True positive rate (Sensitivity)

true positive rate =
$$\frac{\text{# of true positives}}{\text{# of known positives}}$$

(Proportion of actual positives that are correctly identified)

True negative rate (Specificity)

true negative rate =
$$\frac{\text{# of true negatives}}{\text{# of known negatives}}$$

(Proportion of actual negatives that are correctly identified)

False positive rate (1 – Specificity)

false positive rate =
$$\frac{\text{# of false positives}}{\text{# of known negatives}}$$

(Proportion of actual negatives that are incorrectly identified)

Sensitivity and specificity depend on a chosen cutoff

Sensitivity and specificity depend on a chosen cutoff

Do Part 1 of the worksheet now

We usually plot the true pos. rate vs. the false pos. rate for all possible cutoffs

ROC curve

Receiver
Operating
Characteristic
curve

Image from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

The area under the curve tells us how good a model's predictions are

Let's look at the performance of several different models for the biopsy data set

| bland_chromatin

bland_chromatin

Model	Area Under Curve (AUC)
M1	0.940
M2	0.974
M3	0.985
M4	0.995
M5	0.996

Things usually look much worse in real life

Keller, Mis, Jia, Wilke. Genome Biol. Evol. 4:80-88, 2012

Calculating ROC curves in R

We need a custom-built function: calc_ROC()

```
calc ROC <- function(probabilities, known truth, model.name=NULL)</pre>
  outcome <- as.numeric(factor(known truth))-1
  pos <- sum(outcome) # total known positives</pre>
  neg <- sum(1-outcome) # total known negatives</pre>
  pos probs <- outcome*probabilities  # probabilities for known positives
  neg probs <- (1-outcome)*probabilities # probabilities for known negatives
  true pos <- sapply(probabilities,
                      function(x) sum(pos probs>=x)/pos) # true pos. rate
  false pos <- sapply(probabilities,
                      function(x) sum(neg probs>=x)/neg) # false pos. rate
  if (is.null(model.name))
    result <- data.frame(true pos, false pos)</pre>
  else
    result <- data.frame(true pos, false pos, model.name)
  result %>% arrange(false pos, true pos)
```

(We do not cover here how this function works, we just use it as a black box.)

```
# fit a logistic regression model
glm.out <- glm(outcome ~ clump thickness,</pre>
               data=biopsy, family=binomial)
# calculate ROC curve
ROC1 <- calc ROC(probabilities=glm.out$fitted.values,
                 known truth=biopsy$outcome,
                 model.name='M1')
# Result
> ROC1
     true pos false pos model.name
    0.2887029 0.000000000
1
                                   M1
    0.2887029 0.000000000
                                   M1
3
  0.2887029 0.000000000
                                   M1
   0.2887029 0.000000000
                                   M1
    0.2887029 0.000000000
                                   M1
    0.2887029 0.000000000
                                   M1
```

Do Part 2 of the worksheet now