Data Communication and Networking: Basics

Outline

* Goal

- * Basic Terminologies
- * Understanding the components and models of the network

- * Data Communications
- * Components
- * Network
- * Physical Structure of Network
- * Protocols
- * OSI Layers
- * TCP/IP
- * Summary

Data Communications

- * Data communications: Transfer of data from one device to another via some form of transmission medium.
- * The effectiveness of a data communications system depends on four fundamental characteristics: Delivery, Accuracy, Timeliness, and Jitter.
 - * Delivery: The system must deliver data to the correct destination.
 - * Accuracy: The system must deliver the data accurately.
 - * **Timeliness:** The system must deliver data in a timely manner. Data delivered late are useless.
 - * **Jitter**: Jitter refers to the variation in the data arrival time (Uneven delay in the arrival of the packet).

Communication Components

- * The Five Components of Data Communication are:
 - * Sender: The device that sends the message.
 - * Receiver: The device that receives the message.
 - * Message: The information (data) to be communicated
 - * Transmission Medium: the *medium* by which a message travels from sender to receiver
 - * Protocol: Set of rules that govern data communications

Fig. 1: Components of Data Communication (Source: Internet)

Transmission Modes

- * The Communication between the two devices can be: Simplex, Half-duplex and Full-duplex.
 - * **Simplex:** The communication is *unidirectional*, Only one device can send. Eg. Keyboards and traditional monitors
 - * Half-duplex: Both station *can transmit and receive*, but not at the same time. Eg. Walkie-talkies and CB (citizens band) radios.
 - * Full-duplex: Both stations can *transmit and receive simultaneously*. Eg. telephone network

Fig 2: Transmission Modes (Source: Internet)

Networks

- * Network: Two or more devices (Nodes) connected through the communication links.
 - * A Node can be a computer, printer, or any other device capable of sending and/or receiving data generated by other nodes on the network.
 - * A link can be a cable, air, optical fiber, or any medium which can transport a signal carrying information
- * **Network Criteria:** The network must be able to meet certain criteria such as: *performance, reliability, and security.*
 - * Performance: measured using various terms such as transmission time, response time, throughput, delay.
 - * Reliability: Network's robustness in a catastrophe. Network reliability is measured by the *frequency of failure*.
 - * Security: Network Security includes protecting data from *unauthorized access*, protecting data from damage.

Physical Structure of Network

- * The Physical Structure of the network is defined by two components:
 - * Type of Connection
 - * Topology
- * Type of Connection: Defines how the devices are connected in the network. The two types of connections are Point-to-Point and Multi-Point.
 - * Point-to-point: A point-to-point connection provides a dedicated link between two devices.
 - * The entire capacity of the link is reserved for transmission between those two devices.
 - * Multi-point: In multi-point more than two specific devices share a single link.
 - * The capacity of the channel is shared, either spatially or temporally

Fig 3: Type of Connection (Source: Data Communication Text book)

Network Topology

- * The topology refers to the way in which devices in network is laid out physically.
- * Different categories of topology are:

Fig 4: Topology Types

Mesh Topology

- * Every device has a *dedicated point-to-point link* to every other device.
- * Dedicated link means it carries traffic only between the two devices it connects.
- * The number of links (duplex mode) required to connect the N devices in a network is given by N(N-1)/2.
 - * Advantages:
 - * It guarantees that each connection can carry its own data load.
 - * Topology is Robust.
 - * Fault identification and isolation is easy in point-to-point link connection.
 - * Disadvantages:
 - * Number of link and ports are high and also consume more physical space.

Fig 5: Mesh Topology (Source: Internet)

Star Topology

- * In a star topology, each device has a *dedicated point-to-point link* to a central controller called as *hub*.
- * Star topology does not allow direct traffic between devices, data transfer happens via central hub.
- * Advantages:
 - * Less Expensive compare to mesh.
 - * Fault identification and isolation is easier.
- * Disadvantages:
 - * Depends only on centralised hub, if it fails whole topology goes down.

Fig 6: Star Topology (Source: Data Communication Text book)

Bus Topology

- * A bus topology is a *multipoint* connection.
- * One *long cable acts as a backbone* to link all the devices in a network
- * Nodes are connected to the bus cable by drop lines and taps.
 - * A *drop line* is a connection running between the device and the main cable.
 - * A *tap* is a connector that either splices into the main cable or punctures the sheathing of a cable to create a contact with the metallic core.
- * Advantages:
 - * Installation is easy
 - * Less expensive
- Disadvantages:

Fig 7: Bus Topology (Source: Data Communication Text book)

- * Fault identification, reconnection and isolation is difficult.
- * Signal reflection at the taps can cause degradation in quality

Ring Topology

- * In a ring topology, each device has *a dedicated point-to-point connection* with only the two devices on either side of it.
- * A message is passed along the ring in *one direction*, from device to device, until it reaches its destination.
- * Each device in the ring incorporates a repeater
- * Advantages:
 - * A ring is relatively easy to install and reconfigure.
- * Disadvantages:
 - * unidirectional traffic can be a disadvantage.
 - * A break in the ring (such as a disabled station) can disable the entire network

Ring Topology

Fig. 8: Ring Topology (Source: Data Communication Text Book)

Hybrid Topology

- * A network can be hybrid.
- * For example, we can have a main star topology with each branch connecting several stations in a bus topology.

Fig. 9: Hybrid Topology (Source: Computer Networks Textbook)

Categories of Network

- * Local Area Networks (LANs)
 - * Short distances
 - * Designed to provide local interconnectivity
- Wide Area Networks (WANs)
 - * Long distances
 - * Provide connectivity over large areas
- * Metropolitan Area Networks (MANs)
 - * Provide connectivity over areas such as a city, a campus

Protocols

- * A Protocol: set of rules that govern data communications.
- * A protocol in data communications defines what is communicated, how it is communicated, and when it is communicated.
- * The key elements of a protocol are syntax, semantics, and timing.

* Syntax

- * Structure or format of the data (order in which they are presented).
- * Indicates how to read the bits field delineation

* Semantics

- * The word semantics refers to the *meaning of each section of bits*.
- * Knows which fields define what action

* Timing

- * when data should be sent
- * how fast they can be sent.

Network Models

* Layered Model

Fig 10: Tasks involved in sending a letter

OSI-Model

- * Established in 1947
- * International Standards Organization (ISO) is a multinational body dedicated to worldwide agreement on international standards.
- * An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model.
- * It was first introduced in the late 1970s.

Note: ISO is the organization. &

Open System: allows any two different System to Communicate

model for understanding and designing a network architecture that is flexible, robust and interoperable

OSI is the model.

OSI-Layers

Fig. 11: Seven Layers of the OSI Model

OSI-layer

Fig 12: An exchange using the OSI model

Physical Layer

Fig 13: Physical Layer

* Responsible for movements of individual bits from one hop (node) to the next

Physical Layer

- * Other responsibilities of Physical Layer
 - * Physical characteristics of interfaces and medium and defines the type of the medium.
 - * Representation of bits (Stream of bits/sequence of 0s or 1s)
 - * Defines the type of encoding
 - * Data rate: The transmission rate-the number of bits sent each second
 - * Synchronization of bits: Sender and receiver clocks must be synchronised.
 - * Line configuration (Connection Type: Point-to-point/Multi-point)
 - * Physical topology
 - * Type of Transmission Modes

Data Link Layer

Fig 14: Data Link Layer

* Responsible for moving frames from one hop (node) to the next (Hop-to-Hop)

Data Link Layer

Fig 15: Hop-to-hop delivery

Data Link Layer

Other responsibilities of Data Link Layer:

- * **Framing**. The data link layer divides the stream of bits received from the network layer into manageable data units called frames.
- * Physical addressing.
- * Flow control
- * Error control: Mechanisms to detect and retransmit damaged or lost frames
 - * Uses a mechanism to recognize duplicate frames.
- * Access control: Data link layer protocols are necessary to determine which device has control over the link.

Network Layer

 Delivery of individual packets from the source host to the destination host

Network Layer

- * Other Responsibilities
 - * Logical addressing
 - * Routing

Fig 16: Source-to-destination Delivery

Transport Layer

* Responsible for the delivery of a message from one process to another

Transport Layer

Other Responsibilities

- * Service-point addressing: Network layer gets each packet to the correct computer; the transport layer gets the entire message to the correct process (using Port Address)
- * Segmentation and reassembly: A message is divided into transmittable segments, with each segment containing a sequence number.
- * Connection control
- * Flow control
- * Error control

Transport Layer

Fig 17: Reliable process-to-process delivery of a message

Session Layer

- * It establishes, maintains and synchronises the interaction among the devices.
- * Dialog control: It allows the communication between two processes to take place.
 - half-duplex (one way at a time)
 - * full-duplex (two ways at a time) mode
- * Synchronization

Fig 18: Session layer

* Responsible for dialog control and synchronization

Presentation Layer

- * Presentation layer concerned with the syntax and semantics of the information.
- * Translation: changes the information from its sender-dependent format into a common format
- * Compression: reduces the number of bits contained in the information
- * Encryption: Transform the original information

Fig 19: Presentation Layer

* Responsible for translation, compression, and encryption

Application Layer

- * Other Responsibilities
 - * Network virtual terminal: allows a user to log on to a remote host
 - * File transfer, access, and management
 - * Mail services
 - * Directory services: access for global information about various objects and services

Fig 20: Application Layer

* Responsible for providing services to the user

Summary of OSI Layer Model

Away

Pizzas

Sausage

Throw

Not

Do

Please

Fig 21: Summary of OSI Layers Responsibilities

TCP/IP Model

- * The original TCP/IP protocol suite was defined as having four layers: host-to-network, internet, transport, and application.
- * However, when TCP/IP is compared to OSI, we can say that the TCP/IP protocol suite is made of five layers: physical, data link, network, transport, and application.

Fig. 22: TCP/IP and OSI Model

Summary

- * Basic terms of Computer Networks and Data Communication.
- * The computer communications components.
- * Different Network Topologies.
- * OSI Layers and Responsibilities
- * TCP/IP Model

Note: Refer Chapter 1 (Except 1.3) and Chapter 2 (textbook Data Communication and Networking by Behrouz A Forouzan).