MARKINGS)

1 currently amended as 1A

I Claim:

GIRPOTTY 1. A coriolis inertial oscillator consisting of an orbiting mass with radial motion

TMENDED on a moveable platform, said mass rotating at a regulated constant angular velocity, from a regulation system motor flywheel, via sliding rigid coupling, the platform constrained to move linearly in a

vertical channel parallel to the earth's gravitational field, the channel housed

in a rigid frame attached to a payload at the bottom, the oscillating channel is mechanically release

clutched to the frame via a member when the forces are upward and not exceeding 90 degrees in each

retation with repositioning of the platform from a spring-crank mechanism.

LIVENTLY MENDED

2. A system as claimed in 1., where the mechanical clutch is a toggle clamp engaging a grooved member held by a back plate, a ctivated by rotary cam engagi follower on tagle arm

-3. A system as claimed in 1, whore the mechanical clutch is a eccentric cam with engaging a grooved member with spring release.

ANCFIED 4. A system as claimed in I where the mechanical clutch is ball in an inclined plane with spring

UNIENT 36. A system-as claimed in 1 where the mechanical clutch is a cam buckle acting on a nylon webbling. material member in tension with the tramp.

URREM 48. A system as claimed in 1 where the rotor mass is a satellite mass fixed to a planet gear via arm

MENDEO which revolves around a fixed sun gear via axle connected to gear drive

111/1EN75 A. As claimed in 4 where the distances between the rotor, planet and sun gear are equal. NDFD6

/ /// As-claimed in where the satellite mass is zero and the planet gear revolves about the sun

with equal mass

CLAIMS - ORIGINAL (AMENDMENT A MARHINGS)

CUTTENTY 9. A system as claimed in 1 where the platform mass is twice the weight of the combined sate Lite planet gear and rotor.

nochanical 19f ye. A system as claimed in 1. where the flywheel is replaced with a ball governor 8 1. A system as claimed in 1 where the motor is an induction motor with variable frequency speed control Cun. 10 12. A system as claimed in 1 where the motor is a rotary wankel engine CUR. 9 13. A system as claimed in 1 where the motor is a DC electric motor, powered from a fuel-CUR: 11 14. A system as claimed in 1 where the slide coupler is a splined shaft with sliding worm engaging a worm gear set to drive rotons CYR. 1 B-0-15. A system as claimed in 1 where the slide coupler is an oldham coupler connecting the drive source with the oscillate. source with the oscillator axle CURPCHT 12-16. A system as claimed in 1 comprising multiple oscillators with at least two coaxially coupled by a common oldham coupler, each being clocked 180 degrees apart on independent platforms, driven by the motor oldham coupler, to provide 2010 trans verise 7. A system as claimed in 16 with four oscillators clocked 90 degrees appart, each indepenently oscillating from common oldham couple motor drive source.

(UR. 14) 18. A system as claimed in 16 where the spring-crank repositioning device is driven by a chain drive and sprocket arrangement off a sprocket of equal size rotatably connected to the oldham.

BEST AVAILABLE COPY

PAGE 2C

CURRENT AMENDED CLAIMS (A) — CLEAN COPY -

I claim:			LINE	
currently 1.		nod for an inertial oscillator control system	/	
+MEMDED compr	ising		2	
	A. a n	near vertical lifting system for heavy gravity	.3	
-	payloa	ayloads in a firstembodiment:		
	a)	utilizing the compound action of coriolis-cen-	5	
,		trifugal forces in a three body variable radius	6	
		oscillator ,	7	
	b)	torque supply source comprising sliding gear	8	
.÷		arrangement	9	
	c)	moveable platform that carries force generating	10	
		bodies rotating about respective axles,	11 -	
	d)	coupling and release of platform with rigid load	/ ≥	
٠		rod connected to frame for angular durations less	/ 3	
		than 90 degrees of planet rotor,	14	
	e)	while maintaining constant angular velocity of	1-5	
		of rotor bodies by a regulation system,	16	
	f)	maintaining an elevation position of platform	/>	
		in gravity field using spring-crank mechanism, and	18	
	g)	vectoring platform-frame off from vertical to	19	
		obtain horizonal motion of payload,	# *	
	h)	and a motor drive source of high torque design.	2/	
Amended	B , an	ear vertical lift system for gravity pAyload in a	22	
Amendeol	second embodiment,			

REST AVAILABLE COPY

PAGE 3C

	,
Curyen a) a rotary torque source using an oldham	2
Awend coupler,	3
$\mathcal{N}_{\mathcal{C}}\mathcal{W}$ b) driving a two body oscillator consisting	4
df a oplat form with single rotor,	5
current c) in a coaxial arrangment of multiple oscillators	6
with each rotor clocked 180 degrees apart from	>
each other,	S
$ u \in W$ d) that co-rotate in one direction to provide a ne	t 9
gyroscopic moment to stabalize vehicle once in	10
the air,	_ //
current e) a heavy duty clutching system using a cam buck	_
current e) a heavy duty clutching system using a cam buck to ad min ben acting on nylon webbing in tension connection	/3
with the frame,	12/
Current f) a speed regulation design using a mechanical Amend	15
AMeng governor	16
NeW g) and a motor source with high torque.	17
but otherwise having the same controls as the 1st embodi	. 18
ment.	19
-uvven Hx 2. A system as in claim 1 where the mechanical clutch is a	2 0.
Amended toggle clamp acting on a groved load rod with backup plate and	2/
activated by rotary cam engageing a foolower on toggle arm and	22
release from a second rotating pin on separate axis.	2 7
$A_{AYP}H$ 3. A system as in claim 1 with a mechanical clutch using a	24
smended cam buckle acting on a nylon webbing in tension with the frame	. 25

م المداد العاد		
current	4. A system as in claim 1A, where the rotor mass is a	/
amend	satelithe mass fixed to a planet gear via arm which	Z.
•	revolves around a fixed sun gear via axle connected to gear drive	3
ZUTVENTAMEND	5. A system as in claim 1A where the distances between the	4
77 Me PUD	respective masses are equal.	5
	6. A system and in claim 1A where the satelitte mass is zero	G
am,	and the just the planet rotor revolves about the sun gear axle.	7
arrent	7. A system as in claim 1A where the platform mass is equal to	٤
IMEND	twice the mass sum of the planet and satellite rotors.	9
URRENT	8. A System as in claim 1A where the motor is an AC inductioon	10
tm END	motor.	//
	9. A system as in claim 1A where the motor is a DC electric	12
和巨力		13
CURRENT	10 A system as in claim 1B where the motor is a rotary wankel	14
AMEND	engine.	15
A	11. A system as in claim 1A where the drive is a splined shaft	16
4m END	with slidable worm acting on worm gears to drive rotors.	17
New	12. A system as in claim 1A where at least two oscillator units	18
	are paired in a frame to provide zero transverse forcés and mult-	19
	iple pulses of thrust per rotation.	20
New	13. A system as in claim 1 where the frame is mounted above the	2/
	payload in gimbal fashion to permit vectoring for horizonal thrus $\boldsymbol{\zeta}$. 22
urrently mended	14. A system as in claim 2B where the drive is a pair of chain	23
mended	sprockets clocked in synchronous operation with the motor and	24
	crank spring reset system and rotor main drive axle.	25

BEST AVAILABLE COD