Analysis I

Theorems and Corollaries

Lectured by Prof Timothy Gowers

Lent 2014

1 Sequences and convergence

Theorem. An ordered field with the least upper bound property has the monotone sequences property.

Theorem. An ordered field with the monotone sequences property has the least upper bound property.

Theorem (The nestled-intervals property). Let $[a_n, b_n], n \in \mathbb{N}$ be non-empty, closed intervals with $[a_1, b_1] \subset [a_2, b_2] \subset [a_3, b_3] \subset \dots$ Then $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$.

Theorem (Bolzano-Weierstrauss Theorem). Every bounded sequence of reals has a convergent subsequence.

Theorem (General principle of convergence). Let F be an ordered field with the monotone sequences property. Then every Cauchy sequence in F converges.

Theorem. Every ordered field F that satisfies the general principal of convergence and has the Archimedean property has the monotone sequences property.

2 Infinite series

Theorem (The comparison test). Let $0 \le a_n \le b_n$ for every n. If $\sum b_n < \infty$ then $\sum a_n < \infty$.

Theorem (The generalised comparison test). Let $a_n \geq 0, b_n \geq 0$ for every n and suppose that there are C, M such that $a_n \leq Cb_n$ for every $n \geq M$. Then if $\sum b_n < \infty$, then $\sum a_n < \infty$.

Theorem (The ratio test). Let $a_n \geq 0$ for every n, and suppose that there is some ρ with $0 < \rho < 1$ and some n such that $\forall n \geq N$ $a_{n+1} \leq \rho a_n$. Then $\sum a_n < \infty$.

Corollary. Let $a_n \geq 0$ for every n and suppose there is some ρ with $O < \rho < 1$ such that $\frac{a_{n+1}}{a_n} \to \rho$ as $n \to \infty$. Then $\sum a_n < \infty$.

Theorem (The alternating series test). Let (a_n) be a sequence with $0 \le a_n$ for every n and suppose that (a_n) is decreasing and tends to 0. Then $\sum (-1)^{n+1}a_n$ converges.

Theorem. If a series converges absolutely, then it converges.

Theorem. If a series converges absolutely, then it converges unconditionally.

Theorem. If a series converges unconditionally, then it converges absolutely.

Theorem (General principal of convergence in \mathbb{C}). Cauchy sequences in \mathbb{C} converge.

Theorem (Complex version of alternating series test). Let (a_n) be a real sequence with $a_1 \geq a_2 \geq \ldots$ and $a_n \to 0$. Let $z \in \mathbb{C}$ be a number such that $|Z| = 1, z \neq 1$. Then $\sum a_n z^n$ converges.

3 Continuous functions

Theorem. Let $A \subset \mathbb{R}$, let $f: A \to \mathbb{R}$ and let $x \in A$. Suppose that f is continuous at x. Let (a_n) be a sequence in A and suppose that $a_n \to x$. Then $f(a_n) \to f(x)$.

Theorem. Let $A \subset \mathbb{R}$ and let $f: A \to \mathbb{R}$. Let $x \in A$. Suppose that for every sequence (a_n) in A with $a_n \to x$ we have $f(a_n) \to f(x)$. Then f is continuous at x.

Theorem. A composition of continuous functions is continuous. More precisely, let $A, B \in \mathbb{R}$ and let $f: A \to B$ and $g: B \to \mathbb{R}$. Suppose that $x \in A$, f is continuous at x, and g is continuous at f(x). Then $g \circ f$ is continuous at x.

Theorem (Continuous induction principle). For each $x \in [a, b]$ let P(x) be a statement about x. Suppose that the following conditions hold:

- (i) P(a) holds
- (ii) For every x, if P(x) holds, then there exists $\epsilon > 0$ such that P(u) holds for every $u \in [x, x + \epsilon)$.
- (iii) For every x, if P(x) does not hold, then there exists $\epsilon > 0$ such that for every $u \in (x \epsilon, x]$ P(u) does not hold.

Then $\forall x \in [a, b] \ P(x)$ holds.

Theorem (The intermediate value theorem). Let a < b be real numbers and let $f : [a,b] \to \mathbb{R}$ be a continuous function such that f(a) < 0 and f(b) > 0. Then there exists $c \in (a,b)$ such that f(c) = 0.

Corollary. Let a < b, c < d and let $f : [a, b] \to [c, d]$ be an injection such that f(a) = c and f(b) = d. Suppose also that f is continuous. Then f is a strictly increasing bijection and its inverse is continuous.

Theorem. Let a < b and let $f : [a,b] \to \mathbb{R}$ be continuous. Then f is bounded and attains its bounds.

4 Differentiation

Theorem (Rolle's theorem). Let a < b and let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Suppose that f(a) = f(b). Then there exists $x \in (a, b)$ such that f'(x) = 0.

Theorem (The mean value theorem). Let a < b, let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists $x \in (a, b)$ such that $f'(x) = \frac{f(b) - f(a)}{b - a}$.

Theorem. Let a < b and let $f : [a, b] \to [c, d]$ be a function that is continuous on [a, b] and differentiable on (a, b). Suppose also that f'(x) > 0 for every $x \in (a, b)$. Then f has an inverse $g : [c, d] \to [a, b]$, and g is continuous on [c, d], differentiable on (a, b) and $g'(y) = \frac{1}{f'(g(y))}$ for every $y \in (c, d)$. (We are also assuming that f(a) = c, f(b) = d.)

Theorem (One-dimensional inverse function theorem). Let $f : [a, b] \to \mathbb{R}$ be a function that is continuously differentiable on (a, b) (and continuous on [a, b]). Let $x \in (a, b)$ and suppose that $f'(x) \neq 0$. Then there is an interval $[x - \epsilon, x + \epsilon]$ on which f is invertible with continuously differentiable inverse.

Theorem (Higher-order Rolle's theorem). Let $x \in \mathbb{R}$, let h > 0 and let f be a function that is n-times differentiable on an open interval that contains [x, x + h]. Suppose that

$$f(x) = f'(x) = f''(x) = \dots = f^{(n-1)}(x) = f(x+h) = 0$$

Then there exists $\theta \in (0,1)$ such that $f^{(n)}(x+\theta h)=0$.

Corollary (Higher-order mean value theorem). Let f be n-times differentiable on an open interval containing [x, x + h]. Let p be a polynomial of degree $\leq n$ such that $p^{(k)}(x) = f^{(k)}(x)$ for $k = 0, 1, \ldots, n-1$ and p(x+h) = f(x+h). Then there exists $\theta \in (0,1)$ such that $f^{(n)}(x+\theta h) = p^{(n)}(x+\theta h)$.

Theorem (Taylor's Theorem). Let f be n-times differentiable on an open interval containing [x, x + h]. Then there exists $\theta \in (0, 1)$ such that

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(x) + \frac{h^n}{n!}f^{(n)}(x+\theta h)$$

5 Power series

Theorem. Let $\sum_{r=0}^{\infty} u_r$ and $\sum_{s=0}^{\infty} v_s$ be two absolutely convergent series, and let (w_n) be the convolution of (u_r) and (v_s) . Then $\sum_{n=0}^{\infty} w_n = (\sum_{r=0}^{\infty} u_r) (\sum_{s=0}^{\infty} v_s)$.

Corollary. Let $(a_r), (b_s)$ be sequences and let (c_n) be their convolution. Let z be within the radii of convergence of $\sum_{r=0}^{\infty} a_r z^r$ and $\sum_{s=0}^{\infty} b_s z^s$. Then

$$\left(\sum_{r=0}^{\infty} a_r z^r\right) \left(\sum_{s=0}^{\infty} b_s z^s\right) = \sum_{n=0}^{\infty} c_n z^n$$

Theorem. Let $\sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R and let |z| < R. Then $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is differentiable at z with derivative $g(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$.

6 Riemann integration

Theorem. Let $f:[a,b]\to\mathbb{R}$ be a monotone function. Then f is integrable.

Theorem. Let a < b. Then every continuous function $f:[a,b] \to \mathbb{R}$ is uniformly continuous.

Theorem. Let a < b and let $f : [a, b] \to \mathbb{R}$ be continuous. Then f is integrable on [a, b].

Theorem. Let a < b and let $f : [a, b] \to \mathbb{R}$ be bounded, and continuous except at finitely many points. Then f is Riemann integrable.

Theorem (Fundamental Theorem of Calculus - i). Let a < b and let $f : [a, b] \to \mathbb{R}$ be continuous. Let $F(x) = \int_a^x f(t) dt$. Then F is differentiable and F'(x) = f(x).

Theorem (Fundamental Theorem of Calculus - ii). Let $f:[a,b] \to \mathbb{R}$ be integrable and suppose that $F:[a,b] \to \mathbb{R}$ is such that F'(x) = f(x). Then $\int_a^b f(t) dt = F(b) - F(a)$.

Theorem (Integration by parts). Let a < b and let $f, g : [a, b] \to \mathbb{R}$ be continuously differentiable. Then $\int_a^b f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x) dx$.

Theorem (Taylor's Theorem with the integral form of the remainder). Let f be n-times continuously differentiable on [x, x + h]. Then

$$f(x+h) = f(x) + hf'(x) + \ldots + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(x) + \int_{x}^{x+h} \frac{f^{(n)}(t)(x+h-t)^{n-1}}{(n-1)!} dt$$

Theorem. Let a < b, c < d and let $\theta : [c,d] \to [a,b]$ be a continuously differentiable function with $\theta(c) = a$, $\theta(d) = b$. Let $f : [a,b] \to \mathbb{R}$ be continuous. Then $\int_a^b f(t) dt = \int_c^d f(\theta(s))\theta'(s) ds$.

Theorem (The integral test). Let $f:[1,\infty)\to\mathbb{R}$ be a decreasing function taking nonnegative values. Then for every $N\in\mathbb{R}$,

$$\sum_{n=2}^{N} f(n) \le \int_{1}^{N} f(x) \, \mathrm{d}x \le \sum_{n=1}^{N-1} f(n)$$

In particular, $\sum_{n=1}^{\infty} f(n) < \infty$ if and only if $\int_{1}^{\infty} f(x) dx < \infty$.

7 Odds and Ends

Theorem (Binomial Expansion). Let x be a real number with |x| < 1. Then

$$(1+x)^a = 1 + ax + \binom{a}{2}x^2 + \binom{a}{3}x^3 + \dots$$

where $\binom{a}{b}$ is defined to be $\frac{a(a-1)(a-2)...(a-k+1)}{k!}$.

Theorem (Heine-Borel theorem). Let \mathcal{U} be a collection of open intervals that covers a closed interval [a, b]. Then \mathcal{U} has a finite subcover.

Corollary. A continuous function $f:[a,b]\to\mathbb{R}$ is bounded.