spectral values of the generator A into spectral values of the semigroup operator T(t) and vice versa. As shown in Examples 1.3 and 1.4 this is not possible in general. Therefore we tackle first a much easier 'spectral mapping theorem': the relation between $\sigma(A)$ and $\sigma(R(\lambda_0))$, where $R(\lambda_0):=R(\lambda_0,A)$ for some $\lambda_0\in\rho(A)$.

<u>Proposition</u> 2.5. Let (A,D(A)) be a densely defined closed linear operator with non-empty resolvent set $\rho(A)$. For each $\lambda_0 \in \rho(A)$ the following assertions hold:

- (i) $\sigma(R(\lambda_0)) \setminus \{0\} = (\lambda_0 \sigma(A))^{-1}$, In particular, $r(R(\lambda_0)) = (\operatorname{dist}(\lambda_0, \sigma(A)))^{-1}$.
- (ii) Analogous statements hold for the point-, approximate point-, residual spectra of A and $R(\lambda_0,A)$.
- (iii) The point α is isolated in $\sigma(A)$ if and only if $(\lambda_0^{-\alpha})^{-1}$ is isolated in $\sigma(R(\lambda_0^{-\alpha}))$. In that case the residues (resp., the pole orders) in α and in $(\lambda_0^{-\alpha})^{-1}$ coincide.

<u>Proof.</u> (i) is well known. It can be found for example in [Dunford-Schwartz (1958), VII.9.2].

(ii) We show that $\alpha \in A\sigma(A)$ if $(\lambda_O - \alpha)^{-1} \in A\sigma(R(\lambda_O))$ and leave the proof of the remaining statements to the reader. Take $(f_n)_{n \in N} \subset E$ such that $\|f_n\| = 1$, $\|(\lambda_O - \alpha)^{-1}f_n - R(\lambda_O, A)f_n\| \to 0$ and $\|R(\lambda_O, A)f_n\| \ge \frac{1}{2}|\lambda_O - \alpha|^{-1}$. Define

$$g_n := \|R(\lambda_0, A) f_n\|^{-1} \cdot R(\lambda_0, A) f_n \in D(A)$$

and deduce from

$$(\alpha - A) g_n = \|R(\lambda_0, A) f_n\|^{-1} \cdot [(\lambda_0 - A) - (\lambda_0 - \alpha)] R(\lambda_0, A) f_n$$

$$= \|R(\lambda_0, A) f_n\|^{-1} \cdot (\lambda_0 - \alpha) [(\lambda_0 - \alpha)^{-1} - R(\lambda_0, A)] f_n$$

that (g_n) is an approximate eigenvector of A to the eigenvalue α . (iii) Take a circle Γ with center α and sufficiently small radius. Then the residue P of R(.,A) at α is

$$P = \frac{1}{2\pi i} \int_{\Gamma} R(z,A) dz$$

$$= \frac{1}{2\pi i} \int_{\Gamma} (\lambda_{O}^{-z})^{-2} R((\lambda_{O}^{-z})^{-1}, R(\lambda_{O}, A)) dz$$

$$- \frac{1}{2\pi i} \int_{\Gamma} (\lambda_{O}^{-z})^{-1} dz , \text{ (use $\$$)}.$$

If λ_{Ω} lies in the exterior of Γ the second integral is zero. The