STAT-S620

Assignment 2

John Koo

1.7.7

Since each box can hold any number of balls, there are 20^{12} possible arrangements. On the other hand, if we restrict each box to at most one ball, then there are only $\frac{20!}{(20-12)!}$ possible arrangements. Therefore, the

probability is
$$\frac{20!/8!}{20^{12}} \approx 0.015$$
.

1.8.6

If A and B sit net to each other, then there are n-1 slots. On the other hand, all possible seating arrangements is equal to $\binom{n}{2}$. Then the probability that A and B sit next to each other is $\frac{n-1}{\binom{n}{2}} = \boxed{\frac{2}{n}}$.

1.8.8

Number of ways to seat people: $\binom{n}{k}$

Number of ways for k people to sit all together doesn't depend on k (as long as k < n since it's cyclic. Then we can see that there are n ways everyone can all sit together.

Then the probability is $\frac{n}{\binom{n}{k}}$

1.8.10

$$\frac{\binom{22}{8}\binom{2}{2}}{\binom{24}{10}} \approx 0.163$$

1.8.12

P(same team) = P(both on team of 10) + P(both on team of 25)

$$= \boxed{\frac{\binom{33}{8}\binom{2}{2}}{\binom{35}{10}} + \frac{\binom{33}{23}\binom{2}{2}}{\binom{35}{10}} \approx 0.58}$$

1.8.17

By symmetry, this is just $4 \times P(\text{first player gets 4 Aces})$

$$= 4 \frac{\binom{4}{4}\binom{48}{9}}{\binom{52}{13}} \approx 0.011$$

1.9.8

Total ways to distribute cards: $\binom{52}{13,13,13,13,13}$

Number of ways to distribute such that each player gets 3 face cards: $\binom{12}{3,3,3,3}$

Number of ways to distribute the rest: $\binom{40}{10,10,10,10,10}$

Then the probability is:
$$\frac{\binom{12}{3,3,3,3}\binom{40}{10,10,10,10,10}}{\binom{52}{13,13,13,13}}\approx 0.032$$

Not from text

There are $\binom{7+4-1}{4-1}$ ways to distribute the 7 points to the 4 students.

On the other hand, let's say each student already has one point. Then there are three points left over and there are still four students. Then there are $\binom{3+4-1}{4-1}$ ways to distribute those three remaining points among the four students. Therefore, the probability is:

$$\frac{\binom{6}{3}}{\binom{10}{3}} = \frac{1}{6}$$