아두이노 란?

- 누구나 쉽게 MCU를 다루기 위한 플랫폼
- 오픈 소스를 기반으로 한 단일 보드 마이크로 컨트롤러
- 소프트웨어 개발을 위한 통합 환경 제공
- 편리하게 외부 전자 장치를 제어

아두이노 특징 및 응용

- Arduino 특징
 - 저렴한 가격
 - 크로스 컴파일 플랫폼
 - 단순 명확한 프로그래밍 환경
 - 오픈 소스 및 확장 가능한 하드웨어
- Arduino 응용
 - 교육용
 - 예술가들의 디지털화된 작품

아두이노 관련 모듈

Arduino GSM Shield

Arduino Ethernet Shield

Arduino WiFi Shield

Arduino Wireless SD Shield

Arduino Motor Shield Arduino Wireless

Proto Shield

브레드 보드

전자 부품을 연결할 때 납땜이 필요 없기 때문에 재사용이 가능하다.

브레드 보드는 아래 그림과 같이 가로와 세로 방향에 따라 철심이 박혀있다. 같은 색 선 위의 구멍들은 서로 연결되어있고, 전류를 흐를 수 있게 한다.

- A, D : 전원을 공급하기 위한 전원 레일 (Power Rails)
- B, C : 소자를 구성하기 위한 터미널 스트립 (Terminal Strips)

브레드 보드

전원이 공급 된 브레드보드에 LED를 연결하기 위해서는 LED의 긴 핀(+)를 아두이노 보드의 핀에, 짧은 핀(-)을 아두이노의 GND 핀에 연결해주면 회로가 완성된다.

점퍼와이어

1) 점퍼와이어란?

- 브레드보드에 구성한 소자들에게 전류가 흐를 수 있도록 통로 역할을 한다.
- 핀을 꼽을 수 있는 헤더 소켓에 따라 핀 구멍이 있는 암(Female), 핀이 달려있는 수(Male) 단자로 나 뉜다.

2) 점퍼와이어 종류

암-수 점퍼와이어 수-수 점퍼와이어

저항 값 읽기

 $23*10k\Omega = 230k\Omega @ 0.5\%$

	4-band	5-band
100 Ω	-1111	
220 ♀		-11113-
330 ℚ	-1111	-11113-
1 KQ	-1111-	-1111
2 KQ	-1111-	
4.7 KQ		
10 ΚΩ	-1111-	-1111
47 KΩ		
100 KQ	-114-	-1111

LED 전류 계산하기

Absolute Maximum Ratings

(Ta=25°C)

Item	Symbol	Maximum	Unit
Power Dissipation	P _D	78	mW
Continuous Forward Current	I _F	30	mA
Peak Forward Current (1/10 Duty Cycle 0.1ms Pulse Width)	I _{FP}	100	mA
Reverse Voltage	VR	5	V
Derating Linear From 25°C		0.4	mA/°C
Operating Temperature Range	Topr	-30 to +80	°C
Storage Temperature Range	Tstg	-40 to +85	°C

Electrical / Optical Characteristics

(Ta=25°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	$V_{\rm F}$	IF=5mA		1.85	2.30	V
Reverse Current	IR	VR=5V			10	uA
Peak Emission Wavelength	λP	IF=5mA		660		nm
Dominant Wavelength	λD	IF=5mA		643		nm
Viewing Angle	2 0 1/2	IF=5mA		130		Deg
Luminous Intensity	I _V	IF=5mA	1.2	3.6		mcd

LED 전류 계산하기

LED를 전원에 연결하는 회로를 구성할 때 LED를 전원에 직접 연결을 하면 많은 양의 전류가 LED로 흐르게 되어 LED가 뜨거워지고 짧은 시간 후 끊어지게 된다. 따라서 LED에 저항을 직렬 연결하여 LED에 흐르는 전류의 양을 제어해야 한다.

실습: 전류 5mA 회로구성 및 Toggle

아두이노 시작하기

아두이노 프로그램을 실행시키면 다음과 같은 화면이 생성된다. 파일 면접 스케치 중 도움말 void setup() -// put your setup code here, to run once: void loop() { // put your main code here, to run repeatedly: void setup() : 중괄호 사이에 ({ }) 변수 선언, pin mode 설정 등을 포함한다. 프로그램이 시작될 때 한 번만 실행이 된다. void loop(): 프로그램 주 내용이 들어가는 부분으로 반복적으로 실행되는 부분이다.

대 알아보기 주석처리

// 내용 : 한 줄 주석처리. 간단한 설명을 적을 때 사용하며, 프로그램에는 영향을 주지 않는 부분이다.

/* 내용 */ : 여러 줄의 주석처리.

아두이노 시리얼 통신하기

```
      CODE

      Step1 시리얼 통신을 시작하기 위한 명령을 넣어준다.

      1 void setup() {
      //시리얼 통신을 준비한다. 통신 속도는 9600으로 맞춘다.

      3 4 }
      }

      5
      ***

      6 void loop() {
      ***

      7 Serial.println("Hello ARDUINO STORY~!"); //시리얼 창에 Hello World를 출력한다.
      **

      8 delay(1000); //1000 밀리초 (=1초) 동안 기다린다.
      **
```

```
COMS perdunctionaline until

- ロ ×

| 日本 | In ARDUINO STORY~!

| He I In ARDUINO STORY~!

| He I In ARDUINO STORY~!

| He I In ARDUINO STORY~!
```

실습: 아두이노에서 PC에 문자출력

디지털 출력

아두이노의 입출력 신호는 크게 디지털과 아날로그 두 가지로 구분이 된다. 이 중 디지털 출력과 입력에 대한 것을 먼저 다루어 본다.

디지털 신호는 전압의 높낮이를 HIGH / LOW, 1 / 0 , True / False , On /Off 처럼 두 개의 신호로 불 연속적으로 표현하는 것을 일컫는다.

아두이노에는 0번부터 13번까지 14개의 디지털 핀이 있다. 단, 0번과 1번은 컴퓨터와 통신하는 부분이 연결 되어 있으므로 가급적이면 2번 핀부터 사용하는 것이 좋다.

이 핀들은 기본적으로 입력 핀으로 지정되므로 출력 핀으로 사용할 때는 pinMode(핀 번호 ,OUTPUT); 으로 출력을 선언해 주어야 한다.

출력 핀으로 선언 뒤 digitalWrite(핀 번호, HIGH); 로 핀 번호에 5V 출력을 명령하거나 digitalWrite (핀 번호, LOW); 로 핀 번호에 OV 출력을 명령할 수 있다.

아두이노 LED 4개 연결

실습 : 아두이노에서 LED4개 제어

- 1) 1개씩 2) 2개씩
- 3) 1,2,3,4,3,2,1 무한반복