begin{bmatrix} q_B(t) \\ q_I(t) \end{bmatrix} \approx q^S(t) + q^D(t)$$

- $q^{S}(t)$: dynamic response due to linear combination of n_{B} static modes
- $q^D(t)$: dynamic response due to linear combination of limited set of dynamic modes

Fixed-interface eigenmodes (dynamic modes)

$$q^{D}(t) = \begin{bmatrix} q_{B}^{D}(t) \\ q_{I}^{D}(t) \end{bmatrix} = \begin{bmatrix} O_{BK} \\ \Phi_{IK} \end{bmatrix} p_{K}(t)$$

- $q_B^D(t) \equiv 0$: Boundary/interface dofs are fixed.
- Φ_{IK} : kept fixed-interface eigenmodes. Found solving the eigenvalue problem: $\left(-\omega_j^2 M_{II} + K_{II}\right) \varphi_{Ij} = 0$, $\Phi_{IK} = [\varphi_{I1} \quad \varphi_{I2} \quad \cdots \quad \varphi_{In_K}]$. Φ_{IK} contains n_K modes φ_{Ij} for which $\omega_j < \omega_C$ (user defined). Kept angular eigenfrequencies are stored in $\Omega_{KK} = \mathrm{diag}([\omega_1 \quad \omega_2 \quad \cdots \quad \omega_{n_K}])$.

Example: fixed-interface eigenmodes (dynamic modes)

Component 2 of cantilever beam model

For the fixed-interface eigenmodes, the boundary DOFs 5-8 are set to zero

CMS-method of Craig-Bampton

Transformation

$$q(t) \approx q^{S}(t) + q^{D}(t) = \begin{bmatrix} I_{BB} \\ T_{IB} \end{bmatrix} q_{B}(t) + \begin{bmatrix} O_{BK} \\ \Phi_{IK} \end{bmatrix} p_{K}(t) = \begin{bmatrix} I_{BB} & O_{BK} \\ T_{IB} & \Phi_{IK} \end{bmatrix} \begin{bmatrix} q_{B}(t) \\ p_{K}(t) \end{bmatrix} = T^{CB} p(t)$$

Transformation matrix T^{CB} is $n \times (n_B + n_K)$. Generally, $n_B + n_K \ll n$.

Reduced equations of motion:

$$M^{CB}\ddot{p}(t) + K^{CB}p(t) = f^{CB}(t)$$

where

$$M^{CB} = (T^{CB})^{\mathsf{T}} M T^{CB} = \begin{bmatrix} M_{BB}^{CB} & M_{BK}^{CB} \\ \text{sym.} & I_{KK} \end{bmatrix}$$
$$K^{CB} = (T^{CB})^{\mathsf{T}} K T^{CB} = \begin{bmatrix} K_{BB}^{CB} & O_{BK} \\ \text{sym.} & \Omega_{KK}^{2} \end{bmatrix}$$
$$f^{CB}(t) = (T^{CB})^{\mathsf{T}} f(t) = \begin{bmatrix} f_B(t) \\ \Phi_{TK}^{T} f_I(t) \end{bmatrix}$$

Remarks on the method of Craig-Bampton

- If $n_K = 0$ (only constraint modes) we have Guyan's method
- If $n_K = n_I$ no reduction takes place, only coordinate transformation.
- If $f_I(t) = 0$ the reduced model is statically exact
- Reduced component models can be coupled easily (direct stiffness method, see later)
- It is unclear up to which frequency the reduced component model is accurate
- Experimental derivation of reduced model is very difficult

5d. The CMS-method of Rubin

Partition:

$$q(t) = \begin{bmatrix} q_B(t) \\ q_W(t) \\ q_R(t) \end{bmatrix}$$

where

- q(t): DOFs of considered component
- $q_B(t)$: boundary DOFs (length n_B) that consist of
 - DOFs at which the reduced component is coupled to other (reduced) components
 - externally loaded DOFs
 - DOFs with prescribed non-zero displacements
- $q_R(t)$: minimal set of dof's capable of suppressing rigid body modes
- $q_W(t)$: remaining DOFs.

Notation that will be used as well:

$$q(t) = \begin{bmatrix} q_B(t) \\ q_I(t) \end{bmatrix} = \begin{bmatrix} q_E(t) \\ q_R(t) \end{bmatrix}, \quad \Rightarrow \quad q_I(t) = \begin{bmatrix} q_W(t) \\ q_R(t) \end{bmatrix}, q_E(t) = \begin{bmatrix} q_B(t) \\ q_W(t) \end{bmatrix}.$$

M, K, and f(t) are partitioned accordingly.

Approximation:

eximation:
$$q(t) = \Phi_B p_B(t) + \Phi_R p_R(t) + \Phi_K p_K(t) = \begin{bmatrix} \Phi_B & \Phi_R & \Phi_K \end{bmatrix} \begin{bmatrix} p_B(t) \\ p_R(t) \\ p_K(t) \end{bmatrix} = T_1^R p_1(t)$$

$$\Phi_B : \text{residual flexibility modes (length } n_B \text{ static correction modes})$$

- Φ_R : rigid body modes (length n_R)
- Φ_K : kept elastic **free**-interface modes (length n_K)
- $p_1(t)$: generalized coordinates (length n_P)

Note: the Craig-Bampton method uses the **fixed**-interface modes Φ_{IK} . $\Phi_{IK} \neq \Phi_{K}$!

For significant reduction: $n_P = n_R + n_R + n_K \ll n$

Recall: A body in 3D has maximal 6 rigid body modes (3 translations & 3 rotations).

Mechanisms result in extra rigid body modes:

 Φ_B , Φ_R , and Φ_K are related to the (free-interface) eigenvalue problem.

$$(-\omega_i^2 M + K)\varphi_i = 0.$$

Sort all solutions of the eigenvalue problem such that $\omega_j \leq \omega_{j+1}$. Store all eigenvalues and eigenvectors φ_i in

$$\Omega = \operatorname{diag}([\omega_1 \quad \cdots \quad \omega_n]), \qquad \Phi = [\varphi_1 \quad \cdots \quad \varphi_n].$$

Use mass-normalization $\Phi^{\mathsf{T}} M \Phi = I$.

Rigid body modes Φ_R and kept elastic free-interface modes Φ_K

$$\Phi = [\Phi_R \quad \Phi_K \quad \Phi_D].$$

- Φ_R are the rigid body modes
- Φ_K are the **kept** free-interface eigenmodes
- Φ_D are the **deleted** free-interface eigenmodes

 n_K is chosen based on cut-off frequency ω_C such that $\omega_{n_K} \leq \omega_C < \omega_{n_K+1}$.

Alternative computation of Φ_R

Recall: $q(t) = \begin{bmatrix} q_E(t) \\ q_R(t) \end{bmatrix}$

Due to proper choice of $q_R(t)$ it is possible to compute

$$K\widetilde{\Phi}_R = O_R$$
, $\begin{bmatrix} K_{EE} & K_{ER} \\ K_{RE} & K_{RR} \end{bmatrix} \begin{bmatrix} \widetilde{\Phi}_{ER} \\ I_{RR} \end{bmatrix} = \begin{bmatrix} O_{ER} \\ O_{RR} \end{bmatrix}$, $\widetilde{\Phi}_R = \begin{bmatrix} \widetilde{\Phi}_{ER} \\ I_{RR} \end{bmatrix} = \begin{bmatrix} -K_{EE}^{-1}K_{ER} \\ I_{RR} \end{bmatrix}$.

However, $\widetilde{\Phi}_R$ is typically not mass normalized, i.e. $\widetilde{\Phi}_R^{\mathsf{T}} M \widetilde{\Phi}_R \neq I_{RR}$.

Note that $K\widetilde{\Phi}_R=O_R$ implied that $K\widetilde{\Phi}_RZ=O_R$. So $\widetilde{\Phi}_RZ$ are also rigid body modes.

Find **transformation** Z such that $\Phi_R = \widetilde{\Phi}_R Z$ satisfies $\Phi_R^{\mathsf{T}} M \Phi_R = I_{RR}$.

- 1. Compute $\widetilde{M} \coloneqq \widetilde{\Phi}_R^{\mathsf{T}} M \widetilde{\Phi}_R$
- 2. Solve eigenvalue problem $\widetilde{M}\widetilde{z}_j = \gamma_j \widetilde{z}_j$. These eigenvectors satisfy $\widetilde{z}_j^{\mathsf{T}} \widetilde{M} \widetilde{z}_k = 0$ for $j \neq k$.
- 3. Define $\widetilde{m}_j \coloneqq \widetilde{z}_j^{\mathsf{T}} \widetilde{M} \widetilde{z}_j$ and $z_j \coloneqq \widetilde{z}_j / \sqrt{\widetilde{m}_j}$ Then $z_j^{\mathsf{T}} \widetilde{M} z_k = 0$ for $j \neq k$ and $z_j^{\mathsf{T}} \widetilde{M} z_j = 1$.
- 4. Define $Z \coloneqq \begin{bmatrix} Z_1 & Z_2 & \cdots & Z_{n_R} \end{bmatrix}$. Then $Z^{\mathsf{T}}\widetilde{M}Z = I_{RR}$. It follows that $\Phi_R^{\mathsf{T}}M\Phi_R = Z^{\mathsf{T}}\widetilde{\Phi}_R^{\mathsf{T}}M\widetilde{\Phi}_RZ = Z^{\mathsf{T}}\widetilde{M}Z = I_{RR}$.

Example: Φ_R and Φ_K

Component 2 of cantilever beam model

component 2

There are two rigid body modes (1 translation + 1 rotation)

We consider $n_K = 2$ kept free-interface modes.

 Φ_B , Φ_R , and Φ_K are related to the (free-interface) eigenvalue problem.

$$(-\omega_j^2 M + K)\varphi_j = 0.$$

Residual flexibility modes Φ_{R}

$$H(\omega) = \sum_{j=1}^{n_R + n_K} \frac{\varphi_j \varphi_j^\top}{-\omega^2 + \omega_j^2} + \sum_{j=n_R + n_K + 1}^n \frac{\varphi_j \varphi_j^\top}{-\omega^2 + \omega_j^2}$$

$$= \Phi_D \Omega_{DD}^{-2} \Phi_D^\top$$

$$= \Phi_D \Omega_{DD}^{-2} \Phi_D^\top$$
Partition $\Omega = \begin{bmatrix} \Omega_{RR} & 0 & 0 \\ 0 & \Omega_{KK} & 0 \\ 0 & 0 & \Omega_{DD} \end{bmatrix}$
according to $\Phi = [\Phi_R & \Phi_K & \Phi_D]$.

Residual flexibility modes are $\Phi_B = \Phi_D \Omega_{DD}^{-2} \Phi_D^{\mathsf{T}} B$ where $B = \begin{bmatrix} I_{BB} \\ O_{IB} \end{bmatrix}$

Unit loads are applied at boundary DOFs

Computation of Φ_B

$$\Phi_B = \Phi_D \Omega_{DD}^{-2} \Phi_D^{\mathsf{T}} B$$

Problem: in practice Φ_D is often not available!

Compute Φ_B therefore as follows:

In case rigid body modes are absent:

$$\Phi_B = (K^{-1} - \Phi_K \Omega_{KK}^{-2} \Phi_K^\mathsf{T}) B.$$

Note that $\Phi^{\mathsf{T}} K \Phi = \Omega^2$ implies that $K^{-1} = \Phi \Omega^{-2} \Phi^{\mathsf{T}} = \Phi_K \Omega_{KK}^{-2} \Phi_K^{\mathsf{T}} + \Phi_D \Omega_{DD}^{-2} \Phi_D^{\mathsf{T}}$.

• In case of rigid body modes:

$$\Phi_B = (P^{\mathsf{T}}GP - \Phi_K \Omega_{KK}^{-2} \Phi_K^{\mathsf{T}})B,$$

$$P = I - M\Phi_R \Phi_R^{\mathsf{T}}, \qquad G = \begin{bmatrix} K_{EE}^{-1} & O_{ER} \\ O_{RE} & O_{RR} \end{bmatrix}$$

Proof: see book

with

Example: Φ_B

Component 2 of cantilever beam

component 2

There are 4 boundary dof's, therefore also 4 residual flexibility modes Φ_{B}

$$q(t) = \begin{bmatrix} q_B(t) \\ q_I(t) \end{bmatrix} \approx \begin{bmatrix} \Phi_{BB} & \Phi_{BR} & \Phi_{BK} \\ \Phi_{IB} & \Phi_{IR} & \Phi_{IK} \end{bmatrix} \begin{bmatrix} p_B(t) \\ p_R(t) \\ p_{\nu}(t) \end{bmatrix} = T_1^R p_1(t)$$

Remaining problem: we need $q_B(t)$ instead of $p_B(t)$ for coupling to other components.

$$p_{1}(t) = \begin{bmatrix} p_{B}(t) \\ p_{R}(t) \\ p_{K}(t) \end{bmatrix} = \begin{bmatrix} \Phi_{BB}^{-1} & -\Phi_{BB}^{-1}\Phi_{BR} & -\Phi_{BB}^{-1}\Phi_{BK} \\ O_{RB} & I_{RR} & O_{RK} \\ O_{KB} & O_{KR} & I_{KK} \end{bmatrix} \begin{bmatrix} q_{B}(t) \\ p_{R}(t) \\ p_{K}(t) \end{bmatrix} = T_{2}^{R}p(t).$$

Combine the two transformation matrices:

$$q(t) = T_1^R p_1(t) = T_1^R T_2^R p(t) = T^R p(t), \qquad T^R := T_1^R T_2^R.$$

Reduced equations of motion for the Rubin method:

$$M^R \ddot{p}(t) + K^R p(t) = f^R(t),$$

with

$$M^{R} = (T^{R})^{\mathsf{T}} M T^{R}, \qquad K^{R} = (T^{R})^{\mathsf{T}} K T^{R}, \qquad f^{R}(t) = (T^{R})^{\mathsf{T}} f(t).$$

Remarks on the method of Rubin

- To get substantial reduction: $n_B \ll n_D$
- If $f_I(t) = 0$ the reduced model is statically exact
- Numerical coupling of reduced component models requires T_2^R
- Reduced component model accurate up to cut-off frequency ω_C
- Experimental modal analysis can be used for experimental derivation of reduced model:
 - free-interface eigenmodes (component on soft springs)
 - residual flexibility modes via residual terms FRF

5e. Coupling and impedance coupling

Coupling of reduced substructure/component models

2 Substructures with their equations of motion (j = 1,2):

$$\begin{bmatrix} M_{BB}^{(j)} & M_{BP}^{(j)} \\ sym & M_{PP}^{(j)} \end{bmatrix} \begin{bmatrix} \ddot{q}_{B}^{(j)}(t) \\ \ddot{p}^{(j)}(t) \end{bmatrix} + \begin{bmatrix} K_{BB}^{(j)} & K_{BP}^{(j)} \\ sym & K_{PP}^{(j)} \end{bmatrix} \begin{bmatrix} q_{B}^{(j)}(t) \\ p^{(j)}(t) \end{bmatrix} = \begin{bmatrix} f_{Bex}^{(j)}(t) + f_{Bin}^{(j)}(t) \\ f_{P}^{(j)}(t) \end{bmatrix}$$

- equilibrium of internal forces: $f_{Bin}^{(1)}(t) = -f_{Bin}^{(2)}(t)$
- connectivity of interface DOFs: $q_B(t) = q_B^{(1)}(t) = q_B^{(2)}(t)$

Coupling of reduced substructure/component models

Reduced system equations (direct stiffness method):

$$\begin{bmatrix} M_{BB}^{(1)} + M_{BB}^{(2)} & M_{BP}^{(1)} & M_{BP}^{(2)} \\ sym & M_{PP}^{(1)} & O \\ sym & sym & M_{PP}^{(2)} \end{bmatrix} \begin{bmatrix} \ddot{q}_B(t) \\ \ddot{p}^{(1)}(t) \\ \ddot{p}^{(2)}(t) \end{bmatrix} + \begin{bmatrix} K_{BB}^{(1)} + K_{BB}^{(2)} & K_{BP}^{(1)} & K_{BP}^{(2)} \\ sym & sym & K_{PP}^{(2)} \end{bmatrix} \begin{bmatrix} q_B(t) \\ p^{(1)}(t) \\ p^{(2)}(t) \end{bmatrix} = \begin{bmatrix} f_{Bex}^{(1)}(t) + f_{Bex}^{(2)}(t) \\ f_P^{(1)}(t) \\ f_P^{(2)}(t) \end{bmatrix}$$

IMPORTANT: up to which frequency is this model accurate?

Is in general unknown.

For the Rubin method: approximately up to $\omega_{\mathcal{C}}$

Example: CMS methods

Clamped-free beam, pure bending,
2 DOF per node (transversal displacement + rotation)

 $E = 2.1 \cdot 10^{11} \text{ Pa}, I = 10^{-4}/12 \text{ m}^4, A = 0.01 \text{ m}^2, l = 4 \text{ m}, \rho = 7850 \text{ kg/m}^3$

Example: CMS methods

Fair comparison between Craig-Bampton and Rubin method:
number of DOF of reduced system must be equal!

Component 1 (reduced to 4 dof):

C-B: 2 constraint modes + 2 fixed-interface eigenmodes

R: 2 residual flexibility modes + 2 elastic free-interface eigenmodes

Constraint modes and residual flexibility modes are defined for the 2 boundary DOF of node 11 in component 1

Component 2 (reduced to 5 dof):

C-B: 2 constraint modes + 3 fixed-interface eigenmodes

R: 2 residual flex modes + 2 rigid body modes +1 elastic free-interface eigenmode

Constraint modes and residual flexibility modes are defined for the 2 DOF of node 1 in component 2. In this case: constraint modes are rigid body modes!

Example: Results of Craig-Bampton method

Eigenfreq no	Comp 1 fixed-interface eigenmodes	Comp 2 fixed-interface eigenmodes
1	132.92	20.888
2	366.48	130.91
3		366.62

Eigenfreq no	Comp 1, red.	Comp 2, red.	System, red.	System, exact	Difference [%]
1	20.889	0	5.2220	5.2220	0
2	131.05	0	32.729	32.726	0.009
3	367.96	133.07	91.642	91.633	0.010
4	1491.7	367.80	180.10	179.56	0.301
5		1491.7	297.84	296.83	0.340
6			457.74	443.41	3.232
7			967.06	619.31	56.15

Example: Results of Rubin method

Eigenfreq no	Comp 1 free-interface eigenmodes	Comp 2 free-interface eigenmodes
1	20.888	0
2	130.91	0
3		132.92

Eigenfreq no	Comp 1, red.	Comp 2, red.	System, red.	System, exact	Difference [%]
1	20.888	0	5.2220	5.2220	0
2	130.91	0	32.726	32.726	0
3	403.97	132.92	91.635	91.633	0.002
4	2294.0	403.83	179.70	179.56	0.134
5		2298.1	305.60	296.83	2.955
6			550.76	443.41	24.21
7			1429.7	619.31	130.9

Reduction and coupling in the frequency domain

Reduction and coupling procedures can also be carried out in the frequency domain.

- Reduction method: modal truncation (+ residual flexibility)
- Coupling method: Impedance coupling.

Reduction in the frequency domain

Take not all n modes into account, but only a limited number $n_{\mathcal{C}}$ based on the frequency range of interest (see 2. Numerical Modal Analysis)

$$H(\omega) = \sum_{k=1}^{n} \frac{u_{Ok} u_{Ok}^{T}}{m_{k}^{*} (-\omega^{2} + \omega_{Ok}^{2})} \approx \sum_{k=1}^{n_{C}} \frac{u_{Ok} u_{Ok}^{T}}{m_{k}^{*} (-\omega^{2} + \omega_{Ok}^{2})}$$

Improve accuracy by taking **residual flexibilities** related to deleted modes into account

$$H_B(\omega) = \sum_{k=1}^n \frac{u_{Ok} u_{BOk}^T}{m_k^* (-\omega^2 + \omega_{Ok}^2)} \approx \sum_{k=1}^{n_C} \frac{u_{Ok} u_{BOk}^T}{m_k^* (-\omega^2 + \omega_{Ok}^2)} + \sum_{k=n_C+1}^n \frac{u_{Ok} u_{BOk}^T}{m_k^* \omega_{Ok}^2}$$

The residual flexibility term (last term) plays the same role as:

- Constraint modes in the Craig-Bampton method
- Residual flexibility modes in the Rubin method

The method can be applied on system or component level.

Impedance coupling

Component coupling by means of component FRF matrices.

Coupling requires:

- equilibrium of internal forces: $\hat{f}_{Bin}^{(1)} = -\hat{f}_{Bin}^{(2)}$
- connectivity of interface DOFs: $\hat{q}_{\scriptscriptstyle R} = \hat{q}_{\scriptscriptstyle D}^{(1)} = \hat{q}_{\scriptscriptstyle D}^{(2)}$

Impedance coupling

Leads to the following FRF matrix for the coupled system (proof: see book section 1.7)

$$\begin{bmatrix} \hat{q}_B \\ \hat{q}_I^{(1)} \\ \hat{q}_I^{(2)} \end{bmatrix} = \begin{bmatrix} H_{11}(\omega) & H_{12}(\omega) & H_{13}(\omega) \\ \text{sym.} & H_{22}(\omega) & H_{23}(\omega) \\ \text{sym.} & \text{sym.} & H_{33}(\omega) \end{bmatrix} \begin{bmatrix} \hat{f}_{Bex}^{(1)} + \hat{f}_{Bex}^{(2)} \\ \hat{f}_I^{(1)} \\ \hat{f}_I^{(2)} \end{bmatrix}$$

where

•
$$H_{11} = H_{\kappa} = \left[\left[H_{BB}^{(1)} \right]^{-1} + \left[H_{BB}^{(2)} \right]^{-1} \right]^{-1}$$

•
$$H_{12} = H_{\kappa} \left[H_{BB}^{(1)} \right]^{-1} H_{BI}^{(1)}, \qquad H_{13} = H_{\kappa} \left[H_{BB}^{(2)} \right]^{-1} H_{BI}^{(2)}$$

•
$$H_{22} = H_{II}^{(1)} - H_{IB}^{(1)} \left[H_{BB}^{(1)} \right]^{-1} H_{BI}^{(1)} + H_{IB}^{(1)} \left[H_{BB}^{(1)} \right]^{-1} H_{\kappa} \left[H_{BB}^{(1)} \right]^{-1} H_{BI}^{(1)}$$

•
$$H_{23} = H_{IB}^{(1)} \left[H_{BB}^{(1)} \right]^{-1} H_{\kappa} \left[H_{BB}^{(2)} \right]^{-1} H_{BI}^{(2)}$$

•
$$H_{33} = H_{II}^{(2)} - H_{IB}^{(2)} \left[H_{BB}^{(2)} \right]^{-1} H_{BI}^{(2)} + H_{IB}^{(2)} \left[H_{BB}^{(2)} \right]^{-1} H_{\kappa} \left[H_{BB}^{(2)} \right]^{-1} H_{BI}^{(2)}$$
 3 inversions needed!

Impedance coupling

Alternative expression (see Gordis et al., J. of Sound & Vibration, Vol. 150, 1991, pp. 139-158)

$$\begin{bmatrix} \hat{q}_{B} \\ \hat{q}_{I}^{(1)} \\ \hat{q}_{I}^{(2)} \end{bmatrix} = \begin{cases} \begin{bmatrix} H_{BB}^{(1)} & H_{BI}^{(1)} & O \\ H_{IB}^{(1)} & H_{II}^{(1)} & O \\ O & O & H_{II}^{(2)} \end{bmatrix} - \begin{bmatrix} H_{BB}^{(1)} \\ H_{IB}^{(1)} \\ -H_{IB}^{(2)} \end{bmatrix} \begin{bmatrix} H_{BB}^{(1)} + H_{BB}^{(2)} \end{bmatrix}^{-1} \begin{bmatrix} H_{BB}^{(1)} \\ H_{BB}^{(1)} \\ -H_{IB}^{(2)} \end{bmatrix}^{\top} \\ \begin{bmatrix} \hat{f}_{Bex}^{(1)} + \hat{f}_{Bex}^{(2)} \\ \hat{f}_{I}^{(1)} \\ \hat{f}_{I}^{(2)} \end{bmatrix}$$

Observe: factor between curly brackets is system FRF.

Only one inversion needed!

