Assignment 1 - Image Deblurring

Nalet Meinen Computer Vision

October 26, 2020

1 Finite difference approximation of the objective function E

The deblurring problem can be written as the following optimization

$$\hat{u} = \arg \underbrace{min}_{u} E[u]$$

$$E[u] = |g - u * k|^{2} + \lambda R[u]$$
(2)

$$E[u] = |g - u * k|^2 + \lambda R[u]$$
(2)

where the term $|g - u * k|^2$ equals to:

$$|g - u * k|^2 = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \left| g[i, j] - \sum_{p=0}^{1} \sum_{q=0}^{1} k[p, q] u[i - p + 1, j - q + 1] \right|_2^2$$
 (3)

where q is the blurred image, k is the kernel and u should be our result, the deblurred image. The kernel used for this assignment is:

$$k_1 = \begin{bmatrix} \frac{1}{2} & 0\\ \frac{1}{2} & 0 \end{bmatrix} \tag{4}$$

1.1 Derive the corresponding discretization for the anisotropic prior

We want to discretize the anisotropic prior:

$$R[u] = |\nabla u|_1 = \sum_{i=0}^{m} \sum_{j=0}^{n} |\nabla u[i,j]|_1$$
 (5)

the discretized version is similar but takes the absolute value.

$$R[u] = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} |u[i+1,j] - u[i,j]| + |u[i,j+1] - u[i,j]| + \sum_{j=0}^{n-1} |u[m,j+1] - u[m,j]| + \sum_{i=0}^{m-1} |u[i+1,n] - u[i,n]|$$
(6)

2 Calculation of the exact gradient of the discretized E

2.1 $\lambda = 0$

With $\lambda = 0$ the problem reduces to:

$$E[u] = |g - u * k|^{2}$$

$$E[u] = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \left| g[i, j] - \sum_{p=0}^{1} \sum_{q=0}^{1} k[p, q] u[i - p + 1, j - q + 1] \right|_{2}^{2}$$

As the kernel has only four entries, we get rid of the summation:

$$k = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$\sum_{p=0}^{1} \sum_{q=0}^{1} k[p,q]u[i-p+1,j-q+1] = \frac{1}{2}u[i-0+1,j-0+1] + 0u[i-0+1,j-1+1] + \frac{1}{2}u[i-1+1,j-0+1] + 0u[i-1+1,j-1+1]$$

$$= \frac{1}{2}u[i-0+1,j-0+1] + \frac{1}{2}u[i-1+1,j-0+1]$$

$$= \frac{1}{2}u[i+1,j+1] + \frac{1}{2}u[i,j+1]$$

$$\nabla E[u] = \nabla \left(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \left| g[i,j] - \frac{1}{2} u[i+1,j+1] - \frac{1}{2} u[i,j+1] \right|_{2}^{2} \right)$$

$$\nabla E[u] = \nabla \left(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \left| g[i,j] - \frac{1}{2} u[i+1,j+1] - \frac{1}{2} u[i,j+1] \right|_{2}^{2} \right)$$

$$\nabla E[u] = \nabla \left(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (g[i,j] - \frac{1}{2} u[i+1,j+1] - \frac{1}{2} u[i,j+1])^{2} \right)$$

$$\nabla E[u] = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} 2g[i,j] - u[i+1,j+1] - u[i,j+1]$$

we finish here with the basis form where then we go further.

Pixels influence each other, we have to look from all perspectives for $\nabla E[i,j]$: center pixel (i,j), northern pixel (i,j-1), southern pixel (i,j+1), western pixel (i-1,j), eastern pixel (i+1,j), north-western pixel (i-1,j-1), north-eastern pixel (i-1,j+1), south-western pixel (i-1,j+1), south-eastern pixel (i-1,j+1).

$$2g[i-1,j-1] - u[i,j] - u[i-1,j] \\ + 2g[i,j-1] - u[i+1,j] - u[i,j] \\ + 2g[i-1,j] - u[i+1,j-1] - u[i+2,j] - u[i+1,j] \\ + 2g[i-1,j] - u[i,j+1] - u[i-1,j+1] \\ + 2g[i-1,j-1] - u[i+2,j+1] - u[i+1,j+1] \\ + 2g[i-1,j-1] - u[i+1,j+1] - u[i+1,j+1] \\ + 2g[i-1,j-1] - u[i+1,j-1] - u[i+1,j+1] \\ + 2g[i-1,j-1] - u[i+1,j-1] - u[i+1,j+1] \\ + 2g[i-1,j-1] - u[i+1,j-1] - u[i+1,j+1] - u[i+1,j+1] \\ + 2g[i-1,j-1] - u[i+1,j-1] - u[i+1,j+1] - u[i+1,j+1] \\ + 2g[i-1,j-1] - u[i+1,j-1] - u[i+1,j+1] - u[i+1,j+1] - u[i+1,j+1] - u[i+1,j+1] \\ + 2g[i-1,j-1] - u[i+1,j-1] - u[i+1,j+1] - u[i+1,j$$

As we only try to find the derivative for $\nabla E[i,j]$, most value indexes that don't have i or j will be zero. This leaves us with this term:

$$\begin{split} \nabla E[i,j] &= -u[i,j] + 2g[i,j-1] - u[i+1,j] - u[i,j] - u[i+2,j] \\ &- u[i+1,j] + 2g[i-1,j] - u[i,j+1] + 2g[i,j] - u[i,j+1] \\ &+ 2g[i+1,j] - u[i,j+2] + 2g[i,j+1] - u[i,j+2] \\ \nabla E[i,j] &= \underbrace{-2u[i,j] + 2g[i,j-1] - 2u[i+1,j] - u[i+2,j]}_{+2g[i-1,j] - 2u[i,j+1] + 2g[i,j]} \\ &+ \underbrace{-2g[i+1,j] - 2u[i,j+2] + 2g[i,j+1]}_{+2g[i+1,j] - 2u[i,j+2] + 2g[i,j+1]} \end{split}$$

Lets define the behavior at the boundaries: We use the Dirichlet approach, where I set the function to a constant, in this case 0. We define our range as $\forall i \in [1, M-2], \forall j \in [1, N-2]$

Our loop will go from 1 to M-2 or N-2.

2.2 Gaussian prior

The derivative of the data term stays the same, so we only have to look at the Gaussian prior which is:

$$R[u] = |\nabla u|_2^2 = \sum_{i=0}^m \sum_{j=0}^n |\nabla u[i,j]|_2^2$$

$$R[u] = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (u[i+1,j] - u[i,j])^2 + (u[i,j+1] - u[i,j])^2 + \sum_{j=0}^{n-1} (u[m,j+1] - u[m,j])^2 + \sum_{i=0}^{m-1} (u[i+1,n] - u[i,n])^2$$

The derivate then would be:

$$\nabla R[u] = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} -2(u[i+1,j]-u[i,j]) - 2(u[i,j+1]-u[i,j]) + \sum_{j=0}^{n-1} -2(u[m,j+1]-u[m,j]) + \sum_{i=0}^{m-1} -2(u[i+1,n]-u[i,n]) + \sum_{i=0}^{m-1} -2(u[i+1,n]-u[i,n]-u[i,n]) + \sum_{i=0}^{m-1} -2(u[i+1,n]-u[i,n]-u[i,n]) + \sum_{i=0}^{m-1} -2(u[i+1,n]-u[i,n]-u[i,n]-u[i,n]-u[i,n]) + \sum_{i=0}^{m-1} -2(u[i+1,n]-u[i,n]-u[i,n]-u[i,n]-u[i,n]-u[i$$

For the iterative version this would result into this derivative:

$$\begin{split} u_{\nabla}R[i,j] &= \nabla \Big(-2(u[i+1,j] - u[i,j]) - 2(u[i,j+1] - u[i,j]) - 2(u[m,j+1] - u[m,j]) - 2(u[i+1,n] - u[i,n]) \Big) \\ u_{\nabla}R[i,j] &= -2(u[i+1,j] - u[i,j]) - 2(u[i,j+1] - u[i,j]) - 2(0 - u[m,j]) - 2(0 - u[i,n]) \\ u_{\nabla}R[i,j] &= -2(u[i+1,j] - u[i,j]) - 2(u[i,j+1] - u[i,j]) + 2u[m,j] + 2u[i,n] \end{split}$$

Complete Equation:

$$\begin{split} \nabla E[i,j] = & \underbrace{-2u[i,j] + 2g[i,j-1] - 2u[i+1,j] - u[i+2,j]}_{+2g[i-1,j] - 2u[i,j+1] + 2g[i,j]} \\ & \underbrace{+2g[i-1,j] - 2u[i,j+1] + 2g[i,j]}_{+2g[i+1,j] - 2u[i,j+2] + 2g[i,j+1]} \\ & \underbrace{+2g[i+1,j] - 2u[i,j+2] + 2g[i,j+1]}_{+\lambda(-2(u[i+1,j] - u[i,j]) - 2(u[i,j+1] - u[i,j]) + 2u[m,j] + 2u[i,n])} \end{split}$$

hint: $\forall i \in [1, M-2], \forall j \in [1, N-2]$

The boundaries behave the same as before.

2.3 Anisotropic Total Variation

The derivative of the data term stays the same, so we only have to look at the anisotropic Gaussian prior which is:

$$R[u] = |\nabla u|_1 = \sum_{i=0}^{m} \sum_{j=0}^{n} |\nabla u[i,j]|_1$$

$$R[u] = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} |u[i+1,j] - u[i,j]| + |u[i,j+1] - u[i,j]| + \sum_{j=0}^{n-1} |u[m,j+1] - u[m,j]| + \sum_{i=0}^{m-1} |u[i+1,n] - u[i,n]|$$

$$\nabla R[u] = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} -\frac{u[i+1,j] - u[i,j]}{|u[i+1,j] - u[i,j]|} - \frac{u[i,j+1] - u[i,j]}{|u[i,j+1] - u[i,j]|} + \sum_{j=0}^{n-1} -\frac{u[m,j+1] - u[m,j]}{|u[m,j+1] - u[m,j]|} + \sum_{i=0}^{m-1} -\frac{u[i+1,n] - u[i,n]}{|u[i+1,n] - u[i,n]|}$$

For the iterative version this would result into this derivative:

$$\begin{split} \nabla R[i,j] &= \nabla \Bigg(-\frac{u[i+1,j] - u[i,j]}{|u[i+1,j] - u[i,j]|} - \frac{u[i,j+1] - u[i,j]}{|u[i,j+1] - u[i,j]|} - \frac{u[m,j+1] - u[m,j]}{|u[m,j+1] - u[m,j]|} - \frac{u[i+1,n] - u[i,n]}{|u[i+1,n] - u[i,n]|} \Bigg) \\ \nabla R[i,j] &= -\frac{u[i+1,j] - u[i,j]}{|u[i+1,j] - u[i,j]|} - \frac{u[i,j+1] - u[i,j]}{|u[i,j+1] - u[i,j]|} - \frac{u[i+1,n] - u[i,n]}{|u[i+1,n] - u[i,n]|} \end{split}$$

Complete Equation:

$$\begin{split} \nabla E[i,j] &= \underbrace{-2u[i,j] + 2g[i,j-1] - 2u[i+1,j] - u[i+2,j]}_{+2g[i-1,j] - 2u[i,j+1] + 2g[i,j]} \\ &= \underbrace{+2g[i-1,j] - 2u[i,j+1] + 2g[i,j]}_{+2g[i+1,j] - 2u[i,j+2] + 2g[i,j+1]} \\ &= \underbrace{+\lambda \left(-\frac{u[i+1,j] - u[i,j]}{|u[i+1,j] - u[i,j]|} - \frac{u[i,j+1] - u[i,j]}{|u[i,j+1] - u[i,j]|} - \frac{u[i+1,n] - u[i,n]}{|u[i+1,n] - u[i,n]|} \right)}_{-2u[i,j] - 2u[i,j]} \end{split}$$

hint: $\forall i \in [1, M-2], \forall j \in [1, N-2]$

The boundaries behave the same as before.