VISVESVARAYATECHNOLOGICALUNIVERSITY

"JnanaSangama", Belagavi-590018, Karnataka.

Project Phase-I Report(BIS685)

on

"A Research on CodeHive: The Pulse of Collaborative Coding Platform for synchronized innovation through collective teamwork"

Submitted in partial fulfillment for the award of VI semester

BACHELOR OF ENGINEERING

in

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

Project-Associates

1.	Raghavendragouda K T	1DB22IS117
2.	Prasanna N	1DB22IS107
3.	Manjesh R	1DB22IS076
4.	Likhith Gowda T D	1DB22IS069

Under the Guidance of

Mrs. Supriya

ASSISTANT PROFESSOR

Dept of Information Science and Engineering

Don Bosco Institute of Technology

Department of Information Science and Engineering DON BOSCO INSTITUTE OF TECHNOLOGY

Kumbalagodu, Mysuru road, Bengaluru-560074 2024-25

Don Bosco Institute of Technology

Kumbalgodu Mysuru Road Bengaluru-560074

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

CERTIFICATE

This is to Certify that the Project work on the topic "A Research on CodeHive: The Pulse of Collaborative Coding Platform for synchronized innovation through collective teamwork" has been successfully presented at Don Bosco Institute of technology by Raghavendragouda(1DB22IS117), Prasanna N(1DB22IS107), Manjesh R (1D22IS076), Likhith Gowda T D(1DB22IS069) in partial fulfillment of the requirements for the VI Semester degree of Bachelor of Engineering in Information Science and Engineering of Visvesvaraya Technological University, Belagavi during academic year 2024- 2025. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the Project Phase-I report deposited in the departmental library. The Project Phase -I report has been approved as it satisfies the academic requirements in respect of Project for the said degree.

Signature of the Guide

Mrs. Supriya Assistant Professor Dept. of ISE DBIT,Bengaluru **Signature of the HOD**

Dr. B K RaghavendraProfessor & Head
Dept. of ISE
DBIT,Bengaluru

Signature of the Principal

Dr. B S NaghabhushanaPrincipal
DBIT,Bengaluru

ACKNOWLEDGEMENT

The satisfaction and euphoria that a company the successful completion of any task would be incomplete without the mention of the people who made it possible, whose constant guidance and encouragement crowned the efforts with success.

We would like to profoundly thank **Management** of **Don Bosco Institute of Technology** for providing such a healthy environment for the successful completion of Project Phase-I.

We would like to express our thanks to **Dr. B.S Naghabhushana**, Principal, **Don Bosco Institute of Technology**, Bengaluru for his encouragement that motivated us for the successful completion of Project Phase-I.

It gives us immense pleasure to thank **Dr.B K Raghavendra**, Professor and Head of Department, Information Science and Engineering for his constant support and encouragement.

We would like to express our deepest sense of gratitude to our **Project Co- Ordinator** Harshitha H.M **Assistant Professors** Department of Information Science & Engineering for her constant support and guidance throughout the Project Phase-I.

We would like to express our deepest sense of gratitude to our guide Mrs.Supriya, Assistant Professor, Department of Information Science & Engineering for her constant support and guidance throughout the Project Phase-I.

Also, we would like to thank all teaching and non-teaching staff of Department of Information Science & Engineering who have helped directly and indirectly throughout the Project Phase-I.

Raghavendragouda K T (1DB22IS117)
Prasanna N (1DB22IS107)
Manjesh R (1DB22IS059)
Likhith Gowda T D (1DB22IS069)

ABSTRACT

CodeHive is a collaborative coding platform designed to enhance real-time teamwork among developers through a cloud-based integrated development environment (IDE). Supporting multiple programming languages and version control systems, CodeHive enables users to co-edit code, communicate via embedded chat and video conferencing, and manage tasks with greater transparency. Its synchronous and asynchronous collaboration tools allow teams to review, comment, and track changes efficiently, regardless of their physical locations.

Adaptable to diverse environments—from agile startups to large enterprises and educational institutions—CodeHive integrates seamlessly with tools like GitHub, Jira, and Slack to maintain workflow continuity. The platform also supports instructors and students by enabling collaborative learning and facilitating pair programming. With its focus on security, scalability, and usability, CodeHive fosters innovation while promoting accountability and effective teamwork across technical projects.

TABLE OF CONTENTS

Certific	ate	i
Acknov	vledgement	ii
Abstrac	t	iii
Table C	Of Contents	iv
Chapter No.	Contents	Page No.
1	Introduction	1
2	Literature Survey	2-3
3	Existing System	4
4	Problem Statement	5
5	Proposal system	6-10
5.1	Software Requirement	8
5.1.1	Architectural Overview	8
5.2	System Requirement Specification	9
5.2.1	Software Requirement	9
5.2.2	Hardware Requirement	9-10
6	Applications	11
	References	

Chapter1

Introduction

Rainfall is a crucial element of the Earth's climate system, and its accurate monitoring is essential for a wide range of applications, from agriculture and water resource management to flood forecasting and weather forecasting. Over the years, traditional rainfall monitoring systems have been used to gather information on precipitation, such as rain gauges and weather stations. However, these systems can be expensive, require a significant amount of maintenance, and may not provide real-time data.

With the advent of the Internet of Things (IoT) technology, a new era of rainfall monitoring has emerged, making it possible to develop low-cost and efficient monitoring systems that can provide real-time data. One such system is the Rainfall Monitoring using Arduino with IoT. This system combines the power of the Arduino microcontroller and Wi-Fi module to create a reliable, low-cost, and scalable rainfall monitoring system that can be easily deployed in any location.

The Rainfall Monitoring using Arduino with IoT system comprises three primary components: a rain gauge sensor, an Arduino microcontroller, and a Wi-Fi module. The rain gauge sensor measures the amount of rainfall and sends this data to the Arduino microcontroller, which processes the information and transmits it to a cloud-based IoT platform via Wi-Fi.

In summary, the Rainfall Monitoring using Arduino with IoT system is an innovative and effective solution for monitoring rainfall in real-time. Its low cost, accuracy, reliability, and scalability make it an ideal system for a wide range of applications, including agriculture, water resource management, flood forecasting, and weather forecasting. With the system's ability to provide real-time data, decision-makers can make more informed choices based on the latest information on precipitation patterns, leading to better outcomes for people and the environment.

Chapter 2

Literature Survey

2.1 Related Works

Sl.no	Author	Title	Publication	Pros	Cons
1.	ZHI Yong-feng,	Design of	International	Simple and cost-	Limited to detecting
	LI Ru	Raindrop	Conference on	effective design;	raindrops; no data
		Detector Based	Computer Science	uses Arduino	storage or
		on Arduino	and Electronics	which is	transmission
			Engineering	beginner-	
				friendly	
2.	S. R. Olaniyan,	Design and	International	Real-time data	Depends on
	O. S. Ajala	Implementation	Journal of	transmission;	network
		of an Automated	Engineering	low-cost and	connectivity; basic
		Rainfall	Research &	scalable.	data processing.
		Monitoring	Technology		
		System Using	(IJERT).		
		IoT.			
3.	M. R. Islam, M.	Design and	International	Uses wireless	ZigBee has limited
	J. Hasan	Development of a	Conference on	transmission via	range; system
		Wireless Rainfall	Electrical	ZigBee; energy	complexity increases
		Monitoring	Engineering and	efficient.	with distance.
		System.	Information &		
			Communication		
			Technology.		

4.	Tareq Alhmiedat,	A Low Cost	arXiv preprint	Low-cost	Limited to indoor air
	Ghassan Samara	ZigBee Sensor	arXiv:1712.04190	design; suitable	quality monitoring;
		Network		for indoor	may not be
		Architecture for		environments	applicable for
		Indoor Air			outdoor rainfall
		Quality			monitoring
		Monitoring			

2024-25

Page