

08Chapiter

Reinforcement Learning

2I1AE1: Artificial Intelligence

Régis Clouard, ENSICAEN - GREYC

"If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is."

John Von Neumann, 1947

In this chapter

- Learning by reinforcement
 - In which we examine how an agent can learn from success and failure, from reward and punishment.
- Plan
 - Learning agent
 - Reinforcement Learning
 - Q-Learning algorithm
 - Dilemma Exploration / Exploitation
 - Utility Function Approximation

1. Learning Agent

- An agent learns if its performance at a task improves with experience.
- Why programming agent that learns?
 - An agent can be in an unknown or complex environment (it has to discover it).
 - Even if the environment is known beforehand, it can change overtime in unpredictable ways.
 - Sometime, we have no idea how to program the performance function for an agent.

Types of Machine Learning

Supervised Learning

Task Driven

Learning from labeled data "training examples".

- Classification: qualitative
- Regression: quantitative

Unsupervised Learning

Data Driven

Learning from unlabeled data looking for patterns and structure.

- Clustering
- Anomaly detection

Reinforcement Learning

Reward Driven

Learning by interaction with the environment and outcomes.

- Decision Making

2. Reinforcement Learning

- What distinguishes reinforcement learning from other automatic learning paradigms:
 - There is no supervisor who indicates the right solution, but rather a reward signal.
 - The reward can be delayed; it is not necessarily instantaneous.
 - The actions of the agent influence the future data the agent will receive.

Reinforcement Learning Agent

```
function INTELLIGENT-AGENT(percept, goal) returns an action
   static: state, the agent's memory of the world state
   state ← UPDATE-STATE-FROM-PERCEPTS(state, percept)
  IF previous_action != None
        LEARN_FROM_TRANSITION(previous_state, previous_action,
                              state, reward)
  action ← CHOOSE-BEST-ACTION(state)
   state ← UPDATE-POLICY-STATE-FROM-ACTION(state, action)
  previous_action ← action
  previous_state ← state
   return action
```

General Features

- We still have a Markov Decision Process (MDP).
- Let
 - S: a set of finite **states** (including an initial state s_0 and terminal states).
 - A(s): a set of possible actions from state s.
 - P(s'|s, a): a **transition** model, where $a \in A(s)$.
 - R(s): the **reward** function (how good is to be in state s).
 - The environment is perfectly observable.
- We still are looking for the optimal policy π^* that maximizes the expected sum of the rewards.
 - $U^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P(s' | s, \pi(s)) U^{\pi}(s')$ (where γ is the decay discount factor).
 - $\pi^*(s) = \operatorname{argmax}_{\pi} \Sigma_{s' \in S} P(s' | s, a) U^{\pi}(s')$

Learning

- New consideration: solve MDP, ie find an optimal policy π , when
 - P(s'|s, a) is unknown
 - R(s) is unknown
- Trial and get information from percepts after choosing an action
 - Percepts provide information on the current state and the immediate reward.

3. Q-learning algorithm

- Q-Learning learns the action-value function Q(s, a).
 - Q(s, a) is the expected sum of the rewards from s and the execution of a until the end of the optimal policy.
 - $P(s,a) = R(s) + \gamma \sum_{s' \in S} P(s'|s,a) U(s')$
 - The link between Q (s, a) and U(s) is that $U(s) = \max_a Q(s, a)$.
 - $P(s,a) = R(s) + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) \max_{a'} Q(s',a')$
- The policy of the agent
 - $\pi(s) = \arg \max_a Q(s, a)$.
 - Advantage: for the choice of the action, no need to learn P(s'|s, a) or R(s) (hidden in Q(s,a))

Learning with Q-learning

- According to the definition of $Q(s_t, a_t)$, we have:
 - $Q(s_t, a_t) = [R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid s_t, a_t]$
 - R_{t+1} is the reward the agent gains after taking action at time step t.
- We translate this equation by updating based on a learning rate.
 - When a transition $s \rightarrow s'$ occurs from state s to state s', we apply the following update to Q(s, a):
 - ► $Q(s, a) \leftarrow Q(s, a) + \alpha$ (correction) learning rate
 - ► correction = difference = $R(s) + \gamma \max_{a'} Q(s', a')$ -Q(s, a)Current reward + Maximum expected Previous value future reward
- Theorem: if each action is executed an infinite number of times in each state, the values of Q lead to the optimal policy.

Learning Rate α

- The learning rate α determines to what extent newly acquired information overrides old information.
 - $Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - $Q(s, a) \leftarrow (1 \alpha) Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a'))$
 - A factor $\alpha = 0$ makes the agent learn nothing (exclusively exploiting prior knowledge).
 - A factor $\alpha = 1$ makes the agent consider only the most recent information (memoryless: ignoring prior knowledge to explore possibilities).
 - In practice, often a constant learning rate is used, such as $\alpha = 0.1$.

- MDP
 - S={ s_0 , s_1 , s_2 }, A= { a_0 , a_1 , a_2 }
- Initialization:
 - $Q(s_0, a_0) = 0$ $Q(s_0, a_1) = 0$ $Q(s_0, a_2) = 0$ $Q(s_1, a_0) = 0$ $Q(s_1, a_1) = 0$ $Q(s_1, a_2) = 0$ $Q(s_2, *) = 1$ known terminal node.
- Given:
 - $\alpha = 0.5, \gamma = 0.5$
- Note: initial values can be obtain from experiment (eg, helicopter)

- Observations: $(s_0)_{-0.1}$
 - Nothing to do (we need a triplet (s, a, s'))

```
• Chosen action \pi(s_0) = \arg \max\{ Q(s_0, a_0), Q(s_0, a_1), Q(s_0, a_2) \}
= \arg \max\{ 0, 0, 0 \}
= a_1 (arbitrary, could be a_0 or a_2)
```


- Observations: $(s_0)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1}$
 - Recall: $Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') Q(s, a))$ for transition $s \rightarrow s'$
 - $Q(s_0, a_1) \leftarrow Q(s_0, a_1) + \alpha (R(s_0) + \gamma \max\{Q(s_0, a_0), Q(s_0, a_1), Q(s_0, a_2)\} Q(s_0, a_1))$ = 0 + 0.5 (-0.1 + 0.5 max{ 0, 0, 0} - 0) = -0.05
 - Chosen action $\pi(s_0)$ = arg max{ $Q(s_0, a_0)$, $Q(s_0, a_1)$, $Q(s_0, a_2)$ } = arg max{ 0, -0,05, 0 } = a_0 (arbitrary, could be a_2) (change policy! Previously $\pi(s_0) = a_1$)

- Observations: $(s_0)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1} \xrightarrow{a_0} (s_1)_{-0.1}$
 - Recall: $Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - $Q(s_0, a_0) \leftarrow Q(s_0, a_0) + \alpha (R(s_0) + \gamma \max\{Q(s_1, a_0), Q(s_1, a_1), Q(s_1, a_2)\} Q(s_0, a_0))$ = 0 + 0.5 (-0.1 + 0.5 max{ 0, 0, 0} - 0) = -0.05
 - Chosen action $\pi(s_1)$ = arg max{ $Q(s_1, a_0)$, $Q(s_1, a_1)$, $Q(s_1, a_2)$ } = arg max{ 0, 0, 0 } = a_1 (arbitrary, could be a_0 or a_2)

- Observations: $(s_0)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1} \xrightarrow{a_0} (s_1)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1}$
 - Recall: $Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - $Q(s_1, a_1) \leftarrow Q(s_1, a_1) + \alpha (R(s_1) + \gamma \max\{Q(s_0, a_0), Q(s_0, a_1), Q(s_0, a_2)\} Q(s_1, a_1))$ = 0 + 0.5 (-0.1 + 0.5 max{-0.05, -0.05, 0} + 0) = -0.0625
 - Chosen action $\pi(s_0)$ = arg max{ $Q(s_0, a_0)$, $Q(s_0, a_1)$, $Q(s_0, a_2)$ } = arg max{ -0.05, -0.05, 0 } = a_2 (change policy! Previously $\pi(s_0) = a_0$)

- Observations: $(s_0)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1} \xrightarrow{a_0} (s_1)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1} \xrightarrow{a_2} (s_1)_{-0.1}$
 - $Q(s_0, a_2) \leftarrow Q(s_0, a_2) + \alpha (R(s_0) + \gamma \max\{Q(s_1, a_0), Q(s_1, a_1), Q(s_1, a_2)\} Q(s_0, a_2))$ = 0 + 0.5 (-0.1 + 0.5 max{-0.0625, 0, 0} + 0) = -0.065625
 - Chosen action $\pi(s_1) = \arg \max\{ Q(s_1, a_0), Q(s_1, a_1), Q(s_1, a_2) \}$ = $\arg \max\{ 0, -0.0625, 0 \}$ = a_2 (change policy! Previously $\pi(s_1) = a_1$)

- Observations: $(s_0)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1} \xrightarrow{a_0} (s_1)_{-0.1} \xrightarrow{a_1} (s_0)_{-0.1} \xrightarrow{a_2} (s_1)_{-0.1} \xrightarrow{a_2} (s_2)_1$
 - Terminal state: $Q(s_2, *) = 1$
 - Recall: $Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') Q(s, a))$
 - $Q(s_1, a_2) \leftarrow Q(s_1, a_2) + \alpha (R(s_1) + \gamma \max\{Q(s_2, *)\} Q(s_1, a_2))$ = 0 + 0.5 (-0.1 + 0.5 max{ 1} + 0) = 0.2
- Let's go for a new try...

4. Dilemma Exploration vs. Exploitation

- The current approach is greedy: always uses the best action (exploitation)
- Problem:
 - Suppose we could do action a_3 in state s_1 , that leads to state s_3 such as $R(s_3) = 1000$.
 - Since $Q(s_1, a_3) = 0$ at initialization, and current $Q(s_1, a_2) = 0.2$, after a try $Q(s_1, a_2) > Q(s_1, a_3)$, a greedy approach will never explore s_3 !
- Solution : use random actions (exploration)

Dilemma Exploration vs. Exploitation

- Analysis
 - Too much exploitation leads to an agent that relies on suboptimal plans.
 - Too much exploration leads to an agent that wastes his time to learn.
- Finding the optimal balance between exploration and exploitation is an open problem in general.
 - Optimal exploration / exploitation strategies exist only in very simple cases.
 - Only practical heuristics are available.

Solution 1: ε-Greedy

- The simplest strategy
 - Consider parameter $\varepsilon \in [0,1]$
 - Every time step, flip a coin $\rightarrow p$
 - Exploration: with small probability $(p \le \varepsilon)$, act randomly
 - Exploitation: with large probability $(p > \varepsilon)$, act on current policy
- Problems with random actions?
 - You do eventually explore the space, but keep acting randomly once learning is done.
 - One solution: lower ε over time.

Solution 2: Exploration Function

- A more adaptive strategy: the exploration function f(u, n)
 - This function increases artificially the future rewards of unexplored actions to favor exploration.
 - Q(s, a) \leftarrow Q(s, a) + α (R(s) + γ max_{a'} f(Q[a', s'], N(s', a')) Q[a, s]) where N(s,a) is the number of times action a has been chosen in state s

and
$$f(u, n) = \begin{cases} R^+ & \text{if } n < N_e \text{ (exploration)} \\ u & \text{otherwise (exploitation)} \end{cases}$$

- R⁺: an artificial optimistic estimate of the best possible reward obtainable in any state (problem dependent)
- N_e a fix parameter. Guaranty that action a will be chosen in s at least N_e times during learning.
- The exploration function should decrease for u and increase for n.

Q-learning Algorithm

```
function Q-LEARNING-AGENT(percept) returns an action
input: percept, indicating the current state s' and reward signal r'
persistent: Q, a table of action values index by state and action
             Nsa, a table of frequencies for state-action pairs
             s,a,r the previous state, action, reward, initially null
  IF s is not null THEN
     increment Nsa[s,a]
     Q[s,a] \leftarrow Q[s,a] + \alpha(\mathbf{f}(r + \gamma \max_{a'} Q[s',a'], Nsa[s',a']) - Q[s,a])
  s, a, r \leftarrow s', arg \max_{a'} f(Q[s', a'], Nsa[s', a']), r'
  return a
end
    f(u,n) is the exploration function.
```

5. Limits of this modeling

- Problem 1: Limited for real applications
 - **Q(state, action)** values are stored in tables of size state*action.
 - ► Too large to hold in memory.
 - ► Too large to learn all the Q values. Time to convergence increases rapidly as the space gets larger.

Limits of this modeling

- Problem 2: Generalization
- Example: Pacman
 - Suppose we learn during tries that this states is bad (low *U*(*s*) *value*).

• Or even for this one (one dot less).

Solution: Approximation of Utility Function

- Describe a state using a vector of features (cf. adversarial search).
 - $f(s) = \Sigma_i w_i \cdot f_i(s, a)$
 - Features f_i are floating point functions that capture the salient properties of states.
- Advantages
 - Represent utility functions for a very large number of states.
 - Generalize to similar states.

Example of State Abstraction: Pacman

Examples of features:

- Distance to the nearest ghost
- Distance to the nearest food.
- Number of ghosts.
- 1 / (distance to closest dot)
- Is Pacman in a tunnel? (0/1)
- Is Pacman close to a ghost? (0/1)
- etc.

Abstraction using Approximated Linear Functions

- Q values becomes:
 - $Q_f(s, a) = \Sigma_i w_i \cdot f_i(s, a)$
- Q-Learning learning algorithm is used to learn the weight vector W, similar to updating Q-values when a transition $s \rightarrow s'$ by action a occurs:
 - $\forall i, w_i \leftarrow w_i + \alpha[difference] \cdot f_i(s, a)$
 - difference = $[R(s, a) + \gamma \max_{a'} Q(s', a'))] Q(s, a)$
- Intuitive interpretation:
 - Adjust weights of active features
 - e.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features.

Example: Q-Pacman

- Suppose 2 features: $Q(s,a) = 4.0 f_{DOT}(s, a) 1.0 f_{GST}(s, a)$ and $\alpha = 0.004$
 - f_{DOT} = 1 / (distance to closest dot)
 - f_{GST} = distance to the nearest ghost

- $r + \gamma \max_{a'} Q(s', a') = -500 + 0$
- difference = [R(s, a) + γ max_{a'} Q(s', a'))] Q(s, a) = -500 - 1 $w_{DOT} \leftarrow 4.0 + \alpha[-501] \cdot 0.5 = 3$ $w_{GST} \leftarrow -1.0 + \alpha[-501] \cdot 1.0 = -3$
- Update: $Q(s, a) = 3.0 F_{DOT}(s, a) 3.0 F_{GST}(s, a)$

Conclusion

- Reinforcement learning is used to learn sequential decision making.
- This is a very active area of research:
 - There are more and more applications in robotics, self-driving, and other areas.
- Reinforcement learning is more difficult when the reward is far (eg. at the very end of a game).
 - Sometimes appropriate positive intermediate reinforcements are added.
 - Drawback: need expertise.