Avaliação de Ma	Pontos Obtidos ↓		
Data:	Total de questões ${\bf 5}$	Total de pontos: 5	
Tuma:	a: Nome:		Duração: 1 hr

Question:	1	2	3	4	5	Total
Points:	1	1	1	1	1	5
Score:						

Instruções

- 1. Explique todas as questões claramente.
- 2. Necessário todos os cálculos.
- 1. Quatro seleções (Rússia, Itália, Brasil e Estados Unidos) disputaram a etapa final de um torneio internacional de vôlei no sistema "todos jogam contra todos" uma única vez. O campeão do torneio será a equipe que obtiver mais vitórias; em caso de empate no número de vitórias, o campeão é decidido pelo resultado obtido no confronto direto entre as equipes empatadas. Na matriz seguinte, o elemento a_{ij} indica o número de sets que a seleção i venceu no jogo contra a seleção j.

$$\begin{bmatrix} 0 & 2 & 3 & 1 \\ 3 & 0 & 1 & 3 \\ 2 & 3 & 0 & 3 \\ 3 & 2 & 0 & 0 \end{bmatrix}$$

Lembre-se que o jogo de vôlei termina quando uma equipe complete três sets.

Representando Rússia pela Linha 1, Itália pela linha 2, Brasil pela linha 3 e EUA pela linha 4, determine:

- a) O número de vitórias da equipe norte-americana;
- b) O placar do jogo Brasil x Itália;
- c) O número de sets marcados contra a Rússia;
- d) O campeão do torneio.
- 2. Determine a matriz X em cada uma das situações abaixo:

a)
$$X + \begin{bmatrix} 4 & 3 \\ 1 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 2 & 3 \\ 7 & 8 \end{bmatrix}$$

b)
$$2 \cdot \begin{bmatrix} 4 & 1 & 3 \\ 6 & 2 & -1 \end{bmatrix} + X = 3 \cdot \begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 1 \end{bmatrix}$$

- $\boxed{1} \quad 3. \text{ Sendo as matrizes } A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 6 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 2 & 2 \end{bmatrix} \ \text{e } C = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix}, \ \text{determine:}$
 - a) $A \cdot B$
 - b) $B \cdot C$
- 1 4. A partir da matriz $A = (a_{ij})_{2\times 2}$ tal que $a_{ij} = 3i + 2j$ e $B = (b_{ij})_{2\times 2}$ tal que $b_{ij} = i + j$, determine a matriz A + B.
- 5. Uma construtora, pretendendo investir na construção de imóveis em uma metrópole com cinco grandes regiões, fez uma pesquisa sobre a quantidade de famílias que mudaram de uma região para outra, de modo a determinar qual região foi o destino do maior fluxo de famílias, sem levar em consideração o número de famílias que deixaram a região. Os valores da pesquisa estão dispostos em uma matriz

 $A = (a_{ij}), i, j \in \{1, 2, 3, 4, 5\}$, em que o elemento a_{ij} corresponde ao total de famílias (em dezena) que se mudaram da região i para a região j durante um certo período, e o elemento a é considerado nulo, uma vez que somente são consideradas mudanças entre regiões distintas. A seguir, está apresentada a matriz com os dados da pesquisa.

$$\begin{bmatrix} 0 & 4 & 2 & 2 & 5 \\ 0 & 0 & 6 & 2 & 3 \\ 2 & 2 & 0 & 3 & 0 \\ 1 & 0 & 2 & 0 & 4 \\ 1 & 2 & 0 & 4 & 0 \end{bmatrix}$$

Qual região foi selecionada para o investimento da construtora?

a) 1

b) 2

c) 3

d) 4

e) 5