Introduction to Programming in Python

Lucerne University of Applied Sciences and Arts

Working with PyCharm

There are no slides for this bit. Some nice tutorials are available on the web, like <u>this one</u> (<u>https://www.mygreatlearning.com/blog/pycharm-tutorial/#runningacodeinpycharm</u>).

PyCharm also has extensive documentation:

- https://www.jetbrains.com/help/pycharm/creating-and-running-your-first-python-project.html#summary (https://www.jetbrains.com/help/pycharm/creating-and-running-your-first-python-project.html#summary)
- https://www.jetbrains.com/help/pycharm/debugging-your-first-pythonapplication.html#summary (https://www.jetbrains.com/help/pycharm/debuggingyour-first-python-application.html#summary)

Some important packages

Numpy

- Numpy is the most fundamental package for numerical computations in Python (<u>user guide (https://docs.scipy.org/doc/numpy/user/index.html)</u>).
- Basically, it provides a datatype ndarray and defines mathematical functions for it
- An array is similar to a list, except that
 - it can have more than one dimension;
 - its elements are homogeneous (they all have the same type).
- NumPy provides a large number of functions (*ufuncs*) that operate elementwise on arrays. This allows *vectorized* code, avoiding loops (which are slow in Python).

Constructing Arrays

 Arrays can be constructed using the array function which takes sequences (e.g, lists) and converts them into arrays. The data type is inferred automatically or can be specified.

```
In [ ]: import numpy as np
    a = np.array([1, 2, 3, 4])
    print(a)

In [ ]: a = np.array([1, 2, 3, 4], dtype='float64') # or np.array([1., 2., 3., 4.])
    print(a)
```

• NumPy uses C++ data types which differ from Python's (though float64 is equivalent to Python's float).

• Nested lists result in multidimensional arrays. We won't need anything beyond two-dimensional (i.e., a matrix or table).

```
In [ ]: a = np.array([[1., 2.], [3., 4.]]); a
In [ ]: a.shape # number of rows and columns
```

• Other functions for creating arrays include:

```
In []: np.ones([2, 3]) # there's also np.zeros, and np.empty (which results in an uninitialize d array).
In []: np.arange(0, 10, 2) # like range, but creates an array instead of a list.
```

Indexing

• Indexing and slicing operations are similar to lists:

```
In [ ]: a = np.array([[1., 2.], [3., 4.]])
    print(a)
    a[0, 0] # [row, column]

In [ ]: b = a[:, 0]; b # entire first column. note that this yields a 1-dimensional array (vector), not a matrix with one column.
```

• Apart from indexing by row and column, arrays also support *Boolean* indexing:

```
In [ ]: a = np.arange(10); a
In [ ]: ind = a < 5; ind
In [ ]: a[ind]</pre>
```

A shorter way to write this is

```
In [ ]: a[a<5]
```

This is useful for selecting elements according to some condition

Arithmetic and ufuncs

• NumPy ufuncs are functions that operate elementwise:

```
In [ ]: a = np.arange(1, 5); np.sqrt(a)
```

- Other useful ufuncs are exp, log, abs, and sqrt.
- Basic arithmetic on arrays works elementwise:

```
In [ ]: a = np.arange(1, 5); b = np.arange(5, 9); a, b, a+b, a-b, a/b.astype(float)
```

Broadcasting

• Operations between scalars and arrays are also supported:

```
In [ ]: np.array([1, 2, 3, 4]) + 2
```

- This is a special case of a more general concept known as *broadcasting*, which allows operations between arrays of different shapes.
- NumPy compares the shapes of two arrays dimension-wise. It starts with the trailing dimensions, and then works its way forward. Two dimensions are compatible if
 - they are equal, or
 - one of them is 1 (or not present).
- In the latter case, the singleton dimension is "stretched" to match the larger array.

• Example:

```
In [ ]: x = np.arange(6).reshape((2, 3)); x # x has shape (2,3).
In [ ]: m = np.mean(x, axis=0); m # m has shape (3,).
In [ ]: x-m # the trailing dimension matches, and m is stretched to match the 2 rows of x.
```

Array Reductions

- Array reductions are operations on arrays that return scalars or lower-dimensional arrays, such as the mean function used above.
- They can be used to summarize information about an array, e.g., compute the standard deviation:

```
In [ ]: a = np.random.randn(300, 3) # create a 300x3 matrix of standard normal variates.
    a.std(axis=0) # or np.std(a, axis=0)
```

- By default, reductions operate on the *flattened* array (i.e., on all the elements). For row- or columnwise operation, the axis argument has to be given.
- Other useful reductions are sum, median, min, max, argmin, argmax, any, and all (see help).

Saving Arrays to Disk

• There are several ways to save an array to disk:

Pandas Dataframes

Introduction to Pandas

- pandas (from panel data) is another fundamental package (<u>user quide</u> (<u>http://pandas.pydata.org/pandas-docs/stable/overview.html)</u>).
- It provides a number of datastructures (*series*, *dataframes*, and *panels*) designed for storing observational data, and powerful methods for manipulating (*munging*, or *wrangling*) these data.
- It is usually imported as pd:

```
In [ ]: import pandas as pd
```

Series

• A pandas Series is essentially a NumPy array, but not necessarily indexed with integers.

```
In [ ]: pop = pd.Series([5.7, 82.7, 17.0], name='Population'); pop # the descriptive name is op
tional.
```

• The difference is that the index can be anything, not just a list of integers:

```
In [ ]: pop.index=['DK', 'DE', 'NL']
```

• The index can be used for indexing (duh...):

```
In [ ]: pop['NL']
```

• NumPy's ufuncs preserve the index when operating on a Series:

```
In [ ]: gdp = pd.Series([3494.898, 769.930], name='Nominal GDP in Billion USD', index=['DE', 'N
L']); gdp
In [ ]: gdp / pop
```

• One advantage of a Series compared to NumPy arrays is that they can handle missing data, represented as NaN (not a number).

Dataframes

• A DataFrame is a collection of Series with a common index (which labels the rows).

```
In [ ]: data = pd.concat([gdp, pop], axis=1); data # concatenate two Series to a DataFrame.
```

• Columns are indexed by column name:

```
In [ ]: data.columns
In [ ]: data['Population'] # data.Population works too
```

• Rows are indexed with the loc method:

```
In [ ]: data.loc['NL']
```

- Unlike arrays, dataframes can have columns with different datatypes.
- There are different ways to add columns. One is to just assign to a new column:

```
In [ ]: data['Language'] = ['German', 'Danish', 'Dutch'] # add a new column from a list.
```

• Another is to use the join method:

• Notes:

- The entry for 'UK' has disappeared. Pandas takes the *intersection* of indexes ('inner join') by default.
- The returned series is a temporary object. If we want to modify data, we need to assign to it:

```
In [ ]: data = data.join(s)
```

• To add rows, use loc or append:

```
In [ ]: print(data.loc["DE"])
  data.loc['AT'] = [386.4, 8.7, 'German', 'EUR'] # add a row with index 'AT'.
  s = pd.DataFrame([[511.0, 9.9, 'Swedish', 'SEK']], index=['SE'], columns=data.columns)
  data = data.append(s) # add a row by appending another dataframe. May create duplicate
  s.
  data
```

```
In [ ]: data = data.dropna(); data
```

• The dropna method can be used to delete rows with missing values:

• Useful methods for obtaining summary information about a dataframe are mean, std, info, describe, head, and tail.

```
In [ ]: data.describe()
In [ ]: data.head() # show the first few rows; data.tail shows the last few
```

• To save a dataframe to disk as a csv file, use

```
In [ ]: data.to_csv('myfile.csv') # to_excel exists as well.
```

• To load data into a dataframe, use pd.read_csv:

```
In [ ]: pd.read_csv('myfile.csv', index_col=0)
In [ ]: os.remove('myfile.csv') # clean up
```

Pandas can also open CSV files directly from a URL:

```
In [ ]: URL = "https://covid.ourworldindata.org/data/owid-covid-data.csv"
    df = pd.read_csv(URL)
    df.head()
```

Working with Time Series

Data Types

- Different data types for representing times and dates exist in Python.
- The most basic one is datetime from the eponymous package:

```
In [ ]: from datetime import datetime
datetime.today()
```

 datetime objects can be created from strings using strptime and a format specifier:

```
In [ ]: datetime.strptime('2017-03-31', '%Y-%m-%d')
```

• Pandas uses Timestamps instead of datetime objects. Unlike timestamps, they store frequency and time zone information. The two can mostly be used interchangeably.

```
In [ ]: pd.Timestamp('2017-03-31')
```

- A time series is a Series with a special index, called a DatetimeIndex; essentially an array of Timestamps.
- It can be created using the date_range function.

```
In [ ]: myindex = pd.date_range(end=pd.Timestamp.today(), normalize=True, periods=100, freq='B')
P = 20 + np.random.randn(100).cumsum() # make up some share prices.
aapl = pd.Series(P, name="AAPL", index=myindex)
aapl.tail()
```

• As a convenience, Pandas allows indexing timeseries with date strings:

```
In [ ]: aapl['4/11/2022']
In [ ]: aapl['4/11/2022':'4/12/2022']
```

Reading (recommended)

• https://python-course.eu/numerical-programming/ (https://python-course.eu/numerical-programming/) 1-14, 23-28, 33-34

Homework

- Ex. 1-16 of https://github.com/rougier/numpy-100/blob/master/100 Numpy exercises.md). Ski in PyCharm.
- Read https://python-course.eu/numerical-programming/pandas-groupby.php), then do
 <a href="https://github.com/guipsamora/pandas exercises/tree/master/01 Getting %26 Knowhttps://github.com/guipsamora/pandas exercises/tree/master/01 Get