1

Procédé pour le diagnostic/pronostic du neuroblastome

La présente invention concerne un procédé pour le pronostic du neuroblastome.

Le neuroblastome est en fréquence la deuxième cause de tumeur solide chez l'enfant après les tumeurs cérébrales. Le neuroblastome est le plus fréquent des cancers de l'enfant avant cinq ans et représente environ 15 % des cancers avant cet âge.

Les neuroblastomes sont des tumeurs malignes développées à partir de neuroblastes nés de la crête neurale et migrant pour former les ganglions sympathiques et la médullo-surrénale durant la période embryonnaire et fœtale.

Lorsqu'un premier examen clinique permet de suspecter un neuroblastome (boule, hématome, endroit douloureux, difficulté à bouger les membres, etc...), un bilan complet est réalisé afin de confirmer le diagnostic.

Généralement, ce bilan comprend :

10

15

- des examens par prélèvements (sang, urines),
 - ➤ différents examens radiologiques qui ont pour but de bien situer la tumeur, ses limites et sa taille (scintigraphie, échographie et/ou scanner et/ou IRM),
 - des examens au microscope de fragments de tumeurs afin de découvrir exactement de quel type de tumeur dont il s'agit.
- A l'heure actuelle, il n'existe pas de traitement universel lorsqu'un neuroblastome est diagnostiqué, et un traitement spécifique doit être adapté en fonction de l'âge du patient. On distingue alors principalement les traitements loco-régionaux (chirurgie et radiothérapie) afin d'enlever ou détruire la tumeur directement à l'endroit où elle se trouve et les traitements généraux (chimiothérapie), qui agissent dans tout l'organisme du patient à la fois sur la tumeur et mais aussi là où peuvent se trouver les métastases.

Le traitement du patient peut être adapté selon le pronostic du neuroblastome et la stratégie thérapeutique peut s'avérer très différente selon le stade et la caractérisation génétique des cellules tumorales. Ainsi, dans les formes localisées dont les cellules tumorales ne portent aucun caractère de mauvais pronostic, le traitement est essentiellement chirurgical alors que

10

15

20

dans les formes localisées dont les cellules tumorales sont de mauvais pronostic, le traitement doit être plus agressif, reposant sur la chimiothérapie et une radiothérapie locale. Il existe a l'heure actuelle différentes classifications du neuroblastome permettant de définir de la façon la plus précise possible des groupes pronostiques. Ces groupes permettent théoriquement de définir les indications thérapeutiques de façon adaptée au risque de la maladie. On peut citer notamment la classification de l'International Neuroblastoma Staging System (Brodeur et al. (1993) J. Clin. Oncol. 11, 1466-77), qui tient compte des données anatomiques actuellement reconnues comme ayant une valeur pronostique. Selon cette classification, on distingue les stades suivants:

- > stade 1: tumeur localisée totalement enlevée macroscopiquement; ganglions homo et controlatéraux examinés et négatifs microscopiquement
 - > stade 2A: turneur unilatérale enlevée incomplètement avec des ganglions homo et controlatéraux examinés et négatifs.
 - > stade 2B: turneur unilatérale avec atteinte ganglionnaire homolatérale et non controlatérale.
 - ➤ stade 3 : tumeur unilatérale non opérable montrant un dépassement de la ligne médiane ou tumeur unilatérale avec atteinte ganglionnaire controlatérable ou tumeur à cheval sur la ligne médiane avec extension bilatérale par infiltration ou par adénopathie.
- ➤ stade 4 : turneur primitive s'accompagnant d'une dissémination à distance : ganglionnaire, osseuse, médullaire, hépatique.
 - > stade 4S: turneur de stade local 1 ou 2 avec une dissémination limitée au foie, à la peau ou à la moelle osseuse. Les stades 4S sont des enfants ayant un âge inférieur à 1 an.
- Actuellement, le pronostic d'un neuroblatome peut être établi par l'étude de différents facteurs:
 - 1) l'amplification de l'oncogène N-rnyc est considérée comme un outil de référence, et est utilisée par la plupart des oncologues pédiatriques pour définir, au moment du diagnostic, les malades qui doivent recevoir une chimiothérapie intensive suivie de

greffe de moelle (Seeger et al, N Engl J Med. 1985; 313(18):1111-6; Rubie et al J Clin Oncol. 1997 Mar;15(3):1171-82.).

2) il existerait également une corrélation entre le pronostic du neuroblastome et le rapport des catécholamines VMA (vanilmandelic acid) / HVA (homovanillic acid), au moment du diagnostic. Dans les stades avancés, une excrétion urinaire élevée d'HVA et basse de VMA, voire normale, signerait un mauvais pronostic (Laug et al Pediatrics. 1978; 62(1):77-83).

5

10

15

20

25

- l'augmentation de la ferritine sérique dans les neuroblastomes est également considérée comme un facteur de mauvais pronostic (Evans et al, Cancer. 1987; 59(11):1853-9).
- 4) le taux de LDH (lactate deshydrogénase) pourrait également être un facteur de pronostic indépendant et prédominant pour les stades localisés I à III chez l'enfant de plus d'un an, et de façon moins importante chez l'enfant de moins d'un an avec un stade IV (Berthold et al, Am J Pediatr Hematol Oncol. 1994; 16(2):107-15).
- Toutefois, la corrélation entre l'amplification de l'oncogène N-myc et le pronostic du neuroblastome n'est pas absolue (Maris & Matthay, J Clin Oncol, 1999, 17(7): 2264-2279). De plus la LDH et la ferritine étant deux facteurs corrélés entre eux, la fiabilité de ces facteurs pour le pronostic du neuroblastome reste discutée (Berthold et al, 1992, Am J Pediatr Hamtol Oncol, 14(3): 207-215). Enfin, l'utilisation du rapport VMA/HVA donne une sensibilité et une spécificité insuffisantes pour le pronostic du neuroblastome.

4.00

La présente invention se propose de résoudre l'ensemble des inconvénients de l'état de la technique en présentant un nouvel outil de pronostic du neuroblastome.

D'une manière surprenante, les inventeurs ont mis en évidence que le pronostic d'un neuroblastome peut être déterminé par l'analyse de l'expression de gènes cibles sélectionnés parmi 37 gènes tel que présenté dans le tableau 1 ci après, qui sont exprimés différentiellement selon que le patient soit de bon ou de mauvais pronostic.

Tableau 1 - liste des 37 gènes cibles selon l'invention

SEQ ID	Description de la séquence	N° Genbank
N°		
1	Flap structure-specific endonuclease 1 (FEN1)	NM_004111
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM_007019
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
4	Collagen, type I, alpha 2 (COL1A2)	NM_000089
5	Nucleolin (NCL)	NM_005381
6	Interleukin enhancer binding factor 3, 90kDa (ILF3), transcript variant 2	NM_004516
7	cDNA FLJ30781 fis, clone FEBRA2000874, correspondant au gène codant l'adenylate cyclase 1 (brain)	AK055343 / NM_021116
8	TIF1beta zinc finger protein	X97548
9	Likely ortholog of mouse tumor differentially expressed 1, like (TDE1L)	NM_020755
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831
11	v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)(MYCN)	NM_005378
12	Small nuclear ribonucleoprotein D2 polypeptide 16.5kDa (SNRPD2), transcript variant 1	NM_004597
13	MCM2 minichromosome maintenance deficient 2, mitotin (S. cerevisiae)	NM_004526
14	RuvB-like 2 (E. coli) (RUVBL2)	NM_006666
15	Immediate early protein ETR101	NM_004907
16	RNA binding protein S1, serine-rich domain (RNPS1), transcript variant 1	NM_006711
17	Ornithine decarboxylase I (ODC1)	NM_002539
18	Activity-regulated cytoskeleton-associated protein (ARC)	NM_015193
19	Secretogranin II (chromogranin C) (SCG2)	NM_003469
20	Structure specific recognition protein 1 (SSRP1)	NM_003146
21	Collagen, type VI, alpha 3 (COL6A3), transcript variant 1	NM_004369
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091
23	Acidic (leucine-rich) nuclear phosphoprotein 32 family, member B (ANP32B)	NM_006401
24	Non-POU domain containing, octamer-binding (NONO)	NM_007363
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304
26	Small nuclear ribonucleoprotein polypeptide E (SNRPE)	NM_003094
27	KIAA0436 mRNA, partial cds	AB007896
28	Fibrillarin (FBL)	NM_001436
29	Tripartite motif-containing 2 (TRIM2)	NM_015271
	MCM6 minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe)	
30	(S. cerevisiae) (MCM6)	NM_005915
31	Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM_002819
32	Small nuclear ribonucleoprotein polypeptide A (SNRPA)	NM_004596
33	Creatine kinase, brain (CKB)	NM_001823
34	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM_012307
35	Hypothetical protein MGC3077	NM_024051
36	Tissue alpha-L-fucosidase 1 (FUCA 1)	NM_000147

5

37 Secreted protein acidic and rich in cysteine (SPARC) NM_003118

Parmi ces gènes, on peut distinguer des gènes dont la fonction est connue mais qui n'ont jamais été mis en relation avec le neuroblastome (SEQ ID N°1 à 8; 12 à 16; 18 à 26; 28; 30 à 34; 36) ainsi que des gènes dont la fonction est inconnue (SEQ ID N°9; 10; 27; 29; 35). Il est bien entendu que si différentes isoformes de ces gènes existent, toutes les isoformes sont relevantes pour la présente invention, et pas uniquement celles présentées dans le précèdent tableau.

5

10

15

20

25

A cet effet, la présente invention concerne un procédé pour le pronostic du neuroblastome chez un patient atteint du neuroblastome caractérisé en ce qu'il comprend les étapes suivantes :

- a. on extrait du matériel biologique d'un échantillon biologique prélevé chez le patient,
- b. on met en contact le matériel biologique avec au moins un réactif spécifique choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on met en contact le matériel biologique avec au moins deux réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37,
- c. on détermine l'expression d'au moins un desdits gènes cibles, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on détermine l'expression d'au moins deux desdit gènes cibles

Au sens de la présente invention, on entend par <u>échantillon biologique</u>, tout échantillon prélevé chez un patient, et susceptible de contenir un matériel biologique tel que défini ci après. Cet échantillon biologique peut être notamment un échantillon de sang, de sérum, de

10

15

20

25

3.0

salive, tissu, de tumeur, de moelle osseuse, de cellules circulantes du patient. On dispose de cet échantillon biologique par tout type de prélèvement connu de l'homme du métier. Selon un mode préféré de réalisation de l'invention, l'échantillon biologique prélevé chez le patient est un échantillon tissulaire, préférentiellement un échantillon de tumeur ou de moelle osseuse.

Au sens de la présente invention, on entend par <u>matériel biologique</u>, tout matériel permettant de détecter l'expression d'un gène cible. Le matériel biologique peut comprendre notamment des protéines, ou des acides nucléiques tels que notamment les acides desoxyribonucléiques (ADN) ou les acides ribonucléiques (ARN). L'acide nucléique peut être notamment un ARN (acide ribonucléique). Selon un mode préféré de réalisation de l'invention, le matériel biologique comprend des acides nucléiques, préférentiellement, des ARN, et encore plus préférentiellement des ARN totaux. Les ARN totaux comprennent les ARN de transfert, les ARN messagers (ARNm), tel que les ARNm transcrit du gène cible, mais également transcrit de tout autre gène et les ARN ribosomaux. Ce matériel biologique comprend du <u>matériel spécifique d'un gène cible</u>, tel que notamment les ARNm transcrits du gène cible ou les protéines issues de ces ARNm mais peut comprendre également du <u>matériel non spécifique d'un gène cible</u>, tel que notamment les ARNm transcrits d'un gène autre que le gène cible, les ARNt, les ARNr issus d'autres gènes que le gène cible.

Lors de l'étape a) du procédé selon l'invention, on <u>extrait le matériel biologique</u> de l'échantillon biologique par tous les protocoles d'extraction et de purification d'acides nucléiques bien connus de l'homme du métier.

A titre indicatif, l'extraction d'acides nucléique peut être réalisée par :

- une étape de lyse des cellules présentes dans l'échantillon biologique, afin de libérer les acides nucléiques contenus dans les cellules du patient. A titre d'exemple, on peut utiliser les méthodes de lyse telles que décrites dans les demandes de brevet:
 - o WO 00/05338 sur la lyse mixte magnétique et mécanique,
 - o WO 99/53304 sur la lyse électrique,
 - o WO 99/15321 sur la lyse mécanique.

10

15

20

25

L'homme du métier pourra utiliser d'autres méthodes de lyse bien connues, telles que les chocs thermiques ou osmotiques ou les lyses chimiques par des agents chaotropiques tels que les sels de guanidium (US 5,234,809).

une étape de purification, permettant la séparation entre les acides nucléiques et les autres constituants cellulaires relargués dans l'étape de lyse. Cette étape permet généralement de concentrer les acides nucléiques, et peut être adapté à la purification d'ADN ou d'ARN. A titre d'exemple, on peut utiliser des particules magnétiques éventuellement revêtues d'oligonucléotides, par adsorption ou covalence (voir à ce sujet les brevets US 4,672,040 et US 5,750,338), et ainsi purifier les acides nucléiques qui se sont fixés sur ces particules magnétiques, par une étape de lavage. Cette étape de purification des acides nucléiques est particulièrement intéressante si l'on souhaite amplifier ultérieurement lesdits acides nucléiques. Un mode de réalisation particulièrement intéressant de ces particules magnétiques est décrit dans les demandes de brevet: WO-A-97/45202 et WO-A-99/35500. Un autre exemple intéressant de méthode de purification des acides nucléiques est l'utilisation de silice soit sous forme de colonne, soit sous forme de particules inertes (Boom R. et al., J. Clin. Microbiol., 1990, n°28(3), p. 495-503) ou magnétiques (Merck: MagPrep® Silica, Promega: MagneSilTM Paramagnetic particles). D'autres méthodes très répandues reposent sur des résines échangeuses d'ions en colonne ou en format particulaire paramagnétique (Whatman: DEAE-Magarose) (Levison PR et al., J. Chromatography, 1998, p. 337-344). Une autre méthode très pertinente mais non exclusive pour l'invention est celle de l'adsorption sur support d'oxyde métallique (société Xtrana: matrice Xtra-BindTM).

Lorsque l'on souhaite extraire spécifiquement l'ADN d'un échantillon biologique, on peut notamment réaliser une extraction par du phénol, du chloroforme et de l'alcool pour éliminer les protéines et précipiter l'ADN avec de l'éthanol 100%. L'ADN peut alors être culoté par centrifugation, lavé et remis en solution.

Lorsque l'on souhaite extraire spécifiquement les ARN d'un échantillon biologique, on peut notamment réaliser une extraction par du phénol, du chloroforme et de

5

10

15

20

25

٠ -

8

l'alcool pour éliminer les protéines et précipiter les ARN avec de l'éthanol 100%. Les ARN peuvent alors être culoté par centrifugation, lavé et remis en solution.

Au sens de la présente invention, on entend par réactif spécifique, un réactif qui, lorsqu'il est mis en contact du matériel biologique tel que défini précédemment, se lie avec le matériel spécifique dudit gène cible. A titre indicatif, lorsque le réactif spécifique et le matériel biologique sont d'origine nucléique, la mise en contact du réactif spécifique et du matériel biologique permet l'hybridation du réactif spécifique avec le matériel spécifique du gène cible. Par hybridation, on entend le processus au cours duquel, dans des conditions appropriées, deux fragments nucléotidiques se lient avec des liaisons hydrogènes stables et spécifiques pour former un complexe double brin. Ces liaisons hydrogènes se forment entre les bases complémentaires Adénine (A) et thymine (T) (ou uracile (U)) (on parle de liaison A-T) ou entre les bases complémentaires Guanine (G) et cytosine (C) (on parle de liaison G-C). L'hybridation de deux fragments nucléotidiques peut être totale (on parle alors de fragments nucléotidiques ou de séquences complémentaires), c'est à dire que le complexe double brin obtenu lors de cette hybridation comprend uniquement des liaisons A-T et des liaisons C-G. Cette hybridation peut être partiellé (on parle alors de fragments nucléotidiques ou de séquences suffisamment complémentaires), c'est à dire que le complexe double brin obtenu comprend des liaisons A-T et des liaisons C-G permettant de former le complexe double brin, mais également des bases non liées à une base complémentaire. L'hybridation entre deux fragments nucléotidiques dépend des conditions opératoires qui sont utilisées, et notamment de la stringence. La stringence est définie notamment en fonction de la composition en bases des deux fragments nucléotidiques, ainsi que par le degré de mésappariement entre deux fragments nucléotidiques. La stringence peut également être fonction des paramètres de la réaction, tels que la concentration et le type d'espèces ioniques présentes dans la solution d'hybridation, la nature et la concentration d'agents dénaturants et/ou la température d'hybridation. Toutes ces données sont bien connues et les conditions appropriées peuvent être déterminées par l'homme du métier. En général, selon la longueur des fragments nucléotidiques que l'on souhaite

5

10

15

20

25

9

hybrider, la température d'hybridation est comprise entre environ 20 et 70°C, en particulier entre 35 et 65°C dans une solution saline à une concentration d'environ 0,5 à 1 M. Une séquence, ou fragment nucléotidique, ou oligonucléotide, ou polynucléotide, est un enchaînement de motifs nucléotidiques assemblés entre eux par des liaisons ester phosphorique, caractérisé par la séquence informationnelle des acides nucléiques naturels, susceptibles de s'hybrider à un fragment nucléotidique, l'enchaînement pouvant contenir des monomères de structures différentes et être obtenu à partir d'une molécule d'acide nucléique naturelle et/ou par recombinaison génétique et/ou par synthèse chimique. Un motif est dérivé d'un monomère qui peut être un nucléotide naturel d'acide nucléique dont les éléments constitutifs sont un sucre, un groupement phosphate et une base azotée ; dans l'ADN le sucre est le désoxy-2-ribose, dans l'ARN le sucre est le ribose ; selon qu'il s'agisse de l'ADN ou l'ARN, la base azotée est choisie parmi l'adénine, la guanine, l'uracile, la cytosine, la thymine ; ou bien le monomère est un nucléotide modifié dans l'un au moins des trois éléments constitutifs ; à titre d'exemple, la modification peut intervenir soit niveau des bases, avec des bases modifiées telles que l'inosine, la méthyl-5désoxycytidine, la désoxyuridine, la diméthylamino-5désoxyuridine. la diamino-2,6-purine, la bromo-5désoxyuridine ou toute autre base modifiée capable d'hybridation, soit au niveau du sucre, par exemple le remplacement d'au moins un désoxyribose par un polyamide (P.E. Nielsen et al, Science, 254, 1497-1500 (1991), soit encore au niveau du groupement phosphate, par exemple son remplacement par des esters les notamment choisis parmi diphosphates, alkylet aryl-phosphonates et phosphorothioates.

Selon un mode particulier de réalisation de l'invention, le réactif spécifique comprend au moins une amorce d'amplification. Au sens de la présente invention, on entend par <u>amorce</u> d'amplification, un fragment nucléotidique comprenant de 5 à 100 motifs nucléiques, préférentiellement de 15 à 30 motifs nucléiques permettant l'initiation d'une polymérisation enzymatique, telle que notamment une réaction d'amplification enzymatique. Selon un mode particulier de réalisation de l'invention, l'amorce d'amplification comprend une séquence

15

20

choisie parmi les SEQ ID N°38 à 41 et SEQ ID N°44 à 45. Par <u>réaction d'amplification</u> <u>enzymatique</u>, on entend un processus générant de multiples copies d'un fragment nucléotidique par l'action d'au moins une enzyme. De telles réactions d'amplification sont bien connues de l'homme du métier et on peut citer notamment les techniques suivantes :

- PCR (Polymerase Chain Reaction), telle que décrite dans les brevets US 4,683,195, US 4,683,202 et US 4,800,159,
 - LCR (Ligase Chain Reaction), exposée par exemple dans la demande de brevet EP 0 201 184,
 - RCR (Repair Chain Reaction), décrite dans la demande de brevet WO 90/01069,
- 3SR (Self Sustained Sequence Replication) avec la demande de brevet WO 90/06995,
 - NASBA (Nucleic Acid Sequence-Based Amplification) avec la demande de brevet WO 91/02818, et
 - TMA (Transcription Mediated Amplification) avec le brevet US 5,399,491.
 - Lorsque l'amplification enzymatique est une PCR, le réactif spécifique comprend au moins 2 arnorces d'amplification, spécifiques d'un gène cible, et permettent l'amplification du matériel spécifique du gène cible. Le matériel spécifique du gène cible comprend alors préférentiellement un ADN complémentaire obtenu par transcription inverse d'ARN messager issu du gène cible (on parle alors d'ADNc spécifique du gène cible) ou un ARN complémentaire obtenu par transcription des ADNc spécifique d'un gène cible (on parle alors d'ARNc spécifique du gène cible). Lorsque l'amplification enzymatique est une PCR réalisée après une réaction de transcription reverse, on parle de RT-PCR.
 - Selon un autre mode préféré de réalisation de l'invention, le réactif spécifique de l'étape b) comprend préférentiellement une sonde d'hybridation.
- Par sonde d'hybridation, on entend un fragment nucléotidique comprenant de 5 à 100 motifs nucléiques, notamment de 10 à 35 motifs nucléiques, possédant une spécificité d'hybridation dans des conditions déterminées pour former un complexe d'hybridation avec le matériel spécifique d'un gène cible. Dans la présente invention, le matériel spécifique du gène cible peut être une séquence nucléotidique comprise dans un ARN messager issu du

10

15

20

25

gène cible (on parle alors d'ARNm spécifique du gène cible), une séquence nucléotidique comprise dans un ADN complémentaire obtenu par transcription inverse dudit ARN messager (on parle alors d'ADNc spécifique du gène cible), ou encore une séquence nucléotidique comprise dans un ARN complémentaire obtenu par transcription dudit ADNc tel que décrit précédemment (on parlera alors d'ARNc spécifique du gène cible). La sonde d'hybridation peut comprendre un marqueur permettant sa détection. Par détection on entend soit une détection directe par une méthode physique, soit une détection indirecte par une méthode de détection à l'aide d'un marqueur. De nombreuses méthodes de détection existent pour la détection des acides nucléiques. [Voir par exemple Kricka et al., Clinical Chemistry, 1999, no 45(4), p.453-458 ou Keller G.H. et al., DNA Probes. 2nd Ed., Stockton Press, 1993, sections 5 et 6, p.173-249]. Par marqueur, on entend un traceur capable d'engendrer un signal que l'on peut détecter. Une liste non limitative de ces traceurs comprend les enzymes qui produisent un signal détectable par exemple par colorimétrie, fluorescence ou luminescence, comme la peroxydase de raifort, la phosphatase alcaline, la beta galactosidase, la glucose-6-phosphate déshydrogénase; les chromophores comme les composés fluorescents, luminescents ou colorants ; les groupements à densité électronique détectables par microscopie électronique du par leurs propriétés électriques comme la conductivité, par les méthodes d'ampérométrie ou de voltamétrie, ou par des mesures d'impédance; les groupements détectables par des méthodes optiques comme la diffraction, la résonance plasmon de surface, la variation d'angle de contact ou par des méthodes physiques comme la spectroscopie de force atomique, l'effet tunnel, etc.; les molécules radioactives comme ³²P, ³⁵S ou ¹²⁵I.

Au sens de la présente invention, la sonde d'hybridation peut être une sonde dite de détection. Dans ce cas, la sonde dite de détection est marquée au moyen d'un marqueur tel que défini précédemment. La sonde d'hybridation peut être également une sonde dite de capture. Dans ce cas, la sonde dite de capture est immobilisée ou immobilisable sur un support solide par tout moyen approprié, c'est-à-dire directement ou indirectement, par exemple par covalence ou adsorption. Comme support solide, on peut utiliser des matériaux de synthèse ou des matériaux naturels, éventuellement modifiés chimiquement,

5

10

15

20

25

. 7.

12

notamment les polysaccharides tels que les matériaux à base de cellulose, par exemple du papier, des dérivés de cellulose tels que l'acétate de cellulose et la nitrocellulose ou le dextrane, des polymères, des copolymères, notamment à base de monomères du type styrène, des fibres naturelles telles que le coton, et des fibres synthétiques telles que le nylon ; des matériaux minéraux tels que la silice, le quartz, des verres, des céramiques ; des latex ; des particules magnétiques ; des dérivés métalliques, des gels etc. Le support solide peut être sous la forme d'une plaque de microtitration, d'une membrane comme décrit dans la demande WO-A-94/12670, d'une particule. On peut également immobiliser sur le support plusieurs sondes de capture différentes, chacune étant spécifique d'un gène cible. En particulier, on peut utiliser comme support une biopuce sur laquelle peuvent être immobilisées un grand nombre de sondes. Par biopuce, on entend un support solide de dimension réduite où sont fixée une multitude de sondes de capture à des positions prédéterminées. Le concept de biopuce, ou puce à ADN, date du début des années 90. Il repose sur une technologie pluridisciplinaire intégrant la micro-électronique, la chimie des acides nucléiques, l'analyse d'images et l'informatique. Le principe de fonctionnement repose sur un fondement de la biologie moléculaire : le phénomène d'hybridation, c'est-àdire l'appariement par complémentarité des bases de deux séquences d'ADN et/ou d'ARN. La méthode des biopuces repose sur l'emploi de sondes de capture fixées sur un support solide sur lesquelles on fait agir un échantillon de fragments nucléotidiques cibles marqués directement ou indirectement avec des fluorochromes. Les sondes de capture sont positionnées de manière spécifique sur le support ou puce et chaque hybridation donne une information particulière, en relation avec le fragment nucléotidique cible. Les informations obtenues sont cumulatives, et permettent par exemple de quantifier le niveau d'expression d'un gène ou de plusieurs gènes cibles. Pour analyser l'expression d'un gène cible, on peut alors réaliser une biopuce portant de très nombreuses sondes qui correspondent à tout ou partie du gène cible, qui est transcrit en ARNm. On hybride alors par exemple les ADNc ou les ARNc spécifiques d'un gène cible que l'on souhaite analyser sur des sondes de capture spécifique. Après hybridation, le support ou puce est lavé(e), et les complexes ADNc ou ARNc marquées / sondes de capture sont révélés par un ligand de forte affinité

5

10

15

20

25

13

lié par exemple à un marqueur de type fluorochrome. La fluorescence est lue par exemple par un scanner et l'analyse de la fluorescence est traitée par informatique. On peut citer à titre indicatif, les puces à ADN mises au point par la société Affymetrix ("Accessing Genetic Information with High-Density DNA arrays", M. Chee et al., Science, 1996, 274, 610-614. "Light-generated oligonucleotide arrays for rapide DNA sequence analysis", A. Caviani Pease et al., Proc. Natl. Acad. Sci. USA, 1994, 91, 5022-5026), pour les diagnostics moléculaires. Dans cette technologie, les sondes de capture sont généralement de tailles réduites, autour de 25 nucléotides. D'autres exemples de biopuces sont donnés dans les publications de G. Ramsay, Nature Biotechnology, 1998, n°16, p. 40-44; F. Ginot, Human Mutation, 1997, n°10, p.1-10; J. Cheng et al, Molecular diagnosis, 1996, n°1(3), p.183-200; T. Livache et al, Nucleic Acids Research, 1994, n° 22(15), p. 2915-2921; J. Cheng et al, Nature Biotechnology, 1998, nº 16, p. 541-546 ou dans les brevets US-A-4,981,783, US-A-5,700,637, US-A-5,445,934, US-A-5,744,305 et US-A-5,807,522. La caractéristique principale du support solide doit être de conserver les caractéristiques d'hybridation des sondes de capture sur les fragments nucléotidiques cibles tout en générant un bruit de fond minimum pour la méthode de détection.

Pour l'immobilisation des sondes sur le support, on distingue trois grands types de fabrication.

Il y a, tout d'abord, une première technique qui consiste en un dépôt de sondes pré-synthétisées. La fixation des sondes se fait par transfert direct, au moyen de micropipettes, de micro-pointes ou par un dispositif de type jet d'encre. Cette technique permet la fixation de sondes de taille allant de quelques bases (5 à 10) jusqu'à des tailles relativement importantes de 60 bases (impression) à quelques centaines de bases (micro-déposition):

L'impression est une adaptation du procédé utilisé par les imprimantes à jet d'encre. Elle repose sur la propulsion de très petites sphères de fluide (volume <1 nl) et à un rythme pouvant atteindre 4000 gouttes/secondes. L'impression n'implique aucun contact entre le système libérant le fluide et la surface sur laquelle il est déposé.

14

La micro-déposition consiste à fixer des sondes longues de quelques dizaines à plusieurs centaines de bases à la surface d'une lame de verre. Ces sondes sont généralement extraites de bases de données et se présentent sous forme de produits amplifiés et purifiés. Cette technique permet de réaliser des puces dénommées microarrays portant environ dix mille spots, dit zones de reconnaissance, d'ADN sur une surface d'un peu moins de 4 cm2. Il ne faut toutefois pas oublier l'emploi de membranes de Nylon, dites « macroarrays », qui portent des produits amplifiés, généralement par PCR, avec un diamètre de 0,5 à 1 mm et dont la densité maximale est de 25 spots/cm2. Cette technique très flexible est utilisée par de nombreux laboratoires. Dans la présente invention, cette dernière technique est considérée comme faisant partie des biopuces. On peut toutefois déposer en fond de plaque de microtitration un certain volume d'échantillon dans chaque puits, comme c'est le cas dans les demandes de brevet WO-A-00/71750 et FR 00/14896, ou déposer au fond d'une même boîte de Pétri un certain nombre de gouttes séparées les unes des autres, selon une autre demande de brevet FR00/14691.

15

10

5

La deuxième technique de fixation des sondes sur le support ou puce est appelée la synthèse in situ. Cette technique aboutit à l'élaboration de sondes courtes directement à la surface de la puce. Elle repose sur la synthèse d'oligonucléotides in situ (voir notamment les demandes de brevet WO 89/10977 et WO 90/03382), et est fondée sur le procédé des synthétiseurs d'oligonucléotides. Elle consiste à déplacer une chambre de réactions, où se déroule la réaction d'élongation d'oligonucléotides, le long de la surface de verre.

20

25

Enfin, la troisième technique est appelée la photolithographie, qui est un procédé à l'origine des biopuces développées par Affymetrix. Il s'agit également d'une synthèse in situ. La photolithographie est dérivée des techniques des microprocesseurs. La surface de la puce est modifiée par la fixation de groupements chimiques photolabiles pouvant être activés par la lumière. Une fois illuminés, ces groupes sont susceptibles de réagir avec l'extrémité 3' d'un oligonucléotide. En protégeant cette surface par des masques de formes définies, on peut illuminer et donc activer sélectivement des zones de la puce où l'on souhaite fixer l'un ou l'autre des quatre nucléotides. L'utilisation successive de masques différents permet d'alterner des cycles de protection/réaction et donc de réaliser les sondes

. C'si

d'oligonucléotides sur des spots d'environ quelques dizaines de micromètre carré (µm2). Cette résolution permet de créer jusqu'à plusieurs centaines de milliers de spots sur une surface de quelques centimètres carré (cm2). La photolithographie présente des avantages : massivement parallèle, elle permet de créer une puce de N-mères en seulement 4 x N cycles. Toutes ces techniques sont bien entendues utilisables avec la présente invention. Selon un mode préféré de réalisation de l'invention, le au moins un réactif spécifique de l'étape b) définie précédemment comprend au moins une sonde d'hybridation, qui est préférentiellement immobilisée sur un support. Ce support est préférentiellement une biopuce telle que définie précédemment.

10

15

20

25

5

Lors de l'étape c) la <u>détermination de l'expression d'un gène cible</u> peut être réalisée par tous les protocoles connus de l'homme du métier.

D'une manière générale, l'expression d'un gène cible peut être analysée par la détection des ARNm (ARN messagers) qui sont transcrits du gène cible à un instant donné ou par la détection des protéines issues de ces ARNm.

L'invention concerne préférentiellement la détermination de l'expression d'un gène cible par la détection des ARNm issus de ce gène cible selon tous les protocoles bien connus de l'homme du métier. Selon un mode particulier de réalisation de l'invention, on détermine simultanément l'expression de plusieurs gènes cibles, par la détection de plusieurs ARNm différents, chaque ARNm étant issus d'un gène cible.

Lorsque le réactif spécifique comprend au moins une amorce d'amplification, on peut, lors de l'étape c) du procédé selon l'invention, déterminer l'expression d'un gène cible de la manière suivante:

1) après avoir extrait comme matériel biologique, les ARN totaux (comprenant les ARN de transfert (ARNt), les ARN ribosomaux (ARNr) et les ARN messagers (ARNm)) d'un échantillon biologique tel que présenté précédemment, on réalise une étape de transcription reverse afin d'obtenir les ADN complémentaires (ou ADNc) desdits ARNm. A titre indicatif, cette réaction de transcription reverse peut être réalisée à l'aide d'une enzyme reverse transcriptase qui permet d'obtenir, à partir d'un fragment d'ARN, un

16

fragment d'ADN complémentaire. On peut utiliser notamment l'enzyme reverse transcriptase provenant de l'AMV (Avian Myoblastosis Virus) ou de MMLV (Moloney Murine Leukaemia Virus). Lorsque l'on souhaite plus particulièrement obtenir uniquement les ADNc des ARNm, on réalise cette étape de transcription reverse en présence de fragments nucléotidiques comprenant uniquement des bases thymine (polyT), qui s'hybrident par complémentarité sur la séquence polyA des ARNm afin de former un complexe polyT-polyA qui sert alors de point de départ à la réaction de transcription reverse réalisée par l'enzyme reverse transcriptase. On obtient alors des ADNc complémentaires des ARNm issus d'un gène cible (ADNc spécifique du gène cible) et des ADNc complémentaires des ARNm issus d'autres gènes que le gène cible (ADNc non spécifique du gène cible).

5

10

15

20

25

2) on met en contact la ou les amorces d'amplification spécifiques d'un gène cible avec les ADNc spécifique du gène cible et les ADNc non spécifique du gène cible. La ou les amorces d'amplification spécifiques d'un gène cible s'hybrident avec les ADNc spécifique du gène cible et on amplifie spécifiquement une région prédéterminée, de longueur connue, des ADNc provenant des ARNm issus du gène cible. Les ADNc non spécifiques du gène cible ne sont pas amplifiés, alors qu'on obtient alors une grande quantité d'ADNc spécifiques du gène cible. Au sens de la présente invention, on parle indifféremment d' «ADNc spécifiques du gène cible » ou d' «ADNc provenant des ARNm issus du gène cible ». Cette étape peut être réalisée notamment par une réaction d'amplification de type PCR ou par toute autre technique d'amplification telle que définie précédemment. En PCR, on peut également amplifier simultanément plusieurs ADNc différents, chacun étant spécifique de différentes, chacune étant spécifique de pusieurs couples d'amplification en multiplex.

.

3) on détermine l'expression du gène cible en détectant et quantifiant les ADNc spécifiques du gène cible obtenus lors de l'étape 2) ci dessus. Cette détection peut être réalisée après migration par électrophorèse des ADNc spécifiques du gène cible en fonction de leur taille. Le gel et le milieu de migration peuvent comprendre du bromure

5

10

15

20

25

17

d'éthydium afin de permettre la détection directe des ADNc spécifiques du gène cible lorsque le gel est placé, après un temps de migration donné, sur une table lumineuse à rayons UV (ultra violet) par l'émission d'un signal lumineux. Ce signal est d'autant plus lumineux que la quantité des ADNc spécifique du gène cible est importante. Ces techniques d'électrophorèse sont bien connues de l'homme du métier. Les ADNc spécifiques du gène cible peuvent également être détectés et quantifiés par l'utilisation d'une gamme de quantification obtenue par une réaction d'amplification conduite jusqu'à saturation. Afin de tenir compte de la variabilité d'efficacité enzymatique qui peut être observée lors des différentes étapes (transcription reverse, PCR...), on peut normaliser l'expression d'un gène cible de différents groupes de patients, par la détermination simultanée de l'expression d'un gène dit de ménage, dont l'expression est similaire chez les différents groupes de patients. En réalisant un rapport entre l'expression du gène cible et l'expression du gène de ménage, c'est à dire en réalisant un rapport entre la quantité d'ADNc spécifiques du gène cible, et la quantité d'ADNc spécifiques du gène de ménage, on corrige ainsi toute variabilité entre les différentes expérimentations. L'homme du métier pourra se référer notamment aux publications suivantes: Bustin SA Journal of molecular endocrinology, 2002, 29: 23-39; Giulietti A Methods, 2001, 25: 386-401.

Lorsque le réactif spécifique comprend au moins une sonde d'hybridation, on peut déterminer l'expression d'un gène cible de la manière suivante:

1) après avoir extrait, comme matériel biologique, les ARN totaux d'un échantillon biologique tel que présenté précédemment, on réalise une étape de transcription reverse, telle que décrite précédemment afin des ADNc complémentaires des ARNm issus d'un gène cible (ADNc spécifique du gène cible) et des ADNc complémentaires des ARNm issus d'autres gènes que le gène cible (ADNc non spécifique du gène cible).

2) on met en contact tous les ADNc avec un support, sur lequel sont immobilisées des sondes de capture spécifiques du gène cible dont on souhaite analyser l'expression, afin de réaliser une réaction d'hybridation entre les ADNc spécifiques du gène cible et les sondes de capture, les ADNc non spécifiques du gène cible ne s'hybridant pas sur les

18

sondes de capture. La réaction d'hybridation peut être réalisée sur un support solide qui inclut tous les matériaux tels qu'indiqué précédemment. Selon un mode préféré de réalisation, la sonde d'hybridation est immobilisée sur un support. Préférentiellement, le support est une biopuce. La réaction d'hybridation peut être précédée d'une étape d'amplification enzymatique des ADNc spécifique du gène cible telle que décrite précédemment pour obtenir une grande quantité d'ADNc spécifiques du gène cible et augmenter la probabilité qu'un ADNc spécifique d'un gène cible s'hybride sur une sonde de capture spécifique du gène cible. La réaction d'hybridation peut également être précédée d'une étape de marquage et/ou de clivage des ADNc spécifiques du gène cible telle que décrite précédemment, par exemple en utilisant un désoxyribonucléotide triphosphate marqué pour la réaction d'amplification. Le clivage peut être réalisé notamment par l'action de l'imidazole et de chlorure de manganèse. L'ADNc spécifique du gène cible peut aussi être marqué après l'étape d'amplification, par exemple en hybridant une sonde marquée selon la technique d'hybridation sandwich décrite dans le document WO-A-91/19812. D'autres modes particuliers préférentiels de marquage et/ou clivage d'acides nucléiques sont décrit dans les demandes WO 99/65926, WO 01/44507, WO 01/44506, WO 02/090584, WO 02/090319.

3) on réalise ensuite une étape de détection de la réaction d'hybridation. La détection peut être réalisée par la mise en contact du support sur lequel sont hybridés les sondes de capture spécifique du gène cible avec les ADNc spécifiques du gène cible avec une sonde dite de détection, marquée par un marqueur, et on détecte le signal émis par le marqueur. Lorsque l'ADNc spécifique du gène cible a été préalablement marqué par un marqueur, on détecte directement le signal émis par le marqueur.

25

5

10

15

20

Lorsque le au moins un réactif spécifique mis en contact l'étape b) du procédé selon l'invention comprend au moins une sonde d'hybridation, on peut également déterminer l'expression d'un gène cible de la manière suivante:

1) après avoir extrait, comme matériel biologique, les ARN totaux d'un échantillon biologique telle que présentée précédemment, on réalise une étape de transcription reverse.

19

telle que décrite précédemment afin d'obtenir les ADNc des ARNm du matériel biologique. On réalise ensuite la polymérisation de l'ARN complémentaire du ADNc par l'utilisation d'une enzyme polymerase de type T7 polymérase qui fonctionnent sous la dépendance d'un promoteur et qui permettent d'obtenir, à partir d'une matrice d'ADN, l'ARN complémentaire. On obtient alors les ARNc des ADNc des ARNm spécifiques du gène cible (on parle alors d'ARNc spécifique du gène cible) et les ARNc des ADNc des ARNm non spécifiques du gène cible.

2) on met en contact tous les ARNc avec un support, sur lequel sont immobilisées des sondes de capture spécifiques du gène cible dont on souhaite analyser l'expression, afin de réaliser une réaction d'hybridation entre les ARNc spécifiques du gène cible et les sondes de capture, les ARNc non spécifiques du gène cible ne s'hybridant pas sur les sondes de capture. Lorsque l'on souhaite analyser simultanément l'expression de plusieurs gènes cibles, on peut immobiliser sur le support plusieurs sondes de capture différentes, chacune étant spécifique d'un gène cible. La réaction d'hybridation peut également être précédée d'une étape de marquage et/ou de clivage des ARNc spécifiques du gène cible telles que décrites précédemment.

3)" on réalise ensuite une étape de détection de la réaction d'hybridation. La détection peut être réalisée par la mise en contact du support sur lequel sont hybridées les sondes de capture spécifiques du gène cible avec l'ARNc spécifique du gène cible avec une sonde dite de détection, marquée par un marqueur, et on détecte le signal émis par le marqueur. Lorsque l'ARNc spécifiques du gène cible a été préalablement marqué par un marqueur, on détecte directement le signal émis par le marqueur. L'utilisation d'ARNc est particulièrement avantageux lorsqu'on utilise un support de type biopuce sur lequel est hybridés un grand nombre de sondes.

25

5

10

15

20

L'analyse de l'expression d'un gène cible choisi parmi l'une quelconque des SEQ ID N°1 à 37 permet alors de disposer d'un outil pour le pronostic du neuroblatome. On peut par exemple analyser l'expression d'un gène cible chez un patient dont on ne connaît pas le pronostic, et comparer avec des valeurs d'expression moyenne connues du gène cible de

20

patients de bon pronostic et des valeurs d'expression moyenne connues du gène cible de patients de mauvais pronostic. Ceci permet de déterminer si le patient est de bon ou de mauvais pronostic afin de lui proposer un traitement adapté.

Selon un mode préféré de réalisation de l'invention, lors de l'étape b) on met en contact le matériel biologique avec au moins 37 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37 et on détermine, lors de l'étape c, l'expression d'au moins 37 desdits gènes cibles.

10

15

20

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 17, au moins 18, au moins 19, au moins 20, au moins 21, au moins 22, au moins 23, au moins 24, au moins 25, au moins 26, au moins 27, au moins 28, au moins 29, au moins 30, au moins 31, au moins 32, au moins 33, au moins 34, au moins 35, ou au moins 36 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37 et on détermine, lors de l'étape c, l'expression d'au moins au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 27, au moins 28, au moins 29, au moins 23, au moins 24, au moins 25, au moins 26, au moins 27, au moins 28, au moins 29, au moins 30, au moins 31, au moins 32, au moins 33, au moins 34, au moins 35, ou au moins 36 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 19 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°1; SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°9; SEQ ID N°10; SEQ ID N°14; SEQ ID N°16; SEQ ID N°20; SEQ ID N°21; SEQ ID N°22; SEQ ID N°25; SEQ ID N°27;

5

10

15

20

25

21

SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; SEQ ID N°36 ou SEQ ID N°37 on détermine, lors de l'étape c) l'expression d'au moins 19 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 17, au moins 18, ou au moins 19 réactifs spécifiques choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°1; SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°9; SEQ ID N°10; SEQ ID N°14; SEQ ID N°16; SEQ ID N°20; SEQ ID N°21; SEQ ID N°22; SEQ ID N°25; SEQ ID N°27; SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; SEQ ID N°36 ou SEQ ID N°37 on détermine, lors de l'étape c) l'expression d'au moins 2, au moins 3, au moins 4, au moins 5, au moins 6, au moins 7, au moins 8, au moins 9, au moins 10, au moins 11, au moins 12, au moins 13, au moins 14, au moins 15, au moins 16, au moins 17, au moins 18, ou au moins 19 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 16 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°1; SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°9; SEQ ID N°10; SEQ ID N°20; SEQ ID N°21; SEQ ID N°22; SEQ ID N°25; SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; SEQ ID N°36 ou SEQ ID N°37 on détermine, lors de l'étape c) l'expression d'au moins 16 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 12 réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°10; SEQ ID N°20; SEQ ID N°22; SEQ ID N°25; SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; ou SEQ ID N°37 et on détermine, lors de l'étape c) l'expression d'au moins 12 desdits gènes cibles.

Selon un autre mode préféré de réalisation, lors de l'étape b) on met en contact le matériel biologique avec au moins 9 réactifs spécifiques choisis parmi les réactifs

22

spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°10; SEQ ID N°22; SEQ ID N°25; SEQ ID N°29; SEQ ID N°34; et on détermine, lors de l'étape c) l'expression d'au moins 9 desdits gènes cibles.

L'utilisation d'un panel de gènes restreint est particulièrement adapté pour obtenir un outil de pronostic. En effet, l'analyse de l'expression d'une dizaine de gènes ne necessite pas la fabrication à façon de puces à ADN, et peut être mise en œuvre directement par des techniques de PCR ou de NASBA, ce qui présente un atout économique important et une

5

10

15

20

25

mise en œuvre simplifiée.

Les figures ci-jointes sont données à titre d'exemples explicatifs et n'ont aucun caractère limitatif. Elles permettront de mieux comprendre l'invention.

La figure 1 présente un dendogramme obtenu à partir de 23 échantillons de tumeurs issus de patients de bon pronostic (BP) ou de mauvais pronostic (MP), et l'utilisation d'un panel de 40 sondes permettant l'analyse de l'expression des 37 gènes présentés précédemment dans le tableau 1. On retrouve sur ce dendograme 23 colonnes correspondant aux 23 échantillons de tumeurs, et 40 lignes correspondant aux 40 sondes utilisées pour l'analyse de l'expression des 37 gènes. Les échantillons de turneurs, ainsi que les gènes ayant un profil d'expression comparable, mis en évidence par une corrélation de type Pearson, ont été placés côte à côte. Les échantillons de tumeurs ont été classés selon la méthode de moyenne non-pondérée (Spotfire Decision Site for Functional Genomics V7.1, manual) alors que les gènes ont été classés selon la valeur moyenne d'expression obtenue dans l'ensemble des échantillons. Le niveau d'expression de chaque gène, calculé par le logiciel Microarray Suite (MAS5.0, Affymetrix) est représenté par différents niveaux de couleur. Ainsi, la couleur blanche correspond à un faible niveau d'expression, la couleur grise correspond à un niveau d'expression intermédiaire, alors que la couleur noire correspond à un fort niveau d'expression. La longueur des branches du dendograme est corrélée au profil d'expression et la ligne en pointillée qui divise le dendograme permet de distinguer deux groupes de patients : un premier groupe de patients de mauvais pronostic "MP" et un deuxième groupe de patients de bon pronostic "BP". Les six tumeurs "MP-

10

15

20

test' et «BP-test» sont des tumeurs qui ont été analysées « en aveugle », c'est à dire sans connaître leur pronostic.

La figure 2 présente un dendogramme obtenu à partir de 23 échantillons de turneurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 19 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

La figure 3 présente un dendogramme obtenu à partir de 23 échantillons de turneurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 16 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

La figure 4 présente un dendogramme obtenu à partir de 23 échantillons de turneurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 12 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

La figure 5 présente un dendogramme obtenu à partir de 23 échantillons de turneurs issus de patients de bon pronostic ou de mauvais pronostic, et l'analyse de l'expression de 9 gènes. Ce dendogramme a été obtenu comparablement à ce qui est décrit pour la figure 1.

Les exemples suivants sont donnés à titre illustratif et n'ont aucun caractère limitatif.

Ils permettront de mieux comprendre l'invention.

Exemple 1: Recherche d'un profil d'expression pour le pronostic du neuroblastome

<u>Caractéristiques des échantillons biologiques (tumeurs localisées ou ponctions de moelles osseuses)</u>: 23 échantillons de neuroblatome, obtenus auprès du Centre Léon Bérard (CLB) de Lyon, France, ont été utilisées dans cette étude. Ces échantillons de neuroblastome ont été prélevés préalablement à tout traitement thérapeutique. Chaque tumeur a été classée suivant la classification INSS (International Neuroblastoma Staging

10

15

20

25

System; Brodeur et al; (1993) J. Clin. Oncol. 11, 1466-77). On distinguait alors 12 turneurs de stade 1/2, 4 turneurs de stade 4s et 7 échantillons de stade 4. (2 ponctions turnorales, 1 biopsie, 4 ponctions medullaires massivement envahies. L'analyse histochimique montrait dans les turneurs localisées la présence d'environ 80% de cellules turnorales. L'analyse immunocytochimique montrait également dans les ponctions de moelle osseuse la présence d'environ 80% de cellules turnorales. L'âge médian des patients au moment du diagnostic du neuroblastome était de 10 mois et derni, et 5 patients sont décédés au cours de la période de suivi médian de 75 mois. Les patients ayant décédé au cours de l'étude, et les patients présentant un neuroblatome de stade IV étaient qualifiés de patients de mauvais pronostic (MP), alors que les patients en vie, ayant developpé un neuroblastome de stade 1, 2 et 4s étaient qualifiés de patients de bon pronostic (BP) (qualification selon Brodeur, 2003, Nat Rev Cancer, 203-216). Cette analyse a ainsi été réalisée sur 8 patients MP et 15 patients BP.

Extraction du matériel biologique (ARN totaux) de l'échantillon biologique : les ARN totaux ont été extraits de chaque tumeur ou ponction de moelle osseuse selon un protocole bien connu de l'homme du métier (Voir notamment Ausubel et al (1997), Current protocols in Molecular Biology, Volume 1, John Wiley and Sons, New York). Pour cela, chaque échantillon biologique a été homogénéisé dans 1 ml de Trizol (Invitrogen, Cergy Pointoise, France), et traité avec 300 μl de chloroforme afin d'éliminer tout contaminant protéique et lipophile. Les ARN totaux ont ensuite été précipités avec 750 μl d'isopropanol, lavés deux fois avec une solution à 80 % en ethanol (vol/vol) et remis en solution dans de l'eau DEPC. Les ARN totaux ont ensuite été purifiés sur colonne Qiagen RNeasy (Qiagen, Hilden, Germany) conformément aux instructions du fabriquant, à l'exception de l'élution finale qui a été réalisée dans 200 μl d'eau RNAse-free après 1 min d'incubation à 65°C. Préalablement à l'étape de transcription reverse, une étape de précipitation par de l'acétate d'ammonium (0,5 vol, 7.5M) et de l'éthanol (2,5 vol) a été réalisée pour garantir la purification des ARN totaux. La qualité des ARN totaux a été analysée par le bio analyseur AGILENT 2100 (Agilent Technologies, Waldbronn,

5

10

15

20

25

25

Germany). Les ARN totaux comprennent les ARN de transfert, les ARN messagers (ARNm) et les ARN ribosomaux.

Synthèse d'ADNc, obtention des ARNc et marquage des ARNc et quantification: Afin d'analyser l'expression des gènes cibles selon l'invention, les ADN complémentaires (ADNc) des ARNm contenus dans les ARN totaux tels que purifiés ci dessus, ont été obtenus à partir de 10 µg d'ARN totaux par l'utilisation de 400 unités de l'enzyme de transcription reverse SuperScriptII (Invitrogen) et 100 pmol d'amorce poly-T contenant le promoteur de la T7 promotor (T7-oligo(dT)24-primer, Proligo, Paris, France). Les ADNc ainsi obtenus ont ensuite été extraits avec du phénol/chloroforme, et précipités tels que décrit précédemment par de l'acétate d'ammonium et de l'éthanol, et remis en solution dans 24 µl d'eau DEPC. Un volume de 20 µl de cette solution purifiée d'ADNc a fait l'objet ensuite d'une transcription in vitro par l'utilisation d'une ARN polymérase T7 qui reconnaît spécifiquement le promoteur de la T7 polymérase tel que mentionné ci dessus. Cette transcription permet d'obtenir l'ARNc de l'ADNc. Cette transcription a été réalisée par l'utilisation d'un kit Bioarray High Yield RNA Transcript Labeling Kit (Enzo Diagnostics, Farmingdale, NY), qui permet non seulement d'obtenir l'ARNc mais également l'incorporation de bases cytidine et tridine biotinylées lors de la synthèse de l'ARNc.

Les ARNc purifiés ont ensuite été quantifiés par spectrophotométrie, et la solution d'ARNc a été ajustée à une concentration de 1 μ g/ μ l d'ARNc. L'étape de clivage de ces ARNc a ensuite été réalisée à 94°C pendant 35 min, par l'utilisation d'un tampon de fragmentation (40 mM de Tris acétate, pH 8,1, 100 mM d'acétate de potassium, 30 mM d'acétate de magnesium) afin de provoquer l'hydrolyse des ARNc et obtenir des fragments de 35 à 200 bp. Le succès d'une telle fragmentation a été vérifié par une électrophorèse sur gel d'agarose 1,5%).

Mise en évidence d'un profil d'expression différentiel entre les patients BP et MP

L'expression d'environ 10 000 gènes a été analysée et comparée entre les patients BP et MP. Pour cela, 10 µg d'ARNc fragmentés issus de chaque échantillon ont été ajoutés à un tampon d'hybridation (Affymetrix) et 200 µl de cette solution ont été mis en contact

26

pendant 16 h à 45°C sur une puce d'expression (Human Genome U95Av2 GeneChip® (Affymetrix), qui comporte 12 625 groupes de sondes représentant environs 10 000 gènes selon le protocole d'Affymetrix tel que décrit sur le site internet d'Affymetrix (voir notamment à l'adresse suivante

5 http://www.affymetrix.com/support/downloads/manuals/expression_s2_manual.pdf).

10

15

20

25

Afin d'enregistrer les meilleures performances d'hybridation et de lavage, des ARN qualifiés de «contrôle » biotinylés (bioB, bioC, bioD et cre) et des oligonucléotides (oligo B2) ont également été inclus dans le tampon d'hybridation. Après l'étape d'hybridation, la solution d'ARNc biotinylée et hybridée sur la puce, a été révélée par l'utilisation d'une solution de streptavidine-phycoerythrine et le signal a été amplifié par l'utilisation d'anticorps anti-streptavidine. L'hybridation a été réalisée dans une étuve d'hybridation «GeneChip Hybridisation oven » (Affymetrix), et le protocole Euk GE-WS2 du protocole d'Affymetrix a été suivi. Les étapes de lavage et de révélation ont été réalisées sur une station «Fluidics Station 400 » (Affymetrix). Chaque puce U95Av2 a ensuite été analysée sur un scanner Agilent G2500A GeneArray Scanner à une résolution de 3 microns afin de repérer les zones hybridées sur la puce. Ce scanner permet la détection du signal émis par les tholécules fluorescentes après excitation par un laser argon en utilisant la technique du microscope à épifluorescence. On obtient ainsi pour chaque position, un signal proportionnel à la quantité de ARNc fixés. Le signal a ensuite été analysé par le logiciel Microarray Suite 5.0 software (MAS5.0, Affymetrix).

Afin de prévenir les variations obtenues par l'utilisation de différentes puces, il a été réalisé une approche de normalisation globale utilisant le logiciel MAS5.0 (Affymetrix), qui permet de convertir les données brutes obtenues pour chaque puce en un signal moyen d'une intensité de 500. Les résultats obtenus sur une puce peuvent alors être comparés aux résultats obtenus sur une autre puce. Le logiciel MAS5.0 permettait aussi d'inclure un algorithme statistique pour considérer si un gène était exprimé ou non. Chaque gène représenté sur la puce U95Av2 était couvert par 16 à 20 couples de sondes de 25 oligonucléotides. Par couple de sondes, on entend une première sonde qui s'hybridait parfaitement (on parle alors de sondes PM ou perfect match) avec un des ARNc issus

5

10

15

20

25

d'un gène cible, et une deuxième sonde, identique à la première sonde à l'exception d'un mésappariement (on parle alors de sonde MM ou mismatched) au centre de la sonde. Chaque sonde MM servait à estimer le bruit de fond correspondant à une hybridation entre deux fragments nucléotidiques de séquence non complémentaire. (Affymetrix technical note "Statistical Algorithms Reference Guide"; Lipshutz, et al (1999) Nat. Genet. 1 Suppl., 20-24). Deux turneurs de stade IV présentant un faible pourcentage de gènes exprimés, du à un biais soit dans la qualité des ARNc soit dans l'étape d'hybridation, ont été exclues de l'analyse. Les 23 échantillons restant montraient une moyenne de 48 % de gènes exprimés. L'analyse des données d'expression a été réalisée par le logiciel Microsoft Excel, le logiciel Spotfire Decision Site for Functionnal Genomics V7.1 (Spotfire AB, Gothenburg, Sweden), ainsi que le module PAM (Prediction Analysis in Microarrays) du logiciel de statistiques R (Ihaka & Gentleman (1996) Journal of Computational and Graphical Statistics 5, 299-314.; Tibshirani, et al (2002) Proc. Natl. Acad. Sci. 99, 6567-6572).

A partir des 12625 groupes de sondes, représentant environ 10 000 gènes, de la puce, les inventeurs ont sélectionné les gènes pertinents qui étaient corrélés à un mauvais pronostic du neuroblastome.

Pour cela, une première étape a consisté à exclure les gènes présentant un niveau d'expression comparable entre tous les groupes de patients [Tibshirani, et al Proc. Natl. Acad. Sci. 99, 6567-6572]. Les gènes non exprimés chez l'ensemble des patients ont également été exclus (logiciel MAS5.0). Enfin, certains gènes ont été exclus si la moyenne d'expression des 2 groupes (patients de bon pronostic et patient de mauvais pronostic) était inférieur à 500 ou si le rapport des moyennes d'expression entre les patients de mauvais et de bon pronostics étaient compris entre 0,7 et 1,3.

L'expression des 1488 gènes restants a ensuite été analysée (algorithme PAM, Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. 99, 6567-6572).

<u>Résultats obtenus</u>: Dans un premier temps, 37 gènes permettant de différencier les patients de bon et de mauvais pronostic ont été identifiés. L'augmentation ou la diminution

d'expression de chacun de ces gènes, observée chez les patients de mauvais pronostic par rapport aux patients de bons pronostics est indiquée dans le tableau 2.

<u>Tableau 2 - liste des 37 gènes exprimés différentiellement dans les neuroblatomes patients</u>

BP et MP

SEQ ID N°	Description de la séquence	N° Genbank	Expression MP vs BP
1	Flap structure-specific endonuclease 1	NM_004111	augmentée
2	Ubiquitin-conjugating enzyme E2C	NM_007019	augmentée
_	Insulin-like growth factor binding protein		
3	7(MAC25)	NM_001553	diminuée
4	Collagen type I, alpha 2 chain	NM_000089	diminuée
5	Nucleolin	NM_005381	augmentée
6	Interleukin enhancer binding factor 3	NM_004516	augmentée
7	cDNA FLJ30781 fis, clone FEBRA2000874, correspondant au gène codant l'adenylate cyclase 1 (brain)	AK055343 / NM_021116	diminuée
8	TIF1beta zinc finger protein	X97548	augmentée
9	Likely ortholog of mouse tumor differentially expressed 1 TDE1L	NM_020755	diminuée
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831	diminuée
11	N-MYC proto-oncogene	_NM_005378	augmentée
12	Small nuclear ribonucleoprotein D2 polypeptide 16.5kDa	NM_004597	augmentée
13	DNA replication licensing factor MCM2	NM_004526	augmentée
14	RuvB-like DNA helicase TIP49b	NM_006666	augmentée
15	Immediate early protein ETR101	NM_004907	augmentée
16	RNA binding protein S1, serine-rich domain	NM_006711	augmentée
17	Ornithine decarboxylase 1	NM_002539	augmentée
18	Activity-related cytoskeleton-asso. protein (KIAA0278)	NM_015193	augmentée
19	Secretogranin II (chromogranin C)	NM_003469	diminuée
20	Structure specific recognition protein 1	NM_003146	augmentée
21	Collagen type VI, alpha 3 chain	NM_004369	diminuée
22	Small nuclear ribonucleoprotein polypeptides B and B1	NM_003091	augmentée
23	Acidic nuclear phosphoprotein 32 family, member B	NM_006401	augmentée
24	Non-POU domain containing, octamer-binding	NM_007363	augmentée
25	Peripheral myelin protein 22	NM_000304	diminuée
26	Small nuclear ribonucleoprotein polypeptide E	NM_003094	augmentée
27	Putative L-type neutral amino acid transporter (KIAA0436)	AB007896	diminuée
28	Fibrillarin	NM_001436	augmentée
29	Tripartite motif-containing 2	NM_015271	diminuée

, -.;

30	DNA replication licensing factor MCM6	NM_005915	augmentée
31	Polypyrimidine tract binding protein 1	NM_002819	augmentée
32	Small nuclear ribonucleoprotein polypeptide A	NM_004596	augmentée
33	Creatine kinase, brain	NM_001823	augmentée
34	Erythrocyte membrane protein band 4.1 like3	NM_012307	diminuée
35	Hypothetical protein MGC3077	NM_024051	augmentée
36	Tissue alpha-L-fucosidase 1	NM_000147	diminuée
37	Secreted protein acidic and rich in cysteine	NM_003118	diminuée

Ces résultats ont également été validés par l'utilisation d'une autre technique de biologie moléculaire dans laquelle l'analyse de l'expression de gènes tel que présentés dans à tableau 2 a été réalisée par RT-PCR.

Pour cela, une réaction de reverse transcription (RT) a été réalisée à partir d'1 μg d'ARN total tel qu'obtenu précédemment (kit Amersham, First strand cDNA synthesis kit). La transcription reverse a été effectuée pendant 1 h à 37°C. Chaque solution de cDNA a été diluée 6 fois avant la réalisation de la PCR.

10

15

20

L'expression des ARNm de gènes du tableau 2 (Peripheral myelin protein ou PMP22 (SEQ ID N°25); Insulin-like growth factor binding protein ou IGFBP7 (SEQ ID N°3; SPARC (SEQ ID N°37); EPB41L3 (SEQ ID N°34)) a ensuite été analysé par PCR (polymerase chain réaction) et l'utilisation d'amorces d'amplification spécifiques (amplification du gène PMP22: brin sens: 5'-AGGGAGGAAG GGAAAACAGA-3' (SEQ ID N°38); brin antisens: 5'-TTAAGGCTCA ACACGAGGCT-3' (SEQ ID N°39); gène IGFBP7: brin sens: 5'-CTTGAGCTGT GAGGTCATCG-3' (SEO ID N°40); brin antisens: 5'-TATAGCTCGG CACCTTCACC-3' (SEQ ID N°41); gène SPARC: brin sens: 5'-CTGCCTGCCA CTGAGGGTTCC-3' (SEQ ID N°42); brin antisens: 5'-TCCAGGCAGA ACAACAAACC ATCC-3' (SEQ ID N°43); gène EPB41L3: brin sens: 5'-ACCACCACCA CTACCCACAT-3' (SEQ ID N°44); brin antisens: 5'-TGGTTTTCCT AACGGTTTGC-3' (SEQ ID N°45); gène beta actine: brin sens: 5'-TGTTGGCGTA CAGGTCTTTG C-3' (SEQ ID N°46); brin antisens: 5'-GCTACGAGCT GCCTGACGG-3' (SEQ ID N°47). L'expression du gène codant la βactine a été utilisée comme contrôle. Trente cycles de PCR sont ensuite été réalisé en présence des différentes amorces d'amplification (0,2µM); de dNTPs (0,15mM,

10

15

20

Euromedex) et d'enzyme polymérase (Taq Polymerase; 0,027U/µl; Perkin Elmer) (dénaturation 30'' à 94 °C, hybridation 1' à 60 °C; polymérisation 1' à 72 °C). Les résultats obtenus sont présentés dans le tableau 3 ci dessous, qui montre la corrélation existant entre les résultats obtenues par l'utilisation d'une biopuce et ceux obtenues par RT-PCR.

	Patients BP		Patients MP		р
	Résultats	Résultats RT	Résultats	Résultats	
	biopuce	PCR	biopuce	RT PCR	
SEQ ID N°37:					0,04
SPARC	3498	2,2	709	0,87	
SEQ ID N°3					0,003
IGFBP7	4112	3,7	691	1,87	
SEQ ID N° 34					0,001
EPB41L3	6041	4,2	986	1,5	
SEQ ID N°25					0,003
PMP22	9051	3,8	2282	2,75	

Tableau 3

Les résultats de RT-PCR, obtenus à partir de 15 patients BP et 8 patients MP, sont exprimés par le rapport de quantification relative entre les ARNm du gène cible et les ARNm du gène β-actine qui servait de contrôle. Les résultats sont exprimés par la moyenne des rapports obtenus pour chacun des groupes de patients. La corrélation des résultats obtenus d'une part avec la biopuce et d'autre part avec la technique en RT-PCR a été établie grâce au test de corrélation du Tau-B de Kendall. Les patients MP présentaient un niveau d'expression diminuée pour les gènes SPARC , IGFBP7 , EPB41L3, et PMP22, confirmant les résultats présentés dans le tableau 2.

L'expression des ARNm des gènes de SEQ ID N°37: SPARC ; SEQ ID N°2: UBE2C ; SEQ ID N°3: IGFBP7 ; SEQ ID N°8: TRIM28 ; SEQ ID N°22: SNRBP; SEQ ID N°25: PMP22; SEQ ID N°29: TRIM2 ; SEQ ID N°34: EPB41L3 ; SEQ ID N°7 : clone FEBRA2000874, a également été analysée par RT-PCR quantitative.

31

Les ADNc nécessaires à l'analyse de chacun de ces gènes cibles ont été obtenus à partir d'un microgramme d'ARN totaux (first-strand DNA synthesis kit, Amersham France). Après une dilution de 6 fois, 2,5 µl d'ADNc ont été utilisés en PCR en temps réel, en présence d'un couple d'amorce (300 nM) spécifique de chaque gène cible (cf tableau ci dessous) et du tampon SYBR-Green Master Mix.

5

1.3

10

SEQ ID	Amorce sens Amorce antisens
AMPLIFIEE	
SEQ ID N°37:	SEQ ID N°48 : 5'-CACATTAGGC SEQ ID N°49 : 5'-CAGGATGCGC
SPARC	TGTTGGTTCA AACT-3' TGACCACTT-3'
SEQ ID N°2:	SEQ ID N°50 : 5'-TCCTCACGCC SEQ ID N°51 : 5'-TTCAGGATGT
UBE2C	CTGCTATCA-3' CCAGGCATAT GT-3'
SEQ ID N°3:	SEQ ID N°52 : 5'-TGTCCTCATC SEQ ID N°53 : 5'-GGCAGGAGTT
IGFBP7	TGGAACAAGG-3' CTGTCCTTTG-3'
SEQ ID N°7:	SEQ ID N°54 : 5'-TTTACATCCA SEQ ID N°55 : 5'-CACGATGTCA
clone	GAGGCACGAG-3' GCAAACAGG-3'
FEBRA2000874	
SEQ ID N°8:	SEQ ID N°56 : 5'-CAGGAAGGCT SEQ ID N°57 : 5'-CCGTTTCACA
TRIM28	ATGGCTTTGG-3' CCTGACACAT G-3'
SEQ ID N°22:	SEQ ID N°58 : 5'-GCTGGACCGG SEQ ID N°59 : 5'-GCCGCTACCG
SNRBP	AAGTAGGTTT CT-3' GAAATGC-3'
SEQ ID N°25:	SEQ ID N°60 : 5'-GACCCAGTGC SEQ ID N°61 : 5'-GTGTGCGCGT
PMP22	ATCCAACAG A-3' AAAGCTTCAC-3'
SEQ ID N°29:	SEQ ID N°62 : 5'-CAGTAACAAC SEQ ID N°63 : 5'-TGCCAAAACG
TRIM2	CAATGIGTGC AG-3' ACTTITGAAC-3'
SEQ ID N°34:	SEQ ID N°64 : 5'-GTTGGACCCT SEQ ID N°65 : 5'-CAGATAGTTG
EPB41L3	GCTAAGGAAA-3' GGCAGGGTCT-3'
Gène de ménage	SEQ ID N°66 : 5'-CACTGGCAAA SEQ ID N°67 : 5'-CGACCTTGAC
HPRT1	ACAATGCAGA CT-3' CATCITTGGA TT-3'

Le volume total de réaction était de 15 µl. L'amplification en PCR a été réalisée en microplaques 96 puits, par l'utilisation du système ABI Prism 7000 Sequence Detection (Applied BioSystem USA). Le gène de référence HPRT1 ainsi que le gène cible étaient

analysés simultanément. Après 10 min de dénaturation à 95°C, l'amplification a été réalisée selon les conditions suivantes : 40 cycles de 15 secondes à 95°C suivie de 1 minutes à 60°C. Les expériences ont été réalisées en duplicat. La quantification a été réalisée par l'utilisation de la méthode des courbes standards et l'utilisation de la méthode comparative CT telle que recommandé par le fabricant. Les courbes standards ont été obtenues à partir de dilution d'ADNc de lignées cellulaires de neuroblastome, et réalisées pour chaque PCR. L''expression du gène cible a été déterminée par l'utilisation de ces courbes standards. L'expression relative de chaque gène cible a été définie par comparaison avec l'expression du gène de référence. Les tests de corrélation de Pearson et Spearman ont été utilisés pour calculer la corrélation entre les résultats obtenus sur puce, et les résultats obtenus par RT-PCR.

Les résultats sont présentés dans le tableau ci dessous.

5

10

, «-

	Test de Spearman	Test de Pearson
SEQ ID N°37: SPARC	p=0,0008	p=0,0163
SEQ ID N°2: UBE2C	p<0,0001	p<0,0001
SEQ ID N°3: IGFBP7	p=0,004	p=0,0977
SEQ ID N°7	p<0,0001	p= 0,001
SEQ ID N°8: TRIM28	p=0,0428	p=0,0058
SEQ ID №22: SNRBP	p= 0,0664	p= 0,503
SEQ ID N°25: PMP22	p=0,021	p=0,0079
SEQ ID N°29: TRIM2	p=0,2983	p=0,232
SEQ ID N°34: EPB41L3	p=0,0123	p=0,0606

15 Ces résultats montraient une bonne corrélation (p < 0,05) des résultats obtenus sur puce et par RT PCR, concernant en particulier les gènes de SEQ ID N°2, 7, 8, et 25, suggérant que ces 4 gènes sont particulièrement pertinents pour le pronostic du neuroblastome.

10

15

, 7.

Les inventeurs ont également étudié l'expression simultanée des 37 gènes du tableau 2 pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 1. On observe sur ce dendograme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

Dans l'objectif de valider le pouvoir de discrimination du profil d'expression de ces 37 gènes, 6 turneurs supplémentaires de patients «test » ont été analysées sans connaissance préalable de leur pronostic, et classées comme étant de bon pronostic «BP-test » ou de mauvais pronostic «MP-test » en fonction de l'analyse de leur profil d'expression. Leur bon classement a été vérifié ensuite selon leurs propriétés cliniques : tous les échantillons «tests » analysés en aveugle par l'analyse de l'expression de 37 gènes avaient été correctement classés dans le groupe de patients de mauvais pronostic «test-MP » ou dans le groupe de patients de bon pronostic «test-BP ». Ceci confirme que l'analyse de l'expression de ces 37 gènes est un bon outil pour le pronostic du neuroblastome.

A titre indicatif, l'oncogène N-MYC a également été utilisée comme outil de pronostic. L'utilisation de ce gène mettait en évidence 5 patients de mauvais pronostic (MP). Toutefois, 3 patients étaient également de mauvais pronostic alors qu'aucune augmentation de l'expression de l'oncogène N-MYC n'ait été observée, suggérant que l'analyse unique de ce gène n'est pas suffisant pour le pronostic du neuroblastome.

20

25

Les inventeurs ont également défini des panels de gènes plus restreint permettant également de discriminer les patients de bon et de mauvais pronostic.

Un premier panel comportait 19 gènes qui sont présentés dans le tableau 4. Les résultats sont exprimés par le ratio obtenu entre l'expression moyenne du gène chez des patients MP et l'expression du gène chez des patients BP (ratio MP / BP).

Tableau 4 - liste des 19 gènes exprimés différentiellement dans les neuroblatomes de patients BP et MP

SEQ ID N°.	Description de la séquence	N° Genbank	Ratio MP/BP
1	Flap structure-specific endonuclease 1 (FEN1)	NM_004111	2,7
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM_007019	2,9
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553	0,2
7	cDNA FLJ30781 fis, clone FEBRA2000874, correspondant au gène codant l'adenylate cyclase 1 (brain)	AK055343 / NM_021116	0,3
8	TIF1 beta zinc finger protein	X97548	1,8
9	Likely ortholog of mouse tumor differentially expressed 1, like (TDE1L)	NM_020755	0,5
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831	0,4
14	RuvB-like 2 (E. coli)(RUVBL2)	NM_006666	2,1
16	RNA binding protein S1, serine-rich domain (RNPS1), transcript variant 1	NM_006711	1,6
20	Structure specific recognition protein 1 (SSRP1)	NM_003146	2,0
21	Collagen, type VI, alpha 3 (COL6A3), transcript variant 1	NM_004369	0,2
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091	1,7
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304	0,3
27	KIAA0436 mRNA, partial cds	AB007896	0,5
29	Tripartite motif-containing 2 (TRIM2)	NM_015271	0,4
31	Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM_002819	2,1
34	Erythrocyte membrane protein band 4.1-like 3	NM_012307	0,2
36	Fucosidase, alpha-L- 1, tissue (FUCA1)	NM_000147	0,2
37	Secreted protein, acidic, cysteine-rich (osteonectin) (SPARC)	NM_003118	0,2

Les inventeurs ont également étudié l'expression simultanée de ces 19 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 2. On observe sur ce dendogramme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

5

10

Dans l'objectif de valider le pouvoir de discrimination de ces 19 gènes, 6 tumeurs de patients «test » ont été analysées sans connaissance préalable de leur pronostic. Ainsi, les six tumeurs "MP-test" et «BP-test » présentées dans la figure 3 sont des tumeurs qui ont

été analysés «en aveugle ». Leur bon classement a été vérifié selon leur propriété clinique : tous les patients «MP-test » classés en fonction de leur profil d'expression comme patients de mauvais pronostic s'avéraient être des patients de mauvais pronostic et tous les patients «BP-test » classés en fonction de leur profil d'expression comme patients de bon pronostics s'avéraient être des patients de bon pronostic.

D'une façon comparable, un deuxième panel comportait 16 gènes tels que présentés dans le tableau 5.

5

10

Tableau 5 - liste des 16 gènes exprimés différentiellement dans les neuroblatomes de patients BP et MP

SEQ ID N°	Description de la séquence	N° Genbank
1	Flap structure-specific endonuclease 1 (FEN1)	NM_004111
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM_007019
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
7	cDNA FLJ30781 fis, clone FEBRA2000874,	
	correspondant au gène codant l'adenylate cyclase 1 (brain)	AK055343 / NM_021116
8	TIF1beta zinc finger protein	X97548
9	Likely ortholog of mouse tumor differentially expressed 1, like (TDE1L)	NM_020755
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831
20	Structure specific recognition protein 1 (SSRP1)	NM_003146
21	Collagen, type VI, alpha 3 (COL6A3), transcript variant 1	NM_004369
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304
29	Tripartite motif-containing 2 (TRIM2)	NM_015271
31	Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM_002819
34	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM_012307
36	Fucosidase, alpha-L-1, tissue (FUCA1)	NM_000147
37	Secreted protein, acidic, cysteine-rich (osteonectin) (SPARC)	NM_003118

Les inventeurs ont également étudié l'expression simultanée de ces 16 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 3. On observe sur ce dendogramme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

Un troisième panel comportait 12 gènes tels que présentés dans le tableau 6.

5

10

15

<u>Tableau 6 - liste des 12 gènes exprimés différentiellement dans les neuroblatomes de</u>
patients BP et MP

SEQ ID N°	Description de la séquence	N° Genbank
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM_007019
3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
7	cDNA FLJ30781 fis, clone FEBRA2000874, correspondant au gêne codant l'adenylate cyclase 1 (brain)	AK055343 / NM_021116
8	TIF1beta zinc finger protein	X97548
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831
20	Structure specific recognition protein 1 (SSRP1)	NM_003146
22	Small nuclear ribonucleoprotein polypeptides B and B1 (SNRPB)	NM_003091
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304
29	Tripartite motif-containing 2 (TRIM2)	NM_015271
31	Polypyrimidine tract binding protein 1 (PTBP1), transcript variant 1	NM_002819
34	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM_012307
37	Secreted protein, acidic, cysteine-rich (osteonectin) (SPARC)	NM_003118

Les inventeurs ont également étudié l'expression simultanée de ces 12 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 4. On observe sur ce dendograme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

Un quatrième panel comportait 9 gènes tels que présentés dans le tableau 7.

Tableau 7 - liste des 9 gènes exprimés différentiellement dans les neuroblatomes de

patients BP et MP

SEQ ID N°	Description de la séquence	N° Genbank
2	Ubiquitin-conjugating enzyme E2C (UBE2C)	NM_007019

37

3	Insulin-like growth factor binding protein 7 (IGFBP7)	NM_001553
7	cDNA FLJ30781 fis, clone FEBRA2000874, correspondant au gène	AK055343 /
	codant l'adenylate cyclase 1 (brain)	NM_021116
8	TIF1beta zinc finger protein	X97548
10	DKFZp434D1112_s1 434 (synonym: htes3) cDNA clone DKFZp434D1112 3'	AL039831
22	Small nuclear ribonucleoprotein polypeptides B and B1	NM_003091
25	Peripheral myelin protein 22 (PMP22), transcript variant 1	NM_000304
29	Tripartite motif-containing 2 (TRIM2)	NM_015271
34	Erythrocyte membrane protein band 4.1-like 3 (EPB41L3)	NM_012307

Les inventeurs ont également étudié l'expression simultanée de ces 9 gènes pour obtenir un profil d'expression. Les résultats sont présentés dans la figure 5. On observe sur ce dendogramme deux groupes ayant deux profils d'expression différents : un premier groupe permettant de classer les patients de bon pronostic (BP) et un deuxième groupe permettant de classer les patients de mauvais pronostic (MP).

5

10

15

Le pouvoir de discrimination de tous ces panels de gènes a été validé avec des turneurs « tests » tels que décrit précédemment : tous les patients « MP-test » classé en fonction de leur profil d'expression comme patients de mauvais pronostic s'avéraient être des patients de mauvais pronostic et tous les patients «BP-test » classés en fonction de leur profil d'expression comme patients de bon pronostics s'avéraient être des patients de bon pronostic.

Ces résultats démontrent que le pronostic d'un neuroblastome peut être déterminé par l'analyse de l'expression de tout ou partie des 37 gènes de séquence SEQ ID N°1 à 37. En particulier, l'analyse de l'expression des 9 gènes de SEQ ID N°2; 3; 7; 8; 10; 22; 25; 29; et 34 permet de discriminer très efficacement les patients de bon et de mauvais pronostic.

5

10

15

20

25

38

REVENDICATIONS

- 1. Procédé pour le pronostic du neuroblatome chez un patient atteint du neuroblastome caractérisé en ce qu'il comprend les étapes suivantes :
 - a. on extrait du matériel biologique d'un échantillon biologique prélévé chez le patient,
 - b. on met en contact le matériel biologique avec au moins un réactif spécifique choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on met en contact le matériel biologique avec au moins deux réactifs spécifiques choisis parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37,
 - c. on détermine l'expression d'au moins un desdits gènes cibles, étant entendu que lorsque que le gène cible présente une séquence nucléique ayant l'une des SEQ ID N°11, 17 ou 37, on détermine l'expression d'au moins deux desdit gènes cibles.
- Procédé pour le pronostic du neuroblatome selon la revendication 1 caractérisé en ce que l'échantillon biologique prélevé chez le patient est un échantillon tissulaire.
 - 3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le matériel biologique extrait lors de l'étape a) comprend des acides nucléiques.
 - 4. Procédé selon la revendication 3 caractérisé en ce que le au moins un réactif spécifique de l'étape b) comprend au moins une sonde d'hybridation

39

- Procédé selon la revendication 4 caractérisé en ce que la au moins une sonde d'hybridation est immobilisée sur un support.
- 6. Procédé selon la revendication 5 caractérisé en ce que le support est une biopuce.

5

7. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que lors de l'étape b) on met en contact le matériel biologique avec au moins 37 réactifs spécifiques choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant l'une quelconque des SEQ ID N° 1 à 37 et on détermine, lors de l'étape c, l'expression d'au moins 37 desdits gènes cibles.

10

15

8. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que lors de l'étape b) on met en contact le matériel biologique avec au moins 19 réactifs spécifiques choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°1; SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°9; SEQ ID N°10; SEQ ID N°14; SEQ ID N°16; SEQ ID N°20; SEQ ID N°21; SEQ ID N°22; SEQ ID N°25; SEQ ID N°27; SEQ ID N°29; SEQ ID N°31; SEQ ID N°34; SEQ ID N°36 ou SEQ ID N°37 et on détermine, lors de l'étape c) l'expression d'au moins 19 desdits gènes cibles.

20

25

9. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce que lors de l'étape b) on met en contact le matériel biologique avec au moins 9 réactifs spécifiques choisi parmi les réactifs spécifiques des gènes cibles présentant une séquence nucléique ayant la SEQ ID N°2; SEQ ID N°3; SEQ ID N°7; SEQ ID N°8; SEQ ID N°10; SEQ ID N°22; SEQ ID N°25; SEQ ID N°29; SEQ ID N°34; ou SEQ ID N°37 et on détermine, lors de l'étape c) l'expression d'au moins 9 desdits gènes cibles.

1/5

Figure 1

2/5

Figure 2

Figure 3

4/5

Figure 4

Figure 5

SEQUENCE LISTING

<110> BIOMERIEUX SA / CENTRE LEON BERARD

<120> Procédé pour le pronostic du neuroblastome

<130> Unknown

<160> 67

<170> PatentIn version 3.1

<210> 1

<211> 2265

<212> DNA

<213> Homo sapiens

<400> 1 agtcctgcga tttcgggtgt agagggagca ggggcctgcg gggacctggt gtgggtggag 60 tggggacaag cggtggagaa gggtacgcca gggtcgctga gagactctgt tctccctgga 120 gggactggtt gccatgagag cagccgtctg aggggacgca gcctgcacta cgcgccccaa 180 gaggctgtgc gtggcgagca ggtcacgtga cgggagcgcg ggctttggaa ggcggctgaa 240 300 cgtcaggcca cccgccgcta agctgagaag ggagagcgag cttaggaccg cctgcccggg 360 gcaaccccga accaagcttt agccgccgag gccgcgtgtc ccaaaggcca gtcatccctc ctctgtgttg ccatgggaat tcaaggcctg gccaaactaa ttgctgatgt ggcccccagt 420 gccatccggg agaatgacat caagagctac tttggccgta aggtggccat tgatgcctct 480 540 atgagcattt atcagttcct gattgctgtt cgccagggtg gggatgtgct gcagaatgag gagggtgaga ccaccagcca cctgatgggc atgttctacc gcaccattcg catgatggag 600 aacggcatca agcccgtgta tgtctttgat ggcaagccgc cacagctcaa gtcaggcgag 660 ctggccaaac gcagtgagcg gcgggctgag gcagagaagc agctgcagca ggctcaggct 720 gctggggccg agcaggaggt ggaaaaattc actaagcggc tggtgaaggt cactaagcag 780 840 cacaatgatg agtgcaaaca tctgctgagc ctcatgggca tcccttatct tgatgcaccc 900 agtgaggcag aggccagctg tgctgccctg gtgaaggctg gcaaagtcta tgctgcggct accgaggaca tggactgcct caccttcggc agccctgtgc taatgcgaca cctgactgcc 960 1020 agtgaagcca aaaagctgcc aatccaggaa ttccacctga gccggattct gcaggagctg ggcctgaacc aggaacagtt tgtggatctg tgcatcctgc taggcagtga ctactgtgag 1080

1140

1200

3-35-5-4-9 -9-55-5	· 3		5 5	33	
aaggaggctc accagcto	tt cttggaacct	gaggtgctgg	acccagagtc	tgtggagctg	1260
aagtggagcg agccaaat	ga agaagagctg	atcaagttca	tgtgtggtga	aaagcagttc	1320
tctgaggagc gaatccg	ag tggggtcaag	aggctgagta	agagccgcca	aggcagcacc	1380
cagggccgcc tggatgat	tt cttcaaggtg	accggctcac	tctcttcagc	taagcgcaag	1440
gagccagaac ccaaggga	tc cactaagaag	aaggcaaaga	ctggggcagc	agggaagttt	1500
aaaaggggaa aataaatg	tg tttccccatt	atacctcctt	caccccagaa	tatttgccgt	1560
cttgtaccct taagagct	ac agctagagaa	accttcacgg	ggtggagaga	ggattctaag	1620
gcttttctag cgtgacco	tt ttcagtagtg	ctagtccctt	ttttacttga	tcttaatggc	1680
aagaaggcca cagaggta	ct tttccttttt	tagctcagga	aaatatgtca	ggctcaaacc	1740
acttctcagg cagttta	atg gacactaagt	ccattgttac	atgaaagtga	tagatagcaa	1800
caagttttgg agaagaga	aga gggagataaa	agggggagac	aaaagatgta	cagaaatgat	1860
ttcctggctg gccaactg	gt ggccagtggg	aggtgatggt	ggacctagac	tgtgcttttc	1920
tgtcttgttc agccttga	acc caccttgaga	gagagccacc	aggaaggcgc	atcttagcag	1980
atgggaggaa ctgctgag	gag aagatgggca	gaaagctgga	gcccctggag	ttggctgtgt	2040
ctgtgtttgt gactgatt	ac tggctgtgtc	ttgggtgggc	agaaactcga	acttgctatg	2100
taatttgtgt ctagtta	tc agaggagtaa	gatggtgatg	ttcacctggc	aatcagctga	2160
gttgagactt tggaataa	aga cactggtttt	catgcgctgt	ttttgtttta	aagttatgaa	2220
gaaaaaagtc aataaaa	tc taaaagtaaa	aaaaaaaaa	aaaaa		2265
<210> 2					
<211> 783					
<212> 703					
<213> Homo sapiens	•				
ZZISZ Nomo Saprens	•				
· <400> 2					
ggcacgagcg agttcctg	tc tctctgccaa	cgccgcccgg	atggcttccc	aaaaccgcga	60
cccagccgcc actagcgt	cg ccgccgcccg ·	taaaggagct	gagccgagcg	ggggcgccgc	120
ccggggtccg gtgggcaa	iaa ggctacagca (ggagctgatg	accctcatga	tgtctggcga	180
taaagggatt tctgcctt	cc ctgaatcaga	caaccttttc	aaatgggtag	ggaccatcca	240
tggagcagct ggaacagt	at atgaagacct	gaggtataag	ctctcgctag	agttccccag	300
tggctaccct tacaatgo	gc ccacagtgaa g	gttcctcacg	ccctgctatc	accccaacgt	360
ggacacccag ggtaacat	at gcctggacat	cctgaaggaa	aagtggtctg	ccctgtatga	420
tgtcaggacc attctgct	ct ccatccagag	ccttctagga	gaacccaaca	ttgatagtcc	480
cttgaacaca catgctgo	cg agctctggaa a	aaaccccaca	gcttttaaga	agtacctgca	540
		Page 2			

agtatccggg gtattgggcc caagcgggct gtggacctca tccagaagca caagagcatc

gaggagatcg tgcggcgact tgaccccaac aagtaccctg tgccagaaaa ttggctccac

ayaaacctac	ccaaaycayy	ccaccagcca	gyagccciga	cccaggetge	ccagcctgtc	600
cttgtgtcgt	ctttttaatt	tttccttaga	tggtctgtcc	tttttgtgat	ttctgtatag	660
gactctttat	cttgagctgt	ggtatttttg	ttttgtttt	gtcttttaaa	ttaagcctcg	720
gttgagccct	tgtatattaa	ataaatgcat	ttttgtcctt	ttttaaaaaa	aaaaaaaaa	780
aaa						783
<210> 3						
<211> 3	1					
<212> DNA	•					
	sapiens					
\Z15> 110iiic	Jupiciis					
<400> 3						
	ccgcaccccg	ccatggagcg	gccgtcgctg	cgcgccctgc	tcctcggcgc	60
cgctgggctg	ctgctcctgc	tcctgcccct	ctcctcttcc	tcctcttcgg	acacctgcgg	120
cccctgcgag	ccggcctcct	gcccgcccct	gcccccgctg	ggctgcctgc	tgggcgagac	180
ccgcgacgcg	tgcggctgct	gccctatgtg	cgcccgcggc	gagggcgagc	cgtgcggggg	240
tggcggcgcc	ggcagggggt	actgcgcgcc	gggcatggag	tgcgtgaaga	gccgcaagag	300
gcggaagggt	aaagccgggg	cagcagccgg	cggtccgggt	gtaagcggcg	tgtgcgtgtg	360
caagagccgc	tacccggtgt	gcggcagcga	cggcaccacc	tacccgagcg	gctgccagct	420
gcgcgccgcc	agccagaggg	ccgagagccg	cggggagaag	gccatcaccc	aggtcagcaa	480
gggcacctgc	gagcaaggtc	cttccatagt	gacgcccccc	aaggacatct	ggaatgtcac	540
tggtgcccag	gtgtacttga	gctgtgaggt	catcggaatc	ccgacacctg	tcctcatctg	600
gaacaaggta	aaaaggggtc	actatggagt	tcaaaggaca	gaactcctgc	ctggtgaccg	660
ggacaacctg	gccattcaga	cccggggtgg	cccagaaaag	catgaagtaa	ctggctgggt	720
gctggtatct	cctctaagta	aggaagatgc	tggagaatat	gagtgccatg	catccaattc	780
ccaaggacag	gcttcagcat	cagcaaaaat	tacagtggtt	gatgccttac	atgaaatacc	840
agtgaaaaaa	ggtgaaggtg	ccgagctata	aacctccaga	atattattag	tctgcatggt	900
taaaagtagt	catggataac	tacattacct	gttcttgcct	aataagtttc	ttttaatcca	960
atccactaac	actttagtta	tattcactgg	ttttacacag	agaaatacaa	aataaagatc	1020
acacatcaag	actatctaca	aaaatttatt	atatatttac	agaagaaaag	catgcatatc	1080
attaaacaaa	taaaatactt	tttatcacaa	aaaaaaaaa	aaaa		1124
-210- 4						
<210> 4						
<211> 5084	•					
<212> DNA						
<213> Homo	sapiens					

4 3

<400> 4 agcaccacgg	cagcaggagg	tttcggctaa	gttggaggta	ctggccacga	ctgcatgccc	60
gcgcccgcca	ggtgatacct	ccgccggtga	cccaggggct	ctgcgacaca	aggagtctgc	120
atgtctaagt	gctagacatg	ctcagctttg	tggatacgcg	gactttgttg	ctgcttgcag	180
taaccttatg	cctagcaaca	tgccaatctt	tacaagagga	aactgtaaga	aagggcccag	240
ccggagatag	aggaccacgt	ggagaaaggg	gtccaccagg	cccccaggc	agagatggtg	300
aagatggtcc	cacaggccct	cctggtccac	ctggtcctcc	tggcccccct	ggtctcggtg	360
ggaactttgc	tgctcagtat	gatggaaaag	gagttggact	tggccctgga	ccaatgggct	420
taatgggacc	tagaggccca	cctggtgcag	ctggagcccc	aggccctcaa	ggtttccaag	480
gacctgctgg	tgagcctggt	gaacctggtc	aaactggtcc	tgcaggtgct	cgtggtccag	540
ctggccctcc	tggcaaggct	ggtgaagatg	gtcaccctgg	aaaacccgga	cgacctggtg	600
agagaggagt	tgttggacca	cagggtgctc	gtggtttccc	tggaactcct	ggacttcctg	660
gcttcaaagg	cattagggga	cacaatggtc	tggatggatt	gaagggacag	cccggtgctc	720
ctggtgtgaa	gggtgaacct	ggtgcccctg	gtgaaaatgg	aactccaggt	caaacaggag	780
cccgtgggct	tcctggtgag	agaggacgtg	ttggtgcccc	tggcccagct	ggtgcccgtg	840
gcagtgatgg	aagtgtgggt	cccgtgggtc	ctgctggtcc	cattgggtct	gctggccctc	900
caggcttccc	aggtgcccct	ggccccaagg	gtgaaattgg	agctgttggt	aacgctggtc	960
ctgctggtcc	cgccggtccc	cgtggtgaag	tgggtcttcc	aggcctctcc	ggccccgttg	1020
gacctcctgg	taatcctgga	gcaaacggcc	ttactggtgc	caagggtgct	gctggccttc	1080
ccggcgttgc	tggggctccc	ggcctccctg	gaccccgcgg	tattcctggc	cctgttggtg	1140
ctgccggtgc	tactggtgcc	agaggacttg	ttggtgagcc	tggtccagct	ggctccaaag	1200
gagagagcgg	taacaagggt	gagcccggct	ctgctgggcc	ccaaggtcct	cctggtccca	1260
gtggtgaaga	aggaaagaga	ggccctaatg	gggaagctgg	atctgccggc	cctccaggac	1320
ctcctgggct	gagaggtagt	cctggttctc	gtggtcttcc	tggagctgat	ggcagagctg	1380
gcgtcatggg	ccctcctggt	agtcgtggtg	caagtggccc	tgctggagtc	cgaggaccta	1440
atggagatgc	tggtcgccct	ggggagcctg	gtctcatggg	acccagaggt	cttcctggtt	1500
cccctggaaa	tatcggcccc	gctggaaaag	aaggtcctgt	cggcctccct	ggcatcgacg	1560
gcaggcctgg	cccaattggc	ccagctggag	caagaggaga	gcctggcaac	attggattcc	1620
ctggacccaa	aggccccact	ggtgatcctg	gcaaaaacgg	tgataaaggt	catgctggtc	1680
ttgctggtgc	tcggggtgct	ccaggtcctg	atggaaacaa	tggtgctcag	ggacctcctg	1740
gaccacaggg	tgttcaaggt	ggaaaaggtg	aacagggtcc	cgctggtcct	ccaggcttcc	1800
agggtctgcc	tggcccctca	ggtcccgctg	gtgaagttgg	caaaccagga	gaaaggggtc	1860
tccatggtga	gtttggtctc	cctggtcctg	ctggtccaag	aggggaacgc	ggtcccccag	1920
gtgagagtgg	tgctgccggt	cctactggtc	ctattggaag	ccgaggtcct	tctggacccc	1980
cagggcctga	tggaaacaag	ggtgaacctg	gtgtggttgg	tgctgtgggc	actgctggtc	2040
			Dama 4			

catctggtcc	tagtggactc	ccaggagaga	ggggtgctgc	tggcatacct	ggaggcaagg	2100
gagaaaaggg	tgaacctggt	ctcagaggtg	aaattggtaa	ccctggcaga	gatggtgctc	2160
gtggtgctca	tggtgctgta	ggtgcccctg	gtcctgctgg	agccacaggt	gaccggggcg	2220
aagctggggc	tgctggtcct	gctggtcctg	ctggtcctcg	gggaagccct	ggtgaacgtg	2280
gcgaggtcgg	tcctgctggc	cccaacggat	ttgctggtcc	ggctggtgct	gctggtcaac	2340
cgggtgctaa	aggagaaaga	ggagccaaag	ggcctaaggg	tgaaaacggt	gttgttggtc	2400
ccacaggccc	cgttggagct	gctggcccag	ctggtccaaa	tggtccccc	ggtcctgctg	2460
gaagtcgtgg	tgatggaggc	cccctggta	tgactggttt	ccctggtgct	gctggacgga	2520
ctggtccccc	aggaccctct	ggtatttctg	gccctcctgg	tcccctggt	cctgctggga	2580
aagaagggct	tcgtggtcct	cgtggtgacc	aaggtccagt	tggccgaact	ggagaagtag	2640
gtgcagttgg	tcccctggc	ttcgctggtg	agaagggtcc	ctctggagag	gctggtactg	2700
ctggacctcc	tggcactcca	ggtcctcagg	gtcttcttgg	tgctcctggt	attctgggtc	2760
tccctggctc	gagaggtgaa	cgtggtctac	ctggtgttgc	tggtgctgtg	ggtgaacctg	2820
gtcctcttgg	cattgccggc	cctcctgggg	cccgtggtcc	tcctggtgct	gtgggtagtc	2880
ctggagtcaa	cggtgctcct	ggtgaagctg	gtcgtgatgg	caaccctggg	aacgatggtc	2940
ccccaggtcg	cgatggtcaa	cccggacaca	agggagagcg	cggttaccct	ggcaatattg	3000
gtcccgttgg	tgctgcaggt	gcacctggtc	ctcatggccc	cgtgggtcct	gctggcaaac	3060
atggaaaccg	tggtgaaact	ggtccttctg	gtcctgttgg	tcctgctggt	gctgttggcc	3120
caagaggtcc	tagtggccca	caaggcattc	gtggcgataa	gggagagccc	ggtgaaaagg	3180
ggcccagagg	tcttcctggc	ttaaagggac	acaatggatt	gcaaggtctg	cctggtatcg	3240
ctggtcacca	tggtgatcaa	ggtgctcctg	gctccgtggg	tcctgctggt	cctaggggcc	3300
ctgctggtcc	ttctggccct	gctggaaaag	atggtcgcac	tggacatcct	ggtacggttg	3360
gacctgctgg	cattcgaggc	cctcagggtc	accaaggccc	tgctggcccc	cctggtcccc	3420
ctggccctcc	tggacctcca	ggtgtaagcg	gtggtggtta	tgactttggt	tacgatggag	3480
acttctacag	ggctgaccag	cctcgctcag	caccttctct	cagacccaag	gactatgaag	3540
ttgatgctac	tctgaagtct	ctcaacaacc	agattgagac	ccttcttact	cctgaaggct	3600
ctagaaagaa	cccagctcgc	acatgccgtg	acttgagact	cagccaccca	gagtggagca	3660
gtggttacta	ctggattgac	cctaaccaag	gatgcactat	ggatgctatc	aaagtatact	3720
gtgatttctc	tactggcgaa	acctgtatcc	gggcccaacc	tgaaaacatc	ccagccaaga	3780
actggtatag	gagctccaag	gacaagaaac	acgtctggct	aggagaaact	atcaatgctg	3840
gcagccagtt	tgaatataat	gtagaaggag	tgacttccaa	ggaaatggct	acccaacttg	3900
ccttcatgcg	cctgctggcc	aactatgcct	ctcagaacat	cacctaccac	tgcaagaaca	3960
gcattgcata	catggatgag	gagactggca	acctgaaaaa	ggctgtcatt	ctacagggct	4020
ctaatgatgt	tgaacttgtt	gctgagggca	acagcaggtt	cacttacact	gttcttgtag	4080
atggctgctc	taaaaagaca	aatgaatggg	gaaagacaat	cattgaatac	aaaacaaata	4140

. :

agccatcaco	cctgcccttc	cttgatattg	cacctttgga	catcggtggt	gctgaccatg	4200
aattctttgt	ggacattggc	ccagtctgtt	tcaaataaat	gaactcaatc	taaattaaaa	4260
aagaaagaaa	ı tttgaaaaaa	ctttctcttt	gccatttctt	cttcttcttt	tttaactgaa	4320
agctgaatco	ttccatttct	tctgcacatc	tacttgctta	aattgtgggc	aaaagagaaa	4380
aagaaggatt	gatcagagca	ttgtgcaata	cagtttcatt	aactccttcc	cccgctcccc	4440
caaaaattt	aattttttt	tcaacactct	tacacctgtt	atggaaaatg	tcaacctttg	4500
taagaaaac	: aaaataaaaa	ttgaaaaata	aaaaccataa	acatttgcac	cacttgtggc	4560
ttttgaatat	cttccacaga	gggaagttta	aaacccaaac	ttccaaaggt	ttaaactacc	4620
tcaaaacact	ttcccatgag	tgtgatccac	attgttaggt	gctgacctag	acagagatga	4680
actgaggtc	ttgttttgtt	ttgttcataa	tacaaaggtg	ctaattaata	gtatttcaga	4740
tacttgaaga	atgttgatgg	tgctagaaga	atttgagaag	aaatactcct	gtattgagtt	4800
gtatcgtgtg	gtgtatttt	taaaaaattt	gatttagcat	tcatattttc	catcttattc	4860
ccaattaaaa	gtatgcagat	tatttgccca	aagttgtcct	cttcttcaga	ttcagcattt	4920
gttctttgco	agtctcattt	tcatcttctt	ccatggttcc	acagaagctt	tgtttcttgg	4980
gcaagcagaa	aaattaaatt	gtacctattt	tgtatatgtg	agatgtttaa	ataaattgtg	5040
aaaaaaatga	aataaagcat	gtttggtttt	ccaaaagaac	atat		5084
<210> 5						
<211> 251	8					
<212> DNA			1.1			
<213> Hom	o sapiens		•			
<400> 5						
	acgtgctccg			_		60
	ctcatctgcg					120
	caggtaaaaa					180
	atagtgaaga					240
	tcatacctca					300
	ccccaacaaa					360
	aaaaggcagc					420
	ctggcaagaa					480
	ctgccatccc					540
	aagaggagga					600
	aagatgaaat					660
tcagaggatg	aggacgatga	ggatgacgaa	gatgatgagg	atgacgatga	cgatgaggaa	720

780

gatgactctg aagaagaagc tatggagact acaccagcca aaggaaagaa agctgcaaaa

ottatteeta	taaaaaccaa	gaacgtggct	nanna+naan	atnaanaana	aastastasa	940
						840
		cgaagatgat				900
gaggaagaag	aggaggagga	agagcctgtc	aaagaagcac	ctggaaaacg	aaagaaggaa	960
atggccaaac	agaaagcagc	tcctgaagcc	aagaaacaga	aagtggaagg	cacagaaccg	1020
actacggctt	tcaatctctt	tgttggaaac	ctaaacttta	acaaatctgc	tcctgaatta	1080
aaaactggta	tcagcgatgt	ttttgctaaa	aatgatcttg	ctgttgtgga	tgtcagaatt	1140
ggtatgacta	ggaaatttgg	ttatgtggat	tttgaatctg	ctgaagacct	ggagaaagcg	1200
ttggaactca	ctggtttgaa	agtctttggc	aatgaaatta	aactagagaa	accaaaagga	1260
aaagacagta	agaaagagcg	agatgcgaga	acacttttgg	ctaaaaatct	cccttacaaa	1320
gtcactcagg	atgaattgaa	agaagtgttt	gaagatgctg	cggagatcag	attagtcagc	1380
aaggatggga	aaagtaaagg	gattgcttat	attgaattta	agacagaagc	tgatgcagag	1440
aaaacctttg	aagaaaagca	gggaacagag	atcgatgggc	gatctatttc	cctgtactat	1500
actggagaga	aaggtcaaaa	tcaagactat	agaggtggaa	agaatagcac	ttggagtggt	1560
gaatcaaaaa	ctctggtttt	aagcaacctc	tcctacagtg	caacagaaga	aactcttcag	1620
gaagtatttg	agaaagcaac	ttttatcaaa	gtaccccaga	accaaaatgg	caaatctaaa	1680
gggtatgcat	ttatagagtt	tgcttcattc	gaagacgcta	aagaagcttt	aaattcctgt	1740
aataaaaggg	aaattgaggg	cagagcaatc	aggctggagt	tgcaaggacc	caggggatca	1800
cctaatgcca	gaagccagcc	atccaaaact	ctgtttgtca	aaggcctgtc	tgaggatacc	1860
actgaagaga	cattaaagga	gtcatttgac	ggctccgttc	gggcaaggat	agttactgac	1920
cgggaaactg	ggtcctccaa	agggtttggt	tttgtagact	tcaacagtga	ggaggatgcc	1980
aaggaggcca	tggaagacgg	tgaaattgat	ggaaataaag	ttaccttgga	ctgggccaaa	2040
cctaagggtg	aaggtggctt	cgggggtcgt	ggtggaggca	gaggcggctt	tggaggacga	2100
ggtggtggta	gaggaggccg	aggaggattt	ggtggcagag	gccggggagg	ctttggaggg	2160
cgaggaggct	tccgaggagg	cagaggagga	ggaggtgacc	acaagccaca	aggaaagaag	2220
acgaagtttg	aatagcttct	gtccctctgc	tttccctttt	ccatttgaaa	gaaaggactc	2280
tggggttttt	actgttacct	gatcaatgac	agagccttct	gaggacattc	caagacagta	2340
tacagtcctg	tggtctcctt	ggaaatccgt	ctagttaaca	tttcaagggc	aataccgtgt	2400
tggttttgac	tggatattca	tataaacttt	ttaaagagtt	gagtgataga	gctaaccctt	2460
atctgtaagt	tttgaattta	tattgtttca	tcccatgtac	aaaaccattt	tttcctac	2518

<210> 6

<211> 3677

<212> DNA

<213> Homo sapiens

> tg	6 cccg	cccgcccgct	cgcccccggt	ccggactcct	cctcctcctc	ttctcgccat	60
gt	tgga	cccagcagcc	cggcgcgcac	cgcgtggctt	ttgggggcag	accccggcgg	120
tg	gcag	gagggcggcg	gcggcggctg	cggtcgaaga	aggggacgcc	gacaagagtt	180
ta	ttga	taacaccaag	gaactctatc	acaatttgaa	aagataagca	aaagtttgat	240
ag	acac	tacagaagaa	gtaaaaatgc	gtccaatgcg	aatttttgtg	aatgatgacc	300
tg	tgat	ggcaaagcat	tcttccgttt	atccaacaca	agaggagctg	gaggcagtcc	360
ca	tggt	gtcccacacg	gagcgggcgc	tcaaagctgt	gtccgactgg	atagacgagc	420
aa	aggg	tagcagcgag	caggcagagt	ccgataacat	ggatgtgccc	ccagaggacg	480
ta	aaga	aggggctggg	gaacagaaga	cggagcacat	gaccagaacc	ctgcggggag	540
gc	gggt	gggcctggtg	gcaaagggcc	tcctactcaa	gggggacttg	gatctggagc	600
gc	tgct	gtgtaaggag	aagcccacaa	ccgccctcct	ggacaaggtg	gccgacaacc	660
ca	.tcca	gcttgctgct	gtaacagaag	acaagtacga	aatactgcaa	tctgtcgacg	720
tg	cgat	tgtgataaaa	aacacaaaag	agcctccatt	gtccctgacc	atccacctga	780
cc	ctgt	tgtcagagaa	gaaatggaga	aagtattagc	tggagaaacg	ctatcagtca	840
.cc	cccc	ggacgttctg	gacaggcaga	aatgccttgc	tgccttggcg	tccctccgac	900
ca	agtg	gttccaggcc	agagccaacg	ggctgaagtc	ttgtgtcatt	gtgatccggg	960
ga	ggga	cctgtgcact	cgcgtgccca	cctggggtcc	cctccgaggc	tggcctctcg	1020
cc	tgtg	tgagaaatcc	attggcacgg	ccaacagacc	gatgggtgct	ggcgaggccc	1080
ga	gagt	gctggagtgc	ctggcgtcgg	gcatcgtgat	gccagatggt	tctggcattt	1140
cc	cttg	tgaaaaagaa	gccactgatg	ctattgggca	tctagacaga	cagcaacggg	1200
ta	tcac	acagagtgcg	cagcacgcac	tgcggctcgc	tgccttcggc	cagctccata	1260
cc	tagg	catggaccct	ctgccttcca	agatgcccaa	gaaaccaaag	aatgaaaacc	1320
gg	acta	caccgttcag	atcccaccaa	gcaccaccta	tgccattacg	cccatgaaac	1380
aa	tgga	ggaggacggg	gaggagaagt	cgcccagcaa	aaagaagaag	aagattcaga	1440
ag	agga	gaaggcagag	ccccccagg	ctatgaatgc	cctgatgcgg	ttgaaccagc	1500
gc	cagg	gctgcagtac	aagctggtgt	cccagactgg	gcccgtccat	gcccccatct	1560
ca	tgtc	tgtggaggtt	gatggcaatt	cattcgaggc	ctctgggccc	tccaaaaaga	1620
ca	agct	gcacgtggcc	gttaaggtgt	tacaggacat	gggcttgccg	acgggtgctg	1680
ca	ggga	ctcgagcaag	ggggaggact	cggctgagga	gaccgaggcg	aagccagcag	1740
gg	cccc	tgccccagtg	gtagaagctg	tctccacccc	tagtgcggcc	tttccctcag	1800
ċa	ctgc	cgagcagggg	ccgatcctga	caaagcacgg	caagaaccca	gtcatggagc	1860
cg	agaa	gaggcgtggg	ctcaagtacg	agctcatctc	cgagaccggg	ggcagccacg	1920
gc	gctt	cgtcatggag	gtcgaagtgg	atggacagaa	gttccaaggt	gctggttcca	1980
aa	aggt	ggcgaaggcc	tacgctgctc	ttgctgccct	agaaaagctt	ttccctgaca	2040
tc	tcgc	ccttgatgcc	aacaaaaaga	agagagcccc	agtacccgtc	agagggggac	2100

cgaaatttgc	tgctaagcca	cataaccctg	gcttcggcat	gggaggcccc	atgcacaacg	2160
aagtgccccc	acccccaac	cttcgagggc	ggggaagagg	cgggagcatc	cggggacgag	2220
ggcgcgggcg	aggatttggt	ggcgccaacc	atggaggcta	catgaatgcc	ggtgctgggt	2280
atggaagcta	tgggtacgga	ggcaactcgg	cgacagcagg	ctacagtgac	tttttcacag	2340
actgctacgg	ctatcatgat	tttgggtctt	cctagagcgt	ctaaaagtat	tgcacacaaa	2400
atcaactttt	tactccaatt	tcctccaact	ccaaaaccca	aagtgtccgt	gctgtgtccc	2460
tgtgcttcac	tgggtttctc	aaccgtggct	tttcaccgca	gcttgtctga	aactcttagc	2520
ctgcagaatt	taagacaatg	gcagttttta	tcgtgatttg	cctttgaact	tggtcctatt	2580
gaagttcaca	ataagtggaa	aacaattttt	tcagagaatg	tatttttgtg	cagaattgca	2640
cagaattcta	gagacagcgt	tgttcggcat	caaggcaaaa	gcccaccttt	gctttttatg	2700
gaaagcatta	ctttatttaa	agagacagac	aatgacgcat	tttaatctac	ctttgtctta	2760
atttacagca	ggttttgtat	gaatttttaa	ccttttaaca	aactcccaaa	tctggttgat	2820
gcctttgaca	gtgatgaaaa	cgatttcacc	acatctgaat	ccagagaaac	cggctttttt	2880
tcttattgcg	agcatgttaa	aacgttggga	acatgtgggg	aattgtatat	tgcgctgaat	2940
taacttctcc	cgcctcttgt	aatgctctgg	tgggttcttg	tttgggaatg	cgatattttg	3000
tggctggttt	agctagagag	tgaactctca	aaggtatcaa	aactgtgctt	ccattattag	3060
tgcaagaaac	agacaggctt	taaggggtag	atgacgtgaa	attttgcaag	tcttaattac	3120
agctgcagat	gcatgggatt	ctggatttt	ttgttgcttt	ttagtttaat	gggactttaa	3180
				ccagtaaagg	50	3240
gcttgggcag	aggtggtgct	gctgggtgtg	cagctgccac	agactccaaa	ggcgtagaag	3300
tttgtgccaa	cacacggagt	cattctggct	ctctgctgag	gcccctgttt	tctggcaggt	3360
gccctccttg	gaaactggtt	ttggctctga	tcagcggttc	tttttgcagc	aaagcctgca	3420
tctgtgttga	cttgcaagat	tttgcgttta	ttcaggcaaa	aactggtcaa	aatggttact	3480
acatgatttg	ttcccagagg	tttgaaacat	tcagtgaaac	tttttaaaac	tttgattgca	3540
tgatgtattt	tttttttaga	aagttattgt	ttgagaataa	tgtcttttta	taccaggaaa	3600
atagttatcc	tgaatgacgt	tgaaaactcc	ccctcccctt	tattttttt	taatcaatac	3660
atgtgaaagt	aacaagc					3677

<210> 7

<211> 2901

<212> DNA

<213> Homo sapiens

gaaaccccgt	ctctactaaa	aatacaaaa	aaaaattago	tgggcgtgtt	ggcgggagcc	180
tgtagtccca	gctacacggg	aggctaaggt	gggagaattg	cttgaacccg	ggaggcggag	240
gttgcagtga	gctgagattg	caccattgca	ctccagcctg	ggcgacagag	caagactctc	300
tcaaaaaaaa	aaaaaaagaa	agaaagaaat	cagaaaatcg	accacagtgg	tagccacctg	360
gcctaatgct	gtgtttttgt	acctgacagg	ggtcactcat	tttaggcaca	actccttcat	420
tctttgtgaa	attagtgagt	ttccttctac	ccgtcaccag	attcaatatg	ttctattaat	480
acaccgataa	ccacagggga	agggcacttg	tcgctctccc	acctggttac	cacagtctcc	540
atgggtcttt	tgccgtgacc	acaaataaag	gaaacactca	tcactagtat	ctaagtcggg	600
ctttacagta	actatgcacc	ttctgtgtgc	ttcacctcac	tctctacttc	aaacagccca	660
tggagggagg	tattattata	ctccttatgt	tgacagtgaa	gaatctgagg	cccagagagg	720
ttggggactt	gagtaaagtc	acacagccct	gagaggcagg	accagggttc	cattcctgct	780
ctatccagtt	ccaagccctt	gtgttttcca	ttatgtttag	tgcctctttg	ctaacagcaa	840
catctgcaag	atttgtgttg	gttttgatgg	agaactctag	ctcatccaca	tgctagtgcc	900
caagtggtgg	aggggccacc	tcagcaggtg	ggttctgaat	gcagccaagg	ctgtccccgc	960
aatgggtgag	actcgctcca	actgcccgcc	ctcagagcag	gtgcctaagt	cctccctggc	1020
actggcaggc	cttacctcac	attgctaaat	taaagcaatg	caattcctct	tgggtaagag	1080
gaattcctcc	ttctttacta	actgatcccc	agcaaggaaa	taaaatgtta	ggctttaaaa	1140
atccctactt	tgtcatatca	gactatattc	taaaactata	tttgagcgaa	acctgtcatt	1200
gcgtctaatt	tcaaatatac	agaatctcct	taagagctgt	tgccttattt	ttttgtaaag	1260
cctctctgac	atcaaatggg	gagaaatggt	ggcacctcca	gacaccctga	aactacacac	1320
catttcttcc	ctgctcagct	tctgctcagg	agttctgtga	gctatgggaa	ggccattggt	1380
tgtatttgct	acttttactt	tcatcttcct	ctgctgtaga	gccatttaat	gttattgtca	1440
tatgctgctg	gtgaggtaaa	ggtgggtccg	ggtgccttcc	caggggttag	aggatgttca	1500
aagggccgat	ttcagcagga	gttcagaggg	cttatgatgg	atggtgagag	atttgacaac	1560
caccagagca	catgtgctct	gaccctctcc	tgggcattgg	ttcctgctgg	taccgggcgg	1620
ttcagacctt	caaataggtt	gctttcaaaa	gagctttcag	gcacttattg	agaattaatg	1680
tttaaacaga	cataatagcc	tagatgaact	cccaagagat	ctattaaatc	ttgtgggctg	1740
aataaatatc	tcgtgcagga	ctgtgcaaca	gtagcccaga	gcatcctgcc	tgtgggcatc	1800
cacctcccag	gtgagggcag	tgggaagctg	gcccgacggc	agccagaact	tgtttctcac	1860
ctcccaccag	caacccccca	cccaactctg	ggccccaggc	acacgaagca	caagtctcag	1920
gggaccattc	ccacattggg	ggatcctgag	ggagcccatc	accgcctctt	gcatacaact	1980
gtccactagg a	aggcacgccc	agtgtgggag	agatgtatgg	tcttgccttc	cacctgtaaa	2040
aactgcacat a	atgcaagcca	tttgcactct	ggaactgcat	gccgtgaaaa	ctcctaatgg	2100
tgtggaactt a	agtttgaatt	tgaaatcacg	ccgcatgcac	aaagggacag	gcccaggccc	2160
gacctcaggt (catccgcccg	ctggctgcag	agcatccctg	ggagccaagg	cgaggcccgt	2220
			Domo 10			

ggagcctgag ctttgtgtag ctcgagcttt gtgtagctcg tgcacttatt atgcaccacc	2280
tcccttcagt caccactcct cttcctccgc catcctcatt tatactgatt gcacaccccc	2340
cgctcaaaca acaatgtcct tattatgatg accatctcgt agtggtacat tccattccta	2400
tttaaggtaa gcccaaagcc cacttttgga ttttctcgac tgtccgagaa aagttgtgta	2460
agcgcctgcg ttcttctggg tttggctaga tagggttgtg tccctctatg gaatggagag	2520
tgatgtgggc aagggtgtca ttttctcgca caatacaact cactgaggat gcttctgtag	2580
aagtgagaaa cacgatgagt acattcagaa ttacaataac tcactctcac tgggtaactt	2640
ctcatgatag atttgtatga tcaatacggg tctattttta tgtcaactga acactgtagg	2700
gtaccttcca gtctttttca agattgttaa attgagacaa gtaattgaat aatttgtcct	2760
atttttattt taaaaaaagt gaatggactg aaatgttaaa tgtgaatgta catttcttaa	2820
ttgcaatttt tctactgagt gtttgcacta tactttctgg aatcttattt aacaaaaata	2880
aagggaaaaa attgcttgac t	2901
<210> 8	
<211> 3056	
<212> DNA	
<213> Homo sapiens	
*	
<400> 8	
gcggggcggg ccggcggcgg aggccgggcc gcggagccag gagtgactag cagcagttgg	
	60
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggc caggaggcgc gtggtgcggg	120
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg	120
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag	120 180
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcg ggcgggcagc ggcccaggag gcgcgtggcg	120 180 240
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcg ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct	120 180 240 300
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcc ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgcctgcgc ggcgggcccc gcgcccctcc tcccccctg ggcgcccccg gcggcgtgtg	120 180 240 300 360
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcg ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcgcggca gcggcccagc agttggcggc gagcgcgtct gcgcctgcgc ggcgggcccc gcgccctcc tcccccctg ggcgccccc gcgcctctgacccc tcggcggcc tcggcggcg cagcctcggc agcagcggcc tcggccgcc ctggcagccc	120 180 240 300 360 420
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcg ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgcctgcgc ggcgggcccc gcgcccctcc tcccccctg ggcgcccccg gcggcgtgtg aatggcggcc tccgcggcgg cagcctcggc agcagcggcc tcggccgcct ctggcagcc gggcccgggc gagggctccg ctggcggcga aaagcgctcc accgccctt cggccgcagc	120 180 240 300 360 420 480
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcg ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgcctgcgc ggcgggcccc gcgcccctcc tcccccctg ggcgcccccg gcggcgtgtg aatggcggc tccgcgggg cagcctcggc agcagcggcc tcggccgcc ctggcagcc ggggcccgg gagggctcc ctggcggca aaagcgctcc accgccctt cggccgcagc ctcggcctt gcctcagcc ggcgctcgtc gcccgggg ggcggcgcc aggcgctgga	120 180 240 300 360 420 480 540
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcggc ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcgcccctcc tcccccctg ggcgcccccg gcggcgtgtg aatggcggcc tccgcgggg cagcctcggc agcagcggcc tcggcgcgc gtggcgcg agaggcccc gcgcccccc tcggcggcc tcggcgccc ctggcggcg aaagcgcccc accgccct ctggcagcc ctcggccgc gagggctccg ctggcgcga aaagcgctcc accgccctt cggccgcagc ctcggcctct gcctcagccc ggcgctcgtc gcccgcggg ggcggcgcc aggcgctgga gccccgcggg ggcggcgcc aggcgctgga gccccgcct ccggccgccc ccggcggg ggcggcgcc aggcgctcgagc cccggggg cactgcggc tgtgcagaag gcgcctgcga cccgagaggg agccccgcct	120 180 240 300 360 420 480 540 600
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcgc ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgcctgcgc ggcgggcccc gcgccctcc tcccccctg ggcgcccccg gcggcgtgtg aatggcggcc tccgcgggg cagcctcggc agcagcggcc tcggcgcgc gagggctcc gcgcgcga aaagcgctcc accgccctt cggccgcc ctggcggcg gagggctccg ctggcggca aaagcgctcc accgccctt cggccgcagc ctcggccttt gcctcagccg cggcgtcgtc gcccgcgggg ggcggcgcg aggcgctgga gctgctggag cactgcggc tgtgcagaga gcgcctgcga cccgagaggg agccccgct gctgccttt ttgcactcgg cctgtagtgc ctgcttaggg cccgcggccc ccgccgccc	120 180 240 300 360 420 480 540 600 660
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcgc ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgccttgcgc ggcgggcgc cagcccctcc tcccccctg ggcgcccccg gcggcgtgtg aatggcggcc tccgcggcgg cagcctcggc agcagcggcc tcggcgcgc gagggctcc ctggcggca aaagcgctcc accgccctt ctggcagcc ctcggcctt gcctcagcc gcgcgcgca aaagcgctcc accgccctt cggccgcagc ctcggccttc gcctcagccg cggcgtcgtc gcccgcgggg ggcggcgcg aggcgctgga gccccggg ggcggcgcg aggcgctgga gccccgggg ggcggcgcg tgtgcagaag gcgcctgcga cccgagaggg agccccgct gctgccctgt ttgcactcgg cctgtagtgc ctgcttaggg cccgcggccc ccgccgcgc caacagctcg ggggacggcg gggcggcggg cgacggcacc gtggtggact gtcccgtgtg	120 180 240 300 360 420 480 540 600 660 720
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggc caggaggcg gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcgc ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgcctgcgc ggcgggcgcc gcgcccctcc tcccccctg ggcgcccccg gcggcgtgtg aatggcggc tccgcgggg cagcctcggc agcagcggcc tcggcggcg gagggctcc gtggcggca aaagcgctcc accgccctt ctggccgcc ctcggccggc gagggctccg ctggcggcga aaagcgctcc accgccctt cggccgcagc gcgcctctggc gcgcgcgg ggcggcgcg ggcggcggg ggcggcg	120 180 240 300 360 420 480 540 600 660 720 780
ccgtgccgta gcagcgtccc gcgcggggg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcag ttggccgtgc cgtagcagcg tcccgcgcg ggcgggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcgc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgcctgcgc ggcggggcac ggcgcccccg gcggcgtgtg aatggcggc tccgggggg cagcctcggc agcagcggcc tcggcggcg cagcctcggc agcagcggcc tcggcggcg gagggcccc gcgccctcc tccccccctg ggcgcccccg gcggcgtgtg aatggcggc tccggggg cagcctcggc agcagcgcc tcggccgccc ctggcagcc ctcggccggg cagcctcggc aaagcgccc accgccctt cggccgcagc ctcggccggg gagggctccg ctggcggca aaagcgctcc accgccctt cggccgcagc ctcggcctt gcctcagccg cggcgtcgtc gcccgcggg ggcggcgcg agccccgcct gctgctggaa cactgcggcg tgtgcagaaa gcgcctgcga cccgagaggg agccccgcct gctgccctgt ttgcactcgg cctgtagtgc ctgcttaggg cccgcggccc ccgccgccc caacagctcg ggggacggcg gggcggcggg cgacggcacc gtggtggact gtcccgtgtg caagcaacag tgcttctca aagacatcgt ggagaattat ttcatgcgtg atagtggcag caaggctgcc accaggctgc accaggctgc accaggctgc accaggctgc aggataatgc	120 180 240 300 360 420 480 540 600 660 720 780 840
ccgtgccgta gcagcgtccc gcgcgcggcg ggcagcggcc caggaggcgc gtggtgcggg tttcggcggc ggctgaggaa gaagcgcggg cggcgccttc gggaggcgag caggcagcagg ttggccgtgc cgtagcagcg tcccgcgcg ggcggcagc ggcccaggag gcgcgtggcg gcgctcggcc tcgcggcggc ggcggcggca gcggcccagc agttggcggc gagcgcgtct gcgccttggcc tcgcggcgc ggcgcccccc tcccccctg ggcgcccccg gcggcgtgtg aatggcggc tccggggg cagcctcggc agcagcggcc tcggccgcc ctggcggg cagcctcggc agcagcggcc tcggccgcc tcggcgcgc ctggcggcg aaagcgctcc accgcccct tcggccgcc ctggcggcg gagggctccg ctggcggca aaagcgctcc accgcccctt tggccgcagc ctcggcctct gcctcagccg cggcgtcgtc gcccggggg ggcggcgcg aggcgctgga gctgctggag gctgctggag cactgcggag tgtgcagaga gccccgcggg ggcggcgcg aggcgctgga gctgcctgt ttgcactcgg cctgtagtgc ctgcttaggg cccgcggccc ccgccgccc caacagctcg ggggacggcg gggcggcgg cgacggcacc gtggtggact gtcccgtgtg caaggcacag tgcttctcca aagacatcgt ggagaattat ttcatgcgtg atagtggcag caaggctgcc accgacgccc aggatgcgaa ccagtgctgc actagctgtg aggataatgc cccagccacc agctactgt tggagtgctc ggagactctg tgtgagacct gtgtagaggc cccagccacc agctactgt tggagtgctc ggagcctctg tgtgagacct gtgtagaggc	120 180 240 300 360 420 480 540 600 660 720 780 840 900

ttgtgagagc	tgtgatactc	tcacctgccg	agactgccag	ctcaatgccc	acaaggacca	1080
ccagtaccag	ttcttagagg	atgcagtgag	gaaccagcgc	aagctcctgg	cctcactggt	1140
gaagcgcctt	ggggacaaac	atgcaacatt	gcagaagagc	accaaggagg	ttcgcagctc	1200
aatccgccag	gtgtctgacg	tacagaagcg	tgtgcaagtg	gatgtcaaga	tggccatcct	1260
gcagatcatg	aaggagctga	ataagcgggg	ccgtgtgctg	gtcaatgatg	cccagaaggt	1320
gactgagggg	cagcaggagc	gcctggagcg	gcagcactgg	accatgacca	agatccagaa	1380
gcaccaggag	cacattctgc	gctttgcctc	ttgggctctg	gagagtgaca	acaacacagc	1440
ccttttgctt	tctaagaagt	tgatctactt	ccagctgcac	cgggccctca	agatgattgt	1500
ggatcccgtg	gagccacatg	gcgagatgaa	gtttcagtgg	gacctcaatg	cctggaccaa	1560
gagtgccgag	gcctttggca	agattgtggc	agagcgtcct	ggcactaact	caacaggccc	1620
tgcacccatg	gcccctccaa	gagccccagg	gcccctgagc	aagcagggct	ctggcagcag	1680
ccagcccatg	gaggtgcagg	aaggctatgg	ctttgggtca	ggagatgatc	cctactcaag	1740
tgcagagccc	catgtgtcag	gtgtgaaacg	gtcccgctca	ggtgagggcg	aggtgagcgg	1800
ccttatgcgc	aaggtgccac	gagtgagcct	tgaacgcctg	gacctggacc	tcacagctga	1860
cagccagcca	cccgtcttca	aggtcttccc	aggcagtacc	actgaggact	acaaccttat	1920
tgttattgaa	cgtggcgctg	ccgctgcagc	taccggccag	ccagggactg	cgcctgcagg	1980
aacccctggt	gccccacccc	tggctggcat	ggccattgtc	aaggaggagg	agacggaggc	2040
tgccattgga	gcccctccta	ctgccactga	gggccctgag	accaaacctg	tgcttatggc	2100
tcttgcggag	ggtcctggtg	ctgagggtcc	ccgcctggcc	tcacctagtg	gcagcaccag	2160
ctcagggctg	gaggtggtgg	ctcctgaggg	tacctcagcc	ccaggtggtg	gcccgggaac	2220
cctggatgac	agtgccacca	tttgccgtgt	ctgccagaag	ccaggcgatc	tggttatgtg	2280
caaccagtgt	gagttttgtt	tccacctgga	ctgtcacctg	ccggccctgc	aggatgtacc	2340
aggggaggag	tggagctgct	cactctgcca	tgtgctccct	gacctgaagg	aggaggatgg	2400
cagcctcagc	ctggatggtg	cagacagcac	tggcgtggtg	gccaagctct	caccagccaa	2460
ccagcggaaa	tgtgagcgtg	tactgctggc	cctattctgt	cacgaaccct	gccgccccct	2520
gcatcagctg	gctaccgact	ccaccttctc	cctggaccag	cccggtggca	ccctggatct	2580
gaccctgatc	cgtgcccgcc	tccaggagaa	gttgtcacct	ccctacagct	ccccacagga	2640
gtttgcccag	gatgtgggcc	gcatgttcaa	gcaattcaac	aagttaactg	aggacaaggc	2700
agacgtgcag	tccatcatcg	gcctgcagcg	cttcttcgag	acgcgcatga	acgaggcctt	2760
cggtgacacc	aagttctctg	ctgtgctggt	ggagcccccg	ccgatgagcc	tgcctggtgc	2820
tggcctgagt	tcccaggagc	tgtctggtgg	ccctggtgat	ggcccctgag	gctggagccc	2880
ccatggccag	cccagcctgg	ctctgttctc	tgtcctgtca	ccccatcccc	actcccctgg	2940
tggcctgact	cccactccct	ggtggcccca	tccccagtt	cctcacgata	tggtttttac	3000
ttctgtggat	ttaataaaaa	aaacttcacc	agttcaaaaa	aaaaaaaaa	aaaaaa	3056

<210> 9 <211> 3149 <212> DNA <213> Homo sapiens

<400> 9 agcggaatct cggaaaggcg agaaagaagc tgtctccatc ttgtctgtat ccgctgctct 60 tgtgacgttg tggagatggg gagcgtcctg gggctgtgct ccatggcgag ctggatacca 120 tgtttgtgtg gaagtgcccc gtgtttgcta tgccgatgct gtcctagtgg aaacaactcc 180 actgtaacta gattgatcta tgcacttttc ttgcttgttg gagtatgtgt agcttgtgta 240 atgttgatac caggaatgga agaacaactg aataagattc ctggattttg tgagaatgag 300 aaaggtgttg tcccttgtaa cattttggtt ggctataaag ctgtatatcg tttgtgcttt 360 ggtttggcta tgttctatct tcttctctct ttactaatga tcaaagtgaa gagtaqcaqt 420 gatcctagag ctgcagtgca caatggattt tggttcttta aatttgctgc agcaattgca 480 attattattg gggcattctt cattccagaa ggaactttta caactgtgtg gttttatgta 540 ggcatggcag gtgccttttg tttcatcctc atacaactag tcttacttat tgattttgca 600 cattcatgga atgaatcgtg ggttgaaaaa atggaagaag ggaactcgag atgttggtat 660 gcagccttgt tatcagctac agctctgaat tatctgctgt ctttagttgc tatcgtcctg 720 ttctttgtct actacactca tccagccagt tgttcagaaa acaaggcgtt catcagtgtc 780 aacatgctcc tctgcgttgg tgcttctgta atgtctatac tgccaaaaat ccaagaatca 840 caaccaagat ctggtttgtt acagtcttca gtaattacag tctacacaat gtatttgaca 900 tggtcagcta tgaccaatga accagaaaca aattgcaacc caagtctact aagcataatt 960 ggctacaata caacaagcac tgtcccaaag gaagggcagt cagtccagtg gtggcatgct 1020 caaggaatta taggactaat tctctttttg ttgtgtgtat tttattccag catccgtact 1080 tcaaacaata gtcaggttaa taaactgact ctaacaagtg atgaatctac attaatagaa 1140 gatggtggag ctagaagtga tggatcactg gaggatgggg acgatgttca ccgagctgta 1200 gataatgaaa gggatggtgt cacttacagt tattccttct ttcacttcat gcttttcctq 1260 gcttcacttt atatcatgat gacccttacc aactggtaca ggtatgaacc ctctcgtgag 1320 atgaaaagtc agtggacagc tgtctgggtg aaaatctctt ccagttggat tggcatcgtg 1380 ctgtatgttt ggacactcgt ggcaccactt gttcttacaa atcgtgattt tgactgagtg 1440 agacttctag catgaaagtc ccactttgat tattgcttat ttgaaaacag tattcccaac 1500 ttttgtaaag ttgtgtatgt ttttgcttcc catgtaactt ctccaqtgtt ctggcatgaa 1560 ttagatttta ctgcttgtca ttttgttatt ttcttaccaa gtgcattgat atgtgaagta 1620 gaatgaattg cagaggaaag ttttatgaat atggtgatga gttagtaaaa gtggccacta 1680 ttgggcttat tctctgctct atagttgtga aatgaagagt gaaaacaaat ttgtttgact 1740 attttaaaat tatattagac cttaagctgt tttagcaagc attaaagcaa atgtatggct 1800

gccttttaaa	atatttgatg	tgttgcctgg	caggatactg	caaagaacat	ggtttatttt	1860
aaaatttata	aacaagtcac	ttaaatgcca	gttgtctgaa	aaatcttata	aggttttacc	1920
cttgatacgg	aatttacaca	ggtagggagt	gtttagtgga	caatagtgta	ggttatggat	1980
ggaggtgtcg	gtactaaatt	gaataacgag	taaataatct	tacttgggta	gagatggcct	2040
ttgccaacaa	agtgaactgt	tttggttgtt	ttaaactcat	gaagtatggg	ttcagtggaa	2100
atgtttggaa	ctctgaagga	tttagacaag	gttttgaaaa	ggataatcat	gggttagaag	2160
gaagtgtttg	aaagtcactt	tgaaagttag	ttttgggcca	gcacggtagc	tcacccttgt	2220
aatcccagca	ctttgggagg	ctgaggtggg	tagattactt	gagcccagga	attcaagacc	2280
agcctgggca	acatggtgaa	accctgtttc	tataaaaaat	aatctgggct	ttgtagcata	2340
tgcctgtggt	cccagctact	gaggaggctg	aggtgggagg	attgcttgag	cccaggaggc	2400
agaggttgca	gtgagccaag	gtcacgtcac	tgcactctag	cctgggcaac	agagtaagac	2460
aaaaaaatat	atatatattg	aaaatcaaag	gaggcaaaat	tttgacaggg	aaggaagtaa	2520
ctgcaaaaca	ctaggcttta	gtaggtactt	atataaaatc	tagtccagtt	ctctcattta	2580
aaaaaatgaa	gacactgaag	tacagactta	aatagctcag	atagctaatt	aggaaatttc	2640
aagttggcca	ataatagcat	tctctctgac	atttaaaaat	aatttctatt	caaaatacat	2700
gcataattga	ttttacacct	cattactggt	ggataattta	tgtgatgtgg	attgctggtg	2760
tccagcatga	cccataaaca	ggtcagaaga	atgatggaat	gttttagaat	aaactcctgc	2820
ttatagtata	ctacacagtt	caaaagatgt	ttaaaatgct	tttgtattta	ctgccatgta	2880
attgaaatat	atagattatt	gtaacctttc	aacctgaaaa	tcaagcagta	tgagagttta	2940
gttatttgta	tgtgtcacta	gtgtctaatg	aagcttttaa	aatctacaat	ttcttcttta	3000
aaaatattta	ttaatgtgaa	tggaatataa	caattcagct	taattcccca	accttattct	3060
gtgtgtagac	attgtattcc	acaattttga	atggctgtgt	tttacctcta	aataaatgaa	3120
ttcagagaaa	gtgaaaaaaa	aaaaaaaa			•	3149
<210> 10						
<211> 580						
<212> DNA						
<213> Homo	sapiens					
<400> 10 ctttttttt	tttttttta	aagtctttag	tatatttatt	tgtataaaga	gtaaacaaag	60
tgcatataga	gtggccacag	gtttgacaca	gagaccttgg	tgatgtaggc	tatgaacaaa	120
		ctgccactga			_	180
		atactaaaca				240
cataaagacc	gtaatcgttc	acattgaatc	aatgactaaa	catttttgat	tacccagcta	300
cctccaagca	aactgaaaac	tgtctagtgg	atcctgaagt	ccatagtgcc	tctagccggg	360
			Page 14			

tctttcaagt	gttgcaccac	agggtgatga	ttgatggtaa	aaacagggat	caacccttgt	420
agatcggtgg	taagtatgga	aaccctctaa	gaacagtgca	gcgtatgtg	tattcagact	480
ggttgcatac	agcattcaaa	accagtgctg	gaatagcttg	ccccaaagt	gtagagttat	540
aaaaggatat	acattgacgt	ttcttaaaag	catgtgtaat			580
<210> 11						
<211> 246	7					
<212> DNA						
<213> Hom	o sapiens					
<400> 11	*****					
					ggcccccgcc	60
					gcggaaagaa	120
					caccatgccg	180
					cttctacccg	240
					ggacatctgg	300
					cgcggagcac	360
					gtggggcagc	420
					caacccggtc	480
					gcgcgccgtg	540
					ccagtccccg	600
					agccggccgc	660
					ggatcccgcc	720
			gagccagcgc			780
			tcgggggcgg			840
			ggccgccaga			900
			agcgattcag			960
			actgtggaga			1020
			gtgcgtccca			1080
			aaacgatgcc			1140
			agtgaggatg			1200
			agtgtcatcc			1260
			gagcgtcgca			1320
			tttctcacgc			1380
			gtcattttga			1440
cactccctcc	aggccgagga	gcaccagctt	ttgctggaaa	aggaaaaatt	gcaggcaaga	1500

cagcagcagt	tgctaaagaa	aattgaacac	gctcggactt	gctagacgct	tctcaaaact	1560
ggacagtcac	tgccactttg	cacattttga	tttttttt	aaacaaacat	tgtgttgaca	1620
ttaagaatgt	tggtttactt	tcaaatcggt	cccctgtcga	gttcggctct	gggtgggcag	1680
taggaccacc	agtgtggggt	tctgctggga	ccttggagag	cctgcatccc	aggatgctgg	1740
gtggccctgc	agcctcctcc	acctcacctc	catgacagcg	ctaaacgttg	gtgacggttg	1800
ggagcctctg	gggctgttga	agtcaccttg	tgtgttccaa	gtttccaaac	aacagaaagt	1860
cattccttct	ttttaaaatg	gtgcttaagt	tccagcagat	gccacataag	gggtttgcca	1920
tttgataccc	ctggggaaca	tttctgtaaa	taccattgac	acatccgcct	tttgtataca	1980
tcctgggtaa	tgagaggtgg	cttttgcggc	cagtattaga	ctggaagttc	atacctaagt	2040
actgtaataa	tacctcaatg	tttgaggagc	atgttttgta	tacaaatata	ttgttaatct	2100
ctgttatgta	ctgtactaat	tcttacactg	cctgtatact	ttagtatgac	gctgatacat	2160
aactaaattt	gatacttata	ttttcgtatg	aaaatgagtt	gtgaaagttt	tgagtagata	2220
ttactttatc	actttttgaa	ctaagaaact	tttgtaaaga	aatttactat	atatatatgc	2280
ctttttccta	gcctgtttct	tcctgttaat	gtatttgttc	atgtttggtg	catagaactg	2340
ggtaaatgca	aagttctgtg	tttaatttct	tcaaaatgta	tatatttagt	gctgcatctt	2400
atagcacttt	gaaatacctc	atgtttatga	aaataaatag	cttaaaatta	aaaaaaaaa	2460
aaaaaaa						2467
<210> 12						
<211> 762						
<212> DNA						
<213> Homo	sapiens					
<400> 12						
taccattctt	caagaaacgg	tttgaatcag	actgcctttc	cttttgtctt	cattgtcata	60
		tctgactggc				120
tcattgtgca	ccgttggtgg	ggaatgctgt	ggcaacaggc	cacgcctcca	cttactggtt	180
ggctttgcgc	aggcgccaac	ggaagtgggt	cgcaggaaga	ggaagtcccg	cctctctctc	240
ctcaggcagc	agcaacgcgg	aggaaacggg	agtgaacgga	gagcgtagtg	accatcatga	300
gcctcctcaa	caagcccaag	agtgagatga	ccccagagga	gctgcagaag	cgagaggagg	360
aggaatttaa	caccggtcca	ctctctgtgc	tcacacagtc	agtcaagaac	aatacccaag	420
tgctcatcaa	ctgccgcaac	aataagaaac	tcctgggccg	cgtgaaggcc	ttcgataggc	480
actgcaacat	ggtgctggag	aacgtgaagg	agatgtggac	tgaggtaccc	aagagtggca	540
agggcaagaa	gaagtccaag	ccagtcaaca	aagaccgcta	catctccaag	atgttcctgc	600
gcggggactc	agtcatcgtg	gtcctgcgga	acccgctcat	cgccggcaag	taggggccgc	660
ctgtctgttg	acagaactca	ctcctctgtc	ctatgaagac	cgctgccatt	ggtgttgaga	720
			Page 16			

ataataaago	tctgtgtttt	tttctaaaaa	aaaaaaaaa	aa		762
<210> 13						
<211> 337	9					
<212> DNA	•					
<213> Hor	no sapiens					
<400> 13 aattccgcgg	, aatcatcgga	atccttcacc	atggcatcca	gcccggccca	gcgtcggcga	60
	ctctcacctc					120
tccagccctg	gccgtgacct	tccaccattt	gaggatgagt	ccgaggggct	cctaggcaca	180
gaggggccc	: tggaggaaga	agaggatgga	gaggagctca	ttggagatgg	catggaaagg	240
gactaccgc	ccatcccaga	gctggacgcc	tatgaggccg	agggactggc	tctggatgat	300
gaggacgtag	aggagctgac	ggccagtcga	agggaggcag	cagacgggcc	atgcggcacg	360
gtgaccggg	gctggccggg	gctgggcgca	tgcgccgtgg	gctcctgtat	gacagcgatg	420
aggaggacga	ggagcgccct	gcccgcaagc	gccgccagtg	gagccggcac	ggaggacggc	480
gaggaggac	agcagatgat	tgagagcatc	gagaacctgg	aggatctcaa	aggccactct	540
gtgcgcgag	gggtgagcat	ggcgggcccc	cggctggaga	tccaccaccg	cttcaagaac	600
ttcctgcgca	ctcacgtcga	cagccacggc	cacaacgtct	tcaaggagcg	catcagcgac	660
atgtgcaaag	g agaaccgtga	gagcctggtg	gtgaactatg	aggacttggc	agccagggag	720
cacgtgctg	cctacttcct	gcctgaggca	ccggcggagc	tgctgcagat	ctttgatgag	780
gctgccctg	aggtggtact	ggccatgtac	cccaagtacg	accgcatcac	caaccacatc	840
catgtccgca	tctcccacct	gcctctggtg	gaggagctgc	gctcgctgag	gcagctgcat	900
ctgaaccag	tgatccgcac	cagtggggtg	gtgaccagct	gcactggcgt	cctgccccag	960
ctcagcatg	, tcaagtacaa	ctgcaacaag	tgcaatttcg	tcctgggtcc	tttctgccag	1020
tcccagaac	aggaggtgaa	accaggctcc	tgtcctgagt	gccagtcggc	cggccccttt	1080
gaggtcaaca	tggaggagac	catctatcag	aactaccagc	gtatccgaat	ccaggagagt	1140
ccaggcaaag	tggcggctcg	gcggctgccc	cgctccaagg	acgccattct	cctcgcagat	1200
ctggtggaca	gctgcaacgc	aggagacgag	atagagctga	ctggcatcta	tcacaacaac	1260
tatgatggct	ccctcaacac	tgccaatggc	ttccctgtct	ttgccactgt	catcctagcc	1320
aaccacgtg	, ccaagaagga	caacaaggtt	gctgtagggg	aactgaccga	tgaagatgtg	1380
aagatgatca	ctagcctctc	caaggatcag	cagatcggag	agaagatctt	tgccagcatt	1440
gctccttcca	ı tctatggtca	tgaagacatc	aagagaggcc	ctgctctggc	cctgttcgga	1500
ggggagccca	aaaacccagg	tggcaagcac	aaggtacgtg	gtgatatcaa	cgtgctcttg	1560
tgcggagaco	ctggcacagc	gaagtcgcag	tttctcaagt	atattgagaa	agtgtccagc	1620
cgagccatct	: tcaccactgg	ccagggggcg	tcggctgtgg	ccgtcacggc	gtatgtccag	1680
			Dama 17			

cggcaccctg	tcagcaggga	gtggaccttg	gaggctgggg	ccctggttct	ggctgaccga	1740
ggagtgtgtc	tcattgatga	atttgacaag	atgaatgacc	aggacagaac	cagcatccat	1800
gaggccatgg	agcaacagag	catctccatc	tcgaaggctg	gcatcgtcac	ctccctgcag	1860
gctcgctgca	cggtcattgc	tgccgccaac	cccataggag	ggcgctacga	cccctcgctg	1920
actttctctg	agaacgtgga	cctcacagag	cccatcatct	cacgctttga	catcctgtgt	1980
gtggtgaggg	acaccgtgga	cccagtccag	gacgagatgc	tggcccgctt	cgtggtgggc	2040
agccacgtca	gacaccaccc	cagcaacaag	gaggaggagg	ggctggccaa	tggcagcgct	2100
gctgagcccg	ccatgcccaa	cacgtatggc	gtggagcccc	tgccccagga	ggtcctgaag	2160
aagtacatca	tctacgccaa	ggagagggtc	cacccgaagc	tcaaccagat	ggaccaggac	2220
aaggtggcca	agatgtacag	tgacctgagg	aaagaatcta	tggcgacagg	cagcatcccc	2280
attacggtgc	ggcacatcga	gtccatgagt	catggcggag	gcccacgcgc	gcatccatct	2340
gcgggactat	gtgatcgaag	acgacgtcaa	catggccatc	cgcgtgatgc	tggagagctt	2400
catagacaca	cagaagttca	gcgtcatcgc	agcatgcgca	agacttttgc	ccgctacctt	2460
tcattccggc	gtgacaacaa	tgagctgttg	ctcttcatac	tgaagcagtt	agtggcagag	2520
caggtgacat	atcagcgcaa	ccgctttggg	gcccagcagg	acactattga	ggtccctgag	2580
aaggacttgg	tggataaggc	tcgtcagatc	aacatccaca	acctctctgc	attttatgac	2640
agtgagctct	tcaggatgaa	caagttcagc	cacgacctga	aaaggaaaat	gatcctgcag	2700
cagttctgag	gccctatgcc	atccataagg	attccttggg	attctggttt	ggggtggtca	2760
gtgccctctg	tgctttatgg	acacaaaacc	agagcacttg	atgaactcgg	ggtactaggg	2820
tcagggctta	tagcaggatg	tctggctgca	cctggcatga	ctgtttgttt	ctccaagcct	2880
gctttgtgct	tctcaccttt	gggtgggatg	ccttgccagt	gtgtcttact	tggttgctga	2940
acatcttgcc	acctccgagt	gctttgtctc	cactcagtac	cttggatcag	agctgctgag	3000
ttcaggatgc	ctgcgtgtgg	tttaggtgtt	agccttctta	catggatgtc	aggagagctg	3060
ctgccctctt	ggcgtgagtt	gcgtattcag	gctgcttttg	ctcgctttgg	ccagagagct	3120
ggttgaagat	gtttgtaatc	gttttcagtc	tcctgcaggt	ttctgtgccc	·ctgtggtgga	3180
agaggcacga	cagtgccagc	gcagcgttct	gggctcctca	gtcgcagggg	tgggatgtga	3240
gtcatgcgga	ttatccactc	gccacagtta	tcagctgcca	ttgctccctg	tctgtttccc	3300
cactctctta	tttgtgcatt	cggtttggtt	tctgtagttt	taatttttaa	taaagttgaa	3360
taaaatataa	aaaaaaaaa					3379

<210> 14

<211> 1488

<212> DNA

<213> Homo sapiens

60 120

180

240

gttggtgagc atcatggcaa ccgttacagc cacaaccaaa gtcccggaga tccgtgatgt

aacaaggatt gagcgaatcg gtgcccactc ccacatccgg ggactggggc tggacgatgc

cttggagcct cggcaggctt cgcaaggcat ggtgggtcag ctggcggcac ggcgggcggc tggcgtggtg ctggagatga tccgggaagg gaagattgcc ggtcgggcag tccttattgc

<400> 14

tggccagccg ggcacgggga	agacggccat	cgccatgggc	atggcgcagg	ccctgggccc	300
tgacacgcca ttcacagcca	tcgccggcag	tgaaatcttc	tccctggaga	tgagcaagac	360
cgaggcgctg acgcaggcct	tccggcggtc	catcggcgtt	cgcatcaagg	aggagacgga	420
gatcatcgaa ggggaggtgg	tggagatcca	gattgatcga	ccagcaacag	ggacgggctc	480
caaggtgggc aaactgaccc	tcaagaccac	agagatggag	accatctacg	acctgggcac	540
caagatgatt gagtccctga	ccaaggacaa	ggtccaggcc	ggggacgtga	tcaccatcga	600
caaggcgacg ggcaagatct	ccaagctggg	ccgctccttc	acacgcgccc	gcgactacga	660
cgctatgggc tcccagacca	agttcgtgca	gtgcccagat	ggggagctcc	agaaacgcaa	720
ggaggtggtg cacaccgtgt	ccctgcacga	gatcgacgtc	atcaactctc	gcacccaggg	780
cttcctggcg ctcttctcag	gtgacacagg	ggagatcaag	tcagaagtcc	gtgagcagat	840
caatgccaag gtggctgagt	ggcgcgagga	gggcaaggcg	gagatcatcc	ctggagtgct	900
gttcatcgac gaggtccaca	tgctggacat	cgagagcttc	tccttcctca	accgggccct	960
ggagagtgac atggcgcctg	tcctgatcat	ggccaccaac	cgtggcatca	cgcgaatccg	1020
gggcaccagc taccagagcc	ctcacggcat	ccccatagac	ctgctggacc	ggctgcttat	1080
cgtctccacc accccctaca	gcgagaaaga	cacgaagcag	atcctccgca	tccggtgcga	1140
ggaagaagat gtggagatga	gtgaggacgc	ctacacggtg	ctgacccgca	tcgggctgga	1200
gacgtcactg cgctacgcca	tccagctcat	cacagctgcc	agcttggtgt	gccggaaacg	1260
caagggtaca gaagtgcagg	tggatgacat	caagcgggtc	tactcactct	tcctggacga	1320
gtcccgctcc acgcagtaca	tgaaggagta	ccaggacgcc	ttcctcttca	acgaactcaa	1380
aggcgagacc atggacacct	cctgagttgg	atgtcatccc	ccgaccccac	cctgttttcc	1440
accagagttc tgacactgtg	actctgtata	aaatggttgg	gaagctgc		1488
<210> 15					
<211> 1811					
<212> DNA					
<213> Homo sapiens					
TELES TIOMS Suprems					
<400> 15					
ggtttgtgta gagaggcgtg	cagagcccgt	tgtccggagt	gcacctgctg	cctgttctgt	60
ccctcccggg agcccccgcc	gctgtcgccg	tcgagtcgcc	atggaagtgc	agaaagaggc	120
acagcgcatc atgaccctgt	cggtgtggaa	gatgtatcac	tcccgcatgc	agcgcggtgg	180
cctgcggctg caccggagtc	tgcagctgtc	gctggtcatg	cgcagcgccc	gggagctcta	240
		Page 19	•		

cctctcggcc	aaggtggagg	ccctcgagcc	cgaggtgtcg	ttgccggccg	ccctccctc	300
tgaccctcgc	ctgcacccgc	cccgagaagc	cgagtccacg	gccgagacag	cgacccccga	360
cggtgagcac	ccgtttccgg	agccaatgga	cacgcaggag	gcgccgacag	ccgaggagac	420
ctccgcctgc	tgtgccccgc	gccccgccaa	agtcagccgc	aaacgacgca	gcagcagcct	480
gagcgacggc	ggggacgttg	gactggtccc	gagcaagaaa	gcccgtctgg	aagaaaagga	540
agaagaggag	ggagcgtcat	ccgaagtcgc	cgatcgcctg	cagccccctc	cgggccaagc	600
ggagggcgcc	tttcccaacc	tggcccgcgt	cctgcagagg	cgcttctccg	gcctcctgaa	660
ctgcagcccc	gcggcccctc	cgacggcgcc	gcccgcgtgc	gaggcaaagc	ccgcttgccg	720
cccggcggac	agcatgctca	acgtgctcgt	gcgggccgtg	gtggccttct	gaggaccccg	780
agcggcgctg	ccggagccca	gagcgcgcgt	cgaaccgtcg	gcccgagggc	gcagacctga	840
ggcgaggcca	ccccctcca	tcctggggga	agcgcccgcg	aaaaccgtgg	agagaagccg	900
ccgcccgggc	tgctgagagg	cccggagagg	actctgtccc	cggggagcca	tcgccttcag	960
tgtgcaggga	cggcaccgag	gagtctgagc	cgggcgcggg	cgccttccgc	agagacctgc	1020
gcccacaggt	gctgtcttag	tggactggga	cgtgaacctt	tcgctctcct	tctggactgg	1080
gagaagggag	gcttgggtgt	tgtgttttt	gttttgtttg	tttgtttgtt	tttaaagatc	1140
tcctcagggt	cggacttcat	tttgtactgt	gggctgtgct	ggccctttca	aggtttttca	1200
agagttggtt	ttgcgtttcc	aacctcggag	aattccaggc	actccccttc	ccctccgct	1260
gacatacttg	tataagcggt	catcgttgcg	tcatggggca	ggcgtgggga	gcttcctgtc	1320
gccttggctg	ggtgtgggcc	tggaggaagg	tcctggggcg	tgcactcgcc	tgggcagtgg	1380
ggaggagagt	ggcctgagtt	acttcacccc	cgcgtgctgc	tggttaatgt	cccgcgtctc	1440
tgcaccttcg	ggtgggagcg	gggactgatc	tactttcaca	ttctcaagtt	tttctcatct	1500
gcattagagg	tccccagtag	gttcccaggt	tccagcgtgc	ccctccctca	gacacacgga	1560
cacaatcagc	cgagaagttc	ctggtctgaa	tcacgagaat	gtggaggggt	ggggggtgtc	1620
agtggaaagg	cataaggctg	agctgagacc	agttgctggt	gaaactgggc	caatctgggg	1680
aggggaacat	ccttgccagg	gagtttctga	gggtctgctt	tgtttacctt	tcgtgcggtg	1740
gattctttt	aactccgtct	acctggcgtt	ttgttagaaa	tgtcagatag	gaaaataaaa	1800
accatttgag	t					1811
<210> 16						
<211> 2038	В					
<212> DNA						
<213> Homo	o sapiens					
<400> 16						
	actcagacca	gcggggagcg	cggcctccgc	ccttggggcc	ctcccgccgg	60

Page 20

gccggagacc caagcccca acgccaggcc ctgccctgga agcgctcgcg gcccggcgcc

120

tggacggggg	agttgctgct	ctttggcgta	aattgcaatc	gattagggat	cgtttctcag	180
		ttcagataag				240
		tcaggagtga				300
		agggctcctt				360
		aaagataaag			_	420
gcggccggga	caaaacccga	aagaggcgca	gcgcttccag	tggtagcagc	agtaccaggt	480
ctcggtccag	ctcgacttcc	agctcaggct	ccagcaccag	cactggctca	agcagtggct	540
ccagctcttc	ctcagcatcc	agccgctcag	gaagctccag	cacctcccgc	agctccagct	600
ctagcagctc	ttctggctct	ccaagtcctt	ctcggcgcag	acacgacaac	aggaggcgct	660
cccgctccaa	atccaaacca	cctaaaagag	atgaaaagga	gaggaaaagg	cggagcccat	720
ctcctaagcc	caccaaagtg	cacattggga	gactcacccg	gaatgtgaca	aaggatcaca	780
tcatggagat	attttccacc	tatgggaaaa	ttaaaatgat	tgacatgccc	gtggaaagga	840
tgcatcccca	tctgtccaaa	ggctatgcgt	acgtagagtt	tgagaatcca	gatgaagccg	900
agaaggcgct	gaagcacatg	gatggaggac	aaattgatgg	ccaggagatc	actgccaccg	960
ccgtgctggc	cccctggcct	aggccacccc	ccaggagatt	cagccctccc	aggagaatgt	1020
tgccaccacc	gcctatgtgg	cgcaggtctc	ccccacggat	gaggagaagg	tcccgctccc	1080
cgaggcgcag	gtcccccgtg	cgccggagat	cacggtcccc	gggccgccgc	cgccacagga	1140
gccgctccag	ctccaactcc	tcccgataaa	caggccactg	aagctctcgc	ccctgtaact	1200
tataccccac	ccagctcagt	tttgtcactt	ttctagccaa	aggaagacca	gtaggaaagc	1260
aaacccttga	ctctggcagg	atttgcaggc	agcaggcagc	acccctctgc	cagccgggcc	1320
ccggctgcaġ	aagtgctgtt	ggtttggatg	ctgtgtgcct	gtcaagattc	cctccggttt	1380
tctggctaga	aagctcatcc	gtttccggtt	tctaagagtc	agttcagtgg	cagagccacc	1440
agggaaaagt	gaggctcttg	ggggtggttt	gaccctgctt	acctgggagc	acacttttcc	1500
cttccccgat	gacctgggat	ggtggccagg	ccgtgccctt	gctgttgctg	ggcagtgtcc	1560
ttttggaaag	ggagctgccc	caggctttag	tgcagctgcc	aaccctgtta	ggcctggcct	1620
ctcgaggcct	cttctgacct	caagggtcac	acccctcaa	agatcctctc	acccatggta	1680
gttgctgctc	gtggttctgt	ctgtccgtgc	accgatgcac	acaccgcacc	ccaccactgt	1740
actctgaaat	tggcgagtga	gtggagagcc	agctctgcgg	agtcatcacg	cagccatggt	1800
tgtgcctgcc	gttcatggtg	gtctttcagg	ttatcttggc	aacatgtaca	ttgcttttat	1860
tttttttctt	ttttgctttc	attgtacagt	cagtactata	aaatttctct	tttgagtttt	1920
atacctttgt	agcattttag	atgacattgt	gtttgtactt	tgttgtgtag	agtggaagaa	1980
ttgtgttgaa	taaacccaag	atcggaatgc	aaaaaaaaa	aaaaaaaaa	aaaaaaa	2038

<210> 17

<211> 2062

<212> DNA

<213> Homo sapiens

<400> 17						
gtcagtccct	cctgtagccg	ccgccgccgc	cgcccgccgc	ccctctgcca	gcagctccgg	60
cgccacctcg	ggccggcgtc	tccggcgggc	gggagccagg	cgctgacggg	cgcggcgggg	120
gcggccgagc	gctcctgcgg	ctgcgactca	ggctccggcg	tctgcgcttc	cccatggggc	180
tggcctgcgg	cgcctgggcg	ctctgagatt	gtcactgctg	ttccaagggc	acacgcagag	240
ggatttggaa	ttcctggaga	gttgcctttg	tgagaagctg	gaaatatttc	tttcaattcc	300
atctcttagt	tttccatagg	aacatcaaga	aatcatgaac	aactttggta	atgaagagtt	360
tgactgccac	ttcctcgatg	aaggttttac	tgccaaggac	attctggacc	agaaaattaa	420
tgaagtttct	tcttctgatg	ataaggatgc	cttctatgtg	gcagacctgg	gagacattct	480
aaagaaacat	ctgaggtggt	taaaagctct	ccctcgtgtc	accccctttt	atgcagtcaa	540
atgtaatgat	agcaaagcca	tcgtgaagac	ccttgctgct	accgggacag	gatttgactg	600
tgctagcaag	actgaaatac	agttggtgca	gagtctgggg	gtgcctccag	agaggattat	660
ctatgcaaat	ccttgtaaac	aagtatctca	aattaagtat	gctgctaata	atggagtcca	720
gatgatgact	tttgatagtg	aagttgagtt	gatgaaagtt	gccagagcac	atcccaaagc	780
aaagttggtt	ttgcggattg	ccactgatga	ttccaaagca	gtctgtcgtc	tcagtgtgaa	840
attcggtgcc	acgctcagaa	ccagcaggct	ccttttggaa	cgggcgaaag	agctaaatat	900
cgatgttgtt	ggtgtcagct	tccatgtagg	aagcggctgt	accgatcctg	agaccttcgt	960
gcaggcaatc	tctgatgccc	gctgtgtttt	tgacatgggg	gctgaggttg	gtttcagcat	1020
gtatctgctt	gatattggcg	gtggctttcc	tggatctgag	gatgtgaaac	ttaaatttga	1080
agagatcacc	ggcgtaatca	acccagcgtt	ggacaaatac	tttccgtcag	actctggagt	1140
gagaatcata	gctgagcccg	gcagatacta	tgttgcatca	gctttcacgc	ttgcagttaa	1200
tatcattgcc	aagaaaattg	tattaaagga	acagacgggc	tctgatgacg	aagatgagtc	1260
gagtgagcag	acctttatgt	attatgtgaa	tgatggcgtc	tatggatcat	ttaattgcat	1320
actctatgac	cacgcacatg	taaagcccct	tctgcaaaag	agacctaaac	cagatgagaa	1380
gtattattca	tccagcatat	ggggaccaac	atgtgatggc	ctcgatcgga	ttgttgagcg	1440
ctgtgacctg	cctgaaatgc	atgtgggtga	ttggatgctc	tttgaaaaca	tgggcgctta	1500
cactgttgct	gctgcctcta	cgttcaatgg	cttccagagg	ccgacgatct	actatgtgat	1560
gtcagggcct	gcgtggcaac	tcatgcagca	attccagaac	cccgacttcc	cacccgaagt	1620
agaggaacag	gatgccagca	ccctgcctgt	gtcttgtgcc	tgggagagtg	ggatgaaacg	1680
ccacagagca	gcctgtgctt	cggctagtat	taatgtgtag	atagcactct	ggtagctgtt	1740
aactgcaagt	ttagcttgaa	ttaagggatt	tggggggacc	atgtaactta	attactgcta	1800
gttttgaaat	gtctttgtaa	gagtagggtc	gccatgatgc	agccatatgg	aagactagga	1860
tatgggtcac	acttatctgt	gttcctatgg	aaactatttg	aatatttgtt	ttatatggat	1920

ttttattcac tcttcagaca	cgctactcaa	gagtgcccct	cagctgctga	acaagcattt	1980
gtagcttgta caatggcaga	atgggccaaa	agcttagtgt	tgtgacctgt	ttttaaaata	2040
aagtatcttg aaataattag	gc				2062
<210> 18					
<211> 2989					
<212> DNA					
<213> Homo sapiens					
varar none suprens					
<400> 18					
aattcgggca cgagggtcct	ccctccgcag	cagccgagcc	ggacctgcct	ccccgggcgt	60
gctccgccgg ccccgccgcc	ggcccgcagc	gacagacagg	cgctccccgc	agctccgcac	120
gggacccagg ccgccggacc	ccagcgccgg	accaccctct	gtccgccccg	aggagtttgc	180
cgcctgccgg agcacctgcg	cacagatgga	gctggaccac	cggaccagcg	gcgggctcca	240
cgcctacccc gggccgcggg	gcgggcaggt	ggccaagccc	aacgtgatcc	tgcagatcgg	300
gaagtgccgg gccgagatgc	tggagcacgt	gcggcggacg	caccggcacc	tgctggccga	360
ggtgtccaag caggtggagc	gcgagctgaa	ggggctgcac	cggtcggtcg	ggaagctgga	420
gagcaacctg gacggctacg	tgcccacgag	cgactcgcag	cgctggaaga	agtccatcaa	480
ggcctgcctg tgccgctgcc	aggagaccat	cgccaacctg	gagcgctggg	tcaagcgcga	540
gatgcacgtg tggcgcgagg	tgttctaccg	cctggagcgc	tgggccgacc	gcctggagtc	600
cacgggcggc aagtacccgg	tgggcagcga	gtcagcccgc	cacaccgttt	ccgtgggcgt	660
ggggggtccc gagagctact	gccacgaggc	agacggctac	gactacaccg	tcagccccta	720
cgccatcacc ccgcccccag	ccgctggcga	gctgcccggg	caggagcccg	ccgaggccca	780
gcagtaccag ccgtgggtcc	ccggcgagga	cgggcagccc	agccccggcg	tggacacgca	840
gatcttcgag gaccctcgag	agttcctgag	ccacctagag	gagtacttgc	ggcaggtggg	900
cggctctgag gagtactggc	tgtcccagat	ccagaatcac	atgaacgggc	cggccaagaa	960
gtggtgggag ttcaagcagg	gctccgtgaa	gaactgggtg	gagttcaaga	aggagttcct	1020
gcagtacagc gagggcacgc	tgtcccgaga	ggccatccag	cgggagctgg	acctgccgca	1080
gaagcagggc gagccgctgg	accagttcct	gtggcgcaag	cgggacctgt	accagacgct	1140
ctacgtggac gcggacgagg	aggagatcat	ccagtacgtg	gtgggcaccc	tgcagcccaa	1200
gctcaagcgt ttcctgcgcc	accccctgcc	caagaccctg	gagcagctca	tccagagggg	1260
catggaggtg caggatgacc	tggagcaggc	ggccgagccg	gccggccccc	acctcccggt	1320
ggaggatgag gcggagaccc	tcacgcccgc	ccccaacagc	gagtccgtgg	ccagtgaccg	1380
gacccagccc gagtagaggg	catcccggag	ccccagcct	gcccactaca	tccagcctgt	1440
ggctttgccc accaggactt	ttgagctggg	gctgactcct	gcaggggaag	ccctggtcca	1500
gctgggtgcc ccctcgagct	ccgggcggac	tcgcacacac	tcgtgtcatc	cagatgtgag	1560

caccgcaccc agcggca	aag agccctcccc	cctgcagggc	tccacccatc	accctccctc	1620
cgtctgtctt tccggcd	tgg accccaccct	ccacactctc	aggccatcac	agaacacccc	1680
agcttcctca ttctgct	aca acacccaggo	cctctggaca	tccagaaaac	caagtgtccg	1740
gatggcaggg gccagcg	gcc accaagctca	tgggacaccc	agagcagaag	ctagggcaga	1800
gccaatgctg agggagd	ctc gacttccggc	gccgccgccc	tctcccggca	tccgcagagc	1860
cagctgacgc cctccct	gcc tcccagggca	gctggccagc	ctcgggcagc	gcggccccct	1920
cctcccaggg gagagta	igaa gtcgcacacg	cagcagagca	gacctgatgt	cccggtgctt	1980
cctggcccct cagctco	agt gattcacgcc	cgcctggaga	agaatcagag	ctcagctcat	2040
gactcaccca tggcagg	cgg agggtcccag	aggggctgag	tcctcaaatc	cggctgaggc	2100
agcagctggc accatca	ıgag ccaggagagt	gacaacaggt	ctcaaggttc	ccacaaagtc	2160
tttgctgctg tgctggg	cac cacccacccc	tcaccttgca	ggctgcctgc	gtgggaggcg	2220
aagtcccagg acagccc	aga ggggggctac	agagaggagt	cggctgcagc	agagggcagg	2280
agccccagct tagccct	gag cgccagcgcg	aggaccaggg	cctgccacta	agcccgcccc	2340
gctggccgcc agctgcc	cgt ccccagagcc	actgcagcag	gagtcgggcc	ctgcctccct	2400
cccagcaggg aaacccc	gcc cgctgccagg	ccatcctctc	tgccagaggc	tttcatgagc	2460
cccaaggctg gggccac	agc tcctacccct	gcccagcagc	cctgagctca	gctgcaggaa	2520
ggacatccca gaagcca	tgg ctcctggggc	gcttccaggc	attctgccct	gccccgacac	2580
cagaaccctg gtgctgg	tgg gccactagcg	tctgcagcct	aagcaggtgc	tggctcaggg	2640
ttcatcgttc tgccttg	tcc actgggggac	cagccctgca	gaccactctg	acaagtcttc	2700
agcccacacc ctgccag	ccc cacagatttt	atttttgcac	ataagccata	accaatcctc	2760
aaggctggca caggctt	tgg ggaagccctg	gagcctgtga	agaccctgga	aacctcatga	2820
ggctgtggcc aacccct	gcc ccttgcccca	cacagaccag	gccttaaatg	tcggtccagg	2880
ccctgtgcac cttaccc	cag agacagactc	tttttgtaag	attttgttaa	taaaacactg	2940
aaacttcaaa aaaaaaa	aaa aaaaaaaaaa	aaaaaaaaa	aaaaaaaa		2989
<210> 19					
<211> 2365					
<212> DNA					
<213> Homo sapien	s				
·					
<400> 19					
gaaacggccc gagaagc					60
catataaaca aaaagag					120
agcagccctg tctctta				_	180
tcagagaaac cagctgc	ttc agaaagaacc	agacctcagg	ttggaaaatg	tccaaaagtt	240
tcccagtcct gaaatga	tca gggctttgga	gtacatagaa	aacctccaac	aacaaoctca	300

taaggaagaa	agcagcccag	attataatcc	ctaccaaggt	gtctctgtcc	cccttcagca	360
aaaagaaaat	ggcgatgaaa	gccacttgcc	cgagagggat	tcactgagtg	aagaagactg	420
gatgagaata	atactcgaag	ctttgagaca	ggctgaaaat	gagcctcagt	ctgcaccaaa	480
agaaaataag	ccctatgcct	tgaattcaga	aaagaacttt	ccaatggaca	tgagtgatga	540
ttatgagaca	cagcagtggc	cagaaagaaa	gcttaagcac	atgcaattcc	ctcctatgta	600
tgaagagaat	tccagggata	acccctttaa	acgcacaaat	gaaatagtgg	aggaacaata	660
tactcctcaa	agccttgcta	cattggaatc	tgtcttccaa	gagctgggga	aactgacagg	720
accaaacaac	cagaaacgtg	agaggatgga	tgaggagcaa	aaactttata	cggatgatga	780
agatgatatc	tacaaggcta	ataacattgc	ctatgaagat	gtggtcgggg	gagaagactg	840
gaacccagta	gaggagaaaa	tagagagtca	aacccaggaa	gaggtgagag	acagcaaaga	900
gaatatagga	aaaaatgaac	aaatcaacga	tgagatgaaa	cgctcagggc	agcttggcat	960
ccaggaagaa	gatcttcgga	aagagagtaa	agaccaactc	tcagatgatg	tctccaaagt	1020
aattgcctat	ttgaaaaggt	tagtaaatgc	tgcaggaagt	gggaggttac	agaatgggca	1080
aaatggggaa	agggccacca	ggctttttga	gaaacctctt	gattctcagt	ctatttatca	1140
gctgattgaa	atctcaagga	atttacagat	acccccagaa	gacttaattg	agatgctcaa	1200
aactggggag	aagccgaatg	gatcagtgga	accggagcgg	gagcttgacc	ttcctgttga	1260
cctagatgac	atctcagagg	ctgacttaga	ccatccagac	ctgttccaaa	ataggatgct	1320
ctccaagagt	ggctacccta	aaacacctgg	tcgtgctggg	actgaggccc	taccagacgg	1380
gctcagtgtt	gaggatattt	taaatctttt	agggatggag	agtgcagcaa	atcagaaaac	1440
gtcgtatttt	cccaatccat	ataaccagga	gaaagttctg	ccaaggctcc	cttatggtgc	1500
tggaagatct	agatcgaacc	agcttcccaa	agctgcctgg	attccacatg	ttgaaaacag	1560
acagatggca	tatgaaaacc	tgaacgacaa	ggatcaagaa	ttaggtgagt	acttggccag	1620
gatgctagtt	aaataccctg	agatcattaa	ttcaaaccaa	gtgaagcgag	ttcctggtca	1680
aggctcatct	gaagatgacc	tgcaggaaga	ggaacaaatt	gagcaggcca	tcaaagagca	1740
tttgaatcaa	ggcagctctc	aggagactga	caagctggcc	ccggtgagca	aaaggttccc	1800
tgtggggccc	ccgaagaatg	atgatacccc	aaataggcag	tactgggatg	aagatctgtt	1860
aatgaaagtg	ctggaatacc	tcaatcaaga	aaaggcagaa	aagggaaggg	agcatattgc	1920
taagagagca	atggaaaata	tgtaagctgc	tttcattaat	taccctactt	tcattcctcc	1980
caccccaagc	aaatcccaac	atttctcttc	agtgtgttga	cttctatcct	gttaacactg	2040
taatatcttt	aaatgatgta	caggcagatg	aaaccaggtc	actggggagt	ctgcttcatt	2100
tcctctgagc	tgttatcttg	tgtatggata	tgtgtaaatg	ttatgactcc	ttgataaaaa	2160
atttattatg	tccattattc	aagaaagata	tctatgactg	tgtttaatag	tatatctaat	2220
ggctgtggca	ttgttgatgc	tcacatatga	taaaaaagtg	tcctataatt	ctattgaaag	2280
tttttaatat	ttattgaatt	attttgttac	tgtctgtagc	gttttgtgga	gtactggacc	2340
aaaaaaataa	agcattataa	atata				2365

<210> 20
<211> 2825
<212> DNA
<213> Homo sapiens

<400> 20 gtacggcttc	cggtggcggg	acgcggggcc	gcgcacgcgg	gaaaagcttc	cccggtgtcc	60
ccccatcccc	ctcccgcgc	ccccccgcg	tcccccagc	gcgcccacct	ctcgcgccgg	120
ggccctcgcg	aggccgcagc	ctgaggagat	tcccaacctg	ctgagcatcc	gcacacccac	180
tcaggagttg	gggcccagct	cccagtttac	ttggtttccc	ttgtgcagcc	tggggctctg	240
cccaggccac	cacaggcagg	ggtcgacatg	gcagagacac	tggagttcaa	cgacgtctat	300
caggaggtga	aaggttccat	gaatgatggt	cgactgaggt	tgagccgtca	gggcatcatc	360
ttcaagaata	gcaagacagg	caaagtggac	aacatccagg	ctggggagtt	aacagaaggt	420
atctggcgcc	gtgttgctct	gggccatgga	cttaaactgc	ttacaaagaa	tggccatgtc	480
tacaagtatg	atggcttccg	agaatcggag	tttgagaaac	tctctgattt	cttcaaaact	540
cactatcgcc	ttgagctaat	ggagaaggac	ctttgtgtga	agggctggaa	ctgggggaca	600
gtgaaatttg	gtgggcagct	gctttccttt	gacattggtg	accagccagt	ctttgagata	660
cccctcagca	atgtgtccca	gtgcaccaca	ggcaagaatg	aggtgacact	ggaattccac	720
caaaacgatg	acgcagaggt	gtctctcatg	gaggtgcgct	tctacgtccc	acccacccag	780
gaggatggtg	tggaccctgt	tgaggccttt	gcccagaatg	tgttgtcaaa	ggcggatgta	840
atccaggcca	cgggagatgc	catctgcatc	ttccgggagc	tgcagtgtct	gactcctcgt	900
ggtcgttatg	acattcggat	ctaccccacc	tttctgcacc	tgcatggcaa	gacctttgac	960
tacaagatcc	cctacaccac	agtactgcgt	ctgtttttgt	taccccacaa	ggaccagcgc	1020
cagatgttct	ttgtgatcag	cctggatccc	ccaatcaagc	aaggccaaac	tcgctaccac	1080
ttcctgatcc	tcctcttctc	caaggacgag	gacatttcgt	tgactctgaa	catgaacgag	1140
gaagaagtgg	agaagcgctt	tgagggtcgg	ctcaccaaga	acatgtcagg	atccctctat	1200
gagatggtca	gccgggtcat	gaaagcactg	gtaaaccgca	agatcacagt	gccaggcaac	1260
ttccaagggc	actcaggggc	ccagtgcatt	acctgttcct	acaaggcaag	ctcaggactg	1320
ctctacccgc	tggagcgggg	cttcatctac	gtccacaagc	cacctgtgca	catccgcttc	1380
gatgagatct	cctttgtcaa	ctttgctcgt	ggtaccacta	ctactcgttc	ctttgacttt	1440
gaaattgaga	ccaagcaggg	cactcagtat	accttcagca	gcattgagag	ggaggagtac	1500
gggaaactgt	ttgattttgt	caacgcgaaa	aagctcaaca	tcaaaaaccg	aggattgaaa	1560
gagggcatga	acccaagcta	cgatgaatat	gctgactctg	atgaggacca	gcatgatgcc	1620
tacttggaga	ggatgaagga	ggaaggcaag	atccgggagg	agaatgccaa	tgacagcagc	1680
gatgactcag	gagaagaaac	cgatgagtca	ttcaacccag	gtgaagagga	ggaagatgtg	1740
			Daga 36			

gcagaggagt ttgacag	caa cgcctctgcc	agctcctcca	gtaatgaggg	tgacagtgac	1800
cgggatgaga agaagcg					1860
cgcaagaagc ctgtgga					1920
tctgcataca tgctgtg					1980
atcagcatca cggatct					2040
aagaaagagg agtggga					2100
aaagaatatg aaggggg					2160
aaagtaaagg taaagat	gga aaagaaatcc	acgccctcta	ggggctcatc	atccaagtcg	2220
tcctcaaggc agctaag	gcga gagcttcaag	agcaaagagt	ttgtgtctag	tgatgagagc	2280
tcttcgggag agaacaa	agag caaaaagaag	aggaggagga	gcgaggactc	tgaagaagaa	2340
gaactagcca gtactco	ccc cagctcagag	gactcagcgt	caggatccga	tgagtagaaa	2400
cggaggaagg ttctct	ttgc gcttgccttc	tcacaccccc	cgactcccca	cccatatttt	2460
ggtaccagtt tctcct	catg aaatgcagtc	cctggattct	gtgccatctg	aacatgctct	2520
cctgttggtg tgtatg	tcac tagggcagtg	gggagacgtc	ttaactctgc	tgcttcccaa	2580
ggatggctgt ttataa	tttg gggagagata	gggtgggagg	cagggcaatg	caggatccaa	2640
atcctcatct tacttt	cccg accttaagga	tgtagctgct	gcttgtcctg	ttcaagttgc	2700
tggagcaggg gtcatg	tgag gccaggcctg	tagctcctac	ctggggccta	tttctacttt	2760
cattttgtat ttctgg	tctg tgaaaatgat	ttaataaagg	gaactgactt	tggaaaccaa	2820
aaaaa					2825
<210> 21					
<211> 10488					
<212> DNA					
<213> Homo sapie	ns				
•					
<400> 21					
aagagttttc ctccgc					60
aaaaagagac gcagtg					120
agcccaggga cacacg					180
tcaaaatgag gaaaca					240
gctttcctac aactca					300
atataatatt tctagt					360
gagagtttct atatga					420
ctctggtcca gttcaa					480
aacaagaagt cctttc					540
gaaaaggatt agaata	cata atgcaaagco			agccgggccg	600
		Page 2	/		

gtgacggagt	ccctcaggtt	atcgtagtgt	taactgatgg	acactcgaag	gatggccttg	660
ctctgccctc	agcggaactt	aagtctgctg	atgttaacgt	gtttgcaatt	ggagttgagg	720
atgcagatga	aggagcgtta	aaagaaatag	caagtgaacc	gctcaatatg	catatgttca	780
acctagagaa	ttttacctca	cttcatgaca	tagtaggaaa	cttagtgtcc	tgtgtgcatt	840
catccgtgag	tccagaaagg	gctggggaca	cggaaaccct	taaagacatc	acagcacaag	900
actctgctga	cattattttc	cttattgatg	gatcaaacaa	caccggaagt	gtcaatttcg	960
cagtcattct	cgacttcctt	gtaaatctcc	ttgagaaact	cccaattgga	actcagcaga	1020
tccgagtggg	ggtggtccag	tttagcgatg	agcccagaac	catgttttcc	ttggacacct	1080
actccaccaa	ggcccaggtt	ctgggtgcag	tgaaagccct	cgggtttgct	ggtggggagt	1140
tggccaatat	cggcctcgcc	cttgatttcg	tggtggagaa	ccacttcacc	cgggcagggg	1200
gcagccgcgt	ggaggaaggg	gttccccagg	tgctggtcct	cataagtgcc	gggccttcta	1260
gtgacgagat	tcgctacggg	gtggtagcac	tgaagcaggc	tagcgtgttc	tcattcggcc	1320
ttggagccca	ggccgcctcc	agggcagagc	ttcagcacat	agctaccgat	gacaacttgg	1380
tgtttactgt	cccggaattc	cgtagctttg	gggacctcca	ggagaaatta	ctgccgtaca	1440
ttgttggcgt	ggcccaaagg	cacattgtct	tgaaaccgcc	aaccattgtc	acacaagtca	1500
ttgaagtcaa	caagagagac	atagtcttcc	tggtggatgg	ctcatctgca	ctgggactgg	1560
ccaacttcaa	tgccatccga	gacttcattg	ctaaagtcat	ccagaggctg	gaaatcggac	1620
aggatcttat	ccaggtggca	gtggcccagt	atgcagacac	tgtgaggcct	gaattttatt	1680
tcaataccca	tccaacaaaa	agggaagtca	taaccgctgt	gcggaaaatg	aagcccctgg	1740
acggctcggc	cctgtacacg	ggctctgctc	tagactttgt	tcgtaacaac	ctattcacga	1800
gttcagccgg	ctaccgggct	gccgagggga	ttcctaagct	tttggtgctg	atcacaggtg	1860
gtaagtccct	agatgaaatc	agccagcctg	cccaggagct	gaagagaagc	agcataatgg	1920
cctttgccat	tgggaacaag	ggtgccgatc	aggctgagct	ggaagagatc	gctttcgact	1980
cctccctggt	gttcatccca	gctgagttcc	gagccgcccc	attgcaaggc	atgctgcctg	2040
gcttgctggc	acctctcagg	accctctctg	gaacccctga	agttcactca	aacaaaagag	2100
atatcatctt	tcttttggat	ggatcagcca	acgttggaaa	aaccaatttc	ccttatgtgc	2160
gcgactttgt	aatgaaccta	gttaacagcc	ttgatattgg	aaatgacaat	attcgtgttg	2220
gtttagtgca	atttagtgac	actcctgtaa	cggagttctc	tttaaacaca	taccagacca	2280
agtcagatat	ccttggtcat	ctgaggcagc	tgcagctcca	gggaggttcg	ggcctgaaca	2340
caggctcagc	cctaagctat	gtctatgcca	accacttcac	ggaagctggc	ggcagcagga	2400
tccgtgaaca	cgtgccgcag	ctcctgcttc	tgctcacagc	tgggcagtct	gaggactcct	2460
atttgcaagc	tgccaacgcc	ttgacacgcg	cgggcatcct	gactttttgt	gtgggagcta	2520
gccaggcgaa	taaggcagag	cttgagcaga	ttgcttttaa	cccaagcctg	gtgtatctca	2580
tggatgattt	cagctccctg	ccagctttgc	ctcagcagct	gattcagccc	ctaaccacat	2640
atgttagtgg	aggtgtggag	gaagtaccac	tcgctcagcc	agagagcaag	cgagacattc	2700
			Dags 29	ı		

tgttcctctt	tgacggctca	gccaatcttg	tgggccagtt	ccctgttgtc	cgtgactttc	2760
tctacaagat	tatcgatgag	ctcaatgtga	agccagaggg	gacccgaatt	gcggtggctc	2820
agtacagcga	tgatgtcaag	gtggagtccc	gttttgatga	gcaccagagt	aagcctgaga	2880
tcctgaatct	tgtgaagaga	atgaagatca	agacgggcaa	agccctcaac	ctgggctacg	2940
cgctggacta	tgcacagagg	tacatttttg	tgaagtctgc	tggcagccgg	atcgaggatg	3000
gagtgcttca	gttcctggtg	ctgctggtcg	caggaaggtc	atctgaccgt	gtggatgggc	3060
cagcaagtaa	cctgaagcag	agtggggttg	tgcctttcat	cttccaagcc	aagaacgcag	3120
accctgctga	gttagagcag	atcgtgctgt	ctccagcgtt	tatcctggct	gcagagtcgc	3180
ttcccaagat	tggagatctt	catccacaga	tagtgaatct	cttaaaatca	gtgcacaacg	3240
gagcaccagc	accagtttca	ggtgaaaagg	acgtggtgtt	tctgcttgat	ggctctgagg	3300
gcgtcaggag	cggcttccct	ctgttgaaag	agtttgtcca	gagagtggtg	gaaagcctgg	3360
atgtgggcca	ggaccgggtc	cgcgtggccg	tggtgcagta	cagcgaccgg	accaggcccg	3420
agttctacct	gaattcatac	atgaacaagc	aggacgtcgt	caacgctgtc	cgccagctga	3480
ccctgctggg	agggccgacc	cccaacaccg	gggccgccct	ggagtttgtc	ctgaggaaca	3540
tcctggtcag	ctctgcggga	agcaggataa	cagaaggtgt	gccccagctg	ctgatcgtcc	3600
tcacggccga	caggtctggg	gatgatgtgc	ggaacccctc	cgtggtcgtg	aagaggggtg	3660
gggctgtgcc	cattggcatt	ggcatcggga	acgctgacat	cacagagatg	cagaccatct	3720
ccttcatccc	ggactttgcc	gtggccattc	ccacctttcg	ccagctgggg	accgtccaac	3780
aggtcatctc	tgagagggtg	acccagctca	cccgcgagga	gctgagcagg	ctgcagccgg	3840
tgttgcagcc	tctaccgagc	ccaggtgttg	gtggcaagag	ggacgtggtc	tttctcatcg	3900
atgggtccca	aagtgccggg	cctgagttcc	agtacgttcg	caccctcata	gagaggctgg	3960
ttgactacct	ggacgtgggc	tttgacacca	cccgggtggc	tgtcatccag	ttcagcgatg	4020
accccaaggc	ggagttcctg	ctgaacgccc	attccagcaa	ggatgaagtg	cagaacgcgg	4080
tgcagcggct	gaggcccaag	ggagggcggc	agatcaacgt	gggcaatgcc	ctggagtacg	4140
tgtccaggaa	catcttcaag	aggcccctgg	ggagccgcat	tgaagagggc	gtcccacagt	4200
tcctggtcct	catctcgtct	ggaaagtctg	acgatgaggt	ggtcgtcccg	gcggtggagc	4260
tcaagcagtt	tggcgtggcc	cctttcacga	tcgccaggaa	cgcagaccag	gaggagctgg	4320
tgaagatctc	gctgagcccc	gaatatgtgt	tctcggtgag	caccttccgg	gagctgccca	4380
gcctggagca	gaaactgctg	acgcccatca	cgaccctgac	ctcagagcag	atccagaagc	4440
tcttagccag	cactcgctat	ccacctccag	cagttgagag	tgatgctgca	gacattgtct	4500
ttctgatcga	cagctctgag	ggagttaggc	cagatggctt	tgcacatatt	cgagattttg	4560
ttagcaggat	tgttcgaaga	ctcaacatcg	gccccagtaa	agtgagagtt	ggggtcgtgc	4620
agttcagcaa	tgatgtcttc	ccagaattct	atctgaaaac	ctacagatcc	caggccccgg	4680
tgctggacgc	catacggcgc	ctgaggctca	gaggggggtc	cccactgaac	actggcaagg	4740
ctctcgaatt	tgtggcaaga	aacctctttg	ttaagtctgc	ggggagtcgc	atagaagacg	4800
			Daga 20	Υ		

gggtgcccca	acacctggtc	ctggtcctgg	gtggaaaatc	ccaggacgat	gtgtccaggt	4860
tcgcccaggt	gatccgttcc	tcgggcattg	tgagtttagg	ggtaggagac	cggaacatcg	4920
acagaacaga	gctgcagacc	atcaccaatg	accccagact	ggtcttcaca	gtgcgagagt	4980
tcagagagct	tcccaacata	gaagaaagaa	tcatgaactc	gtttggaccc	tccgcagcca	5040
ctcctgcacc	tccaggggtg	gacacccctc	ctccttcacg	gccagagaag	aagaaagcag	5100
acattgtgtt	cctgttggat	ggttccatca	acttcaggag	ggacagtttc	caggaagtgc	5160
ttcgttttgt	gtctgaaata	gtggacacag	tttatgaaga	tggcgactcc	atccaagtgg	5220
ggcttgtcca	gtacaactct	gaccccactg	acgaattctt	cctgaaggac	ttctctacca	5280
agaggcagat	tattgacgcc	atcaacaaag	tggtctacaa	agggggaaga	cacgccaaca	5340
ctaaggtggg	ccttgagcac	ctgcgggtaa	accactttgt	gcctgaggca	ggcagccgcc	5400
tggaccagcg	ggtccctcag	attgcctttg	tgatcacggg	aggaaagtcg	gtggaagatg	5460
cacaggatgt	gagcctggcc	ctcacccaga	ggggggtcaa	agtgtttgct	gttggagtga	5520
ggaatatcga	ctcggaggag	gttggaaaga	tagcgtccaa	cagcgccaca	gcgttccgcg	5580
tgggcaacgt	ccaggagctg	tccgaactga	gcgagcaagt	tttggaaact	ttgcatgatg	5640
cgatgcatga	aaccctttgc	cctggtgtaa	ctgatgctgc	caaagcttgt	aatctggatg	5700
tgattctggg	gtttgatggt	tctagagacc	agaatgtttt	tgtggcccag	aagggcttcg	5760
agtccaaggt	ggacgccatc	ttgaacagaa	tcagccagat	gcacagggtc	agctgcagcg	5820
gtggccgctc	gcccaccgtg	cgtgtgtcag	tggtggccaa	cacgccctcg	ggcccggtgg	5880
aggcctttga	ctttgacgag	taccagccag	agatgctcga	gaagttccgg	aacatgcgca	5940
gccagcaccc	ctacgtcctc	acggaggaca	ccctgaaggt	ctacctgaac	aagttcagac	6000
agtcctcgcc	ggacagcgtg	aaggtggtca	ttcattttac	tgatggagca	gacggagatc	6060
tggctgattt	acacagagca	tctgagaacc	tccgccaaga	aggagtccgt	gccttgatcc	6120
tggtgggcct	tgaacgagtg	gtcaacttgg	agcggctaat	gcatctggag	tttgggcgag	6180
ggtttatgta	tgacaggccc	ctgaggctta	acttgctgga	cttggattat	gaactagcgg	6240
agcagcttga	caacattgcc	gagaaagctt	gctgtggggt	tccctgcaag	tgctctgggc	6300
agaggggaga	ccgcgggccc	atcggcagca	tcgggccaaa	gggtattcct	ggagaagacg	6360
gctaccgagg	ctatcctggt	gatgagggtg	gacccggtga	gcgtggtccg	cctggtgtga	6420
acggcactca	aggtttccag	ggctgcccgg	gccagagagg	agtaaagggc	tctcggggat	6480
tcccaggaga	gaagggcgaa	gtaggagaaa	ttggactgga	tggtctggat	ggtgaagatg	6540
gagacaaagg	attgcctggt	tcttctggag	agaaagggaa	tcctggaaga	aggggtgata	6600
aaggacctcg	aggagagaaa	ggagaaagag	gagatgttgg	gattcgaggg	gacccgggta	6660
acccaggaca	agacagccag	gagagaggac	ccaaaggaga	aaccggtgac	ctcggcccca	6720
tgggtgtccc	agggagagat	ggagtacctg	gaggacctgg	agaaactggg	aagaatggtg	6780
gctttggccg	aaggggaccc	cccggagcta	agggcaacaa	gggcggtcct	ggccagccgg	6840
gctttgaggg	agagcagggg	accagaggtg	cacagggccc	agctggtcct	gctggtcctc	6900
			- 30			

cagggctgat aggagaacaa	ggcatttctg	gacctagggg	aagcggaggt	gcccgtggcg	6960
ctcctggaga acgaggcaga	accggtccac	tgggaagaaa	gggtgagccc	ggagagccag	7020
gaccaaaagg aggaatcggg	aacccgggcc	ctcgtgggga	gacgggagat	gacgggagag	7080
acggagttgg cagtgaagga	cgcagaggca	aaaaaggaga	aagaggattt	cctggatacc	7140
caggaccaaa gggtaaccca	ggtgaacctg	ggctaaatgg	aacaacagga	cccaaaggca	7200
tcagaggccg aaggggaaat	tcgggacctc	cagggatagt	tggacagaag	gggagacctg	7260
gctacccagg accagctggt	ccaaggggca	acaggggcga	ctccatcgat	caatgtgccc	7320
tcatccaaag catcaaagat	aaatgccctt	gctgttacgg	gcccctggag	tgccccgtct	7380
tcccaacaga actagccttt	gctttagaca	cctctgaggg	agtcaaccaa	gacactttcg	7440
gccggatgcg agatgtggtc	ttgagtattg	tgaatgtcct	gaccattgct	gagagcaact	7500
gcccgacggg ggcccgggtg	gctgtggtca	cctacaacaa	cgaggtgacc	acggagatcc	7560
ggtttgctga ctccaagagg	aagtcggtcc	tcctggacaa	gattaagaac	cttcaggtgg	7620
ctctgacatc caaacagcag	agtctggaga	ctgccatgtc	gtttgtggcc	aggaacacat	7680
ttaagcgtgt gaggaacgga	ttcctaatga	ggaaagtggc	tgttttcttc	agcaacacac	7740
ccacaagagc atccccacag	ctcagagagg	ctgtgctcaa	actctcagat	gcggggatca	7800
ccccttgtt ccttacaagg	caggaagacc	ggcagctcat	caacgctttg	cagatcaata	7860
acacagcagt ggggcatgcg	cttgtcctgc	ctgcagggag	agacctcaca	gacttcctgg	7920
agaatgtcct cacgtgtcat	gtttgcttgg	acatctgcaa	catcgaccca	tcctgtggat	7980
ttggcagttg gaggccttcc	ttcagggaca	ggagagcggc	agggagtgat	gtggacatcg	8040
acatggcttt catcttagac	agcgctgaga	ccaccaccct	gttccagttc	aatgagatga	8100
agaagtacat agcgtacctg	gtcagacaac	tggacatgag	cccagatccc	aaggcctccc	8160
agcacttcgc cagagtggca	gttgtgcagc	acgcgccctc	tgagtccgtg	gacaatgcca	8220
gcatgccacc tgtgaaggtg	gaattctccc	tgactgacta	tggctccaag	gagaagctgg	8280
tggacttcct cagcagggga	atgacacagt	tgcagggaac	cagggcctta	ggcagtgcca	8340
ttgaatacac catagagaat	gtctttgaaa	gtgccccaaa	cccacgggac	ctgaaaattg	8400
tggtcctgat gctgacgggc	gaggtgccgg	agcagcagct	ggaggaggcc	cagagagtca	8460
tcctgcaggc caaatgcaag	ggctacttct	tcgtggtcct	gggcattggc	aggaaggtga	8520
acatcaagga ggtatacacc	ttcgccagtg	agccaaacga	cgtcttcttc	aaattagtgg	8580
acaagtccac cgagctcaac	gaggagcctt	tgatgcgctt	cgggaggctg	ttgccgtcct	8640
tcgtcagcag tgaaaatgct	ttttacttgt	ccccagatat	caggaaacag	tgtgattggt	8700
tccaagggga ccaacccaca	aagaaccttg	tgaagtttgg	tcacaaacaa	gtaaatgttc	8760
cgaataacgt tacttcaagt	cctacatcca	acccagtgac	gacaacgaag	ccggtgacta	8820
cgacgaagcc ggtgaccacc	acaacaaagc	ctgtaaccac	cacaacaaag	cctgtgacta	8880
ttataaatca gccatctgtg	aagccagccg	ctgcaaagcc	ggcccctgcg	aaacctgtgg	8940
ctgccaagcc tgtggccaca	aagacggcca	ctgttagacc	cccagtggcg	gtgaagccag	9000

caacagcagc	gaagcctgta	gcagcaaagc	cagcagctgt	aagacccccc	gctgctgctg	9060
caaaaccagt	ggcgaccaag	cctgaggtcc	ctaggccaca	ggcagccaaa	ccagctgcca	9120
ccaagccagc	caccactaag	cccgtggtta	agatgctccg	tgaagtccag	gtgtttgaga	9180
taacagagaa	cagcgccaaa	ctccactggg	agaggcctga	gcccccggt	ccttattttt	9240
atgacctcac	cgtcacctca	gcccatgatc	agtccctggt	tctgaagcag	aacctcacgg	9300
tcacggaccg	cgtcattgga	ggcctgctcg	ctgggcagac	ataccatgtg	gctgtggtct	9360
gctacctgag	gtctcaggtc	agagccacct	accacggaag	tttcagtaca	aagaaatctc	9420
agcccccacc	tccacagcca	gcaaggtcag	cttctagttc	aaccatcaat	ctaatggtga	9480
gcacagaacc	attggctctc	actgaaacag	atatatgcaa	gttgccgaaa	gacgaaggaa	9540
cttgcaggga	tttcatatta	aaatggtact	atgatccaaa	caccaaaagc	tgtgcaagat	9600
tctggtatgg	aggttgtggt	ggaaacgaaa	acaaatttgg	atcacagaaa	gaatgtgaaa	9660
aggtttgcgc	tcctgtgctc	gccaaacccg	gagtcatcag	tgtgatggga	acctaagcgt	9720
gggtggccaa	catcatatac	ctcttgaaga	agaaggagtc	agccatcgcc	aacttgtctc	9780
tgtagaagct	ccgggtgtag	attcccttgc	actgtatcat	ttcatgcttt	gatttacact	9840
cgaactcggg	agggaacatc	ctgctgcatg	acctatcagt	atggtgctaa	tgtgtctgtg	9900
gaccctcgct	ctctgtctcc	agcagttctc	tcgaatactt	tgaatgttgt	gtaacagtta	9960
gccactgctg	gtgtttatgt	gaacattcct	atcaatccaa	attccctctg	gagtttcatg	10020
ttatgcctgt	tgcaggcaaa	tgtaaagtct	agaaaataat	gcaaatgtca	cggctactct	10080
atatactttt	gcttggttca	tttttttcc	cttttagtta	agcatgactt	tagatgggaa	10140
gcctgtgtat	cgtggagaaa	caagagacca	actttttcat	tccctgcccc	caatttccca	10200
gactagattt	caagctaatt	ttctttttct	gaagcctcta	acaaatgatc	tagttcagaa	10260
ggaagcaaaa	tcccttaatc	tatgtgcacc	gttgggacca	atgccttaat	taaagaattt	10320
aaaaaagttg	taatagagaa	tatttttggc	attcctctca	atgttgtgtg	tttttttt	10380
ttgtgtgctg	gagggagggg	atttaatttt	aattttaaaa	tgtttaggaa	atttatacaa	10440
agaaactttt	taataaagta	tattgaaagt	ttaaaaaaaa	aaaaaaa		10488

<210> 22

<211> 1044

<212> DNA

<213> Homo sapiens

<400> 22
gaattccctg aggaggcgaa tccggcgggt atcagagcca tcagaaccgc caccatgacg 6.0
gtgggcaaga gcagcaagat gctgcagcat attgattaca ggatgaggtg catcctgcag 120
gacggccgga tcttcattgg caccttcaag gcttttgaca agcacatgaa tttgatcctc 180
tgtgactgtg atgagttcag aaagatcaag ccaaagaact ccaaacaagc agaaagggaa 240

gagaagcgag tcctcggtct ggt	gctgctg cgaggggaga	atctggtctc	aatgacagta	300
gagggacctc ctcccaaaga tac	tggtatt gctcgagttc	cacttgctgg	agctgccggg	360
ggcccaggga tcggcagggc tgc	tggcaga ggaatcccag	ctggggttcc	catgccccag	420
gctcctgcag gacttgctgg gcc	agtccgt ggggttggcg	ggccatccca	acaggtgatg	480
accccacaag gaagaggtac tgt	tgcagcc gctgcagctg	ctgccacagc	cagtattgcc	540
ggggctccaa cccagtaccc acc	tggccgt gggggtcctc	ccccacctat	gggccgagga	600
gcacccctc caggcatgat ggg	cccacct cctggtatga	gacctcctat	gggtccccca	660
atggggatcc cccctggaag agg	gactcca atgggcatgc	cccctccggg	aatgcggcct	720
cctcccctg ggatgcgagg cct	tctttga cccttggcca	cagagtatgg	aagtagctcc	780
gcagaggcgt gggctcgatt cct	cagggcc acgttaccac	agacctgttt	gtttcttatg	840
ctgttgttcg tggagtctca tgg	gattgtc tggtttccct	tacagggccc	cctccccgg	900
gaatgcgccc accaaggccc tag	actcatc ttggccctcc	tcagctccct	gcctgtttcc	960
cgtaaggctg tacatagtcc ttt	tatctcc ttgtggccta	tgaaactggt	ttataataaa	1020
ctcttaagag aacattataa ttg	С			1044
<210> 23				
<211> 1475				
<212> DNA				
<213> Homo sapiens				
<400> 23				•
gtcgacgcgg ccgcgctccg ctc	ccgtgag taacttggct	ccgggggctc	cgctcgcctg	60
cccgcacgcc gcccgccacc cag	gaccgcg ccgccggcct	ccgccgctag	caaacccttc	120
cgacggccct cgctgcgcaa gcc	gggacgc ctctccccc	tccgcccccg	ccgcggaaag	180
ttaagtttga agagggggga aga	ggggaac atggacatga	agaggaggat	ccacctggag	240
ctgaggaacc ggaccccggc agc	tgttcga gaacttgtct	tggacaattg	caaatcaaat	300
gatggaaaaa ttgagggctt aac	agctgaa tttgtgaact	tagagttcct	cagtttaata	360
aatgtaggct tgatctcagt ttc	aaatctc cccaagctgc	ctaaattgaa	aaagcttgaa	420
ctcagtgaaa atagaatctt tgg	aggtctg gacatgttag	ctgaaaaact	tccaaatctc	480
acacatctaa acttaagtgg aaa	taaactg aaagatatca	gcaccttgga	acctttgaaa	540
aagttagaat gtctgaaaag cct	ggacctc tttaactgtg	aggttaccaa	cctgaatgac	600
taccgagaga gtgtcttcaa gct	cctgccc cagcttacct	acttggatgg	ctatgaccga	660
gaggaccagg aagcacctga ctc	agatgcc gaggtggatg	gtgtggatga	agaggaggag	720
gacgaagaag gagaagatga gga	agacgag gacgatgagg	atggtgaaga	agaggagttt	780
gatgaagaag atgatgaaga tga	agatgta gaaggggatg	aggacgacga	tgaagtcagt	840

900

gaggaggaag aagaatttgg acttgatgaa gaagatgaag atgaggatga ggatgaagag

gaggaagaag gi	tgggaaagg	tgaaaagagg	aagagagaaa	cagatgatga	aggagaagat	960
gattaagacc co	cagatgacc	tgcagaaaca	gaactgttca	gtattggttg	gactgctcat	1020
ggattttgta g	ctgtttaaa	aaaaaaaaa	aggtagctgt	gatacaaacc	ccaggacacc	1080
cacccaccca a	agagccaaa	gaatagttcc	tgtgacattc	cgccttcctt	ccatgtagtc	1140
cctcttggta a	tctaccacc	aagcttgtgg	acttcacccc	aacaaaattg	taagcgttgt	1200
taggtttttg t	gtaagattc	ttgctgtagc	gtggatagct	gtgattggtg	agtcaaccgt	1260
ctgtggctac ca	agttacact	gagattgtaa	cagcattttt	actttctgta	caacaaaaaa	1320
gctttgtaaa ta	aaaatctta	acattttggg	tctgtttttt	catgctttgc	tttttaatta	1380
ttattattat t	ttttttaca	ttaggacatt	ttatgtgaca	actgccaaaa	aagtatttt	1440
aagaatttaa g	cgaaataaa	cagttactct	ttggc			1475
<210> 24						
<211> 2690						
<212> DNA						
	sapiens					
(213) Homo	oup reno					
<400> 24						
gctcttttct c	gggacggga	gaggccgtgt	agcgtcgccg	ttactccgag	gagataccag	60
tcggtagagg a	gaagtcgag	gttagaggga	actgggaggc	actttgctgt	ctgcaatcga	120
agttgagggt g	caaaaatgc	agagtaataa	aacttttaac	ttggagaagc	aaaaccatac	180
tccaagaaag c	atcatcaac	atcaccacca	gcagcagcac	caccagcagc	aacagcagca	240
gccgccacca c	cgccaatac	ctgcaaatgg	gcaacaggcc	agcagccaaa	atgaaggctt	300
gactattgac c	tgaagaatt	ttagaaaacc	aggagagaag	accttcaccc	aacgaagccg	360
tctttttgtg g	gaaatcttc	ctcccgacat	cactgaggaa	gaaatgagga	aactatttga	420
gaaatatgga a	aggcaggcg	aagtcttcat	tcataaggat	aaaggatttg	gctttatccg	480
cttggaaacc c	gaaccctag	cggagattgc	caaagtggag	ctggacaata	tgccactccg	540
tggaaagcag c	tgcgtgtgc	gctttgcctg	ccatagtgca	tcccttacag	ttcgaaacct	600
tcctcagtat g	tgtccaacg	aactgctgga	agaagccttt	tctgtgtttg	gccaggtaga	660
gagggctgta g	tcattgtgg	atgatcgagg	aaggccctca	ggaaaaggca	ttgttgagtt	720
ctcagggaag c	cagctgctc	ggaaagctct	ggacagatgc	agtgaaggct	ccttcctgct	780
aaccacattt c	ctcgtcctg	tgactgtgga	gcccatggac	cagttagatg	atgaagaggg	840
acttccagag a	agctggtta	taaaaaacca	gcaatttcac	aaggaacgag	agcagccacc	900
cagatttgca c	agcctggct	cctttgagta	tgaatatgcc	atgcgctgga	aggcactcat	960
tgagatggag a	agcagcagc	aggaccaagt	ggaccgcaac	atcaaggagg	ctcgtgagaa	1020
gctggagatg g	agatggaag	ctgcacgcca	tgagcaccag	gtcatgctaa	tgagacagga	1080

tttgatgagg cgccaagaag aacttcggag gatggaagag ctgcacaacc aagaggtgca 1140

aaaacgaaag caactggagc	tcaggcagga	ggaagagcgc	aggcgccgtg	aagaagagat	1200
gcggcggcac gaagaagaaa	tgatgcggcg	acacgaggaa	ggattcaagg	gaaccttccc	1260
tgatgcgaga gagcaggaga	ttcggatggg	tcagatggct	atgggaggtg	ctatgggcat	1320
aaacaacaga ggtgccatgc	cccctgctcc	tgtgccagct	ggtaccccag	ctcctccagg	1380
acctgccact atgatgccgg	atggaacttt	gggattgacc	ccaccaacaa	ctgaacgctt	1440
tggtcaggct gctacaatgg	aaggaattgg	ggcaattggt	ggaactcctc	ctgcattcaa	1500
ccgtgcagct cctggagctg	aatttgcccc	aaacaaacgt	cgccgatact	aataagttgc	1560
agtgtctagt ttctcaaaac	ccttaaaaga	aggacccttt	ttggactagc	cagaattcta	1620
ccctggaaaa gtgttaggga	ttccttccaa	tagttagatc	taccctgcct	gtactactct	1680
aagggattcc ttccaatagt	tagatctacc	ctgcctgtac	tactctaggg	agtatgctgg	1740
aggcagaggg caagggaggg	gtggtattaa	acaatgcaat	tctgtgtggt	atattgttta	1800
atcagttctg tgtggtgcat	tcctgaagtc	tctaatgtga	ctgttgaggg	cctggggaaa	1860
ccatggcaaa gtggatccag	ttagagccca	ttaatcttga	tcattccggt	ttttttttt	1920
tttgtccatc ttgtttcatt	tgcttgcccc	gcccccgaga	cggagtctta	ctctgtcgcc	1980
caggctggag tgtagtggca	tgatctcggc	tcactgcaat	ctctgcctcc	cgggttcaag	2040
cttgtccagg ttgatcttga	actcctgacc	tcgtgatcta	cccacctcgg	tctcccaaaa	2100
tgctgggatt acaggggtga	gccaccgtgc	ccaacctcac	ttgcttctta	tccttacact	2160
cccccagccc cagagaaact	gccacataca	ccacaaaaac	caaacatgcc	ccaatgacct	2220
tagccccatt gctccattca	ctcccaggtg	agaattcagg	caaacgtcca	caaaggtcac	2280
aggcagcgta catacggttc	tgttataccc	catatattac	cccttcatgt	cctaaagaag	2340
acattttctc ttagagattt	tcattttagt	gtatctttaa	aaaaaaaatc	ttgtgttaac	2400
ttgcctccat cttttcttg	gggtgaggga	caccagggaa	tgaccctttt	gtgtctatga	2460
tgttgctgtt cacagctttt	cttgataggc	ctagtacaat	cttgggaaca	gggttactgt	2520
atactgaagg tctgacagta	gctcttagac	tcgcctatct	taggtagtca	tgctgtgcat	2580
ttttttttc attggtgtac	tgtgtttgat	ttgtctcata	tatttggagt	ttttctgaaa	2640
aatggagcag taatgcagca	tcaacctatt	aaaatacttt	taagcctttt		2690
<210> 25					
<211> 1828					
<212> DNA					
<213> Homo sapiens			•		
400 25					
<400> 25 cagttacagg gagcaccacc	agggaacatc	tcggggagcc	tggttggaag	ctgcaggctt	60
agtctgtcgg ctgcgggtct	ctgactgccc	tgtggggagg	gtcttgcctt	aacatccctt	120

180

gcatttggct gcaaagaaat ctgcttggaa gaaggggtta cgctgtttgg ccgggcagaa

actccgctga	gcagaacttg	ccgccagaat	gctcctcctg	ttgctgagta	tcatcgtcct	240
ccacgtcgcg	gtgctggtgc	tgctgttcgt	ctccacgatc	gtcagccaat	ggatcgtggg	300
caatggacac	gcaactgatc	tctggcagaa	ctgtagcacc	tcttcctcag	gaaatgtcca	360
ccactgtttc	tcatcatcac	caaacgaatg	gctgcagtct	gtccaggcca	ccatgatcct	420
gtcgatcatc	ttcagcattc	tgtctctgtt	cctgttcttc	tgccaactct	tcaccctcac	480
caaggggggc	aggttttaca	tcactggaat	cttccaaatt	cttgctggtc	tgtgcgtgat	540
gagtgctgcg	gccatctaca	cggtgaggca	cccggagtgg	catctcaact	cggattactc	600
ctacggtttc	gcctacatcc	tggcctgggt	ggccttcccc	ctggcccttc	tcagcggtgt	660
catctatgtg	atcttgcgga	aacgcgaatg	aggcgcccag	acggtctgtc	tgaggctctg	720
agcgtacata	gggaagggag	gaagggaaaa	cagaaagcag	acaaagaaaa	aagagctagc	780
ccaaaatccc	aaactcaaac	caaaccaaac	agaaagcagt	ggaggtgggg	gttgctgttg	840
attgaagatg	tatataatat	ctccggttta	taaaacctat	ttataacact	ttttacatat	900
atgtacatag	tattgtttgc	tttttatgtt	gaccatcagc	ctcgtgttga	gccttaaaga	960
agtagctaag	gaactttaca	tcctaacagt	ataatccagc	tcagtatttt	tgttttgttt	1020
tttgtttgtt	tgttttgttt	tacccagaaa	taagataact	ccatctcgcc	ccttcccttt	1080
catctgaaag	aagatacctc	cctcccagtc	cacctcattt	agaaaaccaa	agtgtgggta	1140
gaaaccccaa	atgtccaaaa	gcccttttct	ggtgggtgac	ccagtgcatc	caacagaaac	1200
agccgctgcc	cgaacctctg	tgtgaagctt	tacgcgcaca	cggacaaaat	gcccaaactg	1260
gagcccttgc	aaaaacacgg	cttgtggcat	tggcatactt	gcccttacag	gtggagtatc	1320
ttcgtcacac	atctaaatga	gaaatcagtg	acaacaagtc	tttgaaatgg	tgctatggat	1380
ttaccattcc	ttattatcac	taatcatcta	aacaactcac	tggaaatcca	attaacaatt	1440
ttacaacata	agatagaatg	gagacctgaa	taattctgtg	taatataaat	ggtttataac	1500
tgcttttgta	cctagctagg	ctgctattat	tactataatg	agtaaatcat	aaagccttca	1560
tcactcccac	atttttctta	cggtcggagc	atcagaacaa	gcgtctagac	tccttgggac	1620
cgtgagttcc	tagagcttgg	ctgggtctag	gctgttctgt	gcctccaagg	actgtctggc	1680
aatgacttgt	attggccacc	aactgtagat	gtatatatgg	tgcccttctg	atgctaagac	1740
tccagacctt	ttgtttttgc	tttgcatttt	ctgattttat	accaactgtg	tggactaaga	1800
tgcattaaaa	taaacatcag	agtaactc				1828

<210> 26

<211> 500

<212> DNA

<213> Homo sapiens

<400> 26 gctctcagag gcagcgtgcg ggtgtgctct ttgtgaaatt ccaccatggc gtaccgtggc 60 Page 36

	cagggtcaga aagtgcagaa	ggttatggtg	cagcccatca	acctcatctt	cagatactta	120
	caaaatagat cgcggattca	ggtgtggctc	tatgagcaag	tgaatatgcg	gatagaaggc	180
	tgtatcattg gttttgatga	gtatatgaac	cttgtattag	atgatgcaga	agagattcat	240
	tctaaaacaa agtcaagaaa	acaactgggt	cggatcatgc	taaaaggaga	taatattact	300
	ctgctacaaa gtgtctccaa	ctagaaatga	tcaatgaagt	gagaaattgt	tgagaaggat	360
	acagtttgtt tttagatgtc	ctttgtccaa	tgtgaacatt	tattcatatt	gttttgatta	420
	ccctcgtgtt actacaagat	ggcaataaat	actatgggat	tgtttgtatt	aaaaaattta	480
	cattgcttct taaaaaaaaa	•				500
	<210> 27					
	<212> DNA					
	<213> Homo sapiens					
	<400> 27 gctggacttg cctgcggtga	cacctgctcc	cctctgagag	cttcaggttc	tccggcctgc	60
	cttcactggt ttgtgtccag	agccggactg	attctctcaa	tttgcgatct	tcagcctgtt	120
	aaacaagaaa acgaaaaacc	ccttccagaa	aacatggatg	catttgaaaa	agtgagaaca	180
	aaattagaaa cacagccaca	agaagaatat	gaaatcatca	atgtggaagt	taaacatggt	240
	ggttttgttt attaccaaga	aggttgttgc	ttggttcgtt	ccaaagatga	agaagcagac	300
	aatgataatt atgaagtttt	attcaatttg	gaggaactta	agttagacca	gcccttcatt	360
	gattgtatca gagttgctco	agatgaaaaa	tatgtggctg	ccaagataag	aactgaagat	420
	tctgaagcat ctacctgtgt	aattataaag	ctcagcgatc	agcccgtaat	ggaagcttct	480
	ttcccgaatg tgtccagttt	tgaatgggta	aaggacgagg	aagatgaaga	tgttttattc	540
	tacaccttcc agaggaacct	tcgctgtcat	gacgtatatc	gagccacttt	tggtgataac	600
	aaacgtaatg aacgctttta	cacagaaaaa	gacccaagct	actttgtttt	cctttatctt	660
	acaaaagaca gtcgtttcct	caccataaat	attatgaaca	agactacttc	tgaagtgtgg	720
	ttgatagatg gcctgagccc	ttgggaccca	ccagtactta	tccagaagcg	aatacatggg	780
	gtcctttact atgttgaaca	cagagatgat	gaattataca	ttctcactaa	tgttggagaa	840
	cctacagaat ttaagctaat	gagaacagcg	gctgataccc	ctgcaattat	gaattgggat	900
	ttattttta caatgaagag	aaatacaaaa	gtgatagact	tggacatgtt	taaggatcac	960
	tgtgttctat ttctgaagca	cagcaatctc	ctttatgtta	atgtgattgg	tctggctgat	1020
	gattcagttc ggtctctaaa	gctccctcct	tgggcctgtg	gattcataat	ggatacaaat	1080
	tctgacccaa agaactgccc	ctttcaactt	tgctctccaa	tacgtccccc	aaaatattac	1140
	acatacaagt ttgcagaagg	caaactgttt	gaggaaactg	ggcatgaaga	cccaatcaca	1200
•	aagactagtc gcgttttacg	tctagaagcc	aaaagcaagg	atggaaaatt	agtgccaatg	1260
			Page 37			

actgttttcc	acaaaactga	ctctgaggac	ttgcagaaga	aacctctctt	ggtacatgta	1320
tatggagctt	atggaatgga	tttgaaaatg	aatttcaggc	ctgagaggcg	ggtcctggtg	1380
gatgatggat	ggatattagc	atactgccat	gttcgaggtg	gtggtgagtt	aggcctccag	1440
tggcacgctg	atggccgcct	aactaaaaaa	ctcaatggcc	ttgctgattt	agaggcttgc	1500
attaagacgc	ttcatggcca	aggcttttct	cagccaagtc	taacaaccct	gactgctttc	1560
agtgctggag	gggtgcttgc	aggagcattg	tgtaattcta	atccagagct	ggtgagagcg	1620
gtgactttgg	aggcaccttt	cttggatgtt	ctcaacacca	tgatggacac	tacacttcct	1680
ctgacattag	aagaattaga	agaatggggg	aatccttcat	ctgatgaaaa	acacaagaac	1740
tacataaaac	gttactgtcc	ctatcaaaat	attaaacctc	agcattatcc	ttcaattcac	1800
ataacggcat	atgaaaacga	tgaacgggta	cctctgaaag	gaattgtaag	ttatactgag	1860
aaactcaagg	aagccatcgc	ggagcatgct	aaggacacag	gtgaaggcta	tcagacccct	1920
aatattattc	tagatattca	gcctggaggc	aatcatgtaa	ttgaggattc	tcacaaaaag	1980
attacagccc	aaattaaatt	cctgtacgag	gaacttggac	ttgacagcac	cagtgttttc	2040
gaggatctta	agaaatacct	gaaattctga	aacactgcat	tcaactggga	attggaaaca	2100
cactgaaata	tttcatagtc	ttacttccaa	ttgagttagc	aaaaaaaaaa	ttaataactt	2160
gagactttta	agttattaat	tttttaaaat	gtgcttctcc	atctaaattt	tgcttagtct	2220
acatctcact	tgcttatact	attcctccat	tgatgcacat	gcccattaac	ctaggaaagt	2280
agttttcaaa	tcatgctcct	tagaaggatg	tggagtagag	ggaagggaag	gattggtgat	2340
agcagagctc	caggcctccc	ttccagtcag	aacagttgag	cagtttacaa	attagtgtcc	2400
tgcctctttg	ctagcaaatg	cttttagaca	ctgtggcagt	gagtcatcct	ctaatttcta	2460
tgactgcatt	ttaagggaaa	agataaaatt	cttcccctta	aaattcgtta	aagtttttga	2520
ataatctggg	gtcctaatgt	gttctggtca	tccctgattg	atgctatctg	aataaagtta	2580
taagctccta	taagccataa	tttactttta	aacattttat	ttttttcaaa	acatttgaga	2640
acctttctta	aagcggttac	attcaagcta	cagaaatatc	gaagaattaa	tgattgttca	2700
ccaagcagca	tgctgtacat	gaagctatta	caaatgctta	caatcccact	gaaatgccag	2760
tgtcttcatc	tcttcataaa	ggtgcctaac	acgaggtata	cagtatgttc	agtacactgg	2820
aatagcatgc	tcgattggaa	acaaagcatc	tatctctgaa	agctgtttgg	cgatgaagga	2880
gattcttcgt	gttgtgttca	aagatgagtc	cctctccctt	gtccagaaaa	atgccacttg	2940
tatcaacttt	actgcctttg	tcggcagaat	tggtacttaa	ccttattctt	attttagcgg	3000
gaaggcccga	aatcatatta	tgtagattta	acagtgttga	ttctccaaaa	ttcagaacca	3060
cgataaagat	tctgtcgatg	ccatccagct	ctcttgtgta	cacaacatag	tggctgtcat	3120
tcctcaaatg	gcaaaaccag	cccctgttga	ggagtagctc	attggcatga	agtagactta	3180
aatcttgata	taacttcaaa	gccgatctgg	gctgagtctt	ttggacctat	tttttaaaa	3240
aagtatttac	gtaagtgttt	gattctaaga	attgtttgta	agtatttta	atatattgta	3300
aggagttatt	tacccaaaac	acttgctcca	attttgcccc	ttataattgc	caaattgtaa	3360
			Dags 20			

gcatcaataa	gtaggtaaga	acaatttata	taaaaactga	tagaaatgac	aaattcgggg	3420
tttcggcttg	tccgggagtc	aataagtacg	cacagtgctc	tgctacattg	tagagtttct	3480
gtagagatca	aatttgactc	cactttagga	gtcccaaagc	aaatgtccat	gtctaagatg	3540
aatatttaac	ttgcatagtc	attctgtgct	atattgtaac	tgccagatgg	ccagaaagaa	3600
ggcaacagtg	gactcagact	tctgaggaat	ttgggtttgt	tcccctttgt	agactaatgt	3660
gtaggttgct	gttgtgcgaa	gatcgtgtaa	ctttagcaga	catgtatttc	ttgcacagct	3720
aatagaagac	aaagttgaaa	aaaaggatgc	aaaataaaaa	gctgcctaag	gtgaaagtta	3780
gaaattgtag	acttttttt	accataatag	tatgtgttca	ttgaagatga	tttgggttta	3840
ttttacagct	atataaaaca	taatttgatg	atgtacttct	aacctttcaa	gcattttctg	3900
ttattgacta	tataatatag	cctccataaa	tgtttttaat	gacaatattc	tgttgaacgg	3960
ttgtaccata	ctcagccatg	ccctttcatt	ttgacgatag	tgtttctaat	attttgtatt	4020
tttattcccc	tcccccatt	tttgtattac	ttaagataga	ttatcagaaa	gacagttact	4080
ttgtcaaaga	gtatgggcac	ttgatacata	atgccaaatt	attcttcata	agagctgttg	4140
ccaaatcagt	gataatgttc	atttaattgt	attcttgcca	gccatgttta	ctggggtgat	4200
agttgttatt	gtggttgtta	ttgttcttta	ggggtaggtt	cccaatatgt	ggtctttaaa	4260
taattatcta	atggtgttta	aaaagatgtt	tattctgttt	gtcaggtaca	aagatattta	4320
tgatacatgt	atgacttgtc	taagttatta	acattttctc	tagccttagg	taatgcatga	4380
aagcacatgt	ttcagtgcca	ctcacataag	aagtgcccgg	taagtgttag	ctattattgt	4440
ctacttgagt	tactactttc	taaaagtatg	ttgaagtctt	tttctgtaat	tgcagatttg	4500
ttgattttgc	atttgagtat	tttctatatt	ttgaagctgt	tagatgcata	gtcatgattt	4560
ttggtggaat	gttttatcaa	tttttgaaaa	ttgcctttgt	ctcatataat	gcttttcata	4620
ttgaactata	ttttgtctgc	tattaaatac	ttccaagcct	g		4661

<210> 28

<211> 1135 <212> DNA

<213> Homo sapiens

<400> 28 ggatccggca acgaaggtac catggccgga ctccggagcc gcacaaacca gggctcgcca 60 tgaagccagg attcagtccc cgtgggggtg gctttggcgg ccgagggggc tttggtgacc 120 gtggtggtcg tggaggccga gggggctttg gcgggggccg aggtcgaggc ggaggcttta 180 gaggtcgtgg acgaggagga ggtggaggcg gcggcggcgg tggaggagga ggaagaggtg 240 gtggaggctt ccattctggt ggcaaccggg gtcgtggtcg gggaggaaaa agaggaaacc 300 agtcggggaa gaatgtgatg gtggagccgc atcggcatga gggtgtcttc atttgtcgag 360 gaaaggaaga tgcactggtc accaagaacc tggtccctgg ggaatcagtt tatggagaga 420 Page 39

agagagtctc gatttcggaa ggagatgaca aaattgagta ccga	gcctgg aaccccttcc 480
gctccaagct agcagcagca atcctgggtg gtgtggacca gatc	cacatc aaaccggggg 540
ctaaggttct ctacctcggg gctgcctcgg gcaccacggt ctcc	catgtc tctgacatcg 600
ttggtccgga tggtctagtc tatgcagtcg agttctccca ccgc	tctggc cgtgacctca 660
ttaacttggc caagaagagg accaacatca ttcctgtgat cgag	gatgct cgacacccac 720
acaaataccg catgctcatc gcaatggtgg atgtgatctt tgct	gatgtg gcccagccag 780
accagacccg gattgtggcc ctgaatgccc acaccttcct gcgt	aatgga ggacactttg 840
tgatttccat taaggccaac tgcattgact ccacagcctc agcc	gaggcc gtgtttgcct 900
ccgaagtgaa aaagatgcaa caggagaaca tgaagccgca ggag	cagttg acccttgagc 960
catatgaaag agaccatgcc gtggtcgtgg gagtgtacag gcca	ccccc aaggtgaaga 1020
actgaagttc agcgctgtca ggattgcgag agatgtgtgt tgat	actgtt gcacgtgtgt 1080
ttttctatta aaagactcat ccgtcaaaaa aaaaaaaaaa	aaaaaa aaaaa 1135
<210> 29	
<211> 6734	
<212> DNA	
<213> Homo sapiens	
<400> 29	
cccagttgtc tgcgggctgc ggggagctaa gtccccagat tgga	ggaggc tggctctggt 60
cttcgatgca caggagtggc cgttatggaa cgcagcagca gcgt	gcaggg tcaaagacag 120
ccggcccccc atgtcagtgg tctaggatgg ccagtgaagg cacc	aacatc ccaagtcctg 180
tggtgcgcca gattgacaag cagtttctga tttgcagtat atgc	ctggaa cggtacaaga 240
atcccaaggt tctcccctgt ctgcacactt tctgcgagag gtgc	ctgcag aactacattc 300
ctgcccacag tttaaccctc tcctgcccag tgtgccgcca gacc	tccatc ctgcccgaga 360
aaggggtggc cgcgctccag aacaatttct tcatcacaaa cctg	atggac gtgctgcagc 420
gaactccagg cagcaacgct gaggagtctt ccatcctgga gaca	gtcact gctgtggctg 480
cgggaaagcc tctctcttgc ccaaaccacg atgggaatgt gatg	gaattt tactgccagt 540
cctgtgagac tgccatgtgt cgggagtgca cggaggggga gcac	gcagag caccccacag 600
ttccactcaa ggatgtggtg gaacagcaca aggcctcgct ccag	gtccag ctggatgctg 660
tcaacaaaag gctcccagaa atagattctg ctcttcagtt catc	tctgaa atcattcatc 720
agttaaccaa ccaaaaggcc agcatcgtgg atgacattca ttcc	accttt gatgagctcc 780
agaagacttt aaatgtgcgc aagagtgtgc tgcttatgga attg	gaggtc aactatggcc 840
tcaaacacaa agtcctccag tcgcagctgg atactctgct ccag	gggcag gagagcatta 900
agagctgcag caacttcaca gcgcaggccc tcaaccatgg cacg	gagacc gaggtcctac 960
tggtgaagaa gcagatgagc gagaagctga acgagctggc cgac	caggac ttccccttgc 1020

acccgcggga	gaacgaccag	ctggatttca	tcgtggaaac	cgaggggctg	aagaagtcca	1080
tccacaacct	cgggacgatc	ttaaccacca	acgccgttgc	ctcagagaca	gtggccacgg	1140
gcgaggggct	gcggcagacc	atcatcgggc	agcccatgtc	cgtcaccatc	accaccaagg	1200
acaaagacgg	tgagctgtgc	aaaaccggca	acgcctacct	caccgccgaa	ctgagcaccc	1260
ccgacgggag	cgtggcagac	ggggagatcc	tggacaacaa	gaacggcacc	tatgagtttt	1320
tgtacactgt	ccagaaggaa	ggggacttta	ccctgtctct	gagactctat	gaccagcaca	1380
tccgaggcag	cccgtttaag	ctgaaagtga	tccgatccgc	tgatgtgtct	cccaccacag	1440
aaggcgtgaa	gaggcgcgtt	aagtccccgg	ggagcggcca	cgtcaagcag	aaagctgtga	1500
aaagacccgc	aagcatgtac	agcactggaa	aacgaaaaga	gaatcccatc	gaagacgatt	1560
tgatctttcg	agtgggtacc	aaaggaagaa	ataaaggaga	gtttacaaat	cttcaggggg	1620
tagctgcatc	tacaaatgga	aagatattaa	ttgcagacag	taacaaccaa	tgtgtgcaga	1680
tattttccaa	tgatggccag	ttcaaaagtc	gttttggcat	acggggacgc	tctccggggc	1740
agctgcagcg	gcccacagga	gtggctgtac	atcccagtgg	ggacataatc	attgccgatt	1800
atgataataa	atgggtcagc	attttctcct	ccgatgggaa	atttaagaca	aaaattggat	1860
caggaaagct	gatgggaccc	aaaggagttt	ctgtggaccg	caatgggcac	attattgttg	1920
tggacaacaa	ggcgtgctgc	gtgtttatct	tccagccaaa	cgggaaaata	gtcaccaggt	1980
ttggtagccg	aggaaatggg	gacaggcagt	ttgcaggtcc	ccattttgca	gctgtaaata	2040
gcaataatga	gattattatt	acagatttcc	ataatcattc	tgtcaaggtg	tttaatcagg	2100
aaggagaatt	catgttgaag	tttggctcaa	atggagaagg	aaatgggcag	tttaatgctc	2160
caacaggtgt	agcagtggat	tcaaatggaa	acatcattgt	ggccgactgg	ggaaacagca	2220
ggatccaggt	ttttgatggg	agtggatcat	ttttgtccta	cattaacaca	tctgctgacc	2280
cactctatgg	ccccaaggc	ctggccctaa	cttcagatgg	tcatgttgtg	gttgcagact	2340
ctggaaatca	ctgtttcaaa	gtctatcgat	acttacagta	atggtgggca	ggtggatacc	2400
cgcttccatg	gtcttgcact	ataaactgga	atggatttct	caatgcggga	ccagattatg	2460
actagagttt	ttatgccaga	aggaatcatt	ggtgaacttt	ccaaggttat	ttctgaatgt	2520
aacaatttcc	ttaaaaatga	cttatccaat	ttctgtattt	cacctttagg	gttaaaaaaa	2580
actcttctac	tgaatctata	aaaactgcag	ttttacatct	gtgaactatg	gcttaaggga	2640
caggatttat	gtagctaaac	taattttgca	aatcaaacag	acacttaaaa	aaactagcat	2700
atgtaaaggt	attcgttaat	cctgtgaatg	gtagcttttg	cacagaactt	ccaaaagcaa	2760
aacaaaaaca	aaatctattg	tagttatata	cttcatttaa	cctaggtcac	aagacccagg	2820
gaatcttcta	acctcacttt	tacagtaggt	attactcttg	tgacattttt	ttggttatca	2880
acaactaaat	ataaattact	ttggaaaaag	taaggctgtc	ttgcaaaatg	atcccagctc	·2940
tgattagcag	ccctctggag	ttcagaactt	aagtatcagt	gcaaatttct	caacctttct	3000
gggttagaca	aagatccttt	tttgtgtgtt	cttttcacca	cccctttggc	tcaccttgta	3060
tcagcaaaca	aagtacttct	tcagggaaac	ctgaaatttc	taatgccttg	aaaagcatat	3120

tacaaaagta	atgctacctt	ttgggaaaca	aactgccccg	ttaactccag	atcattgcac	3180
tggaatgtaa	tcaagaaagt	tagtcatgtt	ttatgtacca	tgttttcaca	cgtgtctctt	3240
ctcttcgact	tcctgaaagc	gaaagcttta	cctcctgcaa	atgtcagcac	atgtagtagg	3300
acaccagtat	cctaggacag	agagccataa	gtagcccttt	ggaggactga	tggtgtcaac	3360
caaaggcatg	tgattgatta	atgattcccc	cttagaaagc	aagtgttacc	aaagttgtgt	3420
tatcttgaaa	gcattacagg	taagggcatg	ttatggttat	ttatcattgt	ttaatgaata	3480
gtagaggtgt	caagggacta	tgtatacatg	attagggtaa	gatagaatgt	attatatata	3540
tatatatata	tacacacaca	catatatata	gctgaatctt	tggtgtattg	aaataggcag	3600
cactctgaaa	gacagaagct	tcgtccagcc	actcttcagc	acattccttt	actaagcagt	3660
ttaaagccgt	cctagtggag	caagccctaa	agcagattta	atttttgcca	ttttccaaga	3720
atgacggtgg	tggcttttag	tcagaaaatg	gccttctgtg	ctttcaaaaa	aaaaacaaaa	3780
aaaaaaccac	acacacacat	aaaaaaccca	acaggtcaaa	ataaaagttg	aacttgagtt	3840
acatttaatt	taaatataaa	tgcattttga	gaaatgttaa	gaacaattta	gtcaatcgtt	3900
catctgtcat	tggtactgta	aaataagctg	tggtctattt	ccactgttta	attttctact	3960
cagttctacc	aaataggatg	tcatgtttga	catttttgat	agtgactttg	gggtcttctt	4020
cactgaaagc	accttagaac	tgtactataa	gaaaacattt	cccctatgta	taattatatg	4080
aatgtgatgt	ttattgctta	ttaatttata	attcagtcat	tctctatata	ggacttctta	4140
aaatttagaa	gggaaatcta	gctacttcaa	attgtctgtt	aaatttatta	tgcccaaatc	4200
aacctctgaa	. aaaaggtttt	tccaggaaga	tttacattta	ggtttaatat	ttttttagtt	4260
aggtagagtt	ttaaaaaata	cttgagcctg	tccgtgataa	agctataaaa	ttcaataact	4320
ttttagaatg	ttaaatgaag	acactgtttc	ctaacatcag	tgagatacat	ctttgaattt	4380
aaacattcat	atttactgag	tacctactag	gtaccaagta	ctcttttagg	cactggaaat	4440
acagtgatgg	acaaaacagg	taaaaaatcg	ctgccccctc	agagctgaca	ttctggggtg	4500
ggaatttcat	tttgccacgt	actaacgttc	tgcacaaaag	acaggctaga	ctcttgtcta	4560
gattgtttaa	aagaaacttt	tcaaattggt	tacattaatt	ttagtttatt	ttcacaagta	4620
aaaatggctt	: tttatttaga	ttctttctgt	cccaggctgt	tgatcttaaa	actagttgat	4680
ttaaagagtt	tttttgcaca	acatttcaat	tatatttgtg	aacttagaaa	ttaacttaca	4740
atctaaccag	ccatcatato	atatcctato	aggctagata	tctcaatagt	agactgaata	4800
caaagctaat	tttttttaca	tgtcaatatt	ggcacaaact	ggaatgaaag	aatagtttga	4860
ttcagacctg	; ctccactat <u>c</u>	ı tgttgctaaa	acacatgcta	tgagcactcg	aggaaacact	4920
atatttttt	caaaaaatat	gtgattatat	atgttaaagt	atagataaca	tttcacactt	4980
ggatacatat	gtgcatttad	tgtatttctt	ggtaagcata	tttttggggg	aaagtgctgc	5040
			gaaattttgt			5100
ttctggtaaa	a ctgagaagga	tattaaaata	agtggctttt	ttctgggcta	ccattattgt	5160
ttgatttct	tttgtcaag	gtatagaaco	tgtcatacat	tcatgataag	tagcactgaa	5220
			Do 50 4	2		

aaattactca ttcaaatttc	ccctgggcac	gtaaggcaaa	atattgccgg	ttgggatttc	5280
aaggtcagtg acgacgcatt	tcctcccagt	acagaccccc	cagcccccct	tgctggacat	5340
ggggaggcag agagtcactt	gaccatccag	aaatacatga	ctacaagtcc	tttatgactg	5400
tttgccattt tttttaatgg	tacttagtat	tttgatcaaa	ctttagtctc	cagaactaaa	5460
caagtcccta agtttcctta	ttttaattta	ctgtgactag	atttgaagca	aataaatact	5520
ccagatccat gcagctagaa	cacacttgct	tccactacta	aatatacagg	gtatgtccta	5580
acatggagtt aactggaata	gcagtacact	agcaagtatc	tgtgaatcct	tagcactgac	5640
gggttaacag aaatgctttg	gtaataccta	cttagttaat	tggaggaagt	agtaaataaa	5700
cattaggtaa tctgcagatt	acttcaaatg	ggaaaaatct	ttttgtagac	tctatagtac	5760
cctctctatt cactagcttc	tgaaaaggga	ggagtatttt	tagtttgaca	atttaataat	5820
ttaaaaacaa gacatctcca	ggtaggaaaa	aatgaaagct	atttcatgca	aacattatct	5880
aatttagctt aaaagtgaaa	gtggtaatac	tgttggtttc	tgtaaatgtt	gcagggtttt	5940
aaactttata attactttaa	tatttttgat	aactagaaat	ctagtattgc	cataaaggaa	6000
actaagtgcc catcaaagat	ttgtttggta	taaataaaga	attatttgtt	ttgttttcaa	6060
tgacagtaag ctacaaatca	tgatgcttaa	aaactttcta	aagatgaatt	gtgtggcagt	6120
gattggtctg tttgtggaga	atgtatgaaa	gctattaata	ttctagaata	gattaataaa	6180
ttggctatgt tgttccaatg	aatgtacagc	acttccatta	acttttgaaa	gcaacacagc	6240
cttaaactca atgcttttgc	tttatgacat	gggaatgttc	tgtcatcaat	ggagtgtatt	6300
cttgtaatag aattctttat	atcgttctca	attctataga	ctttcaagcc	tatgtatgaa	6360
tatgaagggg ttttttttt	tttgctttgt	tttcttttta	gattttgtac	attccatctt	6420
tataggtctg tttcatatgt	tttatgtata	gaacactaag	tcttgcactc	tctgacattg	6480
atactgatat attctcgtca	tttgttcttt	tatgaatcaa	aatgttgact	gcctatttaa	6540
agaaaagaat gaacgctgtg	catcaaagtg	tttgtatgtt	cgtagctaca	tacgtaccac	6600
agtattttgg atgctttagt	ctacaatgaa	actttcaatt	aattctgtct	tgaaacatag	6660
gagaaacagg attcatgtgt	atctctttac	catgcacaaa	atctcaaatc	attataataa	6720
agcttgtttt ctcc					6734
<210> 30					
<211> 3744					
<212> DNA	•				
<213> Homo sapiens					
TELEST HOMO Suprems					
<400> 30					
ccacgcgtcc ggtggcggtc	gagcgtggcg	taggcgaatc	ctcggcacta	agcatatgga	60
cctcgcggcg gcagcggagc	cgggcgccgg	cagccagcac	ctggaggtcc	gcgacgaggt	120
ggccgagaag tgccagaaac	tgttcctgga			gcagcgatgg	180
		Page 43			

agaaattaaa	tacttgcaat	tagcagagga	actgattcgt	cctgagagaa	acacattggt	240
tgtgagtttt	gtggacctgg	aacaatttaa	ccagcaactt	tccaccacca	ttcaagagga	300
gttctataga	gtttaccctt	acctgtgtcg	ggccttgaaa	acattcgtca	aagaccgtaa	360
agagatccct	cttgccaagg	atttttatgt	tgcattccaa	gacctgccta	ccagacacaa	420
gattcgagag	ctcacctcat	ccagaattgg	tttgctcact	cgcatcagtg	ggcaggtggt	480
gcggactcac	ccagttcacc	cagagcttgt	gagcggaact	tttctgtgct	tggactgtca	540
gacagtgatc	agggatgtag	aacagcagtt	caaatacaca	cagccaaaca	tctgccgaaa	600
tccagtttgt	gccaacagga	ggagattctt	actggataca	aataaatcaa	gatttgttga	660
ttttcaaaag	gttcgtattc	aagagaccca	agctgagctt	cctcgaggga	gtatcccccg	720
cagtttagaa	gtaattttaa	gggctgaagc	tgtggaatca	gctcaagctg	gtgacaagtg	780
tgactttaca	gggacactga	ttgttgtgcc	tgacgtctcc	aagcttagca	caccaggagc	840
acgtgcagaa	actaattccc	gtgtcagtgg	tgttgatgga	tatgagacag	aaggcattcg	900
aggactccgg	gcccttggtg	ttagggacct	ttcttatagg	ctggtctttc	ttgcctgctg	960
tgttgcgcca	accaacccaa	ggtttggggg	gaaagagctc	agagatgagg	aacagacagc	1020
tgagagcatt	aagaaccaaa	tgactgtgaa	agaatgggag	aaagtgtttg	agatgagtca	1080
agataaaaat	ctataccaca	atctttgtac	cagcctgttc	cctactatac	atggcaatga	1140
tgaagtaaaa	cggggtgtcc	tgctgatgct	ctttggtggc	gttccaaaga	caacaggaga	1200
agggacctct	cttcgagggg	acataaatgt	ttgcattgtt	ggtgacccaa	gtacagctaa	1260
gagccaattt	ctcaagcacg	tggaggagtt	cagccccaga	gctgtctaca	ccagtggtaa	1320
agcgtccagt	gctgctggct	taacagcagc	tgttgtgaga	gatgaagaat	ctcatgagtt	1380
tgtcattgag	gctggagctt	tgatgttggc	tgataatggt	gtgtgttgta	ttgatgaatt	1440
tgataagatg	gacgtgcggg	atcaagttgc	tattcatgaa	gctatggaac	agcagaccat	1500
atccatcact	aaagcaggag	tgaaggctac	tctgaacgcc	cggacgtcca	ttttggcagc	1560
agcaaaccca	atcagtggac	actatgacag	atcaaaatca	ttgaaacaga	atataaattt	1620
gtcagctccc	atcatgtccc	gattcgatct	cttctttatc	cttgtggatg	aatgtaatga	1680
ggttacagat	tatgccattg	ccaggcgcat	agtagatttg	cattcaagaa	ttgaggaatc	1740
aattgatcgt	gtctattccc	tcgatgatat	cagaagatat	cttctctttg	caagacagtt	1800
taaacccaag	atttccaaag	agtcagagga	cttcattgtg	gagcaatata	aacatctccg	1860
ccagagagat	ggttctggag	tgaccaagtc	ttcatggagg	attacagtgc	gacagcttga	1920
gagcatgatt	cgtctctctg	aagctatggc	tcggatgcac	tgctgtgatg	aggtccaacc	1980
taaacatgtg	aaggaagctt	tccggttact	gaataaatca	atcatccgtg	tggaaacacc	2040
tgatgtcaat	ctagatcaag	aggaagagat	ccagatggag	gtagatgagg	gtgccggtgg	2100
catcaatggt	catgctgaca	gccctgctcc	tgtgaacggg	atcaatggct	acaatgaaga	2160
cataaatcaa	gagtctgctc	ccaaagcctc	cttaaggctg	ggcttctctg	agtactgccg	2220
aatctctaac	cttattgtgc	ttcacctcag	aaaggtggaa	gaagaagagg	acgagtcagc	2280
			Dage 44			

attaaagagg	agcgagcttg	ttaactggta	cttgaaggaa	atcgaatcag	agatagactc	2340
tgaagaagaa	cttataaata	aaaaaagaat	catagagaaa	gttattcatc	gactcacaca	2400
ctatgatcat	gttctaattg	agctcaccca	ggctggattg	aaaggctcca	cagagggaag	2460
tgagagctat	gaagaagatc	cctacttggt	agttaaccct	aactacttgc	tcgaagattg	2520
agatagtgaa	agtaactgac	cagagctgag	gaactgtggc	acagcacctc	gtggcctgga	2580
gcctggctgg	agctctgcta	gggacagaag	tgtttctgga	agtgatgctt	ccaggatttg	2640
ttttcagaaa	caagaattga	gttgatggtc	ctatgtgtca	cattcatcac	aggtttcata	2700
ccaacacagg	cttcagcact	tcctttggtg	tgtttcctgt	cccagtgaag	ttggaaccaa	2760
ataatgtgta	gtctctataa	ccaatacctt	tgttttcatg	tgtaagaaaa	ggcccattac	2820
ttttaaggta	tgtgctgtcc	tattgagcaa	ataacttttt	ttcaattgcc	agctactgct	2880
tttattcatc	aaaataaaat	aacttgttct	gaagttgtct	attggatttc	tttctactgt	2940
accctgatta	ttacttccat	ctacttctga	atgtgagact	ttcccttttt	gcttaacctg	3000
gagtgaagag	gtagaactgt	ggtattatgg	atgaggtttc	tatgagaagg	agtcattaga	3060
gaactcatat	gaaagctaga	ggccttagag	atgactttcc	aaggttaatt	ccagtttttt	3120
tttttttaa	gtttataaaa	gtttattata	cttttttaaa	attactcttt	agtaatttat	3180
tttacttctg	tgtcctaagg	gtaatttctc	aggattgttt	tcaaattgct	tttttagggg	3240
aaataggtca	tttgctatat	tacaagcaat	ccccaaattt	tatggtcttc	caggaaaagt	3300
tattaccgtt	tatgatacta	acagttcctg	agacttagct	atgatcagta	tgttcatgag	3360
gtggagcagt	tcctgtgttg	cagcttttaa	caacagatgg	cattcattaa	atcacaaagt	3420
atgttaaagg	tcacaaaagc	aaaataactg	tctgaggcta	aggcccacgt	gggacagtct	3480
aatacccatg	agtactcaac	ttgccttgat	gtctgagctt	tccagtgcaa	tgtgaatttg	3540
agcagccaga	aatctattag	tagaaagcaa	gacagattaa	tataggttaa	aacaatgatt	3600
taaatatgtt	tctcccaata	attatctctt	tccctggaat	caacttgtat	gaaaccttgt	3660
caaaatgtac	tccacaagta	tgtacaatta	agtattttaa	aaataaatgg	caaacattaa	3720
aaaaaaaaa	aaaaaaaaa	aaaa				3744

<210> 31

<211> 3321

<212> DNA

<213> Homo sapiens

<400> 31
ttgtgagtct ataactcgga gccgttgggt cggttcctgc tattccggcg cctccactcc 60
gtccccgcg ggtctgctct gtgtgccatg gacggcattg tcccagatat agccgttggt 120
acaaagcggg gatctgacga gctttctct acttgtgtca ctaacggacc gtttatcatg 180
agcagcaact cggcttctgc agcaaacgga aatgacagca agaagttcaa aggtgacagc 240

cgaagtgcag	gcgtcccctc	tagagtgatc	cacatccgga	agctccccat	cgacgtcacg	300
gagggggaag	tcatctccct	ggggctgccc	tttgggaagg	tcaccaacct	cctgatgctg	360
aaggggaaaa	accaggcctt	catcgagatg	aacacggagg	aggctgccaa	caccatggtg	420
aactactaca	cctcggtgac	ccctgtgctg	cgcggccagc	ccatctacat	ccagttctcc	480
aaccacaagg	agctgaagac	cgacagctct	cccaaccagg	cgcgggccca	ggcggccctg	540
caggcggtga	actcggtcca	gtcggggaac	ctggccttgg	ctgcctcggc	ggcggccgtg	600
gacgcaggga	tggcgatggc	cgggcagagc	cccgtgctca	ggatcatcgt	ggagaacctc	660
ttctaccctg	tgaccctgga	tgtgctgcac	cagattttct	ccaagttcgg	cacagtgttg	720
aagatcatca	ccttcaccaa	gaacaaccag	ttccaggccc	tgctgcagta	tgcggacccc	780
gtgagcgccc	agcacgccaa	gctgtcgctg	gacgggcaga	acatctacaa	cgcctgctgc	840
acgctgcgca	tcgacttttc	caagctcacc	agcctcaacg	tcaagtacaa	caatgacaag	900
agccgtgact	acacacgccc	agacctgcct	tccggggaca	gccagccctc	gctggaccag	960
accatggccg	cggccttcgg	tgcacctggt	ataatctcag	cctctccgta	tgcaggagct	1020
ggtttccctc	ccacctttgc	cattcctcaa	gctgcaggcc	tttccgttcc	gaacgtccac	1080
ggcgccctgg	ccccctggc	catcccctcg	gcggcggcgg	cagctgcggc	ggcaggtcgg	1140
atcgccatcc	cgggcctggc	gggggcagga	aattctgtat	tgctggtcag	caacctcaac	1200
ccagagagag	tcacacccca	aagcctcttt	attcttttcg	gcgtctacgg	tgacgtgcag	1260
cgcgtgaaga	tcctgttcaa	taagaaggag	aacgccctag	tgcagatggc	ggacggcaac	1320
caggcccagc	tggccatgag	ccacctgaac	gggcacaagc	tgcacgggaa	gcccatccgc	1380
atcacgctct	cgaagcacca	gaacgtgcag	ctgccccgcg	agggccagga	ggaccagggc	1440
ctgaccaagg	actacggcaa	ctcacccctg	caccgcttca	agaagccggg	ctccaagaac	1500
ttccagaaca	tattcccgcc	ctcggccacg	ctgcacctct	ccaacatccc	gccctcagtc	1560
tccgaggagg	atctcaaggt	cctgttttcc	agcaatgggg	gcgtcgtcaa	aggattcaag	1620
ttcttccaga	aggaccgcaa	gatggcactg	atccagatgg	gctccgtgga	ggaggcggtc	1680
caggccctca	ttgacctgca	caaccacgac	ctcggggaga	accaccacct	gcgggtctcc	1740
ttctccaagt	ccaccatcta	ggggcacagg	ccccacggc	cgggccccct	ggcgacaact	1800
tccatcattc	cagagaaaag	ccactttaaa	aacagctgaa	gtgaccttag	cagaccagag	1860
attttatttt	tttaaagaga	aatcagttta	cctgttttta	aaaaaattaa	atctagttca	1920
ccttgctcac	cctgcggtga	cagggacagc	tcaggctctt	ggtgactgtg	gcagcgggag	1980
ttcccggccc	tccacacccg	gggccagacc	ctcggggcca	tgccttggtg	gggcctgtgt	2040
cgggcgtggg	gcctgcaggt	gggcgccccg	accacgactt	ggcttccttg	tgccttaaaa	2100
aacctgcctt	cctgcagcca	cacacccacc	cggggtgtcc	tggggaccca	aggggtgggg	2160
gggtcacacc	agagagaggc	agggggcctg	gccggctcct	gcaggatcat	gcagctgggg	2220
cgcggcggcc	gcggctgcga	caccccaacc	ccagccctct	aatcaagtca	cgtgattctc	2280
ccttcacccc	gcccccaggg	ccttcccttc	tgcccccagg	cgggctcccc	gctgctccag	2340
			Page 46			

agcctctttc tgagaatcca co	cgaatcaca ·	tcttgttcct	caccaacctg	ccagaggaga	780
ccaacgagct catgctgtcc a	tgcttttca	atcagttccc	tggcttcaag	gaggtccgtc	840
tggtacccgg gcggcatgac a	tcgccttcg	tggagtttga	caatgaggta	caggcagggg	900
cagctcgcga tgccctgcag g	gctttaaga	tcacgcagaa	caacgccatg	aagatctcct	960
ttgccaagaa gtagcacctt t	tcccccat	gcctgcccct	tcccctgttc	tggggccacc	1020
cctttccccc ttggctcagc c	ccctgaagg	taagtccccc	cttgggggcc	ttcttggagc	1080
cgtgtgtgag tgagtggtcg c	cacacagca	ttgtacccag	agtctgtccc	cagacattgc	1140
acctggcgct gttaggccgg a	attaaagtg	gctttttgag	gtttggtttt	tcacaaaaaa	1200
aaggaattc					1209
<210> 33					
<211> 1432					
<212> DNA					
<213> Homo sapiens					
•					
<400> 33					
gctgttcggc ctgcgtcgct c	cgggagctg	ccgacggacg	gagcgccccc	gccccgccc	60
ggccgcccgc ccgccgccgc c	atgcccttc	tccaacagcc	acaacgcact	gaagctgcgc	120
ttcccggccg aggacgagtt c	cccgacctg	agcgcccaca	acaaccacat	ggccaaggtg	180
ctgacccccg agctgtacgc g	gagctgcgc	gccaagagca	cgccgagcgg	cttcacgctg	240
gacgacgtca tccagacagg c					300
tgcgtggcgg gcgacgagga g	tcctacgaa	gtgttcaagg	atctcttcga	ccccatcatc	360
gaggaccggc acggcggcta c					420
aacctgcagg gcggcgacga c	ctggacccc	aactacgtgc	tgagctcgcg	ggtgcgcacg	480
ggccgcagca tccgtggctt c					540
atcgagaagc tcgcggtgga a					600
tacgcgctca agagcatgac g					660
ttcgacaagc ccgtgtcgcc c					720
gcccgcggta tctggcacaa t	gacaataag	accttcctgg	tgtgggtcaa	cgaggaggac	780
cacctgcggg tcatctccat g					840
tgcaccggcc tcacccagat t	gaaactctc	ttcaagtcta	aggactatga	gttcatgtgg	900
aaccctcacc tgggctacat c	ctcacctgc	ccatccaacc	tgggcaccgg	gctgcgggca	960
ggtgtgcata tcaagctgcc c					1020
cggctgcgac ttcagaagcg a					1080
ttcgacgtct ccaacgctga c	cgcctgggc	ttctcagagg	tggagctggt	gcagatggtg	1140
gtggacggag tgaagctgct c	atcgagatg			ccaggccatc	1200
		Page 48			

gacgacctca tgcctgc	cca gaaatgaagc	ccggcccaca	cccgacacca	gccctgctgc	1260
ttcctaactt attgcct	ggg cagtgcccaç	catgcacccc	tgatgttcgc	cgtctggcga	1320
gcccttagcc ttgctgt	aga gacttccgtc	acccttggta	gagtttattt	ttttgatggc	1380
taagatactg ctgatgc	tga aataaactag	ggttttggcc	tgcctgcgtc	tg	1432
<210> 34					
<211> 3309					
<212> DNA					
<213> Homo sapien	s				
<400> 34					60
gcggcgcgcc cgagcct					60
aacaatcaac catgacg					120
ccgagcccca ggaggcg					180
ggaggagcag cagcagg					240
gcgagggagg tcactga					300
tatcagcaat tagaaga					360
tctccattaa agattgt	caa aaagcctaaa	agcatgcagt	gcaaagtgat	acttctcgat	420
ggatcagaat atacctg	tga tgtagagaaa	cgctccagag	gacaagtgct	gtttgataaa	480
gtgtgtgaac acttgaa	ctt gctagagaaa	gactactttg	ggcttacgta	tcgagatgct	540
gaaaaccaga agaattg	gtt ggaccctgct	aaggaaataa	aaaaacaggt	tcgaagtggt	600
gcttggcact tttcatt	taa tgtgaaattt	tatccaccag	accctgccca	actatctgaa	660
gatatcacca ggtacta	cct ctgcttgcag	ttgcgagatg	acatcgtgtc	cggaaggctg	720
ccctgctcct ttgttac	cct ggccttgctg	ggctcctaca	ctgtccagtc	agagctcgga	780
gactatgacc cagatga	atg tgggagcgat	tacattagtg	agttccgctt	tgcaccaaac	840
cacactaaag aactgga	aga caaagtgatc	gagctgcaca	agagccacag	aggaatgacg	900
ccagcagaag cagagat	gca tttcttggaa	aatgccaaaa	aattatcaat	gtatggggta	960
gatttacatc atgctaa	gga ctcagaaggg	gtagaaatta	tgttaggagt	ttgtgcaagt	1020
ggtctgttga tatatcg	cga ccggctgcga	ataaacagat	ttgcctggcc	caaggttcta	1080
aagatttcat acaaacg	gaa caactttac	attaagatcc	ggccgggaga	gtttgaacaa	1140
tttgaaagca ccattgg	gtt taagctgcca	aaccatcgag	ctgccaagcg	tttatggaaa	1200
gtatgtgttg agcatca	tac atttttcaga	ctactgttac	cagaagcacc	tcccaagaaa	1260
ttcctaacct tgggtto	caa gtttcgttat	agtggcagga	cacaagcgca	aacgagaaga	1320
gccagtgcgt tgataga	tcg cccagcacct	tactttgaac	gctcatccag	caaacgttat	1380
accatgtctc gcagctt	gga tggagcatca	gtgaatgaaa	accatgaaat	atacatgaag	1440
gattctatgt ctgctg	aga ggttggtact	ggccagtacg	ccacaacaaa	aggcatctct	1500
		Page 49)		

cagaccaact	tgatcaccac	tgtgactccg	gagaagaagg	ctgaggagga	gcgggacgag	1560
gaagaggaca	aacggaggaa	gggggaagaa	gtcacgccca	tctcggccat	ccagcacgag	1620
ggaaagactg	acagtgagcg	cacggacacc	gcagccgacg	gggagaccac	tgccactgag	1680
gagctagaaa	aaactcaaga	tgacctgatg	aaacatcaaa	ccaacattag	cgagctgaaa	1740
agaaccttct	tagaaacctc	aacagacact	gccgtaacga	atgaatggga	gaagaggctt	1800
tccacctccc	ccgtgcgact	ggccgccagg	caggaggatg	cccccatgat	cgaaccactt	1860
gtccctgaag	agaaaatgga	aaccaagacg	gagtccagtg	gatagagacg	gaacccaccg	1920
tgcaccacct	gccgcttagc	actgagaagg	tggtgcagga	gaccgtgttg	gtggaggagc	1980
ggcgtgtggt	gcacgcgagt	ggggatgctt	cttactcggc	gggagacagc	ggggatgctg	2040
cagcacagcc	cgcattcaca	ggcattaaag	ggaaagaggg	ctctgcttga	cggaggggc	2100
taaagaggaa	ggaggggagg	aggtcgctaa	agctgtcctg	gaacaggaag	agacagccgc	2160
tgcttcccgt	gagcgacaag	aggagcagag	tgcagccatc	cacatttcag	aaactttgga	2220
acaaaaacct	cattttgagt	cctcaacggt	gaagacggaa	accatcagtt	ttggcagtgt	2280
ttcaccggga	ggagtaaagc	tagaaatttc	cacaagaagt	gccagtagtt	cacaccgaaa	2340
ccaaaaccat	cacatatgaa	tcatcacagg	tcgatccagg	cacagatctg	gagccaggcg ·	2400
tgctgatgag	tgcacagacg	atcacatctg	aaaccaccag	taccaccacc	actacccaca	2460
tcaccaaaac	tgtgaaaggg	ggcatttcag	agacaagaat	tgagaagcga	atagtcatca	2520
cgggggatgc	agacattgac	catgaccagg	cgctggctca	ggcaattaaa	gaggccaaag	2580
agcagcaccc	tgacatgtca	gtgaccaaag	tagtggtcca	taaagagaca	gagatcacac	2640
cagaagatgg	agaggattga	ccagaggaat	aacttagctt	gcacatgaat	gcagtcatgc	2700
aaaccgttag	gaaaaccaga	gcctatatgg	agttccctct	tctaacccaa	ctgtacttgt	2760
atctgtccgt	ggaaaatttc	agtccagaag	aattgacctt	gaccattaat	aaagacactg	2820
gcagagagat	cttcccataa	taaagcaatc	tgattcagca	tcactaaacc	gataatgcat	2880
gaagcaacga	taaaattaca	aaagagcagc	atttttaatt	ttcacaaaat	gtctcagttt	2940
tcagctatac	ctgctcgttc	ataaccaaca	atataaaccg	tggtctcatg	taacacataa	3000
acaattcatg	cctttcatag	tttattatta	ttaaagtcta	aacaaaattg	caatttctta	3060
ggtaacctta	tatttacaat	aaatgaagat	taccctcaaa	tgctagaagc	tgtctaggtc	3120
cgtccggtgt	gtcagatttc	ctcagattag	atgtgccaat	aaccaagttt	attcagtaaa	3180
caacttgtac	ttgtttcatc	tggtttatta	ctctcaccca	taaacagtaa	tgactctctg	3240
accctctgga	aatatgtaat	gcttccaatc	ttgctttgtg	tatctcattt	aatttgttcc	3300
ggttaagga						3309

<210> 35

<211> 1195

<212> DNA

PCT/FR2004/050475 WO 2005/030992

<213> Homo sapiens

<400> 35 ggcacgaggc	gccagtcccc	taaccctgag	gctgccgcgc	ggcggtcact	gcgccggggt	60
agtgggcccc	agtgttgcgc	tctctggccg	ttccttacac	tttgcttcag	gctccagtgc	120
aggggcgtag	tgggatatgg	ccaactcggg	ctgcaaggac	gtcacgggtc	cagatgagga	180
gagttttctg	tactttgcct	acggcagcaa	cctgctgaca	gagaggatcc	acctccgaaa	240
ccctcggcg	gcgttcttct	gtgtggcccg	cctgcaggat	tttaagcttg	actttggcaa	300
ttcccaaggo	aaaacaagtc	aaacttggca	tggagggata	gccaccattt	ttcagagtcc	360
tggcgatgaa	gtgtggggag	tagtatggaa	aatgaacaaa	agcaatttaa	attctctgga	420
tgagcaagaa	ggggttaaaa	gtggaatgta	tgttgtaata	gaagttaaag	ttgcaactca	480
agaaggaaaa	gaaataacct	gtcgaagtta	tctgatgaca	aattacgaaa	gtgctccccc	540
atccccacag	tataaaaaga	ttatttgcat	gggtgcaaaa	gaaaatggtt	tgccgctgga	600
gtatcaagag	, aagttaaaag	caatagaacc	aaatgactat	acaggaaagg	tctcagaaga	660
aattgaaga	atcatcaaaa	agggggaaac	acaaactctt	tagaacataa	cagaatatat	720
ctaagggta	tctatgtgct	aatataaaat	atttttaaca	cttgagaaca	gggatctggg	780
ggatctcca	gtttgatccg	ttttcagcag	tgctctgaag	gagtatctta	cttgggtgat	840
tccttgttt	tagactataa	aaagaaactg	ggataggagt	tagacaattt	aaaaggggtg	900
tatgagggc	tgaaatatgt	gacaaatgaa	tgtgagtacc	ccttctgtga	acactgaaag	960
ctattctct	t gaattgatct	taagtgtctc	cttgctctgg	taaaagatag	atttgtagct	1020
cacttgatg	a tggtgctggt	gaattgctct	gctctgtctg	agatttttaa	aaatcagctt	1080
aatgagagt	a atctgcagac	aattgataat	aacattttga	aaattggaaa	gatggtatac	1140
tgtttttag	a ggaataaacg	tatttgtggt	ttaaaaaaaa	aaaaaaaaa	aaaaa	1195
<210> 36						
<211> 20	35					
<212> DN	4		•			

<213> Homo sapiens

<400> 36 gaattccggg ctccggggat gaggtcgcgg ccggcgggtc ccgcgctgtt	gctgctgctg	60
ctcttcctcg gagcggccga gtcggtgcgt cgggcccagc ctccgcgccg	ctacacccca	120
gactggccga gcctggattc tcggccgctg ccggcctggt tcgacgaagc	caagttcggg	180
gtgttcatcc actggggcgt gttctcggtg cccgcctggg gcagcgagtg	gttctggtgg	240
cactggcagg gcgaggggcg gccgcagtac cagcgcttca tgcgcgacaa	ctacccgccc	300
ggcttcagct acgccgactt cggaccgcag ttcactgcgc gcttcttcca	cccggaggag	360
tgggccgacc tcttccaggc cgcgggcgcc aagtatgtag ttttgacgac	aaagcatcac	420

gaaggcttca	caaactggcc	gagtcctgtg	tcttggaact	ggaactccaa	agacgtgggg	480
cctcatcggg	atttggttgg	tgaattggga	acagctctcc	ggaagaggaa	catccgctat	540
ggactatacc	actcactctt	agagtggttc	catccactct	atctacttga	taagaaaaat	600
ggcttcaaaa	cacagcattt	tgtcagtgca	aaaacaatgc	cagagctgta	cgaccttgtt	660
aacagctata	aacctgatct	gatctggtct	gatggggagt	gggaatgtcc	tgatacttac	720
tggaactcca	caaattttct	ttcatggctc	tacaatgaca	gccctgtcaa	ggatgaggtg	780
gtagtaaatg	accgatgggg	tcagaactct	tcctgtcacc	atggaggata	ctataactgt	840
gaagataaat	tcaagccaca	gagcttgcca	gatcacaagt	gggagatgtg	caccagcatt	900
gacaagtttt	cctggggcta	tcgtcgtgac	atggcattgt	ctgatgttac	agaagaatct	960
gaaatcattt	cggaactggt	tcagacagta	agtttgggag	gcaactatct	tctgaacatt	1020
ggaccaacta	aagatggact	gattgttccc	atcttccaag	aaaggcttct	tgctgttggg	1080
aaatggctga	gcatcaatgg	ggaggctatc	tatgcctcca	aaccatggcg	ggtgcaatgg	1140
gaaaagaaca	caacatctgt	atggtatacc	tcaaagggat	cggctgttta	tgccattttt	1200
ctgcactggc	cagaaaatgg	agtcttaaac	cttgaatccc	ccataactac	ctcaactaca	1260
aagataacaa	tgctgggaat	tcaaggagat	ctgaagtggt	ccacagatcc	agataaaggt	1320
ctcttcatct	ctctacccca	gttgccaccc	tctgctgtcc	ccgcagagtt	tgcttggact	1380
ataaagctga	caggagtgaa	gtaatcattt	gagtgcaaga	agaaagaggc	gctgctcact	1440
gttttcctgc	ttcagttttt	ctcttatagt	accatcacta	taatcaacga	acttctcttc	1500
tccacccaga	gatggctttt	ccaacacatt	ttaattaaag	gaactgagta	cattaccctg	1560
atgtctaaat	ggaccaaaga	tctgagatcc	attgtgatta	tatctgtatc	aggtcagcag	1620
aagaaggaac	tgagcagttg	aactctgagt	tcatcaattc	taatatttgg	aaattatcta	1680
caatggaatc	ttccctctgt	tctctgataa	cctacttgct	tactcaatgc	ctttaagcca	1740
agtcaccctg	ttgcctatgg	gaggaggtgg	aaggatttgg	caagctcaac	cacatgctat	1800
ttagttagca	tcagttgtca	ccaacagtct	ttctgcaaag	ggcaggagag	ctttggggga	1860
aaggaaaagg	cttaccaggc	tgctatggtc	aactcttcag	aaattttcag	agcaatctaa	1920
aagcgccaaa	attcgctatg	tttacagtga	tactattaag	aaaatgaatg	tgattctgct	1980
ctgtcttttt	aagtatgatc	aaataaaaaa	tttgtacatc	acaatcattt	ctacc	2035

<210> 37

<211> 2133

<212> DNA

<213> Homo sapiens

gaagccctgc	ctgatgagac	agaggtggtg	gaagaaactg	tggcagaggt	gactgaggta	180
tctgtgggag	ctaatcctgt	ccaggtggaa	gtaggagaat	ttgatgatgg	tgcagaggaa	240
accgaagagg	aggtggtggc	ggaaaatccc	tgccagaacc	accactgcaa	acacggcaag	300
gtgtgcgagc	tggatgagaa	caacaccccc	atgtgcgtgt	gccaggaccc	caccagctgc	360
ccagccccca	ttggcgagtt	tgagaaggtg	tgcagcaatg	acaacaagac	cttcgactct	420
tcctgccact	tctttgccac	aaagtgcacc	ctggagggca	ccaagaaggg	ccacaagctc	480
cacctggact	acatcgggcc	ttgcaaatac	atccccctt	gcctggactc	tgagctgacc	540
gaattccccc	tgcgcatgcg	ggactggctc	aagaacgtcc	tggtcaccct	gtatgagagg	600
gatgaggaca	acaaccttct	gactgagaag	cagaagctgc	gggtgaagaa	gatccatgag	660
aatgagaagc	gcctggaggc	aggagaccac	cccgtggagc	tgctggcccg	ggacttcgag	720
aagaactata	acatgtacat	cttccctgta	cactggcagt	tcggccagct	ggaccagcac	780
cccattgacg	ggtacctctc	ccacaccgag	ctggctccac	tgcgtgctcc	cctcatcccc	840
atggagcatt	gcaccacccg	ctttttcgag	acctgtgacc	tggacaatga	caagtacatc	900
gccctggatg	agtgggccgg	ctgcttcggc	atcaagcaga	aggatatcga	caaggatctt	960
gtgatctaaa	tccactcctt	ccacagtacc	ggattctctc	tttaaccctc	cccttcgtgt	1020
ttcccccaat	gtttaaaatg	tttggatggt	ttgttgttct	gcctggagac	aaggtgctaa	1080
catagattta	agtgaataca	ttaacggtgc	taaaaatgaa	aattctaacc	caagacatga	1140
cattcttagc	tgtaacttaa	ctattaaggc	cttttccaca	cgcattaata	gtcccatttt	1200
tctcttgcca	tttgtagctt	tgcccattgt	cttattggca	catgggtgga	cacggatctg	1260
ctgggctctg	ccttaaacac	acattgcagc	ttcaactttt	ctctttagtg	ttctgtttga	1320
aactaatact	taccgagtca	gactttgtgt	tcatttcatt	tcagggtctt	ggctgcctgt	1380
gggcttcccc	aggtggcctg	gaggtgggca	aagggaagta	acagacacac	gatgttgtca	1440
aggatggttt	tgggactaga	ggctcagtgg	tgggagagat	ccctgcagaa	tccaccaacc	1500
agaacgtggt	ttgcctgagg	ctgtaactga	gagaaagatt	ctggggctgt	cttatgaaaa	1560
tatagacatt	ctcacataag	cccagttcat	caccatttcc	tcctttacct	ttcagtgcag	1620
tttcttttca	cattaggctg	ttggttcaaa	cttttgggag	cacggactgt	cagttctctg	1680
ggaagtggtc	agcgcatcct	gcagggcttc	tcctcctctg	tcttttggag	aaccagggct	1740
cttctcaggg	gctctaggga	ctgccaggct	gtttcagcca	ggaaggccaa	aatcaagagt	1800
gagatgtaga	aagttgtaaa	atagaaaaag	tggagttggt	gaatcggttg	ttctttcctc	1860
acatttggat	gattgtcata	aggtttttag	catgttcctc	cttttcttca	ccctccctt	1920
tgttcttcta	ttaatcaaga	gaaacttcaa	agttaatggg	atggtcggat	ctcacaggct	1980
gagaactcgt	tcacctccaa	gcatttcatg	aaaaagctgc	ttcttattaa	tcatacaaac	2040
tctcaccatg	atgtgaagag	tttcacaaat	ctttcaaaat	aaaaagtaat	gacttagaaa	2100
ctgaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaa			2133

<2	10>	38	
<2	211>	20	
<2	212>	DNA	
<2	213>	Homo sapiens	
	100>		20
аų	yyyay	gaag ggaaaacaga	20
<2	210>	39	
<2	211>	20	
<2	212>	DNA	
<2	213>	Homo sapiens	
	100>	39 ctca acacgaggct	20
	Laagg	ccca acacyayyee	20
<2	210>	40	
<2	211>	20	
<7	212>	DNA	
<2	213>	Homo sapiens	
	400> ttaaa	40 ctgt gaggtcatcg	20
	55		
	210>		
	211>		
<	212>	DNA	
<	213>	Homo sapiens	
t	400> atagc	41 tcgg caccttcacc	20
<	210>	42	
<	211>	21	
	212>		
<	213>	Homo sapiens	
C.	400> tgcct	42 gcca ctgagggttc c	21

<210>	43	
<211>	24	
<212>	DNA	
<213>	Homo sapiens	
	·	
<400>		24
cccayy	caga acaacaaacc atcc	24
<210>	44 .	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	44 acca ctacccacat	20
accuce	accu ctacccucut	
<210>	45	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	45 tcct aacggtttgc	20
-99		
<210>	46	
<211>	21	
<212>	DNA	
<213>	Homo sapiens	
<400>	46 cgta caggtctttg c	21
5 55		
	47	
<211>	19	
<212>	DNA	
<213>	Homo sapiens	
<400>	47	19

WO 2005/030992	PCT/FR2004/050475

<510>	48	
<211>	24	
<212>	DNA	
<213>	Homo sapiens	
<400>	48 aggc tgttggttca aact	24
cacacc	agge egelggerea aace	
<210>	49	
<211>	19	
<212>	DNA	
<213>	homo sapiens	
<400>	49 gcgc tgaccactt	19
caggac	gege egaceaere	
<210>	50	
<211>	19	
<212>	DNA	
<213>	Homo sapiens	
<400> tcctca	.50	19
<210>		
<211>		
<212>		
<213>	Homo sapiens	
	•	
<400> ttcagg	51 patgt ccaggcatat gt	22
<210>	52	
<211>		
<212>		
<213>	homo sapiens	
<400>	52 catc tggaacaagg	20

١.,٠

<210>	53	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	53	20
ggcagg	agtt ctgtcctttg	20
<210>	54	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	54 tcca gaggcacgac	20
cccaca	· · · · · · · · · · · · · · · · · · ·	
<210>	55	
<211>	19	
<212>	DNA	
<213>	homo sapiens	
<400>	55 gtca gcaaacagg	19
uuguu	g gg	
<210>	56	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	56 ggct atggctttgg	20
33	55 55 5	
<210>	57	
<211>	21	
<212>	DNA	
<213>	homo sapiens	
<400> ccgttt	57 caca cctgacacat g	21

١.,

<210>	58	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
<400>	58 ccgg aagtaggttt ct	22
gergga	augunggett ut	
<210>	59	
<211>	17	
<212>	DNA	
<213>	homo sapiens	
<400>	59 accg gaaatgc	17
99		
<210>	60	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	60 ···· gtgc atccaacaga	20
J		
<210>	61	
<211>		
<212>	DNA	
<213>	homo sapiens	
<400> atatac	61 gcgt aaagcttcac	20
<210>	62	
<210> <211>		
	22	
<211> <212>	22	
<211> <212>	22 DNA	

<210>	63	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	63 aacg acttttgaac	20
tyccaa	accy accelegate	20
<210>	64	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	64 ccct gctaaggaaa	20
gregga	- Cook geennygaan	
<210>	65	
<211>	20	
<212>	DNA	
<213>	homo sapiens	
<400>	65 gttg ggcagggtct	20
	33 33333	
<210>	66	
<211>	22	
<212>	DNA	
<213>	homo sapiens	
	66 caaa acaatgcaga ct	22
<210>	67	
	22	
<212>	DNA .	
<213>	Homo sapiens	
<400>	67 tgac catctttgga tt	22