Name:
Student ID:
Section:
Section:

Instructor: Paul Gustafson

Math 131 (Principles of Calculus) Exam 2A

RED

Instructions:

- For questions which require a written answer, show all your work. Full credit will be given only if the necessary work is shown justifying your answer.
- Simplify your answers.
- Calculators are allowed.
- Should you have need for more space than is allocated to answer a question, use the back of the exam.
- Please do not talk about the test with other students until exams are handed back.

For Instructor use only.

#	Possible	Earned
MC	55	
12	14	
13	20	
Sub	89	

#	Possible	Earned
14	15	
15	15	
Sub	30	
Total	119	

Part I: Multiple Choice (5 points each) Mark the correct answer on the bubble sheet. For questions 1-2, use the following graph of f'(x):

Figure 1: f'(x)

- 1. According to the graph of f'(x), the original function f(x) has a local maximum at
 - a) -1

b) 0.4

c) 2

d) 6.3

- e) 9
- 2. According to the graph of f'(x), the original function f(x) is concave downward in which interval(s)?
 - a) $(-1,2) \cup (9,\infty)$

- b) $(-\infty, -1) \cup (2, 9)$
- c) $(3, \infty)$

d) (0.4, 6.3)

- e) The original function is never concave down.
- 3. Find the derivative of the function $f(x) = 5x^2 3x + 2$.
 - a) 10x + 2

b) 5x + 1

c) 5x - 3

d) 10x + 1

e) 10x - 3

The graph of g(x) is given below.

Figure 2: g(x)

- 4. According to the graph above, calculate the derivative of g(x) at x=5
 - a) $-\infty$

b) -1.75

c) 0

- d) 1
- e) The derivative does not exist at x = 5.
- 5. According to the graph above, estimate the derivative of g(x) at x=-2
 - a) $-\infty$

b) -1.75

c) 0

- d) 1
- e) The derivative does not exist at x = -2.
- 6. A vertical spring is released at time t = 0 seconds and begins to oscillate in a straight vertical line. The height of its endpoint above the ground in meters is given by the function

$$h(t) = 5 - 0.1\cos(5t)$$

To two decimal places, what is the velocity (in meters/second) of the spring's endpoint at time t=3?

a) 0.28

b) 0.13

c) 0.33

d) 5.00

e) 0.46

7. Find the linear approximation to $(3x-5)^4$ at x=2

a) 3x - 5

b) 12x - 23

c) 12x + 25

d) -4x - 7

e) -4x + 8

8. We are given an unknown function f(x) such that f'(3) = 0, f'(x) < 0 for all x > 3, and f'(x) > 0 for all x < 3. We can conclude that at x = 3, the function f(x) has

a) a local min.

b) a local max.

c) an inflection point.

- d) an undefined derivative.
- e) positive y-value.

9. Calculate the equation of the tangent line to $y = 6\sqrt{x} - 3$ at x = 9

a) y = -2x + 5

b) y = 3x + 25

c) y = x + 6

d) y = -2x - 4

e) y = 3x - 25

10. Find the derivative of the function $f(x) = \frac{3}{x^2 + 1}$.

a) $\frac{6}{x^2 + 1}$

b) $\frac{3-2x}{(x^2+1)^2}$

c) $-\frac{6x}{(x^2+1)^2}$

 $d) \quad -\frac{3}{2x}$

e) $\frac{3}{2x}$

11. Find the derivative of the function $\ln(\sec(x^2e^x))$.

a) $(2x + x^2)e^x \tan(x^2e^x)$

b) $\tan(x^2 e^x)$

c) $\sec(x^2e^x)\tan(x^2e^x)$

d) $(2x + x^2)e^x \sec(x^2e^x)\tan(x^2e^x)$

e) $2x^2e^x\tan(x^2e^x)$

Part II: Free Response Show all work

- 12. (14 points)
 - a.) (10 points) Using the **limit definition of derivative**, calculate the derivative of $f(x) = \sqrt{x+3}$ at x=6. No points will be given for derivative rules or shortcuts.

b.) (4 points) Calculate the equation of the tangent line to f(x) at x = 6.

13. (20 points) Calculate the derivative of the following functions. You may use the derivative rules to calculate your answer. You do not need to simplify your answers.

a.) (10 points)
$$f(x) = \frac{x^3 \ln(x)}{2x^2 - 3}$$

b.) (10 points) $f(x) = \cot(2^{(x^2+1)(x^4-1)})$

- 14. (15 points)
 - a.) (10 points) Find the linear approximation to $f(x) = \sqrt{x}$ at x = 16.

b.) (5 points) Use the approximation from part (a) to estimate $\sqrt{16.3}$

15. (15 points) Is the function

$$f(x) = \begin{cases} 5x^2 - 8x, & x < 2\\ 3x^2 - 8, & x \ge 2 \end{cases}$$

differentiable at x = 2? Why or why not?