Table 1: Crystallinity(χ_c) and thermal stability of components in PCL/PLA blends

	DSC			WAXS		
Sample	χ _{PCL} (%)	$\chi_{PLA}(\%)$	$T_{m_{PCL}}(^{\mathrm{o}}\mathrm{C})$	$\chi_{PCL}(\%)$	$\chi_{PLA}(\%)$	R(%)
0%	17.8	6.13	60.2	27.65	4.81	9.48
25%	21.6	4.77	60.3	31.95	6.41	5.42
50%	24.1	4.87	61.1	34.00	7.84	5.81
75%	23.3	5.60	59.2	31.00	7.21	8.68
100%	28.6	4.43	63.4	33.20	4.56	9.34
125%	28.8	5.17	62.0	30.09	6.96	7.98

 χ_c calculated using Δ_m^c of PCL of 139.5(J·g⁻¹), Δ_m^c of PLA of 79(J·g⁻¹). In MDI jade, R is the *residual errors of fit* when crystallinity was calculated and required ≤ 10 %.

Table 2: SAXS analysis of PCL/PLA blends

Sample	$\mathbf{q}(\mathrm{nm}^{-1})$	Lamllar width(nm)	Herman factor
0%	0.3663	17.15	0.2841
25%	0.3948	15.91	0.2323
50%	0.3948	15.91	0.2709
75%	0.3995	15.72	0.3236
100%	0.3901	16.10	0.4562
125%	0.3922	16.02	0.5971

Table 3: Dynamic properties of the PCL/PLA blends

Sample	Young's Modulus(Mpa)	Tensile Strength(Mpa)	Elongation at break(%)
0%	3799	12.14	13.26
25%	4165	12.67	9.910
50%	4880	17.37	11.03
75%	6124	17.60	10.95
100%	7499	20.21	10.59
125%	5730	20.10	7.667

Table 4: Main thermal degradation parameters of composites in terms of onset temperature of degradation $(T_{5\%})$, degradation temperature of PLA $(T_{deg-PLA})$, degradation temperature of PCL $(T_{deg-PCL})$

Sample	<i>T</i> _{5%} (°C)	$T_{deg-PLA}(^{\mathrm{o}}\mathrm{C})$	$T_{deg-PCL}(^{\mathrm{o}}\mathrm{C})$
0%	319.0	357.09	421.42
25%	319.0	359.52	421.23
50%	315.3	363.32	420.74
75%	321.3	361.04	423.88
100%	321.0	364.73	422.29
125%	322.7	358.29	421.87