Introduction to Noncommutative Geometry

Xinyu Xiang

Jul. 2025

1 Day I: Banach Space, Hilbert Space and C-star Algebra

1.1 Banach Space and Hilbert Space

Hilbert Space $\mathcal{H} \longleftrightarrow$ Banach Space \mathcal{B} + Norm from Inner Product \longleftrightarrow Vector Space + Inner Product + Complete Norm,

where one have unique inner product \langle , \rangle from the norm $\| \|$

$$\langle \phi, \psi \rangle =$$

1.2 C-star Algebra

Definition 1.1 (Algebra). An algebra A over a field \mathbb{F} is a vector space over \mathbb{F} equipped with a bilinear product $A \times A \to A$, denoted by $a \cdot b$ or simply ab.

Definition 1.2 (Banach Algebra). A Banach algebra is an algebra A endowed with a norm $\|\cdot\|$ such that

$$||ab|| \leq ||a|| ||b||, \quad \forall a, b \in \mathcal{A}.$$

Definition 1.3 (\mathbb{C}^* Algebra). \mathbb{C}^* algebra \longleftrightarrow Banach algebra over $\mathbb{C} + \forall x \in \mathbb{C}^*$, $\phi : x \mapsto x^*$.

Example 1.1 (Matrix).

Example 1.2 (Continues Linear Operator over Hilbert Space).