## Change of Bons

Wi're in a bon's B and the optimality test has failed

Our cost function is 
$$\overline{c}^T = c^T - C_0^T B^T A$$

Choose 
$$h \in [1,n]$$
 | Xn is now-bosic:  $\bar{c}_h = c_h - \nu^{\intercal} \Lambda_h < 0$ 

$$C^{T}X = C_{0}^{T}B^{T}b + \underbrace{c_{0}X_{0} + \dots}_{C_{0}^{T}X_{0}}$$

Our good is to invesse Xn xina CnXn would divisose:



following the red arrow will werease the value of Xn xuce we will stay which the polyhedron

We also need to know when to stop, or we'll end up in a place with non-fearible solutions

$$X_{G} = \underbrace{B^{\dagger}b}_{\overline{b}} - \underbrace{B^{\dagger}A_{h}}_{A_{h}} \qquad \left( \begin{array}{c} \text{online oll offms} & X_{F} \neq X_{h} \text{ stay of } 0 = S \text{ froweling on} \\ \text{the edge between the two wetices} \end{array} \right)$$

$$\begin{bmatrix} X_{D[T]} \\ \vdots \\ \overline{b_{m}} \end{bmatrix} = \begin{bmatrix} \overline{b}_{1} \\ \vdots \\ \overline{b_{m}} \end{bmatrix} - \begin{bmatrix} -\overline{a}_{1}a_{m} - \\ -\overline{a}_{m}a_{m} - \end{bmatrix} \times h \qquad \left( \begin{array}{c} \text{Remember that } B[T] \text{ is the index of the} \\ \text{column in } A \text{ that's placed in } B_{1} \end{array} \right)$$

$$X_{p(i)} = \overline{b}_i - \overline{a}_{in} X_{in} \quad \forall i = 1,...,m$$
 (If  $X_{p(i)}$  increases too much we end up) outside of the polyhedron

$$Xh \in \overline{b}_i$$

(  $b \ge 0$  ( nine it's part of a bps  $X_b = \left[\frac{6}{0}b\right]$ 

>0 ( increasing from 0)

• 
$$\bar{a}_{ih} \leq 0 \implies X_h$$
 con grow forever  $\rightarrow$  unbounded  
•  $\bar{a}_{ih} < 0 \implies X_h \leq \frac{\bar{b}_i}{\bar{a}_{ih}}$ 

Coince through all i, we get different XI volves:



$$\theta = \min \left\{ \frac{\overline{b}_i}{\overline{a}_{ii}} : \overline{a}_{ii} > 0 \right\}$$

Once Xn hos reached O, there will be another veriable reaching o

$$X_{B[t]} = 0$$
 with  $t = \operatorname{argmin} \left\{ \frac{\overline{b}i}{\overline{a}i} : \overline{a}i > 0 \right\}$ 

We can now change borns to represent the vertex we've reached:

$$\mathcal{B} = \begin{bmatrix} A_{\beta C i 3} & \cdots & A$$

## Pseudocode for the simplex method

- 1) lubolization: find a starting feasible basis B=[April April]
- 2) Optimolity test:

with 
$$\mu^{T} := C_{0}^{T} B^{-1}$$

if  $C_{0}^{T} = C_{0}^{T} - \mu^{T} A > 0$ , then we found our optimal solution  $x = \begin{bmatrix} g^{-1}b \\ 0 \end{bmatrix}$  else drange boxis

3) Change of boxis:

choose 
$$\overline{c}_{h}$$
 from  $\overline{c}^{T}$  s.t.  $\overline{c}_{h} = \overline{c}_{h} - \mu^{T} Ah < 0$ 

"Xh wouts to enter the bonds"

 $t := \underset{i}{\overline{b}_{ih}} : \overline{e}_{ih} > 0$ 
,  $\overline{b} = \overline{B}^{T} b$ ,  $\overline{A}h = \overline{B}^{T} Ah$ 
 $t := \underset{i}{\overline{e}_{ih}} : \overline{e}_{ih} > 0$ 
, if  $\delta \rightarrow uhounded$  problem

"Xp(t) must have the bon's to let Xh enter" repeat step 2