TBJ – Polarização

Conteúdo

- Pequenos e grandes sinais
- Linearização do TBJ
- Polarização por divisor de tensão
 - Emissor Comum
 - Reta de carga
 - Ponto quiescente
- Regras para polarização
 - Cálculo dos resistores

Fontes de Polarização

Grandes Sinais

Definições:

- 1. Análise DC; Definição de ponto de operação (polarização);
- 2. Utilizam-se as ferramentas de análise de circuitos para encontrar os valores de polarização para tensões e correntes (LKC, LKT, Lei de Ohm etc.);
- 3. Os valores de tensão de interesse nesta análise é da ordem de alguns Volts até algumas dezenas de Volts (grandes valores).

Pequenos Sinais

Definições:

- 1. Análise AC; pequena variação em torno do valor médio (DC);
- 2. O dispositivo é linearizado. Para os valores de interesse, as curvas características se comportam como se fossem lineares;
- 3. Esta análise é usada para encontrar parâmetros como ganho e resistências de entrada e de saída.

Pequenos sinais vs Grandes sinais

Polarização do TBJ

Aproximações

Configuração Emissor Comum

Ponto Quiescente

Ponto Quiescente

Ponto Quiescente

Ganho de tensão

Ganho de tensão

Ganho de tensão

Como definir os valores dos resistores e da fonte de tensão?

Como definir os valores dos resistores e da fonte de tensão?

Dados:

B, Ice Va

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	V _{CEO}	30	Vdc
Collector-Base Voltage	Veso	-40	Vdc
Emitter-Base Voltage	Vino	5.0	Vde
Collector Current - Continuous	Ic.	-200	mAde
Total Device Dissipation @ T. = 25°C	Po	625	mW
Derate above 25°C		5.0	mW/C
Operating and Storage Junction Temperature Range	T _j ,T _{sig}	~55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient	R _{piRC}	83.3	'C W	
	Rutta	200	'C.W	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	120-32-3-3-2-3-2-3-2-3-2-3-2-3-2-3-2-3-2-			
Collector-Ensitter Breakdown Voltage (1) (I _C = 1.0 mAde, I _E = 0)	V _{(BE)CEO}	30		Vdc
Collector-Base Breakdown Voltage (I _C = 10 µAdc, I _E = 0)	V _{DBCRO}	40		Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µAdc, I _C = 0)	V _{(BR)EBO}	5.0	- Z2.	Vdc
Collector Cutoff Current ($V_{CB} = 20 \text{ Vdc}, I_E = 0$)	leso	-	50	nAde
Ensitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	50	nAde
ON CHARACTERISTICS	1			
DC Current Gain(1) $(I_C = 2.0 \text{ mAde}, V_{CH} = 1.0 \text{ Vde})$ $(I_C = 50 \text{ mAde}, V_{CH} = 1.0 \text{ Vde})$	h _{re.}	50. 25	150	=
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAde, I _B = 5.0 mAde)	Vctions	-	0.3	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAde, I _B = 5.0 mAde)	V _{NF(set)}	-	0.95	Vdc

$$R \in = 0.1 V_{cc}$$

$$T_{c}$$

3 Definir o ponto de opereção no meior de veta de cerge.

$$= 7 \text{ VCE} = 0.5 \text{ VC}$$

$$= \text{ VL} - \text{ VE}$$

$$= \text{ VC} - 0.1 \text{ VCC}$$

$$=7$$
 $V_{c} = 0.5 V_{cc} + 0.1 V_{cc}$
 $V_{c} = 0.6 V_{cc}$

$$= \frac{V_{CC-V_C}}{R_C} = \frac{0.1V_{CC}}{R_E}$$

$$= \bigvee V_{CC} - \bigvee V_{CC} - \bigvee V_{CC}$$

$$= \bigvee R_{C} - \bigvee R_{C}$$

$$V_c = 0.6 \, \text{Vcc} \Rightarrow \frac{0.4 \, \text{Vcc}}{R_c} = \frac{0.1 \, \text{Vcc}}{R_E}$$

$$= > V_{CC} - V_C = O, V_{CC}$$

$$R_C = \frac{O, V_{CC}}{R_E}$$

A R2 ≤ 0.01 p R∈

(Regre)

$$\mathbb{G} R_1 = \frac{V_1}{V_2} R_1$$

$$SR_{1} = \frac{V_{1}}{V_{2}} \cdot R_{2}$$

$$I_{1} \simeq I_{2}$$

$$\Rightarrow \frac{V_{1}}{R_{1}} = \frac{V_{2}}{R_{2}}$$

$$\Rightarrow q_{1} = I_{3} \simeq 0$$

$$V_2 = V_B$$
 $V_{BE} = 0, 4$
 $V_{B-VE} = V_{B-0,lVcc}$

$$=> V_1 = 0.9 V_{CC} - 0.7$$

Exercício

Projetar um circuito de polarização por divisor de tensão com as seguintes características:

$$Vcc = 20 V$$

$$Ic = 5 mA$$

$$h_{fe} = 80 a 200$$

Exercício

Projetar um circuito de polarização por divisor de tensão com as seguintes características:

$$Vcc = 20 V$$

$$Ic = 5 mA$$

$$h_{fe} = 80 a 200$$

Solução:

$$Re = 390 (400)$$
 $R2 = 300 (<320)$
 $Rc = 1600 (1560)$ $R1 = 2000 (2050)$

Simulação PSpice

 $h_{fe} = 87$

Simulação PSpice

Script MATLAB

```
function [R1, R2, Rc, Re] = BJTPol(Ic, Vcc, Beta)

Re = 0.1*Vcc/Ic;
Rc = 4*Re;
R2 = 0.01*Beta*Re;

V2 = 0.7 + 0.1*Vcc;
V1 = 0.9*Vcc - 0.7;
R1 = (V1/V2)*R2;
```