函数与极限

函数 — 研究对象

第一节

映制与函数

二、映射

三、函数

一、集合

1. 定义

具有某种特定性质的事物的总体称为集合.

组成集合的事物称为元素.

不含任何元素的集合称为**空集**,记作 Ø .

元素 a 属于集合 M, 记作 $a \in M$.

元素 a 不属于集合 M, 记作 $a \in M$ (或 $a \notin M$)

 $\frac{M}{}^*$ 表示 M 中排除 0 的集; $\frac{M}{}^*$ 表示 M 中排除 0 与负数的集.

2. 表示法

(1) 列举法: 按某种方式列出集合中的全体元素.

例: 有限集合
$$A = \{a_1, a_2, \dots, a_n\} = \{a_i\}_{i=1}^n$$
 自然数集 $N = \{0, 1, 2, \dots, n, \dots\} = \{n\}$

(2) 描述法: $M = \{x \mid x \text{ 所具有的特征}\}$

例:整数集合
$$Z = \{x | x \in \mathbb{N} \ \vec{u} - x \in \mathbb{N}^+ \}$$

有理数集
$$Q = \left\{ \frac{p}{q} \middle| p \in \mathbb{Z}, q \in \mathbb{N}^+, p \neq q \in \mathbb{N} \right\}$$

实数集合 $\mathbf{R} = \{x \mid x$ 为有理数或无理数}

开区间
$$(a,b) = \{x \mid a < x < b\}$$

闭区间
$$[a,b] = \{x \mid a \le x \le b\}$$

半开区间
$$[a,b) = \{x \mid a \le x < b\}$$

 $(a,b] = \{x \mid a < x \le b\}$

无限区间
$$[a, +\infty) = \{x \mid a \le x\}$$

 $(-\infty, b] = \{x \mid x \le b\}$
 $(-\infty, +\infty) = \{x \mid x \in \mathbb{R}\}$ $a = \delta$ $a = \delta$

点
$$a$$
 的 δ 邻域 $\bigcup (a, \delta) = \{x \mid a - \delta < x < a + \delta\}$

$$= \{ x \mid |x-a| < \delta \}$$

去心
$$\delta$$
邻域 $U(a,\delta) = \{x | 0 < |x-a| < \delta \}$

其中, a 称为邻域中心, δ 称为邻域半径.

左 δ 邻域: $(a-\delta,a)$, 右 δ 邻域: $(a,a+\delta)$.

二、映射

1. 映射的概念

定义 设X, Y 是两个非空集合, 若存在一个对应规则f, 使得 $\forall x \in X$, 有唯一确定的 $y \in Y$ 与之对应,则 称f为从X到Y的映射, 记作 $f: X \to Y$.

元素 y 称为元素 x 在映射 f 下的 g, 记作 y = f(x).

元素 x 称为元素 y 在映射 f 下的 g .

集合X称为映射f的定义域;

Y的子集 $f(X) = \{ f(x) | x \in X \}$ 称为 f 的 值域.

对映射 $f: X \to Y$

若f(X) = Y, 则称f为<mark>满射</mark>;

若 $\forall x_1, x_2 \in X, x_1 \neq x_2$,有

$$f(x_1) \neq f(x_2)$$

则称f为**单射**;

若f 既是满射又是单射,则称f为双射 或一一映射.

例1. ∀三角形 ∈ ∆ (三角形集合)

海伦公式

$$\Delta$$
面积 S ∈ $(0,+∞)$ (满射)

对应阴影部分的面积 $S \in [0, +\infty)$

例3. 如图所示,则有

$$f: \begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$C = \{(x, y) | x^2 + y^2 = 1\}$$
 (点集)

$$Y = \{(0, y) | -1 \le y \le 1\}$$
 (点集)

$$\forall$$
点 $P \in C$ **向** y **轴投影** 投影点 $Q \in Y$

例5.

$$\forall x \in \mathbf{R} \xrightarrow{y = x + \sin x} y \in \mathbf{R}$$

(双射)

注意:

1)映射的三要素— 定义域,对应规则,值域.

例如:对于函数 $y = f(x) = \sin x$,

若将其看成从 \mathbb{R} 到 \mathbb{R} 的映射,则 f 既不是单射,也不是满射;若将其看为从 \mathbb{R} 到 [-1, 1] 上的映射,则 f 是满射,但不是单射;若将 f 的定义域限定在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,则 f 是从 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 到 [-1, 1] 上的双射。

2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一.

说明:

映射又称为算子. 在不同数学分支中有不同的惯用名称. 例如,

$$X(\neq\varnothing)$$
 \xrightarrow{f} $Y($ 数集) f 称为 X 上的泛函 $X(\neq\varnothing)$ \xrightarrow{f} X f 称为 X 上的变换 $X($ 数集或点集 $)$ \xrightarrow{f} R f 称为定义在 X 上的为函数

2. 逆映射与复合映射

(1) 逆映射的定义

定义: 若映射 $f:D \to f(D)$ 为单射,则存在一新映射

$$f^{-1}: f(D) \to D$$
, 使 $\forall y \in f(D), f^{-1}(y) = x$, 其中 $f(x) = y$,

称此映射 f^{-1} 为 f 的逆映射 .

习惯上, $y = f(x), x \in D$ 的逆映射记成

$$y = f^{-1}(x) , x \in f(D)$$

例如, 映射 $y = x^2, x \in (-\infty, 0]$, 其逆映射为 $y = -\sqrt{x}, x \in [0, +\infty)$

(2) 复合映射

定义. 设有映射链

$$\forall x \in D \models g \\
f \\
\forall u \in D_1 \models f \\
f \\
y = f(u) \in Y = f(D_1)$$

则当 $g(D) \subset D_1$ 时,由上述映射链可定义由 D 到 Y 的复合映射,记作 y = f[g(x)],或 $f \circ g(x)$, $x \in D$.

注意: 构成复合映射的条件 $g(D) \subset D_1$ 不可少.

以上定义也可推广到多个映射的情形。

三、函数

1. 函数的概念

定义4. 设非空数集 $D \subset \mathbb{R}$,则称映射 $f: D \to \mathbb{R}$ 为定义在

D上的函数,记为

因变量

自变量

f(D) 称为值域

函数图形:

$$C = \{(x, y) | y = f(x), x \in D \}$$
$$\subset D \times f(D)$$

$$\forall x \in D \xrightarrow{f} y \in f(D) = \{ y | y = f(x), x \in D \}$$
(定义域)—— (对应规则) (值域)

- · 定义域 —— 使表达式及实际问题都有意义的自变量集合.
- 对应规律的表示方法:解析法、图象法、列表法

例如, 反正弦主值
$$y = f(x) = \arcsin x$$
 定义域 $D = [-1,1]$,值域 $f(D) = [-\frac{\pi}{2}, \frac{\pi}{2}]$

又如,绝对值函数
$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$
 定义域 $D = \mathbb{R}$ 值 域 $f(D) = [0, +\infty)$

例6. 已知函数
$$y = f(x) = \begin{cases} 2\sqrt{x}, & 0 \le x \le 1 \\ 1+x, & x > 1 \end{cases}$$

求 $f(\frac{1}{2})$ 及 $f(\frac{1}{t})$,并写出定义域及值域.

A:
$$f(\frac{1}{2}) = 2\sqrt{\frac{1}{2}} = \sqrt{2}$$

$$f(\frac{1}{t}) = \begin{cases} 1 + \frac{1}{t}, & 0 < t < 1 \\ \frac{2}{\sqrt{t}}, & t \ge 1 \end{cases}$$

t ≤ 0 时 函数无定义

定义域 $D = [0, +\infty)$

值 域 $f(D) = [0, +\infty)$

2. 反函数与复合函数

(1) 反函数的概念及性质

若函数 $f:D \to f(D)$ 为单射,则存在逆映射

$$f^{-1}: f(D) \to D$$

称此映射 f^{-1} 为 f 的反函数.

习惯上, $y = f(x), x \in D$ 的反函数记成

$$y = f^{-1}(x) , x \in f(D)$$

性质:

1) y = f(x) 严格 单调递增 (减) 其反函数 $y = f^{-1}(x)$ 存在,

且也严格单调递增(减).

2) 函数 y = f(x) 与其反函数 $y = f^{-1}(x)$ 的图形关于直线 y = x 对称.

例如,

指数函数
$$y = e^x, x \in (-\infty, +\infty)$$

对数函数 $y = \ln x, x \in (0, +\infty)$
互为反函数,

它们都严格单调递增, 其图形关于直线 y=x 对称.

(2) 复合函数 — 复合映射的特例

设有函数链

$$y = f(u), u \in D_1$$
 1 1 2 $u = g(x), x \in D, \quad \exists g(D) \subset D_1$ 2

则 $y = f[g(x)], x \in D$

称为由①, ②确定的复合函数, u 称为中间变量.

注意: 构成复合函数的条件 $g(D) \subset D_1$ 不可少.

例如, 函数链: $y = \arcsin u$, $u = 2\sqrt{1-x^2}$, 可定义复合

函数

$$y = \arcsin 2\sqrt{1-x^2}, \quad x \in D = [-1, -\frac{\sqrt{3}}{2}] \cup [\frac{\sqrt{3}}{2}, 1]$$

但函数链 $y = \arcsin u$, $u = 2 + x^2$ 不能构成复合函数.

两个以上函数也可构成复合函数. 例如,

$$y = \sqrt{u}, u > 0$$

$$u = \cot v, v \neq k\pi \ (k = 0, \pm 1, \pm 2, \cdots)$$

$$v = \frac{x}{2}, x \in (-\infty, +\infty)$$

可定义复合函数:

$$y = \sqrt{\cot \frac{x}{2}}, \quad x \in (2k\pi, (2k+1)\pi], \quad n \in \mathbb{Z}$$

$$k\pi < \frac{x}{2} \le k\pi + \frac{\pi}{2}$$
 Fig., $\cot \frac{x}{2} \ge 0$

3. 初等函数

(1) 基本初等函数

常数函数

幂函数

指数函数

对数函数

三角函数

反三角函数

反三角函数

① $y = \arcsin x$ 是函数 $y = \sin x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 的反函数,

因此, $y = \arcsin x$ 的定义域为 [-1, 1], 值域为 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

于是有公式

$$sin(arcsin x) = x, x \in [-1,1]$$

$$arcsin(sin x) = x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$arcsin\left(sin\frac{\pi}{3}\right) =$$

$$arcsin\left(sin\frac{2\pi}{3}\right) =$$

$$arcsin\left(sin\left(-\frac{2\pi}{3}\right)\right) =$$

② $y = \arccos x$ 是函数 $y = \cos x, x \in [0, \pi]$ 的反函数,

因此, $y = \arccos x$ 的定义域为 [-1, 1], 值域为[0, π]

$$cos(arccos x) = x, x \in [-1,1]$$

 $arccos(cos x) = x, x \in [0, \pi]$

$$\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1,1]$$

③ $y = \arctan x$ 是函数 $y = \tan x$, $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ 的反函数,

因此, $y = \arctan x$ 的定义域为 $(-\infty, +\infty)$, 值域为 $(-\frac{\pi}{2}, \frac{\pi}{2})$

$$tan(arctan x) = x, x \in \mathbb{R}$$

$$arctan(tan x) = x, x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

④ $y = \operatorname{arccot} x$ 是函数 $y = \cot x, x \in (0, \pi)$ 的反函数,

因此, $y = \operatorname{arccot} x$ 的定义域为 $(-\infty, +\infty)$, 值域为 $(0, \pi)$.

 $cot(arccot x) = x, x \in \mathbb{R}$

 $arccot(cot x) = x, x \in (0, \pi)$

 $arctan x + arccot x = \frac{\pi}{2}, x \in \mathbb{R}$

(2) 初等函数

由基本的初等函数经过有限次四则运算和复合步骤所构成的函数, 称为初等函数. 否则称为非初等函数.

例如,
$$y = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$
可表为 $y = \sqrt{x^2}$, 故为初等函数.

非初等函数举例:

符号函数

$$y = \operatorname{sgn} x = \begin{cases} 1, & \exists x > 0 \\ 0, & \exists x = 0 \\ -1, & \exists x < 0 \end{cases}$$

取整函数

$$y = [x] = n$$
, $\stackrel{\triangle}{=} n \le x < n+1, n \in Z$

Dirichlet 函数

$$y = D(x) =$$
$$\begin{cases} 1, x \text{ 为有理数} \\ 0, x \text{ 为无理数} \end{cases}$$

例7. 求
$$y = \begin{cases} x^2, & -1 \le x < 0 \\ \ln x, & 0 < x \le 1 \end{cases}$$
 的反函数及其定义域. $2e^{x-1}, & 1 < x \le 2 \end{cases}$

解: 当
$$-1 \le x < 0$$
 时, $y = x^2 \in (0,1]$,
则 $x = -\sqrt{y}$, $y \in (0,1]$
当 $0 < x \le 1$ 时, $y = \ln x \in (-\infty, 0]$,

则
$$x = e^y$$
, $y \in (-\infty, 0]$
当 $1 < x \le 2$ 时, $y = 2e^{x-1} \in (2, 2e]$,

$$\mathbb{N} x = 1 + \ln \frac{y}{2}, y \in (2, 2e]$$

反函数
$$y = \begin{cases} e^x, & x \in (-\infty, 0] \\ -\sqrt{x}, & x \in (0, 1] \\ 1 + \ln \frac{x}{2}, & x \in (2, 2e] \end{cases}$$

定义域为 (-∞,1]U(2,2*e*]

4. 函数的几种特性

设函数 $y = f(x), x \in D$, 且有区间 $I \subset D$.

(1) 有界性

 $\exists M > 0, \forall x \in D, \notin |f(x)| \leq M, 称 f(x)$ 为有界函数. $\exists M > 0, \forall x \in I, \notin |f(x)| \leq M, 称 f(x)$ 在 I 上有界.

说明: 还可定义有上界、有下界、无界

$$\cdots$$
, $f(x) \leq M$, 称为有上界

$$\cdots$$
, $M \le f(x)$, 称为有下界

若对任意正数 M, 均存在 $x \in D$, 使 |f(x)| > M, 则称 f(x) 无界.

例8 证明: $f(x) = \frac{1}{x}$ 在 (0, 1) 上无界.

(2) 单调性

$$\forall x_1, x_2 \in I, x_1 < x_2$$
 若 $f(x_1) < f(x_2),$ 称 $f(x)$ 为 I 上的 (\leq) 单调增函数; 若 $f(x_1) > f(x_2),$ 称 $f(x)$ 为 I 上的 (\geq) 单调减函数.

(3) 奇偶性

$$\forall x \in D$$
, 且有 $-x \in D$,

若
$$f(-x) = f(x)$$
,则称 $f(x)$ 为偶函数;

若
$$f(-x) = -f(x)$$
,则称 $f(x)$ 为奇函数.

$$f(x)$$
 为**奇函数**时, 必有 $f(0) = 0$.

例如,

$$y = f(x) = \frac{e^x + e^{-x}}{2}$$
 偶函数

又如,
$$y = f(x) = \frac{e^x - e^{-x}}{2}$$

再如,
$$y = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
 奇函数

(4) 周期性

$$\forall x \in D, \exists l \neq \mathbf{0}$$
 且 $x + l \in D$, 若 $f(x + l) = f(x)$

则称f(x)为周期函数,称l为周期(一般指最小正周期).

注: 周期函数不一定存在最小正周期.

四. 有界集、确界原理

 M_1 称为A的一个上界

定义: 设 $A \subset R, A \neq \Phi$

 M_2 称为A的一个下界

 $\exists M_1 \in R, \ \forall x \in A, \ \textbf{使} \ x \leq M_1, \ \text{称A为有上界的数集}$ $\exists M_2 \in R, \ \forall x \in A, \ \textbf{使} \ x \geq M_2, \ \text{称A为有下界的数集}$

既有上界, 又有下界 的数集称为有界集。 因此

等价于

A有界 \Leftrightarrow $\exists M > 0$, 使 $\forall x \in A, |x| \leq M$. Why?

若A不是有界集,则称A为无界集。 因此

A无界 $\Leftrightarrow \forall M > 0, \exists x_0 \in A, \mathbf{使} | x_0 | > M.$ Why?

定义: 设 $A \subset R$, $A \neq \Phi$, 若存在常数 α , 满足

- (1) $\forall x \in A, x \leq \alpha$, (即 α 是A的一个上界)
- (2) $\forall \varepsilon > 0, \exists x_0 \in A, \ \mathbf{\notin} \ x_0 > \alpha \varepsilon,$

(即 α 是A的最小上界)

则称 α 为数集A的 上确界。记为 $\alpha = \sup A$

定义: 设 $A \subset R$, $A \neq \Phi$, 若存在常数 β 满足

- (1) $\forall x \in A, x \geq \beta$, (即 β 是A的一个下界)
- (2) $\forall \varepsilon > 0, \exists x_0 \in A, \ \mathbf{e} \ x_0 < \beta + \varepsilon,$

(即 β 是A的最大下界)

则称 β 为数集A的 下确界。记为 $\beta = \inf A$

确界原理

非空有上界的数集,必有上确界。

非空有下界的数集,必有下确界。

因此

非空有界数集, 必有上、下确界

内容小结

- 1. 集合及映射的概念
- 3. 函数的特性 —— 有界性, 单调性, 奇偶性, 周期性
- 4. 初等函数的结构

备用题

1. 设f(0) = 0 且 $x \neq 0$ 时 $a f(x) + b f(\frac{1}{x}) = \frac{c}{x}$, 其中

a, b, c 为常数, 且 $|a| \neq |b|$, 证明 f(x) 为奇函数.

由

$$\begin{cases} af(x) + bf(\frac{1}{x}) = \frac{c}{x} \\ af(\frac{1}{x}) + bf(x) = cx \end{cases}$$

消去 $f(\frac{1}{r})$,得

$$f(x) = \frac{c}{b^2 - a^2} \left(bx - \frac{a}{x} \right) \quad (x \neq 0)$$

显然f(-x) = -f(x),又f(0) = 0,故f(x)为奇函数.

2. 设函数 $y = f(x), x \in (-\infty, +\infty)$ 的图形与 x = a,

 $y = b (a \neq b)$ 均对称, 求证 y = f(x) 是周期函数.

证: 由f(x) 的对称性知

$$f(a+x) = f(a-x),$$
 $f(b+x) = f(b-x)$

于是 f(x) = f[a + (x - a)]= f[a - (x - a)]

$$= f[a - (x - a)] = f(2a - x)$$

$$= f[b + (2a - x - b)]$$

$$= f[b - (2a - x - b)]$$

$$-\int \left[v - (2u - x - v) \right]$$

$$= f[x + 2(b - a)]$$

故f(x) 是周期函数,周期为T = 2(b-a)

