Metody obliczeniowe w nauce i technice - laboratorium 2b

Jakub Radek

Opis problemu

Główną ideą zadania jest zbadanie zachowania wielomianów interpolacyjnych dla niżej podanej funkcji dla zagadnienia Lagrange'a skonstruowanych metodami Hermite'a korzystając z dwóch metod rozmieszczenia węzłów: równomiernie oddalonych (equidistant) oraz według pierwiastków wielomianu Czebyszewa.

Badana funkcja:

$$f(x) = e^{-k \cdot \sin(mx)}$$

$$f'(x) = -k * e^{-k \cdot \sin(mx)} * \cos(mx)$$

Gdzie k = 3, m = 1, $x \in [-2pi, 4pi]$

Opracowanie

Pierwszym krokiem będzie narysowanie wykresów dla skonstruowanych wielomianów przy użyciu różnej liczby węzłów. Do uzyskania wykresów oraz wyników wykorzystano język Python w wersji 3.10, bibliotekę numpy oraz bibliotekę matplotlib.

Rysunek 1: Metoda Hermite'a dla 3 punktów

Przy zastosowaniu trzech węzłów wykresy wielomianów nie przypominają wykresu zadanej funkcji (f)

Rysunek 2: Metoda Hermite'a dla 5 punktów

Rysunek 3: Metoda Hermite'a dla 6 punktów

Można zauważyć dla równomiernego rozmieszczenia węzłów efekt Rungego, jest to szczególnie wizualnie zauważalne dla węzłów większych od 5. Efekt Rungego występuje tylko dla równomiernego rozłożenia węzłów, ponieważ węzły rozłożone metodą Czebyszewa są gęściej upakowane na krańcach przedziału. Dla porównania w zagadnieniu Lagrange'a pojawiał się dopiero przy około 10 węzłach (wielomian jest 9 stopnia, tutaj również 9).

Rysunek 4: Metoda Hermite'a dla 10 punktów

Rysunek 5: Metoda Hermite'a dla 10 punktów wyłącznie dla rozłożenia metodą Czebyszewa

Rysunek 6: Metoda Hermite'a dla 18 punktów wyłącznie dla rozłożenia metodą Czebyszewa

Gdy usuniemy wykres dla równomiernego rozłożenia węzłów możemy zaobserwować zwiększające się podobieństwo wielomianu do funkcji f dla węzłów Czebyszewa aż do 20 węzłów, gdzie następuje degradacja jakości wielomianu zauważalna z lewej strony wykresu.

Rysunek 7: Metoda Hermite'a dla 20 punktów wyłącznie dla rozłożenia metodą Czebyszewa

Problem najprawdopodobniej wynika ze skończonej precyzji floata a co za tym idzie z błędów w obliczeniach. Podobny efekt pojawiał się dla metody Newtona w zagadnieniu Lagrange'a dla 40 węzłów, poniżej przykład.

Rysunek 8: Metoda Newtona dla 40 punktów wyłącznie dla rozłożenia metodą Czebyszewa

Wraz ze zwiększaniem liczby węzłów efekt pogłębia się, poniżej przykład dla 22 węzłów.

Rysunek 9: Metoda Hermite'a dla 22 punktów wyłącznie dla rozłożenia metodą Czebyszewa

Rysunek 10: Metoda Hermite'a dla 26 punktów wyłącznie dla rozłożenia metodą Czebyszewa

Następnie obliczam dokładność przybliżenia, miary dokładności dla wykonywanych obliczeń to: średnia kwadratów odległości oraz największa różnica wartości odległości funkcji f i uzyskanego wielomianu interpolacyjnego.

Obliczenia zostały wykonane dla 1000 równomiernie rozmieszczonych punktów w przedziale [-2pi, 4pi] mierząc do dwa węzły, od 2 do 30.

Liczba węzłów	Średnia kwadratów		Maksimum odległości	
	równo odległe	Czebyszew	równo odległe	Czebyszew
2	72.039975	179.579880	24.386201	36.472895
4	81.427424	89.209065	25.093101	22.730119
6	523.377339	66.842919	82.185844	17.216347
8	2112.236109	62.354805	192.754016	23.355273
10	335501.221433	11.562976	2312.976205	9.723662
12	2995166.594614	8.175237	8218.924545	8.549263
14	4854363.443329	1.816776	12617.575531	3.630994
16	3103003109.167853	0.723931	341754.047302	3.051301
18	105623444528.626617	0.368409	1923604.530013	2.317309
20	295282134555.097351	0.176010	3796184.652418	4.392348
22	16720691464237.16210	51.130935	33336928.962935	76.975278
24	1249888197719730.25	9560.895034	264330566.342788	1141.825663
26	13914914111474396	70530801.318472	799726212.103281	116376.323591
28	18031196208898368	41308281159.897438	1029607734.508429	3029670.394475
30	5690735877095073792	38615952129438.8125	22112633694.609505	69860188.923799

Tabela 1:Zmierzone dokładności dla poszczególnych metod

Na podstawie tabeli można zauważyć podobne wnioski jak te z analizowania wykresów. Dla równomiernego rozmieszczenia węzłów dokładność w zasadzie nie rośnie, natomiast dla rozmieszczenia metodą Czebyszewa dokładność rośnie do około 18/20 węzłów, następnie spada. Największą dokładność udało się uzyskać dla 20 węzłów, pomimo widocznej na wykresie degradacji. Porównując z metodą Newtona dla zagadnienia Lagrange'a można zauważyć że metoda Hermite'a zachowuje się dość podobnie gdy bierzemy pod uwagę ilość informacji. Najlepsza dokładność dla metody Newtona została uzyskana dla około 40 węzłów, tutaj dla około 20 co daje podobną ilość informacji. Metody te tracą na dokładności i generują zdegradowane wykresy dla odpowiednio dużej ilości węzłów (dwukrotnie większej ilości dla metody Newtona). Można więc wywnioskować że metoda Hermite'a cierpni na te same problemy co metoda Newtona, natomiast problemów tych nie ma metoda Lagrange'a.

Wnioski

Metoda Hermite'a pozwala na skuteczne przybliżanie funkcji z wykorzystaniem wielomianów interpolacyjnych, kiedy oprócz wartości punktów znane są także pochodne w tych punktach, jednakże należy wziąć pod uwagę efekt Rungego który wyklucza stosowanie równo odległego rozmieszczenia węzłów dla wszystkich poza najmniejszymi wartościami oraz zniekształcenia wykresu od pewnej liczby węzłów spowodowane błędami na operacjach liczbami zmiennoprzecinkowymi.