PET experiment

BY LEVI KEAY

LAB PARTNER : MARCUS LEE
PHYS409 FALL 2021

Table of contents

- ▶ What is PET?
 - ► Physical mechanism
 - Uses
- Experiment:
 - Apparatus
 - Data collection
 - Sources of noise
 - Characterization of scanning system

Image reconstruction with inverse Radon Transform

Overview Positron Emission Tomography (PET):

Physical Mechanism:

1) Beta Plus decay -> Positron emission

Detection:

Overview Positron Emission Tomography (PET):

Physical Mechanism:

- 1) Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation

Detection:

511 keV

Overview Positron Emission Tomography (PET):

Physical Mechanism:

- 1) Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation
- 3) Two photons (511 keV) produced, travelling in opposite directions

Detection:

Overview Positron Emission Tomography (PET):

Physical Mechanism:

- Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation
- 3) Two photons (511 keV) produced, travelling in opposite directions

Detection:

 Use pair of scintillators + photomultiplier tubes : capture gamma photons + amplify/convert to electrical signal

Overview Positron Emission Tomography (PET):

Physical Mechanism:

- 1) Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation
- 3) Two photons (511 keV) produced, travelling in opposite directions

Detection:

- Use pair of scintillators + photomultiplier tubes : capture gamma photons + amplify/convert to electrical signal
- 2) Use hardware: count number of coincident* photon captures

*when **both scintillators activated within time window** (~ns)

Scintillator

Photo-multiplier tube (PMT)

Source arm

Computer

Hardware

High voltage power supply (for PMTs)

Track

Step motors

Radiation Source: Na-22

Sodium-22 is a man-made isotope with a half-life of 2.6 years. It decays emitting a positron (β ⁺ decay) into stable neon-22.

from PMT

Data collected from a scan of a single radioactive source looks like this:

The aperture is set to 3mm.

Why does it not go to zero outside of the aperture?

Limitations of resolution: SNR and aperture

Limitations of resolution:
Signal -to-noise ratio and aperture

1. Segment using first spatial derivative

- 1. Segment using first spatial derivative
- 2. Fit gaussian to the tails

- 1. Segment using first spatial derivative
- 2. Fit gaussian to the tails
- 3. Generate corrective signal

- 1. Segment using first spatial derivative
- 2. Fit gaussian to the tails
- 3. Generate corrective signal
- 4. Isolate the primary signal by subtracting the corrective signal

- Segment using first spatial derivative
- 2. Fit gaussian to the tails
- 3. Generate corrective signal
- 4. Isolate the primary signal by subtracting the corrective signal
- 5. Fit gaussian to the primary signal,

measure full width @ half maximum (FWHM)

By NARROWING the aperture, localization of the signal increases (GOOD)

But, the amplitude of the signal relative to noise decreases (BAD)

The FWHM is a measure of blurring

The ratio between the primary signal and the noise signal is the SNR

Why is SNR, blurring important?

Why is SNR, blurring important?

- Medical application :
 - ► Inject patient with radiotracer
 - Not localized
 - Smaller signal
 - ▶ Diagnosis important to get right!

Image Reconstruction:

Make image of two sources by:

- Use the rotation of the scanner system to obtain multiple projection angles
- Use all projections to perform the inverse radon transform to reconstruct image

(Figure to the right: 9 angles of a total of 50 taken for this scan)

Image Reconstruction:

Make image of two sources by:

- Use the rotation of the scanner system to obtain multiple projection angles
- Use all projections to perform the inverse radon transform to reconstruct image

(Figure to the right: 9 angles of a total of 50 taken for this scan)

Minimum separation near 90 degrees

Image Reconstruction:

Result: reconstructed image final image

Sensitive to scanner alignment!

Result: reconstructed image final image

Attempt to center this point on the spatial (vertical) axis by removing rows at the bottom:

Sensitive to scanner alignment!

Result: reconstructed image final image

That's better!

QUESTIONS?

