Programação Funcional

Exame 618r

25 de Junho de 2018

 $\mathrm{DCC}/\mathrm{FCUP}$

Nome: _____

Nº mecanográfico: ___

Duração: 2h + 30m tolerância.

Este exame contém 7 questões e 4 páginas. Responda às questões no espaço marcado no enunciado. Pode usar funções auxiliares e/ou do prelúdio-padrão de Haskell. Nas questões 2 a 6, indique sempre o tipo da função definida.

- 1. (30%) Responda a cada uma das seguintes questões, indicando **apenas** o resultado de cada expressão.
 - (a) length ([]:[1,2]:[]:[[]]) = _____
- (b) tail(1:(5:(4:(3:[])))) = _____
- (c) (sum . map length) [[1,2,3],[4,5,6],[]] = _____
- (d) $[(x,y)|x \leftarrow [0..4], y \leftarrow [x..4], odd (x+y)] = ______$
- (e) takeWhile (<100) (map (x-x*x) [1,3..]) = ______
- (f) foldr (-) 10 [1,3..7] = _____
- (g) Defina a seguinte lista em compreensão:

```
[(-2,1),(4,-3),(-6,7),(8,-15),(-10,31),\ldots] =
```

(h) Considere a seguinte definição em Haskell:

```
f [x] = 1
f [x,y] = x
f (x:y:xs) = (x*y) + f xs
```

A avaliação da expressão f [7,8,3,4] tem como resultado:

- (i) Indique um tipo admissível para a função f definida como (f xs = reverse xs == xs):
- (j) Indique o tipo mais geral de [(3==),(<1)]:
- (k) Considere as seguintes definições:

```
data Arv = ???
f:: Arv -> [Int]
f Folha = []
f (No 1 v r) = f 1 ++ [v] ++ f r
```

Complete a definição do tipo Arv, para que a função f esteja bem definida:

(l) Considerando que until :: (a -> Bool) -> (a -> a) -> a -> a, qual o tipo principal de map (until (>=100) (3*))?

empa	(15%) Considere uma base de dados de estatísticas de futebol representada pelo tipo cring, Int, Int, Int)] e que armazena, para cada equipa, o seu nome, número de vitórias, ates e derrotas. Responda às seguintes questões utilizando funções de ordem superior (isto é, usar recursividade explícita nem listas por compreensão).
(a)	Escreva uma função pontuação que dada uma base de dados no formato acima, devolve uma lista das equipas e respectivos pontos acumulados (recorde que uma vitória corresponde a 3 pontos, um empate a 1 ponto e uma derrota a 0 pontos).
(b)	Escreva a função njogos que dado um inteiro positivo n e uma base de dados, verifica que todas as equipas efectuaram o mesmo número n de jogos.
núm	5%) Escreva uma função crescente que lê números do teclado, um por linha e enquanto esses eros formarem uma sequência crescente. No final deverá escrever no monitor o comprimento equência crescente que foi lida.
•	10%) Defina recursivamente uma função maisvezes que produza a seguinte lista infinita: 8,6,8,16,18,36,38,76,].

5. (1	15%) Representamos as arestas de um grafo dirigido como uma lista de pares da forma (a,b).
(a)	Um caminho pode ser definido como uma sequência de arestas $(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n)$. Defina recursivamente uma função caminho, que dada uma lista as de arestas, determina se esta representa um caminho válido.
(b)	Usando ordem-superior defina uma função caminho G, que dado um caminho ps e uma lista as de arestas representando um grafo dirigido, verifica se ps é um caminho no grafo as.
•	15%) Considere a seguinte definição de tipo de dados ArvC a para árvores binárias: ArvC a = Vazia No a Int (ArvC a) (ArvC a)
(a)	Defina a função $\mathtt{nelem},$ que calcula o número total de nós internos de uma dada árvore do tipo \mathtt{ArvC} a.
(b)	Defina uma função update, que dada uma árvore qualquer do tipo ArvC a, retorna uma árvore do mesmo tipo onde o valor adicional do tipo inteiro indica o número total de nós da subárvore com raiz nesse nó. A função não deve percorrer cada sub-árvore mais do que uma vez, nem usar a função nelem. Sugestão: defina a função eElem que, dada uma árvore com esta propriedade, calcula o número de nós internos, sem percorrer recursivamente a árvore.

	(apenas) a uma das seguintes alineas, usando indução matemática. Considerando as funções definidas na questão anterior, mostre que, para qualquer árvore t
(b)	do tipo ArvC a, nelem t = nelem (update t). Considerando as definições das funções map e foldr dadas nas aulas, mostre que para quaisquer f e xs: map f xs = foldr (\x xs -> f x:xs) [].