편집: 홍익대학교(세종) 김혜영

#### ❖ 네트워크

- 라우팅
  - 라우팅 테이블 : 네트워크 구성 형태에 관한 정보를 관리
  - 라우팅 : 송수신 호스트 사이의 패킷 전달 경로를 선택하는 과정
- 혼잡 제어
  - 혼잡 : 네트워크에 패킷 수가 과도하게 증가되는 현상
  - 혼잡 제어 : 혼잡의 발생을 예방하거나 제거하는 기능
- 패킷의 분할과 병합
  - 상위 전송 계층에서 송신을 요구한 데이터는 최종적으로 MAC 계층의 프레임 구조에 정의
  - 된 형식으로 캡슐화되어 물리적으로 전송
  - 패킷 분할 : 데이터를 여러 패킷으로 나누는 과정
  - 패킷 병합 : 목적지에서 분할된 패킷을 다시 모으는 과정

#### ❖ 연결형 서비스와 비연결형 서비스

- 연결형: 데이터 전송 전에 데이터의 전송 경로를 미리 결정
- 비연결형: 데이터의 전송 경로를 사전에 결정하지 않고 패킷 단위로 결정



그림 7-1 연결형 · 비연결형 서비스

- 비연결형 서비스Connectionless Service
  - 패킷의 전달 순서
    - 패킷이 서로 다른 경로로 전송되므로 도착 순서가 일정하지 않음
    - 상위 계층에서 순서를 재조정해야 함
  - 패킷 분실 가능성
    - 패킷의 100% 도착을 보장하지 않음
    - 상위 계층에서 패킷 분실 오류를 복구해야 함
  - 인터넷 환경의 예
    - IP : 네트워크 계층의 기능을 지원하는 비연결형 프로토콜
    - UDP : 전송 계층의 기능을 지원하는 비연결형 프로토콜
- 연결형 서비스Connection-oriented Service
  - 상대적으로 신뢰성이 높음
  - TCP : 전송 계층의 기능을 지원하는 연결형 프로토콜



#### ❖ 라우팅Routing

- 패킷의 전송 경로를 지정
- 전송 경로 결정시 고려 사항
  - 공평 원칙 : 다른 패킷의 우선 처리를 위해 다른 패킷이 손해를 보면 안됨
  - 효율 원칙 : 전체 네트워크의 효율성에 대해 고려해야 함
- 정적/동적 라우팅
  - 정적 라우팅Static Routing
    - 패킷 전송이 이루어지기 전에 경로 정보를 라우터가 미리 저장하여 중개
    - 단점: 경로 정보의 갱신이 어려우므로, 네트워크 변화/네트워크 혼잡도 대처 부족
  - 동적 라우팅Dynamic Routing
    - 라우터의 경로 정보가 네트워크 상황에 따라 적절히 조절됨
    - 단점 : 경로 정보의 수집과 관리로 인한 성능 저하
- HELLO/ECHO 패킷
  - HELLO: 주변 라우터에 HELLO 패킷을 보내어 주변 경로 정보를 파악하는 용도
  - ECHO: 라우터 사이의 전송 지연 시간을 측정하는 용도

- 라우팅 테이블Routing Table
  - 패킷 전송 과정에서 라우터들이 경로를 쉽게 찾도록 하는 가장 기본적인 도구
  - 필수 정보 : 목적지 호스트, 다음 홉
    - 목적지 호스트 : 패킷의 최종 목적지가 되는 호스트 주소
    - 다음 홉 : 목적지 호스트까지 패킷을 전달하기 위한 인접 경로



| 6                  | 3 |
|--------------------|---|
| 7                  | 3 |
| 8                  | 4 |
| 9                  | 2 |
| 10                 | 3 |
| 11                 | 4 |
| (b) 증시트 1이 라오티 테이블 |   |

2 3

4

목적지

5

(a) 네트워크 연결 구성의 예

그림 7-2 라우팅 테이블

#### ■ 라우팅 정보의 처리

- 소스 라우팅Source Routing
  - 패킷을 전송하는 호스트가 목적지 호스트까지 전달 경로를 스스로 결정하는 방식
  - 경로 정보를 전송 패킷에 기록함
  - 데이터그램 방식과 가상 회선 방식에서 모두 이용함
- 분산 라우팅Distributed Routing
  - 라우팅 정보가 분산되는 방식, 패킷의 전송 경로에 위치한 각 라우터가 경로 선택에 참여함
  - 네트워크에 존재하는 호스트의 수가 많아질수록 다른 방식보다 효과적일 수 있음
- 중앙 라우팅Centralized Routing
  - RCC라는 특별한 호스트를 사용해 전송 경로에 관한 모든 정보를 관리하는 방식
  - RCC로부터 목적지 호스트까지 도착하기 위한 경로 정보를 미리 얻음
  - 장점 : 경로 정보를 특정 호스트가 관리하기 때문에 경로 정보를 관리부담이 줄어듬
  - 단점: RCC에 과중한 트래픽을 주어 전체 효율이 떨어짐
- 계층 라우팅Hierarchical Routing
  - 분산 라우팅 기능과 중앙 라우팅 기능을 적절히 조합하는 방식
  - 네트워크 규모가 계속 커지는 환경에 효과적

#### ❖ 혼잡 제어

- 혼잡<sup>Congestion</sup> : 네트워크 성능 감소 현상이 급격하게 악화되는 현상
- 혼잡 제어<sup>Congestion Control</sup>: 혼잡 문제를 해결하기 위한 방안
  - 흐름 제어 : 송신,수신 호스트 사이의 논리적인 점대점 전송 속도를 다룸
  - 혼잡 제어 : 서브넷에서 네트워크의 전송 능력 문제를 다룸



그림 7-3 흐름 제어와 혼잡 제어

#### ■ 혼잡의 원인

- 초기 혼잡 과정에서 타임 아웃 시간이 작으면 혼잡도가 급격히 증가
- 패킷 도착 순서가 다른 상황에서 패킷을 분실 처리하면 타임아웃 증가
- 의도적으로 피기배킹을 사용하면 응답 시간이 느려져 타임아웃 증가
- 패킷 생존 시간을 작게 하면 패킷이 강제로 제거되어 타임아웃 증가
- 라우팅 알고리즘
  - 혼잡이 발생하지 않는 경로를 배정하도록 설계
  - 혼잡이 발생하는 경로를 선택하면 혼잡이 주변으로 확대됨

- 트래픽 성형
  - 혼잡은 트래픽이 특정 시간에 집중되는 버스트현상이 원인
  - 트래픽 성형Traffic Shaping : 송신 호스트가 전송하는 패킷의 발생 빈도가 네트워크에 서 예측할 수 있는 전송률로 이루어지게 하는 기능
  - 리키 버킷Leaky Bucket 알고리즘



- 혼잡 제거
  - 특정 지역의 혼잡이 다른 지역으로 확대되지 않도록 하는 것이 중요
  - 혼잡 제거를 위해 호스트와 서브넷이 가상 회선 연결 과정에서 협상을 함
    (자원 예약 방식)
    - 네트워크에서 수용 불가능한 정도로 트래픽이 발생하는 일을 사전에 예방함
    - 단점: 전송 대역을 해당 사용자가 이용하지 않더라도 다른 사용자가 이용하지 못함
  - ECNExplicit Congestion Notification 패킷
    - 라우터는 트래픽의 양을 모니터해 출력 선로의 사용 정도가 한계치를 초과하면 주의 표시를 함
    - 주의 표시한 방향의 경로는 혼잡이 발생할 가능성이 높기 때문에 특별 관리함



#### ❖ 간단한 라우팅 프로토콜

- 네트워크 거리 기준 : 라우터의 개수, 홉 Hop의 수로 판단
- 최단 경로 라우팅
  - 패킷이 목적지에 도달할 때까지 라우터 수가 최소화될 수 있도록 경로 선택
  - 장점 : 간단한 형식으로 적용가능



그림 7-6 최단 경로 라우팅

- RIPRouting Information Protocol 프로토콜
  - 거리 벡터 방식의 내부 라우팅 프로토콜 중에서 가장 간단하게 구현된 것
  - 소규모 네트워크 환경에 적합, 현재 가장 많이 사용하는 라우팅 프로토콜
  - 라우팅 테이블 적용
    - 새로운 네트워크의 목적지 주소이면 라우팅 테이블에 적용
    - 거리 벡터 정보가 기존 정보와 비교하여 목적지까지 도착하는 지연이 더 적으면 대체
    - 라우터로부터 거리 벡터 정보가 들어왔을 때, 라우팅 테이블에 해당 라우터를 다음 홉으로 하는
      등록 정보가 있으면 새로운 정보로 수정

#### • 라우터 R1의 라우팅 테이블

- 목적지 Net.4: 다음 홉 R4
- 개선의 여지가 있음

#### 표 7-1 수정 전 라우터 R1의 라우팅 테이블

| 목적지 네트워크 | 다음 홉 | 거리 |
|----------|------|----|
| Net.1    | _    | 1  |
| Net.2    | _    | 1  |
| Net.3    | R4   | 2  |
| Net.4    | R4   | 3  |
| Net.5    | R6   | 2  |



그림 7-8 네트워크 구성의 예

• 임의의 시점에 거리 벡터 정보

$$R2 = [1, 2, 2, 1, 2]$$

$$R3 = [2, 1, 2, 1, 2]$$

$$R4 = [2, 1, 1, 2, 2]$$

$$R6 = [2, 1, 2, 2, 1]$$

#### 표 7-2 수정 후 라우터 R1의 라우팅 테이블

| 목적지 네트워크 | 다음 홉 | 거리 |
|----------|------|----|
| Net.1    | _    | 1  |
| Net.2    | _    | 1  |
| Net.3    | R4   | 2  |
| Net.4    | R3   | 2  |
| Net.5    | R6   | 2  |

- IP 프로토콜의 주요 특징
  - 비연결형 서비스를 제공
  - 패킷을 분할/병합하는 기능을 수행
  - 데이터 체크섬은 제공하지 않고, 헤더 체크섬만 제공
  - Best Effort 원칙에 따른 전송 기능을 제공

#### ❖ IP 헤더 구조 ♀



#### DS/ECN

- Service Type 필드
  - 우선순위, 지연, 전송률, 신뢰성 등의 값을 지정할 수 있음
  - IP 프로토콜이 사용자에게 제공하는 서비스의 품질에 관련된 내용을 표현

±7−4 Service Type

| 비트 번호 | 각 비트의 값           |                     |
|-------|-------------------|---------------------|
|       | 0                 | 1                   |
| 0~2   | 우선순위(111 : 가장 높음) |                     |
| 3     | 보통의 지연            | 낮은 지연               |
| 4     | 보통의 전송률           | 높은 전 <del>송</del> 률 |
| 5     | 보통의 신뢰성           | 높은 신뢰성              |
| 6~7   | 예약                |                     |

- Service Type 필드는 6비트의 DS 필드와 2비트의 ECN 필드로 새로 정의됨

- DSDifferentiated Services
  - 사전에 서비스 제공자와 서비스 이용자 사이에 서비스 등급에 대해 합의
  - 동일한 DS 값을 갖는 트래픽들은 동일한 서비스 등급으로 처리됨
- ECNExplicit Congestion Notification
  - ECT 0과 ECT 1은 동일한 의미
  - ECN 기능을 위하여 TCP 프로토콜의 헤더에 ECE 필드와 CWR 필드가 추가

#### 표7-5 ECN 필드 값의 의미

| 필드 값                           | 의미                            |
|--------------------------------|-------------------------------|
| 00                             | IP 패킷이 ECN 기능을 사용하지 않음을 의미한다. |
| 01(ECT 1)                      | TCP 프로토콜도 ECN 기능을 지원한다는 의미이다. |
| 10(ECT 0)                      | TCP 프로토콜도 ECN 기능을 지원한다는 의미이다. |
| 11(CE: Congestion Experienced) | 라우터가 송신 호스트에 혼잡을 통지할 때 사용한다.  |

#### ■ 패킷 분할

- Identification(식별자 혹은 구분자)
  - IP 헤더의 두 번째 워드에는 패킷 분할과 관련된 정보가 포함.
  - Identification은 송신 호스트가 지정하는 패킷 구분자 기능을 수행함
- DFDon't Fragment : 패킷이 분할되지 않도록 함
- MFMore Fragment
  - MF필드 값을 1로 지정하여, 분할 패킷이 뒤에 계속됨을 표시
  - 마지막 패킷은 MF 비트를 0으로 지정하여 분할 패킷이 더 없음을 표시
- Fragment Offset(분할 옵셋)
  - 저장되는 값은 분할된 패킷의 내용이 원래의 분할 전 데이터에서 위치하는 상대 주소값
  - 값은 8바이트의 배수

- 주소 관련 필드
  - Source Address : 송신 호스트의 IP 주소
  - Destination Address : 수신 호스트의 IP
  - network(네트워크) : 네트워크 주소
  - host(호스트) : 네트워크 주소가 결정되면 하위의 호스트 주소를 의미하는 host 비트 값을 개별 네트워크의 관리자가 할당



#### 표 7-6 IP 주소 값에 따른 주소 체계

| IP 주소 값                        | 주소 체계        |
|--------------------------------|--------------|
| $0.0.0.0 \sim 127.255.255.255$ | 클래스 A의 주소 대역 |
| 128.0.0.0 ~ 191.255.255.255    | 클래스 B의 주소 대역 |
| 192,0,0,0 ~ 223,255,255,255    | 클래스 C의 주소 대역 |
| 224.0.0.0 ~ 239.255.255.255    | 클래스 D의 주소 대역 |
| 240.0.0.0 ~ 255.255.255.255    | 클래스 E의 주소 대역 |

#### ■ 기타 필드

- Version Number(버전 번호): IP 프로토콜의 버전 번호
- Header Length(헤더 길이) : IP 프로토콜 헤더 길이를 32비트 워드 단위로 표시
- Packet Length(패킷 길이): IP 헤더를 포함하여 패킷의 전체 길이
- Time To Live(생존 시간) : 패킷의 생존 시간, 라우터를 거칠 때마다 1씩 감소되며 0이 되면 네트워크에서 강제로 제거

• Transport(전송 프로토콜) : [그림 7-14]와 같이 IP 프로토콜에 데이터 전송을 요구한 전송계층의 프로토콜



그림 7-14 Transport 필드

- Header Checksum(헤더 체크섬) : 전송 과정에서 발생할 수 있는 헤더 오류를 검출하는 기능
- Options(옵션) : 네트워크 관리나 보안처럼 특수 용도로 이용할 수 있음
- Padding(패딩): IP 헤더의 크기는 16비트 워드의 크기가 4의 배수가 되도록 설계



### ❖ 패킷 분할

■ 분할의 필요성



그림 7-15 패킷 분할의 필요성



- 분할의 예
  - IP 헤더를 제외한 전송 데이터의 크기는 380바이트
  - 패킷은 최대 크기가 128바이트라고 가정

| IP 헤더 | 분할1  | 분할 2           | 분할               | 3  | 분할 4               |
|-------|------|----------------|------------------|----|--------------------|
|       |      | Identification | Packet<br>Length | MF | Fragment<br>Offset |
| IP 헤더 | 분할1  | 1254           | 124              | 1  | 0                  |
| IP 헤더 | 분할 2 | 1254           | 124              | 1  | 13                 |
| IP 헤더 | 분할 3 | 1254           | 124              | 1  | 26                 |
| IP 헤더 | 분할 4 | 1254           | 88               | 0  | 39                 |

그림 7-16 패킷 분할의 예

#### ❖ARP 프로토콜

- IP 주소와 MAC 주소 사이의 변환을 담당
- MAC 주소
  - 송신 호스트의 IP 주소 : 송신 호스트의 하드 디스크에서 얻을 수 있음
  - 수신 호스트의 IP 주소 : 사용자가 제공
  - 송신 호스트의 MAC 주소 : 송신 호스트의 LAN 카드에서 얻을 수 있음
  - 수신 호스트의 MAC 주소 : IP 주소를 매개변수로 하여 ARP 프로토콜로 얻음
  - ARP 프로토콜
    - 특정 호스트의 IP 주소로 부터 MAC 주소를 제공하는 프로토콜
    - ARP request라는 특수 패킷을 브로드캐스팅
    - IP 주소에 해당하는 호스트만 ARP reply로 MAC 주소를 회신
    - 효율 향상을 위해 캐시 기능을 제공



- IPv6의 주요 변경 사항
  - 주소 공간 확장 : 공간이 32비트에서 128비트로 확장
  - 헤더 구조 단순화 : 오류제어 등의 오버헤드를 줄여 프로토콜의 전송 효율 향상
  - 흐름 제어 기능 지원 : 일정 범위 내에서 예측 가능한 데이터 흐름을 지원 실시간 멀티미디어 응용 환경을 수용

#### ❖IPv6 헤더 구조

9개의 기본 필드를 지원, 총 40바이트 중에서 32바이트는 주소 공간으로 할당,
 8바이트만 프로토콜 기능





#### ❖IPv6 주소

- 주소 표현
  - 128비트, 16비트의 숫자 8개를 콜론(:)으로 구분



그림 8-2 IPv6의 주소 표현

• 축약표시

X:X:X:X:X:d,d,d,d

- X는 16비트이므로 총 96(16×6)비트, d는 8비트이므로 총 32(8×4)비트
- 즉, 전체 크기는 IPv6의 주소 크기와 동일한 128(96+32)비트

#### ■ 주소 공간

#### • IPv6의 주소 공간

표 8-1 IPv6의 주소 공간

| 상위 비트     | 용도                       | 상위 비트        | 용도            |
|-----------|--------------------------|--------------|---------------|
| 0000 0000 | 예약(IPv4 공간 지원 포함)        | 100          | 비할당           |
| 0000 0001 | 비할당                      | 101          | 비할당           |
| 0000 001  | OSI NSAP 주소 공간           | 110          | 비할당           |
| 0000 010  | Novell Netware IPX 주소 공간 | 1110         | 비할당           |
| 0000 011  | 비할당                      | 1111 0       | 비할당           |
| 0000 01   | 비할당                      | 1111 10      | 비할당           |
| 0001      | 비할당                      | 1111 110     | 비할당           |
| 001       | 유니 캐스트 주소 공간             | 1111 1110 0  | 비할당           |
| 010       | 비할당                      | 1111 1110 10 | Link 지역 주소 공간 |
| 010       | 비할당                      | 1111 1110 11 | Site 지역 주소 공간 |
| 011       | 비할당                      | 1111 1111    | 멀티캐스트 주소 공간   |
|           |                          |              |               |

#### ■ ARP의 필요성



그림 8-7 ARP의 필요성

- RARPReverse Address Resolution Protocol 프로토콜의 필요성
  - 하드 디스크가 없는 시스템은 자신의 IP 주소를 알 수 없음
  - 특정 호스트의 MAC 주소로 부터 IP 주소를 제공하는 프로토콜



그림 8-8 RARP의 필요성

#### ❖ICMPInternet Control Message Protocol 프로토콜

- 인터넷 환경에서 오류에 관한 처리를 지원
- ICMP 메시지
  - 오류 보고 메시지<sup>Error-Reporting Message</sup> : IP 패킷을 전송하는 과정에서 발생하는 문제 를 보고하는 것이 목적

#### 표 8-2 오류 보고 메시지

| 메시지                        | 설명                                                                                                                                                                       |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DESTINATION<br>UNREACHABLE | 수신 호스트가 존재하지 않거나, 존재해도 필요한 프로토콜이나 포트 번호 등이 없어<br>수신 호스트에 접근이 불가능한 경우에 발생한다. IP 헤더의 DF 필드가 설정된 패킷을<br>라우터가 분할해야 하는 경우에도 해당 패킷을 버리고 이 메시지를 회신해준다.                          |
| SOURCE QUENCH              | 네트워크에 필요한 자원이 부족하여 패킷이 버려지는 경우에 발생한다. 예를 들면, 전송<br>경로에 있는 라우터에 부하가 많이 걸려 패킷이 버려지는 경우이다. 이 메시지를 이용<br>해 송신 호스트에 혼잡 가능성을 경고함으로써, 패킷을 송신하는 호스트가 데이터를 천<br>천히 전송하도록 알릴 수 있다. |
| TIME EXCEEDED              | 패킷의 TTLTime To Live 필드 값이 0이 되어 패킷이 버려진 경우에 주로 발생한다. 기타시간 초과 현상에 의해 패킷이 버려진 경우도 이에 해당한다.                                                                                 |

• 질의 메시지<sup>Query Message</sup> : 라우터 혹은 다른 호스트들의 정보를 획득하려는 목적 표8-3 질의메시지

| 메시지                                   | 설명                                                                                                                                     |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| ECHO REQUEST, ECHO<br>REPLY           | 유닉스Unix의 ping 프로그램에서 네트워크의 신뢰성을 검증하기 위하여 ECHO REQUEST 메시지를 전송하고, 이를 수신한 호스트는 ECHO REPLY를 전송해 응답한다. 특정 호스트가 인터넷에서 활성화되어 동작하는지 확인할 수 있다. |
| TIMESTAMP REQUEST,<br>TIMESTAMP REPLY | 두 호스트 간의 네트워크 지연을 계산하는 용도로 사용한다.                                                                                                       |



- ICMP 헤더 형식
  - 오류 보고 메세지



그림 8-9 ICMP 메시지: 오류 보고 메시지

- 오류 원인을 제공한 IP 패킷의 헤더와 이어지는 8바이트의 정보가 오류 보고 메시지에 포함됨
- Type(유형): 1바이트 크기로 메시지의 종류를 구분
- Code(코드): 메시지 내용에 대한 자세한 정보를 제공하는 매개변수 값
- Checksum(체크섬) : ICMP 전체 메시지에 대한 체크섬 기능을 지원

- 질의 메시지
  - Identifier와 Sequence Number 필드를 사용하여 메시지를 구분하는 기능이 사용



그림 8-10 ICMP 메시지: 질의 메시지



- ICMP 메시지 전송
  - ICMP는 기능적으로 IP 프로토콜과 같은 계층의 역할을 수행
  - ICMP 메시지는 IP 프로토콜에 캡슐화되어 전송



그림 8-11 ICMP 메시지의 전송

#### ❖IGMP 프로토콜

- 멀티캐스팅Multicasting: 특정 그룹의 모든 호스트에 메시지를 전송하는 방식
- 멀티캐스트 라우팅Multicast Routing: 멀티캐스팅에 필요한 라우팅 알고리즘
- 그룹 관리
  - 그룹 관리의 주요 기능 : 그룹의 생성.제거, 전송 호스트의 그룹 참가.탈퇴 등
  - 멀티캐스팅 기능
    - 다중 호스트를 표시하는 멀티캐스트 그룹 주소 표기 방법의 통일
    - 라우터가 멀티캐스트 주소와 이 그룹에 속하는 호스트 사이의 연관성 처리
    - 멀티캐스트 라우팅 알고리즘은 그룹의 모든 멤버에게 가장 짧은 경로를 선택하는 기능 제공
- IGMPInternet Group Management Protocol
  - 멀티캐스트 그룹에 가입하거나 탈퇴할 때 사용하는 프로토콜
  - 멀티캐스트 그룹에 가입한 호스트와 라우터 사이에 멤버 정보를 교환하는 용도
  - 질의 메시지 : 멀티캐스트 라우터가 그룹 정보를 얻기 위하여 호스트에 전달
  - 보고 메시지 : 질의의 응답으로 호스트가 보고 메시지를 회신

• IGMP 헤더의 구조



#### 그림 8-12 IGMP 헤더의 구조

- Type(유형): 0x11 멀티캐스트 라우터가 전송한 질의 메시지
  - 0x16 호스트가 전송하는 보고 메시지
  - 0x17 그룹 탈퇴에 관한 메시지
- Max Response Time(최대 응답 시간) : 질의에 대한 보고 메시지가 전송되는 최대응답시간
- Checksum(체크섬): IP 프로토콜에서 사용하는 알고리즘과 동일한 방식 (오류 검출용으로 이용)
- Group Address(그룹 주소) : 질의 메시지는 0, 보고 메시지에는 호스트가 가입을 원하는 그룹 주소를 표기

- IGMP 동작 과정
  - 그룹 가입 : 해당 멀티캐스트 주소를 표기한 IGMP 보고 메시지를 전송
  - 그룹 유지: IGMP 보고 메시지를 사용해 IGMP 질의에 응답해야함
  - 그룹 탈퇴 : 라우터의 질의 메시지에 대해 호스트의 보고 메시지 응답이 없음

41/40



- IGMP 메시지의 전송
  - IGMP는 IP 패킷에 캡슐화되어 보내짐
    즉, IGMP 메시지는 IP 프로토콜의 데이터로 처리되기 때문에 IP 패킷의 헤더에 실려서 계층 2 프로토콜로 전달됨



그림 8-14 IGMP 메시지의 전송



# 참조

- 플러딩Flooding
  - 라우터가 자신에게 입력된 패킷을 출력 가능한 모든 경로로 중개하는 방식
  - 패킷이 무한히 만들어질 수 있으므로 생존 시간으로 제한
  - 특별한 목적으로만 사용

### ❖ 거리 벡터 라우팅 프로토콜

- 라우터가 자신과 연결된 이웃 라우터와 라우팅 정보를 교환하는 방식
- 필수 정보
  - 링크 벡터 : 이웃 네트워크에 대한 연결 정보
  - 거리 벡터 : 개별 네트워크까지의 거리 정보
  - 다음 홉 벡터 : 개별 네트워크로 가기 위한 다음 홉 정보



- 링크 벡터
  - 링크 벡터 L(x): 라우터 x와 연결된 이웃 네트워크에 대한 연결 정보를 보관

링크 벡터 L(x)=[포트(1), 포트(2), ....., 포트(m), ....., 포트(M)]

그림 7-7 링크 벡터 L(x)



- L(R1) = [ 포트(Net.1) = 1, 포트(Net.2) = 3]
- -L(R2) = [ 포트(Net.1) = 1, 포트(Net.4) = 8]
- L(R7) = [ 포트(Net.3) = 6, 포트(Net.5) = 9]

- 거리 벡터
  - 전체 네트워크에 소속된 개별 네트워크들까지의 거리 정보를 관리

```
거리 벡터 D(x) = [거리(1), 거리(2), ....., 거리(n), ...., 거리(N)]
```

그림 7-9 거리 벡터 D(x)

• [그림 7-8]에서



- 다음 홉 벡터
  - 다음 홉 벡터 H(x)는 개별 네트워크까지 패킷을 전송하는 경로에 있는 다음 홉 정보를 관리

다음 홉 벡터 H(x) = [홉(1), 홉(2), ....., 홉(n), ....., 홉(N)]

그림 7-10 다음 홉 벡터 H(x)

• [그림 7-8]에서

• 벡터 정보를 교환하기 위해 다음과 같은 패킷 구조를 사용함





- Command(명령): 값이 1이면 RIP 요청을, 2이면 RIP 응답을 의미.
- Version(버전): RIP 프로토콜의 버전 번호
- Address Family Identifier(주소 패밀리 구분자): IP 프로토콜의 주소는 2로 설정
- IP Address(IP 주소) : 특정한 네트워크를 지칭하는 용도로 사용되기 때문에 IP 주소의 네트워크 부분의 값만 사용하고, 호스트 부분은 0으로 채움
- Metric(거리): 해당 라우터에서 목적지 네트워크까지의 거리



## ❖ 링크 상태<sup>Link State</sup> 라우팅 프로토콜

- 개별 라우터가 이웃 라우터까지의 거리 정보를 구한 후, 이를 네트워크에 연결된 모든 라우터에 통보
- 거리 벡터 방식과 반대
- 거리 벡터 라우팅 프로토콜의 단점을 보완하기 위한 방식
- 플러딩Flooding 기법: 임의의 라우터가 이웃한 모든 라우터에 정보를 전달하고, 다시 이들 라우터가 주변의 모든 라우터에 정보를 전달하는 방식으로 동작
- 예) OSPFOpen Shortest Path First



## ❖ 외부 라우팅 프로토콜

- 내부 라우팅 프로토콜
  - 거리 벡터 방식을 사용하는 RIP
  - 링크 상태 방식을 사용하는 OSPF
- 외부 라우팅 프로토콜
  - 경로 벡터 프로토콜: 단순히 연결 가능한지에 대한 정보만 제공
- BGP
  - TCP 프로토콜을 사용

#### 표 7-3 TCP 프로토콜에서 제공하는 메시지의 종류

| 메시지          | 설명                                           |  |  |
|--------------|----------------------------------------------|--|--|
| Open         | 다른 라우터와 연관 <sup>Relationship</sup> 을 설정한다.   |  |  |
| Update       | 라우팅 관련 정보를 전달한다.                             |  |  |
| KeepAlive    | Open 메시지에 대한 응답 기능과 주변 라우터와의 연관을 주기적으로 확인한다. |  |  |
| Notification | 오류 상태를 통보한다.                                 |  |  |

## ❖ DHCP 프로토콜

- IP 주소를 여러 컴퓨터가 공유해서 사용
- DHCP 메시지 <sub>0</sub>

| OPcode                  | HardwareType | HardwareLength | HOPCount |  |  |
|-------------------------|--------------|----------------|----------|--|--|
| Transaction Identifier  |              |                |          |  |  |
| Time Elapsed            |              | Flag           |          |  |  |
| Client IP Address       |              |                |          |  |  |
| Your IP Address         |              |                |          |  |  |
| Server IP Address       |              |                |          |  |  |
| Gateway IP Address      |              |                |          |  |  |
| Client Hardware Address |              |                |          |  |  |
| Server Name             |              |                |          |  |  |
| Boot File Name          |              |                |          |  |  |
| Options                 |              |                |          |  |  |
|                         |              |                |          |  |  |

31

#### • DHCP 프로토콜의 주요 메시지

- DHCP\_DISCOVER : 클라이언트가 DHCP 서버를 찾기 위해 전송하는 브로드캐스트 메시지
- DHCP\_OFFER : 클라이언트의 DHCP\_DISCOVER 메시지에 대한 응답으로 DHCP 서버가 응답하는 메시지
- DHCP\_REQUEST : 주소를 권고한 DHCP 서버에 DHCP\_REQUEST 메시지를 전송하여 권고한 주소를 사용한다고 알림
- DHCP\_ACK : 권고한 IP 주소가 최종적으로 사용 가능한지 판단후 사용 가능하면D HCP\_ACK 메시지를 전송
- DHCP\_NACK : 클라이언트가 DHCP\_DISCOVER 과정을 다시 하도록함



#### • DHCP 프로토콜의 동작 과정



그림 7-18 DHCP 프로토콜의 동작 과정

#### • UDP/IP 프로토콜의 캡슐화



## ❖터널링 원리

- 상이한 전송 수단
  - IP 프로토콜을
    교체하는 방식
    (버스→배→버스)



그림 8-3 상이한 전송 수단

■ 터널링 방식



57/40

#### ❖IP 터널링

- 무선 호스트가 움직일 때 이동 IP 프로토콜의 기본 동작 원리
  - 이동 호스트의 움직이면 새로운 위치를 관장하는 포린 에이전트Foreign Agent Fanew 로부터 COA<sup>Care of Address</sup>를 얻음
  - 이 주소는 이동 호스트의 홈 에이전트Home Agent HA에 등록되어 FAnew와 HA 사이에 터널을 형성
  - HA로 라우팅된 패킷을 이동 호스트에 전달하려면 새로 형성된 터널을 통해



그림 8-5 이동 IP 프로토콜의 기본 동작 원리

- 이동 호스트에는 고유 IP 주소인 홈 주소Home Addres HA가 할당, 호스트 위치가 바뀌어도 변하지 않음. 홈 에이전트와 밀접한 관련
- COA는 이동 호스트가 새로 이동한 지역에서 일시적으로 할당된 IP 주소 호스트가 이동할 때마다 새로운 COA가 할당되고 기존 COA는 회수되는 과정이 반복됨
- 송신 호스트에서 이동 호스트까지 패킷 전달 과정
  - 이동 호스트를 목적지로 하는 패킷은 HA에게 전달됨
  - HA는 FA와의 터널을 이용해 FA에게 패킷을 전달함
  - FA는 이동 호스트에게 패킷 전달함
- 홈 에이전트와 이동 에이전트 사이에 설정되는 터널Tunnel은 원 IP 패킷을
- 목적지까지 전송하기 위한 중간 단계의 새로운 경로임



- 터널구간 라우팅 처리
  - 원 IP 패킷을 데이터로 취급하는 새로운 형태의 IP 캡슐 패킷IP 이 구성되어전달. 원 패킷의 Destination Address 필드에는 이동 호스트의 홈 주소가 들어감
  - 홈 에이전트에서는 원 패킷을 이동 호스트에 전달하려고 그림처럼 캡슐 패킷으로 변경

