Curvas / Superfícies

Frederico Damasceno Bortoloti

Adaptado de:

Donghoon Young

Cláudio Esperança

Paulo Roma Cavalcanti

Curvas

^{*} D.F. Rogers, J. A. Adams, Mathematical elements for computer graphics, 2nd ed.

Representação analítica

- Não paramétrica e paramétrica
- Precisão sobre representação de ponto
- Armazenamento compacto
 - Centro do círculo e raio vs. pontos
- Ponto intermediário
 - Quaisquer pontos sobre a curva podem ser calculados
- Mais fácil gerar desenhos
- Mais fácil mudar a curvatura

Representação analítica de curva definida por ponto

- Interpolação
 - Analiticamente definindo uma curva a partir de um conjunto de pontos conhecido
- Ajustada
 - Uma curva que passa por todos os pontos conhecidos
- Satisfatória
 - Uma curva que passa perto de pontos conhecidos

Não paramétrica vs paramétrica

- Classificação matemática
- Não paramétrica
 - Explícita y = f(x)
 - Implícita f(x, y) = 0
- Equação implícita de segundo grau geral

$$ax^2 + b2xy + cy^2 + 2dx + 2cy + f = 0$$

Representação implícita

- Curva em 2D: f(x,y) = 0
 - Linha: ax + by + c = 0
 - Círculo: $x^2 + y^2 r^2 = 0$
- Superfície em 3D: f(x,y,z) = 0
 - Plano: ax + by + cz + d = 0
 - Esfera: $x^2 + y^2 + z^2 r^2 = 0$

Curvas não paramétricas

- Linha
- Círculo
- Parábola
- Elipse
- Hipérbole

Curvas paramétricas

- Pontos sobre uma curva são representados com uma função de um único parâmetro
 - x = f(u), y = g(u), z = h(u)
 - u : variável paramétrica
- Representação paramétrica de uma linha reta

Spline

 DUCKS SPRINGING A LOFTING BATTEN FOR A HACKER RUNABOUT Courtesy J.D. Ball, NW School of WoodenBoat.

Curvas cúbicas paramétricas

- Spline matemática
 - Foi definida usando polinômios cúbicos
 - Equação de Euler para dobrar momento ao longo do comprimento do feixe (spline)
- Polinômios Cúbicos
 - $-f(u) = a_x u^3 + b_x u^2 + c_x u + d_x$
 - $-u: (0 \le u \le 1)$

Especificando curvas

- Pontos de Controle
 - Um conjunto de pontos que influenciam a forma da curva
- Nós
 - Pontos de controle que estão sobre a curva
- Interpolando Splines
 - Curvas que passam através dos pontos de controle (nós)
- Aproximando Splines
 - Pontos de controle meramente influenciam a forma

Continuidade

- Duas ou mais curvas nos nós (conectando pontos) para formar uma curva contínua
- Tipos de continuidade
 - Continuidade de ponto
 - Continuidade de tangente
 - Continuidade de curvatura

Curvas de Bezier

- Desenvolvidas por Pierre Bezier para descrever o desenho de curvas e superfícies de forma livre
- Polígono definidor
- Primeiro e último ponto
- Vetor tangente

Propriedades de Curva de Bézier

- Continuidade infinita (todas as derivadas são contínuas)
- O grau da curva (do polinômio) é dado pelo número de pontos do polígono de controle menos 1
- A curva de Bézier está contida no fecho convexo do polígono de controle
- A curva interpola o primeiro e último ponto do polígono de controle

Propriedades de Curva de Bézier

- As tangentes à curva em p₀ e p_n têm a direção dos segmentos de reta p₀p₁ e p_{n-1}p_n, respectivamente
 - Para cúbicas, as derivadas são $3(\mathbf{p}_1 \mathbf{p}_0)$ e $3(\mathbf{p}_2 \mathbf{p}_3)$
- Transformar os pontos de controle (transf. afim) e desenhar a curva é equivalente a desenhar a curva transformada

Curvas de Hermite

- Ao invés de modelar a curva a partir de um polígono de controle (Bézier), especifica-se pontos de controle e vetores tangentes nesses pontos
- Vantagem: é fácil emendar várias curvas bastando especificar tangentes iguais nos pontos de emenda
- Exemplos (cúbicas):

Curvas de Bezier

Curvas de Bézier: 1. linear; 2. quadrática; 3. cúbica; 4. quártica.

Curvas Longas

- Curvas Bézier com k pontos de controle são de grau k – 1
- Curvas de grau alto são difíceis de desenhar
 - Complexas
 - Sujeitas a erros de precisão
- Normalmente, queremos que pontos de controle tenham efeito local
 - Em curvas Bézier, todos os pontos de controle têm efeito global
- Solução:
 - Emendar curvas polinomiais de grau baixo
 - Relaxar condições de continuidade

Emendando Curvas Bézier

- Continuidade C⁰: Último ponto da primeira = primeiro ponto da segunda
- Continuidade C¹: C⁰ e segmento p₂p₃ da primeira com mesma direção e comprimento que o segmento p₀p₁ da segunda

Splines

- A base de Bézier não é própria para a modelagem de curvas longas
 - Bézier única: suporte não local
 - Trechos emendados: restrições não são naturais
- Base alternativa: B-Splines
 - Nome vem de um instrumento usado por desenhistas
 - Modelagem por polígonos de controle sem restrições adicionais
 - Suporte local
 - Alteração de um vértice afeta curva apenas na vizinhança
 - Existem muitos tipos de Splines
 - Se os nós estão equidistantemente distribuídos a spline é uniforme, caso contrário é não-uniforme.
 - Uma B-spline uniforme de grau d tem continuidade Cd-1

Curvas B-Spline

 Uma generalização da curva de Bezier

 Pontos de controle adicionais para nó permitem mudanças locais às curvas

Curvas Rational B-Spline

- Provê uma única forma matemática precisa capaz de representar as formas analíticas comuns
- Linhas, planos, curvas cônicas incluindo círculos, curvas de forma livre, superfícies quádricas e esculpidas

NURBS

- Non-Uniform Rational B-Spline
- O peso dos pontos de controle é a diferença

Superfícies

Duas abordagens

Coons

 Criar uma superfície matemática de dados conhecidos

Bezier

Criar uma superfície matemática ab initio

Cohen

 Desenho geral de superfície mostrando um misto das abordagens de Coons e Bezier

Superfície de revolução

 Superfície criada pela rotação de uma curva sobre um plano em torno de uma linha reta (o eixo de rotação) que está sobre o mesmo plano.

Superfície por caminho

 Superfície criada atravessando uma curva ao longo de um caminho no espaço

Superfície quádrica

• Superfície de uma equação de segundo grau x^2 y^2 z^2 Cartesianas tridimensionais $\pm \frac{x^2}{a^2} \pm \frac{y^2}{b^2} \pm \frac{z^2}{a^2} = 1$

Superfícies bilineares

 Interpolação linear entre quatro pontos que não estão no mesmo plano

Superfície regrada

 Contruída juntando 2 curvas por linhas retas entre pontos

Superfície Desenvolvível

 Uma superfície com uma métrica que pode ser achatada sobre un plano sem distorção (i.e. esticando, comprimindo, cortando). De mesmo modo, é uma superfície que pode ser feita transformando um plano (i.e. dobrando, rolando, recortando, e colando)

Mercator Conformal Prujection

Superfície Linear de Coons

- Interpolação entre quatro curvas de fronteira
- Similar a superfície regrada em duas direções

Remendos cúbicos paramétricos/Superfícies bicúbicas

 Curvas cúbicas paramétricas como quatro curvas de fronteira

Superfícies Bezier

Curvas Bezier como quatro curvas de

Retalhos de Bézier

- Curvas na fronteira são curvas de Bézier
- Qualquer curva para s ou t constante é uma curva Bézier
- Podemos pensar assim:
 - Cada linha da grade com 4 pontos de controle define uma curva de Bézier para o parâmetro s
 - Ao avaliar cada curva para um mesmo s obtemos 4 pontos de controle "virtuais"
 - Pontos de controle "virtuais" definem uma curva Bézier em t
 - Avaliando esta curva em um dado t resulta no ponto x(s,t)

Malhas de Retalhos Bézier

- São malhas compostas de diversos retalhos unidos ao longo de suas fronteiras
 - As arestas das grades de controle precisam se justapor perfeitamente
 - As grades precisam ser retangulares

Superfícies B-Spline

 Curvas B-Spline como quatro curvas de frantairo

Superfícies NURBS

Malha de polígono (mesh)

- Coleção de vértices e polígonos que definem a forma de um objeto poliédrico
- Malhas de triângulos ou quadriláteros
 - triangulação
- Bom para caixas, armários, construir exteriores
- Ruim para superfícies curvas

