УСЛОВИЯ ЗАДАЧ. Найти частные производные до второго порядка включительно заданных функций.

1.
$$z = e^{xy}$$
.

$$2. \quad z = x \ln(x/y).$$

3.
$$z = \sin(xy)$$
.

$$4. \quad z = e^x \cos y.$$

5.
$$z = \sqrt{x^2 + y^2}$$
.

$$6. \quad z = \ln(x^2 + y).$$

7.
$$z = \sqrt{2xy + y^2}$$
. 8. $z = \ln \sqrt[3]{xy}$.

8.
$$z = \ln 3/\overline{xy}$$

9.
$$z = x \cos y + y \sin x$$
. 10. $z = (1+x)^2 (1+y)^4$.

N2

УСЛОВИЯ ЗАДАЧ. Найти градиент функции u=f(x,y,z) в точke M.

1.
$$u = x + \ln(z^2 + y^2)$$
, $M(2, 1, 1)$.

2.
$$u = x^2y - \sqrt{xy + z^2}$$
, $M(1, 5, -2)$.

3.
$$u = \sin(x + 2y) + 2\sqrt{xyz}$$
, $M(\pi/2, 3\pi/2, 3)$.

4.
$$u = x^3 + \sqrt{y^2 + z^2}$$
, $M(1, 1, 0)$.

5.
$$u = \sqrt{xy} + \sqrt{9 - z^2}$$
, $M(1, 1, 0)$.

6.
$$u = \ln(3 - x^2) + xy^2z$$
, $M(1, 3, 2)$.

7.
$$u = x^2y^2z - \ln(z-1)$$
, $M(1,1,2)$.

8.
$$u = \ln(x^2 + y^2)$$
, $M(1, -1, 2)$.

9.
$$u = xy - x/z$$
, $M(-4, 3, -1)$.

10.
$$u = \ln(x + \sqrt{z^2 + y^2}), \quad M(1, -3, 4).$$

Условия задач. Найти производную функции u(x,y,z) в точке Aпо направлению к точке В.

1.
$$u = x + \ln(z^2 + y^2)$$

1.
$$u = x + \ln(z^2 + y^2)$$
, $A(2,1,1)$, $B(0,2,0)$.
2. $u = x^2y - \sqrt{xy + z^2}$, $A(1,5,-2)$, $B(1,7,-4)$.

$$A(1,5,-2), B(1,7,-4).$$

3.
$$u = \sin(x+2y) + 2\sqrt{xyz}$$
, $A\left(\frac{\pi}{2}, \frac{3\pi}{2}, 3\right)$, $B\left(\frac{\pi}{2} + 4, \frac{3\pi}{2} + 3, 3\right)$.

3,
$$B\left(\frac{\pi}{2}+4,\frac{3\pi}{2}+3,3\right)$$

4.
$$u = x^3 + \sqrt{y^2 + z^2}$$
,

$$A(1,1,0), B(1,2,-1).$$

5.
$$u = \sqrt{xy} + \sqrt{9 - z^2}$$
,

$$A(1,1,0), B(3,3,-1).$$

6.
$$u = \ln(3 - x^2) + xy^2z$$
,

7.
$$u = x^2y^2z - \ln(z-1)$$
, $A(1,1,2)$, $B(6,-5,2\sqrt{5}+2)$.

8.
$$u = \ln(x^2 + y^2)$$
,

$$b. \quad a = m(x + y),$$

$$A(1,-1,2), B(2,-2,3).$$

$$9. \ \ u = \ln(x + \sqrt{z^2} +$$

9.
$$u = \ln(x + \sqrt{z^2 + y^2}),$$
 $A(1, -3, 4),$ $B(-1, -4, 5).$

10.
$$u = xy - \frac{x}{2}$$
,

$$A(-4,3,-1), B(1,4,-2).$$

1/4

УСЛОВИЯ ЗАДАЧ. Найти производные z_x' и z_y' функции z=z(u,v),где u = u(x, y) и v = v(x, y).

1.
$$z = u^2 + v^2$$
, $u = x + y$, $v = x - y$.

2.
$$z = \ln(u^2 + v^2)$$
, $u = xy$, $v = x/y$.

3.
$$z = u^v$$
, $u = \sin x$, $v = \cos y$.

4.
$$z = u^2 + 2v^3$$
, $u = x^2 - y^2$, $v = e^{xy}$.

4.
$$z = u^2 + 2v^3$$
, $u = x^2 - y^2$, $v = e^{xy}$.
5. $z = \arctan(u/v)$, $u = x \sin y$, $v = x \cos y$.

6.
$$z = \ln(u - v^2)$$
, $u = x^2 + y^2$, $v = y$.

7.
$$z = u^3 + v^2$$
, $u = \ln \sqrt{x^2 + y^2}$, $v = \arctan(y/x)$.

8.
$$z = \sqrt{uv}$$
, $u = \ln(x^2 + y^2)$, $v = xy^2$.

9.
$$z = e^{uv}$$
, $u = \ln x$, $v = \ln y$.

10.
$$z = \ln(u/v)$$
, $u = \sin(x/y)$, $v = \sqrt{x/y}$.

УСЛОВИЯ ЗАДАЧ. Найти производные функций y=y(x), заданных неявно уравнениями.

$$1. \ y^x = x^y.$$

2.
$$y = 1 + y^x$$
.

$$3. \ \ y = x + \ln y.$$

$$4. \quad x + y = e^{x - y}.$$

$$5. \ x^2 e^{2y} - y^2 e^{2x} = 0.$$

$$6. \ x - y + \operatorname{arctg} y = 0.$$

7.
$$y \sin x - \cos(x - y) = 0$$
. 8. $\sin(xy) - e^{xy} - x^2y = 0$.

$$\sin(xy) - e^{xy} - x^2y = 0$$

9.
$$1 + xy - \ln(e^{xy} + e^{-xy}) = 0$$
. 10. $x^2 - 2xy + y^2 + x + y - 2 = 0$.

$$10^{-2}$$
 $2mu + u^2 + m + u - 2 = 0$

N6

Условия задач. Найти уравнения касательной плоскости и нормали к поверхности в заданной точке М.

1.
$$z = x^2 + y^2$$
, $M(1, -2, 5)$.

2.
$$\frac{x^2}{16} + \frac{y^2}{9} - \frac{z^2}{8} = 0$$
, $M(4,3,4)$.

3.
$$z = \sin x \cos y$$
, $M(\pi/4, \pi/4, 1/2)$.

4.
$$z = e^{x \cos y}$$
, $M(1, \pi, 1/e)$.

5.
$$z = y \operatorname{tg} x$$
, $M(\pi/4, 1, 1)$.

6.
$$z = \arctan(x/y)$$
, $M(1, 1, \pi/4)$.

7.
$$x(y+z)(z-xy)=8$$
, $M(2,1,3)$.

8.
$$2^{x/z} + 2^{y/z} = 8$$
, $M(2, 2, 1)$.

9.
$$x^2 + y^2 + z^2 - 16 = 0$$
, $M(2, 2, 2\sqrt{2})$.

10.
$$x^2 + y^2 - z^2 = -1$$
, $M(2, 2, 3)$.

УСЛОВИЯ ЗАДАЧ. Найти стационарные точки заданных функций и исследовать их характер.

1.
$$z = x^2 - xy + y^2$$
.

$$2. \ z = x^2 - xy - y^2.$$

3.
$$z = x^2 - 2xy + 2y^2 + 2x$$

3.
$$z = x^2 - 2xy + 2y^2 + 2x$$
. 4. $z = x^3 + y^3 - x^2 - 2xy - y^2$.

5.
$$z = x^3 - 2y^3 - 3x + 6y$$
. 6. $z = 4x + 2y - x^2 - y^2$.

6.
$$z = 4x + 2y - x^2 - y^2$$

7.
$$z = x^3 + y^3 - 15xy$$
.

7.
$$z = x^3 + y^3 - 15xy$$
.
8. $z = x^2 + xy + y^2 - 3x - 6y$.

9.
$$z = x^2 + 4y^2 - 2xy + 4$$
. 10. $z = x/y + 1/x + y$.

10.
$$z = x/y + 1/x + y$$

Eucleus zagar.

N8

В этом задании в каждом варианте даны функция и трёх переменных x, y, z и уравнение в частных производных (e). Проверьте, является ли

функция u решением уравнения (e).

1.
$$u = x^{z^3}y$$
, (e):

1.
$$u = x^{z^3}y$$
, (e): $3x \ln x \frac{\partial u}{\partial x} = yz \frac{\partial^2 u}{\partial y \partial z}$.

$$2. \ u = z^{x^2 + y}$$

2.
$$u = z^{x^2+y}$$
, (e): $2xz \ln^2 z \frac{\partial u}{\partial z} = (x^2+y) \frac{\partial^2 u}{\partial x \partial y}$.

$$3. \ u = \sin(x^3 y^2 z),$$

3.
$$u = \sin(x^3y^2z)$$
, (e): $\frac{\partial^2 u}{\partial z^2} + x^6y^4u = 0$.

$$4. u = z \operatorname{tg}(x^2 y),$$

4.
$$u = z \operatorname{tg}(x^2 y)$$
, (e): $z^2 \frac{\partial^2 u}{\partial y \partial z} = x^2 (u^2 + z^2)$.

5.
$$u = z^{2y} \arcsin x$$
.

5.
$$u = z^{2y} \arcsin x$$
, (e): $2 \ln z \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x \partial y}$.

6.
$$u = x^{y^3 z}$$
. (e)

6.
$$u = x^{y^3 z}$$
, (e): $x \frac{\partial^2 u}{\partial x \partial z} = y^3 (zy^3 \ln x + 1)u$.

7.
$$u \equiv x^2 y^z$$
,

7.
$$u \equiv x^2 y^z$$
, (e): $xy \frac{\partial^2 u}{\partial x \partial y} = 2zu$.

$$9 = u^{z^3} \operatorname{oret} \sigma \sigma$$

8.
$$u \equiv y^{z^3} \operatorname{arctg} x$$
, (e): $3z^2 \ln y \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x \partial z}$.

$$9. \ u \equiv z^4 e^{xy^3},$$

9.
$$u \equiv z^4 e^{xy^3}$$
, (e): $z \frac{\partial^2 u}{\partial x \partial z} = 4y^3 u$.

10.
$$u = z^{x^5y^3} - 1$$
,

(e):
$$z \frac{\partial^2 u}{\partial x \partial z} = 5x^4y^3(1+x^5y^3\ln z)(u+1)$$

Tember zagar.

В этом задании в каждом варианте даны функция z двух переменных x и y и область D. Найдите наибольшее и наименьшее значение функции z в области D.

- 1. $z = x^2 2x + y^2 4y + 3$, область D задана неравенствами $-2 \le x \le 0$ и $0 \le y \le 3$.
- 2. $z = x^2 + 2x + y^2 4y + 4$, область D задана неравенствами $0 \le x \le 2$ и $0 \le y \le 3$.
- 3. $z = -x^2 + 2x y^2 + 4y$, область D задана неравенствами $0 \le x \le 2$ и $0 \le y \le 3$.
- $4. \ z = 2x^2 8x + y^2 2y + 8,$ область D задана неравенствами $0 \le y \le 4x x^2 1.$
- 5. $z = x^2 2x + y^2 + 4y + 6$, область D задана неравенствами $x^2 2x 3 \le y \le 0$.
- 6. $z = -x^2 4x y^2 + 2y 4$, область D задана неравенствами $-4 \le x \le 0$ и $0 \le y \le 2$.
- 7. $z = x^2 + 4x + y^2 2y + 4$, область D задана неравенствами $1 \le x \le 2$ и $0 \le y \le 2$.
- 8. $z = -x^2 2x y^2 4y 6$, область D задана неравенствами $-2 \le x \le 0$ и $-4 \le y \le 0$.
- 9. $z = -x^2 4x 3y^2 + 6y + 8$, область D задана неравенствами $-4 \le x \le 0$ и $0 \le y \le 2$.
- 10. $z = 4x^2 + 8x + y^2 + 4y + 7$, область D задана неравенствами $-4 \le x \le 0$ и $0 \le y \le 2$.