Varianta 065

Subjectul I

a)
$$\left| \frac{3}{5} + \frac{4}{5}i \right| = 1$$
.

b)
$$OA = 1$$
.

c) Pentru $n \in \mathbb{N}$, A_n aparține cercului $\iff x_n^2 + y_n^2 = 1$, adevărat.

d) Pentru $n \in \mathbb{N}$, toate punctele A_n de la subpunctul **c**) au coordonatele raționale și aparțin cercului.

$$e) V_{ABCD} = 3.$$

$$\mathbf{f}) \begin{cases} a=1 \\ b=-5 \end{cases}.$$

Subjectul II

1.

a) Se verifică prin calcul direct.

b) Se folosește punctul a).

c)
$$g(1) = 0$$
.

d)
$$x \in \{-3, 0\}.$$

e)
$$x_1^2 + x_2^2 + x_3^2 = 49$$
.

2

a)
$$f'(x) = -\frac{6x}{(x^2+4)(x^2+1)}, \forall x \in \mathbf{R}$$
.

b)
$$\int_{0}^{1} f'(x) dx = \ln \frac{5}{8}$$
.

c) Evident, folosind semnul funcției f'.

d)
$$\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = -\frac{3}{5}$$
.

e) Din tabelul de variație rezultă că $\forall x \in \mathbf{R}$, $0 < f(x) \le \ln 4$.

Subjectul III

a) det(A)=1 şi rang (A)=3.

b)
$$A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
 şi $A^3 = A^2 \cdot A = I_3$.

c) Din **b**),
$$A^{-1} = A^2$$
.

d) Se arată prin calcul direct.

e) Considerăm $P, Q \in C(A)$. Din **d**) rezultă că PA = AP și QA = AQ.

Avem
$$(P+Q) \cdot A = PA + QA = AP + AQ = A \cdot (P+Q)$$
, deci $P+Q \in C(A)$.

$$\operatorname{si} \quad (P \cdot Q) \cdot A = P \cdot (QA) = P \cdot (AQ) = (PA) \cdot Q = (AP) \cdot Q = A \cdot (PQ), \ \operatorname{deci} \quad P \cdot Q \in C(A).$$

f) Se arată uşor că dacă
$$Y \in C(A)$$
 şi $Y^2 = O_3$ atunci şi $Y = O_3$ (1)

Fie
$$X \in C(A)$$
 pentru care $f(X) = X^6 = O_3$. $X \in C(A) \stackrel{e}{\Rightarrow} X^3 \in C(A)$.

Folosind afirmația (1) rezultă imediat că $X^6 = O_3 \implies X = O_3$.

g) Avem $f(A) = f(I_3) = I_3$, deci f nu este injectivă.

Fie $B=-I_3\in C(A)$. Se deduce că $\forall X\in C(A), f(X)=X^6\neq B$, deci f nu este surjectivă.

Subjectul IV

a) Se demonstrează prin calcul direct.

Deducem că există $k \in \mathbf{R}$ astfel încât $\forall x \in \mathbf{R}$, f(x) = k.

b)
$$f(0) = \frac{1}{2}$$
, deci $k = \frac{1}{2}$, de unde rezultă $f(\frac{\pi}{2006}) = \frac{1}{2}$.

c)
$$\int_{0}^{2006\pi} f(x) dx = 1003 \pi.$$

d) Avem $\forall n \in \mathbb{N} \ n \ge 1$, $a_{n+1} = a_n \cdot \cos \frac{a}{2^{n+1}}$ şi se demonstrează prin inducție că

pentru orice
$$a \in \left(0, \frac{\pi}{2}\right)$$
 și $n \in \mathbb{N}^*$, avem $a_n = \frac{1}{2^n} \cdot \frac{\sin a}{\sin \frac{a}{2^n}}$.

e) Calcul direct.

$$\mathbf{f}) \text{ Pentru } a \in \left(0, \frac{\pi}{2}\right), \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{2^n} \cdot \frac{\sin a}{\sin \frac{a}{2^n}} = \frac{\sin a}{a} \cdot \lim_{n \to \infty} \frac{\frac{a}{2^n}}{\sin \frac{a}{2^n}} = \frac{\sin a}{a}.$$

g)
$$b_1 = \sqrt{\frac{1}{2}}$$
 și $b_n = \sqrt{\frac{1}{2} + \frac{1}{2}b_{n-1}}$, $\forall n \in \mathbb{N}$, $n \ge 2$ și se demonstrează inductiv că

 $\forall n \in \mathbb{N}^*, b_n = \cos \frac{\pi}{2^{n+1}}$. Folosind **d**) și **f**) obținem, pentru $a = \frac{\pi}{4}$,

$$\lim_{n\to\infty} \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}}} \cdot \dots \cdot \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \dots + \frac{1}{2}\sqrt{\frac{1}{2}}}} = \frac{2}{\pi}.$$