Generative models

MIPT

2023

Generative and discriminative models

Discriminative models Model: p(y|x).

Generative models Model: p(y, x).

Generative models:

- Generate datasets (when generation is a goal)
- Synthetic dataset generation (for train or fine-tuning)
- Latent dataset properties obtaining

Data generation: example

Paganini et al., 2017:

- Model particle energy
- The modeling uses GAN
- Discrimination is done using GEANT software
- Result: good performance, generation is done 100-1000 times faster

Data generation: example

Adams et al., 2010:

- The problem is to generate deep belief networks
- ullet The model structure $oldsymbol{\Gamma}$ is a sequence of adjacency matrices for each layer
- The generation is done using MCMC with Indian buffet process (α, β) as a prior
- ullet α , eta can be interpreted as a width and sparsity of the structure

• Approach 1: assign a likelihood function ("Fully-observed likelihood"), which decomposes object likelihood into parts ("Autoregressive models").

Example: CharRNN

Karpathy, 2015

• Approach 1: assign a likelihood function ("Fully-observed likelihood"), which decomposes object likelihood into parts ("Autoregressive models").

Problems:

- ▶ hard to assign a proper likelihood function.
- ► computationally intensive inference.

- Approach 1: assign a likelihood function ("Fully-observed likelihood"), which decomposes
 object likelihood into parts ("Autoregressive models").
 Problems:
 - ▶ hard to assign a proper likelihood function.
 - computationally intensive inference.
- Approach 2: make an assumption that objects are generated by a latent variable, which is easier to analyze ("Latent variable models").

Example: autoencoder

Autoencoder is a model of dimension reduction:

$$\mathbf{H} = \mathbf{\sigma}(\mathbf{W}_{\mathsf{e}}\mathbf{X}),$$
 $||\mathbf{\sigma}(\mathbf{W}_{d}\mathbf{H}) - \mathbf{X}||_2^2
ightarrow \mathsf{min}\,.$

Autoencoder: generative model?

(Alain, Bengio 2012): consider regularized autoencoder:

$$||\mathbf{f}(\mathbf{x},\sigma)-\mathbf{x}||^2,$$

where σ is a noise level.

Then

$$\frac{\partial {\log p(\mathbf{x})}}{\partial \mathbf{x}} = \frac{||\mathbf{f}(\mathbf{x},\sigma) - \mathbf{x}||^2}{\sigma^2} + o(1) \text{ when } \sigma \to 0.$$

Vector field induced by reconstruction error

Variational autoencoder

Let the objects ${\bf X}$ be generated by latent variable ${\bf h} \sim \mathcal{N}({\bf 0},{\bf I})$:

$$\mathbf{x} \sim p(\mathbf{x}|\mathbf{h},\mathbf{w}).$$

 $p(\mathbf{h}|\mathbf{x},\mathbf{w})$ is unknown.

Maximize ELBO:

$$\log p(\mathbf{x}|\mathbf{w}) \geq \mathsf{E}_{q_{\phi}(\mathbf{h}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{h},\mathbf{w}) - D_{\mathsf{KL}}(q_{\phi}(\mathbf{h}|\mathbf{x})||p(\mathbf{h})) o \mathsf{max} \,.$$

Distributions $q_{\phi}(\mathbf{h}|\mathbf{x})$ и $p(\mathbf{x}|\mathbf{h},\mathbf{w})$ are modeled by neural networks:

$$q_{\phi}(\mathbf{h}|\mathbf{x}) \sim \mathcal{N}(oldsymbol{\mu}_{\phi}(\mathbf{x}), oldsymbol{\sigma}_{\phi}^2(\mathbf{x})), \ p(\mathbf{x}|\mathbf{h}, \mathbf{w}) \sim \mathcal{N}(oldsymbol{\mu}_{w}(\mathbf{h}), oldsymbol{\sigma}_{w}^2(\mathbf{h})),$$

where μ, σ are neural network's outputs.

Variational autoencoder: generation process

Does good likelihood estimation leads to good sampling?

Does good sampling estimation leads to good likelihood estimation?

• Approach 1: assign a likelihood function ("Fully-observed likelihood"), which decomposes object likelihood into parts ("Autoregressive models").

Problems:

- ▶ hard to assign a proper likelihood function.
- ► computationally intensive inference.
- Approach 2: make an assumption that objects are generated by a latent variable, which is easier to analyze ("Latent variable models").

Problems:

- \triangleright p(x) is intractible
- Problem of both methods: high likelihhod and high sampling quality can be independent (Theis et al., 2015).
- Given a noisy mixutre:

$$p_w(x) = 0.01 p_{\text{data}}(x) + 0.99 p_{\text{noise}}(x), \log p_w(x) \ge \log p_{\text{data}}(x) - \log 100$$

For another direction: overfitting

Approach 1: assign a likelihood function ("Fully-observed likelihood"), which decomposes
object likelihood into parts ("Autoregressive models").
 Problems:

- ▶ hard to assign a proper likelihood function.
- computationally intensive inference.
- Approach 2: make an assumption that objects are generated by a latent variable, which is easier to analyze ("Latent variable models").
- Approach 3: do not use likelihood and work straightforwardly with generative process (from likelihood modeling to statistical testing).

Generative-adversarial models (Goodfellow et al., 2014)

Main idea: train two models, generator G and discriminator D:

$$\min_{\mathbf{W}_G} \max_{\mathbf{w}_D} \mathsf{E}_{\mathbf{x} \in \mathfrak{D}} \log p(\mathbf{x} | \mathbf{w}_D, D) + \mathsf{E}_{\mathbf{x} \in p_G} \log (1 - p(\mathbf{x} | \mathbf{w}_D, D)).$$

The algorithm is iterative

- ullet $\mathsf{E}_{\mathbf{x} \in \mathfrak{D}} \log p(\mathbf{x} | \mathbf{w}_D, D) o \mathsf{max}_{\mathbf{w}_D}$
- $\bullet \ \mathsf{E}_{\mathbf{x} \in p_G} \log(1 p(\mathbf{x} | \mathbf{w}_D, D)) \to \mathsf{min}_{\mathbf{w}_G}$
- Alternative: $\mathsf{E}_{\mathbf{x} \in p_G} \log p(\mathbf{x} | \mathbf{w}_D, D) o \mathsf{max}_{\mathbf{w}_G}$

GAN: optimality

When a discriminator is in global optimum, the generator minimizes JS:

$$-\log(4) + \mathit{KL}\left(p(\mathbf{x}|\frac{p(\mathbf{x}) + p_G(\mathbf{x})}{2})\right) + \mathit{KL}\left(p_G\mathbf{x}|\frac{p(\mathbf{x}) + p_G(\mathbf{x})}{2}\right) \to \min_{\mathbf{w}_G}.$$

Consequent: the optimal generator distribution: $p_G = p(\mathbf{x})$.

Optimization details for GAN

- Generator optimization can be made in two regimes: $\mathsf{E}_{\mathbf{x} \in p_G} \log(1 p(\mathbf{x} | \mathbf{w}_D, D)) \to \min_{\mathbf{w}_G} \mathsf{or} \; \mathsf{E}_{\mathbf{x} \in p_G} \log p(\mathbf{x} | \mathbf{w}_D, D) \to \max_{\mathbf{w}_G} \mathsf{:} \; \mathsf{the optima coincide, but for the first regime the gradient is more smooth.}$
- Generator can converge to a local optimum and generate only similar objects (mode collapse).

https://machinelearningmastery.com/practical-guide-to-gan-failure-modes/

Dataset shift is an event when distribuition $p(\mathbf{X}, \mathbf{y})$ significantly differ for the training and test/inference phases.

- Covariate shift difference in p(X)
- Prior probability shift difference in p(y)
- Concept shift difference in p(y|X)

Fig. 1. Covariate shift: $P_{tst}(y|x_0) = P_{tr}(y|x_0)$ and $P_{tr}(x_0) \neq P_{tst}(x_0)$. (a) Training data and (b) test data.

Moreno-Torres et al., 2012

Moreno-Torres et al., 2012

References

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- Paganini M., de Oliveira L., Nachman B. Accelerating science with generative adversarial networks: an application to 3D particle showers in multilayer calorimeters //Physical review letters. 2018. T. 120. №. 4. C. 042003.
- Antoran J., Miguel A. Disentangling and learning robust representations with natural clustering //2019
 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. C.
 694-699.
- Adams R. P., Wallach H., Ghahramani Z. Learning the structure of deep sparse graphical models
 //Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR
 Workshop and Conference Proceedings, 2010. C. 1-8.
- Alain G., Bengio Y. What regularized auto-encoders learn from the data-generating distribution //The Journal of Machine Learning Research. – 2014. – T. 15. – №. 1. – C. 3563-3593.
- Theis L., Oord A., Bethge M. A note on the evaluation of generative models //arXiv preprint arXiv:1511.01844. – 2015.
- Kingma D. P., Welling M. Auto-Encoding Variational Bayes //stat. 2014. T. 1050. C. 10.
- Efron B., Tibshirani R. An Introduction to the Bootstrap, 1993.
- Moreno-Torres J. G. et al. A unifying view on dataset shift in classification //Pattern recognition. 2012.
 T. 45. №. 1. C. 521-530.
- Bakhteev O. Y., Strijov V. V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms //Annals of Operations Research. – 2020. – T. 289. – №. 1. – C. 51-65.

References

- Aditya Grover et al., Deep Generative Models tutorial, 2018: goo.gl/H1prjP
- Fei-Fei Li et al., Generative Models tutorial, 2017, http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
- Shakir Mohamed et al., UAI 2017 Tutorial, 2017, https://www.youtube.com/watch?v=JrO5fSsklSY
- Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks, 2015: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Maxim Panov: Uncertainty, Out-of-distribution detection for NNs: https://www.youtube.com/watch?v=N-p_qSLzoAl
- https://machinelearningmastery.com/practical-guide-to-gan-failure-modes/
- Cat generator: https://github.com/aleju/cat-generator