## CS105 Lab 9: Data Mining

Brian Borucki – bborucki @bu.edu

Think of a model as a black box

 We feed the black box some input and get some output



- Say I'm modeling a person
- If I get certain behavior from the person on some input, I expect the same behavior from my model on the same input



## Types of Learning

- Classification putting objects into bins, predicts behavior
  - "At risk" vs "Not at risk"
- Association finds relationships that already exist
- Numeric Estimation predicts numeric outcomes
  - How much should an insurance company charge a given person?
  - How will the stock market react to X?

- We obtain models by training them on data
- We also test how good our models are using confusion matrices

#### **Predicted**

Actual

|       | Coupe | Sedan | Van | Semi |
|-------|-------|-------|-----|------|
| Coupe | 100   | 0     | 0   | 0    |
| Sedan | 0     | 100   | 0   | 0    |
| Van   | 0     | 0     | 100 | 0    |
| Semi  | 0     | 0     | 0   | 100  |

- We obtain models by training them on data
- We also test how good our models are using confusion matrices

#### **Predicted**

Actual

|       | Coupe | Sedan | Van | Semi |
|-------|-------|-------|-----|------|
| Coupe | 0     | 33    | 33  | 34   |
| Sedan | 33    | 0     | 34  | 33   |
| Van   | 33    | 34    | 0   | 33   |
| Semi  | 34    | 33    | 33  | 0    |

- We obtain models by training them on data
- We also test how good our models are using confusion matrices

#### **Predicted**

Actual

|       | Coupe | Sedan | Van | Semi |
|-------|-------|-------|-----|------|
| Coupe | 50    | 50    | 0   | 0    |
| Sedan | 50    | 50    | 0   | 0    |
| Van   | 0     | 0     | 50  | 50   |
| Semi  | 0     | 0     | 50  | 50   |



[age, income, student, credit, buys?] [26, high, no, fair, yes]

#### **Predicted**

Actual

|     | Yes | No |
|-----|-----|----|
| Yes | 0   | 0  |
| No  | 0   | 0  |

Start by listing all possible classes along the top and side Initialize the matrix with 0's in all places

For each tuple in your testing set:

run in through the model increment the appropriate cell accordingly

### **Predicted**

Actual

|     | Yes | No |
|-----|-----|----|
| Yes | 0   | 0  |
| No  | 0   | 0  |

The model predicted a "No"

### **Predicted**

Actual

|     | Yes | No |
|-----|-----|----|
| Yes | 0   | 0  |
| No  | 0   | 0  |

The model predicted a "No"

The actual was "Yes"

### **Predicted**

Actual

|     | Yes | No |
|-----|-----|----|
| Yes | 0   | 1  |
| No  | 0   | 0  |

The model predicted a "No"

The actual was "Yes"

Increment the corresponding value

### This Lab

• Any Questions?

- Spend time making sure you have a group
  - Professor Sullivan will talk more about the projects tomorrow in lecture

 Submit the completed ans.txt and my\_scrub.py files

## **Project**

 Raise your hand if you don't have a group yet (exactly 3 people to a group)

Exchange contact information with your group members

 Chat briefly about interests, any ideas you may have for the project