Graphs:

Heatmaps: (1,2,...,8,9,0)

Examples of Wrongly Classified Images:

Confusion Matrix:

2118	10	4	2	9	0	8	27	1	0
94	1629	39	35	4	73	50	52	8	31
39	60	1739	7	32	28	38	46	44	17
32	7	3	1740	16	19	4	16	94	2
28	18	168	31	1283	71	27	79	62	50
33	17	1	18	12	1824	0	14	1	23
78	12	17	37	3	0	1861	4	102	26
185	22	73	29	58	23	15	1507	57	22
17	6	37	116	5	1	117	10	1602	22
3	6	5	12	16	26	4	29	1	1897

Important Values:

- Lambda, unrefined, for Mean Square Error: 64
- Lambda, unrefined, for "hit" percentage: 1024
- Refined, final Lambda: **891.4437768152316**

Graphs:

Examples of Wrongly Classified Images:

Confusion Matrix:

2133	12	6	4	3	4	6	8	2	1
21	1798	26	27	5	35	30	42	6	25
10	43	1824	6	45	15	24	43	28	12
19	8	2	1790	6	15	3	10	79	1
7	13	101	18	1513	55	12	39	36	23
6	18	1	8	16	1867	3	5	1	18
32	21	14	30	6	2	1973	5	49	8
51	30	58	10	64	16	13	1693	35	21
10	11	26	86	19	0	71	17	1682	11
2	5	3	5	19	21	5	14	1	1924

Important Values:

• Lambda, unrefined, for Mean Square Error: 16

• Lambda, unrefined, for "hit" percentage: 16

• Refined, final Lambda: 32

Answers:

Q2.2)

Temos que a ELM tem um desempenho de classificação mais alto do que a regressão linear, pois nela utilizamos a tangente hiperbólica (tanh) para mapear as entradas e os pesos dos neurônios para a última camada de pesos. Esta função é útil pois ela impede que pesos de neurônios sejam muito grandes, assim impedindo que alguns poucos pesos causam classificações incorretas.

Já a diminuição do tempo de execução pode ser atrelado às dimensões da matriz W (de pesos da camada final). Considerando todas as operações matriciais que são realizadas durante o treinamento, a diminuição de 785 para 501 faz uma grande diferença.

Q2.2)

Temos que o coeficiente de regularização no caso da regressão linear (891.4438) é maior do que no caso da ELM (32). Além disso, é sabido que quanto maior o posto da matriz utilizada no cálculo de W (H=X*neuron_weights no caso da ELM e X na regressão), menor a necessidade da atuação do coeficiente de

André Barros de Medeiros ; RA:194060

regularização. O posto de H é maior do que o de X, o que justifica o fato de lambda_ELM < lambda_RLin.

Q2.3)

Se a matriz de pesos dos neurônios for alterada, temos que o coeficiente de regularização também será alterado. Entretanto, não haverá uma mudança muito grande, pois o "range" dessa variação será proporcional ao desvio padrão utilizado (0.2 neste caso).

Q4)

Percebemos, após ter feito a regressão linear, a ELM, a MLP e a rede convolucional, que os desempenhos de cada são bem diferentes. A primeira com precisão em torno de 86%, segunda de 92%, terceira de 98% e a última de 99%. Com isso, podemos observar que devemos analisar sempre muito bem o problema que estamos enfrentando para que possamos escolher o melhor tipo de rede possível.