

FIG. 2

FIG. 3

 $MW \times 10^{-3}$

FIG. 4

FIG. 5

FIG. 6

<u>Б</u>

CTTTCAACCT CACCTCCT CATCTAAGAA TIGCTCCTCG IGGTCAIGCT ICTCCTAACT CTTAAGGACC TTATGGTCGA CTGTTACTAA AGGAGGAGTA GAAAGTTGGA GTGGAGAGGA GTAGATTCTT AACGAGGAGC ACCAGTACGA AGAGGATTGA ᆸ V L V 1 GAATTCCTGG AATACCAGCT GACAATGATT TCCTCCTCAT

101 GCAAGGCTAA CGCTGTCCAG CCCGGCTCCT CCTGCTTGTG ACCTCCGAGT CCTCAGTAAA CTGCTTCGTG ACTCCCATGT CCTTCACAGC AGACTGGTGA CGTTCCGATT GCGACAGGTC GGGCCGAGGA GGACGAACAC TGGAGGCTCA GGAGTCATTT GACGAAGCAC TGAGGGTACA GGAAGTGTCG TCTGACCACT L H S ЬΗ LLRD × rı W R V P A ы ď Ø Ŋ L

201 GAACTCCCAA CATTATCCCCC TTTATCCGCG TAACTGGTAA GACACCCATA CTCCCAGGAA GACACCATCA CTTCCTCTAA CTCCTTGACC CAATGACTAT GTAATAGGGG AAATAGGCGC ATTGACCATT CTGTGGGTAT GAGGGTCCTT CTGTGGTAGT GAAGGAGATT GAGGAACTGG GTTACTGATA CTTGAGGGTT

301 TCTTCCCATA TIGICCCCAC CTACTGAICA CACTCTCTGA CAGAATTAT TCTTCACAAT ACAGCCCGCA TTTAAAAGCT CTCGTCTAGA AGAAGGGTAT AACAGGGGTG GATGACTAGT GTGAGAGACT GTTCTTAATA AGAAGTGTTA TGTCGGGCGT AAATTTTCGA GAGCAGATCT

1 tcttcctacccatctgctccccagagggctgcctgctgtgcacttgggtcctggagcccttctccacccggatagattcctcacccttggcccgcctttg

MetGluLeuThrGluLeuLeuLeuValValMetLeuLeuLeuThrAlaArgLeuThrLeuSerSerProAlaProProAlaCysAsp gacaccccggccagaATGGAGCTGAATTGCTCCTCGTGGTCATGCTTCTCCTAACTGCAAGGCTAACGCTGTCCAGCCCGGCTCCTCCTCCTGCTTGTG 201

30 20

LeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeu 301 ACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCT

ProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyGlyVal 401

MetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuLeuGlyAlaLeuGlnSerLeuLeu ATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTTGGGGGCCCTGCAGAGCTCC 501

130 120

GlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPhe TIGGAACCCAGCTICCTCCACAGGGCAGGACCACAGCICCACAAGGAICCCAATGCCAICTICCTGAGCTICCAACACCTGCTCCGAGGAAAGGIGCGTTT 601

LeuMetLeuValGlyGlySerThrLeuCysValArgArgAlaProProThrThrAlaValProSerArgThrSerLeuValLeuThrLeuAsnGluLeu 160

ProAsnArgThrSerGlyLeuLeuGluThrAsnPheThrAlaSerAlaArgThrThrGlySerGlyLeuLeuLysTrpGlnGlnGlyPheArgAlaLysIle

190

200

CCAAACAGGACTTCTGGATTGTTGGAGACAAACTTCACTGCCTCAGCCAGAACTACTGGCTCTGGGCTTCTGAAGTGGCAGCAGGAGTTCAGAGCCAAAGA

FIG. 8B

ProGlyLeuLeuAsnGlnThrSerArgSerLeuAspGlnIleProGlyTyrLeuAsnArgIleHisGluLeuLeuAsnGlyThrArgGlyLeuPhePro TTCCTGGTCTGCTGAACCAAACCTCCAGGTCCCTGGACCAAATCCCCGGATACCTGAACAGGATACACGAACTCTTGAATGGAACTCGTGGACTCTTTCC 210 901

GlyProSerArgArgThrLeuGlyAlaProAspIleSerSerGlyThrSerAspThrGlySerLeuProProAsnLeuGlnProGlyTyrSerProSer 260 250

TGGACCCTCACGCAGGACCCTAGGAGCCCCGGACATTTCCTCAGGACATCAGACACAGGCTCCCTGCCACCCAACCTCCAGGCTGGATATTCTCCTTCC 1001

ProThrHisProProThrGlyGlnTyrThrLeuPheProLeuProProThrLeuProThrProValValGlnLeuHisPrcLeuLeuProAspProSerAla 1101

CCAACCCATCCTCCTACTGGACAGTATACGCTCTTCCCTCTTCCACCCTTGCCCACCCTGTGGTCCAGCTCCACCCCTGTGGTTCTTCTTGACCCTTTCTT ProThrProThrProThrSerProLeuLeuAsnThrSerTyrThrHisSerGlnAsnLeuSerGlnGluGly 330 320

CTCCAACGCCCACCCCTACCAGCCCTTCTAAACACATCCTACACCCCCCCAGAATCTGTCTCAGGAAGGGTAAggttctcagacactgccgacatc 1201

agcattgtctcatgtacagctcccttccctgcagggcgcccctgggagacaactggacaagatttcctacttctctctgaaacccaaagccctggtaaaa 1301

gggatacacaggactgaaaagggaatcattttcactgtacattataaaccttcagaagctatttttttaagctatcagcaatactcatcagaggcagcta 1401

gctctttggtctattttctgcagaaatttgcaactcactgattctctacatgctctttttctgtgataactctgcaaaggcctgggctggcctggcagtt 1501

gaacagagggagagactaaccttgagtcagaaaacagagaaagggtaatttcctttgcttcaaattcaaggccttccaacgcccccatcccctttactat 1601

C	5
Ū	

0

 $rac{1}{2}$ ⋖ PVLLP/ NITVP a z = \circ == w ٧ ر ا 9 SH R L I T SZ = \square **→ ∀** > ш \pm а ш **س** ک × × S > > ∞ ပ (၁) ≺ Ω... α **V** Q. a a ~ ~ h-ML h-epo

(J) >-

8 3 > > 0 \checkmark 9 7 SA **→** > O I 9 1 _ O ш • 3 SP ر ص ပေလ S <u>a</u> z ر ح G Q A L α A 6 A & Σ \rightarrow > > D A шш __ v A V G L 9 0 **⊸** ≥ **⊢** > \Box O > K K O - O шσ **ш** > Σ \square OE α × 3 h-ML h-epo

. ~ **5** > $\propto \propto$ **9 2** ш ш SH _ _ **L** 4 W H **△** ∞ \Box **∠** • **=** < A A S **⊢** < Ø K 9 0 O 0-۵. ۵. യംഗ . 4 1 111 · 👱 00 \vdash \forall 9 9 S L L (9 F 99

h-ML h-epo h-mL h-epo

h-ML

K S ⋖ \mathbf{z} لينا 9 လ \simeq 2 ۹. w Z S \simeq တ ۵.. > ⋖ ٩ ο α A **عد** س ∝ ⊢ > ∝ ∪ ∪ ¥ <u>—</u> ш S **5** > -_ _ \checkmark 9

G α 9 2 w **=** H ~ Z 9 ۵., ----0 _ S α S ---0 zဌာ ۵., **|----{** \checkmark ⋖ \propto ـــا 9 0 0 3 \checkmark __ 9 S ල <u>-</u> α 191

۵.

۵.

O

9

۵.

۵.

=

-

۵.

S

۵.

S

>

G

۵.

0

2

Ω.,

۵.

S

9

—

S

-

9

S

S

۵.

¥

9

-

 α

 \simeq

S

۵_

9

۵.

h-ML

G u O S 0 Ś = S Z S ۵. _ ≺ S ۵. ۵... ۵. ェ O > ۵.,

h-M H-M

FIG. 10A

101 ATACAGGGAG CCACTTCAGT TAGACACCCT GGCCAGAATG GAGCTGACTG ATTTGCTCCT GGCGGCCATG CTTCTTGCAG TGGCAAGACT AACTCTGTCC Met GluLeuThrA spLeuLeuLe uAlaAlaMet LeuLeuAlaV alAlaArgLe uThrLeuSer

gAspSerHis LeuLeuHisS erArgLeuSe rGlnCysPro AspValAspPro 201 AGCCCCGTAG CTCCTGCCTG TGACCCCAGA CTCCTAAATA AACTGCTGCG TGACTCCCAC CTCCTTCACA GCCGACTGAG TCAGTGTCCC GACGTCGACC SerProValA laProAlaCy sAspProArg LeuLeuAsnL ysLeuLeuAr

eProValleu LeuProAlaV alAspPheSe rLeuGlyGlu TrpLysThrG lnThrGluGl nSerLysAla GlnAspIleL euGlyAlaVal CCCTGTTCTG CTGCCTGCTG TGGACTTTAG CCTGGGAGAA TGGAAAACCC AGACGGAACA GAGCAAGGCA CAGGACATTC TAGGGGCAGT 301 CTTTGTCTAT LeuSerIl

SerLeuLeu LeuGluGlyV alMetAlaAl aArgGlyGln LeuGluProS erCysLeuSe rSerLeuLeu GlyGlnLeuS erGlyGlnVa lArgLeuLeu 401 GICCCTICIA CIGGAGGGAG IGAIGGCAGC ACGAGGACAG ITGGAACCCI CCIGCCICIC AICCCICCIG GGACAGCIII CIGGGCAGGI

LeuGlyAlaL euGlnGlyLe uLeuGlyThr GlnGlyArgT hrThrAlaHi sLysAspPro AsnAlaLeuP heLeuSerLe uGlnGlnLeu LeuArgGlyLys Trggggggccc rgcAggggccr cctAggaAcc cAgggCAggA cCACAGCTCA CAAGGACCCC AATGCCCTCT TCTTGAGCTT GCAACAACTG CTTCGGGGAA 110 501

ValArgPh eLeuLeuLeu ValGluGlyP roThrLeuCy sValArgArg ThrLeuProT hrThrAlaVa lProSerSer ThrSerGlnL euLeuThrLeu CCTGCTTCTG GTAGAAGGTC CCACCCTCTG TGTCAGACGG ACCCTGCCAA CCACAGCTGT CCCAAGCAGT ACTTCTCAAC TCCTCACACT 160 150 140 601 AGGTGCGCTT

FIG. 10E

						1
200 ProGlyLeuL euSerArgLe uGlnGlyPhe CCTGGACTTC TGAGGAGTTC	AsnGlyThrHis AATGGAACTC	AlaPheAsnL euGlnGlyGly GCATTCAACC TCCAGGGTGG	300 nLeuHisPro GCTCCACCC	Thr ACATAGCGCG	GCTTTCACCT	CAGCTAGCGA
euSerArgLe TGAGCAGGCT	230 sGlyProVal CGGACCTGTG	AlaPheAsnL GCATTCAACC	erProProGl CTCCACCCCA	330 uSerGlnGlu GTCTCAGGAA	CAGATGTTCT	TTCATCAGAG
ProGlyLeuL CCTGGACTTC	snArgThrHi ACAGGACACA	260 laPheAsnLy sGlySerLeu CTTTCAACAA AGGCTCCCTG	300 aLeuProThr ThrHisGlyS erProProGl nLeuHisPro CTTGCCCACC ACCCATGGAT CTCCACCCCA GCTCCACCC	330 TyrProHisP roArgAsnLe uSerGlnGlu TACCCTCATC CCAGGAATTT GTCTCAGGAA	GCATCTGCTC	ATCAGCAATA
190 gThrAlaGly AACTGCTGGC	GlyTyrLeuA snArgThrHi GGATACCTGA ACAGGACACA		290 aleuProThr CTTGCCCACC		AGAGGCAGCT	TTTTTAACCT ATCAGCAATA TTCATCAGAG CAGCTAGCGA
AsnPheSerV alThrAlaAr gThrAlaGly ProGlyLeuL euSerArgLe AACTTCAGTG TCACAGCCAG AACTGCTGGC CCTGGACTTC TGAGCAGGCT	220 lGlnIleSer CCAAATCTCT		ProPheProP roSerProAl CCCTTCCCTC CTTCACCTGC	320 laProHisPr oValThrMet CCCCTCATCC AGTCACAATG	AGGAAGGCTG	GAGCTATTT
	rgSerProVa GGTCCCCAGT	250 aSerAspIle CTCAGACATC		laProHisPr CCCCTCATCC	CGGGGAC AAGCTTCCCC AGGAAGGCTG AGAGGCAGCT GCATCTGCTC CAGATGTTCT GCTTTCACCT	AAAATTTTAG
180 uLeuGluThr GTTGGAGACG	210 ArgValLysI leThrProGl yGlnLeuAsn GlnThrSerA rgSerProVa lGlnIleSer GlyTyrLeuA snArgThrHi sGlyProVal AGAGTCAAGA TTACTCCTGG TCAGCTAAAT CAAACCTCCA GGTCCCCAGT CCAAATCTCT GGATACCTGA ACAGGACACA CGGACCTGTG	SerLeuGlnT hrLeuGluAl TCACTTCAGA CCCTGGAAGC	280 LeuProPro SerProSerL euAlaProAs pGlyHisThr CTTCCTCCT TCTCCAAGCC TTGCTCCTGA TGGACACACA	320 LeuPheProA spProSerTh rThrMetPro AsnSerThrA laProHisPr oValThrMet CTGTTTCCTG ACCCTTCCAC CACCATGCCT AACTCTACCG CCCCTCATCC AGTCAAATG	TCTCGGGGAC	TGGAGATTGT
hrSerGlyLe CTrcrGGAFT	210 yGlnLeuAsn TCAGCTAAAT	SerLeuGlnT TCACTTCAGA	euAlaProAs TTGCTCCTGA	310 rThrMetPro CACCATGCCT	CTGCAGCTTC	TACACAGCAC
170 AsnLysPhe ProAsnArgT hrSerGlyLe uLeuGluThr AACAAGTTC CCAAACAGGA CTTCTGGATT GTTGGAGACG	leThrProGl TTACTCCTGG	240 GlyLeuPh eAlaGlyThr SerLeuGlnT hrLeuGluAl GGGCTCTT TGCTGGAACC TCACTTCAGA CCCTGGAAGC	SerProSerL TCTCCAAGCC	SpProSerTh ACCCTTCCAC	CAGTGAGCGT	GGGGAAGGGA
170 AsnLysPhe ProAsnArgT hrSerGlyLe uLeuGluThr 701 AAACAAGTTC CCAAACAGGA CTTCTGGATT GTTGGAGGG		GlyLeuPh 901 ATGGCTCTT	270 LeuProPro 1001 ACTTCCTCCT	LeuPheProA 1101 CTGTTTCCTG	1201 GGCACTGGCC CAGTGAGCGT CTGCAGCTTC TCT	1301 AAAAGGCCCT GGGGAAGGGA TACACAGCAC TGGAGATTGT AAAATTTTAG GAGCTATTTT
701	801	106	1001	1101	1201	1301

1401 TCTTTGGTCT ATTTTCGGTA TAAATTTGAA AATCACTAAT TCT

ш G ഗ ட > ⋖ Ф 屲 \circ Ø ഗ \simeq ഗ ェ ェ \simeq α \circ ⋖ ₽ Д \forall mML μM

ш വ ഗ ш > ⋖ 屲 ۵ ۵ 血 \circ Ø ഗ α ഗ ェ H တ တ \simeq \simeq Д \circ Δ. ⋖ Δ ф တ တ

 \simeq \simeq > > Ø Ø വ G ഗ ഗ Ø Ø G G ഗ ഗ ഗ ഗ \circ \circ S ╻ ட G Ш Ø Ø G G \simeq \propto ⋖ ⋖ MΑ MΑ 9 > Ġ ш ш ഗ ⋖ \forall G G \Box Ø Ø ⋖ ⋖ ഗ Ø ш ш ш Q Q X× ×× 51 5 hML

<u>a</u> ഗ G G G П ட ш 깥 α > \leq \leq G G 깥 α Ø Q Q ш ഗ S ш щ A ⋖ Z Z ட ட \checkmark \checkmark ェ ェ ⋖ \forall \vdash \vdash \simeq α <u>ග</u> ග Ø Q П Ф g 9 9 <u>B</u> Ø ⋖ ⋖ G G 5 5 M∭

 α ഗ G G တ Р G G A \simeq \propto ⋖ ⋖ ഗ > ⋖ ഗ ш ш Z Z ш ш G G ഗ ഗ \simeq \simeq Z Z ф Ф ш ш Z Ø လ ഗ \mathbf{A} S ഗ ഗ Ф Ф > > ⋖ ⋖ ட ட ட 2 R \propto \simeq <u>ک</u> <u>ک</u> 147 5 hΜ MM MM

GPSF S <u>ত</u> Р ш ш GL <u>0</u> 8 工 ВI GT Z Z ட ш G 工 工 $\overline{\mathbf{a}}$ 8 Z Z PGY 7 ഗ _ _ _ o 屲 ഗ ഗ α α ഗ ഗ Ø Ø Z Z 귱 GL G ┙ 屲 \leq \checkmark ₹ 2 α ட ш G G 8 201 197 M∭

ட ┙ ഗ G ェ ᡅ Ф ╚ Д Д လ Ф ф 屲 G டு Д ェ ഗ П П ഗ ഗ Д Д S ᠳ G G Ø Z Z Д ட Д. ഗ ഗ G G \Box Z ഗ ட তি G ഗ S ഗ ഗ ಠ A 247 250 J M M

G ш ш Ø Ø ഗ ഗ Z Z Ø 2 E E 屲 Н MY <u>></u> ェ S Д ⋖ တ Z Р ᠳ ⋖ S S ᠳ Ф \Box \Box ℩ Н -1Д Д 工 工 Ø Ø Р M∭

10³

104

Fold Dilutions

10⁵

106

0

102

FIG. 12C