### Where are we...?



- We are now all proficient in understanding deep neural networks and how to optimize them
- But... many research frontiers in deep learning involve probabilistic models of the input p<sub>model</sub>(x)
- We are often interested in using probabilistic inference to predict any of the variables in its environment, given any of the other variables

\*\*\* 99% of the material today is heavily borrowed from the Deep Learning textbook

#### Latent variables



• Many probabilistic models have latent variables, h, with

$$p_{model}(\mathbf{x}) = E_h p_{model}(\mathbf{x}|\mathbf{h})$$

- Latent variables are another way to represent the data
- Idea: distributed representations based on latent variables can obtain all of the advantages of learning which we have seen with deep networks

#### Latent variables: a review



- Latent variables, as opposed to observable variables, are variables that are not observed but instead inferred from observed variables
- Latent variable models are used in: psychology, economics, engineering, medicine, physics, ML/AI, bioinformatics, NLP, management, and pretty much everywhere else

## Example of a latent variable



- In economics, we are often interested in measuring things such as quality of life, morale, happiness, and other things
- These things cannot be directly measured!
- The idea is to link these latent variables to observable variables
- For example, perhaps quality of life can be inferred from some linear combination of wealth, employment, environment, physical health, education, leisure time, etc...

# Linear Factor Models

## Back to deep learning...



- As an introduction to probabilistic models with latent variables, we start with one of the simplest classes: linear factor models
- Warning: you may not be implementing any linear factor models to solve state-of-the-art problems, but they provide a nice building block for mixture models or deeper probabilistic models
- Many of the approaches we discuss today are necessary to build generative models that more advanced deep models (keep coming to class!) models will expand upon

#### Linear factor models



- Defined by the use of a stochastic, linear decoder that generates x by adding noise to a linear transformation of h
- Allow us to discover explanatory factors that have a simple joint distribution
- Simplicity of the linear decoder motivated these as some of the first latent variable models

# Linear factor models (LFMs)



## LFMs describe the data generation process as follows:

1. Sample the explanatory factors h from a distribution

$$\mathbf{h} \sim p(\mathbf{h})$$

where  $p(\mathbf{h})$  is a factorial distribution (i.e.  $p(\mathbf{h}) = \prod_i p(h_i)$ 

2. Sample the real-valued observable variables given the factors:

$$\mathbf{x} = \mathbf{W}\mathbf{h} + \mathbf{b} + \text{noise}$$

where the noise is typically Gaussian and diagonal





# **Types of LFMs**



- The directed graphical model on the previous slide describes the LFM family, where we assume that observed x is obtained by a linear combination of independent latent factors h, plus some noise
- Different types of LFMs make different choices about the form of the noise and of the prior  $p(\mathbf{h})$
- We will touch upon:
  - Probabilistic PCA and factor analysis
  - Independent component analysis (ICA)
  - Slow feature analysis
  - Sparse coding

## **Factor analysis**



- (Batholomew, 1987; Basilevsky, 1994)
- Here, the latent variable prior is just the unit variance Gaussian:

$$\mathbf{h} \sim \mathcal{N}(\mathbf{h}; \mathbf{0}, \mathbf{I})$$

- Observed values x<sub>i</sub> are assumed to be conditionally independent given h
- That is, the noise is <u>assumed</u> to be drawn from a diagonal covariance Gaussian distribution, with covariance matrix  $\psi = \text{diag}(\sigma_1^2, ..., \sigma_n^2)$
- The latent variables should capture the dependencies between the observed variables x<sub>i</sub>
- Can show that **x** is a multivariate normal:

$$\mathbf{x} \sim N(\mathbf{x}; \mathbf{b}, \mathbf{WW}^{\mathsf{T}} + \psi)$$

# Probabilistic PCA

## From factor analysis to probabilistic PCA



- A slight modification to the factor analysis model allows us to cast PCA in a probabilistic framework: make the conditional variances  $\sigma_i^2$  equal to each other
- Now we have:

$$\mathbf{x} \sim N(\mathbf{x}; \mathbf{b}, \mathbf{WW}^\mathsf{T} + \sigma^2 \mathbf{I}) \longrightarrow \mathsf{Factor} \; \mathsf{Analysis}$$

• Equivalently:

$$x = Wh + b + \sigma z$$
 probabilistic PCA

where  $\mathbf{z} \sim N(\mathbf{z}; \mathbf{0}, \mathbf{I})$  is Gaussian noise

• Can use an iterative EM algorithm to estimate **W** and  $\sigma^2$  (Tipping and Bishop (1999))

#### **Probabilistic PCA**



- Probabilistic PCA takes advantage of the observation that most variations in the data can be captured by the latent variables,  $\mathbf{h}$ , up to some small residual **reconstruction error**  $\sigma^2$
- Tipping and Bishop (1999) showed that probabilistic PCA becomes PCA as  $\sigma \rightarrow 0$

## Motivation behind probabilistic PCA



- In standard PCA, we assume linearity (bases of linear combinations of the measurement-basis), that large variances
   import structure, and that principal components are orthogonal
- Linearity is not always justifiable!
- Calculating the covariance matrix can be very expensive in high-dimensional or big data settings
- De-correlation is not always the best approach (first and second order statistics are not always sufficient for revealing all dependencies in data, i.e. Gaussian data)

# Independent Component Analysis

# Independent component analysis (ICA)



- One of the oldest representation learning algorithms
- Models linear factors by seeking to separate an observed signal into underlying signals that are scaled and added together
- The underlying signals are intended to be fully independent
- ∃ many variants



- A variant from Pham et al trains parametric generative model
- The prior  $p(\mathbf{h})$  is fixed
- ullet The model deterministically generates  ${f x}={f W}{f h}$
- A nonlinear change of variables allows us to determine  $p(\mathbf{x})$
- Learning the model proceeds by using maximum likelihood



#### Motivation behind ICA



- By choosing  $p(\mathbf{h})$  to be independent, can recover factors that are as close as possible to independent
- Used to recover low-level signals that have been mixed
- Here, each data point x<sub>i</sub> is one sensor's observation of the mixed signals, and each h<sub>i</sub> is one estimate of the original signals
- Example: we have n people speaking simultaneously in n
  different microphones in different locations, ICA can detect
  changes in the volume between each speaker as heard by each
  microphone and separate the signals so that each h<sub>i</sub> contains
  only one person speaking clearly

## **Applications of ICA**



- Optical imaging of neurons
- Neuronal spike sorting
- Facial recognition
- Removing artifacts (i.e. eye blinks) from EEG (electroencephalography) data
- Predicting stock market prices
- Mobile phone communications