

Scalable Machine Learning Agenda

8:00 - 8:30 -- Machine Learning Overview 8:30 - 9:15 -- R on HPC 9:15 - 9:30 -- Break 9:30 - 10:45 -- Spark 10:45 - 11:45 -- Lunch 11:45 - 12:30 -- Intro to Neural Networks / CNNs 12:30 - 12:45 -- Break 12:45 - 1:30 -- Deep Learning Layers & Models 1:30 - 2:00 -- Deep Learning Tutorial

Spark

Mai H. Nguyen, Ph.D.

SPARK

Computing platform for distributed computing

- Built-in parallelism & fault-tolerance on commodity cluster
- Provides interactive querying, iterative analytics, streaming processing
- Goals: speed, ease of use, generality, unified platform

History

- Research project began in 2009 at UC Berkeley's AMPlab
- Paper published in 2010
- Contributed to Apache Software Foundation in 2013
- Commercial version by Databricks

SPARK

- Goals: speed, ease of use, generality, unified platform
- In-memory processing
 - Exploits distributed memory to cache data
 - Intermediate results written to memory whenever possible
- How does Spark manage data in distributed system?

RESILIENT DISTRIBUTED DATASETS (RDDs)

- Spark central concept
 - Abstraction of data as distributed collection of objects
- Resilient Distributed Datasets (RDDs)
 - Data abstraction
 - Programming construct for storing data
 - Spark uses RDDs to distribute data and computations across nodes in cluster

RDD

- Resilient Distributed Dataset
 - Collection of data
 - From files in local filesystem (text, JSON, etc.)
 - From data store (HDFS, RDBMS, NoSQL, etc.)
 - Created from another RDD
- Resilient **Distributed** Dataset
 - Data is divided into partitions
 - Partitions are distributed across nodes in cluster
- Resilient Distributed Dataset
 - Provides resilience (e.g., fault tolerance) to failures
 - History of operations performed on each partition is tracked to provide lineage-based fault tolerance
- All provided automatically by Spark engine

SPARK CONTEXT

- Spark Context
 - Entry point to Spark engine
 - Provides way to create RDDs

```
from pyspark import SparkContext, SparkConf

conf = SparkConf() \
    .setAppName("RDD Example") \
    .config("config.option", "config.value")

sc = SparkContext(conf=conf)
```

- SparkContext: connection to Spark engine
- SparkConf: configuration parameters for application

CREATING RDDs

- Read data from files in local filesystem (text, JSON, etc.)
 - o lines = sc.textFile("inputfile.txt")
- Data read in from data store (HDFS, RDBMS, NoSQL, etc.)
 - o lines = sc.textFile("hdfs://<path>/inputfile.txt")
- Generate data
 - numbers = sc.parallelize(range(100),3)
 - Divide data into 3 partitions
- Created by transforming another RDD
 - newLines = lines.filter(lambda s: "Spark" in s)
- Note: RDDs are immutable
 - To "change" RDD, create another RDD to hold changed data

PROCESSING RDDs

- RDDs can be processed using 2 types of operations
 - Transformation: Creates new RDD from existing RDD
 - Action: Runs computation(s) on RDD and returns value

LAZY EVALUATION

- Transformations on RDDs have lazy evaluation
 - Transformations are not immediately processed
 - Plan of operations is built
- Operations executed when action is performed
 - i.e., actions force computation
- Allows for optimizations in generating physical plan
- Example:
 - filtered = strings.filter(strings.value.contains("Spark"))
 - Nothing is returned
 - o filtered.count()
 - 'filter' is performed, and count is returned

WordCount

WordCount

The overall MapReduce word count process

https://www.todaysoftmag.com/article/1358/hadoop-mapreduce-deep-diving-and-tuning

Data is partitioned across nodes

Map generates key-value pairs

Pairs with same key moved to same node

Reduce sums values for each key

WordCount (RDD)

DATAFRAMES & DATASETS

- Extensions to RDDs
 - Higher-level abstractions
 - Improved performance
 - Better scalability
- Can convert to/from RDDs and use with RDDs

DATAFRAMES & DATASETS

DataFrame

- Lazy evaluation
- Data organized as collection of Rows
- No static type checking
- APIs in Java, Scala, Python, R

DataSet

- Lazy evaluation
- Data organized as collection of Rows
- Provides static type checking
- APIs in Java and Scala

USING DATAFRAMES

- Spark Session
 - Entry point to Spark engine
 - Note that SparkContext is now SparkSession

```
from pyspark import SparkSession
conf = SparkSession \
  .builder \
  .appName("DataFrame Example") \
  .config("config.option", "config.value")
spark =
   SparkSession.builder.confiq(conf=conf) \
                .qetOrCreate()
```

CREATING DATAFRAMES

- Read data from files in local filesystem (text, JSON, etc.)
 - o df = spark.read.csv("data.csv", header="True")
- Data read in from data store (HDFS, RDBMS, NoSQL, etc.)
 - o df = spark.read.csv("hdfs:///<path>/data.csv")
- Generate data
 - o empl_0 = Row(id="123", name="John")
 - empl_1 = Row(id="456", name="Mary")
 - employees = [empl_0, empl_1]
 - df = spark.createDataFrame(employees)
- Created by transforming another DataFrame
 - o filter_df = df.filter(col("name")=="Mary"))

DATAFRAME TRANSFORMATIONS & ACTIONS

- Similar to RDDs, DataFrames can be processed using transformations and actions
- Transformations on DataFrames also have lazy evaluation
- Operations executed when action is performed

DATA PERSISTENCE

- Persist data through caching
 - Data is stored in memory to avoid re-computing
- Can specify different storage levels
 - In memory, on disk, serialized in memory, etc.
- Examples
 - df.cache() MEMORY_ONLY
 - df.persist(MEMORY_ONLY_SER) Serialized in memory
 - df.unpersist() Remove from cache

SPARK PROGRAM STRUCTURE

Start Spark session

- spark = SparkSession.builder.config(conf=conf).getOrCreate()
- Create distributed dataset
 - df = spark.read.csv("data.csv",header="True")
- Apply transformations
 - new_df = df.filter(col("dept") == "Sales")
- Perform actions
 - df.collect()
- Stop Spark session
 - spark.stop()

SPARK ARCHITECTURE

SPARK PROCESS CONCEPTS

Application

 User program consists of driver program and executors on cluster

SparkSession

 Object that provides point of entry to interact with underlying Spark functionality using Spark APIs

Job

 Parallel computation consisting of multiple operations that are executed in response to Spark actions

Stage

Each job gets divided into smaller units called stages

Task

Single unit of work or execution sent to executor

SPARK APPLICATION

- Driver creates SparkSession object
- Driver converts Spark application into one or more jobs
- An action creates a job
- DAG (directed acyclic graph) of instructions built for each job
- Each node in DAG is single or multiple Spark stages
- Each stage is broken down into tasks
- Tasks are distributed to executors

SPARK INTERFACE

Goals: speed, ease of use, generality, unified platform

RDD WORDCOUNT EXAMPLE IN SPARK

Spark RDD API available in Python, Scala, Java, and R

SPARK - GENERALITY

- Goals: speed, ease of use, generality, unified platform
- Support for several data sources
 - Local file systems, HDFS, RDBMSs, MongoDB, Kafka, AWS S3, etc.
- Can run on various platforms
 - Hadoop, Kubernetes, cloud, standalone
- Support for multiple workloads
 - batch, streaming
 - machine learning, SQL, graph processing

SPARK - UNIFIED PLATFORM

Goals: speed, ease of use, generality, unified platform

- Provides unified platform for various analytics processing
- Spark engine provides core capabilities for distributed processing
- Spark libraries provide additional higher-level functionality for diverse workloads

SPARK SQL

Structured Data Processing

- Provides support for SQL and query processing
- Structure of data and computations allow for efficient query plan can be constructed
- Has APIs for SQL, Scala, Java, Python, and R
- Generated underlying code is identical

SPARK SQL

- Execute SQL queries
 - o SQL

```
spark.sql("SELECT max(count)
FROM flight_data").take(1)
```

PySpark

```
from pyspark.sql.functions import max flight_data.select(max("count")).take(1)
```


SPARK SQL

Integrate SQL queries with Spark commands

```
df = spark.sql ("SELECT * FROM Employees")
df.show(100)

num_employees =
   df.select("Age","Dept","Salary")
        .groupBy("Dept")
        .where(df.Salary > 80000)
        .count()
```

SPARK STREAMING

- Streaming Data Processing
 - Scalable processing for real-time analytics
 - Structured streaming
 - Data stream is divided into micro-batches of data
 - Same operations for static data can be used
 - Has APIs for Scala, Java, and Python

REAL-TIME ANALYTICS

- (Near) Real-Time Analytics
 - Analysis and use of data as it enters system
- Examples
 - Identifying fraudulent credit card transaction at point-of-sale
 - Viewing orders as they happen for up-to-date inventory tracking and trend analysis
 - Understanding trending topics of tweets/news articles/etc.

SPARK STREAMING

- Input data stream is divided into batches of data that are processed by Spark engine
- DStream: high-level abstraction
 - Implemented as sequence of RDDs
- Any Spark operation can be applied to DStreams

https://spark.apache.org/docs/latest/streaming-programming-guide.html

SPARK STREAMING

SPARK GRAPHX / GRAPHFRAMES

Graph Computation

- Distributed graph processing
- Special structures for storing vertex and edge information & operations for manipulating graphs
- GraphX (RDD-based) & GraphFrames (DF-based)
- Has APIs in Scala, Java, Python (GraphFrames)

SPARK GRAPHX / GRAPHFRAMES

Graph analytics

- Analysis of relations among entities
- Data represented as graph
 - Entities are vertices
 - Relationships are edges
- Example: Analyzing tweets
 - Extract conversation threads
 - Find interacting groups
 - Find influencers in community

SPARK GRAPHX / GRAPHFRAMES

- Graph operators & algorithms
 - Connected Components
 - PageRank
 - Triangle Counting
 - Label Propagation Algorithm
 - Shortest Paths

SPARK MLLIB

Machine Learning

- Scalable machine learning library
- Distributed implementations of machine learning algorithms and utilities
- Has APIs for Scala, Java, Python, and R

SPARK MLLIB ALGORITHMS

Machine Learning

- Classification, regression, clustering, etc.
- Evaluation metrics

Statistics

Summary statistics, sampling, etc.

Utilities

Dimensionality reduction, transformation, etc.

ML Pipelines

Similar to scikit-learn

MLLIB EXAMPLE: STATISTICS

```
from pyspark.sql.functions import rand
# Generate random numbers
df = sqlContext.range(0,10)
      .withColumn("rand1", rand(seed=10))
      .withColumn("rand2", rand(seed=27))
# Show summary statistics
df.describe().show()
 Compute correlation
df.stat.corr("rand1", "rand2")
```


MLLIB EXAMPLE: CLUSTER ANALYSIS

```
from pyspark.ml.clustering import KMeans

# Read and parse data
data = spark.read.csv("data.csv", header="true")

# k-means model for clustering
kmeans = Kmeans().setK(3).setSeed(123)
model = kmeans.fit (data)
for center in model.clusterCenters()
    print (center)
```


MLLIB EXAMPLE: CLASSIFICATION

```
from pyspark.ml.classification import DecisionTreeClassifier
# Split data into train & test sets
trainDF, testDF = data.randomSplit([0.7,0.3], seed=123)
# Build model
dt = DecisionTreeClassifier(
         featuresCol='features',
         labelCol='label',
         predictionCol='prediction')
model = dt.fit(trainDF)
# Test model
predictions = model.transform(testDF)
```


MLLIB LIBRARIES

SPARK LIBRARIES

Spark Libraries

- Use Spark engine as core
- Extend functionality to particular applications
- Third-party packages: https://spark-packages.org

SPARK

Goals: speed, ease of use, generality, unified platform

Spark

- Goals: speed, ease of use, generality, unified platform
- RDDs
 - Transformations & actions
 - Lazy evaluation
- DataFrames & DataSets
- Spark program structure
- Spark architecture
- Spark process concepts
- Spark APIs & interactive shells
- Support for different platforms & workloads
- Spark libraries

Spark Demo

Demo

- PySpark
- To show common DataFrame operations

Code

3.3_spark/pyspark-intro/pyspark-dataframe.ipynb

