Q02a Let n be a positive integer (greater than 1), then by the Unique Factorization Theorem, n can be expressed as:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

where $p_1, p_2, ..., p_k$, $k \ge 1$ are a list of prime divisors of n and $a_1, a_2, ..., a_k$ are all non-negative integers. From the DFPF, we know that all of n's divisors (known as the integer c) are of the form:

$$d = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$$
, where $0 \le \beta_i \le \alpha_i$ for $i = 1, 2, ..., k$

We know from DFPF that for each prime factor of d (known as p_i), that its exponent (β_i) must be bounded by: $0 \le \beta_i \le \alpha_i$. In other words this means that the for p_i the choice is between $0, 1, 2, ..., \alpha_i$ which means that for each p_i the total combinations it can have is $\alpha_i + 1$.

Divisor (d) combinations for each
$$p_i = \alpha_i + 1$$

Let c_i corrisponds to the combinations of p_i for 1, 2, ..., k, the total combinations of d will be given by:

Total Combinations of
$$d = (c_1)(c_2)...(c_k)$$

Since we know $c_i = \alpha_i + 1$, this can be replaced by:

Total Combinations of d =
$$(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1)$$

Therefore since d is every positive divisor of n, the number of divisors of n will be given by $(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1)$.

Q02b Let m, n both be positive positive integer greater then 1, then by the Unique Factorization Theorem, n can be expressed as:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

where $p_1, p_2, ..., p_k, k \ge 1$ are a list of prime divisors of n and $a_1, a_2, ..., a_k$ are all non-negative integers. From the DFPF, we know that all of n's divisors (known as the integer c) are of the form:

$$d = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$$
, where $0 \le \beta_i \le \alpha_i$ for $i = 1, 2, ..., k$

We know from DFPF that for each prime factor of d (known as p_i), that its exponent (β_i) must be bounded by: $0 \le \beta_i \le \alpha_i$. In other words this means that the for p_i the choice is between $0, 1, 2, ..., \alpha_i$ which means that for each p_i the total combinations it can have is $\alpha_i + 1$.

Divisor (d) combinations for each
$$p_i = \alpha_i + 1$$

Let c_i corrisponds to the combinations of p_i for 1, 2, ..., k, the total combinations of d will be given by:

Total Combinations of
$$d = (c_1)(c_2)...(c_k)$$

Since we know $c_i = \alpha_i + 1$, this can be replaced by:

Total Combinations of d =
$$(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1)$$

Therefore since d is every positive divisor of n, the number of divisors of n will be given by $(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_k + 1)$.