Ehrhart polynomial of a polytope plus dilating zonotope University of Minnesota Combinatorics Seminar

Sam Hopkins

UMN

September 14th, 2018

Joint work with Alex Postnikov

Interval-firing processes

In earlier work with Pavel Galashin, Thomas McConville, and Alex Postnikov we introduced *interval-firing processes*, certain digraphs on \mathbb{Z}^N .

For $k \in \mathbb{Z}_{\geq 0}$, the *symmetric interval-firing process* has edges

$$\vec{a} \xrightarrow[\text{sym}, k]{} \vec{a} + (e_i - e_j) : \vec{a} \in \mathbb{Z}^N, 1 \leq i < j \leq N, \langle \vec{a}, e_i - e_j \rangle + 1 \in \{-k, \dots, k\};$$

and the truncated interval-firing process has edges

$$\vec{a} \xrightarrow[\mathrm{tr},k]{} \vec{a} + \big(e_i - e_j\big) : --"--, \langle \vec{a}, e_i - e_j \rangle + 1 \in \{-k+1,\ldots,k\}.$$

To get a sense of why these digraphs are in any way interesting, it's best to look at some pictures...

Pictures of interval-firing for N = 3

Projection of \mathbb{Z}^3 to plane orthogonal to (1,1,1); the color represents sum modulo 3 of coordinates.

Pictures of interval-firing for N = 3

Projection of \mathbb{Z}^3 to plane orthogonal to (1,1,1); the color represents sum modulo 3 of coordinates.

Pictures of interval-firing for N = 3

Projection of \mathbb{Z}^3 to plane orthogonal to (1,1,1); the color represents sum modulo 3 of coordinates.

Confluence of interval-firing

One of the main results we proved about interval-firing is the following *confluence* result:

Theorem (GHMP)

For any $k \in \mathbb{Z}_{\geq 0}$, and for either the symmetric or truncated interval-firing process, each connected component of the digraph has a unique sink.

The sinks give us a way to index these components.

Lemma (GHMP)

(Some of) these sinks are $\vec{a} + k\vec{\rho}$, where $\vec{a} = (a_1 \ge a_2 \ge \cdots \ge a_N) \in \mathbb{Z}^N$ is any weakly decreasing vector and $\vec{\rho} := (N-1, N-2, \ldots, 0)$.

Next goal: understand these components in more detail.

Ehrhart-like polynomials

From the above pictures, it looks like for any $\vec{a}=(a_1\geq \cdots \geq a_N)\in \mathbb{Z}^N$, the connected component with sink $\vec{a}+k\vec{\rho}$ gets "dilated" as k grows.

In analogy with the Ehrhart polynomial of a polytope, define

$$L_{\vec{a}}^{\mathrm{sym}}\left(k\right):=\# \text{ of points in } \xrightarrow[\mathrm{sym},k]{} -\mathrm{component containing } \vec{a}+k\vec{\rho};$$

$$L_{\vec{a}}^{\mathrm{tr}}\left(k\right):=\# \text{ of points in } \xrightarrow[\mathrm{tr},k]{} -\mathrm{component containing } \vec{a}+k\vec{\rho}.$$

Theorem (GHMP)

Both $L_{\vec{a}}^{\text{sym}}(k)$ and $L_{\vec{a}}^{\text{tr}}(k)$ are polynomials in k.

Conjecture (GHMP)

These polynomials have nonnegative integer coefficients.

We prove this for $L_{\vec{a}}^{\text{sym}}(k)$ (and even give a formula- thanks, Dennis!).

Permutohedra

In the pictures of the symmetric interval-firing process, you may have seen some highly symmetric, polytopal shapes. These are permutohedra.

For $\vec{a} \in \mathbb{Z}^N$, the permutohedron of \vec{a} is

$$\Pi(\vec{a}') := \operatorname{ConvexHull} \{ (a_{\sigma(1)}, a_{\sigma(2)}, \dots, a_{\sigma(N)}) \colon \sigma \in S_N \}.$$

Examples: (2,0,1) (2,1,0) (1,0,2) (1,1,1) (1,2,0) (0,1,2) (0,2,1)

Important: the *regular permutohedron* $\Pi(\vec{\rho})$ is a zonotope:

$$\Pi(\vec{\rho}) = \sum_{1 \leq i \leq N} [e_i, e_j].$$

Symmetric components as differences of permutohedra

Let $\vec{a} = (a_1 \ge a_2 \ge \cdots \ge a_N) \in \mathbb{Z}^N$ be s.t. $a_i - a_{i+1} \in \{0, 1\}$ for all i. Understanding $\xrightarrow[\text{sym},k]{}$ -components containing $\vec{a} + k\vec{\rho}$ for \vec{a} of this form is enough to understand all components (others are "lower-dimensional").

Lemma (GHMP)

For \vec{a} of this form, the $\xrightarrow[{
m sym},k]{}$ -component containing $\vec{a}+k\vec{
ho}$ is

$$(\Pi(\vec{a}+k\vec{\rho})\cap\mathbb{Z}^N)\setminus\bigcup_{\substack{\vec{b}=(b_1\geq\cdots\geq b_N)\in\mathbb{Z}^N,\\\vec{b}\leq\vec{a}}}(\Pi(\vec{b}+k\vec{\rho})\cap\mathbb{Z}^N),$$

where $\vec{b} \leq \vec{a}$ if $\vec{a} = \vec{b} + \sum_{i=1}^{N-1} c_i (e_i - e_{i+1})$, $c_i \in \mathbb{Z}_{\geq 0}$ (dominance order).

This motivates us to study the lattice points in $\Pi(\vec{a} + k\vec{\rho}) = \Pi(\vec{a}) + k\Pi(\vec{\rho})$, or more generally the lattice points in a polytope plus dilating zonotope.

Ehrhart theory of lattice zonotopes

A zonotope is a Minkowski sum of line segments. Let $v_1, \ldots, v_m \in \mathbb{Z}^N$ be lattice vectors and $\mathcal{Z} := \sum_{i=1}^m [0, v_i]$ the corresponding lattice zonotope.

Theorem (Stanley, 1980)

$$\#(k\mathcal{Z}\cap\mathbb{Z}^N) = \sum_{\substack{X\subseteq \{v_1,\dots,v_m\}\\ \text{lin. ind.}}} \operatorname{rVol}(X) \cdot k^{\#X},$$

where rVol(X) is the gcd of the maximal minors of the matrix whose columns are the elements of X.

Corollary (Stanley)

$$\#(k\Pi(\vec{
ho})\cap\mathbb{Z}^N)=\sum_{F\ labeled\ forest\ on\ N\ vertices} k^{\#edges\ in\ F}.$$

(For corollary: we use total unimodularity of $\{e_i - e_i\}$.)

Lattice points in a polytope plus dilating zonotope

Theorem (HP)

Let $\mathcal P$ be any (lattice) polytope in $\mathbb R^N$ and $\mathcal Z$ as before. Then,

$$\#((k\mathcal{Z}+\mathcal{P})\cap\mathbb{Z}^N) = \sum_{\substack{X\subseteq \{v_1,\dots,v_m\},\\ \text{lin. ind.}}} \#(\text{quot}_X(\mathcal{P})\cap\text{quot}_X(\mathbb{Z}^N))\cdot \text{rVol}(X)\cdot k^{\#X},$$

where $\operatorname{quot}_X : \mathbb{R}^N \to \mathbb{R}^N/\operatorname{Span}_{\mathbb{R}}(X)$ is the canonical quotient map.

The proof of this theorem is quite easy (follows from "multi-paramter" version of Ehrhart polynomials due to McMullen, 1977).

Quotients might not be so nice in general

The formula on the previous slide requires us to check every rational point of \mathcal{P} because in general, $\operatorname{quot}_X(\mathcal{P} \cap \mathbb{Z}^N) \neq \operatorname{quot}_X(\mathcal{P}) \cap \operatorname{quot}_X(\mathbb{Z}^N)$:

$$\mathcal{P} = \text{ConvexHull}\{(1,0), (0,1), (0,2)\}$$
 $X = \{(1,1)\}$
 $\#\text{quot}_X(\mathcal{P} \cap \mathbb{Z}^2) = 3$
 $\#\text{quot}_X(\mathcal{P}) \cap \text{quot}_X(\mathbb{Z}^2) = 4$
 $\#((\mathcal{P} + k[0, (1,1)]) \cap \mathbb{Z}^2) = 3 + 4k$

Because of this, formula is not ideal from a combinatorial perspective.

Quotients are nice for permutohedra

But for permtuohedra, bad behavior depicted on last slide does not happen:

Lemma (HP)

For
$$\vec{a} \in \mathbb{Z}^N$$
 and $X \subseteq \{e_i - e_j\}$,

$$\operatorname{quot}_X(\Pi(\vec{a}) \cap \mathbb{Z}^N) = \operatorname{quot}_X(\Pi(\vec{a})) \cap \operatorname{quot}_X(\mathbb{Z}^N).$$

Proof that quotients are nice for permutohedra

Let $\vec{b} \in \mathbb{Z}^N$ be such that $\mathcal{S} \neq \emptyset$, where $\mathcal{S} := \Pi(\vec{a}) \cap (\operatorname{Span}_{\mathbb{R}}(X) + \vec{b})$ ($\mathcal{S} =$ "slice"). We want to show that \mathcal{S} contains an integer point. Let v be a vertex of \mathcal{S} . Let F be a face of $\Pi(\vec{a})$ of min. dimension containing v; by symmetry can assume $\vec{a} \in F$. Choose $\alpha_1, \ldots, \alpha_m \subseteq \{e_i - e_j\}$ spanning F; choose $\beta_{m+1}, \ldots, \beta_{N-1} \subseteq \{e_i - e_j\}$ spanning $\operatorname{Span}_{\mathbb{R}}(X)$.

Key point: by total unimodularity, $\operatorname{Span}_{\mathbb{Z}}\{\alpha_i,\beta_j\} = \operatorname{Span}_{\mathbb{Z}}\{e_i-e_j\}$. So $\vec{b} = \vec{a} + \sum_i c_i \alpha_i + \sum_j d_j \beta_j$ for $c_i, d_j \in \mathbb{Z}$. But $v = \vec{a} + \sum_i c_i \alpha_i$, so the vertex v is an integer point!

Permutohedron plus dilating regular permutohedron

Corollary (HP)

For
$$\vec{a} = (a_1 \ge \dots \ge a_N) \in \mathbb{Z}^N$$
,
$$\#(\Pi(\vec{a} + k\vec{\rho}) \cap \mathbb{Z}^N) = \sum_{\substack{X \subseteq \{e_i - e_j\}\\ lin. \ ind.}} \#(\operatorname{quot}_X(\Pi(\vec{a}) \cap \mathbb{Z}^N)) \cdot k^{\#X}$$

Not necessarily easy to give a formula for $\#(\operatorname{quot}_X(\Pi(\vec{a}) \cap \mathbb{Z}^N))$; but we can when $\vec{a} = (1, 1, \dots, 1, 0, 0, \dots, 0)$ ("minuscule weight"). For instance, with $f_{\lambda} := \prod_{i=1}^{\ell(\lambda)} \lambda_i^{\lambda_i - 2}$, we have:

$$\begin{split} \#(\Pi((1,0,\ldots,0)+k\vec{\rho}\,)\cap\mathbb{Z}^N) &= \sum_{\lambda\vdash N} \ell(\lambda)\cdot f_\lambda \cdot k^{N-\ell(\lambda)};\\ \#(\Pi((1,1,0,\ldots,0)+k\vec{\rho}\,)\cap\mathbb{Z}^N) &= \sum_{\lambda\vdash N} \left(\binom{\lambda_1'}{2}+\lambda_2'\right)\cdot f_\lambda \cdot k^{N-\ell(\lambda)}. \end{split}$$

W-permutohedra

With the formula for $\#(\Pi(\vec{a}+k\vec{\rho})\cap\mathbb{Z}^N)$, together with the description of components as differences of permutohedra, we can use inclusion-exclusion on dominance order to get a positive formula for $L^{\mathrm{sym}}_{\vec{a}}(k)$.

But actually it is easiest to state this formula for general root systems.

Let Φ be a crystallographic *root system*: finite subset of Euclidean space V closed under reflection orthogonal to any $root \ \alpha \in \Phi$. $Q := \operatorname{Span}_{\mathbb{Z}}(\Phi)$ is the *root lattice* and $P := \{v \in V : \langle v, \alpha^{\vee} \rangle \in \mathbb{Z} \text{ for all } \alpha \in \Phi\}$ is the *weight lattice*. W is the *Weyl group*, and $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$ is the *Weyl vector*.

In our previous set up: $\Phi = \{e_i - e_j\}$, $Q = \{\vec{v} \in \mathbb{Z}^N : \vec{v} \perp (1, 1, \dots, 1)\}$, $P = \mathbb{Z}^N$, $W = S_N$, $\rho = \vec{\rho}$ (this is "Type A_{N-1} ").

Can define (W-)permutohedra exactly analogously: for $\lambda \in P$,

$$\Pi(\lambda) := \text{ConvexHull} W(\lambda); \qquad \Pi^Q(\lambda) := \Pi(\lambda) \cap (Q + \lambda).$$

Quotients are nice for W-permutohedra

Lemma (HP)

For
$$\lambda \in P$$
 and $X \subseteq \Phi$, $\operatorname{quot}_X(\Pi^Q(\lambda)) = \operatorname{quot}_X(\Pi(\lambda)) \cap \operatorname{quot}_X(Q + \lambda)$.

The proof of this for general Φ is much more involved than in Type A, because we no longer have total unimodularity. We reduce the proof to the following "projection-dilation" property of root systems:

Lemma (HP)

Let $\{0\} \neq U \subseteq V$ be any nonzero subspace spanned by a subset of Φ . Then there is some $1 \leq \kappa < 2$ such that

$$\pi_U(\text{ConvexHull}(\Phi)) \subseteq \kappa \cdot \text{ConvexHull}(\Phi \cap U),$$

where $\pi_U \colon V \to U$ is orthogonal projection.

But we have no uniform proof of this last lemma!!!

Projection-dilation property example: D_4

Let $\Phi = D_4$, and U the maximal parabolic subspace corresponding to the trivalent node in the Dynkin diagram. Then ConvexHull($\Phi \cap U$) is an octahedron, while $\pi_U(\operatorname{ConvexHull}(\Phi))$ is a rhombic dodecahedron circumscribing it. Projection-dilation constant is $\kappa = \frac{3}{2}$.

Positive formula for symmetric Ehrhart-like polynomials

Corollary (HP)

For a dominant weight $\lambda \in P_{>0}$, we have

$$\#(\Pi^Q(\lambda+k\rho)) = \sum_{\substack{X\subseteq\Phi\\ lin.\ ind}} \#(\operatorname{quot}_X(\Pi^Q(\lambda)))\cdot \operatorname{rVol}_Q(X)\cdot k^{\#X}.$$

By inclusion-exclusion on root order we get:

Theorem (HP)

Let $\lambda \in P$ be such that $\langle \lambda, \alpha_i^{\vee} \rangle \in \{0, 1\}$ for all simple roots α_i . Then

$$L_{\lambda}^{\mathrm{sym}}(k) = \sum_{\substack{X \subseteq \Phi^+, \\ \text{line in d}}} \# \left\{ \mu \in W(\lambda) \colon \frac{\langle \mu, \alpha^\vee \rangle \in \{0, 1\} \ \textit{for}}{\textit{all } \alpha \in \Phi^+ \cap \mathrm{Span}_{\mathbb{R}}(X)} \right\} \cdot \mathrm{rVol}(X) \cdot k^{\#X}.$$

Truncated Ehrhart-like polynomials?

GHMP showed that for $\lambda \in P$ with $\langle \lambda, \alpha_i^{\vee} \rangle \in \{0, 1\}$ for all simple roots α_i ,

$$L_{\lambda}^{ ext{sym}}(k) = \sum_{\mu \in \mathcal{W}(\lambda)} L_{\mu}^{ ext{tr}}(k).$$

Thus our symmetric formula very naturally suggests:

Conjecture

Let $\lambda \in P$. Then

$$L^{\mathrm{tr}}_{\lambda}(k) = \sum_{X} \mathrm{rVol}_{Q}(X) \, k^{\# X},$$

where the sum is over all $X \subset \Phi^+$ such that:

- X is linearly independent;
- $\langle \lambda, \alpha^{\vee} \rangle \in \{0, 1\}$ for all $\alpha \in \Phi^+ \cap \operatorname{Span}_{\mathbb{R}}(X)$.

However, the above conjecture turns out to be false in general.

It fails for $\Phi = G_2, C_3, C_4, D_4$. But it may hold for Type A and B?

Sam Hopkins (2018)

Thank you!

References:

- Galashin, Hopkins, McConville, Postnikov. "Root system chip-firing I: Interval-firing." arXiv:1708.04850. Forthcoming, Mathematische Zeitschrift.
- Hopkins, Postnikov. "A positive formula for the Ehrhart-like polynomials from root system chip-firing." arXiv:1803.08472