PARTITIONS AND EQUIVALENCE RELATIONS

ROHAN RAMCHAND, MICHAEL MIYAGI

Definition 1. A partition of a set X is a set

$$P = \{C_i \subseteq X \mid i \in I\}$$

such that

$$\bigcup_{i \in I} C_i = X \qquad (covering property)$$

$$\forall i \neq s \ C_i \cap C_s = \varnothing \qquad (mutual \ disjointness)$$

In essence, a set is completely divided into $mutually\ disjoint$ partitions – no two partitions share any elements. Moreover, there is no element of X that is not contained in one of its partitions.

The concept of a partition is illustrated by the following examples.

Example. Let $X = \{1, 2, 3\}$. The set $P_1 = \{\{1\}, \{2, 3\}\}$ is a valid partitioning of X, since $\{1\}$ and $\{2, 3\}$ share no elements; moreover, every element of X is contained in P_1 .

Let $P_2 = \{\{1\}, \{2\}\}$. P_2 is not a valid partitioning of X; even though $\{1\}$ and $\{2\}$ share no elements and P_2 is therefore mutually disjoint, P_2 does not contain the element 3 and is therefore not covering.

Let $P_3 = \{\{1\}, \{2\}, \{3\}, \{1,2,3\}\}\}$. P_3 covers X, unlike P_2 , but is not mutually disjoint; therefore, P_3 is not a valid partitioning of X.

There are two special partitions of any set X. The first is the minimal partition:

$$P_{\min} = \{X\}.$$

The second is the **maximal partition**:

$$P_{\text{max}} = \{ \{x\} \mid x \in X \}.$$

These are valid partitions for any set.

Example. Let $X = \{1, 2, 3\}$. Then

$$P_{min} = \{\{1, 2, 3\}\}$$

and

$$P_{max} = \{\{1\}, \{2\}, \{3\}\}.$$

Partitions of \mathbb{Z}

Let $n \in \mathbb{N}$ for some $n \geq 2$. Let $P_n = \{C_0, C_1, ..., C_{n-1}\}$, where

$$C_r = \{ a \in \mathbb{Z} \mid \underbrace{n | (a - r)}_{n \text{ divides } a - r} \}.$$

Example. Let n = 3. Then

$$C_0 = \{3k \mid k \in \mathbb{Z}\} = \{0, 3, 6, \dots\}$$

$$C_1 = \{3k + 1 \mid k \in \mathbb{Z}\} = \{1, 4, 7, \dots\}$$

$$C_2 = \{3k + 2 \mid k \in \mathbb{Z}\} = \{2, 5, 8, \dots\}$$

Note that $C_0 \cup C_1 \cup C_2 = \mathbb{Z}$ and $C_0 \cap C_1 = C_1 \cap C_2 = C_0 \cap C_2 = \emptyset$.

We now state the following theorems of P_n .

Theorem 1. Let C_r be defined as above. Then

$$\bigcup_{r=0}^{n-1} C_r = \mathbb{Z}$$

$$\forall r_1 \neq r_2 \ C_{r_1} \cap C_{r_2} = \emptyset$$

Then P_n is a valid partitioning of \mathbb{Z} .

The proof of this theorem is left as an exercise to the reader.

Equivalence Relations

Definition 2. Let X be a set. Then a relation on X is a subset

$$R \subseteq X \times X$$
.

Let $a, b \in X$ and let $(a, b) \in R$. Then a is related to b via R; this is denoted

aRb.

Relations are somewhat general, and don't say very much about sets; therefore, we introduce the concept of the equivalence relation, which is a slightly more specifically-defined relation.

Definition 3. Let X be a set and let $R \subseteq X \times X$. Then R is an equivalence relation on X if it satisfies the following properties.

Reflexivity: For every $x \in X$,

$$(x,x) \in R$$
.

Symmetry: Let $a, b \in X$. Then

$$(a,b) \in R \Leftrightarrow (b,a) \in R.$$

Transitivity: Let $a, b, c \in X$. Then

$$(a,b) \in R \land (b,c) \in R \Leftrightarrow (a,c) \in R.$$

If R is an equivalence class, $a \sim b$ is a more common way of denoting $(a,b) \in R$ and will be used from here on.

The most famous example of an equivalence relation on practically any set is equality; the proof is trivial and relies more on definition than any actual algebra. (We will revisit equality later.)

Equivalence relations are demonstrated in the following example.

Example. Let $X = \{1, 2, 3\}$.

Consider the set $R_1 = \emptyset$. Since there are no elements in R_1 , reflexivity fails and therefore R_1 is not an equivalence relation.

Consider the set $R_2 = \{(1,1), (1,2)\}$. Although $1 \sim 1$, $2 \neg \sim 2$ and theref;F5; ore reflexivity fails. (Symmetry and transitivity also fail, but it is not necessary to show this.) Then R_2 is not an equivalence relation.

Consider the set $R_3 = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$. Every element is related to itself, and therefore R_3 satisfies reflexivity. Since both $1 \sim 2$ and $2 \sim 1$, R_3 satisfies symmetry. (Note that it is not a requirement that 3 be related to anything other than itself; however, if it is, it must be symmetrically related.) There are no transitive relations in R_3 , but again, this is not necessary; however, if for example, $(1,3) \in R_3$, then (2,3) (and (3,1)) should also be in R_3 . Therefore, all three conditions are satisfied and R_3 is an equivalence relation.

As with most other structures previously explored, there are two canonical equivalence relations for any set X.

Definition 4. Let X be a set. Then the maximal equivalence relation is the set

$$R = X \times X$$
.

Definition 5. Let X be a set. Then the minimal equivalence relation is the set

$$R = \{(x, x) \mid x \in X\}.$$

This relation is also referred to as equality and is denoted in set form by Δ .

We now return to the divisibility partition above. Recall that n|k is shortform for "n divides k". Then consider the equivalence relation

$$\sim_N = \mathbb{Z} \times \mathbb{Z}$$

for some $N \in \mathbb{N}^{\geq 2}$. Let $a, b \in \mathbb{Z}$; then

$$a \sim_N b \Leftrightarrow n|(b-a).$$

We will now prove that \sim_N is an equivalence relation.

Proof. Reflexivity: Let $a \in \mathbb{Z}$:

$$a \sim_N a \Leftrightarrow n|0$$

Since n always divides 0, \sim_N satisfies reflexivity.

Symmetry: Let $a, b \in \mathbb{Z}$:

$$a \sim_N b \Leftrightarrow n|(b-a)$$

 $\Leftrightarrow n|(a-b)$
 $\Leftrightarrow b \sim_N a$

Then \sim_N satisfies symmetry.

Transitivity: Let $a,b,c\in\mathbb{Z}$ and let $a\sim_N b$ and $b\sim_N c$:

$$a \sim_N b \Leftrightarrow n | (b-a)$$
 $\rightarrow b-a = k_1 n$
 $b \sim_N c \Leftrightarrow n | (c-b)$ $\rightarrow c-b = k_2 n$
 $c-a = (k_1 + k_2)n$
 $\rightarrow a \sim_N c$

Then \sim_N satisfies transivity.

Therefore, \sim_N is an equivalence relation.