Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 883 028 A1 (11)

(12)

ŋŁ.

EUROPEAN PATENT APPLICATION

(43) Date of publication: 09.12.1998 Bulletin 1998/50 (51) Int. Cl.6: G03F 7/115, G03G 5/10

(21) Application number: 98110319.5

(22) Date of filing: 05.06.1998

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE Designated Extension States:

(30) Priority: 06.06.1997 JP 165356/97 25.03.1998 JP 96720/98

(71) Applicant: Fuji Photo Film Co., Ltd. Kanagawa-ken (JP)

AL LT LV MK RO SI

(72) Inventors:

· Naruse, Yasuhito Minami-Ashigara-shi, Kanagawa-ken 258 (JP)

· Shinoda, Kenji Minami-Ashigara-shi, Kanagawa-ken 258 (JP)

(74) Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 80538 München (DE)

(54) Photosensitive lithographic plate and process for producing same

In a photosensitive lithographic plate including a photosensitive layer coated on the surface of a substrate and a mat layer formed on the photosensitive layer, plural resinous protrusions are provided on the back surface of the substrate in the form of a layer. Deterioration of vacuum adhesion due to the mat collapsed in a production process of a photosensitive lithographic plate including a step of winding is prevented, consequently, a photosensitive lithographic plate with uniform quality is obtained regardless of its wound position.

FIG. 1

FIELD OF THE INVENTION

The present invention relates to a photosensitive lithographic or planographic plate and process for preparing, more especially to a photosensitive lithographic plate capable of wound into a coiled form and its production process.

DESCRIPTION OF THE RELATED ART

Up to this time, various techniques have been proposed concerning the production of a photosensitive lithographic plate one of which includes a step of matting the surface of a photosensitive lithographic plate for improving its vacuum adhesion, or complete contact. By the way, onto this photosensitive lithographic plate an image is formed by the following process. In an imagewise exposing step, a film original is superimposed on 20 the photosensitive lithographic plate, and light is exposed through the film original to focus the original image on a photosensitive layer of the photosensitive lithographic plate. Here, in order to obtain a sharp image, light-exposing is required after making completely the original film in complete contact with the photosensitive layer of the photosensitive lithographic plate so as not to result defocusing the exposed image from their interspace. To this end, there has been generally put into practice a process of making a photosensitive lithographic plate in complete contact with a film original which includes steps of using a frame for vacuum exposing equipped with a glass plate and a rubber sheet, placing the photosensitive lithographic plate and the film original superimposed thereon between the 35 glass plate and the rubber sheet into the frame for exposing, and evacuating the interspace of the glass plate and the rubber sheet (hereinafter referred to as "vacuum contact process"). Here, matting the photosensitive layer, which is disclosed in Japanese Patent Kokai Publication No. JP-A-51-111102 (1976), is considered effective to markedly shorten a time required for tight vacuum adhesion to high extent, and it is put into practice now. Technologies concerning the formation of such a fine uneven pattern (matting) are disclosed in, for example, US Patent No. 4,126,289 which corresponds to Japanese Patent Kokai Publication No. JP-A-51-96604 (1976) and Japanese Kokai Publication No. JP-A-55-12974 (1980). Besides, Japanese Patent Kokai Publication No. JP-A-7-132688 (1995) discloses a process for preparing a substrate for a photosensitive lithographic plate, which includes a step of forming an uneven pattern on the back surface of the substrate with the substrate itself, thereby a photosensitive lithographic plate which is light in weight, very savable of resources and excellent in flatness is made possible to be provided notwithstanding it has the same thickness as that of the conventional one.

SUMMARY OF THE DISCLOSURE

However, the mat provided on the photosensitive layer surface by the application of the above processes causes a problem, especially when a photosensitive lithographic plate is prepared in a process including a step of winding the photosensitive lithographic plate into a coil that the mat is collapsed by a pressure generated in a coil by winding, especially, near a coil core so that the desired effect of shortening a time required for tight vacuum adhesion cannot be obtained. Explaining more in detail, the photosensitive lithographic plate wound near the core requires a lot of time for making it complete contact with the film original in light-exposing, thereby, operational time required for plate making step cannot be shortened as well as there is the possibility of deteriorating the sharpness of image by the air residual between the photosensitive lithographic plate and the film original in the course of light-exposing.

In addition, the process disclosed in Japanese Patent kokai publication No.JP-A-7-132688 (1995) makes it possible to prevent the collapse of the mat, but involves a problem that flaws are produced on the photosensitive layer by the unevenness formed on the back surface of the photosensitive lithographic plate during winding, processing or transporting.

Therefore, it is an object of the present invention to provide a photosensitive lithographic plate and its production process in which the deterioration of vacuum adhesion due to the mat collapsed in a production process of a photosensitive lithographic plate including a step of winding is prevented, consequently, a photosensitive lithographic plate with uniform quality is obtained regardless of its coiled position.

Further objects of the present invention will become apparent in the entire disclosure.

The inventors of the present invention studied to prevent the collapse of the mat in a process of preparing a photosensitive lithographic plate including a step of winding, and achieved the present invention. In order to solve the above problems, a first aspect of a photosensitive lithographic plate according to the present invention includes a plurality of resinous protrusions provided on the back surface of a substrate in a layer.

The substrate has a photosensitive layer coated on the surface of the substrate and a mat layer formed on the photosensitive layer. Especially preferable process for preparing the photosensitive lithographic plate includes a step of coating a resin on the back surface of the substrate. In addition, in the second aspect of view, the plural projections have an average height in a central line of 4 to 30 µm relative to the back surface of the photosensitive lithographic plate. According to the photosensitive lithographic plate of the present invention having such features as described above, a winding pressure generated in a wound up coil is applied through the protrusions defined above so that winding can be performed without affecting pressure onto the

10

30

mat provided n the photosensitive layer surfaces. Thereby, the deterioration of vacuum tight adherence due to the collapse of the mat is prevented. Further, conditions of the mat are independent of the wound photosensitive lithographic plate position, and the photosensitive lithographic plate has a uniform quality due to vacuum adhesion, consequently, the vacuum adhesion can be achieved within a predetermined shortened time.

Moreover, no matter whether there is a winding step in the course of manufacturing or not, load is absorbed at the aforementioned protrusions so that the endurance of the photosensitive lithographic plate to load is significantly improved. Still more, the protrusions in the form of a layer are provided on the back surface of the substrate, and the photosensitive lithographic plate is supported by the protrusions even on a printer to be applied, consequently, in proportion to the formed protrusions the use amount of a substrate material can be reduced, thereby, the material cost of interest can be saved to provide a photosensitive lithographic plate at a low cost.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 is a cross sectional view of a photosensitive lithographic plate relating to an embodiment of the present invention.

PREFERRED EMBODIMENTS OF THE INVENTION

The preferred embodiments of the present invention will be explained below. Fig. 1 shows a cross-sectional structure of a photosensitive printing plate. With reference to Fig. 1, on the surface of a substrate 1 for a photosensitive printing plate, a photosensitive layer 2 is coated; on the photosensitive layer, a mat layer 3. On the back surface of the substrate 1 plural resinous protrusions 4 are formed in a layered fashion. As to the substrate 1, an aluminum plate is usually used.

The aluminum plate used in a photosensitive lithographic plate according to the present invention is selected from pure aluminum plate, alloy plate including aluminum mainly and a very small quantity of foreign elements and plastic film on which aluminum is mixed or deposited. Examples of, the foreign element included in the aluminum alloy are silicon, iron, nickel, manganese, copper, magnesium, chromium, zinc, bismuth, titanium, vanadium and the like. Usually, those disclosed in ALU-MINUM HANDBOOK, 4-th edition 1990, Keikinzoku Kyokai (Light Metal Association, Japan), which have been hitherto known, e.g., JIS A 1050 material, JIS A 3103 material, JIS A 3005 material, JIS A 1100 material, JIS 3004 material, or in order to increase tensile strength, alloy including 5 % or less by weight of magnesium added thereto are used. Otherwise, an aluminum plate prepared by the process in which interim annealing is skipped is also used. Roll finish may be plane finish r mill finish.

The aluminum plate may be prepared by the usual process of DC casting or by continuous casting and rolling. As to the process of continuous casting and rolling, rolling process by dual rolls, belt-casting process, block-casting process or the like can be applied. The thickness of the aluminum plate used in the present invention ranges approximately from 0.1 to 0.6 mm.

On the substrate of a photosensitive lithographic plate according to the present invention one of the following photosensitive layers can be provided.

[I] In the case of providing a photosensitive layer of novolak resin including o-napthoquinonediazide sulfonate and phenol-cresol:

O-quinonediazide compound is o-naphthoquinonediazide compound, which is disclosed in many of publications including, for example, each specification of U.S. Pat. Nos. 2,766,118, 2,767,092, 2,772,972, 2,859,112, 3,102,809, 3.106.465, 3.635,709 and 3,647,443. Those disdosed in these references may be used preferably. Among them, especially preferable ones are o-napthoquinonediazide sulfonate or carboxylate of aromatic hyroxyl compounds and o-naphthoquinonediazide sulfonamide or carboxyamide of aromatic amino compounds; especially excellent ones are esterification products, of pyrogallol-acetone condensation product and o-naphthoquinonediazide sulfonic acid, which are disclosed in the specification of U.S. Pat. No. 3,635,709; esterification products, of polyester having a hydroxyl group at the terminal and o-naphthoquinonediazide sulfonic or carboxyl acid, which are disclosed in the specification of U.S. Pat. No. 4,028,111; esterification products of p-hydroxylstyrene homopolymer or copolymer with copolymerizable monomer and onaphthoquinonediazide sulfonic acid or carboxyl acid, as disclosed in the specification of British Patent Publication No. 1,494,043; amide reaction products, of p-aminostyrene copolymer with other copolymerizable monomer and o-naphthoquinonediazide sulfonic acid or carboxyl acid.

These o-quinonediazide compounds may be used solely, but preferably in combination with an alkali-soluble resin. Preferable alkali-soluble resins include novolak type phenol resin, more concretely, phenol-formaldehyde resin, o-cresol-formaldehyde resin, m-cresol-formaldehyde resin and the like. Further, it is more preferable to use the aforementioned phenol resin together with a condensation product of phenol or cresol, each of which is substituted by an alkyl group having 3 to 8 carbon atoms, and formaldehyde, as disclosed in the specification of U.S. Pat. No. 4,028,111.

Moreover, in order to form a visible image with exposure, one or more selected from o-napthoquinonediazide-4-sulfonylchloride, inorganic anianic

salts of p-diazophenylamine, trihalomethyloxadiazole compounds with or without benzofuran ring and the like, is added. On the other hand, as a colrant, triphenylmethane dye such as Victoria Blue BOH, Crystal Violet, Oil Blue and the like is used. Especially preferable dye is that disclosed in Japanese Patent Kokai Publication No.JP-A-62-293247 (1987).

Still more, as a fat-sensitizer, phenol substituted by alkyl group having 3 to 15 carbon atoms as disclosed in Japanese Patent Kokoku Publication No.JP-B-57-23253 (1982) may be added. These examples include tert-bytylphenol, N-octylphenol, novolac resin prepared by condensation of t-butylphenol and formaldehyde. Otherwise, o-naphthoquinonediazide-4-(or 5-)sulfonate of the above type novolak resin (disclosed in e.g., Japanese Patent Kokai Publication No.JP-A-61-242446 (1986)) may be added.

Then, in order to improve developed properties, such non-ionic surfactants as disclosed in Japanese Patent Kokai Publication No.JP-A-62-251740 (1987) may be added.

The above composition is dissolved in a solvent which can dissolve each of the aforementioned ingredients and coated on the substrate. Here, the solvent employed may be ethylene dichloride, cyclohexanone, methyl ethyl ketone, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether, 2-methoxyethyl acetate, 1-methoxy-2-propanol, 1-methoxy-2-propyl acetate, methyl lactate, ethyl lactate, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, water, N-methylpyrrolidone, tetrahydrofurfuryl alcohol, acetone, diacetone alcohol, methanol, ethanol, isopropanol, diethylene glycol dimethyl ether or the like. These solvent may be used solely or in combination.

A photosensitive composition including those ingredients is provided on the substrate in an amount of 0.5 to 30. g/m² in terms of its solid content.

[II] In the case of providing a photosensitive layer including diazo resin and water-insoluble hydrophobic high-molecular compound:

Examples of diazo resin include inorganic salt of diazo resin, which is an organic-solvent-soluble reaction product obtained by reacting a condensation product of p-diazodiphenylamine and formaldehyde or acetoaldehyde with hexafluorophosphate or tetrafluoroborate; organic-solvent-soluble organic salt of diazo resin as disclosed in U.S. Pat No. 3,300,309, which is a reaction product of the aforementioned condensation product with sulfonic acids such as p-toluenesulfonic acid or their salts, or with phosphinic acids such as benzenephosphinic acid or their salts, or with hydroxyl group-containing compounds such as 2,4-dihy-

droxybenzophenone, 2-hydroxy-4-methoxybenz - phenone-5-sulphonic acid or its salt; and the like.

Other ziazo resins preferably used in the present invention include a co-condensation product having structural units derived from: an aromatic compound having at least one organic group selected from carboxyl group, sulfonic group, sulfinic group, oxyacid group of phosphorus and hydroxyl group; and diazonium compound, preferably, aromatic diazonium compound. The above aromatic ring preferably includes phenyl or naphthyl group.

There are many kinds of the aforementioned aromatic compounds having at least one organic group selected from carboxyl group, sulfonic group, sulfinic group, oxyacid group of phosphorus and hydroxyl group. Among them those preferable are 4-methoxybenzoic acid, 3-chlorobenzoic acid, 2,4dimethoxy benzoic acid, p-phenoxybenzoic acid, 4anilinobenzoic acid, phenoxyacetic acid, phenylacetic acid, p-hydroxylacetic acid, 2,4-dihydroxyacetic acid, benzene sulfonic acid, p-toluenesulfinic acid. 1-naphthalene sulfonic acid, phenylphosphoric acid, phenylphosphonic acid. As to the aromatic diazonium compound which can be changed into the structural unit of the aforementioned cocondensation diazo resin product, such diazonium salts as disclosed in Japanese Patent Kokoku Publication No.JP-B-49-48001 (1974) may be used. Among them, diphenylamine-4-diazonium salts are especially preferable.

The diphenylamine-4-diazonium salts are derived from 4-aminodiphenylamines. Examples of these 4-aminodiphenylamines include 4-amin-4-amino-3-methoxydiphenylodiphenylamine, 4-amino-2-methoxydiphenylamine, 4'amino-2-methoxydiphenylamine, 4'-amino-4-methoxydiphenylamine, 4-amino-3-methyldiphenylamine, 4-amino-3-ethoxydiphenylamine, 4-amino-3-B-hydroxyethoxydiphenylamine, 4-aminodiphenylamine-2-sulfonic acid, 4-aminodiphenylamine-2calboxylic acid, 4-aminodiphenylamine-2'-carboxylic acid and the like. Especially preferable ones are 3-methoxy-4-amino-4-diphenylamine and 4-aminodiphenvlamine.

As to diazonium resins other than the co-condensation diazonium resin product prepared by using an aromatic compound having acid radical, diazonium resins, disclosed in Japanese Patent application Nos. 1-130493 (1989), 1-303705 (1989) and 2-53101 (1990), which are obtained by condensation with aldehyde having acid radical or its acetal compound can be preferably used.

Counter anions of the diazonium resin include anions which form stably salt with diazonium resin and make the diazonium resin soluble in an organic solvent. These include organic carboxylic acids such as decanoic acid; benzoic acid and the like; organic phosphoric acids such as phenylphosphoric acid; and sulfonic acids. Typical examples of these compounds include methanesulfonic acid; fluoroalkanesulfonic acids such as trifluoromethanesulfonic acid and the like; aliphatic and aromatic 5 sulfonic acids such as laury/sulphonic acid, dioctylsulfosuccinic acid, dicyclohexylsulfosuccinic acid, camphorsulfonic acid, tolyloxy-3-propanesulfonic acid, nonylphenoxy-2-propanesulfonic acid, nonylphenoxy-4-butanesulfonic acid, dibutylphe- 10 noxy-3-propanesulfonic acid, diamylphenoxy-3-propanesulfonic acid, dinonylphenoxy-3-propanesulfonic acid. dibutylphenoxy-4-butanesulfonic acid, dinonylphenoxy-4-butanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, mesitylenesulfonic acid, p-chlorobenzenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, sulfosalicylic acid, 2,5dimethylbenzenesulfonic acid, p-acetylbenzenesulfonic acid, 5-nitro-o-toluenesulfonic acid, 2nitrobenzenesulfonic acid, 3-chlorobenzenesulfonic acid, 3-bromobenzenesulfonic acid, 2-chloro-5nitrobenzenesulfonic acid, butylbenzenesulfonic acid, octylbenzenesulfonic acid, decylbenzenesulfonic acid, dodecylbenzenesulfonic acid, butoxybenzenesulfonic acid, dodecyloxybenzenesulfonic 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, isopropylnaphthalenesulfonic acid, butylnaphthalenesulfonic acid, hexylnaphthalenesulfonic acid, octylnaphthalenesulfonic acid, butoxynaphthalenesulfonic acid, dodecyloxynaphthalenesulfonic acid, dibutylnaphthalenesulfonic acid, dioctylnaphthalenesulfonic acid, triisopropylnaphthalenesulfonic acid, tributylnaphthalenesulfonic acid, 1-naphthol-5-sulfonic acid, naphthalene-1sulfonic acid, naphthaline-2-sulfonic acid, 1,8-dinitronaphthalene-3,6-disulfonic acid, dimethyl-5-sulfoisophthalate and the like; hydroxyl-groupcontaining aromatic compounds such as 2,2',4,4'tetrahydroxybenzophenone, 1,2,3-trihydroxybenzophenone, 2,2',4-trihydroxybenzophenone and the like; halogenated Lewis acids such as hexafluorophosphoric acid, tetrafluoroboric acid and the like; perhalogenic acids such as ClO₄, IO₄ and the like, but these compounds exemplified above never limit the present invention. Among them, especially preferable ones are butylnaphthalenesulfonic acid, dibutylnaphthalenesulfonic acid, hexafluoro-phosphoric acid, 2-hydroxy-4-methoxybenzophenone-5sulfonic acid and dodecylbenzenesulfonic acid.

The molecular weight of the diazonium resin used in the invention can be changed depending on the molar ratio of monomers and condensing conditions and may have arbitrary values, however, it is adequate to be approximately in the range of 400 to 100,000, preferably to be approximately in the range of 800 to 8,000 in order that the diazonium resin is effective for its use. The water-insoluble hydrophobic high-molecular compound may be

copolymer having one or more structural unit derived from the following monomers (1) to (15) and usually molecular weight of 10,000 to 200,000:

- (1) acrylamides, methacrylamides, acrylic esters, methacrylic esters, hydroxystyrenes, each of these having an aromatic hydroxyl group, for example, N-(4-hydroxyphenyl)acrylamide, N-(4-hydroxyphenyl)methacrylamide, o-,m-,p-hydroxystyrene and o-,m-p-hydroxyphenyl-acrylate or -methacrylate;
- (2) acrylic or methacrylic esters having an aliphatic hydroxyl group such as 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4hydroxybutyl methacrylate;
- (3) unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and the like;
- (4) substituted and unsubstituted alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, amyl acrylate, hexyl acrylate, cyclohexyl acrylate, octyl acrylate, benzyl acrylate, 2-chloroethyl acrylate, glycidyl acrylate, N-dimethylaminoethyl acrylate and the like;
- (5) substituted and unsubstituted alkyl methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, amyl methacrylate, cyclohexylmethacrylate, benzylmethacrylate, glycidyl methacrylate, N-dimethylaminoethyl methacrylate and the like;
- (6) acryl- or methacryl-amides such as acrylamide, methacriamide, N-methylolacrylamide, N-methylolacrylamide, N-hexylmethacrylamide, N-cyclohexylacrylamide, N-hydroxyethylacrylamide, N-phenylacrylamide, N-nitrophenylacrylamide, N-ethyl-N-phenylacrylamide and the like;
- (7) vinyl ethers such as ethyl vinyl ether, 2-chloroethyl vinyl ether, hydroxyethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, octyl vinyl ether, phenyl vinyl ether and the like;
- (8) vinyl esters such as vinyl acetate, vinyl chloroacetate, vinyl butylate, vinyl benzoate and the like;
- (9) styrenes such as styrene, α -methylstyrene, chloromethylstyrene and the like;
- (10) vinylketones such as methyl vinyl ketone, ethyl vinyl ketone, propyl vinyl ketone, phenyl vinyl ketone and the like;
- (11) olefins such as ethylene, propylene, isobutylene, butadiene, isoprene and the like;
- (12) N-vinylpyrrolidone, N-vinylcarbazole, 4-vinylpyridine, acrylonitrile, methacrylonitrile and the like;
- (13) unsaturated imides such as maleinimide, N-acryloylacrylimide, N-acetylmetacrylamide,

N-(p-chloroben-N-propionylmetacrylamide, zoyl)methacrylamide and the like;

(14) metacrylamides such as N-(o-aminosulfonylphenyl)methacrylamide, N-(m-aminosulfonylphenyl)methacrylamide, N-(p-aminosulfo- 5 nylphenyl)methacrylamide, N-(1-(3-aminosulfonyl)naphthyl)methacrylamide, N-(2-aminosulfonylethyl)methacrylamide; acrylamides having the same substituent group as disclosed above; methacrylic esters such as oaminosulfonylphenyl methacrylate, m-aminosulfonylphenyl methacylate, p-aminosulfonylphenyl methacrylate, 1-(3-aminosulfonylnaphthyl) methacrylate and the like; acrylic esters having the same substituent group as 15 disclosed above; and the like;

(15) unsaturated monomers having a crosslinkable group at the side chain thereof such as N-(2-(methacryloyloxy)-octyl)-2,3-dimethyl-

maleinimide, vinyl cinnamate and the like; and 20 copolymerization products of one or more of these monomer with other copolymerizable

(16) phenol resins disclosed in U.S. Pat. No. 3,751,257 and polyvinyl acetal resins such as 25 polyvinyl folmal resin, polyvinyl butyral resin; (17) alkali-soluble high-molecular compounds, obtained from polyurethane, disclosed in Japanese Patent Kokoku Publication No.JP-B-54-19773 (1979), Japanese Patent Kokai Publication Nos.JP-A-57-94747 (1982), JP-A-60-182437 (1985), JP-A-62-58242 (1987), JP-A-62-123452 (1987), JP-A-62-123453 (1987), JP-A-2-146042 JP-A-63-113450 (1988), (1990).

Preferable molecular weight of the above copolymer ranges from 10,000 to 200,000. To the copolymer one or more selected from polyvinyl butyral resin, polyurethane resin, polyamide resin, epoxy resin, novolak resin, natural resin and the like may be added.

To the photosensitive composition of the present invention may also include one or more dyes for the purpose of obtaining a visible image after exposing and developing. Examples of dyes which change color to colorlessness or to different one include triphenylmethane, diphenylmethane, oxazine, xanthene, iminonaphthoquinone, azomethine or anthraquinone dyes such as Victoria Pure Blue BOH (trade name of Hodogaya Chemical Co., Ltd.), Oil Blue #603 (Orient Chemical Industry Co., Ltd.), Patent Pure Blue (Sumitomo Sangoku Chemical Co., Ltd), Crystal Violet, Brilliant Green, Ethyl Violet, Methyl Violet, Methyl Green, Erythrosine B, Basic Fuchsine, Malachite Green, Oil Red, m-cresol purple, p-damine B, Auramine, 4-pdiethylaminophenyl iminonaphthoquinone, cyanop-diethylaminophenylacetoanilide and the like.

On the other hand, examples of dyes which change colorlessness to color include leuco dyes; and primary and secondary arylamine dves such as triphenylamine, diphenylamine, ochloroaniline, 1,2,3-triphenylguanidine, naphthylamine, diaminodiphenylamine, p,p'-bisdimethylaminodiphenylamine, 1,2-dianilinoethylene, p,p',p"trisdimethylaminotriphenylmethane, p,p'-bisdimethp,p',p"-triamino-oylaminodiphenylmethylimine, p,p'-bisdimethylaminmethyltriphenylmethane. odiphenyl-4-anilinohaphtylmethane, p,p',p"-triaminotriphenylmethane and the like. Preferable ones are triphenymetane and diphenylmethane dyes; more preferable, triphenylmethane dyes; especially preferable, Victoria Pure Blue BOH.

To the photosensitive composition of the present invention, various kind of additives may be also incorporated. Examples of these additives include alkyl ethers, for improving coating properties, such as ethyl cellulose and methyl cellulose; fluoro- and nonionic surfactants, (especially, fluorosurfactants are preferable); plasticizers, for imparting flexibility and wear resistance to a film coated on the substrate, such as butyl phthalyl, polyethylene glycol, tributyl citrate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, tricresyl phosphate, tributyl phosphate, trioctyl phosphate, tetrahydrofurfuryl oleate, oligomer or polymer of acrylic or methacrylic acid, (especially, tricresyl phosphate is preferable among them); fatsensitizers, for improving fat-sensitivity of the image portion, including those disclosed in Japanese Patent Kokai Publication No.JP-A-55-527 (1980), such as half-esterification product of a styrene-maleic anhydride copolymer and alcohol, novolak resin, e.g., p-tert-butylphenol-formaldehyde resin, 50 % fatty acid ester of p-hydroxystyrene; stabilizers including phosphoric acid, phosphorous acid, organic acids such as citric acid, oxalic acid, dipicolinic acid, benzenesulfonic acid, naphthalenesulfonic acid, sulfosalicylic acid, 4-methoxy-2hydroxybenzophenone-5-sulfonic acid, tartaric acid and the like; and developing accelerators such as higher alcohols, acid anhydrides and the like.

A layer of the aforementioned photosensitive composition may be provided on a substrate by preparing a coating solution of the photosensitive composition by dissolving a predetermined amount of photosensitive diazonium resin, hydrophobic highmolecular compound, and if necessary, various kind of additives into an adequate solvent; applying the resultant coating solution on the substrate; and then drying the resultant coating. Examples of the solvent include methyl cellosolve, ethyl cellosolve, dimethoxyethane, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, 1-methoxy-2-propanol, methyl cellosolve acetate, acetone,

35

methyl ethyl ketone, methan I, dimethylformamide, dimethylacetamide, cyclohexanone, dioxane, tetrahydrofuran, methyl lactate, ethyl lactate, ethylene dichloride, dimethyl sulfoxide, water or the mixture thereof.

Single kind of the above solvent may be used, however, it is preferable to use a mixture of highboiling point solvent, such as methyl cellosolve, 1-methoxy-2-propanol and methyl lactate, with low-boiling point solvent such as methanol and methyl ethyl ketone. The solid content of the photosensitive composition in coating is desirable in the range of 1 to 50 % by weight. In this case, the coating weight of the photosensitive composition may approximately range from 0.2 to 10 g/m², preferably from 0.5 to 3 g/m² in terms of the weight after drying.

[III] In the case of providing a photosensitive layer including a photodimerizable or photopolimerizable 20 composition:

The photodimerizable composition includes a polymer having one or more of maleimide group, cinnamyl group, cinnamoyl group, cinnamylidene group, cinnamylideneacetyl group and chalcone group at the side or main chain thereof. Polymers having maleimide group at their side chain may be found in Japanese Patent Kokai Publication No.JP-A-52-988 (1977) (corresponding U.S. Pat. No. 4,079,041), the specification of German Patent publication No. 2,626,769, the specifications of European Patent Publication Nos. 21,019 and 3,552, Die Angewandte Makromolekulare Chemie Vol. 115 (1983), p. 163 to 181, Japanese Patent Kokai Publication Nos. JP-A-49-128991 (1974), JP-A-49-128892 (1974), JP-A-49-128993 (1974), JP-A-50-5376 (1975), JP-A-50-5377 (1975), JP-A-50-5379 (1975), JP-A-50-5378 (1975), JP-A-50-5380 (1975), JP-A-53-5298 (1978), JP-A-53-5299 (1978), JP-A-50-5300 (1978), JP-A-50-50107 (1975), JP-A-51-47940 (1976), JP-A-52-13907 (1978), JP-A-50-45076 (1975), JP-A-52-121700 (1977), JP-A-50-10884 (1975)and JP-A-50-45087 (1975), German Patent Publication Nos. 2,349,948 and 2.617.276.

In order to make these polymers soluble or swellable in an alkali solution, carboxylic acid, sulfonic acid, phosphoric acid, phosphoric acid or their alkali metal or ammonium salt may be effective, or otherwise, incorporating an acid radical or the like, having pKa of 6 to 12 and capable of dissociating in an alkali water, into the polymer in question may be effective. It is possible to copolymerize 1 to 3 kind of monomers having the above acid radical with monomers having a maleimide group, if necessary.

The acid value of a maleimide polymer having the acid radical preferably ranges from 30 to 300.

Among polymers having such range of acid value, copolymers, of N-[2-(methacryloyloxy)ethyl]-2,3dimethylmaleimide and mathacrylic or acrylic acid, as disclosed in Die Angewandte Makromolekulare Chemie Vol. 128 (1984), p. 71 to 91 are useful. In synthesizing these polymers, copolymerizing further third ingredient of vinyl monomer in addition to the aforementioned monomers makes it possible to synthesize easily a tailored-to-fit terpolymer or the like multi-copolymer. When the third ingredient of vinyl monomer is alkyl methacrylate or acrylate whose homopolymer has glass transition temperature which is not more than room temperature, flexibility may be imparted to the synthesized copolymer. Examples of photocrosslinkable polymers, which have one or more of cinnamyl group, cinnamoyl group, cinnamylidene group, cinnamylideneacetyl group and chalcone group at the side or main chain thereof, include a potosensitive polyester disclosed in U.S Pat. No. 3,030,208 and the specifications of U.S. Patent Application Nos. 709,496 and 828,455.

Alkali-water-soluble photosensitive polymers obtained from these photocrosslinkable polymers include those disclosed in the specification of Japanese Patent Kokai Publication No.JP-A-60-191244 (1985), or otherwise, these disclosed in each specification of Japanese Patent Kokai Publication Nos. JP-A-62-175729 (1987), JP-A-62-175730 (1987), JP-A-63-25443 (1988), JP-A-63-218944 (1988) and JP-A-63-218945 (1988).

To the photosensitive layer containing these photosensitive polymers a photosensitizer may be also added. Examples of the photosensitizer include benzophenone derivatives, benzanthrone derivatives, quinones, aromatic nitro compounds, naphthothiazoline derivatives, benzothiazoline derivatives, thioxanthones, naphthothiazole derivatives, ketocoumarin compounds, benzothiazole derivatives, naphthofuranone compounds, pyrylium salts, thiapyrylium salts and the like. If necessary, to the photosensitive layer, binder, plastisizer or other additives may be added. Examples of the binder include chlorinated polyethylene, chlorinated polypropylene; alkyl polyacrylates; copolymers obtained by copolymerization of monomers including at least one of alkyl acrylate, acrylonitrile, vinyl chloride, styrene, butadiene; polyamide, methyl cellulose; polyvinylformal; polyvinyl butyral; methacrylic copolymer; acrylic copolymer; itaconic copolymer and the like. Examples of the plastisizer include dialkyl phtalates such as dibutyl phthalate, dihexyl phthalate; oligoethylene glycol alkyl ester; phosphoric ester and the like. It is preferable to add dye, pigment or pH indicator and the like as a printing agent for the purpose of coloring the photosensitive laver.

The photopolymerizable composition includes

one or more of unsaturated calboxylic acid and its salts; ester of unsaturated calboxylic acid and multifunctional aliphatic alcohol compound; amide of unsaturated calboxylic acid and multifunctional aliphatic amine compound; and the like. A photopo- 5 lymerization initiator includes vicinal polyketaldonyl compound, a-carbonyl compound, acyloin ether; aromatic acyloin compound whose a-position is substituted by hydrocarbon, polynuclear quinone compound, combination of triallylimidazole dimer and p-aminophenyl ketone, benzothiazole type compound, trihalomethyl-s-triazine, acridine, phenazine compound, oxadiazole compound and the like. A polymer, which is soluble or swellable in an alkali water as well as film-formable and used together with the aforementioned ingredients, includes copolymer of benzyl (metha)acrylate/methacrylic acid/if necessary, other additionpolymerizable vinyl monomer, copolymer of methacrylic acid/methyl methacrylate (or other methacrylate), adduct of maleic anhydride copolymer with pentaerythritol triacrylate by half esterification, acidic vinyl copolymer and the like.

[IV] Electrophotographic photosensitive layer: For example, a photosensitive ZnO layer disclosed in U.S. Pat. No. 3,001,872 may be provided. An photosensitive layer employed in an electrophotographic photoreceptor disclosed in Japanese Patent Kokai Publication Nos.JP-A-56-161550 30 (1981), JP-A-60-186847 (1985) and JP-A-61-238063 (1986) may also be provided.

The amount of the photosensitive layer to be provided on the substrate ranges from about 0.1 to about 7 g/m², preferably from 0.5 to 4 g/m². In the present invention, an intermediate layer may be provided for improving adhesion between the substrate and the photosensitive layer, preventing the photosensitive layer from remaining after developing, or inhibiting halation.

In order to improve the adhesion, the intermediate layer generally includes diazonium resin and adhesive compound to aluminum such as phosphoric acid compound, amino compound, calboxylic acid compound and the like. Further, the intermediate layer requires high solubility so as not to remain the photosensitive layer after developing and generally includes highly soluble and/or water soluble polymer. Further, in order to inhibit halation, the intermediate layer generally includes dye and/or UV-absorbing agent. The thickness of the intermediate layer can be adjusted arbitrarily, but should be adjusted enough to proceed a uniform bond-forming reaction with the upper layer of the photosensitive layer by exposure. For this reason, it is preferred that the thickness of the intermediate layer ranges generally from about 1 to 100 mg/m², especially from 5 to 40 mg/m².

On the coated photosensitive layer, protrusi ns may be provided independently to each other to form a mat layer. The object of forming this mat layer is to improve the vacuum adhesion between a reversed-image film and the photosensitive lithographic plate at the time of imagewise exposing with complete contact, consequently, to shorten the evacuating time as well as to prevent the deformation of microscopic dots (pixels) ascribable to insufficient contact at the time of imagewise exposing.

Examples of a process for preparing the mat layer include: that disclosed in Japanese Patent Kokai Publication No.JP-A-55-12974 (1980) which has steps of heat-fusing and adhering solid powders after powdering; that disclosed in Japanese Patent Kokai Publication No. JP-A-58-182636 (1983) which has steps of spraying and drying polymer-containing water; and the like. Any process can be applied. However, it is desirable that the mat layer itself can be dissolved in or removed with an aqueous alkaline developing solution which does not contain substantially an organic solvent.

On the photosensitive lithographic plate thus prepared, resinous image is formed in accordance with the conventional technique by treatments including development after imagewise exposing. For example, in the case of the photosensitive lithographic plate having the aforementioned photosensitive layer [I], light-exposed portion is removed away by developing with such an aqueous alkali solution as disclosed in the specification of U.S. Pat. No. 4,259,434 after imagewise exposing to obtain a lithographic plate; and in the case of the photosensitive lithographic plate having the aforementioned photosensitive layer [II], unexposed portion by light is removed away by developing with such a developer as disclosed in the specification of U.S. Pat. No. 4,186,006 after imagewise exposing to obtain a lithographic plate. Alternatively, an aqueous alkaline developer composition as disclosed in Japanese Patent Kokai Publication Nos.JP-A-59-84241 (1984), JP-A-57-19252 (1982) and JP-A-62-24263 (1987) may be used in developing for obtaining a positive lithographic plate.

The following explanation is on the preferred embodiments of the present invention. Less than 4 μm of an average height in a central line of the protrusions tends to make it difficult to prevent efficiently the collapse of the mat. In this contrast, more than 30 μm of the average height tends to make it difficult to ensure the strength of a substrate in the photosensitive lithographic plate. More preferable average height in the central line of the projections ranges from 5 to 20 μm . Preferably the protrusions are made of a resin, which enables to prevent effectively the photosensitive layer from damages arising in the course of manufacturing.

Although the density of the protrusions is differ-

ent in dependent on the size of each pr jections, it is preferable not more than 5,000/cm² in terms of their numbers, more preferable in the range of 100 to 4000/cm². The protrusi ns may be in the shape of a dot, a stripe, a lattice or any other design sincluding company-identifying mark or the like.

Preferable material of the protrusions includes styrene, acrylic ester, acrylic copolymer and polyester. Other materials such as a variety of aqueous resins, thermoplastic resins, thermosetting resins, EB curable resins and UV curable resins can be used for forming the protrusions.

In forming the protrusions, screen coating or hot-melt spray coating is preferably applied. Other preferable processes for forming the protrusions include gravure coating, die coating, bar coating, electrostatic spray coating and electrostatic powder coating. Other processes than those described above may be employed for forming the protrusions.

As to the materials and production processes of the substrate, the photosensitive layer, the mat layer and the like, those disclosed in Japanese Patent Kokai Publication No.JP-A-7-132688 (1955) may be referred and incoporated here in this specification, if necessary.

EXAMPLES

Concrete examples of the present invention will be 30 described as follows.

(Comparative Example 1)

One surface of an aluminum plate having a thickness of 0.240 mm was grained (roughened) with a nylon brush and an aqueous suspension of 400 mesh Pamiston, rinsed in water, dipped into an aqueous tribasic sodium phosphate solution of 70 °C, then rinsed in water and dried. Next, 1 parts by weight of polyhydroxyphenyl naphthoquinone-1,2-diazid-5-sulfonate obtained from polycondensation of acetone and pyrogallol disclosed in Japanese Patent Kokoku Publication No.JP-B-43-28403 (1968) and 2 parts by weight of a novolac phenol-formaldehyde resin were dissolved into a mixture of 20 parts by weight of 2-methoxyethylacetate and 20 parts by weight of methyl ethyl ketone to prepare a photosensitive solution. By coating the thus prepared photosensitive solution on the grained surface of the above substrate and then drying, a photosensitive layer was coated on the substrate.

Subsequently, by using a rotational electrostatic spray coater at 20,000 rpm and 20 cc/min. of a coating supply speed into the coater a matting agent was coated on the above photosensitive layer. The matting agent containing a copolymer of acrylic ester, acrylic acid and methacrylic acid was used. The molar ratio of acrylic ester/acrylic acid/methacrylic acid at the time of

polymerization was 30/30/40.

The thus prepared photosensitive lithographic plate was wound 5000 m at a winding step and cut into pieces at a subsequent processing step, and after sampling the pieces of the most outer and inner parts in the wound plate, the time of these samples required for vacuum adhesion was measured. As a result, the time required for vacuum adhesion of the outer sample was 30 seconds, and that of the inner sample 60 seconds. By the observation of a mat adhering state in both of the samples with a scanning electron microscope it was turned out that no remarkable damage was observed in the mat of the outer sample, but that collapses considered to be generated by a pressure caused by winding were observed in the mat of the inner sample.

(Reference Example 1)

Before the winding step of the photosensitive lithographic plate prepared in the same procedure of Comparative Example 1 (and Example 1), on the back surface of the substrate a 15 % aqueous solution of styrene, acrylic ester and acrylic acid was coated by applying screen coating and then drying was made to form a dot-appearing layer of about 1,000 protrusions per 1 cm2 having radii of about 80 µm, average surface roughness in the central line of 3 μm and average height in the central line of 1.8 μm. The thus prepared photosensitive lithographic plate was wound 5,000 m and cut into pieces at a subsequent processing step, and after sampling the pieces of the most outer and inner parts in the wound plate, the time of these samples required for vacuum adhesion was measured. As a result, the time required for vacuum adhesion of the outer sample was 30 seconds, however, as to the inner sample 50 seconds were required for vacuum adhesion. By the observation of the mat adhering state in both of the samples with a scanning electron microscope it turned out that no remarkable damage was observed in the mat of the outer sample, but that collapses considered to be generated by a pressure due to winding were observed in the mat of the inner sample.

(Example 1)

Before the winding step of the photosensitive lithographic plate prepared in the same procedure of Comparative Example 1, on the back surface of the substrate a 30 % aqueous solution of styrene, acrylic ester and acrylic acid was coated by applying screen printing and then drying was made to form a dotappearing layer of about 1,000 projections per 1 cm² having radii of about 70 μm , average surface roughness in the central line of 10 μm and average height in the central line of 5.8 μm . The thus prepared photosensitive lithographic plate was wound 5,000 m and cut into pieces at a subsequent processing step, and after sampling the pieces of the most outer and inner parts in the

wound plate, the time of these samples required for vacuum adhesion was measured. As to the both of the samples, the time required for vacuum adhesion was 30 seconds. By the observati n of the mat adhering state in both of the samples with a scanning electron microscope it turned out that no remarkable damage was observed in the mat of the both samples. The protrusions provided on the back surface of the substrate can be dissolved at a developing step so that the same handling as Comparative Example 1 can be employed even in the printing step.

(Example 2)

Before the winding step of the photosensitive lithographic plate prepared in the same procedure of Comparative Example 1 except that an aluminum plate of 0.220 mm in thickness was used as a substrate, on the back surface of the substrate a polyester was coated by applying a hot-melt spray coating and then calendering was made to form a dot-appearing layer of about 200 protrusions per 1 cm² having radii of about 400 μm, average surface roughness in the central line of 20 µm and average height in the central line of 18 μ m. The thus prepared photosensitive lithographic plate was wound 5,000 m and cut into pieces at a subsequent processing step, and after sampling the pieces of the most outer and inner parts in the wound plate, the time of these samples required for vacuum adhesion was measured. As to the both of the samples, the time required for vacuum adhesion was 30 seconds. By the observation of a mat adhering state in both of the samples with a scanning electron microscope it turned out that no remarkable damage was observed in the mat of the both samples. The polyester remained on the back surface of the photosensitive lithographic plate even after plate making so that apparent thickness on a printer was not changed, thereby the same handling as Comparative Example 1 could be employed even in the printing step.

(Comparative Example 2)

An aluminum plate of 0.220 mm in thickness (same as that of Example 2) was used. Before coating to form a photosensitive layer, graining (roughening) with a nylon brush and aqueous suspension of 200 mesh Pamiston, rinsing in water, dipping into an aqueous tribasic sodium phosphate solution of 70 °C, then rinsing in water and drying were carried out. In this way, onto the back surface of a photosensitive lithographic plate a 50 dot-appearing layer of about 3,000 protrusions per 1 cm² having an average surface roughness in the central line of 20 µm and an average height in the central line of 12 µm was formed. The thus prepared photosensitive lithographic plate was wound 5,000 m and cut into 55 pieces at a subsequent processing step, and after sampling the pieces of the most outer and inner parts in the wound plate, the time of these samples required for vac-

uum adhesion was measured. As to the both samples, the time required for vacuum adhesion was 30 seconds. By the observation of the mat adhering state in both of the samples with a scanning electron microscope it turned out that the mat of the both samples had slight flaws and that remarkable abrasion marks (scores) were observed on the photosensitive layer. In the printing step, the same handling as Comparative Example 1 could be employed.

These examples disclosed above proves that Examples 1 and 2 of the present invention made it possible to prevent the deterioration of vacuum adhesion resulting from the mat collapsed in the production process of the photosensitive lithographic plate including the step of winding.

Further, these examples disclosed above are based on the experiments which led the present invention to be accomplished, and accordingly never limit the scope of the invention. Various modifications can be made in accordance with the disclosure of the present specification and drawings.

The meritorious effects of the present invention are summarized as follows.

According to the present invention, by the protrusions provided on a substrate, the deterioration of vacuum adhesion due to the collapse of a mat is prevented, and the mat state is held independent of the wound position of the photosensitive lithographic plate, thereby the photosensitive lithographic plate provides a uniform quality in making vacuum adhesion so that complete contact can be made within a predetermined shortened time. Further, no matter whether there is a winding step involved in the course of manufacturing or not, the resistance of the photosensitive lithographic plate to the load is significantly improved. Moreover, the protrusions in the form of a layer are provided on the back surface of the substrate so that in proportion to the laminated protrusions the use amount of a substrate material is reduced, thereby, the material cost of interest can be saved to provide a photosensitive lithographic plate at a low cost. Still more, the projections can be made easily at a low cost by coating a resin on the back surface of the substrate so that degrees of freedom in designing the pattern of the protrusions become high, consequently, added values can be enhanced e.g., by drawing a desired mark on the back surface of the substrate.

It should be noted that modification obvious in the art may be done without departing the gist and scope of the present invention as disclosed herein and claimed hereinbelow as appended.

Claims

 A photosensitive lithographic plate comprising a substrate, a photosensitive layer coated on a surface of said substrate, and a mat layer formed on said photosensitive layer,

wherein a plurality of resinous protrusions

are provided in a layer on the back surface of said substrate.

- A photosensitive lithographic plate comprising a photosensitive layer and plural protrusions having an average height in central line of 4 to 30 µm on the surface of the photosensitive lithographic plate opposite to the photosensitive layer.
- The photosensitive lithographic plate as defined in claim 1 or 2, wherein at least 50 % of said protrusions have a 80 to 120 % height of an average height from the back thereof.
- 4. The photosensitive lithographic plate as defined in any one of claims 1 to 3, wherein said protrusions are made of a soluble resin in a developer solution for developing the photosensitive lithographic plate.
- 5. The photosensitive lithographic plate as defined in any one of claims 1 to 3, wherein said protrusions are made of a insoluble resin in a developer solution for developing the photosensitive lithographic plate.
- The photosensitive lithographic plate as defined in any one of claims 1 to 5, wherein said protrusions have dot-appearing shape.
- The photosensitive lithographic plate as defined in any one of claims 1 to 5, wherein said protrusions have striped shape.
- 8. A process for preparing a photosensitive lithographic plate comprising :

providing a photosensitive layer coated on the surface of a substrate of said substrate and providing a mat layer formed on said photosensitive layer,

wherein a resin is coated on the back surface of said substrate to provide plural protrusions made of said resin in the form of a layer.

45

50

55

FIG. 1

EUROPEAN SEARCH REPORT

Application Number EP 98 11 0319

	DOCUMENTS CONSIDER		Υ	
Category	Citation of document with indica of relevant passage		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	US 4 781 941 A (INUKAI YUZO ET AL) 1 November 1988 * column 2, line 63 - line 65 * * column 7, line 57 - line 59 * * column 11, line 15 - line 27 *		1-6,8	G03F7/115 G03G5/10
Y	DATABASE WPI Section Ch, Week 8644 Derwent Publications L Class A89, AN 86-28952 XP002075438 & JP 61 213 843 A (FUX * abstract *	24	1-8	
Y	DATABASE WPI Section Ch, Week 8848 Derwent Publications Ltd., London, GB; Class A89, AN 88-341847 XP002075439 & JP 63 253 941 A (FUJI PHOTO FILM CO LTD) * abstract *		1-8	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
Y	PATENT ABSTRACTS OF JA vol. 011, no. 168 (M-5 & JP 62 001586 A (FUC January 1987 * abstract *	594), 29 May 1987	1-8	G03F G03G
	The present search report has been	n drawn up for all claims		
	Place of search	Date of completion of the search	'	Examiner
	THE HAGUE	25 August 1998	Phi	losoph, L
X : part Y : part doct A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with another ument of the same category mological background i-written disclosure mediate document	T: theory or principle E: earlier patent doc after the filing dat D: document cited to L: document cited for 8: member of the sa	cument, but public en the application or other reasons	ished on, or