Домашнє завдання 1

Завдання 1:

• Записати наступні означення/формули в конспект: матеріальна точка, шлях, переміщення, закон додавання швидкостей (принцип відносності Галілея)

Домашнє завдання 2

Завдання 1:

• Записати наступні означення/формули в конспект: миттєва швидкість, прискорення, рівняння руху (рівняння координати) рівноприскореного прямолінійного руху

Завдання 2 (95 км та 95 км/год):

Автомобіль рухається по прямій зі швидкістю 120 км/год протягом 20 хв, потім зі швидкістю 80 км/год протягом 30 хв, і, зрештою, зі швидкістю 90 км/год протягом 10 хв. Знайти загальну пройдену відстань (км) та середню швидкість (км/год).

Завдання 3 (13.23 $\mathrm{M/c^2}$ та 29.17 м):

Розгін автомобіля Tesla Model S Plaid від 0 до 100 км/год відбувається за 2.1 секунди. Припускаємо, що цей рух є рівноприскореним прямолінійним рухом. Вирахувати прискорення (в ${\rm M/c^2}$) та шлях (в метрах) пройдений під час цього розгону.

Домашнє завдання 3

Завдання 1:

• Записати наступні означення/формули в конспект: вільне падіння, прискорення вільного падіння, період обертання, обертова частота (або частота обертання), кутова швидкість, доцентрове прискорення та формула для доцентрового прискорення при рівномірному русі по колу.

Завдання 2 (5 с та 50 м/с):

Тіло кидають вертикально вниз із повітряної кулі з висоти 125 метрів. Початкова швидкість нульова. Прискорення вільного падіння вважати рівним $10~{\rm M/c^2}$. Розрахувати час падіння тіла та швидкість в момент зіткнення із землею. Опором повітря знехтувати

Завдання 3 (20 м):

Маленький квадрокоптер злітає вертикально вгору з початковою швидкістю 20 м/с. Уявімо, що одразу після старту його двигуни вимкнулись. На яку максимальну висоту він зможе піднятися за інерцією?

Завдання 4 (70 Гц та 0.0143 с):

Жорсткий диск (HDD) у ноутбуці обертається зі сталою частотою 4200 обертів за хвилину. Визначте обертову частоту диска в герцах (Гц). Знайдіть період обертання диска.

Завдання 5 (113.1 м/с або 407.2 км/год):

Лопать квадрокоптера має довжину 15 см. Під час польоту вона обертається з частотою 120 Гц. Знайдіть лінійну швидкість точки, що знаходиться на самому кінці лопаті.

Домашнє завдання 4

Завдання 1:

• Записати наступні означення/формули в конспект: інертність, інерціальна система відліку, неінерціальна система відліку, перший закон Ньютона, другий закон Ньютона, третій закон Ньютона, закон всесвітнього тяжіння

Завдання 2 (8.694 м/с², 5.69 м/с²):

Визначити прискорення вільного падіння g на висоті 400 км (приблизно на цій висоті рухається Міжнародна космічна станція) та на висоті 2000 км (це межа між низькою навколоземною орбітою та середньою навколоземною орбітою) над поверхнею Землі.

Завдання 3 (5.241 м/с², 7361 м):

13 жовтня 2024 року SpaceX провели п'ятий тестовий політ ракети Starship. Ми можемо дізнатись трішки більше деталей про цей запуск за рахунок застосування тих навичок, які ми вже опанували на парах з фізики. На 53 секунді від початку запуску ракета досягнула швидкості 1000 км/год (див. скріншот). Вважаючи рух рівноприскореним, розрахувати прискорення ракети в м/

с^2. Розрахувати відстань, яку пройшла б ракета із таким прискоренням за ці 53 секунди. Приблизно в момент часу 53 секунди датчики показали висоту, на якій перебувала ракета, як 7 км. Порівняти знайдену відстань та ці 7 км (знайти різницю між цими двома значеннями, результат виразити в метрах).

Завдання 4 (28012 км/год, суборбітальний політ):

На 23 хвилині від старту ракети, друга ступінь ракети знаходилась на висоті 212 км і летіла зі швидкістю 26223 км/год (див. скріншот). Треба порахувати першу космічну швидкість на висоті 212 км. Розрахунок потрібно виконати дуже точно, тому використовуйте наступні параметри:

- 1. Маса Землі становить $5.972 \cdot 10^{24}$ кг
- 2. Радіус Землі становить 6371 км Результат округлити до одиниць (не потрібно десятих чи сотих часток км/год записувати).

І наостанок, вказати чи перша космічна швидкість на заданій висоті більша за 26223 км/год чи менша. На основі цього порівняння вкажіть чи політ був орбітальним чи суборбітальним.

Домашнє завдання 5

Завдання 1:

• Записати наступні означення/формули в конспект: механічна робота, енергія, кінетична енергія, потенціальна енергія, теорема про кінетичну енергію, теорема про потенціальну енергію, потужність, консервативні сили, повна механічна енергія, замкнена система тіл, закон збереження повної механічної енергії.

Завдання 2 (490 Дж):

Яку роботу потрібно виконати, щоб рівномірно підняти вантаж масою 10 кг на висоту 5 м?

Завдання 3 (50кДж, 200кДж, 150кДж):

Автомобіль масою 1 т збільшив швидкість свого руху від 10 до 20 м/с. Визначити кінетичну енергію в початковим момент часу, визначити кінетичну енергію в кінцевий момент часу, коли швидкість досягнула значення 20 м/с і визначити роботу рівнодійної сил, які діють на автомобіль.

Домашнє завдання 6

Завдання 1:

• Записати наступні означення/формули в конспект: атомна одиниця маси, відносна атомна маса, відносна молекулярна маса, моль, число Авогадро, кількість речовини, молярна маса, ідеальний газ

Завдання **2** (111.1 моль та $6.69 \cdot 10^25$):

Скільки молекул та скільки молів міститься у воді об'ємом 2.0 л?

Примітка: спочатку об'єм необхідно перевести в масу (густина води дорівнює 1000 кг/м^3).

Завдання 3 (
$$n=1.25\cdot 10^{10} {
m M}^{-3}$$
, $ho=\approx 3.33\cdot 10^{-16} {
m K}\Gamma/{
m M}^3$, 3.3 км/с):

На висоті орбіти Міжнародної космічної станції (МКС) залишкові частинки атмосфери (переважно атомарний кисень) сильно іонізовані сонячним випромінюванням, тому їхня середня кінетична енергія досить висока - близько $1.2\cdot 10^{-19}$ Дж. Тиск, який створюють ці частинки, надзвичайно низький - приблизно $1\cdot 10^{-9}$ Па. Середня маса частинки становить $2.66\cdot 10^{-26}$ кг (атом кисню).

- 1. Знайдіть концентрацію частинок на цій висоті.
- 2. Обчисліть густину залишкової атмосфери на висоті орбіти МКС.
- 3. Визначте середню квадратичну швидкість цих частинок. Порівняйте її зі швидкістю руху самої МКС (близько 7.7 км/с).

Завдання 4 (mpprox 11.3кг):

У лабораторії для 3D-друку використовують балон зі стисненим азотом (N₂) для створення інертної атмосфери. Балон має об'єм 50 літрів і витримує максимальний тиск 20 МПа. Яку максимальну масу азоту можна закачати в цей балон при температурі 25°С, не перевищуючи допустимий тиск? Молярна маса азоту становить 0.028 кг/моль.