1 + 1 = 1 ou Pareamento de Registros com Python

Flávio Juvenal @flaviojuvenal (https://twitter.com/flaviojuvenal)

Sócio e Desenvolvedor na <u>dedupe-slides=1)</u>

(http://www.vinta.com.br?

Check the other Vinta talks at: http://bit.ly/pybr-talks)

Slides available at: http://bit.ly/pybr-duplica
(http://bit.ly/pybr-duplica)

Registros reais são uma bagunça!

Provavelmente você já lidou com registros assim antes:

In [5]: df

Out[5]:

	restaurant	address	city
0	Reteteu	R. Prof. Otávio de Freitas	Recife - PE
1	Reteteu - Comida Honesta	R. Prof. Otavio de Freitas, 256	Recife (PE)
2	Reteteu (Restaurante)	Rua Otávio de Freitas	Encruzilhada (Recife)
3	Tio Pepe (Restaurante)	R. Alm. Tamandaré, 170	Boa Viagem (Recife)
4	Tio Pepe	Rua Almirate Tamamdare	Recife

A solução se chama **Pareamento de Registros** (<u>Record Linkage</u> (<u>https://en.wikipedia.org/wiki/Record_linkage</u>)). Quando aplicado em um único dataset, se chama **Deduplicação de Registros** (Record Deduplication).

Consiste em comparar e unir registros de maneira **fuzzy**, utilizando campos imprecisos como nomes, endereços, telefones, datas, etc.

Não confundir com Deduplicação de *Dados*, que é associado a compressão e armazenamento.

Comparando strings de forma fuzzy

```
In [7]: jellyfish.jaro_winkler("R. Prof. Otávio de Freitas", "Rua Otávio de Freitas")
Out[7]: 0.7959224985540775
In [8]: jellyfish.jaro_winkler("R. Prof. Otávio de Freitas", "R. Alm. Tamandaré, 170")
Out[8]: 0.473970473970474
```

Comparando endereços de forma fuzzy

Geocodificar endereços, i.e., convertê-los para **latitude/longitude** é bastante útil, pois possibilita:

- limpar variações irrelevantes (prof. vs. professor)
- calcular distância geométrica (mesma rua: mais perto, mais similar)

```
In [9]: import requests
import geocoder

full_addresses = [
    "R. Alm. Tamandaré, 170, Boa Viagem (Recife)",
    "Rua Almirate Tamamdare, Recife",
]

full_addresses_latlng = []
with requests.Session() as session:
    for a in full_addresses:
        a_geocoded = geocoder.google(a, session=session)
        full_addresses_latlng.append((a_geocoded.latlng, a_geocoded.postal))

address_latlng = list(zip(full_addresses, full_addresses_latlng))
```

('Rua Almirate Tamamdare, Recife', ([-8.1338926, -34.9082632], '51030'))]

5 passos para deduplicação

- 1. Pré-processamento
 - input: registros
 - output: registros limpos
- 2. Indexação
 - output: pares de registros
- 3. Comparação
 - output: para cada par, valores de similaridades (vetores)
- 4. Classificação
 - output: pares separados em duplicatas e não-duplicatas
- 5. Clusterização
 - output: clusters de registros

0/4 - Pré-processamento

Dataset fabricado baseado no dataset <u>Restaurant</u> (https://www.cs.utexas.edu/users/ml/riddle/data.html):

- dataset frequentemente usado por pesquisadores
- consiste em 881 registros de restaurantes dos guias Fodor's e Zagat
- contem 150 registros duplicados

Vamos carregar nosso dataset em um **dataframe** Pandas:

Out[11]:

	name	addr	city	phone	type	cluster
0	arnie morton's of chicago	435 s. la cienega blv.	los angeles	310/246- 1501	american	0
1	arnie morton's of chicago	435 s. la cienega blvd.	los angeles	310-246- 1501	steakhouses	0
2	arnie morton	435 s. la cienega boulevard	los angeles	310-246- 1501	steakhouses	0
3	art's delicatessen	12224 ventura blvd.	studio city	818/762- 1221	american	1
4	art's deli	12224 ventura blvd.	studio city	818-762- 1221	delis	1
5	art's deli	12224 ventura blvd.	los angeles	818-762- 1221	delis	1
6	hotel bel-air	701 stone canyon rd.	bel air	310/472- 1211	californian	2
7	bel-air hotel	701 stone canyon rd.	bel air	310-472- 1211	californian	2
8	bel-air	701 stone canyon road	bel air	(310) 472-1211	american	2

Para mostrar como fazer a deduplicação em um contexto difícil, vamos remover os atributos phone e type:

```
In [12]: df = df_with_truth.drop(columns=['cluster', 'phone', 'type'])
    df.head(9)
```

Out[12]:

	name	addr	city
0	arnie morton's of chicago	435 s. la cienega blv.	los angeles
1	arnie morton's of chicago	435 s. la cienega blvd.	los angeles
2	arnie morton	435 s. la cienega boulevard	los angeles
3	art's delicatessen	12224 ventura blvd.	studio city
4	art's deli	12224 ventura blvd.	studio city
5	art's deli	12224 ventura blvd.	los angeles
6	hotel bel-air	701 stone canyon rd.	bel air
7	bel-air hotel	701 stone canyon rd.	bel air
8	bel-air	701 stone canyon road	bel air

Agora vamos pré-processar os registros. Primeiro, limpando name:

Out[13]:

	name	addr	city
0	arnie morton s of chicago	435 s. la cienega blv.	los angeles
1	arnie morton s of chicago	435 s. la cienega blvd.	los angeles
2	arnie morton	435 s. la cienega boulevard	los angeles
3	art s delicatessen	12224 ventura blvd.	studio city
4	art s deli	12224 ventura blvd.	studio city
5	art s deli	12224 ventura blvd.	los angeles
6	hotel bel air	701 stone canyon rd.	bel air
7	bel air hotel	701 stone canyon rd.	bel air
8	bel air	701 stone canyon road	bel air

E depois geocodificando addr:

881 819

```
In [15]: | import os.path
          import json
         geocoding filename = 'address to geocoding.json'
         def geocode addresses(address to geocoding):
              remaining addresses = (
                  set(unique addresses) -
                  set(k for k, v in address to geocoding.items() if v is not None and 'lat'
         in v))
             with requests. Session() as session:
                  for i, address in enumerate(remaining addresses):
                      print(f"Geocoding {i + 1}/{len(remaining addresses)}")
                      geocode result = geocoder.google(address, session=session)
                      address to geocoding[address] = geocode result.json
                  with open(geocoding filename, 'w') as f:
                      json.dump(address to geocoding, f, indent=4)
          if not os.path.exists(geocoding filename):
              address to geocoding = {}
              geocode addresses(address to geocoding)
         else:
             with open(geocoding filename) as f:
                  address to geocoding = json.load(f)
              geocode addresses(address to geocoding)
          address to postal = {
             k: v['postal']
              for k, v in address to geocoding.items()
              if v is not None and 'postal' in v
         address to lating = {
             k: (v['lat'], v['lng'])
              for k, v in address to geocoding.items()
              if v is not None
```

```
In [16]: def assign_postal_lat_lng(df):
    addresses = df['addr'].str.cat(df['city'], sep=', ')
    addresses_to_postal = [address_to_postal.get(a) for a in addresses]
    addresses_to_lat = [address_to_latlng[a][0] if a in address_to_latlng else Non
    e for a in addresses]
    addresses_to_lng = [address_to_latlng[a][1] if a in address_to_latlng else Non
    e for a in addresses]

    return df.assign(postal=addresses_to_postal, lat=addresses_to_lat, lng=address
    es_to_lng)

df = assign_postal_lat_lng(df)
    df.head(6)
```

Out[16]:

	name	addr	city	postal	lat	Ing
0	arnie morton s of chicago	435 s. la cienega blv.	los angeles	90048	34.070708	-118.376563
1	arnie morton s of chicago	435 s. la cienega blvd.	los angeles	90048	34.070708	-118.376563
2	arnie morton	435 s. la cienega boulevard	los angeles	90048	34.070708	-118.376563
3	art s delicatessen	12224 ventura blvd.	studio city	91604	34.142963	-118.399465
4	art s deli	12224 ventura blvd.	studio city	91604	34.142963	-118.399465
E	out a dali	12224	los	01/01	24 142042	110 2004/5

7	artsuen	la la l		71004	34.142703	- 110.377403
	name	ventura b ada r	ang eles	postal	lat	Ing

Assim **limpamos** e **enriquecemos** nossos registros.

1/4 - Indexação

Nós temos os registros limpos, agora nós precisamos dos **pares** dos registros para comparálos e encontrar duplicatas.

Para os próximos passos, usaremos a biblioteca recordlinkage , aka Pythor Toolkit (http://recordlinkage.readthedocs.io/en/stable/). recordlinkage suporta dataframes Pandas , então não precisaremos adapt temos.	5.4

Pra produzir os pares, podemos fazer uma indexação complexa usando a classe Full. Como isso, teremos que comparar todos os registros entre si:

```
In [17]: import recordlinkage as rl
    from recordlinkage.index import Full

    full_indexer = Full()
    pairs = full_indexer.index(df)

    print(f"Full index: {len(df)} records, {len(pairs)} pairs")
```

WARNING:recordlinkage:indexing - performance warning - A full index can result in large number of record pairs. Full index: 881 records, 387640 pairs

Full Indexing

O problema é que o número de pares cresce muito rápido, i.e., **quadraticamente** na medida que os registros crescem: len(df) * (len(df) - 1) / 2

Para evitar tantas comparações e perda de tempo, precisamos **indexar**. Precisamos produzir **apenas** os pares que têm uma chance mínima representar duplicatas.

A forma mais básica de indexar se chama **blocking**. É uma regra de indexação que produz pares **que possuem um valor em comum**.

Standard Blocking

No nosso exemplo, vamos produzir pares com o mesmo valor para **postal** (código postal) usando a classe Block:

```
In [18]: from recordlinkage.index import Block

    postal_indexer = Block('postal')
    pairs = postal_indexer.index(df)

    print(f"Postal index: {len(pairs)} pairs")
```

Postal index: 6462 pairs

Out[21]:

	name	postal
0	arnie morton s of chicago	90048
1	arnie morton s of chicago	90048
2	arnie morton	90048

Existem muitas outras formas de indexação além de **Blocking**:

- Sorted Neighborhood
- Canopy Clustering
- Locality Sensitive Hashing
- ou até... aprender como indexar com Machine Learning

2/4 - Comparação

Com os pares, vamos produzir um **vetor** (feature vector) para cada par. Cada vetor contem as similaridades dos atributos. Algo como:

Out[22]:

		name	addr	postal	lating
100	200	0.5	0.8	0.9	1

Out[23]:

		name	addr	postal	lating
100	200	0.5	0.8	0.9	1

Nesse exemplo, o par (100, 200) possui:

- Valores pouco parecidos em name
- Valores parecidos em addr
- Valores muito parecidos em postal
- Valores iguais de latlng

Para computar esse vetor, preciamos definir pelo menos **uma função de similaridade** para cada atributo:

```
In [24]: comp = rl.Compare()
    comp.string('name', 'name', method='jarowinkler', label='name')
    comp.string('addr', 'addr', method='jarowinkler', label='addr')
    comp.string('postal', 'postal', method='jarowinkler', label='postal')
    comp.geo('lat', 'lng', 'lat', 'lng', method='exp', scale=0.1, offset=0.01, label=
    'latlng');
```

Depois, é só chamar o compute com os pares indexados pairs e os registros df para obter os **vetores**:

```
In [25]: comparison_vectors = comp.compute(pairs, df)
    comparison_vectors.head(5)
```

Out[25]:

		name	addr	postal	lating
0	1	1.000000	0.985507	1.0	1.000000
	2	0.896000	0.910774	1.0	1.000000
	32	0.520128	0.580927	1.0	0.000025
	33	0.556630	0.580927	1.0	0.000025
	35	0.505476	0.528075	1.0	0.030131

3/4 - Classificação

Com nossos vetores, vamos explorar **diferentes formas** de classificá-los como duplicatas ou não.

Classificação por limiar

Uma maneira simples de classificar os vetores como duplicatas ou não é computar uma **média ponderada** para servir de **pontuação** (score) e usar um **limiar** (threshold):

Out[26]:

		name	addr	postal	lating	score
0	1	1.000000	0.985507	1.0	1.000000	0.996047
	2	0.896000	0.910774	1.0	1.000000	0.928393
	32	0.520128	0.580927	1.0	0.000025	0.485770
	33	0.556630	0.580927	1.0	0.000025	0.502362
	35	0.505476	0.528075	1.0	0.030131	0.470170

Sabemos que o registro 0 realmente é uma duplicata do 1 e 2. Para simplificar, vamos classificar como duplicatas quaisquer pares com score >= 0.9. Este é o nosso limiar:

Out[27]:

		name	addr	postal	lating	score
0	1	1.000000	0.985507	1.0	1.0	0.996047
	2	0.896000	0.910774	1.0	1.0	0.928393
1	2	0.896000	0.923779	1.0	1.0	0.931940
3	4	0.911111	1.000000	1.0	1.0	0.959596
	5	0.911111	1.000000	1.0	1.0	0.959596
4	5	1.000000	1.000000	1.0	1.0	1.000000

Já que temos os registros duplicados marcados pelo atributo cluster, podemos **avaliar** o quão bom é o nosso método de classificação por limiar:

```
In [28]: golden_pairs = Block('cluster').index(df_with_truth)
golden_pairs = golden_pairs.swaplevel().sortlevel()[0]
print("Golden pairs:", len(golden_pairs))
```

Golden pairs: 150

```
In [29]: found_pairs_set = set(matches.index)

golden_pairs_set = set(golden_pairs)

true_positives = golden_pairs_set & found_pairs_set
false_positives = found_pairs_set - golden_pairs_set
false_negatives = golden_pairs_set - found_pairs_set

print('true_positives total:', len(true_positives))
print('false_positives total:', len(false_positives))
print('false_negatives total:', len(false_negatives))
```

true_positives total: 128
false_positives total: 2
false negatives total: 22

Tivemos um pequeno número de **falso positivos**. São casos complicados, pois são pares de registros praticamente idênticos mas que não representam o mesmo restaurante:

Por outro lado, tivemos um alto número de **falso negativos**. Nosso método por limiar **perdeu** muitas duplicatas!

In [31]: print(f"False negatives (sample 10 of {len(false_negatives)}):")
 for false_negative_pair in list(false_negatives)[:10]:
 display(df.loc[list(false_negative_pair)][['name', 'addr', 'postal', 'lat', 'lag']])

False negatives (sample 10 of 22):

	name	addr	postal	lat	Ing
182	heera of india	595 piedmont ave. rio shopping mall	30324	33.798336	-84.371044
183	heera of india	595 piedmont ave.	30308	33.770298	-84.381122

	name	addr	postal	lat	Ing
164	abruzzi	2355 peachtree rd. peachtree battle shopping	30305	33.819818	-84.386643
165	abruzzi	2355 peachtree rd. ne	30305	33.819166	-84.387518

	name	addr	postal	lat	Ing
28	restaurant katsu	1972 n. hillhurst ave.	90027	34.107403	-118.287172
29	katsu	1972 hillhurst ave.	90027	34.107403	-118.287172

name	addr	postal	lat	Ing
------	------	--------	-----	-----

	name	addr	postal	lat	Ing
36	locanda veneta	8638 w 3rd	90048	34.073421	-118.381098
37	locanda	w. third st.	None	34.068947	-118.322599

	name	addr	postal	lat	Ing
40	the palm	9001 santa monica blvd.	90069	34.083473	-118.387373
41	palm the los angeles	9001 santa monica blvd.	90069	34.083064	-118.387282

	name	addr	postal	lat	Ing
136	shun lee west	43 w. 65th st.	10023	40.772900	-73.981348
137	shun lee palace	155 e. 55th st.	10022	40.759435	-73.969072

	name	addr	postal	lat	Ing
34	locanda veneta	3rd st.	None	34.009031	-118.488174
35	locanda veneta	8638 w. third st.	90048	34.073421	-118.381098

	name	addr	postal	lat	Ing
--	------	------	--------	-----	-----

Podemos treinar um **classificador** capaz de classificar os pares em duplicatas ou não, baseado em um dataset de treinamento que podemos providenciar:

```
In [32]: df_training = pd.read_csv('restaurant-training.csv', skip_blank_lines=True)
    df_training = df_training.drop(columns=['type', 'phone'])
    df_training
```

Out[32]:

	name	addr	city	cluster
0	locanda veneta	3rd st.	los angeles	13
1	locanda veneta	8638 w. third st.	los angeles	13
2	locanda veneta	8638 w 3rd	st los angeles	13
3	cafe lalo	201 w. 83rd st.	new york	26
4	cafe lalo	201 w. 83rd st.	new york city	26
5	les celebrites	160 central park s	new york	42
6	les celebrites	155 w. 58th st.	new york city	42
7	second avenue deli	156 2nd ave. at 10th st.	new york	58
8	second avenue deli	156 second ave.	new york city	58
9	smith & wollensky	201 e. 49th st.	new york	62

	name	addr	city	cluster
10	smith & wollensky	797 third ave.	new york city	62
11	chin's	3200 las vegas blvd. s	las vegas	67
12	chin's	3200 las vegas blvd. s.	las vegas	67
13	toulouse	b peachtree rd.	atlanta	92
14	toulouse	293-b peachtree rd.	atlanta	92
15	rose pistola	532 columbus ave.	san francisco	111
16	rose pistola	532 columbus ave.	san francisco	111
17	bistro garden	176 n. canon dr.	los angeles	115
18	remi	3rd st. promenade	santa monica	159
19	remi	145 w. 53rd st.	new york	334
20	west	63rd street steakhouse 44 w. 63rd st.	new york	375
21	bistro	3400 las vegas blvd. s	las vegas	429
22	mikado	3400 las vegas blvd. s	las vegas	446
23	l'osteria del forno	519 columbus ave.	san francisco	490

Para o classificador aprender corretamente, devemos **pré-processar** nosso dataset de treinamento também:

```
In [33]: df_training = assign_no_symbols_name(df_training)
    df_training = assign_postal_lat_lng(df_training)
    df_training.head(5)
```

Out[33]:

	name	addr	city	cluster	postal	lat	Ing
0	locanda veneta	3rd st.	los angeles	13	None	34.009031	-118.488174
1	locanda veneta	8638 w. third st.	los angeles	13	90048	34.073421	-118.381098
2	locanda veneta	8638 w 3rd	st los angeles	13	90048	34.073421	-118.381098
3	cafe lalo	201 w. 83rd st.	new york	26	10024	40.785981	-73.976727
4	cafe lalo	201 w. 83rd st.	new york city	26	10024	40.785981	-73.976727

O classificador que usaremos é o **Support Vector Machine**. SVMs são bons para deduplicação pois:

- São resilientes a ruídos nos dados (pares incorretos no treinamento, colunas faltando, etc.)
- Aceitam atributos (features) com similaridades correlacionadas (como 'addr' e 'latlng')
- São robustos a desbalanceamento de classes no dataset de treinamento (e.g. mais não-duplicatas, menos duplicatas, o que é natural em deduplicação) [3]

```
In [34]: all_training_pairs = Full().index(df_training)
    matches_training_pairs = Block('cluster').index(df_training)
    training_vectors = comp.compute(all_training_pairs, df_training)
    svm = rl.SVMClassifier()
    svm.fit(training_vectors, matches_training_pairs);
```

WARNING:recordlinkage:indexing - performance warning - A full index can result in large number of record pairs.

```
In [35]: svm_pairs = svm.predict(comparison_vectors)
    svm_found_pairs_set = set(svm_pairs)

svm_true_positives = golden_pairs_set & svm_found_pairs_set
    svm_false_positives = svm_found_pairs_set - golden_pairs_set
    svm_false_negatives = golden_pairs_set - svm_found_pairs_set

print('true_positives total:', len(true_positives))
    print('false_positives total:', len(false_positives))
    print('false_negatives total:', len(false_negatives))
    print('svm_true_positives total:', len(svm_true_positives))
    print('svm_false_positives total:', len(svm_false_positives))
    print('svm_false_negatives total:', len(svm_false_negatives))

true positives total: 128
```

false_positives total: 2
false negatives total: 22

svm_true_positives total: 133
svm_false_positives total: 3
svm false negatives total: 17

Poderíamos tentar <u>outros classificadores</u> (<u>https://recordlinkage.readthedocs.io/en/stable/notebooks/classifiers.html</u>) disponíveis na biblioteca recordlinkage, mas a verdade é:

- É bem difícil **difícil montar um dataset de treinamento** com exemplos suficientes para os várias casos de similaridade de atributos;
- É bem difícil **escolher os atributos para blocking**. Talvez estamos:
 - introduzindo falso negativos (perdendo duplicatas reais) devido ao blocking (não possuem o mesmo postal)
 - introduzindo falso positivos (adicionando duplicatas falsas) devido ao blocking + classificador permissivos (possuem mesmo postal e são muito parecidas para o classificador)

Para lidar com essas incertezas temos...

Classificação Active Learning

Métodos Active Learning identificam pares para treinamento que maximizam a qualidade dos resultados (precision/recall) [3].
É possível otimizar tanto as atributos e regras de blocking quanto o classificador.

Uma biblioteca Python chamada <u>Dedupe (https://docs.dedupe.io/en/latest/index.html)</u> implementa Active Learning. Vamos vê-la na prática:

```
In [37]:
         from svm dedupe import SVMDedupe
         import dedupe
         fields = [
                  'field': 'name', 'variable name': 'name', 'type': 'JaroWinkler',
              },
                  'field': 'addr', 'variable name': 'addr', 'type': 'JaroWinkler',
             },
                  'field': 'postal', 'variable name': 'postal', 'type': 'JaroWinkler'
              },
                  'field': 'latlng', 'variable name': 'latlng', 'type': 'ExpLatLong'
              },
         deduper = SVMDedupe(fields)
```

O processo de Active Learning consiste em iterativamente **marcar** como duplicata ou nãoduplicata cada par que o Dedupe quer aprender. São esses os pares que mais o ajudarão a escolher as regras de blocking e treinar o classificador.

```
In [40]:
               deduper.sample(data for dedupe)
               dedupe.consoleLabel(deduper)
               deduper.train(index predicates=False)
         with open('training-simple-input-output.txt') as t:
             print('\n'.join(t.read().split('\n')[:262]))
             print('...')
         name: philippe the original
         addr: 1001 north alameda
         postal : 90012
         latlng: (34.059721, -118.237025)
         name : pisces
         addr: 95 ave. a
         postal : 10009
         latlng: (40.7256332, -73.984031)
         0/10 positive, 0/10 negative
         Do these records refer to the same thing?
         (y)es / (n)o / (u)nsure / (f)inished
         n
         name: philippe the original
         addr: 1001 n. alameda st.
         postal : 90012
         latlng: (34.059721, -118.237025)
         name: mon kee seafood restaurant
         addr : 679 n. spring st.
         postal : 90012
         latlng: (34.0595568, -118.2382488)
         0/10 positive, 1/10 negative
         Do these records refer to the same thing?
         (y)es / (n)o / (u)nsure / (f)inished
         n
```

```
name : caffe vivaldi
addr: 32 jones st. at bleecker st.
postal : 10014
latlng: (40.7317316, -74.00298049999999)
name : patria
addr: 250 park ave. s at 20th st.
postal : 10003
latlng: (40.7382552, -73.988214)
0/10 positive, 2/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name: i trulli
addr: 122 e. 27th st. between lexington and park aves.
postal : 10028
latlng: (40.77961699999999, -73.95631999999999)
name : otabe
addr : 68 e. 56th st.
postal : 10022
latlng: (40.7611775, -73.9720541)
0/10 positive, 3/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name: viva mercado s
addr: 6182 w. flamingo rd.
postal : 89103
latlng: (36.1149027, -115.2269398)
name : cafe con leche
```

addr: 424 amsterdam ave.

```
postal : 10024
latlng: (40.7841454, -73.9778061)
0/10 positive, 4/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name: faz
addr: 161 sutter st.
postal : 94104
latlng: (37.7897399999999, -122.4032937)
name : splendido embarcadero
addr: 4
postal : None
latlng: (37.7779649, -122.3962019)
0/10 positive, 5/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name : le bernardin
addr : 155 w. 51st st.
postal : 10019
latlng: (40.7615691, -73.98180479999999)
name : le bernardin
addr : 155 w. 51st st.
postal : 10019
latlng: (40.7615691, -73.98180479999999)
0/10 positive, 6/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
У
```

```
name : cafe lalo
addr : 201 w. 83rd st.
postal : 10024
latlng: (40.78598119999999, -73.97672659999999)
name : cafe lalo
addr : 201 w. 83rd st.
postal : 10024
latlng: (40.78598119999999, -73.97672659999999)
1/10 positive, 6/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
У
INFO:dedupe.training:Final predicate set:
INFO:dedupe.training:(SimplePredicate: (fingerprint, addr), SimplePredicate:
(wholeFieldPredicate, name))
name: hi life restaurant and lounge
addr: 1340 1st ave. at 72nd st.
postal : 10021
latlng: (40.7675807, -73.95580029999999)
name: trattoria dell arte
addr: 900 7th ave. between 56th and 57th sts.
postal : 10106
latlng: (40.7654454, -73.9805358)
2/10 positive, 6/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name : lattanzi ristorante
addr : 361 w. 46th st.
postal : 10036
latlng: (40.7608494, -73.990016)
```

```
name : pomaire
addr: 371 w. 46th st. off 9th ave.
postal : 10036
latlng: (40.7609632, -73.9902681)
2/10 positive, 7/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name : empire korea
addr : 6 e. 32nd st.
postal : 10016
latlng: (40.7465392, -73.9849772)
name : tu lan
addr: 8 sixth st.
postal : 94103
latlng: (37.7818759, -122.41013)
2/10 positive, 8/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name : aquavit
addr : 13 w. 54th st.
postal : 10019
latlng: (40.7616767, -73.976345)
name : aquavit
addr : 13 w. 54th st.
postal : 10019
latlng: (40.7616767, -73.976345)
2/10 positive, 9/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
```

```
У
name : mesa grill
addr: 102 5th ave. between 15th and 16th sts.
postal : 10011
latlng: (40.7370445, -73.9931189)
name: fiorello s roman cafe
addr: 1900 broadway between 63rd and 64th sts.
postal : 10023
latlng: (40.7715867, -73.98138519999999)
3/10 positive, 9/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
name : second avenue deli
addr: 156 2nd ave. at 10th st.
postal : 10003
latlng: (40.7296096, -73.9867012)
name: second avenue deli
addr: 156 second ave.
postal : 10003
latlng: (40.7296096, -73.9867012)
3/10 positive, 10/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
У
name : second street grill
addr : 200 e. fremont st.
postal : 89101
latlng: (36.1709271, -115.1431516)
```

name: paty s

```
addr : 10001 riverside dr.
postal : 91602
latlng: (34.1524376, -118.3496191)
4/10 positive, 10/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
n
INFO:dedupe.training:Final predicate set:
INFO: dedupe.training: (SimplePredicate: (firstIntegerPredicate, addr), SimplePr
edicate: (wholeFieldPredicate, name))
name : cafe ritz carlton buckhead
addr: 3434 peachtree rd.
postal : 30326
latlng: (33.8508073, -84.364227)
name: ritz carlton cafe buckhead
addr: 3434 peachtree rd. ne
postal : 30326
latlng: (33.8508073, -84.364227)
4/10 positive, 11/10 negative
Do these records refer to the same thing?
(y)es / (n)o / (u)nsure / (f)inished
У
INFO:dedupe.training:Final predicate set:
INFO:dedupe.training:(SimplePredicate: (fingerprint, name), SimplePredicate:
(firstIntegerPredicate, addr))
name : le colonial
addr : 149 e. 57th st.
postal : 10022
latlng: (40.7608569, -73.9683494)
name : cassell s
addr: 3266 w. sixth st.
postal : 90020
```

Depois do processo de Active Learning, podemos ver quais **regras de blocking** o deduper aprendeu. É bom checar para ver se faz sentido:

Para terminar o processo de deduplicação com o deduper, computamos o **clustering threshold** (limiar) e chamamos **match**:

```
In [45]: import itertools
    threshold = deduper.threshold(data_for_dedupe, recall_weight=2)
    clustered_dupes = deduper.match(data_for_dedupe, threshold=threshold)

INFO:dedupe.api:Maximum expected recall and precision
INFO:dedupe.api:recall: 0.999
```

INFO:dedupe.api:precision: 0.707

INFO:dedupe.api:With threshold: 0.209

Vamos avaliar como o Dedupe performou. Um pequeno **ajuste** é necessário, pois o Dedupe já retorna os clusters ao invés dos pares:

```
In [47]:
         dedupe true positives = golden pairs set & dedupe found pairs set
         dedupe false positives = dedupe found pairs set - golden pairs set
         dedupe false negatives = golden pairs set - dedupe found pairs set
         print('true positives total:', len(true positives))
         print('false positives total:', len(false positives))
         print('false negatives total:', len(false negatives))
         print()
         print('svm true positives total:', len(svm true positives))
         print('svm_false_positives total:', len(svm false positives))
         print('svm false negatives total:', len(svm false negatives))
         print()
         print('dedupe true positives total:', len(dedupe true positives))
         print('dedupe false positives total:', len(dedupe false positives))
         print('dedupe false negatives total:', len(dedupe false negatives))
         true positives total: 128
         false positives total: 2
         false negatives total: 22
```

svm_true_positives total: 133
svm_false_positives total: 3
svm false negatives total: 17

dedupe_true_positives total: 140
dedupe_false_positives total: 2
dedupe false negatives total: 10

4/4 - Clusterização

O recordlinkage retorna os **pares de duplicatas**. Mas o Dedupe vai além e retorna os **clusters de duplicatas**:

Dedupe finalizou o processo pois **combinou os pares de duplicatas em clusters**. Isso é essencial, pois o seguinte problema pode ocorrer:

- Temos os registros A, B, e C
- Após deduplicar, temos os pares:
- (A, B) duplicata
- (B, C) duplicata
- (A, C) não-duplicata
- E isso não faz sentido!

A solução a essa ambiguidade se chama computar a **Transitive Closure** através de **clustering**.

Usando alguns métodos privados do Dedupe, é possível computar os **pares de duplicatas** (sem clustering):

Vamos avaliar os pares **unclustered** contra os **clustered**:

```
In [50]:
         dedupe unclustered true positives = golden pairs set & dedupe unclustered found pa
         irs set
         dedupe unclustered false positives = dedupe unclustered found pairs set - golden p
         airs set
         dedupe unclustered false negatives = golden pairs set - dedupe unclustered found p
         airs set
         print('dedupe true positives total:', len(dedupe true positives))
         print('dedupe_false_positives total:', len(dedupe false positives))
         print('dedupe false negatives total:', len(dedupe false negatives))
         print()
         print('dedupe unclustered true positives total:', len(dedupe unclustered true posi
         tives))
         print('dedupe unclustered false positives total:', len(dedupe unclustered false po
         sitives))
         print('dedupe unclustered false negatives total:', len(dedupe unclustered false ne
         gatives))
         dedupe true positives total: 140
         dedupe false positives total: 2
         dedupe false negatives total: 10
         dedupe unclustered true positives total: 138
         dedupe unclustered false positives total: 5
         dedupe unclustered false negatives total: 12
```

Pares Unclustered != Pares Clustered

O processo de clustering pode **criar duplicatas** e **remover duplicatas** para resolver ambiguidades.

```
In [51]: diff_set = dedupe_found_pairs_set ^ dedupe_unclustered_found_pairs_set
    display(diff_set)
{(6, 8), (40, 41), (120, 471), (121, 471), (196, 198), (199, 839), (487, 775)}
```



```
In [53]: from graph_utils import show_cluster_graphs
         diff_ids = \{40, 41, 42\}
         show_cluster_graphs(
             df,
             golden_pairs_set, dedupe_found pairs_set, dedupe_unclustered_found pairs_set,
             dedupe_unclustered_pairs_score_dict,
             diff_ids)
```

	name	addr	city	postal	lat	Ing
40	the palm	9001 santa monica blvd.	los angeles	90069	34.083473	-118.387373
41	palm the los angeles	9001 santa monica blvd.	w. hollywood	90069	34.083064	-118.387282
42	the palm los angeles	9001 sta monica boulevard	hollywood	90069	34.083064	-118.387282

Truth

Próximos Passos

Procure aprender sobre outros métodos de pré-processamentro, indexação, funções de similaridade, classificadores, etc. Também verifique outros processos como "Probabilitic Record Linkage".
É interessante começar pela palestra The Art and Science of Data Matching [1] e pelo livro Data Matching [2].

Tendo os clusters, como consolidar os dados de vários registros duplicados em um só? Ver **Data Fusion**:

- Open issue at Python Record Linkage Toolkit (https://github.com/J535D165/recordlinkage/issues/27)
- Christen, 6.12 Merging Matches [2]

E se novos registros forem adicionados ao dataset? Como lidar com os clusters já formados? Ver Incremental Record Linkage:

- A abordagem recomendada pela biblioteca Dedupe é adicionar a um cluster existente ou criar um novo cluster. Para isso, usar a classe <u>Gazetteer</u> (https://docs.dedupe.io/en/latest/API-documentation.html#gazetteer-objects).
- Outras abordagens, ver os papers:
 - Online Correlation Clustering (https://arxiv.org/pdf/1001.0920.pdf)
 - Incremental Record Linkage (http://www.vldb.org/pvldb/vol7/p697-gruenheid.pdf)
 - Heuristic-based approaches for speeding up incremental record linkage
 (https://www.sciencedirect.com/science/article/pii/S0164121217302972)

Referências

Obrigado!

flavio@vinta.com.br @flaviojuvenal (https://twitter.com/flaviojuvenal) vinta.com.br (https://www.vinta.com.br?dedupe-slides=1)

Agradecimentos especiais a Russell Keith-Magee <u>@freakboy3742</u> (<u>https://twitter.com/freakboy3742</u>), Forest Timothy Gregg <u>@forestgregg</u> (<u>https://twitter.com/forestgregg</u>), e Jonathan de Bruin <u>@J535D165</u> (<u>https://github.com/J535D165</u>).