विध्न विचारत भीरु जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम।
पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रघुबर राखे टेक।।
रिवेतः मानद धर्म प्रणेता
सन्वार्क श्री रणछोड्नास्ता महाराज

STUDY PACKAGE This is TYPE 1 Package please wait for Type 2

Subject: PHYSICS

Topic: UNITS & DIMENSIONS + BASIC MATHS

Indexthe support

- 1. Key Concepts
- 2. Exercise I
- 3. Exercise II
- 4. Exercise III
- 5. Exercise IV
- 6. Answer Key
- 7. 34 Yrs. Que. from IIT-JEE
- 8. 10 Yrs. Que. from AIEEE

Student's Name	:
Class	.
Roll No.	=

ADDRESS: R-1, Opp. Raiway Track,
New Corner Glass Building, Zone-2, M.P. NAGAR, Bhopal

1: (0755) 32 00 000, 98930 58881, www.tekoclasses.com

_	20.1	ICC 1 4			a 1' ' C1 a '111	7				
Z G	Q.1 Q.2	(A) FT ²	nd time are taken as fund $(B) F^{-1} A^2 T^{-1}$	(C) FA ² T	the dimensions of length will be: (D) AT ²	<u> </u>				
Ĺ.		(1-1) 1 1	(2)1 11 1	(0)1111						
OP/	Q.2		T ⁻² can correspond to			Y				
B		(A) moment of a forc	e or torque	(B) surface tension	•.	Z				
-	•	(C) pressure	-	(D) co-efficient of visco		Z				
0 98930 58881.		(useful relation are $\vec{\tau} = \vec{r} \times \vec{F}$, $S = F/l$, $F = 6\pi\eta rv$, where symbols have usual meaning)								
0		TTT: 1 0.1 0.11 1				<u>-</u>				
893	Q.3 Which of the following can be a set of fundamental quantities									
60		(A) length, velocity, tir(C) force, mass, veloc		(B) momentum, mass,(D) momentum, time, f	requency	t				
Ö	•	(C) force, mass, veloc	пу	(D) momentum, time, i	requeriey	م د				
00	Q.4	ody as Kαp ^a m ^b	790							
2 00		(A) $a = 1$; $b = 1$	(B) $a = 2$; $b = -1$	(C) $a = 2$; $b = 1$	(D) $a = 1$; $b = 2$					
- 3	Q.4 Q.5 Q.6	IC (A) 1 :- (. 10 1 00 1					
755	Q.5	If area (A) velocity (velocity (velocity))	(ρ) and density (ρ) are ba	ise units, then the dimen	nsional formula of force can be	E				
9		(A) Avp	(B) $Av^2\rho$	(C) $Av\rho^2$	$(D)A^2v\rho$	9				
Ŧ		(13)11/p	(Z)11, p	(5)11,6		N. TPKOC DOSE				
Sir)	Q.6		dyne/cm ² is equivalent			<u>:</u>				
		(A) 10^5 N/m^2	(B) 10^6 N/m^2	(C) 10^7 N/m^2	(D) 10^8 N/m^2	PK				
Ε.						\ 				
S)	Q.7	If 1 unit of mass = 4 kg; 1 unit of length = $\frac{1}{4}$ m and 1 unit of time = 5 sec, then 1 Joule = x units of energy								
ector : SUHAG R. KARIYA (S. R. K.	Q. /		4	and I drift of time = 5 sec,	, then I soulc $-x$ times of energy	•				
\$		in this system where x		(C) 200 ;	(D) 0.00 '4					
ĸ.		(A) 100 units	(B) 0.01 units	(C) 200 units	(D) 0.02 units	VPI				
¥	Q.8	In a certain system of u	units, 1 unit of time is 5 se	c. 1 unit of mass is 20 kg	and unit of length is 10 m. In this	Ξ				
S			wer will correspond to	,	<u></u>	3				
- i			1			96				
ect		(A) 16 watts	(B) $\frac{1}{16}$ watts	(C) 25 watts	(D) none of these	<u>۲</u>				
Ģ					É	ž,				
ES.	Q.9	In a book, the answer	for a particular question	is expressed as	<u>.</u>	2				
ASS		ma [[2kl			7				
C		$b = \frac{1}{k} \sqrt{1+1}$	ma		7	2				
8		.9 In a book, the answer for a particular question is expressed as $b = \frac{ma}{k} \left[\sqrt{1 + \frac{2kl}{ma}} \right]$ here m represents mass, a represents accelerations, l represents length. The unit of b should be (A) m/s (B) m/s ² (C) meter (D) / sec. .10 If the resultant of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7}$ Q, P / Q is (A) 1 (B) 3 / 2 (C) 2 (D) 4								
۳		(A) m/s	(B) m/s^2	(C) meter	(D) / sec.	2				
	Q.10	If the resultant of two	forces of magnitudes P	and O acting at a point a	at an angle of 60° is $\sqrt{7}$ O then	<u> </u>				
	Z.10	P/Q is	101000 of magmados I	and & acting at a point t	a an angle of oo is v / Q, then	Y Y				
		(A) 1	(B) 3/2	(C) 2	(D) 4	T				
	Q.11									
		$(P^2 + Q^2)$ in terms of (A) $2(F_1^2 + F_2^2)$	F_1 and F_2 is	(C) (E + E)2	(D) none of these					
		$(\mathbf{A}) \angle (\mathbf{\Gamma}_1^- + \mathbf{\Gamma}_2^-)$	$(\mathbf{D}) \Gamma_1 + \Gamma_2$	$(C) (F_1 + F_2)^2$	(D) none of these					

	Q.12	12 A man moves towards 3 m north then 4 m towards east and finally 5m towards 3 / south of west displacement from origin is							
(M.P.	•	(A) $5\sqrt{2}$ m	(B) 0 m	(C) 1 m	(D) 12 m	CMATH			
BHOPAL, (M.P.)	Q.13	Three forces P, Q & 120° respectively,	ween P & Q and Q & R are 150° ntio	BASI					
		(A) 1 : 2 : 3	(B) $1:2:\sqrt{3}$	(C) 3:2:1	(D) $\sqrt{3}:2:1$	UNITDIMNSION			
0 98930 58881	Q.14 A man rows a boat with a speed of 18km/hr in northwest direction. The shoreline makes an angle south of west. Obtain the component of the velocity of the boat along the shoreline.								
0 98		(A) 9 km/hr	(B) $18\frac{\sqrt{3}}{2}$ km/hr	(C) 18 cos15°km/hr	(D) 18 cos75° km/hr	3 of 6			
2 00 000,	Q.15	A bird moves from point $(1, -2, 3)$ to $(4, 2, 3)$. If the speed of the bird is 10 m/sec, then the veloc vector of the bird is:							
55)- 3	•	$(A) 5 (\hat{i} - 2\hat{j} + 3\hat{k})$	(B) $5\left(4\hat{i}+2\hat{j}+3\hat{k}\right)$	(C) $0.6\hat{i}+0.8\hat{j}$	(D) 6î+8ĵ	Е			
Sir) PH: (0755)- 32 00 000,	Q.16	The resultant of two forces. The angle bet (A) 150°	(D) 6i+8j Indicular to the smaller of the two (D) 120° (D) 4	classes.co					
χ. S	Q.17	If the angle between	the unit vectors â and	\hat{b} is 60°, then $ \hat{a} - \hat{b} $ is		teko			
S. R		(A) 0	(B) 1	(C) 2	(D) 4	ww.			
RIYA	Q.17 Q.18	For a particle movin $x = t^3$. $6t^2$	g in a straight line, the po	osition of the particle at ti	me (t) is given by	;;			
¥		$x = t^3 - 6t^2 - 6t^2$ what is the velocity of		bsite					
AG F		$(A) - 9 \text{ ms}^{-1}$	$(B) - 12 \text{ ms}^{-1}$	(C) 3 ms^{-1}	(D) 42 ms^{-1}	n we			
SUF:	Q.19	Use the approximation $(1 + x)^n \approx 1 + nx$, $ x << 1$, to find approximate value for							
irector		(a) $\sqrt{99}$	(b) $\frac{1}{1.01}$	(c) 124 ^{1/3}		ackage			
ES. D	Q.20	Use the small angle a	approximations to find ap	proximate values for (a)) $\sin 8^{\circ}$ and (b) $\tan 5^{\circ}$	ldy P			
TEKO CLASS	Q.20 Q.21	 Q.18 For a particle moving in a straight line, the position of the particle at time (t) is given by x = t³ - 6t² + 3t + 7 what is the velocity of the particle when it's acceleration is zero? (A) - 9 ms⁻¹ (B) - 12 ms⁻¹ (C) 3 ms⁻¹ (D) 42 ms⁻¹ Q.19 Use the approximation (1 + x)ⁿ ≈ 1 + nx, x << 1, to find approximate value for (a) √99 (b) 1/1.01 (c) 124¹/³ Q.20 Use the small angle approximations to find approximate values for (a) sin 8° and (b) tan 5° Q.21 A particle is in a uni-directional potential field where the potential energy (U) of a particle depends the x-cordinate given by U_x = k (1 - cos ax) & k and 'a' are constants. Find the physical dimensi of 'a' & k. Q.22 An enclosed ideal gas A has its pressure P as a function of its volume V as P = P₀ - αV², where P₀ are constants. Find the physical dimensions of α. 							
-	Q.22								
	spring constant (k) & length of	f							
		the spring (l) [$k = \frac{\text{Force}}{\text{length}}$]. Find the relation among, (T), (m), (l) & (k) using dimensional method.							

- - Mass of planet (M)
 - Universal gravitation constant (G)
- TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, $\rm Q.22$ $\rm Q.32$ $\rm Q.32$ $\rm Q.33$ Using dimensional analysis find an expression relating orbital velocity (v_0) to the above physical quantities. Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.

 When two forces of magnitude P and Q are perpendicular to each other, their resultant is of magnitude R. When they are at an angle of 180° to each other their resultant is of magnitude $\frac{R}{\sqrt{2}}$. Find the ratio of P and Q ratio of P and Q.
 - A body acted upon by 3 given forces is under equilibrium. (a) If $|\vec{F}_1| = 10 \text{ Nt.}, |\vec{F}_2| = 6 \text{ Nt.}$
 - (b) Express \vec{F}_2 in unit vector form.

If the four forces as shown are in equilibrium Express $\vec{F}_1 \& \vec{F}_2$ in unit vector form.

Download Study Package from website: A particle is acted upon by the forces $\vec{F}_1 = 2\hat{i} + a\hat{j} - 3\hat{k}$, $\vec{F}_2 = 5\hat{i} + c\hat{j} - b\hat{k}$, $\vec{F}_3 = b\hat{i} + 5\hat{j} - 7\hat{k}$ $\vec{F}_4 = c\hat{i} + 6\hat{j} - a\hat{k}$, Find the values of the constants a, b, c in order that the particle will be in equilibrium

5P in the direction OY
4P in the direction OX
10P in the direction OA where A is the point (3a, 4a)
15P in the direction AB where B is the point (-a, a)

Express each force in the unit vector form & calculate the magnitude & direction of sum of the vector of B

- these forces.

 A particle moves along the space curve $\vec{r} = (t^2 + t)\hat{i} + (3t 2)\hat{j} + (2t^3 4t^2)\hat{k}$. (t in sec, r in m) Find at time t = 2 the (a) velocity, (b) acceleration, (c) speed or magnitude of velocity and (d) magnitude of acceleration.

 A vector \vec{A} of length 10 units makes an angle of 60° with a vector \vec{B} of length 6 units. Find the magnitude
- of the vector difference $\vec{A} \vec{B}$ & the angle it makes with vector \vec{A} .
- At time t the position vector of a particle of mass m = 3kg is given by $\vec{r} = 6t \hat{i} t^3 \hat{j} + \cos t \hat{k}$. Find the resultant force $\vec{F}(t)$, magnitude of its acceleration when $t = \frac{\pi}{2}$ & speed when $t = \pi$.
- www.tekoclasses.com Given that the position vector of a particle moving in x-y plane is given by $\vec{r} = (t^2 - 4)\hat{i} + (t - 4)\hat{j}$. Find
- Equation of trajectory of the particle
- Time when it crosses x-axis and y-axis
- The velocity time graph of a body moving in a straight line is shown. Find its
 - instantaneous velocity at t = 1.5 sec.

- average acceleration from t = 1.5 sec. to t = 2.5 sec. draw its acceleration time graph from t = 0 to t = 2.5 sec.

 The curvilinear motion of a particle is defined by $v_x = 50 16t$ and $y = 100 4t^2$, where v_x is in metres per second, y is in metres and t is in seconds. It is also known that x = 0 when t = 0. Determine the velocity (v) and acceleration(a) when the position y = 0 is reached.

 The force acting on a body moving in a straight line is given by $F = (3t^2 4t + 1)$ Newton where t is in sec. If mass of the body is 1kg and initially it was at rest at origin. Find displacement between time t = 0 and t = 2 sec. distance travelled between time t = 0 and t = 2 sec.

TEKO CLASSES, Director: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, 0 98930 58881, BHOPAL, (M.P.)

ANSWER KEY **EXERCISE**

Q.20 0.14, 0.09 Q.21
$$L^{-1}$$
, ML^2T^{-2} Q.22 $ML^{-7}T^{-2}$

Q.23
$$T = a\sqrt{\frac{m}{k}}$$
 Q.24 $ML^5T^{-2}K^{1/2}$ Q.25 $\omega = K\sqrt{\frac{Gm}{r^3}}$

$$Q.26 \quad [M] = [h^{1/2} \cdot c^{1/2} \cdot G^{-1/2}]; [L] = [h^{1/2} \cdot c^{-3/2} \cdot G^{1/2}]; [T] = [h^{1/2} \cdot c^{-5/2} \cdot G^{1/2}]$$

Q.27
$$v_0 = k \sqrt{\frac{GM}{R}}$$
 Q.28 (a) 180°, (b) 90°, (c) 0 Q.29 $2 \pm \sqrt{3}$

Q.30 (a)
$$|\vec{F}_3| = 8 \text{ N}, q = 90^\circ \text{ (b) } \vec{F}_2 = -6\hat{i}$$

Q.31
$$\vec{F}_1 = -(12\sqrt{3} - 1) \hat{j} \& \vec{F}_2 = (12 - 5\sqrt{3})\hat{i} + (12\sqrt{3} - 15)\hat{j}$$

Q.32
$$a = -7, b = -3, c = -4$$

Q.33
$$5P\hat{j},4P\hat{i},6P\hat{i}+8P\hat{j},-12P\hat{i}-9P\hat{j},\sqrt{20}P,\tan^{-1}[-2]$$
 with the +ve x axis

Q.34 (a)
$$5i + 3j + 8k$$
, (b) $2i + 16k$, (c) $7\sqrt{2}$, (d) $2\sqrt{65}$

Q.35
$$2\sqrt{19}$$
; cos⁻¹ $\frac{7}{2\sqrt{19}}$

Q.36
$$-18t \hat{j} - 3\cos t \hat{k}$$
; 3p; $3\sqrt{4 + \pi^4}$

Q.37 (a)
$$y^2 + 8y + 12 = x$$
; (b) crosses x axis when $t = 4$ sec., crosses y axis when $t = \pm 2$ sec.

Q.38 (a)
$$\frac{1}{\sqrt{3}}$$
 m/s , (b) $\frac{\sqrt{3}}{2}$ m/s² , (c) $\frac{\sqrt[5]{3}}{\frac{1}{5}}$ $\frac{\sqrt[7]{3}}{\frac{1}{5}}$ $\frac{\sqrt{3}}{\frac{1}{5}}$ $\frac{\sqrt{$

Q.39
$$\vec{v} = -30\hat{i} - 40\hat{j}$$
, $\vec{a} = -16\hat{i} - 8\hat{j}$ Q.40 (a) $\frac{2}{3}$ m, (b) $t = 0, 1$