

#### Alexander Panchenko

FROM UNSUPERVISED INDUCTION OF LINGUISTIC STRUCTURES FROM TEXT TOWARDS APPLICATIONS IN DEEP LEARNING







# Deep Learning: everything is a vector





#### Motivation ○○●○○

## **Linguistic Structures and Graphs**

■ (Written) language is a symbolic system



### Motivation 00000

## **Graph Matrix Duality**







## **Graph Matrix Duality**



lacksquare Adjacency matrix f A is dual with the corresponding graph G.



## Motivation 000

## **Graph Matrix Duality**



- $\blacksquare$  Adjacency matrix **A** is dual with the corresponding graph G.
- Vector matrix multiply  $\mathbf{A}^T \mathbf{x}$  is dual with breadth-first search.





Learn the interpretable symbolic structures from text in an unsupervised way, which are more complex than tokens and lemmas.





- Learn the interpretable symbolic structures from text in an unsupervised way, which are more complex than tokens and lemmas.
- 2 Represent the learned structures in the vector form.





- Learn the interpretable symbolic structures from text in an unsupervised way, which are more complex than tokens and lemmas.
- Represent the learned structures in the vector form.
- Use the vector representations instead/in addition to word embedding the deep learning applications.





- Learn the interpretable symbolic structures from text in an unsupervised way, which are more complex than tokens and lemmas.
- Represent the learned structures in the vector form.
- Use the vector representations instead/in addition to word embedding the deep learning applications.
- 4 More complex structures could improve performance, but also provide better interpretability of the deep learning models.