Mapeamento do Modelo Entidade-Relacionamento Estendido para o Modelo Relacional

Prof. Bruno Travençolo

Mapeamento ME-R → MRel Os 7 passos do procedimento

- 1. Mapear todos os tipos-entidade forte
- 2. Mapear todos os tipos-entidade fraca
- 3. Mapear todos os tipos-relacionamento 1:1
- 4. Mapear todos os tipos-relacionamento 1:n
- 5. Mapear todos os tipos-relacionamento n:m
- 6. Mapear todos os atributos multivalorados
- Mapear todos os tipos-relacionamento de grau > 2

Mapeamento MER-X → MRel Os 9 passos do procedimento

- Mapear todos os tipos-entidade forte que não são especializações
- Mapear todos os tipos-entidade fraca que não são especializações
- 3. Mapear todos os tipos-relacionamento 1:1
- 4. Mapear todos os tipos-relacionamento 1:n
- 5. Mapear todos os tipos-relacionamento n:m
- 6. Mapear todos os atributos multivalorados
- 7. Mapear todos os tipos-relacionamento de grau > 2
- 8. Mapear todas as ocorrências de abstração de generalização/especialização
- 9. Mapear as ocorrências de agregação

- Modelo entidade relacionamento
 - E₁: superclasse
 - \blacksquare $E_{2, ...,} E_n$: subclasses de E_1
- Modelo relacional
 - a tabela de E₁ possuirá:
 - os atributos de E₁
 - um atributo discriminador, caso necessário
 - as tabelas de E₂ a E_n possuirão:
 - os seus atributos específicos
 - a chave primária de E₁
- Chave primária das subclasses
 - chave primária de E₁

Generalização/Especialização

- Essa opção funciona para qualquer especialização
 - Total ou Parcial
 - Disjuntas ou Sobrepostas
- Interessante quando
 - existem poucas subclasses, cada uma com diversos atributos específicos
 - uma consulta tipicamente se concentra em uma ou poucas subclasses de cada vez

- Modelo entidade relacionamento
 - E₁: superclasse
 - E₂ E_n : subclasses de E₁
- Modelo relacional
 - as tabelas de E₂ a E_n possuirão:
 - os seus atributos específicos
 - os atributos de E₁
 - a chave primária de E₁
- Chave primária das subclasses
 - chave primária de E₁

secretário (<u>CPF_empregado</u>, nome_empregado, idioma) técnico (<u>CPF_empregado</u>, nome_empregado, grau_técnico) engenheiro (<u>CPF_empregado</u>, nome_empregado, tipo_engenheiro)

- Essa opção funciona
 - apenas para participação total
 - é mais adequada para disjunção, mas suporta sobreposição
- Interessante quando
 - é frequente o acesso a cada entidade em sua totalidade, incluindo-se seus dados genéricos e específicos
 - esta alternativa, comparada com as alternativas que mantêm uma relação para a superclasse, permite evitar uma operação de junção na consulta

- Observação importante
 - esta alternativa não é indicada quando
 - houver necessidade frequente de acessar informações envolvendo todas as entidades genéricas
 - houver a possibilidade de existirem especializações não previstas à priori

- Modelo entidade relacionamento
 - E₁: superclasse
 - E_{2,...} E_n : subclasses de E₁
- Modelo relacional
 - a tabela de E₁ possuirá:
 - os atributos de E₁
 - os atributos de E₂, ..., E_n
 - o atributo discriminador, caso necessário

empregado (<u>CPF_empregado</u>, nome_empregado, tipo_empregado, idioma, grau_técnico, tipo_engenheiro)

opcional

- Modelo entidade relacionamento
 - E₁: superclasse
 - E_{2,...} E_n : subclasses de E₁
- Modelo relacional
 - a tabela de E₁ possuirá:
 - os atributos de E₁
 - os atributos de E₂, ..., E_n
 - vários atributos discriminadores de valores booleanos, cada um referente à uma subclasse

empregado (<u>CPF_empregado</u>, nome_empregado, tipo_empS, idioma, tipo_empT, grau_técnico, tipo_empE, tipo_engenheiro)

- Interessantes quando
 - existem poucos atributos específicos nas subclasses
 - houver a possibilidade de existirem especializações (sem atributos específicos) não previstas à priori

Exercício

Agregação

- Para mapear ocorrências de agregação
 - considerar cada um dos casos de como o tipoentidade resultante da agregação é identificado
 - levar em consideração as <u>chaves dos tipos-</u> <u>entidade componentes</u>, o <u>tipo-relacionamento</u> <u>gerador</u>, os <u>atributos do tipo-relacionamento</u> <u>gerador</u>, o <u>tipo-entidade agregação</u>, e os <u>atributos</u> <u>do tipo-entidade agregação</u>

Agregação Opção 1

```
Paciente = {RG, Nome}

Médico = {CRM, Nome}

Consulta = {RG, CRM, Data}
```

- Deve ser usada
 - quando o tipo-entidade agregação é identificado por <u>atributo</u> <u>próprio + chaves dos tipos-entidade</u> que participam do tiporelacionamento gerador
 - quando uma mesma instância do tipo-relacionamento gerador resulta em mais de uma entidade agregada

Agregação Opção 2

```
Professor = {NroFunc, Nome}

AlunoPos = {NroMat, Nome}

Projeto = {Orientador, Aluno, <u>Titulo</u>}
```

- Deve ser usada
 - quando o tipo-entidade agregação é identificado por <u>um de</u> seus atributos
 - em geral o atributo identificador da agregação era identificador do tipo-relacionamento gerador

PROJETO

Agregação Opção de mapeamento 3

Mistura das opções 1 e 2

CONSULTA


```
Paciente = {RG, Nome}

Médico = {CRM, Nome}

Consulta = {RGPa, CRMMe, Data, NoregistroC}
```

Agregação

Analisar os atributos do tipo-relacionamento gerador

```
Paciente = {<u>RG</u>, Nome}

Médico = {<u>CRM</u>, Nome}

Consulta = {<u>RGPa, CRMMe, Data, Local</u>}
```

- Sempre que uma instância do tipo-relacionamento gerador puder resultar em mais de uma entidade agregada
 - Quando puderem ser repassados para a agregação → não mapear o relacionamento

Agregação

Analisar os atributos do tipo-relacionamento gerador

Sempre que uma instância do tipo-relacionamento gerador puder resultar em mais de uma entidade agregada

■ Quando não puderem ser repassados para a agregação → mapear o


```
Professor = {NroFunc, Nome}

Disciplina = {Sigla, Nome}

Ministra = {Professor, Disciplina, LivroTexto}

Aula = {Professor, Disciplina, DataHora}
```


Exercício 1

n

PROFESSOR

CPF professor

nome professor

Mapeamento

pessoa (<u>CPF_pessoa</u>, nome_pessoa)

universidade (CGC_univ, nome_univ)

aluno (CPF_pessoa, CGC_univ, data_ingresso)

professor (CPF_professor, nome_professor)

orienta (CPF_professor, CGC_univ, CPF_pessoa, data_ingresso)

Bibliografia e leitura complementar

- Slides cedidos pelo Prof. Humberto Luiz Razente
- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados:
 - 6ª edição: capítulo 9, Projeto de banco de dados relacional por mapeamento ER e ERR para relacional