

CÉSAR VALLEJO

CÉSAR VALLEJO

TRIGONOMETRÍA

Dirigida 5

PROBLEMA 1

En la circunferencia trigonométrica, si P(a; b), halle $a + \sqrt{3}b$.

A)
$$\cos\theta - \sqrt{3} \mathrm{sen}\theta$$

B)
$$\cos\theta + \sqrt{3} \sin\theta$$

C)
$$sen\theta - \sqrt{3}\cos\theta$$

D)
$$sen\theta + \sqrt{3}\cos\theta$$

E)
$$\cos\theta - \sin\theta$$

PROBLEMA 3

En la circunferencia trigonométrica mostrada, calcule el área de la superficie mostrada. $(m\widehat{ABP} = \theta)$

- A) $\frac{1}{2}$ (sen(θ) + cos(θ) + 1)
- B) $\frac{1}{2}$ (sen(θ) + cos(θ) 1)
- C) $\frac{1}{2}$ (sen(θ) cos(θ) + 1)
- D) $\frac{1}{2}(\cos(\theta) \sin(\theta) + 1)$
- $\frac{1}{2}(\operatorname{sen}(\theta) \cos(\theta) 1)$

PROBLEMA 5

En la circunferencia trigonométrica, halle AM.

A)
$$\frac{1+\sin\theta+\cos\theta}{\sqrt{2}}$$

B)
$$\frac{1-\sin\theta+\cos\theta}{\sqrt{2}}$$

D)
$$\frac{\sin\theta + \cos\theta - 1}{\sqrt{2}}$$

E)
$$\frac{1-\sin\theta-\cos\theta}{\sqrt{2}}$$

RESOLUCIÓN

PROBLEMA 7

En la circunferencia trigonométrica mostrada, el extremo del arco dirigido θ es P. Determine una expresión para la longitud OQ.

- A) $(sen\theta + cos\theta)^{-1}$
- (sen θ -cos θ)⁻¹
- C) $(\cos\theta \sin\theta)^{-1}$
- D) $-(\cos\theta \sin\theta)^{-1}$
- E) $-(\tan\theta + \cot\theta)^{-1}$

$$\alpha = \frac{1}{-\cos\theta + \sin\theta} \qquad \qquad \alpha = \frac{1}{\sin\theta - \cos\theta}$$

PROBLEMA 9

Calcule el área de la región sombreada en términos de θ .

B)
$$2\cos\frac{\theta}{2}$$

C)
$$\frac{1}{2}(\cos\theta - \sin\theta)$$

$$\frac{1}{2}(\csc\theta - \cot\theta)$$

E)
$$\frac{1}{2}(\csc\theta + \cot\theta)$$

RESOLUCIÓN

Por el teorema de Pitagoras:

$$\alpha = \frac{1}{Sen\theta} = \frac{\cos\theta}{\sin\theta}$$

PROBLEMA 11

En la circunferencia trigonométrica, calcule la abscisa del punto P en términos de θ .

- C) $\frac{1}{1-\tan\theta}$
- D) $\frac{2}{1-\tan\theta}$
- E) $\frac{2}{\tan \theta 2}$

RESOLUCIÓN

Piden "a"

For Semejanza de triangulos

$$\frac{\alpha}{1} = \frac{1-\alpha}{1-\tan\theta}$$

$$\alpha - \alpha \tau ane = 1 - \alpha$$

PROBLEMA 15

En el gráfico se muestra la circunferencia trigonométrica. Halle la ordenada del punto P en términos de θ .

- A) $sen^2\theta$
- $-\operatorname{sen}^2\theta$
- C) $\cos\theta$
- D) $-\cos^2\theta$
- E) $\cos\theta \sin\theta$

PROBLEMA 17

Del gráfico mostrado, calcule el área de la región sombreada.

A)
$$\frac{\tan(\theta)}{2}(1+\tan(\theta))$$

B)
$$\cot(\theta)(1+\cot(\theta))$$

C)
$$tan(\theta)(1+tan(\theta))$$

$$\frac{\cot(\theta)}{2}(\cot(\theta)-1)$$

E) $2\cot(\theta)(\cot(\theta)-1)$

PROBLEMA 19

Si PM pasa por el origen de coordenadas, determine el área de la región triangular BNM.

A)
$$\frac{1}{2}(1+\cot\theta)$$

B)
$$\frac{1}{2}(1+\tan\theta)$$

D)
$$\frac{1}{2}(1-\cot\theta)$$

D)
$$\frac{1}{2}(1-\tan\theta)$$

E)
$$\frac{1}{2}(\tan\theta - \cot\theta)$$

RESOLUCIÓN

$$S = \frac{\cot \theta \left(\cot \theta - 1 \right)}{2}$$

$$S = \frac{\cot \theta \cot \theta - \cot \theta}{2}$$

$$\therefore \leq \frac{1 - \cos 6}{2}$$

PROBLEMA 21

A)
$$\frac{1+\sin\theta+\cos\theta}{\sin\theta\cos\theta}$$

B)
$$\frac{\sin\theta - \cos\theta}{1 + \sin\theta + \cos\theta}$$

C)
$$\frac{1-\sin\theta+\cos\theta}{\sin\theta\cos\theta}$$

 $2 sen \theta cos \theta$

D)
$$\frac{1+\sin\theta-\cos\theta}{2}$$

$$\tan \chi = \csc 2\chi - \cot 2\chi$$

$$\sin\theta+\cos\theta-1$$

RESOLUCIÓN

CÉSAR VALLEJO

PROBLEMA 23

En el gráfico muestra una circunferencia trigonométrica con el arco θ cuyo extremo del arco es P. Determine el área de la región cuadrangular ABPT (en u^2).

A)
$$\frac{1}{2}(1+\cos(\theta)+\tan(\theta))$$

$$\frac{1}{2}(1-\cos(\theta)-\tan(\theta))$$

C)
$$\frac{1}{2}(1+\sin(\theta)+\tan(\theta))$$

D)
$$\frac{1}{2}(1-\sin(\theta)-\tan(\theta))$$

E)
$$\frac{1}{2}$$
(sen(θ) + cos(θ))

RESOLUCIÓN

PROBLEMA 25

Si S es el área de la región sombreada, calcule

 $\mathbb{S} + \frac{\sqrt{3}}{4} + \frac{\pi}{6}$. Considere que T es punto de tangencia.

A)
$$\frac{2\csc\theta + \cot\theta}{2}$$

B)
$$\frac{2 \sin \theta - \sec \theta}{2}$$

C)
$$\frac{\csc\theta + 2\cot\theta}{2}$$

D)
$$\frac{2\csc\theta - \cot\theta}{2}$$

E)
$$\frac{\csc\theta - 2\cot\theta}{2}$$

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe