EE2023 Signals & Systems Quiz Semester 1 AY2013/14

Date: 8 October 2013 Time Allowed: 1.5 hours

•	4	4 •		
In	ctr	ucti	anc	•
	31.1			•

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz.
- 3. Tables of Fourier transforms and trigonometric identities are given on Pages 11 and 12.
- 4. No programmable or graphic calculator is allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name :	 	
Matric # :	 	
Class Group #:		

For your information:

Group 1: A/Prof Loh Ai Poh Group 2: A/Prof Ng Chun Sum Group 3: A/Prof Tan Woei Wan Group 4: Prof Lawrence Wong

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q.1 A signal x(t) has a spectrum shown in Figure Q.1 below. You may assume that only signals with frequencies below 3 Hz are important.

Figure Q.1: Spectrum of x(t)

- (a) Without using any anti-aliasing filter, design a sampling frequency to sample x(t) such that the sampled signal has no frequency aliasing effects.
- (b) What is the lowest sampling frequency which can be used to sample x(t) in such a way that there is no distortion to the important frequency components? Show how you arrive at your choice of the sampling frequency.
- (c) If x(t) is sampled at 6 Hz, can the important part of x(t) be reconstructed from the sampled signal? Justify your answer.
- (d) Suppose another signal $y(t) = x(t)\cos(20\pi t)$ is sampled at 20Hz. Sketch the spectrum of the sampled y(t).

Q.1 ANSWER

Q.1 ANSWER ~ continued

Q.2	Let	x(t)	= sinc ²	(t -	$\frac{1}{2\pi}$	
-----	-----	------	---------------------	------	------------------	--

- (a) Determine the phase spectrum and energy spectral density of x(t). Draw a labeled sketch for each.
- (b) Calculate the amount of energy contained within the 3dB bandwidth of x(t). Round your answer to 3 decimal places.

Q.2 ANSWE	R
-----------	---

Q.2 ANSWER ~ continued

Q.3 Consider the periodic signal, x(t), shown in Figure Q.3.

- (a) What is the fundamental period, T_p , of x(t)?
- (b) The signal x(t) may be expressed as

$$x(t) = \sum_{n=-\infty}^{\infty} \alpha(t - nT_p)$$

where
$$\alpha(t) = \begin{cases} \alpha_1(t); & -1 < t < 0 \\ \alpha_2(t); & 0 < t < 1. \\ 0; & \text{otherwise} \end{cases}$$

Find $\alpha_1(t)$ and $\alpha_2(t)$.

(c) Derive the expression of a definite integral for the complex exponential Fourier Series coefficients, X_k , of x(t).

Note : There is no need to evaluate the definite integral.

(d) Sketch the continuous-frequency spectrum of x(t), clearly labelling the axes and important features of the graph.

Q.3 ANSWER

Q.3 ANSWER ~ continued

Q.4. The signal x(t) is shown in Figure Q.4(a).

- (a) Write the expression for the single sinusoid pulse x(t) shown in Figure Q.4(a).
- (b) Determine the Fourier transform, X(f), of the signal x(t).
- (c) Using the replication property of the Dirac- δ function, obtain an expression for the periodic signal $x_p(t)$ shown in Figure Q.4(b) in terms of x(t).
- (d) Derive the Fourier transform, $X_p(f)$, of the periodic signal $x_p(t)$.

Figure Q.4(a)

Q.4 ANSWER Figure Q.4(b)

Q.4 ANSWER ~ continued

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k \, t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k \, t/T) \end{cases}$$

Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS		
	x(t)	X(f)
Constant	K	$K\delta(f)$
Unit Impulse	$\delta(t)$	1
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
Triangle	$\operatorname{tri}\!\left(\frac{t}{T}\right)$	$T\operatorname{sinc}^2(fT)$
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta \big(f - f_o \big) - \delta \big(f + f_o \big) \Big]$
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp\!\left(-\alpha^2\pi^2f^2\right)$
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \mathcal{S} \left(f - \frac{k}{T} \right)$

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\bigg(\frac{f}{\beta}\bigg)$
Duality	X(t)	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$

TRIGONOMETRIC IDENTITIES		
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = \frac{1}{j2} \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
$\sin^2(\theta) + \cos^2(\theta) = 1$		
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta)-\cos(\alpha+\beta)\right]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta) + \cos(\alpha+\beta)\right]$	
$\sin^2(\theta) = \frac{1}{2} \left[1 - \cos(2\theta) \right]$	$\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$	
$\cos^2(\theta) = \frac{1}{2} \left[1 + \cos(2\theta) \right]$	$\mathbf{C}\cos(\theta) - \mathbf{S}\sin(\theta) = \sqrt{\mathbf{C}^2 + \mathbf{S}^2}\cos\left[\theta + \tan^{-1}\left(\frac{\mathbf{S}}{\mathbf{C}}\right)\right]$	