Hierarchy of languages

Regular Languages

Finite State Machines, Regular Expression

Context Free Languages

Context Free Grammar, **Push-down Automata**

Pushdown Automata (PDA)

• Informally:

- A PDA is an NFA-ε with a stack.
- Transitions are modified to accommodate stack operations.

Questions:

- What is a stack?
- How does a stack help?
- A DFA can "remember" only a finite amount of information, whereas a PDA can "remember" an infinite amount of (certain types of) information, in one memory-stack

Example:

$$\{0^n1^n \mid 0 = \leq n\}$$
 regular, but

is *not*

 $\{0^n1^n | 0 \le n \le k, \text{ for some fixed } k\}$ is regular, for any fixed k.

For **k**=3:

- In a DFA, each state remembers a finite amount of information.
- To get $\{0^n1^n \mid 0 \le n\}$ with a DFA would require an infinite number of states using the preceding technique.
- An infinite stack solves the problem for $\{0^n1^n \mid 0 \le n\}$ as follows:
 - Read all 0's and place them on a stack
 - Read all 1's and match with the corresponding 0's on the stack
- Only need two states to do this in a PDA
- Similarly for $\{0^n 1^m 0^{n+m} \mid n,m \ge 0\}$

Formal Definition of a PDA

• A <u>pushdown automaton (PDA)</u> is a seven-tuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$$

- Q A <u>finite</u> set of states
- Σ A <u>finite</u> input alphabet
- Γ A <u>finite</u> stack alphabet
- q_0 The initial/starting state, q_0 is in Q
- z_0 A starting stack symbol, is in Γ // need not always remain at the bottom of stack
- F A set of final/accepting states, which is a subset of Q
- δ A transition function, where

δ: Q x (Σ U $\{\epsilon\}$) x Γ – finite subsets of Q x Γ *

• Consider the various parts of δ :

Q x (Σ U { ϵ }) x Γ – finite subsets of Q x Γ *

- Q on the LHS means that at each step in a computation, a PDA must consider its' current state.
- Γ on the LHS means that at each step in a computation, a PDA must consider the symbol on top of its' stack.
- Σ U $\{\epsilon\}$ on the LHS means that at each step in a computation, a PDA may or may not consider the current input symbol, i.e., it may have epsilon transitions.
- "Finite subsets" on the RHS means that at each step in a computation, a PDA may have several options.
- Q on the RHS means that each option specifies a new state.
- Γ^* on the RHS means that each option specifies zero or more stack symbols that will replace the top stack symbol, but *in a specific sequence*.

• Two types of PDA transitions:

$$\delta(q, a, z) = \{(p_1, \gamma_1), (p_2, \gamma_2), \dots, (p_m, \gamma_m)\}$$

- Current state is q
- Current input symbol is a
- Symbol currently on top of the stack z
- Move to state p_i from q
- Replace z with γ_i on the stack (leftmost symbol on top)
- Move the input head to the next input symbol

Two types of PDA transitions:

$$\delta(q, \epsilon, z) = \{(p_1, \gamma_1), (p_2, \gamma_2), \dots, (p_m, \gamma_m)\}$$

- Current state is q
- Current input symbol is not considered
- Symbol currently on top of the stack z
- Move to state p_i from q
- Replace z with γ_i on the stack (leftmost symbol on top)
- No input symbol is read

• **Example:** $0^{n}1^{n}$, n>=0

$$M = (\{q_1, q_2\}, \{0, 1\}, \{L, \#\}, \delta, q_1, \#, \emptyset)$$

 δ :

- (1) $\delta(q_1, 0, \#) = \{(q_1, L\#)\}$ // stack order: L on top, then # below
- (2) $\delta(q_1, 1, \#) = \emptyset$ // illegal, string rejected, When will it happen?
 - (3) $\delta(q_1, 0, L) = \{(q_1, LL)\}$
 - (4) $\delta(q_1, 1, L) = \{(q_2, \varepsilon)\}$
 - (5) $\delta(q_2, 1, L) = \{(q_2, \epsilon)\}$
 - (6) $\delta(q_2, \varepsilon, \#) = \{(q_2, \varepsilon)\}$ //if ε read & stack hits bottom, accept
 - (7) $\delta(q_2, \varepsilon, L) = \emptyset$ // illegal, string rejected
 - (8) $\delta(q_1, \varepsilon, \#) = \{(q_2, \varepsilon)\}$ // n=0, accept
- Goal: (acceptance)
 - Read the entire input string
 - Terminate with an empty stack
- Informally, a string is accepted if there exists a computation that uses up all the input and leaves the stack empty.
- How many rules should be there in delta?

```
Language: 0^n1^n, n \ge 0
                    δ:
                    (1)
                                          \delta(q_1, 0, \#) = \{(q_1, L\#)\} // stack order: L on top, then # below
                    (2)
                                          \delta(q_1, 1, \#) = \emptyset
                                                                                     // illegal, string rejected, When will it happen?
                                          \delta(q_1, 0, L) = \{(q_1, LL)\}
                    (3)
                    (4)
                                          \delta(q_1, 1, L) = \{(q_2, \epsilon)\}
                    (5)
                                          \delta(q_1, 1, L) = \{(q_2, \epsilon)\}
                    (6)
                                          \delta(q_2, \epsilon, \#) = \{(q_2, \epsilon)\}
                                                                         //if \varepsilon read & stack hits bottom, accept
                                          \delta(q_2, \epsilon, L) = \emptyset
                                                                                               // illegal, string rejected
                    (7)
                                          \delta(q_1, \epsilon, \#) = \{(q_2, \epsilon)\} // n=0, accept
                    (8)
       0011
• (q1, 0 011, #) |-
```

• *011*

• Try 001

- **Example:** balanced parentheses,
- e.g. in-language: ((())()), or (())(), but not-in-language: ((())

```
M = (\{q_1\}, \{"(",")"\}, \{L, \#\}, \delta, q_1, \#, \emptyset)
δ:
                    \delta(q_1, (, \#) = \{(q_1, L\#)\} // stack order: L-on top-then- # lower
       (1)
                    \delta(q_1, ), \#) = \emptyset
       (2)
                                            // illegal, string rejected
                    \delta(q_1, (, L) = \{(q_1, LL)\}
       (3)
                    \delta(q_1, ), L) = \{(q_1, \varepsilon)\}
       (4)
                    \delta(q_1, \varepsilon, \#) = \{(q_1, \varepsilon)\}
       (5)
                                                  //if \varepsilon read & stack hits bottom, accept
                    \delta(q_1, \varepsilon, L) = \emptyset
       (6)
                                                              // illegal, string rejected
                                                                                   // What does it
```

mean? When will it happen?

- Goal: (acceptance)
 - Read the entire input string
 - Terminate with an empty stack
- Informally, a string is accepted if there exists a computation that uses up all the input and leaves the stack empty.
- How many rules should be in delta?

• Transition Diagram:

$$(, \# \mid L \#$$

$$\epsilon, \# \mid \epsilon \qquad \boxed{q} \qquad (, L \mid L L$$

$$), L \mid \epsilon$$

• Example Computation:

<u>Current Input</u>	Stack 1	ransition
(())	#	initial status
())	L#	(1)
- Could have applied ru	ıle (5), but	
))	LL#	(3)
it would have done no good	d	
)	L#	(4)
3	#	(4)
3	-	(5)

- Example PDA #1: For the language $\{x \mid x = wcw^r \text{ and } w \text{ in } \{0,1\}^*, \text{ but sigma} = \{0,1,c\}\}$
- *Is this a regular language?*
- *Note:* length |x| is odd

M = (
$$\{q_1, q_2\}$$
, $\{0, 1, c\}$, $\{\#, B, G\}$, δ , $q_1, \#$, \emptyset) δ :

(1)
$$\delta(q_1, 0, \#) = \{(q_1, B\#)\}\$$
 (9) $\delta(q_1, 1, \#) = \{(q_1, B\#)\}$

G#)}

(2)
$$\delta(q_1, 0, B) = \{(q_1, BB)\}\$$
 (10) $\delta(q_1, 1, B) = \{(q_1, GB)\}\$

(3)
$$\delta(q_1, 0, G) = \{(q_1, BG)\}\$$
 (11) $\delta(q_1, 1, G) = \{(q_1, GG)\}\$

(4)
$$\delta(q_1, c, \#) = \{(q_2, \#)\}$$

(5)
$$\delta(q_1, c, B) = \{(q_2, B)\}$$

(6)
$$\delta(q_1, c, G) = \{(q_2, G)\}$$

(7)
$$\delta(q_2, 0, B) = \{(q_2, \varepsilon)\}\$$
 (12)
$$\delta(q_2, 1, G) = \{(q_2, \varepsilon)\}\$$

(8)
$$\delta(q_2, \varepsilon, \#) = \{(q_2, \varepsilon)\}$$

Notes:

- Stack grows leftwards
- Only rule #8 is non-deterministic.
- Rule #8 is used to pop the final stack symbol off at the end of a computation.

• Example Computation:

<u>Applicable</u>	<u>State</u>	<u>Input</u>	<u>Stack</u>	Rule Applied	<u>Rules</u>	
<u>тършевоте</u>	q ₁ (1)	0 1c10		#		
(10)	q_1	1 c10		В#	(1)	
(6)	q_1	c 10	G	В#	(10)	
(12)	q_2	10	G	В#	(6)	14

• Example Computation:

<u>State</u>	<u>Input</u>	Stack	Rule Applied	
q_1	1 c1	#		
q_1	c 1	G#		(9)
q_2	1	G#		(6)
q_2	3	#		(12)
q_2	3	3		(8)

Questions:

- Why isn't $\delta(q_2, 0, G)$ defined?
- Why isn't $\delta(q_2, 1, B)$ defined?
- TRY: 11c1

- Example PDA #2: For the language $\{x \mid x = ww^r \text{ and } w \text{ in } \{0,1\}^*\}$
- Note: length |x| is even

$$M = (\{q_1, q_2\}, \{0, 1\}, \{\#, B, G\}, \delta, q_1, \#, \emptyset)$$

(1)
$$\delta(q_1, 0, \#) = \{(q_1, B\#)\}$$

(2)
$$\delta(q_1, 1, \#) = \{(q_1, G\#)\}$$

(3)
$$\delta(q_1, 0, B) = \{(q_1, BB), (q_2, \varepsilon)\}\$$
 (6) $\delta(q_1, 1, G) = \{(q_1, GG), GG\}$

$$(q_2, \varepsilon)$$

(4)
$$\delta(q_1, 0, G) = \{(q_1, BG)\}\$$
 (7) $\delta(q_2, 0, B) =$

$$\{(q_2, \varepsilon)\}$$

(5)
$$\delta(q_1, 1, B) = \{(q_1, GB)\}\$$
 (8) $\delta(q_2, 1, G) = \{(q_2, \epsilon)\}\$

(9)

$$\delta(q_1, \, \epsilon, \, \#) = \{(q_2, \, \#)\} \tag{10}$$

$$) \delta(q_2, \varepsilon, \#) = \{(q_2, \varepsilon)\}$$

Notes:

- Rules #3 and #6 are non-deterministic: two options each
- Rules #9 and #10 are used to pop the final stack symbol off at the end of a computation.

• Example Computation:

$$\begin{array}{lll} (1) & \delta(q_1,\,0,\,\#) = \{(q_1,\,B\#)\} \\ \{(q_1,\,GG),\,(q_2,\,\epsilon)\} \\ (2) & \delta(q_1,\,1,\,\#) = \{(q_1,\,G\#)\} \\ \{(q_2,\,\epsilon)\} \\ (3) & \delta(q_1,\,0,\,B) = \{(q_1,\,BB),\,(q_2,\,\epsilon)\} \\ (4) & \delta(q_1,\,0,\,G) = \{(q_1,\,BG)\} \\ \{(q_2,\,\epsilon)\} \\ (5) & \delta(q_1,\,1,\,B) = \{(q_1,\,GB)\} \end{array} \qquad \begin{array}{lll} (6) & \delta(q_1,\,1,\,G) = \{(q_1,\,G,\,B)\} \\ (7) & \delta(q_2,\,0,\,B) = \{(q_2,\,\epsilon)\} \\ (8) & \delta(q_2,\,1,\,G) = \{(q_2,\,\epsilon)\} \\ (9) & \delta(q_1,\,\epsilon,\,\#) = \{(q_2,\,\epsilon)\} \\ (10) & \delta(q_2,\,\epsilon,\,\#) = \{(q_2,\,\epsilon)\} \end{array}$$

<u>State</u>	<u>Input</u>	Stack	Rule Applied	<u>Rules</u>
<u>Applicable</u>				
q ₁ (1), (9)	000000	#		
q ₁ (3), both	00000 options	В#	(1)	
q_1 (3), both options	0000	BB#	(3) option #1	
q_1 (3), both options	000	BBB#	(3) option #1	
$q_2^{}$	00	BB #	(3) option \overline{a}	#2 (7)
(7) q ₂	0	В#	(7)	
(10) q ₂	3	#	(7)	17
q_2	3	3	(10)	- 1

• Negative Example Computation:

$$\begin{array}{lll} (1) & \delta(q_1,\,0,\,\#) = \{(q_1,\,B\#)\} \\ \{(q_1,\,GG),\,(q_2,\,\epsilon)\} \\ (2) & \delta(q_1,\,1,\,\#) = \{(q_1,\,G\#)\} \\ \{(q_2,\,\epsilon)\} \\ (3) & \delta(q_1,\,0,\,B) = \{(q_1,\,BB),\,(q_2,\,\epsilon)\} \\ (4) & \delta(q_1,\,0,\,G) = \{(q_1,\,BG)\} \\ (5) & \delta(q_1,\,1,\,B) = \{(q_1,\,GB)\} \end{array} \qquad \begin{array}{lll} (6) & \delta(q_1,\,1,\,G) = \{(q_1,\,G,\,B)\} \\ (7) & \delta(q_2,\,0,\,B) = \{(q_2,\,\epsilon)\} \\ (8) & \delta(q_2,\,1,\,G) = \{(q_2,\,\epsilon)\} \\ (9) & \delta(q_1,\,\epsilon,\,\#) = \{(q_2,\,\epsilon)\} \\ (10) & \delta(q_2,\,\epsilon,\,\#) = \{(q_2,\,\epsilon)\} \end{array}$$

<u>State</u>	<u>Input</u>	<u>Stack</u>	Rule Applied	
q_1	000	#		
q_1	00	В#	(1)	
q_1	0	BB#	(3) option #1	(-2
0, #) by option 2				(q2,
q ₁ -crashes, no-rule to	ε apply-	BBB#	(3) option #1	
	~PP-J		$(q2, \varepsilon, B\#)$	by
option 2			-rejects: en	d of
string but not empty	stack-		J	

• Example Computation:

$$\begin{array}{lll} (1) & \delta(q_1,\,0,\,\#) = \{(q_1,\,B\#)\} \\ \{(q_1,\,GG),\,(q_2,\,\epsilon)\} \\ (2) & \delta(q_1,\,1,\,\#) = \{(q_1,\,G\#)\} \\ \{(q_2,\,\epsilon)\} \\ (3) & \delta(q_1,\,0,\,B) = \{(q_1,\,BB),\,(q_2,\,\epsilon)\} \\ (4) & \delta(q_1,\,0,\,G) = \{(q_1,\,BG)\} \\ \{(q_2,\,\epsilon)\} \\ (5) & \delta(q_1,\,1,\,B) = \{(q_1,\,GB)\} \end{array} \qquad \begin{array}{lll} (6) & \delta(q_1,\,1,\,G) = \{(q_1,\,G,\,B)\} \\ (7) & \delta(q_2,\,0,\,B) = \{(q_2,\,\epsilon)\} \\ (8) & \delta(q_2,\,1,\,G) = \{(q_2,\,\epsilon)\} \\ (9) & \delta(q_1,\,\epsilon,\,\#) = \{(q_2,\,\epsilon)\} \\ (10) & \delta(q_2,\,\epsilon,\,\#) = \{(q_2,\,\epsilon)\} \end{array}$$

<u>State</u>	<u>Input</u>		Stack	Rule Applied	
q_1	010010		#		
q_1	10010		В#		(1)
From (1) and (9)					
q_1	0010		GB#		(5)
q_1	010		BGB#	(4)	
q_2	10		GB#		(3) option #2
q_2	0		\mathbf{B} #		(8)
q_2^-		3	#		(7)
q_2^-		3	3		(10)

• Exercises:

- 0011001100 // how many total options the machine (or you!) may need to try before rejection?
- 011110 19
- 0111

Formal Definitions for PDAs

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ be a PDA.
- **Definition:** An *instantaneous description* (ID) is a triple (q, w, γ) , where q is in Q, w is in Σ^* and γ is in Γ^* .
 - q is the current state
 - w is the unused input
 - γ is the current stack contents
- Example: (for PDA #2)

$$(q_1, 111, GBR)$$

$$(q_1, 11, GGBR)$$

$$(q_1, 111, GBR)$$

$$(q_2, 11, BR)$$

$$(q_1, 000, GR)$$

$$(q_2, 00, R)$$

- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ be a PDA.
- **Definition:** Let a be in Σ U $\{\epsilon\}$, w be in Σ^* , z be in Γ , and α and β both be in Γ^* . Then:

$$(q, aw, z\alpha) \mid --_{M} (p, w, \beta\alpha)$$

if $\delta(q, a, z)$ contains (p, β) .

• Intuitively, if I and J are instantaneous descriptions, then I |— J means that J follows from I by one transition.

• Examples: (PDA #2)

$$(q_1, 111, GBR) | - (q_1, 11, GGBR)$$

w=11, and

$$(q_1, 111, GBR) | --- (q_2, 11, BR)$$

w=11, and
BR

$$(q_1, 000, GR) \mid -- (q_2, 00, R)$$
 and α

(6) option #1, with a=1, z=G,
$$\beta$$
=GG, α = BR

(6) option #2, with a=1, z=G,
$$\beta$$
= ϵ , α =

Is *not* true, For any a, z, β , w

• Examples: (PDA #1)

$$(q_1, (())), L#) | --- (q_1, ())), LL#)$$

(3)

- **Definition:** |—* is the reflexive and transitive closure of |—.
 - I |─* I for each instantaneous description I
 - If I |— J and J |—* K then I |—* K
- Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J follows from I by zero or more transitions.

• **Definition:** Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ be a PDA. The *language accepted by empty stack*, denoted $L_F(M)$, is the set

$$\{w \mid (q_0, w, z_0) \mid \text{---} * (p, \varepsilon, \varepsilon) \text{ for some p in } Q\}$$

• **Definition:** Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ be a PDA. The *language accepted by final state*, denoted $L_F(M)$, is the set

$$\{w \mid (q_0, w, z_0) \mid \text{---}^* (p, \varepsilon, \gamma) \text{ for some p in F and } \gamma \text{ in } \Gamma^*\}$$

• **Definition:** Let $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ be a PDA. The *language accepted by empty stack and final state*, denoted L(M), is the set

$$\{w \mid (q_0, w, z_0) \mid \text{---} * (p, \varepsilon, \varepsilon) \text{ for some p in F}\}$$

- Lemma 1: Let $L = L_E(M_1)$ for some PDA M_1 . Then there exits a PDA M_2 such that $L = L_E(M_2)$.
- Lemma 2: Let $L = L_F(M_1)$ for some PDA M_1 . Then there exits a PDA M_2 such that $L = L_E(M_2)$.
- **Theorem:** Let L be a language. Then there exits a PDA M_1 such that $L = L_F(M_1)$ if and only if there exists a PDA M_2 such that $L = L_F(M_2)$.
- **Corollary:** The PDAs that accept by empty stack and the PDAs that accept by final state define the same class of languages.
- **Note:** Similar lemmas and theorems could be stated for PDAs that accept by both final state and empty stack.

Back to CFG again: PDA equivalent to CFG

• **Definition:** Let G = (V, T, P, S) be a CFL. If every production in P is of the form

$$A - a\alpha$$

Where A is in V, a is in T, and α is in V*, then G is said to be in <u>Greibach Normal Form</u> (GNF).

Only one non-terminal in front.

• Example:

$$S - aAB \mid bB$$

 $A - aA \mid a$
 $B - bB \mid c$

Language: $(aa^++b)b^+c$

- **Theorem:** Let L be a CFL. Then $L \{\epsilon\}$ is a CFL.
- **Theorem:** Let L be a CFL not containing $\{\epsilon\}$. Then there exists a GNF grammar G such that L = L(G).

- Lemma 1: Let L be a CFL. Then there exists a PDA M such that $L = L_E(M)$.
- **Proof:** Assume without loss of generality that ε is not in L. The construction can be modified to include ε later.

Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G is in GNF. Construct $M = (Q, \Sigma, \Gamma, \delta, q, z, \emptyset)$ where:

```
Q = \{q\}
\Sigma = T
\Gamma = V
z = S
\delta: \text{ for all } a \text{ in } \Sigma \text{ and } A \text{ in } \Gamma, \delta(q, a, A) \text{ contains } (q, \gamma)
\text{ if } A - \text{ ay is in } P \text{ or rather:}
\delta(q, a, A) = \{(q, \gamma) \mid A - \text{ ay is in } P \text{ and } \gamma \text{ is in } \Gamma^*\},
\text{ for all } a \text{ in } \Sigma \text{ and } A \text{ in } \Gamma
```

• For a given string x in Σ^* , M will attempt to simulate a leftmost derivation of x with G.

• Example #1: Consider the following CFG in GNF.

$$S - aS$$

$$S - a$$

G is in GNF

$$L(G) = a^+$$

Construct M as:

$$Q = \{q\}$$

$$\Sigma = T = \{a\}$$

$$\Gamma = V = \{S\}$$

$$z = S$$

$$\delta(q, a, S) = \{(q, S), (q, \varepsilon)\}\$$

$$\delta(q, \epsilon, S) = \emptyset$$

• *Is* δ *complete?*

- Example #2: Consider the following CFG in GNF.
 - (1) S \rightarrow aA
 - (2) S \rightarrow aB
 - (3) A \rightarrow aA
 - $(4) \qquad A \rightarrow aB$

more *a*'s in the start

- (5) B \rightarrow bB
- $(6) \quad B \rightarrow b$

equivalent CFG? Will it be GNF?]

G is in GNF

 $L(G) = a^+ b^+$ // This looks ok to me, one, two or

[Can you write a simpler

Construct M as:

$$Q = \{q\}$$

$$\Sigma = T = \{a, b\}$$

$$\Gamma = V = \{S, A, B\}$$

$$z = S$$

- (1) $\delta(q, a, S) = \{(q, A), (q, B)\}$
- (2) $\delta(q, a, A) = \{(q, A), (q, B)\}$

A->aB

- (3) $\delta(q, a, B) = \emptyset$
- (4) $\delta(q, b, S) = \emptyset$
- (5) $\delta(q, b, A) = \emptyset$
- (6) $\delta(q, b, B) = \{(q, B), (q, \varepsilon)\}$
- (7) $\delta(q, \varepsilon, S) = \emptyset$
- (8) $\delta(q, \varepsilon, A) = \emptyset$
- (9) $\delta(q, \varepsilon, B) = \emptyset$

From productions #1 and 2, S->aA, S->aB From productions #3 and 4, A->aA,

From productions #5 and 6, B->bB, B->b

- For a string w in L(G) the PDA M will simulate a leftmost derivation of w.
 - If w is in L(G) then (q, w, z_0) |—* $(q, \varepsilon, \varepsilon)$
 - If (q, w, z_0) |—* $(q, \varepsilon, \varepsilon)$ then w is in L(G)
- Consider generating a string using G. Since G is in GNF, each sentential form in a *leftmost* derivation has form:

non-terminals

• And each step in the derivation (i.e., each application of a production) adds a terminal and some non-terminals.

$$A_1 \rightarrow t_{i+1} \alpha$$

=> $t_1 t_2 ... t_i t_{i+1} \alpha A_1 A_2 ... A_n$

- Each transition of the PDA simulates one derivation step. Thus, the ith step of the PDAs' computation corresponds to the ith step in a corresponding leftmost derivation with the grammar.
- After the ith step of the computation of the PDA, $t_1t_2...t_{i+1}$ are the symbols that have already been read by the PDA and $\alpha A_1 A_2...A_m$ are the stack contents.

- For each leftmost derivation of a string generated by the grammar, there is an equivalent accepting computation of that string by the PDA.
- Each sentential form in the leftmost derivation corresponds to an instantaneous description in the PDA's corresponding computation.
- For example, the PDA instantaneous description corresponding to the sentential form:

$$=> t_1 t_2 ... t_i A_1 A_2 ... A_m$$

would be:

$$(q, t_{i+1}t_{i+2}...t_n, A_1A_2...A_m)$$

Example: Using the grammar from example #2:

S => aA(1) => aaA**(3)** => aaaA(3) => aaaaB (4) => aaaabB (5)

(6)

The corresponding computation of the PDA:

=> aaaabb

- String is read
- Stack is emptied
- Therefore the string is accepted by the PDA

Grammar:

- $S \rightarrow aA$
- $S \rightarrow aB$ (2)
- (3) $A \rightarrow aA$ G is in GNF
- (4) $A \rightarrow aB$ $L(G) = a^+b^+$
- $B \rightarrow bB$ (5)
- $B \rightarrow b$ (6)

(1)
$$\delta(q, a, S) = \{(q, A), (q, B)\}$$

(2)
$$\delta(q, a, A) = \frac{(q, A)}{(q, A)} + \frac{(q, A)}{(q, B)} = \frac{(q, A)}{(q, B)} + \frac{(q, A$$

(1)/1

(3)
$$\delta(q, a, B) = \emptyset$$

(2)/1

(4) $\delta(q, b, S) = \emptyset$

(2)/1

(5) $\delta(q, b, A) = \emptyset$

(6) $\delta(q, b, B) = \{(q, B), (q, \epsilon)\}$

$$(7)(6)(2x, S) = \emptyset$$

(8)
$$\delta(q, \varepsilon, A) = \emptyset$$

(9)
$$\delta(q, \varepsilon, B) = \emptyset$$

• **Another Example:** Using the PDA from example #2:

$$\begin{array}{cccc} (q, aabb, S) & |--(q, abb, A) & (1)/1 \\ & |--(q, bb, B) & (2)/2 \\ & |--(q, b, B) & (6)/1 \\ & |--(q, \epsilon, \epsilon) & (6)/2 \end{array}$$

• The corresponding derivation using the grammar:

$$S => aA$$
 (1)
=> aaB (4)
=> aabB (5)
=> aabb (6)

• **Example #3:** Consider the following CFG in GNF.

$$(1)$$
 S \rightarrow aABC

$$(2)$$
 A \rightarrow a

G is in GNF

- (3) B \rightarrow b
- (4) C \rightarrow cAB
- (5) $C \rightarrow cC$

Language? aab cc* ab

Construct M as:

$$Q = \{q\}$$

 $\Sigma = T = \{a, b, c\}$
 $\Gamma = V = \{S, A, B, C\}$
 $z = S$

(1)
$$\delta(q, a, S) = \{(q, ABC)\}$$

S->aABC (9)

 $\delta(q, c, S) = \emptyset$

(2)
$$\delta(q, a, A) = \{(q, \varepsilon)\}$$

(10)
$$\delta(q, c, A) = \emptyset$$

(3)
$$\delta(q, a, B) = \emptyset$$

(11)
$$\delta(q, c, B) =$$

(4)
$$\delta(q, a, C) = \emptyset$$

(12)
$$\delta(q, c, C) = \{(q, q) \}$$

(13)
$$\delta(q, \varepsilon, S) =$$

$$(5) \quad \delta(q, b, S) = \emptyset$$

Ø

(13)
$$o(q, \varepsilon, S)$$

$$(6) \quad \delta(q, b, A) = \emptyset$$

(14)
$$\delta(q, \varepsilon, A) = 35$$

(7)
$$\delta(q, b, B) = \{(q, \varepsilon)\}\$$

(15)
$$\delta(q, \varepsilon, B) = \emptyset$$

• Notes:

- Recall that the grammar G was required to be in GNF before the construction could be applied.
- As a result, it was assumed at the start that ε was not in the context-free language L.
- What if ε is in L? You need to add ε back.

• Suppose ε is in L:

1) First, let L' = $L - \{\epsilon\}$

Fact: If *L* is a CFL, then $L' = L - \{\epsilon\}$ is a CFL.

By an earlier theorem, there is GNF grammar G such that L' = L(G).

2) Construct a PDA M such that $L' = L_E(M)$

How do we modify M to accept ε ?

Add $\delta(q, \varepsilon, S) = \{(q, \varepsilon)\}$? *NO!!*

• Counter Example:

Consider $L = \{\epsilon, b, ab, aab, aaab, ...\} = \epsilon + a*b$ $aaab, ...\} = a*b$

• The GNF CFG for L':

P:

- (1) $S \rightarrow aS$
- $(2) S \rightarrow b$

• The PDA M Accepting L':

$$Q = \{q\}$$

$$\Sigma = T = \{a, b\}$$

$$\Gamma = V = \{S\}$$

$$z = S$$

$$\delta(q, a, S) = \{(q, S)\}$$

$$\delta(q, b, S) = \{(q, \epsilon)\}\$$

$$\delta(q, \varepsilon, S) = \emptyset$$

How to add ε to L'now?

$$\delta(q, a, S) = \{(q, S)\}$$

$$\delta(q, b, S) = \{(q, \epsilon)\}$$

$$\delta(q, \epsilon, S) = \emptyset$$

•If $\delta(q, \varepsilon, S) = \{(q, \varepsilon)\}$ is added then:

$$L(M) = \{\varepsilon, a, aa, aaa, ..., b, ab, aab, aaab, ...\}, wrong!$$

It is like, $S \rightarrow aS \mid b \mid \varepsilon$

which is wrong!

Correct grammar should be:

- (0) $S_1 \rightarrow \epsilon \mid S$, with new starting non-terminal S_1
- (1) $S \rightarrow aS$
- (2) S \rightarrow b

For PDA, add a new *Stack-bottom symbol* S_1 , with new transitions:

$$\delta(q, \varepsilon, S_1) = \{(q, \varepsilon), (q, S)\},$$
 where S was the previous stack-bottom of M

Alternatively, add a new *start* state q' with transitions:

$$\delta(q', \varepsilon, S) = \{(q', \varepsilon), (q, S)\}\$$

- Lemma 1: Let L be a CFL. Then there exists a PDA M such that $L = L_E(M)$.
- Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that $L_E(M) = L(G)$.
 - Can you prove it?
 - First step would be to transform an arbitrary PDA to a single state PDA!
- **Theorem:** Let L be a language. Then there exists a CFG G such that L = L(G) iff there exists a PDA M such that $L = L_E(M)$.
- Corollary: The PDAs define the CFLs.

Sample CFG to GNF transformation:

- $0^{n}1^{n}$, n>=1
- $S \rightarrow 0S1 \mid 01$
- GNF:
- $S \to OSS_1 \mid OS_1$
- $S_1 -> 1$
- Note: in PDA the symbol S will float on top, rather than stay at the bottom!
- Acceptance of string by removing last S_1 at stack bottom

Ignore this slide

MHow, about language, like: ((())()), nested

```
δ:
                           \delta(q_1, (, \#) = \{(q_1, L\#)\}
             (1)
             (2)
                           \delta(q_1, ), \#) = \emptyset // illegal, string rejected
                           \delta(q_1, (, L) = \{(q_1, LL)\}
             (3)
             (4)
                           \delta(q_1, ), L) = \{(q_2, \epsilon)\}
                           \delta(q_2, ), L) = \{(q_2, \varepsilon)\}
             (5)
                           \delta(q_2, (, L) = \{(q_1, LL)\} // not balanced yet, but start back anyway
             (6)
                           \delta(q_2, (, \#) = \{(q_1, L\#)\} // start afresh again
             (7)
             (8)
                           \delta(q_2, \varepsilon, \#) = \{(q_2, \varepsilon)\}
                                                             // end of string & stack hits bottom,
accept
                           \delta(q_1, \varepsilon, \#) = \{(q_1, \varepsilon)\}
              (9)
                                                            // special rule for empty string
                           \delta(q_1, \varepsilon, L) = \emptyset
                                                                     // illegal, end of string but more L in
             (10)
stack
Total number of transitions? Verify all carefully.
```

41