Seat /ID	Discrete Structure (CS1005)	Section: BCS3H
Date: 4-09-2024	Quiz-1	Time: 30 mint

Problem-1

Let p and q be the propositions "The election is decided" and "The votes have been counted," respectively. Express each of these compound propositions as an English sen tence.

- a) $\neg p \rightarrow \neg q$
- b) $p \vee q$
- c) $\neg q \lor (\neg p \land q)$
- d) $q \rightarrow p$

Problem-2

Use truth table for given statement is a tautology, contradiction or contingency

$$(p \land \neg q) \land (\neg p \lor q)$$

Problem-3

Write converse, contrapositive and inverse of given conditional statement.

"if it snows tonight then I will stay at home "

Problem-4

Show that using law of logical equivalence and justify each steps

$$(p \land q) \rightarrow (p \rightarrow q) \equiv T$$

Problem-5

Use truth table

Determine the validity of the following argument:

If 7 is less than 4, then 7 is not a prime number. 7 is not less than 4.

7 is a prime number.

Solution-1

- a) If the election is not decided, then the votes have not been counted.
- b) The election is decided, or the votes have been counted.
- c) Either the votes have not been counted, or else the election is not decided and the votes have been counted.
- d) If the votes have been counted, then the election is decided.

Solution-2

Contradiction

Solution-3

Converse: If I stay home, then it will snow tonight.

Contrapositive: If I do not stay at home, then it will not snow tonight.

Inverse: If it does not snow tonight, then I will not stay home.

Solution-4

$(p \land q) \to (p \to q)$	
$\equiv \neg (p \land q) \lor (p \to q)$	Law of Implication
$\equiv \neg(p \land q) \lor (\neg p \lor q)$	Law of Implication
$\equiv (\neg p \lor \neg q) \lor (\neg p \lor q)$	De Morgan's Law
$\equiv (\neg p) \lor (\neg q \lor (\neg p \lor q))$	Associative Law
$\equiv (\neg p) \lor ((\neg p \lor q) \lor \neg q)$	Commutative Law
$\equiv (\neg p) \lor (\neg p \lor (q \lor \neg q))$	Associative Law
$\equiv (\neg p) \vee (\neg p \vee \mathbf{T})$	Negation Law
$\equiv (\neg p) \vee (\mathbf{T})$	Domination Law
$\equiv \mathbf{T}$	Domination Law

Solution-5

First translate the argument into symbolic form.

Let *p* be "7 is less than 4" and *q* be "7 is a prime number."

				Premises		cond	lusion
	p	q	$\neg q$	$p \rightarrow \neg q$	$\neg p$	q	4%
	T	T	F	F	F	Т	
	T	F	T	T	F	F	
	F	Т	F	T	T	T	
	F	F	T	T	T	F	critical row

IT IS NOT VALID