Wizard Control Systems, Inc. dba American Digital Technologies

WTX 915

Report No. AMDI0007

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: November 11, 2010
Wizard Control Systems, Inc. dba American Digital Technologies
Model: WTX 915

Emissions			
Test Description	Specification	Test Method	Pass/Fail
Carrier Frequency Separation	FCC 15.247:2010	ANSI C63.10:2009	Pass
Dwell Time	FCC 15.247:2010	ANSI C63.10:2009	Pass
Number of Hopping Frequencies	FCC 15.247:2010	ANSI C63.10:2009	Pass
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass
Output Power	FCC 15.247:2010	ANSI C63.10:2009	Pass
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass
Spurious Conducted Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass
Duty Cycle Correction	FCC 15.247:2010	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-2).

Approved By:

Don Facteau, IS Manager

QAJVN

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

NVLAP LAB CODE 200881-0

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Product Description

Rev 11/17/06

Party Requesting the Test

Company Name:	Wizard Control Systems, Inc. dba American Digital Technologies
Address:	PO Box 5245 4582 Salem-Dallas Hwy
City, State, Zip:	Salem, OR 97304
Test Requested By:	Aaron Montesano
Model:	WTX 915
First Date of Test:	November 10, 2010
Last Date of Test:	November 11, 2010
Receipt Date of Samples:	November 10, 2010
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):
902-928 MHz radio. +20 dBm expected output power.

Testing Objective:	
To demonstrate compliance to FCC 15.247 specifications.	

Revision 9/21/05

CONFIGURATION 1 AMDI0007

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - Radiated	Wizard Control Systems, Inc. dba American Digital Technologies	WTX 915	None

CONFIGURATION 2 AMDI0007

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT – Direct Connection	Wizard Control Systems, Inc. dba American Digital Technologies	WTX 915	None		

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	11/10/2010	Number of Hopping Frequencies	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	11/10/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	11/10/2010	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	11/10/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	11/10/2010	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	11/10/2010	Carrier Frequency Separation	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	11/10/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
8	11/11/2010	Dwell Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
9	11/11/2010	Duty Cycle Correction	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

CARRIER FREQUENCY SEPARATION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The carrier frequency separation was measured between each of 5 hopping channels in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

The frequency hopping system must have a channel separation of at least 25 kHz or the 20 dB occupied bandwidth of the channels. This system uses an occupied bandwidth of 367 kHz, requiring a channel separation greater than that.

NORTHWEST EMC		CARRIER FREQU	JENCY SEPARA	TION		XMit 2010.01.14
	WTX 915				Warls Ordani AM	D10007
					Work Order: AM	
Serial Number:		loo - dha Amariana Dinisal Tashara	la star		Date: 11/	
		Inc. dba American Digital Techno	logies		Temperature: 22°	
	Aaron Montesano, Aaron	Yarnell		_	Humidity: 45%	
Project:				Baro	metric Pres.: 29.0	
	Rod Peloquin		Power: 3 VDC		Job Site: EV)6
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247:2010			ANSI C63.10:20	009		
COMMENTS						
Frequency hopping	g mode					
	W TEST STANDARD					
DEVIATIONS FROM	M TEST STANDARD					
Configuration #	2	Signature	he Religy			
				Value	Limit	Results
CHANNEL SEPARA	ATION	•		477 kHz	≥ 367 kH	lz Pass

CARRIER FREQUENCY SEPARATION

	CHANNEL SEPARATION		
Result: Pass	Value: 477 kHz	Limit:	≥ 367 kHz

DWELL TIME

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The Dwell time was calculated by using a direct connection between the EUT and the spectrum analyzer. The EUT was operated in a frequency hopping mode. The measurement was made in a zero span while centered on the middle channel.

The requirement to be met is a dwell time of no greater than .4 seconds in a 10 second period. The radio operates on 50 channels with an occupied bandwidth of 437 kHz. The requirement for the 10 second period is met as the occupied bandwidth is greater than 250 kHz and less than 500 kHz

NORTHWEST EMC		DWEL	L TIME			XMit 2010.01.14
_	WTX 915				Work Order: AMDI0007	-
Serial Number:					Date: 11/11/10	
Customer:	Wizard Control Systems, Inc. d	ba American Digital Technolog	ies		Temperature: 22°C	
Attendees:	Aaron Montesano, Aaron Yarne	II			Humidity: 45%	
Project:	None			Baro	metric Pres.: 29.65	
Tested by:	Rod Peloquin		Power: 3 VDC		Job Site: EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247:2010			ANSI C63.10	:2009		
COMMENTS						
Frequency Hoppin	g Mode					
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
Configuration #	2	Signature Rocky le	Reling			
				Value	Limit	Results
Pulse Width	_			15.95 ms	.4 s in 10 s	.207 ms
Period				809 ms	.4 s in 10 s	.207 ms
10 Second Sweep				13 Pulses	.4 s in 10 s	.207 ms

Dwell time = 13 transmissions x 15.95 ms = .207 s in 10 second period

DWELL TIME

Pulse Width

Result: .207 ms Value: 15.95 ms Limit: .4 s in 10 s

PeriodResult: .207 msValue: 809 msLimit: .4 s in 10 s

10 Second Sweep

Result: .207 ms Value: 13 Pulses Limit: .4 s in 10 s

NUMBER OF HOPPING FREQUENCIES

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

The system has a 20 dB occupied bandwidth greater than 250 kHz as noted elsewhere in the report. The system must therefore have at least 25 hopping channels

NORTHWEST	NII	JMBER OF HOP	DINC EDECLIE	VICIES		XMit 2010.01.1
EMC	N	JMBER OF HOP	PING FREQUE	VCIES		
EUT:	: WTX 915				Work Order: AMDI00	007
Serial Number:	none				Date: 11/10/10	0
Customer:	: Wizard Control Systems, In	c. dba American Digital Technol	ogies	•	Temperature: 22°C	
Attendees	: Aaron Montesano, Aaron Ya	arnell			Humidity: 45%	
Project:				Baro	metric Pres.: 29.65	
	Rod Peloquin		Power: 3 VDC		Job Site: EV06	
TEST SPECIFICAT	TONS		Test Method			
FCC 15.247:2010			ANSI C63.10:2	009		
COMMENTS						
None						
DEVIATIONS FROM	M TEST STANDARD					
		20	1 Pol			
Configuration #	2	The state of the s	he Reling			
		Signature	V			
				Value	Limit	Results
NUMBER OF HOPE	PING FREQUENCIES			50	≥ 25	Pass

NUMBER OF HOPPING FREQUENCIES

NUMBER OF HOPPING FREQUENCIES Result: Pass Value: 50 Limit: ≥ 25

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured at the low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in the normal hopping mode.

To support the Dwell Time requirement in a 10 second period, the occupied bandwidth of the channel must be greater than 250 kHz. A frequency hopping system in this rule part must always have an occupied bandwidth less than 500 kHz.

NORTHWEST		SACHELED DANIE	A/IBTU			XMit 2010.01.14
EMC		OCCUPIED BAND	WIDTH			
EUT:	WTX 915			Work Order:	AMDI0007	
Serial Number:	none			Date	11/10/10	
Customer:	Wizard Control Systems, Inc. dba Ame	rican Digital Technologies		Temperature	22°C	
Attendees:	Aaron Montesano, Aaron Yarnell			Humidity	45%	
Project:				Barometric Pres.:	29.65	
	Rod Peloquin	Powers	3 VDC	Job Site:	EV06	
TEST SPECIFICATI	IONS		Test Method			
FCC 15.247:2010			ANSI C63.10:2009			
COMMENTS						
Hopping mode						
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
Configuration #	2	Signature Rolly to Relig	>			
					mit	Results
Low Channel					, ≤ 500 kHz	Pass
Mid Channel					, ≤ 500 kHz	Pass
High Channel			336	kHz ≥ 250 kHz	, ≤ 500 kHz	Pass

OCCUPIED BANDWIDTH

 Low Channel

 Result: Pass
 Value: 380 kHz
 Limit: ≥ 250 kHz, ≤ 500 kHz

 Mid Channel

 Result: Pass
 Value: 367 kHz
 Limit: ≥ 250 kHz, ≤ 500 kHz

OCCUPIED BANDWIDTH

 High Channel

 Result:
 Pass
 Value:
 336 kHz
 Limit:
 ≥ 250 kHz, ≤ 500 kHz

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

NORTHWEST					XMit 2010.01.14
EMC		OUTPUT POWE	₌R		
EUT: WT	TX 915			Work Order:	AMDI0007
Serial Number: nor	ne			Date:	11/10/10
Customer: Wiz	zard Control Systems, Inc. dba Amer	ican Digital Technologies		Temperature:	22°C
	ron Montesano, Aaron Yarnell			Humidity:	
Project: No				Barometric Pres.:	
Tested by: Roo		Power:		Job Site:	EV06
EST SPECIFICATIONS	S		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
None					
DEVIATIONS FROM TE	EST STANDARD				
No Deviations					
Configuration #	2	Signature Rolling to Reling			
	· ·	oignaturo			
			Value	Li	mit Results
ow Channel	_		53.4 mW	1	W Pass
/lid Channel			58.6 mW	1	W Pass
High Channel			63.1 mW	1	W Pass

OUTPUT POWER

Low Channel

Result: Pass Value: 53.4 mW Limit: 1 W

Mid Channel

Result: Pass Value: 58.6 mW Limit: 1 W

OUTPUT POWER

High Channel

Result: Pass Value: 63.1 mW Limit: 1 W

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 5 MHz below the band edge to 5 MHz above the band edge.

NORTHWEST		BAND EDGE COM	ADLIANCE			XMit 2010.01	.14
EMC		BAND EDGE CON	MPLIANCE				
EUT:	WTX 915				Work Order:	AMDI0007	Τ
Serial Number:	none				Date:	11/10/10	
Customer:	Wizard Control Systems, In	c. dba American Digital Technologies			Temperature:	22°C	
Attendees:	Aaron Montesano, Aaron Y	arnell			Humidity:	45%	
Project:	None			Baro	ometric Pres.:	29.65	_
	Rod Peloquin	Po	ower: 3 VDC		Job Site:	EV06	_
TEST SPECIFICATI	IONS		Test Method				
FCC 15.247:2010			ANSI C63.10:2	009			_
							_
COMMENTS							
None							_
DEVIATIONS FROM	I TEST STANDARD						
No Deviations							_
		1010	0				_
Configuration #	2	Rocky le Fred	ing				
		Signature					
	_				•		
				Value	Lir	nit Results	;
Low Channel	_	_		-57.2 dBc	≤ -20	dBc Pass	
High Channel				-53.5 dBc	≤ -20	dBc Pass	

BAND EDGE COMPLIANCE

 Low Channel

 Result: Pass
 Value: -57.2 dBc
 Limit: ≤ -20 dBc

High Channel

Result: Pass Value: -53.5 dBc Limit: ≤ -20 dBc

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency.

NORTHWEST						XMit 2010.01.
EMC	SI	PURIOUS CON	IDUCTED EMIS	SIONS		
EUT	T: WTX 915				Work Order: AMDI0007	7
Serial Number	r: none				Date: 11/10/10	
Custome	r: Wizard Control Systems, Inc	dba American Digital Techr	nologies	Т	emperature: 22°C	
	: Aaron Montesano, Aaron Ya	nell			Humidity: 45%	
	t: None			Baror	metric Pres.: 29.65	
	/: Rod Peloquin		Power: 3 VDC		Job Site: EV06	
TEST SPECIFICA	TIONS		Test Method			
FCC 15.247:2010			ANSI C63.10	:2009		
COMMENTS						
None						
	OM TEST STANDARD					
	OM TEST STANDARD					
DEVIATIONS FRO	OM TEST STANDARD	Rock	y he Feligy			
DEVIATIONS FRO No Deviations Configuration #			y he Felings	Value	Limit	Results
DEVIATIONS FRO No Deviations Configuration #	2		y la Felings			
DEVIATIONS FRO No Deviations Configuration #	2 0 - 3 GHz		y he Felings	-61.3 dBc	≤ -20 dBc	Pass
DEVIATIONS FRO No Deviations Configuration #	2		y he Fieley,			
DEVIATIONS FRO To Deviations Configuration #	2 0 - 3 GHz 2.99 GHz - 10 GHz		y he Felings	-61.3 dBc < -65 dBc	≤ -20 dBc ≤ -20 dBc	Pass
DEVIATIONS FRO No Deviations Configuration #	2 0 - 3 GHz 2.99 GHz - 10 GHz 0 - 3 GHz		y la Felings	-61.3 dBc	≤ -20 dBc	Pass
DEVIATIONS FRO To Deviations Configuration #	2 0 - 3 GHz 2.99 GHz - 10 GHz		y he Religy	-61.3 dBc < -65 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
DEVIATIONS FRO No Deviations Configuration # Low Channel	2 0 - 3 GHz 2.99 GHz - 10 GHz 0 - 3 GHz		y he Feleys,	-61.3 dBc < -65 dBc -61.5 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
DEVIATIONS FRO	2 0 - 3 GHz 2.99 GHz - 10 GHz 0 - 3 GHz		y he Felings	-61.3 dBc < -65 dBc -61.5 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass

Low Channel, 0 - 3 GHz

Result: Pass Value: -61.3 dBc Limit: ≤ -20 dBc

 Low Channel, 2.99 GHz - 10 GHz

 Result: Pass
 Value: < -65 dBc</th>
 Limit: ≤ -20 dBc

Mid Channel, 0 - 3 GHz

Result: Pass Value: -61.5 dBc Limit: ≤ -20 dBc

 Mid Channel, 2.99 GHz - 10 GHz

 Result: Pass
 Value: < -65 dBc</th>
 Limit: ≤ -20 dBc

High Channel, 0 - 3 GHz

Result: Pass Value: -62.6 dBc Limit: ≤ -20 dBc

 High Channel, 2.99 GHz - 10 GHz

 Result: Pass
 Value: < -65 dBc</th>
 Limit: ≤ -20 dBc

DUTY CYCLE CORRECTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	6/1/2009	24
40GHz DC Block	Miteq	DCB4000	AMD	8/5/2010	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/6/2010	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 + N2L2 + ...

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less, where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Pulse= 15.95 mSec

Number of Pulses = 1

Duty Cycle = 20 log [(15.95)/100]= -15.9 dB

NORTHWEST EMC		DUTY CYCLE	CORRECTION			XMit 2010.01.
	WTX 915				Work Order:	AMDI0007
Serial Number:						11/11/10
Customer:	Wizard Control Systems, Inc. dba American Digital Technologiess				Temperature:	22°C
Attendees:	Aaron Montesano, Aaron Yarnell				Humidity:	45%
Project:	None			Baro	metric Pres.:	29.65
	Rod Peloquin		Power: 3 VDC		Job Site:	EV06
TEST SPECIFICATI	ONS		Test Method			
FCC 15.247:2010			ANSI C63.10:200	9		
COMMENTS						
Frequency Hopping						
DEVIATIONS FROM No Deviations	I IESI STANDARD					
Configuration #	2	Rocky le	Reling			
				Value	Lir	
Pulse Width 100ms Period				15.95 100	N/ N/	

DUTY CYCLE CORRECTION

Pulse Width

Result: 0.160 Value: 15.95 ms Limit: N/A

100ms Period

Result: 0.160 Value: 100 ms Limit: N/A

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting Low channel.

Transmitting Mid channel.

Transmitting High channel.

POWER SETTINGS INVESTIGATED

3 VDC

FREQUENCY RANGE INV	'ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	12500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

EST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter	Micro-Tronics	50108	HGF	1/18/2010	13
Attenuator	Pasternack	PE7005-20	AUN	7/14/2010	13
.5-1 GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFT	1/8/2010	13
Antenna, Horn	ETS	3160.07	AHZ	9/8/2010	24
Antenna, Horn	ETS	3115	AIB	9/8/2010	24
Antenna, Biconilog	EMCO	3141	AXG	2/15/2010	13
EV12 Cables	N/A	Standard Gain Horn Cables	EVU	7/14/2010	13
EV12 Cables	N/A	Double Ridge Horn Cables	EVT	10/23/2009	13
EV12 Cables	N/A	Bilog Cables	EVS	7/14/2010	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVH	7/14/2010	13
Pre-Amplifier	Miteq	AMF-3D00100800-32-13P	AVF	7/14/2010	13
Pre-Amplifier	Miteq	AM-1616-1000	AVM	7/14/2010	13
Spectrum Analyzer	Agilent	E4440A	AAX	5/14/2010	12

SUREMENT	BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were made usin	on the handwidths and dete	ectors specified No video filter	was used

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

