Inferência Estatística I

DISTRIBUIÇÕES AMOSTRAIS
TUANY CASTRO

Situação: Qual a idade média dos fãs dos Beatles?

 \bar{X} é uma variável aleatória.

Estimadores são variáveis aleatórias, pois dependem da amostra obtida.

Exemplo: Um jogo consiste em lançar uma moeda honesta 3 vezes. Para cada lançamento, se sair cara você ganha 1 ponto, caso saia coroa, você perde 1 ponto.

Possíveis amostras	Probabilidade	\overline{X}	S^2
(-1, -1, -1)	1/8	-1	0
(-1, -1, 1)	1/8	-1/3	4/3
(-1, 1, -1)	1/8	-1/3	4/3
(-1, 1, 1)	1/8	1/3	4/3
(1, -1, -1)	1/8	-1/3	4/3
(1, -1, 1)	1/8	1/3	4/3
(1, 1, -1)	1/8	1/3	4/3
(1, 1, 1)	1/8	1	0

Assim, as distribuições de \bar{X} e S^2 desse estudo:

$ar{X}$	Probabilidade
-1	1/8
-1/3	3/8
1/3	3/8
1	1/8

S^2	Probabilidade
0	1/4
4/3	3/4

Podemos calcular:

$$\mathbb{E}[\bar{X}] = -1 * \frac{1}{8} - \frac{1}{3} * \frac{3}{8} + \frac{1}{3} * \frac{3}{8} + 1 * \frac{1}{8} = 0;$$

$$\mathbb{E}[S^2] = 0 * \frac{1}{4} + \frac{4}{3} * \frac{3}{4} = 1$$

Observações:

- > Se X é a variável aleatória que representa o resultado obtido com o lançamento da moeda (-1 ou 1), sabemos que a média verdadeira de X é $\mu=0$;
- \succ Portanto a esperança de \bar{X} é igual a $\mu=0$. Chamamos \bar{X} de estimador não viciado de μ , devido à essa característica;
- $> S^2$ é também estimador não viciado de σ^2 .

Qual a distribuição de \overline{X} ? Teorema Central do Limite:

Exemplo: 100 amostras de tamanho n simuladas de uma variável aleatória X que seguia distribuição de Poisson com parâmetro $\lambda=2$.

3.0

Exercício 1: Uma variável aleatória X assume os valores 3, 6 e 8 com, respectivamente probabilidades 0.4, 0.3 e 0.3. Responda:

- (a) Qual a esperança de X (μ) ?
- **(b)** Qual a variância de X (σ^2) ?
- (c) Se uma amostra com 40 observações é coletada, usando o Teorema Central do Limite, qual seria a distribuição da média amostral \overline{X} ?
- (d) Considerando a distribuição calculada no item anterior, qual seria a probabilidade de se observar numa amostra \bar{X} entre 1,3 e 9,5?

Exercício 2: Seja X a variável aleatória que representa o tempo de duração de uma chamada tele<u>f</u>ônica em minutos. Se X tem média $\mu=3$ e variância $\sigma^2=9$, qual a distribuição amostral de \bar{X} para uma amostra de tamanho 50? Qual a probabilidade de se observar na amostra um tempo médio de atendimento menor do que 4 minutos?

Distribuição amostral de proporções

- ➤ Consideremos a variável aleatória X que indica se uma observação tem determinada característica (1, se tem e 0, se não tem);
- \triangleright Portanto, X segue distribuição Bernoulli de parâmetro p, em que p é a probabilidade de apresentar tal característica;
- \triangleright Então, $\mathbb{E}[X] = p$ e Var(X) = p(1-p);
- Então $\hat{p} = \sum \frac{X}{n}$ seria a proporção de observações numa amostra de tamanho n com tal característica;
- ightharpoonup Pelo Teorema do Limite Central: \hat{p} segue distribuição aproximadamente Normal com média p e variância p(1-p)/p.

Exercício 3: Suponha que a proporção de peças defeituosas em um lote é de 40%. Em uma amostra de tamanho 30, qual seria a distribuição da proporção de peças defeituosas na amostra? Considerando essa distribuição, qual a probabilidade de se observar menos do que 50% de peças defeituosas?

Exercício 4: Um fabricante afirma que sua vacina contra gripe imuniza em 80% dos casos. Uma amostra de 25 pessoas que tomaram a vacina foi sorteada e testes foram feitos para verificar a imunização ou não desses indivíduos. Se o fabricante estiver certo, qual é a probabilidade da proporção de imunizados na amostra ser inferior à 0.75? E superior à 0.85?

