R:
$$\{(x,y) \text{ for } (x,y) \in A^2 \text{ if } xRy\}$$

$$T \cdot R : \{(a,c) \mid \exists b \in B \ ((a,b) \in T \land (b,c) \in R)\}$$

$$R^2$$
: $aR2c \iff \{(a,c) \mid \exists b \in A \ ((a,b) \in R \land (b,c) \in R)\}$

an ordered pair $(a,c) \in \mathbb{R}^2$ means there's a "middle" $b \in \mathbb{B}$ that satisfies $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R}$

properties

• whw

examples

•
$$(a=-b)^2 = I_{\mathbb{R}}$$

•
$$\langle a,b \rangle \in \mathbb{R}^2 \iff \langle a,c \rangle, \langle c,b \rangle \in \mathbb{R}$$

Reflexivity: R:=relation(A) is reflexive if $\forall a \in A(\langle a,a \rangle \in R)$

R is reflexive if every a in A satisfies $(a,a) \in \mathbb{R}$. In other words:

$$I_A \subseteq R$$

 $A = \{ -1, 0, 1 \}$. Is the eq oblique contained in R?

properties

- \iff R^{-1} is reflexive
- $\rightarrow R \subseteq R^2$ (and R^2 is reflexive)
- if $S \subseteq R \to S$ is reflexive
- S is reflexive \rightarrow both $R \cup S$ and $R \cap S$ are reflexive

examples

- $\bullet \; \boldsymbol{\mathsf{U}}_{\mathsf{A}} \text{:} \; \forall \mathsf{a} \in \mathsf{A}(\langle \mathsf{a}, \mathsf{a} \rangle \in \mathsf{A} {\times} \mathsf{A} = \boldsymbol{\mathsf{U}}_{\mathsf{A}})$
- $\bullet \ \mathsf{I}_\mathsf{A} \colon \forall \mathsf{a} \in \mathsf{A}(\langle \mathsf{a}, \mathsf{a} \rangle \in \{\langle \mathsf{-1}, \, -1 \rangle, \, \langle \mathsf{0}, \, \mathsf{0} \rangle, \, \langle \mathsf{1}, \, \mathsf{1} \rangle \})$
- \leq , \geq // both have eq oblique

counter examples

- \neq (which is $\mathbf{U}_{A} \mathbf{I}_{A}$)
- C, >, ∅
- a=-b (forward oblique)

Anti-Reflexivity: R:=relation(A) is anti-reflexive iff $\neg \exists a \in A(\langle a,a \rangle \in R)$

R is reflexive if every a in A satisfies $\langle a,a \rangle \notin R$. In other words:

 $\mathbf{I}_{\mathbf{A}} \cap \mathbf{R} = \emptyset$ (just $\mathbf{I}_{\mathbf{A}} \not\subseteq \mathbf{R}$ isn't enough; $\mathbf{I}_{\mathbf{A}} = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} \not\subseteq \mathbf{R} = \{\langle 1,1 \rangle, \langle 1,2 \rangle\}$ but $\langle 1,1 \rangle \in \mathbf{R}$ so isn't anti-reflexive)

examples

counter examples

•
$$U_A$$
, I_A , $a=-b$, \leq , \geq

Symmetry: R:=relation(A) is symmetric iff $R = R^{-1}$

R is reflexive if every $\langle x,y \rangle$ in R satisfies $\langle y,x \rangle \in R$. In other words: examples

- \varnothing (can't point at $\langle x,y \rangle$ and say $\langle y,x \rangle$ is not in \varnothing^{-1})
- **U**_A, **I**_A, a=-b, ≠

counter examples