TaLB - Next Section (tonight) - Klymkowsky

- Review from last time (comments / questions)
- Today: How do we make sense of biology?
 - What are core concepts (ideas) in biology?
 - How do we assess scientific understanding

Update your dossiers

- How has your thinking changed (or has it) from you original canvas response.
- After our discussion, what insights (if any) have you had that are relevant to teaching a particular topic in biology?

From "Conceptual foundation"

Evolutionary thinking & mechanisms

ms modified from Klymkowsky 2010.

- continuity of life (cell theory)
- stochasticity (noise, mutation, drift)
- selection → information generation

physics & chemistry

Molecular foundations

- thermodynamics: enthalpic & entropic factors
 - membrane assembly / protein folding
 - bond formation and catalysis
- molecular interactions (affinty, specificity & regulatory (allostery)
- molecular level effects of mutations

Network behaviors

- non-equilibrium networks
- systems behaviors (feedback/feedforward interactions)
 - homeostatic, adaptive & evolving (development) processes
 - check / decision points
 - processes: i.e. developmental, neural, immunological, ecological (pathogen/prey)

Questions or comments before group?

Week 2.3: After reading Foundational Concepts in Biology

Pre-group questions / comments

Discuss and report on

- 1) What you would add or removing from the list of core concepts necessary for understanding biological systems. and
- 2) what core concepts from "outside of biology" are essential for understanding biological systems?

Report back - Concepts

Report back - McClymer & Knowles: Ersatz Learning, inauthentic testing.

Pre-group questions / comments? (we could spend all session on this)

Figure 1 Thinking Frames: A Descriptive Model	
Information (content)	What every practitioner knows
Problem solving	Familiarity with classic questions and answers in the field
Epistemic	Mastery of styles of analysis prevalent in the field
Inquiry	Ability to undertake original research

Report back - McClymer & Knowles: Ersatz Learning, inauthentic testing.

Discuss and report on

- Describe the characteristics of an inauthentic test (and an ersatz answer)?
- Develop a short list of what every biology student should (end up) know, and why.
- Consider the premise that unless you can generate a plausible explanatory (mechanistic) model for a biological phenomena, you do not understand it.
- What are the characteristics of a plausible model?

Read: Klymkowsky & Garvin-Doxas. 2020. Concept Inventories:

Design: Application, Uses, Limitations & Next Steps

Discuss and report on

- What are the key features of a concept inventory?
- Why are distractors important?

- Are there any BCI questions would you consider "ersatz" questions and why.
- Which seem problematic to you. How might you rewrite them?

https://edstools.colorado.edu/input/i-multi.php?inv=bci&cond=0