Using Tree Edit Distance as an RNA Secondary Structure Similarity Metric

Jon-Michael Deldin

Dept. of Computer Science University of Montana jon-michael.deldin@umontana.edu

2011-05-03

Outline

- Project
- 2 Trees
- Current Work
- 4 Future Work

Topic

- Project
- 2 Trees
- Current Work
- 4 Future Work

Goals

- Represent an RNA secondary structure as a tree data structure
- Determine the similarity between two structures using tree edit distance

Similarity

Pipeline

Data

- 100 SELEX aptamers (M. Ellenbecker, J.M. Lanchy, & J.S. Lodmell)
- Random RNA sequences

>MBE2A
GGCATTACGGCCGGG TGTCGTACTGATTGATGATTTACTCTGGGG GCGTCTTCTAG

Topic

- Project
- 2 Trees
- Current Work
- 4 Future Work

Trees

Definition (Tree Data Structure)

An abstract datatype that represents a hierarchy of objects (e.g., family tree). It is an ordered, directed, acyclic graph.

- Root node
- ullet Traversal order matters (e.g., 5' o 3')

Secondary Structure

Representation

Tree Operations

- Pruning
 - Removing nodes from a tree
 - Rules
 - If deleting a nt in a BP connected to a loop, move a nt from out of the loop
 - Cannot delete a single BP in a series of BPs (gap?)
- Grafting
 - Inserting nodes into a tree

Edit Distance

- Two different trees T_0 and T_1
- ullet How many operations (insertions/deletions) are needed until $T_0 = T_1$?
- Not easy

Topic

- Project
- 2 Trees
- 3 Current Work
- 4 Future Work

Implementing a genetic algorithm

- Take an RNA secondary structure
- Permute it (rearrange/insert/delete nodes)
- fitness(): BP score to original structure

Implementing a genetic algorithm

- Take an RNA secondary structure
- Permute it (rearrange/insert/delete nodes)
- fitness(): BP score to original structure

Chromosome Secondary structure

Genes Hairpins, bulges, base pairs

lacktriangle Permute ancestor n times or randomly generate a population of size n

- lacktriangle Permute ancestor n times or randomly generate a population of size n
- Until a solution is found:

- lacktriangle Permute ancestor n times or randomly generate a population of size n
- Until a solution is found:
 - Get the fitness of all chromosomes

- lacktriangle Permute ancestor n times or randomly generate a population of size n
- Until a solution is found:
 - Get the fitness of all chromosomes
 - **2** Select 2 parent chromosomes, x_0 , x_1

- lacktriangle Permute ancestor n times or randomly generate a population of size n
- Until a solution is found:
 - Get the fitness of all chromosomes
 - 2 Select 2 parent chromosomes, x_0 , x_1
 - **3** offspring \leftarrow crossover (x_0, x_1) according to a crossover rate

- lacktriangle Permute ancestor n times or randomly generate a population of size n
- Until a solution is found:
 - Get the fitness of all chromosomes
 - 2 Select 2 parent chromosomes, x_0 , x_1
 - **9** offspring \leftarrow crossover (x_0, x_1) according to a crossover rate
 - Mutate the offspring according to a mutation rate

- lacktriangle Permute ancestor n times or randomly generate a population of size n
- Until a solution is found:
 - Get the fitness of all chromosomes
 - **2** Select 2 parent chromosomes, x_0 , x_1
 - **3** offspring \leftarrow crossover (x_0, x_1) according to a crossover rate
 - Mutate the offspring according to a mutation rate
 - 6 Add offspring to the population

- lacktriangle Permute ancestor n times or randomly generate a population of size n
- Until a solution is found:
 - Get the fitness of all chromosomes
 - 2 Select 2 parent chromosomes, x_0 , x_1
 - **3** offspring \leftarrow crossover (x_0, x_1) according to a crossover rate
 - Mutate the offspring according to a mutation rate
 - 6 Add offspring to the population
- Print solution

Topic

- Project
- 2 Trees
- Current Work
- 4 Future Work

Future Work

Tree edit distance