第五部分 代数结构

第15章 半群与群

计算机(软件)学院 林 兰

linlan@scu. edu. cn

主要内容

- 15.1 半群
- 15.2 群和子群
- 15.3 交换群和循环群

1. 半群

定义 设 $\langle S,*\rangle$ 是一个二元代数(广群),若运算"*"可结合,则称 $\langle S,*\rangle$ 为一个半群;进一步,若运算"*"可交换,则称 $\langle S,*\rangle$ 为可换半群。

2. 元素的方幂

定义 设(S, •)是半群, $a \in S$,n是正整数,约定: n个a在运算 "•"下的结果表示为 a^n 。可以递归定义如下:

- \bigcirc a¹=a
- ② $a^{n+1}=a^n \cdot a$
- ✓ 幂运算有以下性质:

设〈S, ◆〉是半群, a∈S, m和n是正整数,则

- $a^{m} \bullet a^{n} = a^{m+n}$
- $(a^m)^n = a^{mn}$

说明:进一步,当〈S,•〉是含幺半群或群时,上述结论对任意 非负整数m和n都成立,有a⁰=e。

当⟨S, •⟩是群, a⁻ⁿ=(a⁻¹) n

证明 ①式:设m为固定的任意正整数,对n归纳证明 当n=1时,由前递归定义知,a^m•a=a^{m+1},结论成立。假设n=k时,结论成立,即等式a^m•a^k=a^{m+k}成立。现证当n=k+1时:

$$a^{m} \cdot a^{k+1} = a^{m} \cdot (a^{k} \cdot a)$$
 (由定义)

 $= (a^{m} \cdot a^{k}) \cdot a$
 (具有结合律)

 $= (a^{m+k}) \cdot a$
 (归纳假设)

 $= a^{m+(k+1)}$
 (由定义)

- 二结论对任意n成立。
 - ②式的证明方法同①

定理 设 $\langle S, * \rangle$ 是半群,如果S是有限集,则必有a $\in S$,使得 $a^2=a$ 。

证明:因为〈S,*〉是半群,S是有限集,

对 \forall b∈S,则元素b¹, b², b³, ····中必有重复的,

设bⁱ=b^j,其中j>i。

 $\pm b^{i=b^{j-i}} + b^{i}$, $b^{i+1} = b^{j-i} + b^{i+1}$, $\cdots b^{i+x} = b^{j-i} + b^{i+x}$ $(x \ge 0)$

令t=i+x,则 $t \geq i$ 的任意正整数,得到 $b^{t=b^{j-i}*b^t}$,

利用上式反复迭代,则对任何正整数k≥1,有

 $b^{t}=b^{k}(j-i)*b^{t}, (t\geqslant i)$

特别,取k使得k(j-i)≥i,同时令t=k(j-i),则得到幂等元。

✓ 这是一种构造性的证明方法。

3. 子半群

① 如果〈S,*〉是半群,T是S的非空子集,且T对运算*是封闭的,则称〈T,*〉是半群〈S,*〉的子半群;

(同一般代数系统,仅验证T的非空性和 "*" 关于T的封闭性,结合律自然继承。)

② 如果〈S,*,e〉是含幺半群, T是S的非空子集, 且e∈T, T对运算*是封闭的,则称〈T,*,e〉是含幺半群 〈S,*,e〉的含幺子半群。

例如 半群〈R, ×〉的子代数〈[0, 1], ×〉,〈Z, ×〉, 〈R+, ×〉都是〈R, ×〉的子半群。

例1 设〈S,*〉是一个可换的含幺半群,M是它的所有的幂等元构成的集合,则〈M,*〉是〈S,*〉的一个含幺子半群。

证明: (1)显然, M⊆S;

 $\langle S, * \rangle$ 是含幺半群,所以幺元e存在,又e*e=e,则e是一个幂等元,即有e \in M,所以M是非空的;

- (2) e∈M, 幺元;
- (3) 对任意a, b∈M, 有 (a*b)*(a*b)=a*(b*a)*b=a*(a*b)*b
- = (a*a)*(b*b) = a*b,

即运算"*"关于集合M是封闭的运算。

由(1)、(2)、(3)知: <M, *>是<S, *>的一个含幺子半群。

✓习题十五

主要内容

- 15.1 半群
- 15.2 群和子群
- 15.3 交换群和循环群

1. 群

设(G,*)是一个二元代数,且满足:

- ①运算*在G上满足结合律;
- ②在G上关于运算"*"的幺元存在;
- ③ 对∀a ∈ G,有a⁻¹ ∈ G存在。

则称 $\langle G,* \rangle$ 是一个群。

进一步,若运算"*"又满足交换律,则称此群为交换群 (Abel群)。群中元素的数目|G|称为群的阶。若|G|有限,则称为有限群;若|G|无限,则称为无限群。

```
例如 < Z, + > ,整数加群 < R, + > ,实数加群 < Z, × > ,含幺半群,不是群(一般无乘法逆元) < R, × > ,含幺半群,不是群("0"无逆元) < R-{0}, × > ,实数乘群
```

例2 设 Z_k 表示整数集Z上的模k剩余类集合,即 Z_k ={[0], [1], [2], …, [k-1]} 在 Z_k 上定义运算 \oplus 和 \otimes 如下: [i] \oplus [j]=[t] \Leftrightarrow (i+j) \equiv t (mod k) [i] \otimes [j]=[t] \Leftrightarrow i j \equiv t (mod k)

- $\langle Z_k, \Theta \rangle$ 是群(剩余类加群)。 [0]是 Θ 的幺元,每元[i]的 Θ 逆元是[k-i]。
- 》〈Z_k,⊗〉不是群,因为虽然它满足封闭性和可结合性,且[1]是它的幺元,但是[0]无⊗逆元,所以它仅仅是一个含幺半群。

∠Z_k-{[0]},⊗>是不是群呢?不一定!

例如: $Z_4 - \{[0]\} = \{[1], [2], [3]\},$

 $\overrightarrow{m}[2] ⊗ [2] = [0] ∉ Z_4 - {[0]}$

∴ ⟨Z₄-{[0]}, ⊗>不是群。

而 Z_5 -{[0]}={[1], [2], [3], [4]}

其运算表如右图,

运算是封闭的,可结合的;

[1]是幺元, [1]、[4]的逆元

是自身,[2]、[3]互为逆元;

因此⟨Z5-{[0]},⊗⟩是群。

可以证明: 当k 是素数时,

 $\langle Z_k - \{[0]\}, \otimes \rangle$

一定是群。

\otimes	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]
[2]	[2]	[4]	[1]	[3]
[3]	[3]	[1]	[4]	[2]
[4]	[4]	[3]	[2]	[1]

该定理是群的另一 种等价定义形式。

定理 如果 $\langle G, * \rangle$ 是半群,并且对 $\forall a, b \in G,$ **都存在x**, $y \in G$ 使x*a=b, a*y=b, 则 $\langle G, * \rangle$ 是群。

证明: 设 $a \in G$,方程 x*a=a 的解为 e_1 , $对 \forall t \in G$,方程 a*y=t 有解 y_0 ,

 $e_1*t= e_1* (a*y_0) = (e_1*a) *y_0 = a*y_0 = t$ 即对 $\forall t \in G$,必有 $e_1*t=t$, e_1 是G中的左幺元。

也可以证明G中有右幺元e₂,所以G中有幺元e=e₁=e₂。

同理,对 $\forall b \in G$,方程x*b=e有解 x_0 ,则 x_0 是b的左逆元,方程b*y=e的解是b的右逆元,且左右逆元相等,从而b有逆元。

此定理说明:在群的定义中幺元及逆元的条件可用方程有解来代替。 另外,群的定义中的幺元条件可用存在左幺元(右幺元)的条件 代替,逆元的条件可用存在左逆元(右逆元)的条件代替。

✓ 几条结论

- 1) G为群,则G中每个元素都是可消去元,即如果 a*b=a*c, 或b*a=c*a,则必有b=c。(消去律成立)
- 2) 群G中除幺元e外无其它幂等元;
- 3) 阶大于1的群无零元;
- 4) 群G的运算表中任意一行(列)都没有两个相同的元素 (重复元素);

证明:

- (1)由于群G中每个元素都有逆元a⁻¹, 由a*b=a*c ⇒ a⁻¹*a*b=a⁻¹*a*c,即b=c。
 (a为G上关于运算"*"的左可消去元) 同理,可证右可消去元。
- (2)(反证法)假设a是群G中非幺元的幂等元,即a*a=a,且 a≠e。因此a*a=a*e, 由消去律知a=e,矛盾。
- (4) (反证法) 假设群G的运算表中某一行有两个相同的元素,设为a,并设它们所在的行表头元素为b,列表头元素分别为 c_1, c_2 ,这时显然有 $c_1 \neq c_2$ 。而 $a=bc_1=bc_2$,由消去律律。一。 矛盾 (同理可证 任意一列都没有两

由消去律得 $c_1 = c_2$,矛盾。(同理可证,任意一列都没有两个相同的元素)

2. 群中元素的方幂

定义 设 $\langle G, \bullet \rangle$ 是群, $a \in G$, $n \in Z$,则a的n次幂定义如下:

$$a^{0} = e;$$
 $a^{n} = a^{n-1} \cdot a;$
 $a^{-m} = (a^{-1})^{m} = (a^{m})^{-1} \cdot a;$

例如 求 $\langle \mathbf{Z}, + \rangle$ 中有 3^{-5} :

$$3^{-5} = (3^{-1})^5 = (-3)^5$$

= $(-3) + (-3) + (-3) + (-3) + (-3) = -15$

定理 设 $\langle G, \bullet \rangle$ 是群, $\forall a, b \in G, m, n \in \mathbb{Z}$, G中的幂运算满足:

- $(a^{-1})^{-1} = a$
- $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- $a^m \cdot a^n = a^{m+n}$
- $(a^m)^n = a^{mn}$
- ⑤ 若G为交换群 (Abel群),则 $(a \cdot b)^n = (a)^n \cdot (b)^n$

3. 元素的周期

设 $\langle G, \bullet \rangle$ 是一个群,对 $\forall a \in G$,若有 $a^n = e$,(其中: $n \in Z^+$,且n是使得 a^n =e成立的最小的正整数),则称n为元素a的周期或为元素a的阶数;记作|a|=n,也称a为n阶元。若对 $a \in G$,不存在这样的n,则称元素a的周期为 ∞ 。

例如:在剩余类加群 $\langle Z_6, \oplus \rangle$ 中,元素的周期分别为多少?

元素[1]、[5]的周期是6;

元素[2]、[4]的周期是3;

元素[3]的周期是2;元素[0]的周期是1。

定理

设〈G,*〉是一个群,对∀a∈G,若a的周期为n,则

- ① a^m =e 当且仅当 n | m;
- ② aⁱ=a^j 当且仅当 n (i-j);
- ③ a⁰, a¹, a², …, aⁿ⁻¹ 互不相同。

证明: ① "⇒" (反证法) 设 a^m=e。 若n m不成立,则∃q∈Z,使得 $m=nq+r(1 \le r \le n-1)$, 由a的周期为n,且a^m=e,有: $a^{m} = a^{nq+r} = a^{nq} * a^{r} = (a^{n})^{q} * a^{r} = e^{q} * a^{r} = a^{r} = e^{q}$ 由于1≤r≤n-1,这就与a的周期为n矛盾, 所以有 n/m。 "⇐" 谠 n m。 则∃k∈Z, 使得m=nk, 于是有: $a^{m} = a^{nk} = (a^{n})^{k} = e^{k} = e$ 所以有 a^m=e。证毕。

4. 子群

定义 设〈G,*〉是一个群,e是G中的幺元,S是G的一个非空子集,若S对运算"*"也构成群,则称〈S,*〉是〈G,*〉的一个子群。

例如: < Z, +> 是 < Q, +> 的子群; < Q, +> 是 < R, +> 的子群。

群〈G,*〉,至少有两个子群〈 $\{e\}$,*〉,〈G,*〉,此两个子群称为平凡子群;若有子群〈S,*〉且S \subset G和S \neq {e},则称〈S,*〉为〈G,*〉的非平凡真子群。

定理(**子群的性质**) 设〈G,*〉是一个群,〈S,*〉是〈G,*〉 的子群,则:

- 1) 子群〈S, *〉的**幺**元e_S也是群〈G, *〉的幺元e_G;
- 2) 对∀a∈S,a在S中的逆元a_S⁻¹就是a在G中的逆元a_G⁻¹。

证明: 1)对 $\forall a \in S$,由于 e_S 是S的幺元,

所以有: $e_S*a=a*e_S=a$ ①

又 $S\subseteq G$, 所以 $a\in G$, 由 e_G 是G的幺元,所以有:

$$e_{G}*a=a*e_{G}=a$$
 ②

由①、②有: $e_S*a=a*e_S=a=e_G*a=a*e_G$,

由于G满足消去律,所以有: $e_S = e_G$ 。

2) 对∀a∈S,由于S⊆G,所以a∈G,即a在S中的逆元就是a在G中的逆元。

定理(子群判定定理)

设〈G,*〉是一个群,S是G的一个非空子集,则〈S,*〉 是〈G,*〉的子群的充要条件是:

对∀a, b∈S, 有a*b⁻¹∈S。

证明 " \Rightarrow " 设S是G的子群,对 \forall a,b \in S,由群的定义知,b⁻¹ \in S,即有a*b⁻¹ \in S。所以必要性成立; " \leftarrow " 由子群的定义知,需证明如下四点:

- 1) S是非空的子集;
- 2) 幺元存在: 由于S $\neq\emptyset$,对 \forall a, b \in S, 有a*b $^{-1}$ \in S, 取a=b, 有e=b*b $^{-1}$ \in S, S有幺元;

- 3) 逆元存在: 对∀a, b∈S, 有a*b⁻¹∈S, 对∀b∈S, 由e∈S, 取a=e, 有e*b⁻¹ =b⁻¹∈S;
- 4) 封闭性: 对∀a, b∈S, 由3)知: b⁻¹∈S, 由条件知: a*(b⁻¹)⁻¹∈S, 即a*b∈S. 由1)、2)、3)、4)知:⟨S,*⟩是⟨G,*⟩的子群。

推论:设〈G,*〉是一个群,S是G的非空<u>有限</u>子集,则〈S,*〉是〈G,*〉的子群当且仅当对 \forall a,b \in S,有a*b \in S。

(即只需判断在S中运算是否封闭即可)

例4 设〈G,*〉是一个群,令:

 $C = \{a \mid a \in G \perp \forall x \in G, 有: a*x = x*a\}$

证明〈C,*〉是〈G,*〉的一个子群。(称为G的中心)

证明: (下面利用子群判定定理证明)

- 1) 对 \forall x∈G, 有e*x=x*e=x, 即e∈C, 所以C是非空的;
- 2) 设∀a, b∈C, 为证明a*b⁻¹∈C, 只需证明a*b⁻¹与G中所有元素都可交换。

对∀x∈G,b*x=x*b, 也必有b⁻¹*x=x*b⁻¹
则有 a*b⁻¹*x= a*x*b⁻¹ \Rightarrow (a*b⁻¹) *x= a*x*b⁻¹ = x* (a*b⁻¹)
即a*b⁻¹∈ C。
⟨C, *>是⟨G, *>的一个子群。

✓ 生成子群

例 5 设 $\langle G, * \rangle$ 是一个群,对任意的a \in G , φ S = $\{a^n | n \in \mathbb{Z}, \mathbb{Z} \in \mathbb{Z} \}$, 则 $\langle S, * \rangle$ 是 $\langle G, * \rangle$ 的子群。称为由a 生成的子群,记作(a)。

证明: ①因为a∈S, 所以显然S是G的非空子集。

②对任意的aⁿ, a^m∈S, 则aⁿ*a^m=a^{n+m},

 $\operatorname{dn}, m \in \mathbb{Z}$,有 $n+m \in \mathbb{Z}$,所以 $a^{n+m} \in \mathbb{S}$,即运算是封闭的;

- ③由S是G的子集可得结合律也成立;
- ④由于 e=a⁰∈S ,所以S中有幺元;
- ⑤又∵aⁿ ∈S有逆元a⁻ⁿ使aⁿ*a⁻ⁿ=e
- ∴综上所述,〈S,*〉是〈G,*〉的子群。

定理 元素a的周期为n,则由a生成的子群恰有n个元素,即(a) = {e, a, a, ..., aⁿ⁻¹}。

例如(1)在整数加群〈Z,+〉中,2的生成子群是由全体偶数 关于加法构成的群,可记为(2)。

由1生成的子群正好是Z本身,记为(1)。

(2) 在⟨Z₆, ⊕⟩剩余类加群中, |[2]|=3, 则[2]的生成子 群为([2]) = {[0], [2], [4]}。

例6 设n个元素的集合A上的全体置换构成集合 S_n , 证明 $\langle S_n, \cdot \rangle$ 构成群。(n次对称群)

证明: 1) S_n中两个置换的复合仍然是A上的一个置换,所以 运算是封闭的;

- 2) 由于函数的复合是可结合的,所以置换的复合也是可结合的;
- 3) S_n中存在幺置换(单位置换) π=(1),
 使对 ∀σ∈S_n, π∘σ=σ∘π=σ
 所以π=(1) 是幺元;
- 4)每个置换将x变成y,而逆置换是将y变成x,所以,每个置换都有逆。

定义设A是一个非空集合,|A|=n,A上所有置换构成的群称为n次对称群,记为 $\langle Sn, \circ \rangle$;它的任何子群都叫做置换群。

作业

✓习题十五

6, 9, 10

主要内容

- 15.1 半群
- 15.2 群和子群
- 15.3 交换群和循环群

1. 交换群

定义 若群〈G,*〉中的运算"*"是可交换的运算,则称该群〈G,*〉是一个交换群(或阿贝尔/Abel群)。

例如

整数加群〈Z,+〉,实数加群〈R,+〉,有理数加群〈Q,+〉,剩余类乘群〈 Z_{17-} {[0]}, \otimes 〉、实数乘群〈R-{0}, \times 〉都是交换群。

而n阶非奇异矩阵乘群 $\langle M_n, \times \rangle$ 、 n次对称群 $\langle S_n, \rangle$ 等都不是交换群。

定理 设〈G, *〉是一个群,则〈G, *〉为交换群的充分必要条件是:对 $\forall a, b \in G, 有(a*b)^2 = a^2*b^2$ 。

证明: "⇒" 对∀a, b∈G, 由于运算"*"是可交换的, 所以有:

 $(a*b)^2 = (a*b)*(a*b) = a*(b*a)*b$ = $a*(a*b)*b = (a*a)*(b*b) = a^2*b^2$.

" \leftarrow " 对 $\forall a, b \in G$,若有 $(a*b)^2 = a^2*b^2$,则等式为: (a*b)*(a*b) = (a*a)*(b*b),

则有 a*(b*a)*b=a*(a*b)*b,

由消去律知: b*a=a*b,

所以,运算"*"满足交换律,即群〈G,*〉是交换群。

2. 循环群

定义 设〈G,*〉是一个群,若G中存在元素a,使得对 $\forall x \in G$,都有:

$$x = a^i \ (i \in I)$$

则称〈G,*〉是由a所生成的循环群,记为G=(a),a称为G的一个生成元,群G中的一切生成元的集合叫做该群G的生成集。

循环群G=(a),根据生成元a的阶(周期)可以分成两类: n阶循环群和无限循环群。

设G=(a)是循环群,若a是n阶元,则

$$G = \{a^0 = e, a^1, a^2, ..., a^{n-1}\}$$

那么|G| = n,称G为n阶循环群。

若a是无限阶元,则

$$G = \{a^0 = e, a^{\pm 1}, a^{\pm 2}, \dots\}$$

称G为无限循环群。

例如

- 1)整数加群〈Z,+〉是一个无限循环群,1和-1都是生成元, 而除此以外别无其它生成元。
- 2) 剩余类加群 $\langle Z_k, \oplus \rangle$ 是一个k阶有限循环群,只要[a]满足gcd(a, k)=1,则 Z_k =([a]),即[a]是 Z_k 的一个生成元。

对于循环群G=(a),它的生成元可能不止一个,怎样 求得所有生成元?有以下结论:

设G=(a)是循环群,

- (1)若G是无限循环群,则G只有两个生成元,即a和 a^{-1} 。
- (2)若G是n阶循环群($n \in \mathbb{Z}^+$),则对任何小于n且与n互素的正整数r, a^r 是G的生成元。G含有 $\varphi(n)$ 个生成元。($\varphi(n)$ 为欧拉函数)

- 例7 (1) 设〈 Z_9 ,⊕〉是模9的整数加群,求群的生产元? (2) 设 $G = 3Z = \{3z | z \in Z\}$,G上的二元运算是普通加法,G有哪些生产元?
- 解: (1) $\langle Z_9, \oplus \rangle$ 是循环群, $\varphi(9) = 6$ 小于9且与9互素的正整数是1,2,4,5,7,8。因此, Z_9 生产元是[1],[2],[4],[5],[7],[8]。 (2) G=3Z是无限循环群,则G只有两个生成元,即3和3⁻¹。

定理

- (1)设G=(a)是循环群,G的子群仍是循环群。
- (2) 若G是无限循环群,则G的子群除 {e} 以外,都是 无限循环群。
 - (3)循环群一定是可换群。

证明: (1)留作课后练习。

作业

✓习题十五

16、17、18