Ngo Minh Nhut

Summer School – FIT@HCMUS

2022

Outline

- Convolutional neural network
- Practice with Google Colab

Problems in computer vision

Image segmentation

Semantic Segmentation

Instance Segmentation

Segmentation techniques

- □ The pixel values will be different for the objects and the image's background → Threshold Segmentation
- Edge Detection Segmentation There is always an edge between two adjacent regions with different grayscale values.
- Image Segmentation based on Clustering

- ☐ High resolution images contains O(millions) of pixels
- A neural network which can handle that kind of images would also have
 O(millions) of weight

Convolutional filter

Illustration: Theano documentation

This kind of architecture will learn filters and build an internal representation of the input data using many stacked layers and finally use this representation on a classification task.

Filters

1 _{×1}	1 _{×0}	1,	0	0
O _{×0}	1,	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Filters

1 _{×1}	1 _{×0}	1,	0	0
0,×0	1,	1 _{×0}	1	0
0 _{×1}	O _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

□ Pooling (μa trận con)

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Pooling

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

Max pooling vs Average pooling

Learn high level features of a cat

"Best neuron" activation heat map

- Training: 16.000 CPU during 3 days
- ☐ Learned high levels features of cats, human faces by watching Youtube videos
- ☐ Totally unsupervised : unlabeled data

High level feature learning

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

The model learns some edge detection filter. We find a similar process in the cells of the primary visual cortex of the human brain

Edge detectors filters:

Traditional ML vs Deep learning

Practice with Google Colab

https://colab.research.google.com/drive/1UA-wUXx2QziKgZXTDLVo1gn0xImlwj2H

Model evaluation

- Measurements
 - Precision, recall
 - Accuracy
 - F1-score
- Depending on problems, we need some suitable measures

Model evaluation

$$Precision = \frac{True\ positive}{Predicted\ positive}$$

□ F1 − score =
$$\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

TOTENT

Source: Wikipedia

Confusion matrix

		Cat	Dog	Tiger	Wolf	Total
	Cat	6	0	3	1	10
ual	Dog	2	4	0	4	10
Actual	Tiger	3	3	3	0	9
	Wolf	1	4	1	2	8
	Total	12	11	7	7	

>>> sklearn.metrics.classification_report		precision	recall	f1-score	support
>>> y_true = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0,]	Cat	0.500	0.600	0.545	10
>>> y_pred = [0, 0, 0, 0, 0, 0, 2, 2, 2, 3,]	Dog	0.364	0.400	0.381	10
	Tiger	0.429	0.333	0.375	9
>>> target_names = ['Cat', 'Dog', 'Tiger', 'Wolf']	Wolf	0.286	0.250	0.267	8
	accuracy			0.405	37
	macro avg	0.394	0.396	0.392	37
	weighted avg	0.399	0.405	0.399	37

Thank you for your attention