

(12) United States Patent

Hyon et al.

(10) Patent No.:

US 6,168,626 B1

(45) Date of Patent:

*Jan. 2, 2001

(54)	ULTRA HIGH MOLECULAR WEIGHT
	POLYETHYLENE MOLDED ARTICLE FOR
	ARTIFICIAL JOINTS AND METHOD OF
	PREPARING THE SAME

(75) Inventors: Suong-Hyu Hyon, Uji; Masanori Oka, Nara, both of (JP)

Assignee: BMG Incorporated, Kyoto (JP)

(*) Notice:

This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

Under 35 U.S.C. 154(b), the term of this patent shall be extended for 0 days.

(21) Appl. No.: 08/640,738

(22) PCT Filed: Sep. 18, 1995

(86) PCT No.:

PCT/JP95/01858

§ 371 Date:

May 6, 1996

§ 102(e) Date: May 6, 1996

(87) PCT Pub. No.: WO96/09330

PCT Pub. Date: Mar. 28, 1996

(30)Foreign Application Priority Data

Sep.	21, 1994	(JP)				•••••				6	-25	4564
(51)	Int. Cl.7		• • • •	•••••						A61	F	2/30
(52)	U.S. CI.		• • • •				62	3/18	.11;	623	/23	.58;
								522/	,		, -	
(58)	Field of	Searc	h				• • • • • • • • • • • • • • • • • • • •	623	/18,	16,	23	.58;
		522/	10	00, 1	61,	1: :	525/3	333.8	: 26	4/40)5.	435

(56)References Cited

U.S. PATENT DOCUMENTS

5,030,487	*	7/1991	Rosenzweig 428/34.9
5,066,755	*	11/1991	Lemstra 522/161
5,130,376	*	7/1992	Shih 525/309
5,276,079	٠	1/1994	Duan et al 524/386
5,358,529	٠	10/1994	Davidson 623/20
5,405,393	*	4/1995	Falkenstrom 623/18
5,428,079	*	6/1995	Bastiaanasen et al 522/161
5,728,748	*	3/1998	Sun et al 522/161

FOREIGN PATENT DOCUMENTS

WO 95/06148 3/1995 (WO).

OTHER PUBLICATIONS

Kitamuru, R. et al., "Size and Orientation of Cristallites in Lightly Cross-linked Polyethylene, Crystallized from the Melt Under Unaxial Compression", Die Makromoekulare Chemie, vol. 175, 1974, pp. 255-275.

Kitamura, R. et al., "The Properties of Transparent Film Made from Linear Polyethylene By Irradiation Cross-Linking", Macromolecules, vol. 6, 1973, pp. 337-343.

Kitamura, R. et al., Structure and Properties of Lightly Crosslinked Crystalline Polymers Crystallized or Processed under Molecular Orientation, Journal of Polymer Science: Macromolecular Reviews, vol. 14, 1979, pp. 207-264.

* cited by examiner

Primary Examiner-V. Millin Assistant Examiner-Tram A. Nguyen (74) Attorney, Agent, or Firm-Armstrong, Westerman, Hattori, McLeland & Naughton

ABSTRACT

An ultra high molecular weight polyethylene molded article for artificial joints has molecular orientation or crystal orientation in the molded article, and is low in friction and is superior in abrasion resistance, and therefore is available as components for artificial joints. Further, the ultra high molecular weight polyethylene molded article for artificial joints can be used as a component for artificial hip joints (artificial acetabular cup), a component for artificial knee joints (artificial tibial insert) and the socket for artificial elbow joints, and in addition to the medical use, it can be applied as materials for various industries by utilizing the characteristics such as low friction and superior abrasion resistance.

11 Claims, No Drawings