實會 習 十一

雙載子接面電體交流小訊號放大電路(三)

--共射極串極放大器

◆ 實習目的

- 1. 學習雙載子接面電晶體所組成之串級放大器的交流小訊號基本特性。
- 藉由實習過程,以瞭解共射極串級放大器之交流小訊號特性。

相關知識

- ◆ 為了提高電晶體小訊號放大器之增益,可將放大器作串級連接,以獨補單級放大器有限增益之缺點。
- ◆ 串級放大器 (Multistage amplifier) 通常以下圖之方式串接起來,前一級放大器之輸出阻抗為下一級放大器之輸入電阻,即在求第一級之增益時,必須考慮第二級所產生之負載效應。

- ◆ 對不同級之放大器而言,並不需要有相同之增益,而串級放大器之總增益值為各級放大器增益之乘 積,也就是說,有 n 級放大器串接起來,則總增益 A_{Total} = A₁·A₂·...·A_n,因此欲得到更大之增益,可 以使用更多級放大器作串接。
- ◆ 本實習將分成 2 個部分,分別討論兩種常用之共射極串級電路,分別為 RC 耦合串級放大器與直接耦合串級放大器。

RC 耦合共射極串級放大器

- ◆ 若將兩個電阻分壓器之共射極放大器作串級連接,交流輸入訊號 ν_s 經過 C_{B1} 加入第 1 級放大器之輸入端(基極),接著將第 1 級 (Q₁) 放大器之輸出端(集極),經過電容 C_{B2} 耦合至第 2 級 (Q₂) 放大器之輸入(基極),最後經過電容 C_C,將訊號由第 2 級放大器之輸出端(集極)取出,即可得到 2 級 RC 耦合之共射極串級放大器,如下圖所示。
- ◆ 使用耦合電容 C_{B2},以串接 2 個 共射極放大器之輸入與輸出,因 電容會阻隔直流訊號之流通,使 兩個共射極放大器之直流偏壓 不會相互影響,但因加上耦合電 容 C_{B2} 之原因,導致低頻響應較 差之缺點。

- ◆ 欲對右上圖之串級放大器作小訊號分析 時,將所有耦合電容與旁路電容短路,並 移掉所有之直流電源 (即將直流電源接 地)後,並以共射極組態之簡化混合 h 參 數小訊號模型來取代電晶體後,即可得此 串級放大器之小訊號等效電路,如右下圖 y,(()~ 所示。
- ◆ 利用右下圖之簡化混合 h 參數小訊
 號等效電路,便可求出串級放大器之
 A_i 、 A_s 、 Z_i 與 Z_o 如下:

(a) 電流増益 A_i:

第一級與第二級放大器之電流增益 A_{i1} 與 A_{i2} 分別為

因串級放大器之總電流增益,等於兩級放大器電流增益之乘積,即 $A_i = \frac{i_L}{i_c} = A_{i1} \times A_{i2}$ 。

(b) 電壓增益 A_v:

第一級電配體之電壓增益為
$$A'_{v1} = \frac{v_{o1}}{v_{i1}} = \frac{-h_{fe1} \cdot R_{o1}}{h_{ie1} + (1 + h_{fe1}) \cdot R_{E1}} \rightarrow A_{v1} = \frac{v_{o1}}{v_s} = \frac{v_{o1}}{v_{i1}} \cdot \frac{v_{i1}}{v_s} = A'_{v1} \cdot \frac{R_{i1}}{R_s + R_{i1}} \circ R_{e1}$$

第二級放大器之電壓增益
$$A_{v2} = \frac{v_L}{v_{o1}} = \frac{-h_{fe2} \cdot R_{o2}}{h_{ie2}}$$
。

其中 $R_{o1} = R_{C1} // R_{B2} // h_{ie2}$ 、 $R_{i1} = R_{B1} // [h_{ie1} + (1 + h_{fe1}) \cdot R_{E1}]$ 與 $R_{o2} = R_{C2} // R_L$ 。

因串級放大器之總電壓增益,等於兩級放大器電壓增益之乘積,即 $A_v = \frac{v_L}{v_s} = A_{v1} \times A_{v2}$ 。

(c) 輸入阻抗 Z_i :

第一級放大器之輸入阻抗 Z_i 為

$$Z'_i = h_{ie1} + (1 + h_{fe1}) \cdot R_{E1}$$

由下圖之輸入迴路,可得此串級放大器之輸入阻抗 Z_i 為

$$Z_i = R_{B1} / / Z_i'$$

(d) 輸出阻抗 Z_o:

因下圖之輸出迴路為相依電流源 $h_{fe} \cdot i_b$ 具有極高之阻抗,故串級放大器之輸出阻抗 Z_o 為

$$Z_o = R_{C2}$$

直接耦合共射極串極放大器

- ◆ 將兩個電阻分壓器之共射極放大器作串級連接,交流輸入訊號 v_S,經過電容 C_{B1} 加入第 1 級放大器之輸入端 (基極),接著將第 1 級放大器之輸出端 (集極),直接耦合至第 2 級放大器之輸入 (基極),最後經過電容 C_C,將訊號由第 2 級放大器之輸出端 (集極) 取出,即可得到兩級直接耦合之共射極串級放大器,如下圖所示。
- ◆ 因 Q₁ 之輸出,直接耦合至 Q₂ 之輸入,導致 交、直流訊號,皆可在這兩級間流通,故可得 到較佳之低頻響應之優點。
- ◆ 因沒有使用耦合電容,以阻隔直流訊號的流動,導致 Q₂ 之直流偏壓,會受 Q₁ 之集極電壓與電流的影響,故 R_{C1} 與 R_{E1} 之選擇,必須考慮 Q₂ 之基 射極導通條件,方可使 Q₂ 工作於順向活性區,使 Q₂ 實現小訊號放大之功能。

- ◆ 欲對右上圖之串級放大器作小訊號分析時,首先將所有耦合電容與旁路電容短路,並移掉所有之直流電源(即將直流電源接地)後,並以共射極組態之簡化混合 // 參數小訊號模型取代 BJT 後,即可得此串級放大器之小訊號等效電路,如右下圖所示。
- ◆ 利用右下圖之簡化混合 h 參數小訊號等效電路,便可求出串級放大器之 A_i、A_v、 Z_i 與 Z_o 如下:

(a) 電流増益 A_i:

第一級與第二級放大器之電流增益 A_{i1} 與 A_{i2} 分別為

$$A_{i1} = \frac{i_{b2}}{i_s} = \frac{i_{b2}}{i_{c1}} \cdot \frac{i_{c1}}{i_{b1}} \cdot \frac{i_{b1}}{i_s} = \frac{R_{C1}}{R_{C1} + h_{ie2}} \cdot (-h_{fe1}) \cdot \frac{R_{B1}}{R_{B1} + h_{ie1} + (1 + h_{fe1}) \cdot R_E} \quad (\cancel{\mbox{\mbox{\bf 4P}}} \quad R_{B1} = R_1 \ // \ R_2)$$

$$A_{i2} = \frac{i_L}{i_{b2}} = \frac{i_L}{i_{c2}} \cdot \frac{i_{c2}}{i_{b2}} = \frac{R_{C2}}{R_{C2} + R_L} \cdot (-h_{fe2})$$

因串級放大器之總電流增益,等於兩級放大器電流增益之乘積,即 $A_i = \frac{I_L}{I_c} = A_{i1} \times A_{i2}$ 。

(b) 電壓增益 A_v:

第一級電晶體之電壓增益為
$$A'_{v1} = \frac{v_{o1}}{v_{i1}} = \frac{-h_{fe1} \cdot R_{o1}}{h_{ie1} + (1 + h_{fe1}) \cdot R_{E1}} \rightarrow A_{v1} = \frac{v_{o1}}{v_s} = \frac{v_{o1}}{v_{i1}} \cdot \frac{v_{i1}}{v_s} = A'_{v1} \cdot \frac{R_{i1}}{R_s + R_{i1}} \circ R_{e1}$$

第二級放大器之電壓增益
$$A_{v2} = \frac{v_L}{v_{o1}} = \frac{-h_{fe2} \cdot R_{o2}}{h_{ie2}}$$
 。

其中
$$R_{o1} = R_{C1} // h_{ie2}$$
 、 $R_{i1} = R_{B1} // [h_{ie1} + (1 + h_{fe1}) \cdot R_{E1}]$ 與 $R_{o2} = R_{C2} // R_L$ 。

因串級放大器之總電壓增益,等於兩級放大器電壓增益之乘積,即 $A_v = \frac{v_L}{v_x} = A_{v1} \times A_{v2}$ 。

(c) 輸入阻抗 Z_i :

第一級放大器之輸入阻抗 Z_i 為

$$Z_i' = h_{ie1} + (1 + h_{fe1}) \cdot R_{E1}$$

由下圖之輸入迴路,可得此串級放大器之輸入阻抗 Z_i 為

$$\boldsymbol{Z}_i = \boldsymbol{R}_{B1} \; / \! / \; \boldsymbol{Z}_i'$$

(d) 輸出阻抗 Z_o:

因下圖之輸出迴路為相依電流源 $h_{fe} \cdot i_b$ 具有極高之阻抗,故串級放大器之輸出阻抗 Z_o 為

$$Z_o = R_{C2}$$

實習步驟與結果

(一) RC 耦合共射極串級放大器

表 11-1 RC 耦合共射極串級放大器之直流電壓

 $VR1 = 11.7K \Omega \cdot VR2 = 16K \Omega$

測量項目	理論に値	測量値			
$V_{B1}(V)$	2.27	2.02			
$V_{C1}(V)$	7.4	7.37			
$V_{E1}(V)$	1.389	1.4			
$V_{B2}(V)$	2.9	2.67			
$V_{C2}(V)$	8	8.02			
$V_{E2}(V)$	2	2.04			

表 11-2 RC 耦合共射極串級放大器之交流電壓波形

20m_Volts/DIV

峰値電壓:<u>50m</u>V <u>500μ</u> Time/DIV

週期: <u>1m</u>sec

頻率:___<u>1K__</u>Hz

50m_Volts/DIV

峰値電壓: <u>115m</u> V ____500μ Time/DIV

週期: <u>1m</u>sec

頻率:<u>1K ____</u>Hz

20m Volts/DIV

峰値電壓:<u>45m</u>V

500μ Time/DIV

週期: <u>1m</u>sec

頻率: <u>1K</u>Hz

1___Volts/DIV

峰値電壓: 3.3 V

500μ Time/DIV

週期: <u>1m</u>sec

頻率:<u>1K</u>___Hz

表 11-3 RC 耦合共射極串級放大器的電壓與電流增益

測量項目	理論値	測量値			
$i_s(t) = \frac{v_s(t) - v_{i1}(t)}{R_S}$	6.2 μΑ	5 μΑ			
$i_L(t) = \frac{v_L(t)}{R_L}$	3.85mA	3.3mA			
$A_i = \frac{i_L(t)}{i_s(t)}$	621	660			
$A_{v1} = \frac{v_{o1}(t)}{v_s(t)}$	2.8	2.3			
$A_{v2} = \frac{v_L(t)}{v_{o1}(t)}$	25.8	28.7			
$A_{\nu} = A_{\nu 1} \times A_{\nu 2}$	72.2	66			
$A_P = A_v \times A_i$	44861	43560			

表 11-4 RC 耦合共射極串級放大器的電壓增益對頻率關係

頻率 f (Hz)	100	300	500	1K	5K	20K	50K	100K	500K	1M
$v_{s(p-p)}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$v_{L(p-p)}$	3.0	5.4	6	6.6	6.8	6.8	6.8	6.6	5.4.	2.1
$A_{v} = \frac{v_{L(p-p)}}{v_{s(p-p)}}$	30	54	60	66	68	68	68	66	54	21

(二)直接耦合共射極串級放大器

表 11-5 直接耦合共射極串級放大器之直流電壓

VR1 = 11K $\Omega \cdot VR2 = 80$ Ω

測量項目	理論。値	測量値			
$V_{B1}(V)$	2.16	1.98			
$V_{c1}(V)$	7.67	7.7			
$V_{E1}(V)$	2.17	1.95			
$V_{B2}(V)$	11.52	10.73			
$V_{C2}(V)$	11.7	11.57			
$V_{E2}(V)$	3.75	3.6			

表 11-6 直接耦合共射極串級放大器之交流電壓波形

20m_Volts/DIV

峰値電壓:<u>50m</u>V

500μ Time/DIV

週期:<u>_1m__</u>sec

頻率:<u>1K___Hz</u>

20m Volts/DIV

峰値電壓:__0.12__V

500μ Time/DIV

週期: <u>1m</u> sec

頻率:__ <u>1K ___</u>Hz

20m Volts/DIV

峰値電壓:<u>40m</u>V

500μ Time/DIV

週期: __<u>1m</u>___sec

頻率: __1K Hz

100m_Volts/DIV

峰値電壓:<u>0.37</u> V

500μ Time/DIV

週期:<u>1m</u>sec

頻率:<u>1K</u>___Hz

表 11-7 直接耦合共射極串級放大器的電壓與電流增益

測量項目	理論値	測量値			
$i_s(t) = \frac{v_s(t) - v_{i1}(t)}{R_S}$	6.2 μ4	10 µA			
$i_L(t) = \frac{v_L(t)}{R_L}$	0.85mA	0.37mA			
$A_i = \frac{i_L(t)}{i_s(t)}$	52	37			
$A_{v1} = \frac{v_{i1}(t)}{v_s(t)}$	2.8	2.4			
$A_{v2} = \frac{v_L(t)}{v_{\sigma 1}(t)}$	5.8	3.08			
$A_{\nu} = A_{\nu 1} \times A_{\nu 2}$	16.2	7.4			
$A_P = A_v \times A_l$	845	274			

表 11-8 直接耦合共射極串級放大器的電壓增益對頻率關係

頻率 f (Hz)	100	300	500	1K	5K	20K	50K	100K	500K	1M
$v_{s(p-p)}$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
$v_{L(p-p)}$	0.4	0.5	0.6	0.8	0.8	0.8	0.8	0.8	0.7	0.65
$A_v = \frac{v_{L(p-p)}}{v_{s(p-p)}}$	4	5	6	8	8	8	8	8	7	6.5

