



#### Prof. FELIX ORLANDO MARIA JOSEPH

**DEPARMENT OF ELECTRICAL ENGINEERING** 



# Neural Control of a Hand Exoskeleton based on Subject Intention



#### **Outline**

1. Development of Learning Scheme using surface EMG signal

**2.** Development of Learning Scheme using surface EEG signal

**3.** Working Demos

4. Conclusion

#### Introduction

❖ To develop a learning scheme based on surface EMG signal and then through EEG signal using BPN Neural Network.

❖ To actuate the index finger exoskeleton using the learned network.



## Electromyogram

Measure of electrical activity of the muscles.

• Measurements can be done from a single muscle fiber, a single muscle or a group of muscles.

• Invasive and Surface electrode based methodology.

#### **Surface EMG**

- Invasive:
  - Painful
  - Medical Expert
  - Time consuming
- Surface EMG based method: Preferred in our study





#### **Surface EMG: Electrical Characteristics**

- Amplitude:
  - From 0 to around 20 mV
  - Depends on the muscle
- Frequency Range:
  - Upto 1000 Hz
  - Usable range: 30 500 Hz





# **Control of Exoskeleton using Surface EMG signal**







#### **Feature Extraction**

• The Hjorth parameters extracted are represented in frequency and time domain:

#### 1. Activity:

- measures the variance of the time-varying data.
- represents the surface envelope of the power spectrum in the frequency domain.
- The value of Activity is large/small, if there are many/few high frequency constituents of the signal.

$$m_0 = \int_{-\infty}^{+\infty} S_p(w) dw = \frac{1}{T} \int_{t-T}^t g^2(t) dt$$

#### **Feature Extraction**

#### 2. Mobility:

- It is defined as the square root of variance of the first derivative of the signal divided by variance of the signal.
- represents mean/dominant frequency

$$m_2 = \int_{-\infty}^{+\infty} w^2 S_p(w) dw = \frac{1}{T} \int_{t-T}^t (\frac{dg}{dt})^2 dt$$





#### **Feature Extraction**

#### 3. Complexity:

- It is a measure of the similarity of the shape of a signal to a pure sine waveform.
- If the value of the complexity is closer to one, the shape of the signal is more similar to a sine waveform.

$$m_4 = \int_{-\infty}^{+\infty} w^4 S_p(w) dw = \frac{1}{T} \int_{t-T}^t (\frac{d^2 g}{dt^2})^2 dt$$



# Control of Exoskeleton using Surface EMG signal Finger Motion for Training the Network







# **Back Propagation Algorithm**



#### **Back Propagation Algorithm**

The update laws for the weights connecting the output and the hidden layers is as follows:

$$W_{j_2j_1}(t+1) = W_{j_2j_1}(t) + \alpha(q_{j_2}^d - q_{j_2})q_{j_2}(1 - q_{j_2})v_{j_1}$$
  
=  $W_{j_2j_1}(t) + \alpha\delta_{j_2}v_{j_1}$ 

where,  $\alpha$  is the learning rate and

$$\delta_{j_2} = (q_{j_2}^d - q_{j_2})q_{j_2}(1 - q_{j_2})$$



### **Back Propagation Algorithm**

The update law for the weights connecting the hidden and the input layers is as follows:

$$W_{j_1j_0}(t+1) = W_{j_1j_0}(t) + \alpha \delta_{j_1} p_{j_0}$$

where,  $\alpha$  is the learning rate and

$$\delta_{j_1} = v_{j_1} (1 - v_{j_1}) \sum_{j_2=1}^{n_2} \delta_{j_2} W_{j_2 j_1}$$

#### Control of Exoskeleton using Surface EMG signal

#### **Multilayer Neural Network**

**Input: Hjorth Paramters** 

Activity 
$$(y) = \sum_{i=1}^{N} \frac{(y(i)-\mu)^2}{N}$$
  
Mobility  $(y) = \sqrt{\frac{variance(y')}{variance(y)}}$ 

$$Complexity(y) = \frac{Mobility(y')}{Mobility(y)}$$

**Output:** Finger MCP joint angle corresponding to Flexion/Extension Motions



# **Control of Exoskeleton using Surface EMG signal**







# **Working Demo**



# With EEG Signal



#### **Data Acquisition and Processing**

- The EEG cap worn by the human subject is connected with BIOPAC MP 150 system via NIDAQ 6212 interfaced with LabVIEW platform.
- The EEG cap contains 21 electrodes, of which 20 of them are connected 10 EEG channels and one common ground electrode.
- It required noise free environment and focused thinking process.



Fig: Electrode position and connection to channel



#### **Results**





90 degree flexion movement results of index finger exoskeleton.







(d) Angle Output.



90 degree extension movement results of index finger exoskeleton.



#### **Results**





(a) Channel 2 EEG Signal.

(b) Channel 3 EEG Signal.







(d) Angle Output.

#### **Results**





(a) Channel 2 EEG Signal.

(b) Channel 3 EEG Signal.







(d) Angle Output.

# **Working Demo**



## **Conclusion**

Performed control through EEG signal

**❖** EMG signal based control

# Thank You!

