Database Management System FD's & Normalization

Practice Set 01

[MSQ]

- **1.** According to RDBMS rules, choose the correct statement from the following.
 - (a) A relation in RDBMS can have multiple attributes
 - (b) A relation in RDBMS is a set of rows and columns
 - (c) A tuple in a relation can have multiple values for an attribute.
 - (d) All of the above

[NAT]

2. Consider the student relation shown below with schema stud (Sname, S age, S mail, S marks),

Stud

Dead				
Sname	Sage	Smail	Smarks	
Rohit	28	R@pw.live	68	
Kanika	25	K@pw.live	75	
Pankaj	25	K@pw.live	75	
Rohit	28	R@pw.live	88	
Anjali	26	A@pw.live	75	

For the above given instance how many 2-set of attributes can determine a row uniquely?

[MSQ]

3. Consider a relation schema R(A, B, C, D, E, F, H) with the given Functional dependency set:

$$\{A \rightarrow BC, C \rightarrow AD, DE \rightarrow F, C \rightarrow F\}$$

The attribute closure that contains all the attributes of the relation R is?

- (a) AE⁺
- (b) CE⁺
- (c) AEH+
- (d) All of the above

[NAT]

4. Consider the below relation schema Stud (Rid, name, course, mail, phone) with FD set as:

 $Rid \rightarrow \{Rid\}$

 $Rid \rightarrow \{name, mail\}$

 $course \rightarrow \{course, phone\}$

phone \rightarrow {phone}

 $mail \rightarrow \{Rid, course\}$

 $name \rightarrow \{phone, mail, course\}$

The number of non-trivial FD's in the given FD set is/are?

[MCQ]

5. Consider the following set of FD's:

$$\{V \to W, \ W \to XZ, \ X \to YZ\}$$
 for relation $R(V,W,X,Y,Z)$

Then the attribute closure of YZ⁺ contains how many elements?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

[MCQ]

- **6.** For the given FD set: $\{P \rightarrow QT, Q \rightarrow SU, V \rightarrow U\}$ of a relation R (P, Q, T, S, U, V). Find the set of attributes that is Super key but not a Candidate key?
 - (a) PTQ
- (b) PV
- (c) PQV
- (d) QV

[MCQ]

- 7. In a schema with attribute X, Y, Z, W, V, the following set of functional dependencies are given: {Y → X, Y → Z, ZW → V, X → W, V → X}.
 Which of the following FD is not implied by the
 - (a) $YX \rightarrow ZW$
- (b) $XV \rightarrow YZ$
- (c) $ZW \rightarrow V$

above set?

(d) $XV \rightarrow XW$

[MSQ]

- **8.** Choose the correct statement from the following.
 - (a) The cardinality is defined as the number of attributes in a relation.
 - (b) Degree of the relation is the number of tuples in the relation.
 - (c) Relation instance is the set of tuples of a relation at a particular instance of time.
 - (d) All of the above

[MSQ]

- **9.** Choose the correct statement from the following:
 - (a) There can be many primary keys for a relation.
 - (b) There can be many alternate keys for a relation.
 - (c) All the candidate keys are also super keys.
 - (d) All the super keys are also the candidate keys.

[NAT]

10. Consider the below instance of relation:

Employee:

Emp_rating	Emp_name	Emp_mail	Emp_sal
1	Rohit	p@pw	40000
2	Kanika	c@pw	60000
1	Rohit	Null	50000
3	Pankaj	g@pw	60000

The maximum possible number of alternate keys for the above relational instance is/are

[MCQ]

11. Consider the set of functional dependencies for a relation R(D, N, C, S)

 $\{D\rightarrow N, D\rightarrow C, D\rightarrow S, C\rightarrow S\}$

Then choose the correct statement regarding the above set.

- (a) {D} is the superkey for the relation.
- (b) {DN} is the candidate key for the relation.
- (c) {DC} is the candidate key for the relation.
- (d) {CN} is the superkey for the relation.

[NAT]

12. Consider the given FD set for relation

 $R\left(X,\,Y,\,Z,\,W,\,U,\,V\right)$

 $\{X \to Y,\, YZ \to W,\, U \to Z,\, W \to X\}$

Then the number of prime attributes for the relation are?

[MCQ]

- 13. Choose the incorrect statement from the following
 - (a) All super keys cannot be primary key.
 - (b) We choose the minimal candidate key to be a primary key.
 - (c) The number of super keys are equal to the number of primary keys for a relation.
 - (d) None of the above.

[NAT]

14. Suppose a relation R has 9 attributes, then the maximum possible number of candidate keys are?

[MSQ]

15. For all given set of FD, find the primary key from the options below, for relation R (A, B, C, D, E, F)

 $\{A \rightarrow BC, C \rightarrow DE, C \rightarrow F, B \rightarrow C\}$

- (a) AC could be the primary key.
- (b) There are two candidate keys AC and AB.
- (c) BC is the primary key.
- (d) No primary key exists for the relation.

[MCQ]

- **16.** Consider a relation R (A B C D E F), on this relation how many maximum number of candidate keys are possible?
 - (a) 8
- (b) 12
- (c) 16
- (d) 20

[MCQ]

- 17. Consider the relation R (P, Q, R, S, T) and the set of function dependencies $F = \{P \rightarrow Q, QR \rightarrow T, TS \rightarrow P\}$. Which of the following is not the candidate key of R?
 - (a) RST
- (b) PRS
- (c) QRS
- (d) PQR

[NAT]

18. Assume a relation R (P, Q, R, S, T) with the set of functional dependencies $\{P\rightarrow Q, Q\rightarrow R, R\rightarrow Q \text{ and } Q\rightarrow T\}$. how many candidate keys are possible in R?

[MCQ]

- 19. Consider the following statements:
 - S₁: A key in DBMS is an attribute (or) a set of attributes that help to uniquely identify a tuple (or row) in a relation (or table).
 - **S₂:** There should be only one candidate key in relation, which is chosen as the primary key.
 - (a) Only S_1 is true.
 - (b) Only S₂ is true.
 - (c) Both S_1 and S_2 are true.
 - (d) Neither S_1 nor S_2 is true.

[MSQ]

- **20.** Choose the correct statements from the following:
 - (a) Then minimal set of attributes that can uniquely identify tuple is known as a candidate key.
 - (b) A super key is a group of single or multiple keys that identifies rows in a table. It supports NULL values.
 - (c) Primary key is not a unique key.
 - (d) None of the above.

[MSQ1

21. Consider a schema with attributes A, B, C, D & E following set of functional dependencies are given,

 $A \rightarrow B$

 $A \rightarrow C$

 $CD\rightarrow E$

 $B \rightarrow D$

 $E \rightarrow A$

Which of the following functional dependencies is implied by the above set?

- (a) CD→AC
- (b) $BC \rightarrow CD$
- (c) $AC \rightarrow BC$
- (d) $BD \rightarrow CD$

[MCQ]

- **22.** Assume the relation R that has eight attributes ABCDEFGH. Let A = {CH→G, A→BC, B→CFH, E→A, F→EG} is a set of functional dependencies (FD). How many candidates key does the relation R have?
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

[MCQ]

- **23.** Assume the relation schema R(P, Q, R, S, T, U, V, W, X, Y) and the set of functional dependencies on R: $F = \{PQ \rightarrow R, Q \rightarrow UV, PT \rightarrow WX, W \rightarrow Y, X \rightarrow Z\}$. Which of the following can be candidate key for R?
 - (a) PQU
- (b) PQT
- (b) PQTR
- (d) PQTWX

[MCQ]

- **24.** Consider the following statements:
 - **S₁:** Primary key has no duplicate values it has only unique values.
 - S₂: Primary key are not necessary to be a single column more than one column can also be a primary key for table.
 - (a) Only S1 is true.
 - (b) Only S2 is true.
 - (c) Both S1 & S2 are true.
 - (d) Neither S1 nor S2 are true.

[MSQ]

- **25.** Choose the correct statements about candidate key.
 - (a) Candidate key is a super key with maximum attributes.
 - (b) It must contain unique values.
 - (c) A table can have multiple CK's but only one primary key.
 - (d) It is a super key with no repeated data which is called a candidate key.

[MCQ]

26. Consider the following two sets of functional dependencies

$$X = \{P \rightarrow Q, Q \rightarrow R, R \rightarrow P, P \rightarrow R, R \rightarrow Q, Q \rightarrow P\}$$

$$Y = \{P \rightarrow Q, Q \rightarrow R, R \rightarrow P\}$$

Which of the following is true?

- (a) $X \subset Y$
- (b) $Y \subset X$
- (c) $X \equiv Y$
- (c) $X \neq Y$

[NAT]

27. Consider a relation with schema R(P, Q, R, S, T) and FD set $(PQ \rightarrow R, R \rightarrow S, S \rightarrow P)$. How many super keys in relation R contains?

[NAT]

28. Consider a relation R(P, Q, R, S, T) with the set of functional dependencies $\{P\rightarrow QR, RS\rightarrow T, Q\rightarrow S, and T\rightarrow P\}$. How many super keys are possible in R?

[MCQ]

- **29.** Consider the relation schema R(P, Q, R, S, T, U, V, W, X, Y) and the set of functional dependencies on R are: $F = \{PQ \rightarrow R, Q \rightarrow TU, PS \rightarrow VW, V \rightarrow X, W \rightarrow Y\}$. Which of the following can be the candidate key for R?
 - (a) PQT
- (b) PQS
- (c) PQSR
- (d) PQSVW

[NAT]

30. Let a relation R have attributes {P, Q, R, S, T} and "PQR" is the candidate key, then how many super keys are possible _____?

Answer Key

(a, b) 1.

2. **(1)**

3. **(c)**

4. **(3)**

5. (c)

6. **(c)**

7.

(b) 8. **(c)**

9. (b, c)

10. (3)

11. (a)

12. (5)

13. (c)

14. (126)

15. (a, b)

16. (d)

17. (d)

18 (1)

19. (a)

20. (a, b)

21. (a, b, c)

22. (c)

23. (b)

24. (c)

25. (b, c, d)

26. (c)

27. (7)

28. (27)

29. (b)

30. (4)

Any issue with DPP, please report by clicking here:- $\underline{https://forms.gle/t2SzQVvQcs638c4r5}$ For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

