Multivariate Analysis

Catarina Costa n°86582 Inês Tavares n°86593 Catarina Oliveira n°86963 Gonçalo Mestre n° 87005

Instituto Superior Técnico, Lisboa

January 2020

Initial Dataset

ID	Reason for absence	Month of absence	Day of the week	Seasons	Transportation expense	 Education	Son	Social drinker	Social smoker	Pet	Weight	Height	Body mass index	Absenteeism time in hours
11	26	7	3	1	289	1	2	1	0	1	90	172	30	4
3	23	7	4	1	179	1	0	1	0	0	89	170	31	2
7	7	7	5	1	279	1	2	1	1	0	68	168	24	4
11	23	7	5	1	289	1	2	1	0	1	90	172	30	2
3	23	7	6	1	179	1	0	1	0	0	89	170	31	2
10	22	7	6	1	361	1	1	1	0	4	80	172	27	8
20	23	7	6	1	260	1	4	1	0	0	65	168	23	4
14	19	7	2	1	155	1	2	1	0	0	95	196	25	40
1	22	7	2	1	235	3	1	0	0	1	88	172	29	8
20	1	7	2	1	260	1	4	1	0	0	65	168	23	8
20	1	7	3	1	260	1	4	1	0	0	65	168	23	8
20	11	7	4	1	260	1	4	1	0	0	65	168	23	8
3	11	7	4	1	179	1	0	1	0	0	89	170	31	1
3	23	7	4	1	179	1	0	1	0	0	89	170	31	4
24	14	7	6	1	246	1	0	1	0	0	67	170	23	8
3	23	7	6	1	179	1	0	1	0	0	89	170	31	2
3	21	7	2	1	179	1	0	1	0	0	89	170	31	8
5	11	7	5	1	189	1	2	0	0	2	69	167	25	8

- 21 variables
- 740 rows

Data Preliminary Analysis

Division of the variable Reason for Absence in classes

- Disease Reason for Absence = 1
- Patient follow-up Reason for Absence = 2
- Medical Consultation Reason for Absence = 3
- Blood Donation Reason for Absence = 4
- Laboratory Examination Reason for Absence = 5
- Unjustified Absence Reason for Absence = 6
- Physiotherapy Reason for Absence = 7
- Dental Consultation Reason for Absence = 8

Data Preliminary Analysis

Missing values

The rows in which the variable *Absenteeism* took the value 0 were removed.

Division of the target variable Absenteeism in classes

- Number of hours < 8 **Absenteeism** = 1
- Number of hours = 8 **Absenteeism = 2**
- $40 \le \text{Number of hours} < 8 \text{Absenteeism} = 3$
- Number of hours > 40 **Absenteeism** = 4

Data Preliminary Analysis - Outliers

Figure: Boxplots of Work Distance, Service Time, Age, Hit Target, Son, Pet, Work Load Average/day and Transportation Expense

Data Preliminary Analysis - Pearson's Correlation

Figure: Correlation between the quantitative variables

Data Preliminary Analysis - Mutual Information

- Transportation Expense and Work Distance 0.854;
- Transportation Expense and Age 0.834;
- Service Time and Work Distance 0.868;
- Age and Work Distance 0.869;
- Age and Service Time 0.829;
- Transportation Expense and Service Time 0.789.

Data Preliminary Analysis - Categorical/Binary Variables

```
> table(data$Absenteeism)

1 2 3 4
425 206 48 15
> table(data$'Reason for absence')

1 2 3 4 5 6 7 8
262 36 149 3 31 33 68 112
> table(data$month)

0 1 2 3 4 5 6 7 8 9 10 11 12
0 49 72 83 52 57 50 65 54 44 62 57 49
> table(data$'sweek day')

2 3 4 5 6
153 141 145 118 137
> table(data$'seasons)

1 2 3 4
164 189 167 174
> table(data$'oisciplinary failure')

0 1
694 0
```

Figure: Table of Absenteeism, Reason for Absence, Seasons, Week Day, Month and Disciplinary Failure

- Most commonly used reasons for absence: Disease (38%), Medical Consultation (21%) and Dental Consultation (16%).
- The absenteeism time is mostly lower than 8 hours (61%), or equal to 8 hours (30%);
- 100% of the work absences are from people without disciplinary failures.

Data Preliminary Analysis - Categorical/Binary Variables

Figure: Proportion of each level of Education by Absenteeism's class

 82% of the work absences are from people with only high school level of education;

Data Preliminary Analysis - Categorical/Binary Variables

Figure: Proportion of social smokers/drinkers and non drinkers and smokers by Absenteeism's class

93% of the work absences are from people that do not smoke;

Multivariate Analysis

• 39% of absences are from non smokers and non drinkers;

Data Preliminary Analysis - Final dataset

Reason for absence	Month	Week day	Seasons	Education	Social drinker	Social smoker	Age ÷	Hit target	\$	‡ Pet	Work load Average/day	Absenteeism
3	10	5	4	1	1	0	40	93	1	1	253	1
3	10	4	4	1	1	0	38	93	0	0	253	2
3	10	4	4	1	0	0	28	93	1	2	253	1
1	10	5	4	1	1	0	36	93	4	0	253	3
1	10	3	4	1	1	0	40	93	1	1	253	2
8	10	3	4	1	0	0	28	93	1	2	253	1
6	10	4	4	1	1	0	33	93	2	1	253	2
3	10	6	4	1	1	0	28	93	1	4	253	1
8	10	6	4	1	1	0	36	93	4	0	253	1
3	11	5	4	1	1	0	38	93	0	0	306	1
3	11	4	4	1	0	0	28	93	1	2	306	1
1	11	5	4	1	1	0	38	93	0	0	306	2
1	11	5	4	2	0	1	40	93	2	0	306	2
3	11	5	4	1	1	0	40	93	1	1	306	1

- 13 variables
- 694 rows

Dimensionality Reduction

PCA standardized - Quantitative variables (5)

• The first 4 principal components explain 86.37% of the variability

Dimensionality Reduction

Multidimensional Scaling - Categorical variables (7)

Reason ÷		Week			Social	Social								
for absence	Month	day	Seasons	Education	drinker	smoker	Week day=5	Week day=6	Seasons=1	Seasons=2	Seasons=3	Seasons=4	Education=1	
6	7	3	1	1	1	0	0	0	1	0	0	0	1	
3	7	4	1	1	1	0	0	0	1	0	0	0	1	
1	7	5	1	1	1	1	1	0	1	0	0	0	1	
3	7	5	1	1	1	0	1	0	1	0	0	0	1	

Figure: Turning all variables into binary

- Hamming distance is good for binary variables
- The Goodness of fit is **0.805** using 12 dimensions

Division of dataset

Training and testing data

The dataset after PCA and MDS was divided into training (70%) and testing (30%) data.

Cross Validation

- k-fold cross validation using training data, with k = 10
- Testing the performance of each model using testing data

Linear Algorithms

Linear Discriminant Analysis

Nonlinear Algorithms

- Regularized Discriminant Analysis
- Support Vector Machine
- Naive Bayes Classifier
- Neural Networks
- K-Nearest Neighbour

Ensemble Algorithms

Random Forest


```
        Reference
        Reference
        Reference
        Reference

        Prediction 1 2 3 4 Prediction 1 2
```

Figure: Confusion matrices using LDA, Neural Networks and Random Forest, respectively

- LDA (F1-Score = 0.779) does not classify any observation into class 4 class with the lowest probability
- Neural Networks (F1-Score = 0.800) is a good model for this data
- ullet Random Forest (F1-Score = 0.813) is the best algorithm for this dataset

	Accuracy	F1-score
LDA	0.6442	0.7786
RDA	0.6442	0.7663
\mathbf{SVM}	0.6587	0.7865
Naive Bayes	0.6731	0.8263
Neural Networks	0.6587	0.7953
Random Forest	0.6923	0.8132
KNN	0.6442	0.7958

Figure: Overall performance of each method

Cluster Analysis - First Approach

Distance Metric

Gower's Distance:

$$d_G(\mathbf{X},\mathbf{y}) = \sum_{k=1}^{\rho} \frac{|x_k - y_k|}{r_k}$$

Cluster methods

- Hierarchical methods
- Partitioning method
- Density Based method

Cluster Analysis - Second Approach

Dimensionality Reduction

Multidimensional Scaling and Principal Component Analysis

Distance Metric

Euclidean Distance:

$$d_E(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{p} (x_k - y_k)^2}$$

Cluster methods

- Hierarchical methods
- Partitioning method
- Density Based method
- Mixture model method

Cluster Analysis - Results

Method	Average Silhouette
Gower-Complete	0.1530
Gower-Average	0.2342
Gower-Ward	0.1350
Gower-PAM	0.1381
Gower-DBSCAN	-0.0613
Euclidean-Complete	0.1504
Euclidean-Average	0.2574
Euclidean-Ward	0.2038
Euclidean-PAM	0.1372
Euclidean-Mixture Models	0.1145

Cluster Analysis - Results(2)

Cluster Analysis - Results(3)

First Cluster

```
Reason for absence
                        Month
                                  week day Seasons Education Social drinker Social smoker
       . 247
                                  2:146
                                            1:158
                                                    1:563
                                                               0:279
                                                                               0:648
                                                                                             Min.
                                                                                                    :27.0
       :147
                           : 71
                                  3:136
                                                               1:389
                                                                                             1st Ou.: 30.0
                                                                              1: 20
       :111
                                  4:142
                                            3:161
                                                    3: 78
                                                                                             Median:37.0
                                  5:114
                                                                                             Mean
                                                                                                   :36.1
                          : 54
                                  6:130
                                                                                             3rd Qu.:38.0
       : 33
                                                                                                     :58.0
(Other): 28
                    (Other):287
  Hit target
                       son
                                                     work load Average/day Absenteeism
       : 81.00
                         :0.0000
                                           :0.0000
                                                             :206.0
                                                                            1:413
                 1st ou.:0.0000
                                   1st ou.: 0.0000
                                                     1st Ou. :243.2
                                                                            2:193
Median: 95.00
                 Median :1.0000
                                   Median : 0.0000
                                                     Median :264.0
                                                                             3: 47
      : 94.69
                 Mean
                       :0.9671
                                   Mean
                                          :0.7051
                                                     Mean
                                                                            4: 15
3rd Qu.: 97.00
                 3rd Qu.: 2.0000
                                   3rd Qu.: 1.0000
                                                     3rd Qu.: 285.0
       :100.00
                         :4.0000
                                           :8.0000
                                                             :379.0
```

Second Cluster

```
Reason for absence
                                week day Seasons Education Social drinker Social smoker
                                                                                                Age
                                          1: 6
                                                  1 . 6
                                                             0:26
                                                                                                  :36.00
                                                                                           Min.
                                3:5
                                          2:10
                                                  2:20
                                                             1: 0
                                                                             1.26
                                                                                           1st Qu.: 40.00
                                4:3
                                          3: 6
                                                  3: 0
                                                                                           Median :40.00
                                5:4
                                          4: 4
                                                  4: 0
                                                                                           Mean
                                                                                                 :40.92
                                6:7
                                                                                           3rd Qu.:40.00
                           :1
                                                                                           Max.
                                                                                                   :48.00
(Other): 0
                    (Other):3
                                      Pet
                                                 work load Average/day Absenteeism
                                                                        1:12
                                       :0.000
                                                         :206.0
1st Qu.:93.0
               1st Qu.: 2.000
                                1st Qu.: 0.000
                                                 1st Qu.: 239.5
                                                                        2:13
Median:96.0
               Median :2.000
                                Median :0.000
                                                 Median :250.0
                                                                        3: 1
Mean :95.5
               Mean :1.846
                                Mean :1.077
                                                 Mean :269.8
                                                                        4: 0
3rd Ou. : 98. 0
               3rd Ou. : 2, 000
                                3rd Ou. : 0, 000
                                                 3rd Qu.: 312.0
       :99.0
               Max.
                      :2,000
                                Max.
                                       :5.000
                                                 Max.
                                                       : 343.0
```

Cluster Analysis - Problems and Recommendations

Problems

- High Dimensionality
- Imbalanced Dataset

Recommendations

- Oversampling
- Fuzzy Clustering

Classification with new diagnosis variable

•	Reason for absence	† Month	Week day	\$ Seasons	‡ Education	Social drinker	Social smoker	Age \$	Hit target	\$ Son	‡ Pet	Work load Average/day	cluster
1	6	7	3	1	1	1	0	33	97	2	1	240	1
2	3	7	4	1	1	1	0	38	97	0	0	240	1
3	1	7	5	1	1	1	1	39	97	2	0	240	1
4	3	7	5	1	1	1	0	33	97	2	1	240	1
5	3	7	6	1	1	1	0	38	97	0	0	240	1
6	2	7	6	1	1	1	0	28	97	1	4	240	1
7	3	7	6	1	1	1	0	36	97	4	0	240	1
8	1	7	2	1	1	1	0	34	97	2	0	240	1
9	2	7	2	1	3	0	0	37	97	1	1	240	1
10	1	7	2	1	1	1	0	36	97	4	0	240	1
11	1	7	3	1	1	1	0	36	97	4	0	240	1
12	1	7	4	1	1	1	0	36	97	4	0	240	1
13	1	7	4	1	1	1	0	38	97	0	0	240	1
14	3	7	4	1	1	1	0	38	97	0	0	240	1
15	1	7	6	1	1	1	0	41	97	0	0	240	1
16	3	7	6	1	1	1	0	38	97	0	0	240	1
17	1	7	2	1	1	1	0	38	97	0	0	240	1
18	1	7	5	1	1	0	0	33	97	2	2	240	1
19	3	8	4	1	1	0	0	47	92	2	1	206	1
20	1	8	4	1	2	0	0	28	92	0	0	206	1
21	1	8	2	1	1	1	0	38	92	0	0	206	1
22	1	8	2	1	1	1	0	28	92	1	4	206	1

	Accuracy	F1-score		Accuracy	F1-score
LDA	0.6442	0.7786	LDA	0.976	0.9874
RDA	0.6442	0.7663	RDA	1	1
\mathbf{SVM}	0.6587	0.7865	\mathbf{SVM}	1	1
Naive Bayes	0.6731	0.8263	Naive Bayes	1	1
Neural Networks	0.6587	0.7953	Neural Networks	0.9904	0.995
Random Forest	0.6923	0.8132	Random Forest	1	1
KNN	0.6442	0.7958	KNN	0.9808	0.9901

Figure: Overall performance of each method with Absenteeism variable and clustering results

Compare Performance: K- Nearest Neighbors

Figure: Relation between k values and accuracy of the respectively model, with *Absenteeism* variable on the left and clustering results on the right

Compare Performance: Random Forest

```
Confusion Matrix and Statistics
                                                      Confusion Matrix and Statistics
         Reference
                                                                 Reference
Prediction 1 2
        1 107 27 6 0
2 19 31 4 2
3 0 3 3 1
                                                      Prediction 1 2
                                                                1 201
                                                                      Accuracy: 1
Overall Statistics
                                                                        95% CI: (0.9824, 1)
                                                          No Information Rate: 0.9663
             Accuracy : 0.6827
                                                          P-Value [Acc > NIR] : 0.0008084
               95% CI: (0.6148, 0.7453)
   No Information Rate: 0.6106
   P-Value [Acc > NIR] : 0.01865
                                                                         Kappa: 1
                 Kappa : 0.37
                                                       Mcnemar's Test P-Value · NA
 Mcnemar's Test P-Value : 0.13630
                                                                   Sensitivity: 1.0000
Statistics by Class:
                                                                   Specificity: 1.0000
                                                                Pos Pred Value : 1,0000
                   Class: 1 Class: 2 Class: 3 Class: 4
                                                                Neg Pred Value : 1,0000
Sensitivity
                     0.8425 0.4844 0.23077 0.250000
                                                                    Prevalence: 0.9663
Specificity
                     0.5926 0.8264 0.97949 0.980392
                                                                Detection Rate : 0.9663
Pos Pred Value
                     0.7643 0.5536 0.42857 0.200000
                                                         Detection Prevalence: 0.9663
Neg Pred Value
                     0.7059 0.7829 0.95025 0.985222
Prevalence
                     0.6106 0.3077 0.06250 0.019231
                                                            Balanced Accuracy : 1,0000
Detection Rate
                  0.5144 0.1490 0.01442 0.004808
Detection Prevalence 0.6731 0.2692 0.03365 0.024038
                                                              'Positive' Class: 1
Balanced Accuracy
                     0.7176
                             0.6554 0.60513 0.615196
```

Figure: RF's performance evaluators with Absenteeism variable and clustering results

Conclusion

- Strongly imbalanced data
- Best obtained classification method for Absenteeism: Random Forest
- Few relations that allow group into clusters
- Generalized clusters which favors prediction

Multivariate Analysis

Catarina Costa n°86582 Inês Tavares n°86593 Catarina Oliveira n°86963 Gonçalo Mestre n° 87005

Instituto Superior Técnico, Lisboa

January 2020