Dychotomie kwantowe a termodynamika układów koherentnych

Kamil Korzekwa

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Jagielloński

TEAM-NET

Spis treści

I. Zarys

II. Formalizm

- 1. Testowanie hipotez kwantowych
- 2. Dychotomie kwantowe
- 3. Termodynamika kwantowa
- 4. Formalne postawienie problemu

III. Wyniki

- 1. Optymalne współczynniki konwersji
- 2. Optymalne protokoły termodynamiczne
- 3. Koherentny rezonans zasobowy
- 4. Konwersja splątania dwucząstkowego

IV. Perspektywy

Patryk Lipka-Bartosik University of Geneva

Christopher Chubb ETH Zurich

 $\begin{array}{c} {\rm Marco\ Tomamichel} \\ {\it National\ University\ of\ Singapore} \end{array}$

Joe Renes ETH Zurich

Zarys

Problem: transformacje termodynamiczne między stanami nierównowagowymi

Problem: Testowanie hipotez kwantowych

- Koherentna: superpozycje stanów własnych energii
- Asymptotyczna: liczba układów $n \to \infty$

Quantum dichotomies and coherent thermodynamics beyond first-order asymptotics

Formalizm

Testowanie hipotez kwantowych

		Przygotowano		
		ho	σ	
Zgadłeś	ρ	Sukces $p_{\rm I} = {\rm Tr}(\Pi \rho)$	Błąd II rodzaju $\epsilon_{ m II}={ m Tr}(\Pi\sigma)$	
	σ	Błąd I rodzaju $\epsilon_{\rm I} = 1 - {\rm Tr}(\Pi \rho)$	Sukces $p_{\rm II} = 1 - \text{Tr}(\Pi \sigma)$	

Optymalny błąd II rodzaju przy zadanym błędzie I rodzaju

$$\beta_x(\rho \| \sigma) := \min_{\Pi} \{ \epsilon_{\Pi} \mid \epsilon_{\Pi} = x \}$$

Dychotomie kwantowe

Dychotomia kwantowa: (ρ, σ)

Porządek Blackwella: $(\rho_1, \sigma_1) \succ (\rho_2, \sigma_2) \iff \exists \mathcal{E} : \mathcal{E}(\rho_1) = \rho_2 \text{ and } \mathcal{E}(\sigma_1) = \sigma_2$

Porządek przybliżony: $(\rho_1, \sigma_1) \succ_{(\epsilon_{\rho}, \epsilon_{\sigma})} (\rho_2, \sigma_2) \iff \exists \mathcal{E} : \delta(\mathcal{E}(\rho_1), \rho_2) \leq \epsilon_{\rho} \text{ and } \delta(\mathcal{E}(\sigma_1), \sigma_2) \leq \epsilon_{\sigma}$

Związek między dychotomiami a testowaniem hipotez

$$[\rho_{1}, \sigma_{1}] = [\rho_{2}, \sigma_{2}] = 0$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\begin{cases} [\rho_{1}, \sigma_{1}] \neq 0, & [\rho_{2}, \sigma_{2}] = 0 \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{1}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{2}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{2}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{2}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{2}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} (\rho_{1}, \sigma_{2}) \leq \beta_{x-\epsilon_{\rho}}(\rho_{2} \| \sigma_{2}) + \epsilon_{\sigma} \end{cases}$$

$$\end{cases} ($$

*J. Math. Phys. **57**, 122202 (2016)

Termodynamika kwantowa

Oddziaływanie zachowujące energię

Formalizm operacji termicznych*

$$\rho_1 \xrightarrow{\text{TO}} \rho_2 \iff \rho_2 = \text{Tr}_{B'} \left(U \left(\rho_1 \otimes \gamma_B \right) U^{\dagger} \right)$$

$$\text{gdzie} \left[U, H \otimes \mathbb{I}_B + \mathbb{I} \otimes H_B \right] = 0$$

Przybliżone operacje termiczne**

$$\rho_1 \xrightarrow[\text{TO}]{\epsilon} \rho_2 \iff \rho_1 \xrightarrow[\text{TO}]{\epsilon} \widetilde{\rho}_2 \text{ and } \delta(\widetilde{\rho}_2, \rho_2) \leq \epsilon$$

Stan termiczny układu: $\gamma \propto \exp(-\beta H)$

*Nat. Commun. **4**, 2059 (2013) **Quantum **2**, 108 (2018)

Termodynamika kwantowa

Związek między transformacjami termodynamicznymi, dychotomiami, a testowaniem hipotez

Stany niekoherentne:
$$[\rho_1, \gamma] = [\rho_2, \gamma] = 0^*$$
 Końcowy stan niekoherentny: $[\rho_2, \gamma] = 0$

$$\rho_1 \xrightarrow{\epsilon} \rho_2 \qquad \qquad \forall \beta_x(\rho_1 || \gamma) \leq \beta_{x-\epsilon}(\rho_2 || \gamma)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

*Int. J. Theor. Phys. 39, 2717 (2000)

Formalne postawienie problemu

Optymalny współczynnik konwersji $R_n^*(\epsilon_n)$ to największe R_n takie że:

$$(\rho_1^{\otimes n}, \sigma_1^{\otimes n}) \succeq_{(\epsilon_n, 0)} (\rho_2^{\otimes R_n n}, \sigma_2^{\otimes R_n n}).$$

Cel: Znaleźć asymptotyczne zachowanie $R_n^*(\epsilon_n)$ dla $[\rho_2, \sigma_2] = 0$ w różnych reżimach błędów.

W wyniku tego otrzymamy także optymalne współczynniki konwersji dla:

Termodynamiki

$$(\sigma_1 = \sigma_2 = \gamma)$$

$$\rho_1^{\otimes n} \xrightarrow[\text{TO}]{\epsilon} \rho_2^{R_n n}$$

Splątania

$$(\rho_i = \text{Tr}_B(|\psi_i^{AB}\rangle\langle\psi_i^{AB}|) \text{ oraz } \sigma_1 = \sigma_2 \propto \mathbb{I})$$

Splatania
$$(\rho_i = \text{Tr}_B(\left|\psi_i^{AB}\right\rangle\!\!\left\langle\psi_i^{AB}\right|) \text{ oraz } \sigma_1 = \sigma_2 \propto \mathbb{I})$$

$$\left|\psi_1^{AB}\right\rangle^{\otimes n} \xrightarrow[\text{LOCC}]{\epsilon} \left|\psi_2^{AB}\right\rangle^{R_n n}$$

Wyniki

Optymalne współczynniki konwersji

Idea

Udowodnić, że z dokładnością do wyrazów asymptotycznych drugiego rzędu mamy:

$$\widetilde{\beta}_x(\rho^{\otimes n} \| \sigma^{\otimes n}) \approx \beta_x(\rho^{\otimes n} \| \sigma^{\otimes n})$$

Reżim	$\mathbf{Blad}\epsilon_n$	Współczynnik R_n	Dokładne R_n ?
Zerowy błąd	Zero	Twierdzenie 7	Nie
${\rm Wielkie}_{<}$	$\rightarrow 0$ eksponencjalnie	Twierdzenie 5	Nie
${\bf Umiarkowane}_{<}$	$\rightarrow 0$ subeksponencjalnie	Twierdzenie 4	Tak
${ m Male}_{<}$	Staly, < 0.5	Twierdzenie 3	Tak

Reżim	$\mathbf{Blqd} \ \epsilon_n$	Współczynnnik R_n	Dokładne R_n ?
$\mathrm{Male}_{>}$	Staly, > 0.5	Twierdzenie 3	Tak
${\bf Umiarkowane}_{>}$	$\rightarrow 1$ subeksponencjalnie	Twierdzenie 4	Tak
${ m Wielkie}_{>}$	$\rightarrow 1$ eksponencjalnie	Twierdzenie 6	Tak
Ekstremalne	$\rightarrow 1$ supereksponencjalnie	Twierdzenie 8	Tak

*arXiv:2303.05524

Reżim małych odchyleń

Optymalny współczynnik konwersji termodynamicznej ze stanów koherentnych w niekoherentne

$$R_n^*(\epsilon) \simeq \frac{D(\rho_1 \| \gamma) + \sqrt{V(\rho_1 \| \gamma)/n} \cdot S_{1/\xi}^{-1}(\epsilon)}{D(\rho_2 \| \gamma)}$$

Nierównowagowa energia swobodna:

$$D(\rho \| \gamma) := (\operatorname{Tr} \rho (\log \rho - \log \gamma))$$

Fluktuacje energii swobodnej

$$V(\rho \| \gamma) := \operatorname{Tr} \left(\rho \left(\log \rho - \log \gamma \right)^{2} \right) - D(\rho \| \gamma)^{2}$$

Funkcja odwrotna rozkładu półtoranormalnego*:

$$S_{\nu}^{-1}(\epsilon) = \inf_{x \in (\epsilon, 1)} \sqrt{\nu} \Phi^{-1}(x) - \Phi^{-1}(x - \epsilon)$$

Parametr odwracalności:

$$\xi := \frac{V(\rho_1 \| \gamma)}{D(\rho_1 \| \gamma)} / \frac{V(\rho_2 \| \gamma)}{D(\rho_2 \| \gamma)}$$

*arXiv:2303.05524

Optymalne protokoły termodynamiczne

Wykonywanie pracy

Ilość ε-deterministycznej pracy jaką może wykonać układ $\rho^{\otimes n}$ to maksymalne w, takie że:

$$\rho^{\otimes n} \otimes |0\rangle\langle 0|_W \xrightarrow[\text{TO}]{\epsilon} |1\rangle\langle 1|_W$$

Wynik uzyskany z naszej analizy:

$$\frac{\beta w}{n} \simeq D(\rho \| \gamma) + \sqrt{\frac{V(\rho \| \gamma)}{n}} \Phi^{-1}(\epsilon)$$

Resetowanie pamięci

Ilość pracy potrzebna do zresetowania stanu $\rho^{\otimes n}$ to minimalne w, takie że:

$$\rho^{\otimes n} \otimes |0\rangle\langle 0|_W \xrightarrow[\text{TO}]{\epsilon} |0\rangle\langle 0|^{\otimes n} \otimes |1\rangle\langle 1|_W$$

Wynik uzyskany z naszej analizy:

$$\frac{\beta|w|}{n} \simeq S(\rho) - \sqrt{\frac{V(\rho||\mathbb{I})}{n}} \Phi^{-1}(\epsilon)$$

 Φ^{-1} : Funkcja odwrotna standardowego rozkładu normalnego

Rezonans zasobowy

Koherentny rezonans:

$$R_n^*(\epsilon) \simeq \frac{D(\rho_1 \| \gamma) + \sqrt{V(\rho_1 \| \gamma)/n} \cdot S_{1/\xi}^{-1}(\epsilon)}{D(\rho_2 \| \gamma)} \xrightarrow{\xi = 1}$$

$$\stackrel{\xi = 1}{\Longrightarrow}$$

$$R_n^*(0) \simeq \frac{D(\rho_1 \| \gamma)}{D(\rho_2 \| \gamma)}$$

Dychotomie i koherentna termodynamika

Rezonans zasobowy

Rezonans wspomagany pracą:

Zamiast $\rho_1^{\otimes n} \xrightarrow[TO]{\epsilon} \rho_2^{Rn}$ z optymalnym R, co w przypadku braku rezonansu prowadzi do

dyssypacji energii swobodnej, możemy spróbować:

$$\rho_1^{\otimes n} \otimes |0\rangle\langle 0|_W \xrightarrow[\text{TO}]{\epsilon} \rho_2^{\tilde{R}n} \otimes |1\rangle\langle 1|_W$$

Gdańsk, 06/09/2023

$$\tilde{R} = V(\rho_1 \| \gamma) / V(\rho_2 \| \gamma) \qquad \frac{w}{n} = \frac{1}{\beta} \left(D(\rho_1 \| \gamma) - \frac{V(\rho_1 \| \gamma)}{V(\rho_2 \| \gamma)} D(\rho_2 \| \gamma) \right)$$

Współczynnik konwersji jest wtedy co prawda mniejszy, ale całkowicie unikamy dyssypacji energii swobodnej wykonując pracę.

Konwersja splątania dwucząstkowego

$$|\psi_1^{AB}\rangle^{\otimes n} \xrightarrow[\text{LOCC}]{\epsilon} |\psi_2^{AB}\rangle^{R_n n}$$

Wszystkie otrzymane wyniki możemy także zastosować do tego problemu, np.:

$$R_n^*(\epsilon) \simeq \frac{S(\rho_1^A) + \sqrt{V(\rho_1^A)/n} \cdot S_{1/\xi}^{-1}(\epsilon)}{S(\rho_1^A)}$$

Zredukowany stan podukładu:

Entropia splatania:

Fluktuacje entropii splątania:

Parametr odwracalności:

$$\rho^A := \operatorname{Tr}_B \left| \psi^{AB} \right\rangle \!\! \left\langle \psi^{AB} \right|$$

$$S(\rho^A) := -\text{Tr}\rho^A \log \rho^A$$

$$V(\rho^A) := \operatorname{Tr}\left(\rho^A \left(\log \rho^A\right)^2\right) - S(\rho^A)^2$$

$$\xi := \frac{V(\rho_1^A)}{S(\rho_1^A)} / \frac{V(\rho_2^A)}{S(\rho_2^A)}$$

Perspektywy

- Wykorzystać podejście testowania hipotez by zanalizować konwesje termodynamiczne skorelowanych układów (wyjść poza założenie i.i.d.).
- Zbadać dokładną postać optymalnych protokołów termodynamicznych w różnych reżimach.
- Uogólnić wyniki tak, by uwzględnić także niekomutujące dychotomie początkowe.
- Uogólnić rozważania z dychotomii na multichotomie.
- Znaleźć analog rezonansu zasobowego w tradycyjnym sformułowaniu termodynamiki.
- Poszukać rezonansu w innych teoriach zasobów.

Więcej szczegółów:

arXiv:2303.05524 (2023)

Dziękuję za uwagę!