

Теория вероятности и математическая статистика

Взаимосвязь величин. Параметрические и непараметрические показатели корреляции.

Корреляционный анализ

На этом уроке мы изучим:

- 1. Что такое корреляция
- 2. Коэффициент корреляции
- 3. Взаимосвязь величин
- 4. Ковариация
- 5. Ограничения корреляционного анализа

Коэффициент корреляции - это коэффициент,

показывающий, на сколько велика линейная взаимосвязь

между величинами.

Площадь	Цена
27	1.2
37	1.6
42	1.8
48	1.8
54	2.5
56	2.6
77	3
80	3.3

```
In [8]: 1 import numpy as np
In [11]: 1 | s=np.array([27,37,42,48,54,56,77,80])
Out[11]: array([27, 37, 42, 48, 54, 56, 77, 80])
In [12]: 1 p=([1.2,1.6,1.8,1.8,2.5,2.6,3,3.3])
       import matplotlib.pyplot as plt
       plt.scatter (X,y)
       plt.show()
   3.0
   2.5
   2.0
   1.5
          30
```

```
In [8]: 1 import numpy as np
In [11]:
          1 | s=np.array([27,37,42,48,54,56,77,80])
             5
Out[11]: array([27, 37, 42, 48, 54, 56, 77, 80])
In [18]:
          1 | p=([1.2,1.6,1.8,1.8,2.5,2.6,3,3.3])
Out[18]: [1.2, 1.6, 1.8, 1.8, 2.5, 2.6, 3, 3.3]
In [19]:
        1 | np.corrcoef(p,s)
Out[19]: array([[1. , 0.97318772],
                [0.97318772, 1.
```

```
In [2]: import numpy as np
In [3]: a=np.array([1,2,3,4,5])
In [4]: b=np.array([7,4,6,9,0])
In [8]: np.corrcoef(a,b)
Out[8]: array([[ 1. , -0.41602515],
               [-0.41602515, 1. ]])
In [9]: a=np.array([1,2,3,4,5])
In [10]: b=np.array([11,12,0.8,9,0.4])
In [11]: np.corrcoef(a,b)
Out[11]: array([[ 1. , -0.68080746],
               [-0.68080746, 1. ]])
In [12]: b=np.array([0.5,0.7,0.9,0.8,1])
In [14]: np.corrcoef(a,b)
Out[14]: array([[1. , 0.90419443],
               [0.90419443, 1. ]])
```

Коэффициент корреляции обозначается символами *R* или *r* и может принимать значения от -1 до 1 включительно

Если коэффициент корреляции близок к 1, то между величинами наблюдается прямая связь: увеличение одной величины сопровождается увеличением другой, а уменьшение одной величины сопровождается уменьшением другой.

Если же коэффициент корреляции близок к -1, то между величинами есть обратная корреляционная связь: увеличение одной величины сопровождается уменьшением другой и наоборот.

GeekBrains

Коэффициент корреляции, равный **0**, говорит о том, что между величинами нет **линейной** связи.

Отсутствие корреляции между двумя величинами еще не говорит о том, что между показателями нет связи.

GeekBrains

Высокая корреляция двух величин может свидетельствовать о том, что у них есть общая причина

Наличие корреляции еще не значит, что величины взаимосвязаны, но может подразумевать некую скрытую причину, 3-ю переменную

Пример: чем больше театров, тем больше больниц. Прямая корреляция. На самом деле взаимосвязи нет.

Третья скрытая переменная?

Ковариацию можно вычислить по формуле:

$$cov_{XY} = M(XY) - M(X)M(Y)$$

где **М** – математическое ожидание.

Зная ковариацию и среднее квадратичное отклонение каждого из двух признаков, можно вычислить коэффициент корреляции Пирсона:

$$r_{XY} = \frac{cov_{XY}}{\sigma_X \sigma_Y}$$

```
In [11]:
                    1 | s=np.array([27,37,42,48,54,56,77,80])
           Out[11]: array([27, 37, 42, 48, 54, 56, 77, 80])
           In [41]: 1 p=([1.2,1.6,1.8,1.8,2.5,2.6,3,3.3])
           Out[41]: [1.2, 1.6, 1.8, 1.8, 2.5, 2.6, 3, 3.3]
           In [42]: 1 | np.corrcoef(p,s)
           Out[42]: array([[1. , 0.97318772],
                           [0.97318772, 1.
                                                 11)
                    1 | np.cov(p,s,ddof=1)
           In [51]:
           Out[51]: array([[ 0.53928571, 13.21071429],
                           [ 13.21071429, 341.69642857]])
           In [52]: 1 | np.cov(p,s,ddof=0)
           Out[52]: array([[ 0.471875, 11.559375],
                           [ 11.559375, 298.984375]])
           In [53]: 1 np.std(p)
           Out[53]: 0.6869315832017042
GeekBrain
           In [54]:
                    1 | np.std(s)
           Out[54]: 17.29116465134723
```

```
1 np.cov(p,s)
```

```
array([[ 0.53928571, 13.21071429], [ 13.21071429, 341.69642857]])
```

Плюсы и минусы корреляционного анализа

Метод достаточно прост и легко поддается интерпретации, но легко сделать ошибку, посчитав один признак причиной другого.

Также данный метод учитывает только наличие линейной связи

между признаками.

r=1	r=1

GeekBrains

плюсы	минусы
Простота	Возможна ложная корреляция (есть третья влияющая переменная)
Показывает прямая или обратная связь	Учитывает только наличие линейной связи
На сколько сильна связь	Не показывает угол наклона
	Не показывает точку пересечения с осью у
	R= 0 не означает, что нет связи

```
In [52]: import numpy as np import pylab import scipy.stats as stats

stats.probplot(p, dist="norm", plot=pylab) pylab.show()
```



```
In [39]: from scipy.stats import norm
```

```
In [48]: norm.cdf(1.96)
```

Out[48]: 0.9750021048517795

```
In [51]: norm.ppf(0.97500)
```

Out[51]: 1.959963984540054

QQ -график

```
Out[35]: array([-0.43470698, 0.35635], 0.64508552, -2.02008273, 0.67927448, -0.25885112, -0.06118383, -0.74366259, -0.61095246, 0.23907968, 0.516485], -0.12540223, 2.73714067, -1.37755292, 1.22983232, 0.24660636, -0.4000994], -0.22443351, -0.45667218, -0.25163189, 0.03710948, -1.13155584, 0.3386186], -0.59224175, -0.68677237, -0.09981573, 3.18777739, 0.03082554, -0.86759793, 0.05009779])
```



```
In [1]: from scipy.stats import norm
In [48]: norm.cdf(1.96)
Out[48]: 0.9750021048517795
In [51]: norm.ppf(0.97500)
Out[51]: 1.959963984540054
In [5]: norm.ppf(0.10)
Out[5]: -1.2815515655446004
In [6]: norm.ppf(0.20)
Out[6]: -0.8416212335729142
```


Итоги

- 1. Что такое корреляция
- 2. Коэффициент корреляции
- 3. Взаимосвязь величин
- 4. Ковариация
- 5. Ограничения корреляционного анализа