Feuille d'exercice n° 18 : Espaces vectoriels

Exercice 1 () Dire si les objets suivants sont des espaces vectoriels.

- 1) L'ensemble des fonctions réelles, définies sur \mathbb{R} et vérifiant $f(x) \xrightarrow[x \to +\infty]{} 0$.
- 2) L'ensemble des fonctions impaires, définies sur \mathbb{R} .
- 3) L'ensemble des fonctions définies sur [a,b], continues et vérifiant $f(a) = 7f(b) + \int_a^b t^3 f(t) dt$.
- 4) L'ensemble des fonctions de classe \mathscr{C}^2 vérifiant $f'' + \omega^2 f = 0$.
- 5) L'ensemble des primitives de la fonction $x \mapsto xe^x$ sur \mathbb{R} .
- 6) L'ensemble des nombres complexes d'argument $\pi/4 + k\pi$, pour $k \in \mathbb{Z}$.
- 7) L'ensemble des points (x, y) de \mathbb{R}^2 , vérifiant $\sin(x + y) = 0$.
- 8) L'ensemble des vecteurs de \mathbb{R}^3 orthogonaux au vecteur (-1,3,-2).

Exercice 2 () Soit E un \mathbb{R} -espace vectoriel. On pose $F = E^2$. Pour tout couple $((x_1, y_1), (x_2, y_2))$ d'éléments de F, on pose $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$. Pour tout $\lambda \in \mathbb{C}$, et tout $(x, y) \in F$, on note $\lambda \cdot (x, y) = (ax - by, bx + ay)$, où $a = \text{Re } \lambda$ et $b = \text{Im } \lambda$.

Montrer que $(F, +, \cdot)$ est un \mathbb{C} -espace vectoriel (appelé le complexifié du \mathbb{R} -espace vectoriel E).

Exercice 3 (%)

- 1) Soit les vecteurs $v_1 = (1 i, i)$, $v_2 = (2, -1 + i)$ et $v_3 = (i + 1, i)$. Le vecteur v_1 est-il combinaison linéaire de v_2 et v_3 dans \mathbb{C}^2 , considéré comme \mathbb{C} -espace vectoriel ? comme \mathbb{R} -espace vectoriel ?
- 2) Dans $\mathscr{F}(\mathbb{R},\mathbb{R})$, la fonction $x\mapsto \sin x$ est-elle combinaison linéaire des deux fonctions $x\mapsto \sin 2x$ et $x\mapsto \sin 3x$? Généraliser.

Exercice 4 Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que $F \cup G = F + G \Leftrightarrow F \subset G$ ou $G \subset F$.

Exercice 5 () Montrer que, dans $\mathscr{C}([-1,1],\mathbb{C})$, $F = \left\{ f \in \mathscr{C}([-1,1],\mathbb{C}) \mid \int_{-1}^{1} f(t) dt = 0 \right\}$ et $G = \{ f \in \mathscr{C}([-1,1],\mathbb{C}) \mid f \text{ constante} \}$ sont des sous-espaces vectoriels supplémentaires.

Exercise 6 (\circlearrowleft) Soit $F = \{ f \in \mathscr{F}(\mathbb{R}, \mathbb{R}) \mid f(0) + f(1) = 0 \}.$

- 1) Montrer que F est un espace vectoriel.
- 2) Déterminer un supplémentaire de F dans $\mathscr{F}(\mathbb{R},\mathbb{R})$.

Exercice 7 Soient F, G, F', G' des sous-espaces vectoriels d'un espace vectoriel E, tels que $F \cap G = F' \cap G'$.

Montrer que $(F + (G \cap F')) \cap (F + (G \cap G')) = F$.

Exercice 8 Soit A et B deux parties d'un espace vectoriel E. Comparer $Vect(A \cap B)$ et $Vect(A \cap Vect(B))$

Exercice 9 Soit \mathscr{V} et \mathscr{W} deux sous-espaces affines **disjoints** d'un \mathbb{R} -espace vectoriel E. On note V et W leurs directions respectives. Soit $a \in \mathscr{V}$ et $b \in \mathscr{W}$. On pose U = V + W, $\mathscr{V}' = a + U$ et $\mathscr{W}' = b + U$. Montrer que \mathscr{V}' et \mathscr{W}' sont deux sous-espaces affines disjoints, de même direction et contenant respectivement \mathscr{V} et \mathscr{W} .

Exercice 10 (\infty) Dire si les applications suivantes sont des applications linéaires.

1)
$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto 2x^2$$

5)
$$\chi : \mathscr{C}^1([0,1], \mathbb{R}) \to \mathbb{R}, \ f \mapsto -\int_{1/2}^1 f(t) \, dt$$

$$2) \ g: \mathbb{R} \to \mathbb{R}, \ x \mapsto 4x - 3$$

6)
$$\psi: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto \sin(3x+5y)$$

3)
$$h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \sqrt{x^2}$$

$$\varphi$$
 . In φ , φ , φ , φ , φ , φ

4)
$$\varphi: \mathscr{C}^1([0,1],\mathbb{R}) \to \mathbb{R}, \ f \mapsto f(3/4)$$

7)
$$\theta: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto xy$$

8)
$$\rho: \mathscr{C}^1([0,1],\mathbb{R}) \to \mathscr{C}^1([0,1],\mathbb{R}), \ f \mapsto \left(x \mapsto e^{-x} \int_0^1 f(t) \ dt\right)$$

Exercice 11 (
$$^{\circ}$$
) Calculer le noyau et l'image de $f: \mathbb{R}^3 \to \mathbb{R}^3$.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x + 2y \\ -x - 4y + 2z \\ 2x + 5y - z \end{pmatrix} .$$

Exercice 12 Pour chaque propriété suivante, donner un exemple d'endomorphisme f de \mathbb{R}^2 la vérifiant.

- 1) Ker(f) est inclus strictement dans Im(f).
- 3) $\operatorname{Ker}(f) = \operatorname{Im}(f)$.
- 2) Im(f) est inclus strictement dans Ker(f).
- 4) Ker f et Im f sont supplémentaires.

Exercice 13 ($^{\textcircled{n}}$) Soit E un espace vectoriel et $f \in \mathcal{L}(E)$.

- 1) Montrer que Ker $f \subset \operatorname{Ker} f^2$ et $\operatorname{Im} f^2 \subset \operatorname{Im} f$.
- 2) Montrer que Im $f \cap \operatorname{Ker} f = \{0_E\} \iff \operatorname{Ker} f^2 = \operatorname{Ker} f$.
- 3) Montrer que $E = \operatorname{Ker} f + \operatorname{Im} f \iff \operatorname{Im} f^2 = \operatorname{Im} f$.

1) Soit E, F et G trois \mathbb{K} -espaces vectoriels, soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Établir l'équivalence

$$g \circ f = 0_{\mathscr{L}(E,G)} \iff \operatorname{Im} f \subset \operatorname{Ker} g.$$

- 2) Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E, vérifiant $f^2+f-2\mathrm{Id}_E=0_{\mathscr{L}(E)}$.
 - a) Montrer que $(f \operatorname{Id}_E) \circ (f + 2\operatorname{Id}_E) = (f + 2\operatorname{Id}_E) \circ (f \operatorname{Id}_E) = f^2 + f 2\operatorname{Id}_E = 0_{\mathscr{L}(E)}$.
 - **b)** En déduire que $\operatorname{Im}(f \operatorname{Id}_E) \subset \operatorname{Ker}(f + 2\operatorname{Id}_E)$ et $\operatorname{Im}(f + 2\operatorname{Id}_E) \subset \operatorname{Ker}(f \operatorname{Id}_E)$.
 - c) Montrer que $E = \text{Ker}(f \text{Id}_E) \oplus \text{Ker}(f + 2\text{Id}_E)$.

Exercice 15 ($\mathcal{S}_{\mathbb{C}}$) Soit $f \in \mathcal{L}(E)$, où E est un \mathbb{K} -espace vectoriel. On suppose que

$$\forall x \in E, \exists \lambda \in \mathbb{K}, f(x) = \lambda x.$$

Montrer que

$$\exists \lambda \in \mathbb{K}, \forall x \in E, f(x) = \lambda x.$$

Exercice 16 ($^{\circ}$) Dans \mathbb{R}^4 , comparer (*i.e.* dire s'ils sont égaux ou si l'un est inclus dans l'autre) les sous-espaces F et G suivants :

$$\begin{array}{lcl} F & = & \mathrm{Vect}\,\{(1,0,1,1),(-1,-2,3,-1),(-5,-3,1,-5)\}\ ;\\ G & = & \mathrm{Vect}\,\{(-1,-1,1,-1),(4,1,2,4)\}\,. \end{array}$$

Exercice 17 ($^{\bigcirc}$) Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$. L'ensemble E est-il un sous espace vectoriel de \mathbb{R}^4 ? Le cas échéant, en donner une famille génératrice.

2

Exercice 18 (Soit dans \mathbb{R}^3 les vecteurs $v_1 = (1, 1, 0), v_2 = (4, 1, 4)$ et $v_3 = (2, -1, 4)$.

- 1) Montrer que v_1 et v_2 ne sont pas colinéaires. Faire de même avec v_1 et v_3 , puis avec v_2 et v_3 .
- 2) La famille (v_1, v_2, v_3) est-elle libre ?

Exercice 19 Soit $n \in \mathbb{N}$. Pour tout entier $k \in [0, n]$, on pose $f_k : \mathbb{R} \to \mathbb{R}$, $x \mapsto x^k$. Montrer que la famille $(f_k)_{0 \le k \le n}$ est une famille libre de $\mathscr{F}(\mathbb{R}, \mathbb{R})$.

Exercice 20 Quelle est la nature de l'application
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -5x & + & 2y \\ -12x & + & 5y \\ -4x & + & 2y & - & z \end{pmatrix}$$

Déterminer ses éléments caractéristiques.

Exercice 21 Soit E un \mathbb{K} -espace vectoriel, soit $p, q \in \mathcal{L}(E)$. Montrer qu'il y a équivalence entre les deux assertions suivantes :

- 1) $p \circ q = p$ et $q \circ p = q$;
- 2) p et q sont deux projecteurs de même noyau.

Exercice 22 () On pose $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = z\}$ et G = Vect(1, 1, 0).

- 1) Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- 2) Déterminer une expression explicite de la projection de \mathbb{R}^3 sur F parallèlement à G.

Exercice 23 Soit p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E. Montrer que p-q est un projecteur si et seulement si $p \circ q = q \circ p = q$.

