CS1200: Intro. to Algorithms and their Limitations	Anshu & Vadhan
Lecture 16: Resolution	
Harvard SEAS - Fall 2024	Oct. 29, 2024

1 Announcements

- SRE 5 today
- Midterm regrade requests due tonight.
- Anurag's in person OH moved to Thur 11AM 12 PM.
- A reminder that both the psets and lectures are part of the learning material.
- Pset5 reflection responses:
 - Most common questions students struggled with Word-RAM to RAM simulations, Asymptotic runtime analysis and notation.
 - Students found that struggling through the problem was valuable and led to better understanding and problem solving skills.
 - Students learned how to break down problems and to ask for help, which is great!

2 Recap

- A literal is
- A boolean formula is in *conjunctive normal form (CNF)* if
- It will be convenient to also allow 1 (true) to be a clause. 0 (false) is already a clause:

Input	: A CNF formula φ on n variables
Output	: An $\alpha \in \{0,1\}^n$ such that $\varphi(\alpha) = 1$ (if one exists)

Computational Problem CNF-Satisfiability (SAT)

Simplifying clauses. Note terms and clauses may contain duplicate literals, but if a term or clause contains multiple copies of a variable x, it's equivalent to a term or clause with just one copy (since $x \lor x = x$ and $x \land x = x$). We can also remove any clause or term with both a variable x and its negation $\neg x$, as that clause or term will be always true (in the case of a clause). We define a function Simplify which takes a clause and performs those simplifications:

Motivation for SAT (and logic problems in general): can encode many other problems of interest

- Graph Coloring (last time)
- Longest Path (SRE 5)
- Independent Set (section)
- Program Analysis (lec24)
- and much more (lec19)

Unfortunately, the fastest known algorithms for Satisfiability have worst-case runtime exponential in n. However, enormous effort has gone into designing heuristics that complete much more quickly on many real-world instances.

3 Resolution

SAT Solvers are algorithms to solve CNF-Satisfiability. Although they have worst-case exponential running time, on many "real-world" instances, they terminate more quickly with either (a) a satisfying assignment, or (b) a "proof" that the input formula is unsatisfiable.

The best known SAT solvers implicitly use the technique of *resolution*. The idea of resolution is to repeatedly derive new clauses from the original clauses (using a valid deduction rule) until we either derive an empty clause (which is false, and thus we have a proof that the original formula is unsatisfiable) or we cannot derive any more clauses (in which case we can efficiently construct a satisfying assignment).

Definition 3.1 (resolution rule). For clauses C and D, define their resolvent to be

$$C \diamond D = \left\{ \begin{array}{c} \text{if ℓ is a literal s.t. $\ell \in C$ and $\neg \ell \in D$} \\ \text{if there is no such literal ℓ} \end{array} \right.$$

In the special case where $C = \ell, D = \neg \ell$, we use our definition from Lecture 15 that empty clause is always false and obtain

$$(\ell) \diamond (\neg \ell) =$$

Intuition: The intuition behind resolution can be seen from the following example. Consider two clauses $C_1 = (\neg x_0 \lor x_1)$ and $C_2 = (\neg x_1 \lor x_2)$. If both C_1, C_2 are required to be true (which is the goal of the CNF-Satisfiability problem), there is an implicit dependence between x_0 and x_2 , as follows.

Following the definition, this is precisely the resolvent of C_1, C_2 :

$$(\neg x_0 \lor x_1) \diamond (\neg x_1 \lor x_2) =$$

Example 2:

$$(x_0 \vee \neg x_1 \vee x_3 \vee \neg x_5) \diamond (x_1 \vee \neg x_4 \vee \neg x_5) =$$

Example 3: We could also have a clause that appears to be resolvable in two ways:

$$(x_0 \lor x_1 \lor \neg x_4) \diamond (\neg x_0 \lor x_2 \lor x_4) =$$

From now on, it will be useful to view a CNF formula as just a set \mathcal{C} of clauses.

Definition 3.2. Let \mathcal{C} be a set of clauses over variables x_0, \ldots, x_{n-1} . We say that an assignment $\alpha \in \{0,1\}^n$ satisfies \mathcal{C} if α satisfies all of the clauses in \mathcal{C} , or equivalently α satisfies the CNF formula

$$\varphi(x_0,\ldots,x_{n-1}) = \bigwedge_{C \in \mathcal{C}} C(x_0,\ldots,x_{n-1}).$$

The following lemma says that adding resolvents does not change the set of satisfying assignments.

Lemma 3.3. Let C be a set of clauses and let $C, D \in C$. Then C and $C \cup \{C \diamond D\}$ have the same set of satisfying assignments (if any).

The following theorem tells us under what conditions a set of clauses is satisfiable or unsatisfiable.

Theorem 3.4 (Resolution Theorem). Let C be a set of clauses over variables x_0, \ldots, x_{n-1} . Suppose that C is closed under resolution, meaning that for every $C, D \in C$, we have $C \diamond D \in C$. Then:

- 1. $\emptyset \in \mathcal{C}$ iff
- 2. If $\emptyset \notin \mathcal{C}$, then

To turn this theorem into an algorithm, we can start with a set C of clauses from a CNF formula and keep adding resolvents until we cannot add any new ones. If we find the empty clause, we know φ is unsatisfiable by Theorem 3.4.

There are many variants of resolution, based on different ways of choosing the order in which to resolve clauses. We give a particular version below, where starting with a set of clauses C_0, C_1, \dots, C_{m-1} , simplify all the clauses in φ and then:

- 1. Resolve C_0 with each of C_1, \ldots, C_{m-1} , adding any new clauses obtained from the resolution C_m, C_{m+1}, \ldots
- 2. Resolve C_1 with each of C_2, \ldots, C_{m-1} as well as with
- 3. Resolve C_2 with each of C_3, \ldots, C_{m-1} as well as with
- 4. etc.

Note that this process will resolve every pair of clauses, except for resolving C_i with resolvents of the form $C_i \diamond C_j$ for j > i. Omitting the latter is harmless by the following lemma:

Lemma 3.5. For all clauses C and D, $C \diamond (C \diamond D) = 1$

Proof.

Example: $\phi(x_0, x_1, x_2) = (\neg x_0 \lor x_1) \land (\neg x_1 \lor x_2) \land (x_0 \lor x_1 \lor x_2) \land (\neg x_2)$

```
Example 2: \psi(x_0, x_1, x_2, x_3) = (\neg x_0 \lor x_3) \land (x_0 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_1) \land (\neg x_3)
```

The resolution algorithm can be written as follows in pseudo-code:

```
1 ResolutionInOrder(\varphi)
                   : A CNF formula \varphi(x_0,\ldots,x_{n-1})
   Input
   Output
                   : Whether \varphi is satisfiable or unsatisfiable
2 Let C_0, C_1, \ldots, C_{m-1} be the clauses in \varphi, after simplifying each clause;
                           /* clause to resolve with others in current iteration */
\mathbf{3} \ i = 0;
4 f = m;
               /* start of 'frontier' - new resolvents from current iteration */
5 g = m;
                                                                      /* end of frontier */
6 while f > i + 1 do
      foreach j = i + 1 to f - 1 do
          R = C_i \diamond C_j;
 8
          if R = 0 then return unsatisfiable;
10
          else if R \notin \{C_0, C_1, \dots, C_{q-1}\} then
             C_g = R;
11
            g = g + 1;
12
       f = g;
13
      i = i + 1
15 return satisfiable
```

Algorithm 15 raises two questions:

- 1. (Termination) Why does resolution always terminate? And what is its runtime?
- 2. (Correctness) Is Algorithm 15 correct? If it ever derives the empty clause R=0, we know that φ is unsatisfiable (why?) but if never generates the empty clause, can we be sure that φ is satisfiable?

4 Termination and Efficiency

Q: Why does resolution terminate?

A:

Q: What is the runtime of resolution?

A:

However, in many cases, there is a *short* proof of unsatisfiability that resolution will find. One case is for the 2-SAT problem, defined as follows:

Input	: A CNF formula φ on n variables in which each clause has width at most
	k (i.e. contains at most k literals)
Output	: An $\alpha \in \{0,1\}^n$ such that $\varphi(\alpha) = 1$, or \bot if no satisfying assignment exists

Computational Problem k-SAT

Q: What is the runtime of Resolution for 2-SAT?

A: