1	Докажите, что в равных треугольниках соответствующие медианы равны.
2	Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.
3	Угол треугольника равен сумме двух других его углов. Докажите, что треугольник прямоугольный.
4	Внешние углы треугольника ABC при вершинах A и C равны 115 и 140 . Прямая, параллельная прямой AC , пересекает стороны AB и BC в точках M и N . Найдите углы треугольника BMN .
5	Через вершину B треугольника ABC проведена прямая, параллельная прямой AC . Образовавшиеся при этом три угла с вершиной B относятся как $3:10:5$. Найдите углы треугольника ABC .
6	Прямая, проходящая через вершину A треугольника ABC , пересекает сторону BC в точке M . При этом $BM=AB$, $\angle BAM=35$, $\angle CAM=15$. Найдите углы треугольника ABC .
7	Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.
8	Острые углы прямоугольного треугольника равны 81 и 9. Найдите угол между биссектрисой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.

1 Найти значение выражения:

$$61a - 11b + 50$$
, если $\frac{2a - 7b + 5}{7a - 2b + 5} = 9$.

- **2** Две высоты треугольника равны между собой. Докажите, что треугольник равнобедренный.
- **3** Дан четырехугольник, сумма диагоналей которого равна 18. Найдите периметр четырехугольника с вершинами в серединах сторон данного.
- 4 Углы треугольника относятся как 2 : 3 : 4 Найдите отношение внешних углов треугольника.
- 5 Основания трапеции равны 3 и 5, одна из диагоналей перпендикулярна боковой стороне, а другая делит пополам угол при большем основании. Найдите высоту трапеции.
- **6** Точки M и N лежат на стороне AC треугольника M, причем $\angle ABM = \angle ACB$ и $\angle CBN = \angle BAC$. Докажите, что треугольник BMN равнобедренный.
- 7 Треугольник ABC равнобедренный (AB = BC). Отрезок AM делит его на два равнобедренных треугольника с основаниями AB и MC. Найдите угол B.
- **8** В прямоугольном треугольнике ABC на гипотенузе AB взяты точки K и M, причем AK = AC и BM = BC. Найдите $\angle MCK$.
- 9 Через вершины A и C треугольника ABC проведены прямые, перпендикулярные биссектрисе угла ABC, пересекающие прямые CB и BA в точках K и M соответственно. Найдите AB, если BM=8, KC=1.

Домашняя работа №1

1 Упростить выражение:

$$\left(\frac{1}{x+2} + \frac{5}{x^2 - x - 6} + \frac{2x}{x-3}\right) \cdot \frac{x}{2x+1} - \frac{x-9}{2(3-x)}$$

2 Найти значение выражения:

$$\frac{a}{b}$$
, если $\frac{2a+5b}{5a+2b} = 1$.

3 Упростить выражение:

$$(2\sqrt{5} - \sqrt{15})(\sqrt{15} + 2\sqrt{5}) - (\sqrt{10} - 5\sqrt{2})^2$$

- 4 Острый угол прямоугольного треугольника равен 30, а гипотенуза равна 8. Найдите отрезки, на которые делит гипотенузу высота, проведенная из вершины прямого угла.
- 5 Докажите, что высота равнобедренного прямоугольного треугольника, проведенная из вершины прямого угла, вдвое меньше гипотенузы.
- **6** Биссектрисы двух углов треугольника пересекаются под углом 110. Найдите третий угол треугольника.
- Высоты треугольника ABC, проведенные из вершин B и C, пересекаются в точке M. Известно, что BM = CM. Докажите, что треугольник ABC равнобедренный.

1	Докажите следующие свойства окружности:
	1) диаметр, перпендикулярный хорде, делит ее пополам;
	2) диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде;
	3) хорды, удаленные от центра окружности на равные расстояния, равны.
2	Через точку A окружности с центром O проведены диаметр AB и хорда AC . Докажите, что угол BAC вдвое меньше угла BOC (без использования свойств центральных и вписанных углов).
3	Найдите угол между радиусами OA и OB , если расстояние от центра O окружности до хорды AB вдвое меньше AB . (без использования свойств центральных и вписанных углов)
4	Даны две концентрические окружности и пересекающая их прямая. Докажите, что отрезки этой прямой, заключенные между окружностями, равны.
5	Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12 . Найдите BC , если известно, что точка A лежит на отрезке BC .
6	Две хорды окружности взаимно перпендикулярны. Докажите, что расстояние от точки их пересечения до центра окружности равно расстоянию между их серединами.
7	Докажите, что если треугольник вписан в окружность и одна из его сторон является диаметром этой окружности, то такой треугольник является прямоугольным.
8	Центр окружности, описанной около треугольника, симметричен центру окружности, вписанной в этот треугольник, относительно одной из сторон. Найдите углы треугольника.
9	Через точку A проведена прямая, пересекающая окружность с диаметром AB в точке K , отличной от A , а окружность с центром B — в точках M и N . Докажите, что $MK = KN$.

1	Угол между радиусами OA и OB окружности равен 60 . Найдите хорду AB , если радиус окружности равен 12 .
2	Дана окружность с центром O . На продолжении хорды AB за точку B отложен отрезок BC , равный радиусу. Через точки C и O проведена секущая CD (D – точка пересечения с окружностью, лежащая вне отрезка CO). Докажите, что $\angle AOD = 3\angle ACD$.
3	Равные хорды окружности с центром O пересекаются в точке $M.$ Докажите, что $MO-$ биссектриса угла между ними.
4	Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной 10 , проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырехугольника.
5	Продолжения хорд AB и CD окружности с диаметром AD пересекаются под углом 25 . Найдите острый угол между хордами AC и BD .
6	Докажите, что точка пересечения биссектрис треугольника ABC , точки B и C , а также точка пересечения биссектрис внешних углов с вершинами B и C лежат на одной окружности.
7	Биссектрисы внутреннего и внешнего угла при вершине A треугольника ABC пересекают прямую BC в точках P и Q . Докажите, что окружность, построенная на отрезке PQ как на диаметре, проходит через точку A .
8	Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N , отличных от A . Докажите, что $AM = AN$.

Домашняя работа №2

1 Упростить выражение:

$$1: \left(\frac{a}{a-b} + \frac{4a^2b - ab^2}{b^3 - a^3} + \frac{b^2}{a^2 + ab + b^2}\right) - \frac{-3ab}{(a-b)^2}$$

2 Упростить и найти значение выражения:

$$\left(\frac{x+1}{x-1} - \frac{x-1}{x+1} + 4x\right) \cdot \left(x - \frac{1}{x}\right)$$
, если $x = 5\frac{1}{3}$

- **3** Через точку на окружности проведены диаметр и хорда, равная радиусу. Найдите угол между ними.
- 4 Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB вдвое меньше OA.
- Б На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K. Найдите CK, если AC = 2 и $\angle A = 30$.
- **6** Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.
- 7 Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P. Докажите, что треугольники APD и BPC равнобедренные.

- 1 Докажите, что касательные к окружности, проведенные через концы диаметра, параллельны.
- **2** Через точку M проведены две касательные MA и MB к окружности (A и B точки касания). Докажите, что MA = MB.
- **3** Расстояние от точки M до центра O окружности равно диаметру. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.
- В прямой угол вписана окружность радиуса 12, касающаяся сторон угла в точках A и B. Через некоторую точку на меньшей дуге AB окружности проведена касательная, отсекающая от данного угла треугольник. Найдите его периметр.
- 5 Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по одну сторону от прямой OA. Докажите, что угол CAD вдвое меньше угла AOD.
- В острый угол, равный 60, вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен r. Найдите радиус большей окружности.
- 7 Вычислить:

$$\frac{6 \cdot 2^8 - 9 \cdot 2^{10} + 3 \cdot 2^{12}}{4 \cdot 2^{10} + 4 \cdot 2^{12} - 8 \cdot 2^{11}}$$

8 Решить уравнение:

$$\frac{2x-1}{x+1} = \frac{4x+2}{3x-2}$$

- 1 Докажите, что центр окружности, вписанной в угол, расположен на его биссектрисе.
- **2** Точка D лежит на стороне BC треугольника ABC. В треугольник ABD и ACD вписаны окружности с центрами O_1 и O_2 . Докажите, что отрезок O_1O_2 виден из точки D под прямым углом.
- 3 К окружности, вписанной в равносторонний треугольник со стороной, равной 8, проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
- 4 Прямая, параллельная хорде AB, касается окружности в точке C. Докажите, что треугольник ABC равнобедренный.
- 5 Две прямые, пересекающиеся в точке C, касаются окружности в точках A и B. Известно, что $\angle ACB = 120$. Докажите, что сумма отрезков AC и BC равна отрезку OC.
- **6** Пусть r радиус окружности, вписанной в прямоугольный треугольник с катетами a и b и гипотенузой c. Докажите, что $r=\frac{1}{2}(a+b-c)$.
- **7** В треугольник ABC вписана окружность, касающаяся стороны AB в точке M. Пусть AM = x, BC = a, полупериметр треугольника равен p. Докажите, что x = p a.
- **8** В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника.

Домашняя работа №3

1	Хорда большей из двух концентрических окружностей касается меньшей. Докажите, что точка касания делит эту хорду пополам.
2	Точки A и B лежат на окружности. Касательные к окружности, проведенные через эти точки, пересекаются в точке C . Найдите углы треугольника ABC , если $AB=AC$.
3	Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C . Найдите угол между этими прямыми, если $\angle ABO=40$.
4	К окружности, вписанной в квадрат со стороной, равной a , проведена касательная, пересекающая две его стороны. Найдите периметр отсеченного треугольника.
5	В треугольник ABC вписана окружность, касающаяся стороны AB в точке M . Пусть $AM=x$, $BC=a$, полупериметр треугольника равен p . Докажите, что $x=p-a$.
6	Окружность касается двух параллельных прямых и их секущей. Докажите, что отрезок секущей, заключенный между параллельными прямыми, виден из центра окружности под прямым углом.
7	CH — высота прямоугольного треугольника ABC , проведенная из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .