

(Sheet # 2) - Part [1] - Electrostatic Force

Q1: <u>Compute</u> the electrostatic force between two charges of 5×10^{-9} C and -3×10^{-8} C which are separated by d = 10 cm

Q2: Two metallic spheres located at distance of $d = 5 \, cm$ attract one another with force of $F = 3 \, mN$. If one of them has three times more charges than the other. Determine the charge value of the two spheres

Q3: A particle of charge $-40 \,\mu$ C is located on y – axis at the point $y = 20 \,m$ and the second particle of charge $20 \,\mu$ C is placed on x – axis at $x = 30 \,m$. Determine the total electrostatic force on a third particle of charge $-10.0 \,\mu$ C placed at the origin

Q4: A point charge $q_1 = 2 \mu C$ located at origin and another point charge $q_2 = -5 \mu C$ is on the coordinate (x = 3, y = 4) m

Determine:

- A. The electrostatic force on charge q_1
- B. State that this force is attractive or repulsive

Q5: Three point charges are fixed in place in the right angle triangle shown below, in which $q_1 = 0.71 \,\mu\text{C}$ and $q_2 = -0.67 \,\mu\text{C}$. Determine magnitude and direction of the electrostatic force on the $+1.0 \,\mu\text{C}$ (let's call this q_3) charge due to the other two charges

Q6: Two small insulating spheres are attached to silk threads and aligned vertically as shown in the below figure for stationary position. These spheres have equal masses of 40 g and carry charges q_1 and q_2 of equal magnitude 2.0 μ C but opposite sign. The spheres are brought into the positions shown in the figure, with a vertical separation of 15 cm between them. Note that you cannot neglect gravity. Determine the tension in the lower threads

(Report Section) Q7: Three point charges are located at corners of an equilateral triangle as shown below. Determine magnitude and direction of net electrostatic force on $7 \mu C$ charge

Q8: An electron is fixed at position x = 0 and a second charge q is fixed at $x = 4 \times 10^{-9} \, m$ (to the right). A proton is now placed between the two at $x' = 1 \times 10^{-9} \, m$. Determine the charge q be (magnitude and sign) so that the proton is in equilibrium

Q9: Four point charges are located on the corners of a square shown in the below figure. If the net Coulomb force on q_2 is zero. Determine is the ratio of Q/q

Q10: Two point charges $q_1 = +2 \mu C$ and $q_2 = +8 \mu C$ are 30 cm apart from each other. Extra charge q is placed so that three charges are brought to a balance. Determine the location of the charge q

(Report Section)Q11: Two point charges are given as $q_1 = +2 \mu C$ and $q_2 = -8 \mu C$ are at distance $d = 10 \, cm$. Determine the position of a third charge q_3 to be placed so that net Coulomb force acted upon it is zero

End of Sheet

Dr. Mohamed Tayseer

