Université Mohamed Khider Biskra Faculté des SESNV Module: Prob Approf Contrôle $N^{\circ} - 1$

Département de Mathématiques Master-1. M Hafayed 11/01/2016.

Exercice 1:

Soit (Ω, \mathcal{F}, P) un espace de probabilité, \mathcal{G} sous tribu de \mathcal{F} et X une variable aleatoire. Soit $\Phi_{\mathcal{G}}$ une application definie par:

$$\Phi_{\mathcal{G}}(X) : \mathbb{L}^{q}(\Omega, F, P) \longrightarrow \mathbb{L}^{q}(\Omega, F, P)$$

$$X \longmapsto \Phi_{\mathcal{G}}(X) = \mathbb{E}(X \mid \mathcal{G}).$$

- (1) Montrer que $\Phi_{\mathcal{G}}$ est une application lineaire continue croissante telle que $\Phi_{\mathcal{G}} \circ \Phi_{\mathcal{G}} = \Phi_{\mathcal{G}}$
- (2) Montrer que $\mathbb{E}(\Phi_{\mathcal{G}}(X)) = \mathbb{E}(X)$.
- (3) Montrer que si X est \mathcal{G} -mesurables, alors $\Phi_{\mathcal{G}} \circ \Phi_{\mathcal{G}} \circ \Phi_{\mathcal{G}} \circ ... \circ \Phi_{\mathcal{G}} = X$.
- (4) Montrer que si $\Phi_{\mathcal{G}}(X) = Z$ et $\Phi_{\mathcal{G}}(X^2) = Z^2$ alors X = Z p.s.
- (5) Montrer que si f une fonction convexe sur \mathbb{R} et $\mathbb{E}(|X|)$, $\mathbb{E}(|f(X)|)$ sont finies alors $f \circ \Phi_{\mathcal{G}} \leq \Phi_{\mathcal{G}} \circ f$.
- (6) Montrer que si ξ est une variable aleatoire \mathcal{G} -mesurables, alors $\Phi_{\mathcal{G}}(\xi X) = \xi \Phi_{\mathcal{G}}(X)$.
- (7) Si $\mathcal{G}_1, \mathcal{G}_2$ deux tribus telles que $\mathcal{G}_1 \subset \mathcal{G}_2$, alors

$$\Phi_{\mathcal{G}_1} \circ \Phi_{\mathcal{G}_2}(X) = \Phi_{\mathcal{G}_2} \circ \Phi_{\mathcal{G}_1}(X) = \Phi_{\mathcal{G}_1}(X).$$

- (8) Montrer que $(\Phi_{\mathcal{G}}(XY))^2 \leq \Phi_{\mathcal{G}}(X^2)\Phi_{\mathcal{G}}(Y^2)$.
- (9) Montrer que $\Phi_{\mathcal{G}}(X^2) \geq t^2 P\{|X| \geq t \mid \mathcal{G}\}\$. où $t \in \mathbb{R}$.

Exercice 2:

Soient X et Y deux variables aleatoires à valeur dans \mathbb{N} , telle que X suit la loi de Poisson $\mathcal{P}(\lambda)$ de parametre $\lambda > 0$ et la loi de Y sachant que (X = n) suit la loi Binomial $\mathcal{B}(n, p)$.

- (1) Déterminer l'esperance de Y.
- (2) Déterminer la loi de Y

Exercice 3:

Soit (X,Y) un couple aléatoire de densité jointe:

$$f_{(X,Y)}(x,y) = \frac{1}{y}e^{-\frac{x}{y}-y}\mathbb{I}_{]0,+\infty[^2}(x,y),$$

- (1) Vérifier que $\int_{\mathbb{R}} \int_{\mathbb{R}} f_{(X,Y)}(x,y) dx dy = 1$.
- (2) Déterminer la densité marginale $f_Y(y)$ de Y. Déduire $\mathbb{E}(Y)$.
- (3) En déduire la densité conditionnelle $f_{X|Y}(x,y)$.
- (4) Déterminer la loi de X sachant que (Y = y),
- (5) Calculer $\mathbb{E}(X \mid Y = y)$ et déduire $\mathbb{E}(X \mid Y)$.