2024 / 25

School of Science and Computing

+353 (0)51 302037

☑ Eleanor.Reade@setu.ie

www.wit.ie/schools/science_computing

Module Descriptor

Introduction to Convergent Technologies (Computing and Mathematics)

Introduction to Convergent Technologies (A29442)

Short Title: Int to Convergent Technologies

Department: Engineering Technology

Credits: 5 Level: Advanced

Description of Module / Aims

This module aims to build on the students undergraduate knowledge and introduce him / her to the state-of-the-art in convergent technologies for advanced bio-medical and electro-mechanical applications. A selection of convergent technologies for advanced bio-medical and electro-mechanical applications and industry roadmaps are presented and examined in the context of their associated regulatory frameworks.

Programmes

		stage/semester/statu	\mathbf{s}
	BSc (Hons) in Applied Computing (WD_KACCM_B)	4 / 7 /	
	BSc (Hons) in Applied Computing (WD_KCOMP_B) BSc (Hons) in Computer Science (WD_KCMSC_B)	4 / 7 / 4 / 7 /	
	BSc (Hons) in Physics for Modern Technology (WD_KPHTE_B) BSc (Hons) in the Internet of Things (International) (WD KINTT	BI) 4 / 7 / 1 4 / 7 / 1	
12011 0010	ble (field) in the interior of Timige (international) (\(\tau_D \)_Timit_1_		

Indicative Content

- Overview of the concept of convergent technologies.
- Review of typical industry driven technology convergence roadmaps.
- Review of key regulatory frameworks and application driven ethical considerations.
- Review of typical bio-mechanical measurement variables.
- System and block level review of available technologies for data handling, signal monitoring and waveform generation in advanced bio-medical and electro-mechanical applications
- Advanced Case Studies (Ex.: structural health monitoring, pulse oximeter, ECG, pacemaker etc.).

Learning Outcomes

On successful completion of this module, a student will be able to:

- 1. Demonstrate a knowledge and comprehension of the fundamental importance of convergent technologies in the development of advanced bio-medical and electro-mechanical applications.
- 2. Demonstrate a knowledge and comprehension of basic bio-mechanical measurement variables, signal monitoring / waveform generation and data handling technologies that are commonly employed in advanced bio-medical and electro-mechanical applications.
- 3. Demonstrate an ability to apply the knowledge and comprehension gained in analysing advanced biomedical and electro-mechanical applications and able to relate system specifications to implementation technologies.
- 4. Demonstrate ability to develop system and block level design criteria and partial solutions for selected bio-mechanical applications.
- 5. Demonstrate an understanding of associated regulatory and ethical considerations.

Learning and Teaching Methods

- Lectures
- Case Studies
- Mini Projects
- Presentations

Learning Modes

Learning Type	F/T Hours	P/T Hours
Lecture	24	
Practical	12	
Independent Learning	99	

Assessment Methods

	Weighting	Outcomes Assessed
Continuous Assessment	100%	
Case Studies	50%	1,2,3,4,5
Assignment	50%	1,2,3,4,5

Assessment Criteria

Essential Material(s)

• "Institute of Electrical and Electronic Engineers." www.ieee.org

Supplementary Material(s)

- Bronzion, J.D. Medical Devices and Systems. .: CRC Press, 2006.
- Brown, B.H., R.H. Smallwood, D.C. Barber, P.V. Lawford and D.R. Hose. *Medical Physics and Biomedical Engineering*. :: Institute of Physics, 1999.
- Chan, A.Y.K. Biomedical Device Technology: Principles & Design. .: Thomas, 2008.
- Enderle, J., S.M. Blanchard and J. Bronzino. *Introduction to Biomedical Engineering*. .: Academic Press, 2005.
- Hobbie, R.K. Intermediate Physics for Medicine & Biology. .: Springer Verlag, 1997.
- Khandpu, R. Bio-Medical Instrumentation: Technology & Applications. UK: McGraw Hill, 2004.
- Prutchi, D. Design & Development of Medical Electronic Instrumentation. UK: Wiley Interscience, 2004.
- Stree, L.J. Introduction to Biomedical Engineering Technology. UK: CRC Press, 2007.
- Togawa, T. Bio-Medical Transducers and Instruments. UK: CRC Press, 1997.
- Webster, J.G. Medical Instrumentation Application and Design. UK: Houghton Wiley, 1999.