Basics of Coding Theory and Introduction to Codes with Locality

Lalitha Vadlamani IIIT Hyderabad

Trivandrum School of Communications, Coding and Networking

January 27-30, 2017

How Coding Theory Started?

Channel Models

p: cross-over probability, say 0.1

(a) Binary Symmetric Channel

(b) Binary Erasure Channel

Pre-Shannon Reliable Communication

- ▶ If you send the bits as it is, the probability of error is 0.1. How to reduce it to 0.03?
 - Repeat every bit thrice, rate = 1/3

$$0 \rightarrow 000$$

$$1 \rightarrow 111$$

- Decoding Scheme Use majority rule
- o Probability of error say 0 is transmitted
- 000,001,010,100 √
- 011,101,110,111 X Prob. = 0.028

Rate of the code goes to zero if we require vanishingly small probability of error.

Shannon's 1948 Paper

Theorem

Any rate $R < C = 1 - H_2(p)$ is achievable for the binary symmetric channel with probability of error asymptotically going to zero. Conversely, if probability of error asymptotically goes to zero, then R <= C.

- Shannon showed achievability of the capacity of BSC using random codes
- ► These codes require long block length
- Not practical because of above two reasons

History of Hamming Code

- ▶ Richard Hamming worked at Bell Telephone Laboratories
- Goal was to correct errors in a error-prone punched card reader
- ▶ Hamming code can correct a single bit error
- It can detect all single bit and two bit errors

Binary Block Codes

Binary Field

• $\mathbb{F}_2 = \{0, 1\}$, addition +, multiplication .

+	0	1
0	0	1
1	1	0

	0	1
0	0	0
1	0	1

- Closed and commutative w.r.t addition, multiplication
- Associative
- Additive identity exists, additive inverse exists for all elements
- Multiplicative identity exists, multiplicative inverse exists for all non-zero elements

Binary Field

• $\mathbb{F}_2 = \{0, 1\}$, addition +, multiplication .

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

- Closed and commutative w.r.t addition, multiplication
- Associative
- Additive identity exists, additive inverse exists for all elements
- Multiplicative identity exists, multiplicative inverse exists for all non-zero elements

Any property missing?

Binary Block Codes

Definition

A binary block code of length n is any subset of \mathbb{F}_2^n

- ▶ The elements of the code are called codewords
- Binary block code since the channels have binary input and binary output

Hamming Weight, Hamming Distance

Hamming Weight

The Hamming weight $w_H(\underline{x})$ of a vector $\underline{x} \in \mathbb{F}_2^n$ is the number of nonzero components in \underline{x} .

Hamming Distance

The Hamming distance $d_H(\underline{x},\underline{y})$ between two vectors $\underline{x},\underline{y}\in\mathbb{F}_2^n$ is defined as

$$d_H(\underline{x},\underline{y}) = w_H(\underline{x} + \underline{y})$$

Properties of Hamming Distance

- ▶ (Positivity) $d_H(\underline{x}, y) \ge 0$ with equality if $\underline{x} = y$.
- (Symmetry) $d_H(\underline{x},\underline{y}) = d_H(\underline{y},\underline{x})$.
- ► (Triangle Inequality) $d_H(\underline{x},\underline{z}) \le d_H(\underline{x},\underline{y}) + d_H(\underline{y},\underline{z})$.

Parameters of a Code

- ▶ Block length of the code *n*
- ▶ Size of a code C, which is the number of codewords in the code |C|.
- ▶ Rate R of C, $R = \frac{\log_2 |C|}{n}$.
- ► Minimum distance

$$d_{\min}(\mathcal{C}) = \min\{d_H(\underline{x},\underline{y})|\underline{x},\underline{y} \in \mathcal{C},\underline{x} \neq \underline{y}\}$$

Repetition Code

$$\mathcal{C} = \left\{ \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}
ight], \left[egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}
ight]
ight\}$$

- ▶ Block length n = 7
- ▶ Size of the code |C| = 2
- ▶ Rate $R = \frac{1}{7}$
- $ightharpoonup d_{\min} = 7$

Single Parity Check Code

$$C = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_7 \end{bmatrix} \text{ such that } \sum_{i=1}^7 x_i = 0 \right\}$$

- ▶ Block length n = 7
- ▶ Size of the code $|C| = 2^6$
- Rate $R = \frac{6}{7}$
- $\rightarrow d_{\min} = 2$

$$d_H([0\ 0\ 0\ 0\ 0\ 0\ 0]^t,[1\ 1\ 0\ 0\ 0\ 0\ 0]^t)$$

Hamming Code

$$p_4 = m_0 + m_1 + m_2$$

$$p_5 = m_0 + m_1 + m_3$$

$$p_6 = m_0 + m_2 + m_3$$

- ▶ Block length n = 7
- ▶ Size of the code $|C| = 2^4 = 16$
- ▶ Rate $R = \frac{4}{7}$
- $ightharpoonup d_{\min} = 3$ (Will be calculated later)

Question

- ► Consider Hamming code. To each codeword of the Hamming code, we add a bit which is the sum of all the bits in the codeword.
- ▶ What is the block length, size and rate of the new code?
- Make an observation about Hamming weights of the codewords in the new code.

Error Detection and Error Correction

- ▶ Any combination of $d_{min} 1$ errors can be detected.
- ▶ Any combination of $\lfloor \frac{d_{\min}-1}{2} \rfloor$ errors can be corrected.

(t_c, t_d) Code

Definition

- A (t_c, t_d) code, $t_c \leq t_d$ is a code in which
- (a) any combination of $\leq t_c$ errors can be detected and corrected and
- (b) any combination of t errors, $t_c < t \le t_d$ can be detected as an uncorrectable error
 - Error detection corresponds to the case $t_c = 0$.
 - Error correction corresponds to the case $t_c = t_d$

Minimum Distance Bound of (t_c, t_d) Code

Theorem

A binary block code C is a (t_c, t_d) code iff

$$d_{\min}(\mathcal{C}) \geq t_c + t_d + 1$$

Example

Repetition Code:
$$d_{min} = 7$$

 $(t_c = 0, t_d = 6), (t_c = 1, t_d = 5), (t_c = 2, t_d = 4), (t_c = 3, t_d = 3)$

Simple Parity Code:
$$d_{min} = 2$$

$$(t_c=0,t_d=1)$$

Hamming Code:
$$d_{min} = 3$$

$$(t_c = 0, t_d = 2), (t_c = 1, t_d = 1)$$

Proof of 'If' Part

- Assume that $d_{\min} \geq t_c + t_d + 1$.
- ▶ Define for any vector $\underline{a} \in \mathbb{F}_2^n$

$$B(\underline{a},r) = \{\underline{z} \in \mathbb{F}_2^n \mid d_H(\underline{a},\underline{z}) \le r\}$$

▶ Decoding algorithm: If $B(\underline{y}, t_c)$ contains a codeword \underline{x} , then declare \underline{x} to be transmitted codeword. If not, declare that uncorrectable number of errors have occurred.

Proof of 'If' Part

▶ If one codeword lies in $B(y, t_c)$ and another lies in $B(y, t_d)$

$$\begin{aligned} d_H(\underline{y},\underline{x}_1) &\leq t_c, d_H(\underline{y},\underline{x}_2) \leq t_d \\ \Rightarrow d_H(\underline{x}_1,\underline{x}_2) &\leq d_H(\underline{y},\underline{x}_1) + d_H(\underline{y},\underline{x}_2) \text{(Triangle Inequality)} \\ &\leq t_c + t_d < t_c + t_d + 1 \end{aligned}$$

- ▶ Two codewords cannot lie in $B(y, t_c)$
- ▶ If no codeword lies in $B(\underline{y}, t_c)$, then its not a correctable error and hence declared uncorrectable

Proof of 'Only If' Part

- Suppose $d_{\min} = t_c + t_d \ell$, $\ell \ge 0$
- ▶ There exists a pair $(\underline{x}_1, \underline{x}_2)$ in C such that

$$d_H(\underline{x}_1,\underline{x}_2) = t_c + t_d - \ell$$

- ▶ Pick a vector \underline{y} such that $d_H(\underline{y},\underline{x}_1)=t_d$ and $d_H(\underline{y},\underline{x}_2)=t_c-\ell$,
- \underline{y} can be a uncorrectable error if \underline{x}_1 was transmitted and can be a correctable error if \underline{x}_2 was transmitted. This can't be resolved.

Question

- ▶ Decoding algorithm presented above: If $B(\underline{y}, t_c)$ contains a codeword \underline{x} , then declare \underline{x} to be transmitted codeword. If not, declare that uncorrectable number of errors have occurred. is termed as "bounded distance decoding"
- ► If bounded distance decoding is used, then we cannot achieve capacity. Make an intuitive guess why?

Linear Block Codes

Why Linear Codes?

- ► Complexity of encoding of an arbitrary block code A lookup table of the size of the code
- Complexity of encoding of a linear code Matrix multiplication of the message vector with a matrix of the order of logarithm of the size of the code
- Construction of codes becomes simpler since there is rich structure in the code

Vector Space, Subspace of a Vector Space

Vector Space

A vector space $(V,+,\mathbb{F},.)$ is a set of a vectors, a field \mathbb{F} of scalars and two operations: vector addition denoted by + and scalar multiplication denoted by . which satisfy the following properties:

- (i) Closure, commutativity, associative, additive identity and additive inverse for (V, +)
- (ii) Closed under scalar multiplication
- (iii) Multiplication with identity is the vector itself
- (iv) Associativity under scalar multiplication
- (v) Distributive under scalar multiplication

Subspace

A subspace of a vector space $(V, +, \mathbb{F}, .)$ is a subset W of V such that $(W, +, \mathbb{F}, .)$ is also a vector space.

Basis, Dimension of a Vector Space

Basis

A basis of a vector space $(V,+,\mathbb{F},.)$ is a collection $\{\underline{\alpha}_1,\underline{\alpha}_2,\ldots\}$ such that

- (a) the set is linearly independent.
- (b) the set spans the vector space V.

Dimension

The dimension k of a finite dimensional vector space $(V, +, \mathbb{F}, .)$ is the number of elements in any basis for V.

Examples of Vector Spaces

For each vector space below, write a basis, dimension and identify one subspace

- $ightharpoonup (\mathbb{R}^n, +, \mathbb{R}, .)$
- $ightharpoonup (\mathbb{F}_2^n, +, \mathbb{F}_2, .)$
- $ightharpoonup (\mathbb{F}[x], +, \mathbb{F}, .)$
- $ightharpoonup (\mathbb{R}^{m\times n},+,\mathbb{R},.)$

Linear Block Codes

Definition

A linear code of block length n is any subspace of \mathbb{F}_2^n (of the vector space $(\mathbb{F}_2^n,+,\mathbb{F}_2,.)$

Example

Hamming code is the set of all codewords such that

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ m_2 \\ m_3 \\ p_4 \\ p_5 \\ p_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

If
$$\underline{x}, y \in \mathcal{C}$$
, then $H\underline{x} = 0, Hy = 0 \Rightarrow H(\underline{x} + y) = 0 \Rightarrow \underline{x} + y \in \mathcal{C}$.

Minimum Distance of a Linear Block Code

Theorem

The minimum distance d_{min} of a linear block code $\mathcal C$ is equal to the minimum Hamming weight w_{min} of a nonzero codeword.

Proof.

Let \underline{c} have $w_H(\underline{c}) = w_{\min}$. Then,

$$d_H(\underline{c},\underline{0}) = w_{\min} \implies d_{\min} \le w_{\min}$$

Let $\underline{c}_1,\underline{c}_2\in\mathcal{C}$ such that $d_H(\underline{c}_1,\underline{c}_2)=d_{\min}.$ Then,

$$w_H(\underline{c}_1 + \underline{c}_2) = d_{\min} \implies w_{\min} \leq d_{\min}$$

The second step follows because $\underline{c}_1 + \underline{c}_2 \in \mathcal{C}$.

Dimension of a Linear Code

Dimension

The dimension of a linear code C of block length n is its dimension as a subspace of the vector space $(\mathbb{F}_2^n, +, \mathbb{F}_2, .)$.

- An [n, k, d] code denotes a block code of length n, dimension k and minimum distance d.
- ▶ An [n, k] code denotes a code of block length n and dimension k

Generator Matrix of a Linear Block Code

Generator Matrix

Let \mathcal{C} be an (n, k) code. Then any $k \times n$ matrix G whose rows form a basis for \mathcal{C} is called a generator matrix of \mathcal{C} .

▶ Map from message vectors to codewords in terms of G

$$\underline{c}^t = \underline{m}^t G_{k \times n}$$

A code can in general have more than one generator matrix.

Examples of Generator Matrices

► Single Parity Check Code:

► Hamming Code:

Systematic Generator Matrix

Definition

A generator matrix G is said to be a systematic generator matrix for an (n, k) code if it can be expressed in the form

$$G = [I_k \mid P]$$

▶ A code has systematic generator matrix iff first k columns of G are full rank

Why Systematic Generator Matrix?

Map between message vector and codeword

$$\underline{c}^{t} = \underline{m}^{t} G_{k \times n}$$

$$= \underline{m}^{t} [I_{k} \mid P]$$

$$= [\underline{m}^{t} \mid \underline{m}^{t} P]$$

Message symbols are explicitly present in the codewords

ightharpoonup Every linear code $\mathcal C$ is equivalent (upto permutation of coordinates) to a second linear code $\mathcal C'$ which has a systematic generator matrix

Question

An (n, k) binary linear code has been given. Are there ways to construct new codes from this code?

Recall that we constructed a new code from Hamming code in an earlier example.

Recap

- ▶ Binary block codes block length, size of a code, rate of a code, minimum distance of a code
- Error Detection and error correction capability of a code
- Linear block codes dimension of a code, minimum distance, generator matrix, systematic generator matrix

Dual Code, Parity Check Matrix

Definition

Let $\mathcal C$ be an (n,k) code. The dual $\mathcal C^\perp$ of $\mathcal C$ is defined by

$$\mathcal{C}^{\perp} = \{ y \in \mathbb{F}_2^n \mid \underline{x}^t y = 0 \text{ for all } \underline{x} \in \mathcal{C} \}$$

Example

If $\ensuremath{\mathcal{C}}$ is the repetition code, the dual of this code is the single parity check code

Definition

A parity check matrix for a linear code C is any basis of the dual code C^{\perp} . Rank of parity check matrix is n-k by rank nullity theorem.

Example

Parity check matrix of the repetition code is

$$H = [I_6 \mid \underline{1}]$$

Singleton Bound

Theorem

Upper bound on minimum distance of a code is given by

$$d_{\min} \leq n - k + 1$$

Proof.

Let H be the parity check matrix of code C.

 $s=d_{\min}-1$ is the largest integer such that any s columns of H are linearly independent.

Since $s \le rank(H) = n - k$, the bound follows.

Minimum Distance of Hamming Code

▶ $s = d_{min} - 1$ is the largest integer such that any s columns of H are linearly independent.

▶ Check that s = 2 for parity check matrix above.

Maximum Distance Separable Codes

Definition

A code whose d_{\min} achieves the Singleton bound with equality is called a Maximum Distance Separable (MDS) code.

Example

$$(n, 1, n)$$
 repetition code, $d_{min} = n = n - 1 + 1$.

$$(n, (n-1), 2)$$
 single parity check code $d_{\min} = 2 = n - (n-1) + 1$.

Other MDS Codes over Binary Field

- ► Repetition code and the single parity check code are the only possible families of binary MDS codes
- ▶ Proof: Try constructing the parity check matrix of a binary $(n, n-2), n \ge 4$ code

Reed Solomon Codes

Non-binary Alphabets

- ▶ Binary codes were designed for binary symmetric channel which introduces i.i.d. errors in the bits
- ▶ Suppose there are burst errors in the symbols, then we can think of non-binary alphabets (alphabets of size 2^m) where we treat m bits as one symbol.
- ➤ To define codes over alphabets of size 2^m, finite field arithmetic is needed.

Finite Fields

- ▶ We have already seen \mathbb{F}_2 . The structure of \mathbb{F}_p is similar.
- ▶ To imagine the structure of \mathbb{F}_{2^m} , consider the following analogy:
- ▶ The set of complex numbers $\mathbb C$ is obtained from the set of real numbers $\mathbb R$ by considering the polynomials $\mathbb R[x]$ and taking modulo a polynomial x^2+1 . x^2+1 is irreducible over $\mathbb R$.
- ▶ The finite field \mathbb{F}_{2^4} is obtained from the field \mathbb{F}_2 by considering the polynomials $\mathbb{F}[x]$ and taking modulo a polynomial $x^4 + x + 1$. $x^4 + x + 1$ is irreducible over \mathbb{F}_2 .

Theorem

Let \mathbb{F} be a finite field and $\mathbb{F}[x]$ denote the ring of polynomials with coefficients from \mathbb{F} . Consider $f[x] \in \mathbb{F}_2[x]$ be a polynomial of degree k, then f[x] has at most k roots in \mathbb{F} .

Reed-Solomon Codes

- ▶ Let $\underline{m}^t = [m_0, \dots m_{k-1}]$ be message vector over finite field \mathbb{F}_q
- ▶ Form the polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i$
- ▶ Pick $\alpha_i \in \mathbb{F}_q$, $1 \le i \le n$ all distinct, assuming $q \ge n$.
- ▶ Codeword corresponding to \underline{m}^t is $\underline{c}^t = [f(\alpha_1), \dots, f(\alpha_n)].$

Minimum Distance of Reed-Solomon Codes

- ▶ This code can tolerate n-k erasures (k-1) degree polynomial can be uniquely determined by evaluations at k points). This implies that $d_{\min} \ge n-k+1$.
- ▶ By Singleton bound, $d_{\min} \le n k + 1$.
- ▶ Thus, minimum distance of RS code is n k + 1
- Reed Solomon codes are MDS codes

Generator Matrix of Reed-Solomon Code

$$f(\alpha_j) = \sum_{i=0}^{k-1} m_i \alpha_j^i$$

$$\underline{c}^t = [f(\alpha_1), \dots, f(\alpha_n)] = \underline{m}^t \begin{bmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{bmatrix}$$

- ▶ The above generator matrix is called Vandermonde matrix
- \blacktriangleright Any $k \times k$ submatrix of the above matrix is full rank.

$$\underline{y}^{t} \begin{bmatrix} 1 & 1 & \dots & 1 \\ \alpha_{1} & \alpha_{2} & \dots & \alpha_{k} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & \dots & \alpha_{k}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \dots & \alpha_{k}^{k-1} \end{bmatrix} = 0 \Rightarrow \underline{y} = \underline{0}$$

Applications of Reed-Solomon Codes

- ► CD/DVD
- ► RAID systems
- ► Bar Code Scanning

Codes with Locality

Distributed Storage Systems

Servers in a Google data center

- DSS with hundreds of nodes
- Petabytes of data adding to data center everyday
- Node failures (modeled as erasures) are a norm

High Level Objective

- Data should not be lost at any cost
 - Efficient utilization of storage space and network resources

Some parameters of interest

- High Resiliency
 Low Storage Overhead
- Efficient node repair

Pic courtesy:

http://webodysseum.com/technologyscience/visit-the-googles-data-centers/

Conventional Distributed Storage Systems

- Replication and Reed Solomon codes are commonly used
- ► For same erasure tolerance, Reed Solomon codes have less storage overhead than replication

Reed-Solomon Codes in DSS

- ▶ [14, 10] Reed-Solomon code storage overhead 1.4x
- ▶ Can recover data by connecting to any 10 nodes
- Used in Facebook for "cold" storage

RS Codes inefficient for Node Repair

For node repair, the known strategy is:

- Connect to any 10 nodes
- Download 10 code symbols
- Reconstruct entire data file and then reconstruct data stored in the node

Locality Parameter

Setting:

- ▶ Linear code C with parameters $[n, k, d_{min}]$
- ► Code symbol c_i has locality r

▶ Consider a code in systematic form. The code is said to have information locality r if all the message symbols in the code have locality r

Storage vs Repair Locality Tradeoff

Theorem

For $[n, k, d_{min}]$ code with information locality r

$$d_{min} \leq \underbrace{n-k+1}_{Singleton} - \underbrace{\left(\left\lceil \frac{k}{r} \right\rceil - 1\right)}_{Term\ due\ to}$$
 $locality\ constraint$

P. Gopalan, C. Huang, S. Yekhanin, H. Simitci, "On the Locality of Codeword Symbols," *IEEE Trans. Inform. Th.*, Nov. 2012. 2014 ComSoc/IT Joint Paper Award

Main Lemma

Lemma

Any $n - d_{min} + 1$ columns of generator matrix G have rank k. Thus, if a set of T columns of G has rank $\leq k - 1$, then

$$|T| \leq n - d_{\min}$$

Proof.

- ▶ Let S be set of $n d_{\min} + 1$ columns of G which have rank say k 1. G_1 is submatrix of G corresponding to columns in S.
- $ightharpoonup G_1$ can be row reduced to give all zero vector in one row.
- ▶ If we do the same row reduction to G, we will end up in a vector (that corresponding to all zero vector in G_1), that has support in $\leq d_{\min} 1$ columns. Contradicts the fact that d_{\min} is the minimum distance of the code.

Sketch of Proof of the Theorem

- ▶ To find a upper bound on d_{\min} , we will find a lower bound on the size of T by applying the locality constraint.
- ▶ There are sets of columns (of size $\leq r+1$) of generator matrix G which are linearly dependent. These sets we will call them "local groups"
- ▶ Construct T by accumulating local groups and try to reach the rank k-1.
- ► For each local group we are adding, we get one linearly dependent column which doesn't add rank.
- ▶ Since the number of local groups is at least $\frac{k}{r}$, to accumulate rank of k-1 by adding local groups, we will need a support of at least $k-1+(\frac{k}{r}-1)$. Thus, $|T| \geq k-1+(\frac{k}{r}-1)$.

Pyramid Code Construction via Example

• Given generator matrix G of a systematic [11, 8, 4] MDS code:

▶ Split first parity column, and then rearrange columns:

$$G'= egin{bmatrix} 1 & g_{11} & & & & & & g_{12} & g_{13} \ & 1 & g_{21} & & & & & g_{22} & g_{23} \ & 1 & g_{31} & & & & g_{32} & g_{33} \ & & 1 & g_{41} & & & & g_{42} & g_{43} \ & & & & 1 & & g_{51} & g_{52} & g_{53} \ & & & 1 & & g_{61} & g_{62} & g_{63} \ & & & 1 & g_{71} & g_{72} & g_{73} \ & & & & 1 & g_{81} & g_{82} & g_{83} \ \end{pmatrix}$$

Optimality of Pyramid Code Construction

- ightharpoonup The new [12, 8, ?] code has two [5, 4, 2] local codes.
- ▶ Minimum distance of code generated by G' is at least that generated by G. Thus $d_{\min} \ge 4$.
- Applying the bound on minimum distance,

$$d_{\min} \le n - k - \frac{k}{r} + 2$$

$$= 12 - 8 - \frac{8}{4} + 2 = 4$$

▶ Thus, $d_{min} = 4$ and the pyramid code constructed is optimal

References

- NPTEL Lectures Notes of a course on Error Correcting Codes taught by Prof. P. Vijay Kumar
- ▶ Shu Lin, Daniel J.Costello, Error Control Coding Second Edition, Pearson Education Inc. Pearson Prentice Hall, 2004.
- ▶ W. Cary Huffman, and Vera Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2010.
- Ron M.Roth, Introduction to Coding Theory, Cambridge University Press, 2006.

Thanks!

Email: lalitha.v@iiit.ac.in