Quick Sort

- Find an item in a sorted item [List or Array or String]
- Highly efficient in terms of time complexity against Linear Search
- Run time Complexity : O(log n)
- Based on divide and conquer technique

Example

Sort the given array

11	4 17	18	2	22	1	8	
----	------	----	---	----	---	---	--

11 4 17 18 2 22 1 8

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Step 6) Continue until left >= right

11 4 17 18 2 22 1 8

Pivot = 11

Step 1) Get the pivot (left most)

Left Right

11 4 17 18 2 22 1 8

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left Right

11 4 17 18 2 22 1 8

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left Right

11 4 17 18 2 22 1 8

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left

Right

11 4 17 18 2 22 1 8

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left

Right

11 4 17 18 2 22 1 8

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Left

Right

11 4 17 18 2 22 1 8

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Left

Right

11 4 8 18 2 22 1 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Left

Right

11 4 8 18 2 22 1 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Step 6) Continue until left >= right

Left

Right

 11
 4
 8
 18
 2
 22
 1
 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left

Right

 11
 4
 8
 18
 2
 22
 1
 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left

Right

11 4 8 18 2 22 1 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left

Right

11 4 8 18 2 22 1 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Left

Right

11 4 8 18 2 22 1 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Left

Right

11 4 8 1 2 22 18 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Left

Right

11 4 8 1 2 22 18 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Step 6) Continue until left > right

Left Right

11 4 8 1 2 22 18 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Left Right

11 4 8 1 2 22 18 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Left Right

11 4 8 1 2 18 22 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Left Right

11 4 8 1 2 18 22 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Step 5) Swap the value of left with right

Step 6) Continue until left > right

Left Right

11 4 8 1 2 18 22 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Right

Left

11 4 8 1 2 18 22 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Left

11 4 8 1 2 18 22 17

Right

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

Test Leaf

Right

Left

 11
 4
 8
 1
 2
 18
 22
 17

Pivot = 11

Step 1) Get the pivot (left most)

Step 2) Set 2 Pointers: left -> 0, right -> length - 1

Step 3) Increment left until you find that number >= pivot

Step 4) Decrement right until you find that number <= pivot

right < left ----> hence the loop has to break

Right

Left

 11
 4
 8
 1
 2
 18
 22
 17

Pivot = 11

Step 7) Swap the value of pivot with right

Right

Left

2 4 8 1 11 18 22 17

Pivot = 11

Step 7) Swap the value of pivot with right

Now, we found partitioning position :: All left side has smaller and all right has bigger

Left

Right

2 4 8 1 11

Left

Right

2 4 8 1 11

Left

Right

2 4 8 1 11

Left

Right

2 1 8 4 11

Left		Right	
2	8	4	11

Left

2 8 4 11

Left

2 8 4 11

Left Right

8 4 11

Pivot = 8

1 2

Left Right

8 4 11

Pivot = 8

1 2

TestLeaf

Always Ahead

Left

Right

8 4 11

Pivot = 8

1 2

TestLeaf

Always Ahead

Left

Right

4 8 11

Pivot = 8

1 2

Left Right

8 11

Pivot = 8

1 2 4

Test Leaf

Left

Right

8 11

Pivot = 8

1 2 4

Testleaf

Always Ahead

Left

Right

8 11

Pivot = 8

1 2 4

Testleaf

Always Ahead

Left

Right

8 11

Pivot = 8

1 2 4

Always Ahead

Left

Right

Pivot = 8

1 2 4 8 11

Left

Right

18 | 22 | 17

Pivot = 18

1 2 4 8 11

Left

Right

18 22 17

Pivot = 18

1 2 4 8 11

[Left	Right
18	22	17

[Left	Right
18	22	17

ı	Left	Right
18	17	22

Pivot = 18

1 2 4 8 11

	Right	ı
		Left
18	17	22

Test Leaf

Right

18 | 22

Left

1 2 4 8 11 17

Right

18 | 22

Left

1 2 4 8 11 17

Right

18 22

Left

1 2 4 8 11 17

Right

18 22

Left

1 2 4 8 11 17

1	2	4	8	11	17	18	22
---	---	---	---	----	----	----	----