7.15 1) Désignons respectivement par x et y le rayon et la hauteur du cône.

Le volume du cône est donné par la formule $f(x,y) = \frac{1}{3} \pi \, x^2 \, y$.

- 2) Le théorème de Pythagore fournit la relation $20^2 = x^2 + y^2$.
- 3) On en tire que $x^2 = 400 y^2$.

Le volume du cône s'écrit ainsi $f(y) = \frac{1}{3} \, \pi \, (400 - y^2) \, y$.

Les dimensions x et y devant être positives, on a $D_f = [0; 20]$.

4) Déterminons le maximum de la fonction $f(y) = \frac{1}{3}\pi (400 - y^2) y$ sur l'intervalle $D_f = [0; 20]$.

$$f'(y) = \left(\frac{1}{3}\pi (400 - y^2)y\right)' = \frac{1}{3}\pi (400 y - y^3)' = \frac{1}{3}\pi (400 - 3y^2)$$
$$= \pi \left(\frac{400}{3} - y^2\right) = \pi \left(\frac{20\sqrt{3}}{3} + y\right) \left(\frac{20\sqrt{3}}{3} - y\right)$$

$$f(\frac{20\sqrt{3}}{3}) = \frac{1}{3}\pi \left(400 - \left(\frac{20\sqrt{3}}{3}\right)^2\right) \frac{20\sqrt{3}}{3} = \frac{16\ 000\pi\sqrt{3}}{27}$$
$$f(0) = \frac{1}{3}\pi \left(400 - 0^2\right) 0 = 0$$

$$f(20) = \frac{1}{3}\pi (400 - 20^2) 20 = 0$$

5) Le cône possède un volume maximal de $\frac{16~000\,\pi\,\sqrt{3}}{27}$ cm³ si sa hauteur mesure $y=\frac{20\,\sqrt{3}}{3}$ cm.

Son rayon vaut alors $x = \sqrt{400 - y^2} = \sqrt{400 - (\frac{20\sqrt{3}}{3})^2} = \frac{20\sqrt{6}}{3}$ cm.