10.569 Synthesis of Polymers Prof. Paula Hammond

Lecture 26: Cationic Ring Opening Polymerization, Other Ring Opening Polymerization

Cationic Polymerization

$$R_p = \frac{K k_i k_p \big[I \big[\hspace{-1pt} \big[ZY \big] \hspace{-1pt} \big[M \hspace{-1pt} \big]^2}{k_t}$$

Energetics of Cationic Polymerization

$$\begin{split} R_p \propto \frac{k_i k_p}{k_t} \Rightarrow \frac{A_p A_i}{A_t} \exp\!\left(\frac{-E_p - E_i + E_t}{RT}\right) \\ - E_p - E_i + E_t &= E_{RP} \sim 5\text{-}10 \text{ kcal/mol smaller impact of T than in free radical} \end{split}$$

- More directly impacted by T: transfer rates $C_M \downarrow by 100x$ for ΔT from -30°C to -60°C (isobutene)

Often use refrigeration for commercial processes $E_{\overline{pn}} = -E_p + E_t + \sum_{tr} E_{tr}$

energy of transfer rxns

Example: Cationic Polymerization of Polyisobutylene (PIB)

$$H_2C = \begin{matrix} CH_3 \\ C \\ C \\ CH_3 \end{matrix} \longrightarrow \begin{matrix} CH_3 \\ -C \\ CH_3 \end{matrix}$$

temp of polymerization: -100°C to -30°C need a lot of refrigeration!

- \rightarrow high rate of heat release want R_p to be lower for control (cationic is very rapid, faster than other polymerization methods)
- If used a good solvent for PIB \rightarrow high viscosity early on (problem!)
- Thus, choose a decent solvent for monomer but poor solvent for polymer PIB
- Precipitation occurs as polymer is generated

Porous crystal particles

- ⇒ allow precipitation of monomer
- ⇒ continued chain growth
- \Rightarrow low η slurry low T's

Example: To Form Butyl Rubber

Solvent: CHCl₃

(also precipitant of polymer)

Butyl rubber: solvent resistant

Ex: gloves

- doesn't break down in ozone (O₃)
 - → chemically stable
- chem tank liners
- chem tubes

Cationic: very rapid, high MW

Difficult to control, PDI affected

Living Cationic Polymerization

- must have $R_i >> R_p$ (steady state is not a very good assumption)
- must eliminate cross-transfer processes (that limit chain growth)
- 1. carbocation reactivity is lowered
- 2. deter combination of counterion
- 3. eliminate other impurities

even at low T

→ stiff and brittle app: space shuttle

Examples

Vinyl ethers

$$H_2C = CH$$
 OR'

Initiator: HI + ZnI₂ Solvent: toluene -40 to -25°C

Ethyl styrene

Initiator: CH₃COClO₄

Solvent: CH₂Cl₂/Toluene, -78°C

- Counterion choice is important

e.g. Bulky counterion that cannot recombine or counterion attacks reversibly

$$C \oplus + \Theta X$$

- Styrenes, vinyl ethers, vinyl carbazoles, isobutylene

can attach side groups

"Living" or "Quasi-living" b/c never completely get rid of transfer PDI ~ 1.1 to 1.2 but good enough to get high yield polymers

Ring-Opening of Cyclic Ethers

(best example of ring-opening family)

(n=2) \Rightarrow oxirane or epoxide monomers: ethylene oxide

or other epoxide rings

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

Lecture 26 Page 3 of 7

where R does not affect polymerization n=3 \Rightarrow oxetane, trimethylene oxide n=4 \Rightarrow oxolane, tetrahydrofuran

n=6 keep increasing

(for anionic polymerization: only epoxides can be polymerized) b/c it has a huge angle strain, will open using anionic or cationic initiation

anionic

can be done in controlled environment (living polymerization)

 $\overline{p_n} \uparrow$ slowly with conversion

Rate, kinetics indicate living system

$$R_{p} = k_{p}^{app} [M] [M^{-}]$$

$$II$$

$$[I]$$

$$\overline{p_n}(t) = \frac{[M]_o - [M]_t}{[I]} \Rightarrow \overline{p_n} = \frac{[M]_o}{[I]}$$

Can initiate with any oxyanion: CH3O-

and its analogs

carboanion

- all other cyclic ethers only go by cationic initiation

Examples: oxetanes

$$\circ \searrow_{R}^{R}$$

Initiators: strong acids: H₂SO₄, CF₃COOH or Lewis acid with counterions that don't combine

Propagation Step

Termination Step

- Will happen if A^- is nucleophilic \to counterion combination (bad if irreversible)

If H_2O is present (very good nucleophile)

If :NH₂ is present

Use counterions that are stable AsF₆, PF₆, SbCl₆

Or very strong fluorosulfonic acids CF₃SO₃-H⁺ Only combine reversibly and rapidly

Initiate with mono- and bifunctional initiators

or Triflic anhydride
$$F_3SO_2-O-SO_2CF_3 + n \longrightarrow O-(CH_2)_4-O-(CH_2)_4$$
propagates in both directions
$$CF_3SO_3 - O-SO_2CF_3 - O-SO_2CF_3$$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 26 Page 5 of 7

want to avoid:
$$\left\{\begin{array}{l} BF_3/H_2O\\ AICI_3/HCI \end{array}\right\}$$

temporarily

 \rightarrow causes shuffling \Rightarrow Flory distribution, hurts PDI

Best Living Systems

Pre-existing carbenium ions

$$C_6H_5-C^+=0$$
 SbF₆

Carbenium ions

$$CH_3CH_2-C^+=O$$
 $PF_6^ (C_6H_5)_2C^+H$ B^-F_4

Triflic systems

CF₃-SO₂-O-CH₃, etc

Avoid: ROH

RNH₃

ROR

Other ethers (check relative reactivities)

Can intentionally terminate to get o-functionalities

$$(CH_2)_6 \xrightarrow{\oplus} O \longrightarrow O(CH_2)_4 - OH$$

$$\frac{\ddot{N}R_3}{\text{tertiary amine group}} O(CH_2)_4 - \ddot{N}R_3$$

$$\frac{RNH_2}{\text{primary amine}} O(CH_2)_4 - NHR$$

$$\frac{\ddot{N}R_3}{\text{tertiary amine}} O(CH_2)_4 - OH$$

$$\frac{\ddot{N}R_3}{\text{tertiary amine}} O(CH_2)_4 - OH$$

Ch. 7 Odian: Ring strain

Diff impacts of ring sizes