1.Lasso and Ridge Regression

October 28, 2021

Regularization

```
[1]: # Import necessary package
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

0.0.1 Step 1: Load the dataset

```
[2]: # Load dataset into pandas dataframe

df=pd.read_csv("E:\\MY LECTURES\\DATA SCIENCE\\3.

→Programs\\dataset\\Melbourne_housing_price.csv")

# Change this location based on the location of dataset in your machine
```

```
[3]: # Display the first five records df.head()
```

```
Price Method SellerG
[3]:
            Suburb
                               Address
                                        Rooms Type
       Abbotsford
                         68 Studley St
                                            2
                                                           NaN
                                                                   SS
                                                                       Jellis
     1 Abbotsford
                          85 Turner St
                                            2
                                                 h
                                                     1480000.0
                                                                       Biggin
     2 Abbotsford
                                            2
                       25 Bloomburg St
                                                     1035000.0
                                                                    S
                                                                       Biggin
     3 Abbotsford 18/659 Victoria St
                                            3
                                                 u
                                                           NaN
                                                                   VВ
                                                                       Rounds
     4 Abbotsford
                          5 Charles St
                                                     1465000.0
                                                                       Biggin
              Date Distance Postcode ...
                                           Bathroom Car
                                                           Landsize BuildingArea
     0 03-09-2016
                         2.5
                                3067.0 ...
                                                 1.0 1.0
                                                              126.0
                                                                              NaN
     1 03-12-2016
                         2.5
                                3067.0 ...
                                                 1.0 1.0
                                                              202.0
                                                                              NaN
     2 04-02-2016
                         2.5
                                3067.0 ...
                                                 1.0 0.0
                                                              156.0
                                                                             79.0
     3 04-02-2016
                         2.5
                                3067.0 ...
                                                 2.0 1.0
                                                                0.0
                                                                              NaN
     4 04-03-2017
                         2.5
                                3067.0 ...
                                                 2.0 0.0
                                                              134.0
                                                                            150.0
        YearBuilt
                          CouncilArea Lattitude Longtitude
                                                                         Regionname
     0
              NaN Yarra City Council -37.8014
                                                              Northern Metropolitan
                                                    144.9958
     1
              {\tt NaN}
                  Yarra City Council -37.7996
                                                    144.9984
                                                              Northern Metropolitan
     2
           1900.0 Yarra City Council
                                       -37.8079
                                                    144.9934
                                                              Northern Metropolitan
     3
                  Yarra City Council
                                       -37.8114
                                                    145.0116 Northern Metropolitan
```

4 1900.0 Yarra City Council -37.8093 144.9944 Northern Metropolitan

```
Propertycount
0 4019.0
1 4019.0
2 4019.0
3 4019.0
4 4019.0
```

[5 rows x 21 columns]

```
[4]: # Dataset shape (number of rows and columns)
df.shape
```

[4]: (34857, 21)

0.0.2 Step 2: Apply EDA

You may apply univariate and bivariate analysis

0.0.3 Step 3. Pre-process and extract the features

Unique values in the dataset

[5]: df.nunique()

[5]:	Suburb	351
	Address	34009
	Rooms	12
	Туре	3
	Price	2871
	Method	9
	SellerG	388
	Date	78
	Distance	215
	Postcode	211
	Bedroom2	15
	Bathroom	11
	Car	15
	Landsize	1684
	${\tt BuildingArea}$	740
	YearBuilt	160
	CouncilArea	33
	Lattitude	13402
	Longtitude	14524
	Regionname	8

Propertycount 342 dtype: int64

```
Filter the columns
```

```
[6]: cols_to_use = cols_to_use]

df = df[cols_to_use]

df.head()
```

```
[6]:
                                                       Regionname \
           Suburb Rooms Type Method SellerG
    0 Abbotsford
                      2
                           h
                                 SS Jellis Northern Metropolitan
                                  S Biggin Northern Metropolitan
    1 Abbotsford
                      2
                           h
    2 Abbotsford
                      2
                                  S Biggin Northern Metropolitan
                           h
                      3
                                 VB Rounds Northern Metropolitan
    3 Abbotsford
                           u
                       3
                                 SP Biggin Northern Metropolitan
    4 Abbotsford
                           h
```

	Propertycount	Distance	CouncilArea	Bedroom2	${ t Bathroom}$	Car	\
0	4019.0	2.5	Yarra City Council	2.0	1.0	1.0	
1	4019.0	2.5	Yarra City Council	2.0	1.0	1.0	
2	4019.0	2.5	Yarra City Council	2.0	1.0	0.0	
3	4019.0	2.5	Yarra City Council	3.0	2.0	1.0	
4	4019.0	2.5	Yarra City Council	3.0	2.0	0.0	

Price	${ t Building Area}$	Landsize	
NaN	NaN	126.0	0
1480000.0	NaN	202.0	1
1035000.0	79.0	156.0	2
NaN	NaN	0.0	3
1465000.0	150.0	134.0	4

[7]: df.shape

[7]: (34857, 15)

How many 'NaN' available in the dataset?

```
[8]: df.isna().sum()
```

```
[8]: Suburb
                            0
                            0
     Rooms
     Туре
                            0
     Method
                            0
     SellerG
                            0
     Regionname
                            3
     Propertycount
                            3
     Distance
                            1
```

```
CouncilArea 3
Bedroom2 8217
Bathroom 8226
Car 8728
Landsize 11810
BuildingArea 21115
Price 7610
dtype: int64
```

Let us fill 0 for some NaN in the features: Propertycount, Distance, Bedroom2, Bathroom, and Car

```
[9]: cols_to_fill_zero = ['Propertycount','Distance','Bedroom2','Bathroom','Car'] df[cols_to_fill_zero] = df[cols_to_fill_zero].fillna(0)
```

```
[10]: df.isna().sum()
```

```
[10]: Suburb
                             0
      Rooms
                             0
      Type
                             0
      Method
                             0
      SellerG
                             0
      Regionname
                             3
      Propertycount
                             0
      Distance
                             0
      CouncilArea
                             3
      Bedroom2
                             0
      Bathroom
                             0
      Car
                             0
      Landsize
                        11810
      BuildingArea
                        21115
      Price
                         7610
      dtype: int64
```

Let us fill mean for some NaN in the features: Landsize, and BuildingArea

```
[11]: df['Landsize'] = df['Landsize'].fillna(df.Landsize.mean())
    df['BuildingArea'] = df['BuildingArea'].fillna(df.BuildingArea.mean())
```

```
[12]: df.isna().sum()
```

```
[12]: Suburb 0
Rooms 0
Type 0
Method 0
SellerG 0
```

```
Regionname
                     3
Propertycount
                     0
Distance
                     0
CouncilArea
                     3
Bedroom2
                     0
Bathroom
                     0
Car
                     0
                     0
Landsize
BuildingArea
                     0
Price
                  7610
dtype: int64
```

Let us drop some records that contain NaN (possible when dataset is huge)

```
[13]: df.dropna(inplace=True)
[14]: df.isna().sum()
```

```
[14]: df.isna().sum()
```

```
[14]: Suburb
                        0
                        0
      Rooms
      Туре
                        0
      Method
                        0
      SellerG
                        0
                        0
      Regionname
      Propertycount
                        0
      Distance
                        0
      CouncilArea
                        0
      Bedroom2
                        0
      Bathroom
                        0
      Car
                        0
      Landsize
                        0
      BuildingArea
                        0
      Price
                        0
      dtype: int64
```

One hot encoding - replacing categorical values with numerical number - preprocessing technique ${\bf r}$

```
[15]: df = pd.get_dummies(df, drop_first=True)
    df.head()
```

```
[15]:
                Propertycount Distance
                                          Bedroom2
                                                               Car
                                                                    Landsize
         Rooms
                                                    Bathroom
      1
             2
                        4019.0
                                     2.5
                                               2.0
                                                          1.0
                                                               1.0
                                                                       202.0
                                                          1.0
      2
             2
                       4019.0
                                     2.5
                                               2.0
                                                               0.0
                                                                       156.0
                       4019.0
      4
             3
                                     2.5
                                               3.0
                                                          2.0
                                                               0.0
                                                                       134.0
      5
             3
                       4019.0
                                     2.5
                                               3.0
                                                          2.0
                                                               1.0
                                                                        94.0
```

```
6
       4
                  4019.0
                                2.5
                                          3.0
                                                     1.0 2.0
                                                                   120.0
   BuildingArea
                      Price
                             Suburb_Aberfeldie
       160.2564
                  1480000.0
1
2
        79.0000
                 1035000.0
                                              0
4
       150.0000
                  1465000.0
                                              0
5
       160.2564
                   850000.0
                                              0
6
       142.0000 1600000.0
                                              0
   CouncilArea_Moorabool Shire Council CouncilArea_Moreland City Council \
1
                                       0
                                                                            0
2
4
                                       0
                                                                            0
5
                                       0
                                                                            0
6
                                       0
                                                                             0
                                          CouncilArea_Port Phillip City Council
   CouncilArea_Nillumbik Shire Council
1
2
                                       0
                                                                                 0
4
                                       0
                                                                                 0
5
                                       0
                                                                                 0
6
                                       0
                                                                                 0
   CouncilArea_Stonnington City Council
                                           CouncilArea_Whitehorse City Council \
1
                                        0
                                                                                0
2
                                        0
                                                                                0
4
5
                                        0
                                                                                0
6
                                        0
                                                                                0
   CouncilArea_Whittlesea City Council CouncilArea_Wyndham City Council
1
                                       0
                                                                           0
2
                                       0
                                                                           0
4
                                       0
                                                                           0
5
                                       0
                                                                           0
6
   CouncilArea_Yarra City Council CouncilArea_Yarra Ranges Shire Council
1
2
                                  1
                                                                            0
                                  1
                                                                            0
4
5
                                  1
                                                                            0
                                                                            0
```

[5 rows x 745 columns]

```
[16]: X = df.drop('Price', axis=1)
Y = df['Price']
```

input feature independent feature or predictor feature. All features except Price. output feature dependent feature or response feature or target feature. Price feature.

0.0.4 Step 4. Split the data for training and testing

```
[17]: # Splitting dataset into training and testing set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2, □
→random_state = 2)
```

0.0.5 Step 5: Training phase (bulding the model)

1. Multiple Linear regression

```
[18]: # Fitting line on two dimension on the training set
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x_train, y_train)
```

[18]: LinearRegression()

```
[19]: # R2 score for training data
linear_train_R2 = model.score(x_train, y_train)
linear_train_R2
```

[19]: 0.6792421760392956

```
[20]: # R2 score for testing data
linear_test_R2 = model.score(x_test, y_test)
linear_test_R2
```

[20]: 0.6748321429524691

2. Lasso (L1) regression

```
[21]: from sklearn import linear_model lasso_model = linear_model.Lasso(alpha=50, max_iter=100, tol=0.1) lasso_model.fit(x_train, y_train)
```

C:\Users\Rathinaraja Jeyaraj\anaconda3\lib\sitepackages\sklearn\linear_model_coordinate_descent.py:529: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.

```
Duality gap: 1505479056754043.2, tolerance: 899595916346279.9
      model = cd_fast.enet_coordinate_descent(
[21]: Lasso(alpha=50, max_iter=100, tol=0.1)
[22]: # R2 score for training data
     lasso_train_R2 = lasso_model.score(x_train, y_train)
     lasso_train_R2
[22]: 0.6750163113569139
[23]: # R2 score for testing data
     lasso test R2 = lasso model.score(x test, y test)
     lasso_test_R2
[23]: 0.6782522159085694
     3. Ridge (L2) regression
[24]: from sklearn.linear_model import Ridge
     ridge_model = Ridge(alpha=50, max_iter=100, tol=0.1)
     ridge_model.fit(x_train, y_train)
[24]: Ridge(alpha=50, max_iter=100, tol=0.1)
[25]: # R2 score for training data
     ridge_train_R2 = ridge_model.score(x_train, y_train)
     ridge_train_R2
[25]: 0.663472813002645
[26]: # R2 score for testing data
     ridge_test_R2 = ridge_model.score(x_test, y_test)
     ridge_test_R2
[26]: 0.6715982779092569
     0.0.6 Underfitting and overfitting observation
[27]: print("Method \t R2_Taining R2_Testing")
     print("=====
     print("Linear ",round(linear_train_R2,2)*100,"\t
      →round(linear_test_R2,2)*100)
     →round(lasso_test_R2,2)*100)
```

```
print("Ridge ",round(ridge_train_R2,2)*100,"\t ",⊔

→round(ridge_test_R2,2)*100)
```

Method	R2_Taining	R2_Testing
======		=======
Linear	68.0	67.0
Lasso	68.0	68.0
Ridge	66.0	67.0