Формы

Определение: Форма $B(\vec{x}, \vec{y})$ в векторном пространстве V_n – это отображение пары векторов \vec{x} и \vec{y} в

$$\forall \vec{x}, \vec{y} \in V_n, B: V_n \times V_n \to \mathbb{R}, B(\bar{x}, \bar{y}) = \alpha \in \mathbb{R}.$$

Линейность формы по одной из переменных:

- 1) $\forall \bar{x}, \bar{y}, \bar{z} \in V_n : B(\bar{x} + \bar{z}, \bar{y}) = B(\bar{x}, \bar{z}) + B(\bar{z}, \bar{y})$ 2) $\forall \beta \in \mathbb{R} : B(\beta \bar{x}, \bar{y}) = \beta B(\bar{x}, \bar{y})$

Билинейная форма: линейная по обеим переменным

Симметричная форма: $\forall \vec{x}, \vec{y} \in V_n : B(\vec{x}, \vec{y}) = B(\vec{y}, \vec{x})$

<u>Квадратичная форма:</u> действие билинейной симметричной формы на 2 равных вектора: $\vec{x} = \vec{y}$

Матрица билинейной формы в базисе
$$\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$$
: $\hat{B} = \begin{pmatrix} B(\vec{e}_1,\vec{e}_1) & B(\vec{e}_1,\vec{e}_2) & B(\vec{e}_1,\vec{e}_3) \\ B(\vec{e}_2,\vec{e}_1) & B(\vec{e}_2,\vec{e}_2) & B(\vec{e}_2,\vec{e}_3) \\ B(\vec{e}_3,\vec{e}_1) & B(\vec{e}_3,\vec{e}_2) & B(\vec{e}_3,\vec{e}_3) \end{pmatrix}$ (матрица – вроде

таблицы умножения базисных векторов). Если форма симметричная, то относительно главной диагонали.

Для чего нужна матрица формы? Ответ: Для нахождения значения формы от двух векторов в координатном виде: $B(\vec{x}, \vec{y}) = \vec{y}_{\text{сторка}} \cdot \hat{B} \cdot \vec{x}_{\text{столбел}} =$ число или многочлен

Матрица квадратичной формы:

1)
$$V_2$$
: $\hat{B} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \left\{ a_{12} = a_{21} \right\} \Rightarrow \hat{B} = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$, тогда $\varphi(\vec{x}) = a_{11} \cdot x_1^2 + 2a_{12} \cdot x_1 \cdot x_2 + a_{22} \cdot x_2^2$ в базисе $\left\{ \vec{e}_1, \vec{e}_2 \right\}$

2)
$$V_3$$
: $\hat{B} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & _{33} \end{pmatrix}$, матрица симметрична относительно главной диагонали \Rightarrow $\varphi(\vec{x}) = a_{11} \cdot x_1^2 + 2a_{12} \cdot x_1 \cdot x_2 + 2a_{13} \cdot x_1 \cdot x_3 + 2a_{23} \cdot x_2 \cdot x_3 + a_{22} \cdot x_2^2 + a_{33} \cdot x_3^2$.

Для квадратичной формы:
$$\varphi(\vec{x}) = (x_1, x_2, x_3) \cdot \hat{B} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Канонический вид квадратичной формы: нет смешанных произведений, а только квадраты переменных. Матрица квадратичной формы в каноническом виде с диагональная, где по главной диагонали расположены коэффициенты при квадратах, остальные элементы - нули.

Связь матриц квадратичной формы в разных базисах:

Если B_1 – матрица в базисе F_1 , B_2 – матрица в базисе F_2 , P – матрица перехода от F_1 к F_2 , тогда

$$B_2 = P^T B_1 P .$$

Напомним, что матрица перехода от $Б_1$ к $Б_2$ состоит из координат векторов базиса $Б_2$ в базисе $Б_1$, записанных по столбцам.

Знакоопределенность квадратичной формы:

- 1) Квадратичная форма называется невырожденной, если $\forall \vec{x} \neq \vec{o} \in V_n : \varphi(\vec{x}) \neq 0$. Канонический вид невырожденной квадратичной формы содержит ровно n-квадратов: $n = \dim V_n$
- 2) Квадратичная форма называется положительно определенной, если $\forall \vec{x} \neq \vec{o} : \varphi(\vec{x}) > 0$
- 3) Квадратичная форма называется отрицательно определенной, если $\forall \vec{x} \neq \vec{o} : \varphi(\vec{x}) < 0$

Ранг и индексы инерции квадратичной формы

<u>Ранг квадратичной формы</u> – это ранг матрицы квадратичной формы в каком-либо базисе. Ранг квадратичной формы = количество квадратов в каноническом виде.

<u>Положительный индекс</u> r_{+} : количество квадратов с "+" в каноническом виде.

<u>Отрицательный индекс</u> r :количество квадратов с "-" в каноническом виде.

<u>Сигнатура квадратичной формы:</u> $r_{\perp} - r_{\perp}$, $r_{\perp} + r_{\perp} = r$

Знакоопределенность квадратичной формы в терминах ранга и индексов:

- 1) Квадратичная форма называется невырожденной, если $\forall \vec{x} \neq 0 : \varphi(\vec{x}) \neq 0$ при этом $r = \dim V_n$.
- 2) Квадратичная форма называется положительно определенной, если $r=r_{\!_{+}}=\dim V_{\!_{n}}$
- 3) Квадратичная форма называется отрицательно определенной, если $r = r_{\perp} = \dim V_n$

Критерий Сильвестра знакоопределенности квадратичной формы (с помощью матрицы):

- Квадратичная форма положительно определена
 ⇔ все главные (угловые) миноры положительные
- 2) Квадратичная форма отрицательно определена ⇔ знаки главных миноров чередуются, начиная с минуса
- ? Как выписать матрицу квадратичной формы? <u>Ответ:</u> По главной диагонали коэффициенты при квадратах, а коэффициенты при смешанных произведениях $(x_i \cdot x_j)$ делятся пополам и расставляются симметрично главной диагонали.

Критерий Сильвестра для V_3 :

$$\Delta_1 > 0$$

1) $\Delta_2 > 0 \Rightarrow$ квадратичная форма положительно определена

$$\Delta_3 > 0$$

$$\Delta_1 < 0$$

2) $\Delta_2 > 0 \Rightarrow$ квадратичная форма отрицательно определена

$$\Delta_3 < 0$$

3) Во всех остальных случаях квадратичная форма знаконеопределена

Приведение квадратичной формы к каноническому виду

Метод Лагранжа: (алгебраический): выделение полных квадратов

С помощью ортогонального преобразования:

- 1) Выписать матрицу квадратичной формы
- 2) Найти собственные значения этой матрицы
- 3) Найти собственные векторы
- 4) Ортонормировать базис из собственных векторов ⇒ матрица из координат собственного ортонормированного базиса и есть матрица ортогонального преобразования
- 5) Выписать канонический вид квадратичной формы в этом собственном ортонормированном базисе ⇒ при квадратах собственные значения

Евклидовы пространства

Определение: Отображение пары векторов \vec{x} и \vec{y} из V_n в число $\alpha \in \mathbb{R}$: $(\bar{x}, \bar{y}) = \alpha$ называется скалярным произведением, если выполнены условия:

 $\forall \bar{x}, \bar{y}, \bar{z} \in V_n, \forall \lambda \in \mathbb{R}$

- 1) $(\vec{x}, \vec{y}) = (\vec{y}; \vec{x})$
- 2) $(\lambda \vec{x}; \vec{y}) = \lambda(\vec{x}, \vec{y})$
- 3) $(\vec{x} + \vec{z}, \vec{y}) = (\vec{x}, \vec{y}) + (\vec{z}, \vec{y})$

Скалярное произведение называется евклидовым, если выполнено:

$$\forall \vec{x} \in V_n : (\vec{x}, \vec{x}) \ge 0 \ (\vec{x}, \vec{x}) = 0 \Leftrightarrow \vec{x} = 0$$

Матрица Грама: матрица из попарных скалярных в фиксированном базисе произведений базисных

векторов.
$$\vec{b} = \{\vec{e}_1, \vec{e}_2 ... \vec{e}_n\}$$
 $G_{\vec{b}} = \begin{pmatrix} (\vec{e}_1, \vec{e}_1) & (\vec{e}_1, \vec{e}_2) & ... & (\vec{e}_1, \vec{e}_n) \\ (\vec{e}_2, \vec{e}_1) & (\vec{e}_2, \vec{e}_2) & ... & (\vec{e}_2, \vec{e}_n) \\ \vdots & \vdots & \vdots & \vdots \\ (\vec{e}_n, \vec{e}_1) & (\vec{e}_n, \vec{e}_2) & ... & (\vec{e}_n, \vec{e}_n) \end{pmatrix}$

Нахождение скалярного произведения 2-х произвольных векторов в координатном виде:

$$\vec{x} = (x_1 ... x_n)_{\vec{b}} \ \vec{y} = (y_1 ... y_n)_{\vec{b}} \Rightarrow (\vec{x}, \vec{y}) = (y_1 ... y_n) \cdot G \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \textit{число}$$

Определение: Два ненулевых вектора называются ортогональными, если их скалярное произведение равно нулю: $\vec{x} \perp \vec{v} \Leftrightarrow (\vec{x}; \vec{v}) = 0$

Определение: Вектор \vec{x} : модуль вектора $|\vec{x}| = \sqrt{(\vec{x}; \vec{x})}$ корень из скалярного произведения (длина вектора).

Вектор называется нормированным, если его длина (модуль): $|\vec{x}| = 1$

Ортонормированный базис

Определение: Базис $\{\vec{e}_1...\vec{e}_n\}$ называется ортонормированным, если векторы единичной длины и попарно ортогональны, то есть:

$$(\vec{e}_i; \vec{e}_j) = \begin{bmatrix} 0, i \neq j, \\ 1, i = j \end{bmatrix}$$

Матрица Грама в ортонормированном базисе: единичная.

Для скалярного произведения в трёхмерном пространстве матрица Грама в ортонормированном базисе:

$$G_{
m optohopmup.базиc} = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

Координатная форма скалярного произведения в ортонормированном базисе: $(\vec{x}, \vec{y}) = x_1 y_1 + ... + x_n y_n$

Модуль вектора
$$|\vec{x}| = \sqrt{x_1^2 + ... + x_n^2}$$

Косинус угла между векторами:
$$\cos(\vec{x}, \vec{y}) = \frac{(\vec{x}; \vec{y})}{|\vec{x}| \cdot |\vec{y}|}$$