PROF: ATMANI NAJIB **1BAC SM BIOF** 

## TD:LA ROTATION DANS LE PLAN **AVEC CORRECTIONS**

Exercice1 : ABCD est un carré de centre O tel que :  $(\overrightarrow{AB}, \overrightarrow{AD})$  positif. Soit  $r_A$  la rotation de

centre A et d'angle  $\frac{\pi}{2}$  et  $r_0$  une rotation de centre O et d'angle  $\alpha$ 

- 1) Déterminer  $r_A(A)$ ;  $r_A(B)$ ;  $r_A(D)$ ,
- 2) Comment choisir  $\alpha$  pour avoir  $r_o(A) = B$ ? Comment choisir  $\alpha$  pour avoir

$$r_O(A) = C$$
?





- $r_A(A) = A$  Car le centre est le seul point invariant.
- $r_A(B) = D \operatorname{Car} \begin{cases} AB = AD \\ \left( \frac{\overrightarrow{AB}, \overrightarrow{AD}}{2} \right) = \frac{\pi}{2} [2\pi] \end{cases}$
- $r_A(D) = B'$  avec B' le symétrique de B par rapport a A

2) 
$$r_o(A) = B \Leftrightarrow \alpha = \frac{\pi}{2}$$

$$r_o(A) = C \Leftrightarrow \alpha = \pi$$

Exercice2: ABCD est un carré tel que:

 $(\overrightarrow{AB}, \overrightarrow{AD})$  positif et Soit r la rotation de centre A et

d'angle  $\pi/2$ 

Décomposer la rotation r en composée de deux symétries orthogonales

**Solution**:  $r = S_{(AD)} \circ S_{(AC)} \operatorname{car}(AD) \cap (AC) = \{A\}$ 

$$\operatorname{et}\left(\overline{\overrightarrow{AC},\overrightarrow{AD}}\right) \equiv \frac{\pi}{4} [2\pi] \operatorname{OU} r = S_{\scriptscriptstyle (AC)} \circ S_{\scriptscriptstyle (AB)}$$

$$\operatorname{car}(AB) \cap (AC) = \{A\}$$

$$\operatorname{et}\left(\overline{\overrightarrow{AB},\overrightarrow{AC}}\right) \equiv \frac{\pi}{4}[2\pi]$$

**Exercice3**: ABC est un triangle.

On construit à l'extérieur deux triangles ABD et ACE isocèles et rectangles en A

## Solution:

Soit r la rotation de centre A et d'angle

On a : 
$$\begin{cases} AD = AB \\ \left(\overline{\overrightarrow{AD}, \overrightarrow{AB}}\right) = \frac{\pi}{2} [2\pi] \end{cases}$$

donc:  $r(D) = B \bullet$ 

On a : 
$$\begin{cases} AC = AE \\ \left(\overline{AC, \overrightarrow{AE}}\right) = \frac{\pi}{2} \left[2\pi\right] \end{cases}$$

donc :  $\mathbf{Q} r(C) = E$ 



Alors de  $\bullet$  et  $\bullet$  en déduit que BE = CD

2)on a 
$$r(D) = B$$
 et  $r(C) = E$ 

Donc: 
$$(\overline{\overrightarrow{CD}}, \overline{\overrightarrow{EB}}) = \frac{\pi}{2}$$
 par suite:  $(BE) \perp (CD)$ 

**Exercice4**: ABC est un triangle tel que :  $(\overrightarrow{AB}, \overrightarrow{AC})$ 

positif. On construit à l'extérieur les carrés ABDE et ACFG

Soit r la rotation de centre A et d'angle  $\frac{\pi}{2}$ 

déterminer : r(E) et r(C)

Et Montrer que :  $(\overline{\overrightarrow{CA}, \overrightarrow{CE}}) \equiv (\overline{\overrightarrow{GA}, \overrightarrow{GB}})[2\pi]$ 

## Solution:

on a : 
$$\begin{cases} AE = AB \\ \left(\overline{\overrightarrow{AE}}, \overline{AB}\right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc:  $r(E) = B \bullet$ 

Et on a : 
$$\begin{cases} AC = AG \\ \left(\overline{\overrightarrow{AC}, \overrightarrow{AG}}\right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc:  $\mathbf{Q}_r(C) = G$ 



De :  $\mathbf{O}$  et  $\mathbf{O}$  et  $\mathbf{O}$  en déduit que  $(\overline{\overline{CA},\overline{CE}}) = (\overline{\overline{GA},\overline{GB}})[2\pi]$ 

Exercice5 : ABCD est un carré de centre O

I et J deux points tels que :  $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$  et

$$\overrightarrow{BJ} = \frac{1}{4}\overrightarrow{BC}$$

Montrer que  $(OI) \perp (OJ)$  et OI = OJ

Solution: il suffit de montrer

que: r(I) = J ????

On pose : r(I) = I'

On a :  $\begin{cases} OA = OB \\ \left(\overline{\overrightarrow{OA}}, \overline{\overrightarrow{OB}}\right) = \frac{\pi}{2} [2\pi] \end{cases}$  donc



$$r(A) = B$$

Et on a :  $\overrightarrow{AI} = \frac{1}{4}\overrightarrow{AB}$  donc :  $\overrightarrow{BI'} = \frac{1}{4}\overrightarrow{BC}$  • car la

rotation conserve le coefficient de colinéarité de deux vecteurs

Et on sait que :  $\overrightarrow{BJ} = \frac{1}{4}\overrightarrow{BC}$ 

De lacktriangle et lacktriangle en déduit que  $\overrightarrow{BI'} = \overrightarrow{BJ}$  donc I' = J

Donc r(I) = J par suite :  $\begin{cases} OI = OJ \\ (\overline{\overrightarrow{OI}, \overrightarrow{OJ}}) = \frac{\pi}{2}[2\pi] \end{cases}$ 

**Exercice6**: ABCD est un carré de centre O tel que :  $\left(\overline{0A}, \overline{0B}\right)$  positif. Soit (D) la droite parallèle a (BD) et coupe (AD) en M et coupe (AB) en N et Soit r la rotation de centre O et d'angle  $\frac{\pi}{2}$ . E et F les images M et N

respectivement Par la rotation  $\boldsymbol{r}$ 

1) Faire une figure et Montrer que  $(EF) \perp (MN)$ 

2)Déterminer l'image de la droite (BD) par la rotation r

3)Montrer que DN = FA et (EF) || (AC)

Solution :1)

on a :  $\mathbf{0} r(M) = E$ 

et: r(N) = F

de 0 et 2 en deduit que:

$$\left(\overline{\overrightarrow{MN}, \overrightarrow{EF}}\right) \equiv \frac{\pi}{2} [2\pi]$$

 $donc:(EF)\perp(MN)$ 

2) on a: 
$$\begin{cases} 0B = 0C \\ \left( \overline{0B}, \overline{OC} \right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc:  $r(B) = C \bullet$ 

Et on a : 
$$\begin{cases} 0D = 0A \\ \left(\overline{\overrightarrow{OD}, \overrightarrow{OA}}\right) = \frac{\pi}{2} [2\pi] \end{cases} \text{ donc } r(D) = A$$

de  $\bullet$  et  $\bullet$  en deduit que: r((BD)) = (AC)

3) 
$$DN = FA$$
 ???

on a: 
$$\mathbf{0}_{r(D)=A}$$
 et  $\mathbf{2}_{r(N)=F}$ 

donc: DN = FA(EF) || (AC) ???

On a:  $(MN) \parallel (BD)$  et r((BD)) = (AC) et

$$r((MN)) = (EF)$$

Donc :  $(EF) \parallel (AC)$  car la rotation conserve le

parallélisme

**Exercice7**: ABC est un triangle isocèles et rectangles en A tel que :  $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}})$  positif et O le

milieu du segment [BC].D et E

deux points tels que :  $\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB}$  et  $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$ 

Montrer que ODE est un triangle isocèles et rectangles en O

Solution: il suffit de

On pose : r(E) = E'



Donc:  $r(C) = A \bullet$ 

Et on a : 
$$\begin{cases} OA = OB \\ \left( \overline{\overrightarrow{OA}}, \overline{OB} \right) = \frac{\pi}{2} [2\pi] \end{cases} \text{ donc : } r(A) = B$$

Et on a : 
$$\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$$
 §

De OetOetOetO: en déduit que :  $\overrightarrow{AE'} = \frac{2}{3}\overrightarrow{AB}$  • car la

rotation conserve le coefficient de colinéarité de deux vecteurs

Et on sait que :  $\overrightarrow{AD} = \frac{2}{3} \overrightarrow{AB}$ 

De**4**et **6** en déduit que :  $\overrightarrow{AE'} = \overrightarrow{AD}$  cad E' = D

Donc: r(E) = D par

suite : 
$$\begin{cases} OE = OD \\ \left( \overline{OE}, \overline{OD} \right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc *ODE* est un triangle isocèles et rectangles en *O* 

Exercice8 : ABCD est un carré tel que :

 $(\overline{\overrightarrow{AB}},\overline{\overrightarrow{AD}})$  positif. et AED

et AFB deux triangles équilatéraux Montrer que les points : E et C et F sont alignés



**Solution :** soit *r* la rotation de centre A



d'angle 
$$\frac{\pi}{3}$$
 :  $r\left(A; \frac{\pi}{3}\right)$ 

et soit K l'antécédent de C par  $\it r$ 

On a: r(B) = F

$$\operatorname{Car} \left\{ \begin{array}{l} AB = AF \\ \left( \overline{\overrightarrow{AB}, \overrightarrow{AF}} \right) = \frac{\pi}{3} \left[ 2\pi \right] \end{array} \right.$$

Et on a : 
$$r(D) = E$$
 Car  $\begin{cases} AD = AE \\ \left(\overline{\overrightarrow{AD}, \overrightarrow{AE}}\right) = \frac{\pi}{3}[2\pi] \end{cases}$ 

Et on a: r(K) = C

donc: 
$$AK = AC$$
 et  $(\overline{\overrightarrow{AK}}, \overline{\overrightarrow{AC}}) = \frac{\pi}{3} [2\pi]$ 

puisque : AB = BC donc B appartient à la médiatrice du segment  $\lceil AC \rceil$ 

et AD = DC donc D appartient à la médiatrice du segment  $\lceil AC \rceil$ 

et on a : 
$$AK = AC$$
 et  $(\overline{\overrightarrow{AK}}, \overline{\overrightarrow{AC}}) = \frac{\pi}{3} [2\pi]$ 

donc : AKC est équilatéral donc K appartient à la médiatrice du segment AC

Donc les points : K et B et D sont alignés Et puisque la rotation conserve les alignement des points alors :les points : E et C et F sont alignés

**Exercice9**: ABCD est un carré tel que :  $\left(\overline{AB}, \overline{AD}\right)$  positif et Soit r la rotation de centre A et

d'angle  $\frac{\pi}{2}$ 

1) déterminer la nature de la transformation suivante :  $S_{(AD)} \circ S_{(AB)}$ 

1)on considère les rotations suivantes :  $r\left(A; \frac{\pi}{2}\right)$ 

et 
$$r'\left(B; \frac{\pi}{2}\right)$$
 et  $r''\left(C; -\frac{\pi}{2}\right)$ 

déterminer la nature des transformations suivante :  $r \circ r'$  et  $r \circ r''$ 

**Solution :1)** 
$$S_{(AD)} \circ S_{(AB)} = r\left(A; 2\frac{\pi}{2}\right) = r(A; \pi) = S_A$$

2) a) 
$$r \circ r'$$
 on a  $A \neq B$  et  $\frac{\pi}{2} + \frac{\pi}{2} = \pi \neq 2k\pi$  donc c'est

une rotation 
$$r\left(?; \frac{\pi}{2} + \frac{\pi}{2}\right) = r\left(?; \pi\right)$$
 cad une symétrie

central

Déterminons le centre de la rotation  $r \circ r'$ ?

On a : 
$$r \circ r' = S_{(AC)} \circ S_{(AB)} \circ S_{(AB)} \circ S_{(BD)} = S_{(AC)} \circ S_{(BD)}$$

Et puisque :  $(AC) \cap (BD) = \{O\}$ 

Alors le le centre de la rotation est le point O

on a 
$$A \neq C$$
 et  $\frac{\pi}{2} + \left(-\frac{\pi}{2}\right) = 0$  donc c'est une

translation

Déterminons le vecteur de la translation  $r \circ r''$ ?

On a: 
$$r \circ r''(C) = r(r''(C)) = r(C) = C'$$

Avec: 
$$\begin{cases} AC = AC' \\ \left(\overline{\overline{AC}}, \overline{AC'}\right) = \frac{\pi}{2} [2\pi] \end{cases}$$

Donc  $r \circ r''$  est une translation de vecteur  $\overrightarrow{CC'}$ 

Exercice10 : ABCD est un carré de centre O

tel que : 
$$(\overline{\overrightarrow{OA}, \overrightarrow{OB}})$$
 négatif. Soient M, N, P et Q quatre

points dans le plan tels que :  $\overrightarrow{DQ} = \frac{1}{3}\overrightarrow{DA}$  et

$$\overrightarrow{CP} = \frac{1}{3}\overrightarrow{CD}$$
 et  $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB}$  et  $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BC}$ 

la droite (AN) coupe les droites (DM) et (BP)

Respectivement en E et F

la droite (CQ) coupe les droites (DM) et (BP)

Respectivement en H et G

Soit *r* la rotation de centre O et d'angle  $-\pi/2$ 

1) Faire une figure dans le cas ou : AB = 6cm

2)Montrer que : r(M) = N et r(N) = P et r(P) = Q

et r(Q) = M

3) a)Montrer que : r(F) = G

b)en déduire que : le triangle FOG est isocèle et rectangle en O

4)a) calculer :  $(r \circ r)(F)$  et  $(r \circ r)(E)$ 

4)b) en déduire que :les segments  $\left[EG\right]$  et  $\left[FH\right]$  ont le même milieu

5) Montrer que : EFGH est un carré

Solution:1)



2) on a 
$$\begin{cases} OA = OB \\ \left( \overline{\overrightarrow{OA}}, \overline{OB} \right) = -\frac{\pi}{2} [2\pi] \end{cases}$$
 donc:  $r(A) = B$ 

$$\begin{cases} OB = OC \\ \left( \overline{\overrightarrow{OB}}, \overline{\overrightarrow{OC}} \right) = -\frac{\pi}{2} [2\pi] \end{cases} \text{ donc } : r(B) = C$$

Et puisque  $\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB}$  et la rotation conserve le

coefficient de colinéarité de deux vecteurs

Alors: 
$$\overline{r(A)r(M)} = \frac{1}{3}\overline{r(A)r(B)}$$

cad : 
$$\overrightarrow{Br(M)} = \frac{1}{3}\overrightarrow{BC}$$
 et on a :  $\overrightarrow{BN} = \frac{1}{3}\overrightarrow{BC}$ 

donc: 
$$r(M) = N$$

de meme : on montre que : r(N) = P et r(P) = Q

et 
$$r(Q) = M$$

3) a) on montre que : r(F) = G?

Puisque : r(N) = P et r(A) = B alors : r((AN)) = (BP)

Et Puisque : r(P) = Q et r(A) = B alors :

$$r((AN))=(BP)$$

Et puisque : r(P) = Q et r(B) = C alors :

$$r((BP))=(QC)$$

Donc:  $r((AN) \cap (BP)) = r((AN)) \cap r((BP))$  car r est

une application injective

Donc:  $r(\{F\}) = (BP) \cap (QC) = \{G\}$  par suite: r(F) = G

3)b)On a : 
$$r(F) = G$$
 donc : 
$$\begin{cases} OF = OG \\ \left( \overline{\overrightarrow{OF}, \overrightarrow{OG}} \right) = -\frac{\pi}{2} [2\pi] \end{cases}$$

Donc : le triangle FOG est isocèle et rectangle en O

4)a) On a: 
$$r(C) = D$$
 et  $r(Q) = M$  et  $r(B) = C$ 

donc : r((CQ))=(DM) et puisque : r((BP))=(QC)

alors:  $r((CQ) \cap (BP)) = (DM) \cap (CQ)$  cad:

$$r(\lbrace G \rbrace) = \lbrace H \rbrace \text{ donc} : r(G) = H$$

on a:  $(r \circ r)(F) = r(r(F)) = r(G) = H$  et on a:

r((AN))=(BP) et r((DM))=(AN)

donc:  $r((AN) \cap (DM)) = (AN) \cap (BP)$ 

donc: r(E) = F

On a: 
$$(r \circ r)(EF) = r(r(E)) = r(F) = G$$

4)b)puisque r est une rotation d'angle :  $-\pi/2$ 

alors :  $r \circ r$  est une rotation d'angle :

$$2 \times (-\pi/2) = -\pi$$
 donc  $r \circ r$  est une symétrie

central et soit K son centre

Puisque on a :  $(r \circ r)(F) = H$  et  $(r \circ r)(E) = G$ 

Alors : K est le milieu des segments [EG]et [FH]

Donc : les segments [EG] et [FH] ont les mêmes milieux

4) puisque les segments [EG] et [FH] ont les mêmes milieux alors : EFGH est un parallélogramme et on a aussi : r(F) = G et

$$r(E) = F \text{ donc}: EF = FG \text{ et } \left( \overline{\overrightarrow{EF}, FG} \right) = -\frac{\pi}{2} [2\pi]$$

Donc: EFGH est un carré.

Exercice11 : ABCD est un carré de centre O

tel que : 
$$(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AD}}) = \pi/2[2\pi]$$
. Soient I, J, K et L les

milieux respectivement des segments [AB]et

[BC] et [CD] et [DA].

1)Déterminer les mesures des angles suivants :

$$\operatorname{a)}\!\left(\overrightarrow{AC}, \overrightarrow{AD}\right) \quad \operatorname{b)}\!\left(\overrightarrow{DA}, \overrightarrow{DB}\right) \operatorname{c)}\!\left(\overrightarrow{CD}, \overrightarrow{CA}\right) \quad \operatorname{d)}\!\left(\overrightarrow{CA}, \overrightarrow{CD}\right)$$

2)soit  $S_{(AB)}$  la symétrie axiale d'axe (AB)

soit  $r_{\left(A;\frac{\pi}{2}\right)}$  la rotation de centre A et d'angle  $\pi/2$ 

et  $t_{\bar{u}}$  la translation de vecteur  $\vec{u}$ 

Déterminer la nature et les éléments caractéristiques des transformations suivantes :

a) 
$$F = S_{(AC)} \circ S_{(BD)}$$
 b)  $G = S_{(AC)} \circ S_{(AB)}$ 

$$\text{c) } H = r_{\left(D;\pi\right)} \circ r_{\left(A;\pi\right)} \qquad \qquad \text{d) } K = r_{\left(C;\frac{\pi}{2}\right)} \circ r_{\left(D;\pi\right)} \circ r_{\left(A;\frac{\pi}{2}\right)}$$

**Solution** :1) a)les droites (AC) et(BD) et(JL) et

(IK) sont des axes de symétries du carré ABCD

On a: 
$$S_{(AC)}(A) = A$$
 et  $S_{(AC)}(C) = C$  et  $S_{(AC)}(B) = D$ 

Donc on deduit que : 
$$(\overline{\overrightarrow{AC}, \overline{AD}}) = -(\overline{\overrightarrow{AC}, \overline{AD}})[2\pi]$$

Donc: 
$$(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}}) = (\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}})[2\pi]$$

Donc: 
$$(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}}) \equiv \frac{\pi}{4} [2\pi]$$

b) On a :  $S_{(LJ)}(A) = D$  et  $S_{(LJ)}(C) = B$  et  $S_{(LJ)}(B) = C$ 

Donc on deduit que :  $(\overline{\overrightarrow{DA}}, \overline{\overrightarrow{DB}}) = -(\overline{\overrightarrow{AD}}, \overline{\overrightarrow{AC}})[2\pi]$ 

Donc:  $\left(\overline{\overrightarrow{DA}}, \overline{\overrightarrow{DB}}\right) = \left(\overline{\overrightarrow{AC}}, \overline{\overrightarrow{AD}}\right) [2\pi]$ 

Donc:  $\left(\overline{\overrightarrow{DA}}, \overline{\overrightarrow{DB}}\right) \equiv \frac{\pi}{4} [2\pi]$ 

Puisque la rotation conserve la mesure de l'angle orienté et on a :  $r_{(o;\pi)}(A) = C$  et  $r_{(o;\pi)}(B) = D$  et

 $r_{(O:\pi)}(C) = A \text{ alors } : \left(\overrightarrow{\overline{CD}}, \overrightarrow{CA}\right) = \left(\overrightarrow{\overline{AB}}, \overrightarrow{\overline{AC}}\right)[2\pi]$ 

Donc:  $\left(\overline{\overrightarrow{CD}}, \overline{\overrightarrow{CA}}\right) \equiv \frac{\pi}{4} [2\pi]$ 

d) puisque :  $\left(\overline{\overrightarrow{CD}},\overline{\overrightarrow{CA}}\right) \equiv \frac{\pi}{4} \left[2\pi\right]$  alors :  $\left(\overline{\overrightarrow{CA}},\overline{\overrightarrow{CD}}\right) \equiv -\frac{\pi}{4} \left[2\pi\right]$ 

2)a)  $F = S_{(AC)} \circ S_{(BD)}$  ??

On a:  $(AC) \cap (BD) = \{O\}$ 

Donc *F* est la composé de deux symétries orthogonaux d'axes qui se coupent en O

Donc: F est rotation de centre O

Et puisque :  $(AC)\perp(BD)$  alors : F est une symétrie central de centre O ou  $F=r_{(O:\pi)}$ 

2)b)  $G = S_{(AC)} \circ S_{(AB)}$  ??

On a:  $(AB) \cap (AC) = \{A\}$  et  $(\overline{AB}, \overline{AC}) \equiv \frac{\pi}{4} [2\pi]$ 

Donc G est la composé de deux symétries orthogonaux d'axes qui se coupent en A Donc : G est rotation de centre A

 $G = r_{\left(O; 2\frac{\pi}{4}\right)} = r_{\left(O; \frac{\pi}{2}\right)}$ 

2)c)  $H = r_{(D;\pi)} \circ r_{(A;\pi)}$  ??

Puisque toute rotation est le composé de deux symétries axiales on peut en déduire :

 $r_{(D;\pi)} = S_{(DC)} \circ S_{(DA)}$  et  $r_{(A;\pi)} = S_{(DA)} \circ S_{(AB)}$ 

Donc:  $H = r_{(D;\pi)} \circ r_{(A;\pi)} = S_{(DC)} \circ S_{(DA)} \circ S_{(DA)} \circ S_{(AB)}$ 

Et puisque :  $S_{(DA)} \circ S_{(DA)} = I_P$  alors :  $H = S_{(DC)} \circ S_{(AB)}$ 

Et puisque :  $(DC) \parallel (AB)$  alors : H est une

translation et puisque :  $A \in (AB)$  et D la projection du point D sur la droite (DC) alors :

 $S_{(DC)} \circ S_{(AB)} = t_{2\overrightarrow{AD}} \text{ donc} : H = t_{2\overrightarrow{AD}}$ 

d)  $K = r_{\left(C; \frac{\pi}{2}\right)} \circ r_{\left(D; \pi\right)} \circ r_{\left(A; \frac{\pi}{2}\right)}$  ??

Puisque toute rotation est le composé de deux symétries axiales on peut en déduire :

 $r_{\left(C;\frac{\pi}{2}\right)} = S_{\left(CA\right)} \circ S_{\left(CD\right)} \ \text{et} \ r_{\left(D;\pi\right)} = S_{\left(DC\right)} \circ S_{\left(DA\right)} \ \text{car}$ 

 $\left(\overline{\overrightarrow{CD}},\overline{\overrightarrow{CA}}\right) \equiv \frac{\pi}{4} [2\pi]$ 

Et on a :  $r_{\left(A;\frac{\pi}{2}\right)} = S_{\left(AD\right)} \circ S_{\left(AC\right)}$ 

Donc

$$\begin{split} K &= S_{(CA)} \circ S_{(CD)} \circ S_{(DC)} \circ S_{(AD)} \circ S_{(AC)} = S_{(CA)} \circ I_P \circ I_P \circ S_{(AC)} \\ K &= S_{(CA)} \circ S_{(AC)} = I_P \end{split}$$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs

et exercices

Que l'on devient un mathématicien

