ESPOCKS METOKOS IV

- · SVESONES
- · PUNTOS JE AC

RECORDEMENS: (E,d) cm, (an) $\leq E$, $a\in A$ $an \rightarrow 0 \leq I$ $(4 \leq 10)$ $(\exists m_0)$ $an \in \Im(a, \epsilon) + m \geq m_0$

EVEMPLAS: 1) EN IR SEA $d = d_1, d_2 \stackrel{\cdot}{a} doo.$ SEA (am) $\leq 112^d$: $d_1 = (a_1^{(1)}, ..., a_n^{(d)})$ SEA $O_1 = (a_1^{(1)}, ..., a_1^{(d)}) \in \mathbb{R}^d$ ENDNCES an $\Rightarrow o_1 \leq n$ $o_1^{(i)} \Rightarrow o_1^{(i)}$ $f_1 = 1, ..., d$ METRICA

 $=)) |a_{n}^{(i)} - a_{n}^{(i)}| \leq da_{1}(a_{n}, a)$ $\leq C \cdot d(a_{n}, a)$ $\leq a_{n}^{(i)} + d^{(i)}$

ωω

2

- **2.** (a) Sean $x, y \in \mathbb{R}$ tales que y x > 1. Probar que existe $k \in \mathbb{Z}$ tal que x < k < y.
 - (b) Sean $x, y \in \mathbb{R}$ tales que x < y. Probar que existe $q \in \mathbb{Q}$ tal que x < q < y.

 $\Rightarrow \exists pn) \in Q \quad dn \rightarrow \sqrt{2}$ $\frac{1}{\sqrt{2}-1/2} \quad \sqrt{2} \quad \sqrt{2}+1/2$

CONSIDERO Q COMO E.M, CON $d_{|X,Y|} = |X-y|$ TENGO (2m) $\leq Q$. CONVERGE?

SUP QUE SI: $\exists \alpha \in Q$ CON $2m \to 0$ $|\alpha - \sqrt{2}| \leq |\alpha - 2m| + |2m - \sqrt{2}| < \epsilon$ LED, $\leq |\Delta | \leq |\Delta |$

OKEM IZ

51 m>>>

CONVERCE? SUP QUEST, A UND FUNCION fe ([,e]). 035: $(\forall x) | f_{(x)} - f_{(x)} | \leq \partial_{\infty} (f_{(x)}, f)$ $\frac{1}{m} = \frac{1}{m} = \frac{1}$ ESTA 65 (X), A35° PUES TEC(101) JK, NO CONVERGE; ES JE CAKHY? NO: (ont) (or3E): 949 Los on EminE d (fr, fm) > 2

MEGROWA: $\Delta \subseteq E$. $\times \in E$ BO \times AC $\times A$ S) $(12.5) \times (12.5) \times$

S) $m < m_0$, $\leq N + 3N (\epsilon \le 1)$ $d(am,t) < \epsilon \le 1 \le 1$ d(am,t), d(am,t), d(am,t) < 1 $d(a,b) \le d(a,am) + d(am,t) < 1$ $d(a,b) \le d(a,am) + d(am,t)$, d(am,t) < 1 $d(a,b) \le d(a,am) + d(am,t)$, d(am,t) < 1 $d(a,b) \le 1$ $d(a,b) \le 1$ d(a,b)