Lecture 4: Variational NNs and the Deep Ritz Method

Chris Budd¹

¹University of Bath

Seattle, June 2025

Some papers to look at

- Grossman et. al. Can PINNS beat the FE method?
- Shin et. al. On the convergence of PINNS for linear elliptic and parabolic PDEs
- E and Yu The Deep Ritz Method
- Dondl et. al. Uniform convergence guarantees for the deep Ritz method for nonlinear problems
- Jiao, Lai, Lo, Wang, Yang, Error analysis of deep Ritz methods for elliptic equations
- Müller and Zeinhofer, Deep Ritz Revisited

Motivation: Calculus of variations

Seek to solve PDE problems eg. of the form

$$-\epsilon^2 u_{xx} + u = 1$$
, $u(0) = u(1) = 0$, $\Omega = [0, 1]$ (*)

In the previous lecture we tried to solve this PDE using a PINN with the PDE residual as the loss function

In this lecture we consider using ideas from the calculus of variations to find a loss function

We will also introduce some ideas which will be needed when we study **Neural Operators** in later lectures.

Functional minimisers

Consider the functional

$$F(u) = \int_{\Omega} \frac{\epsilon^2 u_x^2}{2} + \frac{u^2}{2} - u \ dx.$$

Claim F(u) is minimised when $u = u^*$ is the (unique) solution of the PDE (*)

Question: Over what space is F(u) minimised.

Answer: Space is $H_0^1(\Omega)$

$$H_0^1(\Omega) = \{u : \int_{\Omega} u_x^2 dx < \infty, \quad u(0) = u(1) = 0.\}.$$

Set $u = u^* + \phi$ where $\phi \in H^1_0$ is arbitrary.

$$F(u) = F(u^*) + \int_{\Omega} \epsilon^2 u_x^* \phi_x + u^* \phi - \phi \, dx + \frac{1}{2} \int_{\Omega} \epsilon^2 \phi_x^2 + \phi^2 \, dx$$

Integrate by parts and use the boundary conditions to give:

$$= F(u^*) + \int_{\Omega} (-\epsilon^2 u_{xx}^* + u - 1)\phi \ dx + \frac{1}{2} \int_{\Omega} \epsilon^2 \phi_x^2 + \phi^2 \ dx.$$
$$= F(u^*) + 0 + positive$$

So F(u) has a **global** minimum at $u = u^*$

Some definitions

Strong form of the PDE:

$$-\epsilon^2 u_{xx} + u = 1.$$

Weak form of the PDE

$$\int_{\Omega} \epsilon^2 u_x \phi_x + u \phi - \phi \ dx = 0 \quad \forall \quad \phi \in H^1$$

Also

$$\langle u, v \rangle = \int_{\Omega} u_{\mathsf{x}} v_{\mathsf{x}} \ d\mathsf{x}, \quad \|u\|_{H^1}^2 = \langle u, u \rangle.$$

With natural extensions to higher dimensions

Approach 1: Finite Element Methodology

Express u(x) as a Galerkin approximation:

$$u(x) \approx U(x) = \sum_{i=0}^{N} U_i(t) \phi_i(x)$$

with $\phi_i(x)$ **Not** globally differentiable *locally supported, piece-wise* polynomial spline functions

U is in the linear space \mathcal{V} spanned by the functions $\phi_i(x)$.

- Require *U* to satisfy the *weak form* of the PDE.
- If the PDE is linear, this leads to a linear system for the coefficients U_i of the approximation
- Solve this systemusing (for example) a conjugate-gradient method.

Why Finite Element Methods are so powerful: Céas Lemma

Suppose that

$$-\Delta u = f(x), \quad x \in \Omega, \quad u = 0 \quad x \in \partial \Omega$$

On a mesh \mathcal{T} we have the finite element approximation U and the interpolant Πu (See Lecture 2)

Theorem [Céa]

$$||u-U||_{H_0^1} \leq ||u-\Pi u||_{H_0^1}.$$

This theorem gives a strong, and evaluable, upper bound on the FE error. Once you have got an FE solution you know it is a good one!

Proof This relies on the fact that the FE approximation is linear

$$||u - \Pi u||^2 = ||u - U + U - \Pi u||^2 = ||u - U||^2 + 2\langle u - U, U - \Pi u \rangle + ||U - \Pi u||^2.$$

But the weak form of the PDE is

$$\langle u, \phi \rangle = \langle U, \phi \rangle = \int_{\Omega} f \phi \ dx, \quad \forall \phi \in \mathcal{V}$$

Therefore

$$\langle u - U, \phi \rangle = 0, \quad \forall \phi \in \mathcal{V}$$

But as we are in a linear space: $U \in \mathcal{V}$, $\Pi u \in \mathcal{V}$. Hence

$$U - \Pi u \equiv \phi \in \mathcal{V}$$

Hence

$$||u - \Pi u||^2 = ||u - U||^2 + 0 + ||U - \Pi u||^2 \ge ||u - U||^2$$

Features of the FE method

- Unique solution (if the PDE is linear)
- Have guaranteed error estimates (due to Céa's lemma) of the form

$$||u - U||_{H^1} < C(u)N^{-\alpha}$$

- Can reduce C(u) and increase α using an adaptive approach.
- But .. Awkward in higher dimensions!

Meshes

Traditional PDE computations using Finite Element Methods use a computational mesh τ comprising mesh points and a mesh topology with $\phi_i(x)$ defined over the mesh

Mesh choice

Accuracy of the computation depends crucially on the choice and shape of the mesh

Mesh needs to be

- Fine Enough to capture (evolving) small scales/singular behaviour
- Coarse Enough to allow practical computations
- Able to resolve local geometry eg. re-entrant corners in non-convex domains
- Can inforce structure preserving elements eg. conservation laws.

Often very hard to find a good mesh, especially in higher dimensions!

Chris Budd (Bath) Lecture 4 Seattle, June 2025 12 / 33

Approach 2: The Deep Ritz Method [Weinan E and Bing Yu, (2017)]

Lovely Idea!!!

Let y(x) be the output of a parametrised NN

$$y(x) = NN(x)$$

with Y the (nonlinear) set of functions parametrised by heta

Then set

$$y^* = argmin_Y F$$
.

Allowing for the boundary conditions

Deep Ritz method for the Poisson equation

The **Deep Ritz Method** (DRM) seeks the solution u satisfying

$$y = \underset{v \in H}{\operatorname{arg min}} \mathcal{I}(v),$$

where H is the set of admissible functions (trial functions) and

$$\mathcal{I}(v) = \int_{\Omega} \left(\frac{1}{2} |\nabla v(\mathbf{x})|^2 - f(\mathbf{x}) v(\mathbf{x}) \right) d\mathbf{x} + \beta \int_{\partial \Omega} (v(\mathbf{x}) - u_D)^2 d\mathbf{s}$$

The Deep Ritz method is based of the following assumptions:

- y(x) is DNN based approximation of u which is in H^1 eg. ReLU
- A numerical quadrature rule for the functional using chosen quadrature points eg. random, optimal
- An algorithm for solving the optimization problem eg. SGD on random quadrature points

- Assume that $y(\mathbf{x})$ has enough regularity for F to be defined at any point x eg. $y(x) \in H^1$
- ReLU is OK, but may prefer ReLU³.
- Differentiate $y(\mathbf{x})$ once, exactly using the inbuilt chain rule
- Calculate F(y) by using quadrature at quadrature points X_i (chosen to be uniformly spaced, or random)
- Train the neural net to minimise a loss function combining F and the boundary and (if needed) initial conditions
- Include known point values if available.

Network Structure: Feed forward NN

$$y_{i+1}(\mathbf{x}) = \sigma(a_{i,2} \circ \sigma(a_{i,1}y_i(\mathbf{x}) + b_{i,1}) + b_{i,2}) + y_i(\mathbf{x}). \tag{1}$$

The final output is $y(\mathbf{x}) = y_L(\mathbf{x})$ where $a_L \in \mathbb{R}^{n \times d}$ and $b_L \in \mathbb{R}^n$.

For this type of architecture [E+W] suggests the activation function $ReLU^3 = \max(0, x^3) \in C^2$. Other possible choices in C^2 are:

- $sigmoid(x) = \frac{1}{1 + exp(-x)}$
- $swish(x) = \frac{x}{1 + exp(-x)}$
- tanh(x)
- $\bullet \ \sigma_{sin}(x) = (\sin x)^3$

ADAM optimiser on batches of the quadrature points.

DRM vs.Finite Element

The DRM is superficially similar to the Finite Element method but has crucial differences as the NN approximating subspace (eg. FKS) is nonlinear

FE: linear

- Limited expressivity, reduced accuracy
- Adaptive only with effort
- Not equivariant
- Need a complex mesh data structure
- Convex with guarantees of uniqueness for many problems (and direct calculation using linear algebra)
- Work on saddle-point problems (eg. most problems)
- Good (a-priori and a-posteriori) guaranteed error bounds :

Cea's Lemma: Bounds solution error by interpolation error on the FE space

DRM:nonlinear

- Very expressive (potential high accuracy for a small number of degrees of freedom)
- Self adaptive
- Equivariant
- Don't need a complex mesh data structure
- Don't work on saddle-point problems eg. most problems for example:

$$u_{xx} + u = 1, \quad u_x x + u^3 = 0.$$

Don't have Céas Lemma

Comparing a DRM to an adaptive finite element method

If $\sigma(z) = ReLU(z)$ then

$$y(\mathbf{x}) = \sum_{i=0}^{W-1} c_i (a_i \mathbf{x} + \mathbf{b}_i)_+$$

In d-dimensions this is a **piece-wise linear function**SO .. in principle a ReLU network has the same expressivity as an adaptive
Finite Element Method and should deliver the same error estimates if
correctly trained.

Compare with a traditional linear spline (used in FE) which is often a piecewise linear Galerkin approximation to a function with a fixed mesh. Good convergence, but often much slow than an adaptive FE method and hence a well trained PINN

BUT do we ever see this in practice?

Example: Poisson equation in 2D: 1

DRM method works well for small DOF dG Finite Eelement Method is **much** better for more DOF

This convergence pattern is seen in many other examples

Chris Budd (Bath) Lecture 4 Seattle, June 2025 22 / 33

(a) Solution of Deep Ritz method, 811 parameters (b) Solution of finite difference method, 1,681 parameters

Figure 2: Solutions computed by two different methods.

Table 1: Error of Deep Ritz method (DRM) and finite difference method (FDM)

Method	Blocks Num	Parameters	relative L_2 error
DRM	3	591	0.0079
	4	811	0.0072
	5	1031	0.00647
	6	1251	0.0057
FDM		625	0.0125
		2401	0.0063

(Solution of the Allen-Cahn Equations

Results by Grossman et. el. 2

Figure 1: Plot for 1D Poisson equation solution.

(a) Plot of time to solve FEM and train PINN in sec versus ℓ² (b) Plot of time to interpolate FEM and evaluate PINN in sec relative error.

Figure 2: Plot for 1D Poisson equation of time in sec versus ℓ² relative error.

Start of a convergence theory for DRMs

[Jiao, Lai, Lo, Wang, Yang],[Mller and Zeinhofer]

- DRM error is a combination of approximation error, trainin error and optimization error
- Show that a DRM (depth L width W) can be constructed with low approximation error which reduces as the complexity of the DRM increases.
- Show that the training error reduces as the number of quadrature points increases (random sample)
- Use Gamma-convergence to prove convergence of the minimisers
- Hope that the optimization error can be reduced to acceptable levels.
- Try things out on simple problems

BUT AS IN PINNS

- Non convex (no guarantee of uniqueness or convergence of training)
- DRMS are nonlinear function approximators. No equivalent of Cea's lemma giving a bound on the solution error.
- Solutions can sometimes have no connection to reality!
- Location of the quadrature points can matter a lot.
- But when they work, they work well!

Example (again) Poisson Problem on an L-shaped domain

Problem to solve:

$$-\Delta u = f \text{ in } \Omega$$

$$u = u_D \text{ on } \Gamma_D$$

$$\nabla u \cdot \vec{n}_{\Omega} = g \text{ on } \Gamma_N.$$

Singular solution

- Solution $u(\vec{x})$ has a gradient singularity at the interior corner A_i
- If the interior angle is ω and the distance from the corner is r then

$$u(r,\theta) \sim r^{\alpha} f(\theta), \quad \alpha = \frac{\pi}{\omega}$$

where $f(\theta)$ is a regular function of θ

Corner problem

$$u(r,\theta) \sim r^{2/3}, \quad r \to 0.$$

Numerical results: random quadrature points

Solve
$$\Delta u(x) = 0$$
 on Ω_L $u(r, \theta) = r^{2/3} sin(2\theta/3)$ on $\Gamma = \partial \Omega_L$

Figure: Left: PINN Right: DRM

Can we improve the accuracy by a better choice of collocation/quadrature points?

Optimal collocation points for the L-shaped domain

Figure: Optimal points for interpolating $u(r, \theta) \sim r^{2/3}$

Chris Budd (Bath) Lecture 4 Seattle, June 2025 31 / 33

Optimal points and PINN/Deep Ritz

Solutions with Optimal quadrature points

Figure: L^2 error - randomly sampled points: 0.468 | Optimal: 0.0639

Left: PINN, Right: Deep Ritz

Good choice of quadrature points makes a big difference, but still problems with pre-conditioning

Summary

- PINNS and NOs both show promise as a quick way of solving PDEs but have only really been tested on quite simple problems so far
- PINS not (yet) competitive with FE in like-for-like comparisons
- PINNs need careful meta-parameter tuning to work well
- NOs proving more promising. Now used for weather forecasting!
- Long way to go before we understand PINNS or NOs completey and have a satisfactory convergence theory for them in the general case.
- Lots of great stuff to do!