

Physical Layer

Block Coding & Scrambling

DIGITAL-TO-DIGITAL CONVERSION

How we can represent digital data by using digital signals?

The conversion involves three techniques:

- Line coding
- Block coding
- Scrambling

Line coding is always needed; block coding and scrambling may or may not be needed.

Block coding

- We need redundancy to ensure synchronization and to provide some kind of inherent error detecting.
- Block coding is used to provide redundancy and improve the performance of line coding.
- In general, block coding changes a block of m bits into a block of n bits, where n is larger than m.

Block coding is normally referred to as *mB/nB* coding; it replaces each m-bit group with an n-bit group.

Block coding Types:-

- 4B/5B
- 8B/10B

Block coding concept

Block coding normally involves three steps: division, substitution, and combination.

In the division step, a sequence of bits is divided into groups of *m* bits. For example, in 4B/5B encoding, the original bit sequence is divided into 4-bit groups.

In substitution step, we substitute an m-bit group for an n-bit group. For example, in 4B/5B encoding we substitute a 4-bit code for a 5-bit group.

In combination step, the n-bit groups are combined together to form a stream. The new stream has more bits than the original bits.

Combining n-bit groups into a stream

4B/5B coding Scheme

- The 4B/5B coding scheme was designed to be used in combination with NRZ-I.
- NRZ-I has a good signal rate, one-half that of the bi-phase, but it has a synchronization problem.
- A long sequence of 0s can make the receiver clock lose synchronization. One solution is to change the bit stream, prior to encoding with NRZ-I, so that it does not have a long stream of 0s.

Using block coding 4B/5B with NRZ-I line coding scheme

- The block-coded stream does not have more that three consecutive 0s.
- At the receiver, the NRZ-I encoded digital signal is first decoded into a stream of bits and then decoded to remove the redundancy

4B/5B mapping codes

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

Substitution in 4B/5B block coding

8B/10B block encoding

- The most five significant bits of a 10-bit block is fed into the 5B/6B encoder; the least 3 significant bits is fed into a 3B/4B encoder.
- The split is done to simplify the mapping table.
- Disparity controller:-To prevent a long run of consecutive 0s or 1s, the code uses a disparity controller which keeps track of excess 0s over 1s (or 1s over 0s).
- The coding has 2₁₀ 2₈ = 768 redundant groups that can be used for **disparity checking** and **error detection**.
- It has better built-in error-checking capability and better synchronization as compared to 4B/5B scheme.

AMI used with scrambling

- A technique that does not increase the number of bits and does provide synchronization is desired.
- Scrambling technique substitutes long zero-level pulses with a combination of other levels to provide synchronization.
- Scrambling, as opposed to block coding, is done at the same time as encoding. The system needs to insert the required pulses based on the defined scrambling rules.
- ☐ Two common scrambling techniques are
 - 1) B8ZS 2) HDB3

Two cases of B8ZS scrambling technique

□B8ZS substitutes eight consecutive zeros with 000VB0VB

a. Previous level is positive.

b. Previous level is negative.

Different situations in HDB3 scrambling technique

HDB3 substitutes four consecutive zeros with 000V or B00V depending on the number of nonzero pulses after the last substitution

www.bennett.edu.in