GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

The GICD ICFGR<n> characteristics are:

Purpose

Determines whether the corresponding interrupt is edge-triggered or level-sensitive.

Configuration

These registers are available in all GIC configurations. If the GIC implementation supports two Security states, these registers are Common.

GICD_ICFGR1 is Banked for each connected PE with GICR TYPER.Processor Number < 8.

Accessing GICD_ICFGR1 from a PE with GICR TYPER.Processor Number > 7 is constrained unpredictable:

- Register is RAZ/WI.
- An unknown banked copy of the register is accessed.

For SGIs and PPIs:

- When ARE is 1 for the Security state of an interrupt, the field for that interrupt is res0 and an implementation is permitted to make the field RAZ/WI in this case.
- Equivalent functionality is provided by GICR ICFGR<n>

For each supported PPI, it is implementation defined whether software can program the corresponding Int config field.

For SGIs, Int config fields are RO, meaning that GICD ICFGR0 is RO.

Changing Int_config when the interrupt is individually enabled is unpredictable.

Changing the interrupt configuration between level-sensitive and edgetriggered (in either direction) at a time when there is a pending interrupt will leave the interrupt in an unknown pending state.

Fields corresponding to unimplemented interrupts are RAZ/WI.

Attributes

GICD_ICFGR<n> is a 32-bit register.

Field descriptions

Int config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the interrupt is level-sensitive or edge-triggered.

Int_config <x></x>	Meaning
0b00	Corresponding
	interrupt is level-
	sensitive.
0b10	Corresponding
	interrupt is edge-
	triggered.

Int config[0] (bit [2x]) is res0.

For SGIs, this field always indicates edge-triggered.

The reset behavior of this field is:

• On a GIC reset, this field resets to an architecturally unknown value.

Accessing GICD_ICFGR<n>

For SPIs and PPIs, when <u>GICD_CTLR</u>.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.

GICD_ICFGR<n> can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance	
GIC	Dist_base	0x0C00 +	GICD_ICFGR	<n></n>
Distributor		(4 * n)		

Accesses on this interface are RW.

AArch32	AArch64	AArch32	AArch64	Index by
Registers	Registers	Instructions	Instructions	Encoding

External Registers

	28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d9	
С	opyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. Th document is Non-Confidentia	is
		11.