

planetmath.org

Math for the people, by the people.

alternative proof of condition on a near ring to be a ring

 ${\bf Canonical\ name} \quad {\bf Alternative Proof Of Condition On AN ear Ring To Be A Ring}$

Date of creation 2013-03-22 17:20:06

Last modified on 2013-03-22 17:20:06

Owner Wkbj79 (1863)

Last modified by Wkbj79 (1863)

Numerical id 9

Author Wkbj79 (1863)

Entry type Proof
Classification msc 20-00
Classification msc 16-00
Classification msc 13-00

Theorem 1. Let $(R, +, \cdot)$ be a near ring with a multiplicative identity 1 such that the \cdot also left distributes over +; that is, $c \cdot (a + b) = c \cdot a + c \cdot b$. Then R is a ring.

Proof. All that needs to be verified is commutativity of +. Let $a, b \in R$. Consider the expression (1+1)(a+b). We have:

$$(1+1)(a+b) = (1+1)a + (1+1)b$$
 by left distributivity
= $1a + 1a + 1b + 1b$ by right distributivity
= $a+a+b+b$ since 1 is a multiplicative identity

On the other hand, we have:

$$(1+1)(a+b) = 1(a+b) + 1(a+b)$$
 by right distributivity
= $a+b+a+b$ since 1 is a multiplicative identity

Thus, a + a + b + b = a + b + a + b. Hence:

$$a + b = 0 + (a + b) + 0$$

$$= (-a + a) + (a + b) + (b + -b)$$

$$= -a + (a + a + b + b) + -b$$

$$= -a + (a + b + a + b) + -b$$

$$= (-a + a) + (b + a) + (b + -b)$$

$$= 0 + (b + a) + 0$$

$$= b + a$$

since 0 is an http://planetmath.org/AdditiveIde by definition of http://planetmath.org/AdditiveI

since a + a