Dijkstra's K state Distributed Self-Stabilizing Algorithm

- Uni-directional ring network
- n = number of processes(nodes)
- Each process states(Si) for given process Pi holds an integer value which can be from 0 to k where k=n
- Every process knows the state of its left neighbor
- Two types of process
 - Bottom
 - Other

•

Notion of privilege

- When a process has the privilege, it is authorized to make a move
 - Change its local state, and enter the critical section
- The system satisfies following properties
 - There must be at least one privilege in the system
 - During an infinite time, every process should be able to receive a privilege infinitely many times.

Bottom Process(P_0)

- Send value to right neighbor (S₀)
- Receive left neighbor value(S_{n-1})
- If($S_0 = = S_{n-1}$){
 - //Critical section
 - $S_0 = (S_0 + 1) \mod k$
 - }
- Else
 - Do nothing

Other Processes (P_i)

- Send value to the right neighbor(S_i)
- Receive left neighbor value(S_{i-1})
- $If(S_i != S_{i-1})$ {
 - //In critical section
 - $S_i = S_{i-1}$
 - }
- Else
 - Do nothing

Round 1

Round 2

Round 3

Round 4

And so on