

Interférences intentionnelles et attaques en faute

différentes similarités

JAIF 21

José Lopes Esteves LSF, ANSSI

- José Lopes Esteves
- > ANSSI LSF

- Sécurité Électromagnétique
- Autorité nationale TEMPEST
- Agressions EM
- Protocoles de radiocommunications

- Interactions EM et SSI
- Interférences intentionnelles et attaques en faute EM
- Projet sonde et coefficient de réflexion
- Conclusion

Interactions Electromagnétiques et Sécurité de l'Information

Interférences Intentionnelles et Injection de fautes EM

INTERFÉRENCES INTENTIONNELLES

INTERFÉRENCES INTENTIONNELLES

INTERFÉRENCES INTENTIONNELLES

- Menaces en conduction et rayonnement
- Formes d'onde standardisées (ISO 61000)
- Niveaux de puissance élevés
- Attaquant à distance
- Caractérisation effets plutôt axée défaillance
- Du composant au système de systèmes
- > Tendance:
 - □ Formes d'onde plus efficaces
 - Exploitabilité SSI

ATTAQUES EN FAUTE EM

ATTAQUES EN FAUTE EM

- Propagation conduite: Clock/voltage glitch
- Propagation rayonnée: EMFI champ proche
- > Accès physique: contrôle et synchro
- > Formes d'onde: impulsion et harmonique
- ➤ Niveaux: facteur 1 à 100 par rapport à cible
- Cibles: composants
- Caractérisation effets:
 - □ axée exploitabilité SSI
 - □ modèles de fautes

POINTS DE CONVERGENCE

- Vers l'analyse d'exploitabilité en IEMI
 - Codes de test
 - Modèles de faute
 - Nouveaux risques
- Vers des fautes à distance via IEMI
 - Equivalences glitch/EMFI
 - Equivalences implusion/CW
 - Nouveaux modèles de menace

Projet autour des sondes et coefficient de réflexion

SONDE ET S₁₁

- Reproductibilité de l'injection
 - □ Le fait maison est très tendance
- Détermination du signal transmis
- Caractérisation de la sonde
 - Champ proche complique tout
- > Idée:
 - □ Considérer le couple sonde+cible
 - Regarder le signal non transmis
- Question: le coefficient de réflexion est-il un observable intéressant ?

SONDE ET S₁₁

- ➤ Coefficient de réflexion (S₁₁)
 - □ Puissance revenant vers la source
 - □ Pour chaque fréquence

SONDE ET S₁₁: PREMIERS TRAVAUX

Comparaison carto faute et S₁₁

Comparaison faute impulsionnelle et harmonique/bande étroite

SONDE ET S₁₁: PERSPECTIVES

- Reproductibilité
 - Adaptation du signal à la source
- Caractérisation
 - Cartographie, points d'injection favorables
 - □ Impact de l'activité logique
- Profil d'attaquant
 - □ De l'impulsion à la forme d'onde efficace

CONCLUSION

- IEMI et attaques en faute EM
 - Perturbations via susceptibilité EM
 - □ Convergence des formes d'onde
 - Modèles de menace complémentaires
- Opportunités pour la caractérisation IEMI
 - □ Exploitabilité SSI et modèles de faute
- Evolution des modèles de menace
 - □ Vers une faute à distance
- Reconsidération des profils d'attaquant