Ciclo lectivo 2022

FACULTAD DE INGENIERÍA

<u>CAPÍTULO I</u>: <u>ECUACIONES DIFERENCIALES ORDINARIAS</u> <u>TRABAJO PRÁCTICO N°1 – C</u>

ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

> Ecuaciones de primer orden lineales homogeneas

Son ecuaciones de la forma: $\frac{dy(x)}{dx} + P(x)y(x) = 0$

- Resolver las siguientes ecuaciones diferenciales lineales de primer orden homogeneas.
 - a) 2y'(x) + y(x) = 0
 - **b)** y'(x) 3xy(x) = 0
 - c) y'(t) = sen(t)y(t)
 - > Ecuaciones de primer orden lineales no homogeneas

Son ecuaciones de la forma: $\frac{dy(x)}{dx} + P(x)y(x) = Q(x)$

- II. Resolver las siguientes ecuaciones diferenciales lineales de primer orden no homogeneas.
 - a) (2x+5)y'(x)+10y(x)=10(2x+5)
 - **b)** $(1 + x^2)y'(x) + 3xy(x) = 6x$
 - c) y'(x) + cotg(x)y(x) = 2 cosec(x)

ECUACIONES REDUCIBLES A LINEALES

> Ecuación diferencial de Bernoulli

Son ecuaciones de la forma: $\frac{dy(x)}{dx} + P(x)y(x) = Q(x)y^n(x)$

- III. Resolver las siguientes ecuaciones diferenciales reducibles a lineales
- a) $y'(x) + y(x) = x y^{2}(x)$
- **b)** $y'(x) 3y(x) = xy^{-4}(x)$
- c) $x^3y'(x) + x^2y(x) = x^7 y^{3/4}(x)$
- d) $\frac{dy(x)}{dx} = \frac{y}{x} \frac{x}{y^2}$