Intégration - TD11 Approximation des Intégrales

Exercice 1. Sommes de Riemann

a) Soit $f \in C^0([a,b],\mathbb{R})$. On pose $x_k = a + k \frac{b-a}{n}$ et $I_n = \sum_{k=0}^{n-1} f(\xi_k)(x_k - x_{k+1})$ avec $\xi_k \in [x_k, x_{k+1}]$. Montrer que

$$\lim_{n \to +\infty} I_n = \int_a^b f.$$

b) On suppose maintenant que f est C^1 et on choisit $\xi_k = x_k$. Montrer qu'il existe $C \in \mathbb{R}$ tel que

$$\int_{a}^{b} f - I_{n} = \frac{C}{n} + o\left(\frac{1}{n}\right)$$

c) Calculer les limites des suites de terme général

$$u_n = \sum_{k=1}^n \frac{n}{k^2 + n^2}, \quad v_n = \sum_{k=1}^n \frac{k^2}{n^3} \sin\left(\frac{k\pi}{n}\right), \quad w_n = \sum_{k=1}^n \frac{1}{\sqrt{4n^2 - k^2}}$$

Exercice 2. Méthode des trapèzes

Soit $f \in \mathcal{C}^2([a,b],\mathbb{R})$.

a) Soit $\alpha, \beta \in [a, b]$. Montrer que

$$\int_{\alpha}^{\beta} f = \frac{\beta - \alpha}{2} (f(\alpha) + f(\beta)) + \frac{1}{2} \int_{\alpha}^{\beta} (x - \alpha)(x - \beta) f''(x) dx$$

b) En déduire que

$$\left| \int_{\alpha}^{\beta} f - \frac{\beta - \alpha}{2} (f(\alpha) + f(\beta)) \right| \le \frac{(\beta - \alpha)^3}{12} ||f''||_{\infty}$$

c) Pour $0 \le k \le n$, on pose $x_k = a + k \frac{b-a}{n}$. On note $I_n = \frac{b-a}{n} \sum_{k=0}^{n-1} \frac{f(x_k) + f(x_{k+1})}{2}$. Montrer qu'il existe C > 0 tel que $\forall n \in \mathbb{N}^*$,

$$\left| \int_{a}^{b} f - I_{n} \right| \le \frac{C}{n^{2}}$$

Exercice 3. Méthode de Gauss

a) On fixe $(a_1, \ldots, a_n) \in [-1, 1]^n$. Montrer qu'il existe $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ tels que

$$\forall R \in \mathbb{R}_{n-1}[X], \int_{-1}^{1} R(x)dx = \sum_{k=1}^{n} \alpha_k R(a_k)$$

- b) Pour $n \ge 1$, on introduit les polynômes $T_n = (X^2 1)^n$ et $P_n = T_n^{(n)}$. Montrer que $\forall Q \in \mathbb{R}_{n-1}[X], \int_{-1}^1 Q(x) P_n(x) dx = 0$.
- c) Déduire de la question précédente que P_n a n racines simples (x_1,\ldots,x_n) dans]-1,1[.
- d) Montrer qu'il existe $(\beta_1, \dots, \beta_n) \in \mathbb{R}^n$ tels que

$$\forall Q \in \mathbb{R}_{2n-1}[X], \int_{-1}^{1} Q(x)dx = \sum_{k=1}^{n} \beta_k Q(x_k)$$