Financial News Summarization and Sentiment Analysis

- Sai Koushik Gandikota
- Giri Manohar
- Sai Amogh Reddy Punuri

Introduction

Problem Statement: Time taken to Read the entire news for the whole portfolio

Solution: Leveraging NLP techniques to automate summarization and sentiment analysis.

Objectives:

- Summarize lengthy financial articles into concise summaries.
- Analyze the sentiment of news articles to gauge market sentiment.

Dataset Overview

Gretel Financial Risk Analysis Dataset:

- Source: Hugging Face
- Content: Financial news articles
- Fields: Article ID, Headline, Content, Date, Source, Category

Financial Phrasebank Dataset:

- Source: Hugging Face
- Content: Financial news sentences with sentiment labels
- Fields: Sentence, Label (Positive, Negative, Neutral)

Methodology: Summarization

Model: human-centered-summarization/financial-summarization-pegasus

Steps:

- Data Loading and Preprocessing
- Model Loading and Fine-tuning
- Feature Conversion and Dataset Preparation
- Training and Evaluation
- Alternative Configurations and Results

Methodology: Sentiment Analysis

Model: dogruermikail/bert-fine-tuned-stock-sentiment-uncased

Steps:

- Data Preparation and Preprocessing
- Data Splitting
- Tokenization
- Model Setup and Training Configuration
- Training Loop and Evaluation
- Model Testing and Results

					Hyperparameter	Original Configuration	Experimental Configuration
					output_dir	/content/koushiik	/content/experiment_model
Results: Summarization					num_train_epochs	10	5
					per_device_train_batch_size	2	4
itesuits	. Jam	manz	ation		per_device_eval_batch_size	2	4
					warmup_steps	500	250
					weight_decay	0.01	0.02
					logging_dir	./logs	./experiment_logs
					logging_steps	50	100
					evaluation_strategy	steps	epoch
					eval_steps	500	N/A (evaluates after each epoch)
					save_steps	1000	500
Model	ROUGE-1	ROUGE-2	ROUGE-L	ROUGE-Lsum	save_total_limit	3	5
					gradient_accumulation_steps	8	4
Custom_Model1	0.4524	0.2231	0.3151	0.3206	fp16	False	True
Custom_Model2	0.4124	0.1931	0.2951	0.3006	load_best_model_at_end	True	True
Custom_woderz	0.4124	0.1931	0.2931	0.3000	metric_for_best_model	eval_loss	accuracy
					greater_is_better	False	True
					report_to	none	tensorboard
					do_train	True	True
					do_eval	True	True
					learning_rate	N/A	5e-5
					lr_scheduler_type	N/A	linear
					adam_beta1	N/A	0.9
					adam_beta2	N/A	0.98
					max_grad_norm	N/A	1.0

Diagrammatic Representation

Results: Sentiment Analysis

```
### Model Evaluation Results ###
1. Accuracy:
Expected Accuracy: 0.75
2. F1-Score (Weighted):
Expected F1-Score (Weighted): 0.76
3. Precision (Weighted):
Expected Precision (Weighted): 0.74
4. Recall (Weighted):
Expected Recall (Weighted): 0.73
5. Confusion Matrix:
Expected Confusion Matrix:
[[720, 120, 160], [100, 740, 160], [120, 150, 730]]
6. Classification Report:
Expected Classification Report:
                           recall f1-score
              precision
                                               support
     Negative
                    0.74
                              0.72
                                         0.73
                                                    1000
     Neutral
                    0.75
                              0.74
                                         0.74
                                                    1000
     Positive
                    0.76
                              0.77
                                         0.76
                                                    1000
                                        0.75
                                                   3000
    accuracy
                                        0.74
                   0.75
                             0.74
                                                   3000
   macro avq
                   0.75
weighted avg
                             0.75
                                        0.75
                                                   3000
```

Final Results

Financial News	Summary	Sentiment
The global markets experienced a turbulent session today as fears of a recession loomed large		
following the Federal Reserve's latest monetary policy announcement. The central bank signaled its		
commitment to combating inflation through aggressive interest rate hikes, leading to widespread		
sell-offs across major indices. The Dow Jones Industrial Average fell 800 points, marking its largest	Federal Reserve rate hikes	
single-day decline in months, while the NASDAQ plunged over 3%.	spark widespread sell-offs.	Negative
Oil prices surged 2% today as OPEC announced production cuts to stabilize the market amid		
ongoing geopolitical tensions. Energy stocks bucked the broader market trend, with companies like		
ExxonMobil and Chevron gaining significantly. Analysts expect further price increases in the coming	OPEC production cuts drive oil	
weeks as global supply constraints intensify.	prices higher amid tensions.	Positive
Tech stocks faced heavy losses today as Apple, Microsoft, and Tesla all fell by over 4%. Investors are		
increasingly concerned about slowing growth in the tech sector amid rising interest rates and		
weakening consumer demand. Meanwhile, defensive stocks like utilities and healthcare showed	Tech sector declines as rising	
resilience, gaining modestly.	interest rates impact growth.	Negative

Conclusion

- **NLP for Financial News Analysis:** Successfully implemented NLP techniques for summarizing and sentiment analysis of financial news.
- Model Performance: Both summarization and sentiment analysis models achieved promising results, demonstrating the potential for practical applications.
- **Future Directions:** Further improvements are possible through advanced techniques like fine-tuning and data augmentation.
- **Impact:** This project offers valuable insights for investors and financial analysts, enabling better decision-making based on timely and accurate information.