第1页 (共6页)

二〇一八~二〇一九学年 第一学期《工科数学分析》期末考试试题

考试日期: 2018年 月 日 试卷类型: A 试卷代号:

	班	E号	学号	姓名	
题号	_	=	三	四	总分
得分					

一、 填空题:(每题3分,共24分)

1. 级数
$$\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} - a \ln \left(1 - \frac{2}{n} \right) \right)$$
 收敛,则 $a =$ _____;

2. 设
$$f(x)$$
 是连续函数且 $f(x) = x + 2 \int_0^1 f(t) dt$, 则 $f(x) = _____;$

3. 对数螺线
$$r = ae^{\theta}(a > 0)$$
, $-\pi < \theta < \pi$ 与极轴所围图形的面积是_____;

4. 己知
$$f'(x_0) = -1$$
,则 $\lim_{x \to 0} \frac{x}{f(x_0 - 2x) - f(x_0 - x)} = _______;$

6.
$$\int_0^{+\infty} \frac{\ln(1+x)}{(1+x)^2} dx = \underline{\hspace{1cm}};$$

8. 曲线
$$y = \frac{|x-1|}{x\sqrt{x}}$$
 的拐点坐标为______.

选择题: (每题3分,共12分)

本题分数	12
得 分	

1、设函数 $f(x) = \begin{cases} \sin x, & x \le 0 \\ x - 1, & x > 0 \end{cases}$, $F(x) = \int_0^x f(t) dt$, 则 F(x) 在

x=0处

(A) 不连续;

- (B) 连续不可导;
- (C) 可导, 但导函数不连续; (D) 导函数连续.
- 2. 已知数列 $\{x_n\}$ 收敛,下述可以得出 $\lim_{n\to\infty} x_n = 0$ 的是

)

)

- (A) $\lim_{n \to \infty} \sin(x_n) = 0$; (B) $\lim_{n \to \infty} \left(x_n + \sqrt{|x_n|} \right) = 0$; (C) $\lim_{n \to \infty} \left(x_n + x_n^2 \right) = 0$; (D) $\lim_{n \to \infty} \left(x_n + \sin(x_n) \right) = 0$.

- 3. 级数 $\sum_{n=1}^{\infty} (-1)^n \left(n^{\frac{1}{n^2+1}} 1 \right)$ 的收敛性为
 - (A) 绝对收敛; (B) 条件收敛; (C) 发散; (D)不能确定.

- 4. 设0 < r < 1,下述使得函数项级数 $\sum_{n=0}^{\infty} (-1)^n x^n$ 一致收敛的区间是
 - (A) (-1,1); (B) (-r,1);
- (C) (-1,r); (D) [-r,r].

三、 计算题(每小6分,共24分)

本题分数	24
得 分	

2. 求极限 $\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2}$	$\ln\left(1+\frac{k}{n}\right)$
---	---------------------------------

3. 设D是由曲线 $y = \sqrt[3]{x}$,直线x = a (a > 0)及x轴所围成的平面图形,求D绕y轴旋转一周所形成的立体的体积.

4. 求级数 $\sum_{n=0}^{\infty} \frac{2^n (n+1)}{n!}$ 的和.

四、解答与证明题(每题8分,共40分)

本题分数	40
得 分	

1. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R , 其系数满足 $a_0 = 1$,

$$a_1 = 0$$
, $a_{n+1} = \frac{1}{n+1} (na_n + a_{n-1})$, 在区间 $(-R, R)$ 内导出幂级数

的和函数 S(x) 满足的微分方程,并求 S(x) 的表达式.

2. 已知曲线 L: y = y(x) 经过 (1,0) 点,在点 p(x,y) 处的切线与 y 轴交于 $(0,Y_p)$,在点 p(x,y) 处的法线与 x 轴交于 $(X_p,0)$,并且 $X_p = Y_p$,求曲线方程.

3. 设函数 f(x) 在区间 [a,b] 上连续,(a,b) 内可微,且 f'(x) > 0,若极限 $\lim_{x \to a^+} \frac{f(2x-a)}{x-a}$ 存在,证明在区间 (a,b) 内 f(x) > 0 且存在 $\xi \in (a,b)$ 使 $\frac{b^2 - a^2}{\int_a^b f(x) dx} = \frac{2\xi}{f(\xi)}$.

4. (1) 证明级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln^2 n}{n}$ 条件收敛;

(2) 证明函数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^2}{(1+x^2)^n}$ 在 $(-\infty, +\infty)$ 上一致收敛.

5.	将函数 <i>f</i> (x) =	$=\begin{cases} 1, \\ 0, \end{cases}$	$0 \le x \le 1$ 展开为余弦级数 $1 < x < \pi$,写出和函数在[-π,π]的表达式,
	并求数项级数	$\sum_{n=1}^{\infty} \frac{S}{n}$	$\frac{\sin n}{n}$ 的和.	

二〇一**八**~ 二〇一九 学年 第 1 学期

课程名称:《工科数学分析》参考答案及评分标准

命题教师:

试卷类型: A卷

试卷代号:

1.
$$-\frac{1}{2}$$
;

2.
$$x-1$$

1.
$$-\frac{1}{2}$$
; 2. $x-1$; 3. $\frac{a^2}{4} (e^{2\pi} - e^{-2\pi})$; 4. 1;
5. $a = 2, b = 1$; 6. 1; 7. $3e^{-\tan x} + \tan x - 1$; 8. $\left(5, \frac{4}{5\sqrt{5}}\right)$.

5.
$$a = 2, b = 1$$
;

7.
$$3e^{-\tan x} + \tan x - 1$$
;

8.
$$\left(5, \frac{4}{5\sqrt{5}}\right)$$
.

三、1解:
$$\int_0^{\frac{\pi}{2}} \frac{1}{1+\sin^2 x} dx = \int_0^{\frac{\pi}{2}} \frac{1}{\sec^2 x + \tan^2 x} \cdot \frac{1}{\cos^2 x} dx = \int_0^{\frac{\pi}{2}} \frac{1}{1+2\tan^2 x} d(\tan x) \dots (3 \%)$$
$$= \int_0^{+\infty} \frac{1}{1+2t^2} d(t) = \frac{1}{\sqrt{2}} \arctan\left(\sqrt{2}t\right) \Big|_0^{+\infty} = \frac{\pi}{2\sqrt{2}} \dots (6 \%)$$

2 解: 原极限=
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\frac{k}{n}\ln\left(1+\frac{k}{n}\right)=\int_{0}^{1}x\ln(1+x)\,\mathrm{d}x$$
....(3 分)

$$= \frac{1}{2} \left(x^2 \ln(1+x) \right) \Big|_0^1 - \frac{1}{2} \int_0^1 \frac{x^2}{1+x} dx = \frac{1}{4} \dots$$
 (6 \(\frac{1}{2}\))

二〇一八~二〇一九学年 第一学期《工科数学分析》期末考试试题

考试日期: 2018年 月 日 试卷类型: B 试卷代号:

班号			学号 姓名		
		<u>グ</u> エフ		<u> </u>	
题号			三	四	总分
得分					

填空题: (每题3分,共24分)

3. 曲线 $y = \cos x$ $\left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$ 与 x 轴所围成的图形绕 x 轴旋转一周所成的旋转体的

4. 曲线
$$\begin{cases} x - e^x \sin t + 1 = 0 \\ y = t^3 + 2t \end{cases}$$
 于 $t = 0$ 处的切线方程为: $y =$ ______;

5.
$$\lim_{x\to 0+} \frac{\int_0^x \sqrt{x-t} \cdot e^t dt}{\sqrt{x^3}} = \underline{\hspace{1cm}};$$

7. 微分方程
$$(1+x^2)y'+y = \arctan x$$
 满足 $y(0) = 2$ 的解为 $y =$ ______

8. 曲线
$$y = \frac{x^3}{12 + x^2}$$
 ($x > 0$) 的拐点坐标为______.

选择题: (每题3分,共12分)

本题分数	12
得 分	

1、设函数 $f(x) = \begin{cases} \sin x, & x \le 0 \\ x, & x > 0 \end{cases}$, $F(x) = \int_0^x f(t) dt$, 则 F(x) 在

x=0处

(A) 不连续;

- (B) 连续不可导;
- (C) 可导, 但导函数不连续; (D) 导函数连续.
- 2. 已知数列 $\{x_n\}$ 收敛, $\lim_{n\to\infty} (x_n + x_n^2) = 0$,则下述正确的是)
 - (A) $\lim_{n\to\infty}x_n=0;$
- (B) $\lim_{n\to\infty} \left(x_n + \sqrt{|x_n|}\right) = 0$; (D) $\lim_{n\to\infty} x_n 未必存在.$
- (C) $\lim x_n = -1$;

- 3. 级数 $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{\ln n}{n}\right)$ 的收敛性为

-)
- (A) 条件收敛; (B) 绝对收敛; (C) 发散; (D)不能确定.

- 4. 设0 < r < 1,下述使得函数项级数 $\sum_{n=1}^{\infty} (-1)^n (x-1)^n$ 一致收敛的区间是 (
 - (A) [r,2-r]; (B) (0,r); (C) (r,2); (D). (0,2)

三、 计算题(每小6分,共24分)

本题分数	24
得 分	

1. $\int_0^1 \frac{1+x}{\sqrt{1-x^2}} \, \mathrm{d} x$.

2. 求极限 $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n+k}\ln\left(1+\frac{k}{n}\right)$.

3. 设D是由曲线 $r=1-\cos\theta$ 和 $r=\cos\theta$ 围成的平面图形,求D的面积.

4. 求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{(2n-1)!}$ 的和.

解答与证明题(每题8分,共40分) 四、

本题分数	40
得 分	

1. 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R ,其系数满足 $a_0=1$, $a_1=2 \ , \quad a_{n+1}=\frac{1}{n+1} \big((n+2)a_n-a_{n-1}\big) \ , \quad \text{在区间}(-R,R)$ 内导出幂

$$a_1 = 2$$
, $a_{n+1} = \frac{1}{n+1} ((n+2)a_n - a_{n-1})$, 在区间 $(-R, R)$ 内导出幂

级数的和函数 S(x) 满足的微分方程,并求 S(x) 的表达式.

2. 已知曲线 L: y = y(x) 经过 (1,0) 点,在点 p(x,y) 处的切线与 y 轴交于 $(0,Y_p)$,在点 p(x,y)处的法线与 x轴交于 $(X_{\scriptscriptstyle p},0)$,并且 $X_{\scriptscriptstyle p}+Y_{\scriptscriptstyle p}=0$,求曲线方程.

3. 设函数 f(x) 在区间 [0,1] 上连续, (0,1) 内可微,且 $f(1) - 2\int_0^{\frac{1}{2}} x f(x) dx = 0$,证明存在 $\xi \in (0,1)$ 使 $f'(\xi) = -\frac{f(\xi)}{\xi}$.

4. (1) 证明级数 $\sum_{n=2}^{\infty} (-1)^n \frac{\ln^2 n}{n}$ 条件收敛;

(2) 证明函数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{x^2 + n}$ 在 $(-\infty, +\infty)$ 上一致收敛.

5	•	将函数。	$f(x) = \begin{cases} 1, \\ 0, \end{cases}$	$ \frac{0 \le x \le 1}{1 < x < \pi} $ 展开为余弦级数,	写出和函数在[-π,π]的表达式,
		并求数工	页级数 $\sum_{n=1}^{\infty}$	$\frac{\sin n \cos n}{n}$ 的和.	

第1页 (共2页)

二〇一**八**~ 二〇一九 学年 第 1 学期

课程名称:《工科数学分析》参考答案及评分标准

命题教师:

试卷类型: B卷

试卷代号:

- 1. 2; 2. $\frac{3\pi}{4}$; 3. $\frac{\pi^2}{2}$; 4. y = 2e(x+1); 5. $\frac{2}{3}$; 6. $\cos x\sqrt{1+\sin^4 x}$ 7. $3e^{-\arctan x} + \arctan x 1$; 8. $\left(6, \frac{9}{2}\right)$.

8.
$$\left(6, \frac{9}{2}\right)$$

- 选择题 1.D 2.B 3.A 4.A

$$= 1 \text{ fig. } \int_0^{\frac{1}{2}} \frac{1+x}{\sqrt{\left(1-x^2\right)^3}} \, \mathrm{d}x = \int_0^{\frac{\pi}{6}} \frac{1+\sin t}{\cos^3 t} \cdot \cos t \, \mathrm{d}x = \int_0^{\frac{\pi}{6}} \frac{1+\sin t}{\cos^2 t} \, \mathrm{d}t \, ...$$
 (3 分)

$$= \int_0^{\frac{\pi}{6}} \frac{1}{\cos^2 t} dt - \int_0^{\frac{\pi}{6}} \frac{1}{\cos^2 t} d(\cos t) = \frac{\sqrt{3}}{3} + \frac{2}{\sqrt{3}} - 1 = \sqrt{3} - 1.$$
 (6 \(\frac{\frac{1}}{2}\))

2 解: 原极限=
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{1+\frac{k}{n}}\ln\left(1+\frac{k}{n}\right)=\int_{0}^{1}\frac{1}{1+x}\ln(1+x)\,\mathrm{d}x$$
.....(3 分)

$$= \frac{1}{2} \left(\ln(1+x) \right)^2 \Big|_0^1 = \frac{1}{2} \ln^2 2 \dots \tag{6 \%}$$

3
$$\Re: S(D) = 2 \left[\frac{1}{2} \int_0^{\frac{\pi}{3}} (1 - \cos \theta)^2 d\theta + \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos^2 \theta d\theta \right] = \frac{7\pi}{12} - \sqrt{3}$$
 (6 $\%$)

4 解: 由于
$$\sin x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!}$$
 , $x \in (-\infty, +\infty)$, (2 分)

$$\mathbb{P}(x\sin x)' = \left(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{2n}}{(2n-1)!}\right)' = 2\sum_{n=1}^{\infty} \frac{(-1)^{n-1}nx^{2n-1}}{(2n-1)!} = x\cos x + \sin x \dots (5 \%)$$

四、1 解,首先利用逐项求导公式
$$S(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + \sum_{n=0}^{\infty} a_{n+1} x^{n+1} \Rightarrow S'(x) = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$$
 代入条件可得 $S'(x) = 2 + \sum_{n=1}^{\infty} (n+2) a_n x^{n+1} = \frac{1}{x} \left(x^n + \sum_{n=0}^{\infty} a_{n+1} x^n - \sum_{n=0}^{\infty} a_{n+1} x^n + x$