

第十章 群与环

- □主要内容
- 群的定义与性质
- 子群与群的陪集分解
- 循环群与置换群

第十章: 群与环

第一节: 群的定义及性质

群简介

- □群在抽象代数中具有基本的重要地位
 - ❖群是一个特殊的代数系统
 - ❖是环、域和模的基础
 - ❖在几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支起作用
 - ❖群论的重要性还体现在物理学和化学的研究中

群简介

- □群论是法国传奇式人物伽罗瓦提出
 - ❖用以解决了五次方程问题
 - ❖提出:把数学运算归类
- □例:全体整数的加法构成一个群

- □半群<**G**,*>: <**G**,*>是一个代数系统,*是**G**上的二元运算,如果*在**G**上成立结合律
 - a*(b*c)=(a*b)*c
- □例:下列代数系统是半群
 - **❖**R₊表示正实数集合,<R₊,+>,<R₊,*>是半群
 - ❖ <M_n(R),+>, <M_n(R), ·>是半群, M_n(R)是n阶矩阵 的全体

- □独异点<**G**,*>: 有幺元的半群
- □例:下列代数系统是独异点
 - ❖<N,+,0>,<N,*,1>均为独异点
 - **❖**<**P**(**S**), ∪,Ø>,<**P**(**S**), ∩,**S**>均为独异点
 - **❖**<**P**(**S**), ⊕, Ø>为独异点
 - ❖<A^A, o>为独异点: o为函数复合
 - 单位元为恒等函数

- □群<**G**,*>: <**G**,*>为独异点,并且
 - ❖每个元素都有逆元
- □例:
 - ❖ <Z,+>是群, 幺元是0, 逆元是相反数
 - **☆** < M_n(R), → > , → 为矩阵乘法运算
 - · 存在幺元是单位矩阵In
 - 不是群, 逆矩阵不一定存在
 - ***<S**_n(R),•> 为群
 - S_n(R)=所有可逆矩阵的全体

- □ <N₆,+₆>为群,其中N₆={0,1,2,3,4,5}
 - ❖幺元是0
 - +65=0,2+64=0,3+63=0
- □<P(A),⊕>为群
 - $A \forall B \in P(A), B \oplus \emptyset = \emptyset \oplus B = B$
 - **♦ B**⊕**B**=∅

□例: 四元群,设 $G=\{e,a,b,c\}$ 运算*表如下

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

- ❖e为单位元
- **❖G**中运算是可交换的
- ❖每个元素都有逆元

回顾

- □ 半群<**G**,*>: <**G**,*>是一个代数系统,*是**G**上的二元运算,如果*在**G**上成立结合律
- □独异点<**G**,*>: 有幺元的半群
- □群<**G**,*>: <**G**,*>为独异点,并且每个元素都有逆元

□群论中一些重要的概念

- ❖有限群G: G为有限集
- ❖无限群G: G为无限集
- ❖群G的阶: G的基数
- ❖平凡群:只含单位元的群
- ❖交换群(阿贝尔群): G中的二元运算是可交换的

□例:

- **❖<Z,+>**为无限群
- **❖<Zn,⊕>**是有限群,阶数为n
- ❖<{0},+>是平凡群

- □群中元素的幂: G为群, a∈G的n次幂
 - *****a⁰=**e**
 - $a^{n}=a^{n-1}a, n>0$
 - $(a)^n = (a^{-1})^m, n < 0, m = -n$
- □例:
 - **❖<Z₃,⊕>中求2-3**
 - $2^{-3} = (2^{-1})^3 = 1^3 = 1 \oplus 1 \oplus 1 = 0$

- □群的元素的阶(周期): G是群, a∈G
 - ❖a的阶:最小的正整数k,a^k=e
 - ❖记作 | a | = k: a 为k 阶元
 - ❖k不存在,则a为无限元

□例:

- **❖<Z₆,⊕>中, 2和4是3**阶元, **3是2**阶元
- ❖四元群中, e是1阶元, 其他元素是2阶元

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

□定理: G是群, G中幂运算满足:

1)
$$\forall a \in G, (a^{-1})^{-1} = a$$

2)
$$\forall a, b \in G, (ab)^{-1} = b^{-1}a^{-1}$$

3)
$$\forall a \in G, a^n a^m = a^{n+m}, n, m \in Z$$

$$4) \forall a \in G, (a^n)^m = a^{nm}, n, m \in \mathbb{Z}$$

5)若G为交换群,则
$$(ab)^n = a^n b^n$$

2) 证明:

- □ 定理: 设<G,*>是群,则∀a,b,c∈G
 - ① 如a*b=a*c, 则b=c
 - ② 如b*a=c*a, 则b=c
- 证明: (1)群中的每一个元素都有逆元,因此只要两边同左乘a⁻¹,即可得证。
 - (2)同理可证。
- □ 注:如果a*b=c*a,未必得到b=c,而只能知道b=a⁻¹*c*a,因为*不一定满足交换律

□ 例:设G为群,a,b∈G,且 (ab)²=a² b² 证明:ab=ba

证: (ab)²=(ab)(ab)
=abab=a² b²=aabb
因为群的运算满足消去律,所以有ab=ba

- □ 定理: 设G为群, a∈G, |a|=r。对整数k
 - ① ak=e 当且仅当 k是r的整数倍
 - ② $|a^{-1}| = |a|$

证: ①充分性: 由于k是r的整数倍,必存在整数m使得k=mr, 所以有a^k= a^{mr}= (a^r)^m= e。

必要性: 存在整数m和i,使得k=mr+i, 从而有

 $e = a^{mr+i} = a^{mr} a^i = a^i$

因为a的阶是r,并且0≤i≤r-1

所以i=0。则k是r的整数倍

- □ 定理: 设G为群, a∈G, |a|=r。对整数k
 - ① ak=e 当且仅当 k是n的整数倍
 - $2 |a^{-1}| = |a|$

证: ②由于 $(a^{-1})^r = (a^r)^{-1} = e^{-1} = e$ 。可知 a^{-1} 的阶是存在的。

令 | a-1 | =t,根据前面证明有r是t的整数倍。

而a又是a⁻¹的逆元,所以a的阶也是a⁻¹的阶的因子,故有t是r的整数倍。

从而证明了r=t,即 $|a^{-1}|=|a|$

□ 例:设G为有限群,则G中阶大于2的元素有偶数个

证:由前面定理,对任意a∈G
 a²=e⇔a⁻¹a²=a⁻¹e⇔a=a⁻¹
 故G中阶大于2的元素a,必有
 a≠a⁻¹

由于 $|a|=|a^{-1}|$,故**G**中阶大于**2**的元素成对出现

第十章: 群与环

第二节: 子群与群的陪集分解

- □ 子群: 设<G,*>是群,H是G的(非空)子集,如果H关于G的运算*构成群,则称H为G的子群,记作H≤G
 - ❖ 如果H是G的真子集,则称H是G的真子群,记作H<G
- □ 子群说明: <H,*>是子群,则
 - ❖ H对于运算*是封闭的
 - ❖ G的幺元e在H内
 - ❖ H的每个元素的逆元仍在H内(对逆运算封闭)。 至于运算的结合律,由于在G中成立,对于H必然 成立
 - ❖ 如H构成子群,必然是非空的,至少有幺元e

□ 例:

- **❖ <R,+>**是群, **Q**⊆**R**,**<Q**,+>是子群。
 - <N,+>?
- ❖ <N₆,+₆>是群。H₁={0,2,4},则<H₁,+₆>
 是不是子群?
 - $2+_62=4\in H_1, 4+_64=2\in H_1$
 - 2,4互为逆元
- ❖ H₂={0,1,5},< H₂,+₆>是不是子群?
 - $1 +_6 1 = 2 \notin H_2, 5 +_6 5 = 4 \notin H_2$
 - H₂对运算+₆不封闭

- □ 子群的判定定理一: 设<G,*>是群, H⊆G,<H,*>是子群的充要条件是以下三条 同时成立
 - 計算
 - ② 如果a∈H,b∈H,则a*b∈H
 - ③ 若a∈H,则a⁻¹∈H

证明: 必要性是显然成立,下证充分性。

由(1)因H非空,取a∈H,由(3)a⁻¹∈H,由(2)因a, a⁻¹∈H则a*a⁻¹∈H,∴e∈H,从而<H,*>是子群

- □ 子群的判定定理二: 设<G,*>是群,H⊆G,<H,*> 是子群的充要条件是以下两条同时成立
 - 計空
 - ② ∀a,b∈H,均有a*b⁻¹∈H

证明: 必要性: 任取a,b \in H.由于H是G的子群,必有 $b^{-1}\in$ H,从而a* $b^{-1}\in$ H。

充分性: 因为H非空,必存在x \in H,根据给定条件得 x*x $^{-1}$ \in H,即e \in H 。设a是H的任一元素,即a \in H,由 e,a \in H得e*a $^{-1}$ \in H,即a $^{-1}$ \in H。任取a,b \in H,由刚才的证 明知b $^{-1}$ \in H。根据给定条件知a*(b $^{-1}$) $^{-1}$ \in H,即a*b \in H 根据上一定理可知<H,*>是<G,*>的子群

- □ 子群的判定定理三: <G,*>是群,H⊆G,如果H是有 穷集, <H,*>是子群的充要条件是:
 - H非空
 - ② ∀a,b∈H,均有a*b∈H

证明:设a是H的任一元素,即 $a \in H$,由判定定理一,只需证明 $a^{-1} \in H$ 即可。

若a=e,则a⁻¹= e⁻¹ = e ∈ H 若a≠e,令S={a,a²,...},则S ⊆H。由于H是有穷集 ,必有aⁱ= a^j (i<j) 。根据G中的消去律得a^{j-i}= e,由 a≠e可知j-i>1,由此得 a^{j-i-1}*a =e和a*a^{j-i-1} =e 从而证明了a⁻¹=a^{j-i-1}∈H

□ 例:设G为群, $a \in G$,令 $H = \{a^k \mid k \in Z\}$ 即a的所有的幂构成的集合,证明: $H \neq G \neq F \neq A$,称为由a生成的子群,记作 $\{a^k \mid k \in Z\}$

证明: 首先由a∈<a>知道<a>不为空,任取a^m,a^l∈<a>,

则a^m(a^l) -1 = a^m a - l = a^{m - l} ∈ <a>

根据判断定理二可知。

例如:整数加群,由2生成的子群是

 $<2>=\{2k|\ k\in Z\}=2Z$

群<Z6,⊕>中,由2生成的子群是?

□例:设G为群,令C是与G中所有的元素都可 交换的元素构成的集合,即

$$C = \{ a \mid a \in G \land \forall x \in G (ax = xa) \}$$

证明: C是G的子群, 称为G的中心

□子群格

若G为群,令S={H|H是G的子群}是G的所有子群的集合,在S上定义关系R如下:

 $\forall A, B \in S, ARB \Leftrightarrow A \in B$ 的子群

那么<S, R>构成偏序集,称为群G的子群格

□用图表示子群格

(1)

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
С	c	b	a	e

 $(2) < Z_{12} \oplus >$

第十章 习题课

- □主要内容
- 半群、独异点与群的定义
- ●群的基本性质
- 子群的判别定理

基本要求

- 判断或证明给定集合和运算是否构成半群、独异点和群
- 熟悉群的基本性质
- ●能够证明G的子集构成G的子群

- 1. 判断下列集合和运算是否构成半群、独异点和群.
- (1) a 是正整数, $G = \{a^n \mid n \in \mathbb{Z}\}$,运算是普通乘法.
- (2) Q+是正有理数集,运算为普通加法.
- (3) 一元实系数多项式的集合关于多项式加法.

解

- (1) 是半群、独异点和群
- (2) 是半群但不是独异点和群
- (3) 是半群、独异点和群

方法: 根据定义验证, 注意运算的封闭性

- 2. 设 V_1 = <Z, +>, V_2 = <Z, ·>,其中Z为整数集合, + 和·分别代表普通加法和乘法. 判断下述集合S是否构成 V_1 和 V_2 的子半群和子独异点.
 - (1) $S = \{2k \mid k \in \mathbb{Z}\}$
 - (2) $S = \{2k+1 \mid k \in \mathbb{Z}\}$
 - $(3) S = \{-1, 0, 1\}$

解

- (1) S关于 V_1 构成子半群和子独异点,但是关于 V_2 仅构成子半群
- (2) S关于 V_1 不构成子半群也不构成子独异点,S关于 V_2 构成子半群和子独异点
- (3) S关于 V_1 不构成子半群和子独异点,关于 V_2 构成子半群和子独异点

3. 设Z₁₈ 为模18整数加群, 求所有元素的阶.

解:

$$|0| = 1$$
, $|9| = 2$, $|6| = |12| = 3$, $|3| = |15| = 6$, $|2| = |4| = |8| = |10| = |14| = |16| = 9$, $|1| = |5| = |7| = |11| = |13| = |17| = 18$,

说明:

群中元素的阶可能存在,也可能不存在.

对于有限群,每个元素的阶都存在,而且是群的阶的因子.

对于无限群,单位元的阶存在,是**1**;而其它元素的阶可能存在,也可能不存在(可能所有元素的阶都存在,但是群还是无限群).

4. 证明偶数阶群必含2阶元.

由 $x^2 = e \Leftrightarrow |x| = 1$ 或2.

换句话说,对于G中元素x,如果 |x| > 2,必有 $x^{-1} \neq x$.

由于 $|x| = |x^{-1}|$, 阶大于2的元素成对出现,共有偶数个.

那么剩下的1阶和2阶元总共应该是偶数个.

1 阶元只有 1 个,就是单位元,从而证明了G中必有 2 阶元.

作业

回顾

- □ 半群 < G,*>: < G,*>是一个代数系统,*是G上的二元运算,如果*在G上成立结合律
- □独异点<**G**,*>: 有幺元的半群
- □群<**G**,*>: <**G**,*>为独异点,并且每个元素都有逆元
- □元素的阶(周期): G是群, $a \in G$,使得 $a^k = e$ 的最小正整数k

- □ 陪集: <H,*>是<G,*>的子群,a∈G,
 集合{a}H(或H{a}),称为由a所确定的H在G中的左陪集(右陪集)
 - ❖ 记作aH(或Ha)
 - ❖ 元素a称为陪集aH(或Ha)的代表元素

□ 例:设G={e,a,b,c}是四元群,H= {e,a}是G的子群,那么H的所有右陪集是:

*	е	a	b	C
е	e	a	b	C
a	а	е	C	b
b	b	С	е	a
С	С	b	a	е

不同的右陪集只有两个,即H和{b,c}

- □ 定理: 设H是群G的子群,则
 - ① **He=H**
 - ② ∀a∈G有a∈Ha

□ 定理: 设<H,*>是群<G,*>的子群,则
 a∈Hb当且仅当ab⁻¹∈H当且仅当Ha=Hb
 证明: (1) a∈Hb当且仅当ab⁻¹∈H
 a∈Hb
 ⇒∃h∈H,使a=hb,即ab⁻¹=h
 ⇔ab⁻¹∈H

□ 定理: 设<H,*>是群<G,*>的子群,则 $a \in Hb$ 当且仅当 $ab^{-1} \in H$ 当且仅当Ha = Hb

证明: (2) a∈Hb当且仅当Ha=Hb

充分性: 若Ha=Hb, a∈Ha⇒a∈Hb

必要性: a∈Hb⇒h∈H使得a=hb,即h⁻¹a=b

任取h₁a∈Ha,则有h₁a=h₁(hb)=(h₁h)b∈Hb

从而得到Ha⊆Hb

任取h₁b∈Hb,则有

 $h_1b=h_1(h^{-1}a)=(h_1h^{-1})a\in Ha$

从而得到Hb⊆Ha

□ 定理: 设H是群G的子群,在G上定义二元关

系~: ∀a,b∈G, a~b⇔ab⁻¹∈H

~是**G**上的等价关系,且[a]_~=Ha

证明: (1)~是G上等价关系

自反性: 任取a∈G,由aa⁻¹=e∈H⇔a~a

对称性: 任取a,b∈G,则a~b⇒ ab⁻¹∈H

 \Rightarrow (ab⁻¹)⁻¹ \in H \Rightarrow ba⁻¹ \in H \Rightarrow b \sim a

传递性: 任取a,b,c∈G,则a~b且b~c⇒ab⁻¹∈H且bc⁻¹∈H⇒ (ab⁻¹)(bc⁻¹)∈H⇒ac⁻¹∈H

 \Rightarrow a \sim c

□ 定理: 设H是群G的子群,在G上定义二元关

系~: ∀a,b∈G, a~b⇔ab⁻¹∈H

~是**G**上的等价关系,且[a]_~=Ha

证明: (2) [a]_∼=Ha

任取b∈G,则有b∈[a]_~⇔a~b⇔ab⁻¹∈H

根据前面定理有

ab⁻¹∈H⇔Ha=Hb⇔a∈Hb⇔b∈Ha 故b∈[a]_~⇔ b∈Ha,所以[a]_~=Ha

- □ 推论: 设H是群G的子群

 - $\bullet \cup \{Ha \mid a \in G\} = G$
- □ 定理: 设H是群G的子群,则∀a∈G,H≈Ha

□ 性质总结

- ❖ 右陪集的个数和左陪集的个数是相等的
- ❖ 子群的左(右)陪集的基数=子群的阶数
- ❖ 子群的左(右)陪集要么相等,要么相交为空
- ❖ 子群的左(右)陪集集合形成G的一个划分

- 正规子群(不变子群): 设<H,*>是群<G,*>的子群,对任意元素a∈G,如果aH=Ha,则称<H,*>为正规子群
 - ❖ 任何群都有正规子群
 - G和{e}
 - ❖ 阿贝尔群的所有子群都是正规子群

- □ 陪集数: 给定群G及其子群H, 令
 - **S={Ha|a∈G} 和 T={aH|a∈G}**
 - **☆** 定义函数f: S→T
 - f(Ha)=a⁻¹H, ∀a∈G
 - ❖ f是双射
 - ❖ 结论: |S|=|T|
 - ❖ [G:H]=|S|: H在G中的指数

□ 拉格朗日定理: 设G是有限群, H是G的子群|G|=|H|·[G:H]

证明: 设[G:H]=r, a_1 ,..., a_r 为H的r个右陪集的代表元,由前面的定理则有

 $G=Ha_1 \cup ... \cup Ha_r$

由前面定理,有Ha_i \ Ha_j=∅, i≠j

故|G|=|Ha₁|+...+|Ha_r|

由于|Ha_i|=|H|,则易得|G|=|H|·r

故 |G|=|H|·[G:H]

- □ 推论: 设G是n阶群,则∀a∈G, |a|是n的因子,且aⁿ=e
- 证明: ∀a∈G, <a>是G的由a生成的子群。由拉格朗日定理,<a>的阶是n的因子。

设|a|=r,则

 $< a > = \{e, a, a^2, ..., a^{r-1}\}$

故|<a>|=|a|,所以|a|是n的因子

由前面定理知: an=e

第十章: 群与环

第三节:循环群与置换群

- □ 循环群: 存在a∈G, G=<a>
 - ❖ a为G的生成元
- □ 循环群分类:
 - ❖ n阶循环群: a是n阶元
 - G={e,a,a²,...,aⁿ⁻¹}
 - ❖ 无限循环群: a是无限元
 - $G = \{e,a,a^{-1},a^2,a^{-2}...,a^{n-1},a^{-(n-1)},...\}$

□ 例: $\langle N_4, +_4 \rangle$ 是循环群, 运算表为:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

幺元为0,1或3是生成元

$$1^3 = 1 + 4 + 4 = 3$$

$$1^2 = 1 + 4 = 2$$

$$1^1 = 1$$

- □ 定理: 循环群必然是交换群
- □ 反之成立吗?
- □ 例: 四阶群不是循环群, 但是它是交换群

*	$\mid a \mid$	b	\mathcal{C}	d
\overline{a}	а	b	С	\overline{d}
b	b	a	d	C
C	C	d	а	b
d	d	\mathcal{C}	b	а

- □ 定理: 设G=<a>是循环群,则
 - ① 若G是无限循环群,则G只有两个生成元,即a和a-1
 - ② 若G是n阶循环群,则G含有h(n)(欧拉函数)个生成元,对于任意小于等于n且与n互素的正整数r, ar是G的生成元

- □ 定理: 设G=<a>是循环群,则
 - ① 若G是无限循环群,则G只有两个生成元,即a和a-1
- 证明: 显然 $<a^{-1}>\subseteq G$ 。为证明 $G\subseteq <a^{-1}>$,只需证明对任意 $a^k \in G$, a^k 都可以表示成 a^{-1} 的幂。由元素幂的性质有 $a^k = (a^{-1})^{-k}$ 从而得到 $G=<a^{-1}>$, a^{-1} 是G的生成元

- □ 定理: 设G=<a>是循环群,则
 - ① 若G是无限循环群,则G只有两个生成元,即a和 a-1
- 证明(继续): 再证明G只有a和a⁻¹这两个生成元。假设b也是G的生成元,则G=,由a∈G可知存在整数t使得a=b^t。又由b∈G=<a>知存在整数m使得b=a^m。

从而得到 $a=b^t=(a^m)^t=a^{mt}$

由G中消去律得a^{mt-1} = e ,因为G是无限群,必有mt-1=0。从而证明了m=t=1或m=t=-1,即b=a或b= a⁻¹

- □ 定理:设G=<a>是循环群,则
 - ②若G是n阶循环群,则G含有h(n)(欧拉函数)个生成元,对于任意小于等于n且与n互素的正整数r,ar是G的生成元

证明:对r<n(n>1), a^r是G的生成元⇔n与r互素 充分性:设r与n互素,且r≤n,那么存在整数u和v使得 ur+vn=1

因此由元素幂的性质和拉格朗日定理的推论有

$$a = a^{ur+vn} = (a^r)^u(a^n)^v = (a^r)^u$$

所以对任意 $a^k \in G$, $a^k = (a^r)^{uk} \in \langle a^r \rangle$,即 $G \subseteq \langle a^r \rangle$ 另一方面,显然有 $\langle a^r \rangle \subseteq G$ 。所以 $a^r \not\in G$ 的生成元

- □ 定理:设G=<a>是循环群,则
 - ②若G是n阶循环群,则G含有h(n)(欧拉函数)个生成元,对于任意小于等于n且与n互素的正整数r, ar是G的生成元

证明:

必要性: a^r 是G的生成元 \Rightarrow n与r互素 a^r 是G的生成元,则| a^r |=n。令r与n的最大公约数为d则存在正整数t使得r=dt。因此有

$$(a^r)^{n/d} = (a^{dt})^{n/d} = (a^n)^t = e$$

根据n阶群的性质知 $|a^r|$ 是n/d的因子,即n整除n/d。从而证明了d=1

- □ 例: G=<Z₉,⊕>
 - ❖ 小于或者等于9且与9互素的数: 1, 2, 4, 5,7, 8
 - ❖ G的生成元是1, 2, 4, 5, 7, 8
- □ 例: G=3Z={3z|z∈Z}, G是无限循环群 生成元为: 3, -3

- □ 定理: 下列性质成立
 - ① 设G=<a>是循环群,则G的子群也是循环群
 - ② 若G=<a>是无限循环群,则G的子群除{e}以外都是无限循环群
 - 3 若G=<a>是n阶循环群,则对n的每个 正因子d,G恰好含有一个d阶子群 (<a^{n/d}>)

置换: 设S={1,2,...,n}, S上的双射σ为S 上的n元置换

■ 例: S={1,2,3,4,5}

- 置换乘积: 设S={1,2,...,n}, σ和τ是S上 $n元置换, <math>\sigma$ 和 τ 的复合 σ σ τ 也是置换,称为 σ 和τ的乘积
- 例: S={1,2,3,4,5}

$$\sigma \sigma \tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{bmatrix}$$

- \square n元对称群: $\langle S_n, o \rangle$, S_n 为所有的n元置换
 - ❖ 任何 σ , $\tau \in S_n$, $\sigma \circ \tau \in S_n$
 - ❖ 恒等置换为单位元
 - ❖ 任何 $\sigma \in S_n$, $\sigma^{-1} \in S_n$
- \square n元置换群: S_n 的子群

- k阶轮换σ: σ是S={1,2,...,n}S上n元置换
 - $\bullet \ \sigma(i_1)=i_2, \ \sigma(i_2)=i_3,..., \ \sigma(i_{k-1})=i_k, \ \sigma(i_k)=i_1$
 - * σ(i_j)=i_j, 其他i_j
 - ❖ 对换: 2阶轮换
- 轮换分解: σ 是S={1,2,...,n}S上n元置换第一步: 找到一个有限序列 $i_1,...,i_k$, $k \ge 1$, 使得 $\sigma(i_1)=i_2$, $\sigma(i_2)=i_3$,..., $\sigma(i_{k-1})=i_k$, $\sigma(i_k)=i_1$ 令 $\sigma_1=(i_1 i_2 ... i_k)$, σ' 作用于S-{ i_1 ,..., i_k },则 $\sigma=\sigma_1\sigma\sigma'$ 第二步: 继续分解 σ' ,可以得到 $\sigma=\sigma_1\sigma\sigma_2$... σ

□ 例: 设S={1,2,...,8},

 \Box $\sigma = (1 5 2 3 6)(4)(7 8)$

■ k阶轮换→对换: σ是S={1,2,...,n}S上n 元置换

$$(i_1 i_2 ... i_k) = (i_1 i_2)(i_1 i_3)...(i_1, i_k)$$

□ 例: 设S={1,2,...,8},

第十章 习题课

- □主要内容
- 半群、独异点与群的定义
- 群的基本性质
- 子群的判别定理
- 陪集的定义及其性质
- 拉格朗日定理及其应用
- 循环群的生成元和子群
- 置换群

基本要求

- 判断或证明给定集合和运算是否构成半群、独异点和群
- 熟悉群的基本性质
- \bullet 能够证明G的子集构成G的子群
- 熟悉陪集的定义和性质
- 熟悉拉格朗日定理及其推论,学习简单应用
- 会求循环群的生成元及其子群
- 熟悉n元置换的表示方法、乘法以及n元置换群

练习1

- 1. 判断下列集合和运算是否构成半群、独异点和群.
- (1) a 是正整数, $G = \{a^n \mid n \in \mathbb{Z}\}$,运算是普通乘法.
- (2) Q+是正有理数集,运算为普通加法.
- (3) 一元实系数多项式的集合关于多项式加法.

解

- (1) 是半群、独异点和群
- (2) 是半群但不是独异点和群
- (3) 是半群、独异点和群

方法: 根据定义验证,注意运算的封闭性

练习2

- 2. 设 V_1 = <Z, +>, V_2 = <Z, ·>,其中Z为整数集合, + 和·分别代表普通加法和乘法. 判断下述集合S是否构成 V_1 和 V_2 的子半群和子独异点.
 - (1) $S = \{2k \mid k \in \mathbb{Z}\}$
 - (2) $S = \{2k+1 \mid k \in \mathbb{Z}\}$
 - $(3) S = \{-1, 0, 1\}$

解

- (1) S关于 V_1 构成子半群和子独异点,但是关于 V_2 仅构成子半群
- (2) S关于 V_1 不构成子半群也不构成子独异点,S关于 V_2 构成子半群和子独异点
- (3) S关于 V_1 不构成子半群和子独异点,关于 V_2 构成子半群和子独异点

3. 设Z₁₈ 为模18整数加群, 求所有元素的阶.

解:

$$|0| = 1$$
, $|9| = 2$, $|6| = |12| = 3$, $|3| = |15| = 6$, $|2| = |4| = |8| = |10| = |14| = |16| = 9$, $|1| = |5| = |7| = |11| = |13| = |17| = 18$,

说明:

群中元素的阶可能存在,也可能不存在.

对于有限群,每个元素的阶都存在,而且是群的阶的因子.

对于无限群,单位元的阶存在,是**1**;而其它元素的阶可能存在,也可能不存在.(可能所有元素的阶都存在,但是群还是无限群).

4. 证明偶数阶群必含2阶元.

由 $x^2 = e \Leftrightarrow |x| = 1$ 或2.

换句话说,对于G中元素x,如果 |x| > 2,必有 $x^{-1} \neq x$.

由于 $|x| = |x^{-1}|$, 阶大于2的元素成对出现,共有偶数个.

那么剩下的1阶和2阶元总共应该是偶数个.

1 阶元只有 1 个,就是单位元,从而证明了G中必有 2 阶元.

有关群性质的证明方法

- □有关群的简单证明题的主要类型
- 证明群中的元素某些运算结果相等
- 证明群中的子集相等
- 证明与元素的阶相关的命题.
- 证明群的其它性质,如交换性等.
- □常用的证明手段或工具是
- 算律: 结合律、消去律
- 和特殊元素相关的等式,如单位元、逆元等
- 幂运算规则
- 和元素的阶相关的性质. 特别地,a为1阶或2阶元的充分必要条件是 $a^{-1}=a$.

证明方法

- 证明群中元素相等的基本方法就是用结合律、消去律、单位元及逆元的惟一性、群的幂运算规则等对等式进行变形和化简。
- 证明子集相等的基本方法就是证明两个子集相互包含
- 证明与元素的阶相关的命题,如证明阶相等,阶整除等.证明两个元素的阶r和 s 相等或证明某个元素的阶等于r,基本方法是证明相互整除.在证明中可以使用结合律、消去律、幂运算规则以及关于元素的阶的性质.特别地,可能用到a为1阶或2阶元的充分必要条件是a⁻¹ = a.

5. 设G为群,a是G中的2 阶元,证明G中与a可交换的元素构成G的子群.

任取 $x, y \in H$,有

$$(xy^{-1}) a = x(y^{-1}a) = x(a^{-1}y)^{-1} = x(ay)^{-1}$$

= $x(ya)^{-1} = xa^{-1}y^{-1} = xay^{-1} = axy^{-1} = a(xy^{-1})$

因此 xy^{-1} 属于H. 由判定定理命题得证.

分析:

证明子群可以用判定定理,特别是判定定理二.

证明的步骤是:

验证 H 非空

任取 $x, y \in H$, 证明 $xy^{-1} \in H$

- 6.(1) 设G为模12加群, 求<3>在G中所有的左陪集
- (2) 设 $X=\{x \mid x \in \mathbb{R}, x \neq 0,1\}$, 在X上如下定义6个函数:

$$f_1(x) = x$$
, $f_2(x) = 1/x$, $f_3(x) = 1-x$,

$$f_4(x) = 1/(1-x), f_5(x) = (x-1)/x, f_6(x) = x/(x-1),$$

则 $G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ 关于函数合成运算构成群. 求子群 $H = \{f_1, f_2\}$ 的所有的右陪集.

解(1) <3>= {0, 3, 6, 9}, <3>的不同左陪集有3个,即 0+<3>= <3>,

$$1+<3>=4+<3>=7+<3>=10+<3>=\{1, 4, 7, 10\}$$

$$2+<3>=5+<3>=8+<3>=11+<3>=\{2, 5, 8, 11\}.$$

(2) $\{f_1, f_2\}$ 有3个不同的陪集,它们是:

$$H$$
, $Hf_3 = \{f_3, f_5\}$, $Hf_4 = \{f_4, f_6\}$.

7. 设 H_1, H_2 分别是群G 的 r, s 阶子群,若(r,s) = 1,证明 $H_1 \cap H_2 = \{e\}$.

证 $H_1 \cap H_2 \leq H_1$, $H_1 \cap H_2 \leq H_2$. 由Lagrange定理, $|H_1 \cap H_2|$ 整除r, 也整除s. 从而 $|H_1 \cap H_2|$ 整除 r与s 的最大公因子. 因为(r,s)=1, 从而 $|H_1 \cap H_2|=1$. 即 $H_1 \cap H_2=\{e\}$.

某些有用的数量结果: 设a是群G元素,C为G的中心 $N(a)=\{x \mid x \in G, xa=ax\}$, |C| 是 |N(a)| 和 |G| 的因子,|a| 是 |N(a)| 和 |G| 的因子, $|H|=|xHx^{-1}|$ $|a^n|$ 是 |a| 的因子 $a^2=e \Leftrightarrow a=a^{-1} \Leftrightarrow |a|=1,2$

8. 设 i 为虚数单位,即 i $^2 = -1$, 令

$$G = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\}$$

则G关于矩阵乘法构成群. 找出G的所有子群.

解 $\diamondsuit A, B, C, D$ 分别为

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$$

G的子群有6个,即

平凡子群:
$$=\{A\}, G$$

4 阶子群:
$$= \{A,B,-A,-B\},$$
 $= \{A,C,-A,-C\},$

$$< D> = \{A, D, -A, -D\},$$

A -A B -B C -C D -	- D
$\mid A \mid A - A B - B C - C D -$	
$\mid -A \mid -A \mid A \mid -B \mid B \mid -\vec{C} \mid C \mid -D$	\boldsymbol{D}
$\mid B \mid B - B - A A D - D - C$	\boldsymbol{C}
$\mid -B \mid -B \mid B \mid A \mid -A \mid -D \mid D \mid C \mid -B \mid$	
$ \mid C \mid C - C - D \mid D - A \mid A \mid B - A \mid A \mid A \mid B - A \mid A$	B
$\mid -C \mid -C \mid C \mid D \mid -D \mid A \mid -A \mid -B \mid$	
$\mid D \mid D -D \mid C -C -B \mid B -A \mid A$	\boldsymbol{A}
-D -D D -C C B -B A -	A

9. 设群G的运算表如表所示,问G是否为循环群?如果是,求出它所有的生成元和子群.

解

易见 a 为单位元.

由于|G|=6, |b|=6, 所以 b 为生成元. G=为循环群. |f|=6, 因而 f 也是生成元 |c|=3, |d|=2, |e|=3, 因此 c,d, e不是生成元.

子群: $\langle a \rangle = \{a\}, \langle c \rangle = \{c, e, a\},$ $\langle d \rangle = \{d, a\}, G.$

	a	b	С	\overline{d}	\overline{e}	f
a	a	b	c	d	e	f
$\mid b \mid$	b	C	d	e	f	a
c	c	d	e	f	a	b
$\mid d \mid$	d		f	a	b	C
e	e	f	a	b	C	d
f	\int	a	b	С	d	e

10. 证明Fermat小定理: 设p为素数,则 $p|(n^p-n)$

证: 考虑一个圆环上等距离穿有p个珠子,用n种颜色对珠子着色. 考虑围绕中心旋转,则群是

$$G=\{ \sigma_1, \sigma_2, \dots, \sigma_p \}$$
 $\sigma_1=(\bullet)(\bullet)\dots(\bullet)$
 $\sigma_2=(\bullet \bullet \dots \bullet)$
...

 $\sigma_p = (\bullet \bullet \dots \bullet)$

根据Polya定理,不同的着色方案数是

$$M = \frac{1}{p}[n^{p} + (p-1)n^{1}] = \frac{1}{p}(n^{p} - n + pn)$$
于是 $p|(n^{p}-n)$

作业

回顾

- □ 子群: H是G的(非空)子集,且H关于G的运算*构成群
- □ 子群的判定定理一: 设<G,*>是群,H⊆G,<H,*>是子 群的充要条件是以下三条同时成立:
 - ① H非空
 - ② 如果a∈H,b∈H,则a*b∈H
 - ③ 若a∈H,则a⁻¹∈H
- □ 子群的判定定理二: 设<G,*>是群,H⊆G, <H,*>是子 群的充要条件是以下两条同时成立:
 - ① H非空
 - ② ∀a,b∈H, 均有a*b⁻¹∈H

回顾

- □ 子群的判定定理三: <G,*>是群,H⊆G,如果H是有 穷集, <H,*>是子群的充要条件是:
 - H非空
 - ② ∀a,b∈H,均有a*b∈H