CC1-S1

2017-2018

– Correction - Algèbre –

Exercice 1

Première partie

Soit $n \in \mathbb{N}^*$ et $T \in \mathbb{C}[X]$ tel que $\operatorname{deg}(\mathbf{T}) = n$.

Si $P \in \mathbb{C}[X]$, on rappelle que la division euclidienne de $P(X^2)$ par T donne l'unique couple de polynômes (Q,R)tel que

$$P(X^2) = QT + R$$
 et $\deg(R) < \deg(T)$

Soit alors f l'application définie par :

$$\forall P \in \mathbb{C}[X], \quad f(P) = Q + XR$$

avec Q et R précédemment définis.

1. Montrer que f est un endomorphisme de $\mathbb{C}[X]$.

f est clairement une application de $\mathbb{C}[X]$ dans $\mathbb{C}[X]$.

Soient P_1, P_2 dans $\mathbb{C}[X]$, et $\lambda \in \mathbb{C}$.

On a :
$$\begin{cases} P_1(X^2) = Q_1T + R_1 & \text{et} & \deg(R_1) < \deg(T) \\ P_2(X^2) = Q_2T + R_2 & \text{et} & \deg(R_2) < \deg(T) \end{cases}$$
 donc :
$$(\lambda P_1 + P_2)(X^2) = (\lambda Q_1 + Q_2)T + (\lambda R_1 + R_2), \text{ et} \deg(\lambda R_1 + R_2) < \deg(T), \text{ ce qui représente la division}$$

euclidienne de $\lambda P_1 + P_2(X^2)$ par T.

On a donc: $f(\lambda P_1 + P_2) = (\lambda Q_1 + Q_2) + X(\lambda R_1 + R_2) = (\lambda Q_1 + XR_1) + Q_2 + XR_2 = \lambda f(P_1) + f(P_2)$. f est donc bien un endomorphisme de $\mathbb{C}[X]$.

- **2.** Montrer que $\mathbb{C}_n[X]$ est stable par f. On note alors f_n l'endomorphisme induit. Soit $P \in \mathbb{C}_n[X]$, alors $P(X^2) \in \mathbb{C}_{2n}[X]$ et comme $P(X^2) = QT + R$ avec $\deg(R) < \deg(T)$ et $\deg(T) = n$, on en déduit que $Q \in \mathbb{C}_n[X]$ et $XR \in \mathbb{C}_n[X]$. Enfin, $f(P) = Q + XR \in \mathbb{C}_n[X]$.
- **3.** Dans cette question uniquement, n=2 et $T=X^2$.
 - a. Montrer que la matrice A de f_2 dans la base canonique de $\mathbb{C}_2[X]$ est :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Si
$$P = X$$
, alors $P(X^2) = X^2 = 1.T + 0$ donc $Q = 1$ et $R = 0$, puis $f_2(X) = 1 + X.0 = 1$.

Si
$$P = 1$$
, alors $P(X^2) = 0.T + 1$ donc $Q = 0$ et $R = 1$, puis $f_2(1) = 0 + X.1 = X$.
Si $P = X$, alors $P(X^2) = X^2 = 1.T + 0$ donc $Q = 1$ et $R = 0$, puis $f_2(X) = 1 + X.0 = 1$.
Si $P = X^2$, alors $P(X^2) = X^4 = X^2.T + 0$ donc $Q = X^2$ et $R = 0$, puis $f_2(X^2) = X^2 + X.0 = X^2$.

On a donc bien $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

De manière générale, si $P = a + bX + cX^2$ alors $P(X^2) = a + bX^2 + cX^4 = (b + cX^2)X^2 + a$, donc $Q = b + cX^{2}$ et R = a, puis $f_{2}(P) = b + cX^{2} + X \cdot a = b + aX + cX^{2}$.

- **b.** Calculer A^2 . En déduire que f_2 est bijective et donner son application réciproque.
- $A^2 = I_3$, donc $f_2 \circ f_2 = \operatorname{Id}_{\mathbb{C}_2[X]}$; ainsi f_2 est bijective, et $f_2^{-1} = f_2$.
- c. Préciser la nature de f_2 , ainsi que ses caractéristiques géométriques. On sait que $f_2 \circ f_2 = \mathrm{Id}_{\mathbb{C}_2[X]}$, donc f_2 est une symétrie.

$$\operatorname{Ker}(A - \operatorname{I}_3) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right) \text{ et } \operatorname{Ker}(A + \operatorname{I}_3) = \operatorname{Vect}\left(\begin{pmatrix} 1\\-1\\0 \end{pmatrix}\right).$$

Ainsi, f_2 est la symétrie par rapport à $Vect(1+X,X^2)$ parallèlement à Vect(1-X).

Spé PT Page 1 sur 2

Deuxième partie

Soit $a \in \mathbb{C}$. Dans cette partie, n = 3 et $T = X^3 + X^2 + a$.

1. Montrer que la matrice B de f_3 dans la base canonique de $\mathbb{C}_3[X]$ est :

$$B = \begin{pmatrix} 0 & 0 & -1 & -a-1 \\ 1 & 0 & a+1 & 1+a+a^2 \\ 0 & 0 & -a & -a-1 \\ 0 & 1 & 1 & 2a+2 \end{pmatrix}$$

On admettra le résultat de la quatrième colonne.

 ${\bf 2.}\,$ Déterminer les valeurs de a pour les quelles l'application f_3 n'est pas bijective.

$$B = \begin{pmatrix} 0 & 0 & -1 & -a-1 \\ 1 & 0 & a+1 & 1+a+a^2 \\ 0 & 0 & -a & -a-1 \\ 0 & 1 & 1 & 2a+2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & a+1 & 1+a+a^2 \\ 0 & 1 & 1 & 2a+2 \\ 0 & 0 & -1 & -a-1 \\ 0 & 0 & -a & -a-1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & a+1 & 1+a+a^2 \\ 0 & 1 & 1 & 2a+2 \\ 0 & 0 & -1 & -a-1 \\ 0 & 0 & 0 & a^2-1 \end{pmatrix}$$

B est inversible si, et seulement si $\operatorname{rg}(B)=4$ ce qui équivaut à $a\notin\{-1,1\}.$

Ainsi, f_3 est non bijective si, et seulement si $a \notin \{-1, 1\}$.

3. Dans cette question uniquement, a = -1.

a. Déterminer une base du noyau puis de l'image de f_3 .

Si
$$a = -1$$
, alors $B = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$ et $Ker(B) = Vect \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix}$ d'où $Ker(f_3) = Vect(1 - X^3)$.

Le théorème du rang donne $\dim(\operatorname{Im}(f_3)) = 3$. La première et la dernière colonne de B étant identiques, les trois premières colonnes forment une famille libre de vecteurs, et on a :

 $\operatorname{Im}(f_3) = \operatorname{Vect}(X, X^3, -1 + X^2 + X^3).$

b. Le noyau et l'image de f_3 sont-ils supplémentaires? On concatène une base de $\text{Im}(f_3)$ et une base de $\text{Ker}(f_3)$. On obtient la famille

$$\{1-X^3, X, X^3, -1+X^2+X^3\} \text{ dont la matrice dans la base canonique de } \mathbb{C}_3[X] \text{ est } \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 1 \end{pmatrix};$$

un très rapide pivot de Gauss donne cette matrice de rang 4.

On en déduit que le noyau et l'image de f_3 sont supplémentaires dans $\mathbb{C}_3[X]$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 2 sur 2