C	onte	GUC German University in Cairo الجامعة الألمانية بالقامرة		8	Num 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	Extended Mood Line Mood Sieve Print Eule	ended GCD		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0							cerete Logarithm		$\frac{2}{2}$
1							t Fourier-Transform		2
	1.1	Primitives	2		8.13	Tor	toise & Hare		2
	1.2	Intersections	2	_	a	,			
	1.3	Circle Generation	2	9	Sea i 9.1		ary Search		3 3
	1.4	Heron Triangle Area	2		$9.1 \\ 9.2$		nary Search		3
	1.5	Polygon Centroid	2		0.2	1011	mary godfor		9
	1.6	Point In Polygon	2	10	Stri				3
	1.7 1.8	Convex Hull	$\frac{2}{2}$				Corasick		3
	1.9	Voronoi Diagrams	2				hing		3
	1.9	Volumoi Diagrams	2				P		$\frac{3}{3}$
2	3D Geometry			F	Probl		Tags	• •	
	2.1	Primitives	2	0	1 A		0		
	2.2	Convex Hull	2	0	2 B				
	2.3	Great Circle Distance	2		3 C				
					4 D				
3			2		5 E 6 F				
	3.1	Basics	2		ог 7 G				
4	Data Structures		2		8 H				
_	4.1	Palindromic Tree	2		9 I				
	4.2	Treap	2	1	0 J				
	4.3	Sparse Array	2		1 K				
	4.4	Skip Lists	2		2 L				
				_ 1	3 M				
5		ne Theory	2		lime	7.7	Cooting Description	Che	.al.
	5.1	Nim Game	2		30		leeting Description l Problems Read. Write Tags.	CIR	eck
	5.2	Grundy Numbers	2		50 60		ce Decided. Choose Coder.		
6	Gra	ph Theory	2		20		ecide & Order Solveable Problems		
U	6.1	Articulation Points & Bridges	2	1	50	St	atus Check		
	6.2	SCC	2	1	80		atus Check		
	6.3	2-SAT	2		10		atus Check		
	6.4	Edmonds-Karp Max Flow	2		40		atus Check		
	6.5	Dinic's Max Flow	2	$\lfloor 2$	70	St	atus Check		
	6.6	Min-Cist Max Flow	2						
	6.7	Euler Cycles	2						
	6.8	Maximum Matching	2						
	6.9	HL Decomposition	2						
_	т.	D .	•						
7		ear Programming	2						
	7.1	Simplex	2						

1 2D Geometry

1.1 Primitives

```
typedef complex<double> point;
  struct circle {
    point c; double r;
    circle(point c, double r):c(c),r(r){}
    circle(){}
  double cross(const point &a, const point &b) {
    return imag(conj(a)*b);
10 double dot(const point &a, const point &b) {
    return real(conj(a)*b);
12
```

1.2 Intersections

```
1 // Line - Line
2 // Line - Segment
3 // Segment - Segment
4 // Circle - Line
5 // Circle - Segment
6 // Circle - Circle
 // Line - Point
8 // Segment - Point
```

1.3 Circle Generation

```
1 // From 3 Points
2 // From 1 Line 2 Points
3 // From 2 Lines 1 Point
4 // From 3 Lines
```

1.4 Heron Triangle Area

1.5 Polygon Centroid

```
1 for(int i = 1; i < n-1; i++) {</pre>
    pt ai = pts[i] - pts[i-1],
ib = pts[i+1] - pts[i];
     area += (conj(ai)*ib).imag();
4
```

- 1.6 Point In Polygon
- 1.7 Convex Hull
- 1.8 Line Segment Set Intersection
- 1.9 Voronoi Diagrams
- 2 3D Geometry
- 2.1 Primitives
- 2.2 Convex Hull
- 2.3 Great Circle Distance
- 3 Combinatorics
- 3.1 Basics

```
1 // catalan numbers
2 long long C(int n) {
    return (C(n-1)*2*n*(2*n-1))/(n*(n+1));
return NCR(2*n, n) - NCR(2*n, n+1);
return NCR(2*n, n)/(n+1);
6
8 // derangements
9 long long D(int n) {
10
    return n*D(n-1) + pow(-1, n);
11
     return (n-1) * (D(n-1) + D(n-2));
12
13
   // iterate over all the subsets with no more than m
        elements
   for (int i = 0; i < (1<<n); i=Integer.bitCount(i) < m ? i</pre>
        +1 : (i|(i-1))+1)
  // iterate over all the subsets
17
18 for (int i=0; i < (1<<n); i++)
        // iterate over all the subsets of the i-th subset
19
                                                                     11
       for(int i2 = i; i2 > 0; i2 = (i2-1) & i)
                                                                     12
```

// generate the subset induced by i2

4 Data Structures

- 4.1 Palindromic Tree
- 4.2 Treap
- Sparse Array 4.3
- 4.4 Skip Lists

5 Game Theory

- 5.1 Nim Game
- 5.2 Grundy Numbers

6 Graph Theory

- 6.1 Articulation Points & Bridges
- 6.2 SCC
- 6.3 2-SAT
- 6.4 Edmonds-Karp Max Flow
- 6.5 Dinic's Max Flow
- 6.6 Min-Cist Max Flow
- 6.7 Euler Cycles
- 6.8 Maximum Matching
- 6.9 HL Decomposition

7 Linear Programming

7.1 Simplex

8 Number Theory

- 8.1 Extended GCD
- 8.2 Modular Inverse
- 8.3 Modular Linear Equation
- 8.4 Linear Diophantine Equation
- 8.5 Modular Powers
- 8.6 Sieve of Eratosthenes
- 8.7 Primality Testing & Factoring
- 8.8 Euler Phi
- 8.9 Chinese Remainder
- 8.10 Discerete Logarithm
- 8.11 Gaussian Elimination
- 8.12 Fast Fourier-Transform

```
1 double* GaussianElimination(int N, double **mat) {
     int i, j, k, L; double t;
for (i = 0; i < N - 1; i++)</pre>
 2
        L = i;
 4
        for (j = i + 1; j < N; j++)
  if (fabs(mat[j][i]) > fabs(mat[L][i]))
 6
        L = j;
for (k = i; k <= N; k++)
 9
        swap(mat[i][k], mat[L][k]);
        for (j = i + 1; j < N; j++)
10
           for (k = N; k >= i; k--)
11
             mat[j][k] = (mat[i][k] * mat[j][i]) / mat[i][i];
12
13
      double *res = new double[N];
14
      for (j = N - 1; j >= 0; j--) {
  for (t = 0.0, k = j + 1; k < N; k++)</pre>
        t += mat[j][k] * res[k];
17
        res[j] = (mat[j][N] - t) / mat[j][j];
18
19
      return res;
```

8.13 Tortoise & Hare

```
// mu = start of cycle, lambda = cycle length
     ii floyd(int x0) {
     int tortoise = f(x0), hare = f(f(x0));
      while (tortoise != hare)
       tortoise = f(tortoise), hare = f(f(hare));
     int mu = 0; hare = x0;
while (tortoise != hare)
     tortoise = f(tortoise), hare = f(hare), mu++;
int lambda = 1; hare = f(tortoise);
      while(tortoise != hare)
       hare = f(hare), lambda++;
     return ii(mu, lambda);
13 }
```

9

9 Search

- 9.1 Binary Search
- 9.2 Ternary Search

```
long double min() {
long double lo = -le6, hi = le6, res = 3e6;
while(fabs(lo-hi) > EPS) {
long double left = (hi-lo)/3 + lo, right = (2*(hi-lo))/3 + lo;
long double resL = F(left), resR = F(right);
long double resL = F(left), resR = F(right);
lif(resL < resR)
hi = right;
lo = left;
res = min(res, min(resL, resR));
return res;
}
return res;
</pre>
```

10 Strings

- 10.1 Aho Corasick
- 10.2 Hashing
- 10.3 KMP
- 10.4 Suffix Array