Investigating the Flow Conditioners Working Regimes

Efficiency Using Numerical Simulations

Artem Vodeniktov

KSPEU

Kazan, Russia

vodeniktov@yahoo.com

Valerriia Melnikova BMSTU, ISP RAS Moscow, Russia vg-melnikova@yandex.ru

AIR

density $\rho = 1.1839 \text{ kg/m}^3$ kinematic viscosity $\nu = 13.6*10^{-6} \text{ m}^2/\text{s}$ wall roughness - 10 microns initial turbulence level - 5%

Uniform velocity distribution after flow conditioner inside a straight pipe

FLOW UNIFORMITY COEFFICIENT $\xi={^{U_{aver}}}/{_{U_{max}}}$

	OpenFOAM	Experiment	Inaccuracy
Flow conditioner	0.87	0.82	6%
inside a straight pipe	(3.8 h on 8 cores)	0.82	0%
Flow conditioner	0.93	0.92	10/
inside a step pipe	(10.1 h on 8 cores)	0.92	1%

Uniform velocity distribution after flow conditioner inside a step pipe

OpenFOAM

simulation

experiment

0.8