

Parameters:

M => modulation index

 ω_o => output(fundamental) frequency

 $\omega_c => \text{carrier}(\text{switching}) \text{ frequency}$

 $\theta_o =>$ output phase

 $\theta_c => \text{carrier phase}$

Deductions

- Fundamental component is independent from carrier(switching) frequency and phase
- There is no even harmonics of the switching and the sign of the odd harmonics is alternated.
- The switching harmonics are independent from fundamental frequency and phase.
- The side band harmonics are affected by all fundamental and carrier frequency and phases.

Sequences of the Switching Harmonics and Side Bands

positive sequences

Frequency	Phase A	Phase B	Phase C
f_o	$\theta_o = 0^o$	$\theta_o = 120^o$	$\theta_o = -120^o$
$f_s - 4f_o$	00	240°	120°
f_s-2f_o	180°	300°	60°
f_s	0°	0°	0°
$f_s + 2f_o$	180°	60°	300°
$f_s + 4f_o$	00	120°	240°

Switching Harmonics

It is very promising if we think the duty cycle control of DC motor

Side Band Harmonics

Output has only switching harmonics

