Introduction to microbial DNA sequencing

Scott Olesen

28 May 2019

Overview

- 1. The biology of microbial DNA
- 2. Storage of samples intended for DNA extraction
- 3. DNA extraction
- 4. Library prep
- 5. Sequencing
- 6. Post-sequencing, pre-analysis data processing

The biology of microbial DNA

PCR is a key tool for manipulating DNA

Polymerase chain reaction (PCR) allows you to:

- amplify DNA in an exponential chain reaction
- amplify select DNA sequence regions using *primers*

PCR works by repeatedly splitting and extending DNA

The 16S rRNA gene encodes part of the bacterial ribosome

The 16S gene has variable regions that can be PCR-amplified

The variable regions in 16S have taxonomic information

DNA sequences with no clear biological function are preferred for determining taxonomy:

- Mutations occur at a regular rate, producing a "molecular clock".
- Convergent evolution won't lead to convergent taxonomies.

Human DNA fingerprinting uses highly variable, biologically irrelevant DNA sequences.

The phylogeny of 16S led to a rewrite of the tree of life

- Aristotle proposed a "two-kingdom" system: plants vs. animals
- The discovery of microbes led to a three-kingdom system: Plantae, Animalia, Protista
- Understanding of the eukaryote/prokaryote division led to four, adding Monera (and later, Fungi)
- The 16S phylogeny and later work led to a three-kingdom system: Archaea, Bacteria, and Eukaryota

All DNA sequences are mapped onto references for analysis

- 16S sequences are mapped to known sequence-species maps to determine community taxonomic composition (e.g., Greengenes)
- Other sequences are mapped to known sequence-gene maps to determine community *functions* (e.g., UniParc)

Sample collection & storage

There are multiple methods for storing samples

- RNAlater (HCHS/SOL study)
- 95% ethanol kit (HMP2)
- OMNIgene Gut Kit (Personalized Nutrition Study)
- Anaerobic Stool Collection Kit
- Whatman FTA card (American Gut)

There have advantages and disadvantages

- All of them (that I listed) preserve DNA.
- Most are thermostable (but glycerol is not).
- Only some preserve RNA (e.g., RNAlater).
- Only some (e.g., ethanol) preserve metabolites.
- Only some (e.g., glycerol) allow culturing.

DNA extraction

All extraction (or "isolation") methods follow similar steps

- Cell lysis: Mechanical (bead beading) or chemical (detergents)
- Break up lipids with detergents
- Break up proteins with protease
- Break up RNA with RNAse
- Use a concentrated salt to clump this debris
- Centrifugate to separate debris from supernatant with dissolved DNA
- Purify DNA in the supernatant

Methods differ most in how they do the final purification step

Purification method 1 of 3: Ethanol precipitation

DNA is insoluble in alcohol, so it precipitates. Centrifugate and grab that pellet.

Purification method 2 of 3: Spin column purification

DNA is bound to silica beads, cleaned, and eluted.

wikipedia

Purification method 3 of 3: Phenolchloroform extraction

Lipids dissolve in the denser phenol-chloroform mixture; DNA stays in upper aqueous phase; proteins remain at interface.

wikipedia (AGPC extraction)

Extraction methodology affects measured bacterial composition

Library prep

"Library prep": from DNA to something ready to sequence

This can include a few steps:

- Fragmenting the DNA, or amplifying amplicons
- Using PCR to add *adapters* that allow the sequencer to "grab" the DNA
- Using PCR to add barcodes that allow for multiplexing
- Pooling and normalizing multiple samples

"Tagmentation" means fragmentation and adding adapters.

Pooling is one reason that sequencing data is compositional

The sequencer performs better, and data quality is better, when all samples have the same library size.

This, and all the caveats about extraction, mean you get the *composition* of sequences, not the *number*.

Nomenclature about sequencing types mix up targets and technology

		Names	Technology
Whole genome	one organism	"whole genome sequencing"	Illumina
	multiple organisms	"metagenomics", "shotgun sequencing"	Illumina
16S rRNA gene	one organism	"Sanger"	Sanger sequencing
	multiple organisms	"16S", "16S metagenomics"	Illumina

Sequencing

Illumina is the dominant sequencing technology today

Also called "Solexa" because Illumina bought that company and its sequencing technology

Other "next-generation" sequencing methods are less-often used

- Pacific Biosciences ("PacBio")
- Roche 454 ("454" or "pyrosequencing")
- Ion Torrent
- Helicos

Illumina sequencing adapters allow DNA to attach to the flow cell

Bridge amplification forms clusters of identical DNA strands

"Sequencing by synthesis" lights up one color per cluster per base

"This" generation sequencing means Sanger sequencing

"Next-next" includes nanopore sequencing

Gauthier, PhD thesis, U Ottawa (2017)

Data: from sequencer to analysis

There are multiple steps from the sequencer to analysis-ready data

- The sequences outputs BCL ("base call") files.
- It probably also processes them into *FASTQ* files (sequence reads with Quality).
- The user might *demultiplex* the reads.
- The user must process the FASTQs into a FASTA (just sequence reads).

BCL ("base call") files

A BCL file has one record for each cluster/color measurement:

- Cluster ID (cross-referenced with other files giving the cluster location)
- The base (ACTG) measured
- The quality of the measurement (i.e., the probability the base call is right)

A "filter file" says if the whole cluster met some quality criteria.

FASTQ files are just rearranged BCLs

A FASTQ file has one record per read (i.e., cluster):

- Read ID (usually with some information about the cluster)
- The measured bases
- Quality scores by base

The FASTQ format is information dense

HMP SRS013215

Demultiplexing makes multiplegenome sequencing affordable

To avoid having one sample per sequencing lane, you add "a unique index adapter sequence", or "badcode", to each sample during library prep.

Demultiplexing then assigns clusters to a sample based on the index adapter sequence of the cluster.

bcl2fastq documentation

Quality information is used to "clean" the data

Per base sequence quality

A "good" quality sample

Quality information is used to "clean" the data

②Per base sequence quality

Quality "cleaning" has many adjustable steps

- Trimming: cut off the unreliable base calls at the end of a read
- Filtering: throw away overall unreliable reads
- Stitching/assembling/merging/joining: Join forward and reverse reads
- Chimera slaying: throw away "chimeric" sequences

FASTA files are way simpler

It's like FASTQ, but with different syntax and no quality information.

```
>61JFDAAXX100430:7:100:10000:13168/1 <- ID line
CACCACCACGGCGTACCTCTATTCCACCTATGAACG <- base calls
AAGCCGCATCAGCGAAGCTGATCCTACCGACA
```

And *now* you can go onto doing microbiome analysis!

There are subtleties and nuts & bolts

You can read my *Processing 16S data* booklet.

