Πληροφοριακά Συστήματα - Εργαστήριο 1ο

Χρυσόστομος Συμβουλίδης, <u>simvoul@unipi.gr</u> Jean-Didier Totow, <u>totow@unipi.gr</u>

Γενικά θέματα

- Στοιχεία επικοινωνίας:
 - Χρυσόστομος Συμβουλίδης, <u>simvoul@unipi.gr</u>
 Οδ. Ανδρούτσου 150, Γραφείο 207
 - Jean Didier Totow, totow@unipi.gr
 Οδ. Ανδρούτσου 150, Γραφείο 502
- Παρακολούθηση εργαστηρίου: Προαιρετική
- Βαθμολογία εργαστηρίου: Τελική εργασία (4 μονάδες)

Ύλη του εργαστηρίου

- Γνωριμία με τη Python 3
- Docker
- Service-oriented Architecture (SOA) και Web services
- Flask microframework
- MongoDB και PyMongo (library)
- Git / GitHub

Πίνακας περιεχομένων

- Εισαγωγή με την Υπηρεσιοστρεφή Αρχιτεκτονική (SOA) και τα Web Services
 - SOA
 - o REST & Restful APIs
- Γνωριμία με τη Python 3
 - ο Γενικές έννοιες
 - Anaconda distribution
- Git
 - GitHub account
 - ο Δημιουργία νέου repository
 - ο Βασικές εντολές

Visual Studio Code

Προτεινόμενο code editor

Download: https://code.visualstudio.com/

Postman

Download: https://www.postman.com/

Service Oriented Architecture (SOA)

Υπηρεσιοστρεφής Αρχιτεκτονική

- Αρχιτεκτονική προσέγγιση κατά την οποία τα επιμέρους συστήματα (web services)
 - ο συνδέονται μεταξύ τους μέσω ενός δικτύου (internet, intranet, κλπ.)
 - Και επικοινωνούν μεταξύ τους με τη χρήση διεπαφών (interfaces)
- Γιατί SOA;
 - Καλύτερη αξιοποίηση των πόρων ενός συστήματος
 - Ελαχιστοποίηση της επαναχρησιμοποίησης κώδικα
 - Ευέλικτη και επεκτάσιμη
 - ο Кλп.

APIs

Application Programming Interface (API)

- Είναι η διεπαφή (το μέσο μετάδοσης) με την οποία ένας χρήστης επικοινωνεί με ένα σύστημα
 - ο Στέλνει αιτήματα
 - Λαμβάνει απαντήσεις

REST & RESTful

REST

- **Re**presentational **S**tate **T**ransfer
- Αρχιτεκτονικό στυλ που χρησιμοποιείται για το σχεδιασμό εφαρμογών διαδικτύου
- Βασίζεται σε ένα *restless*, client-server πρωτόκολλο
 - ο Τις περισσότερες φορές χρησιμοποιείται το πρωτόκολλο ΗΤΤΡ

RESTful APIs

• Είναι τα ΑΡΙ αυτά που συμμορφώνονται με τους περιορισμούς του REST

Το REST και το RESTful είναι πρακτικά το ίδιο πράγμα

Python 3

- Εγκατάσταση
- Γενικές έννοιες
 - ο Βιβλιοθήκες (Libraries) και πακέτα (Packages)
 - ο Συναρτήσεις (Functions)
 - ο Κλάσεις (Classes) και αντικείμενα (Objects)
- Anaconda
- Environments
- Requirements
 - o pip & conda

Εγκατάσταση Python

Python 3:

https://www.python.org/downloads/

Anaconda (προτείνεται):

https://www.anaconda.com/distribution/

Εγκατάσταση Anaconda Python (1/2)

Add Anaconda to the system
PATH environment variable

cmd / terminal: python --version

```
(s-ehr-cloud) csymvoul@DESKTOP-4HT3TL7:~/projects/infosyslabs/lab1$ python --version
Python 3.8.1
(s-ehr-cloud) csymvoul@DESKTOP-4HT3TL7:~/projects/infosyslabs/lab1$ conda --version
conda 4.7.12

(s-ehr-cloud) csymvoul@DESKTOP-4HT3TL7:~/projects/infosyslabs/lab1$ python
Python 3.8.1 (default, Jan 8 2020, 22:29:32)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("hello world")
hello world
>>> ■
```


Εγκατάσταση Anaconda Python

Για χρήστες Windows:

Αν δεν επιλέξουμε την εισαγωγή της Python στο PATH (το πρώτο checkbox στη προηγούμενη διαφάνεια) πρέπει να την εισάγουμε μόνοι μας.

Βήματα:

- 1. Ανοίγουμε το CMD με δικαιώματα Διαχειριστή
- 2. Βρίσκουμε που έχει εγκατασταθεί η Python με την εντολή

where python

- ανάλογα με τη διανομή που έχουμε εγκαταστήσει.
- 3. Kávou μ E copy to path
- 4. Και εκτελούμε την εντολή:

set PATH=python_path; %PATH% Όπου python_path είναι το path της εγκατάστασης της Python που βρήκαμε στο βήμα 2

Γενικές έννοιες

- Αρχεία:
 - \circ Τα αρχεία Python πρέπει να έχουν πάντα τη κατάλη ξ η .py

- Python packages
 - Βιβλιοθήκες με λειτουργίες που μπορείτε να χρησιμοποιήσετε απλά εγκαθιστώντας τες:
 - pip install packagename
 - conda install packagename
 - Όταν τις κάνουμε εγκατάσταση σε κάποιο περιβάλλον, μπορούμε να τις εισάγουμε σε κάποιο πρόγραμμά μας έτσι:
 - import package_name

Python Virtual Environments (Anaconda)

- Εργαλείο που βοηθάει στη διατήρηση των dependencies που απαιτούνται από διαφορετικές εφαρμογές.
- Δημιουργία Conda περιβάλλοντος:

conda create --name infosys

Ενεργοποίηση περιβάλλοντος:

conda activate infosys

• Απενεργοποίηση περιβάλλοντος:

conda deactivate

Εγκατάσταση Flask:

conda install flask

```
(base) csymvoul@DESKTOP-4HT3TL7:~/projects/Information-Systems-Lab$ conda create --name infosys
Collecting package metadata (current repodata.json): done
Solving environment: done
 ==> WARNING: A newer version of conda exists. <==
  current version: 4.7.12
  latest version: 4.8.3
Please update conda by running
   $ conda update -n base -c defaults conda
## Package Plan ##
  environment location: /home/csymvoul/anaconda3/envs/infosys
Proceed ([y]/n)? y
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
# To activate this environment, use
     $ conda activate infosvs
# To deactivate an active environment, use
```


Python Virtual Environments

• Εγκατάσταση virtualenv:

pip install virtualenv

Δημιουργία Virtual Environment:

virtualenv venv name

• Ενεργοποίηση περιβάλλοντος:

source path/to/venv_name activate

Απενεργοποίηση περιβάλλοντος:

deactivate

Install & Export Requirements

Αν χρησιμοποιούμε Anaconda:

1. Εξαγωγή των βιβλιοθηκών στο αρχείο requirements.txt

```
conda list --export > requirements.txt
```

2. Εγκατάσταση βιβλιοθηκών από το αρχείο requirements.txt

```
conda install --file requirements.txt
```

Av χρησιμοποιούμε απλή Python 3:

1. Εξαγωγή των βιβλιοθηκών στο αρχείο requirements.txt

```
pip freeze > requirements.txt
```

2. Εγκατάσταση βιβλιοθηκών από το αρχείο requirements.txt

```
pip install -r requirements.txt
```


Σχεσιακοί τελεστές	
Τύπος	Σύμβολο
Ισότητα	==
Μεγαλύτερο	>
Μικρότερο	<
Μεγαλύτερο ή ίσο	>=
Μικρότερο ή ίσο	<=
Διάφορο από	!=

```
lab1 > if_for >  if_1.py > ...

1     a = 10
2     b = 15
3
4     if a > b:
5         print(a , ' is bigger than ' , b)
6     elif b > a:
7         print(b , ' is bigger than ' , a)
8     else:
9         print("they are equal")
10
```


Λογικοί τελεστές		
Τύπος	Σύμβολο	
KAI	and	
Ή	ог	
Άρνηση	not	

```
lab1 > if_for > 💠 logical_op.py > ...
       a = "this is a string"
      b = "this"
      if b not in a:
           print("b is not in a")
       else:
           print("b is in a")
       a = "this is a string"
       b = "hello"
 11
       if b not in a:
 12
 13
           print("b is not in a")
           print("b is in a")
```

```
(s-ehr-cloud) csymvoul@DESKTOP-4HT3TL7:~/projects/Information-Systems-Lab$ op.py b is in a b is not in a
```

Λογικοί τελεστές

Range

```
(s-ehr-cloud) csymvoul@DESKTOP-4HT3TL7:~/projects/Information-Systems-Lab$
.py
hello world
```

Parsing a list

```
lab1 > if_for > ♠ for_list.py > ...
1  mylist = ["apple", "lemon", "pie", 4]
2
3  for item in mylist:
4  print("this item is a / an: ", item)
5
```

```
(s-ehr-cloud) csymvoul@DESKTOP-4HT3TL7:~/projects/Information-Systems-Lab$.py
this item is a / an: apple
this item is a / an: lemon
this item is a / an: pie
this item is a / an: 4
```

Δομή επανάληψης for

Εύρεση στοιχείου

Αντικατάσταση στοιχείου λίστας

```
(s-ehr-cloud) csymvoul@DESKTOP-4HT3TL7:~/projects/Information-Systems-Lab$
item.py
0  100
1  2
2  3
3  4
4  5
```

Λίστες (Lists)1/2

Αντικατάσταση στοιχείων λίστας

Με το *extend* προσθέτουμε μόνο στοιχεία στη λίστα μας. Με το *append* μπορούμε να προσθέσουμε και άλλους τύπους όπως λίστες

Με το mylist[-1] μπορούμε να επιλέξουμε το τελευταίο στοιχείο της λίστας

Λίστες (Lists) 2/2

Άσκηση 1

Να υλοποιηθούν οι παρακάτω συναρτήσεις: Έχουμε τη λίστα:

```
my_list = [100, 200, 300, 199, 99, 9]
```

1. Να υλοποιηθεί η συνάρτηση extendList η οποία θα προσθέσει στο τέλος της mylist τη λίστα:

$$a_{list} = [101, 202, 303]$$

- 2. Να υλοποιηθεί η συνάρτηση sum_list () η οποία θα υπολογίζει και θα εμφανίζει το άθροισμα των στοιχείων της λίστας
- 3. Να υλοποιηθεί η συνάρτηση max_min_item () η οποία θα υπολογίζει και θα εμφανίζει το μέγιστο και το ελάχιστο στοιχείο της παραπάνω λίστας

```
(infosys) csymvoul@DESKTOP-4HT3TL7:~/projects/Information-Systems-Lab$ / py
100
200
300
199
99
9
101
202
303
The minimum item is 9
The maximum item is 303
The sum of this list is: 1513
```


Δημιουργία λεξικού

Εμφάνιση

{'name': 'Student', 'course': 'Information Systems', 'year': 2020}

Nέo key

Εμφάνιση

```
{'name': 'Student', 'course': 'Information Systems', 'year': 2020}
{'name': 'Student', 'course': 'Information Systems', 'year': 2020, 'course_id': 'DS-512'}
```

Λεξικά (Dictionaries) 1/3

Αλλαγή τιμής σε κλειδί

{'name': 'Another Student', 'course': 'Information Systems', 'year': 2020}

Επανάληψη σε λεξικό

```
The key is: name
The value is: Student
The key is: course
The value is: Information Systems
The key is: year
The value is: 2020
```

Λεξικά (Dictionaries) 2/3

Λίστα με λεξικά

There is a course with that ID. Information Systems

Λεξικά με λίστες

```
1  my_dict = {"grades": [5, 6, 4, 7, 10]}
2  count = 0
3  i = 0
4  for key in my_dict:
5     for grade in my_dict[key]:
6         count += grade
7         i += 1
8  print("The average is equal to: ", count/i)
```

The average is equal to: 6.4

Λεξικά και λίστες

Άσκηση 2

Να υλοποιηθεί το λεξικό:

```
my_dict = {"a": 10, "b":20, "c":30 }
```

- 1. Να υλοποιηθεί συνάρτηση count_dict() η οποία θα αθροίζει τα στοιχεία του παραπάνω λεξικού
- 2. Να υλοποιηθεί η λίστα:

Git

- Σύστημα διαχείρισης εκδόσεων αρχείων (Version Control System)
- Παρακολουθεί τις αλλαγές σε ένα σύνολο αρχείων κρατώντας τα στιγμιότυπα τους
- Το σύνολο των στιγμιοτύπων ονομάζεται repository
- Υπάρχουν διάφοροι servers όπως οι:
 - o GitHub
 - o GitLab
 - Bitbucket
 - 0 ...

https://git-scm.com/downloads

Git

https://github.com

31

Δημιουργία project στο GitHub

Owner	,
g csymvoul → / T	est-Repository
Great repository names are	e short and memorable. Need inspiration? How about miniature-fortnight?
Description (optional)	
Public	
Anyone can see this r	repository. You choose who can commit.
Private You choose who can	see and commit to this repository.
100 010030 1110 0011	see the comme to the repository.
kip this step if you're imp	orting an existing repository.
Initialize this repository	
	y clone the repository to your computer.

Clone project anó to GitHub

Βασικές εντολές

1. Αντιγραφή project σε τοπικό φάκελο στον υπολογιστή μας:

```
git clone url to project
```

2. Προσθήκη αρχείων για το επόμενο commit

```
git add file.py Για συγκεκριμένα αρχεία git add . Για όλα τα αρχεία που έχουν αλλαγές
```

3. Εισαγωγή των αλλαγών στο τοπικό repository (οχι στο remote - πχ σε αυτό που έχουμε στο GitHub) με κάποιο μήνυμα git commit -m "Commit message"

4. Αποστολή / Ανέβασμα των αλλαγών στο remote repository

```
git push
```

5. Εμφάνιση λίστας με τις αλλαγές που έχουν γίνει στο τοπικό repository σε σχέση με το remote

```
git status
```

6. Τράβηγμα / Κατέβασμα των αλλαγών από το remote repository στο τοπικό

```
git pull
```


Προαιρετική Εργασία

Υλοποιήστε τις παρακάτω συναρτήσεις:

1. Υλοποιήστε τη συνάρτηση removeDuplicates () η οποία θα παίρνει ως είσοδο μία λίστα και θα αφαιρεί τα διπλότυπα.

Πχ: Αν πάρουμε τη λίστα

```
a_list = [10, 12, 14, 14, 16, 28, 28, 30] η τελική λίστα θα πρέπει να είναι η:
```

```
a_{list} = [10, 12, 14, 16, 28, 30]
```

- Υλοποιήστε τη συνάρτηση sortList () η οποία θα παίρνει ως είσοδο τη παραπάνω λίστα και θα την ταξινομεί κατά αύξουσα σειρά.
- 3. Να υλοποιηθούν και οι αντίστοιχες συναρτήσεις για το λεξικό:

```
a_dict= {"a":10, "b":12, "c":14, "d":14, "e":16, "f":28, "g":28, "h":30}
```