Departamento de Ciência de Computadores FCUP Desenho e Análise de Algoritmos (CC2001) 2017/18

Exame (09.01.2018)	duração: 3h

N.º		Nome			
1.	Considere a rede de f	luxo seguinte, onc	le c/f são pares capa	cidade/fluxo, e s e t	são a origem e destino.
			a) [0.7] Indique	os valores de:	
	s $1/0$	$\frac{1}{1}$	f(q,m)	f(m,q)	f(t,z)
	*	3/2	f	c(q,m)	c(m,q)
	$ \begin{array}{c c} & q \\ \hline & 2/2 \\ \hline & 3/3 \\ \end{array} $	4/2	$c_f(q,m)$	$c_f(m,q)$	$c_f(z,x)$
	(m) $4/4$ (2)	x $1/0$ x	$c_f(x,z)$	$c_f(p,t)$	$c_f(t,p)$
b)	[0.4] Indique um cort	$e \{S, T\}$ com cap	acidade mínima. Qua	l é a essa capacidad	le?
			de Edmonds-Karp pa uxo final na rede, e ex		máximo (desenhe a rede
1031	uuai eiii cada iteraça	io, represente o ne	ixo imai na rede, e ex	prique sucmament	C).
d)	[0.3] Qual é a diferen	ça principal entre	o método de Ford-Fu	llkerson e o algoritn	no de Edmonds-Karp?
		- 1			1

de notas e moedas. Admita que pode dispor de um núi	mero ilimitado de notas/moedas de cada tipo.
de notas e moedas. Admita que pode dispor de um nún a) [1.2] Usando pseudocódigo, defina uma função QUANTIA (v, n, q, c, s) , com complexidade $O(n)$, que determine no $array\ s$ a solução obtida pelo algoritmo $greedy$ dado e retorne o número de moedas/notas usadas. O $array\ v$ define o valor das moedas/notas e n o número de tipos.	mero ilimitado de notas/moedas de cada tipo. b) [0.2] Se $q=417$ e $c=79$, o estado final de s e o valor de retorno são: c) [0.5] A complexidade de QUANTIA (v,n,q,c,s) é $\Theta(n)$? Justifique.
d) [0.6] Prove que se o número de moedas/notas for li Indique todos os erros possíveis (e instâncias correspo	

2. Considere o problema de formar uma certa quantia de q euros e c cêntimos com moedas de valores 1, 2, 5, 10, 20 e 50 cêntimos, 1 e 2 euros, e ainda notas de 5, 10 e 20 euros. Pretendemos usar o número mínimo

_		
[
N.º	Nome	
- ' '	1 (01110	

3. [1.5] Aplique o algoritmo de Prim para obter uma árvore geradora \mathcal{T} de peso <u>máximo</u> do grafo indicado, com <u>raiz</u> z. Em cada iteração, apresente os nós em \mathcal{T} e o vetor $pai[\cdot]$ e $dist[\cdot]$, como se definiu nas aulas.

4. [0.6] No algoritmo de Dijkstra, suportado por uma heap binária de mínimo, para determinação de caminhos mínimos com origem num nó s de um grafo dirigido G = (V, E, d), com $d(e) \in \mathbb{Z}^+$, qual é o estado de dist[v] e pai[v], no fim de cada iteração, para todo $v \in V$? Qual é o invariante de ciclo que garante a correção do algoritmo?

5. [2.0] Usando diretamente a **definição** das ordens de grandeza indicadas:

a) prove que $20n + 7n \log_2 n \in O(5n^2 \log_2 n)$

b) diga, justificando, se $7n + 100 \in \Omega(n^2/4)$.

6. Considere um grafo dirigido acíclico $G = (V, E, d)$, com valores com $d(e) \in \mathbb{Z}^+$ associados aos ramos. Cada ramo e representa uma tarefa de um projeto e o valor $d(e)$ representa a sua duração. Todas as tarefas terão de ser realizadas e algumas podem decorrer simultaneamente . As tarefas com origem num nó só podem começar depois de todas as tarefas com fim nesse nó estarem concluídas. Admitindo que pode iniciar o projeto no instante 0 (zero), pretendemos determinar o instante em que estaria concluído e o instante em que daria início às tarefas com origem em cada nó se as realizasse o mais cedo possível.
a) [0.5] Para a instância representada, indique o instante em que daria início às tarefas com origem em cada nó. Quando é que o projeto estaria concluído?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
b) [3.0] Usando pseudocódigo, apresente um algoritmo com complexidade temporal $\Theta(V + E)$ para resolver o problema. Justifique sucintamente a correção e complexidade do algoritmo.
7. [0.6] Indique a estratégia <i>greedy</i> que o resolve o problema da mochila fracionário (<i>linear knapsack</i>).
7. [0.0] marque a estrategia greedy que o resorve o problema da moemia tracionario (unear khapsack).

DCC/FCUP		CC2001 - Exame (09.01.2018)		
1.0	Nome			
• [1.5] Apresente a reco ínima de s para t , para $(e) \in \mathbb{Z}^+$, para todo $e \in \mathbb{Z}^+$	todos os pares (s	$(t,t) \in V \times V$, num g	grafo dirigido pesado (G = (V, E, d), cor
• [2.0] Considere uma h	ean hinária de mín	<i>imo</i> com 10 elemento	os, dada por [-9, -5, 1,	-4.4.8.6.2.10.9
Indique os valores de:		Left(7)	RIGHT(7)	
Represente-a por uma	árvore. c) Deser	nhe-a após Extract		após reduzir a chav DECREASEKEY.
0. [1.0] Qual é a compl	exidade de uma ope	eração de procura de	um elemento com uma	chave k dada, num
eap binária de mínimo,	com n elementos (todos com chaves di	stintas)?	
, numa árvore de pesqui			, num <i>array</i>	

11. Recorde o problema "Caixotes de morangos", em que é necessário determinar como distribuir c caixas de morangos por l lojas de forma a maximizar o valor total obtido. Seja R_{kn} o valor que a loja k oferece por n caixas e seja T_{kn} o valor máximo que se pode obter se se distribuir n caixas pelas lojas $1, 2, \ldots, k$. Seja S_{kn} uma solução com valor T_{kn} , dada por uma lista de pares (q, i) , em que q é o número de caixas que envia à loja i , com $q \neq 0$ (omite o par se $q = 0$). Seja N_{kn} o número total de soluções com valor T_{kn} . Assuma que os valores R_{kn} são inteiros positivos.
a) [1.2] Adaptando a função dada nas aulas, escreva (em pseudocódigo) a função CAIXOTES (R,c,l,T,S,N) para obter os valores T_{ln} , S_{ln} e N_{ln} , usando programação dinâmica, para $0 \le n \le c$, sendo T e N arrays de inteiros, com $c+1$ posições e S um array de $c+1$ listas de pares de inteiros. Admita que R é uma matriz de inteiros com l linhas e $c+1$ colunas.
b) [0.5] Justifique sucintamente a correção.

 $c) \ \ \hbox{$[0.3]$ Indique a complexidade temporal.}$