Chemical properties:

- **Reactivity:** These are highly reactive metals. Reactivity increases down the group. As they vigorously react with air and water they are stored in kerosene.
- Oxides: When alkali metals are heated in air, Li mainly gives Li₂O, sodium mainly gives sodium peroxide (Na₂O₂) and others give super oxides. (KO₂, RbO₂, CsO₂).
- Their oxides dissolve in water to give strong bases. $O^{2-} + H_2O \rightarrow 2OH^-$
- Oxides can be neutralised by acids

$$O^{2-} + 2H^+ \rightarrow H_2O$$

• Peroxides (O_2^{2-}) are the salts of H_2O_2 . Therefore metal peroxides will give H_2O_2 on reaction with water or dil. acids.

$$Na_2O_2 + 2H_2O \rightarrow 2NaOH + H_2O_2$$

Concentrated peroxide solutions will give O₂ on reaction with water

$$2Na_2O_2 + 2H_2O \rightarrow 4NaOH + O_2$$

- Na₂O₂ forms octahydrate crystals (Na₂O₂.8H₂O)
- Na₂O₂ absorbs CO₂ and releases O₂. Therefore it is used to purify air in crowded places, and in submarines.

$$2Na_2O_2 + 2CO_2 \rightarrow 2Na_2CO_3 + O_2$$

- Even K_2O_2 can be used for the same purpose and it is much better than Na_2O_2 .
- Na₂O₂ is used in qualitative analysis in the identification of chromium salts as it forms yellow colored chromate salts.
- Na₂O₂ can be used as oxidising agent.
- Super oxides are colored and paramagnetic due to the presence of unpaired electron or odd electron bond.

Resonance structures of superoxide ion (O_2^-) :

$$\begin{bmatrix} \vdots \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \end{bmatrix}^{-} \leftrightarrow \begin{bmatrix} \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \end{bmatrix}^{-} \leftrightarrow \begin{bmatrix} \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \end{bmatrix}^{-}$$

- The ease of formation and stability of super oxides increases down the group.
- **Hydroxides:** Hydroxides are formed when the metals or their oxides react with water.
- These are strongly basic.
- Solubility and basic strength increase from LiOH to CsOH.
- These are colourless and hygroscopic substances.
- They readily absorb moisture and CO₂ from atmosphere forming white carbonates.

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

- With alcohols they form alkoxides.
- Alcoholic potash is widely used in organic chemistry.
- Halides: Halides of Na and K are present in sea water.

- They can be prepared by the direct combination of the elements.
- They are also produced by the action of hydrogen halides on their hydroxides or carbonates.

NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O
Na₂CO₃ + 2HCl \rightarrow 2NaCl + CO₂ + H₂O

- Alkali metal halides are ionic compounds.
- Except cesium halides they have face centred cubic lattice and Cesium halides have body centred cubic lattice.
- They have high melting and boiling points.
- They are good electrolytes and conduct electricity in aqueous or molten states.
- The extent of hydration decreases with the increase in size of the ion.
- The ionic mobility increases and conductivity increases due to decrease in the size of hydrated ion.

Carbonates & bicarbonates:

H₂CO₃ is a weak dibasic acid and it forms two series of salts bicarbonates and carbonates.

NaOH +
$$H_2CO_3 \rightarrow NaHCO_3 + H_2O$$

2NaOH + $H_2CO_3 \rightarrow Na_2CO_3 + H_2O$

- Alkali metals form solid bicarbonates while the bicarbonates of other group elements exist in solution and do not exist in solid state.
- Except Li₂CO₃ the other carbonates are stable and they decompose only at very high temperatures.

$$Li_2CO_3 \rightarrow Li_2O + CO_2$$

- The stability of carbonates and existence of solid bicarbonates reflect their strong electropositive nature.
- Solubility increases from Li₂CO₃ to Cs₂CO₃.
- Bicarbonates are formed by saturating carbonate solutions with CO₂.

$$Na_2CO_3+H_2O+CO_2 \rightarrow 2NaHCO_3$$

Acids stronger than H₂CO₃ liberate CO₂ from carbonates and bicarbonates

$$Na_2CO_3+2HCl \rightarrow 2NaCl+H_2O+CO_2$$

$$NaHCO_3+HCI \rightarrow NaCl+H_2O+CO_2$$

 Carbonates and bicarbonates of alkali metals show basic properties in aqueous solution due to hydrolysis (anion hydrolysis).

$$CO_3^{-2} + H_2O \rightarrow HCO_3^- + OH^-$$

 $HCO_3^- + H_2O \rightarrow H_2CO_3^- + OH^-$