

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C07D 333/18, 333/16, 333/28, 333/38, 307/38, 409/04, A61K 31/38, 31/44, 31/34	A1	(11) International Publication Number: WO 94/15932 (43) International Publication Date: 21 July 1994 (21.07.94)
(21) International Application Number: PCT/US94/00466		63017 (US). ROGERS, Roland, S. [US/US]; 7431 Arlington Drive, Richmond Heights, MO 63117 (US).
(22) International Filing Date: 14 January 1994 (14.01.94)		(74) Agents: BULOCK, Joseph, W. et al.; G.D. Searle & Co., Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).
(30) Priority Data: 08/004,822 15 January 1993 (15.01.93) US		(81) Designated States: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, HU, JE, KP, KR, KZ, LK, LU, LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(60) Parent Application or Grant (63) Related by Continuation US 08/004,822 (CIP) Filed on 15 January 1993 (15.01.93)		Published <i>With international search report.</i> <i>With amended claims.</i>
(71) Applicants (for all designated States except US): G.D. SEARLE & CO. [US/US]; Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US). THE MONSANTO COMPANY [US/US]; 800 North Lindbergh Boulevard, St. Louis, MO 63166 (US).		
(72) Inventors; and (75) Inventors/Applicants (for US only): BERTENSHAW, Stephen, R. [US/US]; 8758 Pine Avenue, Brentwood, MO 63144 (US). COLLINS, Paul, W. [US/US]; 1557 Hawthorne Place, Deerfield, IL 60015 (US). PENNING, Thomas, D. [US/US]; 374 Larch, Elmhurst, IL 60126 (US). REITZ, David, B. [US/US]; 14814 Pleasant Ridge Court, Chesterfield, MO		

(54) Title: NOVEL 3,4-DIARYL THIOPHENES AND ANALOGS THEREOF HAVING USE AS ANTIINFLAMMATORY AGENTS

(57) Abstract

A class of 3,4-diaryl substituted thiophene, furan and pyrrole derivatives and analogs thereof, pharmaceutical compositions containing them and methods of using them to treat inflammation and inflammation-related disorders. Compounds of particular interest are defined by formula (I), wherein Y is selected from O, S and NR¹; wherein R¹ is selected from hydrido and lower alkyl; wherein X is one or two substituent selected from hydrido, halo, lower alkoxy carbonyl and carboxyl; wherein R² and R³ are independently aryl or heteroaryl; and wherein R² and R³ are optionally substituted at a substitutable position with one or more radicals selected from sulfamyl, alkylsulfonyl, halo, lower alkoxy and lower alkyl; or a pharmaceutically-acceptable salt thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

NOVEL 3,4-DIARYL THIOPHENES AND ANALOGS THEREOF
HAVING USE AS ANTIINFLAMMATORY AGENTS

This invention is in the field of
5 antiinflammatory pharmaceutical agents and relates to
compounds, compositions and methods for treating
inflammation and inflammation-associated disorders,
such as arthritis. This invention specifically relates
to 3,4-diaryl substituted thiophene, furan and pyrrole
10 derivatives and analogs thereof. More particularly,
this invention relates to selected effective and safe
compounds having antiinflammatory and/or analgesic
activity without erosion of the stomach.

15 **BACKGROUND OF THE INVENTION**

Prostaglandins play a major role in the
inflammation process, and the inhibition of
prostaglandin production, especially production of
20 PGG₂, PGH₂ and PGE₂, has been a common target of
antiinflammatory drug discovery. However, common non-
steroidal antiinflammatory drugs (NSAIDs) that are
active in reducing the prostaglandin-induced pain and
swelling associated with the inflammation process, are
25 also active in affecting other prostaglandin-regulated
processes not associated with the inflammation
process. Thus, use of high doses of most common NSAIDs
can produce severe side effects, including life-
threatening ulcers, that limit their therapeutic
30 potential. An alternative to NSAIDs is the use of
corticosteroids, which have even more drastic side
effects, especially when long-term therapy is
involved.

35 Previous NSAIDs have been found to prevent
the production of prostaglandins by inhibiting enzymes

in the human arachidonic acid/prostaglandin pathway, including the enzyme cyclooxygenase (COX). Recently, the sequence of another heretofore unknown enzyme in the human arachidonic acid/prostaglandin pathway has
5 been reported by T. Hla and K. Nielson, Proc. Natl. Acad. Sci. USA, 89, 7384 (1992) and named "cyclooxygenase II (COX II)" or "prostaglandin G/H synthase II". The discovery of an inducible enzyme associated with inflammation provides a viable target
10 of inhibition which more effectively reduces inflammation and produces fewer and less drastic side effects. Cyclooxygenase II is inducible by cytokines or endotoxins and such induction is inhibited by glucocorticoids (J. Masferrer, et al, Proc. Natl. Acad. Sci. USA, 89, 3917 (1992)). The 6-methoxy-2-naphthylacetic acid metabolite of nabumetone has been found by E. Meade et al to selectively inhibit the COX
15 II enzyme (J. Biol. Chem., 268, 6610 (1993)). In addition, Futaki et al (Gen. Pharmac., 24, 105 (1993))
20 has reported that N-(2-cyclohexyloxy-4-nitrophenyl)methanesulfonamide is antiinflammatory and lacks gastric side effects.

The substituted thiophene compounds
25 disclosed herein selectively inhibit cyclooxygenase II over cyclooxygenase I and relieve the effects of inflammation. These compounds, in addition, do not display substantial inhibition of cyclooxygenase I and produce a reduced amount of side effects.
30

Selected symmetrical 3,4-bis(phenyl, naphthyl or substituted phenyl) thiophenes are known.

Preparation of a wide-variety of asymmetric
35 biaryl compounds including substituted thiophene, furan and pyrrol heterocycles is described in U.S. Patent No.

4,990,647 having a suggested utility as precursors for brighteners, pharmaceuticals, plant protection active compounds and liquid crystal materials.

5 U.S. Patent No. 4,757,084 describes to Biftu analogs of 2,5-diaryl tetrahydrothiophenes having activity as PAF-antagonists which are said to be linked to physiological processes associated with a large group of diseases including inflammatory disease.

10

U.S. Patent No. 5,196,532 to Wuest et al, describes 2,4-diaryl substituted thiophenes for cosmetics and the treatment of dermatological disorders.

15

U.S. Patent No. 4,427,693 to Haber, describes antiinflammatory 4,5-diarylthiophene-2-methanamines. U.S. Patent No. 4,432,974 to Haber, describes antiinflammatory and analgesic 2,3-diaryl-5-silylthiophenes. U.S. Patent No. 4,302,461 to Cherkofsky, describes antiinflammatory 2,3-diarylthiophenes substituted with various alkyl sulfur radicals at position 5. U.S. Patent No. 4,381,311 to Haber, describes antiinflammatory 4,5-diarylthiophene-2-methanols.

25

2,3-Diaryl-5-halo thiophenes are described in U.S. Patent No. 4,590,205 to Haber, as analgesic or antiinflammatory agents. 4-Fluorophenyl and 4-methylsulfonylphenyl are among the various substituted phenyl groups that define the diaryl groups. U.S. Patent No. 4,820,827 to Haber, describes 2,3-diaryl-5-bromo thiophenes, and specifically 5-bromo-2-(4-methylthiophenyl)-3-(4-fluorophenyl)thiophene, as having antiinflammatory and prostaglandin synthetase inhibitory activity for use in the treatment of inflammation and dysmenorrhea.

Japanese publication 4,335,767 describes photosensitive 3,4-bis(diazosubstitutedphenyl)thiophene pigments for use in photocopiers or facsimile receivers.

5 U.S. Patent No. 3,743,656 to Brown et al, a CIP of U.S. Patent No. 3,644,499, describes thiophene and furan derivatives having antiinflammatory activity, including ethyl 3,4-diphenylthiophene-2-propionate.

10 The above documents describing antiinflammatory activity show continuing efforts to find a safe and effective antiinflammatory agent.

15 **DESCRIPTION OF THE INVENTION**

A class of compounds useful in treating inflammation-related disorders is defined by Formula I:

20

wherein Y is selected from S, O, and NR¹;
wherein R¹ is selected from hydrido and C₁-C₆ alkyl;
25 wherein X is one or more substituents selected from
a) hydrido, halo, cyano, nitro, hydroxy,
acyl, lower alkyl substituted at a substitutable
position with a substituent selected from halo,
hydroxyl, amino, acylamino, lower alkylamino,
lower alkyl(acyl)amino, acyl, aryl optionally
30 substituted with hydroxyl, a heterocyclic group,
hydroxyimino and lower alkoxyimino, lower alkenyl
optionally substituted at a substitutable
position with cyano, amino optionally substituted

at a substitutable position with a radical selected from acyl and lower alkylsulfonyl, sulfo, sulfamoyl optionally substituted with a substituent selected from the group consisting of lower alkyl, halo(lower)alkyl, aryl, hydroxyl, lower alkylamino(lower)alkyl, a heterocyclic group and (esterified carboxy)lower alkyl, N-containing heterocyclicsulfonyl, a heterocyclic group optionally substituted at a substitutable position with a substituent selected from the group consisting of hydroxyl, oxo, amino and lower alkylamino, provided that when Y is O or NR¹ then X cannot be hydroxyalkyl,

5 b) S(O)_nR⁵, wherein R⁵ is C₁-C₆ alkyl optionally substituted at a substitutable position with fluoro, and n is 0, 1 or 2,

10 c) C(R⁶)(OR⁸)(R⁷) wherein R⁶ and R⁷ independently are selected from CF₃, CF₂H, CFCI₂, CF₂Cl, CC₁FH, CC₁CF₂ and C₁-C₂ alkyl, and wherein R⁸ is selected from hydrido, C₁-C₄ alkyl, (C₁-C₃ alkyl)C(O) and CO₂R⁹, wherein R⁹ is C₁-C₄ alkyl,

15 d) C(O)ZR⁴, wherein Z is O, N, or S, and R⁴ is selected from hydrido, C₁-C₆ alkyl and aryl, and when Z is N then R⁴ is independently taken twice,

20 e) C(R⁹)(NHR¹¹)(R¹⁰), wherein R⁹ and R¹⁰ are independently selected from CF₃, CF₂H, CFCI₂, CF₂Cl, CC₁FH and CC₁CF₂H, and R¹¹ is selected from hydrido and C₁-C₃ alkyl, and

25 f) Si(R¹²)(R¹³)(R¹⁴), wherein R¹², R¹³ and R¹⁴ are independently selected from hydrido, C₁-C₂ alkoxy, C₁-C₇ optionally substituted at a substitutable position with a radical selected from halo, C₂-C₇ alkenyl, phenyl and benzyl, provided that the sum of the number of carbon

atoms in R¹², R¹³ and R¹⁴ must be at least 1 and not greater than 9, and further provided that no more than 2 of R¹², R¹³ and R¹⁴ are alkoxy; and wherein R² and R³ are independently selected from

5 g) aryl or heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with a radical selected from halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower

10 alkylsulfonyl, nitro, amide, amino, lower alkylamino, sulfamyl and lower alkylsulfonylamino,

15 h) para-phenylene-Q wherein Q is C₁-C₂ alkyl or NR¹⁵R¹⁶, wherein R¹⁵ and R¹⁶ are independently C₁-C₂ alkyl,

20 i) p-Q¹(m-Q²)phenylene, wherein Q¹ is selected from hydrido, fluoro, chloro, bromo, nitro, C₁-C₂ alkyl, C₁-C₂ alkoxy, di(C₁-C₂ alkyl)amino and S(O)_nR¹⁷, wherein R¹⁷ is CH₃ or C₂H₅; and wherein Q² is selected from hydrido, fluoro and chloro, and n is 0, 1 or 2; provided that both Q¹ and Q² cannot both be hydrido at the same time, and

25 j) phenylene-W wherein W is alkylamino;

provided that

30 R² and R³ cannot both be phenyl; further provided that when Y is S, then R² and R³ cannot both be 3,5-dihalophenyl; further provided that if X is hydrido, then R² and R³ are not both p-methoxyphenyl, p-chlorophenyl, p-methylphenyl, p-bromophenyl, or 2-naphthyl; further provided that if X is hydrido, nitro, bromo, CO₂-alkyl, benzoyl or CO₂H, then R² and R³ are not both p-methoxyphenyl; and further provided that when Y is NR¹, and R² and R³ are independently aryl optionally substituted at a substitutable

position with C₁-C₄ alkyl, halo, nitro or C₁-C₄ alkoxy, then X cannot be hydrido, -CO₂H or -CO₂-alkyl of from one to four carbons; or a pharmaceutically-acceptable salt thereof.

5

The phrase "further provided", as used in the above description, is intended to mean that the denoted proviso is not to be considered conjunctive with any of the other provisos.

10

Compounds of Formula I would be useful for the treatment of inflammation in a subject, and for treatment of other inflammation-associated disorders, for example, as an analgesic in the treatment of pain and headaches, or as an antipyretic for the treatment of fever. For example, compounds of Formula I would be useful to treat arthritis, including but not limited to rheumatoid arthritis, spondyloarthropathies, gouty arthritis, systemic lupus erythematosus, osteoarthritis and juvenile arthritis. Such compounds of Formula I would be useful in the treatment of asthma, bronchitis, menstrual cramps, tendinitis, bursitis, and skin related conditions such as psoriasis, eczema, burns and dermatitis. Compounds of Formula I also would be useful to treat gastrointestinal conditions such as inflammatory bowel syndrome, Crohn's disease, gastritis, irritable bowel syndrome and ulcerative colitis. Compounds of Formula I would be useful in treating inflammation in such diseases as vascular diseases, migraine headaches, periarthritis nodosa, thyroiditis, aplastic anemia, Hodgkin's disease, sclerodoma, rheumatic fever, type I diabetes, myasthenia gravis, sarcoidosis, nephrotic syndrome, Behcet's syndrome, polymyositis, hypersensitivity, conjunctivitis, gingivitis, swelling occurring after injury, myocardial ischemia, and the

like. The compounds are useful as antiinflammatory agents, such as for the treatment of arthritis, with the additional benefit of having significantly less harmful side effects.

5

The present invention also includes compounds which selectively inhibit cyclooxygenase II over cyclooxygenase I and do not significantly inhibit one or more other arachidonic pathway steps, such as 10 thromboxane B₂ (TXB₂) production. Importantly, thromboxanes cause blood platelet aggregation and have vasoconstriction properties. Thus a lack of effect in the regulation of non-inflammation related thromboxane production is further evidence of the beneficial 15 selectivity of the present compounds.

Preferably, the compounds of the present invention have a thromboxane B₂ inhibition IC₅₀ of greater than about 1.5 μM, as determined by a whole 20 cell assay and preferably over 10 μM. The inhibition of the production of TXB₂ by a whole cell assay is a better indicator of potential in vivo behavior as the assay also incorporates such factors as cell transport.

25

More preferably, the compounds also have a selectivity ratio of cyclooxygenase II inhibition over cyclooxygenase I inhibition of at least 50 and preferably of at least 100. Such preferred selectivity 30 may indicate an ability to reduce the incidence of common NSAID-induced side effects, such as ulcers.

The above mentioned aspects of the current invention exclude compounds such as 5-bromo-2-(4-methylthiophenyl)-3-(4-fluorophenyl)thiophene and N-(2-cyclohexyloxy-4-nitrophenyl)methanésulfonamide.

A preferred class of compounds consists of those compounds of Formula I wherein X is one or two substituents selected from hydrido, halo, cyano, 5 nitro, hydroxyl, acyl, lower alkyl substituted at a substitutable position with a substituent selected from halo, hydroxyl, amino, acylamino, lower alkylamino, lower alkyl(acyl)amino, acyl, aryl optionally substituted with hydroxyl, a heterocyclic 10 group, hydroxyimino and lower alkoxyimino, lower alkenyl optionally substituted at a substitutable position with cyano, amino optionally substituted at a substitutable position with a radical selected from acyl and lower alkylsulfonyl, sulfo, sulfamoyl 15 optionally substituted with a substituent selected from the group consisting of lower alkyl, halo(lower)alkyl, aryl, hydroxyl, lower alkylamino(lower)alkyl, a heterocyclic group and (esterified carboxy)lower alkyl, N-containing 20 heterocyclicsulfonyl, a heterocyclic group optionally substituted at a substitutable position with a substituent selected from the group consisting of hydroxyl, oxo, amino and lower alkylamino; and wherein R² and R³ are independently selected from aryl and 25 heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with a radical selected from halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, nitro, amino, amide, lower alkylamino, 30 sulfamyl and lower alkylsulfonylamino; or a pharmaceutically-acceptable salt thereof.

A more preferred class of compounds consists of those compounds of Formula I wherein Y is S or O; 35 wherein X is one or two substituents selected from hydrido, halo, cyano, nitro, hydroxyl, carboxy, lower

alkoxycarbonyl, lower alkyl substituted at a substitutable position with a substituent selected from halo, hydroxyl, amino, acylamino, lower alkylamino, lower alkyl(acyl)amino, lower
5 alkoxy carbonyl, carboxy, a heterocyclic group, hydroxyimino and lower alkoxyimino, lower alkenyl optionally substituted at a substitutable position with cyano, amino optionally substituted at a substitutable position with a radical selected from
10 acyl and lower alkylsulfonyl, sulfo, sulfamoyl optionally substituted with a substituent selected from the group consisting of lower alkyl, halo(lower)alkyl, aryl, hydroxyl, lower alkylamino(lower)alkyl, a heterocyclic group and
15 (alkoxycarbonyl)lower alkyl, N-containing heterocyclicsulfonyl, a heterocyclic group optionally substituted at a substitutable position with a substituent selected from the group consisting of hydroxyl, oxo, amino and lower alkylamino; and wherein
20 R² and R³ are independently selected from aryl and heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with a radical selected from halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower
25 alkylsulfonyl, nitro, amino, amide, lower alkylamino, sulfamyl and lower alkylsulfonylamino; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest
30 consists of those compounds of Formula I wherein X is one or two substituents selected from hydrido, fluoro, chloro, bromo and iodo; or a pharmaceutically-acceptable salt thereof.

A family of specific compounds of particular interest within Formula I consists of compounds and pharmaceutically-acceptable salts thereof as follows:

- 5 3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)thiophene;
 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-dibromothiophene;
 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2-
10 bromothiophene;
 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-difluorothiophene;
 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2-
 fluorothiophene;
15 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-dichlorothiophene;
 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2-
 chlorothiophene;
 ethyl[3-(4-methylsulfonylphenyl)-4-(4-
20 fluorophenyl)thien-2-yl]carboxylate;
 2-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-
 methanesulfonylphenyl)thienyl-5-carboxylic acid;
 methyl[3-(4-methylsulfonylphenyl)-4-(4-
 fluorophenyl)thien-2-yl]carboxylate;
25 2-methoxycarbonyl-4-(4-fluorophenyl)-3-(4-
 methanesulfonylphenyl)thienyl-5-carboxylic acid;
 4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)
 thienyl-2,5-dicarboxylic acid;
 3-(4-methylsulfonylphenyl)-4-(4-chlorophenyl)
30 thiophene;
 4-(4-methylsulfonylphenyl)-3-(4-chlorophenyl)-2,5-dibromothiophene;
 4-(4-methylsulfonylphenyl)-3-(4-chlorophenyl)-2-
 bromothiophene;
35 3-(4-methylsulfonylphenyl)-4-(4-bromophenyl)thiophene;
 3-(4-methylsulfonylphenyl)-4-(4-methoxyphenyl)

thiophene;
4-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl)-
2-bromothiophene;
3-(4-methylsulfonylphenyl)-4-(4-ethoxyphenyl)
5 thiophene;
4-(4-methylsulfonylphenyl)-3-(4-ethoxyphenyl)-
2-bromothiophene;
3-(4-methanesulfonylphenyl)-4-phenyl-thiophene;
4-(4-methylsulfonylphenyl)-3-phenyl-2,5-
10 dibromothiophene;
4-(4-methylsulfonylphenyl)-3-phenyl-2-bromothiophene;
3-(4-methanesulfonylphenyl)-4-(4-methylphenyl)
thiophene;
4-(4-methylsulfonylphenyl)-3-(4-methylphenyl)-2,5-
15 dibromothiophene;
4-(4-methylsulfonylphenyl)-3-(4-methylphenyl)-2-
bromothiophene;
3-(4-methylsulfonylphenyl)-4-(2-methyl-4-
fluorophenyl)thiophene;
20 3,4-bis(4-methoxyphenyl)thiophene;
2-fluoro-5-[3-(4-methylsulfonylphenyl)thien-4-
yl]pyridine;
2-methyl-5-[3-(4-methylsulfonylphenyl)thien-4-
yl]pyridine;
25 2-chloro-5-[3-(4-methylsulfonylphenyl)thien-4-
yl]pyridine;
5-[3-(4-methylsulfonylphenyl)thien-4-yl]pyridine;
2-methoxy-5-[3-(4-methylsulfonylphenyl)thien-4-
yl]pyridine;
30 2-fluoro-5-[3-(4-methylsulfonylphenyl)-2,5-
dibromothien-4-yl]pyridine;
2-fluoro-5-[4-(4-methylsulfonylphenyl)-2-bromothien-3-
yl]pyridine;
4-[4-(4-fluorophenyl)thien-3-yl]benzenesulfonamide;
35 4-[3-(4-fluorophenyl)-2,5-dibromo-thien-4-
yl]benzenesulfonamide;

- 4-[3-(4-fluorophenyl)-2-bromo-thien-4-
yl]benzenesulfonamide;
4-[4-(4-fluorophenyl)-2,5-difluoro-thien-3-
yl]benzenesulfonamide;
5 4-[3-(4-fluorophenyl)-2-fluoro-thien-4-
yl]benzenesulfonamide;
4-[4-(4-fluorophenyl)-2,5-dichloro-thien-3-
yl]benzenesulfonamide;
4-[3-(4-fluorophenyl)-2-chloro-thien-4-
10 yl]benzenesulfonamide;
4-[4-(4-fluorophenyl)-2-ethoxycarbonyl-thien-3-
yl]benzenesulfonamide;
[4-(4-fluorophenyl)-2-ethoxycarbonyl-(4-
aminosulfonylphenyl)thienyl]-5-carboxylic acid;
15 4-[4-(4-fluorophenyl)-2-methoxycarbonyl-thien-3-
yl]benzenesulfonamide;
[4-(4-fluorophenyl)-2-methoxycarbonyl-(4-
aminosulfonylphenyl)thienyl]-5-carboxylic acid;
[4-(4-fluorophenyl)-(4-aminosulfonylphenyl)thienyl]-
20 2,5-dicarboxylic acid;
4-[4-(4-chlorophenyl)-thien-3-yl]benzenesulfonamide;
4-[3-(4-chlorophenyl)-2,5-dibromo-thien-4-
yl]benzenesulfonamide;
4-[3-(4-chlorophenyl)-2-bromo-thien-4-
25 yl]benzenesulfonamide;
4-[4-(4-bromophenyl)-thien-3-yl]benzenesulfonamide;
4-[4-(4-methoxyphenyl)-thien-3-yl]benzenesulfonamide;
4-[3-(4-methoxyphenyl)-2-bromo-thien-4-
yl]benzenesulfonamide;
30 4-[4-(4-ethoxyphenyl)-thien-3-yl]benzenesulfonamide;
4-[3-(4-ethoxyphenyl)-2-bromo-thien-4-
yl]benzenesulfonamide;
4-[4-phenyl-thien-3-yl]benzenesulfonamide;
4-[3-phenyl-2,5-dibromo-thien-4-yl]benzenesulfonamide;
35 4-[3-phenyl-2-bromo-thien-4-yl]benzenesulfonamide;
4-[4-(4-methylphenyl)-thien-3-yl]benzenesulfonamide;

- 4-[3-(4-methylphenyl)-2,5-dibromo-thien-4-
y1]benzenesulfonamide;
4-[3-(4-methylphenyl)-2-bromo-thien-4-
y1]benzenesulfonamide;
5 4-[4-(2-methyl-4-fluorophenyl)-thien-3-
y1]benzenesulfonamide;
4-[4-(2-fluoropyridin-5-y1)-thien-3-
y1]benzenesulfonamide;
4-[4-(2-methylpyridin-5-y1)-thien-3-
10 y1]benzenesulfonamide;
4-[4-(2-chloropyridin-5-y1)-thien-3-
y1]benzenesulfonamide;
4-[4-(pyridin-5-y1)-thien-3-y1]benzenesulfonamide;
4-[4-(2-methoxypyridin-5-y1)-thien-3-
15 y1]benzenesulfonamide;
4-[4-(2-fluoropyridin-5-y1)-2,5-dibromo-thien-3-
y1]benzenesulfonamide;
4-[4-(2-fluoropyridin-5-y1)-2-bromothien-3-
y1]benzenesulfonamide;
20 3-(4-fluorophenyl)-4-(methylsulfonylphenyl)furan;
4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-
dibromofuran;
4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2-
bromofuran;
25 ethyl[3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)-
fur-2-y1]carboxylate;
2-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-
methanesulfonylphenyl)thienyl-5-carboxylic acid;
methyl[3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)-
30 fur-2-y1]carboxylate;
2-methoxycarbonyl-4-(4-fluorophenyl)-3-(4-
methanesulfonylphenyl)thienyl-5-carboxylic acid;
4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)-
thienyl-2,5-dicarboxylic acid;
35 3-(4-methylsulfonylphenyl)-4-(4-chlorophenyl)furan;

- 4-(4-methylsulfonylphenyl)-3-(4-chlorophenyl)-2,5-dibromofuran;
4-(4-methylsulfonylphenyl)-3-(4-chlorophenyl)-2-bromofuran;
- 5 4-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl)furan;
4-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl)-2-bromofuran;
3-(4-methylsulfonylphenyl)-4-(4-ethoxyphenyl)furan;
4-(4-methylsulfonylphenyl)-3-(4-ethoxyphenyl)-2-bromofuran;
- 10 3-(4-methanesulfonylphenyl)-4-phenyl-furan;
4-(4-methylsulfonylphenyl)-3-phenyl-2,5-dibromofuran;
4-(4-methylsulfonylphenyl)-3-phenyl-2-bromofuran;
3-(4-methanesulfonylphenyl)-4-(4-methylphenyl)furan;
- 15 4-(4-methylsulfonylphenyl)-3-(4-methylphenyl)-2,5-dibromofuran;
4-(4-methylsulfonylphenyl)-3-(4-methylphenyl)-2-bromofuran;
3-(4-methylsulfonylphenyl)-4-(2-methyl-4-fluorophenyl)furan;
- 20 2-fluoro-5-[3-(4-methylsulfonylphenyl)fur-4-yl]pyridine;
2-methyl-5-[3-(4-methylsulfonylphenyl)fur-4-yl]pyridine;
- 25 2-chloro-5-[3-(4-methylsulfonylphenyl)fur-4-yl]pyridine;
5-[3-(4-methylsulfonylphenyl)fur-4-yl]pyridine;
2-methoxy-5-[3-(4-methylsulfonylphenyl)fur-4-yl]pyridine;
- 30 2-fluoro-5-[3-(4-methylsulfonylphenyl)-2,5-dibromofur-4-yl]pyridine;
2-fluoro-5-[4-(4-methylsulfonylphenyl)-2-bromofur-3-yl]pyridine;
4-[4-(4-fluorophenyl)fur-3-yl]benzenesulfonamide;
- 35 4-[3-(4-fluorophenyl)-2,5-dibromo-fur-4-yl]benzenesulfonamide;

4-[3-(4-fluorophenyl)-2-bromo-fur-4-
yl]benzenesulfonamide;
4-[4-(4-fluorophenyl)-2,5-difluoro-fur-3-
yl]benzenesulfonamide;
5 4-[3-(4-fluorophenyl)-2-fluoro-fur-4-
yl]benzenesulfonamide;
4-[4-(4-fluorophenyl)-2,5-dichloro-fur-3-
yl]benzenesulfonamide;
4-[3-(4-fluorophenyl)-2-chloro-fur-4-
10 yl]benzenesulfonamide;
4-[4-(4-fluorophenyl)-2-ethoxycarbonyl-fur-3-
yl]benzenesulfonamide;
4-(4-fluorophenyl)-2-ethoxycarbonyl-(4-
benzenesulfonamidyl)furyl-5-carboxylic acid;
15 4-[4-(4-fluorophenyl)-2-methoxycarbonyl-fur-3-
yl]benzenesulfonamide;
4-(4-fluorophenyl)-2-methoxycarbonyl-(4-
benzenesulfonamidyl)furyl-5-carboxylic acid;
4-(4-fluorophenyl)-(4-benzenesulfonamidyl)furyl-2,5-
20 dicarboxylic acid;
4-[4-(4-chlorophenyl)-fur-3-yl]benzenesulfonamide;
4-[3-(4-chlorophenyl)-2,5-dibromo-fur-4-
yl]benzenesulfonamide;
4-[3-(4-chlorophenyl)-2-bromo-fur-4-
25 yl]benzenesulfonamide;
4-[4-(4-bromophenyl)-fur-3-yl]benzenesulfonamide;
4-[4-(4-methoxyphenyl)-fur-3-yl]benzenesulfonamide;
4-[3-(4-methoxyphenyl)-2-bromo-fur-4-
yl]benzenesulfonamide;
30 4-[4-(4-ethoxyphenyl)-fur-3-yl]benzenesulfonamide;
4-[3-(4-ethoxyphenyl)-2-bromo-fur-4-
yl]benzenesulfonamide;
4-[4-phenyl-fur-3-yl]benzenesulfonamide;
4-[3-phenyl-2,5-dibromo-fur-4-yl]benzenesulfonamide;
35 4-[3-phenyl-2-bromo-fur-4-yl]benzenesulfonamide;
4-[4-(4-methylphenyl)-fur-3-yl]benzenesulfonamide;

- 4-[3-(4-methylphenyl)-2,5-dibromo-fur-4-
y1]benzenesulfonamide;
- 4-[3-(4-methylphenyl)-2-bromo-fur-4-
y1]benzenesulfonamide;
- 5 4-[4-(2-methyl-4-fluorophenyl)-fur-3-
y1]benzenesulfonamide;
- 4-[4-(2-fluoropyridin-5-yl)-fur-3-yl]
benzenesulfonamide;
- 4-[4-(2-methylpyridin-5-yl)-fur-3-yl]
10 benzenesulfonamide;
- 4-[4-(2-chloropyridin-5-yl)-fur-3-yl]
benzenesulfonamide;
- 4-[4-(pyridin-5-yl)-fur-3-yl]benzenesulfonamide;
- 4-[4-(2-methoxypyridin-5-yl)-fur-3-
15 y1]benzenesulfonamide;
- 4-[4-(2-fluoropyridin-5-yl)-2,5-dibromo-fur-3-
y1]benzenesulfonamide; and
- 4-[4-(2-fluoropyridin-5-yl)-2-bromofur-3-
y1]benzenesulfonamide.

20

Within Formula I there is a subclass of
compounds of high interest represented by Formula II:

25

wherein Y is selected from O, S and NR¹;

wherein R¹ is selected from hydrido and lower
alkyl;

wherein X¹ and X² are independently selected from
30 hydrido, halo, lower alkoxycarbonyl and carboxyl;

wherein R² is selected from aryl and heteroaryl;
wherein R² is optionally substituted at a
substitutable position with a radical selected from
halo, lower alkoxy and lower alkyl; and
5 wherein R³⁰ is selected from amino and lower
alkyl;
or a pharmaceutically-acceptable salt thereof.

A preferred class of compounds consists of
10 those compounds of Formula II wherein Y is O or S;
 wherein R² is selected from phenyl, naphthyl,
biphenyl and pyridyl; wherein R² is optionally
substituted at a substitutable position with a radical
selected from halo, lower alkoxy and lower alkyl; and
15 wherein R³⁰ is selected from amino and C₁-C₃
alkyl;
or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest
20 consists of those compounds of Formula II wherein X¹
and X² are independently selected from hydrido,
fluoro, chloro, bromo, iodo, methoxycarbonyl,
ethoxycarbonyl and carboxyl;
 wherein R² is phenyl or pyridyl; wherein R² is
25 optionally substituted at a substitutable position
with a radical selected from fluoro, chloro, bromo,
iodo, methoxy, ethoxy, methyl and ethyl; and
 wherein R³⁰ is amino or methyl;
or a pharmaceutically-acceptable salt thereof.
30

A family of specific compounds of particular
interest within Formula II consists of compounds and
pharmaceutically-acceptable salts thereof as follows:
35 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)
 thiophene;

- 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-dibromothiophene;
4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2-bromothiophene;
5 ethyl[3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)thien-2-yl]carboxylate;
2-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-methylsulfonylphenyl)thienyl-5-carboxylic acid;
4-(4-fluorophenyl)-3-(4-methylsulfonylphenyl)thienyl-2,5-dicarboxylic acid;
10 4-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl)thiophene;
4-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl)-2-bromothiophene;
15 3-(4-methylsulfonylphenyl)-4-phenyl-thiophene;
3-(4-methylsulfonylphenyl)-4-(4-methylphenyl)thiophene;
3-(4-methylsulfonylphenyl)-4-(2-methyl-4-fluorophenyl)thiophene;
20 2-fluoro-5-[3-(4-methylsulfonylphenyl)thien-4-yl]pyridine;
4-[4-(4-fluorophenyl)thien-3-yl]benzenesulfonamide;
4-[3-(4-fluorophenyl)-2,5-dibromo-thien-4-yl]benzenesulfonamide;
25 4-[3-(4-fluorophenyl)-2-bromo-thien-4-yl]benzenesulfonamide; and
3-(4-fluorophenyl)-4-(methylsulfonylphenyl)furan.

Where the term "alkyl" is used, either alone
30 or within other terms such as "haloalkyl",
"alkylamine" and "alkylsulfonyl", it embraces linear
or branched radicals having one to about twenty carbon
atoms or, preferably, one to about twelve carbon
atoms. More preferred alkyl radicals are "lower
35 alkyl" radicals having one to about ten carbon atoms.
Most preferred are lower alkyl radicals having one to

about six carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl, octyl and the like. Where the term "alkenyl" is
5 used, it embraces linear or branched radicals having two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkyl" radicals having two to about six carbon atoms. Suitable "lower alkenyl" may
10 be a straight or branched one such as vinyl, allyl, isopropenyl, propenyl, butenyl, pentenyl or the like, in which preferably one is isopropenyl. Said lower alkenyl may be substituted with cyano. The term "hydrido" denotes a single hydrogen atom (H). This
15 hydrido radical may be attached, for example, to an oxygen atom to form a hydroxyl radical or two hydrido radicals may be attached to a carbon atom to form a methylene (-CH₂-) radical. The term "halo" means halogens such as fluorine, chlorine, bromine or iodine
20 atoms. The terms "halo lower alkyl" and "lower alkyl substituted with halo" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals.
25 A monohaloalkyl radical, for one example, may have either a bromo, chloro or a fluoro atom within the radical. Dihalo radicals may have two or more of the same halo atoms or a combination of different halo radicals and polyhaloalkyl radicals may have more than
30 two of the same halo atoms or a combination of different halo radicals. The terms "hydroxyalkyl" and "lower alkyl substituted with hydroxyl" embraces linear or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted
35 with one or more hydroxyl radicals. The terms "lower alkoxy" and "lower alkoxyalkyl" embrace linear or

branched oxy-containing radicals each having alkyl portions of one to about six carbon atoms, such as methoxy radical. The term "lower alkoxyalkyl" also embraces alkyl radicals having two or more alkoxy

5 radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. The "lower alkoxy" or "lower alkoxyalkyl" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkoxy" or

10 "haloalkoxyalkyl" radicals. Examples of "alkoxy" radicals include methoxy, ethoxy, propoxy, isopropoxy, butoxy and trifluoromethoxy. The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings

15 may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, phenyl substituted with lower alkyl [e.g. tolyl, xylyl, mesityl, cumenyl, di(tert-butyl)phenyl, etc.] and the like, in which the

20 preferable one is phenylnaphthyl, tetrahydronaphthyl, indane and biphenyl. The term "heterocyclic" embraces saturated, partially saturated and unsaturated heteroatom-containing ring-shaped radicals, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Examples of saturated heterocyclic radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms [e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.]; saturated 3 to 6-membered heteromonocyclic

25 group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. morpholinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl, etc.]. The term "heteroaryl" embraces

30 unsaturated heterocyclic radicals. Examples of unsaturated heterocyclic radicals, also termed

35

"heteroaryl" radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl,

5 pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.] tetrazolyl [e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.], etc.; unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms, for example,

10 indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo [1,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, furyl, etc.; unsaturated 3- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-

15 oxadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzoxazolyl, benzoxadiazolyl, etc.]; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g.,

20 benzothiazolyl, benzothiadiazolyl, etc.] and the like.

The term also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like. Said "heterocyclic group" may have 1 to 3 substituents such as lower alkyl as exemplified above, hydroxy, oxo, amino and

25

30

35

lower alkylamino. Preferably one is lower alkyl substituted with a heterocyclic group for R¹ is pyrrolidinylmethyl. Preferable one in a heterocyclic group optionally substituted with substituent(s)

5 selected from the group consisting of hydroxy, oxo, amino and lower alkylamino for R¹ if 4-hydroxy-2,5-dioxo-3-pyrrolin-3-yl, 2-aminothiazol-4-yl or 2-methylaminothiazol-4-yl. The term "sulfonyl", whether used alone or linked to other terms such as

10 alkylsulfonyl, denotes respectively divalent radicals -SO₂- . "Alkylsulfonyl", embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. The term "arylsulfonyl" embraces sulfonyl radicals substituted with an aryl radical. The terms

15 "sulfamyl", "sulfamoyl" or "sulfonamidyl" denote a sulfonyl radical substituted with an amine radical, forming a sulfonamide (-SO₂NH₂). Suitable "sulfamoyl" substituted with lower alkyl" may be methylsulfamoyl, ethylsulfamoyl, isopropylsulfamoyl, dimethylsulfamoyl,

20 diethylsulfamoyl and the like, in which preferably one is methylsulfamoyl or dimethylsulfamoyl. The term "acyl", whether used alone, or within a term such as "acylamino", denotes a radical provided by the residue after removal of hydroxyl from an organic acid.

25 Suitable "acyl" and acyl moiety in the terms "acylamino" and "lower alkyl(acyl)amino" may be carboxy; esterified carboxy; carbamoyl optionally substituted with substituent(s) selected from the group consisting of lower alkyl, halo(lower) alkyl,

30 aryl, hydroxy, lower alkylamino(lower) alkyl, a heterocyclic group (esterified carboxy)lower alkyl and carboxy(lower)alkyl [e.g. lower alkyl-carbamoyl; aryl-carbamoyl; carbamoyl substituted with a heterocyclic group, (esterified carboxy) lower alkyl or

35 carboxy(lower)alkyl; lower alkylcarbamoyl substituted with hydroxy, lower alkylamino, (esterified

carboxy)lower alkyl or carboxy(lower)alkyl; etc.]; lower alkanoyl; aroyl; a heterocycliccarbonyl and the like. The term "acylamino" embraces an amino radical substituted with an acyl group. An examples of an 5 "acylamino" radical is acetylamino ($\text{CH}_3\text{C}(=\text{O})-\text{NH}-$). The terms "carboxy" or "carboxyl", whether used alone or with other terms, such as "carboxyalkyl", denotes $-\text{CO}_2\text{H}$. The term "carboxyalkyl" embraces radicals having a carboxy radical as defined above, attached to 10 an alkyl radical. The term "carbonyl", whether used alone or with other terms, such as "alkoxycarbonyl", denotes $-(\text{C}=\text{O})-$. The term "alkoxycarbonyl" means a radical containing an alkoxy radical, as defined above, attached via an oxygen atom to a carbonyl ($\text{C}=\text{O}$) 15 radical. Examples of such "alkoxycarbonyl" ester radicals include $(\text{CH}_3)_3\text{CO}-\text{C}(=\text{O})-$ and $-(\text{O}=\text{C})-\text{OCH}_3$. The terms "alkoxycarbonylalkyl" and "esterified carboxylower alkyl" embraces radicals having "alkoxycarbonyl", as defined above substituted to an 20 alkyl radical. Examples of such esterified carboxy may be substituted or unsubstituted lower alkoxy carbonyl [e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, hexyloxycarbonyl, 2-iodoethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, 25 etc.], substituted or unsubstituted aryloxy carbonyl [e.g. phenoxy carbonyl, 4-nitrophenoxy carbonyl, 2-naphthylloxycarbonyl, etc.], substituted or unsubstituted ar(lower)alkoxy carbonyl [e.g. benzylloxycarbonyl, phenethylloxycarbonyl, 30 benzhydryloxycarbonyl, 4-nitrobenzylloxycarbonyl, etc.] and the like. The lower alkyl-carbamoyl may be substituted with halo or an unsubstituted one such as methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, dimethylcarbamoyl, 2,2,2-trifluoroethylcarbamoyl or 35 the like. The aryl-carbamoyl may be phenylcarbamoyl, naphthylcarbamoyl, tolylcarbamoyl, xylylcarbamoyl,

mesitylcarbamoyl, cumenylcarbamoyl, and the like, in which the preferable one is phenylcarbamoyl. The carbamoyl substituted with a heterocyclic group may be one substituted with a heterocyclic group as mentioned above, in which preferably one is tetrazolylcarbamoyl.

The carbamoyl substituted with (esterified carboxy) lower alkyl may be methoxycarbonylmethylcarbamoyl, methoxycarbonylethylcarbamoyl, ethoxycarbonylmethylcarbamoyl, ethoxycarbonylethylcarbamoyl,

benzyloxycarbonylmethylcarbamoyl and the like. The carbamoyl substituted with carboxy(lower)alkyl may be carboxymethylcarbamoyl, carboxyethylcarbamoyl and the like. The lower alkylcarbamoyl substituted with hydroxyl may be N-hydroxy-N-methylcarbamoyl, N-ethyl-N-hydroxycarbamoyl, N-hydroxy-N-propylcarbamoyl, N-hydroxy-N-isopropylcarbamoyl and the like, in which the preferable one is N-hydroxy-N-methylcarbamoyl. The lower alkylcarbamoyl substituted with lower alkylamino may be methylaminomethylcarbamoyl,

dimethylaminomethylcarbamoyl,

dimethylaminoethylcarbamoyl,

diethylaminoethylcarbamoyl,

isopropylaminomethylcarbamoyl,

isopropylaminoisobutylcarbamoyl and the like, in which the preferable one is dimethylaminoethylcarbamoyl. The lower alkylcarbamoyl substituted with (esterified carboxy)lower alkyl may be (methoxycarbonylmethyl)-ethylcarbamoyl, (ethoxycarbonylmethyl)methylcarbamoyl, (benzyloxycarbonylmethyl)methylcarbamoyl,

(benzyloxycarbonylethyl) ethylcarbamoyl and the like, in which preferably one is (ethoxycarbonylmethyl)methylcarbamoyl. The lower alkylcarbamoyl substituted with carboxy(lower)alkyl may be (carboxymethyl)ethylcarbamoyl,

(carboxyethyl)ethylcarbamoyl and the like, in which the preferable one is (carboxymethyl)methylcarbamoyl.

The lower alkanoyl may be a substituted or unsubstituted one such as formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, hexanoyl, trifluoroacetyl or the like, in which the 5 preferable one is formyl, acetyl, propionyl or trifluoroacetyl. The aroyl may be benzoyl, naphthoyl, toluoyl, di(tert-butyl)benzoyl and the like and the aryl in said aroyl may be substituted with hydroxyl. The heterocyclic moiety in the term "a 10 heterocyclic carbonyl" may be one mentioned above as a heterocyclic group and preferably one in said heterocyclic carbonyl is morpholinocarbonyl, pyrrolidinylcarbonyl or methylpiperazinylcarbonyl. The term "aralkyl" embraces aryl-substituted alkyl 15 radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenethyl, and diphenethyl. The terms benzyl and phenylmethyl are interchangeable. The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, 20 attached to a divalent sulfur atom. An example of "alkylthio" is methylthio, (CH₃-S-). The term "alkylsulfinyl" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent -S(=O)- atom. The terms "N- 25 alkylamino" and "N,N-dialkylamino" denote amino groups which have been substituted with one alkyl radical and with two alkyl radicals, respectively. Suitable "lower alkylamino" may be mono or di(lower alkyl)amino such as methylamino, ethylamino, dimethylamino, 30 diethylamino or the like. The term "imino" in "hydroxyimino" and "alkoxyimino" denotes a -C=N- radical. The term "hydroxyimino" denotes a -C=N-OH radical. The term "amide" denotes a radical formed by an amino substituted carbonyl, or -C(=O)-NH₂.

The present invention comprises a pharmaceutical composition comprising a therapeutically-effective amount of a compound of Formula I as defined above but without excluding 5 compounds defined in the overall proviso that R² and R³ are not at same time 1) para-hydroxyphenyl, 2) para-methoxyphenyl, 3) para-acetoxyphenyl, 4) para-chlorophenyl, 5) para-methylphenyl or 6) para-bromophenyl, but preferably of Formula I, in 10 association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent.

The present invention also comprises a method of treating inflammation or inflammation-related disorders in a subject, the method comprising administering to a subject having such inflammation or disorder, a therapeutically-effective amount of a compound of Formula I, as defined above but without excluding compounds defined in the overall proviso 15 that R² and R³ are not at same time 1) para-hydroxyphenyl, 2) para-methoxyphenyl, 3) para-acetoxyphenyl, 4) para-chlorophenyl, 5) para-methylphenyl or 6) para-bromophenyl, but preferably of Formula I in unit dosage form.

25 Also included in the family of compounds of Formula I are the pharmaceutically-acceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically-acceptable. Suitable pharmaceutically-acceptable acid addition salts of compounds of Formula I may be prepared from 30 an inorganic acid or from an organic acid. Examples of 35 such inorganic acids are hydrochloric, hydrobromic,

hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of
5 organic acids, example of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicyclic, salicyclic, p-
10 hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethane-sulfonic, benzenesulfonic, pantothenic, 2-hydroxyethanesulfonic, toluenesulfonic, sulfanilic, cyclohexylaminosulfonic, stearic, algenic, β -hydroxybutyric, salicyclic,
15 galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of Formula I include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from N,N'-
20 dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. All of these salts may be prepared by conventional means from the corresponding compound of Formula I by reacting, for
25 example, the appropriate acid or base with the compound of Formula I.

GENERAL SYNTHETIC PROCEDURES

The compounds of the invention can be synthesized according to the following procedures of
35 Schemes I-XIII, wherein the R¹-R³ substituents are as defined for Formula I, above, except where further noted.

29

Scheme I

5

Synthetic Scheme I shows the preparation of dialkylester **2** from starting ester **1** or diacid **3** where R is lower alkyl. The dialkylester **2** can be prepared by the condensation of alkyl chloroacetate **1** with sodium sulfide nonahydrate, where Y is sulfur.
 10 Alternatively, dialkylester **2** can be formed by alcohol esterification of diacid **3**.

30

Scheme II

5 Synthetic Scheme II shows the preparation of
diones 7 in three steps from commercially available
aldehydes. In Step 1, treatment with trimethylsilyl
cyanide (TMSCN) provides the trimethylsiloxy nitrile
5. In Step 2, the nitrile 5 is treated with a Grignard
10 reagent to form the hydroxy ketone 6. In Step 3, the
hydroxy ketone 6 is oxidized to give the desired
diketone 7.

Scheme III

Synthetic Scheme III shows the preparation
 5 of half ester **8**, monoester **9**, diacid **10** and 3,4-
 substituted heterocycles **11** of the present invention.
 In Step 1, the half ester **8** is formed by the Hinsberg
 condensation of dialkyl ester **2** and diketone **7**,
 prepared in Synthetic Schemes I -II, respectively, by
 10 treatment with base, such as sodium methoxide or
 potassium tert-butoxide, in solvents, such as THF or
 alcohols. The half ester **8** can be isolated, or
 saponified in Step 2 to the yield diacid **10**. See D.J.
 Chadwick et al, J. Chem. Soc. Perkin I, 2079 (1972).
 15 Alternatively, a procedure analogous to that described
 in Overberger et al, J. Amer. Chem. Soc., 72, 4958

(1950), can be used to prepare the diacid **10**. In step 3, the diacid **10** is decarboxylated through the addition of copper powder, quinoline and heat to form the antiinflammatory 3,4-substituted heterocycle **11** in 5 a process essentially analogous to that described in D.J. Chadwick et al, J. Chem. Soc. Perkin I, 2079 (1972). Alternatively, the half ester **8** can be monodecarboxylated to the ester **9** by a method similar to that described in Step 3, above.

10

Scheme IV

15

Synthetic Scheme IV shows the five step preparation of 3,4-substituted furans **17** from the nitrile **12**. In step 1, reaction of the nitrile **12** with

an alkyl lithium, such as methyl lithium, at -78°C, is followed by acidification to give the ketone 13. In step 2, the ketone 13 is brominated to yield the bromoketone 14. In step 3, bromoketone 14 is coupled 5 with an acid to produce the ester 15. In step 4, cyclization of the ester 15 by reflux with p-toluenesulfonic acid and triethylamine produces the furanone 16. In step 5, furanone 16 is reduced with borane dimethylsulfide complex to give the 10 antiinflammatory furans 17 of the present invention.

Scheme V

15

The compounds of the present invention wherein X is bromo or chloro, are prepared by treating the decarboxylation product heterocycle 11 or 17, prepared in Synthetic Scheme III or IV, with Br₂ or Cl₂, respectively. In other words Cl₂ or Br₂ may be used to yield monohalo or dihalo heterocycle 18 as in the above Scheme V.

Scheme VI

25

The compounds of Formula I, wherein Y is NR¹ and X is chloro or bromo, may be treated with silver fluoride or potassium fluoride to obtain compound 20 of Formula I wherein Y is NR¹ and X is fluoro. This preparation shown in Scheme VI is analogous to that described in U.S. Patent 4,652,582.

Scheme VII

10

Compound 21 of Formula I, wherein Y is S and X is H, may be treated in two steps, first with alkylolithium and then with perchloroyl fluoride, to obtain compound 22 of Formula I, wherein X is fluoro, in the manner set forth in the Scheme VII using methods analogous to those set forth in U.S. Patent 4,590,205.

Scheme VIII

20

Alternatively, compounds of Formula I, wherein Y is O or S and X is hydrogen, may be treated with N-fluoropyridinium triflate as set forth in the Scheme VIII using methods analogous to those described in Tetrahedron Letters, 27, 4465 (1986).

Alternatively, heterocycle **11** may be substituted at the 2 and 5 position by methods outlined for each of these substituents in their respective patent application and/or Patents, i.e. PCT Publication 5 WO 91/19708, U.S. Patent Nos. 4,590,205, 4,302,461, 4,427,693 and 4,432,974.

Scheme IX

Compounds of Formula I wherein R³ is alkylthiophenyl, may be treated with m-chloroperoxybenzoic acid (MCPBA) to obtain other compounds of Formula I, wherein R³ is alkylsulfonylphenyl, in the manner set forth in Scheme IX.

Scheme X

Compounds of Formula I wherein R³ is alkylsulfonylphenyl, may be treated in three steps to obtain other compounds of Formula I, wherein R³ is benzenesulfonamide, in the manner set forth in Scheme X. In Step 1, the alkylsulfone is treated at -70°C with n-butyllithium. In step 2, tri-n-butyl borane in

THF is added and refluxed overnight. After cooling to room temperature, water, sodium acetate and hydroxylamine-O-sulfonic acid are added to form the sulfonamide.

5

Scheme XI

10 Synthetic Scheme XI shows the two step preparation of 3,4-disubstituted heterocyclic antiinflammatory agents **11** from 1,2-dibromo-thiophene **29** and the available bromides **28** and **31**. In step one, halogen-metal interchange of **28** with n-butyllithium in THF at -78°C gives the 3-lithioccompounds which subsequently react with zinc chloride to give the corresponding zinc reagents. Negishi coupling [Negishi et al, *J. Org. Chem.*, **42**, 1821 (1977)] of the zinc reagents with **29** gives the monocoupled thiophene bromides **30**. In step two, this process is repeated with bromides **31** to yield the 3,4-disubstituted heterocyclic antiinflammatory agents **11**.

15

20

Scheme XII

5 Synthetic Scheme XII shows the two step procedure
for the preparation of 3,4-disubstituted heterocyclic
antiinflammatory agents 11 from monocoupled thiophene
bromides 30 (prepared in Synthetic Scheme XI) and
substituted boronic acids 33 using a sequential
10 coupling procedure which is similar to the coupling
procedure developed by Suzuki, et al., [Syn. Commun.,
11, 513 (1981)]. In step one, halogen-metal
interchange of the bromides 31 in THF at -78°C
generates the corresponding organolithium reagents
15 which are reacted with trimethyl borate. Hydrolysis
with hydrochloric acid provides the substituted
boronic acids 33. In step two, the monocoupled
bromides 30 (prepared in Synthetic Scheme XI) are
coupled in toluene at reflux in the presence of Pd°
20 catalyst, e.g., tetrakis(triphenylphosphine)palladium
(0), and 2M sodium carbonate, with 33 to give the 3,4-
disubstituted heterocyclic antiinflammatory agents 11
of this invention.

38

Scheme XIII

5 Alternatively, the heterocycles of the present invention, where Y is sulfur and R³ is 4-methylsulfonyl, may be prepared essentially as the McMurray synthesis, as shown in Scheme XIII. In Step

1, thioanisole **34** is acetylated with chloroacetyl **35** in the presence of AlCl₃ to form the haloacetophenone **36**. In Step 2, the thioacetylketone **38** is prepared by the treatment of ketone **37** with potassium thioacetate in ethanol. In Step 3, intermediates **36** and **38** are coupled to form the dione **39** in the presence of ammonium hydroxide. In Step 4, diol **40** is formed through the treatment of dione **39** with TiCl₄ and zinc dust. Thiophene **41** is formed in Step 5 by refluxing diol **40** with p-toluenesulfonic acid in toluene. The antiinflammatory (4-methylsulfonylphenyl) thiophenes **42** of the invention are formed through the oxidation of the alkylthiophenyl thiophene **41** with meta-chloroperoxybenzoic acid in dichloromethane.

15

An alternate procedure utilized in the present invention is essentially analogous to that outlined by H. Wynberg and H.J. Kooreman, J. Am. Chem. Soc., 87, 1739 (1985).

20

The following examples contain detailed descriptions of the methods of preparation of compounds of Formula I-II. These detailed descriptions fall within the scope, and serve to exemplify the above described General Synthetic Procedures which form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All parts are by weight and temperatures are in Degrees centigrade unless otherwise indicated.

Example 1**5 3-(4-Methylsulfonylphenyl)-4-(4-fluorophenyl)thiophene****Step 1: Preparation of dimethyl thiodiglycolate.**

A 2L, 4-neck round bottom flask equipped
10 with a mechanical stirrer was charged with
thiodiglycolic acid (300.3 g, 2 mol) and methanol (810
ml). Anhydrous HCl was then bubbled through this
solution with stirring for 0.5 hours. Stirring was
continued for an additional 16 hours at 27°C at which
15 time the methanol was removed by distillation at
reduced pressure. The residue was dissolved in
diethyl ether and washed with brine (300 ml), twice
with saturated bicarbonate (2 x 500 ml) and brine (500
ml). The diethyl ether was dried with Na₂SO₄ and the
20 solvent removed by distillation at reduced pressure.
Vacuum distillation of the resulting residue yielded
229.7 g (1.29 mol, 64%) of dimethyl thiodiglycolate;
¹H NMR (CDCl₃) δ 3.37 (s, 4H), 3.72 (s, 6H).

25 **Step 2: Preparation of 2-methoxycarbonyl-3-(4'-fluorophenyl)-4-(4'-methylthiophenyl)-thienyl-5-carboxylic acid and 2-methoxycarbonyl-3-(4'-methylthiophenyl)-4-(4'-fluorophenyl)-thienyl-5-carboxylic acid,**

30

To a stirred solution of 4-fluoro-4'-methylthio benzil (33.34 g, 122 mmol) and dimethyl thiodiglycolate (43.4 g, 244 mmol) from Step 1 in

tetrahydrofuran (THF) (400 ml) at ambient temperature was added 25% NaOMe in methanol solution (83.7 ml, 366 mmol). This solution was immediately warmed to 65°C and stirred for 2.5 hours. The reaction mixture was
5 cooled to room temperature and poured into 1L of 2M NH₄OH and 1L diethyl ether, shaken, and separated. The aqueous layer was acidified with concentrated HCl, saturated with NaCl, and extracted with 1L ethyl acetate. The ethyl acetate was dried over Na₂SO₄ and
10 concentrated in vacuo to provide 73.43 g of crude intermediate as a tan solid. The crude intermediate was recrystallized from ethyl acetate/iso-octane to provide 39 g (82%) of 2-methoxycarbonyl-3-(4'-fluorophenyl)-4-(4'-methylthiophenyl)-thienyl-5-
15 carboxylic acid as a white crystalline solid.

Step 3: Preparation of 3-(4'-methylthiophenyl)-4-(4'-fluorophenyl)-thienyl-2,5-dicarboxylic acid.

20 To a solution of 2-methoxycarbonyl-3-(4'-fluorophenyl)-4-(4'-methylthiophenyl)-thienyl-5-carboxylic acid (39 g, 93.6 mmol) from Step 2 in 450 ml THF was added 1N NaOH (468 ml). Enough methanol
25 was added to bring reagents back into solution (~ 75 ml). The reaction was then heated to reflux for 1.5 hours at which time the reaction was determined to be complete by HPLC monitoring. The reaction mixture was washed with diethyl ether (500 ml), acidified with
30 conc. HCl, saturated with NaCl, and extracted twice with 500 ml ethyl acetate. The ethyl acetate was dried over MgSO₄ and concentrated in vacuo to yield 36.84 g of 3-(4'-methylthiophenyl)-4-(4'-fluorophenyl)-thienyl-2,5-dicarboxylic acid.

Step 4: Preparation of 3-(4'-methylthiophenyl)-4-(4'-fluorophenyl)thiophene.

The diacid from Step 3 (36.84 g, 94.9 mmol)
5 was suspended in 400 ml of freshly distilled quinoline
and heated to 180-200°C in an oil bath at which time
copper powder (3.6 g) was added in one portion. The
reaction was stirred at 180-200°C for 3 hours, cooled
to 130°C, filtered through a medium frit glass funnel
10 then cooled to room temperature. The quinoline was
acidified with 3N HCl and extracted twice with diethyl
ether (400 ml). The diethyl ether was dried and
concentrated to provide 27.83 g of a dark brown solid.
The brown solid was dissolved in a minimum amount of
15 ethyl acetate and passed over silica in hexane. The
silica was washed with 50% ethyl acetate in hexane
until no further product eluted. The product
containing fractions were combined and concentrated to
provide 25.37 g (89%) of 3-(4'-methylthiophenyl)-4-
20 (4'-fluorophenyl)-thiophene as a white solid.

Step 5: Preparation of 3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)thiophene.

25
3-(4'-methylthiophenyl)-4-(4'-fluorophenyl)thiophene (21.3 g, 70.9 mmol) from Step 4
was dissolved in 500 ml dichloromethane and cooled to
-78°C. To this solution was added 50-60% 3-
30 chloroperoxybenzic acid (MCPBA) (44.5 g, 142 mmol).
The reaction was stirred at -78°C for 1.5 hours at
which time the cooling bath was replaced with an ice
bath and the reaction stirred at 0°C until reaction
was complete by monitoring with HPLC. The reaction
35 was warmed to room temperature, washed with 1M NaHSO₃
solution (500 ml), saturated NaHCO₃ (500 ml) and
brine. The reaction solution was dried over Na₂SO₄ and
concentrated in vacuo. This material was dissolved in

250 ml dichloromethane and 350 ml absolute ethanol was added. The dichloromethane was removed by boiling and the solution cooled to 10°C for a few hours. 3-(4-Methylsulfonylphenyl)-4-(4-fluorophenyl)-thiophene (16 5 g) was collected by filtration on a medium frit funnel. Melting point 190.5-191.5°C.

Example 2

10

4-(4-Methylsulfonylphenyl)-3-(4-fluorophenyl)-2-bromothiophene

15

Example 3

20

4-(4-Methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-dibromothiophene

25

3-(4-Methylsulfonylphenyl)-4-(4-fluorophenyl)-thiophene (102 mg) was dissolved in acetic acid (75 ml) and heated to 90°C. Bromine in acetic acid (0.1 M, 3.07 ml) was added in one portion. The reaction was stirred for 15 minutes at which time the solvent was removed at reduced pressure. The

residue was dissolved in a minimum of ethyl acetate and chromatographed on silica, eluting with 2.5% isopropanol in hexane yielding 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-dibromothiophene (CI MS (M+H) : 489/491/493) and 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2-bromothiophene (CI MS (M+H) : 411/413).

Example 4

10

3,4-Bis(4-methoxyphenyl)thiophene

15 Step 1: Preparation of 2-methoxycarbonyl-3,4-bis-(4-methoxyphenyl)-thienyl-5-carboxylic acid.

To a stirred solution of 4,4'-bis(methoxy)benzil (3.03 g, 11.2 mmol) and dimethyl 20 thiodiglycolate (3.56 g, 20 mmol) in THF (20 ml), 25% NaOMe in methanol solution (7.4 ml, 32.4 mmol) was added at ambient temperature. This solution was immediately warmed to 65°C and stirred for 2.5 hours. The reaction was cooled to room temperature and poured 25 into 2M NH₄OH (100 ml) and 100 ml diethyl ether, shaken and separated. The aqueous layer was acidified with concentrated HCl, saturated with NaCl and extracted with ethyl acetate (100 ml). The ethyl acetate was dried over Na₂SO₄ and concentrated in vacuo 30 to provide 1.72 g (40%) of 2-methoxycarbonyl-3,4-bis-(4'-methoxyphenyl)-thienyl-5-carboxylic acid as a white solid. CI MS (M+H) : 399.

Step 2: Preparation of 3,4-bis-(4-methoxyphenyl)-thienyl-2,5-dicarboxylic acid.

To a solution of 2-methoxycarbonyl-3,4-bis-(4'-methoxyphenyl)-thienyl-5-carboxylic acid (1.6 g, 4.0 mmol) in THF (100 ml) was added 1N NaOH (8.4 ml). Enough methanol was added to bring reagents back into solution (~10 ml). The reaction was heated to reflux for 6 hours at which time the reaction was complete by HPLC monitoring. The THF and methanol were removed at reduced pressure and the residue dissolved in water (300 ml) and diethyl ether (300 ml). The aqueous layer was acidified with conc. HCl, saturated with NaCl and extracted twice with 300 ml ethyl acetate. The ethyl acetate layers were dried over MgSO₄ and concentrated in vacuo to yield 1.45g (94%) of 3,4-bis-(4-methoxyphenyl)-thienyl-2,5-dicarboxylic acid. CI MS (M+H) : 385.

Step 3: Preparation of 3,4-bis(4-methoxyphenyl)thiophene.

3,4-bis-(4-methoxyphenyl)-thienyl-2,5-dicarboxylic acid (1.3 g, 3.4 mmol) was suspended in 50 ml of freshly distilled quinoline and heated to 180-200°C in an oil bath at which time copper powder (0.2 g) was added in one portion. The reaction was stirred at 180-200°C for 3 hours, cooled to 130°C, filtered through a medium frit glass funnel and cooled to room temperature. The quinoline was acidified with 3N HCl and extracted twice with diethyl ether (40 ml). The diethyl ether layer was dried and concentrated to provide a dark brown solid. The brown solid was dissolved in a minimum amount of ethyl acetate and passed over silica, eluting with hexane. After removal of the hexane, the product was crystallized from hot absolute ethanol to yield 0.9 g (90%) of 3,4-

bis(4-methoxyphenyl)thiophene as a white solid. EI MS (M+H) : 296.

Example 5

5

Ethyl[4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)thien-2-yl]carboxylate

10

Step 1: Preparation of 2-ethoxycarbonyl-3-(4-fluorophenyl)-4-(4-methylthiophenyl)thiophene.

A mixture of 2-ethoxycarbonyl-3-(4-fluorophenyl)-4-(4-methylthiophenyl)-thienyl-5-carboxylic acid and 2-carboethoxy-3-(4-methylthiophenyl)-4-(4-fluorophenyl)-thienyl-5-carboxylic acid (714 mg), described in Example 1, was suspended in 75 ml of freshly distilled quinoline and heated to 180-200°C in an oil bath at which time copper powder (0.2 g) was added in one portion. The reaction was stirred at 180-200°C for 3 hours, cooled to 130°C, filtered through a medium frit glass funnel and cooled to room temperature. The quinoline was acidified with 3N HCl and extracted twice with diethyl ether (40 ml). The diethyl ether was dried and concentrated to provide a dark brown solid. The brown solid was dissolved in a minimum amount of ethyl acetate and passed over silica, eluting with hexane followed by 5% ethyl acetate in hexane to the yield 2-

ethoxycarbonyl-3-(4-fluorophenyl)-4-(4-methylthiophenyl)thiophene; CI MS (M+H) : 373.

5 Step 2: Preparation of 2-ethoxycarbonyl-3-(4-fluorophenyl)-4-(4-methylsulphonylphenyl)thiophene.

2-ethoxycarbonyl-3-(4-fluorophenyl)-4-(4-methylthiophenyl)thiophene from Step 1 (93.1 mg, 0.25 mmol) was dissolved in 10 ml dichloromethane and cooled to -78°C. To this solution was added 50-60% MCPBA (173 mg, 0.5 mmol). The reaction was stirred at -78°C for 1.5 hours at which time the cooling bath was replaced with an ice bath and the reaction stirred at 0°C until the reaction was complete as monitored by HPLC. The reaction was warmed to room temperature and washed with 1M NaHSO₃ solution (10 ml), saturated NaHCO₃ (10 ml) and brine. The solution was dried over Na₂SO₄ and concentrated in vacuo. This residue was dissolved in ethyl acetate and chromatographed on silica, eluting with a gradient from 1%-4% isopropanol in hexane yielding 2-ethoxycarbonyl-3-(4-fluorophenyl)-4-(4-methylsulphonylphenyl)thiophene as a white solid. ¹H NMR (CDCl₃) δ1.2p (t, 3h, J = 7.0 Hz), 3.0 (s, 3h), 4.22 (q, 2h, J = 7.0 Hz), 7.0 (m, 2h), 7.11 (m, 2h), 7.23 (d, 2h, J = 8.4 Hz), 7.6 (s, 1H), 7.8 (d, 2h, J = 8.4 Hz).

Example 6

5 3-(4-Methylsulfonylphenyl)-4-(4-methoxyphenyl)thiophene

10 Step 1: Preparation of 2-thioacetyl-4'-methoxy acetophenone.

Potassium thioacetate (2.28 g, 20 mmol) was added to a solution of 2-bromo-4'-methoxy acetophenone (4.58 g, 20 mmol) in absolute ethanol (150 ml). The reaction was stirred at ambient temperature under nitrogen for 16 hours at which time the white precipitate that had formed was filtered and the ethanol removed at reduced pressure. The residue was dissolved in dichloromethane (250 ml) and washed with water (200 ml), brine (200 ml), dried over Na₂SO₄ and the solvent removed at reduced pressure. The resulting residue was chromatographed on silica with a gradient from 10%-35% ethyl acetate in hexane to yield 3.4 g (76%) of 2-thioacetyl-4'-methoxy acetophenone.
 25 ¹H NMR (CDCl₃) δ 2.36p (s, 3h), 3.84 (s, 3h), 4.33 (s, 2h), 6.9 (d, 2h, J = 9.2 Hz), 7.9 (d, 2h, J = 9.2 Hz).

Step 2: Preparation of diketone

30 2-Thioacetyl-4'-methoxy acetophenone (449 mg, 2 mmol) and 2-chloro-4'-methylthioacetophenone (401 mg, 2 mmol) were dissolved in ethanol (20 ml).

To this solution was added NH₄OH (20 M, 1 ml) and the reaction was stirred for 16 hours at ambient temperature. The ethanol was removed at reduced pressure, the residue was dissolved in ethyl acetate (50 ml) and washed with 1N HCl (30 ml) and brine (30 ml). The ethyl acetate was dried over Na₂SO₄ and the solvent was removed at reduced pressure. The residue was chromatographed on silica eluting with 20% ethyl acetate in hexane to yield the diketone (290 mg, 42%).

5
10 CI MS (M+H) : 347.

Step 3: Preparation of Diol

The diketone from Step 2 (173 mg) was dissolved in anhydrous THF (10 ml) and cooled to -7°C. To this solution was added TiCl₄ (255.1 μl, 2.3 mmol) and zinc powder (300 mg). The reaction was stirred at ambient temperature for 3 hours at which time 10% aq K₂CO₃ (20 ml) and dichloromethane (20 ml) were added and the entire reaction poured through celite. The aqueous and organic layers were separated. The organics were washed with water (20 ml), dried over Na₂SO₄ and the solvent removed at reduced pressure. The residue was chromatographed on silica, eluting with a gradient from 10%-30% ethyl acetate in hexane to yield 75 mg (31%) of diol. CI MS (M+H) : 349.

15
20
25

Step 4: Preparation of 3-(4-methylthiophenyl)-4-(4-methoxyphenyl)thiophene.

30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070

dissolved in a minimum amount of ethyl acetate and chromatographed on silica, eluting with 2% ethyl acetate in hexane to yield 3-(4-methylthiophenyl)-4-(4-methoxyphenyl)thiophene (53 mg, 95%). EI MS (M+H) :
5 312.

Step 5: Preparation of 3-(4-methylsulphonylphenyl)-4-(4-methoxyphenyl)thiophene.

10 3-(4-Methylthiophenyl)-4-(4-methoxyphenyl)thiophene from Step 4 (36.5 mg, 0.12 mmol) was dissolved in dichloromethane (10 ml). To this solution was added 3-chloroperoxybenzoic acid
15 (MCPBA) (88.7 mg of 50% MCPBA) and the reaction stirred under nitrogen for 6 hours. Once the reaction was complete, dichloromethane (25 ml) was added and the reaction washed with Na₂S₂O₅ in water (1 g in 25 ml), saturated NaHCO₃ (2 x 25 ml), brine (25 ml),
20 dried over Na₂SO₄ and the solvent removed at reduced pressure. The crude solid was purified by crystallization from dichloromethane and isooctane to yield 3-(4-methylsulphonylphenyl)-4-(4-methoxyphenyl)thiophene (40 mg, 98%). CI MS (M+H) :
25 344.

Example 7

3-(4-Methylsulfonylphenyl)-4-(4-methoxyphenyl)-5-bromothiophene

3-(4-methylsulphonylphenyl)-4-(4-methoxyphenyl)thiophene from Example 6 (9.3 mg) was dissolved in acetic acid (10 ml) and heated to 90°C at which time Br₂ in acetic acid (1.0 M, 27 µl) was added 5 in one portion. The reaction was stirred for 15 minutes at which time the solvent was removed at reduced pressure. The residue was dissolved in a minimum of ethyl acetate and chromatographed on silica, eluting with 2.5% isopropanol in hexane, 10 yielding 3-(4-methylsulfonylphenyl)-4-(4-methoxyphenyl)-5-bromothiophene. CI MS (M+H): 423/425.

Example 8

15

20 2-Ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)-thienyl-5-carboxylic acid

Step 1. Preparation of 1-(4'-thiomethylphenyl)-1-(trimethylsiloxy) acetonitrile.

A 1L 3-necked round-bottomed flask equipped 25 with magnetic stirrer, nitrogen inlet, reflux condenser, constant pressure addition funnel and thermometer was charged with 4'-methylthiobenzaldehyde (33.5 ml, 0.252 mol) and 300 ml of dichloromethane. The addition funnel was charged with 30 trimethylsilylcyanide (25.0 g, 0.252 mol) dissolved in 100 ml dichloromethane. The stirrer was started and

approximately 10 ml of the trimethylsilyl cyanide solution was added from the addition funnel. As no exotherm was noted, zinc iodide (0.50 g, 0.0016 mol) was added to the reaction. An exotherm of

- 5 approximately 3°C was noted, and the addition of the trimethylsilylcyanide solution was continued over about 0.75 hour. During the addition, the exotherm produced warmed the reaction to reflux. The reaction was stirred for one hour, during which time it cooled
10 to room temperature, and the mixture was poured into a separatory funnel charged with water (300 ml). The layers were separated, and the water layer was extracted once with dichloromethane (200 ml). The combined organic layers were washed with brine (200
15 ml), dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to yield a light orange oil (61.05 G, 96%), which crystallized upon standing, of 1-(4'-thiomethylphenyl)-1-(trimethylsiloxy) acetonitrile, ¹H NMR (CDCl₃/300 MHz) δ 7.42 (m, 4H),
20 5.49 (s, 1H), 2.53 (s, 3H), 0.26 (s, 9H).

Step 2. Preparation of 2-(4-thiomethylphenyl)-2-hydroxy-4'-fluoroacetophenone.

- 25 An oven-dried, 1L four-necked round-bottomed flask equipped with mechanical stirrer, reflux condenser, nitrogen inlet, constant pressure addition funnel and thermometer was charged with magnesium turnings (3.31 g, 0.136 mol) and anhydrous THF (200 ml). The addition funnel was charged with 4-bromo-1-fluorobenzene (15.1 ml, 0.136 mol) dissolved in anhydrous THF (100 ml). Approximately 5 ml of the 4-bromo-1-fluorobenzene solution was added to the reaction flask, and an immediate exotherm of 2° C was
30 observed. The remaining 4-bromo-1-fluorobenzene solution was added over ca. 0.75 hour. During the addition, the exotherm produced warmed the reaction to
35

reflux. Upon complete addition, the reaction was stirred without temperature control for ca. 0.75 hour then cooled to 11°C. The addition funnel was charged with 1-(4-thiomethylphenyl)-1-(trimethylsiloxy)-
5 acetophenone (61.05 G, 0.242 mol) dissolved in anhydrous tetrahydrofuran (200 ml). This solution was added over ca. 0.5 hour, while the reaction temperature was maintained lower than 18°C. During the addition, a thick brown oil precipitated, but was kept
10 in suspension by mechanical stirring. The reaction was stirred without temperature control for one hour and quenched by addition of 3 N HCl (300 ml). After stirring for one hour, the solution was transferred to a separatory funnel and extracted with ethyl acetate
15 (2 X 300 ml). The combined organic solution was dried over anhydrous MgSO₄, filtered, and concentrated in vacuo to yield a dark oil. The oil was dissolved in a minimum amount of boiling ethyl acetate, and isooctane was added until the solution turned cloudy. Upon
20 cooling, tan crystals separated. The suspension was cooled to 0°C, held for 0.5 hour, filtered and washed with hexane to provide, after air-drying, 2-(4-thiomethylphenyl)-2-hydroxy-4'-fluoroacetophenone (16.6 g, 53%). ¹H NMR (CDCl₃/300 MHz) δ7.93(m, 2H),
25 7.20(m, 4H), 7.06(m, 2H), 5.86(s, 1H), 2.43(s, 3H); ¹⁹F NMR (CDCl₃/282.2 MHz) -103.036(t, J=6.77 Hz).

Step 3. Preparation of 4-fluoro-4'-thiomethylbenzil.

30 A 500 ml three-necked round-bottomed flask equipped with reflux condenser, thermometer and provisions for magnetic stirring was charged with 2-(4-thiomethylphenyl)-2-hydroxy-4'-fluoroacetophenone
35 from Step 2 (15.0 g, 54.48 mmol) and 200 ml of glacial acetic acid. The solution was warmed to ca. 90°C, when Bi₂O₃ (10.16 g, 21.79 mmol) was added. The

suspension was stirred at reflux for 16 hours, cooled to room temperature. The insoluble inorganics were filtered onto a pad of Celite and washed with glacial acetic acid (50 ml). Water (700 ml) was added, and the resulting suspension was cooled to ca. 15°C, held for 0.5 hour, filtered, washed with water and dried to yield 4-fluoro-4'-thiomethylbenzil (11.98 g, 80%) as a dark yellow solid. ^1H NMR ($\text{CDCl}_3/300$ MHz) δ 8.01 (m, 2H), 7.86 (m, 2H), 7.29 (m, 2H), 7.18 (m, 2H), 2.53 (s, 3H)); ^{19}F NMR ($\text{CDCl}_3/282.2$ MHz -101.58 (m).

Step 4. Preparation of 4-fluoro-4'-methanesulfonylbenzil.

A 500 ml one-neck round-bottom flask equipped for magnetic stirring was charged with 4-fluoro-4'-thiomethylbenzil from Step 3 (10.0 g, 36.46 mmol) and dichloromethane (200 ml) and cooled to 0°C. m-Chloroperbenzoic acid (26.42 G, 50W%, 153.1 mmol) was added, and the suspension was stirred without temperature control for 16 hours. The reaction was poured into aqueous $\text{Na}_2\text{S}_2\text{O}_5$ (5%, 200 ml), and the dichloromethane was evaporated in vacuo. The residue was dissolved in ethyl acetate (200 ml) and washed with 5% $\text{Na}_2\text{S}_2\text{O}_5$ (2 X 200 ml) and saturated NaHCO_3 (2 X 200 ml), dried over anhydrous MgSO_4 , filtered and the solvent evaporated in vacuo to yield 4-fluoro-4'-methylsulfonylbenzil (10.8 g, 96%) as a white solid. ^1H NMR ($\text{CDCl}_3/300$ MHz) δ 8.10 (m, 6H), 7.21 (m, 2H), 3.08 (s, 3H)); ^{19}F NMR ($\text{CDCl}_3/282.2$ MHz -100.21 (m).

Step 5. Preparation of 5-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)-thienyl-2-carboxylic acid and 2-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)-thienyl-5-carboxylic acid.

A 500 ml three-neck round-bottom flask equipped with a reflux condenser, thermometer and provisions for magnetic stirring was charged with 4-fluoro-4'-methanesulfonylbenzil from Step 4 (2.5 g, 5 8.16 mmol) and diethyl thioglycolate (3.03 g, 14.69 mmol) dissolved in tetrahydrofuran (200 ml). Sodium ethoxide in ethanol (9.4 ml; 21 W%, 22.9 mmol) was added, and the reaction was warmed to reflux. After 1.5 hour, the reaction was cooled to room temperature 10 and acidified with 1N HCl (100 ml). The organic solvents were evaporated in vacuo, and the aqueous residue was extracted with diethyl ether (2 x 200 ml). The combined organic solution was washed with 10% NH₄OH solution (3 x 100 ml). The combined basic 15 aqueous solution was then acidified with conc. HCl to pH 2. The resulting suspension of oil in water was extracted with dichloromethane (3 x 100 ml). The combined organic solution was dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo 20 to an oil. Crystallization from hot ethanol/water yielded, upon drying, yielded 5-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)-thienyl-2-carboxylic acid and 2-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)-thienyl-5- 25 carboxylic acid as a 50:50 mix of ester regioisomers (2.38 g, 65%) as a light tan solid ¹H NMR (CDCl₃/ 300 MHz) δ 7.78(m, 2H), 7.21(m, 2H), 6.93(m, 4H) 4.22(m, 2H) 3.05(s, 3H) 1.22(m, 3H); ¹⁹F NMR (CDCl₃/282.2 MHz) -112.93 (m), -113.22 (m). Mass spectrum (M+H): 449.

Example 9

5 **4-(4-Fluorophenyl)-3-(4-methanesulfonylphenyl)-
thienyl-2,5-dicarboxylic acid**

The acidic mother liquor of Example 8, step 5, was concentrated in vacuo to approximately one-third of its original volume (180 ml). The resulting suspension was cooled to 0°C, held for thirty minutes, filtered and washed with 1 N HCl to yield, upon drying, 4-(4-fluorophenyl)-3-(4-methanesulfonylphenyl)thiophene-2,5-dicarboxylic acid (0.60 g; 17.5%) as a white solid. ^1H NMR ($\text{CDCl}_3/300$ MHz) δ 8.13(m, 2H) 8.04(m, 2H) 7.64(m, 2H), 7.47 (m, 2H).

20

Example 10**3-(4-Methanesulfonylphenyl)-4-phenyl-thiophene**

A 100 mL one-neck round-bottom flask, equipped with provisions for magnetic stirring, was charged with aqueous ethanol (5mL) and 3-(thiomethylphenyl)-4-phenyl-thiophene (9 mg, 0.032 mmol), prepared according to procedures similar to that exemplified in Example 1, with the substitution of the appropriate substituted benzil (4'-thiomethylbenzil) in Step 3. Oxone (59 mg, 0.096 mmol) was added, and the suspension was stirred at room temperature for 16 hours. Water (75 mL) was added, and the product precipitated. The suspension was cooled to 0°C and held for one hour. The product was filtered, washed with water (5 mL), and dried to yield 3-(methanesulfonylphenyl)-4-phenyl-thiophene (4.1 mg, 41%) as a white solid. ^1H NMR ($\text{CDCl}_3/300$ MHz) δ 7.81(m, 2H), 7.43 - 7.27(m, 7H), 7.16(m, 2H), 3.06(s, 3H). Mass spectrum ($\text{M}+\text{H}$): 314.

Example 11

20

3-(4-Methanesulfonylphenyl)-4-(4-methylphenyl)-thiophene

25

3-(4-Methanesulfonylphenyl)-4-(4-methylphenyl)thiophene was prepared in a manner similar to that exemplified in Example 10, with the substitution of the appropriate substituted benzil (4'-thiomethyl-4-methylbenzil) from Step 3. ^1H NMR ($\text{CDCl}_3/300$ MHz) δ 7.81(m, 2H), 7.41 - 7.31(m, 4H),

7.06(m, 4H), 3.06(s, 3H), 2.35(s, 3H). Mass spectrum (M+H) : 329.

Example 12

5

4-[4-(4-Fluorophenyl)thien-3-yl]benzenesulfonamide

10 To a solution of 3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)thiophene (0.332 g, 1.0 mmol) in THF (8 mL) at -70°C under nitrogen was added 1.6 M n-butyl lithium in hexane (0.66 mL, 1.05 mmol) slowly, via syringe, and the mixture stirred at -70°C for 20 minutes and then at room temperature (25°C) for 1 hour. After cooling to -70°C, a 1.0 M solution of tri-n-butyl borane in THF (1.15 mL, 1.15 mmol) was added and the mixture allowed to warm slowly to 0°C for 1 hour, warmed to room temperature for 2 hours, and finally stirred at reflux overnight (18 hours). After cooling to room temperature and stirring for 3 hours, water (0.8 mL) was added followed by sodium acetate (0.6 g) and hydroxylamine-O-sulfonic acid (0.41 g). After stirring at room temperature overnight, the mixture was poured into 3 volumes of ethyl acetate, and the organic layer washed with water and brine and dried over MgSO_4 . After solvent removal, the white solids (a mixture of product and starting material) were separated via flash chromatography on silica gel using a 15% ethyl acetate/85% toluene eluant to yield the benzenesulfonamide as a white solid (59 mg, mp 194

- 195°C). Anal. Calc'd for C₁₆H₁₂NO₂S₂F: C, 57.64; H, 3.63; N, 4.20. Found: C, 57.37; H, 3.69; N, 3.99.

Example 13

5

3-(4-Fluorophenyl)-4-(methylsulfonylphenyl)furan

10

Step 1: Preparation of 4-(methylthio)acetophenone

To a stirred solution of 4-(methylthio)benzonitrile (50g, 340 mmol) in THF (2 L) 15 at -78°C, was added methyllithium (282 ml, 1.4 M in diethyl ether, 390 mmol) over a period of ten minutes. The solution was stirred at -78°C for one hour and then the dry ice bath was removed. After five hours, 100 ml of water followed by 200 ml of 3N HCl were 20 added to the reaction mixture and it was stirred overnight. Concentration in vacuo gave a residue which was partitioned between ethyl acetate and water. The water layer was extracted with three portions of ethyl acetate and the combined ethyl acetate layers were 25 dried (MgSO₄). Concentration in vacuo gave 58 g of crude 4-(methylthio)acetophenone as a yellow solid: ¹H NMR (CDCl₃) δ 2.52 (s, 3H), 2.57 (s, 3H), 7.26 (d, J = 8.7 Hz, 2H), 7.87 (d, J = 8.7 Hz, 2H). The sample was used without further purification.

30

Step 2: Preparation of 4-(methylsulfonyl)acetophenone.

To a solution of the acetophenone prepared
5 in Step 1 (11.73 g, 71.1 mmol) in dichloromethane (500 ml) at ambient temperature was added m-chloroperoxybenzoic acid (50%, 61.14 g, 177 mmol) in portions over 20 minutes. The reaction was stirred for two hours, quenched slowly with sodium meta-
10 bisulfite, washed with three 100 ml portions of saturated sodium bicarbonate, dried ($MgSO_4$), and concentrated in vacuo to give 11.91g (91%) of 4-(methylsulfonyl)acetophenone as an off-white solid:
 1H NMR ($CDCl_3$) δ 2.67 (s, 3H), 3.08 (s, 3H), 8.06 (d, J = 9 Hz, 2H), 8.14 (d, J = 9 Hz, 2H).
15

Step 3: Preparation of 2-bromo-4'-(methylsulfonyl)acetophenone.

20 To a stirred solution of the acetophenone prepared in Step 2 (11.91 g, 60.5 mmol) in glacial acetic acid (133 ml) and hydrochloric acid (0.11 ml) at ambient temperature, was added a solution of bromine (8.22 g, 51.4 mmol) in glacial acetic acid
25 (9.3 ml) over a period of three hours. The reaction mixture was diluted with water (500 ml) and extracted with chloroform. The combined chloroform extracts were dried ($MgSO_4$) and concentrated in vacuo to give 15.66 g of crude 2-bromo-4'-(methylsulfonyl)acetophenone: 1H NMR ($CDCl_3$) δ 3.10 (s, 3H), 4.45 (s, 2H), 8.08 (d, J = 9 Hz, 2H), 8.17 (d, J = 9 Hz, 2H). The sample was used without further purification.
30

Step 4: Preparation of 2-(4'-methylsulfonylphenacyl)-4-fluorophenyl acetate.

The bromo acetophenone prepared in Step 3
5 (8.9 g, 28.9 mmol) was added to a stirred solution of
4-fluorophenyl acetic acid (4.45 g, 28.9 mmol) in
triethylamine (3.26 g, 31.8 mmol) and acetonitrile
(275 ml) at ambient temperature and stirred for 30
minutes. The reaction was concentrated in vacuo and
10 the residue partitioned between ethyl acetate and
water. The organic fraction was dried ($MgSO_4$) and
concentrated in vacuo. The residue was purified by
silica gel chromatography (40% ethyl acetate/hexane)
to give 6.87 g (68% yield) of 2-(4'-
15 methylsulfonylphenacyl)-4-fluorophenyl acetate as a
colorless solid: 1H NMR ($CDCl_3$) δ 3.08 (s, 3H), 3.79
(s, 2H), 5.35 (s, 2H), 7.06 (s, t, $J = 9$ Hz, 2H), 7.32
(q, $J = 6, 9$ Hz, 2H), 8.06 (s, 4H).

20 Step 5: Preparation of 3-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-2(5H)-furanone.

The phenylacetate prepared in Step 4 (4.10
g, 11.7 mmol) was combined with triethylamine (6.52
25 ml, 46.8 mmol), p-toluenesulfonic acid (4.89 g, 25.7
mmol), and 4Å molecular sieves (12.0 g) in
acetonitrile (117 ml) and heated to reflux for 16
hours. The reaction was concentrated in vacuo and the
residue partitioned between dichloromethane and water.
30 The dichloromethane fraction was dried ($MgSO_4$) and
concentrated in vacuo. Recrystallization from
hexane/ethyl acetate (2:1) gave 3.65 g (94%) of 3-(4-
fluorophenyl)-4-(4-methylsulfonylphenyl)-2(5H)-
furanone as a solid: mp 166-167°C; 1H NMR ($CDCl_3$) δ
35 3.08 (s, 3H), 5.19 (s, 2H), 7.10 (t, $J = 9$ Hz, 2H),
7.42 (q, $J = 6, 9$ Hz, 2H), 7.52 (d, $J = 9$ Hz, 2H),

7.97 (d, $J = 9$ Hz, 2H); HRMS. Calc'd for M+H: 332.0519. Found 332.0501. Anal. Calc'd for C₁₇H₁₃FO₄S: C, 61.44; H, 3.94; O, 19.26. Found: C, 61.11; H, 4.06; O, 19.32.

5

Step 6: Preparation of 3-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)furan

Under nitrogen, borane dimethyl sulfide complex (2M in toluene, 3.6 ml, 7.2 mmoles) was added with stirring to the furanone prepared in Step 5 (0.6 g, 1.8 mmoles) in 10 ml of THF. After two hours, additional borane dimethyl sulfide complex (2M in toluene, 5.4 ml, 10.8 mmoles) was added. The reaction was stirred at ambient temperature for one hour and at 5°C for 62 hours. The reaction was concentrated in vacuo and the residue slowly mixed with 50 ml of ice water and extracted with three 25 ml portions of ethyl acetate. The combined organic fractions were washed with 25 ml brine, dried (MgSO₄), and concentrated in vacuo. Purification by silica gel chromatography (5% ethyl acetate/dichloromethane) gave 0.22 g (38%) of a colorless solid. Recrystallization from ethyl acetate/hexane gave 3-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)furan: mp 160-161°C; ¹H NMR (CDCl₃) δ 3.07 (s, 3H), 6.99-7.07 (m, 2H), 7.13-7.21 (m, 2H), 7.37-7.42 (m, 3H), 7.56 (d, $J=1.8$ Hz, 1H), 7.66 (d, $J=1.6$ Hz, 1H), 7.83-7.89 (m, 2H); ¹⁹F NMR (CDCl₃) δ -114.80 to -114.90 (m); MS m/e (M+H)⁺ 317(73), (M+) 316(100); HRMS. Calc'd for M+H: 316.0569. Found: 316.0571. Anal. Calc'd for C₁₇H₁₃FO₃S: C, 64.55; H, 4.14; F, 6.01; S, 10;.13. Found: C, 64.59; H, 4.02; F, 6.22; S, 10.52.

Example 14

5 **3-(4-Methylsulfonylphenyl)-4-(4-fluoropyridin-3-yl)
thiophene**

Step 1: Preparation of 4-(4 methylthiophenyl)-3-bromothiophene

10

4-Bromothioanisole (4.197g, 20.7 mmol.) was dissolved in 50 ml of dry THF and cooled to -78°C. N-butyllithium (2.5M, 9.1 ml, 22.77 mmol) was added via syringe and allowed to stir for 30 minutes. 1.0 M Zinc bromide in THF (24.0 ml) was added and the reaction warmed to room temperature. A solution of the dibromothiophene (1 eq., 20.7 mmol, 5.0 g), 25 ml of THF, and tetrakis(triphenylphosphine) palladium(0) (5%, 1 mmol.) was added via syringe to the zinc-thioanisole solution. The reaction was stirred at reflux overnight. The reaction mixture was concentrated, dissolved in ethyl acetate, washed with sat. ammonium chloride, followed by sat. brine, dried (MgSO₄), and reconcentrated to give 2.0 g of crude material. Purification by silica gel chromatography (Waters LC 2000) with hexane gave 1.0 g (20%) of pure monosubstituted thiophene material. NMR (CDCl₃): δ 2.52(s, 3H), 7.22(d, J=6 Hz, 1H), 7.30(d, J=8 Hz, 2H).

30 Step 2: Preparation of 4-(4 methylthiophenyl)-3-(4-fluorophenyl)thiophene.

The monosubstituted thiophene (1.0 g, 3.5 mmol) from Step 1 was dissolved in 15 ml of tetrahydrofuran and cooled to -78°C prior to addition of n-butyllithium (2.5 M, 1.1 eq, 3.9 mmol., 1.5 ml).

- 5 The reaction was stirred for 30 minutes at -78°C, zinc bromide in tetrahydrofuran (1.0 M, 1.2 eq, 4.2 mmol.) was added, and the solution was allowed to warm to 23°C. A mixture of 2-fluoro-5-bromo-pyridine (3 eq, 10.5 mmol, 1.85 g), nickel (+2) (diphenylpalladium) chloride (0.5 eq, 100 mg) and tetrahydrofuran (20 ml) was added and the reaction was stirred at reflux overnight. The solution was concentrated in vacuo. The residue was dissolved in ethyl acetate and washed with water, dried (MgSO_4) and reconcentrated.
- 10 15 Purification by silica gel chromatography (Waters, LC-2000) with hexane gave 330 mg (33%) of the desired 4-(4 methylthiophenyl)-3-(4-fluorophenyl)thiophene as an oil: NMR (CDCl_3): δ 2.49(s, 3H), 6.81(dd, $J=2$ Hz, $J=8$ Hz, 1H), 7.08(d, $J=8$ Hz, 2H), 7.16(d, $J=8$ Hz, 2H), 7.35(dd, $J=2$ Hz, $J=8$ Hz, 2H), 7.49(td, $J=2$ Hz, $J=6$ Hz, 1H), 8.14(d, $J=1$ Hz, 1H).

25 Step 3: Preparation of 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)thiophene.

The 4-(4 methylthiophenyl)-3-(4-fluorophenyl) thiophene (330 mg, 1.1 mmol.) FROM STEP 2 was dissolved in 9.0 ml of dichloromethane, to which 30 meta-chloroperbenzoic acid (MCPBA) (2 eq, 2.2 mmol) was added in one portion. The reaction was stirred for 20 minutes at 23°C and quenched with 500 mg of sodium metabisulfite in 10 ml of water. The organic layer was diluted with dichloromethane and washed repeatedly with sat. sodium bicarbonate and sat. brine. The organic layer was dried (MgSO_4) and

concentrated in vacuo. Recrystallization from ethyl acetate/hexane (1:2) gave 266 mg (73%) of 4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)thiophene: mp 190-191°C (dec); NMR(CDCl₃) δ3.09(s, 3H), 6.84-

5 6.90(m, 1H), 7.36(d, J=8 Hz, 2H), 7.42(d, J=2 Hz, 1H), 7.45-7.53(m, 2H), 7.88(d, J=7 Hz, 2H), 8.10(bs, 1H). Anal. Calc'd for C₁₆H₁₂NFO₂S₂: C, 57.59; H, 3.60; N, 4.20; F, 5.67. Found: C, 57.39; H, 3.75; N, 3.97; F, 5.50.

10

Example 15

15 3-(4-Methylsulfonylphenyl)-4-(2-methyl-4-fluorophenyl)thiophene

Step 1: Preparation of 2-methyl-4-fluorophenyl boronic acid.

20

2-Bromo-5-fluorotoluene (52.9 mmol, 10 g) in 400 ml of tetrahydrofuran was cooled to -78°C and n-butyllithium (2.5 M, 58.2 mmol) was added. The solution was stirred for 20 minutes, trimethoxy borane (3 eq, 0.16 mol) was added, and the reaction was allowed to warm to room temperature overnight. Sodium hydroxide (60 ml of 1.25 M) was added and the reaction was stirred for 30 minutes. The tetrahydrofuran was removed in vacuo. The remaining aqueous layer was diluted and extracted with diethyl ether. The aqueous layer was adjusted to pH 3 with 2N HCl and extracted with ethyl acetate, which was dried (MgSO₄) and

concentrated in vacuo to give 6.57 g (81%) of a colorless solid: MS(FAB) m/e (rel. intensity) 154(48), 136(100).

5 Step 2: Preparation of 3-(4-methylthiophenyl)-4-(2-methyl-4-fluorophenyl)thiophene.

The mono-substituted thiophene from Example 14 (1.8 mmol, 520 mg) was combined with the 2-methyl-
10 4-fluorophenyl boronic acid (2 eq, 3.6 mmol, 562 mg) in 8.0 ml of toluene, 4.3 ml of 2 M sodium carbonate, 10 ml of ethanol and tetrakis(triphenylphosphine)-palladium(0) (1.0 g) and was stirred at reflux overnight. The reaction was concentrated in vacuo and
15 the residue was partitioned between toluene and water. The toluene layer was dried (MgSO_4) and reconcentrated in vacuo. The residue was purified via silica chromatography (Waters, LC-2000) in 97% hexane/ethyl acetate to give 3-(4-methylthiophenyl)-4-(2-methyl-4-fluorophenyl)thiophene (420 mg) as a semi-solid. NMR
20 (CDCl_3) δ 1.90(s, 3H), 2.43(s, 3H), 6.8-6.9(m, 2H), 7.05(q, $J=8$ Hz, 4H), 7.12-7.18(m, 2H), 7.33(d, $J=2$ Hz, 1H).

25 Step 3: Preparation of 3-(4-methylsulfonylphenyl)-4-(2-methyl-4-fluorophenyl)thiophene.

30 3-(4-methylthiophenyl)-4-(2-methyl-4-fluorophenyl)thiophene (420 mg, 1.34 mmol) from Step 2 was dissolved in 20 ml of dichloromethane and treated with meta-chloroperbenzoic acid (2 eq, 2.68 mmol). The reaction was stirred at room temperature for 20 minutes, diluted with dichloromethane, quenched with
35 sodium metabisulfite (550 mg in 10 ml water) washed

with sat. sodium bicarbonate, dried (MgSO_4) and concentrated in vacuo. The residue was crystallized from ethyl acetate/hexane (1:2) to give 3-(4-methylsulfonylphenyl)-4-(2-methyl-4-

5 fluorophenyl)thiophene (200 mg): mp 158-160°C; NMR (CDCl_3): δ 1.8(s, 3H), 3.1(s, 3H), 6.82-6.92(m, 2H), 7.12-7.18(m, 1H), 7.22(d, $J=2$ Hz, 1H), 7.30(d, $J=8$ Hz, 2H), 7.49(d, $J=2$ Hz, 1H), 7.77(d, $J=8$ Hz, 2H); MS(FAB) m/e (rel. intensity) 353(m+Li), (70), 347(40),

10 220(35). Anal. Calc'd for $\text{C}_{18}\text{H}_{15}\text{FO}_2\text{S}_2$: C, 62.45, H, 4.34, F, 5.46. Found: C, 62.14, H, 4.47, F, 5.20.

BIOLOGICAL EVALUATION

15

Rat Carrageenan Foot Pad Edema Test

The carrageenan foot edema test was performed with materials, reagents and procedures 20 essentially as described by Winter, et al., (Proc. Soc. Exp. Biol. Med., 111, 544 (1962)). Male Sprague-Dawley rats were selected in each group so that the average body weight was as close as possible. Rats were fasted with free access to water for over sixteen 25 hours prior to the test. The rats were dosed orally (1 mL) with compounds suspended in vehicle containing 0.5% methylcellulose and .025% surfactant, or with vehicle alone. One hour later a subplantar injection of 0.1 mL of 1% solution of carrageenan/sterile 0.9% 30 saline was administered and the volume of the injected foot was measured with a displacement plethysmometer connected to a pressure transducer with a digital indicator. Three hours after the injection of the carrageenan, the volume of the foot was again 35 measured. The average foot swelling in a group of drug-treated animals was compared with that of a group

of placebo-treated animals and the percentage inhibition of edema was determined (Otterness and Bliven, Laboratory Models for Testing NSAIDs, in Non-steroidal Anti-Inflammatory Drugs, (J. Lombardino, ed. 5 1985)). Results are shown in Table I.

Rat Carrageenan-induced Analgesia Test

The analgesia test using rat carrageenan was 10 performed with materials, reagents and procedures essentially as described by Hargreaves, et al., (Pain, 32, 77 (1988)). Male Sprague-Dawley rats were treated as previously described for the Carrageenan Foot Pad Edema test. Three hours after the injection of the 15 carrageenan, the rats were placed in a special plexiglass container with a transparent floor having a high intensity lamp as a radiant heat source, positionable under the floor. After an initial twenty minute period, thermal stimulation was begun on either 20 the injected foot or on the contralateral uninjected foot. A photoelectric cell turned off the lamp and timer when light was interrupted by paw withdrawal. The time until the rat withdraws its foot was then measured. The withdrawal latency in seconds was 25 determined for the control and drug-treated groups, and percent inhibition of the hyperalgesic foot withdrawal determined. Results are shown in Table I.

TABLE I.

	RAT PAW EDEMA	ANALGESIA
	% Inhibition @ 10mg/kg body weight	% Inhibition @ 20mg/kg body weight
5		

Examples

	1	8
	2	0*
10	4	22
	14	30
	15	20

*@3mpk

15 Evaluation of COX-I and COX-II activity in vitroa. Preparation of recombinant COX baculoviruses

A 2.0 kb fragment containing the coding region of either human or murine COX-I or human or murine COX-II was cloned into a BamH1 site of the baculovirus transfer vector pVL1393 to generate the baculovirus transfer vector. Recombinant baculoviruses were isolated by transfecting 4 μ g of baculovirus transfer vector DNA into SF9 cells (2X10e8) along with 200 ng of linearized baculovirus plasmid DNA by the calcium phosphate method. Recombinant viruses were purified by three rounds of plaque purification and high titer (10E7 - 10E8 pfu/ml) stocks of virus were prepared. For large scale production, SF9 insect cells were infected in 10 liter fermentors (Bioprocess group) (0.5×10^6 /ml) with the recombinant baculovirus stock such that the multiplicity of infection was 0.1. After 72 hours the cells were centrifuged and the cell pellet homogenized in Tris/Sucrose (50 mM: 25%, pH 8.0) containing 1% CHAPS. The homogenate was

centrifuged at 10,000xG for 30 minutes, and the resultant supernatant was stored at -80°C before being assayed for COX activity.

5 b. Assay for COX I and COX II activity:

COX activity was assayed as PGE₂ formed/ μ g protein/time using an ELISA to detect the prostaglandin released. CHAPS-solubilized insect cell 10 membranes containing the appropriate COX enzyme were incubated in a potassium phosphate buffer (50 mM, pH 8.0) containing epinephrine, phenol, and heme with the addition of arachidonic acid (10 μ M). Compounds were pre-incubated with the enzyme for 10-20 minutes prior 15 to the addition of arachidonic acid. Any reaction between the arachidonic acid and the enzyme was stopped after ten minutes at 37°C/room temperature by transferring 40 μ l of reaction mix into 160 μ l ELISA buffer and 25 μ M indomethacin. The PGE₂ formed was 20 measured by standard ELISA technology (Cayman Chemical). Results are shown in Table II.

TABLE II.

		Murine COX I <u>ID₅₀ μM</u>	Murine COX II <u>ID₅₀ μM</u>
Examples			
	1	>100*	<.1
	2	3.5	<.1
30	3	100	1.5
	4	.3	.8
	5	>3	<.1
	6	<.3	<.1

TABLE II. (cont.)

	Murine COX I <u>ID₅₀ μM</u>	Murine COX II <u>ID₅₀ μM</u>
5		
	Examples	
7	<.1	<.1
8	>100	5.5
10	9 >100	4.7
	10 >10	<.1
	11 >100	<.1
	13 >100*	1.9
	14 >10	.2
15	15 8.5	<.1
	<u>*human COX I and COX II enzymes</u>	

Whole Blood Assay for Thromboxane B₂ activity:

20 Thromboxane B₂ (TXB₂) activity was assayed using an ELISA to detect the TXB₂ released. Various concentrations of compounds and standards were prepared by a set of serial dilutions (1:3) in a microtiter plate with ethanol. In U-bottom microtiter plates, 50 μl whole blood (green top heparin), 150 μl RPMI media (JRH Biosciences) and 5 μl compound solution were mixed and preincubated at 37°C for fifteen minutes prior to the addition 4 μg of the calcium ionophore A23187. Any reaction between the 25 compounds and the cells was stopped after ten minutes at 37°C by centrifuging the cells at 2000 rpm for ten minutes at 4°C and transferring 20 μl of the supernatant into 180 μl ELISA enzyme immuno assay buffer. The TXB₂ formed was measured by standard ELISA 30 technology (Cayman Chemical). To washed and pre-coated (goat anti-rabbit IgG H&L) microtiter plates, was 35

added 40 μ l enzyme immuno assay buffer, 10 μ l diluted supernatants, 50 μ l TXB₂ tracer and 50 μ l TXB₂ antisera. After covered overnight incubation at room temperature, 200 μ l Ellman reagent was added and
5 incubated. The absorbance was read at 405 nm with a 650 nm reference. Results are shown in Table III.

TABLE III.

10

Thromboxane B₂IC₅₀ μ M

15

Examples

20

	1	21
	2	.4
15	4	<.1
	7	<.1
	10	7
	11	7
	14	27
20	15	28

The antiinflammatory agents of this invention can be administered to treat inflammation by
25 any means that produces contact of the active agent with the agent's site of action in the body of a mammal, preferably human. These agents can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as
30 individual therapeutic agents or in a combination of therapeutic agents. The agents can be administered alone, but are generally administered with a pharmaceutical carrier select on the basis of the chosen route of administration, preferably oral, and
35 standard pharmaceutical practice.

The amount of therapeutically active compound that is administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the severity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely. The pharmaceutical compositions may contain active ingredient in the range of about 0.1 to 2000 mg, preferably in the range of about 0.5 to 500 mg and most preferably between about 1 and 100 mg. A daily dose of about 0.01 to 100 mg/kg body weight, preferably between about 0.1 and about 50 mg/kg body weight and most preferably from about 1 to 20 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day.

The compounds of the present invention may be administered orally, parenterally, by inhalation spray, rectally, or topically in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles as desired. Topical administration may also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.

30
35
Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or setting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a

nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic 5 sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.

Solid dosage forms for oral administration may include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active 15 compound may be admixed with at least one inert diluent such as lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, 20 gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a 25 dispersion of active compound in hydroxypropylmethyl cellulose. Such dosage forms may also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets, 30 and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings.

Liquid dosage forms for oral administration 35 may include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing

inert diluents commonly used in the art, such as water. Such compositions may also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents. Pharmaceutically acceptable carriers encompass all the foregoing and the like.

While the compounds of the invention can be administered as the sole active pharmaceutical agent, they can also be used in combination with one or more immunomodulators, antiviral agents or other antiinfective agents. For example, the compounds of the invention can be administered in combination with antihistamines or with other such agents known heretofore to be effective in combination with antiinflammatory agents. When administered as a combination, the therapeutic agents can be formulated as separate compositions which are given at the same time or different times, or the therapeutic agents can be given as a single composition.

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

What is claimed is:

1. A compound of Formula I

5

wherein Y is selected from S, O, and NR¹;
 wherein R¹ is selected from hydrido and C₁-C₆ alkyl;
 wherein X is one or more substituents selected from
 10 a) hydrido, halo, cyano, nitro, hydroxy,
 acyl, lower alkyl substituted at a substitutable
 position with a substituent selected from halo,
 hydroxyl, amino, acylamino, lower alkylamino,
 lower alkyl(acyl)amino, acyl, aryl optionally
 15 substituted with hydroxyl, a heterocyclic group,
 hydroxyimino and lower alkoxyimino, lower alkenyl
 optionally substituted at a substitutable
 position with cyano, amino optionally substituted
 at a substitutable position with a radical
 20 selected from acyl and lower alkylsulfonyl,
 sulfo, sulfamoyl optionally substituted with a
 substituent selected from the group consisting of
 lower alkyl, halo(lower)alkyl, aryl, hydroxyl,
 lower alkylamino(lower)alkyl, a heterocyclic
 25 group and (esterified carboxy)lower alkyl, N-
 containing heterocyclicsulfonyl, a heterocyclic
 group optionally substituted at a substitutable
 position with a substituent selected from the
 group consisting of hydroxyl, oxo, amino and
 30 lower alkylamino, provided that when Y is O or
 NR¹ then X cannot be hydroxyalkyl,
 b) S(O)_nR⁵, wherein R⁵ is C₁-C₆ alkyl
 optionally substituted at a substitutable
 position with fluoro, and n is 0, 1 or 2,

- c) $C(R^6)(OR^8)(R^7)$ wherein R^6 and R^7 independently are selected from CF_3 , CF_2H , $CFCl_2$, CF_2Cl , $CClFH$, CCl_2F , CF_3CF_2 and C_1-C_2 alkyl, and wherein R^8 is selected from hydrido, C_1-C_4 alkyl, (C_1-C_3 alkyl) $C(O)$ and CO_2R^9 , wherein R^9 is C_1-C_4 alkyl,
- 5 d) $C(O)ZR^4$, wherein Z is O, N, or S, and R^4 is selected from hydrido, C_1-C_6 alkyl and aryl, and when Z is N then R^4 is independently taken twice,
- 10 e) $C(R^9)(NHR^{11})(R^{10})$, wherein R^9 and R^{10} are independently selected from CF_3 , CF_2H , $CFCl_2$, CF_2Cl , $CClFH$ and CCl_2H , and R^{11} is selected from hydrido and C_1-C_3 alkyl, and
- 15 f) $Si(R^{12})(R^{13})(R^{14})$, wherein R^{12} , R^{13} and R^{14} are independently selected from hydrido, C_1-C_2 alkoxy, C_1-C_7 optionally substituted at a substitutable position with a radical selected from halo, C_2-C_7 alkenyl, phenyl and benzyl, provided that the sum of the number of carbon atoms in R^{12} , R^{13} and R^{14} must be at least 1 and not greater than 9, and further provided that no more than 2 of R^{12} , R^{13} and R^{14} are alkoxy; and wherein R^2 and R^3 are independently selected from
- 20 g) aryl or heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with a radical selected from halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, nitro, amide, amino, lower alkylamino, sulfamyl and lower alkylsulfonylamino,
- 25 h) para-phenylene-Q wherein Q is C_1-C_2 alkyl or $NR^{15}R^{16}$, wherein R^{15} and R^{16} are independently C_1-C_2 alkyl,
- 30
- 35

i) p-Q¹(m-Q²)phenylene, wherein Q¹ is selected from hydrido, fluoro, chloro, bromo, nitro, C₁-C₂ alkyl, C₁-C₂ alkoxy, di(C₁-C₂ alkyl)amino and S(O)_nR¹⁷, wherein R¹⁷ is CH₃ or C₂H₅; and wherein Q² is selected from hydrido, fluoro and chloro, and n is 0, 1 or 2; provided that both Q¹ and Q² cannot both be hydrido at the same time, and

j) phenylene-W wherein W is alkylamino;

10 provided that

R² and R³ cannot both be phenyl; further provided that when Y is S, then R² and R³ cannot both be 3,5-dihalophenyl; further provided that if X is hydrido, then R² and R³ are not both p-methoxyphenyl, p-chlorophenyl, p-methylphenyl, p-bromophenyl, or 2-naphthyl; further provided that if X is hydrido, nitro, bromo, CO₂-alkyl, benzoyl or CO₂H, then R² and R³ are not both p-methoxyphenyl; and further provided that when Y is NR¹ and R² and R³ are independently aryl optionally substituted at a substitutable position with C₁-C₄ alkyl, halo, nitro or C₁-C₄ alkoxy, then X cannot be hydrido, -CO₂H or -CO₂-alkyl of from one to four carbons; or a

25 pharmaceutically-acceptable salt thereof.

2. A compound of Claim 1 wherein R² and R³ are independently pyridyl or para-phenylene-Q, wherein Q is selected from C₁-C₂ alkyl, or NR¹⁵R¹⁶; wherein 30 R¹⁵ and R¹⁶ are independently C₁-C₂ alkyl; or a pharmaceutically-acceptable salt thereof.

3. A compound of Claim 1 wherein X is S(O)_nR⁵, wherein R⁵ is C₁-C₆ alkyl optionally 35 substituted at a substitutable position with fluoro,

and n is 0, 1 or 2; or a pharmaceutically-acceptable salt thereof.

4. A compound of Claim 1 wherein R² and R³ are independently pyridyl or p-Q¹(m-Q²)phenylene, wherein Q¹ is selected from hydrido, fluoro, chloro, bromo, NO₂, C₁-C₂ alkyl, C₁-C₂ alkoxy, di(C₁-C₂ alkyl)amino and S(O)_nR¹⁷, wherein R¹⁷ is CH₃ or C₂H₅; and wherein Q² is selected from hydrido, fluoro and chloro, and n is 0, 1 or 2; provided that both Q¹ and Q² cannot both be hydrido at the same time; or a pharmaceutically-acceptable salt thereof.

5. A compound of Claim 1 wherein X is C(R⁶)(OR⁸)(R⁷) wherein R⁶ and R⁷ independently are selected from CF₃, CF₂H, CFCl₂, CF₂Cl, CClFH, CCl₂F, CF₃CF₂ and C₁-C₂ alkyl; wherein R⁸ is selected from hydrido, C₁-C₄ alkyl, (C₁-C₃ alkyl)C(O) and CO₂R⁹; and wherein R⁹ is C₁-C₄ alkyl; or a pharmaceutically-acceptable salt thereof.

6. A compound of Claim 1 wherein X is C(R⁹)(NHR¹¹)(R¹⁰), wherein R⁹ and R¹⁰ are independently selected from CF₃, CF₂H, CFCl₂, CF₂Cl, CClFH and CCl₂H, and R¹¹ is selected from hydrido and C₁-C₃ alkyl; or a pharmaceutically-acceptable salt thereof.

7. A compound of Claim 1 wherein R² and R³ are independently selected from aryl and heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, nitro, amino, lower alkylamino, sulfamyl and lower

alkylsulfonylamino; or a pharmaceutically-acceptable salt thereof.

8. A compound of Claim 1 wherein X is
5 Si(R¹²)(R¹³)(R¹⁴), wherein R¹², R¹³ and R¹⁴ are independently selected from hydrido, C₁-C₂ alkoxy, C₁-C₇ optionally substituted at a substitutable position with a radical selected from halo, C₂-C₇ alkenyl, phenyl and benzyl, provided that the sum of the number
10 of carbon atoms in R¹², R¹³ and R¹⁴ must be at least 1 and not greater than 9, and further provided that no more than 2 of R¹², R¹³ and R¹⁴ are alkoxy; or a pharmaceutically-acceptable salt thereof.

15 9. Compound of Claim 1 wherein X is one or two substituents selected from hydrido, halo, cyano, nitro, hydroxyl, acyl, lower alkyl substituted at a substitutable position with a substituent selected from halo, hydroxyl, amino, acylamino, lower
20 alkylamino, lower alkyl(acyl)amino, acyl, aryl optionally substituted with hydroxyl, a heterocyclic group, hydroxyimino and lower alkoxyimino, lower alkenyl optionally substituted at a substitutable position with cyano, amino optionally substituted at a
25 substitutable position with a radical selected from acyl and lower alkylsulfonyl, sulfo, sulfamoyl optionally substituted with a substituent selected from the group consisting of lower alkyl, halo(lower)alkyl, aryl, hydroxyl, lower
30 alkylamino(lower)alkyl, a heterocyclic group and (esterified carboxy)lower alkyl, N-containing heterocyclicsulfonyl, a heterocyclic group optionally substituted at a substitutable position with a substituent selected from the group consisting of
35 hydroxyl, oxo, amino and lower alkylamino; and wherein R² and R³ are independently selected from aryl and

heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with a radical selected from halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower 5 alkylsulfonyl, nitro, amino, amide, lower alkylamino, sulfamyl and lower alkylsulfonylamino; or a pharmaceutically-acceptable salt thereof.

10. Compound of Claim 9 wherein Y is S or
10 O; wherein X is one or two substituents selected from hydrido, halo, cyano, nitro, hydroxyl, carboxy, lower alkoxy carbonyl, lower alkyl substituted at a substitutable position with a substituent selected from halo, hydroxyl, amino, acylamino, lower
15 alkylamino, lower alkyl(acyl)amino, lower alkoxy carbonyl, carboxy, a heterocyclic group, hydroxyimino and lower alkoxyimino, lower alkenyl optionally substituted at a substitutable position with cyano, amino optionally substituted at a
20 substitutable position with a radical selected from acyl and lower alkylsulfonyl, sulfo, sulfamoyl optionally substituted with a substituent selected from the group consisting of lower alkyl, halo(lower)alkyl, aryl, hydroxyl, lower
25 alkylamino(lower)alkyl, a heterocyclic group and (alkoxy carbonyl)lower alkyl, N-containing heterocyclicsulfonyl, a heterocyclic group optionally substituted at a substitutable position with a substituent selected from the group consisting of hydroxyl, oxo, amino and lower alkylamino; and wherein
30 R² and R³ are independently selected from aryl and heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with a radical selected from halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, nitro, amino, amide, lower alkylamino,
35

sulfamyl and lower alkylsulfonylamino; or a pharmaceutically-acceptable salt thereof.

11. A compound of Claim 10 wherein X is one
5 or two substituents selected from hydrido, fluoro,
chloro, bromo and iodo; or a pharmaceutically-
acceptable salt thereof.

12. A compound of Formula II

10

wherein Y is selected from O, S and NR¹;
wherein R¹ is selected from hydrido and lower
15 alkyl;

wherein X¹ and X² are independently selected from
hydrido, halo, lower alkoxy carbonyl and carboxyl;
wherein R² is selected from aryl and heteroaryl;
wherein R² is optionally substituted at a
20 substitutable position with a radical selected from
halo, lower alkoxy and lower alkyl; and
wherein R³⁰ is selected from amino and lower
alkyl;
or a pharmaceutically-acceptable salt thereof.

25

13. Compound of Claim 12 wherein Y is O or
S;
wherein R² is selected from phenyl, naphthyl,
biphenyl, and pyridyl; wherein R² is optionally
30 substituted at a substitutable position with a radical
selected from halo, lower alkoxy and lower alkyl; and

wherein R³⁰ is selected from amino and C₁-C₃ alkyl;
or a pharmaceutically-acceptable salt thereof.

5 14. Compound of Claim 13 wherein X¹ and X² are independently selected from hydrido, fluoro, chloro, bromo, iodo, methoxycarbonyl, ethoxycarbonyl and carboxyl;

10 wherein R² is phenyl or pyridyl; wherein R² is optionally substituted at a substitutable position with a radical selected from fluoro, chloro, bromo, iodo, methoxy, ethoxy, methyl and ethyl; and wherein R³⁰ is amino or methyl;
or a pharmaceutically-acceptable salt thereof.

15

15. Compound of Claim 14 selected from compounds and their pharmaceutically-acceptable salts, of the group consisting of

4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)
20 thiophene;
4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2,5-dibromothiophene;
4-(4-methylsulfonylphenyl)-3-(4-fluorophenyl)-2-bromothiophene;
25 ethyl[3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)thien-2-yl]carboxylate;
2-ethoxycarbonyl-4-(4-fluorophenyl)-3-(4-methylsulfonylphenyl)thienyl-5-carboxylic acid;
4-(4-fluorophenyl)-3-(4-methylsulfonylphenyl)
30 thienyl-2,5-dicarboxylic acid;
4-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl)thiophene;
4-(4-methylsulfonylphenyl)-3-(4-methoxyphenyl)-2-bromothiophene;
35 3-(4-methylsulfonylphenyl)-4-phenyl-thiophene;
3-(4-methylsulfonylphenyl)-4-(4-methylphenyl)

thiophene;
3-(4-methylsulfonylphenyl)-4-(2-methyl-4-fluorophenyl)thiophene;
2-fluoro-5-[3-(4-methylsulfonylphenyl)
5 thien-4-yl]pyridine;
4-[4-(4-fluorophenyl)thien-3-yl]benzenesulfonamide;
4-[3-(4-fluorophenyl)-2,5-dibromo-thien-4-
y1]benzenesulfonamide;
4-[3-(4-fluorophenyl)-2-bromo-thien-4-yl]
10 benzenesulfonamide; and
3-(4-fluorophenyl)-4-(methylsulfonylphenyl)furan.

16. A pharmaceutical composition comprising
a therapeutically-effective amount of an
15 antiinflammatory compound, said compound selected from
a compound of Claim 1; or a pharmaceutically-
acceptable salt thereof.

17. A pharmaceutical composition comprising
20 a therapeutically-effective amount of an
antiinflammatory compound, said compound selected from
a compound of Claim 12; or a pharmaceutically-
acceptable salt thereof.

25 18. A pharmaceutical composition comprising
a therapeutically-effective amount of an
antiinflammatory compound, said compound selected from
a compound of Claim 13; or a pharmaceutically-
acceptable salt thereof.

30 19. A pharmaceutical composition comprising
a therapeutically-effective amount of an
antiinflammatory compound, said compound selected from
a compound of Claim 14; or a pharmaceutically-
35 acceptable salt thereof.

20. A pharmaceutical composition comprising
a therapeutically-effective amount of an
antiinflammatory compound, said compound selected from
a compound of Claim 15; or a pharmaceutically-
5 acceptable salt thereof.

21. The composition of Claim 20 wherein the
compound is 4-[4-(4-fluorophenyl)thien-3-
yl]benzenesulfonamide; or a pharmaceutically-
10 acceptable salt thereof.

22. The composition of Claim 20 wherein the
compound is 4-[3-(4-fluorophenyl)-2-bromo-thien-4-
yl]benzenesulfonamide; or a pharmaceutically-
15 acceptable salt thereof.

23. A method of treating inflammation or an
inflammation-associated disorder, said method
comprising administering to a subject having such
20 inflammation or an inflammation-associated disorder, a
therapeutically-effective amount of a compound of
Claim 1.

24. A method of treating inflammation or an
inflammation-associated disorder, said method
comprising administering to a subject having such
inflammation or an inflammation-associated disorder, a
therapeutically-effective amount of a compound of
Claim 12.
30

25. A method of treating inflammation or an
inflammation-associated disorder, said method
comprising administering to a subject having such
inflammation or an inflammation-associated disorder, a
therapeutically-effective amount of a compound of
Claim 13.
35

26. A method of treating inflammation or an
inflammation-associated disorder, said method
comprising administering to a subject having such
5 inflammation or an inflammation-associated disorder, a
therapeutically-effective amount of a compound of
Claim 14.

27. A method of treating inflammation or an
10 inflammation-associated disorder, said method
comprising administering to a subject having such
inflammation or an inflammation-associated disorder, a
therapeutically-effective amount of a compound of
Claim 15.

15 28. The method of Claim 28 wherein the
compound is 4-[4-(4-fluorophenyl)thien-3-
yl]benzenesulfonamide; or a pharmaceutically-
acceptable salt thereof.

20 29. The method of Claim 28 wherein the
compound is 4-[3-(4-fluorophenyl)-2-bromo-thien-4-
yl]benzenesulfonamide; or a pharmaceutically-
acceptable salt thereof.

25 30. The method of Claim 23 for use in
treatment of inflammation.

30 31. The method of Claim 23 for use in
treatment of an inflammation-associated disorder.

32. The method of Claim 31 wherein the
inflammation-associated disorder is arthritis.

35 33. The method of Claim 31 wherein the
inflammation-associated disorder is pain.

34. The method of Claim 31 wherein the
inflammation-associated disorder is fever.

-87-

AMENDED CLAIMS

[received by the International Bureau on 22 June 1994 (22.06.94);
original claim 1 amended; remaining claims unchanged (3 pages)]

1. A compound of Formula I

5

wherein Y is selected from S, O, and NR¹;
wherein R¹ is selected from hydrido and C₁-C₆ alkyl;
wherein X is one or more substituents selected from
10 a) hydrido, halo, cyano, nitro, hydroxy,
 acyl, lower alkyl substituted at a substitutable
 position with a substituent selected from halo,
 hydroxyl, amino, acylamino, lower alkylamino,
 lower alkyl(acyl)amino, acyl, aryl optionally
15 substituted with hydroxyl, a heterocyclic group,
 hydroxyimino and lower alkoxyimino, lower alkenyl
 optionally substituted at a substitutable
 position with cyano, amino optionally substituted
 at a substitutable position with a radical
20 selected from acyl and lower alkylsulfonyl,
 sulfo, sulfamoyl optionally substituted with a
 substituent selected from the group consisting of
 lower alkyl, halo(lower)alkyl, aryl, hydroxyl,
 lower alkylamino(lower)alkyl, a heterocyclic
25 group and (esterified carboxy)lower alkyl, N-
 containing heterocyclicsulfonyl, a heterocyclic
 group optionally substituted at a substitutable
 position with a substituent selected from the
 group consisting of hydroxyl, oxo, amino and
30 lower alkylamino, provided that when Y is O or
 NR¹ then X cannot be hydroxyalkyl,
 b) S(O)_nR⁵, wherein R⁵ is C₁-C₆ alkyl
 optionally substituted at a substitutable
 position with fluoro, and n is 0, 1 or 2,

-88-

- c) $C(R^6)(OR^8)(R^7)$ wherein R^6 and R^7 independently are selected from CF_3 , CF_2H , CFC_2Cl , CF_2Cl , $CClFH$, CCl_2F , CF_3CF_2 and C_1-C_2 alkyl, and wherein R^8 is selected from hydrido, C_1-C_4 alkyl, (C_1-C_3 alkyl) $C(O)$ and CO_2R^9 , wherein R^9 is C_1-C_4 alkyl,
- 5 d) $C(O)ZR^4$, wherein Z is O, N, or S, and R^4 is selected from hydrido, C_1-C_6 alkyl and aryl, and when Z is N then R^4 is independently taken twice,
- 10 e) $C(R^9)(NHR^{11})(R^{10})$, wherein R^9 and R^{10} are independently selected from CF_3 , CF_2H , CFC_2Cl , CF_2Cl , $CClFH$ and CCl_2H , and R^{11} is selected from hydrido and C_1-C_3 alkyl, and
- 15 f) $Si(R^{12})(R^{13})(R^{14})$, wherein R^{12} , R^{13} and R^{14} are independently selected from hydrido, C_1-C_2 alkoxy, C_1-C_7 optionally substituted at a substitutable position with a radical selected from halo, C_2-C_7 alkenyl, phenyl and benzyl, provided that the sum of the number of carbon atoms in R^{12} , R^{13} and R^{14} must be at least 1 and not greater than 9, and further provided that no more than 2 of R^{12} , R^{13} and R^{14} are alkoxy; and wherein R^2 and R^3 are independently selected from
- 20 g) aryl or heteroaryl, wherein the aryl or heteroaryl radical is optionally substituted at a substitutable position with a radical selected from halo, lower alkyl, lower alkoxy, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, nitro, amide, amino, lower alkylamino, sulfamyl and lower alkylsulfonylamino,
- 25 h) para-phenylene-Q wherein Q is C_1-C_2 alkyl or $NR^{15}R^{16}$, wherein R^{15} and R^{16} are independently C_1-C_2 alkyl,
- 30
- 35

-89-

i) p-Q¹(m-Q²)phenylene, wherein Q¹ is selected from hydrido, fluoro, chloro, bromo, nitro, C₁-C₂ alkyl, C₁-C₂ alkoxy, di(C₁-C₂ alkyl)amino and S(O)_nR¹⁷, wherein R¹⁷ is CH₃ or C₂H₅; and wherein Q² is selected from hydrido, fluoro and chloro, and n is 0, 1 or 2; provided that both Q¹ and Q² cannot both be hydrido at the same time, and

j) phenylene-W wherein W is alkylamino;

10 provided that at least one of R² and R³ is substituted with lower alkylsulfonyl or sulfamyl;

15 or a pharmaceutically-acceptable salt thereof.

2. A compound of Claim 1 wherein R² and R³ are independently pyridyl or para-phenylene-Q, wherein Q is selected from C₁-C₂ alkyl, or NR¹⁵R¹⁶, wherein 20 R¹⁵ and R¹⁶ are independently C₁-C₂ alkyl; or a pharmaceutically-acceptable salt thereof.

3. A compound of Claim 1 wherein X is S(O)_nR⁵, wherein R⁵ is C₁-C₆ alkyl optionally 25 substituted at a substitutable position with fluoro,

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 94/00466

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 5	C07D333/18	C07D333/16	C07D333/28	C07D333/38 C07D307/38
	C07D409/04	A61K31/38	A61K31/44	A61K31/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP,A,0 397 175 (MERCKLE GMBH) 14 November 1990 see page 30 - page 33; claim 1 see page 2, line 1 - page 3, line 6 ----	1,16,23
X	EP,A,0 317 845 (BAYER AG) 31 May 1989 see claim 1; examples 32,34 ----	1
X	EP,A,0 300 278 (BAYER AG) 25 January 1989 see claim 1; example 4 ----	1
X	BE,A,642 525 (CIBA LTD) 4 May 1964 RN's [2474-39-7, 2474-38-6, 2474-28-4, 2474-27-3, 2474-23-9, 2474-22-8, 2474-20-6, and 2474-19-3] see examples ----	1
	-/-	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
19 April 1994	- 2. 05. 94

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+ 31-70) 340-3016

Authorized officer

Paisdor, B

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 94/00466

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 92-378261 & JP,A,4 279 672 (MITA IND. CO. LTD.) 5 October 1992 see abstract, RN [145804-30-4] ---	1
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 76-06331 & JP,A,50 121 261 (YOSHINA S) 23 September 1975 see abstract and RN's [58849-10-8], [58849-09-5] ---	1
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 74-16203 & JP,A,48 091 061 (YOSHINA S) 27 November 1973 see abstract and RN [52101-52-7] ---	1
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 74-16200 & JP,A,48 091 058 (YOSHINA S) 27 November 1973 see abstract and RN [52101-38-9] ---	1
X	CHEMICAL ABSTRACTS, vol. 86, no. 21, 23 May 1977, Columbus, Ohio, US; abstract no. 155415p, M. GINDY ET AL. 'Phenylpropionic acids. Part XII. The conversion of phenylpropionic acids and their esters into thiophene derivatives.' page 449 ;column 1 ; see abstract & J. INDIAN CHEM. SOC. vol. 53, no. 5 , 1976 pages 490 - 495 ---	1
X	CHEMICAL ABSTRACTS, vol. 67, no. 17, 23 October 1967, Columbus, Ohio, US; abstract no. 82088e, H. HARTMANN ET AL. '2-Dialkylaminothiophene derivatives' page 7736 ;column 1 ; see abstract & DD,A,53 075 (H. HARTMANN ET AL.) 5 January 1967 ---	1
1		-/-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 94/00466

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 55, no. 4, 20 February 1961, Columbus, Ohio, US; abstract no. 3553g, O. DANN ET AL. 'Desulfurization of 3,4-diphenylthiophene compounds with Raney nickel.' see abstract & ARCH. PHARM. vol. 293 , 1960 pages 187 - 194 ----	1
X	CHEMICAL ABSTRACTS, vol. 55, no. 1, 9 January 1961, Columbus, Ohio, US; abstract no. 502g, G. TRAVERSO 'Intermediate derivatives obtained by alkaline partial hydrolysis of esters of furan-beta-carboxylic acid' see abstract & FARMACO ED. SCI. vol. 15 , 1960 , PAVIA IT pages 442 - 450 ----	1
X	CHEMISCHE BERICHTE. vol. 116 , 1983 , WEINHEIM DE pages 312 - 3124 F. VÖGTLE ET AL. 'Neue helicale Moleküle, IX. Synthesen, Enantiomerentrennungen, Circulardichroismus, Racemisierungsverfahren, Röntgenstrukturanalysen und absolute Konformation neuer, gut zugänglicher Arenicene' see example 6a ----	1
X	JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS. no. 8 , 1992 , LETCHWORTH GB pages 656 - 658 YUN YANG ET AL. '3,4-Bis(tributylstannyly)furan: a Versatile Building Block for the Regiospecific Synthesis of 3,4-Disubstituted Furans' see the whole document ----	1
X	CHEMICAL AND PHARMACEUTICAL BULLETIN. vol. 29, no. 3 , 1981 , TOKYO JP pages 635 - 645 SHENG-CHU KUO ET AL. 'Synthesis and Antimicrobial Activity of Methyl 5-Nitro-3,4-diphenylfuran-2-carboxylate and Related Compounds' see page 636; example 5 ----	1
		-/-

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 94/00466

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	TETRAHEDRON LETTERS. vol. 29, no. 28 , 1988 , OXFORD GB pages 3483 - 3486 YEE-LING LAI ET AL. '2,5b,10b,11-Tetrameth yldihydropyreno[5,6-c]furan: The first furan-isoannelated [14]annulene that sustains as strong a diamagnetic ring current as the parent system' see page 3484; examples 7,8 ---	1
X	US,A,3 743 656 (K. BROWN ET AL.) 3 July 1973 cited in the application see the whole document ---	1-34
A	EP,A,0 087 629 (E.I. DU PONT DE NEMOURS AND COMPANY) 7 September 1983 cited in the application see abstract; claims ---	1-34
A	EP,A,0 055 470 (E.I. DU PONT DE NEMOURS AND COMPANY) 7 July 1982 cited in the application see abstract; claims ---	1-34
A	US,A,4 432 974 (S.B. HABER) 21 February 1984 cited in the application see abstract; claims ---	1-34
A	US,A,4 302 461 (S.C. CHERKOF SKY) 24 November 1981 cited in the application see abstract; claims ---	1-34
A	US,A,4 427 693 (S.B. HABER) 24 January 1984 cited in the application see abstract; claims -----	1-34

INTERNATIONAL SEARCH REPORT

national application No.

PCT/US 94/00466

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 23-34 are directed to a method of treatment of (diagnostic method practised on) the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int. Application No

PCT/US 94/00466

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0397175	14-11-90	DE-A-	3915450	15-11-90
		AU-B-	637098	20-05-93
		AU-A-	5480090	15-11-90
		CA-A-	2016501	11-11-90
		DE-D-	59003753	20-01-94
		JP-A-	3005455	11-01-91
		US-A-	5260451	09-11-93
EP-A-0317845	31-05-89	DE-A-	3739882	08-06-89
		AU-A-	2590288	01-06-89
		CN-A-	1033991	19-07-89
		JP-A-	1165554	29-06-89
		US-A-	4968681	06-11-90
		US-A-	5032590	16-07-91
EP-A-0300278	25-01-89	DE-A-	3817808	02-02-89
		JP-A-	1047761	22-02-89
BE-A-642525	04-05-64	CH-A-	423473	
		FR-A-	1386579	
		GB-A-	1019117	
		NL-A-	6400338	20-07-64
		US-A-	3351468	
DD-A-53075		NONE		
US-A-3743656	03-07-73	NONE		
EP-A-0087629	07-09-83	AU-B-	553269	10-07-86
		AU-A-	1146083	08-09-83
		CA-A-	1242725	04-10-88
		JP-C-	1654086	13-04-92
		JP-B-	3014312	26-02-91
		JP-A-	58159489	21-09-83
		SU-A-	1250172	07-08-86
		US-A-	4590205	20-05-86
		US-A-	4820827	11-04-89
EP-A-0055470	07-07-82	US-A-	4381311	26-04-83
		JP-A-	57134480	19-08-82