INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

MÁQUINAS DE ESTADOS FINITOS E LINGUAGENS

8.1) Linguagens

8.2) Máquinas de Estados Finitos

8.3) Monóides, Máquinas e Linguagens

- Determinar se uma string pertence à linguagem de uma dada gramática é, em geral, difícil
 - (em alguns casos é até impossível).
- Mas as gramáticas e linguagens regulares possuem propriedades que permitem construir um "reconhecedor" de strings.

- Uma máquina é um sistema que:
 - pode aceitar entradas ("input")
 - pode produzir saída ("output")
 - possui algum tipo de memória interna
 - capaz de "rastrear" informações sobre inputs anteriores

- Uma máquina é um sistema que:
 - pode aceitar entradas ("input")
 - pode produzir saída ("output")
 - possui algum tipo de memória interna
 - capaz de "rastrear" informações sobre inputs anteriores
- A qualquer momento em particular:

condição interna da máquina = estado desta máquina + sua memória naquele momento

- O estado de uma máquina a qualquer instante resume a sua memória de inputs passados
 - e determina como ela vai reagir a inputs subsequentes

- O estado de uma máquina a qualquer instante resume a sua memória de inputs passados
 - e determina como ela vai reagir a inputs subsequentes
- Quando chega mais input, o estado atual da máquina determina, junto com o próprio input:
 - o próximo estado a ser ocupado
 - qualquer output que possa ser produzido

- O estado de uma máquina a qualquer instante resume a sua memória de inputs passados
 - e determina como ela vai reagir a inputs subsequentes
- Quando chega mais input, o estado atual da máquina determina, junto com o próprio input:
 - o próximo estado a ser ocupado
 - qualquer output que possa ser produzido
- Se o número destes estados é finito, esta é uma máquina de estados finitos.

- $m{ ilde S}$ Sejam os conjuntos finitos $m{S} = \{ m{s_0}, m{s_1}, \dots, m{s_n} \}$ e $m{I}$:
 - $m{ ilde{}}$ para cada $x \in I$, seja uma função $m{f_x}: S
 ightarrow S$
 - $m{ ilde{ ilde{F}}}$ seja: $m{\mathcal{F}}=\{f_x|x\in I\}$

- lacksquare Sejam os conjuntos finitos $S = \{s_0, s_1, \dots, s_n\}$ e I:
 - $m{ ilde{}}$ para cada $x\in I$, seja uma função $m{f_x}:S o S$
 - $m{ ilde{}}$ seja: $m{\mathcal{F}}=\{f_x|x\in I\}$
- ullet A tripla (S, I, \mathcal{F}) é chamada de máquina de estados finitos:
 - S é o conjunto de estados
 - os elementos de S são chamados de estados
 - I é chamado de conjunto de entradas (inputs) da máquina

- ullet Sejam os conjuntos finitos $S = \{s_0, s_1, \dots, s_n\}$ e I:
 - $m{ ilde{}}$ para cada $x\in I$, seja uma função $m{f_x}:S o S$
 - $m{ ilde{}}$ seja: $m{\mathcal{F}}=\{f_x|x\in I\}$
- \blacksquare A tripla (S, I, \mathcal{F}) é chamada de máquina de estados finitos:
 - S é o conjunto de estados
 - os elementos de S são chamados de estados
 - I é chamado de conjunto de entradas (inputs) da máquina
 - para cada input $x \in I$:

 - é a chamada função de transição de estados

- Se a máquina está no estado s_i e o input x ocorre:
 - ullet o próximo estado da máquina vai ser $f_x(s_i)$
- Uma vez que o próximo estado é determinado de maneira única pelo par (s_i, x) :
 - existe uma função $F: S \times I \rightarrow S$ dada por:

$$F(s_i, x) = f_x(s_i)$$

- Por esta razão:
 - alguns autores usam uma função $F: S \times I \to S$ em vez de um conjunto $\{f_x | x \in I\}$ para definir uma M.E.F.
 - as definições são completamente equivalentes.

- **Exemplo 1:** sejam $S = \{s_0, s_1\}$ e $I = \{0, 1\}$.
 - Defina f_0 e f_1 como:

$$f_0(s_0) = s_0$$
 $f_1(s_0) = s_1$ $f_0(s_1) = s_1$ $f_1(s_1) = s_0$

- **Exemplo 1:** sejam $S = \{s_0, s_1\}$ e $I = \{0, 1\}$.
 - Defina f_0 e f_1 como:

$$f_0(s_0) = s_0$$
 $f_1(s_0) = s_1$ $f_0(s_1) = s_1$ $f_1(s_1) = s_0$

- Esta M.E.F. possui dois estados (s_0 e s_1)
 - e aceita dois inputs (0 e 1)

- **Exemplo 1:** sejam $S = \{s_0, s_1\}$ e $I = \{0, 1\}$.
 - Defina f_0 e f_1 como:

$$f_0(s_0) = s_0$$
 $f_1(s_0) = s_1$ $f_0(s_1) = s_1$ $f_1(s_1) = s_0$

- Esta M.E.F. possui dois estados (s_0 e s_1)
 - e aceita dois inputs (0 e 1):
 - 0: deixa os estados fixos
 - 1: reverte os estados

A máquina do exemplo anterior pode servir como um modelo para o dispositivo lógico a seguir:

- em um dado momento, sinais de saída consistem de duas voltagens, uma mais alta do que a outra
 - ou a linha 1 vai estar em voltagem mais alta e a 2 em mais baixa (s_0) ou o reverso (s_1)

A máquina do exemplo 1 pode servir como um modelo para o dispositivo lógico a seguir:

- Um pulso na entrada ("1") reverte as voltagens de saída.
- O símbolo ("0") representa ausência de sinal na entrada e não resulta em modificação da saída
- Dispositivo frequentemente chamado de flip-flop
 - realização concreta da máquina do exemplo.

Esta máquina pode ser resumida como:

- inputs estão listados no topo
- coluna: função correspondente ao input
- Esta é a tabela de transição de estados da M.E.F.
 - modo conveniente de especificar a máquina.

Exemplo 2: Seja a tabela de transição de estados:

	\boldsymbol{a}	b
s_0	s_0	s_1
s_1	s_2	s_0
s_2	s_1	s_2

Esta tabela mostra que:

$$f_a(s_0) = s_0, \quad f_a(s_1) = s_2, \quad f_a(s_2) = s_1$$

e também que:

$$f_b(s_0) = s_1, \quad f_b(s_1) = s_0, \quad f_b(s_2) = s_2 \quad \Box$$

- Seja M uma M.E.F. com estados S, inputs I e funções de transição de estado $\{f_x|x\in I\}$.
- ullet Relação (natural) $oldsymbol{R_M}$ sobre $oldsymbol{S}$:
 - ullet sejam $s_i, s_j \in S$
 - ullet dizemos que $s_i R_M s_j$ se há um input x tal que:

$$f_{\mathbf{x}}(s_i) = s_j$$

• $s_i R_M s_j$ significa que, se a máquina está no estado s_i , $\exists x \in I$ tal que, se recebido em seguida, coloca a máq. no estado s_i

- Seja M uma M.E.F. com estados S, inputs I e funções de transição de estado $\{f_x|x\in I\}$.
- ullet Relação (natural) $oldsymbol{R_M}$ sobre $oldsymbol{S}$:
 - ullet sejam $s_i, s_j \in S$
 - ullet dizemos que $s_i R_M s_j$ se há um input x tal que:

$$f_{\mathbf{x}}(s_i) = s_j$$

- $s_i R_M s_j$ significa que, se a máquina está no estado s_i , $\exists x \in I$ tal que, se recebido em seguida, coloca a máq. no estado s_j
- $m{P}_{M}$ permite descrever M como um dígrafo:
 - cada aresta é rotulada pelo conjunto de todos os inputs que fazem com que a máquina mude estados como indicado.

Exemplo 3: Dígrafo da relação R_M para a máquina do exemplo 2:

	\boldsymbol{a}	b
s_0	s_0	s_1
s_1	s_{2}	s_0
s_{2}	s_1	s_{2}

Exemplo 4: Dígrafo da relação R_M para a máquina M da tabela dada:

	$oldsymbol{a}$	b	\boldsymbol{c}
s_0	s_0	s_0	s_0
s_1	s_{2}	s_3	s_{2}
s_2	s_1	s_0	s_3
s_3	s_3	s_{2}	s_3

- Note que uma aresta pode ser rotulada por mais do que um input.
 - Vários inputs podem causar a mesma mudança de estado.

Além disto: todo input deve rotular exatamente uma aresta saindo de cada estado.

- Pode-se adicionar diversos recursos extras a uma M.E.F. para aumentar a utilidade do conceito.
- Uma extensão simples e muito útil leva à chamada Máquina de Moore (ou "máquina reconhecedora").

- Pode-se adicionar diversos recursos extras a uma M.E.F. para aumentar a utilidade do conceito.
- Uma extensão simples e muito útil leva à chamada Máquina de Moore (ou "máquina reconhecedora").
- A máquina de Moore é definida como $(S, I, \mathcal{F}, s_0, T)$, aonde:
 - (S, I, \mathcal{F}) é uma Máquina de Estados Finitos.
 - $oldsymbol{s_0} \in S$: é o estado de partida de M
 - condição da máquina antes de receber qualquer input
 - $T \subseteq S$: conjunto de estados de aceitação de M
 - conexão com reconhecimento de linguagens

MÁQUINAS DE MOORE

- No dígrafo de uma máquina de Moore, os estados de aceitação têm dois círculos concêntricos.
- O estado de partida não recebe notação especial
 - mas normalmente será o so.

MÁQUINAS DE MOORE

Exemplo 5: Dígrafo da máq. de Moore $(S, I, \mathcal{F}, s_0, T)$, aonde (S, I, \mathcal{F}) é a máq. do exemplo 4 e $T = \{s_1, s_3\}$:

- Seja $M = (S, I, \mathcal{F})$ uma M.E.F. e R uma relação de equivalência sobre S:
 - dizemos que R é uma congruência de máquina sobre M se:

$$\forall s, t \in S, \ s R t \Rightarrow f_x(s) R f_x(t), \ \forall x \in I$$

 "pares equivalentes de estados são levados para pares equivalentes de estados por todo input em I"

- Se R é uma congruência de máquina sobre $M = (S, I, \mathcal{F})$:
 - ullet definimos $\overline{S}=S/R$ como a partição de S correspondente a R
 - ullet então: $\overline{S}=\{[s]\mid s\in S\}$

- Se R é uma congruência de máquina sobre $M = (S, I, \mathcal{F})$:
 - ullet definimos $\overline{S}=S/R$ como a partição de S correspondente a R
 - então: $\overline{S} = \{[s] \mid s \in S\}$
- ullet Para todo input $x\in I$, definimos a relação $\overline{f_x}$ sobre \overline{S} :

$$\overline{f_x} = \{ ([s], [f_x(s)]) \}$$

- ullet de modo que a relação $\overline{f_x}$ é uma função de \overline{S} para S
 - ullet e podemos escrever: $\overline{f_x}([s]) = [f_x(s)]$

- lacksquare A tripla $\overline{M}=(\overline{S},I,\overline{\mathcal{F}})$, aonde $\overline{\mathcal{F}}=\{\overline{f_x}\mid x\in I\}$, é uma M.E.F..
 - ullet é o chamado quociente de $oldsymbol{M}$ correspondente a $oldsymbol{R}$
 - ullet denotamos \overline{M} por M/R
- Em geral, as máquinas quociente são mais simples do que as originais.
 - é frequentemente possível encontrar uma máq. quociente mais simples que substitui a original para alguns propósitos.

Exemplo 6: Seja M uma M.E.F. com tabela de transição de estados sobre $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$ dada por:

	$\mid a \mid$	\boldsymbol{b}
s_0	s_0	s_4
s_1	s_1	s_0
s_2	s_2	s_4
s_3	s_5	s_{2}
s_4	s_4	s_3
s_5	s_3	s_2

- **Exemplo 6:** Seja *M* uma M.E.F. sobre $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$:
 - ullet e seja a $oldsymbol{R}$ a relação de equivalência sobre $oldsymbol{S}$ cuja matriz é:

- **Exemplo 6:** Seja M uma M.E.F. sobre $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$:
 - então temos $S/R = \{[s_0], [s_1], [s_4]\}$, aonde:

$$[s_0] = \{s_0, s_2\} = [s_2]$$

 $[s_1] = \{s_1, s_3, s_5\} = [s_3] = [s_5]$
 $[s_4] = \{s_4\}$

- **Exemplo 6:** Seja M uma M.E.F. sobre $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$:
 - então temos $S/R = \{[s_0], [s_1], [s_4]\}$, aonde:

$$[s_0] = \{s_0, s_2\} = [s_2]$$

 $[s_1] = \{s_1, s_3, s_5\} = [s_3] = [s_5]$
 $[s_4] = \{s_4\}$

• a tabela de transição de estados mostra que f_a leva cada elemento de $[s_i]$ para outro elemento de $[s_i]$, para i=0,1,4

- **Exemplo 6:** Seja M uma M.E.F. sobre $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$:
 - então temos $S/R = \{[s_0], [s_1], [s_4]\}$, aonde:

$$[s_0] = \{s_0, s_2\} = [s_2]$$
 $[s_1] = \{s_1, s_3, s_5\} = [s_3] = [s_5]$
 $[s_4] = \{s_4\}$

- a tabela de transição de estados mostra que f_a leva cada elemento de $[s_i]$ para outro elemento de $[s_i]$, para i=0,1,4
- além disto, f_b leva:
 - ullet cada elemento de $[s_0]$ para um elemento de $[s_4]$
 - $m{ ilde{s}}$ e cada elemento de $[m{s_4}]$ para um elemento de $[m{s_1}]$

- **Exemplo 6:** Seja M uma M.E.F. sobre $S = \{s_0, s_1, s_2, s_3, s_4, s_5\}$:
 - logo, R é uma congruência de máquina
 - ullet e a tabela de transição de estados de M/R é dada por:

	$oldsymbol{a}$	\boldsymbol{b}
$[s_0]$	$[s_0]$	$[s_4]$
$[s_1]$	$[s_1]$	$[s_0]$
$[s_4]$	$ s_4 $	$[s_2]$

Exemplo 7: Seja $I = \{0,1\}$, $S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$, e $M = (S, I, \mathcal{F})$ a M.E.F. cujo dígrafo é:

Exemplo 7: Seja $I = \{0, 1\}$, $S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$, e $M = (S, I, \mathcal{F})$ a M.E.F. cujo dígrafo é:

- ullet Seja R tal que $S/R = \{\{s_0, s_4\}, \{s_1, s_2, s_5\}, \{s_6\}, \{s_3, s_7\}\}$
- ullet o dígrafo de M mostra que $oldsymbol{R}$ é uma congruência de máquina

- **•** Exemplo 7 (cont.): $I = \{0,1\}, S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}.$
 - ullet para obter o dígrafo da máquina quociente \overline{M} :
 - desenhar um vértice para cada classe de equivalência
 - ligar $[s_i]$ com $[s_j]$ se existir, no grafo original, uma aresta de algum vértice em $[s_i]$ para algum vértice em $[s_j]$

- **•** Exemplo 7 (cont.): $I = \{0,1\}, S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}.$
 - ullet para obter o dígrafo da máquina quociente \overline{M} :
 - desenhar um vértice para cada classe de equivalência
 - ligar $[s_i]$ com $[s_j]$ se existir, no grafo original, uma aresta de algum vértice em $[s_i]$ para algum vértice em $[s_j]$
 - o resultado é:

MÁQUINAS DE MOORE QUOCIENTE

- ullet Seja $M=(S,I,\mathcal{F},s_0,T)$ uma Máquina de Moore.
- ullet E seja $oldsymbol{R}$ uma congruência de máquina sobre $oldsymbol{M}$.
- ullet Então podemos fazer: $\overline{T} = \{[t] \mid t \in T\}$
- $m{ ilde P}$ E a seqüência $\overline{m{M}}=(\overline{m{S}},m{I},\overline{m{\mathcal{F}}},[m{s_0}],\overline{m{T}})$ é uma máquina de Moore.

MÁQUINAS DE MOORE QUOCIENTE

- ullet Seja $M=(S,I,\mathcal{F},s_0,T)$ uma Máquina de Moore.
- ullet E seja $oldsymbol{R}$ uma congruência de máquina sobre $oldsymbol{M}$.
- ullet Então podemos fazer: $\overline{T} = \{[t] \mid t \in T\}$
- $m{ ilde P}$ E a seqüência $\overline{M}=(\overline{S},I,\overline{\mathcal{F}},[s_0],\overline{T})$ é uma máquina de Moore.
- Ou seja:
 - ullet computamos a máquina quociente usual M/R
 - ullet designamos $[s_0]$ como um estado de partida
 - ullet daí, fazemos \overline{T} o conjunto das classes de equivalência dos estados de aceitação
 - ullet a máquina de Moore resultante \overline{M} é a Máquina de Moore quociente de M.

Exemplo 8: Considere a máquina de Moore $M=(S,I,\mathcal{F},s_0,T)$, aonde $M=(S,I,\mathcal{F})$ é a M.E.F. do exemplo 6 e $T=\{s_1,s_3,s_4\}$

O dígrafo da máquina de Moore resultante é:

Final deste item.

Dica: fazer exercícios...