RUTGERS

Principles of Programming LanguagesCS 314

Recitation 9

Lambda Calculus

 β -Reduction

α-Reduction

Programming in Lambda Calculus

RUTGERS

Lambda Calculus

β-Reduction

α-Reduction

Programming in Lambda Calculus

- A unified language to manipulate and reason about functions.
- Consider the function f(x) = x + 4.
- This can be expressed as $\lambda x.(+ x 4)$
- By applying a value to the function, we can evaluate the function.
- $((\lambda x.(+ x 4)) 2) = 6$ is equivalent to saying f(2) = 2 + 4 = 6.

Expressions in Lambda Calculus consist of λ -terms.

- Variables such as "x" or values such as "2".
- Function abstraction (λx . M), where M is some λ -term.
- Function application (M N), where M and N are λ-terms.

An example of function application was: $((\lambda x.(+ x 4)) 2)$

- $M = (\lambda x.(+ x 4))$
- . N = 2

Function abstraction

• We can express a function of many arguments: f(x, y) = x + y + 1:

$$(\lambda x.\lambda y.(+ (+ x y) 1))$$

. We can also write the above expression as

$$(\lambda xy.(+ (+ x y) 1))$$

One lambda for each input variable "λx.λy.", or one letter for each variable "λxy.".

If we have an expression as follows:

 $(\lambda x. M)$

Then we say that x is bound in expression M. All other variable occurrences in M for this particular function are free.

What variables are bound in this expression?

$$(\lambda xy.((x y) (x w)))$$

What variables are bound in this expression?

$$(\lambda xy.((x y) (x w)))$$

x and y are bound in this expression.

What variables are free in this expression?

What variables are bound in this expression?

$$(\lambda xy.((x y) (x w)))$$

x and y are bound in this expression.

What variables are free in this expression?

w is free in this expression.

RUTGERS

Lambda Calculus

β-Reduction

α-Reduction

Programming in Lambda Calculus

 β -Reduction is the technique of applying functions to their arguments.

$$((\lambda x.M) \ v) = [v \ / \ x]M$$

The notation "[v / x]M" means replacing all free occurrences of x in M with v.

Examples:

- $((\lambda x.(+ x 1)) 2) = [2 / x](+ x 1) = (+ 2 1) = 3$
- $((\lambda x.(+ x x)) 2) = (+ 2 2) = 4$
- $((\lambda x.3) 2) = 3$ No substitution happens here.

More examples:

- $((\lambda x.\lambda y.(+ x y)) 2) = [2 / x](\lambda y.(+ x y)) = (\lambda y.(+ 2 y)) = 2 + y$
- Apply the outer-most λ first.
- $((\lambda x.(x y)) (\lambda z.z)) = ((\lambda z.z) y) = y.$
- Functions can be "values" that can be applied.
- What about ((λx.λy.xy) (λz.(z z)) x)?

More examples:

- $((\lambda x.\lambda y.(+ x y)) 2) = [2 / x](\lambda y.(+ x y)) = (\lambda y.(+ 2 y)) = 2 + y$
- Apply the outer-most λ first.
- $((\lambda x.(x y)) (\lambda z.z)) = ((\lambda z.z) y) = y.$
- Functions can be "values" that can be applied.

•
$$((\lambda x.\lambda y.xy) (\lambda z.(z z)) x) = ((\lambda y.((\lambda z.(z z)) y) x)$$
 Substitute $(\lambda z.(z z))$ for $x = ((\lambda z.(z z)) x)$ Substitute $x = (x x)$

RUTGERS

Lambda Calculus

β-Reduction

 α -Reduction

Programming in Lambda Calculus

Suppose we have the following example:

$$((\lambda x.\lambda y.(x y)) y w)$$

If I used β-Reduction here, I would've gotten

$$((\lambda y.(y y)) w)$$

Even though y is not equal to y. How do we fix this problem?

We can use α -Reduction, which first renames y into another variable, say z. $((\lambda x.\lambda z.(x\ z))\ y\ w)$

Now we can continue with β -Reduction.

$$((\lambda x.\lambda z.(x z)) y w) = ((\lambda z.(y z)) w) = (y w)$$

Another example: Use α -Reduction and β -Reduction to reduce this expression:

$$((\lambda x.\lambda y.(x y)) (\lambda y. y) w)$$

Another example: Use α -Reduction and β -Reduction to reduce this expression:

$$((\lambda x.\lambda y.(x y)) (\lambda y. y) w)$$

First, use α -Reduction to rename y

$$((\lambda x.\lambda z.(x z)) (\lambda y. y) w)$$

Now use β-Reduction

$$((\lambda x.\lambda z.(x z)) (\lambda y. y) w) = ((\lambda z.((\lambda y. y) z)) w)$$
$$((\lambda z.((\lambda y. y) z)) w) = ((\lambda y. y) w)$$

$$((\lambda y. y) w) = w$$

RUTGERS

Lambda Calculus

β-Reduction

α-Reduction

Programming in Lambda Calculus

We can also program using Lambda Calculus.

First, some definitions:

```
True = (\lambda xy.x) (select-first)
False = (\lambda xy.y) (select-second)
```

```
and = (\lambda xy.((x y) False))
not = (\lambda x.((x False) True))
```

Can we show that (not False) = True?

We want to show that (not False) = True:

Recall that not = $(\lambda x.((x \text{ False}) \text{ True}))$ and False = $(\lambda xy.y)$

(not False) = $((\lambda x.((x \text{ False}) \text{ True})) \text{ False})$

By β -Reduction we have:

(not False) = ((False False) True) = (($\lambda xy.y$) False) True)

By β -Reduction, again, we have:

 $((\lambda xy.y) \text{ False}) \text{ True}) = ((\lambda y.y) \text{ True}) = \text{True}$

Thus, (not False) = True

Given

```
True = (\lambda xy.x) (select-first)

False = (\lambda xy.y) (select-second)

and = (\lambda xy.((x y) False))

not = (\lambda x.((x False) True))
```

Can we show that (and True False) = False?

We want to show that (and True False) = False:

Recall that and = $(\lambda xy.((x y) False))$ and True = $(\lambda xy.x)$

(and True False) = $((\lambda xy.((x y) False)))$ True False)

By β -Reduction we have:

(and True False) = ((True False) False) = (($\lambda xy.x$) False) False)

By β -Reduction, again, we have:

 $((\lambda xy.x) \text{ False}) = ((\lambda y.\text{False}) \text{ False}) = \text{False}$

Thus, (and True False) = False.

Programming in Lambda Calculus

Consider: What would be the Lambda Calculus representation of "or"?

Programming in Lambda Calculus

Church numerals

```
0 = (\lambda f.\lambda x.x)
1 = (\lambda f.\lambda x.(f x))
2 = (\lambda f.\lambda x.(f (f x)))
...
n = (\lambda f.\lambda x.(f (f... (f (f x))) \quad n \text{ copies of "f"}
```

So, (n f x) = (f (f (f ... f (f x)))), with n copies of "f", where n is the church numeral.

Church numerals

The successor function (s(x) = x + 1) is defined as follows:

$$s(n) = (\lambda n.\lambda fx.(f(n f x)))$$

Note that the idea is to just apply one more "f"

Example: s(1) = 2: Recall that $1 = (\lambda f.\lambda x.(f x))$

$$((\lambda n.\lambda fx.(f (n f x))) (\lambda f.\lambda x.(f x))) = (\lambda fx.(f ((\lambda f.\lambda x.(f x)) f x)))$$

$$= (\lambda fx.(f (f x))) = 2$$

Programming in Lambda Calculus

Church numerals

The addition function (add(m, n) = m + n) is defined as follows:

$$add(m, n) = (\lambda mn.\lambda fx.(m f (n f x))))$$

Example: add(1, 2) = 3: Recall that
$$1 = (\lambda fx.(f x))$$
 and $2 = (\lambda fx.(f (f x)))$ add(1, 2) = $((\lambda fx.(f x)))((\lambda fx.(f x)))((\lambda fx.(f x)))((\lambda fx.(f x))))$ = $(\lambda fx.((\lambda fx.(f x))))((\lambda fx.(f (f x)))))$

$$= (\lambda fx.((\lambda x.(f x)) ((\lambda fx.(f (f x))) f x))))$$

$$= (\lambda f x.((\lambda x.(f x)) (f (f x))))$$

$$= (\lambda f x.(f (f (f x)))) = 3.$$

Programming in Lambda Calculus

Church numerals

The multiplication function (mult(m, n) = m * n) is defined as follows:

$$mult(m, n) = (\lambda mn.\lambda fx.((m (n f)) x)$$

Example: mult(1, 2) = 2: Recall that
$$1 = (\lambda fx.(f x))$$
 and $2 = (\lambda fx.(f (f x)))$

$$mult(1, 2) = ((\lambda mn.\lambda fx.((m (n f)) x) (\lambda fx.(f x)) (\lambda fx.(f (f x)))))$$

 $= (\lambda f x.(((\lambda f x.(f x))((\lambda f x.(f (f x))) f)) x)$

$$= (\lambda f x.(((\lambda f x.(f x))(\lambda x.(f (f x))))) x)$$

$$= (\lambda f x.(((\lambda x.((\lambda x.(f(f(x))) x)))) x)$$

=
$$(\lambda fx.((\lambda x.(f(f x))) x) = (\lambda fx.(f(f x))) = 2.$$