00	3 1 000	Análicic	Matem	ático	Ш	Examen	final	00
€Ð.	3.1.007.	AHGIISIS	Malen	ialico	111.	EXCITION	IIIIai	60

Apellido y Nombre:

22 2 ½ horas 22

LN:

Los cinco puntos de este examen son de complejidad comparable; procure regular el tiempo de que dispone para resolverlos. La condición suficiente de aprobación es la presentación escrita, clara y prolijamente organizada, de la resolución completa, detallada y justificada, sin errores algebraicos, con los gráficos representados correctamente (esto es con la identificación de todos sus objetos, incluyendo ejes y orientación), de tres puntos cualesquiera. No son tenidos en cuenta cálculos dispersos, o poco claros, o sin justificaciones. ¡Suerte!

\$\$ 2 ½ horas \$\$

- (a) Determinar la expresión analítica de las trayectorias ortogonales a la familia de curvas dada por $x = \alpha y^2$, con α tomando todos los valores reales, y determinar la única curva C de esa familia (la de las trayectorias ortogonales) que pasa por el punto $P_0 = (1, 2)$. Graficar ambas familias, poniendo en evidencia la ortogonalidad entre ambas.
- (b) Calcular la circulación de $\bar{f}: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\bar{f}(x,y) = (2x + y + xy e^{xy} + e^{xy}, x^2 e^{xy} + 2y + 3x)_{\mathcal{O}}$ lo largo de la curva C obtenida en (a), orientada de modo que su velocidad en el punto P_0 tiene componente x positiva.
- (a) Siendo $\mathbf{L}[f(t)] = F(p) = \int_0^\infty e^{-pt} f(t) \, dt$ la Transformada de Laplace de la función escalar f, probar que $\mathbf{L}[f(t-a)U(t-a)] = e^{-ap}.F(p)$ detallando las justificaciones correspondientes.
- (b) Hallar dos funciones escalares continuas x = x(t), y = y(t) tales que $\begin{cases} \dot{x} y = f(t) \\ \dot{y} + x = 0 \end{cases}$, x(0) = y(0) = 00 siendo $f(t) = \begin{cases} 0 & \text{si } 0 \le t < 5 \\ 3 & \text{si } t \ge 5 \end{cases}$
 - (a) Determinar el flujo del campo vectorial $\bar{f}: \mathbf{R}^2 \to \mathbf{R}^2 tal \ que \ \bar{f}(x,y,z) = (xz+y^2\cos(z),1+z-yz,2z+x^2)$ a través de la superficie $S = \{(x,y,z) \in R^2: x^2+y^2+z^2=2y,y\leq 1\}$. (Graficar la superficie S, estableciendo explícitamente una orientación).
 - (b) Determinar la única función $x:I\to \mathbf{R}$ tal que $\sin^2(t)\dot{x}+2\sin(t)\cos(t)x=1-\cos(t)$, $x\left(\frac{\pi}{2}\right)=1$. Indicar claramente el intervalo I en el que está definida la solución del problema de valor inicial.
 - Sea el campo vectorial $\bar{f}: \mathbf{R}^2 \to \mathbf{R}^2$ tal que $\bar{f}(x,y) = (\sin(x^2y) + 2x^2y\cos(x^2y), x^3\cos(x^2y))$ sea C el arco de curva contenido en la gráfica de la solución del problema de valor inicial $\frac{dy}{dx} + 2xy^2 = y^2\sin(x), y(0) = \frac{1}{2}$, entre el punto $P_1 = (0, \frac{1}{2})$, y el punto $P_2 = (\pi, y(\pi))$. Calcular la circulación del campo a lo largo de la curva así orientada.
- (a) Graficar el macizo $\mathcal{M} = \{(x,y,z) \in \mathbb{R}^3: \sqrt{x^2 + y^2} \le z \le 4 \sqrt{x^2 + y^2}, x^2 + y^2 \le 9\}$ y calcular su volumen.
 - (b) Graficar la superficie $S = \{(x,y,z) \in \mathbb{R}^3: z+x=2, x^2+y^2 \le 2x\}$ y calcular su área. $\mathbb{R}^3 \ge 2 \frac{1}{2}$ horas \mathbb{R}^3