Control Systems

G V V Sharma*

Contents

Below is the circuit:

1 Feedback Circuits

1

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

1 FEEDBACK CIRCUITS

1.0.1. Complete the table entries given below:

Solution:

Transistor	$\mathbf{I}_{E}(mA)$	$ \mathbf{r}_e(ohm) $	$\mathbf{g}_m(mA/V)$	$\mathbf{r}_{\pi}(K\Omega)$	β_o	$\mathbf{f}_T(MHz)$	$\mathbf{C}_{\mu}(pF)$	$\mathbf{C}_{\pi}(pF)$	$\mathbf{f}_{\beta}(MHz)$
(a)	2				100	500	2		
(b)		25					2	10.7	4
(c)				2.5	100	500		10.7	
(<i>d</i>)	10				100	500	2		
(e)	0.1				100	150	2		
(<i>f</i>)	1				10	500	2		
(g)						800	1	9	80

TABLE 1.0.1: Initial table

We have to fill this table from part a to part g. We can neglect r_{π}

1.0.2. We have to find the missing values of the table.

Solution: We will solve it part by part.

The Full Circuit referred to this problem is shown below which is a CC-CB amplifier:

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.0.2: Complete Circuit

$$g_m = \frac{I_C}{V_T}$$

$$= (\frac{\beta}{\beta + 1}) \frac{I_E}{V_T}$$

$$= (\frac{100}{100 + 1}) \frac{2}{2}$$

$$g_m = 79.2 \frac{mA}{V}$$

1.0.3. First we will represent the given circuit using a Small Signal Equivalent Model.

> Solution: The simplified small signal circuit for the above complete circuit is shown below

Fig. 1.0.3: Small signal Model

$$f_{\beta} = \frac{f_T}{\beta}$$

$$= \frac{500 * 10^6}{100}$$

$$= 5 \text{ Mhz}$$

1.0.4. Part A : We have to find values of : r_{e} , g_{m} , $f_{\beta} = 5Mhz$ r_{π} , C_{π} , f_{β} **Solution:**

$$= \frac{1}{2\pi(10.7 + 2) * 10^{-12} * 4 * 10^{6}}$$
$$= 3.13 \text{ k}\Omega$$

$${\rm r}_{\pi}=3.13k\Omega$$

$$C_{\pi} = \frac{g_m}{2_T} - C - \mu$$

$$= \frac{79.2 * 0.001}{2 * \pi * 10^8} - (2 * 10^-12)$$

$$= 23 \text{ pF}$$

$$C_{\pi} = 23pF$$

$$\beta_o = g_m r_\pi$$

$$C_\pi = 23pF$$

$$= 3.13*10^3 * 40 * 10^{-3}$$

1.0.5. Part B : We have to find values of : I_e , g_m , r_{π} β_o , f_T **Solution:**

$$\beta_o = 125$$

= 125

$$I_E = \frac{V_T}{r_e}$$
$$= \frac{25}{r_e}$$

$$I_E = 1mA$$

$$f_T = \beta f_\beta$$

$$= 125 * 4 * 10^{6}$$

$$= 500 \text{ MHz}$$

$$f_T = 500MHz$$

$$g_m = \frac{I_E}{V_T}$$
 1.0.6. Part C : We have to find values of : f_β , g_m ,
$$r_e \ , I_E \ , \ C_\mu$$

$$=\frac{1}{25}$$

$$= 40 \text{ mA/V}$$

$$g_m = 40 \frac{mA}{V}$$

$$f_{\beta} = \frac{T}{\beta} \\ = \frac{500 * 10^6}{100}$$

$$f_{\beta} = 5MHz$$

$$\mathbf{r}_{\pi} = \frac{1}{2\pi(C_{\pi} + C_{\mu})f_{\beta}}$$

$$g_m = \frac{\beta}{r_\pi}$$
$$= \frac{100}{2500}$$

$$= 40 \text{ mA/V}$$

$$g_m = 40 \frac{mA}{V}$$

$$I_E = g_m V_T$$

$$= 1 \text{ mA}$$

$$I_E = 1mA$$

$$r_e = \frac{V_T}{I_E}$$
$$= \frac{25}{1}$$

$$\mathrm{r}_e=25\Omega$$

$$C_{\mu} = \frac{g_m}{2_T} - C - \pi$$

$$= \frac{40 * 0.001}{2 * \pi * 500 * 10^8} - (10.7 * 10^{-12})$$

$$= 2.03 \text{ pF}$$

$$C_{\mu}=2.03pF$$

1.0.7. Part D : We have to find values of :
$$f_{\beta}$$
 , g_m , r_e , r_{π} , C_{π} Solution:

$$r_e = \frac{V_T}{I_E}$$
$$= \frac{25}{10}$$

$$r_e = 2.5\Omega$$

 $= 2.5 \Omega$

$$g_m = \frac{I_E}{V_T}$$
$$= \frac{10}{25}$$

$$= 0.4 \text{ A/V}$$

$$g_m = 0.4 \frac{A}{V}$$

$$r_{\pi} = \frac{\beta}{g_m}$$
$$= \frac{100}{0.4}$$

$$= 250\Omega$$

$$r_\pi=250\Omega$$

$$f_{\beta} = \frac{T}{\beta}$$

$$=\frac{500*10^6}{100}$$

= 5 MHz

$$\mathrm{f}_{\beta}=5MHz$$

$$r_{\pi} = \frac{\beta}{g_m}$$
$$= \frac{100}{0.004}$$
$$= 25 \text{ K}\Omega$$

 $r_{\pi} = 25K\Omega$

$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu}$$

$$= \frac{0.4}{2 * \pi * 500 * 10^6} - (2 * 10^{-12})$$

$$= 125 \text{ pF}$$

$$C_{\pi} = 125 pF$$

1.0.8. Part E : We have to find values of :
$$f_{\beta}$$
 , g_m , r_e , r_{π} , C_{π}

$$r_e = \frac{V_T}{I_E}$$
$$= \frac{25}{0.1}$$
$$= 250 \Omega$$

$$r_e = 250\Omega$$

$$g_m = \frac{I_E}{V_T}$$
$$= \frac{0.1}{25}$$

$$= 4 \text{ mA/V}$$

$$g_m = 4 \frac{mA}{V}$$

$$f_{\beta} = \frac{T}{\beta}$$

$$=\frac{150*10^6}{100}$$

= 1.5 MHz

$$f_{\beta} = 1.5MHz$$

$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu}$$

$$= \frac{0.004}{2 * \pi * 150 * 10^6} - (2 * 10^{-12})$$

$$= 2.24 \text{ pF}$$

$$C_{\pi}=2.24pF$$

1.0.9. Part F : We have to find values of : f_β , g_m , r_e , r_π , C_π

Solution:

$$\mathbf{r}_e = \frac{V_T}{I_E}$$

$$= \frac{25}{1}$$
$$= 25 \Omega$$

$$r_e = 25\Omega$$

$$g_m = \frac{I_E}{V_T}$$
$$= \frac{1}{25}$$

$$= 40 \text{ mA/V}$$

$$g_m = 40 \frac{mA}{V}$$

$$r_{\pi} = \frac{\beta}{g_m}$$
$$= \frac{100}{0.004}$$

$$= 2500 \Omega$$

$$r_\pi = 2500\Omega$$

$$f_{\beta} = \frac{T}{\beta}$$
$$= \frac{500 * 10^6}{10}$$

= 50 MHz

$$\mathrm{f}_{\beta}=50MHz$$

$$C_{\pi} = \frac{g_m}{2\pi f_T} - C_{\mu}$$

$$= \frac{0.04}{2 * \pi * 500 * 10^6} - (2 * 10^{-12})$$

$$= 10.7 \text{ pF}$$

$$C_{\pi} = 10.7 \text{ pF}$$

Part G : We have to find values of : β , f_{β} , g_m , r_e , I_E

Solution:

$$\beta = \frac{T}{f_{\beta}}$$

$$= \frac{800}{80}$$

$$= 10$$

$$\beta = 10$$

$$r_{\pi} = \frac{1}{2\pi (C_{\pi} + C_{\mu}) f_{\beta}}$$

$$= \frac{1}{2\pi (9+1) * 10^{-12} * 80 * 10^{6}}$$

$$= 199 \Omega$$

$$r_{\pi} = 199\Omega$$

$$g_m = \frac{\beta}{r_\pi}$$

$$= 10_{\overline{199}}$$

$$= 50 \text{ mA/V}$$

$$g_m = 50 \frac{mA}{V}$$

$$\mathbf{I}_E = g_m V_T$$

$$= 0.05 * 0.025$$

$$= 1.25 \text{ mA}$$

$$I_E = 1.25 mA$$

$$r_e = \frac{V_T}{I_E}$$

$$= \frac{25}{1.25}$$

$$= 20 \Omega$$

$$r_e = 20\Omega$$

1.0.10. Given the following values the final table is :

Transistor	$\mathbf{I}_{E}(mA)$	$\mathbf{r}_e(ohm)$	$\mathbf{g}_m(mA/V)$	$\mathbf{r}_{\pi}(K)$	β_o	$\mathbf{f}_T(MHz)$	$\mathbf{C}_{\mu}(pF)$	$\mathbf{C}_{\pi}(pF)$	$\mathbf{f}_{\beta}(MHz)$
(a)	2	12.5	79.2	1.26	100	500	2	23	5
(b)	1	25	40	3.13	125	500	2	10.7	4
(c)	1	25	40	2.5	100	500	2.30	10.7	5
(<i>d</i>)	10	2.5	400	0.25	100	500	2	125	5
(e)	0.1	250	4	25	100	150	2	2.24	1.5
(<i>f</i>)	1	25	40	2.5	10	500	2	10.7	50
(g)	1.25	20	50	0.199	10	800	1	9	80

TABLE 1.0.10

1.0.11. Verify the above calculations using a Python code.

Solution:

codes/es17btech11019/es17btech11019_calc.