Physics

Springs and Pendulums, Form: A

Name:	
Date:	
	Doon Davierren

Primary Peer Reviewer: $\begin{array}{|c|c|c|c|c|c|}\hline +1 & 0 & -1 & \Sigma \\\hline \end{array}$

Section 1. Multiple Choice

For Each queston, chose the best answer. Some Formulas:

$$F_s = -kx$$
 $U_s = \frac{1}{2}kx^2$ $U_g = mgh$ $k = \frac{1}{2}mv^2$ $T_s = 2\pi\sqrt{\frac{m}{k}}$ $T_p = 2\pi\sqrt{\frac{l}{g}}$

- 1. Which is the best definition of the spring constant (k)?
 - (a) A quantity that measures how stiff a spring is.
 - (b) Energy stored in a spring.
 - (c) 9.81 m/s^2 .
 - (d) A quantity that measures how fast a spring is moving.
- 2. Which of the following is the best definition of Elastic Potential Energy?
 - (a) A quantity that measures how stiff a spring is.
 - (b) Energy stored in a spring.
 - (c) 9.81 m/s^2 .
 - (d) A quantity that measures how fast a spring is moving.
- 3. A spring is stretched 0.05m, and stores an elastic potential energy of 5J. If the spring were stretched 0.15m, how much elastic potential energy would the spring store?
 - (a) 10 J
 - (b) 15 J
 - (c) 45 J
 - (d) 225 J
- 4. A pendulum is made such that it has a period of exactly 1 second. The pendulum is then sent to the planet mars $(g_m ars = 3.711m/s^2)$. What would the period of the pendulum be there?
 - (a) 0.248 s
 - (b) 1 s
 - (c) 1.626 s
 - (d) The pendulum will not swing on mars.

_	od of 1 second. If the 2 kg mass were replaced with a 4 kg mass, what would the period ne system be?
(a)	1 second
(b)	$\sqrt{2}$ seconds
(c)	2 seconds
(d)	4 seconds
Section 2.	Free Response
6. A sp	oring has an elastic potential energy of 20J when it is stretched a distacne of 0.25m.
(a)	What is the spring constant of the spring?
(b)	What is the force that the spring is exerting?
(c)	A 0.2 kg mass is attached to the spring and allowed to oscillate. What is the period of oscillation?
mas	endulum has a length of 0.5 meters. A spring has a spring constant of 45 N/m. What is would need to be attached to the spring in order for the period of oscillation of the ng to match the period of the pendulum?

 $5.\ \ A\ 2\ kg$ mass is attached to a spring, and set in oscillatory motion such that the system has a

Answer Key for Exam A

Section 1. Multiple Choice

For Each queston, chose the best answer. Some Formulas:

$$F_s = -kx$$

$$U_s = \frac{1}{2}kx^2$$

$$U_g = mgh$$

$$k = \frac{1}{2}mv^2$$

$$k = \frac{1}{2}mv^2 \qquad T_s = 2\pi\sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{l}{g}}$$

- 1. Which is the best definition of the spring constant (k)?
 - A quantity that measures how stiff a spring is.
 - Energy stored in a spring. (b)
 - 9.81 m/s^2 . (c)
 - A quantity that measures how fast a spring is moving.
- 2. Which of the following is the best definition of Elastic Potential Energy?
 - (a) A quantity that measures how stiff a spring is.
 - Energy stored in a spring.
 - (c) 9.81 m/s^2 .
 - (d) A quantity that measures how fast a spring is moving.
- 3. A spring is stretched 0.05m, and stores an elastic potential energy of 5J. If the spring were stretched 0.15m, how much elastic potential energy would the spring store?
 - (a) 10 J
 - (b) 15 J
 - (c) 45 J
 - (d) 225 J
- 4. A pendulum is made such that it has a period of exactly 1 second. The pendulum is then sent to the planet mars $(g_m ars = 3.711 m/s^2)$. What would the period of the pendulum be there?
 - $0.248 \ s$ (a)
 - (b) 1 s
 - (c) $1.626 \ s$
 - (d) The pendulum will not swing on mars.

_	od of 1 second. If the 2 kg mass were replaced with a 4 kg mass, what would the period ne system be?
(a)	1 second
(b)	$\sqrt{2}$ seconds
(c)	2 seconds
(d)	4 seconds
Section 2.	Free Response
6. A sp	oring has an elastic potential energy of 20J when it is stretched a distacne of 0.25m.
(a)	What is the spring constant of the spring?
(b)	What is the force that the spring is exerting?
(c)	A 0.2 kg mass is attached to the spring and allowed to oscillate. What is the period of oscillation?
mas	endulum has a length of 0.5 meters. A spring has a spring constant of 45 N/m. What is would need to be attached to the spring in order for the period of oscillation of the ng to match the period of the pendulum?

 $5.\ \ A\ 2\ kg$ mass is attached to a spring, and set in oscillatory motion such that the system has a