

First-Order Logic: Theory and Practice

Christoph Benzmüller

Freie Universität Berlin

Block Lecture, WS 2012, October 1-12, 2012

What is this Lecture About?

Beispiel-Formalisierung in Logik Erster Stufe

Natürliche Sprache

Max is a baby boy. He is the son of chris All babies are cute.

Question: Is Max cute?

Formale Logik

(isBaby max) \land (isBoy max) (isSonOf max chris) $\forall X$. (isBaby X) \Rightarrow (isCute X)

Theorem (isCute max)

Logische Konnektive

Konstantensymbole

Prädikaten- und Relationensymbole

(weitere Konnewtive: \neg , \lor , \leftrightarrow , \exists , =)

(so viele wie wir benötigen)

(so viele wie wir benötigen)

Formaler Kalkül:

System Abstrakter Regeln Freie Universität Perlin

$$\frac{(isBaby\ max) \land (isBoy\ max)}{(isBaby\ max)}$$

$$\frac{\forall X.\square}{[t \to X]\square} \qquad \cdots$$

$$\frac{\forall X. (isBaby X) \Rightarrow (isCute X)}{(isBaby max) \Rightarrow (isCute max)}$$

$$\frac{\triangle \quad \triangle \Rightarrow \Box}{\Box} \quad \dots$$

$$\frac{(isBaby \ max) \Rightarrow (isCute \ max)}{(isCute \ max)}$$

Axiom (Axiomenschemata)

$$\triangle \vee \neg \triangle$$

(isBaby max)
$$\vee \neg$$
(isBaby max)

Kalkiil des Natiirlichen Schliessens — Gerhard Gentzen (1909-1945)

Formaler Beweis: Verkettung Instantiierter Kalkülregeln

Natürliche Sprache	Formale Logik
Max is a baby boy. He is the son of Chris All babies are cute.	$(isBaby max) \land (isBoy max)$ (isSonOf max chris) ∀X. (isBaby X) ⇒ (isCute X)
Question: Is Max cute?	Theorem: (isCute max)

Formaler Beweis

(isBaby max) \land (isBoy max)

(isBaby max) \land (isBoy max) (isBaby max)

(isBaby max) \land (isBoy max)

(isBaby max) ∧ (isBoy max

(isBaby max)

 $\forall X. (isBaby X) \Rightarrow (isCute X)$

 $\forall X. (isBaby X) \Rightarrow (isCute X)$

Automated Theorem Proving (ATP)

Artificial Intelligence

Computational Linguistics

Wichtige Begriffe in der Logik

- Syntax, Ausdrucksstärke der Sprache (Expressivität)
- Semantik
- Kalkül
 - Axiome
 - Schlussregeln
- ► Korrektheit und Widerspruchsfreiheit/Konsistenz: Es gibt keine Formel △, so dass △ und ¬△ ableitbar sind.
- ► Entscheidbarkeit vs. Unentscheidbarkeit
- Vollständigkeit

Ausdrucksstärke versus Berechnungseigenschaften

Logik erster Stufe

- Ist Ausdrucksstark (Expressiv)
 - Axiomatische Mengenlehre
 - Turing-vollständig:

Turing zeigt, dass es kein Verfahren gibt, mit dem man die Beweisbarkeit einer FOL Formel entscheiden kann: Corresponding to each computing machine M we construct a formula Un(M) and we show that, if there is a general method for determining whether Un(M) is provable, then there is a general method for determining whether M ever prints 0.)

- Es gibt aber relevante Einschränkungen hinsichtlich Ausdrucksstärke
 - ► Natürliche Zahlen (Induktion)
 - Überabzählbare Mengen
 - modale Operatoren
 - ...viele pragmatische Einschränkungen
- Viele entscheidbare Fragmente
- ▶ Wohlverstandene Semantik und Beweistheorie

Kurze Demo: Automatische Theorembeweiser

The TPTP Problem (and System) Library for Automated Theorem Proving

www.tptp.org