CSE 417T Introduction to Machine Learning

Lecture 7

Instructor: Chien-Ju (CJ) Ho

Logistics

- HW1: Due this Friday
 - Reserve time if you have never used Gradescope
 - Check that submission is readable (if you scan your handwriting)
 - Assign pages to each problem
- HW2: Will be announce between this Friday and next Monday
- Exam1: Will announce the date this week
- Contact me: Piazza, not emails

Recap

VC Generalization Bound

• VC Bound:
$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

- Theoretically characterized the feasibility of learning
- The performance of your learning, i.e., $E_{out}(g)$, depends on
 - How well you fit your data $(E_{in}(g))$
 - How well your $E_{in}(g)$ generalizes to $E_{out}(g)$

Bias-Variance Decomposition

$$\operatorname{Bias}(\vec{x}) \qquad \operatorname{Var}(\vec{x})$$

$$\bullet \ \mathbb{E}_{D}[E_{out}(g^{(D)})] = \mathbb{E}_{\vec{x}}\left[\left(\bar{g}(\vec{x}) - f(\vec{x})\right)^{2}\right] + \mathbb{E}_{\vec{x}}\left[\mathbb{E}_{D}\left[\left(g^{(D)}(\vec{x}) - \bar{g}(\vec{x})\right)^{2}\right]\right]$$

- The performance of your learning, i.e., $\mathbb{E}_D[E_{out}(g^{(D)})]$, depends on
 - How well you can fit your data using your hypothesis set (bias)
 - How close to the best fit you can get for a given dataset (variance)

Very small model

Very large model

Learning Curves

Learning Curves

Bias-Variance Analysis

Today's Lecture

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

Linear Models

Linear Models

This is why it's called linear models

• *H* contains hypothesis $h(\vec{x})$ as some function of $\vec{w}^T\vec{x}$

	Domain	Model	<u>C</u>
Linear Classification	$y \in \{-1, +1\}$	$H = \{h(\vec{x}) = sign(\vec{w}^T \vec{x})\}\$	
Linear Regression	$y \in \mathbb{R}$	$H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$	(
Logistic Regression	$y \in [0,1]$	$H = \{h(\vec{x}) = \theta(\vec{w}^T \vec{x})\}$	F

Credit Card Example

Approve or not

Credit line

Prob. of default

- Linear models:
 - Simple models => Good generalization error

 $\theta(s) = \frac{e^s}{1 + e^s}$

- Reminder:
 - We will interchangeably use h and \vec{w} to represent a hypothesis in linear models

Learning Algorithm?

- Goal of the learning algorithm:
 - Find $g \in H$ such that $g \approx f$
 - Define error measures to quantify $g \approx f$
 - Find $g \in H$ that minimizes $E_{out}(g)$ (but we don't know E_{out})
- Recall on the error measure
 - Often focus on point-wise error $e(h(\vec{x})), f(\vec{x})$
 - Binary error for classification
 - Squared error for regression
 - In-sample and out-of-sample errors

•
$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\vec{x}_n), f(\vec{x}_n))$$

•
$$E_{out}(h) = \mathbb{E}_{\vec{x}}[e(h(\vec{x}), f(\vec{x}))]$$

Learning Algorithm?

- Goal of the algorithm: Find $g \in H$ that minimizes $E_{out}(g)$
- Common algorithms:
 - $g = argmin_{h \in H} E_{in}(h)$
 - Works well when the model is simple (generalization error is small)
 - Will focus on this in the discussion of linear models
 - $g = argmin_{h \in H} \{E_{in}(h) + \Omega(h)\}$
 - $\Omega(h)$: penalty for complex h
 - Will discuss this when we get to LFD Section 4

VC Bound: $E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$

Optimization is a key component in machine learning

Linear Classification

Linear Classification

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = sign(\vec{w}^T\vec{x})\}$
 - Error measure: binary error $e(h(\vec{x}), y) = \mathbb{I}[h(\vec{x}) \neq y]$

- Property
 - Simple model (Fact: the VC dimension of d-dim perceptron is d+1)
 - Good generalization error
- When data is linearly separable
 - Run PLA
 - \Rightarrow find g with $E_{in}(g) = 0$
 - $\Rightarrow E_{out}(g)$ is close to $E_{in}(g) = 0$

Non-Separable Data

- Generally a hard problem
 - Minimizing E_{in} is a NP-hard problem
 - Reason: binary error is discrete and hard to optimize
- Alternative approaches
 - Pocket algorithm
 - Run PLA for a finite pre-determined T rounds
 - Keep track of the best weights \vec{w}^* ($\vec{w}(t)$ that minimizes E_{in})
 - Engineering the features to make data closer to be separable
 - Feature engineering (requiring domain knowledge, e.g., see LFD Example 3.1)
 - Non-linear transformation (will discuss this in later lectures)
 - Changing the problem formulation (will discuss this in later lectures)
 - Example: Support vector machines in 2nd half of the semester

Example on Feature Engineering

• Task: Classify handwritten digits of 1 and 5

- Linearly separable?
 - What are the features \vec{x} ?
 - Each pixel as a feature (deep learning approach. requires data)
 - $\vec{x} = (\text{intensity, symmtry})$

Linear Regression

Linear Regression

- Formulation
 - Hypothesis set $H = \{h(\vec{x}) = \vec{w}^T \vec{x}\}$
 - Squared error $e(h(\vec{x}), y) = (h(\vec{x}) y)^2$

- Given dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - $E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (\vec{w}^T \vec{x}_n y_n)^2$
- Goal: find $\overrightarrow{w}_{lin} = argmin_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$

Matrix Representation

•
$$D = \{(\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N)\}$$

•
$$X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_N^T \end{bmatrix} = \begin{bmatrix} x_{1,0} & x_{1,1} & \cdots & x_{1,d} \\ x_{2,0} & x_{2,1} & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{2,0} & x_{N,1} & \cdots & x_{N,d} \end{bmatrix}$$

$$x_{n,i}: \text{ the } i\text{-th element of vector } \vec{x}_n$$

$$\bullet \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

Rewriting the In-Sample Error In Matrix Form

$$E_{in}(\vec{w}) = \frac{1}{N} \sum_{n=1}^{N} (\vec{w}^T \vec{x}_n - y_n)^2 \qquad \begin{bmatrix} x = \begin{bmatrix} \vec{x}_1^T \\ \vec{x}_N^T \end{bmatrix}; \ \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \end{bmatrix} \begin{pmatrix} x \vec{w} = \begin{bmatrix} \vec{x}_1^T \vec{w} \\ \vdots \\ \vec{x}_N^T \vec{w} \end{bmatrix} \\ = \frac{1}{N} \sum_{n=1}^{N} (\vec{x}_n^T \vec{w} - y_n)^2 \qquad \begin{bmatrix} \|\vec{z}\| = \sqrt{\vec{z}^T \vec{z}} = \sqrt{\sum_{i=1}^d z_i^2} \\ \|\vec{z}\|^2 = \vec{z}^T \vec{z} = \sum_{i=1}^d z_i^2 \end{bmatrix} \\ = \frac{1}{N} \|X \vec{w} - \vec{y}\|^2 \qquad \qquad E_{in}(\vec{w}) = \frac{1}{N} ((X \vec{w})^T - \vec{y}^T) (X \vec{w} - \vec{y}) \\ = \frac{1}{N} (X \vec{w} - \vec{y})^T (X \vec{w} - \vec{y}) \qquad \qquad -\frac{1}{N} ((X \vec{w})^T + X \vec{w} - X \vec{w})^T \vec{y} + \vec{y}^T \vec{y} + \vec{y}^T$$

$$X = \begin{bmatrix} \vec{x}_1^T \\ \vdots \\ \vec{x}_N^T \end{bmatrix}; \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$X\overrightarrow{w} - \overrightarrow{y} = \begin{bmatrix} \overrightarrow{x}_1^T \overrightarrow{w} - y_1 \\ \vdots \\ \overrightarrow{x}_N^T \overrightarrow{w} - y_N \end{bmatrix}$$

$$\|\vec{z}\| = \sqrt{\vec{z}^T \vec{z}} = \sqrt{\sum_{i=1}^d z_i^2}$$
$$\|\vec{z}\|^2 = \vec{z}^T \vec{z} = \sum_{i=1}^d z_i^2$$

$$E_{in}(\vec{w}) = \frac{1}{N} \left((X\vec{w})^T - \vec{y}^T \right) (X\vec{w} - \vec{y})$$
$$= \frac{1}{N} (\vec{w}^T X^T X \vec{w} - 2 \vec{w}^T X^T \vec{y} + \vec{y}^T \vec{y})$$

How to find $\overrightarrow{w}_{lin} = argmin_{\overrightarrow{w}} E_{in}(\overrightarrow{w})$?

- Given $E_{in}(\vec{w}) = \frac{1}{N} (\vec{w}^T X^T X \vec{w} 2 \vec{w}^T X^T \vec{y} + \vec{y}^T \vec{y})$
- Solve for $\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = 0$
 - Think about what you'll do for one-dimensional case

Derivations

•
$$E_{in}(\overrightarrow{w}) = \frac{1}{N} (\overrightarrow{w}^T X^T X \overrightarrow{w} - 2 \overrightarrow{w}^T X^T \overrightarrow{y} + \overrightarrow{y}^T \overrightarrow{y})$$

•
$$\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}) = \frac{1}{N} (2X^T X \overrightarrow{w} - 2X^T \overrightarrow{y})$$

•
$$\nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}_{lin}) = 0 ==> X^T X \overrightarrow{w}_{lin} = 2X^T \overrightarrow{y}$$

$$\nabla f(\overrightarrow{w}) = \nabla_{\overrightarrow{w}} f(\overrightarrow{w}) = \begin{bmatrix} \frac{\partial}{\partial w_0} f(\overrightarrow{w}) \\ \frac{\partial}{\partial w_1} f(\overrightarrow{w}) \\ \vdots \\ \frac{\partial}{\partial w_d} f(\overrightarrow{w}) \end{bmatrix}$$

•
$$X^T X \overrightarrow{w}_{lin} = 2X^T \overrightarrow{y}$$

- Two cases:
 - If X^TX is invertible (When $N \gg d$, most of the time, it is invertible)
 - $\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$
 - If X^TX is not invertible
 - Requires special handling (See LFD Problem 3.15 for an example)
- In practice
 - Define X^{\dagger} as the pseudo-inverse of X
 - When X^TX is invertible, $X^{\dagger} = (X^TX)^{-1}X^T$
 - When X^TX is not invertible, "handle" it appropriately (usually done in the library for you)
 - Linear regression algorithm (a single step algorithm):

•
$$\vec{w}_{lin} = X^{\dagger} \vec{y}$$

Linear Regression "Algorithm"

- Input: $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
- 1. Construct X and \vec{y}
- 2. Compute the pseudo-inverse of $X: X^{\dagger}$ $(X^{\dagger} = (X^T X)^{-1} X^T \text{ when } (X^T X) \text{ is invertible})$
- 3. Compute $\vec{w}_{lin} = X^{\dagger} \vec{y}$
- Output: \overrightarrow{w}_{lin}

Break and Practice

Linear Regression "Algorithm"

- Input: $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
- 1. Construct X and \vec{y}
- 2. Compute the pseudo-inverse of $X: X^{\dagger}$ $(X^{\dagger} = (X^TX)^{-1}X^T \text{ when } (X^TX) \text{ is invertible})$
- 3. Compute $\vec{w}_{lin} = X^{\dagger} \vec{y}$
- Output: \overrightarrow{w}_{lin}

- What happens in 0-dimensional model
 - $\vec{x} = (x_0)$
 - Given $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
 - What's \overrightarrow{w}_{lin}

Discussion

Linear Regression "Algorithm"

- Input: $D = \{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_N, y_N)\}$
- 1. Construct X and \vec{y}
- 2. Compute the pseudo-inverse of $X: X^{\dagger}$ $(X^{\dagger} = (X^TX)^{-1}X^T \text{ when } (X^TX) \text{ is invertible})$
- 3. Compute $\vec{w}_{lin} = X^{\dagger} \vec{y}$
- Output: \vec{w}_{lin}

Special case of zero—dimensional space

$$X = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \Rightarrow X^T X = N \Rightarrow (X^T X)^{-1} = 1/N$$

$$\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$$

$$= \begin{bmatrix} \frac{1}{N} \dots \frac{1}{N} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

Squared error => mean

Discussion

- Linear regression generalizes very well
 - Under mild conditions (See LFD Exercise 3.4 for an example)

$$E_{out}(g) = E_{in}(g) + O\left(\frac{d}{N}\right)$$

- Use regression for classification
 - Note that $\{-1, +1\} \subset \mathbb{R}$
 - Use linear regression to find $\vec{w}_{lin} = (X^T X)^{-1} X^T \vec{y}$ for data with $y \in \{-1, +1\}$
 - Use \vec{w}_{lin} for classification: $g(\vec{x}) = \text{sign}(\vec{w}_{lin}^T \vec{x})$
 - Alternatively, use \vec{w}_{lin} as the initialization for Pocket Algorithm

Logistic Regression