Domain Adaptation in Medical Imaging: WGAN + CNN-Transformer

Saad Alrajhi, Drew Kulischak, Nick Russert, Francis Fernandez, Chao Jung Wu

Motivation: Domain Shifts

- When models are trained and tested on their same domains or distributions, they are able to perform really well.
- However, when these models attempt to test on other domains or distributions, they perform poorly.
- The domain differences in medical scans could be based on modality, patient population differences, or region.

GPT-image

Motivation: Data Scarcity

Translation in x-axis

In medical images, there is a data scarcity problem

Translation in x-axis

 Because of the lack of available medical images, scientists apply different techniques to get the most out of existing medical data

| Random Shear in x-axis | Random Shear in y-axis | Random Rotation | Random Rotation | (-30, 30) | Random Rotation | (-90, 90) | Random Rotation | (-15, 15) | Random Rotation | (-30, 30) | Random Rotation | (-30, 30) | Random Rotation | (-30, 50) | Random Rotation | (-30, 50

Geometric Augmentations

Translation in y-axis

Translation in y-axis

	Egypt	Poland	
Malignant	210	102	
Benign	570	154	
TOTAL	780	256	

Approach: Datasets

We define two distinct domains (distributions) that share the same modality of ultrasound medical images of tumors:

- Egypt, a collection of ultrasound images of breast cancer from Egyptian medical centers (our training dataset)
- 2. **Poland**, a collection of ultrasound images of breast cancer from Polish hospitals (our testing dataset)

- The tasks is to classify whether the tumors are benign (1) or malignant (0)

Approach: Datasets

Poland

Egypt

Goals and Contributions

Goals:

- 1. Understand why some models yields higher accuracies in the general classification task.
- 2. Build a GAN model that can generate realistic looking synthetic images.
- Understand how different ratios of real and synthetic data help models adapt their accuracy to other domains

Contributions:

- A modified WGAN model (BIG-WGAN)
- 2. **CNN-Transformer** based on TransMed
- 3. Experiments within and across domains using **CNNs,ViT**, and a **CNN-Transformer**

Domains Differences

Training and Testing on different domains causes models to perform much worse the target domain. Here is an example using a Resnet:

	Tested on Souce	Tested on Target	Domain Gap
Trained on Egypt	80.26%	62.50%	17.76%
Trained on Poland	68.06%	49.01%	19.07%

Classification Models

Synthetic Images Generation

We utilize a WGAN, a GAN model with the following attributes:

- Provides smoother gradients
- A score metric (wasserstein distance) instead of a sigmoid percentage in the discriminator.
- Weight clipping, which prevents the gradients from exploding

Methodology

GANs Weaknesses

• Its difficult to find a GAN model that is able to generate "good" fake images for smaller datasets, especially for this problem. We modify the WGAN and call it BIG-WGAN.

Big WGAN

We add more convolution layers to our Generator

Big WGAN

More Convolutions in the discriminator

Big WGAN

Spectral norm added to the discriminator

Synthetic Data

Benign:

Malignant:

Results: ResNet50

ResNet model trained on Egypt

Train on	Real	Fake	Test on	Accuracy	Domain Gap
Real only	100	0	Egypt	71.4%	N/A
Real only	100	0	Poland	65%	6.4%
Real + Fake (4:1)	100	25	Poland	66%	5.4%
Real + Fake (2:1)	100	50	Poland	63%	8.4%
Real + Fake (3:2)	100	75	Poland	64%	7.4%
Real + Fake (1:1)	100	100	Poland	66%	5.4%

Results: Vision Transformer

Vision Transformer model only trained on Egypt

Train Domain	Real	Fake	Test Domain	Accuracy	Domain Gap
Real only	100	0	Egypt	70%	N/A
Real only	100	0	Poland	55%	15%
Real + Fake (4:1)	100	25	Poland	50%	20%
Real + Fake (2:1)	100	50	Poland	58%	12%
Real + Fake (3:2)	100	75	Poland	55%	15%
Real + Fake (1:1)	100	100	Poland	55%	15%

CNN-Transformer

- The CNN takes 1x128x128 images and transforms them into a 256x32x32 patches
- Then the 32x32, or 1024 "patches" are fed into the transformer
- Great at discovering long-distance relationships for many small patches

Inspired by <u>TransMed</u>

Results: CNN-Transformer

CNN-Transformer model trained on Egypt

Train Domain	Real	Fake	Test Domain	Accuracy	Domain Gap
Real only	100	0	Egypt	76.4%	N/A
Real only	100	0	Poland	63.6%	12.8%
Real + Fake (4:1)	100	25	Poland	65%	11.4%
Real + Fake (2:1)	100	50	Poland	65%	11.4%
Real + Fake (3:2)	100	75	Poland	65.4%	11%
Real + Fake (1:1)	100	100	Poland	65%	11.4%

Comparing The Models

Training on Egypt's images and testing on Poland

Train Domain	Test Domain	ResNet50 Domain Gap	Vision Transformer Domain Gap	CNN-Transformer Domain Gap
Real only	Poland	6.4%	15%	12.8%
Real + Fake (4:1)	Poland	5.4%	20%	11.4%
Real + Fake (2:1)	Poland	8.4%	12%	11.4%
Real + Fake (3:2)	Poland	7.4%	15%	11%
Real + Fake (1:1)	Poland	5.4%	15%	11.4%

Comparing The Models by Accuracy

- All the training is done on Egypt, testing on both **Egypt** and **Poland**.
- Some of the augmentation is done by horizontal flipping of both real and synthetic images.

Train set	Real (624)	Real (780)	Real (780) + Synthetic (400)	Real (780) + Synthetic (1580)
Test on	Egypt	Poland	Poland	Poland
Resnet	80.26%	61.3%	60.15%	65.62%
ViT	74.3%	60.5%	57.4%	60.2%
CNN-Transformer	83%	63.5%	62.27%	63.8%

Training (CNN-Transformer) on the source

- The model is overfitting, likely because of the small amount of training data
- Most of our data is dominant on the benign side.
- In real world scenarios, such a low recall is highly problematic

Discussion: CNNs, Transformers

- It seems that transformers perform poorly for medical image classification, perhaps an ever bigger patch size is needed in the transformers.
- Domain gaps don't account for the general accuracy of the model, they are just a way to show how accuracies are different across domains.
- CNN based models are better at learning from both synthetic and ultrasound data

Discussion: Datasets and results

- Generating good fake images is extremely difficult with smaller datasets.
- It's hard to classify if tumors are benign or malignant within the same domain, let alone other domains.

Future Ideas:

- Explore distance metrics between images
- Distance metrics perform well in image comparisons

References

- 1. Al-dhabyani, W., et al. (2020). Dataset of breast ultrasound images. Science Direct. Paper. Dataset.
- 2. Yang, J, et al. (2022). MedMNIST v2 A large-scale lightweight benchmark for 2D and 3D biomedical image classification. *Cornell University* Paper.
- 3. Pawłowska, A., et al. (2024). Curate benchmark dataset for ultrasound based breast lesion analysis. Sci Data. Paper. Dataset.
- 4. Dosovitskiy, A., et al. (2020). **An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale**. *Cornell University*.

 Paper.
- 5. He, K., et al. (2015). Deep Residual Learning for Image Recognition. Cornell University. Paper.
- 6. Kebaili, A., et al. (2023). Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. MDPI. Paper.
- 7. Guan, H., Liu, M. (2021). **Domain Adaptation for Medical Image Analysis: A Survey**. *PubMed Central*. <u>Paper</u>.
- 8. Dai, Y., Gao, Y. (2021). TransMed: Transformers Advance Multimodal Medical Image Classification. Cornell University. Paper.
- 9. Arjovsky, M., et al. (2017). Wasserstein GAN. Cornell University. Paper

Contributions

Saad Alrajhi: BIG-WGAN, CNN-Transformer

Drew Kulischak: ResNet, Vision Transformer

Nick Russert: Gan Exploration, Synthetic Data

Francis Fernandez: ResNet, GANs

Chao Jung Wu: ResNet