20

25

PHARMACEUTICAL USES AND SYNTHESIS OF BENZOBICYCLOOCTANES

This application claims the benefit of U.S. Provisional Patent Application No. 60/257,532, filed December 22, 2000, where this provisional application is incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present invention is generally directed to benzobicyclooctanes, their use in inhibiting cellular events involving TNF- α or IL-8, and in the treatment of inflammation events in general; the application also provides a combinatorial library of diverse bicyclooctanes and methods for their synthesis in a library format as well as individual compounds.

BACKGROUND OF THE INVENTION

One process for discovering new therapeutically active compounds for a given indication involves the screening of all compounds from available compound collections. From the compounds tested, one or more structures is selected as a promising lead. A large number of related analogues are then synthesized in order to develop a structure-activity relationship (SAR). The SARs direct the development and then selection of one or more optimal compounds following traditional one-at-a-time synthesis and biological testing. This optimization process is long and labor intensive.

Adding significant numbers of new structures to the compound collections used in this initial screening step of the discovery and optimization process cannot be accomplished with traditional one-at-a-time synthesis methods, except over a time frame of months or even years. Faster methods are needed that allow for the preparation of libraries of related compounds in a matter of days or a few weeks. This need is particularly apparent when it comes to synthesizing more complex compounds.

Combinatorial approaches have recently been extended to "organic" or nonpeptide, libraries. The organic libraries at present, however, are limited in diversity and

5

10

15

20

25

generally relate to peptidomimetic compounds; in other words, organic molecules that repeat a peptide chain pharmacophore. There is a need in the art for additional approaches to the preparation of new organic libraries.

Cytokines are pleiotropic extracellular proteins that are released and recognized by a wide variety of cell types. Via a series of complex interactions they are responsible for regulating many of the events involved in growth and differentiation of an organism. Among the cytokines, tumor necrosis factor- α (TNF- α) has been shown to play an important role in the genesis of certain chronic inflammatory and autoimmune diseases. TNF- α is secreted mainly by macrophages and monocytes in response to a variety of inflammatory agents. Other cell types such as NK cells, T cells, B cells, Kupfer cells, and glial cells also produce TNF- α .

TNF- α is synthesized as an inactive 26 kDa pro-protein which is cleaved by the metalloprotease TNF- α Converting Enzyme (TACE) to afford the active 17 kDa cytokine protein. The cytokine exerts its biological effects by interacting with two high affinity receptors of molecular weights 55 kDa (TNFR1 or p55) and 75 kDa (TNFR2 or p75) found on the surface of most cell types. As a result of TNF- α binding to its receptors, a cascade of signaling events occurs within the cell. The exact nature and sequence of events is dependent upon cell type and receptor. Two of the most important physiological effects of TNF- α binding to its receptors are the upregulation of new genes by activation of the transcription factor NF κ B, and induction of programmed cell death or apoptosis.

Apoptosis is a normal physiological process whereby incompetent cells become targeted for disposal by the immune system. The process involves a series of morphological changes to the apoptotic cell, including a change of surface chemistry. This change in surface chemistry is recognized by macrophages that rapidly phagocytose the cell. A number of stimuli can induce apoptosis, including DNA damage, UV radiation, growth factor deprivation, bacterial and viral infection, and ligation of cell surface receptors. TNF- α has been shown to induce apoptosis by binding to TNFR1. Under normal biochemical circumstances the process of apoptosis is integral in regulating the homeostatic balance between cell death and cell proliferation. However in many

.5

10

15

20

25

autoimmune diseases this balance is shifted; not only do unwanted cells undergo apoptosis but healthy cells as well. These diseases are often associated with increased levels of TNF- α . There is a need in the art for compounds that can modulate binding of TNF- α to cell receptors, and/or modulate the consequential intracellular events.

Transcription factors are a family of proteins that bind to DNA and serve to upregulate gene expression. Often they remain in an inactive form until acted upon by a biochemical signal. One such transcription factor is nuclear factor kappa B (NFκB), which can be activated by the binding of TNF-α to TNFR1 and/or TNFR2. NFκB regulates many of the cytokines and other proinflammatory molecules associated with inflammatory and autoimmune diseases. Classes of proteins subject to regulation by NFκB and which have been demonstrated to be involved with disease states are cytokines and growth factors, adhesion molecules, chemokines, and immunoreceptors.

The inhibition of TNF-α induced apoptosis and of NFκB activation is one means of preventing and/or treating autoimmune and inflammatory diseases including, but not limited to, rheumatoid arthritis, inflammatory bowel disease, psoriasis, atherosclerosis, asthma, reperfusion injury, ischemia, sepsis, graft vs. host disease, adult respiratory distress syndrome, multiple sclerosis, and a host of severe invasive infections such as fulminant hepatitis, AIDS and bacterial meningitis, and allergic inflammation of the lungs and airways.

Interleukin-8 (IL-8) is a chemokine (chemotactic cytokine) which plays an important role in the recruitment of neutrophils to sites of inflammation. It is a member of the CXC subfamily of chemokines, members of which contain a single amino acid residue between the first two cysteines. In addition to inducing the chemotaxis of neutrophils, IL-8 exerts other immunomodulatory effects such as release of superoxide, mobilization of intracellular Ca++, upregulation of cell surface integrins, and activation of phospholipase D. All of these cellular events are the result of IL-8 binding to one of its two high affinity receptors. The two receptors, known as IL8RA or CXCR1 and IL8RB or CXCR2, bind the ligand with a K_d of ca. 2 nM.

Numerous reports in the literature have associated increased levels of IL-8 with the development of inflammatory and autoimmune diseases such as Inflammatory

Bowel Disease (IBD), psoriasis, rheumatoid arthritis, Acute Respiratory Distress Syndrome (ARDS), cancer, atherosclerosis, reperfusion injury, and graft vs. host disease. The inhibition of IL-8 or other CXC chemokines from binding to CXCR1 and/or CXCR2 receptors is one means of preventing and/or treating these diseases.

Although treatment regimens are available for the symptomatic amelioration of some or all of these diseases, there still exists the need for compositions and methods for preventing and/or treating the inflammation which is often associated with the disease.

The present invention satisfies these needs and provides related advantages as well, as described more fully herein.

10 SUMMARY OF THE INVENTION

The present invention overcomes the known limitations to classical organic synthesis of bicyclooctanes, and the shortcomings in applying combinatorial chemistry to bicyclooctanes, as well as providing compounds which are useful in inhibiting TNF- α , IL-8, apoptotic-mediated processes, and inflammatory conditions. Moreover, the present invention provides a library of diverse bicyclooctanes useful in elucidating the structure-function relationship in biological processes, such as inflammation.

In one embodiment, the present invention provides a compound of formula

(I)

5

$$R^3$$
 R^4
 R^5
 $(R^7)_{rr}$
 $(R^7)_{rr}$

20

and optical isomers, diastereomers, enantiomers and pharmaceutically acceptable salts thereof in isolation or mixture, where, independently at each location:

R¹ is selected from the following six formulae:

 R^2 is $-OR^9$ or $-NR^9R^9$;

 R^3 is selected from hydrogen, halogen, hydroxyl or protected hydroxyl, amino or protected amino, and C_1 - C_8 alkyl or C_1 - C_8 haloalkyl;

R⁴ and R⁵ are independently selected from R⁹, -OR⁹, -NR⁹R⁹ and -N=N-R⁹, or R⁴ and R⁵ may together form a group selected from =O, =CR⁸R⁸ and =NR¹⁰, or R⁴ and R⁵ may together with the carbon to which they are both attached form a spiro carbocyclic or heterocyclic ring;

R⁶ is selected from hydrogen, inorganic groups having 1-8 atoms exclusively selected from boron, sulfur, phosphorous, silicon and hydrogen, and organic groups having 1-20 carbons and optionally containing 1-4 heteroatoms selected from nitrogen, oxygen and silicon;

 R^7 is selected from halogen, hydroxyl or protected hydroxyl, amino or protected amino, and C_1 - C_8 alkyl or C_1 - C_8 haloalkyl;

R⁸ is selected from hydrogen, alkyl, aryl and heteroalkyl;

R⁹ is selected from hydrogen and organic groups having 1-30 carbons and optionally containing 1-4 heteroatoms selected from nitrogen, oxygen and silicon, with the provision that two R⁹ groups both joined to a common atom may be joined together so as to

20 form a ring with the common atom;

 R^{10} is selected from $-R^9$, $-OR^9$, $-NR^9R^9$, $-NH-C(O)R^9$; $-NH-C(O)OR^9$ and $-NH-C(S)NHR^9$; and

n is 0, 1, 2 or 3;

with the proviso that when R^6 is hydrogen and R^4 and R^5 together form =0 and R^1 is CO_2R^9 , then R^2 is not OCH_3 .

In one embodiment R¹ is

In one embodiment R¹ is

5

10

In one embodiment R¹ is

$$R^{4}$$
 N
 R^{9}
 R^{9}

In any of the above embodiments, R^8 is, in one embodiment, selected from hydrogen and C_1 - C_8 alkyl. In a further embodiment, R^8 is hydrogen.

In one embodiment R¹ is

In one embodiment R¹ is

In one embodiment R^1 is

In one embodiment, R¹ is selected from the following five formulae:

N R9	PR O R9	O R9 R8 R9
	O R9	O N N R ⁹ R ⁹

In one embodiment R¹ is selected from the following four formulae:

Present N O R9	O R9 R8 R9 R8 R9
O R9	O R ⁹ R ⁹

In any of the above embodiments, in a further embodiment, R⁹ is independently selected at each occurrence from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-arylene, and (R¹⁴)_p-heteroarylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5, with the provision that

15

25

two R⁹ groups both joined to a common atom may be joined together so as to form a ring with the common atom.

In any of the above embodiments, in a further embodiment, R^9 is independently selected at each occurrence from R^{11} , R^{12} , R^{13} , R^{14} and R^{15} where R^{11} is selected from alkyl, heteroalkyl, aryl and heteroaryl; R^{12} is selected from $(R^{11})_p$ -alkylene, $(R^{11})_p$ -heteroalkylene, $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ -alkylene, $(R^{12})_p$ -heteroalkylene, $(R^{12})_p$ -arylene, and $(R^{12})_p$ -heteroarylene; R^{14} is selected from $(R^{13})_p$ -alkylene, $(R^{13})_p$ -heteroalkylene, $(R^{13})_p$ -heteroarylene, and $(R^{13})_p$ -heteroarylene, $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -arylene, and $(R^{14})_p$ -heteroarylene, and an $(R^{14})_p$ -heteroarylene, and an $(R^{14})_p$ -heteroarylene, and an $(R^{14})_p$ -hetero

In any of the above embodiments, in a further embodiment, R^9 is selected from hydrogen, heteroalkyl, C_1 - C_{15} alkyl, (heteroaryl) C_1 - C_{15} alkylene, (C_6 - C_{10} aryl) C_1 - C_{15} alkylene, C_6 - C_{10} aryl fused to C_1 - C_{15} alkylene, (alkyl) $_p$ (C_6 - C_{10} arylene) C_1 - C_{15} alkylene, (C_6 - C_{10} arylene) C_1 - C_{15} alkylene, (C_1 - C_1 5alkylene, or two R^9 groups bonded to a common nitrogen of R^1 may be joined together to form a 5-8 membered heterocycle including the common nitrogen, where this 5-8 membered heterocycle may be substituted with 0-5 groups selected from alkyl and heteralkyl, where p is selected from 1, 2, 3, 4 and 5.

In any of the above embodiments, in a further embodiment, R⁹ is selected 20 from hydrogen, heteroalkyl, C₁-C₁₅alkyl, (C₆-C₁₀aryl)C₁-C₁₅alkylene, (heteroaryl)C₁-C₁₅alkylene, and (heteroalkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene, or the two R⁹ groups joined to a common nitrogen of R¹ may be joined together to form a 5-8 membered heterocycle including the common nitrogen.

In any of the above embodiments, in a further embodiment, R^9 is selected from heteroalkyl, C_1 - C_{15} alkyl, $(C_6$ - C_{10} aryl) C_1 - C_{15} alkylene, $(C_6$ - C_{10} aryl) $(C_6$ - C_{10} arylene) $(C_1$ - C_{15} alkylene, $(C_1$ - C_{15} alkyl) $(C_6$ - C_{10} arylene) $(C_1$ - C_{15} alkylene, and $(C_6$ - (C_{10}) arylene) $(C_1$ - (C_{15}) alkylene.

In any of the above embodiments, in a further embodiment, R^9 is selected from hydrogen, heteroalkyl, C_1 - C_{15} alkyl, $(C_6$ - C_{10} aryl) C_1 - C_{15} alkylene, $(C_6$ - C_{10} aryl) $(C_6$ -

10

25

 C_{10} arylene) C_1 - C_{15} alkylene, $(C_1$ - C_{15} alkyl) $_p$ (heteroarylene) C_1 - C_{15} alkylene, and C_6 - C_{10} arylene) to C_1 - C_{15} alkylene.

In any of the above embodiments, in a further embodiment, R^9 is selected from hydrogen, heteroalkyl, C_1 - C_{15} alkyl, (heteroaryl) C_1 - C_{15} alkylene, and (heteroalkyl) $_p$ (C_6 - C_{10} arylene) C_1 - C_{15} alkylene.

In any of the above embodiments, in a further embodiment, R^9 is selected from hydrogen, heteroalkyl, C_1 - C_{15} alkyl, (heteroaryl) C_1 - C_{15} alkylene, (C_6 - C_{10} aryl) C_1 - C_{15} alkylene, (alkyl)p(C_6 - C_{10} arylene) C_1 - C_{15} alkylene, or the two R^9 groups of R^1 may be joined together to form a 5-8 membered heterocycle including the common nitrogen, where this 5-8 membered heterocycle may be substituted with 0-5 groups selected from alkyl and heteralkyl.

In any of the above embodiments, in a further embodiment, R^2 is $-OR^9$. In any of the above embodiments, in a further embodiment, R^2 is $-NR^9R^9$.

In any of the above embodiments, in a further embodiment, R⁹ of R² is selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5.

In any of the above embodiments, in a further embodiment, R^9 of R^2 is selected from hydrogen, heteroalkyl, C_1 - C_{15} alkyl, $(C_6$ - C_{10} aryl)(C_6 - C_{10} arylene) C_1 - C_{15} alkylene, $(C_1$ - C_{15} alkyl)_p(heteroarylene) C_1 - C_{15} alkylene, $(C_1$ - C_{15} alkyl)_p(heteroarylene)-heteroalkylene, (heteroalkyl)_p(C_6 - C_{10} arylene) C_1 - C_{15} alkylene, and $(C_1$ - C_{15} alkyl)_p(C_6 - C_{10} arylene)heteroalkylene.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R² is -OR⁹ where R⁹ is selected from a

15

20

25

heteroalkyl group having preferably 1-10 carbons and 1-4 heteroatoms selected from nitrogen, oxygen, silicon and sulfur.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^2 is $-NR^9R^9$ and R^9 is selected from hydrogen, heteroalkyl, C_1 - C_{15} alkyl, (heteroaryl) C_1 - C_{15} alkylene, (heteroalkyl) $_p$ (aryl) $_p$ (aryl)

In any of the above embodiments, in a further embodiment, R³ is selected from hydrogen and alkyl.

In any of the above embodiments, in a further embodiment, R³ is hydrogen.

In any of the above embodiments, in a further embodiment, R^4 and R^5 are independently selected from R^9 , $-OR^9$, $-NR^9R^9$ and $-N=N-R^9$.

In any of the above embodiments, in a further embodiment, R^9 of R^4 and R^5 is selected from hydrogen, R^{11} , R^{12} , R^{13} , R^{14} and R^{15} where R^{11} is selected from alkyl, heteroalkyl, aryl and heteroaryl; R^{12} is selected from $(R^{11})_p$ -alkylene, $(R^{11})_p$ -heteroalkylene, $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ -alkylene, $(R^{12})_p$ -heteroalkylene, $(R^{12})_p$ -heteroarylene, and $(R^{12})_p$ -heteroarylene; R^{14} is selected from $(R^{13})_p$ -heteroarylene, $(R^{13})_p$ -heteroarylene, and $(R^{13})_p$ -heteroarylene, $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene, and any heteroarylene, and any heteroarylene, an

In any of the above embodiments, in a further embodiment, each of R^4 and R^5 is hydrogen.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment, at least one of R^4 and R^5 is selected from C_{1-15} alkyl, heteroalkyl, and C_6 - C_{10} aryl.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment, one of R⁴ and R⁵ is hydrogen and the other of R⁴ and R⁵ is selected from hydrogen, -OR⁹, -NR⁹R⁹ and -N=N-R⁹ where the R⁹ is selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl

15

25

and heteroaryl; R^{12} is selected from $(R^{11})_p$ -alkylene, $(R^{11})_p$ -heteroalkylene, $(R^{11})_p$ -arylene and $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ -alkylene, $(R^{12})_p$ -heteroalkylene, $(R^{12})_p$ -heteroalkylene, $(R^{13})_p$ -alkylene, and $(R^{13})_p$ -heteroarylene, and $(R^{13})_p$ -heteroarylene, $(R^{13})_p$ -heteroarylene, and $(R^{13})_p$ -heteroarylene, $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene, and an arrow arrow

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment, R^4 and R^5 together form a group selected from =0, = CR^8R^8 and = NR^{10} .

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^4 and R^5 together form =0.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^4 and R^5 together form =NR¹⁰ and R¹⁰ is -OR⁹ where R^9 is selected from hydrogen, C_6 - C_{10} aryl, C_1 - C_8 alkyl, heteroalkyl, (C_6 - C_{10} aryl)heteroalkyl, (C_6 - C_{10} aryl) C_1 - C_{15} alkylene, (heteroalkyl) $_p$ (heteroarylene) C_1 - C_{15} alkylene, (heteroalkyl) $_p$ (C_6 - C_{10} arylene) C_1 - C_{15} alkylene, and (C_1 - C_{15} alkyl) $_p$ (C_6 - C_{10} arylene)heteroalkylene.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^4 and R^5 together form =NR¹⁰ and R¹⁰ is -N(R⁹)(R⁹) where R⁹ is selected from hydrogen, C₁-C₈alkyl, heteroalkyl, C₆-C₁₀aryl, (C₆-C₁₀aryl)heteroalkylene, (heteroalkyl)_pC₆-C₁₀arylene, (C₁-C₁₅alkyl)_pC₆-C₁₀arylene)heteroalkylene, (C₁-C₁₅alkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene, and (C₁-C₁₅alkyl)_p(C₆-C₁₀arylene)C₁-C₁₅heteroalkylene.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^4 and R^5 together form = CR^8R^8 , and one of R^8 is hydrogen while the other R^8 is selected from hydrogen, C_1 - C_8 alkyl and heteroalkyl.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^8 is selected from hydrogen and C_1 - C_8 alkyl, and R^{10} is selected from hydrogen, R^{11} , R^{12} , R^{13} , R^{14} and R^{15} where R^{11} is selected from

alkyl, heteroalkyl, aryl and heteroaryl; R^{12} is selected from $(R^{11})_p$ -alkylene, $(R^{11})_p$ -heteroalkylene, $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ -alkylene, $(R^{12})_p$ -heteroalkylene, $(R^{12})_p$ -heteroarylene; R^{14} is selected from $(R^{13})_p$ -alkylene, $(R^{13})_p$ -heteroalkylene, $(R^{13})_p$ -arylene, and $(R^{13})_p$ -heteroarylene, $(R^{14})_p$ -heteroarylene, $(R^{14})_p$ -heteroalkylene, $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene, and an analylene, an analylene, an analylene, an analylene, an an analylene, an analylene, an a

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R⁸ is hydrogen.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^{10} is R^{11} .

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R⁴ and R⁵ together with the carbon to which they are both attached form a spiro carbocyclic or heterocyclic ring.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R⁶ is selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹³)_p-heteroalkylene, and (R¹³)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹⁴)_p-heteroarylene, and (R¹³)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^6 is selected from C_1 - C_{15} alkyl, C_1 - C_{15} heteroalkyl, $(C_6$ - C_{10} aryl) C_1 - C_{15} alkylene, $(C_6$ aryl) $(C_6$ aryl) $(C_6$ -aryl) $(C_1$ - C_1 -salkylene, $(C_6$ - C_1 -aryl) $(C_1$ - C_1 -sheteroalkylene, $(C_1$ - C_1 -salkylene, $(C_2$ - C_1 -salkylene) $(C_1$ - C_1 -salkylene, $(C_2$ - C_1 -salkylene) $(C_1$

The state and when most can be stated as the state of the

20

5

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R⁶ is an inorganic group having 1-8 atoms exclusively selected from boron, sulfur, phosphorous, silicon and hydrogen. Separately, in any of the above embodiments, R⁶ excludes inorganic group having 1-8 atoms exclusively selected from boron, sulfur, phosphorous, silicon and hydrogen.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R⁶ is hydrogen.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment n is 0.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment n is 1.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R³ is hydrogen; R⁴ and R⁵ are selected from (a) R⁴ is hydrogen and R⁵ is hydroxyl or protected hydroxyl and (b) R⁴ and R⁵ together form carbonyl; R⁶ is hydrogen; and n is 0.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^2 is $-OR^9$.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R² is -OCH₂CH₂Si(CH₃)₃.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R¹ is

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^9 is a C_1 - C_6 hydrocarbyl.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R⁹ is selected from n-propyl and -CH₂-CH=CH₂.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment R^1 is

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment, R^8 is hydrogen and R^9 is C_1 - C_6 hydrocarbyl.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment, R^9 is $-CH_2-CH=CH_2$.

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment the stereochemistry of the R^1 and $C(=O)R^2$ groups being as shown in formula Ia, with R^1 and $C(=O)R^2$ in a *cis* arrangement, both over the benzo ring substituted with $-OR^6$

$$R^{3}$$
 R^{4}
 R^{5}
 R^{1}
 R^{2}
 R^{7}
 R^{7}
 R^{6}
 R^{6}

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment the stereochemistry of the R^1 and $C(=O)R^2$ groups being as shown in formula Ib, with R^1 and $C(=O)R^2$ in a *trans* arrangement, with only $C(=O)R^2$ over the benzo ring substituted with $-OR^6$

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
(Ib).

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment the stereochemistry of the R^1 and $C(=O)R^2$ groups being as shown in formula lc, with R^1 and $C(=O)R^2$ in a *trans* arrangement, with only R^1 over the benzo ring substituted with $-OR^6$

$$R^2$$
 R^1
 R^3
 R^5
 R^5
 R^6
(Ic).

In any of the above embodiments unless otherwise inconsistent with a previous definition, in a further embodiment the stereochemistry of the R^1 and $C(=O)R^2$ groups being as shown in formula Id, with R^1 and $C(=O)R^2$ in a *cis* arrangement, with neither of the R^1 nor $C(=O)R^2$ groups being over the benzo ring substituted with $-OR^6$

$$R^2$$
 R^1
 R^3
 R^4
 R^5
 R^5
 R^6
(Id).

In another embodiment, the present invention provides a composition comprising a compound, or a combination of compounds, according to any one of the

10

15

20

25

above-described embodiments, and a pharmaceutically acceptable carrier, adjuvant or incipient.

In another embodiment, the present invention provides a method for inhibiting a TNF- α mediated processes, comprising administering to a patient in need thereof, through a therapeutically or prophylactically acceptable manner, a therapeutically or pharmaceutically effective amount of a composition comprising a compound or a mixture of compounds according to any of the above-described embodiments. In one embodiment, the administering is selected from transdermal, oral, intravenous, intramuscular, vaginal, rectal, pulmonary, subcutaneous, sublingual and transmucosal administration.

In another embodiment, the present invention provides a method for treating an inflammation event, comprising administering to a patient in need thereof, through a therapeutically or prophylactically acceptable manner, a therapeutically or pharmaceutically effective amount of a composition comprising a compound or a mixture of compounds according to any of the above-described embodiments. In one embodiment, the administering is selected from transdermal, oral, intravenous, intramuscular, vaginal, rectal, pulmonary, subcutaneous, sublingual and transmucosal administration.

In another embodiment, the present invention provides a library of benzobicyclooctane compounds where said library comprises a plurality of compounds each having a structure of formula (I) as describe above, including inventive embodiments thereof as set forth above, where diversity is present among the R¹, R², R³, R⁴, R⁵, R⁶, and R⁷ groups.

In another embodiment, the present invention provides a process for preparing a combinatorial library of benzobicyclooctane compounds, wherein said library comprises a plurality of compounds of formula (I), including inventive embodiments thereof as set forth above, said process comprising the steps:

(a) providing a compound bound to a solid support according to formula
(II)

10

wherein PG1 and PG2 refer to first and second protecting groups, respectively, where the first protecting group can be removed in the continued presence of the second protecting group, and the second protecting group can be removed in the continued presence of the linker, and (SS) refers to a solid support;

- (b) removing the first protecting group but not the second protecting group, to provide a first deprotected product;
- (c) reacting the first deprotected product with a plurality of amines of the formula HNRR' to provide a plurality of compounds bound to a solid support, each according to formula (IIa)

PG2 O NRR'
$$(R^7)N$$
 (IIa) (R^5) O linker (SS)

where R and R' are each independently selected from R⁹;

- (d) removing the second protecting group from (IIa) to provide a second deprotected product;
- 15 (e) reacting the second deprotected product with a plurality of amines of the formula HNR"R" to provide a plurality of compounds bound to a solid support, each according to formula (IIb)

$$R'''R''N$$

NRR'

 R^{4}
 R^{5}

O—linker—(SS)

where R" and R" are each independently selected from R9;

(f) removing the scaffold from the linker to provide a library of compounds according to formula (IIc)

$$R'''R''N$$
 R^3
 R^4
 R^5
 R^5
 R^5
 R^7
 $R^$

5

10

15

These and other embodiments of the present invention are described in further detail below.

DETAILED DESCRIPTION OF THE INVENTION

Before providing a detailed description of the invention, a number of terms as used herein are defined as follows:

Definition of terms

As used herein, the following terms have the indicated meanings.

Unless otherwise indicated, the term "a" refers to one or more than one of the indicated items. For example, "a compound" includes one and more than one compound.

"Alkyl" is a saturated or unsaturated, straight or branched, hydrocarbon chain. In various embodiments, the alkyl group has 1-18 carbon atoms, *i.e.*, is a C1-C18

10

15

20

25

group, or is a C1-C12 group, a C1-C6 group, or a C1-C4 group. Independently, in various embodiments, the alkyl group has zero branches (*i.e.*, is a straight chain), one branch, two branches, or more than two branches. Independently, in one embodiment, the alkyl group is saturated. In another embodiment, the alkyl group is unsaturated. In various embodiments, the unsaturated alkyl may have one double bond, two double bonds, more than two double bonds, and/or one triple bond, two triple bonds, or more than two triple bonds. Alkyl chains may be substituted or unsubstituted. In one embodiment, the alkyl chains are unsubstituted. In another embodiment, the alkyl chain is substituted, *e.g.*, with 1 substituent (*i.e.*, the alkyl group is monosubstituted), or 1-2 substituents, or 1-3 substituents, or 1-4 substituents, etc.

"Aryl" is an aromatic hydrocarbon ring system. The ring system may be monocyclic or fused polycyclic (e.g., bicyclic, tricyclic, etc.). In various embodiments, the monocyclic aryl ring is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that make up the ring system. A C6 ring system, i.e., a phenyl ring, is a preferred aryl ring. In various embodiments, the polycyclic ring is a bicyclic aryl ring, where preferred bicyclic aryl rings are C8-C12, or C9-C10. A naphthyl ring, which has 10 carbon atoms, is a preferred polycyclic aryl ring. Aryl rings may be substituted or unsubstituted. In one embodiment, the aryl ring is unsubstituted. In another embodiment, the aryl ring is substituted with 1 substituent (i.e., the aryl ring is monosubstituted), or 1-2 substituents, or 1-3 substituents, or 1-4 substituents, etc.

"Carbocyclic aliphatic ring," also referred to as carbocycle, is a saturated or unsaturated, monocyclic or polycyclic (e.g., bicyclic, tricyclic, etc.) hydrocarbon ring. Carbocyclic aliphatic rings are not aromatic. A polycyclic hydrocarbon ring may include fused, spiro or bridged ring structures. In various embodiments, the monocyclic carbocyclic aliphatic ring is a C3-C10, or a C4-C7, or a C5-C6 ring system. In various embodiments, the polycyclic carbocyclic aliphatic ring is a C6-C12, or a C9-C10 ring system. In one embodiment, the polycyclic ring is bicyclic. In another embodiment, the polycyclic ring is bicyclic ing include cyclopropyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl. Carbocycles may be

15

20

25

substituted or unsubstituted. In one embodiment, the carbocycle is unsubstituted. In another embodiment, the carbocycle is substituted with, e.g., 1 substituent (i.e., the alkyl group is monosubstituted), or 1-2 substituents, or 1-3 substituents, or 1-4 substituents, etc.

"Haloalkyl" is an alkyl chain substituted with one or more halogens. A preferred haloalkyl is trifluoromethyl.

"Heteroalkyl" is a saturated or unsaturated, straight or branched, chain containing carbon and at least one heteroatom. The heteroalkyl group may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms. Heteroalkyl chains may contain from 1 to 18 (i.e., 1-18) member atoms (carbon and heteroatoms) in the chain, and in various embodiments contain 1-12, or 1-6, or 1-4 member atoms. Independently, in various embodiments, the heteroalkyl group has zero branches (i.e., is a straight chain), one branch, two branches, or more than two branches. Independently, in one embodiment, the heteroalkyl group is saturated. embodiment, the heteroalkyl group is unsaturated. In various embodiments, the unsaturated heteroalkyl may have one double bond, two double bonds, more than two double bonds, and/or one triple bond, two triple bonds, or more than two triple bonds. Heteroalkyl chains may be substituted or unsubstituted. In one embodiment, the heteroalkyl chain is unsubstituted. In another embodiment, the heteroalkyl chain is A substituted heteroalkyl chain may have 1 substituent (i.e., be monosubstituted), or may have 1-2 substituents, or 1-3 substituents, or 1-4 substituents, etc. Exemplary heteroalkyl groups include esters (-C(=O)-OR) and ketones (-C(=O)-).

"Heteroaryl" is an aromatic ring system or a semi-aromatic system of rings or a pseudo aromatic ring or rings containing carbon and at least one heteroatom in at least one of the rings. The heteroaryl group may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms in the ring. The heteroaryl group may further include more than one ring system, which in various embodiments may include one heteroatom or 1-2 heteroatoms, or 1-3 heteroatoms, or 1 heteroatom in each ring system, or 1-4 heteroatoms in each ring system. The heteroaryl group which comprises more than one ring system may, in various embodiments have one or more than

15

20

25

one of the ring systems aromatic. Heteroaryl rings may be monocyclic or polycyclic, where the polycyclic ring may contained fused, spiro or bridged ring junctions. In one embodiment, the heteroaryl is selected from monocyclic and bicyclic. Monocyclic heteroaryl rings may contain from about 5 to about 10 member atoms (carbon and heteroatoms), preferably from 5-7, and most preferably from 5-6 member atoms in the ring. Bicyclic heteroaryl rings may contain from about 8-12 member atoms, or 9-10 member atoms in the ring. The heteroaryl ring may be unsubstituted or substituted. In one embodiment, the heteroaryl ring is unsubstituted. In another embodiment, the heteroaryl ring is substituted. The substituted heteroaryl ring may contain 1 substituent, or 1-2 substituents, or 1-3 substituents, or 1-4 substituents, etc. Exemplary heteroaryl rings include benzofuran, benzothiophene, furan, imidazole, indole, isothiazole, oxazole, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, quinoline, thiazole and thiophene.

"Heteroatom" is a nitrogen, sulfur, oxygen or silicon atom. Groups containing more than one heteroatom may contain different heteroatoms.

"Heterocyclic aliphatic ring," also referred to as "heterocyclyl", is a saturated or unsaturated, monocyclic or polycyclic (e.g., bicyclic, tricyclic, etc.) ring containing carbon and at least one heteroatom. Heterocyclic aliphatic rings are not aromatic per se but may be pseudo-aromatic and/or readily be made aromatic through methods known in the art. The heterocyclic aliphatic ring may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms, etc. In one embodiment, the heterocyclic aliphatic ring is monocyclic, where the monocyclic ring may have 3-10, or 4-7, or 5-6 member atoms. In another embodiment, the heterocyclic aliphatic ring is polycyclic, where in various embodiments, the ring may be bicyclic, or may be either bicyclic or tricyclic. A polycyclic ring system may have one or more fused, spiro or bridged ring systems. The polycyclic heterocyclic aliphatic ring system may have 6-12, or 9-10 member atoms. The heterocyclic ring may be unsubstituted or substituted. In one embodiment, the heterocyclic ring is unsubstituted. In another embodiment, the heterocyclic ring is substituted. The substituted heterocyclic ring may contain 1 substituent, or 1-2 substituents, or 1-3 substituents, or 1-4 substituents, etc.

10

15

20

25

Exemplary heterocyclic aliphatic rings include piperazyl, morpholinyl, tetrahydrofuranyl, tetrahydropyranyl and piperidyl.

"Inorganic groups having 1-8 atoms exclusively selected from boron, sulfur, phosphorous, silicon and hydrogen" refers to, for example, borates, sulfates, phosphates, silicates, and acids thereof.

"Lower alkyl" is an alkyl chain comprised of 1-6, preferably 1-4 carbon atoms.

"Pharmaceutically acceptable salt" and "salts thereof" means organic or inorganic salts of the pharmaceutically important molecule. A pharmaceutically acceptable salt may involve the inclusion of another molecule such as an acetate ion, a succinate ion or other counterion. The counterion may be any organic or inorganic moiety that stabilizes the charge on the parent compound. Furthermore, a pharmaceutically important organic molecule may have more than one charged atom in its structure. Situations where multiple charged atoms are part of the molecule may have multiple counterions. Hence, the molecule of a pharmaceutically acceptable salt may contain one or more than one charged atoms and may also contain, one or more than one counterion. The desired charge distribution is determined according to methods of drug administration. Examples of pharmaceutically acceptable salts are well known in the art but, without limiting the scope of the present invention, exemplary presentations can be found in the Physician's Desk Reference, The Merck Index, The Pharmacopoeia and Goodman & Gilman's The Pharmacological Basis of Therapeutics.

"Substituents" replace a hydrogen atom with a non-hydrogen atom on an alkyl, heteroalkyl, aryl, heteroaryl, carbocycle, and/or heterocyclyl group as defined herein. Where the substituent contains a heteroatom, that heteroatom may be at any acceptable oxidation state for that particular atom, e.g., sulfur as part of a substituent may vary from an oxidation state of -2 to +8, and may be part of a complex or chelate as in a sulfoxide a mercapto-phosphine or metal chelated in a thia-crown ether. Suitable substituents that may be located on one or more of these groups include the following: hydroxy, alkoxy (i.e., alkyl-O-, e.g., methoxy, ethoxy, propoxy, butoxy, pentoxy), aryloxy (e.g., phenoxy, chlorophenoxy, tolyloxy, methoxyphenoxy, benzyloxy, alkyloxycarbonylphenoxy,

15

20

25

acyloxyphenoxy), acyloxy (e.g., propionyloxy, benzoyloxy, acetoxy), carbamoyloxy, carboxy, mercapto, alkylthio, acylthio, arylthio (e.g., phenylthio, chlorophenylthio, alkylphenylthio, alkoxyphenylthio, benzylthio, alkyloxycarbonyl-phenylthio), sulfonamido (-N(R⁹)SO₂R⁹ or -SO₂NR⁹R⁹), amino (e.g., amino, mono- and di-C₁-C₃ alkanylamino, methylphenylamino, methylbenzylamino, C₁-C₃ alkanylamido, acylamino, carbamamido, ureido, guanidino, nitro, cyano and imino). Moreover, any substituent may have from 1-5 further substituents attached thereto.

"Amino" means a nitrogen atom substituted with up to 4 groups, for instance, 2 or 3 alkyl groups as defined above, or 1 or 2 alkyl groups and a hydrogen group, or with one or two aryl groups and one or two alkyl groups so that the total number of groups is 2 or 3, or with two or three aryl groups, or with two or more hydrogen atoms or with other the substitution required to complete the nitrogen's valence requirements. "Amino" further includes amino salts where the nitrogen is hypervalent, having four bonds and may or may not have a charge and a counterion. The counterion, when present, may be an external inorganic and/or organic counterion and/or may be an internal counterion. Inorganic counterions include, for example, anions such as halo anions and other non-metal anions. Examples of organic counterions include, for example, anionic organic moieties such as acetate, citrate and other anionic organic moieties. Thus, amino refers to quaternary ammonium groups, tertiary amines and salts thereof, secondary amines and salts thereof, and primary amines and salts thereof.

As used herein and in the appended claims a "library" means a large number of chemical derivatives used in screening for biological activity or other activity. In general a library will have greater than 20 members, preferably the library will have at least 50 members, more preferably the library will have at least 96 members and most preferably the library will have at least 1000 members.

As used herein and in the appended claims "scaffold" means a common chemical structure found within a library of organic compounds. Similarly, within a combinatorial chemical library the scaffold forms the basis for a diverse series of chemical derivatization, additions and subtractions. Importantly, regardless of the extent of the

10

15

20

25

chemical derivatization performed on the scaffold, the product is within the scope of the combinatorial library.

"Inflammation event" or "inflammation" or "swelling" are synonymous terms that mean an abnormal enlargement of a portion or tissue of an animal. The abnormal enlargement may be the normal, expected result of another event, such as, for example, sepsis, fever, trauma, shock, or injury. Non-limiting examples of some of these events include sepsis due to renal or liver failure, fever secondary to systemic infection, localized fever secondary to local infection, blunt force trauma or emotional trauma having physical manifestations, shock secondary to trauma and/or other events causing a pooling of body fluids and an injury causing release of cellular fluids initiating the inflammation cascade.

As used herein, "commercially available chemicals" and the chemicals used in the Examples set forth herein may be obtained from standard commercial sources including Acros Organics (Pittsburgh PA), Aldrich Chemical (Milwaukee WI, including Sigma Chemical and Fluka), Apin Chemicals Ltd. (Milton Park UK), Avocado Research (Lancashire U.K.), BDH Inc. (Toronto, Canada), Bionet (Cornwall, U.K.), Chemservice Inc. (West Chester PA), Crescent Chemical Co. (Hauppauge NY), Eastman Organic Chemicals, Eastman Kodak Company (Rochester NY), Fisher Scientific Co. (Pittsburgh PA), Fisons Chemicals (Leicestershire UK), Frontier Scientific (Logan UT), ICN Biomedicals, Inc. (Costa Mesa CA), Key Organics (Cornwall U.K.), Lancaster Synthesis (Windham NH), Maybridge Chemical Co. Ltd. (Cornwall U.K.), Parish Chemical Co. (Orem UT), Pfaltz & Bauer, Inc. (Waterbury CN), Polyorganix (Houston TX), Pierce Chemical Co. (Rockford IL), Riedel de Haen AG (Hannover, Germany), Spectrum Quality Product, Inc. (New Brunswick, NJ), TCI America (Portland OR), Trans World Chemicals, Inc. (Rockville MD), and Wako Chemicals USA, Inc. (Richmond VA).

As used herein, "compounds described in the chemical literature" may be identified though various reference books and databases. Suitable reference books and treatise that detail the synthesis of reactants useful in the preparation of compounds of the present invention, or provide references to articles that describe the preparation, include for example, "Synthetic Organic Chemistry", John Wiley & Sons, Inc., New York; S. R.

10

15

Sandler et al., "Organic Functional Group Preparations," 2nd Ed., Academic Press, New York, 1983; H. O. House, "Modern Synthetic Reactions", 2nd Ed., W. A. Benjamin, Inc. Menlo Park, Calif. 1972; T. L. Gilchrist, "Heterocyclic Chemistry", 2nd Ed., John Wiley & Sons, New York, 1992; J. March, "Advanced Organic Chemistry: Reactions, Mechanisms and Structure", 4th Ed., Wiley-Interscience, New York, 1992. Specific and analogous reactants may also be identified through the indices of known chemicals prepared by the Chemical Abstract Service of the American Chemical Society, which are available in most public and university libraries, as well as through on-line databases (the American Chemical Society, Washington, D.C., www.acs.org may be contacted for more details). Chemicals that are known but not commercially available in catalogs may be prepared by custom chemical synthesis houses, where many of the standard chemical supply houses (e.g., those listed above) provide custom synthesis services.

As used herein "suitable conditions" for carrying out a synthetic step are explicitly provided herein or may be discerned by reference to publications directed to methods used in synthetic organic chemistry. The reference books and treatise set forth above that detail the synthesis of reactants useful in the preparation of compounds of the present invention, will also provide suitable conditions for carrying out a synthetic step according to the present invention.

All other acronyms and abbreviations have the corresponding meaning as published in journals relative to the art of organic chemistry.

A. Compounds

In one aspect, the present invention provides benzobicyclooctane compounds of formula (I)

15

$$R^{3}$$
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{7}
 R^{6}

and optical isomers, diastereomers, enantiomers and pharmaceutically acceptable salts thereof in isolation (i.e., isolated from one another) or in mixture (i.e., two or more compounds in admixture with one another), where, independently at each location:

R¹ is selected from the following six formulae:

N R9	PR O R9	O R9 N R9 R8 R9
O R9	O R9	O R9 R9 R9 ;

 R^2 is $-OR^9$ or $-NR^9R^9$;

R³ is selected from hydrogen, halogen, hydroxyl or protected hydroxyl, amino or protected amino, and C₁-C₈alkyl or C₁-C₈haloalkyl;

 R^4 and R^5 are independently selected from R^9 , $-OR^9$, $-NR^9R^9$ and $-N=N-R^9$, or R^4 and R^5 may together form a group selected from =O, $=CR^8R^8$ and $=NR^{10}$, or R^4 and R^5 may together with the carbon to which they are both attached form a spiro carbocyclic or heterocyclic ring;

R⁶ is selected from hydrogen, inorganic groups having 1-8 atoms exclusively selected from boron, sulfur, phosphorous, silicon and hydrogen, and organic

5

groups having 1-20 carbons and optionally containing 1-4 heteroatoms selected from nitrogen, oxygen and silicon;

 R^7 is selected from halogen, hydroxyl or protected hydroxyl, amino or protected amino, and C_1 - C_8 alkyl or C_1 - C_8 haloalkyl;

R⁸ is selected from hydrogen, alkyl (preferably C₁-C₈alkyl), aryl and heteroalkyl;

R⁹ is selected from hydrogen and organic groups having 1-30 carbons and optionally containing 1-4 heteroatoms selected from nitrogen, oxygen and silicon, with the proviso that two R⁹ groups both joined to a common atom may be joined together so as to form a ring with the common atom;

 R^{10} is selected from -R⁹, -OR⁹, -NR⁹R⁹, -NH-C(O)R⁹; -NH-C(O)OR⁹ and -NH-C(S)NHR⁹; and

n is 0, 1, 2 or 3.

In one embodiment, when R^6 is hydrogen and R^4 and R^5 together form =0 and R^1 is CO_2R^9 , then R^2 is not OCH₃. In one embodiment, R^4 and R^5 are both hydrogen, while in another embodiment R^4 is not hydrogen when R^5 is hydrogen.

In formula (1), the two wavy lines (one connected to R^1 , the other connected to $C(=O)R^2$) indicate that the invention provides any possible stereochemistry for the R^1 and $C(=O)R^2$ groups. In other words, the present invention provides benzobicyclooctanes having each of the four relative stereochemistries shown below as formulae (Ia), (Ib), (Ic) and (Id).

In individual aspects, the present invention provides compounds of formulae Ia through Io, where each of Ia through Io is made up of one or more of the compounds of formula Ia, Ib, Ic and Id. An "x" in a box to the right of the designation Ia through Io indicates which of Ia, Ib, Ic and Id is contained within the designated formula. Thus, for instance, the compounds of formula Ij contain the compounds within formulae Ic and Id (as an "x" is present in the columns designated Ic and Id), but do not include the compounds of formula Ia or Ib (as no "x" appears in the columns designated Ia and Ib) in the row designated formula Ij.

15

Table A

		Formula													
Code.	Ia	Ib	Ic	ld											
No.	,														
Ia	x														
Ib		X													
Ic			X												
Id			, ,	x											
Ie	х	x .	į.												
If	X		x												
Ig	X			х											
Ih		x	x												

		Fon	mula	
Code	Ia	Ιb	Ic	Id
No.	•			
Ii		x	:	x
Ij			x	x
Ik .	х .	x	x	
II	X	x		x
Im .	X.	·	X.	, x ,
In	· .	x	х .	x
Io .	X	x .	x	x .

Thus, as shown in Table A, in one aspect the present invention provides compounds of formula Ia, while in a separate aspect the present invention provides compounds of formula Ib; while in a still separate aspect the present invention provides compounds of formula Ic. In another aspect, the present invention provides compounds of formula Id, while in another aspect the present invention provides compounds of formula Ie (containing the set of compounds within formulae Ia and Ib), and in another aspect the present invention provides compounds of formula If (containing the set of compounds In still another aspect the present invention provides within formulae Ia and Ic). compounds of formula Ig, and in another aspect provides compounds of formula Ih, while in another aspect the invention provides compounds of formula Ii, and in yet another aspect the present invention provides compounds of formula Ij. In a separate aspect, the present invention provides compounds of formula Ik, while in another aspect the present invention provides compound of formula II, and in still another aspect the invention provides compounds of formula Im. In addition, the present invention provides compounds of formula In, while in another aspect the present invention provides compounds of formula

Io. Thus, using a convenient shorthand, it may be said that in various aspects the present invention provides benzybicyclooctane compounds of formulae: (Ia); (Ib); (Ic); (Id); (Ie); (If); (Ig); (Ih); (Ii); (Ij); (Ik); (II); (Im); (Io). In each of the above-listed aspects, the compounds include optical isomers, diastereomers, enantiomers and pharmaceutically acceptable salts thereof in isolation or mixture, where, independently at each location, the substituents R^1 , R^2 etc. are as defined herein.

In the compounds of the present invention, R¹ is selected from the following six formulae, identified as R1a, R1b, R1c, R1d, R1e and R1f as defined below in Table B.

Table B

10

15

Thus, in compounds of the invention, R¹ may be one or more of R1a, R1b, R1c, R1d, R1e and R1f. Table C defines groups R1A through R1BJ, where each of R1A through R1BJ is composed of one or more of R1a, R1b, R1c, R1d, R1e and R1f. For example, as shown in Table C, R1A is defined as formula R1a but not any of R1b through R1f. As another example, R1G is defined as the sum of R1a and R1b, but does not include R1c through R1f. As a final example, R1BI is the sum of R1b through R1f, and excludes only R1a.

			I	R1		
R1	a	b	С	d	e	f
Y	X	X				X
Z	X		X	X		
AA	X		X		X	
AB	X	`.	X			X
AC	X			X	X	
AD	X			X		X
AE	X				X	X
AF		X	X	X		
AG		X	X		X	
AH		X	X	,		X
AI		X		X	X_	
AJ		X		X		X
AK		X			X	X
AL			X	X	X	
AM			X	X		X
AN			X		·X	·X
AO	, .			·X	X	X
AP	X	X	X	X		
AQ	X	X	X		X_	-
AR	X	X	X			X.
AS	X.	X		X	X	
AT	X	X		X		X
AU	X	X			X	X
AV	X		X	X	X	
AW	X	,	X	X		X
AX	X		X		X	X

		R1									
R1	a	b	С	d	e	f					
AY	X			X	X	X					
AZ		X	X	X	X						
BA		X	X	X	,	X					
BB		X		X	X	X					
BC	:		X	X	X	X					
BD	X	X	X	х	X						
BE	X	X	X	X		X					
BF	X	X	X		X	X					
BG	X	X		X	X	X					
ВН	X		X	X	X	X					
BI		X	X	X	X	X					
BJ	X	X	X	X	X	X					

Thus, in one aspect, the present invention provides compounds of formula (I) where R¹ is R1A. In another aspect, the invention provides compounds of formula (I) where R¹ is R1B. In another aspect, the invention provides compounds of formula (I) where R¹ is R1C. In another aspect, the invention provides compounds of formula (I) where R¹ is R1D. In another aspect, the invention provides compounds of formula (I) where R¹ is R1E. In another aspect, the invention provides compounds of formula (I) where R¹ is R1F. In other words, stated in a convenient shorthand nomenclature, in various aspects the present invention provides "Compounds of formula (I) where: R¹ is R1A; R¹ is R1B; R¹ is R1C; R¹ is R1D; R¹ is R1E; R¹ is R1F."

Using this same shorthand nomenclature, in various aspects the present invention provides compounds of formula (I) where: R¹ is R1G; R¹ is R1H; R¹ is R1I; R¹ is R1J; R¹ is R1K; R¹ is R1L; R¹ is R1M; R¹ is R1N; R¹ is R1O; R¹ is R1P; R¹ is R1Q; R¹ is R1R; R¹ is R1S; R¹ is R1T; R¹ is R1U; R¹ is R1V; R¹ is R1W; R¹ is R1X; R¹ is R1Y; R¹

15

is R1Z; R¹ is R1AA; R¹ is R1AB; R¹ is R1AC; R¹ is R1AD; R¹ is R1AE; R¹ is R1AF; R¹ is R1AG; R¹ is R1AH; R¹ is R1AI; R¹ is R1AJ; R¹ is R1AK; R¹ is R1AL; R¹ is R1AM; R¹ is R1AN; R¹ is R1AO; R¹ is R1AP; R¹ is R1AQ; R¹ is R1AR; R¹ is R1AS; R¹ is R1AT; R¹ is R1AU; R¹ is R1AV; R¹ is R1AV; R¹ is R1AZ; R¹ is R1BA; R¹ is R1BB; R¹ is R1BC; R¹ is R1BD; R¹ is R1BE; R¹ is R1BF; R¹ is R1BG; R¹ is R1BH; R¹ is R1BI; R¹ is R1BJ.

In separate aspects, the present invention provides compounds of formulae (Ia)-(Io) as defined in Table B wherein R¹ is selected from R1A through R1BJ as defined in Table C. Each of these aspects is given a unique identifier, X1 through X937 in Table D, where each of X1 through X937 is a separate and unique aspect of the present invention. In each of X1 through X937, R² is -OR⁹ or NR⁹R⁹. The present invention also provides aspects Y1 through Y937 as defined in Table E, which are analogous to aspects X1 through X937 in terms of formula (Ia)-(Io) and R¹, however in aspects Y1 through Z937 as defined in Table F, which are analogous to aspects Z1 through Z937 as defined in Table F, which are analogous to aspects X1 through X937 in terms of formula (Ia)-(Io) and R¹, however in aspects Z1 through Z937 R² is limited to -NR⁹R⁹.

Table D

lo	698X	X870	X871	X872	X873	X874	X875	X876:	X877	X878	628X	X880	X881	X882	X883	X884	X885	988X	X887	X888	X889	068X	X891	X892	X893	X894
ln	X807	808X	608X	X810	X811	X812	X813	X814	X815	X816	X817	X818	X819	X820	X821	X822	X823	X824	X825	X826	X827	X828	X829	X830	X831	X832
Im	X745	X746	X747	X748	X749	X750	X751	X752	X753	X754	X755	X756	X757	X758	65LX	09/X	X761	X762	E9LX	X764	X765	99/X	L9LX	89LX	69LX	X770
II	X683	X684	X685	989X	X687	889X	689X	069X	169X	X692	X693	X694	S69X	969X	L69X	869X	669X	X700	X701	X702	X703	X704	X705	90/X	X707	X708
Ik	X621	X622	X623	X624	X625	X626	X627	X628	K629	X630	X631	X632	X633	X634	X635	9E9X	X637	X638	6E9X	X640	X641	X642	X643	X644	X645	X646
	655X	X260	X561	X562	X563	X564	X565	X566	Z95X	X568	695X	X570	X571	X572	X573	X574	X575	375X	X577	X578	615X	X580	X581	X582	X583	X584
Ii	X497	X498	X499	X500	X501	X502	X503	X504	X505	305X	X507	X508	605X	X510	X511	X512	X513	X514	X515	X516	X517	X518	615X	X520	X521	X522
Ih	X435	X436	X437	X438	X439	X440	X441	X442	X443	X444	X445	X446	X447	X448	X449	X450	X451	X452	X453	X454	X455	X456	X457	X458	X459	X460
Ig	X373	X374	X375	X376	X377	X378	X379	X380-	X381	X382	X383	X384	X385	98EX	X387	X388	K389	X390	X391	X392	X393	X394	X395	X396	X397	X398
If	X311	X312	X313.	X314	X315	X316	X317	X318	X319	X320	X321	X322	X323	X324	X325	X326	X327	X328	X329	X330	X331	X332	X333	X334	X335	X336
Ie	X249	X250	X251	X252	X253	X254	X255	X256	X257	X258	X259	X260	X261	X262	X263	X264	X265	X266	X267	X268	X269	X270	X271	X272	X273	X274
Id	X187	X188	X189	X190	X191	X192	X193	X194	X195	X196	X197	X198	661X	X200	X201	X202	X203	X204	X205	X206	X207	X208	X209	X210	X211	X212
lc	X125	X126	X127	X128	X129	X130	X131	X132	X133	X134	X135	X136	X137	X138	X139	X140	X141.	X142	X143	X144	X145	X146	X147	X148	X149	X150
qI	X63	X64	X65.	99X	L9X	89X	69X	X70	X71	X72	X73	X74	X75	9/X	X77	X78	62X	X80.	X81	X82	X83	X84	X85	.98X	X87	X88
Ia	XI	X2	X3	X4	X5	9X	. X7	8X	6X	X10	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20	X21	X22	X23	X24	X25	X26
R1	V	В	ပ	D	Ε	F	Ð	Н	·I	J	K	L	M	Z	0	Ы	0	2	S	Т	D	>	W	×	Ϋ́	Z

with that that only must be the first that the transition of the t

Table D (cont)

X904 X905 Z06X 806X X912 X903 906X X910 X914 X234 X296 X358 X420 X482 X544 X606 X668 X730 X792 X854 X916 X848 X291X353X415X477X539X601X663X725X787X849X292X354X416X478X540X602X664X726X788X850X293X355X417X479X541X603X665X727X789X851 X93 | X155 | X217 | X279 | X341 | X403 | X465 | X527 | X589 | X651 | X713 | X775 | X837 X842 X95 X157 X219 X281 X343 X405 X467 X529 X591 X653 X715 X777 X839 X96 X158 X220 X282 X344 X406 X468 X530 X592 X654 X716 X778 X840 X782 | X844 X783 | X845 X784 X846 X791 X853 X785 X847 X841 X781 98/X X780 X771 X300 X362 X424 X486 X548 X610 X672 X734 X796 X226 X288 X350 X412 X474 X536 X598 X660 X722 X227 X289 X351 X413 X475 X537 X599 X661 X723 X543 | X605 | X667 | X729 X298 | X360 | X422 | X484 | X546 | X608 | X670 | X732 X299 X361 X423 X485 X547 X609 X671 X733 X285 X347 X409 X471 X533 X595 X657 X719 X287 | X349 | X411 | X473 | X535 | X597 | X659 | X721 X724 X728 X717 X222 X284 X346 X408 X470 X532 X594 X656 X718 X100 X162 X224 X286 X348 X410 X472 X534 X596 X658 X720 X545 | X607 | X669 | X731 X209 X216 | X278 | X340 | X402 | X464 | X526 | X588 | X650 | X712 X648 X649 | X342 | X404 | X466 | X528 | X590 | X652 | X593 X655 X476 X538 X600 X662 X542 | X604 | X666 | X647 X213 X275 X337 X399 X461 X523 X585 X214 X276 X338 X400 X462 X524 X586 X525 X587 | X345 | X407 | X469 | X531 X463 X232 | X294 | X356 | X418 | X480 X359 | X421 | X483 | X295 X357 X419 X481 X414 X339 X401 X228 | X290 | X352 X297 X215 X277 X218 X280 X221 | X283 X223 X230 X231 X233 X225 X236 X238 X229 X235 X113 | X175 | X237 X106 X168 X107 X169 X161 X160 X154 X163 X164 X165 X166 X170 X151 X152 951X 651X X167 X110 X172 X109 X171 X174 X153 X176 X102 X103 X101 X104 X108 X112 X92 86X X105 66X X94 26X X1111 X114 16X 06X **68X** X42 X33 X39 X44 X45 X48 X34 X36 X41 X35 X38 X40 . X43 X46 X47 X50 X49 X52 X37 X27 AP AP AR AT AU AV AM AW AB

The second state and the second state of the s

Table D (con't)

	. :		٠.			٠, ٠,	٠.		
X921	X922	X923	X924	X925	X926	X927	X928	X929	X930
X859	098X	X861	X862	E98X	X864	S98X	998X	.X867	898X
X797	86LX	66LX	008X	X801	X802	X803	X804	X805	908X
X735	X736	X737	X738	X739	X740	X741	X742	X743	X744
X673	X674	X675	9/9X	LL9X	8/9X	629X	089X	X681	X682
X611	X612	X613	X614	X615	X616	X617	X618	619X	X620
X549	X550	X551	X552	£\$\$X	X554	X555	955X	125X	X558
X487	X488	X489	X490	X491	X492	X493	X494	X495	X496
X425	X426	X427	X428	X429	X430	X431	X432	X433	X434
X363	X364	X365	99EX	L9EX	X368	69EX	X370	X371	X372
X301	X302	X303	X304	X305	90EX	X307	X308	X309	X310
X239	X240	X241	X242	X243	X244	X245	X246	X247	X248
X177	X178	X179	X180	X181	X182	X183	X184	X185	X186
X115	X116	X117	X118	X119	·X120	X121	X122	X123	X124
X53	X54	S5X	. 95X	. ZSX	X58	65X	09X	19X	X62
BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ

Table E

• :											•
lo	698 A	Y870	Y871	Y872	Y873	Y874	Y875	9/8X	X877	828Y	628X
In	L08 Å	808Y	608X	V810	118Y	Y812	Y813	Y814	X815	918A	L18 X
Im	Y745	X746	Y747.	X748	. Y749	Y750	Y751	Y752	X753	Y754	55LX.
II	X683	Y684	X685	989X	L89 K	889X	689X	069 λ	169A	769X	E69X
Ik	Y621	X622	Y623	Y624	Y625	Y626	Y627	X628	¥629	$\Lambda630$	X631
ij	Y559	X260	Y561	Y562	Y563	Y564	Y565	A566	X267		
Ii	Y497	Y498	¥499	Y500	Y501	Y502	Y503	Y504	Y505	905A	Y507
Ih	Y435						Y441			X444	Y445
Ig	X373	Y374	X375	¥376.	12 X3	. X378	62£X	V380	Y381	Y382	Y383
If	Y311	X312	Y313	Y314	Y315	Y316	Y317	¥318	4319	Y320	Y321
le	Y249	Y250	Y251	·Y252	Y253	Y254	Y255	X256	Y257	Y258	. Y259
ΡI	Y187	Y188	Y189	M190	161X	X192	£61X	V194	561 X	961A	261 Å
· oI	Y125	Y126	Y127	Y128	Y129	Y130	Y131	Y132	Y133	Y134	Y135
Ib	. Y63	Y64	X65	.99 X	L9X	89A	69.K	0/A	Y71	Y72	Y73
la	.Y1	Y2	. Y3	Y4	. Y5	9.A	$L\lambda$	8.A	6A	· Y10	- Y11
R.	Α	В	C	Ω	Ε	<u>H</u>	Ð	Н	Ι	ſ	Х

Table E (cont)

	. '											•					7 .								
Y880	Y881	Y882	Y883	Y884	X885	388 X	X887	X888	A889	068X	Y891	Y892	Y893	Y894	X895	368 K	X897	868 A	668A	A300	Y901	Y902	Y903	Y904	Y905
Y818	Y819	Y820	Y821	Y822	Y823	Y824	Y825	Y826	Y827	Y828	Y829	Y830	Y831	Y832	Y833	Y834	Y835	Y836	Y837	Y838	Y839	Y840	Y841	Y842	Y843
Y756	Y757	Y758	Y759	09/A	Y761	Y762	X763	Y764	Y765	99 <i>L</i> X	L9LX	89LX	69LX	X770	Y771	Y772	Y773	Y774	Y775	1922 A	111X	X778	622X	X780	Y781
Y694	Y695	X696	L69X	869A	669A	X700	Y701	Y702	Y703	Y704	X705	90/ X	Y707	X708	60LX	Y710	Y711	Y712	Y713	Y714	Y715	Y716	Y717	Y718	Y719
Y632	Y633	Y634	Y635	X636	Y637	Y638	Y639	Y640	Y641	Y642	Y643	Y644	Y645	Y646	Y647	Y648	Y649	Y650	Y651	Y652	Y653	Y654	Y655	¥656	Y657
Y570	Y571	Y572	Y573	Y574	Y575	Y576	Y577.	Y578	V579	Y580	Y581	Y582	Y583	Y584	Y585	X286	Y587	Y588	Y589.	Y590	Y591	Y592	Y593	Y594	Y595
Y508	Y509	Y510	Y511	Y512	Y513	Y514	Y515	Y516	Y517	Y518	Y519	Y520	Y521	Y522	Y523	Y524	Y525	Y526	Y527	Y528	Y529	Y530	Y531	Y532	Y533
Y446	.Y447	Y448	Y449	Y450	Y451	Y452	Y453	Y454	Y455	Y456	Y457	Y458	Y459	Y460	Y461	X462	Y463	Y464	Y465	Y466	X467	Y468	X469	Y470	Y471
Y384	Y385	Y386	·Y387	Y388	Y389	Y390	Y391	Y392	Y393	Y394	X395	368Y	Y397	X398	X399	Y400	Y401	Y402	Y403	Y404	Y405	Y406	Y407	Y408	Y409
Y322.	Y323.	Y324	Y325	Y326	X327	Y328	Y329	Y330	Y331	Y332	Y333	Y334	Y335	Y336	Y337	Y338	Y339	Y340	Y341	Y342	Y343	Y344	Y345	Y346	Y347
Y260	Y261	Y262	Y263	Y264	Y265	Y266	Y267	Y268	K569	¥270	Y271	Y272	Y273	Y274	Y275	Y276	Y277	Y278	Y279	Y280	Y281	Y282	Y283	Y284	Y285
Y198	Y199	Y200	Y201	Y202	Y203.	Y204	Y205	Y206	Y207	Y208	Y209	Y210	Y211	Y212	Y213	Y214	Y215	Y216	Y217	Y218	Y219	Y220	Y221	Y222	Y223
Y136	Y137	Y138	Y139	Y140	Y141	Y142	Y143	Y144	Y145	Y146	Y147	Y148	Y149	Y150	Y151	Y152	Y153	Y154	Y155	Y156	Y157	Y158	V159	.Y160	V161
Y74	Y75	776	Y77	X78	6/A	·Y80	Y81	Y82	Y83	Y84	X85	98.k	Y87	Y88	V89	06X	Y91	Y92	Y93	Y94	V95	96X	76Y	86X	66X
Y12	Y13	Y14	Y15	Y16	Y17	Y18	V19	Y20	Y21	Y22	Y23	Y24	Y25	Y26	Y27	Y28	Y29	Y30	· Y31	· Y32	Y33	Y34	Y35	X36	Y37
Ţ	Σ	ż	0	l b	O	. R1	S		n	Λ	M	X	·Y	Z	AA	AB	AC .	AD	AE	AF	AG	AH	AI	AJ	AK

Table E (con 1)

	_ :					•	·															<u>:</u>	•	·
906X	X907	X908	606X	. 016X	Y911	Y912	Y913	Y914	Y915	Y916	Y917	Y918	4919	Y920	Y921	Y922	Y923	Y924	Y925	Y926	Y927	Y928	Y929	Y930
Y844	Y845	Y846	Y847	Y848	Y849	Y850	Y851	Y852	Y853	Y854	Y855	X856	Y857	Y858	A829	.098Y	Y861	Y862	Y863	Y864	Y865	A866	Ÿ867	¥868
Y782	Y783	Y784	Y785	98/A.	Y787	X788	7789 E	Y790	167Y	Y792	Y793	Y794	Y795	96LX	161X	.86LA	66/A	V800	Y801	Y802	Y803	Y804	Y805	308 A
Y720	Y721	Y722	Y723	Y724	Y725	Y726	Y727	Y728	Y729	Y730	Y731	Y732	Y733	Y734	Y735	Y736	Y737	Y738	A739	Y740	Y741	Y742	Y743	Y744
Y658	¥659	.V660	Y661	X662	Y663	Y664	X665	999X	7.299X	899X	699X	0/9X	119A	Y672	Y673	Y674	X675	9/9K	LL9X	·8/9X	K679	V680	Y681	Y682
Y596	Y597	X598	665 X	009A	Y601	Y602	Y603	Y604	X605	.909X	V607	X608	609X	Y610	Y611	Y612	Y613	Y614	Y615	V616	Y617	Y618	Y619	Y620
Y534	Y535	Y536	Y537	Y538	Y539	Y540	Y541	Y542	Y543	Y544	X545	Y546	Y547	Y548	Y549	Y550	Y551	Y552	Y553	Y554	Y555	Y556	Y557	Y558
Y472	Y473	Y474	Y475	X476	.Y477	¥478	V479	Y480	Y481	Y482	Y483	¥484	Y485	Y486	.Y487	Y488	X489	Y490	Y491	Y492	Y493	Y494	Y495	Y496
Y410	Y411	Y412	Y413	Y414	Y415	Y416	Y417	Y418	Y419	Y420	Y421	Y422	Y423	Y424	Y425	Y426	Y427	Y428	Y429	Y430	Y431	Y432	Y433	Y434
Y348	Y349	Y350	Y351	Y352	Y353	Y354	Y355	X356	Y357	Y358	Y359.	X360	Y361	Y362	X363	Y364	Y365	396 Y	X367	X368	A369	Y370	.Y37i	Y372
Y286	Y287	Y288	Y289	Y290	Y291	X292	Y293	Y294	X295	X296	Y297	X298	¥299	Y300	X301	Y302	Y303	Y304	Y305	X306	Y307	Y308	Y309	Y310
Y224	Y225	. Y226	Y227	Y228	Y229	Y230	Y231	Y232	Y233	Y234	Y235	Y236	Y237	Y238	Y239	Y240	Y241	Y242	Y243	Y244	Y245	Y246	Y247	Y248
Y162	Y163	Y164	Y165	Y166	Y167	Y168	-Y169	Y170	Y171	Y172	Y173	Y174	Y175	3/17	Y177	Y178	Y179	Y180	Y181	Y182	Y183	Y184	Y185	Y186
Y100	Y101	Y102	Y103	Y104	.Y105	Y106	Y107	Y108	X109	V110	Y111	Y112	Y113	Y114	Y115	V116	Y117	Y118	611X	Y120	Y121	Y122	Y123	Y124
Y38	A39	Y40	Y41	Y42	. Y43	Y44	Y45	Y46	Y47	Y48	Y49	Y50	15Y	Y52	Y53	Y54	Y55	Y56	Y57	Y58	Y59	. Y60	19X	Y62
AL	AM	AN	AO	AP	AW	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ

Table F

																					_					
lo	698Z	0/8Z	- 128Z	Z872	EL8Z	Z874	Z875	9 28 Z	<i>LL</i> 8Z	828Z	628Z	Z880	Z881	Z882	£88Z	Z884	Z885	988Z	L88Z	888Z	688Z	068Z	168Z	Z892	E68Z	Z894
ln	Z807	808Z	608Z	018Z	118Z	Z812	Z813	Z814	Z815	Z816	Z817	Z818	Z819	Z820	Z821	Z822	Z823	Z824	Z825	Z826	Z827	Z828	628Z	Z830	Z831	Z832.
Im	Z745	2746	L147	Z748	67/Z	05LZ	1.5LZ	Z212	ESLZ	Z754	.SSLZ	9\$LZ	LSLZ	85LZ	65LZ	09/Z	19/Z	Z162	E9LZ	Z764	Z265	99LZ	<i>L9L</i> Z	89/Z	.69LZ	0 <i>LL</i> Z
II	Z683	Z684	S89Z	989Z	Z887	889Z	689Z	069Z	169Z	Z69Z	E69Z	Z694	S69Z	969Z	L69Z	869Z	669Z	00/Z	10/Z	Z0/Z	Z703	Z704	S0/Z	90/Z	L0LZ	80/Z
Ik	Z621	Z622	Z623	Z624	Z625	Z626	Z627	Z628	Z629	Z630	Z631	Z632	Z633	Z634	Z635	Z636	Z637	Z638	Z639	Z640	Z641	Z642	Z643	Z644	Z645	Z646
Įį	Z559	Z260	Z261	Z562	Z563	Z564	Z565	7 2566	Z267	Z568	69\$Z	Z570	Z571	Z572	Z573	Z574	Z575	2576	Z577	Z578	Z579	Z580	Z581	Z582	Z583	Z584
Ii	Z497	Z498	Z499	Z500	Z501	Z502	Z503	Z504	Z505	.90SZ	Z507	Z508	Z509	Z510	Z511	Z512	Z513	Z514	Z515	91SZ	Z517	S18Z	61 5 Z	Z520	Z521	Z522
Ih	Z435	Z436	Z437	Z438	Z439	Z440	Z441	Z442	Z443	Z444	Z445	Z446	Z447	Z448	Z449	Z450	Z451	Z452	Z453	Z454	Z455	Z456	Z457	Z458	Z459	Z460
Ig	Z373	Z374	Z375.	Z376	Z377	Z378	Z379	Z380	Z381	Z382	Z383	Z384	Z385	Z386	Z387	Z388	Z389	Z390	Z391	Z392	Z393	Z394	Z395	Z396	Z397	Z398.
If	Z311	Z312	Z313	Z314	Z315	Z316	Z317	Z318	Z319	Z320	Z321	Z322	Z323	Z324	Z325	Z326	Z327	Z328	Z329	Z330	Z331	Z332	Z333	Z334	Z335	Z336
Ie	Z249	Z250	Z25.1	Z252	Z253	Z254	Z255	Z256	Z257	Z258	,Z259	Z260	Z261	Z262	Z263	Z264	Z265	Z266	Z267	Z268	57569	Z270	Z271	Z272	Z273	Z274
Id	Z187	Z188	Z189	Z190	Z191	Z192	Z193	Z194	Z195	Z196	161Z	Z198	Z199	Z200	Z201	Z202	Z203	Z204	Z205	Z206	Z207	Z208	Z209	Z210	Z211	Z212
lc	Z125	Z126.	Z127	Z128.	Z129	Z130	Z131	Z132	Z133	Z134	Z135	Z136	Z137	Z138	Z139	Z140	Z141	Z142	Z143	Z144	Z145	Z146	Z147	Z148	Z149	Z150
qI .	E9Z	Z64	Z65	99Z	L9Z	89Z	69Z	0LZ	Z71	Z72	£LZ.	Z74	<i>SL</i> Z	9/Z	LLZ	.8LZ	6LZ	08Z	Z81	Z8Z	Z83	Z84	Z85	98Z .	287	88Z
Ia	. Z1	Z2	Z3	Z4	Z5	9Z	LZ	8Z	6Z	Z10	112	Z12	Z13	Z14	Z15	912	Z17	Z18	61Z	Z20	Z21	· Z 22	Z23	Z24	Z25	Z26
R1	А	В	С	D	E	F	G	Н	I	J	K	7	M	N	0	P	0	R	S	Т	n	·A	W	X	λ	Z

The state of the s

Table F (con t)

				_;-	:	•	, :										1.1	217	<u>.</u>		<u>. '</u> .			. 13	
Z895	968Z	. Z897	Z898	668Z	006Z	Z901	Z902	Z903	Z904	Z905	906Z	Z907	806Z	. 606Z	Z910	Z911	Z912	Z913	Z914	Z915	2916Z	Z917	816Z	Z919	Z920
Z833	Z834	Z835	988Z	Z837	Z838	Z839	Z840	Z841	Z842	Z843	Z844	Z845	Z846	Z847	Z848	Z849	Z850	Z851	Z852	Z853	Z854	Z855	958Z	Z857	Z858
Z771	Z772	<i>ELLZ</i>	Z774	SLLZ	9 <i>LL</i> Z	LLLZ	8/LZ	6LLZ	Z780	Z781	Z782	Z783	Z784	Z785	.98LZ	Z787	Z788	68LZ	06LZ	16/Z	Z192	Z793	Z794	Z795	96LZ
60LZ	Z710	Z711	Z712	Z713	Z714	Z715	Z716	Z717	Z718	Z719.	Z720.	Z721	Z722	Z723	Z724	Z725	Z726	Z727	Z728	Z729	Z730	Z731	Z732	Z733	Z734
Z647	Z648	Z649	Z650	Z651	Z652	Z653 ·	Z654	Z655	Z656.	Z657	Z658	659Z	099Z	Z661	Z99Z	. Z663	Z664	S99Z	999Z	L99Z	899Z	699Z	0/9Z	Z671	Z672
Z585	2586	Z587	Z588	Z589	Z590	Z291	Z892	Z593	Z594	Z595	2596	Z597	865Z	5299	009Z	Z601	Z602	Z603	Z604	S09Z	909Z	· 209Z	809Z	609Z	Z610
Z523	Z524	Z525	Z526	Z527	Z528	Z529	Z530	Z531	Z532	Z533	Z534	Z535	Z536	Z537	Z538	Z539	Z540	Z541	Z542	Z543	Z544	Z545	Z546	Z547	Z548
Z461	Z462	Z463	Z464	Z465	Z466	Z467	Z468	Z469	Z470	Z471	Z472	Z473	Z474	Z475	Z476	Z477	Z478	Z479	Z480	Z481	Z482	Z483	Z484	Z485	Z486
Z399	Z400	Z401	Z402	Z403	Z404	Z405	Z406	Z407	Z408	Z409	Z410	Z411	Z412	Z413	Z414	Z415	Z416	Z417	Z418	Z419	Z420	Z421	Z422	Z423	Z424
Z337	Z338	Z339	Z340	Z341	Z342	Z343	Z344	Z345	Z346	Z347	Z348	Z349	Z350	Z351	Z352	Z353	Z354	Z355	Z356	Z357	Z358	Z359	Z360	Z361	Z362
Z275	.Z276	. Z277	Z278	Z279	Z280	Z281	Z282	Z283	Z284	Z285	Z286	Z287	Z288	Z289	Z290	Z29.1	Z292	Z293	Z294	Z295	Z296	· Z297	Z298	Z299	Z300
Z213	Z214	Z215	Z216	Z217	Z218	Z219	Z220	Z221	Z222	Z223	Z224	Z225	Z226	Z227	Z228	Z229	Z230	Z231	Z232	Z233	Z234	Z235	Z236	Z237	Z238
Z151	- Z152	Z153	Z154	Z155.	Z156	Z157	Z158									Z167		Z169	Z170	Z171	Z172	Z173	Z174	Z175	9L1Z
68Z	Z90	Z91	Z92	Z93	Z94	. Z6Z	96Z	L6Z	86Z	.66Z	_001Z	Z101	Z102	Z103	Z104	Z105	Z106	Z107	Z108	Z109	Z110	Z111	Z112	Z113	Z114
Z27	Z28	Z29	Z30.	Z31	Z32	Z33 .	Z34	. Z35.	Z 36	Z37	Z38	533	Z40	Z41	Z42	Z43	Z44	Z45	Z46	Z47	Z48	Z49	Z50	: Z51	Z52
AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AW	AR	AS	AT	AU	AV.	AW	AX	ΑŸ	AZ

The state of the s

Table F (con t)

					· .	٠٠.		•	
Z921	Z26Z	EZ6Z	Z924	Z925	976Z	L 26Z	Z928	676Z	0£6Z
Z859	098Z	Z861	Z862	. Z863	Z864	Z865	998Z	Z867	. 898Z
Z197	-86LZ	66LZ	008Z	Z801	Z802	Z803	Z804	Z805	908Z
Z735	Z136	Z737	Z738	Z739-	Z740	Z741	Z742	Z743	Z744
Z673	Z674	SE 25	9 <i>L</i> 9Z	LL9Z	8/9Z	6 <i>L</i> 9Z	089Z	Z681	Z89Z
Z611	Z612	Z613	Z614	Z615	Z616	Z617	Z618	619Z	Z620
Z549	Z550	Z551	Z552	Z553.	Z554	Z555	2556	Z557	Z558
Z487	Z488	Z489	Z490	Z491	Z492	Z493	Z494	Z495	Z496
Z425	Z426	Z427	Z428	Z429	Z430	Z431	Z432	Z433	Z434
Z363	Z364	Z365.	.99EZ	Z367	Z368	Z369	Z370	. Z371.	Z372
Z301	Z302	Z303	Z304	Z305	Z306	Z307	Z308	Z309	Z310
Z239	Z240	Z241	Z242	Z243	Z244	Z245	Z246	Z247	Z248
Z177	Z178	6L1Z	Z180	Z181	Z182	Z183	Z184	Z185	2186
511Z:	Z116	L11Z.	Z118	611Z	Z120	Z121	Z122.	Z123	721Z
Z53	Z54	Z55	95Z	Z57	S2S	Z59	09Z	Z61	Z9Z-
BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ

In each of the above-listed aspects, the compounds include optical isomers, diastereomers, enantiomers and pharmaceutically acceptable salts thereof in isolation or mixture, where, independently at each location, the substituents R^1 , R^2 etc. are as defined herein.

Thus, for example, in one embodiment, the present invention provides a compound, or a mixture including a compound, wherein the stereochemistry of the R^1 and $C(=O)R^2$ groups are as shown in formula Ia, with R^1 and $C(=O)R^2$ in a *cis* arrangement, both over the benzo ring substituted with $-OR^6$

$$R^4$$
 R^5
 R^1
 R^2
 R^7
 R^7
 R^6
(Ia).

In another exemplary embodiment, the present invention provides a compounds, or a mixture including a compound, wherein the stereochemistry of the R^1 and $C(=O)R^2$ groups are as shown in formula Ib, with R^1 and $C(=O)R^2$ in a *trans* arrangement, with only $C(=O)R^2$ over the benzo ring substituted with $-OR^6$

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
(Ib).

In yet another exemplary embodiment, the present invention provides a compound, or a mixture including a compound, having the stereochemistry of the R^1 and

 $\chi^{(1)}$

 $C(=O)R^2$ groups as shown in formula Ic, with R^1 and $C(=O)R^2$ in a *trans* arrangement, with only R^1 over the benzo ring substituted with $-OR^6$

$$R^2$$
 R^1
 R^3
 R^5
 R^5
 R^6
(Ic).

Another exemplary embodiment of the present invention provides a benzobicyclooctane compound, or a mixture containing a benzobicyclooctane compound, wherein the stereochemistry of the R^1 and $C(=O)R^2$ groups are as shown in formula Id, with R^1 and $C(=O)R^2$ in a *cis* arrangement, with neither of the R^1 nor $C(=O)R^2$ groups being over the benzo ring substituted with $-OR^6$

$$R^2$$
 R^1
 R^3
 R^5
 R^5
 R^6
(Id).

In one embodiment, the present invention provides a compound of formula (I) wherein R^1 is selected from the following four formulae, *i.e.*, R^1 is R1AX:

$$\begin{array}{c|c}
 & O \\
 & R^9 \\
 & R^8 \\
 & R^9
\end{array}$$

In one embodiment, the present invention provides a compound of formula (I) wherein R¹ is R1AX; R⁸ is selected from hydrogen and C₁-C₁₅alkyl; and R⁹ is selected from hydrogen, heteroalkyl, C₁-C₁₅alkyl, (heteroaryl)C₁-C₁₅alkylene, (C₆-C₁₀aryl)C₁-C₁₅alkylene, C₆-C₁₀aryl fused to C₁-C₁₅alkylene, (alkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene, (C₆-C₁₀arylene)C₁-C₁₅alkylene, (C₁-C₁₅alkyl)_p(heteroarylene)C₁-C₁₅alkylene, and (heteroalkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene, or two R⁹ groups bonded to a common nitrogen of R¹ may be joined together to form a 5-8 membered heterocycle including the common nitrogen, where this 5-8 membered heterocycle may be substituted with 0-5 groups selected from alkyl and heteralkyl, where p is selected from 1, 2, 3, 4 and 5.

In one embodiment, the present invention provides a compound of formula I wherein R^1 is R1A and R^8 and R^9 are each independently selected from R^{11} , R^{12} , R^{13} , R^{14} and R^{15} where R^{11} is selected from alkyl, heteroalkyl, aryl and heteroaryl; R^{12} is selected from $(R^{11})_p$ -alkylene, $(R^{11})_p$ -heteroalkylene, $(R^{11})_p$ -arylene and $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ -alkylene, $(R^{12})_p$ -heteroalkylene, $(R^{12})_p$ -arylene, and $(R^{13})_p$ -arylene, $(R^{13})_p$ -heteroarylene, $(R^{13})_p$ -arylene, and $(R^{13})_p$ -heteroarylene, $(R^{15})_p$ -heteroarylene, $(R^{15})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene) $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene) $(R^{14})_p$ -heteroarylene) $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene) $(R^{14})_p$ -heteroarylene) $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene, and an arylene, and an ary

In one embodiment, the present invention provides a compound of formula (I) wherein R^1 is R1C and R^8 and R^9 are each independently selected from hydrogen, R^{11} , R^{12} , R^{13} , R^{14} and R^{15} where R^{11} is selected from alkyl, heteroalkyl, aryl and heteroaryl; R^{12} is selected from $(R^{11})_p$ -alkylene, $(R^{11})_p$ -heteroalkylene, $(R^{11})_p$ -arylene and $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ -alkylene, $(R^{12})_p$ -heteroalkylene, $(R^{12})_p$ -heteroalkylene, and $(R^{13})_p$ -heteroarylene, $(R^{13})_p$ -heteroalkylene, and $(R^{13})_p$ -heteroarylene, and $(R^{14})_p$ -heteroarylene, and $(R^{14})_p$ -heteroalkylene, and $(R^{14})_p$ -heteroarylene, and $(R^{14})_$

In one embodiment, the present invention provides a compound of formula (I) wherein R¹ is R1E and R⁹ is selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-arylene, and (R¹⁴)_p-heteroarylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. Optionally, R⁹ is selected from hydrogen, heteroalkyl, C₁-C₁₅alkyl, (heteroaryl)C₁-C₁₅alkylene, and (heteroalkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene.

In one embodiment, the present invention provides a compound of formula (I) wherein R¹ is R1F and R⁹ is selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and arylene, and arylene, and arylene, a

heteroarylene, R¹⁵ is selected from (R¹⁴)_p-alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. Optionally, R⁹ is selected from hydrogen, heteroalkyl, C₁-C₁₅alkyl, (heteroaryl)C₁-C₁₅alkylene, (C₆-C₁₀aryl)C₁-C₁₅alkylene, (alkyl)p(C₆-C₁₀arylene)C₁-C₁₅alkylene, or the two R⁹ groups of R¹ may be joined together to form a 5-8 membered heterocycle including the common nitrogen, where this 5-8 membered heterocycle may be substituted with 0-5 groups selected from alkyl and heteralkyl.

In one embodiment, the present invention provides a compound of formula (I) wherein R² is -OR⁹, i.e., aspects Y1 through Y937. Optionally, R⁹ of -OR⁹ of R² is selected from hydrogen, R^{11} , R^{12} , R^{13} , R^{14} and R^{15} where R^{11} is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹²)_parylene, and $(R^{12})_p$ -heteroarylene; R^{14} is selected from $(R^{13})_p$ -alkylene, $(R^{13})_p$ heteroalkylene, $(R^{13})_p$ -arylene, and $(R^{13})_p$ -heteroarylene, R^{15} is selected from $(R^{14})_p$ alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. In a further optional embodiment, R⁹ of -OR⁹ of R² is selected from hydrogen, heteroalkyl, C₁-C₁₅alkyl, (C₆-C₁₀aryl)(C₆-C₁₀arylene)C₁-C₁₅alkylene, (C₁-C₁₅alkyl)_p(heteroarylene)C₁-C₁₅alkylene, $(C_1-C_{15}alkyl)_p$ (heteroarylene) heteroalkylene, $(heteroalkyl)_{p}(C_{6}-C_{10}arylene)C_{1}-C_{15}alkylene,$ and $(C_{1}-C_{15}alkyl)_{p}(C_{6}-C_{10}arylene)hetero$ alkylene. In a further embodiment, R⁹ of -OR⁹ of R² is selected from a heteroalkyl group having 1-10 carbons and 1-4 heteroatoms selected from nitrogen, oxygen, silicon and sulfur, where -CH₂CH₂Si(CH₃)₃ is a preferred heteroaklyl within this group.

In one embodiment, the present invention provides a compound of formula (I) wherein R² is -NR⁹R⁹. Optionally, R⁹ of -NR⁹R⁹ of R² is independently selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-heteroarylene, and (R¹³)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-heteroalkylene, (R¹⁵)_p-heteroarylene, R¹⁵ is selected from (R¹⁶)_p-heteroalkylene, (R¹⁷)_p-heteroarylene, R¹⁸ is selected from (R¹⁸)_p-heteroarylene, R¹⁸ is selected from (R¹⁸)_p-heteroaryl

alkylene, $(R^{14})_p$ -heteroalkylene, $(R^{14})_p$ -arylene, and $(R^{14})_p$ -heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. In a further optional embodiment, R^9 of $-NR^9R^9$ of R^2 is selected from hydrogen, heteroalkyl, C_1 - C_{15} alkyl, (heteroaryl) C_1 - C_{15} alkylene, (heteroalkyl) $_p$ (aryl)heteroalkylene, (heteroalkyl) $_p$ (aryl) C_1 - C_{15} alkylene, and $(C_1$ - C_{15} alkyl) $_p$ (C_6 - C_{10} arylene) C_1 - C_{15} alkylene.

In one embodiment, the present invention provides a compound of formula (I) wherein \mathbb{R}^3 is hydrogen.

In two embodiments, the present invention provides a compound of formula (I) wherein R⁴ and R⁵ are independently selected from: hydrogen, -R⁹, -OR⁹, and -NR⁹R⁹, or R⁴ and R⁵ may together with the carbon to which they are both attached form a spiro carbocyclic or heterocyclic ring; and wherein R⁴ and R⁵ are each hydrogen. In one embodiment, the present invention provides a compound of formula (I) wherein at least one of R⁴ and R⁵ is selected from C₁-C₁₅alkyl, heteroalkyl, and C₆-C₁₀aryl. embodiment, the present invention provides a compound of formula (I) wherein one of R⁴ and R⁵ is hydrogen and the other of R⁴ and R⁵ is selected from hydrogen, -OR⁹, -NR⁹R⁹ and -N=N-R⁹ where the R⁹ is selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_palkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from $(R^{13})_p$ -alkylene, $(R^{13})_p$ -heteroalkylene, $(R^{13})_p$ -arylene, and $(R^{13})_p$ heteroarylene, R¹⁵ is selected from (R¹⁴)_p-alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. Optionally, R⁹ of -OR⁹, -NR⁹R⁹ and -N=N-R⁹ from R⁴ and R⁵ is selected from hydrogen, C₆-C₁₀aryl, heteroalkyl, C_1 - C_{15} alkyl, and $(C_1$ - C_{15} alkyl)_p $(C_6$ - C_{10} arylene) C_1 - C_{15} alkylene. In one embodiment, the present invention provides a compound of formula (I) wherein R⁴ and R⁵ together with the carbon to which they are both attached form a 3-6-membered spiro carbocyclic or heterocyclic ring. In one embodiment, the present invention provides a compound of formula (I) wherein R⁴ and R⁵ together form =0. In one embodiment, the present invention provides a compound of formula (I) wherein R⁴ and R⁵ together form =NR¹⁰ and R¹⁰ is -OR⁹

25

where R^9 is selected from hydrogen, C_6 - C_{10} aryl, C_1 - C_8 alkyl, heteroalkyl, $(C_6$ - C_{10} aryl)heteroalkyl, $(C_6$ - C_{10} aryl) C_1 - C_{15} alkylene, (heteroalkyl) $_p$ (heteroarylene) C_1 - C_{15} alkylene, (heteroalkyl) $_p$ (C_6 - C_{10} arylene)heteroalkylene. In one embodiment, the present invention provides a compound of formula (I) wherein R^4 and R^5 together form =N R^{10} and R^{10} is -N(R^9)(R^9) where R^9 is selected from hydrogen, C_1 - C_8 alkyl, heteroalkyl, C_6 - C_{10} aryl, (C_6 - C_{10} aryl)heteroalkylene, (heteroalkyl) $_p$ C $_6$ - C_{10} arylene, (C_1 - C_{15} alkyl) $_p$ C $_6$ - C_{10} arylene, (heteroalkyl) $_p$ (C_6 - C_{10} arylene)heteroalkylene, (C_1 - C_{15} alkyl) $_p$ (C_6 - C_{10} arylene) C_1 - C_1 5alkyl) $_p$ (C_6 - C_1 6arylene) C_1 - C_1 5alkyl) $_p$ (C_6 - C_1 6arylene) C_1 - C_1 5alkylene. In one embodiment, the present invention provides a compound of formula (I) wherein R^4 and R^5 together form = C_1 8 R^8 8, and one of R^8 1 is hydrogen while the other R^8 1 is selected from hydrogen, C_1 - C_8 alkyl and heteroalkyl.

In one embodiment, the present invention provides a compound of formula (I) wherein R⁶ is hydrogen. In another embodiment, the present invention provides a compound of formula (I) wherein R⁶ is selected from R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_pheteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from (R¹³)_palkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. In another embodiment, R⁶ is selected from C₁-C₁₅alkyl, C_1 - C_1 -sheteroalkyl, $(C_6$ - C_{10} aryl) C_1 - C_{15} alkylene, $(C_6$ aryl) $(C_6$ aryl) C_1 - C_{15} alkylene, C_6 heteroaryl) C_1 - C_{15} alkylene, $(C_6$ - C_{10} aryl) C_1 - C_{15} heteroalkylene, (heteroalkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene, (heteroalkyl)_n(C₂-C₆heteroarylene)C₁-C₁₅alkylene, (heteroalkyl)_p(C₆arylene)(heteroalkylene)(C₆arylene)C₁-C₁₅alkylene. In one embodiment of the present invention, R⁶ is as defined above with the proviso that R⁶ is not lower alkyl, e.g., is not C_1 - C_6 so that -OR⁶ is not C_1 - C_6 alkoxy.

In one embodiment, the present invention provides a compound of formula (I) wherein R^8 is hydrogen.

5

In one embodiment, the present invention provides a compound of formula (I) wherein n is 0. In another embodiment, the present invention provides a compound of formula (I) wherein n is 1. In another embodiment, the present invention provides a compound of formula (I) wherein n is 0 or 1.

In one embodiment, the present invention provides a compound of formula (I) wherein -R¹ is *trans* to -C(O)R², *i.e.*, compounds of formula (Ib) and (Ic), also referred to herein as compounds of formula (Ih).

In one embodiment, the present invention provides a compound of formula (I) wherein $-R^1$ is cis to $-C(O)R^2$, i.e., compounds of formula (Ia) and (Id), also referred to herein as compounds of formula (Ig).

In one embodiment, the present invention provides a compound of formula (I) wherein R^3 is hydrogen; R^4 and R^5 are selected from (a) R^4 is hydrogen and R^5 is hydroxyl or protected hydroxyl and (b) R^4 and R^5 together form carbonyl; R^6 is hydrogen; and n is 0. In one embodiment R^2 is $-OR^9$ where a preferred R^2 group is $-OCH_2CH_2Si(CH_3)_3$.

In one embodiment R¹ is

where optionally R^9 is a C_1 - C_6 hydrocarbyl, such as, in one embodiment, n-propyl and -CH₂-CH=CH₂.

In one embodiment R¹ is

where optionally R⁸ is hydrogen and R⁹ is C₁-C₆ hydrocarbyl, such as, in one embodiment, R⁹ is -CH₂-CH=CH₂.

B. Preparation of Benzobicyclooctane Compounds

The benzobicyclooctanes of this invention may be prepared according to Schemes 1-4. In these Schemes, "PG" denotes a protecting group. Suitable protecting groups are set forth in, for example, Greene and Wuts, Protective Groups in Organic Synthesis, 2d Edition, John Wiley & Sons, New York, 1991.

Scheme 1

In Scheme 1, the starting material (not shown) for 1 may be prepared by the Diels-Alder reaction of 2,7-dihydroxynaphthalene with maleic anhydride (*see, e.g.*, Singh, A.K.; Yadar, S.; Bhattacharjee, G., *J. Indian Chemical Soc.* 1990, 67, 818; and Takeda, K.; Hagishita, S.; Sugiura, M.; Kitahonoki, K.; Ban, I.; Miyazaki, S.; Kuriyama, K., *Tetrahdedron* 1970, 26, p. 1435). The resulting anhydride may be opened with a suitable alcohol, *e.g.*, trimethylsilylethanol, to give the 9-protected and the 10-protected benzobicyclooctane, 1 (only the 9-ester is depicted).

In Scheme 1, chemical steps a, b, c, d, and e represent the following reaction conditions.

(a) is a chemical reaction wherein the free acid of 1 is transformed into the reactive intermediate 2. Suitable conditions for this type of reaction involve treating 1

15

20

25

with a suitable activating agent, e.g., diphenylphosphoryl azide, in the presence of a suitable base, e.g., an organoamine such as diisopropylethylamine (DIEA), in an appropriate solvent, e.g., tetrahydrofuran (THF), at a suitable reaction temperature, e.g., at ambient temperature. Alternatively, formation of an active ester via a suitable coupling agent and hydroxy compound, e.g., 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) and 1-hydroxybenzotriazole (HOBt), under the same conditions produce 2, suitable for use in steps b or c. In either process, X is a leaving group that activates the adjoining carbonyl group.

- (b) is a chemical reaction in which the activated acid 2 forms the ester 3. Suitable conditions for this type of reaction involve treating 2 with a suitable alcohol (R⁹OH), e.g., n-propanol, in the presence of a suitable catalyst, e.g., 4dimethylaminopyridine (DMAP), in an appropriate solvent, e.g., THF, at an appropriate temperature, e.g., ambient temperature. In alcohols of formula R9OH, R9 is an organic group having 1-30 carbons and optionally containing 1-4 heteroatoms selected from nitrogen, oxygen, silicon and sulfur, with the provision that two R⁹ groups both joined to a common atom may be joined together so as to form a ring with the common atom. In one embodiment, R⁹ is selected from R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_pheteroalkylene, $(R^{11})_p$ -arylene and $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-heteroarylene, R¹⁵ is selected from $(R^{14})_p$ -alkylene, $(R^{14})_p$ -heteroalkylene, $(R^{14})_p$ -arylene, and $(R^{14})_p$ heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. Optionally, R⁹ is selected from heteroalkyl, C_1 - C_1 salkyl, $(C_6$ - C_{10} aryl) C_1 - C_1 salkylene, $(C_6$ - C_{10} aryl) $(C_6$ - C_{10} arylene) C_1 -C₁₅alkylene, (C₁-C₁₅alkyl)_p(heteroarylene)C₁-C₁₅alkylene, and C₆-C₁₀aryl fused to C₁-C₁₅alkylene. Numerous suitable alcohols of formula R⁹OH are either commercially available chemicals or are compounds described in the chemical literature.
- (c) is a chemical reaction in which 2 is coupled with an amine to give the amide 4. Suitable conditions for this type of reaction involve treating 2 with a suitable

20

25

amine (R⁹R⁹NH), e.g., di(n-pentyl)amine, and a suitable base (if required), e.g., DIEA, in the presence of a suitable catalyst, e.g., DMAP, in an appropriate solvent, e.g., THF, at ambient temperature. In amines of formula R⁹R⁹NH, R⁹ is selected from hydrogen and organic groups having 1-30 carbons and optionally containing 1-4 heteroatoms selected from nitrogen, oxygen, silicon and sulfur, with the proviso that the two R9 groups may be joined together so as to form a ring with the nitrogen to which they are both attached. In one embodiment, R⁹ is selected from hydrogen, R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_p-heteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_palkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from (R¹³)_p-alkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-heteroarylene, R¹⁵ is selected from $(R^{14})_p$ -alkylene, $(R^{14})_p$ -heteroalkylene, $(R^{14})_p$ -arylene, and $(R^{14})_p$ heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5. Optionally, R⁹ is selected from hydrogen, heteroalkyl, C₁-C₁₅alkyl, (heteroaryl)C₁-C₁₅alkylene, and (heteroalkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene. Numerous suitable amines of formula R⁹R⁹NH are either commercially available chemicals or are compounds described in the chemical literature.

- (d) is a chemical reaction in which 2 is an acyl azide and is converted to the corresponding isocyanate prior to reaction with an alcohol (R⁹OH as defined above) to yield carbamate 5. Suitable conditions for this type of reaction involve first heating 2 in suitable solvent, e.g., refluxing dioxane, and then treating the resulting isocyanate with a suitable alcohol R⁹OH, e.g., n-propanol, in the absence or presence of a suitable catalyst, e.g., DMAP.
- (e) is a chemical reaction in which 2 is an acyl azide and is converted to the isocyanate prior to reacting with an amine (R^9R^9NH as defined above), to yield urea 6. Suitable conditions for this type of reaction involve first heating 2 in a suitable solvent, e.g., refluxing dioxane, and then treating the resulting isocyanate with a suitable amine (R^9R^9NH), e.g., morpholine or tyramine.

10

15

Scheme 2

$$PG \longrightarrow OR^9$$
 $f \longrightarrow HO \longrightarrow OR^9$ $g \longrightarrow R^9O \longrightarrow OR^9$ $OR^9 \longrightarrow OH$

In Scheme 2, chemical steps f, g and h represent the following reaction conditions.

- (f) is a chemical reaction in which the protecting group of 3 is removed to give 7. When, for example, PG is trimethylsilylethyl, it may be removed by exposure to a suitable fluoride source, e.g., tetrabutylammonium fluoride (TBAF), in a suitable solvent, e.g., anhydrous THF. Alternatively, suitable deprotection conditions involve performing an acidolysis in, e.g., TFA/H₂O, 9/1 (v/v). Other conditions for removing protecting groups are set forth in Greene and Wuts, Protective Groups in Organic Synthesis, 2d Edition, John Wiley & Sons, New York, 1991.
 - (g) is a chemical reaction in which 7 is coupled to an alcohol to give 8. Suitable conditions for this type of reaction involve treating 7 with a suitable alcohol, e.g., dimethylbutanol, a coupling reagent such as O-(N-Succinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TSTU), a suitable base, e.g., an organoamine such as N-methylmorpholine (NMM), in the presence of a suitable catalyst, e.g., DMAP, in an appropriate solvent, e.g., 5% dimethylformamide (DMF) in THF.
- (h) is a chemical reaction in which 7 is coupled with an amine HNR⁹R⁹ to give 9. Suitable conditions for this type of reaction involve treating 7 with a suitable 20 coupling reagent such as O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium

10

15

hexafluorophosphate (HATU), a suitable base, e.g., an organoamine such as NMM, in the presence of a suitable catalyst, e.g., DMAP, in an appropriate solvent, e.g., THF.

Scheme 3

In Scheme 3, chemical steps i, j, k, l and m represent the following reaction conditions.

- (i) is a chemical reaction in which the ketone group of 3 is derivatized with an organohydrazine or organohydroxylamine to give 10. Suitable conditions for performing this type of reaction involve treating the ketone with a suitable hydrazine or hydroxylamine, e.g., methyl hydrazine or O-phenyl-hydroxylamine, in a suitable solvent, e.g., methanol.
 - (j) is a chemical reaction in which the ketone group of 3 is reduced to give alcohols 11 and 12. Suitable conditions for performing this type of reaction involve treating the ketone with a suitable reducing agent, e.g., NaBH₄, in a suitable solvent, e.g., methanol. Other suitable reducing conditions are set forth in well known books and

20

25

treatises. The resulting stereoisomers 11 and 12 may be separated from one another by, e.g., column chromatography.

- (k) is a chemical reaction in which the ketone of group of 3 undergoes reductive amination to give amines 13 and 14. Suitable conditions for performing this type of reaction involve treating the ketone with a suitable amine (HNR⁹R⁹), e.g., dimethylamine, a suitable reducing agent, e.g., NaBH₃CN, in the presence of a mild acid, e.g., acetic acid, in a suitable solvent, e.g., methanol. Other suitable reductive amination conditions are set forth in well known books and treatises. The resulting stereoisomers 13 and 14 may be separated from one another by, e.g., column chromatography.
- is a chemical reaction in which the phenolic group of 3 is alkylated (l) to give 15. Suitable conditions for performing this type of reaction involve treating 3 with a suitable alkyl halide, e.g., N,N-diethyl-2-chloroacetamide, in the presence of a suitable inorganic base, e.g., Cs₂CO₃, in a suitable solvent, e.g., dimethoxyethane (DME) or DMF. Other suitable alkyl halides of formula R⁶-X are well known in the art, where X is halide, and R⁶ is selected from R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_pheteroalkylene, $(R^{11})_p$ -arylene and $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ alkylene, $(R^{12})_p$ -heteroalkylene, $(R^{12})_p$ -arylene, and $(R^{12})_p$ -heteroarylene; R^{14} is selected from $(R^{13})_p$ -alkylene, $(R^{13})_p$ -heteroalkylene, $(R^{13})_p$ -arylene, and $(R^{13})_p$ -heteroarylene, R^{15} is selected from $(R^{14})_p$ -alkylene, $(R^{14})_p$ -heteroalkylene, $(R^{14})_p$ -arylene, and $(R^{14})_p$ heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5, and optionally is selected from C₁- C_{15} alkyl, C_1 - C_{15} heteroalkyl, $(C_6$ - C_{10} aryl) C_1 - C_{15} alkylene, $(C_6$ aryl) $(C_6$ aryl) C_1 - C_{15} alkylene, $(C_2-C_6$ heteroaryl) C_1-C_{15} alkylene, $(C_6-C_{10}$ aryl) C_1-C_{15} heteroalkylene, (heteroalkyl)_p $(C_6-C_{10}$ aryl) C_1 C_{10} arylene) C_1 - C_{15} alkylene, (heteroalkyl)_n(C_2 - C_6 heteroarylene) C_1 - C_{15} alkylene, and (heteroalkyl)_p(C₆arylene)(heteroalkylene)(C₆arylene)C₁-C₁₅alkylene. Numerous suitable alkyl halides are either commercially available chemicals or are compounds described in the chemical literature.
- (m) is a chemical reaction in which the phenolic group of 3 is alkylated to give 15. Suitable conditions for performing this type of reaction involve treating 3 with

.;

15

5

an organic compound having a suitably activated hydroxyl group in a suitable solvent, such as THF. For example, allyl 4-hydroxymethylbenzoate may be activated by exposure to a phosphine, e.g., triphenylphosphine, and a suitable azo compound, e.g., diethylazodicarboxylate (DEAD). Other suitable compounds having an activated hydroxyl group may be readily prepared from the corresponding alcohol of the formula R⁶-OH where R⁶ is an organic group. Alcohols of the formula R⁶-OH are well known in the art, including alcohols wherein R⁶ is selected from R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene, (R¹¹)_pheteroalkylene, (R¹¹)_p-arylene and (R¹¹)_p-heteroarylene; R¹³ is selected from (R¹²)_p-alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from (R¹³)_palkylene, (R¹³)_p-heteroalkylene, (R¹³)_p-arylene, and (R¹³)_p-heteroarylene, R¹⁵ is selected from (R¹⁴)_p-alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_p-heteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5, and optionally is selected from C₁-C₁₅alkyl, C_1 - C_{15} heteroalkyl, $(C_6$ - C_{10} aryl $)C_1$ - C_{15} alkylene, $(C_6$ aryl $)(C_6$ aryl $)C_1$ - C_{15} alkylene, $(C_2$ - C_6 heteroaryl) C_1 - C_{15} alkylene, (C_6 - C_{10} aryl) C_1 - C_{15} heteroalkylene, (heteroalkyl) $_p$ (C_6 - C_{10} arylene) C_1 - C_{15} alkylene, (heteroalkyl)_n(C_2 - C_6 heteroarylene) C_1 - C_{15} alkylene, (heteroalkyl)_p(C₆arylene)(heteroalkylene)(C₆arylene)C₁-C₁₅alkylene. Numerous suitable alcohols are either commercially available chemicals or are compounds described in the chemical literature.

conditions.

5

Scheme 4

$$CH_3)_3Si$$

OH

 $CH_3)_3Si$

OH

 CH_3

In Scheme 4, chemical steps n, o, p and q represent the following reaction

(n) is a chemical reaction wherein the ester-carbamate 5 (prepared in, e.g., Scheme 1) is transformed into the corresponding ester-amine 16. Suitable conditions for this type of reaction involve treating 5 under reducing conditions, e.g., H₂, on a suitable catalyst or solid support, e.g., palladium, in the presence of a suitable solvent, e.g., ethanol.

20

25

5

- (o) is a chemical reaction wherein the ester-amine 16 is acylated to form the corresponding ester-amide 17. Suitable conditions for this type of reaction involve treating 16 with an acylating agent, generally denoted as R⁹-C(=O)-X where R⁹ represents R⁹ as set forth in compounds of formula R1a, and X is a leaving group, e.g., chloride. The acylation reaction is suitably conducted in the presence of an amine, such as a secondary or tertiary amine, e.g., diisopropylethylamine (DIEA).
- into an ester-2°amine 18. Suitable conditions for this type of reaction involve treating 16 with an aldehyde of the formula R⁸-CHO, in the presence of a reducing agent, e.g., NaCNBH₃. In Scheme 4, the designation "R⁸" is used to denote the "R⁸" group as found in, for example, compound of formula R1a. Compounds of formula R⁸-CHO wherein R⁸ is selected from alkyl, aryl and heteroalkyl are well known in the chemical literature, and are available from commercial suppliers of chemicals. The ester-2°amine 18 is a suitable intermediate in the preparation of compounds of formula 19, which are also compounds of formula R1a.
- into an ester-amide 19. Suitable conditions for this type of reaction involve treating 18 with an acylating agent, generally denoted as R⁹-C(=O)-X, where R⁹ is used in Scheme 4 to denote "R⁹" in, for example, compounds of formula R1a, and X is a leaving group, *e.g.*, chloride. The acylation reaction is suitably conducted in the presence of an amine, such as a secondary or tertiary amine, *e.g.*, diisopropylethylamine (DIEA). Compounds of the formula R⁹-C(=O)-X are readily prepared from the corresponding carboxylic acid of the formula R⁹-C(=O)-OH by treatment with, *e.g.*, thionyl chloride.

Numerous compounds of the formula R⁹-C(=O)-OH wherein R⁹ is an organic group having 1-30 carbons and optionally containing 1-4 heteroatoms selected from nitrogen, oxygen and silicon are well known in the chemical literature, and/or may be obtained from many commercial suppliers of chemicals. Furthermore, many compounds of formula R⁹-C(=O)-OH wherein R⁹ is selected from R¹¹, R¹², R¹³, R¹⁴ and R¹⁵ where R¹¹ is selected from alkyl, heteroalkyl, aryl and heteroaryl; R¹² is selected from (R¹¹)_p-alkylene,

20

 $(R^{11})_p$ -heteroalkylene, $(R^{11})_p$ -arylene and $(R^{11})_p$ -heteroarylene; R^{13} is selected from $(R^{12})_p$ alkylene, (R¹²)_p-heteroalkylene, (R¹²)_p-arylene, and (R¹²)_p-heteroarylene; R¹⁴ is selected from $(R^{13})_p$ -alkylene, $(R^{13})_p$ -heteroalkylene, $(R^{13})_p$ -arylene, and $(R^{13})_p$ -heteroarylene, R^{15} is selected from (R¹⁴)_p-alkylene, (R¹⁴)_p-heteroalkylene, (R¹⁴)_p-arylene, and (R¹⁴)_pheteroarylene, and p is selected from 0, 1, 2, 3, 4 and 5, are well known in the chemical literature and/or may be obtained from commercial suppliers of chemicals. Furthermore, many compounds of formula R⁹-C(=0)-OH wherein R⁹ is selected from heteroalkyl, C₁-C₁₅alkyl, (heteroaryl)C₁-C₁₅alkylene, (C₆-C₁₀aryl)C₁-C₁₅alkylene, C₆-C₁₀aryl fused to C₁- $(alkyl)_p(C_6-C_{10}arylene)C_1-C_{15}alkylene, \qquad (C_6-C_{10}aryl)(C_6-C_{10}arylene)C_1-C_{15}alkylene, \qquad (C_6-C_{10}arylene)C_1-C_{15}alkylene, \qquad (C_6-C_{10$ C₁₅alkylene, $(C_1-C_{15}alkyl)_n$ (heteroarylene) $C_1-C_{15}alkylene$, and C₁₅alkylene, (heteroalkyl)_n(C₆-C₁₀arylene)C₁-C₁₅alkylene, are well known in the chemical literature and/or may be obtained from commercial suppliers of chemicals. Furthermore, many compounds of formula R9-C(=O)-OH wherein R9 is selected from heteroalkyl, C1-C15alkyl, (C6- $C_{10} aryl) C_1 - C_{15} alkylene, \quad (heteroaryl) C_1 - C_{15} alkylene, \quad and \quad (heteroalkyl)_p (C_6 - C_{10} arylene) C_1 - C_{15} alkylene, \quad (heteroaryl) C_1 - C_{15} alkylene,$ C₁₅alkylene, are well known in the chemical literature and/or may be obtained from commercial suppliers of chemicals. Furthermore, many compounds of formula R9-C(=O)-OH wherein R⁹ is selected from heteroalkyl, C₁-C₁₅alkyl, (C₆-C₁₀aryl)C₁-C₁₅alkylene, (C₆- C_{10} aryl)(C_6 - C_{10} arylene) C_1 - C_{15} alkylene, (C_1 - C_{15} alkyl)₀(heteroarylene) C_1 - C_{15} alkylene, and C₆-C₁₀aryl fused to C₁-C₁₅alkylene are well known in the chemical literature and/or may be obtained from commercial suppliers of chemicals. Furthermore, many compounds of formula R9-C(=O)-OH wherein R9 is selected from heteroalkyl, C1-C15alkyl, (C6- C_{10} aryl) C_1 - C_{15} alkylene, $(C_6$ - C_{10} aryl) $(C_6$ - C_{10} arylene) C_1 - C_{15} alkylene, $(C_1$ - C_{15} alkyl) $_p$ -(heteroarylene)C₁-C₁₅alkylene, and C₆-C₁₀aryl fused to C₁-C₁₅alkylene are well known in the chemical literature and/or may be obtained from commercial suppliers of chemicals. Furthermore, many compounds of formula R⁹-C(=O)-OH wherein R⁹ is selected from heteroalkyl, C₁-C₁₅alkyl, (heteroaryl)C₁-C₁₅alkylene, and (heteroalkyl)_p(C₆-C₁₀arylene)C₁-C₁₅alkylene are well known in the chemical literature and/or may be obtained from commercial suppliers of chemicals. Furthermore, many compounds of formula R9-C(=O)-OH wherein R⁹ is selected from heteroalkyl, C₁-C₁₅alkyl, (heteroaryl)C₁-C₁₅alkylene, (C₆-

15

20

25

 C_{10} aryl) C_1 - C_{15} alkylene, (alkyl) $p(C_6$ - C_{10} arylene) C_1 - C_{15} alkylene, are well known in the chemical literature and/or may be obtained from commercial suppliers of chemicals. These carboxylic acids may be used in the preparation of compounds of the present invention.

One skilled in the art of organic synthesis would readily understand that the chemical steps disclosed above may be performed in a variety of sequences to produce bicyclooctanes of this invention. For instance, the compound of Example 2 undergoes step (h) to give the compound of Example 4. This compound in turn undergoes step (m) to give the bicyclooctane of Example 5.

The present invention provides benzobicyclooctane compounds wherein R³ may or may not be hydrogen, and independently, R⁷ may replace a hydrogen either 0, 1, 2 or 3 times on the "benzo" portion of the benzobicyclooctane compound. Compounds wherein R³ is hydrogen and n is 0 are readily prepared from (unsubstituted) 2,7-dihydroxynaphthalene, as shown in Schemes 1, 2, 3 and 4. Compounds wherein R³ is not hydrogen, and/or n is not 0, are readily prepared from the corresponding substituted 2,7-dihydroxynaphthalene. For example, a benzobicyclooctane compound of the invention wherein R³ is methyl and n is 1 with R⁷ being a methyl group may be prepared from a dimethyl substituted 2,7-dihydroxynaphthalene, e.g., 2,7-dihydroxy-3,6-dimethylnaphthalene as shown in Scheme 5. Commercial supply houses, custom chemical supply houses, and published synthetic methods provide access to a large number of substituted 2,7-dihydroxynaphthalene compounds that may be used in preparing compounds of the present invention.

Furthermore, benzobicyclooctane compounds wherein R³ is not equal to hydrogen and/or n is 1, 2 or 3 may be used in the synthetic transformations shown in Schemes 1, 2, 3 and/or 4, in lieu of the hydrogen-substituted benzobicyclooctane depicted in those Schemes, to provide compounds of the present invention. For instance, the benzobicyclooctane produced by the Diels-Alder reaction of maleic anhydride and 2,7-dihydroxy-3,6-dimethylnaphthalene as shown in Scheme 5 may be treated to open up the anhydride and form the corresponding acid/ester. Exemplary treatment conditions are DMAP with trimethylsilylethanol (see, e.g., Example 1 as described herein), which

5

provides the corresponding carboxylic acid/trimethylsilylethylene ester as shown in Scheme 5, where this acid/ester is a representative compound of formula 1 as shown in Schemes 1, 2, 3 and 4.

Scheme 5

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

In one aspect, the present invention provides benzobicyclooctane compounds wherein R⁶ is hydrogen or an organic group having 1-20 carbons, wherein the organic group may optionally include 1-4 heteroatoms selected from nitrogen, oxygen, silicon and sulfur. Schemes 1, 2, 3 and 4 illustrate synthetic methodology using a benzobicyclooctane compound wherein R⁶ is hydrogen. However, the same methodology may be employed with benzobicyclooctane compounds wherein R⁶ is an organic group.

Alternatively, a compound of the invention may be prepared according to Schemes 1, 2, 3 and 4, having desired R¹, R², R³, R⁴, R⁵ and R⁷ groups, with R⁶ being hydrogen. The R⁶ hydrogen may be replaced with an organic group having 1-20 carbons

15

20

and optionally having 1-4 heteroatoms selected from nitrogen, oxygen, silicon and sulfur, as shown in steps 1 or m of Scheme 3. This later approach is illustrated in several Examples as set forth herein (see, e.g., Examples 5, 10, 33 (describing General Procedure F for converting R⁶=H to R⁶=organic group), 35 (describing General Procedure G) 36-43 and 45 (employing General Procedure F), and 44, 46-52 (employing General Procedure G) and 87-88. See also Examples 7, 8 and 34 wherein the R⁶ group is replaced with a different R₆ group). Accordingly, in view of the present disclosure, those of ordinary skill in the art can prepare compounds of the present invention wherein R⁶ is hydrogen or an organic group.

Benzobicyclooctane compounds of the invention wherein R^6 is an inorganic group having 1-8 atoms exclusively selected from boron, sulfur, phosphorous, silicon and hydrogen, may readily be prepared from the corresponding phenolic compound, *i.e.*, compounds wherein R^6 is H. Methodology to convert alcohols to, *e.g.*, sulfates, sulfonates, phosphates, phosphonates, borates, and boronates, where these groups are exemplary inorganic R^6 groups, are well known in the art, and may be employed in the preparation of compounds of the present invention. For clarification, it will be noted that groups including heteroatoms as well as carbon atoms, *e.g.*, -O-B(OR)₂ and -S(O)₂R where R is an organic group, are included within the scope of heteroalkyls as defined herein.

The present invention provides various stereoisomers of benzobicyclooctanes, in isolated form or as mixtures of stereoisomers, and in particular provides the diastereomers shown as Formulae Ia, Ib, Ic and Id. Any of these four diastereomers can be prepared according to the present invention. The Diels-Alder reaction of 2,7-dihydroxynaphthalene and maleic acid typically forms two diastereomers, shown as structures **A** and **B** in Scheme 6.

The diastereomers **A** and **B** can be separated from one another by, for example, chromatography, and then each can be reacted individually with trimethylsilyl ethanol to provide a mixture of the corresponding two *cis* acid-esters (**C** and **D**), as shown in Scheme 7a starting from diastereomer **A**, or the corresponding two *trans* acid-esters (**E** and **F**), as shown in Scheme 7b starting from diastereomer **B**.

Scheme 7a

Scheme 7b

The diastereomers C and D may be separated from one another by, for example, chromatography. Likewise, the diastereomers E and F can be separated from one another by, for example, chromatography. Each of the diastereomers C, D, E and F may be

reacted under conditions to give either the *trans* or *cis* products. For example, as shown in Scheme 8a, diastereomer **C** may be reacted to form the *trans* diastereomer **G** or the *cis* diastereomer **H** where X is -OR (diester) or -NRR (ester amide). Likewise, diastereomer **D** may be reacted to form *cis* and *trans* products as shown in Scheme 8b.

Scheme 8a

C. <u>Libraries</u>

In one aspect, the present invention provides a library of benzobicyclooctane compounds. In one aspect the library includes, *i.e.*, comprises, a plurality of compounds each having a structure of formula (I), while in another aspect the library consists of a plurality of compounds each having a structure of formula (I)

$$R^{4}$$
 R^{5}
 R^{1}
 R^{2}
 $(R^{7})_{n}$
 $(R^{7})_{n}$

(I)

with the first and the form the same of th

A library according to the present invention may be prepared by combinatorial synthetic techniques, where such a library is referred to herein as a combinatorial library. An exemplary combinatorial approach to preparing a library of the present invention is a solid-phase technique, where the benzobicyclooctane scaffold is covalently attached to a solid support. An exemplary solid-phase combinatorial technique includes the following steps:

5

10

15

The state that the state and the state that the state of the state of

(a) providing a compound bound to a solid support according to formula
(II)

$$\begin{array}{c|c}
\hline
PG2 & O & \hline
O & PG1 \\
\hline
R^3 & (R^7)N & (II) \\
\hline
O & linker & (SS)
\end{array}$$

wherein PG1 and PG2 refer to first and second protecting groups, respectively, where the first protecting group can be removed in the continued presence of the second protecting group, and the second protecting group can be removed in the continued presence of the linker, and (SS) refers to a solid support;

- (b) removing the first protecting group but not the second protecting group, to provide a first deprotected product;
- (c) reacting the first deprotected product with a plurality of amines of the formula HNRR' to provide a plurality of compounds bound to a solid support, each according to formula (IIa)

where R and R' are each independently selected from R9;

- (d) removing the second protecting group from (IIa) to provide a second deprotected product;
- 5 (e) reacting the second deprotected product with a plurality of amines of the formula HNR"R" to provide a plurality of compounds bound to a solid support, each according to formula (IIb)

$$R'''R''N$$
 R^3
 R^4
 R^5
 R^5
 R^5
 R^7
 $R^$

where R" and R" are each independently selected from R9; and

The state of the s

:

10 (f) removing the benzobicyclooctane compounds from the linker to provide a library of compounds according to formula (IIc)

$$R'''R''N$$
 R^3
 R^4
 R^5

OH

 $R^7)N$ (IIc).

15

20

25

In various embodiments of this method: PG1 is -CH₂-CH=CH₂; and/or wherein PG2 is -CH₂CH₂-Si(CH₃)₃; and/or linker is O+CH₂-CH₂-Si(CH₃)₃ and while linker is O+CH₂-CH

In various embodiments, additionally or alternatively: removing the first protecting group but not the second protecting group, to provide a first deprotected product according to step (b), is accomplished by reacting (II) with Pd(PPh₃)₄ and N-methylaniline; and/or removing the second protecting group from (IIa) to provide a second deprotected product according to step (d) is accomplished by treating (IIa) with tetrabutylammonium fluoride solution; and/or removing the linker to provide a library of compounds according to formula (IIc) is accomplished by treating (IIb) with aqueous trifluoroacetic acid.

In various embodiments, additionally or alternatively, the library prepares compounds wherein R³ is H, R⁴ and R⁵ collectively form =O, and n is zero.

C. <u>Pharmaceutical Compositions</u>

In another aspect, the present invention provides a composition containing a benzobicyclooctane compound of formula (I) in admixture with a pharmaceutically acceptable adjuvant, carrier, diluent or excipient, *i.e.*, the present invention provides a pharmaceutical composition containing a compound of formula (I). In other aspects, the present invention provides a composition containing a benzobicyclooctane compound according to each of embodiments, X1-X930, Y1-Y930 and Z1-Z930 in admixture with a pharmaceutically acceptable adjuvant, carrier, diluent or excipient. The pharmaceutical composition may contain optional ingredient(s) if desired.

The pharmaceutical compositions of the present invention may be in any form which allows for the composition to be administered to a patient. Typical routes of administration include, without limitation, oral, topical, parenteral, sublingual, rectal,

15

20

25

vaginal, and intranasal. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. Pharmaceutical composition of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a patient. Compositions that will be administered to a patient take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of benzobicyclooctane in aerosol form may hold a plurality of dosage units.

The composition may be in the form of a solid, liquid or gas (aerosol). In one aspect, the carrier(s) are particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) may be liquid, with the compositions being, for example, an oral syrup or injectable liquid. In addition, the carrier(s) may be gaseous, so as to provide an aerosol composition useful in, e.g., inhalatory administration.

When intended for oral administration, the composition is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid.

As a solid composition for oral administration, the composition may be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form. Such a solid composition will typically contain one or more inert diluents or edible carriers. In addition, one or more of the following adjuvants may be present: binders such as carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin, a flavoring agent such as peppermint, methyl salicylate or orange flavoring, and a coloring agent.

When the composition is in the form of a capsule, e.g., a gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil.

15

20

25

The composition may be in the form of a liquid, e.g., an elixir, syrup, solution, emulsion or suspension. The liquid may be for oral administration or for delivery by injection, as two examples. When intended for oral administration, preferred composition contain, in addition to the present compounds, one or more of a sweetening agent, preservatives, dye/colorant and flavor enhancer. In a composition intended to be administered by injection, one or more of a surfactant, preservative, wetting agent, dispersing agent, suspending agent, buffer, stabilizer and isotonic agent may be included.

Salating at the graph of the first territory

The liquid pharmaceutical compositions of the invention, whether they be solutions, suspensions or other like form, may include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or digylcerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Physiological saline is a preferred adjuvant. An injectable pharmaceutical composition is preferably sterile.

A liquid compositions intended for either parenteral or oral administration should contain an amount of the inventive compound such that a suitable dosage will be obtained. Typically, this amount is at least 0.01% of a compound of the invention in the composition. When intended for oral administration, this amount may be varied to be between 0.1 and about 70% of the weight of the composition. Preferred oral compositions contain between about 4% and about 50% of the active vanadium(V) complex. Preferred compositions and preparations according to the present invention are prepared so that a parenteral dosage unit contains between 0.01 to 1% by weight of active compound.

The pharmaceutical composition may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment or gel base.

10

15

20

25

The base, for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. Thickening agents may be present in a pharmaceutical composition for topical administration. If intended for transdermal administration, the composition may include a transdermal patch or iontophoresis device. Topical formulations may contain a concentration of the inventive compound of from about 0.1 to about 10% w/v (weight per unit volume).

The composition may be intended for rectal administration, in the form, e.g., of a suppository which will melt in the rectum and release the drug. The composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient. Such bases include, without limitation, lanolin, cocoa butter and polyethylene glycol.

The composition may include various materials which modify the physical form of a solid or liquid dosage unit. For example, the composition may include materials that form a coating shell around the active ingredients. The materials which form the coating shell are typically inert, and may be selected from, for example, sugar, shellac, and other enteric coating agents. Alternatively, the active ingredients may be encased in a gelatin capsule.

The composition in solid or liquid form may include an agent which binds to the benzobicyclooctane compounds of the invention and thereby assists in the delivery of the active compound. Suitable agents which may act in this capacity include a monoclonal or polyclonal antibody, a protein or a liposome.

Materials used in preparing the pharmaceutical compositions should be pharmaceutically pure and non-toxic in the amounts used. It will be evident to those of ordinary skill in the art that the optimal dosage of the active ingredient(s) in the pharmaceutical composition will depend on a variety of factors. Relevant factors include, without limitation, the type of subject (e.g., human), the particular form of the active ingredient, the manner of administration and the composition employed.

The pharmaceutical composition of the present invention may consist of gaseous dosage units, e.g., it may be in the form of an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of

10

15

20

25

pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump system which dispenses the active ingredients. Aerosols of compounds of the invention may be delivered in single phase, bi-phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, subcontainers, and the like, which together may form a kit. Preferred aerosols may be determined by one skilled in the art, without undue experimentation.

Whether in solid, liquid or gaseous form, the pharmaceutical composition of the present invention may contain one or more known pharmacological agents used in the treatment of inflammation.

The pharmaceutical compositions may be prepared by methodology well known in the pharmaceutical art. For example, a composition intended to be administered by injection can be prepared by combining a benzobicyclooctane compounds of formula (I) with water so as to form a solution. A surfactant may be added to facilitate the formation of a homogeneous solution or suspension. Surfactants are compounds that non-covalently interact with the benzobicyclooctane compound so as to facilitate dissolution or homogeneous suspension of the compound in the aqueous delivery system.

D. <u>Biological Applications</u>

The present invention provides benzobicyclooctanes, compositions containing a benzobicyclooctane, and methods of using benzobicyclooctane compounds to inhibit cellular events involving TNF-α or IL-8. Thus, in one aspect, the present invention provides a method to modulate binding of TNF-α to cell receptors, and/or modulate the consequential intracellular events comprising administering to a subject in a need thereof an effective amount of a benzobicyclooctane compounds of formula (I). The inhibition of TNF-α induced apoptosis and of NFκB activation is one means of preventing and/or treating autoimmune and inflammatory diseases including, but not limited to, rheumatoid arthritis, inflammatory bowel disease, psoriasis, atherosclerosis, asthma, reperfusion injury, ischemia, sepsis, graft vs. host disease, adult respiratory distress syndrome, multiple

15

20

25

sclerosis, and a host of severe invasive infections such as fulminant hepatitis, AIDS and bacterial meningitis, and allergic inflammation of the lungs and airways.

Thus, in one aspect, the present invention provides a method of inhibiting TNF- α induced apoptosis comprising administering to a subject in a need thereof an effective amount of a benzobicyclooctane compounds of formula (I). In another aspect, the present invention provides a method of inhibiting NF α B activation comprising administering to a subject in a need thereof an effective amount of a benzobicyclooctane compounds of formula (I). In another aspect, the present invention provides a method of inhibiting, preventing, treating, or preventing and/or treating autoimmune and inflammatory diseases including, but not limited to, rheumatoid arthritis, Inflammatory Bowel Disease (IBD), psoriasis, atherosclerosis, asthma, reperfusion injury, ischemia, sepsis, graft vs. host disease, Adult Respiratory Distress Syndrome (ARDS), and multiple sclerosis, comprising administering to a subject in a need thereof an effective amount of a benzobicyclooctane compounds of formula (I). In another aspect, the present invention provides a method of inhibiting, preventing, treating, or preventing and/or treating severe invasive infections such as fulminant hepatitis comprising administering to a subject in a need thereof an effective amount of a benzobicyclooctane compounds of formula (I).

In another aspect, the present invention provides a method for the inhibition of IL-8 or other CXC chemokines binding to CXCR1 and/or CXCR2 receptors comprising administering an effective amount of a compound of formula (I) to a subject in need thereof. In another aspect, the present invention provides a method for reducing the levels of IL-8 within a subject comprising administering to a subject in need thereof an effective amount of a compound of formula (I). In another aspect, the present invention provides a method for treating, preventing, or treating and/or preventing one or more of inflammatory and autoimmune diseases such as Inflammatory Bowel Disease (IBD), psoriasis, rheumatoid arthritis, Acute Respiratory Distress Syndrome (ARDS), cancer, atherosclerosis, reperfusion injury, and graft vs. host disease, comprising administering to a subject in need thereof an effective amount of a compound of formula (I).

20

25

The present invention provides a method for inhibiting TNF-α mediated processes, comprising administering to a patient in need thereof, through a therapeutically or prophylactically acceptable manner, a therapeutically or pharmaceutically effective amount of a composition comprising a compound of formula (I). Administering may be by, for example, transdermal, oral, intravenous, intramuscular, vaginal, rectal, pulmonary, subcutaneous, sublingual and transmucosal administration.

The present invention provides a method for treating an inflammation event, comprising administering to a patient in need thereof, through a therapeutically or prophylactically acceptable manner, a therapeutically or pharmaceutically effective amount of the compound of formula (I). Administering may be selected from transdermal, oral, intravenous, intramuscular, vaginal, rectal, pulmonary, subcutaneous, sublingual and transmucosal administration.

The "effective amount" or "therapeutically effective amount" of a compound of the present invention will depend on the route of administration, the type of mammal being treated, and the physical characteristics of the specific mammal under consideration. These factors and their relationship to determining this amount are well known to skilled practitioners in the medical arts. This amount and the method of administration can be tailored to achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors which those skilled in the medical arts will recognize.

In addition, this invention provides a method for identifying a binding partner to a compound of formula (I), wherein the method comprises immobilizing proteins known to be involved in the TNF-a signaling pathway onto a suitable carrier; and passing a solution of said compounds in isolation or mixture over said proteins and analyzing for compound:protein complex formation using surface plasmon resonance (SPR) in a manner similar to that reported by Karlsson, R et al. Biosensor Analysis of Drug-Target Interactions: Direct and Competitive Binding Assays for Investigation of Interactions Between Thrombin and Thrombin Inhibitors. *Anal. Biochem.* 2000, 278(1), 1-13. For other examples of identifying small molecule-protein interactions using SPR see the Biacore website: http://www.biacore.com

10

15

In addition, this invention provides a method for identifying a binding partner to a compound of formula (I), wherein the method comprises (in a manner similar to that reported by Shimizu, N et al. High Performance Affinity Beads for Identifying Drug Receptors. *Nature Biotechnology*, **2000**, *18*(8), 877-881) providing said compound(s) bound to a solid support to provide solid phase compounds; contacting a cell or cell components with said solid phase compounds in isolation or mixture; removing uncomplexed cellular material, for example by gentle washing with aqueous buffer, from said solid phase compounds; and recovering said binding partner from the solid phase compounds.

As to each publication or patent referenced herein, that publication or patent is incorporated herein by reference in its entirety for all purposes.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

The following examples are offered by way of illustration, and not by way of limitation.

10

15

EXAMPLES

Abbreviations and acronyms used in the examples include: AcOH, acetic acid; APCI-MS, atmospheric pressure chemical ionization mass spectroscopy; DBU, 1,8diazabicyclo[5.4.0]undec-7-ene; DEAD, diethylazodicarboxylate; diisopropylethylamine; DMAP, 4-N,N-dimethylaminopyridine; DME, 1,2-dimethoxyethane; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; DPPA, diphenylphosphorylazide; ESI-MS, electrospray ionization mass spectroscopy; FAB-MS, fast atom bombardment mass spectroscopy; FTIR, Fourier transform infrared spectroscopy; HATU, O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate; HPLC, high pressure liquid HRMS, high resolution chromatography; mass spectroscopy; LC-MS, liquid chromatography-mass spectroscopy; NMA, N-methylaniline; NMM, N-methylmorpholine; NMP, N-methylpyrrolidinone; NMR, nuclear magnetic resonance spectroscopy; TBAF, tetrabutylammonium fluoride; TFA, trifluoroacetic acid; THF, tetrahydrofuran; TSTU, O-(N-Succinimidyl)-1,1,3,3-tetramethyluronium tetrafluoroborate; rt, room temperature; h, hour; min, minute; eq, equivalents.

EXAMPLE 1

Synthesis of 4-Hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 9-(2-trimethylsilanylethyl) ester

20

15

20

25

A. 4-Hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid anhydride

A solution of dihydroxynaphthalene (500 g, 3.125 mol) and maleic anhydride (765 g, 7.815 mol, 2.5 eq) in 1 L 1:1 1,2-dichlorobenzene:toluene were heated at 110°C for 3 days. The reaction mixture was then cooled to 90°C, 1.5 L ethyl acetate added, and then further cooled to room temperature overnight. The mixture was then cooled over ice after another 0.5 L ethyl acetate was added and left stirring for 2 hours. The resultant solid was isolated by filtration, washed with 2x200 mL cold ethyl acetate and dried in oven at 40°C to provide 130 g of the anhydride as a beige solid (16% yield). ¹H NMR (acetone-d₆) 7.33 (d, J=8.2 Hz, 1H), 6.97 (d, J=2.3 Hz, 1H), 6.85 (dd, J=8.1, 2.4 Hz, 1H), 4.05 (d, J=3.9 Hz, 1H), 3.98 (dd, J=6.0, 2.9 Hz, 1H), 3.88 (dd, J=10.2, 3.9 Hz, 1H), 3.70 (dd, J=10.2, 2.7 Hz, 1H), 2.39 (br s, 2H). HRMS for MH⁺ 259.0600 (theoretical 259.0606).

B. 4-Hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 9-(2-trimethylsilanylethyl) ester, 1

DMAP (0.96 g, 7.9 mmol, 10 mol%) and trimethylsilyl-ethanol (12.43 mL, 0.087 mol, 1.1 eq) were added to a stirred suspension of the anhydride from step A (20.5 g, 0.079 mol) in 200 mL acetonitrile and heated to reflux for 7 hours. By HPLC there was some starting material present and the two regioisomers of the opened anhydride were present in a 1:1 ratio. The reaction mixture was cooled and dicyclohexylamine (15.71 mL, 0.079 mol) was added dropwise. A precipitate formed instantaneously but was left overnight. The resulting white salt (40.73 g, 93%) was filtered, suspended in water, acidified with 2 M HCl and extracted with ethyl acetate. An emulsion formed, but was removed by filtration before the layers could be separated, and the organic layer was dried and evaporated *in vacuo* to give a mixture of the regioisomeric acid-esters as a beige foam (25.59 g, 93%). A hazy solution of the solids (25.59 g, 0.068 mol) in 150 mL isopropanol was treated with isopropylamine (5.79 mL, 0.068 mol) and left stirring overnight. The precipitate was isolated by filtration yielding a white solid (12.44 g, 42% yield) as a 86/17 mixture of diastereomers. This solid was slurried in 48 mL isopropanol for 1.5 hours giving

20

a second white solid (10.69 g) as a 93/7 mixture of diasteroemers. This salt was cracked as described above to give a white foam (6.76 g) which was then triturated in 33 mL 20% diethyl ether/toluene at -20°C. The resulting white solid was collected by filtration and washed with 10 mL cold solvent. This afforded 1 as a white solid (4.59 g, 30% overall yield from the anhydride) of 98.2% purity by HPLC. 1 H NMR (acetonitrile- d_3) 7.12 (d, J=8.0 Hz, 1H), 6.76 (d, J=2.5 Hz, 1H), 6.72 (dd, J=8.0, 2.5 Hz, 1H), 4.20-4.06 (m, 2H), 3.65 (d, J=3 Hz, 1H), 3.61 (br s, 1H), 3.22 (br d, J=11.0 Hz, 1H), 2.93 (br s, 1H), 2.85 (dd, J=18.3, 2.3 Hz, 1H), 2.04 (br d, 1H), 0.99-0.93 (m, 2H), 0.03 (s, 9H). MS for MNa $^{+}$ 399.4. Elemental analysis for $C_{19}H_{24}O_6Si$, Theoretical: $C_{19}C_{1$

10 EXAMPLE 2

SYNTHESIS OF (4-HYDROXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-(2-TRIMETHYLSILANYL-ETHYL) ESTER)

DMAP (0.5 g, 4 mmol, 10 mol%) and trimethylsilylethanol (6.6 mL, 5.45 g, 46 mmol) were added to a stirred suspension of the anhydride (10.83 g, 42 mmol) from Example 1.A in 400 mL acetonitrile and heated to reflux for 6 h. The volatiles were evaporated, and the resulting foam was chromatographed on silica gel (20% acetonitrile/dichloromethane with 2% AcOH). Appropriate fractions were combined and dichloromethane and toluene were used to remove residual AcOH. Repeated trituration of the less polar product with ethyl ether provided 4.9 g (31%) of the title compound. ¹H NMR (acetonitrile- d_5) 7.13 (d, J=8.0 Hz, 1H), 6.75 (d, J=2.2 Hz, 1H), 6.72 (dd, J=8.0, 2.5 Hz, 1H), 4.17-4.11 (m, 2H), 3.64-3.62 (m, 1H), 3.60 (d, J=3.0 Hz, 1H), 3.22 (dd, J=11.8, 3.0 Hz, 1H), 2.97 (dt, J=11.8, 2.2 Hz, 1H), 2.87 (dd, J=18.7, 2.2 Hz, 1H), 2.08 (ddd,

J=18.4, 3.3, 2.5 Hz, 1H), 1.00-0.95 (m, 2H), 0.04 (s, 9H). MS 399.4 (MNa⁺). Elemental for C₁₉H₂₄O₆Si: Theoretical, C, 60.62; H, 6.43. Found: C, 60.58; H, 6.57. In addition, repeated trituration of the more polar product provided 5.0 g (32%) of acid 1.

EXAMPLE 3

5 Synthesis of (9, 10 cis)-10-Allyloxycarbonylamino-4-hydroxy-11-oxotricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

To a solution of acid 1 (196 mg, 0.52 mmol) in THF (25 mL) was added DPPA (230 μ L, 1.05 mmol), triethylamine (150 μ L, 1.08 mmol), and allyl alcohol (360 μ L, 5.3 mmol). The mixture was heated to reflux and held for 15 h. Upon cooling, the mixture was concentrated *in vacuo*, and the residue chromatographed, initially with 30% ethyl acetate/hexane followed by a second chromatography using 15% ethyl acetate/dichloromethane to afford a total of 65.8 mg (30%) of the title compound. ESI-MS m/z 454 (MNa⁺).

Synthesis of 5-Hydroxy-10-{methyl- $[(2,4,6-trimethoxy-benzylcarbamoyl)-methyl]-carbamoyl}-12-oxo-tricyclo<math>[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

5

10

15

20

The state of the state

En an

蹲

a :

with the course of the firm

A. Sarcosine-2,4,6-trimethoxybenzylamide

To a solution of N-Fmoc-sarcosine (5 g, 16 mmol) in dichloromethane (160 mL) containing 3A molecular sieves was added NMM (6 mL, 5.52 g, 55 mmol), HATU (7.33 g, 19 mmol) and 2,4,6-trimethoxybenzylamine hydrochloride (4.5 g, 19.2 mmol). The resulting reaction mixture was allowed to stir at rt overnight. The sieves were filtered, the volatiles evaporated and ethyl acetate was added. Acid wash (0.1 N HCl, 3x300 mL) followed by sodium bicarbonate (5% solution, 1x300 mL) provided a solid precipitate, which was collected, washed with ethyl acetate, collected and air dried. The organic layer was concentrated to dryness to give a residue which was triturated with ethyl acetate to provide an additional amount of the Fmoc derivative of 101: amount recovered 7.5 g (95%). ¹H NMR (CDCl₃) 7.77-7.27 (m, 8H), 6.35 (br s, 1H), 6.05 (br s, 2H), 4.49-4.05 (m, 5H), 3.93 (s, 2H), 3.74 (s, 9H), 2.99 (s, 3H). FAB-MS m/z 513 (MNa⁺), 491 (MH⁺).

The isolated N-Fmoc-sarcosine-2,4,6-trimethoxybenzylamide (6.5 g, 13 mmol) was suspended in 25% pyrrolidine/chloroform (100 mL) and allowed to stir at rt for 50 min. The volatiles were then evaporated to give a pale yellow solid. Column chromatography (10% methanol/dichloromethane) provided the desired product 101 upon trituration with ethyl ether, wt. 3.1 g (88%). 1 H NMR (CDCl₃) 6.13 (d, 2H), 4.48 (d, J=5.5

10

15

Hz, 2H), 3.82 (s, 9H), 3.24 (s, 2H), 2.40 (s, 3H). Elemental for $C_{13}H_{20}N_2O_4$: Theoretical, C, 58.19; H, 7.51; N, 10.44. Found: C, 58.09; H, 7.66; N, 10.18.

B. <u>5-Hydroxy-10-{methyl-[(2,4,6-trimethoxy-benzylcarbamoyl)-methyl]-carbamoyl}-</u> 12-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7).3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

To a solution of the carboxylic acid from Example 2 (4.5 g, 11.8 mmol) in dichloromethane (25 mL) was added NMM (3.2 mL, 2.9 g, 29 mmol), HATU (5.3 g, 13.9 mmol), 3A molecular sieves and sarcosine-2,4,6-trimethoxybenzylamide (3.1 g). The resulting solution was allowed to stir at rt under nitrogen overnight. The volatiles were then evaporated, ethyl acetate (300 mL) was added and the organic layer was washed with 0.1 N HCl (2x150 mL), 5% NaHCO₃ solution (1x100 mL) and brine (1x100 mL). The organic layer was dried (MgSO₄), filtered and the volatiles were evaporated to give a yellow foam. Column chromatography (90% ethyl acetate/hexane) provided the desired product, wt. 3.5 g (49%). ¹H NMR (CDCl₃) 7.05-6.70 (m, 3H), 6.48 (t, 1H), 6.12, 6.05 (2s, 2H), 4.56-4.40 (m, 2H), 4.20-2.71 (m, 21H), 2.20-2.07 (m, 1H), 1.00-0.90 (m, 2H), 0.02 (s, 9H). Elemental for C₃₂H₄₂N₂O₉Si: Theoretical, C, 60.16; H, 7.04; N, 4.25. Found: C, 60.29; H, 6.93; N, 4.18.

EXAMPLE 5

Synthesis of 2,4,6-trimethoxy-benzylcarbamoyl)-methyl]-carbamoyl $\}$ -11-oxo-tricyclo $[6.2.2.0^{2.7}]$ dodeca-2(7),3,5-trien-4-yloxymethyl)-benzoic acid allyl ester

with the state of the state of

10

15

20

A. Allyl 4-Hydroxymethylbenzoate

To a solution of 4-hydroxymethylbenzoic acid (0.5 g, 3.3 mmol) in CHCl₃ (10 mL) was added allyl bromide (0.6 mL, 0.84 g, 6.9 mmol) and diisopropylethylamine (1.3 mL, 0.96 g, 7.5 mmol). The resulting reaction mixture was allowed to reflux under nitrogen for 2.5 h. Upon cooling to rt, dichloromethane (50 mL) was added and the organic layer was washed with 0.1 N HCl (3x30 mL), 5% NaHCO₃ solution (1x30 mL) and brine (1x30 mL). Upon drying (MgSO₄), filtration of the drying agent and concentration, the resulting oily residue was chromatographed on silica gel (30% ethyl acetate/hexane) to give 440 mg (70%) of a colorless oil. 1 H NMR (CDCl₃) 8.06 (d, J=8.2 Hz, 2H), 7.44 (d, J=8.2 Hz, 2H), 6.11-5.98 (m, 1H), 5.42 (dd, J=17.2, 1.5 Hz, 1H), 5.30 (dd, J=10.4, 1.2 Hz, 1H), 4.83 (dd, J=5.6, 1.2 Hz, 2H), 4.78 (s, 2H), 1.80 (br s, 1H). MS 192 (M $^{+}$).

B. <u>5-(4-Allyloxycarbonyl-benzyloxy)-10-{methyl-[(2,4,6-trimethoxy-benzylcarbamoyl)-methyl-carbamoyl}-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-carboxylic acid-(2-trimethylsilanyl-ethyl) ester</u>

To a cooled solution (ice bath) of allyl 4-hydroxymethylbenzoate (0.62 g, 3.2 mmol) and the compound prepared in Example 4 (1.33 g, 2 mmol) in anhydrous THF (40 mL) was added PPh₃ (1.34 g, 5.1 mmol) and DEAD (0.8 mL, 0.88 g, 5.1 mmol). The resulting reaction mixture was allowed to warm to room temperature and then allowed to reflux under N₂ for 0.5 h. Column chromatography of the concentrated residue (90% ethyl acetate/hexane) provided the title compound as a white foamy material, wt. 0.98 g (58%). 1 H NMR (CDCl₃) 8.09 (d, J=8.2 Hz, 2H), 7.49 (d, J=8.0 Hz, 2H), 7.16-6.46 (m, 4H), 6.11-5.98 (m, 3H), 5.42 (d, J=17.2 Hz, 1H), 5.30 (d, J=10.4 Hz, 1H), 5.11 (s, 2H), 5.83 (d, J=5.6 Hz, 2H), 4.56-4.37 (m, 2H), 4.17-3.9 (m, 2H), 3.81-3.70 (m, 12H), 3.55-2.05 (m, 8H), 0.97-0.89 (m, 2H), 0.02 (s, 9H). Elemental for C₄₃H₅₂N₂O₁₁Si: Theoretical, C, 64.48; H, 6.54; N, 3.50. Found: C, 64.18; H, 6.67; N, 3.28.

Synthesis of 4-(10-Dipentylcarbamoyl-9-{methyl-[(2,4,6-trimethoxy-benzylcarbamoyl)-methyl]-carbamoyl}-11-oxo-tricyclo[$6.2.2.0^{2,7}$]dodeca-2(7),3,5-trien-4-yloxymethyl)-benzoic acid allyl ester

5

10

To a solution of the diester prepared in Example 5 (0.5 g, 0.62 mmol) in anhydrous THF (14 mL) was added a 1.0 M solution of TBAF (1.0 mL, 1 mmol). The reaction mixture was allowed to stir at rt for 1.75 h, after which ethyl acetate (200 mL) was added. The organic layer was then washed with 0.1 N HCl (2 x 50 mL), brine (2x50 mL), dried (MgSO₄), filtered and concentrated to give a colorless oil. The free acid was dissolved in dichloromethane (12 mL) and HATU (0.29 g, 0.76 mmol); NMM (0.17 mL, 0.16 g, 1.55 mmol) and dipentylamine (.15 mL, 0.12 g, 0.7 mmol) were added. The resulting reaction mixture was then allowed to stir at rt under N₂ for 3 days, after which dichloromethane (300 mL) was added. The organic layer was then washed with 0.1 N HCl (2x100 mL), 55 solution of NaHCO₃ (2x50 mL), water (2x50 mL), brine (1x50 mL), dried (MgSO₄), filtered and the volatiles were evaporated to give a colorless oil. Column chromatography (5% methanol/dichloromethane) provided the desired product, wt. 303 mg (58%). ¹H NMR (CDCl₃) 8.08 (d, J=8.2 Hz, 2H), 7.50 (d, J=8.3 Hz, 2H), 7.18-6.72 (m, 3H), 6.11-5.98 (m, 3H), 5.41 (dd, J=17.2, 1.3 Hz, 1H), 5.30 (apt t, J=6.0, 4.4 Hz, 1H), 5.11 (s, 2H), 4.83 (d, J=5.6 Hz, 2H), 4.53-4.35 (m, 2H), 4.02 (d, J=15.4 Hz, 1H), 3.85-2.80 (m, 23H), 2.16 (d, J=18.5 Hz, 1H), 1.60-1.10 (m, 12H), 0.94-0.86 (m, 6H). Elemental for $C_{48}H_{61}N_{3}O_{10}$ methanol: Theoretical, C, 67.49; H, 7.51; N, 4.82. Found: C, 67.68; H, 7.45; N, 4.63.

Synthesis of 4-(10-Dipentylcarbamoyl-9-{methyl-[(2,4,6-trimethoxy-benzylcarbamoyl)-methyl]-carbamoyl}-11-oxo-tricyclo[$(6.2.2.0^{2,7})$]dodeca-2(7),3,5-trien-4-yloxymethyl)-benzoic acid

5

10

15

A solution of allyl ester prepared in Example 6 (0.28 g, 0.33 mmol), tetrakis(triphenylphosphine) palladium (0) (27 mg, 23 μ mol) and N-methylaniline (75 μ L, 74 mg, 0.69 mmol) in dichloromethane (3.5 mL) was allowed to stir at rt for 1 h. The reaction mixture was then diluted with dichloromethane (50 mL) and washed with 0.1 N HCl solution (2x20 mL) and brine (2x20 mL). Upon drying (MgSO₄), filtration of the drying agent and concentration, the resulting oily residue was chromatographed on silica gel (5% methanol/dichloromethane) to provide the desired product as a white solid, wt. 160 mg (60%). ¹H NMR (CDCl₃) 8.14, 7.92 (2 d, J=8.0, 7.8 Hz, 2H), 7.54 (d, J=7.9 Hz, 2H), 7.31-6.89 (m, 4H), 6.12 (s, 2H), 5.15, 5.06 (2 br s, 2H), 4.57-4.39 (m, 2H), 4.08 (d, J=15.5 Hz, 1H), 3.91-3.52 (m, 13H), 3.30-2.86 (m, 7H), 2.38 (s, 2H), 2.20 (d, J=18.4 Hz, 1H), 1.59-0.80 (m, 18H). MS (ESI +ve) 800 (MH⁺), 822 (MNa⁺). Elemental for C₄₅H₅₇N₃O₁₀.methanol: Theoretical, C, 66.41; H, 7.39; N, 5.05. Found: C, 66.28; H, 7.22; N, 4.83.

Synthesis of 4-[4-(2-Dimethylcarbamoyl-pyrrolidine-1-carbonyl)-benzyloxy]- 11-oxo-tricyclo[$6.2.2.0^{2,7}$]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-dipentylamide 10-{methyl-[(2,4,6-trimethoxy-benzylcarbamoyl)-methyl]-amide}

5

15

A solution of the acid prepared in Example 7 (67 mg, 84 μ mol), HATU (38 mg, 100 μ mol), NMM (22 μ L, 20 mg, 0.2 mmol) and H-prolinedimethylamide (15 mg, 0.1 mmol) in dichloromethane (1.0 mL) was allowed to stir at rt overnight. The reaction mixture was then diluted with dichloromethane (30 mL) and washed with 0.1 N HCl solution (2x20 mL), 5% NaHCO₃ solution (1x25 mL) and brine (1x25 mL). Upon drying (MgSO₄), filtration of the drying agent and concentration, the resulting oily residue was chromatographed on silica gel (5% methanol/dichloromethane) to provide the diastereomeric mixture as a white solid, wt. 54 mg (70%). ¹H NMR (CDCl₃) 7.61 (d, J=8.0 Hz), 7.43 (d, J=8.0 Hz), 7.38 (s), 7.15(d, J=8.0 Hz), 7.02-6.78 (m), 6.11 (s), 6.09 (s), 5.06 (s), 5.02 (s), 4.52-4.33 (m), 4.04-3.88 (m), 3.86-3.67 (m), 3.57-3.49 (m), 3.27-3.06 (m), 2.99 (s), 2.85 (s), 2.82 (s), 2.76 (d, J=10.6 Hz), 2.53 (d, J=9.1 Hz), 2.31-1.80 (m), 1.60-1.10 (m), 0.91 (t, J=5.8 Hz), 0.87 (t, J=6.0 Hz). ESI-MS m/z 925 (MH⁺), 947 (MNa⁺).

Synthesis of 4-Hydroxy-11-oxo-tricyclo $[6.2.2.0^{2.7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-(2,4-dimethoxy-benzyl) ester 9-(2-trimethylsilanyl-ethyl) ester

5

15

To a solution of acid 1 (2.83 g, 7.5 mmol), prepared in Example 1, 2,4-dimethoxybenzylalcohol (1.65 g, 9.8 mmol) and DMAP (0.1 g, 0.8 mmol) in dichloromethane (50 mL) was added DIEA (2.8 mL, 2.1 g, 16 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (2.2 g, 11.5 mmol). The resulting reaction mixture was allowed to stir at rt for 24 h, after which time it was concentrated to dryness, redissolved in ethyl acetate (300 mL) and washed with 0.1 N HCl solution (2x100 mL), 5% NaHCO₃ solution (1x100 mL) and brine (1x100 mL). Upon drying (MgSO₄), filtration of the drying agent and concentration, the resulting oily residue was chromatographed on silica gel (35% ethyl acetate/hexane) to provide 370 mg (10%) of the trans bis-ester. 1 H NMR (CDCl₃) 7.10 (dd, J=8.1, 2.9 Hz, 2H), 6.69 (dd, J=8.0, 2.4 Hz, 1H), 6.48-6.42 (m, 2H), 6.33 (d, J=2.4 Hz, 1H), 5.30-5.22 (br s, 1H), 5.03 (dd, J=37.1, 11.8 Hz, 2H), 4.27-4.21 (m, 2H), 3.91 (d, J=2.2 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.76-3.73 (m, 1H), 3.69 (dd, J=5.8, 2.2 Hz, 1H), 3.28-3.22 (m, 1H), 2.40 (dd, J=18.9, 2.0 Hz, 1H), 2.10 (dm, 1H), 1.04-0.99 (m, 2H), 0.01 (s, 9H). FAB-MS m/z 526 (M $^{+}$).

Synthesis of 4-Methoxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-(2,4-dimethoxy-benzyl) ester 9-(2-trimethylsilanyl-ethyl) ester

5

To a solution of the phenol prepared in Example 9 (70 mg, 0.13 mmol) in anhydrous THF (5 mL) was added cesium carbonate (48 mg, 0.14 mmol) and methyl iodide (45 μ L, 103 mg, 0.7 mmol). The resulting reaction mixture was allowed to stir at rt under N₂ for 22 h. The reaction mixture was then diluted with ethyl acetate (20 mL) and washed with 0.1 N HCl solution (2x10 mL), 5% NaHCO₃ solution (1x10 mL) and brine (1x10 mL). Upon drying (MgSO₄), filtration of the drying agent and concentration, the resulting oily residue was chromatographed on silica gel (1% methanol/dichloromethane) to provide 35 mg (49%) of the methyl ether. ¹H NMR (CDCl₃) 7.18 (d, J=8.2 Hz, 1H), 7.11 (d, J=8.2 Hz, 1H), 6.77 (dd, J=8.2, 2.5 Hz, 1H), 6.58 (d, J=2.4 Hz, 1H), 6.49-6.41 (m, 2H), 5.02 (dd, J=24.7, 11.8 Hz, 2H), 4.28-4.22 (m, 2H), 3.98 (d, J=2.2 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.78-3.75 (m, 1H), 3.72 (s, 3H), 3.71-3.69 (m, 1H), 3.28-3.26 (m, 1H), 2.41 (dd, J=19.0, 2.1 Hz, 1H), 2.11 (dm, 1H), 1.05-0.99 (m, 2H), 0.06 (s, 9H). FAB-MS m/z 540 (M⁺).

EXAMPLE 11

SYNTHESIS OF 10-(2,4-DIMETHOXY-BENZYLCARBAMOYL)-4-HYDROXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

5 General Procedure A for the Synthesis of 4-Hydroxy-10-amido Derivatives

To a solution of the cis acid ester 1 (0.5 mmol) and molecular sieves (3A) in THF (2 mL) was added diisopropylethylamine (2.8 mmol) and diphenylphosphoryl azide (0.7 mmol). The solution was allowed to stir at rt under nitrogen for 3-4 h, after which time a selected amine (1.5 – 2 mol equivalents) and DMAP (2 mol equivalents) were added and the resulting reaction mixture was allowed to stir overnight. Dilution with ethyl acetate (25 mL), followed by washes with 1 N HCl (2x25 mL), 5% NaHCO₃ solution (2x25 mL) and brine (1x25 mL) provided a pale yellow solution, which was dried (MgSO₄), filtered and concentrated to dryness. Column chromatography provided the desired product.

The title compound was prepared as in general procedure A, above. Column chromatography (10% acetonitrile/dichloromethane) provided 35% of the title compound.

¹H NMR (acetonitrile-*d*₃) 7.14 (br s, 1H), 7.11 (d, *J*=8.2 *Hz*, 1H), 7.05 (br s, 1H), 7.02 (d, *J*=8.2 *Hz*, 1H), 6.65 (dd, *J*=8.0, 2.5 *Hz*, 1H), 6.53 (dd, *J*=8.4, 2.3 *Hz*, 2H), 6.44 (dd, *J*=8.4, 2.3 *Hz*, 1H), 4.25-4.16 (m, 4H), 3.81, 3.77 (2 s, 6H), 3.74 (app. q, *J*=2.4 *Hz*, 1H), 3.69 (d, *J*=1.9 *Hz*, 1H), 3.39 (dd, *J*=6.3, 1.9 *Hz*, 1H), 3.20 (dt, *J*=6.3, 2.2 *Hz*, 1H), 2.37 (dd, 2.19.0, 2.2 *Hz*, 1H), 2.03 (dq, *J*=19.0, 3.0, 2.2 *Hz*, 1H), 1.01-0.96 (m, 2H), 0.04 (s, 9H).

¹³C NMR (acetonitrile-*d*₃) 209.20, 174.55, 171.38, 161.73, 159.66, 157.60, 135.53, 134.32, 130.69, 126.08, 120.02, 115.50, 114.98, 105.26, 99.43, 64.48, 57.56, 56.30, 56.10, 46.27,

43.91, 39.42, 39.01, 38.41, 17.96, -1.43. FAB-MS m/z 540 (MH $^{+}$). Elemental for $C_{28}H_{35}NO_7Si$: Theoretical, C, 63.98; H, 6.71; N, 2.66. Found: C, 63.77; H, 6.86; N, 2.63.

EXAMPLE 12

Synthesis of 10-Dipentylcarbamoyl-4-hydroxy-11-oxo-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as in general procedure A in Example 11. Column chromatography (5% acetonitrile/dichloromethane) provided 23% of the title compound. 1 H NMR (acetonitrile- d_3) 7.12 (d, J=8.0 Hz, 1H), 6.98 (br s, 1H), 6.67 (dd, J=8.0, 2.5 Hz, 1H), 6.53 (d, J=2.5 Hz, 1H), 4.62-4.23 (m, 2H), 3.76-3.73 (m, 1H), 3.66 (dd, J=6.6, 1.7 Hz, 1H), 3.56-3.19 (m, 5H), 2.97-2.88 (m, 1H), 2.47 (dd, J=18.8, 2.1 Hz, 1H), 2.04 (dt, J=19.0, 2.6 Hz, 1H), 1.69-1.15 (m, 12H), 1.02-0.97 (m, 2H), 0.92, 0.88 (2 t, J=5.9, 5.6 Hz, 6H), 0.03 (s, 9H). 13 C NMR (acetonitrile- d_3) 208.83, 174.55, 170.74, 157.60, 135.21, 134.56, 125.88, 115.47, 114.94, 64.27, 57.27, 48.65, 46.87, 46.77, 40.21, 38.98, 38.25, 29.94, 29.86, 29.75, 28.34, 23.30, 23.26, 18.10, 14.44, -1.46. FAB-MS m/z 516 (MH $^{+}$). Elemental for C₂₉H₄₅NO₅Si: Theoretical, C, 67.53; H, 8.79; N, 2.72. Found: C, 67.36; H, 9.00; N, 2.73.

10

15

EXAMPLE 13

Synthesis of 4-Hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

$$\begin{array}{c} CH_3 \\ H_3C-Si \\ CH_3 \\ O \\ H \\ OH \\ \end{array}$$

A mixture of the product from Example 1 (1.46g, 3.88 mmol), TSTU (1.40g 4.65 mmol), DIEA (3.2 mL, 18.4 mmol) were dissolved in THF (15 mL) and stirred under N_2 for 5 h. The solution was then treated with DMAP (0.58g, 4.7 mmol) and n-propanol (7.5 mL) and stirred an additional 19 h. The reaction was quenched with 0.2 M HCl (aq) and diluted with 150 mL ethyl acetate. The phases were separated and the organic was washed with 5% NaHCO₃ (aq) and brine. The organic layer was separated, dried (Na₂SO₄) and concentrated to 2.0g of light yellow oil. Silica chromatography (ethyl acetate/hexanes) afforded 1.0 g (62%) of the title compound. ¹H NMR (CDCl₃) 7.12 (d, J=8 Hz, 1H), 6.70 (dd, J=2.5, 8 Hz, 1H), 6.64 (d, J=2.5 Hz, 1H), 5.26 (s, 1H), 4.25 (dd, J=7, 9 Hz, 2H), 3.98 – 3.93 (m, 3H), 3.74 (d, J=2.5 Hz, 1H), 3.65 (dd, J=2.2, 5.8 Hz, 1H), 3.2 (dd, J=2, 5 Hz, 1H), 2.41 (dd, J=2, 19 Hz, 1H), 2.16 (dd, J=2, 21 Hz, 1H), 1.57 (dd, J=7, 14 Hz, 2H), 1.05 (ddd, J=7, 7, <1 Hz, 2H), 0.87 (t, J=7, 7 Hz, 3H), 0.04 (s, 9H); ESI-MS m/z 417 (M-H).

15

20

EXAMPLE 14

Synthesis of 4-Hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-(2-cyclohexyloxy-ethyl) ester 9-(2-trimethylsilanyl-ethyl) ester

General Procedure B for the Synthesis of Trans Bis-esters 3

To a solution of the cis acid ester 1 (0.27 mmol) and molecular sieves (3A) in THF (1.0 mL) was added DIEA (1.4 mmol) and DPPA (0.37 mmol). The solution was allowed to stir at rt under nitrogen for 3-4 h, after which time a selected alcohol (2.5 mol equivalents) and DMAP (2 mol equivalents) were added and the resulting reaction mixture was allowed to stir overnight. Dilution with ethyl acetate (25 mL), followed by washes with 1 N HCl (2x25 mL), 5% NaHCO₃ solution (2x25 mL) and brine (1x25 mL) provided a pale yellow solution, which was dried (MgSO₄), filtered and concentrated to dryness. Column chromatography provided the desired product.

The title compound was prepared as described in general procedure B using 2-cyclohexyloxyethanol. Column chromatography (7% acetonitrile/dichloromethane) provided a 30% yield of the title compound. 1 H NMR (acetonitrile- d_3) 7.15 (d, J=8.0~Hz, 1H), 7.01 (br s, 1H), 6.74-6.69 (m, 2H), 4.32-4.19 (m, 2H), 4.14-4.05 (m, 2H), 3.84 (d, J=2.2~Hz, 1H), 3.73 (app. q, J=2.7~Hz, 1H), 3.60 (dd, J=6.0, 2.2 Hz, 1H), 3.56-3.53 (m, 2H), 3.27-3.20 (m, 1H), 3.09 (dt, J=6.0, 2.3 Hz, 1H), 2.36 (dd, J=19.0, 2.5 Hz, 1H), 2.06 (ddd, J=19.0, 3.2, 2.1 Hz, 1H), 1.87-1.75 (m, 2H), 1.74-1.64 (m, 2H), 1.56-1.46 (m, 1H), 1.34-1.12 (m, 5H), 1.06-1.00 (m, 2H), 0.05 (s, 9H). 13 C NMR (acetonitrile- d_3) 208.86, 173.97, 172.62, 157.71, 135.64, 134.36, 126.38, 115.77, 115.03, 78.49, 66.37, 65.95, 64.74,

55.95, 47.07, 43.78, 39.32, 38.30, 33.03, 26.63, 24.84, 18.01, -1.42. FAB-MS m/z 502 (M^+). Elemental for $C_{27}H_{38}O_7Si$: Theoretical, C, 64.51; H, 7.62. Found: C, 64.47; H, 7.76.

EXAMPLE 15

SYNTHESIS OF 4-HYDROXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-5 DICARBOXYLIC ACID 10-(2-PYRIDIN-2-YL-ETHYL) ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure B using 2-(2-hydroxyethyl)-pyridine. Column chromatography (neat ethyl acetate) provided 48% of the title compound. 1 H NMR (acetonitrile- d_3) 8.49 (ddd, J=4.7, 1.7, 1.1 Hz, 1H), 7.68 (td, J=7.7, 1.9 Hz, 1H), 7.23-7.18 (m, 2H), 7.14 (d, J=8.2 Hz, 1H), 6.72 (dd, J=8.0, 2.5 Hz, 1H), 6.57 (d, J=2.5 Hz, 1H), 4.42-4.15 (2 m, 4H), 3.72-3.68 (m, 2H), 3.53 (dd, J=6.0, 2.2 Hz, 1H), 3.04-2.99 (m, 3H), 2.33 (dd, J=19.0, 2.2 Hz, 1H), 2.03 (ddd, J=19.0, 3.2, 2.1 Hz, 1H), 1.03-0.97 (m, 2H), 0.04 (s, 9H). 13 C NMR (acetonitrile- d_3) 208.85, 173.90, 172.50, 159.30, 157.78, 150.50, 137.92, 135.53, 134.23, 126.38, 124.73, 123.06, 115.82, 114.95, 65.40, 64.68, 55.86, 46.87, 43.75, 39.22, 38.30, 37.71, 17.95, -1.42. FAB-MS m/z 482 (MH $^+$). Elemental for C₂₆H₃₁NO₆Si: Theoretical, C, 64.84; H, 6.49; N, 2.91. Found: C, 64.63; H, 6.43; N, 2.70.

Synthesis of 4-Hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-(3-fluoro-benzyl) ester 9-(2-trimethylsilanyl-ethyl) ester

5

15

The title compound was prepared as described in general procedure B using 3-fluorobenzyl alcohol. Column chromatography (1% methanol/dichloromethane) provided a 56% yield of the title compound. 1 H NMR (acetonitrile- d_3) 7.41-7.34 (m, 1H), 7.16 (d, J=8.2 Hz, 1H), 7.11-7.02 (m, 3H), 6.98 (br s, 1H), 6.72 (dd, J=8.2, 2.5 Hz, 1H), 6.61 (d, J=2.5 Hz, 1H), 5.03 (s, 2H), 4.27-4.22 (m, 2H), 3.86 (d, J=2.2 Hz, 1H), 3.74 (dd, J=5.2, 2.5 Hz, 1H), 3.67 (dd, J=6.0, 2.2 Hz, 1H), 3.12 (dt, J=6.0, 2.3 Hz, 1H), 2.38 (dd, J=19.0, 2.2 Hz, 1H), 2.06 (ddd, J=19.1, 3.3, 2.2 Hz, 1H), 1.03-0.97 (m, 2H), 0.04 (s, 9H). 13 C NMR (acetonitrile- d_3) 208.68, 173.91, 172.49, 165.58, 162.35, 157.72, 140.06, 139.95, 135.46, 134.36, 131.72, 131.62, 126.43, 124.97, 124.94, 116.26, 115.99, 115.91, 115.82, 115.61, 114.97, 67.07, 64.74, 55.81, 47.06, 43.81, 39.19, 38.27, 17.96, -1.45. FAB-MS m/z 484 (M $^+$). Elemental for $C_{26}H_{29}FO_6Si$: Theoretical, C, 64.44; H, 6.03. Found: C, 64.47; H, 6.13.

95

Synthesis of 4-Hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-(2-pyrrolidin-1-yl-ethyl) ester 9-(2-trimethylsilanyl-ethyl) ester

5

15

The title compound was prepared as described in general procedure B using 1-(2-hydroxyethyl)-pyrrolidine. Column chromatography (10% methanol/dichloromethane) provided 39% of the title compound. 1 H NMR (acetonitrile- d_3) 7.17-7.13 (m, 1H), 6.73-6.68 (m, 2H), 4.29-4.21 (m, 2H), 4.08 (t, J=5.8 Hz, 2H), 3.83 (d, J=2.2 Hz, 1H), 3.72 (dd, J=5.5, 2.8 Hz, 1H), 3.57 (dd, J=6.0, 2.2 Hz, 1H), 3.11 (dt, J=6.0, 2.3 Hz, 1H), 2.63 (td, J=5.6, 2.5 Hz, 2H), 2.51-2.45 (m, 4H), 2.35 (dd, J=19.0, 2.2 Hz, 1H), 2.05 (ddd, J=19.0, 3.2, 2.1 Hz, 1H), 1.73-1.68 (m, 4H), 1.05-1.00 (m, 2H), 0.05 (s, 9H). 13 C NMR (acetonitrile- d_3) 208.89, 174.00, 172.59, 157.89, 135.58, 134.18, 126.41, 126.34, 115.83, 115.09, 114.94, 65.13, 64.69, 55.92, 55.10, 55.04, 54.93, 46.99, 43.79, 43.72, 39.27, 38.33, 24.31, 24.11, 17.99, -1.42. FAB-MS m/z 474 (MH $^+$).

15

EXAMPLE 18

SYNTHESIS OF 4-HYDROXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-DODECYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

$$H_3C-Si$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

The title compound was prepared as described in general procedure B using n-dodecanol. Column chromatography (1% methanol/dichloromethane) provided 50% of the title compound. 1 H NMR (acetonitrile- d_3) 7.15 (d, J=8.0 Hz, 1H), 7.00 (br s, 1H), 6.71 (dd, J=8.0, 2.5 Hz, 1H), 6.67 (d, J=2.5 Hz, 1H), 4.28-4.22 (m, 2H), 4.04-3.91 (m, 2H), 3.83 (d, J=2.2 Hz, 1H), 3.72 (dd, J=5.4, 2.6 Hz, 1H), 3.57 (dd, J=5.9, 2.3 Hz, 1H), 3.09 (dt, J=6.0, 2.4 Hz, 1H), 2.37 (dd, J=19.0, 2.5 Hz, 1H), 2.05 (ddd, J=19.0, 3.1, 2.1 Hz, 1H), 1.56-1.44 (m, 2H), 1.28 (br s, 18H), 1.05-1.00 (m, 2H), 0.88 (t, J=6.6 Hz, 3H), 0.05 (s, 9H). 13 C NMR (acetonitrile- d_3) 208.88, 174.01, 172.64, 157.75, 135.65, 134.36, 126.39, 115.75, 114.92, 66.38, 64.68, 55.98, 47.05, 43.87, 39.27, 38.32, 32.78, 30.52, 30.49, 30.44, 30.35, 30.21, 30.03, 29.41, 26.69, 23.50, 18.01, 14.50, -1.40. ESI-MS m/z 567.3 (MNa⁺). Elemental for $C_{31}H_{48}O_6Si$: Theoretical, C, 68.34, H, 8.88. Found: C, 68.22; H, 8.98.

10

15

EXAMPLE 19

SYNTHESIS OF 4-HYDROXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-ALLYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure B using allyl alcohol. Column chromatography (7% acetonitrile/dichloromethane) provided 39% of the title compound. 1 H NMR (acetonitrile- d_3) 7.16 (d, J=8.0 Hz, 1H), 7.02 (br s, 1H), 6.72 (dd, J=8.0, 2.5 Hz, 1H), 6.69 (d, J=2.5 Hz, 1H), 5.92-5.81 (m, 1H), 5.28-5.17 (m, 2H), 4.56-4.43 (m, 2H), 4.33-4.19 (m, 2H), 3.87 (d, J=2.2 Hz, 1H), 3.74 (dd, J=5.4, 2.6 Hz, 1H), 3.64 (dd, J=5.9, 2.3 Hz, 1H), 3.12 (dt, J=5.9, 2.5 Hz, 1H), 2.37 (dd, J=19.0, 2.2 Hz, 1H), 2.06 (ddd, J=19.0, 3.3, 2.2 Hz, 1H), 1.06-1.00 (m, 2H), 0.05 (s, 9H). 13 C NMR (acetonitrile- d_3) 208.79, 173.96, 172.37, 157.71, 135.58, 134.36, 133.51, 126.44, 118.75, 115.79, 114.95, 66.75, 64.72, 55.92, 47.01, 43.81, 39.22, 38.31, 17.98, -1.43. FAB-MS m/z 416 (M $^{+}$). Elemental for $C_{22}H_{28}O_6Si$: Theoretical, C, 63.44; H, 6.78. Found: C, 63.19; H, 6.97.

EXAMPLE 20

Synthesis of 10-Azidocarbonyl-4-hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

To a solution of 1 (584 mg, 1.51 mmol) in THF (15.6 mL) was added triethylamine (0.864 mL, 6.14 mmol) and DPPA (0.384 mL, 1.79 mmol). After 6.5 h the reaction was diluted with ethyl acetate and 1% HCl. The layers were separated and the organic layer washed with 5% NaHCO₃, H₂O, and brine, then dried (Na₂SO₄) and concentrated. Flash chromatography (25% ethyl acetate/hexane) afforded the trans acyl azide 2 (218 mg, 36%). FTIR (NaCl, cm⁻¹): 3435, 2960, 2907, 2152, 2129, 1803, 1735, 1728. ¹H NMR (CDCl₃): 7.15 (d, 1H), 6.7 (m, 2H), 4.23 (m, 2H), 3.94 (d, 1H), 3.77 (dd, 1H), 3.68 (dd, 1H), 3.20 (ddd, 1H), 2.40 (dd, 1H), 2.15 (ddd, 1H), 0.10 (s, 9H).

EXAMPLE 21

SYNTHESIS OF 4-HYDROXY-11-OXO-10-PROPOXYCARBONYLAMINO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

General Procedure C for Synthesis of 10-Alkoxycarbonylamino Derivatives.

10

TF:

The first of the same that the

in the state of th

15

20

A 0.1 M solution of the acyl azide 2 in dioxane was refluxed for 1 h to generate the isocyanate. A selected alcohol was added in large excess and the solution heated for 4-20 h. The solution was cooled, and the crude product isolated by concentration *in vacuo* or by extraction. Chromatography on SiO₂ afforded the product.

The title compound was prepared as described in general procedure C employing propyl alcohol. Chromatography with 10% to 30% ethyl acetate/hexane afforded the title compound in 11% overall yield. FAB-MS m/z 434 (MH⁺).

.

10

15

EXAMPLE 22

SYNTHESIS OF 4-HYDROXY-10-(5-METHYL-ISOXAZOL-3-YLMETHOXYCARBONYLAMINO)-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

$$H_3C-S_1$$
 CH_3
 CH_3

5 General Procedure D for Synthesis of 10-Alkoxycarbonylamino Derivatives.

A 0.1 M solution of the acyl azide 2 in dioxane was refluxed for 1 h to generate the isocyanate. The alcohol (1.2 - 2 eq) was added followed by DMAP and the solution refluxed until complete, typically 12-20 h. The crude product was isolated by extraction.

The title compound was prepared as described in general procedure D employing 5-methylisoxazole-3-methanol, and with the following modifications. A solution of the acyl azide (200 mg, ~0.36 mol) in dioxane (3.6 mL) was heated to reflux for 30 min. The reaction was cooled to rt and 171 mg of 5-methylisoxazole-3-methanol was added. The reaction was returned to reflux for 15 h, then cooled to rt. The reaction was quenched with aqueous ammonium chloride and diluted with ethyl acetate. The phases were partitioned, and the organic layer was separated and washed with 5% aqueous NaHCO₃, then brine. The solution was dried (Na₂SO₄) and concentrated to dryness. Chromatography with 5% to 40% ethyl acetate/hexane afforded the title compound in 4% overall yield. ¹H NMR (CDCl₃) 7.12 (d, 1H), 6.71 (dd, 1H), 6.56 (d, 1H), 5.81 (s, 1H), 5.49 (s, 1H), 4.97 (dd, 2H), 4.25 (dd, 2H), 3.95 (d, 1H), 3.75 (m, 2H), 3.48 (s, 1H), 3.25 – 3.23 (m, 1H), 2.41 (s, 3H), 2.38 (dd, 1H), 2.25 (dd, 1H), 1.03 (dd, 2H), 0.05 (s, 9H).

Synthesis of 4-Hydroxy-10-isopropoxycarbonylamino-11-oxotricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure C employing isopropyl alcohol. Chromatography with 30% ethyl acetate/hexane afforded a 53% yield of product. ESI-MS m/z 456 (MNa⁺).

EXAMPLE 24

Synthesis of 10-Cyclopentyloxycarbonylamino-4-hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

THE REPORT OF THE PARTY OF THE

10

The title compound was prepared as in general procedure C employing cyclopentanol. Chromatography with 30% ethyl acetate/hexane afforded a 64% yield of product. ESI-MS m/z 482 (MNa⁺).

EXAMPLE 25

Synthesis of (9, 10 trans)-10-Allyloxycarbonylamino-4-hydroxy-11-oxo-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as in general procedure C employing allyl alcohol. Chromatography with 40% ethyl acetate/hexane afforded a 44% yield of product. ESI-MS m/z 454 (MNa⁺).

EXAMPLE 26

SYNTHESIS OF 4-HYDROXY-10-(INDAN-2-YLOXYCARBONYLAMINO)-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as in general procedure D employing 2-indanol. Chromatography with 30% ethyl acetate/hexane afforded 17% yield of product. ESI-MS m/z 530 (MNa⁺).

EXAMPLE 27

Synthesis of 10-(3-Allyl-ureido)-4-hydroxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

5 General Procedure E for The Synthesis of 10-Ureido Derivatives

A 0.1 M solution of the acyl azide 2 in dioxane was refluxed for 0.5 h. Upon cooling the appropriate amine was added and the solution stirred at ambient temperature for 1-4 h. Ethyl acetate and 1% HCl were added and the layers separated. The organic layer was washed with 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography afforded the urea.

The title compound was prepared as described in general procedure E employing 3.6 eq of allylamine. The crude product was chromatographed on SiO_2 to afford a 27% yield of the urea. ESI-MS m/z 453 (MNa⁺).

EXAMPLE 28

Synthesis of 4-Hydroxy-10-{3-[2-(4-hydroxy-phenyl)-ethyl]-ureido}-11-oxotricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure E employing 2.2 eq of tyramine. The crude product was chromatographed with 50% ethyl

acetate/hexane to 65% ethyl acetate/hexane gradient to afford an 18% yield of the urea. ESI-MS m/z 533 (MNa⁺).

EXAMPLE 29

SYNTHESIS OF 4-HYDROXY-10-[(MORPHOLINE-4-CARBONYL)-AMINO]-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure E employing 3.3 eq of morpholine. The crude product was chromatographed with 70% ethyl acetate/methylene chloride to afford a 50% yield of the urea. ESI-MS m/z 483 (MNa⁺).

EXAMPLE 30

SYNTHESIS OF 10-(3-TERT-BUTYL-UREIDO)-4-HYDROXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure E employing 3 eq of tert-butylamine. The crude product was chromatographed with 35% ethyl acetate/hexane to 45% ethyl acetate/hexane gradient to afford a 57% yield of the urea. ESI-MS m/z 469 (MNa⁺).

10

EXAMPLE 31

Synthesis of 10-[3-(2,4-Dimethoxy-Benzyl)-ureido]-4-hydroxy-11-oxo-tricyclo[$6.2.2.0^{2,7}$]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure E employing 1.5 eq of 2,4-dimethoxybenzylamine. The crude product was chromatographed with 60% ethyl acetate/hexane to afford a 16% yield of the urea. ESI-MS m/z 563 (MNa⁺).

EXAMPLE 32

SYNTHESIS OF 4-HYDROXY-10-(3-NAPHTHALEN-1-YLMETHYL-UREIDO)-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure E employing 2 eq of 1-naphthalene methylamine. The crude product was chromatographed with 50% ethyl acetate/hexane to afford a 47% yield of the urea. ESI-MS m/z 531 (MH⁺).

10

15

14

The state of the

THE THE PARTY

--

The train that the same and

General Procedure F for the Synthesis of 4-Alkoxy Derivatives

To a 0.1 M solution of the benzobicyclooctane phenol (1 eq), prepared in Example 13, in tetrahydrofuran was added triphenylphosphine and the appropriate alcohol. The solution was cooled to 0°C and DEAD was added. The cooling bath was removed, the solution stirred at ambient temp for 5 min then heated at reflux until reaction was complete, typically 20-30 min. After cooling, the solution was diluted with ethyl acetate, water was added and the layers separated. The organic layer was washed with brine, dried (Na₂SO₄), and concentrated *in vacuo*. Chromatography on SiO₂ afforded the aryl ether.

The title compound was prepared as described in general procedure F employing 2.5 eq triphenyphosphine, 1.9 eq of allyl-4-(hydroxymethyl)-benzoate, and 2.5 eq of DEAD. Chromatography with 15% ethyl acetate/hexane followed by a second chromatography with 25% ethyl acetate/hexane afforded a 54% yield of aryl ether. ESI-MS m/z 615 (MNa⁺).

Synthesis of 4-[4-(2-Dimethylcarbamoyl-pyrrolidine-1-carbonyl)-benzyloxy]11-0x0-tricyclo[6.2.2.02,7]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10PROPYL ESTER 9-(2-trimethylsilanyl-ethyl) ester

5

1

The time that the time that

off the state when the commence of

1...

20

A. 4-(4-Carboxy-benzyloxy)-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

To a solution of the allyl ester prepared in Example 33 in methylene chloride was added N-methylaniline (40 µL, 0.37 mmol) followed by tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.02 mmol). The reaction was stirred for 20 min, diluted with ethyl acetate, and 2% HCl added. The layers were separated and the organic layer was washed with 1% HCl, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Chromatography with 65% ethyl acetate/methylene chloride to 95% ethyl acetate/dichloromethane afforded a 60% yield of product. ESI-MS m/z 551 (M-H).

15 B. 4-[4-(2-Dimethylcarbamoyl-pyrrolidine-1-carbonyl)-benzyloxy]-11-oxotricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

To a solution of the acid (51.1 mg), N-methylmorpholine (30 μL), and proline dimethylamide (17.5 mg, 0.12 mmol) in methylene chloride (0.7 mL) was added HATU (46 mg, 0.12 mmol). The solution was stirred for 6 h, diluted with ethyl acetate, and quenched with 3% HCl. The layers were separated and the organic layer washed with 1% HCl, 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*.

20

5

Chromatography with 100% ethyl acetate - 5% methanol/methylene chloride gradient afforded the product contaminated with tetramethyl urea. An ethereal solution of the mixture was washed with H₂O (10X), dried (Na₂SO₄) and concentrated to afford 29.6 mg (46%) of the titled product as a 1/1 mixture of diasteroemers. ESI-MS m/z 677 (MH⁺).

EXAMPLE 35

SYNTHESIS OF 4-DIETHYLCARBAMOYLMETHOXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

10 General procedure G for the synthesis of 4-Alkoxy Derivatives.

To a 0.2 M solution of the phenol prepared as in Example 13 (1 eq) in DME or DMF was added alkyl halide and cesium carbonate (Cs₂CO₃). The solution was stirred at ambient temperature until complete, normally 1-12 h. The reaction was diluted with ethyl acetate, 1% HCl was added and the layers separated. The organic layer was washed with 5% NaHCO₃, brine, dried (Na₂SO₄) and concentrated *in vacuo*. Chromatography on SiO₂ afforded the aryl ether.

The title compound was prepared as described in general procedure G employing DME, 1.5 eq of N,N-diethyl-2-chloroacetamide and 2.0 eq of cesium carbonate. Chromatography with 3% ethyl acetate/methylene chloride to 10% ethyl acetate/methylene chloride gradient afforded a 26% yield of product. ESI-MS m/z 554 (MNa⁺).

EXAMPLE 36

Synthesis of 4-(4-Nitro-benzyloxy)-11-0x0-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. nitrobenzyl alcohol and 2.3 eq DEAD. Chromatography with 10% ethyl acetate/hexane afforded the title compound in 30% yield. ESI-MS m/z 576 (MNa⁺).

EXAMPLE 37

SYNTHESIS OF 4-(BIPHENYL-4-YLMETHOXY)-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure F employing 1.7 eq PPh₃, 1.7 eq. biphenylmethanol and 1.7 eq DEAD. Chromatography with 10% ethyl acetate/hexane afforded the title compound in 47% yield. ESI-MS m/z 607 (MNa⁺).

Synthesis of 4-(2-Naphthalen-2-yl-ethoxy)-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl)

5

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. naphthaleneethanol and 2.3 eq DEAD. Chromatography with 5% ethyl acetate/hexane afforded the title compound in 46% yield. ESI-MS m/z 595 (MNa⁺).

EXAMPLE 39

Synthesis of 4-(3-Fluoro-benzyloxy)-11-0x0-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. 3-fluorobenzyl alcohol and 2.3 eq DEAD.

15 Chromatography with 5% ethyl acetate/hexane afforded the title compound in 50% yield. ESI-MS m/z 549 (MNa⁺).

SYNTHESIS OF 11-OXO-4-(3-PHENYL-PROPOXY)-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. 3-phenyl-1-propanol and 2.3 eq DEAD. Chromatography with 5% ethyl acetate/hexane afforded the title compound in 40% yield. ESI-MS m/z 559 (MNa⁺).

EXAMPLE 41

SYNTHESIS OF 11-OXO-4-(2-PYRIDIN-2-YL-ETHOXY)-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-10 TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. 2-(2-hydroxyethyl) pyridine and 2.3 eq DEAD. Chromatography with 20% ethyl acetate/dichloromethane afforded the title compound in 36% yield. ESI-MS m/z 546 (MNa⁺).

Synthesis of 4-(2-Methoxy-ethoxy)-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. 2-methoxyethanol and 2.3 eq DEAD. Chromatography with 18% ethyl acetate/hexane, then 15% acetone/hexane afforded the title compound in 50% yield. ESI-MS m/z 499 (MNa⁺), 515 (MK⁺).

EXAMPLE 43

Synthesis of 4-Cyclopentyloxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. cyclopentanol and 2.3 eq DEAD. Chromatography with 10% ethyl acetate/hexane afforded the title compound in 36% yield. ESI-MS m/z 509 (MNa⁺).

EXAMPLE 44

SYNTHESIS OF 4-(3-CYANO-PROPOXY)-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

$$H_3C-Si$$
 CH_3
 O
 CH_3
 O
 CH_3
 $C\equiv N$

The title compound was prepared as described in general procedure G employing DMF, 1.5 eq 4-bromobutyronitrile and 2.0 eq Cs₂CO₃. Chromatography with 20% ethyl acetate/hexane afforded the title compound in 82% yield. ESI-MS m/z 508 (MNa⁺).

EXAMPLE 45

Synthesis of 4-(5-Methyl-isoxazol-3-ylmethoxy)-11-oxotricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure F employing 2.3 eq PPh₃, 2.0 eq. 5-methylisoxazole-3-methanol and 2.3 eq DEAD.

15 Chromatography with 20% ethyl acetate/dichloromethane afforded the title compound in 36% yield. ESI-MS m/z 536 (MNa⁺).

EXAMPLE 46

SYNTHESIS OF 4-ETHOXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure G employing DMF, 1.5 eq iodoethane and 2.0 eq Cs₂CO₃. Chromatography with 10% ethyl acetate/hexane afforded the title compound in 40% yield. ESI-MS m/z 469 (MNa⁺).

EXAMPLE 47

SYNTHESIS OF 4-METHOXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

$$H_3C-Si$$
 CH_3
 O
 CH_3
 O
 CH_3
 O
 CH_3

The title compound was prepared as described in general procedure G employing DMF, 3.0 eq iodomethane and 2.0 eq Cs₂CO₃. Chromatography with 15% ethyl acetate/hexane afforded the title compound in 54% yield. ESI-MS m/z 455 (MNa⁺).

EXAMPLE 48

Synthesis of 4-Allyloxy-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

$$H_3C-Si$$
 CH_3
 O
 CH_3
 O
 CH_3
 O
 CH_2

The title compound was prepared as described in general procedure G employing DMF, 3.0 eq 1,3-diiodopropane and 1.0 eq Cs₂CO₃. Chromatography with 10% ethyl acetate/hexane afforded the title compound in 8% yield. ESI-MS m/z 481 (MNa⁺).

EXAMPLE 49

SYNTHESIS OF 11-OXO-4-(PYRIDIN-3-YLMETHOXY)-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-10 TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure G employing DMF, 2.0 eq 3-picolylchloride hydrochloride and 4.0 eq Cs₂CO₃. Chromatography with 40% ethyl acetate/hexane afforded the title compound in 75% yield. ESI-MS m/z 532 (MNa⁺).

EXAMPLE 50

SYNTHESIS OF 11-OXO-4-(PYRIDIN-2-YLMETHOXY)-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure G employing DMF, 2.0 eq 2-picolylchloride.HCl and 4.0 eq Cs_2CO_3 . Chromatography with 15% ethyl acetate/hexane afforded the title compound in 72% yield. ESI-MS m/z 532 (MNa⁺).

EXAMPLE 51

SYNTHESIS OF 4-TERT-BUTOXYCARBONYLMETHOXY-11-OXO-TRICYCLO[6.2.2.0^{2,7}] DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure G employing DMF, 1.1 eq oftert-butylbromo acetate, and 1.5 eq of Cs₂CO₃.

Chromatography with 20% ethyl acetate/hexane afforded the title compound in 89% yield. ESI-MS m/z 555 (MNa⁺).

EXAMPLE 52

SYNTHESIS OF 4-(DIMETHOXY-PHOSPHORYLOXY)-11-OXO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure G employing DMF, 1.5 eq dimethylchlorophosphate and 2.0 eq Cs₂CO₃. Chromatography with 40% ethyl acetate/hexane afforded the title compound in 19% yield. ESI-MS m/z 549 (MNa⁺).

EXAMPLE 53

Synthesis of 11-Oxo-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

10

15

A. <u>11-Oxo-4-trifluoromethanesulfonyloxy-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester.</u>

To a 0.3 M solution of the propyl ester of Example 13 in dichloromethane was added DIEA (2 eq) and N-phenyltrifluoromethanesulfonimide (1.1 eq). The reaction was stirred for 18 h at rt, then diluted with dichloromethane, quenched with aqueous ammonium chloride. The phases were partitioned, and the organic layer was separated and washed with 5% aqueous NaHCO₃. The solution was dried (Na₂SO₄), concentrated to dryness and chromatographed with 20% to 30% ethyl acetate/hexane.

B. <u>11-Oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl</u> ester 9-(2-trimethylsilanyl-ethyl) ester

A 0.155 M solution of the purified triflate in DMF was treated with Pd(OAc)₂ (0.048 eq), 1,1'-Bis(diphenylphosphino)ferrocene (0.054 eq), triethylamine (7.7 eq) and formic acid (8.5 eq). The reaction was heated to 90°C for 2 days, then diluted with dichloromethane and quenched with aqueous ammonium chloride. The phases were partitioned, and the organic layer was separated, washed with brine, then dried (Na₂SO₄). Chromatography with 30% ethyl acetate/hexane afforded the title compound in 59% yield. ¹H NMR (CDCl₃) 7.27 (dd, 2H), 7.23 – 7.15 (m, 2H), 4.26 (ddd, 2H), 4.04 (d, 1H), 3.96 (ddd, 2H), 3.80 (dd, 1H), 3.69 (dd, 1H), 3.23 (ddd, 1H), 2.43 (dd, 1H), 2.13 (ddd, 1H), 1.57 (dd, 2H), 1.61 – 1.54 (m, 4H), 1.03 (ddd, 2H), 0.88 (t, 3H), 0.04 (s, 9H).

Synthesis of 4-Hydroxy-11-(methyl-hydrazono)-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

5

General Procedure H for the Synthesis of 11-Imino Derivatives

To a solution of the product of Example 13 (1 eq, 0.12 - 0.3 M) in methanol is added a selected amino derivative. Sodium acetate may be used as acid scavenger in the case where the nucleophile is added as an acid salt. The reaction is stirred until complete, normally 1-18 h. The crude material is isolated either by concentration *in vacuo* or by extraction using ethyl acetate or diethyl ether.

The title compound was prepared as described in general procedure H using 4 eq. of methylhydrazine. The crude product was isolated by adding diethyl ether and concentrating *in vacuo*. Trituration with diethyl ether afforded a 69% yield of hydrazone as predominately the E isomer. ESI-MS m/z 447 (MH⁺), 469 (MNa⁺).

EXAMPLE 55

SYNTHESIS OF 4-HYDROXY-11-(PHENYL-HYDRAZONO)-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

15

5

The title compound was prepared as described in general procedure H using 3 eq. of phenylhydrazine. The crude product was isolated by extraction with ethyl acetate. Trituration with CHCl₃/hexane afforded a 62% yield of the hydrazone. ESI-MS m/z 509 (MH⁺).

EXAMPLE 56

Synthesis of 11-[(2-Bromo-phenyl)-hydrazono]-4-hydroxy-tricyclo[$6.2.2.0^{2,7}$]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure H using 2 eq of 2-bromophenylhydrazine hydrochloride and 2 eq. of sodium acetate. The crude product was isolated by extraction with ethyl acetate. Chromatography on SiO₂ using 20% ethyl acetate/hexane afforded a 61% yield of the hydrazone. ¹H NMR (CDCl₃): 7.48 (dd 1H), 7.38 (dd, 1H), 7.2 (m, 2H), 7.10 (d, 1H), 6.65 (m, 3H), 5.7 (br. S, 1H), 4.25 (m, 3H), 3.97 (m, 2H), 3.80 (m, 1H), 3.63 (m, 1H), 3.20 (m, 1H), 2.50 (dd, 1H), 2.20 (m, 1H), 1.59 (hex, 2H), 1.07 (m, 2H), 0.89 (t, 3H), 0.02 (s, 9H).

Synthesis of 11-(Dimethyl-hydrazono)-4-hydroxy-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

$$H_3C$$
 CH_3
 CH_3

5

The title compound was prepared as described in general procedure H employing 1,1-dimethylhydrazine (1.4 eq). Chromatography using 40% - 50% ethyl acetate/hexane afforded the title compound in 38% yield. ESI-MS m/z 461 (MH⁺).

EXAMPLE 58

10

The title compound was prepared as described in general procedure H employing 2-hydroxyethyl hydrazine (1.4 eq) as the reagent. Chromatography using 50% - 80% ethyl acetate/hexane afforded the title compound in 46% yield. ¹H NMR (CDCl₃) 7.25 (d, 1H), 6.70 (dd, 1H), 6.65 (d, 1H), 5.3 – 5.1 (br s, 1H), 4.25 (dd, 2H), 4.25 – 4.15

(m, 2H), 3.98 – 3.91 (m, 4H), 3.74 (d, 1H), 3.68 (dd, 1H), 3.21 – 3.19 (m, 1H), 2.41 (dd, 1H), 2.12 (ddd, 1H), 1.58 (dd, 2H), 1.24 (s, 1H), 1.04 (dd, 2H), 0.91 (t, 3H), 0.05 (s, 9H).

EXAMPLE 59

Synthesis of 11-(Thiosemicarbazono)-4-hydroxy-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure H employing thiosemicarbazide as the reagent. Chromatography using 50% ethyl acetate/hexane afforded the title compound in 42% yield. ESI-MS m/z 492 (MH⁺), 514 (MNa⁺).

EXAMPLE 60

Synthesis of 11-(4-Methyl-3-thiosemicarbazono)-4-hydroxy-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

$$H_3C$$
 CH_3
 CH_3

15

5

The title compound was prepared as described in general procedure H employing 4-methyl-3-thiosemicarbazide (1.4 eq) as the reagent. Chromatography using 35% ethyl acetate/hexane afforded the title compound in 35% yield. APCI-MS m/z 506 (MH⁺), 505 (M⁻).

EXAMPLE 61

The title compound was prepared as in general procedure H using 1.2 eq. of N-methyl-N-phenylhydrazine. The crude product was isolated by concentration *in vacuo*. Chromatography on SiO₂ using 5% ethyl acetate/methylene chloride afforded a 57% yield of the hydrazone. ESI-MS m/z 523 (MH⁺), 521 (M-H).

Synthesis of 11-(Methanesulfonyl-hydrazono)-4-hydroxy-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

5

The title compound was prepared as in general procedure H using 2.4 eq. of methanesulfonyl hydrazine. The crude product was isolated by extraction with ethyl acetate. Chromatography on SiO₂ using 35% ethyl acetate/hexane afforded a 10% yield of the Z-isomer and 50% of the E-isomer. ESI-MS 533.1 (MNa⁺).

10

EXAMPLE 63

Synthesis of 11-(Benzenesulfonyl-hydrazono)-4-hydroxy-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

15

The title compound was prepared as in general procedure H using 2.4 eq. of benzenesulfonyl hydrazine. The crude product was isolated by extraction with ethyl acetate. Chromatography on SiO₂ using 30% ethyl acetate/hexane afforded a 62% yield of product. ESI-MS m/z 595 (MNa⁺).

Synthesis of 11-(4-Methoxybenzenesulfonyl-hydrazono)-4-hydroxy-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

5

The title compound was prepared as described in general procedure H using 2 eq. of 4-methoxybenzenesulfonyl hydrazine. The crude product was isolated by extraction with ethyl acetate. Chromatography on SiO₂ using 40% ethyl acetate/hexane afforded an 82% yield of product. ESI-MS m/z 603 (MH⁺).

10

EXAMPLE 65

Synthesis of 11-(Acetyl-Hydrazono)-4-hydroxy-tricyclo $[6.2.2.0^{2,7}]$ Dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

15

The title compound was prepared as described in general procedure H using 2.6 eq. of acetyl hydrazine. The crude product was isolated by extraction. Chromatography on SiO₂ using 50% ethyl acetate/hexane afforded a 34% yield of a 4/1 mix of E/Z isomers. ESI-MS m/z 475 (MH⁺).

EXAMPLE 66

SYNTHESIS OF 4-HYDROXY-11-HYDROXYIMINO-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure H employing hydroxylamine (1.1 eq) and sodium acetate (2.3 eq). The crude product was isolated by extraction. Chromatography with 5% Acetone/1% acetic acid/94% dichloromethane followed by recrystallization in dichloromethane/hexane afforded the title compound in 58% yield. ESI-MS m/z 456 (MNa⁺).

10 EXAMPLE 67

Synthesis of 4-Hydroxy-11-methoxyimino-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure H employing methoxylamine (1.1 eq) and sodium acetate (2.3 eq). The crude product was isolated by extraction. Chromatography with 10% ethyl acetate/dichloromethane resulted in a 34% yield of the less polar isomer: ESI-MS m/z 448 (MNa⁺), 470 (MNa⁺) and a 34% yield of the more polar isomer: ESI-MS m/z 448 (MH⁺), 470 (MNa⁺).

10

EXAMPLE 68

Synthesis of 4-Hydroxy-11-phenoxyimino-tricyclo[$6.2.2.0^{2,7}$]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in the general procedure H employing 1.1 eq of O-phenylhydroxylamine and 2.3 eq of sodium acetate. The crude product was isolated by extraction. Chromatography with 30% ethyl acetate/dichloromethane afforded the title compounds as a 1:1 mixture in 63% combined yield. ESI-MS m/z 510 (MH⁺), 532 (MNa⁺).

EXAMPLE 69

Synthesis of 11-Benzyloxyimino-4-hydroxy-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure H employing 1.1 eq of benzylhydroxylamine and 2.3 eq of sodium acetate. The crude product was isolated by extraction. Chromatography with 30% ethyl acetate/dichloromethane afforded the title compounds as a 2:1 mixture of Z and E isomers in 47% combined yield. ESI-MS m/z 524 (MH⁺).

SYNTHESIS OF 4-HYDROXY-11-(4-NITRO-BENZYLOXYIMINO)-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

5

The title compound was prepared as described in general procedure H employing 1.1 eq of (4-nitrobenzyl)hydroxylamine and 2.3 eq of sodium acetate. The crude product was isolated by extraction. Chromatography with 20–30% ethyl acetate/dichloromethane afforded the title compound in 28% yield. ESI-MS m/z 569 (MH⁺).

10

EXAMPLE 71

Synthesis of 11-(5-Chloro-[1,2,3]thiadiazol-4-ylmethoxyimino)-4-hydroxy-tricyclo[$6.2.2.0^{2,7}$]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

15

The title compound was prepared as described in general procedure H employing 1.1 eq of (4-chloro)thiadiazolyl-5-methoxyhydroxylamine and 2.3 eq of sodium acetate. The crude product was isolated by extraction. Chromatography with 30% - 40%

ethyl acetate/dichloromethane afforded the title compounds as a 1:1 mixture of E and Z isomers in 92% yield. ESI-MS m/z 566 (MNa⁺).

EXAMPLE 72

SYNTHESIS OF 11-(3-FLUORO-BENZYLOXYIMINO)-4-HYDROXY-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure H employing 1.1 eq of (3-fluoro)benzylhydroxylamine and 2.3 eq of sodium acetate. The crude product was isolated by extraction. Chromatography with 30% ethyl acetate/dichloromethane afforded the title compounds as a 1:1.3 mixture of E and Z isomers in 89% yield. ESI-MS m/z 542 (MNa⁺).

EXAMPLE 73

SYNTHESIS OF 4-HYDROXY-11-[2-OXO-2-(4-PHENYL-PIPERAZIN-1-YL)-ETHOXYIMINO]
TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER

9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

The title compound was prepared as described in general procedure H employing 2-aminooxy-1-(4-phenyl-piperazin-1-yl)-ethanone (1.1 eq) and sodium acetate (2.3 eq). The crude product was isolated by extraction. Chromatography with 40% - 60% ethyl acetate/dichloromethane afforded the less polar E isomer in 8% yield and the more polar Z isomer in 18% yield. ESI-MS m/z 636 (MH⁺), 658 (MNa⁺).

EXAMPLE 74

Synthesis of 11-(4-Fluoro-benzyloxyimino)-4-hydroxy-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

10

15

5

The title compound was prepared as described in general procedure H employing (4-fluoro)benzylhydroxylamine (1.1 eq) and sodium acetate (2.3 eq). The crude product was isolated by extraction. Chromatography with 0% - 10% ethyl acetate/dichloromethane afforded the title compound in 25% yield. 1 H NMR (CDCl₃) 7.32 (dd, 2H), 7.09 - 6.99 (m, 3H), 6.69 - 6.64 (m, 2H), 5.05 - 5.03 (m, 3H), 4.95 (s, 1H), 4.24 (dd, 2H), 3.95 (ddd, 2H), 3.64 (d, 1H), 3.50 (dd, 1H), 3.08 - 3.06 (m, 1H), 2.50 (dd, 1H), 2.12 (ddd, 1H), 1.58 (dd, 2H), 1.02 (dd, 2H), 0.87 (t, 3H), 0.04 (s, 9H).

Synthesis of 4-Hydroxy-11-(2-phenoxy-ethoxyimino)-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

5

The title compound was prepared as described in general procedure H employing (3-phenoxy)ethyllhydroxylamine (1.1 eq) and sodium acetate (2.3 eq). The crude product was isolated by extraction. Chromatography with 0% - 10% ethyl acetate/dichloromethane afforded the title compound in 22% yield. ¹H NMR (CDCl₃) 7.31 - 7.30 (m, 2H), 7.06 (d, 1H), 6.97 - 6.92 (m, 3H), 6.64 (dd, 1H), 6.57 (d, 1H), 5.03 (d, 1H), 4.87 (s, 1H), 4.41 - 4.37 (m, 2H), 4.25 (ddd, 2H), 4.16 (dd, 2H), 3.94 (ddd, 2H), 3.63 (dd, 1H), 3.51 (dd, 1H), 3.09 - 3.06 (m, 1H), 2.52 (dd, 1H), 2.13 (ddd, 1H), 1.57 (ddd, 2H), 1.03 (dd, 2H), 0.86 (t, 3H), 0.05 (s, 9H).

EXAMPLE, 76

15 SYNTHESIS OF 11-ALLYLOXYIMINO-4-HYDROXY-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

15

5

The title compound was prepared as described in general procedure H employing O-allylhydroxylamine (1.1 eq) and sodium acetate (2.3 eq). The crude product was isolated by extraction. Chromatography with 25% - 40% ethyl acetate/hexane afforded the title compound in 45% yield. ESI-MS m/z 496 (MNa⁺).

EXAMPLE 77

Synthesis of 11-(2,4-Dichlorobenzyl-oximo)-4-hydroxy-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure H using 1.1 eq of O-2,4-dichlorobenzyl hydroxyl amine hydrochloride and 1.1 eq of sodium acetate. The crude product was isolated by concentrating *in vacuo*. Chromatography on SiO₂ using 25% ethyl acetate/hexane followed by 3% ethyl acetate/methylene chloride afforded a 28% yield of Z-isomer, the less polar compound, and 33% yield of the E-isomer, the more polar compound. ESI-MS m/z, Z-isomer 592 (MH⁺), 594 ((M + 2)H⁺); E-isomer 592 (MH⁺), 594 ((M + 2)H⁺).

10

15

EXAMPLE 78

Synthesis of 11-(Semicarbazono)-4-hydroxy-tricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was prepared as described in general procedure H using 1.3 eq of semicarbazide hydrochloride and 1.3 eq of sodium acetate. The crude product was isolated by extraction with ethyl acetate. Chromatography on SiO₂ using 70% ethyl acetate/hexane afforded a 48% yield of product. ESI-MS m/z 498 (MNa⁺).

EXAMPLE 79

Synthesis of (9,10 trans)-10-Allyloxycarbonylamino-4,11-dihydroxytricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

To a solution of the ketone prepared in Example 25 (12.4 mg, 0.029 mmol) in 0.5 mL methanol was added sodium borohydride (21.1 mg, 0.56 mmol). After 20 min H₂O was added, the solution acidified to pH 1 with 1% HCl, and the product extracted with ethyl acetate. The organic layer was washed with H₂O, brine, dried (Na₂SO₄) and concentrated. Flash chromatography (SiO₂, 45% ethyl acetate/dichloromethane) afforded 3.7 mg (30%) of the less polar alcohol and 4.1 mg (33%) of the more polar alcohol. ESI-MS m/z: less polar product 456 (MNa⁺), more polar product 456 (MNa⁺).

EXAMPLE 80

Synthesis of (9,10 cis)-10-Allyloxycarbonylamino-4,11-dihydroxy-tricyclo $[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9-(2-trimethylsilanyl-ethyl) ester

To a solution of the ketone from Example 3 (25.9 mg, 0.06 mmol) in methanol (1.1 mL) held at 20°C with a water bath was added sodium borohydride (44.7 mg, 1.2 mmol). The reaction was stirred for 20 min, diluted with ethyl acetate and quenched with water followed by 1% HCl. The layers were separated, and the organic layer washed with 5% NaHCO₃, water, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Chromatography on SiO₂ using 40% ethyl acetate/hexane afforded 13.2 mg (50%) of product as the less polar diastereomer. ESI-MS m/z 456 (MNa⁺).

EXAMPLE 81

Synthesis of 4,11-Dihydroxy-11-phenyl-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

15

To a solution of the compound of Example 13 (61 mg, 0.146 mmol) in tetrahydrofuran (2.9 mL) at -10° was added phenylmagnesium bromide (360 μ L, 1 M).

Additional aliquots (720 μL) of phenylmagnesium bromide were added at 30 min intervals until the reaction was complete by TLC. The cooling bath was removed, the reaction diluted with ethyl acetate, then quenched with 3% HCl. The layers were separated and the organic layer washed with 1% HCl, 5% NaHCO₃, H₂O, brine, and dried (Na₂SO₄). Concentration *in vacuo* followed by chromatography afforded 26 mg (36%) of the tertiary alcohol. ESI-MS m/z 519 (MNa⁺).

EXAMPLE 82

Synthesis of 4-Hydroxy-11-propylamino-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

10

20

To a solution of the compound of Example 13 (75 mg, 0.18 mmol) in methanol (1 mL) was added n-propylamine (75 μL, 1.8 mmol) and acetic acid (52 μL, 1.8 mmol). After 10 min sodium triacetoxy borohydride (380 mg, 1.8 mmol) was added and the solution stirred overnight. Additional aliquots of n-propylamine (600 μL), acetic acid (500 μL) and sodium triacetoxy borohydride (400 mg) were added and the reaction allowed to proceed for 1.5 h. The reaction was diluted with ethyl acetate and 5% NaHCO₃. The layers were separated, and the organic layer washed with 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Chromatography on SiO₂ using a gradient of 45% ethyl acetate/methylene chloride - 2% methanol/methylene chloride - 8% methanol/methylene chloride afforded a 34% yield of the less polar amine and 37% yield of the more polar amine. ESI-MS m/z 462 (MH⁺).

Synthesis of 4-Hydroxy-11-(4-methyl-benzylamino)-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

5

To a solution of the compound of Example 13 (50 mg, 0.12 mmol) in methanol (0.5 mL) was added acetic acid (14 μL, 0.24 mmol), 4-methylbenzyl amine (31 μL, 2.1 eq.) and sodium cyanoborohydride (38 mg, 0.60 mmol). After 2 h an additional aliquot of sodium cyanoborohydride (10 mg) was added and the reaction allowed to stir for 30 more min. The reaction was then quenched with 3% HCl and diluted with ethyl acetate. The biphasic mixture was then basified to pH 8 with 5% NaHCO₃. The layers were separated, and the organic layer washed with H₂O, brine, dried (Na₂SO₄) and concentrated *in vacuo*. Chromatography on SiO₂ using first a gradient of 15% ethyl acetate/hexane - 25% ethyl acetate/hexane followed by a second chromatography using a gradient 10% ethyl acetate/methylene chloride - 17% ethyl acetate/methylene chloride afforded a 19% yield of the less polar amine and 16% of the more polar amine. ESI-MS m/z 524 (MH⁺).

EXAMPLE 84

Synthesis of 4-Hydroxy-11-methylamino-tricyclo[$[6.2.2.0^{2,7}]$ dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

20

15

20

To a solution of the compound of Example 13 (75 mg, 0.18 mmol) in methanol (1.8 mL) was added acetic acid (260 μ L, 25 eq), methylamine (40% in H₂O, 310 μ L) and sodium triacetoxy borohydride (760 mg, 20 eq). After stirring overnight additional aliquots of acetic acid (200 μ L), methylamine (200 μ L) and reducing agent (300 mg) were added. The reaction was allowed to stir for an additional 3 h, then it was diluted with ethyl acetate and 5% NaHCO₃. The layers were separated and the organic layer was washed with 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄) and concentrated *in vacuo*. Chromatography on SiO₂ using a gradient of 65% ethyl acetate/hexane Π 8% methanol/methylene chloride afforded a 28% yield of less polar amine and 43% of the more polar product. ESI-MS m/z: less polar compound 434 (MH⁺), more polar compound 434 (MH⁺).

EXAMPLE 85

Synthesis of 4-Hydroxy-11-phenylamino-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

To a solution of the compound of Example 13 (76.5 mg, 0.18 mmol) in methanol (1.5 mL) was added acetic acid (104 μL, 1.7 mmol) and aniline (82 μL, 0.9 mmol). Additional aliquots were added at 3 h and 5.5 h and the reaction allowed to proceed to completion overnight. The solution was concentrated to dryness and the residue partitioned between ethyl acetate/hexane (3/1) and 5% NaHCO₃. The layers were separated and the organic layer washed with 5% NaHCO₃, H₂O, dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography on SiO₂ afforded 30.5 mg (34%) of the less polar diastereomer and 14.7 mg (16%) of the more polar diastereomer. ESI-MS m/z 496 (MH⁺).

10

EXAMPLE 86

Synthesis of 11-Dimethylamino-4-hydroxy-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

To a solution of the compound of Example 13 (79.5 mg, 0.19 mmol) in methanol (0.5 mL) was added dimethylamine (40 wt% in H_2O , 600 μ L, 4.8 mmol) and acetic acid (330 μ L, 5.7 mmol). After 10 min sodium triacetoxy borohydride (1.0g, 4.8 mmol) was added. Additional aliquots of reagents were added at 3 h and 4.5 h, and the reaction allowed to proceed for 2 h after the final addition of reagents. The reaction was quenched with H_2O and diluted with ethyl acetate. The layers were separated and the organic layer washed with 5% NaHCO₃, H_2O , brine, dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography on SiO₂ with 5% methanol/methylene chloride afforded 9.4 mg of a single diastereomer.

EXAMPLE 87

Synthesis of 11-[Acetyl-(4-methyl-benzyl)-amino]-4-acetoxy-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

10

15

20

To a solution of the more polar amine from Example 83 (16.5 mg, 0.03 mmol) in methylene chloride (0.4 mL) was added N-methylmorpholine (12 μL, 0.10 mmol) followed by acetic anhydride (10 μL, 0.10 mmol). The reaction was stirred for 16 h at room temp, diluted with ethyl acetate, and quenched with 5% NaHCO3. The layers were separated, and the organic layer was washed with H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography on SiO₂ with 40% ethyl acetate/hexanes afforded the amide. ESI-MS m/z 608 (MH+), 630 (MNa+).

EXAMPLE 88

SYNTHESIS OF 11-[ACETYL-METHYLAMINO]-4-ACETOXY-TRICYCLO[[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

A. Diastereomer 1.

To a solution of the less polar amine from Example 84 (35 mg, 0.08 mmol) in dichloromethane (1.1 mL) was added NMM (27 μL, 0.24 mmol) and acetic anhydride (15.3 μL, 0.16 mmol). The reaction was stirred for 18 h at ambient temperature, diluted with ethyl acetate and quenched with 1% HCl. The layers were separated, and the organic layer washed with 1% HCl, 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄) and concentrated *in vacuo*. Chromatography on SiO₂ using a gradient of 45% ethyl acetate/hexane – 55% ethyl acetate/hexane afforded 9.3 mg (22%) of the bis-acylated product, which by TLC is slightly less polar than the free phenol product. ¹H NMR (CDCl₃, 53°C): 7.19 (d, 1H), 6.95 (m, 2H), 4.30 (m, 2H), 3.89 (t, 2H), 3.54 (m, 3H), 3.20 (s 3H), 2.96 (d, 1H), 2.26 (s, 3H), 2.13 (s, 3H), 1.80 (m, 2H), 1.59 (m, 2H), 1.06 (sextet, 2H), 0.91 (t, 2H), 0.07 (s, 9H).

15

B. Diastereomer 2.

To a solution of the more polar amine from Example 84 (58 mg, 0.13 mmol) in methylene chloride (2 mL) was added N-methylmorpholine (43 μL, 0.39 mmol) and acetic anhydride (15 μL, 0.16 mmol). The reaction was stirred at room temp for 21 h, diluted with ethyl acetate, and quenched with 1% HCl. The layers were separated, and the organic layer washed with 1% HCl, 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Multiple flash chromatographies on SiO₂ using 2% methanol/methylene chloride afforded 34 mg (53%) of the phenol as the more polar product and 14.7 mg (21%) of the phenol acetate as the less polar product. ¹H NMR (CDCl₃, 21°C, ca. 3:1 mix of rotamers): 7.24 (d, 1H), 6.90 (m, 2H), 5.21 (m, 0.75H), 4.23 (m, 2.25H), 3.90 (t, 2H), 3.52 (m, 3H), 2.99 (m, 1H), 2.30-1.96 (m, 10H), 1.56 (sextet, 2H), 1.30 (m, 1H), 1.03 (m, 2H), 0.93 (t, 2H), 0.05 (s, 9H).

EXAMPLE 89

Synthesis of 11-[Acetyl-Methylamino]-4-hydroxy-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The title compound was isolated from the preparation of Diastereomer 2 of Example 88. By TLC it is more polar than the corresponding phenol acetate. ESI-MS m/z 476 (MH⁺), 498 (MNa⁺), 474 (M-H)⁻.

10

EXAMPLE 90

Synthesis of 4,11-Dihydroxy-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-(2,4-dimethoxy-benzyl) ester 9-(2-trimethylsilanyl-ethyl) ester

To a solution of the ketone of Example 9 (31.1 mg, 0.06 mmol) in methanol (1 mL) at 15°C was added NaBH₄ (44.0 mg, 1.16 mmol). The reaction was stirred for 45 min, diluted with ethyl acetate, and quenched with 1% HCl. The layers were separated and the organic layer washed with 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography on SiO₂ using 30% ethyl acetate/methylene chloride afforded 6.5 mg (21%) of the less polar alcohol and 13.8 mg (44%) of the more polar alcohol. ESI-MS m/z, less polar product 551 (MNa⁺), more polar product 551 (MNa⁺).

EXAMPLE 91

SYNTHESIS OF 11-SPIRO-(1,4-DIOXACYCLOPENTYL)-4-HYDROXY
TRICYCLO[[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER

9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

To a solution of the ketone of Example 13 (56.0 mg, 0.133 mmol) in benzene (1.3 mL) was added ethylene glycol (45 μ L) and p-touenesulfonic acid monohydrate (4.5

mg). The solution was refluxed for 1 h, using a Dean-Stark trap to collect the water. Upon cooling the reaction was diluted with ethyl acetate and 5% NaHCO₃ was added. The layers were separated, and the organic layer washed with 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography on SiO₂ using 25% ethyl acetate/hexane afforded 14.1 mg (23%) of the ketal. ESI-MS m/z 485 (MNa⁺).

EXAMPLE 92

Synthesis of 11-Ethoxycarbonylmethylene-4-hydroxy- $TRICYCLO[[6.2.2.0^{2.7}]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER$ 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

10

15

20

To a solution of triethylphosphonoacetate (59 μL, 0.30 mmol) in tetrahydrofuran (0.5 mL) at 0°C was added a solution of potassium hexamethyldisilazide (0.45 M in toluene, 0.685 mL, 0.31 mmol). After stirring for 15 min at 0°C a solution of the ketone from Example 13 (59.6 mg, 0.14 mmol) in tetrahydrofuran (0.9 mL) was added. The reaction was stirred for 30 min at 0°C, 3 h at ambient, then placed in a refrigerator without stirring for 66 h. Upon removal, the reaction was stirred at ambient temperature for 6 h, diluted with ethyl acetate, and quenched with 1% HCl. The layers were separated, and the organic layer washed with 1% HCl, 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography on SiO₂ using 17% ethyl acetate/hexane afforded 32.2 mg (46%) of product as a 1/1 mixture of E/Z isomers. ESI-MS m/z 511 (MNa⁺).

10

15

EXAMPLE 93

Synthesis of 4-Hydroxy-11-methylene-tricyclo[[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

To a solution of methyl triphenylphosphonium bromide (236 mg, 0.66 mmol) in tetrahydrofuran (0.5 mL) was added potassium hexamethyldisilazide (0.5 M in toluene, 1.3 mL, 0.65 mmol). The yellow-orange solution was stirred for 15 min at ambient temp, then a solution of the ketone from example 13 (63.5 mg, 0.15 mmol) in tetrahydrofuran (0.3 mL) was added. After 30 min at room temp the reaction was diluted with ethyl acetate and quenched with H₂O. The layers were separated, and the organic layer washed with 1% HCl, 5% NaHCO₃, H₂O, brine, dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography on SiO₂ using 15% ethyl acetate/hexane afforded 34.2 mg (54%) of the olefin. ¹H NMR (CDCl₃), 7.05 (2H), 6.63 (2H), 5.10 (1H), 4.96 (1H), 4.73 (1H), 4.25 (2H), 3.95 (3H), 3.55 (2H), 3.07 (1H), 2.49 (1H), 2.08 (1H), 1.60 (2H), 1.06 (2H), 0.88 (3H), 0.09 (9H).

EXAMPLE 94

SYNTHESIS OF 4,11-DIHYDROXY-TRICYCLO[6.2.2.02,7]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

15

20

To a 0.1 M solution of ketone from Example 13 in methanol was added NaBH₄ (10 eq). After stirring at rt for 20 min, the reaction was quenched with saturated aqueous ammonium chloride and diluted with dichloromethane. The aqueous phase was acidified with 1 M HCl, the phases were partitioned, and the aqueous phase extracted 3 x with dichloromethane. Organic extracts were combined, dried (Na₂SO₄) and concentrated. Chromatography with 40% ethyl acetate/hexane afforded the less polar isomer in 40% yield ESI-MS m/z 419 (M-H), and the more polar isomer in 20% yield ESI-MS m/z 419 (M-H).

EXAMPLE 95

SYNTHESIS OF 11-AMINO-4-HYDROXY-TRICYCLO[6.2.2.02,7]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

To a 0.1 M solution of ketone from Example 13 in methanol was added 4-methylbenzylamine (3 eq), Na(OAc)₃BH (3 eq), acetic acid (3 eq) and 3A mol. sieves (300 mg/mL methanol). The reaction was stirred overnight, then quenched with aqueous NaHCO₃, and extracted with ethyl acetate. The organic extracts were combined, dried (Na₂SO₄) and concentrated. Chromatography with 5% - 30% ethyl acetate/hexane afforded the less polar isomer in 29% yield.

The product from the preceding reaction was dissolved in enough ethanol to give a 0.07 M solution, which was treated with 20% palladium hydroxide on carbon (135 mg/mmol st. mat) and acetic acid (24 eq.). The reaction was stirred at rt under an atmosphere (balloon) of hydrogen gas. After 1.5 h, the reaction was filtered over Celite with dichloromethane and concentrated. Chromatography using 10% – 20%

methanol/dichloromethane afforded a single isomer in 45% yield. ESI-MS m/z 420 (MH⁺), 418 (M-H).

EXAMPLE 96

SYNTHESIS OF 4,11-DIHYDROXY-11-METHYL-TRICYCLO[6.2.2.02,7]DODECA-2(7),3,5
TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(2-TRIMETHYLSILANYL-ETHYL) ESTER

To a 0°C solution of ketone from Example 13 in THF (0.12 M) was added methylmagnesium bromide (1.4 M in THF/toluene, 6.7 eq). After complete reaction and aqueous workup, the crude product was purified by column chromatography using 25% - 40% ethyl acetate/hexane. The less polar isomer was isolated in 12% yield. ¹H NMR (CDCl₃) 7.26 (d, 1H), 6.99 (s, 1H), 6.82 (dd, 1H), 4.94 (s, 1H), 4.27 (ddd, 2H), 3.90 (dd, 2H), 3.90 – 3.85 (m, 1H), 3.35 (d, 1H), 3.28 (d, 1H), 3.18 – 3.15 (m, 1H), 1.77 (dd, 1H), 1.57 (dd, 2H), 1.44 – 1.39 (m, 1H), 1.25 (s, 2H), 1.06 (ddd, 2H), 1.01 (s, 3H), 0.89 (dd, 3H), 0.06 (s, 9H).

EXAMPLE 97

15 Synthesis of 4,11-Dihydroxy-11-methyl-tricyclo[6.2.2.02,7]dodeca-2(7),3,5triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

Cerium chloride (2.0 eq) was heated under vacuum, cooled and suspended in THF. The 0.3 M solution was cooled to -75°C and treated with methylmagnesium

20

bromide (1.4 M in THF/toluene, 4 eq) in a dropwise fashion. The slurry was stirred for 1.5 h, at which point the ketone from Example 13 was added as a 0.3 M solution in THF. The reaction was stirred at -75°C for 2 h, then warmed to rt. After 1.5 h, reaction quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate. Chromatography using 30% - 40% ethyl acetate/hexane afforded the more polar isomer in 13% yield. ¹H NMR (CDCl₃) 7.26 (d, 1H), 6.70 (s, 1H), 6.68 (dd, 1H), 5.26 (s, 1H), 4.25 (ddd, 2H), 3.93 (ddd, 2H), 3.57 (dd, 1H), 3.42 – 3.40 (s, 1H), 3.31 – 3.29 (s, 1H), 2.92 – 2.91 (s, 1H), 1.72 (dd, 1H), 1.57 (dd, 2H), 1.56 (s, 3H), 1.40 (dm, 1H), 1.26 (s, 1H), 1.04 (dd, 2H), 0.87 (t, 3H), 0.06 (s, 9H).

10 EXAMPLE 98

Synthesis of 4,11-Dihydroxy-11-hydroxymethyl-tricyclo[6.2.2.02,7]dodeca-2(7),3,5-triene-9,10-dicarboxylic acid 10-propyl ester 9-(2-trimethylsilanyl-ethyl) ester

The olefin of Example 93 (61077) was dissolved in enough 1:1 tert-butanol:water to give a 0.06 M solution. The solution was treated with OsO_4 (4 wt.% soln. in water, 0.03 eq) and 4-methyl morpholine-N-oxide (3 eq) and heated to 50° C. After stirring overnight, the reaction was quenched with sodium bisulfite. Celite was added, and the solution allowed to stir an additional 3 hours. The solution was then diluted 20 fold with THF and filtered over a short plug of silica. The crude solids were purified by column chromatography (50% - 60% ethyl acetate/hexane) to afford the less polar isomer in 36% yield. APCI-MS m/z 449 (M-H) .

EXAMPLE 99:

Synthesis of 10-(Benzyl-Methyl-Carbamoyl)-5-hydroxy-12-oxotricyclo[6.2.2.0^{2,7}]dodeca-2(7),3,5-triene-9-carboxylic acid allyl ester

5 General Procedure I for the Synthesis of 5-Hydroxy-10-amido Derivatives

A solution of the trans allyl TMS-ethyl ester prepared in Example 19 (1 equivalent) in 2 mL of TFA/H₂O (95%) was allowed to stir at rt for 30 min. The volatiles were evaporated, acetonitrile (2 mL) and toluene (5 mL) were added and the resulting solution was concentrated to dryness (2x) to afford the crude carboxylic acid. The white residue was dissolved in DMF (0.6 mL) and a selected amine (1.5 equivalents), HATU (1.2 equivalents) and NMM (2.7 equivalents) were added and the reaction mixture was allowed to stir at rt under nitrogen overnight. The solution was concentrated to dryness and dichloromethane or ethyl acetate was added (10 mL) and the organic layer was washed with HCl (1 N, 3x10 mL), NaHCO₃ solution (5%, 2x10 mL) and brine (1x10 mL). Upon drying (MgSO₄) the organic layer, the filtered solution was concentrated to dryness and column chromatography provided the desired product.

The title compound was prepared as described in general procedure I using N-methylbenzylamine, resulting in a yield of 19% (10 mg). ESI-MS m/z 442 (MNa⁺), 418 (M-H).

EXAMPLE 100

SYNTHESIS OF 5-HYDROXY-12-OXO-10-PROPYLCARBAMOYL-TRICYCLO[6.2.2.0^{2,7}]DODECA-2(7),3,5-TRIENE-9-CARBOXYLIC ACID ALLYL ESTER

The title compound was prepared as described in general procedure I using propylamine, resulting in a yield of 55% (24 mg). ESI 380 (MNa⁺), 356 (M-H).

EXAMPLE 101

SYNTHESIS OF 4-HYDROXY-11-OXO-TRICYCLO[6.2.2.02,7]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-[2-(TOLUENE-4-SULFONYL)-ETHYL] ESTER

10

General Procedure J for the Synthesis of 9-Esters

To a 0.5 M solution of the corresponding 9-carboxylic acid prepared as described in General Procedure I in 5% DMF/THF was added TSTU (2 eq), 4-methylmorpholine (4 eq), DMAP (2 eq) and a selected alcohol (2 eq). The reaction was allowed to proceed overnight at ambient temperature, after which the reaction was quenched with saturated aqueous ammonium chloride and diluted with 1:1 ethyl acetate:hexane. Aqueous further acidified (pH ~ 2) with 1 M HCl (aq). The phases were partitioned, and the organic layer separated and washed with brine. Solution dried (Na₂SO₄) and concentrated. The products were purified by column chromatography.

Reaction run as in general procedure J using 2-(p-Tosyl)ethanol. Chromatography (ethyl acetate/hexane) affords the title compound in 61% yield. ESI-MS m/z 523 (MNa⁺), 499 (M-H).

EXAMPLE 102

5 SYNTHESIS OF 4-HYDROXY-11-OXO-TRICYCLO[6.2.2.02,7]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 9-(3,3-DIMETHYL-BUTYL) ESTER 10-PROPYL ESTER

Reaction run as in general procedure J using 3,3 dimethylbutanol. Chromatography (30% ethyl acetate/hexane) affords the title compound in 55% yield. ESI
10 MS m/z 425 (MNa⁺).

EXAMPLE 103

SYNTHESIS OF 4-HYDROXY-11-OXO-TRICYCLO[6.2.2.02,7]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 9-(2-ADAMANTAN-1-YL-ETHYL) ESTER 10-PROPYL ESTER

Reaction run as in general procedure J using 1-adamantaneethanol. Chromatography (ethyl acetate/hexane) affords the title compound in 87% yield. ESI-MS m/z 479 (M-H).

EXAMPLE 104

SYNTHESIS OF 4-HYDROXY-11-OXO-TRICYCLO[6.2.2.02,7]DODECA-2(7),3,5-TRIENE-9,10-DICARBOXYLIC ACID 10-PROPYL ESTER 9-(3-TRIMETHYLSILANYL-PROPYL) ESTER

Reaction run as in general procedure J using 1-(trimethylsilyl)-3-propanol. Chromatography (25% - 30% ethyl acetate/hexane) affords the title compound in 38% yield. APCI-MS m/z 433 (MH⁺), 431 (M-H).

EXAMPLE 105

Synthesis of 4-(4-Carboxymethoxy-benzyloxy)-11-oxo-tricyclo[6.2.2.0^{2,7}]dodeca-2,4,6-triene-9,10-dicarboxylic acid 10-allyl ester 9-(2-trimethylsilanyl-ethyl) Ester

A. <u>Butyldimethylsilanyl [4-(tert-butyl-dimethyl-silanyloxymethyl)-phenoxy]-acetate:</u>

To a solution of (4-hydroxymethylphenoxy)acetic acid (10 g, 55 mmol) in dichloromethane (200 mL) was added *t*-butyldimethylsilyl chloride (18.2 g, 121 mmol), diisopropylethylamine (24 mL, 17.8 g, 138 mmol) and dimethylaminopyridine (2.7 g, 22

15

20

mmol). The resulting reaction mixture was allowed to stir at rt for 1.5 h, after which time it was diluted with an additional 300 mL of dichloromethane and washed with 0.1 M citric acid (2x300 mL) and brine (3x300 mL). The resulting yellow organic layer was dried (MgSO₄), filtered and concentrated to dryness to give a white solid, wt. 22.5 g (quantitative). ¹H NMR (CDCl₃) 7.23 (d, *J*=8.8 Hz, 2H), 6.85 (d, *J*=8.8 Hz, 2H), 4.67 (s, 2H), 4.58 (s, 2H), 0.92 (s, 9H), 0.89 (s, 9H), 0.28 (s, 6H), 0.08 (s, 6H).

B. Synthesis of 2-(Toluene-4-sulfonyl)-ethyl (4-hydroxymethyl-phenoxy)-acetate:

- a) To a solution of the product from Step A (22.5 g, 55 mmol) in dichloromethane (200 mL) was added 2-toluenesulfonylethanol (26.4 g, 132 mmol), HATU (25 g, 65.8 mmol) and diisopropylethylamine (23 mL, 17.1 g, 132 mmol). The resulting reaction mixture was allowed to stir at rt overnight under nitrogen atmosphere, after which time it was concentrated to dryness, diluted with ethyl acetate (400 mL), washed with 0.1 M citric acid (3x330 mL), 5% NaHCO₃ solution (2x100 mL) and brine (2x100 mL). The resulting organic layer was dried (MgSO₄), filtered and concentrated to dryness to give a brown solid, wt. 49.41 g (185%). Used as is without further purification.
- b) The brown residue obtained above was suspended in 80% acetic acid/water solution (500 mL) and allowed to stir at rt for 3 h. The resulting cloudy solution was then concentrated to dryness and used dichloromethane/toluene mixture to get rid of residual acetic acid. Column chromatography (45% acetone/hexane) provided the desired product, which upon trituration with methanol provided the desired product as a white solid, wt. 15.6 g (78% for the three steps). ¹H NMR (CDCl₃) 7.78 (dt, *J*=8.4, 1.9 Hz, 2H), 7.36 (d, *J*=8.0 Hz, 2H), 7.27 (dt, *J*=9.2, 2.5 Hz, 2H), 6.80 (dt, *J*=9.2, 2.5 Hz, 2H), 4.60 (s, 2H), 4.51 (t, *J*=6.1 Hz, 2H), 4.39 (s, 2H), 3.45 (t, *J*=6.0 Hz, 2H), 2.41 (s, 3H). ESI-MS m/z 387 (MNa⁺).
- C. <u>4-(4-Carboxymethoxy-benzyloxy)-11-oxo-tricyclo[6.2,2.0^{2,7}]dodeca-2,4,6-triene-</u>
 25 <u>9,10-dicarboxylic acid 10-allyl ester 9-(2-trimethylsilanyl-ethyl) ester</u>
 - a) To a solution of the phenol of Example 19 (17.4 g, 42 mmol), 2-(toluene-4-sulfonyl)ethyl (4-hydroxymethylphenoxy)acetate (18.2 g, 50 mmol) and

15

20

triphenylphosphine (13.1g, 50 mmol) in anhydrous tetrahydrofuran (175 mL) was added DEAD (8.0 mL, 8.85g, 51 mmol). The resulting reaction mixture was allowed to stir at rt for 5 h, after which time it was concentrated to dryness. The residue was then dissolved in ethyl acetate (1.0 L) and washed with 0.1 M citric acid (2x100 mL), 5% NaHCO₃ solution (2x100 mL) and brine (2x100 mL). The resulting organic layer was dried (MgSO₄), filtered and concentrated to dryness to give a yellow oil. Column chromatography (4% acetonitrile/dichloromethane) provided the desired tosylethyl ester, wt. 23.9 g (75%).

b) To a solution of the above ester (23.9 g, 31 mmol) in acetonitrile (200 mL) was added piperidine (7.5 mL, 6.5 g, 76 mmol) and DBU (5.6 mL, 5.7 g, 37.4 mmol). The resulting mixture was allowed to stir at rt for 45 min, after which the solution was concentrated to dryness and redissolved in ethyl acetate (1 L). The organic layer was washed with 0.1 N HCl solution (850/150/150 mL) and brine (2x150 mL), dried (MgSO₄), filtered and the solvent was evaporated to give a yellow oil. Column chromatography (2% methanol/dichloromethane, 2 L, followed by 2% methanol/dichloromethane with 2% AcOH, 3 L) provided the desired product as a foamy off-white solid, wt. 15.2 g (63% over two steps). ¹H NMR (CDCl₃) 7.35 (d, *J*=8.5 Hz, 2H), 7.19 (d, *J*=8.2 Hz, 1H), 6.94(d, *J*=8.8 Hz, 2H), 6.85 (dd, *J*=8.1, 2.6 Hz, 1H), 6.80 (d, *J*=2.5 Hz, 1H), 5.88-5.75 (m, 1H), 5.28-5.19 (m, 2H), 4.94 (s, 2H), 4.69 (s, 2H), 4.49 (dq, *J*=5.6, 1.3 Hz, 2H), 4.30-4.27 (m, 2H), 4.01 (d, *J*=2.5 Hz, 1H), 3.77 (q, *J*=2.7 Hz, 1H), 3.73 (dd, *J*=5.9, 2.3 Hz, 1H), 3.23 (dt, *J*=5.8, 2.3 Hz, 1H), 2.42 (dd, *J*=19.0, 2.2 Hz, 1H), 2.13 (dt, *J*=18.7, 2.6 Hz, 1H), 1.07-1.01 (m, 2H), 0.06 (s, 9H). APCI-MS 603.3 (MNa⁺), 579.2 (M-H).

EXAMPLE 106

PROCEDURE FOR THE SYNTHESIS OF A LIBRARY OF REPRESENTATIVE BENZOBICYCLOOCTANES

- 5 A. <u>Loading scaffold onto TentaGel Amine Resin (Novabiochem A18764):</u>
 - 1. Place dry resin (5 g, 0.43 mmol/g loading) in Schlenk ware
 - 2. Swell resin with dichloromethane (2x30 mL, 2 min)
 - 3. Add NMP, bubble N₂ through frit and drain (4x30 mL, 5 min)
 - 4. Add the following solutions to swelled resin: NMP solution of
- Scaffold (0.5 M, 6 mL), NMP solution of DIEA (1.25 M, 7 mL) and NMP solution of HATU (0.5 M, 6.5 mL)
 - 5. Bubble N₂ through frit for 1.5 h; drain
 - 6. Wash resin with NMP (3x30 mL, 5 min)
 - 7. Kaiser test of resin proved negative (Kaiser, E. et al, Anal. Biochem.,
- 15 1970, 34, 595)
 - 8. Add the following solutions to swelled resin: NMP solution of Scaffold (0.5 M, 4 mL), NMP solution of DIEA (1.25 M, 4 mL) and NMP solution of HATU (0.5 M, 4 mL)
 - 9. Repeat steps 5 7
- 20 10. Wash resin with 1:1 NMP/dichloromethane (2x30 mL, 3 min)
 - 11. Wash resin with 1:4 NMP/dichloromethane (2x30 mL, 3 min)

20

- 12. Wash resin with neat dichloromethane (3x30 mL, 3 min)
- 13. Dry under vacuum overnight
- 14. Distribute resin into 96-well plate (50 mg/well); store at about -15/-20°C in a ziplock bag

5 B. Allyl Ester Deprotection/1st Amide Formation:

- 1. Swell resin (in each well) with CHCl₃ (3x0.5 mL, 3 min); drain
- 2. Add CHCl₃ solution of N-methylaniline (0.5 M, 0.5 mL)
- 3. Add CHCl₃ solution of Pd(PPh₃)₄ (0.05 M, 0.5 mL)
- 4. Bubble N₂ & vortex for 45 min; drain
- 5. Wash with CHCl₃ (3x0.5 mL, 3 min)
 - 6. Repeat steps 2-5
- 7. Wash resin with DMF solution of diethyldithiocarbamic acid, sodium salt trihydrate (0.03 M) and DIEA (0.06 M) (3x0.75 mL, 3 min)
 - 8. Wash resin with DMF (3x0.5 mL, 3 min)
- 9. Wash resin with NMP (3x0.5 mL, 3 min)
 - 10. Add the following: NMP solution of DIEA (1.25 M, 0.15 mL), NMP solution of HATU (0.5 M, 0.15 mL) and NMP solution of amine (0.5 M, 0.15 mL) respectively (amine (HCl)_Z were treated with an excess of an NMP solution of DIEA (1.25 M, (z)x0.15 mL)
 - 11. Bubble N₂ & vortex for 2 h; drain
 - 12. Wash with NMP (3x0.5 mL, 3 min)
 - 13. Repeat steps 10 12
 - 14. Wash resin with 1:1 NMP/dichloromethane (2x0.5 mL, 3 min)
 - 15. Wash resin with neat dichloromethane (3x0.5 mL, 3 min)
 - 16. Keep 96-well plate in the reaction block at rt overnight

25 C. TMSE Ester Deprotection/2nd Amide Formation:

- 1. Swell resin with THF (3x0.5 mL, 3 min); drain
- 2. Add THF solution of TBAF (1 M, 0.5 mL)

	the second secon		- ,
		4.	Wash resin with THF (3x0.5 mL, 3 min)
		5.	Repeat steps 2 – 4
		6.	Wash with 1:1 THF/NMP (2x0.5 mL, 3 min)
5	•	7.	Wash with NMP (3x0.5 mL, 3 min)
:		8.	Add the following: NMP solution of DIEA (1.25 M, 0.15 mL), NMP
	solution of HA	TU (0.	5 M, 0.15 mL) and NMP solution of amine (0.5 M, 0.15 mL) respectively
	(amine (HCl) _Z	were tr	eated with an excess of an NMP solution of DIEA (1.25 M, (z)x0.15 mL))
		9.	Bubble N ₂ & vortex for 1.5 h; drain
10		10.	Wash with NMP (3x0.5 mL, 3 min)
		11.	Repeat steps 8 - 10
		12.	Wash with 1:1 NMP/dichloromethane (2x0.5 mL, 3 min)
		13.	Wash with neat dichloromethane (3x0.5 mL, 3 min)
		14.	Store at about -15/-20°C in a ziplock bag
15	D. <u>TFA C</u>	leavage	e of Compound from Resin:
		1.	Swell resin with dichloromethane (2x0.5 mL, 2 min); drain
		2.	Add 95:5 TFA/H ₂ O solution to each well (0.5 mL)
•		3.	Bubble N ₂ & vortex for 2 h; drain into cube tubes
	2	4.	Wash wells with TFA/H ₂ O (3x0.25 mL, 2 min)
20		5.	Add AcOH (0.5 mL) to each cube tube
	·	6.	Concentrate under reduced pressure with heat (Savant) for about 1 h
		7.	Add AcOH (0.75 mL) to each cube tube
		8.	Concentrate under reduced pressure with heat (Savant) for 45 min
		9.	Add AcOH (0.25 mL) and toluene (0.75 mL) to each cube tube
25		10.	Concentrate under reduced pressure with heat (Savant) for 2 h
		11.	Add methanol (0.25 mL), vortex then add toluene (0.75 mL)
		12.	Concentrate under reduced pressure with heat (Savant) overnight

Bubble N₂ & vortex for 45 min; drain

3.

15

A 1152-member bicyclic library was produced using TentaGel™ as the solid support and the procedure described in steps A-D above. The library was made using 36 (3*12) by 32 (4*8) sets of diverse amines (see Table 2). The acid-labile protecting groups tert-butoxycarbonyl, tert-butyl ethers, and tert-butyl esters were utilized for the protection of amines, alcohols and carboxylic acids, respectively. On average, each well provided 6.5 micromoles of desired product [17.2 micromoles (of starting resin) * 0.76 (% yield) * 0.5 (assuming 50% purity on average)]. Each well was analyzed by MS (loop injection). In addition, 15 wells from plate 4 and 12 wells from plate 12 were analyzed by LC-MS to confirm that MS-loop injection analysis was consistent with the LC-MS data. Each compound of the 1152-member library was then placed into one of three relative purity categories: high purity, lower purity and failures. The data is summarized in Table 1.

Table 1

Plate	# of High Purity	%	# of Lower Purity	%	# of	%
#	wells		wells		Failures	
1	69	72	18	19	. 9	9
2	77	79	18	19	1	2
3	74	77	22	23	. 0	0
4	74	77	11	11	11	11
5	72	75	21	22	3	3
6	68	71	28	29	. 0	0
7	76	79	20	21	0	0
8	77	80	19	20	0	0
. 9	78	81	18	19	0	.0
10	67	70	29	30	0	0
11	49	51	47	49	0	0
12	62	65	34	35	. 0	0.
Totals	843	73	285	25	24	2

High purity indicates that the molecular ion and/or fragments resulting from the desired ion were the only/major peaks in the MS spectra. Lower purity refers to wells where the molecular ion and/or fragment were present in addition to a number of other peaks. Although a significant number of wells were of lower purity, the major impurity in these wells (about 90% of the wells) was the carboxylic acid resulting from incomplete coupling with the second amine. A failure indicates very little or no molecular ion or identifiable fragment was detected.

Table 2

Structures of Combinatorial Library Compounds

	NRR'
1	ни
2	
. 3	HN O
4	HN
5	HN N N N N N N N N N N N N N N N N N N
6	N(CsH11)2
7	`ОН
8	HN N
9	IN OH
10	, O

<u>_</u>	NR"R"
:	
1	HN
2	N(C5H11)2
. 3	ř
4	HN NH 1
5	
6	ни он
7	
8	IN S
. 9	HN N
10	HN O

NH	ı
11	
HN F	
13	
14 HN 55 6 8	
HN	
16 IN O	
HNN N N N N N N N N N N N N N N N	
19	
20	
21	
о N ОН 22	
23	
24 N N	

	HN NO ₂
11	
	№ОН
	0
. 13	ни~~и
	^ ^ ^
14	ни У м
15	HN
	0
. 16	00
	~~
17	NH NH
	HN
18	ố [*] ò
10	
19	
	N N
20	
	$N \longrightarrow N = $
21	
22	
	N
23	но О
	N O
24	~

- 11	NH			HN NO 2
12	HN F		12	NOH
. 13	N HO O		13	HN ~ N
14	HN S S S S		14	IIN \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
15	HN-		15	HN
16	HIN O		16	O NH
17	HN N N		17	N -N
18	0 N O		. 18	HN OS
18			19	нх
20	Z Z		20	N N
	HN \		21	N N
. 22	OH OH	:	22	
_				N
23			23	но 0
23	N N N		23	HO 0

15

EXAMPLE 107

BIOLOGICAL ACTIVITIES OF REPRESENTATIVE BICYCLOOCTANES

Apoptosis:

The protocol used for determining inhibition of apoptosis in A549 cells was adopted from a system previously described (K. Last-Barney *et al.*, *J. of Immunology 141*:527-530, 1988). Briefly, 10⁵ cells in 200 μL 10% FBS/RPMI antibiotic containing culture medium were plated into 96 well round bottom culture plates and allowed to adhere for 6 hours at 37°C in a 5% CO₂ atmosphere. The media was removed and 100 μL of RPMI + 1 μg/mL actinomycin-D was added to each well, followed by 90 μL of test compound solution in 1% DMSO. This was incubated for 1 hour. 10 μL TNF-α was added at its EC₅₀ (normally 1 ng/mL FAC) and the plates incubated for 18 hours. The media was aspirated from the plates and 100 μL of 0.5% crystal violet in 20% methanol was added. After 10 minutes the plates were rinsed with water to remove excess stain, air dried, and read on a Spectramax at a wavelength of 590 nm. The data obtained from the Spectramax was converted into percent inhibition data at a concentration of 20μM or IC₅₀ measured in μM. Data is presented for representative compounds under the column titled "Apopt inh" in Table 3 as follows: "*" refers to percent inhibition from 6% to 64%; "**" refers to an IC₅₀ from 10 μM to 50 μM; "***" refers to an IC₅₀ below 10 μM.

NFκB:

A549 cells were stably transfected with an E-selectin promoter containing three NFκB binding sites driving luciferase expression. For the assay, 5 x 10⁴ cells were incubated in 96 well round bottom plates overnight in 100 μL of 10% FBS/RPMI medium at 37°C in a 5% CO₂ atmosphere. The following morning the medium was removed and 90 μL of a 1% DMSO solution of test compound solution was added and the plates incubated for 1 hour. 10 μL of TNF-α was added at its EC₅₀ (normally 6 ng/mL FAC) to each well and the plate incubated for 5 hours. 100 μL of luciferase buffer was added, and

The state of the s

after 10 minutes luminescence was read on a Wallac Victor 1420 Multilabel Counter. The data obtained from the Wallac Victor was converted into % inhibition data or IC_{50} measured in μM . Data is presented for representative compounds under the column titled "NF κ B inh" in Table 3 as follows: "*" refers to percent inhibition from 6% to 64%; "**" refers to an IC_{50} from 10 μM to 50 μM ; "***" refers to an IC_{50} below 10 μM .

The compounds of Table 3 were synthesized according to disclosed methods of Examples 1-106, and tested for activity according to the above assays. In Table 3, each compound is provided with a unique compound number, as set forth in the column "No."

Table 3

STRUCTURE	No.	Apopt inh	NFkB inh
H³C \ CH³ H³C \ Si \	1	**	*
H ₂ C O H			
O H			
ĊH² OH	2	*	*
ON OCH3			
H ₃ C O CH ₃ H ₃ C O H			
ОН			

ſ,

STRUCTURE	No.	Apopt inh	NFκB inh
СНЗ	3	*	*
N-CH ₃ O CH ₃		• • • • •	
н,с о о сн,	•		
H,C CH ₂			
CH ₃	4	*	*
H ₃ C O CH ₃	· . ,		
H ₃ C OH			
CH ³	5	**	*
O CH ₃		·	,
H ₃ C CH ₃ CH ₃			
H ₃ C N			
N-CH ₃			
H ₂ C Si O CH ₃	6	*	*
O'H OOCH,	,		
0			

STRUCTURE	No.	Apopt inh	NF _K B inh
H ₃ C Si O CH ₃	7	*	*
OH CH ₃			:
H ₃ C Si O CH ₃	8	*	**
O O CH ₃			
H ₃ C Si A CH ₃	9	*	*
O H O NH ₂			
H ₃ C Si O CH ₃	10	***	**
H ₃ C Si O CH ₃	11	**	*
O H O CH ₃			
H ₃ C Si O CH ₃	12	**	**
O H O N			

STRUCTURE	No.	Apopt inh	NFκB inh
H ₃ C Si O	13	**	*
H ₃ C O CH ₃		. :	
O H		·	
CH ₃			
CH ₃ O O	14	**	**
H ₃ C CH ₃			
	·		
0″ Й			
CH ₃ O	15	**	*
H ₃ C Si O CH ₃			
0" H O CH ₃			
CH₃ O	16	**	**
H ₃ C Si O CH ₃			
O H O CH ₃			
CH ₃ O O	17	*	*
H ₃ C Si O CH ₃			
O H CH ₂			,

STRUCTURE	No.	Apopt inh	NFkB inh
H ₃ C Si O CH ₃	18	**	
O H			
H ₃ C CH ₃ O CH ₃	19	* .	*
O H			
H ₃ C Si O CH ₃	20	*	*
O CH3 CH3			
H ₃ C Si O CH ₃	21	*	*
O CH ₃			
H ₃ C CH ₃ CH ₃ CH ₃	22	_	*
ОН			

The state of the s

STRUCTURE	No.	Apopt inh	NF _K B inh
H _C OH OH	23		**
H ₃ C OH ₃	24		**
H _C O H	25	**	*
H ₃ C CH ₃ O O O O O O O O O O O O O O O O O O O	26		*
H ₃ C CH ₃ H ₃ C CH ₃ OH	27	**	*
H,C,CH, H,C,CH,	28	**	*

ž Ž

CTRLICTURE	N-	A a t i la	NE D'I
STRUCTURE	No.	J	NFκB inh
H,C,CH,	29	**	*
о́н	30	***	
H ₂ C ₋ CH ₃	30		
ңс-si сн,	31	*	*
OH, OH,			
OH, CH,			
H ₅ C-Si OH	32	**	*
H,C-SI OH,	33	**	*
OH OH			
H,C-si CH,	34	***	**
O' H OH	<u> </u>	<u> </u>	

η.'. :

STRUCTURE	No.	Apopt inh	NF _K B inh
H, C, CH,	··35	***	*
30-31			
OF H			
н,с, сн, н,с,-s,	36	*	*
сн,			
H			
OH			
ң _С СЧ, н,С-Si	37	**	*
	- - -		
O O COH,			
ÇH₃ Ç Ç	38	***	**
/ \ / \ / \ \ / \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ \ / \ / \ \ / \ / \ \			
но н		• • •	
CH ₃ O O	39	*	**
H ₃ C O N O CH ₂			
но н			
H ₃ C Si OH OH OH			

STRUCTURE	No.	Apopt inh	NFkB inh
H ₃ C CH ₃ H ₃ C Si	40	**	*
H ₂ C O N,			
ОН	41	- da	**
H ₃ C CH ₃ O CH ₃ H ₃ C CH ₃ O CH ₃	41	*	***
HC-Si H3C	42	*	*
ОН	. •		
H ₃ C Si O H OH	43	*	*
H ₃ C Si O O CH ₃ CH ₃ CH ₃	44	*	*
OH OH			
H ₃ C Si O O O O O O O O O O O O O O O O O O	45	***	*

STRUCTURE	No.	Apopt inh	NFκB inh
	46	*	*
H ₃ C Si O CH ₃			
ОН			
H ₃ C Si O O O O O O O O O O O O O O O O O O	47	*	*
O H			
HC S O O CH3	48	**	*
OH OH			
H ₃ C Si O O O CH ₃	49	*	*
OH OH			
H,CH,	50	***	**
O CH			
OH.		***	**
H,C CH,	51	T T T	T T
OH,			
ОН			

STRUCTURE	No.	Apopt inh	NFκB inh
H ₃ C Si O CH ₃	52	*	**
H ₃ C Si O CH ₃ H ₃ C O O CH ₃ O O O O O O O O O O O O O O O O O O O	53	***	**
H ₃ C Si O CH ₃	54	***	**
H ₃ C Si O CH ₃ N-N H OH	55		*
H ₃ C-S CH ₃ O CH ₃ O CH ₃ O O CH ₃ O O O O O O O O O O O O O O O O O O O	56	***	*

<u>"</u>.

), ())

STRUCTURE	No.	Apopt inh	NFκB inh
H ₃ C Si N OH OH	57	**	**
H ₃ C Si O CH ₃ N-N H OH	58	**	*
H ₃ C Si O O CH ₃ H ₃ C O O O O O O O O O O O O O O O O O O O	59	***	**
H ₃ C Si O CH ₃ H ₃ C N-N H	60	**	**
H ₃ C Si O O CH ₃ H ₃ C Si O O O O O O O O O O O O O O O O O O	61	**	*

STRUCTURE	No.	Apopt inh	NFκB inh
H ₃ C Si O CH ₃ H ₃ C O O O O O O O O O O O O O O O O O O O	62	**	*
H ₃ C Si O CH ₃ H ₃ C O N N H OH	63	*	*
H ₃ C Si O CH ₃	64	***	*
HO-N H OH			
H ₃ C Si O CH ₃ N H O OH H ₃ C OH	65	***	**
H ₃ C Si O CH ₃ H ₃ C O N H OH	66	*	**

STRUCTURE	No.	Apopt inh	NFkB inh
H ₃ C Si O CH ₃ O-N H OH	67	***	**
H ₃ C Si O CH ₃	68	***	**
CH ₃ H ₃ C Si H ₃ C CH ₃ CCH ₃	69	***	*
O ₂ N O-N H OH H ₃ C Si O CH ₃	70	*	*
HO _{rt} HO _{rt} OH	71	***	**
N=N O-N H OH	72	***	*
CH ₃ H ₃ C Si O N O O O O O O O O O O O O O O O O O	72	ጥ የ የ	

* ******

STRUCTURE	No.	Apopt inh	NFκB inh
H ₃ C Si O CH ₃	73	_	**
H ₃ C Si O CH ₃	74		**
N H OH			
		·	
H ₃ C Si O CH ₃	75	<u> </u>	*
H,C Si O CH,	76		**
	-		

STRUCTURE	No.	Apopt inh	NFkB inh
H,C Si O CH,	77		**
CI			
H ₃ C Si O CH ₃	78	***	
H ₂ C CH ₃ OH	79	***	**
H ₂ N-N H OH	80	***	**
H ₃ C Si O CH ₃			·
H ₂ N H OH	81	***	*
H ₃ C Si OH OH			

STRUCTURE	No.	Apopt inh	NFκB inh
(CH ₃) ₃ Si O CH ₃	82	***	**
(CH ₃) ₃ Si O CH ₃	83	***	**
(CH ₃) ₃ Si O CH ₃	84	***	**
$(CH_3)_3Si$ O O CH_3 H_3C O	85		**
(CH ₃) ₃ Si O CH ₃ H ₃ C NH H OH	86		**

STRUCTURE	No.	Apopt inh	NFκB inh
(CH ₃) ₃ Si O CH ₃	87		**
H ₃ C NH H OH			
(CH ₃) ₃ Si O CH ₃	88		*
NH H OH			
(CH ₃) ₃ Si O CH ₃	89	 .	*
H ₃ C N H OH			
(CH ₃) ₃ Si O CH ₃	90		*
H ₂ N H OH			
(CH ₃) ₃ Si O CH ₃	91		**
H ₃ C O CH ₃ OH			

STRUCTURE	No.	Apopt inh	NFkB inh
(CH ₃) ₃ Si O CH ₃ H ₃ C N H CH ₃ O CH ₃	92	_	**
O CH ₃ 0	93		**
(CH ₃) ₃ Si O CH ₃ H ₃ C N H CH ₃ O CH ₃			
(CH ₃) ₃ Si O CH ₃	94		**
H ₃ C H OH	·		
(CH ₃) ₃ Si O OCH ₃ HO H OCH ₃	95	*	*
(CH ₃) ₃ Si O OCH ₃ HO H OH	96	***	*

STRUCTURE	No.	Apopt inh	NF _K B inh
(CH ₃) ₃ Si O CH ₃	97	*	**
(CH ₃) ₃ Si O CH ₃ H ₃ C O H O O O O O O O O O O O O O O O O O	98	*	*
(CH ₃) ₃ Si O CH ₃	99	-	**
H ₃ C H HO OH			4.
(CH ₃) ₃ Si O CH ₃ HO CH ₃	100	_	**
(CH ₃) ₃ Si O CH ₃	101	***	*
H ₂ C H OH			

	· ·		
STRUCTURE	No.	Apopt inh	NFkB inh
0	102	*	*
(CH ₃) ₃ Si CH ₃			
			·
HO			
HO HO OH			٠.
(CH) s: 0	103	*	*
CH ₃)331 CH ₃		•	
0			
HO			
но он			
0 0	104	_	*
N CH ₂	<u> </u>		
CH ₃			
O H	,		
ОН	٠,		
0 0	105		*
H ₃ C N CH ₂			
O H			
ОН			
0,50000	106		**
CH,			
н,с			
о" н он			
CH ₃ O O	107		**
CH ₃			
0 3			
O H			
ОН	•		<u> </u>

STRUCTURE	No.	Apopt inh	NFκB inh
OH OH	108		**
H ₃ C ₁ H ₃ C ₁ CH ₃ O OH	109		**
H ₃ C OCH ₃ H ₃ C OCH ₃ H ₃ C OCH ₃ CH	110	*	*

EXAMPLE 108

BIOLOGICAL ACTIVITIES OF REPRESENTATIVE BICYCLOOCTANES

Compounds of the present invention were synthesized according to methods disclosed in Examples 1-106, and tested for activity according to the apoptosis and NFkB assays described in Example 107, and the CXCR1 and CXCR2 assays described below. The results from these biological testings are set forth in Table 4, where each compound is provided with a unique compound number, as set forth in the column "No."

CXCR1:

; 45;

This assay is a radioligand binding assay in human recombinant CHO cells with 125 I labeled IL-8 as the ligand. The assay procedure is described in Ahuja, S.K.; Murphy, P.M;. *J. Biol. Chem.* 1996, **271**, 20545, and was performed by Panlabs Taiwan, Ltd. Data is presented for representative compounds under the column titled "CXCR1 inh" in Table 4 as follows: "*" refers to percent inhibition from 10-36%; "**" refers to an IC₅₀ from 10 μ M to 50 μ M; "***" refers to an IC₅₀ below 10 μ M.

CXCR2:

This assay is a radioligand binding assay in human recombinant CHO cells with ¹²⁵I labeled IL-8 as the ligand. The assay procedure is described in Ahuja, S.K.; Murphy, P.M;. *J. Biol. Chem.* 1996, **271**, 20545, and was performed by Panlabs Taiwan, Ltd. Data is presented for representative compounds under the column titled "CXCR2 inh" in Table 4 as follows: "*" refers to percent inhibition from 10-36%; "**" refers to an IC₅₀ from 10 μM to 50 μM; "***" refers to an IC₅₀ below 10μM.

15

10

Table 4

STRUCTURE	No.	Apopt. Inh.	NFkB inh.	CXCR1 inh.	CXCR 2 inh.
$(CH_3)_3Si$ O O CH_3 $N-N$ H OH	111	***	**	***	***

大きの一番の

STRUCTURE	No.	Apopt. Inh.	NFkB inh.	CXCR1 inh.	CXCR 2 inh.
$(CH_3)_3Si$ O CH_3	112	N.D.	*	**	***
Br O OH					
(CH ₃) ₃ Si (CH ₃) ₃ Si	113	N.D.	*	**	**
ОН					
(CH ₃) ₃ Si O	114	N.D.	*	N.D.	*
CH ₃	•				
H. OH	:				

STRUCTURE	No.	Apopt. Inh.	NFkB inh.	CXCR1 inh.	CXCR 2 inh.
$(CH_3)_3Si$ O O CH_3 O	115	-	*	*	*
$(CH_3)_3Si$ O O CH_3 O	116	***	**	*	*

All other acronyms and abbreviations have the corresponding meaning as published in journals relative to the art of organic chemistry. From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

All references cited herein are incorporated by reference.