Worksheet 12 Review

March 31, 2020

Question 1

a. $g \in \mathcal{O}(1)$: $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq c$, where $g : \mathbb{N} \to \mathbb{R}^{\geq 0}$

Notes:

- $g \in \mathcal{O}(f)$: $\exists c, n_o \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n)$, where $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$
- b. Predicate Logic $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq c$, where $g: \mathbb{N} \to \mathbb{R}^{\geq 0}$

Proof. Let $n_0 = 1$, c = 200 and $g(n) = 100 + \frac{77}{n+1}$. Assume $n \ge n_0$.

We will prove the statement by showing

$$100 + \frac{77}{n+1} \le c \tag{1}$$

It follows from the fact $n_0 \ge 1$ that we can write

$$100 + \frac{77}{n+1} \le 100 + \frac{77}{1+1} \tag{2}$$

$$\leq 100 + \frac{77}{2} \tag{3}$$

$$\leq 100 + 77\tag{4}$$

$$\leq 100 + 100$$
 (5)

$$\leq 200\tag{6}$$

Then,

$$100 + \frac{77}{n+1} \le c \tag{7}$$

by the fact that c = 200.

Question 2

• Predicate Logic: $\forall f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}, \ (\exists c_0, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \leq c_0 f(n)) \Rightarrow (\exists d_0, m_0 \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ n \geq m_0 \Rightarrow f(n) \geq dg(n))$

Proof. Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$. Let c = 2, $n_0 = 1$ and $n \in \mathbb{N}$. Assume $n \geq m_0$. Let $d = \frac{1}{c}$ and $m_0 = n_0$. Assume $n \geq m_0$.

We will prove that $d_0g(n) \leq f(n)$ given $g(n) \leq c_0f(n)$.

It follows from the assumption $g(n) \leq f(n)$ that we can write

$$g(n) \le cf(n) \tag{1}$$

$$\frac{1}{2}g(n) \le f(n) \tag{2}$$

$$\frac{1}{2}g(n) \le f(n) \tag{3}$$

Then since $d = \frac{1}{2}$,

$$d \cdot g(n) \le f(n) \tag{4}$$

Question 3

Question 4