Monitor: Ricardo Brandão

Problem set 1 GMM

Exercise 1 Consider the model with $y_i = x_i'\beta + e_i$ and $\mathbb{E}(z_i e_i) = 0$, with $\{e_i\}$ being i.i.d.

- a) Derive the efficient GMM estimator
- b) Compare with 2SLS. Are they always equal?
- c) Under what conditions the GMM estimator is consistent and normally distributed?
- d) Find the asymptotic distribution of the GMM estimator.

Exercise 2 Let y_i be given by $y_i = \beta + u_i$ with $\{u_i\}$ i.i.d. where the first two moments of u_i are:

$$\mathbb{E}(u_i) = 0$$
, $\mathbb{E}(u_i^2) = m_2$

- a) Suppose you want to estimate β using GMM. What moment conditions would you use? Under the moments conditions' you choose, derive the efficient GMM estimator and find the asymptotic distribution
- b) Now, suppose that $\mathbb{E}(u_i^3) = 0$, $\mathbb{E}(u_i^4) = m_4$ and $\mathbb{E}(u_i^6) = m_6$ and the moments conditions you use are:

$$g(y_i, \beta) = \begin{bmatrix} y_i - \beta \\ (y_i - \beta)^3 \end{bmatrix}$$

Derive the efficient GMM estimator and find the asymptotic distribution.

Exercise 3 You observe (y_i, x_i, z_i) which are i.i.d. Take the model

$$y_i = x_i'\beta + e_i \; ; \; \mathbb{E}(x_i e_i) = 0 \; ; \; e_i^2 = z_i'\gamma + \eta_i \; ; \; \mathbb{E}(z_i \eta_i) = 0$$

Find the method of moments estimators $(\hat{\beta}, \hat{\gamma})$ for (β, γ)

Exercise 4 For the case described in exercise 1, suppose $R'\beta = c$. Consider $R_{k\times q}$ and $c \in \mathbb{R}^q$. Derive the constrained GMM estimator and it's asymptotic distribution.

Exercise 5 Let $r(\beta): \mathbb{R}^k \to \Theta \subset \mathbb{R}^q$ and $\theta = r(\beta)$. The GMM estimator of θ is $\hat{\theta}_{gmm} = r(\hat{\beta}_{gmm})$. Show how to construct a Wald statistic W to test

$$\mathbb{H}_0: \theta = \theta_0 \ against \ \mathbb{H}_0: \theta \neq \theta_0$$

and derive the asymptotic distribution

Exercise 6 In the linear model estimated by GMM with general weight matrix W, the asymptotic variance of $\hat{\beta}_{GMM}$ is:

$$V = (Q'WQ)^{-1}Q'W\Omega WQ(Q'WQ)^{-1}$$

- a) Let V_0 be this matrix when $W = \Omega^{-1}$. Show that $V_0 = (Q'\Omega^{-1}Q)^{-1}$
- b) We want to show that for any W, $V V_0$ is positive semi-definite (for then V_0 is the smaller possible covariance matrix, and $W = \Omega^{-1}$ is the efficient weight matrix). To do this, start by finding matrices A and B such that $V = A'\Omega A$ and $V_0 = B'\Omega B$.
- c) Show that $B'\Omega A = B'\Omega B$ and therefore that $B'\Omega (A B) = 0$.
- d) Use the expressions $V = A'\Omega A$, A = B + (A B), and $B'\Omega(A B) = 0$ to show that $V \geq V_0$.