RuggedBoard - iMX6UL Hardware Reference Manual

RuggedBoard – iMX6UL Hardware Reference Manual

Document No.	:	RB-HWR-001-A3
CB PCB Number	:	RB-iMX6UL-1P2
SOM PCB Number	:	1468.2

Edition - January-2021

Revision History

Date	Change Note	Revision No.
23-APRL-2019	Draft Release	1.0
27-JAN-2020	Alpha First Release	1.1
January-2021	Alpha Second Release	1.1.1

- 1 Introduction
 - 1.1 Hardware overview
 - 1.1.1 Features
- 2 Accessing the RuggedBoard Interfaces
 - 2.1 Interfaces
 - Table 1: Overview
 - 2.2 RuggedBoard-Interfaces
 - Fig 1: Specifications and Interfaces
 - 2.3 Block Diagram
 - Fig 2: Block Diagram
 - 2.4 Functional ComponentsFig 3: Front Panel
 - 2.4.1 Power Supply
 - 2.4.1.1 Power IN (Industrial Standard Three Pin Connector)
 - Table 2: Power Information
 - 2.4.2 Jumpers (J2)
 - Fig 5: Power Jumper
 - 2.4.3 USB PWR / DBG Console
 - Fig 6: USB Power and Debugger Connector
 - Table 3: USB PWR / DBG CONSOLE
 - Fig 7: UART Debug Port
 - Table 4: DBG Port
 - 2.4.4 Switches
 - Fig 8: Reset Switch and User Level Switch
 - 2.4.5 User LED (GPIO)
 - Fig 9: User LEDs
 - Table 5: User LED GPIO
 - 2.4.6 Industrial Field Interfaces
 - Fig 10: Field Interfaces
 - 2.4.7 RS-485 (P9)
 - Fig 11: RS485 and CAN Connector
 - 2.4.8 CAN (P9)
 - Fig 12: RS485 and CAN Connector
 - Table 6: P9 Connector
 - 2.4.9 RS-232 (P4)
 - Fig 13: RS2323 connector
 - Table 7: RS232

- 2.4.10 DIN and DOUT(0-24V) (P5 and P6)
 - Fig14: Digital Input Connector Fig15: Digital Output Connector
 - Table 8: DIN and DOUT (0-24V)
 - Table 9: P5 Connector
 - Table 10: P6 Connector
- 2.4.11 Expansion Header (P10)
 Table 11: Expansion Header
- 2.4.12 MiKroBUS Connector (M1)
 - Fig 17: mikroBUS connector
 - Fig 18: mikroBUS pinouts
 - Table 12: microBUS Connector
- 2.4.13 Ethernet (J3)
 - Fig 19: Ethernet connectorTable 13: Ethernet
- 2.4.14 USB 2.0 (P7)

 - Fig 20: USB Dual Stack Connector
 Fig 21: USB and mPCle Connection Block Diagram
 - Table 14: USB 2.0
- 2.4.15 mPCle Connector (P8)
 - Fig 22: mPCle Connector
 - Table15: mPCle (P8) PIN details
- 2.4.16 On Board WiFi or eMMC Pad (U17)-[Chip Not Mounted by default]
 Fig 23:Wi-Fi/BT and eMMC Soldering pad
 Table 16: Wi-Fi/BT and eMMC
- 2.4.17 Secure digital Memory card + SIM (Dual Connector) (J4)
 - Fig 24: Memory Card and SIM Dual connector
 - Table 17: Secure digital Memory card+SIM (Dual Connector)
- 2.4.18 LCD Connector (J1)
 - Fig 25: LCD Connector (Not mounted by default)
 Table 18: LCD Connector
- 2.4.19 RTC Battery (P11)
 - Table 19: RTC Battery

Abbreviations and acronyms used in this manual

SIP	System-In-Package	
SOM	System On Module	
DDR2-SDRAM	Double Data Rate 2 Synchronous Dynamic Random-Access Memory	
DSC	Direct Solder Connection	
ESD	Electrostatic discharge	
Mbit	Megabit	
EMI/EMC	Electromagnetic Interference/Electromagnetic Compatibility	
DDR	Double Data Rate	
BGA	Ball Grid Array	
RTC	Real-Time Clock	
USB	Universal Serial Bus	
TFT-LCD	Thin Film Transistor - Liquid Crystal Display.	
ADC	Analog-to-Digital Converter	
PWM	Pulse width Modulation	
QSPI	Queued Serial Peripheral Interface	
UART	universal asynchronous receiver-transmitter	
IIC	Inter-Integrated Circuit	
eMMC	embedded Multi-Media Controller"	
PCB	Printed Circuit Board	
PMIC	Power Management IC	
POR	Power On reset	
GPIO	General Purpose Input/output	

DNM

Note:

The BSP delivered with the phyCORE-iMX6UL usually includes drivers and/or software for controlling all components such as interfaces, memory, etc. Therefore, programming close to hardware at register level is not necessary in most cases. For this reason, this manual contains no detailed description of the controller's registers, or information relevant for software development. Follow RB-Forum for any specific development requirement.

Product Specific Information and Technical Support

In order to receive product specific information on changes and updates in the best way also in the future, we recommend to register at: https://www.community.ruggedboard.com/members

Caution!

RuggedBoard products lacking protective enclosures are subject to damage by ESD and, hence, may only be unpacked, handled or operated in environments in which sufficient precautionary measures have been taken in respect to ESD - dangers. It is also necessary that only appropriately trained personnel (such as electricians, technicians and engineers) handle and/or operate these products. Assembly options include choice of Controller; RAM(Size /Type); Size of NOR Flash, Interfaces available; Vanishing; Temperature Range; and other features. Please contact our sales team to get more information on the ordering options available. Please refer the last page of this document for the ordering information.

Note:

Implementation of RuggedBoard into target devices, as well as user modifications and extensions of RuggedBoard products, is subject to renewed establishment of conformity to, and certification of, Electro Magnetic Directives. Users should ensure conformance following any modifications to the products as well as implementation of the products into target systems.

ESD Warning:

Electronic components and circuits are sensitive to Electrostatic Discharge (ESD). When handling any circuit board assemblies including Pico Computer carrier assemblies, it is recommended that ESD safety precautions be observed. ESD safe best practices include, but are not limited to:

- Leaving circuit boards in their antistatic packaging until they are ready to be installed.
- Using a grounded wrist strap when handling circuit boards, at a minimum you should touch a grounded metal object to dissipate any static charge that may be present on you.
- Only handling circuit boards in ESD safe areas, which may include ESD floor and table mats, wrist strap stations and ESD safe lab coats.
- Avoiding handling circuit boards in carpeted areas.
- Try to handle the board by the edges, avoiding contact with components

Power Supply Warning:

Hardware Power Supply Limitation: Powering the board with higher voltages may damage the board. The recommended input voltage to RuggedBoard is **5V±5%** We recommend Supply voltage to SOM module from Carrier Board is **3.3V ± 5%**. In addition for proper operation of the module into the target application also requires connecting all GND pins common. This hardware manual describes about the RuggedBoard - iMX6UL. This manual specifies the RuggedBoard-iMX6UL design and function. Precise

specifications for the NXP iMX6 microprocessor can be found in the NXP iMX6 Data Sheet and Technical Reference Manual.

1 Introduction

1.1 Hardware overview

The RuggedBoard SBC with phyCORE-iMX6UL SOM as core, is a low-cost, feature-rich software development platform supporting the NXP iMX6 microprocessor. Standard interfaces on the RuggedBoard iMX6UL can serve as bedrock for your application. At the core of the RuggedBoard is the phyCORE-iMX6UL System On Module (SOM) in a direct solder form factor, containing the processor, Flash, power regulation, supervision, transceivers, and other core functions required to support the iMX6 processor. Surrounding the SOM is the RuggedBoard carrier board, adding power input, communication PHY chips, buttons, connectors, signal breakout, Ethernet and mikro-BUS connectivity amongst other things.

1.1.1 Features

The RuggedBoard has the following features

- 1 x Ethernet
- 1 x RS-232
- 1 x RS-485 (Isolated)
- 1 x CAN
- 4 x DIN (Isolated)
- 4 x DOUT
- 1 x LCD
- 1 x Micro SD Slot
- 1 x SIM
- 2 x USB 2.0 / mPCle slot
- 1 x mikroBUS
- 1 x 36 PIN Expansion Headers
- 1 x eMMC / Wi-Fi
- 1 x User Switch

2 Accessing the RuggedBoard Interfaces

RuggedBoard is fully equipped with all Software, Electronics, mechanical and Electrical components necessary for the speedy and secure start-up.

2.1 Interfaces

The RuggedBoard is depicted in Figure 2. It features many different interfaces and is equipped with the components as listed in Table 1. For a more detailed description of each peripheral refer to the appropriate chapter listed in the applicable table. Figure 2 highlights the location of each peripheral for easy identification.

Referen ce Design ator	Description	See Section
P1	Power Supply 5V only (3-pole connector with dedicated Shielded ground Pin)	2.4.1
P2	USB power/ Debug Console (USB Micro-AB connector 5V Power supply)	2.4.3
P4	RS232	2.4.9
P5	Digital Input(0-24v)	2.4.10
P6	Digital Output(0-24v)	2.4.10
P7	USB 2.0	2.4.14
P8	mPCIe (Supports multiple Cellular Modules 2G/3G/4G/Cat-M/NB-IoT, Supports AI & ML VPU/TPU co-processor).	2.4.15
P9	CAN & RS-485P	2.4.8
P10	Expansion Header	2.4.11
P11	RTC Battery	2.4.19
P12	LED GPIO	2.4.5
P13	Debug port	2.4.13
J1	LCD Connector	2.4.18

P17	SAML11E 16-GPIO Connector [By default DNM]	2.4.5
SW2	Reset	
M1	mikroBUS Expansion (Supports multiple IoT wireless modules (Zigbee/BLE/LoRa/6LoWPAN), Supports multiple IoT Sensor modules based on UART/I2C/SPI Interface)	2.4.12
U14	ATSAML11E16-A (Microchip product)	next release
U17	ATWILC3000	2.4.15
J3	Ethernet (RJ45 10/100Mbps)	2.4.13
J4	SD card + SIM (Dual connector)	2.4.17

Table 1: Overview

2.2 RuggedBoard-Interfaces

Fig 1: Specifications and Interfaces

2.3 Block Diagram

Fig 2: Block Diagram

2.4 Functional Components

This section describes the functional components of the RuggedBoard. Each subsection details a particular connector/interface and associated jumpers for configuring that interface. Figure below shows the <u>front side</u> of RuggedBoard-iMX6UL.

Fig 3: Front Panel

2.4.1 Power Supply

The RuggedBoard is available with two different power supply connectors. Power in through industrial standard three pin connector and microUSB connector.

2.4.1.1 Power IN (Industrial Standard Three Pin Connector)

Fig 4: Power Supply Connector

A 3-pole Phoenix Contact MINI COMBICON base strip 3.5 mm connector (P1) suitable for a single 5 V supply voltage (Fig. 4)

PIN NO	PIN DESCRIPTION	SIGNAL NAME
1	VCC (5V)	5V power supply
2	GND	Ground
3	SHLD (Shielded Ground)	Shielded Ground

Table 2: Power Information

2.4.2 Jumpers (J2)

Fig 5: Power Jumper

This jumper (J2) is used to ON/OFF of the Board. If jumper (J2) is not present in the board then the board will not power on. So jumper (J2) must present on the board.

2.4.3 USB PWR / DBG Console

Fig 6: USB Power and Debugger Connector

A USB Micro-AB connector (P2) to connect a standard 5V USB power supply. Connect the USB to micro USB cable of to the board and the other end to the Host PC. Also remember to short the jumper J2.

PIN NO	PIN DESCRIPTION	SIGNAL NAME
1	DC_IN/USB	VBUS
2	Debug_D_N	DM
3	Debug_D_P	DP
4	ID	ID
5	GND	GND
67891011	SH1	SHLD_GND

Table 3: USB PWR / DBG CONSOLE

Fig 7: UART Debug Port

Debug port is a port included in a device to simplify development and debugging, which is not necessary for normal UART1 function. Debug ports are usually not removed or disabled to avoid costs of design changes, and can be used by developers to get extra functionality. TTL to USB converter can be used to debug the console of RuggedBoard-iMX6UL.

The same debugging facility is also available in Micro USB connector P1. The table 15 shows the pin description of the debug port:

PIN NO	SIGNAL NAME	Software Node
1	X_UART1_TX_DBG	/dev/ttymxc0
2	X_UART1_RX_DBG	/dev/ttymxc0
3	GND	

Table 4: DBG Port

2.4.4 Switches

The RuggedBoard contains two switches

1. System Reset Button(RST.SW2)

Fig 8: Reset Switch and User Level Switch

The RuggedBoard is equipped with a system reset button at RST.SW2. Pressing this button will toggle the nRST pin of the phyCORE-iMx6UL low, causing the module to reset. Additionally, the reset signal nRST is generated on the module to also reset the peripherals on the carrier board.

1. User_SW1

PIN NO	Switch No	SIGNAL NAME	MRAA Mapped Pins
1	SW1	X_ENET2_RX_D0_GPIO2_IO8_INT_SW	52

User_SW1 button is used for GPIO user level input. The User Level Switch is shown in the Figure 8.

2.4.5 User LED (GPIO)

Fig 9: User LEDs

The RuggedBoard populated with three user controllable LEDs. Fig.9 shows the location of the LEDs. Their functions are listed in Table given below.

PIN NO	PIN NO LED No SIGNAL NAME		MRAA Mapped Pins
1	LED_1 (D4)	X_ENET2_TX_D0_GPIO2_IO11_ULED1	49
2	LED_2 (D7)	X_ENET2_TX_D1_GPIO2_IO12_ULED2	53
3	LED_3 (D17)	X_ENET2_TX_EN_GPIO2_IO13_ULED3	54

Table 5: User LED GPIO

2.4.6 Industrial Field Interfaces

RuggedBoard-iMX6UL equipped with multiple Industrial field interfaces. It has 1x RS485, 1x CAN, 1x RS232, 4x DIN, 4x DOut.

Fig 10: Field Interfaces

2.4.7 RS-485 (P9)

Fig 11: RS485 and CAN Connector

RS485, also known as TIA485(A), EIA485, is a standard defining the electrical characteristics of drivers and receivers for use in serial communications systems. Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. An RS-485 transceiver on the RuggedBoard converts the TTL level signals of UART2 from the phyCORE-iMX6UL to RS-485 level signals. The RS-485 level signals are available at the connector P9 (5 positions, 3.5 mm pitch). Refer Table 6 from section 2.4.8 for pinout details.

2.4.8 CAN (P9)

Fig 12: RS485 and CAN Connector

The Controller Area Network (CAN) bus offers a low-bandwidth, prioritised message field-bus for serial communication between microcontrollers. The CAN interface transmits and receives signals from the SOM. CAN pins like CANH and CANL are connected to the CAN Transceiver (SN65HVD234D) and the output signals from the transceiver are connected to the connector (P9) physically located on top of the RuggedBoard.

P9 Connector:

PIN NO	PIN DESCRIPTION	SIGNAL NAME	Software Node
1	CANH	X_UART3_CTS_B_CAN_TX	CAN 0
2	CANL	X_UART3_RTS_B_CAN_RX	CAN 0
3	GND	Ground	
4	RS485 B	X_CSI_PIXCLK_UART6_RX	/dev/ttymxc5
5	RS485 A	X_CSI_MCLK_UART6_TX	/dev/ttymxc5
6	RS485 DE	X_ENET2_RX_EN_GPIO2_IO10	

Table 6: P9 Connector

2.4.9 RS-232 (P4)

Fig 13: RS2323 connector

Two RS-232 transceivers on the RuggedBoard convert the TTL level signals of UART2 from the phyCORE-iMX6UL to RS-232 level signals. The RS-232 level signals are available at the connector P4.

PIN NO	PIN DESCRIPTION	SIGNAL NAME	MRAA MAPPED PINs	Software Node
FIN NO	FIN DESCRIPTION	SIGNAL NAME	INITAA INIAFFED FINS	Software Noue

1	RS232_TX_1	X_UART2_TX	70	/dev/ttymxc1
2	RS232_RX_1	X_UART2_RX	71	/dev/ttymxc1
3	GND	Ground		
4	RS232_TX_2	X_UART2_CTS_B	68	/dev/ttymxc1
5	RS232_RX_2	X_UART2_RTS_B	69	/dev/ttymxc1

Table 7: RS232

2.4.10 DIN and DOUT(0-24V) (P5 and P6)

Fig14: Digital Input Connector Fig15: Digital Output Connector

The RuggedBoard comes with an isolated Digital IOs (0-24V). The RuggedBoard provides four digital IOs that are designed for processing DC-signals with up to 24 V DC. The digital output voltage depends on the input voltage of the board. Input and output signals are routed to the CPU (phyCORE-iMX6UL) through two discrete opt-couplers for 3.75KV isolation. Thus, it is possible to write and read the status of every single GPIO of the RuggedBoard simultaneously.

WARNING!

Please consider that the GPIOs do not have a separate current-driver on board. In case the GPIOs are used as outputs, the current is self-limited by the output opt-coupler and should not exceed 50mA for each GPIO channel. These outputs are low-side outputs.

When the GPIOs on the RuggedBoard are used as digital inputs, they are configured active high with the following switching voltages:

Signal Level	Voltage
H Level	>11V
L Level	< 5V

Table 8: DIN and DOUT (0-24V)

P5 Connector:

PIN NO	PIN DESCRIPTION	SIGNAL NAME
1	DIN(0-24V)_01	X_GPIO5_5
2	DIN(0-24V)_02	X_GPIO1_3_ADC1_IN3
3	DIN(0-24V)_03	X_GPIO1_1_ADC1_IN1
4	DIN(0-24V)_04	X_JTAG_TMS/SAI2_MCLK
5	DGND_ISO_IN	Isolated Ground

Table 9: P5 Connector

P6 Connector:

PIN NO	PIN DESCRIPTION	SIGNAL NAME
1	ISO_VCC_IN	Isolated Voltage 0 to 24V
2	DOUT(0-24V)_04	X_JTAG_TDI/SAI2_BCLK
3	DOUT(0-24V)_03	X_JTAG_TDO/SAI2_SYNC
4	DOUT(0-24V)_02	X_nJTAG_TRST/SAI2_TXD
5	DOUT(0-24V)_01	X_JTAG_TCK/SAI2_RXD
6	DGND_ISO_IN	Isolated Ground

Table 10: P6 Connector

2.4.11 Expansion Header (P10)

Expansion connector P10 provides an easy way to add other functions and features to the RuggedBoard Standard interfaces. By default, it consists of 2xI2C, 1x ADC pins, 2x SPI, Tamper Security Pins, 1x Shutdown Controller Pin, 1x USB Inter-Chip Transceiver and other GPIO's. This GPIO's can able to mux according to the customer requirement such as UART, ISC(Image Sensor Controller),SPI and ADC. The expansion connector is intended to add specific functions with custom expansion boards. The pin-out of the expansion connector is shown in Table 11 given below:

MRAA Mapped Pins	Signal Name	Pin Description	Pin No	Pin No	Pin Description	Signal Name	MRAA Mapped Pins
1	3V3 Power Supply	VCC_3V3	1	2	VCC5V_IN	5V Power Supply	2
3	3V3 Power Supply	VCC_3V3	3	4	VCC5V_IN	5V Power Supply	4
5	X_JTAG_TDI/SAI2_BCLK	GPIO1_13	5	6	VCC5V_IN	5V Power Supply	6
7	X_JTAG_TDO/SAI2_SYN	GPIO1_12	7	8	VCC5V_IN	5V Power Supply	8
9	X_nJTAG_TRST/SAI2_TX	GPIO1_15	9	10	X_nRESET_IN	Reset IN	10
11	X_JTAG_TCK/SAI2_RXD	GPIO1_14	11	12	X_RESET#	External reset	12
13	GND	Ground	13	14	X_SPI2_MISO	SPI 2 MISO	14
15	X_USB_OTG1_VBUS	USB VBUS	15	16	X_SPI2_MOSI	SPI 2 MOSI	16
17	X_USB_OTG_N	USB Negative	17	18	X_SPI2_SCLK	SPI 2 Clock	18
19	X_USB_OTG_P	USB Positive	19	20	X_GPIO1_4/PWM3	Pulse width Modulation	20
21	X_USB_OTG1_ID	USB ID	21	22	X_CSI_D6_SPI1_SCLK	SPI 1 Clock	22
23	X_UART3_TX	UART 3 Transmit	23	24	X_CSI_D9_SPI1_MISO	SPI 1 MISO	24
25	X_UART3_RX	UART 3 Receive	25	26	X_CSI_D8_SPI1_MOSI	SPI 1 MOSI	26
27	X_GPIO1_1_ADC1_IN1	ADC_IN	27	28	X_I2C1_SCL	I2C 1 Serial Clock	28
29	X_ENET2_TX_CLK_GPIO	GPIO2_14	29	30	X_I2C1_SDA	I2C 1 Serial Data	30
31	X_JTAG_TMS/SAI2_MCL	GPIO1_11	31	32	X_I2C2_SCL	I2C 2 Serial Clock	32
33	GND	Ground	33	34	X_I2C2_SDA	I2C 2 Serial Data	34
35	X_JTAG_MOD_gpio1_IO1	GPIO1_10	35	36	GND	Ground	36

Table 11: Expansion Header

2.4.12 MiKroBUS Connector (M1)

Fig 17: mikroBUS connector

The RuggedBoard host pairs female headers acting as mikrobus interface. The mikrobus standard defines the main board sockets and add-on boards (a.k. a. "mikrobus shield") used for interfacing microprocessors with integrated modules with proprietary pin configuration and silkscreen markings. The pinout consists of three groups of communication pins (SPI, UART and TWI), four additional pins(PWM, interrupt, Analog input and reset) and two power groups (+3V3 and GND on the left and 5V and GND on the 1x8 header). The following table provides the pin description of all the connected pins.

Not all pins are always connected on all extension headers. The extension headers can be used to connect a variety of Add-On modules to RuggedBoard or to access the pins of the target microcontroller on the RuggedBoard.

Fig 18: mikroBUS pinouts

PIN NO	PIN DESCRIPTION	SIGNAL NAME	MRAA Mapped Pins	
1	AN	X_GPIO1_3_ADC1_IN3	37	
2	RST	X_RESET	38	
3	cs	X_CSI_D7_GPIO_3V3	39	
4	SCK	X_CSI_D6_SPI1_SCLK	40	
5	MISO	X_CSI_D9_SPI1_MISO	41	
6	MOSI	X_CSI_D8_SPI1_MOSI	42	
7	3V3	VCC ³ V3	43	
8	GND	GND	44	
9	GND	GND	45	
10	+5V	VCC5V_IN	46	
11	SDA	X_I2C1_SDA	47	I2C_1
12	SCL	X_I2C1_SCL	48	I2C_1
13	TX	X_UART3_TX		/dev/ttymxc2
14	RX	X_UART3_RX		/dev/ttymxc2
15	INT	X_GPIO5_0_INPT		
16	PWM	X_GPIO1_4/PWM3		

Table 12: microBUS Connector

2.4.13 Ethernet (J3)

Fig 19: Ethernet connector

The on-board SOM integrates a 10/100 Mbps Ethernet controller allowing direct connection to any 10/100 Mbps Ethernet-based Local Area Network, for full interaction with local servers and wide area networks such as the Internet. Eth signals from the SOM are connected to a RJ45 MagJack. The Ethernet interfaces of the RuggedBoard are accessible at J3. Figure 19: Ethernet Interface at Connector (J3) Ethernet interface is configured as 10 /100Base-T networks. The LEDs for LINK (green) and SPEED (yellow) indication are integrated in the connector. Ethernet transceiver support HP Auto-MDIX, eliminating the need for the consideration of a direct connect LAN cable, or a crossover cable. They detect the TX and RX pins of the connected device and automatically configure the PHY TX and RX pins accordingly.

PIN NO	PIN DESCRIPTION	SIGNAL NAME	Remarks
1	TD+	X_ENET1_TX+	
2	TD-	X_ENET1_TX-	
3	RD+	X_ENET1_RX+	
4	PoE_V+	Poe_V+/TDCT	TDCT Function Used
5	PoE_V+	Poe_V+/RDCT	RDCT Function Used
6	RD-	X_ENET1_RX-	
7	SHLD	Poe_V-/NC	Connected to the Ground
8	PoE_V-	Poe_V-/CH_GND	Connected to the Ground
9	NC	VCC_3V3	
10	NC	X_ENET1_LED0	
11	ETH_LED0	X_ENET1_LED1	
12	VCC_3V3	VCC_3V3	
13	SHIELD1	SHIELD1 Ground	
14	SHIELD2	SHIELD2 Ground	

Table 13: Ethernet

2.4.14 USB 2.0 (P7)

Fig 20: USB Dual Stack Connector

In RuggedBoard there are two stacked USB2.0 Host Ports. Both USB1 &USB2 are configured as Host. USB2 signal are also used for the mPCle port (P8). The switching happens through USB mux switch configuration. This configuration can be done by either Software or Hardware method. By default, it is configured to Hardware Configuration by mounting the resistor R66 and R70 to pass the USB2 Signals to mPCle connector. Please note that the USB2 on the P7 connector will be disabled if you configure to use mPCle. For software configuration DNM the resistor R65, R66, R70 and R71. Then mount R68 and R69 with signal.

Fig 21: USB and mPCle Connection Block Diagram

PIN DESCRIPTION	SIGNAL NAME
VBUS	VBUS_HOST1
DM	USBA_N
DP	USBA_P
GND	GND
VBUS	VBUS_HOST2
DM	USBD_HOST_N
DP	USBD_HOST_P
GND	GND
9	Shield Gnd
10	Shield Gnd
11	Shield Gnd
12	Shield Gnd

Table 14: USB 2.0

2.4.15 mPCle Connector (P8)

Fig 22: mPCle Connector

The PCI express interface of the RuggedBoard-iMX6UL provides USB functionality and SIM card interface pins for GSM. The USB interface is brought out at the mini PCIe connector P8 shown in the figure 23. The SIM/µSIM card signals of a connected mPCIe module can be made available at expansion connector P8. Please refer to Table for more information about the jumper settings. Soldering jumpers allow to connect the USB host interface to the Mini PCIe connector P8 (Table 15). In the following table is a complete overview of the Mini PCI Express connector pin Assignment:

PIN NO	PIN DESCRIPTION	SIGNAL NAME
1	WAKE	VCC_3V3
2	+3.3V_1	VCC_3V3
3	RSVD1	NC
4	GND7	GND
5	RSVD2	NC
6	+1.5V_1	NC
7	CLKREQ	NC
8	RSVD13	SIM_VCC
9	GND1	GND
10	RSVD14	SIM_IO
11	REFCLK-	NC
12	RSVD15	SIM_CLK
13	REFCLK+	NC
14	RSVD16	SIM_RST
15	GND2	GND
16	RSVD17	SIM_VPP
17	RSVD3	NC
18	GND8	GND
19	RSVD4	NC
20	RSVD18	VCC_3V3
21	GND3	GND
22	PERST	VCC_3V3
23	PER_N0	NC
24	+3.3V_AUX	VCC_3v3
25	PER_P0	NC
26	GND9	GND
27	GND4	GND
28	+1.5V_2	NC
29	GND5	GND
30	SMB_CLK	NC
31	PET_N0	NC
32	SMB_DATA	NC
33	PET_P0	NC
34	GND10	GND
35	GND6	GND
36	USB_D-	USB_mPCle_N

37	RSVD5	GND
38	USB_D+	USB_mPCle_P
39	RSVD6	VCC_3V3/GND
40	GND11	GND
41	RSVD7	VCC_3V3/GND
42	LED_WWAN	VCC_3v3
43	RSVD8	GND
44	LED_WLAN	NC
45	RSVD9	NC
46	LED_WPAN	NC
47	RSVD10	NC
48	+1.5V_3	NC
49	RSVD11	NC
50	GND12	GND
51	RSVD12	NC
52	+3.3V_2	VCC_3V3/GND
S1	GNDM1	GND
S2	GNDM1	GND
M1	GNDM3	GND
M2	GNDM4	GND

Table15: mPCIe (P8) PIN details

2.4.16 On Board WiFi or eMMC Pad (U17)-[Chip Not Mounted by default]

Fig 23:Wi-Fi/BT and eMMC Soldering pad

U17 soldering pad can be utilized for two peripherals like Wi-Fi/BT module (ATWILC3000) core MMC. By default, both peripherals are not mounted. 1) RB-iMX6UL supports eMMC Upto 32GB onto the MMC1 pad.

2)ATWILC3000 is a single chip IEEE 802.11 b/g/n RF/Baseband/MAC link controller and Bluetooth 5. This can support single stream 1x1 802.11n mode providing tested throughput of up to 46 Mbps UDP & 28 Mbps TCP/IP. The ATWILC3000 features fully integrated Power Amplifier, LNA, Switch and Power Management. Implemented in low-power CMOS technology, the ATWILC3000 offers very low power consumption while simultaneously providing high performance and minimal bill of materials.

The ATWILC3000 utilizes highly optimized 802.11-Bluetooth coexistence protocols. The only external clock sources needed for the ATWILC3000 is a highspeed crystal or oscillator and a 32.768 kHz clock for sleep operation.

- IEEE 802.11 b/g/n 20MHz (1x1) Wi-Fi plus Bluetooth 5 Low Energy Module
- Supports Personal & Enterprise IEEE 802.11 WEP, WPA, WPA2 Security
 SPI, SDIO, I2C, and UART host interfaces
- Operating temperature range of -40C to +85C

• Bluetooth 5 Certified

Module is Agency Certified in over 75 Countries

PIN NO	PIN DESCRIPTION	SIGNAL NAME	
1	GND	GND	
2	SDIO/SPI_CFG	GND/SDIO MODE	
3	NC	NC	
4	NC	NC	
5	NC	NC	
6	NC	NC	
7	RESETN	X_RESET#	
8	URXD3_TXD	X_UART5_RX	
9	UTXD3_RXD	X_UART5_TX	
10	BT_RTS	uart5_RTS_B	
11	BT_CTS	uart5_CTS_B	
12	DVDDIO	VCC_3V3	
13	GND	GND	
14	GPIO3	NC	
15	GPIO4	NC	
16	UART_TXD	TP14	
17	UART_RXD	TP15	
18	VBAT	VCC_3V3	
19	CHIP_EN	X_GPIO1_18_Wifi_EN	
20	RTC	NC	
21	GND	GND	
22	SD_CLK	X_LCD_D19_usdhc2_CLK	
23	SD_CMD	X_LCD_D18_usdhc2_CMD	
24	SD_DATA0	X_LCD_D20_usdhc2_DATA0	
25	SD_DAT1	X_LCD_D21_usdhc2_DATA1	
26	SD_DAT2	X_LCD_D22_usdhc2_DATA2	
27	SD_DAT3	X_LCD_D23_usdhc2_DATA3	
28	GND	GND	
29	GPIO17	NC	
30	GPIO18	NC	
31	GPIO19	NC	
32	GPIO20	NC	
33	IRQN	X_CSI_FIELD_GPIO_3V3	
34	I2C_SDA_M	TP11	
35	I2C_SCL_M	TP9	
36	GND	GND	
37	PADDLE	GND	

Table 16: Wi-Fi/BT and eMMC

2.4.17 Secure digital Memory card + SIM (Dual Connector) (J4)

Hybrid Slot (J4)

Fig 24: Memory Card and SIM Dual connector

The RuggedBoard provides a standard micro SDHC card slot at J4 for connection to MMC/SD interface cards. It allows easy and convenient connection to peripheral devices like SD-Card and MMC cards. Power to the SD-Card interface is supplied by inserting the appropriate card into the MMC/SD connector, which features card detection, a lock mechanism and a smooth extraction function by Push-in/ Push-out of card.

PIN NAME	PIN DESCRIPTION	SIGNAL NAME			
T1	DAT2	X_SD1_D2			
T2	DAT3	X_SD1_D3			
Т3	CMD	X_SD1_CMD			
T4	VCC	VCC_3V3			
T5	CLK	X_SD1_CLK			
Т6	GND	Ground			
Т7	DAT0	X_SD1_D0			
Т8	DAT1	X_SD1_D1			
SW	SW1	X_UART1_RTS_B_SD_CD			
CELLULAR MODULE SIM SIGNAL					
C1	SIM_VCC	SIM_VCC			
C2	SIM_RST	SIM_RST			
C3	SIM_CLK	SIM_CLK			
C4	GND	SIM_GND			
C5	SIM_VPP	SIM_VPP			
C6	SIM_IO	SIM_IO			
G1 G2 G3 G4 G5 G6 G7 G8	GND	Ground			

Table 17: Secure digital Memory card+SIM (Dual Connector)

2.4.18 LCD Connector (J1)

Fig 25: LCD Connector (Not mounted by default)

The Baseboard provides a FPC connector with 24bits of data and control signals to the LCD interface. Other signals are used to control the LCD and are available on connector J1:TWI, SPI and power supply lines. A 42-pin FPC (J1) header is provided on the baseboard to interface the LCD module with 24-bit parallel RGB.

In order to operate correctly out of the processor with various LCD modules, two voltage lines are available: 3V3 and 5V0.

PIN DESCRIPTION	SIGNAL NAME	PIN NO	PIN NO	SIGNAL NAME	PIN DESCRIPTION
Not Connect	NC	1	2	X_I2C1_SDA	I2C 1 Serial Data
Not Connect	NC	3	4	X_I2C1_SCL	I2c 1 Serial Clock
Not Connect	NC	5	6	X_GPIO5_9_CTP_INPRT	GPIO5_9
3V3 power supply	VCC_3V3	7	8	VCC_3V3	3V3 power supply
Ground	GND	9	10	GND	Ground
3V3 power supply	VCC_3V3	11	12	X_SPI2_MOSI	SPI 2 MOSI
LCD Data Enable	X_LCD_ENABLE	13	14	X_LCD_VSYNC	LCD Vertical Synchronization
LCD Horizontal Synchronization	X_LCD_HSYNC	15	16	NC	Not Connect
LCD Pixel Clock	X_LCD_CLK	17	18	GND	Ground
SPIO 2 Chip Select	X_SPI2_SSO	19	20	X_LCD_D13	LCD Data Bus
LCD Data Bus	X_LCD_D14	21	22	X_LCD_D15	LCD Data Bus
LCD Data Bus	X_LCD_D16	23	24	X_LCD_D17	LCD Data Bus
LCD Data Bus	GND	25	26	X_LCD_D6	LCD Data Bus
LCD Data Bus	X_LCD_D7	27	28	X_LCD_D8	LCD Data Bus
LCD Data Bus	X_LCD_D9	29	30	X_LCD_D10	LCD Data Bus
LCD Data Bus	X_LCD_D11	31	32	GND	Ground
LCD Data Bus	X_SPI2_SCLK	33	34	X_LCD_D1	LCD Data Bus
LCD Data Bus	X_LCD_D2	35	36	X_LCD_D3	LCD Data Bus
LCD Data Bus	X_LCD_D4	37	38	X_LCD_D5	LCD Data Bus
External Reset	X_RESET	39	40	X_LCD_RESET	LCD Reset
Ground	GND	41	42	GND	Ground

Table 18: LCD Connector

2.4.19 RTC Battery (P11)

Fig 26: RTC Battery Connector

A real-time clock (RTC) keeps track of the current date & time. Since RuggedBoard-iMX6UL is SIP based SOC it consists of internal RTC. Thus the RTC need to be powered by 3.3v external RTC battery on P11 connector to maintain the Date and Time. Below are the connector details.

PIN NO	PIN DESCRIPTION
1	VCC 3V
2	GND

Table 19: RTC Battery