Статистическое оценивание параметров случайной величины

Доверительный интервалы по большим выборкам ($n \ge 20$)

<i>r</i> 1 1 1	L i i i i i i i i i i i i i i i i i i i	(1)
Характеристика	Генеральная средняя	Генеральная доля
Интервал	$ \bar{x} - \bar{x}_{\scriptscriptstyle \mathrm{B}} \leqslant \Delta$	$ p - \omega_{\scriptscriptstyle \mathrm{B}} \leqslant \Delta$
Точность	$\Delta = t \sigma_{\bar{x}}$	$\Delta = t\sigma_{\omega}$
	$\gamma = 2\Phi(t)$	$\gamma = 2\Phi(t)$
Повторная выборка	$\sigma_{ar{x}}pprox\sqrt{rac{s^2}{n}}$	$\sigma_{\omega}pprox\sqrt{rac{\omega(1-\omega)}{n}}$
Бесповторная выборка	$\sigma_{ar{x}}pprox\sqrt{rac{s^2}{n}\left(1-rac{n}{N} ight)}$	$\sigma_w pprox \sqrt{\frac{\omega(1-\omega)}{n}\left(1-\frac{n}{N}\right)}$
Параметр t	$\gamma =$	$2\Phi(t)$
Объем повторной выборки	$n = \frac{t^2 \sigma^2}{\Lambda^2}$	$n = \frac{t^2pq}{\Lambda^2}$
Объем бесповторной выборк	и $n'=$	$=rac{nN}{n+N}$

Доверительный интервал для генеральной средней по малой выборке (n < 20)

$$|\bar{x} - \bar{x}_{\scriptscriptstyle B}| \leqslant \Delta_{\scriptscriptstyle MB}, \qquad \Delta_{\scriptscriptstyle MB} = \frac{t_{\gamma, n-1}s}{\sqrt{n-1}}.$$

 $\frac{|\bar{x} - \bar{x}_{\scriptscriptstyle B}| \leqslant \Delta_{\scriptscriptstyle MB}, \qquad \Delta_{\scriptscriptstyle MB} = \frac{t_{\gamma,n-1}s}{\sqrt{n-1}}.}{\text{Доверительный интервал для генеральной дисперсии}}{\frac{ns^2}{\chi^2_{\frac{1-\gamma}{2},n-1}} < \sigma^2 < \frac{ns^2}{\chi^2_{\frac{1+\gamma}{2},n-1}}.}$

$$\frac{ns^2}{\chi^2_{\frac{1-\gamma}{2},n-1}} < \sigma^2 < \frac{ns^2}{\chi^2_{\frac{1+\gamma}{2},n-1}}$$

1. Для исследования доходов населения города, составляющего 20 тыс. человек, по схеме собственно-случайной бесповторной выборки было отобрано 1000 жителей. Получено следующее распределение жителей по месячному доходу (тыс. руб.):

x_i	Менее 10	10-20	20-30	30-40	40-50	Свыше 50
$\overline{n_i}$	58	96	239	328	147	132

Требуется:

- (а) найти несмещенную и состоятельную оценку доли жителей города с месячным доходом не менее 30 тыс. руб.;
- (б) найти несмещенную и состоятельную оценку среднего месячного дохода;
- (в) найти несмещенную и состоятельную оценку дисперсии месячного дохода;
- (\mathbf{r}) найти вероятность того, что средний месячный доход жителя города отличается от среднего дохода его в выборке не более чем на 9 тыс. руб. (по абсолютной величине);
- (д) определить границы, в которых с надежностью 0,99 заключен средний месячный доход жителей города;
- (е) каким должен быть объем выборки, чтобы те же границы гарантировать с надежностью 0,9973?
 - 2. Произведено 12 измерений одним прибором (без систематической ошибки) некоторой величины, имеющей нормальное распределение, причем дисперсия случайных ошибок измерений оказалась равной 0,36. Найти границы, в которых с надежностью 0,95 заключено среднее квадратическое отклонение случайных ошибок измерений, характеризующих точность прибора.

Домашнее задание

3. Разобрать по учебнику Н.Ш. Кремера примеры 9.10, 9.11, 9.12, 9.13, 9.15, 9.17.

4. Упражнения 2,3 из пособия А.В. Ряттель Основы кономико-математического м делирования с. 49–50	-O1