(20475) 2 פתרון ממ"ן 21 – חשבון אינפיניטסימלי – 12

2023 ביולי 25

שאלה 1

את הפולינום על־ידי אפולינום בקטע $I=[e^2-1,e^2+1]$ מקרבים מקרבים את אל

$$P(x) = \frac{1}{2} + \frac{2x}{e^2} - \frac{x^2}{2e^4}$$

נראה כי

$$|f(x) - P(x)| < \frac{1}{3(e^2 - 1)^3}$$

 $.x \in I$ לכל

אז מההגדרה נובע

$$\ln x = \ln(e^2e^{-2}x) = \ln(e^{-2}x) + 2 = \ln((e^{-2}x-1)+1) + 2$$
 נראה כי
$$t = \frac{x}{e^2} - 1$$
 לכן נגדיר

ln x = g(t) = ln(t+1) + 2

ולכן $x \in [e^2 - 1, e^2 + 1]$ ידוע כי

$$e^{2} - 1 \le x \le e^{2} + 1$$

 $e^{2} - 1 \le e^{2}(t+1) \le e^{2} + 1$
 $1 - e^{-2} \le t + 1 \le 1 + e^{-2}$
 $-1 < -e^{-2} \le t \le e^{-2} < 1$

הוא g(t) של מסדר 2 של פיתוח טיילור בעמוד 65 כרך ב' אשר מוגדר בתחום וות(t+1) של של שיילור מסדר בי פולינום אדר דהינו $t\in(-1,1)$ אשר מוגדר של פיתוח טיילור של פיתוח אדר בתחום וות

$$P_2(t) = g(0) + t - \frac{1}{2}t^2 = 2 + \frac{x}{e^2} - 1 - \frac{1}{2}(\frac{x}{e^2} - 1)^2 = 1 + \frac{x}{e^2} - \frac{1}{2}(\frac{x^2}{e^4} - \frac{2x}{e^2} + 1) = \frac{1}{2} + \frac{2x}{e^2} - \frac{x^2}{2e^4} = P(x)$$

לכן על־פי הגדרת השארית

$$R_2(t) = g(t) - P_2(t)$$

על־פי דוגמה 4.4 לכל לכל $t \in (-1,1)$ מתקיים

$$|R_2(t)| < \frac{|t|^3}{1 - |t|} = \frac{\left(\frac{x}{e^2} - 1\right)^3}{\frac{x}{e^2}} = \frac{\left(x - e^2\right)^3}{xe^4}$$

ולכן $x=e^2+1$ ולכן מקסימום כי היא עולה כי אולה מחקירת הפונקציה עולה בי

$$|R_2(t)| = |f(x) - P(x)| < \frac{(e^2 + 1 - e^2)^3}{(e^2 + 1)e^4} = \frac{1}{e^6 + e^4}$$

 $x \in [e^2-1,e^2+1]$ ניתן לבדוק ולראות כי מתקיים לבדוק ניתן

$$|f(x) - P(x)| < \frac{1}{3(e^2 - 1)^3}$$

שאלה 2

[a,b]רציפה רציפה רציפה וי
 [a,b]ו פעמים פעמים הזירה גזירה פונקציה פונקציה חהי
 f(x)ור

 x_0 ב ב' של n מסדר מסדר את השארית ב' ונסמן ב' $x_0 \in [a,b]$ בקבע נקודה

 $x \in [a,b]$ נוכיח כי לכל

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t) (x-t)^n dt$$

 $0 \leq i \leq n$ סביב של סביב הפונקציה בכל הדרישות לפיתוח העבור f(x) סביב במים לב כי הפונקציה עבור f(x) סביב סביב מיילור של פיתוח העבור: f(x) סביב מיילור של מיילור של השנה:

בסיס האינדוקציה: מהמשפט היסודי של החשבון האינפיניטסמלי נובע כי

$$\int_{x_0}^x f'(t)dt = f(x) - f(x_0) = f(x) - P_0(x) = R_0(x)$$

n=0 ומצאנו כי הטענה נכונה עבור

מתקיים לכן האינדוקציה: נניח כי הטענה נכונה עבור $i \leq n$ לכן מתקיים

$$f(x) = P_i(x) + \frac{1}{i!} \int_{x_0}^x f^{(i+1)}(t)(x-t)^i dt$$

עבור הביטוי נבצע אינטגרציה בחלקים, כאשר

$$u = f^{(i+1)}(t)$$
 $dv = (x-t)^{i}$
 $du = f^{(i+2)}(t)dt$ $v = -\frac{1}{i+1}(x-t)^{i+1}$

ולכן

$$A = \int_{x_0}^{x} u(t)v(t)dt$$

$$= -\frac{1}{i+1}f^{(i+1)}(t)(x-t)^{(i+1)}\Big|_{x_0}^{x}$$

$$= -\frac{1}{i+1}f^{(i+1)}(x)(x-x)^{(i+1)} + \frac{1}{i+1}f^{(i+1)}(x_0)(x-x_0)^{(i+1)}$$

$$= \frac{1}{i+1}f^{(i+1)}(x_0)(x-x_0)^{(i+1)}$$

$$f(x) = P_i(x) + \frac{1}{i!}\left(A - \frac{1}{i+1}\int_{x_0}^{x} (-1)f^{(i+2)}(t)(x-t)^{(i+1)}dt\right)$$

$$= P_i(x) + \frac{1}{(i+1)!}\left(f^{(i+1)}(x_0)(x-x_0)^{(i+1)} + \int_{x_0}^{x} f^{(i+2)}(t)(x-t)^{(i+1)}dt\right)$$

$$= P_{i+1}(x) + \frac{1}{(i+1)!}\int_{x_0}^{x} f^{(i+2)}(t)(x-t)^{(i+1)}dt$$

מש"ל מהלך האינדוקציה.