

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 顋 年 月 日
Date of Application:

1999年 1月21日

出 類 番 号 Application Number:

平成11年特許願第013328号

出 類 人 Applicant (s):

オリンパス光学工業株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2000年 2月18日

特 許 庁 長 官 Commissioner, Patent Office

近藤隆

特平11-013328

【書類名】

特許願

【整理番号】

98P02454

【提出日】

平成11年 1月21日

【あて先】

特許庁長官殿

【国際特許分類】

A61B 1/04

G02B 23/24

【発明の名称】

内視鏡装置

【請求項の数】

3

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

大野 光伸

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

村田 雅尚

【特許出願人】

【識別番号】

000000376

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号

【氏名又は名称】

オリンパス光学工業株式会社

【代表者】

岸本 正壽

【代理人】

【識別番号】

100076233

【弁理士】

【氏名又は名称】

伊藤 進

【手数料の表示】

【予納台帳番号】

013387

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9101363

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 内視鏡装置

【特許請求の範囲】

【請求項1】 内視鏡の挿入部の先端に固体撮像素子を設け、かつ内視鏡内部 に前記固体撮像素子を駆動し、該固体撮像素子の出力信号に対して標準の映像信 号を生成する信号処理回路とを設けた内視鏡装置において、

前記固体撮像素子を駆動する駆動信号発生機能と、前記固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する信号処理機能とを有する汎用 映像信号処理回路と、

前記汎用映像信号処理回路と接続され、前記挿入部の先端に設けた固体撮像素子に適合する信号処理を行うために、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能との少なくとも一方を変更する機能変更回路を有する内視鏡用機能調整回路と、

により前記信号処理回路を形成したことを特徴とする内視鏡装置。

【請求項2】 固体撮像素子を駆動する駆動信号発生機能と、前記固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する信号処理機能とを有する汎用映像信号処理回路と、

前記汎用映像信号処理回路と接続され、前記固体撮像素子を内蔵する内視鏡に 応じて、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能 との少なくとも一方を変更する機能変更回路を有する内視鏡用機能調整回路と、

を具備したことを特徴とする内視鏡装置。

【請求項3】 内視鏡に内蔵された固体撮像素子を駆動すると共に、該固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する汎用映像信号 処理回路と接続される内視鏡用機能調整回路において、

前記固体撮像素子を内蔵する内視鏡に応じて、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能との少なくとも一方を変更する機能変更 回路を備えたことを特徴とする内視鏡用機能調整回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、汎用の映像信号処理回路に対し、内視鏡に内蔵した場合の固体撮像素子に適合した信号処理機能等の調整或いは拡張機能を設けた内視鏡装置に関する。

[0002]

【従来の技術】

特開昭63-283277号公報にあるように撮像素子を備えた内視鏡装置では挿入部内に挿通されるケーブルによる信号遅延、CCD駆動パルスの波形補正などが必要になり、その回路は複雑化する。

[0003]

そこでこの従来例では内視鏡側に撮像素子を駆動し、かつ撮像素子の出力信号に対する信号処理を行う信号処理回路全てを内蔵した構成にしている。信号処理回路といってもCDS回路やAGC回路、A/Dコンバータ、エンコーダ回路などの各回路が必要となる。

[0004]

【発明が解決しようとする課題】

このような従来例は内視鏡に内蔵させる信号処理回路をそれぞれの内視鏡専用 として開発するため、上記各回路もその都度開発しなければならいな問題があり 、汎用性がなかった。

[0005]

多品種少量生産に対応することが必要な現在では、多品種作るとそれぞれの回路も新規で開発せねばならず、開発費が増大する問題があった。

[0006]

本発明は、上述した点に鑑みてなされたもので、多品種の内視鏡に対しても低 コストで対応できる信号処理回路を備えた内視鏡装置を提供することを目的とす る。 [0007]

【課題を解決するための手段】

内視鏡の挿入部の先端に固体撮像素子を設け、かつ内視鏡内部に前記固体撮像素子を駆動し、該固体撮像素子の出力信号に対して標準の映像信号を生成する信号処理回路とを設けた内視鏡装置において、

前記固体撮像素子を駆動する駆動信号発生機能と、前記固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する信号処理機能とを有する汎用 映像信号処理回路と、

前記汎用映像信号処理回路と接続され、前記挿入部の先端に設けた固体撮像素子に適合する信号処理を行うために、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能との少なくとも一方を変更する機能変更回路を有する内視鏡用機能調整回路と、

により前記信号処理回路を形成することにより、挿入部長等が異なる多品種の 内視鏡の場合に対しても共通の汎用映像信号処理回路に内視鏡特有の内視鏡用機 能調整回路を付加することで対処できるようにして、低コストで実現できるよう にした。

[0008]

【発明の実施の形態】

以下、図面を参照して本発明の実施の形態を説明する。

(第1の実施の形態)

図1ないし図7は本発明の第1の実施の形態に係り、図1は第1の実施の形態を備えた内視鏡システムの全体構成を示し、図2は内視鏡装置の構成を示し、図3はDSPの内部構成を示し、図4はDL遅延回路の構成を示し、図5は図4の作用説明図を示し、図6は波形整形用ハイブリッドICの構成を示し、図7は図6の作用説明図を示す。

[0009]

図1に示すように本発明の第1の実施の形態を備えた内視鏡システム1はそれ ぞれ撮像手段を内蔵して複数の内視鏡2A、2B、2Cと、接続される内視鏡2 I(I=A,B,C)に対し、照明光を供給する光源装置3と、内視鏡2Iに接 続され、撮像された内視鏡画像を表示する例えば液晶表示モニタ4と、内視鏡2 Iの外部リモート端子に着脱自在で接続され、ズーム操作を行う操作リモートコントロール装置(以下、操作リモコンと略記)5と、内視鏡2Iのシリアル端子に着脱自在で接続され、データの送受を行う例えばパーソナルコンピュータ(以下、パソコンと略記)6とから構成される。

[0010]

内視鏡2 I はそれぞれ長さが異なる細長の挿入部11 I とこの挿入部11 I の 後端に設けられた操作部12と、この操作部12の側部から延出されたユニバー サルケーブル13とを有し、このユニバーサルケーブル13の端部のコネクタ1 4から突出するライトガイド15の入射端部を光源装置3に着脱自在で接続する ことができる。

[0011]

また、このコネクタ14に設けた映像端子16、外部リモート端子17、シリアル端子18にはそれぞれ接続ケーブルを介して液晶表示モニタ4、操作リモコン5、パソコン6とが接続される。

[0012]

光源装置3内部にはハロゲンランプ等のランプ21が設けられ、このランプ21で発光した白色の光はコンデンサレンズ22で集光され、ライトガイド15の 端面に照射される。

[0013]

そして、内視鏡2I内に挿通されたライトガイド15により伝送された照明光は挿入部11Iの先端部24の照明窓に取り付けられたライトガイド先端面から前方に出射され、患部等の被写体を照明する。

[0014]

先端部24には照明窓に隣接して観察窓(撮像窓)が設けてあり、この観察窓には対物レンズ25が取り付けてあり、その結像位置には電荷結合素子(CCDと略記)26が配置され、光学像を光電変換する。つまり、本実施の形態における内視鏡2Iは挿入部11Iの先端部24にCCd26を設けた電子内視鏡である。

なお、CCD26の撮像面(感光面)には図示しないモザイクフィルタ等の色 分離フィルタが配置され、例えば各画素単位で色分離する。

[0015]

また、本実施の形態では先端部24内、つまりCCD26に近く波形整形回路機能を備えたハイブリッド集積回路(HICと略記)27が配置され、CCD26を駆動するために信号線28Iを介して伝送されたCCD駆動信号の波形を成形してCCD26に印加するようにしている。

[0016]

このCCD26は信号線28Iを介して操作部12内部に設けた映像信号処理 回路としてのカメラコントロールユニット部(CCU部と略記)29と接続され ている。

[0017]

本実施の形態では、このCCU部29は汎用基板としてデジタルシグナルプロセッサ(DSPと略記)を搭載して標準の映像信号を生成する機能を備えたDSP基板30と、このDSP基板30と接続して内視鏡特有の機能に対応できる機能調整(機能変更)手段或いは機能拡張手段を付加等した機能調整/拡張回路基板31Iとから構成される。

[0018]

このDSP基板30は標準の映像信号を生成する機能を備えているので、例えばDSP基板30(CCD駆動回路)に直接CCD26を(或いは短いケーブルで)接続しDSP基板30の映像信号出力端にモニタを接続すれば、そのモニタにCCD26で撮像された画像を表示することができる。

[0019]

つまり、本実施の形態では、CCD26に対してCCD駆動信号を発生するCCD駆動機能と、このCCD駆動信号の印加により、CCD26から出力されるCCD駆動信号に対して信号処理して標準の映像信号を生成する映像信号処理機能とを備えたDSP基板30に対して、例えば挿入部11Iの長さが異なる(従ってCCD26とCCU部29までの信号線28Iの長さに依存する信号遅延量が発生する)内視鏡2Iの場合に必要とされる機能(例えば信号遅延量の影響を

解消する機能)に対応する機能変更或いは機能拡張手段を設けた機能調整/拡張 回路基板31を接続して、挿入部長(ケーブル長)が異なる内視鏡2I(換言す ると、挿入部長が異なる内視鏡2Iにおける挿入部先端に設けたCCD26に応 じて、そのCCD26に適合する信号処理)に対応できるような構成にしている

[0020]

本実施の形態では機能調整/拡張回路基板31は挿入部長(ケーブル長)によりその設定値が内視鏡2A(挿入部長が異なる場合の挿入部11Iの先端に配置したCCD26)に応じて異なっているが、挿入部長が異なる場合にも共通の機能調整/拡張回路基板31で対処できるようにして、低コスト化できるようにしている。

なお、光源装置3内の図示しない電源回路からCCU部29に動作に必要な電源が供給されるようになっている。

[0021]

図2は例えば内視鏡2Aの場合での内視鏡装置の電気系の構成を示す。DSP基板30は図3に示すような(CCD駆動機能及び)信号処理機能を備えたDSP32を有し、このDSP32のシステム信号発生回路(システムSSG回路と略記)33のタイミング信号に同期してCCD駆動信号及びタイミニグ信号(TGと略記)を生成するCCD駆動&TG回路34のCCD駆動信号及びタイミニグ信号は機能調整/拡張回路基板31に設けたディレイライン遅延回路(DL遅延回路と略記)35に入力され、DSP制御マイクロコンピュータ(DSP制御マイコンと略記)36からの遅延量設定信号によりDL遅延回路35でケーブル長(信号線長)に対するタイミング補正がされる。

[0022]

例えばDSP制御マイコン36は例えばディップスイッチ37と接続されており、該ディップスイッチ37のON/OFFの組み合わせによる複数ビットにより対応する遅延量設定信号をDSP制御マイコン36はDL遅延回路35に出力する。

[0023]

このディレイライン遅延回路35の出力信号は駆動アンプ38により増幅された後、信号線28Aを構成する駆動信号線28Aaを経てHIC27に印加され、このHIC27により波形整形された後、その付近に配置されたCCD26に印加される。

[0024]

このCCD26はCCD駆動信号の印加により、光電変換されたCCD出力信号が読み出され、信号線28Aを構成する出力信号線28Abを経て、機能調整/拡張回路基板31内のプリアンプ39で増幅された後、DSP基板30内の相関二重サンプリング回路(CDS回路と略記)40に入力され、CCD出力信号における信号成分が抽出される。

[0025]

後述するようにDL遅延回路35によるCCD駆動信号に対する信号遅延により、CDS回路40では信号遅延がない場合と同様な適切なタイミングで信号部分がサンプリングパルスでサンプリングされて信号成分の抽出が行われる。

[0026]

このCDS回路40の出力信号はA/D変換回路41によりデジタル信号に変換された後、DSP32により構成されるデジタルオプチカルブラッククランプ回路(デジタルOBクランプ回路と略記)42に入力され、CCD26の全画素における遮光されたOB部での出力信号レベルを黒レベルに設定する処理が行われた後、デジタルガンマ回路43に入力される。

[0027]

このデジタルガンマ回路43によりガンマ補正が施された後、色分離及びカラー信号処理を行う色分離&カラー信号処理回路44とデジタルローパスフィルタ回路(デジタルLPF回路と略記)45とに入力される。

[0028]

色分離&カラー信号処理回路44により色分離及びカラー信号処理された色信号Cとしての色差信号R-YとB-Y(UとV)とはホワイトバランス用可変アンプ回路46に入力され、ホワイトバランス調整された後、デジタル入出力の制

御を行うデジタル入出力制御部47aと、サンプリング周波数変換の制御を行うサンプリング周波数変換制御部47bと、デジタルZOOM処理を行うデジタルZOOM処理部47cとの機能を備えたデジタル制御&処理部47に入力される

[0029]

なお、本実施の形態ではホワイトバランス用可変アンプ回路46は光源装置3のランプ21を光源ランプとした場合に対してホワイトバランス調整を行うようにしている。

[0030]

また、デジタルLPF回路45に入力された信号はこのデジタルLPF回路4 5によりデジタルの輝度信号 Y 成分が抽出された後、デジタルエンハンス回路4 8に入力され、水平及び垂直のエンハンス処理がされた後、デジタルホワイトク リップ回路49に入力され、ホワイトレベルがクリップされた後、デジタル制御 & 処理部47に入力される。

[0031]

このデジタル制御&処理部47から出力されるデジタルの輝度信号Y及び色信号Cはデジタルエンコーダ回路50に入力され、輝度信号Y、色信号C及び同期信号が重畳されたデジタルの複合映像信号(コンポジット信号)VBSと、輝度信号Y及び色信号Cを分離したY/C分離信号(Y/Cコンポーネント信号)に変換され、さらにその内部のD/A変換回路51によりアナログの複合映像信号VBSとY/C分離信号に変換され、図2のバッファアンプ52,53を経てそれぞれ複合映像信号出力端54及びY/C分離映像信号出力端(S端子)55から出力する。

[0032]

また、バッファアンプ52を経た複合映像信号VBSは機能調整/拡張回路基板31内のRGBデコーダ56に入力され、液晶モニタ4を駆動するRGB信号に変換されて液晶モニタ4に入力され、被写体像をカラー表示する。

[0033]

上記デジタル制御&処理部47はデジタルの輝度信号Yと色信号C(色差信号

R-Y, B-Y或いはU, V) とをY: U: V=4:2:2(又はY: U: V=4:2:0)の形式で出力すると共に、Y: U: V=4:2:2(又はY: U: V=4:2:0)の形式で入力されるデジタルの輝度信号Yと色信号Cとに対する制御及び信号処理を行う機能を備えている。

[0034]

また、DSP基板30にはDSP32とその内部のマイコンインタフェース57を介して双方向の情報送受を行うマイコン58が設けてある。このマイコン58は機能回路基板31のDSP制御マイコン36と例えばシリアルインタフェースを介して接続されており、このDSP制御マイコン36を介してDSP32の動作モードを変更或いは設定することができるようにしている。

[0035]

なお、DSP32のシステムSSG回路33にはDSP基板30に設けた例えば水晶発振回路59から例えばCCD26の画素を読み出すのに使用する基本クロックが印加され、この基本クロックに同期して各種のタイミング信号を生成し、映像系同期信号も出力する。また、このシステムSSG回路33の外部同期信号入力端には外部同期信号を入力してこの外部同期信号に同期した各種タイミング信号等も生成することができる。

[0036]

また、本実施の形態ではDSP制御マイコン36は信号線28Acを介してHIC27と接続されており、このDSP制御マイコン36側からHIC27の波形整形の動作モードを変更できるようにしている。

[0037]

図4はDL遅延回路35の構成例を示す。DL遅延回路35は例えば一定の時間、遅延するディレイライン或いは遅延素子(図4ではDで略記)61を多数接続した遅延部62と、各ディレイライン61に接続された接点j(j=a,b,c,d,e…)を選択することにより遅延量を選択設定するマルチプレクサ(或いは選択スイッチ)63とから構成され、マルチプレクサ63による接点jの選択はDSP制御マイコン36からの遅延量設定信号により決定されるようにしている。

そして、例えば挿入部長、或いはケーブル長によるCCD駆動信号の遅れ及び CCD出力信号の時間遅延を補正するようにしている。

[0038]

例えばケーブル長が最も長い内視鏡2A、中位の内視鏡2B、短い内視鏡2Cでは例えばCCD駆動信号における水平転送信号 φ Hに対して示すと、図5(B)、(C)、(D)のように遅延時間を設定し、図5(A)に示す遅延を行わない場合(CCU部29にCCD26を設けた場合に相当)の(次の)水平転送信号 φ Hよりもケーブル長による遅延時間分だけ、位相を前にずらすようにしてCDS回路40にCCD出力信号が入力されるタイミングはケーブル長に依存しないで一致するようにしている。

[0039]

このため、CDS回路40では(ケーブル長を考慮していないで図5(A)の場合の水平転送信号 φ Hのタイミングに適合する)CDSサンプリングパルスで信号成分を抽出する動作を行うと、(ケーブル長が異なる場合にも)CCD出力信号における信号部分が入力されるタイミングでその信号部分を抽出することができる。

[0040]

なお、図5では簡単化のため、ケーブル長が最も長い内視鏡2Aの場合での信 号遅延量は1画素分より小さいとして示しているが、1画素分よりも信号遅延量 が大きい場合には2画素或いは3画素後の遅延を行わない場合の水平転送信号 φ Hの場合のタイミングと一致させるようにすれば良い。

なお、図5では水平転送信号 ϕ Hを示したが、この他にリセットゲートパルス ϕ R、垂直転送パルス ϕ Vも同様にDL遅延回路35で時間遅延される。

[0041]

このようにすることにより、CDS回路40等には遅延しないでCCD出力信号が入力されるタイミングに一致するようになり、CCD出力信号における信号成分を抽出できるようにしている。

なお、ディレイライン(遅延素子)61としてはバッファ等でを利用しても良 く、このバッファの段数で遅延量を変えることができる。

[0042]

また、CCD26に印加されるCCD駆動信号の波形がケーブル長により変形するので、本実施の形態ではCCD26の近傍に波形整形用のHIC27を設け、CCD駆動信号の波形を整形するようにしている。図6は波形整形回路としてのHIC27の構成例を示す。

[0043]

このHIC27はCCD駆動信号における例えば2相の水平転送信号 ϕ H1, ϕ H2とリセットゲート信号 ϕ RGとがそれぞれ入力されることにより、波形整形して出力するコンパレータ65、66、67と、これらコンパレータ65、6 6 7 による出力レベルを決定する電源レギュレータ68とからなる。

[0044]

水平転送信号 ϕ H1, ϕ H2とリセットゲート信号 ϕ RGはそれぞれコンパレータ65、66、67の反転入力端に印加され、コンパレータ65、66、67の非反転入力端は共通のコンパレータ電圧信号Vrが印加される。このコンパレータ電圧信号VrはDSP制御マイコン36から信号線28Acを経て印加される。

[0045]

また、電圧レギュレータ68にもDSP制御マイコン36から信号線28Acを経て電圧モード切換信号Vcが印加される。この電圧モード切換信号VcはCCD26の種類に対応して例えば"L"レベル或いは"H"レベルの電圧モード切換信号Vcを電圧レギュレータ68に印加することにより、電圧レギュレータ68はそれに対応した電圧レベル(例えば5V或いは8V)の電源電圧をコンパレータ65、66、67の電源端に印加する。そして、コンパレータ65、66、67からCCD26にはその駆動に必要な電圧レベルのCCD駆動信号が印加される。

[0046]

図7は図6の動作を示す説明図である。図7 (A) に示すようにケーブルにより波形が変形した (コンパレータ) 入力信号として例えばリセットゲート信号 φ R G がコンパレータ 6 5 に入力されると、コンパレータ電圧信号 V r と比較され

、図7 (B) に示す波形整形された出力信号 Ø R G が出力される。

なお、リセットゲート信号 ϕ RGの場合で示したが、水平転送信号 ϕ H1、 ϕ H2の場合も同様に波形整形される。

[0047]

このようにコンパレータ電圧信号Vrのレベルを可変設定することにより、サグに影響されない適切なパルス幅Tのリセットゲート信号 ΦRG等をCCD26に印加することができる。例えば図7(A)の2点鎖線で示すレベルであると、サグの影響を受けて適切なリセットゲート信号 ΦRG等をCCD26に印加することができなくなる可能性があるが、本実施の形態ではケーブル長により、CCD駆動信号の波形が変形してもそのケーブル長による波形変形に応じてコンパレータ電圧信号Vrに設定することにより、ケーブル長に影響されないで、常に適切なパルス幅T等のCCD駆動信号をCCD26に出力することができる。

[0048]

従って、CCD出力信号からCDS回路40により信号成分を抽出する場合に も、抽出するタイミングがずれてしまうようなことを防止することもできる。

[0049]

従って、本実施の形態によれば、挿入部長が異なる内視鏡2Iの挿入部11Iの先端部24にCCD26を設け、内視鏡2I内部のCCU部29までのケーブル長が異なる場合にも、各CCD26に適合する信号処理を行うことができる。

この場合、CCU部29は共通のDSP基板30と、そのDSP基板30に対して挿入部長(ケーブル長)を考慮して駆動信号の遅延を行うその遅延量の値が異なるが共通の機能調整/拡張回路基板31を付加することで挿入部長が異なる場合の各CCDにも適合できるようにしているので、低コストで挿入部長が異なる内視鏡2Iにも対応できる。

[0050]

(第2の実施の形態)

次に本発明の第2の実施の形態を図8及び図9を参照して説明する。図8は本 発明の第2の実施の形態の内視鏡システム1′を示す。この内視鏡システム1′ は図1の内視鏡システム1において、光源装置3として例えばメタルハライドラ ンプ21Aを用いた光源装置3Aとキセノンランプ21Bを用いた光源装置3B とのいずれでも使用できるようにしている。

[0051]

メタルハライドランプ21Aとキセノンランプ21Bとでは色温度(発光波長分布)が異なるので、互いに異なる設定状態のホワイトバランス調整が必要になる。このため、本実施の形態では各内視鏡2Iには光源装置3Aと3Bとのいずれが使用された場合にもそれに対応したホワイトバランス状態に設定する手段をCCU部29に設けている。

[0052]

本実施の形態ではCCU部29は第1の実施の形態と同じDSP基板30と、第1の実施の形態における機能調整/拡張回路基板31に光源装置3A、3Bに対応したホワイトバランス設定手段を設けた機能調整/拡張回路基板31′とから構成され、また例えば光源装置3A、3Bは固有の識別情報(ID情報)を発生する識別信号発生回路70A、70Bが設けてある。

[0053]

そして、装着された場合の光源装置3A或いは3Bに設けた識別信号発生回路70A或いは70Bからの信号が機能調整/拡張回路基板31′内の図9に示すDSP制御マイコン36に入力されるようにしている。

[0054]

図9は内視鏡2Aに例えば光源装置3Aが接続された場合の電気系の構成例を示す。 識別信号発生回路70Aは例えば抵抗Ra(光源装置3Bでは抵抗Rb)で構成され、内視鏡2Aに光源装置3Aが接続されると、DSP制御マイコン36には例えば電源電圧Vccを基準抵抗Rと抵抗Raで分割した電圧レベルの光源ランプの種類(この場合にはメタルハライドランプ21A)を表す識別情報が入力される。

[0055]

また、この機能調整/拡張回路基板31′には光源ランプの種類に対応して複数の色信号のゲイン設定回路71が設けてあり、このゲイン設定回路71の出力はセレクタ72を経た後、A/D変換器73, 74でデジタル信号に変換されて

DSP制御マイコン36に入力される(DSP制御マイコン36内部にA/D変換機能がある場合にはA/D変換器73,74は不要となる)。

[0056]

具体的にはゲイン設定回路71はメタルハライドランプ21Aの場合にホワイトバランスさせるように、例えばGの色信号を基準として残りのRとBとの色信号のゲインを設定するゲイン設定用トリマ抵抗75ァと76ァと、キセノンランプ21Bの場合にホワイトバランスさせる例えばRとBとの色信号のゲインを設定するゲイン設定用トリマ抵抗75bと76bとから構成されている。

[0057]

Rの色信号のゲイン設定用トリマ抵抗75r及び75bと、Bの色信号のゲイン設定用トリマ抵抗76r及び76bとの信号はセレクタ72を経た後、さらにA/D変換器73,74でデジタル信号に変換されてDSP制御マイコン36に入力される。

[0058]

DSP制御マイコン36はID情報によりセレクト信号を生成し、セレクタ72をID情報に対応した光源ランプ側のRゲイン及びBゲインを選択する。図8に示すように光源装置3Aが接続された場合には、その内部のメタルハライドランプ21Aを光源とした照明光の波長分布に対してホワイトバランスさせるゲイン設定用トリマ抵抗75rと76rによるRゲインとBゲイン(を規定する抵抗値の電圧値)がDSP制御マイコン36に入力されるようにする。

[0059]

そして、このDSP制御マイコン36はDSP基板31のマイコン58を介してDSP32のホワイトバランス用可変アンプ46のデュアル可変アンプ77、78にRゲイン制御信号とBゲイン制御信号とをゲイン制御端に印加して、メタルハライドランプ21Aの場合に対してホワイトバランス状態となるように設定する。

[0060]

また、マイコン58を介してDSP32に設けてあるオートホワイトバランス 回路79の動作を停止させるようにオートゲイン停止信号をオートホワイトバラ ンス回路 7 9 に印加する。このオートホワイトバランス回路 7 9 は第 1 の実施の 形態では説明を省略したものであるが、汎用の映像信号処理回路を行う D S P 3 2 に通常は設けられている。このオートホワイトバランス回路 7 9 は自然光のも とで被写体からの反射光を撮像した信号における各色信号の平均値がバランスす るようにRとBのゲインを調整して自動的にホワイトバランスさせるものである

このため、本実施の形態では自然光とは異なる各ランプの照明光の波長分布状態に対応して、精度の良いホワイトバランス設定をするようにしている。

[0061]

なお、図9では例えば色分離回路44'は図3の符号44~49をまとめて示し、また、ポストプロセス回路80は図3の制御&処理部47及びデジタルエンコーダ50をまとめて示している。また、図2の水晶発振回路59をOSC59で示している。その他は第1の実施の形態と同様の構成及び同様の作用効果を有する。

[0062]

なお、本実施の形態では各光源装置3A或いは3Bに固有のID情報を発生する手段を設けて使用する内視鏡2Iに実際に接続された光源装置3A或いは3Bに対応するホワイトバランス設定を行うようにしたが、図9の2点鎖線で示すように例えば各内視鏡2Iに光源装置3A或いは3Bに対応して切換える切換スイッチ81を設け、この切換スイッチ81の切換信号をDSP制御マイコン36に与えて、光源装置3A或いは3Bに対応したホワイトバランス設定を行う指示信号(或いはID情報)としても良い。

[0063]

本実施の形態によれば、第1の実施の作用効果の他に、さらに異なる色温度 (発光波長分布)が異なる光源装置 3 A、或いは 3 B を使用した場合にもそれに対 応したホワイトバランス状態で内視鏡検査を行うことができる。

[0064]

従って、体腔内患部或いは配管内部等を実際に観察した場合の色調を忠実に反映した画像表示を行うことができる。このため、例えば体腔内患部等を診断する

場合には適切な診断を行うことが容易となる。

[0065]

また、本実施の形態では光源装置3A及び3Bに対応したゲイン設定回路71、セレクタ72、A/D変換器73,74を設けたが、これらを設けないで、例えばシリアル端子18にプログラム書き換え治具を接続して、このプログラム書き換え治具によりDSP制御マイコン36の動作プログラムを書き換えて、同様の作用を行わせるようにしても良い。

[0066]

また、本実施の形態では光源装置3A、或いは3Bの発光ランプの波長分布を 考慮したホワイトバランス設定を行う説明をしたが、CCD26の色分離フィル タのバラツキとかライトガイド15の波長に依存した伝送特性等を考慮して、ホ ワイトバランス調整することもできる。

[0067]

例えば、図8において、ゲイン設定用トリマ抵抗75rと76rによるRゲインとBゲインを個々の内視鏡2I毎に光源装置3A、或いは3Bに接続した場合に(基準となる白の被写体を撮像した状態で)ホワイトバランスする状態に設定しておけば、その内視鏡2Iのライトガイド15及びCCD26の色分離フィルタの特性等を考慮した状態のホワイトバランス状態に設定できる。

[0068]

従って、本実施の形態によれば、第1の実施の形態と同様に内視鏡2Iに設けた各CCD26にそれぞれ適合できると共に、さらに内視鏡2Iに設けたライトガイド15の特性が異なる場合、内視鏡2Iに接続する光源装置を変更等した場合にも、適切なホワイトバランス状態に設定できる。

[0069]

この場合にも、第1の実施の形態のように共通のDSP基板30と、設定状態が異なる共通の機能調整/拡張回路基板31′で対応できるので、低コストで挿入部長が異なる内視鏡2Iに対応できるし、さらに色分離フィルタ及びライトガイド15等にバラツキがある場合にもそのバラツキに左右されないで適切なホワイトバランス状態に設定できる。

[0070]

(第3の実施の形態)

次に本発明の第3の実施の形態を図10及び図11を参照して説明する。図10は本発明の第3の実施の形態の内視鏡装置を内視鏡2Aの場合でその概略の構成を示し、図11はその電気系の構成を示す。

本実施の形態例えば第1の実施の形態において、各内視鏡2Iに電動湾曲機構 を設けたものである。

[0071]

図10に示す内視鏡2Aの挿入部11Aは先端部24と湾曲自在の湾曲部82 と、可撓性の可撓部83とから構成されている。湾曲部82は複数の関節駒84 が互いに隣接する関節駒84同士をリベット等の回動自在の連結手段で縦列接続 されて構成され、最先端の湾曲駒84には、対となる湾曲用のアングルワイヤ8 5 u、85dの先端が上下方向に対応する位置にそれぞれ固定され、該アングル ワイヤ85u、85dの後端は操作部12内に設けたプーリ86aに掛け渡して あり、このプーリ86aは上下湾曲用モータ87aに連結されている。

[0072]

また、挿入部11A内における上記アングルワイヤ85u、85dと直交する 左右方向に配置された左右湾曲用のアングルワイヤ851、85r(図11参照)も操作部12内でプーリ86bに掛け渡してあり、このプーリ86bは左右湾 曲用モータ87bに連結されている。

図11に示すように両モータ87a、87bはモータドライバ88により駆動 され、このモータドライバ88はDSP制御マイコン36により制御される。

[0073]

このDSP制御マイコン36は上下及び左右湾曲方向操作ノブ89a、89b に接続され、該湾曲方向操作ノブ89a、89bを傾ける操作を行うことによりその操作方向に対応する指示信号がDSP制御マイコン36に入力され、DSP 制御マイコン36はその指示方向に対応する制御信号をモータドライバ88に出力し、モータ87a或いは87bを回転させて、アングルワイヤ85u、85d 851、85rを牽引して牽引されたアングルワイヤ85k(k=u,d,1,

r) 側に湾曲部82を湾曲させることができる。

[0074]

この場合、手動よるアングルワイヤ85kの牽引による湾曲操作に比べて、電動駆動であるので、軽い操作で所望の方向に湾曲させることができる。

なお、湾曲方向操作ノブ89a、89bはそれぞれ上下及び左右に傾けることができるものであるが、上下左右の任意の方向に傾ける操作を行うことができる 1本のジョイスティックで構成しても良い。

[0075]

また、モータ87a、87bの例えば回転軸にはエンコーダ91a、91bが設けてあり、モータ87a、87bの回転量を検出してその検出した回転量をDSP制御マイコン36に入力する。そして、DSP制御マイコン36は検出された回転量から指示された湾曲量だけ湾曲されたか否かを判断できるようにしている。

[0076]

また、エンコーダ91a、91bにより各湾曲方向の最大湾曲量を検出した場合にも、DSP制御マイコン36はモータ87a,87bの回転動作を停止させる。

また、本実施の形態ではDSP32内部に設けた信号処理により画像の拡大を行うZOOM処理部47cにおけるPAN(上下方向の首振り)、TILT(左右方向の首振り)の機能を制御できるようにしている。

[0077]

このために操作スイッチ部90が設けてあり、操作スイッチ部90を構成する上、下、左、右の各位置に設けたスイッチ90u、90d、901、90rの操作による指示信号がDSP制御マイコン36に入力される。そして、指示された方向に観察画像を移動して、湾曲操作を行った場合と類似の機能を実現している

[0078]

また、本実施の形態ではさらに湾曲操作ノブ89a, 89bによるアングル操作機能とPAN、TILTの機能とを切り換える切換スイッチ93が設けてある

そして、例えば湾曲操作ノブ89a,89bによるアングル操作により最大湾曲させた後、この切換スイッチ93によりアングル操作機能側に設定した場合には、湾曲操作ノブ89a,89bの操作により最大湾曲角以上に操作した場合にはさらに2〇〇M処理でPAN、TILTの機能を制御して最大湾曲角以上の方向を観察できるようにしている。

[0079]

本実施の形態では、例えば湾曲操作ノブ89a, 89b、操作スイッチ部90 等は図10に示すように内視鏡2Aの操作部12に設けてある。

また、ZOOM処理でPAN、TILTの機能を行った場合にニュートラル位置に戻す図示しないニュートラルスイッチを設けている。

[0080]

また、図10に示すように光源装置3の電源端子94から電源線95を介して CCU29のDSP基板30と機能調整/拡張回路基板(図10では拡張基板と 略記)31には電源が供給されるようになっている。

[0081]

また、例えば操作部12にはメイン電源スイッチ96が設けてある。なお、図10及び図11では内視鏡2Aの場合での構成を示したが、他の内視鏡2B、2Cでも同様の構成である。その他は第1の実施の形態と同様の構成である。

[0082]

本実施の形態では湾曲方向操作ノブ89a、89bを操作することにより、所望の方向に湾曲部82を湾曲させることができるようにしている。

また、操作スイッチ部90を操作して湾曲方向操作ノブ89a、89bによる 最大湾曲角以上の方向の観察も行うことができる。さらに、切換スイッチ93の 操作により、湾曲方向操作ノブ89a、89bのみの操作で最大湾曲角以上の方 向の観察も行うことができるようにして、操作性を向上している。

[0083]

この場合、この切換スイッチ93をPAN、TILT側にすれば湾曲方向操作

ノブ89a、89bでも単独にPAN, TILTの操作できる。

湾曲部82を湾曲等させる動作は以下のようになる。

[0084]

湾曲方向操作ノブ89 a、89 bを動かすとまずDSP制御マイコン36はモータ87 a 或いは87 bを動かし、アングル操作を行なうように命令する。アングル角限界までモータ87 a 或いは87 b が回るとエンコーダ91 a 或いは91 b の出力でモータ87 a 或いは87 b は停止する。

[0085]

DSP制御マイコン36はモータ87a或いは87bの回転停止後、DSP32のZOOM処理部47cのPAN, TILTに信号を送り、湾曲方向操作ノブ89a、89bの湾曲指示方向に適するPAN, TILT操作を行う。

[0086]

このように電動湾曲とデジタルPAN, TILT機能を関連させると、湾曲方向操作ノブ89a、89b側のみの操作で最大湾曲角以上の方向を観察することができ、操作が簡単となる。

[0087]

また、システム電源OFF時の操作はDSP制御マイコン36はCCU部29の映像出力させた制御状態のまま、このDSP制御マイコン36は電動アングルを(湾曲部82が)ストレートになる状態に戻してから、図示しないDC出力(電源)を切る。このように自動操作することで、アングル機構に無理な力をかけずに、挿入部11Iを被検体より抜去させることができる。

[0088]

電源、CCU部29、電動アングルを制御するDSP制御マイコン36の関連 制御により実現できる効果である。

また、外部のパソコン6からも通信によってアングルを動かすことが可能であり、外部のパソコン6の画像処理機能を使って高度なアングル自動動作が実現できる。

[0089]

なお、別の操作 SWを用いて単独にデジタルPAN, TILTを動かすように

することも可能である。

[0090]

本実施の形態によれば、第1の実施の形態の効果の他に操作部12に設けた湾曲方向操作ノブ89a、89bを操作することにより、所望の方向に湾曲部82を簡単に湾曲させることができる。

[0091]

また、操作スイッチ部90を操作してZOOM処理部47cのPAN, TIL Tによる観察を行うことができる。

[0092]

なお、本実施の形態では、DSP32によるZOOM機能(ZOOM, PAN, TILT)と、電動アングルとの関連制御をDSP制御マイコン36で関連して行うように制御しているが、例えば切換スイッチ93を設けないで、湾曲方向操作ノブ89a、89bの操作では電動アングルの湾曲、操作スイッチ部90の操作ではデジタルZOOM処理によるPAN, TILTをそれぞれ独立して行うようにしても良い。

[0093]

(第4の実施の形態)

次に本発明の第4の実施の形態を図12ないし図14を参照して説明する。本 実施の形態は例えば第3の実施の形態において、さらに画素数が異なるCCDに 対応した信号処理を行えるようにしたものである。

[0094]

図12は本発明の第4の実施の形態を備えた内視鏡システム1″の構成を示す。本実施の形態では例えば内視鏡2AのCCD26Aと内視鏡2BのCCD26Bと内視鏡2CのCCD26Cはそれぞれ画素数が異なる。

[0095]

CCD26A、26B、26Cの縦横ともその画素数は例えばCCD26A(の画素数)>26B(の画素数)>26C(の画素数)であるとして説明する。つまり、CCD26Aが最大画素数のCCDであるとする。

そして、最大画素数のCCD26Aの内視鏡2Aの場合の構成は図11と同様

であるとし、その説明を省略する。

[0096]

この場合、最大の画素数のCCD26Aを採用したDSP基板30では水晶発振器59は最大の画素数のCCD26Aの場合に対応した周波数の基本クロックで発振する。

[0097]

これに対し、最大画素数のCCD26Aより少ない画素数のCCD26B或いは26Cでは最大画素数のCCD26Aの場合の機能調整/拡張回路基板31とは一部構成が異なる機能調整/拡張回路基板31″を採用することにより、異なる画素数の場合にも標準の映像信号を生成して、液晶モニタ4に出力できるようにしている。

このCCD26B(或いは、26C)を採用した内視鏡2B(或いは2C)の電気系の構成を図13に示す。

[0098]

図13に示す内視鏡2Bは図11の内視鏡2Aの場合のDSP基板30に搭載されたDSP32内のデジタル入出力制御部47aから出力されるデジタルの輝度信号Y及び色信号C(色差信号U,V)を機能調整/拡張回路基板31″に設けたフレームメモリ97に一時格納し、このフレームメモリ97から標準の映像周期で読み出し、D/A変換部98でアナログの輝度信号Y及び色信号Cに変換し、さらにRGBエンコーダ99でRGB信号に変換し、映像出力端16から出力するようにしている。

[0099]

このフレームメモリ97は例えば最大の画素数のCCD26A(実際にはCCD26Bでも良いが、次の実施の形態でもそのまま利用できるようにCCD26Aとする)の場合に対する記憶容量のフレームメモリである。

[0100]

また、デジタル入出力制御部47aはCCD26Aの画素数の場合に相当する デジタルの輝度信号Y及び色信号Cを出力する動作を行うので、これより少ない 画素数のCCD26B(及び26C)の場合に対してはデジタル入出力制御部4 7 aからはCCD26Bの画素を越える部分を空読み出しした信号部分のない信号(ここではダミー信号)が出力されることになり、フレームメモリ97にはCCD26Bの画素数部分の信号と共に、その画素数を越える部分のダミー信号がフレームメモリ97に格納されることになる。

[0101]

つまり、このフレームメモリ97には、CCD26B(及び26C)の場合その縦横の一部のメモリセルにはダミーの画素の記憶が行われる。そして、読み出す場合には、DSP制御マイコン36の制御によりその画素数部分のみが読み出され、D/A変換部98でアナログの輝度信号Y及び色信号Cに変換され、さらにRGBエンコーダ99でRGB信号に変換され、映像出力端16から出力される。

[0102]

この場合、液晶モニタ4にはCCD26Iの画素数の応じてその表示エリアが変化することになる。

なお、CCD26B, CCD26cのようなより画素数が小さいCCDの場合、映像表示されるエリアが小さくなってしまうが、DSP32に内蔵されたデジタルZOOM処理部47cのZOOM倍率を変化させ、TELE側に拡大処理して出力することにより、表示エリアをCCDの画素数によらず常にほぼ一定にすることが出来る。このようにすれば、どのような画素数のCCDを使っても映像をフル画面表示することが可能となる。

[0103]

一般的なインタライン転送方式の標準的なTV信号用(例えばNTSCやPAL等)のCCDの場合、画素数大小に応じて水平方向の画素数が変化して、水平方向の解像度が変わる。つまり、より画素数の多いCCD程、水平解像度を高くすることができる。しかし、垂直方向に関しては画素数の大小によらず、常に一定の画素数となっており、画素数によらず垂直解像度は一定である。これはTV信号の規格で垂直方向の走査ライン数が決まっているためである。

[0104]

このように一般的にはCCD26B、CCD26cのようなより低画素のCC

Dを本実施の形態のようなDSP基板30で駆動した場合、水平方向のみ圧縮された縦長の画像となってしまう。これを補正するために、ZOOM処理部47cの水平方向の倍率のみをTELE側に拡大して処理することにより、水平方向に圧縮された映像を伸張して復元し、通常の表示画像、フル画面表示することができる。

[0105]

この例では水平方向のみZOOM倍率を変化させることにより、CCDの画素数によらず通常の表示画像の大きさに変更したが、同様に垂直方向のZOOM倍率も水平方向とな異なるZOOM倍率で使用するようにすれば、垂直、水平の画素数がどのような構成のCCDを使用しても通常の表示画像、フル画面表示することができる。

[0106]

また、フル画面にするためのZOOM倍率をDSP制御マイコン36に記憶させておくことができる。このようにしておけば内視鏡2B等の電源を投入する毎にZOOM倍率をDSP32に転送するようにすることで、内視鏡装置の電源投入時からフル画面表示させることが可能である。

[0107]

本実施の形態によれば、第3の実施の形態の作用効果の他に、異なる画素数の CCD26Iの場合にも同じDSP基板30を採用し、機能調整/拡張回路基板 側の構成を一部変更することで対応できる。

[0108]

(第5の実施の形態)

次に本発明の第5の実施の形態を図14を参照して説明する。本発明は第4の 実施の形態において、さらにフリーズ機能を設けたものである。

本実施の形態は、例えば第4の実施の形態において、内視鏡2Aも他の内視鏡2B及び2Cと同様の機能調整/拡張回路基板31″を採用する。つまり、画素数が異なる場合にも、図14に示す内視鏡2Aの場合(他の内視鏡2B或いは2Cも同様)で示す共通の機能調整/拡張回路基板31″を採用する。

[0109]

さらに本実施の形態では例えば操作部12等にフリーズスイッチ92を設け、 このフリーズスイッチ92の操作によるフリーズ指示信号はDSP制御マイコン 36に入力され、DSP制御マイコン36はフレームメモリ97への書き込みを 禁止する。

[0110]

そして、書き込み禁止直前にフレームメモリ97に書き込まれた信号を繰り返 し出力し、液晶モニタ4には静止画を表示する。また、静止画の表示を指示した 後に、さらにフリーズスイッチ92が操作した場合には書き込み禁止を解除して 、フレームメモリ97から動画の信号が出力されるようにする。

[0111]

本実施の形態によれば、第4の実施の形態の作用効果の他に、異なる画素数の CCD26Iの場合にも共通のDSP基板30と、共通の機能調整/拡張回路基板31"により対応できると共に、静止画の表示も可能になる。

なお、第4の実施の形態においても、フレームメモリ97を採用した内視鏡2 B或いは2Cの場合には静止画を表示する機能を付加できる。

[0112]

なお、異なる画素数のCCDの場合には第4或いは第5の実施の形態では共通のDSP基板30を採用しているが、以下のようにして対応しても良い。DSP32に供給する水晶発振回路59を画素数毎に用意し、切換えてDSP32に供給する。また、DSP基板30側にD/A変換回路51の帯域制限用アナログLPFを画素数毎にその特性に最適化したものを複数用意し、切り換えて使用する。このようにすればどの画素数のCCDでも最適な駆動周波数で駆動できるため、第4の実施の形態のように表示エリアが変化せず、常にフル画面状態にすることができる。

また、機能調整/拡張回路基板31側にDSP制御マイコン36のソフトの変更及びCCD駆動回路の定数の変更等を行って対応するようにしても良い。

[0113]

なお、この他に、光源装置による照明光の光量制御を撮像された信号の輝度レ

ベルの平均値等で自動的に目標とする輝度レベル値に設定する自動調光機能を設けるようにしても良い。

なお、上述した各実施の形態等を部分的等で組み合わせて構成される実施の形態等も本発明に属する。

[0114]

[付記]

1. 内視鏡の挿入部の先端に固体撮像素子を設け、かつ内視鏡内部に前記固体撮像素子を駆動し、該固体撮像素子の出力信号に対して標準の映像信号を生成する 信号処理回路とを設けた内視鏡装置において、

前記固体撮像素子を駆動する駆動信号発生機能と、前記固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する信号処理機能とを有する汎用 映像信号処理回路と、

前記汎用映像信号処理回路と接続され、前記挿入部の先端に設けた固体撮像素子に適合する信号処理を行うために、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能との少なくとも一方を変更する機能変更回路を有する内視鏡用機能調整回路と、

により前記信号処理回路を形成したことを特徴とする内視鏡装置。

[0115]

2. 固体撮像素子を駆動する駆動信号発生機能と、前記固体撮像素子の出力信号 に対して信号処理して標準の映像信号を出力する信号処理機能とを有する汎用映 像信号処理回路と、

前記汎用映像信号処理回路と接続され、前記固体撮像素子を内蔵する内視鏡に 応じて、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能 との少なくとも一方を変更する機能変更回路を有する内視鏡用機能調整回路と、

を具備したことを特徴とする内視鏡装置。

[0116]

3. 内視鏡に内蔵された固体撮像素子を駆動すると共に、該固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する汎用映像信号処理回路と接続される内視鏡用機能調整回路において、

前記固体撮像素子を内蔵する内視鏡に応じて、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能との少なくとも一方を変更する機能変更回路を備えたことを特徴とする内視鏡用機能調整回路。

[0117]

- 4. 付記1において、前記内視鏡用機能調整回路は前記固体撮像素子と信号処理 回路とを接続する信号ケーブルによる信号遅延の影響を解消するための遅延量調 整回路を有する。
- 5. 付記1において、前記内視鏡は光源装置と着脱自在であり、前記内視鏡用機 能調整回路は少なくとも前記光源装置に内蔵されらランプの発光波長分布を考慮 したホワイトバランス状態に設定するホワイトバランス調整回路を有する。

[0118]

- 6. 付記1において、前記内視鏡用機能調整回路は前記固体撮像素子の画素数が 異なる場合にも、標準的な映像信号を生成する画素数変化対応の調整回路を有す る。
- 7. 付記1において、前記内視鏡用機能調整回路は静止画の映像信号を出力する機能を有する。

[0119]

- 8. 付記1において、前記内視鏡用機能調整回路は挿入部に設けた湾曲部を電気的に湾曲させる電動湾曲機能を有する。
- 9. 付記1において、前記汎用映像信号処理回路と前記内視鏡用機能調整回路とは前記内視鏡の挿入部長が異なる場合にもそれぞれ共通の回路構成である。
- 10. 付記1において、前記汎用映像信号処理回路と前記内視鏡用機能調整回路とは前記固体撮像素子の画素数が異なる場合にもそれぞれ共通の回路構成である

[0120]

11. 挿入部の先端にそれぞれ配置された固体撮像素子と、かつ各内視鏡内部に 前記固体撮像素子を駆動し、該固体撮像素子の出力信号に対して標準の映像信号 を生成する信号処理回路をそれぞれ設けた複数の内視鏡を有する内視鏡システム において、 前記固体撮像素子を駆動する駆動信号発生機能と、前記固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する信号処理機能とを有する汎用 映像信号処理回路と、

前記汎用映像信号処理回路と接続され、前記挿入部の先端に設けた固体撮像素子に適合する信号処理を行うために、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能との少なくとも一方を変更する機能変更回路を有する内視鏡用機能調整回路と、

により前記信号処理回路を形成したことを特徴とする内視鏡システム。

[0121]

- 12. 付記11において、前記汎用映像信号処理回路と前記内視鏡用機能調整回路とは前記内視鏡の挿入部長が異なる場合にもそれぞれ共通の回路構成である。
- 13. 付記11において、前記汎用映像信号処理回路と前記内視鏡用機能調整回路とは前記固体撮像素子の画素数が異なる場合にもそれぞれ共通の回路構成である。

[0122]

14. CCDからの映像信号がデジタル化して入力され、デジタル信号でCCDカメラに適した信号処理をしてアナログ映像信号として出力するデジタルシグナルプロセッサ(DSP) LSIを使ってCCDからの映像信号を処理する映像信号処理回路を内臓した電子内視鏡装置において、

前記DSPおよびCDS回路およびA/D変換回路、映像出力色からなるCCDデジタルカメラ信号処理に必要な基本回路を1枚のCCD信号処理基板として構成し、

信号遅延回路および内視鏡挿入部のケーブル減衰補償アンプ回路および上記DSP制御用マイコン回路および電源回路からなる電子内視鏡装置特有の回路および前記CCD信号処理回路を電子内視鏡装置に適した調整または動作モードに設定する回路の全部または一部を上記CCD信号処理基板とは別の1枚の内視鏡回路基板として構成し、

前記CCD信号処理基板と前記内視鏡回路基板を組み合わせることにより、電子内視鏡用の映像信号処理を行なう様に構成した事を特徴とする電子内視鏡装置

15. 付記14において、前記内視鏡色基板にRGBデコーダ回路と液晶表示デバイス駆動用ドライバ回路を内蔵させた。

[0123]

16. CCDからの映像信号をデジタル化して入力され、デジタル信号でCCDカメラに適した信号処理をしてアナログ映像信号として出力するデジタルシグナルプロセッサ(DSP)LSIを使ってCCDからの映像信号を処理する映像信号処理回路を内臓した電子内視鏡装置において

DSPの内部に信号を遅延するためのバッファを複数直列に接続し、バッファの段数をDSP外部から指定されるデータにより任意に設定して上記バッファ段数を切換えて使用できる多段バッファからなる可変遅延回路をDSPに内臓させ

上記可変遅延回路を利用してCCD水平転送駆動パルスおよびCCDリセット ゲートパルスおよびCDS回路用S/Hパルスの1部または全部の信号の遅延を 行なうようにして、内視鏡挿入部のケーブルによる信号遅延を補償したことを特 徴とする電子内視鏡装置。

[0124]

- 17. 付記16において、前記遅延回路のバッファ段数の設定をDSP外部に設けたマイコンおよび前記マイコン外付されたディップスイッチによって設定する
- 18. 付記16において、前記遅延回路のバッファ段数の設定をDSP外部に設けたマイコンおよび前記マイコンに入力される内視鏡挿入部のケーブル長を示す識別信号によって設定する。

[0125]

19. CCDからの映像信号がデジタル化して入力され、デジタル信号でCCDカメラに適した信号処理をしてアナログ映像信号として出力するデジタルシグナルプロセッサ (DSP) LSIを使ってCCDからの映像信号を処理する映像信号処理回路を内臓し、挿入部先端部の湾曲操作を電動で動かす電動湾曲機構を備えた電子内視鏡装置において、

上記DSP内部に電子ZOOM機能およびPAN機能およびTILT機能を内臓させ、上記DSPに内臓されたZOOM機能、PAN機能、TITL機能を上記DSPに外付したマイコンによって制御すると共に、上記マイコンで電動湾曲機構の湾曲制御を行ない、

電子ZOOM機能、PAN機能、TILT機能と湾曲制御とを上記マイコンにより関連制御することを特徴とする電子内視鏡装置。

[0126]

20. CCDからの映像信号がデジタル化して入力され、デジタル信号でCCDカメラに適した信号処理をしてアナログ映像信号として出力するデジタルシグナルプロセッサ (DSP) LSIを使ってCCDからの映像信号を処理する映像信号処理回路を内臓し、挿入部先端部の湾曲操作を電動で動かす電動湾曲機構を備えた電子内視鏡装置において上記DSP内部に電子ZOOM機能およびPAN機能およびTILT機能を内臓させ、上記DSPに内臓されたZOOM機能、PAN機能、TILT機能を上記DSPに外付したDSP制御マイコンによって制御すると共に、上記マイコンとは別の湾曲制御用マイコンで電動湾曲機構の湾曲制御を行ない、

上記DSP制御マイコンと湾曲制御用マイコンとを通信接続することにより電子ZOOM機能およびPAN機能およびTILT機能と湾曲制御とを関連制御することを特徴とする電子内視鏡装置。

[0127]

21. 付記19又は20において、上記関連制御は上記電子ZOOM機能がTE LE状態になっている時、ある特定方向へ湾曲操作を行ない、実際の湾曲角度が 限界に達した時、上記マイコンが湾曲動作を一時停止させ、さらに特定方向が観 察できる様、PAN、TILT機能を自動で動かす。

[0128]

2.2. 内視鏡挿入部先端部にCCD駆動信号を波形成形するための波形成形回路 を半導体集積回路として内臓した電子内視鏡装置において、前記半導体集積回路 に動作モードを切換えるモード切り換え手段を設け、駆動するCCDの種類に適 した駆動波形を発生することができるようにしたことを特徴とする電子内視鏡装 置。

[0129]

23. 内視鏡挿入部先端部にCCD駆動信号を波形成形するための波形成形回路 を半導体集積回路として内臓した電子内視鏡装置において、前記波形成形回路は コンパレータを内臓し、入力されたCCD駆動波形を前記コンパレータにて基準 電圧と比較し、比較した結果をCCDへ出力し、前記基準電圧を可変設定できる 設定手段をもつことを特徴とする電子内視鏡装置。

[0130]

24. CCDからの映像信号がデジタル化して入力され、デジタル信号でCCDカメラに適した信号処理をしてアナログ映像信号として出力するデジタルシグナルプロセッサ (DSP) LSIを使ってCCDからの映像信号を処理する映像信号処理回路を内蔵し、上記DSPに電子ZOOM機能を内蔵させ、上記DSPに内蔵されたZOOM機能を上記DSPに外付けしたマイコンにより制御することにより、CCD画素数の違いによる表示エリアの変化を補正して内視鏡画像表示させるようにしたことを特徴とする電子内視鏡装置。

[0131]

25. CCDからの映像信号がデジタル化して入力され、デジタル信号でCCDカメラに適した信号処理をしてアナログ映像信号として出力するデジタルシグナルプロセッサ (DSP) LSIを使ってCCDからの映像信号を処理する映像信号処理回路を内蔵し、上記DSPに電子ZOOM機能を内蔵させ、上記DSPに内蔵されたZOOM機能を上記DSPに外付けしたマイコンによって水平方向と垂直方向のZOOM倍率をそれぞれ独立に制御することにより、CCD画素数の違いによる表示エリアの変化を補正し、CCD画素数の少ないCCDを使用した場合も内視鏡画像をフル画面表示させるようにしたことを特徴とする電子内視鏡装置。

[0132]

【発明の効果】

以上説明したように本発明によれば、内視鏡の挿入部の先端に固体撮像素子を 設け、かつ内視鏡内部に前記固体撮像素子を駆動し、該固体撮像素子の出力信号 に対して標準の映像信号を生成する信号処理回路とを設けた内視鏡装置において

前記固体撮像素子を駆動する駆動信号発生機能と、前記固体撮像素子の出力信号に対して信号処理して標準の映像信号を出力する信号処理機能とを有する汎用 映像信号処理回路と、

前記汎用映像信号処理回路と接続され、前記挿入部の先端に設けた固体撮像素子に適合する信号処理を行うために、前記汎用映像信号処理回路における駆動信号処理機能及び信号処理機能との少なくとも一方を変更する機能変更回路を有する内視鏡用機能調整回路と、

により前記信号処理回路を形成しているので、挿入部長等が異なる多品種の内 視鏡の場合に対しても共通の汎用映像信号処理回路に内視鏡特有の内視鏡用機能 調整回路を付加することで対処できるようにして、低コストで実現できる。

【図面の簡単な説明】

【図1】

本発明の第1の実施の形態を備えた内視鏡システムの全体構成図。

【図2】

内視鏡装置の構成図。

【図3】

DSPの内部構成を示すブロック図。

【図4】

DL遅延回路の構成を示す回路図。

【図5】

図4の作用説明図。

【図6】

HIC回路の構成を示す回路図。

【図7】

図6の作用説明図。

【図8】

本発明の第2の実施の形態を備えた内視鏡システムの全体構成図。

【図9】

内視鏡装置の構成図。

【図10】

本発明の第3の実施の形態の内視鏡装置の構成図。

【図11】

内視鏡装置の電気系の構成図。

【図12】

本発明の第4の実施の形態を備えた内視鏡システムの全体構成図。

【図13】

内視鏡装置の電気系の構成図。

【図14】

本発明の第5の実施の形態の内視鏡装置の電気系の構成図。

【符号の説明】

- 1…内視鏡システム
- 2A, 2B, 2C…内視鏡
- 3 …光源装置
- 4…液晶モニタ
- 5…操作リモコン
- 6…パソコン
- 11A, 11B, 11C…挿入部
- 12…操作部
- 13…ユニバーサルケーブル
- 14…コネクタ
- 15…ライトガイド
- 21…ランプ
- 2 4 … 先端部
- 25…対物レンズ
- 26 ··· CCD
- 27 ··· H I C

- 28A, 28B, 28C…信号線
- 29 ··· CCU部
- 30…DSP基板
- 3 1 …機能調整/拡張回路基板
- 3 2 ··· D S P
- 34 ··· CCD駆動&TG回路
- 35…DL遅延回路
- 36…DSP制御マイコン
- 37…ディップスイッチ
- 38…駆動アンプ
- 39…プリアンプ
- 40…CDS回路
- 41…A/D変換回路
- 44…色分離&カラー信号処理回路
- 46…ホワイトバランス用可変アンプ
- 47…デジタル制御&処理部
- 50…デジタルエンコーダ
- 61…ディレイライン
- 6 2 …遅延部
- 63…マルチプレクサ

代理人 弁理士 伊藤 進

【書類名】 図面

【図1】

【図3】

【図4】

【図5】

【図6】

【図7】

【図10】

【図11】

【図13】

【図14】

【書類名】

要約書

【要約】

【課題】 多品種の内視鏡に対しても低コストで対応できる信号処理回路を備 えた内視鏡装置を提供する。

【解決手段】 内視鏡2A等はそれぞれ長さが異なる挿入部11Aを有し、その先端部24にはCCD26が配置され、操作部12内には映像信号を生成するCCU部29を通常の映像信号を生成する機能を備えた汎用のDSP基板30と、CCD26に接続された信号線28Ab等の長さによる信号遅延を補正する機能調整/拡張回路基板31とで構成することにより、挿入部長が異なる内視鏡の場合にも共通のDSP基板30と、共通の回路構成の機能調整/拡張回路基板31とで対応できるようにして、低コスト化する。

【選択図】 図2

出願人履歴情報

識別番号

[000000376]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都渋谷区幡ヶ谷2丁目43番2号

氏 名

オリンパス光学工業株式会社