

Output Feedback

Prof. Seungchul Lee Industrial AI Lab.

Plant G (or System)

- Consider the plant *G*
 - Input u(t)
 - Output y(t)
- So far, we have learnt about dynamics of plant *G*

- Control problem
 - The output of this plant track a desired reference trajectory r(t)

Open Loop Control

- The simplest solution to the tracking problem is to use a pre-compensator G
 - $-C = \frac{1}{G}$
 - Then y(t) = r(t)

- Do you see any problems of this solution?
 - Model uncertainty
 - Disturbance

Open Loop Control

- Consider the important practical issue of model uncertainty and disturbance.
 - It is always the case that the true system we wish to control will deviate from the nominal model used in control design
- Suppose uncertain plant G' and disturbance d(t)

• Open loop controller $C = \frac{1}{G}$

$$y(t) = rac{G'}{G} r(t) + d(t)$$

Closed Loop Control (= Negative Feedback Control)

- An alternative solution is to purchase a sensor and use feedback control
 - Use a constant gain compensator K, that multiplies the measured tracking error e(t) = r(t) y(t)

$$u = Ke$$

$$e = r - y$$

$$y = Gu$$

$$e = rac{1}{1 + GK} r$$

$$y = rac{GK}{1+GK} r$$

As
$$|GK| o \infty, \; e(t) o 0$$
 and $y(t) o r(t)$

Closed Loop Control

- Feedback controller
 - Use of feedback with sufficiently high gain provides an approximate solution to the tracking problem even in the presence of system uncertainty and disturbance

$$e = \frac{1}{1 + G'K}r - \frac{1}{1 + G'K}d$$

$$y = \frac{G'K}{1 + G'K}r + \frac{1}{1 + G'K}d$$

Transfer Function for Closed Loop System

- Feedback changes the system transfer function
 - Change system dynamics
 - Change poles and zeros
 - Might change system stability

$$E = R - Y$$
 $Y = KGE$

$$Y = KG(R - Y)$$
 $= KGR - KGY$

$$(1 + KG)Y = KGR$$

$$H = \frac{Y}{R} = \frac{KG}{1 + KG}$$

Transfer Function for Closed Loop System

- Feedback changes the system transfer function
 - Change system dynamics
 - Change poles and zeros
 - Might change system stability

$$E = R - KY$$
 $Y = GE$

$$Y = G(R - KY)$$
 $= GR - KGY$

$$(1 + KG)Y = GR$$

$$H = \frac{Y}{R} = \frac{G}{1 + KG}$$

Transfer Function for Closed Loop System

Example 1

$$G(s) = \frac{1}{s+1}$$
, pole at -1

$$H(s) = rac{KG}{1 + KG} = rac{rac{K}{s+1}}{1 + rac{K}{s+1}} = rac{K}{s+1 + K}, ext{ new pole at } -(1 + K)$$

Example 2

$$G(s) = rac{1}{s-1}, \quad ext{pole at} + 1, ext{unstable}$$

$$H(s)=rac{KG}{1+KG}=rac{rac{K}{s-1}}{1+rac{K}{s-1}}=rac{K}{s-1+K}, \quad ext{new pole at } (1-K)$$

if k>1, the closed loop system H(s) becomes stable

• Feedback = autoregressive = infinite length response

• If
$$G = \frac{1}{s}$$

$$H = rac{Y}{R} = rac{1}{1+s} = 1 - s + s^2 - s^3 + \cdots$$

Open Loop vs. Closed Loop

Open Loop vs. Closed Loop

- Suppose that there is a car
 - input: force u(t)
 - output: velocity y(t)
 - transfer function G(s)

ullet Suppose that there is a car driving with a road wave disturbance d

Open Loop

- Reference velocity r(t) that is desired by a driver
- Assume the force produced by a engine is u = Kr

• The system input \boldsymbol{u}

u = Kr

Calculating y

y = Gu + d = GKr + d

• Error

$$e = r - y = r - GKr - d$$

$$= r(1 - GK) - d$$

Closed Loop

- Think about how we drive
 - We step on the gas or put the brake on based on the desired speed and the current one
 - We care about the difference r-y
 - The term of "Negative feedback" is coming from -y

Closed Loop

- Now assume *K* is a controller
- The system input u

$$u = K(r - y)$$

Calculating y

$$y = GK(r - y) + d$$
$$= KGr - KGy + d$$

$$(1 + KG)y = KGr + d$$

$$\therefore y = \frac{KGr + d}{1 + KG} = \frac{KG}{1 + KG}r + \frac{1}{1 + KG}d$$

- Error
 - When K is large, the error becomes small

$$e = r - y = r - \frac{KGr + d}{1 + KG} = \frac{r - d}{1 + KG}$$

Model Uncertainty of Open Loop

- Let us suppose that the predicted model is G(s) = 2, and actually G(s) = 1
- Let's design the K value when the desired output speed is $100 \ km/h$

In the open loop model, y is

$$y_{\text{model}} = G_{\text{model}}Kr + d = 2Kr + d$$

Model Uncertainty of Open Loop

• In the open loop model, y is

$$y_{\text{model}} = G_{\text{model}}Kr + d = 2Kr + d$$

• In order for y to approach 100 reference input

$$K = 0.5$$

Then the actual y is

$$y_{\text{true}} = G_{\text{true}}Kr + d = Kr + d$$

The model and true errors are

$$e_{\text{model}} = r - y_{\text{model}} = r(1 - G_{\text{model}}K) - d = r(1 - 2K) - d$$

$$e_{\text{true}} = r - y_{\text{true}} = r(1 - G_{\text{true}}K) - d = r(1 - K) - d$$

Model Uncertainty of Open Loop

Discrepancy from model uncertainty

$$y_{\text{model}} - y_{\text{true}} = Kr$$

- Stability
 - The open loop system cannot change the poles of system
- Uncertainty, Low Robustness
 - Predicting models incorrectly has a critical impact on speed
- Disturbance rejection
 - Disturbance directly affects the system

Model Uncertainty of Closed Loop

• In the closed loop model, y is

$$y_{
m model} = rac{KG_{
m model}r + d}{1 + KG_{
m model}} = rac{2Kr + d}{1 + 2K} = rac{2K}{1 + 2K}r + rac{1}{1 + 2K}d$$

In order for y to approach 100 reference input, the larger K is better

$$K = 100$$

Then the actual y is

$$y_{ ext{true}} = rac{KG_{ ext{true}}r + d}{1 + KG_{ ext{true}}} = rac{Kr + d}{1 + K} = rac{K}{1 + K}r + rac{1}{1 + K}d$$

• The model and true errors are

$$e_{\text{model}} = r - y_{\text{model}} = \frac{r - d}{1 + KG_{\text{model}}} = \frac{r - d}{1 + 2K} = \frac{1}{1 + 2K}r - \frac{1}{1 + 2K}d$$

$$e_{\text{true}} = r - y_{\text{true}} = \frac{r - d}{1 + KG_{\text{true}}} = \frac{r - d}{1 + K} = \frac{1}{1 + K}r - \frac{1}{1 + K}d$$

Model Uncertainty of Closed Loop

• Discrepancy from model uncertainty (assume d=0) is

$$y_{
m model} - y_{
m true} = rac{K}{2K^2 + 3K + 1} r ~pprox ~0$$

- Stability
 - The closed loop system can change the poles of system
- Uncertainty, Robustness
 - Model uncertainty has a reduced impact on speed
- Disturbance rejection
 - Disturbance little affects the system

PID Control

Car Model

- For the car model
 - velocity y
 - input force u
- In a block diagram

• In a Laplace transform

• We want to achieve

$$y
ightarrow r$$
 as $t
ightarrow \infty \; (e = r - y
ightarrow 0)$

P Control

- The proportional term produces an output value that is proportional to the current error value.
 - Small error yields small control signals
 - Nice and smooth
 - So-called proportional regulation (P regulator)

$$u = k_P e$$

Model Uncertainty

• Caveat: the "real" model is augmented to include a wind resistance term:

$$\dot{y} = \frac{c}{m}u - \gamma y$$

$$u = k_P e = k_P (r - y)$$

At steady-state

$$\dot{y} = 0 = \frac{c}{m}u - \gamma y = \frac{c}{m}k_P(r-y) - \gamma y$$

$$\implies y = \frac{ck_P}{ck_P + m\gamma}r$$

PI Control

- The integral controller is the sum of the instantaneous error over time and gives the accumulated offset that should have been corrected previously
 - Stability
 - Tracking
 - Robustness

$$u(t) = k_P \, e(t) + k_I \int_0^t e(au) d au$$

PID Control

- PID: by far the most used low-level controller
 - P: contributes to stability, medium-rate responsiveness
 - I: tracking and disturbance rejection, slow-rate responsive, may cause oscillations
 - D: fast-rate responsiveness, sensitive to noise

$$u(t) = k_P \, e(t) + k_I \int_0^t e(au) d au + k_D rac{de(t)}{dt}$$

• Feedback has a remarkable ability to fight uncertainty in model parameters!

PID Control

- Feedback has a remarkable ability to fight uncertainty in model parameters!
- The goal of this problem is to show how each of the term, k_P , k_I and k_D contributes to obtaining the common goals of:
 - Fast rise time
 - Minimal overshot
 - Zero steady-state error

$$k_P = 1, k_I = 0, k_D = 0$$

$$k_P = 1, k_I = 1, k_D = 0$$

$$k_P = 1, k_I = 10, k_D = 0$$

$$k_P = 1, k_I = 2, k_D = 0.1$$

General Tips for Designing a PID Controller

- When you are designing a PID controller for a given system, follow the steps shown below to obtain a
 desired response.
 - Obtain an open-loop response and determine what needs to be improved
 - Add a proportional control to improve the rise time
 - Add a derivative control to reduce the overshoot
 - Add an integral control to reduce the steady-state error
 - Adjust each of the gains k_P , k_I and k_D until you obtain a desired overall response.

• Lastly, please keep in mind that you do not need to implement all three controllers (proportional, derivative, and integral) into a single system, if not necessary. For example, if a PI controller meets the given requirements (like the above example), then you don't need to implement a derivative controller on the system. Keep the controller as simple as possible.

Mass

Mass and spring

Mass and spring

Mass, spring and damper

$$m\ddot{y} + c\dot{y} + ky = u$$

Mass, spring and damper

$$m\ddot{y} + c\dot{y} + ky = u$$
 \Longrightarrow $m\ddot{y} = u - ky - c\dot{y}$

