Øving 7

Håvard Solberg Nybøe

MA0301 - 7. mars 2022

Ønsker retting

Tallene a_0, a_1 og a_2 er alle multiplum av 3, 0(3), 2(3), 3(3), altså er de delelig på 3. Formelen $a_n = a_{n-1} + a_{n-3}$ legger kun sammen leddene ergo vil summen alltid være et multiplum av 3 og dermed delelig på 3. \square

2

Grunnsteg:
$$p_0: a=1, b=1, \quad 3\cdot 1+5\cdot 1=8$$

 $p_1: a=3, b=0, \quad 3\cdot 3+5\cdot 0=9$
 $p_2: a=0, b=2, \quad 3\cdot 0+5\cdot 2=10$
 $p_3: a=2, b=1, \quad 3\cdot 2+5\cdot 1=11$
 $p_4: a=4, b=0, \quad 3\cdot 4+5\cdot 0=12$
 $p_5: a=1, b=2, \quad 3\cdot 1+5\cdot 2=13$
 $p_6: a=3, b=1, \quad 3\cdot 3+5\cdot 1=14$
 $p_7: a=0, b=3, \quad 3\cdot 0+5\cdot 3=15$
Bevis: Anta $k=3a+5b,$
 $p_7: a=0, b=3, \quad 3\cdot 0+5\cdot 3=15$
 $k=3\cdot (a_{p_k \bmod 8}+\frac{k-(k \bmod 8)}{8}-1)+5\cdot (b_{p_k \bmod 8}+\frac{k-(k \bmod 8)}{8}-1)$

ex.:
$$33 = 3 \cdot (3 + \frac{33 - 1}{8} - 1) + 5 \cdot (0 + \frac{33 - 1}{8} - 1)$$

 $33 = 3 \cdot (3 + 4 - 1) + 5 \cdot (0 + 4 - 1)$
 $33 = 18 + 15$
 $33 = 33$

3

$\boxed{4} \ \text{Primtall t.o.m. 11:} \ \{2,3,5,7,11\}$

Grunnsteg:
$$4 = 2 \cdot 2$$

$$6 = 2 \cdot 3$$

$$8 = 2 \cdot 4$$

$$9 = 3 \cdot 3$$

$$10 = 2 \cdot 5$$

Bevis: Anta
$$k = \prod_{i=1}^{n} a_i$$
,