Subgroups!

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

10 Feb 2025

Definition time!

Here is the definition of a subgroup.

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

Okay, but remind me what's the definition of a group?

Definition

A group (G, \star) is a set of elements together with a binary operation \star satisfying the following properties:

- 1. The operation is associative.
- 2. G contains the identity element.
- 3. Every element in G has an inverse element.
- 4. *G* is closed under the binary operation.

Trivial subgroups

Every group G has the following two boring subgroups: $G \leq G$, and $\{e\} \leq G$.

Definition

A proper subgroup H < G is a subgroup that's not equal to the whole group.

S. Bagley (Westminster) Subgroups! 10 Feb 2025

Generating sets

We've previously looked at the orbit of an element:

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g| := |\langle g \rangle|$. In particular, if |g| = n is finite, this is the set $\{g^0 = 1, g, g^2, \dots, g^{n-1}\}$.

This is a subgroup:

Cyclic subgroups are subgroups

For any element $g \in G$, $\langle g \rangle \leq G$.

But we need not restrain ourselves to generating by one element:

Definition

Let S be a subset of G. A word in S is a finite product of finite powers of elements of S or their inverses.

 $\langle S \rangle = \{ \text{words in } S \} \text{ is a subgroup of } G, \text{ and it's called the subgroup generated by } S.$

And in fact every subgroup looks like this.

Example: $C_2 \leq D_3$

Writing $C_2 < D_3$ means there is a copy of C_2 sitting inside of D_3 as a subgroup.

Question

How many ways can you find C_2 sitting inside of D_3 ?

Remark

It's more precise to express a subgroup by its generator(s).

$$C_2 \cong \langle f \rangle < D_3$$

$$C_2 \cong \langle f \rangle < D_3$$
 $C_2 \cong \langle rf \rangle < D_3$

$$C_2 \cong \langle r^2 f \rangle < D_3$$

Question

How about $C_3 < D_3$? There's only one!

The two groups of order 4

Let's start by considering the subgroups of the two groups of order 4.

- Proper subgroups of V_4 : $\langle h \rangle = \{e, h\}$, $\langle v \rangle = \{e, v\}$, $\langle r \rangle = \{e, r\}$, $\langle e \rangle = \{e\}$.
- Subgroups of C_4 : $\langle r \rangle = \{1, r, r^2, r^3\} = \langle r^3 \rangle$, $\langle r^2 \rangle = \{1, r^2\}$, $\langle 1 \rangle = \{1\}$.

It is illustrative to arrange these in a subgroup lattice:

Subgroups of \mathbb{Z}_6

What subgroups can you find in \mathbb{Z}_6 ? I've drawn the Cayley diagram two different ways.

Subgroups of D_3

Let's figure out all the subgroups of D_3 .

7 / 13

Here are the non-trivial proper subgroups of D_3 :

$$\langle r \rangle = \{1, r, r^2\} = \langle r^2 \rangle, \quad \langle f \rangle = \{1, f\}, \quad \langle rf \rangle = \{1, rf\}, \quad \langle r^2 f \rangle = \{1, r^2 f\}, \quad \langle 1 \rangle = \{1\}, r^2 f \}$$

Observations:

- The cycle graph helps us spot cyclic subgroups.
- \blacksquare For small groups like D_3 , the cyclic subgroups may be the only proper subgroups.
- There might, however, be more complicated things that are harder to clock.

Subgroups of D_4

See if you can figure out all the subgroups of D_4 .

What do you think is a reasonable way to, like, arrange them?

Lattices

A lattice is a partially ordered set such that every pair of elements x, y has a unique:

- join, or sup, or least upper bound x∨v
- meet, or inf, or greatest lower bound $x \wedge y$.

Examples that we're familiar with are subset lattices and divisor lattices.

$$x \lor y = x \cup y \qquad \begin{cases} 1, 2, 3 \\ 1 \end{cases} \qquad \begin{cases} 2, 3 \\ 1 \end{cases} \\ x \land y = x \cap y \qquad \begin{cases} 1 \end{cases} \qquad \begin{cases} 2, 3 \\ 2 \end{cases} \end{cases}$$

$$12 \xrightarrow{24}_{8} \qquad x \lor y = \operatorname{lcm}(x, y)$$

$$x \land y = \operatorname{gcd}(x, y)$$

9/13

This seems like a good way to organize subgroups, because:

Theorem

If $H \leq G$ and $K \leq G$ are two subgroups, then $H \cap K$ is a subgroup. (Indeed, it's the largest subgroup that's contained in both H and K.)

Theorem

 $\langle H, K \rangle$ is the smallest subgroup containing both H and K. (Note that $H \cup K$ is not in general a subgroup.)

Subgroup lattices

 $H \lor K$: "smallest subgroup above both H and K"

 $H \wedge K$: "largest subgroup below both H and K"

Examples:

The subgroup lattice of D_4

The subgroups of D_4 are:

- The entire group D_4 , and the trivial group $\langle 1 \rangle$
- 4 subgroups generated by reflections: $\langle f \rangle$, $\langle rf \rangle$, $\langle r^2 f \rangle$, $\langle r^3 f \rangle$.
- 1 subgroup generated by a 180° rotation, $\langle r^2 \rangle \cong C_2$
- 1 subgroup generated by a 90° rotation, $\langle r \rangle \cong C_4$
- 2 subgroups isomorphic to V_4 : $\langle r^2, f \rangle$, $\langle r^2, rf \rangle$.

The subgroup lattice of D_4

The subgroup lattice of D_4

