Chapitre 14 : Limites et continuité

Dans ce chapitre, sauf mention explicite, I désigne un intervalle de \mathbb{R} . La notation $\overline{\mathbb{R}}$ désigne $\mathbb{R} \cup$ $\{+\infty; -\infty\}$.

Limites de fonctions

On commence par les limites en $+\infty$. On donne des définitions analogues à celles que nous avions pour les limites de suites :

Définition 1

met pour limite ℓ en $+\infty$ si

Soit $f:[a;+\infty[\to\mathbb{R} \text{ et }\ell\in\mathbb{R}.\text{ On dit que }f\text{ ad-}\blacktriangleright\text{ Soit }f:[a;+\infty[\to\mathbb{R}.\text{ On dit que }f\text{ admet pour }f]]$ limite $+\infty$ en $+\infty$ si

$$\forall \epsilon > 0, \exists A > 0, \forall x \in [a; +\infty[, x \geq A \implies |f(x) - \ell| \leq \epsilon.$$

 $\forall M>0, \exists A>0, \forall x\in [a;+\infty[,x\geq A\Longrightarrow f(x)\geq M.$

On définit de même les limites en $-\infty$, et les limites valant $-\infty$.

Proposition 1

Soient $a \in \{+\infty; -\infty\}$ et $\ell \in \mathbb{R}$. Si f admet pour limite ℓ en a, alors cette limite est unique. On note alors $\lim_{x \to a} f(x) = \ell$ ou $f(x) \xrightarrow[x \to a]{} \ell$.

Exemple 1

Soit $f:[0;+\infty[\to\mathbb{R},x\mapsto\sqrt{x}]$. On prouve que $\lim_{x \to +\infty} f(x) = +\infty$.

Soit M > 0. On pose $A = M^2$. On a les implications:

$$x \ge A$$

 $\Rightarrow x \ge M^2$
 $\Rightarrow \sqrt{x} \ge \sqrt{M^2}$ (car $x \mapsto \sqrt{x}$ strict. \nearrow sur $]0; +\infty[$)
 $\Rightarrow \sqrt{x} \ge M$

Conclusion : si $x \ge M^2$, alors $f(x) \ge M$.

Ceci est vrai pour tout M > 0, donc $\lim_{x \to +\infty} f(x) =$

Soit $f: I \to \mathbb{R}$ une fonction, a une extrémité de I. On dit que f admet pour limite +∞ en a si

 $\forall M > 0, \exists \eta > 0, \forall x \in I, |x - a| \le \eta \implies f(x) \ge M.$

▶ Soit $f: I \to \mathbb{R}$ une fonction, a un point de I ou une extrémité de I, et $\ell \in \mathbb{R}$. On dit que f admet pour limite ℓ en a si

 $\forall \epsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| \le \eta \implies |f(x) - \ell| \le \epsilon.$

Sur chacune des deux figures, quand x est dans la zone verte, f(x) est dans la zone rouge.

On définit de même une fonction de limite $-\infty$ en a.

Proposition 2

Soient a dans \mathbb{R} , ℓ dans $\overline{\mathbb{R}}$. Si f admet pour limite ℓ en a, alors cette limite est unique. On note alors $\lim_{x \to a} f(x) = \ell$ ou $f(x) \xrightarrow[x \to a]{} \ell$.

Remarque.

L'inégalité $|x-a| \le \eta$ se réécrit $a-\eta \le x \le a+\eta$; et l'inégalité $|f(x)-\ell| \le \varepsilon$ se réécrit $\ell-\varepsilon \le f(x) \le \varepsilon$ $\ell + \epsilon$. Donc l'implication $|x - a| \le \eta \implies f(x) \ge M$ se réécrit

$$a - \eta \le x \le a + \eta \implies f(x) \ge M.$$

Tandis que l'implication

$$|x-a| \leq \eta \implies |f(x)-\ell| \leq \epsilon$$

se réécrit

$$a-\eta \leq x \leq a+\eta \implies \ell-\epsilon \leq f(x) \leq \ell+\epsilon.$$

Proposition 3

Si f est définie en a et si $\lim_{x \to a} f(x) = \ell$, alors $\ell = f(a)$.

Exemple 2

Soit $f:]0; +\infty[\to \mathbb{R}, x \mapsto \ln x.$ On prouve que $\lim_{x\to 0} f(x) = -\infty.$

Soit M > 0. On pose $\eta = e^{-M}$. On a les implications :

$$0 < x \le \eta$$

$$\Rightarrow 0 < x \le e^{-M}$$

$$\Rightarrow \ln x \le \ln(e^{-M}) \quad \text{(car ln strict. } / \text{sur }]0; +\infty[)$$

$$\Rightarrow \ln x \le -M$$

Conclusion : si $0 < x \le e^{-M}$, alors $f(x) \le -M$.

Ceci est vrai pour tout M > 0, donc $\lim_{x \to 0} f(x) = -\infty$.

Remarque. Pour trouver un η qui convienne, on écrit au brouillon les équivalences :

$$\ln x \le -M \iff e^{\ln x} \le e^{-M} \iff x \le e^{-M}.$$

Exemple 3

Soit $f : \mathbb{R} \to \mathbb{R}$, $x \mapsto 2x + 1$. On prouve que $\lim_{x \to 1} f(x) = 3$.

Soit $\epsilon > 0$. On pose $\eta = \frac{\epsilon}{2}$. On a les implications :

$$1-\eta \leq x \leq 1+\eta$$

$$\Rightarrow 1-\frac{\epsilon}{2} \leq x \leq 1+\frac{\epsilon}{2}$$

$$\Rightarrow -\frac{\epsilon}{2} \leq x-1 \leq \frac{\epsilon}{2} \qquad \text{(on retire 1)}$$

$$\Rightarrow -\epsilon \leq 2x-2 \leq \epsilon \qquad \text{(on multiplie par 2)}$$

$$\Rightarrow 3-\epsilon \leq 2x+1 \leq 3+\epsilon \qquad \text{(on ajoute 3)}$$

Conclusion : si $1 - \frac{\epsilon}{2} \le x \le 1 + \frac{\epsilon}{2}$, alors $3 - \epsilon \le f(x) \le 3 + \epsilon$.

Ceci est vrai pour tout $\epsilon > 0$, donc $\lim_{x \to 1} f(x) = 3$.

$$\forall \epsilon > 0, \exists \eta > 0, \forall x \in I, a < x \leq a + \eta \implies |f(x) - \ell| \leq \epsilon.$$

On note
$$\lim_{x \to a, x > a} f(x) = \ell$$
 ou $f(x) \xrightarrow[x \to a, x > a]{} \ell$.

Soit $f: I \to \mathbb{R}$ une fonction, a un point de I ou une extrémité de I, et $\ell \in \mathbb{R}$. On dit que f admet pour limite à gauche ℓ en a si

$$\forall \epsilon > 0, \exists \eta > 0, \forall x \in I, a - \eta \le x < a \Longrightarrow |f(x) - \ell| \le \epsilon.$$

On note
$$\lim_{x \to a, x < a} f(x) = \ell$$
 ou $f(x) \xrightarrow[x \to a, x < a]{} \ell$.

Remarque.

Définition 3

On définit de la même façon une limite à droite ou à gauche égale à $\pm \infty$.

Soit
$$f : \mathbb{R} \to \mathbb{R}$$
, $x \mapsto \lfloor x \rfloor$.

On a par exemple:

$$\lim_{x \to 2, x > 2} f(x) = 2$$
 (flèche rouge)

$$\lim_{x \to 2, x < 2} f(x) = 1$$
 (flèche verte)

Proposition 4

Soit $f: I \to \mathbb{R}$ et a un point à l'intérieur de I. Si f admet une limite en a, alors f admet une limite à droite et une limite à gauche en a.

Remarque.

La réciproque n'est pas vraie, comme le montre l'exemple ci-dessus avec la partie entière.

On a déjà énoncé dans la leçon n°3 (Généralités sur les fonctions):

- toutes les limites de référence;
- toutes les règles de calcul sur les limites;
- le théorème sur la limite d'une composée, le théorème de limite par comparaison et le théorème des gendarmes.

On renvoie le lecteur à cette leçon pour les énoncés de ces résultats, que nous utiliserons librement à partir de maintenant.

Proposition 5

Si $f: I \to \mathbb{R}$ admet une limite finie en un point $a \in I$, alors f est bornée dans un voisinage de a: il existe $\eta > 0$ et M > 0 tels que $x \in [a - \eta; a + \eta] \cap I \Longrightarrow |f(x)| \le M$.

Théorème 1 (caractérisation séquentielle de la limite)

Soient ℓ et a dans $\overline{\mathbb{R}}$. La fonction f admet pour limite ℓ en a si, et seulement si, pour toute suite $(x_n)_{n\in\mathbb{N}}$ de limite a, $(f(x_n))_{n\in\mathbb{N}}$ a pour limite ℓ .

Exemple 5

Supposons que $(u_n)_{n\in N}$ converge vers 2. Que dire de la suite $(v_n)_{n\in N}$ définie par $v_n=u_n^2$? On utilise le théorème 1 :

$$\lim_{n \to 2} u_n = 2$$

$$\lim_{n \to 2} x^2 = 2^2 = 4$$

$$\implies \lim_{n \to 2} v_n = \lim_{n \to 2} u_n^2 = 4.$$

On retrouve ainsi toutes les opérations usuelles sur les limites de suites.

Soit
$$f:]0; +\infty[, x \mapsto \sin(\frac{1}{x}).$$

Les suites définies par $u_n = \frac{1}{2n\pi}$ $v_n = \frac{1}{2n\pi + \frac{\pi}{2}}$ convergent vers 0 et

$$\sin(u_n) = \sin\left(\frac{1}{\frac{1}{2n\pi}}\right) = \sin(2n\pi) = 0 \to 0,$$

$$\sin(\nu_n) = \sin\left(\frac{1}{\frac{1}{2n\pi + \frac{\pi}{2}}}\right) = \sin\left(2n\pi + \frac{\pi}{2}\right) = 1 \to 1.$$

D'après le théorème 1, la fonction f n'a pas de limite en 0.

Proposition 6 (limite monotone)

Soit $f:[a,b]\to\mathbb{R}$ une fonction croissante, avec $b\in\mathbb{R}$ ou $b=+\infty$. Alors f admet une limite (à gauche) en b, qui est finie si f est majorée, qui vaut $+\infty$ sinon.

Remarque.

On a un résultat analogue avec la limite en a d'une fonction décroissante $f:]a, b] \to \mathbb{R}$, etc.

5

II. Continuité

Définition 4

- ▶ On dit qu'une fonction $f: I \to \mathbb{R}$ est continue en $a \in I$ si elle a une limite en a. On a alors $\lim_{x \to a} f(x) = f(a)$.
- ▶ On dit que f est continue sur I si elle est continue en tout point $a \in I$.
- ▶ On note $\mathscr{C}(I,\mathbb{R})$ l'ensemble des fonctions à valeurs réelles définies et continues sur I.

Exemples 7

1.

fonction continue sur [-2;2]

2.

fonction discontinue en a = 1

Remarque.

Intuitivement, une fonction f est continue sur I si on peut tracer sa courbe représentative « sans lever le stylo ».

Proposition 7

- 1. Les fonctions usuelles (puissances, exponentielles, logarithmes, circulaires) sont continues sur leur ensemble de définition.
- **2.** Si deux fonctions sont continues sur *I*, alors
 - a. Si le dénominateur ne s'annule pas sur I.
- leur somme, leur différence, leur produit et leur quotient a est continue sur I.
- **3.** Si $u \in \mathcal{C}(I, J)$ et $v \in \mathcal{C}(J, \mathbb{R})$, alors $v \circ u \in \mathcal{C}(I, \mathbb{R})$.

Exemples 8

- **1.** La fonction $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{x^2 \cos x}{e^x + 1}$ est continue sur \mathbb{R} .
- **2.** La fonction $g:]2; +\infty[\rightarrow \mathbb{R}, x \mapsto \ln(x-2) \text{ est continue sur }]2; +\infty[$.

Remarque.

On dit qu'une fonction f est continue à droite en a si $\lim_{x \to a, x > a} f(x) = f(a)$, qu'elle est continue à gauche en a si $\lim_{x \to a, x < a} f(x) = f(a)$.

Dans l'exemple 7.2, la fonction est continue à droite en 1, car $\lim_{x \to 1, x > 1} f(x) = 2 = f(1)$, mais elle n'est pas continue à gauche, car $\lim_{x \to 1, x < 1} f(x) = 3 \neq f(1)$.

6

Si f est définie sur $I \setminus \{a\}$ et si $\lim_{x \to a, x \neq a} f(x) = \ell$, avec $\ell \in \mathbb{R}$, alors la fonction \tilde{f} définie sur I par

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si } x \neq a \\ \ell & \text{si } x = a \end{cases}$$

s'appelle prolongement par continuité de f en a. Cette fonction est continue en a.

Exemple 9

On sait que $\lim_{x\to 0, x\neq 0} \frac{\mathrm{e}^x - 1}{x} = 1$, donc la fonction définie par

$$g(x) = \begin{cases} \frac{e^x - 1}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

est continue en 0.

Exercices 8 à 11

Théorème 2 (valeurs intermédiaires)

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Si y_0 est compris entre f(a) et f(b), alors il admet au moins un antécédent x_0 dans [a,b].

Exemple 10

Le polynôme X^4-5X-3 a au moins une racine dans \mathbb{R} . En effet :

- la fonction $f: x \mapsto x^4 5x 3$ est continue sur \mathbb{R} ;
- $f(1) = 1^4 5 \times 1 3 = -7$, $f(2) = 2^4 5 \times 2 3 = 3$.

D'après le théorème des valeurs intermédiaires, tout nombre $y_0 \in [-7;3]$ a au moins un antécédent par f dans l'intervalle [1;2]. En particulier, 0 a un antécédent par f, donc le polynôme $X^4 - 5X - 3$ a au moins une racine dans [1;2] – et donc dans \mathbb{R} .

Remarque.

Le théorème des valeurs intermédiaires se généralise de façon évidente à des intervalles ouverts ou semi-ouverts. Dans le cas d'un intervalle [a, b[par exemple, il faut remplacer f(b) par la limite de f en b (voir exercices).

On appelle segment de \mathbb{R} un intervalle de la forme [a, b].

Proposition 8

- 1. L'image d'un intervalle par une fonction continue est un intervalle.
- 2. L'image d'un segment par une fonction continue est un segment.

Exemple 11

Soit $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$.

Alors:

- f([-1;2]) = [0;4].
- f(]-1;2]) = [0;4].
- f([-1;2]) = [0;4[.

Un corollaire immédiat du point 2 de la proposition qui précède est :

Dans le cas où la fonction est monotone, on retrouve le résultat que nous avons déjà énoncé dans le chapitre 8 :

Proposition 9

Une fonction continue sur un segment est bornée et atteint ses bornes (son maximum et son minimum).

Théorème 3 (théorème de la bijection)

Si $f:[a,b]\to\mathbb{R}$ est continue et strictement monotone, alors f réalise une bijection de [a,b] sur :

- [f(a), f(b)] si f est strictement croissante:
- [f(b), f(a)] si f est strictement décroissante

Exemple 12

Soit $f: [-1;1] \to \mathbb{R}$, $x \mapsto x^3 + x + 2$. On cherche le nombre de solutions de l'équation f(x) = 3.

Pour tout $x \in [-1;1]$,

$$f'(x) = 3x^2 + 1.$$

On a donc le tableau de variations :

x	-1	x_0	1
f'(x)		+	
f(x)	0	3	_* 4

Comme f est continue et strictement croissante, d'après le théorème de la bijection, elle réalise une bijection de [-1,1] sur [0,4]. L'équation f(x)=3 a donc une unique solution x_0 dans [-1,1].

Le théorème de la bijection donne l'existence de x_0 , mais ne dit rien sur sa valeur. Il est d'ailleurs

difficile de la déterminer : il faudrait résoudre l'équation $x^3 + x + 2 = 3$, ce que nous ne savons pas faire (méthode de Cardan). On peut néanmoins donner une valeur approchée de x_0 grâce à un algorithme de balayage, comme on l'explique ci-dessous.

Exemple 13 (algorithme de balayage)

On reprend l'exemple 12 et on cherche un encadrement de x_0 d'amplitude 0,01.

Étape 1 : encadrement à l'unité. On complète **Étape 3 : encadrement au centième.** On fait un un tableau de valeurs avec toutes les valeurs entières de x dans l'intervalle d'étude [-1;1]:

х	-1	0	1
f(x)	0	2	4

x	-1	0	x_0	1
f(x)	0	2	3	. 4

D'après le tableau de valeurs (ou le tableau de variations en-dessous), la fonction f prend la valeur 3 pour une valeur de x comprise entre 0 et 1:

$$0 < x_0 < 1$$
.

Étape 2 : encadrement au dixième. Sachant que x_0 est entre 0 et 1, on fait un tableau de valeurs sur l'intervalle [0;1], avec un pas 10 fois plus petit – donc un pas de 0,1. Pour aller plus vite, on programme le tableau avec la calculatrice.

nouveau tableau de valeurs, cette fois sur l'intervalle [0,6;0,7], et avec un pas 10 fois plus petit – donc un pas de 0,01.

х	0,60	0,61	 0,68	0,69	0,70
f(x)	2,816	2,837	 2,9944	3,0185	3,043

On obtient finalement l'encadrement d'amplitude 0,01:

$$0,68 < x_0 < 0,69$$
.

3	ĸ	0	0, 1	0,2		0,6	0,7		1
f((x)	2	2,101	2,208	•••	2,816	3,043	•••	4
			x	0	0.6	$x_0 = 0$	7 1		

x	0	0.6	x_0	0.7	1
f(x)	2 ^	2.816	_3^	3.043	4

La valeur 3 est prise pour un x compris entre 0,6 et 0,7:

$$0,6 < x_0 < 0,7.$$

Remarque.

Lorsqu'on programme en machine (code Python), il est plus simple de couper l'intervalle en 2 plutôt qu'en 10 à chaque étape. On parle alors d'algorithme de dichotomie (voir exercices).

Théorème 4 (de la bijection, version générale)

- Si f est continue et strictement monotone sur I, alors f réalise une bijection de I sur f(I). Son application réciproque est continue est de même sens de variation que f.
- Si par exemple I = [a, b[et si f est strictement décroissante sur I, alors elle réalise une bijection de I sur $J =]f(b^-)$, f(a)], où $f(b^-)$ désigne la limite à gauche en b (limite qui appartient à \overline{R}).

III. Relations de comparaison

Dans cette section, on se donne un intervalle ouvert I dont l'une des extrémités est notée a (éventuellement $a=\pm\infty$) et deux fonctions $f,g:I\to\mathbb{R}$. On suppose que g ne s'annule pas sur un voisinage de a:

- dans le cas où a est fini, il existe $\eta > 0$ tel que g ne s'annule pas sur l'intervalle $|a \eta; a + \eta| \cap I$.
- dans le cas où $a = +\infty$, il existe M tel que g ne s'annule pas sur l'intervalle M, $+\infty$

On dit que:

• f est dominée par g au voisinage de a s'il existe un intervalle ouvert J dont a est une extrémité et un réel M > 0 tels que

$$\forall x \in J, |f(x)| \leq M |g(x)|.$$

On note f = O(g), f(x) = O(g(x)) ou encore f(x) = O(g(x)).

- f est négligeable devant g au voisinage de a si $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$. On note f = o(g), f(x) = o(g(x)) ou encore f(x) = o(g(x)).
- f et g sont équivalentes au voisinage de a si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$. On note $f \sim g$, $f(x) \sim g(x)$ ou encore $f(x) \sim g(x)$

Cela revient à dire que f(x) - g(x) = o(g(x)).

Toutes les propriétés de comparaison énoncées dans le cas des suites (chapitre n°12) restent valables dans le cas des fonctions. Nous nous contenterons donc de donner deux exemples :

Exemple 14

 $x + \ln x \sim x$, car $\frac{x + \ln x}{x} = 1 + \frac{\ln x}{x} \longrightarrow 1 + 0 = 1$ par croissance comparée.

Exemple 15

On sait que $\lim_{x\to 0, x\neq 0} \frac{\mathrm{e}^x - 1}{x} = 1$, donc $\mathrm{e}^x - 1 \sim x$.

On se rappellera également les deux autres équivalents « de référence » énoncés (ou presque) dans le chapitre n°3 :

$$\sin x \sim x$$
 et $\ln(1+x) \sim x$.

^{1.} On a une condition analogue dans le cas $a = -\infty$.

IV. Exercices

Exercice 1 (6). En utilisant la définition, prouver que $\lim_{x \to +\infty} \ln x =$

Exercice 2 (6). Soit $f:]0; +\infty[\to \mathbb{R}, x \mapsto \frac{1}{\sqrt{x}}]$. En utilisant la définition, prouver que $\lim_{x\to 0} f(x) = +\infty$.

Exercice 3 (8).

En utilisant la définition, prouver que $\lim_{x\to 0} x^2 = 0$.

Exercice 4 (δ). Soit $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{1}{2}x - 2$. 1. Soit $\epsilon > 0$. Démontrer que pour tout réel x:

$$|x-4| \le 2\epsilon \implies |f(x)| \le \epsilon$$

2. Que peut-on en déduire?

Exercice 5 (6).

Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que :

$$\lim_{x \to +\infty} f(x) = +\infty \quad \text{et} \quad \lim_{x \to +\infty} g(x) = 2024$$

On fixe M > 0.

1. Montrer qu'il existe $A_1 > 0$ tel que :

$$\forall x \in \mathbb{R}, x \ge A_1 \implies g(x) \ge 1.$$

2. Montrer qu'il existe $A_3 > 0$ tel que :

$$\forall x \in \mathbb{R}, \ x \ge A_3 \implies f(x)g(x) \ge M.$$

Conclusion?

Exercice 6 ($\widehat{\underline{\mathbf{m}}}$ $\overleftarrow{\mathbf{o}}$).

Calculer les limites :

1.
$$\lim_{x \to +\infty} \frac{x+2}{x^2 \ln x}$$
.

4.
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - x \right).$$

2.
$$\lim_{x \to 0, x > 0} \frac{x+2}{x^2 \ln x}$$

$$\mathbf{5.} \quad \lim_{x \to 0, x \neq 0} x \sin\left(\frac{1}{x}\right)$$

3.
$$\lim_{x \to +\infty} \left(\sqrt{x+4} - \sqrt{x} \right)$$
.

$$6. \quad \lim_{x \to 0, x > 0} x \lfloor \frac{1}{x} \rfloor.$$

- Exercice 7 (*\overline{\dagger}).
 Soit f: R→R, x → √x [√x].
 On pose u_n = n² pour tout n ∈ N. Calculer lim f (u_n).
 On pose v_n = n² + 2n pour tout n ∈ N. Calculer lim f (v_n).

 - La fonction f a-t-elle une limite en $+\infty$?

1.
$$\lim_{x \to 0} (x^2 - 3x + 1)$$
.

3.
$$\lim_{x \to 0} x^x$$

Calculer les limites :

1.
$$\lim_{x \to 2} (x^2 - 3x + 1)$$
.

3. $\lim_{x \to 0, x > 0} x^x$.

2. $\lim_{x \to +\infty} \ln(1 + xe^{-x})$.

4. $\lim_{x \to +\infty} \sin(\frac{1}{x})$.

4.
$$\lim_{x\to +\infty} \sin\left(\frac{1}{x}\right)$$

Exercice 9 $(\hat{\mathbf{m}})$.

Peut-on prolonger par continuité en 0 la fonction

$$f: \mathbb{R}^* \to \mathbb{R}, x \mapsto e^{-\frac{1}{x^2}}$$
?

Exercice $10 \ (\hat{\underline{\mathbf{m}}})$.

Reprendre l'exercice précédent avec la fonction

$$g: \mathbb{R}^* \to \mathbb{R}, x \mapsto \frac{|x|}{x}.$$

Exercice $11 \ (\underline{\hat{\mathbf{m}}} \ \ \boldsymbol{\delta}).$

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue en 0 vérifiant

$$\forall x \in \mathbb{R}, \ f(2x) = f(x).$$

- 1. Soit a un réel. Prouver que pour tout $n \in \mathbb{N}$, $f(a) = f\left(\frac{a}{2^n}\right)$.

1. $\lim_{x \to +\infty} \frac{x+2}{x^2 \ln x}$.

4. $\lim_{x \to +\infty} \left(\sqrt{x^2 + 2x} - x \right)$.

5. $\lim_{x \to 0, x > 0} \frac{x \sin\left(\frac{1}{x}\right)}{x^2 \ln x}$.

5. $\lim_{x \to 0, x \neq 0} x \sin\left(\frac{1}{x}\right)$.

6. $\lim_{x \to 0, x > 0} x \lfloor \frac{1}{x} \rfloor$.

(Ea): $x^3 - 3x^2 + 1 = a$.

$$(E_a): x^3 - 3x^2 + 1 = a$$

Exercice 13 $(\hat{\mathbf{1}})$.

Prouver que tout polynôme de degré 5 a au moins une racine dans R. Généraliser.

Exercice 14 $(\hat{\mathbf{1}})$.

Soit $f:[0,1] \rightarrow [0,1]$ une fonction continue. On pose g(x) = x - f(x) pour tout $x \in [0, 1]$.

- **1.** Calculer g(0) et g(1).
- **2.** Prouver que l'équation f(x) = x a au moins une solution dans [0, 1].

Exercice 15 ($\stackrel{\frown}{\blacksquare}$ $\stackrel{\frown}{\bullet}$).

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $(f(x))^2 = 1$ pour tout réel x. Prouver que f est

Exercice 16 (6).

Soient $f : \mathbb{R} \to \mathbb{R}$ une fonction continue et $g : \mathbb{R} \to \mathbb{R}$ une fonction bornée.

Prouver que $g \circ f$ et $f \circ g$ sont bornées.

Exercice 17 $(\hat{\mathbf{m}})$.

Soit $f:[0;2] \to \mathbb{R}, x \mapsto f(x) = x^3 - 2x^2 + 2x - 1$.

- 1. Étudier les variations de f
- **2.** Justifier que l'équation f(x) = 1 admet une unique solution x_0 dans l'intervalle [0;2]. Déterminer un encadrement de x_0 au centième.

Exercice 18 $(\hat{\mathbf{m}})$.

- 1. Soit $g:[0;+\infty[\to \mathbb{R}, x \mapsto (x-2)e^x + 2]$.
 - a. Étudier les variations de g et calculer sa limite en $+\infty$.
 - **b.** Prouver que l'équation g(x) = 0 admet une unique solution α dans l'intervalle $]0;+\infty[$, puis déterminer un encadrement de α d'amplitude 10^{-2} .
- **2.** Soit $f:]0; +\infty[\rightarrow \mathbb{R}, x \mapsto \frac{e^x 1}{x^2}.$
 - a. Étudier les variations de f et calculer ses limites en 0^+ et en $+\infty$.
 - **b.** Prouver que $f(\alpha) = \frac{1}{\alpha(2-\alpha)}$, puis déterminer un encadrement de $f(\alpha)$ à l'aide de la question 1.b.

Exercice 19 (algorithme de dichotomie).

On reprend l'exercice 17 et on considère l'algorithme suivant écrit en Python.

```
def f(x):
         return x**3-2*x**2+2*x-1
def dichotomie():
         a, b=0, 2
         while b-a>0.1:
                  y=f((a+b)/2)
                  if y < 1:
                           a = (a+b)/2
                  else:
                           b = (a+b)/2
         return (a+b)/2
```

Déterminer l'affichage en sortie après avoir complété le tableau ci-dessous (ajouter autant de lignes que nécessaire).

a	b	b-a	boucle à continuer?	$\frac{a+b}{2}$	у
0	2	•••	•••	•••	•••

Exercice 20 (6).

1. Pour tout $n \in \mathbb{N}$, montrer que l'équation

$$\ln x = -nx$$

d'inconnue $x \in \mathbb{R}_+^*$ a une unique solution x_n .

- **2.** Étudier la monotonie de $(x_n)_{n\in\mathbb{N}}$.
- **3.** Déterminer la limite de $(x_n)_{n\in\mathbb{N}}$.

Exercice 21 ($\widehat{\mathbf{m}}$ $\mathbf{\delta}$).

Déterminer un équivalent simple de chacune des fonctions suivantes:

- 1. $e^x + x en + \infty$.
- 2. $\cos(\sin x)$ en 0.
- **3.** $\ln(\sin x)$ à droite en 0.
- **4.** $\frac{e^{2x}-1}{x}$ en 0. **6.** $\frac{\ln(1+2x)}{3x}$ en 0. **5.** $e^x e^{-x}$ en 0. **7.** $(1+x)^{1/x}$ en 0.

- 8. $x \ln x x \ln(x+2)$ en $+\infty$.

Exercice 22 $(\hat{\mathbf{m}})$.

Soient $f,g:\mathbb{R}\to\mathbb{R}$ et $a\in\overline{\mathbb{R}}$. Les équivalences cidessous sont-elles vraies ou fausses?

- 1. $e^f \sim_a e^g \iff \lim_a (f g) = 0$.
- 2. $e^f \sim e^g \iff f \sim g$.