Advanced Qualitative Data Analysis STATISTICS 455 Noelle I. Samia, Ph.D.

Homework # 2:

• Suppose that $Y = (Y_1, Y_2, Y_3)$ is multinomial $(n, p = (p_1, p_2, p_3))$. You are to test $H_0: p_1 = p_2 = p_3$ using S_R^2 or S_U^2 , where

 S_R^2 is the score test statistic for H_0 versus the restricted alternative $H_1: p_1 = p_2 \neq p_3$; and S_U^2 is the score test statistic for H_0 versus the unrestricted alternative $H_1^*:$ not H_0 . Recall that $S_R^2 \sim A\mathcal{X}^2(1, \lambda_R)$

and $S_U^2 \sim A\mathcal{X}^2(2,\lambda_U)$.

Let $P_R = P(S_R^2 \ge 3.8415)$, $aP_R = P(\mathcal{X}^2(1, \lambda_R) \ge 3.8415)$;

and $P_U = P(S_U^2 \ge 5.9915)$, $aP_U = P(\mathcal{X}^2(1, \lambda_U) \ge 5.9915)$;

where 3.8415 is the 95th quantile of the $\mathcal{X}^2(1)$ distribution

and 5.9915 is the 95th quantile of the $\mathcal{X}^2(2)$ distribution.

The values aP_R and aP_U are the chi-squared approximations to the exact tail probabilities P_R and P_U , respectively.

- a. Write explicitly S_R^2 and S_U^2 in terms of Y_1, Y_2 , and n.
- b. Complete the following table, and comment on your findings. <u>Hint</u>: Use Monte Carlo simulation to compute exact probabilities P_R and P_U .

Note that the table, once it is filled in, gives the Monte Carlo estimates and chisquared approximations for the probabilities of rejecting H_0 for different values of p_T , using an approximate 0.05 size test; i.e. these are 'power' values.

Sample size n	True probability p_T	P_R	aP_R	P_U	aP_U
75	(1/3, 1/3, 1/3)				
75	(1/4, 1/4, 2/4)				
75	(1/6, 3/6, 2/6)				
75	(0.2, 0.3, 0.5)				
250	(1/3, 1/3, 1/3)				
250	(0.3, 0.3, 0.4)				
250	(0.22, 0.4467, 0.3333)				
250	(0.250, 0.300, 0.450)				
250	(0.22, 0.40, 0.38)				

c. Let n_R be the sample size needed so that the approximate power based on S_R^2 is 0.8; i.e. $P(\mathcal{X}^2(1,\lambda_R) \geq 3.8415) = 0.8$.

Let n_U be the sample size needed so that the approximate power based on S_U^2 is 0.8; i.e. $P(\mathcal{X}^2(2, \lambda_U) \geq 5.9915) = 0.8$. Fill in the following table of required sample sizes, and comment on your findings.

True probability p_T	n_R	n_U
(1/3, 1/3, 1/3)		
(1/4, 1/4, 2/4)		
(1/6, 3/6, 2/6)		
(0.2, 0.3, 0.5)		
(0.3, 0.3, 0.4)		
(0.22, 0.4467, 0.3333)		
(0.250, 0.300, 0.450)		
(0.22, 0.40, 0.38)		