

MDS7101

Estadística: Teoría y Aplicaciones

ESCRIBAS

Naomí Cautivo B. Máximo Flores Valenzuela

ÍNDICE

1.	Semana 1: Repaso de probabilidades	3
	1.1. Notaciones básicas	
	1.2. Propiedades básicas de P	3
	1.3. Variables aleatorias	3
	1.3.1. Variables aleatorias discretas	3
	1.3.2. Variables aleatorias continuas	3
	1.3.3. Funciones de densidad	3
	1.3.4. Esperanza de una variable aleatoria	4
	1.3.5. Varianza de una variable aleatoria	4
	1.3.6. Estandarización de una variable aleatoria	4
	1.4. Distribuciones discretas	5
	1.5. Distribuciones continuas	5
	1.6. Covarianza de dos variables aleatorias	6
	1.7. Correlación de dos variables aleatorias	6
2.	Semana 2: Repaso de probabilidades e inferencia estadística	6
	2.1. Inferencia estadística	7
	2.2. Estimadores	7
	2.3. Intervalos de confianza	8

1. SEMANA 1: REPASO DE PROBABILIDADES.

- ¿Qué es una probabilidad? Una probabilidad es una medida de incertidumbre.
- Tiene dos enfoques: frecuentista y bayesiano. Para el frecuentista, la probabilidad es algo inherente a la naturaleza, y su paradigma de cálculo es casos favorables/casos totales. Para el bayesiano, la probabilidad es un invento del ser humano, y ya no se usa la fórmula anterior.

1.1. NOTACIONES BÁSICAS

En el curso, usaremos Ω para denotar el espacio muestral, ω para los eventos, y $\mathbb P$ para la medida de probabilidad, que corresponde a una función que asigna una probabilidad a cualquier evento en $\mathcal F$, donde $\mathcal F$ es una colección de subconjuntos de Ω , no necesariamente una partición.

1.2. PROPIEDADES BÁSICAS DE P

- ① La probabilidad del espacio muestral debe ser siempre 1, es decir, $\mathbb{P}(\Omega) = 1$.
- ② La probabilidad es no negativa, es decir, para cualquier evento $A \in \mathcal{F}$, $\mathbb{P}(A) \geq 0$.
- ③ La probabilidad de la unión de eventos disjuntos es la suma de sus probabilidades por separado, es decir, $\mathbb{P}\left(\bigcup_{i}A_{i}\right)=\sum_{i}\mathbb{P}(A_{i})$ cuando $\forall i\neq j, A_{i}\cap A_{j}=\emptyset$.

1.3. VARIABLES ALEATORIAS

(i) Nota

Por convención, en este curso usaremos letras mayúsculas para denotar las variables aleatorias (en adelante, abreviadas como v. a.).

Son funciones que toman elementos del espacio muestral, y les asigna a cada uno un número real. Podemos definir una v. a. X como $X:\Omega\to\mathbb{R}$. Por ejemplo, sea X el número de caras en el lanzamiento de una moneda no cargada 3 veces, entonces $X=\{0,1,2,3\}$, porque son las distintas cantidades de caras que pueden salir.

1.3.1. VARIABLES ALEATORIAS DISCRETAS

Se dice que X es una v. a. discreta si toma valores de un conjunto finito, o infinito numerable, y además $\forall x, \mathbb{P}(X=x) \neq 0$.

1.3.2. VARIABLES ALEATORIAS CONTINUAS

Se dice que X es una v. a. continua si X toma cualquier valor real con probabilidad cero, es decir, $\forall x, \mathbb{P}(X=x)=0$.

1.3.3. FUNCIONES DE DENSIDAD

Existen dos funciones de densidad que permiten ver el comportamiento de una variable aleatoria.

- PDF: Probability Density Function (f(x)). Describe cómo se distribuye la probabilidad a lo largo de los posibles valores de la v. a. En específico, $\mathbb{P}(a \le X \le b) = \int_a^b f(x) \, \mathrm{d}x$.
- CDF: Cummulative Density Function (F(x)). Acumula la probabilidad desde $-\infty$ hasta un valor x en el dominio. En específico, $F(x) = \mathbb{P}(X \le x)$.

Estas funciones están directamente relacionadas mediante la fórmula $F(x) = \int_{-\infty}^x f(t) \, \mathrm{d}t$, lo que puede ser observado gráficamente en la Figura 1.

Figura 1: Funciones "PDF" (f(x)) y "CDF" (F(x)).

Si se conoce F, podemos conocer la probabilidad de un intervalo mediante la siguiente fórmula $\mathbb{P}(a \le X \le b) = F(b) - F(a)$.

1.3.4. ESPERANZA DE UNA VARIABLE ALEATORIA

Definimos la esperanza de una variable aleatoria para las v. a. discretas y continuas como:

- X discreta: $\mathbb{E}[X] = \sum_{\Omega} x \cdot \mathbb{P}(X = x)$.
- X continua: $\mathbb{E}[X] = \int_{\mathbb{R}_X} x \cdot f(x) \, \mathrm{d}x$.

También se puede definir como el primer momento de distribución. Los momentos de distribución se definen como $\mathbb{E}[X], \mathbb{E}[X^2], \mathbb{E}[X^3]$, etc.

1.3.5. VARIANZA DE UNA VARIABLE ALEATORIA

Definimos la varianza de una v. a. discreta y continua como:

- X discreta: $\mathbb{V}\mathrm{ar}(X) = \mathbb{E}\big[(X \mathbb{E}[X])^2\big].$
- X continua: $\mathbb{V}\mathrm{ar}(X) = \int_{\mathbb{R}_X} (X \mathbb{E}(X))^2 \cdot f(x) \, \mathrm{d}x$

Con esto mismo podemos definir la desviación estándar de una variable aleatoria, la cual viene a ser la raíz cuadrada de su varianza. Se le conoce también como σ o $\mathrm{STD}(X)$.

1.3.6. ESTANDARIZACIÓN DE UNA VARIABLE ALEATORIA

Sea X una variable aleatoria, se define la variable $Z=(X-\mu)/\sigma$ con $\mu=\mathbb{E}[X]$ y $\sigma=\sqrt{\mathbb{V}\mathrm{ar}(X)}$. Se dice que Z es la estandarización de X, pues cumple $\mathbb{E}[Z]=0$ y $\mathbb{V}\mathrm{ar}(Z)=1$.

Advertencia

En algunas librerías de programación, la «estandarización» de una v. a. se considera como su «normalización», pero estos términos no son equivalentes.

1.4. DISTRIBUCIONES DISCRETAS

En el curso, veremos principalmente las siguientes distribuciones discretas:

① Bernoulli: $X := \text{lanzamiento de una moneda sólo una vez. Entonces } X \sim \text{Bernoulli}(p)$. Sus valores se definen como:

$$X = \begin{cases} 1 \text{ en el caso de éxito} \\ 0 \text{ en el caso de fracaso} \end{cases}$$

Además, $\mathbb{P}(X=1)=p$ (probabilidad de éxito) y $\mathbb{P}(X=0)=1-p$ (probabilidad de fracaso). El éxito puede ser, por ejemplo, «obtener cara al lanzar la moneda».

② Binomial: si realizamos el experimento anterior n veces, entonces $X \coloneqq \text{número de éxitos en}$ n ensayos independientes. Luego, $X \sim \text{Binomial}(p,n)$. La probabilidad asociada a k éxitos es la siguiente:

$$\mathbb{P}(X=k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

Además, $\mathbb{E}(X) = np \text{ y } \mathbb{V}ar(X) = np \cdot (1-p).$

Si p es un vector multivariado $(p_1, p_2, ..., p_n)$, se transforma en una distribución multinomial, denominada $X \sim \text{Multinomial}(p, n)$.

1.5. DISTRIBUCIONES CONTINUAS

① Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$. Su función de densidad es:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}; \quad x \in \mathbb{R}$$

- Normal estándar: si $X \sim \mathcal{N} \big(\mu, \sigma^2 \big)$ y $Z = (X \mu) / \sigma$, entonces $Z \sim \mathcal{N} (0, 1)$.
- ② «Chi cuadrado» (χ^2): si $Z \sim \mathcal{N}(0,1)$ entonces:

$$Y=Z^2\to Y\sim \chi^2_{[1]}$$

donde el subíndice [1] denota los grados de libertad, que es algo que se tratará en las próximas secciones.

③ $t ext{-Student: si }Z\sim\mathcal{N}(0,1)$ e $Y\sim\chi^2_{[n]}$. Entonces definimos $t ext{-Student como:}$

$$t = \frac{Z}{\sqrt{Y/n}} \sim t_{[n]}$$

 $\ \ \$ Fischer (F): combinamos dos χ^2 independientes:

$$X_1\sim\chi^2_{[n_1]}\wedge X_2\sim\chi^2_{[n_2]}$$
entonces $F=\frac{X_1/n_1}{X_2/n_2}\sim F_{n_1,n_2}$

1.6. COVARIANZA DE DOS VARIABLES ALEATORIAS

Medida de cómo en promedio varían linealmente dos variables aleatorias entre sí.

$$\begin{split} \mathbb{C}\mathrm{ov}(X,Y) &= \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] \\ &= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \end{split}$$

Si estas variables X,Y son independientes, entonces su covarianza será cero, pues $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ por la propiedad heredada de la esperanza.

Advertencia

La implicancia $\mathbb{C}\mathrm{ov}(X,Y)=0 \Rightarrow X,Y$ son independientes es falsa, y es un error muy común asumir que es cierta.

1.7. CORRELACIÓN DE DOS VARIABLES ALEATORIAS.

Es una estandarización de la covarianza, para tener resultados interpretables en el rango [-1,1]. Se calcula de la siguiente forma:

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{\mathbb{C}ov}(X,Y)}{\sqrt{\operatorname{\mathbb{V}ar}(X) \cdot \operatorname{\mathbb{V}ar}(Y)}} = \rho(X,Y)$$

2. SEMANA 2: REPASO DE PROBABILIDADES E INFERENCIA ESTADÍSTICA

- Cuando decimos Corr(X,Y) = 0, quiere decir que no hay información sobre la relación lineal entre X e Y. Esto no quiere decir que X e Y sean independientes, porque pueden tener un tipo de relación no lineal, por ejemplo, cuadrática.
 - Ejemplo: Sea $X \sim \mathrm{U}[-1,1]$ e $Y = X^2$, con $\mathrm{U}(a,b)$ una distribución uniforme. Como los momentos de una variable Z que distribuye uniformemente en el intervalo (a,b) se calculan mediante la expresión:

$$\mathbb{E}(Z^n) = \frac{b^{n+1} - a^{n+1}}{(n+1) \cdot (b-a)}$$

y X es uniforme en el intervalo [-1,1], entonces su primer momento, $\mathbb{E}(X)$, es nulo. Además, $\mathbb{E}(X^3)=0$. Esta última expresión nos sirve para deducir la contradicción, pues:

$$\begin{split} \mathbb{C}\mathrm{ov}(X,Y) &= \mathbb{E}(XY) - \mathbb{E}(X) \cdot \mathbb{E}(Y) \\ &= \mathbb{E}(XY) \\ &= \mathbb{E}(X \cdot X^2) \\ &= \mathbb{E}(X^3) = \mathbf{0} \end{split}$$

pero *Y* sí depende de *X*, entonces no pueden ser independientes.

2.1. INFERENCIA ESTADÍSTICA

La inferencia estadística es una rama de la estadística que se encarga de hacer predicciones o caracterizaciones sobre una población a partir de una muestra.

Normalmente, habrá una variable $Y \sim f(X)$, con f una función genérica llamada modelo, que encuentra una relación. Y se llama variable endógena, porque depende de X. Será la variable que estudiaremos. Por otro lado, X se llama variable exógena, porque en el mundo ideal no dependen de nada.

Haremos un estudio de X, con una sola variable. Por ejemplo, sea $Y \coloneqq \operatorname{demanda}$ por poleras, y $X \coloneqq \operatorname{tallas}$ (estaturas). En Chile, podríamos decir que el promedio de estatura en hombres es $\overline{x}_H = 1.73 \, \mathrm{m}$ y en mujeres es $\overline{x}_M = 1.58 \, \mathrm{m}$. Diremos que el mínimo es $1 \, \mathrm{m}$, y el máximo es $2.5 \, \mathrm{m}$.

Podemos decir que las estaturas distribuyen como una variable aleatoria normal, es decir, $X \sim \mathcal{N}(\mu, \sigma^2)$, porque usualmente las concentraciones de estaturas toman esta forma por naturaleza.

2.2. ESTIMADORES

Importante

Para hacer las estimaciones, tomamos muestras aleatorias independientes e idénticamentte distribuidas (en adelante, denotado como i.i.d.). Así, la observación i no depende de la j, y todas vienen de la misma distribución. En el curso trabajaremos sólo con distribuciones i.i.d., salvo que se diga lo contrario.

En el caso anterior, no podemos conocer ni μ ni σ . Como habrán casos donde esto suceda, necesitamos instrumentos que «aproximen» estos valores para poder hacer la inferencia, por ejemplo:

$$\overline{X} = \frac{1}{N} \cdot \sum_{i=1}^{N} X_i$$

- ¿Por qué nos gusta el promedio? El promedio cumple con propiedades que hacen que sea un buen estimador. Una de ellas se enlista a continuación:
 - Insesgadez. Sea T(X) estimador del parámetro θ . T(X) es insesgado si $\mathbb{E}[T(X)] = \theta$. Esto significa que su valor esperado está completamente centrado en el parámetro que estoy buscando. Esta propiedad la cumple el promedio:

$$\begin{split} \mathbb{E}\Big(\overline{X}\Big) &= \mathbb{E}\left(\frac{1}{N} \cdot \sum_{i=1}^{N} X_i\right) \\ &= \frac{1}{N} \cdot \sum_{i=1}^{N} \mathbb{E}(X_i) \quad \text{(linealidad)} \\ &= \frac{1}{N} \cdot N \cdot \mu = \mu \qquad (X_i \text{ i.i.d.}) \end{split}$$

Definimos $\mathbb{V}\mathrm{ar}(T(X))$ como la medida de dispersión del estimador, es decir, qué tan lejos me encuentro del «centro». Para el promedio:

$$\begin{split} \mathbb{V}\mathrm{ar}\left(\overline{X}\right) &= \mathbb{V}\mathrm{ar}\left(\frac{1}{N} \cdot \sum_{i=1}^{N} X_i\right) \\ &= \frac{1}{N^2} \cdot \mathbb{V}\mathrm{ar}\left(\sum_{i=1}^{N} X_i\right) \\ &= \frac{1}{N^2} \cdot \sum_{i=1}^{N} \mathbb{V}\mathrm{ar}(X_i) \quad (X_i \text{ i.i.d.}) \\ &= \frac{1}{N^2} \cdot N \cdot \sigma^2 = \frac{\sigma^2}{N} \end{split}$$

A propósito, queremos que la varianza sea lo más cercana a cero posible, porque esto hace que el estimador esté concentrado en el valor central. Lo malo del resultado obtenido con el promedio, es que si N es muy grande, no podré estimar σ (que sigue siendo desconocido), porque N tiene influencias en el resultado al estar dividiendo.

De esto, nace la necesidad de buscar un estimador insesgado de σ^2 . La expresión que toma es la que sigue:

$$S^2 = \frac{1}{N-1} \cdot \sum_{i=1}^N \left(X_i - \overline{X} \right)^2; \quad \mathbb{E}(S^2) = \sigma^2$$

De esta forma, ya tenemos una estimación de σ^2 , por lo tanto, podemos decir que $\mathbb{V}\mathrm{ar}(\overline{X}) = S^2/N$ con un error $\mathrm{STD}(\overline{X}) = \sqrt{S^2/N}$.

2.3. INTERVALOS DE CONFIANZA

Se anotan como $IC(\overline{X})$, $CI(\overline{X})$ o $C(\overline{X})$, y corresponden a un rango de valores que con cierta probabilidad contienen al parámetro de interés θ . Lo importante es notar que el parámetro de interés está fijo, lo que varía es justamente el intervalo de confianza.

$$C(\overline{X}) = \overline{X} \pm Z_{\alpha} \cdot STD(\overline{X})$$

El valor Z_{α} es el que escojo para que con « α » nivel de confianza $\mu \in \mathrm{C}(X).$

$$\begin{split} \mathbb{P} \Big(\mu \in \mathcal{C} \Big(\overline{X} \Big) \Big) &= \mathbb{P} \Big(\overline{X} - Z_{\alpha} \cdot \operatorname{STD} \Big(\overline{X} \Big) \leq \mu \leq \overline{X} + Z_{\alpha} \cdot \operatorname{STD} \Big(\overline{X} \Big) \Big) \\ &= \mathbb{P} \left(-Z_{\alpha} \leq \underbrace{\overline{X} - \mu}_{\substack{\text{estadistica } t}} \leq Z_{\alpha} \right) \end{split}$$

Para fijar la probabilidad de que el parámetro de interés esté en el intervalo de confianza, necesitamos saber cómo distribuye el estadístico t. Vamos a ver algunos ejemplos.

① $X \sim \mathcal{N}(\mu, \sigma^2)$, y supondremos que conocemos σ^2 . Entonces $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/N)$ por los cálculos que hicimos anteriormente. Luego,

$$Z \sim \frac{\overline{X} - \mu}{\mathrm{STD} \big(\overline{X}\big)} \sim \mathcal{N}(0,1) \quad \text{(es una normal estandarizada)}$$

Para una normal $\mathcal{N}(0,1)$, el valor de Z_{α} es aproximadamente 1.96 para una estimación del 95% de confianza para μ (o sea, $\alpha=1-0.95=0.05$). Este valor de Z_{α} varía en función de la probabilidad asociada a la estimación.

② $X \sim \mathcal{N}(\mu, \sigma^2)$, pero no conocemos σ^2 . Nuevamente, $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/N)$. Luego, queremos conocer cómo distribuye $Z = \left(\overline{X} - \mu\right)/\sqrt{S^2/N}$. Para esto, necesitamos escribir Z de manera conveniente. Se escribirá de la siguiente forma:

$$Z = rac{\overline{X} - \mu}{\sqrt{\sigma^2/N}} \left/ \sqrt{\left((N-1) \cdot rac{S^2}{\sigma^2}
ight) / (N-1)} \right.$$

Ya sabemos que $\left(\overline{X}-\mu\right)/\sqrt{\sigma^2/N}\sim\mathcal{N}(0,1)$. Nos falta estimar el resto. Desarrollando:

$$(N-1) \cdot \frac{S^2}{\sigma^2} = \frac{1}{N-1} \sum_{i=1}^N \left[\left(X_i - \overline{X} \right)^2 \right] \cdot \frac{N-1}{\sigma^2} = \sum_{i=1}^N \left(\frac{X_i - \overline{X}}{\sigma} \right)^2$$

y además, $\left(X_i-\overline{X}\right)/\sigma\sim\mathcal{N}(0,1)$, entonces $(N-1)\cdot S^2/\sigma^2\sim\chi^2_{[N-1]}$, pues es una suma de normales al cuadrado. Finalmente, y por definición de la variable aleatoria t-Student, Z distribuye $t_{[N-1]}$.

🗓 Importante

La suma de variables χ^2 independientes sigue siendo χ^2 . Los grados de libertad de la variable resultante son la suma de los grados de libertad de las variables originales.