Operations Research HW3

Timothy Schwieg

Question 1

Question 2

We set x_1, x_2, x_3 to be production of product 1,2,3 respectively, and let s_1 be a binary predictor of if product 3 is produced. It is clear that $x_3 \le 100$ so by setting $x_3 \le 100s_1$ this ensures $x_3 = 0$ if $s_1 = 0$, and x_3 is otherwise unaffected.

$$\max 25x_1 + 30x_2 + 45x_3$$
s.t.
$$3x_1 + 4x_2 + 5x_3 \le 100$$

$$4x_1 + 3x_2 + 6x_3 \le 100$$

$$x_3 - 5s_1 \ge 0$$

$$x_3 - 100s_1 \le 0$$

$$x_1, x_2, x_3 \in \mathbb{R}_+, s_1 \in \{0, 1\}$$

Branching on $s_1 = 0$ and $s_1 = 1$

Case: $s_1 = 1$

$$\begin{array}{ll} \max \ 25x_1 + 30x_2 + 45x_3 \\ \mathrm{s.t.} & 3x_1 + 4x_2 + 5x_3 \leq 100 \\ 4x_1 + 3x_2 + 6x_3 \leq 100 \\ x_3 \geq 5 \\ x_3 \leq 100 \\ x_1, x_2, x_3 \in \mathbb{R}_+ \end{array}$$

This has a maximal value of: $\frac{2500}{3}$ at a maximizer of: $x^* = (0, \frac{100}{9}, \frac{100}{9})$

Case:
$$s_1 = 0$$

$$\max 25x_1 + 30x_2 + 45x_3$$
s.t.
$$3x_1 + 4x_2 + 5x_3 \le 100$$

$$4x_1 + 3x_2 + 6x_3 \le 100$$

$$x_3 \ge 0$$

$$x_2 \le 0$$

This has maximal value of: $\frac{5500}{7}$ at a maximizer of: $x^* = (\frac{100}{7}, \frac{100}{7}, 0)$

Since $\frac{2500}{3} > \frac{5500}{9}$ We choose to utilize x_3 and produce: $\frac{2500}{3}$ at a maximizer of: $x^* = (0, \frac{100}{9}, \frac{100}{9})$

Question 3

Question 5