ENGR122 Assignment 9

Mark McGuinness, SMS, (Victoria) University of Wellington

DUE: 1pm on 5 October 2018 online

- 1. Use partial fractions to find
 - (a) $\int \frac{6t+3}{2t^2-5t+2} dt$
 - (b) $\int_1^2 \frac{3-3x}{2x^2+6x} dx$
- 2. Consider the DE

 $\frac{dy}{dx} = 3y(11 - y) \quad \text{subject to } y(0) = 5.$

(a) Solve the equation.

Hint: Solve $\frac{1}{3y(11-y)} = \frac{A}{3y} + \frac{B}{11-y}$ for A and B and then integrate the RHS.

- (b) As $x \to -\infty$, what happens to y(x)?
- (c) As $x \to \infty$, what happens to y(x)?
- 3. Solve the following separable or, nearly separable ODEs
 - (a)

 $\frac{dx}{dt} = \frac{\cos 3t}{x^2}$ where x(0) = 1

(b) [integrate by parts along the way]

$$\frac{dy}{dx} = \frac{x \ln x}{e^y}$$

(c)

$$\frac{dy}{dt} = e^{y+t}$$

(d)

$$\frac{dy}{dx} = \frac{y}{x} + \frac{y^4}{x^4}$$

Hint: Let $z = \frac{y}{x}$.

4. Solve the following first order linear ODEs using integrating factors

[General hint: Convert 1st order linear DEs into standard form $\frac{dy}{dx} + P(x)y = Q(x)$ as an initial step.]

(a)

$$\frac{dy}{dx} + \frac{y}{x} = 1$$

(b) | parts along the way |

$$x^2 \frac{dy}{dx} + xy - x^2 e^x = 0$$

(c) [use parts twice]

$$\frac{dx}{dt} + \frac{2x}{t} = \sin t$$

(d) / parts /

$$\frac{dx}{dt} + 6t^2x = t^2 + 2t^5$$

Tutorial Questions for 1-4 Oct 2018, ENGR122

- 1. Use partial fractions to compute $\int_0^1 \frac{4x+7}{4x^2+8x+3} dx$
- 2. Solve the following separable (or nearly separable) ODEs:

(a) $\frac{dy}{dx} = 2y(7-y)$

Hint: Solve $\frac{1}{2y(7-y)} = \frac{A}{2y} + \frac{B}{7-y}$ for A and B and then integrate the RHS.

(b) $\frac{dy}{dx} = y(e^x + \sin 8x)$

(c) $\frac{dy}{dx} = \frac{x}{e^{3x}}$

 $x\frac{dy}{dx} + y = e^x$

Hint: write the LHS as $\frac{d}{dx}(xy)$.

- 3. Solve the following 1st order linear ODEs
 - (a) [use integration by substitution]

$$\frac{dy}{dx} + \frac{y}{x^2} = \frac{1}{x^2}$$

(b) $x^2 \frac{dy}{dx} + xy = 1$

(c) $\frac{dx}{dt} + \frac{2x}{t} = t^2$

 $\frac{dx}{dt} + tx = 3t$