Introduction

This paper contains the computation of the motive of the irreducible $SL_2(k)$ -character variety of torus knots for any algebraically closed field k. The calculation is based on the methods introduced in the paper [1].

The notations used in this paper are the following:

- X_2^{irr} is the irreducible $\text{SL}_2(k)$ -representation variety of torus knots, that is, the variety of irreducible representations $\rho: \Gamma \to \text{SL}_2(k)$ where $\Gamma = \Gamma_{n,m}$ is the fundamental group of the complement of the (n,m)-torus knot (see section 2 of [1]).
- $\mathfrak{M}_2^{\text{irr}} = X_2^{\text{irr}} /\!\!/ \operatorname{SL}_2(k)$ is the irreducible $\operatorname{SL}_2(k)$ -character variety of torus knots, that is, the moduli space of representations (see section 2 of [1]).
- $\kappa = (\epsilon, \epsilon)$ is a configuration of eigenvalues, that is a collection of possible eigenvalues for the matrices A and B of a torus knot representation $\rho = (A, B)$ (see section 2 of [1]).
- τ is the type of a semi-simple filtration of a torus knot representation (see section 2.1 of [1]).
- ξ is the shape of the type τ , that is the collection of dimensions and multiplicities of each isotypic component (see section 2.1 of [1]).
- σ_A are the collections of eigenvalues of A for each isotypic component of a torus knot representation $\rho = (A, B)$ (see section 7.1 of [1]).
- σ_B are the collections of eigenvalues of B for each isotypic component of a torus knot representation $\rho = (A, B)$ (see section 7.1 of [1]).
- \mathcal{M}_{τ} is the space parametrizing possible completions of a semi-simple representation to a general representation of type τ (see section 4 of [1])
- \mathcal{G}_{τ} is the gauge group acting on $\mathcal{M}_{\tau} \times \mathrm{SL}_{2}(k)$ that identifies isomorphic completions (see section 4 of [1]).
- $\mathfrak{M}_{\tau}^{irr}$ is the variety of possible semi-simplifications of a representation of type τ (see section 4 of [1]).
- $X(\tau)$ is the variety of representations of type τ .
- $m_{\kappa}(\tau)$ is the multiplicity of the type τ , that is the number of isomorphic components $X(\tau')$ of types τ' with the same shape as τ but whose eigenvalues are given by a permutation of the ones of τ that preserves their multiplicity (see section 5 of [1]).
- $C_{\pi,\pi'}$ are the number of isomorphic components given by configurations of eigenvalues with the same structure of repeated eigenvalues (see Section 6 of [1]). Here, π,π' are two partitions of 2 that determine the number of repeated eigenvalues of the matrices A and B of a representation $\rho = (A,B)$. If $\pi = \{1^{e_1},\ldots,2^{e_2}\}$ and $\pi' = \{1^{e'_1},\ldots,2^{e'_2}\}$ we have the following characterization in terms of multinomial numbers (Theorem 6.8 of [1])

$$C_{\pi,\pi'} = \frac{2}{nm} \begin{pmatrix} n \\ e_1, \dots, e_2 \end{pmatrix} \begin{pmatrix} m \\ e'_1, \dots, e'_2 \end{pmatrix}.$$

Combinatorial formulas for the motives $[\mathcal{M}_{\tau}]$, $[\mathcal{G}_{\tau}]$ and $[\mathfrak{M}_{\tau}^{irr}]$ are described in section 5 of [1] in terms of the structure of the type τ .

The structure of the paper is as follows. Each section describes the count of the motive $[\mathfrak{M}_{\kappa}]$ for a possible configuration of eigenvalues κ . For that purpose, we analyze all the types τ compatible with κ and compute the motives $[X(\tau)]$. A configuration of eigenvalues κ not appearing as a section of the paper means that $X_{\kappa}^{\text{irr}} = \emptyset$ (see Remark 2.5 and Proposition 8.1 of [1]). In the final section of this paper, we summarize the results for each configuration κ and we provide the final result depending on the combinatorial coefficients $C_{\pi,\pi'}$.

Warning: The script generating this paper is only valid for rank ≤ 4 . The result for higher rank may not be correct.

1

1. Configuration $\epsilon = (\epsilon_1, \epsilon_2)$ and $\epsilon = (\epsilon_1, \epsilon_2)$

$$\xi = ((1,1),(1,1)), \quad \sigma_A = (\epsilon_1,\epsilon_2), \quad \sigma_B = (\epsilon_1,\epsilon_2).$$

- $[\mathcal{M}_{\tau}] = 1$.
- $[\mathcal{G}_{\tau}] = (q-1)^2$.
- $[\mathfrak{M}_{\tau}^{irr}] = 1.$
- $\bullet \ [X(\tau)] = q^2 + q$
- $m_{\kappa}(\tau) = 2$.

$$\xi = ((1,1),(1,1)), \quad \sigma_A = (\epsilon_1,\epsilon_2), \quad \sigma_B = (\epsilon_1,\epsilon_2).$$

- $[\mathcal{M}_{\tau}] = q 1$.
- $[\mathcal{G}_{\tau}] = (q-1)^2$.
- $[\mathfrak{M}_{\tau}^{irr}] = 1.$
- $\bullet \ [X(\tau)] = q^3 q$
- $m_{\kappa}(\tau) = 4$.

Total count of $\kappa = ((\epsilon_1, \epsilon_2), (\epsilon_1, \epsilon_2))$

$$\begin{split} [X_{\kappa}^{\text{red}}] &= 4 \, q^3 + 2 \, q^2 - 2 \, q, \\ [X_{\kappa}^{\text{irr}}] &= q^4 - 2 \, q^3 - q^2 + 2 \, q, \\ [X_{\kappa}] &= q^4 + 2 \, q^3 + q^2, \\ [\mathfrak{M}_{\kappa}] &= q - 2. \end{split}$$

$$[X_{\kappa}] = q^4 + 2q^3 + q^2,$$

$$[\mathfrak{M}_{\kappa}] = q - 2$$

Summary

$$\begin{split} [X_{(\epsilon_1,\epsilon_2),(\varepsilon_1,\varepsilon_2)}^{\mathrm{irr}}] &= q^4 - 2\,q^3 - q^2 + 2\,q. \\ \mathbf{Final\ result\ representations}. \end{split}$$

$$[X_2^{\text{irr}}] = (q^4 - 2q^3 - q^2 + 2q)C_{(1,1),(1,1)}.$$

Final result characters.

$$[\mathfrak{M}_2^{irr}] = C_{(1,1),(1,1)}(q-2).$$

References

[1] Á. González-Prieto and V. Muñoz, Motive of the $\mathrm{SL}_4(\mathbb{C})$ -character variety of torus knots,