Complex Numbers

Shiv Shankar Dayal

July 18, 2022

Geometrical Results contd

Length of a Perpendicular from a Point to a Line

Length of a perpendicular of point $A(\omega)$ from the line $\overline{a}z+a\overline{z}+b=0, (a\in C,b\in R)$ is given by

$$p = \frac{|\overline{a}\omega + a\overline{\omega} + b|}{2|a|}$$

Equation of a Circle

The equation of a circle with center z_0 and radius r is $|z-z_0|=r$ or $z=z_0+re^{i\theta}, 0\leq \theta\leq 2\pi$ or $z\overline{z}-z_0\overline{z}-\overline{z_0}z+z_0\overline{z_0}-r^2=0$

General equation of a circle is $z\overline{z}-a\overline{z}+\overline{a}z+b=0, (a\in C,b\in R)$ such that $\sqrt{a\overline{a}-b}\geq 0$. Center of this circle is -a and radius is $a\overline{a}-b$.

An equation of the circle, one of whose diameter is the line segment joining z_1 and z_2 is $(z-z_1)(\overline{z}-\overline{z_2})+(\overline{z}-\overline{z_1})(z-z_2)=0$ An equation of the the circle passing through two points z_1 and z_2 is

$$(z-z_1)(\overline{z}-\overline{z_2})+(\overline{z}-\overline{z_1})(z-z_2)+k\begin{vmatrix}z&\overline{z}&1\\z_1&\overline{z_1}&1\\z_2&\overline{z}&1\end{vmatrix}=0$$

where k is a parameter.

Geometrical Results contd

Equation of a Circle Passing through Three Points

We choose any point P(z) on the circle. Two such points are shown in the figure above one is in same segment with C and the other one in different segement. So we have

$$\angle ACB = \angle APB \text{ or } \angle ACB + \angle APB = \pi$$

$$\arg \frac{z_3 - z_2}{z_2 - z_1} - \arg \frac{z - z_2}{z - z_1} = 0 \text{ or } \arg \frac{z_3 - z_2}{z_2 - z_1} + \arg \frac{z - z_2}{z - z_1} = \pi$$

Clearly, in both cases the fraction must be purely real. Thus we can apply the property of conjugates i.e. $z = \overline{z}$ which also gives us the condition for four concyclic points.

The argument above line can be represented by equation $arg(z-z_0)=\alpha$ where α is a real number and z_0 is a fixed point. If z_0 is origin then the equation becomes $arg(z)=\alpha$ which is a vector starting at origin and making angle α with x-axis.

If z_1 and z_2 are two fixed points such that $|z-z_1|=|z-z_2|$ then z represents perpendicular bisector of the segment joining $A(z_1)$ and $B(z_2)$. And z,z_1,z_2 will form an isoscles triangle.

If z_1 and z_2 are two fixed points and $k>0, k\neq 1$ is a real number then $\frac{|z-z_1|}{|z-z_2|}=k$ represents a circle.

Consider $|z-z_1|+|z-z_2|=k$. Let z_1 and z_2 be two fixed points and k be a positive real number.

- 1. If $k>|z-z_2|$, then $|z-z_1|+|z-z_2|=k$ represents an ellipse with foci at z_1 and z_2 and k is length of major axis.
- 2. If $k=|z-z_2|$ then it represents the line segment joining z_1 and z_2 .
- 3. If $k < |z z_2|$ then it does not represent any curve.

Consider $|z-z_1|-|z-z_2|=k$ like previous case.

- 1. If $k \neq |z z_2|$ then it represents parabolas with foci at z_1 and z_2 .
- $2. \ \ \text{If } k=|z-z_2|, \text{ then it represents the straight line joining } A(z_1) \text{ and } B(z_2) \text{ but excluding the the segment } AB.$

$$|z-z_1|^2+|z-z_2|^2=|z_1-z_2|^2$$
 represents a circle with z_1 and z_2 representing the diameter.

 $\text{Consider } arg \tfrac{z-z_1}{z-z_2} = \alpha \text{ where } z_1 \text{ and } z_2 \text{ are two fixed points and } \alpha \text{ be a real number such that } 0 \leq \alpha \leq \pi.$

- 1. If $0 < \alpha < \pi$ and $\alpha \neq \pi/2$, then it represents a segment of a circle passing through z_1 and z_2 .
- 2. If $\alpha=\pi/2$, then it represents a circle with diameter as the line segment joining z_1 and z_2 .
- 3. If $\alpha = 0$, then it represents the line segment joining z_1 and z_2 .
- 4. If $\alpha=\pi$, then it represents the line segment joining z_1 and z_2 but excluding z_1z_2 .