Proofs with 3-introduction and 3-elimination are unnecessarily long and cumbersome...

There are alternatives!

Proving an existential quantification

To prove

$$\exists x[x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0]$$

Proof

It suffices to find a witness, i.e., an $x \in \mathbb{Z}$ satisfying $x^3 - 2x - 8 \ge 0$.

x = 3 is a witness, since $3 \in \mathbb{Z}$ and $3^3 - 2 \cdot 3 - 8 = 13 \ge 0$

Conclusion: $\exists x[x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0].$

also x = 5 is a witness...

Alternative 3 introduction

How do we prove an existential quantification?

3*-introduction

by finding a witness

(k) P(a)

• • •

(I) Q(a)

• • •

 $\{\exists *-intro on (k) and (l)\}$

(m) $\exists x [P(x) : Q(x)]$

strategy: wait until a witness object appears

does not always work

(k < m, l < m)

Using an existential quantification

We know

$$\exists x[x \in \mathbb{R} : a - x < 0 < b - x]$$

We can declare an $x \in \mathbb{Z}$ (a witness) such that

$$a - x < 0 < b - x$$

and use it further in the proof. For example:

From a - x < 0, we get a < x.

From b - x > 0, we get x < b.

Hence, a < b.

Alternative 3 elimination

How do we use an existential quantification in a proof?

∃*-elimination

 $\| \|$

(k) $\exists x [P(x) : Q(x)]$

 $\parallel \parallel$

 $\{\exists *-elim on (k)\}$

(m) Pick x with P(x) and Q(x)

we pick a witness

x must be new!

time for an example!

(k < m)

Back to Naive Set Theory Relations

Product of multiple sets

Direct product (Kartesisches Produkt)

$$A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$$

ordered pairs

$$(A \times B) \times C \neq A \times (B \times C)$$

Therefore, we define

$$A \times B \times C =$$
 if $A_i = A$ for all i,
then the product is
denoted A^n

and $y \in B$ and $z \in C$

In general, for ets A_1 , A_2 , ..., A_n with $n \ge 1$,

sequence of length n

$$A_1 \times A_2 \times ... \times A_n = \prod_{1 \le i \le n} A_i = \{(x_1, x_2, ..., x_n) \mid x_i \in A_i \text{ for } 1 \le i \le n\}$$

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$

is a (binary) relation between A and B

similarly, unary relation (subset), n-ary relation...

Def. R is a relation on A if $R \subseteq A \times A$

some relations are special

Special relations

A relation $R \subseteq A \times A$ is:

```
reflexive
                   iff
                         for all a \in A, (a,a) \in R
                         for all a,b \in A, if (a,b) \in R, then (b,a) \in R
                  iff
symmetric
                   iff
                         for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
transitive
                                             then (a,c) \in R
irreflexive
                   iff
                         for all a \in A, (a,a) \notin R
antisymmetric iff
                         for all a,b \in A, if (a,b) \in R and (b,a) \in R
                                           then a = b
                         for all a,b \in A, if (a,b) \in R, then (b,a) \notin R
                   iff
asymmetric
                   iff
                         for all a,b \in A, (a,b) \in R or (b,a) \in R
total
```

(infix) notation aRb for $(a,b) \in R$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:

```
equivalence iff R is reflexive, symmetric, and transitive

partial order iff R is reflexive, antisymmetric, and transitive

strict order iff R is irreflexive and transitive

preorder iff R is reflexive and transitive
```

total (linear)
order iff R is a total partial order

Obvious properties

- I. Every partial order is a preorder.
- 2. Every total order is a partial order.
- 3. Every total order is a preorder.
- 4. If $R \subseteq A \times A$ is a relation such that there are $a, b \in A$ with $a \neq b, (a,b) \in R$ and $(b,a) \in R$, then R is not a partial order, nor a total order, nor a strict order.

Operations on relations

Let $R \subseteq A \times B$ and $S \subseteq B \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

relational composition is associative (R \circ S) \circ T = R \circ (S \circ T)

so again we write $R^{n} = R \circ R \circ ... \circ R$ n times

Let $R \subseteq A \times B$ be a relation. The inverse relation of R is the relation

$$R^{-1} = \{(b,a) \in B \times A \mid (a,b) \in R\}$$

Characterizations

Lemma: Let R be a relation over the set A. Then

```
I. R is reflexive iff \Delta_A \subseteq R
```

- 2. R is symmetric iff $R \subseteq R^{-1}$
- 3. R is transitive iff $R^2 \subseteq R$

Important equivalence on \mathbb{Z}

Def. For a natural number n, the relation \equiv_n is defined as

```
\begin{aligned} i &\equiv_{n} j & \text{ iff } n \mid i-j \\ & & [\text{iff } i\text{-}j \text{ is a multiple of } n \text{ }] \\ & & [\text{iff there exists } k \in \mathbb{Z} \text{ s.t. } i\text{-}j = k \cdot n \text{ }] \\ & & [\text{iff } \exists k \text{ } (k \in \mathbb{Z} \text{ } \wedge \text{ } i\text{-}j = k \cdot n) \text{ }] \end{aligned}
```

Lemma: The relation \equiv_n is an equivalence for every n.

Equivalences classes

Def. Let R be an equivalence over A and $a \in A$. Then

$$[a]_R = \{ b \in A \mid (a, b) \in R \}$$
 the equivalence class of a

Lemma: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Task: Describe the equivalence classes of \equiv_n How many classes are there?

Unions and intersections of multiple sets

Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

AUB

Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

A ∩ B

In general, for sets A_1 , A_2 , ..., A_n with $n \ge 1$,

 $A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for some } i \in \{1,...n\}\}$

 $A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for all } i \in \{1,...n\}\}$

Unions and intersections of multiple sets

Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

AUB

Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

A and B are disjoint if $A \cap B = \emptyset$

A ∩ B

In general, for a family of sets $(A_i | i \in I)$

 $\bigcup_{i \in I} A_i = \{x \mid x \in A_i \text{ for some } i \in I\}$

$$\bigcap_{i \in I} A_i = \{x \mid x \in A_i \text{ for all } i \in I\}$$

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets. all equivalence classes of R

Lemma E2: $A = \bigcup_{a \in A} [a]_R$. The union is disjoint.

Partitions

Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

- (I) For all $A \in P$, $A \neq \emptyset$
- (2) For all A, B \in P, if A \neq B then A \cap B = \emptyset

 $(3) \cup_{A \in P} A = X$

that are non-empty,
pairwise disjoint,
and their union equals X

Partitions = Equivalences

Theorem PE: Let X be a set.

- (I) If R is an equivalence on X, then the set $P(R) = \{ [x]_R \mid x \in X \}$ is a partition of X.
- (2) If P is a partition of X, then the relation $R(P) = \{(x,y) \in X \times X \mid \text{there is } A \in P \text{ such that } x,y \in A\}$ is an equivalence relation.

Moreover, the assignments $R \mapsto P(R)$ and $P \mapsto R(P)$ are inverse to each other, i.e., R(P(R)) = R and P(R(P)) = P.

Transitive closure

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

$$R^+ = \bigcup_{n \in \mathbb{N}, n \neq 0} R^n$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^* , is the relation

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

Proposition TC: Let R be a relation on X. The transitive closure of R is the smallest transitive relation that contains R. The reflexive and transitive closure of R is the smallest reflexive and transitive relation that contains R.