CS321 Introduction to Theory of Computation Assignment No. 1, Due: Friday January 20, 2023

Ivan Chan 933821369

1/17/23

1. Prove that $\overline{S_1 \cup S_2} = \overline{S_1} \cap \overline{S_2}$ where S_1 and S_2 are sets and \overline{S} is the complement of the set S.

Proof. Let $x \in (\overline{S_1 \cup S_2})$ Thus,

$$x \in \overline{S_1}$$
 and $x \in \overline{S_2}$

$$x \notin S_1$$
 and $x \notin S_2$

$$x \in \overline{S_1} \cap \overline{S_2}$$

Therefore, $\overline{S_1 \cup S_2} \subset \overline{S_1} \cap \overline{S_2}$

Let another arbitrary variable $y \in (\overline{S_1} \cap \overline{S_2})$,

$$y \in (\overline{S_1} \cap \overline{S_2})$$

 $y \in \overline{S_1}$ and $y \in \overline{S_2}$

 $y \notin S_1$ and $y \notin S_2$

 $y \notin (S_1 \cup S_2)$

 $y \in (\overline{S_1} \cup \overline{S_2})$

Therefore, $\overline{S_1} \cap \overline{S_2} \subset (\overline{S_1 \cup S_2})$

Proof is also known as DeMorgan's Union Law

2. A tree is a graph with no cycle. Show by induction that a tree with n nodes contains n-1 edges.

Proof.

Base case: When n = 1, there are (1) - 1 = 0 edges.

The proof holds true that a tree with n = 1 nodes contain n - 1 = 0 edges

Induction Assumption:

 $k \text{ nodes } = k - 1 \text{ edges for } k \ge 0$

Induction Step:

Let n = (k+1),

Then a tree containing (k+1) nodes = (k+1) - 1 = k edges

Thus, the (k+1)th node will contain k edges

Hence, nodes containing n nodes contain n-1 edges

3. A rational number is of the form m/n where m and n are integers. For example, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{2}{5}$, $\frac{4}{7}$, $\frac{3}{8}$, $\frac{5}{9}$, $\frac{11}{18}$, $\frac{9}{25}$ are some rational numbers. Show by contradiction that $\sqrt{2}$ is not a rational number

Proof. Let $x \in (S_1 \cup S_2)$ where t = xy and u = zw. So,

Hellothere

4. Let the input symbols in a finite automata be $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Design a DFA that accepts all integers which are divisible by 3. (Hint: An integer is divisible by 3 if the sum of the digits is divisible by 3)

Proof. Let $x \in (S_1 \cup S_2)$ where t = xy and u = zw. So,

Hello

5. For this problem assume that the input symbols are $\{0,1\}$. Design a DFA that accepts the binary string if it is divisible by 3.

Proof. Let $x \in (S_1 \cup S_2)$ where t = xy and u = zw. So,

Hello