Úvod do počítačových sítí (NSWI141)

Libor Forst, SISAL MFF UK

- Základní pojmy z oblasti komunikací
- Vrstevnatý model sítě (OSI vs. TCP/IP, adresace, multiplexing, ...)
- Aplikační vrstva (DNS, FTP, email, web, VoIP, ...)
- Transportní vrstva
- Síťová vrstva (IPv4, IPv6, směrování, firewally, ...)
- Linková a fyzická vrstva (switch vs. repeater, Ethernet, Wi-Fi, kabeláž, ...)

Literatura

- D. E. Comer, D. L. Stevens: Internetworking With TCP/IP; Prentice Hall 1991
- A. S. Tanenbaum: Computer Networks; Prentice Hall 2003
- C. Hunt: TCP/IP Network Administration; O'Reilly & Associates 1992
- P. Satrapa, J. A. Randus: LINUX Internet server; Neokortex 1996; ISBN 80-902230-0-1
- L. Dostálek, A. Kabelová: Velký průvodce protokoly TCP/IP a systémem DNS; Computer Press 2002
- zdroje na internetu
- Request For Comment (RFC)
- http://www.warriorsofthe.net

SISAL

Obecné atributy komunikace

Identifikace

 komunikující strany se musí "najít" (telefonní čísla), představit

Metoda

 př.: hluchoněmý u přepážky, zkusí znakovou řeč, recepční napíše na papír, že nerozumí a navrhne psanou formu komunikace

Jazyk

obě strany se musí dohodnout na jazyku, který použijí

Rychlost

obě strany se musí dohodnout na rychlosti komunikace

Proces

požadavky, odpovědi, potvrzení

Porovnání komunikací

- Běžná komunikace
 - hlas, signály, písmo
 - volná intuitivní pravidla
- Telekomunikace
 - složitá technologie se zabudovanými pravidly
 - řízení má na starosti síť, řídí i koncová zařízení
- Počítačová síť
 - pravidla jsou volně dostupná
 - značná část logiky je v koncových zařízeních
 - síť se stará jen o přenos
- Konvergovaná síť
 - spojuje svět spojů a počítačů (cena, efektivita...)
 - úspěšnější je konvergence na bázi počítačové sítě

Požadavky - odolnost

- přepojování okruhů: rychlejší, plynulejší, ale při výpadku uzlu se spojení rozpadne
- přepojování paketů: každý může jít jinou cestou, liší se doba přenosu, ale výpadek uzlu není fatální

Požadavky - rozšiřitelnost (WAN)

Požadavky - rozšiřitelnost (LAN)

Požadavky - bezpečnost

- Relativně nové kritérium, staré technologie byly naivní:
 - otevřená komunikace (odposlech)
 - důvěra v identitu protistrany
 - důvěra ve správnost obsahu
- Základní dělení:
 - bezpečnost infrastruktury
 - bezpečnost dat
- Současné metody:
 - ověřování uživatelů a kontrola přístupových práv
 - ověřování počítačů (serverů, příp. i klientů)
 - inspekce dat (aplikační proxy, antiviry, antispamy, ...)
 - kryptografie (šifrování a podpisy)

Požadavky - kvalita služeb

- Různé aplikace mají různé požadavky
 - zpoždění (latence, delay)
 - pravidelnost doručování (jitter, rozptyl zpoždění)
 - oba parametry kritické pro multimediální aplikace
 - ztrátovost dat
 - kritická pro přenos dat (WWW, pošta)
 - šířka pásma (bandwidth, "rychlost")
- Cíl:
 - garance vymezeného toku pro konkrétní typ provozu
 - garance rychlejšího doručení prioritních zpráv

Quality of Service

- Externí faktory:
 - kvalita a zaplnění komunikačního kanálu
 - změny formy (hlas ⇒ text ⇒ obrázek)
 - přeposílání (změny adresy)
 - čas vymezený pro komunikaci
- Interní faktory:
 - velikost, složitost, důležitost zprávy
- Implementace:
 - data obsahují klasifikaci QoS
 - strategie garance kvality: vyhrazená šířka pásma
 - zaručená kvalita, plýtvání kapacitou
 - strategie best effort: prioritní fronty
 - efektivní využití média, není záruka kvality

Segmentace a multiplexing

- Médium není dedikované pro jeden přenos
- Uzly segmentují data do menších jednotek
- Všechny přenosy sdílejí společné médium

Současná síťová komunikace

Příklady:

- dopravní spojení
- předpověď počasí
- zpravodajství
- kuchařské recepty
- internetbanking
- elektronická pošta
- publikování, blog
- chat, IP telefonie
- spolupráce
- vzdělávání

Výhody:

- aktuálnost
- dostupnost
- cena
- integrace sítí

Prvky síťové komunikace

- Protokoly (pravidla)
 - normy
 - standardy
 - doporučení
- Jednotky dat
 - zpráva
 - paket
 - bit

- Média
 - drát
 - optika
 - "vzduch"
- Uzly
 - koncová zařízení
 - síťová zařízení

Přenos zprávy (pošta)

Přenos zprávy (e-mail)

Vznik počítačových sítí

Základní dělení sítí

- Lokální sítě (Local Area Network)
 - sdílení prostředků (souborové a databázové servery, tiskárny)
 - menší vzdálenosti, malé zpoždění
 - jednotné vlastnictví a řízení
- Rozlehlé sítě (Wide Area Network)
 - vzdálený přístup, komunikace
 - velké vzdálenosti, větší zpoždění
 - mnoho vlastníků, distribuované řízení
- Dnes:
 - rozdíly se stírají (nejmarkantnější jsou ve vlastnictví)
 - vznikají mezistupně (MAN)
- Není to dělení technické (neexistuje definice), ale logické

SISAL

Veřejné a privátní sítě

- Většina LAN je privátních (uživatel je vlastníkem)
- Většina non-LAN je veřejných (uživatel není vlastníkem)

- Motivace VPN: bezpečnost, cena
- Typické použití VPN: propojení poboček, připojení (mobilních) koncových uživatelů

SISAL

Historie Internetu

- zač. 60. let koncepce "packet switching"
- 60.léta US DoD podporuje koncept "packet switching" pro odolnost proti fyzickému útoku
- 1969 ARPANET financuje Defense Advanced Research Project Agency, provozují akademická pracoviště, point-to-point, pevné linky
- 1974 termín "Internet" (zkratka "internetworking") použit v RFC 675 definujícím TCP
- 1977 na ARPANET páteř se připojuje první síť
- 1983 TCP/IP nahrazuje NCP v ARPANETu
- pol. 80. TCP/IP součástí BSD UNIXu

Vývoj Internetu v číslech

Request for Comments (RFC)

- Prostředek "standardizace" Internetu
- RFC 1 zveřejněno 7.4.1969

- Jsou volně šiřitelné (http://www.ietf.org/rfc.html)
- Různý charakter: standardy, informace, návody
- Návrh textu se předkládá IAB ⇒ IETF,IRTF ⇒ WG
- Dokumenty se nemění, aktualizace mají nové číslo (SMTP: 772, 780, 788, 821, 2821, 5321)
- Aktuální stav lze najít v indexovém souboru
- Zdaleka ne všichni RFC dodržují

Vrstevnatá filozofie

- Př.: rozeslání zápisu z obchodní porady
 - vrstva Zapisovatel
 - vytvoří zápis z porady
 - pravidla: formát zápisu
 - požadavek na Sekretářku: poslat dopis [zápis;osoba]
 - vrstva Sekretářka
 - vyhledá adresu, doplní záhlaví, podpis ... vloží do obálky
 - pravidla: formát obchodního dopisu
 - požadavek na Podatelnu: odeslat poštou [dopis;adresa]
 - vrstva Podatelna
 - dopis ofrankuje a zařadí do balíku pro transport na poštu
 - pravidla: odesílání pošty
- Výhody:
 - snazší dekompozice a popis
 - snadná změna technologie (pošta/email, pošta/kurýr)

Síťový model, síťová architektura

- Síťový (referenční) model:
 - počet a struktura vrstev
 - rozdělení práce mezi vrstvy
 - př.: ISO/OSI
- Síťová architektura (protocol suite):
 - síťový model
 - komunikační technologie
 - služby a protokoly
 - př.: TCP/IP

OSI model

- Budovaný shora, megalomanský, nepraktický
- Vhodný jako teoretický model

Pořadí	Vrstva	Úkol
7	aplikační	komunikace mezi programy
6	prezentační	datové konverze pro aplikace
5	relační	řízení dialogu mezi koncovými uzly
4	transportní	end-to-end přenos datových celků
3	síťová	dosažení cílového počítače
2	linková	přenos dat mezi sousedy
1	fyzická	fyzický přenos (bitů) mezi uzly

X.400, X.500

- Implementace služeb na základě OSI se opírala o řadu podobně (shora) navržených standardů
 - X.400: Message Handling System (pošta), nějakou dobu byl základem Microsoft Exchange Serveru
 - X.500: Directory Access Protocol (adresářové služby, tlf. seznam), perlička: implicitní položkou osoby je oblíbený nápoj
- Jediným živým pozůstatkem je identifikace osob a organizací v X.509 (mimo protokoly X.500) jako identifikace vlastníků klíčů používaných při autentikaci:

```
G=Libor; S=Forst;
O=Charles University;
OU=Faculty of Mathematics and Physics;
OU=SISAL;
C=cz
```

Rodina protokolů TCP/IP

Vyrostly z potřeb praxe, od jednoduchých ke složitějším

OSI	Vrstva	Příklady protokolů						
7					NFS			
6	aplikační	FTP, HTTP	DNS	NS	XDR			
5					RPC			
4	transportní	TCP)		UDP ICMP			
3	síťová	IP					ARP	
2	síťové rozhraní Ethernet, FDDI, ATM, WiFi,							
1	SILUVE IUZIIIAIII	SLIP, PPP,						

SISAL

Spojované/nespojované služby

- Spojované (connection-oriented) služby
 - obdoba telefonního spojení
 - zaručeno doručení paketů ve správném pořadí (stream)
 - aplikace je jednodušší, ale nemůže řídit komunikaci
 - nepravidelné, ale bezeztrátové doručování
 - velká režie, TCP je komplikované
- Nespojované (connectionless) služby
 - obdoba poštovního spojení
 - není zaručeno pořadí ani doručení paketů
 - kontrolu musí provádět aplikace, zato může řídit komunikaci
 - pravidelný tok, za cenu vyšší ztrátovosti
 - malá režie, IP i UDP jsou jednodušší

Aplikační modely

- Model klient-server
 - klient zná pevnou adresu serveru
 - klient navazuje komunikaci, zadává požadavky
 - server obvykle obsluhuje více klientů
 - tok dat server ⇒ klient: download
 - tok dat klient ⇒ server: upload
 - př. DNS, WWW, SMTP
- Model peer-to-peer (P2P)
 - partneři neznají pevné adresy "zdroje dat"
 - nejsou vyhraněné role
 - každý je zároveň klientem i serverem (=šíří data!)
 - Napster, Gnutella, BitTorrent

Adresování služeb

- Uniform Resource Identifier (URI, RFC 3986)
 - jednotný systém odkazů
 - jeden klient pro více služeb (FTP ve WWW)
 - historické členění: URL (umístění), URN (název)

```
URI = schéma: / / autorita [cesta] [?dotaz] [#fragment]
autorita = [jméno[:heslo]@]adresa[:port]
```

```
př.: ftp://sunsite.mff.cuni.cz/Net/RFC
    http://www.cuni.cz:8080/q?ID=123#Local
    mailto:forst@cuni.cz
```

SISAL

Adresování počítačů

 HW (linková vrstva)

 SW (síťová vrstva)

Lidé

 (aplikační vrstva)

- fyzická, MAC adresa
 (např. ethernetová: 8:0:20:ae:6:1f)
 - dána výrobcem (dříve), nastavitelná (dnes)
 - nerespektuje topologii
- IP adresa (např.: 194.50.16.71, ::1)
 - přidělována podle topologie sítě
 - určuje jednoznačně síť a v jejím rámci počítač
- doménová adresa (např.: whois.cuni.cz)
 - přidělována podle organizační struktury
 - snazší zapamatování

Doménový systém

Správa domén

- Domény nejvyšší úrovně (spravuje ICANN):
 - administrativní (arpa)
 - původně čistě americké "rezortní" (com, net, org, edu, mil, gov); postupně uvolněny a doplněny o další (info, biz, aero, ...); o další už mohou žádat privátní subjekty
 - ISO kódy zemí (cz, sk, ...) a několik výjimek (uk, eu);
 některé "zajímavé" státečky jména prodávají (nu, to)
 - internacionalizované kódy (.中国 = .xn--fiqs8s, .pф)

• TLD .cz:

- CZ.NIC (sdružení ISP), dohoda s vládou o správě
- není zavedena struktura, cca 3/4 mil. jmen pod .cz
- nejsou podporována lokalizovaná jména (IDN)
- Nižší domény:
 - spravuje sám vlastník (ms.[mff.[cuni.cz]])

IP adresy

- Každý koncový uzel v síti TCP/IP musí mít IP adresu
- V současnosti:
 - IP verze 4: 4 byty (např. 195.113.19.71)
 - IP verze 6: 16 bytů (např. 2001:718:1e03:a01::1)
- Přiřazení adresních bloků:
 - veřejné adresy přiděluje ISP
 - uvnitř LAN lze používat privátní adresy nedostupné zvenku (bezpečnost vs. interoperabilita), překlad adres (NAT)

SISAL

Protokol vs. rozhraní

Adresace v TCP/IP

Port, socket

Port

- ... 16bitové číslo identifikující jeden konec spojení aplikaci, proces, který má zpracovávat příchozí pakety
 - destination-port musí klient znát, typicky je to některý z tzv. well-known services
 - source-port navazovatele (>1024) spojení přiděluje lokální systém

Socket

- ... jeden konec komunikačního kanálu mezi klientem a serverem
- ... označení (adresa) jednoho konce kanálu <*IPadresa*, *port*>

Příklady well-known services

- 21/TCP: FTP File Transfer Protocol (přenos souborů)
- 22/TCP: SSH Secure Shell (vzdálené přihlášení a přenos souborů)
- 23/TCP: telnet Telecommunication network (vzdálené přihlášení)
- 25/TCP: SMTP Simple Mail Transfer Protocol (přenos elektronické pošty)
- 53/*: DNS Domain Name System (překlad jmen na IP adresy a naopak)
- 67,68/UDP: DHCP Dynamic Host Configuration Protocol (vzdálená konfigurace)
- 80,443/TCP: HTTP HyperText Transfer Protocol (přenos stránek informačního systému WWW)
- 5060,5061/*: SIP Session Initiation Protocol (VoIP, IP telefonie)

Multiplexing, zapouzdření

Tok dat v TCP/IP

- Multiplexing:
 - sdílení komunikačního kanálu více službami
- Demultiplexing:
 - přijímající strana musí data správně distribuovat podle řídících informací uložených v PDU
- Zapouzdření (encapsulation):
 - do PDU jedné vrstvy se uloží data i řídící informace jiné vrstvy (typicky n+1 => n, jsou možné i jiné kombinace)
- Segmentace:
 - rozdělení aplikačních dat na transportní vrstvě
- Fragmentace:
 - další dělení dat na síťové vrstvě díky malé MTU (maximum transmission unit) linkové vrstvy

Základní kryptografické metody

Symetrické šifrování

- pro šifrování a dešifrování se používá stejný klíč
- výhoda: rychlé, vhodné na velká data
- nevýhoda: partneři si musí klíč předat bezpečnou cestou

Asymetrické šifrování

- pro šifrování/dešifrování se používá pár klíčů (tajný a veřejný)
- výhoda: veřejný lze publikovat, tajný pečlivě uschovat
- nevýhoda: pomalé, lze šifrovat jen malá data
- veřejný klíč je třeba pečlivě ověřovat

Hash

- vytvoření pevného "kódu" z daného textu
- malá změna textu = velká změna hashe, "skoro jednoznačný"
- je jednosměrný, text je z hashe "neodvoditelný"

Šifrování dat

Elektronický podpis

Diffie-Hellman algoritmus

- Způsob výměny informací mezi dvěma partnery posílanými nezabezpečeným kanálem tak, aby oba získali sdílenou tajnou informaci (např. symetrický šifrovací klíč)
- Základ řady protokolů založených na symetrické kryptografii
- Postup:
 - 1. Alice vygeneruje tajné číslo a a veřejná (prvo)čísla p a g.
 - 2. Spočítá číslo $A = g^a \mod p$ a pošle p, g, a A Bobovi.
 - 3. Bob zvolí tajné číslo b, spočte $B = g^b \mod p$ a pošle B Alici.
 - 4. Alice spočítá $s = B^a \mod p$ a Bob totéž $s = A^b \mod p$.
- Princip:
 - $-A^{b} = (g^{a})^{b} = g^{ab} = g^{ba} = (g^{b})^{a} = B^{a}$
 - Bez znalosti tajných čísel a a b a při volbě dostatečně velkých prvočísel p a g je i při odchycení čísel A a B spočítání čísla s považováno za neřešitelnou úlohu.

Autenticita veřejných klíčů

- Je třeba ověřit, že jmenovka patří ke klíči
 - Mezi lidmi lze obvykle snadno ověřit, že komunikuji se správným partnerem dřív, než sdělím tajné informace
 - Klíč lze ověřit z více nezávislých zdrojů
 - Mezi komponentami SW je nutno nějak automatizovat
- Autenticitu ověří třetí strana a připojí svůj podpis; je to buďto
 - někdo, koho já osobně znám a mám jeho resp. její klíč ověřený ("pavučina důvěry")
 - veřejně uznávaná certifikační autorita;
 jejich seznam je např. v prohlížečích,
 ale věrohodnost takového seznamu není zcela stoprocentní

Certifikát

- Certifikát je klíč vybavený identifikací a podepsaný certifikační autoritou (CA)
- Pokud důvěřujeme CA, můžeme věřit klíči vlastníka (ověřovat věrohodnost CA!)
- Struktura certifikátu podle X.509 (RFC 3280, SSL, ne SSH):
 - certifikát
 - verze certifikátu
 - sériové číslo certifikátu
 - vydavatel
 - doba platnosti
 - vlastník veřejného klíče
 - informace o veřejném klíči vlastníka (algoritmus a klíč)
 - algoritmus pro elektronický podpis
 - elektronický podpis

Aplikační vrstva TCP/IP

- Spojuje funkce OSI 5, 6 a 7
 - pravidla komunikace mezi klientem a servrem
 - stav dialogu
 - interpretaci dat
- Protokol na aplikační vrstvě definuje
 - průběh zpracování na obou stranách
 - formát zpráv (textový/binární, struktura,...)
 - typy zpráv (požadavků a odpovědí)
 - sémantiku zpráv, sémantiku informačních polí
 - varianty průběhu dialogu
 - interakci s transportní vrstvou

Domain Name System

- Klient-sever aplikace pro překlad jmen na adresy a naopak
- Binární protokol nad UDP i TCP, port 53, RFC 1034, 1035
 - Běžné dotazy (do velikosti 512B) se vyřizují pomocí UDP
 - Větší datové výměny probíhají v TCP
- Klient se obrací na servery definované v konfiguraci, postupně získává informace o dalších, dokud neví odpověď
- Problematická je bezpečnost, podpisy zabezpečené DNS (DNSSEC) je komplikované a rozšiřuje se pomalu
- Jednotkou dat je "záznam" (resource record RR), př.:

```
ns.cuni.cz. 3600 IN A 195.113.19.78
```

- jméno záznamu
- doba platnosti (TTL)
- typ a data

DNS záznamy

Тур	Jméno	Data
SOA	jméno domény	obecné informace o doméně
NS	jméno domény	jméno nameserveru domény
A	jméno počítače	IPv4 adresa počítače
AAAA	jméno počítače	IPv6 adresa počítače
PTR	reverzní jméno (např. pro IP adresu 1.2.3.4 je to 4.3.2.1.in-addr.arpa, pro ::1 je to 1.00.ip6.arpa)	doménové jméno počítače
CNAME	jméno aliasu	kanonické jméno počítače
MX	jméno domény/počítače	jméno poštovního serveru a jeho priorita

Servery DNS

- Typy serverů:
 - primární: spravuje záznamy o doméně
 - sekundární: stahuje a uchovává kopii dat o doméně
 - <u>caching-only</u>: udržuje jen (ne)vyřešené dotazy po dobu platnosti
- Každá doména (zóna) musí mít alespoň jeden, ale raději více autoritativních (primárních nebo sekundárních) nameserverů
- Pro výměnu dat se používá TCP, ale normální formát dotazu a odpovědi (data se posílají jako DNS RR)
- Aktualizaci zónové databáze vyvolává sekundární server, je ale možné z primárního serveru signalizovat její potřebu

Vyřizování DNS dotazu

DNS dotaz a odpověď

Dotaz:

QUERY: www.cuni.cz. IN A

· Odpověď:

FLAGS: Authoritative, Recursive

QUERY: www.cuni.cz. IN A

ANSWER: www.cuni.cz. IN CNAME tarantula

tarantula IN A 195.113.89.35

AUTHORITY: cuni.cz. IN NS golias

ADDITIONAL: golias IN A 195.113.0.2

• Problém: Příznak Authoritative se nevztahuje na sekci AUTHORITY a ADDITIONAL, server pro nějakou doménu tam může zdánlivě legálně umístit falešné údaje o jiné.

Konfigurace DNS

UNIX

lokální doména a nameserver: /etc/resolv.conf

```
domain jméno_domény
nameserver IP_adresa_nameserveru
```

Windows

```
Control Panel ⇒ Network and Internet

⇒ Network Connections

⇒ Local Area Connection ⇒ Properties

⇒ TCP/IPv4 ⇒ Properties

⇒ General ⇒ Advanced ⇒ DNS
```

Diagnostika DNS

- Program nslookup
 - podpříkazy: set type, server, name, IPadr, 1s, exit

```
> set type=ns
```

> cuni.cz

Server: 195.113.19.71

Address: 195.113.19.71#53

Non-authoritative answer:

```
cuni.cz nameserver = golias.ruk.cuni.cz.
```

cuni.cz nameserver = ns.ces.net.

Authoritative answers can be found from:

- Program dig
 - dig [@server] jméno [typ_RR]

File Transfer Protocol

- Jeden z nejstarších protokolů (RFC 959, dodnes platí!)
- Původně přístup k vlastnímu účtu, otevřený přenos hesla!
- Dnes hlavně anonymní přístup (uživatel anonymous nebo ftp, heslo je email) k volně šiřitelným datům
- Ukázka řídícího spojení (příkazy a odpovědi):

Kódy odpovědí

- Pro usnadnění automatického zpracování začíná každá odpověď trojmístným číslem
- První číslice vyjadřuje závažnost odpovědi:
 - 1xx **předběžná kladná odpověď** (akce byla zahájena, budou ještě další odpovědi)
 - 2xx **kladná odpověď** (definitivní)
 - 3xx **neúplná kladná odpověď** (jsou nutné další příkazy)
 - 4xx dočasná záporná odpověď (nepodařilo se, ale je možné příkaz opakovat)
 - 5xx **trvalá záporná odpověď** (nepodařilo se a nemá smysl příkaz opakovat)
- Podobné schéma převzala řada následníků

Aktivní/pasivní datové spojení

- Přenos dat probíhá po jiném (datovém) spojení
- Aktivní navázání datového spojení:

Pasivní navázání datového spojení:

Po skončení přenosu se datové spojení uzavře

Third Party Transfer

 Přímý přenos dat mezi servery (z výkonových, kapacitních nebo bezpečnostních důvodů)

• Bezpečnostní riziko: útočník může podvrhnout adresu a port

Aplikace pro FTP

- WWW prohlížeče
- správci souborů (Total Commander)
- řádkový interaktivní příkaz ftp
 - navazování relace: open, user
 - ukončování relace: close, quit, bye
 - lokální příkazy: lcd, !command
 (!cd obecně nefunguje!)
 - vzdálené příkazy: cd, pwd, ls, dir
 - přenos souborů: get, put, mget, mput
 - typ přenosu souborů: ascii, binary
 (pozor na textové/binární soubory mezi různými OS!)
 - práce se soubory: delete, rename, mkdir, rmdir
 - pomocné příkazy: prompt, hash, status, help,...

Elektronická pošta

- Obecná služba, existuje i mimo Internet
 - off-line předávání zpráv příp. souborů
 - off-line použití informačních služeb
 - diskusní kluby (mailing-listy, konference)
 - komunikace mimo Internet
- Na Internetu funguje na základě RFC 821, 2821 resp. 5321 (protokol SMTP) a RFC 822, 2822 resp. 5322 (formát zpráv) na portu 25
- E-mailová adresa v Internetu (typicky):

```
login@počítač nebo alias@doména např.:
```

```
forst@ms.ms.mff.cuni.cz, Libor.Forst@cuni.cz
```

Příjem a odeslání pošty v SMTP

mbox IN MX 0 mbox IN MX 20 relay

Přístup k poště z pohledu uživatele

a) přímé připojení (terminál nebo web) na SMTP server Mail Transfer Agent **SMTP** Mail WAN User server Agent POP server b) připojení přes SMTP a POP nebo IMAP

Ukázka SMTP protokolu

```
    220 alfik.ms.mff.cuni.cz ESMTP Sendmail ...

⇒ HELO betynka

250 alfik Hello betynka, pleased to meet you
⇒ MAIL FROM: <forst@cuni.cz>
⇒ RCPT TO: libor@forst.cz>

← 250 2.1.5 < libor@forst.cz>... Recipient ok

⇒ DATA

← 354 Enter mail, end with "." on a

                                 line by itself
⇒ From: <forst@cuni.cz>
                                 obálka
⇒ To: dor@forst.cz>
                                 dopis
\Rightarrow | . . .
\Rightarrow

    250 2.0.0 h98G9FxT Message accepted for delivery

⇒ QUIT
```

Elektronický dopis

```
Received: from alfik.ms.mff.cuni.cz
    by betynka.ms.mff.cuni.cz...
Date: Thu, 16 Nov 1995 00:54:31 +0100
To: student1@ms.mff.cuni.cz
From: Libor Forst <forst@cuni.cz>
Subject: Test posty
Cc: student2@ms.mff.cuni.cz
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="=_XXX_="
--= XXX =
Content-Type: text/plain; charset=Windows-1250
Content-Transfer-Encoding: 8bit
Čau Petře!
--= XXX =--
```

Hlavičky dopisu

Date: datum pořízení dopisu

From: autor (autoři) dopisu

Sender: odesilatel dopisu

Reply-To: adresa pro odpověď

To: adresát(i) dopisu

Cc: (carbon copy) adresát(i) kopie

("na vědomí:")

Bcc: (blind cc) tajní adresáti kopie

Message-ID: identifikace dopisu

Subject: předmět dopisu

Received: záznam o přenosu dopisu

Soubory a diakritika v poště

 Původně pouze 7-bit ASCII, kódování souborů pomocí UUENCODE (pochází z UUCP, unix-to-unix-copy)

• Kódování OK, ale chybí systematické začlenění do dopisu

Multipurpose Internet Mail Extension

- RFC 2045-2049, umožňuje:
 - Strukturovat dokument
 - Pro každou část
 - Popsat typ a formát obsahu (př. text/html)
 - Zadat znakovou sadu a kódování dokumentu
 - Doplnit další informace ke zpracování
 - Používat diakritiku i v (některých) hlavičkách:

```
Subject: =?utf-8?b?SVRBVCAyMDEyIC0gcG96?=
```

- Kódování:
 - Base64: vychází z uuencode, jiná tabulka a formát řádek
 - Quoted-Printable: nonASCII znaky jsou uloženy jako řetězec "=HH", kde HH je jejich hexadecimální hodnota
- Dnes široce používaný i mimo poštu

Etika poštovního styku

- RFC 1855 (Netiquette Guidelines)
 - přečíst všechny maily, než odpovíte
 - zvažovat zásah do konverzace, pokud jste jen Cc
 - nechat příjemci čas na odpověď (ale ověřit doručení lze)
 - odpovídat rychle, alespoň jako potvrzení
 - pečlivá volba Subjectu, kontrola adresátů
 - volba jazyka, výrazových prostředků, emocí
 - míra zachování původního textu v odpovědi
 - respektování ©, souhlas autora při přeposílání
 - účelné a ověřené posílání souborů, češtiny
 - kontrola toho, co mailer posílá (ne HTML!)
 - přetěžování uživatelů a sítě, řetězové dopisy
 - podpis

Bezpečnost pošty

Dopis je vždy otevřená listovní zásilka
 (z různých příčin se může dostat do ruky mnoha lidem)

Řešení: šifrovat obsah dopisu (např. PGP - Pretty Good Privacy)

· Nikdy není jistý odesilatel, ani shoda údajů v obálce a textu

Částečná řešení: Sender Policy Framework, pokus o zpětné doručení

Řešení: systém výzva/odpověď, elektronický podpis

Neotevírat soubory neznámého původu!

Post Office Protocol

- Protokol pro přístup uživatelů k poštovní schránce
- Aktuální je verze 3, RFC 1939, port 110
- Hlavní nevýhody:
 - Otevřené posílání hesla; existuje rozšiřující příkaz pro posílání šifrovaného hesla (APOP), ale řada klientů ho nemá implementovaný
 - Dopisy je nutno stahovat ze serveru celé; existuje příkaz
 TOP pro stažení začátku dopisu, ale opět je jen řídce implementovaný
 - Není možné pracovat se strukturou dokumentů
- Dnes podporován spíše kvůli zpětné kompatibilitě a nahrazován protokolem IMAP

Ukázka POP3 protokolu

```
← +OK POP3 server ready ...
⇒ USER forst
+OK User accepted
⇒ PASS heslo
+OK Pass accepted
⇒ LIST
← +OK 2 messages (1234 octets)
= 1 1111
= 2 123
— •
\Rightarrow RETR 1
← +OK 1111 octets
← From: ...
← .
\Rightarrow DELE 1
+OK message 1 deleted
```

Internet Message Access Protocol

- Modernější, ale složitější nástupce POP
- Aktuální verze 4rev1, RFC 3501, port 143
- Hlavní výhody:
 - Zabudována možnost používat šifrované spojení
 - Server uchovává informace o dopisech (stav)
 - Podpora více schránek (složek)
 - Protokol umožňuje vyžádat pouze část dopisu
 - Je možné nechat na serveru v dopisech vyhledávat
 - Možnost zadat paralelní příkazy
- Šifrování:
 - a) navázání spojení na port 993
 - b) vyvoláno příkazem STARTTLS
- IMAP má implementována většina stávajících MUA

Princip distribuované databáze

Hypertext

Základní myšlenka (1945):

nelineární hierarchický text obsahující vazby, které umožňují pokračovat čtením podrobnější informace nebo příbuzného tématu

• Pozdější rozšíření (1965):

doplnění samotného textu o netextové informace (obrázky, zvuk, video...), někdy se používá pojem hypermediální text

 Praktická implementace (1989): systém World Wide Web vyvinutý v CERNu

World Wide Web

- WWW je distribuovaná hypertextová databáze
- Základní jednotkou je hypertextová stránka (dokument), kterou server posílá na žádost klientům
- Dokumenty jsou psány v textovém jazyce HTML (Hypertext Markup Language)
 - popisuje obsah i formu
 - konkrétní zobrazení je v režii klienta resp. uživatele
 - existují staticky nebo se vytvářejí dynamicky
- Přenos stránek se odehrává pomocí protokolu HTTP (Hypertext Transfer Protocol)

Ukázka protokolu HTTP

URL: http://www.cuni.cz/index.html

Hypertext Transfer Protocol

- V současnosti verze 1.1, RFC 2616, port 80
- Obecný formát zpráv:
 - úvodní řádka (požadavek/odpověď)
 - doplňující hlavičky
 - požadavek: jazyk, kódování, stáří stránky, autentikace,...
 - odpověď: typ dokumentu, kódování, expirace,...
 - (volitelné) tělo dokumentu
- Kódy odpovědí:

1xx informativní odpověď (požadavek přijat, zpracovává se)

2xx kladná odpověď (definitivní)

3xx **přesměrování** (očekává se další požadavek od klienta)

4xx chyba na straně klienta (nesprávný požadavek)

5xx chyba na straně serveru (nepodařilo se vyhovět požadavku)

Metody HTTP

Metoda	Tělo požadavku	Tělo odpovědi
GET		požadovaná stránka
HEAD		
POST	parametry stránky	požadovaná stránka
PUT	uploadovaný soubor	
CONNECT		

Vlastnosti HTTP

- Odpovědí na jeden požadavek je obvykle jeden dokument (stránka, obrázek,...)
- Po jednom (perzistentním) spojení může jít postupně více požadavků, klienti si obvykle otevírají současně několik spojení
- Požadavky jsou nezávislé, komunikace je bezestavová; stav je nutno přenášet jako dodatečná data, tzv. cookies:
 - server vygeneruje cookies s identifikací spojení a pošle je v hlavičkách klientovi
 - klient při dalších požadavcích na stejný server tato data přidává do hlaviček požadavku

Jazyk HTML

- Hypertext Markup Language, verze 4.01, další vývoj poněkud zamlžený (XHTML vs. HTML 5.0)
- Vlastní textový obsah stránky je doplněn doplňujícími informacemi, značkami: strukturálními (např. odstavec), sémantickými (např. adresa), formátovacími (např. tučně)
- Je aplikací staršího SGML (Standard Generalized ML) a předchůdcem XML (Extensible ML)
- Formát značky: <znacka [atributy]>
- Volný formát řádek (bílé znaky nevýznamné)
- Speciální znaky entity (<, >, &, ...)
- Komentáře (<!-- ... -->)

HTML - struktura dokumentu

HTML - hypertext

- Odkazy značka anchor.
 - odkaz na jinou stránku: ...
 - označení místa v dokumentu:
 - odkaz na část dokumentu: ...

Obrázky - značka image (img), atributy:

HTML - formátování

Základní formátování:

- odstavec (...)
- nadpis (<h1> až <h6>)
- pevné odřádkování (
)
- vodorovná čára (<hr>
- vycentrování (<center>)

• Písmo:

- určení fontu: ...
- fyzický formát: tučné (), kurzíva (<i>), podtržení (<u>), pevná šířka (<tt>), index (<sub>)...
- logický formát: zvýraznit (,), ukázka kódu (<code>)...

HTML - seznamy

```
ul>
položka A
položka B
<01>
                          položka A
položka A
                          položka B
položka B
položka A
                        2. položka B
< 11>
<dt>termín A</dt>
                        termín A
<dd>vysvětlení</dd>
                          vysvětlení
<dt>termín B</dt>
                        termín B
<dd>vysvětlení</dd>
                          vysvětlení
</dl>
```

HTML - tabulky

```
Období
 Zisk
2012
 I - III
 10
IV - VI
          Období
              Zisk
 2000
I - III
               10
          2012
IV - VI
              2000
```

HTML - formuláře

```
<form action="mailto.cgi" method="post">
Jméno: <input name="jmeno">
Zpráva: <textarea name="zprava"
          rows="3" cols="40"></textarea>
Poslat
<input type="radio"</pre>
  name="kdy" value="hned">
hned
                                Jméno:
<input type="radio"</pre>
  name="kdy" value="zitra">
                               Zpráva:
zítra
<input type="submit"</pre>
       value="Odeslat">
                                Poslat Ohned o zítra
</form>
                                  Odeslat
```

HTML - rámy

```
<html>
<head><title>Titulek</title></head>
<frameset cols="20%,*">
  <frameset rows="*,120">
    <frame name="obsah" src="obsah.html">
    <frame name="logo" src="logo.html">
 </frameset>
 <frame name="hlavni" src="titulni.html">
 <noframes><body>
 Dokument pro klienty nepodporující rámy.
  </body></noframes>
</frameset>
</html>
```

Kaskádové styly

- Složitější formátování přímo v HTML je komplikované
- Kaskádové styly (CSS) je prostředek, jak
 - definovat vlastnosti pro celé oblasti stránky
 - vytvářet vlastní styly
 - dědit a upravovat vlastnosti jiných stylů
- Umožňují snazší údržbu rozsáhlých souborů stránek dodržujících zadané formátovací konvence
- Př.:

```
<style type="text/css">
h2 {color: blue; font-style: italic;}
</style>
```

Zodpovědnost za vzhled stránky

1. Autor stránky

- vkládá do stránky svou ideu
- hloubka detailu záleží na něm

2. Typ a verze prohlížeče

- různé (verze) prohlížeče mohou interpretovat stejný kód mírně odlišným způsobem
- je žádoucí ověřit vzhled na různých prohlížečích

3. Nastavení klienta

 uživatel obvykle má možnost nastavením ovlivnit některé atributy vzhledu (např. zvolit strategii používání fontů, barev)

Dynamické stránky (server)

Dynamika řízena na serveru, na klientovi neběží žádný kód.

- V HTML lze vytvořit formulář, jeho odesláním se na serveru spouští tzv. cgi-skript, který za pomoci dat od uživatele (přenášejí se v URI nebo v těle požadavku) vygeneruje text dynamické stránky
- Autor stránky může nechat SW na serveru vložit do textu stránky určité části (tzv. server-side include)
- Do textu stránky je možné vložit kód, který zpracuje HTML preprocesor (PHP), klient už vidí jen výsledek (datum a čas)

```
<?php
    echo date(DATE_RFC822);
?>
```

PHP obsahuje širokou podporu funkcí, např. pro zacházení s databázemi

SISAL

Dynamické stránky (klient)

Přenesení dynamiky (spuštění kódu) na klienta.

- Java jazyk myšlenkově vycházející z C++, s vyššími nároky na bezpečnost, s knihovnami pro jednoduchou tvorbu uživatelského rozhraní
 - Java programy (applety) se na klienta přenášejí ve formě mezikódu nezávislého na platformě, ten klient interpretuje a vykonává za pomoci lokálních knihoven
- Javascript analogický princip, na klienta se ale přenáší zdrojový kód a on ho interpretuje přímo, př.:

Dnes umí i komunikovat se serverem.

Bezpečnost na WWW

- Bezpečnost uživatele
 - komunikace probíhá otevřeně, přenos citlivých informací (hesla, údaje ve formulářích) představuje riziko
 - obsah stránky může být podvržen
 - spouštění nebezpečného Java(script) kódu
 - autentikace a šifrování (HTTPS: HTTP+SSL)
 - cookies se ukládají na klientovi, jsou čitelné a mohou být poslány jinému serveru
- Bezpečnost serveru
 - přes WWW server vede řada útoků
 - pečlivě udržovaný systém, minimální práva
- Bezpečnost sítě
 - pokud se klient a server domluví, lze do HTTP zabalit libovolný provoz

Telnet

- Protokol pro přihlašování na vzdálené stroje, port 23
- Zkratka z Telecommunication Network
- Jeden z nejstarších protokolů, poprvé v RFC 97 (1971!)
- Uživatel má k dispozici síťový virtuální terminál (NVT), protokol přenáší oběma směry znaky a příkazy pro řízení NVT (slabiny: např. nerozlišuje příkaz a odpověď)
- Hlavní nevýhoda: otevřený přenos dat (řeší až rozšíření podle RFC 2946, které ale přichází pozdě)
- Dnes:
 - přístup na síťová zařízení v rámci odděleného segmentu LAN
 - ladění jiných protokolů:
 - > telnet alfik 25 220 alfik.ms.mff.cuni.cz ESMTP Sendmail ... HELO betynka 250 alfik Hello betynka, pleased to meet you

One Time Password

- Obecné označení pro mechanizmy umožňující nereplikovatelnou plain-textovou autentikaci uživatele
- Původní varianta:

Vytištěný seznam jednorázových hesel.

Starší systém:

Server vyšle jedinečný náhodný kód, uživatel na klientovi z něj určeným způsobem vyrobí odpověď (např. pomocí speciální HW či SW kalkulačky, kam zadá přijatý kód a svoje heslo a dostane odpověď) a klient ji pošle servru.

Modernější řešení:

Uživatel dostane speciální autentikační předmět (*token*), který na základě přesné časové synchronizace se servrem generuje jednorázový časově omezený kód.

Secure Shell (SSH)

- Bezpečná náhrada starších protokolů pro vzdálené přihlašování resp. přenos souborů
- Aktuální verze 2, RFC 4250-4254, port 22
- SSHv2 kromě základní funkce umožňuje:
 - otevírat paralelně více zabezpečených kanálů
 - tunelovat zabezpečeným kanálem jiný provoz
 - zpřístupnit souborový systém (SSHFS)
 - **–** ...
- Klienti (windows): putty, winscp
- Příkazy (unix):

```
ssh [user@]host [command]
scp [-pr] [user@[host:]]file1 [user@[host:]]file2
```

Bezpečnost SSH

- Klient ověřuje server
 - na základě klíče (potvrzuje uživatel)
 - certifikátu (ověřen autoritou)
- Server ověřuje uživatele
 - pomocí hesla
 - pomocí výzev a odpovědí (OTP)
 - pomocí veřejného klíče (server posílá výzvu zašifrovanou klíčem uživatele, klient odpovídá plain textem)
- Strategie používání klíčů
 - důkladně ověřovat klíč serveru, pozor zvl. při změně (nebezpečí útoku "man-in-the-middle")
 - přihlášení bez hesla vázat na privátní klíč s heslem
 - na méně důležité cíle je možné i bez hesla, ale rozhodně nikoliv recipročně (A→B i B→A) - ochrana proti červům

Voice over IP

- Obecné označení technologií pro přenos hlasu po IP
- Lze realizovat různými navzájem nekompatibilními způsoby:
 - standard H.323
 - standard SIP
 - proprietárně (Skype)
- Celá řada problémů:
 - digitalizace hlasu
 - dohadování vlastností zařízení
 - nalezení partnera
 - propojení s běžnou telefonní sítí

H.323

- Komplexní řešení multimediální komunikace od ITU
- Založeno na ASN.1 (binární, bitové protokoly)
- Zahrnuje celou řadu dílčích protokolů, mj.:
 - H.225/RAS (Registration/Admission/Status) pro vyhledávání partnera pomocí tzv. gatekeeper uzlů
 - Q.931 (síťová vrstva ISDN) řeší navazování spojení
 - H.245 řeší řízení hovoru (dohodu o používaných vlastnostech zařízení)
 - RTP kanály (Realtime Transport Protocol, RFC 3550) se používají pro vlastní přenos multimediálních dat
 - RTCP (RTP Control Protocol) zabezpečuje jejich řízení
- Dnes postupně nahrazováno SIP

Abstract Syntax Notation 1

Formální definice datové struktury, př.:

```
Answer ::= CHOICE {
   word PrintableString,
   flag BOOLEAN }
SignedData ::= SEQUENCE {
   version Version,
   digestAlgorithms DigestAlgorithmIdentifiers,
```

- Pochází z 80. let (a je to na ní znát)
 - př.: výčtový typ (enumerace) se zapíše do tolika bitů, kolik je třeba, dopředu se přidá bit s hodnotou 0, ale pokud bude mít hodnotu 1, je typ rozšířen a zapsán jiným počtem bitů
- Je možné automaticky generovat parser
- Umožňuje přenášet menší objemy dat, ale neprůhledně
- Příklady použití: H.323, X.509

Session Initiation Protocol

- Náhrada složitého H.323 jednodušším protokolem
- RFC 3261, port TCP i UDP 5060
- Architektura protokolu se podobá HTTP, informace se přenášejí ve formě hlaviček
- Neřeší vlastní přenos dat (obvykle používá RTP/RTCP)
- Řeší jen signalizaci (vyhledání partnera a navázání spojení)
- Dohodu o parametrech datových kanálů obvykle řeší SDP (Session Description Protocol, RFC 4566), jeho data se přenášejí zabalená do těla SIP zpráv
- Koncový uzel se může registrovat u registrátora, tím lze uskutečnit propojení na běžnou telefonní síť

Příklad SIP session

Úvod do počítačových sítí (2014)

Sdílení systému souborů

- Připojení cizího filesystému transparentně do lokálního
- Network File System (NFS)
 - původně vyvinut v Sun Microsystems, dnes IETF
 - poslední verze 4, RFC 3530, port 2049 (UDP i TCP)
 - identifikace zdroje: server:cesta
 - autentikace: Kerberos
 - zajímavost: relační (RPC) a prezentační (XDR) vrstva
- Server Message Block (SMB)
 - původně vyvinut v IBM, posléze přejal Microsoft
 - open implementace Samba (UNIX)
 - identifikace zdroje: UNC (\\jméno_serveru\jméno_zdroje)
 - autentikace: obvykle uživatelské jméno a heslo

Network Time Protocol

- Synchronizace času mezi uzly sítě
 - stejné timestampy souborů
 - porovnávání času událostí na různých počítačích
- Aktuální verze 4, RFC 5905, port 123 (UDP)
- Klient kontaktuje servery uvedené v konfiguraci
- Servery mohou mít různou přesnost stratum:
 - 0: atomové hodiny, GPS hodiny
 - 1: servery synchronizované se zdrojem stratum 0, ...
- Problém: odpovědi od serverů mají (různé) zpoždění
 - podle časových známek se pro každý spočítá interval, do něhož pravděpodobně spadá jím udaný čas
 - pomocí Marzullova algoritmu se najde nejlepší průnik intervalů

SISAL

BOOTP a DHCP

- Bootstrap Protocol, RFC 951, byl vyvinut pro automatickou konfiguraci bezdiskových stanic
 - stanice pošle (všem) fyzickou adresu síťové karty
 - server najde klienta v seznamu a pošle IP adresu, jméno...
- Nahrazen DHCP (Dynamic Host Configuration Protocol)
 - stejný formát zpráv
 - kromě statické alokace adres i dynamická
 - časově omezený pronájem
 - možnost zapojení více serverů
- RFC 2131, UDP porty 67 (server) a 68 (klient)
- Klient si vybírá nabídku (podle adresy, délky pronájmu…)

Průběh DHCP

SISAL

SSL, TLS

- Secure Socket Layer 3.0 ~ Transport Layer Security 1.0
- Mezivrstva mezi transportní a aplikační vrstvou umožňující autentikaci a šifrování
- Využívá řada protokolů (např. HTTPS na portu 443)
- Princip:
 - 1. Klient pošle požadavek na SSL spojení + parametry.
 - 2. Server pošle odpověď + parametry + certifikát serveru.
 - 3. Klient ověří server a vygeneruje základ šifrovacího klíče, zašifruje ho veřejným klíčem serveru a pošle mu ho.
 - 4. Server rozšifruje základ šifrovacího klíče. Z tohoto základu vygenerují jak server, tak klient hlavní šifrovací klíč.
 - 5. Klient a server si navzájem potvrdí, že od teď bude jejich komunikace šifrovaná tímto klíčem.

SISAL

Prezentační vrstva (OSI 6)

- Představa o všeobecném modelu popisujícím kódování
 - datových typů: celých čísel, řetězců,...
 - datových struktur: polí, záznamů, pointrů,...
- Obecně velmi složité: kdo a kdy (de)kóduje
- Pokus o realizaci: ASN.1
- TCP/IP obecnou potřebu potlačilo, začlenilo definici výměnného formátu přímo do aplikačních protokolů, konverzi musí provádět aplikace
- Praktické problémy:
 - konce řádek: CRLF (0x0D, 0x0A)
 - pořadí bytů: big endian (1 = 0×00 , 0×00 , 0×00 , 0×01), např. Intel má little endian (1 = 0×01 , 0×00 , 0×00 , 0×00)

Relační vrstva (OSI 5)

- Představa o obecném modelu dialogu
 - jeden dialog může obsahovat více spojení
 - po jednom spojení může probíhat více dialogů
- TCP/IP obecnou potřebu potlačilo, začlenilo princip dialogu přímo do aplikačních protokolů, př.:
 - v rámci jednoho SMTP spojení mezi klientem a serverem může být vyřízeno několik mailů
 - SIP (dal by se považovat za protokol relační vrstvy) inicializuje dialog za pomoci více parciálních spojení pro přenos audio či video dat

Transportní vrstva (OSI 4)

• Funkce OSI 4:

- zodpovídá za end-to-end přenos dat
- zprostředkovává služby sítě aplikačním protokolům, které mají rozdílné požadavky na přenos
- umožňuje provozování více aplikací (klientů a serverů) na stejném uzlu sítě
- (volitelně) zabezpečuje spolehlivost přenosu dat
- (volitelně) segmentuje data pro snazší přenos a opětovně je skládá ve správném pořadí
- (volitelně) řídí tok dat (flow control, "rychlost vysílání")
- V TCP/IP zabezpečují transport
 - TCP (Transmission Control Protocol) pro spojované služby
 - UDP (User Datagram Protocol) pro nespojované služby

SISAL

Struktura UDP datagramu

Source Port	Destination Port
Length	Checksum
Data	

- Data se v UDP přenášejí jako samostatné zprávy
- Aplikace s tím musejí počítat, zabezpečit řízení a uzpůsobit PDU
- V UDP neexistuje pojem "spojení"

Struktura TCP paketu

Source Port		e Port	Destination Port
Sequence Number			
		Acknowledge	ment Number
Data Offset	(rsvd)	Flags	Window
Checksum		ksum	Urgent Pointer
Options			
Data			

Zahájení a ukončení spojení

Navázání TCP spojení (three-way handshake):

Uzavření spojení (jednostranné):

Protistrana (hned nebo později) provede totéž.

TCP okna

TCP příznaky

- **SYN** paket slouží k synchronizaci čísel segmentů (inicializace "Sequence number")
- ACK paket potvrzuje doručení všech paketů až po "Acknowledgement number" (nevčetně); paket může ale nemusí obsahovat i data
- рsн informuje příjemce, že obdržel kompletní blok a má ho předat aplikaci ("push")
- FIN odesilatel zavírá svoji stranu spojení, nehodlá už posílat žádná data
- RST odesilatel odmítá přijmout spojení resp.
 oznamuje okamžité přerušení spojení ("reset")
- URG paket obsahuje urgentní (*out-of-band*) data, jejich adresa je v "Urgent pointer"

Výpis existujících socketů

C:\Users\forst>netstat -an

Active Connections

Proto	Local Address	Foreign Address	Stat
TCP	0.0.0.0:135	0.0.0.0:0	LIS
TCP	0.0.0.0:623	0.0.0.0:0	LIS
TCP	127.0.0.1:49209	127.0.0.1:49210	EST
TCP	127.0.0.1:49210	127.0.0.1:49209	EST
TCP	192.168.28.73:139	0.0.0.0:0	LIST
TCP	192.168.28.73:49167	195.113.19.78:22	EST
TCP	192.168.28.73:49183	195.113.19.78:80	EST
UDP	0.0.0.0:\3702	*:*	
UDP	127.0.0.1 1900	*:*	
→ UDP	192.168.28.73:1900	*:*	

ate

STENING

STENING

CABLISHED

TABLISHED

STENING

CABLISHED

CABLISHED

TCP spojení: místní adresa / port vzdálená adresa / port poslouchající server

Síťová vrstva (OSI 3)

- Hlavní funkce OSI 3: přenos dat předaných transportní vrstvou od zdroje k cíli
- Základem této činnosti jsou
 - adresace protokol síťové vrstvy definuje tvar a strukturu adres komunikujících partnerů
 - encapsulation (zapouzdření) řídící data potřebná pro přenos (zjm. adresy) se musí vložit do PDU
 - routing (směrování) vyhledání nejvhodnější cesty k cíli přes mezilehlé sítě
 - forwarding (přeposílání) předání dat ze vstupního síťového rozhraní na výstupní
 - decapsulation vybalení dat a předání transportní vrstvě
- Příklady protokolů: **IPv4**, **IPv6**, IPX, AppleTalk

Internet protokol (IP)

Vlastnosti:

- nespojovaná služba (každý datagram běží svou cestou)
- best effort (nespolehlivá, spolehlivost řeší vyšší vrstvy)
- nezávislá na médiu (vyšší vrstvy neřeší typ média)

Adresy:

- obsahují část s adresou sítě a část s adresou uzlu
- IPv4: 4 byty
- IPv6: 16 bytů

• Přidělování:

- centrální: IANA (Internet Assigned Numbers Authority)
- regiony: RIR (5x, náš: RIPE NCC)
- dále: ISP
- v lokální síti: lokální správa sítě (ručně nebo automaticky)

IPv4 adresy

Původně: jeden byte

1975 (RFC 687): tři byty ("This expansion is adequate for

any forseeable ARPA Network growth.")

1976 (RFC 717): jeden byte (síť) + tři byty (počítač)

- 1981 (RFC 791): třídy A, B a C

Třída	1.byte 2.byte 3.byte 4.byte	1. byte	Sítí	Adres
Α	0 net host	1-126	126	~16 M
В	10 net host	128-191	~16 k	~64 k
С	110 net host	192-223	~2 M	254
D	1110 net	224-239	mult	icast
Е	1111	240-255	experi	mental

Subnetting

Rozdělení sítě na podsítě rozšířením síťové části adresy:

net sub host

pomocí specifikace tzv. síťové masky (*netmask*), v tomto případě 255.255.255.224:

11111111	11111111 1	1111111	111 0000	0
----------	------------	---------	----------	---

- Nedoporučuje se používat subnet "all-zeros" a "all-ones", takže zde máme jen 6 x 30 adres (70%)
- Je přípustná nespojitá maska, obvykle se nepoužívá
- V současnosti se často ignorují třídy (classless mód) a uvádí jen počet bitů prefixu (např. 193.84.56.71/27)
- Pokud se v síti používají různé masky, hovoříme o síti s variable length subnet mask (VLSM)
- Posun hranice sítě opačným směrem: supernetting

Speciální IPv4 adresy (RFC 5735)

- Speciální adresy "by design"
 - this host (smí být použita pouze jako zdrojová): 0.0.0.0/8
 - adresa rozhraní s dosud nepřiřazenou adresou
 - loopback (RFC 1122): 127.0.0.1/8
 - adresa lokálního počítače, umožňuje vytvoření smyčky
 - network broadcast (RFC 919) < adresa sítě > . < samé jedničky >
 - "všem v dané síti", normálně se doručí do cílové sítě
 - limited broadcast (RFC 919): 255.255.255.255
 - "všem v této síti", nesmí opustit síť
- Speciální adresy "by definition"
 - privátní adresy (RFC 1918):

```
10.0.0.0/8, 172.16-31.0.0/16, 192.168.*.0/24
```

- pro provoz v lokální síti, přiděluje správce, nesmí opustit síť
- link-local adresy (RFC 3927): 169.254.1-254.0/16
 - pouze pro spojení v rámci segmentu sítě, uzel si ji sám volí

Struktura IPv4 datagramu

Vers.	Header Length	Service Type (priorita, QoS)	Packet Length		
Frag	ment Ide	entification	Flags Fragment Offset		
Time-t	o-live	Protocol	Header Checksum		
	Source IP Address				
	Destination IP Address				
Options				Padding	
	Data				

Krize Internetu

- Vyčerpávání adresního prostoru
 - Podstata problému: díky hrubému členění dochází k "plýtvání"
 - Částečné řešení: přidělování bloků adres bez ohledu na třídy (tzv. classless), vracení nepoužívaných bloků, privátní adresy + NAT
 - IANA už prostor vyčerpala, APNIC 2011/04, RIPE 2012/09, další budou brzo následovat
- Přeplňování směrovacích tabulek
 - Podstata problému: velký počet nesouvisle přidělených bloků rychle plní směrovací tabulky
 - Částečné řešení: realokace adres, CIDR (Classless InterDomain Routing) agregace

IPv6 adresy

- Dlouhý vývoj, konečná podoba: 128 bitů (16 bytů)
- **Zápis**: fec0::1:800:5a12:3456
- Druhy adres:
 - unicastové adresa jednoho uzlu; zvláštní adresy (RFC 5156):
 - *Loopback* (::1/128)
 - Link-Scope (fe80::/10), dříve link-local
 - *Unique-Local* (fc00::/7), dříve *site-local*, obdoba privátních adres v IPv4
 - multicastové (ff00::/8) adresa skupiny uzlů (rozhraní)
 - anycastové formálně se jedná o unicastové adresy, které jsou přiděleny více uzlům (rozhraním); účel: farmy serverů
 - chybějí <u>broadcastové</u>
- Přechod z IPv4 usnadní různé varianty tunelování IPv4 a IPv6

Internet Control Message Protocol

- ICMP slouží pro posílání řídících informací pro IP:
 - Echo, Echo Reply ... testování dosažitelnosti počítače (příkazem ping)
 - Destination Unreachable ... nedostupný stroj, služba, síť
 - Redirect ... výzva ke změně záznamu v routovací tabulce
 - Time Exceeded ... vypršel Time-to-live (chyba v routování)
 - Source Quench … žádost o snížení rychlosti toku datagramů
 - Parameter Problem ... chyba v záhlaví datagramu
 - Timestamp Request, Reply ... odhad doby přenosu
 - Information Request, Reply ... žádost o adresu sítě
 - Address Mask Request, Reply ... žádost o síťovou masku
- Používá IP datagramy, ale není to transportní protokol

Ping

Základní prostředek pro diagnostiku sítě

betynka:~> ping alfik


```
PING alfik.ms.mff.cuni.cz (195.113.19.71): 56 data bytes 64 bytes from 195.113.19.71: icmp_seq=0 ttl=64 time=0.214 ms 64 bytes from 195.113.19.71: icmp_seq=1 ttl=64 time=0.323 ms 64 bytes from 195.113.19.71: icmp_seq=2 ttl=64 time=0.334 ms ^C --- alfik.ms.mff.cuni.cz ping statistics --- 3 packets transmitted, 3 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 0.214/0.290/0.334/0.054 ms
```

- na cílovém uzlu nemusí běžet žádný speciální program
- nezaručuje dostupnost služeb (pouze síťové vrstvy)

Směrování (silnice)

- Na každé křižovatce se rozhodujeme podle směrovek
- Ke správné interpretaci potřebujeme lingvistickou a geografickou znalost

Směrování (síť)

Příklad směrovací tabulky

Destination	Gateway	Mask	
193.84.48.50	193.84.48.49	255.255.255.255	direct, host
194.50.16.64	194.50.16.71	255.255.255.224	direct, subnet
194.50.17.0	194.50.16.77	255.255.255.0	indirect, net
default	193.84.48.50	0.0.0.0	default

Principy směrování

- Směrování by měla umět každá stanice v TCP/IP síti
- Záznam ve směrovací tabulce obsahuje "sloupce": cíl, maska, gateway
- Maska vyjadřuje "uvažovanou část" adresy cíle
- Dřívější členění cílů: host (/32), net, default (/0)
- Typy záznamů:
 - direct (přímo připojená síť, "gateway" je vlastní adresa)
 - indirect, default
- Vznik záznamu:
 - implicitní (automaticky po přiřazení adresy rozhraní)
 - explicitní ("ručně" zadán příkazem)
 - dynamický (v průběhu práce od partnerů v síti)

Směrovací algoritmus

Forwardování

Úvod do počítačových sítí (2014)

Address Resolution Protocol

- Konverze MAC (např. Ethernet) a síťových (např. IP) adres
- Neznámé adresy se zjišťují broadcastovou výzvou:

Ethernet=1	IP=0x0800		ARPreq=1	
	Sender MAC		Sende	er IP
FF:FF:FF:FF:FF		Targe	et IP	

- Výsledky se ukládají na stanici do ARP cache
- Unicastová odpověď (odpovídající si nejprve musí přidat informace o tazateli do svojí ARP tabulky)
- Neexistuje metoda, jak ověřit správnost odpovědi
- Gratuitous ARP: nevyžádané ARP (rychlejší změny, riziko)
- Výpis ARP tabulky: arp -a
- Omezení na linkový segment, mezi sítěmi je v činnosti OSI 3

Proxy ARP

① klient posílá ARP request s IP adresou serveru

- ③ MAC routeru přiřazena k IP serveru v ARP na klientovi
- klient posílá data na server s MAC adresou routeru

Time To Live (IP)

- Prostředek pro ochranu před zacyklením v případě routovací smyčky (chybné konfigurace routerů)
- Udává počet hopů, které smí paket ještě přeskočit
- Při dosažení 0 se posílá ICMP Time Exceeded

Diagnostika směrování

Výpis směrovací tabulky: netstat -r[n]
 příp.: route print
 Destination Gateway Flags Ipkts ... Colls Interface
 194.50.16.0 this U 15943 ... 0 tu0
 127.0.0.1 loopback UH loo
 default gw UG tu0
 193.84.57.0 gate UGD

• Kontrola cesty: traceroute, tracert

Konfigurace sítě

UNIX

- IP adresa: ifconfig interface IP_adr[netmask maska]
- defaultní router: route add default router
- často uložené v konfiguračním souboru, liší se podle typu OS

Windows

```
Control Panel ⇒ Network and Internet

⇒ Network Connections

⇒ Local Area Connection ⇒ Properties

⇒ TCP/IPv4 ⇒ Properties

⇒ General
```

Statické řízení směrovacích tabulek

Cesty se nastavují při startu podle konfigurace

- nepružné při změnách
- problémy se subnettingem
- nesnadné zálohování spojení
- + méně citlivé na problémy v síti
- + dostupné i ve zcela heterogenním prostředí
- vhodné pro jednodušší, stabilní sítě

Redirekce

Dynamické řízení směrovacích tabulek

Routery si navzájem vyměňují informace o síti pomocí routovacího protokolu, stanice se jím mohou řídit také

- + jednoduché změny konfigurace
- + síť se dokáže sama "opravovat"
- + směrovací tabulky se udržují automaticky
- citlivější na problémy příp. útoky
- na počítači musí běžet program obsluhující protokol
 - př. routed, gated, BIRD (vyvinutý na MFF),...
 - pro lokální sítě (interní routery) se používají nejčastěji protokoly RIP a OSPF

Distance vector protokoly

- Základní myšlenka:
 - uzel má u záznamů ve směrovací tabulce i "vzdálenosti"
 - svou tabulku periodicky posílá sousedům, ti si upraví svoji tabulku a v dalším taktu ji posílají dál
- Výhody:
 - jednoduché, snadno implementovatelné
- Nevýhody:
 - pomalá reakce na chyby
 - metrika špatně zohledňuje vlastnosti linek (rychlost, spolehlivost, cenu...)
 - omezený rozsah sítě
 - chyba ve výpočtu jednoho routeru ovlivňuje celou síť (možnost vzniku routovacích smyček)

Routing Information Protocol

- Nejstarší směrovací protokol, RFC 1058
- Vlastnosti:
 - metrikou je počet routerů v cestě (hop count)
 - rozsah sítě je omezen na 15 hopů, 16 je "nekonečno"
 - pro výpočet nejkratších cest používá Bellman-Fordův algoritmus
- Aktuálně verze 2
 - používá UDP port 520, multicast adresu 224.0.0.9
 - umí subnetting vč. VLSM
 - obsahuje mechanizmy na urychlení detekce chyb (triggered updates, split horizon, poison reverse)
- Dostupný na nejrůznějších systémech
- Nepoužitelný pro velké, složité nebo dynamické sítě

Metrika a kvalita linek

4.0.0.0/8

1.0.0.0/8

2.0.0.0/8

3.0.0.0/8

1/8	ı	1
3/8	ı	3
4/8	_	1

1/8	-	1
2/8	_	1

2/8	ı	1
3/8	_	3

A rozesílá update:

1/8	ı	1
2/8	ı	1
3/8	A	3+1
4/8	A	1+1

1/8	A	1+3
2/8	-	3
3/8	ı	1
4/8	A	1+3

B rozesílá update:

1/8	В	1+1
2/8	I	3
3/8	ı	1
4/8	В	2+1

Counting to infinity

	/	
1/8	I	1
2/8	В	2
3/8	-	3
4/8	_	1

1/8	ı	1
2/8	ı	1
3/8	A	4
4/8	A	2

Výpadek linky A/4:

4../8 - 16

B rozesílá update:

4../8 B **2+1**

A rozesílá update:

4.../8 **A** 3+1

- -

Stav po 14x30sec:

4../8 - 16

4../8 - 16

Link state protokoly

Základní myšlenka:

- každý router zná "mapu" celé sítě
- routery si navzájem sdělují stav svých linek a podle toho si každý modifikuje svoji mapu sítě

Nevýhody:

- výpočet mapy je náročnější na výkon CPU i na paměť
- při startu a na nestabilních sítích může výměna dat znamenat významnou zátěž sítě

Výhody:

- pružná reakce na změny topologie
- každý si počítá sám za sebe, chyba neovlivní ostatní
- síť je možné rozdělit na menší podsítě (rychlost výpočtu!)
- výměna dat probíhá pouze při změnách

Open Shortest Path First

- Nejrozšířenější link-state interní routovací protokol
- Vlastnosti:
 - používá Dijkstrův algoritmus nalezení nejkratší cesty
 - používá hierarchický model sítě:
 - oblast (area) 0 tvoří páteř
 - ostatní oblasti se připojují pouze na páteř
 - každý router zná mapu své oblasti a cestu k páteři
 - metriku je možné konfigurovat, implicitně je to path cost, součet "cen" na cestě, kde cena je dána šířkou pásma
- Používá samostatný protokol transportní vrstvy 89 a multicast adresy 224.0.0.5 a 224.0.0.6
- Aktuální je verze 2 pro IPv4 (RFC 2328) a revize pro IPv6 označovaná jako verze 3 (RFC 5340)

Autonomní systémy

- Definice: blok sítí se společnou routovací politikou
- Zavedeny v r. 1982: snazší routování na globální úrovni, nasazení externích routovacích protokolů (EGP)
- Jako EGP se dnes používá Border Gateway Protocol (BGP)
- Identifikátor: 16bitové číslo, dnes přechod na 32bitová
- V ČR: na počátku 2, nyní stovky

IP filtrování

- Router na perimetru obsahuje konfiguraci, jaký provoz je povolen a za jakých podmínek
- Přísná konfigurace: ven vybrané, dovnitř nic
 - dobré pro protokoly s jedním kanálem (HTTP, SMTP)
 - problém u protokolů s více kanály (FTP, SIP)
- Obvyklá konfigurace: ven cokoliv, dovnitř nic
 - naráží např. u FTP s aktivním přenosem
 - nepoužitelné u protokolů s mnoha kanály (SIP)
- Lépe se dá řešit nastavením aplikací a SW na routeru, který musí částečně rozumět aplikační vrstvě
- Problém se službami "uvnitř" (např. www server, pošta)
 - povolení výjimek je riskantní
 - lepší je oddělený segment, DMZ, demilitarizovaná zóna

Překlad adres (NAT)

- Obecný princip, kdy lokální síť používá privátní adresy a ven se představuje veřejnými adresami (nebo jinými privátními)
- Jiný termín: IP masquerading
- Implementace i terminologie se v detailech liší

Proxy server

- Transparentní varianta:
 - SW na routeru zachytí spojení, uloží požadavek, naváže "svým jménem" spojení na server a požadavek odešle.
 - Odpověď přijde zpět na router, ten ji uloží (pro další klienty) a zároveň odešle původnímu žadateli.
 - Není třeba konfigurovat na klientovi.
- Netransparentní varianta:
 - Klienty je třeba nakonfigurovat, aby se požadavky neposílaly přímo, ale proxy-serveru v lokální síti (lze i automaticky po síti).
 - Proxy server nemusí být nutně router.
 - Je nutná podpora v protokolu.
- Významný bezpečnostní a výkonnostní prvek:
 - umožňuje správě sítě efektivně kontrolovat činnost klientů
 - umožňuje omezit objem provozu na přípojné lince

Linková vrstva (OSI 2)

- Dělí se na dvě podvrstvy:
 - Logical Link Control (LLC) umožňuje různým protokolům síťové vrstvy přístup ke stejnému médiu (multiplexing)
 - Media Access Control (MAC) řídí adresaci uzlů a přístup k médiu: kdo, kdy a jak může data odesílat a jak je přijímat
- TCP/IP už se touto vrstvou ("síťového rozhraní") nezabývá
- Síťový segment (fyzická síť):
 - množina uzlů sdílející stejné médium
- PDU na linkové vrstvě: rámec (frame)
 - liší se podle použitého média
 - obecně obsahuje: synchronizační pole, hlavičku (adresy, typ, příp. řídící data), datové pole a patičku (detekce chyb)

Typy fyzických topologií

Multipoint

Sběrnice (např. Ethernet)

Hvězda (např. ATM)

Kruh (např. FDDI, Token-ring)

Point-to-point

Přímé propojení kabelem (např. sériový, koaxiální, UTP, optický)

Propojení přes modemy

Bezdrátové propojení (např. laser, radioreléové)

Typy přístupu k médiu

Multipoint

Point-to-point

Nedeterministický - kolize

Half duplex

Deterministický - režie

Full duplex

Řešení kolizí

- CSMA (Carrier Sense with Multiple Access)
 - uzel poslouchá "nosnou", a pokud není volno, čeká
- CSMA/CD (Collision Detection), např. Ethernet
 - během vysílání uzel současně detekuje případnou kolizi
 - při kolizi stanice zastaví vysílání, upozorní ostatní, počká určitou (náhodnou!) dobu a pokus opakuje, obvykle se postupně prodlužuje interval čekání (exponenciální čekání)
 - doba vysílání rámce < doba šíření po segmentu (kolizní okénko); limituje max. délku segmentu a min. velikost rámce
- CSMA/CA (Collision Avoidance), např. WiFi
 - jakmile je volná nosná, odvysílá se celý rámec a čeká se na potvrzení (ACK)
 - pokud není volná nosná nebo nedorazí ACK, zahájí se exponenciální čekání

Ethernet

Historie:

- první pokusy o realizaci LAN ve firmě Xerox
- standardizaci převzalo IEEE (únor 1980 → IEEE 802)
- dva nejběžnější formáty Ethernet II, IEEE 802.3
- Momentálně vůdčí technologie pro lokální sítě
 - dokáže pružně reagovat na progresivní vývoj HW
 - přizpůsobí se širokému spektru přenosových médií
- Na multipoint spojích řízení přístupu metodou CSMA/CD
 - při detekci kolize uzel vysílá "jam signal"
 - exponenciální čekání končí po 16 pokusech chybou

• Adresy:

- 3 byty prefix (výrobce, multicast...), 3 byty adresa
- dříve "vypálená" v kartě, dnes nastavitelná

Standardy IEEE 802.3

Standard	Rok	Označení	Rychlost	Médium
802.3	1983	10BASE5	10 Mbit/s	tlustý koaxiální kabel
802.3a	1985	10BASE2	10 Mbit/s	tenký koaxiální kabel
802.3i	1990	10BASE-T	10 Mbit/s	kroucená dvoulinka (UTP)
802.3j	1993	10BASE-F	10 Mbit/s	optický kabel
802.3u	1995	100BASE-TX,FX	100 Mbit/s	UTP nebo optický kabel
802.3z	1998	1000BASE-X	1 Gbit/s	optický kabel
802.3ab	1999	1000BASE-T	1 Gbit/s	kroucená dvoulinka
802.3ae	2003	10GBASE-SR,	10 Gbit/s	optický kabel
802.3an	2006	10GBASE-T	10 Gbit/s	kroucená dvoulinka

Na rozdíl od RFC jsou normy IEEE vázány licencí.

Struktura ethernetového rámce

Ethernet v2:

IEEE 802.3

Virtuální sítě (VLAN)

- Prostředek, jak po jedné fyzické síti provozovat více nezávislých lokálních sítí
- Sítě jsou označeny 12bitovým identifikátorem (VLANID)
- Ethernetový rámec se prodlouží o 32 bitů dlouhý tag (tag protocol identifier 0x8100, QoS prioritu a VLANID)
- Tagovat může switch, pro koncovou stanici transparentně

Cyclic Redundancy Check

- Hashovací funkce používaná pro kontrolu konzistence dat na mnoha úrovních, např. Frame Check Sequence v Ethernetu
- Posloupnost bitů je považována za koeficienty polynomu (ve dvojkové soustavě)

- Ten se vydělí tzv. charakteristickým polynomem (např. pro CRC-16 je to x¹⁶ + x¹⁵ + x² + 1)
- Zbytek po dělení se převede zpět na bity a použije jako hash
- Jednoduchá implementace (i pomocí HW)
- Velká síla, n-bitový CRC detekuje:
 - na 100% chyby s lichým počtem bitů, chyby kratší než n bitů
 - s vysokou pravděpodobností i delší chyby

Wi-Fi

- Bezdrátová síť, jiný název: WLAN (wireless LAN)
- Mnoho různých variant pod souhrnným označením IEEE 802.11 (802.11a, b, g, n, y,...):
 - různá pásma (2,4 až 5 GHz)
 - různé rychlosti (2 až 600 Mbps)
- WiFi zařízení dnes prakticky v čemkoliv
- Struktura sítě:
 - ad-hoc peer-to-peer sítě
 - infrastruktura přístupových bodů (access pointů)
- SSID (Service Set ID): řetězec (až 32 znaků) pro rozlišení sítí
- Problém: zabezpečení!

Fyzická vrstva (OSI 1)

- Funkce vrstvy:
 - přenos dat po konkrétním fyzickém médiu
 - převod digitální informace na analogovou a obráceně
- Různé typy médií
 - metalické: elektrické pulzy
 - optické: světelné pulzy
 - bezdrátové: modulace vln

Druhy přenosu dat

- Analogový vs. digitální
 - ve skutečnosti je vše analogové (přenáší se např. proud)
 - digitální: rozhoduje, zda hodnota signálu spadá do nějakého intervalu (menší vliv zkreslení)
 - převody: D→A a zpět modem (modulator/demodulator),
 A→D codec (coder/decoder)
- Baseband vs. broadband
 - baseband přenáší přímo signál a kóduje ho, Ethernet používá tzv. Manchester:

broadband přenáší základní signál a moduluje ho (fázi, amplitudu, frekvenci)

Nestíněná kroucená dvoulinka (UTP)

- Dnes standardní prostředek strukturované kabeláže
- 4 páry Cu vodičů navzájem pravidelně zakroucené
 - zakroucení snižuje vyzařování i příjem elektromagnetického záření (nižší rušení)
- 100Mb Ethernet používá jen dva páry (je možno rozdělit)
- Konektory: RJ 45
- Při propojení je třeba zohlednit povahu zařízení
 - dnes obvykle už autodetekce MDI/MDIX

Alternativa: kabel s kovovým stíněním (STP)

Optická vlákna

- Signál se šíří jako viditelné světlo vláknem z SiO₂
 - vysoké frekvence, velká šířka přenosového pásma
 - nízký útlum, žádné rušení
- Nevýhody:
 - vyšší cena, náročnější manipulace, nekoukat do kabelu
- Druhy vláken:
 - jednovidová (singlemode) vlákna: svítí se laserem => větší dosah, šířka pásma ("rychlost", ne rychlost), cena
 - mnohovidová (multimode) vlákna, svítí se LED

Síťové prvky (repeater, bridge)

- Repeater (opakovač) spojuje segmenty na fyzické vrstvě
 - řeší: větší dosah (překonává útlum kabelu)
 - neřeší: propustnost (problém kolizí naopak zhoršuje)
 - ve strukturované kabeláži se nazývá hub, rozbočovač
- Bridge (most) spojuje segmenty na linkové vrstvě
 - řeší: větší propustnost (rozděluje kolizní doménu)
 - ve strukturované kabeláži se nazývá switch, přepínač

Porovnání hub vs. switch

• HUB Σ 10 Mbit/s

• Switch Σ 10 Mbit/s

• Switch, více serverů $\Sigma > 10 \text{ Mbit/s}$

• Switch s uplinkem Σ up to 100 Mbit/s

Learning bridge

Spanning Tree Algoritmus

 Motivace: pokud je v síti záložní switch, learning nefunguje a síť se zahltí přeposíláním rámců

- Důvod: graf je <u>cyklický</u>
- Řešení: najít acyklickou podmnožinu, kostru (spanning tree)
- Switche se musejí dohodnout, který z nich bude mít potlačeno forwardování a bude pouze monitorovat provoz
- Výpočet STA určitou dobu trvá, start portů je pomalý
 - obvykle lze STA na portu potlačit ("faststart"), nutno zvážit

The End