5.4 Independencia lineal

En el estudio del álgebra lineal, una de las ideas centrales es la de dependencia o independencia lineal de los vectores. En esta sección se define el significado de independencia lineal y se muestra su relación con la teoría de sistemas homogéneos de ecuaciones y determinantes.

Empezamos tratando de contestar la siguiente pregunta: ¿existe una relación especial entre los vectores $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ y $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$? Por supuesto, se puede apreciar que $\mathbf{v}_2 = 2\mathbf{v}_1$; o si se escribe esta ecuación de otra manera,

$$2v_1 - v_2 = 0 ag{5.4.1}$$

En otras palabras, el vector cero se puede escribir como una combinación no trivial de v_1 y v_2 (es decir, donde los coeficientes en la combinación lineal no son ambos cero). ¿Qué tienen de

especial los vectores
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} -4 \\ 1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_3 = \begin{pmatrix} -5 \\ 8 \\ 19 \end{pmatrix}$? La respuesta a esta pregunta es más

difícil a simple vista. Sin embargo, es sencillo verificar que $\mathbf{v}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2$; reescribiendo esto se obtiene

$$3\mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3 = \mathbf{0} \tag{5.4.2}$$

Se ha escrito el vector cero como una combinación lineal de \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 . Parece que los dos vectores en la ecuación (5.4.1) y los tres vectores en la ecuación (5.4.2) tienen una relación más cercana que un par arbitrario de dos vectores o una terna arbitraria de tres vectores. En cada caso, se dice que los vectores son *linealmente dependientes*. En términos generales, se tiene la importante definición que a continuación se presenta.

Definición 5.4.1

Dependencia e independencia lineal

Sean v_1, v_2, \dots, v_m n vectores en un espacio vectorial V. Entonces se dice que los vectores son **linealmente dependientes** si existen n escalares c_1, c_2, \dots, c_n no todos cero tales que

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = \mathbf{0}$$
 (5.4.3)

Si los vectores no son linealmente dependientes, se dice que son linealmente independientes.

Para decirlo de otra forma, $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ son linealmente independientes si la ecuación $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$ se cumple únicamente para $c_1 = c_2 = \cdots = c_n = 0$. Son linealmente dependientes si el vector cero en V se puede expresar como una combinación lineal de $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ con coeficientes no todos iguales a cero.

¿Cómo se determina si un conjunto de vectores es linealmente dependiente o independiente? El caso de dos vectores es sencillo.

Nota

Se dice que los *vectores* $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ *son* linealmente independientes (o dependientes), o que *el conjunto* de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ *es* linealmente independiente (o dependiente). Esto es, se usan las dos frases indistintamente.