3 Поля

3.3 Алгебраические расширения

Определение 1. Пусть E - расширение поля F ($^E/_F$) и $\alpha \in E$. α называется алгебраическим над F, если α является корнем некоторого ненулевого многочлена в F[X]. Если α не является алгебраическим над F, то α называется транцендентом.

Расширение $^{E}/_{F}$ называется алгебраическим, если \forall элемент из E является алгебраическим над F. B противном случае $^{E}/_{F}$ называется траниендентным.

Расширение поля F вида $F(\alpha)$ называется простым расширением поля F.

Теорема 1. Пусть $^{E}/_{F}$ - расширение полей, $\alpha \in E$. Если α - трансцендентный над F, то $F(\alpha) \cong F[X]$. Если α - алгебраический над F, то $F(\alpha) \cong F[X]/_{(P(X))}$, где $P(X) \in F[X]$. $\deg p$ - минимальна и $P(\alpha) = 0$. P(X) - неприводим над F.

Теорема 2. Если α - алгебраический над F, тогда $\exists !$ унитарный неприводимый многочлен $P(X) \in F[X] | P(\alpha) = 0$. P - минимальный многочлен элемента α .

Теорема 3. Пусть α - алгебраический над F, P(X) - тіп многочлен элемента α над F. Если $f(X) \in F[X]$ и $f(\alpha) = 0$, то P(X)|f(X) в F[X].

Конечные расширения

Определение 2. Пусть $^{E}/_{F}$ - расширение полей. Будем говорить, что E имеет степень n над F([E:F]=n), если $\dim_{F}E=n$. Если [E:F] меньше бесконечности, то $^{E}/_{F}$ конечен, иначе - бесконечен.

Теорема 4. Если $^E/_F$ - конечно расширение полей, то $^E/_F$ - алгебраическое.

Доказательство. Пусть [E:F]=n Рассмотрим $\alpha \in E$

Базис состоит из n элементов

Рассмотрим $\{1,\alpha,\alpha^2,...,\alpha^n\}$ - линейно независимы над F

 $\Rightarrow \exists c_0, c_1, ..., c_n \in F | c_n \alpha^n + c_{n-1} \alpha^{n-1} + ... + c_1 \alpha + c_0 = 0$ $f(X) = c_n X^n + c_{n-1} X^{n-1} + ... + c_1 X + c_0 = 0$

 $\Rightarrow \alpha$ - алгебраический над F

Теорема 5. Пусть $F \subset E \subset K$, K/E и E/F - конечны. Тогда K/F - конечное $u[K:F] = [K:E] \cdot [E:F]$.