# Análise Exploratória

## KMeans

Delermando Branquinho Filho

### Matrix data

```
set.seed(12345); par(mar=rep(0.2,4))
dataMatrix <- matrix(rnorm(400),nrow=40)
dim(dataMatrix)</pre>
```

## [1] 40 10

image(1:10,1:40,t(dataMatrix)[,nrow(dataMatrix):1])



## Cluster the data

```
par(mar=rep(0.2,4))
heatmap(dataMatrix)
```



## E se nós adicionarmos um padrão?

```
set.seed(678910)
for(i in 1:40){
    # flip a coin
    coinFlip <- rbinom(1,size=1,prob=0.5)
    # if coin is heads add a common pattern to that row
    if(coinFlip){
        dataMatrix[i,] <- dataMatrix[i,] + rep(c(0,3),each=5)
    }
}</pre>
```

## E se nós adicionarmos um padrão? - os dados

```
par(mar=rep(0.2,4))
image(1:10,1:40,t(dataMatrix)[,nrow(dataMatrix):1])
```



# What if we add a pattern? - Os dados agrupados

```
par(mar=rep(0.2,4))
heatmap(dataMatrix)
```



### Padrões em linhas e colunas

```
hh <- hclust(dist(dataMatrix));
dataMatrixOrdered <- dataMatrix[hh$order,]
par(mfrow=c(1,3))
image(t(dataMatrixOrdered)[,nrow(dataMatrixOrdered):1])
plot(rowMeans(dataMatrixOrdered),40:1,xlab="Row Mean",ylab="Row",pch=19)
plot(colMeans(dataMatrixOrdered),xlab="Column",ylab="Column Mean",pch=19)</pre>
```



## Soluções relacionadas - PCA / SVD

#### SVD

Se X é uma matriz com cada variável em uma coluna e cada observação em uma linha, em seguida, o SVD (Singular value decomposição) é uma "decomposição da matriz". Formalmente, a decomposição em valores singulares de uma matriz  $m \times n$  real ou complexa M é uma fatoração ou fatorização na forma:

$$X = UDV^T$$

Onde as colunas de U são ortogonais (vetores singulares esquerdos), as colunas de V são ortogonais (vetores singulares diretos) e D é uma matriz diagonal (valores singulares).

#### PCA

The principal components are equal to the right singular values if you first scale (subtract the mean, divide by the standard deviation) the variables.

## Components of the SVD - u and v

```
svd1 <- svd(scale(dataMatrixOrdered))
par(mfrow=c(1,3))
image(t(dataMatrixOrdered)[,nrow(dataMatrixOrdered):1])
plot(svd1$u[,1],40:1,xlab="Row",ylab="First left singular vector",pch=19)
plot(svd1$v[,1],xlab="Column",ylab="First right singular vector",pch=19)</pre>
```



## Componentes da SVD - Variância explicada

```
par(mfrow=c(1,2))
plot(svd1$d,xlab="Column",ylab="Singular value",pch=19)
plot(svd1$d^2/sum(svd1$d^2),xlab="Column",ylab="Prop. of variance explained",pch=19)
```



### Relação com os componentes principais

```
svd1 <- svd(scale(dataMatrixOrdered))
pca1 <- prcomp(dataMatrixOrdered,scale=TRUE)
plot(pca1$rotation[,1],svd1$v[,1],pch=19,xlab="Principal Component 1",ylab="Right Singular Vector 1")
abline(c(0,1))</pre>
```



```
constantMatrix <- dataMatrixOrdered*0
for(i in 1:dim(dataMatrixOrdered)[1]){constantMatrix[i,] <- rep(c(0,1),each=5)}
svd1 <- svd(constantMatrix)
par(mfrow=c(1,3))
image(t(constantMatrix)[,nrow(constantMatrix):1])
plot(svd1$d,xlab="Column",ylab="Singular value",pch=19)
plot(svd1$d^2/sum(svd1$d^2),xlab="Column",ylab="Prop. of variance explained",pch=19)</pre>
```



## E se acrescentarmos um segundo padrão?

```
set.seed(678910)
for(i in 1:40){
    # flip a coin
    coinFlip1 <- rbinom(1,size=1,prob=0.5)
    coinFlip2 <- rbinom(1,size=1,prob=0.5)
    # if coin is heads add a common pattern to that row
    if(coinFlip1){
        dataMatrix[i,] <- dataMatrix[i,] + rep(c(0,5),each=5)
    }
    if(coinFlip2){
        dataMatrix[i,] <- dataMatrix[i,] + rep(c(0,5),5)
    }
}
hh <- hclust(dist(dataMatrix)); dataMatrixOrdered <- dataMatrix[hh$order,]</pre>
```

#### Decomposição do valor singular - padrões verdadeiros

```
svd2 <- svd(scale(dataMatrixOrdered))
par(mfrow=c(1,3))
image(t(dataMatrixOrdered)[,nrow(dataMatrixOrdered):1])
plot(rep(c(0,1),each=5),pch=19,xlab="Column",ylab="Pattern 1")
plot(rep(c(0,1),5),pch=19,xlab="Column",ylab="Pattern 2")</pre>
```



#### v e padrões de variação em linhas

```
svd2 <- svd(scale(dataMatrixOrdered))
par(mfrow=c(1,3))</pre>
```

```
image(t(dataMatrixOrdered)[,nrow(dataMatrixOrdered):1])
plot(svd2$v[,1],pch=19,xlab="Column",ylab="First right singular vector")
plot(svd2$v[,2],pch=19,xlab="Column",ylab="Second right singular vector")
```



## d e variação explicada

```
svd1 <- svd(scale(dataMatrixOrdered))
par(mfrow=c(1,2))
plot(svd1$d,xlab="Column",ylab="Singular value",pch=19)
plot(svd1$d^2/sum(svd1$d^2),xlab="Column",ylab="Percent of variance explained",pch=19)</pre>
```



## Missing values

```
dataMatrix2 <- dataMatrixOrdered
## Inserir aleatoriamente alguns dados em falta
dataMatrix2[sample(1:100,size=40,replace=FALSE)] <- NA
svd1 <- svd(scale(dataMatrix2)) ## Não funciona!</pre>
```

 $\hbox{\tt \#\# Error in svd(scale(dataMatrix2)): infinite or missing values in $\tt 'x'$}$ 

## Exemplo de rosto

```
load("data/face.rda")
image(t(faceData)[,nrow(faceData):1])
```



## Exemplo de face - variação explicada

```
svd1 <- svd(scale(faceData))
plot(svd1$d^2/sum(svd1$d^2),pch=19,xlab="Singular vector",ylab="Variance explained")</pre>
```



## Exemplo de rosto - criar aproximações

```
## Note que %*% é a multiplicação matricial
# Aqui svd1$d[1] é uma constante
approx1 <- svd1$u[,1] %*% t(svd1$v[,1]) * svd1$d[1]

# Nestes exemplos, precisamos fazer a matriz diagonal fora de d
approx5 <- svd1$u[,1:5] %*% diag(svd1$d[1:5])%*% t(svd1$v[,1:5])
approx10 <- svd1$u[,1:10] %*% diag(svd1$d[1:10])%*% t(svd1$v[,1:10])</pre>
```

# Exemplo de rosto - criar aproximações - Plot

```
par(mfrow=c(1,4))
image(t(approx1)[,nrow(approx1):1], main = "(a)")
image(t(approx5)[,nrow(approx5):1], main = "(b)")
image(t(approx10)[,nrow(approx10):1], main = "(c)")
image(t(faceData)[,nrow(faceData):1], main = "(d)") ## Original data
```

