The Auto-segmentation for Human Left Ventricles

Author: Pei-Yan Li (Alvin)

Contact Email: d05548014@ntu.edu.tw

Introduction

This technical document summarizes the programs (as shown in **table 1**) that have been done for automatically doing the segmentation of the left ventricles (LV's). The main idea is to utilize the designed U-net model to ultrasound images of LV's. Besides, image processes and how to generate ground truth labels are also illustrated to readers. Please read and follow the instructions to get familiar with it before move a step forward.

Other information might also be useful that can be found in this directory: home/alvinli/Desktop/EF/Weekly_Reports.

Table 1: Developed Programs @ /home/alvinli/Desktop/EF/bin.

Program	Purpose		
image_preprocess.py	Enhance images for labeling		
boundary_fill.py	Get ground truth masks		
data_rename.py	Rename files consistently		
data2_pool.py	Pull data into a pool		
data2_batched.py	Partition data to train_batch and test_batch		
Unet_input.py	Create a training queue		
Unet.py	The Unet model		
Unet_train.py	Training the model		
Unet_eval.py	Evaluating the model		
volumn_calculator.py	Calculate the volume of LV		

Materials

The ultrasound images of LV include two types: 2-chamber images and 4-chamber images, which were named by A2C and A4C, respectively.

This directory stores the original images without any modification: home/alvinli/Desktop/EF/Raw_data.

From here, images would be selected for training purposes. Only the types of A2C and A4C were used and processed. An image with two screens (double A2C or A4C) should not be selected.

The selected images of A2C and A4C were respectively copied to: home/alvinli/Desktop/EF/dataset/A2C_patients and home/alvinli/Desktop/EF/dataset/A4C_patients.

A table called "Folder_information.ods" describing the information of data is inside both directories of A2C and A4C.

Please update this table manually if any folder is added or renamed.

Labeling process

For each patient folder in either <u>/home/alvinli/Desktop/EF/dataset/A2C_patients</u> or <u>/home/alvinli/Desktop/EF/dataset/A4C_patients</u>, please execute the program **image_preprocess.py** to enhance the images in entire folder.

Ex:

<u>alvinli@ComputerVisionLab</u>:~\$ cd ~/Desktop/EF/dataset/A2C_patients/180234_20190510_1 <u>alvinli@ComputerVisionLab</u>:~/Desktop/EF/dataset/A2C_patients/180234_20190510_1\$ python Desktop/EF/bin/ image_preprocess.py

Then, you get "*_enhanced.png" for each "*.png" accordingly.

The "enhanced images" are used to label the border of LV.

After the enhance process being done, open "labelme" app to label and save label information in the same folder.

This is how to open "labelme" graphic user interface:

| alvinli@ComputerVisionLab: ~

(base) alvinli@ComputerVisionLab:~\$ source activate labelme
(labelme) alvinli@ComputerVisionLab:~\$ labelme

You can see this window on your screen:

Click "Open" to select an image with the name "*_enhanced.png":

Click "Create Polygons" to use the label tool and store it with label index as 'LV':

Click "Save" to save it in the folder with the name of ".json" **without** "_enhanced" (*delete* it from the recommended name):

Do it for every "*_enhanced.png" to get the "*.json" accordingly.

Generate ground truth masks

After you have labeled all the enhanced images in the same folder, please execute the program **boundary_fill.py** at the same folder to get the ground truth mask with the name of "* ROI mask.png".

Ex:

(base) alvinli@ComputerVisionLab:~/Desktop/EF/dataset/A4C_patients/B31164_20190510_1\$ python /home/alvinli/Desktop/EF/bin/boundary_fill.py

Then, please rename the folder manually to this form "A2C_patient_xxxxx" or "A4C_patient_xxxxx" like:

This will make the folder names in a consistent way for further processes. However, please **only** rename the folder after you have labeled all the inside enhanced-images. This can make a difference to distinguish the folders with or without labeling. And please update "Folder_information.ods" to make a record for this change.

A	В	C
Raw Folder	New Folder	Frames
244283_20190510_1	A4C_patient_00001	84
303999_20190510_1	A4C_patient_00002	76
975388 20190510 1	A4C patient 00003	75
1037184 20190510 1	A4C patient 00004	59
1061815 20190510 1	A4C patient 00005	93
H65138_20181210110344_0	A4C_patient_00006	108
H65138 20181210110344 2	A4C patient 00007	111
B31164 20190510 1		54
C61423_20190510_1		93
C61423_20190510_2		95
C61423_20190510_7		88
G12082_20190510_1		84
G12082_20190510_6		81
J30587_20190510_1		142
J30587_20190510_2		135
J30587_20190510_6		124
U77368 20190510 1		82
Y32756_20190510_1		82
Y32756_20190510_2		57
Y81206_20190510_1		103

Then, please execute the program data rename.py to rename all the files in the folder:

(base) alvinli@ComputerVisionLab:~/Desktop/EF/dataset/A4C_patients/A4C_patient_00001\$ python /home/alvinli/Desktop/EF/bin/data_rename.py

This will make the files' name in a consistent way:

Partition data to train_batch (80%) and test_batch (20%)

Step 1:

Create a folder called 'EF-training-Pool' at the path like this: '/home/alvinli/Desktop/EF/dataset/EF-training-Pool'

Step 2:

run the program data2_pool.py:

(base) alvinli@ComputerVisionLab:~\$ python Desktop/EF/bin/data2_pool.py

Step 3:

run the program data2_batches.py:

(base) alvinli@ComputerVisionLab:~\$ python Desktop/EF/bin/data2_batches.py

Then you should get this:

Train model

~\$ python Unet_train.py

Evaluate model

~\$ python Unet_eval.py

volumn_calculator.py

 \rightarrow calculate the volume of LV by the modified Simpson's Method.

The input file is a *.json file storing the discrete labels.

The "nothing" function can output the ejection fraction with a heart pumping circle chart.

