Table of Contents

```
Housekeeping 2
Set up _______4
%%%%%%%%%%%%%%%
% CODE CHALLENGE 5 - Template Script
% The purpose of this challenge is to predict whether or not the
Boulder
% Reservior will have to close due to a major leak.
% To complete the challenge, execute the following steps:
% Part 1:
% 1) Read in the data file
% 2) Set values to any constants
% 3) Perform a trapazoid integration on the data w/r.t. x
% 4) Perform a simpson's 1/3 integration on the data w/r.t. x
% 5) Display which volume measurement is more accurate and why
% Part 2:
% 1) Define which delta t will be used in the Euler integration
% 2) Set values to any constants and initial conditions
% 3) Propagate h with t using Euler integration
% 4) Repeat steps 1-4 with different delta t values
% 5) Display which delta t gives a more accurate result and why.
% NOTE: DO NOT change any variable names already present in the code.
% Upload your team's script to Gradescope to complete the challenge.
% NAME YOUR FILE AS Challenge5_Sec{section number}_Group{group}
breakout #}.m
% ***Section numbers are 1 or 2***
% EX File Name: Challenge5_Sec1_Group15.m
% 1) Suphakan Sukwong
% 2) John Glezen
% 3) Reid Godbey
% 4) Tristan Workman
% 5) Brendan Sheets
```

Housekeeping

don't "clear variables", it makes things easier to grade

Part 1

Set up

```
data = readtable("depth_data.csv") % read in .csv
x = data.x; % [ft]
d = data.d; % [ft]
L = 4836; % length of reservior [ft]

data =
    31×2 table
```

X	d
0	0
-	•
223.82	5.126
447.64	9.6481
671.46	13.478
895.29	16.552
1119.1	18.844
1342.9	20.369
1566.8	21.183
1790.6	21.381
2014.4	21.089
2238.2	20.45
2462	19.614
2685.9	18.72
2909.7	17.886
3133.5	17.196
3357.3	16.696
3581.1	16.387
3805	16.233
4028.8	16.162
4252.6	16.08
4476.4	15.883
4700.3	15.47
4924.1	14.759
5147.9	13.696
J14/.J	13.090

```
5371.7 12.267

5595.5 10.497

5819.4 8.4562

6043.2 6.2481

6267 4.0047

6490.8 1.8727

6714.6 2.5539e-06
```

Trapazoid - Calculate Volume

```
n = length(x) - 1;
dx = 223.8215;
Area = 0;
for i=1:n % summation for repeating values
    Area = Area + (dx * d(i));
end
Area = Area + (dx./2)*(d(1)+d(n+1))
comparison = trapz(x,d) % checking accuracy
Vol_trap = Area * L; % [ft^3]

Area =
    9.5403e+04

comparison =
    9.5403e+04
```

Simpson 1/3 - Calculate Volume

```
sum1 = 0;
for i=2:(n/2) % first summation for odd repeating values
    sum1 = sum1 + d(2*i-1);
end
sum2 = 0;
for i=1:(n/2) % second summation for even repeating values
    sum2 = sum2 + d(2*i);
end
Area_S = dx/3 * (d(1) + d(n+1) + (2 * sum1) + (4 * sum2)) % area
V_simp = Area_S * L % [ft^3]
Area_S =
    9.5536e+04

V_simp =
```

4.6201e+08

The simpsons rule calculation is much more accurate.

Part 2

Set up

```
del_t = [0.5 1 4 7]; % various delta t values to test [days]
% time vector with the 4 provided delta t's
figure(1) % create figure
h0 = 20; % initial depth
alpha = 1.5 * 10^6; % relating volume out per day to depth [ft^2/day]
dV_in = 2 * 10^7; % volume in rate per day
for j = 1:4 % for plotting the 4 delta t's
    t = 1:del_t(j):100; % allocate time vector [days]
    h = zeros(length(t),1); % allocate depth vector [ft]
    h(1) = h0; % set initial value in h vector
    for i = 1:(length(t)-1) % Euler method
        dhdt = get_dhdt(h(i),L,alpha,dV_in); % get dh/dt at this depth
        h(i+1) = h(i) + dhdt*del_t(j); %compute next depth value
    end
    plot(t,h)
    hold on
end
legend("0.5 Days", "1 Day", "4 Days", "7 Days")
title("Boulder Reservoir Depth with Time")
xlabel("Time [Days]")
ylabel("Depth [ft]")
% plot results
% labels for plot
```


Published with MATLAB® R2020a