

SEQUENCE LISTING

Wands, Jack R.
de la Monte, Suzanne M.
Ince, Nedim
Carlson, Rolf I.

- <120> DIAGNOSIS AND TREATMENT OF MALIGNANT NEOPLASMS
- <130> 21486-032 DIV5
- <140> 09/903,248
- <141> 2001-07-11
- <150> 09/436,184
- <151> 1999-11-08
- <160> 9
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 36
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Consensus EGF-like domain
- <220>
- <221> VARIANT
- <222> (2)..(8)
- <223> Wherein Xaa is any amino acid
- <220>
- <221> VARIANT
- <222> (10)..(13)
- <223> Wherein Xaa is any amino acid.
- <220>
- <221> VARIANT
- <222> (15)..(24)
- <223> Wherein Xaa is any amino acid.
- <220>
- <221> VARIANT
- <222> (26)

<220> <221> VARIANT <222> (28)..(35) <223> Wherein Xaa is any amino acid. <400> 1 Cys Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Cys Xaa Xaa 5 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Cys Xaa Xaa Xaa Xaa 20 25 30 Xaa Xaa Xaa Cys 35 <210> 2 <211> 758 <212> PRT <213> Homo sapiens <400> 2 Met Ala Gln Arg Lys Asn Ala Lys Ser Ser Gly Asn Ser Ser Ser Ser Gly Ser Gly Ser Gly Ser Thr Ser Ala Gly Ser Ser Ser Pro Gly Ala 20 25 Arg Arg Glu Thr Lys His Gly Gly His Lys Asn Gly Arg Lys Gly Gly 40 Leu Ser Gly Thr Ser Phe Phe Thr Trp Phe Met Val Ile Ala Leu Leu 55 Gly Val Trp Thr Ser Val Ala Val Val Trp Phe Asp Leu Val Asp Tyr 65 70 75 80 Glu Glu Val Leu Gly Lys Leu Gly Ile Tyr Asp Ala Asp Gly Asp Gly 85 90 95 Asp Phe Asp Val Asp Asp Ala Lys Val Leu Leu Gly Leu Lys Glu Arg 100 105 110 Ser Thr Ser Glu Pro Ala Val Pro Pro Glu Glu Ala Glu Pro His Thr

<223> Wherein Xaa is any amino acid.

120

125

Glu	Pro 130	Glu	GIu	GIn	Val	Pro 135	Val	Glu	Ala	Glu	Pro 140	GIn	Asn	He	Glu
Asp 145	Glu	Ala	Lys	Glu	Gln 150	Ile	Gln	Ser	Leu	Leu 155	His	Glu	Met	Val	His 160
Ala	Glu	His	Val	Glu 165	Gly	Glu	Asp	Leu	Gln 170	Gln	Glu	Asp	Gly	Pro 175	Thr
Gly	Glu	Pro	Gln 180	Gln	Glu	Asp	Asp	Glu 185	Phe	Leu	Met	Ala	Thr 190	Asp	Val
Asp	Asp	Arg 195	Phe	Glu	Thr	Leu	Glu 200	Pro	Glu	Val	Ser	His 205	Glu	Glu	Thr
Glu	His 210	Ser	Tyr	His	Val	Glu 215	Glu	Thr	Val	Ser	Gln 220	Asp	Cys	Asn	Gln
Asp 225	Met	Glu	Glu	Met	Met 230	Ser	Glu	Gln	Glu	Asn 235	Pro	Asp	Ser	Ser	Glu 240
Pro	Val	Val	Glu	Asp 245	Glu	Arg	Leu	His	His 250	Asp	Thr	Asp	Asp	Val 255	Thr
Tyr	Gln	Val	Tyr 260	Glu	Glu	Gln	Ala	Val 265	Tyr	Glu	Pro	Leu	Glu 270	Asn	Glu
Gly	Ile	Glu 275	Ile	Thr	Glu	Val	Thr 280	Ala	Pro	Pro	Glu	Asp 285	Asn	Pro	Val
Glu	Asp 290	Ser	Gln	Val	Ile	Val 295	Glu	Glu	Val	Ser	Ile 300	Phe	Pro	Val	Glu
Glu 305	Gln	Gln	Glu	Val	Pro 310	Pro	Glu	Thr	Asn	Arg 315	Lys	Thr	Asp	Asp	Pro 320
Glu	Gln	Lys	Ala	Lys 325	Val	Lys	Lys	Lys	Lys 330	Pro	Lys	Leu	Leu	Asn 335	Lys
Phe	Asp	Lys	Thr 340	Ile	Lys	Ala	Glu	Leu 345	Asp	Ala	Ala	Glu	Lys 350	Leu	Arg
Lys	Arg	Gly 355	Lys	Ile	Glu	Glu	Ala 360	Val	Asn	Ala	Phe	Lys 365	Glu	Leu	Val
Arg	Lys 370	Tyr	Pro	Gln	Ser	Pro 375	Arg	Ala	Arg	Tyr	Gly 380	Lys	Ala	Gln	Cys

385	Asp	Asp	Leu	Ala	390	гуs	Arg	Arg	ser	395	Glu	vai	Leu	Arg	400
Ala	Ile	Glu	Thr	Tyr 405	Gln	Glu	Val	Ala	Ser 410	Leu	Pro	Asp	Val	Pro 415	Ala
Asp	Leu	Leu	Lys 420	Leu	Ser	Leu	Lys	Arg 425	Arg	Ser	Asp	Arg	Gln 430	Gln	Phe
Leu	Gly	His 435	Met	Arg	Gly	Ser	Leu 440	Leu	Thr	Leu	Gln	Arg 445	Leu	Val	Gln
Leu	Phe 450	Pro	Asn	Asp	Thr	Ser 455	Leu	Lys	Asn	Asp	Leu 460	Gly	Val	Gly	Tyr
Leu 465	Leu	Ile	Gly	Asp	Asn 470	Asp	Asn	Ala	Lys	Lys 475	Val	Tyr	Glu	Glu	Val 480
Leu	Ser	Val	Thr	Pro 485	Asn	Asp	Gly	Phe	Ala 490	Lys	Val	His	Tyr	Gly 495	Phe
Ile	Leu	Lys	Ala 500	Gln	Asn	Lys	Ile	Ala 505	Glu	Ser	Ile	Pro	Tyr 510	Leu	Lys
Glu	Gly	Ile 515	Glu	Ser	Gly	Asp	Pro 520	Gly	Thr	Asp	Asp	Gly 525	Arg	Phe	Tyr
Phe	His 530	Leu	Gly	Asp	Ala	Met 535	Gln	Arg	Val	Gly	Asn 540	Lys	Glu	Ala	Tyr
Lys 545	Trp	Tyr	Glu	Leu	Gly 550	His	Lys	Arg	Gly	His 555	Phe	Ala	Ser	Val	Trp 560
Gln	Arg	Ser	Leu	Tyr 565	Asn	Val	Asn	Gly	Leu 570	Lys	Ala	Gln	Pro	Trp 575	Trp
Thr	Pro	Lys	Glu 580	Thr	Gly	Tyr	Thr	Glu 585	Leu	Val	Lys	Ser	Leu 590	Glu	Arg
Asn	Trp	Lys 595	Leu	Ile	Arg	Asp	Glu 600	Gly	Leu	Ala	Val	Met 605	Asp	Lys	Ala
Lys	Gly 610	Leu	Phe	Leu	Pro	Glu 615	Asp	Glu	Asn	Leu	Arg 620	Glu	Lys	Gly	Asp
Trp 625	Ser	Gln	Phe	Thr	Leu 630	Trp	Gln	Gln	Gly	Arg 635	Arg	Asn	Glu	Asn	Ala 640

Cys Lys Gly Ala Pro Lys Thr Cys Thr Leu Leu Glu Lys Phe Pro Glu 645 650 655

Thr Thr Gly Cys Arg Arg Gly Gln Ile Lys Tyr Ser Ile Met His Pro 660 665 670

Gly Thr His Val Trp Pro His Thr Gly Pro Thr Asn Cys Arg Leu Arg 675 680 685

Met His Leu Gly Leu Val Ile Pro Lys Glu Gly Cys Lys Ile Arg Cys 690 695 700

Ala Asn Glu Thr Arg Thr Trp Glu Glu Gly Lys Val Leu Ile Phe Asp 705 710 715 720

Asp Ser Phe Glu His Glu Val Trp Gln Asp Ala Ser Ser Phe Arg Leu 725 730 735

Ile Phe Ile Val Asp Val Trp His Pro Glu Leu Thr Pro Gln Gln Arg
740 745 750

Arg Ser Leu Pro Ala Ile 755

<210> 3

<211> 2324

<212> DNA

<213> Homo sapiens

<400> 3

cggaccgtgc aatggcccag cgtaagaatg ccaagagcag cggcaacagc agcagcagcg 60 qctccqqcaq cqqtaqcacq aqtqcqqqca qcaqcaqccc cqqqqgccqq agagagacaa 120 agcatggagg acacaagaat gggaggaaag gcggactctc gggaacttca ttcttcacgt 180 ggtttatggt gattgcattg ctgggcgtct ggacatctgt agctgtcgtt tggtttgatc 240 ttgttgacta tgaggaagtt ctaggaaaac taggaatcta tgatgctgat ggtgatggag 300 attttgatgt ggatgatgcc aaagttttat taggacttaa agagagatct acttcagagc 360 cagcagtece gecagaagag getgageeac acaetgagee egaggageag gtteetgtgg 420 aggcagaacc ccagaatatc gaagatgaag caaaagaaca aattcagtcc cttctccatg 480 aaatggtaca cgcagaacat gttgagggag aagacttgca acaagaagat ggacccacag 540 qaqaaccaca acaaqaqqat qatqaqtttc ttatqqcqac tqatqtaqat qataqatttq 600 agaccetgga acetgaagta teteatgaag aaacegagea tagttaceae gtggaagaga 660 cagtttcaca agactgtaat caggatatgg aagagatgat gtctgagcag gaaaatccag 720 attccagtga accagtagta gaagatgaaa gattgcacca tgatacagat gatgtaacat 780 accaagtcta tgaggaacaa gcagtatatg aacctctaga aaatgaaggg atagaaatca 840 cagaagtaac tgctcccct gaggataatc ctgtagaaga ttcacaggta attgtagaag 900 aagtaagcat ttttcctgtg gaagaacagc aggaagtacc accagaaaca aatagaaaaa 960 cagatqatcc aqaacaaaaa qcaaaaqtta aqaaaaaqaa gcctaaactt ttaaataaat 1020

```
ttgataagac tattaaagct gaacttgatg ctgcagaaaa actccgtaaa aggggaaaaa 1080
ttgaggaagc agtgaatgca tttaaagaac tagtacgcaa ataccctcag agtccacgag 1140
caagatatgg gaaggcgcag tgtgaggatg atttggctga gaagaggaga agtaatgagg 1200
tgctacqtqq agccatcqaq acctaccaaq aqqtqqccaq cctacctgat qtccctqcaq 1260
acctgctgaa gctgagtttg aagcgtcgct cagacaggca acaatttcta ggtcatatga 1320
gaggttccct gcttaccctg cagagattag ttcaactatt tcccaatgat acttccttaa 1380
aaaatgacct tggcgtggga tacctcttga taggagataa tgacaatgca aagaaagttt 1440
atgaagaggt gctgaqtgtg acacctaatg atggctttgc taaagtccat tatggcttca 1500
tcctgaaggc acagaacaaa attgctgaga gcatcccata tttaaaggaa ggaatagaat 1560
ccggagatcc tggcactgat gatgggagat tttatttcca cctgggggat gccatgcaga 1620
gggttgggaa caaagaggca tataagtggt atgagcttgg gcacaagaga ggacactttg 1680
catctgtctg gcaacgctca ctctacaatg tgaatggact gaaagcacag ccttggtgga 1740
ccccaaaaga aacgggctac acagagttag taaagtcttt agaaagaaac tggaagttaa 1800
tccgagatga aggccttgca gtgatggata aagccaaagg tctcttcctg cctgaggatg 1860
aaaacctgag ggaaaaaggg gactggagcc agttcacgct gtggcagcaa ggaagaagaa 1920
atgaaaatgc ctgcaaagga gctcctaaaa cctgtacctt actagaaaag ttccccgaga 1980
caacaqqatq caqaaqaqqa caqatcaaat attccatcat qcaccccqqq actcacqtqt 2040
ggccgcacac agggcccaca aactgcaggc tccgaatgca cctgggcttg gtgattccca 2100
aggaaggetg caagattega tgtgccaacg agaccaggac ctgggaggaa ggcaaggtgc 2160
tcatctttga tgactccttt gagcacgagg tatggcagga tgcctcatct ttccggctga 2220
tattcatcqt ggatqtgtgg catccggaac tgacaccaca gcagagacgc agccttccag 2280
caatttagca tgaattcatg caagcttggg aaactctgga gaga
                                                                  2324
```

```
<210> 4
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EGF-like
      cysteine-rich repeat
<220>
<221> VARIANT
<222> (3)..(5)
<223> Wherein any Xaa may be any amino acid
<220>
<221> VARIANT
<222> (6)..(7)
<223> Wherein Xaa is any amino acid.
<220>
<221> VARIANT
<222> (10)
<223> Wherein Xaa is any amino acid.
```

```
<220>
<221> VARIANT
<222> (14)
<223> Wherein Xaa is any amino acid.
<220>
<221> VARIANT
<222> (17)..(18)
<220>
<221> VARIANT
<222> (25)..(26)
<223> Wherein Xaa is any amino acid.
<220>
<221> VARIANT
<222> (29)
<223> Wherein Xaa is any amino acid.
Cys Asp Xaa Xaa Cys Xaa Xaa Lys Xaa Gly Asn Gly Xaa Cys Asp
                  5
                                      10
 1
                                                          15
Xaa Xaa Cys Asn Asn Ala Ala Cys Xaa Xaa Asp Gly Xaa Asp Cys
             20
<210> 5
<211> 1242
<212> PRT
<213> Homo sapiens
Met Ala Ser Pro Pro Glu Ser Asp Gly Phe Ser Asp Val Arg Lys Val
                                     10
Gly Tyr Leu Arg Lys Pro Lys Ser Met His Lys Arg Phe Phe Val Leu
             20
                                 25
Arg Ala Ala Ser Glu Ala Gly Gly Pro Ala Arg Leu Glu Tyr Tyr Glu
         35
                             40
Asn Glu Lys Lys Trp Arg His Lys Ser Ser Ala Pro Lys Arg Ser Ile
     50
                         55
                                              60
Pro Leu Glu Ser Cys Phe Asn Ile Asn Lys Arg Ala Asp Ser Lys Asn
```

65

75

гàг	HIS	Leu	Val	85	Leu	Tyr	Thr	Arg	90	GIU	HIS	Pne	Ala	95	Ala
Ala	Asp	Ser	Glu 100	Ala	Glu	Gln	Asp	Ser 105	Trp	Tyr	Gln	Ala	Leu 110	Leu	Gln
Leu	His	Asn 115	Arg	Ala	Lys	Gly	His 120	His	Asp	Gly	Ala	Ala 125	Ala	Leu	Gly
Ala	Gly 130	Gly	Gly	Gly	Gly	Ser 135	Cys	Ser	Gly	Ser	Ser 140	Gly	Leu	Gly	Glu
Ala 145	Gly	Glu	Asp	Leu	Ser 150	Tyr	Gly	Asp	Val	Pro 155	Pro	Gly	Pro	Ala	Phe 160
Lys	Glu	Val	Trp	Gln 165	Val	Ile	Leu	Lys	Pro 170	Lys	Gly	Leu	Gly	Gln 175	Thr
Lys	Asn	Leu	Ile 180	Gly	Ile	Tyr	Arg	Leu 185	Cys	Leu	Thr	Ser	Lys 190	Thr	Ile
Ser	Phe	Val 195	Lys	Leu	Asn	Ser	Glu 200	Ala	Ala	Ala	Val	Val 205	Leu	Gln	Leu
Met	Asn 210	Ile	Arg	Arg	Cys	Gly 215	His	Ser	Glu	Asn	Phe 220	Phe	Phe	Ile	Glu
Val 225	Gly	Arg	Ser	Ala	Val 230	Thr	Gly	Pro	Gly	Glu 235	Phe	Trp	Met	Gln	Val 240
Asp	Asp	Ser	Val	Val 245	Ala	Gln	Asn	Met	His 250	Glu	Thr	Ile	Leu	Glu 255	Ala
Met	Arg	Ala	Met 260	Ser	Asp	Glu	Phe	Arg 265	Pro	Arg	Ser	Lys	Ser 270	Gln	Ser
Ser	Ser	Asn 275	Cys	Ser	Asn	Pro	Ile 280	Ser	Val	Pro	Leu	Arg 285	Arg	His	His
Leu	Asn 290	Asn	Pro	Pro	Pro	Ser 295	Gln	Val	Gly	Leu	Thr 300	Arg	Arg	Ser	Arg
Thr 305	Glu	Ser	Ile	Thr	Ala 310	Thr	Ser	Pro	Ala	Ser 315	Met	Val	Gly	Gly	Lys 320
Pro	Gly	Ser	Phe	Arg 325	Val	Arg	Ala	Ser	Ser 330	Asp	Gly	Glu	Gly	Thr 335	Met

Ser	Arg	Pro	Ala 340	Ser	Val	Asp	Gly	Ser 345	Pro	Val	Ser	Pro	Ser 350	Thr	Asn
Arg	Thr	His 355	Ala	His	Arg	His	Arg 360	Gly	Ser	Ala	Arg	Leu 365	His	Pro	Pro
Leu	Asn 370	His	Ser	Arg	Ser	Ile 375	Pro	Met	Pro	Ala	Ser 380	Arg	Cys	Ser	Pro
Ser 385	Ala	Thr	Ser	Pro	Val 390	Ser	Leu	Ser	Ser	Ser 395	Ser	Thr	Ser	Gly	His 400
Gly	Ser	Thr	Ser	Asp 405	Cys	Leu	Phe	Pro	Arg 410	Arg	Ser	Ser	Ala	Ser 415	Val
Ser	Gly	Ser	Pro 420	Ser	Asp	Gly	Gly	Phe 425	Ile	Ser	Ser	Asp	Glu 430	Tyr	Gly
Ser	Ser	Pro 435	Сув	Asp	Phe	Arg	Ser 440	Ser	Phe	Arg	Ser	Val 445	Thr	Pro	Asp
Ser	Leu 450	Gly	His	Thr	Pro	Pro 455	Ala	Arg	Gly	Glu	Glu 460	Glu	Leu	Ser	Asn
Tyr 465	Ile	Сув	Met	Gly	Gly 470	Lys	Gly	Pro	Ser	Thr 475	Leu	Thr	Ala	Pro	Asn 480
Gly	His	Tyr	Ile	Leu 485	Ser	Arg	Gly	Gly	Asn 490	Gly	His	Arg	Cys	Thr 495	Pro
Gly	Thr	Gly	Leu 500	Gly	Thr	Ser	Pro	Ala 505	Leu	Ala	Gly	Asp	Glu 510	Ala	Ala
Ser	Ala	Ala 515	Asp	Leu	Asp	Asn	Arg 520	Phe	Arg	Lys	Arg	Thr 525	His	Ser	Ala
Gly	Thr 530	Ser	Pro	Thr	Ile	Thr 535	His	Gln	Lys	Thr	Pro 540	Ser	Gln	Ser	Ser
Val 545	Ala	Ser	Ile	Glu	Glu 550	Tyr	Thr	Glu	Met	Met 555	Pro	Ala	Tyr	Pro	Pro 560
Gly	Gly	Gly	Ser	Gly 565	Gly	Arg	Leu	Pro	Gly 570	His	Arg	His	Ser	Ala 575	Phe
Val	Pro	Thr	Arg	Ser	Tyr	Pro	Glu	Glu	Gly	Leu	Glu	Met	His	Pro	Leu

Glu Arg Arg Gly Gly His His Arg Pro Asp Ser Ser Thr Leu His Thr Asp Asp Gly Tyr Met Pro Met Ser Pro Gly Val Ala Pro Val Pro Ser Gly Arg Lys Gly Ser Gly Asp Tyr Met Pro Met Ser Pro Lys Ser Val Ser Ala Pro Gln Gln Ile Ile Asn Pro Ile Arg Arg His Pro Gln Arg Val Asp Pro Asn Gly Tyr Met Met Ser Pro Ser Gly Gly Cys Ser Pro Asp Ile Gly Gly Pro Ser Ser Ser Ser Ser Ser Ser Asn Ala Val Pro Ser Gly Thr Ser Tyr Gly Lys Leu Trp Thr Asn Gly Val Gly Gly His His Ser His Val Leu Pro His Pro Lys Pro Pro Val Glu Ser Ser Gly Gly Lys Leu Pro Cys Thr Gly Asp Tyr Met Asn Met Ser Pro Val Gly Asp Ser Asn Thr Ser Ser Pro Ser Asp Cys Tyr Tyr Gly Pro Glu Asp Pro Gln His Lys Pro Val Leu Ser Tyr Tyr Ser Leu Pro Arg Ser Phe Lys His Thr Gln Arg Pro Gly Glu Pro Glu Glu Gly Ala Arg His Gln His Leu Arg Leu Ser Thr Ser Ser Gly Arg Leu Leu Tyr Ala Ala Thr Ala Asp Asp Ser Ser Ser Ser Thr Ser Ser Asp Ser Leu Gly Gly Tyr Cys Gly Ala Arg Leu Glu Pro Ser Leu Pro His Pro His His Gln Val Leu Gln Pro His Leu Pro Arg Lys Val Asp Thr Ala

Ala	Gln 850	Thr	Asn	Ser	Arg	Leu 855	Ala	Arg	Pro	Thr	Arg 860	Leu	Ser	Leu	Gly
Asp 865	Pro	Lys	Ala	Ser	Thr 870	Leu	Pro	Arg	Ala	Arg 875	Glu	Gln	Gln	Gln	Gln 880
Gln	Gln	Pro	Leu	Leu 885	His	Pro	Pro	Glu	Pro 890	Lys	Ser	Pro	Gly	Glu 895	Tyr
Val	Asn	Ile	Glu 900	Phe	Gly	Ser	Asp	Gln 905	Ser	Gly	Tyr	Leu	Ser 910	Gly	Pro
Val	Ala	Phe 915	His	Ser	Ser	Pro	Ser 920	Val	Arg	Cys	Pro	Ser 925	Gln	Leu	Gln
Pro	Ala 930	Pro	Arg	Glu	Glu	Glu 935	Thr	Gly	Thr	Glu	Glu 940	Tyr	Met	Lys	Met
Asp 945	Leu	Gly	Pro	Gly	Arg 950	Arg	Ala	Ala	Trp	Gln 955	Glu	Ser	Thr	Gly	Val 960
Glu	Met	Gly	Arg	Leu 965	Gly	Pro	Ala	Pro	Pro 970	Gly	Ala	Ala	Ser	Ile 975	Cys
Arg	Pro	Thr	Arg 980	Ala	Val	Pro	Ser	Ser 985	Arg	Gly	Asp	Tyr	Met 990	Thr	Met
Gln	Met	Ser 995	Cys	Pro	Arg		Ser .000	Tyr	Val	Asp		Ser .005	Pro	Ala	Ala
	Val .010	Ser	Tyr	Ala	Asp 1	Met .015	Arg	Thr	Gly		Ala .020	Ala	Glu	Glu	Val
Ser 1025		Pro	Arg		Thr 1030	Met	Ala	Ala		Ser .035	Ser	Ser	Ser		Ala .040
Ser	Ala	Ser		Thr .045	Gly	Pro	Gln	-	Ala .050	Ala	Glu	Leu		Ala .055	His
Ser	Ser		Leu .060	Gly	Gly	Pro		Gly .065	Pro	Gly	Gly		Ser .070	Ala	Phe
Thr	_	Val .075	Asn	Leu	Ser		Asn .080	Arg	Asn	Gln		Ala .085	Lys	Val	Ile

Arg Ala Asp Pro Gln Gly Cys Arg Arg Arg His Ser Ser Glu Thr Phe

Ser Ser Thr Pro Ser Ala Thr Arg Val Gly Asn Thr Val Pro Phe Gly 1105 1110 1115 1120

Ala Gly Ala Ala Val Gly Gly Gly Gly Ser Ser Ser Ser Glu 1125 1130 1135

Asp Val Lys Arg His Ser Ser Ala Ser Phe Glu Asn Val Trp Leu Arg 1140 1145 1150

Pro Gly Glu Leu Gly Gly Ala Pro Lys Glu Pro Ala Lys Leu Cys Gly
1155 1160 1165

Ala Ala Gly Gly Leu Glu Asn Gly Leu Asn Tyr Ile Asp Leu Asp Leu 1170 1175 1180

Val Lys Asp Phe Lys Gln Cys Pro Gln Glu Cys Thr Pro Glu Pro Gln 1185 1190 1195 1200

Pro Pro Pro Pro Pro Pro Pro His Gln Pro Leu Gly Ser Gly Glu Ser
1205 1210 1215

Ser Ser Thr Arg Arg Ser Ser Glu Asp Leu Ser Ala Tyr Ala Ser Ile 1220 1225 1230

Ser Phe Gln Lys Gln Pro Glu Asp Arg Gln 1235 1240

<210> 6

<211> 5828

<212> DNA

<213> Homo sapiens

<400> 6

cggcggcgcg gtcggaggg gccggcgcg agagccagac gccgccgctt gttttggttg 60 gggctctcgg caactctccg aggaggaga ggaggagga ggaggggaga agtaactgca 120 gcggcagcg cctcccgagg aacaggcgtc ttccccgaac ccttcccaaa cctcccccat 180 cccctctcgc ccttgtcccc tcccctcctc cccagccgcc tggaggagag ggcagggatg 240 agtctgtccc tccggcgct ccccagctgc agtggctgcc cggtatcgtt tcgcatggaa 300 aagccacttt ctccacccgc cgagatgggc ccggatgggg ctgcagagga cgcgccgcg 360 ggcggcggaa gcagcagcag cagcagcag agcaacagca acagccgcag cgcgccgcg 420 tctgcgactg agctggtatt tggggcggct gtggcggctg ggacggttgg ggggtgggag 480 gaggcgaagg agcagggaa accccgtca acgttggac tttggcaaccc gcctcccct 540 gcccaaaggat atttaatttg cctcgggaat cgctgcttcc agaggggaac tcaggagga 600 aggcgcgcgc gcgcgcgc tcctggagga gatcgcgag gacccccgac tgtcgctcc 660 ctgtgccga aggagacttg gccccgaaa agagggct gccctcaccc cggacgcact 780 gcctccccc cggcgtgaag cgcccgaaaa ctccggtcg gcctctccc cggacgcac 840

```
getgegteet cetteagetg ecceteceeg gegeggggg eggegtggat tteagagteg 900
gggtttctgc tgcctccagc cctgtttgca tgtgccgggc cgcggcgagg agcctccgcc 960
ccccacccgg ttgtttttcg gagcctccct ctgctcagcg ttggtggtgg cggtggcagc 1020
atggcgagcc ctccggagag cgatggcttc tcggacgtgc gcaaggtggg ctacctgcgc 1080
aaacccaaga gcatgcacaa acgcttcttc gtactgcgcg cggccagcga ggctgggggc 1140
ccggcgcgcc tcgagtacta cgagaacgag aagaagtggc ggcacaagtc gagcgccccc 1200
aaacgctcga tececettga gagetgette aacateaaca agegggetga etecaagaac 1260
aagcacctgg tggctctcta cacccgggac gagcactttg ccatcgcggc ggacagcgag 1320
gccgagcaag acagctggta ccaggctctc ctacagctgc acaaccgtgc taagggccac 1380
cacgacggag ctgcggccct cggggcggga ggtggtgggg gcagctgcag cggcagctcc 1440
ggccttggtg aggctgggga ggacttgagc tacggtgacg tgcccccagg acccgcattc 1500
aaagaggtet ggcaagtgat eetgaageee aagggeetgg gteagaeaaa gaacetgatt 1560
ggtatctacc gcctttgcct gaccagcaag accatcagct tcgtgaagct gaactcggag 1620
gcagcggccg tggtgctgca gctgatgaac atcaggcgct gtggccactc ggaaaacttc 1680
ttetteateg aggtgggeeg ttetgeegtg aeggggeeeg gggagttetg gatgeaggtg 1740
gatgactetg tggtggccca gaacatgcac gagaccatec tggaggccat gcgggccatg 1800
agtgatgagt tecgeceteg cageaagage cagteetegt ceaactgete taaccecate 1860
agegtecece tgegeeggea ceateteaac aateeeege eeageeaggt ggggetgaee 1920
cgccgatcac gcactgagag catcaccgcc acctccccgg ccagcatggt gggcgggaag 1980
ccaggeteet teegtgteeg egeeteeagt gaeggegaag geaceatgte eegeeeagee 2040
teggtggaeg geageeetgt gagteeeage accaacagaa eeeaegeeea eeggeategg 2100
ggcagcgccc ggctgcaccc cccgctcaac cacagccgct ccatccccat gccggcttcc 2160
egetgetege etteggeeae eageceggte agtetgtegt ceagtageae eagtggeeat 2220
ggetecacet eggattgtet etteceaegg egatetagtg etteggtgte tggtteeece 2280
agegatggeg gtttcatctc cteggatgag tatggeteca gteeetgega tttceggagt 2340
teetteegea gtgteactee ggatteeetg ggeeacacee caccageeeg eggtgaggag 2400
gagetaagea actatatetg catgggtgge aaggggeeet ceaecetgae egeeeecaae 2460
ggtcactaca ttttgtctcg gggtggcaat ggccaccgct gcaccccagg aacaggcttg 2520
ggcacgagtc cagcettggc tggggatgaa gcagccagtg ctgcagatct ggataatcgg 2580
ttccgaaaga gaactcactc ggcaggcaca tcccctacca ttacccacca gaagaccccg 2640
teccagteet cagtggette cattgaggag tacacagaga tgatgeetge etacecacca 2700
ggaggtggca gtggaggccg actgccggga cacaggcact ccgccttcgt gcccacccgc 2760
tectacecag aggaggtet ggaaatgeae eeettggage gtegggggg gcaccacege 2820
ccagacaget ccaeceteca caeggatgat ggetacatge ccatgteece aggggtggee 2880
ccagtgccca gtggccgaaa gggcagtgga gactatatgc ccatgagccc caagagcgta 2940
tetgececae ageagateat caateceate agaegeeate eecagagagt ggaceecaat 3000
ggctacatga tgatgtcccc cagcggtggc tgctctcctg acattggagg tggccccagc 3060
agcagcagca gcagcagcaa cgccgtccct tccgggacca gctatggaaa gctgtggaca 3120
aacggggtag ggggccacca ctctcatgtc ttgcctcacc ccaaaccccc agtggagagc 3180
ageggtggta agetettace ttgcacaggt gactacatga acatgtcace agtgggggac 3240
tecaacacca geagecette egactgetae taeggeeetg aggacececa geacaageca 3300
gtcctctcct actactcatt gccaagatcc tttaagcaca cccagcgccc cggggagccg 3360
gaggagggtg cocggcatca gcacctccgc ctttccacta gctctggtcg ccttctctat 3420
gctgcaacag cagatgattc ttcctcttcc accagcagcg acagcctggg tggggggatac 3480
tgcggggcta ggctggagcc cagccttcca catccccacc atcaggttct gcagccccat 3540
ctgcctcgaa aggtggacac agctgctcag accaatagcc gcctggcccg gcccacgagg 3600
ctgtccctgg gggatcccaa ggccagcacc ttacctcggg cccgagagca gcagcagcag 3660
cagcagccct tgctgcaccc tccagagccc aagagcccgg gggaatatgt caatattgaa 3720
```

```
tttgggagtg atcagtctgg ctacttgtct ggcccggtgg ctttccacag ctcaccttct 3780
qtcaggtgtc catcccagct ccagccagct cccagagagg aagagactgg cactgaggag 3840
tacatgaaga tggacctggg gccgggccgg agggcagcct ggcaggagag cactggggtc 3900
gagatgggca gactgggccc tgcacctccc ggggctgcta gcatttgcag gcctacccgg 3960
gcagtgccca gcagccgggg tgactacatg accatgcaga tgagttgtcc ccgtcagagc 4020
tacgtggaca cctcgccagc tgcccctgta agctatgctg acatgcgaac aggcattgct 4080
qcagaggagg tgagcctgcc cagggccacc atggctgctg cctcctcatc ctcagcagcc 4140
tetgetteee egactgggee teaaggggea geagagetgg etgeeeacte gteeetgetg 4200
gggggcccac aaggacctgg gggcatgagc gccttcaccc gggtgaacct cagtcctaac 4260
cgcaaccaga gtgccaaagt gatccgtgca gacccacaag ggtgccggcg gaggcatagc 4320
tecgagaett teteeteaae acceagtgee accegggtgg geaacacagt gecetttgga 4380
gcgggggcag cagtaggggg cggtggcggt agcagcagca gcagcgagga tgtgaaacgc 4440
cacagetetg etteetttga gaatgtgtgg etgaggeetg gggagettgg gggageecee 4500
aaggagccag ccaaactgtg tggggctgct gggggtttgg agaatggtct taactacata 4560
gacctggatt tggtcaagga cttcaaacag tgccctcagg agtgcacccc tgaaccgcag 4620
cctccccac ccccaccccc tcatcaaccc ctgggcagcg gtgagagcag ctccacccgc 4680
cgctcaagtg aggatttaag cgcctatgcc agcatcagtt tccagaagca gccagaggac 4740
cgtcagtagc tcaactggac atcacagcag aatgaagacc taaatgacct cagcaaatcc 4800
tcttctaact catgggtacc cagactctaa atatttcatg attcacaact aggacctcat 4860
atcttcctca tcagtagatg gtacgatgca tccatttcag tttgtttact ttatccaatc 4920
ctcaggattt cattgactga actgcacgtt ctatattgtg ccaagcgaaa aaaaaaaatg 4980
cactgtgaca ccagaataat gagtctgcat aaacttcatc ttcaacctta aggacttagc 5040
tggccacagt gagctgatgt gcccaccacc gtgtcatgag agaatgggtt tactctcaat 5100
qcattttcaa gatacatttc atctgctgct gaaactgtgt acgacaaagc atcattgtaa 5160
attatttcat acaaaactgt tcacgttggg tggagagagt attaaatatt taacataggt 5220
tttgatttat atgtgtaatt ttttaaatga aaatgtaact tttcttacag cacatctttt 5280
ttttggatgt gggatggagg tatacaatgt tctgttgtaa agagtggagc aaatgcttaa 5340
aacaaggett aaaagagtag aatagggtat gateettgtt ttaagattgt aatteagaaa 5400
acataatata agaatcatag tgccatagat ggttctcaat tgtatagtta tatttgctga 5460
tactatctct tgtcatataa acctgatgtt gagctgagtt ccttataaga attaatctta 5520
attttgtatt ttttcctgta agacaatagg ccatgttaat taaactgaag aaggatatat 5580
ttggctgggt gttttcaaat gtcagcttaa aattggtaat tgaatggaag caaaattata 5640
agaagaggaa attaaagtct tccattgcat gtattgtaaa cagaaggaga tgggtgattc 5700
cttcaattca aaagctctct ttggaatgaa caatgtgggc gtttgtaaat tctggaaatg 5760
5828
aaaaaaaa
```

```
<210> 7
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: FLAG epitope
<400> 7
Asp Tyr Lys Asp Asp Asp Asp Lys
```

<210>	8	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Primer	
<400>	8	•
ggggga	aattt gtcaata	17
<210>	9	
<211>		
<212>		
	Artificial Sequence	
~~~		
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	9	
gaattt	gtta atattg	16