МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ)

Факультет	
Кафедра	
Направление подготовки	
ВЫПУСКНАЯ КВАЛИФИКАП	ДИОННАЯ РАБОТА БАКАЛАВРА
(Фамилия, Им	я, Отчество автора)
Тема работы	
«К защите допущена»	Научный руководитель
Заведующий кафедрой,	ученая степень, звание
ученая степень, звание	должность, место работы
	/
(фамилия, И., О.) / (подпись)	(фамилия, И., О.) / (подпись)
«»20г.	«»20г.

Содержание

Cı	тисок	сокращений	3
1	Вве	дение	4
2	Обз	ор литературы	6
	2.1	Сопряженные донорно-акцепторные хромофоры	6
	2.2	Подходы к синтезу 2-пиразолинов	7
	2.3	Синтез других изомеров пиразолина	17
	2.4	Реакции пиразолинов	19
3	Резу	льтаты и обсуждение	22
	3.1	Взаимодействие формилированного декафтортриарилпиразолина с	
		бинуклеофилами	22
	3.2	Методика введения разделительного блока	24
	3.3	Синтез красителей	26
4	Экс	периментальная часть	30
5	Выв	30ды	37
Cı	тисок	: литературы	38

Список сокращений

НСМО Низшая Свободная Молекулярная Орбиталь

in situ В реакционной смеси

Су Циклогексил

В Бензоил

Bn Бензил

ТСХ Тонкослойная хроматография

ДМФА N,N-диметилформамид

DMAP 4-Диметиламинопиридин

DIAD Диизопропилазодикарбоксилат

DCC 1,3-Дициклогексилкарбодиимид

КССВ Константа спин-спинового взаимодействия

TAFS Toluic Acid Fluorinated Sulfide (бис[4-метил-3,5-бис({[2,3,5,6-тет-

рафтор-4-(трифторметил)фенил]тио}метил)бензоил)

TATBS Toluic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]-

тио \ метил) 4-метилбензоил)

IDATBS Isodurilic Acid Tert-Butyl Sulfide (3,5-бис({[4-(трет-бутил)фенил]-

тио}метил)-2,4,6-триметилбензоил)

MALDI Matrix Assisted Laser Desorption/Ionization, Матрично-

активированная лазерная десорбция/ионизация

TOF Time-of-flight, Времяпролетный масс-анализатор

уш. Уширенный

с Синглет

д Дублет

дд Дублет дублетов

м Мультиплет

isoph Изофорон

рір 4-Гидроксипиперидин

руг Пиразолин

A у нас 500 нм

1 Введение

Увеличивающиеся объемы передаваемой информации ставят задачу создания новых методов ее обработки, в том числе оптических. Большую перспективу имеют электрооптические (ЭО) модуляторы, основанные на композициях хромофор-полимер. Рабочей средой в таких устройствах является органический донорно-акцепторный хромофор, проявляющий нелинейность второго порядка.

Органические нелинейно-оптические (НЛО) материалы обладают важным преимуществом относительно неорганических — бо́льшими значениями НЛО восприимчивости второго порядка и, соответственно, меньшими величинами управляющих напряжений, и относительно полупроводниковых — высокой температурной стабильностью спектральных ЭО свойств.

Отличительным свойств органических НЛО материалов является возможность получения хромофоров, поглощающих в заданной области спектра. В настоящее время актуальны разработки материалов, работающих в двух спектральных областях: 1300–1550 нм (область нулевой дисперсии кварцевого оптического волокна) и 830–900 нм (окно прозрачности атмосферы).

Важными являются также пленкообразующие свойства органических хромофоров, так как эффективность работы ЭО модулятора зависит, в том числе, от эффективности ориентации молекул хромофора в полимерной матрице. С этой целью в структуру хромофоров вводятся разветвленные (дендроидные) заместители, препятствующие агрегации молекул хромофора в полимере при больших концентрациях.

Синтез хромофоров для ЭО модуляторов является одним из основных направлений научной тематики в Лаборатории органических светочувствительных материалов НИОХ СО РАН. В качестве таких хромофоров используются полиметиновые красители биполярной структуры с различной длиной полиметиновой цепи. Ранее в лаборатории был синтезирован ряд новых хромофоров для спектральной области 720–760 нм с использованием полифторированных триарилпиразолинов в качестве донорных блоков [1].

Цель и задачи работы. Исходя из описанного была сформулирована цель данной работы — синтез новых нелинейных хромофоров на основе полифторированных триарилпиразолинов. Были поставлены следующие задачи:

- 1. Разработать подход к синтезу нелинейных хромофоров на основе полифторированных триарилпиразолинов, замещенных бифункциональными нуклеофилами
- 2. Оптимизировать методику введения в молекулу хромофора дендроидных заместителей.

3. Наработать нелинейные хромофоры на основе полифторированных триарилпиразолинов, замещенных бифункциональными нуклеофилами в количествах, достаточных для дальнейших иследованиях.

Вклад автора. Дипломная работа полностью выполнена автором. Подбор и анализ литературы по теме «Синтез и свойства пиразолинов», написание обзора сделаны автором полностью самостоятельно. Планирование и проведение эксперимента, обсуждение и анализ полученных результатов требовали минимального участия руководителя. Экспериментальная часть выполнена полностью автором. Всего в работе получено, выделено и охарактеризовано 11 новых соединений.

Что напи-

2 Обзор литературы

2.1 Сопряженные донорно-акцепторные хромофоры

Сопряжённые донорно-акцепторные хромофоры представляют большой интерес изза их электрооптических свойств: система сопряженных двойных связей позволяет образовать низколежащую НСМО и реализовать внутримолекулярный перенос заряда. Они применяются в таких областях, как органическая электроника, электрооптика, фотовольтаика [2].

Общая структура донорно-акцепторного хромофора представлена на Рис. 2.1 и включает в себя донорный блок (**D**), π -сопряженный мостик (π) и акцепторный блок (**A**).

Рис. 2.1: Общая структура донорно-акцепторных хромофоров

Внутримолекулярный перенос заряда хорошо заметен при сравнении спектров поглощения анилина, нитробензола, *пара*- и *мета*-нитроанилина (Рис. 2.2). В спектре *пара*-нитроанилина присутствует интенсивная полоса переноса заряда из-за сопряжения, присутствующего в молекуле, и возможности образования цвиттерионной резонансной структуры. В спектре *мета*-нитроанилина соответствующая полоса имеет гораздо меньшую интенсивность из-за отсутствия сопряжения между нитрогруппой и аминогруппой [2].

Рис. 2.2: Сравнение спектров поглощения анилина, нитробензола, *пара-* и *мета-*нитроанилина [2]

Донорно-акцепторные хромофоры могут иметь различные организации: линейную (диполярную) — $D-\pi-A$, квадрупольную — $D-\pi-A-\pi-D$ или $A-\pi-D-\pi-A$, октапольную — $(D-\pi)_3-A$ или $(A-\pi)_3-D$. В литературе описаны хромофоры с более редкими

структурами, такие как V-образная **1** [3], Y-образная **2** [5] и X-образная **3** [6—8].

Рис. 2.3: Различные структуры нелинейных хромофоров

2.2 Подходы к синтезу 2-пиразолинов

2-Пиразолины (Рис. 2.4) были впервые синтезированы в 19 веке Фишером и Кнёвенагелем реакцией α,β-ненасыщенных альдегидов и кетонов с фенилгидразином при кипячении в уксусной кислоте.

Рис. 2.4: Структура и нумерация атомов 2-пиразолина

Химия пиразолинов получила развитие в середине XX века в связи с применением арилпиразолинов в качестве оптических отбеливателей и органических сцинтиляторов. Благодаря их люминесцентным свойствам в настоящее они используются для создания органических светодиодов (OLED) [9—11].

Производные пиразолина проявляют биологическую активность, поэтому их синтез представляет большой интерес [12—14]. Пиразолины проявляют противомикробную [15], противодиабетическую [16], противоэпилептическую [17], антиоксидантную [18], противовоспалительную [19] активность.

2.2.1 Синтез из халконов и гидразинов

Основным способом синтеза 2-пиразолинов является реакция конденсации халконов с гидразинами. Этот подход является достаточно общим, как было показано в работе [20], где таким способом была получена библиотека из 7680 1,3,5-триарилпиразолинов с различными заместителями во всех трех ароматических ядрах.

Схема 2.1

Халконы представляют собой соединения с двумя электрофильными центрами — карбонильной группой и сопряженной связью C=C. Однако в реакциях халконов с гидразинами наблюдается высокая региоселективность (в отличие от, например, 1,3-дикетонов), в реакцию с атомом азота первой вовлекается карбонильная группа. Такое поведение обычно объясняют повышенной нуклеофильностью первичного атома азота в замещенных гидразинах по сравнению с вторичным.

Механизм образования пиразолинов (Схема 2.2) включает в себя образование гидразона и атаку вторичного атома азота на сопряженную двойную связь, замыкающую цикл. Стадия замыкания цикла является лимитирующей и ее скорость значительно зависит от пространственного и электронного строения гидразона, а также от кислотности среды.

Схема 2.2

В случае фенилгидразина лимитирующей стадией является дегидратация, а стадия циклизации является быстрой и самопроизвольной. На ход реакции в наибольшей мере влияет заместитель при карбонильной группе (R_1) и его влияние мало зависит от кислотности

среды. Было показано, что реакция фенилгидразина с диарилиденацетонами происходит по фрагменту, содержащему донорную группу [21].

Обычно сначала получают халкон конденсацией Кляйзена-Шмидта в основных условиях и вводят его в реакцию с арилгидразином в кислых условиях. Однако описаны как конденсация в кислых условиях [22, 23], так и циклизация в основных [24—28].

Существует *one-pot* модификация этого метода (Схема 2.3), в этом варианте халкон не выделяется в индивидуальном виде, а сразу же реагирует с фенилгидразином, присутствующим в реакционной смеси. При этом реакция проводится целиком в основной среде [29].

$$R_1 = H, 4-Me, 4-Cl, 4-OMe$$
 $R_2 = H, 4-Br, 4-Cl, 4-OMe, 4-NO_2$

Схема 2.3

В недавнее время были предприняты попытки проводить реакцию в более экологичных условиях, используя в качестве циклизующего агента вольфрамсерную кислоту [30] и целлюлозосульфоновую кислоту [31]. Также в качестве экологически чистых методов исследовались синтез в водных растворах [32], механохимический синтез [33], микроволновый синтез [34] и ультразвуковой синтез [35].

Получение полифторированных триарилпиразолинов несет в себе больше сложностей: в случае разных заместителей в молекуле халкона часто не удается подобрать условия реакции таким образом, чтобы получать селективно один региоизомер — образуется смесь продуктов с разными заместителями в положениях 3 и 5 (??) [36].

Было обнаружено, что халконы с акцепторным заместителем при двойной связи при кипячении образуют один региоизомер пиразолина, а халконы с акцепторным заместителем при карбонильной группе — два региоизомера в сравнимых количествах. Это можно объяснить большим различием σ^* -констант заместителей при двойной связи (C_6F_5CO и Ph), из-за чего усиливается электрофильный характер β -атома углерода, что дает возможность нуклеофильной атаки фенилгидразина как по карбонильной группе, так и по двойной связи.

Ph
$$\rightarrow$$
 PhNHNH₂
 \rightarrow R = F, OPh, N(CH₂)₅
 \rightarrow PhNHNH₂
 \rightarrow

Схема 2.4

2.2.2 Синтез из аналогов халконов

Сопряженные енины можно считать аналогами халконов, поскольку при гидратации тройной связи образуется соответствующий кетон. В работе [37] была исследована реакция циклизации арилгидразинов с 1,3-енинами при катализе различными металлсодержащими реагентами (Схема 2.5). Было показано, что при микроволновом облучении смеси сопряженных енинов с арилгидразинами в присутствии Zn(OTf)₂ наблюдается наилучший выход соответствующих пиразолинов. В ходе реакции происходит двойное гидроаминирование сначала тройной, а потом двойной связи.

Схема 2.5

Некоторые пропаргиловые спирты способны вступать в перегруппировку с образованием халконов. При исследовании реакции сочетания Соногаширы вторичных пропаргиловых спиртов с арилгалогенидами было обнаружено, что при наличии акцпторных замести-

телей в арилгалогениде такая перегруппировка может происходить под действием триэтиламина, который присутствует в реакционной смеси (Схема 2.6) [38].

$$= \begin{array}{c} OH \\ Ph \end{array} \begin{array}{c} R-X \\ \hline [(PPh_3)_2PdCl_2] \\ Cul, \, NEt_3, \, \Delta \end{array} \end{array} \begin{array}{c} R \\ \hline Ph \end{array} \begin{array}{c} OH \\ Ph \end{array} \begin{array}{c} OH \\ \hline Ph \end{array} \begin{array}{c$$

Схема 2.6

Пропаргиловые спирты, не содержащие акцепторных заместителей, также способны вступать в эту перегруппировку, однако в более жестких условиях. В работе [39] была разработана и оптимизирована методика синтеза пиразолинов из пропаргиловых спиртов и арилгидразинов в присутствии tBuOK (Схема 2.7).

OH
$$R_2$$
 R_3 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_6 R_6 R_7 R_8 R_8 R_8 R_9 R

Схема 2.7

2.2.3 Синтез с помощью цвиттерионов Хьюсгена

Взаимодействие азадикарбоксилатов с трифенилфосфином дает соединения, получившие название цвиттерионов Хьюсгена. Они являются основным интермедиатом в реакции Мицунобу и также способны реагировать с карбонильными соединениями [40].

Реакцией цвиттерионов Хьюсгена с сопряженными эфирами, дополнительно замещенными акцепторными группами по двойной связи, могут быть получены 2-пиразолины,

замещенные по атомам азота (Схема 2.8) [41]. Взаимодействие азиридинов с этими цвиттерионами дает аминозамещенные 2-пиразолины [42].

Обычно взаимодействие халконов с цвиттерионом Хьюсгена дает 3-пиразолины, однако при наличие двух карбонильных групп, сопряженных с двойной связью (как в случае с производныи 1,3-индандиона), приводит к 2-пиразолину [43]. Контрольный опыт с производным 1-инданона в таких же условиях дает 3-пиразолин (Схема 2.9).

Схема 2.8

При присоединении цвиттерионов Хьюсгена к халконам обычно образуются 3-пиразолины. Так, в работе [44] взаимодействием халконов с азадикарбоксилатами в присутствии трифенилфосфина был получен ряд 3-пиразолинов, замещенных по положениями 3 и 5 (Схема 2.9). Аналогично [45] можно получить 3-пиразолины из сопряженных эфиров (Схема 2.9).

Образование того или иного региоизомера пиразолина обусловлено начальной атакой цвиттериона. При атаке атома азота на карбонильную группу образуется 3-пиразолин. Если двойная связь имеет несколько акцепторных заместителей, это повышает ее электрофильность и направляет атаку азота на двойную связь, что дает 2-пиразолин (Схема 2.10).

Схема 2.10

2.2.4 Синтез [3 + 2] циклоприсоединением

Второй способ синтеза пиразолинов использует [3+2] циклоприсоединение илидов азометиновых иминов **4** к алкинам. Циклоприсоединение 1,3-диполей к диполярофилам является удобным способом получения пятичленных циклов. Наиболее известным примером

таких реакций является присоединение азидов к алкинам. Считается, что [3 + 2] циклоприсоединение идет по согласованному механизму. Использование комплексов металлов с хиральными лигандами в качестве катализаторов позволяет селективно получать энантиомерно чистые пиразолины. Циклоприсоединение илидов азометиновых иминов к алкенам дает полностью насыщенные аналоги пиразолинов — пиразолидины [46].

Схема 2.11

Азометиновые илиды можно представить в виде четырех резонансных структур (Рис. 2.5) — двух иминных и двух диазониевых. Чаще всего их изображают с зарядами, локализованными на атомах азота, такое распределение зарядов соотносится с квантовомеханическими расчетами [46].

Рис. 2.5: Резонансные структуры илидов азометиновых иминов

Синтез пиразолинов, исходя из ациклических илидов азометиновых иминов, получаемых $in\ situ$, был подробно изучен в работе [47]. В этой работе было синтезировано более 18 пиразолинов и проведена оптимизация условий реакции: было изучено влияние различных солей Cu(I) и заместителей лигандов и субстратов.

$$Bz$$
 Bn $HN-NH$ Bz $N-N$ N

Схема 2.12

В [26] библиотека 2-пиразолинов с различными заместителями в положениях 3 и 4 была получена с помощью [3+2] циклоприсоединения нитрилиминов к сопряженным ок-

сазолидинонам под действием триэтиламина (Схема 2.13). Реакция является энантиоселективной. Наряду с целевым региоизомером (C), образовывался другой региоизомер (N). Попытки контролировать образование региоизомеров с помощью активации различными кислотами Льюиса (Mg(ClO₄)₂, Mg(NTf₂)₂, TiCl₄, SnCl₄, Yb(OTf)₃) привели к снижению региоселективности. Охлаждение реакционной смеси до $-78\,^{\circ}$ С улучшает региоселективность реакции.

$$X = CI, Br$$
 $R = Me, Et, Ph, 4-F-Ph, 4-CI-Ph, 4-NO_2-Ph, 2-OMe-Ph$
 $Ar = Ph, 3-Me-Ph, 3-CI-Ph, 4-F-Ph$

Схема 2.13

2.2.5 Синтез с образовнием связи N-N

Все рассмотренные способы синтеза пиразолинов основаны на соединениях, содержащих в своем составе связь между атомами азота. Способы синтеза гетероциклов со связью N-N, основанные на образовании этой связи малоизвестны [48]. Однако существуют различные подходы к пиразолинам на этой основе.

Так, в статье [49] авторы исходят из предположения, что DCC, как эффективный водоотнимающий агент, успешно используемый для получения лактонов и лактамов, сможет способствовать образованию связи N-N в β -аминооксимах. Упомянутые β -аминооксимы легко получаются из кетонов с помощью реакции Манниха, а затем образования оксима. Таким образом удалось получить пиразолин, сконденсированный с циклогексаном, из производного циклогексанона (Схема 2.14). Такой же результат наблюдается при взаимодействии с PCl_5 .

Схема 2.14

При этом геометрическое строение оксима играет большую роль в реакции; изза механизма реакции циклизация возможна только при расположении ОН-группы в (*E*)-положении к аминогруппе. Также метод неприменим к оксимам альдегидов, поскольку они подвергаются дегидратации с образованием нитрилов.

В [50] используется схожий подход на основе эфиров оксимов с использованием солей меди в качестве катализатора (Схема 2.15), которые давно используются в синтезе гетероциклов. В этом подходе эфир оксима используется в качестве предшественника енамина, который вступает в реакцию с N-сульфанилимином, при этом реакция малочувствительна к природе заместителей субстратов.

$$R_1$$
 + R_2 R_2 R_1 R_2 R_1 R_2 R_3 R_4 R_5 R_7 R_8

 ${\bf R_1}$ = Ph, 3-Me-Ph, 4-Cl-Ph, 3-OMe-Ph, 4-OMe-Ph, 2-фурил, 2-тиенил ${\bf R_2}$ = Ph, 4-Me-Ph, 4-OMe-Ph, 4-Cl-Ph, 4-NO $_2$ -Ph, 4-CN-Ph, 4-CO $_2$ Me-Ph, 1-нафтил

Схема 2.15

Принциально иной способ образования связи N-N был обнаружен авторами [51] при попытке получить спироциклический алкалоид аматаспирамид с помощью реакции Нефа в восстановительных условиях с низковалентным титаном в качестве модификации методики, описанной в [52]. Но вместо целевого продукта неожиданно был получен бициклический пиразолин. Эту реакцию позднее использовали для получения другого алкалоида —

механизм?

<mark>транслитераци</mark>ньюбулдина.

2.3 Синтез других изомеров пиразолина

2.3.1 Синтез 1-пиразолинов

В работах [53—56] описан синтез 1-пиразолинов из соединений, содержащих двойную связь, и производных диазометана. Обычно 1-пиразолины нестабильны и склонны к перегруппировке в соответствующие 2-пиразолины (Схема 2.17), что было показано в [54, 55].

$$R = H, Me, Ph$$
 $R' = Me, Et, tBu, Mентил$
 $R = H, Me, Et, tBu, Meнтил$
 $R = H, Me, Et, tBu, Meнтил$
 $R = H, Me, Et, tBu, Meh Tu$
 $R = H, Me, CO_2Et$
 $R' = H, Me$

Схема 2.17

Тетразамещенные 1-пиразолины, полученные в работе [56] из защищенных аддуктов Бейлиса-Хиллмана и ацилдиазометанов, имеют по два заместителя в положениях 3 и 5, и поэтому не могут перегруппироваться в соответствующие 2-пиразолины (Схема 2.18).

 ${\bf R}$ = 4-NO₂-Ph, 4-CN-Ph, 4-F-Ph, 4-Cl-Ph, 4-Br-Ph, Ph, 4-Me-Ph, 3-CF₃-Ph, 3-Me-Ph, 2-Br-Ph, 2-нафтил, 2-пиридинил, *E*-стирил, Et ${\bf R}'$ = Me, Et

Схема 2.18

В [53] взаимодействием цефалоспорина, содержащего экзоциклическую связь, и диазометана был получен сравнительно стабильный 1-пиразолин. Полученное соединение не

подвергается никакому изменению при кипячении в толуоле в течение восьми дней, но в диметилформамиде дает смесь двух продуктов: циклопропана, соответствующего присоединению карбена по исходной двойной связи, и винильного производного (Схема 2.19).

2.3.2 Синтез 3-пиразолинов

3-Пиразолины существуют только в 1,2-дизамещенном виде за исключением нескольких примеров. Для 3-пиразолинов, незамещенных по обоим атомам азота, существует лишь один пример описанный в [57]; 3-пиразолины, замещенные только по одному атому азота несколько более известны [58—61].

Главным способом синтеза 1,2-замещенных 3-пиразолинов является реакция Манниха симметричных дизамещенных гидразинов с формальдегидом и кетоном. Получающееся основание Манниха вступает во внутримолекулярную циклизацию с образованием соответствующего 3-пиразолина (Схема 2.20). Позиция двойной связи была подтверждена с помощью ИК-спектроскопии, показавшей наличие сопряжения между двойной связью пиразолина и бензольным кольцом.

Схема 2.20

Конденсация гидразида фталевой кислоты с коричным альдегидом дает региоизомерные 3-пиразолины (Схема 2.21), которые при гидролизе превращаются в соответствующие 2-пиразолины. Образование 3-пиразолина было подтверждено с помощью расщепления молекулы и элементого анализа [62].

$$\bigcap_{NH}^{NH} + \bigcap_{NH}^{CHO} \longrightarrow \bigcap_{NH}^{N} + \bigcap_{NH}^{N} +$$

Схема 2.21

Взаимодействие халконов с азадикарбоксилатами в присутствии трифенилфосфина позволяет получать 3-пиразолины, замещенные по положениям 3 и 5 и по обоим атомам азота (Схема 2.9 на стр. 13).

Циклоприсоединение илидов азометиновых иминов, полученных из 1,2дизамещенных гидразинов, к алкинам дает 3-пиразолины, которые, при снятии защитной группы с одного из атомов азота, перегруппируются в 2-пиразолины (Схема 2.12 на стр. 14).

2.4 Реакции пиразолинов

2.4.1 Реакции окисления

Пиразолины неустойчивы к окислению — они могут быть переведены в соответствующие пиразолы действием различных окислителей (Схема 2.22). При этом возможно как стехимометрическое окисление [63—68], так и каталитическое [69—71].

$$Ar_3$$
 $N-N$ Ar_2 $N-N$ Ar_1 Ar_2 Ar_3 $N-N$ Ar_1

Схема 2.22

Также описано окисление пиразолинов в хлорированных растворителях (1,2-дихлорэтан и $CCl_4)$ под действием видимого света. В этом случае в качестве окислителя выступает растворитель. Для этой реакции в работах [72,73] был предложен механизм (Схема 2.23), включающий фотовозбуждение молекулы приразолина, перенос электрона на молекулу растворителя и дальнейшие превращения получившегося катион-радикала.

Радкикальный характер этой реакции подтверждается тем, что добавление в реакционную смесь радикальных ингибиторов замедляет реакцию. Однако полного ингибирования не наблюдается, поскольку стадия образования пиразолиниевого радикала не является лимитирующей [73].

Схема 2.23: Предполагаемый механизм окисления пиразолинов под воздействием света

2.4.2 Реакции восстановления

Двойная связь C=N в пиразолинах может быть восстановлена типичными реагентами — комплексными гидридами. В работах [74, 75] авторы использовали триэтилборгидрид лития в тетрагидрофуране, а в [76] — цианоборгидрид натрия в уксусной кислоте (Схема 2.24). В каждом случае было испробовано несколько восстановителей и выбор конкретного — баланс между выходом целевого продукта и образованием побочных продуктов (например, деацилирования).

$$\begin{array}{c|c} R & & \\ \hline N-N & \\ \hline C & \\ R' & \\ \end{array}$$

R = Ph, 4-Me-Ph, 2-фурил, *t*Bu, 4-OMe-Ph **R**' = Me, Ph

 \mathbf{R} = Me, Ph, 4-OMe-Ph, C₆F₅, 2,4,6-Me-Ph, 1-нафтил

Схема 2.24

В других условиях пиразолины можно восстановить с расщеплением связи N-N. Восстановление пиразолинов натрием в этаноле можно использовать для получения 1,3-

диаминозамещенных пропанов [62]. Для получения 1,3-диаминокарбоновых кислот в работе [77] использовали восстановление водородом под давлением на никеле Ренея (Схема 2.25).

Схема 2.25

Стадии восстановления и расщепления связи N-N могуть проводиться раздельно. В [47] пиразолины восстанавливали водородом на палладиевом катализаторе и расщепляли связь N-N под действием SmI_2 , энантиоселективно получая 1,3-аминозамещенные соединения (Схема 2.26).

Схема 2.26

3 Результаты и обсуждение

Ранее было показано [1, 78], что формильные производные триарилпиразолинов, содержащих полифторфенильные остатки в положениях 5 или 3 пиразолинового цикла, могут служить эффективными донорами в синтезе сопряженных донорно-акцепторных хромофоров с поглощением при 720–760 нм. В развитие этой тематики была поставлена задача синтеза Д-А хромофоров с использованием декафторзамещенных производных триарилпиразолина. Наличие двух пентафторфенильных групп дает дополнительные возможности для модификации донорного фрагмента.

Альдегид **5** был наработан по литературной методике [36, 79]. Его получение представляет собой многостадийный процесс (Схема 3.1). Альдольно-кротоновой конденсацией пентафторацетофенона **6** с пентафторбензальдегидом **7** получали декафторхалкон **8**, который переводили в пиразолин **9** конденсацией с фенилгидразином. Далее кольцо в положении 1 пиразолина **9** формилировали реакцией Вильсмайера, получая альдегид **5**.

3.1 Взаимодействие формилированного декафтортриарилпиразолина с бинуклеофилами

Схема 3.1

Далее атом фтора в *пара*-положении обоих колец замещали на бифункциональный нуклеофил — 4-гидроксипиперидин (Схема 3.2). При 60 °C реакция замещения фтора в обеих пентафторфенильных группах на остатки 4-гидроксипиперидина не идет до конца, в смеси присутствует примесь исходного соединения наряду с продуктом замещения фтора в одном из колец. Поэтому реакционную смесь выдерживали при 100 °C.

Схема 3.2

Из реакционной смеси были выделены два соединения — целевой альдегид **10a** с двумя гидроксипиперидиновыми остатками и альдегид **10b**, содержащий в одном из колец диметиламиногруппу. Положение диметиламиногруппы было установлено реакцией альдегида **5** с недостатком 4-гидроксипиперидина, при которой незамещенным и, следовательно, менее реакционноспособным оказалось перфторфенильное кольцо в положении 3 (Схема 3.3).

PCA

Схема 3.3

Спектры ЯМР продукта **10a** соответствуют его структуре (Схема 3.2). В спектре ЯМР 1 Н наблюдаются сигнал альдегидного протона; сигналы системы AA'BB' парафениленового кольца; три дублета дублетов, соответствующие системе ABX пиразолинового кольца; в сильном поле — мультиплеты, соответствующие протонам пиперидиногруппы, в том числе сложный мультиплет, принадлежащий протону С<u>Н</u>-ОН. Спектр 19 Г также имеет характерный вид и содержит уширенный синглет, который соответствует атомам фтора в

так?

орто-положении кольца в 5 положении пиразолина. Считается, что это уширение связано с взаимодействием этих атомов фтора с атомом водорода в 5 положении пиразолина.

Изначально пиперазин пытались вводить в тех же условиях, что и 4-гидроксипиперидин. В этих условиях образуется неразделимая смесь, содержащая в основном продукты олигомеризации (сшивки по остаткам пиперазина). Это происходит из-за наличия в молекуле пиперазина двух атомов азота, каждый из которых в этих условиях может замещать фтор в ароматическом кольце. Мы предположили, что большее количество пиперазина в реакционной смеси и меньшая температура могут снизить долю продукта олигомеризации. По данными ¹Н ЯМР спектра смеси продуктов наблюдается образование некоторого количества целевого продукта, который, к сожалению, не удалось выделить в индивидуальном виде, и, предположительно, побочный продукт реакции с диметиламином. Основным продуктом реакции является также продукт олигомеризации.

переделал весь абзац

3.2 Методика введения разделительного блока

Разделительные блоки (Рис. 3.1) доступны в виде кислот и хлорангидридов, следовательно, требуется найти оптимальные условия ацилирования гидроксигруппы 4-гидроксипиперидина. В качестве модельной реакции мы выбрали реакцию ацилирования хлористым бензоилом.

Рис. 3.1: Структуры использованных разделительных блоков

Были испытаны два подхода: бензоилирование большим избытком хлористого бензоила (ранее предложенный в [1]) и бензоилирование с катализом DMAP и небольшим избытком хлористого бензоила. В результате было обнаружено, что использование DMAP поз-

воляет сократить время реакции с 6–8 часов до 2 в случае хлористого бензоила и требует гораздо меньшего избытка хлорангидрида (1.25 экв. против 3 экв. при проведении реакции без катализатора).

переделал

переделал

О полном ацилировании ОН-групп можно судить по смещению сигнала протонов СН-ОН в слабое поле.

Наряду с вышеописанным подходом, мы исследовали альтернативную последовательность реакций: конденсацию альдегида **10a** с дицианоизофороном и последующее ацилирование полученного ОН-красителя **11a** (Схема 3.5).

HO .CN **PhCOCI** NEt₃ (DMAP) OHO NC R-CI NEt₃ (DMAP) 'nн CN $\mathbf{R} = Bz(\mathbf{a}), TAFS(\mathbf{b}), TATBS(\mathbf{c})$

Схема 3.4

При сопоставимых выходах на стадии ацилирования более выгодным является подход с конденсацией и последующим ацилированием, поскольку он позволяет использовать меньшее количество хлорангидрида, получение которого представляется собой значительную сложность. В итоге оптимизированная последовательность реакций и методика ацилирования позволила снизить требуемое количество ацилирующего реагента и повысить выхол.

В спектре ЯМР 1 Н соединения **11a** характеристическими являются сигналы AB-системы двойной связи с КССВ около $15\,\Gamma$ ц, что указывает на E-конфигурацию двойной связи, синглет при $6.72\,\mathrm{m.g.}$, соответствующий протону при двойной связи дицианоизофорона, два синглета при $2.61\,\mathrm{u}\,2.55\,\mathrm{m.g.}$, принадлежащих $\mathrm{CH_2}$ группам дицианоизофорона и синглет при $1.04\,\mathrm{m.g.}$, принадлежащий двум метильными группам дицианоизофорона.

Мы обнаружили, что в реакции бензоилирования **11a** при длительной выдержке реакционной смеси вместо пиразолина **12a** образуется соответствующий пиразол. На образование пиразола указывает отсутствие в 1 H ЯМР спектре сигналов ABX-системы пиразолина и отсутствие в спектре 19 F уширенного синглета.

Также мы наблюдали окисление пиразолина **12a** в пиразол даже при кратковременной выдержке в темноте в хлорированных растворителях (CH₂Cl₂ и CDCl₃). При этом для предшественника соединения **12a** — альдегида **10a** окисления не наблюдалось даже при длительной выдержке в хлороформе на свету. Это может быть связано с предполагаемым механизмом окисления (Схема 2.23 на стр. 20); введение в молекулу акцептора упрощает образование цвиттерионной структуры, играющей ключевую роль в процессе окисления. Таким образом, наилучшая стратегия при синтезе и очистке производных альдегида **10a** — избегать хлорсодержащих растворителей.

как-то криво

3.3 Синтез красителей

Найденные оптимальные условия ацилирования были применены для введения разветвленных заместителей в структуру красителей. Кроме синтезированного в работе красителя 11a, был использован полученный ранее в лаборатории краситель $13a^2$, содержащий одно 4-гидроксипиперидинозамещенное тетрафторфенильное кольцо.

В целом, реакция ацилирования идет достаточно быстро и с хорошим выходом (Таблица 3.1), однако в случае соединения **14d** выход продукта составляет всего 7.5%. Это может быть связано с тем, что хлорангидрид IDATBS—Сl является стерически затрудненным, а следовательно, затруднен подход ОН-группы к карбонильной группе. Для получения соединения **14d** мы использовали несколько вариаций общей методики: увеличение времени реакции, замена растворителя с бензола на ацетонитрил, проведение реакции при повышенной

¹Реагенты в виде кислот и хлорангидридов предоставлены сотрудниками НИОХ Максимовым А.М., Бережной В.Н. и Рязановым Н.Д.

²Соединение предоставлено сотрудником НИОХ Каргаполовой И.Ю.

R = Ph (a); TAFS (b); TATBS (c); IDATBS (d)

Схема 3.5

Таблица 3.1: Условия ацилирования соединений 10а, 11а и 13а и выходы продуктов

Субстрат	Реагент	Экв.	Условия реакции	Время реакции, ч	Продукт	Выход, %
10a	PhCOCl	6	PhH, Et ₃ N	24	15	74
10a	PhCOCl	2.5	PhH, Et ₃ N, DMAP	6	15	74
11a	PhCOCl	3	PhH, Et ₃ N, DMAP	2	12a	25
11a	TAFS-Cl	3	PhH, Et ₃ N, DMAP	2	12b	30
11a	TATBS-Cl	3	PhH, Et ₃ N, DMAP	6	12c	55
13a	PhCOCl	1.5	PhH, Et ₃ N, DMAP	4	14a	92
13a	TAFS-Cl	1.5	PhH, Et ₃ N, DMAP	2.5	14b	97
13a	TATBS-Cl	1.5	PhH, Et ₃ N, DMAP	3	14c	59
13a	TATBS-OH	1	ТГФ, DIAD, PPh_3	3	14c	70
13a	TATBS-OH	1	PhH, DCC, DMAP	3	14c	22
13a	IDATBS-Cl	1.5	PhH, Et ₃ N, DMAP	12	14d	7.5
13a	IDATBS-Cl	1.5	MeCN, Et ₃ N, DMAP	36	14d	7.5
13a	IDATBS-Cl	1.5	PhMe, Et ₃ N, DMAP	0.5^{1}	14d	2.5

 $^{^{1}}$ Реакцию проводили в микроволновом реакторе при температуре 150 $^{\circ}\mathrm{C}$

температуре с нагревом микроволновым излучением, однако это не привело к повышению выхода.

Также на то, что реакция проходит не до конца, указывает получение при очистке реакционной смеси желтой фракции, содержащей по данным ЯМР- и ИК-спектроскопии смесь исходного хлорангидрида и соответствующий кислоты.

написать

подобрать

слово

В качестве альтернативных способов получения целевых эфиров мы также исследовали реакцию Мицунобу и реакцию Штеглиха (взаимодействие спирта с кислотой в присутствим DCC и DMAP). Реакция Мицунобу позволяет получать эфиры из спиртов и карбоновых кислот в присутствим диизопропилазодикарбоксилата (DIAD) и трифенилфосфина. Применение этой реакции для получения соединения 14с позволило еще больше снизить требуемое количество ацилирующего реагента (в реакции Мицунобу он берется эквимолярно) и получить целевое соединение с даже большим выходом, чем при ацилировании с помощью хлорангидрида.

В спектрах ЯМР ¹Н соединений **14b–d** наблюдается сигнал около 4.2 м.д., соответствующий S–CH₂ фрагменту разделительного блока и сигналы около 2.5 м.д., принадлежащие метильным группам в ароматическом кольце. В спектрах соединений **14c,d** присутствует сигнал *трет*-бутильной группы при 1.2 м.д.. Ароматические протоны основного кольца в соединениях **14b,c** проявляются в виде синглета при 7.7–7.8 м.д.. В спектрах соединений **12a–c** описанные сигналы выглядят как дублеты из-за неэквивалентности двух заместителей. Спектры ¹⁹F соединений **12b** и **14b** соответствуют структуре TAFS-фрагмента.

Соединения имеют длинноволновый максимум поглощения на длине волны 490–500 нм в ацетоне, который не зависит от структуры введеного разделительного блока, поскольку тот не включен в цепь сопряжения (Рис. 3.2).

Рис. 3.2: Нормированные электронные спектры поглощения полученных красителей

надо бы
еще в разных растворителях

Рис. 3.3: Спектры флуоресценции (сплошная линия) и возбуждения флуоресценции (пунктирная линия) соединения **12b**

4 Экспериментальная часть

В работе использовались следующие коммерчески доступные реактивы и растворители, которые дополнительно не очищали, если не указано иное.

Таблица 4.1: Использованные коммерчески доступные реактивы и растворители и методы их очистки

Название	Производитель	Чистота	Примечание
DCC	Alfa Aesar	99%	
4-Гидроксипиперидин	Alfa Aesar	97%	
DMAP			
DIAD	Sigma Aldrich?	98%	
Морфолин	Реахим	Ч	
Пентафторацетофенон	P&M Invest	99%	
Пентафторбензальдегид	ОХП НИОХ СО РАН	99%	
Пиперазин	Aldrich	99%	
Трифенилфосфин	Lancaster	99%	
Триэтиламин	AppliChem	99.5%	
Фенилгидразин	Acros Organics	97%	
Хлористый бензоил	Реахим	Ч	Предварительно перегоняли
Ацетон	ЭКОС 1	ЧДА	
		ЧДА	Перегоняли над P_2O_5 ,
Ацетонитрил	Реахим		хранили над молекулярными
			ситами 4 Å
Бензол	Реахим	ЧДА	Хранили над Na
Бутанол			
Гексан	Реахим	ЧДА	
Диэтиловый эфир	Кузбассоргхим	ЧДА	
W. (*)		TITIA	Хранили над
ДМФА	Реахим	ЧДА	молекулярными ситами 4 Å и 13 Å
ТГФ	Реахим	ЧДА	Хранили над Na
Толуол	Реахим	ЧДА	Хранили над Na
Хлористый метилен	Реахим	ЧДА	
			Перегоняли над СаО,
Этанол	Реахим	ЧДА	хранили над молекулярными
			ситами 4 Å

Спектральные данные получены в Исследовательском химическом центре коллективного пользования СО РАН. Спектры ЯМР регистрировали на спектрометрах Bruker AV-300 (1 H, 300.13 МГц; 19 F, 282.37 МГц) и Bruker AV-400 (1 H, 400.13 МГц) в дейтерохлороформе, ацетонитриле- 4 d, и ацетоне- 4 d. Значения химических сдвигов протонов приведены относительно сигналов остаточных протонов растворителей (5 H = 7.26, 1.94, 2.05 м.д.соответственно). При регистрации спектров ЯМР 19 F в качестве внутреннего стандарта использовали 6 G (5 He = 0 м.д.). Электронные спектры поглощения регистрировали на спектрофотометре Hewlett Packard 8453. Масс-спектры высокого разрешения получены на приборе DFS (Thermo Fisher Scientific) в режиме прямого ввода, энергия ионизации 70 эВ. Масс-спектры методом MALDI-TOF получены на приборе Autoflex Speed MALDI-TOF «Вгикег Daltonic» (Германия) в режиме положительного отраженного иона, частота лазера — 1000 Гц, ускоряющее напряжение — 19 кВ 3 .

уточнить

R19

R20

Альдегид 5 синтезировали по [36, 79].

4-{3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-дигид-

 \mathbf{p} ро-1H-пиразол-1-ил \mathbf{b} бензальдегид (10a). Раствор 3.00 г (5.9 ммоль) альдегида 5 и 1.80 г (17.8 ммоль) 4-гидроксипиперидина в 50 мл сухого ДМФА нагревали до 100 °C, выдерживали при этой температуре 6 часов и оставляли на ночь. Реакционную смесь выливали в 400 мл воды со льдом, перемешивали до таяния льда и отфильтровывали осадок. Осадок на фильтре промывали водой до нейтральной реакции, затем гексаном и сушили на воздухе. Желто-оранжевый порошок, выход 3.70 г — смесь **10а** и **10b**. Продукт очищали колоночной хроматографией на SiO_2 , элюент — CH_2Cl_2 : ацетонитрил, градиент 5:1 – 2:3. Собирали желтые фракции, анализировали TCX (CH₂Cl₂: ацетонитрил, 2:1, $R_f \approx 0.25 - 0.3$). Желтый порошок, выход **10a** 2.00 г (52 %) T_{nn} 155–159 °C. ЯМР 1 Н (ацетон-d₆) δ , м.д.:9.77 (c, 1 H, СНО), 7.76 (д, $2 H_{Ar}$, $J = 8.8 \Gamma II$), 7.17 (д, $2 H_{Ar}$, $J = 8.8 \Gamma II$), 5.98 (дд, $1 H_{DVI}$, J = 13.0, 5.3 ΓII), 4.16 (дд, $1 H_{pvr}$, J = 18.2, $13.1 \Gamma ц$), 3.95 - 3.69 (м, 3 H, $1 H_{pyr}$, $2 CH_{pip}$), 3.61 - 3.46 (м, 4 H, $2 \text{ CH}_{2\text{pip}}$), 3.30 - 3.02 (M, 4 H, $2 \text{ CH}_{2\text{pip}}$), 2.01 - 1.81 (M, 4 H, $2 \text{ CH}_{2\text{pip}}$), 1.75 - 1.52 (M, 4 H, $2 \text{ CH}_{2 \text{nin}}$). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 22.27 (дд, 2 F, J = 18.4, 6.9 Гц), 18.05 (уш. с., 2 F), 12.62 (дд, 2 F, J = 20.8, 6.5 Гц), 11.67 (дд, 2 F, J = 17.6, 6.0 Гц). МС (DFS) Найдено [M⁺]: 668.2023. С₃₂Н₂₈F₈N₄O₃. Рассчитано: М 668.2028.

4-{3-(4-Диметиламино-2,3,5,6-тетрафторфенил)-5-[4-(4-гидроксипиперидин-1-ил)-2,3,5,6-тетрафторфенил]-4,5-дигидро-1H-пиразол-1-ил}бензальдегид (10b). Желтый порошок, выход 0.41 г (11 %) Т_{пл.} 180 °C. МС (DFS) Найдено [M⁺]: 612.1758. С₂₉H₂₄F₈N₄O₂. Рассчитано: М 612.1766.

{[1-(4-Формилфенил)-4,5-дигидро-1*H*-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)}бис(пиперидин-1,4-диил)дибензоат (16а). Способ 1 Суспензию

³Исследование выполнено в центре масс-спектрометрического анализа ИХБФМ СО РАН

 $0.50\,\Gamma$ ($0.75\,\text{ммоль}$) альдегида **10a** в $10\,\text{мл}$ сухого бензола доводили до кипения и прибавляли к ней $0.62\,\text{мл}$ ($4.5\,\text{ммоль}$) триэтиламина и $0.35\,\text{мл}$ ($3.0\,\text{ммоль}$) хлористого бензоила. После двух часов кипячения прибавляли еще столько же триэтиламина и хлористого бензоила и кипятили еще сутки. Реакционную смесь выливали в $100\,\text{мл}$ воды и добавляли бензол до разделения фаз. Органическую фазу отделяли, сушили над Na_2SO_4 и удаляли растворитель в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол: CHCl_3 , градиент 1:0-0:1. Собирали желтые фракции, элюент удаляли в вакууме и повторно очищали колоночной хроматографией на SiO_2 , элюент — смесь бензол: CH_2Cl_2 1:1. Собирали желтые фракции, растворитель удаляли в вакууме. Желтое масло, выход $0.49\,\Gamma$ ($74\,\%$).

Способ 2 К суспензии $0.20\,\Gamma$ ($0.3\,\text{ммоль}$) альдегида 10a в 5 мл сухого бензола, прибавляли $0.11\,\text{мл}$ ($0.75\,\text{ммоль}$) хлористого бензоила, $0.13\,\text{мл}$ ($0.75\,\text{ммоль}$) триэтиламина и 2 мг DMAP. Реакционную смесь кипятили 6 часов, оставляли на ночь и удаляли растворитель в вакууме. Полученное масло очищали колоночной хроматографией на SiO_2 , элюент — смесь ацетонитрил : CH_2Cl_2 , градиент 1:1-8:1, собирали желтую фракцию, элюент удаляли в вакууме, полученное масло промывали смесью гексана с диэтиловым эфиром 1:1. Светло-желтый порошок, выход $0.19\,\Gamma$ ($74\,\%$). $T_{\rm nn}$ $180-183\,^{\circ}$ С. ЯМР 1 H (CDCl $_3$) δ , м.д.: $9.77\,$ (с, $1\,\text{H}$, CHO), $8.00-8.14\,$ (м, $4\,\text{H}_{\rm Ar}$), $7.73\,$ (д, $2\,\text{H}_{\rm Ar}$, $J=8.4\,$ Гц), $7.61-7.52\,$ (м, $2\,\text{H}_{\rm Ar}$), $7.50-7.39\,$ (м, $4\,\text{H}_{\rm Ar}$), $7.13\,$ (д, $2\,\text{H}_{\rm Ar}$, $J=8.4\,$ Гц), 5.75, $3.95\,$ (оба дд, оба по $1\,\text{H}$, пиразолин, J=17.8, 13.0, $5.9\,$ Гц), $5.35-5.11\,$ (м, $3\,\text{H}$, $2\,$ CH-OH, пиразолин), $3.65-3.41\,$ (м, $4\,\text{H}$), $3.41-3.13\,$ (м, $4\,\text{H}$), $2.26-2.03\,$ (м, $4\,\text{H}$), $2.03-1.87\,$ (м, $4\,\text{H}$). ЯМР 19 F (CDCl $_3$) δ , м.д.: $21.14\,$ (д, $2\,\text{F}$, $J=12.2\,$ Гц), $16.72\,$ (уш. c, $2\,\text{F}$), $11.74\,$ (c, $2\,\text{F}$), $11.14-9.71\,$ (м, $2\,\text{F}$). МС (DFS) Найдено [M $^+$]: 876.2548. $C_{46}H_{36}F_8N_4O_5$. Рассчитано: М 876.2553.

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1*H*-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)-

R22 с двумя бензоилами **}бис(пиперидин-1,4-диил)дибензоат (12а).** Способ 1. К суспензии $0.48\,\mathrm{r}$ ($0.55\,\mathrm{ммоль}$) альдегида **16а** в $15\,\mathrm{mm}$ бутанола прибавляли $0.10\,\mathrm{r}$ дицианоизофорона и $5\,\mathrm{mm}$ капель морфолина. Смесь кипятили в атмосфере аргона $7\,\mathrm{uacob}$, растворитель удаляли в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — $\mathrm{CH}_2\mathrm{Cl}_2$: гексан, градиент 1:1-0:1, затем ацетонитрил. Собирали красные фракции.

получили пиразол

Способ 2. К суспензии $0.10\,\mathrm{r}$ ($0.12\,\mathrm{ммоль}$) соединения 11a в 5 мл сухого бензола прибавляли $0.35\,\mathrm{m}$ л ($0.30\,\mathrm{ммоль}$) хлористого бензоила, $0.42\,\mathrm{m}$ л ($0.30\,\mathrm{ммоль}$) триэтиламина и 7 мг DMAP. Реакционную смесь кипятили в атмосфере аргона $10\,\mathrm{часов}$, добавив еще столько же хлористого бензоила. Растворитель удаляли в вакууме. Очищали колоночной хроматографией на SiO_2 , элюент — смесь ацетонитрил : $\mathrm{CH}_2\mathrm{Cl}_2$, градиент 1:10-1:1. Собирали оранжевые фракции, растворитель удаляли в вакууме. Темно-оранжевый порошок, $\mathrm{T}_{\mathrm{пл.}}$ 145-

выход

147 °C. ЭСП (ацетон) λ_{max} (lg ε): 490 нм (4.73). ЯМР ¹H (CDCl₃) δ , м.д.: 8.12 = 7.99 (м, 4 H_{Ph}), 7.61 = 7.51 (м, 2 H_{Ar}), 7.49 = 7.30 (м, 5 H, 2 H_{Ar}, 3 H_{Ph}), 7.21 = 7.03 (м, 3 H_{Ph}), 6.97 (д, 1 H, CH=, J = 16.0 Γ ц), 6.81 (д, 1 H, = CH, J = 16.0 Γ ц), 6.74 (с, 1 H, CH_{isoph}), 5.72 (дд, 1 H_{pyr}, J = 12.4, 5.8 Γ ц), 5.30 = 5.10 (м, 2 H, CH_{pip}), 4.04 = 3.80 (м, 1 H_{pyr}), 3.61 = 3.16 (м, 9 H, 4 CH_{2pip}, 1 H_{pyr}), 2.56 (с, 2 H, CH_{2isoph}), 2.42 (с, 2 H, CH_{2isoph}), 2.20 = 1.86 (м, 8 H, 4 CH_{2pip}), 1.24 (с, 6 H, 2 CH_{3isoph}). ЯМР ¹⁹F (CDCl₃) δ , м.д.: 20.92 = 20.76 (м, 2 F), 16.76 (уш. с, 2 F), 11.60 (с, 2 F), 10.27 = 10.10 (м, 2 F). МС (МАLDI-ТОF) Найдено [М + H] ⁺: 1045.3609. C₅₆H₄₈F₈N₆O₄. Рассчитано: [М + H] 1045.3682.

(E)-2-[3-(4-{3,5-Бис[2,3,5,6-тетрафтор-4-(4-гидроксипиперидин-1-ил)фенил]-4,5-дигидро-1H-пиразол-1-ил}стирил)-5,5-диметилциклогекс-2-ен-1-илиден]мало-

нонитрил (11а). К раствору $0.25\,\Gamma$ ($0.37\,\text{ммоль}$) альдегида 17a и $0.070\,\Gamma$ ($0.37\,\text{ммоль}$) дицианоизофорона в 5 мл бутанола прибавляли 5 капель морфолина, кипятили в атмосфере аргона 7 часов и оставляли на ночь. Выпавший осадок отфильтровывали, промывали этанолом и диэтиловым эфиром. Темно-красный порошок, выход $0.13\,\Gamma$ ($42\,\%$). ЯМР 1 Н (CDCl₃) δ , м.д.: 7.37 (д, $2\,H_{Ar}$, $J=8.7\,\Gamma$ ц), 7.05 (д, $2\,H_{Ar}$, $J=8.7\,\Gamma$ ц), 6.96 (д, $1\,H$, CH=, $J=15.9\,\Gamma$ ц), 6.80 (д, $1\,H$, =CH, $J=15.9\,\Gamma$ ц), 6.73 (с, $1\,H$, CH $_{isoph}$), 5.71 (дд, $1\,H_{pyr}$, J=13.0, $5.6\,\Gamma$ ц), 3.99-3.76 (м, $3\,H$, $2\,CH_{pip}$, $1\,H_{pyr}$), 3.75-3.60 (м, $2\,H$, $2\,CH_{2pip}$), 3.55-3.44 (м, $2\,H$, CH $_{2pip}$), 3.44-3.31 (м, $3\,H$, CH $_{2pip}$, $1\,H_{pyr}$), 3.25-3.02 (м, $4\,H$, $2\,CH_{2pip}$), 2.55 (с, $2\,H$, CH $_{2isoph}$), 2.41 (с, $2\,H$, CH $_{2isoph}$), 1.97 (м, $4\,H$, $2\,CH_{2pip}$), 1.78-1.63 (м, $4\,H$, $2\,CH_{2pip}$), 1.04 (с, $6\,H$, $2\,CH_{3isoph}$). ЯМР 19 Г (CDCl₃) δ , м.д.: 20.65 (дд, $2\,F$, J=19.6, $7.9\,\Gamma$ ц), 16.69 (уш. с, $2\,F$), 11.44 (с, $2\,F$), 10.11 (д, $2\,F$, J=19.6, $8.3\,\Gamma$ ц).

Диэфиры 12b,d (общая методика) К раствору соединения **11a** в 6 мл сухого бензола добавляли соответствующий хлорангидрид, триэтиламин и 1 мг DMAP. Полученную смесь кипятили до окончания реакции. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO_2 . Элюент удаляли в вакууме, твердый продукт промывали гексаном или смесью гексан-эфир.

(*E*)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1*H*-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)-}бис(пиперидин-1,4-диил)бис[4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)-фенил]тио}метил)бензоат] (12b). По общей методике из $0.10\,\Gamma$ ($0.12\,\text{ммоль}$) соединения 11а, $0.24\,\Gamma$ ($0.36\,\text{ммоль}$) ТАFS-Сl, $0.10\,\text{мл}$ ($0.72\,\text{ммоль}$, $6\,$ экв.) триэтиламина и $0.001\,\Gamma$ DMAP. Время реакции 2 часа. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO_2 , элюент — CH_2Cl_2 . Темно-красный порошок, выход $0.08\,\Gamma$ ($30\,\%$). $T_{пл.}$ 93–95 °C. ЭСП (ацетон) λ_{max} ($\lg\varepsilon$): 491 нм (4.73). ЯМР 1 H (CD_3CN) δ , м.д.: 7.68-7.61 (м, $4\,\text{H}_{TAFS}$), 7.57 (д, $2\,\text{H}_{Ar}$, $J=8.6\,\Gamma$ ц), 7.22 (д, $1\,\text{H}$, CH=, $J=16.2\,\Gamma$ ц), 7.15 (д, $2\,\text{H}_{Ar}$, $J=8.6\,\Gamma$ ц), 7.09 (д, $1\,\text{H}$, =CH, $J=16.2\,\Gamma$ ц), 6.87 (с, $1\,\text{H}$,

пиперидин с двумя TAFS R30

R23

 ${\rm CH_{isoph}}$), 5.95 (дд, $1\,{\rm H_{pyr}}$, J=11.3, 3.4 $\Gamma{\rm II}$), 5.28 – 5.09 (м, $2\,{\rm H}$, $2\,{\rm CH_{pip}}$), 4.49 – 4.37 (м, $8\,{\rm H}$, $4\,{\rm CH_{2TAFS}}$), 4.24 – 3.99 (м, $1\,{\rm H_{pyr}}$), 3.73 – 3.23 (м, $9\,{\rm H}$, $1\,{\rm H_{pyr}}$, $4\,{\rm CH_{2pip}}$), 2.60 (с, $2\,{\rm H}$, ${\rm CH_{2isoph}}$), 2.21 (с, $6\,{\rm H}$, $2\,{\rm CH_{3TAFS}}$), 2.18 – 2.11 (м, $4\,{\rm H}$, $2\,{\rm CH_{2pip}}$), 2.00 – 1.80 (м, $4\,{\rm H}$, $2\,{\rm CH_{2pip}}$), 1.45 – 1.34 (м, $2\,{\rm H}$, ${\rm CH_{2isoph}}$), 1.14 (с, $6\,{\rm H}$, $2\,{\rm CH_{3isoph}}$). $9\,{\rm MP}^{-19}{\rm F}$ (${\rm CD_3CN}$) δ , м.д.: 109.21 – 105.32 (м, $12\,{\rm F}$, $4\,{\rm CF_3}$), 32.41 – 31.58 (м, $8\,{\rm F}$), 22.10 – 21.54 (м, $10\,{\rm F}$), 17.84 (уш. с, $2\,{\rm F}$), 12.98 – 12.06 (м, $2\,{\rm F}$), 11.83 – 10.84 (м, $2\,{\rm F}$). ${\rm MC}$ (MALDI-TOF) Найдено [M – H] -: 2119.2502. ${\rm C_{92}H_{56}F_{36}N_6O_4S_4}$. Рассчитано: [М – H] 2119.2598.

пиперидин с двумя ТАТВЅ R33

ЭСП

(E)-{[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-4,5-дигидро-1*H*-пиразол-3,5-диил]бис(2,3,5,6-тетрафтор-4,1-фенилен)-**}бис(пиперидин-1,4-диил)бис[3,5-бис({[4-(трет-бутил)фенил]тио}метил)-4-метилбензоат] (12с).** По общей методике из 0.06 г (0.07 ммоль) соединения **11а**, 0.12 г (0.22 ммоль) TATBS-Cl, 0.14 мл (1.1 ммоль) триэтиламина и 0.001 г DMAP. Время реакции 6 часов. Твердый остаток после удаления растворителя очищали колоночной хроматографией на SiO_2 , элюент — бензол. Темно-красный порошок, выход $0.07 \, \Gamma$ (55%). (ацетон-d₆) δ , м.д.: 7.78 (c, $2\,\mathrm{H}_{\mathrm{TATBS}}$), 7.75 (c, $2\,\mathrm{H}_{\mathrm{TATBS}}$), 7.60 (д, $2\,\mathrm{H}_{\mathrm{Ar}}$, $J = 8.7\,$ Гц), 7.37 – 7.25 (м, $16 \, H_{TATBS}$), 7.20 (д, $2 \, H_{Ar}$, $J = 7.3 \, \Gamma \mu$), 7.13 – 7.05 (м, $2 \, H$, CH = CH), 6.78 (с, $1 \, H$, CH_{isoph}), 5.98 (дд, 1 H_{pvr} , J = 13.0, 5.6 Γ ц), 5.21 – 5.04 (м, 2 H, 2 CH_{pip}), 4.27 (с, 4 H, 2 CH_{2TATBS}), 4.25 (c, 4 H, 2 $\text{CH}_{2\text{TATBS}}$), 4.14 (дд, 1 H_{DVI} , J = 18.0, 13.0 Γ ц), 3.65 – 3.21 (м, 9 H, 4 $\text{CH}_{2\text{DID}}$, $1 H_{pyr}$), 2.62 (c, 2 H, CH_{2isoph}), 2.59 – 2.56 (M, 2 H, CH_{2isoph}), 2.50 (c, 3 H, CH_{3TATBS}), 2.48 (c, 3 H, CH_{3TATBS}), 2.14-2.07 (M, 4H, 2 CH_{2pip}), 1.99-1.75 (M, 4H, 2 CH_{2pip}), 1.27 (c, 18H, tBu_{TATBS}), 1.25 (c, 18 H, tBu_{TATBS}), 1.07 (c, 6 H, 2 CH_{3isoph}). ЯМР 19 F (ацетон- d_6) δ , м.д.: 22.59 – 21.86 (M, 2 F), 18.47 (VIII. c, 2 F), 13.01 – 12.49 (M, 2 F), 12.23 – 11.43 (M, 2 F). MC (MALDI-TOF) Найдено $[M+H]^+$: 1785.7141. $C_{104}H_{108}F_8N_6O_4S_4$. Рассчитано: [M+H] 1785.7260.

Моноэфиры 14а—d (общая методика) К раствору 0.10 г (0.15 ммоль) соединения 13а в 6 мл сухого бензола добавляли 0.2-0.3 ммоль соответствующего хлорангидрида , 0.2-0.3 ммоль триэтиламина и 1 мг DMAP. Полученную смесь кипятили до окончания реакции. Растворитель удаляли в вакууме, твердый остаток очищали колоночной хроматографией на SiO₂, элюент — бензол. Элюент удаляли в вакууме, твердый продукт промывали гексаном или смесью гексан-эфир.

(Е)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]-

пиперидин с одним бензоилом

винил}фенил)-3-фенил-4,5-дигидро-1H-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-илбензоат (14а). По общей методике из $0.10\,\mathrm{r}$ ($0.15\,\mathrm{mmonb}$) соединения $13\mathrm{a}$, $0.03\,\mathrm{mn}$ ($0.23\,\mathrm{mmonb}$) хлористого бензоила, $0.04\,\mathrm{mn}$ ($0.23\,\mathrm{mmonb}$) триэтиламина и $0.001\,\mathrm{r}$) DMAP. Время реакции 4 часа. Темно-красный порошок, выход $0.11\,\mathrm{r}$ ($92\,\%$). $T_{\mathrm{пл.}}$ $145-147\,^{\circ}\mathrm{C}$. ЭСП (ацетон) λ_{max} ($1\mathrm{g}\,\varepsilon$): 499 нм (4.68). ЯМР $^{-1}\mathrm{H}$ (ацетон- $^{-1}\mathrm{d}$ 6) δ , м.д.: 8.03 (д, $2\,\mathrm{H}_{\mathrm{Ar}}$, $J=7.6\,\mathrm{\Gamma II}$), 7.82 (д, $2\,\mathrm{H}_{\mathrm{Ar}}$, $J=7.6\,\mathrm{\Gamma II}$), 7.67-7.54 (м, $3\,\mathrm{H_{Ph}}$), 7.54-7.36 (м, $5\,\mathrm{H_{Ph}}$),

7.22 (д, 1 H, CH=, $J=15.3~\Gamma$ ц), 7.18–7.04 (м, 3 H, =CH, 2 H_{Ph}), 6.76 (с, 1 H, CH_{isoph}), 5.94 (дд, 1 H_{pyr}, $J=13.0, 5.6~\Gamma$ ц), 5.28–5.06 (м, 1 H, CH_{pip}), 4.08 (дд, 1 H_{pyr}, $J=18.0, 13.0~\Gamma$ ц), 3.65–3.40 (м, 3 H, 1 H_{pyr}, CH_{2pip}), 3.28 (с, 2 H, CH_{2pip}), 2.61 (с, 2 H, CH_{2isoph}), 2.56 (с, 2 H, CH_{2isoph}), 1.94–1.75 (м, 4 H, 2 CH_{2pip}), 1.06 (с, 6 H, 2 CH_{3isoph}). ЯМР ¹⁹F (ацетон-d₆) δ , м.д.: 18.23 (уш. с, 2 F), 12.70 (д, 2 F, $J=21.2~\Gamma$ ц). МС (DFS) Найдено [М⁺]: . C₄₆H₃₉F₄N₅O₂. Рассчитано: М .

написать

(E)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-3-фенил-4,5-дигидро-1H-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил-4-метил-3,5-бис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]-

пиперидин с одним TAFS R36 нил}пиперидин-4-ил-4-метил-3,5-оис({[2,3,5,6-тетрафтор-4-(трифторметил)фенил]-тио}метил)бензоат (14b). По общей методике из $0.10\,\mathrm{r}$ ($0.15\,\mathrm{mmonb}$) соединения 13a, $0.15\,\mathrm{r}$ ($0.23\,\mathrm{mmonb}$) ТАFS—Cl, $0.04\,\mathrm{mn}$ ($0.23\,\mathrm{mmonb}$) триэтиламина и $0.001\,\mathrm{r}$ DMAP. Время реакции $2.5\,\mathrm{часа}$. Темно-красный порошок, выход $0.19\,\mathrm{r}$ ($97\,\%$). $T_{\mathrm{пл}}$ $108-111\,^{\circ}\mathrm{C}$. ЭСП (ацетон) λ_{max} ($\mathrm{lg}\,\varepsilon$): $499\,\mathrm{hm}$ (4.61). ЯМР $^{1}\mathrm{H}$ (ацетон- d_{0}) δ , м.д.: $7.84\,\mathrm{(д, 2\,H_{\mathrm{Ar}}, \it J=8.8\,\Gamma \mu)}$, $7.65\,\mathrm{(c, 2\,H_{\mathrm{TAFS}})}$, $7.58\,\mathrm{(д, 2\,H_{\mathrm{Ar}}, \it J=8.8\,\Gamma \mu)}$, $7.50-7.38\,\mathrm{(m, 3\,H_{\mathrm{ph}})}$, $7.34\,\mathrm{(c, 1\,H_{\mathrm{ph}})}$, $7.28-7.04\,\mathrm{(m, 3\,H, 1\,H_{\mathrm{ph}}, \, \mathrm{CH=CH})}$, $6.77\,\mathrm{(c, 1\,H, \, \mathrm{CH}_{\mathrm{isoph}})}$, $5.95\,\mathrm{(дд, 1\,H_{\mathrm{pyr}}, \it J=12.9, 5.7\,\Gamma \mu)}$, $5.17-5.00\,\mathrm{(m, 1\,H, \, \mathrm{CH}_{\mathrm{pip}})}$, $4.47\,\mathrm{(c, 4\,H, 2\,\mathrm{CH}_{\mathrm{2TAFS}})}$, $4.09\,\mathrm{(дд, 1\,H_{\mathrm{pyr}}, \it J=17.8, 12.9\,\Gamma \mu)}$, $3.64-3.18\,\mathrm{(m, 5\,H, 1\,H_{\mathrm{pyr}}, 2\,\mathrm{CH}_{\mathrm{2pip}})}$, $2.66\,\mathrm{(c, 3\,H, \, \mathrm{CH}_{\mathrm{2pip}})}$, $1.07\,\mathrm{(c, 6\,H, 2\,\mathrm{CH}_{\mathrm{3isoph}})}$. ЯМР $^{19}\mathrm{F}$ (ацетон- d_{0}) δ , м.д.: $107.51\,\mathrm{(T, 6\,F, 2\,\mathrm{CF}_3, \it J=21.9\,\Gamma \mu)}$, $32.23-31.88\,\mathrm{(m, 4\,F)}$, $22.26-21.42\,\mathrm{(m, 4\,F)}$, $18.23\,\mathrm{(ym. c, 2\,F)}$, $12.65\,\mathrm{(дд, 2\,F, \it J=21.9, 8.2\,\Gamma \mu)}$. МС (MALDI-TOF) Найдено [М + H]+: $1308.2568.\,\mathrm{C}_{63}\,\mathrm{H}_{43}\,\mathrm{F}_{18}\,\mathrm{N}_{5}\,\mathrm{O}_{2}\,\mathrm{S}_{2}$. Рассчитано: [М + H] 1308.2644.

(*E*)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]-винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил-3,5-бис({[4-(*трет*-бутил)фенил]тио}метил)4-метилбензоат (14с). Способ 1. По общей методике из 0.10 г (0.15 ммоль) соединения 13а, 0.12 г (0.23 ммоль) ТАТВЅ-СІ, 0.06 мл (0.4 ммоль) триэтиламина и 0.001 г DMAP. Время реакции 3 часа. Темно-красный порошок, выход 0.10 г (59 %).

пиперидин с одним TATBS R31

Способ 2. К раствору $0.05\,\Gamma$ ($0.75\,\text{ммоль}$) соединения 13a, $0.04\,\Gamma$ ($0.75\,\text{ммоль}$) ТАТВS—ОН и $0.03\,\Gamma$ ($0.11\,\text{ммоль}$) трифенилфосфина в $6\,\text{мл}$ сухого ТГФ при перемешивании в атмосфере аргона по каплям прибавляли раствор $0.02\,\text{мл}$ DIAD в $4\,\text{мл}$ сухого ТГФ. Реакционную смесь выдерживали при комнатной температуре $2.5\,$ часа, растворитель удаляли в вакууме. Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол. Собирали красные фракции, элюент удаляли в вакууме. Темно-красный порошок, выход $0.06\,\Gamma$ ($70\,\%$).

Способ 3. Раствор 0.05 г (0.75 ммоль) соединения **13а**, 0.04 г (0.75 ммоль) ТАТВЅ-ОН, 0.02 г (0.83 ммоль) DCC и 0.001 г DMAP в 6 мл сухого бензола выдерживали

5 часов, после кипятили 7 часов. Растворитель удаляли в вакууме, Твердый остаток очищали колоночной хроматографией на SiO_2 , элюент — бензол. Собирали красные фракции, элюент удаляли в вакууме. Темно-красный порошок, выход $0.02\,\Gamma$ ($22\,\%$). $T_{\rm пл.}$ $108-110\,^{\circ}{\rm C}$. ЭСП (ацетон) $\lambda_{\rm max}$ ($1g\,\varepsilon$): 499 нм (4.67). ЯМР $^1{\rm H}$ (ацетон-d₆) δ , м.д.: 7.82 (д, $2\,{\rm H}_{\rm Ar}$, $J=8.5\,\Gamma{\rm II}$), 7.72 (с, $2\,{\rm H}_{\rm TATBS}$), 7.57 (д, $2\,{\rm H}_{\rm Ar}$, $J=8.5\,\Gamma{\rm II}$), 7.48 – 7.37 (м, $3\,{\rm H}_{\rm Ph}$), 7.32 (с, $2\,{\rm H}_{\rm Ph}$), 7.30 – 7.21 (м, $8\,{\rm H}_{\rm TATBS}$), 7.20 – 7.00 (м, $2\,{\rm H}$, CH=CH), 6.75 (с, $1\,{\rm H}$, CH $_{\rm isoph}$), 5.94 (дд, $1\,{\rm H}_{\rm pyr}$, J=12.9, 5.6 $\Gamma{\rm II}$), 5.06 (м, $1\,{\rm H}$, CH $_{\rm pip}$), 4.23 (с, $4\,{\rm H}$, $2\,{\rm CH}_{\rm 2TATBS}$), 4.07 (дд, $1\,{\rm H}_{\rm pyr}$, J=17.8, $12.9\,\Gamma{\rm II}$), 3.62 – 3.38 (м, $3\,{\rm H}$, $1\,{\rm H}_{\rm pyr}$, CH $_{\rm 2pip}$), 3.34 – 3.16 (м, $2\,{\rm H}$, CH $_{\rm 2pip}$), 2.60 (с, $2\,{\rm H}$, CH $_{\rm 2isoph}$), 2.55 (с, $2\,{\rm H}$, CH $_{\rm 2isoph}$), 2.47 (с, $3\,{\rm H}$, CH $_{\rm 3TATBS}$), 1.90 – 1.73 (м, $2\,{\rm H}$, CH $_{\rm 2pip}$), 1.38 – 1.18 (м, 20 H, $2\,{\rm tBu}_{\rm TATBS}$, CH $_{\rm 2pip}$), 1.05 (с, $6\,{\rm H}$, $2\,{\rm CH}_{\rm 3isoph}$). ЯМР $^{19}{\rm F}$ (ацетон-d₆) δ , м.д.: 18.29 (уш. с, $2\,{\rm F}$), 12.74 (д, $2\,{\rm F}$, $J=20.1\,\Gamma{\rm II}$). МС (МАLDI-TOF) Найдено [М + H] $^+$: 1140.4823. С $_{\rm 69}{\rm H}_{\rm 69}{\rm F}_4{\rm N}_5{\rm O}_2{\rm S}_2$. Рассчитано: [М + H] 1140.4902.

(E)-1-{4-[1-(4-{2-[3-(Дицианометилен)-5,5-диметилциклогекс-1-ен-1-ил]винил}фенил)-3-фенил-4,5-дигидро-1*H*-пиразол-5-ил]-2,3,5,6-тетрафторфенил}пиперидин-4-ил-3,5-бис({[4-(*трет*-бутил)фенил]тио}метил)-2,4,6-триметилбен-

пиперидин с одним IDATBS R32 **зоат (14d).** По общей методике из $0.09\,\Gamma$ ($0.14\,\mathrm{ммоль}$) соединения **13a**, $0.11\,\Gamma$ ($0.21\,\mathrm{ммоль}$) IDATBS-Cl, $0.06\,\mathrm{mn}$ ($0.4\,\mathrm{ммоль}$) триэтиламина и $0.001\,\Gamma$ ($0.05\,\mathrm{экв.}$) DMAP. Время реакции 12 часов. Темно-красный порошок, выход $0.01\,\Gamma$ ($7.5\,\%$). $T_{\mathrm{пл.}}$ 147–150 °C. ЭСП (ацетон) λ_{max} ($\lg\varepsilon$): 497 нм (4.64). ЯМР ¹H (CDCl₃) δ , м.д.: 7.74 (д, $2\,\mathrm{H_{Ar}}$, $J=7.3\,\Gamma\mathrm{u}$), 7.47-7.34 (м, $5\,\mathrm{H_{ph}}$), 7.33-7.24 (м, $8\,\mathrm{H_{IDATBS}}$), 7.08 (д, $2\,\mathrm{H_{Ar}}$, $J=7.3\,\Gamma\mathrm{u}$), 6.97 (д, $1\,\mathrm{H_{r}}$), $0.00\,\mathrm{H_{r}}$, $0.00\,\mathrm{H_{r}}$,

5 Выводы

В ходе работы были достигнуты следующие результаты:

- 1. Синтезированы донорные блоки для донорно-акцепторных красителей, исходя из декафторзамещенного трифенилпиразолина.
- 2. Получены новые красители конденсацией формильных производных октафтортрифенилпиразолинов с дицианоизофороном.
- 3. Исследованы альтернативные пути модификации синтезированных красителей дендроидными фрагментами на примере реакции бензоилирования, проведена оптимизация условий ацилирования.

Список литературы

- 1. Формильные производные аминозамещенных полифторфенил-4,5-дигидро-1Н-пиразолов: синтез и использование в качестве донорных блоков в структурах нелинейно-оптических хромофоров / В. Шелковников [и др.] // Журнал органической химии. 2019. Т. 55, № 10. С. 1551—1566.
- 2. *Bureš F.* Fundamental aspects of property tuning in push–pull molecules // RSC Adv. 2014. T. 4, № 102. C. 58826—58851.
- 3. Donor-(π -bridge)-azinium as D- π -A + one-dimensional and D- π -A +- π -D multidimensional V-shaped chromophores / M. A. Ramírez [μ др.] // Organic and Biomolecular Chemistry. 2012. T. 10, № 8. C. 1659—1669.
- 4. Benzothiazoles with tunable electron-withdrawing strength and reverse polarity: A route to triphenylamine-based chromophores with enhanced two-photon absorption / P. Hrobárik [и др.] // Journal of Organic Chemistry. 2011. Т. 76, № 21. С. 8726—8736.
- 5. Changing the shape of chromophores from "h-type" to "star-type": Increasing the macroscopic NLO effects by a large degree / W. Wu [и др.] // Polymer Chemistry. 2013. Т. 4, № 2. С. 378—386.
- 6. Chase D. T., Young B. S., Haley M. M. Incorporating BODIPY fluorophores into tetrakis(arylethynyl)benzenes // Journal of Organic Chemistry. 2011. T. 76, № 10. C. 4043—4051.
- 7. Property tuning in charge-transfer chromophores by systematic modulation of the spacer between donor and acceptor / F. Bureš [и др.] // Chemistry A European Journal. 2007. Т. 13, № 19. С. 5378—5387.
- 8. Dicyanopyrazine-derived push-pull chromophores for highly efficient photoredox catalysis / Y. Zhao [и др.] // RSC Advances. 2014. Т. 4, № 57. С. 30062—30067.
- 9. Blue organic light-emitting diodes based on pyrazoline phenyl derivative / P. Stakhira [и др.] // Synthetic Metals. 2012. Т. 162, № 3/4. С. 352—355.
- 10. *Ramkumar V.*, *Kannan P.* Highly fluorescent semiconducting pyrazoline materials for optoelectronics // Optical Materials. 2015. T. 46. C. 605—613.
- 11. *Vandana T.*, *Ramkumar V.*, *Kannan P.* Synthesis and fluorescent properties of poly(arylpyrazoline)'s for organic-electronics // Optical Materials. 2016. T. 58. C. 514—523.

- 12. A Comprehensive Review on Recent Developments in the Field of Biological Applications of Potent Pyrazolines Derived from Chalcone Precursors / V. V. Salian [и др.] // Letters in Drug Design & Discovery. 2018. Т. 15, № 5. С. 516—574.
- 13. 2-Pyrazolines as Biologically Active and Fluorescent Agents, An Overview / P. Singh [и др.] // Anti-Cancer Agents in Medicinal Chemistry. 2018. Т. 18, № 10. С. 1366—1385.
- 14. Pharmacological Activity of 4,5-Dihydropyrazole Derivatives (Review) / D. D. Korablina [и др.] // Pharmaceutical Chemistry Journal. 2016. Т. 50, № 5. С. 281—295.
- 15. *Hassan S.* Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives // Molecules. 2013. T. 18, № 3. C. 2683—2711.
- 16. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents / J. H. Ahn [и др.] // Bioorganic & Medicinal Chemistry Letters. 2004. Т. 14, № 17. С. 4461—4465.
- 17. Synthesis, characterization and pharmacological properties of some 4-arylhydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines / Ş. Güniz Küçükgüzel [и др.] // European Journal of Medicinal Chemistry. 2000. Т. 35, № 7/8. С. 761—771.
- 18. *Jagadish P. C.*, *Soni N.*, *Verma A.* Design, Synthesis, and In Vitro Antioxidant Activity of 1,3,5-Trisubstituted-2-pyrazolines Derivatives // Journal of Chemistry. 2013. T. 2013. C. 1—6.
- Barsoum F. F., Hosni H. M., Girgis A. S. Novel bis(1-acyl-2-pyrazolines) of potential antiinflammatory and molluscicidal properties // Bioorganic & Medicinal Chemistry. — 2006. — T. 14, № 11. — C. 3929—3937.
- 20. Automated parallel synthesis of chalcone-based screening libraries / D. G. Powers [и др.] // Tetrahedron. 1998. Т. 54, № 16. С. 4085—4096.
- 21. Chebanov V. A., Desenko S. M., Gurley T. W. Azaheterocycles Based on α,β -Unsaturated Carbonyls. Springer-Verlag Berlin Heidelberg, 2008.
- 22. Wang Z. Claisen-Schmidt Condensation // Comprehensive Organic Name Reactions and Reagents. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. C. 660—664.
- 23. *Nielsen A. T., Houlihan W. J.* The Aldol Condensation // Organic Reactions. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. C. 1—438.
- 24. Synthesis and antimicrobial activity of quinoline-based 2-pyrazolines / M. Munawar [и др.] // Chemical Papers. 2008. Т. 62, № 3. С. 288—293.

- 25. Development of potential selective and reversible pyrazoline based MAO-B inhibitors as MAO-B PET tracer precursors and reference substances for the early detection of Alzheimer's disease / C. Neudorfer [и др.] // Bioorganic & Medicinal Chemistry Letters. 2014. Т. 24, № 18. С. 4490—4495.
- 26. Solution-Phase Parallel Synthesis of a Library of Δ 2 -Pyrazolines / S. Manyem [и др.] // Journal of Combinatorial Chemistry. 2007. Т. 9, № 1. С. 20—28.
- 27. *Patel V. M.*, *Desai K. R.* Eco-friendly synthesis of pyrazoline derivatives over potassium carbonate // Arkivoc. 2004. T. 2004, № 1. C. 123.
- 28. Structure-guided discovery of 1,3,5-triazine–pyrazole conjugates as antibacterial and antibiofilm agent against pathogens causing human diseases with favorable metabolic fate / B. Singh [и др.] // Bioorganic & Medicinal Chemistry Letters. 2014. Т. 24, № 15. С. 3321—3325.
- 29. *Farooq S.*, *Ngaini Z.* One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines // Tetrahedron Letters. 2020. T. 61, № 4. C. 151416.
- 30. Rahmatzadeh S. S., Karami B., Khodabakhshi S. A Modified and Practical Synthetic Route to Indazoles and Pyrazoles Using Tungstate Sulfuric Acid // Journal of the Chinese Chemical Society. 2015. T. 62, № 1. C. 17—20.
- 31. *Daneshfar Z.*, *Rostami A.* Cellulose sulfonic acid as a green, efficient, and reusable catalyst for Nazarov cyclization of unactivated dienones and pyrazoline synthesis // RSC Advances. 2015. T. 5, № 127. C. 104695—104707.
- 32. *Marković V., Joksović M. D.* "On water" synthesis of N-unsubstituted pyrazoles: semicarbazide hydrochloride as an alternative to hydrazine for preparation of pyrazole-3-carboxylate derivatives and 3,5-disubstituted pyrazoles // Green Chemistry. 2015. T. 17, № 2. C. 842—847.
- 33. An atom efficient, green synthesis of 2-pyrazoline derivatives under solvent-free conditions using grinding technique / S. B. Zangade [и др.] // Green Chemistry Letters and Reviews. 2013. Т. 6, № 2. С. 123—127.
- 34. Synthesis, characterization and pharmacological study of 4,5-dihydropyrazolines carrying pyrimidine moiety / A. Adhikari [и др.] // European Journal of Medicinal Chemistry. 2012. T. 55. C. 467—474.
- 35. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives / S. N. Shelke [и др.] // Bioorganic & Medicinal Chemistry Letters. 2012. Т. 22, № 17. С. 5727—5730.

- 36. Взаимодействие полифторхалконов с гидразингидратом и фенилгидразином / К. Шмуйлович [и др.] // Известия Академии наук. Серия химическая. 2010. Т. 5, № 7. С. 1378—1382.
- 37. *Patil N. T., Singh V.* Synthesis of 1,3,5-trisubstituted pyrazolines via Zn(ii)-catalyzed double hydroamination of enynes with aryl hydrazines // Chemical Communications. 2011. T. 47, № 39. C. 11116.
- 38. *Müller T. J. J., Ansorge M., Aktah D.* An Unexpected Coupling Isomerization Sequence as an Entry to Novel Three-Component-Pyrazoline Syntheses // Angewandte Chemie International Edition. 2000. T. 39, № 7. C. 1253—1256.
- 39. A novel methodology for synthesis of dihydropyrazole derivatives as potential anticancer agents / X. Wang [и др.] // Org. Biomol. Chem. 2014. Т. 12, № 13. С. 2028—2032.
- 40. Reactivity of Mitsunobu reagent toward carbonyl compounds / R. D. Otte [и др.] // Organic Letters. 2005. Т. 7, № 3. С. 495—498.
- 41. Triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with activated alkenes leading to pyrazolines / S. Yamazaki [и др.] // RSC Advances. 2012. Т. 2, № 21. С. 8095—8103.
- 42. *Cui S. L.*, *Wang J.*, *Wang Y. G.* Facile access to pyrazolines via domino reaction of the Huisgen zwitterions with aziridines // Organic Letters. 2008. T. 10, № 1. C. 13—16.
- 43. Chemo- and Diastereoselective Construction of Indenopyrazolines via a Cascade aza-Michael/Aldol Annulation of Huisgen Zwitterions with 2-Arylideneindane-1,3-diones / Y. Li [и др.] // Advanced Synthesis & Catalysis. 2017. Т. 359, № 23. С. 4158—4164.
- 44. A Novel Reaction of the "Huisgen Zwitterion" with Chalcones and Dienones: An Efficient Strategy for the Synthesis of Pyrazoline and Pyrazolopyridazine Derivatives / V. Nair [и др.] // Angewandte Chemie International Edition. 2007. T. 46, № 12. C. 2070—2073.
- 45. Zhang J.-F., Pan H., Liu T. Facile strategy for the preparation of pyrazoline derivatives through phosphine-promoted [2 + 3] cycloaddition of dialkyl azodicarboxylates with β , γ unsaturated α -keto esters // Synthetic Communications. 2018. T. 48, No 9. C. 1085—1091.
- 46. Metal-catalyzed [3+2] cycloadditions of azomethine imines / U. Grošelj [и др.] // Chemistry of Heterocyclic Compounds. 2018. Т. 54, № 3. С. 214—240.
- 47. *Hashimoto T.*, *Takiguchi Y.*, *Maruoka K.* Catalytic Asymmetric Three-Component 1,3-Dipolar Cycloaddition of Aldehydes, Hydrazides, and Alkynes // Journal of the American Chemical Society. 2013. T. 135, № 31. C. 11473—11476.

- 48. *Guo Q.*, *Lu Z.* Recent Advances in Nitrogen–Nitrogen Bond Formation // Synthesis. 2017. T. 49, № 17. C. 3835—3847.
- 49. *Hassner A.*, *Michelson M. J.* The Formation of the N—N Bond in Pyrazolines // The Journal of Organic Chemistry. 1962. T. 27, № 1. C. 298—301.
- 50. Wu Q., Zhang Y., Cui S. Divergent syntheses of 2-aminonicotinonitriles and pyrazolines by copper-catalyzed cyclization of oxime ester // Organic Letters. 2014. T. 16, № 5. C. 1350—1353.
- 51. *Pangerl M.*, *Hughes C. C.*, *Trauner D.* Total synthesis of newbouldine via reductive N-N bond formation // Tetrahedron. 2010. T. 66, № 33. C. 6626—6631.
- 52. *Hughes C. C.*, *Trauner D*. The Total Synthesis of (−)-Amathaspiramide F // Angewandte Chemie International Edition. 2002. T. 41, № 23. C. 4556—4559.
- 53. *Baldwin J. E.*, *Pitlik J.* 1,3-Dipolar cycloadditions of 3-methylenecephams with diazoalkanes // Tetrahedron Letters. 1990. T. 31, № 17. C. 2483—2486.
- 54. *Mish M. R.*, *Guerra F. M.*, *Carreira E. M.* Asymmetric dipolar cycloadditions of Me3SiCHN2. Synthesis of a novel class of amino acids: Azaprolines // Journal of the American Chemical Society. 1997. T. 119, № 35. C. 8379—8380.
- 55. 1,3-Dipolar cycloadditions of trimethylsilyldiazomethane revisited: Steric demand of the dipolarophile and the influence on product distribution / D. Simovic [и др.] // Journal of Organic Chemistry. 2007. Т. 72, № 2. С. 650—653.
- 56. Facile synthesis of novel tetrasubstituted 1-pyrazolines from Baylis–Hillman adducts and acyl diazomethanes / H. Sun [и др.] // Tetrahedron Letters. 2013. Т. 54, № 29. С. 3846—3850.
- 57. *Misani F.*, *Speers L.*, *Lyon A. M.* Synthetic Studies in the Field of Fluorinated Cyclopropanes //
 Journal of the American Chemical Society. 1956. T. 78, № 12. C. 2801—2804.
- 58. *Takamizawa A.*, *Hayashi S.* Syntheses of Pyrazole Derivatives // YAKUGAKU ZASSHI. 1963. T. 83, № 4. C. 373—377.
- 59. *Takamizawa A.*, *Hayashi S.*, *Sato H.* Syntheses of Pyrazole Derivatives. VIII // YAKUGAKU ZASSHI. 1965. T. 85, № 2. C. 158—165.
- 60. Armstrong S. E., Tipping A. E. Novel 1:1 adducts from the reaction of hexafluoroacetone azine with various olefins and 1,3-dienes; Diels-Alder adducts as intermediates in the formation of criss-cross 2:1 adducts // Journal of Fluorine Chemistry. 1973. T. 3, № 1. C. 119—121.

- 61. Synthesis of 1H-3-pyrazolines / K. Burger [и др.] // Tetrahedron. 1979. Т. 35, № 3. С. 389—395.
- 62. Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings / R. H. Wiley [и др.] // Chemistry of Heterocyclic Compounds. T. 22. Hoboken: John Wiley & Sons, Inc., 1967.
- 63. *Zolfigol M. A.*, *Azarifar D.*, *Maleki B.* Trichloroisocyanuric acid as a novel oxidizing agent for the oxidation of 1,3,5-trisubstituted pyrazolines under both heterogeneous and solvent free conditions // Tetrahedron Letters. 2004. T. 45, № 10. C. 2181—2183.
- 64. Dodwadmath R. P., Wheeler T. S. Studies in the chemistry of chalcones and Chalcone-Oxides // Proceedings of the Indian Academy of Sciences Section A. 1935. T. 2, № 5. C. 438—451.
- 65. Gladstone W. A., Norman R. O. Reactions of lead tetra-acetate. Part VII. Some reactions leading to pyrazoles // Journal of the Chemical Society C: Organic. 1966. № 1536. C. 1536—1540.
- 66. *Auwers K. V.*, *Heimke P.* Über Pyrazoline // Justus Liebig's Annalen der Chemie. 1927. T. 458, № 1. C. 186—220.
- 67. Hypervalent Iodine Oxidation of 1, 3, 5-Trisubstituted Pyrazolines: A Facile Synthesis of 1,3,5-Trisubstituted Pyrazoles / S. P. Singh [и др.] // Synthetic Communications. 1997. Т. 27, № 15. С. 2683—2689.
- 68. Walker D., Hiebert J. D. 2,3-Dichloro-5,6-dicyanobenzoquinone and Its Reactions // Chemical Reviews. 1967. T. 67, № 2. C. 153—195.
- 69. *Nakamichi N., Kawashita Y., Hayashi M.* Oxidative Aromatization of 1,3,5-Trisubstituted Pyrazolines and Hantzsch 1,4-Dihydropyridines by Pd/C in Acetic Acid // Organic Letters. 2002. T. 4, № 22. C. 3955—3957.
- 70. *Kojima M.*, *Kanai M.* Tris(pentafluorophenyl)borane-Catalyzed Acceptorless Dehydrogenation of N-Heterocycles // Angewandte Chemie International Edition. 2016. T. 55, № 40. C. 12224—12227.
- 71. *Shah J. N.*, *Shah C. K.* Oxidative dehydrogenation of pyrazolines with cobalt(II) and oxygen // The Journal of Organic Chemistry. 1978. T. 43, № 6. C. 1266—1267.
- 72. Visible light mediated metal-free oxidative aromatization of 1,3,5-trisubstituted pyrazolines / S. B. Annes [и др.] // Tetrahedron Letters. 2019. Т. 60, № 34. С. 150932.
- 73. *Traven V. F.*, *Dolotov S. M.*, *Ivanov I. V.* Activation of fluorescence of lactone forms of rhodamine dyes by photodehydrogenation of aryl(hetaryl)pyrazolines // Russian Chemical Bulletin. 2016. T. 65, № 3. C. 735—740.

- 74. *Jakob F.*, *Herdtweck E.*, *Bach T.* Synthesis and Properties of Chiral Pyrazolidines Derived from (+)-Pulegone // Chemistry A European Journal. 2010. T. 16, № 25. C. 7537—7546.
- 75. A convenient synthesis of substituted pyrazolidines and azaproline derivatives through highly regio- and diastereoselective reduction of 2-pyrazolines / J. M. De Los Santos [и др.] // Journal of Organic Chemistry. 2008. T. 73, № 2. C. 550—557.
- 76. *Mish M. R.*, *Guerra F. M.*, *Carreira E. M.* Asymmetric Dipolar Cycloadditions of Me 3 SiCHN 2. Synthesis of a Novel Class of Amino Acids: Azaprolines // Journal of the American Chemical Society. 1997. T. 119, № 35. C. 8379—8380.
- 77. Carter H. E., Abeele F. R. V., Rothrock J. W. A general method for the synthesis of α, γ -diamino acids // Journal of Biological Chemistry. 1949. T. 178. C. 325—334.
- 78. Synthesis and nonlinear optical properties of donor-acceptor dyes based on triphenylpyrazolines as a donor block and dicyanoisophorone as acceptor / V. V. Shelkovnikov [и др.] // Russian Chemical Bulletin. 2019. Т. 68, № 1. С. 92—98.
- 79. Синтез несимметричных тиофлавилиевых красителей на основе производный юлолидина и полифторированных трифенилпиразолинов / И. Каргаполова [и др.] // Журнал органической химии. 2016. Т. 52. С. 10—14.