ML – Regression and Cost Function

draft

House sizes and prices

Regression model Predicts numbers Supervised learning model Data has "right answers"

nodel Classification model

ers" Predicts categories

Small number of possible outputs

Terminology

Training Data used to train the model set:

315

178

size in feet² price in \$1000's

(1) 2104
$$400$$
(2) 1416 232

$$(\chi^{(1)}, \gamma^{(1)}) = (2104, 400)$$

$$\chi^{(2)} = 1416$$

$$\chi^{(2)} = 1416$$
 $\chi^{(2)} + \chi^2$ not exponent

m = 47

Notation:

$$m = number of training examples$$

$$(x, y) = \text{single training example}$$

$$(x^{(i)}, y^{(i)})$$

 $(x^{(i)}, y^{(i)}) = i^{th}$ training example index $(1^{st}, 2^{nd}, 3^{rd} ...)$

How to represent *f*?

How to represent f?

$$f_{w,b}(x) = wx + b$$

$$f(x)$$

Linear regression with one variable.

size

Univariate linear regression.

one variable

Cost Function

How well the model is doing

Training set

features size in feet $^2(x)$	targets price \$1000's (y)
2104	460
1416	232
1534	315
852	178

Model: $f_{w,b}(x) = wx + b$

w,b: parameters

coefficients

weights

What do w, b do?

ANS: We use a cost function to measure how close is Type equation here.y-hat to y.

$$\hat{\mathbf{y}}^{(i)} = f_{w,b}(\mathbf{x}^{(i)})$$

$$f_{w,b}(\mathbf{x}^{(i)}) = w\mathbf{x}^{(i)} + b$$

Find
$$w, b$$
:
 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

$y = \begin{pmatrix} x^{(i)}, y^{(i)} \\ y^{(i)} \\ x \end{pmatrix} \times x$ $x = \begin{pmatrix} x^{(i)}, y^{(i)} \\ x \end{pmatrix} \times x$ $x = \begin{pmatrix} x^{(i)}, y^{(i)} \\ x \end{pmatrix} \times x$

$$\left(\begin{array}{cc} \hat{y}^{(i)} - y^{(i)} \end{array}\right)^2$$

$$\hat{\mathbf{y}}^{(i)} = f_{w,b}(\mathbf{x}^{(i)})$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Find w, b: $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

$$\sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$
error

m = number of training examples

$$\hat{\mathbf{y}}^{(i)} = f_{w,b}(\mathbf{x}^{(i)})$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

$y = \begin{pmatrix} x^{(i)}, y^{(i)} \\ y^{(i)} \\ y^{(i)} \\ x \end{pmatrix}$

Cost function

$$\frac{1}{m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$
error

m = number of training examples

$$\hat{\mathbf{y}}^{(i)} = f_{w,b}(\mathbf{x}^{(i)})$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

$y = \begin{cases} x^{(i)}, y^{(i)} \\ y^{(i)} \\ y^{(i)} \\ x \\ x \end{cases}$

$$\hat{\mathbf{y}}^{(i)} = f_{w,b}(\mathbf{x}^{(i)})$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Cost function: Squared error cost function

$$\frac{J(w,b)}{J(w,b)} = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$
error

m = number of training examples

There could be other cost function in different ML Algo, however, this one is the most common one.

Find w, b: $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

$y = \begin{cases} x^{(i)}, y^{(i)} \\ y^{(i)} \\ x \\ x \end{cases}$

$$\hat{\mathbf{y}}^{(i)} = f_{w,b}(\mathbf{x}^{(i)}) \leftarrow$$

$$f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

Cost function: Squared error cost function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right)^2$$
error

m = number of training examples

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^{2}$$

Find w, b:

 $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$.

model:

$$f_{w,b}(x) = wx + b$$

parameters:

w, b

cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal:

 $\underset{w,b}{\text{minimize}} J(w,b)$

model:

$$f_{w,b}(x) = wx + b$$

parameters:

w, b

cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal:

 $\underset{w,b}{\operatorname{minimize}} J(w,b)$

simplified

$$f_w(x) = \underline{wx}$$
 $b = \emptyset$

w

$$\underline{J(w)} = \frac{1}{2m} \sum_{i=1}^{m} (\underline{f_w(x^{(i)})} - y^{(i)})^2$$

$$\min_{w} \underline{J(w)}$$

$$w \times^{(i)}$$

model:

$$f_{w,b}(x) = wx + b$$

parameters:

w, b

cost function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal:

 $\underset{w,b}{\operatorname{minimize}} J(w,b)$

simplified

J(w)
(function of w)
parameter

$f_w(x)$ (for fixed w, function of x) input y= f(X) = y

J(w)

(function of w) parameter

$$(wx^{(i)} - y^{(i)})^2 = \frac{1}{2m}(0^2 + 0^2 + 0^2)$$

Lets see how w = 0.5 looks like

Lets see how w = 0 looks like

Lets see how w = -0.5 looks like = very high cost!

We can put different value of w and find the cost function

How to choose a w such that it minimizes the cost???

goal of linear regression:

 $\min_{w} \operatorname{imize} J(w)$

general case:

 $\underset{w,b}{\operatorname{minimize}} J(w,b)$

choose w to minimize J(w)