通信原理

第5章 模拟信号的数字化

第五章 模拟信号的数字化

模拟消息在数字通信中首先要把它数字化,变成数字消息。模拟消息数字化有三大步骤:

- ① 首先是把模拟信号<mark>抽样</mark>,用时间离散的消息样本值 表示时间连续信号;
- ② 然后对样本值进行量化,即把样本幅度值用有限数目的离散电平值近似;
- ③ 最后对这有限个量化电平值用数字<mark>编码</mark>;从而得到模拟消息的数字表示。

设
$$m(t)$$
低通模拟信号, $\delta_{T_c}(t)$ 是脉冲序列

$$\delta_{T_s}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

则
$$m_s(t) = m(t) \times \delta_{T_s}(t) = \sum_{n=-\infty}^{\infty} m(t) \delta(t - nT_s)$$
 采样信号

$$\sum_{n=-\infty}^{\infty} g(t)h(t-nT_0) \Leftrightarrow \frac{1}{T_0} \sum_{n=-\infty}^{\infty} H\left(\frac{l}{T_0}\right) G\left(f - \frac{l}{T_0}\right)$$
 (泊松公式)

$$m_s(t) \Leftrightarrow M_s(f)$$

$$M_s(f) = \frac{1}{T_s} \sum_{l=-\infty}^{\infty} M(f - \frac{l}{T_s}) = \frac{1}{T_s} \sum_{l=-\infty}^{\infty} M(f - lf_s)$$
 采样信号的Fourier变换

其中
$$f_s = \frac{1}{T_c}, \quad M(f) \Leftrightarrow m(t)$$

5/59

要使抽样序列 $m_{\scriptscriptstyle S}(t)$ 的频谱不相交迭,则要求 $f_{\scriptscriptstyle S} \geq 2f_{\scriptscriptstyle H}$,其中 $f_{\scriptscriptstyle H}$ 是低通信号 的带宽,即要求:

 $T_s \leq \frac{1}{2f_H}$

被抽样信号恢复

为了从 $m_s(t)$ 中恢复出原来信号 m(t), 只要把 $m_s(t)$ 通过截止频率为 f_H 的低通滤波器。 设低通滤波器脉冲响应为 h(t) ,传递函数为 H(f) ;

输出信号为:
$$m_s(t) \otimes h(t) = \sum_{n=-\infty}^{\infty} m(nT_s) \delta(t-nT_s) \otimes h(t)$$

$$=2f_{H}\sum_{n=-\infty}^{\infty}m(nT_{s})\cdot\operatorname{sinc}\left[2f_{H}(t-nT_{s})\right]$$

取
$$2f_H = f_s$$
, $m_s(t) \otimes h(t) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} m(nT_s) \cdot \text{sinc}[2f_H(t-nT_s)]$
= $\frac{1}{T_s} m(t)$

7/59

注意1: 曲顶抽样

设<u>采样脉冲序列</u>为 以下矩形脉冲序列:

$$s(t) = \sum_{n=-\infty}^{\infty} h(t - nT_s)$$

$$h(t) = \begin{cases} A & |t| \le \tau/2 \\ 0 & |t| \ge \tau/2 \end{cases}$$

$$H(f) = A\tau \cdot \operatorname{sinc}(f\tau)$$

采样信号
$$m_s(t) = m(t) \cdot s(t) = \sum_{n=-\infty}^{\infty} m(t) \cdot h(t - nT_s)$$

$$M_s(f) = \frac{1}{T_s} \sum_{l=-\infty}^{\infty} H(lf_s) \cdot M(f - lf_s)$$

$$= \frac{A\tau}{T_s} \sum_{l=-\infty}^{\infty} M(f - lf_s) \sin(lf_s \tau)$$

用截止频率为 $f_{\!\scriptscriptstyle H}$ 的低通滤波器,可以滤出低通信号 m(t) 。

二、带通信号的抽样

带通信号 s(t) 的频谱 S(f) 限制在 $f_L \le |f| \le f_H$ 带宽为 $B = f_H - f_L$

信号 $\mathbf{S}(t)$ 经抽样频率为 $f_{\mathbf{s}}$ 的脉冲序列抽样后,它的频谱为:

$$\frac{1}{T_s} \sum_{l=-\infty}^{\infty} S(f - lf_s)$$

11/59

要求从抽样序列中不失真的恢复出原来信号 S(t),则要求

$$\sum_{n=-\infty}^{\infty} S(f-nf_s)$$
 不相重迭。

(1) **当**
$$2f_H = 2nB$$

若选 $f_s=2B$,或 $T_s=1/2B$,则可以保证平移后的频谱不相重迭。 这时可以用通带为 $(f_L\sim f_H)$ 的带通滤波器选出这个带通信号。

(2) $rac{d}{dt} = nB + kB$, 0 < k < 1 | Figure 1

同样如果抽样频率 f_s 满足 $n\!f_s=2f_H$,则频谱搬移过程中不会发生重迭的。

$$f_s = \frac{2f_H}{n} = 2B\left(1 + \frac{k}{n}\right)$$
 $n = 1, 2, \dots$

§ 5.2 模拟值的量化

量化是一种近似,即以一定精度来表示样本值。

我们把连续样本值可能的取值区间分成M部分(M个子区间),落入某一子区间的样本值都用某一个固定的量化值(恢复值)表示。如图所示,采样值 S(kT) 的取值范围为从 $m_0=-\infty$ 到 $m_8=\infty$,把 (m_0,m_8) 分成8部分。每个子区间中取一个代表点(恢复值),比如在 $\left[m_i,m_{i+1}\right]$,区间对应的代表点为 q_{i+1} ,于是

$$\hat{s}(kT) = q_{i+1}, \quad m_i \le s(kT) < m_{i+1}$$

量化误差为: $\Delta = s(kT) - \hat{s}(kT)$

< 均方误差

量化信噪比:

$$(SNR)_{Q} = \frac{P_{s}}{P_{N_{Q}}} = \frac{E\left[s^{2}(kT)\right] \circ \left[E\left[\left(s(kT) - \hat{s}(kT)\right)^{2}\right]\right]}{E\left[\left(s(kT) - \hat{s}(kT)\right)^{2}\right]}$$

一、均匀量化

设输入信号X的取值范围为 [a,b] ,采用M电平均匀量化,量化间

隔为:
$$\Delta v = (b-a)/M$$

当 $m_{i-1} \le X < m_i$ 时,量化器输出:

$$\hat{X} = q_i$$

 $m_i = a + \Delta v \cdot i, \qquad i = 1, 2, \dots, M$ 其中

$$i = 1, 2, \cdots, M$$

$$m_0 = a, \qquad m_M = b$$

量化误差值为: $\Delta = X - \hat{X}$

$$P_{N_Q} = E\left[\left(X - \hat{X}\right)^2\right] = \int_a^b (x - \hat{x})^2 \cdot p(x) dx$$
$$= \sum_{i=1}^M \int_{m_{i-1}}^{m_i} (x - q_i)^2 p(x) dx$$

19/59

若X是 $\left[-A,A\right]$ 上均匀分布的随机变量,即

$$p(x) = \begin{cases} \frac{1}{2A} & -A \le x \le A \\ 0 & 其它 \end{cases}$$

 $\Delta v = \frac{2A}{M}$ 量化间隔:

量化恢复电平: $q_i = a + \Delta v \cdot i - \frac{\Delta v}{2} \text{ , pp } q_i = \frac{1}{2} (m_{i-1} + m_i)$ 量化噪声功率: $P_{N_Q} = \frac{(\Delta v)^2}{12} = \frac{A^2}{3M^2}$ 请问量化的码位每增加1位,量化信噪比?

量化信噪比: $(SNR)_Q = M^2 = 20 \lg M$

固定的均匀量化器的最大缺点:对小信号量化时信噪比变差。

二、最佳标量量化

对于一个随机变量的量化,称为是标量量化。如果我们知道随机变量 的概率分布,则对于给定的量化电平数,我们可以构成量化误差功率 最小的最佳量化器。

设随机变量X的概率分布为 $p_X(x)$,取值范围为 $(-\infty,\infty)$ 。N电 平量化把实数轴分为N部分 $_{1}$

$$-\infty < a_1 < a_2 < a_3 \cdots < a_{N-1} < \infty$$

相应的恢复电平为: $(\hat{x}_1, \hat{x}_2, \hat{x}_3, \dots, \hat{x}_N)$

平均量化误差功率:

$$D = \int_{-\infty}^{a_1} (x - \hat{x}_1)^2 p_X(x) dx + \sum_{i=1}^{N-2} \int_{a_i}^{a_{i+1}} (x - \hat{x}_{i+1})^2 p_X(x) dx$$
$$+ \int_{a_{N-1}}^{\infty} (x - \hat{x}_N)^2 p_X(x) dx$$

21/59

如何选定这 2N-1 个变量,使 D 最小?

$$\frac{\partial}{\partial a_i} D = p_X(a_i) \Big[(a_i - \hat{x}_i)^2 - (a_i - \hat{x}_{i+1})^2 \Big] = 0$$

$$a_i = \frac{1}{2} (\hat{x}_i + \hat{x}_{i+1})$$

 $a_i = \frac{1}{2}(\hat{x}_i + \hat{x}_{i+1})$

量化的边界点等于相邻二个量化恢复值的平均数。

确定 $\{\hat{x}_i\}$ 值,

$$\begin{split} \frac{\partial}{\partial \hat{x}_{i}} D &= \int_{a_{i-1}}^{a_{i}} 2(x - \hat{x}_{i}) p_{X}(x) dx = 0 \\ \hat{x}_{i} &= \frac{\int_{a_{i-1}}^{a_{i}} x \cdot p_{X}(x) dx}{\int_{a_{i-1}}^{a_{i}} p_{X}(x) dx} = \frac{\int_{a_{i-1}}^{a_{i}} x p_{X}(x) dx}{P\left\{a_{i-1} < X \le a_{i}\right\}} \\ &= \int_{a_{i-1}}^{a_{i}} x \cdot \frac{p_{X}(x)}{P\left\{a_{i-1} < X \le a_{i}\right\}} dx = E\left[X \middle| a_{i-1} < X \le a_{i}\right] \end{split}$$

最佳量化器的恢复值是条件均值,相当于分布质量线条的质心。

最佳标量量化器的二个必要条件,它们被称 Lloyd-Max条件:

- ① 量化区间的边界是相应二个量化恢复值的中点;
- ② 量化恢复值等于量化区间的质心位置;

最佳值不能用闭合公式表示,通常通过迭代方法逐次逼近。

[例5.2.1] 设高斯随机变量 $X \sim N(0,400)$, 即

$$P_X(x) = \frac{1}{\sqrt{800\pi}} \exp\left\{-\frac{x^2}{800}\right\} \qquad -\infty < x < \infty$$

若采用 N=8 电平均匀量化,则边界点和恢复点为:

$$a_1 = -60, a_2 = -40, a_3 = -20, a_4 = 0, a_5 = 20, a_6 = 40, a_7 = 60$$

$$\hat{x}_1 = -70, \hat{x}_2 = -50, \hat{x}_3 = -30, \hat{x}_4 = -10, \hat{x}_5 = 10, \hat{x}_6 = 30, \hat{x}_7 = 50, \hat{x}_8 = 70$$

$$D = 33.38$$

$$23/59$$

若采用 N=8 电平的最佳量化器,则边界点和恢复点为:

$$a_1 = -a_7 = -34.96, a_2 = -a_6 = -21, a_3 = -a_5 = -10.012, a_4 = 0$$

$$\hat{x}_1 = -\hat{x}_8 = -43.04, \hat{x}_2 = -\hat{x}_7 = -26.88, \hat{x}_3 = -\hat{x}_6 = -15.12, \hat{x}_4 = -\hat{x}_5 = -4.902$$

$$D = 13.816$$

四、非均匀量化

- ① 均匀量化的缺点在于对于小信号量化性能的变差;
- ② 最佳量化必须知道被量化量的概率分布,没有闭合的公式解;

语音信号:

- ① 语音信号没有合适的概率分布近似;
- ② 语音信号中小信号的概率比较大;

非均匀量化:对小信号量化间隔变细,对于大信号量化间隔放大。

量化原理: 先对输入信号 X进行非线性变换(称为非线性压缩),

$$y = f(x), \qquad x = f^{-1}(y)$$

然后对Y实行均匀量化

理想压缩特性:

当量化区间分得细时,可把每量化区间中的压缩特性曲线近似为直线,

$$\frac{\Delta y}{\Delta x} = \frac{dy}{dx} = y' \qquad \Delta x = \left(\frac{dx}{dy}\right) \cdot \Delta y$$

压缩器的输入、输出限制在0-1之间。对于Y轴是均匀量化,当0-1区间 被均匀分成N 部分时,则 $\Delta y = 1/N$,所以

$$\Delta x = \left(\frac{dx}{dy}\right) \Delta y = \frac{1}{N} \frac{dx}{dy}$$

要求当输入x 较小时 $\Delta x \propto x$

则,
$$\frac{dx}{dy} = kx$$
 \Leftrightarrow $\ln x = ky + c$ 由边界条件 $x = 1$, $y = 1$, 所以理想压缩特性 $y = 1 + \frac{1}{k} \ln x$

理想压缩特性:

$$y = 1 + \frac{1}{k} \ln x$$

理想压缩特性不满足: $x=0 \Rightarrow y=0$ 要求对理想特性作修正。

① A律压缩

$$y = \begin{cases} \frac{Ax}{1 + \ln A} & 0 < x \le \frac{1}{A} \\ \frac{1 + \ln(Ax)}{1 + \ln A} & \frac{1}{A} \le x \le 1 \end{cases}$$

其中x为归一化输入信号,y为归一化输出信号,A为压缩常数。

$$x = \frac{$$
 压缩器输入电平 $}{$ 压缩器输入的最大电平

$$y = \frac{$$
 压缩器输出电平 $}{$ 压缩器输出最大电平

从原点 o 到曲线作切线 ob,用这直线段 ob 代替原来相应的曲线段。

切点在
$$(x_1,y_1)$$
 ,在该点理想压缩曲线 $y=1+\frac{1}{k}\ln x$ 的斜率为,
$$\left.\frac{dy}{dx}\right|_{x=x_1}=\frac{1}{kx_1}$$

$$\left. \frac{dy}{dx} \right|_{x=x_1} = \frac{1}{kx_1}$$

直线 *ob* 的方程为: $y = \frac{x}{kx_1}$

在切点处的纵座标 y_1 满足, $y_1 = 1 + \frac{1}{k} \ln x_1 = \frac{1}{k}$

所以,
$$x_1 = e^{1-k} \triangleq \frac{1}{A} \implies k = 1 + \ln A$$

于是修正后的压缩特性为:

$$y = \begin{cases} \frac{Ax}{1 + \ln A} & 0 < x \le \frac{1}{A} \\ \frac{1 + \ln(Ax)}{1 + \ln A} & \frac{1}{A} \le x \le 1 \end{cases}$$

y值	0	$\frac{1}{8}$		2	$\frac{2}{8}$		$\frac{3}{8}$		$\frac{4}{3}$		<u>5</u>	$\frac{6}{8}$		$\frac{7}{8}$		1
按A律算出的x值	0	1 12	1 128		$\frac{1}{0.6}$ $\frac{1}{30}$		l).6	$\frac{1}{15}$.4	7.	1 79	$\frac{1}{3.9}$	93	$\frac{1}{1.9}$	98	1
按折线近似的 x 值	0	1 12	$\frac{1}{128}$ ${6}$		<u>-</u>	$\frac{1}{32}$		$\frac{1}{1}$	6		<u>1</u> 8	$\frac{1}{4}$		1/2	- }	t
折线段号	1	2		2	3		4	4		;	6		7			8
折线斜率	16	16		6	8		4		2			I	- 114	<u>1</u>		<u>1</u> 4

第一段和第二段折线斜率相同,是一条直线,另外考虑到在区间上A律压缩曲线是奇对称的,所以折线近似也应该是奇对称的。在第一象限中第一段和第二段折线与第三象限中第一段,第二段折线的斜率都等于16,所以这四段折线事实上是一条直线,因此总共只要用13条折线可以近似区间上的A律压缩特性。

§5.3 脉冲编码调制 (PCM) 一、PCM的基本原理--A/D变换 量化后的信号已经是时间离散、数值离散的数字信号,接下 来就要对这些数字信号进行编码。常用二进制符号表示它。 通常把模拟信号抽样、量化,直到变成二进制符号的过程称 为脉冲编号调制PCM。 **PCM** 信号 抽样 低通滤 保持 量化器 编码器 解码器 模拟 模拟 波器 电路 信号 信号 输出 输入 PCM的编码和译码原理框图 37/59

二、自然二进制码与折迭二进制码

量化值序号	量化电压极性	自然二进码	折迭二进码		
15		1111	1111		
14		1110	1110		
13		1101	1101		
12	正极性	1100	1100		
11	IE 10X IE	1011	1011		
10		1010	1010		
9		1001	1001		
8		1000	1000		
7		0111	0000		
6		0110	0001		
5		0101	0010		
4	负极性	0100	0011		
3	火饭庄	0011	0100		
2		0010	0101		
1		0001	0110		
0		0000	0111		

折迭码的一个<mark>优点</mark>是对于小电平信号(绝对值小),若发生一个 "比特"错误所产生的误差比自然码小。

39/59

A律量化的PCM用8个比特表示一个样本值。编码采用折迭码,也就是由一个比特表示极性,正负极性编码对称。

$$C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8$$

 C_1 : <mark>极性,"1"表示正极性,"0"表示负极性;</mark>

 $C_2C_3C_4$: 段落码,表示样本落到 (0,1) 中8个量化区域中哪一个;

 $C_5C_6C_7C_8$: 段内码,每一段等间隔分为16个量化间隔;

段落序号	段落码C ₂ C ₃ C ₄
8	111
7	110
6	101
5	100
4	011
3	010
2	001
1	000

量化序号	段内码C ₅ C ₆ C ₇ C ₈
15	1111
14	1110
13	1101
12	1100
11	1011
10	1010
9	1001
	1000
7	0111
6	0110
5	0101
4	0100
3	0011
2	0010
1	0001
0	0000

41/59

第一段落中的量化间隔最小,为

$$\Delta = \frac{1}{128} \cdot \frac{1}{16} = \frac{1}{2048}$$

如果用 $\Delta = 1/2048$ 作为度量单位,则各段的起始电平为:

段落序号	1	2	3	4	5	6	7	8
起始电平	0	16∆	32∆	64Δ	128Δ	256Δ	512∆	1024Δ
段内量化区间长度	Δ	Δ	2Δ	4Δ	8Δ	16∆	32∆	64∆

[例5.3.1] 设输入抽样值为 $U=+1270\Delta$,用13折线A律特性编成8位 码。这8位码分别用 $C_1C_2C_3C_4C_5C_6C_7C_8$ 表示:

- ① 确定极性码 C_1 : 因输入信号 U 是正极性的,所以 $C_1 = 1$;
- ② 确定段落码 $C_2C_3C_4$: 输入样本 U 落到第8段,所以段落码为: $C_2C_3C_4$ =111
- ③ 段内码 $C_5C_6C_7C_8$: 在第8段内,量化间隔为64 Δ ,由于 $(1024+3\times64)\Delta < U < (1024+4\times64)\Delta$

U处于第8段落中序号为3的量化间隔中,所以段内码为 $C_sC_cC_rC_s$ =0011,

整个码字为: $C_1C_2C_3C_4C_5C_6C_7C_8$ =11110011

相应恢复电平为量化区间的中间值,即 $(1024+3.5\times64)\Delta=1248\Delta$

量化误差为: $|1248\Delta - 1270\Delta| = 22\Delta$

43/59

三、PCM系统的噪声性能

假定信号样本值是取值在 (-A,A) 中的均匀分布随机变量,并采用M电平均匀量化器。PCM信号传输过程如图

$$m(t)$$
 $m(kT_s)$ $m_q(kT_s)$ 编码 信道 译码 $\hat{m}(kT_s)$

PCM接收端译码器输出可表示为:

$$\hat{m}(kT_s) = m(kT_s) + n_q(kT_s) + n_c(kT_s)$$

其中 $m(kT_s)$ 采样值,是信号分量, $n_q(kT_s)$ 是由量化误差引起的噪声, $n_c(kT_s)$ 是由信道误码引起的噪声,所以输出信噪比为,

$$\frac{P_s}{P_N} = \frac{E\left[m^2(kT_s)\right]}{E\left[n_q^2(kT_s)\right] + E\left[n_c^2(kT_s)\right]}$$
44/59

(1) 先不考虑信道误码引起的噪声:

M 电平均匀量化所引起的量化噪声功率为,

$$E\left[n_q^2(kT_s)\right] = \frac{(\Delta v)^2}{12}, \qquad \Delta v = \frac{2A}{M}$$

信号样本功率: $E\left[m^2(kT_s)\right] = \frac{(M\Delta v)^2}{12}$

输出信噪比: $\frac{P_s}{P_M} = M^2$

若采用N比特量化: $M=2^N$ 请问量化后PCM 码位增加1位,输出信噪比? $\frac{P_s}{P_N}=2^{2N_{\odot}}$

45/59

(2) 考虑信道误码引起的噪声:

假设信道的误比特率为 $P_{\!\scriptscriptstyle b}$,则一个样本的N个比特构成的码字错 误概率 $P_{e} \leq NP_{h}$ 。通常 P_{h} 很小,所以在一个码字的N个比特中错 2个或2个以上比特的概率非常小,可以近似认为每个码字如果出 错。则错误也只有一个比特构成。

若样本N个比特采用自然编码,不同位的权值是不一样的。这N位 的权值分别为 $2^0,2^1,2^2,\cdots,2^{{\scriptscriptstyle N-1}}$, 如果一个码字出了错,则均方 误差值为:

$$E\left[\Delta^{2}\right] = \frac{1}{N} \sum_{i=1}^{N} (2^{i-1} \cdot \Delta v)^{2}$$
$$= \frac{2^{2N} - 1}{3N} \cdot (\Delta v)^{2}$$
$$\approx \frac{2^{2N}}{3N} \cdot (\Delta v)^{2}$$

码字错误概率为 $P_e \approx NP_b$, 平均每隔 $T_a = T_s \, / \, P_e = T_s \, / \, NP_b$ 时间发

生一个样本码字错误。信道误码引起的噪声功率为:

$$E\left[n_c^2(kT_s)\right] = E\left[\Delta^2\right] \cdot P_e = \frac{2^{2N}}{3N} \cdot (\Delta v)^2 \cdot NP_b$$
$$= \frac{2^{2N}}{3} \cdot (\Delta v)^2 \cdot P_b$$

考虑到信道误码后, PCM的输出信噪比为

$$\frac{P_{s}}{P_{N}} = \frac{E[m^{2}(kT_{s})]}{E[n_{q}^{2}(kT_{s})] + E[n_{c}^{2}(kT_{s})]} = \frac{2^{2N}}{1 + 4P_{b} \cdot 2^{2N}}$$

在大信噪比时,信道误码较小, $4P_k \cdot 2^{2N} \ll 1$

$$\frac{P_s}{P_N} = 2^{2N}$$

信道误码较大时, $4P_b \cdot 2^{2N} \gg 1$

$$\frac{P_s}{P_N} = \frac{1}{4\frac{P_b}{P_b}}$$

☆ 大信噪比信道条件下, PCM输出噪声以量化噪声为主 ☆ 小信噪比信道条件下, PCM输出噪声以信道噪声为主

普通话音的PCM, 采样频率8k, 每个样本用8bit, 码率为64k b/s; 若3路复用,则码率为192k b/s;

49/59

§ 5.4 差分脉冲编码调制 (DPCM) 和增量调制 (ΔM)

一、差分脉冲编码调制(DPCM)原理

利用信源记忆性,用前面的样本预测后面的样本,可以改善PCM的性能。使在相同量化电平数目下,量化误差减少;或者在相同量化误差下使量化电平数M减少,从而降低码率。DPCM技术正是利用以前的样本值来预测当前样本值,然后对样本值与预测值的差值进行量化,这样可以减少量化电平数。

DPCM是一种有记忆的量化器。最佳线性预测器的预测系数 $\left\{a_i\right\}$ 可以通过使均方预测误差最小求得。

$$D = E \left[X_n - \sum_{i=1}^p a_i X_{n-i} \right]^2$$

$$= R_X(0) - 2 \sum_{i=1}^p a_i R_X(i) + \sum_{i=1}^p \sum_{j=1}^p a_i a_j R_X(i-j)$$

为了求D的极小值,可通过令偏导数等于零,

$$\frac{\partial D}{\partial a_i} = 0 \qquad i = 1, 2, \dots, p$$

$$\sum_{i=1}^{p} a_i R_X(i-j) = R_X(j) \qquad 1 \le j \le p$$

52/59

二、增量调制(AM)

增量调制(ΔM)是一种最简单的DPCM,其中量化器的量化电平数取为2,预测器是一个延时一个抽样间隔的延时器。

增量调制与解调原理方框图

信道传输无误码时, Δ M的解调输出为 \tilde{x}_{ι} 。

$$\begin{split} \hat{x}_k &= \tilde{x}_{k-1} \\ \tilde{x}_k &= y_k + \tilde{x}_{k-1} = \sum_{i=0}^k y_i \end{split}$$

实际上 \tilde{x}_k 是对 \mathcal{Y}_k 的累加,可以用积分器代替它。

53/59

增量调制的失真(噪声)分二种情况:

- ① 当采样频率较高时,阶梯波形跟得上原来信号的变化,这时的失真称为颗粒量化噪声(granular noise)。
- ② 当阶梯波形跟不上原来信号变化时,这时失真较大,称为过载量化噪声。

增量调制的噪声性能

假定输入信号为频率 f_k 的正弦信号,为了保证不产生过载量化噪声,要求正弦波最大幅度不超过,

$$A_{\text{max}} = \frac{\Delta}{2\pi} \cdot \frac{f_s}{f_k}$$

$$P_{s_o} = \frac{A_{\text{max}}^2}{2} = \frac{\Delta^2}{8\pi^2} \cdot \frac{f_s^2}{f_k^2}$$

信号功率为:

颗粒量化噪声看成是在 $(-\Delta,\Delta)$ 上均匀分布的随机变量,噪声功率为:

$$E\left[e^{2}(t)\right] = \int_{-\Delta}^{\Delta} e^{2} \cdot p(e) de = \frac{1}{2\Delta} \int_{-\Delta}^{\Delta} e^{2} de = \frac{\Delta^{2}}{3}$$

由于采样周期为 T_{s} ,可以认为颗粒量化噪声功率密度在 $(0,f_{s})$ 中均匀,

$$P_e(f) = \frac{\Delta^2}{3f_s}$$
, $0 < f < f_s$

增量调制解调后低通滤波的带宽满足:

$$f_k \le f_L \le f_s$$

低通滤波后的输出噪声功率为,

$$P_{N_o} = \frac{\Delta^2 f_L}{3f_s}$$

增量调解调后的输出信噪比为:

$$\frac{P_{S_o}}{P_{N_o}} = \frac{3}{8\pi^2} \left(\frac{f_s^3}{f_k^2 \cdot f_L} \right)$$

输出信噪比与采样频率的三次方成比例,所以对于用于语音编码的 增量调制,要求采样频率 f_s 在几十 kHz/s 以上。一般来说的增量 调制的码率比PCM低,但语音质量也不如 PCM好。现在也出现一些改进的增量调制技术,如自适应和调制等。

