高等数值计算第二章复习

每一章,包括一些公式都给整理下来便于记忆。复习完这一遍之后就可以去整理一个公式纸了。

知识结构图

拉格朗日插值多项式

已知y=f(x)在区间 $[x_0,x_n]$ 上有定义及在n+1个节点 $x_0 < x_1 < \ldots < x_n$ 的函数值 $y_j=f(x_j)(j=0,1,\ldots,n)$

要求n次插值多项式 $L_n(x)$, 使他满足

$$L_n(x_i) = y_i, (j = 0, 1, \dots, n)$$

基函数法求解

 $L_n(x)$ 表示为已知节点函数值的基函数组合形式:

$$L_n(x) = \sum_{k=0}^n y_k l_k(x)$$

其中,组合系数被称为 y_k ,而 $l_k(x)$ 则称为n次插值基函数,满足下面条件:

- 1. $l_k(x)(k=0,1,\ldots,n)$ 是不超过n的多项式函数
- 2. 在节点 $x_k(k = 0, 1, ..., n)$ 处满足:

$$l_k(x) = egin{cases} 1, & k=j \ 0, & k
eq j \end{cases} (j,k=0,1,\ldots,n)$$

推导过程在此处,核心思路就是做一个待定系数法,把那个系数给求出来:

求基函数 $l_k(x)$ $(k = 0,1,\dots,n)$

(1) 由 $l_k(x_j) = 0$ ($j = 0,1,\dots,k-1,k+1,\dots n$) 知 x_j ($j = 0,1,\dots,k-1,k+1,\dots n$) 是函数 $l_k(x)$ 的零点,又由于 $l_k(x)$ 满足条件 (i),于是设

$$l_k(x) = A(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)$$
 (其中 A 为待定常数)

(2)由 $l_k(x_k)=1$,得

$$l_k(x_k) = A(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n) = 1$$

于是

$$A = \frac{1}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

故有

$$l_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

若引入记号 $\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_k)\cdots(x-x_n)$

易得
$$\omega'_{n+1}(x_k) = (x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)$$
,则有 $l_k(x) = \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)}$ 推验

所以n次拉格朗日插值多项式 $L_n(x)$ 为:

$$L_n(x) = \sum_{k=0}^n y_k rac{\omega_{n+1}(x)}{(x-x_k)\omega'_{n+1}(x_k)}$$

插值余项

若在[a,b]上用 $L_n(x)$ 近似f(x),则其截断误差为 $R=f(x)-L_n(x)$,也称为插值多项式的余项,记作 $R_n(x)$

设 $f^{(n)}(x)$ 在[a,b]上连续, $f^{(n+1)}(x)$ 在[a,b]上存在,节点 $a \leq x_0 < x_1 < \ldots < x_n \leq b$,则 $L_n(x)$ 是满足拉格朗日插值条件的多项式,则对任何 $x \in [a,b]$,有:

$$R_n(x) = f(x) - L_n(x) = rac{f^{n+1}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

这里 $\xi \in [a,b]$ 且依赖于x

推导如下图:

证明:由条件知节点 $x_{k}(k=0,1,\dots,n)$ 是 $R_{m}(x)$ 的零点,即 $R_{m}(x_{k})=0$ 。

于是
$$R_n(x) = K(x)(x-x_0)(x-x_1)\cdots(x-x_n) = K(x)\omega_{n+1}(x)$$

其中K(x)是与x有关的待定函数。

现把x看成[a,b]上的固定点,作函数

$$\phi(t) = f(t) - L_n(t) - K(x)(t - x_0)(t - x_1) \cdots (t - x_n)$$

根据插值条件和余项定义,知 $\phi(t)$ 在点 x_0, x_1, \cdots, x_n 及 x 处均为零。故 $\phi(t)$ 在 [a,b] 上有 n+2 个零点,根据罗尔定理, $\phi'(t)$ 在 [a,b]内至少有 n+1 个零点。对 $\phi'(t)$ 再应用罗尔定理,可知 $\phi''(t)$ 在 [a,b]内至少有n个零点。依次类推, $\phi^{(n+1)}(t)$ 在 (a,b) 上至少有一个零点,记为 $\xi \in (a,b)$,使

$$\phi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - (n+1)!K(x) = 0$$
 可推验
于是

$$K(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}, \quad \xi \in (a,b),$$
且依赖于 x

于是得到插值余项。 证毕。

罗尔定理以及其Generalized形式

Theorem 1.5 (Rolle's Theorem). Assume that $f \in C[a, b]$ and that f'(x) exists for all $x \in (a, b)$. If f(a) = f(b) = 0, then there exists a number c, with $c \in (a, b)$, such that f'(c) = 0.

Theorem 1.7 (Generalized Rolle's Theorem). Assume that $f \in C[a, b]$ and that $f'(x), f''(x), \ldots, f^{(n)}(x)$ exist over (a, b) and $x_0, x_1, \ldots, x_n \in [a, b]$. If $f(x_j) = 0$ for $j = 0, 1, \ldots, n$, then there exists a number c, with $c \in (a, b)$, such that $f^{(n)}(c) = 0$.

余项的误差限

余项的误差限为: $R_n(x) \leq rac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|$

例题

例1:

例2-1 已知
$$f(-2)=2$$
, $f(-1)=1$, $f(0)=2$, $f(0.5)=3$,
试选用适合的插值节点通过二次插值多项式计算 $f(-0.5)$
的近似值,使之精度尽可能高。

解: 取节点
$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 0.5$,作二次插值
$$l_0 = \frac{(x-0)(x-0.5)}{(-1-0)(-1-0.5)} = \frac{2}{3}x(x-0.5)$$

$$l_1 = \frac{(x+1)(x-0.5)}{(0+1)(0-0.5)} = -2(x+1)(x-0.5)$$

$$l_2 = \frac{(x+1)(x-0)}{(0.5+1)(0.5-0)} = \frac{4}{3}x(x+1)$$

二次插值多项式为

$$L_2(x) = f(x_0)l_0(x) + f(x_1)l_2(x) + f(x_2)l_2(x) = l_0(x) + 2l_1(x) + 3l_2(x)$$
$$f(-0.5) \approx L_2(-0.5) = 1 \times l_0(-0.5) + 2 \times l_1(-0.5) + 3 \times l_2(-0.5) = \frac{4}{3}$$

例1就是按照拉格朗日插值的方法求出求出来各个 $l_n(x)$

例2:

例2-2 给定函数值表

x	10	11	12	13
lnx	2.302585	2.397895	2.484907	2.564949

用二次插值计算 1n(11.25) 的近似值,并估计误差。

解: 取节点
$$x_0 = 10$$
, $x_1 = 11$, $x_2 = 12$, 作二次插值
$$\ln(11.25) \approx L_2(11.25) = \frac{(11.25 - 11)(11.25 - 12)}{(10 - 11)(10 - 12)} \times 2.302585$$
$$+ \frac{(11.25 - 10)(11.25 - 12)}{(11 - 10)(11 - 12)} \times 2.397895$$
$$+ \frac{(11.25 - 10)(11.25 - 11)}{(12 - 10)(12 - 11)} \times 2.484907 = 2.420426$$

在区间[10,12]上**ln**x 的三阶导数 (2/x³) 的上限 **M**₃=0.002, 可得误差估计式 点数 (条件数目) 阶导

$$|R_2(11.25)| \le \frac{M_3}{3!} | (11.25 - 10)(11.25 - 11)(11.25 - 12) | < 0.0000781$$

注:实际上, ln(11.25)=2.420368,

$$|R_2(11.25)|$$
=0.000058

这个例题就是直接用二次插值的多项式来直接解

例3

例2-3(反插值法)已知单调连续函数 y = f(x) 在如下采样点处的函数值

x_i	1.0	1.4	1.8	2.0
$y_i = f(x_i)$	-2.0	-0.8	0.4	1.2

求方程 f(x) = 0 在 [1,2] 内根的近似值 x^* , 使误差尽可能小。

y_i	-2.0	-0.8	0.4	1.2	0
$f^{1}(y_{i})=x_{i}$	1.0	1.4	1.8	2.0	?

解: 对 y = f(x) 的反函数 $x = f^{-1}(y)$ 进行三次插值,插值多项式为

$$L_{3}(y) = f^{-1}(y_{0}) \frac{(y - y_{1})(y - y_{2})(y - y_{3})}{(y_{0} - y_{1})(y_{0} - y_{2})(y_{0} - y_{3})}$$

$$+ f^{-1}(y_{1}) \frac{(y - y_{0})(y - y_{2})(y - y_{3})}{(y_{1} - y_{0})(y_{1} - y_{2})(y_{1} - y_{3})}$$

$$+ f^{-1}(y_{2}) \frac{(y - y_{0})(y - y_{1})(y - y_{3})}{(y_{2} - y_{0})(y_{2} - y_{1})(y_{2} - y_{3})}$$

$$+ f^{-1}(y_{3}) \frac{(y - y_{0})(y - y_{1})(y - y_{2})}{(y_{3} - y_{0})(y_{3} - y_{1})(y_{3} - y_{2})}$$

$$= 1.675 + 0.3271y - 0.03125y^{2} - 0.01302y^{3}$$

于是有

$$x^* = f^{-1}(0) \approx L_3(0) = 1.675$$

因为要求的是这个x,而不是函数值,所以这里就做一个从函数值到自变量的一个反函数,并且利用这个反函数做插值。

例4

例2-4 证明

(1)
$$\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) \equiv x^{k} \quad (k = 0, 1, \dots, n)$$

(2)
$$\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = 0$$
, 其中 $l_i(x)$ 是关于点 x_0, x_1, \dots, x_5 的插值基函数。

证明: (1) 函数 x^k 及 $\sum_{j=0}^n x_j^k l_j(x)$ 均为被插值函数 x^k 的关于互异节点 $\left\{x_j\right\}_{j=0}^n$ 的不超过n 次的插值多项式,利用插值多项式的唯一性知两者恒等。

(2)
$$\sum_{i=0}^{5} (x_i - x)^2 l_i(x) = \sum_{i=0}^{5} (x_i^2 - 2x_i x + x^2) l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - \sum_{i=0}^{5} 2x_i x l_i(x) + \sum_{i=0}^{5} x^2 l_i(x)$$
$$= \sum_{i=0}^{5} x_i^2 l_i(x) - 2x \sum_{i=0}^{5} x_i l_i(x) + x^2 \sum_{i=0}^{5} l_i(x)$$
$$= x^2 - 2x^2 + x^2 = 0$$

第二题就是利用了第一题的性质去做的。

例2-5 设 $f \in C^2[a,b]$, 试证:

$$\max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a} (x - a)] \right| \le \frac{1}{8} (b - a)^2 M_2$$

其中 $M_2 = \max |f''(x)|$ 。记号 $C^2[a,b]$ 表示在区间[a,b]上二阶导数连续的函数空间。

证明 通过两点(a, f(a)), (b, f(b))的线性插值为

$$l_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

于是

$$\max_{a \le x \le b} \left| f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)] \right|$$

$$= \max_{a \le x \le b} \left| f(x) - L_1(x) \right| = \max_{a \le x \le b} \left| \frac{f''(\xi)}{2}(x - a)(x - b) \right|$$

$$\le \frac{M_2}{2} \max_{a \le x \le b} \left| (x - a)(x - b) \right| = \frac{1}{8}(b - a)^2 M_2$$

推导

利用了之前的误差余项性质。

均差 & 牛顿插值多项式

均差定义与性质

均差的定义:

- 称 $f[x_0,x_k]=rac{f(x_k)-f(x_0)}{x_k-x_0}$ 为函数f(x)关于点 x_0,x_k 的一阶均差
- 称 $f[x_0,x_1,x_k]=rac{f[x_0,x_k]-f[x_0,x_1]}{x_k-x_1}$ 为函数f(x)关于点 x_0,x_1,x_k 的二阶均差
 称 $f[x_0,x_1,\dots,x_k]=rac{f[x_0,\dots,x_{k-2},x_k]-f[x_0,x_1,\dots,x_{k-2},x_{k-1}]}{x_k-x_{k-1}}$ 为函数f(x)关于点 x_0,x_1,\dots,x_k 的k阶均差

均差的性质:

• k阶均差可表示为函数值 $f(x_0),\ldots,f(x_k)$ 的线性组合

$$f[x_0,x_1,\ldots,x_k] = \sum_{j=0}^k rac{f(x_j)}{(x_j-x_0)\ldots(x_j-x_{j-1})(x_j-x_{j+1})\ldots(x_j-x_k)}$$

- $ullet \ f[x_0,x_1,\ldots,x_k] = rac{f[x_1,...,x_k] f[x_0,...,x_{k-1}]}{x_k x_0}$
- $\exists f(x) \in [a,b] \perp f(x)$, $\exists f(x) \in [a,b]$, $\exists f(x) \in [a,b]$, $\exists f(x) \in [a,b]$, $\exists f(x) \in [a,b]$

$$f[x_0,\ldots,x_n]=rac{f^{(n)}(\xi)}{n!}, \xi\in[a,b]$$

均差计算表

均差计算表

x _i	$f(x_i)$	一阶	二阶均差	三阶均差	 n阶均差
		均差			
\mathbf{x}_{o}	$f(x_0)$				
X ₁	$f(x_1)$	$f[x_0,x_1]$			
x ₂	$f(x_2)$	$f[x_1,x_2]$	$\int [x_0, x_1, x_2]$		
X ₃	$f(x_3)$	$f[x_2, x_3] -$	$\rightarrow f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
	:	:	:		
x _n	$f(x_n)$	$f[x_{n-1},x_n]$	$f[x_{n-2},x_{n-1},x_n]$	$f[x_{n-3},x_{n-2},x_2,x_3]$	 $f[x_0,x_1,,x_n]$

例如 由函数y=f(x)的函数表写出均差表.

i	0	1	2	3
\boldsymbol{x}_i	-2	-1	1	2
$f(x_i)$	5	3	17	21

解 均差表如下:

i	X _i	$f(x_i)$	一阶均差	二阶均差	三阶均差
0	-2	5			
1	-1	3	-2		
2	1	17	7	3	
3	2	21	4	-1	-1

牛顿插值公式

通过均差的定义,用迭代的方法可以求得牛顿插值公式:

$$N_n(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \ldots + f[x_0, x_1, \ldots, x_n](x - x_0) \ldots (x - x_{n-1})$$
 而其余项则为:

$$R_n(x) = f[x,x_0,\ldots,x_n](x-x_0)\ldots(x-x_n)$$

例2-6

 x_1, x_2 的二次插值和 x_0, x_1, x_2, x_3 的三次插值多项式.

解 由均差表知 $f[x_0,x_1]=-2$, $f[x_0,x_1,x_2]=3$, $f[x_0,x_1,x_2,x_3]=-1$,

于是有

$$N_1(x)=5-2(x+2)=1-2x$$

$$N_2(x)=1-2x+3(x+2)(x+1)=3x^2+7x+7$$

$$N_3(x)=3x^2+7x+7-(x+2)(x+1)(x-1)=-x^3+x^2+8x+9$$

i	Xi	f(x _i)	一阶均差	二阶均差	三阶均差
0	-2	5			
1	-1	3	-2		
2	1	17	7	3	
3	2	21	4	-1	-1

这里就是先求出均差表,然后逐项把牛顿插值公式给写出来。

例2

例2-7 给出 f(x) 的函数值表,求4次牛顿插值多项式,并计算f(0.596) 的近似值。

X _i	$f(x_i)$	一阶均差	二阶均差	三阶均差	四阶均差	五阶 均差
0.40	0.44075					內在
0.40	0.41075					
0.55	0.57815	1.11600				
0.65	0.69675	1.18600	0.28000			
0.80	0.88811	1.27573	0.35893	0.19733		
0.90	1.02652	1.38410	0.43348	0.21300	0.03134	
1.05	1.25382	1.51533	0.52493	0.22863	0.03126	-0.00012

$$\begin{split} N_4(x) &= 0.41075 + \underline{1.116}(x - 0.4) + \underline{0.28}(x - 0.4)(x - 0.55) \\ &+ 0.19733(x - 0.4)(x - 0.55)(x - 0.65) \\ &+ \underline{0.03134}(x - 0.4)(x - 0.55)(x - 0.65)(x - 0.8) \end{split}$$

于是

$$f(0.596) \approx N_4(0.596) = 0.63192$$

截断误差

$$|R_4(x)| \approx |f[x_0, \dots, x_5]\omega_5(0.596)| = 3.63 \times 10^{-9}$$

 $|R_4(x)| \approx |f[x_0, \dots, x_4, 0.596]\omega_5(0.596)|$

误差计算(估算)的两种方式:

- (1) $f[x,x_0,\dots,x_n]$ 用 $f[x_0,\dots,x_{n+1}]$ 近似;
- (2) 令 $f(x) \approx N_n(x)$ 计算 $f[x, x_0, \dots, x_n]$ 值。

这里就是直接用均差表求出来牛顿公式,然后再根据误差公式来算出他的误差

埃尔米特插值多项式

定义

定义:在节点上的函数值相等,并且对应的导数值也相等,甚至要求高阶要求也相等。

均差的性质:

如果[a,b]上的节点互异,根据均差定义,若 $f \in C^1[a,b]$,则有

$$\lim_{x \to x_0} f[x_0, x] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

由此定义重节点均差 $f[x_0,x_0] = \lim_{x \to x_0} f[x_0,x] = f'(x_0)$

类似地可定义重节点的二阶均差,当 $x_1 \neq x_0$ 时,有

$$f[x_0, x_0, x_1] = \frac{f[x_0, x_1] - f[x_0, x_0]}{x_1 - x_0}$$

拓展到n次之后,则有:

当
$$x_1 \rightarrow x_0$$
时,有

$$f[x_0, x_0, x_0] = \lim_{\substack{x_1 \to x_0 \\ x_2 \to x_0}} f[x_0, x_1, x_2] = \frac{1}{2} f''(x_0)$$

一般地,可定义n 阶重节点的均差

$$f[x_0, x_0, \dots, x_0] = \lim_{x_i \to x_0} f[x_0, x_1, \dots, x_n] = \frac{1}{n!} f^{(n)}(x_0)$$

例题

例2-8 试用数据表建立不超过3次的埃尔米特插值多项式。

х	0	1	2
f(x)	1	2	9
f'(x)		3	

X _i	f(x _i)	一阶均差	二阶均 差	三阶均 差
0	1			
1	2	1_		
1	2	3	2	
2	9	7	4	1

$$H_3(x) = f(0) + f[0,1](x-0) + f[0,1,1](x-0)(x-1)$$

$$+ f[0,1,1,2](x-0)(x-1)(x-1)$$

$$= 1 + 1 \times (x-0) + 2(x-0)(x-1)$$

$$+ 1(x-0)(x-1)(x-1) = x^3 + 1$$

重要知识(数值积分需用)

余项表达式: 条件数目阶导
$$R(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!}(x-0)(x-1)^2(x-2)$$
 条件数目阶乘

解法二 (待定系数法)

以已知函数值为插值条件的二次插值多项式为

$$N_2(x) = f(0) + f[0,1](x-0) + f[0,1,2](x-0)(x-1)$$

= 1+1×(x-0)+3×(x-0)(x-1)
= 3x²-2x+1

设待求插值函数为

$$H_3(x) = N_2(x) + k(x-0)(x-1)(x-2)$$

 $H'_3(x) = 6x - 2 + [k(x-0)(x-1)(x-2)]'$
令 $H'_3(1) = f'(1) = 3$,即 $4-k=3$,求得 $k=1$ 。
进而有 $H_3(x) = N_2(x) + (x-0)(x-1)(x-2)$
 $= x^3 + 1$

这里的第一种解决方法就是回到了定义,用定义的方式去解决问题。而第二种解决方法则是通过待定系数来解决问题。

例2

例6 设
$$f(x) \in \mathcal{C}^4[0, 2]$$
,且 $f(0)=1$, $f(1)=0$, $f(2)=3$, $f'(1)=0$,试求 $f(x)$ 的三次插值多项式 $H_3(x)$,并给出余项.

解 法1(基函数法):设

 $H_3(x)=\varphi_0(x)\,y_0+\varphi_1(x)\,y_1+\varphi_2(x)\,y_2+\psi_1(x)\,y_1'$
 $=\varphi_0(x)+3\,\varphi_2(x)$
则 $\varphi_0(x)=c_0(x-1)^2(x-2)=-1/2(x-1)^2(x-2)$
 $H_3(0)=1$
 $\varphi_2(x)=c_2x(x-1)^2=1/2x(x-1)^2$
所以
 $H_3(x)=-1/2(x-1)^2(x-2)+3/2x(x-1)^2$
 $=1/2(x-1)^2[(2-x)+3x]$

法2(待定系数法):设

 $=(x-1)^2(x+1)$

$$H_3(x) = (x-1)^2 (ax+b)$$

由 $H_3(0) = 1$ 得: $b = 1$,由 $H_3(2) = 3$ 得: $2a+b = 3$
解得 $a = 1$, $b = 1$.
所以 $H_3(x) = (x-1)^2 (x+1)$
记 $R_3(x) = f(x) - H_3(x)$,则 $R_3(0) = R_3(1) = R_3(2) = R_3'(1) = 0$
于是, $R_3(x) = C(x) x(x-1)^2 (x-2)$
对于任一 $x \in [0, 2]$, $x \neq 0$,1,2,构造函数:
$$\varphi(t) = f(t) - H_3(t) - C(x) t(t-1)^2 (t-2)$$
由于 $\varphi(0) = \varphi(1) = \varphi(2) = \varphi'(1) = \varphi(x) = 0$,可得
$$R_3(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi_x)}{A!} x (x-1)^2 (x-2)$$

同样,第一个方法是用定义去算,第二个方法则是用待定系数法去算。

其它插值公式

分段线性插值

• 分段线性插值

分段线性插值就是通过插值点用折线段连接起来逼近f(x).

Figure 5.11 Piecewise linear interpolation (a linear spline).

其插值余项: 对所有 k, 我们有
$$M_2 = \max_{a \le x \le b} |f''(x)|$$

$$\max_{\substack{x_k \le x \le x_{k+1} \\ M_2 \ b^2}} |f(x) - I_h(x)| \le \frac{M_2}{x} \max_{\substack{x_k \le x \le x_{k+1} \\ M_2 \ b^2}} |(x - x_k)(x - x_{k+1})| \le$$

分段三次Hermite插值

分段三次埃尔米特插值:
$$I_h(x) = (\frac{x-x_{k+1}}{x_k-x_{k+1}})^2 (1+2\frac{x-x_k}{x_{k+1}-x_k}) f_k + (\frac{x-x_k}{x_{k+1}-x_k})^2 (1+2\frac{x-x_{k+1}}{x_k-x_{k+1}}) f_{k+1} + (\frac{x-x_{k+1}}{x_k-x_{k+1}})^2 (x-x_k) f_k + (\frac{x-x_k}{x_{k+1}-x_k})^2 (x-x_{k+1}) f_{k+1}$$

$$\max_{a \leq x \leq b} |f(x)-I_h(x)| \leq \frac{h^4}{384} \max_{a \leq x \leq b} |f^{(4)}(x)|, h = \max_{0 \leq k \leq n-1} (x_{k+1}-x_k)$$

三次样条插值

对于n+1给定点的数据集 $\{x_i\}$,我们可以用n段三次多项式在数据点之间构建一个三次样条。如果

$$S(x) = \left\{egin{array}{l} S_0(x), \ x \in [x_0, x_1] \ S_1(x), \ x \in [x_1, x_2] \ & \dots \ S_{n-1}(x), \ x \in [x_{n-1}, x_n] \end{array}
ight.$$

表示对函数f进行插值的样条函数,那么需要:

- 插值特性, $S(x_i) = f(x_i)$
- 样条相互连接, $S_{i-1}(x_i) = S_i(x_i), i = 1, \ldots, n-1$
- 两次连续可导, $S_{i-1}'(x_i) = S_i'(x_i)$ 以及 $S_{i-1}''(x_i) = S_i''(x_i), i=1,\ldots,n-1$.

由于每个三次多项式需要四个条件才能确定曲线形状,所以对于组成S的n个三次多项式来说,这就意味着需要4n个条件才能确定这些多项式。但是,插值特性只给出了n+1个条件,内部数据点给出n+1-2=n-1个条件,总计是4n-2个条件。我们还需要另外两个条件,根据不同的因素我们可以使用不同的条件。

其中一项选择条件可以得到给定4与0的绀位三次样条,

$$S'(x_0) = u \ S'(x_k) = v$$

另外, 我们可以设

$$S''(x_0) = S''(x_n) = 0$$

这样就得到自然三次样条。自然三次样条几乎等同于样条设备生成的曲线。

在这些所有的二次连续可导函数中,钳位与自然三次样条可以得到相对于待插值函数的最小震荡。

如果选择另外一些条件,

$$S(x_0) = S(x_n)$$

 $S'(x_0) = S'(x_n)$
 $S''(x_0) = S''(x_n)$

可以得到周期性的三次样条。

如果选择,

$$egin{split} S(x_0) &= S(x_n) \ S'(x_0) &= S'(x_n) \ S''(x_0) &= f'(x_0), \quad S''(x_n) &= f'(x_n) \end{split}$$

可以得到complete三次样条。