ICMT Division A Sample Problems

1. Evaluate

$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+4)!}.$$

- 2. A monoid M is a set S equipped with a binary operation $: S \times S \to S$ having the properties of
 - Associativity: For all $a, b, c \in S$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
 - Identity: There exists $1_M \in S$ such that $a \cdot 1_M = 1_M \cdot a = a$ for all $a \in S$.

Let M be a monoid with the 4 (initially free) elements $a,b,c,d \in M$ and the 12 relations $xyx = 1_M$ for all $x,y \in \{a,b,c,d\}$ where $x \neq y$. What is the minimum number of relations that need to be added to M to reduce the number of distinct elements of M to 1?

3. Let $\mathcal{M} = \mathbb{F}_4^{4\times 4}$ be the set of 4×4 matrices with elements in \mathbb{F}_4 . Let \mathcal{N} be the nilpotent subgroup of \mathcal{M} ; i.e.

$$\mathcal{N} = \{ M \in \mathcal{M} : \exists n \in \mathbb{N}, M^n = 0 \}.$$

Define the equivalence relation $A \sim B$ for matrices in \mathcal{M} if there exists invertible $V \in \mathcal{M}$ such that AV = VB. Compute $|\mathcal{N}/\sim|$.

4. Define S_N to be the number of integral solutions (x, y, z) to the equation x + y + z = 0 such that $-N \le x, y, z \le N$ and gcd(x, y) = gcd(y, z) = gcd(z, x) = 1. Compute

$$\lim_{N\to\infty}\frac{S_N}{N^2}.$$

5. Let S be the set of all differentiable functions with continuous derivatives $f:[0,1]\to\mathbb{R}$ such that

$$\int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1.$$

Compute

$$\inf_{f \in S} \left(\int_0^1 (f'(x))^2 \, dx \right).$$

6. Compute the number of ordered pairs (g, h) of elements of S_5 , the group of permutations of 5 elements, such that gh = hg.