INF721 Final Project - Emulating MiniLM:Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers

Olavo Barros
Departamento de Informatica
Universidade Federal de Viçosa
Viçosa, Brazil
olavo.barros@ufv.br

Summary:

- Knowledge distillation
- BERT
- Implementation
 - Self-Attention Distribution Transfer
 - Self-Attention Value-Relation Transfer
- Experimental Setup
- Results and Discussion

Knowledge distillation

BERT

- 1. Input Embeddings (Token, Segment, and Positional Embeddings)
- 2. Multi-Head Self-Attention Mechanism
- 3. Feedforward Neural Networks and Layer Normalization
- 4. Transformer Encoder Layers (Stacked Architecture)
- **5. Output Representations for Tokens and Sequences**

https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/bert-encoder

Universidade Federal de Viçosa

Implementation

MINILM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers

Wang, Wenhui, et al. "Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained transformers." Advances in Neural Information Processing Systems 33 (2020): 5776-5788.

Implementation

$$\mathcal{L} = (\mathcal{L}_{AT} + \mathcal{L}_{VR}) + \mathcal{L}_{OUT}$$

The training loss is computed by summing the attention distribution transfer loss and value-relation transfer loss

Introducing the relation between values enables the student to deeply mimic the teacher's self-attention behavior.

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \log \left(\frac{P(i)}{Q(i)} \right)$$

Self-Attention Distribution Transfer

$$\mathcal{L}_{AT} = \frac{1}{A_h|x|} \sum_{a=1}^{A_h} \sum_{t=1}^{|x|} D_{KL} \left(\mathbb{A}_{L,a,t}^T \parallel \mathbb{A}_{M,M,a,t}^S \right)$$

- 1. |x|: Represents the **sequence length**, i.e., the number of tokens in the input sequence.
- 2. **Ah**: Represents the **number of attention heads** in the attention mechanism of the model.
- 3. L and M: Represent the **number of layers** in the teacher and student models, respectively.
- 4. A: Represents the attention distribution of the last Transformer layer in the teacher model and student model.

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \log \left(\frac{P(i)}{Q(i)}\right)$$

Self-Attention Value-Relation Transfer

$$\mathcal{L}_{VR} = \frac{1}{A_h|x|} \sum_{a=1}^{A_h} \sum_{t=1}^{|x|} D_{KL} \left(V R_{L,a,t}^T \parallel V R_{M,a,t}^S \right)$$

The value relation is computed via the multi-head scaled dot-product between values. The KL-divergence between the value relation of the teacher and student is used as the training objective

$$VR_{L,a}^{T} = \operatorname{softmax}\left(\frac{V_{L,a}^{T}(V_{L,a}^{T})^{T}}{\sqrt{d_{k}}}\right)$$

$$VR_{M,a}^S = \operatorname{softmax}\left(\frac{V_{M,a}^S(V_{M,a}^S)^T}{\sqrt{d_k'}}\right)$$

Experimental Setup

Model:

Description	Teacher	Student			
Teacher Model Architecture	BERTBASE (Devlin et al., 2018)	My implementation			
Model Type	12-layer Transformer	6-layer Transformer			
Hidden Size	768	768			
Attention Heads	12	12			
Total Parameters	109M	65M			

Experimental Setup

Hyperparameters:

Description	MiniLM	My Implementation				
Vocabulary Size	30,522	30,522				
Maximum Sequence Length	512	128				
Adam Hyperparameters	β1=0.9, β2=0.999	β1=0.9, β2=0.999				
Batch Size (Student)	1024 (for 6-layer student model)	32				
Learning Rate (Student)	5e-4 (peak learning rate)	5e-4 (peak learning rate)				
Training Steps (Student)	400,000	210,500				
Linear Warmup Steps	4,000	2,000				
Dropout Rate	0.1	0.1				

Universidade Federal de Viçosa

Experimental Setup

Dataset SST-2:

- **Dataset Overview**: SST-2 is a sentiment analysis dataset for binary classification (positive or negative sentiment).
- 2. Text Data: Contains movie reviews labeled as positive (1) or negative (0).
- 3. Number of Samples: 67,349 samples—53,142 for training, 1,872 for validation, 1,821 for testing.
- 4. **Labels**: Two sentiment labels: "positive" (1) and "negative" (0).
- 5. **Input Length**: Sentences with varying lengths, typically capped at 128 or 512 tokens.

BERT-Base checkpoint (PyTorch, AMP, SST-2, seqLen128)

nerdy folks

phenomenal fantasy best sellers

Socher, Richard, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." Proceedings of the 2013 conference on empirical methods in natural language processing. 2013.

Results and Discussion

Uses the first 1000 samples of the dataset;

• Uses the transforms' implementation for the student;

 Uses the original loss function proposed in the paper.

Results and Discussion

Uses the full dataset;

Uses my implementation for the student;

 Uses the original loss function proposed in the paper.

Results and Discussion

$$\mathcal{L} = (\mathcal{L}_{AT} + \mathcal{L}_{VR}) + \mathcal{L}_{OUT}$$

Conclusion

Model	#Param	SQuAD2	MNLI-m	SST-2	QNLI	CoLA	RTE	MRPC	QQP	Average
$BERT_{BASE}$	109M	76.8	84.5	93.2	91.7	58.9	68.6	87.3	91.3	81.5
DistillBERT	66M	70.7	79.0	90.7	85.3	43.6	59.9	87.5	84.9	75.2
TinyBERT	66M	73.1	83.5	91.6	90.5	42.8	72.2	88.4	90.6	79.1
MINILM	66M	76.4	84.0	92.0	91.0	49.2	71.5	88.4	91.0	80.4

Wang, Wenhui, et al. "Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained transformers." Advances in Neural Information Processing Systems 33 (2020): 5776-5788.

https://github.com/Olavo-B/Emulating-MiniLM.git

olavo.barros@ufv.br

