Tennis mit Leap Motion

V. Reckendrees, A. Ljulin, M. Greco, E. Arpaci

Fachprojekt Visual Computing

24. Juli 2017

Inhaltsverzeichnis

Worum geht's?

Darstellung der Spielobjekte

Physik

Worum geht's?

Inhaltsverzeichnis

Worum geht's?

Darstellung der Spielobjekte

Physik

5/24

Rendering Architektur

- Klassen der Spielobjekte:
 - => Ball, Racket, Box, Scorefield
- Enhalten Member, die Renderable Interface implementieren
- Jedes Renderable zuständig für
 - Erzeugung der Render-Daten, der Buffer und des Shader-Programms
 - Rendern des Modells

6/24

3D-Modelle

- Box (Spielfeld)
 - Quaderförmig
 - Wände als Ebenen in Hessescher NF $\vec{n} \cdot \vec{x} = d$
 - Koordinaten der Vertices aus den Abstandswerten

3D-Modelle

- Racket (Schläger)
 - Regelmäßiges Polygon / n-Eck
 - N+1 Vertices
 - Erzeugung der Vertices durch
 Berechnung der Koordinaten auf dem Einheitskreis

3D-Modelle

- Ball
 - Erzeugung der Vertices durch Berechnung der Koordinaten auf der Einheitskugel
 - Formeln:

$$x = \sin(\theta) * \cos(\phi)$$
$$y = \sin(\theta) * \sin(\phi)$$
$$z = \cos(\theta)$$

- Winkelkoordinaten (intuitiv):
 - θ bestimmt den Ring

Kamerabewegung

- Komponenten des Systems:
 - Particle-Klasse
 - Position
 - Geschwindigkeit
 - Lebensdauer
 - Größe
 - BallParticleRenderable-Klasse
 - Verwaltung der Partikel (emittieren, aktualisieren, löschen)
 - Rendern aller Partikel

- Instanced Rendering
 - Rendering von mehreren Instanzen desselben Modells mit nur einem Render-Call
 - Anlegen eines Array-Buffers für Model-Matrizen der Partikel in BallParticleRenderable
 - Bei jedem Update Model-Matrizen neu berechnen und an Buffer senden

0	V ₁	V ₂	٧3	٧4	V ₅	V ₆
1	t ₁	t ₂	t ₃	$t_{\scriptscriptstyle{4}}$	t_{5}	t_6
2	M_1	M ₂	• • •			M _n

- Blending
 - Erlaubt es Farben miteinander zu mischen
 - Teil der Fragmentverarbeitung in der Rendering-Pipeline
 - Sich überlagernde Partikel sollen einen leuchtend weißen Bereich bilden

- Tiefentest
 - Transparenz eines Fragments spielt keine Rolle für Tiefentest
 - Lösung: Tiefenpuffer non-writeable schalten

Inhaltsverzeichnis

Worum geht's?

Darstellung der Spielobjekte

Physik

Physik

- Ziel
 - Realistische Ballbewegungen

Nachvollziehbare Reflexion

Ballbewegungen

Gravitationsfaktoren

Ballbewegungen

- Bei jedem Tick:
 - Berechnung des Geschwindigkeitsvektors

$$Beschleunigung = (\frac{1}{Masse} + Gravitation) * Zeit$$

 $Geschwindigkeit_{Neu} = Geschwindigkeit_{Alt} + Beschleunigung$

Berechnung der Neuen Position

 $Position_{Neu} = Position_{Alt} + Geschwindigkeit_{Neu} * Zeit$

Kollisionen und Reflexionen

Berechnung der Abstand zur Ebene

Kollisionen und Reflexionen

- Falls der Ball "hinter" die Ebene gelangt (bei hohen Geschwindigkeiten)
 - => Interpolation der Ballposition

Kollisionen und Reflexionen

• Bei Kollision: Reflexion gemäß Reflexionsgesetz

Inhaltsverzeichnis

Worum geht's?

Darstellung der Spielobjekte

Physik

- Eingabe durch Leap Motion
- Rechte Hand steuert Schläger
- Linke Hand kann Ball zurücksetzen

Rechte Hand

- Steuert Position des Schlägers
- Normalvektor bestimmt Ausrichtung
- Geschwindigkeit wird erfasst

Linke Hand

• Kann mit einer Kreisgeste den Ball zurücksetzen

