Домашнее задание

Загрузим все пакеты для работы.

```
library("pander")
library("knitr")
library("psych")
library("memisc")
library("psych")
library("dplyr")
library("knitr")
library("rlms")
library("sandwich")
library("ggplot2")
library("scales")
```

Зададим директорий и подгрузим данные.

```
df < -rlms_read("r22i_os_32.sav")
```

Подготовим данные к анализу и выберем переменные.

```
\begin{array}{l} {\rm data} < - \, {\rm mutate}({\rm df,\, sex} = {\rm as.numeric}({\rm rh}5 == 2), \\ {\rm age} = 2013 - {\rm rh}6, \\ {\rm wage} = {\rm rj}13.2, \\ {\rm educ\_l} = {\rm as.numeric}({\rm as.numeric}({\rm r\_diplom}) < 4), \\ {\rm educ\_m} = {\rm as.numeric}({\rm as.numeric}({\rm r\_diplom}) == 4), \\ {\rm educ\_ms} = {\rm as.numeric}({\rm as.numeric}({\rm r\_diplom}) == 5), \\ {\rm educ\_h} = {\rm as.numeric}({\rm as.numeric}({\rm r\_diplom}) == 6), \\ {\rm city} = {\rm as.numeric}({\rm as.numeric}({\rm status}) < 3), \\ {\rm udovl} = {\rm as.numeric}({\rm as.numeric}({\rm rj}1.1.1) < 3)) \% > \% \\ {\rm dplyr::select}({\rm sex,\, age,\, wage,\, educ\_l,\, educ\_m,\, educ\_ms,\, educ\_h,\, } \\ {\rm city,\, udovl}) \end{array}
```

Так как задание сделано в учебных целях, облегчим себе жизнь и очистим данные от пропусков.

```
data <- na.omit(data)
```

Посмотрим быстро на описание массива. Отберём некоторые характеристики.

```
desc <- describe
(data) # from psych package desc_selected <- as.data.frame
(desc[, c(1, 2, 3, 4, 5)]) # not all statistics pander
(desc_selected)
```

	vars	n	mean	sd	median
sex	1	6042	0.547	0.4978	1
age	2	6042	41.73	12.62	41
wage	3	6042	19806	15966	16000
$educ_l$	4	6042	0.08755	0.2827	0
$educ_m$	5	6042	0.3168	0.4653	0
$educ_ms$	6	6042	0.2719	0.445	0
$educ_h$	7	6042	0.3237	0.4679	0
city	8	6042	0.7143	0.4518	1
udovl	9	6042	0.6792	0.4668	1

Изобразим пару графиков (вариант 1).

hist(data\$wage, breaks = 50, main = "Гистограмма по доходам", xlab = "Заработная плата", ylab = "Частота")

hist(data\$age, breaks = 50, main = "Гистограмма по возрасту", xlab = "Возраст", ylab = "Частота")

.....

А теперь изобразим пару более красивых графиков (вариант 2).


```
ggplot(data = data, aes(age)) +
geom_histogram(fill = "pink", binwidth = 5, color = "red") +
labs(title = "Гистограмма по возрасту",
x = "Возраст (в годах)", y = "Частота")
```


Оценим модель и посмотрим на коэффициенты.

$$\begin{array}{l} model <-lm(wage \ \widetilde{\ } sex + age + educ_m + educ_ms + educ_h + city + udovl, \\ data = data) \end{array}$$

Но для красоты можно сделать так:

	Estimate	Std. Error	t value	$\Pr(> \mathrm{t})$
(Intercept)	16414	947.9	17.32	1.321e-65
sex	-8271	388.2	-21.31	3.433e-97
age	-83.22	15.06	-5.524	3.453 e-08
$educ_m$	2277	724.2	3.144	0.001672
$educ_ms$	4256	743.4	5.726	1.08e-08
$educ_h$	10403	734.5	14.16	8.012e-45
city	5024	422.9	11.88	3.453e-32
udovl	3757	408.1	9.207	4.523e-20

Основной вывод: все коэффициенты значимы. Все р-значения очень маленькие, то есть нулевая гипотеза $(H_0:\beta_i=0)$ при проверке гипотезы о значимости для каждого отдельного коэффициента отвергается. Вспомним два важных момента для интерпретации:

1. Если переменная числовая и коэффициент при ней значим и, скажем, положителен, то увеличение этого показателя на одну единицу будет вызывать увеличение заработной платы на $\hat{\beta}_i$ при этой переменной.

2. Если переменная факторная и коэффициент при ней значим, то $\hat{\beta}_i$ при этой переменной будет означать, что заработная плата будет изменяться на $\hat{\beta}_i$ при переходе от базовой категории этой переменной к той категории, которая у нас отображена перед $\hat{\beta}_i$.

А теперь с робастными ошибками.

```
\begin{array}{l} coefs2 <- coeftest(model, \, vcov. = vcovHC(model)) \\ pander(coefs2[, \, 1:4]) \end{array}
```

	Estimate	Std. Error	t value	$\Pr(> \mathrm{t})$
(Intercept)	16414	725	22.64	5.457e-109
sex	-8271	423.7	-19.52	2.363e-82
age	-83.22	13.71	-6.07	1.36e-09
$educ_m$	2277	466.5	4.882	1.079e-06
$\mathrm{educ_ms}$	4256	508.5	8.37	7.073e-17
$\operatorname{educ}_{\mathbf{h}}$	10403	575	18.09	2.763e-71
city	5024	349.6	14.37	4.597e-46
udovl	3757	357.3	10.52	1.198e-25

Выводы не меняются. Все коэффициенты значимы, но стадартные отклонения теперь изменились.