

FERIENKURS EXPERIMENTALPHYSIK 2

Übung 3

Elektrostatik

Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub

15.09.2010

- 1. Berechnen Sie Feld und Potential für
 - a) eine Hohlkugel mit Radius R und Oberflächenladungsdichte σ ,
 - b) eine Kugel mit homogener Ladungskonzentration ρ ,
 - c) für einen unendlich langen Stab mit Längenladungsdichte λ .
- 2. Ein Kabel, das aus zwei ineinander gesteckten Hohlzylindern besteht sei mit entgegengesetzten Längenladungsdichten λ bzw. $-\lambda$ geladen. Berechnen Sie hierfür den Potentialverlauf, sowie die spezifische Kapazität (Kapazität pro Länge) der Anordnung.

3. Berechnen Sie die Kapazität eines Kugelkondensators, die innere Kugel habe den Radius R_1 die äußere Hohlkugel den Radius R_2 .

- 4. Man berechne den Energiegehalt eines Plattenkondensators der Kapaziät C auf zwei Weisen:
 - a) Der Kondenstator sei zunächst ungeladen. Nun werden Ladungen sukzessive von der einen Platte zu der anderen gebracht (Arbeit im entstehenden elektrischen Feld) bis insgesamt Q Ladungen transferiert wurden.
 - b) Der Kondensator ist mit der Ladung Q geladen, betrachten Sie die Energie, die in seinem Feld steckt.
- 5. Berechnen Sie die Kapazität eines Plattenkondensators (Plattenabstand d, Plattenbreite b, Plattenhöhe h) sowie elektrisches Feld und Verschiebungsdichte für den Fall, dass
 - a) sich zwischen den Platten Vakuum befindet,
 - b) ein Teil der Breite $x \cdot d$ mit einem Dielektrikum ϵ gefüllt ist,
 - c) ein Teil der Höhe $y \cdot h$ mit einem Dielektrikum ϵ gefüllt ist.

- 6. Ein Dielektrikum mit der relativen Dielektrizitätskonstante ϵ ist so an einer Feder (Federkonstante f) aufgehängt, dass sich seine Unterseite auf der Höhe der Öffnung eines Kondensators befindet ($x_0=0$). Die Geometrie des Dielektrikums ist so, dass es den Spalt eines Plattenkondensators (Plattenabstand d, Kapazität C, Plattenbreite b) genau ausfüllt. Der Kondensator ist mit der Ladung Q geladen und isoliert.
 - a) Berechnen Sie wie weit das Dielektrikum in den Kondensator hineingezogen wird: x(Q).
 - b) Wie groß ist der Energieunterschied im Vergleich zu dem Fall ohne Dielektrikum?

- 7. An einer isolierten Kapazität C liegt eine Spannung U an. Zum Zeitpunkt $t_0=0$ wird die Kapazität mit einem Widerstand R kurzgeschlossen. Berechnen Sie den zeitlichen Verlauf der Spannung und des Stroms.
- 8. Ein leitender Vollzylinder mit Querschnittsfläche A und Länge L hat den spezifischen Widerstand ρ . Berechnen Sie den Widerstand des Zylinders, wenn er entlang seiner Symmetrieachse durchströmt wird.
- 9. Eine Autobatterie hat im unbelasteten Zustand eine Spannung $U_0=12\,\mathrm{V}$. Beim Starten des Motors sinkt die Spannung auf $10\,\mathrm{V}$ und es fließt dabei ein Strom von $150\,\mathrm{A}$. Wie groß ist der Widerstand des Anlassers R_A und der Innnenwiderstand der Batterie R_I ?