```
require('igraph')
require('ggplot2')
require('reshape')
# require('lsr')
source("MGCSampleStat.R")
source("MGCPermutationTest.R")
require("ggplot2")
require("fields")
setwd("~/git/subgraph/mgc_based/")
listGs<- list.files(path = "../graphml/", pattern = "*.graphml")</pre>
#read in covariates and graph list
#find those with common ids, sort by id
covariates<- read.csv("../covariates/predictors.csv",stringsAsFactors = F)</pre>
ids <- unlist( lapply(listGs,function(x)strtrim(x,6)))</pre>
common_id<- intersect(covariates$RUNNO , ids)</pre>
covariates <- covariates[covariates$RUNNO%in%common_id,]</pre>
covariates <- covariates[order(covariates$RUNNO),]</pre>
listGs<- listGs[ids%in%common_id]</pre>
listGs<- listGs[order(listGs)]</pre>
graphList<- lapply(listGs, function(x){</pre>
  read.graph( file = paste("../graphml/",x,sep = ""),format = "graphml")
AdjacencyList<- lapply(graphList, function(x){
  get.adjacency(x)
})
HemisphereList<- lapply(graphList, function(x){</pre>
  get.vertex.attribute(x,name="hemisphere")
})
DegreeList<- lapply(AdjacencyList, function(x){</pre>
  rowSums(as.matrix(x))
  })
n = nrow(AdjacencyList[[1]])
############################
## Compute all local corr
library(ecodist)
library(energy)
library(HHG)
source("MGCLocalCorr.R")
source("MGCSampleStat.R")
LowerTriMatrix = sapply(AdjacencyList,function(x){
```

```
x = as.matrix(x)
 x[lower.tri(x)]
})
AdjMatrix = t(LowerTriMatrix[,covariates$GENOTYPE>=1])
GenoType = covariates$GENOTYPE[covariates$GENOTYPE>=1]
Gender = covariates$GENDER[covariates$GENOTYPE>=1]
A = as.matrix(dist(AdjMatrix))
B = as.matrix(dist(GenoType))
C = as.matrix(dist(Gender))
m = nrow(A)
distVertex <- lapply( c(1:n),function(i){</pre>
  AdjVec = LowerTriMatrix = sapply(AdjacencyList,function(x){
    x = as.matrix(x)
    x[,i]
 })
  subsetMat = t(AdjVec[,covariates$GENOTYPE>=1])
  A = as.matrix(dist(subsetMat))
})
```

Test over Genotype

```
\# mgc\_result = sapply(distVertex, function(x) \{MGCSampleStat(x,B)\})
# perm_result = sapply(distVertex, function(x) {
      permuate_test = MGCPermutationTest(x,B,rep=500,option='mcor')
#
     permuate_test$pMGC
#
     7)
#
# local_result= sapply(distVertex, function(x) {
       lCor = MGCLocalCorr(x,B,option='mcor')$corr
#
#
        lCor[nrow(lCor),1]
#
     7)
#
# genotype_vertex_list = list("mgc_result"=mgc_result, "perm_result"=perm_result, "local_result" = loca
# save(qenotype_vertex_list,file= "qenotype_vertex_list.RDa")
load(file= "genotype_vertex_list.RDa")
df = data.frame( "value" = c(genotype_vertex_list$mgc_result, -log(genotype_vertex_list$perm_result), ge
ggplot(df, aes(x=vertex, y=value)) + geom_point(shape=1)+facet_grid(metric~., scales="free_y")
```


Test over Gender

```
# mgc_result = sapply(distVertex, function(x) {MGCSampleStat(x,C)})
# perm_result = sapply(distVertex, function(x) {
# permuate_test = MGCPermutationTest(x,C,rep=500,option='mcor')
# permuate_test$pMGC
# })
#
# local_result= sapply(distVertex, function(x) {
# Cor = MGCLocalCorr(x,C,option='mcor')$corr
# Cor[nrow(lCor),1]
# })
# #
# gender_vertex_list = list("mgc_result"=mgc_result, "perm_result"=perm_result, "local_result" = local_
# save(gender_vertex_list,file= "gender_vertex_list.RDa")

load(file= "gender_vertex_list.RDa")

df = data.frame( "value"= c(gender_vertex_list$mgc_result, -log(gender_vertex_list$perm_result), gender
ggplot(df, aes(x=vertex, y=value)) + geom_point(shape=1)+facet_grid(metric~, scales="free_y")
```

