Project Report

This project aims to analyze the efficiency of Inverse Normal Transformation and Yeo-Johnson Power Transformation in transforming extreme data to normal distribution.

Least Squares Estimation

Construct a matrix
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
. We have that $A^T A = \begin{bmatrix} \frac{n}{2} & 0 \\ 0 & \frac{n}{2} \end{bmatrix}$ and $(A^T A)^{-1} = \begin{bmatrix} \frac{2}{n} & 0 \\ 0 & \frac{2}{n} \end{bmatrix}$.

To perform a least squares estimation, we use the simple linear regression model $Y = \beta X + \varepsilon$. Let X = A and Y be our simulated data, we can fit the matrix A to our simulated data Y and calculate the least squares estimator $\hat{\beta} = (X^T X)^{-1} X^T Y$ as:

$$\hat{\beta} = \begin{bmatrix} \frac{2}{n} & \frac{2}{n} & \dots & 0 & 0 \\ 0 & 0 & \dots & \frac{2}{n} & \frac{2}{n} \end{bmatrix} Y = \begin{bmatrix} \frac{2}{n}y_1 + \frac{2}{n}y_2 + \dots + \frac{2}{n}y_{\frac{n}{2}} \\ \frac{2}{n}y_{\frac{n}{2}+1} + \dots + \frac{2}{n}y_{n-1} + \frac{2}{n}y_n \end{bmatrix} = \begin{bmatrix} \frac{2}{n}(y_1 + y_2 + \dots + y_{\frac{n}{2}}) \\ \frac{2}{n}(y_{\frac{n}{2}+1} + \dots + y_{n-1} + y_n) \end{bmatrix}$$

Now, we can get our test statistic $t = \frac{\sqrt{n}\hat{\beta}}{\hat{\sigma}}$. In this case, we are testing whether there is a

difference in the mean of the first half elements compare to the mean of the second half elements of our data. We can use the t-distribution to find the associated p-value. We can then observe the distribution of the p-values, expected to be uniform if the original data is distributed in normal shape, and calculate the type I error rate.

Inverse Normal Transformation

In order to perform the Inverse Normal Transformation, we first replace the data values by their fractional ranks. We then use the probit function Φ^{-1} to map these probabilities to Z-scores. If W is any continuous random variable with CDF F_W , then the transformed random variable $U = F_W(W)$ is uniformly distributed in large samples. Consequently, we know that $INT(W) = \Phi^{-1}\{F_n(W)\} \sim N(0,1)$, regardless of the initial distribution F_W . Therefore, for an observed W_i for each of n independent subjects, the formula for performing the Inverse Normal Transformation is $INT(W_i) = \Phi^{-1}\{\frac{rank(W_i) - c}{n+1-2c}\}, c \in [0,1/2]$. Based on the paper, we choose $c = \frac{3}{8}$ in our transformations. (McCaw $et\ al.$, 2019).

For our simulated data Y, we perform the Inverse Normal Transformation to it so that $\tilde{Y} = INT(Y)$. Use this \tilde{Y} to replace the original Y in the least squares estimation model above and let X = A remain unchanged. We can get our new $\hat{\beta}$ and use it to obtain the p-values and the type I error rate for the transformed data and compare the results to those of the original data to examine how the transformation performs.

Yeo-Johnson Power Transformation

We use the existed *yeojohnson*() function in R to perform the Yeo-Johnson power transformation. The code behind this function can be found at <u>github.com/petersonR/bestNormalize/blob/master/R/yeojohnson.R</u>.

We then use the same method above to fit X = A to the data transformed by the Yeo-Johnson Power Transformation $\tilde{Y} = yeojohnson(Y)$. We then get another $\hat{\beta}$ and use it to obtain the p-values and the type I error rate for the power transformed data and compare the results to those of the original data to examine how the transformation performs.

The type I error rates of the original data, the INT transformed data, and the power transformed data are listed in Table 1.

Two Ways of Calculating P-Values

In simple regressions like what we performed above, we obtain the p-values by the inverse CDF of the t distribution $p = \Phi^{-1}(T)$ where $\Phi(t) = \mathbb{P}(T \le t)$. Now, we want to calculate the p-values by just using a Gaussian approximation $\Phi(t) = \mathbb{P}(N(0,1) \le t)$ which uses the Gaussian distribution rather than the t distribution. We obtain the type I error rates for our simulated data, the INT transformed data, and the power transformed data using the least squares estimation method above with these two ways of p-value calculation. The results are listed in Table 2.

Table 1. Type I Error Rate

	Distribution	Sample Size	$\alpha = 0.05$	$\alpha = 0.01$	$\alpha = 0.001$
Original	N(0,1)	6	0.0497	0.0102	0.0008
INT	N(0,1)	6	0.1029*	0.0000^	0.0000^
Power	N(0,1)	6	0.0659*	0.0174*	0.0009
Original	N(0,1)	20	0.0504	0.0093	0.0011
INT	N(0,1)	20	0.0503	0.0092	0.0010
Power	N(0,1)	20	0.0507	0.0090	0.0011
Original	N(0,1)	50	0.0485	0.0100	0.0008
INT	N(0,1)	50	0.0467	0.0100	0.0006
Power	N(0,1)	50	0.0487	0.0099	0.0010
Original	Exp(1)	6	0.0378^	0.0095	0.0015
INT	Exp(1)	6	0.0964*	0.0000^	0.0000^
Power	Exp(1)	6	0.0687*	0.0192*	0.0027*
Original	Exp(1)	20	0.0443^	0.0071	0.0004^
INT	Exp(1)	20	0.0495	0.0108	0.0006
Power	Exp(1)	20	0.0519	0.0114	0.0012
Original	Exp(1)	50	0.0478	0.0080	0.0005
INT	Exp(1)	50	0.0509	0.0107	0.0014
Power	Exp(1)	50	0.0501	0.0112	0.0012
Original	$\chi^2(1)$	6	0.0353^	0.0096	0.0011
INT	$\chi^2(1)$	6	0.1018*	0.0000^	0.0000^
Power	$\chi^2(1)$	6	0.0745*	0.0262*	0.0035*
Original	$\chi^2(1)$	20	0.0396^	0.0044^	0.0004^
INT	$\chi^2(1)$	20	0.0523	0.0094	0.0013
Power	$\chi^2(1)$	20	0.0532	0.0112	0.0018*

	Distribution	Sample Size	$\alpha = 0.05$	$\alpha = 0.01$	$\alpha = 0.001$
Original	$\chi^2(1)$	50	0.0436^	0.0054	0.0004^
INT	$\chi^2(1)$	50	0.0507	0.0109	0.0007
Power	$\chi^2(1)$	50	0.0501	0.0110	0.0009
Original	Laplace(0,1)	6	0.0359^	0.0062	0.0006
INT	Laplace(0,1)	6	0.0977*	0.0000^	0.0000^
Power	Laplace(0,1)	6	0.0549	0.0112	0.0008
Original	Laplace(0,1)	20	0.0466	0.0075	0.0009
INT	Laplace(0,1)	20	0.0519	0.0097	0.0013
Power	Laplace(0,1)	20	0.0488	0.0089	0.0009
Original	Laplace(0,1)	50	0.0459	0.0096	0.0008
INT	Laplace(0,1)	50	0.0466	0.0114	0.0012
Power	Laplace(0,1)	50	0.0468	0.0102	0.0011
Original	Rayleigh(1)	6	0.0544	0.0101	0.0013
INT	Rayleigh(1)	6	0.1003*	0.0000^	0.0000^
Power	Rayleigh(1)	6	0.0680*	0.0166*	0.0018*
Original	Rayleigh(1)	20	0.0495	0.0090	0.0011
INT	Rayleigh(1)	20	0.0489	0.0096	0.0014
Power	Rayleigh(1)	20	0.0506	0.0093	0.0014
Original	Rayleigh(1)	50	0.0483	0.0095	0.0010
INT	Rayleigh(1)	50	0.0465	0.0098	0.0011
Power	Rayleigh(1)	50	0.0474	0.0098	0.0010
Original	Weibull(1,0.5)	6	0.0386^	0.0096	0.0009
INT	Weibull(1,0.5)	6	0.0957*	0.0000^	0.0000^
Power	Weibull(1,0.5)	6	0.0694*	0.0197*	0.0014

	Distribution	Sample Size	$\alpha = 0.05$	$\alpha = 0.01$	$\alpha = 0.001$
Original	Weibull(1,0.5)	20	0.0464	0.0057	0.0001^
INT	Weibull(1,0.5)	20	0.0486	0.0107	0.0010
Power	Weibull(1,0.5)	20	0.0502	0.0119	0.0008
Original	Weibull(1,0.5)	50	0.0495	0.0081	0.0003^
INT	Weibull(1,0.5)	50	0.0529	0.0100	0.0012
Power	Weibull(1,0.5)	50	0.0543	0.0104	0.0012
Original	Cauchy(0,1)	6	0.0170^	0.0037^	0.0004^
INT	Cauchy(0,1)	6	0.0964*	0.0000^	0.0000^
Power	Cauchy(0,1)	6	0.0369^	0.0078	0.0005
Original	Cauchy(0,1)	20	0.0195^	0.0014^	0.0000^
INT	Cauchy(0,1)	20	0.0497	0.0117	0.0012
Power	Cauchy(0,1)	20	0.0365^	0.0035^	0.0001^
Original	Cauchy(0,1)	50	0.0188^	0.0015^	0.0000^
INT	Cauchy(0,1)	50	0.0523	0.0120	0.0009
Power	Cauchy(0,1)	50	0.0381^	0.0041^	0.0000^
Original	Lognormal(0,3)	6	0.0098^	0.0025^	0.0015
INT	Lognormal(0,3)	6	0.0990*	0.0000^	0.0000^
Power	Lognormal(0,3)	6	0.0665*	0.0234*	0.0034*
Original	Lognormal(0,3)	20	0.0077^	0.0005^	0.0000^
INT	Lognormal(0,3)	20	0.0514	0.0099	0.0013
Power	Lognormal(0,3)	20	0.0508	0.0112	0.0022*
Original	Lognormal(0,3)	50	0.0114^	0.0002^	0.0000^
INT	Lognormal(0,3)	50	0.0489	0.0098	0.0012
Power	Lognormal(0,3)	50	0.0512	0.0108	0.0016*

10,000 simulations are used. * marks the values that are greater than expectation. ^ marks the values that are smaller than expectation.

Table 2: Type I Error Rate with Two Ways of Calculating P-Values

	Distribution	Sample Size	T Distribution	Gaussian Approximation
Original	N(0,1)	6	0.0504	0.1327
INT	N(0,1)	6	0.1073	0.1073
Power	N(0,1)	6	0.0692	0.1485
Original	N(0,1)	20	0.0477	0.0627
INT	N(0,1)	20	0.0465	0.0627
Power	N(0,1)	20	0.0474	0.0639
Original	N(0,1)	50	0.0492	0.0560
INT	N(0,1)	50	0.0510	0.0556
Power	N(0,1)	50	0.0500	0.0547
Original	N(0,1)	150	0.0485	0.0499
INT	N(0,1)	150	0.0483	0.0510
Power	N(0,1)	150	0.0472	0.0494
Original	Exp(1)	6	0.0412	0.1008
INT	Exp(1)	6	0.1010	0.1010
Power	Exp(1)	6	0.0715	0.1364
Original	Exp(1)	20	0.0438	0.0588
INT	Exp(1)	20	0.0512	0.0675
Power	Exp(1)	20	0.0526	0.0688
Original	Exp(1)	50	0.0451	0.0517
INT	Exp(1)	50	0.0480	0.0532
Power	Exp(1)	50	0.0480	0.0524
Original	Exp(1)	150	0.0467	0.0487
INT	Exp(1)	150	0.0499	0.0516
Power	Exp(1)	150	0.0515	0.0530

	Distribution	Sample Size	T Distribution	Gaussian Approximation
Original	$\chi^2(1)$	6	0.0333	0.0858
INT	$\chi^2(1)$	6	0.1032	0.1032
Power	$\chi^2(1)$	6	0.0748	0.1398
Original	$\chi^2(1)$	20	0.0367	0.0534
INT	$\chi^2(1)$	20	0.0514	0.0643
Power	$\chi^2(1)$	20	0.0506	0.0651
Original	$\chi^2(1)$	50	0.0465	0.0525
INT	$\chi^2(1)$	50	0.0505	0.0569
Power	$\chi^2(1)$	50	0.0513	0.0574
Original	$\chi^2(1)$	150	0.0516	0.0541
INT	$\chi^2(1)$	150	0.0498	0.0524
Power	$\chi^2(1)$	150	0.0518	0.0539
Original	Laplace(0,1)	6	0.0376	0.1119
INT	Laplace(0,1)	6	0.1027	0.1027
Power	Laplace(0,1)	6	0.0596	0.1377
Original	Laplace(0,1)	20	0.0456	0.0623
INT	Laplace(0,1)	20	0.0499	0.0664
Power	Laplace(0,1)	20	0.0473	0.0644
Original	Laplace(0,1)	50	0.0493	0.0546
INT	Laplace(0,1)	50	0.0506	0.0552
Power	Laplace(0,1)	50	0.0480	0.0539
Original	Laplace(0,1)	150	0.0524	0.0544
INT	Laplace(0,1)	150	0.0515	0.0533
Power	Laplace(0,1)	150	0.0518	0.0543
Original	Rayleigh(1)	6	0.0535	0.1216

	Distribution	Sample Size	T Distribution	Gaussian Approximation
INT	Rayleigh(1)	6	0.1027	0.1027
Power	Rayleigh(1)	6	0.0703	0.1375
Original	Rayleigh(1)	20	0.0506	0.0661
INT	Rayleigh(1)	20	0.0509	0.0673
Power	Rayleigh(1)	20	0.0517	0.0676
Original	Rayleigh(1)	50	0.0511	0.0572
INT	Rayleigh(1)	50	0.0514	0.0582
Power	Rayleigh(1)	50	0.0515	0.0590
Original	Rayleigh(1)	150	0.0505	0.0520
INT	Rayleigh(1)	150	0.0516	0.0537
Power	Rayleigh(1)	150	0.0512	0.0531
Original	Weibull(1,0.5)	6	0.0399	0.0984
INT	Weibull(1,0.5)	6	0.0976	0.0976
Power	Weibull(1,0.5)	6	0.0706	0.1321
Original	Weibull(1,0.5)	20	0.0442	0.0591
INT	Weibull(1,0.5)	20	0.0512	0.0654
Power	Weibull(1,0.5)	20	0.0518	0.0665
Original	Weibull(1,0.5)	50	0.0432	0.0480
INT	Weibull(1,0.5)	50	0.0462	0.0525
Power	Weibull(1,0.5)	50	0.0470	0.0523
Original	Weibull(1,0.5)	150	0.0485	0.0506
INT	Weibull(1,0.5)	150	0.0498	0.0511
Power	Weibull(1,0.5)	150	0.0468	0.0480
Original	Cauchy(0,1)	6	0.0198	0.0691
INT	Cauchy(0,1)	6	0.0948	0.0948

	Distribution	Sample Size	T Distribution	Gaussian Approximation
Power	Cauchy(0,1)	6	0.0420	0.1174
Original	Cauchy(0,1)	20	0.0195	0.0306
INT	Cauchy(0,1)	20	0.0522	0.0679
Power	Cauchy(0,1)	20	0.0370	0.0562
Original	Cauchy(0,1)	50	0.0212	0.0247
INT	Cauchy(0,1)	50	0.0488	0.0553
Power	Cauchy(0,1)	50	0.0370	0.0430
Original	Cauchy(0,1)	150	0.0185	0.0193
INT	Cauchy(0,1)	150	0.0496	0.0511
Power	Cauchy(0,1)	150	0.0372	0.0390
Original	Lognormal(0,3)	6	0.0112	0.0358
INT	Lognormal(0,3)	6	0.0989	0.0989
Power	Lognormal(0,3)	6	0.0696	0.1308
Original	Lognormal(0,3)	20	0.0089	0.0149
INT	Lognormal(0,3)	20	0.0520	0.0666
Power	Lognormal(0,3)	20	0.0536	0.0690
Original	Lognormal(0,3)	50	0.0100	0.0131
INT	Lognormal(0,3)	50	0.0478	0.0529
Power	Lognormal(0,3)	50	0.0501	0.0557
Original	Lognormal(0,3)	150	0.0135	0.0151
INT	Lognormal(0,3)	150	0.0495	0.0513
Power	Lognormal(0,3)	150	0.0490	0.0517

10,000 simulations and a significance level $\alpha=0.05$ are used.