SENG1110/SENG6110 Object Oriented Programming

Lecture 10 Recursion

Outline

- Recursive definitions
- Recursive Problem Solving
- Factorial example
- How recursion works
- Tracing a recursive method
- The Run-Time Stack
- Infinite Recursion and Stack Overflow
- Recursion and Iteration
- Sequential search example
- Fibonacci example

Recursive Definitions

Recursion

- Process of solving a problem by reducing it to simpler versions of itself.

Dr. Regina Berretta

Recursive Definitions

- Recursive algorithm:
 - Algorithm that finds the solution to a given problem by reducing the problem to smaller versions of itself.
 - Has one or more base cases.
 - Implemented using recursive methods.
- Recursive method:
 - Method that calls itself.
- · Base case:
 - Case in recursive definition in which the solution is obtained directly.
 - Stops the recursion.

Recursive Problem Solving

- Find one or more simple cases of the problem that can be solved directly – base cases
- Find a way to make the problem smaller for a recursive solution
- · Find a way to combine the partial solutions

May 17

Dr. Regina Berretta

Factorial example

- · Factorial:
 - n! = 1, when n = 1
 - n! = n * (n 1)! otherwise

Factorial example

n! = 1, when n = 1n! = n * (n - 1)! otherwise

```
factorial (n)
  if n == 1
    return 1
  else
    return n * factorial(n - 1)
```

May 17

Dr. Regina Berretta

Factorial example

n! = 1, when n = 1

n! = n * (n - 1)! otherwise

Recursive case

factorial (n)

if n == 1

return 1

else

return n * factorial (n - 1)

Factorial example

n! = 1, when n = 1

n! = n * (n - 1)! otherwise

Recursive case

factorial (n)

if n == 1

return 1

else

return n * factorial (n - 1)

Combination step

May 17

Dr. Regina Berretta

How Recursion Works

- Each call of a method generates an instance of that method
- · An instance of a method contains
 - memory for each parameter
 - memory for each local variable
 - memory for the return value

Tracing a Recursive Method

- · Recursive method:
 - Has unlimited copies of itself.
 - Every recursive call has its own:
 - Code
 - · Set of parameters
 - · Set of local variables

May 17 Dr. Regina Berretta

Tracing a Recursive Method

- After completing a recursive call:
 - Control goes back to the calling environment.
 - Recursive call must execute completely before control goes back to previous call.
 - Execution in previous call begins from point immediately following recursive call.


```
public static int fact(int num)
{
    if (num == 1)
        return 1;
    else
        return num * fact(num - 1);
}
```

May 17

Dr. Regina Berretta

Example: factorial (4)

14

return value

Dr. Regina Berretta

Activation record for factorial (4)

Number of Activations = # Calls

n 4 return value

Activation record for factorial (4)

May 17 Dr. Regina Berretta

Activation record for factorial (2) return value n Activation record for factorial (3) return value n Activation record for factorial (4) return value Dr. Regina Berretta

Recursive Process Unwinds

Activation record for factorial (1)

Activation record for factorial (2)

Activation record for factorial (3)

Activation record for factorial (4)

Activations Are Deallocated

Dr. Regina Berretta

Activation record for factorial (3) return value n Activation record for factorial (4) return value

return value n return value n return value n

return value

Dr. Regina Berretta

Activation record for factorial (4)

22

Dr. Regina Berretta

The Run-Time Stack

- To support recursive method calls, the run-time system treats memory as a stack of activation records
- Computing factorial (n) requires the allocation of n activation records on the stack

The value of n never reaches zero, so the method is called, and records are pushed onto the stack, until the system runs out of memory.

```
Dr. Regina Berretta
```


Recursion and Iteration

```
int factorial (int n) {
   if n == 1
      return 1;
      return n * factorial (n - 1);
```

```
int factorial (int n) {
   int result = 1;
   while (n > 1) {
      result = result * n;
   return result;
```

Recursive methods can be translated to methods that run loops.

Dr. Regina Ber Recursive version

n return value n return value n return value

Iterative version

Memory Usage

int factorial (int n) { int result = 1; while (n > 1) { result = result * n; return result;


```
result
          n
return value
```

Iterative version

Memory Usage

Dr. Regina Ber Recursive version


```
result
          n
return value
```

Dr. Regina Berrette Cursive version

Iterative version

return value return value

Dr. Regina Berreta Cursive version


```
int find(int[] a, int target) {
   return recursiveFind(a, target, 0);
}
```

Top-level method maintains interface to clients

```
int recursiveFind(int[] a, int target, int pos) {
  if (pos == a.length)
    return -1;
  else if (a[pos] == target)
    return pos;
  else
    return recursiveFind(a, target, pos + 1);
}
```

Base case 1: not in array

Base case 2: found target

Recursive step: search rest of array

May 17

Dr. Regina Berretta

Sequential Search example

target 41

oos (initially)

```
Calls
>>
```

Fibonacci Example

- The first two numbers in the series are 0 and 1.
- · Each remaining number is obtained by taking the
- sum of the previous two numbers in the series.
- Example: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

```
Definition: fib(n) = 0, when n = 0

fib(n) = 1, when n = 1

fib(n) = fib(n - 1) + fib(n - 2) when n > 1
```

May 17
Dr. Regina Berretta

Fibonacci Example

```
int fib (int n)
{
   if (n == 0)
      return 0;
   else if (n == 1)
      return 1;
   else
      return fib (n - 1)
      + fib (n - 2);
}
```


35

fib(4)

May 17

Dr. Regina Berretta

May 17 Dr. Regina Berretta

Tracing fib (4) with a Call Tree

34

33

(fib(4)

Tracing fib (4) with a Call Tree

3

Tracing fib (4) with a Call Tree

Tracing fib (4) with a Call Tree

42

Tracing fib(4) with a Call Tree

Work Done - Stack Memory

Tracing fib (4) with a Call Tree

4

May 17 Maximum number of activations = The depth of the The NEW CASTLE AUSTRALIA

Fibonacci as Algorithm and Process

 Fibonacci generates a tree-recursive process (processing time grows with the size of the call tree, and memory growths with depth of tree)


```
int fib (int n) {
  int a = 1, b = 0;
  while (n > 0) {
    int temp = a;
    a = a + b;
    b = temp;
    n--;
  }
  return b;
}
```

May 17

Dr. Regina Berretta

Recursion or Iteration?

- Two ways to solve particular problem:
 - Iteration
 - Recursion
- Iterative control structures use looping to repeat a set of statements.
- Tradeoffs between two options:
 - Sometimes recursive solution is easier.
 - Recursive solution is often slower.

Your task

- Read
 - Lecture slides
 - Chapter 11
- Exercises
 - MyProgrammingLab
 - Computer lab exercises

May 17

Dr. Regina Berretta

