ТЕМА 1: МНОЖЕСТВА

Понятие за множество

Означения за множество и елемент на множество. Принадлежност на елемент към множество

$$a, b, m, x, y, t$$

 A, A', B, M, \emptyset
 $a \in b; \neg(a \in b); a \notin b; a \in A; m \in M'; x \notin B; A \in M'; B \notin A$

Представяне на множества

- чрез изброяване на елементите на множеството:

$$\{0, 1, 2, 3, 4, 5, 6, 7\}; \{0, 1, ...7\}; \{a, b, x, y, z\}$$

$$A = \{a, b, ..., z\}; A' = \{A\}$$

$$M = \{\emptyset\}; P = \{a, \{1, 2, 3\}, M\}$$

$$J_n = \{0, 1, ..., n - 1\}; I_n = \{1, 2, ...n\}$$

 $B = \{false, true\}$

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ - множество на естествените числа

 $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ - множество на целите числа

 \mathbb{R} - множеството на реалните числа

С - множеството на комплексните числа

- чрез указване на свойство, общо за елементите:

$$X = \{x \in \mathbb{N} | x \le 100\}$$

$$\mathbb{Q} = \{\langle x, y \rangle | x, y \in \mathbb{Z}, y \ne 0\}$$

- чрез диаграми на Вен

Равенство на множества. Проверка за равенство на множества

$$\{a, b, a\} = \{a, b\}
 \{x, y, x, 1, y, b\} = \{1, x, y, b\}$$

 ${\it \Pi} {\it paзнo}$ множество: \emptyset или $\{\}$

Подмножество на дадено множество:

$$M' = \{x | x \in M, P(x)\}$$

$$\forall M : M \subseteq M; \emptyset \subseteq M$$

Степенно множество на дадено множество:

$$2^M = \{M'|M' \subseteq M\}$$

Операции над множества:

- Обединение на две множества $A \cup B = \{x | x \in A \lor x \in B\}$

- Сечение на две множества $A\cap B=\{x|x\in A\land x\in B\}$

- Разлика на две множества:

$$A \setminus B = \{x | x \in A \land x \notin B\}$$

- Симетрична разлика на две множества $A \triangle B = \{x | x \in A \land x \notin B \ \lor x \in B \land x \notin A\}$

- Допълнение на множество до дадено множество U $\overline{A}^U = \{x | x \in U \land x \not\in A\}$

Свойства на операциите над множества

1. Идемпотентност

$$A \cup A = A; A \cap A = A$$

2. Комутативност

$$A \cup B = B \cup A; A \cap B = B \cap A; A \triangle B = B \triangle A$$

3. Асоциативност

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

4. Дистрибутивност

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

5. Свойства на празното и на универсалното множество

$$A \cup \emptyset = A; A \cap \emptyset = \emptyset; A \setminus \emptyset = A$$

$$A \cup U = U; A \cap U = A; A \setminus U = \emptyset$$

6. Свойства на допълнението

$$A \cup \overline{A} = U; A \cap \overline{A} = \emptyset;$$

$$A \setminus \overline{A} = A; \overline{\overline{A}} = A$$

7. Закони на ДеМорган

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

8. Други свойства

За произволни множества A и B е изпълнено:

$$A \subseteq A \cup B; A \cap B \subseteq A;$$

$$A \setminus B \subseteq A; A \setminus B = A \cap \overline{B}$$

$$A \cup (A \cap B) = A; A \cap (A \cup B) = A$$

$$(A \cap B) \cup (A \cap \overline{B}) = A; (A \cup B) \cap (A \cup \overline{B}) = A$$

Табличен метод за представяне на множества

Таблично представяне на резултата на операциите допълнение на множествата A и B; обединение, сечение, разлика и симетрична разлика на множествата A и B:

	Α	В	\overline{A}	\overline{B}	$A \cup B$	$A \cap B$	$A \setminus B$	$A \triangle B$
	0	0	1	1	0	0	0	0
Ī	0	1	1	0	1	0	0	1
Ī	1	0	0	1	1	0	1	1
Ī	1	1	0	0	1	1	0	0

Доказване на равенство на множества с помощта на табличния метод

$$A \cap (\overline{A} \cup B) = A \cap B$$

Α	В	$A \cap (\overline{A} \cup B)$	$A \cap B$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Задачи за упражнение:

- 1. Проверете истинността на следните твърдения:
 - a) $\emptyset \subseteq \emptyset$
 - b) $\emptyset \in \emptyset$
 - c) $\emptyset \subseteq \{\emptyset\}$
 - d) $\{1\} \subseteq \{1, 2, 3\}$
 - e) $\{1\} \in \{1, 2, 3\}$
 - f) $\{1,2\} \subseteq \{1,2,3,\{1,2\}\}$
 - g) $\{1,2\} \in \{1,2,3,\{1,2\}\}$
 - h) $\{\{1,2\},\{1,2,3\}\}=\{1,2,3\}$
 - i) $\{1, 2, 1, 2, 3\} = \{1, 2, 3\}$
- 2. Определете равни ли са съответните множества:
 - а) ∅ и {∅}
 - b) $\{a, b, c\}$ и $\{a, b, c, c\}$
 - c) $\{1,2,3\}$ и $\{\{1\},\{2\},\{3\}\}$
- 3. Дадени са множествата:

$$S1 = \{a, b, c\}, S2 = \{a, b\}, S3 = \{b, c\}, S4 = \{b, c, d\}$$

Да се определи кои от следните отношения са верни:

- a) $S2 \subseteq S1$ b) $S3 \subseteq S1$ c) $S4 \subseteq S1$
- 4. Дадени са множествата: $A = \{1, 2, 3, 4, 5\}, B = \{0, 2, 4, 6\}$ и $C = \{1, 3, 5\}$. Да се определят следните множества:
 - a) $(A \cup B) \triangle (A \cap B)$
 - b) $A \triangle (A \cup B)$
 - c) $(A \triangle B) \setminus (A \triangle B)$
 - d) $(A \setminus B) \triangle (A \setminus C)$
- 5. Дадени са множествата:

$$A = \{3n | n \in \mathbb{Z}, n \ge 4\}$$

$$B = \{2n | n \in \mathbb{Z}\}$$

$$C = \{ n | n \in \mathbb{Z}, n^2 \le 100 \}$$

Като използвате операции
ите над множества, изразете следните множества чрез множествата $A,\,B,\,C$ и
 $\mathbb{N}.$

- а) {нечетните естествени числа}
- b) $\{-10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10\}$
- c) $\{6n|n\in\mathbb{Z},n\geq2\}$
- d) $\{-9, -7, -5, -3, -1, 1, 3, 5, 7, 9\}$
- 6. Дадени са множествата: $A=\{1,2,4,7,8\}, B=\{1,4,5,7,9\}, C=\{3,7,8,9\}$ и универсалното множество $U=\{1,2,3,4,5,6,7,8,9,10\}$. Да се определят следните множества: $X=\{2,7,9\}$ и $Y=\{3,5,6,7,9,10\}$ чрез операции над множествата A,B и C.
- 7. Докажете следните тъждества:
 - a) $(A \cap \overline{B}) \cup B = \overline{A} \cup B$
 - b) $\overline{\overline{A} \cap \overline{B \cup C}} = A \cup B \cup C$
 - $\stackrel{\frown}{(A \cup B \cup C)} \cap (A \cup \overline{B} \cup C) \cap (\overline{A \cup C}) = \emptyset$

- d) $(A \setminus B) \setminus C = A \setminus (B \cup C)$
- e) $A \triangle A \triangle A = A$
- 8. Проверете истинността на следните твърдения. Използвайте диаграми на Вен за да илюстрирате решението си.
 - a) $(A \cup B) \setminus (A \cap B) = A \triangle B$
 - b) $(A \setminus B) \setminus (B \setminus A) = A \triangle B$
 - c) $(A \triangle B) \setminus B = A$
 - d) $(A \triangle B) \triangle B = A$
 - e) $A \triangle A = A \setminus A$
- 9. Напишете всички верни твърдения от вида: $A \in B$ и $A \subseteq B$, където A и B се избират по всички възможни начини измежду $1,\{1\},\{\{1\}\}$
- 10. Определете множеството, състоящо се от всички множества X такива, че:

$$\{1,2,3\} \subseteq X \subseteq \{1,2,3,4,5\}.$$

- 11. Да се напише в явен вид степенното множество на всяко от следните множества:
 - a) $\{a, b, c\}$
 - b) $\{a, \{b, c\}\}$
 - c) $\{\{a\},\{b\}\}$
 - d) $2^{\{3\}}$
- 12. Дайте пример за:
 - а) Непразно множество, което е подмножество на своето степенно множество;
 - b) Множество, което не е подмножество на своето степенно множество;
 - с) Множества A и B такива, че е изпълнено: $A \in B$ и $A \subseteq B$.
- 13. Да се докаже или опровергае всяко от следните твърдения:
 - а) Ако $A \cap B = \emptyset$ и $B \cap C = \emptyset$, то $A \cap C = \emptyset$
 - b) Ако $A \cap B = \emptyset$ и $C \cap D = \emptyset$, то $(A \cap C) \cap (B \cap D) = \emptyset$
 - c) Ако $A \cap B = \emptyset$ и $C \cap D = \emptyset$, то $(A \cup C) \cap (B \cup D) = \emptyset$
 - d) $A \setminus \overline{B} = A \cap B$
 - e) $A \subseteq B \Leftrightarrow A \setminus B = \emptyset$
 - f) $A \setminus B = \overline{B \setminus A}$
- 14. Дадени са множествата: $U = \{a, 1, b, 2, c, 3, d, 4\}, A = \{a, c, 1, d\}$ и $B = \{2, b, c, 1\}$. Напишете в явен вид елементите, принадлежащи на всяко от множествата:

$$X=2^{\overline{A\cap B}^U\setminus\overline{A\cup B}^U}$$
 и $Y=2^{\overline{A\cap B}^U}\setminus 2^{\overline{A\cup B}^U}$

- 15. Да се докаже или опровергае всяко от следните твърдения:
 - a) $\overline{(\overline{A} \cup B)} \cap \overline{C} = \overline{A} \cap \overline{(B \cup C)}$
 - b) $A \setminus \overline{(B \cup C)} = A \cap (B \cup C)$
 - c) $(A \cap B) \cup (A \cap \overline{B}) = A$
 - $d) A \cup (B \setminus A) = A \cup B$
 - e) $A \setminus B = \overline{B} \setminus \overline{A}$
 - $f) A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$
 - g) $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C)$
 - $h) A \cap (\overline{A} \cup B) = A \cap B$
 - $i)(A \setminus \overline{B}) \cup (A \setminus \overline{C}) = A \cap (B \cap C)$