ÚLOHA 4 **Lineární regrese více proměnných**

Zadáno na cvičení: 5 Mezní termín: 10.11. 2022 Maximální počet bodů: 10-15 Povinná úloha

Zadání

Stáhněte si archiv *linRegMulti(NumPy)* ze stránky *Lineární regrese*. Struktura kódu je následující:

- data1.txt vstupní data pro první část úlohy
- data_machines.txt vstupní data pro druhou část úlohy
- data_machines_readme.txt popis jednotlivých příznaků v datech pro druhou část úlohy.
- $model/LinearRegression^1$ třída implementující celou funkcionalitu linearní regrese (hypotéza, pokutová funkce, gradient)
- optimize/Optimizer generický optimalizační algoritmus
- optimize/GradinetDescent¹ gradientní sestup
- utils/normalize_features()¹ škálování příznaků
- utils/build_dict()² vytváří slovník pro reprezentaci výčtových příznaků
- utils/transform()² transformuje výčtové příznaky na one-hot vektory
- utils/cross_vlidation() křížová validace pro využití stejných dat pro trénování i testování
- visualize.py kontrolní vizualizace podobné jako v předchozí úloze
- $ex4.py^1$ hlavní skript první části úlohy
- ex4-2.py hlavní skript druhé části úlohy

Třídy/funkce označené 1 budete doplňovat v rámci první části, třídy/funkce označené 2 ve druhé části.

1 Vícerozměrná lineární regrese a škálování příznaků

Vstupní data

V této části budeme predikovat cenu domu podle jeho velikosti a počtu místností. Rozložení dat můžete vidět na obrázku 1.

Obrázek 1: Vizualizace dat.

Úkolv

V této části budete programovat lineární regresi o libovolném počtu proměnných. Před touto úlohou je doporučeno naprogramovat úlohu předchozí, protože většina úkolů je pouze drobnou modifikací úkolů z předchozí úlohy.

1. Cenová funkce a hypotéza

Cenovou funkci a hypotézu naprogramujte pomocí maticových operací (bez cyklů).

2. Gradientní sestup

Gradientní sestup musí umožňovat nastavení více ukončovacích podmínek:

- (a) Počet iterací num_iters
- (b) Minimální chyba minCost
- (c) Minimální rozdíl parametrů oproti předchozí iteraci minThetaDiff

může být nastaveno 1-N ukončovacích podmínek. Všechny zadané ukončovací podmínky musí být kontrolovány současně.

3. Škálování příznaků

Normalizujte střední hodnotu a rozptyl příznaků .

4. V souboru *ex4.py* doplňte predikci ceny domu o 1650 čtverečních stopách a 3 místnostech. Stejnou predikci udělejte pomocí normální rovnice.

5. Vyladte parametry gradientního sestupu tak, aby konvergoval co nejrychleji.

Po škálování příznaků by vykreslené grafy měly vypadat zhruba tak, jak je vidět na Obrázku 3.

Obrázek 2: Regrese dat.

Obrázek 3: Vývoj chyby se změnou parametrů modelu.

2 Transformace příznaků (nepovinná část)

Cílem je predikovat skóre výkonu počítačů na základě některých jeho parametrů. Popis parametrů najdete v souboru data_machines_readme.txt. Vaším úkolem bude naprogramovat univerzální funkci pro reprezentaci textového řetězce jako příznaku výčtového charakteru. Pro tyto účely se využívá one-hot vektor, což je vektor o velikosti rovné počtu všech různých hodnot (plus jedna pro neznámou hodnotu). Řetězce pak reprezentujeme tímto vektorem, kde máme pouze jednu jedničku na pozici odpovídající danému řetězci a zbytek složek jsou nuly. Vaším úkolem je naprogramovat univerzální funkce pro vytvoření této reprezentace. Ve fázi trénování musíte vytvořit slovník. In-

Obrázek 4: Graf konvergence

dexy v tomto slovníku pak budou odpovídat nenulové složce one-hot vektoru. Budete doplňovat funkce $dictionaryFT_train.m$ a $dictionaryFT_transform.m$.

Příklad

Ve fázi trénování dostaneme text:

Slovník tedy vypadá následovně:

pokud vstupem funkce transform bude:

$$\begin{pmatrix} 'first' \\ 'second' \\ 'first' \\ 'fourth' \\ 'fifth' \end{pmatrix}$$

výstupem pak bude matice:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

První složka vektoru odpovídá všem neznámým slovům. Na konkrétním pořadí prvků nezáleží, ale musí být pořád stejné.