PREDICTING SEX BASED ON INFORMATION IN OK CUPID USER PROFILES

MICHELLE A CALER 2021 MARCH 29

OUTLINE

- I. Main Questions
- 2. The Data
- 3. Overview of All Users
- 4. Associations of Features with Sex
- 5. Supervised Machine Learning Models
- 6. Conclusions

MAIN QUESTIONS:

I. Can sex be predicted using a multinomial naïve Bayes classifier trained on OK Cupid user essay texts?

2. Can sex be predicted using a machine learning algorithm trained on age, height, drinking habits, drug use habits, smoking habits, essay lengths, and average lengths of words in essays?

THE DATA:

One .csv file containing:

age	essay0	essay6	income	pets	status
body type	essayl	essay7	job	religion	
diet	essay2	essay8	last online	sex	
drinks	essay3	essay9	location	sign	
drugs	essay4	ethnicity	offspring	smokes	
education	essay5	height	orientation	speaks	

59,946 users all located in the San Francisco area

Essay prompts:

- essay0 My self summary
- essay I What I'm doing with my life
- essay2 I'm really good at
- essay3 The first thing people usually notice about me
- essay4 Favorite books, movies, show, music, and food
- essay5 The six things I could never do without
- essay6 I spend a lot of time thinking about
- essay7 On a typical Friday night I am
- essay8 The most private thing I am willing to admit
- essay9 You should message me if...

AGE AND HEIGHT DISTRIBUTIONS, ALL USERS

Distribution of Heights Reported in OKCupid Profiles Height

Skew right, multimodal?

Approx. Normal Distribution

DRINK, DRUG, SMOKE HABITS, ALL USERS

ASSOCIATIONS OF FEATURES WITH SEX

FRACTION OF USERS OF EACH SEX

Percentage of Male and Female OK Cupid Profiles

Percentage Breakdown

AGE AND HEIGHT DISTRIBUTIONS, SPLIT BY SEX

Peak Differences

Clear separation

DRINK, DRUG, AND SMOKE HABITS, SPLIT BY SEX

Self-Reported Drug Use Habits of OK Cupid Users by Sex 0.7 0.6 0.3 0.2 0.1 sometimes often

Small differences

More male drug use

More male smokers

FEATURE ASSOCIATIONS WITH SEX

Feature	Associated with sex?	Hypothesis Test	Significance threshold	p-value
age	yes	K-S	0.01	8.5×10^{-16}
height	yes	2-Sample t-test	0.01	$< 3.4 \times 10^{-33}$
drinks	yes	Chi-squared	0.01	5.9 × 10 ⁻¹⁴
drugs	yes	Chi-squared	0.01	3.4×10^{-33}
smokes	yes	Chi-squared	0.01	3.5×10^{-25}

TEXT PRE-PROCESSING

FOR ALL ESSAYS:

- ❖ Remove HTML links
- * Remove HTML characters (, \n, <, >)
- Remove Punctuation
- ❖ All Lowercase

FOR ESSAYS 0, 1, 4, 5, 6, 7:

- Split essays into individual words
 - Count number of words
 - Calculate average length of words in essay

ESSAY LENGTH ASSOCIATION WITH SEX

Essay	Associated with sex?	Hypothesis Test	Significance threshold	p-value
0	yes	K-S	0.01	9.9 × 10 ⁻³⁵
I	yes	K-S	0.01	2.8×10^{-08}
4	yes	K-S	0.01	8.8×10^{-24}
5	yes	K-S	0.01	1.9 × 10 ⁻¹⁹
6	yes	K-S	0.01	9.1 × 10 ⁻¹¹
7	yes	K-S	0.01	2.3×10^{-17}

AVERAGE LENGTH OF WORDS IN ESSAYS ASSOCIATION WITH SEX

Essay	Associated with sex?	Hypothesis Test	Significance threshold	p-value
0	NO	2-Sample t-test	0.01	0.995
I	yes	2-Sample t-test	0.01	3.2×10^{-11}
4	yes	2-Sample t-test	0.01	5.9 × 10 ⁻²⁴
5	NO	2-Sample t-test	0.01	0.42
6	yes	2-Sample t-test	0.01	1.0×10^{-22}
7	yes	2-Sample t-test	0.01	0.00049

SUPERVISED MACHINE LEARNING MODELS

ORDINAL CATEGORICAL VARIABLE MAPPING

drinks:

Description	Value
not at all	0
rarely	l
socially	2
often	3
very often	4
desperately	5

drugs:

Description	V alue
never	0
sometimes	Ī
often	2

smokes:

Description	Value
no	0
when drinking	I
sometimes	2
trying to quit	3
yes	4

MULTINOMIAL NAÏVE BAYES CLASSIFICATION MODEL

MODEL 1: Essay 0 contents	only
---------------------------	------

Metric	V alue	Extremum?
Accuracy	0.715	
Precision	0.663	
Male misclassifications	0.225	YES
Female misclassifications	0.369	

MODEL 2: Contents of Essays 0, 1, 2, 3, 4, 5, 6, and 7

Metric	V alue	Extremum?
Accuracy	0.764	YES
Precision	0.680	YES
Male misclassifications	0.268	
Female misclassifications	0.190	YES

Model 2 is the better model.

K-NEAREST NEIGHBOURS CLASSIFICATION MODEL

MODEL 1: age, height, drinks, drugs, smokes, essay 0, 1, 4, 5, 6, 7 lengths, essay 1, 4, 6, 7, avg word lengths

Metric	Value
Accuracy	0.784
Precision	0.789
Male misclassifications	0.114
Female misclassifications	0.367

MODEL 2: age, height, drinks, drugs, smokes

Metric	Val ue
Accuracy	0.804
Precision	0.786
Male misclassifications	0.129
Female misclassifications	0.295

LOGISTIC REGRESSION CLASSIFICATION MODEL

age, height, drinks, drugs, smokes, essay 0, 1, 4, 5, 6, 7 lengths, essay 1, 4, 6, 7, avg word lengths

Metric	V alue	
Accuracy	0.824	
Precision	0.809	
Male misclassifications	0.117	
Female misclassifications	0.262	

SUPPORT VECTOR MACHINE CLASSIFICATION MODEL

age, height, drinks, drugs, smokes, essay 0, 1, 4, 5, 6, 7 lengths, essay 1, 4, 6, 7, avg word lengths

Metric	Value	
Accuracy	0.819	
Precision	0.752	
Male misclassifications	0.182	
Female misclassifications	0.180	

OVERALL PREDICTIVE MODEL PERFORMANCE

Model	Accuracy	Precision	Male misclassifications	Female misclassifications
Multinomial Naïve Bayes	0.764	0.680	0.268	0.190
k-Nearest Neighbours ²	0.804	0.786	0.129	0.295
Logistic Regression ¹	0.824	0.809	0.117	0.262
Support Vector Machine	0.819	0.752	0.182	0.180

I: shortest computational time

2: longest computational time

CONCLUSIONS

I. Can sex be predicted using a multinomial naïve Bayes classifier trained on OK Cupid user essay texts?

Answer: YES, but it doesn't perform as well as a supervised machine learning model trained on quantitative features.

2. Can sex be predicted using a machine learning algorithm trained on age, height, drinking habits, drug use habits, smoking habits, essay lengths, and average lengths of words in essays?

Answer: YES. Use a logistic regression classifier if higher precision is desired; use a support vector machine classifier if higher recall is desired.

ACKNOWLEDGEMENTS

This project is a Codecademy "Portfolio Project" which fulfills a requirement of the Data Science learning path.

I would like to thank Codecademy for providing the data used, as well as for hints provided in an earlier version of the project (when it was called a "Capstone Project").

Codecademy gives no indication of where they got the data from, but it stands to reason that they had to interact with OK Cupid at some point to get it. So, I would like to thank OK Cupid for the role they played in allowing Codecademy to compile the data.