Python On Resonance (PyOR)

Everybody can simulate NMR

Author: Vineeth Thalakottoor

Email: vineethfrancis.physics@gmail.com

Tutorial 5: Evolution of Density Matrix in Hilbert Space Part 2

In previous tutorial, we try to evolve the density matrix in time by solving Liouville-Von Neumann equation in Hilbert Space for a single spin half system. In this tutorial we will see two spin half system with out coupling.

Load Python packages and define path to the source file "PythonOnResonance.py"

Generating Spin System

```
In [53]:
    Define Spin quantum numbers of your spins in "Slist1".
    Slist1[0] is spin of first particle and Slist1[1] is spin of second particle.
    """;
    Slist1 = [1/2,1/2]

In [54]:
    Define Planck constant equals 1.
    Because NMR spectroscopists are more interested to write Energy in frequency units.
    if False then hbarEQ1 = hbar
    """;
    hbarEQ1 = True
```

```
In [55]:
    Generate Spin Operators
""";
    System = PyOR.Numerical_MR(Slist1, hbarEQ1)

"""
    Sx, Sy and Sz Operators
""";
    Sx,Sy,Sz = System.SpinOperator()

"""
    S+ and S- Operators
""";
    Sp,Sm = System.PMoperators(Sx,Sy)
```

Zeeman Hamiltonian in Lab Frame

```
In [56]:
          0.00
          Gyromagnetic Ratio
          Gamma = [Gyromagnetic Ratio spin 1, Gyromagnetic Ratio spin 1, ...]
          0.00
          Gamma = [System.gammaH1,System.gammaH1]
          0.000
          Define the field of the spectromter, B0 in Tesla.
          B0 = 9.4
          Define the chemical Shift of individual spins
          Offset = [chemical Shift spin 1, chemical Shift spin 1, ...]
          Offset = [20,40] # Offset frequency in Hz
          0.00
          Function "LarmorF" give the list Larmor frequencies of individual spins in lab frame
          LarmorF = System.LarmorFrequency(Gamma, B0, Offset)
          Hz = System.Zeeman(LarmorF,Sz)
```

Larmor Frequency in MHz: [-400.22803765 -400.22805765]

Initialize Density Matrix

```
In [57]:
    We will generate Initial Density Matrix in two ways:
    First we will generate a density matrix as we prefer say, Sz.
    Second we will create density matrix at thermal equlibrium

First Case
    """;

Thermal_DensMatrix = False

if Thermal_DensMatrix:
    Hz_EnUnit = System.Convert_FreqUnitsTOEnergy(Hz)
    HT_approx = False # High Temperature Approximation is False
    T = 300 # Temperature in Kelvin
    rho_in = System.EqulibriumDensityMatrix(Hz_EnUnit,T,HT_approx)
```

rhoeq = rho_in.copy()

/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_G/Source/PythonOnResonance.py:669: User
Warning: FixedFormatter should only be used together with FixedLocator
 ax.set_xticklabels([''] + labelx, fontsize=10)
/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_G/Source/PythonOnResonance.py:670: User
Warning: FixedFormatter should only be used together with FixedLocator
 ax.set_yticklabels([''] + labely, fontsize=10)

Zeeman Halitonian in Rotating Frame

```
In [60]: OmegaRF = [-System.gammaH1*B0,-System.gammaH1*B0]
Hzr = System.Zeeman_RotFrame(LarmorF, Sz, OmegaRF)
```

Pulse

```
In [61]:
    Rotate the magnetization about Y-axis, by an angle theta.
    """;
    pulse_angle = 90.0
    rho = System.Rotate_H(rho_in, pulse_angle, np.sum(Sy, axis=0))
In [62]: System.MatrixPlot(2, rho.real)
```


Relaxation Constant

```
In [63]:
    Define longitudinal (R1) and transverse Relaxation (R2)
    R1 = [R1 of first spin, R1 of second spin,...]
    R2 = [R2 of first spin, R2 of second spin,...]
    ''';
    R1 = np.asarray([0,0])
    R2 = np.asarray([0,0])
    System.Relaxation_Constants(R1,R2)
```

```
Options for "Rprocess": "No Relaxation" or "Phenomenological"

or "Random Field Fluxtuation" or "Dipolar"

''';

Rprocess = "No Relaxation"
```

Evolution of Density Matrix

```
In [64]:
          Samplling Rate, fs = n * Highest_Larmor_Frequency; minimum value of n = 2 (Nyquist-Shannor
          Dwell time, dt = 1/fs
          Acquisition time, AQ is time for which we evolve the density matrix, in seconds.
          Number of points in the simulation, Npoints
          Highest_Larmor_Frequency = 40.0
          fs = 4 * Highest_Larmor_Frequency
          dt = 1.0/fs
          AQ = 5.0
          Npoints = int(AQ/dt)
          print("Number of points in the simulation", Npoints)
          option for solver, "method": "Unitary Propagator" or "ODE Solver"
          method = "Unitary Propagator"
          start_time = time.time()
          t, rho_t = System.Evolution_H(rhoeq,rho,Sx,Sy,Sz,Sp,Sm,Hzr,dt,Npoints,method,Rprocess)
          end_time = time.time()
          timetaken = end_time - start_time
          print("Total time = %s seconds " % (timetaken))
```

Number of points in the simulation 800 Total time = 0.010149955749511719 seconds

Expectation value

```
In [65]: 
Basis Operators in plus minus Z
""";
Basis = "PMZ spin half"
B_PMZ = System. TwoSpinOP(Sx, Sy, Sz, Sp, Sm, Basis)

Basis: \frac{1}{2}E, \frac{1}{\sqrt{2}}I_+, \frac{1}{\sqrt{2}}I_-, \frac{1}{\sqrt{2}}I_z, \frac{1}{\sqrt{2}}S_+, \frac{1}{\sqrt{2}}S_-, S_z, \sqrt{2}I_xS_z, \sqrt{2}I_zS_z, \sqrt{2}I_zS_x, \sqrt{2}I_zS_y, 2I_zS_z, I_+S_+, I_+S_-, I_-S_+, I_-S_-

In [66]: 

"""
Lets see the expectation value of I+ and S+
```

Windowing

0.00

```
In [67]: Mp = System.WindowFunction(t,Mp,5.0)
```

t, Mp = System.Expectation_H(rho_t,B_PMZ[1] + B_PMZ[4],dt,Npoints)

Fourier Transform

```
In [68]: fs = 1.0/dt
freq, spectrum = System.FourierTransform(Mp,fs,5)
```

Plotting

```
In [69]:
```

```
System.Plotting(3,t,Mp,"time (s)","Mp","red")
```


/opt/anaconda3/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Cas ting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)
No handles with labels found to put in legend.

In [71]:

System.Plotting(4, freq, np.absolute(spectrum), "Frequency (Hz)", "Spectrum", "blue")

No handles with labels found to put in legend.

Next tutorial: Evolution of Density Matrix in Hilbert Space Part 3

In this lecture you will see how to evolve the desnity matrix in time by solving Liouville-Von Neumann equation in Hilbert Space of 6 spin half system (ethanol).

Any suggestion? write to me

vineethfrancis.physics@gmail.com

In []:		