

RELATIONS

INTRODUCTION:

Let A and B be two sets. Then a relation R from A to B is a subset of A B.

thus, R is a relation from A to B \Leftrightarrow R \subset A B.

Ex. If $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$, then $R = \{(1, b), (2, c), (1, a), (3, a)\}$ being a subset of A B, is a relation from A to B. Here (1, b), (2, c), (1, a) and $(3, a) \in R$, so we write 1 Rb, 2Rc, 1Ra and 3Ra. But $(2, b) \notin R$, so we write 2 R b

Total Number of Realtions: Let A and B be two non-empty finite sets consisting of m and n elements respectively. Then A B consists of mn ordered pairs. So, total number of subsets of A B is 2^{mn} .

Domain and Range of a relation : Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called to domain of R, while the set of all second components or coordinates of the ordered pairs in R is called the range of R.

Thus, Dom (R) =
$$\{a : (a, b) \in R\}$$

and, Range (R) = $\{b : (a, b) \in R\}$

It is evident from the definition that the domain of a relation from A to B is a subset of A and its range is a subset of B.

e.g. Let $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6, 8\}$ be two sets and let R be a relation from A to B defined by the phrase " $(x, y) \in R \Leftrightarrow x > y$ ". Under this relation R, we have

3R2, 5R2, 5R4, 7R2, 7R4 and 7R6

i.e.
$$R = \{(3, 2), (5, 2), (5, 4), (7, 2), (7, 4), (7, 6)\}$$

$$\therefore$$
 Dom (R) = {3, 5, 7} and Range (R) = {2, 4, 6}

Inverse Relation : Let A, B be two sets and let R be a relation from a set A to a set B. Then the inverse of R, denoted by R^{-1} , is a relation from B to A and is defined by

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

Clearly,

$$(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$$

Also, $Dom(R) = Range(R^{-1})$ and $Range(R) = Dom(R^{-1})$

Illustration 1 :

Let A be the set of first ten natural numbers and let R be a relation on A defined by $(x, y) \in R \Leftrightarrow x + 2y = 10$, i.e. $R = \{(x, y) : x \in A, y \in A \text{ and } x + 2y = 10\}$. Express R and R^{-1} as sets of ordered pairs. Determine also (i) domain of R and R^{-1} (ii) range of R and R^{-1}

Solution :

We have
$$(x, y) \in R \Leftrightarrow x + 2y = 10 \Leftrightarrow y = \frac{10-x}{2}, x, y \in A$$

where
$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Now,
$$x = 1 \Rightarrow y = \frac{10-1}{2} = \frac{9}{2} \notin A$$
.

This shows that 1 is not related to any element in A. Similarly we can observe. that 3, 5, 7, 9 and 10 are not related to any element of A under the defined relation

Further we find that :

For
$$x = 2$$
, $y = \frac{10-2}{2} = 4 \in A$ $\therefore (2, 4) \in R$

For
$$x = 4$$
, $y = \frac{10-4}{2} = 3 \in A$ $\therefore (4, 3) \in R$

For
$$x = 6$$
, $y = \frac{10-6}{2} = 2 \in A$ \therefore $(6, 2) \in R$

For
$$x = 8$$
, $y = \frac{10-8}{2} = 1 \in A$ $\therefore (8, 1) \in R$

Thus, $R = \{(2, 4), (4, 3), (6, 2), (8, 1)\}$

$$\Rightarrow$$
 R⁻¹ = {(4, 2), (3, 4), (2, 6), (1, 8)}

Clearly, Dom(R) = $\{2, 4, 6, 8\}$ = Range(R⁻¹)

and, Range (R) = $\{4, 3, 2, 1\}$ = Dom(R⁻¹)

Do yourself - 1:

- (i) If $A = \{2, 4, 6, 9\}$ and $B = \{4, 6, 18, 27, 54\}$, $a \in A$, $b \in B$, find the set of ordered pairs such that 'a' is a factor of 'b' and a < b.
- (ii) Find the domain and range of the relation R given by $R = \{(x, y) : y = x + \frac{6}{x}, \text{ where } x, y \in N \text{ and } x \le 6\}$

TYPES OF RELATIONS:

In this section we intend to define various types of relations on a given set A.

Void Relation : Let A be a set. Then $\phi \subseteq A$ A and so it is a relation on A. This relation is called the void or empty relation on A.

Universal Relation: Let A be a set. Then A \subseteq A and so it is a relation on A. This relation is called the universal relation on A.

Identity Relation : Let A be a set. Then the relation $I_A = \{(a, a) : a \in A\}$ on A is called the identity relation on A

In other words, a relation I_A on A is called the identity relation if every element of A is related to itself only.

e.g. The relation $I_A = \{(1, 1), (2, 2), (3, 3)\}$ is the identity relation on set $A = \{1, 2, 3\}$. But relations $R_1 = \{(1, 1), (2, 2)\}$ and $R_2 = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$ are not identity relations on A, because $(3, 3) \notin R_1$ and in R_2 element 1 is related to elements 1 and 3.

Reflexive Relation : A relation R on a set A is said to be reflexive if every element of A is related to itself. Thus, R on a set A is not reflexive if there exists an element $A \in A$ such that $(a, a) \notin R$.

e.g. Let $A = \{1, 2, 3\}$ be a set. Then $R = \{(1, 1), (2, 2), (3, 3), (1, 3), (2, 1)\}$ is a reflexive relation on A. But $R_1 = \{(1, 1), (3, 3), (2, 1), (3, 2)\}$ is not a reflexive relation on A, because $A \in A$ but $A \in A$ but

Note: Every Identity relation is reflexive but every reflexive ralation is not identity.

Symmetric Relation: A relation R on a set A is said to be a symmetric relation iff

$$(a, b) \in R \Rightarrow (b, a) \in R \text{ for all } a, b \in A$$

i.e. a R b \Rightarrow bRa for all a, b, \in A.

e.g. Let L be the set of all lines in a plane and let R be a relation defined on L by the rule $(x, y) \in R \Leftrightarrow x$ is perpendicular to y. Then R is a symmetric relation on L, because $L_1 \perp L_2 \Rightarrow L_2 \perp L_1$

i.e.
$$(L_1, L_2) \in R \Rightarrow (L_2, L_1) \in R$$
.

e.g. Let $A = \{1, 2, 3, 4\}$ and Let R_1 and R_2 be realtion on A given by $R_1 = \{(1, 3), (1, 4), (3, 1), (2, 2), (4, 1)\}$ and $R_2 = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$. Clearly, R_1 is a symmetric relation on A. However, R_2 is not so, because $(1, 3) \in R_2$ but $(3, 1) \notin R_2$

Transitive Relation: Let A be any set. A relation R on A is said to be a transitive relation iff

(a, b)
$$\in$$
 R and (b, c) \in R \Rightarrow (a, c) \in R for all a, b, c \in A

i.e. a R b and b R c \Rightarrow a R c for all a, b, c \in A

e,g. On the set N of natural numbers, the relation R defined by $x R y \Rightarrow x$ is less than y is transitive, because for any $x, y, z \in N$

$$x \le y$$
 and $y \le z \Rightarrow x \le z \Rightarrow x R y$ and $y R z \Rightarrow x R z$

e.g. Let L be the set of all straight lines in a plane. Then the realtion 'is parallel to' on L is a transitive relation, because from any ℓ_1 , ℓ_2 , $\ell_3 \in L$.

$$\ell_1 \ | \ \ell_2 \ \text{and} \ \ell_2 \ | \ \ell_3 \Rightarrow \ell_1 \ | \ \ell_3$$

Antisymmetric Relation : Let A be any set. A relation R on set A is said to be an antisymmetric relation iff $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$ for all $a, b \in A$

e.g. Let R be a relation on the set N of natural numbers defined by

$$x R y \Leftrightarrow 'x \text{ divides } y' \text{ for all } x, y \in N$$

This relation is an antisymmetric relation on N. Since for any two numbers $a, b \in N$

$$a \mid b$$
 and $b \mid a \Rightarrow a = b$ i.e. $a R b$ and $b R a \Rightarrow a = b$

Equivalence Relation: A relation R on a set A is said to be an equivalence relation on A iff

- (i) it is reflexive i.e. (a, a) $\in R$ for all $a \in A$
- (ii) it is symmetric i.e. (a, b) $\in R \Rightarrow$ (b, a) $\in R$ for all a, b $\in A$
- (iii) it is transitive i.e. (a, b) $\in R$ and (b, c) $\in R \Rightarrow$ (a, c) $\in R$ for all a, b, c $\in A$.
- **e.g.** Let R be a relation on the set of all lines in a plane defined by $(\ell_1, \ \ell_2) \in R \iff$ line ℓ_1 is parallel to line ℓ_2 . R is an equivalence relation.

Note: It is not neccessary that every relation which is symmetric and transitive is also reflexive.

PARTIAL ORDER RELATION:

A relation R on set A is said to be an partial order relation on A if

- (i) R is reflexive i.e. (a, a) \in R, \forall a \in A
- (ii) R is antisymmetric i.e. (a, b) $\in R \Rightarrow$ (b, a) $\in R$ only Possible When $a = b \ \forall \ a, \ b \in A$
- (iii) R is transitive i.e. (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R \forall a, b, c \in R
- e.g. R be a relation on the set N of natural numbers defined by

 $x \ R \ y \Rightarrow 'x$ divides $y' \ \forall \ x, \ y \in N$ then R is a partial order Relation.

Illustration 2:

Three relation R_1 , R_2 and R_3 are defined on set $A = \{a, b, c\}$ as follows :

- (i) R_1 {a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
- (ii) R₂ {(a, b), (b, a), (a, c), (c, a)}

(iii) R_3 {(a, b), (b, c), (c, a)}

Find whether each of R_1 , R_2 and R_3 is reflexive, symmetric and transitive.

Solution :

- (i) Reflexive : Clearly, (a, a), (b, b), (c, c) $\in R_1$. So, R_1 is reflexive on A.
 - Symmetric : We observe that (a, b) $\in R_1$ but (b, a) $\notin R_1$. So, R_1 is not symmetric on A.

Transitive: We find that $(b, c) \in R_1$ and $(c, a) \in R_1$ but $(b, a) \notin R_1$. So, R is not transitive on A.

(ii) Reflexive : Since (a, a), (b, b) and (c, c) are not in R_2 . So, it is not a reflexive realtion on A.

Symmetric : We find that the ordered pairs obtained by interchanging the components of ordered pairs in R_2 are also in R_2 . So, R_2 is a symmetric relation on A.

Transitive : Clearly (c, a) $\in R_2$ and (a, b) $\in R_2$ but (c, b) $\notin R_2$. So, it is not a transitive relation on R_2 .

(iii) Reflexive: Since non of (a, a), (b, b) and (c, c) is an element of R3. So, R3 is not reflexive on A.

Symmetric : Clearly, (b, c) $\in R_3$ but (c, b) $\notin R_3$. so, is not symmetric on A.

Transitive : Clearly, (b, c) \in R₃ and (c, a) \in R₃ but (b, a) \notin R₃. So, R₃ is not transitive on A.

Illustration 3:

Prove that the relation R on the set Z of all integers defined by

$$(x, y) \in R \Leftrightarrow x - y$$
 is divisible by n

is an equivalence relation on Z.

Solution :

We observe the following properties

Reflexivity: For any $a \in N$, we have

$$a-a=0=0$$
 $n \Rightarrow a-a$ is divisible by $n \Rightarrow (a, a) \in R$

Thus, $(a, a) \in R$ for all $a \in Z$

So, R is reflexive on Z

symmetry: Let $(a, b) \in R$. Then,

 $(a, b) \in R \Rightarrow (a - b)$ is divisible by n

 \Rightarrow a - b = np for some p \in Z

 \Rightarrow b - a = n(-p)

 \Rightarrow b - a is divisible by n

$$[:: p \in Z \Rightarrow -p \in Z]$$

 \Rightarrow (b, a) \in R

Thus, $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b, \in Z$

So, R is symmetric on Z.

Transitivity: Let a, b, $c \in Z$ such that (a, b) $\in R$ and (b, c) $\in R$. Then,

 $(a, b) \in R \Rightarrow (a - b)$ is divisible by n

$$\Rightarrow$$
 a - b = np for some p \in Z

 $(b, c) \in R \Rightarrow (b - c)$ is divisible by n

$$\Rightarrow$$
 b - c = nq for some q \in Z

 \therefore (a, b) \in R and (b, c) \in R

 \Rightarrow a - b = np and b - c - nq

 \Rightarrow (a - b) + (b - c) = np + nq

 \Rightarrow a - c = n(p + q)

 \Rightarrow a – c is divisible by n

[:
$$p, q \in Z \Rightarrow p + q = Z$$
]

$$\Rightarrow$$
 (a, c) \in R

thus, $(a, b) \in R$ and $(b, c) \in R \implies (a, c) \in R$ for all $a, b, c \in Z$. so, R is transitive realtion in Z.

Illustration 4:

Show that the relation is congruent to' on the set of all triangles in a plane is an equivalence relation.

Solution :

Let S be the set of all triangles in a plane and let R be the relation on S defined by $(\Delta_1, \Delta_2) \in R \Leftrightarrow \text{triangle } \Delta_1$ is congruent to triangle Δ_2 . We observe the following properties.

Reflexivity: For each triangle $\Delta \in S$, we have

 $\Delta \cong \Delta \Rightarrow (\Delta, \Delta) \in R$ for all $\Delta \in S \Rightarrow R$ is reflexive on S

Symmetry: Let Δ_1 , $\Delta_2 \in S$ such that $(\Delta_1, \ \Delta_2) \in R$. Then, $(\Delta_1, \ \Delta_2) \in R \Rightarrow \Delta_1 \cong \Delta_2 \Rightarrow \Delta_2 \cong \Delta_1 \Rightarrow (\Delta_2, \ \Delta_1) \in R$. So, R is symmetric on S.

Transitivity: Let Δ_1 , Δ_2 , $\Delta_3 \in S$ such that $(\Delta_1, \Delta_2) \in R$ and $(\Delta_2, \Delta_3) \in R$. Then, $(\Delta_1, \Delta_2) \in R$ and $(\Delta_2, \Delta_3) \in R \Rightarrow \Delta_1 \cong \Delta_2$ and $\Delta_2 \cong \Delta_3 \Rightarrow \Delta_1 \cong \Delta_3 \Rightarrow (\Delta_1, \Delta_3) \in R$. So, R is transitive on S.

Hence, R being reflexive, symmetric and transitive, is an equivalence relation on S.

Do yourself - 2:

(i) Show that the relation R defined on the set N of natural number by $xRy \Leftrightarrow 2x^2 - 3xy + y^2 = 0$, i.e. by $R = \{(x, y); x, y \in N \text{ and } 2x^2 - 3xy + y^2 = 0\}$ is not symmetric but it is reflexive.

ANSWERS FOR DO YOURSELF

- **1.** (i) {(2, 4), (2, 6), (2, 18), (2, 54), (6, 18), (6, 54), (9, 18), (9, 27), (9, 54)}
 - (ii) Domain of $R = \{1, 2, 3\}$, Range of $R = \{7, 5\}$