Quantum Cohomology and the Gromov-Witten Theory of \mathbb{P}^2

Adam Monteleone

November 26, 2024

1 Introduction

We would like to know the answer to the following question:

Question 1.1. What is the number N_d of degree d rational curves that pass through (3d-1) points in general position on the plane?

One way to proceed is to get our hands dirty and see if we can spot some kind of pattern. Well, the case when n = 1 reduces to a basic question that one first encounters early in school, namely:

Question 1.2. How many lines pass between two points in the plane?

The answer if of course 1, so the number of degree 1 rational curves that pass through 2 marked points which are in general position is 1. The next iteration of the question would be for when the degree is 2.

Question 1.3. How many conics pass between five points in the plane?

Once again the answer is classically known to be 1 and has been known at least since the time of Apollonius (\sim 200B.C). We can show this by construction as follows: consider points (x_i, y_i) with $1 \le i \le 5$ in general position then we have the determinant

$$f(X,Y) = \begin{vmatrix} 1 & X & Y & X^2 & Y^2 & XY \\ 1 & x_1 & y_1 & x_1^2 & y_1^2 & x_1y_1 \\ 1 & x_2 & y_2 & x_2^2 & y_2^2 & x_2y_2 \\ 1 & x_3 & y_3 & x_3^2 & y_3^2 & x_3y_3 \\ 1 & x_4 & y_4 & x_4^2 & y_4^2 & x_4y_4 \\ 1 & x_5 & y_5 & x_5^2 & y_5^2 & x_5y_5 \end{vmatrix}.$$
(1)

The determinant here is a polynomial of degree 2 (i.e a conic) in X and Y and substituting in any of our five points we have $f(x_i, y_i) = 0$ as this would yield two identical rows. Therefore five points determine a unique conic in \mathbb{P}^2 .

Question 1.4. How many cubics pass between 8 points in the plane?

This is a much less elementary question and the answer is 12 as computed by Chasles/Steiner in the early 19th century. A sketch of the argument for the proof is given:

Consider a line f(x,y) + tg(x,y) = 0 with coordinate t in the space of cubics i.e $\deg(f) = \deg(g) = 3$. The cubics can be seen as a family over $\mathbb{P}^1_{[t]}$. We now compute the Euler characteristic of the total space \mathcal{S} in two ways: By Bezout's theorem f and g intersect at nine points corresponding to nine lines. If $P \in \mathbb{P}^2$ is not one of those nine points then there is one cubic in the family that contains such a point. The total space can be recognized as the blowup of \mathbb{P}^2 at 9 points, and hence has Euler characteristic $\chi(\mathcal{S}) = \chi(\mathbb{P}^2 \setminus 9\mathbb{P}^0 \sqcup 9\mathbb{P}^1) = 3 - 9 \cdot 1 + 9 \cdot 2 = 12$. Alternatively, viewing the family fiberwise, the generic fiber is a smooth cubic (torus) and the nodal cubic has $\chi(C_{\text{nodal}}) = 1$ and the Euler characteristic of the family is $\chi(\mathcal{S}) = n_{\text{nodal}} \chi(C_{\text{nodal}}) + n_{\text{smooth}} \chi(C_{\text{smooth}}) = n_{\text{nodal}}$, which gives $n_{\text{nodal}} = 12$.

To summarize we have found that $N_1 = N_2 = 1$, and $N_3 = 12$. It wasn't until the late 19th century that $N_4 = 620$ was computed by Schubert/Zeuthen, and it wasn't until the mid 20th century that we found $N_5 = 87304$. Our results so far are then

$$1, 1, 12, 620, 87304, \dots$$

Given this data it is not all clear what N_6 should be, and that was the state of things... until Maxim Kontsevich discovered the general recursive formula finding N_d for all $d \ge 0$ in 1993. Deriving this recursion will be the subject of this talk and on the way we will build on the Gromov-Witten theory introduced in the seminar and give motivation for the introduction of quantum cohomology.

2 Quantum Cohomology

Let X be a smooth, projective, homogeneous variety. Observe that on $H^*(X)$ there is an associative cup product and a bilinear non-degenerate pairing $\langle -, - \rangle : H^*(X) \times H^*(X) \to H^*(X)$ given by

$$\langle \alpha, \beta \rangle := \int \alpha \cup \beta. \tag{2}$$

The cup product and the non-degenerate bilinear pairing $\langle -, - \rangle$ give $H^*(X)$ the structure of a Frobenius algebra, with unit the fundamental class $1_X \in H^0(X)$. We can generalize this structure by defining the multiplication:

$$\alpha_1 *_{\beta} \alpha_2 = ev_{3*}(ev_1^*(\alpha_1) \cup ev_2^*(\alpha_2)),$$
 (3)

where the moduli space considered is $\overline{\mathcal{M}}_{0,3}(X,\beta)$. We introduce a formal parameter q^{β} for each element $\beta \in H_2(X;\mathbb{Z})_+$ with rule $q^{\beta_1}q^{\beta_2}=q^{\beta_1+\beta_2}$. Thus we define

$$\alpha_1 * \alpha_2 = \sum_{\beta \in H_2(X)} (\alpha_1 *_{\beta} \alpha_2) q^{\beta} \tag{4}$$

and extend this product $\mathbb{Q}[[H_2(X;\mathbb{Z})_+]]$ -linearly to $H^*(X)\otimes\mathbb{Q}[[H_2(X;\mathbb{Z})_+]]$. The coefficients are the genus-zero, three point Gromov-Witten invariants. That is, if $\{T_i\}_{i=0}^m$ is a basis for $H^*(X)$ then we can write the small quantum product as

$$\alpha_1 * \alpha_2 = \sum_{\beta \in H_2(X)} \langle \alpha_1, \alpha_2, T_i \rangle_{0,3,\beta} g^{ij} T_j q^{\beta} \text{ where } g_{ef} = \int_X T_e \cup T_f, \text{ and } g^{ef} := (g_{ef})^{-1}.$$
 (5)

The resulting structure on this vector space $QH_s^*(X)$ is called the **small quantum cohomology** of X.

Theorem 2.1. The small quantum cohomology $QH_s^*(X)$ is a Frobenius algebra with the same unit of $H^*(X)$.

Example 2.2. $QH_s^*(\mathbb{P}^n) \cong \mathbb{Q}[H][[q]]/(H^{n+1}-q)$ where H is the class of a hyperplane in $H^2(\mathbb{P}^n)$.

The small quantum cohomology ring of \mathbb{P}^n is a deformation of the usual cohomology ring that contains the 3-point information. Therefore the gromov witten numbers N_d do not appear in the small quantum cohomology of \mathbb{P}^2 . If we want to go beyond the information of 3-point functions and consider n-point functions, we need to study an object known as the big quantum cohomology associated to X. We define the Gromov-Witten potential:

$$\Phi(\gamma) := \sum_{n \ge 3} \sum_{\beta} \frac{\langle \gamma^n \rangle_{0,n,\beta}}{n!} q^{\beta} \tag{6}$$

Here we use the notation that $\gamma^n = \gamma, \dots, \gamma$, *n*-times. Let $\gamma = \sum_i y_i T_i$, we obtain a formal power series in the y_i given by:

$$\Phi(y_0, \dots, y_m) = \sum_{\substack{n_0 + \dots + n_m = n \\ \beta \in H_2(X; \mathbb{Z})}} \langle T_0^{n_0}, \dots, T_m^{n_m} \rangle_{0, n, \beta} \frac{y_0^{n_0}}{n_0!} \cdots \frac{y_m^{n_m}}{n_m!}.$$
 (7)

Remark 2.3. By [[FP97], Lem 15] we have that for any n, there are only finitely many β such that $\langle \gamma^n \rangle_{0,n,\beta}$ are nonzero.

Example 2.4. The Gromov-Witten potential for \mathbb{P}^2 with $\gamma = y_0 1 + y_1 H + y_2 H^2 \in H^*(\mathbb{P}^2)$ is given by

$$\Phi(\gamma) = \frac{1}{2}(y_0y_1^2 + y_0^2y_2) + \sum_{d=1}^{\infty} N_d \frac{y_2^{3d-1}}{(3d-1)!} e^{dy_1}$$
(8)

It will be convenient to define the following bit of notation $\Phi_{ijk} := \partial_i \partial_j \partial_k \Phi$ with $0 \le i, j, k \le m$.

Definition 2.5. Let X be a smooth projective variety, and let $\{T_i\}_i$ be a basis for $H^*(X)$. The **big quantum product** on $H^*(X)[[y_0,\ldots,y_m,q]]$ is defined on the basis T_0,\ldots,T_m as

$$T_i *_b T_j := \sum_{e,f} \Phi_{ije} T^e$$
, where $T^e = \sum_{f=1} g^{ef} T_f$ (9)

where the product is then extended $\mathbb{Q}[[y_0,\ldots,y_m]]$ -linearly to a product on the $\mathbb{Q}[[y_0,\ldots,y_m]]$ -module $H^*(X)\otimes_{\mathbb{Z}}\mathbb{Q}[[y_0,\ldots,y_m]]$ making it a $\mathbb{Q}[[y_0,\ldots,y_m]]$ -algebra.

Remark 2.6. One should check that the product defined above is indeed well-defined. That is, given a basis T'_0, \ldots, T'_m , there is a linear change of coordinates from $H^*(X) \otimes \mathbb{Q}[[y_0, \ldots, y_m]]$ to $H^*(X) \otimes \mathbb{Q}[[y'_0, \ldots, y'_m]]$ identifying the two product structures.

Example 2.7. The big quantum product for \mathbb{P}^2 with basis $T_0 = 1, T_1 = [L]$ and $T_2 = [pt]$ for $H^*(\mathbb{P}^2)$ is given by

$$T^0 = T_2 = [pt]$$
 $T^1 = T_1 = [L]$ and $T^2 = T_0 = 1 = [\mathbb{P}^2].$ (10)

Using the potential for \mathbb{P}^2 defined above, we find

$$[L] * [L] = \sum_{k=0}^{2} \Phi_k T^k = \Phi_{110}[pt] + \Phi_{111}[L] + \Phi_{112}[\mathbb{P}^2] = \left(\int_{\mathbb{P}^2} [L] \cup [L]\right) [pt] + \Phi_{111}[L] + \Phi_{112}[\mathbb{P}^2]. \tag{11}$$

Using $\Phi_{110} = 1 = \int_{\mathbb{P}^2} [L] \cup [L]$ we see that we now have additional higher order terms to the classical cup product.

It's natural to ask what properties such a multiplication has, in particular whether it's associative or commutative. Well, commutativity is clear as the product is symmetric in the subscripts i.e $\phi_{ijk} = \Phi_{jik}$

$$T_j * T_i = \sum_k \Phi_{jik} T^k = \sum_k \Phi_{ijk} T^k = T_i * T_j.$$
 (12)

For associativity, we have

$$(T_i * T_j) * T_k = \sum_{e,f} \Phi_{ije} g^{ef} T_f * T_k = \sum_{e,f} \sum_{c,d} \Phi_{ije} g^{ef} \Phi_{fkc} g^{cd} T_d$$
(13)

$$T_i * (T_j * T_k) = \sum_{e,f} \Phi_{jke} g^{ef} T_i * T_f = \sum_{e,f} \sum_{c,d} \Phi_{jke} g^{ef} \Phi_{ifc} g^{cd} T_d, \tag{14}$$

and since the matrix g^{cd} is non-singular the equality of $(T_i * T_j) * T_k = T_i * (T_j * T_k)$ is equivalent to the following non-linear partial differential equation

$$\sum_{e,f} \Phi_{ije} g^{ef} \Phi_{fkl} = \sum_{e,f} \Phi_{jke} g^{ef} \Phi_{ifl}, \tag{15}$$

called the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation. A (formal) solution to this nonlinear PDE is called a *Gromov-Witten potential*. One can also show $T_0 = 1$ is a unit for the *-multiplication.

Definition 2.8. The big quantum product endows $H^*(X) \otimes \mathbb{Q}[[y_0, \dots, y_m]]$ with a multiplication. The ring

$$QH^*(X) := H^*(X) \otimes \mathbb{Q}[[y_0, \dots, y_m]], \tag{16}$$

is called the **big quantum cohomology ring** of X.

Theorem 2.9 ([FP97], Thm 4). The biq quantum cohomology ring $QH^*(X)$ is a commutative, associate $\mathbb{Q}[[y_0,\ldots,y_m]]$ -algebra with unit T_0 . In other words it is a Frobenius algebra.

Example 2.10. When $X = \mathbb{P}^2$ the big quantum cohomology ring of X has the identification

$$QH^*(\mathbb{P}^2) \cong \frac{\mathbb{Q}[[y_0, y_1, y_2]][Z]}{Z^3 - \Phi_{111}Z^2 - 2\Phi_{112}Z - \Phi_{122}},\tag{17}$$

which we can compare with the cohomology ring $H^*_{\mathbb{Q}}(\mathbb{P}^2) \cong \mathbb{Q}[Z]/Z^3$ with basis $\{1, Z, Z^2\}$.

3 The Gromov-Witten Theory of \mathbb{P}^2

Recall the Gromov-Witten potential for \mathbb{P}^2 , where $\gamma = y_0 1 + y_1 H + y_2 H^2 \in H^*(X)$ is given by

$$\Phi(\gamma) = \frac{1}{2} (y_0^2 y_2 + y_0 y_1^2) + \sum_{d=1}^{\infty} N_d \frac{e^{dy_1} y_2^{3d-1}}{(3d-1)!} q^d.$$
(18)

Using the associativity of the big quantum cohomology product, one can derive the WDVV equation for \mathbb{P}^2 , which has the form

$$\Phi_{222} = \Phi_{112}^2 - \Phi_{111}\Phi_{122}.\tag{19}$$

Computing the term on the left hand side gives

$$\Phi_{222} = \sum_{d=1}^{\infty} N_d \frac{e^{dy_1} y_2^{3d-4}}{(3d-4)!} q^d. \tag{20}$$

On the right hand side we compute

$$\Phi_{112}^2 = \left(\sum_{d=1}^{\infty} d^2 N_d \frac{e^{dy_1} y_2^{3d-2}}{(3d-2)!} q^d\right)^2 \tag{21}$$

$$= \sum_{d=1}^{\infty} \sum_{d=d_1+d_2} d_1^2 d_2^2 N_{d_1} N_{d_2} \frac{e^{dy_1} y_2^{3d-4}}{(3d_1-2)!(3d_2-2)!} q^d, \tag{22}$$

and

$$\Phi_{111}\Phi_{122} = \partial_1^3 \Phi \cdot \partial_1 \partial_2^2 \Phi \tag{23}$$

$$= \left(\sum_{d=1}^{\infty} d^3 N_d \frac{e^{dy_1} y_2^{3d-1}}{(3d-1)!} q^d\right) \left(\sum_{d=1}^{\infty} dN_d \frac{e^{dy_1} y_2^{3d-3}}{(3d-3)!} q^d\right)$$
(24)

$$= \sum_{d=1}^{\infty} \sum_{d=d_1+d_2} d_1^3 d_2 N_{d_1} N_{d_2} \frac{e^{dy_1} y_2^{3d-3}}{(3d_1-1)!(3d_2-3)!}.$$
 (25)

Equating coefficients of both sides for a fixed value of d we obtain

$$\frac{N_d}{(3d-4)!} = \sum_{d=d+1} N_{d_1} N_{d_2} \left[\frac{d_1^2 d_2^2}{(3d_1 - 1)!(3d_2 - 2)!} + \frac{d_1^3 d_2}{(3d_1 - 1)!(3d_2 - 3)!} \right]. \tag{26}$$

Rearranging and using $d_2 = d - d_1$, we derive Kontsevich's formula for the Gromov-Witten invariants of \mathbb{P}^2 .

Theorem 3.1 (Kontsevich 1993). The number of rational curves N_d of degree d that pass through (3d-1) points which are in general position in the \mathbb{P}^2 , satisfies the recursion relation

$$N_d = \sum_{d=d_1+d_2} N_{d_1} N_{d_2} \left[d_1^2 d_2^2 \binom{3d-4}{3d_1-2} - d_1 d_2 \binom{3d-4}{3d_1-1} \right]. \tag{27}$$

where $N_1 = 1$.

Computing N_d for d = 1, ..., 8 using Kontsevich's formula gives

$$N_1=1, \quad N_2=1, \quad N_3=12, \quad N_4=620, \quad N_5=87,304,$$

$$N_6=26,312,976, \quad N_7=14,616,808,192,$$

$$N_8=13,525,751,027,392.$$

Adam Monteleone References

References

 $[\mathrm{FP97}]\,$ W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology, 1997.