EE 112 (MBP): HW 6 (March 6, 2017)

- 1. For a half-wave rectifier with $V_m = 15 \,\mathrm{V}$, $f = 50 \,\mathrm{Hz}$, the maximum load current is given to be $i_L = 30 \,\mathrm{mA}$. What is the minimum value of the filter capacitance which will ensure that the ripple voltage V_R is less than $1 \,\mathrm{V}$? With this capacitance value, find the average and peak diode currents, and the maximum reverse bias that appears across the diode for the following cases.
 - (a) $i_L = 30 \,\text{mA}$.
 - (b) $i_L = 10 \,\text{mA}$.

(Assume the diode to be ideal, with $V_{\rm on} = 0 \, \rm V.$)

- 2. Answer Q-1 for a full-wave rectifier with the same specs.
- 3. For the circuit shown in the figure, assume that the BJT has a large β (i.e., $\alpha \approx 1$).

- (a) What is R_E for $I_E = 1.5 \,\text{mA}$?
- (b) With $I_E = 1.5 \,\mathrm{mA}$, what value of R_C will ensure a reverse bias of 2 V across the B-C junction?
- (c) What is the maximum value of R_C for which the BJT operates in the active region (for the same value of I_E , viz., 1.5 mA)?

4. A current source circuit is shown in the figure. It provides a constant current to the load resistance R_L (i.e., I_L independent of R_L) as long as $R_L < R_L^{\text{max}}$. Assume that the Zener diode, with $V_Z = 5.1 \,\text{V}$, operates under reverse breakdown.

- (a) What is I_L for $R_L = 100 \Omega$?
- (b) What is the reverse bias across the B-C junction for $R_L = 100 \Omega$?
- (c) What is R_L^{max} ?
- 5. Consider an npn transistor operating in the active mode. Let $I_C = 1 \,\text{mA}$ for some $V_{BE} = V_{BE}^0$. We want to change V_{BE} from V_{BE}^0 to $V_{BE}^0 + \Delta V_{BE}$ to obtain $I_C = 2 \,\text{mA}$. What is ΔV_{BE} ? (Take $V_T = 26 \,\text{mV}$.)
- 6. Consider an npn transistor operating in the active mode. If V_{BE} is reduced by $40 \,\mathrm{mV}$, by what factor will the collector current decrease? (Take $V_T = 26 \,\mathrm{mV}$.)
- 7. In the circuit shown in the figure, the BJT has $\beta = 150$. For $R_E = 1 \text{ k}\Omega$, what is the input voltage V_i required to obtain $V_{CE} = 5 \text{ V}$? (Hint: Since β is large, $I_E \approx I_C$.)

8. Consider the circuit of Q-7. With $V_i = 4 \text{ V}$, what is the value of R_E required to obtain $V_{CE} = 4 \text{ V}$?