逆。因此, $q = I_B \circ q = f^{-1} \circ f \circ q$ 。 因为 f^{-1} 和 $f \circ q$ 都是满射的,由教材定理 3.4(1) 得, $q = f^{-1} \circ f \circ q$ 也是满射的。 3.21 先证一个引理。 引理 3.3 对任意函数 $f, g \in A \to B$, f = g 当且仅当 $\forall x (x \in A \to f(x) = g(x))$ 。 证明: 先证必要性。 若 f = q, 则: $\forall x$ $x \in A$ $\iff \exists y (\langle x, y \rangle \in f)$ $(f \in A \to B)$ (∃消去) $\implies \langle x, a \rangle \in f$ $\iff f(x) = a$ (f(x) 定义) $\iff f(x) = a \land f(x) = a$ (命题逻辑幂等律) $\iff f(x) = a \land \langle x, a \rangle \in f$ (*f*(*x*) 定义) $\iff f(x) = a \land \langle x, a \rangle \in g$ (f = g) $\iff f(x) = a \land g(x) = a$ (g(x) 定义)(等号传递性) $\iff f(x) = g(x)$ 于是有: $f = q \Rightarrow \forall x (x \in A \rightarrow f(x) = q(x))$ 。 再证充分性。 若 $\forall x (x \in A \rightarrow f(x) = g(x))$,则: $\forall x, y$ $\langle x, y \rangle \in f$ $\iff f(x) = y$ (f(x) 定义)

$$\iff g(x) = y \tag{f(x) = g(x)}$$

丁定有: $\forall x(x \in A \to f(x) = g(x)) \to f =$ 综合即得原题。

再证原题。

证明: 先证: $f \circ h_1 = g \circ h_1$.

由教材定理 3.3 知, $dom(f \circ h_1) = dom(g \circ h_1) = dom h_1 = A$ 。

由引理 3.3 知, 欲证: $f \circ h_1 = g \circ h_1$, 只需证: $\forall x (x \in A \to f \circ h_1(x) = g \circ h_1(x))$ 。

由 A 定义知,对于任意 $x \in A$,有 $x \in X \land f(x) = g(x)$ 。于是:

 $\forall x \in A$.

$$f \circ h_1(x) = f(h_1(x))$$
 (教材定理 3.3)
 $= f(x)$ ($h_1(x) = x$)
 $= g(x)$ ($f(x) = g(x)$)
 $= g(h_1(x))$ ($h_1(x) = x$)
 $= g \circ h_1(x)$ (教材定理 3.3)

从而证得原题。

下面证: $B \subseteq A$ 。