Decentralized Asynchronous Multi-player Bandits

Setting:

Players join or leave the system at arbitrary time steps.

Difficulty:

Players do not know when others come → unavoidable collisions Players do not know when others leave → The optimal arms can change

Algorithm:

Adaptive change between exploration and exploitation \rightarrow players can detect the change of optimal arms Double Selection (Players pull arms at two consecutive steps) \rightarrow players do not exploit the same optimal arms with others.

Analysis:

an upper bound

Setting

Problem formulation:

- Let $1 \le T_{\text{start}}^j < T_{\text{end}}^j \le T$. A player is active at step t means that she needs to pull an arm at this step. Let m_t denote the number of active players at step t.
- Each player $j \in [M]$ is only active from T_{start}^j to T_{end}^j .
- Player j is only aware of T, but does not know T_{start}^{j} and T_{end}^{j} .
- At each step $t \in [T^j_{\text{start}}, T^j_{\text{end}}]$, player j pulls an arm $\pi^j(t) \in [K]$ and observes $< r^j(t), \eta^j(t) >$.

Regret Definition:

$$\mathbb{E}[R(T)] := \sum_{t \leq T} \sum_{k \leq m_t} \mu_k - \mathbb{E}\left[\sum_{t \leq T} \sum_{j: T_{ ext{start}}^j \leq t \leq T_{ ext{end}}^j} r^j(t)
ight] \,.$$

Assumption:

• There exists a constant m such that for any t, $m_t \le m \le K/2$.

Challenge

Challenge 1

Previous Init or Com phase does not work. However, I do not want to assume a known *j* here. And the assumption is not reasonable in the setting.

Thus, it is difficult to avoid collisions.

Challenge 2

The optimal arms depend on the number of active players. It can change.

When a player who is exploiting her optimal arm leaves the system, the left arms that are still exploited by players may become suboptimal.

Challenge 1:

difficult to avoid collisions

Solution 1:

- There is no Init or Com phase; each player independently executes her own policy.
- Player j maintains a set A^j , representing the arms believed to be occupied by other players.
- Player j explores arms in $[K] \setminus A^j$ uniformly at random.
- If arms in $[K] \setminus A^j$ frequently result in collisions, player j infers that those arms are likely being exploited by others and adds them to A^j .

Challenge 2:

change of optimal arms

Solution 2:

- Player j always pulls arms in \mathcal{A}^j with a small probability ε .
- If arms in \mathcal{A}^j frequently result in non-collisions, player j infers that those arms are likely being released by others and removes them from \mathcal{A}^j .

Player j adaptively changes between an exploration phase and an exploitation phase:

- **Exploration phase:** If there exists an arm k such that $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$, then player j transitions to the exploitation phase and pulls arm k with probability 1ε .
- **Exploitation phase:** If player j detects that an arm in \mathcal{A}^j has been released, she switches back to the exploration phase.

Challenge 1:

difficult to avoid collisions

Solution 1:

- There is no Init or Com phase; each player independently executes her own policy.
- Player j maintains a set A^j , representing the arms believed to be occupied by other players.
- Player j explores arms in $[K] \setminus A^j$ uniformly at random.
- If arms in $[K] \setminus A^j$ frequently result in collisions, player j infers that those arms are likely being exploited by others and adds them to A^j .

Challenge 2:

change of optimal arms

Solution 2:

- Player j always pulls arms in \mathcal{A}^j with a small probability ε .
- If arms in \mathcal{A}^j frequently result in non-collisions, player j infers that those arms are likely being released by others and removes them from \mathcal{A}^j .

Since player *j* does not always exploit *k*, others may also set *k* as exploitation arm!

Player j adaptively changes between an exploration phase and an exploitation phase:

- **Exploration phase:** If there exists an arm k such that $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$, then player j transitions to the exploitation phase and pulls arm k with probability 1ε .
- **Exploitation phase:** If player j detects that an arm in \mathcal{A}^j has been released, she switches back to the exploration phase.

DoubleSelection

- Exploration phase: player j samples $k \sim \text{Uniform}([K] \setminus A^j)$.
 - w.p. 1ε : pulls k twice;
 - w.p. ε : pull arm k once, then pull an arm $k' \sim \mathrm{Uniform}(\mathcal{A}^j)$.
- **Exploitation phase:** let \hat{k}^j denote player j's exploitation arm.
 - w.p. 1ε : pulls \hat{k}^j twice;
 - w.p. ε : pulls \hat{k}^j once, then pull an arm $k' \sim \text{Uniform}(\mathcal{A}^j)$.

Therefore, when a player wants to enter the exploitation phase, she needs to find an arm k satisfying:

- Condition 1: $\eta_{k_1}(t-1) + \eta_{k_2}(t) = 0$, where $k_1 = k_2 = k$;
- Condition 2: $LCB_k^j \ge UCB_\ell^j$ for all $\ell \ne k$, $\ell \in [K] \setminus A^j$.

Let \mathcal{P}_k^j , \mathcal{Q}_k^j denote two queues with fixed length $L_p=866\ln T$ and $L_q=570\ln T$, respectively. Let T_o^j , T_r^j denote the numbers of time steps that are required for player j to identify an occupied arm k and a released arm k, respectively.

To solve Challenge 1

- At step t, if $k1 = k_2$ and they are both sampled from $[K] \setminus A^j$, then player j adds $[\eta_{k_1}(t-1) \cdot \eta_{k_2}(t)]$ into a queue \mathcal{P}_k^j .
- If there exists an arm k s.t. $\sum_{i \in \mathcal{P}_k^j} i \geq \lceil 0.85L_p \rceil$, then player j adds k to \mathcal{A}^j .

Lemma 1.

With probability at least $1 - 1/T^2$:

- i) If arm k is occupied and remains occupied thereafter, player j will add k to $\mathcal{A}^{j}(t)$ with $E[T_{o}^{j}] \leq 1926 K ln T$ time steps;
- ii) If arm k is not occupied and remains not occupied thereafter, player j will not add k to $\mathcal{A}^{j}(t)$.

To solve Challenge 2

- At step t, if k is sampled from \mathcal{A}^j , then player j adds $[1 \eta_k(t)]$ into a queue \mathcal{Q}_k^j .
- If there exists an arm k s.t. $\sum_{i \in \mathcal{Q}_k^j} i \geq \lceil 0.142L_q \rceil$, then player j removes k from \mathcal{A}^j .

Lemma 2.

With probability at least $1 - 1/T^2$:

- i) If arm k is released and never occupied again, player j will remove k from $\mathcal{A}^{j}(t)$ with $E[T_{r}^{j}] \leq 1141 m ln T/\varepsilon$ time steps;
- ii) If arm k is not released and remains not released thereafter, player j will not remove k from $\mathcal{A}^{j}(t)$.

Analysis

Theorem 1.

Given K arms and M players, and let $\varepsilon = \min\{\sqrt{\frac{1141m^3\ln(T)}{2T}}, \frac{1}{K}, \frac{1}{10}\}$, the regret of Algorithm 1 is bounded by

$$\mathbb{E}[R(T)] \leq \frac{576emKM\log(T)}{\Delta^2} + 96m^{3/2}M\sqrt{T\ln(T)} + 7704m^2KM\ln(T) + (4emKM)^2,$$

where $\Delta := \min_{k \le m} (\mu_k - \mu_{k+1})$.

$\mathcal{O}(\log T/\Delta^2)$ arises from Challenge 1:

Players cannot completely avoid collisions, leading to a regret of $\mathcal{O}(\log T/\Delta^2)$ instead of the standard $\mathcal{O}(\log T/\Delta)$.

$\mathcal{O}(\sqrt{T \log T})$ incurs from Challenge 2:

The set of optimal arms may change over time, so players must pull occupied arms with a small probability. This persistent exploration contributes a regret of $\mathcal{O}(\sqrt{T \log T})$.

Corollory 1.

Given K arms and M players, $\varepsilon = \min\{\sqrt{\frac{1141K^3\ln(T)}{16T}}, \frac{1}{K}, \frac{1}{10}\}$, the regret of Algorithm 1 is bounded by

$$R(T) \leq \frac{288e^{K^2}M\log(T)}{\Lambda^2} + 34K^{3/2}M\sqrt{T\ln(T)} + 1926K^3M\ln(T) + (3e^{K^2}M)^2,$$