Events

Definition: Experiment

An *experiment* is any activity or process whose outcome is subject to uncertainty. A *trial* is one execution of an experiment. An *outcome* of an experiment, denoted ω , is one of the possible results from the experiment. The *sample space* of an experiment, denoted \mathcal{S} , is the set of all possible outcomes of the experiment.

Examples: Sample Spaces

- Discrete and finite sample spaces:
 - Toss a coin: $S = \{H, T\}$
 - Roll a die: $S = \{1, 2, 3, 4, 5, 6\}$
 - Draw a card from a deck: $S = \{sr \mid s \in \{C, D, H, S\}, r \in \{2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A\}\}$
 - Throw a coin twice: $S = \{HH, HT, TH, HH\}$
 - Roll two dice: $S = \{(i, j) | i, j \in \{1, 2, 3, 4, 5, 6\}\}$
- Discrete and infinite sample spaces:
 - Throw a coin repeatedly until the first heads: $S = \{H, TH, TTH, TTTH, \ldots\}$
- Continuous sample spaces:
 - The lifetime of a new lightbulb: $\mathcal{S} = [0, \infty)$

Definition: Event

An *event* is a subset of outcomes from a sample space. To say that an event is *simple* means that it contains exactly one outcome. Otherwise, an event is called *compound*. When an experiment is performed, an event A is said to have *occurred* if the resulting outcome ω is contained in the event ($\omega \in A$). In particular, \mathcal{S} is an event that always occurs and \emptyset is an event that never occurs.

Example: Roll a Die

 $S = \{1, 2, 3, 4, 5, 6\}$

- $A = \{1\}$ (simple)
- $B = \{6\}$ (simple)
- $\bullet \ C = \{ \text{an even number} \} = \{ 2, 4, 6 \} \qquad \text{(compound)}$
- $D = \{ \text{an odd number} \} = \{1, 3, 5\}$ (compound)

Although each trial of an experiment has exactly one outcome, multiple events could occur: if $\omega=1$ then A and D occur, but B and C do not occur.

Example: Roll Two Dice

$$\mathcal{S} = \{(i, j) \mid i, j \in \{1, 2, 3, 4, 5, 6\}\}$$

- $A = \{ \text{sum equals 6} \} = \{ (1,5), (2,4), (3,3), (4,2), (5,1) \}$
- $B = \{ \text{both equal} \} = \{ (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) \}$
- $C = \{ \text{both even} \} = \{ (2,2), (2,4), (2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6) \}$

Example: Toss a Coin

Toss a coin until the first heads: $S = \{H, TH, TTH, TTH, \dots\}$

• $A = \{ at most four tails \} = \{ H, TH, TTH, TTTH, TTTTH \}$

Since events are sets, the various set operations apply. Assuming the following events from rolling two dice:

- Cardinality: |A| = the number of outcomes in A
- Complement: $A^c = \{\omega \mid \omega \notin A\}$
- Union: $A \cup B = \{\omega \, | \, \omega \in A \text{ or } \omega \in B\}$
- Intersection: $A \cap B = \{\omega \mid \omega \in A \text{ and } \omega \in B\}$
- Difference: $A-B=\{\omega\,|\,\omega\in A \text{ and }\omega\notin B\}=A\cap B^c$
- Distributive:
 - $-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- DeMorgan:
 - $(A \cup B)^c = A^c \cap B^c$
 - $(A \cap B)^c = A^c \cup B^c$

Example: Set Operations

Assuming the following events from rolling two dice:

- 1. $A = \{\text{sum equals 6}\}$
- 2. $B = \{ both equal \}$
- 3. $C = \{both even\}$

$$\begin{split} |C| &= 9 \\ A \cap B &= \{(3,3)\} \\ A \cup B &= \{(1,1),(1,5),(2,2),(2,4),(3,3),(4,2),(4,4),(5,1),(5,5),(6,6)\} \\ B^c &= \{(i,j) \,|\, i,j \in \{1,2,3,4,5,6\} \text{ and } i \neq j\} \\ A - C &= \{(1,5),(3,3),(5,1)\} \end{split}$$

Definition: Disjoint

To say that two events A and B are disjoint means that $A \cap B = \emptyset$.

Let $\{E_i, i \in I\}$ be a family of events. To say that the E_i are pairwise disjoint or mutually exclusive means:

$$\forall i \in I, i \neq j \implies E_i \cap E_j = \emptyset$$

Example: Toss Two Dice

Consider the following events:

$$A = \{\text{sum equals 7}\}\$$

 $B = \{\text{both equal}\}\$

Since B always results in an even sum, but 7 is odd, it is the case that $A \cap B = \emptyset$ and thus A and B are disjoint.