回帰分析

予測と発展的なモデル

村田 昇

講義概要

- 第1回: 回帰モデルの考え方と推定
- 第2回: モデルの評価
- ・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

- 目的変数 を 説明変数 で説明する関係式を構成
 - 説明変数: $x_1, ..., x_p$ (p 次元)
 - 目的変数: y (1 次元)
- 回帰係数 $\beta_0, \beta_1, \ldots, \beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

問題設定

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 式の評価: 残差平方和 の最小化による推定

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解とその一意性

• 解の条件: 正規方程式

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}\mathbf{v}$$

• 解の一意性 : **Gram 行列** *X*^T*X* が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2024-10-01	23.3	0.5	11.45	0	NNW	2.6	1006.0	81	5.8
2024-10-02	26.5	0.0	18.32	0	S	2.9	1007.9	77	6.0
2024-10-03	23.1	11.0	5.88	0	E	2.7	1015.9	87	10.0
2024-10-04	25.9	2.0	12.60	0	S	3.5	1015.4	87	10.0
2024-10-05	21.3	9.5	1.88	0	NNE	2.5	1018.4	94	10.0
2024-10-06	21.3	0.0	5.01	0	NNW	1.7	1017.1	93	10.0
2024-10-07	25.0	0.0	14.99	0	S	2.9	1008.9	83	8.0
2024-10-08	18.8	33.5	1.98	0	NE	3.0	1008.9	97	10.0
2024-10-09	16.0	53.5	3.58	0	NNW	2.9	1009.3	93	10.0
2024-10-10	17.8	0.0	7.52	0	NNW	2.6	1009.8	75	6.0
2024-10-11	19.0	0.0	16.14	0	SSE	1.9	1013.1	69	7.5
2024-10-12	20.6	0.0	16.44	0	N	1.9	1019.0	73	2.5
2024-10-13	20.9	0.0	16.27	0	NNW	2.2	1021.1	70	0.8
2024-10-14	20.8	0.0	16.02	0	NNW	2.3	1022.6	71	4.0
2024-10-15	22.1	0.0	16.53	0	SSW	2.2	1020.3	72	3.8
2024-10-16	22.6	0.0	8.50	0	NNE	1.5	1017.3	76	7.5
2024-10-17	22.8	0.0	8.10	0	ENE	2.3	1020.0	79	9.3
2024-10-18	21.6	2.0	3.27	0	N	1.8	1019.5	92	10.0
2024-10-19	24.2	1.5	11.29	0	S	2.7	1009.2	84	10.0
2024-10-20	17.4	0.0	13.59	0	ENE	3.6	1023.6	55	5.8
2024-10-21	16.2	0.0	12.31	0	NW	2.7	1029.2	61	7.0
2024-10-22	19.7	0.0	12.02	0	NNW	1.9	1022.1	69	8.3
2024-10-23	21.9	6.5	4.24	0	NW	2.3	1012.3	90	10.0
2024-10-24	22.6	0.0	9.18	0	NE	2.2	1013.5	79	8.0
2024-10-25	20.2	0.5	3.61	0	NNE	2.4	1021.1	77	9.8
2024-10-26	19.0	0.0	3.90	0	NNW	1.7	1019.1	80	10.0
2024-10-27	19.7	4.0	8.46	0	NW	1.5	1011.4	87	9.5
2024-10-28	18.8	8.0	3.54	0	NE	1.9	1006.4	87	9.8
2024-10-29	15.4	24.5	2.79	0	NE	2.9	1017.4	79	10.0
2024-10-30	16.8	17.5	9.07	0	NW	3.2	1012.4	79	7.5
2024-10-31	16.2	0.0	11.86	0	NNE	2.0	1021.9	65	7.5

解析の事例

気温に影響を与える要因の分析

- データの概要
- ・ 気温を説明する 5 種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

• 関連するデータの散布図

Figure 1: 散布図

• 観測値とあてはめ値の比較

寄与率

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

モデルの評価

• 決定係数 $(R^2 \cdot Adjusted R^2)$ によるモデルの比較

F統計量による検定

- 説明変数のうち1つでも役に立つか否かを検定する
 - 帰無仮説 H_0 : $\beta_1 = \cdots = \beta_p = 0$
 - 対立仮説 H_1 : $\exists j \beta_j \neq 0$ (少なくとも 1 つは役に立つ)
- F 統計量: 決定係数 (または残差) を用いて計算

Figure 2: モデルの比較

	モデル 1		モデル 2		Ŧ	デル3	Ŧ	デル4	モデル 5	
Characteristic	Beta	95% CI								
気圧	-0.14	-0.32, 0.04			-0.17	-0.35, 0.01	0.06	-0.12, 0.24	-0.14	-0.32, 0.04
日射			0.17	-0.03, 0.38	0.21	0.00, 0.41	0.53	0.30, 0.75	0.38	0.08, 0.68
湿度							0.28	0.14, 0.42		
雲量									0.49	-0.14, 1.1
\mathbb{R}^2	0.078		0.093		0.204		0.519		0.272	
Adjusted R ²	0.047		0.062		0.147		0.466		0.191	

Abbreviation: CI = Confidence Interval

$$F = \frac{n{-}p{-}1}{p}\frac{R^2}{1-R^2}$$

• p 値: 自由度 p,n-p-1 の F 分布で計算

モデルの評価

• F 統計量によるモデルの比較

t 統計量による検定

- ・ 回帰係数 β_i が回帰式に寄与するか否かを検定する
 - 帰無仮説 H_0 : $\beta_j = 0$
 - 対立仮説 H_1 : $\beta_j \neq 0$ (β_j は役に立つ)
- ・ t 統計量: 各係数ごと, ζ^2 は $(X^\mathsf{T} X)^{-1}$ の対角成分

	モデル 1		モデル 2		Ŧ	デル3	モ	デル4	 モデル 5	
Characteristic	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI	Beta	95% CI
気圧	-0.14	-0.32, 0.04			-0.17	-0.35, 0.01	0.06	-0.12, 0.24	-0.14	-0.32, 0.04
日射			0.17	-0.03, 0.38	0.21	0.00, 0.41	0.53	0.30, 0.75	0.38	0.08, 0.68
湿度							0.28	0.14, 0.42		
雲量									0.49	-0.14, 1.1
R ²	0.078		0.093		0.204		0.519		0.272	
Statistic	2.47		2.98		3.58		9.72		3.36	
p-value	0.13		0.10		0.041		< 0.001		0.033	

Abbreviation: CI = Confidence Interval

	モデル 1			モデル 2					4				
Characteristic	Beta	SE	Statistic	p-value	Beta	SE	Statistic	p-value	Beta	SE	Statistic	p-value	Beta
(Intercept)	164	91.3	1.80	0.083	19	1.08	17.6	< 0.001	191	87.3	2.19	0.037	-70
気圧	-0.14	0.090	-1.57	0.13					-0.17	0.086	-1.97	0.059	0.06
日射					0.17	0.101	1.73	0.10	0.21	0.098	2.10	0.045	0.53
湿度													0.28
雪 量													

Abbreviations: CI = Confidence Interval, SE = Standard Error

$$t = \frac{\hat{\beta}_j}{\hat{\sigma}\zeta_j}$$

• p 値: 自由度 n-p-1 の t 分布を用いて計算

モデルの評価

• t 統計量によるモデルの比較

診断プロットによる評価

- 回帰モデルのあてはまりを視覚的に評価
 - Residuals vs Fitted: あてはめ値 (予測値) と残差の関係 (誤差の独立性)
 - Normal Q-Q: 残差の正規性の確認
 - Scale-Location: あてはめ値と正規化した残差の関係 (分散の一様性)
 - Residuals vs Leverage: 正規化した残差とテコ比の関係 (外れ値)
- モデル 2
- モデル3
- モデル 4

回帰モデルによる予測

予測

• 新しいデータ (説明変数) x に対する **予測値**

Figure 3: モデル 2 の診断

Figure 4: モデル 3 の診断

Figure 5: モデル 4 の診断

$$\hat{y} = (1, \mathbf{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \qquad \hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

• 予測値は元データの目的変数の重み付け線形和

$$\hat{\mathbf{y}} = \mathbf{w}(\mathbf{x})^{\mathsf{T}} \mathbf{y}, \qquad \mathbf{w}(\mathbf{x})^{\mathsf{T}} = (1, \mathbf{x}^{\mathsf{T}}) (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}}$$

- 重みは元データと新規データの説明変数で決定

予測値の性質

• 推定量は以下の性質をもつ多変量正規分布

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^2 (X^\mathsf{T} X)^{-1}$$

• この性質を利用して以下の3つの値の違いを評価

$$y = (1, \mathbf{x}^{\mathsf{T}})\boldsymbol{\beta} + \epsilon$$
 (観測値)
 $\tilde{y} = (1, \mathbf{x}^{\mathsf{T}})\boldsymbol{\beta}$ (最適な予測値)
 $\hat{y} = (1, \mathbf{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}$ (回帰式による予測値)

- ŷとyは独立な正規分布に従うことに注意

信頼区間

最適な予測値との差

• 差の分布は以下の平均・分散をもつ正規分布に従う

$$\mathbb{E}[\tilde{y} - \hat{y}] = (1, \boldsymbol{x}^{\mathsf{T}})\boldsymbol{\beta} - (1, \boldsymbol{x}^{\mathsf{T}})\mathbb{E}[\hat{\boldsymbol{\beta}}] = 0$$

$$\operatorname{Var}(\tilde{y} - \hat{y}) = \underbrace{\sigma^{2}(1, \boldsymbol{x}^{\mathsf{T}})(X^{\mathsf{T}}X)^{-1}(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}}_{\hat{\boldsymbol{\beta}}} = \sigma^{2}\gamma_{c}(\boldsymbol{x})^{2}$$

• 標準化による表現

$$\frac{\tilde{y} - \hat{y}}{\sigma \gamma_c(x)} \sim \mathcal{N}(0, 1)$$

信頼区間

• 未知の分散を不偏分散で推定

$$Z = \frac{\tilde{y} - \hat{y}}{\hat{\sigma}\gamma_{C}(\mathbf{x})} \sim \mathcal{T}(n-p-1) \quad (t \ \text{分布})$$

確率 α の信頼区間

$$I_{\alpha}^{c} = (\hat{\mathbf{y}} - C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}), \ \hat{\mathbf{y}} + C_{\alpha}\hat{\sigma}\gamma_{c}(\mathbf{x}))$$

$$P(|Z| < C_{\alpha}|Z \sim \mathcal{T}(n-p-1)) = \alpha$$

- 最適な予測値 ỹ が入ることが期待される区間

予測区間

観測値との差

• 差の分布は以下の平均・分散をもつ正規分布に従う

$$\mathbb{E}[y - \hat{y}] = (1, \boldsymbol{x}^{\mathsf{T}})\boldsymbol{\beta} + \mathbb{E}[\boldsymbol{\epsilon}] - (1, \boldsymbol{x}^{\mathsf{T}})\mathbb{E}[\boldsymbol{\hat{\beta}}] = 0$$

$$\operatorname{Var}(y - \hat{y}) = \underbrace{\sigma^{2}(1, \boldsymbol{x}^{\mathsf{T}})(X^{\mathsf{T}}X)^{-1}(1, \boldsymbol{x}^{\mathsf{T}})^{\mathsf{T}}}_{\boldsymbol{\hat{\beta}}} + \underbrace{\sigma^{2}}_{\text{誤差の分散}} = \sigma^{2}\gamma_{p}(\boldsymbol{x})^{2}$$

• 標準化による表現

$$\frac{y - \hat{y}}{\sigma \gamma_p(x)} \sim \mathcal{N}(0, 1)$$

予測区間

• 未知の分散を不偏分散で推定

$$Z = \frac{y - \hat{y}}{\hat{\sigma}\gamma_p(x)} \sim \mathcal{T}(n-p-1)$$
 (t 分布)

確率 α の予測区間

$$I_{\alpha}^{p} = \left(\hat{y} - C_{\alpha}\hat{\sigma}\gamma_{p}(\boldsymbol{x}), \ \hat{y} + C_{\alpha}\hat{\sigma}\gamma_{p}(\boldsymbol{x})\right)$$

$$P(|Z| < C_{\alpha}|Z \sim \mathcal{T}(n-p-1)) = \alpha$$

- 観測値 y が入ることが期待される区間
- $-\gamma_p > \gamma_c$ なので信頼区間より広くなる

実習

発展的なモデル

非線形性を含むモデル

- 目的変数 y
- 説明変数 x_1, \ldots, x_p
- 説明変数の追加で対応可能
 - 交互作用 (交差項): x_ix_i のような説明変数の積
 - 非線形変換: $\log(x_k)$ のような関数による変換

カテゴリカル変数を含むモデル

- 数値ではないデータ
 - 悪性・良性
 - 血液型 (A 型,B 型,AB 型,O 型)
- 適切な方法で数値に変換して対応:
 - 2値の場合は1,0(真, 偽)を割り当てる
 - * 悪性:1
 - * 良性:0
 - 3 値以上の場合は **ダミー変数** を利用する (カテゴリ数-1 個)
 - * A型: (1,0,0)
 - * B型: (0,1,0)
 - * O型: (0,0,1)
 - * AB型: (0,0,0)

実習

次回の予定

- ・第1回: 主成分分析の考え方
- ・第2回:分析の評価と視覚化