lmage

目录

第	一部分 七年级上	1
1	有理数(算术) 1.1 正数和负数	2
2	整式的加減(代数) 2.1 整式	
3	一元一次方程(方程) 3.1 从算式到方程 3.2 解一元一次方程: 合并同类项与移项 3.3 解一元一次方程: 去括号与去分母	4
4	几何图形初步(几何) 4.1 几何图形	5
第	二部分 七下	6
5	相交线与平行线(几何)5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移	7 7
6	实数(算术) 6.1 平方根 6.2 立方根 6.3 实数	
7	平面直角坐标系(解析几何) 7.1 平面直角坐标系	9 9
8	二元一次方程组(方程) 8.1 二元一次方程组	

目录

	8.3 实际问题与二元一次方程组	
	不等式与不等式组(方程) 9.1 不等式 9.2 一元一次不等式 9.3 一元一次不等式 9.3 一元一次不等式组 数据的收集、整理与描述(统计与概率) 10.1 统计调查 10.2 直方图	11 11 12 12
第	10.3 课题学习:从数据谈节水	12 13
11	三角形(几何) 11.1 与三角形有关的线段	14
	2 全等三角形(几何) 12.1 全等三角形	15 15 15
13	4 知对称 13.1 画轴对称图形	16
14	整式的乘法与因式分解(代数) 14.1 整式的乘法	17
15	分式(代数) 15.1 分式. 15.2 分式的运算. 15.3 分式方程.	18
第	四部分 八下	19
16	二次根式(代数) 16.1 二次根式 16.2 二次根式的乘除 16.3 二次根式的加減	20

<u>-C-</u>

17	勾股定理(几何)	21
	17.1 勾股定理	21
	17.2 勾股定理的逆定理	21
	17.3 平行四边形(几何)	21
10	77.4 m/4 m/	22
18	平行四边形	22
	18.1 特殊的平行四边形	22
19	一次函数(函数)	23
	19.1 函数	23
	19.2 一次函数	23
	19.3 课题学习: 选择方案	23
20	数据的分析(统计与概率)	24
4 U	数据的第一(
	20.2 数据的波动程度	
	20.3 课题学习: 体质健康测试中的数据分析	
	20.5 床题子刁: 怦灰陡床ტ风中的致循分型	24
~~	ㅜ·pp / L	25
弗	五部分 九上	25
21	一元二次方程(方程)	26
	21.1 一元二次方程	26
	21.2 解一元二次方程	26
	21.3 实际问题与一元二次方程	26
22	二次函数(函数)	27
	22.1 二次函数的图像和性质	
	22.2 二次函数与一元二次方程	
	22.3 实际问题与二次函数	
	22.3 人际中心与二八团双	21
23	旋转(几何)	28
	23.1 图形的旋转	
	23.2 中心对称	
	23.3 课题学习: 图案设计	28
24	圆(几何)	29
	24.1 圆的有关性质	29
	24.2 点和圆、直线和圆的位置关系	
	24.3 正多边形和圆	
	24.4 弧长和扇形的面积	
. -		
25	概率初步(统计与概率)	30
	25.1 随机事件与概率	
	25.2 用列举法求概率	
	25.3 用频率估计概率	30

───

目录

第六部分 九下	31
26 反比例函数(函数)	32
26.1 反比例函数	32
26.2 实际问题与反比例函数	32
27 相似(几何)	33
27.1 图形的相似	
27.2 相似三角形	
27.3 世似	
28 锐角三角函数(函数)	34
28.1 锐角三角函数	34
28.2 解直角三角形及其应用	34
29 投影与视图(几何)	35
29.1 投影	
29.2 三视图	
29.3 课题学习:制作立体模型	
第七部分 综合	36
30 几何模型	37
30.1 相似模型	37
30.2 辅助圆	40
30.3 8 字模型与飞镖模型	41
30.4 角平分线四大模型	43
30.5 截长补短	44
30.6 手拉手模型	45
30.7 三垂直	45
30.8 将军饮马	46
30.9 半角模型	49
30.10蚂蚁行程: 立体图形展开的最短路径	50
30.11中点四大模型	50
30.12圆中的辅助线	51

→∘⊘∘

第一部分

七年级上

第1章 有理数(算术)

- 1.1 正数和负数
- 1.2 有理数
- 1.3 有理数的乘除法
- 1.4 有理数的乘方

第2章 整式的加减(代数)

- 2.1 整式
- 2.2 整式的加减

第3章 一元一次方程(方程)

- 3.1 从算式到方程
- 3.2 解一元一次方程: 合并同类项与移项
- 3.3 解一元一次方程: 去括号与去分母

第4章 几何图形初步(几何)

- 4.1 几何图形
- 4.2 直线、射线、线段
- 4.3 角

第二部分

七下

第5章 相交线与平行线(几何)

- 5.1 相交线
- 5.2 平行线及其判定
- 5.3 平行线的性质
- 5.4 平移

第6章 实数(算术)

- 6.1 平方根
- 6.2 立方根
- 6.3 实数

第7章 平面直角坐标系(解析几何)

- 7.1 平面直角坐标系
- 7.2 坐标方法的简单应用

第8章 二元一次方程组(方程)

- 8.1 二元一次方程组
- 8.2 消元--解二元一次方程组
- 8.3 实际问题与二元一次方程组
- 8.4 * 三元一次方程组的解法

第9章 不等式与不等式组(方程)

- 9.1 不等式
- 9.2 一元一次不等式
- 9.3 一元一次不等式组

第10章 数据的收集、整理与描述(统计与概率)

- 10.1 统计调查
- 10.2 直方图
- 10.3 课题学习: 从数据谈节水

第三部分

八上

第11章 三角形(几何)

- 11.1 与三角形有关的线段
- 11.2 与三角形有关的角
- 11.3 多边形及其内角和

第12章 全等三角形(几何)

- 12.1 全等三角形
- 12.2 三角形全等的判定
- 12.3 角的平分线的性质
- 12.4 轴对称(几何)

第13章 轴对称

- 13.1 画轴对称图形
- 13.2 等腰三角形
- 13.3 课题学习: 最短路径问题

第14章 整式的乘法与因式分解(代数)

- 14.1 整式的乘法
- 14.2 乘法公式
- 14.3 因式分解

第15章 分式(代数)

- 15.1 分式
- 15.2 分式的运算
- 15.3 分式方程

第四部分

八下

第16章 二次根式(代数)

- 16.1 二次根式
- 16.2 二次根式的乘除
- 16.3 二次根式的加减

第17章 勾股定理(几何)

- 17.1 勾股定理
- 17.2 勾股定理的逆定理
- 17.3 平行四边形(几何)

第18章 平行四边形

18.1 特殊的平行四边形

第19章 一次函数(函数)

- 19.1 函数
- 19.2 一次函数
- 19.3 课题学习: 选择方案

第20章 数据的分析(统计与概率)

- 20.1 数据的集中趋势
- 20.2 数据的波动程度
- 20.3 课题学习: 体质健康测试中的数据分析

第五部分

九上

第21章 一元二次方程(方程)

- 21.1 一元二次方程
- 21.2 解一元二次方程
- 21.3 实际问题与一元二次方程

第22章 二次函数(函数)

- 22.1 二次函数的图像和性质
- 22.2 二次函数与一元二次方程
- 22.3 实际问题与二次函数

第23章 旋转(几何)

- 23.1 图形的旋转
- 23.2 中心对称
- 23.3 课题学习:图案设计

第24章 圆(几何)

- 24.1 圆的有关性质
- 24.2 点和圆、直线和圆的位置关系
- 24.3 正多边形和圆
- 24.4 弧长和扇形的面积

第25章 概率初步(统计与概率)

- 25.1 随机事件与概率
- 25.2 用列举法求概率
- 25.3 用频率估计概率

第六部分

九下

第26章 反比例函数(函数)

- 26.1 反比例函数
- 26.2 实际问题与反比例函数

第27章 相似(几何)

- 27.1 图形的相似
- 27.2 相似三角形
- 27.3 位似

第28章 锐角三角函数(函数)

- 28.1 锐角三角函数
- 28.2 解直角三角形及其应用

第29章 投影与视图(几何)

29.1 投影

29.1.1 知识要点

一、 光源

二、投影

1. 定义: { 点光源: 中心投影 平行光源: 平行投影 2. 性质: { 中心投影: 物体垂直地面时, 越长越近 平行光源: 平行投影

29.2 三视图

29.3 课题学习:制作立体模型

第七部分

综合

第30章 几何模型

30.1 相似模型

30.1.1 A 字形和 8 字形

图 30.1: A 字形和 8 字形相似

条件: ∠1 = ∠2

结论: $\triangle ADE \sim \triangle ABC$

应用:通过平行,得出两大类,四小类相似.

30.1.2 共边共角型

条件: ∠1 = ∠2

结论: $\triangle ACD \sim \triangle ABC$ 其他结论: $AC^2 = AD \cdot AB$ 30.1 相似模型 -38 -

30.1.3 一线三等角型

条件: $\angle 1 = \angle 2$

结论: $\triangle ACD \sim \triangle ABC$

证明:

 $\therefore \angle ACE + \angle DCE = \angle B + \angle A, \ \Box \angle B = \angle ACE$

 $\therefore \angle DCE = \angle A$

 $\therefore \triangle ABC \sim \triangle CDE$

图 2, 图 3 同理可得

分析:一线三等角模型中,难点在于当已知三个相等角时,容易忽略隐含的其他相等的角.图2中的三垂直相似模型 应用较多,看见该模型时,应能立刻看出其中的相似三角形.

30.1.4 倒数型

图 30.4: 倒数型相似

条件:
$$AF//DE//BC$$

结论: $\frac{1}{AF} + \frac{1}{BC} = \frac{1}{DE}$
证明:

- $\therefore AF//DE//BC$
- $\therefore \triangle BDE \sim \triangle BAF, \triangle ADE \sim \triangle ABC$

 $\frac{1}{F}+rac{1}{BC}=rac{1}{DE}$,(两边同除 DE). 分析: 倒数型模型由两个 A 型相似模型相加而得.

30.1.5 与圆有关的简单相似

结论:

图 1, 由同弧所对圆周角相等, 得 $\triangle PAC \sim \triangle PDB$

图 2, 由圆的内接四边形的一个外角等于它的内对角, 得 $\triangle ABD \sim \triangle AEC$.

图 3, 已知 AB 切 $\odot O$ 于点 A, 则 $\triangle BAD \sim \triangle BCA$

图 30.5: 倒数型相似

证明:

图 3: 如图, 过 A 作直径 AE, 连接 DE,

则有 $\angle EAD + \angle E = 90^{\circ}$

 $\mathbb{Z} \angle BAD + \angle EAD = 90^{\circ},$

 $\therefore \angle BAD = \angle E = \angle C.$

 $\therefore \triangle BAD \sim \triangle BCA$

圆的内接四边形的性质

图 30.6: 圆的内接四边形

以圆内接四边形 ABCD 为例,圆心为 O, 延长 AB 至 E, AC、BD 交于 P, 则

- 1. 圆内接四边形的对角互补: BAD+DCB=180ř, ABC+ADC=180ř
- 2. 圆内接四边形的任意一个外角等于它的内对角: CBE=ADC
- 3. 圆心角的度数等于所对弧的圆周角的度数的两倍: AOB=2ACB=2ADB
- 4. 同弧所对的圆周角相等: ABD=ACD
- 5. 圆内接四边形对应三角形相似: ABPDCP (三个内角对应相等)
- 6. 相交弦定理: APŒCP=BPŒDP
- 7. 托勒密定理: ABŒCD+ADŒCB=ACŒBD

30.1.6 相似与旋转

条件: 如图 1, 已知 DE//BC, $\triangle ADE$ 绕点 A 旋转一定角度, 连接 BD,CE, 得到图 2.

30.2 辅助圆 **-** 40 **-**

图 30.7: 旋转型相似

结论: $\triangle ABD \sim \triangle ACE$

证明:

 $\therefore \frac{DE//BC}{AB} = \frac{AE}{AC}$

图 $2 + \angle DAE = \angle BAC$, ∴ $\angle BAD = \angle CAE$

 $\therefore \triangle ABD \sim \triangle ACE$

分析: 本模型难度较高, 常出现在压轴题中, 以直角三角形为背景出题, 综合性较强. 考察知识点有相似, 旋转, 勾股 定理, 三角函数等.

附: 三角形相似的判定

- 1. 两角对应相等, 两三角形相似.
- 2. 两边对应成比例且夹角相等, 两个三角形相似.
- 3. 三边对应成比例,两个三角形相似.

30.2 辅助圆

30.2.1 共端点,等线段模型

图 30.8: 共端点, 等线段构造辅助圆

条件: 三条线段共端点且长度相等, 即 OA = OB = OC

结论: 三条线段的端点在同一个圆上. 证明:

分析:可以构造辅助圆,利用圆的性质快速解决角度问题.如圆周角等于圆心角的一半 $\angle ACB = \frac{1}{2} \angle AOB, \angle BAC = \frac{1}{2}$ $\frac{1}{2} \angle BOC$

30.2.2 直角三角形共斜边模型

条件:两个直角三角形共斜边(同侧或异侧)

结论: A,B,C,D 四点共圆.

证明:

取 AB 中点 O, 根据直角三角形斜边中线等于斜边一半, 可得 OA = OB = OC = OD, 所以四点共圆.

分析:证明四点共圆之后,可以利用圆的性质证明角度等量关系,是证明角度相等的重要途径之一.

图 30.9: 直角三角形共斜边模型

30.3 8字模型与飞镖模型

30.3.1 角的 8 字模型

图 30.10: 角的 8 字模型

条件: O 是 AC 和 BD 的交点 结论: $\angle A + \angle D = \angle B + \angle C$ 证明:

对顶角相等, 三角形内角和等于 180 度.

分析:8 字模型常用来在几何综合题中推导角度.

30.3.2 角的飞镖模型

图 30.11: 角的飞镖模型

条件: 如图

结论: $\angle D = \angle A + \angle B + \angle C$

证明:

30.3 8 字模型与飞镖模型 - 42 -

连接 BC, 三角形内角和等于 180 度.

 $\angle 2 + \angle 4 + \angle D = 180^{\circ}$

 $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle A = 180^{\circ}$

 $\therefore \angle A + \angle 1 + \angle 3 = \angle D$

分析: 常在几何综合题中用于推导角度.

30.3.3 边的 8 字模型

图 30.12: 边的 8 字模型

条件: O是 AC和 BD的交点

结论: AC + BD > AD + BC

证明:

:: OA + OD > AD, OB + OC > BC

 $\therefore OA + OD + OB + OC > BC + AD$ 即:AC + BD > AD + BC 分析:

30.3.4 边的飞镖模型

条件: 如图

结论: AB + AC > BD + CD

证明:

三角形两边之和大于第三边.

如图,延长BD交AC于点E.

 $\therefore CE + DE > CD$

∴ BD + CE + DE > BD + CD, $\ \ \, \square \ \, BE + CE > BD + CD$

 $\mathbb{Z} AB + AE > BE$

30.4 角平分线四大模型 - 43 -

∴ AB + AE + CE > BD + CD, \mathbb{P} AB + AC > BD + CD

分析: 用来证明边的不等式

30.4 角平分线四大模型

图 30.14: 倒数型相似

条件:

结论:

证明:

分析:

30.4.1 角平分线上的点向两边做垂线

图 30.15: 倒数型相似

条件:

结论:

证明:

分析:

30.4.2 截取构造对称全等

图 30.16: 倒数型相似

条件:

结论:

30.5 截长补短 - 44-

证明:

分析:

30.4.3 角平分线 + 垂直构造等腰三角形

图 30.17: 倒数型相似

条件:

结论:

证明:

分析:

30.4.4 角平分线 + 平行线

图 30.18: 倒数型相似

条件:

结论:

证明:

分析:

30.5 截长补短

条件: 已知线段 AB,CD,EF, 求三者之间的数量关系

结论:

通过截长 (图 2), 在 EF 上截取 EG=AB; 证明 EG 和 AB 的关系.

或补短 (图 3), 延长 AB 至 H 点, 使 BH=CD, 证明 AH 和 EF 的关系.

证明:

分析: 截长补短法适用于求证线段的和差倍分关系. 截长是指在长线段中截取一段等于已知线段; 补短是指将短线的延长, 延长部分等于已知线段. 常用于等腰三角形, 角平分线等情况, 采用截长补短法构造全等三角形来完成证明.

30.6 手拉手模型 - 45 -

图 30.19: 截长补短法

30.6 手拉手模型

图 30.20: 倒数型相似

条件:

结论:

证明:

分析:

30.7 三垂直

图 30.21: 倒数型相似

条件:

结论:

证明:

分析:

30.8 将军饮马 - 46-

30.8 将军饮马

图 30.22: 两定点与直线上的动点间的距离问题

条件:

结论:

证明:

分析:

30.8.1 定直线与两定点

图 30.23: 倒数型相似

条件:

结论:

证明:

分析:

30.8.2 角与定点

条件:

结论:

30.8 将军饮马 - 47 -

图 30.24: 角与定点

证明:

分析:

30.8.3 两定点一定长

图 30.25: 倒数型相似

>>c≫>>>

条件:

结论:

证明:

分析:

30.8.4 胡不归模型

背景:

一个身在他乡的小伙子,得知父亲病危的消息后便日夜赶路回家。然而,当他气喘吁吁地来到父亲的面前时,老 人刚刚咽气了。人们告诉他,在弥留之际,老人在不断喃喃地叨念:"胡不归?胡不归?"

A 是出发地,B 是目的地; AC 是一条驿道,而驿道靠目的地的一侧是沙地。为了急切回家,小伙子选择了直线路程 AB。但是,他忽略了在驿道上行走要比在砂土地带行走快的这一因素。如果他能选择一条合适的路线(尽管这条路线长一些,但是速度可以加快),是可以提前抵达家门的

图 30.26: 胡不归问题背景

解析: 构造某个角的正弦值等于系数 $\mathbf{k}(\mathbf{k} < 1 \ \mathrm{tr})$ 或 $\frac{1}{k}(\mathbf{k} > 1 \ \mathrm{tr})$

例题:

分析:

- 1. 费马与笛卡尔讨论光的折射现象时,发现胡不归问题与光的折射现象一致,即光总是走时间最短路线.
- 2. $PA + k \cdot PB$ 型最值问题,k=1 时转化为 PA+PB 之和最短,就是将军饮马模型; 当 k 为 \neq 1 的正数时,如果 P 在直线上运动,就是胡不归问题; 若 P 在圆上运动,就是"阿氏圆"问题.

30.8.5 阿氏圆问题

背景:

"阿氏圆"又称"阿波罗尼斯圆",已知平面上两点 $A \times B$,则所有满足 $PA=k \cdot PB$ (k1)的点 P 的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称"阿氏圆"。

如图 $1, \odot O$ 的半径为 r, 点 A,B 都在 $\odot O$ 外,P 为圆上一动点,已知 $r = k \cdot OB$,连接 PA,PB,当 " $PA + k \cdot PB$ " 的值最小时,P 点的位置如何确定?

解析: 在线段 OB 上截取 OC, 使 OC= $k \cdot r$, 则 $\triangle BPO \sim \triangle PCO$, 即 $k \cdot PB = PC.PA + k \cdot PB$ 最小值转化为 PA + PC 的最小值, 其中 A 与 C 为定点,P 为动点, 当 A,P,C 三点共线时,PA + PC 最小.

例题:

分析:

1. $PA + k \cdot PB$ 型最值问题,k=1 时转化为 PA+PB 之和最短,就是将军饮马模型; 当 k 为 \neq 1 的正数时,如果 P 在直线上运动,就是胡不归问题; 若 P 在圆上运动,就是"阿氏圆"问题.

30.9 半角模型

图 30.29: 角含半角模型

条件: $\angle 2=\frac{1}{2}\angle AOB; \angle 4=\angle 3; OA=OB; OF'=OF$ 结论: 旋转全等: $\triangle OAF'\cong\triangle OBF;$ 对称全等: $\triangle OEF\cong\triangle OEF'$ 证明:

- $: OF' = OF, \angle 3 = \angle 4, OA = OB$
- $\therefore \triangle OAF' \cong \triangle OBF(SAS)$
- $\therefore \angle 2 = \frac{1}{2} \angle AOB$
- $\therefore \angle 1 + \overline{\angle 3} = \angle 2, \ \ \ \ \angle 4 = \angle 3$
- ∴ $\angle 1 + \angle 3 = \angle 2$, $\mathbb{P} \angle F'OE = \angle EOF$

 $\oplus OF' = OF, OE = OE, \angle F'OE = \angle EOF$

可得 $\triangle OEF \cong \triangle OEF'(SAS)$

分析:

- 1. 半角模型: 存在两个角, 其中一个是另一个的一半, 且这两个角共顶点.
- 2. $\triangle OAF'$ 由 $\triangle OBF$ 绕 O 点旋转 $\angle AOB$ 而来.B 点旋转至 A 点,F 点旋转至 F' 点.
- 3. 在遇到角含半角时, 首先构造旋转全等, 再寻找对称全等. 构造旋转全等的方法是从 O 点作射线 OF', 使 $\angle F'OA = \angle FOB$, 在射线上截取 OF' = OF.

- 4. 通过旋转全等和轴对称全等,一般用来证明线段和差关系.
- 5. 常见的半角模型是 90 度含 45 度,120 度含 60 度.

30.10 蚂蚁行程: 立体图形展开的最短路径

图 30.30: 立体图形展开的最短路径

条件: 蚂蚁从点 A 沿圆柱爬行一周, 到点 B 的最短路径.

结论: 最短路径就是展开图中 AB' 的长, $AB' = \sqrt{AA'^2 + A'B'^2}$

证明:

分析: 立体图形表面最短路径问题的关键是正确展开立体图形, 然后利用"两点之间线段最短"或"两边之和大于第三边"准确找出最短路径.

30.11 中点四大模型

30.11.1 倍长中线或类中线构造全等

图 30.31: 倒数型相似

条件:

结论:

证明:

分析:

30.11.2 等腰底边三线合一

图 30.32: 倒数型相似

30.12 圆中的辅助线 -51-

条件: 结论:

证明:

分析:

30.11.3 直角三角形直角边中点

图 30.33: 直角三角形斜边中线

条件: △

结论: 证明:

分析:

30.11.4 直角三角形斜边中点

图 30.34: 直角三角形斜边中线

条件: $\triangle ABC$ 是 $Rt\triangle$,D 是斜边中点

结论: $CD = \frac{1}{2}AB$; $\triangle ACD$ 和 $\triangle BCD$ 是等腰三角形

证明:

构造外接圆,AB 为直径,CD 为半径.

分析: 直角三角形中, 遇见斜边中点, 一般可作斜边中线, 利用斜边中线等于斜边一半, 证明线段间的数量关系. 反过来, 如果中线等于对应边的一半, 则该三角形为直角三角形. 该模型经常与中位线定理综合应用.

30.12 圆中的辅助线

30.12.1 构造等腰三角形

条件:

结论:

证明:

分析:

30.12 圆中的辅助线 - 52 -

30.12.2 构造直角三角形

图 30.36: 倒数型相似

条件:

结论:

证明:

分析:

30.12.3 切线相关辅助线

图 30.37: 倒数型相似

条件:

结论:

证明:

分析: