Shenxin Zhou 3036339565

1.

1. X= Professor gono is the pout of the committee
0. P(x) = (16).(4) = 7
$P(x) = \frac{\binom{b}{4}\binom{4}{2}}{\binom{b}{4}\binom{5}{2}} = \frac{7}{5}$
(4)(2)
O. Y= Professor Adler is the chair.
(5)(5)
$P(Y) = \frac{\binom{15}{5}\binom{5}{2}}{\binom{6}{1}\binom{16}{4}\binom{5}{2}} = \frac{1}{24}$
D. X= and tome & women contained in committee.
(D. \ \ D (V-1)
(2, 3, 2) - (10, 10) + (4)(17)
$= 1 - \frac{(6)}{121} - \frac{(71)}{121} \approx 0.31$
$P(x > 2) = 1 - (P(x=0) + P(x-1))$ $= 1 - \frac{\binom{17}{6}}{\binom{21}{6}} - \frac{\binom{4}{5}\binom{17}{5}}{\binom{21}{6}} \sim 0.315$
≈ 555
2 Y= non-binary professors contained in committee
@ 1 = 100 - 10 indry proper
P(Y-0) = -0.5
$P(Y=0) = \frac{\binom{19}{6}}{\binom{2!}{4}} = 0.5$
The chair of smiles
B. Z = no-binary is the chair.
0(2)
P(Z) = (1) (1) (1)
(19)(2) $(19)(2)(2)$
= (5/1) + (4/12/01)
$= \frac{\binom{19}{5}\binom{2}{1}}{\binom{6}{1}\binom{2}{6}} + \frac{\binom{19}{4}\binom{2}{2}\binom{2}{1}}{\binom{6}{1}\binom{2}{6}}$
≈ 0.095
0.0 3
VALS.

2.	
2,	P. C = answered a question rightly $P(K) = 69$, $P(C K) = 1$
	D. C = answered a question nyring P(K) = 698, P(C K) = 1
	K = know the answer. P(C(k') = 4
	P(K C) = P(C K) · P(K)
	PLC)
	D(11/1) P(k)
	= P(c/Hz). P(k)
	P(c k). P(k) + P(c kc). P(kc)
	0.6 x = 7
	$= \frac{0.6 \times 1}{1 \times 0.6 + 4.0.4} = \frac{6}{7}$
	$P(c) = 0.7$ $= (\sim Bin (10, 0.7) $
	6 N Bin (10,0.7)
	P(C=6.5) = P(C=7) + P(C=8) + P(C=9) + P(C=10)
	= (10) 0.7.0.3+ (18) 0.7.0.3+ (10) 0.7.0.3+ (10) 0.7
	= 0.65
	3) assume p is the probability that she pass, which
	we get at problem Z.
	S = the student pass.
	awordy +0 the question,
	s ~ Geo (n, p)
	(1)/11/
	:E(5)= 6
	= 1.54

4.
$$0 \cdot \int_{0}^{1} c \times e^{x} = 1$$

$$c(xe^{x}|_{0}^{1} - \int_{0}^{1} e^{x} dx) = 1$$

$$c = 1$$

$$0 \cdot Var(2+x) = Var(x)$$

$$E[x] = \int_{0}^{1} x^{2} e^{x} dx$$

$$= x^{2}e^{x}|_{0}^{1} - (2\int_{0}^{1} xe^{x} dx)$$

$$= e - 2$$

$$E[x^{2}] = \int_{0}^{1} x^{2}e^{x} dx$$

$$= x^{3}e^{x}|_{0}^{1} - (3\int_{0}^{1} x^{2}e^{x} dx)$$

$$= b - 2e$$

$$Var(x) = E[x^{2}] - E[x]^{2}$$

$$= -e^{2} + 2e + 2e$$

```
Then |x| = 0 of |x| = 0 of
```

E. actionary to
$$\mathbb{P}$$
.

The state of the s

6.

7. Inspiration: No inspiration, I have thought of this on my own.

gnestion: 7ke joint obensity function of x, Y is given by:

$$f(x,y) = 4e^{2(x+y)}, x>0, y>0$$

Find: $E[x]YJ$, $E[YJ]$, $E[XJ]$, and $corr(x,y)$

Solution:

$$first find the manginal density of Y: : E[xYJ] = \int_{0}^{\infty} \int_{0}^{\infty} xyf(x,y)dxdy$$

$$f(xy) = \int_{0}^{\infty} 4e^{-2(x+y)}dx = 4e^{2y}\int_{0}^{\infty} e^{2x}dx = \frac{1}{4}$$

$$= 2e^{2y} : cov(x,y) = E[xYJ] - E[xYJ]$$
So, $E[YJ] = \frac{1}{2}$

$$= 0$$

$$f(x,y) = f(x,y)$$

$$f(x,y) = f(x,y)$$

$$f(x,y) = 2e^{2x}$$

$$f(y,y) = E[xYJ] = \frac{1}{2}$$

$$E[xYJ] = \frac{1}{2}$$