

a. 1234_{10} b. $0,567_{10}$ c. $12,23_{10}$ d. 8900000_{10} e. $0,000001_{10}$

Organización del Computador - UNGS

Práctica - Sistemas de numeración -2024

1. Expresar los siguientes números en base 10 como la suma de cada dígito por su peso:

3. Convertir de binario a decimal sumando el peso de cada dígito, utilizar el ejercicio 2:

2. Calcule las potencias de 2 desde 2º hasta 2¹6 y desde 2¹ hasta 2º6.

a. 1000_2 b. 111_2 c. 1110_2 d. 10101010_2		g. 0,1 ₂ h. 0,001 ₂ i. 100,001 ₂ j. 10101100,111 ₂	
	al a binario usando divisiones y dígitos de precisión en la parte	y multiplicaciones sucesivas según correfraccionaria:	sponda
 a. 15₁₀ b. 127₁₀ c. 513₁₀ 	e. 0.5_{10} f. 0.55_{10} g. 0.1_{10} h. 0.01_{10}	i. 12,125 ₁₀ j. 1024,99 ₁₀ k. 1000,11 ₁₀	
	s números de la tercera colui fraccionaria. Utilizar divisiones y	mna del ejercicio 4. Calcular hasta 2 di y multiplicaciones sucesivas.	ígitos de
 6. Convertir de base 8 a a. 1234₈ b. 0,02₈ c. 77,3₈ 	a base 10:	d. 10000₈e. 0,74₈	
		a columna del ejercicio 4, usando divis dígitos de precisión en la parte fraccionaria	•
 8. Convertir de hexadeo a. 1234₁₆ b. CC,8₁₆ c. 0,2₁₆ 	cimal a decimal:	d. 888,F ₁₆ e. ADE ₁₆	

9. Completar la siguiente tabla usando cuatro dígitos para los números binarios:

Decimal	Binario	Octal	Hexa	Decimal	Binario	Octal	Hexa
0				8			
1				9			
2				10			
3				11			
4				12			
5				13			
6				14			
7				15			

- 10. Convertir los siguientes números a hexadecimal sin hacer cuentas (Pasar a binario sustituyendo dígitos):
 - a. 101100₈
 - b. 77,06₈

- c. 0,00001₈
- d. 7654321076543210₈
- 11. Convertir los siguientes números a base 2 y de base 2 a octal sustituyendo los dígitos:
 - a. FFFF₁₆
 - b. 3A,1F₁₆
 - c. $0,008_{16}$

- d. FEDCBA9876543210₁₆
- e. 8000,6001₁₆
- f. 111,111₁₆

Operaciones en binario

12. Resuelva las siguientes operaciones en binario verificando los resultados en decimal

a.	11111 + 10101	(52 ₁₀)	07.	111 × 10	(14 ₁₀)
b.	11 + 1111	(18 ₁₀)	08.	1010 × 111	(70 ₁₀)
C.	111 + 111 + 111 + 111	(28 ₁₀)	09.	10101 × 101	(105 ₁₀)
d.	1000 - 1	(7 ₁₀)	10.	1111 ÷ 10	$(7_{10} \text{ resto } 1_{10})$
e.	110011 - 101	(46 ₁₀)	11.	10101 ÷ 101	$(4_{10} \text{ resto } 1_{10})$
f.	111 - 1011	(-4 ₁₀)	12.	11011011 ÷ 11	(73 ₁₀)

13.

- a. ¿Se puede saber cuántos dígitos binarios serán necesarios para representar un número dado en base 10, sin hacer la conversión? Explicar cómo
- b. ¿Se puede representar exactamente el mismo valor numérico en cualquier base de las vistas (2,8,10,16)?
- c. ¿Cuando represento un número en cualquier base, como la suma de cada dígito por la base elevada a la posición que ocupa dicho dígito, el resultado obtenido que es?