לינארית 2 ־ אופרטורים צמודים

 $A^*:V \to V$ מרחב לינארי האופרטור פנימית. מכפלה מכפלה ע מרחב ע מרחב אופרטור פנימית נקרא מרחד לאופרטור לינארי $A:V \to V$ אופרטור לינארי ע מתקיים ע מתקיים ע מתקיים

$$.\langle \mathbf{A}x, y\rangle = \langle x, \mathbf{A}^*y\rangle$$

 $m{A}:V o V$ מרחב מכפלה פנימית. לכל אופרטור לינארי מרחב מכפלה פנימית. לקיים אופרטור צמוד $m{A}^*$ והוא הוא קיים אופרטור

A אם (a_{ij}) אם היא המטריצה המייצגת של האופרטור לינארי $A=(a_{ij})$ בבסיס אורטונורמלי $\mathfrak B$, אז באותו בסיס $\mathfrak B$ המטריצה $\mathfrak B$, כך ש־ $A^*=(a_{ij}^*)$, היא מטריצה המייצגת של האופרטור הצמוד A^* , (המטריצה $a_{ij}^*=\overline{a}_{ji}$ בקראת מטריצה צמודה למטריצה A^*

תרגיל 1: מצא אופרטור הצמוד $A^*:\mathbb{R}^3 o\mathbb{R}^3$ של האופרטור לינארי מצא $A:\mathbb{R}^3 o\mathbb{R}^3$ הנתון לפי

$$Ax = a \times x$$
.

(triple scalar product) **פתרון:** נשתמש בזהות של מכפלה מעורבת

$$\langle u \times v, w \rangle = \langle v \times w, u \rangle = \langle w \times u, v \rangle.$$

אזי

$$\langle Ax, y \rangle = \langle a \times x, y \rangle = \langle y \times a, x \rangle =$$

= $\langle x, y \times a \rangle = \langle x, -a \times y \rangle = \langle x, -Ay \rangle$

 $A^*=-A$ קבלנו ש־

תרגיל הפונקציות הגזירות אינסוף $C_0^\infty([0,1])$ מרחב של כל הפונקציות הגזירות אינסוף פעמים בקטע [0,1], כך הנגזרות מסדר כלשהו (כולל נגזרת מסדר ס), מתאפסות בקצבות [0,1] (בדוק שזה מרחב וקטורי עם הפעולות הרגילות).

נגדיר מכפלה פנימית

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt,$$

ויהא A אופרטור לינארי המקיים אופרטור לינארי ויהא A אופרטור לינארי המקיים $C_0^\infty([0,1]) \ni f$

 A^st מצא אופרטור הצמוד

 $:C_0^\infty([0,1])
ightarrow f,g$ עבור בחלקים באינטגרציה באינטגרציה נשתמש

$$\langle Af, g \rangle = \int_0^1 f'(t)g(t)dt = f(t)g(t)|_0^1 - \int_0^1 f(t)g'(t)dt =$$

$$= -\int_0^1 f(t)g'(t)dt = \int_0^1 f(t) \left[-g'(t) \right] dt = \langle f, -Ag \rangle .$$

 $A:\mathbb{R}^3 o\mathbb{R}^3$ נתון שהמטריצה המייצגת של הופרטור לינארי המייצגת שהמטריצה המייצגת אופרטור בבסיס $B=(b_1,b_2,b_3)$ בבסיס

$$[A]_B^B = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 5 & -1 \\ 2 & 7 & -3 \end{bmatrix}$$

נתון $E = (e_1, e_2, e_3)$ בסיס סטנדרטי כך ש־

$$b_1 = e_1 + 2e_2 + e_3$$
, $b_2 = e_1 + e_2 + 2e_3$, $b_3 = e_1 + e_2$.

 A^* בבסיס אופרטור האופרטור המייצגת מטריצה מטריצה מצא

בתרון: הבסיס B הוא לא אורטונורמלי (תרגיל), לכן לא ניתן להשתמש בסיס B הבסיס מטריצה במשפט 2. נמצא קודם מטריצה מטריצה במשפט 2.

$$[I]_E^B = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \end{array} \right]$$

כאשר

$$[I]_B^E = ([I]_E^B)^{-1} = \frac{1}{2} \begin{bmatrix} -2 & 2 & 0 \\ 1 & -1 & 1 \\ 3 & -1 & -1 \end{bmatrix}.$$

כיוון ש־

$$[A]_{B}^{B} = [I]_{B}^{E} [A]_{E}^{E} [I]_{E}^{B}$$

נקבל

$$[A]_{E}^{E} = [I]_{E}^{B} [A]_{B}^{B} [I]_{B}^{E} = \begin{bmatrix} 2 & -3 & 7 \\ 6 & -4 & 6 \\ 6 & -5 & 5 \end{bmatrix},$$

לכן, לפי משפט 2

$$[A^*]_E = [A^*]_E^E = \begin{bmatrix} 2 & 6 & 6 \\ -3 & -4 & -5 \\ 7 & 6 & 5 \end{bmatrix}.$$

מכאן

$$[A^*]_B^B = [I]_B^E [A^*]_E^E [I]_E^B = \begin{bmatrix} -36 & -37 & -15 \\ 30 & 30 & 14 \\ 26 & 27 & 9 \end{bmatrix}.$$

 A^* שלו אלו לצמוד הוכח האופרטור את המעבירה אלו הוכח שפעולה המעבירה את מקיימת שפעולה הוכח מקיימת תכונות:

$$;(A^*)^* = A \text{ (1} \\ ;(A+B)^* = A^* + B^* \text{ (2} \\ .(A^{-1})^* = (A^*)^{-1} \text{ (3}$$

תרגיל במרחב המקדמים עם $\mathbb{R}_2[x]$ עם הפולינומים נתונה במרחב במרחב מכפלה פנימית

$$\langle f, g \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

 $\mathbb{R}_2[x]\ni f(x)=a_0+a_1x+a_2x^2, g(x)=b_0+b_1x+b_2x^2$ כאשר

 D^* הצמוד של ואופרטור הגזירה הגזירה של מטרימות: מצא מטרימות: בבסיס

$$B = \left(1, t, \frac{3}{2}t^2 - \frac{1}{2}\right).$$

(הרמיטיות),
$$\langle u,v \rangle = \overline{\langle v,u \rangle} \Leftarrow u,v \in V$$
 (1

,(ליניאריות במשתנה הראשון), עו ליניאריות (
$$au+bv,w\rangle=a\left\langle u,w\right\rangle +b\left\langle v,w\right\rangle \Leftarrow u,v,w\in V$$
 (2

, (חיובית לחלוטין)
$$u=0 \Leftrightarrow \langle u,u \rangle = 0$$
 ד $\langle u,u \rangle \geqslant 0 \Leftrightarrow u \in V$ (3

נקרא מרחב אוניטרי.

תזכורת: מרחב וקטורי V נקרא מרחב אוקלידי ברגע שב־V מגדירים (במידע ויש) את המכפלה הפנימית.

תנדרה 2: אופרטור לינארי H במרחב מכפלה פנימית V נקרא **צמוד לעצמו** אם אם $H^*=H$. אופרטור המצוד לעצמו במרחב אוניטרי (אוקלידי) נקרא גם הרמיטי (סימטרי).

 $A^t=A^{-1}$ מטריצה אורטוגונלית אורטוגונלית מטריצה A

הגדרה בי אופרטור לינארי במרחב במרחב לינארי (אוקלידי) נקרא אוניטרי במרחב לינארי אופרטור לינארי (אורטוגונלי) אם

$$UU^* = U^*U = I$$

. כלומר $U^*=U^{-1}$, כאשר ליצה היחידה.

:תרגיל 6: יש להראות שבמרחב \mathbb{R}^3 אופרטורים הבאים הם סימטריים

א)
$$Ax=\lambda x$$
 (א הוא מספר קבוע), \mathbb{R}^3 ב) א $Ax=\langle x,e\rangle\,e$ ב) הוא וקטור ב- $Ax=\langle x,e\rangle\,e$ (ג) $||e||=1$ כאשר $Ax=x-\langle x,e\rangle\,e$ (ג)

$$\langle Ax, y \rangle = \langle \lambda x, y \rangle = \lambda \langle x, y \rangle = \lambda \overline{\langle y, x \rangle} = \lambda \langle y, x \rangle =$$
$$= \langle \lambda y, x \rangle = \overline{\langle x, \lambda y \rangle} = \langle x, \lambda y \rangle = \langle x, Ay \rangle.$$

פתרון (ב): ניקח x,y אז

$$\begin{split} \langle Ax,y\rangle &= \langle \langle x,e\rangle\,e,y\rangle = \langle x,e\rangle\,\langle e,y\rangle = \overline{\langle e,x\rangle}\,\overline{\langle y,e\rangle} = \\ &= \langle e,x\rangle\,\langle y,e\rangle = \langle y,e\rangle\cdot\langle e,x\rangle = \langle \langle y,e\rangle\,e,x\rangle = \overline{\langle x,\langle y,e\rangle\,e\rangle} = \\ &= \langle x,\langle y,e\rangle\,e\rangle = \langle x,Ay\rangle\,. \end{split}$$

תרגיל $\mathbb{R}_2[x]$ עם המכפלה פנימית הראה שבמרחב הפולינומים (ראה תרגיל 5) האופרטורים הבאים הם סימטריים:

$$f(t)
ightarrow f(-t)$$
 (ຮ $f(t)=t^nf\left(rac{1}{t}
ight)$ (ຊ

לכל Af(x)=f(-x) יהא $A:\mathbb{R}_2[x]\to\mathbb{R}_2[x]$ אופרטור המוגדר לפי יהא יהא $A:\mathbb{R}_2[x]\to \mathbb{R}_2[x]$ אופרטור המוגדר לפי יהא יקח $\mathbb{R}_2[x]\ni b_0+b_1x+b_2x^2=g(x),\ a_0+a_1x+a_2x^2=f(x)$ ניקח $\mathbb{R}_2[x]\ni f(x)$ אזי לפי הגדרה של המכפלה הפנימית $\langle\cdot,\cdot\rangle$ של התרגיל 5 נקבל

$$\langle Af(x), g(x) \rangle = \langle f(-x), g(x) \rangle = \langle a_0 - a_1x + a_2x^2, b_0 + b_1x + b_2x^2 \rangle =$$

= $a_0b_0 - a_1b_1 + a_2b_2 = \langle a_0 + a_1x + a_2x^2, b_0 - b_1x + b_2x^2 \rangle =$
= $\langle f(x), g(-x) \rangle = \langle f(x), Ag(x) \rangle$.

תרגיל 8: הראה שהאופרטורים (ראה תרגיל 6) הם אורטוגונליים.