Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme

Skript zur Vorlesung

Datenbanksysteme I

Wintersemester 2017/2018

Kapitel 4: Relationen-Kalkül

Vorlesung: Prof. Dr. Christian Böhm Übungen: Dominik Mautz
Skript © 2017 Christian Böhm

http://dmm.dbs.ifi.lmu.de/dbs

Begriff

Kal|kül das, auch der; -s, -e <unter Einfluss von gleichbed. fr. calcul aus lat. calculus «Steinchen, Rechen-, Spielstein; Berechnung», Verkleinerungsform von lat. calx «(Spiel)stein; Kalk»>: etwas im Voraus abschätzende, einschätzende Berechnung, Überlegung.

...das Kalkül

Quelle: DUDEN - Das große Fremdwörterbuch

der Kalkül ...

Kal|kül *der; -s, -e* ≼zu ¹Kalkül>: durch ein System von Regeln festgelegte Methode, mit deren Hilfe bestimmte mathematische Probleme systematisch behandelt u. automatisch gelöst werden können (Math.).

Quelle: DUDEN - Das große Fremdwörterbuch

Begriff

- Mathematik: Prädikatenkalkül
 - Formeln wie $\{x \mid x \in IN \land x^3 > 0 \land x^3 < 1000\}$
- Anwendung solcher Formeln f
 ür DB-Anfragen
 - Bezugnahme auf DB-Relationen im Bedingungsteil: $(x_1, y_1, z_1) \in \text{Mitarbeiter}, t_1 \in \text{Abteilungen}$
 - Terme werden gebildet aus Variablen, Konstanten usw.
 - Atomare Formeln aus Prädikaten der Datentypen:
 =, <, >, ≤, usw.
 - Atomare Formeln können mit logischen Operatoren zu komplexen Formeln zusammengefasst werden: $F_1 \land F_2, F_1 \lor F_2, \neg F_1, \exists x: F_1, \forall x: F_1$
- Bsp: Finde alle Großstädte in Bayern: {t | Städte(t) ∧ t[Land] = Bayern ∧ t[SEinw] ≥ 500.000} Hinweis: Städte(t) gleichbedeutend mit t ∈ Städte

Unterschied zur Rel. Algebra

- Relationale Algebra ist prozedurale Sprache:
 - Ausdruck gibt an, unter Benutzung welcher
 Operationen das Ergebnis berechnet werden soll
 - WIE
- Relationen-Kalkül ist deklarative Sprache:
 - Ausdruck beschreibt, welche Eigenschaften die Tupel der Ergebnisrelation haben müssen ohne eine Berechnungsprozedur dafür anzugeben
 - WAS
- Es gibt zwei verschiedene Ansätze:
 - Tupelkalkül: Variablen sind vom Typ Tupel
 - Bereichskalkül: Variablen haben einfachen Typ

Der Tupelkalkül

• Man arbeitet mit

Tupelvariablen:

- Formeln: $\psi(t)$

- Ausdrücken: $\{t \mid \psi(t)\}$

• Idee: Ein Ausdruck beschreibt die Menge aller Tupel, die die Formel ψ erfüllen (wahr machen)

• Ein Kalkül besteht immer aus

– Syntax: Wie sind Ausdrücke aufgebaut?

– Semantik: Was bedeuten die Ausdrücke?

Tupelvariablen

- Tupelvariablen haben ein definiertes Schema:
 - Schema(t) = (A_1 : D_1 , A_2 : D_2 , ...)
 - Schema(t) = R_1 (t hat dasselbe Schema wie Relation)
- Für Zugriff auf die Komponenten
 - -t[A] oder t.A für einen Attributnamen $A \in Schema(t)$
 - oder auch t[1], t[2] usw.
- Tupelvariable kann in einer Formel ψ frei oder gebunden auftreten (s. unten)

Atome

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Es gibt drei Arten von Atomen:

-R(t) R ist Relationenname, t Tupelvariable

lies: t ist ein Tupel von R

 $-tA \Theta s.B$ t bzw. s sind zwei Tupelvariablen mit

passenden Attributen

lies: t.A steht in Beziehung Θ zu ...

 $- tA \Theta c$ t ist Tupelvariable und c eine passende

Konstante

 Θ Vergleichsoperator: $\Theta \in \{ =, <, \le, >, \ge, \ne \}$

Formeln

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

Der Aufbau von Formeln ψ ist rekursiv definiert:

• **Atome**: Jedes Atom ist eine Formel

Alle vorkommenden Variablen sind frei

• **Verknüpfungen**: Sind ψ_1 und ψ_2 Formeln, dann auch:

 $- \neg \psi_1$ *nicht*

- $(\psi_1 \wedge \psi_2)$ und

 $- (\psi_1 \vee \psi_2)$ oder

Alle Variablen behalten ihren Status.

• Quantoren: Ist ψ eine Formel, in der t als freie

Variable auftritt, sind auch Formeln...

- $(\exists t)(\psi)$ es gibt ein t, für das ψ

 $- (\forall t)(\psi)$ für alle t gilt ψ

die Variable t wird gebunden.

Formeln

• Gebräuchliche vereinfachende Schreibweisen:

$$- \psi_1 \Rightarrow \psi_2$$
 für $(\neg \psi_1) \lor \psi_2$ (Implikation)

- $-\exists t_1,...,t_k: \psi(t_1,...t_k) \quad \text{für } (\exists t_1) \ (...((\exists t_k) \ (\psi(t_1,...t_k)))...)$
- $(\exists t \in R) (\psi(t)) \qquad \text{für } (\exists t) (R(t) \land \psi(t))$
- $(\forall t \in R) (\psi(t)) \qquad \text{für } (\forall t) (R(t) \Rightarrow \psi(t))$
- Bei Eindeutigkeit können Klammern weggelassen werden
- Beispiel:
 - $(\forall s) (s.A \le u.B \lor (\exists u)(R(u) \land u.C > t.D))$
 - t ist frei
 - s ist gebunden
 - u ist frei beim ersten Auftreten und dann gebunden

Ausdruck (Anfrage)

Datenbanksysteme I Kapitel 4: Relationen-Kalkül • Ein Ausdruck des Tupelkalküls hat die Form $\{t \mid \psi(t)\}$

• In Formel ψ ist t die einzige freie Variable

Semantik

Datenbanksysteme I Kapitel 4: Relationen-Kalkül Bedeutung, die einem korrekt gebildeten Ausdruck durch eine Interpretation zugeordnet wird:

Belegung von Variablen

- Gegeben:
 - eine Tupelvariable t mit Schema $(t) = (D_1, D_2, ...)$
 - eine Formel $\psi(t)$, in der t frei vorkommt
 - ein beliebiges konkretes Tupel r (d.h. mit Werten).
 Es muß nicht zu einer Relation der Datenbank gehören
- Bei der Belegung wird jedes freie Vorkommen von *t* durch *r* ersetzt. Insbesondere wird *t*.A durch den Attributwert von *r*.A ersetzt.
- Man schreibt: $\psi(r \mid t)$

Beispiel

Gegeben sei folgendes Relationenschema:

Städte (SName: String, SEinw: Integer, Land: String)

Länder (LName: String, LEinw: Integer, Partei*: String)

* bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

- $\psi(t) = (t.\text{Land=Bayern} \land t.\text{SEinw} \ge 500.000)$ mit Schema(t) = Schema(Städte)
 - $r_1 =$ (Passau, 49.800, Bayern): $ψ(r_1 | t) =$ (Bayern = Bayern ∧ 49.800 ≥ 500.000)
 - r_2 = (Bremen, 535.058, Bremen): $\psi(r_2 \mid t)$ = (Bremen = Bayern \wedge 535.058 \geq 500.000)

Interpretation von Formeln

Datenbanksysteme I Kapitel 4: Relationen-Kalkül Interpretation $I(\psi)$ analog zu syntaktischem Aufbau

- Anm: Alle Variablen sind durch konkrete Tupel belegt
- Atome:
 - -R(r): $I(R(r)) = \mathbf{true} \Leftrightarrow r \text{ ist in } R \text{ enthalten}$
 - $-c_i \Theta c_i$: $I(c_i \Theta c_i) = \mathbf{true} \Leftrightarrow \operatorname{der Vergleich}$ ist erfüllt
- Logische Operatoren:
 - $-\neg \psi$: $I(\neg \psi) = \mathbf{true} \Leftrightarrow I(\psi) = \mathbf{false}$
 - $\psi_1 \wedge \psi_2$: $I(\psi_1 \wedge \psi_2)$ =**true** \Leftrightarrow $I(\psi_1)$ =**true** und $I(\psi_2)$ =**true**
 - $\psi_1 \lor \psi_2$: $I(\psi_1 \lor \psi_2)$ =**true** $\Leftrightarrow I(\psi_1)$ =**true** oder $I(\psi_2)$ =**true**

Beispiele

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

• Atome:

- I(Städte (Passau, 49.800, Bayern)) = true
- $-I(49.800 \ge 500.000)$ = false

• Logische Operatoren:

- $-I(\neg 49.800 \ge 500.000)$ = true
- I(Städte (Passau, 49.800, Bayern) ∨
 ∨ 49.800 ≥ 500.000) = true
- $-I(Städte (Passau, 49.800, Bayern) \land$ $\land 49.800 \ge 500.000) =$ **false**

Interpretation von Quantoren

- Interpretation $I((\exists s)(\psi))$ bzw. $I((\forall s)(\psi))$:
 - In ψ darf nur s als freie Variable auftreten.
 - -I((∃s)(ψ)) =true ⇔ ein Tupel $r ∈ D_1 × D_2 × ...$ existiert, daß bei Belegung der Variablen s die Formel ψ gilt:

$$I(\psi(r \mid s)) = \mathbf{true}$$

- $I((∀s)(ψ)) = \mathbf{true} \Leftrightarrow \text{für alle Tupel } r ∈ D_1 × D_2 × ... \text{ gilt die Formel } ψ.$
- Beispiele:
 - $-I((\exists s)(St\ddot{a}dte(s) \land s.Land = Bayern)) = true$
 - $-I((\forall s)(s.\text{Name} = \text{Passau})) = \text{false}$

Interpretation von Ausdrücken

- Interpretation von Ausdruck $I(\{t|\psi(t)\})$ stützt sich
 - auf Belegung von Variablen
 - und Interpretation von Formeln
- Gegeben:
 - $-E = \{t \mid \psi(t)\}$
 - -t die einzige freie Variable in $\psi(t)$
 - Schema(t) = $D_1 \times D_2 \times ...$
- Dann ist der Wert von E die Menge aller* (denkbaren) Tupel $r \in D_1 \times D_2 \times ...$ für die gilt:

$$I(\psi(r \mid t)) = \mathbf{true}$$

^{*}Grundmenge sind hier nicht nur die gespeicherten Tupel aus der DB

Beispiel-Anfragen

Gegeben sei folgendes Relationenschema:

Städte (SName: String, SEinw: Integer, Land: String)

Länder (LName: String, LEinw: Integer, Partei*: String)

* bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

• Finde alle Großstädte (SName, SEinw, Land) in Bayern:

```
Schema(t) = Schema(Städte)

\{t \mid \text{Städte}(t) \land t.\text{Land} = \text{Bayern} \land t.\text{SEinw} \ge 500.000\}
```

• In welchem Land liegt Passau?

```
Schema(t) = (Land:String)

\{t \mid (\exists u \in St\ddot{a}dte)(u.Sname = Passau \land u.Land = t.Land\}
```

• Finde alle Städte in CDU-regierten Ländern:

```
Schema(t) = Schema(Städte)

\{t | \text{Städte}(t) \land (\exists u \in \text{Länder})(u.\text{Lname} = t.\text{Land} \land u.\text{Partei} = \text{CDU})\}
```


Beispiel-Anfragen

Gegeben sei folgendes Relationenschema:

Städte (SName: String, SEinw: Integer, Land: String)

Länder (LName: String, LEinw: Integer, Partei*: String)

* bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

• Welche Länder werden von der SPD allein regiert?

```
Schema(t) = Schema(Länder)

\{t | \text{Länder}(t) \land (\forall u \in \text{Länder})(u.\text{LName} = t.\text{LName} \Rightarrow u.\text{Partei} = \text{SPD})\}
```

• Gleichbedeutend mit:

```
Schema(t) = Schema(Länder) \{t | L \ddot{a}nder(t) \land (\forall u \in L \ddot{a}nder) \neg (u.LName = t.LName \land u.Partei \neq SPD)\}
```


Beispiel Bundesländer

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

Länder:

LName	LEinw	Partei
Baden-Württemberg	10.745.000	Grüne
Baden-Württemberg	10.745.000	SPD
Bayern	12.510.000	CSU
Bayern	12.510.000	FDP
Berlin	3.443.000	SPD
Berlin	3.443.000	Linke
Brandenburg	2.512.000	SPD
Brandenburg	2.512.000	Linke
Bremen	662.000	SPD
Bremen	662.000	Grüne
Hamburg	1.774.000	SPD
	•••	•••

Sichere Ausdrücke

- Mit den bisherigen Definitionen ist es möglich, unendliche Relationen zu beschreiben:
 - Schema(t) = {String, String}
 - $\{t \mid t.1 = t.2 \}$
 - Ergebnis: $\{(A,A),(B,B),...,(AA,AA),(AB,AB),...\}$
- Probleme:
 - Ergebnis kann nicht gespeichert werden
 - Ergebnis kann nicht in endlicher Zeit berechnet werden
- Definition:

Ein Ausdruck heißt *sicher*, wenn jede Tupelvariable nur Werte einer gespeicherten Relation annehmen kann, also positiv in einem Atom R(t) vorkommt.

Der Bereichskalkül

• Tupelkalkül: Tupelvariablen t (ganze Tupel)

• Bereichskalkül: Bereichsvariablen $x_1:D_1, x_2:D_2, ...$

für einzelne Attribute

(Bereich=Wertebereich=Domäne)

Ein **Ausdruck** hat die Form:

$$\{x_1, x_2, \dots \mid \psi(x_1, x_2, \dots)\}$$

Atome haben die Form:

 $-R_1(x_1, x_2, ...)$: Tupel $(x_1, x_2, ...)$ tritt in Relation R_1 auf

 $- x \Theta y$: x,y Bereichsvariablen bzw. Konstanten

 $\Theta \in \{=,<,\leq,>,\geq,\neq\}$

Formeln analog zum Tupelkalkül

Beispiel-Anfragen

Städte (SName: String, SEinw: Integer, Land: String)

Länder (LName: String, LEinw: Integer, Partei*: String)

*bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei

• In welchem Land liegt Passau?

```
\{x_3 \mid \exists x_1, x_2 \colon (\text{Städte}(x_1, x_2, x_3) \land x_1 = \text{Passau}) \}
oder auch
\{x_3 \mid \exists x_2 \colon (\text{Städte}(\text{Passau}, x_2, x_3)) \}
```

• Finde alle Städte in CDU-regierten Ländern:

```
\{x_1 \mid \exists x_2, x_3, y_2 : (Städte(x_1, x_2, x_3) \land Länder(x_3, y_2, CDU))\}
```

• Welche Länder werden von der SPD allein regiert?

```
\{x_1|\exists x_2:(\text{Länder}(x_1,x_2,\text{SPD})\land\neg\exists y_3:(\text{Länder}(x_1,x_2,y_3)\land y_3\neq\text{SPD}))\}
```


Query By Example (QBE)

- Beruht auf dem Bereichskalkül
- Ausdrücke nicht wie in SQL als Text
- Dem Benutzer wird am Bildschirm ein Tabellen-Gerüst angeboten, das mit Spezial-Editor bearbeitet werden kann
- Nach Eintrag von Werten in das Tabellengerüst (Anfrage) füllt das System die Tabelle
- Zielgruppe: Gelegentliche Benutzer

Query By Example (QBE)

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

Sprachelemente:

- Kommandos, z.B. **P.** (print), **I.** (insert), **D.** (delete) ...
- Bereichsvariablen (beginnen mit '_'): _x, _y
- Konstanten (Huber, Milch)
- Vergleichsoperatoren und arithmetische Operatoren
- Condition-Box: Zusätzlicher Kasten zum Eintragen einer Liste von Bedingungen (AND, OR, kein NOT)

Beispiel-Dialog

evtl. weitere Tabelle (Join

• System füllt Tabelle mit Ergebnis-Werten

Kunde	∥ KName	KAdr
	Huber	Innsbruck
	Maier	München

Anfragen mit Bedingungen

• Welche Lieferanten liefern Mehl oder Milch?

• Bedeutung:

$$\{x_1, x_2 | \exists w, x_4: \text{Lieferant}(x_1, x_2, w, x_4) \land (w = \text{Mehl} \lor w = \text{Milch})\}$$

• Kommando P. für print bzw. auch für die Projektion

Anfragen mit Bedingungen

• Welche Lieferanten liefern Brie und Perrier, wobei Gesamtpreis 7,00 € nicht übersteigt?

Lieferant	LName	LAdr	Ware	Preis
	PL		Brie	y
	_L		Perrier	_Z

• Bedeutung:

$$\{l \mid \exists x_1, x_2, y, z: Lieferant (l, x_1, Brie, y) \land Lieferant (l, x_2, Perrier, z) \land y + z \le 7.00\}$$

Join-Anfragen

• Welcher Lieferant liefert etwas das Huber bestellt hat?

Lieferant	LName	LAdr	Ware	Preis
	P.		_W	

Auftrag	KName	Ware	Menge
	Huber	_W	-

• Bedeutung:

$$\{x_1 \mid \exists x_2, w, x_4, y_3:$$
 Lieferant $(x_1, x_2, w, x_4) \land$ Auftrag (Huber, w, y_3)

• Beachte: Automatische Duplikat-Elimination in QBE

Join-Anfragen

Meist ist für Ergebnis neues Tabellengerüst nötig:

- Beispiel: Bestellungen mit Kontostand des Kunden
- Falsch (leider nicht möglich):

Kunde	KName	KAdr	Kto
	Pn		P.
Auftrag	KName	Ware	Menge
	_n	P.	P.

• Richtig:

Kunde	KName	KAdr	Kto
	_n		_k
Auftrag	KName	Ware	Menge
<u>Auftrag</u>	KNamen	Warew	Mengem

Abkürzung!

Bestellung Name Was Wieviel Kontostand
P. W. _n W. _w V. _m V. _k

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

Anfragen mit Ungleichung

- Wer liefert Milch zu Preis zw. 0,50 € und 0,60 €?
- Variante mit zwei Zeilen:

Lieferant	LName	LAdr	Ware	Preis
P.	_L		Milch	>= 0.5
	_L		Milch	<= 0.6

• Variante mit Condition-Box

Lieferant	LName	LAdr	Ware	Preis
P.			Milch	_p

CONDITIONS			
$_p >= 0.5 \text{ AND } _p <= 0.6$			

Anfragen mit Negation

• Finde für jede Ware den billigsten Lieferanten

Lieferant	LName	LAdr	Ware	Preis
P.			_w	_p
			_W	<_p

- Das Symbol in der ersten Spalte bedeutet: Es gibt kein solches Tupel
- Bedeutung:

$$\{x_1, x_2, w, p \mid \neg \exists y_1, y_2, y_3:$$
 Lieferant $(x_1, x_2, w, p) \land$ Lieferant $(y_1, y_2, w, y_3) \land y_3 < p\}$

Einfügen

- Einfügen von einzelnen Tupeln
 - Kommando I. für INSERT

Kunde	KName	KAdr	Kto
I.	Schulz	Wien	0

- Einfügen von Tupeln aus einem Anfrageergebnis
 - Beispiel: Alle Lieferanten in Kundentabelle übernehmen

Kunde	KName	KAdr	Kto	
I.	_n	_a	0	
Lieferant	LName	LAdr	Ware	Preis
	n	9		

Löschen und Ändern

• Löschen aller Kunden mit negativem Kontostand

Kunde	KName	KAdr	Kto
D.			< 0

• Ändern eines Tupels (U. für UPDATE)

Kunde	KName	KAdr	Kto
	Schulz	Wien	U. 100

• oder auch:

Kunde	KName	KAdr	Kto
	Meier	_a	_k
U.	Meier	_a	_k - 110

• oder auch mit Condition-Box

Vergleich

Datenbanksysteme I Kapitel 4: Relationen-Kalkül

QBE	Bereichskalkül
Konstanten	Konstanten
Bereichsvariablen	Bereichsvariablen
leere Spalten	paarweise verschiedene
	Bereichsvariablen,
	∃-quantifiziert
Spalten mit P.	freie Variablen
Spalten ohne P.	∃-quantifizierte Variablen

Anmerkung: QBE ist relational vollständig, jedoch ist für manche Anfragen der relationalen Algebra eine Folge von QBE-Anfragen nötig

Umsetzung einer QBE-Anfrage

(ohne Negation)

- Erzeuge für alle Attribute A_i aller vorkommenden Tabellen-Zeilen der Anfrage eine Bereichsvariable x_i
- Steht bei Attribut A_i das Kommando **P.** dann schreibe x_i zu den freien Variablen $(\{... x_i, ... | ... \})$, sonst binde x_i mit einem \exists -Quantor $(\{... | \exists ..., x_i, ... \})$
- Binde alle Variablen der Anfrage mit einem ∃-Quantor

Umsetzung einer QBE-Anfrage

Lieferant	LName	LAdr	Ware	Preis
	P.	P.	Pw	
Auftrag	KName	Ware	Menge	
	Huber	_w	>= 5	

• Füge für jede vorkommende Relation R ein Atom der Form $R(x_i, x_{i+1}, ...)$ mit \wedge an die Formel Ψ an

$$\{x_1, x_2, x_3 \mid \exists x_4, x_5, x_6, x_7, w: \text{Lieferant}(x_1, x_2, x_3, x_4) \land \text{Auftrag}(x_5, x_6, x_7) \dots \}$$

• Steht bei A_i ein Zusatz der Form Const bzw. \leq Const etc., dann hänge x_i = Const bzw. $x_i \leq$ Const mit \wedge an Formel.

$$\{x_1, x_2, x_3 \mid \exists x_4, x_5, x_6, x_7, w: \operatorname{Lieferant}(x_1, x_2, x_3, x_4) \land \operatorname{Auftrag}(x_5, x_6, x_7) \land x_5 = \operatorname{Huber} \land x_7 \ge 5$$

Umsetzung einer QBE-Anfrage

Lieferant	LName	LAdr	Ware	Preis
	P.	P.	Pw	
Auftrag	KName	Ware	Menge	
	Huber	_W	>= 5	•

Gleiches Vorgehen bei Zusätzen der Form _Variable bzw.
 ≤ Variable usw:

```
\{x_1, x_2, x_3 \mid \exists x_4, x_5, x_6, x_7, w: \text{Lieferant}(x_1, x_2, x_3, x_4) \land \text{Auftrag}(x_5, x_6, x_7) \land x_5 = \text{Huber} \land x_7 \ge 5 \land w = x_3 \land w = x_6\}
```

- Ggf. wird der Inhalt der Condition-Box mit ∧ angehängt.
- Meist lässt sich der Term noch vereinfachen:

$$\{x_1,x_2,w \mid \exists x_4,x_5,x_7: \text{Lieferant}(x_1,x_2,w,x_4) \land \text{Auftrag}(\text{Huber},w,x_7) \land x_7 \ge 5\}$$

Quantoren und Subqueries in SQL

- Quantoren sind Konzept des Relationenkalküls
- In relationaler Algebra nicht vorhanden
- Können zwar simuliert werden:
 - Existenzquantor implizit durch Join und Projektion:

$$\{x \in R \mid \exists y \in S: ...\} \equiv \pi_{R^*}(\sigma...(R \times S))$$

- Allquantor mit Hilfe des Quotienten $\{x \in R \mid \forall y \in S: ...\} \equiv (\sigma... (R \times S)) \div S$
- Häufig Formulierung mit Quantoren natürlicher
- SQL: Quantifizierter Ausdruck in einer Subquery

Quantoren und Subqueries in SQL

• Beispiel für eine Subquery select * from Kunde where exists (select...from...where...)

Subquery

- In Where-Klausel der Subquery auch Zugriff auf Relationen/Attribute der Hauptquery
- Eindeutigkeit ggf. durch Aliasnamen für Relationen (wie bei Self-Join):

```
select *
from kunde k1
where exists ( select *
    from Kunde k2
    where k1.Adr=k2.Adr and...
)
```


Existenz-Quantor

- Realisiert mit dem Schlüsselwort exists
- Der ∃-quantifizierte Ausdruck wird in einer Subquery notiert.
- Term true gdw. Ergebnis der Subquery nicht leer
- Beispiel:
 KAdr der Kunden, zu denen ein Auftrag existiert:

```
select KAdr from Kunde k
where exists
  ( select * from Auftrag a
    where a.KName = k.KName
)
```

Äquivalent mit Join ??

Allquantor

- Keine direkte Unterstützung in SQL
- Aber leicht ausdrückbar durch die Äquivalenz:

```
\forall x: \psi(x) \Leftrightarrow \neg \exists x: \neg \psi(x)
```

- Also Notation in SQL: ...where not exists (select...from...where not...)
- Beispiel:
 Die Länder, die von der SPD allein regiert werden select * from Länder L1
 where not exists
 (select * from Länder L2
 where L1.LName=L2.LName and not L2.Partei='SPD'

)

Direkte Subquery

- An jeder Stelle in der select- und where-Klausel, an der ein konstanter Wert stehen kann, kann auch eine Subquery (select...from...where...) stehen.
- Einschränkungen:
 - Subquery darf nur ein Attribut ermitteln (Projektion)
 - Subquery darf nur ein Tupel ermitteln (Selektion)
- Beispiel: Dollarkurs aus Kurstabelle

• Oft schwierig, Eindeutigkeit zu gewährleisten...

Weitere Quantoren

- Quantoren bei Standard-Vergleichen in WHERE
- Formen:

```
-A_i \Theta all (select...from...where...) \forall-Quantor
```

 $-A_i \Theta$ some (select...from...where...) $-A_i \Theta$ any (select...from...where...) \exists -Quanto

Vergleichsoperatoren $\Theta \in \{=, <, <= \overline{,>,>=, <>\}}$

- Bedeutung:
 - $-A_i \Theta$ all (Subquery) $\equiv \{... | \forall t \in \text{Subquery} : A_i \Theta t \}$
 - ist größer als alle Werte, die sich aus Subquery ergeben
- Einschränkung bezüglich Subquery:
 - Darf nur ein Ergebnis-Attribut ermitteln
 - Aber mehrere Tupel sind erlaubt

nicht Relation

Beispiel

Ermittle den Kunden mit dem höchsten Kontostand

```
select KName, KAdr
from Kunde
where Kto >= all ( select Kto
from Kunde
)
```

• Äquivalent zu folgendem Ausdruck mit EXISTS:

Subquery mit IN

- Nach dem Ausdruck A_i [not] in ... kann stehen:
 - Explizite Aufzählung von Werten: A_i in (2,3,5,7,11,13)
 - Eine Subquery:
 - A_i in (select wert from Primzahlen where wert<=13)
 - Auswertung:
 - Erst Subquery auswerten
 - In explizite Form (2,3,5,7,11,13) umschreiben
 - Dann einsetzen
 - Zuletzt Hauptquery auswerten

Beispiele

- Gegeben:
 - MagicNumbers (Name: String, Wert: Int)
 - Primzahlen (Zahl: Int)
- Anfrage: Alle MagicNumbers, die prim sind select * from MagicNumbers where Wert in (select Zahl from Primzahlen)
- ist äquivalent zu folgender Anfrage mit EXISTS:
 select * from MagicNumbers where exists
 (select * from Primzahlen where Wert = Zahl)
- und zu folgender Anfrage mit SOME/ANY/ALL:
 select * from MagicNumbers where
 Wert = some (select Zahl from Primzahlen)

Beispiele

- Gegeben:
 - MagicNumbers (Name: String, Wert: Int)
 - Primzahlen (Zahl: Int)
- Anfrage: Alle MagicNumbers, die nicht prim sind select * from MagicNumbers where Wert not in (select Zahl from Primzahlen)
- ist äquivalent zu folgender Anfrage mit EXISTS:
 select * from MagicNumbers where
 not exists (select * from Primzahlen where Wert = Zahl)
- und zu folgender Anfrage mit SOME/ANY/ALL:
 select * from MagicNumbers where
 Wert <> all (select Zahl from Primzahlen)

bzw.: select * from MagicNumbers where
not (Wert = any (select Zahl from Primzahlen))

Typische Form der Subquery

- Bei exists bzw. not exists ist für die Haupt-Query nur relevant, ob das Ergebnis die leere Menge ist oder nicht.
 - Deshalb muss keine Projektion durchgeführt werden: select ... from ... where exists (select * from ...)
- Bei some, any, all und in ist das Ergebnis der Subquery eine *Menge von Werten* (d.h. ein Attribut, mehrere Tupel), die in die Hauptquery eingesetzt werden.
 - Deshalb muss in der Subquery eine Projektion auf *genau ein* Attribut durchgeführt werden: select ... from ... where $A \le all$ (select B from ...)
- Das Ergebnis der direkten Subquery ist genau ein Wert.
 - Projektion auf ein Attribut, Selektion eines Tupels:
 ... where A <= (select B from ... where Schlüssel=...)