LOM3114 - Estatística Aplicada à Engenharia

Applied Statistics

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Ativação: 01/01/2023

Departamento: Engenharia de Materiais

Curso (semestre ideal): EM (10)

Objetivos

Utilização de conceitos básicos da estatística para estudar influência de variáveis independentes sobre variáveis dependentes (respostas) em Processos da Engenharia . Utilização de ferramentas de planejamento experimental, dimensionamento das atividades experimentais de pesquisa e atividades industriais, minimizando tempo e custos, identificando quais são as variáveis de processo que podem influenciar significativamente nos sistemas estudados. Permitir a utilização de ferramentas estatísticas usando planilhas eletrônicas, para comparar metodologias e resultados em estudo de casos reais em Engenharia.

Docente(s) Responsável(eis)

5840521 - Rosa Ana Conte

Programa resumido

Trabalho em planilhas eletrônicas e Estudo de Casos no Excel e Minitab; Introdução à Estatística Descritiva; Estatística de Inferência usando planilhas eletrônicas; distribuições amostrais; intervalos de confiança; testes de hipóteses; testes ANOVA; estudo de casos em engenharia, meio ambiente, agricultura, gerenciamento de resíduos, dentre outros.

Programa

O papel da estatística na Engenharia: métodos de coleta de dados. Trabalho em planilhas eletrônicas em Excel

- •Revisão de conceitos estatísticos fundamentais da estatística descritiva: população, amostra, tipos de erros associados a medidas experimentais.
- •Distribuições amostrais: distribuição normal, normal padronizada, de Student;
- •Estatística de inferência: estimativas, intervalos de confiança.
- •Testes de hipóteses para média aritmética e para duas populações: testes t uni- e bilateral, teste F, rejeição de valor suspeito; teste para independência ou homogeneidade da população Análise de Variância (ANOVA): aplicações a problemas experimentais: fator único e 2 fatores; identificação de fatores significativos nos experimentos.
- •Planejamento de Experimentos: vantagens dos experimentos fatoriais em relação aos experimentos do tipo um fator por vez; varielaboração do planejamento fatorial Completo do tipo 2^k e fracionado, e superfície de resposta Utilização de Minitab no planejamento e tomada de decisão de problemas experimentais.

•Os conceitos desenvolvidos serão aplicados no estudo de casos reais nas áreas de engenharia, finanças, meio ambiente, agricultura, gerenciamento de resíduos, dentre outros.

Avaliação

Método: Estudo de Casos, Aulas expositivas e em laboratório computacional, trabalhos em grupo e exercícios comentados.

Critério: Média aritmética de trabalhos propostos ao longo do curso (40%) e avaliação individual final (60%).

Norma de recuperação: Não haverá exame de recuperação.

Bibliografia

•Levine, D.M et al. Estatística: teoria e Aplicações usando MicrosoftTM Excel em Português, 6a ed, Rio de Janeiro:LTC, 2012. •Mann, P.S. Introdução à Estatística, 8a ed, Rio de Janeiro:LTC, 2015. •Webster, A.L. Estatística Aplicada à Administração e Economia, São Paulo:McGraw Hill, 2007. •Johnson, R. e Kuby, P. ESTAT, São Paulo:Cengage Learning, 2014. •Barros Neto, B., Scarminio, I.S. e Bruns, R.E. Planejamento e Otimização de Experimentos, 2a. ed, Campinas: Editora da UNICAMP, 1995. •Miller, JC and Miller, JN Statistical for Analytical Chemistry, Chichester: Ellishor Wood Ltd. 1988. •https://www.real-statistics.com • Kiernan, D. Natural Resources Biometrics: https://milnepublishing.genesco.edu/natural-resources-biometrics

Requisitos

LOB1012 - Estatística (Requisito fraco)