PAT-NO:

JP404352120A

DOCUMENT-IDENTIFIER:

JP 04352120 A

TITLE:

OPTICAL DEFLECTING METHOD

PUBN-DATE:

December 7, 1992

INVENTOR-INFORMATION:

NAME

FUNEMI, KOJI UESUGI, YUJI

ASSIGNEE-INFORMATION:

MATSUSHITA ELECTRIC IND CO LTD

COUNTRY

N/A

APPL-NO:

JP03127446

APPL-DATE:

May 30, 1991

INT-CL (IPC): G02B026/10

ABSTRACT:

PURPOSE: To make a scan with a light beam at a high speed and also to switch the light beam by applying a voltage whose hysteresis characteristic is corrected to a piezoelectric element, controlling the displacement of the piezoelectric element, and rotating a $\overline{\text{reflecting }}\underline{\text{mirror}}$.

CONSTITUTION: This optical deflecting method consists of the piezoelectric element (e.g. laminated type piezoelectric element) 4, a main body base 5, a fulcrum base 6, steel spheres 7a and 7b, and the reflecting mirror 9. The hysteresis characteristic of the piezoelectric element 4 is modeled previously, the voltage whose hysteresis characteristic is corrected according to the model is applied to the piezoelectric element 4 to control the displacement of the piezoelectric element 4, and the displacement is converted from linear motion to rotary motion by using a converting mechanism to rotate the reflecting mirror 9, thereby making the scan with the light beam and switching the light beam with high accuracy. The response of the piezoelectric element 4 is faster than that of a conventional method, so the light beam can be put in fast scanning motion and switched.

COPYRIGHT: (C) 1992, JPO& Japio

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-352120

(43)公開日 平成4年(1992)12月7日

(51) Int.Cl.5

識別記号

庁内整理番号

FI

技術表示箇所

G 0 2 B 26/10

101

8507-2K

審査請求 未請求 請求項の数3(全 4 頁)

(21)出願番号

特顯平3-127446

(22)出願日

平成3年(1991)5月30日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 船見 浩司

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 植杉 雄二

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54) 【発明の名称】 光偏向方法

(57)【要約】

【目的】 従来、光ビームの走査, 切り替えを行う光偏 向装置において、その剛性が小さいために、光路を安定 状態で維持することが困難であった。更に、固有振動の 点から、走査速度、反射ミラーの質量等について、制限 が生じていた。そこで、本発明は上記課題を解決し、簡 単な機構で、高速、高精度に光ビームの走査、切り替え を行う光偏向方法を提供することを目的とする。

【構成】 あらかじめ、圧電素子4のヒステリシス特性 のモデリングを行い、そのモデルを元に、ヒステリシス 特性を補正した電圧を、圧電素子4へ印加して、圧電素 子4の変位を制御し、さらに、その変位を、直線運動か ら回転運動への変換機構を用いて、反射ミラー9を回転 させることにより、光ピームを高精度に走査、及び、切 り替えを行う。また、圧電素子4の応答性は、従来の方 法に比べて、速いため、光ピームを高速に走査、及び、 切り替えを行うことができる。

【特許請求の範囲】

【請求項1】 圧電素子のヒステリシス特性のモデリン グを行い、そのヒステリシス・モデルを参考にして、ヒ ステリシス特性を補正した制御電圧を、圧電素子へ印加 することにより、圧電素子の変位を制御し、さらに、そ の変位を、直線運動から回転運動への変換機構を用い て、反射ミラーを回転させて、光ピームを偏向させるこ とを特徴とする光偏向方法。

【請求項2】 圧電素子のヒステリシス・モデルの更新 する請求項1記載の光偏向方法。

【請求項3】 光ビームで偏向するパターンを限定し、 それらのパターンに対して、ヒステリシス特性を補正し た制御電圧を、圧電素子へ印加することにより、圧電素 子の変位を制御することを特徴とする請求項1記載の光 偏向方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、レーザ加工機(レーザ マーカ.レーザトリマ),OA機器(レーザプリンタ, バーコードリーダ)、測定器(レーザ顕微鏡、レーザ検 査器) 等において、特に高速, 髙精度で、光ピームの走 査、切り替えを行う光偏向方法に関するものである。

[0002]

【従来の技術】近年、光偏向技術は、高速、高精度化の 方向に進んでおり、その従来技術としては、図4に示す ような、ガルバノ・メータ・スキャナを用いた光偏向方 法が挙げられる。

【0003】この方法は、ガルパノ・メータ1の回転軸 に、反射ミラー2を固定し、このガルパノ・メータ1の 30 振れにより、反射ミラー2を回転させることにより、光 ピームの走査、切り替えを行う方法である。

[0004]

【発明が解決しようとする課題】ところが、このような 光偏向方法(ガルパノ・メータ・スキャナ)では、ガル パノ・メータの剛性が小さいために、反射ミラーは外部 振動の影響を受けやすく、光路を高度に安定した状態で 維持し続けることが困難であった。更に、固有振動の観 点から、光ピームの走査速度、走査周波数、反射ミラー の質量等について、数多くの制限が生じていた。

【0005】そこで、本発明は上記課題を解決し、簡単 な機構で、高速、高精度に光ビームの走査、切り替えを 行う光偏向方法及びその装置を提供するものである。

[0006]

【課題を解決するための手段】上記課題を解決するため の手段は、あらかじめ、圧電素子のヒステリシス特性の モデリングを行っておき、そのヒステリシス・モデルを 参考にして、ヒステリシス特性を補正した制御電圧を、 圧電索子へ印加することにより、圧電索子の変位を制御 し、さらに、その変位を、直線運動から回転運動への変 50 電圧に対する、圧電素子4の変位特性は、図3に示すよ

換機構を用いて、反射ミラーを回転させて、光ピームの 走査,切り替えを行う方法である。

[0007]

【作用】まず始めに、圧電素子のヒステリシス特性のモ デリングを行う。そして、そのヒステリシス・モデルを 参考にして、ヒステリシス特性を補正した制御電圧を、 圧電素子へ印加することにより、圧電素子の変位を制御

【0008】さらに、圧電素子の変位を、直線運動から を行いながら、圧電素子の変位を制御することを特徴と 10 回転運動への変換機構を用いて、反射ミラーを回転させ ることにより、光ビームの走査、切り替えを行う。

> 【0009】圧電素子の変位は、印加する電圧の大きさ によって正確に変化するため、この印加電圧を最適に制 御することにより、光ピームを正確に走査、及び、切り 替えを行うことができる。また、非線形要素を持つ圧電 素子のヒステリシス特性に対しては、十分に、そのモデ リングを行うことにより、圧電素子を高精度に制御する ことができる。更に、圧電素子の応答性は、非常に速い ため、光ピームを高速に走査、及び、切り替えを行うこ 20 とができる。

[0010]

【実施例】以下、図面を参照しながら、本発明を説明す

【0011】図1は、本発明の一実施例を示す図であ る。図1において、4は圧電素子(例えば、積層型圧電 素子)、5は本体ペース、6は支点ペース、7a,7b は鋼球、8はコイルパネ、9は反射ミラーである。

【0012】印加電圧に応じて歪(変位)が発生する圧 電素子4には、主に、積層型圧電素子とパイモルフ型圧 電索子の2種類がある。

【0013】積層型圧電素子はパイモルフ型圧電素子に 比べて、変位量は小さいが、その精度が高く発生力も大 きい、また、熱や騒音の発生が極めて小さく、かつ、入 力電気エネルギの機械エネルギへの変換効率が大きいの で、消費電力も小さくてすむという長所があり、さらに **電極間距離を小さくすることにより、駆動電圧を低くす** ることができる。従って、光偏向装置に使用する圧電素 子4には、積層型圧電素子を用いるのが多い。

【0014】積層型圧電素子は、図2に示すような構造 40 をしており、表裏両面に電極を形成した薄型の圧電セラ ミックス3が、分極方向を対向するように何層も積層さ れ、機械的に直列に配置されている。一方、電極は、一 層おきに取り出して、電気的には、並列構造となってお り、その両端に電圧を加えると、一枚一枚の圧電セラミ ックス3の変位が加算され、大きな変位が得られる。

【0015】また、圧電素子4の構成要素である圧電セ ラミックス3は、強誘電体であるジルコンチタン酸鉛 (P2T)にて形成されているため、いわゆる、ヒステ リシス特性を有している。例えば、圧電素子4への印加 3

うな非線形要素を持つヒステリシス特性となる。つまり、印加電圧の増加時の変位と、減少時の変位との間に、誤差があるため高精度の位置決めには不十分である。

【0016】つまり、高精度の位置決めを行うためには、通常、高精度の位置センサーと共に、クローズド・ループ・システムを構成し、上記位置センサーからの信号に基いてヒステリシスの影響が生じないように、印加電圧をフィード・パック制御する必要がある。ところが、印加電圧のフィード・パック制御を行っているた 10 め、高速制御、安定性という面において問題がある。

【0017】そこで、本発明においては、まず始めに、使用する圧電素子4(あるいは、光偏向装置に組み込んだ状態での圧電素子4)のヒステリシス特性の解析を、十分に行い、そのヒステリシス・モデルを作成する。ここで、圧電素子4のヒステリシス特性は、圧電素子4が置かれている状態によって変化するため注意が必要である。例えば、その状態変数には、圧電素子4の両端にかけている印加電圧、圧電素子4の変位量、圧電素子4への機械的負荷量、及び現時点までに圧電素子4にかけた 20印加電圧の経過等が挙げられる。

【0018】そして、このヒステリシス・モデルを参考 にして、ヒステリシス特性を補正した制御電圧を、圧電 素子4の両端に印加することにより、圧電素子4の変位 を高精度に制御することができる。

【0019】次に、図1で示した光偏向装置の機械的動作を説明する。まず始めに、上記で示したように、ヒステリシス特性を補正した制御電圧を、圧電素子4の両端に印加すると、圧電素子4は高精度に変位する。変位した圧電素子4は、一端が本体ベース5で固定されている 30 ため、その逆方向に変位する。つまり、この変位は、圧電素子4上の鋼球7aを介して、反射ミラー9に伝えられる。

【0020】一方、反射ミラー9は、本体ペース5と、コイルパネ8で固定されている。そのため、圧電素子4の直線運動(変位)は、本体ペース5に固定された支点ペース6上の鋼線7bを支点として、反射ミラー9への回転運動に変換される。

【0021】このように、反射ミラー9が回転運動する ことにより、光ピームの走査、切り替えを行うことがで 40 きる

【0022】つまり、あらかじめ、圧電素子4のヒステリシス特性のモデリングを行い、そのヒステリシス・モデルを参考にして、ヒステリシス特性を補正した制御電圧を、圧電素子4へ印加することにより、圧電素子4の変位を制御し、さらに、その変位を、直線運動から回転運動への変換機構を用いて、反射ミラー9を回転させる

ことにより、光ビームを高精度に走査、及び、切り替え を行うことができる。

【0023】 更に、圧電素子4の応答性は、従来の光偏向方法(ガルパノ・メータ・スキャナ)に比べて、非常に速いため、光ビームを高速に走査、及び、切り替えを行うことができる。

【0024】一方、圧電素子4のヒステリシス特性は、 周囲環境(温度等)により変化する場合がある。そのため、この光偏向装置を使用しながら、学習制御を用いて、圧電素子4のヒステリシス・モデルの更新を行う。 この更新されつつあるヒステリシス・モデルを用いることにより、圧電素子4の制御を行うと、より安定して、高精度に光ビームを走査、及び、切り替えを行うことができる。

【0025】更に、光ピームで偏向するパターンを限定し、それらのパターンに対して、ヒステリシス特性を補正した電圧を、圧電素子4へ印加することにより、圧電素子4の変位を制御することにより、より簡易的に、光ピームを走査、及び、切り替えを行うことができる。

20 [0026]

【発明の効果】以上述べたように、あらかじめ、圧電素子のヒステリシス特性のモデリングを行い、そのヒステリシス・モデルを参考にして、ヒステリシス特性を補正した電圧を、圧電素子へ印加することにより、圧電素子の変位を制御し、さらに、その変位を、直線運動から回転運動への変換機構を用いて、反射ミラーを回転させることにより、光ビームを高速、高精度に走査、及び切り替えを行うことができる。

【0027】さらに、この圧電素子のヒステリシス・モデルの更新を行いながら、圧電素子の直線運動を制御すると、より安定して、高精度に光ビームを走査、及び、切り替えを行うことができる。

【0028】一方、光ピームで偏向するパターンを限定し、それらのパターンに対して、ヒステリシス特性を補正した制御電圧を、圧電素子へ印加することにより、圧電素子の変位を制御することにより、より簡易的に、光ピームを走査、及び、切り替えを行うことができる。

【図面の簡単な説明】

【図1】本発明の第1の実施例における光偏向装置の構成図

【図2】積層型圧電素子の構成図

【図3】積層型圧電素子のヒステリシス特性図

【図4】従来の光偏向装置の構成図

【符号の説明】

4 圧電素子

9 反射ミラー

