## **Group B Assignment - 4**

Visualize the data using Python libraries matplotlib, seaborn by plotting the graphs for assignment no 2 and 3 (Group B)

### **Importing libraries**

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

#### Reading the data

```
In [3]: data = pd.read_csv("airquality (1).csv")
In [4]: data
```

#### Out[4]:

|     | Unnamed: 0 | Ozone | Solar.R | Wind | Temp | Month | Day | Humidity |
|-----|------------|-------|---------|------|------|-------|-----|----------|
| 0   | 1          | 41.0  | 190.0   | 7.4  | 67   | 5     | 1   | High     |
| 1   | 2          | 36.0  | 118.0   | 8.0  | 72   | 5     | 2   | High     |
| 2   | 3          | 12.0  | 149.0   | 12.6 | 74   | 5     | 3   | Low      |
| 3   | 4          | 18.0  | 313.0   | 11.5 | 62   | 5     | 4   | NaN      |
| 4   | 5          | NaN   | NaN     | 14.3 | 56   | 5     | 5   | High     |
|     |            |       |         |      |      |       |     |          |
| 148 | 149        | 30.0  | 193.0   | 6.9  | 70   | 9     | 26  | Low      |
| 149 | 150        | NaN   | 145.0   | 13.2 | 77   | 9     | 27  | Low      |
| 150 | 151        | 14.0  | 191.0   | 14.3 | 75   | 9     | 28  | High     |
| 151 | 152        | 18.0  | 131.0   | 8.0  | 76   | 9     | 29  | Medium   |
| 152 | 153        | 20.0  | 223.0   | 11.5 | 68   | 9     | 30  | Low      |

153 rows × 8 columns

## Replacing the null values by mean values

```
In [5]: data["Ozone"] = data["Ozone"].fillna(data["Ozone"].mean())
    data["Solar.R"] = data["Solar.R"].fillna(data["Solar.R"].mean())
```

In [6]: data

Out[6]:

|     | Unnamed: 0 | Ozone    | Solar.R    | Wind | Temp | Month | Day | Humidity |
|-----|------------|----------|------------|------|------|-------|-----|----------|
| 0   | 1          | 41.00000 | 190.000000 | 7.4  | 67   | 5     | 1   | High     |
| 1   | 2          | 36.00000 | 118.000000 | 8.0  | 72   | 5     | 2   | High     |
| 2   | 3          | 12.00000 | 149.000000 | 12.6 | 74   | 5     | 3   | Low      |
| 3   | 4          | 18.00000 | 313.000000 | 11.5 | 62   | 5     | 4   | NaN      |
| 4   | 5          | 42.12931 | 185.931507 | 14.3 | 56   | 5     | 5   | High     |
|     |            |          |            |      |      |       |     |          |
| 148 | 149        | 30.00000 | 193.000000 | 6.9  | 70   | 9     | 26  | Low      |
| 149 | 150        | 42.12931 | 145.000000 | 13.2 | 77   | 9     | 27  | Low      |
| 150 | 151        | 14.00000 | 191.000000 | 14.3 | 75   | 9     | 28  | High     |
| 151 | 152        | 18.00000 | 131.000000 | 8.0  | 76   | 9     | 29  | Medium   |
| 152 | 153        | 20.00000 | 223.000000 | 11.5 | 68   | 9     | 30  | Low      |

153 rows × 8 columns

### **Pie Chart**



#### **Bar Plot**

```
In [8]: def addlabels():
    for i in range(len(data.iloc[0:31, 4])):
        plt.text(i, data.iloc[0:31, 4][i], data.iloc[0:31, 4][i], ha = 'center

y = np.arange(len(data.iloc[0:31, 4]))
    addlabels()
    plt.bar(x=y, height=data.iloc[0:31, 4], tick_label=y, color="red")
    plt.title("Temeprature for 1st to 30th of May")
    plt.xlabel("Days")
    plt.ylabel("Temperature")
    plt.show()
```

#### Temeprature for 1st to 30th of May



## **Box Plot**

In [26]: plt.boxplot(x=data[["Temp", "Solar.R", "Wind", "Ozone"]], labels=["Temp", "Sol
plt.plot()

Out[26]: []



### Histogram

```
In [27]: plt.hist(x=data["Temp"], bins=20, color="orange", label="Temp")
    plt.title("Temperature count")
    plt.xlabel("Temperature")
    plt.ylabel("Count")
    plt.plot()
```

Out[27]: []



# **Line Graph**

```
In [28]: plt.plot(data.iloc[0:30, 6], data.iloc[0:30, 3], color="purple")
    plt.title("Wind of May month")
    plt.xlabel("Day")
    plt.ylabel("Wind")
```

Out[28]: Text(0, 0.5, 'Wind')



### **Scatter Plot**

```
In [29]: plt.scatter(data.iloc[0:30, 6], data.iloc[0:30, 3], color="red")
    plt.title("Wind measure of May month")
    plt.xlabel("Day")
    plt.ylabel("Wind")
```

Out[29]: Text(0, 0.5, 'Wind')





### **Pair Plot**

```
In [30]: import seaborn
seaborn.pairplot(data.iloc[:,[1,2,3,4,7]], hue ='Humidity')
plt.show()
```



# Heatmap

In [31]: seaborn.heatmap(data=data.iloc[0:30,[1,2,3,4]])
 plt.show()



#### **Word Cloud**

```
In [35]:
```

```
from wordcloud import WordCloud, STOPWORDS
stopwords = set(STOPWORDS)
text = """Lorem Ipsum is simply dummy text of the printing and typesetting ind
Lorem Ipsum has been the industry's standard dummy text ever since the 1500s,
when an unknown printer took a galley of type and scrambled it to make a type
It has survived not only five centuries, but also the leap into electronic typ
It was popularised in the 1960s with the release of Letraset sheets containing
and more recently with desktop publishing software like Aldus PageMaker includ
wordcloud = WordCloud(width = 800, height = 800,
                background_color ='white',
                stopwords = stopwords,
                min_font_size = 10).generate(text)
plt.imshow(wordcloud)
plt.axis("off")
plt.tight_layout(pad = 0)
plt.show()
```

