Supporting Information

Design, Synthesis and Isomerization Studies of Light-driven Molecular Motors for Single Molecular Imaging

Jiawen Chen*, Jérôme Vachon and Ben L. Feringa*

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.

*E-mails: j.chen@rug.nl; b.l.feringa@rug.nl

Table of contents

NMR spectra	S2-S12
1	
Kinetic studies of thermal helix inversion step of 1b	S12

NMR spectra

Figure S1. ¹HNMR spectrum (400 MHz, CDCl₃) of compound 6.

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **6**.

Figure S3. ¹HNMR spectrum (400 MHz, CDCl₃) of compound 3.

Figure S4. 13 C NMR spectrum (100 MHz, CDCl₃) of compound 3.

Figure S5. ¹HNMR spectrum (400 MHz, CDCl₃) of compound 8.

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 8.

Figure S7. ¹HNMR spectrum (400 MHz, CDCl₃) of compound 9.

Figure S8. 13 C NMR spectrum (100 MHz, CDCl₃) of compound 9.

Figure S9. ¹HNMR spectrum (400 MHz, CDCl₃) of compound 10.

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 10.

Figure S11. ¹HNMR spectrum (400 MHz, CDCl₃) of compound 11.

Figure S12. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 11.

Figure S13. 1 HNMR spectrum (500 MHz, CD₂Cl₂) of compound 1a.

Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 1a.

Figure S15. ¹HNMR spectrum (400 MHz, CDCl₃) of compound 13.

Figure S16. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 13.

Figure S17. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 14.

Figure S18. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 14.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 1b.

Figure S20. ¹³C NMR spectrum (126 MHz, CD₂Cl₂) of compound 1b.

Kinetic studies of thermal helix inversion step of motor 1b

Figure S21. Kinetic studies of thermal helix inversion step of **1b**. (a) UV-vis absorption changes of motors **1b** during thermal helix inversion at 510 nm at four different temperatures (5 $\,^{\circ}$ C, 0 $\,^{\circ}$ C, -5 $\,^{\circ}$ C, -10 $\,^{\circ}$ C). (b) Eyring analysis of thermal helix inversion of unstable **1b** to stable **1b**.

The thermal helix inversion of unstable **1b** to stable **1b** was followed by monitoring the UV-vis absorption change at 510 nm (Figure S1a) with respect to time at four different temperatures (5 °C, 0 °C, -5 °C, -10 °C). From these data, Gibbs free energy of activation ($\Delta^{\ddagger}G^{\circ}=84.5 \text{ kJ/mol}$), the half-life ($t_{1/2}=148 \text{ s}$) at room temperature (20 °C) could be obtained by means of an Eyring analysis (Figure S1b), as well as the enthalpy of activation ($\Delta^{\ddagger}H^{\circ}=72.8 \text{ kJ/mol}$) and entropy of activation ($\Delta^{\ddagger}S^{\circ}=-41.5 \text{ J/K.mol}$).