Tree level scattering amplitude in (De)constructed gauge theory

Su Yingze

Nagoya University

April 21st 2025

Contents

Why we need new method?

Feynman diagram is a brilliant method without doubt, helping us compute the scattering process pertubatively.

From Frynman diagram to On-shell method

The answer is On-shell method.

On-shell here means that all quantities we use are gauge invariant and satisfy the on-shell condition. Specifically, there are many ingredients under this frame

- The analytic continuation for S-matrix.
- The color-ordered amplitudes.
- The BCFW recursion relation.
- The spinor helicity discription for amplitudes.

Contents

A brief introduction to BCFW

BCFW helps us solve one of the problems

with the cost of introducing complexed momentum.

BCFW is a method to compute amplitudes recursively, proposed by

- Britto, Cachazo, Feng, arXiv: hep-th/0412308
- Britto, Cachazo, Feng, Witten, arXiv: hep-th/0501052

From real to complex – Analytic Continuation

Why can we conduct analytic continuation?

- Tree level scattering amplitudes are rational functions of Lorentz invariants, such as $p_{i\mu}p_{j}^{\mu}$, $p_{i\mu}\epsilon_{j}^{\mu}$.
- Locality tells us that any pole of a tree-level amplitude must correspond to a on-shell propagating particle.
- There's only single pole, no branch cuts (logs, square roots, etc) at tree level.

Amplitudes can be shifted to complex plane

Momentum Shift in BCFW

What did BCFW do to make the shift?

Here we consider the case in which all particles are massless, $p_i^2=0$ for all $i=1,2,\ldots,n$. We choose two momentum to be shifted oppositely

$$p_i \to \hat{p}_i(z) \equiv p_i - zk, \qquad p_j \to \hat{p}_j(z) \equiv p_j + zk$$

satisfying

$$k^2 = 0, \qquad p_i \cdot k = 0, \qquad p_j \cdot k = 0$$

For a non-trival subset of generic momenta $\{p_i\}_{i\in I}$

$$\hat{P}_{I}^{2} = P_{I}^{2} - 2zP_{I} \cdot k = -\frac{P_{I}^{2}}{z_{I}}(z - z_{I})$$

with
$$z_I = \frac{P_I^2}{2P_I \cdot k}$$
.

Fantasitic result from Cauchy Theorem

BCFW recursion relation

$$A_n = \sum_{\text{diagrams }I} \hat{A}_L(z_I) \frac{1}{P_I^2} \hat{A}_R(z_I) = \sum_{\text{diagrams }I} \hat{\hat{P}_I} \hat{P}_I \hat$$

Brief proof:

We consider amplitude A_n in terms of shifted momentum \hat{p}_i^μ instead of original real momentum.

$$A_n \longrightarrow \hat{A}_n(z)$$

If we consider the meromorphic function $\frac{A_n(z)}{z}$ in the complex plane, pick a contour that surrounds the single pole at the origin. \bigstar The most important point here is that

$$\operatorname{Res}|_{z=0}\frac{\hat{A}_n(z)}{z} = \hat{A}_n(0) = A_n$$

The most important point here is that

$$\operatorname{Res}|_{z=0} \frac{\hat{A}_n(z)}{z} = \hat{A}_n(0) = A_n$$

It means that the original amplitude equals to the residue at origin.

This makes it easy to evaluate the residue at $z=z_I$

$$-\text{Res}|_{z=z_I} \frac{\hat{A}_n(z)}{z} = \hat{A}_L(z_I) \frac{1}{P_I^2} \hat{A}_R(z_I)$$

Large z behavior

In the BCFW formula, the boundary term B_n affects a lot

$$A_n = -\sum_{z_I} \operatorname{Res}|_{z=z_I} \frac{\hat{A}_n(z)}{z} + B_n,$$

In most applications. one assumes or much better, proves $B_n=0$. This is often justified by declaring a stronger condition

$$\hat{A}_n(z) \to 0$$
 for $z \to \infty$

Here I show the large z behavior for gluon scattering

$[i\setminus j\rangle$	+	_
+	1/z	z^3
_	1/z	1/z

Spinor-Helicity formalisim

In the part of introduction to BCFW

but the S-matrix is a function of moentum p_i and helicity h_i

How can we catch the information of helicity?

The answer is **Spinor-Helicity formalism** \rightarrow Catch p_i and h_i at the same time.

Spinor-helicity formalism

Massless Case

$$p_{\mu}\sigma^{\mu} = p_{\alpha\dot{\alpha}} = \lambda_{\alpha}\tilde{\lambda}_{\dot{\alpha}} = |\lambda\rangle[\lambda|$$

There is an ambiguity for the definition, the momentum is invariant under the following redefinition

$$\lambda \to t^{-1}\lambda, \qquad \tilde{\lambda} \to t\tilde{\lambda}, \qquad t \in \mathbb{C}$$

same for

$$|\lambda\rangle \to t^{-1}|\lambda\rangle, \qquad |\lambda] \to t|\lambda]$$

The scattering amplitudes should transform covariantly under little group scaling:

$$\mathcal{A}_n(\{|1\rangle, |1], h_1\}, \dots \{t_i^{-1}|i\rangle, t_i|i], h_i\}, \dots) = t_i^{2h_i} \mathcal{A}_n$$

Massive Case

It can also be handled in terms of spinor-helicity variable, see also arXiv:1709.04891 [hep-th] (Nima Arkani-Hamed, Tzu-Chen Huang, Yu-tin Huang).

On-shell 3-point can be completely determined

On-shell 3-point for real momentum

Because of the constrain from momentum conservation and on-shell condition

$$p_1 = \kappa p_3, \qquad p_2 = (1 - \kappa)p_3$$
 (Collinear)

All of the contribution

$$(p_1 \cdot p_2), (p_1 \cdot p_3), (p_2 \cdot p_3) = 0$$

In terms of Spinor- Helicity variable, we have

$$2p_1 \cdot p_2 = \langle 12 \rangle [21] = 0 \longrightarrow \langle 12 \rangle = [21]^* = 0$$

We can not obtain any thing nontrival from 3-point!

Of coure, you can introduce non-minimal interaction

$$\mathcal{L}_3 \ni \frac{1}{\Lambda^2} \bar{\Psi} \not\!\!\!D (\Box \Psi)$$

but it still equals to 0 under the on-shell condition.

Another necessarity to introduce complex momentum

If the momentum is complexed, we have

$$\langle 12 \rangle \neq [21]^*$$

Then we can obtain

$$|1\rangle \propto |2\rangle \propto |3\rangle$$
 or $|1] \propto |2] \propto |3]$

It means that 3-point amplitude depends only on angle brackets or squar brackets. Here I choose the first case to give an example

$$A_3(1^{h_1}, 2^{h_2}, 3^{h_3}) = c\langle 12 \rangle^{x_{12}} \langle 13 \rangle^{x_{13}} \langle 23 \rangle^{x_{23}},$$

Little group scaling tells us that

$$t_1^{2h_1} A_3(1^{h_1}, 2^{h_2}, 3^{h_3}) = c t_1^{-x_{12}} t_1^{-x_{13}} \langle 12 \rangle^{x_{12}} \langle 13 \rangle^{x_{13}} \langle 23 \rangle^{x_{23}}.$$

We can obtain

$$2h_1 = -x_{12} - x_{13}$$

Similarly, we can also obtain

$$2h_2 = -x_{12} - x_{23}, \qquad 2h_3 = -x_{13} - x_{23}.$$

Then all index can be solved from this system of equations, so that

$$A_3^{h_1 h_2 h_3} = c \langle 12 \rangle^{h_3 - h_1 - h_2} \langle 31 \rangle^{h_2 - h_1 - h_3} \langle 23 \rangle^{h_1 - h_2 - h_3} \qquad h_1 + h_2 + h_3 < 0$$

$$A_3^{h_1 h_2 h_3} = c' [12]^{h_1 + h_2 - h_3} [23]^{h_2 + h_3 - h_1} [31]^{h_3 + h_1 - h_2} \qquad h_1 + h_2 + h_3 > 0$$

 \star All massless on-shell 3-point ampltides are completely determined by little group scaling!

Example: 3-gluon amplitude

$$A_3(g_1^-, g_2^-, g_3^+) = g \frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 31 \rangle}$$

There's another possibility

$$A_3(g_1^-, g_2^-, g_3^+) = g' \frac{[13][23]}{[12]^3}$$

but actually it comes from the non-local interaction $g'AA \stackrel{\partial}{\square} A$, so we discard it.

Contents

Introduction of Quiver or Moose gauge theory

Quiver: A container for carring ar-

rows

Moose: A kind of deer with large

horns

In the language of field theories, quiver gauge theories contain gauge fields and bi-fundamental scalars, summarized in a pictotial representaion.

Moose diagram

N-sided polygon

 $G: {\tt gauge \ group} \quad SU(m)$

ightarrow: Unitary scalar fields Φ_{ij}

Why we foucs on quiver gauge theory?

The lagrangian can be written like

$$\mathcal{L} = -\sum_{i=1}^{N} \frac{1}{2} \text{Tr}(F_i)^2 + \sum_{i=1}^{N} \text{Tr}[(D_{\mu}\Phi_i)^{\dagger}(D^{\mu}\Phi_i)],$$

here F_i refers to the ith gauge field strength, scalar field Φ_i transformed under the bi-fundamental representation and the covariant derivative equals to

$$D_{\mu}\Phi_{i} = \partial_{\mu}\Phi_{i} - ig_{i}A_{i\mu}\Phi_{i} + ig_{i+1}\Phi_{i}A_{i+1\mu}.$$

Here, gauge field and scalar field transformed like

$$\mathbf{A}_{i\mu} \to U_i(x) \mathbf{A}_{i\mu} U_i^-(x) - \frac{i}{g_i} (\partial \mu U) U^{-1}, \qquad \Phi_i \to U_i(x) \Phi_i U_{i+1}^-(x)$$

It is easy to confirm that this theory is invariant under $\prod_1^N SU(m)$ gauge group.

It has been proposed that this model actually discretized a five-dimension gauge theory with gauge group SU(m), where only the fifth dimension are latticed. So it is an effective theory for 5d gauge theory.

- If $SU(m)_1$ and $SU(m)_N$ are connected $\longrightarrow S^2$ compactification
- If not connected → Interval compactification

After higgsing the scalar field, we can obtain a spectrum

$$M_k^2 = 4g^2 f_s^2 \sin^2\left(\frac{\pi k}{N}\right)$$

This is precisely the Kaluza-Klein spectrum under S^2 compactification.

What is relation to scattering amplitude?

The critical point is locality.

- Space-Time Locality → local field theories

If we change this to a scattering diagram, and compute the large-z behavior

 $\sim 1/z^{4}$

Contents

Classification of Scattering Amplitudes

For simplicity, we start from the two-site gauge theory with gauge fields V_1 , V_2 and scalar fields Φ , Φ^{\dagger} . The amplitudes are classified by their multiplicity:

3-point	4-point	5-point	6-point
$V_1\Phi\Phi^\dagger$	$V_1V_1V_1V_1$	$V_1V_1V_1V_1V_1$	$V_1V_1V_1V_1V_1V_1$
$V_2\Phi\Phi^\dagger$	$V_2V_2V_2V_2$	$oxed{V_2V_2V_2V_2V_2}$	$oxed{V_2V_2V_2V_2V_2V_2}$
$V_1V_1V_1$	$\Phi^\dagger V_1 V_1 \Phi$	$\Phi^\dagger V_1 V_1 V_1 \Phi$	$\Phi^\dagger V_1 V_1 V_1 V_1 \Phi$
$V_2V_2V_2$	$\Phi V_2 V_2 \Phi^\dagger$	$\Phi V_2 V_2 V_2 \Phi^\dagger$	$\Phi V_2 V_2 V_2 V_2 \Phi^\dagger$
	$\Phi V_2 \Phi^\dagger V_1$	$V_2\Phi^\dagger V_1 V_1\Phi$	$V_2 V_2 \Phi^\dagger V_1 V_1 \Phi$
	$\Phi\Phi^\dagger\Phi\Phi^\dagger$	$\Phi V_2 V_2 \Phi^\dagger V_1$	$\Phi V_2 V_2 \Phi^\dagger V_1 V_1$
		$\Phi\Phi^\dagger\Phi\Phi^\dagger V_1$	i i
		$\Phi\Phi^\dagger\Phi\Phi^\dagger V_2$	i i

Basic building block - 3-point

From the previous section, we have known that there are only two kinds of 3 point amplitude

$$A[1,2,3^{+}] = \frac{[23][31]}{[12]}, \qquad A[1,2,3^{-}] = \frac{\langle 23 \rangle \langle 31 \rangle}{\langle 12 \rangle}$$
$$A[3^{+},4^{+},5^{-}] = \frac{[34]^{3}}{[45][53]}, \qquad A[3^{-},4^{-},5^{+}] = \frac{\langle 34 \rangle^{3}}{\langle 45 \rangle \langle 53 \rangle}$$

By using the 3 point building block, we can construct 4 point color-ordered amplitudes from BCFW recursion relation.

Gauge boson sector

• ${\rm n}V_1$ or ${\rm n}V_2$ This part is completely the same as the pure gluon amplitude, so we can directly borrow the existing results.

Parke - Talyor Formula :
$$A[\cdots,i^-,\cdots,j^-,\cdots]=\frac{\langle ij\rangle^4}{\langle 12\rangle\!\langle 23\rangle\cdots\langle n1\rangle}$$

Notice that this formula only applies to MHV amplitudes, although the NMHV can be completely solved.

SQCD like sector

• $\Phi^\dagger V_1 V_1 \Phi$ Here we compute the color-ordered amplitude $A[1,2,3^+,4^-]$. We choose $[2,3\rangle$ shift

$$\begin{split} |\hat{2}] &= |2] - z|3], \qquad |\hat{2}\rangle = |2\rangle \\ |\hat{3}] &= |3], \qquad |\hat{3}\rangle = |3\rangle + z|2\rangle \end{split}$$

The amplitudes can be computed

$$A[1,2,3^+,4^-] = (-1)\frac{\langle 14 \rangle^2 \langle 24 \rangle^2}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

 $\bullet \quad \Phi^{\dagger}V_1V_1V_1\Phi$

$$A[1,2,3^+,4^+,5^-] = \frac{\langle 15 \rangle^2 \langle 25 \rangle^2}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$$

• $\Phi^{\dagger}(nV_1)\Phi$

$$A[1, 2, \cdots, (n+2)^{-}] = (-1)^{n+1} \frac{\langle 1, n+2 \rangle^{2} \langle 2, n+2 \rangle^{2}}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n+1, n+2 \rangle \langle n+2, 1 \rangle}$$

* Bonus relation:

$$A[1,2,3^+,4^+] = 0 \quad \Rightarrow \quad A[1,2,3^+,\cdots,n^+] = 0$$

For the amplitude $\Phi(nV_2)\Phi^{\dagger}$, we can obtain nearly the same expression.

Pure 2-site amplitude

 $\bullet \quad \Phi V_2 \Phi^\dagger V_1$

$$A[1,2,3_1^+,4_2^-] = \frac{\langle 14 \rangle \langle 24 \rangle}{\langle 13 \rangle \langle 23 \rangle}$$

 $\bullet \Phi V_2 \Phi^{\dagger} V_1 V_1$

$$A[1,2,3_1^+,4_1^+,5_2^-] = (-1)\frac{\langle 25 \rangle^2 \langle 15 \rangle^2}{\langle 23 \rangle \langle 34 \rangle \langle 41 \rangle \langle 25 \rangle \langle 51 \rangle}$$

 $\bullet \quad \Phi V_2 V_2 \Phi^{\dagger} V_1 V_1$

$$A[1, 2, 3_1^+, 4_1^+, 5_2^+, 6_2^-] = \frac{\langle 26 \rangle^2 \langle 16 \rangle^2}{\langle 23 \rangle \langle 34 \rangle \langle 41 \rangle \langle 25 \rangle \langle 56 \rangle \langle 61 \rangle}$$

Compact formula for general case

$$A = \underbrace{\frac{\langle 2a \rangle^2 \langle 1a \rangle^2}{\langle 2 \star \rangle \cdots \langle \star 1 \rangle}}_{SU(N_1)} \underbrace{\langle 2 \star \rangle \cdots \langle \star 1 \rangle}_{SU(N_2)}$$

Green: Particle with — helicity

Blue: Particle belongs to the first gauge group

Red: Particle belongs to the second gauge group

 \star : Order for gauge group 1

*: Order for gauge group 2

Contents

Summary

- Introduce the on-shell method, including BCFW recursion relation, color-ordered amplitudes. etc.
- Introduce a (de)constructed gauge theory model, which is an effective field theory for 5 dimension gauge theory.
- The locality plays an important role to relate the spacetime locality and field space locality.
- Much of the scattering amplitudes in this model can be recursively computed by BCFW, and some compact formulas are offered.

Possible future work

Thanks for your attention!

Contents

Color structure

• ${\rm n}V_1$ or ${\rm n}V_2$ This part is completely the same as the pure gluon amplitude, so we can directly borrow the existing results.

Parke - Talyor Formula :
$$A[\cdots,i^-,\cdots,j^-,\cdots]=\frac{\langle ij\rangle^4}{\langle 12\rangle\!\langle 23\rangle\cdots\langle n1\rangle}$$

Notice that this formula only applies for MHV amplitudes, although the NMHV can be completely solved.

 \bullet $\Phi^{\dagger}V_1V_1\Phi$

The color factor can be written respectively as following

$$r_s = \text{Tr}[\Phi_2^{\dagger} T^{a_3} T^{a_4} \Phi_1], r_u = \text{Tr}[\Phi_2^{\dagger} T^{a_4} T^{a_3} \Phi_1], r_t = \text{Tr}[\Phi_2^{\dagger} [T^{a_3}, T^{a_4}] \Phi_1]$$

We can easily obtain a similar Jacobbi relation

$$r_t = r_s - r_u$$

Then we can accomplish the color decomposition and define the corresponding color-ordered amplitudes.

For example, in the 4pt. case, the full amplitude can be decomposed to the following form

$$\mathcal{A}_4(\Phi^{\dagger} V_1 V_1 \Phi) = A_s r_s + A_u r_u + A_t r_t$$

= $A_s r_s + A_u r_u + A_t (r_s - r_u)$
= $(A_s + A_t) r_s + (A_u - A_t) r_u$

The two subamplitudes can be defined as color-ordered amplitude with order [1,2,3,4] and [1,2,4,3] respectively.

Of course, for the type $\Phi^{\dagger}(nV_1)\Phi$ and $\Phi(nV_2)\Phi^{\dagger}$, we can do the same thing to define the color-ordered amplitudes. It should be noticed that the order only has the relation with the order of external gluon line.

$$[1, 2, \sigma(3), \sigma(4), \cdots, \sigma(n)]$$

$\bullet \Phi V_2 \Phi^{\dagger} V_1$

The color structure for this kind of amplitude has special form, like

$$(T_1^a)_{ij}(T_2^b)_{\overline{j}\overline{i}}$$

It is more straightforward to observe the color structure in terms of double line notation as follows

OPP(Order preserving permutation)

From the 4 point case, we have known that the relative order between gauge boson 1 and gauge boson 2 does not affect the color structure. Thus, it is necessary to introduce the **OPP(Order preserving permutation)**. For example:

$$(3_1,4_1,5_2)$$
 $(3_1,5_2,4_1)$ $(5_2,3_1,4_1)$

These three permutations are different OPP for $(3_1,4_1,5_2)$, so that give us the same color factor.

Basic building block - 3-point

From the previous section, we have known that there are only two kinds of 3 point amplitude

$$A[1,2,3^{+}] = \frac{[23][31]}{[12]}, \qquad A[1,2,3^{-}] = \frac{\langle 23\rangle\langle 31\rangle}{\langle 12\rangle}$$
$$A[3^{+},4^{+},5^{-}] = \frac{[34]^{3}}{[45][53]}, \qquad A[3^{-},4^{-},5_{+}] = \frac{\langle 34\rangle^{3}}{\langle 45\rangle\langle 53\rangle}$$

By using the 3 point building block, we can construct 4 point color-ordered amplitudes from BCFW recursion relation.

4 point from BCFW

 $\bullet \Phi^{\dagger} V_1 V_1 \Phi$

Here we compute the color-ordered amplitude $A[1,2,3^+,4^-].$ We choose $[2,3\rangle$ shift

$$|\hat{2}| = |2| - z|3|,$$
 $|\hat{2}\rangle = |2\rangle$
 $|\hat{3}| = |3|,$ $|\hat{3}\rangle = |3\rangle + z|2\rangle$

$$A[1,2,3^+,4^-] = \sum_{h} \int_{1}^{2} e^{\frac{x^2}{2}} e^{\frac{x^2}{2}} e^{\frac{x^2}{2}} e^{\frac{x^2}{2}} e^{\frac{x^2}{2}}$$

We denote these two different BCFW channels as A_1 and A_2 , then

$$A_{1} = \frac{\langle \hat{2}\hat{I}\rangle\langle \hat{I}1\rangle}{\langle 1\hat{I}\rangle} \times \frac{1}{s_{12}} \times \frac{[\hat{I}\hat{3}]^{3}}{[\hat{3}4][4\hat{I}]}$$
$$= (-1)\frac{\langle 14\rangle^{2}\langle 24\rangle^{2}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}$$

where we use the fact $|\hat{2}\rangle = |2\rangle$, $|\hat{3}] = |3]$, and the Fierz Identity

$$[ij][kl] + [il][jk] + [ik][lj] = 0$$

Similarly, we can obtain

$$A[1,2,3^-,4^+] = (-1)\frac{\langle 13 \rangle^2 \langle 23 \rangle^2}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

★ Bonus relation

$$A[1, 2, 3^+, 4^+] = A[1, 2, 3^-, 4^-] = 0$$

Fantasitic result from Cauchy Theorem

As a result, we can consider amplitude A_n in terms of shifted momentum \hat{p}_i^μ instead of original real momentum.

$$A_n \longrightarrow \hat{A}_n(z)$$

and we have known the possible positions of single poles, z_I , different propagators give us different single poles in the z-plane.

If we consider the meromorphic function $\frac{\hat{A}_n(z)}{z}$ in the complex plane, pick a contour that surrounds the simple pole at the origin. \bigstar The most important point here is that

$$\operatorname{Res}_{z=0} \frac{\hat{A}_n(z)}{z} = \hat{A}_n(0) = A_n$$

It means that the original amplitude equals to the residue at origin.