

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வீத் தீணைக்களத்துடன் இணைந்து கொண்டைமானாறு வெளிக்கள நிலையும் நடாத்தும் தவணைப் பரீட்சை, மார்ச் – 2020

Conducted by Field Work Centre, Thondaimanaru In Collaboration with Provincial Department of Education **Northern Province**

Term Examination, March - 2020

தரம் :- 13 (2020)

பௌதிகவியல் - I

நேரம் :- 2.00 மணித்தியாலம்

பகுதி - I

எல்லா வினாக்களுக்கும் விடை எழுதுக.

- 01. மின்னுழைய அனுமதித்திறனின் SI அலகு.
 - 1) $C^2 N^{-1} m^{-1}$ 2) $Nm^2 C^{-2}$ 3) $H m^{-1}$ 4) $F m^{-1}$ 5) $CN^{-1}m^{-2}$

- 02. அலை நீளம் λ ஐ உடைய விருத்தியலையில், அலை முதலிற்கும் அலை முதலில் இருந்து xதூரத்திலுள்ள புள்ளிக்குமிடையிலான அவத்தை வித்தியாசம்.

- 1) $\frac{x}{\lambda}$ 2) $\frac{\pi x}{\lambda}$ 3) $\frac{x}{2\pi}$ 4) $\frac{2\pi x}{\lambda}$ 5) $\frac{\lambda}{2\pi x}$
- 03. சமமான விசையினால் ஈர்க்கப்பட்ட, சம நீளமுள்ள உருக்குக்கம்பிகளின் அடிப்படை அதிர்வெண்கள் முறையே 440 Hz , 660 Hz எனின் அக் கம்பிகளின் விட்டங்களுக்கிடையிலான விகிதம்.
- 1) 2:3 2) 3:2 3) $\sqrt{3}:\sqrt{2}$ 4) 9:4 5) 4:3
- 04. நிலைத்த R அரையுடைய வளையமொன்றினுள் r அரையுடைய வட்டத்தட்டானது வமுக்காமல் வளையத்தினுள் சீராக உருளுவதன் மூலம் வளையத்தை பூரணமாக சுற்றிவர எடுக்கும் நேரம் T எனின் வளையத்துடன் தொடுகையிலுள்ள தட்டின் புள்ளிக்கு நேர் எதிரே தட்டின் விளிம்பில் உள்ள புள்ளியின் கணநிலை கதி
- 1) $2\pi (R-r)/T$ 2) $4\pi (R+r)/T$ 3) $4\pi (R-2r)/T$
- 4) $2\pi (R-2r)/T$ 5) $4\pi (R-r)/T$

- 05. சீரற்ற திண்ம அரைகோளமொன்று உருவில் காட்டியவாறு பகுதியாக அமிழ்ந்து மிதக்கிறது. கோளத்தின் சமநிலை
 - 1) உறுதிச் சமநிலை
 - 2) உறுதியற்ற சமநிலை
 - 3) நடுநிலைச் சமநிலை
 - 4) நடுநிலை, உறுதிச்சமநிலை வகைக்குள் அமையும்
 - 5) நடுநிலை, உறுதியற்ற சமநிலை வகைக்குள் அமையும்

- 06. ஜெனரேற்றர் ஒன்று 220 V இலும் 100 A மின்னோட்டத்திலும் 22 kW வலுவை உற்பத்தி செய்கிறது. சக்தியானது $100~\mathrm{km}$ தூரத்திற்கு கொண்டு செல்லப்படுகிறது. இதன் தடை $1~\Omega$ கடத்தியில் விரயமாக்கப்படும் வலு (kW)
 - 1) 2
- 2) 5
- 3) 10
- 4) 15
- 5) 20

07. இலட்சிய வாயுவொன்று 1, 2, 3 எனக் குறிக்கப்பட்டுள்ள வெவ்வேறு வெப்பச் செய்முறைகளுக்கு உட்படுவதை P-V வளையி காட்டுகிறது. ஒவ்வொரு செய்முறையும் ஒரே ஆரம்ப நிலையிலிருந்து ஒரே இறுதி கனவளவு வரை நிகழ்கிறது. வெப்பச்சேறலிலா, மாறா அமுக்க, சமவெப்பமாற்ற செய்முறைகளில் ஏதாவது ஒரு செய்முறைக்கு 1, 2, 3 செய்முறைகள் உட்படுமெனின், அவற்றை சரியாக குறிப்பிடுவது.

P♠		
	1	
	2	
0	3 \	→ V

	வெப்பச்சேறலிலா செய்முறை	மாறா அமுக்க செய்முறை	சமவெப்ப செய்முறை
1)	1	2	3
2)	2	1	3
3)	2	3	1
4)	3	1	2
5)	3	2	1

08. குழாய் ஒன்றினூடாக நெருக்கற்தகவற்ற பாகுநிலையற்ற திரவம் அருவிக்கோட்பாட்டுப் பாய்ச்சலில் பாயும் போது உள்ள அமுக்கமாறல் காட்டப்பட்டுள்ளது.

இதே நிபந்தனையில் பாகுநிலைக்குணகம் உடைய திரவம் பாயுமாயின் அமுக்கமாறல்

- 09. பின்வரும் செயற்பாடுகளில் முறைமை வழு இருக்கக்கூடியது எது/எவை.
 - A. பிழையாக அளவு கோடிட்ட மீற்றர் கோலைப் பயன்படுத்தி வாசிப்பு எடுத்தல்.
 - B. கம்பி ஒன்றின் விட்டத்தை காண, வெவ்வேறு இடங்களில் விட்டத்தை அளந்து சராசரி காணல் மூலம் குறைக்கக்கூடிய வழு.
 - C. ஊசல் குண்டின் அலைவு காலத்தை அளவிட, பல அலைவுகளுக்குரிய நேரம் கணிக்கப்பட்டு சராசரி காண்பதன் மூலம் குறைக்கக்கூடிய வழு.

மேலுள்ள கூற்றுக்களில்

- 1) A மட்டும் உண்மையானது
- 2) A யும் B யும் மட்டும் உண்மையானது
- 3) B யும் C யும் மட்டும் உண்மையானது
- 4) A, B, C எல்லாம் உண்மையானது
- 5) A, B, C எல்லாம் பொய்யானது
- 10. சாய்தளமொன்றின் முனைகளில் இணைக்கப்பட்டுள்ள கப்பிகளின் மேலாக செல்லும் இலேசான இழையினால் இரு திணிவுகள் இணைக்கப்பட்டுள்ளதை உரு காட்டுகிறது. எல்லா தொடுகை மேந்பரப்புகளும் ஓய்வில் அழுத்தமானது. திணிவுகள் இருந்து இயங்க விடப்படும் போது, சாய்தளமானது
 - 1) $m_1 < m_2$ எனின் இடப்பக்கமாக ஆர்முடுகும்.
 - 2) $m_1 < m_2$ எனின் வலப்பக்கமாக ஆர்முடுகும்.
 - 3) அசையாது இருக்கும்.
 - 4) திணிவுகள் எவ்வாறு இருப்பினும் இடப்பக்கமாக ஆர்முடுகும்.
 - 5) திணிவுகள் எவ்வாறு இருப்பினும் வலப்பக்கமாக ஆர்முடுகும்.

11. திணிவு m உடைய சீரான கோல் கிடை தரையில் உள்ளதையும், அதன் ஒரு முனை நிலைக்குத்து இழையினால் கட்டப்பட்டு, F என்னும் மாறா விசையினால் இழுக்கப்படுவதையும் உரு காட்டுகிறது. கோலின் திணிவு மையம் lpha என்னும் மேல் நோக்கிய ஆர்முடுகலுடன் இயங்கத் தொடங்கும் போது, தரையை

தொட்டுக்கொண்டிருக்கும் முனையில் உள்ள செவ்வன் மறுதாக்கம் N ஐ சரியாக குறிப்பிடுவது. ℓ கோலின் நீளம் ℓ எனின் கோலின் ஒரு ℓ முனையினூடாக செல்லும் அச்சுப்பற்றிய சடத்துவதிருப்பம் $I = \frac{1}{2} m \ell^2$ எனக் கொள்க)

1) $mg + \frac{ma}{3}$

- 2) $mg \frac{2 ma}{3}$
- 3) $\frac{mg}{2} + \frac{ma}{3}$

4) $mg - \frac{ma}{2}$

- 5) $\frac{mg}{2} + \frac{2ma}{3}$
- 12. ஆரை r ஐ உடைய அரைவட்ட முக உயரம் h ஐ உடைய உருளை வடிவத்தாங்கி ஒன்றை உரு காட்டுகிறது. இதனுள் அடர்த்தி ho ஐ உடைய திரவம் நிரப்பப்பட்டுள்ளது. வளைந்த மேற்பரப்பிலுள்ள திரவ உதைப்பானது.

- 1) $h^2 r \rho g$
- 2) $2h^2 r \rho g$
- 3) $\pi r^2 h \rho g$

- 4) $\pi rh^2 \rho g$
- 5) $\frac{\pi rh^2 \rho g}{2}$
- 13. மாறா மின்னோட்டத்தைக் காவும் ℓ நீளமுடைய கம்பியொன்று R ஆரையும் n முறுக்குகளையும் கொண்ட சுருளாக வளைக்கப்பட்டுள்ளன. சுருளின் மையம் O இல் காந்தப்பாய அடர்த்தியானது அதன் ஆரை R உடனும், முறுக்குகளின் எண்ணிக்கை n உடனும் மாறுபடுவதைச் சரியாக காட்டும் வரைபுகள் முறையே.

- 1) A, B
- 2) B, C
- 3) A, D 4) B, D
- 5) A, C
- 14. மின்னேற்றப்பட்ட பொட்கடத்தி X இனுள் மின்னேற்றப்படாத கடத்திப்பந்து Y உள்ளது. X இலிருந்து Y ஆனது தனிமையாக்கப்பட்டுள்ளது. பின்வரும் கூற்றுக்களைக் கரு<u>து</u>க.
 - ${
 m A.}$ பந்து ${
 m Y}$ யானது கடத்தி ${
 m X}$ யுடன் தொடுகையுற்றால் பந்து ${
 m Y}$ இன் அழுத்தம் மாற்றமடையும்.
 - B. கடத்தியின் துளையினுள் தேறிய ஏற்றம் பூச்சியம்.
 - C. X யினதும் Y யினதும் அழுத்தங்கள் சமன்
 - 1) A, B மட்டும் சரியானது
- 2) A, C மட்டும் சரியானது
- 3) B, C மட்டும் சரியானது
- 4) A, B, C எல்லாம் சரியானது
- 5) A, B, C எல்லாம் பொய்யானது

15. ஆரை r உடைய அச்சாணியொன்று அக ஆரை r+d (d<< r) உம் உயரம் h உடைய நிலையான உருளையினுள் கோணவேகம் ω உடன் சுழல்கின்றது. குணகம் மசகெண்ணெய<u>்</u> பிசுக்குமைக் η உடைய அச்சாணிக்கும் உருளைக்குமிடையில் இடப்பட்டுள்ளது. பிசுக்குமை விசை F எனின்.

- 1) $F = 6 \pi \eta \omega$
- 2) $F = 12 \pi^2 h \eta \omega$ 3) $F = \frac{2\pi r h \eta \omega}{d}$

- 4) $F = 2 \pi^2 h$
- 5) $F = \frac{2\pi r^2 h\eta\omega}{d}$
- 16. 8m உயரமும் H வடிவக் குறுக்கு வெட்டும் உள்ள 4 உருக்குக் கம்பங்களின் மீது 500kg திணிவுள்ள ஒரு கூரை தங்கியுள்ளது. ஒரு கம்பத்தின் குறுக்குவெட்டுப் பரப்பளவு $25cm^2$ உம் உருக்கின் யங்கின் மட்டு $2 \times 10^{11} \, Nm^{-2}$ உம் ஆகும். கூரையின் நிறை 4 கம்பங்களினாலும் சமமாகத் தாங்கப்படுமெனின், காரணமாக ஒரு கம்பம் சுருங்கும் நீளத்தின் அளவு

- 1) $1 \times 10^{-2} \, mm$
- 2) $2 \times 10^{-2} mm$ 3) $2.5 \times 10^{-2} mm$

- 4) $5 \times 10^{-2} \, mm$
- 5) $8 \times 10^{-2} \, mm$
- 17. ஓர் முடிய தடத்தினூடான காந்தப்பாய அடர்த்தி (B) நேரம் (t) உடன் மாறுபடுவதை வரைபு காட்டுகின்றது. இத் தடத்தில் தூண்டப்பட்ட மின்னியக்க விசை (E) நேரம் (t) உடன் மாறுபடுவதைக் காட்டும் வரைபு.

18. நகரும் <u>நுணு</u>க்குக் காட்டியை பயன்படுத்தி வாசிப்பு எடுக்கும் நிலையை உரு காட்டுகிறது. நகரும் நுணுக்குக்காட்டியின் பிரதான அளவிடை அரை மில்லிமீற்றரில் குறிக்கப்பட்டுள்ளது. வேணியர் அளவிடையின் 50 பிரிவுகள் 49 அரை மில்லிமீற்றர் பிரிவுகளுடன் பொருந்துகின்றன, வாசிப்பு 2.685*cm* ஆக உள்ள போது பிரதான அளவிடையின் ஒரு பிரிவுடன் வேணியரின் எத்தனையாவது பிரிவு பொருந்தியிருக்க வேண்டும்.

- 1) 5
- 2) 15
- 3) 25
- 4) 35
- 5) 45
- 19. உருவில் காட்டியவாறு ρ அடர்த்தியுடைய திரவத்தினால் நிரப்பப்பட்ட உருளையினுள் A குறுக்கு வெட்டுப்பரப்புடைய முசலத்தினால் மாறாவிசை F ஐ பிரயோகிக்கும் போது, குறுக்கு வெட்டுப்பரப்பு lpha உடைய துளையினூடாக திரவமானது மாறா வேகம் V உடன் வெளியேறுகின்றது. பிரயோகிக்கும் விசை F காரணமாக உருவாக்கப்படும் அமுக்கம் P ஆயின்

- 1) $P = \frac{1}{2} \rho V^2 \frac{A^2}{a^2}$ 2) $P < \frac{1}{2} \rho V^2 \frac{A^2}{a^2}$ 3) $P = \frac{1}{2} \rho V^3 \frac{A^2}{a^2}$
- 4) $P > \frac{1}{2} \rho V^3 \frac{A^2}{a^2}$ 5) $P > \frac{1}{2} \rho V^2 \frac{A^2}{a^2}$

- வெப்பக்கொள்ளளவுடைய வெப்பக்காவலிட்ட பாத்திரமொன்றினுள் 20. புறக்கணிக்கத்தக்க திணிவுடைய $30^{\circ}C$ இலுள்ள நீர் உள்ளது. $700\,W$ வலுவுடைய பளிச்சீடும் மின்குமிழ் இப்பாத்திரத்தில் உள்ள நீரினுள் முற்றாக அமிழ்த்தப்பட்டு ஆளி இடப்படுகிறது. நீரின் வெப்பநிலை 7 நிமிடத்தில் $100^{\circ} \mathcal{C}$ ஆக அதிகரிக்கும் எனின் இம் மின்குமிழின் வெப்ப வினைத்திறன், (நீரின் தன்வெப்ப கொள்ளவு 4200 J kg^{-1} °C $^{-1}$)
 - 1) 70%
- 2) 60%
- 3) 49%
- 5) 42%
- 5) 40%
- 21. ஜெனரேற்றர் ஒன்றில் தூண்டப்படும் மின்னியக்க விசை 130 V ஆமேச்சரின் ஊடான மின்னோட்டம் 25 A ஆக உள்ள போது ஆமேச்சரின் முடிவிடங்களுக்கிடையேயான அழுத்த வேறுபாடு 125 V ஆமேச்சரின் தடை.
 - 1) 0.5Ω
- $2) 0.2 \Omega$
- 3) 1Ω
- 4) 1.5Ω
- 5) 2.4 Ω

22.

பொய்ப்பு அழுத்தம் 0.2V செயற்பாட்டு விரியலாக்கிக்கு பிரயோகிக்கப்படுகிறது. பயப்பு வோல்ற்றளவு V_{\circ} .

- 1) 0.20 V
- 2) 1.0 V
- 3) 1.2 V

- 4) 0.08 V
- 5) 8.0 V
- 23. பின்வரும் பூலியன் கோவைகளில் எது தரப்பட்ட தருக்க சுற்றை வகை குறிக்கின்றது.

2)
$$(A + B) + (B.C)$$

- 3) $(\overline{A+B})+(\overline{B+C})$
- 4) $(\overline{A.B}) + (B.C)$
- 5) $(\overline{A+B}) + B.C$

- 24. ஒரே வெப்பநிலையில் உள்ள நீர், நீராவி பற்றிய பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை. A. நீராவி மூலக்கூறுகள் உயர் கதியையும், நீர்மூலக்கூறுகள் குறைவான கதியையும் கொண்டிருக்கும்.
 - B. நீர் மூலக்கூறுகளை விட நீராவி மூலக்கூறுகளுக்கு இடையிலான அழுத்த சக்தி உயர்வானதாகும்.
 - C. முறைமையான நிலைமாற்றத்தின் போது நீர் மூலக்கூறுகளின் இயக்க சக்தியில் மாற்றம் ஏற்படும்.
 - 1) A மட்டும்

- 2) A, C மட்டும்
- 3) A, B மட்டும்

4) B, C மட்டும்

5) A, B, C எல்லாம்

25.

நீர்மட்டம் உருவில் காட்டப்பட்ட திசையில் இயங்கும் ஒன்று இயக்கத்திற்கான வேக – நேர வரைபு தரப்பட்டுள்ளது.

 t_1 , t_2 ஆகிய நேர ஆயிடைகளின் போது வளிக்குமிழியின் நிலைகளை சரியாக வகை குறிப்பது.

- 3)

- 5)

26.	ഖിல്തെல	குவியத்தூரம் f/mm	விட்டம் d/mm
	1	50	20
	2	100	10
	3	200	30
	4	200	50

கோணப்பெரிதாக்கத்தையும், பிரகாசமான வானியல் உயர் விம்பத்தையும் பெறத்தக்க தொலைக்காட்டியை அமைப்பதற்குரிய பொருத்தமான தெரிவு.

	பார்வைத்துண்டு	பொருளி
1)	1	3
2)	1	4
3)	2	3
4)	2	4
5)	1	2

27. இருசமபக்க செங்கோண முக்கோண கண்ணாடி அரியம் ஒன்று சமபக்க முக்கோண பிளாத்திக்கு அரியமொன்றும் உருவில் காட்டப்பட்டவாறு வைக்கப்பட்டுள்ளது. பிளாத்திக்கு அரியத்தின் ஒரு முகத்தில் செங்குத்தாக படும் ஒளிக்கதிர் உருவில் காட்டிய பாதையில் சென்று கண்ணாடி அரியத்தின் முகத்தை மருவி வெளியேறுகிறது. பிளாத்திக்கு அரியத்தின் முறிவுச்சுட்டி (கண்ணாடியின் முறிவுச்சுட்டி 1.5 எனக் கொள்க)

- 1) $\frac{\sqrt{3}}{2}$ 2) $\sqrt{\frac{5}{3}}$ 3) $\frac{5}{3}$ 4) $\frac{3}{\sqrt{2}}$ 5) $\sqrt{\frac{5}{2}}$
- 28. ஒரு முனையில் மூடப்பட்ட குழாய் ஒன்றினுள் உள்ள அதிரும் வளி நிரலைப் பற்றி செய்யப்பட்ட பின்வரும் கூற்றுக்களைக் கருதுக.
 - A. பரிவு மீடிறன்கள் அடிப்படை மீடிறனின் ஒற்றை எண்மடங்கில் இருக்கும்.
 - B. இழிவு வளி அமுக்கம், குழாயின் மூடப்பட்ட முனையிலேயே ஏற்படும்.
 - C. ஒலி நிரலினது அலை நீளம் ஈரப்பதனுடன் வேறுபடும். மேலுள்ள கூற்றுக்களில்
 - 1) A மட்டும் உண்மையானது

- 2) A, B மட்டும் உண்மையானது
- 3) A, C மட்டும் உண்மையானது
- 4) B, C மட்டும் உண்மையானது
- 5) A, B, C எல்லாம் உண்மையானது
- 29. படத்தில் காட்டப்பட்ட சுற்றில் கொள்ளளவி \mathcal{C}_1 இல் உள்ள ஏற்றம்

- 1) $6 \mu C$ 2) $12 \mu C$ 3) $18 \mu C$
- 4) 24 μC 5) 30 μC

உருவில் காட்டப்பட்ட காவலிடப்பட்ட சேர்த்தி கடத்தும் கோல் $X,\,Y$ என்னும் இரு கடத்திகளை முனை இணைப்பதன் மூலம் ஆக்கப்பட்டுள்ளது. X, Y கோல்கள் ஒரே வெட்டுப்பரப்பு $1\ cm^2$ ஐ உடையவையும், முறையே $1.8\ \mathrm{m},\, 1.6\ \mathrm{m}$ நீளங்களை உடையவையும், $300 \ Wm^{-1} \ K^{-1}$, $400 \ Wm^{-1} \ K^{-1}$ வெப்பக்கடத்தாறினையும் கொண்டவை. காட்டப்பட்டவாறு இவற்றின் சுயாதீன முனைகள் முறையே $100^{\circ}\mathit{C}$, $\mathit{O}^{\circ}\mathit{C}$ இல் பேணப்படும் போது இச்சேர்த்தி கோலினூடான வெப்பப்பாய்ச்சல் வீதம்

- 1) 0.5 W
- 2) 1 W
- 3) 1.5 W
- 4) 2 W
- 5) 2.5 W
- 31. பின்வரும் படலைச் சுற்றுகளில் S R எழுவீழ் (flip flop) பெறப்படத்தக்கது.

1) A மாத்திரம்

В

- 2) B மாத்திரம் 3) A, C ஆகியன மாத்திரம்
- 4) B, C ஆகியன மாத்திரம்
- 5) A, B, C ஆகிய எல்லாம்
- 32. உருவில் உள்ள சுற்றில் இருக்கும் கலங்களினதும் அம்பியர்மானிகளினதும் அகத்தடை பூச்சியமாகும். ஆளியை மூடி P யையும் Q வையும் குறுஞ்சுற்றாக்கியபோது அம்பியர்மானி வாசிப்புக்கு என்ன நடைபெறும் $(E_1 > E_2)$

	A_1 இன் வாசிப்பு	A_2 இன் வாசிப்பு
1)	அதிகரிக்கின்றது	அதிகரிக்கின்றது
2)	அதிகரிக்கின்றது	குறைக்கின்றது
3)	குறைகின்றது	குறைகின்றது
4)	குறைகின்றது	அதிகரிக்கின்றது
5)	A_2 இற்குச் சமம்	A ₁ இற்குச் சமம்

- 33. $2\,\mathrm{cm}$ விட்டமுடைய இழை தாங்கவல்ல உயர் இழுவிசை $1.5 \times 10^5\,N$ ஆகும். இதே பதார்த்தத்தாலான 1 cm விட்டமுடைய இழை தாங்கவல்ல உயர் இழுவிசை (breaking Strength)
 - 1) $0.375 \times 10^5 N$
- 2) $2 \times 10^5 N$
- 3) $6 \times 10^5 N$

4) $9 \times 10^4 N$

5) $12 \times 10^4 N$

- 34. கீழே காட்டப்பட்டுள்ள ஒழுங்கமைப்பில் சாவி S மூடப்படும் போது அலுமினிய வளையம் நோக்கி வீசப்பட்டது.
 - A. அலுமினிய வளையம் காந்தமாக மாறுவதால்
 - B. அலுமினிய வளையத்தின் மீது ஒரு ஏற்றம் தூண்டப்படுவதால்.
 - C. அனுமினிய வளையத்தின் மீது ஒரு ஓட்டம் தூண்டப்படுவதால்

மேலுள்ள கூற்றுக்களில் உண்மையானது / உண்மையானவை.

- 1) A, B, C எல்லாம்
- 2) A உம் B உம் மட்டும்
- 3) B உம் C உம் மட்டும்
- 4) A மட்டும்
- 5) C மட்டும்
- 35. தனிமையாக்கப்பட்ட பரப்பளவு A உடைய தட்டொன்ற<u>ு</u> கடத்தும் Q மின்னேற்றப்பட்டுள்ளது. இத்தட்டானது சீரான மின்புலம் E இல் மின்புலச்செறிவுக்கு செங்குத்தாக தட்டு இருக்கின்றது. அத்துடன் தட்டுமுழுவதும் மின்புலத்தினுள் உள்ளது. தட்டின் X, Y மேற்பரப்பில் உள்ள ஏற்றங்கள் முறையே.

- 2) $\frac{Q}{2} + EA\varepsilon_0$, $\frac{Q}{2} + EA\varepsilon_0$ 3) $\frac{Q}{2} EA\varepsilon_0$, $\frac{Q}{2} EA\varepsilon_0$

- 4) $\frac{Q}{2} + EA\varepsilon_0$, $\frac{Q}{2} EA\varepsilon_0$ 5) $\frac{Q}{2} EA\varepsilon_0$, $\frac{Q}{2} + EA\varepsilon_0$
- 36. மெல்லிய பொட்கோளக்கடத்தி அதன் மேற்பரப்பில் மின்னேற்றம் Q வை கோளக்கடத்தியின் கொண்டுள்ளது. மையத்தில் ஏற்றம் q_1 கோளக்கடத்திக்கு வெளியே வைக்கப்பட்டுள்ளது. q_2 ஏற்றம் வைக்கப்பட்டுள்ளது. எல்லா ஏற்றங்களும் நேர் ஏற்றங்கள். பின்வரும் கூற்றுக்களுள் சரியானது.

- 1) ஏற்றம் q_1 இல் தொழிற்படும் விசை வலப்பக்கம் நோக்கி இருக்கும்.
- 2) ஏற்றம் q_1 இல் தொழிற்படும் விசை இடப்பக்கம் நோக்கி இருக்கும்.
- ஏற்றம் q₁ இல் தொழிற்படும் விசை பூச்சியம்.
- 4) பொட்கோளக்கடத்தியின் உட்பகுதியில் மின்புலச்செறிவு பூச்சியம்.
- 5) பொட்கோளக்கடத்தியின் உட்பகுதியில் மின அழுத்தம் பூச்சியம்.
- 37. மூடப்பட்டுள்ள அறையொன்றில் சில நபர்கள் உள்ளனர். சிறிது நேரத்தின் பின்னர் வியர்வை காரணமாக அசௌகரியத்திற்கு உட்படுகின்றனர். இவ் அசௌகரியத்தை தடுப்பதற்கு.
 - A. அறையிலுள்ள மின்விசிறியை வேகமாக சுழலவிட வேண்டும்.
 - B. அறையிலுள்ள குளிரேற்றியின் கதவு திறந்த நிலையில் செயற்படுத்தல் வேண்டும்.
 - C. அறை கதவை திறந்து வைத்தல் வேண்டும்.

மேலுள்ள கூற்றுக்களில் பிழையானது / பிழையானவை.

1) A மாத்திரம்

- 2) C மாத்திரம்
- 3) A, B மாத்திரம்

- 4) A, C மாத்திரம்
- 5) B, C மாத்திரம்

- 38. தடை R கொண்ட சுற்றொன்றின் ஊடாக $\Delta\,t$ நேரத்தில் $\Delta\,\phi$ அளவினால் காந்தப்பாயம் மாறுபடுகிறது. சுற்றின் எந்தவொரு புள்ளியின் ஊடாகவும் பாயும் ஏற்றம் Q எனின்.

- 1) $Q = \frac{1}{R} \frac{\Delta \phi}{\Delta t}$ 2) $Q = \frac{\Delta \phi}{R}$ 3) $Q = \frac{\Delta \phi}{\Delta t}$ 4) $Q = \frac{R\Delta \phi}{\Delta t}$ 5) $Q = \frac{\Delta \phi \Delta t}{R}$
- 39. AB எனும் சேர்மானத்தின் A இலிருந்து அளக்கப்படும் தூரம் x உடன் y எனும் கணியம் மாறுவதை வரைபு காட்டுகின்றது. கணியம் y ஆனது.

- A. AB ஆனது காவலிடப்பட்டுள்ள ஒரே திரவியத்தியாலான சேர்மானக் கோலாயின், வெப்ப நிலையாகும்.
- B. AB ஆனது சேர்மானக் குழாயாயின், உறுதிப் பாய்ச்சலில் பாயும் பாகுநிலையுடைய பாயியின் அமுக்கமாகும்.
- C. AB ஆனது ஒரே திரவியத்திலானான கடத்தியாயின் மின் அழுத்தமாகும். மேலுள்ள கூற்றுக்களில் உண்மையானது / உண்மையானவை.
- 1) A மட்டும்

- 2) B மட்டும்
- 3) A, B ஆகியன மட்டும்

- 4) B, C ஆகியன மட்டும்
- 5) A, B, C ஆகிய யாவும்
- 40. கோளொன்றின் ஆரை R உம் மேற்பரப்பின் மீது ஈர்ப்புப்புலச்செறிவு g உம் ஆகும். போற்சுமானின் மாறிலி k உம் H_2 வாயு மூலக்கூறின் திணிவு m உம் ஆயின் H_2 வாயு மூலக்கூறுகளின் வர்க்க இடை மூலக்கதியும் கோளின் மேற்பரப்பில் தப்பு வேகமும் சமனாகும் வெப்பநிலை.
- 2) $\frac{mg R}{2K}$ 3) $\frac{3 mg R}{2K}$ 4) $\frac{2 mg R}{K}$ 5) $\frac{mg R}{K}$
- 41. 700~K வெப்பநிலையில் உள்ள ஐதரசன் (H_2) மூலக்கூறுகள் $4.57 \times 10^{14}~Hz$ மீடிறனை உடைய ஒளியை காலிய வண்ணம் அவதானியை நோக்கி $3 imes 10^3~ms^{-1}$ கதியில் நகரும் போது அவதானியால் நோக்கப்படும் ஒளியின் அதிர்வெண் மாற்றம் (வளியில் ஒளியின் கதி $3 imes 10^8 \ ms^{-1}$) அண்ணளவாக.
 - 1) $4.57 \times 10^6 Hz$
- 2) $4.57 \times 10^9 Hz$
- 3) $1.52 \times 10^{11} Hz$

- 4) $1.52 \times 10^9 \, Hz$
- 5) $4.57 \times 10^{11} Hz$
- 42. R ஆரையுடைய புவி மேற்பரப்பிலிருந்து 3R உயரத்திலுள்ள புள்ளி B இல் பொருளொன்றின் ஈர்ப்பு அழுத்த சக்தி $-16/3 {
 m kJ}$ ஆகும். பொருளை A இலிருந்து B ற்கு கொண்டு செல்வதற்கு தேவையான இழிவுச் சக்தி.

- 1) 8kJ
- 2) 16 kJ
- 3) 32 kJ
- 4) 16 kJ 5) 32 kJ
- 43. சம அழுத்த மேற்பரப்புக்கள் படத்தில் காட்டியுள்ளவாறு உள்ளன. மின்புலச்செறிவின் பருமன் திசை குறிப்பது.
 - 1) $100 V m^{-1}, X$ அச்சு வழியே.
 - 2) $100~V~m^{-1}$, X அச்சுடன் 60° அமைக்கும் திசையில்
 - 3) $200 \, V \, m^{-1}$, X அச்சுடன் 60° அமைக்கும் திசையில்
 - 4) $200~V~m^{-1}$, X அச்சுடன் 120° அமைக்கும் திசையில்
 - 5) $200\,Vm^{-1}$,X அச்சு வழியே.

புலவிளைவு திரான்சிற்றரர் இன் சுற்று ஒன்று அருகில் காட்டப்பட்டுள்ளது. $I_D=2.5\ mA$ எனின் V_{DS} சமன்.

- 1) 12 V
- 2) 15 V
- 3) 17 V
- 4) 20 V
- 5) 24 V

45. உருவில் உள்ள சுற்றில் தடை R ஐ மாற்றும் போது வோல்ற்றுமானியின் வாசிப்புடன் அம்பியர்மானியின் வாசிப்பு மாறும் விதம் வரைபில் காணப்படுகின்றது. கலத்தின் மின்னியக்க விசையும் அகத் தடையும் முறையே.

- 1) $2V, 0.5\Omega$
- 2) $2V, 1\Omega$
- 3) 2V, 2Ω 4) 4V, 1Ω
- 5) $2V, 2\Omega$

46. இலேசான மீள்தன்மை இழையொன்றின் ஒரு முனை நிலைத்த புள்ளிக்கு இணைக்கப்பட்டு மற்றைய முனையில் திணிவொன்று தொங்கவிடப்பட்டுள்ளது. பொருள் நிலைத்த புள்ளியின் மட்டத்திற்கு உயர்த்தப்பட்டு விடுவிக்கப்படுகின்றது. சக்தி இழப்பு இல்லை எனவும் இழை விகிதசம எல்லையை மீறவில்லை எனவும் கொண்டு பொருள் மீண்டும் ஆரம்ப நிலையில் கணநிலை ஓய்வடையும் வரை வேக (V) — நேர (t) வரைபு.

47. ஓர் எளிய நுணுக்குக்காட்டி வில்லையின் குவியத்தூரம் 10cm ஆகும். ஒரு கண்ணின் அன்மைப்புள்ளி 30 cm எனின், உயர்ந்த பட்சக்கோணப் பெரிதாக்கத்தைப்பெறத் தேவைப்படும் பொருட் தூரத்தின் பெறுமானம்.

- 1) 5 cm
- 2) 6 cm
- 3) 7 cm
- 4) 7.5 cm
- 5) 9 cm

- 48. ஓர் அசையுஞ் சுருட் கல்வனோமானியின் உணர்திறனைப் பின்வருவனவற்றின் எதன் மூலம் கூட்டலாம்.
 - A. சுருளின் சுற்றுக்களின் எண்ணிக்கையைக் கூட்டுவதன் மூலம்
 - B. காந்த முனைகளின் வலிமையைக் குறைப்பதன் மூலம்
 - C. சுருளை மெல்லுரும்பு உருளையைப் பற்றி சுழலக்கூடிய சட்டம் ஒன்றில் சுற்றுவதன் மூலம்.
 - D. முறுக்குத்திறன் மாறிலி கூடிய மயிர் வில்லுடன் (Hair spring) இணைப்பதன் மூலம் அவற்றில் இவற்றுள் சரியானவை.
 - 1) A, B ஆகியன மாத்திரம்

4) A, B, C ஆகியன மாத்திரம்

- 2) A, D ஆகியன மாத்திரம் 5) B, C, D ஆகியன மாத்திரம்
- 3) A, C ஆகியன மாத்திரம்
- 49. ஒரு ஒலிபெருக்கி L இல் இருந்து x அச்சின் நேர்த்திசையில் $400~{
 m Hz}$ மீடிறனில் தொடர்ச்சியாக ஒலி காலப்படுவதையும், குறித்த கணமொன்றில், வளித்துணிக்கைகளின் x அச்சின் வழியே சராசரி ஓய்வுத்தானத்தில் இருந்தான இடப்பெயர்ச்சி – நேர வரைபையும் கீழ் உள்ள உரு காட்டுகிறது. (வளித்துணிக்கைகளின் χ அச்சின் நேர் திசையிலான இடப்பெயர்ச்சி (+) எனக் கொள்க).

A, B, C, D ஆகிய புள்ளிகளில் கணநிலை உயர்வு அமுக்கம் உள்ள புள்ளி / புள்ளிகள்.

- 1) A
- 2) B
- 3) C
- 4) A, C
- 5) B, D
- 50. செவ்வக வடிவ குறுக்குவெட்டை உடைய படகு அடியில் சிறிய துளை அதன் கொண்டுள்ளதுடன் இதனூடாக படகினுள் உட்புகவிடுவதன் மூலம் படகு நீரினுள் அமிழ்வதை உரு காட்டுகிறது. வரைபுகளில் துளையினூடான பின்வரும் நீரின் பாய்ச்சல் வீதம் (Q) நேரத்துடன் (t) மாறும். வரைபை திறம்பட வகை குறிப்பது முழ்கும் வரை

FWC

வடமாகாணக் கல்வீத் தணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பழீட்சை, மாரீச் – 2020

Conducted by Field Work Centre, Thondaimanaru
In Collaboration with Provincial Department of Education
Northern Province

Term Examination, March - 2020

தரம் :- 13 (2020) பௌதிகவியல் - II A

நான்கு வினாக்களுக்கும் இத்தாளிலேயே விடையளிக்க.

நேரம் :- 3.00 மணித்தியாலம் 10 நிமிடம்

பகுதி – II A

- 01. a) i) ஆக்கிமிடீசின் தத்துவத்தைக் தருக.
 - ii) ஆக்கிமிடீசின் தத்துவத்தின் பிரயோகம் இரண்டு தருக.

b) ஆக்கிமிடீசின் தத்துவத்தைப் பயன்படுத்தி திண்மம், திரவம் என்பவற்றின் அடர்த்திகள் துணிய வேண்டி உள்ளது. இதற்காக ஒரு மாணவன் ஏற்பாடு செய்த பரிசோதனை ஒழுங்கமைப்பின் மாதிரி கீழே உரு I இல் காட்டப்பட்டுள்ளது.

உரு I

c) கல்லினை நிறுத்த போது பெறப்பட்ட வாசிப்பு கீழே உரு II இல் காட்டப்பட்டுள்ளது.

உரு II

கல்லின் திணிவு யாது? (W_1 என்க)

.....

d) நீரினுள் கல்லை நிறுத்த போது பெறப்பட்ட வாசிப்பு கீழே உரு III இல் காட்டப்பட்டுள்ளது வாசிப்பு யாது? (w_2 என்க)

உரு III

.....

e) கல்லின் சார் அடர்த்தியைத் துணிவதற்கான கோவையை $(w_1\,,w_2)$ சார்பில் தருக.

f) **கல்லின்** சார் அடர்த்தியைக் காண்க.

g) கல்லை திரவத்தினுள் நிறுத்த போது பெறப்பட்ட வாசிப்பு கீழே உரு IV இல் காட்டப்பட்டுள்ளது.

உரு IV

திரவத்தில் கல்லின் நிறை யாது? (w_3 என்க)

h) திரவத்தின் சார் அடர்த்திகள் துணிவதற்கான கோவையை w_1 , w_2 , w_3 சார்பில \cdot தருக.

.....

i) திரவத்தின் சார் அடர்த்தியை கணிக்க.

j) பரிசோதனையில் ஏற்படக்கூடிய வழக்கள் யாது?

g)	i)	எதிர்பார்க்கப்படும் வரைபை பருமட்டாக வரைக. அச்சுக்களை தெளிவாக பெயரிடுக. ♣
	ii)	வரைபிலிருந்து வளி மண்டல அமுக்கத்தை எவ்வாறு துணிவீர்?
	iii)	$x=10~cm, \ L=40~cm$ படித்திறன் $=1.64\times 10^{-4}~cm^{-2}$ வெட்டுத்துண்டு $0.05~cm$ ஆகவும் இருப்பின், வ. ம. அ H இன் பெறுமதியைக் காண்க. $1.64\simeq \frac{1}{0.61}$ என எடுக்க.
	iv)	குழாய் கிடையாக உள்ளபோது அடைபட்ட வளி நிரலின் நீளம் யாது?
	v)	குறுகிய இரச நிரலை பயன்படுத்தி (< 2 <i>cm</i>) இப் பரிசோதனையை வெற்றிகரப செய்யமுடியுமா? உமது விடையை விளக்குக.
1)	டுழு	வுட்தெறிப்பு நிகழ்வதற்கான நிபந்தனைகளை எழுதுக.
	••••	

b)	கனவடிவ	கண்ணாடிக்குற்றியொன்று	(கண்ணாடி —	ഖണി	அவதிக்கோணம்	42°)	சிறிய
	நாணயமொ	ரன்றின் மீது வைக்கப்பட்டுள்	ளதை உரு காட்(நெகின்றத	IJ.		

i)	மாணவனொருவன் கண்ணாடிக்குற்றியின் நிலைக்குத்து முகங்களிற்கூடாக நாணயத்தை
	அவதானிக்க முயலுகின்றான் நாணயம் அவனிற்கு தோற்றமளிக்குமா? நாணயத்திலிருந்து
	செல்லும் கதிர்ப்படத்தின் உதவியுடன் விளக்குக.
ii)	இன்னொரு மாணவனொருவன் நா <mark>ணயத்திற்கும்</mark> கண்ணாடிக்குற்றிக்குமிடையில் சிறிதளவு நீர்
	விட்டு நாணயத்தினை கண்ணாடிக்குற்றியின் நிலைக்குத்து முகங்களிற்கூடாக அவதானிக்க
	முயலுகின்றான் நாணயம் அவனிற்கு தோற்றமளிக்குமா? நாணயத்திலிருந்து செல்லும்
	கதிர்ப்படத்தின் உதவியுடன் விளக்குக.

c) அரியம் ஆக்கப்பட்ட பதார்த்தமொன்றின் முறிவுச்சுட்டியை முழுவகத்தெறிப்பின் மூலம் துணிய வேண்டியுள்ளது. உருவில் காணப்படுகின்றவாறு அரியம் ஒரு வெள்ளைத்தாளின் மீது வைக்கப்பட்டு குண்டு ஊசி M ஆனது அரியத்தின் முகம் AC இல் தொடுகையிலிருக்குமாறு வைக்கப்பட்டுள்ளது. அரியத்தின் புறவுரு வெள்ளைத்தாளில் வரையப்பட்டுள்ளது.

• v

i)) இப்பரிசோதனையில் குண்டு ஊசி M ஆனது முகம் AC உடன் தொடுகையில் வைக்கப்ப வேண்டும். இதற்குரிய காரணத்தை குறிப்பிடுக.								
ii)	முகம் BC யினூடாக AB யை பார்த்துக் கொண்டு உமது கண்ணை B இலிருந்து C யிற்கு கொண்டு செல்லும் போது குண்டூசி M இன் விம்பத்தில் எம்மாற்றம் நடைபெறுமென நீர் எதிர்பார்ப்பீர்?								
iii)	வேறு இரு குண்டூசிகளைப் பயன்படுத்தி உரிய வெளிப்படுகதிரின் பாதையை பரிசோதனை ரீதியாக எங்ஙனம் கண்டுபிடிப்பீர்?								
	மேலே உருவில் இரு குண்டூசிகளின் தானங்களும் உருவில் X, Y என குறிக்கப்பட்டுள்ளன கதிர் வரிப்படத்தை அமைக்க. கதிர்வரிப்படத்திலிருந்து நீர்பெற்றுக்கொள்ளும் அளவீடு யாது? அதனை கதிர் வரிப்படத்தில்								
	தெளிவாக குறிக்க. 								
ඉ (¶	தவனால் அமைக்கப்பட்ட மின்சுற்று உருவில் காட்டப்பட்டுள்ளது. E C A V								
a)	 i) உருவிற் காட்டப்பட்ட அகத்தடை புறக்கணிக்கப்படத்தக்க அம்பியர்மானி(A), உயர் அகத்தடை கொண்ட இலக்க (Digital) வோல்ற்மானி என்பவற்றின் முடிவிடங்களின் முனைவுகளை +, – எனக் குறித்துக் காட்டுக. 								
	ii) மாறும் தடை R இற்காகப் பயன்படுத்தப்படக்கூடிய மின்னியற் கூறு யாது?								

	குறித்து வரையப்படும் வரைபினது படித்திறன் 0.5Ω ஆகவும் வெட்டுத்துண்டு $1.5\mathrm{V}$
	ஆகவும் காணப்பட்டன.
	் அகத்தடை r
iv)	இப்பரிசோதனையின் செம்மையானது கலத்தின் முடிவிடங்களுக்குக் குறுக்கேயுள்ள அழுத்தி வீழ்ச்சியானது எவ்வளவு செம்மையாக அளவிடப்படுகிறது என்பதில் தங்கியிருக்கும் அழுத்த வீழ்ச்சியை அளவிடுவதற்காக இலக்க வோல்ற்மானியைப் பயன்படுத்துவதைகளைட்டிலும் அழுத்த மானியைப் பயன்படுத்தல் சிறந்ததாகும். இதற்கான காரணம் யாது?
இப்(போது அழுத்தமானியைப் பயன்படுத்தி r இனை திருத்தமாக அறிவதற்கு மாணவன்
தீர்ம	ானிக்கின்றான். இதற்காக மேற்கொள்ளப்பட்ட பரிசோதனையின் பூரணமற்ற ஒழுங்கமைப்ட
உரு	விற் காட்டப்பட்டுள்ளது. இங்கு மாறும் தடை (X) $5k\Omega$ உயர்தடைப்பெட்டி (Y) வழுக்குட
	். டுகை என்பன குறித்துக் காட்டப்படவில்லை. போதிய இணைப்புக் கம்பிகள
தரப்	பட்டுள்ளன.
	சேமிப்புக்கலம் K_1
_	
1	
	PQ - அழுத்த மானிக்கம்பி
	PQ - அழுத்த மானிக்கம்பி Q
•	Q
•	E,r K_2 Q
•	C C C C C C C C C C
•— i)	Q E,r K_2 G — மையப்பூச்சிய கல்வனோமானி
•— i)	Q E,r K_2 G — மையப்பூச்சிய கல்வனோமானி
	Q E,r K_2 G G G E,r G
	E,r K_2 G G — மையப்பூச்சிய கல்வனோமானி K_3 $X,\ Y$ என்றபவற்றை உரிய இடங்களில் குறித்துக் காட்டுவதுடன் மின்சுற்றையும் பூரணப்படுத்துக.
	E,r K_2 G G — மையப்பூச்சிய கல்வனோமானி K_3 $X,\ Y$ என்றபவற்றை உரிய இடங்களில் குறித்துக் காட்டுவதுடன் மின்சுற்றையும் பூரணப்படுத்துக.
ii)	E,r K2 G — மையப்பூச்சிய கல்வனோமானி K3 X, Y என்றபவற்றை உரிய இடங்களில் குறித்துக் காட்டுவதுடன் மின்சுற்றையுட பூரணப்படுத்துக. X இற்காகப் பயன்படுத்தக்கூடிய மின்னியல் கூறை இனங்காண்க.
ii)	© G – மையப்பூச்சிய கல்வனோமானி K3 X, Y என்றபவற்றை உரிய இடங்களில் குறித்துக் காட்டுவதுடன் மின்சுற்றையும் பூரணப்படுத்துக. X இற்காகப் பயன்படுத்தக்கூடிய மின்னியல் கூறை இனங்காண்க. X இனது பெறுமானம் R ஆக உள்ள போது ஆளி K₃ திறந்த நிலையிலும், மூடப்பட்ட
ii)	© E,r ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
i) iii)	© G – மையப்பூச்சிய கல்வனோமானி K3 X, Y என்றபவற்றை உரிய இடங்களில் குறித்துக் காட்டுவதுடன் மின்சுற்றையும் பூரணப்படுத்துக. X இற்காகப் பயன்படுத்தக்கூடிய மின்னியல் கூறை இனங்காண்க. X இனது பெறுமானம் R ஆக உள்ள போது ஆளி K₃ திறந்த நிலையிலும், மூடப்பட்டி நிலையிலும் சமநிலை நீளங்கள் முறையே ℓ₀,ℓ பெறப்பட்டிருந்தன. R, r என்பவற்றை

iv)	பொருத்தமான நேர்	கோட்டு வரைபு ஒன்	றை வரைவதன்	மூலம் r இனைத்	துணிவதற்கு
	உத்தேசிக்கப்பட்டிரு	ப்பின் இதற்காக b(iii)	இலுள்ள கோவை	பயை மீள ஒழுங்குட	படுத்துக.
v)	ℓ , ℓ_0 இற்குரிய	அளவீட்டுப் பெறும	ானங்கள் ஒப்பீட்	டளவில் பெரிதாக	இருக்கும்
	சந்தர்ப்பங்களில்	அவ்வளவீடுகளின்	செம்மையும்	அதிகரிக்கின்றன.	இவற்றை
	அதிகரிப்பதற்காக	மாணவன் சுற்று	ஒழுங்கமைப்பில்	செய்யக்கூடிய	பின்வரும்
	மாற்றங்களைக் கரு	துக.			
	1) PQ உடன் தொட	ராக பெரிய தடையை	<u></u> ுத் தொடுத்தல்	()	
	2) X இன் பெறுமா	னத்தை உயர் பெறும	ானங்களாகத் தெரி	ிதல் ()	

3) X இன் பெறுமானத்தைக் குறைந்த பெறுமானமுடையதாகத் தெரிதல் $(\ \)$

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் தவணைப் பரீட்சை, மார்ச் - 2020

Conducted by Field Work Centre, Thondaimanaru
In Collaboration with Provincial Department of Education
Northern Province

Term Examination, March - 2020

தரம் :- 13 (2020)

பௌதிகவியல் - II B

பகுதி - II B கட்டுரை வினாக்கள்

💠 நான்கு வினாக்களுக்கு விடை எழுதுக.

05. a) உரு I இல் காட்டப்பட்டவாறு 0.3km குத்துயரமும் 4.8km சாய்வுமுடைய ஒரு சாய்தளத்தில் ஒரு கார் A ஒரு சீரான கதி $16\,ms^{-1}$ உடன் பயணம் செய்கிறது. காரில் தாக்கும் சராசரி உராய்வு விசை $5.0 \times 10^2\,N$ காரின் மொத்த நிறை $1.2 \times 10^4\,N$

உரு I

- i) கார் A உச்சியை அடைய எடுத்த நேரம் யாது?
- ii) புவியீர்ப்பு விசைக்கு எதிராக கார் A செய்த வேலையை கணிக்க.
- iii) a (i), a (ii) விடைகளிலிருந்து கார் A ஆனது உச்சியை அடைய எஞ்சின் வழங்கிய மிகக்குறைந்த வலு யாது?
- b) உச்சியை அடைந்த கார் A ஓய்வுக்குக் கொண்டுவரப்பட்டு பின்னர் உரு II இல் காட்டப்பட்டுள்ள 6.4~km சாய்வுடைய சாய்தளம் வழியே பயணம் செய்கிறது. இதன் போது எரிபொருளை சேமிக்கும் நோக்கில் காரின் எஞ்சின் நிறுத்தப்பட்டு கார் சுயாதீனமாக இயங்கவிடப்பட்டது. காரில் தாக்கிய சராசரி தடை விசை $5.0 \times 10^2~N$ ஆகும்.

- i) காரின் ஆர்முடுகல் யாது?
- ii) அடியை அடையும் போது காரின் கதி யாது?
- iii) உண்மையில் சாய்தளம் வழியே கார் இயங்கும் போது இறுதி 100m இல் கார் மாறாக்கதியுடன் பயணம் செய்கிறது. இதன் போது காரில் தாக்கும் உராய்வு விசையை கணிக்க.

c) நேரான மட்டமான வீதி வழியே கார் A மாறாக்கதி உடன் பயணிக்கிறது. இது வீதியோரத்தில் ஓய்வாக உள்ள கார் B யைக் கடந்து செல்கின்றது. கார் A கார் B யை கடந்து செல்லும் அதே வேளை கார் B அதே திசையில் இயங்க ஆரம்பிக்கின்றது. கார் A ஆனது கார் B யை கடக்கும் கணத்தில் இருந்து இரண்டினதும் வேக – நேர வரைபுகள் அருகே காட்டப்பட்டுள்ளது.

- i) கார் B இன் ஆரம்ப ஆர்முடுகலைக் கணிக்குக.
- ii) 5.0s முடிவில் கார் A இற்கும் கார் B இற்கும் இடையேயான தூரத்தைக் கணிக்குக.
- iii) கார் B இன் மொத்த நிறை $1500\,kg$ ஆகும். 2.0s இன் போது கார் B இல் தாக்கம் செலுத்தும் விசை $9000\,N$ ஆகும்.
 - 1) இந்நேரத்தில் கார் B இல் தாக்கும் உராய்வு விசை யாது?
 - மாறா ஆர்முடுகலைப் பேணுவதற்கு நேரத்துடன் செலுத்தும் விசை ஏன் அதிகரிக்கப்பட வேண்டும் என விளக்குக.
 - 3) 6.0s முடிவில் கார் B அதன் உயர் செலுத்தும் விசையை அடைகின்றது. அதன் பின் செலுத்தும் விசையை மாறாது பேணுகின்றது. கார் B இன் வேக நேர வரைபை 5.0s லிருந்து வரைக.
- ഒരിധെ 06. வெளவால் உயர் அதிர்வெண்ணடைய பூச்சிகள், காலுகின்ற<u>து</u>, இவ்வொலி ஏதாயினும் பழங்கள் (இரைகள்) தடுப்புகளில் தெறிப்பினால் வெளவாலை எதிரொலி மீண்டும் ஏற்படும் அடைகின்றது. இவ் எதிரொலியைப் பயன்படுத்தி அவை இருக்கும் இடத்தை (தானத்தை) அறிந்து கொள்கிறது. இதனை அருகே படம் விளக்குகின்றது.

- a) ஒலி அலைகள் நீள்பக்க அலைகள்,
 - i) மூலக்கூறுகளின் அசைவினை அடிப்படையாக கொண்டு ஒலி அலை நீள்பக்க அலை என்பதனை விளக்குக.
 - ii) உமது விடைத்தாளில் மூலக்கூறுகளின் சமனிலைத்தானங்களையும் சமனிலைத் தானங்களிலிருந்து எதாயினும் ஒரு கணத்தில் மூலக்கூறுகளின் நிலைகளையும் குறித்து அதற்குரிய அலைவடிவத்தையும் வரைக.
- b) வெளவாலினால் காலப்படும் ஒலியானது 340 ms⁻¹ என்னும் கதியுடன் செல்கின்றது. வெளவாலினால் காலப்படும் ஒலியின் அதிர்வெண்ணானது 20kHz இலிருந்து 80kHz வரையாகும். இவ்வதிர்வெண்வீச்சிற்குரிய அலைநீளவீச்சைக்கணிக்க.

- c) வெளவாலானது அலை B யினதும் அலை P யினதும் இரண்டு அலைமுகங்களைக் காலுகின்றது. இவை மேற்பொருந்துகை அடைந்து அலை E யை உருவாக்கின்றது.
 - அலை B யானது அதனை சூழவுள்ள சுற்றாடல் பற்றி தகவல்களை வழங்குகின்றது.
 - அலை P யானது இரையை கண்டுபிடிக்க உதவுகின்றது.
 - அலை E யானது அலை P யினதும் அலை B யினதும் மேற்பொருந்துகையால் உருவான அலையாகும்.

- i) மேற்பொருந்துகை தத்தவத்தைப்பயன்படுத்தி நேர அச்சில் L.M.N ஆகிய புள்ளிகள் குறிக்கும் நேரத்திற்குரிய அலை P இன் இடப்பெயர்ச்சிகளைக் கணிக்க.
- ii) உமது விடைத்தாளில் அலை B இனதும் அலை E இனதும் அலைகளை மீள வரைந்து
 அலை P இனை அதில் வரைக.
- d) டொப்ளரின் விளைவைப்பயன்படுத்தி அதிர்வெண்ணில் ஏற்படும் மாற்றத்தினால் தெறிபொருளின் (இரையின்) கதியை (v) கணிக்கலாம். அலை P யானது இரையில் பட்டு தெறிப்பதனால் ஏற்படும் தெறி அலைக்கும் படு அலைக்குமிடையிலான அதிர்வெண் வித்தியாசம் Δf ஆனது பின்வரும் தொடர்பால் கொடுக்கப்படுகின்றது என நிறுவலாம் $\frac{\Delta f}{f} = \frac{2v}{c}$ இங்கு c வெளவாலினால் காலப்படும் ஒலியின் கதி $340~ms^{-1}$
 - i) அலை P யின் அதிர்வெண்ணானது 50.80 kHz இவ்வலை தெறிபடைவதனால் வெளவால் உணரும் தோற்ற அதிர்வெண் 51.25 kHz இரையின் கதியைக் கணிக்க.
 - ii) அலை P யின் அலைநீளமானது இரையின் பருமனுக்கு அண்ணளவாக சமனாக இருக்கின்றபோதே சிறிய இரையையும் துல்லியமாக கண்டுபிடிக்கும். (Discriminates). இதனை விளக்கக்கூடிய அலையின் இயல்பை கூறுக?

e) கார் ஒன்று சிறிய உயரத்திலிருந்து கொங்கீறிட் தரையொன்றில் விழவிடப்பட்ட போது காரின் நிலைக்குத்து திசையிலான அலைவின் இடப்பெயர்ச்சி நேர வரைபு கீழே காட்டப்பட்டுள்ளது.

- i) காரின் அலைவிற்கான அதிர்வெண்ணைக்கணிக்க?
- ii) வரைபிலிருந்து காரின் அதிர்வானது தணித்தல் அதிர்வு என எவ்வாறு கூறுவீர்?
- iii) காரின் மொத்த திணிவு 750kg காரானது நான்கு சில்லுகளிலும் ஒரே மாதிரியான ஒவ்வொரு விற்சுருள்களை கொண்டுள்ளது எனின் விற்சுருள் மாறிலியைக் கணிக்க.

- iv) படத்தில் காட்டியவாறு வீதியானது மேடு பள்ளங்களாக உள்ள போது காரின் வேகமானது அதிகரித்து செல்லுதல் ஆபத்தானது. காரானது $110\ kmh^{-1}$ கதியில் செல்லும் போது பரிவு நிகழ்கின்றது.
 - 1) பரிவு நிகழ்வதற்கான நிபந்தனைகளை குறிப்பிடுக.
 - 2) பரிவுறலைத் தோற்றுவிக்க அடுத்தடுத்த ஏற்றங்களுக்கிடையிலான தூரத்தைக் மதிப்பிடுக.
 - 3) வட்டச்சுற்று வழியை நெருங்குகையில் நேரத்தோடு மோட்டார் வாகனத்தின் அலையின் வீச்சு எவ்விதம் மாற்றமடையும் என நீர் எதிர்பார்ப்பதை ஒரு பருமட்டான வரைபில் காட்டுக.

07. a) ஒரு சீரான உலோகக் கம்பிக்குரிய தகைப்பு – விகார _{தகைப்பு} நடத்தையை உரு 1 காட்டுகிறது. A, B, C என்ற புள்ளிகளை இனங்காண்க. A, B என்ற புள்ளிகளுக்கு இடையிலுள்ள வேறுபாடு யாது?

- b) உரு 2 ஆனது சீரான கு.வெ.பரப்புக்களைக் கொண்ட உருக்கு, செப்புக்கம்பிகளுக்குரிய தகைப்பு – விகார நடத்தைகளைக் காட்டுகிறது.
 - i) உருக்கு, செப்பு என்பவற்றின் யங்கின் மட்டுக்களைக் கணிக்க.
 - ii) இக்கம்பிகள் இரண்டும் சமனான நீளம் 2 m ஐயும் சம குறுக்குவெட்டுப் பரப்பு 0.8 mm² ஐயும் கொண்டவை. விகிதசம எல்லையை மீறாத வகையில் இரு கம்பிகளிலும் ஏற்றப்படத்தக்க உயர் சுமைகளைத் தனித்தனியே காண்க.

- iii) மேலுள்ள இரு கம்பிகளும் முனைக்கு முனை இணைக்கப்பட்டு உருவாக்கப்படும் கூட்டுக்கம்பியில் ஒவ்வொரு கம்பியினதும் விகிதசம எல்லையை மீறாத வகையில் ஏற்றப்படக்கூடிய உயர்சுமையைக் காண்க.
- c) பகுதி (a) இல் தரப்பட்ட அதே பரிமாணங்களைக் கொண்ட சர்வசமனான நான்கு உருக்குக் கம்பிகள் தரப்பட்டிருப்பதாகக் கருதுக. இவற்றைக் கொண்டு கிடையான சீலிங்கில் இருந்து புறக்கணிக்கத்தக்க திணிவுடையதும் 15 *cm* விட்டத்தைக் கொண்டதுமான சீரான வட்டத்தட்டொன்று தொங்கவிடப்பட்டிருப்பதை உரு 3 காட்டுகிறது. P, Q, R, S என்னும் புள்ளிகளுக்கு இக்கம்பிகள் தட்டின் பரிதி வழியே சமச்சீரானதும் PQRS சதுரமாக அமையுமாறும் இணைக்கப்பட்டுள்ளன. குறுக்குவெட்டுத்தோற்றம் உரு (4) இல் காட்டப்பட்டுள்ளது. வட்டத்தட்டை 1 mm கிடையாக கீழிறங்கச் செய்ய வேண்டியிருப்பின் இத்தட்டின் மையத்தில் வேண்டிய திணிவைக் கணிக்க.

உரு 4

- d) இப்போது கம்பிகளில் ஒன்று (P என்க) சர்வசமனான நீளத்தையுடையதும் 2.4mm² குறுக்கு வெட்டுப் பரப்புமுடையதுமான செப்புக்கம்பியினால் பிரதியீடு செய்யப்படுகின்றதென்க. தட்டானது 1 mm கீழிறங்கிய நிலையிலும் தொடர்ந்து கிடையாகவே இருக்கச் செய்யப்படல் வேண்டும்.
 - i) செப்புக்கம்பி, உருக்குக்கம்பி என்பவற்றில் உள்ள இழுவைகளின் விகிதத்தைக் காண்க?
 - ii) இத்தகைய இறக்கத்தை ஏற்படுத்தத்தக்க சுமையின் பருமன் யாது?
 - iii) உரு (4) ஐ உமது விடைத்தாளில் பிரதி செய்து d(ii) இல் உள்ள சுமையை வைக்க வேண்டிய புள்ளியினை X எனக் குறித்துக்காட்டுக.
 - iv) P யிலிருந்து X இற்கான தூரத்தைக் கணிக்க.
- 08. i) பரடேயின் மின்காந்த தூண்டல் விதியைச் சொற்களில் கூறுக.
 - ii) லென்சின் மின்காந்த தூண்டல் விதியைச் சொற்களில் கூறுக.
 - iii) காந்தப்பாயம் என்றால் என்ன?
 - iv) காந்தப்பாய அடர்த்தி என்றால் என்ன?
 - v) ஒரு கடத்தியின் இயக்கத்தால் தூண்டப்பட்ட மின்னியக்க விசை எவற்றிற்கு விகிதசமனாக காணப்படும்?
 - vi) சுழிப்போட்டம் எவ்வாறு ஒரு கடத்தி ஒன்றில் உருவாகின்றது என கூறுக.
 - vii) சுழிப்போட்டத்தின் உபயோகம் 2 தருக.

உரு 1 இல் காட்டப்பட்ட உலோக வட்டத்தட்டு ω கோண வேகத்துடன் சுற்றும் போது தட்டில் உருவாக்கப்படும் சுழிப்போட்டத்தினை வரைந்து காட்டுக. (உரு 1 இனை விடைத்தாளில் பிரதி செய்து.

viii) காட்டப்பட்டுள்ள உரு 2 இல் காந்தப்பாய அடர்த்தி B நேரத்துடன் அதிகரிக்குமாயின் செவ்வகக்கடத்தி PQRS இல் மின்னோட்டத்தின் திசையை குறித்துக்காட்டுக. (விடைத்தாளில் PQRS ஐ பிரதி செய்து குறிக்காட்டுக)

PQRS மெல்லிய உலோகக் கம்பியினாலானது X, Y ஆகிய புள்ளிகளுக்கு இடையில் அதே உலோகக்கம்பி இணைக்கப்பட்டுள்ளது. **PXYS** 2m பக்கம் உடைய சதுரம் ஆகும். XQ =YR= 1m ஆகும். இது உறுதியாக அதிகரிக்கும் சீரான காந்தப்புலத்தில் வைக்கப்பட்டுள்ளது. காந்தப்புல மாற்ற வீதம் $1 \, \mathrm{T} \, \mathrm{s}^{-1}$, கம்பியின் அலகு நீளத்தடை $1\Omega m^{-1}$ எனின் PX,QX,XY இனூடான மின்னோட்டத்தினைக் கணிக்க.

09. A அல்லது B க்கு மட்டும் விடை எழுதுக.

A)

- a) ஒரு மின் முதலின் மின்னியக்க விசை (emf) ஆனது அம் முதலினால் ஓரலகு ஏற்றத்தின் மீது செய்யப்படும் வேலையாக வரையறுக்கப்படும். தரப்பட்ட மின்னியக்க விசையின் வரைவிலக்கணத்தைப் பயன்படுத்தி
 - i) மின்னியக்க விசையின் அலகுகளைத் துணிக.
 - ii) முதலொன்றினால் பிறப்பிக்கப்படும் வலுவிற்குரிய ஒரு கோவையை அதன் மின்னியக்க விசை E, அதனூடான ஓட்டம் I ஆகியவற்றின் சார்பிற் பெறுக.
- b) மின்னியக்க விசை E ஐயும் அகத்தடை r ஐயும் உடைய ஒரு முதல் தடை R ஐ உடைய புறத்தடையி ஒன்றுடன் தொடுக்கப்பட்டுள்ளது. நேரம் t இற் சுற்றில் விரயமாகும். மொத்தச் சக்திக்குரிய ஒரு கோவையை E, r, R, t ஆகியவற்றின் சார்பிற் பெறுக.

படத்தில் காட்டிய $24~{
m V}$ மின்னியக்க விசையும் அகத்தடையும் உடைய கலம் ஒன்றுடன் $L_1~12V,6W$ எனக் குறிக்கப்பட்ட மின்குமிழும் $8~{\Omega}$ அகத்தடை உடைய மின் விசிறி $({
m F})$ ஒன்றும் தொடராக இணைக்கப்பட்டு மின்கலத்துடன் இணைக்கப்பட்டுள்ளது. இதனுடன் 20V,10W எனக் குறிக்கப்பட்ட L_2 மின்குமிழ் F,L_1 உடன் சமாந்தரமாக இணைக்கப்பட்டுள்ளது.

- I_1 ஆளி மூடப்படும் போது மின்குமிழ் I_2 முழுப்பிரகாசத்துடன் ஒளிர்கிறது. எனின்,
 - 1) மின்குமிழ் L_2 ஊடான மின்னோட்டம் யாது?
 - 2) கலத்தின் அகத்தடையைக் காண்க.
 - 3) அப்போது கலத்தினால் பிறப்பிக்கப்பட்ட வலுவைக் காண்க.

- $\mathrm{ii})$ S_1 ஆளி திறக்கப்பட்டு S_2 ஆளி மூடப்பட்ட கணத்தில்,
 - 1) மின்குமிழ் L_1 இன் தடையைக் காண்க.
 - 2) மின்விசிறி ஊடான மின்னோட்டத்தைக் காண்க.
 - 3) அப்போது கலத்தினால் சுற்றுக்கு வழங்கப்பட்ட வலுவைக் காண்க.
- S_2 ஆளி மட்டும் மூடப்பட்டு உள்ள போது, மின் விசிறி ஆர்முடுகி சிறிது நேரத்தின் பின்னர் உறுதி வேகத்துடன் சுற்றும் போது, L_1 அதில் குறிக்கப்பட்ட வீதத்தில் ஒளிர்கின்றது.
 - 1) இந் நிலையில் மின்குமிழ் ஊடான மின்னோட்டம் யாது?
 - ஆளி S₂ மூடப்பட்ட உடன் உள்ள மின்னோட்டத்திலும் பார்க்க, தற்போது உள்ள மின்னோட்டம் குறைவாக காணப்படுகிறது. ஏன் என விளக்குக.
 - மின் விசிறி உறுதியாக இயங்கும் போது மின் விசிறியால் தூண்டப்பட்ட பின் மின் இயக்க விசையைக் காண்க.
- d) மாணவன் ஒருவன் மேலே குறிப்பிட்ட கலத்திற்குப் பதிலாக 6V மின்னியக்க விசையும் 4 Ω அகத்தடையும் உடைய கலத்தை பயன்படுத்தத் தீர்மானித்தான். இதற்குத் தேவைப்படும் குறைந்தபட்ச கலத்தின் எண்ணிக்கையும், இணைக்கும் முறையையும் படம் வரைந்து காட்டுக.
- B) உயர் வேகத்தில் தொழிற்படக்கூடிய ஆளிச்சுற்றுக்களை தன்னகத்தே கொண்டுள்ளவையே தர்க்கப்படலைகளாகும். இத்தர்க்கப் படலைகள் கணனிகள், கணிப்பான்கள், ரோபோக்கள் தொலைத்தொடர்பு சாதனங்கள் போன்றவற்றில் பெரிதும் பயன்படுத்தப்படுகின்றது.
- a) i) அடிப்படைத் தர்க்கப் படலைகள் மூன்றையும் தருக.
 - ii) அடிப்படை தர்க்கப் படலைகள் மூன்றுக்குமான தர்க்கக் குறியீட்டை வரைந்து அதன் பெய்ப்புக்கள் A, B பயப்பு F என்பவற்றைப் பெயரிடுக.
 - iii) ஒவ்வொரு அடிப்படை தர்க்கப்படலைக்குமுரிய மெய்நிலை அட்டவணையை தருக.
 - iv) இலக்க தொழில்நுட்பத்தின் நன்மைகள் இரண்டு தருக.
- இரவில் மின்தடை ஒன்று ஏற்படும் போது பற்றரியில் இயங்கும் விளக்கொன்றினைச் சுயமாக b) இயங்கவைக்கக்கூடியதான இலக்கச் சுற்று ஒன்றை வடிவமைக்க மாணவர் ஒருவர் விரும்புகிறார். மேலும், ஆளி ஒன்றை அழுத்துவதன் மூலம் எந்த நேரத்தி<u>ல</u>ும் அது இயங்குவதற்கான ஒரு வசதியையும் சுற்று கொண்டிருக்க வேண்டும். கீழ்வரும் தர்க்கப் பெறுமானங்களைக் (0,1)கொண்ட மூன்று பெய்ப்புகள் P, Q, R என்பவற்றை உருவாக்குவதற்கான வழிமுறைகளை மாணவர் கொண்டுள்ளார்.
 - P=0 ஆளி அழுத்தப்படாமல் இருக்கும் போது
 - P=1 ஆளி அழுத்தப்படும் போது
 - Q=0 பகல் நேரத்தில்
 - Q=1 இரவு நேரத்தில்
 - R=0 மின் தடை ஏற்படும் போது
 - R = 1 மின் இருக்கும் போது

மாணவர் பயப்பு X ஆனது X=1 ஆகும் போது விளக்கு எரியத்தக்கதாகவும் பயப்பு X ஆனது X=0 ஆகும் போது விளக்கு அணையத்தக்கதாகவும் P,Q.R என்னும் மூன்று பெயப்புக்களைக் கொண்டு சுற்றை வடிவமைத்தால் பின்வருவனவற்றைக் காண்க.

- i) மெய்நிலை அட்டவணையைத் தருக.
- ii) மெய்நிலை அட்டவணையின் பயப்பு X இற்குரிய கோவையைத் தருக.

- iii) பூல அட்சர கணிதத்தைப் பயன்படுத்தி பயப்பு X அனது $x=P+Q.\overline{R}$ ஆக சுருக்கப்படலாம் எனக் காட்டுக.
- iv) பயப்பு X ஐ தரக்கூடிய தர்க்கச் சுற்றை வரைக.
- 10. a) i) நிரம்பாத ஆவியை நிரம்பலாவியாக மாற்றும் செய்முறைகள் மூன்றை குறிப்பிடுக.
 - ii) பனிபடு நிலை என்பதால் அறியப்படுவது யாது?
 - iii) சாரீரப்பதனின் பனிபடுநிலை சார்பான வரைவிலக்கணத்தை எடுத்துரைக்க.

வெப்பநிலை (θ)°C	10	11	12	13	14	15	16	17	18	19	20
நிரம்பலாவி அமுக்கம் (Hg mm)	5.5	6.3	7.2	8.2	9.3	10.5	12.8	14.0	15.1	16.2	17.5

உரு II

60% சாரீரப்பதனை கொண்டதும் $20^{\circ}C$ வெப்பநிலையிலுள்ளதுமான $1\,m^3$ கனவளவுள்ள வளியை கொண்ட உருளையை உரு I காட்டுகிறது. வெப்பநிலையுடன், நிரம்பலாவி அமுக்கம் மாறுகின்ற அட்டவணையை உரு II காட்டுகிறது. நீரின் மூலர்த்திணிவு =18g ,

வாயு மாறிலி = $8.31 \mathrm{J \ mol^{-1}} K^{-1}$ இரசத்தின் அடர்த்தி $13000 \ Kg \ m^{-3}$ எனக்கொள்க. பின்வரும் வினாக்களுக்கு விடை தருக.

- 1) i) உருளையினுள் உள்ள வளியின் பனிபடு நிலை யாது?
 - ii) உருளையினுள் உள்ள வளியின் தனி ஈரப்பதன் யாது?
- 2) வெப்பநிலையை மாற்றாது உருளையினுள் உள்ள வளியின் கனவளவு 0.6 m³ ஆக மாற்றப்படும் போது, உருளையிலுள்ள வளியின் புதிய தனி ஈரப்பதன், சார்ஈரப்பதன், பனிபடு நிலை என்பவற்றைக் காண்க. (உருளையினுள் உள்ள வளி இக் கனவளவு மாற்றத்திற்கிடையில் நிரம்பலடையவில்லை.
- 3) வெப்பநிலையை மாற்றாது வளியின் கனவளவை 0.25 m^3 ஆக மாற்றும் போது ஒடுங்கும் நீராவியின் திணிவு யாது? நீர் ஆவியானது இலட்சிய வாயுபோற் செயற்படுகிறது எனக் கருதுக.
- 4) தற்போது உருளையினுள் ஒடுங்கிய நீராவி அகற்றப்பட்டு வெப்பநிலை மாறாது இருக்க வளியின் கனவளவு அதன் ஆரம்ப நிலைக்கு மாற்றப்பட்டால் தற்போதைய தனி ஈரப்பதனையும், சாரீரப்பதனையும் காண்க.
- 5) உருளையிலுள்ள வளியின் கனவளவை குறைக்கும் போது, பின்வரும் ஒவ்வொரு சந்தர்ப்பத்திலும் (i) மெதுவாக (ii) விரைவாக மாற்றப்பட்டால் வாயு தொகுதியின் வெப்பநிலை எவ்வாறு மாற்றம் அடையும் என்பதை வெப்ப இயக்கவியலின் அடிப்படையில் விளக்குக.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

