```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]:
         ls
         Volume in drive C is Windows
         Volume Serial Number is F8D0-9F99
         Directory of C:\Users\Hajir\Machine Learning Course
        02/21/2022 07:30 PM
                                <DIR>
        02/21/2022 07:30 PM
                                <DIR>
                                               . .
        02/15/2022 05:24 PM
                                <DIR>
                                               .ipynb_checkpoints
                                         4,756 Advertising.csv
        01/22/2022 08:50 PM
                                         9,869 First ML program.ipynb
        01/19/2022 05:44 PM
        02/11/2022 02:55 PM
                                       281,466 Linear Regression Excersise 1.ipynb
        02/21/2022 07:30 PM
                                       975,199 Logistic Regression.ipynb
        02/15/2022 05:25 PM
                                        23,480 SL_Logistics_Regression_+ Decision tree_RF_Practi
        ce.ipynb
        02/13/2022 09:39 AM
                                        16,843 SL_Logistics_Regression_Practice.ipynb
                                        60,302 titanic_train.csv
        02/11/2022 03:57 PM
                                      1,371,915 bytes
                       7 File(s)
                       3 Dir(s) 77,878,464,512 bytes free
In [3]:
         df = pd.read_csv('titanic_train.csv') # it will show us the index column and better to
             Passongarld Survived Pelass
```

Out[3]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	ı
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
	•••		•••								•••	•••	

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	I
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

891 rows × 12 columns

In [4]:
 df = pd.read_csv('titanic_train.csv', index_col=0) # here we remove the index column be
 df

[4]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embar
	PassengerId											
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embar
PassengerId											
887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	
890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	
891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	

891 rows × 11 columns

Name

Sex

Age

0

0

177

```
In [5]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 891 entries, 1 to 891
        Data columns (total 11 columns):
                        Non-Null Count Dtype
         #
             Column
                                        int64
         0
             Survived 891 non-null
         1
             Pclass
                        891 non-null
                                        int64
         2
                        891 non-null
                                        object
             Name
                        891 non-null
                                        object
         3
             Sex
         4
             Age
                        714 non-null
                                        float64
         5
             SibSp
                        891 non-null
                                        int64
         6
             Parch
                        891 non-null
                                        int64
         7
                        891 non-null
                                        object
             Ticket
         8
                        891 non-null
                                        float64
             Fare
             Cabin
                        204 non-null
                                        object
         10 Embarked 889 non-null
                                        object
        dtypes: float64(2), int64(4), object(5)
        memory usage: 83.5+ KB
In [6]:
         df.isnull().sum() # To detect null values
Out[6]: Survived
                       0
        Pclass
                       0
```

```
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
```

In [7]: #We can see the missing value in graph. Let us see missing values in graph.
sns.heatmap(df.isnull())

Out[7]: <AxesSubplot:ylabel='PassengerId'>

we notice from above graph is small and we cant see exactly how many values are missi # Based on our data we decide which graph we choose.

plt.figure(figsize=(10,20)) #This is to increase the size of graph sns.heatmap(df.isnull()) plt.show

Out[8]: <function matplotlib.pyplot.show(close=None, block=None)>

dtype='object')

Assumption iteration or creation 1

'Survived'----> Target calss(y)--> Dependent Variable

Now will analyze and check column by column if the specific column has relation to survival or not.

'Pclass'---> Need to Check 'Name'----> Exclude 'Sex'----> Need to check 'Age'----> Need to check 'SibSp'---> Need to check 'Parch'----> Need to check 'Ticket'---> Exclude 'Fare'----> Exclude 'Cabin'---> Exclude 'Embarked'----> Need to check

```
In [10]:
          ## Let us create our data for analytics
          df = df.drop(['Name','Ticket','Fare','Cabin'], axis=1) #Want to drop it frpm column
          df
```

Out[10]:		Survived	Pclass	Sex	Age	SibSp	Parch	Embarked
	PassengerId							
	1	0	3	male	22.0	1	0	S
	2	1	1	female	38.0	1	0	С
	3	1	3	female	26.0	0	0	S
	4	1	1	female	35.0	1	0	S
	5	0	3	male	35.0	0	0	S
	•••							
	887	0	2	male	27.0	0	0	S
	888	1	1	female	19.0	0	0	S
	889	0	3	female	NaN	1	2	S
	890	1	1	male	26.0	0	0	С
	891	0	3	male	32.0	0	0	Q

891 rows × 7 columns

Assumption iteration or creation 2

'Survived'----> Target calss(y)--> Dependent Variable

Now will analyze and check column by column if the specific column has relation to survival or not.

'Pclass'---> Need to Check

plt.show()

'Sex'----> Need to check 'Age'----> Need to check 'SibSp'---> Need to check 'Parch'----> Need to check 'Embarked'----> Need to check

Assumption verification

sns.countplot(x = 'Survived', data = df)

```
Assumption verification
```

#what we understand from this graph is that; total of surviver is 300 and all remaining

In [12]:

In [11]:

sns.countplot(x = 'Survived', data = df, hue ='Pclass')
plt.show()

#According to this graph we can see there is impacting btw survival and pclass. We have #so will keep Pclass column in our data for logistic regression.

In [13]:
 sns.countplot(x = 'Survived', data = df, hue ='Sex')
 plt.show()

#We notice here the survival percentage for female much higher than male. So, There is

In [14]: sns.countplot(x = 'Survived', data = df, hue = 'Embarked')
 plt.show()

#To understand the graph, first left side show the dead for each embarked and right sid #let us analyze; First S embarked showed that; approxmatly 550 ppl died and around 220

Learning so far: We use Countplot for calculating object data. Object data means textual data. It will count how many numbers appears for particular segment or category in a coulmn like (Embarked, Sex and pclass) all these are object.

Assumption iteration or creation 3

'Survived'----> Target calss(y)--> Dependent Variable

Now will analyze and check column by column if the specific column has relation to survival or not.

'Pclass'---> Include 'Sex'----> Include 'Age'----> Need to check 'SibSp'---> Need to check 'Parch'----> Need to check 'Embarked'----> Include

```
In [15]: #Now will check remaining column which are continous data
    sns.countplot(x = 'Survived', data = df, hue = 'Age')
    plt.show()

#We notice this is not good graph for Age column which is continous data. So, Will crea
```

0.83 0.92 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 14.5 15.0 16.0 17.0 18.0 19.0 20.0 20.5 21.0 22.0 23.0 23.5 24.0 24.5 25.0 26.0 27.0 28.0 28.5 29.0 30.0 30.5 31.0 32.0 32.5 33.0 34.0 34.5 35.0 36.0 36.5 37.0 38.0 39.0 40.0 40.5 41.0 42.0 43.0 44.0 45.0 45.5 46.0 47.0 48.0 49.0 50.0 51.0 52.0

In [16]: sns.boxplot(x = 'Survived', data = df, y= 'Age') #We create boxplot for age column inst

Out[16]: <AxesSubplot:xlabel='Survived', ylabel='Age'>


```
plt.figure(figsize=(16, 9))
sns.violinplot(x = 'Survived', data = df, y= 'Age')
plt.show()

#We notice almost same, we can evidence there is different. Will try to create another
```



```
In [18]:
    plt.figure(figsize=(16, 9))
    sns.swarmplot(x = 'Survived', data = df, y= 'Age')
    plt.show()

#According to this graph we notice that who are age less than 10 survived more. We can
```



```
In [19]: #Now will continue and check Sibsb

sns.catplot(x = 'SibSp', data = df, y= 'Survived', kind = 'point')
plt.show()

#According to the graph yes we can see the Sibsb impacting the survival but very little
```



```
In [20]:
    sns.catplot(x = 'Parch', data = df, y= 'Survived', kind = 'point')
    plt.show()

#We can notice from the graph the rate of survival from 0 sibsb to 3 are higher. when w
```


So, Assumption iteration or creation 4

So, Our df should include the above columns after we verify that, they are all impacting the suvival.

In [21]:	df								
Out[21]:		Survived	Pclass	Sex	Age	SibSp	Parch	Embarked	
	PassengerId								
	1	0	3	male	22.0	1	0	S	
	2	1	1	female	38.0	1	0	С	
	3	1	3	female	26.0	0	0	S	
	4	1	1	female	35.0	1	0	S	
	5	0	3	male	35.0	0	0	S	
	•••								
	887	0	2	male	27.0	0	0	S	
	888	1	1	female	19.0	0	0	S	
	889	0	3	female	NaN	1	2	S	
	890	1	1	male	26.0	0	0	С	
	891	0	3	male	32.0	0	0	Q	
In [22]:	891 rows × 7		#Horo 1	co checl	b if w	ue have	nul l	values in	columns that we consider the
	ur.isnuii(()•3uii() 1	#11C1 C (.o chech		ve nave	nacc	vacaes in	COCUMINS CHAC WE CONSTACT CHE
Out[22]:	Survived Pclass Sex Age SibSp Parch Embarked dtype: inte	0 0 177 0 0 2							
In [23]:	#Let us in		values	for th	ne Emb	arked	column		
	#we notice	e here The	e vlues	in Emb	parked	d colum	n are	categorica	al data So, we cant replace t
Out[23]:	PassengerId	d							

```
2
                C
                S
         3
                S
         4
                S
         5
         887
                S
                S
         888
                S
         889
         890
                C
         891
                Q
         Name: Embarked, Length: 891, dtype: object
In [24]:
          df['Embarked'].mode()
Out[24]: 0
         dtype: object
In [25]:
          df['Embarked'].mode()[0] # we need to see the first value
          'S'
Out[25]:
In [26]:
          mode_Embarked = df['Embarked'].mode()[0]
          mode_Embarked
Out[26]:
          'S'
In [27]:
          df['Embarked'] = df['Embarked'].fillna(mode_Embarked)
In [28]:
          #We need to check if we fill the null values in embarked column.
          df.isnull().sum()
          #We notice there is 0 null value in Embarked column now.
         Survived
Out[28]:
         Pclass
                        0
         Sex
                        0
                      177
         Age
         SibSp
         Parch
                        0
         Embarked
                        0
         dtype: int64
In [29]:
          #Now will replace values for null values in Age column by mean
          df['Age'].mean()
         29.69911764705882
Out[29]:
In [30]:
          #The age value should consider difference btw male and female, So it effect by {Sex}
          df[df['Sex']== 'female']['Age'].mean()
```

```
Out[30]: 27.915708812260537
In [31]:
          df[df['Sex']== 'female']['Age'].median()
Out[31]: 27.0
In [32]:
          df[df['Sex']== 'male']['Age'].mean()
Out[32]: 30.72664459161148
In [33]:
          df[df['Sex']== 'male']['Age'].median()
Out[33]: 29.0
In [34]:
          # We can see there is no big different btw mean and median. So the data here is not ske
In [35]:
          # To view the mean for female and male
          sns.boxplot(x= 'Age', data= df )
Out[35]: <AxesSubplot:xlabel='Age'>
                                       50
            0
                 10
                      20
                                            60
                                                  70
                                                       80
                            30
                                 40
                                 Age
In [36]:
          # Will check if the Pclass can show someting with Age.
          print(df[df['Pclass']== 1]['Age'].mean())
          print(df[df['Pclass']== 2]['Age'].mean())
          print(df[df['Pclass']== 3]['Age'].mean())
          # We can see here pclass 1 has ppl who are older than pclass 2 and 3. The difference is
          38.233440860215055
          29.87763005780347
         25.14061971830986
In [37]:
          # Will create function..
```

```
def age_impute(col):
               Age = col[0]
               Pclass = col[1]
               if pd.isnull(Age):
                   if Pclass == 1:
                       return 38.23
                   elif Pclass == 2:
                       return 29.87
                   else:
                       return 25.14
               else:
                   return Age
In [38]:
           df['Age'] #To check the Null Values but here it does not show any NAN because I did fil
Out[38]: PassengerId
                 22.0
          1
          2
                 38.0
          3
                 26.0
          4
                 35.0
          5
                 35.0
          887
                 27.0
          888
                 19.0
          889
                  NaN
          890
                 26.0
          891
                 32.0
          Name: Age, Length: 891, dtype: float64
In [39]:
           df['Age'] = df[['Age', 'Pclass']].apply(age_impute, axis = 1) # To impute and apply fit
           df['Age']
Out[39]: PassengerId
                 22.00
          1
                 38.00
          2
          3
                 26.00
          4
                 35.00
          5
                 35.00
                 . . .
          887
                 27.00
          888
                 19.00
                 25.14
          889
          890
                 26.00
          891
                 32.00
          Name: Age, Length: 891, dtype: float64
In [40]:
           df
                                              Age SibSp Parch Embarked
Out[40]:
                      Survived Pclass
                                        Sex
          PassengerId
                   1
                            0
                                   3
                                       male 22.00
                                                      1
                                                             0
                                                                       S
```

	Survived	Pclass	Sex	Age	SibSp	Parch	Embarked
PassengerId							
2	1	1	female	38.00	1	0	С
3	1	3	female	26.00	0	0	S
4	1	1	female	35.00	1	0	S
5	0	3	male	35.00	0	0	S
•••							
887	0	2	male	27.00	0	0	S
888	1	1	female	19.00	0	0	S
889	0	3	female	25.14	1	2	S
890	1	1	male	26.00	0	0	С
891	0	3	male	32.00	0	0	Q

891 rows × 7 columns

```
In [41]: #And now I want to convert data in Sex column to numerical data. To be easy for compute

df['Sex'] = pd.get_dummies(df.Sex)['female']

df
```

Out[41]:		Survived	Pclass	Sex	Age	SibSp	Parch	Embarked
	PassengerId							
	1	0	3	0	22.00	1	0	S
	2	1	1	1	38.00	1	0	С
	3	1	3	1	26.00	0	0	S
	4	1	1	1	35.00	1	0	S
	5	0	3	0	35.00	0	0	S
	•••		•••					
	887	0	2	0	27.00	0	0	S
	888	1	1	1	19.00	0	0	S
	889	0	3	1	25.14	1	2	S
	890	1	1	0	26.00	0	0	С
	891	0	3	0	32.00	0	0	Q

891 rows × 7 columns

```
In [42]:
    df = pd.get_dummies(df, columns = ['Embarked']) #Will notice that get_dummies in column
    df
```

Out[42]:		Survived	Pclass	Sex	Age	SibSp	Parch	Embarked_C	Embarked_Q	Embarked_S
	PassengerId									
	1	0	3	0	22.00	1	0	0	0	1
	2	1	1	1	38.00	1	0	1	0	0
	3	1	3	1	26.00	0	0	0	0	1
	4	1	1	1	35.00	1	0	0	0	1
	5	0	3	0	35.00	0	0	0	0	1
	•••									
	887	0	2	0	27.00	0	0	0	0	1
	888	1	1	1	19.00	0	0	0	0	1
	889	0	3	1	25.14	1	2	0	0	1
	890	1	1	0	26.00	0	0	1	0	0
	891	0	3	0	32.00	0	0	0	1	0

891 rows × 9 columns

Out[43]:		Survived	Pclass	Sex	Age	SibSp	Parch	Embarked_Q	Embarked_S
	PassengerId								
	1	0	3	0	22.00	1	0	0	1
	2	1	1	1	38.00	1	0	0	0
	3	1	3	1	26.00	0	0	0	1
	4	1	1	1	35.00	1	0	0	1
	5	0	3	0	35.00	0	0	0	1
	•••								
	887	0	2	0	27.00	0	0	0	1
	888	1	1	1	19.00	0	0	0	1
	889	0	3	1	25.14	1	2	0	1
	890	1	1	0	26.00	0	0	0	0
	891	0	3	0	32.00	0	0	1	0

891 rows × 8 columns

#It is time to split our data into two parts

		i Class	JCX	Age	эгээр	i ai cii	Lilibarkea_Q	Lilibarkea_5
Passen	gerld							
	1	3	0	22.00	1	0	0	1
	2	1	1	38.00	1	0	0	0
	3	3	1	26.00	0	0	0	1
	4	1	1	35.00	1	0	0	1
	5	3	0	35.00	0	0	0	1
	•••	•••						
	887	2	0	27.00	0	0	0	1
	888	1	1	19.00	0	0	0	1
	889	3	1	25.14	1	2	0	1
	890	1	0	26.00	0	0	0	0
	891	3	0	32.00	0	0	1	0

891 rows × 7 columns

Let us split data into training and testing

```
In [46]: from sklearn.model_selection import train_test_split
In [47]: x_train, x_test, y_train, y_test = train_test_split(x,y, random_state = 123)
```

Let us apply Logistic Regression on the IV and DV

```
In [48]:
          from sklearn.linear model import LogisticRegression
In [49]:
          #Will pass Logistic Regression to variable to use it
          model = LogisticRegression()
          model
Out[49]: LogisticRegression()
In [50]:
          #Now Will fit the data into the model for logistic regression
          model.fit(x_train, y_train)
         C:\Users\Hajir\anaconda3\lib\site-packages\sklearn\linear model\ logistic.py:763: Conver
         genceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
           n iter i = check optimize result(
Out[50]: LogisticRegression()
In [51]:
          #Let us predict for the test data
          y pred = model.predict(x test)
          y_pred
          \#This\ code\ and\ the\ bottome\ one\ model---> predict_proba(x_test) \\\shows\ us\ the\ probabil
Out[51]: array([1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,
                0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,
                0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0,
                0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
                0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0,
                1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0], dtype=int64)
In [52]:
          model.predict proba(x test)
          #How I read this: If the probability greater than 0.5 the predict will be 1 it mean wil
Out[52]: array([[0.22746369, 0.77253631],
                [0.86071307, 0.13928693],
                [0.40747569, 0.59252431],
                [0.77524934, 0.22475066],
```

```
[0.90434765, 0.09565235],
[0.85592275, 0.14407725],
[0.25908179, 0.74091821],
[0.21744487, 0.78255513],
[0.2568596 , 0.7431404 ],
[0.4173324 , 0.5826676 ],
[0.37110807, 0.62889193],
[0.40737048, 0.59262952],
[0.20034738, 0.79965262],
[0.88482109, 0.11517891],
[0.11297453, 0.88702547],
[0.24299401, 0.75700599],
[0.15342189, 0.84657811],
[0.55831333, 0.44168667],
[0.67149016, 0.32850984],
[0.79828466, 0.20171534],
[0.46029411, 0.53970589],
[0.0784905 , 0.9215095 ],
[0.81354596, 0.18645404],
[0.89848307, 0.10151693],
[0.9182833 , 0.0817167 ],
[0.91714764, 0.08285236],
[0.87310324, 0.12689676],
[0.04022019, 0.95977981],
[0.85771225, 0.14228775],
[0.85070921, 0.14929079],
[0.37923103, 0.62076897],
[0.32999126, 0.67000874],
[0.7777807, 0.2222193],
[0.89139112, 0.10860888],
[0.71788377, 0.28211623],
[0.76813803, 0.23186197],
[0.9432369 , 0.0567631 ],
[0.96110503, 0.03889497],
[0.14727353, 0.85272647],
[0.51661011, 0.48338989],
[0.04477935, 0.95522065],
[0.92468378, 0.07531622],
[0.4004571 , 0.5995429 ],
[0.76282273, 0.23717727],
[0.84079492, 0.15920508],
[0.70182258, 0.29817742],
[0.12384426, 0.87615574],
[0.67782522, 0.32217478],
[0.8630084 , 0.1369916 ],
[0.19577994, 0.80422006],
[0.32151318, 0.67848682],
[0.50670021, 0.49329979],
[0.86559373, 0.13440627],
[0.92426918, 0.07573082],
[0.69251517, 0.30748483],
[0.86071307, 0.13928693],
[0.95419494, 0.04580506],
[0.85224641, 0.14775359],
[0.54256104, 0.45743896],
[0.96411254, 0.03588746],
[0.09787655, 0.90212345],
[0.041957 , 0.958043 ],
[0.34877998, 0.65122002],
[0.0704615, 0.9295385],
[0.88255542, 0.11744458],
[0.94268946, 0.05731054],
[0.86645892, 0.13354108],
[0.87633593, 0.12366407],
[0.55831333, 0.44168667],
```

```
[0.13891945, 0.86108055],
[0.14659842, 0.85340158],
[0.95942303, 0.04057697],
[0.55831333, 0.44168667],
[0.76276701, 0.23723299],
[0.86813773, 0.13186227],
[0.89963768, 0.10036232],
[0.96931675, 0.03068325],
[0.86813773, 0.13186227],
[0.09653287, 0.90346713],
[0.09653287, 0.90346713],
[0.47009675, 0.52990325],
[0.90161054, 0.09838946],
[0.9386079 , 0.0613921 ],
[0.86071307, 0.13928693],
[0.88255542, 0.11744458],
[0.77006749, 0.22993251],
[0.1403257 , 0.8596743 ],
[0.89731614, 0.10268386],
[0.55831333, 0.44168667],
[0.88704864, 0.11295136],
[0.30667253, 0.69332747],
[0.69525613, 0.30474387],
[0.89421437, 0.10578563],
[0.92147738, 0.07852262],
[0.48337076, 0.51662924],
[0.85771225, 0.14228775],
[0.03890361, 0.96109639],
[0.07754824, 0.92245176],
[0.91786175, 0.08213825],
[0.25533467, 0.74466533],
[0.91491342, 0.08508658],
[0.70235831, 0.29764169],
[0.63013414, 0.36986586],
[0.23256675, 0.76743325],
[0.85070921, 0.14929079],
[0.5643492, 0.4356508],
[0.89139112, 0.10860888],
[0.87754228, 0.12245772],
[0.92426918, 0.07573082],
[0.22668998, 0.77331002],
[0.44742219, 0.55257781],
[0.5643492 , 0.4356508 ],
[0.06574459, 0.93425541],
[0.9144761 , 0.0855239 ],
[0.89139112, 0.10860888],
[0.88461937, 0.11538063],
[0.76747454, 0.23252546],
[0.92257054, 0.07742946],
[0.85224641, 0.14775359],
[0.43285349, 0.56714651],
[0.85771225, 0.14228775],
[0.94555178, 0.05444822],
[0.59881491, 0.40118509],
[0.85070921, 0.14929079],
[0.71994061, 0.28005939],
[0.73553853, 0.26446147],
[0.65141618, 0.34858382],
[0.55831333, 0.44168667],
[0.30409409, 0.69590591],
[0.8630084 , 0.1369916 ],
[0.08899402, 0.91100598],
[0.90354879, 0.09645121],
[0.88704864, 0.11295136],
[0.38655294, 0.61344706],
```

```
[0.12976968, 0.87023032],
[0.85224641, 0.14775359],
[0.11290002, 0.88709998],
[0.51395901, 0.48604099],
[0.88766559, 0.11233441],
[0.26748846, 0.73251154],
[0.97061667, 0.02938333],
[0.42892572, 0.57107428],
[0.85874125, 0.14125875],
[0.5331806 , 0.4668194 ],
[0.27909356, 0.72090644],
[0.89963768, 0.10036232],
[0.95336805, 0.04663195],
[0.9144761 , 0.0855239 ],
[0.8955863 , 0.1044137 ],
[0.03890361, 0.96109639],
[0.69136711, 0.30863289],
[0.95924459, 0.04075541],
[0.35542334, 0.64457666],
[0.84079492, 0.15920508],
[0.0626198, 0.9373802],
[0.86071307, 0.13928693],
[0.18814311, 0.81185689],
[0.1995898 , 0.8004102 ],
[0.27636366, 0.72363634],
[0.13483025, 0.86516975],
[0.25908179, 0.74091821],
[0.55581132, 0.44418868],
[0.43743397, 0.56256603],
[0.07074954, 0.92925046],
[0.55831333, 0.44168667],
[0.04521675, 0.95478325],
[0.47689487, 0.52310513],
[0.8630084, 0.1369916],
[0.30409409, 0.69590591],
[0.93922276, 0.06077724],
[0.87790806, 0.12209194],
[0.55831333, 0.44168667],
[0.62904365, 0.37095635],
[0.72859599, 0.27140401],
[0.85070921, 0.14929079],
[0.94991703, 0.05008297],
[0.38948288, 0.61051712],
[0.86071307, 0.13928693],
[0.71994061, 0.28005939],
[0.02764082, 0.97235918],
[0.88064238, 0.11935762],
[0.93812968, 0.06187032],
[0.82601616, 0.17398384],
[0.33542102, 0.66457898],
[0.88557887, 0.11442113],
[0.07003855, 0.92996145],
[0.61282533, 0.38717467],
[0.0631759 , 0.9368241 ],
[0.86813773, 0.13186227],
[0.22603488, 0.77396512],
[0.64370159, 0.35629841],
[0.88766559, 0.11233441],
[0.20269453, 0.79730547],
[0.81874539, 0.18125461],
[0.35627516, 0.64372484],
[0.37143802, 0.62856198],
[0.91714764, 0.08285236],
[0.56863601, 0.43136399],
[0.09024478, 0.90975522],
```

```
[0.88766559, 0.11233441],
[0.03507567, 0.96492433],
[0.30409409, 0.69590591],
[0.67782522, 0.32217478],
[0.78283774, 0.21716226],
[0.57745988, 0.42254012],
[0.85771225, 0.14228775],
[0.85070921, 0.14929079],
[0.15280045, 0.84719955],
[0.55831333, 0.44168667],
[0.9432369 , 0.0567631 ],
[0.90354879, 0.09645121],
[0.16337614, 0.83662386],
[0.38984065, 0.61015935],
[0.92426918, 0.07573082],
[0.90916022, 0.09083978],
[0.86071307, 0.13928693],
[0.7777807 , 0.2222193 ],
[0.88928318, 0.11071682],
[0.89694641, 0.10305359],
[0.85997145, 0.14002855],
[0.88766559, 0.11233441],
[0.78427203, 0.21572797],
[0.8844733 , 0.1155267 ]])
```

Let us check the model Performance.

This is mean 81% of the time my model is able to predict if somebody has survived or not survived.

Applying Desision tree with same data

```
In [58]: | model_dt
Out[58]: DecisionTreeClassifier(criterion='entropy')
In [59]:
         model_dt.fit(x_train, y_train)
Out[59]: DecisionTreeClassifier(criterion='entropy')
In [60]:
         y_pred_dt = model_dt.predict(x_test)
         y_pred_dt
Out[60]: array([0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1,
               0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
               0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
               0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0,
               0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
               0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0,
               1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0,
               1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
               1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,
               0, 0, 0], dtype=int64)
In [61]:
         metrics.accuracy_score(y_test, y_pred_dt)
Out[61]: 0.7892376681614349
In [62]:
         #The accuracy for decision tree model is 78% while the logistic regression model was 81
```

Let us plot the decision tree graph

In [66]:

#It is better dont show the graph when we have alot of independent variables, it will t # Decision tree is the best when we have small number of raws. it is very good to divid # When we use Decision tree; When our data is Dichotomas or polynomic. Also, if we have

```
# For repeated values decision tree works better. When we have conditions and one condi
          # If we have outlires, Abnormality and missing in the data, decision tree can exclude a
          # Decision tree is part of classification and regression. Sometimes we use decision tre
In [67]:
          # Let us create confusion matrix
          pd.DataFrame(metrics.confusion_matrix(y_test, y_pred_dt),
                       columns = ['Predicted not survival', 'Predicted survival'],
                       index = ['True not survival', 'True Survival'])
                         Predicted not survival Predicted survival
Out[67]:
          True not survival
                                        122
                                                          17
                                         30
             True Survival
                                                          54
```

Overfitting/ underfitting/ just right models.

Checking with logistic regression.

```
In [68]:
    y_pred_lr_train = model.predict(x_train)
    y_pred_lr_train

print("training data Acuuracy for Log Reg is: ", metrics.accuracy_score(y_train, y_pred
    y_pred_lr_test = model.predict(x_test)
    print("Testing data Acuuracy for Log Reg is: ", metrics.accuracy_score(y_test, y_pred_l

training data Acuuracy for Log Reg is: 0.8038922155688623
Testing data Acuuracy for Log Reg is: 0.8161434977578476
```

Checking with decision tree model

```
In [69]:
    y_pred_dt_train = model_dt.predict(x_train)
    y_pred_dt_train

    print("training data Acuuracy for Log Reg is: ", metrics.accuracy_score(y_train, y_pred_y_red_dt_test = model_dt.predict(x_test)
    print("Testing data Acuuracy for Log Reg is: ", metrics.accuracy_score(y_test, y_pred_d_y_red_integral training data Acuuracy for Log Reg is: 0.9401197604790419
Testing data Acuuracy for Log Reg is: 0.7892376681614349
```

We can see clearly that; Decision tree model is overfitted

To minimize the over fitted in decision tree, we use

Random Forest

```
In [70]:
         from sklearn.ensemble import RandomForestClassifier
In [71]:
         model_rf = RandomForestClassifier(n_estimators=500, criterion='gini', random_state=123,
         #min samples leaf clarify means for example random forest dont split after 30 split be
In [72]:
         model rf
        RandomForestClassifier(min_samples_leaf=4, n_estimators=500, random_state=123)
In [73]:
         model rf.fit(x train, y train)
        RandomForestClassifier(min_samples_leaf=4, n_estimators=500, random_state=123)
Out[73]:
In [74]:
         y pred rf = model rf.predict(x test)
         y_pred_rf
Out[74]: array([1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,
               0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,
               0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,
               0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0,
               0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
               0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
               1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
               1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,
               1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
               0, 0, 0], dtype=int64)
In [75]:
         metrics.accuracy score(y test, y pred rf)
Out[75]: 0.8385650224215246
```

Checking the performance of Random State