

MySQL-DDL

Course Objective

- To create ,drop and alter the tables in MySQL Database.
- To implement constraints in table while creating or altering the table.

Session Objective

- DDL create, alter, drop & truncate.
- Constraints and its types.

Commercial Data Bases

MySQL Introduction

- MySQL is a database management system used for many small and big businesses.
- MySQL is developed, marketed and supported by MySQL AB a Swedish company.
- MySQL is a open source database.
- MySQL supports large databases, up to 50 million rows or more in a table. The
 default file size limit for a table is 4GB, but you can increase
 to a theoretical limit of 8 million terabytes (TB).

Database Client GUI

Database Client GUI

Workbench

Sequel Pro

HeidiSQL

SQLyog

SQLWave

DBTools Manager

MyDB Studio

Navicat for MySQL

Database Client GUI - Workbench

Show Database

mysql> SHOW DATABASES;

+-----+
| Database |
+-----+
| mysql |
| test |
+------+
2 rows in set (0.13 sec)

Show databases command
Display all database
instances in MySQL
database

Create Database

You can create and drop a MySQL database instance by using My SQL Workbench by using the command

Create Database:

→ Create database << Database Name >>

Create database Training

Drop Database:

→ Drop Database << Database Name >>

Drop database Training

DDL

- DDL is short name of Data Definition Language.
- DDL deals with database schemas like table.

DDL Commands

- CREATE create the structure of a data base object (ex: table).
- ALTER alters the structure of the existing database.
- DROP delete objects from the database.
- TRUNCATE remove all records from a table, including all spaces allocated for the records are removed.

Create Table

- CREATE TABLE Table_Name (column_specifications)
- Example

```
CREATE TABLE student
(

student_ID INT UNSIGNED NOT NULL,
name VARCHAR(20) NOT NULL,
major VARCHAR(50),
grade VARCHAR(5)
);
```

6 14:27:28 CREATE TABLE student (student_ID INT UNSIGNED NOT NULL, name VA... 0 row(s) affected 0.203 sec

Display Table Structure

 show tables: command display the tables from current database SHOW tables;

describe: command display the structure of the table

DESCRIBE student; / DESC student;

Res	Result Grid Filter Rows: Export: Wrap Cell Content: 1A								
	Field	Туре	Null	Key	Default	Extra			
	student ID	int(10) unsianed	NO		NULL				
	name	varchar(20)	NO		NULL				
	maior	varchar(50)	YES		NULL				
	grade	varchar(5)	YES		NULL				

Modify Table Structure

alter the existing structure of the table

ALTER TABLE student ADD PRIMARY KEY (student_ID);

15 14:35:59 alter table student add primary key (student... 0 row(s) affected Records: 0 Duplicates: 0 Warnings: 0

DESCRIBE student;

Re	sult Grid	Filter Rows:			Export:	Wrap	Cell Content:	‡A
	Field	Туре	Null	Key	Default	Extra		
	student ID	int(10) unsianed	NO	PRI	NULL		•	
	name	varchar(20)	NO		NULL			
	maior	varchar(50)	YES		NULL			
	arade	varchar(5)	YES		NULL			

Drop

Syntax:

DROP TABLE table_name;

Example

DROP TABLE student;

23 14:42:19 drop table student 0 row(s) affected

24 14:42:22 SELECT * FROM student LIMIT 0, 1000 Error Code: 1146. Table 'sampledb.student' doesn't exist

Truncate

Syntax: TRUNCATE TABLE table_name;

Example:

TRUNCATE TABLE student

Difference
Between
drop and
truncate

What are Constraints?

- Constraints enforce rules at the table level.
- Constraints prevent the deletion of a table if there are dependencies.

The following constraint types are valid:

- NOT NULL
- UNIQUE
- PRIMARY KEY
- FOREIGN KEY
- DEFAULT

Defining Constraints

Syntax:

```
CREATE TABLE [schema.]table (column datatype [DEFAULT expr] [column_constraint], ...
[table_constraint][,...]);
```


Example:

```
CREATE TABLE employees(

emp_id VARCHAR(8) NOT NULL,

emp_name VARCHAR(50) NOT NULL,

CONSTRAINT PRIMARY KEY (emp_id)

);
```

57 15:20:24 CREATE TABLE employees(emp_id varchar(8) NOT NULL , ... 0 row(s) affected

The NOT NULL Constraint

- The NOT NULL Constraint Ensures that null values are not permitted for the column
- The NOT NULL constraint can be specified only at the column level, not at the table level.

Example:

CREATE TABLE employee (id INT, last_name VARCHAR(255) NOT NULL, salary DOUBLE(5,2), hire_date DATE NOT NULL
):

60 15:22:37 CREATE TABLE employee (id INT, last_name VARCHAR(255) NO... 0 row(s) affected

Re	esult Grid	Filter Rows:			Export	
	Field	Type	Null	Key	Default	Extra
	id	int(11)	YES		NULL	
	last name	varchar(255)	NO		NULL	
	salarv	double(5.2)	YES		NULL	
	hire date	date	NO		NULL	

wwww.hexaware.com | © Hexaware Technologies. All rights reserved.

The UNIQUE Constraint

- A UNIQUE key integrity constraint requires that every value in a column or set of columns (key) be unique
- Defined at either the table level or the column level

Example:

CREATE TABLE employees(

```
employee_id INT(6),
last_name VARCHAR(25) NOT NULL,
email VARCHAR(25),
salary DOUBLE(8,2),
commission_pct DOUBLE(2,2),
hire_date DATE NOT NULL,
CONSTRAINT emp_email_uk UNIQUE(email)
```

63 15:25:03 CREATE TABLE employees(employee_id INT(6), last_name VARCHAR... 0 row(s) affected

Contd..

Re	sult Grid 📗 🔣 Fil	ter Rows:			Export:
	Field	Туре	Null	Key	Default
	emplovee id	int(6)	YES		NULL
	last name	varchar(25)	NO		NULL
	email	varchar(25)	YES	UNI	NULL
	salarv	double(8.2)	YES		NULL
	commission pct	double(2.2)	YES		NULL
	hire date	date	NO		NULL

The PRIMARY KEY Constraint

- A PRIMARY KEY constraint creates a primary key for the table
- Defined at either the table level or the column level

Example:

CREATE TABLE departments(

```
department_id INT(4),
department_name VARCHAR(30) NOT NULL,
manager_id INT(6),
location_id INT(4),
CONSTRAINT dept_id_pk PRIMARY KEY(department_id)
```

68 15:29:15 CREATE TABLE departments (department_id INT(4), department_name ... 0 row(s) affected

Contd..

Field	Type	Null	Key	Default
department id	int(4)	NO	PRI	NULL
department nan	ne varchar(30)	NO		NULL
manager id	int(6)	YES		NULL
location id	int(4)	YES		NULL

The FOREIGN KEY Constraint

• The FOREIGN KEY, or referential integrity constraint, designates a columbia combination of columns as a foreign key and establishes a relationship between a primary key or a unique key in the same table or a different table.

Example:

CREATE TABLE employees(

(2)

```
employee_id INT(6),
last_name VARCHAR(25) NOT NULL,
email VARCHAR(25),
salary DOUBLE(8,2),
commission_pct DOUBLE(2,2),
hire_date DATE NOT NULL,
department_id INT(4),

CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)
REFERENCES departments(department_id),
CONSTRAINT emp_email_uk UNIQUE(email)
);
```

71 15:32:26 CREATE TABLE employees(employee_id INT(6), last_name VARCHAR... 0 row(s) affected

Contd..

Field	Type	Null	Key	Default
emplovee id	int(6)	YES		NULL
last name	varchar(25)	NO		NULL
email	varchar(25)	YES	UNI	NULL
salarv	double(8.2)	YES		NULL
commission pct	double(2.2)	YES		NULL
hire date	date	NO		NULL
department id	int(4)	YES	MUL	NULL

FOREIGN KEY Constraint Keywords

- FOREIGN KEY: Defines the column in the child table at the table constraint level
- REFERENCES: Identifies the table and column in the parent table
- ON DELETE CASCADE: Deletes the dependent rows in the child table when a row in the parent table is deleted.
- ON DELETE SET NULL: Converts dependent foreign key values to null

Default constraint

- DEFAULT is used to set a default value for a column.
- Can be implemented using DEFAULT default_value
 where default_value is the default value set to the column.

```
CREATE TABLE employees(

emp_id varchar(8) NOT NULL UNIQUE DEFAULT '',

emp_name varchar(50) NOT NULL,

emp_city varchar(25) NOT NULL ,

country varchar(25) NOT NULL DEFAULT 'India',
```

PRIMARY KEY (emp_id));

75 15:36:10 CREATE TABLE employees (emp_id varchar(8) NOT NULL UNIQUE D... 0 row(s) affected


```
INSERT INTO employees(emp_id,emp_name,emp_city,country) VALUES('20302','Rahul','NEWYORK','US');
INSERT INTO employees(emp_id,emp_name,emp_city) VALUES('20304','Rohit','Mumbai');
SELECT * FROM employees;
```

Re	sult Grid	III 🙌 File	ter Rows:		Edit:
	emp_id	emp_name	emp_city	country	doj
	20302	Rahul	NEWYORK	US	NULL
	20304	Rohit	Mumbai	India	NULL
	NULL	NULL	NULL	NULL	NULL

List constraints

SELECT column_name,constraint_name,referenced_column_name,referenced_table_name FROM information_schema.KEY_COLUMN_USAGE where TABLE_NAME='employees'

Re	sult Grid 🔠 🐧	Filter Rows:	Export:	Wrap Cell Content: ‡A
	column_name	constraint_name	referenced_column_name	referenced_table_name
	emp id	PRIMARY	HULL	HULL
	emp id	emp id	NULL	NULL
	email	emp email uk	HULL	NULL
	department id	emp dept fk	department id	departments
	emplovee id	PRIMARY	NULL	NULL
	email	emo email uk	HULL	NULL
	department id	emp dept fk	department id	departments

Adding a Constraint Syntax

Use the ALTER TABLE statement to:

- Add or drop a constraint, but not modify its structure
- Enable or disable constraints
- Add a NOT NULL constraint by using the MODIFY Clause

Syntax

ALTER TABLE table
ADD [CONSTRAINT constraint] type (column);

Adding a Constraint

Add a FOREIGN KEY constraint to the Orders table indicating that a person must be a valid user in the Persons table.

Example:

ALTER TABLE Orders ADD CONSTRAINT FK_PersonOrder FOREIGN KEY (PersonID) REFERENCES Persons(PersonID);

116 16:17:14 ALTER TABLE Orders ADD CONSTRAINT FKe... 0 row(s) affected Records: 0 Duplicates: 0 Warnings: 0

Dropping a Constraint

Remove the fk_PersonOder constraint from the Orders table.

Example:

ALTER TABLE Orders

DROP FOREIGN KEY FK_PersonOrder;

118 16:20:06 ALTER TABLE Orders DROP FOREIGN KEY F... 0 row(s) affected Records: 0 Duplicates: 0 Warnings: 0

Remove the PRIMARY KEY constraint on the DEPARTMENTS

Example:

ALTER TABLE departments
DROP PRIMARY KEY;

Gamification

Objective:

To make the participants familiarize with tables, fields and keys through activity.

Assignment

1. DDL

2. Constraints

Innovative Services

Passionate Employees

Delighted Customers

Thank you

www.hexaware.com