Linear Programming: Convex Polytopes

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Understand what a convex polytope is and why it is relevant to linear programming.
- Get a feel for what a convex polytope looks like.
- Prove some basic facts about convex polytopes.

Linear Programs

Optimize linear function given linear inequality constraints.

Linear Programs

Optimize linear function given linear inequality constraints.

Want to understand region of points defined by inequalities.

Example

From factory example

Example II

Equations: $0 \le x, y, z \le 1$ give cube.

In General

Get what's called a convex polytope

Hyperplanes

A single linear equation defines a hyperplane.

Hyperplanes

A single linear equation defines a hyperplane.

An inequality, defines a halfspace.

Polytopes

So a system of linear inequalities, defines a region bounded by a bunch of hyperplanes.

Definition

A polytope is a region in \mathbb{R}^n bounded by finitely many flat surfaces.

Polytopes

So a system of linear inequalities, defines a region bounded by a bunch of hyperplanes.

Definition

A polytope is a region in \mathbb{R}^n bounded by finitely many flat surfaces. These surfaces may intersect in lower dimensional facets (like edges), with zero-dimensional facets called vertices.

More Conditions

But not every polytope is possible.

Everything must be on one side of each face.

Convexity

Definition

A region $\mathcal{C} \subset \mathbb{R}^n$ is convex, if for any $x,y\in\mathcal{C}$, the line segment connecting x and y is contained in \mathcal{C} .

Convexity

Lemma

An intersection of halfspaces is convex.

- Defined by Ax > b.
- Need for $x, y \in \mathcal{C}$ and $t \in [0, 1]$, $tx + (1 t)y \in \mathcal{C}$.

$$A(tx + (1 - t)y) = tAx + (1 - t)Ay$$

$$\geq tb + (1 - t)b$$

$$= b$$

Convex Polytope

Theorem

The region defined by a system of linear inequalities is always a convex polytope.

Problem

Which of these figures is a convex polytope?

Solution

Only B.

Lemmas

We will conclude with a couple important lemmas about convex polytopes.

Separation

Lemma

Let C be a convex region and $x \notin C$ a point. Then there is a hyperplane H separating x from C.

Separation

Lemma

Let C be a convex region and $x \notin C$ a point. Then there is a hyperplane H separating x from C.

Note that if C is given by a system of linear inequalities, we can just find one of the defining inequalities that x violates.

Start with x.

Let y be closest point in $\mathcal C$

Let L be the perpendicular bisector of xy.

If $z \in \mathcal{C}$ on wrong side of L,

yz contains point closer to x. Contradiction.

Extreme Points

Lemma

A linear function on a polytope takes its minimum/maximum values on vertices.

Intuition

The corners are the only extreme points. Optima must be there.

Idea

Linear function on segment takes extreme values on ends.

Use to push towards corners.

Start at any point.

Pick line through point.

Extreme values at endpoint.

Point is on a facet.

Repeat to push to lower dimensional facet.

Eventually on a vertex.

Summary

- Region determined by LP always convex polytope.
- Optimum always at vertex.
- Can separate from outside points by hyperplanes.