Program Language Translation Using a Grammar-Driven Tree-to-Tree Model

Mehdi Drissi, Olivia Watkins, Aditya Khant, Vivaswat Ojha, Pedro Sandoval, Rakia Segev, Eric Weiner, Robert Keller

Background papers

- Tree-to-tree Neural Networks for Program Translation (Chen, Liu, Song), 2018
- A Syntactic Neural Model for General-Purpose Code Generation (Yin, Neubig) 2017
- Effective Approaches to Attention-based Neural Machine Translation (Luong, Pham, Manning) 2015
- Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks (Tai, Socher, Manning) 2015

Context

- PL to PL translation
 - Infix to prefix, HLL to IR, Imperative to functional, IDE's and tooling
- Translation seems solved but lots of special cases
 - Polyglot tools, embedded HTML/JS/CSS, Python + DSLs (Spark, Tensorflow), JSX (JS+ Html templating)
- Syntax-driven parsing is the most important "Solved unsolved problem" in CS

Idea

- Neural encoder-decoder architecture could be useful
- Allows for end-to-end data driven training
- Can refine on pure syntax directed translation
 - Combined translation/optimization
 - folding of redundancies
 - Stylistic conventions

Problem

- Formal languages are not free-form
 - Things appearing at every step of generation are tightly governed by grammar rules
- Existing approaches often generate invalid outputs
- Should incorporate the strong inductive bias of syntactic validity without taking away End-to-End trainability

Refinement

- Use tree-structured RNN's to deal with the rigid structure of formal languages
- Enforce the syntactic validity
- Should incorporate the strong inductive bias of syntactic validity without taking away End-to-End trainability

Combining in tree-LSTM

Tree-LSTM hidden and cell state combining rule

$$(h,c) = LSTM(([h_L:h_R],[c_L,c_R]),t_s).$$

- Binary constitution-tree LSTM cell
- Each node has too children so combining is straightforward (How?), needs binarized trees

Tree
Binarization:
Left child right
sibling

Facilitates simpler tree-LSTM cell architecture compared to N-ary tree

Only used in source tree in this work

Decoder Architecture & attention

- At end of encoding source tree, create empty target tree and push source root node state to it and put it in a queue
- Pop nodes from Queue and:
- Use Attention to decide which part of source tree to concentrate On.
 - Calclulate source context embedding e_s by weighted sum inner product of hidden top-of-queue state with all source tree states (soft attention)
 - Calculate target context embedding vector from source context and top-of-queue hidden state
 - Calculate target token by softmax

Attention map:
$$w_i \propto \exp(h_i^T W_0 h_5')$$

Source embedding: $e_s = \sum_{i=1}^{17} w_i h_i = [h_1; ...; h_{17}] w$
Combined embedding: $e_t = \tanh(W_1 e_s + W_2 h_5')$

Predicting the node: node = $\operatorname{argmax} \operatorname{softmax}(We_t)$

$$e_t = anh(W_1[e_s; h])$$
 $t_t = argmax softmax(We_t)$

Decoding Algorithm

• Prior Art:

- Target tree is binarized as well
- If the selected token is not <EOS>, use two parameterized LSTM cells $LSTM_L$ and $LSTM_R$ To generate child node cell and hidden states and push onto the queue, for <EOS> do nothing

$$(h_i, c_i) = LSTM_i((h, c), [Bt_t; e_t])$$

Dequeue nodes and repeat until output queue is empty

Decoding Algorithm (This work)

• This work:

- Target tree is kept N-ary, as enforcing grammar rules on binarized tree is not easy
- For each source token (Terminal or non-terminal) we know its arity in target grammar, N
- For each of the N child positions, consider separately the set of tokens that can appear there as a category set (e.g. Literal, Variable, Factor/product for +/- production)
- Factor out categories across all grammar productions
- Learn separate weight parameters for each category W_k to generate expanded node tokens and hidden states
- Use softmax to generate child token of the right category
- Feed chosen child token to LSTM cell to generate the hidden and cell state of the LSTM

Results

Program Accuracy Comparison for Different Models

0.8

0.9

0.0

Grammar Validation
Tree Validation
Sequence Validation
Thousands of Training Examples

- 100K synthetic programs in FOR (toy imperative lang) to corresponding programs in Lambda (toy functional lang)
- Comparison with Chen et al. and naïve seq-2seq
- Don't reproduce the exact results of Cheng et al. due to dataset differences
- Claim their results show less variation due to random seeds

MODEL	MEAN ACCURACY	σ Accuracy
GRAMMAR TREE2TREE	88.82%	0.64%
REIMPLEMENTED TREE2TREE	80.69%	7.02%
REIMPLEMENTED TREE2SEQ	83.59%	3.95%
CHEN ET AL. TREE2TREE (EASY)	99.76%	N/A
CHEN ET AL. TREE2SEQ (EASY)	98.36%	N/A
CHEN ET AL. TREE2TREE (HARD)	97.50%	N/A
CHEN ET AL. TREE2SEQ (HARD)	87.84%	N/A
(LONG) GRAMMAR TREE2TREE	93.70%	N/A
(LONG) REIMPLEMENTED TREE2TREE	91.89%	N/A
(LONG) REIMPLEMENTED TREE2SEQ	90.60%	N/A

METRIC	For	LAMBDA
TOTAL PROGRAM COUNT	100ĸ	100к
AVERAGE PROGRAM LENGTH	22	56
MINIMUM PROGRAM LENGTH	5	13
MAXIMUM PROGRAM LENGTH	104	299
Number of tokens in Language	32	33