RECSYS Formula Sheet

Global Effects

1. Global Bias μ	$\mu = \frac{\sum_{u} \sum_{i} r_{ui}}{N+C}$
	N = # non-zero ratings

2. Normalization
$$r'_{ui}$$
 $r'_{ui} = r_{ui} - \mu$
3. Item Shrink Average Rating b_i $b_i = \frac{\sum_u r'_{ui}}{N_i + C}$
4. Normalization (Again) $r''_{ui} = r'_{ui} - b_i \ \forall u \in U, i \in I$
5. User Shrinked Average Rating b_u $b_u = \frac{\sum_{i \in I} r''_{ui}}{N_u}$

3. Item Shrink Average Rating
$$b_i$$
 $b_i = \frac{\sum_u r'_{ui}}{N_i + C}$

$$N_i = \text{number of Users who rated item } i$$

4. Normalization (Again)
$$r''_{ui} = r'_{ui} - b_i \ \forall u \in U, i \in I$$

5. User Shrinked Average Rating
$$b_u$$
 $b_u = \frac{\sum_{i \in I} r''_{ui}}{N_u}$

Rating Estimation

We can estimate a rating in a NON-PERSONALIZED way using the global effects:

$$r_{ui} = \mu + b_u + b_i$$

Evaluation Techniques

Online Evaluation	
Direct Feedback	User questionnaires (high bias)
A/B Testing	Compare RS_1 vs RS_2 with unaware users
Controlled Exp.	Small aware group, mock-up testing
Crowdsourcing	Large volunteer group with compensation
Offline Evaluation	
/D 1	D. C. D. L. C. M. M.

Rating Prediction, Top-N Tasks Dataset Split Training Set \rightarrow Model Creation User Profile \rightarrow Rating Generation Testing Set \rightarrow Evaluation

Dataset Partitioning Hold out of Ratings Random % of ratings for testing, Risk of overfitting

Hold out of Users Exclude users for training, Split excluded users' ratings between profile/testing

Quality Metrics

Metric	Description
Relevance	Ability of recommending items that the user likes
Diversity	Ability of recommending different items
Serendipity	Ability of recommending unexpected items
Coverage	Ability of recommending items that the user has not seen
Novelty	Ability of recommending unknown items
Consistency	Ability to give consistent recommendations
Confidence	Measure how much the model is sure about its recommendations
Scalability	Time required for training
Serving Time	Time required for serving recommendations
Fairness	Fair recommendation for all users and for content providers

Classification Metrics

Recall	$\frac{TP}{FN+TP}$
Precision	$\frac{TP}{TP+FP}$
Fallout	$\frac{FP}{FP+TN}$

Ranking Metrics

AUC
$$\frac{\sum_{k} Recall(k) \cdot \Delta Fallout}{N}$$

AP
$$\sum_{k} Precision(k) \cdot [Recall(k) - Recall(k-1)]$$
MAP
$$\sum_{u} AP_{u}(k)$$

MAP

Content-Based Filtering

Similarity Metrics

Basic Similarity	$s_{ij} = i \cdot j = \#\text{common}$	

Cosine Similarity
$$s_{ij} = \frac{\vec{i} \cdot \vec{j}}{\|\vec{i}\| \cdot \|\vec{j}\|}$$

Shrinked Cosine $s_{ij} = \frac{\vec{i} \cdot \vec{j}}{\|\vec{i}\| \cdot \|\vec{j}\| + C}$

Rating Estimation

Single Rating	$\tilde{r}_{ui} = rac{\sum_{j} r_{uj} \cdot s_{ij}}{\sum_{j} s_{ij}}$
Matrix Form	$\tilde{R} = R \cdot \tilde{S}$

k-Nearest Neighbors (kNN)

Definition	Keep only k highest similarity values per item
Effect	Reduces noise and improves computation speed

k too small: unreliable estimates Selection k too large: noisy recommendations

 $\tilde{r}_{ui} = \frac{\sum_{j,i \in N_k(j)} r_{uj} \cdot s_{ji}}{\sum_{j,i \in N_k(j)} s_{ji}}$ Formula

TF-IDF Weighting

Term Frequency
$$TF_{i,a} = \frac{N_{i,a}}{N_i}$$

 $N_{i,a}$: occurrences of attribute a in item i

 N_i : attributes in item i

 $IDF_a = \log_2 \frac{N_{items}}{N_a}$ Inverse Doc Freq

 N_{items} : total items N_a : items with attribute a

Collaborative Filtering

User-based CF aims to find similar users and recommend items based on their preferences.

Similarity	Formula	Context
Cosine Similarity	$s_{ij} = \frac{\vec{i} \cdot \vec{j}}{\ \vec{i}\ \ \vec{j}\ }$	Implicit ratings
Jaccard Similarity	$s_{ij} = rac{ec{i} \cap ec{j}}{ec{i} \cup ec{i}}$	Implicit ratings
Pearson Correlation	$s_{ij} = \frac{\sum_{i \in I} (r_{iu} - \bar{r}_u) \cdot (r_{iv} - \bar{r}_v)}{\sqrt{\sum_{i \in I} (r_{iu} - \bar{r}_u)^2} \sqrt{\sum_{i \in I} (r_{iv} - \bar{r}_v)^2}}$	Explicit ratings

Focus on Pearson Correlation

Pearson correlation computes similarity between a rating delta. Therefore the similarity is used to predict the delta of the rating!

$$\tilde{r}_{ui} - \bar{r}_u = \frac{\sum v \in KNN(u)(r_{vi} - \bar{r}_v) \cdot s_{uv}}{\sum v \in KNN(u)s_{uv}}$$

The Top-N Scenario

Normalizing the predicted rating is necessary to improve rating prediction. In a Top-N scenario, we can compute the rating \tilde{r}_{ui} without normalization to save computation!

Item-based CF aims to find similarity between items based how many users have the same opinion about them. The similarity is obtained in the same way as for user-based CF, considering the items instead of the users.

Memory-Based vs Model-Based

Memory-Based:

- Requires user profile in URM used to build model
- Only works for "known" users
- Must rebuild model for new users
- Example: User-Based CF (uses user neighborhood)

Model-Based:

- Works with any user profile
- Supports both "known" and "unknown" users
- No model recomputation needed for new users
- Example: Item-Based CF (uses item similarities)

Association Rules

Association rules explore relationships between items using conditional probability:

$$P(i|j) = \frac{\text{\# appearances of i and j}}{\text{\# appearances of j} + C}$$

where C is a shrinkage term to avoid biases. The similarity is asymmetric: $P(i|j) \neq P(j|i)$

Machine Learning Item-based CF

Loss Functions	
Error Metrics	MAE,MSE
Accuracy Metrics	Precision, Recall
Ranking Metrics	AUC, MAP
SLIM (opt. Error Metric)	
Closed-Form Solution Objective	$S^* = \arg\min_S \ R - RS\ _2$
Constraints on S	$\operatorname{diag}(S) = 0$
Lasso Regression Regularization	$S^* = \arg\min_{S} (\ R - RS\ _2 + \lambda \ S\ _1)$
Ridge Regression Regularization	$S^* = \arg\min_{S} (\ R - RS\ _2 + \lambda \ S\ _2)$
Elastic Net Regularization	$S^* = \arg\min_{S} (\ R - RS\ _{2} + \lambda_1 \ S\ _{1} + \lambda_2 \ S\ _{2})$
BPR (opt. Ranking)	
(BPR) Probability Function	$P(\tilde{r}_{ui} > \tilde{r}_{uj} \mid \text{user } u) = \sigma(x) = \frac{1}{1 + e^{-x}}$
Pairwise Difference for BPR	$x_{uij} = \tilde{r}_{ui} - \tilde{r}_{uj}$
Loss Function	$\arg \max_{\theta} \prod_{(u,i,j)} P(x_{uij}(\theta) > 0 \mid u)$
Log-Likelihood:	$\arg\max_{\theta} \sum_{(u,i,j)} \log(P(x_{uij}(\theta) > 0 \mid u))$
Loss Minimization:	$\arg\min_{\theta} - \sum_{(u,i,j)} \log(\sigma(x_{uij}(\theta))) + \lambda \theta _2 \dots$
LightGCN	

BPR optimization

It can be demonstrated that optimizing the BPR objective function is equivalent to maximizing the AUC metric. Thus, BPR is an optimization method for ranking metrics.

$$P(\tilde{r}_{ui} > \tilde{r}_{uj} \mid \text{user } u) = P(\tilde{r}_{ui} - \tilde{r}_{uj} > 0 \mid \text{user } u) \tag{1}$$

$$= P(x_{uij} > 0 \mid \text{user } u) \tag{2}$$

$$= \sigma(x_{uij}) = \frac{1}{1 + e^{-x_{uij}}}$$
 (3)

Where $\sigma(x)$ is the sigmoid function to optimize.

- $-x_{uij}$ should tend to 1 if i is a relevant item for user u and j is not
- $-x_{uij}$ should tend to 0 if both items are not relevant for user u or either both relevant

NB: BPR suffers from popularity bias.

Matrix Factorization	
User Rating Matrix (URM)	
User Preference	x_{uk} : Preference of user u for feature k
Item Description	y_{ik} : Description of item i for feature k
Predicted Rating	
Dimensionality Constraint	$ \tilde{r}_{ui} = \sum_{k} x_{uk} \cdot y_{ik} N_k < \frac{N_u \cdot N_i}{N_u + N_i} $
Matrix Factorization	$R \approx X \cdot Y$
Dimensions	$X \in \mathbb{R}^{N_u \times N_f}, Y \in \mathbb{R}^{N_f \times N_i}, R \in \mathbb{R}^{N_u \times N_i}$
Loss Function	$\min_{X,Y} \ R - XY\ _2$
Regularization	$\min_{X,Y} \ R - XY\ _2 + \lambda_1 \ X\ _2 + \lambda_2 \ Y\ _2$
SGD for MF	- Sample (u, i, r_{ui}) - $\frac{\delta E(X,Y)}{\delta x_u} = -2 \cdot (r_{ui} - x_u y_{i*}) \cdot y_{i*} + 2\lambda_1 \cdot x_u$ - $\frac{\delta E(X,Y)}{\delta y_{i*}} = -2 \cdot (r_{ui} - x_u y_{i*}) \cdot x_u + 2\lambda_2 \cdot y_{i*}$
Missing Ratings	 MAR: Missing As Random MAN: Missing As Negative
ALS Algorithm	While not converged do: Fix X , Learn Y Fix Y , Learn X
	set $N_k=0$
	Initialize X,Y
a Fund-CVD Almonithm	While not converged do:
• FunkSVD Algorithm	Increment N_k
	Apply ALS for current N_{k}
SVD++ (train with SGD)	$-\tilde{r}_{ui} = \mu + b_u + b_i + \sum_k x_{uk} \cdot y_{ki} -\mu^*, b_u^*, b_i^*, X^*, Y^* = \min_{\mu, b_u, b_i, X, Y} E(\dots)$
Asymmetric SVD (m-b)	$\tilde{R} = RZY$, $X = RZ$
• pure SVD (m-b)	$\tilde{R} = U_k \Sigma_k V_k^T = R V_k V_k^T$

Graph-Based Recommenders

Graph-Based - 2

PageRank	
Random Walk and Restart	$\prod = \gamma \prod P + (1 - \gamma) \prod_{0}$
P3Alpha $P_3\alpha$	
Metapath	$U \to I \to U \to I$
Probability	$P_{UI} = (diag(\frac{1}{d_{u}}) \cdot R)^{\alpha}$
Recommendation	$P_{IU} = (diag(\frac{1}{d_i}) \cdot R^T)^{\alpha}$ $\prod = \gamma \prod \cdot P^3$ $= \gamma \prod \cdot P_{UI} \cdot P_{IU} \cdot P_{UI}$
Disadvantages	$= \gamma \prod P_{UI} \cdot S$ Strong popularity bias
RP3Beta $RP_3\beta$	(penalize popular items)
Similarity	$S_{ij} = \frac{1}{d_j^{\beta}} \sum_{u \in U} \left(\frac{r_{ui}r_{uj}}{d_i d_j}\right)^{\alpha}$

Cosine Similarity Correlation

As seen above, without the parameter α , the random walk will end up building the same similarity matrix S as the one obtained by the cosine similarity (for implicit ratings).

$$S_{ij} = [P_{IU} \cdot P_{UI}]_{ij} = \sum_{u \in U} \frac{r_{ui}r_{uj}}{d_id_j}$$

DL for RECSYS

Binary Cross Entropy $\arg \min_{\theta} = \operatorname{Sampling}$	$-\frac{1}{N}$	$\sum_{i=1}^{N} \left[r_{ui} \log(\tilde{p}_{ui}(\theta)) + (1 - r_{ui}) \log(\tilde{p}_{ui}(\theta)) \right]$
Sumpring	×	Cannot use ground truth (too many negative samples)
	×	Cannot use just positive samples (no
		learning)
	\checkmark	Subsample among $+$ and $-$ interac-
		tion with probability $p = 0.5$

MSE, BCE

Autoencoder

Stone

Reconstruction Loss

Steps	- Sample a user profile r_u - Ecode it $e_u = g_e(r_u)$ - Decode it $\tilde{r}_u = g_d(e_u)$ - Rank the items
EaseR	(Item-Based similarity CF model)
Loss Function $S^* =$	$\underset{\vec{\gamma} \in \mathbb{R}^{ I }}{\arg \min_{S} R - RS _{F} + \lambda S _{F} + 2\vec{\gamma} \odot diag(S)}$
Constraints	diag(S) = 0
Similarity Matrix	$P = (R^T \cdot R + \lambda I_{ I })^{-1}$
v	$S^* = I_{ I } - P \cdot diag(1 \oslash diag(P))$
Pros and Cons	 ✓ Fast and highly efficient ✓ Due the Frobenius norm, it tries to compute R = RS, thus repoducing the input as output such as an autoencoder. × Computing P is memory intensive

Autoencoders and Item-Item Similarity Correlation

Given a shallow autoencoder with no hidden layers and embedding size K, if f = I and $b_e, b_d = 0$ then:

$$e_u = f_e(r_u \cdot W_e + b_e) = r_u \cdot W_e$$

$$\tilde{r}_u = f_d(e_u \cdot W_d + b_d) = e_u \cdot W_d = r_u \cdot W_e \cdot W_d$$

Since $W_e \in \mathbb{R}^{|I| \times K}, W_d \in \mathbb{R}^{|K| \times |I|}$

We can derive the assymmetric (or symmetric, if encoder and decoder share parameters) similarity matrix S as: $S = W_e \cdot W_d$

Denoising Autoecoders	
Risks	 × The encoder might create a poor embedding for new user profiles × The decoder could lack on reconstruct correctly portion of the embedding space
Denoising Salt & Pepper	Dropout, remove a number of postive interactionsRandom add a number of positive ir teractions
Variational Autoencoders (Mult-VAE)	Encoding a input as a distribution
Idea	Encoder: encode the input as $\vec{\mu}$, $\vec{\sigma}$ of a Gaussian Decoder: sample from the Gaussia and decode it $\vec{e}\tilde{N}(\vec{\mu}, \vec{\sigma})$ Learn the probability distributio $P(\theta z)$.
Reparametrization Trick Two Tower Models	$\vec{e} = \vec{\mu} + \vec{\sigma} \odot \vec{\epsilon}$ Where $\vec{\epsilon} \sim \mathcal{N}(0, 1)$
	User Tower User Input User Input Item Tower
Pros and Cons	 ✓ Can use any loss function (it does not have to reconstruct the input) ✓ User and item input can be of different types × Need to compute several ranking predictions r̃_{ui} × If the input is a one-hot encoding,
	is memory based

Graph Convolutional Networks Training Initialize user and item embeddings $E^{(0)}$ - Sample a data point (depends on loss function) - Apply h hops of graph convolution on the nodes $E^{(h)}$ - Using $E^{(h)}$ compute the prediction and gradients - Repeat! learn is $E^{(0)}$ predict is $E^{(h)}$. The "message" is the node embedding. LightGCN - weighted mean as aggregation function - Loss function is BPR - Does not include self-connections $E_u^{(h)} = \sum_{i:u,i \in R^+} \frac{1}{\sqrt{d_u \cdot d_i}} \cdot E_i^{(h-1)}$ $E_i^{(h)} = \sum_{u:u,i \in R^+} \frac{1}{\sqrt{d_u \cdot d_i}} \cdot E_u^{(h-1)}$ normalized adjacency matrix \hat{G} : $\hat{g}_{xy} = \frac{g_{xy}}{\sqrt{d_x d_y}}$ LightGCN Training Initialize the embeddings $E^{(0)}$ 1. Apply h convolution steps $E^{(h)} = \hat{G}^h \cdot E^{(0)}$ 2. Draw a BPR sample u, i, j such that $u, i \in \mathbb{R}^+$ and 3. Compute prediction $\tilde{r}_{ui} = E_u^{(h)} \cdot E_i^{(h)}$ and \tilde{r}_{uj} 4. Apply gradient of BPR Pros and Cons ✓ Can work on different types of graphs \checkmark Can accommodate different aggregation functions that may have parameters themselves ✓ Can accommodate different lossfunctions × Have enormous computational cost × Can exhibit high popularity bias **Popularity Bias** \hat{G} with SVD $E^{(h)} = \hat{G}^h \cdot E^{(0)}$ $= (V \cdot \Sigma \cdot V^T)^h \cdot E^{(0)}$ $=V \cdot \Sigma^h \cdot V^T \cdot E^{(0)}$

Large singular values, strongly popularity-basedSmall singular values, fine-grained signals

 $E^{(h)} = \hat{G}^h \cdot E^{(0)} = V \cdot f(\Sigma)^h \cdot V^T \cdot E^{(0)}$

Filter Function

f modifies Σ

Consider a two-tower model with no hidden layers, embedding size K and both user and item input one-hot encoded x_u , x_i . If f=I and $b_u,b_i,I=0$: $\tilde{r}_{ui}=W_u^U\cdot W_i^I$ Where $W_u^U\in\mathbb{R}^{|U|\times K},W_i^I\in\mathbb{R}^{|I|\times K}$ Then we have a Matrix Factorization model with K latent factors, $X=W_u^U$ and $Y=W_i^I$

Graph-Filter Collaborative Filtering

GF-CF

- Observation:small singular values disappear

- Idea: use truncated SVD to compute the similarity.

Normalize

Pros and Cons

$$\tilde{r}_{ui} = \frac{r_{ui}}{\sqrt{d_u d_i}}$$

Compute item-item S:

$$S = \hat{R}^T \cdot \hat{R} + \alpha D_I^{-\frac{1}{2}} \cdot V_k \cdot V_k^T \cdot D_I^{+\frac{1}{2}}$$

✓ Fast computation of the similarity and very effective

 \checkmark Flexible, change the exponent of the degree matrix

× The similarity is dense (high memory requirement. slow prediction)

× Applying KNN is difficult, large # of neighbors

Factorization Machines

user	item	rating	
1, 0, 0	1, 0, 0	3	

0, 1, 0 0, 1, 0 1 One hot encoding. Input Data

$$\vdots$$
 \vdots \vdots $0,0,1$ $0,0,1$ 2

Rating Estimation
$$\tilde{r}^{(k)} = \omega_0 + \sum_{i=1}^n \omega_i x_i^{(k)} + \sum_{i=1}^n \sum_{j=i+1}^n \omega_{ij} x_i^{(k)} x_j^{(k)}$$

Vector Form
$$\tilde{r}^{(k)} = \omega_0 + \vec{\omega} \cdot \vec{x}^{(k)} + \vec{x}^{(k)T} \cdot W \cdot \vec{x}^{(k)}$$

Loss Function
$$\arg\min_{\vec{\omega}} E(\omega) = \arg\min_{\vec{\omega}} ||r^{(k)} - \tilde{r}^{(k)}||$$

W factorization
$$\omega_{ij} = \vec{v}_i \cdot \vec{v}_j = \sum_{h=0}^f v_{i,h} v_{j,h} f \ll n$$
 latent factors

N parameters
$$\begin{cases} 1+n+\frac{n^2-n}{2} & \text{if not factorized} \\ 1+n+nf & \text{if factorized} \end{cases}$$

Imbalance Problem

× If ratings are implicit, lead to predict only 1s

✓ Random select non rated items for every user

 \checkmark Use the same number of positive and negative samples

Factorization Machines as SVD++

Using only collaborative data, the factorization machine is equivalent to SVD++, since one-hot encoding we can rewrite the factorization machine as:

$$\tilde{r}^{(k)} = \omega_0 + \omega_i + \omega_u + V_i \cdot V_u^T \tag{4}$$

Equivalent to SVD++.

We need to add **Context** data, for example from a ICM model.

${f Etics}$

\sim			. •	
	on			

Concentration	
Concentration Effect	The recommender made popular items more popular.
Gini Coefficient	$G(y) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} y_i - y_j }{2N^2 \bar{y}}$
	$\int G(y) \approx 0 \implies \text{even distribution}$
	$\begin{cases} G(y) \approx 0 \implies \text{ even distribution} \\ G(y) \approx 1 \implies \text{ concentration} \\ G_R(y) < G_I(y) \implies \text{ dispersion} \\ G_R(y) > G_I(y) \implies \text{ concentration} \end{cases}$
In our case	$\int G_R(y) < G_I(y) \implies \text{dispersion}$
in our case	$G_R(y) > G_I(y) \implies \text{concentration}$
Diversification	Variety
MMR	$\arg\max_{i\in R\setminus S} [\lambda Sim^{us}(i,u) - (1-\lambda) \max_{j\in S} Sim^{it}(i,j)]$
	$\begin{cases} \lambda \ large \implies \text{only care about relevance} \\ \lambda \ small \implies \text{only care about diversity} \end{cases}$
	$\lambda \ small \implies \text{only care about diversity}$

Diversification

Different items recommended to different users

Adomavicius & Kwon
$$rank'_u(i,t) = \begin{cases} rank^{(pop)}(i) \text{ if } r(u,i) \geq t \\ \alpha_u + rank_u(i) \text{ otherwise} \end{cases}$$
 Recommend items that the user likes but are not popular.

Spotify

Computing if user is specialist

User representation	$\gamma_u = \frac{1}{ H } \sum_{j=1}^{ H } \gamma_{H_j}$
	$\gamma_i = \text{Item representation}$
	$\gamma_u = \text{User representation}$
	Average of user's listening history.

Generalist - Specialist
$$GS(u) = \frac{1}{|H|} \sum_{j=1}^{|H|} \frac{\gamma_{H_j} \cdot \gamma_u}{||\gamma_{H_j}|| ||\gamma_u||}$$

$$\begin{cases} GS(u) \approx 0 \implies \text{ generalist} \\ GS(u) \approx 1 \implies \text{ specialist} \end{cases}$$

Inactive users tends to be specialist.

Calibration

Calibrate similar attribute proportions

KL divergence
$$KL(p,q) = \sum_g p(g|u) \log \frac{p(g|u)}{q(g|u)}$$
 Where:

- p is the historical distribution of attribute g for
- q is the current distribution of attribute g for user

Means: p and q should match.

Beyond CF	
CARS	Context-Aware Recsys
Rating Tensor	$\tilde{R} = X \cdot Y \cdot Z Z \in \mathbb{R}^{ F \times K }$
Loss function Session-based	$\arg\min_{X,Y,Z} R - \tilde{R} _2 + \lambda_1 X _2 + \lambda_2 Y _2 + \lambda_3 Z _2$
	 Anonymous users can only optimize short-term preferences Is Session-aware, if past sessions are available. can optimize long-term preferences
Knowledge-based	
	 Explicitly encode additional knoledge, requires knoledge engineering Useful for certain domains (chatbots, conversational systems)
Sequence-Aware	When sequence matters
Input	 if CF, is a set of user interactions Rely on a specific sequence of interactions, not on a session. × cannot use URM!
Goal	Predict the next item in the sequence
Approach	 Basics: CO-occurrence, Markov Chains, Heuristic KNN: find past sessions similar. Sequence-learning: Embedding, RNN, Attention.