Chapter 2. Knowledge and Reasoning [Knowledge-based / Logical Agent]

Topic 2.1 Knowledge representation and reasoning with Propositional Logic (PL)

a) PL

- PL is a language for representing Knowledge Bases (KBs)
- It is also used for reasoning/<u>inference</u> / answering queries to KBs.
- It is one of the simplest languages for the purposes.

b) Inference in PL

- To infer means to derive a new sentence from some old ones.
- Forward and backward chaining algorithms are used for easy inference.

11/21/2022

c) Assumptions for working with PL

- KB contains only Horn clauses (definite clauses)
- Clause: disjunction of literals
- Horn clause: clause with at most one positive literal

d) Example of executing the forward chaining algorithm

Execution:

Query: KB | M? KB:

Α

B C

 $P \Rightarrow Q$

 $C \wedge L \Rightarrow P$

 $D \wedge M \Rightarrow P$

 $B \wedge L \Rightarrow M$

 $A \wedge P \Rightarrow L$

 $A \wedge B \Rightarrow L$

 $A \wedge D \Rightarrow G$

 $G \wedge B \Rightarrow C$

```
Query: KB ⊨ M ?
KB:
Α
B
C
                                 Execution:
                                     M is not found in KB.
P \Longrightarrow Q
C \wedge L \Rightarrow P
D \wedge M \Rightarrow P
                                 ii)
                                               A
B \wedge L \Rightarrow M
                                                                            F
                                                                                      L, [Added to KB]
A \wedge P \Rightarrow L
                                                B
A \wedge B \Rightarrow L
                                               A \wedge B \Rightarrow L
A \wedge D \Rightarrow G
G \wedge B \Rightarrow C
                                 iii)
                                               A
                                                                            F
                                               D
                                                                                      G, [Added to KB]
                                               A \wedge D \Rightarrow G
```

B

L

 $B \wedge L \Rightarrow M$

F

v) M is found in KB.

iv)

M, [Added to KB]

```
Query: KB | M?
KB:
```

Α

В

 $P \Rightarrow Q$

$$\mathsf{C} \wedge \mathsf{L} \Longrightarrow \mathsf{P}$$

$$\mathsf{D} \wedge \mathsf{M} \Longrightarrow \mathsf{P}$$

$$B \wedge L \Rightarrow M$$

$$\mathsf{A} \wedge \mathsf{P} \Longrightarrow \mathsf{L}$$

$$A \wedge B \Rightarrow L$$

$$\mathsf{A} \wedge \mathsf{D} \Longrightarrow \mathsf{G}$$

$$G \wedge B \Rightarrow C$$

Execution:

i) M is not found in KB.

ii) A B
$$\models$$
 L, [Added to KB] A \land B \Rightarrow L

e) Characteristics of a typical forward chaining algorithm

- ❖ It is called a <u>data driven</u> algorithm
- \diamond Query \rightarrow data search \rightarrow premise \rightarrow conclusion \rightarrow conclusion added to KB \rightarrow data search ... until found or KB exhausted

f) Example of executing the backward chaining algorithm

KB (same):

A $A \land P \Rightarrow L$ Query: KB $\models M$?

A $\land B \Rightarrow L$

 $\begin{array}{ccc}
B & A \land B \Rightarrow L \\
A \land D \Rightarrow G
\end{array}$

 D $\mathsf{G} \wedge \mathsf{B} \Rightarrow \mathsf{C}$

 $P \Rightarrow Q$

 $C \wedge L \Rightarrow P$

 $D \wedge M \Rightarrow P$

 $B \wedge L \Rightarrow M$

☐ Characteristics of a typical backward chaining algorithm

- ❖ A backward chaining algorithm is called a goal oriented algorithm.
- ❖ Query → goal → conclusion → premise → subgoal → conclusion → premise → subgoal → backtracking → ... until proved or KB exhausted

Example:

KB:

- 1. A
- 2. B
- 3. C
- 4. D
- 5. $P \Rightarrow Q$
- 6. $C \wedge L \Rightarrow P$
- 7. $D \wedge M \Rightarrow P$
- 8. $B \wedge L \Rightarrow M$
- 9. $A \wedge P \Rightarrow L$
- 10. $A \wedge B \Rightarrow L$
- 11. $A \wedge D \Rightarrow G$
- 12. $G \wedge B \Rightarrow C$

Query: KB = M?

- 1. ? M
- 2. $B \wedge L \Rightarrow M$, Found in KB
- 3. $?B \wedge L$
- 4. ? B ? L
- 5. B, Found in KB
- 6. ? L
- 7. $A \wedge P \Rightarrow L$, Found in KB; Alternatives are there
- 8. $?A \wedge P$
- 9. ? A ? P
- 10. A, Found in KB
- 11. ? P
- 12. $C \wedge L \Rightarrow P$, Found in KB; Alternatives are there
- 13. ? C ∧ L
- 14. ? C ?L
- 15. C, Found in KB
- 16. ? L [Backtrack needed; See step 6]

Example:

KB:

- 1. A
- 2. B
- 3. C
- 4. D
- 5. $P \Rightarrow Q$
- 6. $C \wedge L \Rightarrow P$
- 7. $D \wedge M \Rightarrow P$
- 8. $B \wedge L \Rightarrow M$
- 9. $A \wedge P \Rightarrow L$
- 10. $A \wedge B \Rightarrow L$
- 11. $A \wedge D \Rightarrow G$
- 12. $G \wedge B \Rightarrow C$

Query: $KB \models M$?

12₁. D \wedge M \Rightarrow P, Found in KB

13₁. ? D ∧ M

14₁. ? D ? M

15₁. D, Found in KB

16₁. ? M [Backtrack needed; See step 1]

 7_1 . A \wedge B \Rightarrow L, Found in KB

 8_1 . ? A \wedge B

9₁. ?A ?B

10₁. A, Found in KB

11₁. B, Found in KB

[Proved]