Chapitre 3: Espaces vectoriels

I Corps

Définition : Un **corps** est un ensemble K muni de deux lois de composition interne notées + et \times telles que :

- (K, +) est un groupe abélien
- $(K \setminus \{0\}, \times)$ est un groupe abélien
- La loi \times est distributive par rapport à la loi +

Si de plus la loi \times est commutative, on dit que K est un **corps commutatif**.

- **1** Rappel: Distributivité: $\forall a, b, c \in K, a \times (b+c) = a \times b + a \times c$
- **© Exemple:** $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}, p$ premier sont des corps.

II Espaces vectoriels

Définition : Soient K un corps et E un groupe abélien.

Soit une loi $: {}^{K \times E \to E}_{(\lambda, v) \mapsto \lambda \cdot v}$ (multiplication externe).

On dit que $(E, +, \cdot)$ est un K-espace vectoriel si on a $\forall \lambda, \mu \in K, \forall v \in E$:

- $\lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v$
- $1 \cdot v = v$
- $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ (on a deux + différents)
- $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$
- \bigcirc Vocabulaire : Les éléments de E sont appelés **vecteurs**. Les éléments de K sont appelés **scalaires**.
- **© Exemple :** \mathbb{R}^n est un \mathbb{R} -espace vectoriel. De même pour $\{0\}$, $\mathbb{R}[X]$, $M_n(\mathbb{R})$. On peut voir \mathbb{C} comme un \mathbb{R} -espace vectoriel.

Définition : Soit E un K-ev, et soit $(v_i)_{i \in I}$ une famille de vecteurs de E.

Soit $(\lambda_i)_{i\in I}$ une famille de scalaires de K.

On dit que $(\lambda_i)_{i \in I}$ est presque nulle si : $\{i \in I, \lambda_i \neq 0\}$ est fini.

Alors on considère $\sum_{i \in I, \lambda \neq 0} \lambda_i v_i$ noté $\sum_{i \in I} \lambda_i v_i$. C'est une **combinaison linéaire** des v_i .

Définition : Soit $X \subset E$. Une combinaison linéaire de vecteurs de X est de la forme $\sum_{v \in X} \lambda_v v$ avec $(\lambda_v)_{v \in X}$ presque nulle.

 \bigcirc Vocabulaire : Les $(\lambda_v)_{v \in X}$ sont appelés les **coefficients** de la combinaison linéaire.

III Sous-espaces vectoriels

Définition : Soit E un K-ev. Soit $F \subset E$.

On dit que F est un **sous-espace vectoriel** (sous-ev) de E si :

- $F \neq \emptyset$
- $\forall u, v \in F, \lambda, \mu \in K, \lambda u + \mu v \in F$

Proposition: Caractérisation des sous-ev

Tout sous-espace vectoriel est un espace vectoriel pour les lois induites par E.

Preuve:

Montrons (F, +) est un sous-groupe de (E, +):

- $F \neq \emptyset$ donc $\exists u \in F$.
- $\lambda = \mu = 1 \implies u + v \in F, \forall u, v \in F \text{ donc } F \text{ est stable par } +$
- $u + (-1)u = u(1 + (-1)) = 0_E \in F$. On a donc $-u \in F, \forall u \in F$.

Donc on a bien un sous-groupe.

Les autres propriétés sont vérifiables et immédiates, on a bien un espace vectoriel

- **?** Exemple : Soit E un \mathbb{K} -ev.
 - $\{0_E\}$ et E sont des sous-ev de E.
 - $\{(x,y) \mid ax + by = 0\} \subset \mathbb{R}^2$ est un sous-ev de \mathbb{R}^2 .

Proposition: Intersection de sev

Soit E un K-ev. Soit $(F_i)_{i\in I}$ une famille de sev de E. Alors $\bigcap_{i\in I}F_i$ est un sev de E.

Preuve:

Montrons que $\bigcap_{i \in I} F_i$ est stable par combinaison linéaire.

Soient $x, y \in \bigcap_{i \in I} F_i$ et $\lambda, \mu \in K$.

On a $x, y \in F_i$ pour tout $i \in I$, donc $\lambda x + \mu y \in F_i$ pour tout $i \in I$.

Donc $\lambda x + \mu y \in \bigcap_{i \in I} F_i$. \square

1 Remarque: L'union de sev n'est pas forcément un sev.

Proposition: Sous-ev engendré

Soit E un K-ev. Soit $X \subset E$.

Alors il existe un plus petit sev de E contenant X, noté Vect(X) et appelé le **sev engendré** par X.

On a $Vect(X) = \{\sum_{x \in X} \lambda_x x \mid (\lambda_x)_{x \in X} \text{ est presque nulle}, \lambda_x \in K\} = \bigcap_{F \text{ sev de } E} F.$

Intuitivement, c'est l'ensemble des combinaisons linéaires d'éléments de X.

1 Rappel: "Presque nulle" signifie que tous les coefficients sont nuls sauf un nombre fini d'entre eux.

Preuve:

Montrons que Vect(X) est un sev de E.

Soient $u, v \in Vect(X)$ et $\lambda, \mu \in K$.

On a $u = \sum_{x \in X} \lambda_x x$ et $v = \sum_{x \in X} \mu_x x$ avec $(\lambda_x)_{x \in X}$ et $(\mu_x)_{x \in X}$ presque nulles.

Donc $\lambda u + \mu v = \sum_{x \in X} (\lambda \lambda_x + \mu \mu_x) x$ est une combinaison linéaire d'éléments de X avec des coefficients presque

nuls.

Donc $\lambda u + \mu v \in Vect(X)$. C'est bien un sev.

On a $X \subset \{CLdeX\}$ car $x = 1 \cdot x + 0 \cdot y, \forall x \in X, y \in E$.

Donc $Vect(X) \subset \{CLdeX\}.$

Réciproquement, Vect(X) est stable par combinaison linéaire et contient X, donc $\{CLdeX\} \subset Vect(X)$. Donc $Vect(X) = \{CLdeX\}$. \square .

1 Remarque: La démonstration est générée par IA, elle diffère de celle du cours.

Proposition: Addition de sev

Soit E un K-ev. Soit $(F_i)_{i \in I}$ une famille de sev de E.

On peut considérer $Vect(\bigcup_{i\in I}F_i)$, noté $\sum_{i\in I}F_i$ et appelé la **somme** de la famille $(F_i)_{i\in I}$.

1 Remarque : On note $F_1 + F_2 + \cdots + F_n$ au lieu de $\sum_{i=1}^n F_i$.

Proposition: Caractérisation de la somme

Soit E un K-ev. Soit $(F_i)_{i\in I}$ une famille de sev de E. Alors $\sum_{i\in I}F_i=\{\sum_{i\in I}x_i\mid x_i\in F_i, \text{ presque tous nuls}\}.$

Preuve:

Note de rédaction : cf. Laurent

© Exemple : Soient F et G deux sev de E. Alors $F+G=\{x+y\mid x\in F,y\in G\}$.

Proposition: Application

On a une application $\varphi: \stackrel{F_1 \times F_2 \times \cdots \times F_n \to F_1 + F_2 + \cdots + F_n}{(x_1, x_2, \ldots, x_n) \mapsto x_1 + x_2 + \cdots + x_n}$. Elle est surjective.

Proposition: Caractérisation de la somme directe

Soient F_1, F_2, \dots, F_n des sev de E. Les assertions suivantes sont équivalentes :

- $F_1 + F_2 + \cdots + F_n$ est une somme directe.
- $\forall (u_1, u_2, \dots, u_n) \in F_1 \times F_2 \times \dots \times F_n, u_1 + u_2 + \dots + u_n = 0_E \implies u_1 = u_2 = \dots = u_n = 0_E$
- $\forall i \in \{1, 2, \dots, n\}, F_i \cap (F_1 + \dots + F_{i-1}) = \{0_E\}$

Preuve:

Note de rédaction : cf. Laurent

X Attention **X** On a F_1 somme directe avec F_2 ssi $F_1 \cap F_2 = \{0_E\}$. Mais pour avoir $F_1 \oplus F_2$ et $F_1 \oplus F_3$, et $F_2 \oplus F_3 = \{0_E\}$, mais pas forcément $F_1 \oplus F_2 \oplus F_3$.

Exemple : On prend 3 droites dans le plan passant par l'origine, deux par deux distinctes. Alors elles sont en somme, mais pas en somme directe.

- \bigcirc Vocabulaire : Si $F \oplus G = E$, on dit que F et G sont des **supplémentaires**.
- **X** Attention **X** Le supplémentaire n'est pas unique.

IV Familles

Définition : Soit E un K-ev. Soit I un ensemble. Soit $(x_i)_{i\in I}$ une famille d'éléments de E.

Soit $J \subset I$. On dit que $(x_i)_{i \in J}$ est une **sous-famille** de $(x_i)_{i \in I}$.

- $oldsymbol{\bigcirc}$ Vocabulaire : À l'inverse, $(x_i)_{i\in I}$ est une sur-famille de $(x_i)_{i\in J}$.
- **1** Remarque: Dans la pratique, on prend souvent $I = \{1, 2, ..., n\}$.
- **§** Remarque : Soit $X \subset E$. On a une famille $(x)_{x \in X}$ indexée par X. Donc une combinaison linéaire de X est une combinaison linéaire de la famille $(x)_{x \in X}$. (la réciproque n'est pas vraie, car il peut y avoir des répétitions dans la famille)