DEFAULT CREDIT CARD CLIENTS PREDICTION

CAPSTONE PROJECT PRESENTATION

Machine Learning Foundations Training

Dasun Kehelwala (DSA_0392)

Contents

- ✓ Introduction (Problem Definition)
- ✓ Dataset
- ✓ Methodology (Solution Approach, Tools used)
- ✓ Results
- ✓ Conclusions
- ✓ Future Developments

Introduction

Problem Definition:-

Predicting credit card clients who will default on their next month payment.

Input Data :-

Prediction need to be done based on demographic characteristics, past spending and repayment patterns.

Target users:-

Helpful for banks which provide credit card facilities for Customers.

Business Value :-

Useful to manage credit risks.

Usability:-

Service need to accessed e through API and also by submitting batch input as csv file.

Dataset

- Used "Default of credit card clients Data Set" in UCI Machine learning repository
- Contains the default payment details in Taiwanese banking industry in year 2005
- Multivariate dataset with 24 attributes and 30,000 instances.
- Attributes of dataset was already converted to Real Integer values

Dataset: Feature Details

Attribute	Description					
ID	Identifier for data entry					
X1 (LIMIT_BAL)	Amount of the given credit (NT dollar): Includes both the individual consumer credit and supplementary credit. →Numerical					
X2 (SEX)	Gender (1 = male; 2 = female). →Categorical variable mapped to integers					
X3 (EDUCATION)	Education Level (1 = graduate school; 2 = university; 3 = high school; 4 = others). →Categorical variable mapped to integers					
X4 (MARRIAGE)	Marital status (1 = married; 2 = single; 3 = others). →Categorical variable mapped to integers					
X5 (AGE)	Age (year) →Numerical					
X6 - X11	History of past payment derived from past monthly payment records from April to September 2005.					
(PAY_0, PAY_2, PAY_3,	X6 = the repayment status in September; X7 = the repayment status in August;; X11 = the repayment status in April					
PAY_4, PAY_5, PAY_6)	(The measurement scale: -2: No consumption; -1 = pay duly; 0: The use of revolving credit; 1 = payment delay for one month;					
	2 = payment delay for two months;; 8 = payment delay for eight months; 9 = payment delay for nine months and above) → Categorical variables mapped to integers, but have ordinal nature as per definition					
X12-X17 (BILL_AMT1 to	Amount of bill statement (NT dollar) from April to September 2005.					
BILL_AMT6	X12 = amount of bill statement in September; X13 = amount of bill statement in August;; X17 = amount of bill statement in April . →Numerical					
X18-X23 (PAY_AMT1)	Amount of previous payment (NT dollar) from April to September 2005.					
	X18 = amount paid in September ; X19 = amount paid in August ;; X23 = amount paid in April . →Numerical					
Y (default payment next	Default payment (Yes = 1, No = 0) → class variable - Categorical variables mapped to integers					
month)						

Methodology

This machine learning challenge was approached as binary classification problem.

ID	Step	Tools Used
#1	Identifying and Loading Required Libraries	
#2	Loading Data and Viewing Basic Information About Dataset	Pandas
#4	Data Preprocessing	Pandas, Numpy
#4	Exploratory Data Analysis	Matplotlib, Seaborn
#5	Feature Engineering, Feature Selection and Preparing for Machine Learning Model training	
#6	Model Building and Evaluating	
#7	Hyperparameter Tuning and Selecting Best Model	
#8	Saving Best Model	
#9	Developing Inference Flow (Future Step)	
#10	Application Deployment (Future Step)	

Methodology: Exploratory Data Analysis

Methodology: Handling Imbalance

Results

Output Models After Hyper Parameter Tuning

	Model	Resampeling method	Feature count	Accuracy score	Precision score	Recall score	F1 score	F1 score weighted	ROC AUC score
Model ID									
xgb_rovs_02	XGBClassifier(colsample_bytree=0.5, gamma=9, m	Random Over Sampleing	23	0.760734	0.473742	0.647235	0.547063	0.772604	0.790571
xgb_rovs_03	XGBClassifier(colsample_bytree=0.5, gamma=1, n	Random Over Sampleing	23	0.763404	0.477794	0.643249	0.548312	0.774668	0.788177
xgb_rovs_04	XGBClassifier(colsample_bytree=0.5, gamma=0.5,	Random Over Sampleing	23	0.763181	0.477424	0.642750	0.547887	0.774456	0.789252
xgb_rovs_05	XGBClassifier(colsample_bytree=0.5, gamma=0.5,	Random Over Sampleing	23	0.765740	0.481257	0.633284	0.546902	0.776146	0.787701
rf_rovs_02	$\label{eq:continuous} \begin{tabular}{ll} (DecisionTreeClassifier(max_features='auto', r \\ \hline \end{tabular}$	Random Over Sampleing	23	0.809121	0.602972	0.424514	0.498246	0.796439	0.771253
rf_rovs_03	(DecisionTreeClassifier(max_features='auto', r	Random Over Sampleing	23	0.810011	0.603892	0.432985	0.504353	0.798066	0.774043
rf_rovs_04	(DecisionTreeClassifier(max_depth=10, max_feat	Random Over Sampleing	23	0.788877	0.524169	0.588939	0.554669	0.793111	0.785155
rf_rovs_05	(DecisionTreeClassifier(max_depth=10, max_feat	Random Over Sampleing	23	0.788877	0.524211	0.587942	0.554251	0.793049	0.785135

Best Model Observed: (Model ID = rf_rovs_04)

- RandomForestClassifier(max_depth=10, n_estimators=500, n_jobs=3,random_state=42)
- Resampling method: Random Over Sampling
- Feature count: 23

Confusion Matrix and Performance Scores for Best Model

Metric	Value			
Accuracy Score	0.7889			
Precision Score	0.5242			
Recall Score	0.5889			
F1 Score	0.5547			
F1 score (Weighted)	0.7931			
ROC AUC Score	0.7856			

Conclusions

- Application requires to increase true positive count while maintaining false positives and false negatives at satisfactory level.
- Due to imbalanced nature of dataset, accuracy is high when algorithm classify majority of true negatives correctly.
- F1 score was used to benchmark model performance as measuring accuracy not serves intended purpose in this context
- Observed maximum F1 score (0.5547) can be considered as acceptable value in this context (F1 score > 0.5)
- In general, Models with >0.8 F1 scores greater are considered as good Models.
- Even though this model is usable, further finetuning is required to improve model performance further.

Future Developments

Further Improving Model Performance

- Further refining input feature set using feature engineering and feature selection techniques (Use one-hot encoding, Derive new features by removing correlations)
- Trying with more different combinations of features out of full feature set to find optimum feature combination
- Trying with different resampling technique like Synthetic Minority Oversampling Technique (SMOTE)
- Trying with more classifier types including Classifiers like Support Vector Machine and Deep Neural Networks (DNN)

Developing Inference Pipeline and Deploy Application

Enabling convenient access to solution through API/GUI

Using explainable Machine Learning techniques

Improving model explain ability and result interpretability

THANK YOU

Email: Dasun.Kehelwala@dialog.lk