Calcul différentiel

Théorie des courbes

Question 1/18

Équation différentielle vérifiée par
$$\begin{pmatrix} T \\ N \\ B \end{pmatrix}$$

Réponse 1/18

$$\begin{pmatrix} T \\ N \\ B \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$$

$$\tau = \langle N', B \rangle \text{ est la torsion}$$

Question 2/18

Vecteurs tangent et normal

Réponse 2/18

Le vecteur tangent est $\tau(s) = f'(s)$ unitaire avec f' le paramétrage de la longueur d'arc et le vecteur normal est n(s) unitaire tel que $(\tau(s), n(s))$ soit une base orhtonormée directe

Question 3/18

$$T_{x_0}M$$

Réponse 3/18

$$\operatorname{Vect}(\varphi'(t_0))$$

Question 4/18

Courbe birégulière

Réponse 4/18

 φ de classe \mathcal{C}^2 est birégulière si $\varphi(t)$ et $\varphi'(t)$ sont linéairement indépendants pour tout t

Question 5/18

Rayon de courbure

Réponse 5/18

$$\rho(s) = \frac{1}{K(s)}$$

Question 6/18

Détermination angulaire

Réponse 6/18

$$\alpha: I \to \mathbb{R} \text{ tel que}$$

$$\overrightarrow{T}(t) = \cos(\alpha(t))\overrightarrow{i} + \sin(\alpha(t))\overrightarrow{j} \text{ où } T \text{ est le}$$
vecteur tangent unitaire
$$d\alpha$$

Question 7/18

Repère binormal

Réponse 7/18

$$B(s) = T(s) \land N(s)$$
 est le vecteur binormal
C'est le vecteur tel que $(\varphi(s), T(s), N(s), B(s))$
est une base orhtonormée directe

Question 8/18

Torsion pour une courbe φ birégulière de classe \mathcal{C}^3

Réponse 8/18

$$\tau = \frac{\det(\varphi'|\varphi''|\varphi''')}{\|\varphi' \wedge \varphi''\|^2}$$

Question 9/18

Courbure algébrique en fonction de (x(t), y(t))

Réponse 9/18

Si
$$t \mapsto (x(t), y(t))$$
 est une fonction de classe $x'(t)y''(t) = x''(t)y'(t)$

Si
$$t \mapsto (x(t), y(t))$$
 est une fonction de classe
$$\mathcal{C}^2, K(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{\left(x'(t)^2 + y'(t)^2\right)^{\frac{3}{2}}}$$

Question 10/18

Paramétrage de la longueur d'arc

Réponse 10/18

$$g = \varphi \circ \theta^{-1}$$
 pour φ régulière, défini sur $\theta(I)$
$$g'(s) = \frac{\varphi' \circ \theta(s)}{\|\varphi' \circ \theta\|}$$

$$\|g'(s)\| = 1$$

Question 11/18

Point régulier Point singulier

Réponse 11/18

$$t_o \in I$$
 est régulier pour φ si $\varphi'(t) \neq 0$ et singulier sinon

Question 12/18

Courbure pour une courbe φ régulière de classe \mathcal{C}^2

Réponse 12/18

$$\kappa = \frac{\|\varphi' \wedge \varphi\|}{\|\varphi'\|^3}$$

Question 13/18

Expression de N(t) en fonction de T(t)

Réponse 13/18

$$\frac{T'(s)}{T(s)}$$

Question 14/18

Courbe paramétrée

Réponse 14/18

Application $\varphi: I \to \mathbb{R}^n$ différentiable de classe \mathcal{C}^k avec I un intervalle ouvert de \mathbb{R}

Question 15/18

Expression de la courbure $\kappa(r)$ en fonction de T(r)

Réponse 15/18

$$\kappa(t)$$
 est le réel tel que $T'(s) = \kappa(s)N(s)$

Question 16/18

Abscisse curviligne de φ

Réponse 16/18

$$\theta(t) = \int_{t_0}^t \|\varphi'(s)\| \, \mathrm{d}s$$
 C'est la longueur algébrique de l'arc $\widehat{\varphi(t_0)\varphi(t)}$

Question 17/18

Courbure algébrique

Réponse 17/18

$$K: I \to \mathbb{R}$$
 tel que $\tau'(s) = K(s)n(s)$

Question 18/18

Centre de courbure

Réponse 18/18

$$C(s) = f(s) + \rho(s)n(s)$$
 où f est la paramétrisation par la longueur d'arc