Lecture 7

- One dimensional maps
 - Preliminaries
 - Fixed points, stability and cobwebs
 - Logistic map
 - Period doubling
 - Chaos
 - Intermittency
 - Liapunov exponents
 - Universality (qualitative, quantitative)
 - (Renormalization as a way to understand universality)
 - Summary

One Dimensional Maps

- "New" class of dynamical systems in which time is discrete -> difference equations, recursion relations, iterated maps or maps
- 1d map: $x_{n+1} = f(x_n)$ ("map" usually refers to the function and the equation ...)
- Orbit: sequence x_0, x_1, x_2, \dots
- Why maps?
 - Tools to analyze differential Eq's (Poincare map, Lorenz map, ...)
 - Models of natural phenomena (digital electronics, economics and finance, certain animal populations ...)
 - Simple examples of chaos

One Dimensional Maps

 Why can 1d maps exhibit much "richer" dynamical behaviour then 1d continuous systems?

- We'll see later that 1d maps can exhibit:
 - Fixed points, oscillations and even chaos

Fixed Points

- Fixed point: $x^* = f(x^*)$
- Stability?
 - Consider nearby orbit $x_n = x^* + \eta_n$ Is it attracted or repelled from x*?

$$x_{n+1} = x^* + \eta_{n+1} = f(x^* + \eta_n) = f(x^*) + f'(x^*) \eta_n + O(\eta_n^2)$$

$$--- \eta_{n+1} = f'(x^*) \eta_n + O(\eta_n^2)$$

• Neglect $O(\eta^2)$ terms -> linearized map with eigenvalue/multiplier λ =f'(x*)

$$\eta_n = \lambda^n \eta_0$$

- $|f'(x^*)|<1 -> linearly stable, =1 marginal, >1 unstable$
- f'(x*)=0 -> superstable $\eta_n \propto \eta_0^{(2^n)}$

Cobwebs

Examples

Let's have a look at

$$x_{n+1} = \sin x_n$$

$$x^* = 0$$

$$\lambda = f'(0) = \cos(0) = 1$$

$$x_{n+1} = \cos x_n$$

 $x^* = 0.739...$
 $\lambda = -\sin(0.739...), 0 > \lambda > -1$

Logistic Map

Analogue of logistic eq. for population growth

$$x_{n+1} = r x_n (1 - x_n)$$

- x_n ... population in nth generation
- r ... growth rate, consider 0<=r<=4

Numerics

Period Doubling

• r_n ... value of r where 2ⁿ-cycle is born

•
$$r_1 = 3$$

•
$$r_2 = 3.449...$$

•
$$r_3 = 3.54409...$$

•
$$r_4 = 3.5644...$$

•
$$r_{inf} = 3.569946...$$

infinite cycle

• Distances between successive bifurcations become smaller and smaller ... geometric convergence

What about r>r_{inf}?

Chaos ...

- For example r=3.9 aperiodic irregular dynamics similar to what we have seen for continuous systems
- However ... not all r>r_{inf} have chaotic behaviour!

(lines successively connect the first 50 iterates and the dashed line y = x)

Bifurcation Diagram

- For r>r_{inf} diagram shows mixture of order and chaos, periodic windows separate chaotic regions
- Blow-up of parts appear similar to larger diagram ...

Logistic Map -- Analysis

• Fixed points and stability $x_{n+1} = r x_n (1 - x_n)$

$$x *= r x * (1-x*) \longrightarrow x *= 0 \lor x *= 1-1/r$$

- Stability $f'(x^*)=r-2rx^*$
 - f'(0)=r -> origin is stable for r<1
 - $f'(x^*)=2-r -> stable for -1<2-r<1, i.e. unstable for r>3$

- Small r -> origin only FP
- Increasing r -> parabola "grows", becomes tangential to diagonal
- r>1 parabola intersects diagonal in a second FP, origin loses stab.
 - -> transcritical bifurcation
- Larger r -> slope at x* becomes steeper and f'(x*)=-1 for r=3
 - -> flip bifurcation

Flip Bifurcations and Period Doubling

- Local picture near a FP with $f'(x^*)=-1$, if f is concave a small stable 2-cycle appears
- This is an example of a supercritical flip bifurcation

Analyzing 2-cycles

- 2-cycle exists if there exist p and q with (p!=q) and f(p)=q and f(q)=p
- ... or: p is a fixed point of second iterate p=f(f(p))

$$f^{2}(x)=r(rx(1-x))(1-rx(1-x))$$

Solve:

$$f^{2}(x)-x=0$$

Factor out x and x-(1-1/r) ...

$$p, q = \frac{r+1 \pm \sqrt{(r-3)(r+1)}}{2r}$$

Exists for r>3 and bifurcates cont. from 1-1/r at r=3

Stability of 2-cycles

Calculate multiplier of second iterate f(f(x))

$$\lambda = d/dx (f(f(x)))_{x^*=p} = f'(f(p))f'(p) = f'(p)f'(q)$$

$$\lambda = r(1-2q)r(1-2p)$$

$$\lambda = 4 + 2r - r^2$$

Understanding Periodic Windows

• Birth of a stable 3-cycle, f³(p)=p (8th degree)

Tangent bifurcation at $r=1+8^{1/2}$

Intermittency

- Just below period-3 window trajectories show intervals of period three behaviour interspersed with intervals of chaotic behaviour
- "Ghost" of a 3-cycle ...

Intermittency

- Intermittency is common in systems in which transition to chaos occurs via a saddle node bifurcation of cycles
- In experimental systems (e.g. laser systems):
 - Appears as nearly periodic motion interrupted by occasional irregular bursts which are statistically distributed
 - Bursts become more and more frequent ...
 - Intermittency route to chaos

Liapunov Exponents

- Consider x_0 and $x_0 + \delta_0$. δ_n is separation after n iterations. If $|\delta_n| = |\delta_0| \exp(n\lambda) -> \lambda$ is Liapunov exponent
- More precisely: $\delta_n = f^n(x_0 + \delta_0) f^n(x_0)$ $\lambda \approx 1/n \ln |\delta_n/\delta_0|$ $= 1/n \ln |\frac{f^n(x_0 + \delta_0) f^n(x_0)}{\delta_0}|$ $\approx 1/n \ln |(f^n)'(x_0)| = 1/n \ln |\prod_{i=0}^{n-1} f'(x_i)|$ $= 1/n \sum_{i=0}^{n-1} \ln |f'(x_i)|$

Liapunov Exponents

• So, for an orbit starting at x_0 we define

$$\lambda = \lim_{n \to \infty} 1/n \sum_{i=0}^{n-1} \ln |f'(x_i)|$$

• Stable fixed points and cycles: λ <0 superstable: $\lambda = -\infty$ chaotic attractors: λ >0

Liapunov spectrum of the logistic map

Qualitative Universality

- For various unimodal maps (e.g. $x_{n+1} = r \sin \pi x_n$) bifurcation diagrams look rather "similar"
- Metropolis et al. (1973): $x_{n+1} = r f(x_n)$, f(0) = f(1) = 0
 - As r is varied the sequence in which stable periodic solutions appear when r is varied is always the same
 - So called "U-sequence" up to period 6: 1,2,2*2,6,5,3,2*3,5,6,4,6,5,6
 - Has e.g. been found in experiments with the Belousov-Zhabotinski reaction in a continuously stirred flow reactor

Quantitative Universality -- Feigenbaum

- Quantify bifurcation diagrams in some way
 - r-direction $\Delta_n = r_n r_{n-1}$
 - x-direction d_n

$$\delta = \lim_{n \to \infty} \frac{\Delta_n}{\Delta_{n+1}} = 4.669 \dots$$

$$\alpha = \lim_{n \to \infty} \frac{d_n}{d_{n+1}} = -2.5029...$$

Both α and δ are **universal**, i.e. independent of precise form of the map f

Experimental Tests

- E.g.: Libchaber (1982)
 - Box with liquid mercury, heated from below
 - Control parameter is Rayleigh number R (measure for temperature gradient)

- R<R : conduction without convection
- R>R_s: convection occurs, rolls appear, rolls straight, motion steady
- Larger R: another instab., temperature waves along roles (magnetic field used)
- Measured $\delta \sim 4.4(1)$

Feigenbaum's Renormalization Theory

- f(x,r) ... unimodal map which undergoes period doubling route to chaos as r increases;
 - x_m maximum of f,
 - r_n ... value of r at which 2ⁿ-cycle is born
 - R_n... value at which 2ⁿ-cycle becomes superstable
- Turns out superstable cycle always contains x_m as one of its points
- Exploit self-similarity of figtree
- Compare f with its second iterate; then "renormalize" one map into the other

Renormalization (2)

- Compare: $f(x,R_0)$ and $f^2(x,R_1)$
 - same stability properties and x_m superstable FP for both of them !

• First step: shift origin by x_m and subtract x_m from f

Renormalization (3)

• Second step: rescale by alpha: $x'=\alpha x$ $f^2(x,R_1) \rightarrow \alpha f^2(x/\alpha,R_1)$

• Use local resemblance of f and f^2 near x_m :

$$f(x,R_0) \approx \alpha f^2(x/\alpha,R_1)$$

$$f^2(x/\alpha,R_1) \approx \alpha f^4(x/\alpha^2,R_2) \text{ i.e. } f(x,R_0) \approx \alpha^2 f^4(x/\alpha^2,R_2)$$

$$\longrightarrow f(x,R_0) \approx \alpha^n f^{2^n}(x/\alpha^n,R_n)$$

• Feigenbaum found numerically:

 $\lim_{n\to\infty} \alpha^n f^{(2^n)}(x/\alpha^n, R_n) = g_0(x)$ is universal with a superstable FP

Renormalization (4)

- We might construct other such functions by starting with some R_i (not R_0) -> universal functions $g^i(x)$ with superstable 2^i -cycle
- Most interesting is the one starting at R_{∞}

$$f(x,R_{\infty}) \approx \alpha f^{2}(x/\alpha,R_{\infty})$$
 or $g(x) = \alpha g^{2}(x/\alpha)$

- This is a functional equation for g
 - Boundary conditions: g'(0)=0 (shifted maxima), g(0)
 =1 (defines x-scale)
 - Note: $g(0) = \alpha g(g(0))$ and $g(0) = 1 \rightarrow \alpha = 1/g(1)$

Renormalization (5)

- For an approximate solution expand g as a polynomial $g(x)=1+c_2x^2+c_4x^4+...$
 - Compare matching powers of x -> system of equations for coefficients
 - Feigenbaum (1979): seven term expansion yielded α ~-2.5029
- Calculation of δ is much harder ...

Summary

- Maps, stability of fixed points and arguments using cobweb diagrams
- Logistic map
 - Period doubling route to chaos
 - Intermittency
 - Liapunov exponents
 - Universality
 - Qualitative
 - Quantitative