Extrapolating prediction error for 'extreme' multi-class classification

Charles Zheng

Stanford University

February 20, 2017

(Joint work with Rakesh Achanta and Yuval Benjamini.)

Multi-class classification

MNIST digit recognition: 10 categories

Human motion database: 51 categories

• ImageNet: 22,000 categories

• Wikipedia: 325,000 categories

from Krizhevsky et al. 2012

Facial recognition

• Used to tag images in software, security

Facial recognition

- Used to tag images in software, security
- Preprocessing

Facial recognition

- Used to tag images in software, security
- Preprocessing

Feature extraction

Accuracy vs. number of classes

Accuracy vs. number of classes

Accuracy vs. number of classes

How does the accuracy scale with the number of classes (faces)?

Setup

1. Population of categories $\pi(y)$

2. Subsample k labels, y_1, \ldots, y_k

Setup

3. Collect training and test data $x_j^{(i)}$ (faces) for labels (people) $\{y_1, \dots, y_k\}$.

Label	Training			Test
y_1 =Amelia	$x_1^{(1)} =$	$x_1^{(2)} =$	$x_1^{(3)} =$	$x_1^* =$
y_2 =Jean-Pierre	$x_2^{(1)} =$	$x_2^{(2)} =$	$x_2^{(3)} =$	$x_2^* =$
y ₃ =Liza	$x_3^{(1)} =$	$x_3^{(2)} =$	$x_3^{(3)} =$	x ₃ * =
y ₄ =Patricia	$x_4^{(1)} =$	$x_4^{(2)} =$	$x_4^{(3)} =$	$x_4^* =$

4. Train a classifier and compute test error.

Setup

3. Collect training and test data $x_j^{(i)}$ (faces) for labels (people) $\{y_1, \dots, y_k\}$.

Label	Training			Test
y_1 =Amelia	$x_1^{(1)} =$	$x_1^{(2)} =$	$x_1^{(3)} =$	$x_1^* =$
y_2 =Jean-Pierre	$x_2^{(1)} =$	$x_2^{(2)} =$	$x_2^{(3)} =$	$x_2^* =$
y ₃ =Liza	$x_3^{(1)} =$	$x_3^{(2)} =$	$x_3^{(3)} =$	x ₃ * =
y ₄ =Patricia	$x_4^{(1)} =$	$x_4^{(2)} =$	$x_4^{(3)} =$	$x_4^* =$

4. Train a classifier and compute test error.

Can we analyze how error depends on k?

• The classifier is *marginal* if it learns a model *independently* for each class.

• The classifier is *marginal* if it learns a model *independently* for each class.

Examples: LDA/QDA

• The classifier is *marginal* if it learns a model *independently* for each class.

Examples: LDA/QDA

x, naïve Bayes

 The classifier is marginal if it learns a model independently for each class.

Examples: LDA/QDA

- 🛪 , naïve Bayes
- Non-marginal classifiers: Multinomial logistic, multilayer neural networks, k-nearest neighbors

Definitions

 $\hat{F}_{\nu(i)}$ is the empirical distribution obtained from the training data for label $v^{(i)}$

Classification Rule

Classification rate
$$M_{y^{(1)}}(x) = \mathcal{M}(\hat{F}_{y^{(1)}})(x) \qquad \qquad M \boxed{\qquad \qquad } \\ M_{y^{(2)}}(x) = \mathcal{M}(\hat{F}_{y^{(2)}})(x) \qquad \qquad M \boxed{\qquad \qquad } \\ M_{y^{(3)}}(x) = \mathcal{M}(\hat{F}_{y^{(3)}})(x) \qquad \qquad M \boxed{\qquad \qquad } \\ \hat{Y}(x) = \underset{x \in \mathcal{M}_{x}}{\operatorname{argmax}} \quad \mathcal{M}_{x}(x) \qquad \qquad \mathcal{M}_{y^{(2)}} \boxed{y^{(2)}} \boxed{y^{(2)}}$$

$$Risk = \mathbb{E}[L]$$

9 / 41

Theoretical Result

Theorem. (**Z.**, Achanta, Benjamini.) Suppose π , $\{F_y\}_{y\in\mathcal{Y}}$ and marginal classifier \mathcal{F} satisfy (some regularity condition). Then, there exists some function $\bar{D}(u)$ on $[0,1]\to[0,1]$ such that the k-class average risk is given by

$$AvRisk_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

Theoretical Result

Theorem. (**Z.**, Achanta, Benjamini.) Suppose π , $\{F_y\}_{y\in\mathcal{Y}}$ and marginal classifier \mathcal{F} satisfy (some regularity condition). Then, there exists some function $\bar{D}(u)$ on $[0,1]\to[0,1]$ such that the k-class average risk is given by

$$AvRisk_k = (k-1) \int \bar{D}(u)u^{k-2}du.$$

What is this $\bar{D}(u)$ function? We will explain in the following toy example...

$$Y_1,\ldots,Y_k\stackrel{iid}{\sim} N(0,1);$$

$$Y_1, \dots, Y_k \stackrel{iid}{\sim} N(0, 1);$$
 $X|Y \sim N(\rho Y, 1 - \rho^2) \text{ i.e. } (Y, X) \sim N(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}).$

- Suppose k = 3, and we draw Y_1, Y_2, Y_3 .
- The Bayes rule is the optimal classifier and depends on knowing the true densities:

$$\hat{y}(x) = \operatorname{argmax}_{y_i} p(x|y_i)$$

 The Bayes Risk, which is the misclassification rate of the optimal classifier.

• The Bayes Risk is the expected test error of the Bayes rule,

$$\frac{1}{k} \sum_{i=1}^{k} \Pr[\hat{y}(x) \neq Y | Y = y_i]$$

Defining the *U*-function

Define $U_x(y)$ as follows:

- Suppose we have test instance (face) x whose true label (person) is y.
- Let Y' be a random incorrect label (person).
- Use the classifier to guess whether x belongs to y or Y'.
- Define $U_x(y)$ as the probabilility of success (randomizing over training data).

$$U_y(x) = \Pr[d(x, \rho Y') > d(x, \rho y)], \text{ for } Y' \sim N(0, 1).$$

20 / 41

Defining $\bar{D}(u)$

• Define random variable as $U_Y(X)$ for (Y, X) drawn from the joint distribution.

Defining $\bar{D}(u)$

- Define random variable as $U_Y(X)$ for (Y, X) drawn from the joint distribution.
- $\bar{D}(u)$ is the cumulative distribution function of U,

$$\bar{D}(u) = \Pr[U_Y(X) \leq u].$$

Defining $\bar{D}(u)$

- Define random variable as $U_Y(X)$ for (Y, X) drawn from the joint distribution.
- $\bar{D}(u)$ is the cumulative distribution function of U,

$$\bar{D}(u) = \Pr[U_Y(X) \leq u].$$

Computing average risk

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 2)

Computing average risk

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 3)

Computing average risk

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 4)

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 5)

$$AvRisk_k = (k-1) \int \bar{D}(u)u^{k-2}du.$$

(k = 6)

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 7)

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 8)

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 9)

$$\mathsf{AvRisk}_k = (k-1) \int \bar{D}(u) u^{k-2} du.$$

(k = 10)

Implication: estimate $\overline{D}(u)$ to predict risk

- Theoretical result links k-class average risk to $\bar{D}(u)$ function
- In real data, we do not know $\bar{D}(u)$ since it depends on the unknown joint distribution
- However, given a model, we can estimate $\bar{D}(u)$

Subsampled risk estimates

- Suppose we have data for k classes (subsampled from π)
- The test error TestErr_k is an unbiased estimate for AvRisk_k
- For any $\ell < k$, we can estimate AvRisk $_\ell$ by subsampling the k classes, and taking the average test risk, AvTestErr $_\ell$.

k = 4	vs vs vs
k = 3	vs vs w
	ys Vs 💚
	vs vs
	vs Vs 🗐
k = 2	Vs 😵
	Vs Vs
	Vs 😜
	vs 🔝
	VS VS
	vs 💚

Parametric modelling approach

Assume that for set of basis functions h_1, \ldots, h_ℓ , we have

$$ar{D}(u) = \sum_{\ell=1}^m eta_\ell h_\ell(u).$$

Then

$$\mathsf{AvRisk}_k = \sum_{\ell=1}^m \beta_\ell H_{\ell,k} = \beta^\mathsf{T} \vec{H}_k$$

where

$$H_{\ell,k} = (k-2) \int_0^1 h_{\ell}(u) u^{k-2} du.$$

and $\vec{H}_k = (H_{1,k}, \ldots, H_{\ell,k})$

• Choose basis h_1, \ldots, h_ℓ

$$\bar{D}(u) = \sum_{\ell=1}^m \beta_\ell h_\ell(u).$$

1 Choose basis h_1, \ldots, h_ℓ

$$\bar{D}(u) = \sum_{\ell=1}^m \beta_\ell h_\ell(u).$$

Obtain subsampled test errors AvTestErr₂,..., AvTestErr_k.

1 Choose basis h_1, \ldots, h_ℓ

$$ar{D}(u) = \sum_{\ell=1}^m eta_\ell h_\ell(u).$$

- Obtain subsampled test errors AvTestErr₂,..., AvTestErr_k.
- Fit regression model

$$\hat{\beta} = \operatorname{argmin}_{\beta} \sum_{i=2}^{k} \left(\operatorname{AvTestErr}_{i} - \vec{H}_{i}^{T} \beta_{\ell} \right)^{2}$$

• Choose basis h_1, \ldots, h_ℓ

$$ar{D}(u) = \sum_{\ell=1}^m eta_\ell h_\ell(u).$$

- ② Obtain subsampled test errors $AvTestErr_2, \ldots, AvTestErr_k$.
- 3 Fit regression model

$$\hat{\beta} = \operatorname{argmin}_{\beta} \sum_{i=2}^{k} \left(\operatorname{AvTestErr}_{i} - \vec{H}_{i}^{T} \beta_{\ell} \right)^{2}$$

• For K > k, predict AvRisk_K as

$$\widehat{\mathsf{AvRisk}}_K = \vec{H}_K^T \beta_\ell.$$

Examples of basis functions

- Polynomials, $1, x, x^2, \dots$
- Cubic splines
- Linear splines, $[x-t_\ell]_+$

Optional constraint: assume β is non-negative. In the case of linear splines, this results in a *convex* fit.

Section 1

Applications

- Data: faces from "Labeled Faces in the Wild."
- 1672 people with at least 2 photos
- Featurization: trained neural network from OpenFace

- Let us first subsample 400 faces (out of 1672)
- Randomly choose 1 face as training and 1 as test for each person
- Use 1-nearest neighbor.
 - NOTE: 1-NN with 1
 example/class is equivalent to
 LDA with Σ = I: this fits
 marginal classifier assumption!

- Let us first subsample 400 faces (out of 1672)
- Randomly choose 1 face as training and 1 as test for each person
- Use 1-nearest neighbor.
 - NOTE: 1-NN with 1 example/class is equivalent to LDA with Σ = I: this fits marginal classifier assumption!

- Let us first subsample 400 faces (out of 1672)
- Randomly choose 1 face as training and 1 as test for each person
- Use 1-nearest neighbor.
 - NOTE: 1-NN with 1 example/class is equivalent to LDA with Σ = I: this fits marginal classifier assumption!

Can we predict the accuracy on the full set of 1672?

Estimated $\bar{D}(u)$

Using linear spline basis (p = 10000) and nonnegativity constraint.

Estimated risk

Compare to test risk at K = 1672

Section 2

The end