README.md - Grip

randcopoly

This is a package that uses polymer field theory to find phase behavior of random copolymers. The polymers are modeled as wormlike chains. Given chemical correlation \lambda, number of monomers N, and monomer rigidity NM, it calculates

- · structure factor (density-density correlation)
- · phase transition Flory-Huggins paramter
- · critical wavemode of phase segregation

The package provides two of functions s2invwlc() and kmaxwlc(). s2invwlc() calculates the structure factor of random copolymers in the homogeneous phase. kmaxwlc() finds the critical wavemode (location of peak) in the structure factor. Similar codes can be found for Gaussian chain (s2invgc()) and kmaxgc()) and perfectly rigid rod (s2invrc()) and kmaxrc()).

This package was developed by Shifan Mao, Quinn McPherson, and Andrew Spakowitz [1]

Installation

Open Matlab and change directory to randcopoly. Then add the folder functions to path with

```
addpath('functions')
```

Example Usage

Here is an example of using the code to calculate the structure factor (density-density correlations) of rigid, anti-correlated random copolymers.

```
% Example 1: plot density-density correlations vs wavevector at different CHI
N=100; % total of 100 monomers
NM=0.1; % each monomer has 0.1 Kuhn steps
LAM=-0.75; % anti-correlated random copolymer
FA=0.5:
         % equal chemical composition
% find spinodal CHIS
[kval,sval]=kmaxwlc(N,NM,FA,LAM);
CHIS=0.5*sval;
CHI=CHIS*[0 0.2 0.4 0.6 0.8];
RM=sqrt(r2wlc(NM)); % end-to-end distance of a monomers
K0=1e-2; % minimum wavevector
KF=1e2; % maximum wavevector
NK=201; \% number of wavevectors
K=transpose(logspace(log10(K0),log10(KF),NK))/RM;
% evaluate s2inv
[SINV]=s2invwlc(N,NM,FA,LAM,K);
figure; hold
for I=1:length(CHI)
   COL=(I-1)/(length(CHI)-1);
    loglog(RM*K,1./(-2*CHI(I)+SINV),'-','LineWidth',2,'Color',[COL 0 1-COL])
end
xlabel('R_Mq');ylabel('S(q)')
set(gca,'xscale','log');set(gca,'yscale','log');
axis([K0 KF 1e-2 1e1])
```

http://localhost:6419/

As another example, the spinodal (order-disorder transition) of flexible random copolymers

```
% Example 2: find spinodal vs. fraction of A monomers
N=100; % total of 100 monomers
NM=10; % each monomer has 10 Kuhn steps
LAM=0; % ideal random copolymer

FAV = linspace(0.1,0.9,101);
CHIS = zeros(length(FAV),1);
for ii = 1:length(FAV)
    FA = FAV(ii);
    [kval,sval,d2gam2]=kmaxwlc(N,NM,FA,LAM);
    CHIS(ii)=0.5*sval; % spinodal
end
figure;plot(FAV,CHIS*NM,'k-','linewidth',2)
xlabel('f_A');ylabel('\chi_S v N_M')
```

http://localhost:6419/

[1] Mao, S and MacPherson, Q and He, S and Coletta, E and Spakowitz, A "Impact of conformational and chemical correlations on microphase segregation in random copolymers". *Macromolecules* in review (2016)

http://localhost:6419/