# NOTES FOR ALGEBRAIC TOPOLOGY

# Based on the notes provided by Maxim on MATH 751 2024 FALL

**Author** Wells Guan

# Contents

| 1 | Fundamental Group |                                        | 3  |
|---|-------------------|----------------------------------------|----|
|   | 1.1               | Concepts                               | 3  |
|   | 1.2               | Basepoint Independence                 | 4  |
|   | 1.3               | Functoriality                          | 4  |
| 2 | Cla               | ssification of Compact Surfaces        | 4  |
|   | 2.1               | Concepts                               | 4  |
|   | 2.2               | Fundamental Group of a Labeling Scheme | 4  |
|   | 2.3               | Classification of Surfaces             | 5  |
| 3 | Covering spaces   |                                        | 5  |
|   | 3.1               | Concepts                               | 5  |
|   | 3.2               | Covering Transformations               | 7  |
|   | 3.3               | Universal Covering Spaces              | 9  |
|   | 3.4               | Group Actions and Covering maps        | 10 |
|   | 3.5               | Exercises                              | 11 |
| 4 | Homology          |                                        | 12 |
|   | 4.1               | Singular Homology                      | 12 |
|   | 4.2               | Homotopy Invariance                    | 14 |
|   | 4.3               | Homology of a pair                     | 15 |

# 1 Fundamental Group

#### 1.1 Concepts

**Definition 1.1.1.** (Homotopy)

Two paths  $\gamma, \delta \in \mathcal{P}(X, x, y) := \{ \gamma : [0, 1] \to X, \gamma(0) = x, \gamma(1) = y, \gamma \text{ continuous} \}$  are called **homotopic**, denoted as  $\gamma \sim \delta$ , if there exists a continuous map

$$F:[0,1]\times[0,1]\to X$$

such that  $F(\cdot,0) = \gamma, F(\cdot,1) = \delta, F(0,s) = x, F(1,s) = y$  for any  $s \in [0,1]$  and call F a **homotopy** between  $\gamma$  and  $\delta$ .



**Lemma 1.1.1.** The homotopy relation is an equivalence relation on the set  $\mathcal{P}(X, x, y)$ . *Proof.* 

**Definition 1.1.2.** (Fundamental Group)

The **funadamental group** of X at the basepoint  $x \in X$  is the set of equivalence classes of loops at x, i.e.  $\Omega(X,x) := \mathcal{P}(X,x,x)$  under the homotopy relation.

**Definition 1.1.3.** (Concatenation)

For  $x, y, z \in X$ , define a binary operation \* on paths:

$$\mathcal{P}(X, x, y) \times \mathcal{P}(X, y, z) \to \mathcal{P}(X, x, z)$$

by

$$(\gamma * \delta)(t) = \begin{cases} \gamma(2t) & 0 \le t \le \frac{1}{2} \\ \delta(2t - 1) & \frac{1}{2} \le t \le 1 \end{cases}$$

**Lemma 1.1.2.** The concatenation is consistent with the homotopy relation, i.e. if  $\gamma \sim \gamma'$ ,  $\delta \sim \delta'$ , then  $\gamma * \delta \sim \gamma' * \delta'$ .

Proof.

Corollary 1.1.3. Conncatenation of paths induces a binaary law on the set  $\pi_1(X,x)$  by

$$[\gamma]\cdot[\delta]:=[\gamma*\delta]$$

Proof.

**Theorem 1.1.4.**  $(\pi_1(X, x), \cdot)$  is a group. *Proof*.

# 1.2 Basepoint Independence

**Proposition 1.2.1.** For  $\delta \in \mathcal{P}(X, x, y)$ , we may define  $\delta_{\#} : \pi_1(X, x) \to \pi_1(X, y)$  by

$$[\gamma] \mapsto [\bar{\delta} * \gamma * \delta]$$

which is well-defined and an isomorphism.

Proof.

#### 1.3 Functoriality

# 2 Classification of Compact Surfaces

## 2.1 Concepts

**Definition 2.1.1.** An *n*-dimensional manifold with no boundary is a topological space X such that every  $x \in X$  has a neighbourhood  $U_x$  homeomorphic to  $\mathbb{R}^n$ .

**Definition 2.1.2.** A surface is a 2-dimensional manifold with no boundary.

**Proposition 2.1.1.** The identification space X obtained from a polygonal region P as above is Hausdorff and compact.

**Definition 2.1.3.** Let M, N be surfaces. We define the connected sum of M and N denoted by M # N as

$$M \# N = (M - D_1) \sqcup (N - D_2)/(\partial D_1 \sim \partial D_2)$$

where  $D_1, D_2$  are relatively disks in M, N.

**Lemma 2.1.2.** If  $L_1, L_2$  are labeling schemes for M and N, then their concatenation  $L_1L_2$  is a labeling scheme for M # N.

**Definition 2.1.4.**  $T_n = T^2 \# \cdots T^2$ , and  $P_n = \mathbb{R}P^2 \# \cdots \mathbb{R}P^2$ .

**Theorem 2.1.3.** Any compact surface is homeomorphic to  $S^2, T_n$  or  $P_n$  for some  $n \in \mathbb{N}$ .

#### 2.2 Fundamental Group of a Labeling Scheme

**Theorem 2.2.1.** If X is the identification space of a labeling scheme

$$a_1^{\epsilon_1}a_2^{-\epsilon}\cdots a_n^{\epsilon^n}$$

with  $\epsilon_i = \pm 1$  whose vertices are indentificed by the projection, then

$$\pi_1(X) = \langle a_1, \cdots, a_n | a_1^{\epsilon_1} a_2^{-\epsilon} \cdots a_n^{\epsilon^n} = 1 \rangle$$

Proposition 2.2.2.

$$\pi_1(T_n) = \langle a_1, b_1, \cdots, a_n, b_n | a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_n b_n a_n^{-1} b_n^{-1} \rangle$$
  
$$\pi_1(P_n) = \langle a_1, \cdots, a_n | a_1^2 \cdots a_n^2 = 1 \rangle$$

**Proposition 2.2.3.**  $S^2$ ,  $P_n$ ,  $T_n$  have non isomorphic fundamental froups, hence they are not homotopu eqiovalent nor homeomorphic.

**Theorem 2.2.4.** Any surface is homeomorphic to one of  $S^2, T_n$  or  $P_n$  for some  $n \in \mathbb{N}$ .

Corollary 2.2.5. If X is a simply connected surface, the nit is homeomorphic to  $S^2$ .

#### 2.3 Classification of Surfaces

**Proposition 2.3.1.** If P is a polygonal region with an even number of edges which are identified in pairs, then the quotient space X is a comapct 2-dimensional manifold.

**Theorem 2.3.2.** Every 2-dimensional compact surface is homeomorphic to the identification space of a regular labling scheme.

**Theorem 2.3.3.** As polygonal region of a regular labeling scheme is homromorphic to a standard labeling scheme.

# 3 Covering spaces

## 3.1 Concepts

**Definition 3.1.1.** (Covering)

A map  $p: E \to B$  is called a **covering** if

- p is continuous and onto.
- For any  $b \in B$ , there is  $U \in \mathcal{N}(b)$  is evenly covered, i.e.  $p^{-1}(U) = \sqcup_{\alpha} V_{\alpha}$  where  $V_{\alpha}$  are disjoint open sets and  $p|_{V_{\alpha}}: V_{\alpha} \to U$  is a homeomorphic for any  $\alpha$ .

**Definition 3.1.2.** (Equivalence of coverings)

Assume  $p_1: E_1 \to B, p_2: E_2 \to B$  are coverings. We call them **equivalent** if there is an  $f: E_1 \to E_2$  homeomorphism such that  $p_2 \circ f = p_1$ .

The equivalence of coverings is an equivalence relation.

**Lemma 3.1.1.** If  $p: E \to B$  is a covering,  $B_0 \subset B$  and  $E_0 := p^{-1}(B_0)$ , then  $p|_{E_0}$  is a covering.

**Theorem 3.1.2.** (Path lifting property)

Let p be a covering,  $b_0 \in B$ , and  $e_0 \in p^{-1}(b_0)$ . If  $\gamma : I \to B$  is a path in B starting at  $b_0$ , then there is a unique lift  $\widetilde{\gamma}_{e_0} : I \to E$  such that  $\widetilde{\gamma}_{e_0} = e_0$ .

**Theorem 3.1.3.** (Homotopy lifting property)

Let  $p: E \to B$  be a covering,  $b_0 \in B$  and  $e_0 \in p^{-1}(b_0)$ . Let  $F: I \times I \to B$  be a homotopy with with  $F(0,s) = b_0$  for all  $s \in I$ . Then there is a unique lift  $\widetilde{F}: I \times I \to E$  of F such that  $\widetilde{F}(0,s) = e_0$  for any  $s \in I$ .

Corollary 3.1.4. If  $\gamma_1, \gamma_2$  are paths in B starting at  $b_0$  which are homotopic by F, then  $\widetilde{\gamma}_{1e_0} \stackrel{\widetilde{F}}{\sim} \widetilde{\gamma}_{2e_0}$ , where infer the same endpoints.

Proof

We know  $\widetilde{F}$  is a homotopy in E starting at  $e_0$  and obviously an homotopy between  $\widetilde{\gamma}_1, \widetilde{\gamma}_2$  and hence they have the same endpoints.

**Definition 3.1.3.** Let  $b_0 \in B$ , for  $e_0 \in p^{-1}(b_0)$ , define

$$\phi_{e_0}: \pi(B, b_0) \to p^{-1}(b_0)$$

by  $[\gamma] \mapsto \widetilde{\gamma}_{e_0}(1)$ .

**Theorem 3.1.5.**  $\phi_{e_0}$  is onto if E is path-connected and injective if E is simply connected. *Proof*.

If E is path-connected, then there exists  $\gamma$  from  $e_0$  to any  $e \in p^{-1}(b)$ , then we know  $[p \circ \gamma] \mapsto e$ .

If E is simply-connected, we consider if  $\phi_{e_0}([\gamma]) = \phi_{e_0}([\delta]) = e$ , then since  $\widetilde{\gamma} \sim \widetilde{\delta}$  by E is simply-connected, we know  $\gamma \sim \delta$  and we are done.

**Proposition 3.1.6.** If  $p: E \to B$  is a covering and B is path-connected, then for  $b_0, b_1 \in B$  there is a bijection  $p^{-1}(b_0) \to p^{-1}(b_1)$ .

Proof.

We may consider  $\gamma$  a path from  $b_0, b_1$ , and then for any  $e \in p^{-1}(b_0)$ , there exists a unique lift  $\tilde{\gamma}_e$  of  $\gamma$ , and then we know the endpoint of  $\tilde{\gamma}_e$  is distinct and consider  $\bar{\gamma}$ , the conclusion is done.

**Proposition 3.1.7.** Let E be path connected,  $p: E \to B$  a covering, and  $p(e_0) = b_0$ . Then  $p_*: \pi_1(E, e_0) \to \pi_1(B, b_0)$  is injective. Further, if  $e_0$  is changed to some other point  $e_1 \in p^{-1}(b_0)$ , then the images under  $p_*$  of the groups  $\pi_1(E, e_0)$  and  $\pi_1(E, e_1)$  are conjugate in  $\pi_1(B, b_0)$ .

Proof.

For  $[\widetilde{\gamma}], [\widetilde{\delta}] \in \pi_1(E, e_0)$ , if  $\gamma \sim \delta$ , then by the uniqueness of lift, we know  $\widetilde{\gamma} \sim \widetilde{\delta}$ .

There exists  $\tilde{l}$  a path from  $e_0, e_1$ , then for any  $\tilde{\gamma} \sim \tilde{\delta}$  loops at  $e_0$ , then  $l_\# : \pi_1(E, e_0) \to \pi_1(E, e_1)$  is an isomorphism. And then for any  $[\tilde{\gamma}] \in \pi_1(E, e_0)$ , we know  $p_*(\bar{l})p_*([\tilde{l}\gamma)])p_*(l) = p_*([\bar{l}*\gamma*l])$  which also induces a surjective from  $p_*(\pi_1(E, e_0))$  to  $p_*(\pi_1(E, e_1))$  and obviously injective, and hence they are conjugate.

**Theorem 3.1.8.** Let E be path-connected,  $p: E \to B$  a covering map,  $b_0 \in B$  and  $e_0 \in p^{-1}(b_0)$ . Let  $H := p_*(\pi_1(E, e_0)) \le pi_1(B, b_0)$ . Then

- A loop  $\gamma$  in B based at  $b_0$  lifts to a loop in E at  $e_0$  if and only if  $[\gamma] \in H$ .
- $\phi_{e_0}: H/\pi_1(B,b_0) \to p^{-1}(b_0), [\gamma] \mapsto \widetilde{\gamma}_{e_0}(1)$  is a bijection. In particular,

$$\#p^{-1}(b_0) = [\pi_1(B, b_0)] : p_*(\pi_1(E, e_0))$$

Proof.

We may show  $p_*$  to be a homomorphism, which can be shown by

$$p_*([\widetilde{\gamma}][\widetilde{\delta}]) = [\gamma * \delta] = [\gamma][\delta] = p_*([\widetilde{\gamma}])p_*([\widetilde{\delta}])$$

and hence H is a subgroup. The first conclusion is trivial.

**Theorem 3.1.9.** (Lifting Lemma)

Let E, B, Y be path-connected and locally path-connected, i.e. there is a path-connected topology basis. Let  $p: E \to B$  be a cover,  $b_0 \in B, e_0 \in p^{-1}(b_0)$ , and  $f: Y \to B$  a continuous

map such that  $f(y_0) = b_0$ . Then there exists a lift  $\tilde{f}: Y \to E$  of f such that  $\tilde{f}(y_0) = e_0$  if and only if  $f_*\pi_1(Y, y_0) \subset p_*\pi_1(E, e_0)$ .

$$(E, e_0)$$

$$\downarrow^{\widetilde{f}} \qquad \downarrow^{p}$$

$$(Y, y_0) \xrightarrow{f} (B, b_0)$$

Proof.

For the sufficiency, we know if so, then  $p \circ \widetilde{f} = f$  and hence

$$f_*(\pi_1(Y, y_0)) = p_*(\widetilde{f}_*(\pi_1(Y, y_0))) \subset p_*(\pi_1(E, e_0))$$

For the necessity, firstly we may give the definition of  $\widetilde{f}$  naturally by considering for any  $y \in Y$ , there exists  $\gamma$  a path from  $y_0$  to y and hence  $f \circ \gamma$  will become a path from  $b_0$  to f(y) in B. Then by path lifting property, we may define  $\widetilde{f}(y)$  to be  $\widetilde{f} \circ \alpha(1)$  and then  $\widetilde{f}$  will be a lift if it is well-defined.

To see it is well-defined, we have to show that for any  $\gamma$ ,  $\delta$  from  $y_0$  to y,  $\widetilde{f} \circ \gamma(1) = \widetilde{f} \circ \delta(1)$ . Notice  $\gamma * \overline{\delta} \in \Omega(Y, y_0)$  and then  $f \circ (\gamma * \overline{\delta}) \in \Omega(B, b_0)$  and hence

$$(\widetilde{f\circ(\gamma*\bar{\delta})})_{e_0}=\widetilde{(f\circ\alpha)}_{e_0}*\widetilde{\overline{(f\circ\delta)}_{(\widetilde{f}\circ\gamma)(1)}}=\widetilde{(f\circ\alpha)}_{e_0}*\widetilde{(\widetilde{f\circ\delta)}_{e_0}}$$

and hence  $\widetilde{f}$  is well-defined.

Now we only need to show that  $\widetilde{f}$  is continuous. For any U open in E, we assume  $\widetilde{y} \in U$  and we know for f(y), there exists path-connected locally homeomorphism neighbourhood V of f(y), such that  $V' \subset U$  is homeomorphic to V by p. There exists W a path-connected neighbourhood of y such that  $f(W) \subset V$  and then we show  $f(W) \subset V'$ . Since for any  $w \in W$ , there exists  $\alpha$  a path from y to w and then we know  $f \circ \alpha$  from f(y) to f(w) covered by V and use the homeomorphism we know  $\widetilde{f}(w) \in V' \subset U$  and we are done.

Corollary 3.1.10. If Y is simply connected, then such a lift always exists.

**Proposition 3.1.11.** Let  $p: E \to B$  be a cover,  $b_0 \in B, e_0 \in p^{-1}(b_0)$ , and  $f: Y \to B$  a continuous map such that  $f(y_0) = b_0$ . If Y is connected and  $\widetilde{f_1}, \widetilde{f_2}: Y \to E$  are two lifts as in the previous theorem, then  $\widetilde{f_1} = \widetilde{f_2}$ .

Proof.

Consider  $A = {\widetilde{f}_1 = \widetilde{f}_2}$ , we know A is nonempty.

We claim A is closed, since for any y such that  $\widetilde{f}_1(y) \neq \widetilde{f}_2(y)$ , there exists U evenly covered neighbourhood of f(y) such that  $\widetilde{f}_i(y) \in U_i$  disjoint, since  $\widetilde{f}_i$  are continuous and hence A is closed.

Similarly, we will have A is open by the locally homeomorphism.

#### 3.2 Covering Transformations

For this subsection, all spaces are assumed to be path-connected and locally connected.

**Definition 3.2.1.** If  $p: E \to B, p': E' \to B$  are coverings, a **homomorphism of coverings**  $h: (E, p) \to (E', p')$  is a continuous map  $h: E \to E'$  such that  $p' \circ h = p$ .

**Definition 3.2.2.** An **isomorphism of coverings** is a homomorphism of coverings which is also a homeomorphism.

**Theorem 3.2.1.** Let  $p: E \to B, p': E' \to B$  be coverings of B with  $p(e_0) = p'(e'_0) = b_0 \in B$ . Then there is an equivalence of coverings  $h: E \to E', h(e_0) = e'_0$  if and only if  $H = p_*(\pi_1(E, e_0))$  and  $H' = p'_*(\pi_1(E', e'_0))$  are equal as subgroups.

$$(E', e'_0) \xrightarrow{\tilde{h}} (E', e'_0)$$

$$(E, e_0) \xrightarrow{p} (B, b_0)$$

Proof.

The sufficiency is trivial. It suffices to show the necessity, if H = H', we know there exists  $h: (E, e_0) \to (E', e'_0)$  and  $h': (E', e'_0) \to (E, e_0)$  such that  $h \circ p' = p, h' \circ p = p'$ . We have  $(h \circ h') \circ p = p$ , which is a lift of p and hence it has to be  $id_E$  and we are done.

**Proposition 3.2.2.** If  $h, k : (E, p) \to (E', p')$  are homeomorphisms of coverings p, p' of B such that h(e) = k(e) for some  $e \in E$ , then h = k.

**Definition 3.2.3.** (Deck Transformation)

If E = E', p = p' an equivalence of p interchanges points in the fiber over each  $b \in B$ , such a self-quivalence is called an automorphism of (E, p) or a **deck transformation**.

#### **Definition 3.2.4.** (Deck Group)

The deck transformations form a group under composition of maps, called the **deck** group of (E, P) and denoted  $\mathcal{D}(E, p)$ .

**Corollary 3.2.3.** If  $p: E \to B$  is a covering and  $p(e_1) = p(e_2)$ , then there is  $h \in \mathcal{D}(E, p)$  with  $h(e_1) = e_2$  if and only if  $p_*(\pi_1(E, e_1)) = p_*(\pi_1(E, e_2))$ .

Corollary 3.2.4. If  $h \in \mathcal{D}(E, p)$  so that h(x) = x for some x, then  $h = id_E$ .

**Theorem 3.2.5.** (Main Theorem)

Let  $p: E \to B$  and  $p': E' \to B$  be covering maps. Let  $p(e_0) = p'(e'_0) = b_0$ . The covering maps p and p' are equivalent if and only if the subgroups  $H = p_*(E, e_0)$  and  $H'(p'_*(E', e'_0))$  are conjugate in  $\pi_1(B, b_0)$ .

Notice this is a general case for Theorem 2.2.1.

Proof.

If there exists an equivalence h, and  $h(e_0) = e_0''$ , then we may have

$$p_*(\pi_1(E, e_0)) = p'_*(\pi_1(E', e''_0))$$

and there exists  $\delta$  from  $e_0''$  to  $e_0'$  and we know  $\delta_\#: \pi_1(E', e_0'') \to \pi_1(E', e_0')$  an isomorphism, and the induced  $p_*'(\pi_1(E', e_0''))$  is conjugate with  $p_*'(\pi_1(E', e_0'))$  by  $p_*'([\delta])$ .

To show the necessity, we consider if H' is conjuate to H, then there exists  $[\gamma] \in \pi_1(B, b_0)$  such that  $[\gamma]^{-1}H'[\gamma] = H$ , for  $\gamma$  we may consider  $\widetilde{\gamma}_{e'_0}$  and denote  $e''_0 = \widetilde{\gamma}_{e'_0}(1)$ . Then we may know that  $p_*(\pi_1(E', e''_0)) = H$  and there exists h such that  $h(e_0) = h(e''_0)$  an equivalence.

#### 3.3 Universal Covering Spaces

**Definition 3.3.1.** (Universal Cover)

A covering  $p: E \to B$  is called a universal covering map is E is simply connected, then call E a universal cover.

Corollary 3.3.1. If a universal cover of B exists, it is unique up to equivalence of coverings.

**Definition 3.3.2.** (Semi-locally Simply Connectness)

A topological space B is semi-locally simply connected if for any  $b \in B$ , there is a neighborhood  $U_b$  of b such that the inclusion  $\iota: U_b \hookrightarrow B$  induces a trivial homomorphism  $\iota_*: \pi_1(U_b, b) \to \pi_1(B, b)$ .

**Theorem 3.3.2.** A topological space B has a universal cover if and only if V is path connected, locally path connected and semi-locally connected. (Simply connectness infers path-connectness).

To show the theorem we need two conclusions.

**Proposition 3.3.3.** Let  $p: E \to B$  be a covering map,  $p(e_0) = b_0$ . Assume E is simply-connected. Then there exists a neighborhood U of  $b_0$  such that the inclusion  $\iota: U \hookrightarrow B$  induces a trivial homomorphism  $\iota_*: \pi_1(U, b_0) \to \pi_1(B, b_0)$ .

Proof.

Only thing need to be paid attention is that find a neighbourhood such that the loops on it have fiber consisted of loops, that is there is always  $U \in \mathcal{N}(b_0)$  such that U is evenly covered, and hence U will satisfy the requirement.

**Theorem 3.3.4.** Let B be path connected, locally path connected and semi-locally simply connected. Let  $b_0 \in B$  and  $H \subset \pi_1(B, b_0)$  a subgroup. Then there is a covering  $p: E \to B$  and a point  $e_0 \in p^{-1}(b_0)$  such that  $p_*\pi_1(E, e_0) = H$ .

Proof.

This theorem need a construction, like we consider  $\mathcal{P}$  to be all the paths from  $b_0$  in B and define a equivalent relation by  $\alpha \sim \beta$  if  $\alpha(1) = \beta(1)$  and  $[\alpha * \bar{\beta}] \in H$ , then denote  $\alpha_{\#}$  to be its equivalence class, and E to be all the equivalence classes. Define  $p: E \to B$  by  $\alpha_{\#} \mapsto \alpha(1)$ .

We may define  $(U \in \mathcal{N}(\alpha(1)), \alpha_{\#})$  by all  $(\alpha * \gamma)_{\#}$  such that  $\gamma$  is covered in U and it is eays to check p is continuous under the topology generated by  $(U, \alpha_{\#})$ . For any  $b \in B$  and  $p(\beta) = b$ , we consider U to be a local simply connected set and then define  $(U, \beta) \to U$  be  $\beta * \alpha \mapsto \alpha(1)$ , which is checked to be a bijection and equals the restriction of p on  $(U, \beta)$  and easy to be check a homeomorphism. If  $\beta, \gamma$  and there exists  $\delta, \delta'$  such that  $\beta * \delta \sim \gamma * \delta'$  and they are both in  $(U, \beta) \cap (U, \gamma)$  for some path-connected and locally simply connected U, then it can be checked that  $\beta \sim \gamma$  and hence p is a covering.

Now we only need to check that there exists  $e_0$  such that  $p_*(\pi_1(E, e_0)) = H$ , which is easy to be checked since for any  $[\gamma] \in H$ , there is a unique lift of  $\gamma$  and it has to be a loop at  $e_0$ , then we know  $\pi_*$  will be a surjection to H and we are done.

Now we may prove the Theorem 2.3.2.

Proof.

Only need to check the necessity, we may know let H = e and we can find a covering such that  $p_*(\pi_1(E, e_0))$  is trivial. We should consider the construction, and the simply connectness can be obtained fro the construction directly.

## 3.4 Group Actions and Covering maps

Assume all spaces path connected and locally path connected

**Theorem 3.4.1.** If  $p: E \to B$  is a cover with

$$H = p_*(\pi_1(E, e)) \subset \pi_1(B, p(e))$$

then

$$\mathcal{D}(E,p) \cong N(H)/H$$

where  $N(H) = \{g \in \pi_1(B, p(e)) | gHg^{-1}\}$  is the normalizer of H.

Proof.

We know  $\phi_e: \pi_1(B, p(e)) \to F := p^{-1}(p(e))$  is surjective, and we may consider if  $\phi_e([\gamma]) = \phi_e([\delta])$  then  $p_*([\gamma])p_*([\delta])^{-1} \in H$  and hence it induce  $\phi_e: \pi_1(B, p(e))/H \to F$  a bijection. And  $\varphi_e: \mathcal{D}(E, p) \to F$  by  $\varphi_e(h) = h(e)$ .

Then consider for  $e' \in Im\varphi_e$ , consider  $\alpha, \beta$  from e to e', we will have  $p_*([\alpha])p_*([\beta])^{-1} \in H$  and  $p_*([\alpha])Hp_*([\alpha])^{-1} = H$  and hence  $p_*([\alpha]) \in N(H)$ , and hence  $Im\varphi_e \subset \phi_e(N(H)/H)$ .

For any  $e' \in \phi_e(N(H)/H)$ , it is easy to check that  $p_*(\pi_1(E, e')) = H$  and hence there exists  $h \in \mathcal{D}(E, p)$  such that h(e) = e'.

Now we know  $Im(\varphi_e) = \phi_e(N(H)/H)$  and hence  $\phi_e^{-1} \circ \varphi_e$  is a injective and surjective, so an isomorphism and we are done.

**Corollary 3.4.2.** If  $\pi_1(E, e) = 0$ , then  $\mathcal{D}(E, p) \cong \pi_1(B, p(e))$ .

**Definition 3.4.1.** A covering  $p: E \to B$  is regular if  $p_*$  is a normal subgroup of  $\pi_1(B, p(e))$  for any  $e \in E$ .

**Proposition 3.4.3.** A covering  $p: E \to B$  is regular if and only if the deck group acts transitively on the fibers of p.

Proof.

The sufficiency can be obtained by consider the isomorphism between  $\mathcal{D}(E,p)$  and  $\pi_1(B,p(e))/H$ .

To see the necessity, we may know that  $N(H) = \pi_1(B, p(e))$  and we are done.

Corollary 3.4.4. If  $p: E \to B$  is regular, then

$$\mathcal{D}(E,p) \cong \pi_1(B,p(e))/p_*\pi_1(E,e)$$

It is easy to know that a unversial cover is regular.

#### Example 3.4.1.

- $p: \mathbb{R} \to S^1$  by  $t \mapsto \exp(2\pi i t)$
- $\mathbb{R}^2 \to T^2$  naturally.
- $p: S^2 \to \mathbb{R}P^2$  quotient.

**Definition 3.4.2.** We call G acts freely on X if gx = x for some x implies that  $g = e_G$ .

**Definition 3.4.3.** The group G acts properly discontinuous on X if for any  $x \in X$ , there is an open neighborhood  $U_x$  of x such that  $gU_x \cap U_x =$  for any  $g \neq e_G$ .

**Proposition 3.4.5.** If X is Hausdorff and G is a finite group of homeomorphisms of X acting freely on X, the action of G is properly discontinuous.

**Theorem 3.4.6.** Let X be a path-connected, locally path-connected topological space, and  $G \leq Homeo(X)$ . Then  $\pi: X \to X/G$  is a covering if and only if G acts properly discontinuous on X. Moreover, if this is the case, the deck group  $\mathcal{D}(X,\pi)$  of the covering is isomorphic to G and the covering is regular.

Proof.

We know  $\pi$  is an open map. To see the necessity, for any  $x \in X$ ,  $x \in U$  such that  $gU \cap U$  empty for any  $g \neq e_G$ . Then  $\pi(U)$  is an evenly covered neighborhood of [x] since it is an open continuous bijection.

To see the sufficiency, for  $x \in X$ ,  $V_x$  is a neighborhood of [x] which is evenly covered,  $V_x \cong U$  containing x. Then if  $y \in gU \cap U$ , then  $g^{-1}y, y$  are in U and they have the same image under  $\pi$ , which is a contradiction.

Now we prove that  $\mathcal{D}(X,\pi) \cong G$ . g is obviously in  $\mathcal{D}(X,\pi)$ , and for any  $h \in \mathcal{D}(X,\pi)$ , h(x) = gx, then h has to be g since  $\pi$  is a covering.

 $\pi$  is regular by proposition 2.4.3.

Corollary 3.4.7. If X is simply connected and G acts properly discontinuously on X, then  $\pi_1(X/G) \cong G$ .

**Proposition 3.4.8.** If  $p: E \to B$  is a cover, then  $\mathcal{D}(E,p)$  acts properly discontinuous on E.

**Proposition 3.4.9.** Any regular cover of B is of the form E/G, where E is the universal cover of B and G acts properly discontinuous on E.

#### 3.5 Exercises

**Ex 3.1.** Show that the map  $p: S^1 \to S^1, p(z) = z^n$  is a covering.

Proof.

For  $x = e^{i2\pi t}$ , we have  $y = e^{i2\pi t/n}$  such that  $y^n = x$  and hence p is surjective. Obviously continuous and choose B(1/2n) which is evenly covered.

**Ex 3.2.** Let  $p: E \to B$  be a covering map, with E path connected. Show that if B is simply-connected, then p is a homeomorphism.

Proof.

For  $b \in B$ , if there exists  $e_b, e'_b$  distinct in the fiber of b, then consider  $\gamma$  a path from  $e_b$  to  $e'_b$  and we know  $p \circ \gamma$  is a trivial loop in B and hence  $e_b = e'_b$  which is a contradiction. So  $p^{-1}$  is well defined and we know p is open by choosing a evenly covered neighborhood.

#### Ex 3.3.

- Show that if n > 1 then any continuous map  $f: S^n \to S^1$  is nullhomotopic.
- Show that any continuous map  $f: \mathbb{R}P^2 \to S^1$  is nullhomotopic.

Proof.

If  $\widetilde{f}$  is a lift of a continuous map and it is nullhomotopic, then we know  $p \circ F$  will be a homotopy from f to a constant. So since  $\mathcal{R}$  is a cover of  $S^1$  which is contractible, and we are done since  $p_*(\pi_1(S^n, e))$  is trivial. For the second problem, notice that  $p_*(\mathbb{R}\mathcal{P}^{\in}, e)$ 

has to be trivial since,  $\mathbb{R}P^2 = S^3/\{0,1\}$  which means  $\pi_1(\mathbb{R}P^2)$  is  $\{0,1\}$  since  $S^3$  is simply connected.

# 4 Homology

# 4.1 Singular Homology

**Definiton 4.1.1.** (Simplex)

The **standard** *n*-simplex is the set

$$\Delta^n := \left\{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} \Big| \sum_{i=0}^n t_i = 1, t_i \ge 0 \right\}$$

An *n*-simplex is the convex span in  $\mathbb{R}^m$  of n+1 points  $v_0, \dots, v_n$  that do not lie in a hyperplane of dimension less than n.

We denote

$$[v_0,\cdots,v_n]$$

for the *n*-simplex generated by  $\{v_i\}$ , and there is a canonical linear homeomorphism from  $\Delta^n$  to any *n*-simplex  $[v_0, \dots, v_n]$  given by

$$\Delta^n \to [v_0, \cdots, v_n] := (t_0, \cdots, t_n) \mapsto \sum_{i=0}^n t_i v_i$$

If we delete one vertex, then remaining n vertices span a (n-1)-simplex, called a **face** of  $[v_i]_{i=1}^n$  and the union of all faces is called the **bounday** of the simplex and  $[v_0, \dots, \hat{v_i}, \dots, v_n]$  denotes that  $v_i$  is deleted.

**Definition 4.1.2.** A singular *n*-simplex in a space X is a continuous map  $\sigma: \Delta^n \to X$ .

**Definition 4.1.3.** (Homology)

Let  $C_n(X)$  be the free abelian group with basis consisted of the singular *n*-simplices in X, i.e.

$$C_n(X) = \left\{ \sum_i n_i \sigma_i | n_i \in \mathbb{Z}, \sigma_i : \Delta^n \to X \text{ continuos} \right\}$$

where the formal sum  $\sum_{i=1}^{n} n_i \sigma_i$  is finite and we call an element of  $C_n(X)$  an n-chain in X.

The **boundary maps**  $\partial_n: C_n(X) \to C_{n-1}(X)$  is defined as

$$\partial_n(\sigma) := \sum_{i=1}^n (-1)^i \sigma|_{[v_0, \dots, \hat{v_i}, \dots, v_n]}$$

and we will know that  $\partial_n \circ \partial_{n+1} = 0$ .

We call  $C_{\bullet}(X) = (C_n(X), \partial_n)n \in \mathbb{N}$  the singular chain complex of X.

The n-th singular homology group of X is defined by

$$H_n(X) := \ker(\partial_n)/\operatorname{Im}(\partial(n+1))$$

Proof.

We know that for  $\sigma: \Delta^{n+1} \to X$ 

$$\partial_{n}(\partial_{n+1}(\sigma)) = \partial_{n} \left( \sum_{i=1}^{n+1} (-1)^{i} \sigma|_{[v_{0}, \dots, \hat{v_{i}}, \dots, v_{n+1}]} \right)$$

$$= \sum_{i=1}^{n+1} \sum_{j \neq i} (-1)^{i} (-1)^{\delta(j,i)} \sigma|_{[v_{0}, \dots, \hat{v_{i}}, \dots, \hat{v_{j}}, \dots, v_{n+1}]}$$

where  $\delta(j,i) = j$  if j < i and it is j - 1 if j > i, so we may get that for each not order 2-tuple (i,j), the coefficient will of  $\sigma_{(i < j)}$  will always be  $(-1)^{i+j-1} + (-1)^{j+i} = 0$ .

By this, we may know that  $\operatorname{Im}(\partial_{n+1})$  will be a subgroup of  $\ker(\partial_n)$  the the definition goes.

**Definition 4.1.4.** •  $Z_n := \ker(\partial_n)$  is the group of *n*-cycles.

•  $Z_n := \operatorname{Im}(\partial_n)$  is the group of n-boundaries.

**Proposition 4.1.1.** Let  $x_0$  be a point. Then

$$H_n(x_0) = \begin{cases} \mathbb{Z}, & n = 0\\ 0, & n > 0 \end{cases}$$

Proof.

We may know  $\partial_n(\sigma_n) = 0$  when n is odd and  $\sigma_{n-1}$  when n is even since there is only one kind of singular n-simplex and then we know  $\ker(\partial_n) = \mathbb{Z}$  when n is odd and 0 when n is even and hence for all n even except for 0  $\sigma_n$  have 0 kernel and for n odd it is  $\mathbb{Z}/\mathbb{Z}$  and we are done.

**Proposition 4.1.2.** Suppose X is a space and  $(X_{\alpha})_{\alpha \in A}$  to be the path-connected components of X. Then,  $H_n(X) \cong \bigoplus_{\alpha \in A} H_n(X_{\alpha})$ .

Proof

Since  $\Delta^n$  is path connected and we know  $\operatorname{Im}(\sigma) \subset X_\alpha$  for some  $\alpha$ , so we may construct an isomorphism between  $C_n(X)$  and  $\bigoplus_{\alpha} C_n(X_\alpha)$  by

$$(\sigma_{\alpha}) \mapsto \sigma_{\alpha}$$

for  $\operatorname{Im}(\sigma_{\alpha}) \subset X_{\alpha}$  and span it to  $\bigoplus_{\alpha} C_n(X_{\alpha})$ , since  $\partial(C_n(X_{\alpha})) \subset C_{n-1}(X_{\alpha})$  we may know that  $\ker(\partial_n), \operatorname{Im}(\partial_{n+1})$  can be also given a direct sum decomposition like this, and for some  $\sigma + \operatorname{Im}(\partial_{n+1})$ , we may maps it to  $(0, \dots, \sigma + \operatorname{Im}_{\alpha}(\partial_{n+1}), \dots, 0)$  if  $\operatorname{Im}(\sigma) \subset X_{\alpha}$  and we are done by span it to  $\bigoplus_{\alpha} H_n(X_{\alpha})$ .

**Definition 4.1.5.** (Augmentation map)

$$\epsilon: C_0(X) \to \mathbb{Z} \text{ by } \sum_i n_i \sigma_i \mapsto \sum_i n_i.$$

**Proposition 4.1.3.** If  $X \neq \emptyset$  is path connected, then  $H_0(X) \cong \mathbb{Z}$ .

We know

$$C_1(X) \stackrel{\partial_1}{\to} C_0(X) \stackrel{\partial_0}{\to} 0$$

and we claim  $\ker(\epsilon) = \operatorname{Im}(\partial_1)$  for the augmentation map. If  $\sum_i n_i \sigma_i \in \ker(\epsilon)$ , then  $\sum_i n_i = 0$  and we may assume that  $\sigma_i : [v_0] \to X$  at p and for any p, q distinct in X, we may find a

path from p to q which will satisfy that  $\partial_1(\gamma) = (p) - (q)$  and hence we may obtained that  $\ker(\epsilon) \subset \operatorname{Im}(\partial_1)$  by induction, and obviously  $\operatorname{Im}(\partial_1) \in \ker(\epsilon)$ .

Notice  $\ker(\partial_0) = C_0(X)$  and then we know  $C_0(X)/\ker(\epsilon) \cong H_0(X)$ , where the former is isomorphic to  $\mathbb{Z}$  and we are done.

#### **Definition 4.1.6.** (Reduced Homology)

The **reduced homology** groups of X,  $\widetilde{H}_n(X)$  are the homology groups of the augmented chain complex of X defined as

$$\cdots \to C_2(X) \stackrel{\partial_2}{\to} C_1(X) \stackrel{\partial_1}{\to} C_0(X) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0$$

this complex is a chain complex since  $\epsilon \circ \partial_1 = 0$ .  $\epsilon$  induces an onto map  $C_0(X)/\mathrm{Im}(\partial_1) = H_0(X) \to \mathbb{Z}$  with kernel  $\widetilde{H}_0(X)$  and  $H_0(X) \cong \widetilde{H}_0(X) \oplus \mathbb{Z}$  and  $H_n(X) \cong \widetilde{H}_n(X)$  for  $n \geq 1$ .

# 4.2 Homotopy Invariance

**Definition 4.2.1.** Let  $f: X \to Y$  continuous and we have an induced homomorphism from  $C_n(X) \to C_n(Y)$ 

$$f_{\#}(\sum_{i} n_{i}\sigma_{i}) = \sum_{i} n_{i}(f \circ \sigma_{i})$$

**Lemma 4.2.1.**  $f_{\#}$  is a chain map, i.e.  $f_{\#}\partial_n = \partial_n f_{\#}$ .

Proof.

Since

$$f_{\#}(\partial_n(\sigma)) = f_{\#}\left(\sum_i (-1)^i \sigma|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}\right)$$

$$= \sum_i (-1)^i f \circ \sigma|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}$$

$$= \sum_i (-1)^i (f \circ \sigma)|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}$$

$$= \partial_n(f_{\#}(\sigma))$$

Corollary 4.2.2.  $f_{\#}$  takes n-cycles/boundaries to n-cycles/boundaries.

Corollary 4.2.3. The map  $f: X \to Y$  induces a homomorphism  $f_*: H_n(X) \to H_n(Y)$ . Proposition 4.2.4.

- If  $X \stackrel{g}{\to} Y \stackrel{f}{\to} Z$  are maps, then  $(f \circ g)_* = f_* \circ g_*$ .
- $(id_X)_* = id_{H_{-}(X)}$

Proof.

Notice

$$f_*(\sigma + \operatorname{Im}_X(\partial_n)) = f_\#(\sigma) + \operatorname{Im}_Y(\partial_n)$$

**Theorem 4.2.5.** If  $f, g: X \to Y$  are homotopic maps, then they induce the same homomorphisms  $f_* = g_*: H_n(X) \to H_n(Y)$  for every n.

Proof.

Corollary 4.2.6. If  $f: X \to Y$  is a homotopy equivalence then  $f_*: H_n(X) \to H_n(Y)$  are isomorphisms for every n.

Corollary 4.2.7. If X is contractible, then  $\widetilde{H}_n(X) = 0$  for every n.

**Definition 4.2.2.** (Chain Homotopy)

A map  $P: C_n(X) \to C_{n+1}(X)$  satisfies

$$\partial P + P\partial = g_{\#} - f_{\#}$$

is called a **chain homotopy** between  $g_{\#}, f_{\#}$ .

More generally, if  $(C_i, \partial_i), (D_i, \partial_i)$  are two chain complexs with two chain map  $h, k: C_i \to D_i$  such that there exists a map  $P: C_n \to D_{n+1}$  such that  $P\partial + \partial P = h - k$ .



# 4.3 Homology of a pair

**Definition 4.3.1.** Given a space X and a subspace  $A \subset X$ , define

$$C_n(X,A) := C_n(X)/C_n(A)$$

called the set of **relateive** *n***-chains**.

 $\partial: C_n(X) \to C_{n-1}(X)$  takes  $C_n(A)$  to  $C_{n-1}(A)$  and induced maps  $\partial: C_n(X,A) \to C_{n-1}(X,A)$ , with  $\partial^2 = 0$  and we get a chain complex  $(C_i(X,A), \partial_i)$  whose homology is called the **relative homology** of the pair (X,A), denoted as  $H_n(X,A)$ .

**Definition 4.3.2.** (Connecting Homomorphism)

We consider a short exact sequence of chain complexes

$$0 \to A_{\bullet} \xrightarrow{i} B_{\bullet} \xrightarrow{j} C_{\bullet} \to 0$$

which means the diagram



commutes and there is a map  $\partial: H_n(C_i) \to H_{n-1}(A_i)$  called a **connecting homomorphism**.

Proof.

Consider  $c \in \ker(\partial_n) \subset C_n$ , since the sequence is exact and we may know j is surjective, there exists  $b \in B_n$  such that c = j(b) and hence

$$j(\partial(b)) = \partial(j(b)) = \partial(c) = 0$$

and hence  $\partial(b) \in \ker j = \operatorname{Im}(i)$ . So there exists  $a \in A_{n-1}$  such that  $\partial(b) = i(a)$  and hence  $\partial(i(a)) = i(\partial(a)) = 0$ , which means  $\partial(a) = 0$  since  $\ker i = 0$ . Define  $\partial(c) = [a] \in H_{n-1}(A)$ . Let us check this will be come a homomorphism, that is for  $[c] \in H_n(C_i)$ , we have

$$\partial(c) = [a] \in H_{n-1}(A)$$

where there exists  $b \in B_n$  such that c = j(b) and  $\partial(b) = i(a)$ , if there exists b' such that c = j(b') then  $b - b' \in \ker(j) \in \operatorname{Im}(i)$  and there exists a' such that i(a') = b - b' and

$$\partial(b') = i(a + \partial(a'))$$

which since means  $[a] = [a + \partial(a')]$  and hence the homomorphism is well-defined. And for  $c + \partial(c')$  we know

$$c + \partial(c') = j(b + \partial(b'))$$

and hence  $\partial(b)$  unchanged and it is well-defined on  $H_n(C_i)$  and we are done.

**Theorem 4.3.1.** The sequence

$$\cdots \to H_n(A_{\bullet}) \stackrel{i_*}{\to} H_n(B_{\bullet}) \stackrel{j_*}{\to} H_n(C_{\bullet}) \stackrel{\partial}{\to} H_{n-1}(A_{\bullet}) \to \cdots$$

is exact.

Proof.

Recall

$$i([\alpha]) = [i(\alpha)]$$

which is well-defined because if  $\alpha - \alpha' \in \text{Im}(\partial) \subset A_n$ , then there is  $a \in A_{n+1}$  such that  $\partial(a) = \alpha - \alpha'$ 

$$i(a) - i(a) = i(\alpha - \alpha') = i(\partial(a)) = \partial(i(a)) \in \operatorname{Im}(\partial)$$

and hence  $i_*$  is well-defined and similarly  $j_*$  is well defined and we have shown above that  $\partial$  is well defined.

"Im $(i_*) = \ker(j_*)$ ": for any  $[\alpha] \in H_n(A_{\bullet})$ , we have  $i_*([\alpha]) = [i(\alpha)]$  and then

$$j_*(i_*([\alpha])) = [j(i(\alpha))] = [0]$$

and if  $j_*([\beta]) = 0$ , then  $[j(\beta)] = 0$ , which means there exists  $c \in C_{k+1}$  such that  $j(\beta) = \partial(c)$ . Since j is surjective and there exists  $b \in B_{k+1}$  such that c = j(b) and hence  $j(\partial(b)) = j(\beta)$  and hence  $\beta - \partial(b) \in \ker(j) = \operatorname{Im}(i)$  and hence there exists  $\alpha \in A_k$  such that  $i(\alpha) = \beta - \partial(b)$  and hence  $i_*([a]) = [i(a)] = [\beta]$  and we are done.

"Im $(j_*)=\ker(\partial)$ ": for any  $j_*([\beta])=[j(\beta)],$  we know  $\partial([j(\beta)])=[a]$  where  $i(a)=\partial(\beta), a\in A_{n-1}$  and hence

$$i(\partial(a)) = \partial(i(a)) = 0$$

and hence  $a \in \ker(\partial)$ . For the other side, if  $\partial([\gamma]) = 0$ , then there exists  $a \in A_{n-1}$ ,  $\beta \in B_n$  such that  $j(\beta) = \gamma$  and  $i(a) = \partial(\beta)$ ,  $a \in \operatorname{Im}(\partial)$ , which means there exists  $\alpha \in A_n$  such that  $\partial(\alpha) = a$  and hence

$$\beta - i(\alpha) \in \ker(\partial)$$

then

$$j_*([\beta - i(\alpha)]) = [j(\beta) - j(i(\alpha))] = [\gamma]$$

and we are done.

"Im( $\partial$ ) = ker( $i_*$ )": for  $[\gamma] \in H_n(C_{\bullet})$ , we may know that  $\partial([\gamma]) = [a]$  where  $i(a) = \partial(\beta)$  such that  $j(\beta) = \gamma$ , and then  $i_*([a]) = [i(a)] = [\partial(\beta)] = 0$ . For the other side, if  $[i(\alpha)] = i_*([\alpha]) = 0$ , then there exists  $b \in B_{n+1}$  such that  $\partial(b) = i(\alpha)$  and then  $\partial[j(b)] = [\alpha]$  and we are done.

#### **Definition 4.3.3.** (Induced Homomorphism)

Consider  $f:(X,A)\to (Y,B)$  such that  $f(A)\subset (B)$ , then we may know  $f_\#(C_n(A))\subset C_n(B)$  and hence  $f_\#:C_n(X,A)\to C_n(Y,B)$  is well-defined.

Then  $f_{\#}\partial = \partial f_{\#}$  and it can induce  $f_*: H_n(X,A) \to H_n(Y,B)$  by for

$$f_*([\sigma]) = [f \circ \sigma]$$

and

$$0 \to C_{\bullet}(A) \to C_{\bullet}(X) \to C_{\bullet}(X,A) \to 0$$

is exact and we may use the general theory on this sequence.

Proof.

Consider  $[\sigma] - [\sigma'] = \partial([\gamma]) \in \operatorname{Im}_{C_{n+1}(X,A)}(\partial)$ , then  $f_{\#}([\sigma] - [\sigma']) = f_{\#}(\partial([\gamma])) = \partial(f_{\#}([\gamma])) \in \operatorname{Im}_{C_{n}(Y,B)}(\partial)$ .

**Theorem 4.3.2.** Let X be a topological space and let A be a subspace of X. Then there is a long exact sequence

$$\cdots \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A)$$

Proof.

Since

$$C_n(X) \xrightarrow{\pi} C_n(X, A)$$

$$\downarrow \partial \qquad \qquad \downarrow \partial$$

$$C_{n-1}(X) \xrightarrow{\pi} C_{n-1}(X, A)$$

commutes and we are done.

Corollary 4.3.3. There is a long exact sequence

$$\cdots \to \widetilde{H}_n(A) \to \widetilde{H}_n(X) \to \widetilde{H}_n(X,A) \to \widetilde{H}_{n-1}(A) \to \cdots$$

Proof.

Notice we have



commutes.

**Corollary 4.3.4.** For  $x_0 \in X$ , we have  $\widetilde{H}_n(X) \cong H_n(X, x_0)$  for all n.

Corollary 4.3.5. There is a long exact sequence for homology of  $(X, A, B), B \subset A \subset X$ 

$$\cdots \to H_n(A,B) \to H_n(X,B) \to X_n(X,A) \to H_{n-1}(A,B)$$