CS-GY-9223 Visualization: Connections with Machine Learning

Course materials based on CS 8395-03 Visual Analytics & Machine Learning
By Matt Berger, Vanderbilt University
https://matthewberger.github.io/teaching/vaml/spring2019/

Agenda

- What is Visual Analytics?
- Visual Analytics & Machine Learning
- Course Logistics

Visual Analytics

- A combination of analytic techniques and interactive data visualization to help people make sense of data.
- Analytic techniques?
- Interactive Data Visualization?
- Sensemaking?

Data Analytics

- I am given some dataset, and I want to understand something about it. What do I do?
- Well, I can stare at a table of numbers.

Α	В	С	D	E	F	G	Н	1	J	K	L	M
symboling	normalized_	make	fuel_type	aspiration	num_of_doo	body_style	drive_wheels	engine_locat	wheel_base	length	width	height
3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8
3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8
1	?	alfa-romero	gas	std	two	hatchback	rwd	front	94.5	171.2	65.5	52.4
2	164	audi	gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3
2	164	audi	gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3
2	?	audi	gas	std	two	sedan	fwd	front	99.8	177.3	66.3	53.1
1	158	audi	gas	std	four	sedan	fwd	front	105.8	192.7	71.4	55.7
1	?	audi	gas	std	four	wagon	fwd	front	105.8	192.7	71.4	55.7
1	158	audi	gas	turbo	four	sedan	fwd	front	105.8	192.7	71.4	55.9
0	?	audi	gas	turbo	two	hatchback	4wd	front	99.5	178.2	67.9	52
2	192	bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3
0	192	bmw	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3
0	188	bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3
0	188	bmw	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3
1	?	bmw	gas	std	four	sedan	rwd	front	103.5	189	66.9	55.7
0	?	bmw	gas	std	four	sedan	rwd	front	103.5	189	66.9	55.7
0	?	bmw	gas	std	two	sedan	rwd	front	103.5	193.8	67.9	53.7
0	?	bmw	gas	std	four	sedan	rwd	front	110	197	70.9	56.3
2	121	chevrolet	gas	std	two	hatchback	fwd	front	88.4	141.1	60.3	53.2
1	98	chevrolet	gas	std	two	hatchback	fwd	front	94.5	155.9	63.6	52
0	81	chevrolet	gas	std	four	sedan	fwd	front	94.5	158.8	63.6	52
1	118	dodge	gas	std	two	hatchback	fwd	front	93.7	157.3	63.8	50.8

Analytics

- Suppose I wanted to compare front-wheel drive and rearwheel drive automobiles in terms of their width.
- For each type of "wheel drive", we have a set of values for width. What would be some ways of analyzing this data?
- A distribution! We could show all of the values, but we could also summarize the distribution: minimum, maximum, upper/lower quartiles, median.

Distribution of Cars

	min	lq	med	uq	max
fwd	60.3	63.8	64.6	66.3	71.4
rwd	61.8	65.6	67.2	68.4	72.3

If you are staring at a bunch of numbers, plot them!

(e.g. data vis)

Boxplots

Visual Analytics

- We visualize:
 - Data we are given
 - Models built on top of data (aforementioned trivial model: coarse statistics)
- Interactions with data and models to gain insight
- Interactions?

Car Similarity

- I want to explore the similarity of individual cars (rather than isolate attributes).
- I will take wheel size, length, width, height, MPG (in city), MPG (on highway) as my data fields.
- Gives a 6-dimensional space, (moderately) highdimensional data.
- How do we visualize high-dimensional data?
- Dimensionality reduction! Let's look at PCA.

PCA

- Points that are close in 2D should (ideally!) be "close" in highdimensional space.
- Any potential problems you can see here in using this plot for analysis?
- Dimensionality reduction is imperfect! Visual analytics is all about confronting these imperfections!

Exploring PCA a bit

Why restrict ourselves to the top 2 principal components?

Interaction with PCA

Interaction is an essential component to visual analytics

Interaction with PCA

Interaction is an essential component to visual analytics

Interaction with PCA

Interaction is an essential component to visual analytics

Understanding Model Parameters

- Let's move away from a simple model like PCA, and instead consider tSNE (t-distributed Stochastic Neighbor Embedding)
- One key parameter to tSNE: perplexity
- Controls neighborhood influence: larger perplexity, larger neighborhoods
- What should the perplexity be?
- Visual analytics: let the user explore this parameter space in understanding data

Interaction with tSNE

perplexity: 10 perplexity: 50

Interaction with tSNE

perplexity: 10 perplexity: 50

Interaction with tSNE

perplexity: 10 perplexity: 50

Data Visualization for Insight

[Sacha et al. 2014]

Visual Analytics Workflow

Feedback loop

[Keim et al. 2008]

Data

- Data could be (virtually) anything!
 - Images, video, text, networks, trees, etc..
- At this step: often need to perform data cleaning, filtering, aggregation, transformation, etc..

Visual Analytics Workflow

Feedback loop

[Keim et al. 2008]

Models

- Model is something built on top of data that can be used for automated data analysis
- Models that we will consider? <u>Machine learning models</u>
 - Classification, regression, clustering, generative models, etc...
 - SVMs, decision trees, neural networks, dimensionality reduction, topic models, language models, etc...

Visual Analytics Workflow

Feedback loop

[Keim et al. 2008]

Visualization

- Visualize <u>data</u> and/or <u>model</u>.
- Are models alone sufficient for solving the problem under consideration? (often) no!
 - Can we use models alongside humans?
 - Suppose we didn't; can we trust a classifier?
 - How do we go about building models in the first place?
- Visualization plays a key role in tackling these questions.

Visual Analytics Workflow

Feedback loop

[Keim et al. 2008]

Knowledge

- For what reason are we building models and performing visualization?
- Visual analytics often used when the question we want to answer is not crisp: typically cannot be formulated as a machine learning problem
- Loops back into visualization and models:
 - We understand one piece a little better, and then adjust our visualization to understand something else
 - We tune parameters of our model based on our better understanding

Knowledge for VAML

- What do we hope to gain from combining visualization with machine learning? (e.g. this course?)
 - Mixed-Initiative Visual Exploration
 - Visual Analytics for Model Understanding
 - Visual Analytics for Model Training
 - Learning for Visualization

Mixed-Initiative Visual Exploration

- Goal: obtain insight from data
- Blend of automated analyses provided by a machine learning technique, alongside interactive data visualization
- Challenges:
 - How do we visually encode both data and model?
 - What should be left to the model? Exposed as user interactions?
- Typical scenarios: dimensionality reduction, clustering, topic modeling, etc.. - help the user understand data

Visual Analytics for Model Understanding

- Goal: obtain insight on model
- Interpretability, explainability:
 - Training process, parameters of a model, features learned by a model, outputs produced by a model
- Classification, regression, generative models, etc...
- Typical scenarios: convolutional networks, recurrent networks, generative models, neural language models help the user understand why models behave as they do

Visual Analytics for Model Training

- Goal: efficiently and intuitively build models
- Typically for supervised learning: classification
- Improve how humans annotate data used in training
- Incorporate human directly in to the model-building process
- Typically, a blend of active learning with visual inspection / interaction with model

Learning for Visualization

- Goal: use machine learning to improve the process of visualization itself
- Recommending visualizations, (semi-)automating the creation of visualizations, constructing learning models for visualization techniques

Course Format

- Lecture-based
- No textbook for the course
- Course material based on research papers
- (<u>LINK</u>)
- Assessment: class participation (10%), project (90%)

Class Participation

- Expectations
 - You have read the papers listed on the schedule prior to lecture (<u>LINK</u>)
 - During lecture, you should provide critiques on the covered papers - visual design? interactions? do they successfully address intended problems?
 - Some lectures you will find more relevant than others
 - Critiques during <u>all lectures</u> will help you in your project

Project

- Will span the entirety of the course
- Three main components:
 - Project Proposal (Abstract & Introduction)
 - Baseline (Related Work)
 - Full Project (Technical Approach Details, Results)
- Treat the project as a research paper
- (LINK)

Project Proposal

- What do you want to do for your project?
- Proposal Document
 - basic info, description, background, data, baseline, schedule
- Proposal Presentation
 - 5-minute talk outlining the goals of your project
- We will provide feedback on your proposal, we will agree to a refined/expanded scope, and this will serve as the basis for assessment

Project Types

- Mirrors the structure of the course:
 - Mixed-Initiative Visual Exploration
 - Visual Analytics for Model Understanding
 - Visual Analytics for Model Training
 - Learning for Visualization

Project Topics

- Choose a topic that is most interesting to you! It will make it much easier to invest the necessary effort.
 - Certain domain of interest? Dataset? ML model? ML training procedure?
- Unable to decide on a topic? We can meet with you to discuss problems from a variety of domains.
 - (first come first serve, email me if interested)

Baseline

- You will be expected to implement an existing approach that will either:
 - Serve as a piece of your project
 - A competing method, one you intend to compare against
- Baseline will help focus your project: deal with data wrangling/cleaning, Visualization/ML libraries, etc..
- Pre-baseline: use existing visualization tools to visualize your data! (see website for further references)

Project Updates

- Throughout the semester you will be expected to give updates to the class on the progression of your project, and baseline.
- Intended to keep you on track.
- Updates comprise part of project assessment: you will not be graded on whether you are keeping up with your proposed schedule; you will be graded on detailing where things went wrong, unexpected challenges, etc..

Final Project

 Project presentation: how does your project improve over prior work? What is your technical approach? What are the features of your visualization? Strengths/weaknesses? Insights gained? Should be all-encompassing.

Project Summary

- Start thinking about projects ...
 - Now! <u></u>
 - Do not put off the project proposals: carefully think about what you want to do, and how you are going to achieve it.
 - Proposal does not need to be perfect: We will provide feedback
 - We will cover basics of VA & ML, to give you some basis; but you should also be proactive and comb through papers on the website.

Prerequisites (1)

- (one of the following two)
- Working knowledge of machine learning
 - Experience in data cleaning, training models, evaluation, and ideally some experience in optimizing models from scratch (e.g. not just using TensorFlow, PyTorch, etc..)
- Working knowledge of data visualization
 - Some experience with visualization tools, and ideally, building your own!

Prerequisites (2)

- You should have a solid linear algebra background
- Basics of optimization is a plus
 - Linear systems, eigenvalue problems, matrix factorization, gradient descent, stochastic gradient descent (and the many variants)
- For visualization: you will need to be able to think in terms of space, shape, colors, and how data gets mapped to these visual encodings.

Prerequisites (3)

- Programming languages? Libraries?
- Up to you! You will need to be self-motivated for this course.
 - The ideal languages/libraries likely to vary project-toproject (e.g. Python, Javascript, C++, Processing, etc)...
 - (Treat the baseline as an opportunity to learn libraries that you will need for your project!)
 - Additionally: I have listed a set of resources on the website (<u>LINK</u>)

Course Logistics

- Please see course website for additional information on project, lectures, late submission policy, academic honesty, etc...
- Questions?