Tutorial 7

STAT3015/4030/7030 Generalised Linear Modelling

The Australian National University

Week 7, 2017

Overview

Question 1

Question 2

3 Question 3

(a) Let Y be the number of iPhone owners out of a random sample of 100 that download an app today.

- (a) Let Y be the number of iPhone owners out of a random sample of 100 that download an app today.
 - Binomial. This is a discrete variable and can be viewed as counting the number of successes/failures in 100 independent trials.

- (a) Let Y be the number of iPhone owners out of a random sample of 100 that download an app today.
 - Binomial. This is a discrete variable and can be viewed as counting the number of successes/failures in 100 independent trials.
- (b) Let Y be the number of babies born on a single day in Canberra.

- (a) Let Y be the number of iPhone owners out of a random sample of 100 that download an app today.
 - Binomial. This is a discrete variable and can be viewed as counting the number of successes/failures in 100 independent trials.
- (b) Let Y be the number of babies born on a single day in Canberra.
 - Poisson. This is a discrete variable counting the number of events in a fixed interval.

(c) Let Y be the initial weight (in kilograms) of a randomly selected male enrolling in the Biggest Loser diet.

- (c) Let Y be the initial weight (in kilograms) of a randomly selected male enrolling in the Biggest Loser diet.
 - Normal. Reasonable to think that weights are symmetrically distributed around a mean and more likely to be close to that mean than far from it. Distribution could be skewed as well.

- (c) Let Y be the initial weight (in kilograms) of a randomly selected male enrolling in the Biggest Loser diet.
 - Normal. Reasonable to think that weights are symmetrically distributed around a mean and more likely to be close to that mean than far from it. Distribution could be skewed as well.
- (d) Let Y be the initial weight (in kilograms) of a randomly selected person on the Biggest Loser diet.

- (c) Let Y be the initial weight (in kilograms) of a randomly selected male enrolling in the Biggest Loser diet.
 - Normal. Reasonable to think that weights are symmetrically distributed around a mean and more likely to be close to that mean than far from it. Distribution could be skewed as well.
- (d) Let Y be the initial weight (in kilograms) of a randomly selected person on the Biggest Loser diet.
 - Other. Would expect two modes, one for men and one for women.

(e) Let Y be 1 if a randomly selected person who saw the movie The Wolverine liked it, and 0 if not.

- (e) Let Y be 1 if a randomly selected person who saw the movie The Wolverine liked it, and 0 if not.
 - Bernoulli. *Y* is either 0 or 1.

- (e) Let Y be 1 if a randomly selected person who saw the movie The Wolverine liked it, and 0 if not.
 - Bernoulli. Y is either 0 or 1.
- (f) Let Y be 1 if you flip a coin and it lands tails, and 2 if it lands heads.

- (e) Let Y be 1 if a randomly selected person who saw the movie The Wolverine liked it, and 0 if not.
 - Bernoulli. Y is either 0 or 1.
- (f) Let Y be 1 if you flip a coin and it lands tails, and 2 if it lands heads.
 - Other. Y follows a Bernoulli random variable plus a constant of 1.

(a) Suppose a probability distribution has an unknown mean μ that is restricted to be greater than 1. Why is $g(\mu) = \log(\mu)$ NOT a sensible link function? What would be a more reasonable link function?

(a) Suppose a probability distribution has an unknown mean μ that is restricted to be greater than 1. Why is $g(\mu) = \log(\mu)$ NOT a sensible link function? What would be a more reasonable link function?

If μ is always greater than 1, then $g(\mu) = \log(\mu) > 0$. This is not sensible because the range of $X\beta$ is the entire real line and we would like the ranges of $g(\mu)$ and $X\beta$ to match up.

A more reasonable link function would be $log(\mu - 1)$.

(b) Suppose that a probability distribution has an unknown mean μ that is restricted to be between -1 and 1. What would be a reasonable link function for μ ?

(b) Suppose that a probability distribution has an unknown mean μ that is restricted to be between -1 and 1. What would be a reasonable link function for μ ?

A reasonable link function would be $g(\mu) = \operatorname{logit}\left(\frac{\mu+1}{2}\right)$

Delta Method

The delta method is a statistical approach to derive an approximate probability distribution for a function of an asymptotically normal estimator using the Taylor series approximation.

If a sequence of random variables Y_1, \dots, Y_n satisfying

$$\sqrt{n}(Y_i - \theta) \stackrel{D}{\rightarrow} \mathcal{N}(0, \sigma^2),$$

where θ and σ^2 are finite valued constants, then

$$\sqrt{n}(g(Y_i)-g(\theta))\stackrel{D}{\to} \mathcal{N}(0,[g'(\theta)]^2\sigma^2).$$

Confidence interval for $g^{-1}(X^T\beta)$

When we want to calculate a 95% confidence interval for a function of the parameters β , say $\mu = g^{-1}(X^T\beta)$, we can firstly compute a confidence interval for $X^T\beta$ as $\{L,U\}$, and then apply the function $g^{-1}()$ to both bounds L and U.

The desired confidence interval is given by $\{g^{-1}(L), g^{-1}(U)\}$. Part (c) of Question 2 involves this method.

(Proof is on Page 41 of the lecture brick on Wattle.)

A Binomial example

Example 1 of the lecture notes considers anaesthetic data where Y represents proportions of patients responding to the stimulus within each group. With the fact that Y follows a Binomial(n,p)/n=n distribution and the table on Page 33:

Distribution	$E(Y) = \mu$	Var(Y)	$b(\mu)$	$V(\mu)$	ϕ
$Normal(\mu, \sigma^2)$	μ	σ^2	μ	1	σ^2
Binomial(n, p)	np	np(1-p)	$\log\left(\frac{\mu}{n-\mu}\right)$	$\frac{\mu(n-\mu)}{n}$	1
Binomial(n, p)/s	n p	$\frac{p(1-p)}{n}$	$\log\left(\frac{\mu}{1-\mu}\right)$	$\mu(1-\mu)$	$\frac{1}{n}$
$Poisson(\lambda)$	λ	λ	$\log(\mu)$	μ	1
$Poisson(\lambda T)/T$	λ	$rac{\lambda}{T}$	$\log(\mu)$	μ	$\frac{1}{T}$
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$-\mu^{-1}$	μ^2	$\frac{1}{\alpha}$

we want to find Var(g(Y)).

A Binomial example (cont.)

- We have assumed that $g(\mu) = X^T \beta$ and want to estimate β . However, we don't know the population mean μ .
- We have a unbiased estimator for μ , namely the sample mean (denoted by Y here).
- We can use the GLM technique, regress g(Y) on observed covariates; OR, use a weighted least-squares model.

Following the Delta Method, we have

$$Var\{g(Y)\} \approx Var(Y)g'(\mu)^2 = \phi Var(\mu)g'(\mu)^2$$

= $\frac{1}{n(\mu(1-\mu))}$.

(calculation left as your exercise)

Iteratively Re-weighted Least-Squares (IRLS) algorithm

We apply the IRLS algorithm as follows:

- ② Apply a weight according to $\omega_i^2 = 1/Var(g(Y) \approx n(\mu(1-\mu))$
- ullet Perform a weighted regression of g(Y) on covariates to obtain estimates \hat{eta}
- **3** Calculate new fitted values $\hat{Y} = g^{-1}(X^T\hat{\beta})$ and repeat steps 2 and 3 till successive values of the parameter estimates (or equivalently values of the weights) do not change substantially.