FUNDAMENTOS DE CÁLCULO

CUARTA PRÁCTICA CALIFICADA-SOLUCIONES PROPUESTAS SEMESTRE ACADÉMICO 2022-1

Horario: Turno 1.

1. Una función f está definida por

$$f(x) = \frac{2}{\pi} arcsen(x + |x + 1|)$$

halle el dominio implícito de f y esboce su gráfica.

(4 puntos)

Solución.

Para hallar el dominio implícito debemos resolver la desigualdad:

$$-1 \le x + |x + 1| \le 1...(1)$$

Si $x + 1 \ge 0$, tenemos $-1 \le x + (x + 1) \le 1$ que es equivalente a $-1 \le x \le 0$, luego intersectamos $[-1, +\infty[$ con [-1, 0] y obtenemos [-1, 0].

Si x+1 < 0, tenemos $-1 \le x + (-x-1) \le 1$ que es equivalente a $-1 \le -1 \le 1$ que es cierto, entonces cualquier x en el intervalo $]-\infty,-1[$ cumple esa desigualdad.

Por lo anterior, concluimos que el dominio implícito es $]-\infty,-1[\cup [-1,0].$

Luego, podemos redefinir la función de la siguiente forma:

$$f(x) = \begin{cases} -1, & x < -1\\ \frac{2}{\pi} \arcsin(2x+1), -1 \le x \le 0 \end{cases}$$

Usando transformaciones, obtenemos la gráfica de f.

Finalmente, la gráfica de f es

2. Considere la función f definida por

$$f(x) = \begin{cases} sen(x) + 1 &, \quad 0 < x \le \frac{\pi}{2} \\ k \cos(x) &, \quad \pi \le x \le 2\pi \end{cases}$$

donde $k \in \mathbb{R} - \{0\}$ es una constante real.

a) Para $k = \frac{1}{2}$, halle la función inversa de f y grafíquela.

(4 puntos)

b) Determine el menor valor de k tal que f sea inyectiva.

(2 puntos)

Solución.

a)
$$f(x) = \begin{cases} sen(x) + 1 & , & 0 < x \le \frac{\pi}{2} \\ \frac{cos(x)}{2} & , & \pi \le x \le 2\pi \end{cases}$$

Grafiquemos f

De la gráfica se observa que f es infectiva. Luego, existe f^{-1} .

Primer tramo: Si $x \in]0$; $\frac{\pi}{2}$] y $y = f(x) \in]1$; 2] (se obtiene de la gráfica de f) entonces $y = sen(x) + 1 \implies x = arc sen(y - 1)$

Segundo tramo: Si $x \in [\pi; 2\pi]$ y $y = f(x) \in \left[-\frac{1}{2}; \frac{1}{2}\right]$ (se obtiene de la gráfica de f) entonces $arc \cos(\cos(x-\pi)) = x - \pi$ y $\cos(x-\pi) = -\cos(x)$

$$\Rightarrow x = \pi + arc\cos(-2y)$$

Por tanto, la función inversa es

$$f^{-1}(x) = \begin{cases} \pi + arc\cos(-2x) &, & -\frac{1}{2} \le x \le \frac{1}{2} \\ arc sen (x-1) &, & 1 < x \le 2 \end{cases}$$

b) El primer tramo de f es inyectivo y tiene rango]1;2]. El segundo tramo es inyectivo y tiene rango [-k;k].

Como $k \neq 0$ entonces la función f es inyectiva si $|k| \leq 1$, donde el menor valor es k = -1.

3. Calcule los siguientes límites o explique por qué no están definidos:

a)
$$\lim_{x \to -\infty} (\pi - \arctan(2 - x))$$
 (1.5 puntos)

b)
$$\lim_{x \to 2^+} \left| 1 - \log_{\frac{1}{2}}(x - 2) \right|$$
 (1.5 puntos)

Solución.

Usando transformaciones de gráfica de funciones obtenemos

a)

$$\lim_{x \to 2^+} \left| 1 - \log_{\frac{1}{2}}(x - 2) \right| = +\infty$$

4. Sean las funciones

$$f(x) = \frac{6}{\pi} \arctan\left(\frac{x}{\sqrt{3}}\right)$$

y

$$g(x) = -1 - \log_3(x)$$
, con $0 < x \le 9$.

Determine el rango de la función $f \circ g$.

(3 puntos)

Solución

De las gráficas de f y g

Decimos que:

Para $0 < x \le 9$ se tiene que $g(x) \in [-3, +\infty[$

Para $x \in [-3, +\infty[$ se tiene $f(x) \in [-2, 3[$

Por tanto, $Ran(f \circ g) = [-2, 3[$.

5. Justifique la veracidad o falsedad de las siguientes proposiciones:

a) Si
$$a$$
 es un número real positivo tal que $\lim_{x \to +\infty} a^{2x} = 0$ entonces $a \le 2$. (1 punto)

Solución:

Verdadera, por contradicción. Si a > 2, entonces

 $a^2 > 4 > 1$ y tendríamos que $a^{2x} = (a^2)^x$ es una función exponencial de base mayor que 1, entonces $\lim_{x \to +\infty} a^{2x} = +\infty$ (por la gráfica), lo cual es una contradicción. Por lo tanto, concluimos que a ≤ 2 .

b) Si una función
$$f$$
 es creciente en]1, $+\infty$ [, entonces $\lim_{x \to +\infty} f(x) = +\infty$. (1 punto)

Solución:

Falsa, un contraejemplo es

$$f(x) = -\frac{1}{x}$$

f es creciente en]1, $+\infty$ [, y

$$\lim_{x \to +\infty} f(x) = 0$$

c) Existe $x \in [-\pi, \pi]$ tal que $sen\left(\frac{x}{4}\right) = 1$.

(1 punto)

Solución:

Falsa. La gráfica de $f(x) = sen\left(\frac{x}{4}\right)$

Nos indica que el rango es $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$.

Por lo tanto, no existe algún valor de $x \in [-\pi, \pi]$ tal que f(x) = 1.

d) La función inversa de

$$f(x) = cos(x) , \qquad 2\pi \le x \le 3\pi$$
 es $f^{-1}(x) = 2\pi + arc \cos(-x)$, $-1 \le x \le 1$. (1 punto) **Solución**

Falsa.

Si
$$x \in [2\pi + 0, 2\pi + \pi]$$
 y $y = f(x) \in [-1, 1]$ entonces
 $arc cos(cos(x - 2\pi)) = x - 2\pi$ y $cos(x - 2\pi) = cos(x)$
 $\Rightarrow x = 2\pi + arc cos(cos(x - 2\pi))$
 $\Rightarrow x = 2\pi + arc cos(cos(x))$
 $\Rightarrow x = 2\pi + arc cos(y)$
 $f^{-1}(x) = 2\pi + arc cos(x), -1 \le x \le 1$.

San Miguel, 23 de junio de 2022 Coordinadora PC4: Iris Flores.