### 000

### Short Exact Confidence Intervals for the Parameters of the Negative Hypergeometric Distribution

Rachel Roggenkemper

Advisor: Dr. Bret Holladay

Committee Members: Dr. Jimmy Doi & Dr. Kevin Ross

**Binomial** 

# The Forgotten Distribution

**Negative Binomial** 

Hypergeometric 7



## Relationships among Discrete Distributions

|                      | Sampling with Replacement | Sampling<br>without<br>Replacement |
|----------------------|---------------------------|------------------------------------|
| # Trials Fixed       | Binomial                  | Hypergeometric                     |
| # Successes<br>Fixed | Negative<br>Binomial      | Negative<br>Hypergeometric         |



## Negative Hypergeometric (NHG) Distribution

Used to model the number of failures needed to achieve a fixed number of successes when sampling without replacement from a finite population

#### **Notation:**

- $X \sim NHG(N, M, m) = number of failures sampled until m successes$
- N = total population size
- M = number of successes in the population
- *m* = fixed number of successes

**Estimation of M: Surveys** 

**Population:** 



N = # Cal Poly
students
(known)

M = #
students who
have COVID
(unknown)

#### **Estimation of M: Surveys**

#### Sample:



Continue
sampling until
m COVID
positive
students
sampled

m = # students
who have COVID
to sample (fixed)

Before sampling: all N penguins (unknown) are unmarked



M penguins (known) are captured and marked



M marked penguins are released back into the population



Sample until m (fixed) marked penguins are recaptured



### Confidence Intervals for Parameters of the Negative Hypergeometric:

(i) Estimating the population size (N unknown)

(ii) Estimating the number of successes in a population (*M* unknown)



## Large sample methods commonly used in practice often exhibit poor coverage for any discrete distribution



#### Construct Intervals Directly from the Exact Distribution





## Construct Intervals with Coverage at or Above the Confidence Level that are as Narrow (Precise) as Possible

### Optimization Problem:

Algorithm: reverse engineer the optimal CPF



Determine confidence intervals



#### **CPF** → **Confidence Intervals**



#### **Comparative Analysis: Relative Expected Length**



#### **Comparative Analysis: Average Length**



Inverse Sampling versus Sampling with **Fixed Sample** Size



### **Estimating Population Size (N)**



### **Estimating Population Successes (M)**



### **Shiny App**







#### R Package

#### nhgCl

The **nhgCl** package provides methods for constructing exact and approximate confidence intervals for the parameters of the Negative Hypergeometric distribution.

It supports the following methods:

- · Analog to Clopper-Pearson
- Conditional Minimal Cardinality (CMC)
- Crow & Gardner (CG)
- Blaker

The package handles cases where either: - The number of successes ( M ) is unknown, or - The total population size ( N ) is unknown.

#### Installation

You can install the development version from GitHub with:









# Thank you!

Any questions?