W11 - Examples

Power series as functions

Geometric series: algebra meets calculus

Consider the geometric series as a power series functions:

$$\frac{1}{1-x} = 1+x+x^2+x^3+\cdots$$

Take the derivative of both sides of the *function*:

$$\frac{d}{dx}\left(\frac{1}{1-x}\right) \gg \frac{1}{(1-x)^2} \gg \left(\frac{1}{1-x}\right)^2$$

This means f satisfies the identity:

$$f' = f^2$$

Now compute the derivative of the series:

$$1 + x + x^2 + x^3 + \cdots$$
 \gg $1 + 2x + 3x^2 + 4x^3 + \cdots$

On the other hand, compute the square of the series:

$$(1+x+x^2+x^3+\cdots)^2 \gg 1+2x+3x^2+4x^3+\cdots$$

So we find that the *same relationship holds*, namely $f' = f^2$, for the closed formula and the series formula for this function.

Manipulating geometric series: algebra

Find power series that represent the following functions:

(a)
$$\frac{1}{1+x}$$
 (b) $\frac{1}{1+x^2}$ (c) $\frac{x^3}{x+2}$ (d) $\frac{3x}{2-5x}$

Solution

(a)
$$\frac{1}{1+x}$$

1. \equiv Rewrite in format $\frac{1}{1-n}$.

• Introduce double negative:

$$\frac{1}{1+x} = \frac{1}{1-(-x)}$$

- Choose u = -x.
- 2. \Rightarrow Plug u = -x into geometric series.
 - Geometric series in *u*:

$$1 + u + u^2 + u^3 + \cdots$$

• Plug in u = -x:

$$\gg \gg 1 + (-x) + (-x)^2 + (-x)^3 + \cdots$$

• Simplify:

$$\gg \gg 1 - x + x^2 - x^3 + \cdots$$

• Final answer:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots$$

(b)
$$\frac{1}{1+x^2}$$

- 1. \equiv Rewrite in format $\frac{1}{1-u}$.
 - Rewrite:

$$rac{1}{1+x^2} = rac{1}{1-(-x^2)}$$

- Choose $u = -x^2$.
- 2. \Rightarrow Plug $u = -x^2$ into geometric series.
 - Geometric series in u:

$$1 + u + u^2 + u^3 + \cdots$$

• Plug in $u = -x^2$:

$$\gg \gg 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \cdots \gg \gg 1 - x^2 + x^4 - x^6 + \cdots$$

• Final answer:

$$\frac{1}{1+x} = 1 - x^2 + x^4 - x^6 + \cdots$$

(c)
$$\frac{x^3}{x+2}$$

- 1. \implies Rewrite in format $Ax^3 \cdot \frac{1}{1-u}$.
 - Rewrite:

$$\frac{x^3}{x+2} \qquad \gg \gg \qquad x^3 \cdot \frac{1}{2+x} \qquad \gg \gg \qquad x^3 \cdot \frac{1}{2\left(1+\frac{x}{2}\right)}$$

$$\gg \gg \frac{1}{2}x^3 \cdot \frac{1}{1+\frac{x}{2}} \gg \gg \frac{1}{2}x^3 \cdot \frac{1}{1-\left(-\frac{x}{2}\right)}$$

- Choose $u = -\frac{x}{2}$. Here $Ax^3 = \frac{1}{2}x^3$.
- 2. \Rightarrow Plug $u = -x^2$ into geometric series.
 - Geometric series in *u*:

$$1 + u + u^2 + u^3 + \cdots$$

• Plug in $u = -\frac{x}{2}$:

$$\gg \gg 1 + (-\frac{x}{2}) + (-\frac{x}{2})^2 + (-\frac{x}{2})^3 + \cdots$$

$$\gg \gg 1 - \frac{1}{2}x + \frac{1}{4}x^2 - \frac{1}{8}x^3 + \cdots$$

• Obtain:

$$\frac{1}{1 - \left(-\frac{x}{2}\right)} = 1 - \frac{1}{2}x + \frac{1}{4}x^2 - \frac{1}{8}x^3 + \cdots$$

3. \equiv Multiply by $\frac{1}{2}x^3$.

• Distribute:

$$\frac{1}{2}x^3 \cdot \frac{1}{1 - \left(-\frac{x}{2}\right)} \gg \gg \frac{1}{2}x^3 - \frac{1}{4}x^4 + \frac{1}{8}x^5 - \frac{1}{16}x^6 + \cdots$$

· Final answer:

$$\frac{x^3}{x+2} = \frac{1}{2}x^3 - \frac{1}{4}x^4 + \frac{1}{8}x^5 - \frac{1}{16}x^6 + \cdots$$

(d)
$$\frac{3x}{2-5x}$$

- 1. \implies Rewrite in format $Ax \cdot \frac{1}{1-u}$.
 - Rewrite:

$$\frac{3x}{2-5x} \gg 3x \cdot \frac{1}{2-5x}$$

$$\gg 3x \cdot \frac{1}{2\left(1-\frac{5x}{2}\right)} \gg \frac{3}{2}x \cdot \frac{1}{1-\frac{5x}{2}}$$

- Choose $u = \frac{5x}{2}$. Here $Ax = \frac{3}{2}x$.
- 2. \Rightarrow Plug $u = \frac{5x}{2}$ into geometric series
 - Geometric series in u:

$$1 + u + u^2 + u^3 + \cdots$$

• Plug in $u = \frac{5x}{2}$:

$$\gg \gg 1 + (\frac{5x}{2}) + (\frac{5x}{2})^2 + (\frac{5x}{2})^3 + \cdots$$

$$\gg \gg 1 + \frac{5}{2}x + \frac{25}{4}x^2 + \frac{125}{8}x^3 + \cdots$$

• Obtain:

$$\frac{1}{1 - \frac{5x}{2}} = 1 + \frac{5}{2}x + \frac{25}{4}x^2 + \frac{125}{8}x^3 + \cdots$$

- 3. \equiv Multiply by $\frac{3}{2}x$.
 - Distribute:

$$\frac{3}{2}x \cdot \frac{1}{1 - \frac{5x}{2}} \qquad \gg \gg \qquad \frac{3}{2}x + \frac{15}{4}x^2 + \frac{75}{8}x^3 + \frac{375}{16}x^4 + \cdots$$

• Final answer:

$$\frac{3x}{2-5x} = \frac{3}{2}x + \frac{15}{4}x^2 + \frac{75}{8}x^3 + \frac{375}{16}x^4 + \cdots$$

Manipulating geometric series: calculus

Find power series that represent the following functions:

(a)
$$\ln(1+x)$$
 (b) $\tan^{-1}(x)$

Solution

- (a) $\ln(1+x)$
- 1. = Differentiate to obtain similarity to geometric sum formula.

• Differentiate ln(1+x):

$$\frac{d}{dx}\ln(1+x) = \frac{1}{1+x} \qquad \gg \gg \qquad \frac{1}{1-(-x)}$$

- $2. \equiv$ Find power series of differentiated function.
 - Power series by modifying $\frac{1}{1-u}$ with u=-x:

$$\frac{1}{1-(-x)} = 1 - x + x^2 - x^3 + x^4 - \cdots$$

- - Integrate both sides:

$$\int \frac{1}{1 - (-x)} \, dx = \int 1 - x + x^2 - x^3 + x^4 - \cdots \, dx$$

$$\ln(1+x) = D + x - rac{1}{2}x^2 + rac{1}{3}x^3 - rac{1}{4}x^4 + \cdots$$

• Use known point to solve for *D*:

$$ln(1+0) = D + 0 + 0 + \cdots$$
 >>> $0 = D$

• Final answer:

$$\ln(1+x) = x - rac{1}{2}x^2 + rac{1}{3}x^3 - rac{1}{4}x^4 + \cdots$$

- (b) $\tan^{-1} x$
- 1. = Differentiate to obtain similarity to geometric sum formula.
 - Differentiate $\tan^{-1} x$:

$$\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$$
 $\gg \gg$ $\frac{1}{1-(-x^2)}$

- $2. \equiv$ Find power series of differentiated function.
 - Power series by modifying $\frac{1}{1-u}$ with $u=-x^2$:

$$rac{1}{1-(-x^2)}=1-x^2+x^4-x^6+x^8-\cdots$$

- - Integrate both sides:

$$\int \frac{1}{1-(-x^2)} \, dx = \int 1 - x^2 + x^4 - x^6 + x^8 - \cdots \, dx$$

$$\tan^{-1}(x) = D + x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

• Use known point to solve for *D*:

$$\tan^{-1}(0) = D + 0 - 0 + \cdots \gg \gg 0 = D$$

• Final answer:

$$an^{-1}(x) = x - rac{1}{3}x^3 + rac{1}{5}x^5 - rac{1}{7}x^7 + \cdots$$

• Notice: by evaluating at x = 1 we get the Leibniz formula:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

Recognizing and manipulating geometric series: Part I

(a) Evaluate
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
.

(Hint: consider the series of ln(1-x).)

(b) Find a series approximation for ln(2/3).

Solution

(a) Evaluate $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$. (Hint: consider the series of $\ln(1-x)$.)

1. \sqsubseteq Find the series representation of $\ln(1-x)$ following the hint.

- Notice that $\frac{d}{dx}\ln(1-x) = \frac{-1}{1-x}$.
- We know the series of $\frac{-1}{1-x}$:

$$\frac{-1}{1-x} = -(1+x+x^2+\cdots) = -1-x-x^2-\cdots$$

- Notice that $\int \frac{-1}{1-x} dx = \ln(1-x) + C$; this is the desired function when C=0.
- Integrate the series term-by-term:

$$\int \frac{-1}{1-x} \, dx = \int -1 - x - x^2 - \dots \, dx \qquad \gg \gg \qquad \ln(1-x) = D - x - \frac{x^2}{2} - \frac{x^3}{3} - \dots$$

• Solve for D using $\ln(1-0)=0$, so $0=D-0-0-\cdots$ and thus D=0. So:

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} -\frac{x^n}{n!}$$

- 2. ! Notice the similar formula.
 - The series formula $\sum_{n=1}^{\infty} -\frac{x^n}{n!}$ looks similar to the formula $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$.
- 3. \equiv Choose x = -1 to recreate the desired series.
 - We obtain equality by setting x = -1 because $-(-1)^n = (-1)^{n+1} = (-1)^{n-1}$.
- $4. \equiv \text{Final answer is } \ln(1-1) = \ln 2.$
- (b) Find a series approximation for ln(2/3).
- 1. \equiv Observe that $\ln(2/3) = \ln(1 1/3)$.
 - Therefore we can use the series $\ln(1-x) = -x \frac{x^2}{2} \frac{x^3}{3} \cdots$
- 2. \equiv Plug x = 1/3 into the series for $\ln(1-x)$.
 - Plug in and simplify:

$$\ln(2/3) = \ln(1 - 1/3) = -1/3 - \frac{(1/3)^2}{2} - \frac{(1/3)^3}{3} - \cdots$$
$$= -\frac{1}{3} - \frac{1}{3^2 \cdot 2} - \frac{1}{3^3 \cdot 3} - \cdots$$

Recognizing and manipulating geometric series: Part 2

- (a) Find a series representing $tan^{-1}(x)$.
- (b) Find a series representing $\int \frac{dx}{1+x^4}$.

Solution

(a) Find a series representing $\tan^{-1}(x)$.

- 1. \triangle Notice that $\frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2}$.
- 2. \Rightarrow Obtain the series for $\frac{1}{1+x^2}$.
 - Let $u = -x^2$:

$$\frac{1}{1+x^2} \gg \gg \frac{1}{1-u} = 1 + u + u^2 + \cdots$$

$$\gg \gg 1 - x^2 + x^4 - x^6 + x^8 - \cdots$$

- 3. \sqsubseteq Integrate the series for $\frac{1}{1+x^2}$ by terms.
 - Set up the strategy. We know:

$$\int \frac{1}{1+x^2}\,dx = \tan^{-1}(x) + C$$

and:

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + x^8 - \cdots$$

• Integrate term-by-term:

$$=\int 1-x^2+x^4-x^6+x^8-\cdots \, dx=D+x-rac{x^3}{3}+rac{x^5}{5}-rac{x^7}{7}+\cdots$$

• Conclude that:

$$\tan^{-1}(x) + C = D + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

- 4. \equiv Solve for D-C by testing at $\tan^{-1}(0)=0$.
 - Plugging in, obtain:

$$\tan^{-1}(0) = D - C + 0 + \cdots + 0$$

so
$$D-C=0$$
.

- 5. \equiv Final answer is $\tan^{-1}(x) = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \cdots$
- (b) Find a series representing $\int \frac{dx}{1+x^4}$.
- 1. ➡ Find a series representing the integrand.
 - Integrand is $\frac{1}{1+x^4}$.
 - Rewrite integrand in format of geometric series sum:

$$\frac{1}{1+x^4} \qquad \gg \gg \qquad \frac{1}{1-(-x^4)} \qquad \gg \gg \qquad \frac{1}{1-u}, \quad u=-x^4$$

• Write the series:

$$\frac{1}{1-u} = 1 + u + u^2 + u^3 + \cdots \qquad \gg \gg \qquad 1 - x^4 + x^8 - x^{12} + x^{16} - \cdots \qquad = \sum_{n=0}^{\infty} (-1)^n x^{4n}$$

- 2. = Integrate the integrand series by terms.
 - Integrate term-by-term:

$$\int 1 - x^4 + x^8 - x^{12} + x^{16} - \cdots dx \qquad \gg \gg \qquad C + x - \frac{x^5}{5} + \frac{x^9}{9} - \frac{x^{13}}{13} + \frac{x^{17}}{17} - \cdots$$

• This is our final answer.

Taylor and Maclaurin series

Maclaurin series of e^x

What is the Maclaurin series of $f(x) = e^x$?

Solution

Because $\frac{d}{dx}e^x = e^x$, we find that $f^{(n)}(x) = e^x$ for all n.

So $f^{(n)}(0) = e^0 = 1$ for all n.

So $a_n = \frac{1}{n!}$ for all n. Thus:

$$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots$$

Maclaurin series of $\cos x$

Find the Maclaurin series representation of $\cos x$.

Solution

Use the Derivative-Coefficient Identity to solve for the coefficients:

$$a_n = rac{f^{(n)}(0)}{n!}$$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	a_n
0	$\cos x$	1	1
1	$-\sin x$	0	0
2	$-\cos x$	-1	-1/2
4	$\sin x$	0	0
5	$\cos x$	1	1/24
6	$-\sin x$	0	0
:	:	:	:

By studying the generating pattern of the coefficients, we find for the series:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Maclaurin series from other Maclaurin series

- (a) Find the Maclaurin series of $\sin x$ using the Maclaurin series of $\cos x$.
- (b) Find the Maclaurin series of $f(x) = x^2 e^{-5x}$ using the Maclaurin series of e^x .
- (c) Using (b), find the value of $f^{(22)}(0)$.

Solution

(a)

- 1. Premember that $\frac{d}{dx}\cos x = -\sin x$
- 2. \Rightarrow Differentiate $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \cdots$
 - Differentiate term-by-term:

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots >> 0 - 2\frac{x^1}{2!} + 4\frac{x^3}{4!} - 6\frac{x^5}{6!} + \cdots$$
$$= -\frac{x^1}{1!} + \frac{x^3}{3!} - \frac{x^5}{5!} - \cdots$$

• Take negative because $\sin x = -\frac{d}{dx}\cos x$:

$$\gg \gg x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

3. \equiv Final answer is $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$

(b)

- 1. Property Recall the series $e^u = 1 + \frac{u^1}{1!} + \frac{u^2}{2!} + \frac{u^3}{3!} + \cdots$
- 2. \equiv Compute the series for e^{-5x}
 - Set u = -5x:

$$1 + \frac{u^1}{1!} + \frac{u^2}{2!} + \frac{u^3}{3!} + \cdots \gg \gg 1 + \frac{(-5x)^2}{1!} + \frac{(-5x)^2}{2!} + \frac{(-5x)^3}{3!} + \cdots$$

- $3. \equiv$ Compute the product.
 - Product of series:

$$x^{2}e^{-5x} \gg x^{2} \left(1 + \frac{(-5x)}{1!} + \frac{(-5x)^{2}}{2!} + \frac{(-5x)^{3}}{3!} + \cdots \right)$$

$$= x^{2} - 5x + \frac{25}{2}x^{2} - \frac{125}{3!}x^{3} + \cdots$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{5^{n}x^{n+2}}{n!}$$

(c)

- 1. \triangle Derivatives at x=0 are calculable from series coefficients.
 - Suppose we know the series $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$
 - Then $f^{(n)}(0) = n! \cdot a_n$.
 - It may be easier to compute a_n for a given f(x) than to compute the derivative *functions* $f^{(n)}(x)$ and then evaluate them.
- 2. \Longrightarrow Compute a_{22} .
 - Write the series such that it reveals the coefficients:

$$\sum_{n=0}^{\infty} (-1)^n \frac{5^n x^{n+2}}{n!} \qquad \gg \gg \qquad \sum_{n=0}^{\infty} \left((-1)^n \frac{5^n}{n!} \right) x^{n+2}, \qquad \Longrightarrow \qquad a_{n+2} = (-1)^n \frac{5^n}{n!}$$

- • Always have a_{22} is the coefficient of x^{22} .
- Compute a_{22} :

$$a_{22} = (-1)^{20} \frac{5^{20}}{20!}$$
 $\gg \gg$ $5^{20} \frac{1}{20!}$

- 3. \equiv Compute $f^{(22)}(0)$.
 - Use formula $f^{(22)}(0) = n! \cdot a_n$:

$$f^{(22)}(0) = 22! \cdot a_{22}$$
 $= 5^{20} \cdot rac{22!}{20!}$

Computing a Taylor series

Find the Taylor series of $f(x) = \sqrt{x+1}$ centered at c=3.

Solution

A Taylor series is just a Maclaurin series that isn't centered at c = 0.

The general format looks like this:

$$f(x) = a_0 + a_1(x-c) + a_2(x-c)^2 + a_3(x-c)^3 + \cdots$$

The coefficients satisfy $a_n = \frac{f^{(n)}(c)}{n!}$. (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at x = 3:

$$f(x)=(x+1)^{1/2}, \qquad f(3)=2$$
 $f'(x)=rac{1}{2}(x+1)^{-1/2}, \qquad f'(3)=rac{1}{4}$ $f''(x)=-rac{1}{4}(x+1)^{-3/2}, \qquad f''(3)=-rac{1}{32}$ $f'''(x)=rac{3}{8}(x+1)^{-5/2}, \qquad f'''(3)=rac{3}{256}$ $f^{(4)}(x)=-rac{15}{16}(x+1)^{-7/2}, \qquad f^{(4)}(3)=-rac{15}{2048}$

By dividing by n! we can write out the first terms of the series:

$$f(x) = \sqrt{x+1} = 2 + \frac{1}{4}(x-3) - \frac{1}{64}(x-3)^2 + \frac{1}{512}(x-3)^3 - \frac{5}{16,384}(x-3)^4 + \cdots$$

Applications of Taylor series

Taylor polynomial approximations

Let $f(x) = \sin x$ and let $T_n(x)$ be the Taylor polynomials expanded around c = 0.

By considering the alternating series error bound, find the first n for which $T_n(0.02)$ must have error less than 10^{-6} .

Solution

- 1. \equiv Write the Maclaurin series of $\sin x$ because we are expanding around c = 0.
 - Alternating sign, odd function:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

- 2. A Notice this series is alternating, so AST error bound formula applies.
 - AST error bound formula is:

$$|E_n| \leq a_{n+1}$$

- Here the series is $S=a_0-a_1+a_2-a_3+\cdots$ and $E_n=S-S_n$ is the error.
- Notice that x = 0.02 is part of the terms a_i in this formula.
- 3. \Rightarrow Implement error bound to set up equation for n.
 - Find *n* such that $a_{n+1} \leq 10^{-6}$, and therefore by the AST error bound formula:

$$|E_n| \le a_{n+1} \le 10^{-6}$$

- Plug in x = 0.02.
- From the series of $\sin x$ we obtain for a_{2n+1} :

$$a_{2n+1} = rac{0.02^{2n+1}}{(2n+1)!}$$

- We seek the first time it happens that $a_{2n+1} \leq 10^{-6}$.
- 4. \implies Solve for the first time $a_{2n+1} \leq 10^{-6}$.

• Equations to solve:

$$rac{0.02^{2n+1}}{(2n+1)!} \le 10^{-6} \qquad ext{but:} \quad rac{0.02^{2(n-1)+1}}{(2(n-1)+1)!}
ot \le 10^{-6}$$

• Method: list the values:

$$\frac{0.02^1}{1!} = 0.02, \qquad \frac{0.02^3}{3!} \approx 1.33 \times 10^{-6}, \qquad \frac{0.02^5}{5!} \approx 2.67 \times 10^{-11}, \qquad \dots$$

- The first time a_{2n+1} is below 10^{-6} happens when 2n+1=5.
- 5. = Interpret result and state the answer.
 - When 2n+1=5, the term $\frac{x^{2n+1}}{(2n+1)!}$ at x=0.02 is less than 10^{-6} .
 - Therefore the sum of prior terms is accurate to an error of less than 10^{-6} .
 - The sum of prior terms equals $T_4(0.02)$.
 - Since $T_4(x) = T_3(x)$ because there is no x^4 term, the same sum is $T_3(0.02)$.
 - The final answer is n=3.
 - ① We do not immediately infer that the answer is 5, nor solve 2n + 1 = 5 to get n = 2. Those are wrong!

Taylor polynomials to approximate a definite integral

Approximate $\int_0^{0.3} e^{-x^2} dx$ using a Taylor polynomial with an error no greater than 10^{-5} .

Solution

$1. \equiv$ Write the series of the integrand.

• Plug $u = -x^2$ into the series of e^u :

$$e^u = 1 + \frac{u}{1!} + \frac{u^2}{2!} + \cdots \gg \gg e^{-x^2} = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$$

• Antiderivative by terms:

$$\int 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots dx \qquad \gg \gg \qquad x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$$

• Plug in bounds for definite integral:

$$\int_0^{0.3} e^{-x^2} dx \qquad \gg \gg \qquad x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots \Big|_0^{0.3}$$

$$\gg \gg \qquad 0.3 - \frac{0.3^3}{3!} + \frac{0.3^5}{5!} - \frac{0.3^7}{7!} + \dots$$

- $3. \equiv$ Notice AST, apply error formula.
 - Compute some terms:

$$\frac{0.3^3}{3!} pprox 0.0045, \qquad \frac{0.3^5}{5!} pprox 2.0 imes 10^{-5}, \qquad \frac{0.3^7}{7!} pprox 4.34 imes 10^{-8}$$

• So we can guarantee an error less than 4.34×10^{-5} by summing the first terms through $\frac{0.3^5}{51}$.

4.
$$\equiv$$
 Final answer is $0.3 - \frac{0.3^3}{3!} + \frac{0.3^5}{5!} \approx 0.291243$.