1.

When the solids Ba(OH)₂ and NH₄SCN are mixed, a solution is produced and the temperature drops.

$$Ba(OH)_2(s) + 2NH_4SCN(s) \rightarrow Ba(SCN)_2(aq) + 2NH_3(g) + 2H_2O(1)$$

Which statement about the energetics of this reaction is correct?

- A. The reaction is endothermic and ΔH is negative.
- В. The reaction is endothermic and ΔH is positive.
- C. The reaction is exothermic and ΔH is negative.
- D. The reaction is exothermic and ΔH is positive.

2.

The data below is from an experiment used to measure the enthalpy change for the combustion of 1 mole of sucrose (common table sugar), C12H22O11(s). The timetemperature data was taken from a data-logging software programme.

Mass of sample of sucrose, m = 0.4385 g

Heat capacity of the system, $C_{\text{system}} = 10.114 \text{ kJ K}_{-1}$

(a) Calculate ΔT , for the water, surrounding the chamber in the calorimeter.

(b) Determine the amount, in moles, of sucrose.
(c) (i) Calculate the enthalpy change for the combustion of 1 mole of sucrose.
(ii) Using Table 12 of the Data Booklet (theoretical value is 5.3×10^3 kJ mol ⁻¹), calculate the percentage experimental error based on the data used in this experiment.
3. To completely neutralize 200mL of 0.500M sodium hydroxide, a student adds 100mL of 0.500M sulfuric acid in a beaker. The temperature of the solution increases from 25.0 °C to 29.5°C. a. Determine the limiting reagent of the reaction.
b. Calculate the heat released in this reaction.
c. Use your answer in part a and b, determine the molar enthalpy change of the neutralization reaction.

d. Write the complete thermochemcal equation.	
e. Draw the energy diagram of the reaction to show the energy	change of reaction over time.
f. Predict the final temperature if the experiment is repeated wi hydroxide and 100mL of 1.00M sulfuric acid	ith 200mL of 100Msodium
4. Calculate ΔH for the reaction $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$ $C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(1)$	(g), from the following data. $\Delta H = -1411. \text{ kJ/mole}$
$C_2H_6(g) + 7/2 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$	$\Delta H = -1560$. kJ/mole

 $\Delta H = -285.8 \text{ kJ/mole}$

 $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(l)$

2. Calculate ΔH for the reaction 4 NH3 (g) + 5 O2 (g) \rightarrow 4 NO (g) + 6 H2O (g), from the following data.

$$N_2(g) + O_2(g) \rightarrow 2 \text{ NO } (g)$$

$$\Delta H = -180.5 \text{ kJ}$$

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

$$\Delta H = -91.8 \text{ kJ}$$

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$

$$\Delta H = -483.6 \text{ kJ}$$

6.

Find ΔH_f^0 for acetic acid, $HC_2H_3O_2$, using the following thermochemical data.

$$HC_2H_3O_2(1) + 2 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(1)$$

$$\Delta H = -875$$
. kJ/mole

$$C (s, graphite) + O_2 (g) \rightarrow CO_2 (g)$$

$$\Delta H = -394.51 \text{ kJ/mole}$$

$$H_2(g) + 1/2 O_2(g) \rightarrow H_2O(1)$$

$$\Delta H = -285.8 \text{ kJ/mole}$$

7.

Calculate ΔH for the reaction $CH_4(g) + NH_3(g) \rightarrow HCN(g) + 3H_2(g)$, from the reactions.

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

$$\Delta H = -91.8 \text{ kJ}$$

$$C (s, graphite) + 2 H2 (g) \rightarrow CH4 (g)$$

$$\Delta H = -74.9 \text{ kJ/mole}$$

$$H_2(g) + 2 C(s, graphite) + N_2(g) \rightarrow 2 HCN(g)$$
 $\Delta H = +270.3 \text{ kJ}$

$$\Delta H = +270.3 \text{ kJ}$$

8.

Calculate ΔH for the reaction 2 Al (s) + 3 C½ (g) \rightarrow 2 AlC½ (s) from the following data.

$$2 \text{ Al (s)} + 6 \text{ HCl (aq)} \rightarrow 2 \text{ AlC}_{\frac{1}{2}} \text{ (aq)} + 3 \text{ H}_{2} \text{ (g)}$$

$$\Delta H = -1049. \text{ kJ}$$

$$HCl(g) \rightarrow HCl(aq)$$

$$\Delta H = -74.8 \text{ kJ/mole}$$

$$H_2(g) + C_{\frac{1}{2}}(g) \rightarrow 2 HCl(g)$$

$$\Delta H = -1845. \text{ kJ}$$

$$AlC_{\mathfrak{k}}(s) \rightarrow AlC_{\mathfrak{k}}(aq)$$

$$\Delta H = -323$$
. kJ/mole