EE 4711

Data Communications and Computer Networks

May 30, 2019

EE 4711: Data Communications and Computer Networks

Link Layer (part I)

Layers, Services, Protocols

Application

Service: user-facing application.

Application-defined messages

Transport

Service: multiplexing applications

Reliable byte stream to other node (TCP),

Unreliable datagram (UDP)

Network

Service: move packets to any other node in the network

IP: Unreliable, best-effort service model

Link

Service: move frames to other node across link.

May add reliability, medium access control

Physical

Service: move bits to other node across link

Link Layer Framing

Framing

- The process of grouping bits into frames (packets)
- Typically implemented by the network adaptor
- Why frames?

Byte-Oriented Framing

- BISYNC: Binary synchronous communication
- Frame is a collection of bytes
- Need to indicate the beginning and end of a frame
- Sentinel characters are used

SYN: Synchronization character

SOH: Start of header

STX, ETX: Start of text, End of text

CRC: Cyclic redundancy check

Byte-Oriented Framing

Point-to-Point (PPP) protocol used by Internet Protocol (IP) to carry IP packets

8	8	8	16		16	8
Flag	Address	Control	Protocol	Payload	Checksum	Flag

STX: 0111110

Payload: 1,500 bytes

Checksum: 2 or 4 bytes

Overhead: 8/1508 = 0.5%

Byte-counting Framing

- Include the # of bytes in the frame as a field in the header
- Digital Data Communications Protocol (DDCMP)

8	8	8	14	42	16
SYN	NXS	Class	Count	Header	Body CRC

Count: Specifies # of bytes in the body

CRC ensures that count field is not corrupted

Bit-oriented Framing

High-Level Data Link Control (HDLC)

Beginning/end of frame, flag: 01111110

Instead of inserting bytes do bit stuffing

Sender adds a 0 after five consecutive 1s

Receiver removes zero after five 1s

Example of Bit-stuffing

Sender

Clock-based Framing

• E.g., SONET (Synchronous Optical Network)

- Each frame is 125µs long
- Look for header every 125µs
- Encode with NRZ

