Prejšnjič smo prišli do enačbe

$$(k+\mu)(k+\mu-1)c_k + \sum_{j=0}^{k} (j+\mu)c_j p_{k-j} + \sum_{j=0}^{k} c_j q_{k-j} = 0$$

Člene, ki vsebijejo c_k , zberemo skupaj.

$$c_k \left((\mu + k)(\mu + k - 1) + (\mu + k)p_0 + q_0 \right) + \sum_{j=0}^{k-1} \left((\mu + j)c_j p_{k-j} + c_j q_{k-j} \right) = 0$$

Tako smo izrazili c_k s pomočjo ostalih členov zaporedja. Potrebujemo še μ . Pri k=0 je

$$c_0 \left(\mu(\mu - 1) + \mu p_0 + q_0 \right) = 0$$

Dobili smo kvadratno enačbo, ki ji pravimo tudi odločitvena zveza. Njeni rešitvi sta neki μ_1 in μ_2 , običajno vzamemo $\Re \mathfrak{e}(\mu_1) >= \Re \mathfrak{e}(\mu_2)$.

Označimo $f(\mu) = \mu(\mu - 1) + \mu p_0 + q_0 = (\mu - \mu_1)(\mu - \mu_2)$. Opazimo, da je člen pri c_k ravno enak $f(\mu + k)$:

$$c_k \cdot f(\mu + k) = -\sum_{j=0}^{k-1} ((\mu + j)p_{k-j} + q_{k-j}) c_j$$

$$c_k(\mu + k - \mu_1)(\mu + k - \mu_2) = -\sum_{j=0}^{k-1} ((\mu + j)p_{k-j} + q_{k-j}) c_j$$

Zdaj poglejmo primer $\mu = \mu_1$:

$$c_k \cdot k \cdot (k + \mu_1 - \mu_2) = -\sum_{j=1}^{k-1} ((\mu_1 + j)p_{k-j} + q_{k-j}) c_j$$

Ker je $\mathfrak{Re}(\mu_1) > \mathfrak{Re}(\mu_2)$, mora biti vsota $k + \mu_1 - \mu_2$ različna od 0 (ker je k > 0, pravzaprav večja od 0). Torej lahko pišemo

$$c_k = -\frac{1}{k + \mu_1 - \mu_2} \sum_{j=1}^{k-1} ((\mu_1 + j)p_{k-j} + q_{k-j}) c_j$$

To je ena rešitev. Druga rešitev je, da vstavimo $\mu = \mu_2$.

$$c_k \cdot k \cdot (k + \mu_2 - \mu_1) = -\sum_{j=1}^{k-1} ((\mu_2 + j)p_{k-j} + q_{k-j}) c_j$$

Zdaj nimamo več zagotovila, da je $k + \mu_2 - \mu_1 \neq 0$. Če je $\mu_1 - \mu_2 \in \mathbb{N}$, potem $\mu_1 - \mu_2$ -tega člena ne bomo mogli izračunati. Sicer pa naredimo isto kot prej - delimo in dobimo linearno neodvisno rešitev.

Primer.
$$4z^2y'' + 2zy' + zy = 0$$

$$y'' + \frac{1}{2z}y' + \frac{1}{4z}y = 0$$

$$zp(z) = \frac{1}{2} \quad p_0 = \frac{1}{2}, \ p_1 = p_2 = \dots = 0$$

$$z^2q(z) = \frac{z}{4} \quad q_1 = \frac{1}{4}, \ p_0 = p_2 = \dots = 0$$

Odločitvena zveza:

$$\mu \left(\mu - 1 + p_0\right) + q_0 = 0$$
$$\mu \left(\mu - \frac{1}{2}\right) = 0$$

Dobili smo $\mu_1 = 1/2$ in $\mu_2 = 0$. Njuna razlika ni naravno število, torej ne bomo imeli težav. Vstavimo $\mu = \frac{1}{2}$:

$$y = \sum_{k=0}^{\infty} c_k z^{k+\frac{1}{2}}$$

$$y' = \sum_{k=0}^{\infty} c_k \left(k + \frac{1}{2}\right) z^{k-\frac{1}{2}}$$

$$y'' = \sum_{k=0}^{\infty} c_k \left(k + \frac{1}{2}\right) \left(k - \frac{1}{2}\right) z^{k-\frac{3}{2}}$$

To vstavimo v začetno enačbo, poiščemo koeficient pri $z^{k+\frac{1}{2}}$.

$$c_k(2k+1)(2k-1) + c_k(2k+1) + c_{k-1} = 0$$
$$c_k = -\frac{c_{k-1}}{2k(2k+1)}$$

Ko izračunamo par členov (ali pa opazimo, da bomo v imenovalcu dobili (2k-1)!), vidimo, da ne potrebujemo rekurzivne zveze:

$$c_k = \frac{(-1)^k c_0}{(2k+1)!}$$

To je podobno vrsti za sinus, vendar ne čisto, saj c_k stoji pred potenco $z^{k+1/2}$. Zdaj vstavimo $\mu=0$ in pogledamo koeficient pri z^k .

$$4c_k k(k-1) + 2c_k k + d_{k-1} = 0$$
$$c_k = -\frac{c_{k-1}}{2k(2k-1)}$$

Spet opazimo, da je $c_k = \frac{(-1)^k c_0}{(2k)!}$. Tokrat imamo opravka s potencami $z^k = (z^{1/2})^2 k$, torej je

$$y_2 = c_0 \cos \sqrt{z}$$

Zdaj obravnavajmo še problematični primer: $\mu_1 - \mu_2 \in \mathbb{N}$, recimo $\mu_1 - \mu_2 = m$.

$$0 = -\sum_{j=0}^{m-1} (...) c_j$$

Tedaj postavimo $c_0 = c_1 = \dots = c_{m-1} = 0$ in izberemo poljuben c_m . Ostale koefiiente lahko računamo z rekurzivno zvezo. S tem smo dobili rešitev, ki pa ni nujno linearno neodvisna od prve. Če sta naši rešitvi linearno neodvisni, lahko (brez dokaza) drugo rešitev dobimo z nastavkom

$$y_2 = y_1 \ln z + z^{\mu_2} \cdot f(z)$$

Pri čemer mora biti f(z) holomorna v okolici 0 - tedaj jo lahko razvijemo, vstavimo v originalno enačbo in računamo koeficiente.

Besselova diferencialna enačba.

$$z^{2}y'' + zy' + (z^{2} - \nu^{2})y = 0$$
$$y'' + \frac{1}{z}y' + \left(1 - \frac{\nu^{2}}{z^{2}}\right)y = 0$$

0 je pravilna singularna točka te enačbe.

$$zp(z) = 1$$
 $p_0 = 1$
$$z^2q(z) = z^2 - \nu^2 \quad p_0 = -\nu^2, \ p_2 = 1$$

$$\mu(\mu - 1 + p_0) + q_0 = 0$$

$$\mu_1 = \nu, \quad \mu_2 = -\nu$$

Spet vzamemo $\mu = \mu_1 = \nu$, vstavimo v originalno enačbo in izrazimo koeficiente pri $z^{k+\nu}$.

$$c_k(k+\nu)(k+\nu-1) + c_k(k+\nu) + c_{k-2} - \nu^2 c_k = 0$$
$$c_k \cdot k(k+2\nu) = -c_{k-2}$$
$$c_k = -\frac{c_{k-2}}{k(k+2\nu)}$$

Če poznamo c_0 , lahko izračunamo c_2, c_4, c_6 ... Za lihe c_k lahko izberemo $c_1 = 0$ in dobimo $c_1 = c_3 = c_5 = \dots = 0$. Izkaže se, da to celo moramo narediti, sicer bi (nekje) dobili protislovje. Tudi za c_0 lahko izberemo 0 in dobimo validno rešitev, ampak to je dolgočasno. Raje izberimo

$$c_0 = \frac{1}{2^{\nu} \Gamma(\nu + 1)}$$

Zdaj lahko izračunamo še ostale sode člene:

$$c_{2} = -\frac{1}{4(1+\nu)2^{\nu}\Gamma(\nu+1)} = -\frac{1}{2^{\nu+2}\Gamma(\nu+2)}$$

$$c_{4} = \frac{1}{2^{\nu+4}\Gamma(\nu+3)(1\cdot2)}$$

$$c_{6} = -\frac{1}{2^{\nu+6}\Gamma(\nu+4)(1\cdot2\cdot3)}$$

Splošen člen je: $c_{2n} = \frac{(-1)^n}{2^{\nu+2n}\Gamma(\nu+n+1) n!}$