Morphological Disambiguation for Turkish

Selçuk Gülcan

Hakkani-Tür, Dilek Zeynep, et al. 2018, "Morphological Disambiguation for Turkish." pp 53-67 in: Turkish Natural Language Processing. Springer, Cham.

Book

- Kemal Oflazer
- Murat Saraçlar

Oflazer, Kemal, and Murat Saraçlar, eds. Turkish Natural Language Processing. Springer, 2018.

Theory and Applications of Natural Language Processing Edited volumes

Kemal Oflazer · Murat Saraçlar Editors

Turkish Natural Language Processing

Outline

- Turkish Language
- Morphological Ambiguity Problem
- Methods
- Datasets and Results

- Free constituent order
- Consider words a, b, c
- All 6 permutation is valid:
 - o abc
 - o acb
 - o bca
 - O ...

- Ekin Çağla'yı gördü. (Ekin saw Çağla.)
- Çağla'yı Ekin gördü. (It was Ekin who saw Çağla.)
- Gördü Ekin Çağla'yı. (Ekin saw Çağla (but was not really supposed to see her.))
- Gördü Çağla'yı Ekin. (Ekin saw Çağla (and I was expecting that)
- Ekin gördü Çağla'yı. (It was Ekin who saw Çağla (but someone else could also have seen her.))
- Çağla'yı gördü Ekin. (Ekin saw Çağla (but he could have seen someone else.)

- Turkish is an agglutinative language
- Morphemes attaches to a root word like "beads-on-a-string."
- yap+abil+ecek+se+k \rightarrow if we will be able to do (it)

Morphological Parsing: Dividing a word into its morphemes

- Root affects morpheme
 - Defter + ler
 - Kitap + lar
- Morpheme affects root
 - Taba<u>k</u>
 - Taba<u>ă</u> + ın

ev + in

(your) house

ev + in

of the house

evin

wheat grain

- Morphological disambiguation is the task of determining the contextually correct morphological parses of tokens in a sentence.
- Ambiguity quite common: Each word has 2 different morphological interpretation on average.

12 Possible Candidate Parses, which one is correct?

Approaches

- Rule based methods
- Statistical methods
 - Hidden Markov Model (HMM)
 - Averaged Perceptron Algorithm

Rule Based Methods

- Manually written constraints
- Need an expert
- No need for data

Oflazer K, Kuruöz İ (1994) Tagging and morphological disambiguation of Turkish text. In: Proceedings of ANLP, Stuttgart, pp 144–149

Hidden Markov Model

Generative Model

$$\hat{T} = \underset{T}{\operatorname{argmax}} P(T|W) = \underset{T}{\operatorname{argmax}} P(T) \times P(W|T)$$

Markov Assumption:

$$\hat{T} = \underset{T}{\operatorname{argmax}} \prod_{i=1}^{n} P(t_i | t_{i-2}, t_{i-1}) \times P(w_i | t_i)$$

Hakkani-Tür DZ, Oflazer K, Tür G (2002) Statistical morphological disambiguation for agglutinative languages. Comput Hum 36(4):381–410

Hidden Markov Model

The correct parse of word 4 depends on correct parse of word 3 and word 2

Hidden Markov Model

- Correct states are hidden
- We have to guess them from observations
- Observations = Candidate Parses

Averaged Perceptron Algorithm

- Neural network with one layer
- Handcrafted features

$$P(T|W) = \frac{e^{\mathbf{\Phi}(W,T)\cdot\overline{\alpha}}}{\sum_{T'\in\mathbf{GEN}(W)} e^{\mathbf{\Phi}(W,T')\cdot\overline{\alpha}}}.$$

Sak H, Güngör T, Saraçlar M (2011) Resources for Turkish morphological processing. LangResour Eval 45(2):249–26

Averaged Perceptron Algorithm

Gloss	Feature	
Morphological parse trigram	$(1) t_{i-2}t_{i-1}t_i$	
Morphological parse bigram	(2) $t_{i-2}t_i$ and (3) $t_{i-1}t_i$	
Morphological parse unigram	$(4) t_i$	
Morpheme tag with previous tag	$(5) t_{i-1}m_i$	
Morpheme tag with second to previous tag	$(6) t_{i-2}m_i$	
Root trigram	$(7) r_{i-2}r_{i-1}r_i$	
Root bigram	(8) $r_{i-2}r_i$ and (9) $r_{i-1}r_i$	
Root unigram	$(10) r_i$	
Morpheme tag trigram	$(11) m_{i-2} m_{i-1} m_i$	
Morpheme tag bigram	(12) $m_{i-2}m_i$ and (13) $m_{i-1}m_i$	
Morpheme tag unigram	$(14) m_i$	
Individual morpheme tags	$(15) m_{i,j} \text{ for } j = 1 \dots n_i$	
Individual morpheme tags with position	(16) $jm_{i,j}$ for $j = 1 \dots n_i$	
Number of morpheme tags	$(17) n_i$	

Datasets and Results

- METU dataset: 5635 sentences, 56 K words
- ITU dataset: 300 sentences, 3.7 words
- Training set: 650 K unambiguous tokens & 32 K disambiguated tokens

Disambiguator	Manual test	METU-Sabancı Treebank	ITU validation set
Hakkani-Tür et al. (2002)	95.48%	_	_
Yuret and Türe (2006)	95.82%	78.76%	87.67%
Sak et al. (2011)	96.45%	78.23%	87.84%

References

- Hakkani-Tür, Dilek Zeynep, et al. 2018, "Morphological Disambiguation for Turkish." pp 53-67 in: Turkish Natural Language Processing. Springer, Cham.
- Oflazer K, Kuruöz İ (1994) Tagging and morphological disambiguation of Turkish text. In: Proceedings of ANLP, Stuttgart, pp 144–149
- Hakkani-Tür DZ, Oflazer K, Tür G (2002) Statistical morphological disambiguation for agglutinative languages. Comput Hum 36(4):381–410
- Sak H, Güngör T, Saraçlar M (2011) Resources for Turkish morphological processing. LangResour Eval 45(2):249–26
- Yuret D, Türe F (2006) Learning morphological disambiguation rules for Turkish. In: Proceedings of NAACL-HLT, New York, NY, pp 328–334