

Binary Search Tree

Data structures

- Previous lecture: hash tables
 - Insert, Delete, Search in (expected)
 constant time
 - Works for integers from {0...m^r-1}
- This lecture: Binary Search Trees
 - Insert, Delete, Search (Successor)
 - Works in comparison model

Binary Search Tree

- Each node x has:
 - -key[x]
 - Pointers:
 - left[x]
 - right[x]
 - p[x]

Binary Search Tree (BST)

- Property: for any node x:
 - For all nodes y in the left subtree of x:

$$\text{key}[y] \leq \text{key}[x]$$

 For all nodes y in the right subtree of x:

$$\text{key}[y] \ge \text{key}[x]$$

• Given a set of keys, is BST for those keys unique?

No uniqueness

What can we do given BST?

- Sort !
- Inorder-Walk(x):

If x ≠ NIL then

- Inorder-Walk(left[x])
- print key[x]
- Inorder-Walk(right[x])

Sorting, ctd.

- What is the running time of Inorder-Walk?
- It is **O**(n)
- Because:
 - Each link is traversed twice
 - There are O(n) links

Sorting, ctd.

- Does it mean that we can sort n keys in O(n) time ?
- No
- It just means that building a BST takes $\Omega(n \log n)$ time (in the comparison model)

BST as a data structure

- Operations:
 - -Insert(x)
 - Delete(\mathbf{x})
- \rightarrow Search(\mathbf{k})

Search

Search(x):

- If x\neq NIL then
 - $-\operatorname{If} \operatorname{key}[x] = k \text{ then return } x$
 - If k < key[x] then returnSearch(left[x])
 - If k > key[x] then return Search(right[x])
- Else return NIL

Search(8.5):

Predecessor/Successor

- Can modify Search (into Search') such that, if k is not stored in BST, we get x such that:
 - Either it has the largest key[x]<k, or
 - It has the smallest key[x]>k
- Useful when k prone to errors
- What if we always want a successor of k?
 - -x=Search'(k)
 - If key[x]<k, then return Successor(x)</p>
 - Else return x

Binary Search Tree (BST)

TREE-PREDECESSOR is symmetric to TREE-SUCCESSOR.

Example:

- Find the successor of the node with key value 15. (Answer: Key value 17)
- Find the successor of the node with key value 6. (Answer: Key value 7)
- Find the successor of the node with key value 4. (Answer: Key value 6)
- Find the predecessor of the node with key value 6. (Answer: Key value 4)

Time: For both the TREE-SUCCESSOR and TREE-PREDECESSOR procedures, in both cases, we visit nodes on a path down the tree or up the tree. Thus, running time is O(h), where h is the height of the tree.

Successor

Successor(x):

- If right[x] ≠ NIL then
 return Minimum(right[x])
- Otherwise

$$-y \leftarrow p[x]$$

- − While y≠NIL and x=right[y] do
 - x ← y
 - $y \leftarrow p[y]$
- Return y

Minimum

Minimum(x)

- While left[x]≠NIL do
 - $-x \leftarrow left[x]$
- Return x

Nearest Neighbor

- Assuming keys are numbers
- For a key k, can we find x such that |k-key[x]| is minimal?
- Yes:
 - key[x] must be either a predecessor or successor of k
 - -y=Search'(k) //y is either succ or pred of k
 - -y' = Successor(y)
 - y''=Predecessor(y)
 - Report the closest of key[y], key[y'], key[y'']

Analysis

- How much time does all of this take?
- Worst case: O(height)
- Height really important
- Tree better be balanced

Constructing BST

Insert(z):

- $y \leftarrow NIL$
- $x \leftarrow root$
- While $x \neq NIL$ do
 - $-y \leftarrow x$
 - If key[z] < key[x]then $x \leftarrow left[x]$ else $x \leftarrow right[x]$
- $p[z] \leftarrow y$
- If key[z] < key[y]then $left[y] \leftarrow z$ else right[y] $\leftarrow z$

Analysis

- After we insert n elements, what is the worst possible BST height?
- Pretty bad: n-1

Example: We can demonstrate on the above sample tree.

- For Case 1, delete *K*.
- For Case 2, delete *H*.
- For Case 3, delete B, swapping it with C.

Time: O(h), on a tree of height h.

Deletion

TREE-DELETE is broken into three cases.

Case 1: z has no children.

• Delete z by making the parent of z point to NIL, instead of to z.

Case 2: z has one child.

• Delete z by making the parent of z point to z's child, instead of to z.

Case 3: z has two children.

- z's successor y has either no children or one child. (y is the minimum node—with no left child—in z's right subtree.)
- Delete y from the tree (via Case 1 or 2).
- Replace z's key and satellite data with y's.

```
TREE-DELETE (T, z)
Determine which node y to splice out: either z or z's successor.
if left[z] = NIL or right[z] = NIL
  then y \leftarrow z
  else y \leftarrow \text{TREE-SUCCESSOR}(z)
\triangleright x is set to a non-NIL child of y, or to NIL if y has no children.
if left[y] \neq NIL
  then x \leftarrow left[y]
  else x \leftarrow right[y]
\triangleright y is removed from the tree by manipulating pointers of p[y] and x.
if x \neq NIL
  then p[x] \leftarrow p[y]
if p[y] = NIL
  then root[T] \leftarrow x
  else if y = left[p[y]]
           then left[p[y]] \leftarrow x
           else right[p[y]] \leftarrow x
\triangleright If it was z's successor that was spliced out, copy its data into z.
if y \neq z
  then key[z] \leftarrow key[y]
         copy y's satellite data into z
return y
```


Case 1: z has no children

Case 2: z has one child

Case 3: z has two children

Average case analysis

- Consider keys 1,2,...,n, in a random order
- Each permutation equally likely
- For each key perform Insert
- What is the likely height of the tree?
- It is O(log n)

Summing up

- We have seen BSTs
- Support Search, Successor, Nearest Neighbor etc, as well as Insert
- Worst case: O(n)
- But O(log n) on average
- Next week: O(log n) worst case