DEVOIR À LA MAISON N°2

Problème 1 –

On note $\mathbb{P}=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$ et $\mathbb{D}=\{z\in\mathbb{C}\mid |z|<1\}$. On appelle *homographie* toute fonction h de \mathbb{C} dans \mathbb{C} qui à tout $z\in\mathbb{C}$ tel que $cz+d\neq 0$ associe $h(z)=\frac{az+b}{cz+d}$ où a,b,c,d sont des complexes tels que $ad-bc\neq 0$.

Partie I - Un exemple

- **1.** Soit h l'homographie définie par $h(z) = i\frac{1+z}{1-z}$.
 - **a.** Montrer que $\forall z \in \mathbb{U} \setminus \{1\}$, $h(z) \in \mathbb{R}$.
 - **b.** Montrer que $\forall z \in \mathbb{D}$, $h(z) \in \mathbb{P}$.
 - **c.** Déterminer les points fixes de h, c'est-à-dire les complexes z tels que h(z)=z.
 - **d.** Pour quels $Z \in \mathbb{C}$, l'équation h(z) = Z d'inconnue z admet-elle une solution ?
- **2.** Soit g l'homographie définie par $g(z) = \frac{z i}{z + i}$.
 - **a.** Montrer que $\forall z \in \mathbb{R}$, $g(z) \in \mathbb{U}$.
 - **b.** Montrer que $\forall z \in \mathbb{P}$, $g(z) \in \mathbb{D}$.

Partie II – Homographies conservant \mathbb{U}

- **1.** Soit $\theta \in \mathbb{R}$ et h l'homographie définie par $h(z) = \frac{e^{\mathrm{i}\theta}}{z}$. Montrer que $\forall z \in \mathbb{U}, \, h(z) \in \mathbb{U}$.
- **2.** Soient $\alpha \in \mathbb{C} \setminus \mathbb{U}$, $\theta \in \mathbb{R}$ et l'homographie h définie par $h(z) = e^{i\theta} \frac{z + \alpha}{\overline{\alpha}z + 1}$.
 - a. Montrer que h est bien une homographie et que h est définie sur \mathbb{U} .
 - **b.** Montrer que $\forall z \in \mathbb{U}$, $h(z) \in \mathbb{U}$.
- 3. Inversement, on souhaite montrer que les seules homographies conservant $\mathbb U$ sont celles des questions II.1 et II.2. Soit donc h une homographie définie par $h(z)=\frac{az+b}{cz+d}$ où a,b,c,d sont des complexes tels que $ad-bc\neq 0$ et vérifiant : $\forall z\in \mathbb U,\, h(z)\in \mathbb U.$
 - a. Montrer que $\begin{cases} \overline{\alpha}b = \overline{c}d\\ |\alpha|^2 + |b|^2 = |c|^2 + |d|^2. \end{cases}$
 - **b.** Montrer que si a = 0, alors h est du type présenté dans la question II.1.
 - **c.** On suppose maintenant $a \neq 0$.
 - i. Montrer que $(|a|^2 |c|^2)(|a|^2 |d|^2) = 0$.
 - ii. Montrer que $|a| \neq |c|$.
 - iii. En déduire que h est du type présenté dans la question II.2.