1 Basic statistics in Pandas

Like NumPy, Pandas may be used to give us some basic statistics on data.

Let's start by building a very sample dataframe.

```
import pandas as pd
df = pd.DataFrame()

names = ['Gandolf','Gimli','Frodo','Legolas','Bilbo']
types = ['Wizard','Dwarf','Hobbit','Elf','Hobbit']
magic = [10, 1, 4, 6, 4]
aggression = [7, 10, 2, 5, 1]
stealth = [8, 2, 5, 10, None]

df['names'] = names
df['type'] = types
df['magic_power'] = magic
df['aggression'] = aggression
df['stealth'] = stealth
```

1.1 Overview statistics

We can get an overview with the describe() method.

```
print (df.describe())
```

OUT:

	magic_power	aggression	${\tt stealth}$
count	5.000000	5.000000	4.00
mean	5.000000	5.200000	6.25
std	3.316625	3.420526	3.50
min	1.000000	2.000000	2.00
25%	4.000000	2.000000	4.25
50%	4.000000	5.000000	6.50
75%	6.000000	7.000000	8.50
max	10.000000	10.000000	10.00

We can modify the percentiles reported:

```
print (df.describe(percentiles=[0.05,0.1,0.9,0.95]))
```

OUT:

	magic_power	aggression	stealth
count	5.000000	5.000000	4.00
mean	5.000000	5.200000	6.25
std	3.316625	3.420526	3.50
min	1.000000	2.000000	2.00
5%	1.600000	2.000000	2.45
10%	2.200000	2.000000	2.90
50%	4.000000	5.000000	6.50
90%	8.400000	8.800000	9.40
95%	9.200000	9.400000	9.70
max	10.000000	10.000000	10.00

Specific statistics may be returned:

```
print (df.mean())
```

```
OUT:
magic_power 5.00
aggression 5.20
stealth 6.25
dtype: float64
```

1.2 List of key statistical methods

```
mean() = mean
median() = median
min() = minimum
max() = maximum
quantile(x)
var() = variance
std() = standard deviation
mad() = mean absolute variation
skew() = skewness of distribution
kurt() = kurtosis
cov() = covariance
corr() = Pearson Correlation coefficent
autocorr() = autocorelation
diff() = first discrete difference
cumsum() = cumulative sum
comprod() = cumulative product
cummin() = cumulative minimum
```

1.3 Returning the index of minimum and maximum

idxmin and idxmax will return the index row of the min/max. If two values are equal the first will be returned.

```
print ('Minimum:', df['aggression'].min())
print ('Index row:',df['aggression'].idxmin())
print ('\nFull row:\n', df.iloc[df['aggression'].idxmin()])
OUT:
Minimum: 2
Index row: 2
Full row:
               Frodo
names
               Hobbit
type
magic_power
aggression
                    2
stealth
Name: 2, dtype: object
```

1.4 Removing rows with incomplete data

We can extract only those rows with a complete data set using the dropna() method.

```
print (df.dropna())
```

OUT:

	names	type	magic_power	aggression	stealth
0	${\tt Gandolf}$	Wizard	10	7	8.0
1	Gimli	Dwarf	1	10	2.0
2	Frodo	Hobbit	4	2	5.0
3	Legolas	Elf	6	5	10.0

We can use this directly in the describe method.

```
print (df.dropna().describe())
```

OUT:

magic_po	wer aggress	sion stealth	
count	4.000000	4.000000	4.00
mean	5.250000	6.000000	6.25
std	3.774917	3.366502	3.50
min	1.000000	2.000000	2.00
25%	3.250000	4.250000	4.25
50%	5.000000	6.000000	6.50
75%	7.000000	7.750000	8.50
max	10.000000	10.000000	10.00

To create a new dataframe with compplete rows only, we would simply assign to a new variable name:

```
df_na_dropped = df.dropna()
```