ISO Geodetic Registry

Transformation Item class Name ITRF2008 to NAD83(CSRS) v6 [v1] Item status **VALID** Identifier 489 Title The Canadian Spatial Reference System (CSRS) Information source Canadian Geodetic Survey **Author** Canadian Geodetic Survey, Surveyor General Publisher Branch, Earth Sciences Sector, Natural Resources Canada, Government of Canada Publication date 2016-08-30 Information source Title Reference Frames: National Author M. Craymer, J. Henton, D. Hutchinson, E. Lapelle, M. Piraszewski Canadian Geodetic Survey, Surveyor General Publisher Branch, Earth Sciences Sector, Natural Resources Canada Publication date 2010-04-19 Series/Journal name Presentation to Canadian Geodetic Reference Systems Committee Meeting, Ottawa, April 19-21, 2010 Data source ISO Geodetic Registry Remarks Transformation defines NAD83(CSRS)v6 and is treated as errorless. Operation version ν1 Scope Spatial referencing Operation accuracy 0.0 m Source CRS ITRF2008 - XYZ Target CRS NAD83(CSRS) v6 - XYZ Time-Dependent Position Vector Transformation (geocentric Cartesian Operation method

Extent

Description	Canada - onshore and offshore - Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Northwest Territories, Nova Scotia, Nunavut, Ontario, Prince Edward Island, Quebec, Saskatchewan, Yukon.	
Geographic Bounding Box	West-bound longitude North-bound latitude	-141.01 90.0
	East-bound longitude	90.0 -47.74
	South-bound latitude	40.04

domain)

Operation parameter values

Time reference	1997.0 year
Rate of change of scale difference	-0.102 parts per billion per year
Rate of change of Z-axis rotation	0.05133 milliarc-second per year
Rate of change of Y-axis rotation	0.75744 milliarc-second per year
Rate of change of X-axis rotation	-0.06667 milliarc-second per year

Rate of change of Z-axis translation	-0.00134 metre per year
Rate of change of Y-axis translation	-6.0E-4 metre per year
Rate of change of X-axis translation	7.9E-4 metre per year
Scale difference	1.71504 parts per billion
Z-axis rotation	-11.59935 milliarc-second
Y-axis rotation	-9.42645 milliarc-second
X-axis rotation	-25.91467 milliarc-second
Z-axis translation	-0.52655 metre

Z-axis translation-0.52655 metreY-axis translation-1.90331 metreX-axis translation0.99343 metre

ISO Geodetic Registry

Item class OperationMethod

Name Time-Dependent Position Vector

Transformation (geocentric Cartesian domain)

Item status VALID Identifier 82

Alias Time-Dependent 7-Parameter Transformation

Alias 14-Parameter Transformation

Alias Time-Dependent Position Vector Transformation

Data source ISO Geodetic Registry

Remarks Note the analogy with the rotation for the Time-dependent Coordinate

Frame Transformation but beware of the differences! The Position

Vector Transformation convention is used by IAG.

Formula Geomatics Guidance Note No 7, part 2: Coordinate Conversions and

Transformations including Formulas

Operation parameters

X-axis translation

Y-axis translation

Z-axis translation

X-axis rotation

Y-axis rotation

Z-axis rotation

Scale difference

Rate of change of X-axis translation

Rate of change of Y-axis translation

Rate of change of Z-axis translation

Rate of change of X-axis rotation

Rate of change of Y-axis rotation

Rate of change of Z-axis rotation

Rate of change of scale difference

Time reference