QUESTION 7 - (10 marks)

A feedback control system is shown as below

where

$$G(s) = \frac{1}{s^2}$$

$$G_c(s) = \frac{K(s+a)}{(s+b)}$$

Determine K, a and b so that the transient response of the overall system has an overshoot of 35% for a step input and settling time with a 2% criterion of 4 s. Assume that phase contribution from zero of the compensator is twice as much as its pole. Follow the steps given below:

(a) Determine the desired damping factor from the overshoot requirement by using one correct expression for the relationship between maximum overshoot and damping factor among the following four expressions $M_p = e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$, $M_p = e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$, $M_p = e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^2}}}$, and calculating it.

Correct expression for
$$M_p$$
 and ζ :

Calculated damping factor ζ :
$$\frac{4\pi}{1-4^2} = 0.35$$

$$\frac{4\pi}{1-4^2} = 0.317$$

(b) Determine the real part $\sigma=\zeta\;\omega_n$ of the desired closed loop poles of the compensated system by using one correct expression for the relationship between settling time and damping factor among the following four expressions $T_s=\frac{4}{\zeta\omega_n^2},\; T_s=\frac{4}{\zeta^2\omega_n^2},\; T_s=\frac{4}{\zeta^2\omega_n},\; T_s=\frac{4}{\zeta\omega_n},\;$ and calculating it.

Correct expression for
$$T_s$$
 and ζ : $|S| = \frac{4}{3W\eta}$

Calculated real part $\sigma = \zeta \omega_n$: $|S| = \frac{4}{7S} = |S|$

Determine the desired closed loop poles of the compensated system. $\frac{C(y)}{R(5)} = \frac{y_1}{S^2 + 25} = \frac{9.955}{S^2 + 25} = \frac{5^2 + 25 + 9.955}{S^2 + 25 + 9.955}$ $\frac{5^2 + 25 + 9.955}{S^2 + 25 + 9.955}$

QUESTION 7 (cont.) 2.
$$\frac{4}{3}$$
 3 = 0.317

Desired closed loop poles: -1+31, -1-31

Determine a and b based on the condition that phase contribution from zero of the compensator is

twice as much as its pole. We have:
$$G(S)-G(S) = \frac{|L(S+a)|}{|S^2(S+b)|}$$
 and $[LS+a=2LS+b]$

$$50: \arctan \frac{2}{64} - \arctan \frac{2}{64} = 37^{\circ}$$
And $\arctan \frac{2}{64} = 2437^{\circ} = 74^{\circ}$

$$\arctan \frac{2}{64} = 2437^{\circ} = 74^{\circ}$$

$$\arctan \frac{2}{64} = 46074^{\circ} = 3.487$$

$$\arctan \frac{2}{64} = 46074^{\circ} = 3.487$$

$$\arctan \frac{2}{64} = 46074^{\circ} = 3.487$$

50:
$$\begin{cases} \frac{3}{64} = \tan 74^{\circ} = 3.487 \\ \frac{3}{64} = \tan 37^{\circ} = 0.754 \end{cases}$$

$$\begin{cases} a = 1.86 \\ b = 4.98 \end{cases}$$

(e) Determine K by using one correct expression among the following four expressions $K = \frac{1}{\sqrt{|\hat{GH}(s)|}}$, $K = \frac{1}{\sqrt{|\hat{GH}(s)|}}$ |GH(s)|, $K = \frac{1}{|GH(s)|}$, $K = \sqrt{|GH(s)|}$, and calculating it.

Correct expression for K:
$$|C|$$
 $|C|$ $|C$