

Advancing Molecular Graph-Text Pre-training via Fine-grained Alignment

Yibo Li¹, Yuan Fang²*, Mengmei Zhang³, Chuan Shi¹*,
¹Beijing University of Posts and Telecommunications
²Singapore Management University
³China Telecom Bestpay

- 1 Background
- 2 Fine-grained Alignment
- 3 FineMolTex
- 4 Experiments
- 5 Conclusion

Comprehending molecular structure and related knowledge is pivotal in scientific investigations spanning diverse fields

[1] A survey of geometric graph neural networks: data structures, models and applications

Several studies explore molecular structures along with their corresponding descriptions.

[1] Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing

- 1 Background
- 2 Fine-grained Alignment
- 3 FineMolTex
- 4 Experiments
- 5 Conclusion

Coarse-grained Alignment & Fine-grained Alignment

Fine-grained Alignment Is Crucial

(c) Downstream tasks

- 1 Background
- 2 Fine-grained Alignment
- 3 FineMolTex
- 4 Experiments
- 5 Conclusion

$$\begin{split} L_{\text{con}} &= -\frac{1}{2} \mathbb{E}_{m_0, t_0} \left[\log \frac{\exp(\cos(\mathbf{z}_{\mathbf{m}_0}, \mathbf{z}_{\mathbf{t}_0}) / \tau)}{\exp(\cos(\mathbf{z}_{\mathbf{m}_0}, \mathbf{z}_{\mathbf{t}_0}) / \tau) + \sum_{t_0'} \exp(\cos(\mathbf{z}_{\mathbf{m}_0}, \mathbf{z}_{\mathbf{t}_0'}) / \tau)} \right. \\ &+ \log \frac{\exp(\cos(\mathbf{z}_{\mathbf{t}_0}, \mathbf{z}_{\mathbf{m}_0}) / \tau)}{\exp(\cos(\mathbf{z}_{\mathbf{t}_0}, \mathbf{z}_{\mathbf{m}_0}) / \tau) + \sum_{m_0'} \exp(\cos(\mathbf{z}_{\mathbf{t}_0}, \mathbf{z}_{\mathbf{m}_0'}) / \tau)} \right], \end{split}$$

$$L_{\text{pre}} = \beta \sum_{i} \text{CE}(\hat{y}_{m_i}, y_{m_i}) + \alpha \sum_{j} \text{CE}(\hat{y}_{t_j}, y_{t_j})$$

- 1 Background
- 2 Fine-grained Alignment
- 3 FineMolTex
- 4 Experiments
- 5 Conclusion

	Give	n Molecular G	raph	Given Text			
T	4	10	20	4	10	20	
KV-PLM	68.38±0.03	47.59 ± 0.03	36.54 ± 0.03	67.68±0.03	48.00 ± 0.02	34.66±0.02	
MolCA	83.75 ± 0.54	74.25 ± 0.26	66.14 ± 0.21	81.27 ± 0.33	69.46 ± 0.17	62.13 ± 0.16	
MoMu-S	70.51 ± 0.04	55.20 ± 0.15	43.78 ± 0.10	70.71 ± 0.22	54.70 ± 0.31	44.25 ± 0.43	
MoMu-K	69.40 ± 0.11	53.14 ± 0.26	42.32 ± 0.28	68.71 ± 0.03	53.29 ± 0.05	43.83 ± 0.12	
3D-MoLM	81.35 ± 0.14	73.65 ± 0.13	64.79 ± 0.15	79.78 ± 0.22	62.38 ± 0.16	53.43 ± 0.11	
MV-Mol	92.24 ± 0.26	85.38 ± 0.19	79.41 ± 0.43	91.28 ± 0.13	85.32 ± 0.15	80.37 ± 0.22	
MoleculeSTM	92.14 ± 0.02	86.27 ± 0.02	81.08 ± 0.05	91.44 ± 0.02	86.76 ± 0.03	81.68 ± 0.03	
FineMolTex	96.78±0.05	92.48±0.02	87.94±0.14	96.29±0.12	91.65±0.15	85.07±0.11	

Experiments Can FineMolTex bridge the gap to tasks centered on motif-level knowledge

Experiments Can FineMolTex perform better on single-modality tasks?

Model	BBBP	Tox21	ToxCast	Sider	ClinTox	MUV	HIV	Bace	Avg
AttrMask	67.8±2.6	75.0 ± 0.2	63.6±0.8	58.1±1.2	75.4±8.8	73.8±1.2	75.4±0.5	80.3±0.0	71.2
ContextPred	63.1±3.5	74.3 ± 0.2	61.6 ± 0.5	60.3 ± 0.8	80.3 ± 3.8	71.4 ± 1.4	70.7 ± 3.6	78.8 ± 0.4	70.1
InfoGraph	64.8 ± 0.6	76.2 ± 0.4	62.7 ± 0.7	59.1±0.6	76.5 ± 7.8	73.0 ± 3.6	70.2 ± 2.4	77.6 ± 2.0	70.0
MolCLR	67.8 ± 0.5	67.8 ± 0.5	64.6 ± 0.1	58.7 ± 0.1	84.2±1.5	72.8 ± 0.7	75.9 ± 0.2	71.1±1.2	71.3
GraphMVP	68.1±1.4	77.1 ± 0.4	65.1±0.3	60.6 ± 0.1	84.7±3.1	74.4 ± 2.0	77.7 ± 2.5	80.5 ± 2.7	73.5
GraphCL	69.7 ± 0.7	73.9 ± 0.7	62.4 ± 0.6	60.5 ± 0.9	76.0 ± 2.7	69.8 ± 2.7	78.5 ± 1.2	75.4±1.4	70.8
KV-PLM	70.5 ± 0.5	72.1 ± 1.0	55.0 ± 1.7	59.8 ± 0.6	89.2±2.7	54.6 ± 4.8	65.4 ± 1.7	78.5 ± 2.7	68.2
MoMu-S	70.5 ± 2.0	75.6 ± 0.3	63.4 ± 0.5	60.5 ± 0.9	79.9 ± 4.1	70.5 ± 1.4	75.9 ± 0.8	76.7 ± 2.1	71.6
MoMu-K	70.1 ± 1.4	75.6 ± 0.5	63.0 ± 0.4	60.4 ± 0.8	77.4 ± 4.1	71.1 ± 2.7	76.2 ± 0.9	77.1±1.4	71.4
MolCA	70.0 ± 0.5	77.2 ± 0.5	64.5 ± 0.8	63.0 ± 1.7	89.5±0.7	72.1 ± 1.3	77.2 ± 0.6	79.8 ± 0.5	74.2
MoleculeSTM	70.0 ± 0.5	76.9 ± 0.5	65.1±0.4	61.0±1.1	92.5±1.1	73.4 ± 2.9	77.0 ± 1.8	80.8±1.3	74.6
FineMolTex	73.5±1.6	77.1±1.2	68.6±0.9	64.8±1.4	92.5±0.8	76.3±1.2	79.0±1.4	84.0±1.5	76.9

Has FineMolTex learned fine-grained knowledge?

Figure 1: Visualization of motif tokens and word tokens using *t*-SNE. Triangles denote word tokens; circles denote motif tokens.

Figure 2: Explaination of the prediction of certain masked motifs based on text tokens utilizing LIME.

- 1 Background
- 2 Fine-grained Alignment
- 3 FineMolTex
- 4 Experiments
- 5 Conclusion

Conclusion

- We reveal that fine-grained motif-level knowledge is crucial for molecular representation learning.
- We propose FineMolTex to jointly learn both coarse- and fine-grained knowledge through a contrastive alignment task and a masked multimodal learning task, respectively.
- By selectively masking the important motif/word tokens and predicting their labels using tokens from the other modality, we can effectively learn fine-grained alignment between motifs and words.
- Experimental results on three downstream tasks and two case studies demonstrate the effectiveness of FineMolTex.

Thank you!

Email: liyibo@u.nus.edu

WeChat: liushi32992