Mini-Project 1

Leakage Power Reduction with Gate Sizing and Vt Cell Swap

Due: March 1, 2018, 11:59pm Pacific Time

ECE 260B – CSE 241A 1 Andrew B. Kahng, UCSD

Project Overview

Gate Sizing

Simultaneous gate sizing and Vt cell swapping to optimize circuit power under performance constraints

Objective

Minimize leakage power consumption under timing constraints

Environments

Timing & power analysis: Synopsys PrimeTime

Designs: usb_phy, aes_ciphe_top, mpeg2_top

Library: Multi-Vt (HVT, NVT, LVT) library

Background

- The sizing problem in VLSI design seeks to tune the circuit parameters (i.e., gate width, gate length and threshold voltage) to optimize a tradeoff of speed, area and power of circuit.
- Cell swapping with multi-Vt (threshold voltage) library is widely used method to reduce leakage power in postlayout stage
 delay and leakage - INVD4
- Large size & LVT : fast timing, but large leakage
- Small size & HVT: slow timing, but low leakage

Use low-leakage and/or small-size cells along paths with positive timing slack

ECE 260B – CSE 241A 3 Andrew B. Kahng, UCSD

Cell Swap Example

- Assume that all cells are NVT (nominal Vt) type
- Cell "x" and "w" can be swapped to a HVT or small-size cell since they have positive slack (3 and 8)
- In case, slack of "v", "x", "w" are zero, down sizing or using HVT cells can lead to timing violation

ECE 260B - CSE 241A 4 Andrew B. Kahng, UCSD

Timing Recovery Can Help

- Speed up bottleneck cells that participate in many timingcritical paths
- With timing recovery, we are able to down size or use low leakage cells on critical paths to optimize power

ECE 260B – CSE 241A 5 Andrew B. Kahng, UCSD

Environment

Design: 2013 ISPD benchmarks

ISPD Liberty + TSMC 65nm BEOL

P&R is implemented with Cadence Innovus Implementation System

Liberty: 2013 ISPD

Vt types: triple-Vt (HVT, NVT, LVT)

Cell sizes: (except flip-flop)

Timing constraints each cell has 10 sizing variants

Max transition constraints (described in Liberty)

Max capacitance constraints (described in Liberty)

Setup time constraint

Library Information

→ Cell sizes

Cell name in benchmarks	Mapped cell type
$in01\{s, m, f\}\{01, 02, 03, 04, 06, 08, 10, 20, 40, 80\}$	Inverter
na02{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	2-input NAND
na03{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	3-input NAND
na04{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	4-input NAND
no02{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40,80}	2-input NOR
no03{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	3-input NOR
no04{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	4-input NOR
ao12{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	2-1 AOI
ao22{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	2-2 AOI
oa12{s, m, f}{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	2-1 OAI
oa22[s, m, f]{01, 02, 03, 04, 06, 08, 10, 20, 40, 80}	2-2 OAI
ms00f80	D Flip-Flop

Vt types: s = HVT, m = NVT and f = LVT

ECE 260B – CSE 241A 7 Andrew B. Kahng, UCSD

Overall Flow

PrimeTime Execution

Running PrimeTime

ieng6-ece-01\$ pt_shell -f run_pt.tcl

Report after sizing / Vt swapping

ECE 260B – CSE 241A 9 Andrew B. Kahng, UCSD

PrimeTime Baseline Script (size.tcl)

```
set cellList [get_cell *]
                                                             # put all cells into cellList
foreach in collection cell $cellList {
  set cellName [get attri $cell base name]
                                                             # get cell instance name
  set libcell [get_lib_cells -of_objects $cellName]
  set libcellName [get attri $libcell base name]
                                                             # get library cell name
  if { [regexp {[a-z][a-z][0-9]f[0-9][0-9]} $libcellName] } { # change LVT to NVT
     set newlibcellName [string replace $libcellName 4 4 m]
     size cell $cellName $newlibcellName
     set newWNS [ PtWorstSlack clk ]
                                                             # calculate worst slack
     if { $newWNS < 0.0 } {
                                                             # restore the swap
       size cell $cellName $libcellName
                                                             # if WNS goes to negative
```

- You are supposed to modify this script to enable sizing and Vt assignment to reduce leakage more
- You should not use PT's own optimization commands (e.g., fix_eco*)
- Your solutions should be reproducible by your script (If you performed manual changes, please list all of them and explain why you did this.)

ECE 260B – CSE 241A 10 Andrew B. Kahng, UCSD

Potential Knobs for Your Optimization

See Zahn's SNUG'08 paper

http://vlsicad.ucsd.edu/SIZING/ref/other/ZahnSNUG08.pdf

Sensitivity based greedy method

Sort cells according to the sensitivity and try cell swaps.

Prof. Kahng's papers:

http://vlsicad.ucsd.edu/SIZING/ref/our/GuptaKSS06.pdf

http://vlsicad.ucsd.edu/Publications/Conferences/288/c288.pdf

http://vlsicad.ucsd.edu/Publications/Conferences/304/c304.pdf

ECE 260B - CSE 241A 11 Andrew B. Kahng, UCSD