EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Number 51603L001

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Source	Air Contaminant	Emission Rates *	
Name (2)	Name (3)	lb/hr	TPY
Drum/Dryer Baghouse Stack	VOC (a)	41.3	19.18
, 0		525.00	65.63
	VOC (c)	56.50	5.65
	NO_x	12.60	6.75
	CO	13.30	7.13
	SO_2	8.95	10.65
	PM_{10}	12.55	6.72
Material Handling (4)	PM	5.72	3.11
	PM_{10}	1.45	0.80
Stockpiles (4)	PM	*	1.83
	PM_{10}	*	0.88
	VOC (b)	1.05	6.56
Caterpillar D389 Generator (4	•		50.45
			11.12
			5.10
		0.4	1.03
	VOC	0.6	1.53
Lime Storage Silo	PM ₁₀	0.05	0.01
	Name (2) Drum/Dryer Baghouse Stack Material Handling (4) Stockpiles (4)	Name (2) Drum/Dryer Baghouse Stack VOC (a) VOC (b) VOC (c) NO _x CO SO ₂ PM ₁₀ Material Handling (4) PM PM ₁₀ Stockpiles (4) PM PM ₁₀ VOC (b) Caterpillar D389 Generator (4) NO _x CO SO ₂ PM ₁₀ VOC	Name (2) Name (3) Ib/hr Drum/Dryer Baghouse Stack VOC (a) 41.3 VOC (b) 525.00 VOC (c) 56.50 NOx 12.60 CO 13.30 SO2 8.95 PM10 12.55 Material Handling (4) PM 5.72 PM10 1.45 Stockpiles (4) PM * PM10 * VOC (b) 1.05 Caterpillar D389 Generator (4) NOx 19.8 CO 4.36 SO2 2.00 PM10 0.4 VOC 0.6

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - VOC(a) from standard mix asphalt concrete
 - VOC(b) from cold mix asphalt concrete
 - VOC(c) total VOCs from recycled rubber modified asphalt concrete mixes
 - NO_x nitrogen oxide CO - carbon monoxide SO₂ - sulfur dioxide

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

PM -particulate matter, suspended in the atmosphere, including PM_{10} . PM_{10} -particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.

- (4) Fugitive emissions are an estimate only.
- * Emission rates are based on and the facility is limited to the following asphalt concrete production rates and operating schedule:

to	ons/hour	tons/week	tons/year
Standard hot-mix		350	300,000
Recycled rubber modified mixes	250		**50,000
Cold mix asphalt with emulsion	300	10,000	***
Cold mix asphalt with slow cure	262	8,750	***
Cold mix asphalt with rapid cure	210	5,000	***
Cold mix asphalt with medium cure	150	5,000	***

^{**} Included in the standard hot-mix annual limit.

^{***} Total production of cold-mix asphalt concrete with cutback or emulsion will be governed by the following:

	tons/hour	tons/week	tons/year
Cold mix asphalt with:			-
emulsion	300	10,000	EM
slow cure cutback	262	8,750	SC
rapid cure cutback	210	5,000	RC
medium cure cutback	150	5,000	MC

The maximum annual production of cold-mix asphalt concrete is governed by the following equation:

$$75,000 \text{ tpy} = 2 \text{ (MC) tpy} + 1.43 \text{ (RC) tpy} + 1.14 \text{ (SC) tpy} + \text{ (EM) tpy}$$

The use of cutback oil additive will be limited to a maximum concentration of 8.5 percent oil (by weight) of cold-mix asphalt produced.

The use of emulsion additive will be limited to a maximum concentration of 8.0 percent (by weight) of cold-mix asphalt produced.

Permit Number 51603L001 Page 3

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES