Ta	ıble	des matières
1	Mécanique	1
	Ondes	3
3	Éléctromagnétique	5
4	Optique	9
5	Quantique	11
6	Annexes	12

1 Mécanique

 Δ un axe fixe, $\mathcal{D} \in \Delta$, O, O', M des points de l'espace, et H $\in \Delta$ le un projeté orthogonal de M sur Δ

Référenciels non Galiléens	
Nom de la formule	Expression mathématique
Formule de dérivation composée	$\left(\frac{\mathrm{d}\vec{\mathrm{U}}}{\mathrm{d}t}\right)_{\mathscr{R}} = \left(\frac{\mathrm{d}\vec{\mathrm{U}}}{\mathrm{d}t}\right)_{\mathscr{R}'} + \overrightarrow{\Omega}_{\mathscr{R}'/\mathscr{R}} \wedge \overrightarrow{\mathrm{U}}$
Vitesse	$\vec{v_{\mathcal{R}}}(\mathbf{M}) = \vec{v_{\mathcal{R}'}}(\mathbf{M}) + \vec{v_e}(\mathbf{M})$
Vitesse d'entrainement	$\vec{v_e}(\mathbf{M}) = \vec{v_{\mathcal{R}}}(\mathbf{O}') + \vec{\Omega}_{\mathcal{R}'/\mathcal{R}} \wedge \vec{\mathbf{O}'}\mathbf{M}$
Vitesse ref en translation uniforme	$\vec{v_{\mathcal{R}}}(\mathbf{M}) = \vec{v_{\mathcal{R}'}}(\mathbf{M}) + \vec{v_e}(\mathbf{M}) = \vec{v_{\mathcal{R}}}(\mathbf{O}') + \vec{v_{\mathcal{R}}}(\mathbf{O}')$
Vitesse ref en rotation uniforme d'axe fixe	$\vec{v_{\mathcal{R}}}(\mathbf{M}) = \vec{v_{\mathcal{R}'}}(\mathbf{M}) + \vec{\Omega}_{\mathcal{R}'/\mathcal{R}} \wedge \vec{\mathbf{HM}}$
Accélération ref en translation uniforme	$\vec{a}_{\mathscr{R}}(M) = \vec{a}_{\mathscr{R}'}(M) + \vec{a}_{\mathscr{R}}(O')$
Accélération ref en rotation uniforme d'axe fixe	$\vec{a}_{\mathcal{R}}(\mathbf{M}) = \vec{a}_{\mathcal{R}'}(\mathbf{M}) + \vec{a}_{c}(\mathbf{M}) + \vec{a}_{e}(\mathbf{M})$
Accélération de Coriolis	$\vec{a}_e(\mathbf{M}) = 2\vec{\Omega}_{\mathcal{R}'/\mathcal{R}} \wedge \vec{v_{\mathcal{R}'}}(\mathbf{M})$
Accélération d'entrainement	$\vec{a}_c(\mathbf{M}) = -\Omega_{\mathscr{R}'/\mathscr{R}}^2 \vec{\mathbf{H}} \mathbf{M}$
Théorème de la résultante dynamique	$\vec{a_{\mathcal{R}'}} = \sum \vec{F_{ext}} - m\vec{a_e} - m\vec{a_c} = \sum \vec{F_{ext}} + \vec{F_{ie}} + \vec{F_{ic}}$
Théorème du moment cinétique	$\left(\frac{\mathrm{d}\vec{\mathcal{L}}_{\mathrm{A}/\mathscr{R}'}(\mathrm{M})}{\mathrm{d}t}\right)_{\mathscr{R}} = \sum \vec{\mathcal{M}}_{\mathrm{A}}\left(\vec{\mathrm{F}}_{ext}\right) + \vec{\mathcal{M}}_{\mathrm{A}}\left(\vec{\mathrm{F}}_{ie}\right) + \vec{\mathcal{M}}_{\mathrm{A}}\left(\vec{\mathrm{F}}_{ic}\right)$
Energie d'entrainement, cas translation rectiligne	$E_{p,ie} = ma_e x + C^{\text{ste}}$
Energie d'entrainement, cas rotation uniforme d'axe fixe	$E_{p,ie} = -\frac{1}{2}m\Omega_{\mathcal{R}'/\mathcal{R}}^2 r^2 + C^{\text{ste}}$

TABLE 1 – Formules relatives aux référentiels non inertiels.

Énergétique	
Nom de la formule	Expression mathématique
Puissance d'une force	$\mathscr{P}(ec{f}) = ec{f} \cdot ec{v}$
Travail élémentaire	$\delta \mathbf{W}(\vec{f}) = \mathcal{P}(\vec{f}) \mathbf{d}t = \vec{f} \cdot \mathbf{d}\vec{OM}$
Force conservative	$\exists \mathbf{E}_p \mid \delta \mathbf{W}(\vec{f}) = -\mathbf{d}\mathbf{E}_p$
Travail d'une force	$W(\vec{f}) = \int_{M \in \widehat{AB}} \delta W(\vec{f})$
Condition pour qu'une force dérive d'une \mathbf{E}_p	$\vec{\mathrm{rot}}\vec{\mathrm{F}} = \vec{0}$
Théorème de l'énergie cinétique	$\Delta \mathbf{E}_c = \sum_i \mathbf{W}(\vec{f}_i)$
Energie potentielle	$\Delta \mathbf{E}_c = \sum_i \mathbf{W}(\vec{f}_i)$ $\mathbf{E}_p = -\int_{\Gamma} \mathbf{d}\mathbf{E}_p$
Energie mécanique	$\mathbf{E}_m = \mathbf{E}_p + \mathbf{E}_c$
Théorème de l'énergie mécanique	$\Delta E_m = \sum_i W(\vec{F}_{i, \text{ non conservative}})$
Lien énergie potentielle / force	$\vec{\mathbf{F}} = -\vec{\nabla}\mathbf{E}_p = -\vec{\mathbf{grad}}(\mathbf{E}_p)$
Lien puissance / Energie	$\mathscr{P} = \frac{dE}{dt}$
Théorème de la puissance cinétique	$\mathcal{P} = \frac{dE}{dt}$ $\frac{dE_c}{dt} = \sum_{i} \mathcal{P}(\vec{f}_i)$

Table 2 – Formules énergiétiques.

2 Ondes

Avec u une coordonnée de l'espace (u=ax+by+cz), et $\vec{r}=\vec{e_x}+\vec{e_y}+\vec{e_z}$

Formules : Les ondes		
Nom de la formule	Expression mathématique	
D'Alembertien	$\Box \Psi = \Delta \Psi - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2}$	
Équation de D'Alembert	$\Box \Psi = 0$	
Cas 1D	$\Box \Psi = \frac{\partial^2 \Psi}{\partial u^2} - \frac{1}{v^2} \frac{\partial^2 \Psi}{\partial t^2} = 0, \text{ avec } u = \alpha x + \beta y + \gamma z$	
Surface d'onde	Points M à t fixé tel que $\Psi(M, t) = C^{ste}$	
Solutions de l'EDA 1D	$\Psi(u,t) = f(u-tv) + g(u+vt) \text{ ou } f(t-\frac{u}{v}) + g(t+\frac{u}{v})$	
Pour Ψ solution de l'EDA 1D	Avec $a(u) = \Psi(u,0)$ et $b(u) = \frac{\partial \Psi}{\partial t}(u,0) = b(u)$	
On a	$\Psi(u,t) = \frac{1}{2} \left(a(u - vt) + a(u + vt) + \frac{1}{v} \int_{u - vt}^{u + vt} b(s) ds \right)$	
Onde progressive monochromatique	$\Psi(u,t) = \Psi_0 \cos\left(\omega t \pm ku + \phi\right) = \Psi_0 \cos\left(\omega \left(t \pm \frac{u}{v}\right) + \phi\right)$	
Vecteur d'onde	$\vec{k} = k \vec{e_u}$	
Norme du vecteur d'onde	$\ \vec{k}\ = k(\omega) = \frac{\omega}{v} = \vec{r} \cdot \vec{k}$	
Longueur d'onde	$\ \vec{k}\ = k(\omega) = \frac{\omega}{\nu} = \vec{r} \cdot \vec{k}$ $\lambda = \mathbf{T}^{-1} = \frac{2\pi}{k} (\operatorname{car} k(u + \lambda) = ku + 2\pi)$	
Célérité d'une onde dans la matière	$v_{\rm mat} = \sqrt{\frac{{\rm K}a^2}{m}} = \sqrt{\frac{{\rm E}}{\rho}}$ Avec ${\rm E} = \frac{{\rm K}}{a}$ le module de Young et ρ sa masse volumique.	
Célérité d'une onde dans une corde	$v_{\rm corde} = \sqrt{\frac{{ m T}}{\mu_0}}$ Avec T la tension et μ_0 la masse linéique	
Ondes stationnaires	$\Psi(u,t) = \gamma(t)\phi(u)$	
Sur une corde de longueur L,	$y_n(x,t) = \left[a_n \cos\left(\frac{n\pi \nu}{L}t\right) + b_n \sin\left(\frac{n\pi \nu}{L}t\right) \right] \sin\left(\frac{n\pi \nu}{L}\right)$	

TABLE 3 – Formules : Les Ondes

Paquets d'ondes		
Nom de la formule	Expression mathématique	
EDA:	$\frac{\partial^2 \theta}{\partial t^2} = v^2 \frac{\partial^2 \theta}{\partial x^2} - \frac{1}{\tau} \frac{\partial \theta}{\partial t} - \omega_0^2 \theta$	
Forme recherchée:	$\underline{\theta}(x,t) = \underline{\theta}_0 e^{i(\omega t - kx)}$	
Reformulation de l'EDA :	$-\omega^2\theta = v^2k^2\theta - \frac{1}{\tau}i\omega\theta - \omega_0\theta$	
Relation de dispertion : $(\theta \neq 0)$	$ \frac{\theta(x,t) = \theta_0 e^{i(\omega t - kx)}}{e^{i(\omega t - kx)}} $ $ -\omega^2 \theta = v^2 k^2 \theta - \frac{1}{\tau} i\omega \theta - \omega_0 \theta $ $ \frac{\omega_0^2 - \omega^2}{v^2} + \frac{1}{v^2 \tau} i\omega = k^2 $	
Vecteur d'onde complexe :	k = k' - i k''	
Forme de l'onde :	$\underline{\theta}(x,t) = \underline{\theta}_0 e^{-k'' x} e^{i(\omega t - kx)}$	
Vitesse de phase :	$v_{m{arphi}} = rac{\omega}{k}$	
Distance caracteristique d'atténuation	$\frac{1}{ k''(\omega) }$	
Klein Gordon (Limite $\omega_0 \ll 1$)	$\underline{k}^2 = \frac{\omega_0^2 - \omega^2}{\nu^2}$	
Vitesse de groupe	$\frac{\underline{k}^{2}}{v_{g}} = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{1}{\underline{\mathrm{d}k}}$	
	${\rm d}\omega$	

MPI*

TABLE 4 – Paquets d'onde

3 Éléctromagnétique

Électromagnétique		
Nom de la formule	Expression mathématique	
Vecteur densité de courant volumique	$\vec{j} = q n^* \vec{v} = \rho \vec{v}$	
Lien densité de courant volumique / Charge	$dQ = \vec{j} \cdot d\vec{S}dt$	
Maxwell Gauss	$\operatorname{div}(\vec{\mathrm{E}}) = \frac{\rho}{\varepsilon_0}$	
Maxwell Thomson / Flux	$\operatorname{div}(\vec{\mathrm{B}}) = 0$	
Maxwell Faraday	$\vec{\text{rot}}(\vec{\mathbf{E}}) = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$	
Maxwell Ampère	$\vec{\text{rot}}(\vec{B}) = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$	
Ostrogradski	$\iiint_{\widetilde{K}} \operatorname{div}(\vec{F}) d\tau = \iint_{\widetilde{K}} \vec{F} \cdot d\vec{S}$	
Stokes	$\vec{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$ $\vec{rot}(\vec{B}) = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$ $\iiint_{\mathscr{V}_{\hat{S}}} div(\vec{F}) d\tau = \oiint_{\hat{S}} \vec{F} \cdot d\vec{S}$ $\iiint_{\hat{S}} rot(\vec{F}) \cdot d\vec{S} = \oint_{\hat{\Gamma}} \vec{F} \cdot d\vec{\ell}$	
Théorème de Gauss	$\iint_{\mathcal{S}} \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$ $\oint_{\mathcal{S}} \vec{B} \cdot d\vec{\ell} = \mu_0 I_{\text{enl}}$ $\frac{\partial \rho}{\partial t} + \text{div}(\vec{j}) = 0$ $\frac{dQ}{dt} + \iint_{S} \vec{J} \cdot d\vec{S} = 0$	
Théorème d'Ampère	$\oint_{\mathbf{R}} \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_0 \mathbf{I}_{\text{enl}}$	
Conservation de la charge (local)	$\frac{\partial \rho}{\partial t} + \operatorname{div}(\hat{j}) = 0$	
Conservation de la chage (Global)	$\frac{\mathrm{dQ}}{\mathrm{d}t} + \iint_{\mathbf{S}} \vec{\mathbf{j}} \cdot d\vec{\mathbf{S}} = 0$	
Lien champ éléctrique potentiels	$\vec{E} = -grad(V)$	
Lien champ éléctrique potentiels	$dV = -\vec{E} \cdot d\vec{\ell}$	
Pour une variable d'état €	$\Delta \mathcal{E} = \sum_{i} \mathcal{E}_{i, \text{\'echang\'e}} + \mathcal{E}_{\text{cr\'ee}}$	
Pour une variable d'état (infinitésimal) $\mathscr E$	$\mathrm{d}\mathscr{E} = \sum_{i}^{l} \delta\mathscr{E}_{i,\mathrm{\acute{e}chang\acute{e}}} + \delta\mathscr{E}_{\mathrm{cr\acute{e}e}}$	
Relations de passage à l'interface conducteur-vide	$\begin{split} \mathrm{d}\mathscr{E} &= \sum_{i} \delta \mathscr{E}_{i,\text{\'echang\'e}} + \delta \mathscr{E}_{\text{cr\'e}} \\ \begin{cases} \vec{\mathrm{E}}_{\mathrm{vide}}(\mathrm{M},t) &= \frac{\sigma(\mathrm{M},t)}{\varepsilon_{0}} \vec{n}_{\mathrm{conducteur} \rightarrow \mathrm{vide}} \\ \vec{\mathrm{B}}_{\mathrm{vide}} &= \mu_{0} \vec{\mathrm{J}}_{s}(\mathrm{M},t) \wedge \vec{n}_{\mathrm{conducteur} \rightarrow \mathrm{vide}} \end{cases} \end{split}$	

TABLE 5 – Formules électromagnétique.

Dipôles non rayonnants

Nom de la formule	Expression mathématique
Moment dipolaire	$\vec{p} = q \vec{ ext{NP}}$
Potentiel Dipôle	$V = \frac{\vec{p} \cdot \vec{u_r}}{4\pi\varepsilon_0 r^2} = \frac{p\cos(\theta)}{4\pi\varepsilon_0 r^2}$
Champ éléctrique, dipôle non rayonnant	$\vec{E} = \frac{p}{4\pi\varepsilon_0 r^3} (2\cos(\theta)\vec{u}_r + \sin(\theta)\vec{u}_r)$
Champ éléctrique dipôle non rayonnant, Forme intrinseque	$\vec{E} = \frac{\vec{p}}{4\pi\varepsilon_0 r^3} (2\cos(\theta)\vec{u}_r + \sin(\theta)\vec{u}_r)$ $\vec{E} = \frac{1}{4\pi\varepsilon_0 r^5} (3(\vec{p} \cdot \vec{r})\vec{r} - r^2\vec{p})$
Moment dûe à un champ éléctrostatique sur un dipôle <i>rigide</i> non rayonnant	$\vec{\mathcal{M}}_{\mathrm{O}} = \vec{p} \wedge \vec{\mathrm{E}}_{\mathrm{ext}}$
Énergie potentielle dûe à l'action éléstrostatique d'un champ uniforme sur un dipôle <i>rigide</i> non rayonnant	$\mathscr{E}_{\mathrm{p}} = -\vec{p} \cdot \vec{\mathrm{E}}_{\mathrm{ext}}$
Force exercée par un champ electrostatique sur un dipôle non rayonnant au point O	$\vec{F}_{E_{\text{ext}} \rightarrow \text{dip}} = \left(\vec{p} \cdot \vec{\text{grad}} \right) \vec{E}_{\text{ext}}(O)$
Analogie champ éléctrique / magnétique	$\frac{1}{\varepsilon_0} \longleftrightarrow \mu_0 \text{ et } \vec{p} \longleftrightarrow \vec{M}$

TABLE 6 – Dipôles non rayonnants.

Formule d'énergétique électromagnétique

Nom de la formule	Expression mathématique
Force de Lorentz	$\vec{\mathbf{F}}_{\text{Lorentz}} = q(\vec{\mathbf{E}} + \vec{v} \wedge \vec{\mathbf{E}})$
Force de Lorentz volumique	$\vec{f}_{\mathrm{Lorentz}} = \rho \vec{\mathrm{E}} + \vec{\mathrm{J}} \wedge \vec{\mathrm{B}}$
Force de Laplace	$ec{\mathrm{F}_{\mathscr{L}}}=iec{\mathrm{L}}\wedgeec{\mathrm{B}}$
Force de Drude	$\vec{\mathrm{F}}_{\mathrm{Drude}} = -\frac{m_i}{\tau_i} \vec{v}_i$
Loi d'Ohm locale	$\vec{\mathbf{f}}_{\text{Drude}} = -\frac{m_i}{\tau_i} \vec{v}_i$ $\vec{\mathbf{j}} = \gamma \vec{\mathbf{E}}, \ \gamma = \sum_i \frac{n_i^* \tau_i q_i^2}{m_i}$
Lien puissance (Volumique) Lorentz / Drude	$p_{ m lorentz} = \vec{ exttt{j}} \cdot \vec{ exttt{E}} = -p_{ m Drude}$
Densité volumique énergétique éléctromagnétique	$e_{ m em}$ tel que $\mathscr{E}_{ m em}$ = $\iiint e_{ m em} { m d} \mathscr{V}$
Conservation de l'énergie éléctromagnétique (Globale)	$e_{ m em}$ tel que $\mathscr{E}_{ m em} = \iiint\limits_{ m M\in V} e_{ m em} { m d}\mathscr{V}$ $\dfrac{{ m d}\mathscr{E}_{ m em}}{{ m d}t} + \iint\limits_{ m S_\mathscr{V}} \vec\Pi\cdot{ m d}\vec{ m S} = -\mathscr{P}_{ m Lorentz}$
Conservation de l'énergie éléctromagnétique (Local)	$\frac{\partial e_{\text{em}}}{\partial dt} + \text{div}(\vec{\Pi}) = -\vec{p}_{\text{Lorentz}}$ $e_{\text{em}} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$ $\vec{\Pi} - \frac{\vec{E} \wedge \vec{B}}{2}$
Formule pour $e_{ m em}$	$e_{\rm em} = \frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$
Vecteur de Poynting	$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$

Table 7 – Energie éléctromagnétique

Dipôles Rayonnants	
Nom de la formule	Expression mathématique
Moment dipôlaire atome soumis à un champ éléctrique	$\vec{p} = \frac{(Ze)^2}{m\omega_0^2} E_0 \cos(\omega t) \vec{e}_x$
Approximation dipolaire	$r \gg a$
Dans l'approximation non relativiste	$a\omega \ll c$
Zone de rayonnement (Zone de champ lointaine)	$r \gg \lambda$
À l'onde exitatrice \vec{E}_{ext} est associé ω et λ tel que	$\lambda f = c \ \lambda \frac{\omega}{2\pi} = c \ \omega = \frac{2\pi c}{\lambda}$
Pour prendre en compte le temps de propagation de l'onde, on définit	$\xi = t - \frac{r}{c}$
Expression des champs éléctromagnétiques dans cette zone	$\begin{cases} \vec{E}(M,t) = \frac{\sin\theta}{4\pi\varepsilon r^3} \left(\frac{r}{c}\right)^2 p''(\xi)\vec{e}_{\theta} \\ \vec{B}(M,t) = \frac{\sin\theta}{4\pi\varepsilon_0 r^3 c} \left(\frac{r}{c}\right)^2 p''(\xi)\vec{e}_{\varphi} \end{cases}$
Puissance rayonnée	$\left\langle \vec{\Pi}(\mathbf{M},t) \right\rangle_t = \frac{p_0^2 \omega^4 \sin^2 \theta}{32\pi^2 \varepsilon_0 c^3 r^2} \vec{e}_r$
Puissance moyenne, sphère rayon r , centré sur le dipôle	$\langle \vec{\Pi}(\mathbf{M}, t) \rangle_{t} = \frac{p_{0}^{2} \omega^{4} \sin^{2} \theta}{32\pi^{2} \varepsilon_{0} c^{3} r^{2}} \vec{e}_{r}$ $\mathscr{P} = \iint_{\text{Sphère}} \langle \vec{\Pi}(\mathbf{M}, t) \rangle_{t} \cdot \vec{dS} = \frac{p_{0}^{2} \omega^{4}}{12\pi \varepsilon_{0} c^{3}}$
Régime Rayleigh (Régime basse fréquence)	$\omega^2 \ll \omega_0^2$ et donc, $p_0(\omega) = \frac{(Ze)^2 E_0}{m\omega_0^2}$
Puissance de Larmor	$\omega^2 \ll \omega_0^2 \text{ et donc, } p_0(\omega) = \frac{(Ze)^2 E_0}{m\omega_0^2}$ $\mathscr{P}_{Larmor} = \frac{q^2}{4\pi\varepsilon_0} \times \frac{2\langle p^2 \rangle}{3c^2}$

TABLE 8 – Dipôles Rayonnants

On se limite à des signaux lentements variables (En basse fréquence)

Ondes éléctromagnétiques dans les conducteurs Ohmiques

Nom de la formule	Expression mathématique
TRD appliqué au porteur mobile moyen e^- libre :	$m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = -e\vec{E} - \frac{m}{\tau}\vec{v}$
Relation "ohmique"	$\vec{\underline{J}} = \frac{\gamma_0}{1 + i\tau\omega} \vec{\underline{E}} = \frac{\frac{ne^2\tau}{m}}{1 + i\tau\omega} \vec{\underline{E}}$ $\tau\omega \ll 1, \frac{\omega\varepsilon_0}{\gamma_0} \ll 1$
Approximation basse fréquence	$\tau \omega \ll 1, \frac{\omega \varepsilon_0}{\gamma_0} \ll 1$
Ordre de grandeur de ω pour le cuivre à $100 \mathrm{K}$	$1 \times 10^{14} \text{rad/s}$
Cette approximation est vérifiée lorsque (Radiofréquences)	$\omega \ll 1 \times 10^{14} \text{rad/s}$
Radiofréquences :	$f \lesssim 1 \times 10^9 \mathrm{Hz}$
Équations de Maxwell dans l'ARQS	(MG): $\operatorname{div} \vec{E} = 0$ (MF): $\overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
	(MT): $\operatorname{div} \vec{B} = 0$ (MA): $\overrightarrow{\operatorname{rot}} \vec{B} = \mu_0 \gamma_0 \vec{E}$
Relation de dispertion (Obtenue en injectant (MF) dans (MA))	$\underline{k}^2 = -i\mu_0 \gamma_0 \omega$ (On a posé $\underline{k} = k' - ik''$)
Expression du champ éléctrique	$\vec{E}(M,t) = \vec{E}_0 e^{-\frac{u}{\delta}} \cos\left(\omega t - \frac{u}{\delta} + \Phi\right)$
Rappel : Distance caractéristique d'atténuation :	$\delta = \frac{1}{ k''(\omega) }$
	mat / freq 1kHz 1GHz
Ordres de grandeur de δ	cuivre $\delta = 2$ mm $\delta = 2$ μ m
	fonte $\delta = 2 \text{cm}$ $\delta = 20 \mu \text{m}$
Conducteur parfait :	$\vec{E}(M, t) = 0$ au sein du conducteur
Une OemPPM en incidence normale réféchie vérifie	 même amplitude même pulsation même polarisation vecteurs d'ondes de même direction mais opposés La réfléction s'accompagne d'un déphasage de π
Coefficient de réfléction en amplitude	— La réfléction s'accompagne d'un déphasage de π $\underline{\Omega} = \frac{\text{Amplitude complexe de }\underline{E}_r \hat{\mathbf{a}} \text{ l'interface}}{\text{Amplitude complexe de }\underline{E}_i \hat{\mathbf{a}} \text{ l'interface}}$ $\underline{t} = \frac{\underline{E}_r \text{ (interface)}}{\underline{E}_i \text{ (interface)}}$
Transition	$\underline{t} = \frac{\underline{E}_r(\text{Interface})}{\underline{E}_i(\text{interface})}$
Dans le modèle du conducteur parfait	$\delta = 0, \ \gamma \to +\infty, \ \underline{\Omega} = -1, \ \underline{t} = 0$
Stationairité des ondes du coté du vide	$\begin{cases} \vec{B}_{\text{vide}} = \frac{2E_0}{c} \cos(\omega t + \varphi) \cos(ku) (\vec{e_u} \wedge \vec{e_p}) \\ \vec{E}_{\text{vide}} = 2E_0 \sin(\omega t + \varphi) \sin(ku) \vec{e_p} \end{cases}$
Densité d'énergie éléctromagnétique moyenne	$\langle e_{em}(\mathbf{M}, t) \rangle_t = \varepsilon_0 \mathbf{E}_0^2$
Vecteur de Poynting moyen	$\left\langle \vec{\Pi}(\mathbf{M},t)\right angle _{t}=\vec{0}$

 ${\it TABLE}~9-Ondes~\'el\'ectromagn\'etiques~dans~les~conducteurs~Ohmiques$

Avec j l'unité complexe de partie imaginaire positive. $(j^2=-1,\Im(j)=1)$. On pose $x=\frac{\omega}{\omega_0}$

Filtrage	
Nom de la formule	Expression mathématique
Fonction de transfert complexe	$\underline{\underline{H}} = \frac{\underline{s}}{e}$
FC ¹ : Passe bas du premier ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0}{1 + ix}$
FC: Passe haut du premier ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0 J x}{1 + i x}$
FC : Passe bas du second ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0}{1 - (x)^2 + j\frac{x}{\mathbf{O}}}$
FC : Passe haut du second ordre	$\underline{\mathbf{H}} = \frac{\mathbf{H_0}(x)^2}{1 - (x)^2 + j\frac{x}{\Omega}}$
FC : Passe bande	$\underline{\mathbf{H}} = \frac{\mathbf{H}_0}{1 + j\mathbf{Q}\left(x - \frac{1}{x}\right)}$
Remarque	Pour passer d'un filtre passe haut à un filtre passe bas, il suffit de multi- plier le numérateur par le terme prédominant en x au denominateur!
Bande passante	$\Delta \omega = \frac{\omega_0}{Q} \text{ et } \Delta f = \frac{f_0}{Q}$

TABLE 10 – Filtrage d'un signal periodique en RSF

4 Optique

Optique Ondulatoire	
Nom de la formule	Expression mathématique
Longueur d'onde dans le vide (Resp. vecteur d'onde)	$\lambda_0 \text{ (resp } k_0)$
Rappel : Relation de Plank Einstein :	$\mathscr{E} = \hbar v = \hbar \omega = \frac{2\pi\hbar}{\lambda_0}$
Onde lumineuse monochromatique :	$ \psi(\mathbf{M}, t) = \Psi(\mathbf{M})e^{i(\omega t - \varphi(\mathbf{M}))} $
Retard de phase :	$\varphi(M) = \tau_{SM} + \varphi(S)$
Retard de phase (2):	$\tau_{\text{SM}} = \int_{\Gamma_{\text{SM}}} \frac{d\ell}{\nu_{\varphi}} = \int_{\Gamma_{\text{SM}}} \frac{nd\ell}{c} = \frac{1}{c} \int_{\Gamma_{\text{SM}}} nd\ell = \frac{1}{c} (\text{SM})$ $I(M) = k \cdot \langle \psi^{2}(M, t) \rangle_{\tau_{r}} = \frac{k}{\tau_{r}} \int_{t}^{t+\tau_{r}} \psi^{2}(M, u) du, \ k = c\varepsilon_{0} \text{ Note : à l'usage,}$
Intensité lumineuse :	$I(M) = k \cdot \langle \psi^2(M, t) \rangle_{\tau_r} = \frac{k}{\tau} \int_{-\tau_r}^{t+\tau_r} \psi^2(M, u) du, \ k = c\varepsilon_0 \text{ Note : à l'usage,}$
	on ne prends pas en compte le k . τ_r le temps de réponse du capteur.
Ordre de grandeur de $ au_r$:	$\tau_{r,\text{oeuil humain}} = 1 \times 10^{-1} = 0.1 \text{s} \ \tau_{r,\text{capteur CCD}} = 1 \times 10^{-6} \text{s}$
Pour une onde monochromatique :	$I(M) = \frac{\psi^2(M)}{2}$
Durée de cohérence	$I(M) = \frac{\psi^{2}(M)}{2}$ $\tau_{c} = \frac{1}{\Delta v} = \pi \tau$

 ${\it TABLE} \ 11 - Optique \ ondulatoire$

Dispositif interferenciels des trous d'Young || Dispositif interferenciels à élargissement des fronts d'onde Nom de la formule Expression mathématique Interférences à grande distance : Dans l'hyposthèse où M $\it est~ a$ $a \ll D$ et $|x|, |y| \ll D$ grande distance des points S₁ et S₂ $\delta_{1/2}(M) = n \frac{ax}{D}$ Difference de marche à grande distance dans le dispositif des trous d'Young: $\delta_{1/2}(\mathbf{M}) = n \frac{ax}{f_2'}$ Difference de marche à grande distance dans le montage de Frauhofer: Critère de brouillage par extension spatiale d'une fente source $|\Delta p| \gtrsim 1$ primaire, et critère de brouillage par extension spectrale de la source: $\theta_{\text{source}} \simeq \frac{\lambda}{\lambda}$ Perte de contraste par élargissement angulaire de la source

TABLE 12 - Dispositif interferenciels des trous d'Young

Interferomètre à division d'amplitude Dispositif interferenciels de Michelson		
Nom de la formule	Expression mathématique	
Difference de marche au point M par l'interferomètre :	$\delta_{1/2}(\mathbf{M}) = 2ne\cos(i)$	
Intensité en un point M de l'écran (Fresnel) :	$\mathscr{I}(\mathbf{M}) = \frac{\mathbf{I}_0}{2} \left(1 + \cos(\frac{2\pi}{\lambda_0} \cdot 2en\cos i) \right)$	
Rappel : Dans les conditions de gauss, DL_2 :	$\cos(i) = 1 - \frac{i^2}{2} + o(i^2)$ $\sin(i) = i + o(i^2) = \tan(i)$	
Reformulation de l'intensité en un point M de l'écran dans les conditions de gauss :	$\mathscr{I}(\mathbf{M}) = \frac{\mathbf{I}_0}{2} \left[1 + \cos \left(\frac{4\pi en}{\lambda_0} \left(1 - \frac{1}{2} \left(\frac{r}{f'} \right)^2 \right) \right) \right]$	
Rayon des anneaux :	$r = f' \sqrt{2\left(1 - \frac{p}{p(O')}\right)}$	

 ${\it TABLE~13-Dispositif~interferenciels~de~Michelson}$

5 Quantique

Introduction aux equations de la physique quantique		
Nom de la formule	Expression mathématique	
Energie du photon	$\mathscr{E}_{\mathrm{photon}} = \hbar \omega$	
Amplitude de protobabilité de présence	$\psi(\mathbf{M},t), \operatorname{Im}(\psi) \subset \mathbb{C}$	
Amplitude de protobabilité de présence	$dP(u,t) = \psi^*(u,t)\psi(u,t)du = \psi(u,t) ^2 du$ (La dernière égalité dans le cas u coordonée cartésienne)	
En cartésien 1D, on écrit la densité de probabilité de présence	$\rho(u,t) = \psi(u,t) ^2$	
La probabilité de trouver la particule dans $[a,b]$ s'écrit	$P(a \le u \le b, t) = \int_{a}^{b} \rho(u, t) du$	
Extension spatiale typique de la fonction d'onde	Δu	
Longueur d'onde de Broglie (à prononcer <i>Breuil</i>)	λ_0 ou $\lambda_{ m DB}$	
Pour u une variable aléatoire :		
Moyenne de <i>u (Esperance</i>)	$\langle u(t)\rangle_{\psi} = \int_{\mathbb{D}} u\rho(u,t)\mathrm{d}u$	
Moments de <i>u</i> (<i>Théorème de transfert</i>)	$\langle u(t) \rangle_{\psi} = \int_{\mathbb{R}} u \rho(u, t) du$ $\langle u^{n}(t) \rangle_{\psi} = \int_{\mathbb{R}} u^{n} \rho(u, t) du, \ n \in \mathbb{N}^{*}$	
Si <i>u</i> est en cartésien :	- L	
Extension spatiale typique de la fonction d'onde (<i>Écart type</i>) :	$\Delta u = \sigma(u) = \sqrt{\mathbb{V}(u)} = \sqrt{\mathbb{E}(u^2) - \mathbb{E}(u)^2} = \sqrt{\langle u^2(t) \rangle_{\psi} - \langle u(t) \rangle_{\psi}^2}$	
Condition aux limites de Born	$\int_{\mathbb{R}} \rho(u, t) \mathrm{d}u = 1$	
Équation de Schrödinger	$\int_{\mathbb{R}} \rho(u, t) du = 1$ $i\hbar \frac{\partial \psi}{\partial t} = \frac{-\hbar^2}{2m} \Delta \psi + V \psi$ $\frac{-\hbar}{2m} \delta \psi$	
Terme d'énergie cinétique de la particule	$\frac{-\hbar}{2m}\delta\psi$	
Terme lié à l'énergie potentielle	$ abla\psi$	
Vitesse de la particule (def)	$\langle v_x(t) \rangle_{\psi} = \lim_{dt \to 0} \frac{\langle x(t+dt) \rangle_{\psi} - \langle x(t) \rangle_{\psi}}{dt}$	
Vitesse de la particule	$\langle v_{x}(t) \rangle_{\psi} = \lim_{dt \to 0} \frac{\langle x(t+dt) \rangle_{\psi} - \langle x(t) \rangle_{\psi}}{dt}$ $\langle v_{x}(t) \rangle_{\psi} = \frac{\hbar}{im} \int_{\mathbb{R}} \psi^{*} \frac{\partial \psi}{\partial x} dx$	
Quantité de mouvement	$\langle p_x \rangle_{\psi} = m \langle v_x \rangle_{\psi} = \int_{\mathbb{R}^2} \psi^* \left(\frac{\hbar}{i} \right) \frac{\partial \psi}{\partial x} dx$	
Quantité de mouvement (Moment d'ordre 2)	$\langle p_x^2 \rangle_{\psi} = \int_{\mathbb{R}} \psi^* \left(\frac{\hbar}{i}\right)^2 \frac{\partial^2 \psi}{\partial x^2} dx$	
Théorène d'Ehrenfest	$\frac{\mathrm{d}\langle p_x \rangle_{\psi}}{\mathrm{d}t} = -\left\langle \frac{\partial \mathbf{V}}{\partial x} \right\rangle_{\psi}$	
Dans la limite classique $\Delta x \ll \Lambda$ (Λ l'echelle de longueur typique sur laquelle x varie, i.e. $V(x)$ peut être approché par sa tangente)	$\frac{\mathrm{d}\langle p_x \rangle_{\psi}}{\mathrm{d}t} = -\frac{\partial V}{\partial x} \left(\langle x \rangle_{\psi,t} \right) \text{ C'est le TRD!}$	
Énergie cinétique	$\langle \mathbf{E}_c \rangle_{\psi} = \int_{\mathbb{R}} \psi^* \left(\frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} \right) \mathrm{d}x$	
Dans l'état stationnaire	arphi	

Table 14 – Introduction aux equations de la physique quantique

6 Annexes

Quelques constantes		
Nom de la formule	Expression mathématique	
Constante de gravitation	$\mathcal{G} = 6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2/\mathrm{kg}^2$	
Vitesse de la lumière	$c = 3,00 \times 10^8 \text{m/s}$	
Constante de Planck	$h = 6.63 \times 10^{-34} \text{J s}$	
Charge élémentaire	$e = 1,60 \times 10^{-19}$ C	
Constante de Boltzmann	$k_{\rm B} = 1.38 \times 10^{-23} {\rm J/K}$	
Masse du proton	$m_p = 1,67 \times 10^{-27} \text{kg}$	
Masse de l'électron	$m_e = 9.11 \times 10^{-31} \text{kg}$	
Constante de permittivité du vide	$\varepsilon_0 = 8,85 \times 10^{-12} \text{F/m}$	
Constante de perméabilité du vide	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H/m}$	
Champ de claquage de l'air sec	$E_{claquage, air sec} = 10 \times 10^5 V/m$	
Masse de la Terre	$M_{Terre} = 5.97 \times 10^{24} kg$	
Rayon moyen de la Terre	$R_{Terre} = 6.37 \times 10^6 \text{m}$	
Constante de Stefan-Boltzmann	$\sigma = 5.67 \times 10^{-8} \text{W/m}^2/\text{K}^4$	
Constante d'Avogadro	$N_A = 6,022 \times 10^{23} 1/\text{mol}$	
Constante des gaz parfaits	R = 8.31J/(mol K)	
Masse du Soleil	$M_{\odot}=1.989\times10^{30}kg$	
Rayon moyen du Soleil	$R_{\odot} = 6.96 \times 10^8 \text{m}$	
K standard de la réaction d'autoprotolise de l'eau	$K_e = 10 \times 10^{-14}$	

TABLE 15 – Quelques constantes physiques