M → MC calque M sigui DFA! ⇒ Determinitzar

si M és mínim → MC també mínim determinista

→ Passem els estats acceptadors a no acceptadors

* Lienavatee format pels mots que no comercen amb el prefix bb.

Persem complementari: $L = \frac{1}{4} w \in \frac{1}{4} \cdot \frac{1}{3} \times : w = bb \times 4$

Determinitzem > alegim un nou estat pou

Complementem:

* Heravatore format pers mots que no contenen la cadena bba. $|w|_{bba}=0$

$$L = 4 we 4 a_1 b_4^* \left(\forall a_1 x_1 o_1 \wedge |x| = 3 \right) \Rightarrow x \neq b b a_4 \qquad 7(a \Rightarrow b) \equiv a \wedge 7b$$

$$\int_{a_1}^{b_2} (4)$$

Delerminitzem:

		a	b
peu estats	(→ A)	Α	AB
inicials	AB	A	ABC
	ABC	AD	ABC
	† AD	AD	ABD
	t ABD	AD	ABCD
1	ABCD	AD	ABCD
	ļ	!	

Forem conta acceptados
Plague tirreum una D

minimilizem:

0-Indis:

			٨			2	
	A	AB	ABC \		CA	ABD	ABCD'
a	1	1	2		丁	2	2
b	1	1	1	\neg	II	2	2

			1	, 2	l	3_	
1-mais:		A	AB	ABC	AD	ABD	ABCD
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\overline{a}	1	111	3	3	3	3
	b	1	2	2	3	3	ろ
			て				

DFA MÍNÍM: JAYJABY JABCY JAD, ABD, ABCDY

Complementem @

Intersecció

Fer un nou autòmat que simuli els 2 donats via producte cartesià.

$$M$$
 ds DFA \Rightarrow $L(M) = L1 \cap L_2 = L(M_1) \cap L(M_2)$

Obtindrem un nou <u>autômat</u> determinista que pot <u>no</u> <u>ser mínim</u> \Rightarrow (Hinimitzar)

considerem estats acceptadors els estats que no sicuin dels 2 autòmats donats. » Han de lentres.

MAR

 $F = F_1 \times F_2$

* Automat que reconequi 6

L= \we \0.44* \ w=3 x w=24

L1 = 1 WE10/14 W=34

Interseco	10:	
Vealet akaoz	1	0
+> AD)	BE	AD
BE	AE	CD
ΑE	BE	AD
CD	CE	BD
CE	Œ	BD
BD	AE	CD
1		

Mimim:	1	1	1 101	=	<u> </u>	2	BD	(E1
-	AD	_				ALE Y		
0	1		2		_	<u> </u>	2	2
1	2		2	2 2	2.	2	2	2
	1	2					3	
	AD	Ā	£,	Bt	E C	D	FD	(E,
0	1	1		3) =	3	13	3
1	3	3	,	2	. \	3	2	3
	A	2						
	AD /	A	-1	DE.		5 1 1		TET
0	7	1	1	4	4	†	3	3
1	3	3		2	2	1	4	4
	00		1		->(:	3) 7)

· unid

Fer un autômat que símuli els 2 donats i posar com a acceptadors els estats que no sícuin d'alcun dels 2 donats.

2NFA → unir-lo i determinitzar l'autòmat resultant o bé belerminitzar els autòmats de partida i ferne després el producte cartesià.

2DFA→ unió i determinitzar l'NFA resultant o bé

Producte cartesià dels 2 autòmats micrals → l'autòmat resultant

ja és delerminista

* mois multiples de 2 o de 3.

JUNCPO A1, A2 => NFA

con que la construcció via producte cartesià és identica a la intersecció \Rightarrow tindrem el mateix aiosrama de transicions que la ficura (1.1 pasA).

Només clifereix en el conjunt d'estats acceptadors = samplia amb 3 nous estats.

Només posem com a acceptacions tols aquells que esticuin formats per alcun estat final dels 20FA's initials

1

follo minimityar

concatenació

Afeolm A-transicions entre els estats fital-inicial dels autòmats a concatenar. Per eliminar-les, es tracta, simplement, de:

- · connectar els estats acceptadors de 14 amb els successors dels inicials de 14.
- · col·locar com a estat acceptador, si via A-transicrons anribem a un estat acceptador.
- * Llenovatoe format pels mots en què tot parell de a's consecutives va secuit immediatament per un parell de b's consecutives

L1 > conjunt de mots acabats amb dues as \rightarrow $\lambda w \in \lambda a, b \in \mathbb{R}^3$: $w = xaa + L_2 \rightarrow conjunt de mots que comencen amb dues b's <math>\rightarrow \lambda w \in \lambda a, b \in \mathbb{R}^4$ $\exists y : w = bby + by = bby + by = bby = bby$

L= AWE AaIDY* | Yxy (w=xy A XEL1) => xEL2 4

I = 1 we harby | 3xy = w=xy 1 xel1 1 yelz4 = 1 we harby 3xel1 3yelz : w=xy4
= 11. [2

Conceitenem

Determinitzem:

!	a	b
→A	AB	A
AB	ABC	A
+ ABC	ABCE	AF
ABCE	ABCE	AFE
+ AF	ABE	AG
+ AFE	ABE	AGE
+ ABE	ABCE	AE
AG	ABG	AG
+ AGE	ABGE	A6E
+ AE	ABE	AE
ABG	ABCG	AG
+ABGE	ABCGE	AGE
+ ABCG	ABCEG	AGF
+ABCGE	ABCEGE	AFGE
+ AGF	ABGE	AG
+ AFGE	ABEG	AGE
]	<u> </u>
	}	1
	ì	•

Complementem 🦠

· Tancament de Kleene.

* Lienauatoe que els mots lenen lorgifud múlt 3 i tals que tots els símbols que ocupen posicions múlt de 3 són als.

L=4 we faiby | 3xy R: w = xayaz / |4|=

· Revessat: L regular => LR regular

només cal canviar el sentit de les fletxes i intercanviar estats finals amb micials. Despres de determinitzar són estats finals tots aquells que tenten alcuna lletra dels finals abans de determ.

! Els estats pou s'eliminen.

*conjunt de mots que si comencen per aa llavors no contenen dues los secuides.

$$\overline{L} = \frac{\lambda aa4 \lambda y \epsilon \lambda a_1 b 4 | |y|bb>04}{L_1}$$

T = L1L2

* conjunt de mots en que tot pareil d'as adjacents apareixen davant (no necessariament de manera consecutiva) d'alcun pareil de b's adjacents

$$F = \frac{1}{4} \frac{1}{4}$$

fadem descompasar el Herbuatse

De terminitzou

1	α	b
A	A	В
В	Α	C
С	EC	C
E	F	
ΓF	G	G
16	6	6
EC.	F(E	C
FCE	GCEF	GC
GCEF	GCEF	\GC
6C	GCE	16C
6CE	GCE	F)6C

minimizar i complementari

* conjunt de mots en què cada símbol és immediatament precedit i secuit d'un símbol a

* conjunt de mots amb un nombre parell de als i un nombre parell de bls.

$$L = 1 \omega \in 4a, by^4 \mid 1\omega \mid a = 2 \wedge 1\omega \mid b = 24$$

* Hots que no contenen cap prefix que coalifiqui en binari un múltiple de 3.

L= flue faiby+ | Yxiy: (w=xy => x+3)4

 $T = \lambda \omega \in \lambda a_1 b_1^{+} / \lambda a_2 = \lambda \omega =$

Minimilizar i complementar

* tot prefix múltiple de 3 menys 1 in d'arar secult (no immediatament) d'alcun sufix que sícul mult 3+1.

L=1 we 1a, by $|\forall x,y: w=xy \land x=\hat{s}-1 \Rightarrow \exists u,v: y=uv \land v=\hat{s}+1$

[= λωελαι b4 |] x,y: ωχy λ x=3-1 λ 7(] us; y= uσ λ σ=3+1) 4

L= \x e \0,44 \ \x = 3-14 \ 0,44 \ \tau = 3 \ 0,44 \ \\
L = \L_1 \cdot \left(\dot 0,44 \ \tau = 3 \ \dot 2)

1	0	4	
$\overline{\Delta}$	AΒ	AC.	_
AB	AB	AC	
+ AC	ABD	ACB	
ABD	ABC	ACD	
MUB			
+ ABC	ABD	ACB	
† ACD	ABDC	ACED	
+ ABCD	ABDC	ACBD	
	1	1	•

	1						
A	AB	NBDI	AC /	1 BC	ACD	ABCD	•
1	1	2	1	À	2	2	
-7	- <u>'</u> -	- 7	7	2. 1	2	2	
		<u> </u>				4-	
'A	1 A 12	1 ABD	1 70	APC	TAC	D VBC	D'
1	4	3	2	2	4	<u> </u>	
3	3	4	3		4	4	
	1 2	A AB 1 1 2 2	A AB (ABD) 11 2 2 2 2 2 2	A AB ABD AC	A AB ABD AC ABC 1 1 2 1 1 2 2 2 2 2 2 A AB ABO ABO AC ABC 1 1 3 2 2	A AB (ABD) AC ABC ACD 1 1 2 1 1 2 2 2 2 2 2 2 2 A AB (ABD) AC ABC ACD 1 1 2 3 4 A AB (ABD) AC ABC ACD 1 1 3 2 2 1	A AB (ABD) AC ABC ACD ABCD 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 A AB (ABD) AC ABC ACD ABCD 1 1 2 2 2 A AB (ABD) AC ABC ACD ABCD 1 1 3 2 2 1 1

 $A_2: 3-1 = 3+2$

Determinitzar) i complemental. Minimilizar * conjunt de mots tal que tota cadena de 5 simbols conté com a mínim dues als.

 L^{C} = (onjunt de mots en què 3 tura cadenci de 5 símbols que conté menys de dues a's $(0 \circ 1)$

* TOT prefix de longitud 23 té un nombre 2 de a's o b's

$$L = \langle \omega \in \langle a_1b' \rangle^{+} | \forall x_1y_1 : \omega = xy_1 \wedge | x_1 \geq 3 \implies | x_1 a_2 = 2 \vee | x_1 b_2 = 2 \vee$$

Froducte cartesici

a b

AE