The LNM Institute of Information Technology Jaipur, Rajsthan

MATH-I ■ Assignment #4

(Infinite Series)

1. Find the values of p for which the following series are convergent or divergent:

$$(a) \sum_{n=1}^{\infty} \frac{1}{n^p}$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
, (b) $\sum_{n=1}^{\infty} \frac{1}{n((log n)^p)}$

- 2. Test the series $\sum_{n>1} \tan^{-1}(e^{-n})$ and the series $\sum_{n>1} \left(1-\frac{1}{n}\right)^{n^2}$ for convergence.
- 3. Show that if $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges. Give an example to show that the converse need not be true.
- 4. In each of the following cases, discuss the convergence/divergence of the series $\sum_{n\geq 1} a_n$, where a_n equals: (a) $2^{-n-(-1)^n}$, (b) $\left(1+\frac{1}{n}\right)^{n(n+1)}$.

(a)
$$2^{-n-(-1)^n}$$

(b)
$$\left(1 + \frac{1}{n}\right)^{n(n+1)}$$

- 5. Let $\{a_n\}$ be a decreasing sequence, $a_n \geq 0$ and $\lim_{n \to \infty} a_n = 0$. For each $n \in \mathbb{N}$, let $b_n = \frac{a_1 + a_2 + \ldots + a_n}{n}$. Show that $\sum_{n \ge 1} (-1)^n b_n$ converges.
- 6. Determine the values of x for which the following series converges: (a) $\sum_{n\geq 1} \frac{(x-1)^{2n}}{n^2 3^n}$, (b) $\sum_{n\geq 1} \frac{n^3}{3^n} x^n$, (c) $\sum_{n>1} \frac{(2n)!}{(2^n n!)^2} \frac{x^{2n+1}}{2n+1}$.

(a)
$$\sum_{n\geq 1} \frac{(x-1)^{2n}}{n^2 3^n}$$

$$(b) \sum_{n \ge 1} \frac{n^3}{3^n} x^n,$$

(c)
$$\sum_{n\geq 1} \frac{(2n)!}{(2^n n!)^2} \frac{x^{2n+1}}{2n+1}$$
.