TELNET & SSH - Full Overview

What is Telnet?

Telnet (TCP Port 23) is a remote access protocol that allows you to connect and manage network devices (like routers or switches) through a text-based session.

- You can execute commands remotely as if you were directly on the console.
- It sends data (including passwords) in plain text, which makes it insecure.

What is SSH?

SSH (Secure Shell, TCP Port 22) is a secure replacement for Telnet. It encrypts all data-including login credentials and commands - so no one can intercept or read your session.

- Provides authentication + encryption + integrity
- Securely used for remote device management

Comparison: Telnet vs SSH

Feature	Telnet	SSH
Port	23	22
Encryption	None	Encrypted
Authentication	Basic (plaintext password)	Secure (RSA or local user auth)
Protocol	ТСР	ТСР
Security	Low	High
Recommended Use	Labs/testing only	Real networks / production

Configuration Steps:

Step 1: Assign IP address

Router(config)# interface fastEthernet0/0 Router(config-if)# ip address 192.168.1.1 255.255.255.0 Router(config-if)# no shutdown

Step 2: Set a password for Telnet access

Router(config)# line vty 0 4 Router(config-line)# password cisco Router(config-line)# login

Step 3: (Optional) Set an enable password for privileged access

Router(config)# enable secret admin123

Step 4: Verify from another device

From another router/PC: Router# telnet 192.168.1.1

Then enter password cisco.

You should now be connected remotely.


```
Router > enable
Router #
Router # configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config) # interface FastEthernet 0/0
Router (config-if) # no shutdown

Router (config-if) #
% LINK-5-CHANGED: Interface FastEthernet 0/0, changed state to up
% LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet 0/0, changed state to up

Router (config-if) # ip add 192.168.1.0 255.255.255.0
Bad mask /24 for address 192.168.1.0
Router (config-if) # ip add 192.168.1.1 255.255.255.0
Router (config-if) # ip add 192.168.1.1 255.255.255.0
```


Physical Config Desktop Programming Attributes Command Prompt Cisco Packet Tracer PC Command Line 1.0 C:\>ping 192.168.1.1 Pinging 192.168.1.1 with 32 bytes of data: Reply from 192.168.1.1: bytes=32 time<1ms TTL=255 Ping statistics for 192.168.1.1: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms

Config Physical Desktop Programming Attributes Command Prompt Cisco Packet Tracer PC Command Line 1.0 C:\>ping 192.168.1.1 Pinging 192.168.1.1 with 32 bytes of data: Reply from 192.168.1.1: bytes=32 time<1ms TTL=255 Ping statistics for 192.168.1.1: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = Oms, Maximum = Oms, Average = Oms


```
Physical
         Config
                Desktop
                          Programming
                                       Attributes
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
```


Applying telnet on router, you need to give the IP of the router as default gateway of every PC.

Physical Config Desktop Programming Attributes

Command Prompt

```
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>telent 192.168.1.1
Invalid Command.
C:\>telnet 192.168.1.1
Trying 192.168.1.1 ... Open
User Access Verification
Username:
% Username: timeout expired!
[Connection to 192.168.1.1 closed by foreign host]
C:\>telent 192.168.1.1
Invalid Command.
C:\>telnet 192.168.1.1
Trying 192.168.1.1 ...Open
User Access Verification
Username: Admin
Password:
r1>en
Password:
rl#conf t
Enter configuration commands, one per line. End with CNTL/Z.
rl(config) #hostname PCOR1
PCOR1(config)#
```



```
Physical
         Config
                 Desktop
                          Programming
                                       Attributes
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>telnet 192.168.1.1
Trying 192.168.1.1 ...Open
User Access Verification
Username: Admin
Password:
PC0R1>en
Password:
PCOR1#
```

Applying telnet on a switch:

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname S0

S0(config)#enable secret pass

S0(config)#interface vlan 1

S0(config-if)#ip add 192.168.1.1 255.255.255.0

S0(config-if)#no shutdown

S0(config-if)#

%LINK-5-CHANGED: Interface Vlan1, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up

S0(config-if)#exit

S0(config)#line vty 0 4

S0(config-line)#password pass1

S0(config-line)#login

S0(config-line)#exit

S0(config)#

```
Switch0
```

```
Switch>en
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #hostname S0
S0(config) #enable secret pass
S0(config)#interface vlan 1
S0(config-if) #ip add 192.168.1.1 255.255.255.0
S0(config-if) #no shutdown
S0(config-if)#
%LINK-5-CHANGED: Interface Vlan1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up
S0 (config-if) #exit
S0(config) #line vty 0 4
S0(config-line) #password passl
S0 (config-line) #login
S0(config-line)#exit
S0(config)#
%SYS-5-CONFIG I: Configured from console by console
```


PC1

We can change the hostname from this. Now if i do telnet on any PC it will open S1 not S0.

Applying ssh on Switch:

Switch>en

Switch#conf t

Switch#show run

Enter configuration commands, one per line. End with CNTL/Z.

```
Switch(config)#interface vlan 1
Switch(config-if)#ip add 192.168.1.1 255.255.255.0
Switch(config-if)#no shutdown
Switch(config-if)#
%LINK-5-CHANGED: Interface Vlan1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up
Switch(config-if)#exit
Switch(config)#exit
Switch#
%SYS-5-CONFIG I: Configured from console by console
Switch#show run
Building configuration...
Current configuration: 1093 bytes
version 15.0
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
hostname Switch
spanning-tree mode pvst
spanning-tree extend system-id
interface FastEthernet0/1
interface FastEthernet0/2
interface FastEthernet0/3
interface FastEthernet0/4
interface FastEthernet0/5
interface FastEthernet0/6
```

```
interface FastEthernet0/7
interface FastEthernet0/8
interface FastEthernet0/9
interface FastEthernet0/10
interface FastEthernet0/11
interface FastEthernet0/12
interface FastEthernet0/13
interface FastEthernet0/14
interface FastEthernet0/15
interface FastEthernet0/16
interface FastEthernet0/17
interface FastEthernet0/18
interface FastEthernet0/19
interface FastEthernet0/20
interface FastEthernet0/21
interface FastEthernet0/22
interface FastEthernet0/23
interface FastEthernet0/24
interface GigabitEthernet0/1
interface GigabitEthernet0/2
```



```
Physical
         Config
                          Programming
                 Desktop
                                       Attributes
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Request timed out.
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```



```
Physical
         Config
                          Programming
                                       Attributes
                 Desktop
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Request timed out.
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
     Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Switch>en

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname SW1

SW1(config)#ip domain-name LabMid

SW1(config)#crypto key generate rsa

The name for the keys will be: SW1.LabMid

Choose the size of the key modulus in the range of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

SW1(config)#enable password pass1

*Mar 1 0:30:12.55: %SSH-5-ENABLED: SSH 1.99 has been enabled

SW1(config)#username cs-student password 123

SW1(config)#username ds-student password 123

SW1(config)#ip ssh version 2

SW1(config)#line vty 0 4

SW1(config-line)#transport input ssh

SW1(config-line)#login local

SW1(config-line)#exit

SW1(config)#exit

SW1#

%SYS-5-CONFIG_I: Configured from console by console

SW1#show ssh

%No SSHv2 server connections running.

%No SSHv1 server connections running.

SW1#


```
Switch>en
Switch#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch (config) #hostname SW1
SW1(config) #ip domain-name LabMid
SW1(config) #crypto key generate rsa
The name for the keys will be: SW1.LabMid
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
 a few minutes.
How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]
SW1(config) #enable password passl
*Mar 1 0:30:12.55: %SSH-5-ENABLED: SSH 1.99 has been enabled
SW1(config) #username cs-student password 123
SW1(config) #username ds-student password 123
SW1(config) #ip ssh version 2
SW1(config) #line vty 0 4
SW1(config-line) #transport input ssh
SW1(config-line) #login local
SW1 (config-line) #exit
SW1 (config) #exit
SW1#
%SYS-5-CONFIG I: Configured from console by console
SW1#show ssh
%No SSHv2 server connections running.
%No SSHvl server connections running.
SW1#
```


Physical Config Desktop Programming Attributes

```
Command Prompt
C:\>ssh -1 cs-student 192.168.1.1
Password:
SW1>en
Password:
Password:
SW1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config) #exit
SW1#exit
[Connection to 192.168.1.1 closed by foreign host]
C:\>ssh -1 ds-student 192.168.1.1
Password:
SW1>en
Password:
SW1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
SW1 (config) #exit
SW1#exit
[Connection to 192.168.1.1 closed by foreign host]
C:\>ssh -1 cs-student 192.168.1.1
Password:
SW1>en
Password:
SW1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)#interface vlan 1
SW1(config-if) #ip add 192.168.1.2 255.255.255.0
% Connection refused by remote host
C:\>telnet 192.168.1.2
Trying 192.168.1.2 ...Open
[Connection to 192.168.1.2 closed by foreign host]
```

This shows that we can change the IP of switch interface vlan 1 by using ssh and PC.


```
Physical
         Config
                Desktop
                          Programming
                                       Attributes
Command Prompt
Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Request timed out.
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ssh -1 ds-student 192.168.1.2
Password:
SW1>en
Password:
SW1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)#
```

Applying ssh on Router:

Steps:

- 1- Give ip address to the Router.
- 2- Give IP addresses to PCs and Default Gateway.
- 3- Check the connectivity from PCs to the Router using ping command.
- 4- Configure hostname, enable password, domain name, username and password on the router.
- 5- Generate crypto keys using RSA with key length of 1024.
- 6- Login to line vty and make it to use local database for authentication and finally allow only SSH.
- 7- Enable ssh version 2.
- 8- Test ssh using command ssh -l username 192.168.1.1

Router>en

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface Gig0/0

Router(config-if)#no shutdown

Router(config-if)#

%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0, changed state to up

Router(config-if)#ip add 192.168.1.1 255.255.255.0 Router(config-if)#exit

Router(config)#

Checking the connectivity using ping:


```
Physical
         Confia
                 Desktop
                          Programming
                                       Attributes
Command Prompt
 Cisco Packet Tracer PC Command Line 1.0
C:\>ping 192.168.1.1
 Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time=10ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
Reply from 192.168.1.1: bytes=32 time<1ms TTL=255
 Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 10ms, Average = 2ms
```

Router>en

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#hostname R1ssh

R1ssh(config)#enable password pass

R1ssh(config)#ip domain-name CNlab.com

R1ssh(config)#username cs-student password 123

R1ssh(config)#crypto key generate rsa

The name for the keys will be: R1ssh.CNlab.com

Choose the size of the key modulus in the range of 360 to 4096 for your

General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

R1ssh(config)#

*Mar 1 0:39:21.111: %SSH-5-ENABLED: SSH 1.99 has been enabled

R1ssh(config)#line vty 0 15

R1ssh(config-line)#login local

R1ssh(config-line)#transport input ssh

R1ssh(config-line)#exit

R1ssh(config)#ip ssh version 2

R1ssh(config)#

Physical Config CLI Attributes

IOS Command Line Interface

```
Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #hostname Rlssh
Rlssh(config) #enable password pass
Rlssh(config) #ip domain-name CNlab.com
Rlssh(config) #username cs-student password 123
Rlssh(config) #crypto key generate rsa
The name for the keys will be: Rlssh.CNlab.com
Choose the size of the key modulus in the range of 360 to 4096 for your
 General Purpose Keys. Choosing a key modulus greater than 512 may take
  a few minutes.
How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]
Rlssh(config)#
*Mar 1 0:39:21.111: %SSH-5-ENABLED: SSH 1.99 has been enabled
Rlssh(config) #line vty 0 15
Rlssh(config-line) #login local
Rlssh(config-line) #transport input ssh
Rlssh(config-line) #exit
Rlssh(config) #ip ssh version 2
Rlssh(config)#
%SYS-5-CONFIG I: Configured from console by console
```

```
C:\>ssh -1 cs-student 192.168.1.1

Password:

Rlssh>en
Password:
Rlssh#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Rlssh(config) #exit
Rlssh#exit

[Connection to 192.168.1.1 closed by foreign host]
```