

Serial No.: 09/960,004
Atty. Docket No.: NVID-044/04US
Inventor: John Erik LINDHOLM et al.
Filed: September 20, 2001
Attorney: Edward Van Gieson (650) 843-5625
Page 1 of 43 Figure 1

FIG. 1
(PRIOR ART)

FIG. 1A

FIG. 2

COMMAND	TRANSFORM	LIGHTING	DESCRIPTION
STALL	STALL		

COMMAND	TRANSFORM	LIGHTING	DESCRIPTION
STALL	STALL		
FE2XF_CMD_NOP			NO OPERATION. CAN BE USED AS A SPACER BETWEEN COMMANDS.
FE2XF_CMD_VERTEX	READ	READ	VERTEX DATA.
FE2XF_CMD_PASSTHR			PASSTHROUGH. TRANSFORM AND LIGHTING PASS THE DATA THROUGH.
FE2XF_CMD_RDVAB			READ THE VAB CONTENTS WHEN CONTEXT SWITCHING.
FE2XF_CMD_LDMODE			LOAD NEW MODE BITS.
FE2XF_CMD_LDXFCTX	WRITE		LOAD TRANSFORM CONTEXT MEMORY DATA.
FE2XF_CMD_RDXFCTX	READ		READ TRANSFORM CONTEXT MEMORY DATA.
FE2XF_CMD_LDLTCTX		WRITE	LOAD LIGHTING CONTEXT MEMORY DATA.
FE2XF_CMD_RDLTCTX		READ	READ LIGHTING CONTEXT MEMORY DATA.
FE2XF_CMD_LDLTC0		WRITE	LOAD LIGHTING CONTEXT0 MEMORY DATA.
FE2XF_CMD_RDLTC0		READ	READ LIGHTING CONTEXT0 MEMORY DATA.
FE2XF_CMD_LDLTC1		WRITE	LOAD LIGHTING CONTEXT1 MEMORY DATA.
FE2XF_CMD_RDLTC1		READ	READ LIGHTING CONTEXT1 MEMORY DATA.
FE2XF_CMD_LDLTC2		WRITE	LOAD LIGHTING CONTEXT2 MEMORY DATA.
FE2XF_CMD_RDLTC2		READ	READ LIGHTING CONTEXT2 MEMORY DATA.
FE2XF_CMD_LTLTC3		WRITE	LOAD LIGHTING CONTEXT3 MEMORY DATA.
FE2XF_CMD_RDLTC3		READ	READ LIGHTING CONTEXT3 MEMORY DATA.
FE2XF_CMD_SYNC	READ+ WRITE	READ+ WRITE	SIMILAR TO NOP, BUT IS NOT ALLOWED TO BE PROCESSED IN PARALLEL.

FIG. 2A

FIG. 2B

FIG. 2C

MODE BIT	BITS	DESCRIPTION
T0	1	TEXTURE 0 ENABLE
TXF0	1	TEXTURE 0 MATRIX TRANSFORM ENABLE
TDV0	1	TEXTURE 0 w DIVIDE ENABLE
TOS	3	TEXTURE 0 TEXGEN s CONTROL
TOT	3	TEXTURE 0 TEXGEN t CONTROL
TOU	3	TEXTURE 0 TEXGEN r CONTROL
TOQ	2	TEXTURE 0 TEXGEN q CONTROL
T1	1	TEXTURE 1 ENABLE
TXF1	1	TEXTURE 1 MATRIX TRANSFORM ENABLE
TDV1	1	TEXTURE 1 w DIVIDE ENABLE
T1S	3	TEXTURE 1 TEXGEN s CONTROL
T1T	3	TEXTURE 1 TEXGEN t CONTROL
T1U	3	TEXTURE 1 TEXGEN r CONTROL
T1Q	2	TEXTURE 1 TEXGEN q CONTROL
ETY	1	EYE TYPE INFINITE(0) OR LOCAL(1)
LIT	1	LIGHTING ENABLE
NRM	1	NORMAL NORMALIZE ENABLE
FOG	1	FOG ENABLE
LIS	16	LIGHT STATUS (8 LIGHTS BY 2 BITS EACH, 0:OFF,1:INFINITE,2:LOCAL,3:SPOTLIGHT)
FG	2	FOGGEN CONTROL(0: OFF, 1:RADIAL, 2: PLANE)
LAT	1	LIGHT ATTENUATION CONTROL (0: INVERT, 1: NO INVERT)
C1I	1	SPECULAR COLOR INPUT ENABLE
C1O	1	SPECULAR COLOR OUTPUT ENABLE
CM	4	COLOR MATERIAL CONTROL (1: EMISSIVE, 2: AMBIENT, 4: DIFFUSE, 8:SPECULAR)
PP	1	POINT PARAMETER ENABLE
SKIN	1	SKINNING ENABLE
VPAS	1	VERTEX PASS ENABLE

FIG. 3

FIG. 4

FIG. 4A

FIG. 4B

FIG. 5

PASS

PASS

FIG. 8

FIG. 9

ADDRESS	TARGET	ACTION	DESCRIPTION
TPOS	TBUFFER	T[0] = ALU	POSITION
TT0	TBUFFER	T[3] = ALU	TEXTURE0
TT1	TBUFFER	T[4] = ALU	TEXTURE1
WEV	WBUFFER,VBUFFER	W[0] = ALU, V[0].y = ALU.w	EYE VECTOR
WLV0	WBUFFER,VBUFFER	W[1] = ALU, V[1].y = ALU.w	LIGHT0 DIRECTION VECTOR
WLV1	WBUFFER,VBUFFER	W[2] = ALU, V[2].y = ALU.w	LIGHT1 DIRECTION VECTOR
WLV2	WBUFFER,VBUFFER	W[3] = ALU, V[3].y = ALU.w	LIGHT2 DIRECTION VECTOR
WLV3	WBUFFER,VBUFFER	W[4] = ALU, V[4].y = ALU.w	LIGHT3 DIRECTION VECTOR
WLV4	WBUFFER,VBUFFER	W[5] = ALU, V[5].y = ALU.w	LIGHT4 DIRECTION VECTOR
WLV5	WBUFFER,VBUFFER	W[6] = ALU, V[6].y = ALU.w	LIGHT5 DIRECTION VECTOR
WLV6	WBUFFER,VBUFFER	W[7] = ALU, V[7].y = ALU.w	LIGHT6 DIRECTION VECTOR
WLV7	WBUFFER,VBUFFER	W[8] = ALU, V[8].y = ALU.w	LIGHT7 DIRECTION VECTOR
WSL0	WBUFFER	W[9] = ALU	SPOTLIGHT0 cos
WSL1	WBUFFER	W[10] = ALU	SPOTLIGHT1 cos
WSL2	WBUFFER	W[11] = ALU	SPOTLIGHT2 cos
WSL3	WBUFFER	W[12] = ALU	SPOTLIGHT3 cos
WSL4	WBUFFER	W[13] = ALU	SPOTLIGHT4 cos
WSL5	WBUFFER	W[14] = ALU	SPOTLIGHT5 cos
WSL6	WBUFFER	W[15] = ALU	SPOTLIGHT6 cos
WSL7	WBUFFER	W[16] = ALU	SPOTLIGHT7 cos
VED	VBUFFER	V[0].x = 1.0, V[0].z = ALU.w	EYE RADIAL DISTANCE VECTOR
VLD0	VBUFFER	V[1].x = 1.0, V[1].z = ALU.w	LIGHT0 DISTANCE VECTOR
VLD1	VBUFFER	V[2].x = 1.0, V[2].z = ALU.w	LIGHT1 DISTANCE VECTOR
VLD2	VBUFFER	V[3].x = 1.0, V[3].z = ALU.w	LIGHT2 DISTANCE VECTOR
VLD3	VBUFFER	V[4].x = 1.0, V[4].z = ALU.w	LIGHT3 DISTANCE VECTOR
VLD4	VBUFFER	V[5].x = 1.0, V[5].z = ALU.w	LIGHT4 DISTANCE VECTOR
VLD5	VBUFFER	V[6].x = 1.0, V[6].z = ALU.w	LIGHT5 DISTANCE VECTOR
VLD6	VBUFFER	V[7].x = 1.0, V[7].z = ALU.w	LIGHT6 DISTANCE VECTOR
VLD7	VBUFFER	V[8].x = 1.0, V[8].z = ALU.w	LIGHT7 DISTANCE VECTOR
VC0	VBUFFER,TBUFFER	V[9] = ALU, T[1] = ALU	DIFFUSE COLOR
VC1	VBUFFER,TBUFFER	V[10] = ALU, T[2] = ALU	SPECULAR COLOR
VNRM	VBUFFER	V[11] = ALU	NORMAL VECTOR
VED2	VBUFFER	V[12] = ALU	EYE PLANAR DISTANCE VECTOR
TVW_NOP			NO VALID OUTPUT.

FIG. 10

MICROCODE FIELD	BITS	LOCATION	DELAY	DESCRIPTION
oa	6	0:5	2	OUTPUT BUFFER WRITE ADDRESS
ra	3	6:8	0	RLU READ ADDRESS
rwm	4	9:12	2	RLU WRITE MASK
rwa	3	13:15	2	RLU WRITE ADDRESS
ilu	2	16:17	2	ILU OPERATION
alu	4	18:21	1	ALU OPERATION
ais	2	22:23	1	ALU SIGN CONTROL
aia	1	24	1	ALU INPUT A MUX
mlu	3	25:27	0	MLU OPERATION
mib	2	28:29	0	MLU INPUT B MUX
mia	2	30:31	0	MLU INPUT A MUX
va	3	32:34	0	INPUT BUFFER READ ADDRESS
ce	1	35	0,2	CONTEXT MEMORY READ/WRITE
ca	6	36:41	0,2	CONTEXT MEMORY ADDRESS
mr	2	42:43	0	MLU INPUT VECTOR ROTATE

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 14A

FIG. 14B

FIG. 14C

FIG. 14D

FIG. 15

FIG. 16

PASS

FIG. 17

1610

FIG. 18

FIG. 19

FIG. 20

Serial No.: 09/960,004
Atty. Docket No.: NVID-044/04US
Inventor: John Erik LINDHOLM et al.
Filed: September 20, 2001
Attorney: Edward Van Gieson (650) 843-5625
Page 26 of 43 Figure 21

NAME	REGISTER	DESCRIPTION
Z	IFLAG	CLEAR FLAG. SETS IFLAG AND MFLAG TO 0.
C	IFLAG	SPOTLIGHT CONE FLAG. SET IF VERTEX IS OUTSIDE SPOTLIGHT CONE.
S	IFLAG	SPECULAR2 FLAG. SET IF SPECULAR CONTRIBUTION IS NEGATIVE.
D	IFLAG	DIFFUSE FLAG. SET IF DIFFUSE TERM IS NEGATIVE.
	MFLAG	
U	MFLAG	SPOTLIGHT CONE ATTENUATION FLAG. SET IF SPOTLIGHT CONE ATTENUATION CONTRIBUTION IS NEGATIVE.
T	MFLAG	SPECULAR FLAG. SET IF SPECULAR CONTRIBUTION IS NEGATIVE.
R	MFLAG	RANGE FLAG. SET IF VERTEX IS TOO FAR AWAY FROM THE LIGHT.

FIG. 21

MICROCODE FIELD BITS LOCATION DELAY DESCRIPTION

oa	3	0:2	2	OUTPUT ADDRESS
rwe	1	3	2	RLU WRITE ENABLE
rwa	2	4:5	2	RLU WRITE ADDRESS
R23	1	6	0	RLU (MLU) READ ADDRESS
R01	1	7	1	RLU (ALU) READ ADDRESS
aia	1	8	1	ALU INPUT A MUX
alu	2	9:10	1	ALU OPERATION
mib	2	11:12	0	MLU INPUT B MUX
mia	2	13:14	0	MLU INPUT A MUX
mlu	2	15:16	0	MLU OPERATION
mwa	5	17:21	0	MLU WBUFFER READ ADDRESS
awa	5	22:26	1	ALU WBUFFER READ ADDRESS
va	4	27:30	0	VBUFFER READ ADDRESS
os	2	31:32	2	LLU OUTPUT ADDRESS
frm	6	33:38	2	FLAG REGISTER MASK
mfe	1	39	2	MFLAG WRITE ENABLE
mfa	2	40:41	2	MFLAG WRITE ADDRESS
ife	1	42	2	IFLAG WRITE ENABLE
ifa	2	43:44	2	IFLAG WRITE ADDRESS
fia	2	45:46	2	FLU INPUT A MUX
flu	3	47:49	2	FLU OPERATION
M1c	1	50	2	MAC1 INPUT C MUX
M1b	2	51:52	2	MAC1 INPUT B MUX
M1a	2	53:54	2	MAC1 INPUT A MUX
M0c	2	55:56	2	MAC0 INPUT C MUX
M0b	2	57:58	2	MAC0 INPUT B MUX
M0a	2	59:60	2	MAC0 INPUT A MUX
ce	3	61:63	0,2	CONTEXT MEMORY READ/WRITE ENABLE
ca	6	64:69	0,2	CONTEXT MEMORY ADDRESS
C3a	4	70:73	2	CONTEXT3 MEMORY ADDRESS
C2a	4	74:77	2	CONTEXT2 MEMORY ADDRESS
C1a	5	78:82	2	CONTEXT1 MEMORY ADDRESS
C0a	2	83:84	2	CONTEXT0 MEMORY ADDRESS

FIG. 22

FIG. 23

FIG. 24

FIG. 25

Serial No.: 09/960,004
Atty. Docket No.: NVID-044/04US
Inventor: John Erik LINDHOLM et al.
Filed: September 20, 2001
Attorney: Edward Van Gieson (650) 843-5625
Page 31 of 43 Figure 25B

FIG. 25B

FIG. 26

FIG. 26A

FIG. 27

Serial No.: 09/960,004
Atty. Docket No.: NVID-044/04US
Inventor: John Erik LINDHOLM et al.
Filed: September 20, 2001
Attorney: Edward Van Gieson (650) 843-5625
Page 34 of 43 Figure 27A

FIG. 27A

FIG. 28

FIG. 28A

FIG. 28B

FIG. 29

Serial No.: 09/960,004
Atty. Docket No.: NVID-044/04US
Inventor: John Erik LINDHOLM et al.
Filed: September 20, 2001
Attorney: Edward Van Gieson (650) 843-5625
Page 38 of 43 Figure 29A

FIG. 29A

FIG. 30

FIG. 31

3128		3128		3128	
		1	2		
		4	3		
		5	6		
		8	7	138	
		9	10	139	
		13	12	11	140
		14	15	16	141
		19	18	17	144
		20	21	22	145
		25	24	23	149
		27	26	28	150
		33	32	31	156
		34	35	36	157
		41	40	39	164
		102	42	43	165
		103	49	48	166
		104	50	51	167
		105	57	56	168
		106	58	59	169
		108	107	65	170
		109	110	66	171
		112	111	73	172
		113	114	74	173
		116	115	81	174
		118	117	119	175
		122	121	120	176
		123	124	125	177
		128	127	126	178
		129	130	131	179
		135	134	133	180
		136	137	132	181
				101	182
				99	183
				100	184
				94	185
				217	186
					187
					188
					189
					190
					191
					192
					193
					194
					195
					196
					197
					198
					199
					200
					201
					202
					203
					204
					205
					206
					207
					208
					209
					210
					211
					212
					213
					214
					215
					216
					217

FIG. 31A

FIG. 32

FIG. 32A

FIG. 32B

FIG. 32C