Introduction to Information Security 14-741/18-631 Fall 2021 Unit 5, Lecture 4: Intro to Cryptocurrencies

Hanan Hibshi hhibshi@andrew

Part I: Overview

Most Common Types of Cryptocurrencies

■ Bitcoin

Most famous and recognizable

Bitcoin cash

■ Introduced in 2017; faster; block size is 8 MB

Litecoin

■ Shorter transaction time; lower fees; faster processing

Ethereum

- Smart Contracts; Focuses on decentralized applications
- **Ripple** (Not blockchain based; meant for larger corporations)
- **Stellar** (money transfers; non-profit;)
- NEO (Ethereum competitor)

Bitcoin Primer (1/2)

- A peer-to-peer digital payment system
- B
- Completely decentralized digital currency
 - No central mint to produce currency
 - No central bank to verify transactions
 - Verification needed for digital currencies, are duplication of coins simply means "copying bits"
 - Without verification double-spending is possible
 - Physical currencies avoid this by using physical security features
 - Once confirmed, transactions are irreversible
 - Predictable, capped, currency supply
- Key innovation in Bitcoin: coin production and verification is done by network consensus

Bitcoin Primer (2/2)

- There is actually no notion of a "coin"
 - Although Casascius provides neat physical artifacts
 - Those are technically one-time use wallets

- Bitcoins are exchanged from "wallet" to "wallet"
- Transactions are at the heart of the protocol
- Wallets are represented by addresses (e.g., 1VayNert...)
 - (An address is essentially the public key of the wallet)

Bitcoin Transactions

- Alice wants to send 1 BTC to Bob
 - She picks a transaction (or a group of transactions) that she has previously been the recipient of and that cumulatively contain at least 1 BTC
 - She then appends Bob's wallet address to the transaction and digitally signs it
- When Bob subsequently wants to spend the 1 BTC, all he has to do is to repeat the operation

Preventing Double-Spending

- Bob now has 1 BTC
 - He wants to send it to Charlie...
 - while keeping it for himself at the same time
- To prevent this Bob (and Alice before him) has to broadcast the transaction to everybody in the Bitcoin network
- Then other peers can verify that the transaction is not a double-spend
- Once this is done, the transaction is embedded forever in a public ledger

Bitcoin Ledger Size

Details: Worldwide; 2010 to 2020 © Statista 2020

Preventing Double Spending

Bitcoin is Transaction-Based

Bitcoin Transactions Specify Scripts

Redemption script:

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Bitcoin Transactions Specify Scripts

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Bitcoin Script Features

- multiple signatures
- escrow
- time locking
- commitment opening
- •••

smart contracts?

Part II: Mining Bitcoin

Coin Production

- Coin production is embedded in the verification process
- Verifiers ("miners") verify batches of transactions at once
 - In exchange for which they are allowed to add a "creation" transaction to the batch and give themselves a fixed amount of money
 - 50 BTC originally, 12.5 BTC as of 7/9/2016, divided by two every so often, drop to 6.25 BTC estimated 5/22/2020
 - ▼ Verification is combined with a "proof-of-work" scheme to ensure
 - That transactions have proper timestamping
 - That currency production is rate-limited

Proof-of-Work / Mining Incentives

Miners essentially solve a cryptographic puzzle, essentially

find x such that
$$H(x) < y$$

- There is no good algorithm to solve this (H is a cryptographically secure hash function)
 - Brute-force: try x=0, x=1, x=2, x=...
 - \blacksquare The lower y, the harder the puzzle
- Difficulty is tunable and is (by edict) designed to be inversely proportional to the total computational power of the network
- The goal is to have one block every ten minutes
 - ▼ Predictable supply of currency (independent of the difficulty)
 - But this limits how quickly transactions can be verified
 - At least 10 minutes, usually 60 minutes is recommended

Transaction Fees

- In addition to the bonus they get for mining, miners get "transaction fees"
 - Leftover "change" voluntarily left in transactions
- Because the bonus is decreasing over time, the expectation is that transaction fees will increase over time to make up for lost mining revenue

51% Attacks

17

Mining Difficulty

Bitcoin Hash Rate vs Difficulty (9 Months)

Difficulty Adjustment

Bitcoin Block Generation Time vs Difficulty

Mining Rewards

Courtesy: Brian Warner

Total Network Capacity

- Feb 2019: 2^{74.4} hashes per block (every 10 minutes!)
- Consuming >> 4.2GW continuously \
 - *Assuming ~10,000 MegaH/J (AntMiner S9)
- 2⁷⁵ hashes in 2015... in one hour!
- Computation of power is very hard to do nowadays see <u>https://digiconomist.net/bitcoin-energy-consumption</u>
- Recent historical perspective:

Year	2017	2018
Total # of hashes	2 ^{87.37}	2 ^{89.89}
~power*	> 0.6 GW (5.4 TWh/yr)	> 3.6 GW (31 TWh/yr)
Profit	> US \$1.6B	> US \$4.7 B

Bitcoin Hash Rate

Source: https://www.blockchain.com/charts/hash-rate

Bitcoin Mining Hardware

TerraMiner™ IV - 2TH/s Networked ASIC Miner

\$5,999

Shipping June 2014

300 GH Bitcoin Mining Card The Monarch BPU 300 C \$1,497.00

Qty: ADD TO CART

Pre-Order Terms: This is a pre-order. 28nm ASIC bitcoin mining hardware products are shipped according to placement in the order queue, and delivery may take 3 months or more after order. All sales are final.

23

- 2.5 TH/s
- Dimensions: 15" x 13.3" x 13.7" (38cm x 34cm x 35cm)
- 28nm ASIC technology
- Silent Cooling
- In-built WiFi Connection (without Antenna)
- Less than 750 watt (0.3 per
- 1 Year Guarantee
- \$5.800

- 1. Power Supply
- 2. Free Remote Power Outlet & Smartphone App
- 3. Free User Guide
- 4. Free Personal Assistance for Setup

- · Worldwide, Express
- · Included in the price

Should I Mine Bitcoins?

Chilkoot pass, Klondike 1898

Mining Pools

Mining Pools

Part III: Using Bitcoin

Getting Bitcoin

Become a miner

Nowadays only profitable if dedicated (ASIC) hardware

Buy at an exchange

- CampBX, Bitstamp, BTC-e, Coinbase...
- (Mt.Gox before they went bankrupt)
- Very high concentration on exchanges through which money is exchanged
 - Exchanges fail pretty often...
- Increasingly scrutinized by regulator

Buy from individuals

Satoshi Square in NYC

Main Bitcoin Uses

As a speculative instrument

- People invest in BTC, betting on its rising value
- Dominant use thus far

2012

2014

Main Bitcoin uses

As a currency

- Only currency accepted on underground marketplaces (Silk Road, Evolution,...)
 - ▼ (Except for LiteCoin, which is a clone of Bitcoin)
 - Because of its "anonymity properties"
 - Still relatively modest
 - Entire Silk Road revenue represented in 1st half of 2012 about \$15M/annum
- Gambling, poker sites
 - Large number of transactions, volume not very high
- Other uses still in their infancy
 - Campaign contributions, online stores (e.g., Overstock), etc.

messages 0 orders 0 account \$0.00

Search

Go

Shop by Category

Drugs 11,247

Cannabis 2,664

Dissociatives 269

Ecstasy 1,262

Opioids 667

Other 551

Precursors 102

Prescription 2,447

Psychedelics 1,213

Stimulants 1,551

Apparel 341

Art 3

Biotic materials 2

Books 912

Collectibles 14

Computer equipment 74

Custom Orders 89

Digital goods 630

Drug paraphernalia 330

Electronics 103

Erotica 626

Fireworks 15

Food 9

Forgeries 158

Hardware 27

Herbs & Supplements 11

Home & Garden 11

Jewelry 90

Lab Supplies 53

Lotteries & games 53

Royal Customers 10G

B1.66

Decanoate250, (1 x 10ml = 2.500mg) **B**0.39

XTC Pills MDMA 175mg x500 B19.28

100g Dimethoxbenzaldehyde **B**1.45

LECKERMANN WEEKLY SKUNK IS BACK STRONG #0.52

Good Quality Soap Bar | 126g(4.5oz) | UK Vendor B2.78

Modafinil 200mg - 300 Pills

B2.65

0.2g DMT Freebase

₿0.48

1g cocaine high premium quality FLEX - high grade \$1.32

How Was Anon Market Able to Survive?

■ Tor "hidden service"

- Tor = peer-to-peer network that conceals IP addresses of traffic sources by bouncing traffic around peers
- Website uses Tor to connect to the Internet
- Only accessible through Tor
 - .onion address as opposed to .com, .org, .net
- Server is very hard to locate for an attacker

Bitcoin for payments

- Peer-to-peer, decentralized currency
- Some anonymity (no identity bound to wallets)
 - However the entire chain of transactions is public
- Marketplace provides escrow mechanism to guarantee transaction completion
 - For buyers: Registration free, open to anyone
 - For sellers: Relatively modest account fee (refunded after a number of successful transactions)

32

Escrow Transactions

Escrow Transactions

Escrow Transactions

Bitcoin Regulation

Bitcoin Regulation

- Is Bitcoin a currency, a commodity, or a security? Is Bitcoin a payments network, a protocol, or a digital bank of sorts
- Against
 - No protections for consumers (Mt. Gox lost 850,000 bitcoins).
 - Used by criminals in dark markets
- For
 - **▼** Freedom
 - Transformative technology
- New York becomes the first state to regulate bitcoin
 - BitLicense Regulatory Framework

Part IV: Anonymity?

Pseudonymity vs Anonymity

- Wallets are public/private key pairs
 - Can create as many as you want
 - Think of them as zero-cost pseudonyms
- There is no central authority issuing Bitcoins or vetting transactions
- This means Bitcoin is anonymous, right?

Bitcoin Tracing

- Anonymity here implies un-linkability of transactions
- The entire ledger of all transactions is available, forever
 - ▼ Technically in a compressed form, but transaction chains can all be reconstructed
- Even if you add intermediary dummy steps wallets, linking the source and the destination of a transaction may be done by graph analysis...
 - Something that computer scientists know how to do!
 - Reid & Harrigan, 2011
 - Shamir & Ron, 2012
 - Meiklejohn et al., 2013
- Families of wallets can be pooled together as belonging to the same actual user...
- ... and if somehow you can get the user's identity, the game is over

Anonymizing Bitcoin

Mixers

■ Did Alice give 10 BTC to Charles or Daisy?

Anonymizing Bitcoin

Mixers in practice

- Need to also introduce arbitrary delays
- Introduction of change addresses, etc
- Mixer can be dishonest!

Anonymizing Bitcoin

- It's unclear how good existing Bitcoin mixers are
 - Key difference with message mixing (Tor, mixnets)
 - ▼ You can't implement arbitrary "padding" money has to go somewhere eventually
 - Possible measure: taint
 - Amount of money that can be traced back to a given source
 - Recent research (Meiklejohn et al.) suggests existing mixers are not effective or downright dishonest
- Open problem: is it possible to design a (distributed) mixing algorithm that provides strong unlinkability guarantees?

Ethereum Smart Contracts

Ethereum

- 2014: Whitepaper released, crowdsale
- Crypto-currency and more
- Similar to bitcoin
 - Use public blockchain as ledger
 - Each block contains several transactions
 - Proof of work

Different from bitcoin

- Transactions can include Turing-complete programs that run when blocks are processed (Solidity language)
- Helps developers build de-centralized applications

Transaction & Contracts: Accounts

- Externally owned accounts (similar to wallet in Bitcoin)
- Contract accounts (controlled by smart contract programs)
- Send ether to contracts, send money from contracts to externally owned accounts
 - examples in the homework

A Smart Contract

- A program that runs on the blockchain
- Collection of code (its functions) and data (state)
- They have a balance and can send transactions
- Not controlled by the user
 - Instead, deployed to the network
 - Run as programmed
- User accounts interact with a smart contract
 - Submitting transactions that execute a function defined on the smart contract
- Can define rules and enforce rules via code

Transaction & Contracts: Gas

- What if someone writes a contract that never terminates?
- Gas: fuel for executing transactions and contracts
 - Submitting transactions and contracts to the blockchain has an associated "gas" cost paid in Ether based on the complexity of the operations.

Why Smart Contracts?

Solidity: Basics (vo.5.12)

```
contract Coin {
      // The keyword "public" makes those variables easily readable from outside.
       address public minter; ___
                                                        160-bit value, no arithmetic operations
       mapping (address => uint) public balances;
      // Events allow light clients to react to changes efficiently.
       event Sent(address from, address to, uint amount);
      // This is the constructor whose code is run only when the contract is created.
       constructor() public { minter = msg.sender; } |
                                                       permanently stores address of the contract creator
// Sends an amount of newly created coins to an address; can only be called by the contract creator.
       function mint(address receiver, uint amount) public {
                                                         Only creator can call mint
          require(msg.sender == minter);
          require(amount < 1e60);
                                                      Only maximum amount of tokens
          balances[receiver] += amount; }
      // Sends an amount of existing coins from any caller to an address.
      function send(address receiver, uint amount) public {
           require(amount <= balances[msg.sender], "Insufficient balance.");</pre>
           balances[msg.sender] -= amount;
           balances[receiver] += amount;
           emit Sent(msg.sender, receiver, amount); }
```

Transactions & Contracts: distributed applications

Solidity: Fallback Functions

- A contract can have exactly one unnamed function, which is called fallback function
 - **▼** function(){....}
- It is called when
 - a function f is called but f does not match any function name in the contract
 - Or no function name is supplied
- addr.call.value(x)()
 - Invoke the fallback function at addr and send x ether to it

The Blockchain Technology

Blockchain Overview

Source: pwc, United States

New Application for Blockchain

- Research in interest into good applications of Blockchain and smart contracts
 - Autonomous cars
 - ▼ Financial services (reduce transaction costs)
 - Voting (cast votes electronically, immediate verifiable results)
 - Healthcare
 - Share patient information with multiple providers
 - ▼ Preserve privacy

Memory-Based Proof of work

- Goal: performance is less sensitive to hardware specs
- Computation speed is bound by main memory accesses
- Example Algorithms
 - CryptoNight
 - Released in 2013 as part of CryptoNote blockchain
 - Memory hard-loop; sequence of random reads and writes in a scratchpad (small memory area)
 - Fits on CPU cache
 - Ethash
 - **■** Used by Ethereum.
 - Memory hard-loop randomly reads DAG area (memory slices larger than scratchpad)
 - Cuckoo Cycle
 - Solves a PoW puzzle that finds cycles or other structures in large random graphs

Proof-of-Stake

Current common consensus algorithm is proof of work(PoW)

- Energy consumption
- No penalty for fraud
- Miners increase processing power to improve their chances

Proof-of-Stake

- More energy efficient
- Removes the high-powered computing from the consensus algorithm
- More complicated
 - **▼** security?
- "Validators" set aside a certain amount as collateral

How PoS Works

- "Validator" instead of "miner"
- The validator has an economic state
 - ▼ The "stake" their funds on the blocks that they believe are valid
- Validators take turns to propose and vote
 - ▼ Votes are weighed by size of collateral amount
- Anyone can become a validator
 - If and only if they hold some ether as collateral amount
- An algorithm determines the validators to be chosen for a block
- Validators no longer increase processing power
 - Increase "stake" to improve chances
- Verifying bad (fraudulent) blocks can result in loss of stake

Takeaway Slide

- Bitcoins, Ethereum and other cryptocurrencies are applications of crypto
 - Decentralized Peer-to-peer digital payment systems
- Eventually, the blockchain technology is now attractive to other applications
- Security challenges
 - Attacks (e.g. 51%)
 - Anonymity
 - **■** Others?
- Other challenges include
 - Computation recourses
 - Environmental impact
- Proof-of-work and proof-of-stake
 - An ongoing area of research and development