Problem Statement -

We have two datasets which are in the form of excel sheets named FAA1.xlsx and FAA2.xlsx. Both of these data sets contain the data about the flight landings. Both datasets have little variance.

Our problem statement is to study the factors which impact the landing conditions of a commercial flight with the 950 records of data.

The given data and conditions are as follows -

FAA1 has 8 variables with total data count of 801 rows.

The variables are -

Aircraft, duration, no_pasg, speed_ground, speed_air, height, pitch, distance

FAA2 has 7 variables with total count of 151 rows.

The variables are -

Aircraft, no_pasg, speed_ground, speed_air, height, pitch, distance

So, when we compare both the datasets, FAA2 has one variable missing.

Variables and its descriptions -

Aircraft – The make of an aircraft (Boeing or Airbus).

<u>Duration (in minutes)</u> – Flight duration between taking off and landing. The duration of a normal flight should always be greater than 40min.

No pasg – The number of passengers in a flight.

<u>Speed_ground (in miles per hour)</u> – The ground speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.

<u>Speed_air (in miles per hour)</u> – The air speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.

<u>Height (in meters)</u> – The height of an aircraft when it is passing over the threshold of the runway. The landing aircraft is required to be at least 6 meters high at the threshold of the runway.

<u>Pitch (in degrees)</u> – Pitch angle of an aircraft when it is passing over the threshold of the runway.

<u>Distance (in feet)</u> – The landing distance of an aircraft. More specifically, it refers to the distance between the threshold of the runway and the point where the aircraft can be fully stopped. The length of the airport runway is typically less than 6000 feet.

Data Preparation and Cleaning -

<u>Step 1 – </u>

We will import both the datasets in SAS.

```
proc import out=faa1 datafile='/folders/myfolders/ecprg193/FAA1.xls'
dbms = xls replace;
  getnames = yes;
run;

proc import out=faa2 datafile='/folders/myfolders/ecprg193/FAA2.xls'
dbms = xls replace;
  getnames = yes;
run;
```

Analysis on first glance is as follows -

- 1) Duration column in dataset faa2 is not present.
- 2) The first 101 datasets of faa2 are same as that of faa1 except for the duration column.

```
proc means data=faa1 n nmiss mean median std skew min max; title 'faa1'; run;
```

The below table shows the characteristics of the FAA1 -

	taa1										
	The MEANS Procedure										
Variable	Label	N	N Miss	Mean	Median	Std Dev	Skewness	Minimum	Maximum		
duration	duration	800	0	154.0065385	153.9480975	49.2592338	0.1214794	14.7642071	305.6217107		
no_pasg	no_pasg	800	0	60.1325000	60.0000000	7.5271686	-0.0270744	29.0000000	87.0000000		
speed ground	speed ground	800	0	79.5414195	79.6428041	19.2348870	0.1174102	27.7357153	141.2186354		
speed_air	speed_air	200	600	103.8294713	100.9933978	10.4118729	1.0384782	90.0028586	141.7249357		
height	height	800	0	30.1217717	30.1467453	10.2761691	-0.1168804	-3.5462524	59.9459639		
pitch	pitch	800	0	4.0183751	4.0200665	0.5248160	-0.0200692	2.2844801	5.9267842		
distance	distance	800	0	1544.52	1267.44	938.2330999	1.6226419	34.0807833	6533.05		

```
proc means data=faa2 n nmiss mean median std skew min max; title 'faa2'; run;
```

The below table shows the characteristics of the FAA2 -

					faa2						
	The MEANS Procedure										
Variable	Label	N	N Miss	Mean	Median	Std Dev	Skewness	Minimum	Maximum		
no_pasg	no_pasg	150	50	60.3400000	60.5000000	7.3107717	0.0349586	44.0000000	78.0000000		
speed ground	speed_ground	150	50	77.9173910	76.5308198	19.8788997	0.3291706	29.2276564	141.2186354		
speed air	speed air	39	161	103.2224489	100.2606698	11.6781942	1.4232817	90.1110133	141.7249357		
height	height	150	50	30.2326030	29.2596657	10.8272955	-0.0304723	-3.5462524	58.0835448		
pitch	pitch	150	50	4.0238987	3.9877143	0.5342237	0.2921878	2.6689057	5.5563992		
distance	distance	150	50	1571.77	1271.99	1005.55	1.9758644	425.8585610	6533.05		

The above data can be used to show that -

- 1) All the variables except distance has a normal distribution as we can see that the mean and median are nearly equal for both data sets.
- 2) First data set has 600 missing values for speed_air variable.
- 3) Similarly, there are missing values for each variable in faa2 dataset.
- 4) The minimum and maximum for the variables are comparable in both the data sets, so should not contribute to a big change after combining.

Step 2 -

We will combine records from both the datasets.

```
data combined_faa;
set faa1 faa2;

data combined_faa;
set combined_faa;
if missing(coalesceC(of_character_)) then delete;
run;
```

After this we get 950 rows of data in a new data set named combined faa.

<u>Step 3 – </u>

After combining, we will remove all the duplicate fields from the combined dataset.

We had 100 rows of data in faa2 which had same data as in faa1. So, those should be removed as duplicates.

```
proc sort data=combined_faa nodupkey;
by aircraft no_pasg speed_ground speed_air height pitch distance;
run;
```

After this step, we are left with 850 rows of data.

<u>Step 4 – </u>

Now we have been provided with conditions where the data is abnormal. So, we should preferably remove those records before analyzing.

The conditions mentioned are as follows -

Duration (in minutes): Flight duration between taking off and landing. The duration of a normal flight should always be greater than 40min.

Speed_ground (in miles per hour): The ground speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.

Speed_air (in miles per hour): The air speed of an aircraft when passing over the threshold of the runway. If its value is less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal.

Height (in meters): The height of an aircraft when it is passing over the threshold of the runway. The landing aircraft is required to be at least 6 meters high at the threshold of the runway.

Distance (in feet): The landing distance of an aircraft. More specifically, it refers to the distance between the threshold of the runway and the point where the aircraft can be fully stopped. The length of the airport runway is typically less than 6000 feet.

Abnormal conditions -

Duration<40min

140 MPH < Speed_ground < 30 MPH

140 MPH < Speed_air < 30 MPH

Height < 6 meters

Distance > 6000 feet

We should remove all the records with the above abnormal conditions.

We will create three groups which will be -

- 0 Abnormal Values
- 1 Missing Values
- 2 Normal Values

```
data combined_faa_v1;
set combined_faa;
if speed_ground=. or speed_air=. or height=. then group=1;
else group=2;
if speed_ground ne . and (speed_ground lt 30.0 or speed_ground gt 140.0) then
group=0;
if speed_air ne . and (speed_air lt 30.0 or speed_air gt 140.0) then group=0;
if height ne . and height<6 then group=0;
if distance ne . and distance > 6000 then group=0;
run;
```

Now we will create a new dataset combined_faa_v2 which will not have abnormal values. Deleting the abnormal values by removing group 0 values.

```
data combined_faa_v2;
set combined_faa_v1;
if group=0 then delete;
else output combined_faa_v2;
run;
```

Now we are left with 836 rows of data with 8 variables.

Step 5 -

Let us analyze the data available after we removed the abnormal values –

abnormal values removed The MEANS Procedure Variable Label N Miss N Mean Std Dev Minimum Maximum Median duration duration 786 153.9337944 49.3360402 14.7642071 305.6217107 154.1281058 29.0000000 87.0000000 60.0000000 0 60.0406699 7.4792021 no_pasg no_pasg 836 speed_ground speed_ground 0 836 79.5944146 18.7327127 33.5741041 132.7846766 79.8275813 speed_air speed_air 630 206 103.4552338 9.6926499 90.0028586 132.9114649 101.1070213 height height 836 30.5104883 9.8049102 6.2275178 59.9459639 30.2095636 pitch 836 4.0050110 0.5273975 2.2844801 5.9267842 4.0023169 pitch 0 836 1263.54 distance distance 1526.05 898.4154244 41.7223127 5381.96 2.0000000 1.0000000 836 1.2464115 0.4311789 1.0000000 group

From the above analysis, we can see that -

- 1) Duration has 50 missing values.
- 2) Speed_air has 630 missing values.

Let us analyze both of these variables.

```
proc plot data=combined_faa_v2;
plot speed_air*speed_ground='@';
run;
```


From the above plot, we can see that the speed_ground and speed_air are correlated. So, even if we remove this variable we can do the analysis. Moreover, we have 630 values missing, so it is better to drop the speed_air variable.

proc plot data=combined_faa;
plot speed_ground*duration='^';
run;

Here we see no relation of duration with speed_ground and distance. We plan to check the correlation.

There seems to be no correlation between duration and distance. But as we have only 50 records missing, we plan to move ahead with this variable.

So, after the data preparation and cleaning we have the following dataset-

```
data combined_faa_v3;
set combined_faa_v2;
drop speed_air;
run;
```

This dataset has 836 records.

after data preparation and cleaning The MEANS Procedure Variable Label N Miss N Std Dev Minimum Median Mean Maximum 836 60.0406699 7.4792021 29.0000000 87.0000000 60.0000000 0 no_pasg no_pasg 0 132.7846766 speed_ground speed_ground 836 79.5944146 18.7327127 33.5741041 79.8275813 height height 0 836 30.5104883 9.8049102 6.2275178 59.9459639 30.2095636 2.2844801 836 4.0023169 pitch pitch 0 4.0050110 0.5273975 5.9267842 . distance . distance 0 836 1526.05 898.4154244 41.7223127 5381.96 1263.54 0 836 1.2464115 0.4311789 1.0000000 2.0000000 1.0000000 group

Data Exploration -

In this section, we will try to gain insights from the clean data available to us. We will analyze individual variables and check its relations with other variables.

1)Univariate Analysis -

no_pasg -

	Moments							
N	836	Sum Weights	836					
Mean	60.0406699	Sum Observations	50194					
Std Deviation	7.47920208	Variance	55.9384637					
Skewness	-0.0103497	Kurtosis	0.30478069					
Uncorrected SS	3060390	Corrected SS	46708.6172					
Coeff Variation	12.4568931	Std Error Mean	0.25867361					

The above table shows us that the variables no_pasg is nearly a normal distribution. The mean, median and mode are nearly equal. We have some outliers but we cannot remove those because it can have an impact on analysis.

speed_ground -

	Moments						
N	836	Sum Weights	836				
Mean	79.5944146	Sum Observations	66540.9306				
Std Deviation	18.7327127	Variance	350.914524				
Skewness	0.08550087	Kurtosis	-0.2394114				
Uncorrected SS	5589300.05	Corrected SS	293013.627				
Coeff Variation	23.53521	Std Error Mean	0.64788441				

This variable also looks nearly normal and the mean, median and mode are nearly equal. Though some outliers are present, we may not remove the outliers.

height -

	Moments						
N	836	Sum Weights	836				
Mean	30.5104883	Sum Observations	25506.7682				
Std Deviation	9.8049102	Variance	96.1362641				
Skewness	0.12917906	Kurtosis	-0.3340755				
Uncorrected SS	858497.735	Corrected SS	80273.7805				
Coeff Variation	32.1361956	Std Error Mean	0.33910991				

This variable also looks nearly normal and the mean, median and mode are nearly equal. Though some outliers are present, we may not remove the outliers.

pitch -

	Moments							
N	836	Sum Weights	836					
Mean	4.00501101	Sum Observations	3348.1892					
Std Deviation	0.52739751	Variance	0.27814813					
Skewness	0.00858989	Kurtosis	-0.0889377					
Uncorrected SS	13641.7883	Corrected SS	232.253692					
Coeff Variation	13.168441	Std Error Mean	0.01824042					

This variable also looks nearly normal and the mean, median and mode are nearly equal. Though some outliers are present, we may not remove the outliers because it may have some hidden information.

distance -

	Moments							
N	836	Sum Weights	836					
Mean	1526.0539	Sum Observations	1275781.06					
Std Deviation	898.415424	Variance	807150.275					
Skewness	1.46471488	Kurtosis	2.48355071					
Uncorrected SS	2620881139	Corrected SS	673970479					
Coeff Variation	58.8718017	Std Error Mean	31.0723472					

This is a non-normal distribution which does not have mean, median and mode nearly equal. This can be a lognormal distribution.

2) Bivariate Analysis -

We find the bivariate analysis, which is the relation of one variable with another variable.

proc sgscatter data=combined_faa_v3; plot(no_pasg speed_ground height pitch aircraft)*distance; run;

From this we can see that there is a linear and positive relationship between distance and speed_ground. But if we want to increase the linearity we can try to transform any of the variable. The only variable which is nearly linear is speed_ground, so we should try transformation on that variable.

Before doing that let us check the correlations of present variables.

3) Correlation -

Now we will find the correlation between various variables to check the type of relation between them.

For that first of all we will convert our aircraft to numeric values so that we can find the correlation with distance.

```
data combined_faa_v3;
set combined_faa_v3;
if aircraft="boeing" then aircraft_type=0;
else aircraft_type=1;

proc corr data=combined_faa_v3;
var no_pasg speed_ground height pitch distance aircraft_type;
title Correlation Coefficients;
run;
```

Correlation Coefficients

The CORR Procedure

6 Variables: no_pasg speed_ground height pitch distance aircraft_type

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
no_pasg	836	60.04067	7.47920	50194	29.00000	87.00000	no_pasg
speed_ground	836	79.59441	18.73271	66541	33.57410	132.78468	speed_ground
height	836	30.51049	9.80491	25507	6.22752	59.94596	height
pitch	836	4.00501	0.52740	3348	2.28448	5.92678	pitch
distance	836	1526	898.41542	1275781	41.72231	5382	distance
aircraft_type	836	0.53349	0.49918	446.00000	0	1.00000	

Pearson Correlation Coefficients, N = 836 Prob > r under H0: Rho=0									
	no_pasg	speed_ground	height	pitch	distance	aircraft_type			
no_pasg	1.00000	-0.00303	0.04237	-0.01923	-0.02115	0.02305			
no_pasg		0.9302	0.2210	0.5788	0.5414	0.5057			
speed_ground	-0.00303	1.00000	-0.05051	-0.03478	0.86661	0.03877			
speed_ground	0.9302		0.1445	0.3152	<.0001	0.2629			
height	0.04237	-0.05051	1.00000	0.02679	0.10767	0.01038			
height	0.2210	0.1445		0.4391	0.0018	0.7645			
pitch	-0.01923	-0.03478	0.02679	1.00000	0.09308	-0.35582			
pitch	0.5788	0.3152	0.4391		0.0071	<.0001			
distance	-0.02115	0.86661	0.10767	0.09308	1.00000	-0.24022			
distance	0.5414	<.0001	0.0018	0.0071		<.0001			
aircraft_type	0.02305 0.5057	0.03877 0.2629	0.01038 0.7645	-0.35582 <.0001	-0.24022 <.0001	1.00000			

From the above correlation table, we find that the distance is correlated with speed_ground.

Let us now check after transforming our speed_ground variable. We can try to check its square.

```
data combined_faa_v4;
set combined_faa_v3;
speed_ground_sqr = speed_ground**2;
run;
proc sgscatter data=combined_faa_v4;
plot(no_pasg speed_ground speed_ground_sqr height pitch aircraft)*distance;
run;
```


The plot above shows that the square of the speed_ground is more linear that the speed_ground. This should be better when we use for modeling.

Let us also check the correlation coefficients.

```
data combined_faa_v4;
set combined_faa_v4;
if aircraft="boeing" then aircraft_type=0;
else aircraft_type=1;

proc corr data=combined_faa_v4;
var no_pasg speed_ground speed_ground_sqr height pitch distance aircraft_type;
title Correlation Coefficients;
run;
```

	7 Vai	riables:	no_	pasg speed_	ground speed	l_ground_sqr	height pitch	distance air	craft_type	
	Simple Statistics									
V	/ariable		N	Mean	Std Dev	Sum	Minimum	Maximu	m Label	
n	io_pasg		836	60.04067	7.47920	50194	29.00000	87.0000	0 no_pas	g
s	peed_groun	ıd	836	79.59441	18.73271	66541	33.57410	132.7846	8 speed_	ground
s	peed_groun	ıd_sqr	836	6686	3047	5589300	1127	1763	2	
h	eight		836	30.51049	9.80491	25507	6.22752	59.9459	6 height	
р	itch		836	4.00501	0.52740	3348	2.28448	5.9267	8 pitch	
d	listance		836	1526	898.41542	1275781	41.72231	538	2 distanc	е
а	ircraft_type		836	0.53349	0.49918	446.00000	0	1.0000	0	
		no pa		_						
		no pa								
		1 000	-	speed_groun		ground_sqr	height	pitch	distance	aircraft_type
no_pasg no_pasg		1.000	00	-0.0030 0.930	13	-0.00467 0.8928	0.04237 0.2210	-0.01923 0.5788	-0.02115 0.5414	0.02305 0.5057
no_pasg speed_g	round	-0.003 0.93	00	-0.0030	13	-0.00467	0.04237	-0.01923	-0.02115	0.0230
no_pasg speed_gr speed_gr	round	-0.003	00 03 02 67	-0.0030 0.930	13 12 10 10	-0.00467 0.8928 0.98836	0.04237 0.2210 -0.05051	-0.01923 0.5788 -0.03478	-0.02115 0.5414 0.86661	0.02305 0.5057 0.03877
speed_gr speed_gr speed_gr height	round round	-0.003 0.93 -0.004	00 03 02 67 28	-0.0030 0.930 1.0000	33 32 30 36 31 31	-0.00467 0.8928 0.98836 <.0001	0.04237 0.2210 -0.05051 0.1445 -0.04696	-0.01923 0.5788 -0.03478 0.3152 -0.02424	-0.02115 0.5414 0.86661 <.0001 0.91670	0.02309 0.5057 0.03877 0.2629
no_pasg speed_gr speed_gr speed_gr height height pitch	round round	-0.003 0.93 -0.004 0.89	00 03 02 67 28 37 10	-0.0030 0.930 1.0000 0.9883 <.000	33 32 30 30 30 30 30 30 30 30 30 30 30 30 30	-0.00467 0.8928 0.98836 <.0001 1.00000	0.04237 0.2210 -0.05051 0.1445 -0.04696 0.1749	-0.01923 0.5788 -0.03478 0.3152 -0.02424 0.4839 0.02679	-0.02115 0.5414 0.86661 <.0001 0.91670 <.0001 0.10767	0.02309 0.5057 0.03877 0.2629 0.01546 0.6555
no_pasg speed_gr speed_gr	round round round_sqr	-0.003 0.93 -0.004 0.89 0.042 0.22	00 03 02 67 28 37 10 23 88	-0.0030 0.930 1.0000 0.9883 <.000 -0.0505 0.144	33 32 30 30 30 30 30 30 30 30 30 30 30 30 30	-0.00467 0.8928 0.98836 <.0001 1.00000 -0.04696 0.1749 -0.02424	0.04237 0.2210 -0.05051 0.1445 -0.04696 0.1749 1.00000 0.02679	-0.01923 0.5788 -0.03478 0.3152 -0.02424 0.4839 0.02679 0.4391	-0.02115 0.5414 0.86661 <.0001 0.91670 <.0001 0.10767 0.0018	0.0230! 0.505; 0.0387; 0.262! 0.01544 0.655; 0.0103(0.764!

Now when we compare the values of correlation of speed_ground and speed_ground_sqr, the value is greater for speed_ground_sqr.

Modeling -

We will build a model which we can be used to show the dependence of the response variable on the independent variables. We are trying to find a model which can show the variation of distance based on other variables.

Linear regression is a type of analysis which tries to find if one or more variable can represent a dependent variable.

The prerequisites of linear regression are –

- Linear relationship
- Multivariate normality
- No or little multicollinearity
- No auto-correlation
- Homoscedasticity

We can either transform the predictor or response variable. We choose to transform the predictor.

We can achieve a high value of R square if we consider both speed_ground and speed_ground_sqr.

But, as we consider the above prerequisites, we need no or little multicollinearity, so we need to remove one among the speed_ground and speed_ground_sqr. And as speed_ground_sqr has more linear relationship, we prefer this variable.

proc reg data=combined_faa_v4; model distance = no_pasg speed_ground_sqr height pitch aircraft_type/r spec; output out=faa_regression r=residual; run;

Correlation Coefficients

The REG Procedure Model: MODEL1 Dependent Variable: distance distance

Number of Observations Read	836
Number of Observations Used	836

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	5	626438367	125287673	2187.76	<.0001		
Error	830	47532113	57268				
Corrected Total	835	673970479					

Root MSE	239.30651	R-Square	0.9295
Dependent Mean	1526.05390	Adj R-Sq	0.9290
Coeff Var	15.68139		

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	Intercept	1	-529.37037	102.47574	-5.17	<.0001	
no_pasg	no_pasg	1	-2.06482	1.10866	-1.86	0.0629	
speed_ground_sqr		1	0.27365	0.00272	100.56	<.0001	
height	height	1	14.10606	0.84680	16.66	<.0001	
pitch	pitch	1	39.23883	16.81561	2.33	0.0199	
aircraft_type		1	-445.59212	17.75930	-25.09	<.0001	

We see that the value of R square is 0.9295, looking at which we can say that the model fits the equation.

To create an equation, we check the p values of the variables. If the value of p is greater than .05 we drop the variable or else, we keep it.

Creating the equation -

Y = b0 + b1X1 + b2X2 + E

Y = Distance

B0 = -529.37

B1 = -445.59

X1 = aircraft_type

B2 = 0.2736

X2 = speed_ground_sqr

B3 = 14.106

X3 = height

B4 = 39.23

X4 = pitch

Distance = -529.37 -445.59(aircraft_type) + 0.2736(speed_ground_sqr) + 14.106(height) + 39.23(pitch)

Model Checking -

In model checking we will have following criteria -

- Independent
- Normally Distributed
- Mean 0
- Constant Variance

Independent -

proc plot data=faa_regression;
plot distance*residual;
run;

Normally distributed -

proc univariate data=faa_regression; histogram/normal; var residual;

run;

Mean 0 -

proc chart data=faa_regression;
vbar residual;
run;

1. How many observations (flights) do you use to fit your final model? If not all 950 flights, why?

I have fit 836 observations in the final model. In my views, all the 950 observations were not eligible for a model because of the following reasons –

- 1) 100 observations from FAA2 were exactly duplicate of the observations from FAA1, but FAA2 had duration column missing. But, as I have dropped the duration column, those 100 observations have become exact replicas. So, it is preferred to remove those duplicates. After this we are left with 850 observations.
- 2) We also remove the abnormal values which are mentioned in problem statement. After removing those, we are left with 836 observations.
- 2. What factors and how they impact the landing distance of a flight?

After modelling, we are left with this equation

```
Distance = -529.37 - 445.59(aircraft_type) + 0.2736(speed_ground_sqr) + 14.106(height) + 39.23(pitch)
```

Above equation shows that the distance is impacted by four variables.

The other variables like no_pasg, duration, speed_air did not have a strong correlation like the other four variables. So, we removed these and kept the others.

3. Is there any difference between the two makes Boeing and Airbus?

Yes, there is a difference in both the makes of aircraft. If we analyze the response variable against the aircrafts, we can see the difference.

```
proc ttest data=combined_faa_v4;
var distance;
class aircraft_type;
run;
```

The mean and median of distance for Boeing is greater than that of Airbus.

The minimum and maximum are also very different.

The TTEST Procedure Variable: distance (distance)

aircraft_type	N	Mean	Std Dev	Std Err	Minimum	Maximum
0	390	1756.7	957.2	48.4691	573.6	5382.0
1	446	1324.4	791.3	37.4714	41.7223	4896.3
Diff (1-2)		432.4	872.6	60.4970		

aircraft_type	Method	Mean	95% CL Mean		Std Dev	95% CL Std Dev	
0		1756.7	1661.4	1852.0	957.2	894.4	1029.5
1		1324.4	1250.7	1398.0	791.3	742.6	847.0
Diff (1-2)	Pooled	432.4	313.6	551.1	872.6	832.7	916.6
Diff (1-2)	Satterthwaite	432.4	312.1	552.6			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	834	7.15	<.0001
Satterthwaite	Unequal	756.67	7.06	<.0001

Equality of Variances						
Method	Num DF	Den DF	F Value	Pr > F		
Folded F	389	445	1.46	0.0001		

