

Testing of Automotive Systems (Part I)

Module 6 - HV Battery and Testing

David Ludwig, Magna Steyr

HV Battery - BASICS

6. Pre-Charge Resistor

Overview HV Battery

11. Power Relay Assembly Connector (Main relay control)

HV Battery Components

Universal Setup of Battery Systems

Important Terms and Parameters I

- (Galvanic) cell: Smallest unit
- Module: Connection of cells into (geometrically standardized) modules
- Battery pack: Connection of two or more module
- Electrodes:
 - Anode: positive Electrode
 - Cathode: negative Electrode
- Location of chemical reaction; consisting of current collector foil and coated active material

Example of a cathode:

Dark grey areas: coated active material

Light grey areas: current collector foil (Aluminium)

Example of an anode:

Dark grey areas: coated active material

Red/brown areas: current collector foil (Copper)

FH JOANNEUM Mechanical Cell Designs – Housing Possibilities Electronic Engineering

Cylindric Cells

Prismatic Cells

Pouch Bag Cells

Different Cells for Different Applications

Cell Designs – Housing Possibilities

Туре	 Pro	Con
Cylindrical Cell	 ✓ High energy density ✓ Fast standard process production ✓ Possibility of integrated safety features (pressure relief valve, circuit breaker,) 	 Poor cooling behavior High volume when integrated into modules Limited cell size (Ah)
Prismatic Cell	✓ Good cooling behavior via can ✓ Low volume and weight when integrated into modules ✓ Possibility of integrated safety features (pressure relief valve,circuit breaker,)	 More expensive cell housing Bracing with endplates necessary Different stress at flat and bent areas of jelly roll
Pouch Cell	 ✓ High energy density ✓ High flexibility in design ✓ Good cooling behavior ✓ Lower cost 	 Rather complex module design Integration of safety features not possible No defined exhaust relief position

Important Terms and Parameters II

Capacity [Ah]:

Withdrawable charge of the battery

$$Q = I^*t$$

- [Attention: it is a charge not mix it up with the term capacity in the proper sense (capacitor; C=Q/U)]
- C-Rate: Rate of electric current related to the cell capacity

Examples: 1C: battery with 100 Ah \rightarrow 1 hour with 100A for full charge or discharge of the battery

C/5: Battery with 100 Ah \rightarrow 5 hours with 20A for full charge or discharge of the battery

2C: Battery with 100 Ah \rightarrow ½ h at 200A for full charge or discharge of the battery

Charge Efficiency (Coulombic Efficiency; [%]):

$$q_{Ah} = (Q_{disch}/Q_{ch})*100$$

Open Circuit Voltage (OCV) [V]:

Difference of electrical potential between two terminals of a device when they are disconnected from any circuit

Nominal Voltage [V]:

- Voltage at defined current (1C-Rate)
- e.g.: lead acid: 2V; Lithium-Ion: 3,6V; Nickel-Metallhydride: 1,2V; ...

Important Terms and Parameters III

• Energy [Wh]:

- The **specific energy** [Wh/kg] respectively the **energy density** [Wh/l] maintain the stored energy content of a battery.
- This parameter depends on the specific charge/discharge density of the active materials as well as on the redox-potentials of the electrochemical reactions.
- The stored energy is reduced by charge and discharge losses:
 - Current-heat losses at the internal resistance* (heating of the cell): $P_v = I^2 \times R_i$
 - Charge losses due to side reactions: gas generation
 - Self discharge (electrochemical accelerated by high T)

$$q_{Wh} = q_{Ah}^* (U_{disch}/U_{ch})$$

Power [W]:

- The power related to the battery weight or volume is denoted as specific power [W/kg] or power density [W/l].
- This parameter describes the maximum current carrying capacity.

Rdischarge Rdynamic

Ideal Diodes

Rcharge Cdynamic

OCVch COVdis

 $E = U^*I^*t$

P = E/t = U*I

Equivalent circuit

Internal Resistance (Impedance) [Ohm]

Modell

Important Terms and Parameters IV

→ From vehicle to battery – which battery property is important for which vehicle function?

Vehicle data	Battery data
Range (one refueling)	specific Energy (Wh/kg)
_	Energy density (Wh/I)
	Self discharge (%/month)
Refueling	Charging time (Ah/h)
Overall range of car	number of cycles till EOL
Acceleration	specific Power (W/kg)
	Power density (W/I)
Reliability	Reaction to Shock/ Vibration
Safety	influence of temperature
	OverCharge, Short circuit
	Charge after Deep discharge

Battery requirements for future automotive applications EG BEV&FCEV July 2019

Table 1. - Battery requirements for future Battery Electric Vehicle (BEV) applications

BEV - Parameter at CELL level	Unit	Condition	State of the art 2019 (approximate d average values)	Target 2030 Mass market PC low range ~400km	Target 2030 Mass Market PC high range >600km	Target 2030 Mass market Commercial HDV
Specific energy	Wh/kg	@ 1/3C charge and discharge at 25°C (charging with CC and CV step)	~250	450	450	450
Energy density	Wh/I	@ 1/3C charge and discharge at 25°C (charging with CC and CV step)	~500	1000	1000	1000
Continuous specific power - discharge	W/kg	180s, SOC100%-10%, 25°C	750	1000	1000	1000
Continuous power density - discharge	W/I	180s, SOC100%-10%, 25°C	1500	2200	2200	2200
Peak specific power PC - discharge Peak specific power CV - discharge	W/kg	10s, \$OC50%, 25°C / -25°C (PC) 60s, \$OC50%, 25°C / -25°C (HDV)	1500/500	1800 / 600	1800 / 600	1350 / - due to performance
Peak power density PC - discharge Peak power density CV - discharge	W/I	10s, \$OC50%, 25°C / -25°C 60s, \$OC50%, 25°C / -25°C	3000/1000	4000 / 1300	4000 / 1300	3000 / -
Charging rate	C (1/h)	SOC 0%-80%	3	3.5	3.5	3
Self discharge	%	SOC100%, 25°C, 30 days	1	1	1	1
Cycle lifetime WLTP for cars Cycle lifetime for truck / bus	Energy throughput MWh	25°C, DOD90% until SOH80%	~20	22 to 24	22 to 24	N/A
Hazard level	EUCAR safety levels		<=4	<=4	<=4	<=4
Cost	€ / kWh		220	70	70	70
			State of the art	Target 2030	Target 2030	Target 2030
BEV - Parameter at PACK level	Unit	Condition	2019	Mass market	Mass Market	Mass market
bev - Farameter at FACK level		Condition	(approximate	PC low range	PC high range	Commercial
			d average	~400km	>600km	HDV
Cell volume per battery pack	%		60	75	75	75
Cell weight per battery pack	%		70	80	80	80
Lifetime expectation	Years & km	DOD90%	lifetime of a car 150.000km	lifetime of a car 150.000km	lifetime of a car 150.000km	N/A
Cost	€ / kWh		*+30% of cell cost	*+20% of cell cost	*+15% of cell cost	N/A

FH JOANNEUM Electronic Engineering

PHEV - Parameter at CELL level

State of the art 2019 (approximated average values)	Target 2030 Mass Market PC PHEV e-mode ~100km
~200	350
~500	800
750 1500	1750 3850
1500/500	3500 / -
3000/1000	7700 / -
4	5
1	1
~20	15 to 24
<=4	<=4
220	100
State of the art 2019 (approximated average values)	Target 2030 Mass Market PC PHEV e-mode ~100km
60	70
70	75
lifetime of a car 150.000km	lifetime of a car 150.000km
*+30% of cell cost	*+20% of cell cost

https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf

Battery Dimensioning

- √cell technology (chemistry)
- √cell size and
- √cell design!

Pack Requirements for 3 Automotive Applications Fric Engineering

Data sheet example

	-	

3,54V*4S*28 Modules

68.9Ah*3*396.5V

	Project	Scheme
	Capacity (KWh)	86.7
	Cell type and system	811
Information	Nominal capacity (Ah), 1/3C capacity (Ah)	68.9/71
	Nominal voltage (V), 1/3C voltage (V)	3.54/3.64
	Cell size (mm)	342×11.5×102
Module	Module type	3P4S
information	Number of modules (pcs)	28
	Module size	390×152×108
	Connection method	3P112S
	System nominal voltage (V)	396.5, 1C
	System voltage range (V)	280-470.4
System	System nominal energy (kWh)	81.9, 1C
information	NEDC available energy (kWh)	79.8(92% 1/3C)
	Type of thermal management	Liquid cooling
	Battery pack weight (kg)/size (mm)	weight: 490
	Energy density (Wh/kg)	~182

Battery Management System (BMS)

Key-Performance Parameters

^{* 25°}C, 50% SoC

Key performance parameters for electric vehicle batteries (targets for 2014 to 2020)

^{** -25°}C, 50% SoC

eDrive Systems: BMW i3

Electric motor			
Туре		BMW eDrive technology:	
		Hybrid synchronous motor w	vith integrated power electronics,
		charger and generate	or mode for recuperation
Peak-Output	kW (hp)	125 (170)	125 (170)
Permanent Output	kW (hp) / min ⁻¹	75 (102) / 4800	75 (102) / 4800
Torque	Nm/ min ⁻¹	250/0	250/0
Recuperation	kW	up to 50	up to 50
High-voltage battery			
Rated voltage	V	360	353
Energy capacity (gross/net)	kWh	21,6/18,8	33,2/27,2
Storage technology		Lithium-ion	Lithium-ion
l .			

Fahrzeugdaten

Motor	Synchron-Elektromotor
Batterietyp	Lithium-Ionen
Batteriekapazität (netto/brutto)	27,2/33,2 kWh
Spitzenleistung kW (PS)	135 (184)
Nennleistung kW (PS)	75 (102)

[BMW i3s]

[BMW i3]

Source: Schoewel & Hockgeiger (BMW) @ AABC 2015 [BMW i3] Technical Specifications 07/2016 Media Information [BMW i3s] http://www.autobild.de/artikel/bmw-i3s-test-13410337.html FH JOANNEUM **Electronic Engineering**

HV Battery Safety

Thermal Runaway / Propagation

Safety of Lithium-Ion Batteries - Setscrews

Fig. 24.4 Battery system safety

Thermal Runaway

Thermal runaway is one of the failure modes in lithium-ion batteries with enormous impact on safety

Thermal runaway occurs when an exothermic (energy release) reaction goes out of control \rightarrow exothermic reactions between electrolyte, anode and cathode

Normal Conditions: Lithium-Ion Battery convert chemical energy into electrical energy with minimal heat and e.g. Unstable cathode negligible gas generation materials → generation of O2 (> 250°C) Internal failure: metallic impurities in production process Thermal Runaway • implementation of thin separators (for high energy density) Leakage Internal short circuit = · formation of metallic Li-dentrites due to aging Venting overheating **Unsufficient Cooling** Gassing Misuse/Abuse: Smoke • Fire nail penetration · mechanical crush Explosion External heating of a cell Chemical reaction causes Overcharge internal heat generation → **Sufficient Cooling Forced Aging** (local) overheating **Deep Discharge High Current Charge**

Definitions

*Thermal Runaway

"Thermal runaway" means the phenomena of uncontrollable heat generation with continuous temperature rise caused by exothermal chain reaction in the cell.

**Thermal Propagation

"Thermal propagation" means the sequential occurrence of thermal runaway within a battery system triggered by thermal runaway of a cell in that battery system.

Fig. 14. The three-level strategy of reducing the hazard caused by thermal runaway.

Thermal Events at Vehicle Level

- Development tests are usually highest strictly confidential level
- Test authorities have published a few results of vehicles already longer in the market (Leaf, i-MiEV)
- The few accidents of electric vehicles in the field lead to videos going viral in social networks, but no technical information

 Source: https://www.youtube.com/watch?v=p4Qhr_LLoJO

Figure 103 - Top left: 7:07, beginning of first runaway. Top right: 8:16, fourth cell runaway in the first module. Bottom left: 14:47, second module begins after lull. Bottom right: 22:10, several modules into event, ignition coming soon. Between runaways, the smoke cleared and resembled the top left image.

Figure 104 - Top left: 23:41, ignition has occurred. Top right: 26:44, rear flames continue.

Bottom left: 28:22, flames inside cabin. Bottom right: 30:53,

many internal flames.

Source: National Highway Traffic Safety Administration. (2019, May). Safety performance of rechargeable energy storage systems (Report No. DOT HS 812 717). Washington, DC:

Practical Implementation

Cell Test

The bigger the cell capacity is, the more gas is generated at thermal runaway

Pack test

Closed pack with valves

Initiate e.g. with heat plates at one cell

Source: Golubkov at Workshop: Safer Li-Ion Batteries by Preventing

Thermal Propagation? Petten Mar 2018

Classification of Results – Abuse/Misuse Test

Hazard Level Definition – EUCAR:

Hazard Lev	el Description Classification Criteria & Effect	
0	No effect	No effect, no loss of functionality.
	Passive	No defect, no leakage, no venting, no fire or flame, no rupture,
1 -	Protection	no explosion, no exothermic reaction or thermal runaway.
	activated	Cell reversibly damaged. Repair of protection device needed.
		No leakage, no venting, no fire or flame, no rupture,
2	Defect / Damage	no explosion, no exothermic reaction or thermal runaway.
		Cell irreversibly damaged, repair needed
	Leakage	No venting, no fire or flame, no rupture, no explosion,
3	Leakage ∆ m < 50%	Weight loss < 50% of electrolyte weight.
	∠m < 50%	(electrolyte = solvent + salt)
4	Venting	No fire or flame, no rupture, no explosion,
4	∧ m ≥ 50%	Weight loss ≥ 50% of electrolyte weight
5	Fire or Flame	No rupture, no explosion, i.e., no flying parts.
6	Rupture	No explosion, but flying parts, ejection of parts of the active mass.
7	Explosion	Explosion, i.e., disintegration of the cell.

Examples - Testing Results:

Abuse/ Missuse Test	GS Yuasa	A123 - 32113	
	LEV 50	Gen1	Gen2
	hazard level	hazard level	hazard level
Crush	4	4	4
Nail penetration	4	3	3
Heat	2	2	2
Overcharge	5	4	4
External short circuit	2	2 - 3	2 - 3
Overdischarge	2	2	2
Average	3	2,5	2,5

Regulation

UN ECE-R100

Uniform provisions concerning the <u>approval</u> of vehicles with regard to specific requirements for the electric power train

UN-R 100-02

E/ECE/324-TRANS/505/Rev.2/Add.99 Basic version In force: 23.08.1996
E/ECE/324-TRANS/505/Rev.2/Add.99 Basic version, Corr. 1 In force: 12.02.1997
E/ECE/324-TRANS/505/Rev.2/Add.99/Amend.1 Basic version, Supplement 1 In force: 21.02.2002
E/ECE/324-TRANS/505/Rev.2/Add.99/O1 series of amendments In force: 04.12.2010
E/ECE/324-TRANS/505/Rev.2/Add.99/Rev.1/Amend.1/Suppl.1 to 01 In force: 26.07.2012
E/ECE/324-TRANS/505/Rev.2/Add.99/Rev.1/Amend.2/Suppl.2 to 01 In force: 15.07.2013
E/ECE/324-TRANS/505/Rev.2/Add.99/Rev.3/Amend.1/Suppl.1 to 02 In force: 15.07.2013
E/ECE/324-TRANS/505/Rev.2/Add.99/Rev.2/Amend.1/Suppl.1 to 02 In force: 29.01.2016
E/ECE/324-TRANS/505/Rev.2/Add.99/Rev.2/Amend.1/Suppl.3 to 02 In force: 29.01.2016
E/ECE/324-TRANS/505/Rev.2/Add.99/Rev.2/Amend.1/Suppl.3 to 02 In force: 18.06.2016
Supplement 4 to the 02 series of amendments – Date of entry into force: 28.05.2019

- Battery drop tests
- Battery corrosion tests
- Battery nail penetration tests
- Immersion tests
- · Fire resistance tests
- Over-discharge tests
- Over-charge tests
- Over-temperature tests
- Short circuit tests
- Thermal propagation tests
- Thermal shock and cycling tests
- Battery mechanical crush, impact and shock tests
- Altitude tests
- Vibration tests

UN 38.3

Transport of Lithium Batteries

Manual of Tests and Criteria

Seventh revised edition

Recommendations on the

TRANSPORT OF DANGEROUS GOODS

Manual of Tests and Criteria

Gefahrzettel Nr. 9A (10 x 10 cm)

UN 3480 LITHIUM ION BATTERIES

Testreihe	Inhalt
T.1	Höhen- simulation
T.2	Thermische Prüfung
T.3	Schwingung
T.4	Schlag
T.5	Äußerer Kurzschluss
T.6	Aufprall oder Quetschtest
T.7	Überladung
T.8	Erzwungene Entladung

Littilum-ionen-		
Zellen	Batterien	
X	X	
X	X	
Х	X	
X	X	
X	X	
X		
	X	
Х		

Lithium-lonen-

Source: https://www.lithium-batterie-service.de/de/un-38.3-test-reihe

FH JOANNEUM **Electronic Engineering**

China Regulations

GB/T 31467.3

Lithium-ion traction battery pack and system for electric vehicles — Part 3: Safety requirements and test methods

GB/T 18384.3

Lithium-ion traction battery pack and system for electric vehicles -Part 3: Safety requirements and test methods

GB/T 31484

Cycle Life Requirements and Test Methods for Traction Battery of Electric Vehicle

GB/T 31485

Safety Requirements and Test Methods for Traction Battery of Electric Vehicle

GB/T 31486

Electrical Performance Requirements and Test Methods for Traction Battery of Electric Vehicle

GB/T 31498

The Post-crash Safety Requirement of Electric Vehicles

GB/T 18384.1

Electrically propelled road vehicles - Safety specifications -Part 1: On-board rechargeable energy storage system (REESS)

GB/T 18384.2

Electrically propelled road vehicles - Safety specifications -Part 2: Vehicle operational safety means and protection against failures GB/T 38031-2020

31467.3-2015 31485-2015 Replaces GB/T

Source: Wilhelmy AABE 2018

International standards and regulations e.g. China

> 80 NEV related Standards

China Regulation GB/T 31467.3

Table 2 Frequency and Acceleration

Frequency (Hz)	Acceleration (m/s2)
7_18	10
18–30	Gradually decrease from 10 to 2
30-50	2

GB/T 31467.3 (May 2015)-> Amendment 1 of June 6, 2017
This Part applies to the lithium-ion traction battery packs and systems...

7. Test of Safety

7.1	Vibration (battery pack/system) ->
7.2	Mechanical shock
7.3	Drop
7.4	Turn-over
7.5	Simulated collision ->
7.6	Crush
7.7	Temperature shock
7.8	Damp heat cycle
7.9	Seawater immersion
7.10	External bonfire
7.11	Salt mist
7.12	High altitude
7.13	Over-temperature protection
7.14	Short-circuit protection
7.15	Over-charge protection
7.16	Over-discharge protection

Figure 3 Illustration of acceleration pulse

GB 38031—2020

Electric vehicles traction battery safety requirements

Issued on: May 12, 2020 Implemented on: January 1, 2021

C.1 Purpose

An advance warning (intended for warning of thermal events of the whole vehicle) shall be sent to occupants to evacuate within 5 minutes before the occurrence of any danger within the occupant compartment resulting from thermal propagation within battery pack or system caused by thermal runway of a single cell. It shall be deemed satisfactory if the thermal propagation does not leave the occupants in danger.

HV Battery DVP EXAMPLE

B-Sample Plan HV Battery

Functional Test

Physical analysis

Component function test

Basis functions OK?

- optical inspection
- tightness
- isolation resistance
- interlock working
- withstand voltage (test equipment below)
- power delivery
- capacity
- ...

Electrical Performance: Electrical - 01

Version 1.3 LV 124 Erstelldatum 20.01.2010

LV124

Physical analysis

LV124

Long time overvoltage:

• Transient overvoltage

t

FH JOANNEUM Electronic Engineering

Electrical Performance: Electrical - 02

Transient undervoltage

Jump start

FH JOANNEUM Electronic Engineering

Electrical Performance: Electrical - 03

Load dump

• Superimposed alternating voltage

Electrical Performance: Electrical - 04

Slow decrease and increase of the supply voltage

• Slow decrease, quick increase of the supply voltage

FH JOANNEUM Electronic Engineering

Electrical Performance: Electrical - 05

Reset behavior

Short interruptions

FH JOANNEUM Electronic Engineering

Electrical Performance: Electrical - 06

Cold start

Warm start

Electrical Performance: Electrical - 07

Voltage curve with intelligent generator control

• Pin interruption

Electrical Performance: Electrical - 08

- Equalization bonding
- Dielectric strength
- HV shielding
- Etc...

Sources: Gebauer & Griller; Rosenberger Hochfrequenztechnik GmbH & Co. KG

Electrical Performance: EMC

Electrical performance Misuse EMC Lifecycle Mechanical Leakage

 Electromagnetic compability

Electrical Performance: Lifecycle

- 4 season lifecycle test
 - Spring
 - Summer
 - Fall
 - Winter

Environmental Tests: Mechanical

Physical analysis

- M-shock
 - Shocks from the road
- Vibration
 - Vibration during driving
- Mech acceleration
 - Verify safety performance

Source: https://www.sgs-cqe.de/

Environmental Tests: Thermal

- HTHH
 - High temperature High humidity
- PTCE
 - Power thermal cycling endurance
- Temp shock
 - Temperature shock
- K12
 - Thermal Shock with splash water

Environmental Tests: Leakage

- IP6x
 - Dust testing

- IPx7
 - Immersion
- IPx9k
 - High pressure
- Dust test
 - Arizona dust
- Salt spray
 - Resistance to corrosion

Environmental Tests: Component

Physical analysis

- Cooler durability
 - Pressure variation test

Source: motoi1q.com

Misuse Test - 01

Physical analysis

Mechanical integrity

Prismatic cell

- Venting test
 - Nail penetration

Cylindrical cell

Source: Journal Electrochem Soc,164(13) A3285 (2017)

Misuse Test - 02

- Fuel fire
 - According ECE-R100

- Free fall
 - Checks malfunctions caused by free fall
- Bollard test
 - Mechanical test

Short Circuit

Homologation

- UN38.3
 - Transportation

- C-Sample Test plan pretty the same like B-Sample but some Homologation tests were included
- C-Samples must be produced with serial parts on serial prodution line

C-Sample Plan HV Battery

Electrical

- SOC loss @ storage
 - Measure SOC loss is not in use
- No load SOC loss
 - Measure SOC loss @ different Temperatures

Homologation

- ECE R100
 - European market
- GBT 31467.3
 - China market
- KMVSS
 - Korean market