Image segmentation

Thierry Pécot Associate Researcher CZI Imaging Scientist

Outline

Intensity thresholding

Clustering

Region growing

Frequency decomposition methods

Machine learning

Morphological operations

 Estimate an intensity threshold such that all pixels with an intensity superior (resp. inferior) to the threshold are part of the object component (resp. background component)

- Estimate an intensity threshold such that all pixels with an intensity superior (resp. inferior) to the threshold are part of the object component (resp. background component)
- Such methods are based on the histogram distribution

- Estimate an intensity threshold such that all pixels with an intensity superior (resp. inferior) to the threshold are part of the object component (resp. background component)
- Such methods are based on the histogram distribution
- Global and local thresholding methods

- Estimate an intensity threshold such that all pixels with an intensity superior (resp. inferior) to the threshold are part of the object component (resp. background component)
- Such methods are based on the histogram distribution
- Global and local thresholding methods
- First example: the **global mean thresholding method**:

$$T = \frac{\sum_{i \in \Omega} I_i}{|\Omega|},\tag{1}$$

where Ω is the set of pixels in the image and I_i is the intensity observed at pixel $i \in \Omega$

- Estimate an intensity threshold such that all pixels with an intensity superior (resp. inferior) to the threshold are part of the object component (resp. background component)
- Such methods are based on the histogram distribution
- Global and local thresholding methods
- First example: the global mean thresholding method:

$$T = \frac{\sum_{i \in \Omega} I_i}{|\Omega|},\tag{1}$$

where Ω is the set of pixels in the image and I_i is the intensity observed at pixel $i \in \Omega$

Second example: the local mean thresholding method:

$$T_s = \frac{\sum_{i \in \Omega_s} I_i}{|\Omega_s|},\tag{2}$$

3/28

where T_s is the local threshold estimated at pixel s, Ω_s is a a local neighborhood defined around pixel s and I_i is the intensity observed at pixel $i \in \Omega_s$

Advantages:

- No parameters for global thresholding (but at least local neighborhood size for local thresholding)
- Many global and local thresholding methods exist in Fiji

Drawbacks:

- Sensitivity to noise
- Sensitivity to intensity variations

Outline

Intensity thresholding

Clustering

Region growing

Frequency decomposition methods

Machine learning

Morphological operations

Image clustering: classifying or grouping objects based on intensity

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

- K = 4 clusters
- Euclidean distance

Advantages:

- Any **number** of **categories** (not limited to object/background)
- Gray level and color images (or any number of channels)

Drawbacks:

- Need to define a **number** of categories
- Sensitivity to initialization
- Sensitivity to local minima

Outline

Intensity thresholding

Clustering

Region growing

Frequency decomposition methods

Machine learning

Morphological operations

Region growing

Region growing algorithms have two main steps:

- Seed initialization
- Expansion through similarity criteria (average intensity, variance, texture, ...)

Region growing

Region growing algorithms have two main steps:

- Seed initialization
- Expansion through similarity criteria (average intensity, variance, texture, ...)

Example: Active contours approach

Energy based on **partial differential equations**:

$$E(\mathcal{C}) = \sum_{0}^{1} (E_{\text{int}}(\mathcal{C}(q)) + (E_{\text{ext}}(\mathcal{C}(q)))dq$$
 (3)

where E_{int} controls the **smoothness** of the contours E_{ext} is responsible for **attracting** the contours towards **objects**

Region growing

Advantages:

• Flexibility of criteria (possibility to have several criteria)

Drawbacks:

- Parameterization
- Need for seed initialization
- Slow

Outline

Intensity thresholding

Clustering

Region growing

Frequency decomposition methods

Machine learning

Morphological operations

Frequency decomposition methods methods (DoG, Fourier transform, ...) identify a specific **scale** in the image

DoG (Difference of Gaussians):

DoG (Difference of Gaussians):

DoG (Difference of Gaussians):

Advantages:

- Accurate when objects are the same size
- Robust to noise

Drawbacks:

 Need for specific scale that is different enough from the rest of the image

Outline

Intensity thresholding

Clustering

Region growing

Frequency decomposition methods

Machine learning

Morphological operations

Machine learning

Contrary to **traditional approaches** where each **single step** is fully **determined** by the developer, machine learning algorithms are **trained to** "learn":

- A training dataset is defined such that input images and outputs (detection, classification, decision, ...) are known
- The **training process** for the algorithm consists in finding how to estimate the outputs given the input images
- Once the algorithm is trained, other images can be processed

Machine learning

Advantages:

Potentially solves complex problems

Drawbacks:

- Need for large training datasets if using deep learning
- Need to define image features if using traditional machine learning algorithms
- Need for **optimization** (complex for non specialists)

Practice

https://youtu.be/5YLf0RZukA8

Outline

Intensity thresholding

Clustering

Region growing

Frequency decomposition methods

Machine learning

Morphological operations correspond to image filtering applied to binary images

Image

Dilation

Image

Dilation

Image

Dilation

Image

Dilation

t least one 1

Image

Dilation

Filtered

Image

Dilation

Image

Erosion

Image

Erosion

Image

Erosion

Filtered

Image

Erosion

Opening

Opening: first erosion then dilation

Closing

Closing: first dilation then erosion

Fill holes

Fill holes: swap regions in the **background** component **to the object** component when **completeley surrounded** by pixels belonging to the object component

Distance map

Distance map: distance to the **closest** pixel in the **background** component for each pixel in the object component

Watershed

Watershed: object separation based on the local maxima in the distance map

Watershed

Watershed: object separation based on the local maxima in the distance map

Watershed

Watershed: object separation based on the local maxima in the distance map

Skeletonization

Skeletonization: single pixel wide **skeletons** obtained by **iteratively removing** pixels located at the object **edge**

Skeletonization

Skeletonization: single pixel wide **skeletons** obtained by **iteratively removing** pixels located at the object **edge**

Voronoi

Voronoi tessellation: identification of points that are **equidistant** from at least two **separated objects**

Distance map

Distance map applied to background gives the **closest distance** from each pixel in the background **to objects**

Practice

https://youtu.be/OfDEtmyztNE