CS F364: Design & Analysis of Algorithm

Network Flow Search Trees

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Feb 22, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Flow

Flow in the graph *G* is a real valued function $f: V \times V \to \mathbb{R}$

- **①** Capacity Constraint: $\forall u, v \in V$ we require $0 \le f(u, v) \le c(u, v)$
- **2** Flow conservation: $\forall u \in V \{s, t\}$ we require $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \text{ here if } (u, v) \notin E \text{ then } f(u, v) = 0,$

Network flow is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

Typically, no edge enters the source, so $\sum_{v \in V} f(v, s) = 0$

Maximum-flow problem: given a flow network G with source s and sink t; we wish to find a flow of maximum value.

Ford-Fulkerson method

Algorithm 1: FORD-FULKERSON-METHOD(G,s,t)

- 1 Initialize flow f to 0
- 2 while ∃ an augmenting path p in the residual network G_f
- Augment the flow f along p
- 4 return f

Given a flow network G = (V, E) with source s, sink t, and flow f

Residual network G_t has two type of edges

- **1** Residue: $c_f(u, v) = c(u, v) f(u, v)$
- 2 flow: $c_f(u, v) = f(v, u)$

Observe that $|E_f| \le 2|E|$

Flow Network

Flow network G = (V, E) is a directed graph

- Every edge $(u, v) \in E$ has a non-negative **capacity** $|c(u, v)| \geq 0$
- There are two distinguished vertices: source s, and sink t
- For each vertex $v \in V$ the network has a path $s \rightsquigarrow v \rightsquigarrow t$
- Self loops are not allowed $(u, u) \notin E$
- No reverse edge, If $(u, v) \in E$ then $(v, u) \notin E$
- If $(u, v) \notin E$ then c(u, v) = 0,
- Graph is connected, so $|E| \ge |V| 1$

Dealing Anti-Parallel Edges, Many Source/Sink (Supersource, Supersink)

Example: Residual Network

Augmentation $f \uparrow f'$

If f is a flow in G; and f' in its residual network G_f then

$$(f\uparrow f')(u,v)=\left\{\begin{array}{ll}f(u,v)+f'(u,v)-f'(v,u)&\text{if }(v,u)\in E\\0&\text{otherwise}\end{array}\right.$$

 $f \uparrow f'$ is a flow in G with value $|f \uparrow f'| = |f| + |f'|$

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021) 7/16

Augmenting Paths

- Augmenting path p is a simple path from s to t in residual n/w G_f of a flow network G = (V, E) having source s and sink t
- Residual capacity $c_f(p) = min\{c_f(u, v) : (u, v) \text{ is on path } p\}$
- Define

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \text{ is on path } p \\ 0 & \text{otherwise} \end{cases}$$

- f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$
- If we augment f with f_p we get another flow in G, whose value is closer to the maximum.

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021)

Find flow and capacity across the cut in following n/w

flow 19, capacity 26 ?

Let's find $f \uparrow f'$

$$\begin{split} |f \uparrow t'| &= \sum_{v \in V} (f \uparrow t')(s, v) - \sum_{v \in V} (f \uparrow t')(v, s) \\ &= \sum_{v \in V_1} (f \uparrow t')(s, v) - \sum_{v \in V_2} (f \uparrow t')(v, s) \\ &= \sum_{v \in V_1} (f(s, v) + t'(s, v) - t'(v, s)) - \sum_{v \in V_2} (f(v, s) + t'(v, s) - t'(s, v)) \\ &= \sum_{v \in V_1} f(s, v) + \sum_{v \in V_1} f'(s, v) - \sum_{v \in V_1} f'(v, s) - \sum_{v \in V_2} f(v, s) - \sum_{v \in V_2} f'(v, s) + \sum_{v \in V_2} f'(s, v) \\ &= \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1} f'(s, v) + \sum_{v \in V_2} f'(s, v) - \sum_{v \in V_2} f'(v, s) - \sum_{v \in V_2} f'(v, s) \\ &= \sum_{v \in V_1} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1 \cup V_2} f'(s, v) - \sum_{v \in V_1 \cup V_2} f'(v, s) \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V_2} f(v, s) + \sum_{v \in V_1 \cup V_2} f'(s, v) - \sum_{v \in V_1 \cup V_2} f'(v, s) \\ &= |f| + |f'| \end{split}$$

where $V_1 = \{v : (s, v) \in E\}$ and $V_2 = \{v : (v, s) \in E\}$

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021) 8/16

Cuts of flow network

- A cut (S, T) of a flow network G = (V, E) is a partition of V in Sand T = V - S such that $s \in S$ and $t \in T$
- Net flow across the cut is

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Capacity of the cut is

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

• Minimum cut of a network is a cut whose capacity is minimum over all cuts of the network

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021) 10/16

Net flow is |f|

Let f be a flow in a network G with source s and sink t and let (S, T)be any cut of G. Then the net flow across (S, T) is f(S, T) = |f|

• $\forall u \in V - \{s, t\}$ we know $\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) = 0$

$$\begin{split} |I| &= & \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s) + \sum_{u \in S - \{s\}} \sum_{v \in V} f(u,v) - \sum_{v \in V} f(v,u)) \\ &= & \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s) + \sum_{u \in S - \{s\}} \sum_{v \in V} f(u,v) - \sum_{u \in S - \{s\}} \sum_{v \in V} f(v,u) \\ &= & \sum_{v \in V} (f(s,v) + \sum_{u \in S - \{s\}} f(u,v)) - \sum_{v \in V} (f(v,s) + \sum_{u \in S - \{s\}} f(v,u)) \\ &= & \sum_{v \in V} \sum_{u \in S} f(u,v) - \sum_{v \in V} \sum_{u \in S} f(v,u) \\ &= & \sum_{v \in S} \sum_{u \in S} f(u,v) + \sum_{v \in T} \sum_{u \in S} f(u,v) - \sum_{v \in S} \sum_{u \in S} f(v,u) - \sum_{v \in T} \sum_{u \in S} f(v,u) \\ &= & \sum_{v \in T} \sum_{u \in S} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) + (\sum_{v \in S} \sum_{u \in S} f(u,v) - \sum_{v \in S} \sum_{u \in S} f(v,u)) \\ &= & \sum_{v \in T} \sum_{u \in S} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) \\ &= & \sum_{v \in T} \sum_{u \in S} f(u,v) - \sum_{v \in T} \sum_{u \in S} f(v,u) \\ &= & f(S,T) \end{split}$$

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021) 11/16

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021) 12/16

Flow is upper bounded

$$|f| = f(S,T)$$

$$= \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

$$\leq \sum_{u \in S} \sum_{v \in T} f(u,v)$$

$$\leq \sum_{u \in S} \sum_{v \in T} c(u,v)$$

$$= c(S,T)$$

Design & Analysis of Algo. (BITS F364)

Lecture-16(Feb 22, 2021) 13/16

Example

Max-Flow min-cut theorem

If f is a flow in a flow network G = (V, E) with source s and sink t, then following conditions are equivalent

- of is maximum flow in G
- 2 The residual network G_f contains no augmenting paths

Proof:

- (1) \rightarrow (2) if residual network G_f contains augmenting paths p, then augment p in G to get more flow.
- (2) \rightarrow (3) let $S = \{v \in V : \text{ there is a path from } s \text{ to } v \text{ in } G_f\}$, also T V S. Consider $u \in S$ and $v \in T$; if $(u, v) \in E$ then f(u, v) = c(u, v) and if $(v, u) \in E$ then f(v, u) = 0

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u) = \sum_{u \in S} \sum_{v \in T} c(u,v) = C(S,T)$$

• (3) \rightarrow (1) since flow is upper bounded by c(S, T) shown earlier

Design & Analysis of Algo. (BITS F364) M W F (3-4PM) online@BITS-Pilani Lecture-16(Feb 22, 2021) 14/16

Thank You!

Thank you very much for your attention! (Reference¹) Queries?

¹[1] Book - *Algorithm*, Kormen