$$\frac{1}{2} \cdot \frac{3}{4} (x \cdot \ln x - x) = \frac{1}{4} + \ln x - 1$$

$$= \ln x$$

$$\frac{1}{3} \cdot \frac{1}{6} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

$$\frac{1}{4}$$

Is.
$$\ln (\ln(s)) > \frac{1}{\ln s} \cdot \frac{1}{s}$$

to so,

 $(x^2+2)^2 C_x^4 + \psi)^4 = y$
 $\ln(y) = \ln (\sqrt{2}+2) \cdot (x^4 + 4)^4$
 $\ln(y) = 2 \cdot \ln (x^2+2) + 4 \cdot \ln (x^4 + \psi)$
 $\frac{1}{x^2} = 2 \cdot \sqrt{x^2} \cdot 2 + 4 \cdot \sqrt{x^4} + 4 \cdot 4 \cdot \frac{1}{x^4}$
 $= (\frac{1}{x^4} + \frac{16x^3}{x^4}) \cdot y$

He is $1 \cdot \ln y = \ln((x+1)) \cdot (x+1)$
 $\frac{1}{x^4} = \frac{1}{x^4} \cdot (\frac{1}{x^4} - \frac{1}{x^4}) \cdot (\frac{1}{x^4})$
 $\frac{1}{x^4} = \frac{1}{x^4} \cdot (\frac{1}{x^4} - \frac{1}{x^4}) \cdot (\frac{1}{x^4})$
 $\frac{1}{x^4} = \frac{1}{x^4} \cdot (\frac{1}{x^4} - \frac{1}{x^4}) \cdot (\frac{1}{x^4})$
 $\frac{1}{x^4} = \frac{1}{x^4} \cdot (\frac{1}{x^4} - \frac{1}{x^4})$
 $\frac{1}{x^4} = \frac{1}{x^4} \cdot (\frac{1}{x^4} + \frac{1}{x^4})$
 $\frac{1}{x^4} = \frac{1}{x^4} \cdot (\frac{1}{$

= (sinx + cosx Inx) /