G	PLEBANEK
U .	LUDDANUK

Kombinatoryka (R)

NR 8

Funkcje tworzące

- 1. Niech $a_0 + a_1 x + a_2 x^2 + \ldots = 1/(1+x+x^2)$. Obliczyć kilka pierwszych wyrazów ciągu a_n .
- **2.** Funkcja tworząca ciągu $a_n = 1$ to $1 + x + x^2 + \dots$ czyli 1/(1-x) w zwartej postaci. Podobnie, jak już sprawdziliśmy, $1 + 2x + 3x^2 + \dots = 1/(1-x)^2$.

Znaleźć funkcje tworzące (w zwartej postaci) dla podanych ciągów a_0, a_1, \ldots

- (i) $1, q, q^2, q^3, \ldots$;
- (ii) $1, -1, 1, -1, 1, -1, \ldots$;
- (iii) $\binom{\alpha}{0}$, $-\binom{\alpha}{1}$, $\binom{\alpha}{2}$, ..., $(-1)^n \binom{\alpha}{n}$, ... $(\alpha \in \mathbb{R})$;
- (iv) $0, 0, 0, -1, 1, -1, 1, -1, 1, \ldots$;
- (v) $1/0!, 1/1!, 1/2!, \dots, 1/n!, \dots;$
- (vi) $1/0!, -1/1!, 1/2!, \dots, (-1)^n/n!, \dots;$
- (vii) $1, 3, 4, 9, 8, 27, 16, 81, \ldots$;
- (viii) $1, 2, 4, 1, 3, 8, 1, 4, 16, 1, 5, 32, \dots$
- **3.** Znaleźć wzór na $\sum_{n} nx^{n}$.

WSKAZÓWKA:
$$x + 2x^2 + 3x^3 + \dots = (x + x^2 + x^3 + \dots) + (x^2 + 2x^3 + \dots).$$

- 4. Znaleźć funkcję tworzącą dla ciągu kolejnych kwadratów liczb naturalnych $0, 1, 4, \ldots, n^2, \ldots$ WSKAZÓWKA: Warto obliczyć f(x) xf(x).
- 5. Stosując powyższe chwyty znaleźć funkcję tworzące (w zwartej postaci) ciągów
 - (i) $a_n = n^3$;
 - (ii) $b_n = \binom{n}{2}$;
 - (iii) $c_n = \binom{n}{3}$.
- 6. Niech F(x) będzie funkcją tworzącą ciągu a_0, a_1, a_2, \ldots Wyznaczyć (w zależności od F(x) funkcję tworzącą ciągów $b_n = na_n$ i $c_n = \sum_{i=1}^n a_i$.

Wskazówka: Nie zaczynaj od tego zadania.

Funkcje tworzące i rekurencje

- 7. Niech S będzie multizbiorem $\{\infty \cdot e_1, \infty \cdot e_2, \infty \cdot e_3, \infty \cdot e_4\}$. Wyznaczyć funkcję tworzącą ciągu liczb $a_0, a_1, a_2, \ldots, a_n, \ldots$, gdzie a_n jest liczbą n-kombinacji S przy podanych warunkach
 - (i) każdy element występuje nieparzystą ilość razy;
 - (ii) każdy element występuje liczbę razy podzielną przez 3;
 - (iii) element e_1 nie pojawia się, a e_2 pojawia się co najwyżej raz;
 - (iv) element e_1 pojawia się 1, 3 lub 11 razy, natomiast element e_2 pojawia się 2, 4 lub 5 razy;

- 8. Rozważmy wielkości a_n, b_n, c_n , określające, na ile sposobów można wydać n gr za pomocą monet
 - (a) 1gr;
 - (b) 1gr i 2gr;
 - (c) 1gr, 2gr, 5gr.

Podać wzory na a_n i b_n . Obliczyć (na piechotę) c_{12} . Dla każdego ciągu wyznaczyć jego funkcję tworzącą.

9. Rozwiązać rekurencję $a_{n+1}=3a_n+n,\ a_0=0,$ rozważając funkcję tworzącą ciągu.

WSKAZÓWKA: Metoda jak na wykładzie; wskazówka jest też w GAL/zadanie 46.

- 10. Postępując jak wyżej rozwiązać rekurencje
 - (i) $a_{n+1} = 5a_n + 2^n$, $a_0 = 0$;
 - (ii) $b_{n+1} = b_n + n^2$, $b_0 = 0$.
- **11.** Rozwiązać rekurencję $a_0 = 2020$, $a_{n+1} = a_n + a_{n-1} + \ldots + a_0$.

WSKAZÓWKA: To, dla odmiany, jest banalne:-)

Dodatek: zbieżność szeregów potęgowych

- (A) Szereg potęgowy $\sum_n a_n x^n$ zmiennej rzeczywistej jest zbieżny dla |x| < R i rozbieżny dla |x| > R, gdzie R (promień zbiezności szeregu) wyliczamy ze wzoru $1/R = \limsup_n \sqrt[n]{|a_n|}$ (może wyjść $R = +\infty$).
 - Zauważyć że jest to twierdzenie stosunkowo proste: o granicy górnej ciągu c_n wystarczy wiedzieć, że warunek $\limsup_n c_n \leqslant \gamma$ oznacza że dla dowolnego $\varepsilon > 0$, nierówność $c_n < \gamma + \varepsilon$ zachodzi dla prawie wszystkich n. Jeżeli więc $|x| \limsup_n \sqrt[n]{|a_n|} < 1$ to dla pewnego q < 1 nierówność $|a_n x^n| \leqslant q^n$ zachodzi dla prawie wszystkich n.
- (B) Zauważyć, że jeżeli R jest promieniem zbieżności szeregu $f(x) = \sum_n a_n x^n$ i 0 < r < R to szereg jest jednostajnie zbieżny na przedziale [-r, r]. Można stąd wywnioskować, że $f'(x) = \sum_n n a_n x^{n-1}$.