The Importance of XRT Observations in Discriminating Between Impulsive and Footpoint Heating

Amy Winebarger¹, Roberto Lionello², Cooper Downs^{2,} Zoran Mikic², Jon Linker²

¹NASA MSFC, ST13, Huntsville, AL 35802 ²Predictive Science Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910

What heating mechanism?

"Impulsive"

- low frequency
- Nanoflares
- magnetic reconnection
- stressing models
- DC heating

Parker, Sol. Ph., 1989, 121, 271

TRAVEL TIME (s)

"Footpoint"

- Quasi-steady
- high-frequency
- Stratified
- wave dissipation
- AC heating

Impulsive heating = Cooling Loops

Cooling Loops Are Everywhere!

Red and yellow imply the hotter channel peaks before the cooler channel

- 1) Qualitative comparisons between the observations and models is lacking
 - Don't know the true geometry of the coronal structures
 - Don't know the abundance
 - Don't know the density evolution
- 2) Footpoint heating can also generate cooling loops

Footpoint heating

Highly-stratified heating can cause thermal non-equilibrium (TNE).

Qualitatively, this looks identical to nanoflare heating

Mikic et al., ApJ, 2013, 773, 94

Additional observational evidence of TNE:

- Coronal rain (e.g., Antolin et al., ApJ, 2010, 716, 154)
- Long term oscillations in EUV loops (e.g., Froment et al. ApJ, 2017, 835, 272)

Statement of the problem

Both impulsive heating and footpoint heating predict cooling loops.

There is additional observational evidence for both impulsive and footpoint heating

How can we differentiate between impulsive and footpoint heating?

For additional information,

see paper.

IDENTIFYING OBSERVABLES THAT CAN DIFFERENTIATE BETWEEN IMPULSIVE AND FOOTPOINT HEATING: TIME LAGS AND INTENSITY RATIOS

Amy R. Winebarger,

NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812

amy.r.winebarger@nasa.gov

and

Roberto Lionello, Cooper Downs, Zoran Mikić, Jon Linker

Predictive Science, Inc., 9990 Mesa Rim Rd., Ste. 170, San Diego, CA 92121-2910

{lionel, cdowns, mikicz, linkerj}@predsci.com

Scope of this study

Simulated EIT 171 Å Emission from AR 7986 (August 1996)

Field Line from a 3D Active Region Simulation NLFFF Model of AR 7986, August 1996

Selected a *single field line geometry*

Varied:

stratification of heating impulsive heating magnitude

Calculated:

AIA and XRT lightcurves
- timelags between channel
pairs

Conclusions:

XRT to AIA time lags can discriminate between heating mechanisms

Step 1 – Establish the Geometry and Initial Heating Profile

Used loop geometry and heating profile from Mikic et al., ApJ, 2013, 773, 94

Step 2 – Solve 1D Hydrodynamic Simulations

Step 3 – Calculate Lightcurves

Step 4 – Repeat for Impulsive Heating with Same Average Heating Rate

Step 4 – Repeat for Impulsive Heating with Same Average Heating Rate

Step 5 – Compare Timelags

Channel Pair [Ch. 1 - Ch. 2]	Footpoint Time Lag [s]	Footpoint Int. Rat. [Ch. 2 / Ch. 1]	Impulsive Time Lag [s]	Impulsive Int. Rat. [Ch. 2 / Ch. 1]
Be-thin-A335	990	0.40	1200	0.07
Be-thin-A211	3870	8.43	1950	1.47
Be-thin-A193	4830	19.60	2340	4.46
Be-thin-A171	4230	3.90	2760	6.91
A335-A211	1770	21.06	510	21.58
A335-A193	2430	48.99	840	65.71
A335-A171	2070	9.76	1230	101.73
A211-A193	690	2.33	240	3.04
A211-A171	780	0.46	630	4.71
A193-A171	0	0.20	390	1.55

Additional Analysis

Completed identical analysis for multiples heating magnitudes for footpoint and impulsive heating.

Additional Analysis

Results

Conclusions

- Cooling loops can be explained by both impulsive and footpoint heating.
- AIA time lags alone may not be enough to discriminate between them.
- Adding a high temperature channel (like XRT Be-thin) improves diagnostics.