PhD Programme in Physics of the University of Bologna 38th Cycle

"Measurements of nuclear **fragmentation** differential **cross section** of a ¹⁶O beam in an energy range between 200 MeV/n and 400 MeV/n at the FOOT experiment"

Thesis description presentation

Candidate: Giacomo Ubaldi

The FOOT experiment

Fixed target experiment with scintillators, magnetic spectrometer, calorimeter

- Beams of p,C,O between 200 MeV/u and 700 MeV/u for hadrontherapy and space radioprotection topics
- Particle identification by measuring all kinematic quantities

Goal:

Diffential **fragmentation cross sections** mesurements:

$$\frac{d^2\sigma}{d\Omega \cdot dE_{kin}}$$

My work

- Analysis of data taken at GSI in 2021 of ¹⁶O 400 MeV/u and 200 MeV/u against C as target
- Analysis integrated in SHOE and optimization for specific data
- Partial setup: no tracker, only one module of calorimeter

Specific goal:

Differential fragment cross section:

$$\frac{d\sigma}{d\theta} = \frac{(Y_f - B_f)^u}{N_{beam} \cdot N_{target} \cdot \Delta\theta \cdot \epsilon}$$

Event reconstruction

$$\frac{d\sigma}{d\theta} = \frac{(Y_f - B_f)^u}{N_{beam} \cdot N_{target} \cdot \Delta\theta \cdot \epsilon}$$

TW charge reconstruction algorithm

Kalman Filter reconstruction of a track

Efficiencies

$$\frac{d\sigma}{d\theta} = \frac{(Y_f - B_f)^u}{N_{beam} \cdot N_{target} \cdot \Delta\theta}$$

$$\varepsilon(Z) = \frac{N_{\rm TW}(Z) + 1}{N_{\rm track}(Z) + 2}$$

$$\varepsilon(Z) = \frac{N_{Z,conv}}{N_{Z,tot}}$$

charge reconstruction efficiency

Track reconstruction efficiency

Pile-up removal

$$\frac{d\sigma}{d\theta} = \frac{(Y_f - B_f)^u}{N_{beam} \cdot N_{target} \cdot \Delta\theta \cdot \epsilon}$$

constant threshold discrimination method

pileup projectile: >4 crosses

Pile-up rejection ~ 1%

Future prospects

Foreseen:

• New data taking with beam of ⁴He, ¹²C, ¹⁶O at energies of 200 MeV/u, 400 MeV/n, 800 MeV/n

- Analysis optimization for all the setup
- Implementation of neutron detectors in analysis software
- Inverse kinematic application

BC-501A liquid scintillator

Back up slides

Isotopic identification

 $\frac{d\sigma}{d\theta} = \frac{(Y_f - B_f)^u}{N_{beam} \cdot N_{target} \cdot \Delta\theta \cdot \epsilon}$

MC data

Mass reconstruction using all FOOT subdetectors:

$$A_1 = \frac{p}{U\beta c\gamma}$$

$$A_2 = \frac{E_k}{Uc^2(\gamma - 1)}$$

$$A_3 = \frac{p^2 c^2 - E_k^2}{2Uc^2 E_k}$$

Isotopic identification

$$\frac{d\sigma}{d\theta} = \frac{(Y_f) - B_f)^u}{N_{beam} \cdot N_{target} \cdot \Delta\theta \cdot \epsilon}$$

• MC data

Augmented Lagrangian Method

Minimization of

$$L(\vec{x}, \lambda, \mu) \equiv f(\vec{x}) - \sum_{a} \lambda_{a} c_{a}(\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2}(\vec{x})$$

where

$$f(\vec{x}) = \left(\frac{TOF - T}{\sigma_{TOF}}\right)^2 + \left(\frac{p - P}{\sigma_p}\right)^2 + \left(\frac{E_k - K}{\sigma_{E_k}}\right)^2$$
$$c_a(\vec{x}) = A - A_a$$

$$A_{ALM} = 11.66 \pm 0.38$$

 $A/\sigma_{A} = 3.2 \%$
 $\chi \ 2 < 5$

Hadrontherapy

depth- dose profile for X-rays and charged particles as a beam

Sketch of a treatment planning system on brain-located tumor

Hadrontherapy vs radiotherapy:

- Finite range
- Localized dose profile
- Nuclear fragmentation

Hadrontherapy

Space radioprotection

Particles contribution in Fluence, dose and equivalent dose

GCR fluence

Nuclear Fragmentation

The FOOT detector

Differential Cross section

Bethe Bloch vs nuclear cross section

SHOE organization

Kalman filter in pills

- 1. Take an ideal particle in vacuum. If we add air + detector layers, trajectory changes due to M.S. and energy loss.
- 2. We'll see some measurement hits on the detector layers (considering finite detector uncertainty).
- 3. Propagate the first hit to the next layer. Propagator Matrix F.
- 4. Find the best compromise between the propagated point and the closest hit on the 2 nd layer. Use a Chi2 and a Projection Matrix H.
- 5. Iterate 3 and 4 for the next layers.

Kalman Filter reconstruction of a track

- Start from VT tracklets
- Projection to possible planes of IT
- KF extrapolation to MSD
- KF extrapolation to TW
- Fit the track candidates and extract reconstructed quantities: es. momentum

Fast neutrons detectors

High **neutron production** as a consequence of fragmentation with detectors

- BC-501A liquid scintillator
- BGO Phoswich

 recoil-proton track imaging detector

Inverse kinematics

Proton beam on patient-target (Patient frame of reference)

$$ct' = \gamma(ct - \beta z)$$
$$x' = x$$
$$y' = y$$
$$z' = \gamma(z - \beta ct)$$

$$E'/c = \gamma (E/c - \beta p_z)$$

$$p'_x = p_x$$

$$p'_y = p_y$$

$$p'_z = \gamma (p_z - \beta E/c)$$