Introduction to Network Analysis

Soda 496

Why Networks?

- Network are one of the only ways we have to measure relationships.
 - People
 - Groups
 - Geographies
 - Things
 - Concepts
- Relationships are a critical part of almost all social behavior.

Why Networks?

- Network are one of the only ways we have to measure relationships.
 - People
 - Groups
 - Geographies
 - Things
 - Concepts
- Relationships are a critical part of almost all social behavior.
 - Politics

Senators casting the same votes

Democrat

Republican

101st Congress, 1989 session

Why Networks?

- Network are one of the only ways we have to measure relationships.
 - People
 - Groups
 - Geographies
 - Things
 - Concepts
- Relationships are a critical part of almost all social behavior.
 - Politics
 - Sports
 - Infectious disease
 - Business and Trade
 - War
 - Information and beliefs

Senators casting the same votes

Democrat

Republican

101st Congress, 1989 session

Sources: GovTrack.us, Renzo Lucioni

Independent

Basic Concepts

Nodes (vertices)

- Represent an entity in the network
- Can contain entity level features or meta data

Nodes (vertices)

- Represent an entity in the network
- Can contain entity level features or meta data

Edges (link, relation)

- Represent a relationship between nodes
- Characteristics:
 - Weight
 - Direction
 - Qualitative attributes
- One of the most common distinctions is between directed and undirected graphs

Edges (link, relation)

- Represent a relationship between nodes
- Characteristics:
 - Weight
 - Direction
 - Qualitative attributes
- One of the most common distinctions is between directed and undirected graphs

Edges (link, relation)

- Represent a relationship between nodes
- Characteristics:
 - Weight
 - Direction
 - Qualitative attributes
- One of the most common distinctions is between directed and undirected graphs

- Networks are usually stored in one of three ways:
 - Edge list

source	target		
Α	В		
Α	В		
Α	С		
Α	D		
Α	F		
F	Α		
В	Ε		

- · Networks are usually stored in one of three ways:
 - Edge list
 - Adjacency matrix

	Α	В	С	D	Е
Α	1	0	1	1	2
В	0	0	1	0	1
C D		0	0	0	2
D	1 2	1	1	1	1
Е	0	1	1	2	1

- Networks are usually stored in one of three ways:
 - Edge list
 - Adjacency matrix
 - As a network object

- Networks are usually stored in one of three ways:
 - Edge list
 - Adjacency matrix
 - As a network object
- Edge lists and adjacency matrices are most common and good for data sharing.
 - Often accompanied by a second data set of node attributes.

Description

Subgraphs

• Dyad: Pair of nodes

• Triad: Triple of nodes

• Subgroup: a subnetwork of any size

Popularity

- · Degree: How many edges are attached to a node.
- Popularity is one measure of importance in a network.
- Preferential attachment: The more connected a node is the more likely it is to receive new links.

Centrality

 Measure of importance, distance, and time to spread

• Two types:

- Radial: Walks that originate or terminate at a node.
- · Medial: Walk that pass through a node.

• Ways to measure:

- Eigenvector Centrality: centrality is proportional to the centrality of its neighbors.
- Betweenness centrality: Nodes that have a high number of "shortest paths" that pass through them are more central.
- Closeness centrality: Sum of the distance between nodes.
- Degree is also considered a measure of centrality

Mixing

- Homophily: The tendency for similar nodes to have connections.
- · Assortative mixing: nodes associate with other like them
- Disassortative mixing: nodes associate with those who are different
- Almost all social networks are assortative. Biological networks tend to be disassortative.

Transitivity

- AKA clustering coefficient. A measure of the tendency for nodes to group together.
- Density: the degree of connectedness between nodes. And "everywhere dense" network is one in which all nodes connect to each other.
- Clustering coefficient: Proportion of a nodes "neighbors" that are tied.
- Triads are and import part of measuring transitivity.
 - E.g. compare the number of triads to a null distribution of interest.

Reciprocity

- Number of bidirectional links/total number of links
- Can measure:
 - Hierarchy
 - Cohesion
 - Commitment
 - Retaliation