

Mathematics for Al 1

3. Sequences and Series

JOHANNES KEPLER UNIVERSITY LINZ Altenbergerstraße 69 4040 Linz, Austria jku.at

Convergence tests

2/59

Comparison Test

Theorem

Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two series.

- 1. If $\sum_{k=1}^{\infty} b_k$ is absolutely convergent and $|a_k| \leq |b_k|$ holds for all but finitely many $k \in \mathbb{N}$, then $\sum_{k=1}^{\infty} a_k$ is also absolutely convergent.
- 2. If $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ are real-valued sequences such that $0 \le b_k \le a_k$ holds for all $k \in \mathbb{N}$, and $\sum_{k=1}^{\infty} b_k = \infty$, then $\sum_{k=1}^{\infty} a_k = \infty$.

Proof

1. It follows from the hypothesis that there exists $k_0 \in \mathbb{N}$ such that,

$$|a_k| \leq |b_k|, \quad \forall k \geq k_0.$$

Since $\sum_{k=1}^{\infty} b_k$ converges absolutely, it follows that the sequence of partial sums $s_n = \sum_{k=1}^n |a_k|$ is bounded. Indeed, for any $n \ge k_0$, we have

$$\sum_{k=1}^{n} |a_{k}| = \sum_{k=1}^{k_{0}-1} |a_{k}| + \sum_{k=k_{0}}^{n} |a_{k}| \le \sum_{k=1}^{k_{0}-1} |a_{k}| + \sum_{k=k_{0}}^{n} |b_{k}|$$

$$\le \sum_{k=1}^{k_{0}-1} |a_{k}| + \sum_{k=k_{0}}^{\infty} |b_{k}|.$$

Since s_n is bounded and monotone it follows that $\sum_{k=1}^{\infty} |a_k|$ converges.

Proof

2. Let

$$s_n = \sum_{k=1}^n a_n, \quad t_n = \sum_{k=1}^n b_n$$

denote the sequences of partial sums of the two series. Since $b_n \geq 0$, we know (by monotonicity of (t_n)) that the sequence (t_n) is not bounded. But also, $s_n \geq t_n$ for all $n \in \mathbb{N}$, and so it must also be the case that the sequence (s_n) is not bounded. Since $s_n > 0$ for $n \in \mathbb{N}$ and $(s_n)_{n \in \mathbb{N}}$ is an unbounded monotone sequence we know that $\lim_{n \to \infty} s_n = \infty$.

We will now use Theorem from the last slide to prove that the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is (absolutely) convergent. For any $k \in \mathbb{N}$, we have $k+1 \le 2k$ and thus

$$\frac{1}{k^2} = \frac{k+1}{k} \cdot \frac{1}{k(k+1)} \le 2 \cdot \frac{1}{k(k+1)}.$$

Since both sides of this inequality are non-negative, it follows that

$$\left|\frac{1}{k^2}\right| \le \left|\frac{2}{k(k+1)}\right|.$$

Note that the series $\sum_{k=1}^{\infty}\frac{2}{k(k+1)}$ is absolutely convergent. Indeed, we showed earlier that the sequence $\sum_{k=1}^{\infty}\frac{1}{k(k+1)}$ converges. Therefore the series $\sum_{k=1}^{\infty}\frac{2}{k(k+1)}$ is also convergent, and moreover

$$\sum_{k=1}^{\infty} \frac{2}{k(k+1)} = 2 \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 2.$$

Since the corresponding sequence consists of non-negative real numbers, it follows that $\sum_{k=1}^{\infty} \frac{2}{k(k+1)}$ is also absolutely convergent. Apply the first part of comparison test with $a_k = \frac{1}{k^2}$ and $b_k = \frac{2}{k(k+1)}$. It follows that the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is absolutely convergent.

For c > 2 and $k \in \mathbb{N}$ we have $k^c \ge k^2$. Therefore, for $k \in \mathbb{N}$

$$\frac{1}{k^c}\leq \frac{1}{k^2}.$$

Since series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is convergent by comparison test we have

$$\sum_{k=1}^{\infty} \frac{1}{k^c} < \infty.$$

Similarly for c < 1 we have

$$\frac{1}{n} \leq \frac{1}{n^c}$$
.

The series $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent. By comparison test the series $\sum_{k=1}^{\infty} \frac{1}{k^c}$ is also divergent for $c \le 1$.

Soon we will show that series $\sum_{k=1}^{\infty} \frac{1}{k^c}$ is convergent if and only if c > 1.

A potentially more complicated example $\sum_{k=1}^{\infty} \frac{3k^3+2k^2-k-1}{k^6+k^4-k}$. First we estimate terms of a sequence corresponding to the series. Clearly

$$3k^3 + 2k^2 - k - 1 \ge 3k^3 > 0$$
 and $k^6 + k^4 - k \ge k^6 > 0$

for $k \in \mathbb{N}$. Therefore

$$\frac{3k^3 + 2k^2 - k - 1}{k^6 + k^4 - k} > 0$$

for $k \in \mathbb{N}$. Now we observe that

$$3k^3 + 2k^2 - k - 1 \le 3k^3 + 2k^2 \le 3k^3 + 2k^3$$
.

Therefore

$$0 < \frac{3k^3 + 2k^2 - k - 1}{k^6 + k^4 - k} \le \frac{5k^3}{k^6} = \frac{5}{k^3}.$$

A moment ago we have proven that the series $\sum_{k=1}^{\infty} \frac{5}{k^3}$ is absolutely convergent. By comparison test $\sum_{k=1}^{\infty} \frac{3k^3+2k^2-k-1}{k^6+k^4-k}$ is convergent.

We study similar example: $\sum_{k=1}^{\infty} \frac{k^5 - k^4 - k - 3}{k^7 - k^4 - k}$. Let's do this using limits. Observe that

$$\frac{k^5-k^4-k-3}{k^7-k^4-k} = \frac{k^5}{k^7} \frac{1-\frac{1}{k}-\frac{1}{k^4}-\frac{3}{k^5}}{1-\frac{1}{k^3}-\frac{1}{k^6}} = \frac{1}{k^2} \frac{1-\frac{1}{k}-\frac{1}{k^4}-\frac{3}{k^5}}{1-\frac{1}{k^3}-\frac{1}{k^6}}.$$

Note the that

$$\lim_{k \to \infty} \frac{1 - \frac{1}{k} - \frac{1}{k^4} - \frac{3}{k^5}}{1 - \frac{1}{k^3} - \frac{1}{k^6}} = 1.$$

By the definition of a limit $(\varepsilon = \frac{1}{2})$ there exists $N \in \mathbb{N}$ such that for k > N we have

$$\frac{1}{2} \leq \frac{1 - \frac{1}{k} - \frac{1}{k^4} - \frac{3}{k^5}}{1 - \frac{1}{k^3} - \frac{1}{k^6}} \leq \frac{3}{2}.$$

Thus,

$$0 \leq \frac{1}{2} \frac{1}{k^2} \leq \frac{k^5 - k^4 - k - 3}{k^7 - k^4 - k} \leq \frac{3}{2} \frac{1}{k^2}.$$

Since the series $\sum_{k=1}^{\infty} k^{-2}$ is convergent then by comparison test

$$\sum_{k=1}^{\infty} \frac{k^5 - k^4 - k - 3}{k^7 - k^4 - k}$$

is convergent.

Exercise

Investigate for absolute convergences of series using the comparison test:

a)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{(n+1)(n+2)(n+3)(n+4)(n+5)}}$$
,

b)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[6]{(n+1)(n+2)(n+3)(n+4)(n+5)}}$$
,

c)
$$\sum_{k=1}^{\infty} \frac{k^3+k}{k^5+1}$$
.

Theorem (Root test)

Let $\sum_{k=1}^{\infty} a_k$ be a series.

1. If there exists a real number c < 1 such that

$$\sqrt[k]{|a_k|} \leq c$$

holds for all but finitely many $k \in \mathbb{N}$, then $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

2. Conversely, if

$$\sqrt[k]{|a_k|} \geq 1$$

holds for infinitely many $k \in \mathbb{N}$, then $\sum_{k=1}^{\infty} a_k$ is divergent.

Proof 1.

The series $\sum_{k=1}^{\infty} c^k$ is absolutely convergent for |c| < 1. By the hypothesis of the theorem $|a_k| \le c^k = |c^k|$ holds for all but finitely many $k \in \mathbb{N}$. Therefore, by comparison test, $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

Proof 2.

It follows from the condition that $|a_k| \ge 1$ for infinitely many $k \in \mathbb{N}$. In particular, the sequence $(a_k)_{k \in \mathbb{N}}$ is not a null sequence. By Cauchy's criterion the series $\sum_{k=1}^{\infty} a_k$ does not converge.

Remark

The root test is usually most helpful when a the *k*th term of the corresponding sequence involves a *k*th power.

Root test - limits version

Let $(a_k)_{k\in\mathbb{N}}$ be a sequence.

1. If

$$\lim_{k\to\infty} \sqrt[k]{|a_k|} < 1$$

then the series $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

2. If

$$\lim_{k\to\infty}\sqrt[k]{|a_k|}>1$$

then the series $\sum_{k=1}^{\infty} a_k$ is divergent.

Proof of 1.

Since

$$\lim_{k\to\infty}\sqrt[k]{|a_k|}<1$$

it follows that there is some c < 1 such that $\sqrt[k]{|a_k|} < c$ holds for all k sufficiently large. It then follows from part 1 of root test that the series $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

Proof of 2.

lf

$$\lim_{k\to\infty}\sqrt[k]{|a_k|}>1$$

then it follows that $\sqrt[k]{|a_k|} > 1$ holds for all k sufficiently large. Part 2 of root test then implies that the series $\sum_{k=1}^{\infty} a_k$ is divergent.

Consider this scary looking series

$$\sum_{k=1}^{\infty} \sin(k) \frac{k^{100}}{2^{k/2}}.$$

Note that, for all $k \in \mathbb{N}$,

$$\left|\sin(k)\frac{k^{100}}{2^{k/2}}\right| \leq \left|\frac{k^{100}}{2^{k/2}}\right|$$

Therefore, by comparison test it will be sufficient to prove that the series

$$\sum_{k=1}^{\infty} \frac{k^{100}}{2^{k/2}}$$

is absolutely convergent.

We use the root test. Observe that

$$\sqrt[k]{\left|\frac{k^{100}}{2^{k/2}}\right|} = \frac{1}{\sqrt{2}}\sqrt[k]{k^{100}}.$$

Recall that $\lim_{n\to\infty} \sqrt[k]{k^{100}} = 1$. Therefore, we get

$$\lim_{n\to\infty} \sqrt[k]{\left|\frac{k^{100}}{2^{k/2}}\right|} = \frac{1}{\sqrt{2}} < 1.$$

Consider the series

$$\sum_{k=1}^{\infty} \frac{k^{k/4}}{3^{2+3k}}$$

For the root test, we study the terms

$$\sqrt[k]{\left|\frac{k^{k/4}}{3^{2+3k}}\right|} = \frac{k^{1/4}}{27 \cdot \sqrt[k]{9}}.$$

Recall that $\lim_{k\to\infty} \sqrt[k]{9} = 1$. Clearly

$$\lim_{k\to\infty}\frac{k^{1/4}}{27\cdot\sqrt[k]{9}}=+\infty$$

Therefore for infinitely many $k \in \mathbb{N}$

$$\frac{k^{k/4}}{3^{2+3k}} > 1$$

It follows from root test that the series

$$\sum_{k=1}^{\infty} \frac{k^{k/4}}{3^{2+3k}}.$$

is divergent.

The root test does not always provide a definite answer regarding the convergence or divergence of a series. To see this, we fix $m \in \mathbb{N}$ and try and to apply the ratio test for the series $\sum_{n=1}^{\infty} \frac{1}{n^m}$.

Observe that

$$\sqrt[k]{|a_k|} = \sqrt[k]{k^{-m}} \stackrel{k \to \infty}{\to} 1.$$

It follows that neither of the two conditions in root test (slide 15 and slide 18) hold, and we do not get any information about the series $\sum_{n=1}^{\infty} \frac{1}{n^m}$ by this method.

Moreover we know that the series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

 $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent

and

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

is convergent.

Exercise

Find all parameters $b \in \mathbb{R}$ such that the series

$$\sum_{k=1}^{\infty} \frac{(b^2 + 2b)^k}{k^2}$$

is convergent. **Hint.** Check the range of the function $f(x) = x^2 + 2x$ and use the root test.

Exercise

Let $(F_n)_{n\in\mathbb{N}}$ be a Fibonacci sequence. Show that the series $\sum_{k=1}^{\infty} \frac{1}{F_k}$ is convergent. **Hint.** Use the definition of the Fibonacci sequence.

Answer to the question from the audience

If we have $b_k \le a_k$ for $k > k_0$ and $\sum_{k=1}^{\infty} b_k = \infty$ then for $k > k_0$:

$$\sum_{k=1}^{n} a_k = \sum_{k=k_0+1}^{n} a_k + \sum_{k=1}^{k_0} a_k$$

$$\geq \sum_{k=k_0+1}^{n} b_k + \sum_{k=1}^{k_0} a_k$$

$$= \sum_{k=1}^{n} b_k - \sum_{k=1}^{k_0} b_k + \sum_{k=1}^{k_0} a_k.$$

Answer to the question from the audience

Since $-\sum_{k=1}^{k_0} b_k + \sum_{k=1}^{k_0} a_k$ is a fixed number we get

$$\lim_{n\to\infty} \left(\sum_{k=1}^n b_k - \sum_{k=1}^{\kappa_0} b_k + \sum_{k=1}^{\kappa_0} a_k \right) = +\infty.$$

By sandwich rule for definitely divergent (to $+\infty$) sequences we have:

$$\sum_{k=1}^{\infty} a_k = \lim_{n\to\infty} \sum_{k=1}^{n} a_k = +\infty.$$

Answer to the question from the audience

Remember that just having $\sum_{k=1}^{\infty} b_k$ diverges and $b_k \leq a_k$ for $k > k_0$ is not enough.

Example take $b_k = (-1)$ and $a_k = \frac{-1}{k^2}$. Clearly $b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges. However $\sum_{k=1}^{\infty} \frac{-1}{k^2}$ is absolutely convergent.

Another example: We take $a_k = \frac{1}{k^3}$ and $b_k = \frac{-1}{k}$ we have $b_k \le a_k$ but $\sum_{k=1}^{\infty} b_k$ diverges and $\sum_{k=1}^{\infty} a_k$ converges.

Theorem (Ratio test)

Let $\sum_{k=1}^{\infty} a_k$ be a series.

1. If there exists some real number c < 1 such that, for all but finitely many $k \in \mathbb{N}$,

$$a_k \neq 0$$
, and $\left| \frac{a_{k+1}}{a_k} \right| \leq c$,

then $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

2. Conversely, if for all but finitely many $k \in \mathbb{N}$,

$$a_k \neq 0$$
, and $\left| \frac{a_{k+1}}{a_k} \right| \geq 1$,

then $\sum_{k=1}^{\infty} a_k$ is divergent.

Proof of 1.

There exists $k_0 \in \mathbb{N}$ such that, for all $k \geq k_0$,

$$\left|\frac{a_{k+1}}{a_k}\right| \leq c.$$

It follows by induction that, for all $m \in \mathbb{N}$,

$$|a_{k_0+m}|\leq c^m|a_{k_0}|.$$

Let

$$b_n := c^n \cdot \frac{|a_{k_0}|}{c^{k_0}}.$$

Proof of 1.

The series $\sum_{k=1}^{\infty} b_k$ is absolutely convergent. This follows from rules of calculation for series and absolute convergence of geometric series for |q| < 1. For all $k \ge k_0$,

$$|a_k| = |a_{m+k_0}| \le c^m |a_{k_0}| = c^{k-k_0} |a_{k_0}| = |b_k|.$$

It follows from part 1 of comparison test that $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

Proof of 2.

There exists $k_0 \in \mathbb{N}$ such that, for all $k \geq k_0$,

$$\left|\frac{a_{k+1}}{a_k}\right| \geq 1.$$

It follows by induction that, for all $k \ge k_0$,

$$|a_k|\geq |a_{k_0}|.$$

In particular, the sequence $(a_k)_{k\in\mathbb{N}}$ is not a null sequence. It therefore follows from Cauchy's criterion that the series $\sum_{k=1}^{\infty} a_k$ is divergent.

Ratio test - limits version

Let $(a_k)_{k\in\mathbb{N}}$ be a sequence.

1. If

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|<1$$

then the series $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

2. If

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|>1$$

then the series $\sum_{k=1}^{\infty} a_k$ is divergent.

Proof.

This is left as an exercise.

We can use the ratio test to prove that the series $\sum_{k=1}^{\infty} a_k$ given by

$$a_k = \frac{k^3}{k!}$$

is convergent. Indeed, for all $k \in \mathbb{N}$

$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{(k+1)^3}{(k+1)!} \cdot \frac{k!}{k^3}\right| = \frac{1}{k+1} \cdot \left(\frac{k+1}{k}\right)^3 \le \frac{8}{k+1}.$$

The last inequality is just an application of the fact that $\frac{k+1}{k} \leq 2$ holds for all $k \in \mathbb{N}$.

It therefore follows that, for all $k \ge 15$ we have

$$\left|\frac{a_{k+1}}{a_k}\right|\leq \frac{1}{2}.$$

The ratio test implies that the series $\sum_{k=1}^{\infty} \frac{k^3}{k!}$ is convergent.

We study convergence of another series $\sum_{k=1}^{\infty} a_k$ given by

$$a_k=\frac{1}{k^k}.$$

By now you know several ways to prove that the series above is convergent. We will use the ratio test. Indeed, for all $k \in \mathbb{N}$

$$\left|\frac{a_{k+1}}{a_k}\right| = \left|\frac{k^k}{(k+1)^{k+1}}\right| = \frac{1}{k} \cdot \left(\frac{k}{k+1}\right)^{k+1} = \left(1 - \frac{1}{k+1}\right)^{k+1} \frac{1}{k}.$$

Recall that

$$\lim_{k \to \infty} \left(1 - \frac{1}{k+1} \right)^{k+1} = e^{-1} \quad \text{and} \quad \lim_{k \to \infty} \frac{1}{k} = 0$$

It therefore follows that

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=0.$$

By the ratio test the series $\sum_{k=1}^{\infty} \frac{1}{k^k}$ is convergent.

The ratio test does not always provide a definite answer regarding the convergence or divergence of a series. To see this, we fix $m \in \mathbb{N}$ and try and to apply the ratio test for the series $\sum_{n=1}^{\infty} \frac{1}{n^m}$.

Observe that

$$\left|\frac{a_{k+1}}{a_k}\right| = \frac{k^m}{(k+1)^m} \stackrel{k\to\infty}{\to} 1.$$

It follows from the above that neither of the two conditions in ratio test (slide 30 and slide 34) hold, and we do not get any information about the series $\sum_{n=1}^{\infty} \frac{1}{n^m}$ by this method.

Recall we know that the series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

is divergent

and

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

is convergent.

Exercise

Determine the convergence of the following series

- a) $\sum_{k=1}^{\infty} (1 \frac{1}{k^2})^{k^3}$,
- b) $\sum_{k=1}^{\infty} \frac{3^k}{k!},$
- c) $\sum_{k=1}^{\infty} \frac{k!}{k^k}$,
- d) $\sum_{k=1}^{\infty} \frac{k+k^k}{k^{2k}}.$

Remark

Last two convergence tests we will discuss you will find in Mario Ulrich notes p.126-127.

Theorem (Cauchy's condensation lemma)

Let
$$\sum_{k=1}^{\infty} a_k$$
 be a series with $0 \le a_{k+1} \le a_k$ for all $k \in \mathbb{N}$. Then,

$$\sum_{k=1}^{\infty} a_k \text{ is convergent } \Leftrightarrow \quad \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ is convergent.}$$

Let $s_n = \sum_{k=1}^n a_k$. Since $a_k \ge 0$ then (s_n) is a monotone sequence.

Thus, (s_n) is convergent if and only if (s_n) is bounded.

Similarly for $t_n = \sum_{k=1}^n 2^k a_{2^k}$. Sequence (t_n) monotone.

Therefore the sequence (t_n) is convergent if and only if the sequence (t_n) is bounded.

So it is enough that we show that the sequence (s_n) is bounded if and only if the sequence (t_n) is bounded.

First we observe that for

$$2^k a_{2^{k+1}} \leq \sum_{j=2^k}^{2^{k+1}-1} a_j \leq 2^k a_{2^k}$$

Indeed, if we put in the sum a_{2^k} instead of a_j for every j in range we increase the value of the sum. If we put in the sum $a_{2^{k+1}}$ instead of a_j for every j in range we decrease the value of the sum .

Visualization for k = 2

$$\sum_{j=2^k}^{2^{k+1}-1} a_k = \text{Area} \le \text{Area} = 2^k a_{2^k}$$

Visualization for k = 2

$$\sum_{i=2^k}^{2^{k+1}-1} a_k = \text{Area} \ge \text{Area} = 2^k a_{2^{k+1}}$$

Therefore, we get

$$\frac{1}{2} \sum_{k=0}^{n} 2^{k+1} a_{2^{k+1}} \leq \sum_{k=1}^{2^{n+1}-1} a_k = \sum_{k=0}^{n} \sum_{j=2^k}^{2^{k+1}-1} a_j \leq \sum_{k=0}^{n} 2^k a_{2^k}$$

which finishes the proof.

We will prove that the series

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$

is convergent if and only if $\alpha > 1$. We have discuss that for $\alpha < 0$ the series is divergent. For $\alpha > 0$ sequence $(\frac{1}{k^{\alpha}})_{k \in \mathbb{N}}$ is decreasing and has non-negative values. We can use the Cauchy's condensation lemma.

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
 is convergent $\Leftrightarrow \sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{\alpha k}}$ is convergent

The series on the right hand side is a geometric series. Indeed, we have

$$2^k \frac{1}{2^{\alpha k}} = (2^{1-\alpha})^k$$

The geometric series is convergent if and only if |q|<1. However,

$$2^{1-\alpha} < 1 \Leftrightarrow 1-\alpha < 0 \Leftrightarrow 1 < \alpha$$
.

By the Cauchy's condensation lemma we get that the series

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$

is convergent if and only if $\alpha > 1$.

Exercise

Proof that the series

$$\sum_{k=1}^{\infty} \frac{1}{k \ln^{\alpha} k}$$

is convergent if and only if $\alpha > 1$.

Theorem (Leibniz criterion)

Let $(a_k)_{k\in\mathbb{N}}$ be a monotone null sequence. Then, the series

$$\sum_{k=1}^{\infty} (-1)^k a_k$$

is convergent.

Without loss of generality we assume that the sequence (a_k) is non-increasing (otherwise we work with $(-a_k)$). Observe that $a_k \ge 0$ for every $k \in \mathbb{N}$. Since (a_k) is decreasing then

$$S_{2n+2} = S_{2n} - a_{2k+1} + a_{2k+2} \le S_{2n}$$

and

$$s_{2n+3} = s_{2n+1} + a_{2k+2} - a_{2k+3} \ge s_{2n+1}$$

Moreover

$$s_{2n} = s_{2n+1} + a_{2k+1} \ge s_{2n+1} \ge s_{2n-1} \ge \cdots \ge s_1$$

The sequence $(s_{2n})_{n\in\mathbb{N}}$ is bounded and monotone. Thus, it is convergent. Moreover from $\lim_{n\to\infty}a_n=0$ we get

$$\lim_{n\to\infty} s_{2n} = \lim_{n\to\infty} s_{2n} - a_{2n+1} = \lim_{n\to\infty} s_{2n+1}.$$

The sequence s_{2n+1} is convergent. By the definition the series

$$\sum_{k=1}^{\infty} (-1)^k a_k$$

is convergent.

The sequence $(\frac{1}{n})_{n\in\mathbb{N}}$ is a monotone null sequence. Thus, by Leibniz criterion the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$$

is convergent.

It is crucial that the sequence a_k is monotone. We define $a_{2k} = \frac{1}{k}$ and $a_{2k+1} = -2^{-k}$. The sequence (a_k) is a null sequence. However

$$\sum_{k=1}^{2n} (-1)^k a_k = \sum_{k=1}^n a_{2k} - a_{2k+1} \ge \sum_{k=1}^n \frac{1}{k}.$$

Thus, the series $\sum_{k=1}^{\infty} (-1)^k a_k$ is divergent.

Fact

Sum of the series which is convergent but not absolutely convergent depends on the order of terms!!!

Example:

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = (1 - \frac{1}{2}) + (\frac{1}{3} - \frac{1}{4}) + \dots = \ln 2$$

but

$$\sum_{k=1}^{\infty} \frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k} = \left(1 - \frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{6} - \frac{1}{8}\right) + \dots = \frac{1}{2} \ln 2$$

Exercise

Determine the convergence of the following alternating series

- a) $\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^5}$,
- b) $\sum_{k=1}^{\infty} (-1)^k \frac{k}{k+1}$,
- c) $\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt[3]{k}}$.

Don't just read it; fight it!

--- Paul R. Halmos

source: Abstruse Goose

