

De l'Électronique Embarquée à l'Internet des Objets (IoT)

Explorez comment les systèmes embarqués forment la base essentielle de l'IoT. Cette présentation vulgarise ces concepts clés avec des exemples pratiques.

Introduction à l'Internet des Objets

Définition

L'IoT relie objets physiques à Internet pour échange de données.

Pourquoi l'électronique embarquée ?

Elle fournit le matériel et la logique pour l'IoT.

Objectif

Comprendre la progression des systèmes embarqués à l'loT.

Les systèmes embarqués : la base de l'IoT

Un système embarqué est un système autonome constitué de composants matériels (électroniques) tels que des capteurs, un microcontrôleur et des actionneurs, ainsi que de logiciels. Il est intégré dans un dispositif plus large (voiture, électroménager, appareil médical...) pour en assurer le contrôle, le pilotage ou la supervision d'une ou plusieurs tâches spécifiques.

Capteurs

Un capteur est un dispositif qui détecte une information physique ou chimique et la transforme en un signal électrique que peut comprendre un système électronique.

Capteur de gaz mq2

Capteur de température

Capteur d'humidité du sol

Actionneurs

Un actionneur est un composant qui réagit à un signal de commande en produisant un effet physique, comme un mouvement, une lumière ou un son etc.

Buzzer

Servomoteur

LED

Microcontrôleurs

Un microcontrôleur est un composant électronique programmable qui peut recevoir des données (des capteurs), les traiter (grâce à un programme, et agir (via des actionneurs).

Carte ESP32

Carte Arduino Mega

Exemple pratique

Projet Tathiou

Breadboard

Arduino ide

Arduino ide

De l'Électronique Embarquée à l'Internet des Objets (IoT)

Simulation - Alarme d'intrusion

De l'intelligence locale à la connectivité

Limites des systèmes autonomes

Manque de communication et contrôle distant.

Technologies de communication

Wi-Fi, Bluetooth, LoRa facilitent la connectivité.

Besoin crucial

Remonter les données et piloter à distance en temps réel.

Architecture de l'Internet des Objets

Capteurs & actionneurs

Collecte et action locale sur le terrain.

Réseaux

Transmission des données vers les serveurs.

Serveurs & plateformes

Traitement et stockage, ex: Node-RED, MQTT.

Interfaces utilisateur

Contrôle via mobile, web, ou autre système.

Serveurs & plateformes

Node-RED

MQTT

Node-RED

Node-RED est un **outil permettant de programmer facilement des serveurs**. Il est basé sur Node JS, et son principe de base est l'utilisation de 'Nodes' représentant chacune une fonctionnalité, ce qui permet de ne presque jamais avoir à coder soi-même.

MQTT

MQTT (Message Queuing Telemetry Transport) est un **protocole de messagerie léger**, très utilisé dans l'IoT pour permettre la communication entre appareils. Il repose sur une architecture **publish/subscribe** (publication/abonnement),

Topic

maison/wally/alerter/police

Clients

Publisher (émetteur)

Subscriber (Abonné)

Serveur (courtier)

Il reçoit tous les messages des clients publishers et les redirige vers les clients subscribers qui se sont abonnés à ces messages.

Exemple: plateforme IoT avec Node-RED et MQTT

1

Capteur & actionneur

Mesure ou action déclenchée sur objet connecté.

2

Broker MQTT

Gestion des messages entre appareils et serveurs.

3

Node-RED

Traitement visuel des données, automatisation des flux.

4

Interface Web

Contrôle et visualisation en temps réel.

Conclusion et perspectives

Résumé

Les systèmes embarqués permettent l'émergence de l'IoT.

Avantages

Automatisation, contrôle à distance, collecte massive de données.

Applications réelles

Santé, smart city, domotique et bien plus encore.