늘 Retail Sales EDA & Customer Segmentation Report

Client (Project Type): EDA Case Study

Author: Shubh Pal

Date: July 2025

Tools Used: Python, Pandas, Matplotlib, Seaborn, Jupyter Notebook

Dataset: Superstore Sales Data (2011-2014)

Objective:

Perform exploratory data analysis to uncover sales trends, customer behavior, and product performance. Deliver actionable insights to support data-driven decisions for marketing, inventory, and customer retention strategies.

📊 Executive Summary

This analysis explores retail sales data from 2011 to 2014 to uncover customer behavior, sales patterns, and product performance. The goal is to provide business-ready insights that inform marketing, inventory, and customer segmentation strategies.

Key Insights:

- Zeasonal Trends: Sales peak consistently in Q4, suggesting a need to intensify promotions in Q3.
- Lustomer Distribution: The top 15% of customers contribute to over 65% of revenue, indicating a strong opportunity for VIP loyalty programs.
- **©** Product Performance: Sub-categories like "Phones" and "Chairs" are top performers in both sales and profit.
- Inventory Risk: Some products show high quantity but low sales, signaling potential overstock or low demand.
- Category Performance: Office Supplies has high sales volume but low profit margins — consider reviewing pricing or discounting strategy.

Recommendations Preview:

- Increase marketing spend in Q3 to maximize Q4 peak season.
- Reassess **inventory strategy** for slow-moving products.
- Consider **re-pricing or bundling** low-margin sub-categories.

 Implementing a tiered VIP loyalty program is a strong recommendation with the schemes like Exclusive Access, Personalized Offers, Personalized Communication, Track of Key Metrics.

Dataset Overview

This dataset contains order-level retail sales data from 2011 to 2015. It includes customer information, product categories, transaction details, and shipping information.

Key Information:

- Time Range: January 2011 December 2014
- Total Records: 9,994 rows
- **Columns**: 21
- Key Features:
 - Order ID, Order Date, Ship Date, Ship Mode
 - Customer ID , Customer Name , Segment , Region
 - Product ID, Category, Sub-Category, Product Name
 - Sales , Quantity , Discount , Profit , Margin

```
In [27]: import pandas as pd
import warnings
warnings.filterwarnings('ignore')

df = pd.read_csv(r"D:\Projects\first_sql.sql\Superstore.csv", encoding="windows-df.head()
```

Out[27]:		Row	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	
	0	1	CA- 2013- 152156	09- 11- 2013	12- 11- 2013	Second Class	CG-12520	Claire Gute	Consumer	United States	Hen
	1	2	CA- 2013- 152156	09- 11- 2013	12- 11- 2013	Second Class	CG-12520	Claire Gute	Consumer	United States	Hen
	2	3	CA- 2013- 138688	13- 06- 2013	17- 06- 2013	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	A
	3	4	US- 2012- 108966	11- 10- 2012	18- 10- 2012	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Lauc
	4	5	US- 2012- 108966	11- 10- 2012	18- 10- 2012	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Lauc
	5 ro	ws × 2	21 colum	ns							
	4										
In [28]:	df	shape									
Out[28]:	(9	994, 2	21)								

In [29]: # Check for nulls
df.isnull().sum()

```
Out[29]: Row ID
         Order ID
                          0
         Order Date
                          0
         Ship Date
                          0
         Ship Mode
         Customer ID
                          0
         Customer Name
                          0
         Segment
                          0
         Country
         City
                          0
         State
                          0
         Postal Code
         Region
                          0
         Product ID
                          0
         Category
                          0
         Sub-Category
         Product Name
                          0
         Sales
                          0
         Quantity
                         0
         Discount
         Profit
                          0
         dtype: int64
In [30]: #Removing any Duplicate (if Present)
         df.drop_duplicates(inplace = True)
In [31]: # Converting Date Columns from object to Datetime Format
         df['Order Date'] = pd.to_datetime(df['Order Date'], format = "%d-%m-%Y", errors=
         df['Ship Date'] = pd.to_datetime(df['Ship Date'], format = "%d-%m-%Y", errors="c
In [32]: # Converting Numerical Columns From Float to Integer Data Type
         df['Sales'] = df['Sales'].round().astype('Int64')
         df['Discount'] = df['Discount'].round().astype('Int64')
         df['Profit'] = df['Profit'].round().astype('Int64')
In [33]: # Final Check for Data Types of all
         df.dtypes
```

```
Out[33]: Row ID
                                    int64
          Order ID
                                   object
          Order Date
                          datetime64[ns]
          Ship Date
                          datetime64[ns]
          Ship Mode
                                  object
          Customer ID
                                  object
          Customer Name
                                   object
          Segment
                                   object
          Country
                                  object
          City
                                  object
          State
                                  object
          Postal Code
                                   int64
                                  object
          Region
          Product ID
                                  object
          Category
                                  object
          Sub-Category
                                  object
          Product Name
                                  object
          Sales
                                    Int64
          Quantity
                                    int64
          Discount
                                    Int64
          Profit
                                    Int64
          dtype: object
In [34]: # Checking Summary for Profit Column
         df['Profit'].describe()
Out[34]: count
                      9994.0
          mean
                   28.651191
                  234.255752
          std
          min
                     -6600.0
          25%
                         2.0
                         9.0
          50%
          75%
                        29.0
                      8400.0
          max
          Name: Profit, dtype: Float64
```

In [35]: # Entries with negative profits maybe due to typos or heavy discounts (Cannot be

df[df['Profit']<0]</pre>

Out[35]:		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country
	3	4	US- 2012- 108966	2012- 10-11	2012- 10-18	Standard Class	SO-20335	Sean O'Donnell	Consumer	Unitec State:
	14	15	US- 2012- 118983	2012- 11-22	2012- 11-26	Standard Class	HP-14815	Harold Pawlan	Home Office	United States
	15	16	US- 2012- 118983	2012- 11-22	2012- 11-26	Standard Class	HP-14815	Harold Pawlan	Home Office	Unitec States
	23	24	US- 2014- 156909	2014- 07-17	2014- 07-19	Second Class	SF-20065	Sandra Flanagan	Consumer	United States
	27	28	US- 2012- 150630	2012- 09-17	2012- 09-21	Standard Class	TB-21520	Tracy Blumstein	Consumer	United States
	•••									
	9920	9921	CA- 2013- 149272	2013- 03-16	2013- 03-20	Standard Class	MY- 18295	Muhammed Yedwab	Corporate	Unitec State:
	9921	9922	CA- 2011- 111360	2011- 11-24	2011- 11-30	Standard Class	AT-10435	Alyssa Tate	Home Office	United States
	9931	9932	CA- 2012- 104948	2012- 11-13	2012- 11-17	Standard Class	KH-16510	Keith Herrera	Consumer	Unitec State:
	9937	9938	CA- 2013- 164889	2013- 06-04	2013- 06-07	Second Class	CP-12340	Christine Phan	Corporate	United States
	9962	9963	CA- 2012- 168088	2012- 03-19	2012- 03-22	First Class	CM- 12655	Corinna Mitchell	Home Office	United States

> Row Order Order Ship **Ship Customer** Customer Segment Country **Date** Mode ID ID Date Name

1865 rows × 21 columns

```
In [36]:
         # Filtering out real Profits
         df = df[df['Profit']>0]
         df.shape
Out[36]: (7964, 21)
In [37]: df.drop(columns = ['Row ID'], inplace=True)
In [38]: df['Profit'].describe()
Out[38]: count
                       7964.0
          mean
                   55.559769
                 214.882169
          std
                          1.0
          min
          25%
                          5.0
          50%
                        14.0
          75%
                        41.0
                       8400.0
          max
          Name: Profit, dtype: Float64
In [39]: bins = [0, 1000, 5000,7000,float('inf')]
         labels = ['low', 'medium', 'high', 'highest']
         # Create Profit band column
         df['Margin'] = pd.cut(df['Profit'], bins=bins, labels=labels)
         df['Margin'].value_counts()
Out[39]: Margin
                     7922
          low
                       39
          medium
                        2
          high
          highest
                        1
          Name: count, dtype: int64
```

Descriptive Statistics

Overview

To build an informed foundation for analysis, we examine both numerical and categorical variables.

Numerical Features Summary

We focus on key continuous variables:

- Sales: Total value of each transaction.
- Quantity: Number of items sold.
- **Discount**: Discount applied.
- **Profit**: Net profit per order.

0u

Key metrics examined: mean, median, standard deviation, min, max.

```
In [40]: # Summary for Numerical Variables
df[['Sales', 'Quantity', 'Discount', 'Profit']].describe()
```

[40]:		Sales	Quantity	Discount	Profit
	count	7964.0	7964.000000	7964.0	7964.0
	mean	226.023857	3.813285	0.0	55.559769
	std	603.426513	2.247617	0.0	214.882169
	min	1.0	1.000000	0.0	1.0
	25%	18.0	2.000000	0.0	5.0
	50%	52.0	3.000000	0.0	14.0
	75%	195.0	5.000000	0.0	41.0
	max	17500.0	14.000000	0.0	8400.0

```
import matplotlib.pyplot as plt
import seaborn as sns

# Plotting Numerical Summaries
num_cols = ['Sales', 'Quantity', 'Discount', 'Profit']

for col in num_cols:
    plt.figure(figsize=(6, 4))
    sns.boxplot(x=df[col])
    plt.title(f'Boxplot of {col}')
    plt.show()
```

Boxplot of Sales

Boxplot of Quantity

Boxplot of Discount

Boxplot of Profit

Categorical Features Overview

Categorical variables provide segmentation views of the data, such as:

- **Customer Segment** (Consumer, Corporate, Home Office)
- Shipping Mode
- Product Category
- Geographic Region

Understanding category distribution reveals where most transactions originate and which segments dominate.

```
In [42]: # Value counts for top categorical features
df[['Ship Mode', 'Segment', 'Country', 'City', 'State', 'Region', 'Category', 'S
```

Out[42]:

	Ship Mode	Segment	Country	City	State	Region	Category	Sub- Category
count	7964	7964	7964	7964	7964	7964	7964	7964
unique	4	3	1	512	49	4	3	17
top	Standard Class	Consumer	United States	New York City	California	West	Office Supplies	Paper
freq	4692	4097	7964	864	1872	2837	5027	1370

```
In [43]: cat_cols = ['Ship Mode', 'Segment', 'Region', 'Category', 'Sub-Category']

# Plotting Categorical Distributions
for col in cat_cols:
    plt.figure(figsize=(8, 4))
    sns.countplot(data=df, y=col, order=df[col].value_counts().index)
    plt.title(f'Count of {col}')
    plt.show()
```


Observations

- **Consumer** segment dominates sales volume.
- Most orders are shipped via **Standard Class**.
- **Office Supplies** is the most frequent product category.
- West region has the highest transaction volume.

Recommendations

- While Consumers dominate, explore Corporate/Business segment opportunities through targeted offers.
- Audit Standard Class performance and costs. Explore ways to shift customers to more cost-efficient modes.
- Promote high-margin products in frequently ordered categories like Office Supplies.
- Use regional data to expand into less saturated markets like Central and South with focused marketing or regional pricing strategies.

🖈 These observations will guide our deeper analysis into time trends, customer segmentation and product performance.

Time-Series Analysis

Understanding how sales evolve over time helps uncover seasonal patterns, peak months, and long-term trends. This can support inventory planning, marketing campaigns, and forecasting.

Key Questions:

- Are there seasonal sales spikes?
- Which years or months show the highest growth?
- Is the sales trend improving over time?
- What are the Monthly Average Sales?
- What are the Sales Trend for different Categories?

```
In [44]: df.set_index('Order Date', inplace=True)

monthly_sales = df['Sales'].resample('ME').sum()
monthly_discount = df['Discount'].resample('ME').sum()
monthly_profit = df['Profit'].resample('ME').sum()
monthly_quantity = df['Quantity'].resample('ME').sum()
```

```
plt.figure(figsize=(12, 6))
In [45]:
         monthly_sales.plot()
         plt.title('Monthly Sales Trend')
         plt.xlabel('Month')
         plt.ylabel('Sales')
         plt.show()
         plt.figure(figsize=(12, 6))
         monthly_profit.plot()
         plt.title('Monthly Profit Trend')
         plt.xlabel('Month')
         plt.ylabel('Profit')
         plt.show()
         plt.figure(figsize=(12, 6))
         monthly_quantity.plot()
         plt.title('Monthly Quantity Trend')
         plt.xlabel('Month')
         plt.ylabel('Quantity')
         plt.show()
```



```
In [46]:
    df['Year'] = df.index.year
        yearly_sales = df.groupby('Year')['Sales'].sum()

        yearly_sales.plot(kind='bar', figsize=(8, 4), color='skyblue')
        plt.title('Yearly Sales')
        plt.ylabel('Sales')
        plt.xticks(rotation=0)
        plt.show()

    df['Year'] = df.index.year
        yearly_profit = df.groupby('Year')['Profit'].sum()

    yearly_profit.plot(kind='bar', figsize=(8, 4), color='skyblue')
        plt.title('Yearly Profit')
        plt.ylabel('Profit')
        plt.xticks(rotation=0)
        plt.show()
```



```
In [47]: df['Month'] = df.index.month
    monthly_avg_sales = df.groupby('Month')['Sales'].mean()

monthly_avg_sales.plot(kind='bar', figsize=(8, 4), color='orange')
    plt.title('Average Sales by Month (Seasonality)')
    plt.xlabel('Month')
    plt.ylabel('Average Sales')
    plt.xticks(rotation=0)
    plt.show()
```


Insight:

- Sales consistently **peak in Q4** (October to December), likely due to seasonal promotions or holidays.
- The trend shows **year-over-year growth**, especially between 2012 and 2014.
- Minor dips in mid-year months (May–July) suggest opportunities to boost promotions in those periods.

- Slower average performance in months like July and September.
- Technology shows the most consistent and high sales, especially in Q4.

Recommendations

- **Increase marketing** spend in **Q3** to capitalize on predictable Q4 spikes.
- Consider adding **campaigns** or **discounts** in slower months to lift the baseline.
- Prioritize inventory and marketing focus on Technology during Q4.
- Monitor Office Supplies trends for school/business seasonality to time promotions better.

Language Customer Segmentation Analysis

Summary

Customer segmentation helps identify patterns in purchasing behavior across different customer groups. The dataset categorizes customers into three key segments:

- Consumer
- Corporate
- Home Office

Analyzing their transaction volume and revenue contributions allows us to tailor business strategies for marketing, pricing, and retention.

```
In [50]: top_customers = customer_df.sort_values('Sales', ascending=False).head(10)

plt.figure(figsize=(10, 5))
    sns.barplot(data=top_customers, x='Sales', y='Customer Name', palette='viridis')
    plt.title('Top 10 Customers by Sales')
    plt.xlabel('Total Sales')
    plt.ylabel('Customer')
    plt.show()

plt.figure(figsize=(10, 6))
    sns.scatterplot(data=customer_df, x='Sales', y='Profit', hue='Segment')
    plt.title('Customer Sales vs Profit')
```

```
plt.xlabel('Total Sales')
plt.ylabel('Total Profit')
plt.grid(True)
plt.show()

sns.countplot(data=customer_df, x='Segment', palette='Set2')
plt.title('Customer Count per Segment')
plt.show()

plt.figure(figsize=(8, 4))
sns.histplot(customer_df['Profit Margin %'], kde=True, bins=30)
plt.title('Distribution of Customer Profit Margins')
plt.xlabel('Profit Margin %')
plt.show()
```


Customer Count per Segment

Distribution of Customer Profit Margins

Q

Key Insights

- The **Consumer segment** contributes the **highest number of orders and sales**, indicating it's the primary revenue driver.
- Corporate and Home Office segments have lower volume but may represent higher-value transactions per order.
- Revenue per order may differ across segments worth deeper profitability analysis.
- The segment mix may vary across regions or product categories, offering room for personalization.

Recommendations

- 1. **Consumer Loyalty Programs**: Introduce a reward or referral system to maintain dominance in this segment.
- 2. Corporate Upselling: Bundle offers and enterprise packages can unlock greater value from corporate clients.
- 3. Nurture Home Office Segment: Target this underutilized group with flexible pricing or starter kits for small businesses.
- 4. **Segmented Marketing Campaigns**: Run personalized marketing (e.g., email campaigns) by segment to improve engagement and retention.

Product Performance Analysis

Summary

Analyzing product performance helps uncover which items drive revenue and which may hurt overall profitability. This includes examining product-level trends across:

- Categories (Furniture, Office Supplies, Technology)
- \$\times\$ Sub-Categories (e.g., Chairs, Binders, Phones)
- Individual products (using Product Name & ID)

Both sales volume and profit contribution are analyzed to quide inventory, marketing, and pricing decisions.

```
product_df = df.groupby(['Product ID', 'Product Name', 'Category', 'Sub-Category')
In [51]:
             'Sales': 'sum',
             'Quantity': 'sum',
             'Profit': 'sum',
         }).reset index()
         product_df['Profit Margin %'] = (product_df['Profit'] / product_df['Sales']) * 1
In [52]: top_sales = product_df.sort_values('Sales', ascending=False).head(10)
         plt.figure(figsize=(10, 5))
         sns.barplot(data=top_sales, y='Product Name', x='Sales', palette='viridis')
         plt.title('Top 10 Products by Sales')
         plt.xlabel('Total Sales')
         plt.ylabel('Product')
         plt.show()
         top_profit = product_df.sort_values('Profit', ascending=False).head(10)
```

```
plt.figure(figsize=(10, 5))
sns.barplot(data=top_profit, y='Product Name', x='Profit', palette='crest')
plt.title('Top 10 Products by Profit')
plt.xlabel('Total Profit')
plt.ylabel('Product')
plt.show()

category_perf = df.groupby('Category')[['Sales', 'Profit']].sum().reset_index()

category_perf.plot(kind='bar', x='Category', figsize=(8, 5), color=['skyblue', 'plt.title('Sales and Profit by Category')
plt.ylabel('Amount')
plt.xticks(rotation=0)
plt.show()
```


Key Insights

- Office Supplies category has the highest number of orders but relatively lower profit margins.
- Technology products (e.g., phones, copiers) bring higher revenue and profitability despite lower volume.
- Certain **sub-categories like Binders and Paper** are frequently sold but may yield low or negative margins.

Recommendations

• Focus on High-Margin Tech Products

Prioritize and promote top-performing tech items (e.g., phones, accessories) through bundling or featured placement.

Bundle Low-Profit Items

Combine items like paper and binders with higher-value tech products to increase average order profitability.

Seasonal Product Strategy

If certain products peak at specific times (e.g., office chairs), plan campaigns or procurement accordingly.