Analysis of Time Series, L7

Rolf Larsson

Uppsala University

7 april 2025

Today

3.6: Estimation

- Method of moments
- Maximum likelihood

AR(p):

- We observe $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + ... + \phi_p x_{t-p} + w_t$ for t = 1, 2, ..., n.
- Estimate $\phi_1, \phi_2, ..., \phi_p$ and $\sigma_w^2 = \text{var}(w_t)$.

Definition (3.10)

The Yule-Walker equations are given by

$$\gamma(h) = \phi_1 \gamma(h-1) + ... + \phi_p \gamma(h-p), \quad h = 1, 2, ..., p,$$

 $\sigma_w^2 = \gamma(0) - \phi_1 \gamma(1) - ... - \phi_p \gamma(p).$

The system

$$\gamma(h) = \phi_1 \gamma(h-1) + ... + \phi_p \gamma(h-p), \quad h = 1, 2, ..., p$$

is equivalent to

$$\begin{pmatrix} \gamma(0) & \gamma(1) & \dots & \gamma(p-1) \\ \gamma(1) & \gamma(0) & \dots & \gamma(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(p-1) & \gamma(p-2) & \dots & \gamma(0) \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{pmatrix} = \begin{pmatrix} \gamma(1) \\ \gamma(2) \\ \vdots \\ \gamma(p) \end{pmatrix}$$

i.e. $\Gamma_p \phi = \gamma_p$.

ullet Method of moments estimators $\hat{oldsymbol{\phi}}=\hat{\Gamma}_{p}^{-1}\hat{oldsymbol{\gamma}}_{p}.$

Calculate the moment estimators of the AR/MA parameters for

- The AR(1) process $x_t = \phi x_{t-1} + w_t$.
- ② The AR(2) process $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$.
- **3** The MA(1) process $x_t = w_t + \theta w_{t-1}$. (Two solutions!)

Theorem (Property 3.8)

Let $\hat{\phi}$ be the vector of moment estimators for a causal AR process. Then, as $n \to \infty$,

$$\sqrt{n}(\hat{\phi}-\phi) \stackrel{d}{\to} N(\mathbf{0},\sigma_w^2\Gamma_p^{-1}).$$

Hence, $\hat{\phi} \approx N(\phi, n^{-1}\sigma_w^2\Gamma_p^{-1})$ for large n. (Proof in Appendix B.)

For causal AR processes, the moment estimators are asymptotically efficient in the sense that they attain the minimal asymptotic variance.

Theorem (Property 3.9)

For a causal AR(p) process, the PACF fulfills, as $n \to \infty$,

$$\sqrt{n}\hat{\phi}_{hh} \stackrel{d}{\to} N(0,1), \text{ for } h > p.$$

Calculate the asymptotic variances (and covariances) of the AR parameter moment estimators for

- The AR(1) process $x_t = \phi x_{t-1} + w_t$.
- ② The AR(2) process $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t$.

Causal AR(1) without constant: $x_t = \phi x_{t-1} + w_t$, t = 1, 2, ..., n, $w_t \sim N(0, \sigma_w^2)$, independent.

Log likelihood (why?)

$$I(\phi, \sigma_w^2) = -\frac{n}{2}\log(2\pi\sigma_w^2) + \frac{1}{2}\log(1-\phi^2) - \frac{S(\phi)}{2\sigma_w^2},$$

where

$$S(\phi) = (1 - \phi^2)x_1^2 + \sum_{t=2}^n (x_t - \phi x_{t-1})^2.$$

• No "simple" explicit expression for the MLE of ϕ .

Causal AR(1) without constant: $x_t = \phi x_{t-1} + w_t$, t = 1, 2, ..., n, $w_t \sim N(0, \sigma_w^2)$, independent.

Conditional log likelihood (the x₁ density 'disappears')

$$I(\phi, \sigma_w^2 | x_1) = -\frac{n-1}{2} \log(2\pi\sigma_w^2) - \frac{S_c(\phi)}{2\sigma_w^2},$$

where

$$S_c(\phi) = \sum_{t=2}^n (x_t - \phi x_{t-1})^2.$$

Conditional MLEs (give zero partial derivatives, cf linear regression)

$$\hat{\sigma}_w^2 = \frac{S_c(\hat{\phi})}{n-1}, \quad \hat{\phi} = \frac{\sum_{t=2}^n x_t x_{t-1}}{\sum_{t=2}^n x_{t-1}^2}.$$

Causal AR(p) without constant:

$$x_t = \phi_1 x_{t-1} + ... + \phi_p x_{t-p} + w_t, \quad t = 1, 2, ..., n,$$

 $w_t \sim N(0, \sigma_w^2)$, independent.

Conditional log likelihood

$$I(\phi_1, ..., \phi_p, \sigma_w^2 | x_1, ..., x_p) = -\frac{n-p}{2} \log(2\pi\sigma_w^2) - \frac{S_c}{2\sigma_w^2},$$

where

$$S_c = \sum_{t=p+1}^n (x_t - \phi_1 x_{t-1} - \dots - \phi_p x_{t-p})^2.$$

• Find the conditional MLEs!

Causal and invertible ARMA(p, q) without constant:

$$x_{t} = \phi_{1}x_{t-1} + \dots + \phi_{p}x_{t-p} + w_{t} + \theta_{1}w_{t-1} + \dots + \theta_{q}w_{t-q}, \quad t = 1, 2, \dots, n,$$

- $w_t \sim N(0, \sigma_w^2)$, independent.
 - Not possible to find explicit conditional (or unconditional) MLEs (see p.118-119).
 - Use numerical methods! (p.119-122).

Causal and invertible ARMA(p, q) with constant, t = 1, 2, ..., n:

$$\begin{aligned} x_t - \mu &= \phi_1(x_{t-1} - \mu) + \dots + \phi_p(x_{t-p} - \mu) + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}, \\ \text{i.e. } \phi(B)(x_t - \mu) &= \theta(B) w_t. \end{aligned}$$

Let $\beta = (\phi_1, ..., \phi_p, \theta_1, ..., \theta_q)'$. Let $\hat{\beta}$ be the vector of MLEs.

Theorem (Property 3.10)

1 Under appropriate conditions, as $n \to \infty$,

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{d}{\to} N(\mathbf{0}, \sigma_w^2 \Gamma_{p,q}^{-1}),$$

where

$$\Gamma_{p,q} = \left(egin{array}{cc} \Gamma_{\phi\phi} & \Gamma_{\phi\theta} \ \Gamma_{\theta\phi} & \Gamma_{\theta\theta} \end{array}
ight).$$

 $\hat{\beta}$ is asymptotically efficient.

$$\Gamma_{p,q} = \left(\begin{array}{cc} \Gamma_{\phi\phi} & \Gamma_{\phi\theta} \\ \Gamma_{\theta\phi} & \Gamma_{\theta\theta} \end{array} \right),$$

where

$$\Gamma_{\phi\phi} = \left(egin{array}{cccc} \gamma(0) & \gamma(1) & \ldots & \gamma(p-1) \ \gamma(1) & \gamma(0) & \ldots & \gamma(p-2) \ dots & dots & \ddots & dots \ \gamma(p-1) & \gamma(p-2) & \ldots & \gamma(0) \end{array}
ight),$$

where $\gamma(h)$ is the autocovariance function of $\phi(B)x_t = w_t$.

 $\Gamma_{\theta\theta}$ is similarly constructed from $\theta(B)y_t = w_t$.

 $\Gamma_{\phi\theta}$ is similarly constructed from the cross covariance function between $\phi(B)x_t=w_t$ and $\theta(B)y_t=w_t$, and $\Gamma_{\theta\phi}$ is analogous.

Calculate the asymptotic variances (and covariances) of the ML parameter estimators for

- **1** The MA(1) process $x_t = w_t + \theta w_{t-1}$.
- **2** The ARMA(1,1) process $x_t = \phi x_{t-1} + w_t + \theta w_{t-1}$.

	AR(<i>p</i>)	MA(q)	ARMA(p,q)
ACF	Tails off	Cuts off after lag q	Tails off
PACF	Cuts off after lag p	Tails off	Tails off

Daily temperature, Uppsala, summer 1984.

Daily temperature, Uppsala, summer 1984, ACF (tails off) and PACF (cuts off after lag 1). Try AR(1)!


```
In R: (note: \hat{\phi} \approx 0.69 is outside the \pm 2 \cdot \text{s.e.} bound.)
> x=read.table("tempUasom84.txt")$V1
> plot(x,type='l',xlab='days',ylab='max temp')
> par(mfrow=c(2,1))
> acf(x,main=',')
> pacf(x,main=',')
> arima(x,order=c(1,0,0))
Call:
arima(x = x, order = c(1, 0, 0))
Coefficients:
               intercept
          ar1
      0.6946
                 19.7769
s.e. 0.0745
                  0.8053
sigma^2 estimated as 5.839: log likelihood = -212.04,
aic = 430.08
```


Global mean temperature, ACF and PACF. (Typical signs of a trend.)

Series temp

Difference of global mean temperature, ACF (cuts off after lag 2?) and PACF (tails off?). Try MA(2)!


```
Estimation in R with ML:
```

```
> arima(temp,order=c(0,1,2))
Call:
arima(x = temp, order = c(0, 1, 2))
Coefficients:
          ma2
     ma1
     -0.3010 -0.2118
s.e. 0.0783 0.0702
sigma^2 estimated as 0.01106: log likelihood = 119.84,
```

aic = -233.68

```
Estimation in R with CSS (similar results):
> arima(temp,order=c(0,1,2),method = "CSS")
Call:
arima(x = temp, order = c(0, 1, 2), method = "CSS")
Coefficients:
          ma1
                   ma2
      -0.3034 -0.2139
s.e. 0.0782 0.0703
sigma^2 estimated as 0.01106: part log likelihood = 119.96
```

News of today

- Method of moments, Yule Walker equations
- Maximum likelihood/Least squares
 - Conditional on initial values
 - Unconditional