Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{\alpha_0+2\alpha_0k^2}$	$-\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$	0	$-\frac{4k^2}{\alpha_0(1+2k^2)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+2 k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{\alpha_0 (1 + 2 k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	0	$\frac{4ik}{\alpha_0 + 2\alpha_0 k^2}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2ik}{\alpha_0(1+k^2)^2}$	$-\frac{2k^2}{\alpha_0 (1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$	$\frac{2}{\alpha_0 (1+k^2)^2}$	$\frac{2ik}{\alpha_0(1+k^2)^2}$	0	0	0	0
$\sigma_1^{\#}$	$\frac{2}{\alpha_0}$	α0 (α0 (1				
$\sigma_{1}^{\#1}{}_{lphaeta}$ $\sigma_{1}^{\#}$	$+^{\alpha\beta}$ 0 $\frac{2}{\alpha_0}$	$+\alpha\beta \frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2} - \frac{\alpha_0}{\alpha_0}$	$-\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2} = \frac{2}{\alpha_0 (1)}$	0	$+_{\alpha}$ 0	0	$+_{\alpha}$ 0

Quadratic (free) Lagrangian density

$$\frac{1}{2} \alpha_0 \omega_{\alpha\zeta\beta} \omega^{\alpha\beta\zeta} - \frac{1}{2} \alpha_0 \omega_{\alpha}^{\alpha\beta} \omega_{\beta\zeta}^{\zeta} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - \alpha_0 f^{\alpha\beta} \partial_{\beta} \omega_{\alpha\zeta}^{\zeta} + \alpha_0 \partial_{\beta} \omega_{\alpha}^{\alpha\beta} + \alpha_0 f^{\alpha\beta} \partial_{\zeta} \omega_{\alpha\beta}^{\zeta} - \alpha_0 f^{\alpha}_{\alpha} \partial_{\zeta} \omega_{\beta}^{\beta\zeta}$$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{\alpha_0}{2}$
$f_{0}^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	$-\frac{i\alpha_0 k}{\sqrt{2}}$	0	0	0
$\omega_{0^+}^{\#1}$	$\frac{\alpha_0}{2}$	$\frac{i\alpha_0 k}{\sqrt{2}}$	0	0
	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1}\dagger$

	$\sigma_{0^{+}}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	0	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	0	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$-\frac{4}{\alpha_0}$

$\omega_{2}^{\#1}_{+}$ $\beta_{2}^{\#1}_{+}$ $\omega_{2}^{\#1}_{-}$ αeta_{X}	0	0	$-\frac{\alpha_0}{4}$
$f_{2}^{\#1}$	$\frac{i\alpha_0k}{2\sqrt{2}}$	0	0
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{\alpha_0}{4}$	$-\frac{i\alpha_0 k}{2\sqrt{2}}$	0
·	$\omega_2^{#1} + ^{\alpha\beta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{\alpha \beta \chi}$

Source constraints/gauge generators

SO(3) irreps	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
Total constraints:	10

Massive and massless spectra

(No massive particles)

Unitarity conditions