Playing games until the end of time

MINGLE '18

Dan Saattrup Nielsen University of Bristol

September 27, 2018

I pick a natural number n_0

I pick a natural number n_0 You pick another natural number n_1

I pick a natural number n_0 You pick another natural number n_1 You win if $n_1 > n_0$

I

I n₀ II

I
$$n_0$$
 II n_1

You always have a winning strategy

I
$$n_0$$
II n_1
1 round

You always have a winning strategy

For every n_0 there's an n_1 such that $n_1 > n_0$

I
$$n_0$$
II n_1

You always have a winning strategy

$$\forall n_0 \exists n_1 : n_1 > n_0$$

Let's model the generalised stupid game

You always have a winning strategy

$$\forall n_0 \exists n_1 \forall n_2 \exists n_3 \cdots \forall n_{2k} \exists n_{2k+1} : n_{2k+1} > n_{2k}$$

Why are we playing stupid games?

 $First\ of\ all,\ games\ aren't\ stupid.\ Calm\ down.$

We saw that player II has a winning strategy iff $\forall n_0 \exists n_1 \forall n_2 \exists n_3 \cdots \forall n_{2k} \exists n_{2k+1} : n_{2k+1} > n_{2k}$

We saw that player II has a winning strategy iff $\forall n_0 \exists n_1 \forall n_2 \exists n_3 \cdots \forall n_{2k} \exists n_{2k+1} : n_{2k+1} > n_{2k}$

Analogously, player I has a winning strategy iff $\exists n_0 \forall n_1 \exists n_2 \forall n_3 \cdots \exists n_{2k} \forall n_{2k+1} : n_{2k+1} \leq n_{2k}$

We saw that player II has a winning strategy iff $\forall n_0 \exists n_1 \forall n_2 \exists n_3 \cdots \forall n_{2k} \exists n_{2k+1} : n_{2k+1} > n_{2k}$

Analogously, player I has a winning strategy iff $\exists n_0 \forall n_1 \exists n_2 \forall n_3 \cdots \exists n_{2k} \forall n_{2k+1} : n_{2k+1} \leq n_{2k}$

But these two are just negations of each other, so one of them is true

We saw that player II has a winning strategy iff $\forall n_0 \exists n_1 \forall n_2 \exists n_3 \cdots \forall n_{2k} \exists n_{2k+1} : n_{2k+1} > n_{2k}$

Analogously, player I has a winning strategy iff $\exists n_0 \forall n_1 \exists n_2 \forall n_3 \cdots \exists n_{2k} \forall n_{2k+1} : n_{2k+1} \leq n_{2k}$

But these two are just negations of each other, so one of them is true $We \ say \ that \ finite \ games \ are \ {\tt determined}$

(if we remove draws)

(say White wins if it's a draw)

Same rules, same pieces, infinite board

Same rules, same pieces, infinite board Still determined?

Note that if white loses then they've lost at a finite stage

Note that if white loses then they've lost at a finite stage

If Black doesn't have a winning strategy then White can start out by playing a non-losing move

Note that if white loses then they've lost at a finite stage

If Black doesn't have a winning strategy then White can start out by playing a non-losing move

Keep playing non-losing moves

Note that if white loses then they've lost at a finite stage

If Black doesn't have a winning strategy then White can start out by playing a non-losing move

Keep playing non-losing moves

If White loses then they've lost at a finite stage, but they're playing non-losing moves, contradiction!

Note that if white loses then they've lost at a finite stage

If Black doesn't have a winning strategy then White can start out by playing a non-losing move

Keep playing non-losing moves

If White loses then they've lost at a finite stage, but they're playing non-losing moves, contradiction!

So infinite chess is determined

I know what you're thinking

I know what you're thinking

Yes, there are non-determined games out there

I know what you're thinking

Yes, there are non-determined games out there

Let's do that another time

