TP 6 : Neumann/Dirichlet boundary value problem

In accordance with previous tutorial sheets, a mesh shall be modelled by two tables: vtx that models the vertices, and elt that models the mesh cells (triangles in 2D, edges in 1D).

Exercice 1: computing the normal vector field

Here we consider meshes that have been generated by means of the function GenerateMesh written in exercise 2 of tutorial sheet no.2.

Question 1.1 Write a function taking as input a pair (vtx,belt) that represents the boundary of a mesh generated by means of GenerateMesh, and that returns as output a table nrm of nb_belt arrays of \mathbb{R}^2 such that nrm[j] is the outgoing vector normal to element no.j on the boundary.

Question 1.2 Plot the outgoing normal vector field through the boundary of the mesh obtained by a call to GenerateMesh('rectangle.msh', 2π , π , 10, 10).

Exercice 2: Neumann problem

In this exercise we consider the computational domain $\Omega =]0, 2\pi[\times]0, \pi[$ and the corresponding mesh obtained by means of the routine GenerateMesh. We shall denote \boldsymbol{n} the outgoing vector field normal to the boundary of Ω .

Question 2.1 We consider given $\mathbf{d} \in \mathbb{R}^2$, $|\mathbf{d}| = 1$, a parameter $\mu > 0$, and a function $u_{\text{ex}}^{\text{N}}(\mathbf{x}) := \sinh(\mu \mathbf{d} \cdot (\mathbf{x} - \mathbf{x}_c))$ with $\mathbf{x}_c = (\pi, \pi/2)$. Plot u_{ex}^{N} over the domain Ω taking $\mathbf{d} = (1/\sqrt{2}, 1/\sqrt{2})$ and $\mu = 2$. What is the result of $-\Delta u_{\text{ex}}^{\text{N}} + \mu^2 u_{\text{ex}}^{\text{N}}$? What is the solution to the following boundary value problem?

$$\begin{cases} \text{Find } u \in H^{1}(\Omega) \text{ such that} \\ \Delta u - \mu^{2} u = 0 \text{ in } \Omega, \\ \partial_{n} u = \partial_{n} u_{\text{ex}}^{N} \text{ on } \partial \Omega. \end{cases}$$
 (1)

Question 2.2 Compute the nodal values of the numerical solution u_h^{N} obtained by means of a \mathbb{P}_1 -Lagrange finite element method applied to Problem (1).

Question 2.3 Let $\Pi_h : \mathscr{C}^0(\overline{\Omega}) \to V_h(\Omega)$ refer to the \mathbb{P}_1 -Lagrange interpolation operator. Produce a graphical plot of $u_h^{\mathbb{N}} - \Pi_h(u_{\mathrm{ex}}^{\mathbb{N}})$. This function should be small compared to 1 over the whole domain Ω for a sufficiently fine mesh.

Question 2.4 Plot the function $h \mapsto \|u_h^{\scriptscriptstyle N} - \Pi_h(u_{\rm ex}^{\scriptscriptstyle N})\|_{L^2(\Omega)} / \|\Pi_h(u_{\rm ex}^{\scriptscriptstyle N})\|_{L^2(\Omega)}$, where h refers to the meshwidth. What is the convergence rate? On the same figure, plot the function $h \mapsto \|u_h^{\scriptscriptstyle N} - \Pi_h(u_{\rm ex}^{\scriptscriptstyle N})\|_{H^1(\Omega)} / \|\Pi_h(u_{\rm ex}^{\scriptscriptstyle N})\|_{H^1(\Omega)}$. What is the rate of convergence with this second plot?

Exercice 3: Dirichlet problem

In this exercise we consider the same computational domain $\Omega =]0, 2\pi[\times]0, \pi[$ as in the previous exercise, and $\mu > 0$ refers again to the same fixed parameter.

Question 2.1 Again we consider the function $f(\mathbf{x}) = \sin(x_1)\sin(x_2)$. Compute Δf . What is the solution $u_{\text{ex}}^{\text{D}}(\mathbf{x})$ of the following boundary value problem?

$$\begin{cases}
\text{Trouver } u \in H^1(\Omega) \text{ tel que} \\
-\Delta u + \mu^2 u = f \quad \text{dans } \Omega, \\
u = 0 \quad \text{sur } \partial \Omega.
\end{cases} \tag{2}$$

Question 2.2 Solve Problem (2) by the \mathbb{P}_1 -Lagrange finite element method. We shall denote $u_h^{\scriptscriptstyle D}$ the obtained discrete solution.

Question 2.3 Plot $u_h^{\scriptscriptstyle D} - \Pi_h(u_{\rm ex}^{\scriptscriptstyle D})$ graphically taking $\mu = 2$.

Question 2.4 Compute $||f||_{L^2(\Omega)}^2$ by hands. Plot the function $h \mapsto ||u_h^{\scriptscriptstyle D} - \Pi_h(u_{\rm ex}^{\scriptscriptstyle D})||_{L^2(\Omega)} / ||f||_{L^2(\Omega)}$, where h refers to the meshwidth, with the value $\mu = 2$.