

ABNT-Associação Brasileira de Normas Técnicas

Sede:
Rio de Janeiro
Av. Treze de Maio, 13 - 28º andar
CEP 20003-900 - Caixa Postal 1680
Rio de Janeiro - RJ
Tel.: PABX (021) 210-3122
Telex: (021) 34333 ABNT - BR
Endereço Telegráfico:
NORMATÉCNICA

Copyright © 1995, ABNT-Associação Brasileira de Normas Técnicas Printed in Brazil/ Impresso no Brasil Todos os direitos reservados JUN 1995 | NBR 6158

Sistema de tolerâncias e ajustes

Procedimento

Origem: Projeto NBR 6158/1994

CB-04 - Comitê Brasileiro de Máquinas e Equipamentos Mecânicos CE-04:005.06 - Comissão de Estudo de Tolerâncias e Ajustes

NBR 6158 - System of limits and fits - Procedure

Descriptors: Tolerance. Fit

Esta Norma substitui a NB-86/1961 (NBR 6158)

Esta Norma foi baseada na ISO/DIS 286-1 e ISO/DIS 286-2

Válida a partir de 31.07.1995

Palavras-chave: Tolerância. Ajuste

79 páginas

SUMÁRIO

- 1 Objetivo
- 2 Documentos complementares
- 3 Definições
- 4 Condições específicas

ANEXO - Seleção de classes de tolerâncias para uso geral Glossário

1 Objetivo

- 1.1 Esta Norma fixa o conjunto de princípios, regras e tabelas que se aplicam à tecnologia mecânica, a fim de permitir escolha racional de tolerâncias e ajustes, visando a fabricação de peças intercambiáveis.
- 1.2 O campo de aplicação desta Norma abrange dimensões nominais de até 3150 mm de peças intercambiáveis. Esta Norma, embora preparada para utilização em peças cilíndricas, aplica-se a outras formas, visto que os termos "furo" e "eixo" nela empregados têm significados convencionais. Em particular, o termo "furo" ou "eixo" pode referirse a uma dimensão interna ou externa de duas faces paralelas ou planos tangentes de qualquer peça, como a largura de um rasgo ou a espessura de uma chaveta. O sistema prescrito nesta Norma também estabelece ajustes entre elementos cilíndricos conjugados e ajustes entre peças que tenham elementos com faces paralelas.

2 Documentos complementares

Na aplicação desta Norma é necessário consultar:

NBR 6165 - Temperatura de referência para medições industriais de dimensões lineares - Padronização

NBR 6409 - Tolerâncias de forma e tolerâncias de posição - Procedimento

ISO 1938 - Inspection of plain workpieces:

Part 1 - Terms, definitions and general principles;

Part 2 - Plain limit gauges;

Part 3 - Limit indicating gauges;

Part 4 - Inspection by measurement.

ISO 8015 - Technical drawings - Fundamental tolerancing principle

3 Definições

Para os efeitos desta Norma são adotadas as definições de 3.1 a 3.13.

3.1 Eixo

Termo convencional utilizado para descrever uma característica externa de uma peça, incluindo também elementos não cilíndricos (ver 1.2).

3.1.1 Eixo-base

Eixo cujo afastamento superior é zero (ver 3.11.1).

3.2 Furo

Termo convencional utilizado para descrever uma característica interna de uma peça, incluindo também elementos não cilíndricos (ver 1.2).

3.2.1 Furo-base

Furo cujo afastamento inferior é zero (ver 3.11.2).

3.3 Dimensão

Número que expressa em uma unidade particular o valor numérico de uma dimensão linear.

3.3.1 Dimensão nominal

Dimensão a partir da qual são derivadas as dimensões limites pela aplicação dos afastamentos superior e inferior (ver Figura 1).

3.3.2 Dimensão efetiva

Dimensão de um elemento obtido pela medição.

3.3.2.1 Dimensão efetiva local

Qualquer distância individual em uma seção transversal da peça, isto é, qualquer dimensão medida entre dois pontos opostos quaisquer.

3.3.3 Dimensão limite

As duas dimensões extremas permissíveis para um elemento, entre as quais a dimensão efetiva deve estar.

3.3.3.1 Dimensão máxima

A maior dimensão admissível de um elemento (ver Fiqura 1).

3.3.3.2 Dimensão mínima

A menor dimensão admissível de um elemento (ver Figura 1).

3.4 Elemento

Parte em observação de uma peça.

3.5 Linha zero

Linha reta que representa a dimensão nominal e serve de origem aos afastamentos em uma representação gráfica de tolerâncias e ajustes (ver Figura 1).

Nota: De acordo com a convenção, a linha zero é desenhada horizontalmente, com afastamentos positivos mostrados acima e afastamentos negativos abaixo (ver Figura 2).

3.6 Afastamentos fundamentais

Diferença algébrica entre uma dimensão (dimensão efetiva, dimensão limite, etc.) e a correspondente dimensão nominal (ver Figura 2).

Nota: Os afastamentos são designados por letras maiúsculas para furos (A...ZC) e por letras minúsculas para eixos (a...zc). Para evitar confusão, as seguintes letras não são usadas: I, i; L, I; Q, q; W, w (ver Figuras 3 e 4).

Figura 1 - Dimensão nominal e dimensões máxima e mínima

Figura 2 - Representação convencional de um campo de tolerância

Figura 3 - Representação esquemática das posições dos afastamentos fundamentais

Figura 4 - Afastamentos para eixos e furos

3.6.1 Afastamento superior (ES, es)

Diferença algébrica entre a dimensão máxima e a correspondente dimensão nominal (ver Figura 2). As letras "ES" são designadas para afastamentos em furos e as letras "es" para afastamentos em eixos.

3.6.2 Afastamento inferior (EI, ei)

Diferença algébrica entre a dimensão mínima e a correspondente dimensão nominal (ver Figura 2). As letras "El" são designadas para afastamentos em furos e as letras "ei" para afastamentos em eixos.

3.6.3 Afastamento fundamental

Afastamento que define a posição do campo de tolerância em relação à linha zero, podendo ser o superior ou o inferior.

Nota: Este afastamento pode ser tanto o afastamento superior como o inferior, mas, por convenção, é aquele mais próximo da linha zero.

3.7 Tolerância

Diferença entre dimensão máxima e a dimensão mínima, ou seja, diferença entre o afastamento superior e o afastamento inferior.

Nota: A tolerância é um valor absoluto, sem sinal.

3.7.1 Tolerância-padrão (IT)

Qualquer tolerância pertencente a este sistema.

Nota: As letras do símbolo IT significam International Tolerance.

3.7.2 Graus de tolerância-padrão (IT)

Grupo de tolerância considerado como correspondente ao mesmo nível de precisão para todas as dimensões nominais. Os graus de tolerância-padrão são designados pelas letras IT e por um número (por exemplo: IT7). Quando o grau de tolerância é associado a um afastamento fundamental para formar uma classe de tolerância, as letras IT são omitidas (por exemplo: h7).

Nota: O sistema prevê um total de 20 graus de tolerância-padrão, dos quais os graus IT1 a IT18 são de uso geral. Os graus IT0 e IT01 não são de uso geral e são dados para fins de informação.

3.7.3 Campos de tolerância

Em uma representação gráfica de tolerâncias, o campo compreendido entre duas linhas, representando as dimensões máxima e mínima, é definido pela magnitude da tolerância e sua posição relativa em relação à linha zero (ver Figura 2).

3.7.4 Classe de tolerância

Combinação de letras representando o afastamento fundamental, seguida por um número representando o grau de tolerância padrão.

Exemplo: H7 (furos); h7 (eixos).

3.7.5 Fator de tolerância-padrão (I, i)

Fator que é uma função da dimensão nominal e que é usado como base para a determinação da tolerância-padrão do sistema.

Notas: a) O fator de tolerância-padrão "i" é aplicado para dimensão nominal menor que 500 mm.

b) O fator de tolerância-padrão "I" é aplicado para dimensão nominal maior que 500 mm.

3.8 Folga

Diferença positiva entre as dimensões do furo e do eixo, antes da montagem, quando o diâmetro do eixo é menor que o diâmetro do furo (ver Figura 5).

Figura 5 - Folga

3.8.1 Folga mínima

Diferença positiva entre a dimensão mínima do furo e a dimensão máxima do eixo.

3.8.2 Folga máxima

Diferença positiva entre a dimensão máxima do furo e a dimensão mínima do eixo.

3.9 Interferência

Diferença negativa entre as dimensões do furo e do eixo, antes da montagem, quando o diâmetro do eixo é maior que o diâmetro do furo (ver Figura 6).

3.9.1 Interferência mínima

Diferença negativa entre a dimensão máxima do furo e a dimensão mínima do eixo.

3.9.2 Interferência máxima

Diferença negativa entre a dimensão mínima do furo e a dimensão máxima do eixo.

3.10 Ajuste

Relação resultante da diferença, antes da montagem, entre as dimensões dos dois elementos a serem montados.

Nota: Os dois elementos em um ajuste têm em comum a dimensão nominal.

3.10.1 Ajuste com folga

Ajuste no qual sempre ocorre uma folga entre o furo e o eixo quando montados, isto é, a dimensão mínima do furo é sempre maior ou, em caso extremo, igual à dimensão máxima do eixo (ver Figuras 7 e 8).

Figura 6 - Interferência

Figura 7 - Ajuste com folga

Figura 8 - Representação esquemática de ajuste com folga

3.10.2 Ajuste com interferência

Ajuste no qual ocorre uma interferência entre o furo e o eixo quando montados, isto é, a dimensão máxima do furo é sempre menor ou, em caso extremo, igual à dimensão mínima do eixo (ver Figuras 9 e 10).

Figura 9 - Ajuste com interferência

Figura 10 - Representação esquemática de ajuste com interferência

3.10.3 Ajuste incerto

Ajuste no qual pode ocorrer uma folga ou uma interferência entre o furo e o eixo quando montados, dependendo das dimensões efetivas do furo e do eixo, isto é, os campos de tolerância do furo e do eixo se sobrepõem parcialmente ou totalmente (ver Figuras 11 e 12).

Figura 11 - Ajuste incerto

Figura 12 - Representação esquemática de ajuste incerto

3.10.4 Variação de um ajuste

Soma aritmética das tolerâncias dos dois elementos contendo o ajuste.

Nota: A variação de um ajuste é o valor absoluto sem sinal.

3.11 Sistema de ajustes

Sistema compreendendo eixos e furos pertencentes a um sistema de tolerâncias.

3.11.1 Sistema de ajustes eixo-base

Sistema de ajustes no qual as folgas ou interferências exigidas são obtidas pela associação de furos de várias classes de tolerâncias com eixos de uma única classe de tolerâncias. Neste sistema a dimensão do eixo é idêntica à dimensão nominal, isto é, o afastamento superior é zero (ver Figura 13).

Notas: a) As linhas contínuas horizontais representam os afastamentos fundamentais para furos ou eixos.

 b) As linhas tracejadas representam os outros afastamentos e mostram a possibilidade de diferentes combinações entre furos e eixos, relacionados ao seu grau de tolerância (por exemplo: G7/h4, H6/h4, M5/h4).

Figura 13 - Sistema eixo-base de ajuste

3.11.2 Sistema de ajuste furo-base

Sistema de ajuste no qual as folgas ou interferências exigidas são obtidas pela associação de eixos de várias classes de tolerâncias, com furos de uma única classe de tolerâncias.

3.11.3 Neste sistema a dimensão mínima do furo é idêntica à dimensão nominal, isto é, o afastamento inferior é zero (ver Figura 14).

3.12 Limite de máximo material (MML)

Designação aplicada a uma das duas dimensões limites que corresponda à dimensão de máximo material, como, por exemplo:

- a) dimensão máxima (superior) para um elemento externo (eixo);
- b) dimensão mínima (inferior) para um elemento interno (furo).

Nota: Anteriormente chamado "Limite PASSA".

3.13 Limite de mínimo material (LML)

Designação aplicada a uma das dimensões limites que corrresponda à dimensão de mínimo material, como, por exemplo:

a) dimensão mínima (inferior) para um elemento externo (eixo);

b) dimensão máxima (superior) para um elemento interno (furo).

Nota: Anteriormente chamado "Limite NÃO PASSA".

Notas: a) As linhas contínuas horizontais representam os afastamentos fundamentais para furos ou eixos.

b) As linhas tracejadas representam os outros afastamentos e mostram a possibilidade de diferentes combinações entre furos e eixos, relacionados ao seu grau de tolerância (por exemplo: H6/h6, H6/js5, H6/p4).

Figura 14 - Sistema furo-base de ajuste

4 Condições específicas

4.1 Temperatura de referência

A temperatura para a qual as dimensões do sistema ISO de tolerâncias e ajustes está especificada é 20°C (ver NBR 6165).

4.2 Designação de tolerâncias e ajustes

4.2.1 Designação para dimensão com tolerância

Uma dimensão com tolerância deve ser designada pela dimensão nominal seguida pela designação da classe de tolerância exigida ou os afastamentos em valores numéricos.

Exemplos: 32 H7; 80 js15; 100 g6, ou $100_{-0.034}^{-0.012}$.

4.2.2 Designação para ajuste

O ajuste entre elementos acoplantes deve ser designado por:

- a) dimensão nominal comum;
- b) símbolo da classe de tolerância para furo;
- c) símbolo da classe de tolerância para eixo.

Exemplos: 52 H7/g6 ou 52 h7 - g6 ou 52 $\frac{H7}{a6}$

4.2.3 Designação especial

Para distinguir entre furos e eixos quando se transmite informação através de um equipamento de caracteres limitados, como telex, a dimensão nominal deve ser repetida e a designação deve ser prefixada pelas seguintes letras:

- a) Houh para furos;
- b) S ou s para eixos.

Exemplos: a) para peças isoladas:

- 50 H5 torna-se H50H5 ou h50h5;
- 50 H6 torna-se S50H6 ou s50h6;
- b) para ajuste:
 - 52 H7/g6 torna-se H52H7/S52G6 ou h52h7/s52g6.

Nota: Este método de designação não deve ser usado em desenhos

4.3 Interpretação de uma dimensão com tolerância

4.3.1 Desenhos com indicação de tolerância de acordo com o princípio de independência

As tolerâncias para as peças fabricadas conforme desenhos com a inscrição "Tolerância conforme ISO 8015" devem ser interpretadas como indicado em 4.3.2 e 4.3.3 (ver ISO 8015).

4.3.2 Tolerância de dimensão linear

Uma tolerância de dimensão linear controla somente a dimensão efetiva local (medição entre dois pontos) de um elemento, mas com seus desvios de forma (por exemplo: desvios de circularidade e retitude de um elemento cilíndrico ou desvio de planeza de superfícies paralelas). Não existe controle da inter-relação geométrica de elementos isolados pelas tolerâncias dimensionais.

Nota: Elementos isolados consistem em uma superfície cilíndrica ou em dois planos paralelos.

4.3.3 Exigência de envoltura

Elementos isolados, tendo a função de um ajuste, são indicados no desenho pelo símbolo E, em adição à dimensão e tolerância. Isto indica uma dependência mútua de dimensão e forma, que exige que a envolvente de forma perfeita não deve ser excedida (para mais informações, ver ISO 1938 e ISO 8015).

4.3.4 Desenhos com indicação ou tolerância em desacordo com o princípio de independência

As tolerâncias para peças fabricadas a partir de desenhos que não tenham a anotação "Tolerância conforme ISO 8015" devem ser interpretadas da seguinte maneira dentro da dimensão especificada:

a) para furos:

 o diâmetro do maior cilindro perfeito imaginário que é envolvido pelo furo, de maneira que toque exatamente os pontos altos da superfície, não deve ser menor que a dimensão de máximo material. O diâmetro máximo para qualquer seção transversal do furo não deve exceder a dimensão de mínimo material;

b) para eixos:

 o diâmetro do menor cilindro perfeito imaginário que envolve o eixo, de maneira que toque exatamente os pontos altos da superfície, não deve ser maior que a dimensão de máximo material. O diâmetro mínimo para qualquer seção transversal do eixo não deve ser menor que a dimensão de mínimo material.

Notas: a) A interpretação dada nas alíneas a) e b) significa que, se uma peça está toda no seu limite de máximo material, ela deve ser perfeitamente circular e reta, isto é, um cilindro perfeito. Salvo especificado de outra maneira, os desvios a partir de um cilindro perfeito podem alcançar o valor total da tolerância especificada para o diâmetro.

 b) Em casos especiais, o erro máximo de forma admitido pela interpretação dada nas alíneas a) e b) pode ser excessivamente grande para permitir funcionamento satisfatório das peças montadas. Nestes casos, devem ser dadas tolerâncias separadas para a forma (ver NBR 6409), como, por exemplo: para circularidade e/ou retitude.

4.4 Graus de tolerâncias-padrão e afastamentos fundamentais

4.4.1 Tolerâncias-padrão

Os valores de graus de tolerâncias-padrão IT1 a IT18, inclusive, são dados na Tabela 1.

4.4.2 Afastamentos fundamentais para eixos (exceto js)

Os afastamentos fundamentais para eixos e seus respectivos sinais (+ ou -) são mostrados na Figura 15. Os valores para os afastamentos fundamentais são dados na Tabela 2.

Figura 15 - Afastamentos para eixos

Tabela 1 - Valores numéricos de graus de tolerância-padrão IT para dimensões nominais até 3150 mm^(A)

	ensão								Grau	ıs de t	olerân	cia-pa	drão						
	minal mm)	IT1 ^(B)	IT2 ^(B)	IT3 ^(B)	T4 ^(B)	T5 ^(B)	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14 ^(C)	IT15 ^(C)	IT16 ^(C)	IT17 ^(C)	IT18 ^(C)
Acima	Até e inclusive					(μm)					Tolera	ância			(m	m)	, i	
-	3 ^(C)	0,8	1,2	2	3	4	6	10	14	25	40	60	0,1	0,14	0,25	0,4	0,6	1	1,4
3	6	1	1,5	2,5	4	5	8	12	18	30	48	75	0,12	0,18	0,3	0,48	0,75	1,2	1,8
6	10	1	1,5	2,5	4	6	9	15	22	36	58	90	0,15	0,22	0,36	0,58	0,9	1,5	2,2
10	18	1,2	2	3	5	8	11	18	27	43	70	110	0,18	0,27	0,43	0,7	1,1	1,8	2,7
18	30	1,5	2,5	4	6	9	13	21	33	52	84	130	0,21	0,33	0,52	0,84	1,3	2,1	3,3
30	50	1,5	2,5	4	7	11	16	25	39	62	100	160	0,25	0,39	0,62	1	1,6	2,5	3,9
50	80	2	3	5	8	13	19	30	46	74	120	190	0,3	0,46	0,74	1,2	1,9	3	4,6
80	120	2,5	4	6	10	15	22	35	54	87	140	220	0,35	0,54	0,87	1,4	2,2	3,5	5,4
120	180	3,5	5	8	12	18	25	40	63	100	160	250	0,4	0,63	1	1,6	2,5	4	6,3
180	250	4,5	7	10	14	20	29	46	72	115	185	290	0,46	0,72	1,15	1,85	2,9	4,6	7,2
250	315	6	8	12	16	23	32	52	81	130	210	320	0,52	0,81	1,3	2,1	3,2	5,2	8,1
315	400	7	9	13	18	25	36	57	89	140	230	360	0,57	0,89	1,4	2,3	3,6	5,7	8,9
400	500	8	10	15	20	27	40	63	97	155	250	400	0,63	0,97	1,55	2,5	4	6,3	9,7
500	630 ^(B)	9	11	16	22	32	44	70	110	175	280	440	0,7	1,1	1,75	2,8	4,4	7	11
630	800 ^(B)	10	13	18	25	36	50	80	125	200	320	500	0,8	1,25	2	3,2	5	8	12,5
800	1000 ^(B)	11	15	21	28	40	56	90	140	230	360	560	0,9	1,4	2,3	3,6	5,6	9	14
1000	1250 ^(B)	13	18	24	33	47	66	105	165	260	420	660	1,05	1,65	2,6	4,2	6,6	10,5	16,5
1250	1600 ^(B)	15	21	29	39	55	78	125	195	310	500	780	1,25	1,95	3,1	5	7,8	12,5	19,5
1600	2000 ^(B)	18	25	35	46	65	92	150	230	370	600	920	1,5	2,3	3,7	6	9,2	15	23
2000	2500 ^(B)	22	30	41	55	78	110	175	280	440	700	1100	1,75	2,8	4,4	7	11	17,5	28
2500	3150 ^(B)	26	36	50	68	96	135	210	330	540	860	1350	2,1	3,3	5,4	8,6	13,5	21	33

⁽A) Os valores para graus de tolerância-padrão IT01 e IT0 para dimensões nominais menores ou igual a 500 mm são dados na Tabela 5.

⁽B) Os valores para graus de tolerância-padrão IT1 a IT5 (inclusive) para dimensões nominais acima de 500 mm estão incluídos para uso experimental.

⁽C) Graus de tolerância-padrão IT14 a IT18 (inclusive) não devem ser usados para dimensões nominais menores ou iguais a 1 mm.

Tabela 2 - Valores numéricos dos afastamentos fundamentais para eixos

Din	nensão				Д	Afastam	ento sur	perior	es				ı Afa	stame	ntos f	undar	nentais (µm)	1							Afastam	ento infe	ior ei				
(minal mm)			Т	odos	os grau	us de tol	lerânc	cia-pa	drão			IT5 e IT6	IT7	IT8	IT4 até IT7	Até IT3 (inclusive e acima de IT7							Todos	s os grau	s de toler	ância-padrâ	ăo			
Acima	inclusive	a ^(A)	b ^(A)	С	cd	d	е	ef	f	fg g	h	js ^(B)	1	6			k	m	n	р	r	s	t	u	v	х	у	z	za	zb	zc
-	3 ^{A)}	-270	-140	-60	-34	-20	-14 -	10	-6 -	4 -2	0		-2	-4	-6	0	0	+2	+4	+6	+10	+14		+18		+20		+26	+32	+40	+60
3	6	-270	-140	-70	-46	-30	-20 -	14 -	10 -	6 -4	0		-2	-4	6	+1	0	+4	+8	+12	+15	+19		+23		+28		+35	+42	+50	+80
6	10	-280	-150	-80	-56	-40	-25 -	18 -	13 -	8 -5	0		-2	-5	.5.	J- 1.	0	+6	+10	+15	+19	+23		+28		+34		+42	+52	+67	+97
10	14	000	450	0.5		-50	00									9	23.	. 7	.40	. 40	. 00	.00		+33		+ 40		+50	+64	+90	+130
14	18	-290	-150	-95		-50	-32		16	-6	0		-3	-6		+1	0	+7	+12	+18	+23	+28		+33	+39	+ 45		+60	+77	+108	+150
18	24	-300	-160	-110		-65	-40		20	-7	0		-4	-8		-+2	305	+8	+15	+22	+28	+35		+41	+47	+54	+63	+73	+98	+136	+188
24	30	-300	-100	-110		-03	-40		20		Ļ			-0		-+2	250	+0	+13	722	720	+33	+41	+48	+55	+ 64	+75	+88	+118	+160	+218
30	40	-310	-170	-120		-80	-50	-:	25	-9	0	⊨	-5	-10		+2	0	+9	+17	+26	+34	+43	+48	+60	+68	+80	+94	+112	+148	+200	+274
40	50	-320	-180	-130				4		_		valor l											+54	+70	+81	+97	+114	+136	+180	+242	+325
50	65	-340	-190	-140		-100	-60	-:	30	-10	0	é,	-7	-12		+2	0	+11	+20	+32	+41	+53	+66	+87	+102	+122	+144	+172	+226	+300	+405
65	80	-360	-200	-150				+	+		-	onde n							\mathbf{H}		+43	+59	+75	+102	+120	+146	+174	+210	+274	+360	+480
80	100	-380	-220	-170		-120	-72	-:	36	-12	0	_	-9	-15		+3	0	+13	+23	+37	+51	+71	+91	+124	+146	+178	+214	+258	+335	+445	+585
100	120	-410	-240	-180	\vdash		\vdash	+	+	-	\vdash	= 2		\vdash							+54	+79	+104	+144	+172	+210	+254	+310	+400	+525	+690
120	140	-460	-260	-200		4.45	0.5		40			nto =		1.0				.45	. 07	. 40	+63	+92	+122	+170	+202	+248	+300	+365	+470	+620	+800
140	160	-520	-280	-210		-145	-85		43	-14	0	Afastamento	-11	-18		+3	0	+15	+27	+43	+65	+100	+134	+190	+228	+280	+340	+415	+535	+700	+900
160	180	-580	-310	-230	\vdash		\vdash	+	+	-	\vdash	Afa		\vdash							+68	+108	+146	+210	+252	+310	+380	+465	+600	+780	+1000
180	200	-660	-340	-240									l								+77	0+122	+166	+236	+284	+350	+425	+520	+670	+880	+1150
200	225	-740	-380	-260		-170	-100	-	50	-15	0		-13	-21		+4	0	+17	+31	+50	+80	+130	+180	+258	+310	+385	+470	+575	+740	+960	+1250
225	250	-820	-420	-280				+	+	-	+										+84	+140	+196	+284	+340	+425	+520	+640	+820	+1050	+1350
250	280 315	-920 -1050	-480 -540	-300 -330		-190	-110		56	-17	0		-16	-26		+4	0	+20	+34	+56	+94	+158	+218	+315	+385	+475 +525	+580	+710 +790	+920	+1200	+1550
					$\vdash \vdash$		$\vdash \vdash$	+	+	+	\vdash	1		\vdash										3	-						
315	355 400	-1200 -1350	-600 -680	-360 -400		-210	-125	-6	62	-18	0		-18	-28		+4	0	+21	+37	+62	+108	+190 +208	+268	+390	+475	+590 +660	+730	+900	+1150	+1500 +1650	+1900
400	450	-1500	-760	-440	$\vdash \vdash$		$\vdash \vdash$	+	+	-	\vdash	-	\vdash	\vdash	\vdash	_			-		+126	+232	+330	+490	+595	+740	+920	+1100	+1450	+1850	+2400
450	500	-1650	-840	-440		-230	-135	-6	88	-20	0		-20	-32		+5	0	+23	+40	+68	+132	+252	+360	+540	+660	+820	+1000	+1250	+1600	+2100	+2600
		1000	040	-100				ㅗ	L			l		<u> </u>	<u> </u>	Ц	<u> </u>		Ц		1 102	1202	1000	1 1010	1 .000	1020	11000	1 1200	1 1000	12100	. 2000

/continuação

	nensão ominal					Afastam	nento s	superio	r es				Afa	stamer	ntos f	undar	nentais (µm)								Afastam	ento infe	erior ei				
(mm)				Todos	os gra	us de	tolerâr	ncia-pa	drão			IT5 e IT6	IT7	IT8	IT4 até IT7								Todos	s os grau	s de tole	erância-padra	ão			
Acima	Ate e inclusive	a ^(A)	b ^(A)	С	cd	d	е	ef	f f	fg g	h	js ^(B)		j			k	m	n	р	r	s	t	u u	v	х	у	z	za	zb	zc
500	560					-260	-145		-76	-22	0					0	0	+26	+44	+78	+150	+280	+400	+600							
560	630					-200	-143		-76	-22	ľ					U	U	+20	+44	+70	+155	+310	+450	+660							
630	710					-290	-160		-80	-24	0					0	0	+30	+50	+88	+175	+340	+500	+740							
710	800					-290	-100		-80	-24	ľ	<u> </u>				U	Ů	+30	+30	+00	+185	+380	+560	+840							
800	900					-320	-170		-86	-26	0	valor I				0	0	+34	+56	+100	+210	+430	+620	+940							
900	1000					020	170				L	é O					Ů	104	100	1100	+220	+470	+680	+1050							
1000	1120					350	-195		- 98	-28	0	u apuo				0	0	+40	+66	+120	+250	+520	+780	+1150							
1120	1250					330	-133		- 30	-20	Ľ	ō				Ů	Ů	140	+00	6.5	+260	+ 580	+ 840	+1300							
1250	1400					-390	-220		110	-30	0	T ₊ Z				0	0	+48	+78	+140	+300	+ 640	+ 960	+1450							
1400	1600					000	220				L	п				Ů	Ů	140	170	1140	+330	+ 720	+1050	+1600							
1600	1800					-430	-240		120	-32	0	Afastamento				0	0	+58	+ 92	+170	+370	+ 820	+1200	+1850							
1800	2000					100	240		120	02	L	Afast						K	1 52	1110	+400	+ 920	+1350	+2000							
2000	2240					-480	-260		130	-34	0					0	0	+68	+110	+195	+440	+1000	+1500	+2300							
2240	2500					-700	-200		.50	-34	Ľ					Ĺ	Ů	+00	.,,,,,	1133	+460	+1100	+1650	+2500							
2500	2800					-520	-290		145	-38	0					0	0	+76	+135	+240	+550	+1250	+1900	+2900							
2800	3150					020	230		143	-30	L						S.F.	.70	1.133	1240	+580	+1400	+2100	+3200							

isto é,
$$\pm \frac{ITn}{2}$$
.

⁽A) Os afastamentos fundamentais a e b não devem ser usados para dimensões nominais menores ou iguais a 1 mm.
(B) Para classes de tolerância js 7 e js 11, se o valor IT é um número n ímpar, ele pode ser arredondado para o número par imediatamente abaixo, tal que o afastamento possa ser expresso em micrometros inteiros,

4.4.3 Afastamentos fundamentais para furos (exceto Js)

Os afastamentos fundamentais para furos e seus respectivos sinais (+ ou -) são mostrados na Figura 16. Os valores para afastamentos fundamentais são dados na Tabela 3.

4.4.4 Afastamentos fundamentais js e JS

As informações dadas em 4.4.2 e 4.4.3 não se aplicam aos afastamentos fundamentais js e JS, os quais são distribuídos simetricamente em relação à linha zero (ver Figura 17), isto é:

a) para js:

$$es = ei = \frac{IT}{2}$$
;

b) para JS:

$$ES = EI = \frac{IT}{2}$$
.

Figura 16 - Afastamentos para furos

Figura 17 - Afastamentos js e JS

Tabela 3 - Valores numéricos dos afastamentos fundamentais para furos

Dime	ensão					Afas	stamen	toinferi	ior FI									Afastame	ntosfunda	amentais	(um)								At	astamento	nsuperior	FS				$\overline{}$	V:	alores p	nara A ((um)	—
non						71100	Junen	tomicii	IOI EI					+	Τ	T	T	T	Thos run a	arricitais	(Jann)		<u> </u>	+				7	7.0	astament	osupenoi					\vdash		JIOICS P	uiu ii	ДПП)	—
(m					Tod	lososg	rausde	tolerâr	ncia-pa	idrão				IT6	IT7	IT8	Até IT8 (incl.)	Acima de IT8	Até IT8 (incl.)	Acima de IT8	Até IT8 (incl.)	Acima de IT8	Até IT7 (incl.)					Grausde	tolerância	-padrão a	cima de IT	7			I		Grau	us de tole padrã		3-	
Acima	Atée inclusive	A ^(A)	B ^(A)	С	CD	D	Е	EF	F	FG	G	Н	JS ^(B)		J	-	+	(C)	M		N(c)(P até ZC	(C) P	R	S	Т	U	V	Х	Υ	z	ZA	ZB	ZC	IT3	IT4	IT5 I	IT6	П7	IT8
	3 ^{(A) (E)}	+270	+140	+60	+34	+20	+14	+10	+ 6	+4	+2	0		+2	+4	+6	0	0	-2	- 2	-4	-4		-6	-10	-14	3	-18		-20		- 26	- 32	- 40	- 60	0	0	0	0	0	0
3	6	+270	+140	+70	+46	+30	+20	+14	+10	+6	+4	0		+5	+6	+10	-1 +∆		-4 +∆	-4	-8 +∆	0		-12	-15	-19	3/6	-23		-28		- 35	- 42	- 50	- 80	1	1,5	1	3	4	6
6	10	+280	+150	+80	+56	+40	+25	+18	+13	+8	+5	0		+5	+8	+12	-1 +∆		-6 +∆	-6	-10+∆	0		-15	-19	-23	3	-28		-34		- 42	- 52	- 67	- 97	1	1,5	2	3	6	7
10	14		П		一								1										1	Т		15				-40		- 50	- 64	- 90	-130	П	П	一	十	\dashv	_
14	18	+290	+150	+95		+50	+32		+16		+6	0		+6	+10	+15	-1 +∆		-7 +∆	-7	-12+∆	0		-18	-23	-28		-33	-39	-45		- 60	- 77	-108	-150	1	2	3	3	7	9
18	24																						1		. 3			-41	-47	-54	- 63	- 73	- 98	-136	-188		П	一	丁	ヿ	_
24	30	+300	+160	+110		+65	+40		+20		+7	0		+8	+12	+20	-2 +∆		-8 +∆	-8	-15+∆	0		-22	-28	-35	-41	-48	-55	-64	- 75	- 88	-118	-160	-218	1,5	2	3	4	8	12
30	40	+310	+170	+120								Г	1										or∆	. 0	3		-48	-60	-68	-80	- 94	-112	-148	-200	-274	П	П	П	\Box	\Box	_
40	50	+320	+180	+130		+80	+50		+25		+9	0		+10	+14	+24	-2 +∆		-9 + ∆	-9	-17+∆	0	scido pol	-26	-34	-43	- 54	-70	-81	-97	-114	-136	-180	-242	-325	1,5	3	4	5	9	14
50	65	+340	+190	+140									alor∏										7 acres		-41	-53	-66	-87	-102	-122	-144	-172	-226	-300	-405	П	П	П	П	\Box	
65	80	+360	+200	+150		+100	+60		+30		+10	0	ondenéovalor	+13	+18	+28	-2 +∆		-11 + ∆	-11	-20 + ∆	0	na del T7 a	-32	-43	-59	-75	-102	-120	-146	-174	-210	-274	-360	-480	2	3	5	6	11	16
80	100	+380	+220	+170									, onde									KI	acin	\mathbb{I}	-51	-71	-91	-124	-146	-178	-214	-258	-335	-445	-585	П	П	П	П	П	
100	120	+410	+240	+180		+120	+72		+36		+12	0	F °	+16	+22	+34	-3 +∆		-13+∆	-13	-23+∆	0	cia-padrão	-37	-54	-79	-104	-144	-172	-210	-254	-310	-400	-525	-690	2	4	5	7	13	19
120	140	+460	+260	+200									= ``										ərância		-63	-92	-122	-170	-202	-248	-300	-365	-470	-620	-800		П	П	\Box	\Box	
140	160	+520	+280	+210		+145	+85		+43		+14	0	mento	+18	+26	+41	-3 +∆		-15+∆	-15	-27 + ∆	0	sdetole	-43	-65	-100	-134	-190	-228	-280	-340	-415	-535	-700	-900	3	4	6	7	15	23
160	180	+580	+310	+230									Afastame							C.F.			ragraus		-68	-108	-146	-210	-252	-310	-380	-465	-600	-780	-1000		ıl				
180	200	+660	+340	+240															1	3			'alores par	Т	-77	-122	-166	-236	-284	-350	-425	-520	-670	-880	-1150	П	П	一	ヿ	ヿ	_
200	225	+740	+380	+260		+170	+100		+50		+15	0		+22	+30	+47	-4 +∆		-17+∆	-17	-31 +∆	0	Vak	-50	-80	-130	-180	-258	-310	-385	-470	-575	-740	-960	-1250	3	4	6	9	17	26
225	250	+820	+420	+280															00						-84	-140	-196	-284	-340	-425	-520	-640	-820	-1050	-1350		ıl				
250	280	+920	+480	+300														100					1	Т	-94	-158	-218	-315	-385	-475	-580	-710	-920	-1200	-1550		П	一	ヿ		_
280	315	+1050	+540	+330		+190	+110		+56		+17	0		+25	+36	+55	-4 +∆	6	-20 +∆	-20	-34 +∆	0		-56	-98	-170	-240	-350	-425	-525	-650	-790	-1000	-1300	-1700	4	4	7	9	20	29
315	355	+1200	+600	+360									1				Ot Of								-108	-190	-268	-390	-475	-590	-730	-900	-1150	-1500	-1900		П	П	丁	寸	_
355	400	+1350	+680	+400		+210	+125		+62		+18	0		+29	+39	+60	-4 +∆		-21 +∆	-21	-37+∆	0		-62	-114	-208	-294	-435	-530	-660	-820	-1000	-1300	-1650	-2100	4	5	7	11	21	32
400	450	+1500	+760	+440									1			3	3							Г	-126	-232	-330	-490	-595	-740	-920	-1100	-1450	-1850	-2400	П	П	П	\top	ヿ	_
450	500	+1650	+840	+480		+230	+135		+68		+20	0		+33	+43	+66	-5 +∆		-23 +∆	-23	-40+∆	0		-68	-132	-252	-360	-540	-660	-820	-1000	-1250	-1600	-2100	-2600	5	5	7	13	23	34

/continuação

Dimens	ão					Afas	stamen	toinfer	iorEl					1					Afastame	entos	fundamentais	s(µm	n)		ı						At	fastamen	to superior	ES					٧	'alores	para∆	(µm)	_
nomina (mm))				Too	dososgi	rausde	tolerâ	ncia-pa	drão				IT6	Г	П7	П8	Até IT8 (incl.)	Acima de IT8	Г	Até Acima T8 de ncl.) IT8	1	Até Acima IT8 de ncl.) IT8	Até IT7 (incl.)						Grausde	tolerância	-padrão a	ıcima de IT	7					Gra	us de to pad	olerânci rão	ia-	
	Atée clusive	A ^(A)	B ^(A)	С	CD	D	Е	EF	F	FG	G	Н	JS ^(B)		J			9	((C)		M _{(C)(D)}	T	N _{(C)(E)}	P até Z	C(C)	Р	R	S	Т	U	V	Х	Y	Z	ZA	ZB	ZC	IT3	IT4	IT5	IT6	IT7	IT8
500	560					+260	±145		+76		+22	0						0	15		-26	Τ	-44		T	-78	-150	-280	-400	-600											\Box	П	_
560	630					1200	11-0		"		122	ľ							8	2	20		**			"	-155	-310	-450	-660													
630	710				Ī	+290	+160		+80		+24	0						0	1		-30	Τ	-50	_	Γ	-88	-175	-340	-500	-740											\Box	П	_
710	800											Ĺ								1	23			cidopor∆	L		-185	-380	-560	-840													
800	900					+320	+170		+86		+26	0	valorIT		Т			0	,		-34		-56	acresc		100	-210	-430	-620	-940													
900	1000												néovak								Pe			de IT7	-		-220	-470	-680	-1050													ı
1000	1120					+350	+195		+98		+28	0	onden					0			-40	8	-66	ãoacima		120	-250	-520	-780	-1150											\Box	П	_
1120	1250																					82	55	adrão			-260	-580	-840	-1300													
1250	1400					+390	+220		+110		+30	0	F 2					0			-48	T	-78	rância-p	[140	-300	-640	-960	-1450											\Box	П	_
1400	1600	\perp							L				anto=		┸	_								o o			-330	-720	-1050	-1600												Ш	
1600	1800					+430	+240		+120		+32	0	Afastame					0			-58		-92	ara graus de	V	170	-370	-820	-1200	-1850													ı
1800	2000												Afe											parag	П		-400	-920	-1350	-2000													
2000	2240					+480	+260		+130		+34	0						0			-68	Τ	-110	Valores		195	-440	-1000	-1500	-2300											\Box	П	_
2240	2500					50	00					Ĺ		L				Ů			**						-460	-1100	-1650	-2500												Ш	
2500	2800					+520	+290		+145		+38	0						0			-76	Γ	-135			240	-550	-1250	-1900	-2900				·								П	
2800	3150					. 520	00					Ľ									• •						-580	-1400	-2100	-3200													<u> </u>

⁽A) Os afastamentos fundamentais A e B não devem ser usados para dimensões nominais menores ou igual a 1 mm.

(B) Para classes de tolerância JS7 a JS11, se o valor IT é um número n ímpar, ele pode ser arredondado para o número par imediatamente abaixo, tal que o afastamento possa ser expresso em micrometros intei-

ros, isto é,
$$\pm \frac{ITn}{2}$$
.

(C) Para determinar os valores K, M e N para os graus de tolerância-padrão até IT8 (inclusive) e afastamentos P a ZC para graus de tolerância-padrão até IT7 (inclusive), tomar os valores das colunas à direita. Exemplos:

K7 na faixa 18 mm a 30 mm: Δ = 8 μ m. Portanto ES = -2 + 8 = +6 μ m;

S6 na faixa 18 mm a 30 mm: Δ = 4 µm. Portanto ES = - 35 + 4 = - 31 µm.

- ^(D) Casos especiais: para classe de tolerâncias M6 na faixa de 250 mm a 315 mm, ES = $-9 \mu m$ (em vez de $-11 \mu m$).
- (E) O afastamento fundamental N para graus de tolerância-padrão acima de IT8 não deve ser usado para dimensões nominais menores ou igual a 1 mm.

4.4.5 Afastamentos fundamentais je J

As informações dadas em 4.4.2 a 4.4.4 não se aplicam aos afastamentos fundamentais j e J, os quais têm, na maioria das vezes, distribuições assimétricas do grau de tolerância-padrão em torno da linha zero (ver Tabelas 17 e 33).

4.5 Bases do sistema ISO de tolerâncias e ajustes

Os dados são fornecidos para que os valores possam ser calculados para afastamentos fundamentais em circunstâncias especiais e para quando os valores não constarem nas Tabelas ou, ainda, para um completo entendimento do sistema.

4.5.1 Grupos de dimensões nominais

Por conveniência, as tolerâncias-padrão e os afastamentos fundamentais não são calculados individualmente para cada dimensão nominal, mas para grupos de dimensões nominais, como dados na Tabela 4. Estes grupos estão separados em grupos principais e grupos intermediários. Os grupos intermediários são usados somente em certos casos para cálculo das tolerâncias-padrão e dos afastamentos "a" a "c" e "r" a "zc" para eixos, e "A" a "C" e "R" a "ZC" para furos. Os valores destas tolerâncias-padrão e afastamentos fundamentais para cada grupo de dimensão nominal estão calculados a partir da média geométrica (D) das dimensões limites (D1 e D2) deste grupo, como segue:

$$D = \sqrt{D1 \times D2}$$

Para o primeiro grupo de dimensão nominal (menor ou igual a 3 mm), a média geométrica D, de acordo com a convenção, é tomada entre as dimensões 1 mm e 3 mm, portanto, D = 1,732 mm.

4.5.2 Graus de tolerância-padrão

O sistema ISO de tolerâncias e ajustes prevê 20º de tolerâncias-padrão, designados IT01, IT0, IT1 a IT18 na faixa de dimensões de 0 a 500 mm (inclusive) e 18º de tolerâncias-padrão na faixa de dimensão acima de 500 mm até 3150 mm (inclusive), designados IT1 a IT18. O sistema ISO é derivado da ISA Bolletin 25, a qual cobre somente dimensões nominais até 500 mm, e foi baseado principalmente em experiência prática na indústria. O sistema não foi desenvolvido a partir de uma base matemática coerente e, por isso, existem descontinuidades e fórmulas diferentes para graus de afastamento IT acima de 500 mm. Os valores de tolerâncias-padrão para dimensões nominais a partir de 500 mm até 3150 mm (inclusive) foram desenvolvidos para propósitos experimentais e, uma vez aceitos pela indústria, foram incorporados pelo sistema ISO. Os valores para tolerâncias-padrão nos graus ITO e ITO1 são dados na Tabela 5 e têm pequeno uso na prática.

4.5.3 Derivação das tolerâncias-padrão (IT) para dimensões nominais até 500 mm

4.5.3.1 Graus de tolerâncias-padrão IT01 a IT4

Os valores destas tolerâncias-padrão nos graus IT01, IT0 e IT1 são calculados a partir da fórmula dada na Tabela 6.

Deve-se notar que não são dadas fórmulas para os graus IT2, IT3 e IT4. Os valores para tolerâncias nestes graus foram aproximadamente escalonados em progressão geométrica entre os valores para IT1 e IT5.

4.5.3.2 Graus de tolerâncias-padrão IT5 a IT18

Os valores para tolerâncias-padrão nos graus IT5 a IT18 para dimensões nominais até 500 mm (inclusive) são determinados como uma função do fator de tolerâncias-padrão i. O fator de tolerância-padrão i, em micrometro, é calculado a partir da seguinte fórmula:

$$i = 0.45 \sqrt[3]{D} + 0.001 D$$

Onde:

D = média geométrica do grupo de dimensões nominais, em mm (ver 4.5.1)

Esta fórmula foi determinada empiricamente, sendo baseada em várias práticas e na premissa de que para o mesmo processo de fabricação a relação entre a magnitude dos erros de fabricação e as dimensões nominais se aproximam de uma função parabólica. Os valores destas tolerâncias-padrão são calculados em termos do fator tolerânciapadrão i, como mostrado na Tabela 7. Deve ser observado que acima de IT6 (inclusive) progressivamente, as tolerâncias-padrão são multiplicadas por um fator 10 para cada grupo de cinco. Esta regra se aplica a todas as tolerâncias-padrão e pode ser usada para extrapolar valores para graus IT acima de IT18.

Exemplo: $IT20 = IT15 \times 10 = 640i \times 10 = 6400i$.

Nota: A regra acima se aplica, exceto para IT6, na faixa de dimensão nominal a partir de 3 mm a 6 mm (inclusive).

4.5.4 Derivação de tolerâncias-padrão (IT) para dimensões nominais acima de 500 mm até 3150 mm (inclusive)

Os valores para tolerâncias-padrão nos graus IT1 a IT18 são determinados como função do fator de tolerância-padrão I. O fator de tolerância-padrão I, em micrometros, é calculado a partir da seguinte fórmula:

$$I = 0,004D + 2,1$$

Onde:

D = média geométrica do grupo de dimensão nominal, em mm (ver 4.5.1)

Os valores das tolerâncias-padrão são calculados em termos do fator de tolerância-padrão I, como mostrado na Tabela 7. Deve ser observado que acima de IT6 (inclusive), progressivamente, as tolerâncias-padrão são multiplicadas por um fator 10 para cada grupo de cinco. Esta regra se aplica a todas as tolerâncias-padrão e deve ser usada para extrapolar valores para graus IT acima de IT18.

Exemplo: $IT20 = IT15 \times 10 = 6401 \times 10 = 64001$.

Notas: a) As fórmulas para tolerâncias-padrão nos graus IT1 a IT15 são dadas provisoriamente.

b) Embora as fórmulas para "i" e "l" variem, a continuidade da progressão é assegurada para a faixa de transição.

Tabela 4 - Grupos de dimensões nominais

Unid.: mm

a) Di	imensões nomina	ais até 500 mm (in	clusive)	a) Dimensões	nominais acima c	le 500 mm até 31	50 mm (inclusi
Grupos	principais	Grupos inte	ermediários ^(A)	Grupos	s principais	Grupos inter	mediários ^(B)
Acima	Até e inclusive	Acima	Até e inclusive	Acima	Até e inclusive	Acima	Até e inclusive
-	3	6/2		500	630	500 560	560 630
3	6	Nenhur	na subdivisão		000		
6	10	900		630	800	630 710	710 800
10	18	10 14	14 18	800	1 000	800 900	900 1 000
18	30	18 24	24 -30	1 000	1 250	1 000 1 120	1 120 1 250
30	50	30 40	40 50	1 250	1 600	1 250 1 400	1 400 1 600
50	80	50 65	65 80	1 800	2 000	1 600 1 800	1 800 2 000
80	120	80 100	100 120	2 000	2 500	2 000 2 240	2 240 2 500
120	180	120 140 160	140 160 180	2 500	3 150	2 500 2 800	2 800 3 150
180	250	180 200 225	200 225 250				
250	315	250 280	280 315		Cen		
315	400	315 355	355 400		licenca de Uso		
400	500	400	450		5		

⁽A) São usados, em certos casos, para afastamentos "a" a "c" e "r" a "zc" ou "A" a "C" e "R" a "ZC" (ver Tabelas 2 e 3).

500

450

 $^{^{\}mbox{\tiny (B)}}$ Eles são usados para os afastamentos "r" a "u" e "R" a "U" (ver Tabelas 2 e 3).

Tabela 5 - Valores numéricos para graus de tolerâncias-padrão ITO1 e ITO

	o nominal nm)	Graus de tole ITO1	rância-padrão ITO
Acima	Até e inclusive		âncias m)
-	3	0,3	0,5
3	6	0,4	0,6
6	10	0,4	0,6
10	18	0,5	0,8
18	30	0,6	1
30	50	0,6	R
50	80	0,8	1,2
80	120	1	1,5
120	180	1,2	2
180	250	2	3
250	315	2,5	4
315	400	3	5
400	500	4	6

Tabela 6 - Fórmulas para tolerâncias-padrão para graus ITO1, ITO e IT1 para dimensões nominais até 500 mm, inclusive

Unid.: µm

Graus de tolerância-padrão	Fórmula para cálculo ^(B)
ITO1 ^(A)	0,3 + 0,001D
ITO ^(A)	0,5 + 0,012D
IT1	0,8 + 0,020D

^(A) Ver 4.5.2.

Tabela 7 - Fórmula para graus de tolerâncias-padrão IT1 a IT18

	nensão				6	2.	Gra	us de	tole	ância-p	oadrão								
	minal mm)	IT1 ^(A)	IT2 ^(A)	IT3 ^(A)	IT4 ^(A)	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14	IT15	IT16	IT17	IT18
Acima	Até e inclusive			900			Fórr	nulas	para	tolerâr	ncias-pad	lrão (resu	ıltados e	m µm)					
_(B)	500	-3	his	-	-	7i	10i	16i	25i	40i	64i	100i	160i	250i	400i	640i	1000i	1600i	2500i
500 ^(C)	3150	21	2,71	3,71	51	71	101	161	251	401	641	1001	160I	2501	4001	6401	10001	16001	25001

⁽A) Ver 4.5.3.1.

 $^{^{(}B)}\,D$ é a média geométrica das dimensões nominais, em milímetros.

⁽B) Para cálculo de i, ver 4.5.3.2.

⁽C) Para cálculo de I, ver 4.5.4.

4.5.5 Arredondamento de valores para tolerâncias-padrão

Para cada grupo de dimensões nominais, os valores obtidos a partir da fórmula dada em 4.5.3.2 e 4.5.4, para tolerâncias-padrão em graus até IT11 (inclusive), são arredondados de acordo com as regras dadas na Tabela 8. Os valores calculados para tolerâncias-padrão em graus acima de IT11 não requerem arredondamento, pois são derivados dos valores de graus de tolerâncias IT7 a IT11, os quais já foram arredondados.

4.6 Derivação dos afastamentos fundamentais

4.6.1 Afastamentos fundamentais para eixos

4.6.1.1 Os afastamentos fundamentais para eixos são calculados a partir das fórmulas dadas na Tabela 9.

Tabela 8 - Arredondamento de valores IT até grau de tolerância-padrão IT11 (inclusive)

	c.		Arredondamento: μm
Valores o	alculados	Dimensão	nominal
(µm		Até 500 mm (inclusive)	Acima de 500 mm até 3150 mm (inclusive)
Acima	Até e inclusive	Arredondamento	em múltiplos de
0	50	1	1
50	100	1	2
100	200	5	5
200	500	10	10
500	1 000	-	20
1 000	2000	-	50
2 000	5 000		100
5 000	10 000		200
10 000	20 000		500
20 000	50 000		1 000

Notas: a) Para valores pequenos, para assegurar melhor escalonamento, às vezes é necessário não aplicar as regras de arredondamento desta Tabela. Neste caso, utilizar os valores calculados.

b) Os valores para tolerância-padrão nos graus IT1 a IT18 são dados na Tabela 1 e para IT0 e IT01, na Tabela 5.

Tabela 9 - Fórmula para afastamentos-padrão para eixos e furos

Dir	mensão no (mm)	minal	E	ixos	Fórmulas ^(A) onde D é a média	34	Furos			ão nominal nm)
Acima	Até e inclusive	Afastamento nominal	Sinal negativo ou positivo	Designação	geométrica das dimensões nominais, em mm	Designação	Sinal negativo ou positivo	Afastamento nominal	Acima	Até e inclusive
1	120				265 + 1,3D			2115	1	120
120	500	а	-	es	3,5D	EI	+	A	120	500
1	160				≈140 + 0,85D			9	0 1	160
160	500	b	-	es	≈ 1,8D	EI	+	В	160	500
0	40	_			52D ^{0,2}				0	40
40	500	С	-	es	95 + 0,8D	EI	+	С	40	500
0	10	cd	-	es	Média geométrica dos valores para C, c e D, d	EI	+	CD	0	10
0	3150	d	-	es	16D ^{0,44}	EI	+	D	0	3150

/continuação

Dir	nensão no (mm)	minal	E	ixos	Fórmulas ^(A) onde D é a média		Furos			ăo nominal nm)
Acima	Até e inclusive	Afastamento nominal	Sinal negativo ou positivo	Designação	geométrica das dimensões nominais, em mm	Designação	Sinal negativo ou positivo	Afastamento nominal	Acima	Até e inclusive
0	3150	е	-	es	11D ^{0,41}	EI	+	OES	0	3150
0	10	ef	-	es	Média geométrica dos valores para E, e e F, f	EI	+ 3	E/E/F	0	10
0	3150	f	-	es	5,5 D ^{0,41}	EI		F	0	3150
0	10	fg	-	es	Média geométrica dos valores para F, f e G, g	EI S	+	FG	0	10
0	3150	g	-	es	2,5D ^{0,34}	E	+	G	0	3150
0	3150	h	sem sinal	es	Afastamento = 0	S E	sem sinal	Н	0	3150
0	500	j			Sem fórmula ^(B)			J	0	500
0	3150	js	+	e e	0,5 ITn	EI ES	+	JS	0	3150
0	500 ^(C)	k	+	ei	0,6 ∜D	ES	-	K (D)	0	500 ^(E)
500	3150	"	sem sinal	O.	Afastamento = 0	20	sem sinal	.`	500	3150
0	500	m	+	ei	IT7 - IT6	ES	_	M ^(D)	0	500
500	3150		·	OI .	0,024D + 12,6				500	3150
0	500	n	+	ei	5D ^{0,34}	ES	_	N ^(D)	0	500
500	3150	"	1,50	CI	0,04D + 21			N	500	3150
0	500	р	19	ei	IT7+0e5	ES	_	P (D)	0	500
500	3150	P	0/2	5	0,072D + 37,8			·	500	3150
0	3150	SIV3 02,	+	ei	Média geométrica dos valores para P, p e S, s	ES	-	R ^(D)	0	3150
0	50	50			IT8 + 1 e 4			G (D)	0	50
50	3150	ST S	+	ei	IT7 + 0,4D	ES	-	S ^(D)	50	3150
24	3150	t	+	ei	IT7 + 0,63D	ES	-	T ^(D)	24	3150
0,8	3150	u	+	ei	IT7+D	ES	-	U ^(D)	0	3150
14	500	v	+	ei	IT7 + 1,25D	ES	-	V _(D)	14	500
0	500	х	+	ei	IT7 + 1,6D	ES	-	X ^(D)	0	500
18	500	у	+	ei	IT7 + 2D	ES	-	Y ^(D)	18	500

				~
_ /	\sim	ntir	าบา	ção
-/	CU	'I I L I I	Iua	Lau

Dir	nensão no (mm)	minal	E	Eixos	Fórmulas ^(A) onde D é a média		Furos			ão nominal nm)
Acima	Até e inclusive	Afastamento nominal	Sinal negativo ou positivo	Designação	geométrica das dimensões nominais, em mm	Designação	Sinal negativo ou positivo	Afastamento nominal	Acima	Até e inclusive
0	500	Z	+	ei	IT7 + 2,5D	ES	-	Z ^(D)	0	500
0	500	za	+	ei	IT8 + 3,15D	ES	-	ZA ^(D)	0	500
0	500	zb	10	ei	IT9 + 4D	ES	-	ZB ^(D)	0	500
0	500	zc	+97	ei	IT10 + 5D	ES	-	ZC ^(D)	0	500

⁽A) Afastamentos fundamentais (resultam das fórmulas), em micrometros.

4.6.1.2 Os afastamentos fundamentais dados pela fórmula da Tabela 9 são, em princípio, aqueles correspondentes aos limites mais próximos à linha zero, isto é, o afastamento superior para eixos "a" até "h" e afastamento inferior para eixos "k" até "zc". Exceto para eixos "j" e "js", para os quais, rigorosamente, não existe afastamento fundamental, o valor do afastamento é independente do grau de tolerância selecionado (até mesmo quando a fórmula incluir um termo envolvendo ITn).

4.6.2 Afastamentos fundamentais para furos

- **4.6.2.1** Os afastamentos fundamentais para furos são calculados a partir das fórmulas dadas na Tabela 9. Portanto, o limite correspondente para o afastamento fundamental de um furo é exatamente simétrico em relação à linha zero e ao limite correspondente ao afastamento fundamental para um eixo com a mesma letra. Esta regra se aplica a todos os afastamentos fundamentais, exceto para os seguintes:
 - a) afastamento N, para graus de tolerância-padrão IT9 a IT16 nas dimensões nominais acima de 3 mm até 500 mm (inclusive), para os quais o afastamento fundamental é zero;
 - b) ajuste do eixo-base ou furo-base, para dimensão nominal acima de 3 mm até 500 mm (inclusive), no qual um furo de um dado grau de tolerância-padrão é associado a um eixo de grau próximo inferior (por exemplo: H7/p6 e P7/h6), para os quais são exigidos ter a mesma folga ou interferência (ver Figura 18).
- **4.6.2.1.1** Nestes casos, é adicionado algebricamente o valor Δ ao afastamento fundamental calculado, como segue:

$$ES = ES$$
 (calculado) + Δ

Onde:

 Δ = diferença IT_n - IT_{n-l} entre a tolerância-padrão para o grupo de dimensão nominal em um dado grau e aquele no grau próximo inferior

Exemplo: Para p7 na faixa de dimensão nominal de 18 mm até 30 mm:

$$\Delta = IT7 - IT6 = 21 - 13 = 8 \mu m$$

Nota: A regra dada em 4.6.2.1 b) aplica-se somente a dimensões nominais acima de 3 mm para afastamentos fundamentais "K", "M" e "N", no grau de tolerância-padrão até IT8 (inclusive) e afastamentos "P" a "ZC" nos graus de tolerância-padrão até IT7 (inclusive).

4.6.2.2 O afastamento fundamental dado pelas fórmulas na Tabela 9 é, em princípio, aquele que corresponde aos limites mais próximos à linha zero, isto é, o afastamento inferior para furos "A" a "H" e afastamento superior para furos "K" a "ZC". Exceto para furos "J" e "JS", para os quais, rigorosamente falando, não existe afastamento fundamental, o valor do afastamento é independente do grau de tolerância selecionado (até mesmo a fórmula quando inclui um termo envolvendo ITn).

4.6.3 Arredondamento de valores para afastamentos fundamentais

Para cada grupo de dimensões nominais, os valores obtidos a partir das fórmulas dadas na Tabela 9 são arredondados de acordo com as regras dadas na Tabela 10.

⁽B) Valores dados nas Tabelas 2 e 3.

⁽C) A fórmula se aplica somente aos graus IT4 a IT7 (inclusive); os afastamentos fundamentais k para as demais dimensões nominais e demais graus IT são iguais a zero.

⁽D) Aplicam-se regras especiais (ver 4.6.2 b)).

⁽E) A fórmula se aplica somente até os graus IT8 (inclusive); os afastamentos fundamentais K para as demais dimensões nominais e demais graus IT são iguais a zero.

NBR 6158/1995 21

Figura 18 - Representação esquemática furo-base e eixo-base

Tabela 10 - Arredondamento para desvios fundamentais

		$H \setminus H \setminus H$			Arredondamento: µm
	, T. I. O		Dimensã	o nominal	
Valores calculados o	conforme a Tabela 9	Até 500 mm (inclu	ısive)		a de 500 mm até) mm (inclusive)
(μι	m)	Α	fastamentos	fundamenta	ais
	Sel. Si.	"a" até g" "A" até G"	1	té zc" té ZC"	"d" até "u" "D" até "U"
Acima	Até e inclusive	Arro	edondament	o em múltipl	os de
5	45	1		1	1
45	60	2		1	1
60	100	5		1	2
100	200	5		2	5
200	300	10		2	10
300	500	10		5	10
500	560	10		5	20
560	600	20		5	20
600	800	20		10	20
800	1000	20	:	20	20
1000	2000	50		50	50
2000	5000		10	00	100
.68					
20 x 10 ⁿ	50 x 10 ⁿ				1 x 10 ⁿ
50 x 10 ⁿ	100 x 10 ⁿ				2 x 10 ⁿ
100 x 10 ⁿ	200 x 10 ⁿ				5 x 10 ⁿ

4.7 Exemplos de uso da norma

Esta seção fornece exemplos para utilização do sistema ISO de tolerâncias e ajustes na determinação dos limites para eixos e furos. Os valores numéricos dos afastamentos superiores e inferiores para os grupos de dimensões nominais mais usados, os afastamentos fundamentais e os graus de tolerância foram calculados e aparecem nas Tabelas 11 a 41. Nos casos especiais, não cobertos por esta Norma, os afastamentos superior e inferior apropriados podem ser calculados a partir dos dados fornecidos nas Tabelas 1 a 3 e Tabelas 4 a 6 e, conseqüentemente, as dimensões limites.

4.8 Revisão de características especiais

É dado a seguir um sumário das características e fatores que devem ser levados em consideração ao se usar esta Norma para obter afastamentos superiores e inferiores em casos especiais:

- a) eixos e furos com afastamentos fundamentais "a",
 "A", "b", "B" são previstos somente para dimensões nominais maiores que 1 mm;
- b) eixos j8 são previstos somente para dimensões nominais menores ou iguais a 3 mm;
- c) furos com afastamento fundamental "K" no grau de tolerância acima de IT8 são previstos somente para dimensões nominais menores ou iguais a 3 mm;
- d) eixos e furos com afastamentos fundamentais "t", "T", "v", "V" e "y", "Y" são somente previstos para dimensões nominais maiores que 24 mm, 14 mm e 18 mm, respectivamente (para dimensões nominais menores, os afastamentos são praticamente os mesmos daqueles dos graus de tolerância adjacente);

- e) graus de tolerância IT14 a IT18 são somente previstos para dimensões nominais maiores que 1 mm;
- f) furos com afastamento fundamental "N" de graus de tolerância acima de IT8 são previstos somente para dimensões nominais maiores que 1 mm.

4.9 Exemplos

4.9.1 Determinação das dimensões limites para eixo φ 40g11

Grupo de dimensão nominal: 30 mm a 50 mm (ver Tabela 4) Tolerância-padrão: 160 µm (ver Tabela 1)

Afastamento fundamental = -9 μm (ver Tabela 2) Afastamento superior = Afastamento fundamental = -9 μm Afastamento inferior = Afastamento fundamental - tolerância = -9 -160 = -169 μm

Dimensões limites:

Máximo = 40 - 0,009 = 39,991 mm Mínimo = 40 - 0,169 = 39,831 mm

4.9.2 Determinação das dimensões limites para furo φ 130N4

Grupo de dimensão nominal: 120 mm a 180 mm (ver Tabela 4)

Tolerância-padrão: 12 µm (ver Tabela 1)

Afastamento fundamental = -27 + $\Delta \mu m$ (ver Tabela 3)

Valor de $\Delta = 4 \mu m$ (ver Tabela 3)

Afastamento superior = Afastamento fundamental =

 $= -27 + 4 = -23 \mu m$

Afastamento inferior = Afastamento fundamental-tolerância = $-23 - 12 = -35 \mu m$

Dimensões limites:

Máximo: 130 - 0,023 = 129,977 mm Mínimo: 130 - 0,035 = 129,965 mm

Tabela 11 - Afastamentos limites para furos A, B e C(A)

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

no	nensão minal mm)			A ^(B)						B ^(B)					200	C		
Acima	Até e inclusive	9	10	11	12	13	8	9	10	11	12	13	8	9	10	11	12	13
-	3 ^(B)			+ 330 + 270				l .					+74 +60	+ 85 + 60	+100 +60	+120 +60	+160 +60	+200 +60
3	6			+ 345 + 270												+145 +70	+ 190 + 70	+ 250 + 70
6	10			+ 370 + 280			l	l							+138 +80		+ 230 + 80	+300 +80

/continua

NBR 6158/1995 23

	nensão			A (D)						D(B)						0		
	ominal mm)			A ^(B)						B ^(B)						С	3	
Acima	Até e inclusive	9	10	11	12	13	8	9	10	11	12	13	8	9	10	11	12	13
10	18	+333 +290	+360 +290	+400 +290	+470 +290	+560 +290	+177 +150	+193 +150	+220 +150	+260 +150	+330 +150	+420 +150	+122 +95	+138 +95	+165 +95	+205 +95	+275 +95	+3
18	30	+352 +300	+384 +300	+430 +300		+630 +300	+193 +160		+244 +160	+290 +160	+370 +160	+490 +160	_		+194 +110	+240 +110	+320 +110	+4
30	40	+372 +310	+410 +310	+470 +310		+700 +310	+209 +170	+232 +170	+270 +170	+330 +170	+420 +170	+560 +170		+182 +120	+220 +120		+370 +120	+{
40	50	+382	+420 +320	+480 +320		+710 +320	+219 +180		+280 +180	+340 +180	+430 +180	+570 +180	+169 +130	+192 +130	+230 +130		+380 +130	+{
50	65	+414 +340	+460 +340	+530 +340	+640	+800 +340	+236 +190	+264 +190	+310	+380 +190	+490 +190	+650 +190	+186 +140	+214 +140	+260 +140		+440 +140	+(
65	80	+434	+480	+550 +360	+660	+820	+246	+274	+320	+390 +200	+500 +200	+660	+196	+224	+270 +150	+340	+450 +150	+1
80	100	+467	+520	+600	+730	+920	+274	+307	+360	+440	+570	+760	+224	+257	+310	+390	+520	+
100	120	+380	+380	+380	+760	+380	+220	+220	+220	+220	+220	+220	+170	+170	+170	+400	+170	+
120	140	+410	+410	+410 +710	+410	+410	+240	+240	+240	+240	+240	+240	+180	+300	+360		+180	+
140	160	+460	+460	+460 +770		+460 +1150	+260	+260	+260	+260	+260 +680	+260 +910	+200 +273	+200	+200	+200 +460	+200 +610	+
160	180	+520 +680	+520 +740	+520 +830	+520 +980	+520 +1210	+280	+280 +410	+280	+280 +560	+280 +710	+280	+210 +293	+210	+210 +390	+210 +480	+210 +630	+
		+580	+580	+580	+580	+580	+310	+310	+310	+310	+310	+310	+230	+230	+230	+230	+230	+
180	200	+775 +660	+845 +660		+1120 +660		+412 +340		+525 +340	+630 +340		+1060 +340			+425 +240		+700 +240	+
200	225	+855 +740	+925 +740	N .	+1200 +740	+1460 +740	+452 +380	l	+565 +380	+670 +380	+840 +380	+1100 +380	+332 +260	+375 +260	+445 +260	1	+720 +260	+
225	250	+935 +820	+1005 +820	+1110 +820		+1540 +820	+492 +420	+535 +420	+605 +420	+710 +420	+ 880 +420	+1140 +420	+352 +280	+395 +280	+465 +280		+740 +280	
250	280	+1050 +920	+1130 +920	+1240 +920		+1730 +920	+561 +480	+610 +480	+690 +480	+800 +480	+1000 +480	+1290 +480	+381 +300	+430 +300	+510 +300		+820 +300	
280	315		+1260 +1050		+1570 +1050	+1860 +1050	+621 +540	+670 +540	+750 +540	+860 +540	+1060 +540	+1350 +540	+411 +330	+460 +330	+540 +330		+850 +330	
315	355		+1430 +1200		+1770 +1200	+2000 +1200	+689 +600	+740 +600	+830 +600	+960 +600	+1170 +600	+1490 +600	+449 +360	+500 +360	+590 +360		+930 +360	
355	400	+1490 +1350	+1580 +1350			+2240 +1350	+769 +680	+820 +680	+910 +680	+1040 +680	+1250 +680	+1570 +680	+489 +400	+540 +400	+630 +400		+970 +400	
400	450	7	+1750 +1500		+2130 +1500	+2470 +1500	+857 +760		+1010 +760	+1160 +760	+1390 +760	+1730 +760	+537 +440	+595 +440	+690 +440		+1070 +440	
450	500		+1900 +1650			+2620 +1650	+937 +840	+995 +840	+1090 +840	+1240 +840	+1470 +840	+1810 +840		+635 +480	+730 +480		+1110 +480	

⁽A) Os afastamentos fundamentais "A", "B" e "C" não estão previstos para dimensões maiores que 500 mm.

⁽B) Os afastamentos fundamentais "A" e "B" não devem ser usados para qualquer tolerância-padrão em dimensões nominais menores ou iguais a 1 mm.

Tabela 12 - Afastamentos limites para furos "CD", "D" e "E"

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

		36	5															Alas	tame	nto: µm
nor	ensão minal mm)		90	CD ^(A))						D							E		
Acima	Até e inclusive	6	7	8	9	10	6	7	8	9	10	11	12	13	5	6	7	8	9	10
-	3	+40 +34		+48 +34		+74 +34	+26 +20	+30 +20	+34 +20	+45 +20	+60 +20	+80 +20	+120 +20	+160 +20	+18 +14	+20 +14	+24 +14	+28 +14	+39 +14	+54 +14
3	6	+54 +46	+58 +46	+64 +46		+94 +46	+38 +30	+42 +30	+48 +30	+60 +30	+78 +30	+105 +30	+150 +30	+210 +30	+25 +20	+28 +20	+32 +20	+38 +20	+ 50 +20	+68 +20
6	10	+65 +56	+71 +56	l		+114 +56	+49 +40	+55 +40	+62 +40	+76 +40	+98 +40	+130 +40	+190 +40	+260 +40	+31 +25	+34 +25	+40 +25	+47 +25	+ 61 +25	+83 +25
10	18						+61 +50	+68 +50	+77 +50	+93 +50	+120 +50	+160 +50	+230 +50	+320 +50	+40 +32	+43 +32	+50 +32	+59 +32	+ 75 +32	+102 +32
18	30						+78 +65	+86 +65	+98 +65	+117 +65	+149 +65	+195 +65	+275 +65	+395 +65	+49 +40	+53 +40	+61 +40	+73 +40	+ 92 +40	+124 +40
30	50						+96 +80	+105 +80	+119 +80	+142 +80	+180 +80	+240 +80	+330 +80	+470 +80	+61 +50	+66 +50	+75 +50	+89 +50	+112 +50	+150 +50
50	80						+119 +100	+130 +100	+146 +100	+174 +100	+220 +100	+290 +100	+400 +100	+560 +100	+73 +60	+79 +60	+90 +60	+106 + 60	+134 + 60	+180 +60
80	120							+155 +120		+207 +120		+340 +120	+470 +120	+660 +120	+87 +72	+94 +72		+125 +72	+159 +72	+212 +72
120	180						+170 +145	+185 +145	+208 +145	+245 +145	+305 +145	+395 +145	+545 +145	+775 +145	+103 +85	+110 +85	+125 +85	+148 +85	+185 +85	+245 +85
180	250						+199 +170	+216 +170		+285 +170		+460 +170	+630 +170		+120 +100	+129 +100	+146 +100		+215 +100	+285 +100
250	315						+222 +190	+242 +190	+271 +190	+320 +190		+510 +190	+710 +190	+1000 +190	+133 +110				+240 +110	+320 +110
315	400							+267 +210		+350 +210		+570 +210	+780 +210	+1100 +210	+150 +125				l	+355 +125
400	500							+293 +230		+385 +230		+630 +230	+860 +230		+162 +135		+198 +135)	+290 +135	+385 +135
500	630							+330 +260		+435 +260		+700 +260	+960 +260	+1360 +260			+215 +145		+320 +145	+425 +145
630	800						+340 +290	+370 +290		+490 +290		+790 - +290	-1090 +290	+1540 +290			+240 +160			+480 +160
800	1000							+410 +320		+550 +320		+880 +320	+220 +320	+1720 +320			+260 +170			+530 +170
1000	1250							+455 +350		+610 +350		+1010 - +350	-1400 +350	+2000 +350			+300 +195			+615 +195

/continua

NBR 6158/1995 25

/continuação

no	ensão minal mm)			CD ^{(/}	A)						D							E		
Acima	Até e inclusive	6	7	8	9	10	6	7	8	9	10	11	12	13	5	6	7	8	9	10
1250	1600							+515 +390	+585 +390	+700 +390		_	+1640 +390	+2340 +390			+345 +220	+415 +220	+530 +220	+720 +220
1600	2000						l -		+660 +430	+800 +430	l	+1350 +430		+2730 +430			+390 +240		+610 +240	+840 +240
2000	2500								+760 +480	+920 +480				+3280 +480	C		+435 +260		+700 +260	+960 +260
2500	3150						+655 +520		+850 +520	+1060 +520				+3820 +520			+500 +290		+830 +290	+1150 +290

⁽A) O afastamento fundamental intermediário "CD" é previsto principalmente para micromecanismos e relojoaria. Na necessidade de classes de tolerância envolvendo este afastamento fundamental em outra dimensão nominal, elas podem ser calculadas conforme o estabelecido nesta norma.

Tabela 13 - Afastamentos limites para furos "EF" e "F"

ES = Afastamento limite superior EI = Afastamento limite inferior

								Ш			<u> </u>				Afa	stamer	nto: µm
nor	ensão minal nm)					EF ^(A)		K					F	:			
Acima	Até e inclusive	3	4	5	6	7	8	9	10	3	4	5	6	7	8	9	10
-	3	+12 +10	+13 +10	+14 +10	+16 +10	+20 +10	+24 +10	+35 +10	+50 +10	+8 +6	+9 +6	+10 +6	+12 +6	+16 +6	+20 +6	+31 +6	+46 +6
3	6	+16,5 +14	+18 +14	+19 +14	+22 +14	+26 +14	+32 +14	+44 +14		+12,5 +10	+14 +10	+15 +10	+18 +10	+22 +10	+28 +10	+40 +10	+58 +10
6	10	+20,5 +18	+22 +18	+24 +18	+27 +18	+33 +18	+40 +18	+54 +18		+15,5 +13	+17 +13	+19 +13	+22 +13	+28 +13	+35 +13	+49 +13	+71 +13
10	18		9 D.	6/6						+19 +16	+21 +16	+24 +16	+27 +16	+34 +16	+43 +16	+59 +16	+86 +16
18	30	1//2	10.							+24 +20	+26 +20	+29 +20	+33 +20	+41 +20	+53 +20	+72 +20	+104 +20
30	50	8 no.								+29 +25	+32 +25	+36 +25	+41 +25	+50 +25	+64 +25	+87 +25	+125 +25
50	80											+43 +30	+49 +30	+60 +30	+76 +30	+104 +30	
80	120											+51 +36	+58 +36	+71 +36	+90 +36	+123 +36	

/continua

/continu	uação									_							
nor	ensão minal nm)	2				EF ^(A)							F	:			
Acima	Até e inclusive	320	4	5	6	7	8	9	10	3	4	5	6	7	8	9	10
120	180		OEN	20								+61 +43	+68 +43	+83 +43	+106 +43	+143 +43	
180	250			15110								+70 +50	+79 +50	+96 +50	+122 +50	+165 +50	
250	315				02/4	0						+79 +56	+88 +56	+108 +56	+137 +56	+186 +56	
315	400					6100						+87 +62	+98 +62	+119 +62	+151 +62	+202 +62	
400	500						35					+95 +68	+108 +68	+131 +68	+165 +68	+223 +68	
500	630						*						+120 +76	+146 +76	+186 +76	+251 +76	
630	800												+130 +80	+160 +80	+205 +80	+280 +80	
800	1000												+142 +86	+176 86	+226 +86	+316 +86	
1000	1250												+164	+203 +98	+263 +98	+358 +98	+98
1250	1600										1			+188 +110	+235 +110	+305 +110	+420 +110
1600	2000											Co Co		+212 +120	+270 +120	+350 +120	+490 +120
2000	2500											~~	150	+240 +130	+305 +130	+410 +130	+570 +130
2500	3150												210	+280 +145	+355 +145	+475 +145	+685 +145

⁽A) O afastamento fundamental intermediário "EF" é previsto principalmente para micromecanismos e relojoaria. Na necessidade de classes de tolerância envolvendo este afastamento fundamental em outra dimensão nominal, elas podem ser calculadas conforme o estabelecido nesta Norma.

Pellobias S.A.

NBR 6158/1995 27

Tabela 14 - Afastamentos limites para furos "FG" e "G"

ES = Afastamento limite superior EI = Afastamento limite inferior

															Afa	stamer	nto: µm
Dime nom (mi	inal				F	Э ^(A)								G	Silving		
Acima	Até e inclusive	3	4	5	6	7	8	9	10	3	4	5	6	07.0/L	8	9	10
-	3	+6 +4	+7 +4	+8 +4	+10 +4	+14 +4	+18 +4	+29 +4	+44 +4	+4 +2	+5 +2	+6 +2	+8 +2	+12 +2	+16 +2	+27 +2	+42 +2
3	6	+8,5 +6	+10 +6	+11 +6	+14 +6	+18 +6	+24 +6	+36 +6	+54 +6	+6,5 +4	+8 +4	+9 +4	+12 +4	+16 +4	+22 +4	+34 +4	+52 +4
6	10	+10,5 +8	+12 +8	+14 +8	+17 +8	+23 +8	+30 +8	+44 +8	+66 +8	+7,5 +5	+9 +5	+11 +5	+14 +5	+20 +5	+27 +5	+41 +5	+63 +5
10	18									+9 +6	+11 +6	+14 +6	+17 +6	+24 +6	+33 +6	+49 +6	+76 +6
18	30									+11 +7	+13 +7	+16 +7	+20 +7	+28 +7	+40 +7	+59 +7	+91 +7
30	50									+13 +9	+16 +9	+20 +9	+25 +9	+34 +9	+48 +9	+71 +9	+109 +9
50	80							K				+23 +10	+29 +10	+40 +10	+56 +10		
80	120											+27 +12	+34 +12	+47 +12	+66 +12		
120	180					<i>h</i> :						+32 +14	+39 +14	+54 +14	+77 +14		
180	250				3.0	2,						+35 +15	+44 +15	+61 +15	+87 +15		
250	315			000	3							+40 +17	+49 +17	+69 +17	+98 +17		
315	400		200	Ph								+43 +18	+54 +18	+75 +18	+107 +18		
400	500	110:	Mor									+47 +20	+60 +20	+83 +20	+117 +20		
500	630	400											+66 +22	+92 +22	+132 +22		
630	800												+74 +24	+104 +24	+149 +24		
800	1000												+82 +26	+116 +26	+166 +26		
1000	1250												+94 +28	+133 +28	+193 +28		

/continuação

Dimer nom (mr	inal	23			FG	∂ ^(A)								G			
Acima	Até e inclusive	300	4	5	6	7	8	9	10	3	4	5	6	7	8	9	10
1250	1600	4	1508										+108 +30	+155 +30	+225 +30		
1600	2000		7	2/5/									+124 +32	+182 +32	+262 +32		
2000	2500			9	92								+144 +34	+209 +34	+314 +34		
2500	3150					0000							+173 +38	+248 +38	+368 +38		

⁽A) O afastamento fundamental intermediário "FG" é previsto principalmente para micromecanismos e relojoaria. Na necessidade de classes de tolerância envolvendo este afastamento fundamental em outra dimensão nominal, elas podem ser calculadas conforme o estabelecido nesta Norma.

Tabela 15 - Afastamentos limites para furos "H"

ES = Afastamento limite superior EI = Afastamento limite inferior

nor	ensão ninal nm)					i				н				i			i	ı	i
	<i>,</i>	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^(A)	15 ^(A)	16 ^(A)	17 ^(A)	18 ^(A)
Acima	Até e inclusive		I			(h	ım)					Afasta	mentos	(mm)			l	l	
-	3 ^(A)	+0,8	+1,2 0	+2 0	+3 0	+4	+6 0	+10	+14 0	+25 0	+40	+60 0	+0,1 0	+0,14 0	+0,25 0	+0,4 0	+0,6 0		
3	6	+1 0	+1,5 0	+2,5 0	+4 0	+5 0	+8 0	+12	+18 0	+30 0	+48 0	+75 0	+0,12 0	+0,18	+0,3	+0,48 0	+0,75 0	+1,2 0	+1,8 0
6	10	+1	+1,5 0	+2,5 0	+4	+6 0	+9 0	+15	+22	+36	+58 0	+90 0	+0,15 0	+0,22	+0,36	+0,58 0	+0,9 0	+1,5 0	+2,2
10	18	+1,2 0	+2 0	+3 0	+5 0	+8	+11	+18	+27	+43	+70 0	+110 0	+0,18 0	+0,27 0	+0,43	+0,7 0	+1,1 0	+1,8 0	+2,7 0
18	30	+1,5 0	+2,5 0	+4 0	+6 0	+9 0	+13	+21	+33	+52 0	+84 0	+130 0	+0,21 0	+0,33	+0,52	+0,84 0	+1,3	+2,1 0	+3,3 0
30	50	+1,5 0	+2,5 0	+4	+7 0	+11	+16 0	+25	+39	+62	+100 0	+160 0	+0,25 0	+0,39	+0,62	+1	+1,6 0	+2,5 0	+3,9
50	80	+2	+3	+5 0	+8 0	+13 0	+19	+30	+46 0	+74 0	+120 0	+190 0	+0,3 0	+0,46 0	+0,74	+1,2 0	+1,9 0	+3	+4,6
80	120	+2,5 0	+4	+6 0	+10 0	+15 0	+22	+35 0	+54 0	+87 0	+140 0	+220	+0,35 0	+0,54 0	+0,87 0	+1,4 0	+2,2 0	+3,5	+5,4 0

/continua

/contin	nuação																		
non	ensão ninal									н									
	nm	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^(A)	15 ^(A)	16 ^(A)	17 ^(A)	18 ^(A)
Acima	Até e inclusive					۱)	ım)					Afastar	nentos	(mm)		96.5	86		
120	180	+3,5 0	+5 0	+8	+12	+18	+25 0	+40 0	+63 0	+100 0	+160 0	+250 0	+0,4 0	+0,63	+1	+1,6 0	+2,5	+4	+6,3 0
180	250	+4,5 0	+7 0	+10	+14	+20	+29	+46 0	+72 0	+115 0	+185 0	+290	+0,46	+0,72	+1,15 0	+1,85 0	+2,9 0	+4,6 0	+7,2 0
250	315	+6 0	+8 0	+12	+16 0	+23	+32	+52 0	+81 0	+130 0	+210 0	+320	+0,52	+0,81 0	+1,3	+2,1 0	+3,2	+5,2 0	+8,1 0
315	400	+7 0	+9 0	+13	+18 0	+25 0	+36 0	+57 0	+89 0	+140 0	+230 0	+360	+0,57 0	+0,89	+1,4	+2,3 0	+3,6	+5,7 0	+8,9 0
400	500	+8	+10 0	+15 0	+20 0	+27	+40 0	+63 0	+97 0	+155 0	+250 0	+400	+0,63 0	+0,97 0	+1,55 0	+2,5 0	+4	+6,3 0	+9,7 0
						((B)			•									
500	630	+9 0	+11	+16	+22	+32	+44 0	+70 0	+110	+175 0	+280 0	+440 0	+0,7 0	+1,1 0	+1,75 0	+2,8 0	+4,4 0	+7 0	+11 0
630	800	+10 0	+13 0	+18 0	+25 0	+36	+50 0	+80 0	+125 0	+200 0	+320	+500 0	+0,8 0	+1,25 0	+2 0	+3,2 0	+5 0	+8 0	+12,5 0
800	1000	+11 0	+15 0	+21 0	+28 0	+40	+56 0	+90	+140	+230 0	+360 0	+560 0	+0,9 0	+1,4 0	+2,3 0	+3,6 0	+5,6 0	+9 0	+14 0
1000	1250	+13 0	+18 0	+24 0	+33 0	+47	+66 0	+105 0	+165	+260 0	+420 0	+660 0	+1,05 0	+1,65 0	+2,6 0	+4,2 0	+6,6 0	+10,5 0	+16,5 0
1250	1600	+15 0	+21 0	+29 0	+39	+55	+78 0	+125	+195 0	+310 0	+500 0	+780 0	+1,25 0	+1,95 0	+3,1 0	+5 0	+7,8 0	+12,5 0	+19,5 0
1600	2000	+18 0	+25 0	+35	+46	+65 0	+92 0	+150 0	+230	+370 0	+600 0	+920 0	+1,5 0	+2,3 0	+3,7	+6 0	+9,2 0	+15 0	+23 0
2000	2500	+22	+30	+41	+55 0	+78	+110		+280	+440 0	+700 0	+1100 0	+1,75 0	+2,8	+4,4 0	+7 0	+11 0	+17,5 0	+28 0
2500	3150	+26	+36	+50 0	+68	+96	+135 0	+210 0	+330	+540 0	+860 0	+1350 0	+2,1 0	+3,3 0	+5,4 0	+8,6 0	+13,5 0	+21 0	+33

⁽A) Os graus de tolerância IT14 a IT18 (inclusive) não devem ser usados para dimensões nominais menores ou iguais a 1 mm.

⁽B) Os valores dados na moldura, para graus de tolerância IT1 a IT15 (inclusive) para dimensões nominais maiores que 500 mm e menores ou iguais a 3150 mm, estão incluídos para uso experimental.

Tabela 16 - Afastamentos limites (A) para furos JS

ES = Afastamento limite superior EI = Afastamento limite inferior

	nensão						(ice			JS	i								
	ominal (mm)	1	2	3	4	5	6	6 7	8	9	10	11	12	13	14 ^(B)	15 ^(B)	16 ^(B)	17	18
Acima	Até e inclusive						(µm) so etch				Afastar	mentos			(mm)			
-	3 ^(B)	± 0,4	± 0,6	± 1	± 1,5	± 2	± 3	± 5	±7	± 12,5	± 20	± 30	± 0,05	± 0,07	± 0,125	± 0,2	± 0,3		
3	6	± 0,5	± 0,75	± 1,25	± 2	± 2,5	± 4	± 6	±9	± 15	± 24	± 37,5	± 0,06	± 0,09	± 0,15	± 0,24	± 0,375	± 0,6	± 0,9
6	10	± 0,5	± 0,75	± 1,25	± 2	± 3	± 4,5	± 7,5	±11	± 18	± 29	± 45	± 0,075	± 0,11	± 0,18	± 0,29	± 0,45	± 0,75	± 1,1
10	18	± 0,6	± 1	± 1,5	± 2,5	± 4	± 5,5	± 9	±13,5	± 21,5	± 35	± 55	± 0,09	± 0,135	± 0,215	± 0,35	± 0,55	± 0,9	± 1,35
18	30	± 0,75	± 1,25	± 2	± 3	± 4,5	± 6,5	± 10,5	±16,5	± 26	± 42	± 65	± 0,105	± 0,165	± 0,26	± 0,42	± 0,65	± 1,05	± 1,65
30	50	± 0,75	± 1,25	± 2	± 3,5	± 5,5	± 8	± 12,5	±19,5	± 31	± 50	± 80	± 0,125	± 0,195	± 0,31	± 0,5	± 0,8	± 1,25	± 1,95
50	80	± 1	± 1,5	± 2,5	± 4	± 6,5	± 9,5	± 15	±23	± 37	± 60	± 95	± 0,15	± 0,23	± 0,37	± 0,6	± 0,95	± 1,5	± 2,3
80	120	± 1,25	± 2	± 3	± 5	± 7,5	± 11	± 17,5	±27	± 43,5	± 70	± 110	± 0,175	± 0,27	± 0,435	± 0,7	± 1,1	± 1,75	± 2,7
120	180	± 1,75	± 2,5	± 4	± 6	± 9	± 12,5	± 20	±31,5	± 50	± 80	± 125	± 0,2	± 0,315	± 0,5	± 0,8	± 1,25	± 2	± 3,15
180	250	± 2,25	± 3,5	± 5	± 7	± 10	± 14,5	± 23	±36	± 57,5	± 92,5	± 145	± 0,23	± 0,36	± 0,575	± 0,925	± 1,45	± 2,3	± 3,6
250	315	± 3	± 4	± 6	± 8	± 11,5	± 16	± 26	±40,5	± 65	± 105	± 160	± 0,26	± 0,405	± 0,65	± 1,05	± 1,6	± 2,6	± 4,05
315	400	± 3,5	± 4,5	± 6,5	± 9	± 12,5	± 18	± 28,5	±44,5	± 70	± 115	± 180	± 0,285	± 0,445	± 0,7	± 1,15	± 1,8	± 2,85	± 4,45
400	500	± 4	± 5	± 7,5	± 10	± 13,5	± 20	± 31,5	±48,5	± 77,5	± 125	± 200	± 0,315	± 0,485	± 0,775	± 1,25	± 2	± 3,15	± 4,85
						(1	C)						91	25.0					
500	630	± 4,5	± 5,5	± 8	± 11	± 16	± 22	± 35	±55	± 87,5	± 140	± 220	± 0,35	± 0,55	± 0,875	± 1,4	± 2,2	± 3,5	± 5,5
630	800	± 5	± 6,5	± 9	± 12,5	± 18	± 25	± 40	±62,5	± 100	± 160	± 250	± 0,4	± 0,625	± 1	± 1,6	± 2,5	± 4	± 6,25

/continuação

	nensão									,	JS								
	ominal (mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^(B)	15 ^(B)	16 ^(B)	17	18
Acima	Até e inclusive						(µm)				Afastar	mentos			(mm))		
800	1000	± 5,5	± 7,5	± 10,5	± 14	± 20	± 28	± 45	±70	± 115	± 180	± 280	± 0,45	± 0,7	± 1,15	± 1,8	± 2,8	± 4,5	± 7
1000	1250	± 6,5	± 9	± 12	± 16,5	± 23,5	± 33	± 52,5	±82,5	± 130	± 210	± 330	± 0,525	± 0,825	± 1,3	± 2,1	± 3,3	± 5,25	± 8,25
1250	1600	± 7,5	± 10,5	± 14,5	± 19,5	± 27,5	± 39	± 62,5	±97,5	± 155	± 250	± 390	± 0,625	± 0,975	± 1,55	± 2,5	± 3,9	± 6,25	± 9,75
1600	2000	± 9	± 12,5	± 17,5	± 23	± 32,5	± 46	± 75	±115	± 185	± 300	± 460	± 0,75	± 1,15	± 1,85	± 3	± 4,6	± 7,5	± 11,5
2000	2500	± 11	± 15	± 20,5	± 27,5	± 39	± 55	± 87,5	±140	± 220	± 350	± 550	± 0,875	± 1,4	± 2,2	± 3,5	± 5,5	± 8,75	± 14
2500	3150	± 13	± 18	± 25	± 34	±48	± 67,5	± 105	±165	± 270	± 430	± 675	± 1,05	± 1,65	± 2,7	± 4,3	± 6,75	± 10,5	± 16,5

⁽A) Para evitar repetição de valores iguais, a Tabela lista valores como "± x". Isso é para ser interpretado como ES = +x e EI = -x. Exemplo: +0.23 μm .

⁽B) Os graus de tolerância IT14 a IT16 (inclusive) não devem ser usados para dimensões nominais menores ou iguais a 1 mm.

⁽C) Os valores na moldura, para graus de tolerância IT1 a IT15 (inclusive), para dimensões nominais maiores que 500 mm e menores ou iguais a 3150 mm, estão incluídos para uso experimental.

Tabela 17 - Afastamentos limites para furos J e K

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

	1	3									<i>P</i>	Afastame	ento: µm
no	ensão minal mm)	08 450	J	l					ŀ	<			
Acima	Até e inclusive	6	77	8	9 ^(A)	3	4	5	6	7	8	9 ^(B)	10 ^(B)
-	3	+2 -4	+4 -6	+6 -8		0 -2	0 -3	0 -4	0 -6	0 -10	0 -14	0 -25	0 -40
3	6	+5 -3	±6 ^(C)	+10 -8		0 -2,5	+0,5 -3,5	0 -5	+2 -6	+3 -9	+5 -13		
6	10	+5 -4	+8 -7	+12 -10	0120	0 -2,5	+0,5 -3,5	+1 -5	+2 -7	+5 -10	+6 -16		
10	18	+6 -5	+10 -8	+15 -12	it.	0 -3	+1 -4	+2 -6	+2 -9	+6 -12	+8 -19		
18	30	+8 -5	+12 -9	+20 -13		-0,5 -4,5	0 -6	+1 -8	+2 -11	+6 -15	+10 -23		
30	50	+10 -6	+14 -11	+24 -15		-0,5 -4,5	+1 -6	+2 -9	+3 -13	+7 -18	+12 -27		
50	80	+13 -6	+18 -12	+28 -18				+3 -10	+4 -15	+9 -21	+14 -32		
80	120	+16 -6	+22 -13	+34 -20				+2 -13	+4 -18	+10 -25	+16 -38		
120	180	+18 -7	+26 -14	+41 -22				+3 -15	+4 -21	+12 -28	+20 -43		
180	250	+22 -7	+30 -16	+47 -25				+2 -18	+5 -24	+13 -33	+22 -50		
250	315	+25 -7	+36 -16	+55 -26				+3 -20	+5 -27	+16	+25 -56		
315	400	+29 -7	+39 -18	+60 -29				+3 -22	+7 -29	+17 -40	+28 -61		
400	500	+33 -7	+43 -20	+66 -31				+2 -25	+8 -32	+18 -45	+29 -68		
500	630								0 -44	0 -70	0 -110	CHO	
630	800								0 -50	0 -80	0 -125	23	5
800	1000								0 -56	0 -90	0 -140		7.
1000	1250								0 -66	0 -105	0 -165		

/continuação

no	ensão minal mm)			J					K			S. P.	
Acima	Até e inclusive	6	7	8	9 ^(A)	3	4	5	6	7	80	9 ^(B)	10 ^(B)
1250	1600								0 -78	0 -125	0 -195		
1600	2000								0 -92	0 -150	0 -230		
2000	2500								0 -110	0 -175	0 -280		
2500	3150							80	0 -135	0 -210	0 -330		

⁽A) As classes de tolerância J9, J10, etc. são simétricas em torno da linha zero. Para estes valores, ver JS9, JS10, etc.

Tabela 18 - Afastamentos limites para furos M e N

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

noı	ensão minal mm)				N	1								N				
Acima	Até e inclusive	3	4	5	<i>S</i>	7	8	9	10	3	4	5	6	7	8	9 ^(A)	10 ^(A)	11 ^(A)
-	3 ^(A)	-2 -4	-2 -5	-2 -6	-2 -8	-2 -12	-2 -16	-2 -27	-2 -42	-4 -6	-4 -7	-4 -8	-4 -10	-4 -14	-4 -18	-4 -29	-4 -44	-4 -64
3	6	-3 -5,5	-2,5 -6,5	-3 -8	-1 -9	0 -12	+2 -16	-4 -34	-4 -52	-7 -9,5	-6,5 -10,5	-7 -12	-5 -13	-4 -16	-2 -20	0 -30	0 -48	0 -75
6	10	-5 -7,5	-4,5 -8,5	-4 -10	-3 -12	0 -15	+1 -21	-6 -42	-6 -64	-9 -11,5	-8,5 -12,5	-8 -14	-7 -16	-4 -19	-3 -25	0 -36	0 -58	0 -90
10	18	-6 -9	-5 -10	-4 -12	-4 -15	0 -18	+2 -25	-7 -50	-7 -77	-11 -14	-10 -15	-9 -17	-9 -20	-5 -23	-3 -30	0 -43	0 -70	0 -110
18	30	-6,5 -10,5	-6 -12	-5 -14	-4 -17	0 -21	+4 -29	-8 -60	-8 -92	-13,5 -17,5	-13 -19	-12 -21	-11 -24	-7 -28	-3 -36	0 -52	0 -84	0 -130
30	50	-7,5 -11,5	-6 -13	-5 -16	-4 -20	0 -25	+5 -34	-9 -71	-9 -109	-15,5 -19,5	-14 -21	-13 -24	-12 -28	-8 -33	-3 -42	0 -62	0 -110	0 -160
50	80			-6 -19	-5 -24	0 -30	+5 -41					-15 -28	-14 -33	-9 -39	-4 -50	0 -74	0 -120	0 -190

/continua

⁽B) Os afastamentos para "K" nos graus de tolerância acima de IT8 não são definidos para dimensões nominais maiores que 3 mm.

⁽C) Idêntico a JS7.

/continuação	

Dim	ensão minal mm)				М									N				
Acima	Até e inclusive	23 %	4	5	6	7	8	9	10	3	4	5	6	7	8	9 ^(A)	10 ^(A)	11 ^(A)
80	120	4	CO	-8 -23	-6 -28	0 -35	+6 -48					-18 -33	-16 -38	-10 -45	-4 -58	0 -87	0 -140	0 -220
120	180		TO	-9 -27	-8 -33	0 -40	+8 -55					-21 -39	-20 -45	-12 -52	-4 -67	0 -100	0 -160	0 -250
180	250			-11 -31	-8 -37	0 -46	+9 -63					-25 -45	-22 -51	-14 -60	-5 -77	0 -115	0 -185	0 -290
250	315			-13 -36	-9 -41	0 -52	+9 -72					-27 -50	-25 -57	-14 -66	-5 -86	0 -130	0 -210	0 -320
315	400			-14 -39	-10 -46	0 -57	+11					-30 -55	-26 -62	-16 -73	-5 -94	0 -140	0 -230	0 -360
400	500			-16 -43	-10 -50	0 -63	+11 -86					-33 -60	-27 -67	-17 -80	-6 -103	0 -155	0 -250	0 -400
500	630			-26 -70	-26 -96	-26 -136			1				-44 -88	-44 -114	-44 -154	-44 -219		
630	800			-30 -80	-30 -110	-30 -155		╝					-50 -100	-50 -130	-50 -175	-50 -250		
800	1000			-34 -90	-34 -124	-34 -174							-56 -112	-56 -146	-56 -196	-56 -286		
1000	1250			-40 -106	-40 -145	-40 -205							-66 -132	-66 -171	-66 -231	-66 -326		
1250	1600			-48 -126	-48 -173	-48 -243					cen		-78 -156	-78 -203	-78 -273	-78 -388		
1600	2000			-58 -150	-58 -208	-58 -288						08	-92 -184	-92 -242	-92 -322	-92 -462		
2000	2500			-68 -178	-68 -243	-68 -348							-110 -220	-110 -285	-110 -390	-110 -550		
2500	3150			-76 -211	-76 -286	-76 -406							-135 -270	-135 -345	-135 -465	-135 -675		
(A) As cla	asses de to	lerância	N9, N10	e N11 i	não de\	em se	r usada	is para	dimensõ	es nomi	nais mei	nores	ou igua	ais a 1	mm.			
																CHO		
																	14.05 S.W.	
																	7	

NBR 6158/1995 35

Tabela 19 - Afastamentos limites para furos P

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

								Afasta	mento: µm
non	ensão ninal nm)				F)		JIS JOS	
Acima	Até e inclusive	3	4	5	6	7	8	9	10
-	3	6 8	6 9	-6 -10	-6 -12	-6 -16	-6 -20	-6 -31	-6 -46
3	6	-11 -13,5	-10,5 -14,5	-11 -16	-9 -17	-8 -20	-12 -30	-12 -42	-12 -60
6	10	-14 -16,5	-13,5 -17,5	-13 -19	-12 -21	-9 -24	-15 -37	-15 -51	-15 -73
10	18	-17 -20	-16 -21	-15 -23	-15 -26	-11 -29	-18 -45	-18 -61	-88 -88
18	30	-20,5 -24,5	-20 -26	-19 -28	-18 -31	-14 -35	-22 -55	-22 -74	-22 -106
30	50	-24,5 -28,5	-23 -30	-22 -33	-21 -37	-17 -42	-26 -65	-26 -88	-26 -126
50	80			-27 -40	-26 -45	-21 -51	-32 -78	-32 -106	
80	120			-32 -47	-30 -52	-24 -59	-37 -91	-37 -124	
120	180		7	-37 -55	-36 -61	-28 -68	-43 -106	-43 -143	
180	250	35.0		-44 -64	-41 -70	-33 -79	-50 -122	-50 -165	
250	315	0110		-49 -72	-47 -79	-36 -88	-56 -137	-56 -186	
315	400	6.		-55 -80	-51 -87	-41 -98	-62 -151	-62 -202	
400	500			-61 -88	-55 -95	-45 -108	-68 -165	-68 -223	
500	630				-78 -122	-78 -148	-78 -188	-78 -253	
630	800				-88 -138	-88 -168	-88 -213	-88 -288	
800	1000				-100 -156	-100 -190	-100 -240	-100 -330	
1000	1250				-120 -186	-120 -225	-120 -285	-120 -380	

/continuação

Dime nom (mi	inal				Р				
Acima	Até e inclusive	3	4	5	6	7	8	9	10
1250	1600				-140 -218	-140 -265	-140 -335	-140 -450	
1600	2000	151			-170 -262	-170 -320	-170 -400	-170 -540	
2000	2500	903/3			-195 -305	-195 -370	-195 -475	-195 -635	
2500	3150	K	2/0/		-240 -375	-240 -450	-240 -570	-240 -780	

Tabela 20 - Afastamentos limites para furos R

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

												Afasta	ament	o: µm
no	nensão ominal mm)				R		K			nc	nensão ominal mm)		R	
Acima	Até e inclusive	3	4	5	6	7	8	9	10	Acima	Até e inclusive	6	7	8
-	3	-10 -12	-10 -13	-10 -14	-10 -16	-10 -20	-10 -24	-10 -35	-10 -50	500	560	-150 -194	-150 -220	-150 -260
3	6	-14 -16,5	-13,5 -17,5	-14 -19	-12 -20	-11 -23	-15 -33	-15 -45	-15 -63	560	630	-155 -199	-155 -225	-155 -265
6	10	-18 -20,5	-17,5 -21,5	-17 -23	-16 -25	-13 -28	-19 -41	-19 -55	-19 -77	630	710	-175 -225	-175 -255	-175 -300
10	18	-22 -25	-21 -26	-20 -28	-20 -31	-16 -34	-23 -50	-23 -66	-23 -93	710	800	-185 -235	-185 -265	-185 -310
18	30	-26,5 -30,5	-26 -32	-25 -34	-24 -37	-20 -41	-28 -61	-28 -80	-10 -112	800	900	-210 -266	-210 -300	-210 -350
30	50	-32,5 -36,5	-31 -38	-30 -41	-29 -45	-25 -50	-34 -73	-34 -96	-34 -134	900	1000	-220 -276	-220 -310	-220 -360
50	65			-36 -49	-35 -54	-30 -60	-41 -87			1000	1120	-250 -316	-250 -355	-250 -415
65	80			-38 -51	-37 -56	-32 -62	-43 -89			1120	1250	-260 -326	-260 -365	-260 -425
80	100			-46 -61	-44 -66	-38 -73	-51 -105			1250	1400	-300 -378	-300 -425	-300 -495
100	120			-49 -64	-47 -69	-41 -76	-54 -108			1400	1600	-330 -408	-330 -455	-330 -525

/continua

no	nensão ominal mm)				F	₹			
Acima	Até e inclusive	3	4	5	6	7	8	9	10
120	140			-57 -75	-56 -81	-48 -88	-63 -126		
140	160			-59 -77	-58 -83	-50 -90	-65 -128		
160	180			-62 -80	-61 -86	-53 -93	-68 -131		
180	200			-71 -91	-68 -97	-60 -106	-77 -149		25
200	225			-74 -94	-71 -100	-63 -109	-80 -152	72	300
225	250			-78 -98	-75 -104	-67 -113	-84 -156	(Icel)	\$
250	280			-87 -110	-85 -117	-74 -126	-94 -175		
280	315			-91 -114	-89 -121	-78 -130	-98 -179		
315	355			-101 -126	-97 -133	-87 -144	-108 -197		
355	400			-107 -132	-103 -139	-93 -150	-114 -203		
400	450			-119 -146	-113 -153	-103 -166	-126 -223		
450	500		7,	-125 -152	-119 -159	-109 -172	-132 -229		

	n	mensão ominal (mm)		R	
	Acima	Até e inclusive	(G	7	8
	1600	1800	-370 -462	-370 -520	-370 -600
	1800	2000	-400 -492	-400 -550	-400 -630
	2000	2240	-440 -550	-440 -615	-440 -720
	2240	2500	-460 -570		-460 -740
	2500	2800	-550 -685	-550 -760	-550 -880
•	2800	3150	-580 -715		-580 -910

Tabela 21 - Afastamentos limites para furos S

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

		3										Afas	stamen	to: µm
n	mensão ominal (mm)	delig	S		S	3				nc	nensão ominal mm)		S	
Acima	Até e inclusive	3	24	5	6	7	8	9	10	Acima	Até e inclusive	6	7	8
	3	-14 -16	-14 -17	-14 -18	-14 -20	-14 -24	-14 -28	-14 -39	-14 -54	500	560	-280 -324	-280 -350	-280 -390
3	6	-18 -20,5	-17,5 -21,5	-18 -23	-16 -24	-15 -27	-19 -37	-19 -49	-19 -67	560	630	-310 -354	-310 -380	-310 -420
6	10	-22 -24,5	-21,5 -25,5	-21 -27	-20 -29	-17 -32	-23 -45	-23 -59	-23 -81	630	710	-340 -390	-340 -420	-340 -465
10	18	-27 -30	-26 -31	-25 -33	-25 -36	-21 -39	-28 -55	-28 -71	-28 -98	710	800	-380 -430	-380 -460	-380 -505
18	30	-33,5 -37,5	-33 -39	-32 -41	-31 -44	-27 -48	-35 -68	-35 -87	-35 -119	800	900	-430 -486	-430 -520	-430 -570
30	50	-41,5 -45,5	-40 -47	-39 -50	-38 -54	-34 -59	-43 -82	-43 -105	-43 -143	900	1000	-470 -526	-470 -560	-470 -610
50	65			-48 -61	-47 -66	-42 -72	-53 -99	-53 -127		1000	1120	-520 -586	-520 -625	-520 -685
65	80			-54 -67	-53 -72	-48 -78	-59 -105	-59 -133		1120	1250	-580 -646	-580 -685	-580 -745
80	100			-66 -81	-64 -86	-58 -93	-71 -125	-71 -158	Ce	1250	1400	-640 -718	-640 -765	-640 -835
100	120			-74 -89	-72 -94	-66 -101	-79 -133	-79 -166	J.	1400	1600	-720 -798	-720 -845	-720 -915
120	140			-86 -104	-85 -110	-77 -117	-92 -155	-92 -192		1600	1800	-820 -912	-820 -970	-820 -1050
140	160			-94 -112	-93 -118	-85 -125	-100 -163	-100 -200		1800	2000	-920 -1012	-920 -1070	
160	180			-102 -120	-101 -126	-93 -133	-108 -171	-108 -208		2000	2240	-1000 -1110	-1000 -1175	
180	200			-116 -136	-113 -142	-105 -151	-122 -194	-122 -237		2240	2500	-1100 -1210	-1100 -1275	
200	225			-124 -144	-121 -150	-113 -159	-130 -202	-130 -245		2500	2800	-1250 -1385		-1250 -1580
225	250			-134 -154	-131 -160	-123 -169	-140 -212	-140 -55		2800	3150	-1400 -1535	-1400 -1610	
250	280			-151 -174	-149 -181	-138 -190	-158 -239	-158 -288					/cc	ontinua

/continua	

n	mensão ominal (mm)				S	}			
Acima	Até e inclusive	3	4	5	6	7	8	9	10
280	315			-163 -186	-161 -193	-150 -202	-170 -251	-170 -300	
315	355			-183 -208	-179 -215	-169 -226	-190 -279	-190 -330	
355	400			-201 -226	-197 -233	-187 -244	-208 -297	-208 -348	
400	450			-225 -252	-219 -259	-209 -272	-232 -329	-232 -387	
450	500			-245 -272	-239 -279	-229 -292	-252 -349	-252 -407	100 E

Tabela 22 - Afastamentos limites para furos T e U

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

nor	ensão minal nm)		Т	-(A)					U			no	nensão ominal (mm)		Т			U	
Acima	Até e inclusive	5	6	7	8	5	6	7	8	9	10	Acima	Até e inclusive	6	7	8	6	7	8
-	3					-18 - 22	-18 -24	-18 -28	-18 -32	-18 -43	-18 -58	500	560	-400 -444	-400 -470	-400 -510	-600 -644	-600 -670	-600 -710
3	6				70	- 22 - 27	-20 -28	-19 -31	-23 -41	-23 -53	-23 -71	560	630	-450 -494	-450 -520	-450 -560	-660 -704	-660 -730	-660 -770
6	10			13.0	10/6	- 26 - 32	-25 -34	-22 -37	-28 -50	-28 -64	-28 -86	630	710	-500 -550	-500 -580	-500 -625	-740 -790	-740 -820	-740 -865
10	18		ii.	0/6		- 30 - 38	-30 -41	-26 -44	-33 -60	-33 -76	-33 -103	710	800	-560 -610	-560 -640	-560 -685	-840 -890	-840 -920	-840 -965
18	24	170	301.56			- 38 - 47	-37 -50	-33 -54	-41 -74	-41 -93	-41 -125	800	900	-620 -676	-620 -710	-620 -760	-940 -996	-940 -1030	-940 -1080
24	30	- 38 - 47	-37 -50	-33 -54	-41 -74	- 45 - 54	-44 -57	-40 -61	-48 -81	-48 -100	-48 -132	900	1000	-680 -736	-680 -770	-680 -820	-1050 -1106	-1050 -1140	-1050 -1190
30	40	- 44 - 55	-43 -59	-39 -64	-48 -87	- 56 - 67	-55 -71	-51 -76	-60 -99	-60 -122	-60 -160	1000	1120	-780 -846	-780 -885	-780 -945	-1150 -1216	-1150 -1255	-1150 -1315
40	50	- 50 - 61	-49 -65	-45 -70	-54 -93	- 66 - 77	-65 -81	-61 -86	-70 -109	-70 -132	-70 -170	1120	1250	-840 -906	-840 -945	-840 -1005	-1300 -1366	-1300 -1405	-1300 -1465
50	65		-60 -79	-55 -85	-66 -112		-81 -100	-76 -106	-87 -133	-87 -161	-87 -207	1250	1400	-960 -1038	-960 -1085	-960 -1155	-1450 -1528	-1450 -1575	-1450 -1645

355

400

450

400

450

500

-283

-319

-317

-357

-347

-387

-273

-330

-307

-370

-337

-400

-294

-383

-330

-427

-360

-457

-424

-460 -471

-477

-517

-527

-567

-414

-467

-530

-517

-580

-435

-524

-490

-587

-540

-637

-435

-575

-490

-645

-540

-695

-435

-665

-490

-740

-540

-790

/contin	uação																			
nor	ensão minal nm)	100	7	Γ(A)					U				nc	nensão ominal (mm)		Т			U	
Acima	Até e inclusive	5	6	7	8	5	6	7	8	9	10		Acima	Até e inclusive	6	7	8	6	7	8
65	80		-69 -88	-64 -94	-75 -121		-96 -115	-91 -121	-102 -148	-102 -176			1400	1600	-1050 -1128	-1050 -1175	-1050 -1245		-1600 -1725	-1600 -1795
80	100		-84 -106	-78 -113	-91 -145		-117 -139	-111 -146	-124 -178	-124 -211	-124 -264		1600	1800	-1200 -1292	-1200 -1350	-1200 -1430		-1850 -2000	-1850 -2080
100	120		-97 -119	-91 -126	-104 -158	32	-137 -159	-131 -166	-144 -198	-144 -231	l		1800	2000	-1350 -1442	-1350 -1500	-1350 -1580		-2000 -2150	-2000 -2230
120	140		-115 -140	l	-122 -185	•	-163 -188	-155 -195	-170 -233	-170 -270		•	2000	2240	-1500 -1610	-1500 -1675	-1500 -1780	-2300 -2410	-2300 -2475	-2300 -2580
140	160		-127 -152	-119 -159	-134 -197		-183 -208	-175 -215	-190 -253	-190 -290		•	2240	2500	-1650 -1760	-1650 -1825	-1650 -1930	-2500 -2610	-2500 -2675	-2500 -2780
160	180		-139 -164	-131 -171	-146 -209		-203 -228	-195 -235	-210 -273	-210 -310	-210 -370	•	2500	2800	-1900 2035	-1900 -2110	-1900 -2230	-2900 -3035	-2900 -3110	-2900 -3230
180	200		-157 -186	-149 -195	-166 -238		-227 -256	-219 -265	-236 -308	-236 -351	-236 -421		2800	3150	-2100 -2235	-2100 -2310	-2100 -2430		-3200 -3410	-3200 -3530
200	225		-171 -200	-163 -209	-180 -252		-249 -278	-241 -287	-258 -330	-258 -373	-258 -443	·								
225	250		-187 -216	-179 -225	-196 -268		-275 -304	-267 -313	-284 -356	-284 -399	-284 -469									
250	280		-209 -241	-198 -250	-218 -299		-306 -338	-295 -347	-315 -396	-315 -445	-315 -525									
280	315		-231 -263	-220 -272	-240 -321		-341 -373	-330 -382	-350 -431	-350 -480	-350 -560			licensa	3					
315	355		-257 -293	-247 -304	-268 -357		-379 -415	-369 -426	-390 -479	-390 -530	-390 -620			Ç	%					

⁽A) As classes T5 a T8 (inclusive) não foram tabeladas para dimensões nominais menores ou iguais a 24 mm. Recomenda-se que sejam substituídas pelas classes de tolerância U5 a U8 (inclusive). Entretanto, se as classes de tolerâncias T5 a T8 (inclusive) forem requeridas, elas podem ser calculadas conforme o estabelecido nesta Norma.

Tabela 23 - Afastamentos limites para furos V, X e $Y^{(A)}$

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

														Afa	stamen	ito: μm
nor	ensão minal nm)		V	(B))	X				N. S.	Y (C)		
Acima	Até e inclusive	5	6	7	8	5	6	7	8	9	10	6	0-6/1	8	9	10
-	3					-20 -24	-20 -26	-20 -30	-20 -34	-20 -45	-20 -60	16/1/5				
3	6					-27 -32	-25 -33	-24 -36	-28 -46	-28 -58	-28 -76	lis.				
6	10					-32 -38	-31 -40	-28 -43	-34 -56	-34 -70	-34 -92					
10	14					-37 -45	-37 -48	-33 -51	-40 -67	-40 -83	-40 -110					
14	18	-36 -44	-36 -47	-32 -50	-39 -66	-42 -50	-42 -53	-38 -56	-45 -72	-45 -88	-45 -115					
18	24	-44 -53	-43 -56	-39 -60	-47 -80	-51 -60	-50 -63	-46 -67	-54 -87	-54 -106	-54 -138	-59 -72	-55 -76	-63 -96	-63 -115	-63 -147
24	30	-52 -61	-51 -64	-47 -68	-55 -88	-61 -70	-60 -73	-56 -77	-64 -97	-64 -116	-64 -148	-71 -84	-67 -88	-75 -108	-75 -127	-75 -159
30	40	-64 -75	-63 -79	-59 -84	-68 -107	-76 -87	-75 -91	-71 -96	-80 -119	-80 -142	-80 -180	-89 -105	-85 -110	-94 -133	-94 -156	-94 -194
40	50	-77 -88	-76 -92	-72 -97	-81 -120	-93 -104	-92 -108	-88 -113	-97 -136	-97 -159	-97 -197	-109 -125	-105 -130	-114 -153	-114 -176	-114 -214
50	65		-96 -115	-91 -121	-102 -148		-116 -135	-111 -141	-122 -168	-122 -196		-138 -157	-133 -163	-144 -190		
65	80		-114 -133	-109 -139	-120 -166		-140 -159	-135 -165	-146 -192	-146 -220		-168 -187	-163 -193	-174 -220		
80	100		-139 -161	-133 -168	-146 -200		-171 -193	-165 -200	-178 -232	-178 -265		-207 -229	-201 -236	-214 -268		
100	120	"//6	-165 -187	-159 -194	-172 -226		-203 -225	-197 -232	-210 -264	-210 -297		-247 -269	-241 -276	-254 -308		
120	140	100	-195 -220	-187 -227	-202 -265		-241 -266	-233 -273	-248 -311	-248 -348		-293 -318	-285 -325	-300 -363		
140	160		-221 -246	-213 -253	-228 -291		-273 -298	-265 -305	-280 -343	-280 -380		-333 -358	-325 -365	-340 -403		
160	180		-245 -270	-237 -277	-252 -315		-303 -328	-295 -335	-310 -373	-310 -410		-373 -398	-365 -405	-380 -443		
180	200		-275 -304	-267 -313	-284 -356		-341 -370	-333 -379	-350 -422	-350 -465		-416 -445	-408 -454	-425 -497		

/continuação

nor	ensão minal nm)		V	(B)				×	(Y (C)		
Acima	Até e inclusive	-5	6	7	8	5	6	7	8	9	10	6	7	8	9	10
200	225		-301 -330	-293 -339	-310 -382		-376 -405	-368 -414	-385 -457	-385 -500		-461 -490	-453 -499	-470 -542		
225	250		-331 -360	-323 -369	-340 -412		-416 -445	-408 -454	-425 -497	-425 -540		-511 -540	-503 -549	-520 -592		
250	280		-376 -408	-365 -417	-385 -466		-466 -498	-455 -507	-475 -556	-475 -605		-571 -603	-560 -612	-580 -661		
280	315		-416 -448	-405 -457	-425 -506	Let C	-516 -548	-505 -557	-525 -606	-525 -655		-641 -673	-630 -682	-650 -731		
315	355		-464 -500	-454 -511	-475 -564	0185	-579 -615	-569 -626	-590 -679	-590 -730		-719 -755	-709 -766	-730 -819		
355	400		-519 -555	-509 -566	-530 -619) · ·	-649 -685	-639 -696	-660 -749	-660 -800		-809 -845	-799 -856	-820 -909		
400	450		-582 -622	-572 -635	-595 -692		-727 -767	-717 -780	-740 -837	-740 -895		-907 -947	-897 -960	-920 -1017		
450	500		-647 -687	-637 -700	-660 -757		-807 -847	-797 -860	-820 -917	-820 -975		-987 -1027	-977 -1040	-1000 -1097		

⁽A) Os afastamentos fundamentais V, X e Y não são previstos para dimensões nominais maiores que 500 mm.

... mm. Recomen Jancia Y6 a Y10 (inclusiv

⁽B) As classes de tolerância V5 a V8 (inclusive) não foram tabeladas para dimensões nominais menores ou iguais a 14 mm. Recomenda-se que sejam substituídas pelas classes de tolerância X5 a X8 (inclusive). Entretanto, se as classes de tolerância V5 a V8 forem especialmente requeridas, elas podem ser calculadas conforme o estabelecido nesta Norma.

⁽c) As classes de tolerância Y6 a Y10 (inclusive) não foram tabeladas para dimensões nominais menores ou iguais a 18 mm. Recomenda-se que sejam substituídas pelas classes de tolerância Z6 a Z10 (inclusive). Entretanto, se as classes de tolerância Y6 a Y10 (inclusive) forem requeridas, elas podem ser calculadas conforme o estabelecido nesta Norma.

Tabela 24 - Afastamentos limites para furos A e AZ^(A)

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

											Af	astame	nto: µm
no	nensão ominal (mm)			Z						Z	AOIS		
Acima	Até e inclusive	6	7	8	9	10	11	6	7	88/	9	10	11
-	3	-26 -32	-26 -36	-26 -40	-26 -51	-26 -66	-26 -86	-32 -38	-32 -42	-32 -46	-32 -57	-32 -72	-32 -92
3	6	-32 -40	-31 -43	-35 -53	-35 -65	-35 -83	-35 -110	-39 -47	-38 -50	-42 -60	-42 -72	-42 -90	-42 -117
6	10	-39 -48	-36 -51	-42 -64	-42 -78	-42 -100	-42 -132	-49 -58	-46 -61	-52 -74	-52 -88	-52 -110	-52 -142
10	14	-47 -58	-43 -61	-50 -77	-50 -93	-50 -120	-50 -160	-61 -72	-57 -75	-64 -91	-64 -107	-64 -134	-64 -174
14	18	-57 -68	-53 -71	-60 -87	-60 -103	-60 -130	-60 -170	-74 -85	-70 -88	-77 -104	-77 -120	-77 -147	-77 -187
18	24	-69 -82	-65 -86	-73 -106	-73 -125	-73 -157	-73 -203	-94 -107	-90 -111	-98 -131	-98 -150	-98 -182	-98 -228
24	30	-84 -97	-80 -101	-88 -121	-88 -140	-88 -172	-88 -218	-114 -127	-110 -131	-118 -151	-118 -170	-118 -202	-118 -248
30	40	-107 -123	-103 -128	-112 -151	-112 -174	-112 -212	-112 -272	-143 -159	-139 -164	-148 -187	-148 -210	-148 -248	-148 -308
40	50	-131 -147	-127 -152	-136 -175	-136 -198	-136 -292	-136 -296	-175 -191	-171 -196	-180 -219	-180 -242	-180 -280	-180 -340
50	65		-161 -191	-172 -218	-172 -246	-172 -292	-172 -362		-215 -245	-226 -272	-226 -300	-226 -346	-226 -416
65	80	00/10	-199 -229	-210 -256	-210 -284	-210 -330	-210 -400		-263 -293	-274 -320	-274 -348	-274 -394	-274 -464
80	100	Elpn	-245 -280	-258 -312	-258 -345	-258 -398	-258 -478		-322 -357	-335 -389	-335 -422	-335 -475	-335 -555
100	120		-297 -332	-310 -364	-310 -397	-310 -450	-310 -530		-387 -422	-400 -454	-400 -487	-400 -540	-400 -620
120	140		-350 -390	-365 -428	-365 -465	-365 -525	-365 -615		-455 -495	-470 -533	-470 -570	-470 -630	-470 -720
140	160		-400 -440	-415 -478	-415 -515	-415 -575	-415 -665		-520 -560	-535 -58	-535 -635	-535 -695	-535 -785
160	180		-450 -490	-465 -528	-465 -565	-465 -625	-465 -715		-585 -625	-600 -663	-600 -700	-600 -760	-600 -850
180	200		-503 -549	-520 -592	-520 -635	-520 -705	-520 -810		-653 -699	-670 -742	-670 -785	-670 -855	-670 -960

/continuação

no	mensão ominal (mm)			Z	·					Z	ΖA		
Acima	Até e inclusive	6	7	8	9	10	11	6	7	8	9	10	11
200	225	tch	-558 -604	-575 -647	-575 -690	-575 -760	-575 -865		-723 -769	-740 -812	-740 -855	-740 -925	-740 -1030
225	250	Nov	-623 -669	-640 -712	-640 -755	-640 -825	-640 -930		-803 -849	-820 -892	-820 -935	-820 -1005	-820 -1110
250	280		-690 -742	-710 -791	-710 -840	-710 -920	-710 -1030		-900 -952	-920 -1001	-920 -1050	-920 -1130	-920 -1240
280	315		-770 -822	-790 -871	-790 -920	-790 -1000	-790 -1110		-980 -1032	-1000 -1081	-1000 -1130	-1000 -1210	-1000 -1320
315	355		-879 -936	-900 -989	-900 -1040	-900 -1130	-900 -1260		-1129 -1186	-1150 -1239	-1150 -1290	-1150 -1380	-1150 -1510
355	400		-979 -1036	-1000 -1089	-1000 -1140	-1000 -1230	-1000 -1360		-1279 -1336	-1300 -1389	-1300 -1440	-1300 -1530	-1300 -1660
400	450		-1077 -1140	-1100 -1197	-1100 -1255	-1100 -1350	-1100 -1500		-1427 -1490	-1450 -1547	-1450 -1605	-1450 -1700	-1450 -1850
450	500		-1227 -1290	-1250 -1347	-1250 -1405	-1250 -1500	-1250 -1650		-1577 -1640	-1600 -1697	-1600 -1755	-1600 -1850	-1600 -2000

⁽A) Os afastamentos fundamentais Z e ZA não estão previstos para dimensões nominais maiores que 500 mm.

Tabela 25 - Afastamentos limites para furos ZB e ZC(A)

ES = Afastamento limite superior EI = Afastamento limite inferior

Afastamento: µm

Dimensão nominal (mm) ZB ZC Acima Até e inclusive 7 8 9 10 11 7 8 9 10 11 - 3 -40 -40 -40 -40 -60 -80 -80 -									<u> </u>			
Inclusive	nor	minal			ZB				Octu	ZC		
3 6 -46 -50 -50 -50 -50 -50 -70 -74 -85 -100 -120 3 6 -46 -50 -50 -50 -50 -76 -80 -80 -80 -80 -80 -80 -101 -128 -155 -155 -101 -128 -155 -155 -157 -106 -119 -133 -155 -187 10 14 -83 -90 -90 -90 -90 -123 -130 -130 -130 -130 -130 -130 -130 -141 -157 -173 -200 -240 14 18 -101 -108 -108 -108 -108 -143 -150 -150 -150 -150 -150	Acima		7	8	9	10	11	7	8	9	10	11
6 10 -61 -67 -67 -67 -67 -91 -97 -97 -97 -97 -97 -155 10 14 -83 -90 -90 -90 -90 -123 -130 -130 -130 -130 -130 -130 -130 -240 14 18 -101 -108 -108 -108 -108 -143 -150 -150 -150 -150 -150	-	3		_				l		_		
10 14 -83 -90 -90 -90 -90 -125 -157 -106 -119 -133 -155 -187 10 14 -83 -90 -90 -90 -90 -123 -130 -130 -130 -130 -130 -240 14 18 -101 -108 -108 -108 -108 -143 -150 -150 -150 -150	3	6	_							\	4/1	
14 18 -101 -108 -108 -108 -108 -108 -108 -108 -108 -108 -150 -150 -150 -150	6	10		_	_			_	_		N. Committee of the com	
	10	14						l				
	14	18									l	

nom	ensão ninal m)			ZB					ZC	Ch.	
Acima	Até e inclusive	7	8	9	10	11	7	8	9	10	11
18	24	-128 -149	-136 -169	-136 -188	-136 -220	-136 -266	-180 -201	-188 -221	-188 -240	-188 -272	-188 -318
24	30	-152 -173	-160 -193	-160 -212	-160 -244	-160 -290	-210 -231	-218 -251	-218 -270	-218 -302	-218 -348
30	40	-191 -216	-200 -239	-200 -262	-200 -300	-200 -360	-265 -290	-274 -313	-274 -336	-274 -374	-274 -434
40	50	-233 -258	-242 -281	-242 -304	-242 -342	-242 -402	-316 -341	-325 -364	-325 -387	-325 -425	-325 -485
50	65	-289 -319	-300 -346	-300 -374	-300 -420	-300 -490	-394 -424	-405 -451	-405 -479	-405 -525	-405 -595
65	80	-349 -379	-360 -406	-360 -434	-360 -480	-360 -550	-469 -499	-480 -526	-480 -554	-480 -600	-480 -670
80	100	-432 -467	-445 -499	-445 -532	-445 -585	-445 -665	-572 -607	-585 -639	-585 -672	-585 -725	-585 -805
100	120	-512 -547	-525 -579	-525 -612	-525 -665	-525 -745	-677 -712	-690 -744	-690 -777	-690 -830	-690 -910
120	140	-605 -645	-620 -683	-620 -720	-620 -780	-620 -870	-785 -825	-800 -863	-800 -900	-800 -960	-800 -1050
140	160	-685 -725	-700 -763	-700 -800	-700 -860	-700 -950	-885 -925	-900 -963	-900 -1000	-900 -1060	-900 -1150
160	180	-765 -805	-780 -843	-780 -880	-780 -940	-780 -1030	-985 -1025	-1000 -1063	-1000 -1100	-1000 -1160	-1000 -1250
180	200	-863 -909	-880 -952	-880 -995	-880 -1065	-880 -1170	-1133 -1179	-1150 -1222	-1150 -1265	-1150 -1335	-1150 -1440
200	225	-943 -989	-960 -1032	-960 -1075	-960 -1145	-960 -1250	-1233 -1279	-1250 -1322	-1250 -1365	-1250 -1435	-1250 -1540
225	250	-1033 -1079	-1050 -1122	-1050 -1165	-1050 -1235	-1050 -1340	-1333 -1379	-1350 -1422	-1350 -1465	-1350 -1535	-1350 -1640
250	280	-1180 -1232	-1200 -1281	-1200 -1330	-1200 -1410	-1200 -1520	-1530 -1582	-1550 -1631	-1550 -1680	-1550 -1760	-1550 -1870
280	315	-1280 -1332	-1300 -1381	-1300 -1430	-1300 -1510	-1300 -1620	-1680 -1732	-1700 -1781	-1700 -1830	-1700 -1910	-1700 -2020
315	355	-1479 -1536	-1500 -1589	-1500 -1640	-1500 -1730	-1500 -1860	-1879 -1936	-1900 -1989	-1900 -2040	-1900 -2130	-1900 -2260
355	400	-1629 -1686	-1650 -1739	-1650 -1790	-1650 -1880	-1650 -2010	-2079 -2136	-2100 -2189	-2100 -2240	-2100 -2330	-2100 -2460
400	450	-1827 -1890	-1850 -1947	-1850 -2005	-1850 -2100	-1850 -2250	-2377 -2440	-2400 -2497	-2400 -2555	-2400 -2650	-2400 -2800
450	500	-2077 -2140	-2100 -2197	-2100 -2255	-2100 -2350	-2100 -2500	-2577 -2640	-2600 -2697	-2600 -2755	-2600 -2850	-2600 -3000

⁽A) Os afastamentos fundamentais ZB e ZC não são previstos para dimensões nominais maiores que 500 mm.

Tabela 26 - Afastamentos limites para eixos a, b e $c^{\scriptscriptstyle{(A)}}$

es = Afastamento limite superior ei = Afastamento limite inferior

	3														Afas	tamen	to: µm
	ensão ninal m)	delis		a ^(B)					þ(В)					С		
Acima	Até e inclusive	9	10	11	12	13	8	9	10	11	12	13	8	9	10	11	12
-	3 ^{b)}	-270 -295	-270 -310	-270 -330	-270 -370	-270 -410	-140 -154	-140 -165	-140 -180	-140 -200	-140 -240	-140 -280	-60 -74	-60 -85	-60 -100	-60 -120	-60 -160
3	6	-270 -300	-270 -318	-270 -345	-270 -390	-270 -450	-140 -158	-140 -170	-140 -188	-140 -215	-140 -260	-140 -320	-70 -88	-70 -100	-70 -118	-70 -145	-70 -190
6	10	-280 -316	-280 -338	-80 -370	-280 -430	-280 -500	-150 -172	-150 -186	-150 -208	-150 -240	-150 -300	-150 -370	-80 -102	-80 -116	-80 -138	-80 -170	-80 -230
10	18	-290 -333	-290 -360	-290 -400	-290 -470	-290 -560	7-150 -177	-150 -193	-150 -220	-150 -260	-150 -330	-150 -420	-95 -122	-95 -138	-95 -165	-95 -205	-95 -275
18	30	-300 -352	-300 -384	-300 -430	-300 -510	-300 -630	-160 -193	-160 -212	-160 -244	-160 -290	-160 -370	-160 -490	-110 -143	-110 -162	-110 -194	-110 -240	-110 -320
30	40	-310 -372	-310 -410	-310 -470	-310 -560	-310 -700	-170 -209	-170 -232	-170 -270	-170 -330	-170 -420	-170 -560	-120 -159	-120 -182	-120 -220	-120 -280	-120 -370
40	50	-320 -382	-320 -420	-320 -480	-320 -570	-320 -710	-180 -219	-180 -242	-180 -280	-180 -340	-180 -430	-180 -570	-130 -169	-130 -192	-130 -230	-130 -290	-130 -380
50	65	-340 -414	-340 -460	-340 -530	-340 -640	-340 -800	-190 -236	-190 -264	-190 -310	-190 -380	-190 -490	-190 -650	-140 -186	-140 -214	-140 -260	-140 -330	-140 -440
65	80	-360 -434	-360 -480	-360 -550	-360 -660	-360 -820	-200 -246	-200 -274	-200 -320	-200 -390	-200 -500	-200 -660	-150 -196	-150 -224	-150 -270	-150 -340	-150 -450
80	100	-380 -467	-380 -520	-380 -600	-380 -730	-380 -920	-220 -274	-220 -307	-220 -360	-220 -440	-220 -570	-220 -760	-170 -224	-170 -257	-170 -310	-170 -390	-170 -520
100	120	-410 -497	-410 -550	-410 -630	-410 -760	-410 -950	-240 -294	-240 -327	-240 -380	-240 -460	-240 -590	-240 -780	-180 -234	-180 -267	-180 -320	-180 -400	-180 -530
120	140	-460 -560	-460 -620	-460 -710	-460 -860	-460 -1090	-260 -323	-260 -360	-260 -420	-260 -510	-260 -660	-260 -890	-200 -263	-200 -300	-200 -360	-200 -450	-200 -600
140	160	-520 -620	-520 -680	-520 -770	-520 -920	-520 -1150	-280 -343	-280 -380	-280 -440	-280 -530	-280 -680	-280 -910	-210 -273	-210 -310	-210 -370	-210 -460	-210 -610
160	180	-580 -680	-580 -740	-580 -830	-580 -980	-580 -1210	-310 -373	-310 -410	-310 -470	-310 -560	-310 -710	-310 -940	-230 -293	-230 -330	-230 -390	-230 -480	-230 -630
180	200	-660 -775	-660 -845	-660 -950	-660 -1120	-660 -1380	-340 -412	-340 -455	-340 -525	-340 -630	-340 -800	-340 -1060	-240 -312	-240 -355	-240 -425	-240 -530	-240 -700
200	225	-740 -855	-740 -925	-740 -1030	-740 -1200	-740 -1460	-380 -452	-380 -495	-380 -565	-380 -670	-380 -840	-380 -1100	-260 -332	-260 -375	-260 -445	-260 -550	-260 -720
225	250	-820 -935	-820 -1005	-820 -1110	-820 -1280	-820 -1540	-420 -492	-420 -535	-420 -605	-420 -710	-420 -880	-420 -1140	-280 -352	-280 -395	-280 -465	-280 -570	-280 -740
250	280	-920 -1050	-920 -1130	-920 -1240	-920 -1440	-920 -1730	-480 -561	-480 -610	-480 -690	-480 -800	-480 -1000	-480 -1290	-300 -381	-300 -430	-300 -510	-300 -620	-300 -820

/continuação

	ensão ninal m			a ^(B)					b	_j (B)					c	*	
Acima	Até e inclusive	9	10	11	12	13	8	9	10	11	12	13	8	9,0	10	11	12
280	315	-1050 -1180	-1050 -1260	-1050 -1370	-1050 -1570	-1050 -1860	-540 -621	-540 -670	-540 -750	-540 -860	-540 -1060	-540 -1350	-330 -411	-330 -460	-330 -540	-330 -650	-330 -850
315	355	-1200 -1340	-1200 -1430	-1200 -1560	-1200 -1770	-1200 -2090	-600 -689	-600 -740	-600 -830	-600 -960	-600 -1170	-600 -1490	-360 -449	-360 -500	-360 -590	-360 -720	-360 -930
355	400	-1350 -1490	-1350 -1580	-1350 -1710	-1350 -1920	-1350 -2240	-680 -769	-680 -820	-680 -910	-680 -1040	-680 -1250	-680 -1570	-400 -489	-400 -540	-400 -630	-400 -760	-400 -970
400	450	-1500 -1655	-1500 -1750	-1500 -1900	-1500 -2130	-1500 -2470	-760 -857	-760 -915		-760 -1160	-760 -1390	-760 -1730	-440 -537	-440 -595	-440 -690	-440 -840	-440 -1070
450	500	-1650 -1805	-1650 -1900	-1650 -2050	-1650 -2280	-1650 -2620	-840 -937	-840 -995	-840 -1090	-840 -1240	-840 -1470	-840 -1810	-480 -577	-480 -635	-480 -730	-480 -880	-480 -1110

⁽A) Os afastamentos fundamentais a, b e c não são previstos para dimensões nominais maiores que 500 mm.

Tabela 27 - Afastamentos limites para eixos cd e d

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

non	ensão ninal nm)			cd	(A)							d				
Acima	Até e inclusive	5	6	7	æ	9	10	5	6	7	8	9	10	11	12	13
-	3	-34 -38	-34 -40	-34 -44	-34 -48	-34 -59	-34 -74	-20 -24	-20 -26	-20 -30	-20 -34	-20 -45	-20 -60	-20 -80	-20 -120	-20 -160
3	6	-46 -51	-46 -54	-46 -58	-46 -64	-46 -76	-46 -94	-30 -35	-30 -38	-30 -42	-30 -48	-30 -60	-30 -78	-30 -105	-30 -150	-30 -210
6	10	-56 -62	-56 -65	-56 -71	-56 -78	-56 -92	-56 -114	-40 -46	-40 -49	-40 -55	-40 -62	-40 -76	-40 -98	-40 -130	-40 -190	-40 -260
10	18	3						-50 -58	-50 -61	-50 -68	-50 -77	-50 -93	-50 -120	-50 -160	-50 -230	-50 -320
18	30							-65 -74	-65 -78	-65 -86	-65 -98	-65 -117	-65 -149	-65 -195	-65 -275	-65 -395
30	50							-80 -91	-80 -96	-80 -105	-80 -119	-80 -142	-80 -180	-80 -240	-80 -330	-80 -470
50	80							-100 -113	-100 -119	-100 -130	-100 -146	-100 -174	-100 -220	-100 -290	-100 -400	-100 -560

⁽B) Os afastamentos fundamentais a, b não devem ser usados para quaisquer graus de tolerância em dimensões nominais menores ou iguais a 1 mm.

non	ensão ninal nm)	3		cd	(A)							d				
Acima	Até e inclusive	5 13	6	7	8	9	10	5	6	7	8	9	10	11	12	13
80	120		etch					-20 -135	-120 -142	-120 -155	-120 -174	-120 -207	-120 -260	-120 -340	-120 -470	-120 -660
120	180			ilas.				-145 -163	-145 -170	-145 -185	-145 -208	-145 -245	-145 -305	-145 -395	-145 -545	-145 -775
180	250			91	12 PE			-170 -190	-170 -199	-170 -216	-170 -242	-170 -285	-170 -355	-170 -460	-170 -630	-170 -890
250	315					35		-190 -213	-190 -222	-190 -242	-190 -271	-190 -320	-190 -400	-190 -510	-190 -710	-190 -1000
315	400					ب	7	-210 -235	-210 -246	-210 -267	-210 -299	-210 -350	-210 -440	-210 -570	-210 -780	-210 -1100
400	500							-230 -257	-230 -270	-230 -293	-230 -327	-230 -385	-230 -480	-230 -630	-230 -860	-230 -1200
500	630					V				-260 -330	-260 -370	-260 -435	-260 -540	-260 -700		
630	800									-290 -370	-290 -415	-290 -490	-290 -610	-290 -790		
800	1000									-320 -410	-320 -460	-320 -550	-320 -680	-320 -880		
1000	1250									-350 -455	-350 -515	-350 -610	-350 -770	-350 -1010		
1250	1600									-390 -515	-390 -585	-390 -700-	-390 890	-390 -1170		
1600	2000									-430 -580	-430 -660	-430 -800	-430 -1030	-430 -1350		
2000	2500									-480 -655	-480 -760	-480 -920	-480 -1180	-480 -1580		
2500	3150									-520 -730	-520 -850	-520 -1060	-520 -1380	-520 -1870		

⁽A) O afastamento fundamental intermediário cd é previsto principalmente para micromecanismos e relojoaria. Na necessidade de classes de tolerância envolvendo este afastamento fundamental em outra dimensão nominal, elas podem ser calculadas conforme o estabelecido nesta Norma.

Tabela 28 - Afastamentos limites para eixos e e ef

es = Afastamento limite superior ei = Afastamento limite inferior

													Afa	stamen	ito: μm
Dime nom (m	ninal			€)						ef ^(A)	.ec	Sign		
Acima	Até e inclusive	5	6	7	8	9	10	3	4	5	6	By By	8	9	10
-	3	-14 -18	-14 -20	-14 -24	-14 -28	-14 -39	-14 -54	-10 -12	-10 -13	-10 -14	-10 -16	-10 -20	-10 -24	-10 -35	-10 -50
3	6	-20 -25	-20 -28	-20 -32	-20 -38	-20 -50	-20 -68	-14 -16,5	-14 -18	-14 -19	-14 -22	-14 -26	-14 -32	-14 -44	-14 -62
6	10	-25 -31	-25 -34	-25 -40	-25 -47	-25 -61	-25 -83	-18 -20,5	-18 -24	-18 -24	-18 -27	-18 -33	-18 -40	-18 -54	-18 -76
10	18	-32 -40	-32 -43	-32 -50	-32 -59	-32 -75	-32 -102	. 6	estic						
18	30	-40 -49	-40 -53	-40 -61	-40 -73	-40 -92	-40 -124	!/7							
30	50	-50 -61	-50 -66	-50 -75	-50 -89	-50 -112	-50 -150								
50	80	-60 -73	-60 -79	-60 -90	-60 -106	-60 -134	-60 -180								
80	120	-72 -87	-72 -94	-72 -107	-72 -126	-72 -159	-72 -212								
120	180	-85 -103	-85 -110	-85 -125	-85 -148	-85 -185	-85 -245								
180	250	-100 -120	-100 -129	-100 -146	-100 -172	-100 -215	-100 -285								
250	315	-110 -133	-110 -142	-110 -162	-110 -191	-110 -240	-110 -320								
315	400	-125 -150	-125 -161	-125 -182	-125 -214	-125 -265	-125 -355								
400	500	-135 -162	-135 -175	-135 -198	-135 -232	-135 -290	-135 -385								
500	630	S*	-145 -189	-145 -215	-145 -255	-45 -320	-145 -425								
630	800		-160 -210	-160 -240	-160 -285	-160 -360	-160 -480								
800	1000		-170 -226	-170 -260	-170 -310	-170 -400	-170 -530								
1000	1250		-195 -261	-195 -300	-195 -360	-195 -455	-195 -615								

/continuação

Dime nom (m	ninal			•	e						ef ^(A)				
Acima	Até e inclusive	5	6	7	8	9	10	3	4	5	6	7	8	9	10
1250	1600	150 R	-220 -298	-220 -345	-220 -415	-220 -530	-220 -720								
1600	2000	7	-240 -332	-240 -390	-240 -470	-240 -610	-240 -840								
2000	2500		-260 -370	-260 -435	-260 -540	-260 -700	-260 -960								
2500	3150		-290 -425	-290 -500	-290 -620	-290 -830	-290 -1150								

⁽A) O afastamento fundamental intermediário ef é previsto principalmente para micromecanismos e relojoaria. Na necessidade de classes de tolerância envolvendo este afastamento fundamental em outra dimensão nominal, elas podem ser calculadas conforme o estabelecido nesta Norma.

Tabela 29 - Afastamentos limites para eixos f e fg

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

nor	ensão minal nm)					f						fç	J ^(A)				
Acima	Até e inclusive	3	4	5	6	7	8	9	10	3	4	5	6	7	8	9	10
-	3	-6 -8	-6 -9	-6 -10	-6 -12	-6 -16	-6 -20	-6 -31	-6 -46	-4 -6	-4 -7	-4 -8	-4 -10	-4 -14	-4 -18	-4 -29	-4 -44
3	6	-10 -12,5	-10 -14	-10 -15	-10 -18	-10 -22	-10 -28	-10 -40	-10 -58	-6 -8,5	-6 -10	-6 -11	-6 -14	-6 -18	-6 -24	-6 -36	-6 -54
6	10	-13 -15,5	-13 -17	-13 -19	-13 -22	-13 -28	-13 -35	-13 -49	-13 -71	-8 -10,5	-8 -12	-8 -14	-8 -17	-8 -23	-8 -30	-8 -44	-8 -66
10	18	-16 -19	-16 -21	-16 -24	-16 -27	-16 -34	-16 -43	-16 -59	-16 -86				2/10	0.			
18	30	-20 -24	-20 -26	20 -29	-20 -33	-20 -41	-20 -53	-20 -72	-20 -104					9/3	00-		
30	50	-25 -29	-25 -32	-25 -36	-25 -41	-25 -50	-25 -64	-25 -87	-25 -125						(01)	130	
50	80		-30 -38	-30 -43	-30 -49	-30 -60	-30 -76	-30 -104								Sin	
80	120		-36 -46	-36 -51	-36 -58	-36 -71	-36 -90	-36 -123									
120	180		-43 -55	-43 -61	-43 -68	-43 -83	-43 -106	-43 -143									

/continuação

no	nensão minal mm					f							fg ⁽	A)	. 8:	•	
Acima	Até e inclusive	3	4	5	6	7	8	9	10	3	4	5	6	70	8	9	10
180	250		-50 -64	-50 -70	-50 -79	-50 -96	-50 -122	-50 -165					000	Ous			
250	315		-56 -72	-56 -79	-56 -88	-56 -108	-56 -137	-56 -185				70	(e)pa				
315	400		-62 -80	-62 -87	-62 -98	-62 -119	-62 -151	-62 -202				E113					
400	500		-68 -88	-68 -95	-68 -108	-68 -131	-68 -165	-68 -223			196	<i>b</i>					
500	630				-76 -120	-76 -146	-76 -186	-76 -251		2000	3						
630	800				-80 -130	-80 -160	-80 -205	-80 -280	90%	ps.							
800	1000				-86 -142	-86 -176	-86 -226	-86 -316	7/2								
1000	1250				-98 -164	-98 -203	-98 -263	-98 -358									
1250	1600				-110 -188	-110 -235	-110 -305	-110 -420									
1600	2000				-120 -212	-120 -270	-120 -350	-120 -490									
2000	2500				-130 -240	-130 -305	-130 -410	-130 -570									
2500	3150				-145 -280	-145 -355	-145 -475	-145 -685									

⁽A) O afastamento fundamental intermediário fg é previsto principalmente para micromecanismos e relojoaria. Na necessidade de classes de tolerância envolvendo este afastamento fundamental em outra dimensão nominal, elas podem ser calculadas conforme estabelecido nesta Norma.

Tabela 30 - Afastamentos limites para eixos g

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µ	ım
----------------	----

	5							Afasta	mento: µm
non	ensão ninal nm)				ç	J			
Acima	Até e inclusive	3	4	5	6	7	8	9	10
	3	-2 -4	-2 -5	-2 -6	-2 -8	-2 -12	-2 -16	-2 -27	-2 -42
3	6	-4 -6,5	-4 -8	-4 -9	-4 -12	-4 -16	-4 -22	-4 -34	-4 -52
6	10	-5 -7,5	-5 -9	-5 -11	-5 -14	-5 -20	-5 -27	-5 -41	-5 -63

non	ensão ninal nm)				g	J			
Acima	Até e inclusive	3	4	5	6	7	8	9	10
10	S 18	-6 -9	-6 -11	-6 -14	-6 -17	-6 -24	-6 -33	-6 -49	-6 -76
18	30	-7 -11	-7 -13	-7 -16	-7 -20	-7 -28	-7 -40	-7 -59	-7 -91
30	50	-9 -13	-9 -16	-9 -20	-9 -25	-9 -34	-9 -48	-9 -71	-9 -109
50	80	Petro	-10 -18	-10 -23	-10 -29	-10 -40	-10 -56		
80	120	0/4	-12 -22	-12 -27	-12 -34	-12 -47	-12 -66		
120	180		-14 -26	-14 -32	-14 -39	-14 -54	-14 -77		
180	250		-15 -29	-15 -35	-15 -44	-15 -61	-15 -87		
250	315		-17 -33	-17 -40	-17 -49	-17 -69	-17 -98		
315	400		-18 -36	-18 -43	-18 -54	-18 -75	-18 -107		
400	500		-20 -40	-20 -47	-20 -60	-20 -83	-20 -117		
					7	3			
500	630				-22 -66	-22 -92	-22 -132		
630	800				-24 -74	-24 -104	-24 -149		
800	1000				-26 -82	-26 -116	-26 -166		
1000	1250				-28 -94	-28 -133	-28 -193	323	
1250	1600				-30 -108	-30 -155	-30 -225	Person	
1600	2000				-32 -124	-32 -182	-32 -262	Ola	35
2000	2500				-34 -144	-34 -209	-34 -314		·Ā.
2500	3150	-			-38 -173	-38 -248	-38 -368		

Tabela 31 - Afastamentos limites para eixos h

es = Afastamento limite superior ei = Afastamento limite inferior

	nensão									h			Shi						
	ominal mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^(A)	15 ^(A)	16 ^(A)	17	18
Acima	Até e inclusive						(µm)					Afastar	nentos			(mm)			
-	3 ^(A)	0 -0,8	0 -1,2	0 -2	0 -3	0 -4	0 -6	0 -10	0 -14	0 -25	0 -40	0-60	0 -0,1	0 -0,14	0 -0,25	0 -0,4	0 -0,6		
3	6	0 -1	0 -1,5	0 -2,5	0 -4	0 -5	0 -8	0 -12	0 -18	0 -30	0 -48	0 -75	0 -0,12	0 -0,18	0 -0,3	0 -0,48	0 -0,75	0 -1,2	0 -1,8
6	10	0 -1	0 -1,5	0 -2,5	0 -4	0 -6	0 -9	0 -15	0 -22	0 -36	0 -58	0 -90	0 -0,15	0 -0,22	0 -0,36	0 -0,58	0 -0,9	0 -1,5	0 -2,2
10	18	0 -1,2	0 -2	0 -3	0 -5	0 -8	0 -11	0 -18	0 -27	0 -43	0 -70	0 -110	0 -0,18	0 -0,27	0 -0,43	0 -0,7	0 -1,1	0 -1,8	0 -2,7
18	30	0 -1,5	0 -2,5	0 -4	9 0	0 -9	0 -13	0 -21	0 -33	0 -52	0 -84	0 -130	0 -0,21	0 -0,33	0 -0,52	0 -0,84	0 -1,3	0 -2,1	0 -3,3
30	50	0 -1,5	0 -2,5	0 -4	0 -7	0 -11	0 -16	0 -25	-39	0 -62	0 -100	0 -160	0 -0,25	0 -0,39	0 -0,62	0 -1	0 -1,6	0 -2,5	0 -3,9
50	80	0 -2	0 -3	0 -5	0 -8	0 -13	0 -19	0 -30	0 -46	0 -74	0 -120	0 -190	0 -0,3	0 -0,46	0 -0,74	0 -1,2	0 -1,9	0 -3	0 -4,6
80	120	0 -2,5	0 -4	0 -6	0 -10	0 -15	0 -22	0 -35	0 -54	0 -87	0 -140	0 -220	0 -0,35	0 -0,54	0 -0,87	0 -1,4	0 -2,2	0 -3,5	0 -5,4
120	180	0 -3,5	0 -5	0 -8	0 -12	0 -18	0 -25	0 -40	0 -63	0 -100	0 -160	0 -250	0 -0,4	0 -0,63	0 -1	0 -1,6	0 -2,5	0 -4	0 -6,3
180	250	0 -4,5	0 -7	0 -10	0 -14	0 -20	0 -29	0 -46	0 -72	0 -115	0 -185	0 -290	0 -0,46	0 -0,72	0 -1,15	0 -0,85	0 -2,9	0 -4,6	0 -7,2

	nensão									h									
	minal mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^(A)	15 ^(A)	16 ^(A)	17	18
Acima	Até e inclusive						(µm)	26 150				Afastar	nentos			(mm)			
250	315	0 -6	0 -8	0 -12	0 -16	0 -23	0 -32	0 -52	0 -81	0 -130	0 -210	0 -320	0 -0,52	0 -0,81	0 -1,3	0 -2,1	0 -3,2	0 -5,2	0 -8,1
315	400	0 -7	0 -9	0 -13	0 -18	0 -25	0 -36	0 -57	0 -89	0 -140	0 -230	0 -360	0 -0,57	0 -0,89	0 -1,4	0 -2,3	0 -3,6	0 -5,7	0 -8,9
400	500	0 -8	0 -10	0 -15	0 -20	0 -27	0 -40	0 -63	0 9	0 -155	0 -250	0 -400	0 -0,63	0 -0,97	0 -1,55	0 -2,5	0 -4	0 -6,3	0 -9,7
						(B)			,									
500	630	0 -9	0 -11	0 -16	0 -22	0 -32	0 -44	0 -70	0 -110	0 -175	0 -280	0 -440	0 -0,7	0 -1,1	0 -1,75	0 -2,8	0 -4,4	0 -7	0 -11
630	800	0 -10	0 -13	0 -18	0 -25	0 -36	0 -50	0 -80	0 -125	0 -200	0 -320	0 -500	0 -0,8	0 -1,25	0 -2	0 -3,2	0 -5	0 -8	0 -12,5
800	1000	0 -11	0 -15	0 -21	0 -28	0 -40	0 -56	0 -90	0 -140	0 -230	0 -360	0 -560	0 -0,9	0 -1,4	0 -2,3	0 -3,6	0 -5,6	0 -9	0 -14
1000	1250	0 -13	0 -18	0 -24	0 -33	0 -47	0 -66	0 -105	0 -165	0 -260	0 -420	0 -660	0 -1,05	0 -1,65	0 -2,6	0 -4,2	0 -6,6	0 -10,5	0 -16,5
1250	1600	0 -15	0 -21	0 -29	0 -39	0 -55	0 -78	0 -125	0 -195	0 -310	0 -500	0 -780	0 -1,25	0 -1,95	0 -3,1	0 -5	0 -7,8	0 -12,5	0 -19,5
1600	2000	0 -18	0 -25	0 -35	0 -46	0 -65	0 -92	0 -150	0 -230	0 -370	0 -600	0 -920	0 -1,5	0 -2,3	0 -3,7	0 -6	0 -9,2	0 -15	0 -23
2000	2500	0 -22	0 -30	0 -41	0 -55	0 -78	0 -110	0 -175	0 -280	0 -440	0 -700	0 -1100	0 -1,75	0 -2,8	0 -4,4	0 -7	0 -11	0 -17,5	0 -28
2500	3150	0 -26	0 -36	0 -50	0 -68	0 -96	0 -135	0 -210	0 -330	0 -540	0 -860	0 -1350	0 -2,1	0 -3,3	0 -5,4	0 -8,6	0 -13,5	0 -21	0 -33

⁽A) Os graus de tolerância IT14 a IT16 (inclusive) não devem ser usados para dimensões nominais menores ou iguais a 1 mm.
(B) Os valores dados no quadro, para graus de tolerância IT1 a IT5 (inclusive), para dimensões nominais maiores que 500 mm e menores ou iguais a 3150 mm, estão incluídos para uso experimental.

Tabela 32 - Afastamentos limites^(A) para eixos js

es = Afastamento limite superior ei = Afastamento limite inferior

	ensão									js ^{(l}	3)								
	minal mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^{C)}	15 ^{c)}	16 ^{C)}	17	18
Acima	Até e inclusive					(µr	m)					Afasta	mentos		(m	nm)			
-	3 ^(C)	± 0,4	± 0,6	± 1	± 1,5	± 2	± 3	± 5	±7	± 12,5	± 20	± 30	± 0,05	± 0,07	± 0,125	± 0,2	± 0,3		
3	6	± 0,5	± 0,75	± 1,25	± 2	± 2,5	± 4	± 6	±9	± 15	± 24	± 37,5	± 0,06	± 0,09	± 0,15	± 0,24	± 0,375	± 0,6	± 0,9
6	10	± 0,5	± 0,75	± 1,25	± 2	± 3	± 4,5	± 7,5	±11	± 18	± 29	± 45	± 0,075	± 0,11	± 0,18	± 0,29	± 0,45	± 0,75	± 1,1
10	18	± 0,6	± 1	± 1,5	± 2,5	± 4	± 5,5	± 9	±13,5	± 21,5	± 35	± 55	± 0,09	± 0,135	± 0,215	± 0,35	± 0,55	± 0,9	± 1,35
18	30	± 0,75	± 1,25	± 2	± 3	± 4,5	± 6,5	± 10,5	± 16,5	± 26	± 42	± 65	± 0,105	± 0,165	± 0,26	± 0,42	± 0,65	± 1,05	± 1,65
30	50	± 0,75	± 1,25	± 2	± 3,5	± 5,5	± 8	± 12,5	± 19,5	± 31	± 50	± 80	± 0,125	± 0,195	± 0,31	± 0,5	± 0,8	± 1,25	± 1,95
50	80	± 1	± 1,5	± 2,5	± 4	± 6,5	± 9,5	± 15	±23	± 37	± 60	± 95	± 0,15	± 0,23	± 0,37	± 0,6	± 0,95	± 1,5	± 2,3
80	120	± 1,25	± 2	± 3	± 5	± 7,5	± 11	± 17,5	±27	± 43,5	± 70	± 110	± 0,175	± 0,27	± 0,435	± 0,7	± 1,1	± 1,75	± 2,7
120	180	± 1,75	± 2,5	± 4	± 6	± 9	± 12,5	± 20	±31,5	± 50	± 80	± 125	± 0,2	± 0,315	± 0,5	± 0,8	± 1,25	± 2	± 3,15
180	250	± 2,25	± 3,5	± 5	± 7	± 10	± 14,5	± 23	±36	± 57,5	± 92,5	± 145	± 0,23	± 0,36	± 0,575	± 0,925	± 1,45	± 2,3	± 3,6
250	315	± 3	± 4	± 6	± 8	± 11,5	± 16	± 26	± 40,5	± 65	± 105	± 160	± 0,26	± 0,405	± 0,65	± 1,05	± 1,6	± 2,6	± 4,05
315	400	± 3,5	± 4,5	± 6,5	± 9	± 12,5	± 18	± 28,5	± 44,5	± 70	± 115	± 180	± 0,285	± 0,445	± 0,7	± 1,15	± 1,8	± 2,85	± 4,45
400	500	± 4	± 5	± 7,5	± 10	± 13,5	± 20	± 31,5	± 48,5	± 77,5	± 125	± 200	± 0,315	± 0,485	± 0,775	± 1,25	± 2	± 3,15	± 4,85
						(0) 180												
500	630	± 4,5	± 5,5	± 8	± 11	± 16	± 22	± 35	±55	± 87,5	± 140	± 220	± 0,35	± 0,55	± 0,875	± 1,4	± 2,2	± 3,5	± 5,5

Z	
W	
J	
ന	
ĆΊ	
$^{\infty}$	
Q	
ဖွ	

/continu	ação																		
	ensão									js ^{(E}	3)								
	minal nm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14 ^(C)	15 ^(C)	16 ^(C)	17	18
Acima	Até e inclusive		Afastamentos (μm) 5 ± 6,5 ± 9 ± 12,5 ± 18 ± 25 ± 40 ± 62,5 ± 100 ± 160 ± 250 ± 0,4 ± 0,625 ± 1 ± 1,6 ± 2,5 ± 4 ± 6,3														•		
630	800	± 5	± 6,5	± 9	± 12,5	± 18	± 25	± 40	±62,5	± 100	± 160	± 250	± 0,4	± 0,625	± 1	± 1,6	± 2,5	± 4	± 6,25
800	1000	± 5,5	± 7,5	± 10,5	± 14	± 20	± 28	± 45/	± 70	± 115	± 180	± 280	± 0,45	± 0,7	± 1,15	± 1,8	± 2,8	± 4,5	± 7
1000	1250	± 6,5	± 9	± 12	± 16,5	± 23,5	± 33	± 52,5	± 82,5	± 130	± 210	± 330	± 0,525	± 0,825	± 1,3	± 2,1	± 3,3	± 5,25	± 8,25
1250	1600	± 7,5	± 10,5	± 14,5	± 19,5	± 27,5	± 39	± 62,5	±97,5	± 155	± 250	± 390	± 0,625	± 0,975	± 1,55	± 2,5	± 3,9	± 6,25	± 9,75
1600	2000	± 9	± 12,5	± 17,5	± 23	± 32,5	± 46	± 75	± 115	± 185	± 300	± 460	± 0,75	± 1,15	± 1,85	± 3	± 4,6	± 7,5	± 11,5
2000	2500	± 11	± 15	± 20,5	± 27,5	± 39	± 55	± 87,5	± 140	± 220	± 350	± 550	± 0,875	± 1,4	± 2,2	± 3,5	± 5,5	± 8,75	± 14
2500	3150	± 13	± 18	± 25	± 34	± 48	± 67,5	± 105	± 165	± 270	± 430	± 675	± 1,05	± 1,65	± 2,7	± 4,3	± 6,75	± 10,5	± 16,5

(A) Para evitar repetição de valores iguais, a tabela lista os valores " $\pm x$ ". Isso é para ser interpretado como es = +x e ei = -x. Exemplo: $^{+0.23}_{-0.23} \mu m$.

(B) A tabela fornece os valores exatos derivados a partir de ± 1/2 , em μm ou mm. Para classes de tolerância js7 a js11 (inclusive), os valores com fração decimal de 0,5 μm devem ser arredondados, substituindo o valor exato pelo valor inteiro inferior, como, por exemplo: ± 19,5 μm deve ser arredondado para ± 19 μm.

(c) Os graus tolerância IT14 a IT16 (inclusive) não devem ser usados para dimensões nominais menores ou iguais a 1 mm.

(D) Os valores dados no quadro, para graus de tolerância IT1 a IT5 (inclusive), para dimensões nominais maiores que 500 mm e menores ou iguais a 3150 mm, estão incluídos para uso experimental.

Tabela 33 - Afastamentos limites para eixos je k

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

														Af	astame	nto: µm
no	ensão minal mm)		j	j 								Κ		18/18/18		
Acima	Até e inclusive	5 ^(A)	6 ^(A)	7 ^(A)	8	3	4	5	6	7	8	9	10	11	12	13
-	3	±2	+4 -2	+6 -4	+8 -6	+2 0	+3 0	+4 0	+6 0	+10 0	+14 0	+25	+40 0	+60 0	+100 0	+140 0
3	6	+3 -2	+6 -2	+8 -4		+2,5 0	+5 +1	+6 +1	+9 +1	+13 +1	+18 0	+30 0	+48 0	+75 0	+120 0	+180 0
6	10	+4 -2	+7 -2	+10 -5		+2,5 0	+5 +1	+7 +1	+10 +1	+16 +1	+22 0	+36	+58 0	+90 0	+150 0	+220
10	18	+5 -3	+8 -3	+12 -6		+3 0	+6 +1	+9 +1	+12 +1	+19 +1	+27 0	+43 0	+70 0	+110 0	+180 0	+270 0
18	30	+5 -4	+9 -4	+13 -8		+4 0	+8 +2	+11 +2	+15 +2	+23 +2	+33	+52 0	+84 0	+130 0	+210 0	+330
30	50	+6 -5	+11 -5	+15 -10		+4 0	+9 +2	+13 +2	+18 +2	+27 +2	+39	+62 0	+100 0	+160 0	+250 0	+390
50	80	+6 -7	+12 -7	+18 -12			+10 +2	+15 +2	+21 +2	+32 +2	+46 0	+74 0	+120 0	+190 0	+300	+460 0
80	120	+6 -9	+13 -9	+20 -15			+13 +3	+18 +3	+25 +3	+38 +3	+54 0	+87 0	+140 0	+220 0	+350 0	+540 0
120	180	+7 -11	+14 -11	+22 -18	P		+15 +3	+21 +3	+28 +3	+43 +3	+63 0	+100 0	+160 0	+250 0	+400	+630 0
180	250	+7 -13	+16 -13	+25 -21	Son		+18 +4	+24 +4	+33 +4	+50 +4	+72 0	+115 0	+185 0	+290 0	+460 0	+720 0
250	315	+7 -16	±16	±26			+20 +4	+27 +4	+36 +4	+56 +4	+81 0	+130 0	+210 0	+320 0	+520 0	+810 0
315	400	+7 -18	±18	+29 -28			+22 +4	+29 +4	+40 +4	+61 +4	+89	+140 0	+230 0	+360 0	+570 0	+890
400	500	+7 -20	±20	+31 -32			+25 +5	+32 +5	+45 +5	+68 +5	+97 0	+155 0	+250 0	+400 0	+630 0	+970 0
500	630	21.							+44 0	+70 0	+110 0	+175 0	+280 0	+440 0	+700 0	+1100 0
630	800								+50 0	+80 0	+125 0	+200	+320	+500 0	+800	+1250 0
800	1000								+56 0	+90 0	+140 0	+230 0	+360 0	+560 0	+900 0	+1400 0
1000	1250								+66 0	+105 0	+165 0	+260 0	+420 0	+660 0	+1050 0	+1650 0

/continuação

no	ensão minal nm)		j								I	<				
Acima	Até e inclusive	5 ^(A)	6 ^(A)	7 ^(A)	8	3	4	5	6	7	8	9	10	11	12	13
1250	1600	60	25						+78 0	+125 0	+195 0	+310 0	+500 0	+780 0	+1250 0	+1950 0
1600	2000		COL						+92 0	+150 0	+230 0	+370 0	+600 0	+920 0	+1500 0	+2300
2000	2500			200	50				+110 0	+175 0	+280 0	+440 0	+700 0	+1100 0	+1750 0	+2800
2500	3150				CIT	3			+135 0	+210 0	+330 0	+540 0	+860 0	+1350 0	+2100 0	+3300

⁽A) Onde os valores para j5, j6 e j7 são mostrados como "± x", eles são idênticos aos de classe de tolerância js5, js6 e js7, para estes grupos de dimensões nominais.

Notas: a) Os valores correspondentes aos espaços em branco das Tabelas podem ser calculados a partir das bases dadas nesta Norma.

- b) Uma separação horizontal foi inserida para distinguir entre valores para dimensões nominais menores ou iguais a 500 mm e aqueles maiores que 500 mm, os quais foram originados de bases diferentes.
- c) As notas a) e b) referem-se somente às Tabelas 11 a 33.

Tabela 34 - Afastamentos limites para eixos m e n

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

no	nensão ominal (mm)				m					F-9 90	n n				
Acima	Até e inclusive	3	4	5	6	7	8	9	3	4	50	6	7	8	9
-	3	+4 +2	+5 +2	+6 +2	+8 +2	+12 +2	+16 +2	+27 +2	+6 +4	+7 +4	+8 +4	+10 +4	+14 +4	+18 +4	+29 +4
3	6	+6,5 +4	+8 +4	+9 +4	+12 +4	+16 +4	+22 +4	+34 +4	+10,5 +8	+12 +8	+13 +8	+16 +8	+20 +8	+26 +8	+38 +8
6	10	+8,5 +6	+10 +6	+12 +6	+15 +6	+21 +6	+28 +6	+42 +6	+12,5 +10	+14 +10	+16 +10	+19 +10	+25 +10	+32 +10	+46 +10
10	18	+10 +7	+12 +7	+15 +7	+18 +7	+25 +7	+34 +7	+50 +7	+15 +12	+17 +12	+20 +12	+23 +12	+30 +12	+39 +12	+55 +12
18	30	+12 +8	+14 +8	+17 +8	+21 +8	+29 +8	+41 +8	+60 +8	+19 +15	+21 +15	+24 +15	+28 +15	+36 +15	+48 +15	+67 +15
30	50	+13 +9	+16 +9	+20 +9	+25 +9	+34 +9	+48 +9	+71 +9	+21 +17	+24 +17	+28 +17	+33 +17	+42 +17	+56 +17	+79 +17

no	nensão ominal (mm)				m						n	1	S	} '	
Acima	Até e inclusive	3	4	5	6	7	8	9	3	4	5	6	100	8	9
50	80		+19 +11	+24 +11	+30 +11	+41 +11				+28 +20	+33 +20	+39 +20	+50 +20		
80	120		+23 +13	+28 +13	+35 +13	+48 +13				+33 +23	+38 +23	+45 +23	+58 +23		
120	180		+27 +15	+33 +15	+40 +15	+55 +15				+39 +27	+45 +27	+52 +27	+67 +27		
180	250		+31 +17	+37 +17	+46 +17	+63 +17				+45 +31	+51 +31	+60 +31	+77 +31		
250	315		+36 +20	+43 +20	+52 +20	+72 +20			130	+50 +34	+57 +34	+66 +34	+86 +34		
315	400		+39 +21	+46 +21	+57 +21	+78 +21		(1)	3	+55 +37	+62 +37	+73 +37	+94 +37		
400	500		+43 +23	+50 +23	+63 +23	+86 +23				+60 +40	+67 +40	+80 +40	+103 +40		
500	630				+70 +26	+96 +26						+88 +44	+114 +44		
630	800				+80 +30	+110 +30						+100 +50	+130 +50		
800	1000				+90 +34	+124 +34						+112 +56	+146 +56		
1000	1250			88	+106 +40	+145 +40						+132 +66	+171 +66		
1250	1600		727		+126 +48	+173 +48						+156 +78	+203 +78		
1600	2000	20	0/0/		+150 +58	+208 +58						+184 +92	+242 +92		
2000	2500	CILLS			+178 +68	+243 +68						+220 +110	+285 +110		
2500	3150	2/			+211 +76	+286 +76						+270 +135	+345 +135		

Tabela 35 - Afastamentos limites para eixos p

es = Afastamento limite superior ei = Afastamento limite inferior

	C							Afastaı	mento: µ
no	mensão ominal (mm)				ŗ)			
Acima	Até e inclusive	3	4	5	6	7	8	9	10
-	3 %	+8 +6	+9 +6	+10 +6	+12 +6	+16 +6	+20 +6	+31 +6	+46 +6
3	6	+14,5 +12	+16 +12	+17 +12	+20 +12	+24 +12	+30 +12	+42 +12	+60 +12
6	10	+17,5 +15	+19 +15	+21 +15	+24 +15	+30 +15	+37 +15	+51 +15	+73 +15
10	18	+21 +18	+23 +18	+26 +18	+29 +18	+36 +18	+45 +18	+61 +18	+88 +18
18	30	+26 +22	+28 +22	+31 +22	+35 +22	+43 +22	+55 +22	+74 +22	+106 +22
30	50	+30 +26	+33 +26	+37 +26	+42 +26	+51 +26	+65 +26	+88 +26	+126 +26
50	80		+40 +32	+45 +32	+51 +32	+62 +32	+78 +32		
80	120		+47 +37	+52 +37	+59 +37	+72 +37	+91 +37		
120	180		+55 +43	+61 +43	+68 +43	+83 +43	+106 +43		
180	250		+64 +50	+70 +50	+79 +50	+96 +50	+122 +50		
250	315		+72 +56	+79 +56	+88 +56	+108 +56	+137		
315	400		+80 +62	+87 +62	+98 +62	+119 +62	+151 +62		
400	500		+88 +68	+95 +68	+108 +68	+131 +68	+165 +68	32	
500	630				+122 +78	+148 +78	+188 +78	CANON	
630	800				+138 +88	+168 +88	+213 +88	0	35
800	1000				+156 +100	+190 +100	+240 +100		Ä
1000	1250				+186 +120	+225 +120	+285 +120		

/continuação

no	ensão minal mm)					p		S.P.	
Acima	Até e inclusive	3	4	5	6	7	8	9	10
1250	1600				+218 +140	+265 +140	+335 +140		
1600	2000				+262 +170	+320 +170	+400 +170		
2000	2500				+305 +195	+370 +195	+475 +195		
2500	3150				+375 +240	+450 +240	+570 +240		

Tabela 36 - Afastamentos limites para eixos r

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

8

+260 +150

+265 +155

+300 +175

+310 +185

+350 +210

+360 +220

+415 +250

+425 +260

+495 +300

no	nensão ominal mm)					r	K				noi	ensão minal mm)		r
Acima	Até e inclusive	3	4	5	6	7	8	9	10		Acima	Até e inclusive	6	7
-	3	+12 +10	+13 +10	+14 +10	+16 +10	+20 +10	+24 +10	+35 +10	+50 +10		500	560	+194 +150	+220 +150
3	6	+17,5 +15	+19 +15	+20 +15	+23 +15	+27 +15	+33 +15	+45 +15	+63 +15		560	630	+199 +155	+225 +155
6	10	+21,5 +19	+23 +19	+25 +19	+28 +19	+34 +19	+41 +19	+55 +19	+77 +19	_	630	710	+225 +175	+255 +175
10	18	+26 +23	+28 +23	+31 +23	+34 +23	+41 +23	+50 +23	+66 +23	+93 +23		710	800	+235 +185	+265 +185
18	30	+32 +28	+34 +28	+37 +28	+41 +28	+49 +28	+61 +28	+80 +28	+112 +28	•	800	900	+266 +210	+300 +210
30	50	+38 +34	+41 +34	+45 +34	+50 +34	+59 +34	+73 +34	+96 +34	+134 +34	•	900	1000	+276 +220	+310 +220
50	65		+49 +41	+54 +41	+60 +41	+71 +41	+87 +41				1000	1120	+316 +250	+355 +250
65	80		+51 +43	+56 +43	+62 +43	+73 +43	+89 +43				1120	1250	+326 +260	+365 +260
80	100		+61 +51	+66 +51	+73 +51	+86 +51	+105 +51				1250	1400	+378 +300	+425 +300

no	nensão minal mm)	23			r	,					nor	ensão ninal nm)		r	
Acima	Até e inclusive	3	4	5	6	7	8	9	10		Acima	Até e inclusive	6	7	8
100	120		+64 +54	+69 +54	+76 +54	+89 +54	+108 +54				1400	1600	+408 +330	+455 +330	+525 +330
120	140		+75 +63	+81 +63	+88 +63	+103 +63	+126 +63				1600	1800	+462 +370	+520 +370	+600 +370
140	160		+77 +65	+83 +65	+90 +65	+105 +65	+128 +65				1800	2000	+492 +400	+550 +400	+630 +400
160	180		+80 +68	+86 +68	+93 +68	+108 +68	+131 +68				2000	2240	+550 +440	+615 +440	+720 +440
180	200		+91 +77	+97 +77	+106 +77	+123 +77	+149 +77				2240	2500	+570 +460	+635 +460	+740 +460
200	225		+94 +80	+100 +80	+109 +80	+126 +80	+152 +80	T N			2500	2800	+685 +550	+760 +550	+880 +550
225	250		+98 +84	+104 +84	+113 +84	+130 +84	+156 +84	7			2800	3150	+715 +580	+790 +580	+910 +580
250	280		+110 +94	+117 +94	+126 +94	+146 +94	+175 +94								
280	315		+114 +98	+121 +98	+130 +98	+150 +98	+179 +98								
315	355		+126 +108	+133 +108	+144 +108	+165 +108	+197 +108			(co	2000				
355	400		+132 +114	+139 +114	+150 +114	+171 +114	+203 +114			J	300				
400	450		+146 +126	+153 +126	+166 +126	+189 +126	+223 +126				150	O,			
450	500		+152 +132	+159 +132	+172 +132	+195 +132	+229 +132					exclusiva			
	•			•	•	•			<u> </u>			9	32		
													PE		
														035	7
														7.	7

nor	ensão ninal nm)		r	
Acima	Até e inclusive	6	7	8
1400	1600	+408 +330	+455 +330	+525 +330
1600	1800	+462 +370	+520 +370	+600 +370
1800	2000	+492 +400	+550 +400	+630 +400
2000	2240	+550 +440	+615 +440	+720 +440
2240	2500	+570 +460	+635 +460	+740 +460
2500	2800	+685 +550	+760 +550	+880 +550
2800	3150	+715 +580	+790 +580	+910 +580

Tabela 37 - Afastamentos limites para eixos s

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

													Af	astame	nto: µm
no	nensão ominal mm)				;	6						mensão nominal (mm)	Selfo	S	
Acima	Até e inclusive	3	4	5	6	7	8	9	10		Acima	Até e inclusive	6	7	8
-	3	+16 +14	+17 +14	+18 +14	+20 +14	+24 +14	+28 +14	+39 +14	+54 +14		500	560	+324 +280	+350 +280	+390 +280
3	6	+21,5 +19	+23 +19	+24 +19	+27 +19	+31 +19	+37 +9	+49 +19	+67 +19		560	630	+354 +310	+380 +310	+420 +310
6	10	+25,5 +23	+27 +23	+29 +23	+32 +23	+38 +23	+45 +23	+59 +23	+81 +23	200	630	710	+390 +340	+420 +340	+465 +340
10	18	+31 +28	+33 +28	+36 +28	+39 +28	+46 +28	+55 +28	+71 +28	+98 +28	20	710	800	+430 +380	+460 +380	+505 +380
18	30	+39 +35	+41 +35	+44 +35	+48 +35	+56 +35	+68 +35	+87 +35	+119 +35		800	900	+486 +430	+520 +430	+570 +430
30	50	+47 +43	+50 +43	+54 +43	+59 +43	+68 +43	+82 +43	+105 +43	+143 +43		900	1000	+526 +470	+560 +470	+610 +470
50	65		+61 +53	+66 +53	+72 +53	+83 +53	+99 +53	+127 +53			1000	1120	+586 +520	+625 +520	+685 +520
65	80		+67 +59	+72 +59	+78 +59	+89 +59	+105 +59	+133 +59			1120	1250	+646 +580	+685 +580	+745 +580
80	100		+81 +71	+86 +71	+93 +71	+106 +71	+125 +71	+158 +71			1250	1400	+718 +640	+765 +640	+835 +640
100	120		+89 +79	+94 +79	+101 +79	+114 +79	+133 +79	+166 +79			1400	1600	+798 +720	+845 +720	+915 +720
120	140		+104 +92	+110 +92	+117 +92	+32 +92	+155 +92	+192 +92			1600	1800	+912 +820	+970 +820	+1050 +820
140	160		+112 +100	+118 +100	+125 +100	+140 +100	+163 +100	+200 +100			1800	2000	+1012 +920	+1070 +920	+1150 +920
160	180		+120 +108	+126 +108	+133 +108	+148 +108	+171 +108	+208 +108			2000	2240 +1000		+1175 +1000	+1280
180	200	2/2	+136 +122	+142 +122	+151 +122	+168 +122	+194 +122	+237 +122			2240	2500			+1380 +1250
200	225		+144 +130	+150 +130	+159 +130	+176 +130	+202 +130	+245 +130			2500	2800	l .	+1460 +1250	+1580 +1250
225	250		+154 +140	+160 +140	+169 +140	+186 +140	+212 +140	+255 +140			2800	3150		1	+1730 +1400
250	280		+174 +158	+181 +158	+190 +158	+210 +158	+239 +158	+288 +158							
		-	-	-		-	-	•	•						

/continuação

no	nensão minal mm)				S	6			
Acima	Até e inclusive	90 B	4	5	6	7	8	9	10
280	315	050	+186 +170	+193 +170	+202 +170	+222 +170	+251 +170	+300 +170	
315	355		+208 +190	+215 +190	+226 +190	+247 +190	+279 +190	+330 +190	
355	400		+226 +208	+233 +208	+244 +208	+265 +208	+297 +208	+348 +208	
400	450		+252 +232	+259 +232	+272 +232	+295 +232	+329 +232	+387 +232	
450	500		+272 +252	+279 +252	+292 +252	+315 +252	+349 +252	+407 +252	

Tabela 38 - Afastamentos limites para eixos t e u

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

no	ensão minal mm)		t ^{(A})				u			nom	ensão ninal nm)	t ^{(/}	N)		u	
Acima	Até e inclusive	5	6	7	8	5	6	7	8	9	Acima	Até e inclusive	6	7	6	7	8
-	3					+22 +18	+24 +18	+28 +18	+32 +18	+43 +18	500	560	+444 +400	+470 +400	+644 +600	+670 +600	+710 +600
3	6					+28 +23	+31 +23	+35 +23	+41 +23	+53 +23	560	630	+494 +450	+520 +450	+704 +660	+730 +660	+770 +660
6	10					+34 +28	+37 +28	+43 +28	+50 +28	+64 +28	630	710	+550 +500	+580 +500	+790 +740	+820 +740	+865 +740
10	18					+41 +33	+44 +33	+51 +33	+60 +33	+76 +33	710	800	+610 +560	+640 +560	+890 +840	+920 +840	+965 +840
18	24					+50 +41	+54 +41	+62 +41	+74 +41	+93 +41	800	900	+676 +620	+710 +620	+996 +940		+1080 +940
24	30	+50 +41	+54 +41	+62 +41	+74 +41	+57 +48	+61 +48	+69 +48	+81 +48	+100 +48	900	1000	+736 +680	+770 +680	+1106 +1050		+1190 +1050
30	40	+59 +48	+64 +48	+73 +48	+87 +48	+71 +60	+76 +60	+85 +60	+99 +60	+122 +60	1000	1120	+846 +780	+885 +780	+1216 +1150		
40	50	+65 +54	+70 +54	+79 +54	+93 +54	+81 +70	+86 +70	+95 +70	+109 +70	+32 +70	1120	1250	+906 +840	+945 +840	+1366 +1300	+1405 +1300	+1465 +1300
50	65	+79 +66	+85 +66	+96 +66	+112 +66	+100 +87	+106 +87	+117 +87	+133 +87	+161 +87	1250	1400	+1038 +960	+1085 +960	+1528 +1450		+1645 +1450

8

+1600

+2080

+1850

+2230

+2000

+2580

+2300

+2780

+2500

+3230

+2900

+3530

+3200

/continuação

	·uaşuo																
no	ensão minal mm)		t ^{(A}	N)				u			nom	ensão ninal m)	t ^{(/}	4)	8	u	
Acima	Até e inclusive	5	6	7	8	5	6	7	8	9	Acima	Até e inclusive	6	7	6	7	
65	80	+88 +75	+94 +75	+105 +75	+121 +75	+115 +102	+121 +102	+132 +102	+148 +102	+176 +102	1400	1600	+1128 +1050	+1175 +1050		+1725 +1600	
80	100	+106 +91	+113 +91	+126 +91	+145 +91	+139 +124	+146 +124	+159 +124	+178	+211 124	1600 +124	1800	+1292 +1200	+1350 +1200		+2000 +1850	
100	120	+119 +104	+126 +104	+139 +104	+158 +104	+159 +144	+166 +144	+179 +144	+198 +144	+231 +144	1800	2000	+1442 +1350	+1500 +1350		+2150 +2000	
120	140	+140 +122	+147 +122	+162 +122	+185 +122	+188 +170	+195 +170	+210 +170	+233 +170	+270 +170	2000	2240	+1610 +1500	+1675 +1500	+2410 +2300	+2475 +2300	
140	160	+152 +134	+159 +134	+174 +134	+197 +134	+208 +190	+215 +190	+230 +190	+253 +190	+290 +190	2240	2500	+1760 +1650	+1825 +1650		+2675 +2500	
160	180	+164 +146	+171 +146	+186 +146	+209 +146	+228 +210	+235 +210	+250 +210	+273 +210	+310 +210	2500	2800	+2035 +1900	+2110 +1900	+3035 +2900	+3110 +2900	
180	200	+186 +166	+195 +166	+212 +166	+238 +166	+256 +236	+265 +236	+282 +236	+308 +236	+351 +236	2800	3150	+2235 +2100	+2310 +2100		+3410 +3200	
200	225	+200 +180	+209 +180	+226 +180	+252 +180	+278 +258	+287 +258	+304 +258	+330 +258	+373 +258							
225	250	+216 +196	+225 +196	+242 +196	+268 +196	+304 +284	+313 +284	+330 +284	+356 +284	+399 +284							
250	280	+241 +218	+250 +218	+270 +218	+299 +218	+338 +315	+347 +315	+367 +315	+396 +315	+445 +315							
280	315	+263 +240	+272 +240	+292 +240	+321 +240	+373 +350	+382 +350	+402 +350	+431 +350	+480 +350							
315	355	+293 +268	+304 +268	+325 +268	+357 +268	+415 +390	+426 +390	+447 +390	+479 +390	+530 +390							
355	400	+319 +294	+330 +294	+351 +294	+383 +294	+460 +435	+471 +435	+492 +435	+524 +435	+575 +435							
400	450	+357 +330	+370 +330	+393 +330	+427 +330	+517 +490	+530 +490	+553 +490	+587 +490	+645 +490							
450	500	+387	+400	+423	+457	+567	+580	+603	+637	+695							

⁽A) As classes de tolerância t5 a t8 (inclusive) não foram tabeladas para dimensões nominais menores ou iguais a 24 mm. Recomenda-se que sejam substituídas pelas classes de tolerâncias u5 a u8 (inclusive). Entretanto, se as classes de tolerância t5 a t8 (inclusive) forem requeridas, elas podem ser calculadas conforme o estabelecido nesta Norma.

+540 +540 +540

+360 +360 +360 +360 +540 +540

Tabela 39 - Afastamentos limites para eixos v, x e $y^{\scriptscriptstyle{(A)}}$

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

	F3													Atas	tamen	to: µn
Dime nom (m		150	V ⁽	В)					<					y ^(C)		
Acima	Até e inclusive	5	6	7	8	5	6	7	8	9	10	6	7	8	9	10
-	3		Na	02		+24 +20	+26 +20	+30 +20	+34 +20	+45 +20	+60 +20					
3	6			1910	000	+33 +28	+36 +28	+40 +28	+46 +28	+58 +28	+76 +28					
6	10				0000	+40 +34	+43 +34	+49 +34	+56 +34	+70 +34	+92 +34					
10	14					+48 +40	+51 +40	+58 +40	+67 +40	+83 +40	+110 +40					
14	18	+47 +39	+50 +39	+57 +39	+66 +39	+53 +45	+56 +45	+63 +45	+72 +45	+88 +45	+115 +45					
18	24	+56 +47	+60 +47	+68 +47	+80 +47	+63 +54	+67 +54	+75 +54	+87 +54	+106 +54	+138 +54	+76 +63	+84 +63	+96 +63	+115 +63	+147 +63
24	30	+64 +55	+68 +55	+76 +55	+88 +55	+73 +64	+77 +64	+85 +64	+97 +64	+116 +64	+148 +65	+88 +75	+96 +75	+108 +75	+127 +75	+159 +75
30	40	+79 +68	+84 +68	+93 +68	+107 +68	+91 +80	+96 +80	+105 +80	+19 +80	+142 +80	+180 +80	+110 +94	+119 +94	+133 +94	+156 +94	+19 ⁴
40	50	+92 +81	+97 +81	+106 +81	+120 +81	+108 +97	+113 +97	+122 +97	+136 +97	+159 +97	+197 +97	+130 +114	+139 +114		+176 +114	
50	65	+115 +102		+132 +102			+141 +122	+152 +122		+196 +122	+242 +122	+163 +144	+174 +144	+190 +144		
65	80		+139 +120				+165 +146				+266 +146	+193 +174	+204 +174	+220 +174		
80	100	+161 +146	+168 +146	+181 +146			+200 +178		+232 +178		+318 +178	+236 +214	+249 +214	+268 +214		
100	120	+187 +172		+207 +172			+232 +210	+245 +210	+264 +210		+350 +210	+276 +254	+289 +254	+308 +254		
120	140	+220 +202	+227 +202	+242 +202		ı	+273 +248		+311 +248		+408 +248	+325 +300	+340 +300	+363 +300	2	
140	160	+246 +228	+253 +228	+268 +228			+305 +280	+320 +280	+343 +280		+440 +280	+365 +340	+380 +340	+403 +340	85	2
160	180	+270 +252		+292 +252			+335 +310		+373 +310		+470 +310	+405 +380	+420 +380	+443 +380		
180	200	+304 +284		+330 +284			+379 +350		+422 +350		+535 +350	+454 +425	+471 +425	+497 +425		

Dime nom (m	inal		V ⁽	В)					Κ					y ^(C)	*	
Acima	Até e inclusive	5	6	7	8	5	6	7	8	9	10	6	70	8	9	10
200	225	+330 +310	+339 +310	+356 +310	+382 +310	+405 +385		_	+457 +385	+500 +385	+570 +385	+499 +470	+516 +470	+542 +470		
225	250	+360 +340	+369 +340	+386 +340	+412 +340	+445 +425	_		+497 +425	+540 +425	+610 +425	+549 +520	+566 +520	+592 +520		
250	280	+408 +385	+417 +385	+437 +385	+466 +385			-	+556 +475	+605 +475	+685 +475	+612 +580	+632 +580	+661 +580		
280	315	+448 +425	+457 +425	+477 +425	+506 +425	+548 +525		+577 +525	+606 +525		+735 +525	+682 +650	+702 +650	+731 +650		
315	355	+500 +475	+511 +475	+532 +475	+564 +475	+615 +590		-	+679 +590	+730 +590	+820 +590	+766 +730	+787 +730	+819 +730		
355	400	+555 +530	+566 +530	+587 +530	+619 +530	+685 +660		+717 +660	+749 +660	+800 +660	+890 +660	+856 +820	+877 +820	+909 +820		
400	450	+622 +595	+635 +595	+658 +595	+692 +595				+837 +740	+895 +740	+990 +740	+960 +920	+983 +920	+1017 +920		
450	500	+687 +660	+700 +660	+723 +660	+757 +660	+847 +820	4 -	+883 +820	+917 +820		+1070 +820	+1040 +1000				_

⁽A) Os afastamentos fundamentais v, x e y não estão previstos para dimensões nominais maiores que 500 mm.

⁽B) As classes de tolerância v5 a v8 (inclusive) não foram tabeladas para dimensões nominais menores ou iguais a 14 mm. Recomenda-se que sejam substituídas pelas classes de tolerância x5 a x8 (inclusive). Entretanto, se as classes de tolerância v5 a v8 (inclusive) forem requeridas, elas podem ser calculadas conforme o estabelecido nesta Norma.

⁽C) As classes de tolerância y6 a y10 (inclusive) não foram tabeladas para dimensões nominais menores ou iguais a 18 mm. Recomenda-se que sejam substituídas pelas classes de tolerância z6 a z10 (inclusive). Entretanto, se as classes de tolerância y6 a y10 (inclusive) forem requeridas, elas podem ser calculadas conforme o estabelecido nesta Norma.

Tabela 40 - Afastamentos limites para eixos z e $za^{(A)}$

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

	53										At	astame	nto: µm
no	ensão minal mm)			Z	<u>'</u>					Z	a		
Acima	Até e inclusive	6	7	8	9	10	11	6	7	8	9	10	11
-	3	+32 +26	+36 +26	+40 +26	+51 +26	+66 +26	+86 +26	+38 +32	+42 +32	+46 +32	+57 +32	+72 +32	+92 +32
3	6	+43 +35	+47 +35	+53 +35	+65 +35	+83 +35	+110 +35	+50 +42	+54 +42	+60 +42	+72 +42	+90 +42	+117 +42
6	10	+51 +42	+57 +42	+64 +42	+78 +42	+100 +42	+132 +42	+61 +52	+67 +52	+74 +52	+88 +52	+110 +52	+142 +52
10	14	+61 +50	+68 +50	+7 7 +50	+93 +50	+120 +50	+160 +50	+75 +64	+82 +64	+91 +64	+107 +64	+134 +64	+174 +64
14	18	+71 +60	+78 +60	+87 +60	+103 +60	+130 +60	+170 +60	+88 +77	+95 +77	+104 +77	+120 +77	+147 +77	+187 +77
18	24	+86 +73	+94 +73	+106 +73	+125 +73	+157 +73	+203 +73	+111 +98	+119 +98	+131 +98	+150 +98	+182 +98	+228 +98
24	30	+101 +88	+109 +88	+121 +88	+140 +88	+172 +88	+218 +88	+131 +118	+139 +118	+151 +118	+170 +118	+202 +118	+248 +118
30	40	+128 +112	+137 +112	+151 +112	+174 +112	+212 +112	+272 +112	+164 +148	+173 +148	+187 +148	+210 +148	+248 +148	+308 +148
40	50	+152 +136	+161 +136	+175 +136	+198 +136	+236 +136	+296 +136	+196 +180	+205 +180	+219 +180	+242 +180	+280 +180	+340 +180
50	65	+191 +172	+202 +172	+218 +172	+246 +172	+292 +172	+362 +172	+245 +226	+256 +226	+272 +226	+300 +226	+346 +226	+416 +226
65	80	+229 +210	+240 +210	+256 +210	+284 +210	+330 +210	+400 +210	+293 +274	+304 +274	+320 +274	+348 +274	+394 +274	+464 +274
80	100	+280 +258	+293 +258	+312 +258	+345 +258	+398 +258	+478 +258	+357 +335	+370 +335	+389 +335	+422 +335	+475 +335	+555 +335
100	120	+332 +310	+345 +310	+364 +310	+397 +310	+450 +310	+530 +310	+422 +400	+435 +400	+454 +400	+487 +400	+540 +400	+620 +400
120	140	+390 +365	+405 +365	+428 +365	+465 +365	+525 +365	+615 +365	+495 +470	+510 +470	+533 +470	+570 +470	+630 +470	+720 +470
140	160	+440 +415	+455 +415	+478 +415	+515 +415	+575 +415	+665 +415	+560 +535	+575 +535	+598 +535	+635 +535	+695 +535	+785 +535
160	180	+490 +465	+505 +465	+528 +465	+565 +465	+625 +465	+715 +465	+625 +600	+640 +600	+663 +600	+700 +600	+760 +600	+850 +600
180	200	+549 +520	+566 +520	+592 +520	+635 +520	+705 +520	+810 +520	+699 +670	+716 +670	+742 +670	+785 +670	+855 +670	+960 +670

/continuação

no	nensão minal mm)			Ž	Z					Z	a	Sk.	
Acima	Até e inclusive	6	7	8	9	10	11	6	7	8	90	10	11
200	225	+604 +575	+621 +575	+647 +575	+690 +575	+760 +575	+865 +575	+769 +740	+786 +740	+812 +740	+855 +740	+925 +740	+1030 +740
225	250	+669 +640	+686 +640	+712 +640	+755 +640	+825 +640	+930 +640	+849 +820	+866 +820	+892 +820	+935 +820	+1005 +820	+1110 +820
250	280	+742 +710	+762 +710	+791 +710	+840 +710	+920 +710	+1030 +710	+952 +920	+972 +920	+1001 +920	+1050 +920	+1130 +920	+1240 +920
280	315	+822 +790	+842 +790	+871 +790	+920 +790	+1000 +790	+1110 +790		+1052 +1000	+1081 +1000	+1130 +1000	+1210 +1000	+1320 +1000
315	355	+936 +900	+957 +900	+989 +900	+1040 +900	+1130 +900		+1186 +1150	+1207 +150	+1239 +1150	+1290 +1150	+1380 +1150	+1510 +1150
355	400	+1036 +1000	+1057 +1000	+1089 +1000	+1140 +1000	+1230 +1000	+1360 +1000	7	+1357 +1300	+1389 +1300	+1440 +1300	+1530 +1300	+1660 +1300
400	450	+1140 +1100		+1197 +1100			+1500 +1100		+1513 +1450	+1547 +1450	+1605 +1450	+1700 +1450	+1850 +1450
450	500	+1290 +1250	+1313 +1250	+1347 +1250	+1405 +1250	+1500 +1250	+1650 +1250		+1663 +1600	+1697 +1600	+1755 +1600	+1850 +1600	+2000 +1600

⁽A) Os afastamentos fundamentais z e za não estão previstos para dimensões nominais maiores que 500 mm.

Tabela 41 - Afastamentos limites para eixos zb e zc^(A)

es = Afastamento limite superior ei = Afastamento limite inferior

Afastamento: µm

		70		<i>'</i>						Arastam	ento: µm
no	ensão minal nm)	118/0		zb					zc		
Acima	Até e inclusive	7	8	9	10	11	7	8	9	10	11
-	TOKO TOKO	+50 +40	+54 +40	+65 +40	+80 +40	+100 +40	+70 +60	+74 +60	+85 +60	+100 +60	+120 +60
3	6	+62 +50	+68 +50	+80 +50	+98 +50	+125 +50	+92 +80	+98 +80	+110 +80	+128 +80	+155 +80
65	10	+82 +67	+89 +67	+103 +67	+125 +67	+157 +67	+112 +97	+119 +97	+133 +97	+155 +97	+187 +97
10	14	+108 +90	+117 +90	+133 +90	+160 +90	+200 +90	+148 +130	+157 +130	+173 +130	+200 +130	+240 +130
14	18	+126 +108	+135 +108	+151 +108	+178 +108	+218 +108	+168 +150	+177 +150	+193 +150	+220 +150	+260 +150

/continuação											
nor	ensão ninal nm)			zb					ZC		
Acima	Até e inclusive	7	8	9	10	11	7	8	9	10	11
18	24	+157 +136	+169 +136	+188 +136	+220 +136	+266 +136	+209 +188	+221 +188	+240 +188	+272 +188	+318 +188
24	30	+181 +160	+193 +160	+212 +160	+244 +160	+290 +160	+239 +218	+251 +218	+270 +218	+302 +218	+348 +218
30	40	+225 +200	+239 +200	+262 +200	+300 +200	+360 +200	+299 +274	+313 +274	+336 +274	+374 +274	+434 +274
40	50	+267 +242	+281 +242	+304 +242	+342 +242	+402 +242	+350 +325	+364 +325	+387 +325	+425 +325	+ 485 +325
50	65	+330 +300	+346 +300	+374 +300	+420 +300	+490 +300	+435 +405	+451 +405	+479 +405	+525 +405	+595 +405
65	80	+390 +360	+406 +360	+434 +360	+480 +360	+550 +360	+510 +480	+526 +480	+554 +480	+600 +480	+670 +480
80	100	+480 +445	+499 +445	+532 +445	+585 +445	+665 +445	+620 +585	+639 +585	+672 +585	+725 +585	+805 +585
100	120	+560 +525	+579 +525	+612 +525	+665 +525	+745 +525	+725 +690	+744 +690	+777 +690	+830 +690	+910 +690
120	140	+660 +620	+683 +620	+720 +620	+780 +620	+870 +620	+840 +800	+863 +800	+900 +800	+960 +800	+1050 +800
140	160	+740 +700	+763 +700	+800 +700	+860 +700	+950 +700	+940 +900	+963 +900	+1000 +900	+1060 +900	+1150 +900
160	180	+820 +780	+843 +780	+880 +780	+940 +780	+1030 +780	+1040 +1000	+1063 +1000	+1100 +1000	+1160 +1000	+1250 +1000
180	200	+926 +880	+952 +880	+995 +880	+1065 +880	+1170 +880	+1196 +1150	+1222 +1150	+1265 +1150	+1335 +1150	+1440 +1150
200	225	+1006 +960	+1032 +960	+1075 +960	+1145 +960	+1250 +960	+1296 +1250	+1322 +1250	+1365 +1250	+1435 +1250	+1540 +1250
225	250	+1096 +1050	+1122 +1050	+1165 +1050	+1235 +1050	+1340 +1050	+1396 +1350	+1422 +1350	+1465 +1350	+1535 +1350	+1640 +1350
250	280	+1252 +1200	+1281 +1200	+1330 +1200	+1410 +1200	+1520 +1200	+1602 +1550	+1631 +1550	+1680 +1550	+1760 +1550	+1870 +1550
280	315	+1352 +1300	+1381 +1300	+1430 +1300	+1510 +1300	+1620 +1300	+1752 +1700	+1781 +1700	+1830 +1700	+1910 +1700	+2020 +1700
315	355	+1557 +1500	+1589 +1500	+1640 +1500	+1730 +1500	+1860 +1500	+1957 +1900	+1989 +1900	+2040 +1900	+2130 +1900	+2260 +1900
355	400	+1707 +1650	+1739 +1650	+1790 +1650	+1880 +1650	+2010 +1650	+2157 +2100	+2189 +2100	+2240 +2100	+2330 +2100	+2460 +2100
400	450	+1913 +1850	+1947 +1850	+2005 +1850	+2100 +1850	+2250 +1850	+2463 +2400	+2497 +2400	+2555 +2400	+2650 +2400	+2800 +2400
450	500	+2163 +2100	+2197 +2100	+2255 +2100	+2350 +2100	+2500 +2100	+2663 +2600	+2697 +2600	+2755 +2600	+2850 +2600	+3000 +2600

^(A) Os afastamentos fundamentais zb e zc não estão previstos para dimensões nominais maiores que 500 mm.

ANEXO - Seleção de classes de tolerâncias para uso geral

A-1 Condições gerais

Este Anexo tem por finalidade evitar uma multiplicidade desnecessária de ferramentas e calibradores, através do estabelecimento de classes de tolerâncias preferenciais para eixos e furos.

A-2 Classes de aplicação

É aplicável para uso geral, não se estendendo a casos especiais que requeiram seleção de classes de tolerâncias específicas, como, por exemplo, micromecanismos, relojoaria, etc.

A-3 Seleção de classes de tolerâncias

Devem ser escolhidas as classes de tolerâncias, cujos símbolos se encontram nas Figuras 19 e 20, preferencialmente aquelas que estão emolduradas.

A-4 Recomendações práticas para a escolha de um ajuste

São as seguintes:

 a) deve-se decidir primeiramente se o ajuste a ser adotado é do sistema furo-base ou eixo-base;

- b) o sistema furo-base deve ser escolhido como sistema preferencial para uso geral, o que permite evitar uma multiplicidade desnecessária de calibradores;
- c) o sistema eixo-base deve ser escolhido somente no caso em que a sua utilização resultar em inquestionáveis vantagens econômicas (por exemplo, quando houver necessidade de montar peças com furos tendo diferentes afastamentos em um único eixo):
- d) os outros afastamentos e campos de tolerâncias (letras e números) devem ser escolhidos para furos e eixos, de modo a obter as folgas ou interferências mínimas e máximas correspondentes, que melhor satisfaçam as condições requeridas ao funcionamento (especialmente nos casos de ajustes críticos com interferências acentuadas). Neste caso, as tolerâncias devem ser as maiores, compatíveis com a condição de utilização;
- e) sendo mais difícil a usinagem de um furo do que a de um eixo, pode ser escolhido para o furo um grau de tolerância maior do que a do eixo, como, por exemplo: H8/f7.

A-5 Representação de classes de tolerâncias

Ver Figuras 21 a 24.

Figura 19 - Classes de tolerâncias selecionadas para eixos

Nota: Os afastamentos js e Js podem ser substituídos pelos afastamentos j e J.

Figura 20 - Classes de tolerâncias selecionadas para furos

											_																
										H1	JS1																
			6							H2	JS2																
			in en			EF3	F3	FG3	G3	НЗ	JS3		К3	МЗ	N3	Р3	R3	S3									
			36	3		EF4	F4	FG4	G4	H4	JS4		K4	M4	N4	P4	R4	S4									
			4	0	E 5	EF5	F5	FG5	G5	H5	JS5		K5	M5	N5	P5	R5	S5	T5	U5	V5	X5					
			CD6	D6	E6	EF6	F6	FG6	G6	H6	JS6	J6	K6	M6	N6	P6	R6	S6	Т6	U6	V6	X6	Y6	Z6	ZA6	I	
			CD7	D7	E7	EF7	F7	FG7	G7	H7	JS7	J7	K7	M7	N7	P7	R7	S7	T7	U7	V7	X7	Y7	Z 7	ZA7	ZB7	ZC7
	В8	C8		D8	E8	EF8		FG8		H8	JS8	J8	K8	M8	N8	P8	R8	S8		U8		X8		Z8	ZA8	ZB8	ZC8
A9	В9	C9	CD9		E9	EF9		FG9		H9	JS9		K9	M9	N9	P9	R9	S9		U9		X9		Z9		ZB9	ZC9
						-//		FG10																			
		C10	CD10			EFSC) F10	FGTU	G10		JS10		K10	MTO	N10	P10	RTU	510		U10		X10	Y10		ZA10		
A11	B11	C11		D11			6			H11	JS11				N11									Z11	ZA11	ZB11	ZC11
A12	B12	C12		D12			1	25		H12	JS12																
A13	B13	C13		D13				9/3		H13	JS13																
								9	0	H14	JS14																
									Q	H15	JS15																
									1	H16	JS16																
										0/2	JS17																
										97	JS18																
										нтв	JS18																
	11			12		1:	_ _	14	1	15	16	1	7	1	8	19	20	21	2	22		23			4	2	5
			l			l		l		l				ı		l	I	l									
													Tab	elas													

Nota: Os valores numéricos das tolerâncias preferenciais são encontrados na tabela indicada na parte inferior da coluna.

Figura 21 - Representação sinóptica de classe de tolerância para furos de dimensões nominais menores ou iguais a 500 mm

				H1	JS1								
				H2	JS2								
				H3	JS3								
				H4	JS4			<					
				H5	JS5				Con				
		ı .	I	-	<u>'</u>		Ī		163	i	ı	I	
D6	E6	F6	G6	H6	JS6	K6	M6	N6	P6	R6	S6	T6	U6
D7	E7	F7	G7	H7	JS7	K7	M7	N7	P7	R 7	S7	T7	U7
D8	E8	F8	G8	H8	JS8	K8	M8	N8	P8	R8	S8	T8	U8
D9	E9	F9		H9	JS9			N9	P9	0			
D10	E10			H10	JS10					4			
D11				H11	JS11					'6/			
D12				H12	JS12					7	9/		
D13				H13	JS13						3		
				H14	JS14						100		
				H15	JS15						6		
				H16	JS16							8	
				H17	JS17							1/2	
				H18	JS18							0	
12		13	14	15	16	17	18		19	20	21	92	2
		. '	. '	•	-	. '	Tabelas		. '	•			0.0

Notas: a) As classes de tolerância emolduradas são dadas para uso experimental.

Figura 22 - Representação sinóptica de classes de tolerância para furos de dimensões nominais maiores que 500 mm e menores ou iguais a 3150 mm

b) Os valores numéricos das tolerâncias preferenciais são encontrados na tabela indicada na parte inferior da coluna.

										h1	js1																
										h2	js2																
						ef4	f3	fg3	g3	h3	js3		k3	m3	n3	р3	r3	s3									
						ef5	f4	fg4	g4	h4	js4		k4	m4	n4	p4	r4	s4						C			
			cd5	d5	e5	ef5	f5	fg5	g5	h5	js5		k5	m5	n5	р5	r5	s5	t5	u5	v5	x5	•	S			
			cd6	d6	e6	ef6	f6	fg6	g6	h6	js6	j6	k6	m6	n6	p6	r6	s6	t6	u6	v6	x6	y6	z6	za6		
			cd7	d7	е7	ef7	f7	fg7	g7	h7	js7	j7	k7	m7	n7	р7	r7	s7	t7	u7	v7	x7	у7	z7	za7	zb7	zc7
		с8	cd8	d8	е8	ef8	f8	fg8	g8	h8	js8	j8	k8	m8	n8	р8	r8	s8	t8	u8	v8	x8	y8	z8	za8	zb8	zc8
a9	b9	с9	cd9	d9	е9	ef9	f9	fg9	g9	h9	js9		k9	m9	n9	р9	r9	s9		u9		x9	у9	z9	za9	zb9	zc9
a10	b10	c10	cd10	d10	e10	ef10	f10	fg10	g10	h10	js10		k10			p10	r10	s10			2	x10	y10	z10	za10	zb10	zc10
a11	b11	c11		d11						h11	js11		k11							5	7			z11	za11	zb11	zc11
a12	b12	c12		d12						h12	js12		k12														
a13	b13			d13						h13	js13		k13							3							
										h14	js14							76	2ν								
										h15	js15							O	3								
										h16	js16						3										
										h17	js17				\boldsymbol{A}		Q	•									
										h18	js18					5	5										
	26		2	7	2	:8	2	9	30	31	32	3	33	34	1	35	36	37	3	8		39			40	4	1
												Ta	bela	3	1	3											

Nota: Os valores numéricos das tolerâncias preferenciais são encontrados na tabela indicada na parte inferior da coluna.

Figura 23 - Representação sinóptica de classes de tolerância para eixos de dimensões menores ou iguais a 500 mm

				h1 h2 h3 h4 h5	js1 js2 js3 js4 js5								
d6	e6	f6	g6	h6	js6	k6	m6	n6	р6	r6	s6	t6	u6
d7	e7	f7	g7	h7	js7	k7	m7	n7	р7	r7	s7	t7	u7
d8	e8	f8	g8	h8	js8	k8			р8	r8	s8		u8
d9	e9	f9		h9	js9	k9							
d10	e10			h10	js10	k10							
d11			~6	h11	js11	k11							
			80	h12	js12	k12							
				h13	js13	k13							
			2	h14	js14								
		2.		h15	js15								
		.5		h16	js16								
				h17	js17								
	0			h18	js18								
27	28	29	30	31	32	33	34		35	36	37		38
	S.					Tal	oela						

Notas: a) As classes de tolerância emolduradas são dadas para uso experimental.

b) Os valores numéricos das tolerâncias preferenciais são encontrados na tabela indicada na parte inferior da coluna.

Figura 24 - Representação sinóptica de classes de tolerância para eixos de dimensões nominais maiores que 500 mm e menores ou iguais a 3150 mm

____ /Glossário

Licenca de uso exclusiva data de lodras S.A. Licenca de uso exclusiva para periobras S.A.

Glossário

				Glossario			
Número de referência	Português	Inglês	Francês	Alemão	Espanhol	Italiano	Sueco
1	acoplamento	mating	appariement	Paarung	apareamiento, acoplamiento	connessione	tillpassning
2	afastamento	deviation	écart	Abmass	desviación (o diferencial)	scostamento	avmatt, avvikelse
3	afastamento efetivo	actual deviation	écart effectif	Istabmass	desviación efectiva (o real)	scostamento effettivo	verkligt avwatt
4	afastamento fundamental	fundamental deviation	écart fondamental	Grundabmass	desviación fundamental	scostamento fondamentale	lägesavmatt
5	afastamento inferior	lower deviation	écart inférieur	unteres Abmass	desviación inferior	scostamento inferiore	undre gränsavmatt
6	afastamento negativo	negative deviation	écart negatif	negatives Abmass	desviación negativo	scostamento negativo	negativt avmatt
7	afastamento positivo	positive deviation	écart positif	positives Abmass	desviación positiva	scostamento positivo	positivt avmatt
8	afastamento superior	upper deviation	écart superieur	oberes Abmass	desviación superior	scostamento superiore	övre gränsavmatt
9	afastamentos admissíveis	permissible deviations	écarts permissibles	Grenzabweichungen, zulässige Abweichungen	desviaciones admisibles	scostamenti ammessi (ammissibili)	tillatna avvikelser
10	afastamentos limites	limit deviations	écarts limites	Grenzabmasse	desviaciones diferencias	scostamenti limiti	gränsavmatt gräansavvikelse
11	afastamentos simétricos	symmetrical deviations	écarts symétriques	symmetrishe Abmasse	desviaciones simétricas	scostamenti simmetrici	symmetriska avmatt
12	ajuste	fit	ajustement	Passung	ajuste	accoppiamento	passning
13	ajuste com folga	clearance fit	ajustement avec jeu	Spielpassung	ajuste con juego	accoppiamento con giuoco	spelpassning
14	ajuste com folga máxima	loosest extreme of fit	ajustement limite le plus large	Höchstpassung, weiteste Grenzpassung	ajuste limite con máximo juego	accoppiamento limite il più largo (sciolto)	största passning
15	ajuste com interferência	interference fit	ajustement avec serrage	übermasspassung	ajuste com aprieto	accoppiamento con interferenza	grepassning
16	ajuste incerto	transition fit	ajustement incertain	übergangspassung	ajuste indeterminado	accoppiamento incerto	mellanpassning
17	ajuste limite com folga mínima	tightest extreme of fit	limite d'ajustement le plus étroit	engste Grenzpassung Mindestpassung	ajuste límite con mínimo juego	accoppiamento limite il più stretto	min. gränspassning
18	ajuste médio	mean fit	ajustement moyen	mittlere Passung, Mittenpassung	ajuste medio	accoppiamento medio	medelpassning
19	ajustes limites	limits of fit	limites d'ajustement	Grenzpassungen	ajustes límites	accoppiamento limiti	gränspassningal
20	campo de tolerância	tolerance zone	zone de tolérance	Toleranzfeld	zona de tolerancia	zona di tolleranza	toleranszon tolerasomerâde

Número de referência	Português	Inglês	Francês	Alemão	Espanhol	Italiano	Sueco
21	campo de variação de um ajuste, campo de tolerância de um ajuste	fit tolerance zone, variation zone	zone de tolérance d'ajustement	Passtoleranzfeld	zona de tolerancia de ajuste	zona di tolleranza di accoppiamento	passningens toleransomrade
22	classe de tolerância	tolerance class	classe de tolérance, série de tolérances d'une zone	Toleranzklasse, Toleranzfeldreihe	classe de tolerancias, serie de tolerancias de un campo	classe di tolleranze	toleransklass, tolerans
23	designação para ajuste	fit symbol	symbole de l'ajustement	Passungssymbol, Passungskurzzeichen	simbolo de ajuste	simbolo di accoppiamento	passningssymbol
24	designação para tolerância	tolerance symbol	symbole de tolérances	Toleranzsymbol, Toleranzkurzzeichen	símbolo de tolerancias	simbolo di tolleranza	toleranssymbol
25	dimensão	size, dimension	dimension, cote	Mass	medida dimensión	dimensione	matt, dimension
26	dimensão aproximada	approximate size	dimension approximative	Ungefährmass	medida aproximada	dimensione approssimativa	ungefärligt matt, cirkamatt
27	dimensão com tolerância	toleranced size	dimension tolérancée	toleriertes Mass	medida com tolerancia	dimensione con tolleranza	toleransbestämt matt
28	dimensão de acoplamento	mating size	dimension d'appariement	Paarungsmass	medida de acoplamiento	dimensione di connessione	passningsmatt
29	dimensão de referência teoricamente exata	theoretically exact reference size	dimension de référence théoriquement exacte	theoretisch genaues Bezugsmass	medida absoluta de referencia	dimensione teoricamente esatto di riferimento	teoretiskt exakt referensmatt
30	dimensão efetiva	actual size	dimension effective	Istmass	medida efectiva o real	dimensione effettiva	verkligt matt
31	dimensão máxima	maximum limit of size	dimension maximale	Höchstmass, Grösstmass	medida máxima	dimensione massima	övre gräansmatt
32	dimensão mínima	minimum limit of size	dimension minimale	Mindestmass, Kleinstmass	medida mínima	dimensione minima	undre gränsmatt
33	dimensão nominal	basic size, nominal size	dimension nominale	Nennmass	medida nominal	dimensione nominale	basmatt, nominellt matt
34	dimensão sem indicação da tolerância	size without (direct) tolerance indication	dimension sans indication (directe) de tolerances	Mass ohne (direkte) Toleranzangabe, Freimass	medida sin indicación (directa) de tolerancias	dimensione senza indicazione (diretta) di tolleranza	icke direkt toleranssatta matt
35	dimensão teórica	desired size	dimension de consigne	Sollmass	medida teórica	dimensione desiderata	önskat matt
36	dimensões limites	limits of size	dimensions limites	Grenzmasse	medidas Iímites	dimensioni Iimiti	gränsmatt

- /	con	tin	1120	\sim
1	cor		uau	au

Número de referência	Português	Inglês	Francês	Alemão	Espanhol	Italiano	Sueco
37	eixo	shaft (=plug)	arbre (=tige)	Welle (=Dorn)	eje	albero (=perno)	axel (=dorn)
38	elemento de um ajuste	fit component (part)	élément d'um ajustement	Passteil	elemento (pieza) de um ajuste	elemento (pezzo) di um accoppiamento	passningsdel
39	elemento externo de um ajuste	external (outer) part (component)	élément exterieur (femelle) d'un ajustement	äussers Passteil, Aussenpassteil	elemento (pieza) exterior de un ajuste	pezzo esterno di un accoppiamento	utvändig passningsdel
40	elemento interno um ajuste	internal (inner) part (component) of fit	élément interieur (male) d'un ajustement	Inners Passteil, Innenpassteil	elemento (piezza) interior de un ajuste	pezzo interno di accoppiamento	invändig passningsdel
41	exigência de envoltura	envelope requirement	exigence de l'enveloppe	Hüllbedingung	condición del envolvente	condizione del inviluppamento	enveloppkrav
42	fator de tolerância padrão (i, I)	standard tolerance factor (i, I)	fateur de tolérance (i, I)	Toleranzfaktor (i, I) Toleranzeinheit	unidad de tolerancia (i, I)	unità di tolleranza (i, I)	toleransenhet (i, l)
43	folga	clearance	jeu	Spiel	juego	giuoco	spel
44	folga efetiva	actual clearance	jeu effectif	Istspiel	juego efectivo o real	giuoco effettivo	verligt spel
45	folga máxima	maximum clearance	jeu maxial	Höchstspiel, Grösstspiel	juego máximo	giuoco massimo	maxspel
46	folga média	mean clearance	jeu moyen	mittleres Spiel, Mittenspiel	juego medio	giuoco medio	medelspel
47	folga mínima	minimum clearance	jeu minimal	Mindestspiel Kleinstspiel	juego mínimo	giuoco minimo	minspel
48	folga relativa (% _o)	relative clearance (%)	jeu relatif (% _o)	relatives Spiel (% _o), bezogenes Spiel	juego relativo (% _°)	giuoco relativo (% _o)	relativt spel (% _o)
49	furo	hole	alésage	Bohrung	agujero	foro	hal
50	grau de precisão	accuracy grade	degré de précision	Genauigkeitsgrad	grado de precisión	grado di precisione	noggranhetsgrad
51	grau de tolerância	tolerance grade, grade of tolerance	degré de tolérance, qualité de tolérance (ancien)	Toleranzgrad, Toleranzqualitat (ehemals)	grado de tolerancia	grado di tolleranza	toleransgrad
52	grau internacional de tolerância (IT)	international (standard) tolerance grade (IT)	degré de tolérance internationale (normalité) (IT)	internationaler (Standard-) Toleranzgrad (IT)	grado internaciónal de tolerância (IT)	grado de tolleranza internazionale (IT)	internationell toleransgrad, Standardtoleransg (IT)

lúmero de eferência	Português	Inglês	Francês	Alemão	Espanhol	Italiano	Sueco
	grupo de dimensões nominais	range (step) of basic (nominal) sizes	palier de dimensions nominales	Nennmassbereich	grupo de medidas nominales	grupo di dimensinoali nominali	basmattsomraden
54	interferência	interference	serrage	Übermass	aprieto	interferenza	grepp
	interferência efetiva	actual interference	serrage effectif	Istübermass	aprieto efectivo o real	interferenza effettiva	verkligt grepp
	interferência máxima	maximum interference	serrage maximal	Hochstübermass, Grosstübermass	aprieto máximo	interferenza massima	maxgrepp
	interferência média	mean interference	serrage moyen	mittleres übermass, Mittenübermass	aprieto medio	interferenza media	medelgrepp
	interferência mínima	minimum interference	serrage minimal	Mindestübermass, Kleinstübermass	aprieto mínimo	interferenza mínima	mingrepp
	interferência relativa (% _o)	relative interference (% _o)	serrage relatif (% _o)	relatives Übermass, bezogenes übermass (% _o)	aprieto relativo (% _o)	interferenza relativa (%,)	relativt grepp (% _o)
	limite de máximo material (MML)	maximum material limit (MML)	dimension du maximum de matière (MML)	Maximum-Material- Mass	limite de material máximo	dimensione di massimo materiale	max. materialmatt, gagräns
	limite de mínimo material (LML)	least- material limit (LML)	dimension au minimum de matière (LMC)	Minimum-Material- Mass	medida de mínimo material	dimensione di minimo materiale	minimi material gräns; stoppgräns
	linha de afastamento zero, linha zero	line of zero devation, zero line	ligne d'écart nul, ligne zéro	Linie des Abmasses Null, Nullinie	línea cero, línea de referencia	linea dello zero	nollinje
	media das dimensões limites, dimensão média	mean of the limits of size, mean size	moyenne des dimensions limites, dimension moyenne	mittleres Grenzmass, Mittenmass	media de medidas limites, medida media	media delle dimensioni limiti, dimensione media	gränsmattens mittvärde
64	medida auxiliar	temporary size	dimension auxiliaire	Hilfsmass	medida auxiliar	dimensione ausiliaria	hjälpmatt
65	caracter de ajuste	character of fit	caractere d'ajustement	Passungscharakter	carácter de ajuste	carattere dell'accopiamento	passningskaraktär
	posição da tolerância	tolerance position	position de la tolérance	Toleranzlage	posición de toleranci	posizione di tolleranza	toleransläge
	série de tolerâncias	tolerance series	série de tolérances	Toleranzreihe	serie de tolerancias	serie (gamma) di tolleranza	serie av toleransvidder

, ,.	~
/continu	$\alpha \alpha \alpha \alpha \alpha$
/continu	auau

úmero de eferência	Português	Inglês	Francês	Alemão	Espanhol	Italiano	Sueco
68	série de tolerâncias fundamentais	fundamental (standard) tolerance series	série de tolérance internationale	Grundtoleranz- Reihe	serie de tolerancias fundamentais	serie di tolleranze fondamentali	grundtoleranserie
69	sistema de ajuste "eixo-base"	"shaft-basis" system of fits	systeme d' ajustements "a arbre normal"	Passystem "Einheitswelle"	sistema de ajustes "eje único" (o "eje base")	sistema di accoppiamenti "albero base"	passningssystem "axeln bas"
70	sistema de ajuste "furo-base"	"hole-basis" system of fits	systeme d'ajustement "a alésage normal"	Passystem "Einheitsbohrung"	sistema de ajustes "agujero único"(o "agujero base")	sistema de accoppiamenti "foro base"	passningssystem "halet bas"
71	sistema de ajustes	fit system	système d'ajustement	Passungssystem, Passystem	sistema de ajuste	sistema di accoppiamento	passningssystem
72	sistema de tolerâncias	tolerance system	système tolerances	Toleranzsystem	sistema de tolerancias	sistema di tolleranze	toleranssystem
73	superfície de ajuste	mating surface, fit surface	surface d'ajustement	Passfläche	superficie un ajuste	superficie di accoppiamento	passningsyta
74	temperatura de referência	reference temperature	température de référence	Bezugstemperatur	temperatura de referencia	temperatura di riferimento	referenstemperatu
75	tolerância	tolerance	tolérance	Toleranz	tolerancia	tolleranza	toleransvidd, tolerans
76	tolerância de forma	tolerance of form	tolérance de forme	Formtoleranz	tolerancia de forma	tolleranza di forma	formtolerans
77	tolerância de posição	tolerance of position	tolérance de position	Lagetoleranz	tolerancia posición	tolleranza di posizione	lägetolerans
78	tolerância de um ajuste, variação de um ajuste	fit tolerance, variation of fit	tolérance d'ajustement	Passtoleranz	tolerancia de ajuste	tolleranza d'accoppiamento	passningens toleransvidd; passningsvariation
79	tolerância dimensional	dimensional tolerance, size tolerance	tolérance dimensionnelle	Masstoleranz	tolerancia dimensional	tolleranza dimensionale	dimensions- tolerans mattolerans
80	tolerância estatística	statistical tolerance	tolérance statistique	statistische	tolerancia estadística	tolleranza statistica	statistisk tolerans
81	tolerância geral	general tolerance	tolérance générale	allgemeintoleranz	tolerancia general	tolleranza generale	generell tolerans
82	tolerância- padrão	fundamental (standard) tolerance	tolérance fondamentale	Grundtoleranz	tolerancia fundamental	tolleranza fondamentale	grundtolerans, grundtoleransvidd