Tutorial 1

Pytorch Introduction

About the exercises

1) It is not required to submit by email

However, if you want feedback, feel free to email

2) Next week presenter (?)

Last week's exercise

Make a program that counts the frequency of words in a file

```
create a dictionary counts
                                    create a map to hold counts
open a file
for each line in the file
   split line into words
   for w in words
       if w exists in counts, add 1 to counts[w]
       else set counts[w] = 1
print key, value of counts
```

```
counts = \{\}
filename = "data/00-input.txt"
f = open(filename)
for line in f:
    words = line.split()
    for w in words:
        if w in counts:
            counts[w] += 1
        else:
            counts[w] = 1
for k, v in sorted(counts.items()):
    print(k,v)
```

Question

What is the vocabulary size considering the following sentence?

The book is on the table

Question

What is the vocabulary size considering the following sentence?

The book is on the table The, the \Rightarrow the Vocabulary: {the, book, is, on, table}

When processing texts, we usually need to do some **normalization**.

Last week's exercise

Make a program that counts the frequency of words in a file

 $counts = \{\}$ **create** a dictionary *counts* create a map to hold counts filename = "data/00-input.txt" lowercase **open** a file f = open(filename) for line in f: for each line in the file words = line.lower().split() **split** line into words for w in words: for w in words if w in counts: counts[w] += 1 if w exists in counts, add 1 to counts[w] else: **else** set counts[w] = 1 counts[w] = 1**print** key, value of counts for k, v in sorted(counts.items()): print(k,v)

Pytorch Introduction

Introduction

Introduction

Supervised Learning

Figure 1-1. The supervised learning paradigm, a conceptual framework for learning from labeled input data.

Supervised Learning

Figure 1-2. Observation and target encoding: The targets and observations from Figure 1-1 are represented numerically as vectors, or tensors. This is collectively known as input "encoding."

Means one **1**, and rest **0**s

Words can be represented as **one-hot** vectors

fruit =
$$[0,0,0,0,0,1,0,0]$$

like = $[0,0,0,0,0,0,1,0]$

Vector dimension: number of words in the vocabulary (e.g. 8)

Time flies like an arrow. Fruit flies like a banana.

Time flies like an arrow.
Fruit flies like a banana.

Vocabulary: {an, arrow,banana, flies, fruit, like, time}

"Collapsed" or Binary One-hot representation

"Collapsed" or Binary One-hot representation

TF Representation

- TF: Term Frequency
- TF representation of sentence or document:
 - > Sum of the one-hot representations of its constituent words

TF-IDF Representation

IDF: Inverse Document Frequency

$$IDF(w) = \log \frac{N}{n_w}$$
 Total number of documents

Number of documents containing the word **w**

Common tokens get lower score Rare tokens get higher score

TF-IDF score:

TF-IDF

```
from sklearn.feature extraction.text import TfidfVectorizer
corpus = ['Time flies flies like an arrow.',
          'Fruit flies like a banana.'
tfidf vectorizer = TfidfVectorizer()
tdidf = tfidf vectorizer.fit transform(corpus).toarray()
vocab = one hot vectorizer.get feature names()
sns.heatmap(tdidf, annot=True,
           cbar=False, xticklabels=vocab,
           yticklabels=['Sentence 1','Sentence 2'],
           cmap="YlGnBu")
```


TF-IDF

Common baseline (can be done in unsupervised way)

Sentence similarity, document similarity

Summarization, etc.

Actively used today in production systems

22

Computational Graph

Abstraction that models mathematical expressions

E.g.
$$y = wx + b$$

Can be divided into:

$$z = wx$$
 and $y = z + b$

In Pytorch: implement automatic differentiation for computing gradients during training

Dynamic versus Static Computational Graphs

From: http://phontron.com/class/nn4nlp2020/assets/slides/nn4nlp-01-intro.pdf

Pytorch Basics

Core data structure: Tensor

Tensor: mathematical object holding some multidimensional data

Creating Tensors

```
import torch

def describe(x):
    print("Type: {}".format(x.type()))
    print("Shape/size {}:".format(x.shape))
    print("Values: \n{}".format(x))

describe(torch.Tensor(2,3))
```

Creating randomly initialized tensors

```
describe(torch.rand(2,3))
                           #uniform random dist.
print()
describe(torch.randn(2,3)) #random normal dist. (mean=0, variance=1)
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0.1024, 0.7524, 0.4075],
        [0.7064, 0.8535, 0.9619]])
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[ 0.3324, 0.8341, 0.7928],
        [1.2872, -0.4749, -1.4327]])
```

Creating a filled tensor

```
describe(torch.zeros(2,3)) #tensor of zeros
x = torch.ones(2,3) #tensor of ones
describe(x)
x.fill (5) #filling witg value 5
describe(x)
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0., 0., 0.],
        [0., 0., 0.]1)
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[1., 1., 1.],
        [1., 1., 1.]
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[5., 5., 5.],
        [5., 5., 5.11)
```

Creating and initializing a tensor from lists

Creating and initializing a tensor from numpy

```
import numpy as np
npy = np.random.rand(2,3)
describe(torch.from numpy(npy))
Type: torch.DoubleTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0.4260, 0.1411, 0.9704],
        [0.0330, 0.0276, 0.7927]], dtype=torch.float64)
```

Tensor Types and Size

```
x = torch.FloatTensor([[1,2,3],
                      [4,5,6]]
describe(x)
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[1., 2., 3.],
        [4., 5., 6.]
x = x.long()
describe(x)
Type: torch.LongTensor
Shape/size torch.Size([2, 3]):
Values:
```

tensor([[1, 2, 3],

[4, 5, 6]]

Converts a tensor to long type

Tensor operations: addition

```
x = torch.randn(2,3)
describe(x)
describe(torch.add(x,x))
                                              Two ways to do addition
describe(x+x)____
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[ 0.7481, 1.2792, -0.8766],
        [0.6250, 0.9984, -0.222711)
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[ 1.4963, 2.5583, -1.7532],
       [1.2500, 1.9967, -0.4454]]
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[ 1.4963, 2.5583, -1.7532],
       [1.2500, 1.9967, -0.4454]])
```

Dimension-based tensor operations

```
x = torch.arange(6.)
                                            Same data, but different shape
describe(x)
x = x.view(2,3)
describe(x)
Type: torch.FloatTensor
Shape/size torch.Size([6]):
Values:
tensor([0., 1., 2., 3., 4., 5.])
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0., 1., 2.],
        [3., 4., 5.11)
```

Dimension-based tensor operations

```
x = torch.arange(6.)
                                                     Sum elements on dimension 0 (row)
x = x.view(2,3)
describe(x)
describe(torch.sum(x, dim=0))
describe(torch.sum(x, dim=1))
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0., 1., 2.],
        [3., 4., 5.11)
Type: torch.FloatTensor
Shape/size torch.Size([3]):
                                                  Sum elements on dimension 1 (column)
Values:
tensor([3., 5., 7.])
Type: torch.FloatTensor
Shape/size torch.Size([2]):
Values:
tensor([ 3., 12.])
```

Dimension-based tensor operations

```
x = torch.arange(6.)
x = x.view(2,3)
                                               Dimensions 0 and 1 are swapped
describe(x)
describe(torch.transpose(x, 0, 1))
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0., 1., 2.],
        [3., 4., 5.]
Type: torch.FloatTensor
Shape/size torch.Size([3, 2]):
Values:
tensor([[0., 3.],
        [1., 4.],
        [2., 5.11)
```

Complex indexing: noncontiguous indexing of a tensor

```
x = torch.arange(6.).view(2,3)
describe(x)
indices = torch.LongTensor([0,2])
describe(indices)
describe(torch.index select(x,dim=1,index=indices))
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0., 1., 2.],
        [3., 4., 5.11)
Type: torch.LongTensor
Shape/size torch.Size([2]):
Values:
tensor([0, 2])
Type: torch.FloatTensor
Shape/size torch.Size([2, 2]):
Values:
tensor([[0., 2.],
        [3., 5.11)
```

Concatenating tensors

```
x = torch.arange(6.).view(2,3)
describe(x)
describe(torch.cat([x,x], dim=0))
describe(torch.cat([x,x], dim=1))
describe(torch.stack([x,x]))
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0., 1., 2.],
        [3., 4., 5.]]
Type: torch.FloatTensor
Shape/size torch.Size([4, 3]):
Values:
tensor([[0., 1., 2.],
        [3., 4., 5.],
        [0., 1., 2.],
        [3., 4., 5.]]
Type: torch.FloatTensor
Shape/size torch.Size([2, 6]):
Values:
tensor([[0., 1., 2., 0., 1., 2.],
        [3., 4., 5., 3., 4., 5.11)
Type: torch.FloatTensor
Shape/size torch.Size([2, 2, 3]):
Values:
tensor([[[0., 1., 2.],
        [3., 4., 5.11,
        [[0., 1., 2.],
```

[3., 4., 5.111)

Tensor multiplication

```
x1 = torch.arange(6.).view(2,3)
describe(x1)
x2 = torch.ones(3,2)
x2[:,1] += 1
describe(x2)
describe(torch.mm(x1,x2))
Type: torch.FloatTensor
Shape/size torch.Size([2, 3]):
Values:
tensor([[0., 1., 2.],
        [3., 4., 5.11)
Type: torch.FloatTensor
Shape/size torch.Size([3, 2]):
Values:
tensor([[1., 2.],
        [1., 2.],
        [1., 2.]])
Type: torch.FloatTensor
Shape/size torch.Size([2, 2]):
Values:
tensor([[ 3., 6.],
        [12., 24.]])
```

Creating tensors for gradient bookkeeping

```
x = torch.ones(2,2, requires grad=True)
describe(x)
print(x.grad is None)
print()
y = (x+2)*(x+5) + 3
describe(y)
print(x.grad is None)
print()
z = y.mean()
describe(z)
z.backward()
print(x.grad is None)
Type: torch.FloatTensor
Shape/size torch.Size([2, 2]):
Values:
tensor([[1., 1.],
        [1., 1.]], requires grad=True)
True
Type: torch.FloatTensor
Shape/size torch.Size([2, 2]):
Values:
tensor([[21., 21.],
        [21., 21.]], grad fn=<AddBackward0>)
True
Type: torch.FloatTensor
Shape/size torch.Size([]):
Values:
```

21.0

CUDA Tensors

```
print(torch.cuda.is available())
#device agnostic tensor instantiation
device = torch.device("cuda" if torch.cuda.is available() else "cpu")
print(device)
print()
x = torch.rand(3,3).to(device)
describe(x)
True
cuda
Type: torch.cuda.FloatTensor
Shape/size torch.Size([3, 3]):
Values:
tensor([[0.3205, 0.6094, 0.1437],
        [0.9105, 0.3578, 0.6457],
        [0.3558, 0.8847, 0.1556]], device='cuda:0')
```

Mixing CUDA tensors with CPU-bound errors

```
y = torch.rand(3,3)
x + y
RuntimeError
                                           Traceback (most recent call last)
<ipython-input-52-2de5f9fcdd39> in <module>()
      1 y = torch.rand(3,3)
---> 2 x + y
      4 cpu device = torch.device("cpu")
RuntimeError: expected device cuda: 0 but got device cpu
 SEARCH STACK OVERFLOW
cpu device = torch.device("cpu")
y = y.to(cpu device)
x = x.to(cpu device)
x + y
tensor([[0.9282, 0.6427, 0.9240],
        [1.2185, 0.4185, 1.3111],
        [1.2352, 1.0999, 0.5164]])
```

For next week

Try to practice the examples

Try to practice the exercises

Install spacy.io on your machine

Is there anyone who wants to present next week?