(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-184655 (P2000-184655A)

(43)公開日 平成12年6月30日(2000.6.30)

(51) Int.Cl. ⁷	ii	划記号	FΙ			テーマコード(参考)
H02K	7/09	H	102K	7/09		3 J 1 O 2
F16C	32/04	F	716C	32/04	Α	5H607
H02K	21/16	ŀ	102K	21/16	M	5H621

審査請求 未請求 請求項の数5 OL (全 10 頁)

(21)出願番号

特願平10-355124

(22)出顧日

平成10年12月14日(1998, 12.14)

特許法第30条第1項適用申請有り 1998年6月20日 社 団法人日本機械学会発行の「No.98-251 第10回電 磁力関連のダイナミックスシンポジウム講演論文集」に 発表 (71)出額人 000002233

株式会社三協精機製作所

長野県諏訪郡下諏訪町5329番地

(72)発明者 岡田 養二

茨城県日立市台原町3-14-6

(72)発明者 金箱 秀樹

長野県諏訪郡原村10801番地の2 株式会

社三協精機製作所諏訪南工場内

(74)代理人 100087468

弁理士 村瀬 一美

最終頁に続く

(54) 【発明の名称】 磁気浮上電動機

(57)【要約】

【課題】 軸長が短くでき、かつ、安定した磁気浮上を 得られると共に、制御系を簡単にできるようにする。

【解決手段】 磁気浮上電動機は、磁性体で構成し一方端側の周面に永久磁石7が固着されたロータ2a. 2b と、ステータ3a, 3b側に設けられ、上記ロータ2a, 2bの内部から放射状に広がるバイアス磁束を分布させる直流磁場発生手段4と、ステータ3a, 3bを浮上制御するための2極の浮上制御磁束を発生する第1のステータ捲線5a, 5bと、ステータ3aに対して回転磁界を設定させる第2のステータ捲線6とを備えている。この電動機1は、直流磁場発生手段4からの直流磁場と浮上制御用電流を流しロータ2a, 2bを浮上制御させ、第1のステータ捲線5aに隣接して設けた第2のステータ捲線6に通電しロータ2aに回転力を付与している。

【特許請求の範囲】

【請求項1】 磁性体からなり少なくとも一方端側の周 面に永久磁石が固着されたロータと、ステータ側に設け られ、上記ロータの内部から放射状に広がる磁束を発生 する直流磁場発生手段と、上記ロータを浮上制御するた めの2極の浮上制御磁束を発生する第1のステータ巻線 と、上記ロータに対して回転磁界を発生させる第2のス テータ巻線とを備えたことを特徴とする磁気浮上電動 機。

【請求項2】 上記直流磁場発生手段は、永久磁石から 10 なることを特徴とする請求項1記載の磁気浮上電動機。 【請求項3】 ロータの磁極数が6極以上であることを 特徴とする請求項1記載の磁気浮上電動機。

【請求項4】 ロータ周面に永久磁石を貼着したことを 特徴とする請求項1記載の磁気浮上電動機。

【請求項5】 ロータの周面に永久磁石を埋設したこと を特徴とする請求項1記載の磁気浮上電動機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は磁気浮上電動機に関 20 する。さらに詳しくは、本発明は、直流磁場と浮上制御 用ステータ捲線とによりロータを浮上制御させるととも に、当該浮上制御用ステータ捲線とは別にロータに対し て回転磁界を設定するステータ捲線を設けてロータを回 転させるようにした磁気浮上電動機に関する。

[0002]

【従来の技術】近年、接触型の軸受けに代わる磁気軸受 が開発されている。この磁気軸受は、非接触でロータ (軸)を支持するため、摩擦係数がほぼゼロになって高 速回転が可能になる。また、このような磁気軸受は、潤 30 滑油を必要としないため、高温、低温あるいは真空中等 のような特殊環境下での使用が可能になり、しかもメン テナンスを要しないという利点がある。そこで、この磁 気軸受を電動機のロータの支持に用いることが考えられ ている。

【0003】例えば、従来のモータの軸受けに代わって 磁気軸受を採用し、磁気軸受、回転力発生機構(電動機 部分)、磁気軸受という順序で水平方向に配置すること が提案されている。しかしながら、この場合、軸長が増 加し、危険速度が低下するという問題が伴う。

【0004】そこで、磁気軸受のステータが交流電動機 のステータとほぼ同一構造であることに注目し、これら を一体化した磁気浮上電動機が提案されている。この結 果、装置全体が小型化し、軸長も短くすることができ る。

【0005】このように磁気浮上と回転を同時に実現し た磁気浮上電動機については、例えば特開平6-269 144号公報に記載されたものがある(第1の従来技 術)。この第1の従来技術は、各磁極に捲線を配置した

ロータとを備え、制御手段によりロータの永久磁極数M ±2極の回転磁界を発生させる電流と前記ロータを回転 させる電流とを前記捲線に流すことにより、磁気浮上と 回転力とを得るようにした磁気浮上電動機である。この 第1の従来技術によって、装置全体が小型化し、軸長も 短くできて危険速度を低下させることができた。

【0006】また、上記第1の従来技術とは原理が異な るが、突極を備える2個のロータと、これらロータを囲 **続するように配置され前記ロータにトルクを発生させる** 捲線を備えたステータと、前記ステータの外側に配置さ れ前記ロータの突極を励磁する直流磁場発生手段と、前 記ロータに半径方向力を発生する制御用コイルと、この 制御用コイルに通電する制御手段とを備えたホモポーラ 型リラクタンスモータが提案されている(特開平10-136622号公報(第2の従来技術))。この第2の 従来技術では、磁気浮上電動機を得ることができ、軸長 を短くして、危険速度を低下させたものである。 [0007]

【発明が解決しようとする課題】しかしながら、上記第 1の従来技術によれば、負荷トルク及びモータ電流によ って浮上制御が影響を受ける欠点がある。また、第1の 従来技術によれば、浮上制御を回転磁界によって行うた め、座標変換が必要となり、制御系が複雑になるという 欠点もある。さらに、この第1の従来技術によれば、磁 気回路を線形として考えているので、磁気飽和が浮上力 に影響を及ぼすという欠点がある。

【0008】また、第2の従来技術では、ロータが突極 型で最低8極を必要とする欠点があった。

【0009】本発明は、軸長が短くでき、かつ、安定し た磁気浮上を得られると共に、制御系を簡単にすること ができる磁気浮上電動機を提供することを目的とする。 [0010]

【課題を解決するための手段】かかる目的を達成するた め、請求項1記載の発明にかかる磁気浮上電動機は、磁 性体からなり少なくとも一方端側の周面に永久磁石が固 着されたロータと、ステータ側に設けられ、上記ロータ の内部から放射状に広がる磁束を発生する直流磁場発生 手段と、上記ロータを浮上制御するための2極の浮上制 御磁束を発生する第1のステータ巻線と、上記ロータに 40 対して回転磁界を発生させる第2のステータ巻線とを備 えるようにしている。

【0011】したがって、直流磁場と浮上制御用の第1 のステータ搭線に浮上制御用電流を流すことによりロー タを浮上制御させ、かつ、第2のステータ捲線に通電す ることによりロータに回転力を付与させる。即ち、ロー タの永久磁石が固着された部分との間でモータを構成す るステータは、ロータの極数に応じた回転磁界と2極の 浮上磁界を作り出せる。モータ側および磁気軸受側のロ ータにはバイアス永久磁石により放射状の磁束が与えら ステータと、永久磁石によってM個の磁極数を形成した 50 れるために、この磁束によって直流での浮上制御が可能

となる。ステータ側に配置された直流磁場によりロータ とステータの間隙に放射状に広がる一定の磁束を形成し ておき、ステータの位置制御捲線により制御磁束を発生 させて前記一定の磁束と合成することにより、このロー タに上向きの浮上力を発生させてロータを浮上させてい る。即ち、ロータに働く力は、制御磁束と直流磁場によ るバイアス磁束との相互作用によって生じさせている。 そこで、浮上回転制御はステータからの回転磁界と浮上 磁界、そして、このバイアス磁束をエアギャップに重畳 させることにより行う。

【0012】また、請求項2記載の発明は、請求項1磁 気浮上電動機において、直流磁場発生手段が、永久磁石 からなるようにしている。この場合、永久磁石でバイア スのための直流磁場を発生させているので、その磁束発 生のための電力が不要になる。

【0013】また、請求項3記載の発明は、請求項1の 磁気浮上電動機において、ロータの磁極数が6極以上で あるようにしている。この場合、第1のステータ捲線と 第2のステータ捲線とを同一のステータに設け、磁気浮 上と回転力発生とを個別に行わせることができるように 20 しているので、ロータ及びステータの数を少なくするこ とができる。

【0014】また、請求項4記載の発明は、請求項1の 磁気浮上電動機において、ロータ周面に永久磁石を貼着 するようにしている。この場合、ロータの周面に永久磁 石を貼着するだけの簡単な構造であるので、簡単に製造 することが可能になる。

【0015】更に、請求項5記載の発明は、請求項1の 磁気浮上電動機において、ロータの周面に永久磁石を埋 設するようにしている。この場合、ロータの周面に永久 30 磁石を埋設してなるので、堅固な構造となる。

[0016]

【発明の実施の形態】以下、本発明の構成を図面に示す 一実施の形態に基づいて詳細に説明する。

【0017】図1~図2に本発明の実施の一形態に係る 磁気浮上電動機の原理的構造を示す。この磁気浮上電動 機1は、ロータ2a,2bと、ステータ3a,3bと、 直流磁場発生手段4と、第1のステータ捲線5a,5b と、第2のステータ捲線6と、ロータ2aに設ける永久 磁石7, …, 7とを具備し、永久磁石7, …, 7を備え 40 たロータ2aとステータ3aとの間でモータが構成され ている。また、ロータ2a, 2bとステータ3a, 3b とのそれぞれの間では磁気軸受が構成される。

【0018】ロータ2a、2bは磁性体から構成されて おり、磁性体からなる回転軸8に所定の間隔を隔てて設 けられている。これらロータ2a, 2bのうちのロータ 2aの周面には、永久磁石7, …, 7が極性をN, S, N. …, Sというように反転して設けられている。これ ら永久磁石7, …, 7は、ロータ2aの周面に貼着され ている。ここで、永久磁石7は、N極が表側に露出する 50 秒後のロータ2a, 2bの位置はωt/Mで求めること

永久磁石とS極が露出する永久磁石とが交互に配置され ており、尚かついずれか一方の周方向の両側縁が図6に 示すように台形状を成すように周方向に突出した形状と され、他方の磁石が単純な長方形とされ、ロータ表面の ロータの磁束密度分布が正弦波状に近づくように設けら れることが好ましい。尚、ロータ2a, 2bはケイ素鋼 板を重ねて製作することが渦電流の発生を防ぐ上で好ま LW

【0019】これらロータ2a、2bの外側には、ステ 10 ータ3a, 3bがロータ2a, 2bの周面をそれぞれ囲 **続するように配置されている。ステータ3a,3bに** は、ロータ2a、2bを浮上制御するための2極の浮上 制御磁束φ: を発生する第1のステータ捲線5a,5b がそれぞれ捲回されている。また、ステータ3aには、 第1のステータ捲線5 aに隣接させてロータ2 aに対し て回転磁界φκ を設定させる第2のステータ捲線6が設 けられている。

【0020】また、ステータ3a,3bの間には直流磁 場発生手段4が設けられており、この直流磁場発生手段 4によってロータ2a, 2bからステータ3a, 3bに 向けて放射状に分布する磁束 Φ む を発生させている。こ の直流磁場発生手段4は、具体的には永久磁石Pであっ て、ステータ3a,3bの間の中央に配置され、この永 久磁石Pによってロータ2a, 2bとステータ3a, 3 bとの間隙にバイアスのための直流磁場を発生させてい る。ここで、バスアス磁束を発生させる直流磁場発生手 段4としての永久磁石Pの数は、特に限定されるもので はないが、多いほど即ちエアギャップ内のバイアス磁束 が大きいほど浮上電流をより少なくできることから、可 能な限り多くすることが好ましい。尚、ステータ3a、 3bもロータ2a, 2bと同様に、ケイ素鋼板の積層材 で構成することが好ましい。

【0021】また、ロータ2aの磁極数とステータ3a のスロット数は特に限定されるものではないがPMモー タを構成できる数であれば足りるが、磁極数が6極以 上、スロット数が9個以上であることが好ましく、本実 施形態では磁極数6極、スロット数12で構成されてい

【0022】尚、上記のPMモータにおいて、ステータ はスロットレス構造であってもよい。

【0023】このような磁気浮上電動機の作用について 図1及び図2を基に図3及び4を参照して説明する。

【0024】ここで、図3に、ロータにおける座標系を 示す。図3において、ステータ3a,3bの回転中心を Oとし横軸にx軸をとり、これに直角な縦軸にy軸をと る。また、ステータ3a,3bの上に固定した回転座標 $epsilon \theta$ を $epsilon \theta$ とし、ロータ $epsilon \theta$ and $epsilon \theta$ とし、時間を tとおくと、各ステータ3a,3bはy軸から角度 θ と して配置されており、また、y軸を時間t=Oとしてt

(4)

5

ができる。

【0025】図4に、ステータ及びロータにおける磁束 と時間との関係を示す。ここで、図4(a)はロータの 永久磁石と直流磁場発生手段からのバイアス磁束による 磁束密度Brを時間との関係で示し、図4(b)は第2 のステータ捲線によってステータとロータとの間隙に発 生する磁束密度Bsmを時間との関係で示し、かつ、図4 (c)は第1のステータ捲線による磁束密度Bsbを時間 との関係で示したものである。

【0026】この磁気浮上電動機1では、第1のステー 10 夕捲線5a,5bから図4(c)に示す磁界が発生する ように第1のステータ捲線5a,5bに電流を流し、ま た、第2のステータ捲線6から図4(b)に示すような 磁界が発生するように第2のステータ捲線6に電流を流 すことにより、この磁気浮上電動機1は磁気浮上すると ともに、電動機として回転を発生する。

【0027】このように第1のステータ捲線5a,5b から磁束密度Bsbが発生するように電流を流し、第2の ステータ捲線6から磁束密度Brが発生するように電流 を流すことにより、磁気浮上と回転力とが独立して発生*20

*することについて、理論解析をするために、次の(i)~ (vi)のような仮定をする。

【0028】(i) ステータ3a, 3bは電流が連続的に 分布するものとする。

【0029】(ii)定常回転、定常スラスト負荷(重力 等) 状態とする。

【0030】(iii) ロータ2aは、永久磁石によって矩 形波状の磁束密度を作り、これによる偏心力はない。

[0031](iv)D-92a, 2bdz-7-93a, 3bの中心にあり、偏心していない。

【0032】(v)バイアス磁束は一定で放射状に分布し ている。

【0033】(vi) 第2のステータ搭線6に流す回転磁 界用の電流による電機子反作用はない。

【0034】このような仮定の上において、ロータ2a の永久磁石7と直流磁場発生手段4のバイアス磁束によ る磁束密度Brは、次の数式1のようになる。

[0035]

【数1】

$$B_{-} = \begin{cases} B_{0} + B_{1} \\ \cdots \left(\frac{\omega t}{M} + \frac{2\pi(i-1)}{M} - \frac{\pi}{2M} \sim \frac{\omega t}{M} + \frac{2\pi(i-1)}{M} + \frac{\pi}{2M} \right) \\ B_{0} - B_{1} \\ \cdots \left(\frac{\omega t}{M} + \frac{2\pi(i-1)}{M} + \frac{\pi}{2M} \sim \frac{\omega t}{M} + \frac{2\pi(i-1)}{M} + \frac{3\pi}{2M} \right) \end{cases}$$

30

【0036】ここで、

Bo: バイアス磁石によるギャップ磁束密度

Bi: ロータの永久磁石による磁束密度の波高値

B2: 電動機巻線による磁束密度の波高値

B3: 位置制御巻線による磁束密度の波高値

θ : ステータ上に固定した回転座標

ψ : 電動機巻線による磁束とロータの位相差

φ : 位置制御巻線による磁束の位相角

ω: ロータの角速度

t : 時間

 $M : 極対数 (=1, 2, 3, \cdots)$

i : 自然数

計算を簡単にするため、正弦波に近似させると、次の数 式2に示すように表すことができる。

[0037]

【数2】

$$B_t = B_0 + B_1 cos(M\theta - \omega t)$$

【0038】第2のステータ捲線6によってロータ2a とステータ3aとの間に発生する磁束密度Bsmは、

[0039]

【数3】

$$B_{m} = B_{2} cos (M \theta - \omega t - \phi)$$

【0040】のように表すことができる。

【0041】また、第1のステータ捲線5a,5bによ※50 【数7】

※って発生する磁束密度 Bsbは、

[0042]

【数4】

$$B_{ab} = B_3 cos(\theta - \phi)$$

【0043】のようになる。

【0044】したがって、ロータ2a, 2bとステータ 3a, 3bとの間のエアギャップに作られる磁束密度B gli

[0045]

【数5】

$$B_s = B_r + B_{sm} + B_{sb}$$

【0046】となる。

【0047】次に、ロータ2a, 2bの半径をrとし、 40 ロータ2a, 2bとステータ3a, 3bとのエアギャッ プをgとし、ロータ2a, 2bの軸方向に長さを1、微 小角度を $d\theta$ とすると、エアギャップの微小体積 ΔV は、

[0048]

【数6】

$$\Delta V = rlgd\theta$$

【0049】となり、この微小体積 Δ V に蓄えられる磁 気エネルギーΔWは、

[0050]

 $\Delta W = \frac{B_g^2}{2\mu_0} \Delta V = \frac{B_g^2}{2\mu_0} r lg d\theta$

【0051】となる。

【0052】これにより、半径方向に沿った放射状の力 dFは微小ギャップ体積中に蓄えられる磁気エネルギの 仮想変位により次の数式8のように計算される。

[0053]

【数8】

$$dF = \frac{\partial \Delta W}{\partial q} = \frac{B_q^2}{2\mu_0} rld\theta$$

【0054】ここで、x軸及びy軸方向に発生するカFx,Fyは、数式9に示すdFox方向成分及びy方向成分を θ についてギャップ全周に渡って積分することにより、数式9、数式10に示すように算出することができる。

[0055]

$$F_{\pi} = \int_{V} dF \cos \theta$$

$$= \int_{0}^{2\pi} \frac{B_{g}^{2}}{2\mu_{0}} r l \cos \theta d\theta$$

$$= \frac{lr}{2\mu_{0}} \left[\frac{B_{0}B_{1}}{2} \int_{0}^{2\pi} \cos\{(M-1)\theta - \omega t\} d\theta + \frac{B_{0}B_{2}}{2} \int_{0}^{2\pi} \cos\{(M-1)\theta - (\omega t + \psi)\} d\theta + 2B_{0}B_{3}\pi \cos \phi + \frac{B_{1}B_{3}}{2} \int_{0}^{2\pi} \cos\{(M-2)\theta - (\omega t - \phi)\} d\theta + \frac{B_{2}B_{3}}{2} \int_{0}^{2\pi} \cos\{(M-2)\theta - (\omega t + \psi) + \phi\} d\theta$$

[0056]

10030

$$\begin{aligned} \{ \underbrace{\otimes} 1 \ 0 \ \} \\ F_y &= \int_0^{2\pi} \frac{1}{2\mu_0} B_y^2 r l \sin \theta d\theta \\ &= \frac{ir}{2\mu_0} \left[\frac{B_0 B_1}{2} \int_0^{2\pi} \sin\{(1-M)\theta + \omega t\} d\theta \right. \\ &+ \frac{B_0 B_2}{2} \int_0^{2\pi} \sin\{(1-M)\theta + (\omega t + \psi)\} d\theta \\ &+ 2B_0 B_3 \pi \sin \phi \\ &+ \frac{B_1 B_3}{2} \int_0^{2\pi} \sin\{(2-M)\theta + \omega t - \phi\} d\theta \\ &+ \frac{B_2 B_3}{2} \int_0^{2\pi} \cos\{(2-M)\theta + (\omega t + \psi) - \phi\} d\theta \end{aligned}$$

【0057】ここで、M≥3とすると、

[0058]

【数11】

$$F_{x} = \frac{B_0 B_3 lr \pi}{\mu_0} \cos(\phi)$$

[0059]

【数12】

$$F_y = \frac{B_0 B_3 l r \pi}{\mu_0} \sin(\phi)$$

【0060】となり、ロータ2a、2bの回転角に関係なく一定の浮上力が得られる。数式11の×方向の浮上力も、数式12のy方向の浮上力も、ロータ2aの永久磁石の磁束密度及び第2のステータ捲線6による磁束密度の項が表れていないことから、磁気浮上力は第2のステータ捲線6によって形成される回転磁界の影響を受けないことがわかる。

【0061】一方、回転トルクTは、

[0062]

0 【数13】

$$T = \int_0^{2\pi} \frac{\partial \Delta W}{\partial \psi}$$

$$= -\frac{r l g M B_1 B_2 \pi}{\mu_0} \sin M \psi$$

$$+ \frac{r l g M B_2 B_3}{2\mu_0} \int_0^{2\pi} \sin\{(M-1)\theta\}$$

$$-M(\omega t + \psi) + \phi\} d\theta$$

【0063】に示すように求められる。ここで、M≥2 とすると、回転トルクTは、

20 [0064]

【数14】

$$T = -\frac{rigMB_1B_2\pi}{\mu_0}\sin M\psi$$

【0065】となり、直流磁場発生手段4で発生するバイアス磁界によるエアギャップ磁束密度、及び第1のステータ捲線5a,5bによる磁束密度の項が表れないため、バイアス磁界及び浮上磁界の影響を受けないことがわかる。

【0066】このように本発明の実施の形態では、次の 30 ような利点がある。

【0067】(1)磁気軸受と電動機の磁気回路とを一体化したので、装置全体がコンパクトになり、軸長を小さくできて危険速度を高くでき、高速回転をさせることができる。

【0068】(2)負荷トルク及び電動機電流によって 磁気浮上制御が影響を受けないので、より安定した浮上 が実現できる。

【0069】(3)磁気浮上制御は回転磁界によって行わないため、座標変換が不要になり、制御系が簡単にな40 る。

【0070】(4)ホモポーラ型磁気浮上電動機では突極型で最低8極が必要であるが、この実施の形態による磁気浮上電動機では最低6極で構成することができ、構造が簡単になる。

【0071】(5)直流磁場発生手段に永久磁石を使用することが可能であり、永久磁石を使用したときには磁場発生のための電力が必要としない。

【0072】なお、上述の実施の形態は本発明の好適な 実施の形態の例であるが、これに限定されるものではな 50 く、本発明の要旨を逸脱しない範囲において種々の変形 実施が可能である。例えば、本実施形態では、ロータ2 aの周面に永久磁石7,…,7が貼着されている例について主に説明したがこれに特に限定されず、ロータ2a に永久磁石7,…,7を埋設し、周面に露出させるように構成することも可能である。

[0073]

【浮上及び回転実験】本発明の磁気浮上電動機の浮上及び回転実験を図6に示すロータ構造を採用した図5の実験装置で実施した。

【0074】実験装置となった磁気浮上電動機101 は、図5に示すように、ロータ102a,102bの外周面を、ステータ103a,103bとで覆った形に形成されている。また、ステータ103aとステータ103bとの間には直流磁場発生手段である永久磁石104が配置されており、この永久磁石104により鉄プレート103c,103dを介してステータ103a,103bにバイアス磁界を供給できるようになっている。さらに、これらステータ103a,103bには、第1のステータ搭線105a,105bがそれぞれ巻かれている。また、ステータ103aには第1のステータ捲線1205aに隣接して第2のステータ捲線106が巻かれている。

【0075】また、ロータ102aは、図6に示すように、ロータ鉄心120と、N極側が表側を向いた永久磁石107sとから構成されている。すなわち、ロータ鉄心120には、N極を表側に向けた永久磁石107nとS極を表側に向けた永久磁石107sとを交互に配置して6極の永久磁石が張り付けられている。尚、N極が露出する永久磁石107nは、周方向の両側縁が台形状を成すように30周方向に突出した形状とされ(上底14mm、下底24mm、高さ5mm)、S極が露出する永久磁石107sは単純な長方形とされ、ロータ表面のロータ102aの破束密度分布が正弦波状に近づくように設けられている。また、ロータ102a,102bの各ロータ鉄心120は、回転軸となる鉄パイプ108に例えば42mmだけ離して固定してある。

【0076】この鉄パイプ108は、例えば長さ約19 0㎜程度のものであり、このパイプ108の一端にはセンサーターゲット109が設けられている。このセンタ 40 ーターゲット109の部分には支持体110が設けられており、センサーターゲット109を検出するセンサー 111×、111yが設けられている。

【0077】尚、本実験装置では、始動時には磁気軸受の制御は行わず、磁気軸受けのロータが水平を保つように、最右端を玉軸受けにより支持するように設けられている。即ち、鉄パイプ108には軸108aが挿入されていて、この軸108aの図示右側において玉軸受112によって軸108aが回転可能に固定されている。玉軸受112は支持体113により固定されている。

10

【0078】また、支持体110,113、及びステータ103a,103bは基台115に固定されている。 【0079】なお、ロータ102aの図示左側と、ロータ102bの図示右側にはタッチダウンプレート116a,116bが設けられている。

【0080】そして、基台115の上面からタッチダウンプレート116a, 116bの上端までの高さが例えば135mmであり、また、基台115の上面から回転軸108aの回転中心までの高さが例えば70mmとして構10成されている。また、基台115に配置された各種の部材は、タッチダウンプレート116aからセンサーターゲット109までの間隔が例えば22mm、ロータ102a及びステータ103aの厚みが例えば63mm、直流磁場発生手段である永久磁石104の関連部分の間隔が42mm、ロータ102b及びステータ103bの部分の長さが例えば48.5mm、また、タッチダウンプレート116bから支持体113までの間隔が例えば73.5mmとなるように構成している。

【0081】図7に、当該磁気浮上電動機を駆動する制 御系を示す。センサ111x,111yは置換コンバー タ201の入力に接続されている。置換コンバータ20 1は、センサ111x,111yからの検出信号を所定 の置換を行い出力できる。置換コンバータ201の出力 端はDSP (Digital Signal Processor: デジタル信号 処理装置)202の入力端に接続されている。DSP2 02は、クロックボード202aと、A/Dボード20 2bと、D/Aボード202cとから構成されている。 このDSP202はコンピュータ203に接続されてお り、コンピュータ203の制御下にデジタル信号処理を 実行する。このDSP202のA/Dボード202bに は置換コンバータ201の出力が供給されている。ま た、DSP202のD/Aボード202cは、そのアナ ログ出力信号を増幅装置204に供給する。この増幅装 置204は電源205から電力の供給を受けて、D/A ボード202cからの出力信号に応じてステータ103 aの第1のステータ捲線105aと第2のステータ捲線 106に流す電流を制御するとともに、ステータ103 bの第1のステータ捲線105bに流す電流を制御する ようになっている。

40 【0082】このような磁気浮上電動機101の動作について説明する。図8に、6極のロータ102aの磁束分布を示す。この図において、点線IFが望ましい磁束分布を示し、実線AFが実測値を示したものである。この磁束密度の分布は、ロータ102aを開放状態で計測したものである。エッジ効果により波形が歪んでいるが、磁極の最大値は0.13Tとなる。実際に使用するときには、ステータ103aに挿入することにより、さらに大きな値となり、より理想状態に近い波形に変化すると考えられている。なお、ロータ102aをステータ50 103aに、ロータ102bをステータ103bにそれ

1 1

ぞれ挿入したときには、エアギャップは、永久磁石の厚 みを含めて片側が2.0㎜となるようにした。

【0083】この磁気浮上電動機101の静的な特性を 調べるために、浮上力の測定を行った。電動機の磁界を 静止磁界とし、ロータ102a, 102bの浮上制御を 行った状態で、鉛直上方向に力を加えていったときの、 浮上電流値を測定した。

【0084】図9に、バイアス磁束を発生させる永久磁 石104を3個としたときの浮上力と、永久磁石104 を6個としたときの浮上力を示す。この図9において、 バイアス磁束を発生させる永久磁石104が3個のとき の特性gと、永久磁石104が6個のときの特性rとを 比較すると、永久磁石104が6個のときの方が浮上電 流をより少なくすることができることがわかる。すなわ ち、永久磁石104は多ければ多いほど浮上電流を少な くするとこができる。

【0085】このことは、x、y方向の浮上力の式であ る数式11、数式12からも容易にわかる。ロータ10 2a, 102bの浮上力は、ロータ102aに加わる力 が8.0Nあり、また、この装置ではバイアス磁束を与 20 える永久磁石104として6個用いたため、浮上に必要 な電流は約0.9Aを必要となることが、図9からもわ

【0086】つぎに、浮上及び回転動作について説明す る。ロータ102a, 102bとステータ103a, 1 O3bとの間のエアギャップを2mmとし、前述したよう に磁気軸受の制御は行わず、電動機としての電流を 0. 3A、0. 5A、0. 7Aとしてそれぞれ動作させた。 また、増幅装置204にはリニアアンプを使用し、最大 ±24 Vで駆動した。

【0087】制御系のゲインは実験的に求め、以下の値 を使用した。

(0088) Kp = 25 A/mm

 $Kd = 5A \cdot Sec /mm$

K i = 0. $2 A \cdot Sec$

 $\tau = 1 \times 10^{-4} \text{Sec}$

 $T d = 3 \times 10^{-2} Sec$

また、電動機の電流を0.5Aとして、ロータ102a が静止(回転数が〇rpm)のときにインパクトハンマ を用いてロータ102aを加振させたときの応答を図1 40 0(a)、図10(b)に示す。これらの図からも分か るように、ロータ102aが安定して浮上制御が行えて いることがわかる。

【0089】次に、アンバランス応答(回転数毎の振動 振幅)を図11~図13に示す。 ここで、 図11は電動 機電流を0.3Aとしたときのアンバランス応答であ り、図12は電動機電流をO.5Aとしたときのアンバ ランス応答であり、図13は電動機電流を0.7Aとし たときのアンバランス応答である。

12

を100rpm刻みで上昇させてゆき、各回転数で安定 状態の最大と最小のセンサ変位を記録し、その差をとっ たものである。

【0091】これらの図をみたときに、低回転において 振動振幅が大きくなっている理由は、ロータ102aに 張り付けた永久磁石107n、107sにより、ステー タ103aの突部に吸引される力の影響が大きく、ま た、低回転ではロータ102aの角速度を一定にするこ とが困難であり、そのため、ロータ102aが大きく振 動してしまうことが考えられる。

【0092】なお、電動機電流が0.3Aのときは43 OOrpmまで、電動機電流がO. 5Aのときは440 Orpmまで、電動機電流がO. 7Aのときは4300 rpmまで浮上制御を行いながら、回転制御が可能にな ることが確かめられた。

【0093】このように本磁気浮上電動機101によれ ば、直流磁場発生手段である永久磁石104により直流 磁場をステータ103a,103bを介してロータ10 2a,102bに供給することにより位置制御が可能に なり、また、ロータ102aの対極数が6極以上であれ ば、浮上制御と回転制御を完全独立に行わせることがで きる。

[0094]

【発明の効果】以上説明したように、本発明によれば、 次のような効果がある。

【0095】(1)磁気磁気受と電動機の磁気回路とを 一体化したので、装置全体がコンパクトになり、軸長を 小さくできて危険速度を高くでき、高速回転をさせるこ とができる。

30 【0096】(2)負荷トルク及び電動機電流によって 磁気浮上制御が影響を受けないので、より安定した浮上 が実現できる。

【0097】(3)磁気浮上制御は回転磁界によって行 わないため、座標変換が不要になり、制御系が簡単にな る。

【図面の簡単な説明】

【図1】本発明の実施の形態に係る磁気浮上電動機を示 す正面図である。

【図2】同磁気浮上電動機を示す断面図である。

【図3】同磁気浮上電動機の座標系を設定するための説 明図である。

【図4】同磁気浮上電動機に発生する磁束密度を説明す るための特性図であり、同図(a)はロータの永久磁石 と直流磁場発生手段からのバイアス磁束による磁束密度 Brを時間との関係で示し、同図(b)は第2のステー 夕捲線によってステータとロータとの間隙に発生する磁 東密度Bsmを時間との関係で示し、同図(c)は第1の ステータ捲線による磁束密度Bsbを時間との関係で示し たものである。

【0090】これらのアンバランス応答特性は、回転数 50 【図5】本発明の磁気浮上電動機の浮上及び回転実験を

13

行うための実験装置として構成された磁気浮上電動機の 一実施例を示す構成図である。

【図6】同実施例の一方のロータの構造を拡大して示す 斜視図である。

【図7】同実施例の制御系を示すブロック図である。

【図8】同実施例のロータの磁界分布を示す特性図であ る。

【図9】同実施例の直流磁場発生手段を構成する永久磁 石の個数に応じて必要な電流値を示す特性図である。

【図10】同実施例においてロータが静止しているとき 10 8、108a 回転軸 にインパクトハンマを用いてロータを加振させたときの 応答を示す特性図であり、(a)はX軸、(b)はY軸 を示す。

【図11】同実施例において電動機電流を0.3Aとし たときのアンバランス応答を示す特性図である。

【図12】同実施例において電動機電流を0.5Aとし たときのアンバランス応答を示す特性図である。

【図13】同実施例において電動機電流を0.7Aとし

14

たときのアンバランス応答を示す特性図である。

【符号の説明】

1,101 磁気浮上電動機

2a, 2b, 102a, 102b ロータ

3a, 3b、103a, 103b ステータ

4、104 直流磁場発生手段

5a, 5b、105a, 105b 第1のステータ搭線

6、106 第2のステータ捲線

7、107n, 107s 永久磁石

108 鉄パイプ

111x, 111y センサ

201 置換コンバータ

202 DSP

203 コンピュータ

204 增幅装置

205 電源

フロントページの続き

Fターム(参考) 3J102 AA01 CA10 CA19 CA27 DA02

DA07 DA13

5H607 AA04 BB01 BB07 BB09 BB14

CCO1 CCO9 DDO3 DD19 GG19

GG21 HHO1 HHO5

5H621 AAO4 BB01 BB02 BB10 GA01

GA04 GB10 HH01 JK19 PP02

PP10