

<u>Gameboard</u>

Maths

2D Vectors & NII 1ii

2D Vectors & NII 1ii

Figure 1: Two horizontal forces P and Q acting at the origin of a point Q as viewed from above.

Two horizontal forces P and Q act at the origin O of rectangular coordinates Oxy. The components of P in the x-and y-directions are $14\,\mathrm{N}$ and $5\,\mathrm{N}$ respectively. The components of Q in the x-and y-directions are $-9\,\mathrm{N}$ and $7\,\mathrm{N}$ respectively as shown in Figure 1

Part A Resultant force 1

Write down the x-component of the resultant of P and Q.

Write down the y-component of the resultant of P and Q.

Part B Resultant force 2

Find the magnitude of this resultant of resultant force.

Find the angle the resultant makes with the positive x-axis to 3 significant figures.

Part C Acceleration

The two forces P and Q act on a particles of mass $0.2\,\mathrm{kg}$. Express the acceleration of the particle using ijk notation..

The following symbols may be useful: a, i, j, k

Used with permission from UCLES, A Level, June 2007, OCR M1, Question 1

<u>Gameboard</u>

Maths

2D Vectors & NII 1i

2D Vectors & NII 1i

Three horizontal forces, acting at a single point have magnitudes $12\,N$, $14\,N$ and $5\,N$ and act along bearings $000\,^\circ$, $090\,^\circ$, and $270\,^\circ$ respectively.

Part A Force diagram

Show these forces on a diagram.

Part B Base vector form

Express the $12\,\mathrm{N}$ using ijk notation.

The following symbols may be useful: i, j, k

Express the $14\,\mathrm{N}$ using ijk notation.

The following symbols may be useful: i, j, $\ensuremath{\mathtt{k}}$

Express the $5\,\mathrm{N}$ using ijk notation.

The following symbols may be useful: i, j, k

Part C Magnitude and bearing

Find the magnitude of the resultant force to 2 significant figures.

Find the bearing of the resultant force.

Part D Mass

The three forces are applied to a small particle producing an acceleration of $(45\underline{i} + 60\underline{j}) \,\mathrm{m\,s^{-2}}$.

Find the mass of the particle.

Created for isaacphysics.org by Sally Waugh

Gameboard:

Mechanics Practice: 2D Vectors & Newton II

<u>Gameboard</u>

Maths

2D Vectors & NII 2ii

2D Vectors & NII 2ii

Figure 1: Diagram showing three forces acting on a particle.

A particle rests on a smooth horizontal surface. Three horizontal forces of magnitudes $2.5\,\mathrm{N}$, $F\,\mathrm{N}$ and $2.4\,\mathrm{N}$ act on the particle on bearings $\theta^{\,\circ}$, $180^{\,\circ}$ and $270^{\,\circ}$ respectively. The particle is in equilibrium.

Part A Vector notation

The $2.5\,\mathrm{N}$ force may be written in the form $(p\mathbf{\underline{i}}+q\mathbf{j})\mathrm{N}$. Write down the value of p.

${\bf Part \ B} \qquad {\bf Finding} \ F$

Hence, find F.

Find θ to 3 significant figures.

Part D Acceleration

The $2.4\,\mathrm{N}$ force suddenly ceases to act on the particle, which has mass $0.2\,\mathrm{kg}$.

Find the magnitude of the acceleration of the particle.

Find the direction of the acceleration of the particle in the form of a bearing.

Used with permission from UCLES, A Level, June 2014, OCR M1, Question 2

Gameboard:

Mechanics Practice: 2D Vectors & Newton II

<u>Home</u> <u>Gameboard</u> Mat

<u>d</u> Maths Friction 2i

Friction 2i

A particle of mass $2\,\mathrm{kg}$ is propelled in a straight line across a rough surface with an initial velocity $\underline{\bm{u}} = 12\underline{\bm{i}} + 9\underline{\bm{j}}\,\mathrm{m\,s^{-1}}$. It comes to rest in 3 seconds.

Assuming that the frictional force is constant throughout the motion and no other forces are acting, what is the magnitude of the frictional force?

Created for isaacphysics.org by Sally Waugh

<u>Gameboard</u>

Maths

Modelling 2ii

Modelling 2ii

A trailer of mass $600 \,\mathrm{kg}$ is attached to a car of mass $1100 \,\mathrm{kg}$ by a light rigid horizontal tow-bar. The car and trailer are travelling along a horizontal straight road with acceleration $0.8 \,\mathrm{m\,s^{-2}}$.

Part A Modelling assumptions

Write down the three modelling assumptions about the tow-bar and explain why each assumption is important.

More practice questions?

Part B Trailer's resistance

Given that the force exerted on the trailer by the tow-bar is $700\,\mathrm{N}$, find the resistance to motion of the trailer.

Part C Car's resistance

Given also that the driving force of the car $2100\,\mathrm{N}$, find the resistance to motion of the car.

Adapted with permission from UCLES, A Level, June 2004, OCR M1

Gameboard:

Mechanics Practice: Modelling

<u>Gameboard</u>

Maths

Analysing Systems and Forces 2i

Analysing Systems and Forces 2i

Figure 1: Man preparing to lower a box down a cliff.

A man is preparing to lower a box down a cliff. He sets up a fixed pulley with a rope as shown in the **Figure 1**. He pulls on the rope with a force $-(100\underline{\mathbf{i}} + 75\underline{\mathbf{j}})$ N and the box settles into a stationary position with the rope between the box and pulley vertical.

Part A Force in rope

The force on the man's hand from the rope can be written as

$$\underline{\mathbf{F}} = \binom{F_1}{F_2}$$

Find F_1 .

Find F_2 .

Part B Magnitude of tension

What is the magnitude of the tension in the rope?

Part C Force diagrams

Draw a labelled diagram showing the forces acting in the rope at the pulley.

Easier question?

Draw a labelled diagram showing the forces on the box.

Easier question?

Part D Assumptions

In order to model the system mathematically, it is necessary to make assumptions. Give one assumption you need to make about the pulley and two assumptions about the rope.

Easier question?

Part E Mass of box

Find the mass of the box to 3 significant figures.

Created for isaacphysics.org by Sally Waugh

<u>Gameboard</u>

Maths

Newton's Laws 2i

Newton's Laws 2i

A trailer of mass $500\,\mathrm{kg}$ is attached to a car of mass $1250\,\mathrm{kg}$ by a light rigid horizontal tow-bar. The car and trailer are travelling along a horizontal straight road. The resistance to motion of the trailer is $400\,\mathrm{N}$ and the resistance to motion of the car is $900\,\mathrm{N}$. Find both the tension in the tow-bar and the driving force of the car in each of the following cases.

Part A Driving force 1

The car and trailer are travelling at constant speed.

What is the driving force?

Part B Tension 1

What is the tension in the tow-bar?

Part C Driving force 2

The car and trailer have acceleration $0.6\,\mathrm{m\,s^{-2}}$.

What is the driving force of the car? Give your answer to 4 significant figures.

Part D Tension 2

What is the tension in the tow-bar?

Used with permission from UCLES, A Level Maths, January 2009, OCR M1, Question 2

<u>Gameboard</u>

Maths

Normal Reaction 2i

Normal Reaction 2i

Figure 1: Diagram showing a block of mass $M \log$ on a platform which is raised by a hoist.

A box of mass $M \log$ is loaded onto a platform which can be raised by a hoist. The platform, which consists of 2 vertical supports and a horizontal plate, has a total mass of $30 \log$. Before the hoist is attached, the box and platform are on horizontal ground and the thrust in each support is $350 \log$.

Part A Mass of box

Find the mass of the box to 3 significant figures.

Part B Normal reaction 1

The platform is now connected to the hoist cable, raised slowly by a short distance so that it leaves the ground, and brought to a halt.

Find the normal reaction on the box in this stationary position to 3 significant figures.

Part C Tension

Find the tension in the hoist cable.

Part D Normal reaction 2

The hoist suddenly jerks the platform upwards, with an initial acceleration of $1.5\,\mathrm{m\,s^{-2}}$.

Find the normal reaction on the box to 3 significant figures.

Created for isaacphysics.org by Sally Waugh

<u>Home</u> <u>Gameboard</u>

Maths Friction 1ii

Friction 1ii

A block of mass $4 \,\mathrm{kg}$ is in equilibrium on a rough surface under the influence of a horizontal force, X, of $11.8 \,\mathrm{N}$.

Part A Diagram

Draw a diagram to show all the forces on the block.

Part B Ratio of forces

Find the ratio of the frictional force, F, to the normal reaction, R. Give your answer to one decimal place.

${\bf Part \ C} \qquad {\bf Finding} \ M$

A different block, of mass M, is placed on the same surface. A force of $16.8\,\mathrm{N}$ is applied in place of force X. Again the system is in equilibrium.

Assuming the same ratio applies to the frictional and normal forces, find the value of M to 3 significant figures.

Created for isaacphysics.org by Sally Waugh

<u>Gameboard</u>

Maths

Analysing Systems and Forces 1i

Analysing Systems and Forces 1i

A small, smooth pulley is suspended from a fixed point by a light chain. A light inextensible string passes over the pulley. Particles P and Q, of masses $0.30\,\mathrm{kg}$ and m respectively, are attached to the opposite ends of the string. The particles are released from rest at a height of $0.20\,\mathrm{m}$ above horizontal ground with the string taut; the portions of the string not in contact with the pulley are vertical. P strikes the ground with speed $1.4\,\mathrm{m\,s^{-1}}$. Subsequently P remains on the ground and Q does not reach the pulley.

Part A Acceleration of P

Calculate the acceleration of P while it is in motion to 2 significant figures.

Part B Tension in the string

Calculate the tension in the string to 2 significant figures.

Part C Mass of m

Find the mass of m.

Calculate the greatest height of Q above the ground.

Part E Tension in the chain

It is given that the mass of the pulley is $0.50 \, \mathrm{kg}$.

State the magnitude of the tension in the chain which supports the pulley when P is in motion. Give your answer to 2 significant figures.

Part F Tension when Q moving upwards

State the magnitude of the tension in the chain which supports the pulley when P is at rest on the ground and Q is moving upwards. Give your answer to 2 significant figures.

Used with permission from UCLES, A Level Maths, June 2010, OCR M1, Question 7

Gameboard:

<u>Mechanics Practice: Analysing Systems and Forces</u>