Ejercicios en clase: División y conquista 2

Análisis y Diseño de Algoritmos

24 de abril de 2020

Ejercicio 1. Decimos que un vector A[1..n] es unimodal si existe un índice p, llamado pico tal que A[1..p] es una secuencia creciente, y A[p+1..n] es una secuencia decreciente. Diseñe un algoritmo de división y conquista que recibe un vector unimodal y encuentra el pico de A. Su algoritmo debe tener complejidad $\Theta(\lg n)$ en el peor caso. Escriba la recurrencia y resuélvala usando los métodos visto en clase. Verifique que su recurrencia es correcta usando el teorema maestro.

Solución.

Primera parte: Diseñar un algoritmo de división y conquista.

Observamos que existen dos únicas posibilidades para el pico de un vector unimodal: o está en el lado "zquierdo" del arreglo o está en lado "derecho" del arreglo.

Esto nos da la idea de un algoritmo de división y conquista. Sumado a esto, note que si A es un vector unimodal, entonces cualquier subarreglo en A es también unimodal, portanto se respetan las condiciones de los parámetros de entrada en las llamadas recursivas.

Recibe: Un vector unimodal A[p..r] con elementos diferentes

Devuelve: el pico de A

PICO (A, p, r)	cost	times
1: if $p == r$	c_1	1
2: $\mathbf{return} \ A[p]$	c_2	0
$3: q = \lfloor (r - p + 1)/2 \rfloor$	c_3	1
4: if $A[q] < A[q+1]$	c_4	1
5: return $PICO(A, q + 1, r)$	$T(\lceil n/2 \rceil)$	1
6: else		
7: return $PICO(A, p, q)$	$T(\lfloor n/2 floor)$	1

Segunda parte: Escribir la recurrencia y resolverla.

Tenemos la siguiente recurrencia para el tiempo de ejecución del algoritmo en el peor caso:

$$T(n) = \begin{cases} c_1 & n = 1\\ T(\lceil \frac{n}{2} \rceil) + d & \text{caso contrário} \end{cases}$$

Resolveremos primero para $n = 2^k$ para algún k

$$T(n) = T(2^{k})$$

$$= T(2^{k-1}) + d$$

$$= T(2^{k-2}) + d + d$$

$$= T(2^{k-j}) + dj$$

$$= T(1) + dk$$

$$= c_1 + d \lg n$$

Ahora suponga que n no es potencia de 2. Luego $2^k \le n < 2^{k+1}$ para algún entero k. Luego, como T(n) es creciente (ver final),

$$T(n) < T(2^{k+1}) = c_1 + d(k+1) = c_1 + d + dk \le c_1 + d + d \lg n$$

(la última desigualdad se obtiene porque $2^k \leq n$).

Vea también que

$$T(n) \ge T(2^k) = c_1 + dk = c_1 - d + d(k+1) > c_1 - d + d\lg n$$

(la última desigualdad se obtiene porque $2^{k+1} > n$).

Concluimos que

$$c - d + d \lg n < T(n) \le c + d + d \lg n.$$

Portanto, $T(n) = \Theta(\lg n)$.

Faltaba demostrar que $T(n) = T(\lceil \frac{n}{2} \rceil) + d$ es una función creciente. Demostraremos por inducción en n que $T(n) \le T(n+1)$. Si n = 1, tenemos que $T(1) = c_1 \le c_1 + d = T(1) + d = T(2)$. Si n > 1, tenemos dos casos.

Si
$$n$$
 es impar, $T(n) = T(\lceil \frac{n}{2} \rceil) + d = T(\lceil \frac{n+1}{2} \rceil) + d = T(n+1)$.
Si n es par, $T(n) = T(\lceil \frac{n}{2} \rceil) + d \le T(\lceil \frac{n}{2} \rceil + 1) + d = T(\lceil \frac{n+1}{2} \rceil) + d = T(n+1)$.

Tercera parte: Comprobar usando teorema maestro.

Finalmente, el ejercicio nos pide comprobar nuestra solución mediante el teorema maestro. Para esto, note que, cuando n es potencia de 2, tenemos que $T(n) = T(n/2) + dn^0$. Luego a = 1, b = 2, k = 0 y $\lg 1/\lg 2 = 0 = k$. Portanto estamos en el caso 2 del teorema maestro, y $T(n) = \Theta(n^0 \lg n) = \Theta(\lg n)$.

Ejercicio 2. Considere el siguiente problema. Entrada: Dos vectores A[1..n], B[1..n] con elementos distintos dos a dos, ordenados de manera creciente. Salida: La mediana del conjunto de elementos que están en A o en B. Es decir, el elemento v tal que existen exactamente v 1 elementos menores en v 0 v 1.

Por ejemplo, si A = [10, 30, 50, 70], B = [20, 40, 60, 80], la mediana correspondiente es 40, ya que n = 4 y existen 3 elementos menores que 40. Diseñe un algoritmo $\Theta(\lg n)$ para el problema de la mediana. En este ejercicio puede considerar que n es potencia de 2. Escriba el pseudocódigo, su recurrencia para el peor caso y concluya el tiempo de ejecución

Solución

Primera parte: Diseñar un algoritmo de división y conquista.

Note que existen 4 posibilidades en donde puede estar la mediana:A[1..n/2], A[n/2 + 1..n], B[1..n/2], B[n/2 + 1..n].

Al comparar los puntos medios tenemos las siguientes posibilidaes

Caso 1 A[n/2] < B[n/2]. En ese caso, tenemos que todos los elementos en A[1..n/2] son menores que todos los elementos en $A[n/2+1..n] \cup B[n/2..n]$ Como existen n+1 elementos en $A[n/2+1..n] \cup B[n/2..n]$, la mediana no puede estar en A[1..n/2]. Análogamente, observe que todos los elementos en B[n/2+1..n] son mayores que todos los elementos en $B[1..n/2] \cup A[1..n/2]$. Luego la mediana no puede estar en B[n/2+1..n].

Caso 2 A[n/2+1] > B[n/2+1]. De manera similar al caso anterior, deducimos que la mediana no puede estar ni en ni B[1..n/2] ni en A[n/2+1..n].

El análisis anterior nos permite diseñar el siguiente algoritmo.

Recibe: Dos vectores A[p..q], B[r..s] con elementos distintos dos a dos,ordenados de manera creciente.

Devuelve: La mediana del conjunto de elementos que están en A o en B

Mediana (A, p, q, B, r, s)	cost	times
1: if $p == q$	c_1	1
2: $\mathbf{return} \ \min\{A[p], B[r]\}$		
3: $mid_A = (p+q-1)/2$	c_2	1
4: $mid_B = (r+s-1)/2$	c_3	1
5: if $A[mid_A] < B[mid_B]$	c_4	1
6: return Mediana $(A, mid_A + 1, q, B, r, mid_B)$	T(n/2)	1
7: else		
8: return Mediana $(A, p, mid_A, B, mid_B + 1, s)$	T(n/2)	1

Segunda parte: Escribir la recurrencia y resolverla.

El enunciado del problema nos permite asumir que n es potencia de 2, luego, el tiempo de ejecución viene dado por

$$T(n) = \begin{cases} c & n = 1\\ T(\frac{n}{2}) + d & \text{caso contrário} \end{cases}$$

Como $n = 2^k$ para algún k natural, tenemos

$$T(n) = T(2^{k})$$

$$= T(2^{k-1}) + d$$

$$= T(2^{k-2}) + d + d$$

$$= T(2^{k-j}) + dj$$

$$= T(1) + dk$$

$$= c + dk$$

$$= c + d \lg n$$

Luego $T(n) = \Theta(\lg n)$.

Tercera parte: Comprobar usando teorema maestro.

Finalmente, el ejercicio nos pide comprobar nuestra solución mediante el teorema maestro. Para esto, note que, cuando n es potencia de 2, tenemos que $T(n) = T(n/2) + dn^0$. Luego a = 1, b = 2, k = 0 y $\lg 1/\lg 2 = 0 = k$. Portanto estamos en el caso 2 del teorema maestro, y $T(n) = \Theta(n^0 \lg n) = \Theta(\lg n)$.

Ejercicio 3. Entrada: un arreglo ordenado A[1..n] de números enteros diferentes. Salida: El número de inversiones significativas, donde una inversión significativa es un par ordenado (i,j) tal que i < j y A[i] > 2A[j]. El algoritmo debe tener complejidad $\Theta(n \lg n)$ Escriba el pseudocódigo del algoritmo anterior. Escriba una recurrencia para el peor caso de este algoritmo. Resuelva la recurrencia.

Ejercicio 4. Considere el siguiente problema de búsqueda. Entrada: un arreglo A[1..n] de números enteros Salida: El número máximo de elementos con el mismo valor Por ejemplo, si A = [2,4,2,4,2,2,1,4,3], el algoritmo debe devolver el valor 2. Su algoritmo debe consumir tiempo $\Theta(n \lg n)$ en el peor caso. Escriba el pseudocódigo del algoritmo anterior. Escriba una recurrencia para el peor caso de este algoritmo. Resuelva la recurrencia.