METHOD OF UNDETERMINED COEFFICIENTS

The method of undetermined coefficients can be used to find the particular integral of a linear differential equation with constant coefficients. But this method is applicable only to a limited class of functions, called UC functions.

UC function: A function is a UC function if it is either

(i) a function defined by one of the following four types

- (a) $a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, where n is a positive integer or zero;
- (b) e^{ax} , where $a \neq 0$ is a constant;
- (c) $\sin(bx+c)$, where $b \neq 0$ and c are constants; and
- (d) cos(bx+c), where $b \neq 0$ and c are constants, or

(ii) a function defined as a finite product of two or more functions of these four types.

Example 1: The functions $3x^2 + 2x - 1$, $x^2 \sin x$, $xe^{2x} \cos x$, $xe^{2x} \sin^2 x \cos 2x$ are UC functions.

 ${f UC}$ set: Given a UC function f, each successive derivative of f is either a constant multiple of itself or a linear combination of linearly independent UC functions. The set of functions consisting of f itself and all linearly independent UC functions is called the UC set of f.

Example 2: Let $f(x) = x^2 \sin x$. The successive derivatives of f are given by $f'(x) = x^2 \cos x + 2x \sin x$, $f''(x) = -x^2 \sin x + 4x \cos x + 2\sin x, \quad f'''(x) = -x^2 \cos x - 2x \sin x - 4x \sin x + 6\cos x \text{ and so on. The UC}$ set of f is $S = \left\{ x^2 \sin x, x^2 \cos x, x \sin x, x \cos x, \sin x, \cos x \right\}$.

Table of UC functions and their UC sets

S.No.	UC function	UC set
1	$a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$	$\{x^n, x^{n-1},, x, 1\}$
2	e^{ax}	$\{e^{ax}\}$
3	$\sin(ax+b)$ or $\cos(ax+b)$	$\{\sin(ax+b),\cos(ax+b)\}$
4	f g	UC set of $f \times$ UC set of g
5	$x^2 \sin x$	$\{x^2, x, 1\} \times \{\sin x, \cos x\}$
		$= \{x^2 \sin x, x^2 \cos x, x \sin x, x \cos x, \sin x, \cos x\}$

METHOD OF UNDETERMINED COEFFICIENTS

Problem: Find the particular solution of an nth order linear differential equation with constant coefficients

$$[a_0D^n + a_1D^{n-1} + \dots + a_{n-1}D + a_n] y = X(x),$$
 [1]

where $X(x) = A_1 f_1(x) + A_2 f_2(x) + ... + A_k f_k(x)$ is a linear combination of UC functions $f_1, f_2, ..., f_k$

Step1 : Obtain the complementary function $y_c(x)$ of the given differential equation.

Step2 : To seek a particular (or trial) solution, $y_p(x)$, proceed as follows.

- For each of the UC functions in X(x), form the UC sets, say, $S_1, S_2, ..., S_k$.

 From these UC sets, obtain those UC sets that are mutually disjoint. [i.e., If $S_i \subseteq S_j$ then remove smaller set S_i and retain larger set S_j .] Suppose there are 'm' UC sets that are mutually disjoint.
- Check whether each of the 'm' UC set contain UC members of the complementary function or not. [If the UC set S_ℓ includes the members of the complementary function, obtain the revised UC set S_ℓ , that doesn't contain any UC member of the complimentary function, by multiplying the set S_ℓ with the lowest positive integral power of x.].
- Now we have 'm' UC sets (including the revised UC set) that are mutually disjoint. The particular integral $y_p(x)$ is chosen to be the linear combination of the members of the 'm' UC sets.

Step3: Determine the unknown coefficients by substituting $y_p(x)$ in the differential equation.

Step4: General solution of the given differential equation is $y(x) = y_c(x) + y_p(x)$.

Worked Example1:

Solve the differential equation

$$y'' - 2y' - 3y = 2e^x - 10sinx.$$

Solution.

Step1: To find the complementary function

The auxiliary equation of the associated homogeneous equation is $m^2-2m-3=0 \Rightarrow m=-1,3$ Hence the complementary function is

$$y_c(x) = c_1 e^{-x} + c_2 e^{3x}$$
, where c_1 and c_2 are arbitrary constants.

Step2: To find the particular solution by the method of undetermined coefficients.

Let the particular solution be

$$y_n(x) = Ae^x + B_1 sinx + B_2 cosx$$
, where A, B₁, B₂ are the coefficients to be determined.

$$y_p'(x) = Ae^x + B_1 cosx - B_2 sinx$$
 and $y_p''(x) = Ae^x - B_1 sinx - B_2 cosx$.

As $y_p(x)$ satisfies the given DE, we have

$$[Ae^x - B_1sinx - B_2cosx] - 2[Ae^x + B_1cosx - B_2sinx] - 3[Ae^x + B_1sinx + B_2cosx] = 2e^x - 10sinx$$

To determine the coefficients, equate the coefficients of UC functions as follows:

$$e^{x}$$
: $A - 2A - 3A = 2$ \Rightarrow $A = -\frac{1}{2}$
 $sinx$: $-B_{1} + 2B_{2} - 3B_{1} = -10$ \Rightarrow $-2B_{1} + B_{2} = -5$
 $cosx$: $-B_{2} - 2B_{1} - 3B_{2} = 0$ \Rightarrow $-2B_{1} - 4B_{2} = 0$

On solving, we get $B_2 = -1$ and $B_1 = 2$.

Hence the particular solution is $y_p(x) = -\frac{1}{2}e^x + 2sinx - cosx$

Thus the general solution of the given DE is

$$y(x) = y_c(x) + y_p(x) = c_1 e^{-x} + c_2 e^{3x} - \frac{1}{2} e^x + 2\sin x - \cos x$$

Worked Example2:

Find the complete solution of the differential equation

$$y'' - 3y' + 2y = 2x^2 + (1 + 2x)e^x + 4e^{3x}.$$

Solution.

Step1: To find the complementary function

The auxiliary equation of the associated homogeneous equation is $m^2-3m+2=0 \Rightarrow m=1,2$

Hence the complementary function is

$$y_c(x) = c_1 e^x + c_2 e^{2x}$$
, where c_1 and c_2 are arbitrary constants.

Step2: To find the particular solution by the method of undetermined coefficients.

Let the particular solution be

 $y_p(x) = [Ax^2 + Bx + C] + [De^{3x}] + [Ex^2e^x + Fxe^x]$, where A, B, C, D, E, F are the coefficients to be determined.

$$y_p'(x) = 2Ax + B + 3De^{3x} + E[2xe^x + x^2e^x] + F[e^x + xe^x]$$

$$y_n''(x) = 2A + 9De^{3x} + E[2e^x + 4xe^x + x^2e^x] + F[2e^x + xe^x]$$

As $y_n(x)$ satisfies the given DE, we have

$${2A + 9De^{3x} + E[2e^x + 4xe^x + x^2e^x] + F[2e^x + xe^x]}$$

$$-3\{2Ax + B + 3De^{3x} + E[2xe^x + x^2e^x] + F[e^x + xe^x]\}$$

$$+2\{[Ax^2 + Bx + C] + [De^{3x}] + [Ex^2e^x + Fxe^x]\} = 2x^2 + (1+2x)e^x + 4e^{3x}$$

To determine the coefficients, equate the coefficients of UC functions as follows:

$$x^{2} : 2A = 2 \qquad \Rightarrow \qquad A = 1$$

$$x: -6A + 2B = 0 \qquad \Rightarrow \qquad B = 3$$

$$1: 2A - 3B + 2C = 0 \qquad \Rightarrow \qquad C = \frac{7}{2}$$

$$e^{3x} : 9D - 9D + 2D = 4 \qquad \Rightarrow \qquad D = 2$$

$$xe^{x} : 4E + F - 6E - 3F + 2F = 2 \qquad \Rightarrow \qquad E = -1$$

$$e^{x} : 2E + 2F - 3F = 1 \qquad \Rightarrow \qquad F = -3$$

Hence, the particular solution is $y_p(x) = x^2 + 3x + \frac{7}{2} + 2e^{3x} - x^2e^x - 3xe^x$

Thus the general solution of the given DE is

$$y(x) = y_c(x) + y_p(x) = c_1 e^x + c_2 e^{2x} + x^2 + 3x + \frac{7}{2} + 2e^{3x} - x^2 e^x - 3xe^x$$

Problems for practice

- 1. Set up the particular solution by the method of undetermined coefficients and hence determine the particular solution for the following differential equations.
 - $y'' + 6y' + 13y = xe^{-3x}sin2x$
 - $y'' + 4y' + 5y = e^{-2x}(1 + \cos x)$
 - $y'' + 9y = 2sinh3x + e^{3x}sin3x$
 - $y'' 6y' + 8y = x^3 + x + e^{-2x}$
- 2. Set the following differential equations using the method of undetermined coefficients.
 - $y'' 2y' 3y = 2e^x 10sinx$; y(0) = 0; y'(0) = 4
 - $y'' 3y' + 2y = 2x^2 + e^x + 2xe^x$