MatrixTree定理.md 2024-11-27

矩阵树定理是一个基于线性代数工具,解决图上生成树计数相关问题的工具。

基础定义:

1. 图的关联矩阵:

对于一个n个点(第i个点记为 $$v_i$$),m条边(第j条边记为 $$e_j$$)的无向图,定义关联矩阵M为: \$\$ M_{i,j}=\left{\begin{matrix} 1,e_j\ellowbellev_i的出边 \

- -1, e_j是v_i的入边 \ 0,otherwise. \end{matrix}\right. \$\$ 显然,大小是n x m的
- 2. 拉普拉斯 (基尔霍夫) 矩阵:

拉普拉斯矩阵 L 定义为:

\$\$ L_{i,j}=\left{\begin{matrix} deg(v_i),i=j \ -cnt(v_i,v_j),otherwise. \end{matrix}\right. \$\$ 其中,deg(v)是点v的度数,\$cnt(v_i,v_j)\$表示\$v_i\$ <-> \$v_j\$的数量。

计算公式:

 $$$ L = MM^{T} $$$

矩阵树定理:

\$记L_0为L去掉第k行、第k列后的矩阵(k任意取),则该无向图的生成树个数为det(L_0).\$

在有向图上的扩展: