A Sense of Place: Quick and Dirty Accessibility Analysis Using Open Source Network Analysis Tools

Adam Porr

Research & Data Officer

Mid-Ohio Regional Planning Commission

Ohio GIS Conference

September 20 – 22, 2022

Networks are hard. Multimodal networks are much harder!

Connectivity

Costs

Restrictions

 Data availability, attributes, and integration

 Also, data and tools can be expensive!

Sometimes you need foolproof routing or research-grade analysis.

Source: NBC

But sometimes you just need a general sense of a place... and the people and things that are nearby.

Source: Extracted from MORPC Intel Site Driving Times map

Luckily, there are (open source) apps for that!

OpenStreetMap

Network of roads, trails, sidewalks, etc.

Network of transit routes ("GTFS")

"R5" routing engine

(Rapid Realistic Routing on Real-world and Reimagined networks)

One R package to rule them all and on the PC bind them!


```
install.packages("r5r")
   library(r5r)
    r5r core <- setup r5(data path = "./input data", verbose=TRUE)
    locations = read.csv("./input data/sample locations.csv")
   ttm_car <- travel_time_matrix(r5r_core = r5r_core,
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
                              mode = c("CAR"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                    format = "%Y-%m-%d %H:%M:%S"),
10
                              max trip duration = 90)
11
   ttm_bike <- travel_time_matrix(r5r_core = r5r_core,
                              origins = locations[1, ],
13
                              destinations = locations[1:nrow(locations), ],
14
                              mode = c("BICYCLE"),
15
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
16
                                                    format = "%Y-%m-%d %H:%M:%S"),
17
                              max_trip_duration = 90)
18
    ttm transit <- travel time matrix(r5r core = r5r core,
20
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
21
                              mode = c("TRANSIT","WALK"),
22
23
                              departure datetime = as.POSIXct("2022-09-12 17:00:00",
                                                    format = "%Y-%m-%d %H:%M:%S"),
24
                              max trip duration = 90)
    write.csv(ttm car, "output data/ttm sample locations car.csv", row.names=FALSE)
    write.csv(ttm_bike, "output_data/ttm_sample_locations_bike.csv", row.names=FALSE)
    write.csv(ttm transit, "output data/ttm sample locations transit.csv", row.names=FALSE)
```

Pre-requisites:

- 1. Install R
- Download OSM extract
 (a)
- 3. Download **GTFS** file (b)
- 4. Create a spreadsheet with your **origin and destination coordinates** with fields "id", "lat", and "lon".
- (1) https://download.geofabrik.de/
- (2) https://cota.com/data/


```
install.packages("r5r")
   library(r5r)
   r5r core <- setup r5(data path = "./input data", verbose=TRUE)
    locations = read.csv("./input data/sample locations.csv")
    ttm_car <- travel time_matrix(r5r_core = r5r_core,
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
                              mode = c("CAR"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                    format = "%Y-%m-%d %H:%M:%S"),
10
                              max trip duration = 90)
11
    ttm bike <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
13
                              destinations = locations[1:nrow(locations), ],
14
15
                              mode = c("BICYCLE"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
16
                                                    format = "%Y-%m-%d %H:%M:%S"),
17
                              max_trip_duration = 90)
18
   ttm transit <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
20
                              destinations = locations[1:nrow(locations), ],
21
                              mode = c("TRANSIT","WALK"),
22
                              departure datetime = as.POSIXct("2022-09-12 17:00:00",
23
                                                    format = "%Y-%m-%d %H:%M:%S"),
24
                              max trip duration = 90)
25
    write.csv(ttm car, "output data/ttm sample locations car.csv", row.names=FALSE)
    write.csv(ttm bike, "output data/ttm sample locations bike.csv", row.names=FALSE)
   write.csv(ttm transit, "output data/ttm sample locations transit.csv", row.names=FALSE)
```

Install and load r5r


```
install.packages("r5r")
   library(r5r)
   r5r_core <- setup_r5(data_path = "./input_data", verbose=TRUE)
    locations = read.csv("./input data/sample locations.csv")
    ttm_car <- travel_time_matrix(r5r_core = r5r_core,
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
                              mode = c("CAR"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                    format = "%Y-%m-%d %H:%M:%S"),
10
                              max trip duration = 90)
11
    ttm bike <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
13
                              destinations = locations[1:nrow(locations), ],
14
                              mode = c("BICYCLE"),
15
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
16
                                                    format = "%Y-%m-%d %H:%M:%S"),
17
                              max trip duration = 90)
18
    ttm transit <- travel time matrix(r5r core = r5r core,
20
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
21
                              mode = c("TRANSIT","WALK"),
22
                              departure datetime = as.POSIXct("2022-09-12 17:00:00",
23
                                                    format = "%Y-%m-%d %H:%M:%S"),
24
                              max trip duration = 90)
25
    write.csv(ttm car, "output data/ttm sample locations car.csv", row.names=FALSE)
    write.csv(ttm_bike, "output_data/ttm_sample_locations_bike.csv", row.names=FALSE)
    write.csv(ttm transit, "output data/ttm sample locations transit.csv", row.names=FALSE)
```

Build network from OSM and GTFS

Note: To understand the network in more detail, see:

http://docs.opentripplanner.org/en
/latest/RouterConfiguration/


```
install.packages("r5r")
   library(r5r)
   r5r core <- setup r5(data path = "./input data", verbose=TRUE)
   locations = read.csv("./input data/sample locations.csv")
   ttm car <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
                              mode = c("CAR"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                    format = "%Y-%m-%d %H:%M:%S"),
10
                              max trip duration = 90)
11
   ttm bike <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
13
                              destinations = locations[1:nrow(locations), ],
14
15
                              mode = c("BICYCLE"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
16
                                                    format = "%Y-%m-%d %H:%M:%S"),
17
                              max_trip_duration = 90)
18
   ttm transit <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
20
                              destinations = locations[1:nrow(locations), ],
21
                              mode = c("TRANSIT","WALK"),
22
                              departure datetime = as.POSIXct("2022-09-12 17:00:00",
23
                                                    format = "%Y-%m-%d %H:%M:%S"),
24
                              max trip duration = 90)
25
   write.csv(ttm car, "output data/ttm sample locations car.csv", row.names=FALSE)
   write.csv(ttm bike, "output data/ttm sample locations bike.csv", row.names=FALSE)
   write.csv(ttm transit, "output data/ttm sample locations transit.csv", row.names=FALSE)
```

Load origin and destination coordinates


```
install.packages("r5r")
library(r5r)
r5r core <- setup r5(data path = "./input data", verbose=TRUE)
locations = read.csv("./input_data/sample_locations.csv")
ttm_car <- travel time_matrix(r5r_core = r5r_core,
                          origins = locations[1, ],
                          destinations = locations[1:nrow(locations), ],
                          mode = c("CAR"),
                          departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                format = "%Y-%m-%d %H:%M:%S"),
                          max trip duration = 90)
ttm bike <- travel time matrix(r5r core = r5r core,
                          origins = locations[1, ],
                          destinations = locations[1:nrow(locations), ],
                          mode = c("BICYCLE"),
                          departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                format = "%Y-%m-%d %H:%M:%S"),
                          max_trip_duration = 90)
ttm transit <- travel time matrix(r5r core = r5r core,
                          origins = locations[1, ],
                          destinations = locations[1:nrow(locations), ],
                          mode = c("TRANSIT","WALK"),
                          departure datetime = as.POSIXct("2022-09-12 17:00:00",
                                                format = "%Y-%m-%d %H:%M:%S"),
                          max_trip_duration = 90)
write.csv(ttm car, "output data/ttm sample locations car.csv", row.names=FALSE)
write.csv(ttm bike, "output data/ttm sample locations bike.csv", row.names=FALSE)
write.csv(ttm transit, "output data/ttm sample locations transit.csv", row.names=FALSE)
```

Compute travel time matrices for several modes (car, bike, transit)

Note: The full list of configurable parameters is available at:

https://ipeagit.github.io/r5r/reference/travel_t ime_matrix.html


```
install.packages("r5r")
   library(r5r)
    r5r core <- setup r5(data path = "./input data", verbose=TRUE)
   locations = read.csv("./input data/sample locations.csv")
   ttm_car <- travel_time_matrix(r5r_core = r5r_core,
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
                              mode = c("CAR"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                    format = "%Y-%m-%d %H:%M:%S"),
10
                              max trip duration = 90)
11
    ttm bike <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
13
                              destinations = locations[1:nrow(locations), ],
14
15
                              mode = c("BICYCLE"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
16
                                                    format = "%Y-%m-%d %H:%M:%S"),
17
                              max_trip_duration = 90)
18
    ttm transit <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
20
                              destinations = locations[1:nrow(locations), ],
21
                              mode = c("TRANSIT","WALK"),
22
                              departure datetime = as.POSIXct("2022-09-12 17:00:00",
23
24
                                                    format = "%Y-%m-%d %H:%M:%S"),
                              max trip_duration = 90)
   write.csv(ttm car, "output data/ttm sample locations car.csv", row.names=FALSE)
   write.csv(ttm bike, "output data/ttm sample locations bike.csv", row.names=FALSE)
   write.csv(ttm transit, "output data/ttm sample locations transit.csv", row.names=FALSE)
```

Write the matrices to CSV


```
install.packages("r5r")
   library(r5r)
    r5r core <- setup r5(data path = "./input data", verbose=TRUE)
   locations = read.csv("./input data/sample locations.csv")
    ttm_car <- travel_time_matrix(r5r_core = r5r_core,
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
                              mode = c("CAR"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
                                                    format = "%Y-%m-%d %H:%M:%S"),
10
                              max trip duration = 90)
11
    ttm bike <- travel time matrix(r5r core = r5r core,
                              origins = locations[1, ],
13
                              destinations = locations[1:nrow(locations), ],
14
15
                              mode = c("BICYCLE"),
                              departure_datetime = as.POSIXct("2022-09-12 17:00:00",
16
                                                    format = "%Y-%m-%d %H:%M:%S"),
17
18
                              max_trip_duration = 90)
    ttm transit <- travel time matrix(r5r core = r5r core,
20
                              origins = locations[1, ],
                              destinations = locations[1:nrow(locations), ],
21
                              mode = c("TRANSIT","WALK"),
22
                              departure datetime = as.POSIXct("2022-09-12 17:00:00",
23
24
                                                    format = "%Y-%m-%d %H:%M:%S"),
                              max trip duration = 90)
25
    write.csv(ttm car, "output data/ttm sample locations car.csv", row.names=FALSE)
    write.csv(ttm bike, "output data/ttm sample locations bike.csv", row.names=FALSE)
    write.csv(ttm transit, "output data/ttm sample locations transit.csv", row.names=FALSE)
```

Total runtime: 2.02 minutes

(4 cores @ 3GHz, 16GB RAM)

The result doesn't look very impressive at first...

	Α	В	С	D
1	fromId	told	travel_time	
2	1	161	89	
3	1	352	87	
4	1	450	89	
5	1	451	86	
6	1	452	87	
7	1	453	88	
8	1	551	87	
9	1	552	85	
10	1	552	96	

, bu

... but with a little GIS work, cool things are possible!

Travel times point-to-point

Travel time rings

Accessibility analysis

Example - Travel time comparison by mode (from this conference)

Example - Travel time rings (from Intel site)

Example - Travel time rings (from Intel site)

Bike

Shuttle + transit

Example – Accessibility analysis

Example – Accessibility analysis

What if we were to...

- ...model a new COTA stop at the Intel site?
- ...model a new fixed-route service to serve Licking County?
- ...model a new bike path between the site and the New Albany park and ride and/or Johnstown?

• ...improve the OSM data?

- Feature completeness (esp. bike/ped)
- Attribute completeness (Level of Traffic Stress)

Lessons learned and caveats

- R5R doesn't (yet) provide access to all features of R5 (e.g. custom ingress modes)
- Computation of inbound routes is much slower than outbound routes?
- Couldn't get router to allow boarding at New Albany Park and Ride
- OpenStreetMap network isn't perfect in Central Ohio...
 - Incomplete sidewalks
 - Incomplete greenways
 - No Level of Traffic Stress
- ... and yet, many companies are selling or relying on OSM-based products!
- Need to fully understand or fine tune network behavior? Stick with ArcGIS (for now)
- There is a Python equivalent (r5py), but it doesn't seem as mature or functional as r5r (yet).

Does this sound like too much work? Try Conveyal!

https://conveyal.com/

Thank you! Questions?

Source code: https://github.com/aporr/r5r-demo