AI Planning Exercise Sheet 7

AI Planning Exercise Sheet 7

Date: December 11, 2014

Students: Axel Perschmann, Tarek Saier

Exercise 7.1

(a) $\Pi' = \{V, I, O, \gamma\}$ with

- $V = \{above-a, above-b, above-c, below-a, below-b, below-c\}$ $\mathcal{D}_{above-\Upsilon} = \{A, B, C, n\} \setminus \{\Upsilon\}$ $\mathcal{D}_{below-\Upsilon} = \{A, B, C, t\} \setminus \{\Upsilon\}$ where $\Upsilon \in \{A, B, C\}$
- I(a) = 1 for $a \in \{below b = t, above b = A, above a = n, below c = t, above c = n\}$ I(a) = 0 else
- $\begin{array}{l} \bullet \ O = \{move-X-Y-Z, move-X-Table-Z, move-X-Y-Table\} \\ move-X-Y-Z = \langle (below-X=Y) \land (above-X=n) \land (above-Z=n), \\ (above-Y:=n) \land (below-X:=Z) \rangle \\ move-X-Table-Z = \langle (below-X=t) \land (above-X=n) \land (above-Z=n), \\ (below-X:=Z) \rangle \\ move-X-Y-Table = \langle (below-X=Y) \land (above-X=n), \\ (above-Y:=n) \land (below-X:=t) \rangle \\ \text{for pair-wise distinct } X,Y,Z \in \{A,B,C\} \end{array}$
- $\bullet \ \ \gamma = (above{-}c = B) \wedge (above{-}a = C)$

And the addition¹ that every $above|below[:]=\Upsilon$ with $\Upsilon \in \{A, B, C\}$ implies its counterpart (e.g. above-A[:]=B also tests/sets below-B[:]=A).

(b)
$$\Pi'' = \Pi$$

(c)

¹to make this a bit less verbose and better readable

AI Planning Exercise Sheet 7

Exercise 7.2

(a) Since both h_1 and h_2 include the blank tile, $h_1 + h_2$ is not admissible. Proof by counterexample:

$$n = 1, m = 2$$

$$t_0 \quad t_1 \quad t_2 \quad t_3 \qquad t_0 \quad - \quad - \qquad - \quad t_1 \quad t_2 \quad t_3$$

$$s = \begin{cases} t_4 \quad t_5 \quad t_6 \quad t_7 \\ t_8 \quad t_9 \quad t_{10} \quad t_{11} \end{cases} \quad \alpha_2\text{-view} : \begin{cases} - \quad - \quad - \quad - \quad \alpha_1\text{-view} : \begin{cases} t_4 \quad t_5 \quad t_6 \quad t_7 \\ t_8 \quad t_9 \quad t_{10} \quad t_{11} \end{cases}$$

$$t_{12} \quad t_{13} \quad b \quad t_{14} \qquad - \quad - \quad b \quad - \qquad t_{12} \quad t_{13} \quad b \quad t_{14}$$

$$h^*(s) = 1$$

$$h_1(s) + h_2(s) = 1 + 1 = 2$$

2 > 1, therefore $h_1 + h_2$ is not admissible.

(b) Basic approach: since for all tiles t_i it holds that $t_i \in h_3$ iff $t_i \notin h_4$ and vice verca and both h_3 and h_4 do not include the blank tile, $h_3 + h_4$ is admissible.