Homework (12)

1. Consider the equality constrained least-squares problem

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2},$$

$$s.t. \ \mathbf{G}\mathbf{x} = \mathbf{h},$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank $\mathbf{A} = n$, and $\mathbf{G} \in \mathbb{R}^{p \times n}$ with rank $\mathbf{G} = p$. Give the KKT conditions, and derive expressions for the primal solution \mathbf{x}^* and the dual solution $\boldsymbol{\nu}^*$.

2. Show that the strong duality holds for the problem

$$\min_{\mathbf{x}} -3x_1^2 + x_2^2 + 2x_3^2 + 2(x_1 + x_2 + x_3)$$
s.t. $x_1^2 + x_2^2 + x_3^2 = 1$,

even though the problem is not convex. Derive the KKT conditions. Find all solutions \mathbf{x} , $\boldsymbol{\nu}$ that satisfy the KKT conditions. Which pair corresponds to the optimum?

Homework (12)

3. Consider a convex problem with no equality constraints,

$$\min_{\mathbf{x}} f_0(\mathbf{x})$$
s.t. $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m.$

Assume that $\mathbf{x}^* \in \mathbb{R}^n$ and $\boldsymbol{\lambda}^* \in \mathbb{R}^m$ satisfy the KKT conditions

$$f_i(\mathbf{x}^*) \le 0, \quad i = 1, \dots, m$$

$$\lambda_i^* \ge 0, \quad i = 1, \dots, m$$

$$\lambda_i^* f_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m$$

$$\nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) = 0.$$

Show that

$$\nabla f_0(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0$$

for all feasible \mathbf{x} .

Homework (12)

- 4. In the subsection "Nonstrict Inequalities", the lecture note only gives the proof of primal infeasibility implying dual feasibility. This is insufficient to claim the strong alternative. Please make the proof complete.
- 5. Consider the linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$. From linear algebra we know that this equation has a solution if and only $\mathbf{b} \in \mathcal{R}(\mathbf{A})$, which occurs if and only if $\mathbf{b} \perp \mathcal{N}(\mathbf{A}^T)$. In other words, $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution if and only if there exists no $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{A}^T\mathbf{y} = \mathbf{0}$ and $\mathbf{b}^T\mathbf{y} \neq \mathbf{0}$. Derive this result from the theorems of alternatives.
- 6. Let $\mathbf{P} \in \mathbb{R}^{n \times n}$ be a matrix that satisfies

$$P_{ij} \ge 0, \quad i, j = 1, \dots, n, \quad \mathbf{P}^T \mathbf{1} = \mathbf{1},$$

i.e., the coefficients are nonnegative and the columns sum to one. Use Farkas' lemma to prove there exists a $\mathbf{y} \in \mathbb{R}^n$ such that

$$\mathbf{P}\mathbf{y} = \mathbf{y}, \mathbf{y} \ge \mathbf{0}, \mathbf{1}^T \mathbf{y} = 1.$$

(We can interpret \mathbf{y} as an equilibrium distribution of the Markov chain with n states and transition probability matrix \mathbf{P} .)