

Segunda entrega proyecto final

Carrera de Data Scientist – Mayo de 2023

Autor: Emilse Bover

Contenido

Abstract	2
Objetivo	2
Contexto comercial	2
Contexto analítico	2
Se presentan las librerías utilizadas:	2
Data acquisition	3
Data wrangling	3
Base de datos productivos	3
Base de datos climáticos de Concepción del Uruguay, Entre Ríos	4
Transformaciones de las bases de datos para el análisis	5
Creación de subset	5
Análisis exploratorio de datos	6
Histograma de ganancia media diaria de peso (A.D.)	6
A.D. por año	6
A.D. por estación del año	7
A.D. por mes del año	7
Histograma A.D. por tipo de ventilación	8
A.D. por sistema de ventilación	9
A.D. y temperatura máxima	9
A.D. y temperatura mínima	10
A.D. por zona de producción	10
A.D. por zona de producción	11
Machine learning aproximación	11
Modelo SVR	11

Abstract

En presente trabajo se analizaron los resultados productivos de una empresa productora de pollos parrilleros para detectar las variables que impactan sobre los resultados y realizar recomendaciones a partir de ello. En segunda instancia se construyó un modelo de predicción de resultados productivos en función de los datos que se suministren en el futuro.

Objetivo

El objetivo del presente trabajo es detectar el impacto de los factores que afectan al crecimiento de los pollos parrilleros para tomar decisiones que mejoren los resultados productivos.

Contexto comercial

El retorno económico de la empresa productora de pollos parrilleros depende de la obtención de mejores resultados productivos. A mayor ganancia de peso diaria, por ejemplo, el consumo total de alimento será menor disminuyendo el costo. Otro impacto positivo del aumento de la ganancia de peso diaria es que se reduce la edad a faena de los animales ya que se alcanza el peso deseado en menor cantidad de días. Esta reducción de días permite: liberación de superficie de producción (metros cuadrados de galpón, rotación), menor propensión a sufrir enfermedades y accidentes (por ejemplo, cortes de luz). También el dueño de la granja tiene menores costos de luz y gas y por lo tanto mayores ganancias finales también.

Contexto analítico

Se presentan las librerías utilizadas:

- import pandas as pd
- import xlsxwriter
- import matplotlib as mpl
- import matplotlib.pyplot as plt
- import seaborn as sns
- import scipy as sp
- import numpy as np
- import datetime
- import pingouin as pg
- import statsmodels.api as sm
- from scipy import stats
- import requests
- import json
- import plotly.express as px
- import ydata_profiling
- from sklearn.model_selection import train_test_split
- from sklearn.svm import SVR
- from sklearn.metrics import mean_squared_error, r2_score
- from sklearn import preprocessing

Data acquisition

La empresa ha provisto un archivo Excel con información de resultados y se utilizaron datos climáticos históricos obtenidos a través de una API de Open Meteo.

- Ingresos semanales compilado registra resultados finales de la producción en la pestaña BASE. Contiene además datos de genética, nutrición y sanidad.
- Se hizo una solicitud HTTP a la API de Open-Meteo para la ciudad de Concepción del Uruguay en Entre Ríos

Data wrangling

Primero se eliminaron valores erróneos de la base de datos que se conocían antes de iniciar el análisis.

Base de datos productivos

Los resultados se agrupan por crianza (índice) de cada granja y se registran los diferentes resultados e indicadores de la producción

	granja	Nombre	Primer BB	Cantid. BB	A Faena	% a 7 Días	% Mortan.	% Fal.	Kg. Pollo	P. Prom.	 Índice
0	357	MENESCARDI FABRICIO MEDARDO	2014- 11-11	23200	20699	1.42	10.78	-1.09	58340	2.818494	 1
1	605	COSSO CARLOS	2014- 11-11	23176	20678	1.51	10.78	-1.88	61580	2.978044	 2
2	833	CARDINAUX MARTIN ULISES	2014- 11-14	40000	36825	1.45	7.94	-2.86	102480	2.782892	 3
3	1710	STEGEMANN DANIELA CRISTINA	2014- 11-11	29000	26423	1.10	8.89	0.25	74800	2.830867	 4
4	2333	OJEDA LIVIO	2014- 11-13	22000	19502	0.92	11.35	-1.91	53020	2.718696	 5

La base de datos contiene resultados productivos de 15.571 crianzas desde el año 2015 hasta la primera quincena del mes de abril de 2023.

df.isna().sum()	
granja	0
Nombre	0
Primer BB	0
Cantid. BB	0
A Faena	0
conv aj AVIAGEN	0
hepatitis	14848
consumo total	0
Pes conv 2,7	0
zona prod	0
Length: 66, dtype:	int64

Los valores en blanco hallados pertenecen a una columna que no será utilizada en este análisis

```
df.duplicated().sum()
0
```

La base no posee valores de crianzas duplicados.

Base de datos climáticos de Concepción del Uruguay, Entre Ríos

	time	temperature_2m_max	temperature_2m_min	precipitation_sum
0	2020-01-01	26.1	20.8	0.0
1	2020-01-02	26.2	17.9	0.0
2	2020-01-03	26.8	18.7	0.0
3	2020-01-04	27.8	18.1	0.0
4	2020-01-05	30.3	19.6	0.0

La base no posee valores en blanco

```
dfc.duplicated().sum()
0
```

La base no posee fechas duplicadas

Transformaciones de las bases de datos para el análisis

De la base de datos provista por la empresa se seleccionarán las siguientes columnas para el análisis:

Nombre	Descripción
granja	Unidad productiva compuesta por galpones
Primer BB	Fecha inicio crianza de aves
A Faena	Cantidad de aves al final de la crianza
% Mortan.	Mortalidad animales
P. Prom.	Peso promedio a faena
Ulto. Levan.	Fecha fin de crianza de aves
Edad	Edad al final de la crianza
A.D.	Ganancia media diaria de peso
año levante	año de fin de crianza
mes levante	mes de fin de crianza
Estación del año	Momento del año en que ocurrió el fin de la crianza
Consumo medio diario (g)	Consumo de alimento por ave
Destino	Destino de venta: mercado interno o exportación
Densidad	Cantidad de aves por metro cuadrado de galpón (de cada granja)
kg pollo/m2	Cantidad de kilos logrados por unidad de superficie de granja
Ventilación forzada	Tipo de sistema de ventilación de granja
Ambiente controlado	Subtipo de sistema de ventilación
localidad	Localidad geográfica de las granjas
% desvío consumo std	Desvío del consumo de alimento respecto del estándar
Índice	Número de crianza (único)
zona climática	Zona de producción según clima imperante
Pes conv 2,7	Indicador de eficiencia productivo
zona prod	Zona de producción de la granja

Creación de subset

Se crearon diferentes subset para realizar los análisis de las bases de datos.

Análisis exploratorio de datos

Histograma de ganancia media diaria de peso (A.D.)

La **ganancia media diaria de peso** es una medida que permite comparar resultados entre granjas y además permite ver la evolución de los resultados globales de la empresa a lo largo del tiempo. A mayor valor, mejor será el resultado. El valor medio es de **57.18** gramos de peso ganados promedio por día.

A.D. por año

Se observa que las ganancias de peso de los años 2017 y 2021 fueron superiores al resto de los años analizados. El año 2023 fue excluido por estar incompleto.

A.D. por estación del año

Se observa que la ganancia de peso es variable según la estación del año en la que se desarrolle la crianza, las mayores ganancias de peso ocurren en primavera y las peores en verano dando indicios de que el ambiente puede estar afectando el resultado productivo.

A.D. por mes del año

Se observan también diferencias en los valores de ganancia media diaria de peso en los meses del año. Debido a ello a continuación se realizará un análisis según los tipos de ventilación que poseen las granjas.

Para ello se han clasificado las granjas en tres categorías:

S: Ventilación forzada: La ventilación del galpón se realiza a través de la entrada del aire por inlets o aberturas en la zona superior de los galpones y su posterior expulsión por extractores.

N: Granjas con sistema de ventilación convencional con encendido manual de ventiladores y/o apertura y cierre de las cortinas laterales del galpón.

MI: Mixtas: Granjas que tienen ambos tipos de galpones.

Histograma A.D. por tipo de ventilación

En el gráfico se observa que los valores de ganancia de peso de los tres sistemas tienen una distribución normal y que el sistema convencional logra menores ganancias de peso que los sistemas de ventilación forzada y mixto.La distribución de los datos de las granjas convencionales se encuentra desplazada hacia la izquierda, es decir hacia valores menores de ganancia. Su promedio se ubica alrededor de los 56 gramos/días mientras que el promedio de las granjas de ventilación forzada está alrededor de los 60 gramos/día.

A.D. por sistema de ventilación

Habría indicios de que el sistema de ventilación tiene impacto sobre la ganancia de peso de los animales.

A.D. y temperatura máxima

Ganancia de peso y temperatura máxima por tipo de granja

A.D. y temperatura mínima

Ganancia de peso y temperatura mínima por tipo de granja

Los gráficos de correlación entre la ganancia de peso y las temperaturas máximas y mínimas diarias no muestran ninguna relación entre estas variables y tampoco con relación al sistema de ventilación.

A.D. por zona de producción

A nivel de promedios, hay diferencias entre las zonas del país donde se encuentran ubicadas las granjas.

A.D. por zona de producción

Los mejores resultados se encuentran en la zona de Crespo (CR), no solo porque tiene mayores valores de ganancia de peso sino también porque los resultados tienen menor dispersión y prácticamente no posee resultados atípicos.

Machine learning aproximación

Se seleccionó la variable ganancia media diaria de peso como valor a predecir en función de los valores del siguiente subset:

```
#subset para machine learning
df_5= df[['A.D.', 'año levante','mes levante','Estación del año', 'Ventilación
forzada','zona prod']]
```

Se dividió el conjunto de datos en subconjuntos de entrenamiento y prueba y se aplicó un modelo SVR y sus correspondientes pruebas.

Modelo SVR

Error cuadrático medio (MSE): 24.685740309200384Coeficiente de determinación (R²): 0.23898212288917642 El modelo aplicado tiene un error cuadrático medio de 24.7 con un coeficiente de determinación del 23.9. Este modelo permitirá estimar valores de ganancia media diaria de peso en función de valores conocidos de año de levante, mes de levante, estación del año, sistema de ventilación y zona de producción.