Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Varianta 2

Filiera teoretică, profilul real, specializarea matematică - informatică.

Filiera vocațională, profilul militar, specializarea matematică - informatică.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I		de puncte)
1.	$b_3 = b_1 q^2$, $b_4 = b_1 q^3$	2 p
	$24 = 6q^2$	2p
	q = 2	1p
2.	$1-a^2=0$	3p
	a=1 sau $a=-1$	2 p
3.	$\left(\frac{2}{3}\right)^x = \left(\frac{3}{2}\right)^{-x}$	1p
	Deoarece $\frac{3}{2} > 1$, inecuația devine $x < -x$	2 p
	$S = (-\infty, 0)$	2p
4.	$T_{k+1} = C_{10}^k \sqrt{2}^k, \ k \in \{0,1,\dots,10\}$	2p
	$T_{k+1} \in \mathbb{Q} \iff k$ par	2p 1p
	Sunt 6 termeni raționali	
5.	BC: x + y - 1 = 0	2 p
	Distanța este $\frac{ 2+2-1 }{\sqrt{2}} = \frac{3}{\sqrt{2}}$	3р
6.	$\cos 60^{\circ} = \frac{1}{2}$	2p
	$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \cdot AC \cdot \cos A =$	2p
	=10	1p

SUBIECTUL al II-lea (30		ncte)
1.a)	$ \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} $	4p
	$ (0 \ 0)(0 \ 0) (0 \ 0) $ $ Aşadar \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \in H $	1p
b)	$(A^n)^2 = A^{2n} = (A^2)^n =$	2p
	$(A^n)^2 = A^{2n} = (A^2)^n =$ = A^n , deci $A^n \in H$	3p
c)	Matricele $\begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix}$ aparțin lui H pentru orice $x \in \mathbb{R}$	4p
	Finalizare	1p
2.a)	Restul împărțirii polinomului f la $X-i$ este $f(i)$	2p
	$f(i) = (2i)^{10} = -2^{10}$	3p

Probă scrisă la Matematică

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea matematică - informatică.

Filiera vocațională, profilul militar, specializarea matematică - informatică.

b)	$f = \sum_{k=0}^{10} \left(C_{10}^{k} X^{10-k} i^{k} + C_{10}^{k} X^{10-k} (-i)^{k} \right) = \sum_{k=0}^{10} C_{10}^{k} X^{10-k} i^{k} \left(1 + (-1)^{k} \right)$	2p
	$\begin{vmatrix} k=0 \\ a_{2p+1} = 0 \in \mathbb{R} \text{, pentru orice } p \in \{0,1,2,3,4\} \end{vmatrix}$	1p
	$a_{2p} = C_{10}^{2p} i^{2p} \left(1 + (-1)^{2p} \right) = 2C_{10}^{2p} \cdot \left(-1 \right)^p \in \mathbb{R}, \text{ pentru orice } p \in \{0, 1, 2, 3, 4, 5\}$	2p
c)	Dacă z este rădăcină, atunci $(z+i)^{10} = -(z-i)^{10}$, deci $ z+i = z-i $	3p
	Punctul de afix z este egal depărtat de punctele de afixe $\pm i$, deci aparține axei reale	2p

SUBII	SUBIECTUL al III-lea (30 de pu		
1.a)	$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2)$	2p	
	$f'(x) = 5x^4 - 5$	2p	
	f'(2) = 75	1p	
b)	$f''(x) = 20x^3$ se anulează în 0	3p	
	Deoarece f " are semne opuse de o parte și de cealaltă a lui 0 , rezultă că 0 este punct de inflexiune	2p	
c)	$f'(x) = 0 \Rightarrow x^4 - 1 = 0 \Rightarrow x = \pm 1$	1p	
	Tabelul de variație a funcției f Finalizare	2p 2p	
2.a)	$\int_{0}^{1} g(x) dx = \int_{0}^{1} e^{-x} dx = -e^{-x} \Big _{0}^{1} =$	3p	
	$=\frac{e-1}{e}$	2p	
b)	Cu schimbarea de variabilă $x^3 = t$ se obține $\frac{1}{3} \int_0^1 t \cdot e^{-t} dt =$	2p	
	$= -\frac{1}{3}te^{-t}\Big _0^1 + \frac{1}{3}\int_0^1 e^{-t}dt = \frac{e-2}{3e}$	3 p	
c)	$I_{n+1} - I_n = \int_n^{n+1} g(x^3) dx = \int_n^{n+1} e^{-x^3} dx \ge 0$, $\forall n \in \mathbb{N}^*$, deci şirul este crescător	2p	
	$0 \le I_n \le \int_1^n e^{-x} dx = \frac{1}{e} - \frac{1}{e^n} < \frac{1}{e}, \ \forall n \in \mathbb{N}^*, \text{ deci sirul este mărginit}$	2p	
	Deoarece șirul este monoton și mărginit, el este convergent	1p	

Probă scrisă la Matematică

Barem de evaluare și de notare

Varianta 2