CASdesigner manual

October, 10th

<u>CASdesigner</u> is a web tool to help you design donor DNA cassettes for genomic integration. These cassettes can be used to delete or replace existing genes, or to introduce genes into well-characterized empty loci. In all cases, CASdesigner provides primers which can be used to construct cassettes by Gibson assembly, PCR overlap, or homologous recombination. The markerless cassette can be integrated with the aid of a Cas9/gRNA plasmid (pCut) specifying the chromosomal target of the desired edit. These plasmids are available from the JBEI Public Registry.

We also provide experimental data on ~100 parts including integration sites and promoters that can be used with CASdesigner. When possible, we have standardized the construction and definition of parts for ease of use. These data are available from the JBEI Public Experimental Data Depot.

The CASdesigner Team casdesigner@lbl.gov

Table of contents

Acknowledgements, licensing, and citing our tool
Integration Loci
Promoters
Terminators
Cassette construction
Feedback

Acknowledgements, licensing, and citing our tool

CASdesigner is part of the following study, which we kindly ask you cite in any reports in which employ it:

A Cas9-based toolkit to program expression context in Saccharomyces cerevisiae Amanda Reider Apel*, Leo d'Espaux*, Maren Wehrs*, Daniel Sachs, Rachel A. Li, Gary J. Tong, Megan Garber, Oge Nnadi, William Zhuang, Nathan J. Hillson, Jay D. Keasling, and Aindrila Mukhopadhyay. Submitted.

The software tool was created and coded by Leo d'Espaux, William Zhuang, and Oge Nnadi. The data included in this manual were collected by Maren Wehrs, Amanda Reider Apel, Leo d'Espaux, and Rachel Li. CASdesigner is provided open-source under a BSD license, and is available from github. We kindly thank Gos Micklem for permission to use Intermine to fetch yeast sequences.

Integration Loci

We have characterized 23 integration loci. The integration deletes the 20-nt guide sequence and the subsequent 14 bp. Here are data for a GFP cassette integrated into various loci and tested in different media and time points. For each integration site, we have a pCut plasmid available from the <u>JBEI Public</u> Registry.

While the 23 cut sites were chosen from a BY *S. cerevisiae* strain background, all 23 sites are also present in both CEN.PK and W303 backgrounds with two exceptions: (1) 208a is mutated at the 4th nucleotide in CEN.PK, and (2) His3b is missing in W303. Therefore, in addition to the two low efficiency sites, 208a should not be used for strain engineering in a CEN.PK background and His3b should be avoided when working in W303.

I	YPD		CSM		Int	Cuido Samuenas				
	8hr	24hr	8hr	24hr	Eff	Guide Sequence				
208a	1.00	0.27	0.67	0.47	0.99	GTCCGCTAAACAAAAGATCT				
1622b	0.80	0.17	0.61	0.23	1.00	TAAAGCCACCACATCGCAAA				
YPRCd15c	0.79	0.18	0.66	0.34	0.87	AATCCGAACAACAGAGCATA				
308a	0.78	0.23	0.57	0.40	0.98	CACTTGTCAAACAGAATATA				
1021b	0.78	0.16	0.50	0.29	0.72	CCTCTGTGTGGTGGTAATTG				
911b	0.77	0.15	0.60	0.32	1.00	GTAATATTGTCTTGTTTCCC				
1014a	0.74	0.16	0.56	0.31	0.42	TTATGTGCGTATTGCTTTCA				
HIS3b	0.71	0.13	0.54	0.30	0.98	AATATAGAGTGTACTAGAGG				
YOLCd1b	0.70	0.10	0.50	0.39	0.33	CTAGAATTTCCATTTTGCGT				
416d	0.70	0.28	0.54	0.30	0.99	TAGTGCACTTACCCCACGTT				
1309a	0.69	0.17	0.54	0.22	0.99	CCTGTGGTGACTACGTATCC				
SAP155b	0.62	0.15	0.66	0.29	0.83	GGTTTTCATACTGGGGCCGC				
805a	0.60	0.20	0.51	0.33	0.01	TTATTTGAATGATATTTAGT				
CAN1y	0.59	0.23	0.63	0.35	0.40	GATACGTTCTCTATGGAGGA				
1206a	0.58	0.15	0.52	0.26	0.01	CGAACATTTTTCCATGCGCT				
SAP155c	0.57	0.21	0.56	0.29	0.51	ATGAAAGACAACTATAGGGC				
106a	0.54	0.13	0.39	0.22	1.00	ATACGGTCAGGGTAGCGCCC				
607c	0.53	0.18	0.78	0.23	0.02	CTATTTTTGCTTTCTGCACA				
1114a	0.52	0.12	0.51	0.26	0.46	CTTGTGAAACAAATAATTGG				
720a	0.52	0.19	0.56	0.28	0.98	CAACAATTGTTACAATAGTA				
1414a	0.47	0.10	0.75	0.27	0.82	GCGCCACAGTTTCAAGGGTC				
RDS1a	0.46	0.17	0.42	0.23	0.16	ATTCAATACGAAATGTGTGC				
511b	0.33	0.17	0.45	0.25	0.96	CAGTGTATGCCAGTCAGCCA				

Promoters

We have characterized 37 promoters. Here are data for a GFP expressed from a fixed locus (1021b) tested in different media and time points. You can also use promoters from any native *S. cerevisiae* gene by referring to its common name, *e.g.*, GPD1. In all cases, CASdesigner includes as the promoter the 600 bp upstream the start codon of that gene.

30 - 3	YPD				CSM				YPG			Fold
	4hr	8hr	24hr	48hr	4hr	8hr	24hr	48hr	8hr	24hr	48hr	19.
TDH3	1.00	0.96	0.66	0.86	1.07	0.84	0.60	0.49	0.70	0.66	0.89	0.86
CCW12	0.90	0.89	0.21	0.18	0.87	0.68	0.30	0.18	0.93	0.30	0.32	0.20
ENO2	0.68	0.50	0.18	0.18	0.63	0.43	0.23	0.15	0.34	0.14	0.27	0.27
TEF1	0.55	0.43	0.14	0.15	0.48	0.37	0.16	0.12	0.41	0.14	0.10	0.27
TEF2	0.48	0.38	0.19	0.29	0.50	0.31	0.27	0.19	0.56	0.26	0.24	0.61
RPL3	0.45	0.32	0.11	0.13	0.33	0.21	0.13	0.07	0.44	0.15	0.12	0.29
PGK1	0.43	0.37	0.46	0.46	0.38	0.45	0.43	0.21	0.37	0.40	0.38	1.07
HHF2	0.37	0.37	0.25	0.22	0.34	0.29	0.19	0.13	0.44	0.22	0.16	0.60
TPI1	0.30	0.25	0.11	0.15	0.29	0.21	0.12	0.09	0.26	0.13	0.11	0.51
YEF3	0.26	0.29	0.21	0.29	0.33	0.29	0.20	0.17	0.26	0.25	0.23	1.11
HHF1	0.24	0.25	0.12	0.13	0.27	0.23	0.12	80.0	0.28	0.13	0.11	0.54
ASC1	0.22	0.19	0.05	0.04	0.18	0.11	0.06	0.03	0.20	0.05	0.04	0.20
SSA1	0.20	0.14	0.32	0.45	0.22	0.30	0.25	0.24	0.28	0.39	0.52	2.26
HSP26	0.20	0.06	0.79	0.91	0.24	0.30	0.39	0.28	0.13	0.81	1.07	4.56
PDC1	0.16	0.12	0.02	0.02	0.19	0.11	0.06	0.07	0.05	0.02	0.06	0.15
PCK1	0.15	0.01	0.40	0.26	0.01	0.00	0.00	0.00	0.06	0.44	0.31	1.77
HSP82	0.15	0.14	0.31	0.29	0.13	0.18	0.20	0.12	0.12	0.21	0.32	1.96
HSP104	0.13	0.14	0.34	0.47	0.16	0.22	0.24	0.21	0.18	0.40	0.63	3.61
SSB2	0.13	0.09	0.03	0.05	0.10	0.07	0.04	0.02	0.14	0.04	0.04	0.42
ADH2	0.12	0.01	0.35	0.40	0.00	0.00	0.00	0.00	0.06	0.34	0.40	3.28
ACT1	0.12	0.10	0.10	0.12	0.11	0.10	0.08	0.04	0.13	0.10	0.11	1.04
HXT7	0.10	0.10	0.22	0.20	0.10	0.18	0.17	0.10	0.47	0.20	0.17	1.95
CIT1	0.09	0.04	0.29	0.30	0.05	0.06	0.04	0.06	0.14	0.29	0.26	3.47
CIT2	0.06	0.02	0.06	0.10	0.20	0.09	0.08	0.06	0.02	0.08	0.16	1.68
EFT1	0.04	0.01	0.22	0.16	0.11	0.08	0.10	0.07	0.03	0.15	0.16	3.46
CYC1	0.04	0.03	0.06	0.06	0.04	0.03	0.02	0.01	0.10	0.09	0.18	1.38
SPI1	0.01	0.00	0.02	0.03	0.04	0.05	0.07	0.04	0.02	0.02	0.03	2.87
HSP30	0.01	0.00	0.02	0.03	0.02	0.02	0.06	0.05	0.01	0.06	0.15	4.35
GAL1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.27	0.50	0.36	0.16

Terminators

We do not have data for terminators. However, you can specify any *S. cerevisiae* gene by common name and CASdesigner will use its terminator, defined as the 250 bp downstream the named gene.

Cassette construction

The markerless cassette will contain your genetic edit flanked by 1kb homology regions. In the case of a deletion, the donor DNA is just these homology regions fused so as to delete the protein-coding sequence from start to stop codon.

A "standard cassette" consists of a 600-bp promoter, your protein-coding sequence, and a 250-bp terminator. The promoter, terminator and homology sequences are always the same size and can be PCR amplified from genomic DNA. CASdesigner creates primer sequences with an annealing temperature of 57°C (to the template). Except for terminal primers, these sequences also include 5' overhangs providing 30-60 bp of inter-fragment homology. These fragments can be assembled by homologous recombination inside the cell, Gibson assembly, or PCR -sewing. We've had good success transforming up to ~4 fragments into one site.

Our primer nomenclature is described in Figure 1. Generally, F is used for the forward primer, and R for the reverse. The letter is followed by the feature the primer anneals to, and then, in parentheses, the feature the overhang confers homology to. As an example, F-YFG(TDH3ps) is the forward primer annealing to YFG, and conferring homology to TDH3ps. A PCR reaction amplifying YFG with the primers F-YFG(TDH3ps) and R-YFG(ADH1ts) results in a DNA fragment with 5' homology to the TDH3 promoter, and 3' homology to the ADH1 terminator. The total melting temperature and length of overhang vary for each primer. All primers are <60 nt.

Feedback

To report bugs, inquire about collaborations, and provide any feedback, please e-mail casdesigner@lbl.gov or create a support ticket directly via github.