LADR Done Right

johnsmith0x3f

September 9, 2024

Contents

1	Vector Spaces			
		\mathbf{R}^n and \mathbf{C}^n		
	1.B	Definition of Vector Space	3	
	1.C	Subspaces	3	
2	Inner Product Spaces			
		Inner Products and Norms		
	2.B	Orthonormal Bases	7	

Chapter 1

Vector Spaces

1.A \mathbf{R}^n and \mathbf{C}^n

Exercise 7 Show that for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$.

Proof. Suppose $\alpha = a + bi$. Let $\beta = -a - bi$. Then

$$\alpha + \beta = (a-a) + (b-b)i = 0,$$

proving existence.

Suppose there exists $\gamma \in \mathbb{C}$ such that $\alpha + \gamma = 0$. Then

$$\gamma = \gamma + (\alpha + \beta) = (\gamma + \alpha) + \beta = \beta$$
,

proving uniqueness.

1.B Definition of Vector Space

Exercise 6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**. Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \quad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$$
$$t + \infty = \infty + t = \infty, \qquad t + (-\infty) = (-\infty) + t = -\infty,$$
$$\infty + \infty = \infty, \qquad (-\infty) + (-\infty) = -\infty, \qquad \infty + (-\infty) = 0.$$

Is $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ a vector space over \mathbf{R} ? Explain.

Solution. No. If it is a vector space over \mathbf{R} , then we have

$$1 = 1 + 0 = 1 + (\infty + (-\infty)) = (1 + \infty) + (-\infty) = \infty + (-\infty) = 0$$

a contradiction.

1.C Subspaces

Exercise 9 A function $f : \mathbf{R} \to \mathbf{R}$ is called *periodic* if there exists a positive number p such that f(x) = f(x+p) for all $x \in \mathbf{R}$. Is the set of periodic functions from \mathbf{R} to \mathbf{R} a subspace of $\mathbf{R}^{\mathbf{R}}$? Explain.

Solution. No. Consider two periodic functions $f(x) = \cos x$, $g(x) = \sin \pi x$. Suppose the set of periodic functions from **R** to **R** a subspace of **R**^{**R**}. Then the function h(x) = f(x) + g(x) should be a periodic function. In other words, there exists p > 0 such that f(-p) = f(0) = f(p), which implies

$$\cos p - \sin \pi p = 1 = \cos p + \sin \pi p.$$

Exercise 12 Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Proof. Suppose U and W are subspaces of V, such that $U \cup W$ is also a subspace and neither is contained in the other. In other words, $U \not\subset W$ and $W \not\subset U$. Let $u \in U - W$

and $w \in W - U$. Since $U \cup W$ is a subspace of V, we have $u + w \in U \cup W$. However,

$$u + w \in U$$
 \Rightarrow $w = (u + w) - u \in U$,
 $u + w \in W$ \Rightarrow $u = (u + w) - w \in W$,

which implies that u + w is in neither U nor W, a contradiction.

Conversely, suppose one of U and W is contained in the other. Without loss of generality, we assume $U \subset W$. Then $U \cup W = W$ is a subspace of V.

Exercise 13 Prove that the union of three subspaces of V is a subspace of V if and only if one of the subspaces contains the other two.

[This exercise is surprisingly harder than the previous exercise, possibly because this exercise is not true if we replace ${\bf F}$ with a field containing only two elements.]

Proof. One direction is obvious. Without loss of generality, suppose A, B, C are three subspaces of V satisfying $A \cup B \subset C$. Then $A \cup B \cup C = C$ is a subspace of V.

To prove the other direction, one may notice that $A \cup B \cup C = A \cup (B \cup C)$, and hence may try using the same approach as in the previous exercise, where one would get stuck for $B \cup C$ is not necessarily a subspace of V. However, Exercise 11 informs that, fortunately, $B \cap C$ is a subspace of V.

Let $u \in A - (B \cup C)$, $a = (B \cap C) - A$. If $u + a \in A$, then we have $a \in A$, a contradiction. If $u + a \in B \cap C$, then we have $u \in B \cap C \subset B \cup C$, also a contradiction. Hence $u + a \in S - (A \cup (B \cap C))$

Chapter 2

Inner Product Spaces

2.A Inner Products and Norms

Exercise 5 Suppose $T \in \mathcal{L}(V)$ is such that $||Tv|| \le ||v||$ for every $v \in V$. Prove that $T - \sqrt{2}I$ is invertible.

Proof. Suppose *V* is finite-dimensional. For all $u \in \text{null}(T - \sqrt{2}I)$, we have $Tu = \sqrt{2}u$, and hence $||Tu|| = ||\sqrt{2}u|| = \sqrt{2}||u||$. Since $||tv|| \le ||v||$, this implies that u = 0.

Exercise 6 Suppose $u, v \in \mathcal{L}(V)$. Prove that $\langle u, v \rangle = 0$ if and only if

$$||u|| \leq ||u + av||$$

for all $a \in \mathbf{F}$.

Solution. If $\langle u, v \rangle = 0$, then

$$||u + av||^2 - ||u||^2 = ||av||^2 \ge 0.$$

by the Pythagorean Theorem.

If $||u|| \le ||u + av||$ for all $a \in \mathbb{F}$, then

$$0 \leq \left\| u + av \right\|^2 - \left\| u \right\|^2 = \overline{a} \langle u, \, v \rangle + a \overline{\langle u, \, v \rangle} + |a|^2 \|v\|^2.$$

Letting
$$a = -\frac{\langle u, v \rangle}{\|v\|^2}$$
 yields $\langle u, v \rangle = 0$.

Exercise 8 Suppose $u, v \in V$ and ||u|| = ||v|| = 1 and $\langle u, v \rangle = 1$. Prove that u = v.

6

Proof. Note that

$$||u - v||^2 = \langle u - v, u - v \rangle = ||u||^2 - \langle u, v \rangle - \langle v, u \rangle + ||v||^2 = 0.$$

Hence u - v = 0 by definiteness.

Exercise 11 Prove that

$$16 \le (a+b+c+d) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right)$$

for all positive numbers a, b, c, d.

Proof. By Exercise 6.17(a), we have

$$16 = \left| \sqrt{a \cdot \frac{1}{a}} + \sqrt{b \cdot \frac{1}{b}} + \sqrt{c \cdot \frac{1}{c}} + \sqrt{d \cdot \frac{1}{d}} \right|^2$$

$$\leq (a+b+c+d) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right).$$

Exercise 12 Prove that

$$(x_1 + x_2 + \dots + x_n)^2 \le n(x_1^2 + x_2^2 + \dots + x_n^2)$$

for all positive integers n and all real numbers x_1, \ldots, x_n .

Proof. In Exercise 6.17(a), let $y_1 = y_2 = \cdots = y_n = 1$.

Exercise 17 Prove or disprove: there is an inner product on \mathbb{R}^2 such that the associated norm is given by

$$||(x, y)|| = \max\{x, y\}$$

for all $(x, y) \in \mathbf{R}^2$.

Counterexample. Let u = (0, 1), v = (1, 0). Then 6.22 fails.

2.B Orthonormal Bases

Exercise F ind a polynomial $q \in \mathcal{P}_2(\mathbf{R})$ such that

$$p\left(\frac{1}{2}\right) = \int_0^1 p(x)q(x) \, \mathrm{d}x$$

for every $p \in \mathcal{P}_2(\mathbf{R})$.

Solution. Let $\varphi(p) = p\left(\frac{1}{2}\right)$ and $\langle p, q \rangle = \int_0^1 p(x)q(x) \, dx$. Then with the orthonormal basis found in Exercise 5 and the formula in 6.43, we can find that

$$q(x) = -15x^2 + 15x - \frac{3}{2}.$$