CS 480 Cheat Sheet

Perceptron

We assume $(x_1, y_1), ..., (x_n, y_n)$ belongs to some distribution. Choose predictive function h_n such that $\max Pr(h(x_i) = y_i)$

Dot Product: $\langle w, x \rangle = \sum w_i x_i$ **Padding:** $\langle w, x \rangle + b = \langle (w, b), (x, 1) \rangle$

Note: $z = (w, b), a_i = y_i(x_i, 1)$

Linear Seperable: if s > 0 and Az > s1

If data is not linearly separable perceptron stalls.

Margin is determined by closest point to the hyperplane.

Perceptron finds a solution, no guarantee its the best solution.

12 Norm: $||x||_2 = \sqrt{\sum_i x_i^2}$

Error Bound $\leq \frac{R^2||z||_2^2}{s^2}, R = \max ||a_i||_2$

Margin: $\gamma = \max_{||z||_2=1} \min_i \langle a_i, z \rangle$

One-versus-all: $\hat{y} = \operatorname{argmax}_k w_k^T x + b_k$

One-versus-one: $\#\{x^Tw_{k,k'} + b_{k,k'} > 0, x^Tw_{k',k} + b_{k',k} < 0\}$

Linear Regression

Gradient: if $f(x)\mathbb{R}^d \to \mathbb{R}$, $\Delta f(v) = \left(\frac{\delta f}{\delta v_1}, ..., \frac{\delta f}{\delta v_d}\right)\mathbb{R}^d \to \mathbb{R}^d$ Hessian: $\Delta^2 f(v) = \begin{bmatrix} \frac{\delta^2 f}{\delta^2 v_1^2} & ... & \delta v_d^2 \delta v_1^2 \\ \vdots & & \vdots \\ \frac{\delta^2 f}{\delta v_1^2 \delta v_d^2} & ... & \delta^2 v_d^2 \end{bmatrix} : \mathbb{R}^d \to \mathbb{R}^{d \times d}$

Emprical Risk Minimization: $\underset{w}{\operatorname{argmin}}_{w} \frac{1}{n} \sum_{d} l_{w}(x, y)$

Convexity #1: $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

Convexity #2: if $\Delta^2 f(x)$ is positive semi definite.

Positive Semidefinite: if $M \in \mathbb{R}^{d \times d}$, PSD iff $v^T M v > 0$

Loss function needs to be convex to optimizes.

Setting loss function to 0 optimizes our solution.

MLE principle: pick paramaters that maximize likelihood.

Ridge Regularization: arg min_w $||Aw - z||_2^2 + \lambda ||w||_2^2$ **Lasso Regularization:** arg min_w $||Aw - z||_2^2 + \lambda ||w||_2$

k-Nearest Neighbour Classification

Bays Optimal Classifier: $f^*(x) = \arg \max_c \Pr(y = c|x)$

NN Assumption: $Pr[y = c|x] \approx Pr[y' = c|x'], x \approx x' y \approx y'$

No classifier can do as good as bayes.

Can't be descriped as a parameter vector.

Can express non linear relationships.

Takes 0 training time, and O(nd) to $O(d \log n)$ testing time.

Small values of k lead to overfitting.

Large values of k lead to high error.

1NN Limit: as $n \to \infty$ then $L_{1NN} \le 2L_{Bayes}(1 - L_{Bayes})$

Logistic Regression

Classifications are take into account confidence: $\hat{y} \in (-1,1)$

Bernoulli Model: $Pr[y=1|x,w]=p(x,w)\in (-1,1)$ Logit Transform: $\log\left(\frac{p(x,w)}{1-p(x,w)}\right)=\langle x,w\rangle=\frac{1}{1+exp(-\langle x,w\rangle)}$

Optimizing Loss: $\Delta_w l_w(x_i, y_i) = (p_i(x_i, w) - y_i)x_i$

Iterative Update: $w_t = w_{t-1} - \eta d_i$ Gradient Descent: $d_t = \frac{1}{n} \sum_{i=1}^{n} \Delta_w l_{wt-1}(x_i, y_i)$

Stochastic GD: Let $B \in [n], \overline{d-t} = \frac{1}{|B|} \sum_{i \in B} \Delta_w l_{wt-1}(x_i, y_i)$

Newton's Method d_t is given by the equation below:

 $d_t = (\frac{1}{n} \sum_{i=1}^{n} \Delta_w^2 l_{wt-1}(x_i, y_i))^{-1} (\frac{1}{n} \sum_{i=1}^{n} \Delta_w l_{wt-1}(x_i, y_i))$

Multiclass Logisitc Regression where k = class:

 $Pr[y = k|x, w] = \frac{exp(\langle w_k, x \rangle)}{\sum_l exp(\langle w_l, x \rangle)}$

Hard-Margin SVM

Assume that dataset is linearly seperable. Hard Margin SVM's will try to find the "best" solution. The best solution is the one that maximizes margin.

Optimize: $min_{w,b} \frac{1}{2} ||w||_2^2 \ s.t \ y\hat{y} \ge 1$

Primal: $min_{w,b}\frac{1}{2}||w||_2^2$ s.t $y_i(\langle w, x_i \rangle + b) \ge 1$ Duel: $min_a\frac{1}{2}\sum_i\sum_j a_ia_jy_iy_j\langle x_i, x_j \rangle$ s.t $\sum a_iy_i = 0$ Complimentary Slackness: $a_i(y_i(\langle w, x_i \rangle + b) - 1) = 0, \forall i$

Support Vector: if $a_i > 0$ then $w = \sum a_i y_i x_i$

Soft-Margin SVM

Data does not need to be linearly separable.

Soft-Margin: $\min_{w,b} \frac{1}{2} ||w||_2^2 + C \sum_i \max(0, 1 - y_i \hat{y}_i)$

if $1 - y_i \hat{y}_i \leq 0 \implies \text{Correct side of margin.}$

if $0 < 1 - y_i \hat{y_i} \le 1 \implies$ Correctly classified, inside of margin.

if $y_i \hat{y_i} \leq 0 \implies$ incorrectly classified.

If C=0 ignore data, if $C=\infty$, hard-margin.

Slack Variable: define γ_i such that $max(0, 1 - y_i\hat{y}_i) \leq \gamma_i$

Split in Two: $0 \le \gamma_i$ and $1 - y_i \hat{y_i} \le \gamma_i$

Duel Solution: Note $0 \le \gamma_i$ and $1 - y_i \hat{y_i} \le \gamma_i$ implies:

 $= \max_{\alpha,\beta} \min_{w,b,\gamma} \frac{1}{2} ||w||_2^2 + \sum_i (C\gamma_i + \alpha(11 - y_i\hat{y}_i - \gamma_i) - \beta_i\gamma_i)$ $= \min_{\alpha} \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle - \sum_i a_i \text{ s.t. } \sum_i a_i y_i = 0$ if $a_i = 0$ then $y_i = 0$, point is classified correctly.

if $a_i > 0$ and $y_i = 0$, point is on margin.

if $a_i > 0$ and $y_i > 0$, point is on within margin.

Loss Function: $\mathcal{L} = \frac{C}{n} \sum_{i} l_{w,b}(x_i, y_i) + \frac{1}{2} ||w||_2^2$ Gradient Descent: $\frac{\delta L}{\delta w} = w + C/N \sum_{i} \delta_i$ if $1 - y_i \hat{y}_i \ge 0$, then $\delta = -y_i x_i$ else $\delta = 0$

Kernels

Map data to new space where it is linearly seperable.

Padding Trick: $\emptyset(x) = [w, 1]$ and $w = \langle x, p \rangle$ New Classifier: $\langle \phi(x), w \rangle = \langle x, p \rangle + b > 0$

Quadratic Feature: $x^tQx + \sqrt{2}x^Tp + b$, wich gives us:

 $\phi(x) = [xx^t, \sqrt{2}x, 1] \text{ and } w = [Q, p, b]$

With feature map $\phi : \mathbb{R}^d \to \mathbb{R}^{d \times d + d + 1}$, time O(d) to O(d^2)

This can take infinite time in high dimensions. For the duel we only need to calculate dot product.

Kernal: $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ if $k(x,x') = \langle \phi(x), \phi(x') \rangle$

Polynomial Kernel t: