Sigma Algebra

Jung Park

July 28, 2023

Contents

1	Sigma Algebra			
	1.1	Definition	3	
	1.2	Property	4	

1 Sigma Algebra

1.1 Definition

Algebra: Let X be a nonempty set. An **Algebra** of set X is a nonempty collection \mathcal{A} of subsets of X that is

- 1) Closed under finite union: If $E_1,...,E_n \in A$, then $\bigcup_{j=1}^n E_j \in A$.
- 2) Closed under finite Intersection: If $E_1,...,E_n \in A$, then $\bigcap_{j=1}^n E_j \in A$.
- 3) Closed under complement: If $E \in A$, then $E^c \in A$.
- 4) $\emptyset \in A$.
- 5) $X \in A$.

Condition 2,4,5 and be derived from condition 1 and 3, using De Morgan's Law.

 σ -Algebra(Field): Let X be a nonempty set. An σ -Algebra(Field) of set X is a nonempty collection \mathcal{A} of subsets of X that is

- 1) Closed under Countable union: If $E_1,...,E_n \in A$, then $\bigcup_{j=1} E_j \in A$. 2) Closed under Countable Intersection: If $E_1,...,E_n \in A$, then $\bigcap_{j=1} E_j \in A$.
- 3) Closed under complement: If $E \in A$, then $E^c \in A$.
- 4) $\emptyset \in A$.
- 5) $X \in A$.

The only difference between algebra and σ -algebra is that it's closed under finite or countable union,

It is worth noting that an algebra A is a σ -algebra provided that it is closed under countable disjoint unions. Suppose $\{E_j\}_1^\infty \subset A$. A set

$$F_k = E_k \setminus \left[\bigcup_{j=1}^{k-1} E_j\right] = E_k \cap \left[\bigcup_{j=1}^{k-1} E_j\right]^c.$$

Then the F_k 's belong to A and are disjoint, and $\bigcup_{j=1}^{\infty} E_j = \bigcup_{k=1}^{\infty} F_j$. This technique of replacing a sequence of sets by a disjoint sequence is frequently employed in future proofs.

Intersection of any family of σ -algebra on X is also a σ -algebra, but their union is not necessarily σ -algebra.

1.2 Property