Comutação Óticas e Redes Óticas Passivas

Flavio de Andrade Silva Analista de Tl Bacharel em Ciências e Tecnologias -UFRN Bacharelando em Engenharia de Telecomunicações - UFRN

Date: 23/11/2023

Engenharia Comutação Óptica de Telecomunicações Redes Ópticas Passicas 2

Conceitos Iniciais

01

Comutação Óptica

Direciona sinais ópticos de entrada para os caminhos corretos de saída em uma rede óptica.

02

Roteamento Óptico

Determina o caminho que os dados ópticos devem seguir em uma rede.

03

Enlace Óptico

Conexão física entre dois pontos na rede por meio de meios ópticos.

Comunicação WDM

OADM: Só pode adicionar e remover canais de comprimentos de onda especificados, e não pode ajustar e definir dinamicamente os canais para adicionar ou soltar canais.

Sinais de mesma intensidade

Espaçamento Adequado

combinados em um único sinal

ROADM: Adicionar ou descartar dinamicamente comprimentos de onda por meio de reconfiguração remota.

Atenuador óptico variável (VOA) Interruptor seletivo de comprimento de onda (WSS)

Um ROADM de 20 graus requer três gabinetes, mais de 100 placas e 400 fibras dentro do local.

000 x 0E0

01 Cross-connect Optical

Característica

Múltiplos caminhos ópticos na rede podem usar o mesmo comprimento de onda, desde que não se sobreponham em nenhum enlace.

Esta capacidade de reutilização espacial permite que a rede suporte um grande número de caminhos ópticos usando um número limitado de comprimentos de onda

Cross-Connect Optical (OXC)

Características	ROADM	охс	
Expansibilidade	Poucas direções de troca Baixa escalabilidade da rede	Muitas direções de troca Forte escalabilidade de rede	
	Ocupa mais espaço na sala de informática Alto consumo de energia	Ocupa menos espaço na sala de informática Menor consumo de energia	
Operação e manutenção de redes	Há muitas conexões internas de fibra óptica, muitas transferências de placas, sistemas complexos, muitas falhas no local e difícil operação e manutenção.	Jumper de fibra "0", alta integração do sistema, poucos pontos de falha, manutenção simples	
Custo do equipamento	Maior	Abaixar	

Cross-Connect Optical (OXC)

Cross-Connect Optical (OXC)

EDFAs

Contenção

Conflito pelo mesmo recurso de comprimento de onda durante o processo de comutação.

Filtros sintonizáveis

EDFAs

Conversão do comprimento de onda

Figura 13.31 Exemplo de uma simples arquitetura crossconnect óptica 4 × 4 utilizando comutadores ópticos espaciais e conversores de comprimento de onda.

Conversão de comprimento de onda

Cálculo de utilização da fibra

P = Medida de utilização da Fibra

F = nº de comprimento de onda disponível por link

 $H = n^{o}$ de links (saltos) entre dois pontos.

Pb = Probabilidade de bloqueio/conteção

Conversão de comprimento de onda

Fibra

 $F = n^{\circ}$ de comprimento de onda disponível por link

H = nº de links (saltos) entre dois pontos.

P_b = Probabilidade de bloqueio/conteção

P = Medida de utilização da
$$ho_b = 1 - (1 -
ho^F)^H$$

$$ho = 1 - (1 -
ho_b^{rac{1}{H}})^{rac{1}{F}}$$

$$hopprox
ho_c=(rac{
ho_b}{H})^{rac{1}{F}}$$

$$\left|
hopprox
ho_s=-(rac{1}{H})\ln(1-
ho_b^{rac{1}{F}})
ight|$$

Considere duas redes ópticas, cada qual usando 30 comprimentos de onda. Com uma probabilidade de bloqueio de 10^(-3) em uma implementação de 10 hops, qual é a utilização de comprimento de onda quando:

A)há conversão de comprimento de onda B)não há conversão de comprimento de onda.

Conversão de comprimento de onda

G = Ganho (Beneficio da conversão de comprimento de onda).

Pc = Com conversão

Ps = Sem conversão

$$G\equivrac{
ho_c}{
ho_s}=H^{1-rac{1}{F}}rac{
ho_b^{rac{1}{F}}}{-ln(1-
ho_b^{rac{1}{F}})}$$

Figura 13.34 Aumento da utilização da rede em função do número de comprimentos de onda para uma probabilidade de bloqueio de 10⁻³ quando a conversão de comprimento de onda é utilizada. (Reproduzida com permissão Barry e Humblet, ⁶¹ © IEEE, 1996.)

Comutação por pacotes ópticos

01

Roteamento de comprimento de onda (RWA)

Direciona sinais ópticos de entrada para os caminhos corretos de saída em uma rede óptica.

02

Roteamento Óptico

Determina o caminho que os dados ópticos devem seguir em uma rede.

Comutação de pacotes ópticos

Comutação de pacotes Redes Elétricas

Empacotamento
Confiabilidade
Controlede
congestionamento

Comutação de pacotes Ópticos

Troca de cabeçalho óptico (OLS).

Define: Comprimento de onda, taxa de bits, etc.

Não contém Buffer.

Pacote de controle

02

Cabeçalho IP padrão

Carga de informação

Compensação de tempo

10

Comutação de Rajadas ópticas (OBS)

Passive Optical Network

O que é a Tecnologia PON

A tecnologia PON (Passive Optical Network), ou Rede Óptica Passiva, é uma tecnologia que utiliza fibra óptica para construir redes de ponto a multiponto.

Ela se destaca por não precisar de energia no meio de transmissão e, por isso, é definida como passiva. Através de uma única fibra, é possível transmitir dados, voz e vídeo.

Características

- Benefícios da fibra óptica
- 128 ONUs/ONTs por porta PON
- 2,5 Gbs no sentido downstream e
- 1,25 Gbps no sentido Upstream
- Permite controle de ataques do tipo Storm
- Segurança: Encapsulamento GEM
- Largura de banda dinâmica
- Alcance físico máximo entre OLT ONT 20km.

Redes ópticas Passivas (PON)

OLT - Terminal de linha óptica

Gerencia a distribuição de tráfego na rede.

Gerenciamento das ONU/OLT

- Identificação, Aprovisionamento Transmissão e recepção.

Splitter - Divisior óptico

Passivo

Dividir o Sinal óptico 1:N

Econimizar custo com infra.

Conceito de Rede Ponto-

Multiponto

ONT - Terminal de Rede Óptica

ONU - Unidade de Rede Óptica

Se conecta a rede PON

Converte Sinais Iuminosos em

Elétricos

Distribuição da rede interna

Arquitetura de uma rede GPON

CDOE - Caixa de Distribuição Óptica Externa: Elemento de onde o técnico realiza o lançamento do cabo drop até a residência do cliente

CDOE - Caixa de Distribuição Optica Externa: Elemento de onde o tecnico realiza o lançamento do cabo arop ate a residencia do ciente

DROP - Cabo óptico utilizado para interligar a CDOE/CDOI com o PTO na rede interna e também utilizado para alimentação de CDOE/CDOI

CDOI – Caixa de Distribuição Óptica Interna: Utilizado em adequações prediais, recebe o sinal vindo de uma CDOE e faz a interligação com a CDOI A

CDOI A - Caixa de Distribuição Óptica de Andar: Está entre os andares dos prédios, recebe o sinal vindo da CDOI e é dela que o técnico lança o drop low friction até o apartamento

DROP LOW FRICTION - Cabo óptico utilizado em instalações prediais devido seu diâmetro reduzido e baixo atrito, facilitando a passagem pelo tubulação

PTO - Ponto Terminal óptico: Interliga o drop vindo da rede externa com o cordão monofibra que será conectado à ONT.

Cordão monofibra - Responsável por conectar o PTO a ONT.

ONT - Optical Network Terminal - Equipamento responsável por negociar as solicitações e recebimentos de informação junto a OLT (down e up)

Fluxo do dados

Tecnologia PON- Presente e Futuro

As tecnologias EPON e GPON são as mais difundidas atualmente, oferecendo taxas de dados suficientes para atender a maioria das aplicações de banda larga.

A XGPON é a nova tecnologia de transição, que oferece taxas de dados ainda maiores, e é adequada para aplicações que exigem alta largura de banda, como serviços de vídeo em alta definição e realidade virtual.

A 50GPON é a tecnologia mais recente, e oferece taxas de dados ainda maiores, tornando-a adequada para aplicações como serviços de 5G e Internet das Coisas.

Característica	EPON	GPON	XGPON	50GPON
Tipo	PON	PON	PON	PON
Norma	IEEE 802.3ah	ITU-T G.984	ITU-T G.987	ITU-T G.989
Protocolo	Ethernet	Ethernet	Ethernet	Ethernet
Taxa de dados downstream	1,25 Gbit/s	2,5 Gbit/s	10 Gbit/s	50 Gbit/s
Taxa de dados upstream	1,25 Gbit/s	1,25 Gbit/s	2,5 Gbit/s	25 Gbit/s
Confiabilidade e garantia de desempenho	Alta	Alta	Alta	Alta
Complexidade de implementação	Baixa	Média	Alta	Alta
Tecnologia WDM	Não	Não	Sim	Sim
SDN	Não	Não	Sim	Sim

