МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий

ОТЧЕТ

по лабораторной работе №3 «Файловая система FAT» по дисциплине

«Принципы и методы организации системных

программных средств»

РУКОВОДИТЕЛЬ:	
	Викулова Е.Н
(подпись)	(фамилия, и.,о.)
СТУДЕНТ:	
	Сухоруков В.А.
(подпись)	(фамилия, и.,о.)
	<u>19-B-2</u>
	(шифр группы)
Работа защищена	«»
С оценкой	

Оглавление

Цель работы	3
Теория	3
WinHex	3
Описание файловой системы <i>FAT</i>	4
Ход работы	6
Анализ информации	6
Информация о диске	6
Сектор загрузки	7
FAT таблицы	7
Корневой каталог	9
Область данных	11
Изменение файла с помощью WinHex	12
Изменение имени файла	12
«Удаление» и «восстановление» файла	13
Удаление кластеров из файла	15
Вывод	16

Цель работы

- 1. Выбрать hex-редактор для работы с файловой системой FAT (exFAT), ознакомиться с его функциональными возможностями.
- 2. Подготовить носитель с файловой системой *FAT* (USB-флэш-накопитель, внешний диск), или создать FAT раздел на диске.

Используя выбранный *hex*-редактор, уметь выполнять следующие действия:

- **Ф** работать с диском на физическом (c,h,s) и логическом (LBA) уровнях;
- **•** находить и читать:
 - ✓ данные загрузочной области:
 - \checkmark область FAT;
 - ✓ данные корневого каталога:
 - ✓ данные подкаталогов;
 - ✓ содержимое файлов.
- ❖ изменять имя, размер и атрибуты файла;
- ❖ создавать, удалять и восстанавливать файлы;
- ◆ объединять файлы;
- удалять кластеры из файла.

Теория

WinHex

WinHex - универсальный HEX-редактор. Как редактор дисков позволяет работать с жесткими дисками, дискетами, CD- ROM, DVD, ZIP, Smart Media, Compact Flash memory cards и прочими носителями, при этом поддерживается FAT12, FAT16, FAT32, NTFS, CDFS.

Возможности:

- Редактор дисков для работы с жёсткими дисками, дискетами, CD/DVD, Zip, SmartMedia, Compact Flash и прочими устройствами.
 - ❖ Встроенный интерпретатор для динамических дисков и RAID систем.
 - ***** Клонирование дисков.
- ❖ Надёжное удаление конфиденциальных данных без возможности восстановления.
- ❖ Разнообразные методы для восстановления потерянных или удалённых данных.
 - ❖ Поддержка символов ANSI, ASCII, EBCDIC.
- Редактор оперативной памяти, обеспечивающий доступ к физической и виртуальной памяти других процессов.
 - Анализ, объединение, сравнение, конвертирование файлов.
 - ❖ Гибкий и многофункциональный поиск с функциями замены.
- ❖ Конкатенация и разделение файлов, объединение и разделение на четные и нечетные байты.
 - Поддержка файлов, размер которых превышает 4 GB.

Описание файловой системы FAT

В файловой системе FAT дисковое пространство логического раздела делится на две области — системную и область данных. Системная область создается и инициализируется при форматировании, а впоследствии обновляется при манипулировании файловой структурой. Системная область файловых систем FAT состоит из следующих компонентов:

- ❖ загрузочный сектор (boot);
- ❖ таблицы размещения файлов (FAT 1 и FAT 2);
- ❖ область корневого каталога(root).

Область данных логического диска содержит файлы и каталоги, подчиненные корневому, и разделена на участки одинакового размера — кластеры. Кластер может состоять из одного или нескольких последовательно расположенных на диске секторов. Размер кластера зависит от типа используемой файловой системы (FAT12, FAT16, FAT32) и объема логического диска.

Рис. 1 Структура файловой системы FAT

Загрузочный сектор - сектор, в котором содержится множество данных разного размера и формата. Чтобы найти нужные данные необходимо точное описание структуры загрузочного сектора.

Смещение	Размер, байт	Описание
0x00	3	Безусловный переход (jmp) на загрузочный код
0x03	8	Идентификатор фирмы-изготовителя
0x0B	2	Число байт в секторе (512)
0x0D	1	Число секторов в кластере
0x0E	2	Число резервных секторов в резервной области раздела, начиная с первого сектора раздела
0x10	1	Число таблиц (копий) FAT
0x11	2	Для FAT12/FAT16 - количество 32-байтных дескрипторов файлов в корневом каталоге; для FAT32 это поле имеет значение 0
0x13	2	Общее число секторов в разделе; если данное поле содержит 0, то число секторов задается полем по смещению 0х20
0x15	1	Тип носителя. Для жесткого диска имеет значение 0xF8; для гибкого диска (2 стороны, 18 секторов на дорожке) – 0xF0
0x16	2	Для FAT12/FAT16 это поле содержит количество секторов, занимаемых одной копией FAT; для FAT32 это поле имеет значение 0
0x18	2	Число секторов на дорожке (для прерывания 0x13)
0x1A	2	Число рабочих поверхностей (для прерывания 0x13)
0x1C	4	Число скрытых секторов перед разделом
0x20	4	Общее число секторов в разделе. Поле используется, если в разделе свыше 65535 секторов, в противном случае поле содержит 0.

В таблице размещения файлов хранится информация о кластерах логического диска. Каждому кластеру соответствует элемент таблицы FAT, содержащий информацию о том, свободен данный кластер или занят данными файла. Если кластер занят под файл, то в соответствующем элементе таблицы размещения файлов указывается адрес кластера, содержащего следующую часть файла. Номер начального кластера, занятого файлом, хранится в элементе каталога, содержащего запись об этом файле. Последний элемент списка кластеров содержит признак конца файла (EOF – End Of File). Первые два элемента FAT являются резервными.

Файловая система FAT свободное всегда заполняет место на диске последовательно от начала к концу. При создании нового файла или увеличении уже существующего она ищет самый первый свободный кластер в таблице размещения файлов. Если в процессе работы одни файлы были удалены, а другие изменились в размере, то появляющиеся в результате пустые кластеры будут рассеяны по диску. Если кластеры, содержащие данные файла, расположены не подряд, ТО файл оказывается фрагментированным.

За таблицами размещения файлов следует корневой каталог. Каждому файлу и подкаталогу в корневом каталоге соответствует 32-байтный элемент каталога (directory entry), содержащий имя файла, его атрибуты (архивный, скрытый, системный и «только для чтения»), дату и время создания (или внесения в него последних изменений), а также прочую информацию. Для файловых систем FAT12 и FAT16 положение корневого каталога на разделе и его размер жестко зафиксированы. В FAT32 корневой каталог может быть расположен в любом месте области данных раздела и иметь произвольный размер.

Ход работы

Анализ информации

Информация о диске

Откроем USB-флэш-накопитель программой WinHex. Программа отображает данные о накопителе: имя диска, тип файловой системы, количество свободного и занятого пространства на диске.

	[unregistered]
Drive F:	100% free
File system:	FAT32
Volume label:	SUKHORUKOV
Default Edit Mode	
State:	original
Undo level:	0
Undo reverses:	n/a
Alloc. of visible drive s	pace
Cluster No.:	n/a
	Boot sector
Snapshot taken	3 min. ago, FAT 1
Logical sector No.:	0
Physical sector No.:	256
Used space:	28,0 KB
	28 672 bytes
Free space:	3,8 GB
	4 043 149 312 bytes
Total capacity:	3,8 GB
	4 051 566 592 bytes
Bytes per cluster:	4 096
Free clusters:	987 097
Total clusters:	987 104
Bytes per sector:	512
Usable sectors:	7 896 832
First data sector:	16384

Сектор загрузки

Создадим на флешке файл и посмотрим на состояние системной области и области данных. Первым идёт сектор загрузки. Разберем что в нем есть.

Найдём адрес, по которому находится первая FAT таблица. Его можно узнать по числу зарезервированных секторов.

- 1) 3C0h=960d
- 2) 960d*512d=491520d=78000h

FAT таблицы

Проверить расчёты можно, перейдя в контекстном меню по адресу таблицы FAT1.

Таблица FAT содержит информацию о кластерах, которые могут быть свободными или заняты файлами. Первые два кластера - нулевой и первый - зарезервированы. Все остальные могут быть использованы для хранения данных.

Во 2,3,4,5 кластерах в моём случае хранится служебная папка — System Volume Information, которая не удаляется даже при полном форматировании флешки. По информации из Интернета эта папка создаётся автоматически на накопителях, подключенных к ПК под управлением ОС Windows 10 и Windows 8. В ней хранятся точки восстановления диска, базы данных службы индексирования, уникальный идентификатор для накопителя, используемый Windows.

Интересуемый файл - A. S. Pushkin. Eugene Onegin.txt хранится в 6, 7 ,8 кластерах, что можно увидеть в таблице FAT.

Раздел FAT2 находится по смещению 43C000h и содержит копию информации из FAT1.

Offset																				^
0043C000	F8	FF	FF	0F	FF	0F	FF	FF	FF	0F	<mark>⊘</mark> ŸŸ Ÿij	? <u>₽₽₽₽₽</u>	ŸŸŸŸ							
0043C010	FF	FF	FF	0F	FF	FF	FF	0F	07	00	00	00	08	00	00	00	ŸŸŸ Ÿ <u>`</u>	ŻΫ		
0043C020	FF	FF	FF	0F	00	00	00	00	00	00	00	00	00	00	00	00	ŸŸŸ			

Корневой каталог

Рассмотрим раздел Root directory и информацию о файле в нём.

Раздел содержит множество записей о файлах по 32 байта каждая (для FAT16, для FAT 32 присутствует раздел с полным название файла/директории). Основные поля:

Смещение	Длина	Значение
(байт)	(байт)	
00h	8	Имя файла
08h	3	Расширение файла
0Bh	1	Байт атрибутов файла
16h	2	Время создания
18h	2	Дата создания
1Ah	2	№ начального кластера
1Ch	4	Размер файла в байтах

- 1. **Имя файла** ASPUSH~1
- 2. **Расширение файла** TXT
- 3. Атрибуты файла

Формат байта атрибутов

№ бита	7	6	5	4	3	2	1	0
Значение	-	-	A	D	V	S	Н	R

- ❖ А «архивный»
- ❖ D «подкаталог»
- \bullet V «метка тома»
- ❖ S «системный»
- ♦ Н «скрытый»
- ❖ R «только для чтения»

20h = 00100000b, переводим в атрибуты: выставлен бит с номером 5, считая от конца: это значит, что файл "Архивный".

4. Время создания файла

7189h=1110 001100 01001b

Первые 4 бита отвечают за часы, следующие 6 за минуты, последние 5 за секунды.

1110b=14d - 14 часов

1100b=12d - 12 минут

1001b=9d – 18 секунд (9*2)

5. Дата создания

547Eh=101010 0011 11110b

Первые 6 бит отвечают за год, следующие 4 за месяц, последние 5 за число.

101010b=42d – 2022 год (1980+42)

11b=3d - 3 месяц

11110b=30d - 30 число

6. *№ Начального кластера* – 6

7. Размер файла в байтах

2C82h=11394d байт

Область данных

В области данных можно увидеть содержание битов файла и их расшифровку. Выберем тип кодировки UTF-8 для того, чтобы можно было увидеть кириллицу.

Изменение файла с помощью WinHex

Изменение имени файла

Для изменения имени файла перейдём в Root directory и поменяем байты, отвечающие за название.

До изменения:

После изменения:

«Удаление» и «восстановление» файла

Для удаления запишем 0 в первый байт имени файла.

До изменения:

После изменения:

После изменения на ненулевое и не на исходное значение:

Имя файла заменилось на сокращённое имя, которое используется для обозначения удалённых файлов.

Восстановим файл, вернув исходное значение.

														l Eug Óe
														ne On eg
008000C0	01 41	00 32	00 2	00	53	00	33	00	0F	00	D2	20	00	A 2 S 3 Ò
008000D0	50 00	75 00	73 0	68	00	6B	00	00	00	69	00	6E	00	Pushk in
008000E0	41 53	50 55	53 4	3 7E	31	54	58	54	20	00	84	93	53	ASPUSH~1TXT ""S
008000F0	81 54	81 54	00 0	89	71	7E	54	06	00	82	2C	00	00	T T %q~T ,,

Удаление кластеров из файла

A. S. Pushkin. Eugene Onegin.txt хранится в 6, 7, 8 кластерах. Попробуем удалить 8 кластер из файла. Для этого запишем в 7 кластер значение окончания файла в обе FAT таблицы; в 8 кластер запишем значение пустого кластера.

До изменения:

После применения изменений файл перестал открываться :(

После обратного изменения файл «чинится».

Вывод

В ходе лабораторной работы была изучена файловая система FAT. Были получены полезные практические навыки работы с Нех редактором.