Category \mathcal{O} , Problem Set 4

D. Zack Garza

Sunday 26th April, 2020

Contents

1	Humphreys 3.1 1.1 Solution
2	Humphreys 3.2 2.1 Solution
3	Humphreys 3.4 3.1 Solution 4 3.1.1 Proof of Proposition 1 4 3.1.2 Proof of Proposition 2 4
4	Humphreys 3.7 4.1 a

1 Humphreys 3.1

Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and identify $\lambda \in \mathfrak{h}^{\vee}$ with a scalar. Let N be a 2-dimensional $U(\mathfrak{b})$ -module defined by letting x act as 0 and h act as $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

Show that the induced $U(\mathfrak{g})$ -module structure $M := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N$ fits into an exact sequence which fails to split:

$$0 \longrightarrow M(\lambda) \longrightarrow M \longrightarrow M(\lambda) \longrightarrow 0$$

1.1 Solution

Reference 1 Reference 2

Hence $M \notin \mathcal{O}$.

We first unpack all definitions in terms of tensor products, using the fact that $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$:

$$0 \longrightarrow M(\lambda) \longrightarrow M \longrightarrow M(\lambda) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \longrightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N \longrightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \longrightarrow 0$$

$$1 \otimes 1 \longmapsto \psi \longrightarrow 1 \otimes 0$$

$$1 \otimes \mathbf{v} \longmapsto 0 \longrightarrow 1 \otimes 1$$

where $N = \operatorname{span}_{\mathbb{C}} \{ \mathbf{u}, \mathbf{v} \}.$

We make the following claims:

- 1. The action defined on N lifts to a $U(\mathfrak{g})$ -action on M.
- 2. This is an exact sequence of $U(\mathfrak{g})$ -modules.
- 3. $M \ncong M(\lambda) \oplus M(\lambda)$, showing that this sequence can not split.

We note that by using a PBW basis for $\mathfrak{sl}(2,\mathbb{C})$, M is spanned by infinitely many basis elements of the form $\{y^k \otimes \mathbf{u}, y^j \otimes \mathbf{v} \mid j, k \in \mathbb{Z}^{\geq 0}\}$. We also note that identifying the image $\psi(M(\lambda)) = \mathbb{C} \cdot \mathbf{u} \cong \mathbb{C}_{\lambda}$ (as $U(\mathfrak{b})$ -modules) we obtain a submodule of N, which lifts to a submodule of the induced module M. Similarly,

2 Humphreys 3.2

Show that for $M \in \mathcal{O}$ and dim $L < \infty$,

$$(M \otimes L)^{\vee} \cong M^{\vee} \otimes L^{\vee}$$

Reference for Dual of Sum

2.1 Solution

We first note that $M \in \mathcal{O} \implies M = \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} M_{\lambda}$ where each M_{λ} is a finite-dimensional weight space.

Moreover, $M^{\vee} := \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} M_{\lambda}^{\vee}$ is defined to be a direct sum of duals of weight spaces, which are still finite-dimensional.

So let $M, N \in \mathcal{O}$; we will proceed by showing that both $(M \otimes_{\mathbb{C}} L)^{\vee}$ and $M^{\vee} \otimes_{\mathbb{C}}^{\vee}$ have identical direct sum decompositions.

We first have

$$(M \otimes_{\mathbb{C}} L)^{\vee} := \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} (M \otimes_{\mathbb{C}} L)_{\lambda}^{\vee}, \qquad \text{the λ weight spaces of $M \otimes_{\mathbb{C}} L$}$$

$$\cong \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} \left(\bigoplus_{\alpha + \beta = \lambda} (M_{\alpha} \otimes_{\mathbb{C}} L_{\beta}) \right)^{\vee} \quad \text{by an exercise on the weight spaces of a tensor product}$$

$$\cong \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} \left(\bigoplus_{\alpha + \beta = \lambda} (M_{\alpha} \otimes_{\mathbb{C}} L_{\beta})^{\vee} \right) \quad \text{since the inner term is a finite sum}$$

$$\cong \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} \left(\bigoplus_{\alpha + \beta = \lambda} \left(M_{\alpha}^{\vee} \otimes_{\mathbb{C}} L_{\beta}^{\vee} \right) \right) \quad \text{since the weight spaces are finite-dimensional,}$$

where we've repeatedly used the fact that $(V \otimes W)^{\vee} \cong V^{\vee} \otimes W^{\vee}$ for finite-dimensional vector spaces, which inductively holds for any finite direct sum of vector spaces.

On the other hand, using the fact that

$$(A \oplus B) \otimes (C \oplus D) = ((A \oplus B) \otimes C) \oplus ((A \oplus B) \otimes D)$$
$$= (A \otimes C) \oplus (B \otimes C) \oplus (A \otimes D) \oplus (B \otimes D)$$
$$\Longrightarrow \left(\bigoplus_{j \in J} A_i\right) \otimes \left(\bigoplus_{k \in K} B_k\right) = \bigoplus_{j \in J} \bigoplus_{k \in K} (A_j \otimes B_k) \quad \text{by induction} \quad .$$

we can write

$$M^{\vee} \otimes_{\mathbb{C}} L^{\vee} := \left(\bigoplus_{\alpha \in \mathfrak{h}^{\vee}} M_{\alpha}^{\vee}\right) \otimes_{\mathbb{C}} \left(\bigoplus_{\beta \in \mathfrak{h}^{\vee}} L_{\beta}^{\vee}\right)$$
$$\cong \bigoplus_{\lambda \in \mathfrak{h}^{\vee}} \left(\bigoplus_{\alpha + \beta = \lambda} \left(M_{\alpha}^{\vee} \otimes_{\mathbb{C}} L_{\beta}^{\vee}\right)\right),$$

which equals what was obtained above.

This exhibits the isomorphism as \mathbb{C} -vector spaces, to see that this is in fact as isomorphism of $U(\mathfrak{g})$ -modules we can use the fact that for $M \in \mathcal{O}$, a twisted \mathfrak{g} -action was defined as

$$\mathbf{v} \in M, \ f \in M^{\vee}, \ g \in \mathfrak{g} \implies (g \cdot f)(\mathbf{v}) = f(\tau(g) \cdot \mathbf{v})$$

for the transpose map τ . This action can be "linearly extended" over direct products and tensor products by taking the action component-wise, and is thus preserved by all of the isomorphisms appearing above.

Since the final terms $\bigoplus_{\lambda \in \mathfrak{h}} \bigoplus_{\alpha + \beta = \lambda} M_{\alpha}^{\vee} \otimes L_{\beta}^{\vee}$ are identical, they carry the same action, and since they

are preserved by the isomorphisms, working backwards shows that the actions on $(M \otimes L)^{\vee}$ and $M^{\vee} \otimes L^{\vee}$ must also agree, yielding the desired isomorphism.

3 Humphreys 3.4

Show that $\Phi_{[\lambda]} \cap \Phi^+$ is a positive system in the root system $\Phi_{[\lambda]}$, but the corresponding simple system $\Delta_{[\lambda]}$ may be unrelated to Δ .

For a concrete example, take Φ of type B_2 with a short simple root α and a long simple root β . If $\lambda := \alpha/2$, check that $\Phi_{[\lambda]}$ contains just the four short roots in Φ .

3.1 Solution

We would like to show the following two propositions:

- 1. $\Phi_{[\lambda]}^+ := \Phi_{[\lambda]} \cap \Phi^+$ is a positive system in $\Phi_{[\lambda]}$,
- 2. In general, the associated simple system $\Delta_{[\lambda]} \neq \Phi_{[\lambda]}^+ \cap \Delta$.

3.1.1 Proof of Proposition 1

We'll use the definition that for an abstract root system Φ , a positive system Φ^+ is defined by picking a hyperplane H not containing any roots and taking all roots on one side of this hyperplane.

However, if every element of Φ^+ is on one side of H, then any subset satisfies this property as well, thus $\Phi_{[\lambda]} \cap \Phi^+$ consists only of positive roots and thus forms a positive system.

3.1.2 Proof of Proposition 2

Concretely, we can realize Φ and Δ as subsets of \mathbb{R}^2 in the following way:

$$\begin{split} \Phi &= P_1 \coprod P_2 \coloneqq \{[1,0],[0,1],[-1,0],[0,-1]\} \coprod \{[1,1],[-1,1],[1,-1],[-1,-1]\} \\ \Delta &\coloneqq \{\alpha,\beta\} \coloneqq \{[1,0],[-1,1]\}\,, \end{split}$$

where we note that P_1 consists of short roots (of norm 1) and P_2 of long roots (of norm $\sqrt{2}$) and we've chosen a simple system consisting of one short root and one long root.

Now by definition,

$$\Phi_{[\lambda]} := \left\{ \gamma \in \Phi \mid \langle \lambda, \ \gamma^{\vee} \rangle \in \mathbb{Z} \right\}, \qquad \gamma^{\vee} := \frac{2}{\|\gamma\|^2} \ \gamma,
\Delta_{[\lambda]} := \left\{ \gamma \in \Delta \mid \langle \lambda, \ \gamma^{\vee} \rangle \in \mathbb{Z} \right\}.$$

Now choosing $\lambda := \frac{\alpha}{2} = \left[\frac{1}{2}, 0\right]$, we now consider the inner products $\langle \lambda, \gamma^{\vee} \rangle$ for $\gamma \in \Phi$:

Thus

$$\gamma_1 \in P_1 \implies \left\langle \left[\frac{1}{2}, 0 \right], \ 2\gamma_1 \right\rangle = 2\left(\frac{1}{2} \right) \langle [1, 0], \ \gamma_1 \rangle = (\gamma_1)_1 \in \{0, \pm 1\} \in \mathbb{Z}$$

$$\gamma_2 \in P_2 \implies \left\langle \lambda, \ \gamma_2^{\vee} \right\rangle = \left\langle \left[\frac{1}{2}, 0 \right], \ \frac{2}{\left(\sqrt{2} \right)^2} [\pm 1, \pm 1] \right\rangle = \pm \frac{1}{2} \notin \mathbb{Z}$$

where $(\gamma_1)_1$ denotes the first component of γ_1 .

We thus find that

$$\Phi_{[\lambda]} = P_1$$
 the short roots
$$\Delta_{[\lambda]} = \Phi_{[\lambda]} \bigcap \Delta = \{\alpha\}$$
 the single short simple root.

Choosing the following hyperplane H not containing any root, we can choose a positive system:

$$\Phi^+ = \{\beta, \beta + \alpha, \beta + 2\alpha, \alpha\}$$

where we can note that $\Phi^+ \cap \Delta = \Delta$, since we've placed both simple roots on the positive side of this hyperplane by construction.

But by taking roots on the positive side of this plane, we have

$$\Phi_{[\lambda]} = \{\alpha, -\alpha, \alpha + \beta, -\alpha - \beta\} \implies \Phi_{[\lambda]}^+ = \{\alpha, \alpha + \beta\}$$

where we can now note that a simple system in *this* root system must still have rank 2, so we can take $\Delta_{[\lambda]} = \{\alpha, \alpha + \beta\}$. But now we can note

$$\Delta_{[\lambda]} = \{\alpha, \alpha + \beta\} \neq \{\alpha\} = \{\alpha, \alpha + \beta\} \bigcap \{\alpha, \beta\} = \Phi^+_{[\lambda]} \bigcap \Delta,$$

which is what we wanted to show.

4 Humphreys 3.7

4.1 a

If a module M has a standard filtration and there exists an epimorphism $\phi: M \longrightarrow M(\lambda)$, prove that ker ϕ admits a standard filtration.

4.2 b

Show by example that when $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ that the existence of a monomorphism $\phi: M(\lambda) \longrightarrow M$ where M has a standard filtration fails to imply that coker ϕ has a standard filtration.