Portfolio Risk

CAPM

Capital Asset Pricing Model

A basket of assets

May hold stocks, bonds, cash, commodities, derivatives, etfs

Investors aim for a return by mixing these securities in a manner that reflects

Their appetite for risk

Their financial goals

Their time horizon

..

A key concept in portfolio management is diversification Don't carry all your eggs in one basket

Developed Markets Emerging Markets Derivatives Cash

Annual Return %						
Average	6.01	7.98	8.97	9.64		
Best 12 months	31.06	76.57	109.55	136.07		
Worst 12 months	-17.67	-40.64	-52.92	-60.78		
Best 5 years	17.23	23.14	27.27	31.91		
Worst 5 years	0.37	-6.18	-10.43	-13.78		

Assume investors are rational

Irrespective of their motivation, they want the **maximum** amount of return for the **least** amount of risk

Return

Assume investors are rational

Irrespective of their motivation, they want the **maximum** amount of return for the **least** amount of risk

Assume investors are rational

Irrespective of their motivation, they want the **maximum** amount of return for the **least** amount of risk

Problem

Given you have \$100,000 to invest for 1 year.

Treasury bills yield 5% (TBills pay a lot less, but this is for demonstration purposes only)

One alternative is to invest in TBills for no risk where the expected return is 5%.

Another alternative is to invest in stock.

Suppose the possible outcomes from investing in stock are

Probability	Return (%)		
.05	50		
.25	30		
.4	10		
.25	-10		
.05	-30		

expected return is calculated by

$$(0.05 * 0.5) + (0.25 * 0.3) + (0.4 * 0.1) + (0.25 * -0.1) + (0.05 * -0.3)$$

= 0.1

May get \$50K return

May also lose \$30K

Quantifying Risk

Often std deviation is used

std deviation = 0.1897

$$\sigma = \sqrt{E(R^2) - [E(R)]^2}$$

```
Expected Return - E(R)

= (0.05 \times 0.5) + (0.25 \times 0.3) + (0.4 \times 0.1) + (0.25 \times -0.1) + (0.05 \times -0.3)

= 0.1

[E(R)]^2 = 0.01

E(R^2)

= (0.05 \times 0.5^2) + (0.25 \times 0.3^2) + (0.4 \times 0.1^2) + (0.25 \times -0.1^2) + (0.05 \times -0.3^2)

= 0.046
```

Portfolio with 2 securities

A portfolio consisting of 2 securities with returns R_1 and R_2

Put a proportion of money into the first ω_1

The remainder into the second $\omega_2 = 1 - \omega_1$

The return on the investment is $\omega_1 R_1 + \omega_2 R_2$

The portfolio expected return $\mu_p = \omega_1 \mu_1 + \omega_2 \mu_2$ where

 μ_1 is the expected return on the first investment μ_2 is the expected return on the second investment

The std deviation of such a portfolio is

$$\sigma_p = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2\rho w_1 w_2 \sigma_1 \sigma_2}$$

Portfolio with 2 securities

Given the following

$$\mu_1 = 10\% \ \sigma_1 = 16\%$$
 $\mu_2 = 15\% \ \sigma_2 = 24\%$
 $\rho = 20\%$

Most investors are risk averse

They want increased expected returns while reducing std deviation of return. They will want to move as far as possible in a **North East** direction.

Analysis such as this helps investors make more informed investing decisions.

The expected return and standard deviation for this portfolio for weights of

(0%, 100%),

(20%, 80%),

(40%, 60%),

(60%, 40%),

(80%, 20%),

(100%, 0%)

ω_1	ω_2	μ_{p}	$\sigma_{ m p}$
0.0	1.0	15%	24.00%
0.2	0.8	14%	20.09%
0.4	0.6	13%	16.89%
0.6	0.4	12%	14.87%
0.8	0.2	11%	14.54%
1.0	0.0	10%	16.00%

Efficient Frontier

An investor can

- add a third investment to the portfolio
- combine it with any combination of the first 2 produce a new risk return.

They can repeat this with a 4th, 5th investment etc.

Eventually we reach the limit of how far North West we can go.

This is known as the **efficient frontier**

