ČASOPIS SVAZARMU PRO RADIOTECHNIKU A AMATÉRSKÉ VYSÍLÁNÍ

ROČNÍK IX/1960 ČÍSLO 5

TOMTO SEŠITĚ

Vstříc slavnému výročí	121
25 wattů = jeden kulomet	122
Poděbradští se tuží	123
Nová organizace radioamatérské-	
ho sportu v SSSR	124
Na slovíčko	124
Neviditelné spoje	126
Dopiněk k měřicímu přístroji	
pro měření odporů	128
Başs – reflex, který se osvědčil .	132
Regulační transformátor ,	133
Infratechnika ve vojenství	135
Je to snad málo?	137
Ze schůze předsednictva ústřední	
Le schuze preuseumerva ustreum	
sekce radia	138
sekce radia Co jsou to ferroelektrika a k čemu	
sekce radia	138 139
sekce radia Co jsou to ferroelektrika a k čemu	
sekce radia Co jsou to ferroelektrika a k čemu slouží Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního	139 141
sekce radia Co jsou to ferroelektrika a k čemu slouží Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního závodu 1960 "Al-Contest").	139
sekce radia Co jsou to ferroelektrika a k čemu slouží Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního	139 141
sekce radia Co jsou to ferroelektrika a k čemu slouží Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního závodu 1960 "Al-Contest"). DX Soutěže a závody (Závěrečné vý-	139 141 143 145
sekce radia Co jsou to ferroelektrika a k čemu slouží Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního závodu 1960 "Al-Contest") DX Soutěže a závody (Závěrcčné výsledky OK-kroužek 1959)	139 141 143 145
sekce radia Co jsou to ferroelektrika a k čemu slouží Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního závodu 1960 "Al-Contest"). DX Soutěže a závody (Závěrečné výsledky OK-kroužek 1959) Závod Den radia	139 141 143 145
sekce radia Co jsou to ferroelektrika a k čemu slouží. Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního závodu 1960 "Al-Contest"). DX Soutěže a závody (Závěrečné výsledky OK-kroužek 1959) Závod Den radia Šiření KV a VKV	139 141 143 145
sekce radia Co jsou to ferroelektrika a k čemu slouží Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního závodu 1960 "Al-Contest"). DX Soutěže a závody (Závěrečné výsledky OK-kroužek 1959) Závod Den radia	139 141 143 145 147 148
sekce radia Co jsou to ferroelektrika a k čemu slouží. Jednoduchý adaptér pro 435 MHz VKV (výsledky I. subregionálního závodu 1960 "Al-Contest"). DX Soutěže a závody (Závěrečné výsledky OK-kroužek 1959) Závod Den radia Šiření KV a VKV	139 141 143 145 147 148 149

Na titulní straně je ukázka sestavy amatérského projektoru na úzký film a zvukového adaptéru, který vyrábí družstvo Druopta. Text viz str. 124. Druhá strana obálky ukazuje, jak radio pomáhalo v osvobozovacích bojích v roce 1945. Text viz str. 122 Třetí strana je ilustrací k článku Je to snad málo? na str. 139

Na zadní straně obálky je několik záběrů z nácviku spartakiádních skladeb v radiokroužku stavebního učiliště v Praze 12.

AMATÉRSKÉ RADIO – Vydává Svaz pro spolupráci s armádou ve Vydavatelství časopisů MNO, Praha 2, Vladislavova 26. Redakče Praha 2, Vinohrady, Lublaňská 57, telefon 223630. – Řídí Frant. Smolik s redakčním kruhem (J. Černý, inž. J. Čermák, V. Dančík, K. Donát, A. Hálek, inž. M. Havlček, K. Krbec, nositel odznaku "Za obětavou práci", A. Lavante, inž. O. Petráček, J. Sedláček, mistr radioamatérského sportu a nositel odznaku "Za obětavou práci", A. Soukup, Z. Skoda (zást. ved. red.), L. Zýka, nositel odznaku "Za obětavou práci", A. Soukup, Z. Škoda (zást. ved. red.), L. Zýka, nositel odznaku "Za obětavou práci"). – Vychází měsíčně, ročně vyjde 12 čísel, Inzerci příjímá Vydavatelství časopisů MNO, Praha II, Jungmannova 13. Tiskne Polygrafia 1, n. p., Praha. Rozšířuje Poštovní novinová služba. Za původnost příspěvků ručí autor. Redakce příspěvky vrací jen byly-li vyžádány a byla-li přiložena frankovaná obálka se zpětnou adresou.

Inzertni oddělení Praha 2, Jungmannova 13 (tel. 237646, linka 154)

Toto číslo vyšlo 3. května 1960. A20*01082 PNS 52

VSTŘÍC SLAVNÉMU VÝROČÍ

Náměstek ministra národní obrany generálporučík Miroslav Šmoldas

které nás již dělí od osvobození naší vlasti Sovětskou armádou, dovršeného 9. května úspěšným zakončením pražské operace, je slavným revolučním obdobím, ve kterém naše země a jejich lid vítězně zakončil boj s fašismem a navždy skoncoval s vládou buržoasie. V jubilejním patnáctém roce, který je naplněn velikým pracovním úsilím a závažnými změnami, provázejícími období dovršování socialistické výstavby v ČSR, vzpomínáme proto s hlubokou úctou a vděčností zásluh sovětských

ozbrojených sil o naši národní svobodu a plně si uvědomujeme správnost cesty, kterou náš lid pod vedením Komunistické strany Československa po osvobození nastoupil. Výsledky uplynulých 15 let boje za definitivní vítězství socialistické revoluce a úspěšného rozvíjení socialistické výstavby jsou pro nás

nejvýše radostné.

Naše země zaznamenala nebývalý rozvoj národního hospodářství, vědy a kultury, životní úrovně pracujících a celého společenského života. Zařadila se na čestné místo ve velkém socialistickém táboře a poskytla celému světu názorný příklad úspěchů, jakých může dosáhnout průmyslově rozvinutá země po vítězství socialistické revoluce. Radostná bilance dosažených výsledků ukazuje, co dokáže tvořivá síla pracujících, zbavená kapitalistických pout a řízená prozíravou politikou komunistické strany. Pro jubilejní patnáctý rok existence naší lidově demokratické republiky je charakteristické především to, že náš lid nepodléhá uspokojení nad dosaženými výsledky, ale soustřeďuje svou pozornost hlavně na nadcházející léta 3. pětiletky, ve snaze co nejdříve a nejúspěšněji dovršit výstavbu socialismu a nastoupit cestu k vyšším cílům - ke komunismu.

Hlavní podmínkou pro splnění těchto úkolů je úspěšné rozvíjení a využití současné technické revoluce, která v podmínkách socialistického společenského řádu otevírá skutečně jedinečné perspektivy rozvoje společnosti. Plné zvládnutí, cílevědomé usměrnění a všestranné využití možností, které se tak naskýtají, je proto právem považováno za klíčovou otázku současné doby. V komplexu otázek technické revoluce stojí na předním místě rozvoj elektroniky, který umožnil nebývalý rozvoj automatizace a mechanizace výrobních procesů a vytvořil tak obrovské zdroje pro zvyšování produktivity práce, výrobu nebývalého objemu a kvality, jakož i rychlé stírání rozdílů mezi fyzickou a dušení prací.

Automatizace uvolňuje tak tvořivou sílu člověka stále více především pro tvůrčí, řídicí a usměrňující činnost, která dále celý proces rozvoje společnosti bude urychlovat. Studium a osvojování principů, použití i dalšího rozvoje elektronických zařízení je proto jednou z nejdůležitějších otázek zvyšování úrovně technických znalostí všech pracujících. Je nespornou zásluhou Amatérského radia, že už po léta dává svým čtenářům možnost seznamovat se s těmito otázkami, že vychovává tisíce mladých lidí k tvůrčí práci na tomto úseku, že svou propagační a osvětovou činností přibližuje elektroniku a její využití širokému okruhu čtenářů. Je proto naším oprávněným přáním, aby toto své čestné poslání Amatérské radio čestně splnilo i v příštích letech.

Úspěchy celého socialistického tábora při budování komunismu a socialismu, převratné události a objevy ve světě vědy a techniky, úspěšný boj za světový mír a v neposlední řadě i mohutný osvobozenecký boj závislých a koloniálních zemí naplňuje nás důvěrou ve štastnou budoucnost našich národů. Považujeme proto za nejcennější pozdrav k 15. výročí osvobození Ceskoslovenska Sovětskou armádou, jestliže každý ve své práci a podle svých sil přispějeme k úspěšnému splnění úkolů, které od nás dovršení výstavby socialismu vyžaduje. Z tohoto hlediska právě v oblasti slaboproudé techniky může být náš přínos nejvýš užitečný. Jsem přesvědčen, že široký aktiv čtenářů a členů Svazarmu, soustředěný kolem našeho časopisu, bude mezi prvními, kdo takto 15. výročí osvobození pozdraví.

25 Wattie = jeden kulomet

Občané! Schörnerova armáda je rozdrcena... Fotoaparát zvuk bohužel nezachytí, ale i tak bude jednou tento obrázek reproduktoru na náměstí Republiky památný. Je sobota, I I hodin 30 minut.

Začaly se rozvěšovat na X. slet v roce 1938. Dodávala je tenkrát Telegrafie v Pardubicích, tedy dnešní Tesla Pardubice; reproduktory i příslušné zesilovače. To jsme ještě nevěděli, k čemu vlastně budou dobré.

Po sletě, v roce 1939, to začalo zavánět prachem docela vážně. Reproduktory, rozvěšené po ulicích pro slet, se staly důležitou součástí systému civilní protiletecké obrany. Vlastně, abych se správně vyjádřil, bylo to tak míněno. Ale nedošlo k tomu. A tak se stalo, že se sletové reproduktory pak staly součástí aparátu, podřízeného šéfovi pražského Luftschutzu, doktorovi Portele, Němci.

Ten doktor Portele měl divné jméno a k tomu divnou povahu. Ale to bylo vlastně tak: V roce 1943 se na pražském magistrátě vytvořila jedna z ilegálních odbojových skupin, jakých tehdy po Čechách a Moravě byly tucty. Ta naše byla řízena komunisty - bolševicky. A pokud její členové nebyli předválečnými organizovanýmí komunisty, vypadalo to tak, že po osvobození budou jedněmi z prvních, kdo podají přihlášku do komunistické strany. Tato skupina si uvědomovala, jakou významnou úlohu může hrát pouliční rozhlas v případě aktivního vystoupení proti okupantům a proto s radostí uvítala, když radniční páni uznali, že pouliční rozhlas tak, jak byl postaven pro slet, už nevyhovuje a musí se renovovat. Tenkrát se hodně nakupovalo, přišly holandské Philipsovy reproduktory 25 W a nové zesilovače 300 W a my měli radost, jak nám rozhlas vylepšují, protože jsme si říkali - reproduktor vydá za jeden kulomet. Čím víc jich budeme mít, tím lépe pro nás. Portele se staral - a my samozřejmě taky.

Jenže v roce 1944 přišla zpráva, že je hotov projekt na přestěhování ústředny pražského pouličního rozhlasu z radnice na SS-Standortkommandatur v právnické fakultě! – Tohle jsme samozřejmě v programu neměli a bylo nutno něco podniknout. Primátor? Klapka už doprimátoroval a Pfitzner..? Poslouchej, povídá bratr, co je to za člověka ten Portele? – Požádal mne jednou, abych mu uděla krátkovlnný přijímač. Povídám, to nemůžu, já jako radiomechanik bych si podepsal provaz, když něco takového udělám. Udělejte mi ho, řekl; tak jsem udělal. Dal mi za něj, škrob, láhev vína, a vyhrávalo nám k tomu vysílání pro Československo. – Dobrá, povídá bratr, vyjednej mi s Portelem schůzku.

Lehko mi nebylo, když jsme k šéfovi Luftschutzu vstupoval. Hned za mnou přišel jeden úředník magistrátu. "Heil Hitler", pozdraví a Portele na to "Hitl!". Vyřídili si svoje německy a po jeho odchodu Portele se zeptal: "Znáte ho?". Znám, povídám, Čech. "Vidíte, on je Čech, já Němec. – Tak co chcete!" Tahle epizoda mi dodala odvahy, nadechl jsem a říkám: pane doktore, chci s vámi hovořit velezrádně a protistátně! – Hm, – vyfoukne kouř z cigára. – Tak si, Kučera, sedněte! – Tak už to bylo venku. – Pane doktore, ted hned ne, ale přijde za vámi bratr.

Tak se stalo ,že se ústředna na SS-Standortkommandaturu nestěhovala.

Na začátku roku 1945 bylo jasné, že se blíží chvíle, kdy skoro tři stovky těch našich pětadvacetiwattových "kulometů" zahovoří. Měli jsme je instalovány v oblasti vnitřního města, na Vinohradech, Žižkově, Strašnicích, ve Vršovicích, Nuslích, v části Záběhlic, na

Smíchově, v Braníku, Košířích, Střešovicích, Břevnově, Dejvicích, Letné, Holešovicích, v Libni a Karlíně. Rozvod 100 V, podústředny dálkově ovládané v každé čtvrti, ústřednu na radnici. Naše skupina byla začátkem roku rozšířena. Vše bylo připraveno, a bylo nutno domluvit podrobnosti. Stalo se to na jedné ze schůzek asi 3 neděle před revolucí. Sešli jsme se my, bratří Kučerové, soudružka Karla Svobodová, manželka pozdějšího primátora Adolfa Svobody, soudruh nadporučík Kozel a další, mezi nimi zaměstnanci městského rozhlasu Vans, Řezníček, Kaucký. Přizván byl Lamač z rozhlasu a Fröhlich z Elektrických podniků. Hovořilo se o tom, že by se radnice měla převzít do českých rukou. Pamatují se, jak tenkrát doktor Krása říkal: To nenl jen tak! Kdo za námi vůbec stojí? - Až to praskne, odpověděli jsme, stojí za námi celá Praha! - Bylo usneseno vydat leták, kterým by se dělnictvo pražských továren sezvalo na Staroměstské náměstí na pondělí 7. května. Původně se mluvilo o sobotě, ale pak byl termín přesunut na pondělí. Jenže když byly letáky vytištěny, bylo zřejmé, že v pondělí by bylo pozdě. V sobotu ráno Němci rozestavili na Václavském náměstí kulomety a pražský lid byl již připraven natolik, že jsme v sobotu ráno rozhodli -pojedem! Volám na druhý policejní revír praporčíku Slavíčkovi. -Měli jsme s nimi již delší dobu spojení a pamatuji, jak asi před týdnem přišel Slavíček do hlasatelny, srazil paty a hlásil: Jsem praporčík Slavíček a celý druhý revír je vám k dispozici! - Sotva pověsím telefon, vběhne policajt a tlačí mne revolverem ke zdi. No, domluvili jsme se. Mezitím už obsadili celou budovu. Radnici převzal revoluční primátor Dr. Váciav Vacek a v 11.26 hodin jsme do ulic hlásili, že Schörnerova armáda je rozdrcena, moc na radnici převzal národní výbor a vyzvali jsme německé vojáky, aby neklad-li odpor a složili zbraně. Skutečně to leckde působilo a prostí vojáci, kteří měli války také dost, odevzdávali zbraně i s návodem, jak se s nimi zacházi. Jenže jenom na idyle nezůstalo. Kolem poledne volal rozhlas, že jsou napadeni a potřebují nutně pomoc. To už začaly docházet zprávy o bojích ze všech stran, a předem přichystané texty hlášení se musily upravovat a nakonec hlásit bez dlouhých příprav podle okamžité situace.

My na radnici jsme byli proti státnímu rozhlasu ve výhodě. Za války se rozmístění všech zařízení tajilo a ani na radnici nebylo dost dobře známo, kde máme ústřednu a podústředny. Naši lidé, kteří věděli o rozmístění dálkově řízených podústředen, to dál nepovídali a naopak je chránili před odhalením a poškozením, takže za revolučních bojů nám síť dobře sloužila. Reproduktory a linky samozřejmě utrpěly škody, např. ze soboty na neděli rozstříleli SS reproduktory na Staroměstském náměstí, jenže v noci se to opravilo a ráno byli překvapeni, že pouliční rozhlas mluví dál – a neznámo odkud. Bylo také dobře, že velitelem obránců radnice byl člen naší skupiny npor. Kozel. Tak se spojenými silami podařilo udržet po celou květnovou revoluci spojení mezi vedoucími složkami a pražským lidem, který povstal, aby se zbraní v ruce bil fašistické okupanty. Naše pětadvacetiwattové kulomety se osvědčily...

- A co dnes, po patnácti letech? Nejsou ty vaše dráty už trochu zastaralé?

Co to říkáš! Však zrovna teď máme plné ruce práce, abychom je měli jako ze škatulky. To víš, Spartakiáda přede dveřmí!

Vyprávění s. jaroslava Kučery zaznamenal Škoda.

V hlasatelně městského rozhlasu v sobotu. Sedící bratří Kučerové, nad nimi npor. Kozel, velitel obránců radnice. • V neděli ráno byl s. Kučera (vlevo) postřelen v Senovážné ulici.

PODEBRADŠTÍ SE TUŽÍ

Často čteme na stránkách Amatérského radia o práci radioklubů ze všech koutů republiky a proto jsme se rozhodli napsat také něco o činnosti našeho klubu.

Okresní radioklub při OV Svazarmu v Poděbradech byl založen v roce 1954 a již tehdy dostal do vínku kolektivní stanici OK1KKJ. Nechceme se však věnovat historii a proto budeme psát o dnešní činnosti. Úvodem je třeba se zmínit o tom, že k 1. prosinci měl klub 27 členů s vyrovnanými členskými příspěvky. Mnozí členové mají i několik odborností. V klubu jsou čtyři OK a z nich dva ZO, deset PO, jeden RO první, tři druhé a třináct třetí třídy; dvacettři RP, dva RT I a pět RT II. Z toho jsou tři provozní a jedna registrovaná operátorka. V okrese pracují kolektivní stanice OK!KKJ, OK!KJY a OK!KUR je dočasně v klidu, protože nemá vhodnou místnost. S místnostmi je v Poděbradech vůbec potíž. Vždyť OKIKKJ má kromě malé vysílací kábiny k dispozici jedinou místnost, která slouží jako dílna, klubovna a částečně i sklad. Hlavní sklad je umístěn v části

Při zavádění polytechnické výchovy na školách se podařilo podchytit zájem mládeže o amatérskou činnost a prvním ovocem této činnosti jsou dva RO III. třídy ve stáří 13 let. Na jedenáctiletce byl uspořádán již druhý kurs pro RO, v němž pracuje 16 žáků.

Pozornost se věnuje i jiným druhům činnosti. Například byla uspořádána oficiální soutěž ve střelbě sportovní malorážkou mezi radioklubem a střeleckými kroužky při základních organizacích Libice n. Čidlinou a ČVUT Poděbrady.

A nyní o naší radioamatérské činnosti. Do podzimu roku 1957 se stanice OK1KKJ věnovala převážně práci na pásmech 3,5 a 7 MHz. Z této doby je

Kroužek radia při základní organizaci Svazarmu ve Vranově nad Dyjí, OK2KIW, se pravidelně zúčastňuje oslav Prvního máje.

Na obr.: RO 1513 Anežka Beránková, RP Pavel Pacherník a RO 2953 Libuše Vavříčková propagovali na 1. máje 1959 vadioamatérskou činnost se stanicemi RF11. datováno nejvíce QSL lístků, které nám jako prvním v ČSR umožnily získat diplom DLD-100, později DLD-150. Před nedávnem jsme posílali žádost o DLD-200, který zřejmě bude první v zemích lidové demokracie. Doufáme, že v době, kdy toto číslo vyjde, bude již tento diplom v rámečku zdobit místnost ORK.

Potom byl vybudován hlavně zásluhou s. Majtáse, tehdy ještě RO 9783, vysílač pro všechna pásma s příkonem 50 W, osazený elektronkami 6L31 na oscilátoru a násobičích a LS50 na koncovém stupni. Tím byla vyřazena z provozu inkurantní zařízení a byla zahájena aktivní činnost na DX pásmech. Následovala první spojení s CN8, VK, JZ0, CE0, LU a dalšími až k dnešnímu umístění v DX žebříčku 115 (142).

Ještě téhož roku jsme se zúčastníli CW části "World-Wide DX Contestu". Soutěžili jsme pouze na 14 MHz. Byl to náš první úspěch, když jsme ve své kategorii v ČSR zvítězili. Příslušný diplom na stěně je toho hmatatelným důkazem. Další úspěch jsme zaznamenali v OK-DX Contestu, kde jsme ve stejné kategorii byli na třetím místě na světě a na prvním v ČSR.

Naše činnost na DX pásmech se projevila i získáním dalších diplomů. Nejprve to byly: S6S s doplňovacími známkami za I4 a 21 MHz a WAC. Dále následovaly: finský OHA, jugoslávský WAYUR, východoněmecký WADM-IV, náš ZMT a další. Později DXCC, WAE-III, WGDXC, WASM-I a nakonec námi všemi očekávaný WAZ č. 1119, který jsme získali jako druhá kolektivní stanice v ČSR.

Práce na DX pásmech nás však neodtrhla od "třiapůlky" a naopak jsme zahájili činnost i na 1,8 MHz. Obzvláště na 3,5 MHz se nám podařila některá DX spojení jako: W's, UA9's, 4X4, CN8, VE, JA a jiná. Práce na 160 metrech nám přinesla diplom 100-OK a několik bodů pro WAE.

S jídlem roste chuť. Staré zařízení se nám již zdálo být nemoderním a hlavně nebylo konstruováno pro fonický provoz, což nám vytýkal hlavně zarytý "fonista" PO 708 s. Schliksbier. Rozhodli jsme se tedy vybudovat něco lepšího, ale byli jsme nucení volit kompromis mezi moderním zařízením a finančními prostředky, neboť zařízení bylo zhotoveno převážně svépomocí. Úkolu se ujali soudruzi PO 9783 s. Majtás, PO 1840 s. Kodr, PO 234 s. Holubec, RO 2011 s. Svák se s. Jarem. Stavba si vyžádala půl roku aktivní práce.

Vysílač sestává ze dvou částí: operátorského pultu, ve kterém je umístěn budič, elektronkový klíč, modulátor pro úzkopásmovou kmitočtovou modulaci a přijímač Lambda V. Druhou částí je stojan s násobiči, koncovým stupněm a zdroji. S tímto vysílačem jsme navázali spojení a zúčastnili se jak fone, tak CW části "World-Wide DX Contestu". Náš ZO, mistr sportu s. Prostecký, OK1MP, provedl ve fone části zkoušku pokusného zařízení s provozem SSB, která dopadla celkem dobře. Posudte sami některá spojení: KX6BT, BV1USE, ET2US, HZ1AB, SV0WV-Rhodos, SV0WK - Kréta, CO2ZS, VE8NH a jiná. V těchto závodech

se však ukázalo, že přísloví "Kdo šetří má za tři" vždy nep atí, neboť použité elektronky 6P3S se ukázaly nevhodné pro násobení kmitočtu na vyšších pásmech (21, 28 MHz). Zahájili jsme již práce na novém, zlepšeném panelu pro násobiče a koncový stupeň.

Při práci na DX pásmech jsme po-

Při práci na DX pásmech jsme pocítili nedostatky naší "staré fuchsky", která měla své "zakázané" oblasti. Proto jsme vybudovali antény typu "Ground plane" pro pásma 14 a 21 MHz. Obě se nám výborně osvědčily.

Stanice OKIKKJ čerpá své operátory z řad dobrých ŘP, čehož dokladem je to, že čtyři její operátoři mají diplom RP-OK-DX-I.tř. Mladým členům, kteří mají posluchačské číslo, věnujeme stálou pozornost. Věřte, že takový aktivní RP se při vysílání pozná.

Okresní radioklub se stará také o stanici OK1KJY při základní organizaci Regula Pečky, jejímž ZO je s. Formánek, OK1YT. Tato stanice zatím převážně pracuje na pásmu 80 metrů. Velmi dobrou propagaci provedla u příležitosti Dne čs. armády, kdy navazovala spojení přímo z hřiště T. J. Regula Pečky. Tato činnost jí vynesla několik nových členů, ze kterých budou jednou dobří operátoři.

V plánech do budoucna chceme po technické stránce dobudovat zařízení schopné provozu na všech pásmech CW, AM, FM, SSB, vybavené otočnou směrovou anténou. Chceme i nadále rozšiřovat spolupráci se složkami Svazarmu a ostatními společenskými organizacemi. Chceme vychovat z mladých zájemců dobré pracovníky, kteří budou vždy schopni hájit dobré jméno československých amatérů.

Kolektiv ORK Poděbrady

Radisté v polské branné organisaci

V bratrské branné organizaci Polska LPŽ (Liga przyjaciół źolnierza) se obdobně jako ve Svazarmu velmi mnoho mladých lidí zajímá o radistický sport. Ve 126 radioklubech LPŽ pracuje dnes 3200 radioamatérů, z nichž řada již získala koncesi k držení vlastní radiové

stanice. V klubech se školí jednak radiomechanici a jednak radiooperátoři. Radiokluby velmi úzce spolupracují s více jak stem námořních klubů a sekcí LPZ, kde je přes 8000 členů, neboť činnost polské branné organizace je zaměřena na výchovu dorostu pro obchodní a vojenské lodstvo.

NOVÁ ORGANIZACE RADIOAMATÉRSKÉHO SPORTU V SSSR

Třetí pićnum ÚV DOSAAF za účelem další-ho rozvoje technických druhů sportu přijalo usnesení o vytvoření sportovních řederací, mezi nimi též Federace radioamatérského sportu SSSR a Federací r. s. jednotlivých sva-

sportu SSSR a Federaci r. s. jednotlivých sva-zových republik.

22. až 23. prosince 1959 v Moskvě se konalo ustavující plénum Federace radioamatérské-no sportu SSSR. Zúčastnili se ho delegáti radioamatérské veřejnosti všech svazových republik, Moskvy i Leningradu.

Na zahájení zasedání člen předsednictva ÚV DOSAAF B. F. Tramm zdůraznil, že rych-tí techniký nekrak jahož svacranyumraco-

technický pokrok, jehož program vypraco-val 21. sjezd KSSS, vyžaduje značně rozšířit propagandu technických znalosti mezi pra-cujícími SSSR. Zvláštní úloha při řešení toho-to úkolu přisluší radioamatérskému hnutí a

sportu. Plénum vyslechlo a prodiskutovalo referá-ty: předsedy organizačního výboru E. T. Krenkla – o situaci a úkolech dalšího rozvoje Krenkla – o situaci a úkolech dalšího rozvoje radioamatérského sportu v zemi, a náčelníka Ustředního radioklubu L. A. Děmjanova – o organizaci a úkolech Federace radioamatérského sportu SSSR. Referující poukázali na to, že radioamatérské hnutí doznalo v poslední době rychlý rozvoj. Radiokluby a základní organizace DOSAAF pod vedením stranických organizaci, při aktivní účastí Komsomolu a odborů zlepšily podle usnesení IV. sjezdu DOSAAF propagaci radiotechnických znalostí, rozšířily přípravu radioamatérů-sportovců. Některá čísla uvedená na plenárním zasedání:

Za šest měsíců 1959 plnilo tisíce radioama-

Za šest měsíců 1959 plnilo tisíce radioama-Za šest mesícu 1959 pinno tisice radioama-térů kvalifikační normy; 112 sportovců dostalo čestný název Mistra radioamatérského spor-tu; ve srovnání s r. 1957 vzr-stl počet KV a VKV stanic trojnásobně. Za 11 měsíců minulého roku sovětští vysladí

Za 11 měsíců minulého roku sovětští vysílačí navázali přes milion spojení s amatéry 200 zemí a oblastí světa.

Diskutující věnovali zvláštní pozornost účasti radioamatérů na automatizování výrobních procesů v rozličných odvětvích národního hospodářství.

Ustavující plénum jednomyslně přijalo usnesení o Federaci radioamatérského sportu v SSSR.

Federace radioamatérského sportu SSSR je

Federace radioamatérského sportu SSSR je dobrovolná společenská organizace, která pečuje o rozvoj radioamat, sportu v zemi a sdru-čuje o rozvoj radioamat, sportu v zemi a sdru-žuje republikánské Federace, sekce dobrovol-ných sportovních sdružení a vedeni. Vytváří se při ÚV DOSAAK, pracuje pod jeho řízením za denní a aktivní účasti komsomolských, odborářských a jiných společenských organi-

zací na základě tvůrčí iniciativy a dobrovolné práce širokých mas radioamatérského aktivu. Jaké jsou hlavní úkoly Federace? Především je to zavádění radiometod do národního hospodářství pomocí radioamatérů SSSR, získávání mládeže pro radiosport a propagace radiotechnických znalostí mezi obyvatelstvení zlenšování sportových výkonů radioamatery. vem; zlepšování sportovních výkonů radioamaterů a na tomto základě dosahování vyso-kých sportovních výsledků na všesvazových i mezinárodních závodech; spolupůsobení radioamatérů při výzkumné a vývojové práci za účelem zlepšení existujících a vytvoření nových typů radiových přístrojů, sportovní techniky, přístrojové techniky a učebních pomůcek.

pomucek.
Federace si vytyčuje za úkol vychovávat radioamatéry-sportovce v duchu sovětského vlastenectví, internacionalismu a přátelství mezi národy, oddanosti věci Komunistické strany a neustálé připravenosti k práci a obraně socialistické vlasti.

ně socialistické vlasti.
Nejvyšším orgánem Federace je Rada. Skládá se z představitelů všech republikánských Federací, ze sekce Moskvy a Leningradu a sekcí dobrovolných sportovních sdružení a zpráv, mládežnických, odborových a jiných organizací. Plénum Rady se svolává jednou

Rada volí veřejným hlasováním předsednictvo, které se skládá z předsedy i náměstků, tajemníka a členů, a taktéž sestavuje rozbodčí

Ze členů Rady a aktivu sestaví předsednic-tvo trenerskou radu, komisi agitačně propa-gačni, učebně metodickou, technickou, proozní, kvalifikační a disciplinární a dále komisi pro materiálně technické zabezpečení a pro

mezinárodní sportovní styky.
Federace radioamatérského sportu SSSR pečuje o rozvoj radioamatérského sportu, zabývá se perspektivním plánováním a shrnuzabývá se perspektivním plánováním a shrnuje výsledky masové a sportovní činnosti a vypracovává organizační a učebně metodické
materiály. Usměrňuje činnost amatérůkonstruktérů na konstrukci přístrojů pro národní hospodářství. Do její kompetence spadá
vypracování a potvrzování pravidel, instrukci,
usnesení, programů, podmínek všesvazových
a mezinárodních závodů jakož i jejich plánování přínrava a provádění

a mezmarodních zavodu jakož i jejích plano-vání. příprava a provádění.

Velké úkoly stojí před Federací, pokud se týče opatření výchovného charakteru, mají-cích za cil zvýšení ideologicko-politické a kul-turní úrovně sovětských radioamatérů-sportovců. Federace má za povinnost provádět propagaci radiového sportu využitím tisku, filmu, radia a televize, spolupracovat při vydávání knih, časopisů, bulletinů, příruček a

davání knih, časopisů, bulletinů, přiruček a metodických pomůcek.
Federace má velká práva. Řeší otázky udčiování nejvyšších sportovních a trénérských titulů, posuzuje materiály o odměňování sportovců odměnami DOSAAF a odznakem Zasloužilý radista. Federace má uloženo plánovat finanční prostředky v mezích přidělených částek a hledat možnosti úspor a cískání donlěkových finanční prostředky v mezích přidělených částek a hledat možnosti úspor a cískání donlěkových finanční prostředků. usienych castek a hledat možnosti úspor a získání doplňkových finančních prostředků na rozvoj radioamatérského sportu. Vypraco-vává technické podmínky pro amatérské pří-stroje a přednáší návrhy na jejich průmyslo-vou výrobu. V souvislosti se stále se rozšířulícími mezi-

V souvislosti se stále se rozšířujícími mezinárodními styky sovětských radioamatérů je na Federaci vložen úkol vést korespondenci s vedoucími orgány mezinárodních sportovních organizaci a národnímu Svazu radioamatérů-sportovců v zahraničí, reprezentovat sovětské radioamatéry v mezinárodních federacich, připravovat a provádět mezinárodní sportovní soutěže a jiná opatření na území SSSR.

území SSSR.
Federace radioamatérského sportu SSSR
potvrzuje složení reprezentačních družstev
SSSR, potvrzuje rekordy a nejvyšší výkony.
Ustavující plénum schválilo rozpracované
usnesení, v němž je podrobně nastíněn program práce na rok 1960 a 1961.
Federace SSSR a svazových republik, radioamatérské sekce a radiokluby musí učinit vše

všemi způsoby se rozšířovala příprava sportovců pro získání kvalifikačních stupňů a

sportovcu pro zaskam kvamnkacnich stupnu a organizace nových soběstačně hospodařících radioklubů; v roce 1960 bylo v každém klubu (včetně soběstačných) vytvořeno pět stálých družstev pro různé obory sportu, v základních organi-

zacích po jednom družstvu; každoročně bylo uspořádáno nejméně deset vnitroklubových závodů a dva až tři závody mezi družstvy radioklubů a základních orga-

V usnesení jsou nastíněny úkoly, týkající se přípravy sportovních rozhodčich, celosvazových trenérů a instruktorů, stanoveny úkoly pro rozvoj konstruktérské činnosti radioamatérů. "Považujeme za nutné" - říká se v usnesení pléna - "v každém radioklubu a na velsých základních organizacích vytvořit konstruktérské skupiny pro zavádění radiotechniky du něrodníha bosroděžtví"

ky do národního hospodářství."
Ustavující plénum zvolilo předsednictvo Federace. Jeho předsedou byl zvolen Hrdina Sovčtského svazu E. T. Krenkel, náměstky F. C. Višněvčckij, V. G. Mavrodijadi a V. V. Zvenigorodskij, tajemníkem I. A. Děmjanov.

Na slovičko!

Uf, to jsem si dal! Ještě mi v uších zvoní od telefonů, které se mohly uzvonit pro upozornění na služby, které poskytuje nebo neposkytuje družstvo ESA kolem navíjení transformátorů, a už je tu další, tentokrát písmo, týkající se družstva Lověna. Také inzerují (výlepkami v tramvajích), také soudruzi redaktoři uvěřili a v dobré víře na Lověnu upozornili a také to nefunguje tak, jak by mělo. Vidíš, povídám, však jsem ti to povídal: nejprve si objednej na takový inzert něco sám. Riskuješ tím málo, protože je velká pravděpodobnost, že ti ani neodpovědí, natož aby tvou objednávku vyřídili. A pak teprve na základě vlastní zkušenosti doporuč jiným. - Jo, povídá tadyhle Škoda, já bych si u Dezy objednal vrata ke garáži, abych vyzkusil, zda je pravda, co říkají ve svém letáku: "Sloužíme obyvatelstvu: opravujeme a vyrábíme... vrata ke garážím, akvaria, stojany, kování, opravy, svařování a montáže i na místě, opracování odlitků, mědění, niklování a chromování - Deza, lidové družstvo kovodělné, Podolská 48, Praha 15-Podolí, tel. 930682." Ale co když to vezmou vážně a opravdu mí ta vrata pošlou? Pak si je budu musit postavit tadyhle

124 amasérské RAD () 👸

na dvorek, jako mají v Plzni ta právovárečná vrata, a stavět si za ně koloběžku! Prý ať to zkusí někdo, kdo opravdu potřebuje třeba stojan pro vysílač pro áčko s jedním kilowattem.

Vida ho, chytráka, Ale do Střešovic mne vytáhl, do dalšího družstva, které slíbilo sloužit amatérům. Že prý koupit hned nemusíme. Čekal jsem družstevníky v bílých pláštích a v prostorné hale, kde se chodí po špičkách, neboť, pst, tady se vyvíjí a stojí to moc času a peněz. Aspoň tak jsem tomu zvyklý odjinud. Nemohu zakrýt svoji nespokojenost, neboť jsme vešli do podkrovního kumbálu, kde nás uvitali mládenci dost připomínající amatéra ve svém "sacku" skutečně také amatéry jsoucí, jak se později vysvětlilo. Tím se také vysvětluje, že bez velkých řečí v tomto kumbálu vyvinuli v krátké době zvukový adaptor k amatérskému projektoru pro film 8 nebo 16 mm.

Adaptor je prostý (aspoň principem). Po okraji filmu se nanese zvuková stopa a film pak z projektoru běží do adaptoru, kde se jeho trhavý pohyb uklidní soustavou kladek a setrvačníkem, těžkým asi 3 kg. Setrvačník vyrovná kolísání, způsobované nevhodnými kolektorovými motorky, používanými až dosud v projektorech. Mimo to se u 8mm filmu musí vyfiltrovat i zubový kmitočet. který otřásá filmem při posunu ozubenými transportními válečky. Magnetická zvuková stopa běží přes mazací a kombinovanou hlavu a film je pak tažen dovíjecím bubínkem na dolní cívku.

Nu což, povídám, a má být? To má být, povídají: Při pokusech jsme přišli na to, že ferritové hlavy ZPP nemažou, ale zato se vydatně zahřívají. Pak nás pořádně potrápil film Foma, jehož perforace je plastická. Vidíš, jak j sou dírky vyhnuty ven po nástroji, který je řezal? Tady máš filmy bez této závady. Ne, to není Foma . . . A také se nám stává, že po rychlém sušení v laboratoři se film pokroutí - a teď poraď, jak ho uklidnit, aby nekňoural a netremoloval! Zvuková stopa běží těsně vedle perforace, opravdu, nikde jinde není pro ni místo. A teď oceň, že se nám podařilo tyto nepříznivé vlivy vykompenzovat a u 8 mm filmu získat kmi-točtový rozsah mezi 100—5000 Hz v mezich 5 dB při frekvenci 24 obrázků/vt. Při frekvenci 16 obrázků/vt je rozsah cca 100 až 4000 Hz. Jen si poslechni.

Sekce radia Severočeského kraje ustavena

Na slučovacím zasedání krajských sekcí radia Liberecka a Ústecka, které se konalo 27. března 1960 v České Lípě, byla ustavena nová sekce Severočeského kraje. Jejímu ustavení předcházela slučovací zasedání okresních sekcí radia v Děčíně, Chomutové, Litoměřicích a Lounech. Předsedou nové sekce byl zvolen s. Antonín Král, OKIAKZ. Předsednictvo je jedenáctičlenné a plénum

třicetipětičlenné.

V první části jednání zhodnotili zástupci obou kraju uplynulou radioamatérskou činnost, poukázali na dosažené úspěchy, ale i na dosavadní nedostatky. Z diskuze bylo vidět, že soudruzi mají zájem na tom, aby se celková činnost zlepšila a dobré zkušenosti aby se staly majetkem všech klubů. Zatímco libe-rečtí vynikali ve VKV, ústečtí měli úspěchy na KV; jejich zkušenosti se skloubí tak, aby i ostatní činnost byla co nejlepší. Shodně se vyjadřovali diskutující k rozvinutí různých soutěží, k podchycování zájmu mládeže a ustavováním výcvikových útvarů radia na školách a pionýrských domech. Stálou pozornost je třeba věnovat náboru a především získávání žen. Diskutovalo se o výchově instruktorů a o pořádání kursů radiotechniky a telegrafie. Své místo v diskuzi měla i rychlotelegrafie a péče o RP posluchače.

V druhé části zasedání bylo zvoleno nové předsednictvo a plénum sekce, které tvoří vždy několik zástupců jednotlivých okresů. Schváleno bylo obsazení vedoucích míst odborů – politickopropagačního, výcvikového, provozního a technického. Zvolen byl i nový předseda

kontrolního sboru.

V závěru jednání ukázal patron sekce

s. Kostelecký - člen předsednictva ústřední sekce radia – jakými úkoly se budou muset soudruzi zabývat. Pravidelně bude nutno organizovat IMZ pro výcvik mládeže, organizovat různé kursy i v okresech, pravidelně pořádat Hon na lišku, vypsat soutěž pro kolektivní stanice, jmenovat reprezentační družstva kolektivních stanic a OK pro mezinárodní závody, vybudovat televizní odbor a odbor pro využití elektroniky v průmyslu, věnovat stálou pozornost zřízení krajské prodejny radioamatér-

Kolektiv OK3KDX na Sirkani pri pokusoch o prvé QSO OK-UB, z ľava OK3MH-z prava OK3GBD

ských potřeb a už dnes začít připravovat exponáty pro celostátní výstavu radioamatérských prací.

Skončila slučovací konference a funkce se ujala nová krajská sekce radia, v níž jsou nejlepší radioamatéři. Všichni mají jednu vůli – pracovat tak, aby radioamatérský rozvoj byl v Severočeském kraji co nejlepší. A bude, když se osvědčené zkušenosti z jednotlivých druhů výcvikové, sportovní a politickopropagační práce stanou podkladem k další činnosti všech SDR, kroužků radia a klubů.

Sraz radioamatérů

Z popudu krajské sekce radia v Pardubicích byl začátkem roku uspořádán sraz koncesionářů, zodpovědných a provozních operátorů. Ukázalo se, že podobné srazy by se měly pořádat v každém kraji nejméně jednou za rok.

V dopoledním jednání rozebral inž. Srdínko, OKISV, provoz na amatérských pásmech deníky ze závodů a jak jsou posílány. Ukázal na několika příkladech, že stanice jsou často diskvalifikovány proto, že neznají dost dobře podmínky závodu.

Celkem správná byla připomínka OKIFV, který poukázal na to, že některé stanice potvrzují zaslaný lístek pouze svým razítkem. OKIZL připomenul, že v OK kroužku se operátoři naučí dávat závratnými rychlostmi jen šablonovité spojení, ale potřebuje-li se odevzdat nějaká zpráva, není možno se sněkterými stanicemi domluvit. OKINR podal návrh na novou soutěž. V odpoledním programu pak inž. Menšík, OKIZL objasnil princip a způsob použití SSB pro amatérské vysílače.

OKIEG

Tak jsme si poslechli, a protože jsem přece Amatérský Rejpal, zatím jsem si to rozmyslel a pak zarejpám: No, mluví to, je to hezké, že vstup zesilovače je pro dva gramofony a mikrofon, že umožňuje plynulé mísení, že to má magické oko a výstup pro kontrolní po-slech sluchátky, že to váží 8 kilo, ale – kdy to bude a co to bude stát? To je pro nás, víme, to nejdůležitější, protože pěkných věcí už jsem viděl, ale za pultem už méněro. A tu ti lidé povídají: Chceme podle usnesení ÚV KSČ o zlepšení služeb obyvatelstvu vybudovat naše služby jako jedny z nejlepších. Chtěli bychom dosáhnout, aby cena úpravy projektoru včetně 8mm adaptéru byla así Kčs 1800,- a dodací lhůty krátké. Dodávat začneme asi v II. kvartále tohoto roku (zeptal jsem se ještě jednou, zda jsem se nepřeslechl, a bylo řečeno číslicí i slovy; tohoto roku). Objednávky je možno zasílat již nyní na adresu DRUOPTA, obchodní oddělení, Perlová 10, Praha 1. - A co film? Zatím prý počítají s cenou Kčs 1,40 za metr nanesení

Složité uklidňovací zařízení s těžkým setrvačníkem zajištuje plynulý pohyb zvukové stopy, jež je nanesena na okraj filmu

magnetické stopy na pozitivní materiál, přičemž kvalita vrstvy je lepší než u pásku CH.

lnu, to jsou mi věci. Taková hlavička by jistě zajímala í jiné zájemce, ne jen filmové amatéry. Prý chtějí prodávat i hlavičky samostatně. Subminiaturní úzkostopé ve stínicím krytu o průměru 8 mm a v prodeji budou buď v Žitné ulici nebo v pasáži u Nováků (ale to tam nepiš!). Tak zpět tu dobu, nepíšu to tam. A když už je tu ten adaptér se zesilovačem, ale bez motoru, budou k němu dělat další adaptér s motorem a jednou hlavou, která bude jeden pásek popisovat ve čtyřech stopách s možností mazání každé stopy zvlášť. Bude to mít rychlost 9,5 cm a snad i 4,75 cm/vt, posadí se to na adaptér a bude magnetofon i filmový adaptér za cenu jednoho magnetofonu. A kdy to bude, ptám se já? Chtějí dodávat ve III. kvartále tohoto roku.

Tak co říkáš družstvům teď, ptá se Škoda ve vymrzlé tramvaji. Abych pravdu řekl, lí-

bilo se mi to ,ne že by se mi to nelíbilo, povídám; ale víš, neuvěřím, dokud ruku do rány nevložím a dokud si tu hlavičku nebudu moci levně a v každém množství koupit. A ty bys měl hloubat, kam se podíváme příště, abychom viděli, kdo - a proč by to nemohlo být zrovna některé družstvo bude pro nás dělat takové potřebné věci, jako jsou otočné kondenzátory pro krátké vlny, pro vysílače, konektory pro nf i vf techniku, leptané destičky s plošnými spoji a miniaturní duálky pro dnes tak oblíbené tranzistorové přijímače. A myslíš, že by nebyl zájem o hračkový nahrávač, jaký jsem viděl tuhle v Gottwaldově? Motorek na baterku, uhlíkový mikrofon, magnetické sluchátko, dva-tří tranzistory, bakelitový výlisek a je nový druh technické hračky. Nebo co kdyby se některé družstvo dalo do sestavování stavebnic - třebas tranzistorový přijímač, stačil by nějaký reflex: prešpánová destička se sítí dírek, součástky (vyzkoušené, ne vadné) v pytlíku a sestav to. Že by nám to nepomohlo získávat mládež pro elektroniku? Abys nemyslel, tohle nejsou moje výmysly. To mne jen napadlo, když jsem se byl v neděli bez tvého svolení podívat na výstavu hraček a učebních pomůcek v místnostech informační služby NDR na Národní třídě.

Tak to vidíte.

Neviditelné spoje

V únoru letošního roku uspořádala Tesla Strašníce v Národním technickém muzeu zajímavou výstavu, nazvanou "Neviditelné spoje". Výstavou oslavila 40 let trvání závodu a současně seznámila širokou veřejnost s výsledky úspěšné práce dělníků a techniků od roku 1945 do dnešních dnů.

Přehledně uspořádané vitriny v předsálí výstavy hovořily dokumenty, letáky, fotografiemi a novinovými výstřižky o historii závodu.

Na počátku – v roce 1920 – stáli tři majitelé a čtyři učňové, kteří představovali podnik na "opravy a zařízování telefonů". V roce 1924 však již podnik zaměstnával na 80 lidí. V roce 1927 se závod s 250 zaměstnanci přestěhoval do budovy na Smíchov a na jeho firmě se objevuje nový název – Microphona, Po třech letech byl závod z větší části zničen požárem a zanedlouho nato se stěhuje do Strašnic.

K původním telefonním zařízením přibyla výroba rozhlasových přijímačů. Dvouelektronkový typ MK 202 byl první čs. přijímač s dynamickým reproduktorem a detekcí na pentodě. Některé z těchto přístrojů, kterých závod vyráběl 27 000 kusů ročně, pracují dodnes.

Po vítězství v roce 1945 stál závod před velkými úkoly. Síť čs. spojů byla před válkou odkázána na dovoz přenosových zařízení ze zahraničí. Dodávali Telefunken, Siemens, Philips, Standard aj. Vzájemné závazky nedovolily, aby si čs. průmysl vybudoval samostatný vývoj nebo výzkum. Teprve po znárodnění v prosinci 1945 se otevřely perspektivy vlastní, samostatné cesty. V roce 1947 byla ukončena výroba rozhlasových přijímačů a závod se jako jediný v ČSR plně věnoval výrobě telekomunikačních přenosových zařízení.

V roce 1952 uložila vláda závodu další úkol: zavést výrobu televizních přijímačů. V krátké době se podařilo vyřešit řadu problémů, jež přinesl nový obor včetně zavedení pásové výroby, zhotovení potřebných měřicích přístrojů a pracovišť. Ve druhém roce druhé pětiletky dokončil závod stotisící televizor, v roce 1960 přestoupil počet vyrobených televizorů 250 000.

Za úspěšné spínění úkolů byl závod několikrát vyznamenán Rudými prapory, a v roce 1956 řádem "Za zásluhy o výstavbu". Řada dělníků a techniků je nositeli pracovních řádů a vyznamenání. Na závodě soutěží 15 kolektivů o titul brigády socialistické práce. Od roku 1949 nese závod jméno losefa

Obr. I. Televizní přijímač Ametyst; na výstavě byly připojeny na kameru průmyslové televize.

Hakena a dnes je jednou z nejdůležitějších složek Sdružení telekomunikačních podniků.

Vlastní technická část výstavy ukázala vývoj televizorů vyráběných v Tesle Strašníce od roku 1952. Historický typ 4001 s obrazovkou 25 cm připomíná počátky čs. televize. Ani zdokonalený typ 4002 s rozhlasovým přijímačem by neuspokojil dnešní diváky. Typ 4102 U, známý pod označením "Mánes", s obrazovkou 36 cm představoval značný krok vpřed, neboť jeho váha a spotřeba proti dřívějšímu typu byla asi poloviční, citlivost dvojnásobná a divák měj možnost volby některého ze šesti kanálů. Obdobným typem byl "Aleš" (4103 U) s obrazovkou 43 cm. Řadu televizorů uzavírá

見見り LIBOCHOVICE prenos DR 32 NITOZ NT3 BRVANY PERUC 20 30 LIPENEC (Pro) - (-Z) OBORA vzdušná vedení - zesil obec 6 4 4 4 EM-UZ CERNCICE vys. A A A A OR 32 mislní rozvad Obr. 2. – Použití systému DR32 v síti dráto--O půk Hf. vého rozhlasu, místní nebo prożský porad

"Marold" s obrazovkou 53 cm a hudební skříň "Brandl" s vestavěným rozhlasovým přijímačem a páskovým nahrávačem.

V nedávné době překvapila Tesla Strašnice veřejnost novým typem "Ametyst" (obr. 1) s obrazovkou 43 cm. Obrazovka s vychylovacím úhlem 90° dovoluje podstatně zmenšit hloubku přijímače. Její metalizované stínítko zaručuje jakostní obraz i při denním osvětlení. Kanálový vodič má 12 poloh s devíti kanály pro l. a III. televizní pásmo. Jeho citlivost je lepší než 100 µV, je vybaven dvěma reproduktory, z nichž jeden je speciální typ pro vysoké kmitočty. Jeho obvody vyhovují i nejnáročnějším požadavkům. Televizor se 17. elektronkami má příkon asi 150 W, váhu 28 kg. Ve vkusné skříni je současně vestavěna anténa pro místní příjem ve III. televizním pásmu. Jakost obrazu si mohli návštěvníci výstavy ověřit na soupravě průmyslové televize, zakončené několika přijímači Ametyst.

Zařízení přenosové telefonní techniky nepatří k běžně známým oborům slaboproudé elektrotechniky. Tato zařízení slouží k přenosu telefonních hovorů mezi jednotlivými ústřednamí a městy. Dnes nestačí jen vzdušná vedení na sloupech nebo kabely. Přenos hovoru na vzdálenosti desítek, set nebo tisíc km umožňují telefonní zesilovače, systémy nosné telefonie, jež přenášejí desítky hovorů po jediném páru vodičů apod. Všeobecně se tato zařízení počítají k nejsložitějším, nejnákladnějším a nejnáročnějším výrobkům slaboproudé elektrotechniky vůbec. Bez těchto zařízení by dnes už nebyl meziměstský telefonní provoz vůbec možný. A právě Tesla Strašnice spolu s Výzkumným ústavem telekomunikaci zajišťují jejich vývoj a vý-

Na obr. 3 vidíme zařízení pro nízkofrekvenční přenosy po kabelech. Po několika desítkách km je třeba do kabelů zapojit zesilovač a zesílit přicházející hovorové proudy na původní úroveň. Tesla Strašnice vyrábí universální telefonní zesilovač U2, osazený tranzistory (na obr. 3, prostřední stojan). Zesilovač je konstruován tak, že může zesilovat v jednom nebo v obou směrech přenosu.

V pozadí stojí pomocné stojany pro nf ze-

dované přesnosti a spolehlivosti postačí uvážit, že hovor z Prahy do Košic prochází asi 40 zesilovači a přípustné celkové kolísání úrovně hovoru na konci vedení nemá být větší než asi 2 dB.

silovací stanici, jako stojan kabelových závěrů, transformátorů a rozváděcí stojan.

Moderní přenosová technika patří systémům nosné telefonie, tj. systémům, jež pomocí nosných proudů dovolují přenos více

hovorů současně po jediném vedení. Osvědčený tříkanálový systém Tesla NT1 až 3 byl

předváděn v provozu a návštěvníci si mohli

sami ověřit jakost přenosu. Pro hlavní kabe-

lová meziměstská a mezinárodní spojení je určen systém NTK 12/24. Dovoluje

zřídit po dvou párech vodíčů dvacetčtyři

hovorové kanály. Ke zmenšení útlumu ka-

belu jsou ve vzdálenostech asi 20 km zřízovány tzv. průběžné zesilovací stanice, zpra-

vidla neobsluhované, ovládané a napájené

z hlavních obsluhovaných zesilovacích stanic

přímo po žilách kabelu. K představě o poža-

Tesla Strašnice též vystavila díly nového šestikanálového systému KNK 6. Systém je zcela osazen tranzistory, používá plošných spojů, miniaturních součástek a je na světové úrovni.

Není běžně známo, že nosné systémy jsou používány i v sítích drátového rozhlasu. Aby nebylo třeba zřizovat nová vedení mezi městy (odkud se pořad rozvádí) a okolními

Obr. 3. Zařízení pro nf telefonní přenosy po kabelech. Uprostřed stojan univerzálních telefonních zesilovačů U2; v pozadí stojan kabelových závěrů, transformátorů a rozváděčový stojan.

Obr. 4. Přincip tříkanálového zařízení nosné telefonie. Uspoří se tři páry vodičů.

obcemi, využívá se dosavadních vzdušných vedení, přičemž se rozhlasový pořad namoduluje na nosný kmitočet 80 nebo 32 kHz. Oba přenosy (nízkofrekvenční telefonní asi do 4 kHz a vysokofrekvenční rozhlasový) probíhají zcela nerušeně. Vysílač pro několik desítek vedení systému DR 32 je na obr. 5. V jednotlivých obcích jsou zapojeny přijímače (obr. 2) zcela osazené tranzistory, jež po demodulaci budí výkonové nízkofrekvenční zesilovače pro místní (obecní) rozvod.

Neviditelné spoje z Tesly Strašnice řídí celé energetické sítě. Vzájemná spolupráce elektráren, jejich zapínání a vypínání se řídí z dispečerských stanovišť na vzdálenost desítek a set km. Současně s vysokým napě-

pečinku.

tím 100, 200 i 400 kV se po vedení přenáší hovory, údaje dálkového měření a signály dálkového ovládání. Tato zařízení pracují obdobně jako systémy nosné telefonie v pásmu 50 až 300 kHz.

Obr. 6. Koncová za-

řízení JVT2 (v každé dvojici vlevo) a NDM 12 (ve dvojici

vpravo) pro sítě energetického dis-

Na obr. 6 vidíme koncová zařízení vf telefonních systémů JVT2 a dálkového měření NDM 12. I v tomto oboru je ČSR soběstačná a zařízení odpovídá světové úrovni.

Tesla Strašnice vyvinula i vyrobila měřicí přístroje pro vlastní potřeby výroby i pro provoz přenosových zařízení.

Tyto měřicí přístroje vynikají přesností, spolehlivostí a jednotnou mechanickou konstrukcí.

Výstava ukázala výsledky práce závodu od osvobození do dnešních dnů. Její vkusné uspořádání, přehledné uspořádání a ochota informátorů uspokojila přes 25 tisíc návštěvníků. Jménem všech těchto návštěvníků a jménem našeho časopisu chceme poděkovat pracovníkům Tesly Strašnice za jejich dobrou práci a přát jim mnoho zdaru v dalších letech.

Šroubovák – zkoušečka

Pro indikaci napětí větších než asi 100 V, a to střídavých i stejnosměrných, lze s výhodou použít malé doutnavky s předřadným odporem l až 3 MΩ podle obrázku.

Jako zkušebního hrotu je použito úzkého šroubováku, vyjmutého z původního držadla. Připájíme k němu ochranný odpor v sérii s doutnavkou a měděným kroužkem, svinutým z plechu. Po zalití konce šroubováku a doutnavky s odporem do Dentacrylu bude měděný kroužek tvořit kontakt pro uzemnění elektrody rukou zkoušejícího.

Dentacryl má řadu dobrých vlastnosti, jako např. velký izolační odpor, snadno se odlévá za studena do forem, rychle tvrdne, po ztvrdnutí je průhledný s jantarovým zbarvením, dobře se opracovává pilníkem, dobře se leští.

Před zalitím vsuneme do kousku skleněné trubičky (např. od tabletek) šroubovák s odporem a doutnavkou tak, aby se měděný kroužek dotýkal zevnitř těsně stěn trubičky. Dentacrylem připraveným podle návodu v balení zalijeme trubičku a vystředíme šroubovák. Asi po hodině rozbijeme skleněnou trubičku a držadlo šroubováku opilujeme na koncích a vyleštíme např. lešticí pastou na auta.

Doutnavka rozsvícená uvnitř držadla signalizuje napětí např. při hledání fáze v sítové zásuvce, upozorňuje na dotyk s vyšším napětím při opravách rozhlasových přijímačů a zhruba umožňuje i odhad velikosti napětí i jeho druhu(zda je st nebo ss).

1 – bužírka, 2 – Dentacryl, 3 – předřadný odpor, 4 – měděný dotykový kroužek, 5 – doutnavka

Magnetický stojánek

Při spájení součástek používáme stojánku, na který odkládáme horkou páječku. Sám jsem používal různé druhy stojánků, ale často se mi stalo, že páječka vypadla – vysmekla se při pohybu přívodního kabelu apod.

Proto jsem si zhotovil stojánek, který tomu zabraňuje. Použil jsem starého magnetu z reproduktoru, který jsem přišrouboval na dřevěnou destičku třemi šroubky, které drží vystředěný trn. Pod magnet jsem vložil asbestovou podložku.

Aby se při povolení šroubků trn nepřitáhl ke stěně magnetu, připravíme si pásek papíru, jehož síla se rovná mezeře mezi trnem a stěnou magnetu. Z tohoto papíru uděláme kroužek, který vsuneme na trn. Po sešroubování prkénka s magnetem kroužek vyjmeme.

Před magnet jsem připevnil úhelníček z plechu, který má výřez pro rukojef páječky. Ruth

5 amaterske RADIO 127

DOPLNĚK K MĚŘICÍMU PŘÍSTROJI PRO

Ivan Kaška

1. Úvod

K základnímu vybavení radiotechnické dílny patří vícerozsahový A-Vmetr pro stejnosměrný a střídavý proud, kterým lze v jistých mezích sledovat činnost mnoha zařízení. Použitelnost takového přístroje lze rozšířit na měření od-porů zde popsaným doplňkem. Tento článek uvádí postup návrhu napěťového a proudového ohmmetru s korekcí poklesu napětí napájecí baterie a příklad elektrického i stavebního řešení doplňku pro přístroj AVO-M.

Pozn.: Vzorce pro výpočet v další části jsou uvedeny bez odvození, které je dosti zdlouhavé a nespadá do rámce tohoto článku.

2. Návrh napěťového ohmmetru

Napěťový ohmmetr je vhodný pro měření odporů řádu kiloohmů. Při návrhu vycházíme z požadovaného rozsahu, který je dán volbou odporu, jemuž odpovídá polovina maximální výchylky měřidla, z přípustné změny napětí baterie a z hodnot samotného měřidla. Zapojení napěťového ohmmetru je na

Má-li mít ohmmetr pro obě krajní napětí baterie stejnou relativní chybu, je odpor S dán vzťahem

$$S = R_s \left[1 - \frac{U_0}{2} \left(\frac{1}{U_x} + \frac{1}{U_2} \right) \right] \quad (2.1.)$$

kde $S[\Omega]$ sériový odpor podle schématu,

 $R_{s}\left[\Omega
ight]$ odpor, při jehož měření má měřidlo polovinu maximál-

ní výchylky, napětí na měřidle pro maximální výchylku, které je s odporem měřidla *M* a $U_0[V]$ proudem pro maximální výchylku I_0 vázáno vztahem $U_0 = M \cdot I_0$ [V, Ω , A] (2.2)

 $U_1[V]$ $U_2[V]$ maximální napětí baterie minimální napětí baterie

Vzorec (2.1) platí pro $U_0 < \frac{1}{5} U_1$, musí-

me však většinou volit $U_0 < \frac{1}{10} U_1$, protože v opačném případě by vznikla při změně napětí U nepřípustně velká chyba. Odpor K slouží k nastavení výchylky přístroje na maximum pro X = 0 (tj. zkratované svorky) na počátku měření.

Jeho velikost pro maximální a minimální napětí baterie vypočteme ze vzorce

$$K = \frac{MS}{\frac{U}{I_0} - (M+S)} [V,A,\Omega] (2.3)$$

kam za U dosadíme max, a min. hodnotu napětí baterie, tj. pro napětí U_1 obdržíme hodnotu K_1 a pro napětí U_2 hodnotu K_2 .

Příklad I.

Navrhnout napěťový ohmmetr pro přístroj AVO-M, jehož hodnoty jsou: $U_0 = 60$ mV, proud pro plnou výchylku $I_0 = 1,2$ mA. Odpor M je ze vzorce (2.2) $M = \frac{U_0}{I_0} = \frac{60}{1,2} = 50 \Omega$. Vestředu stupnice má mít ohmmetr odpor $R_s = 5 \,\mathrm{k} \Omega$. Jako zdroj použijeme dvě ploché baterie zapojené v sérii. Napětí ploché baterie zapojené v sérii. Napětí ploché baterie v čerstvém stavu je 4,5 V a stárnutím poklesne na 3,25 V. Napětí zdroje tedy kolísá mezi $U_1 = 9$ V a $U_2 = 6,5$ V. Z těchto hodnot lze dosazením do vzorců (2,1) a (2,2) vypočíst odpory (2,K)(2.1) a (2.2) vypočíst odpory S, K_1 , K_2 .

$$S=5.10^{3} \left[1 - \frac{0,06}{2} \left(\frac{1}{9} + \frac{1}{6,5}\right)\right] =$$

$$= 4960 \ \Omega$$

$$K_{1} = \frac{50.4960}{\frac{9}{1,2.10^{-9}} - (50 + 4960)} =$$

$$= 100 \ \Omega$$

$$K_{3} = \frac{50.4960}{\frac{6,5}{1,2.10^{-3}} - (50 + 4960)} =$$

$$= 600 \ \Omega$$

Kontrola:

Pro všechna zde použitá zapojení Ize odvodit, že odpor mezi svorkami ohmmetru je roven takovému odporu X_s , pro nějž má měřidlo polovinu maximál-ní výchylky (2. 4). V případě napěťo-vého ohmmetru je to $X_s = S + M \parallel K$ (2. 5).*) Dosadíme-li do tohoto výrazu za K hodnoty K_1 , K_2 , obdržíme krajní hodnoty X_{s_1} , X_{s_2} . Relativní chyba ohmmetru je $\delta = \frac{X_s - R_s}{X_s}$ (2. 6), čili opět pro krajní hodnoty napětí jsou relativní chyby δ_1 , δ_2 . Dosadíme-li vypočtené hodnoty do těchto vzorců, obdržíme:

$$X_{s_1} = 4960 + 50 \parallel 100 = 4993 \ \Omega$$

 $X_{s_2} = 4960 + 50 \parallel 600 = 5006 \ \Omega$
 $\delta_1 = -\frac{7}{5000} = -0,0014 = -0,14 \%$

*) || znači "paralelně s".

Obr. 2.

$$\delta_2 = \frac{6}{5000} = 0.0012 = 0.12 \%$$

Jak je vidět, mají relativní chyby pro obě krajní napětí baterie stejnou velikost a jsou zanedbatelně malé proti chybě samotného měřidla, která u přístroje AVO-M činí 1 %. Kontrola chyby je důležitá u měřidel, která mají větší U_0 , protože chyba se zvětšuje přibližně úměrně s poměrem $\frac{U_0}{U_1+U_2}$. Dále je z výsledků příkladu vidět, že pro vyšší napětí U ukazuje ohmmetr více.

3. Návrh proudového ohmmetru

Pro naše účely lze užít dvou různých zapojení. Zapojení podle obr. 2 je po-užitelné pro $R_s < M$, tj. pro odpor ve středu stupnice menší, než je odpor mě-řidla. Zapojení podle obr. 3 je pro $R_s \ge M$. Odporem K v obou zapojeních nasta-vujeme před měřením maximální výchylku měřidla při rozpojených svor-

3a) Návrh proudového ohmmetru zapojeného podle obr. 2.

Při návrhu vycházíme z odporu R_s pro poloviční výchylku měřidla, z dovolené změny napětí zdroje a z hodnot měřidla. Z požadavku stejných relativních chyb pro krajní napětí baterie platí pro odpor P vztah

$$\frac{\delta_{1}=-\frac{7}{5000}=-0,0014=-0,14 \%}{*) \mid\mid znači ,,paralelně s.c.} P=\frac{1}{\frac{1}{R_{s}}\left[1-\frac{U_{0}}{2}\left(\frac{1}{U_{1}}+\frac{1}{U_{2}}\right)\right]-\frac{1}{M}}{(3.1)}$$

Význam symbolů je stejný jako v odstavci 2, hodnoty se dosazují v Ω a V. Hodnoty korekčního odporu K_1 , K_2 určíme pro krajní hodnoty napětí zdroje U_1 a U_2 ze vzorce

$$K = \frac{\frac{U}{I_0} - M}{1 + \frac{M}{P}}$$

kam dosazujeme opět ve V, A, Ω .

Přiklad 2.

Navrhnout proudový ohmmetr pro měřidlo s hodnotami $I_0 = 0.5 \text{ mA}, M = 0.000 \text{ magneticky}$ lk Ω . Z těchto hodnot plyne z (2. 2) $U_0 = 0.5$ V. Napětí zdroje vybíjením klesá z $U_1 = 9$ V na $U_2 = 6$ V. Odpor ve středu stupnice má být $R_s = 100 \ \Omega$.

$$P = \frac{1}{\frac{1}{100} \left[1 - \frac{0.5}{2} \left(\frac{1}{9} + \frac{1}{6} \right) \right] - \frac{1}{1000}}$$

$$= 120.4 \Omega$$

$$K_{1} = \frac{\frac{9}{0.5 \cdot 10^{-3}} - 10^{3}}{1 + \frac{1000}{120.4}} = 1818 \Omega$$

$$K_{2} = \frac{\frac{6}{0.5 \cdot 10^{-3}} - 10^{3}}{1 + \frac{1000}{120.4}} = 1182 \Omega$$
Kentrola:

Kontrola:

Pro zapojení podle obr. 2 platí opět (2.4), tedy $X_s = K || P || M$. Pro hodnoty K_1 , K_2 obdržíme z tohoto vzoce X_{s_1} , X_{s_2} , z nichž vypočteme podle (2.6) relativní chyby.

$$X_{s_1} = \frac{1}{\frac{1}{1818} + \frac{1}{120,4} + \frac{1}{1000}} = \frac{101,4 \Omega}{1000}$$

$$= 101,4 \Omega$$

$$\delta_1 = \frac{101,4-100}{100} = 0,014 = 1,4 \%$$

$$X_{s_2} = \frac{1}{\frac{1}{1182} + \frac{1}{120,4} + \frac{1}{1000}} = \frac{98,6 \Omega}{1000}$$

$$= 98,6 \Omega$$

$$\delta_2 = \frac{98,6-100}{1000} = 0,014 = -1,4\%$$

Velikost relativních chyb pro krajní napětí je tedy opět stejná; chyby jsou však větší než v předchozím příkladě, což je způsobeno větším poměrem

$$\frac{U_0}{U_1+U_2}$$
.

Dále je z výsledků zřejmé, že při vyšším napětí baterie ukazuje ohmmetr méně.

3b) Návrh proudového ohmmetru zapojeného podle obr. 3.

Při návrhu vycházíme ze stejných hodnot R_s , U_1 , U_2 , M, I_0 jako v případě 3a), dosazujeme je jen do odlišných vzorců. Jinak je postup úplně stejný.

$$P = \frac{1 - \sqrt{1 - 2R_s I_0 \left(\frac{1}{U_1} + \frac{1}{U_2}\right)}}{I_0 \left(\frac{1}{U_1} + \frac{1}{U_2}\right)} - M$$

$$K = \frac{U}{I} - (P + M)$$
(3.3)

Příklad 3.

Navrhnout proudový ohmmetr k přístroji AVO-M. Měřídlo má hodnoty I_e = 1,2 mA, M = 50 Ω . Volíme R_s = 50 Ω , U_1 = 9 V, U_2 = 6,5 V.

$$P = \frac{1 - \sqrt{1 - 2.50.1, 2.10^{-5} \left(\frac{1}{9} + \frac{1}{6,5}\right)}}{1.2.10^{-3} \left(\frac{1}{9} + \frac{1}{6,5}\right)}$$
$$-50 = 50.4 - 50 = 0.4 \Omega$$

$$K_1 = \frac{9}{1,2 \cdot 10^{-8}} - (0.4 + 50) = 7450 \,\Omega$$

$$K_2 = \frac{6.5}{1.2 \cdot 10^{-8}} - (0.4 + 50) = 5370 \,\Omega$$

$$X_{s_1} = (P + M) | |K_1 = (0.4 + 50)| | 7450 = 50.1 \Omega$$

$$\delta_1 = \frac{50,1-50}{50} = 0.2 \%$$

$$X_{s_2} = (0.4 + 50) \parallel 5370 = 49.9 \Omega$$

$$\delta_2 = \frac{49.9 - 50}{50} = -0.2 \%$$

Vzorce (3. 1) a (3. 3) dávají při použití logaritmického pravítka přesné výsledky v tom případě, liší-li se navzájem dost hodnoty Ř_e a M. Jsou-li tyto hodnoty přibližně stejné, je vypočítáváme jako rozdíl přibližně stejných hodnot. Náprava je možná přesným výpočtem pomocí logaritmických tabulek (jako to bylo provedeno v příkladě 3).

Vyjdou-li z některých vzorců výsledky, které nemají fyzikální význam (záporný odpor), znamená to, že nelze realizovat ohmmetr s takovými danými a zvolenými hodnotami, z jakých byl vypočítáván. Bývá nejvhodnější zvýšit napětí zdroje nebo zmenšit jeho dovolenou

4. Stupnice ohmmetrů

Odvodíme je ze stupnice měřidla výpočtem, protože jsou nerovnoměrné, k cejchování by byla zapotřebí souprava přesných odporů a cejchování by se muselo provádět při takovém napětí baterie, při němž je chyba ohmmetru nulová.

Označíme-li výchylku měřidla při měření odporu R hodnotou α, je-li max. výchylka měřidla α_m a odpor pro polovinu max. výchylky R_s , platí pro napěťový ohmmetr na obr. 1

$$\frac{\alpha_n}{\alpha_m} = \frac{1}{1 + \frac{R}{R_c}} \tag{4.1}$$

pro proudový ohmmetr na obr. 2,3

$$\frac{\alpha_p}{\alpha_m} = \frac{1}{1 + \frac{R_s}{R}} \tag{4.2}$$

Vypočteme-li ze (4.2) hodnotu $(\alpha_m - \alpha_p)$

$$=\alpha_m\left(1-\frac{1}{1+\frac{R_s}{R}}\right)=$$

$$= \alpha_m \frac{1}{1 + \frac{R}{R_s}} = \alpha_n (4.3), \text{ vidíme, že}$$

obě stupnice jsou navzájem převratné, tj. vyneseme-li stupnici ohmmetru napětového podle vz. (4.1), lze stupnici proudového ohmmetru získat vynesením stejných hodnot od opačného konce stup-nice. V uvedené tabulce (podle [1])

$rac{R}{R_s}$	$\frac{\alpha}{a_m}$. 100	$\frac{R}{R_s} \frac{\alpha}{\alpha_m} \cdot 100$
100	99,0	1,0 50,00
50	98,0	0,9 47,4
30	96,75	0,8 44,5
20	95,30	0,7 41,2
15	93,70	0,6 37,5
10	90,9	0,5 33,33
9 8 7 6 5	90,0 88,9 87,5 85,7 83,3	0,48 32,45 0,46 31,50 0,45 31,05 0,44 30,56 0,42 29,56 0,40 28,6
4,8	82,75	0,38 27,55
4,6	82,15	0,36 26,47
4,5	81,8	0,35 25,92
4,4	81,5	0,34 25,38
4,2	80,8	0,32 24,25
4,0	80,00	0,30 23,09
3,8	79,2	0,28 21,88
3,6	78,25	0,26 20,64
3,5	77,75	0,25 20,00
3,4	77,3	0,24 19,35
3,2	76,2	0,22 18,03
3,0	75,00	0,20 16,67
2,8	73,7	0,18 15,25
2,6	72,2	0,16 13,80
2,5	71,4	0,15 13,05
2,4	70,55	0,14 12,28
2,2	68,7	0,12 10,72
2,0	66,67	0,10 9,10
1,9 1,8 1,7 1,6 1,5 1,4 1,3 1,2 1,1	65,5 64,3 62,9 61,5 60,00 58,3 56,5 54,5 52,4 50,00	0,09 8,26 0,08 7,41 0,06 5,66 0,05 4,76 0,04 3,84 0,02 1,96 0,01 0,99

jsou vypočteny poměrné výchylky $\frac{\alpha}{\alpha_m}$ v závislosti na poměru $\frac{R}{R_s}$ pro ohmmetr proudový; u něho vynášíme výchylku α od nuly, u ohmmetru napěťového od maximální výchylky měřidla. Stupnice na obr. patří k přístroji AVO-M pro $R_s=50~\Omega$ u proudového a $R_s = 5 \text{ k}\Omega$ u napěťového ohmmetru.

5. Popis doplňku pro měření odporů k přístroji AVO-M – elektrická část

Doplněk je zapojen podle schématu na obr. 4. Zapojování přístroje jako napěťového či proudového ohmmetru provádějí samočinně spínací zdířky P a N. Při zasunutí banánku do zdířky N sepnou kontakty n, při zasunutí banánku do zdířky P přepne kontakt p. Podle toho lze na obr. 4 vysledovat zapojení ohmmetrů z obr. 1 a obr. 3. Hodnoty, uvedené na obr. 4, jsou ty, které byly vypočteny v příkl. 1. a 3. Korekční odpor K se skládá z pevných odporů 4 $k\Omega$, 800 Ω , a logaritmického potenciometru 5 $k\Omega$ (malý typ \emptyset 25 mm). U napěťového ohmmetru je odpor K tvořen paralelní kombinací odporů 800 Ω a 5 $k\Omega$, jejíž výsledný odpor se při změně oddo zdířky P přepne kontakt p. Podle jejíž výsledný odpor se při změně odporu potenciometru $0 \div 5$ k mění od 0 Ω do 5000|800 = 690 Ω , což vyho-

5 (Andrew RADIO 129

Obr. 4. Přepínač P má být nakreslen v dolní poloze

vuje požadavku $K = 100 \div 600 \Omega$, vypočtenému v př. 1. Pro proudový ohmmetr se odpor K, tvořený sériovou kombinací odporu $4 \, \mathrm{k} \Omega$ a potenciometru $5 \, \mathrm{k} \Omega$, mění od 4 do $9 \, \mathrm{k} \Omega$, což opět bohatě dostačí pro rozsah $5370 \div 7450 \, \Omega$, požadovaný v př. 3.

Na odporu 4k96 záleží přesnost napěťového ohmmetru. Získáme ho nejsnadněji výběrem na můstku z odporů 5 $k\Omega$ 10 %. Odchylka odporu 0,4 Ω o 10 % není pro přesnost proudového ohmmetru rozhodující a vyrobíme ho navinutím odporového drátu na pertinaxovou destičku, opatřenou na koncích dutými nýtky k připájení.

Znakem -O- je označeno nulovací tlačítko. Při jeho stisknutí se spojí nakrátko svorky N a O napěťového a rozpojí obvod proudového ohmmetru. Potenciometrem pak nastavíme ručku měřidla na maximální výchylku (pravý konec stupnice).

Obvod pro kontrolu napětí baterie: Při stisknutí tlačítka BAT se odpojí měřidlo od obvodů ohmmetru a je zapojeno jako voltmetr přes předřadný odpor R (obr. 5.) Jeho velikost vypočteme ze

$$R = \frac{U_1}{I_1} - M, (5.1)$$

kde M je odpor měřidla, U_1 napětí baterie, při němž má měřidlo ukazovat proud I_1 . Protože proud měřidlem je

přímo úměrný napětí, protéká při napětí U_2 proud I_2 podle vzorce

$$I_2 = I_1 \frac{U_2}{U_1}$$
 (5. 2)

V našem případě volíme-li $I_1 = 1$ mA, $U_1 = 9$ V, $U_2 = 6.5$ V, vychází

$$R = \frac{9}{10^{-3}} - 50 = 8950 \ \Omega$$

$$I_2 = 10^{-3} \frac{6.5}{9} = 0.723.10^{-3} = 0.723 \text{ mA}$$

Rozsah proudů je na stupnici ohmmetru vyznačen barevnou značkou.

6. Popis doplňku pro měření odporů k přístroji AVO-M – mechanická část

Spínací zdířky jsou upraveny z normálních mosazných zdířek podle výkresu 7. Na spodku zdířky je šroubkem M2 přišroubován držák pérového svazku, vyrobený z 2 mm silného hliníko-vého plechu. V boku zdířky je vyvrtán a vypilován otvor, jímž prochází zko-sený pertinaxový špalík, kterým banánek při zasunutí ohýbá pérový svazek. Špalík je v otvoru pera zalepen roztokem plexiskla v chloroformu nebo lepidlem Epoxy. Montáž zdířky provádíme tak, že do otvoru v panelu upevníme nejprve matkou samotnou zdířku a pak na ni namontujeme držák s pérovým svazkem. Kóty na výkresu jsou jen informativní, záleží na použitých perech, ale větší svazky by bylo lze v použité skříňce těžko umístit. Varianta 7a) je pro zdířku napěťového, varianta pro zdířku proudového ohmmetru. Další pérové svazky, použité v přístroji, jsou na výkresu 5. Varianta a) je ovládána tla-čítkem BAT, varianta b) tlačítkem -O-. Izolační plošky, na ně dosedají tlačítka (det. 9), jsou z tenkého pertinaxu a jsou na perech přilepeny. Při sestavování svazků z per, k nimž nemáme náležité izolační podložky a trubičky, se osvědčilo použití igelitové špagety k izolaci šroubů a slepení celého svazku vhodným lepidlem (trolitul v benzenu, plexisklo v chloroformu). Sestavený svazek necháme sešroubovaný důkladně zaschnout a pak jím lze bez rizika rozsypání manipulovat.

Detail 1, který drží baterii, je proveden z hliníkového plechu o síle 1,5 mm a na něm je upevněn potenciometr a tlačítko BAT. Z tohoto plechu vyřežeme pilkou (stříháním se plech deformuje) celý detail v rozvinutí i s otvorem pro vložení potenciometru a zohýbáme na přípravku z tvrdého dřeva. Teprve po provedení všech ohybů narýsujeme a vyvrtáme otvory. Ohýbání nelze totiž provést tak přesně, aby se otvory dříve vyvrtané octly na správných místech.

Podobně je třeba postupovat při výrobě detailu 3.

Bakelitová skříňka, v níž je celý do-plňek zamontován, má vnější rozměry 51×111×81 mm a je běžně k dostání v Obchodě potřebami pro domácnost. Pro montáž je upravena podle výkresu 4. Do čtyř z otvorů na horní straně jsou pevně zašroubovány (případně ještě zalepeny) šrouby M3 se zapuštěnou hlavou, na nichž jsou zevnitř matkami upevněny detaily 1 a 3; do pátého otvoru se zašroubuje osa ukazatele (det. 8). Otvory o Ø 3,2 prochází tlačítka O a BAT (tyto otvory orýsujeme z detailů 1 a 3). V pravé stěně skříňky je otvor pro hřídel potenciometru (výkr. 6), v levé stěně jsou otvory pro zdířky. Po provedení všech otvorů a zašroubování upevňovacích šroubů nalepíme na obroušenou horní stranu skříňky papírový štítek se stupnicemi, nejlépe narýsovaný tuší na kvalitní kladívkové čtvrtce. Lepíme některým z výše uvedených lepidel. Při lepení je důležité zachovat soustřednost stupnic s otvorem pro osu ukazatele. Po důkladném zaschnutí lepidla obrousíme okraje štítku tak, aby se papír při náhodném dotyku neodlupoval, a na celou horní stranu skříňky nastříkáme silnější vrstvu čistého nitrolaku, která chrání stupnice před odřením a znečištěním.

Dno skříňky (výkr. 2) je z pertinaxu 3mm silného a je ke skříňce přišroubováno šrouby M3 se zapuštěnou hlavou. Okraje skříňky, přečnívající dno, opilujeme. Ve dnu jsou dále zašroubovány rozříznuté a napružené mosazné kolíky o Ø4 mm, jimiž je doplněk spojen elektricky i mechanicky s měřidlem.

Ukazatel, jehož pomocí provádíme srovnání údaje měřidla (střední stupnice) se stupnicemi ohmmetru je na výkresu 8. V ose celuloidového pásku je ryska, vyplněná černou barvou. Prohnutí pásku je provedeno po nahřátí v horké vodě; je nutné proto, aby mohla být mezi ukazatel a štítek vložena podložka. Šroubek M3 je v ukazateli zalepen roztokem celuloidu v acetonu a je na něj matkou s drážkou pro šroubovák (výkr. 8) upevněn knofiík z obyčejného síťového vypínače, který slouží k ovládání ukazatele a zároveň zakrývá hlavu šroubu, tvořícího osu ukazatele.

Tlačítka jsou vyrobena z ocelového drátu o Ø 3 mm podle výkr. 9. Do vypilovaných vrubů upevníme při montáži závit drátu, který je zajistí proti vypadnutí.

Po vyrobení všech detailů přistoupíme k montáži. Protože je prostor ve skříňce velmi omezený, provádíme zároveň s mechanickou montáží elektrické zapojení. Na všechna pájecí očka, která

se stanou během montáže nepřístupná, připájíme předem dost dlouhé vodiče, jimiž pak dokončíme zapojení, případně vestavujeme ihned součástky (odpory 4k96 J4, 4k). Osvědčil se tento postup mon áže:

1. Přišroubovat ukazatel, zevnitř zajistit

protimatkou.

2. Upevnit zdířky s pérovými svazky.

3. Upevnit det. 1. K našroubování matek je zde zapotřebí trubkový klíč pro M3 matky. Lze jej improvizovat z tenkostěnné mosazné trubky o světlosti 6,5 mm, z níž lze šestihran zformovat podle matky.

4. Přišroubovat potenciometr. Je třeba vložit do mezery mezi stěnou skříňky a det. 1 matku, prostrčit jí hřídel potenciometru a plochým klíčem utáh-

nout.

5. Připevnit pérový svazek na det. 1. 6. Upevnit det. 3 s pérovým svazkem.

7. Dokončit zapojení. Přívody k bateriím a ke kolíkům pro připojení měřidla provedeme z ohebného lanka, které připájíme na kontakty baterie (nedostatek místa pro jiný způsob připojení).

Po dokončení zapojení provedeme kontrolu několika známými odpory vhodných hodnot. Při měření přesných odporů (1 %) na popsaném vzorku nebyly zjištěny pozorovatelné odchylky.

Lit. [1] Ing. M. Pacák: Universální měřicí přistroj. Elektronik XXX-5.

BASS - REFLEX, KTERÝ SE OSVĚDČIL

Jindřich Pichl, OK1CG

Když jsem dokončil zesilovač jako první část svého budoucího reprodukčního zařízení, ustrnul jsem delší dobu nad reprodukční skříní. Protože je to problém sám pro sebe, stejně složitý jako zesilovač sám, ne-li obtížnější, pročetl jsem znovu všechnu dosažiteľnou literaturu, rozhodnut zhotovit to nejlepší, i kdyby to bylo sebepracnější. K závěru jsem však nedošel a celkový dojem z toho, co se mně dostalo do rukou, byl ten, že vše, co doposud v této věci bylo podniknuto, byly akce jednotlivců a žádná soustavná cílevědomá výzkumná práce.

Obr. 1.

132 anadetski []A]) () =

Návody se od sebe značně lišily, každý autor chválil své, ale téměř všichni se shodovali na tom, že zhotovení dokonalé reprodukční skříně je více méně věcí experimentu a dokonce i náhody a že mnohdy ani složité výpočty nezaručí uspokojivé výsledky.

Znamenalo to tedy na nedohlednou dobu udělat ze svého bytu truhlářskou dílnu a experimentovat. Tak daleko zase ale moje touha po dokonalosti nešla, protože moje hlavní zájmy jsou jinde. Proto jsem se naposled rozhodl pro skříň, kterou jsem měl příležitost spatřit již hotovou a v chodu a zhotovenou podle nevím již jakého anglického časopisu. Byl jsem naráz rozhodnut skončit svoje bloudění a skříň jsem si vlastnoručně brzo postavil. Nezklamala svého

45

25,5

10

9

220

Míry v nákresech jsou udány v milimetrech a značí vždy vnitřní rozměry. Při dodržení měr v obr. 2, který udává přesné rozměry výřezu v přední stěně skřině, vyjdou bočné strany trojúhelníku nikoli rovně, ale mírně vyklenuté dovnitř. Těsně pod reproduktorem dělí skříň na dvě poloviny příčné stěny ve tvaru obráceného "Ü", které jsou v obrázku I a 3 vyznačeny čárkovaně a spojují přední a zadní stěnu skřině.

Jak je z nákresu patrno, jde o rohový typ, který jak akusticky, tak co do možnosti umístění nejlépe vyhovuje. V mém návodu snad budete postrádat pečlivě rozkreslené jednotlivé díly a návod na jejich sestavení. Z původního popisu se mi však v tomto směru nedostalo žádných informací a nabízet můj postup, mne, naprostého laika, ve zpracování dřeva, by bylo trestuhodné. Obojí by pak nemělo stejně význam, protože vy budete

S

Obr. 4.

600

musit pracovat z toho, co budete mít doma nebo co dostanete koupit. A co s tím, nejlépe poradí nejbližší truhlář, ukážete-li mu nákres. Na věci nemůžete nic zkazit, dodržíte-li vnitřní rozměry

skříně a masivnost provedení.

O kvalitě dřeva dostalo se mi z původního návrhu informací jen k přední desce, která má být z překližky 1,5 až 2 cm silné, ale já jsem ji zhotovil z dvou centimetrových odborně klížených měkkých prken a vyztužených třemi příčnými tvrdými lištami. Že si budete muset ponechat přístup k reproduktoru odnětím některé ze zadních stěn, je samozřejmé. Není snad špatným řešením, když jsem obě boční stěny zhotovil z 2 cm hobry, vyztužené opět příčnými tvrdými lištami, které jsou odnímatelné, ovšem po povolení několika desítek šroubů. S hobrou se lehko pracuje, je současně tlu-micím materiálem a hlavně levná. Jen šrouby je nutno podkládat velkými podložkami nebo přítlačnými lištami. Ostat-ní části skříně pak tvoří jeden klížený a šroubovaný celek. Naposled všechny stěny uvnitř skříně vylepte obvyklým zvuk tlumicím materiálem, který by příliš nezmenšil vnitřní prostor.

Nyní zmínka k reproduktoru: Prosím, nezkažte si výsledek práce tím, že použijete "nějaký" reproduktor na-místo předepsaného o Ø 30 cm. To by byla největší chyba. Nespěchejte. Občas se přeci objeví něco na trhu nebo ve výprodeji a ani pak se nerozpakujte reproduktor co nejlépe přizpůsobit jeho úkolu. Mám tím na mysli hlavně výměnu membrány, protože reproduktory těchto průměrů, které se dosud objevily na trhu, byly vesměs určeny pro větší výkony a měly proto mohutné magnety a tvrdou membránu. S touto membránou byste pak ovšem nedosáhli sametově měkký přednes hlubokých tónů. Já sám jsem se nelekl obtížného řešení. Získal jsem totiž biografový reproduktor s poškozenou membránou a přerušenou budicí cívkou. Již samo převinutí budicí cívky o 24 000 závitů bylo dramatickou záležitostí. Opatření vhodné membrány a vyhledání zručného mechanika (i když amatéra) nebylo také snadnou záležitostí, ale výsledek byl úměrný vynaložené námaze.

Ve svém popisu jsem nezacházel do podrobností. Všechna základní pra-vidla, platná pro stavbu skříní a vlastnosti reproduktorů, platí i zde. Před-pokládám, že každý, kdo projeví zájem o stavbu této skříně, jistě již předtím o těchto věcech nejednou četl a tak by to bylo jen opakováním mnohokrát již napsaného.

Naposled bych se chtěl doznat, že jsem si přeci jen pro možnost porovnání úplně neodepřel zaexperimentovat si a zhotovil jsem ještě jednu menší skříň podle obrázku 4 a desku 80×80 cm. Rozdíl je přímo makatelný i naprosto nemuzikálnímu uchu. Rozhodnete-li se ke stavbě v létě, spojte přijemné s uži-tečným a přijeďte na Zbraslav parníkem. Bydlím v budově spojů, Žižkova 337.

Opravdu subminiaturní rozměry mají nové "Mikro-miniaturní pulsní transformátory", které nabízí fa Electronics Components Division. Tyto transformátory mají rozměry Ø 5,5×7,8 mm při váze pouhých 0,85 g. Svým vzhledem připomínají spíše tranzistory, od kterých se list pouze čtyřmi vývody. M.U. Firem. lit. fy ESC 534 Bergen Boulevard, Palisades, Park, N. Jersey

REGULAČNÍ TRANSFORMÁTOR

Jindřich Duřt

Kolísání síťového napětí dosahuje v některých místech takové hodnoty, že je tím ohrožena správná funkce různých elektrických přístrojů, zejména televizních přijímačů.

Elektromagnetické stabilizátory pro výkony 150 a 260 VA, které jsou v současné době na trhu, udržují sice jmenovitou efektivní hodnou síťového na-pětí s tolerancí 2 %, jejich velkou ne-výhodou však je, že silně deformují sinusovku. Nelze jich proto s úspěchem použít u těch televizorů, které získávají anodové napětí prostřednictvím jednocestného usměrňovače přímo ze sítě, neboť usměrněné napětí je podstatně nižší než v případě, kdy síťové napětí má sinusový průběh.

V takové situaci nezbývá, než použít

k vyrovnání poklesu síťového napětí regulační transformátor. V článku je popisován přístroj, kterým lze nastavit jmenovité síťové napětí 220 V s tolerancí 2,5 %. Proti elektromagnetickým stabilizátorům však vyžaduje občasnou ruční regulaci a stálou kontrolu výstupního napětí vestavěným voltmetrem.

Požadavky na zařízení

1. Regulační rozsah 180—230 V regulovatelný stupňovitě. Velikost regulačních stupňů nemá být větší než 2,5 % jmenovité hodnoty síťového napětí.

Maximální příkon spotřebiče připojeného na regulační transformátor je

500 VA.

3. Během přepínání nesmí docházet k přerušování proudu.

 Konstrukce přístroje musí odpovídat bezpečnostním předpisům.

Volba zapojení

Všem uvedeným požadavkům vyho-

vuje přístroj zapojený podle schématu. Odbočky transformátoru se přepínají dvoupatrovým jedenáctipolohovým přepínačem, který v tomto zapojení dovoluje regulovat síťové napětí v mezich 180 až 230 V bez přerušení dodávky proudu

do připojeného spotřebiče.

Aby nedocházelo k přímému zkratování sousedních odboček transformátoru během přepínání v okamžiku, kdy běžce přepínače překrývají současně vždy dva sousední kontakty, jsou v pří-vodech k oběma běžcům zařazeny odpory 1,5 Ω/12 W, které pro zkratový proud jsou zapojeny v sérii a omezují jej na hodnotu menší než 2 A. Po přepnutí je v sérii se spotřebičem zapojen vždy pouze jeden z odporů. Na tomto odporu vzniká pochopitelně úbytek na-pětí. Tento úbytek, který není nijak

kritický, je vzápětí kompenzován transformátorem. V krajním případě, tj. při napětí v síti 180 V a maximálním zatížení, činí asi 4 V.

Protože na prvý pohled by se mohlo zdát použití dvoupatrového přepínače zbytečně nákladné, uděláme si malé srovnání: Pro zapojení uvedené na potřebujeme dvoupatrový schématu přepínač, jehož každé patro musí mít II kontaktů a normální aretaci. Celkový

počet kontaktů je 22.

Při použití jednopatrového přepínače bychom museli zapojit jednotlivé odbočky vždy ob jeden kontakt, aby nedocházelo k přímému zkratování mezi sousedními odbočkami transformátoru při přepínání. Potřebovali bychom k tomu přepínač, který by měl 21 kontaktů a aretaci upravenou tak, aby přepínal ob jeden kontakt. Mimo okolnost, že po-dobný přepínač má obvykle značné rozměry, museli bychom se smířit s tím, že během přepínání by docházelo k přerušení proudu, což je nežádoucí a v ně-kterých případech dokonce nepřípustné.

Výpočet transformátoru

Výpočet vlastního transformátoru provádíme podle obecně známých vzorců, pouze s tím rozdílem, že jej nepočítáme na plný průchozí výkon, nýbrž na tzv. výkon regulační, vyjádřený vzorcem:

$$N_{\text{reg}} = \frac{\Delta U \cdot Is}{\eta} = \frac{(40 + 4) \cdot 2,27}{0,85} = 120 \text{ VA}$$

 $\Delta U = \text{maximální úbytek napětí v síti}$ proti jmenovité hodnotě síťového napětí, plus úbytek napětí na ochranném odporu $1,5^{\circ}\Omega$, který činí v nejnepříznivějším případě 4 V.

proud, který odebírá spotřebič při jmenovité hodnotě síťového

napětí.

 $\eta = \text{účinnost.}$ Pro transformátory této velikosti se obvykle voli $\eta =$ = 0.85.

Dále jsou uvedeny praktické údaje potřebné ke zhotovení regulačního trans-formátoru, dimenzovaného na maximální průchozí výkon 500 VA.

Jádro o průřezu 16 cm Plechy tvaru např. EI 40 složeny střídavě

Budicí vinutí – 500 závitů Cu 0,65 mm Regulační vinutí – 10 × 16 závitů Cu 1,1 mm

Zhotovení transformátoru

Vývody z transformátoru je výhodné uspořádať tak, aby na jedné straně spodního čela byly všechny vývody, které

jdou na jedno patro přepínače, a na druhé straně spodního čela opět všechny vývody, které vedou na druhé patro přepínače. Odbočku pro 220 V je výhodné vyvést dvakrát, a to jednou spodním čelem k přepínači a podruhé vrchním čelem, spolu se začátkem budicího vinutí, k výstupní zásuvce. Tím se všechny spoje zkrátí na minimum a forma vyjde vzhlednější.

Odbočky provedeme nejlépe lankem o průřezu 1 mm, na které navlékneme textilní bužírku. Místa, kde odbočujeme z vinutí, dobře propájíme a proložíme lesklou lepenkou. Po skončení vinutí obalíme cívku dvěma vrstvami lesklé lepenky, dvěma vrstvami olejového plátna a jednou vrstvou průhledné fólie, pod kterou neopomeneme vložit štítek s údajem o počtu závitů a průměru drátu jednotlivých vinutí. Transformátor nemusí být opatřen svorkovnicí, protože všechny vývody jdou přímo k přepínači nebo k výstupní zásuvce.

Konstrukce přístroje

Celý přístroj je namontován do kovové kostry tvaru U o rozměrech $250 \times 200 \times 125$ mm.

Kostra je zhotovena ze železného plechu síly 2 mm a nahoře je vyztužena dvěma distančními sloupky ze železné kulatiny o průměru 6 mm. Pro lepší vzhled navlékneme na distanční sloupky syntetickou bužírku o průměru 5 mm, kterou jsme před navlékáním změkčili ponořením do tetrachloru asi na čtvrt hodiny. Na přední straně kostry je namontován kontrolní voltmetr, sítový vypínač a regulační přepínač. Zadní strana nese výstupní zásuvku, pojistku a přívodní šňůru.

Uvnitř kostry je přišroubován vlastní transformátor, na němž je připevněna pertinaxová destička, která nese ochranné odpory, svorky pro připojení síťové šňůry a bakelitovou skříňku, ve které je umístěn usměrňovač a předřadný odpor voltmetru.

Na kostru se navléká ochranný kryt zhotovený ze železného plechu síly 1,2 mm, opatřený držadlem ke snazšímu přenášení. Ochranný kryt je ke kostře připevněn jedním šroubkem M3 na zadní stěně a čtyřmi šrouby na spodní stěně. Tyto čtyři šrouby současně drží gumové nárazníčky, na kterých celý přístroj stojí. Ochranný kryt i kostra

přístroje je nastříkána vhodným vypalovacím lakem.

Kontrolní voltmetr může být buď elektromagnetický nebo deprézský s usměrňovačem. Volíme raději přístroj s kopinatou ručkou, protože je daleko výraznější než nožová. Bude-li regulační transformátor používán ve spojení s televizorem, doporučuji použít voltmetr s osvětlenou stupnicí, nebo na ručku přístroje a značku 220 V nanést svíticí hmotu, jaké se používá na stupnice leteckých přístrojů.

Odpory 1,5 Ω /12 W, zapojené v přívodech k běžcům přepínače, je výhodné provést jako jeden odpor 3 Ω s odbočkou uprostřed. Zjednoduší se tím konstrukce a zlepší chlazení odporu, takže stačí, aby společné tělísko, na kterém jsou navinuty oba odpory, bylo dimenzováno na 12 W

Po elektrické stránce musí náš přístroj jako každé silnoproudé zařízení odpovídat bezpečnostním předpisům, tzn. musí být řádně jištěn a kostra přístroje spojena s ochranným vodičem. Přívodní šňůru proto použijeme zásadně třípramennou, nejlépe Flexo o průřezu 3 × 1 mm. Třetí ochranný vodik u výpojíme přímo na ochranný kolík u výstupní zásuvky. Tento bod současně spojíme s kostrou přístroje. Tím máme zaručeno, že je chráněn nejen náš přístroj, nýbrž i spotřebič, který bude přes regulační transformátor napájen.

Přepínač je nutno zapojit tak, aby při otáčení knoflíkem doprava výstupní napětí stoupalo; v pravé krajní poloze bude připojena odbočka pro nejnižší napětí, tj. 180 V a naproti tomu v levé krajní poloze odbočka pro nejvyšší napětí, tj. 230 V.

Popisovaný přístroj byl zhotoven ve třech exemplářích. Je používán v domácí laboratoři, u televizního přijímače a při zvětšování fotografií ve spojení s elektronickým časovým spínačem. Ve všech případech se plně osvědčil.

Je samořejmé, že domácí pracovník si přizpůsobí konstrukci přístroje podle svých možností a potřeb. Náklady na něj vynaložené nedosáhnou částky 365 Kčs (cena elektromagnetického stabilizátoru pro výkon 260 VA) ani v tom případě, bude-li nutno všechny součástky kupovat.

Budete opět svá zařízení lepit na kótě Polního dne?

Pozor na elektronky 6CC41 a ECC83!

Je bohužel dosti rozšířena mylná domněnka, že tyto-elektricky velmi blízké – dvojité triody lze v přístroji vzájemně nahradit prostov výměrov

vzájemně nahradit prostou výměnou. Tomuto bludu naneštěstí napomáhá i osmé zlepšené vydání známého "Rohren-Taschenbuch", vydaného nakladatelstvím Fachbuchverlag Leipzig 1958. Tam se totiž na str. 349 uvádí špatné zapojení patice elektronky 6CC41 tak, že podle uvedeného zapojení by měla 6CC41 odpovídat elektronce ECC83. Nevíme, jakou cestou se dostala data čs. elektronek do NDR, ale je docela možné, že autor "Taschenbuchu" byl sveden buď nápadnou podobou s ECC83 nebo konečně podle srovnávacích tabulek byl opět sveden k ECC83.

Omylu zřejmě napomáhá jednak stejné žhavení na kolících 4 a 5 a jednak devátý kolík, označený "s", což se patrně u elektronky 6CC41 chybně vykládá za střední vývod žhavení. Elektronka 6CC41 má žhavení 6,3 V/

Elektronka 6CC41 má žhavení 6,3 V/0,3 A na kolících 4 a 5, zatím co kolík 9 je její vnitřní stínční. Elektronka ECC83 má také žhavení na kolících 4 a 5, ale 12,6 V/0,15 A a na kolíku 9 má vyvedený střed žhavení. Vhodné stínční obou systémů je provedeno již jejich konstrukcí. Při záměně 6CC41 ze ECC83 tedy můžeme očekávat, že se přeruší žhavicí vlákno přílišným proudem, ovšem jen tehdy, je-li ECC83 žhavena napětím 12,6 V. (Je-li žhavena paralcíně, tj. napětím 6,3 V, nebude žhavit, jak je dále vysvětleno). A právě ECC83 bývá v amatérských přístrojích a konstrukcích vzhledem ke spolupráci s inkurantními elektronkami RV12P2000 apod. žhavena napětím 12,6 V. Při žhavení napětím 6,3 V se spojí kolíky 4 a 5 a tvoří tak jeden přívod a kolík 9 druhý přívod žhavení.

Poslední výrobní série 6CC41 vrchlabské Tesly má na první pohled stejné vzhledové provedení anod, jak jsou známé u elektronek ECC81, ECC82 a ECC83. Stínicí přepážka je ale patrnější než u dřívějšího provedení s "bednovitými" anodami.

$U_{ m f}$	6,3	6,3 12,6	V
I_{f}	0,3	0,3 0,15	A
U_{a}	250	250	V
I _a	2,3	1,25	mA
S	2	1,6	mA/V
μ	100	100	
$R_{\mathbf{i}}$	50	62	kΩ
W_8	1	1	W
U_{g1}	2,5	-2	V

INFRATECHNIKA VE VOJENSTVI

Jaroslav Maruna

Infratechnické přístroje využívají pro svou činnost infračervené paprsky (IF). Tyto paprsky zaujímají v celkovém spektru elektromagnetického vlnění vlnové délky od 0,78 do 500 mikronů. Ve srovnání s viditelným světlem je infračervené záření v atmosféře méně pohlcováno a rozptylováno. Díky těmto vlastnostem má větší pronikavost. Tyto vlastnosti jsou výhodné a využívají se pro vojenské účely.

pro vojenské účely.

Přírodním zdrojem IF paprsků je slunce a jiná nebeská tělesa. Lze říci, že každý předmět vyzařující teplo je zdrojem IF záření. Z toho vyplývá, že zdrojem IF paprsků jsou i letadla, automobily, tanky, lodě, továrny, hutě a jiné zdroje tepla. Dokonce i lidské tělo, jehož teplota je 36,7 °C, je zdrojem dlouhých IF paprsků.

Detekce IF paprsků

K odhalení přítomnosti IF paprsků se používají speciální fotografické desky, bolometry, termočlánky, fotoelektrické odporové články a v současné době polovodiče. Elektrické detektory IF paprsků mají jeden společný princip spočívající v tom, že jejich odpor se při ozáření mění. Tyto přijímače jsou zapojeny do elektrického obvodu, který je vyvážen. V případě, že přijímač (např. termočlánek) je ozářen, rovnováha obvodu se poruší, což se projeví akusticky, světelně nebo mechanicky.

Vlastnosti IF paprsků

IF paprsky podléhají stejným zákonům jako světelné paprsky. Na rozdíl od nich však poměrně lehko procházejí neprůzračnými materiály jako je lepenka, černý fotografický papír, ebonit a jiné. Další rozdíl spočívá v šíření atmosférou. IF paprsky procházejí lépe než viditelné paprsky kouřem, deštěm, sněhovou vánicí, mlhou a prachem. Např. IF paprsky o vlnové délce 0,8 až 1,2 μ se při slabé mlze šíří na dvojnásobnou vzdálenost než viditelné paprsky.

Použití IF techniky ve vojenské technice

Za nynějšího stavu výzbroje armád musí počítat všichni velitelé s vedením boje v noci. Současná bojová technika (radiové průzkumné prostředky, radiolokační průzkumné prostředky, přístroje pro vidění v noci, prostředky umělého osvětlení bojiště) umožňuje noční boj. Přístroje pro noční vidění umožňují přesnou střelbu z pušek, kulometů

a děl, průzkum činnosti nepřítele, bezpečnou jízdu tanků a motorizovaných jednotek, signalizaci a telefonní spojení. Již během druhé světové války byly vyvinuty IF prostředky pro vidění v noci. Jako prvý byl vyvinut IF převáděč obrazu. Skládá se z těchto částí (viz obr. 1):

- a) fotokatody F, která je citlivá na IF zářeni,
 - b) fluorescenčního stínítka S,
 - c) elektronové optiky A_1 , A_2 , A_3 , A_4 ,
- d) skleněné baňky, kde je celý systém uložen.

Dopadne-li na fotokatodu F infračervené záření, začne tato emitovat elektrony, jejichž hustota je úmčrná intenzitě IF záření. Tento tok elektronů je urychlován a zaostřován elektronovou optikou A_1 , A_2 , A_3 , A_4 na fluorescenční stínítko S, kde způsobí záření a tím vytvoří viditelný obraz, obdobný obrazu, který dopadl na fotokatodu F. Napájecí zdroje pro převáděč mohou být nepatrných rozměrů a váhy, neboť IF převaděč obrazů spotřebuje příkon 0.1 W.

vaděč obrazů spotřebuje příkon 0,1 W. IF převáděč obrazu je základním prvkem IF dalekohledu (obr. 2). Dalekohled se skládá z objektivu O, který zobrazuje obraz pozorovaného předmětu na fotokatodu F infračerveného převáděče obrazu IMO. Zde se přeměňuje na obraz viditelný, jenž se pak pozoruje čočkou Č. Na obr. 3 je principiální schéma použití přístroje v noci. Sestává z IF dalekohledu A, napájecího zdroje B a IF reflektoru C. IF reflektor se skládá z odrazové paraboly, v jejímž ohnisku je žárovka a filtr, který nepropouští viditelné paprsky, nýbrž pouze IF paprsky. Reflektor ozáří pozorovaný objekt, od něhož se IF paprsky odrazí a jsou zachyceny IF dalekohledem a přeměněny ve viditelný obraz.

IF prostředky v pěchotě a tankovém vojsku

Vševojskový průzkum a speciální skupiny v pěchotě mají v IF prostředcích významného pomocníka. Konstrukce těchto prostředků závisí na oblasti jejich použití a nasazení. Nejmenší konstrukce jsou montovány na puškách odstřelovačů. Větší konstrukce těchto přístrojů jsou montovány na kulomety a děla. Zvláště důležité jsou IF prostředky pro tankové a motorizované vojsko při noční bojové činnosti. Jeden zahraniční IF dalekohled, určený pro vedení motorizovaných vozidel za noci, má tato

Obr. 2.

Evaporografický snímek letadla na vzdálenost 200 m.

data: zvětšení 1, zorný úhel 30°, dosah 100 m a váha 15 kg. IF dalekohled pro střelbu má tato data: zvětšení 2, zorné pole 10°, dosah 300—500 m, váha 30 kg.

Obrana proti IF prostředkům

Pro pozorování a průzkum IF reflektorů byly zhotoveny zvláštní průkazníky. Dopadnou-li IF paprsky na tento průkazník, ukáží obsluhovateli, že je ozařován. Tyto přístroje se dělají přenosné o nevelké váze 200–400 g. Základním prvkem je vrstva luminiscenční látky, která po ozáření IF paprsky světélkuje viditelným světlem. Světélkování vrstvy se pozoruje pomocí optického systému. Buzení citlivé vrstvy se provádí pomocí slunečních nebo ultrafialových paprsků. V současné době se používá pro tyto účely radioaktivní alfa-preparát.

Zatím objekt nemůže zjistit, že je pozorován IF prostředky, které zorné pole neozařují, ale využívají vlastního tepelného záření cíle.

neno zarem cne

Použití IF prostředků pro letectvo a námořnictvo

Tyto prostředky lze použít pro letecký průzkum v nočních podmínkách a zvláště pak pro letecké fotografování. Fotografování se provádí na speciální desky nebo filmy. V USA byla sestrojena IF kamera, která umožňuje fotografovat za mlhy a dýmu pozemní objekty na vzdálenost 50 km. Tato kamera je nesena tubusem o délce 218 cm, který je umístěn na třínožce. Uvnitř tu-

5 amaterské RADIO 135

Obr. 1.

Obr. 4.

samonaváděcí infra hlavice

- zesilovač

3 - zařízení ovládající servomotory kormidel

4 - bojová nálož

5 – stľačený vzduch

6 - automatická stabilizace

7 – raketový motor

8 - kormidla

busu je teleobjektiv o průměru 24 cm s ohniskovou dálkou 254 cm. Kamera umožňuje sejmout 36 obrázků $12,7 \times 17,8$ cm. Po pravé straně tubusu je dalekohled, který umožňuje sejmout 36 nasměrování IF kamery na objekt. Váha bez třínožky je 55 kg. Doba potřebná pro uvedení kamery v činnost je 5 minut. Vysoká rozlišovací schopnost do-voluje zřetelné snímky automobilů na vzdálenost 10 km.

IF prostředky lze dále používat pro rozpoznávání vlastních a nepřátelských letounů, pro signalizaci mezi letouny, pro vedení letadel v noci, pro označení výsadkových prostorů apod. Široce se zavádějí v řízených střelách "vzduch-vzduch", "vzduch-země", "země-vzduch", "země-země". Na obr. 4 je vyobrazena řízená střela "vzduch-vzduch" a její části. V přední části je umístěno samonaváděcí IF zařízení, které reaguje např. na ústí trysky prou-dového letounu. Velkou předností těchto IF naváděcích systémů je jejich velká jednoduchost vůči radiolokačním. Např. řízená střela "vzduch-vzduch" typu AAM-N-7 Sidewinder používá samo-naváděcí IF systém a má jen 7 elektronek, Analogický radiolokační systém má několik desítek elektronek. Lze předpokládat, že i mezikontinentální balistické střely budou vybavovány tímto systémem, neboť jsou určeny především proti velkým průmyslovým městům a závodům, které jsou ve srovnání s okolní přírodou mohutným zářičem tepla a tedy i IF paprsků. Zvláštní pozornost se věnuje tzv. infra-zaměřovačům. Tyto přistroje slouží pro přesné zaměřování letounů v noci. Mají řadu předností:

vysokou rozlišovací schopnost - velmi úzký směrový paprsek

– malé rozměry zařízení - jednoduchosť konstrukce

malou váhu

Při průměru reflektoru 1,5 m může přístroj zjistit bombardovací letadlo do vzdálenosti 10—15 km, aniž se sám vyzradí, neboť žádné paprsky nevyzařuje. IF technika se v tomto oboru neustále rozvíjí a již dnes slouží některé přístroje v praxi. V době druhé světové války se tyto přístroje široce používaly ve vojenském námořnictvu pro hledání cílů – lodí, torpedoborců, ponorek apod. Do-sah zaměřování velkých lodí byl v rozmezí 25—35 km. Na obr. 5 je schéma IF zaměřovače. Je to přístroj, který reaguje na cíle, které vyzařují IF paprsky. Jako přijímačů IF paprsky se zde používá termočlánků, bolometrů a odporových fotočlánků. Činnost pří-

136 Amastrski RADIO 30

stroje je tato: parabolické zrcadlo zachytí a soustředí na termočlánek IF paprsky, které vyzařuje nějaký cíl. Termoclánek je umístěn v ohnisku zrcadla. Při jeho ozáření IF paprsky vznikne v uzavřeném okruhu termoelektrický proud. Tento se dále zesiluje a působí na registrační zařízení. Poprvé bylo tohoto zařízení použito k varování osádek lodí před možnou srážkou lodi s ledovcem v noci nebo mlze.

Použití IF prostředků pro spojení

Prvních IF prostředků pro spojení použili v druhé světové válce Němci a Ja-ponci. Japonský IF telefon měl váhu 45 kg a zabezpečoval telefonní spojení mezi dvěma místy na vzdálenost 3 km. Německý IF telefon umožňoval spojení na vzdálenost 16 km. Váha celého zařízení byla bez napájecích zdrojů 73 kg. Provozní zkušenosti ukázaly jednu z největších výhod IF telefonu – nesnadný odposlech nepřítelem. Na obr. 6 je vy-obrazeno schéma IF telefonu, který pracuje takto: Napětí z mikrofonního obvodu je zesilováno v zesilovači a moduluje elektrický proud, který protéká výbojkou (5). Modulovaná vyzařovaná energie je fokusována parabolickým zrcadlem do potřebného směru. Filtr zadrží světelné paprsky a propustí pouze IF paprsky. Tyto směrované IF paprsky jsou zachyceny parabolickým zrcadlem protější stanice, zesíleny v ze-silovači a demodulovány. IF telefonu se používá hlavně pro spojení v hornatém a stepním terénu a opevněných rajónech. Dosah těchto přístrojů může být podle terénu a klimatických podmínék

1 – parabolické zrcadlo

2 – infračervené paprsky

3 – termočlánek

4 – zesilovač

5 – registrační zařízení

až 20 km. Použití IF telefonu má řadu předností:

a) nesnadný odposlech vysílaných re-

možnost kódování signálů

jednoduchost provozu a obsluhy. Těchto vlastností IF telefonu chtěla využít americká špionážní služba v západnim sektoru Berlina. Proto dodala tento přístroj své spolupracovnici Gi-sele Gebhartové, která měla podávat tímto přístrojem špionážní zprávy ze svého bytu v demokratické části Berlína. Zásahem bezpečnostních orgánů NDR byla tato špionka v roce 1959 i se svým spojovacím přístrojem včas odhalena a zajištěna.

Závěr

Značné úspěchy, dosažené v oblasti fotoelektroníky ve válečných a poválečných letech, vytvořily předpoklady, aby rych letech, vytvorny predpoklady, aby IF paprsky byly využity pro vojenské účely. Přístroje pro noční vidění, IF telefony, IF zaměřovače, IF průkaz-níky, fotoelektrické zapalovače – to není ani zdaleka úplný výpočet vojenských přístrojů, jejichž princip činnosti je za-ložen na využití IF paprsků. Neustálé

Obr. 6.

1 - mikrofon

2 – zesilovač – modulátor

3 - napájeci zdroj

4 – parabolické zrcadlo

5 – zdroj záření

6 – viditelné světelné paprsky

7 – filtr, zadržující světelné paprsky

8 – infračervené paprsky

9 – parabolické zrcadlo

10 - prvek, citlivý na infračervené paprsky

11 - zesilovač - demodulátor

12 – sluchátka

zdokonalování IF techniky umožňuje, že se její prostředky stávají vážným konkurentem radiolokační techniky, zvláště v oblasti navádění řízených střel, v odhalování vojenských objektů, střelec-kého navádění a pozorování bojiště. IF technika se neustále rozvíjí a zvláště ve vojenství je nutno s ní počítat a věnovat jí patřičnou pozornost.

Použitá literatura: S. Vavilov: O teplém a studeném světle F. Müller: Leitfaden der Fernlenkung

A. Locke: Guidance

V. Kička: Infrakrasnyje luči v vojennom

Věstnik svjazi č. 7/1957 Flight, roč. 1957, 1958, 1959 Electronics, roč. 1954 Radio and Telecision News č. 6/1955

PIRE, roč. 1959

Funkamateur č. 10/1959

Ant. Vaško: Elektronické obrazové měniče, * * *

SNTL 1955

Anténní člen k přijímači

Málokterý z amatérů věnuje větší pozornost svému přijímači, přijímací anténě a jejich vzájemnému přizpůsobení. A přece je to věc téměř nezbytná a ti, kteří si postaví zde popisovaný člen, budou jistě překvapení výsledkem.

Zařízení zlepší potlačení nežádoucích signálů např. o 15 dB na 10 MHz a o 12 dB na 25 MHz.

Všechny cívky jsou vinuty na průměr 5 cm drátem o Ø 1,2 mm, závit vedle závitu. Cívky L_4 , L_5 a L_6 jsou provedeny jako odklápěcí. Počty závitů: L_1 : 72 záv.;

 L_2 a L_4 : 20 záv.; L_3 : 4 záv.; L_6 : 12 záv.; L_6 : 2 záv.; kondenzátor C_1 jakostní vzduchový o kapacitě 150 pF.

S uvedenými hodnotami cívek lze překrýt tyto rozsahy: 1,8—5 MHz; 4,5—13 MHz; 12—30 MHz. Peček

JE TO SNAD MÁLO?

Únorový úvodník "Vyvíjet nebo nevyvíjet" zabral. Lze tak soudit, když už z ničeho jiného, tedy z několika dopisů, jejichž autoři projevili nesouhlas s tam uvedenými vývody a z cvičných důvodů se zapomněli podepsat. Asi proto, abychom náhodou nechtěli v diskuzi pokračovat a ukázat důkazy, že výzkumná a vývojová práce v Československu se k patnáctému výročí osvobození republiky má čím pochlubit a zdůvodnit existenci výzkumných ústavů a vývojových skupin.

Ale ani anonym nemůže svýma křečovitě zavřenýma očima zabránit, aby příznivý vývoj nepokračoval. Kdo z pražských zájemců měl čas, mohl se 28. února na besedě o nových součástkách, kterou pořádala redakce AR, přesvědčit, že v blízké budoucnosti bude z čeho stavět moderní zařízení. Ti, kteří neměli příležitost se této besedy zúčastnit, mají vyobrazeno několik ukázek z nové produkce na III, straně obálky. Jsou tu tolik postrádané konektory, elektronkové objímky, miniaturní přepinače, cívková tělíska, ba i plošné indukčnosti – vše již s přihlédnutím na nejnovější technologií.

Obdivovatele západní techniky asi překvapí, že např. Tesla Rožnov se chystá na tranzistory s mezním kmitočtem až do 400 MHz, na výkonové tranzistory 4, 10, 50 W, křemikové hrotové diody a solární baterie, triody pro kmitočty nad 1000 MHz v keramickém provedení a pracuje se na obrazovce pro přenosný tranzistorový televizor.

Tyto výrobky samozřejmě předpokládají spolupráci s množstvím dalších součástí, které dosud u nás nebyly zavedeny a které se musí řešit současně s sebou. Psát o všech by znamenalo opisovat zápisky z množství schůzí, konferencí a porad, s nimiž se v poslední době tak říkaje roztrhl pytel.

Konference a výstavy, na níchž se lidé domlouvají a seznamují vzájemně se svou prací, však mají mnohem závažnější význam než jen ukázat, co jsme udělali: umožňují využíváním kooperace dosáhnout soustředění výroby, zmasovění, automatizaci výrobních postupů a – nikoliv naposled – normalizaci, která při dosavadním roztříštěném vývoji a výrobě nemohla zdárně pokračovat. O významu normalizace a typizace není třeba se šířit – větší série, levnější výroba atd. V této souvislosti chceme jen poukázat na průkopnickou práci n. p. Adast

Dubnica, jemuž se podařilo vyvinout všestranně vyhovující unifikovanou řadu (o několika málo členech!) takových součástek, které bylo možno považovat za nenormalizovatelné – síťových transformátorů a tlumivek.

Takovým úspěchem se může pochlubit málokterý z průmyslově velmí vyspělých států. O dobré práci našich normalizátorů vůbec svědčí i skutečnost, kterou zdůraznil předseda komise pro zhromadňování výroby Státního výboru pro rozvoj techniky, s. inž. Dostál na l. celostátní konferenci o slaboproudých součástkách 17. prosince m. r. v Liberci, že totiž Československu byl svěřen sekretariát pro tvorbu norem Rady vzájemné hospodářské pomoci na dva až tři roky. Soudruh inženýr Dostál, ač sám pracovník Úřadu pro normalizaci, prohlásil, že pokrok nedělají normy, ale výroba, a Úřad pro normalizaci on sám považuje za technickou administrativu, která vyřizuje to, co se na závodech udělá. - Což přeloženo do řeči srozumitelné lidem nespokojeným znamená, že normalizační práce u nás musí být asi podložena množstvím nejrozmanitějších výrobků, neboť za nic a pro nic by nám tato funkce, tak závažná pro plánovitý rozvoj hospodářských základů socialistických států, přiklepnuta nebyla.

Amatér se samozřejmě zeptá, co z toho je pro amatéra. Amatér, který myslí nejen technicky, ale také politicky, si spočítá, že dobře zorganizovaná výroba slaboproudých součástí musí v první řadě sloužit potřebám celku. Je jistě důležitější, aby bylo dostatek prostředků pro důslednou telefonizaci, pro automatizační prostředky v průmyslu a pro obranu, než aby byl již nyní nadbytek materiálu pro stavbu zařízení, která mají přece jen charakter luxusní. Vždyť právě tímto zajišťovaný rozmach výroby má za konečný cíl dosáhnout takového stupně uspokojování materiálních i kulturních potřeb všech pracujících, o jakém se v našem kapitalistickém sousedství nikomu ani nesní! - Jinou otázkou je, zda už z toho, co by mohlo být amatérům již dnes k dispozici, se příslušný díl dostává do distribuční sítě. Organizace distribuce ponechává ještě mnoho splnitelných přání nesplněných a je i naší snahou pomoci ke zlepšení v tomto oboru. Sortiment součástí v prodejnách radio-elektro však není zdaleka směrodatným ukazatelem úrovně naší radioelektroniky.

Tesla Liberec je jedním ze závodů, jež mají za úkol doplnit součástkovou základnu našeho slaboproudého průmyslu. Zatím se závod věnoval výrobě objímek, konektorů a jiné "galanterie". Na obrázcích je zachycena výroba novalových objímek.

Co z toho je tedy pro amatéra? Radostné zjištění, že před patnácti lety jsme neměli samostatný slaboproudý průmysl a dnes jej máme. Zjištění, že před patnácti lety jsme měli jen několik desítek amatérů vysílačů, a dnes jich máme přes tisíc. A všechny ty tisíce mají z čeho stavět, třebas i tak složitá zařízení, jako jsou zařízení pro velmi krátké vlny a SSB. A jistota, že výběr se v blízkých měsících a letech rozvine, co hrdlo ráčí. A to je, prosím, málo?

Zdroj srovnávacího napětí

Dobrým pomocníkem v laboratoři je přípravek podle obrázku. Umožňuje plynulé nastavení stejnosměrného nebo střídavého napětí s malým odběrem, např. pro cejchování měřicích přístrojů, osciloskopů apod. Pro běžné účely je dostatečná nejvyšší hodnota napětí 24 V. Jak je patrno z obrázku, přeřadí se na drátový potenciometr P_1 (o minimální hodnotě 5 k Ω) buď střídavé napětí nebo usměrněné a vyfiltrované napětí ze selenového usměrňovače U. Na jeho běžci je dělené výstupní napětí se žádanou polaritou. Volba provozu je provedena přepínačem Př₁: buď stejnosměrné, nebo střídavé výstupní napětí. Selenový usměrňovač U je běžného provedení v můstkovém zapojení a ve vzorku je typ 24 V/0,3 A. Jeho velikost není kritická. Také proto, že nejčastější srovnávací napětí bývá do 1 V, max. do 10 V – a jen výjimečně je vyšší. Vzhledem k těmto požadavkům může být usměrňovač i starší, se zvětšeným vnitřním odporem, protože odbíraný proud je nepatrný. Při zvětšené kapacitě filtračního kondenzátoru C_1 může být i usměrnění jednocestné. Filtrační účinek kondenzátoru C₁ o kapacitě 100 μF/50 V je pro můstkové usměrnění vyhovující. Při odpojeném potenciometru P_1 je základní zátěží usměrňovače odpor R_1 – $10~{\rm k}\Omega$. Přípravek spolehlivě pracuje i se vstupním střídavým napětím 1 V. B.

Japonsko vyrobilo v červnu 1959 8 miliónů tranzistorů; tato produkce má být zvýšena v nejbližší době na 10 miliónů měsíčně.

Také výroba vakuových elektronek dosáhla 10 miliónů měsíčně.

Nízkými cenami, podmíněnými žebráckou mzdou, japonské firmy soutěží s výrobky americkými. Polovina exportu elektronických přístrojů jde do USA. A z toho 85 % je osazeno tranzistory.

 M, \dot{U}

Ze schůze předsednictva sekce radia 21, ledna 1960

Bylo přijato usne-

Z každé schůze kterékoliv složky sekce

radia ÚV vypracovat usnesení a kontrolovat jeho

Zodpovídá: vedoucí složek. Termin: trvale Schvalují se vedoucí jednotlivých skupin:
odbor politickoorganizační: tajemník s. Zýka
Vita - 1ZW

organizační: Hes Vladimír 1HV Haszprunár František 1AFZ propagační: ediční: Sedláček Tosef, ISE kulturní: zatím neobsazeno redakce vysílače 1 CRA:

Ježek František 1AAJ výcvíkový odbor: rajemník Ježek František 1AAJ branné výchovy: Krčmárik Jozef 3DO školení: Laifer Rudolf 1MQ branné výchovy: skolení:
posluchačí:
spojovací služby:
spojovací služby:
schön Walter 1WR
práce s mládeží:
práčet jaroslav 1PR
provozní odbor:
tajemník s. Verdan Jiří 1DC
KV provoz:
VKV provoz:
Macoun Jindřich 1VR

dlouhodobé soutěže : Kaminek Karel 1CX

neobszecno Stehlík Josef 1JQ tajemník s. Helebrandt Jiří Marha Karel IVE Navrátil Jaroslav rychlotelegrafie: trenérská rada: technický odbor: KV technika: VKV technika: rozhlasová tech-

Černý Josef nika: nízkofrekvenční

technika; Maurene Ji televisni technika; neobsazeno Maurene Jiří 1ASM telemechanika: neobsazeno

Kde dosud nejsou určeni vedoucí skupin, bude provedeno a nahlášeno vedoucími odborů do 15, února 1960 tajemníku sekce.

Zodpovídají: vedoucí odborů. Termin: 15.2.60. Mimopražští členové sekce ÚV nahlásí, ve kte-

Minopražšti členové sekce UV nahlást, ve kterých skupinách budou pracovat.

Byly projednány návrhy předkládané spojovacím oddělením v 1. čtvrtletí organizačnímu sekretariátu a předsednictvu UV.

Materiály budou předloženy na předsednictvu sekce dne 25. února 1960.

Zodpovídá: Krbec Karel. Termín: 25. 2. 60.
Projednán a schválen plán úkolů sekce radia UV na rok 1960.

na rok 1960:

a) Politickoorganizační odbor: I. čtvrtletí:

a) spolupráci radioamatérských složek ZO na závodech při pomoci zlepšovatelskému hnutí,
 při zavádění malé mechanizace a automatí-

b) předkládání tematických úkolů výrobnich závodů k řešení celému radioamatérskému

aktivu Svazarmu; účast hospodářských složek (výzkumných ústavů, zlepšovatelů) na akcích Svazarmu (výstavy, vývojové práce, obsáhlé zkoušky zařízení, popularizace nové techniky, vy-

zanieni, popininzace nove techniky, vy-užití materiálu ze zrušené výroby); materiálová a finanční pomoc radioamatér-ským složkám Svazarmu Státním výborem pro rozvoj techniky, VTS a jednotlivými zá-vody;

e) spolupráce při organizování přednáškové

e) spolupráce při organízování přednáškové čimosti.
Vypracovat návrh na zakládání klubů s technickou náplní ve velkých městech a závodech.
Vypracovat návrh na celostární výstavu radío-amatérských praci, radíoamatérského provozu a technických soutěží v rámci výstavy.
Zajistit pomoc krajským složkám při územní reorganizaci KV.

II. čtvrtletí:

Vypracovat návrh na pomoc při organizování technických kroužků na školách v rámci poly-technického školení.

Přepracovat zkušební látku pro zkoušky odbor-ností všech stupňů – politickou část. Vypracovat návrh na propagační činnost v za-

III. čtvrtletí:

čtvrtletí:

Vypracovat návrh na spolupráci se sesterskými organizacemi SSSR a LDS.

Ve spolupráci s OPA vypracovat návrh spolupráce s denním tiskem na zvýšenou propagaci svazarnovské techniky – populárnětechníckými články, zřízením radiotechnických rubrik, zajištěním dopisovatelů atd.

Vypracovat návrh na hlubší spolupráci s rozhlasem, televizí a filmem při propagací nové techniky.

IV. čtvrtletí:

11. Provést instalací celostátní výstavy radioama-

11. Provest instalaci celostatní vystavy radioamatérských prací, provozu a technických soutěží.
12. Rozpracovat plán rozvoje Svazarmu na jednotlivé krajské radioamatérské složky na rok 1961.
13. Vypracovat plán úkolů na rok 1961 pro sekcí radia ÚV.

Celoroční úkol:

Organizovat odborné školení se zaměřením hlavně na pracovníky závodů a podniků.
 Organizovat rozsáhlou přednáškovou činnost

v celostátním měřítku. Ve spoluprácí s vydavatelstvím Našeho vojska a vydavatelstvím Státního nakladatelství pracovat na vydávání a rozšiřování radiotechnické literatury.

Provádět s ostatními odbory rozbory činnosti radioamatérských složek KV a podávat návrhy na opatření ke zlepšení činnosti.

b) Výcvikový odbor:

I. čtvrtletí:I. Vypracovat návrhy na rozšíření branné přípravy hlavně mezi mládeží – radistické branné hry, hon na lišku, celostátní branné cvičení. Vypracovat návrh spojovací sítě ÚV s krajský-

mi výbory Svazarmu. Přepracovat zkušební látku pro zkoušky odbor-

ností všech stupňů – výcviková a provozní část. Projednat program výcviku radistů pro výcví-kový rok 1960–1961, vypracovat osnovu učebnice a zajistit její vydání.

II. čtvrtletí:5. Vypracovat návrh na provozní kursy, základní technické kursy, kursy žen, pro polytechnické kroužky na školách vypracovat programy, a kursy instruktorů techniků a radiooperátorů.

Přepracovat zkušební látku pro zkoušky odbor-nosti všech stupňů ve výcvikové a provozní části.

Spolupracovat při návrhu celestátní výstavy radioamatérských praci – část výcviková, Ve spolupráci s technickým odborem vypraco-

vat návrh na technickou stavebnící pro poly-technickou výchovu na školách a pro výcvik v základních organizacích – výcvikových skupinách radistů. III. čtvrtletí:

Vypracovat směrnice pro výcvik posluchačů

vypracovat smernice pro vycytk postucnacu a radiooperátorů.

 Pokračovat a dokončit práce na návrhu podle bodů 5, 6 a 7.

 Pracovat na přípravě celostátní výstavy radio-

amatérských prací.

IV. čtvrtletí:

Spolupracovat s technickým odborem na návrhu standardního zařízení pro radiovozy sekcí radia KV. Spolupracovat s technickým odborem na ná-

vrhu standardního zařízení pro kolektivní stanice i jednotlivce.

Zúčastnit se praci na organizování a provozu celostátni výstavy radioamatérských praci – výcvikové částí.

Celoroční úkoly: 15. Organizovat a řídit spojovací služby celostát-

ního významu.

16. Provádět s ostatními odbory rozbor činnosti radioamatérských složek KV a podávat návrhy na opatření ke zlepšení činnosti.

c) Provozní odbor: I. čtvrtletí:

Vypracovat návrh na přípravn všech reprezentačních jednotek v mezinárodních závodech.
 tvrtletí:
 Vypracovat návrh propozic národních a mezinárodních závodech.

Vypracovat návrh propozic národních a mezi-národních závodů (pořádaných ÚRK) a sou-rěží na rok 1961.

Vypracovat propozice závodů a soutěží pro zařízení nové techniky (polovodičové vysílače a přijimače a jiná zařízení).

Vypracovat návrh na společné soutěže s jinými odbornostmi.

Přepracovat zkušební látku pro zkoušky všech

odbornosti – část provozní, předpisy a práce

III. čtvrtletí:

Vypracovat návrh na rozšíření tříd rozhodčích.
Dokončit návrh podle bodu 5.
Zúčastnit se prací na celestátní výstavě radioamatěrských prací – část sportovní.
čtvrtletí:

Vypracovat společně s technickým odborem návrh na standardní zařízení kolektivních stanic i jednotlivců.

Celoroční úkol:

Organizovat soutèže pro prověrku slyšitelnosti

 pro potřeby CO, hospodářských složek, průmyslu, zemědělství a stavebnictví.

 Organizovat a řídit všechny celostátní soutěže

a závody.

12. Provádět pravidelné rozbory činnosti radio-amatérských složek KV a podávat návrhy na opatření ke zlepšení činnosti.

d) Technický odbor:

I. čtvrtletí:

Vypracovat návrh na celostátní výstavu radioamatérských prací, technickou část. Ve spolupráci s politicko organizačním odbo-

rem vypracovat návrh na putovní výstavy krajských a okresních výborů – sekcí radia. Vypracovat návrh na hlubší školení instruktorů

a zvýšení jejich počtu. Projednat návrh na zřizení prodejny radio-

materiálu. Vypracovat návrh na zřízení spojovací školy

Ve spolupráci s politickoorganizačním rem vypracovat návrh na spolupráci se Státním výborem pro technický rozvoj a VTS.

II. čtvrtletí:

Vypracovat návrh na techníckou stavebnící pro polytechnickou výchovu na školách a pro vý-

cvík v základních organizacích Svazarmu výcvikových skupinách radistů. Vypracovat pávol

Vypracovat návrh na prověrku materiálu v niž-ších složkách.

Vypracovat návrh na technické zařízení spojo-vacího oddělení ÚV Svazarmu.

Vypracovat návrh na výměnu materiálu se

vypracovat navrni na vyniena inacenau se sesterskými organizacemi. Vypracovat návrh na zřízení radiotechnické dílny pro údržbu radiotechnických zařízení (majetku Svazarmu) a výrobu nedostatkových dílů pro ZO Svazarmu i jednotlivé členy.

III. čtvrtletí:

ctvrttett: Vypracovat ve spolupráci s mín. spojů a mín. vnitra návrh na výstavbu sítě retranslačních stanic (televiznich) a jejich standardní za-řízení.

Na základě prověrky radiomateriálu v nižších složkách vypracovat návrh na lepší využití za-řízení a materiálu hlavně inkurantního.

Pokračovat v práci na úkolu čís. 5.

Vypracovat návrh na výstavbu standardního zařízení pro kolektivní stanice i jednotlivce s úplnou technickou dokumentací.

s úplnou technickou dokumentact.
Vypracovat návrh na výstavbu standardního zařízení pro radiovozy všech KV Svazarmu – pro využití vozů při spojovacích službách.
Dokončit návrh podle úkolu čis. 5.

Celoroční úkol: 18. Kontrolovat a pomáhat organizovat odborné školení a technický výcvik v radioklubech, sportovních družstvech radia a výcvikových skupinách.

Provádět pravidelné rozbory činnosti radistic-kých složek KV a podávat návrhy na opatření ke zlepšení činnosti.

Vedouci odborů odpovídají za plnění plánu sekce v jednotlivých črvrtletích. Sekce radia krajských výborů se budou na svých schůzich zabývat jednotlivými úkoly sekce radia ÚV a budou k nim zasílat připomínky. Úkoly, které se týkají i krajských složek, rozpracují do svého plánu činnosti.

Spojovací oddělení vypracuje:

a) návrh na IMZ předsedů sekcí radia a spojovacích instruktorů krajských výborů

b) vypracuje návrh na pozvání dvou pozorovatelů Dosaafu na PD 60, c) návrh spojovací sitě mezí krajskými výbory

d) návrh na celostátní výstavu radioamatérských

e) návrh na putovní výstavy pro krajské a okresní radioamaterské složky.

Návrhy projedná na schůzí předsednictva sekce ÚV. Zodpovidá: Krbec Karel. Termín: 25. 2. 60.

Předsednictvo doporučuje pro celostátní výstavu vytvoření komise ve složení: ss. Maurenc, Cach, Daneš, Škoda, Svoboda Miloš, Skopalík, Ježek a Helebrandt.

a Heleorandt.

K projednání spolupráce sekce radia ÚV a časopisu Amatérské radio pozvat s. Smolika na příšti schůzi předsednictva dne 25. 2. 60.

Zodpovídá: Krbec Karel.

Sekce radia doporučuje, aby do návrhu systemi-zace krajských výborů Svazarmu vytvořených po územní reorganizaci byli navržení vzhledem k úkolům uloženým radioamatérskému hnutí nejméně dva pracovníci a to – jeden pracovník pro provozní, sportovní činnost a politickou výchovu a jeden pro

sportovní činnost a politickou výchovu a jeden pro výcvik, radiotechniku a elektroniku. Zodpovídá: Krbec Karel. Termin: podle ÚV. Plánovat na měsíc únor zájezdy do schůzí kraj-ských sekci radia Č. Budějovice – 27. 2. 60 s. Ka-mínek a Krbec, Jihlava – s. Jiruška a Ježek. Předsedníctvo bere na vědomí konání přednášek pořádaných ve spolupráci s redakci AR.

Usnesení bylo jednomyslně schváleno.

Únorová schůze zkontrolovala usnesení a za-bývala se stykem s redakci Amatérského radia, územními organizačními změnami a zprávami ve-doucích odborů.

Usnesení uložilo projednat s Technickým mu-zeem zapůjčení místností pro celostátní výstavu ra-dioamatérských praci a výstavní komisi doplnit o s. Hese. Vytvořit komisi ve složení ss. pplk. Hálek, pplk. Hes, inž. Navrátil, Sedláček, Zýka a Krbec pro spolupráci sekce s redakci Amatérského radia, která zpracuje přitominky s návrhy vyplývající která zpracuje připominky s návrhy vyplývající z diskuse a předloží OS UV k projednání. Soudruh Krbec přednesl zprávu o územní re-

Všechny okresní kluby změnit na kluby s místní (oblastni) působnosti; vytvořít sekce radia při okres-(oblastní) působností; vytvořít sekce radia při okresních výborech Svazarmu, které budou řidit radiomatérskou činnost v okrese – kluby i SDR. Je konstatováno, že v okresech není radioamatérská činnost vedena. Nutno vybudovat silně kluby hlavně v okresních městech pro zajištění výcvíkových úkolů. Sekce se musí prosadit a zajištit, aby POV a OV Svazarmu se zabývaly na svých schůzích radioamatérskou činností a činily opatření k jejímu zlanšení.

zlepšení.
b) Pro jednotlivé sekce radia krajských výborů b) Pro jednotlivé sekce radia krajských vyboru schváltí instruktory-aktivisty: Praha-město s. Sed-láčka, Praha-venkov s. Marhu, Č. Budějovice s. Ji-rušku, Plzeň s. Kamínka, Ústí n. Lab. s. Kostelec-kého, Hradec Králové s. Macouna, Brno s. Navrá-tila, Ostravu s. Hese. Členové sekce budou spolu s pracovníky oddělení zajišťovat kontrolu a pomoc v krajích. Zpráva s. Krbce byla jednomyslně schválena.

CO JSOU FERROELEKTRIKA A K ČEMU SLOUŽÍ

Antonin Glanc, OKIGW

V posledních letech se v technické a vědecké literatuře setkáváme stále častěji s novým pojmem: ferroelektrické látky. Poněvadž jde o látky, které pro své velmi zajímavé vlastnosti nacházejí široké uplatnění ve slaboproudé elektrotechnice a slibují v blízké budoucnosti vážně konkurovat polovodičům, chceme naše čtenáře seznámit s jejich základními vlastnostmi a možnostmi jejich použití. S některými ferro-elektriky se ostatně můžeme setkat v praxi už dnes. Tak například ferroelektrický krystal Seignettovy soli se užívá již řadu let v gramofonových přenoskách. Některé nové typy miniaturních keramických kondenzátorů s vysokou kapacitou obsahují ferroelektrické dielektrikum. Nám však jde hlavně o jiné vlastnosti ferroelektrik: o jejich ne-linearitu. Ta umožňuje konstruovat dielektrické zesilovače, paměťové prvky, modulátory, násobiče kmitočtu aj. Tato zapojení popíšeme podrobně v druhé části článku. Nejdříve je však nutno říci něco o tom, co jsou to vlastně ferroelektrika, jaké mají základní vlastnosti a které látky mezi ně patří. A to je obsahem dnešního článku.

Jak ovlivňuje dielektrikum kapacitu kondenzátoru

Abychom pochopili podstatu dielektrické látky, musíme si nejdříve stručně zopakovat základy tzv. dielektrické polarizace. Představme si vzduchový kondenzátor, tvořený dvěma kovovými deskami, k němuž je připo-jena baterie (obr. 1, obvod A). Po zapnutí klíče se kondenzátor nabije, tj. na deskách se nahromadí jisté množství náboje Q; Q závisí na napětí baterie V a na rozměrech kondenzátoru, určujících jeho kapacitu C.

Platí

$$Q = C \cdot V$$
.

Nahromaděné náboje vytváří mezi deskami elektrické polě.

Vyplňme nyní prostor mezi deskami dielektrikem, např. trolitulem (obr. 1, obvod B). Vlivem elektrického pole, které bylo přítomno mezi deskami, se dielektrikum polarizuje. Neznamená to nic jiného, než že všechny záporné i kladné elektrické částice, z nichž je di-elektrikum složeno (ionty, elektrony, atomová jádra) se posunou: záporné směrem ke kladně nabité elektrodě, kladné v opačném směru. Na horní a dolní ploše dielektrika, které přiléhají ke kovovým deskám a které byly až

O. volně náhoje

🖶 ... dipoly; no povrchu dielektrika tveri vázané nábole

Obr. 1.

dosud neutrální, se tak objeví náboje (které ovšem jsou součástí dielektrika a nemůžeme je z něho odstranit; proto jim říkáme vázané náboje). Vázané náboje však přitáhnou z baterie do ko-vových desek další (volné) náboje. Kondenzátor s dielektrikem se tedy nabije větším nábojem než bez něho (podle obr. 1); poněvadž V je stále stejné, má kondenzátor větší kapacitu C.

Čím má dielektrikum větší schopnost polarizovat se, tím více přiteče nábojů do kondenzátoru, tím větší je jeho kapacita. Mírou polarizační schopnosti látky je tzv. dielektrická konstanta s. Z uvedených důvodů je tedy kapacita kondenzátoru C s dielektrikem úměrná jeho dielektrické konstantě ε.

$$C = C_0 \cdot \varepsilon$$

kde C_0 je kapacita kondenzátoru ve vakuu (či se vzduchem).

Ferroelektrikum – "elektrický magnet"

Dnes je již všeobecně známo, že některé látky lze polarizovat i jinak než vložením do elektrického pole. Máme na mysli piezoelektrické látky, na jejichž povrchu vzniká vázaný náboj (polarizují se) i tchdy, jestliže je podrobíme mechanickému tláku.

Není to však tak dávno, co bylo objeveno, že některé látky jsou polarizovány stále, i když na ně nijak nepůsobíme. Tak na příklad tzv. X – řez z krystalu Seignettovy soli má dvě plochy stále nabity – jde tedy o jakýsi "elektrický magnet". Krystal obsahuje totiž zcela spontánně elektrické dipólky, tj. kladné a záporné náboje, jejichž těžiště neleží ve stejném bodě, ale jsou od sebe po-někud posunuty (dipóly jsou vyznačeny např. uvnítř dielektrika na obr. 1, v ob- $\operatorname{vodu} B$). Říkáme, že látka je "spontánně polarizována". Poněvadž, jak už víme, polarizace určuje náboj kondenzátoru, je zřejmé, že vložíme-li tento krystal mezi dvě kovové desky, nabíjí se – i když nepřipojíme baterii. Kdybychom měli dva kusy spontánně polarizované látky, přitahovalý či odpuzovaly by se podobně jako dva magnety, neboť nabité plochy by na sebe působily elektrosta-tickými silami. Ve skutečnosti tento jev nikáy nepozorujeme z toho důvodu, že spontánní polarizace je kompenzována volnými elektricky nabitými částicemi, stále přítomnými ve vzduchu i v látce samé. U kovového magnetu tato kom-

Obr. 2. Závislost náboje na napěti u a) ferroelektrického kondenzátoru, b) normálního kondenzátoru.

penzace nemůže nastat, neboť volné "magneticky nabité" částice neexistují.

U normálního dielektrika dipólky zmizí, když kondenzátor zkratujeme. Jestliže přepólujeme baterii v obvodu na obr. 1, změní se směr (polarita) dipólků v dielektriku kondenzátoru. Jak je to ale u našeho "elektrického magne-

Hysterezní smyčka

Celý proces tzv. přepolarizace si znázorníme graficky (obr. 2). Není-li ke kondenzátoru s X – řezem Seignettovy soli připojeno napětí, odpovídá náboj kondenzátoru Q spontánní polarizaci látky. Připojíme-li kladné napětí, zvyšuje se polarizace (a tedy Q) jen málo (křivka B-A); připojíme-li záporné na pětí a postupně je zvyšujeme (B-C), působí elektrické pole na spontánní dipólky silou, která se je snaží otočit o 180 stupňů. Při dosažení jistého tzv. koercitivního napětí dojde náhle ke změně jejich směru - změní se polarita vázaného a tedy i volného náboje na desce kondenzátoru (křivka C–D). Další zvýšení záporného napětí zvýší opět polarizaci a tedy i náboj jen málo (D-E). Při opačné polovině cyklu probíhá děj analogicky (E-D-F-A).

Vidíme tedy, že napěťová závislost náboje na kondenzátoru s naší spontánně polarizovanou látkou má tvar zavřené křivky, které říkáme bystorazu.

uzavřené křivky, které říkáme hysterezní smyčka. Podobnou křívku vykazují i ferromagnetika (závislost magnetické indukce na magnetickém poli např. u železa). Analogicky nazýváme di-elektrika s hysterezní smyčkou ferro-elektrickými látkamí nebo ferro-elektri-

Nelineární vlastnosti

Připojíme-li k ferroelektrickému kondenzátoru střídavé napětí o amplitudě A-E (obr. 2), nemění se tedy náboj na kondenzátoru sinusově a proto ani proud jím procházející není sinusový, ale obsahuje vyšší harmonické. Tedy chová se podobně jako např. trioda pracující ve třídě C. To je první nelineární vlastnost. Z obr. 2a je dále zřejmé, že pokud je střídavé napětí, přiložené ke kondenzátoru s ferroelektrikem, malé, je jeho kapacita malá (pohybuje se po úseku A–B–C, resp. F–D). Žvýšíme-li přiložené napětí, probhá ve tvaru hysterezní smyčky, změny náboje jsou daleko větší sa větší je tedy i kapacita přídučné to a větší je tedy i kapacita příslušná to-muto napětí. Závislost kapacity na napětí pro typickou ferroelektrickou látku je na obr. 3. To je druhý typ nelineárních vlastností. Lze jej měřit na libovolném kapacitním mostě s měnitelnou amplitudou napětí.

Obr. 3. Závislost dielektrické konstanty (jíž je úměrná kapacita) vzorku z ferroelektrické látky BaTiO3 na intenzitě měrného pole.

Obr. 4. Uspořádání k měření třetího typu nelinearity (viz obr. 5).

Třetí typ nelinearity se projevuje takto: jestliže měříme (obr. 4) kapacitu ferroelektrika ve slabém střídavém poli a ovlivňujeme-li vzorek zároveň silným stejnosměrným napětím (předpětím), zjistíme, že kapacita se mění podle obr. 5 (nahoře). Není ovšem nutné, aby předpětí bylo stejnosměrné; může být i střídavé, ovšem s kmitočtem nižším než s jakým měříme kapacitu. Tento druh nelinearity byl naměřen v širokém oboru kmitočtů. Na obr. 5 je analogická závislost e' na předpětí u vzorku BaTiO₃, získaná měřením při kmitočtu 1000 MHz pomocí stojatých vln (dole).

Teplotní závislosti ferroelektrik

Dosud jsme – jako příklad – uvedli jako ferroelektrikum pouze Seignettovu sůl. Dnes však těchto látek známe celou řadu (asi 40). Uvedeme alespoň nejznámější z nich: titaničitan barnatý BaTiO₃, guanidinamoniumsulfáthexahydrát, dále KH₂PO₄, KH₂A₃O₄, Li₂TaO₃, K₂NbO₃, triglycinsulfát atd.

Užitečnost jistého ferroelektrika je nutno posoudit z několika hledisek. Vážnou roli hraje např. chemická stálost, odolnost vůči vlhkosti, opracovatelnost. Nejpodstatnějším faktorem však jsou teplotní vlastnosti dané látky.

Fyzikové totiž zjistili, že ferroelektrické vlastnosti, tj. spontánní polarizace a tedy i hysterezní smyčka, jsou silně závislé na teplotě. Nad jistou teplotou, která je nazývána Curieovým bodem T_0 , neexistuje hystereze vůbec a látka se chová jako normální dielektrikum. Také pod Curieovým bodem jsou všechny vlastnosti látky závislé na teplotě. Na obr. 6 je závislost kapacity kondenzátoru s titaničitanem barnatým BaTiO₃ na teplotě.

Vidíme tedy, že dielektrická konstanta BaTiO₃ (kapacita, jak víme, je jí úměrná) silně roste, bližíme-li se teplotě 120 °C, která je Čurieovým bodem látky. Při této teplotě dosahuje neobvyklé hodnoty více než 11 000 – hodnoty, o které ještě před několika lety mohli výrobci kondenzátorů jen snít. Ale i při poko-

Obr. 5. Závislost dielektrické konstanty baryumtitanátuna statickém předpětí při nízkých a velmi vysokých kmitočtech.

140 Amaderski RADIO 50

jové teplotě má dielektrická konstanta veľkou hodnotu 1000 až 3000. (Pro srovnání: ε trolitulu činí 2,5).

Poznamenejme ještě, že protože s teplotou se mění poněkud i tvar hysterezní smyčky (blíží-li se k $T_{\rm c}$, její výška stále klesá, až přechází v úsečku na obr. 2b), závisí na teplotě i nelineární vlastnosti, znázorněné obrázky 3 a 5. Obě tyto nelinearity mají totiž svůj původ v existenci hysterezní smyčky.

Curieovy body různých ferroelektrik leží v nejrůznějších teplotních oborech. Tak např. pro $\mathrm{KH_2PO_4}$ je $T_\mathrm{e} = -150\,^\circ\mathrm{C}$, takže za pokojové teploty již tato látka není ferroelektrická. Jako druhý extrém uvedme Li $\mathrm{TaO_3}$, jehož Curieova teplota je vyšší než 450 °C. Je zřejmé, že pro technické aplikace se budou hodit nejlépe ty látky, jejichž Curieův bod leží dostatečně vysoko nad pokojovou teplotou

Piezoelektrický jev u ferroelektrik

V jednom z předchozích odstavců jsem se již zmínil o tom, v čem spočívá tzv. piezoelektrický jev. Z praxe je

Obr. 6. Závislost kapacity kondenzátoru s titanicitanem barnatým BaTiO₃ na teplotě.

Druhá křivka udává ztráty (tg δ).

čtenářům zvláště dobře znám tzv. obrácený piezoefekt. Jde o to, že je-li piezoelektrická látka umístěna do elektrického pole (tedy připojíme-li na kondenzátor, obsahující piezoelektrickou látku, napětí), mění vzoreksvé rozměry deformuje se. Poněvadž každý vzorek určitých rozměrů má jistý rezonanční kmitočet, při němž nejsnáze kmitá, lze převráceného piezoefektu užívat ke stabilizaci kmitočtu. Vzorek (x-tal) je přitom buzen kmity o kmitočtu blízkém jeho rezonančnímu kmitočtu.

Naopak přímého piezoefektu se užívá např. v přenoskách nebo mikrofonech: mechanické kmity deformují vzorek a vyvolávají v něm polarizaci. Polarizace však znamená přitažení volných nábojů a tedy vznik proudu, který lze dále zesilovat.

Piezoelektrická látka je tím výhodnější, čím je její piezoefekt silnější, čili čím víc se vzorek deformuje v daném elektrickém poli. Tuto schopnost měříme tzv. piezoelektrickou konstantou d; zde platí

$$\frac{\delta l}{l} = d \cdot E,$$

kde E je elektrické pole ve voltech na centimetr, působící na piezoelektrickou látku, $\frac{\delta l}{l}$ je relativní změna rozměrů

vzorku ve směru pole. Měření ukázala, že i po této stránce jsou ferroelektrické látky velmi význačné. Zatímco u běžně užívaného křemene činí d asi $6\cdot 10^{-8}$ elst. jednotek, u keramiky BaTi O_3 je $d=3\cdot 10^{-6}$ elst. jedn., tedy piezoefekt titaničítanu barnatého je 100krát silnější.

Obr. 7. Teplotni závislost dielektrické konstanty soustavy $BaTiO_3 - SrTiO_3$. Poměr $BaTiO_3$: $SrTiO_3 = 1 - 100$: 0; 2 - 90: 10; 3 - 80: 20; 4 - 70: 30; 5 - 60: 40; 6 - 50: 50; 7 - 40: 60; 8 - 30: 70; 9 - 20: 80; 10 - 10: 90.

Podobně jako spontánní polarizace a dielektrická konstanta je i piezoefekt silně závislý na teplotě. Zde je však podstatný rozdíl; řada ferroelektrik ztrácí piezoefekt při teplotách vyšších než $T_{\rm c}$, některé druhy ferroelektrik si jej naopak i nad $T_{\rm c}$ zachovávají. V každém případě však závislost d na teplotě má maximum při teplotě $T_{\rm c}$.

Nejnadějnější ferroelektrika

Elektronická aparatura musí odolávat spolehlivě nejrůznějším rušivým vlivům. Stejné požadavky je tedy nutno klást na všechny její součástky. Tak např. jednotlivé prvky musí být odolné vůči vlhkosti, nárazům a musí snášet bez závažných změn svých hodnot i značně rozdílné teploty.

Mnoho ze známých ferroelektrik – jejich technické využití, jímž se budeme zabývat ve druhé části tohoto článku, se zkušenějším radioamatérům jistě již rýsuje – takovým požadavkům vůbec nevyhovuje. Vezměme např. dobře známou Seignettovu sůl: její $T_c = 23$ °C, čili v aparatuře, kde vždy dochází k průměrnému zvýšení teploty na 30 – až 35 °C, nelze jejích ferroelektrických vlastností využít, neboť při této teplotě je již prostě nemá. (Jinak je tomu u ní s piezoefektem; Seignettova sůl patří mezi ta ferroelektrika, která svůj piezoefekt neztrácejí ani nad T_c .)

U některých ferroelektrik vadí při jejich použití jiné vlastnosti. Tak na příklad guanidinamoniumsulfáthexahydrát (označovaný v literatuře jako GASH) je látka silně hygroskopická. I poměrně malý obsah vlhkosti ve vzduchu silně narušuje ferroelektrické vlastnosti.

Uveďme však přímo dvě látky, které se jeví dnes jako aplikačně nejvýznamnější. První z nich je titaničitan barnatý, druhou triglycinsulfát (dále TGS). BaTiO₃ má $T_{\rm e}=120^{\circ}$, u TGS je $T_{\rm e}=47$ °C. Obě tyto látky lze pěstovat ve formě krystalů poměrně jednoduchými metodami.

Krystaly jsou výhodné tím, že všechny ferroelektrické vlastnosti jsou u nich velmi výrazné. Tak např. hysterezní smyčky monokrystalů BaTiO₃ i TGS jsou takřka pravoúhlé a všechny nelineární vlastnosti jsou proto silně vyjádřeny. Krystaly baryumtitanátu jsou však velmi tvrdé a přitom křehké, takže je nelze opracovávat do vhodných tvarů.

Na pomoc fyzice a technice zde však přišla keramická technologie. Ukázalo se totiž, že baryumtitanát lze připravit i ve formě keramiky, tedy hmoty sestávající z velkého množství malých krystalků různě orientovaných a malého množství sklovité fáze. Keramiku lze vyrábět v libovolných tvarech (lisováním). Navíc bylo zjištěno, že velikost dielektrické konstanty a polohu Curieova bodu baryumtitanátové keramiky lze snadno ovlivňovat tím, že při přípravě se do hmoty přidá jísté množství stroncia (Sr). Taková směsná kera-TiO₃, mika má vzorec $(Ba-Sr)_{x,y}$ kde čísly x, y je označen percentuální obsah atomů barya, resp. stroncia. Na obr. 7 jsou uvedený teplotní závislosti dielektrických konstant různých baryum-stronciumtitanátů. Vidíme, že vhodnou volbou směsi lze regulovat hodnotu dielektrické konstanty při pokojové teplotě. Zároveň lze měnit i výraznost nelineárních vlastností, nebóť tím, že přidáme Sr, posunujeme Čuricův

bod, měníme i tvar hysterezní smyčky při pokojové teplotě a tak i nelineární vlastnosti. Je-li stroncia více než 45 %, ztrácí se nelinearita v oblasti 20—40 °C úplně, zůstává však ještě vysoká di-elektrická konstanta. To jsou pochopitelně možnosti, které jsou pro radiotechniku velmi cenné.

Dnes známe již více ferroelektrických keramik než jen BaTiO₃ a (Ba-Sr)_{x,y}: TiO₃. V SSSR jsou již nelineární keramiky vyráběny, a to pod názvem varikondy. Jdc o složité keramické soustavy na bázi titaničitanů.

Uveďme ještě, že kromě ostatních ferroelektrických vlastností vykazují keramická ferroelektrika i piezoefekt. Na rozdíl od krystalů je však třeba je pro tento účel speciálně upravit, a to přiložením silného stejnosměrného napětí po delší dobu.

TGS nelze připravovat ve formě keramiky, zato však krystaly TGS mají některé přednosti proti krystalům BaTiO₃. Lze je pěstovat ve velkých rozměrech a poněvadž nejsou křehké ani tvrdé, lze je snadno opracovat. Mají překrásně pravoúhlou hysterezní smyčku (u keramických ferroelektrik takové pravouhlosti nelze nikdy dosáhnout) a proto se jich začíná užívat jako paměťových prvků v počítacích strojích.

O tom a hlavně o těch aplikacích ferroelektrik, která jsou dů ežitá pro radiotechniku - pojednáme podrobně

v druhé části článku.

JEDNODUCHÝ ADAPTÉR PRO 435 MHz

Vladimír Novotný, OKIVN

Prosincová schůzka VKV amatérů mne pobídla k tomu, abych popsal svůj velmi jednoduchý adaptér pro pásmo 435 MHz. Prakticky jsem ho vyzkoušel na hradě Bezdězu o PD 1959 ve spojení s přijímačem EBL3, který měl svůj vysokofrekvenční vstup na-laděn na 30 MHz. Výsledek byl ten, že jsem poslouchal moravské a slovenské stanice, které byly na dosud používaném přijímači (superreakčním) naprosto neslyšitelné. Zařízení mělo však jednu nevýhodu, že většina stanic silně kmitočtově modulovaných byla naprosto nečitelná a zabíralá značnou šíři pásma. Je proto nutno co nejdříve i na tomto pásmu počítat s jakostními vysílači.

A nyní k samotnému zařízení: Je osazeno dvěma elekronkami 6CC3I, kdy půl prvé elektronky pracuje jako oscilátor a druhá jako směšovač v protitaktu. Zapojení oscilátoru je velmi jednoduché. Laděný oscilační obvod, pracující o 30 MHz níž nebo výš než je přijímaný kmitočet, tvoří dva dráty dlouhé 40 mm a silné 2 mm, na jejichž koncích je zapojen malý hrníčkový trimr s odříznutým jedním kroužkem. V těchto bodech jsou zapojeny též ví tlumivky. Další je zřejmo ze schématu. Nad tímto oscilátorovým obvodem je symetrický vstupní obvod, který je induktivně vázán s oscilátorem. Vazba se nastavuje přihýbáním obvodu. Vstup je naladěn na příjímaný kmitočet a doladění se provádí rovněž co nejmenším kondenzátorem, připojeným na objímku elektronky. Smyčka tohoto obvodu je dlouhá 40 mm, široká asi 18 mm. Na

anodách směšovací elektronky je zapojen poslední obvod, který je již naladěn na rozdílový kmitočet 30 MHz. Je to normální kostřička o průměru 8 mm se železovým jádrem, na níž je navinuto dvakrát 13 závitů opředeným drátem o ø 0,2 mm s vyvedeným středem, na který se přivádí přes ví tlumivku anodové napětí. Ve středu cívky jsou navinuty dva závity drátu dobře izolovaného, jehož jeden konce je připojen na zem, druhý koaxiálním kablíkem přiveden na vstup přijímače EBL3, Emil nebo podobného.

Toto zařízení bylo zkoušeno bez jakýchkoliv úprav a hned první zkouška

byla úspěšná.

(Pozn. red.: Kladem popisovaného přístroje je jednoduchost a dostupnost součástí. Vzhledem k tomu, že prvním stupněm je směšovač, jeho citlivost se nevyrovná přijímači nebo konvertoru složitějšímu, přesto však je lepší než u přijímače superreakčního. Doporučuje se experimentovat s mřížkovým svodem 1M, případně s vazbou mezi obvodem oscilátoru a směšovače, aby se dosáhlo pracovního bodu, v němž má elektronka maximální směšovací strmost.)

Tranzistory a diody mění své vlastnosti v silném magnetickém poli

Magnetickým polem lze měnit vlastnosti tranzistorů a diod z polovodičových materiálů značnou měrou. U hrotových tranzistorů lze vnějším magnetickým polem ovládat nestabilní oblast tranzistoru. Pozorované změny závislosti výstupního proudu jsou v závislosti na vstupním proudu při vzrůstajícím nebo klesajícím magnetickém poli lineární. Uvedené možnosti dovolují řešit ovládání tranzistoru pomocí vnějšího nezávislého obvodu. Byly zjištěny odchylky až 22 % od jmenovitých hodnot při činnosti tranzistoru v magnetickém poli 10 000 až 14 000 gaussů.

(1959, Electronic Ind. č. 3, str. 71-73) Hl

VKV audion

Odvážné použití elektronek RV12-P2001 ve VKV audionu jsme objevili v jednom inkurantním přistroji. Zapo-jení audionu je na obrázku. Symetricky zapojené elektronky jsou připojeny na dipól (l=365 mm) přes malé keramické kondenzátory 50 pF. Anody jsou napájeny přes dvojnásobný filtrační obvod napětím 210 V. Podobně jsou i napájeny stínicí mřížky napětím 140 V. Ní napětí se odebírá přes vazební kondenzátor Ml. A teď to nejzajímavější: audion je širokopásmový (samozřejmě) a s uvedenými hodnotami pracuje v kmitočtovém rozsahu 400—337 MHz, tj. vlnové délce 75 až 89 cm. Protějšek přijímače - vysílač kmitočtově modulovaný – byl osazen jednou elektronkou LD2 a jeho vyzářený výkon byl 1,4 W. Maximální vzdálenost, ve které přijímač zaručeně spolehlivě reagoval na signály vysílače, je 3 km. Data cívek a tlumivek: vstupní cívka

 L_1 má 2,5 závitu ocel. drátu o průměru 1 mm, vinutého na průměru 12 mm. Tlumivky L_1 až L_7 jsou všechny stejné: 22 závitů drátu 0.5 mm, vinutého na průměru 4 mm. Štejné tlumivky jsou v přívodu žhavení, blokované keramickými kondenzátory 100 pF.

Úspěchy křemíkových diod a tranzistorů si vynutily výrobu opravdu čistých surovin. Tak v USA byla uvedena do chodu již devátá továrna zabývající se výrobou čistého křemíku pro výrobu polovodičových prvků. Tato firma (Foote Minerals Co. v Extonu) dodává křemík o čistotě takové, že je dosaženo poměru 2 až 10 nečistot ku 1 miliardě. Výchozím produktem je jodid křemičitý. Po případném dalším čištění je možno dosáhnout poměru až 1 díl nečistot ku 1 miliardě.

Lit. Chem. Industrie 1959, č. 3

Nezvyklé zapojení obrazovky

Jeden z několika způsobů zapojení obrazovek je na obrázku. Je převzat z měřicího přístroje, který hlavně pracoval s modulací paprsku značkovacími impulsy. Obrazovka je se symetrickým vychylováním v obou směrech, s prů-měrem stínítka 7 cm. Svodový odpor řídicí elektrody zde zastává sirutor 5b. Zároveň nedovolí, aby se na ni dostalo kladné napětí. Značkovací (zatemňovací) impulsy se přivádějí přes jakostní vazební kondenzátor 5k na mřížku obrazovky. Jas se mění poněkud jiným způsobem, než je obvyklé, a to v katodovém obvodu potenciometrem P_1 . Tím je zároveň splněn požadavek výrobců obrazovek, aby v katodovém přívodu byl nějaký odpor (jak známo, tento požadavek se vůbec nerespektuje). Zaostřování se provádí normálním způsobem potenciometrem P2. Rovněž posun paprsku v obou směrech je obvyklý, za pomoci potenciometrů P_3 a P_4 . Kladné anodové napětí není, jako je tomu ve většině případů, uzemněno. Vychylovací napětí se přivádí přes vazební kondenzátory na destičky obrazovky. Na svorky označené Č. Z. se připojí časová základna (generátor pilovitých kmitů) a na svorky označené V. Z. výstup vertikálního zesilovače. V tomto případě jde o symetrické výstupy obou pomocných dílů. Zapojení lze aplikovat pro malé osciloskopické obrazovky, u nichž je požadována modulace jasu. Hodnoty na obrázku jsou pouze informativní, protože jiná obrazovka má pochopitelně i jiný režim. Sirutor lze nahradit vhodnou Ge-diodou.

Měrný hrot

Jeho úprava podle obrázku umožňuje vodivé spojení měrného hrotu s jakýmkoliv vodičem, opatřeným na konci "banánkem". Výhody konstrukční úpravy oceníme např. při použití Avometu, Omegy, jako sondy elektronkového voltmetru apod.

Asi 10 cm měděného drátu o Ø 4 mm opilujeme do tupého hrotu a na druhý konec přikápneme cínem mosaznou zdířku (např. z rozebrané zdířkové lišty s pěti zdířkami, cena l Kčs). Zaléváme Dentacrylem ve skleněné trubičce, při čemž nesmíme zapomenout kouskem drátu utěsnit zdířku před Dentacrylem.

Zbývá výrobek opilovat a vyleštit. Náklad na jeden hrot nepřesáhne 3 Kčs.

Měmý hrot 1 –Dentacryl, 2 – měděný drát o Ø4 mm, 3 – zdířka

V zahraničí je dosti rozšířeno napájení stanic pohyblivé služby i amatérských stanic tranzistorovými zdroji, jež umožňují získat z 12 V autobaterie napětí k napájení vysílače a přijímače při výkonu vysílače do 100 W. Tranzistory pracují jako oscilátor o kmitočtu kolem l kHz a jejich napětí se transformuje transformátorem z plechů z jakostního magnetického materiálu, který má vzhledem k použitému vysokému kmitočtu malé rozměry. Taktó získané napětí se usměrní a filtruje, přičemž filtrační tlumivka i kondenzátory mají vzhledem k použitému vysokému kmitočtu rovněž malé rozměry. Tak je váha celého zařízení snížena na minimum při dobré účinposti.

V poslední době se objevily zprávy o podobném napájecím tranzistorovém zdroji, který umožňuje napájení mobilního vysílače až 0,5 kW. Zdroj dává napětí 2 kV a má účinnost 75 %. Pro krátkodobý provoz, běžný v amatérském styku, stačí vzdušné chlazení. Pro delší provoz je zdroj opatřen vodním chlazením tranzistorů.

Zapojení osciloskopické obrazovky

Osciloskopy, ve kterých je použito malé obrazovky, mají zpravidla společné anodové napětí pro časovou základnu, vertikální zesilovač i pro obrazovku. V tomto případě je pochopitelně katoda obrazovky přímo uzemněna. Takové zapojení jednoho zahraničního malého v
f osciloskopu je na obrázku. Potenciometrem P_1 100 k Ω se nastaví jas papr
sku a potenciometrem P_2 40 k Ω se nastaví zaostření bodu obrazovky DG7-32. Zpětný běh pilovitého kmitu je potlačen záporným impulsem z generátoru pilovitých kmitů (časové základny), přivedeným přes kvalitní oddělovací kondenzátor C₁ 0,22 μF. Při nepravidelném generování zhášecích pulsů může vzniknout kolísání jasu stopy na stínítku. Aby se tomu zabránilo, je v obvodu mřížky obrazovky zapojena Ge-dioda. Vertikální (měrné) destičky jsou přímo zapojeny na výstup stejnosměrného vertikálního zesilovače, který je osazen elektronkami PCF80 a PCC85. Horizontální destičky (pro časovou základnu) jsou napájeny generátorem pilovitých kmitů se symetrickým výstupem přes vazební kondenzátory C_2 a C_3 o kapacitě 0,22 μF . Potenciál těchto destiček je nastaven pomocí odporů R_3 až R_6 tak, aby výchozí bod paprsku byl na levé straně stínítka obrazovky. Aby se zamezilo nežádoucímu posuvu obrazu během měření (okamžitou a náhlou změnou anodového napětí třeba při jednorázovém provozu časové základny), je stejnosměrné napětí na odporech R_3 až R_6 stabilizováno elektronkou EAA91 (6B31, 6B32).

142 Mariles de RADIO 50

Dálkové ovládání hlasitosti

Zakřivení charakteristiky U_0/I_a normální elektronky dovoluje řídit hlasitost změnou mřížkového předpětí. Ovšem za předpokladu, že je elektronka buzena malým střídavým napětím, aby zkreslení výstupního napětí nevzrostlo nad přípustnou mez. Provést změnu předpětí tak, aby případně zanikl anodový proud, není problémem, protože vlastně jde o statické a stejnosměrné hodnoty. Nejjednodušeji se tak stane, mění-li se předpětí změnou katodového odporu. Přívody pak mohou být dosti dlouhé bez nebezpečí nějakých nežádoucích vlivů.

Podrobná zapojení jsou na obrázcích. Na obr. 1 je triodový stupeň selektronkou 6J5 ($U_a=250~{\rm V},\,I_a=9~{\rm mA},\,U_{g_1}=-8~{\rm V},S=2,6~{\rm mA/V},\,R_i=7,7~{\rm k}\Omega,\,\mu=20$), kde změnou předpětí o 14 V se nastaví zesílení v rozsahu 12 dB. Této triodě odpovídá jeden systém elektronky ECC82. Katodový potenciometr 1 k Ω (drátový) je umístěn v malém pouzdru, které je kabelem propojeno se zesilovačem. Vstupní nf signál nesmí být vyšší než 100 mV.

Na obr. 2 je dokonalejší stupeň, osazený dvojitou triodou 6SN7. Tuto lze nahradit těmito dostupnými elektronkami: 6CC10, 6N8C a ECC82. Je zde dosaženo dobré účinnosti a širokého řídicího rozsahu. Změnou záporného předpětí o 14 V je získán regulační rozsah hlasitosti 26 dB. Vstupní signál nesmí být větší než 500 mV. Jinak je nebezpečí zvětšení zkreslení nad 1 %.

Při praktickém provedení je důležité, aby byly obě kostry řádně propojeny.

Funk-Technik B.

The same of the sa

Rubriku vede Jindra Macoun, OKIVR, nositel odznaku "Za obětavou práci"

RB5 - OK3 na 2 m

RNS - OKS na Z m

Květnovou rubríku zahajujeme podrobnou zprávou o prvém spojení Československo - Sovětský svaz, resp. Československo - Ukrajinská SSR, tak jak nám ji zaslal s. Miloslav Hrebeň - OK3MH. Dočítáme se v ní nejen o velkém úsili malého kolektivu nadšených sninských VKV amatérů, ale seznamuje nás i se skutečností dosud málo známou, že nám totiž v nejvýchodnější částí naší republiky vyrústá rychle početná skupina zdatných a nadšených VKV amatérů, vybavených ne sôlooscilátory a superreakčními příjimačí - jak se mnozí domnívají, ale technicky dokonalými zařízeními. OK3HS nás informoval, že jen v prešovském krají je v činností celá řada stanic, které se pravidelně objevují na na pásmu a používají krystalem řízených vysílačů. (Prešov - OK3KFE, 3YBY, 3VAH, 3VAD, 3WZ, Yranov - 3KHN, 3VDH, 3VEB; Snina - 3KDX, 3MH; Giraltovce 3CAK; Stropkov 3CAA). Pouze několik málo dalších používá dosud sólooscilátory - ovšem jen dočasně.

Již z toho je vidět, že teď o prešovských – a věříme, že i o košických VKV amatérech budeme čist v naší rubrice častěji a jistě je v případě příznivých podmínek uslyšíme i v Čechách a na Moravě. A nyní OK3MH:

Dňa 13. 3. 1960 o 1641 až 1804 hod. sa uskutočnilo spojenie v pásme 2 metrov medzi OK3MH v Snine a RB5WN v Lvove,

V najvýchodnejšom cípe ČSR začal 1. 1. 1959 na 2 metroch pravidelne vysielať od krbu OK3MH v Snine, keď dokončil stavbu päťstupňového TXu, riadeného krištalom na kmitočte 144,82 MHz, s REE 30/A na PA. RX: konvertor Walman kaskóda 6CC42 + 6CC42 + 6CC31 + FUGE16 + R 1155/A. Anténa štvorposchodová 16 prvková súfáz. Prvé QSO nasleduje ihned po telefonickom dohovore s OK3QO a OK3KHU v Humennom, QRB 20 km. Každodemé pravidelné CQ od 2000 do 2400 hod. je vystriedané len monotónným šumom v prijímači.

V prvej časti subreg. preteku bolo urobené QSO z OK3KLM/P a OK3HO/P na Chopku v Tatrách QRB 250 km, a OK3KSI/P, OK3UP/P, OK3VP/P a OK3CAJ/P na Heringeši pri Košiciach. Tieto prvé úspechy sú impulzom kaktívnejšej práci na VKV a hla, 1. 6. 1959 dostávám telegram: Pocul som vase volanie na 145 prosim o pokusy dnes o 2200 az 2400 = OK3RD. O 2200 natáčam anténu na Košice a po prvej smerovej výzve počúvam: OK3MH DE OK3RD = GE RST 589 = TNX FIRST QSO OD KRBU+. Následovné pravidelnéa dlhé škedy, trvajúce do neskorých ranných hodín, potvrdili, že i také prekážky, ako sú Slánské vrchy, tiahnúce naprieč východným Slovenskom, nie sú vlastne prekážkou pre prácu na 2 metroch. Z Košíc pracuje na kmitočte

144,68 MHz OK3VHI, ktorý je po celom východnom Slovensku počutelný 59+. Používa štvorstupňový TX krištalom riadený z GU29 na PA, a s ním bolo urobené QSO s OK3VAH v Prešove a OK3VO, OK3YP a OK3CAJ, pracujúcich z centra Košic. Dlhšie chvíle si vyžiadalo QSO s OK3CAK v Giraltoviciach, které dnes odrazom od pohoria Vihorlat (1070 m) chodi 59 + ako aj OK3VEB a OK3VDH vo Vranove.

Na návrh OK3MH boli krajskou sekciou radia usporiadané preteky na VKV na východnom Slovensku, v ktorých najväčší počet bodov mal OK3MH a OK3VBI. V týchto prešovských pretekoch pracovali stanice z kraja Prešov a Košice.

Prešov a Košice.

Po týchto krásnych výsiedkoch sa uvažovalo o spojení na 2 m z UB stanicami. OK3MH vyjednáva na 40 metroch s UB5WU pokusy a po veľkých pripravách sa OK3MH s kolektívom OK3KDX vyberá na krkolomnú kótu vojtaň, odkial je pekne otvorený terén na UB. Po nezdarenom pokuse sa zistilo, že UB5WU pre nepriaznívé počasie na kótu nevyšiel a trvalého QTH z neznámých príčin nepracoval. Pri tejto príležitosti sa pracovalo s HG stanicami z YU hranic (QTH Baja). Tiež pri priežitosti odovzdávania štafety na sovietskych hraniciach bol kolektívnej stanici UB5KGL darováný TX+RX na 2 m, konštruovaný OK3HS z Prešova so žiadosťou o nadviazanie spojenia s OK. Toto sa tiež z technických príčin neuskutočnílo ako to UB5WN pri spojení na 40 m z OK3MH spomínal. Medzi tým pri VKV pokusoch v HG dňa 14. 2. 1960 bolo za spolupráce OK3VCI/P na Lom. štíte v Tatrách urobené QSO medzi OK3MH a HG5CT/P NEAR BUDAPEST – SECENI WEG. Touto cestou ďakujem Janovi OK3VCI/P za účasť na uskutočnení tohoto QSO. Pracovalo sa Al obojstranne RST 449.

obojstranne RST 449.

V dňoch 6., 7.a 8.marca 1960 sa zasa cez 40 m dohovárajú pokusy na 2m a OK3MHs OK3CHD s popisaným zariadením, benzinovým agregátom a s početným kolektívom OK3KDX sa vyberá sväzarmovským autom na kótu Sirkaň, kde za tuhých mrazov a silného vetra zotrváva 3 dní a 3 noci. Celý večer sa striedavo vysiela a počúva po 2000 hod. v päťnásťminutových reláciách. No (SRI) ani k tomu nedošlo, lebo UBSWN anténu, ktorú musilný vletor zo stožiara zhodil, nestačil postaviť a OK3MH, OK3CBD i s početným kolektívom OK3KDX schádza sklamaný zo Sirkane, aby nadobudol dalších síl, ale s predsavzatím, že až jarné slnko roztopí sneh a Iad na Sninskom kamení, vypraví sa opäť a prvé QSO U-OK si nenechá ujsť.

No dnes už možno s radosťou konštatovať, že na Sninský kameň až do PD 1960 nám netreba chodít, pretože dňa 13. 3. 1960 v čase 1641 až 1804 hodín SEČ došlo k prvému spojeniu na 2 m medzi stn OK3MH v Snine a RB5WN v Lvove. Po dohode v dopoludňajších hodinách na 40 m s UB5WN a UB5WF pracovalo sa v päťminútových reláciach po 1600 hod. SEČ za pritomnosti UB5WF, ktorý nás pri týchto pokusoch doprevádzal na 40 m pásme. Prvé signály na 2 m zachytáva OK3MH odrazom od pohoria Vihorlat o 1641 SEČ RST 33-49. Odpoved na tieto signály prijima Karol RB5WN v Lvove o 1804 hodín v sile 239 tiež odrazom od pohoria Vihorlat. Veľké prejavy nadšenia operátorov, zúčastnených na týchto pokusoch, určite počúvalo viac posluchačov na 40 m pásme. Po dohovorených dalších pokusoch na najbližšie dni na VKV sa OK3MH srdečne lúči s Karolom UB5WN v Lvove a Vladimírom UB5WF tiež v Lvove a so želaním mohých úspechov vypíname vysielače. V dobe, keď tieto riadky pišem, robia sa dalšie pokusy na 2 m s OK3VCI/P na Lomnickom štíte

a RB5WN v Lvove. Preto sa aj OK3IE vybral na Lomnický štít, aby pomohol OK3VCI/P pri týchto pokusoch. Do ďalšej aktívnej práce na VKV prajem veľa úspechov a dopočutia.

ОКЗМН

Děhujeme Milovi, OK3MH za zajímavou zprávu a jměnem všech čs. VKV anatérů jemu i všem členům kolektivu OK3KDX co nejsrdečnějí blahopřejeme k prvému spojení OK – RB5 na pásmu 145 MHz.

Výsledky I. subregionálního závodu 1960 "A1 – Contest"

145 MHz - stálé QTH

was milite see	10 6 1 11		
1. OK1KKD		51 QSO	480 km max
2. OK3YY	5917	32	400
3. OK2VCG		24	295
4. OKIVCW		31	295
5. OKIVAF	2791	24	265
	2684	21	285
 OK2BJH 	2321	18	362
8. OK2VAJ	2195	18	261
9. OK1KKR	2147	25	295
10. OK2OS	2099	19	385
II. OKIVBB	2080	23	280
12. OK1AZ	2053	27	252
	1926	16	270
14. OK1VAM		24	292
 OK1VDR 		20	270
16. OK1ABY		15	230
17. OK1AAB		19	185
 OK1VCX 	1091	18	140
19. OK2VAR	1070	10	200
 OK2BKA 	1000	13	176
21, OK1KLR	984	14	102
22. OK2KLF	852	12	204
23. OK1KKJ	755	12	167
24. OKIVBN	682	5	195
25, OK2VDC	609	10	97
26. OK2VEE	550	10	83
27. OK2TF	345	4	120
145 14 14 2.	Abadas OT	TŦ	

21. OK21F 345 4 120
145 MHz — přechodné QTH
1. OK17KL/p 9567 bodů 51 QSO 490 km
2. OK1NG/p 1547 15 232
Pro kontrolu zaslali deníky: OK1CE, 1TD, 1KSD, 1VAK, 2NT, 3HO a 3KGW.
Pro kontrolu bylo těž použíto deníků stanic OK1KVA, 2KNJ, 3VCO, kde nebyly uvedeny vzdálenosti.
Neobdrželi isma doníka deníku skolovatelníků stanic OK1KVA, 2KNJ, 3VCO, kde nebyly uvedeny vzdálenosti.

Neobdrželi jsme deníky stanic: OKIGV, IVBK. IVDQ, IKLC, a 2VBA, pozdě IKPL/p, a IVDM. Celkem se I. subregionální VKV soutěže zúčastnilo 46 OK stanic.

A1 – Contestem ve dnech 5, a 6. března bylo zahájeno letošní období VKV soutěží, zakončené v uplynulém roce Hradeckou soutěží. Poprvé byl A1-Contest pořádán loni, jako II. subregionální VKV soutěž. Měl značný úspěch ve většině zemí. Proto nebylo ani letos upuštěno od jeho pořádání. Bylo však doporučeno pořádat A1-Contest v termínu I. subregionálního závodu, vzhledem k zpravidla méně příznivějším podmínkám v březnu, kdy tedy lze spíše využít CW provozu zejména ze stalých QTH, když přechodná QTH nebývají v tětobě zpravídla obsazována. Tato doporučená změna v terminu pro letošní A1-Contest byla akceptována většinou amatérských organizací, s vyjimkou DL. a SM, kde byl A1-Contest vyhlášen opět v květnu. Je otázkou, zda to bylo úmyslně, či zda došlo pouze a SM, kde byl Af-Contest vyhlášen opět v květnu. Je otázkou, zda to bylo úmyslně, čí zda došlo pouze k nedorozumění. Je třeba přípomenout, že subregionální soutěže jsou vlastně jen navzájem koordinované soutěže národní, takže jednotlivé amatérské organizace si mohou soutěžní podminky pozměnit. My spolu s většinou ostatních zahraničních amatérských organizací se domníváme, že dodržování těchto podminek, doporučených VKV komitérem I. oblasti, je v zájmu zdárněho průběhu soutěže, a proto se je snažíme plně dodržet. V HG a DM subregionální soutěže vyhlašovány nejsou, proto se nelze divit, že i zde se v prvé části contestu pracovalo většinou fonicky. Nakonec však nejen většina HG a DM, ale i DL stanic přešla na CW provoz. Tolik tedy na vysvětlenou k četným dotazům v této záležitosti. Zanedlouho se jistě dozvime, proč se v DL pojede AI-Contest až v květnu.

N DL pojede Al-Contest až v kvétnu. V porovnání s Al-Contestem v minulém roce byl letošní poněkud úspěšnější. Co do účastí (loni 39 stanic, letos 44) i co do dosažených výsledků. Za zmínku stojí zejména velká účast moravských stanic. Loni jich bylo 7 a letos 14; tedy téměř 30 % všech účastníků. Konečné výsledky jsou pochopitelně ovlivněny ze-jména podmínkami šíření během soutěže. Většína operátorů se shoduje v názoru, že byly průměrné. Není to tak docela pravda. V době asi od 2300 do časných ranních hodin došlo k patrnému zlepšení podmínek směrem na SZ díky: rontální inverzi, která sice nezasáhla až nad naše území, ale umožnila celou řadu pěkných spojení se severoněmeckými stanicemi v okolí Hannovcru a Hamburku. Využily jich zejména ti, kteří vytrvali na pásmu celou noc, v OKIKKD a OKIKKL/p. Odměnou za jejich snahu je jim celá řada pěkných spojení se stanicemi vzdálenými přes 400 km a značný bodový náskok před ostatními stanicemi

před ostatními stanicemi. Max QRB – téměř 500 km se stanici DL1BF v Hamburku překlenuli jak na Kladně, tak na Kozákově. Pro většinu ostatních stanic (zejména moravských) byl ODXem této soutěže DM2ARL/p na Fichtelbergu, nedaleko Klinovce. Byla to jedna na řichtelergu, nedaleko Klinovice. Byla to jedna z nejsilnějších stanic na pásmu, velmi daleko slyšitelná. Proti minulému roku, kdy jsme se této stanice nemohli dovolat ani z Prahy, se letos situace zlepšila. V DM2ARL si zřejmě postavili nový přijimač, podstatně lepší než měli loni. Přesto však byli slyšet opět ještě v celé řadě dalších stanic, které sich parophly dovoler. Pravá je že byli se křej byli slyšet opět ještě v celé řadě dalších stanic, které se jich nemohly dovolat. Pravda je, že byli na kotě, kde měli velký výběr dostatečně silných stanic a tak jim na ty nejslabší stanice zbývalo měně času. Podle deníku to však vypadá tak, jako by i většina našich stanic nereagovalu na signály slabší než S 6. Většina reportů je totiž 599, méně 589, ještě měně 579 a slabší stanice nejsou zřejmě vůbec "příjímány", když tam zcela určitě jsou a často marně volají. Nalězt je na poměrně širokém pásmu je ovšem dosti obtížné, zejména když nenl znám jejích kmitočet. Z praxe vime, jakou nepostradatelnou pomůčet. dosti obtížné, zejména když není znám jejich kmitočet. Z praxe vime, jakou nepostradatelnou pomůckou je při provozu, zejména soutěžním, znalost
kmitočtu protistanice. Nelze pochopitelně znát
kmitočty všech stanic, které se na pásmu mohou
vyskytnout, ale dobrou pomůckou je stále doplňovaný seznam stanic s jejich kmitočty, který si mnozí
naší VKV amatéři vedou a neustále doplňují. Takový seznam ovšem není nie platný v těch případech, kdy se stanice "oplývající" krystaly nebo pozivající vfo objevují pokaždé na jiném kmitočtu.
Někdy je krátkodobé přeladční výhodné – jde-li
na př. o zavolání stanice na kmitočtu, kde právě
končí spolení, nebo při vzájemném rušení. Zásadkončí spolení, nebo při vzájemném rušení. Zásadkončí spojení, nebo při vzájemném rušení. Zásad-ně má však každá stanice dodržovat svůj stá-lý pracovní kmitočet. V současně době je to jedno ze zásadních pravidel provozu na pás-mech 145 a 435 MHz. Neustálým přeladováním, resp. užíváním různých ktalů se taková stanice jen připravuje o spojení se vzdálenými stanicemi, pro-tože tyto vzdálené stanice nevědí, kde ji mají na pásmu hledat.

Poznámky některých účastníků:

OK1KKD: Je velmi potěšítelné, že se telegrafie OKIKKD: Je velmi potěšítelné, že se telegrafie stává čím dále oblibenějším druhem provozu na VKV. Oproti loňskému roku bylo letos více stanic, avšak stále je málo s počátečním písmenem V v prefixu OK1, 2 nebo 3. Podmínky byly velmi dobré směrem na SZ. Špatné směrem na Moravu a Slovensko, a navíc z této strany pracovalo málo stanic. (Nebylo to tak zlé. 1VR). Také polských stanic bylo poskrovnu. Velkou chybou bylo, že německé stanice pracovaly většinou fone. Až teprve kánu začaly používat CW a tak prakticky vše co jsme slyšeli jsme udělali. Reporty pro nás většinou 599, tak snad to bylo slyšet i dál než byl náš přijimač schopen zachytit.

schopen zachytit.

OE1WJ pracoval přímo z Vídně. Neměl sice
QSO s žádnou OK1 stanicí, ale slyšel OK1KKD,

1KKL/p, 1VBB, dále DM2ARL/p. Volal také OK2VBA, ale 2VBA zřejmě už měl všechny stanice, které slyšel, udčlané, a tak během soutěže klidné vysílal hudbu!! A deník nakonec stejně neposlal. OK3YY: ... Stanicu DM2ARL/p som volal 26krát. .. Zarážajúca bola malá účast z OK3 a OK2. Málo OK1 stanic smerovalo na Bratislavu. Pro mnohé bola možnost získať QSO s HG, ktoré už majú tiež CW prijimače a vysielače kryštalom riadené. OK1VAF: Závod byl velmi zajímavý a má přednost proti kombinovanému Al/A3 lepším využitím pásma a menším vzájemným rušením. Škoda, že jsem nedosáhl spojení s OK2VAJ a OK3VCO, které jsem poslouchal.

OK1KKR: Podmínky při závodu byly dostí špatné, zejména moravské stanice se daly dělat pouze

né, zejména moravské stanice se daly dělat pouze krátkou dobu v noci. Naproti tomu OK3YY byl slyšet v Praze téměř po celou dobu závodu. Pro-vozní úroveň některých stanic nebyla dobrá. A1 jim zřejmě činí potíže. Ze stejného důvodu nepra-covala i řada dalších stanic, které jsou jinak na 2 m denně. Škoda, ale snad se telegrafní abecedě také iednou naučí.

ocunou nauci.

OKIVBB: Celkem špatné podmínky. Většina
našich VKV stanic se bojí jet jen Al závod. Já jsem
jel tentokráte závod už sám (dříve míval Vlastík
na telegrafii "najatého" operátora – hi ... IVR)
a bylo to ufb. Neslyšel jsem více stanic, než jsem

udělal.

OKIVBN v Č. Budějovicích slyšel, a marně volal tyto OK stanice: IVBB, IVAM, IVCW, IVDM, IKKR, 2BJH a IVDR. Má TX s 25 W, ant 11 prvků dlouhá Yagi a RX s PCC88.

OK2VDC: Byl to můj první závod a velmi se mi libil. Podmínky byly celkem dobré, což lze dokázat poslechem stanic OKIKKD, IKKR, IKKL/p, SP6EG, SP9QZ aj, na celkem jednoduchý přijímač. Tyto stanice jsem volal, ale díky svému nevhodnému QTH jsem se jich nedovolal. Těším se na další závod.

závod.

OK2VEE: Je to můj druhý VKV závod. Pracoval jsem opět ze stálého QTH, které mám velmi nevýhodně, jaké všechny stanice ve Vsetíně. Obklopují nás ze všech stran v těsné blízkostí dosti vysoké kopce. Takže i těch deset spojení, které jsem v závodé udělal, je pro mne úspěchem. Spojení se stanicí OK2OS a SP dělám odrazem. Závod se mi libil, až na malou účast našich stanic.

Ze zahraničí

Estonská SSR. Známý estonský krátkovlnný DX-man, UR2BU z Rigy, pracuje nyní pravidelně i na pásmu 145 MHz. Používá prozatím malého příkonu - 5 W - což je v současné době maximální povolený příkon na VKV pásmech v SSSR. S tímto 5 W QRP vysílačem se mu podařilo dne 5. 12. 1959 (bylo to u příležinosti velké polární záře, o které byla zmínka v AR) uskutečnit první spojení SSSR - Finsko na 145 MHz. Protistanicí byl OHINL, který tentokrát pracoval poprvé také s Dánskem - OZ7BR a - jak se až teď dovídáme i s Norskem - LA9T. UR2BU pracuje nyní na pravidelně na kmitočtu 144,18 MHz CW i fone. Douřá, že mu bude povoleno používat na VKV většího příkonu. Sovětští amatéří mají tedy na 145 MHz za sebou prvá spojení s Polskem, Maďarskem, Finskem a Československem. Na 435 MHz bylo pracováno jen se stanicemi maďarskými u příležitosti loňského RB5-HG Contestu.

Itálie: Italská amatérská organizace ARI uspořádala ve dnech 26. a 27. března t. r. v Modeně 2. mezinárodní konferenci - VHF Symposium. Na programu byly přednášky a diskuze na tato témata: Estonská SSR. Známý estonský krátkovinný

programu byly přednášky a diskuze na tato témata: Šiření VKV. Směrové antény.

Použití tranzistorů pro dálkové ovládání. Použití tranzistorů v konvertorech. Parametrické zesilovače a jejich technika. Šumové vlastnosti zesílovačů s uzemněnou

mnzkou.

Na toto Symposium byli oficiálně pozváni zásupci evropských amatérských organizací. Sekce
ARI v Modeně uhradila dvoudenní pobyt jednomu
účastníku z každé země.

Doprava agregátu na kótu Záruby v Malých Karpatech při Polním dnu 1959. Na kótu se nedá vyjet a proto se veškeré zařízení musi dopravit pěšky. Práce to není lehká, vždyť stoupání je až v úhlu 60°.

Znáte? Neznáte? Tak to je OKIVAW, soudruh Krejčik z Kladna se svým zařízením na 145 MHz. Práce od krbu si přeci jen nevyžádá takové námahy jakou vidíme na vedlejším obrázku ze stanice OK3KGQ.

Dánsko: Skandinávský Polní den je pořádán ve dnech II. a 12. června 1960 na pásmech 145 a 435 MHz. I. část 2100 až 0200 SEČ, II. část 0200 až 1200 SEČ. S každou stanicí je možno navázat a každém pásmu jedno spojení v každé části. Ostatní podrobnosti soutěžních podminek nám zatím nejsou známy. Pořadatelé upozorňují na možnost dálkových spojení ve druhé části, která trvá 10 hodin. 10. ledna t. r. bylo možno ve skandinávýských zemích opět využít polámi záře k dálkovým spojením na 145 MHz pásmu. OZ7BR pracoval velmi snadno s LA9T a SM6PU.

Francie: II. subregionální contest – 7./8. května, je ve Francii pořáděn jako Polní den. Soutěží se pouze na pásmech 72 a 145 MHz. Zajímavé je bodování. Spojení mezi stanicemi, pracujícími ze stálého QTH, je hodnoceno jedním bodem, spojení stálé QTH – přechodné QTH dvěma body, a spojení mezi stanicemi, při kterém obě stanice pracují z přechodného QTH, je hodnoceno čtyřmi body. Touto úpravou, která je na první pohled neobvyklá, je zřejmě propagována práce z přechodných QTH.

Letos také pracují francouzské stanice naposled na pásmu 72 MHz, které bylo ve Francii velmi ob-líbeno a činnost tam byla větší než na 145 MHz. Z rozhodnutí ženevské radiokomunikační konferennebude na 72 MHz od roku 1961 povolen amatérský provoz.

Jugoslávie: Evropský VHF Contest 1960 je po-řádán jugoslávskou americky řádán jugoslávskou amatérskou organizací SRJ. (Soutěžní podmínky viz AR č. 4/1959.) Do dnešního dne nejsou známy výsledky EVHFC 1959, který požádali kalentá pořádali Italové,

Maďarsko: Velmi aktivní a dobře vybavená budapeštská kolektivní stanice HG5KBP pracuje během soutěží z Hármashatáhegy, 450 m n. m. nedaleko Budapeští. QRG 144,27 MHz. Upozorňujeme na tuto stanici zejména všechny OK1 stanice, které dosud nemají s Maďarskem QSO na 145 MHz. Operátoří stanice HG5KBP směrují totíž zejména na Z a SZ ve snaze dosáhnout konečně spojení s DL nebo DM, které dosud nebylo uskutečněno.

VKV diplomy

Zatím co za činnost na KV pásmech je možno Zaum co za cinnost na KV pasmech je mozno získat dosítky nejrůznějších diplomů, nerozšířila se naštěsti tato diplomová inflace na VKV, zejména ne v Evropě. Jediné dva diplomy za soustavnou činnost na VKV pásmech, o které se mohou snažit VKV amatéři ze všech evropských zemí jsou VHF6 a VHFCC.

Nejpopulárnějším diplomem je VHF6, vydávaný holandskou amatérskou organizací VERON za spoholandskou amatérskou organizaci VERON za spojení se šesti různými zemémi (včetně vlastní) na některém z VKV pásem. Za každou další zemi nad počet šest je vydávána zvláštní nálepka, až do maximálního počtu 15, i když 15 není maximální počet zemí, se kterými lze na 145 MHz pracovat. Pro zajímavost uvádíme, že na špičce evropského "DX žebříčku", uveřejňovaného pravidelně v anglickém časopise SHORT WAVE MAGAZINE, je GSYV – 19 zemí, ON4BZ 18 zemí a G3HBW 17 zemí. DL3YBA má na 145 MHz 16 zemí. VHF6 byl zatím udělen témto naším stanicím: 1957: OK1VA, 1959: OK2BJH, OK3YY a OK2VCG, 1960: OK1KHK. Je však jistě celá řada dalších naších stanic, které mají potřebný počet QSL listků již doma. Žádostí se posílají prostřednictvím ÚRK. Cena je 5 IRC kuponů.

Cena je 5 IRC kuponů.

VHFCC je diplom za potvrzená spojení se 100 různými stanicemi na libovolných VKV pásmech od 50 MHz (!!) výše, uskutečněných z jednoho QTH. Udčluje jej redakce časopisu SHORT WAVE MAGAZINE. Díplomy jsou čislovány a udčlení je publikováno v citovaném časopise. Cena je 10 IRC. Nedá se říci, že by tyto dva diplomy vynikaly svou grafickou úpravou. Zejména VHFCC je "chudý". Podmínky pro udčlení uvedených dvou diplomů jsou splnitelné prakticky ve všech částech Evropy. Další dva diplomy H22-VHF a WASM 144 jsou sice velmí pěkné, ale nesmírně obtížné. O jejich získání se mohou zajímat vlastně jen amatéři z okolí Svýcarska a Švédska. H22-VHF b-i zatím vystaven jen dvěma HB stanicím, které dosáhly na VKV spojení se všemi 22 švýcarskými kantony. jení se všemi 22 švýcarskými kantony,

jení se všemi 22 švýcarskými kantony.

WASM 144. Od zahraničních stanic je požadováno potvrzení oboustranných spojení na 145 MHz
pásmu se všemi sedmi švédskými distrikty,uskutečněných po 1. 1. 1949. Platí jen spojení uskutečněná z jednoho QTH nebo z přechodných QTH v okruhu 50 km od QTH stálého. Diplom získalo dosud 26 švédských stanic. Ze stanic zahraničních mají OH1NL a OZ7BR po šesti SM distriktech. Nejbotížněji se navazuje QSO s SM2, kde pracuje na 148 MHz jen SM2CFG a SM3, kde vysílají tři sranice SM3WB, 3LX a 3AKW. Mezi amatéry naších sousedních zemí je velký zájem o připravovaný diplom 100 OK na 145, který bude vydáván v jiném vyhotovení než dosud známy 100 OK na KV pásmech. Vynasnažíme se, aby byl stejně pěkný jako WASM 144 nebo H22 VHF. Pak o něj bude jistě velký zájem í mezi našími VKV amatéry.
Zatím tedy QRU. Všem naším čtenářům přeji

velký zájem i mezi našími VKV amatéry,
Zatím tedy QRU. Všem naším čtenářům přeji
mnoho zdaru v prácí na VKV, zejména dobré počasí
a pěkné podminky při dalších soutěžích. Deníky
z druhého subregionálního contestu nezapomeňte odeslat nejpozději první neděli po soutěží na ÚRK nebo přímo OKIVR, Praha 10, Strašnice, Na výsluní 23. Nezapomeňte připojit svoje
připomínky a další zprávy, týkající se oboru našeho
společného zájmu.

73 de OKIVR.

Rubriku vede Mírek Kott, OK1FF, mistr radioamatérského sportu

"DX ŽEBŘÍČEK" Stav k 15. březnu 1960

Vysílači:

OK1FF	266(278)	OK1KDC	112(130)
OK1CX	218(231)	OK1ZW	107(113)
OKISV	207(228)	OK3KFE	105(138)
OK3MM	197(225)	OK2KAU	103(135)
OKIXO	191(205)	OK1AAA	96(123)
OK1VW	184(214)	OKIUS	90(110)
OK11X	184(192)	OKIKFG	89(112)
OK2AG	183(203)	OK2K1	89(102)
OK3DG	182(185)	OKILY	87(128)
OK3KAB	172(201)	OK2OV	86(118)
OKIVB	172(201)	OKIKCI	85(100)
OK1FO	171(183)	OKIKPZ	84 (95)
OK3EA	166(181)	OK1FV	80(106)
OK1CC	156(175)	OKIVO	76(102)
OK1AW	155(186)	OKIKJQ	75 (91)
OK1MG	150(176)	OK2KGZ	71 (80)
OK3EE	138(157)	OK1KMM	68 (90)
OK1MP	135(139)	OK1TJ	67 (94)
OK2NN	128(169)	OK2KGE	67 (90)
OKIKLV	125(148)	OK2KBH	64 (94)
OKIKKJ	124(142)	OK3KAS	64 (84)
OKIIZ	122(157)	OK2RT	63 (84)
OK2QR	116(147)	OK2KEH	60 (9 1)
OK3HF	112(130)	OKIKSO	58 (80)
			. ,

Posluchači:

OK2-5663	146(225)	OK2-3868	82(190)
OK3-9969	143(225)	OK1-25058	82(187)
OK1-9823	138(233)	OK1-8933	81(143)
OK1-7820	133(217)	OK1-2455	79(173)
OK1-3811	130(212)	OK3-6029	78(155)
OK3-9280	122(203)	OK1-2239	76(161)
OK2-4207	119(238)	OK1-2643	74(160)
OK1-1630	119(195)	OK2-9532	71(166)
OK3-7773	117(200)	OK1-5879	70(120)
OK1-1704	115(204)	OK2-5462	69(177)
OK1-3765	114(191)	OK2-6222	68(166)
OK3-9951	108(186)	OK2-2026	68(165)
OK1-7837	106(169)	OK1-1608	68(127)
OK1-4550	105(222)	OK1-3764	68(121)
OK1-65	105(200)	OK1-121	66(142)
OK2-3437	105(186)	OK2-8927	64(153)
OK3-6281	103(172)	OK3-4159	63(160)
OK2-1487	102(175)	OK1-1198	62(137)
OK1-756	102(172)	OK2-4948	61(120)
OK2-3914	100(198)	OK2-3301	60(143)
OK2-1437	100(153)	OK2-4877	60(122)
OK1-7880	98(206)	OK3-3625	59(173)
OK1-3112	98(165)	OK3-4477	58(138)
OK1-9652	96(140)	OK2-4243	58(127)
OK1-939	95(154)	OK3-1566	56(119)
OK2-4179	94(182)	OK1-6234	54(148)
OK2-9375	8 9 (189)	OK2-4236	53(109)
OK1-4009	87(176)	OK1-1128	52(106)
OK1-2689	85(143)	OK2-6139	51(163)
OK1-4956	82(196)	OK1-4310	50(117)

Hlášení neobnovily ve stanoveném čase stanice OKIVD a OK2UD, z posluchačů OK3-7347, OK1-1907, OK3-1369, OK1-4609 a OK2-3887. Byly proto vyřazeny. Svůj zájem o DX-žebříček mohou projevit obnovením přihlášky a včasným zasiláním hlášení nejméně jednou za 60 dni.

OKICX

OK1CX

Američtí amatéři přeci jen dostali povolení od FCC vysílat telefonií v pásmu 14200 14350 kHz.

DX stanice mohly dosud používat části pásma 14300—14350 kHz, aniž by byly rušeny US stanicemi. Od 10/3 1960 se tyto podmínky silně změnily. Když jsou dobré podmínky pro USA, je prakticky nemožné pracovat s jinými DXy, tak silně nyní americké stanice ruší provoz. Mimoamerické stanice nyní zkoušejí se prosadit v pásmu 14100-14200 kHz, které je dosud používáno stanicemi pracujícími s AM. Další - a to dosti znočná - část SSB-DXů volá mezi 14150-14200 kHz a poslouchají v pásmu 14300-14350 kHz.

Tentokrát se americkým amatérům podařil husarský kousek a zničili dobře zavedený kousek pásma, který byl používán celým světem skoro výhradně na SSB a nebyl rušen US stanicemi. Nyní to má za následek, že rušení v celém fone pásmu 14200-14350 je takové, že DX stanice se těžko mezi sebou dovolávají, poněvadž US stanice svými kilowatty ruší nejen sebe navzájem, ale i celý DX provoz.

Jestliže si činitelé, kteří v USA rozhodují o přidělení pásem amatérům, myslí, že pomohli dobré věci, tak se hluboce mýlí. Pomohli sami sobě tím, že rozšířili telefonní pásmo, ale na úkor dobře zavedeného DX provozu. Ohlas v celém světě na tento krok americké FCC je všude negativní. Po čase sami američtí amatéři přijdou na to, že zničili nebo ztížili SSB-DX provoz na dvacetímetrovém pásmu.

Ze zahraničí

Jak známo, mají sovčtští amatéři povoleno pracovat na desetimetrovém pásmu namísto VKV pásma 38—40 MHz. Tím se na tomto pásmu objevila celá řada nových značek, jako RA, RHS, RIS, RJS, RRS, RMS apod. Nová značka UT, jak se zdá, je pokračováním řady značek UBS, které asi byly již vyčerpány. Také RV je asi pokračováním řady RA (UA). V následujícím přehledu uvádím rozdělení pásem v SSSR na fone a CW, jak je mají sovětští amatéři nyní používat. Toto rozdělení bylo uveřejněno v jednom z posledních čísel Radia.

3500	3650	kHz	CW - A3
7000-	7100	kHz	CW - A3
14 000-	14 100	kHz	CW
14 100-	14 300	kHz	A3 (AM)
14 300-	14 350	kHz	SSB
21 000	21 150	kHz	CW
21 150	21 350	kHz	A3 (AM)
21 350	21 450	kHz	SSB
28 000	28 200	kHz	CW
28 200-	28 500	kHz	A3 (AM)
28 500-	29 700	kHz	SSB
144 000-1	146 000	kHz	CW A3
420 0004	35 000	kHz	CW - A3

Pozoruhodné na tomto rozdělení je přísné rozdělení telefonie AM a SSB. Toto rozdělení bylo nutné, neboť jak víme, dodnes pracovali sovětští amatéří fone v CW pásmech a hlavné silné rušení bylo v poslední době na deseti metrech, když se tam

nutne, neboť jak vime, dodnes pracovali sovetsti amatéří fone v CW pásmech a hlavně silné rušení bylo v poslední době na deseti metrech, když se tam objevily stanice, které dřive pracovaly v pásmu 38—40 MHz.

Podle posledních zpráv výprava Z+H nejela do Saudské Arábie ani do Kuweitu, jak bylo hlášeno v minulém čisle AR, poněvadž nedostali potřebná visa. Zatím pracují v severní části Iráku a pak pojedou lodí přímo do Indie. Začátkem května chtěji být již v Bombaji. Při této příležitosti bych chtěl upozornit na omyl, který se stal jednomu našemu RP z Moravy, když slyšel výpravu OK7HZ/4W. Na Nový rok odpoledne poslouchal a slyšel, jak OK7HZ/4W volá WóKOK. Jak však víme, výprava Z+H byla v té době v Jordánsku a nebyla v jemenu; nemohl tedy Jirka Hanzelka vysílat jako OK7HZ/4W.

Dopis, který jsem od dotyčného soudruha z Moravy obdržel, mi pak vysvětili omyl, který nastal. Soudruh piše doslova, že chytil volání takto: "OU KEJ SEVEN EJČ ZET BAJ FOR DABLJÚ" – a poněvadž Jirka volal stanici WóKOK, znělo jistě dále "ZÍROU KEJ OU KEJ", což už jaksi nevnímal a upjal se na "FOR DABLJÚ". A zde právě nastal onen omyl. Za prvé snad, – opakuji: snad –, OK7HZ nedal značku lomeno . . ., ač pokud vím Jirka hlásivá "portejbi" tam a tam . . . a za druhé, když se přechází na příjem pro protistanici, říká se stručně "BAJ FOR". Ze slova "FOR a s přidáním počátečního písmene ze znaku WoKOK si soudruh zkombinoval znak 4W "FOR DABLJÚ". Následky pak z tohoto omylu byly horší, než by jeden vůbec očekával. Soudruh se s tím pochlubil kamarádům v závodě, ti to dali do závodního časopisu, převzzala to Práce, trochu se vše okrášillo a vznikla prima novinářská kachna. Poněvadž účastníky výmravy Z+ H zálímá jak se o nich doma níše vode, ti to dali do zavodního časopisu, převzala to Práce, trochu se vše okrášillo a vznikla prima novinářská kachna. Poněvadž účastníky výpravy Z+H zajímá, jak se o nich doma píše (dostávají výstřižky ze všech novin do sekretariátu výpravy), byl nucen sekretariát zprávu novinám vyvracet a soudruzi z výpravy Z+H byli rozčarování takovouto neseriózní a nervsylikyu zprávou. pravdivou zprávou.

Nešlo tedy o piráta, jak se soudruh domnívá, ale jen o jeho neznalost telefonního provozu a jemných odstinů, nesrozumitelných tomu, kdo dobře neovládá anglický jazyk a amatérský telefonní provoz.

7G1A, který pracuje již 9 měsíců v Konakry, udělal dosud 4100 spojení s více jak 100 zeměmí. Na telefonii (jen SSB) jezdí poměrné málo a má jen asi 300—400 spojení. Do WAZu mu chybí jen 77—8 zón. Při spojení, které jsem s ním měl a při kterém mně předal tyto informace, mi raké pověděl něco o DX podmínkách, za jakých v Konakry pracuje. Zásadně špatně se mu dělají spojení s JV Asií a se Střední Amerikou. Velmi dobře zato chodí Occánie a tak například udělal lehce VR1, VR2, VR3. Jinak ctý ostatní svět mu chodí na jeho KWM1 a na GP velmi dobře.

Koncem března se měl objevit na Velikonočních ostrovech CE0AZ s novým 600W vysílačem na CW a na fone.

čem na CW a na fone.

AP2CR se marně namáhá dostat povolení vysílat

z Východního Pakistánu. Naděje na vydání koncese je zatím velmí nepatrná.

amasérské RADIO 145

GW3ITD, který tč. pracuje jako /mm, bude

GW3ITD, který tč. pracuje jako /mm, bude pracovat v květnu ze ZD9 a později z VQ8. Ex VK9AD (nyní VK3AWX) chce v dubnu nebo v květnu navštívit ostrov Willis, pomoci tam vybudovat stanici a zaučit dva zájemce o DX provoz. Tím by pro budoucnost bylo zajištěno, že se častěji v éteru objeví tato nová země. Na ostrově Willis již v minulosti pracovali amatéří a poněvadž pro DXCC platí vesmés poválěčná spojení, bude vás zajímat, kdo a kdy tam pracoval. VK4IA zde pracoval v roce 1955—56; VK4IC pracoval v letech 1956—57 a VK4DS sice na ostrově byl, alc nebyl činný. Ostrov Willis je malý korálový ostrov, vzdálený asi 300 mil od Austrálie, od pobřeží Queenslandu. Na ostrově pracují dva radioví operátoří a jeden meteorolog, osádka se stříčíá vždy jedenkrát za rok a po celou dobu nemají s pevninou poštovní styk.

krát za rok a po celou dobu nemají s pevninou poštovní styk.

Na ostrově Marcus mělbýt v dubnu JA1ACB. Toto byla poslední zpráva, kterou jsem nemohl dát do dubnového AR. JA1ACB prýmusel žádat Američany o povolení k udělení koncese, neboť ostrov Marcus patří pod americkou správu. V době psaní této hlídky nebyly známy bližší podrobnosti.

Také výprava na ostrov Malpelo měla být v dubnu. Měli se jí zúčastnit tři známí amatéři z Kolumbie a tři američtí amatéři: W3PZW, W4KVX a W9EVI. Účastnicí měli pracovat na několika pásmech po celých 24 hodin a po pět dnů. Ostrov Malpelo patří správou ke Kolumbii a splňuje prý podmínky pro novou zemí do DXCC.

Podle zprávy od KV4AA je Danny Weil – VP2VB – na Floridě a jeho prvým cílem přeci en mají být Galapágské ostrovy. Výpravy se definitivně zúčastní ZL1AV a W8LNI.

Tannu Tuva, která leží ve 23. zohé, je zajímavá v poslední době tím, že tam pracují UA9KYA a UA0YC na 15 metrech a na fone.

Na ostrově Samoa pracuje jako nová stanice K6CQV/KS6 na telegrafií i na fone. Operátor zde má zůstat až do léta 1961.

9N1GW je Američan a jeho značka je W2CBD. Od roku 1947 do roku 1949 pracoval jako EK1GW, 1952 jako SVOWX a 1954—1956 jako KR6GW. Teprve až dojde elektrický agregát, který každým dnem má do Nepalu dojít, bude častěji pracovat CW.

WAZ na SSB bude mít brzy pohromadě MP4BBW. Dosud pracoval s 36 zónami obou-

CW.

WAZ na SSB bude mít brzy pohromadě MP4BBW. Dosud pracoval s 36 zónami oboustranně SSB.

Expedice VU2ANI udělala celkem 3360 spojení, 125 zemí, a celý WAZ. Jistě velmi pěkný úspěch. Výprava se bude prý brzy opakovat!

VQ8BBB, který opustil ostrov Cargados Carajos, se vrátí za dva měsíce a při návratu již bude mít sebou konvertor pro 21 a 28 MHz.

Amatéři z Izracle nechtěji posilat QSL listky jako protest proti tomu, že je Jerusalem počitán za zvláštní zemi.

V Nepalu pracuje telegrafií nová stanice

Nepalu pracuje telegrafii nová stanice

9NiFV.

CE0AC a CE0AD pracuji nyní také SSB, avšak znají velmi málo anglicky. Pracuji hlavné mezi 14335—14350 a mezi 0000—0400 GMT. Někdy také pracuji na 21 MHz. Velikonoční ostrovy se v jejich řeči jmenuji lles de Pascua.

VP8BK skončil v dubnu svoji práci na ostrově South Georgia. Od května je jako LA1RC. Podle jeho mínění bude trvat pět let, než zase se na tomto ostrově objeví nový amatér.

TA3GY má být přeci jen dobrý. Je to prý americký přislušník a jeho působištěm je Ankara. Zařízení má KWM1, zesilovač 500 W a pětiprvkovou anténu.

ZLIABZ, který je znám svou dřívější činností na ostrově Kermadec, bude pracovat až 2 roky z obou částí ostrovů VRI. Hlasí, že koncem dubna bude již na místě.

že koncem dubna bude již na místě.

FF7 a FF4, Manertánie a Pobřeží Slonoviny bylo
již slyšeno na 15 metrech. Zatím není známo, zda
obě tyto země jsou uznány od ARRL za novou zemí.
FF7AB (ex FISAH) byl často slyšen ve večerních
hodinách na 15 a 20 metrech CW. QTH Nouakchott
v Mauretánii. FF7AB je zase často slyšet fone na
21 MHz a na 28 MHz. FF4AB z Pobřeží Slonoviny
je často slyšet na 21 MHz AM. V nové republice Pobřeží Slonoviny mají být činny tyto stanice: FF4AA, FF4AB, FF4AC, FF4AD, FF4AE, FF4AF, FF4AG, a FF4AH. Hlavním městem je

FF4AF, FF4AG, a també deniky od expedice VU2ANI. Mezi tím došla zpráva, že deniky byly omylem dány do QSL ústředí v Indii, které se ujalo zprostředkování QSL lístků. Adresa ústředí je uvedena níže v adresách dielo stanic

Adresa ústředí je uvedena nize v auresami cizich stanic.
Konečně je také zastoupen v éteru ostrov Johnston, kde pracuje KJ6BV na deseti a dvacetí metrech telefonii. Snad i SSB.
Na ostrově Norfolk je jediná činná stanice VK9RH, která pracuje fone; z ostrova Lord Howe pracuje také fone stanice VK2FR a nová stanice VK3ARX. Na CW pracuje ZL3VB

z ostrova Chatham.
Pro diplom DUF se neuznávají QSL listky od
3W8AA a W3ZA/3W.

Ve Východním Pakistánu pracuje pouze AP3D. Východní Pakistán, jak je známo, platí za novou zem pro DXCC. YAIKE, který jezdí z Afghánistána, je norský

146 amaserské RADIO 50

státní příslušník a pracuje hlavně na 14 MHz. YA1AO pracuje pravidelně denně na 40 a 80 metrech po 21 hodině SEČ a dívá se po stanicích z Evropy.

Ostrov Jan Mayen je stále zastoupen stanicí LA3SG/p a LA1NG/p a je k dosažení na desetí až čtyřicetí metrech. Na dvacítce pracuje také telefo-

čtyřicetí metrech. Na dvacitce pracuje take tekanicky SSB.

Ve Velké Británii bylo dosud vydáno 8474 amatérských licencí. Z toho je 761 povolení promobilní provoz. Dalších 68 (dříve 73) povolení je na provozování amatérské televize.

HASFU prosi o QSL listky pro diplom 100 OK od následujících stanic: OKIAVT spojení 7/10/58, OKIGO 17/3/59, OKIJX 29/11/59, OK3KOT 31/5/59, OKIZL 28/11/59, OK3KGW 29/11/59 OK3KLM 9/2/60.

Adresy cizích stanic

VR3A	nyní VK2ANB
VK9AD	nyni VK3AWX
VU2ANI	Indian QSL - Bureau P.O.B. 534
VOZMINI	New Delhi, India, nebo via W8PQQ
	1012 Delicent E-met Hills Char
	1013 Belmont, Forest Hills, Char-
TIDATA	leston, W. VA., U.S.A.
VP2DX	via W8VDJ,
TA3GY	via VE7ZM,
HP9FR/VQ8	
LA3SG/p	via VE7ZM,
VP2SL	via K4SXO,
VP2ML	via K4SXO,
ZC6UNJ	Lt. Col. W. T. McAninch, 029601,
	APO 206-B, c/o PM, New York,
	N. Y., U.S.A.,
YAIAO	via DL6YI,
YAIBW	via DL8AX,
VP5AB	vla W3AYD
VS9ARF	via VS9AZ,
EA8CP	via SM5AĤK,
VP3VN	Vasco Nascimento, 1. Chapel Street,
	Lodge Village, British Guayana,
GB3RI	via GI3HXV.
CE0AC	a
CEOAD	via CE3HL,
ZAIAL	QSL direkt na Box 57 Tirana, Albania
	(bez záruky!)
VP2LS	via W8QHW (s obálkou a IRC na
	odpověď),
EL6C	V. Zeverino, Raymond Concrete Pile
	Co., Roberts Field, Liberia,
ELSF	c/o Bishop's House, Monrovia,
	Liberia,
FG7ZW	via VP4LC.
VP4WÏ	via W4ORB,
ZM6AB	clo Esleolo Airport Privete Bar.

Piráti

c/o Falcolo Airport, Private Bag, Western Samoa

FL4JI ZC3RF, který prý černíl v okolí Sheffieldu.

Poslechové zprávy

1,8 MHz

Na pásmu ještě se daly dělat v poslední době nějaké DXy, ponévadž tam když pracuje a hlídá pásmo DL1FF, tak určitě se vyplati toto pásmo sledovat. Z Evropy mimo běžných, zemí stojí za zmínku jen GM, GW a HB9. V únoru byl na pásmu W2BOT s RST 589 a pracoval s naším OK1TJ. Zřejmě to byl unlis, poněvadž na QRT se více neobjevil.

3,5 MHz

Z večera a v noci stále jezdí pravidelně UA9CM a UA9KCA a jejich RST bývá až 599. Z jiných zajímavosti uvádím jen DL5ÁF ve 2100, GD3UB v 0040, GD3FBS celkem velmi často okolo 1900, LX1DW v 1740, a ZL4NX ve spojení s EU ráno v 0740 při RST 239. Na pásmu pracuje ZA1AA, který udává bydliště Tirana a jméno Ali. O jeho pravosti pochybují pravosti pochybuji.

7 MHz

Ze čtyřicetimetrových zajímavostí stojí za povšimnuti tato stanice: GB2SM v 0800, GD3UB v 0100, KG4AD v 0310, řada UA0 ve večerních hodinách, UM8KAB v 0300, PJ2MF ve 2330, PY1BBQ ve 2220, PY2BWN v 0200, YSICWX ve 2330, ZA1KC v 1100, který udává bydliště Tirana a Box 42 a jehož QSL DARC snad uznává, ZC4IP v 0100, ZS1A ráno v 0550, 5A3TA také v 0550 a 5A3TR ve 2310. Ze čtyřicetimetrových zajímavostí stojí za

Dvacítka je stále dobrá, jak svědčí převážná část Dvacitka je stále dobrá, jak svédčí převážná část dopišů a hlášeni. CP3CN ve 2240, CO7NR ve 1255, CR4AH v 0540, CT1YG op je YL ve 2200, DU1OR ve 2140 a DU7SV v 1630, EL2X ve 2020, EL4A v 1950, staří veteráni FB8XX a FB8ZZ pravidelně odpoledne a také někdy ráno v 0600, FF8AD ve 2230, FG7XF ve 2150, FK8AT v 0730, FO8AC v 0550, FR7ZD v 0410, GD3FXN ve 1430, GD3UB v 1730, GM3HTH na Shetlandech ve 2130, HC2IU v 0550, HP1UH ve 1330, HP3KB v 1920, HK0AI ve 2330, HZ1AB v 1620, JZ0DA časné ráno, JZ0PC (ex P11KM) v 1715, KR6GF v 1850, KS4AZ ve 2150, KG4AD v 1100, KG4FAE v 1830, KG6AJ ve 2245, LA3SG/p v 0110, LJ2A (dobrý

pro WPX) v 0930, LU2ZI na Jižních Shetlandech ve 2130, argentinská loď pod značkou LU0AC v 0510, MP4BCV v 0550, OD5CN v 1700, OD5LX ve 2015, OR4TX ve 2130, OX3RH ve 2200, PJ2AL ve 2205, PJ2AV ve 2210, PJ2MV v 0450, PJ3AK v 0550, PY0NA na ostrově Fernando de Noronha ve 2200, PX1AJ ve 2350, PZ1AP ve 2110, SU1AL v 1630, SU1MS v 1830, SV0WZ na Krétě ve 2030, TI2PZ v 0550, UA1KAEJ6 v 0810 (tato stanice je prý již zrušena), UA0KAB na mysu Čeljuskin mezi 1300—1700, UM8KAB v 1620, VP1JH ve 2230, VP3MC ve 2225, VP3VN ve 2220, VP3YG ve 2240, VP4DW ve 2015, VP6PJ ve 2220, VP3YG ve 2240, VQ3CF v 1840, VQ6AB 2340, VQ6GM v 0550, VQ8BB na Mauritiu v 1810, a záhadná značka VQ0MP ve 2000, VS1KL v 1540, VS5AK v 1845, VS6AE v 1540, XWSAI ve 2250, XZ3LI ?? ve 1340, YA1AO ve 2130, YA1BW ve 2230, YN4AB ve 2150, YS1O v 0550, YV3RP ve 2100, YV4CA ve 2310, YV5HL ve 2240, ZB2A ve 2050, ZD3S v 1830, ZD9TK v 1800, ZK1AK v 0910, ZK2YC ?? v 1800, ZP5AW ve 2220, ZP5LS ve 2330, ZS3AH v 1800, ZS7R v 1900, ZS8MB v 1330, 457NG v 0135, 457SJ ve 2220 7G1A v 1700 a ve 2200, 9K2BC ve 2010 a 9M2CV v 1700. pro WPX) v 0930, LU2ZI na Jižních Shetlandech

21 MHz

BV1USB ve 1420, CR7IZ v 1800, EA6AM v 1815, EA9AQ v 1730, EL4A v 1040, FBSGP/Comorno Isl. v 0900, FF8AW v 0840, FK8AW ve 1350, HI7IM v 1540, KL7CDF v 1120, KP4CC ve 1340, KP4KD ve 1220, KR6ZN ve 1400, argentinská loď LU0EAB v 1010, MP4TAF v 1530, MP4TAH ve 1440, OA3D ve 1350, OD5CQ v 1540 a 2015, OK4QK/MM na naší nové lodí Kladno na cestě z Evropy na Dálný Východ mezi 0700-1700 velmi pěkně, až S9 fone, STZAR ve 2040, SU1MS v 1500, FF2WEW v 1640, TF5TP ve 1330, VK9GK ve 1210, VK9RO v 1100, VE6AAE/SU v 0830, VO2RS v 1900, VP4LP v 1750, VP7NS ve 2000, VQ2JM v 9000, VQ3CF ve 2000, VQ4GT ve 1400, VU2XG v 1000, XR2A (kdo ví, co to jc?) ve 2105, YA1BW ve 1230, ZB1FA v 1810, ZB2A v 1540, ZD2IHP v 1035, ZS3AH ve 2000, 5A2TZ v 0840, 9G1CW ve 2130 a 9M2GT v 1610.

28 MHz

Deset metrů je stále otevřeno, ač ne naplno, jak jsme byli zvykli. Jak píše OK1QM, stává se desítka "divokou"; některý den jsou tam pěkné DXy a někdy je tam jen "short skip". Chec to, aby še pásmo stále hlídalo. Je to tedy hodně již měnivé, ale stále se tam vyskytují velmi pěkné DXy, jak je vidět z přehledu: CR6CA ve 1430, CR6AT v 1830, CR7BN v 1520, CX2BT v 1500, CX4CS v 1500, EABCG ve 1400, EL11D v 1510, FBSCI v 1650, HC2IN v 1700, celá fada JA1 až JA0 v dopoledních hodinách, KP4CC ve 1320, KR6MD v 1015, KZ5BS ve 1400, OA4FM v 1815, OX3RH v 1500, PJ3BH ve 1400, PY4AO ve 1445, RA0WAB a celá další řada RA0 v dopoledních až odpoledních, ST2AR ve 1425, UL7FA ve 1310, VE6AAE/SU v 1700, VK9DB ve 1430, VO1FB v 1640, VP3HAG v 1740, VP9DL ve 1440, VO3HG v.1715, VQ4FK ve 1400, VQ8AV ve 1340, VS6EE ve 1200, VS6BJ ve 1420, VU6RD v 1530, XW8AI ve 1400, YA1BW ve 1415, YV5EB v 1935, ZB1FA v 1015, ZB2CK v 1510, ZE2KG ve 1410, ZE3JO v 1750, ZC4DP v 0800, ZD2JKO v 1510, ZS6AYN v 1610, SA5TA v 1550, 7G1A ve 1350 a velmí často v odpoledních hodinách severoamerické stanice.

Závody

PACC - Contest

na telegrafii 30. 4.—1. 5. 1960 od 1300 SEČ do 2100 SEČ. na telefonii 7. 5.—8. 5. 1960 od 2200 SEČ do 2200 SEČ.

SSSR – Contest na telegrafii 7, 5.—8, 5, 1960 od 2200 SEČ do 2200 SEČ. Bližší podmínky viz v tomto

Výsledky loňského WADM závodu

Uveřejňují úplné výsledky loňského WADM contestu, který uspořádali východoněmečtí amatéří a který se hned na poprvé stal velmi populární. Poněvadž se ho zúčastnilo nnoho stanic od nás, jistě bude naše amatéry zajímat jejich umístění.

Jednotlivci

		bodů			bodů
1.	OK3AL	18900	18.	OKIVK	2 744
2.	OKIIN	10 440	19.	OK1AAW	2 640
3.	OK3EA	10920	20.	OKIFT	2 060
4.	OK2LN	9 918	21.	OK3XK	1 824
5.	OKILY	7 743	22.	OK1ACF	1 620
6.	OKIRX	6 480	23,	OK1BQ	1 620
7.	OK3IR	6 138	24.	OK1ZV	1 581
8.	OK1EB	5 460	25.	OK1ABE	1 449
9.	OK1QM	5 460	26.	OK1WR	1 440
10.	OKIAHN	4 320	27.	OK1ZE	1 428
11.	OK1SV	3 960	28.	OK2QR	1 377
12.	OK100	3 690	29.	OKIAAU	1 326
13.	OK2UX	3 672	30.	OK3WN	I 326
14.	OKIUQ	3 510	31.	OK2TE	1 209
15.	OK1GA	3 105	32.	OK1CF	1 023
16.	OK2UD	2 940	33.	OKINL	1 008
17,	OKIBM	2 772	34.	OK2ID	880

35. 36. 37. 38. 39. 41. 42. 43.	OK2OR OK3CAN OK2IE OK2LL OK2OU OK1MG OK1ACH OK1KAY OK1QB/p	864 858 741 702 600 585 580 567 540	46. 47. 48. 49. 50. 51. 52. 53.	OK2TH OK3SK OK2SG/p OK3BJ OK1ZH OK2BBB OK3CAT OK3EE OK1DC	486 405 390 378 351 336 273 240 210
43. 44. 45.	OKIQB/P OK1ZZ OK2BBG	540 540 504	54. 55.	OKIDG OK2DO	60 60

Kolektivní stanice

Posluchači

I.	OK 1-8188	7252	11.	2-4236	1537
2.	35842	5240	12.	3 - 4877	903
3.	36281	4620	13.	2 - 154	826
4.	12738	4230	14.	11902	456
5.	2-4245	4050	15.	13127	390
6.	1-3134	3224	16,	2-1435	384
7.	3-8187	2976	17.	2-6395	192
8.	3-2922	2808	18.	18174	152
9.	1-3156	2800	19.	2-4598	152
10.	3-2555	1776			

DARC USPOŘÁDAL SWL-MARATHON

pro posluchače, ve kterém se umístil s. Jirka Peček, OK2—5663, tč. v Poděbradech, na prvém místě mezi zahraničními závodníky. Dosáhl 949 bodů a včetně německých posluchačů obsadil 15. místo

Nakonec ještě blahopřeji OK2AG k dosažení diplomu Fone WAZ, který obdržel jako druhý u nás v Československu.

diplomu Fone WAZ, který obdržel jako druhý u nás v Československu.

Zprávy pro dnešní rubriku zaslali tito amatéři: OKIQM, OKIQS, OKISV, OKIUS OKIYG, OKIQM, OKIQK, OKSY, OKSTR, OKJYG, OKIZL, OK2AG, OK2QR, OK2TR, OK3MM a OK3WM. Z posluchačů, jejichž činnost je velmi pilná, jsou to tito: OK1-4708

z Luštěnic, OK1-6234 z Dolního Újezda u Litomyšle, OK1-6732 z Prahy, OK1-2725 z Kolina, OK1-1902 z Prahy, OK1-4550 a OK1-6423, OK2-9375 tč. z Litoměřic, OK2-4857 tč. z Jaroměře n. Ohří, OK2-8036 z Ostravy, OK2-3437 z Lužíce, OK2-4857, OK3-9951 z Odry a OK3-2922 z Nižné n. Oravou.

Děkují Vám všem, soudruzí, za pomoc při vedení rubriky; ze zaslaných příspěvků je možno udělat dobře pravdivý přehled podminek, laké byly na pásmech. Jen bych potřeboval více drobných zpráv z ciziny. Poslouchejte proto hodně "drby" mezi amatéry a novinky mně posílejte. Sám jsem v poslední době málo vysílal poněvadž mě stihla další smutná rána osudu a tak tato dnešní rubrika je jen a jen sestavena z Vaších hlášení.

Příští zprávy pro rubriku prosím opět pošlete do 20. v měsíci nětna na modi adzest.

Příští zprávy pro rubriku prosím opět pošlete do 20. v měsici přímo na moji adresu – Praha 7, Havanská 14. Hodně úspěchů na pásmech Vám přeje

OK1FF

Co z nás udělalo "roboty"?

Ve 3. čísle AR v DX-rubrice uveřejnil OKIFF výtah z dopisu jednoho čilého RP, který si stěžoval na různé nešvary v provozu. Největším nešvarem podle minění onoho RP jsou šablonovitá spojení s malou dávkou srdečnosti a odbornosti. Příčina tohoto stavu prý spočívá v tom, že ZO nebo PO přídou do kolektivky jednou za čas a čekající RO pak pocífují potřebu udělat za tu chvili, co mají vysilač k dispozici, co nejvíce spojení. To může být pravda; ale proč už tito začinající RO touží po tom udělat co nejvíce spojení? Soukromí koncesionáři nemusí čekat na nikoho a přece většina z nich pracuje tempem závodnim po celý rok! Ve 3. čísle AR v DX-rubrice uveřejnil OKIFF výpem závodním po celý rok!

pem závodním po celý rok!

Příčinou je honba za QSL, které jsou potřebné
pro získání některého diplomu, nebo nutné pro
umístění v některé soutěží a vůbec pro celkové hodnocení operátorů. Těchto možnosti je dnes tolik,
že operátorům nezbývá čas na to, aby na pásmech
dlouho hovořili. Někteří nemají ani o čem povídat,
protože žádné nové zařízení nestavějí a experimenty
neprovádějí. O provozu samotném se toho mnoho
namíuvit nedá.

neprovádějí. O provozu samotném se toho mnoho namluvit nedá.

Mám za to, že onen RP není pamětníkem těch časů, kdy se odbývala na 80 m i na jiných pásmech velmi srdečná, technicky poučná, a proto několik hodin trvající spojení. Pravda, dnes tomu tak není a ani z výše naznačeného důvodu být nemůže. Kdo by dnes rákový provoz chtěl dělat, zaostával by v celkové činnosti za ostatnímí. Naši amatéři většínou dnes ani nepocifují potřebu řešít nějaké technické apod. problémy na dálku, tak jak jsme to museli dělat ve svém osamocení před mnoha lety my. Přesto však by nebylo na škodu, kdyby se o různých technických i jiných problémech více na pásmech hovořilo. Je nutno však uvážit, je-li to při dnešním tempu naší činnosti vůbec možné. Vezměme si za příklad statistické údaje stanice OK2QR, otištěné

v témže čísle AR. Operátor Ruda uskutečnil v roce 1959 3451 spojení. Kdyby pracoval požadovaným způsobem, musel by své soukromé vysílaci činnosti věnovat při nejmenším 3000 hodin za rok, tj. skoro 8 hodin denně. To by si ani OK2QR každý den dovolit nemohl. Proto, aby jeho bilance v počtu spojení a v počtu ziskaných díplomů byla úspěšná, musel (nemě-li k tomu jiné metody dělbu jednotlivých sel (nemá-li k tomu jiné metody) délku jednotlivých set denia-n k odnu jine nietody desku jednotných spojení zkrátí na míru potřebnou pro získání QSL. Tak podobně je tomu i u jiných operátorů, OK1FF nevyjimaje. Všeobecné lze proto řici, že průměrné amatérské spojení trvá 5 minut a proto za tu dobu se toho mnoho nenavykládá, i když se jede rychlým

se toho mnoho nenavykládá, i když se jede rychlým tempem.
Poměrně nejdéle se udržel pomalý, srdečný a technickou úrovní se vyznačující provoz na VKV.
Na srdečné popovídání bývalo dost času i o Polnich dnech. Dnes už to vypadá o Polních dnech jako někde v blázinci. Operátoři podstupují mnohdy velkou námahu jen proto, aby předali vzdáleným stanicím několik čísel. Podobně je tomu i při práci od krbu. Jedni číhají celý rok na polární záři, druzi na roje meteoritů a ti ostatní na inverzi.
To, co jsem uvedl o dnešním amatérském provozu, nelze dost dobře nazvat nešvarem. Je to ne-

To, co jšem uvedl o dnešním amatérském pro-rozu, nelze dost dobře nazvat nešvarem. Je to ne-zkrotná touha po dosažení nějakého úspěchu, ně-čeho, čím by jeden vynikal nad druhého! Je to prostě soutěžení, které se nedá jinak v amatérském provozu provádět. Pokud se při tom dodržují pra-vidla soutěže, pak nelze aní proti kritizovanému provozu ničeho namítat. Byl bych šťasten, kdyby toto masové soutěžení probíhalo v duchu amatér-ského hamsnijím, v rámci proplovacích podmínek ského hamspiritu, v rámci povolovacích podmínek. Bohužel vyskytují se při tom všem ještě horší ne-švary, které je možno na pásmech odposlouchat a o kterých bych se nerad zmiňoval. Dají se nazvat švindl, podvod apod. Nemohu pochopit jen jedno, jaký požitek může mít amatér z trofeje, kterou nezískal čestně.

Karel Charuza, OK2KJ

Klub západoněmeckých radioamatérů DARC připravil péčí známého OM Halbauera DL3TJ kurs telegrafních značek na dlouhohrajících gramofonových deskách. Jednotlivé desky mají nahrán tento text:

1—2 strany tempo 30, skupiny

2—2 strany tempo 40, skupiny 3—2 strany tempo 50, skupiny

4—2 strany tempo 60, skupiny

5—1. strana tempo 60, souvislé texty 2. strana tempo 60, amatérské texty

6—1 strana tempo 70, skupiny 2. strana, tempo 80, skupiny –1 strana tempo 80, skupiny

2 strana, tempo 80, souvislé texty 8—1 strana tempo 80, amatérské texty

2 strana tempo 80, zkušební text. K deskám je přiložena instrukční brožura, kde je též uveden nahraný text. Cena je 20 DM.

I u nás by bylo jistě velmi záslužné zajistit nahrání cvičných textů, čímž by se zkrátila výcviková doba. Hlavním přínosem by však bylo, že radioamatéři by si mohli doma denně cvičit příjem

Rubriku vede Karel Kaminek, OKICX

"OK KROUŽEK 195<mark>9"</mark> Závěrečné výsledky

	Počet C	SL/poč.	okresů	
	1,75	3,5	7	Součet
Stanice	MHz	MHz	MHz	bodů
	I -	odů za 1	-	Coun
	3	1	3	
	11	l		
a) kolektivní				
stanice;	109/57	667/190	206/03	202 843
2. OK!KIY	139/70	578/173		
3. OK3KIC	83/47		141/73	138 855
4. OKIKBY		574/182		120 116
5. OK3KEE	57/39	377/148		70 277
6. OK3KAS	16/11	410/155		
7. OK3KJJ		393/147		
8. OKIKLR	124/66			60 426
9. OK2KLN	107/58			
10. OK1KFG 11. OK3KEW		313/128 325/128		52 463 51 653
12. OK1KPB		365/139	21/10	
13. OK3KBP		240/117	15/10	
14. OK3KFV		256/128	23/18	37 886
15. OK1KPZ	70/40		29/15	36 455
16. OK3KFV	34/31	252/126	23/18	36 156
17. OK1KFW	92/47		23/15	
18, OK2KGN			<i> -</i> -	33 669
19. OK2KRO	40/25		/	32 945
20. OK3KKV 21. OK1KOZ	F0/20			29 869
22. OK2KLS	52/36	218/100 205/98	11/6 4/4	26 678 25 754
23. OK1KIO	91/51	142/72	16/14	
24. OK2KFT	31/31		—/—	24 516
25. OK2KGZ	12/11		16/14	22 692
26. OKIKOB	95/58		2/2	21 246
27. OKIKRU	/		—/—	18 522
28, OK2KIW			1/1	16 023
29. OK2KBH	2/2	170/90	13/13	15 819
30. OK2KLF	45/35		10/0	13 087
31. OK3KII	-/-	112/65	12/9	7 604
	1	1	<u> </u>	

Vyhodnocení soutěže "OKK 1959"

Pokud nedojde k změnám pořadí, které by pří-padně nastaly při zjištění závad v hlášeních, prove-dených na základě namátkových kontrol QSL lístků, budou ve smyslu podminek, uveřejněných v 1. čísle Amatérskébo radia, ročník 1958, navržení k pro-hlášení vítězi a k odměnění zvláštními cenami

- v kategorii kolektivních stanic
 OK2KMB, SDR při okresním radioklubu v Moravských Budějovicích
 OK1KIY, SDR při okresním radioklubu v Přelouči

ysiedky				
b) jednotlivci (tř.)				-
1. OK3CAG(c)	106/55	487/164		114 848
2. OK2DO (b)		498/162	150/70	112 176
	121/59	461/161	106/52	$112\ 174$
	109/6I	443/149		102 331
	115/62	400/145		91 297
	125/66	271/122		82 562
	107/59	286/127		74 200
	130/67	211/101		73 571
9. OK3SK (b)	74/45	374/149		71 281
10. OK1DC (b)	1/2	403/160		64 534
11. OK3IR (b)	17/12	332/136		64 055
12. OK2NF (b)	5/5	409/153	—/ <u>·</u> —	62 652
13. OK3KI (c)	-/-	412/148	-/	60 976
14. OK1EG (c)		372/145	—/ <u>,</u> —	59 700
	107/58	313/131	/,	58 551
16. OK2PO (c)	81/43	286/126		56 834
17. OK3XK (b)	2/1	349/139		52 432
18. OK2LS (b)		283/122	35/22	50 801
		152/76	/	48 632 42 938
20. OKINK (b)	-/-	325/131	11/11	40 600
21. OK2LL (b)	101/60	304/133 181/103		40 115
22, OK1KP (b) 23, OK3TN (b)		284/127		36 203
		245/114	—/ -	35 370
		278/124		34 472
25. OK2TR (b) 26. OK1WK (b)	<u>-/-</u>	256/124	_/_	31 744
27. OK1OT (c)	_/ <u>_</u>	253/123	/	31 119
28, OK3EE (a)	142/72		/	30 672
29, OK3CAN(b)	—/	242/122	j	29 524
30. OK1FV (a)		134/86	21/21	28 348
31. OK1AAF (c)		239/95	_/_	27 505
32. OK1AAD (c)		76/47	— <i>′</i> /—	27 134
33. OK1AAQ (c)		238/108	_/_	25 704
34. OKIABP (b)		238/105	_/_	24 990
35. OK2LR (b)	5/4	228/107	<i>j-</i>	24 456
36. OK2BAZ (c)		131/77	—/—	22 963
37. OKIEV (b)			7	15 015
38. OK2BAT (c)	34/24	132/76	_j_	14 928
[(c)	11-T	-52 .5	,	
1				

3, OK3KIC, SDR při okresním radioklubu

- II. v kategorii jednotlivců 1. OK3CAG, s. Karol Poláček, Nové Mesto nad Váhom
- Váhom 2. OK2DO, s. Josef Majzlík, Tišnov 3. OKIVK, s. Boh. Petr, Praha-jih

Amaserske RAD () 147

Stanice	Počet QSL/počet okresů (6 bodů za 1 QSO)	Počet bodů
1. OK3UH	130/67	52 260
2. OK1GA	125/66	49 500
3. OK2BBB	107/59	37 878
4. OK1ZE	103/60	37 080
5. OK3CAG	106/55	34 980
6. OKIAAD	77/51	23 562
7. OK2PO	81/43	20 898
8. OK2BAZ	58/37	12 876
9. OK1EG	40/24	5 760
10. OK2BAT	34/24	4 896
II. OKIAAF	40/20	4 800

HI. v kategorii jednotlivců třídy C
1. OK3UH, s. Karol Nagy, Šala
2. OK1GA, s. Václav Homolka, Kutná Hora

3. OK2BBB, s. František Kućera, Kyjov

3. OK2BBB, 8. František Kućera, Kyjov
Kromě toho obdrží diplomy všechny stanice, které dosáhly nejměně 50 % bodů stanice vítězně, Podle toho budou odměněny diplomy tyto stanice: I. v kategorii kolektivních stanic: OK2KMB, OK1KIY, OK3KIC, OK1KBY
II. v kategorii jednotlivců: OK3ČAG, OK2DO, OK1VK, OK1QM, OK2LN, OK1GA, OK2BBB, OK3UH, OK3SK, OK1DC, OK3IR, OK2NF, OK3KI, OK1EG, OK2ZI.
III. v kategorii jednotlivců třídy C: OK3UH, OK1GA, OK2BBB, OK1ZE, OK3CAG.
V letošním roce byli jednotlivci poprvé poražení

OKIGA, OK2BBB, OK1ZE, OK3CAG.

V letošnim roce byli jednotlivci poprvé poraženi kolektivními stanicemi, a to se značnou převahou. Děkujeme všem účastníkům za účast v soutěží í za přípomínky, které nám zaslali. Názory v nich jsou tak různorodé, že jejich vyhodnocení jakož i posouzení celé soutěže přincseme v příštím čísle AR.

Za provozní odbor ÚSR

Karel Kaminek, OK1CX.

Zmčny v soutěžích od 15. února do 15. března 1960

"RP OK-DX KROUŽEK"

I. třída: V tomto období byl vystaven diplom č. 9 stanici OK2-22021, Jaroslavu Kadlčákovi z Březnice u Gottwaldova. Blahopřejeme k úspěšnému splnční opravdu obtížné posluchačské soutěže!

Diplom č. 72 byl vystaven stanici OK1-4009, Janu Bártovi z Podčbrad a č. 73 stanici OK2-3517, Raimundu Zaorálkovi z Ostravy.

III. třída:
Další diplomy obdrželi: č. 239 OK1-4752,
J. Blahna z Poděbrad, č. 240. OK1-5057, Rudolf Vrbacký z Trutnova a č. 241 OK1-2725, S. Schworm z Kolina.

"100 OK"

Było uděleno dalších 18 diplomů: č. 361 (50. diplom v OK.) OKIWR z Prahy, č. 362 OE5LD z Vídně, č. 363 DL7IM z Berlina, č. 364 SM5WI z Vastcras, č. 365 SP6TQ z Opolí, č. 366 SP6SU z Jaworu, č. 367 I1IZ z Livorna, č. 368 UF6FB z Tbilisi, č. 369 SP6KDH z Jaworu, č. 370 DJ4QU z Villingen. č. 371 SP2IH z Bydhoště, č. 372 (51.) OK3UI z Banské Bystrice, č. 373 (52.) OK2KMB z Mor. Budějovic, č. 374 DL1BL z Muhlheimu č. 375 (53.) OK1KFW z Prahy, č. 376 HA8WZ z Makó, č. 377 (54.) OK2UX z Brna a č. 378 (55.) OK1FV z Litomyšle.

"P-100 OK"
Diplom č. 139 (30. diplom v OK) dostal OK2-154,
Jaroslav Kvapil ze Strukova u Pňovic, č. 140
HA5-2828, Berzsenyi Lászlo a č. 141 HA5-2829, Głócz István, oba z Budapešti.

"ZMT"
Bylo přiděleno dalších 10 diplomů ZMT č. 403
až 412 v tomto pořadí: OK1LY z Hlinska, UA3KAV
z Moskvy, OK3UI z Banské Bystrice, UA9KJA
z Tjumenu, UI8AM z Taškentu, OK3EM z Trnavy, DL1XZ z Erlangen, SM5DX z Brandhagenu,
OK3KGH z Michalovců a OK1ABE z Hradce
Král.

Král. V uchszečích má OK2KGZ již 38 QSL, OK1QM 37, OK3UH a OK2KZG 36 QSL.

"P-ZMT"
Nové diplomy byly udčleny těmto stanicím: č. 371 OK1-3803 Frant. Habětinovi z Prahy Břevnova, č. 372 OK1-2647 Jiřímu Podlajovi z Přelouče a č. 373 Frant. Šedivému z Milovic.
V uchazečích si polepšily stanice OK1-65, která má již 25 QSL doma, OK1-5057 a OK1-3764 mají již po 24 listcích, OK2-4236 23 QSL.

"\$68" V tomto období bylo vydáno 28 diplomů CW a 13 diplomů fone (v závorce pásmo doplňovací

148 Amalérské RADIO 50

CW: č. 1229 OK1WR z Prahy (21), č. 1230 OK1FV z Litomyśle (14), č. 1231 OK2KRG z Gottwaldova (14), č. 1232 PJ2AL z Aruby (21), č. 1233 W31MV ze Spring City, Pa., č. 1234 ZP5LS z Asunciónu (14), č. 1235 SM5CNA z Ljungby (14, 21), č. 1236 W3FKE z Betchem, Pa. (14), č. 1237 OK1LD z Vrchlabi (14), č. 1238 W3JEJ z Orelandu, PA. (14), č. 1239 IIBOL z Livorna (14), č. 1240 UF6AE z Tbilisi (14), č. 1241 DL1XZ z Erlangen (14), č. 1242 K4PAE z Hialeaku, Fla., č. 1243 OK1TC z Trutnova (21), č. 1244 W8FUT z Elyrie, Ohio (14), č. 1245 V33FN z Bukurešti (14), č. 1246 UA6UO z Astracháně (14), č. 1247 DJ4SO z Kielu-Wik (14), č. 1248 OK1KEW z Prahy (14), č. 1249 HA5KAG z Budapešti (21), č. 1250 HA0KDA z Debrecinu (14), č. 1251 HA8KCU ze Szegedu (14), č. 1252 UA3FT z Moskvy (14, 21), č. 1253 G3LZF z Todmorden, Lanc., č. 1254 DJ1YB z Celle/Hannover, č. 1255 OK1KUR z Podébrad, č. 1256 CT1DJ z Lisabonu (3.5, 7, 14, 21 a 28).
Fone: č. 291 OK1AW z Městce Král. (28), č. 292 WIEJD z Oxfordu, Mass., č. 293 OQ5CJ z Kashy (28), č. 294 W8PYN z Detroitu, Mich., č. 295 K4EEH z Mobile, Ala., č. 296 DJ2PR z Trieru (21, 28), č. 297 K6DDO z Hollywoodu, Calif, č. 298 CT1HF z Lisabonu (14, 21), č. 299 G3LZF z Todmorden, Lanc., č. 300 CT1DU z Lisabonu (14, 21, 28), č. 301 CT1JG z Lisabonu (14, 21, 28), č. 301 CT1JG z Lisabonu (14, 21, 28) z Sol CK1VFX z Woodland Hills, Calif. (14) a č. 303 K6CWS ze San Francisca, Calif. (21).
Doplřiovaci známku dostali: OK1AW k č. 1 za

C. 302 KOUFAZ WOODHAID FIIIS, CAIII. (12) a C. 305 K6CWS ze San Francisca, Calif. (21). Dophňovací známku dostali: OK1AW k č. 1 za 7 MHz, OK2NN k č. 586 za 21 a 28 a DJ4CG k č. 1086 za 21 MHz. Všichni CW.

"OK KROUŽEK 1960" Stav k 15. březnu 1960

			SL/poč. okresů	
Stanice	1,75 MHz	3,5 MHz	7 MHz	Součet bodů
a) 1. OK1KAM 2. OK2KZC b) 1. OK1TJ 2. OK1WK 3. OK1OH 4. OK2BBB 5. OK3EA 6. OK3EE	6/5 30/25 57/35 8/8 28/18 23/21 -/- 48/35	152/87 89/60 157/90 136/84 94/64 86/53 93/62	25/22 5/5 27/23 1/1 5/5 /- 3/3 /-	14 964 7 665 21 978 11 619 7 603 7 456 5 793 5 040

Zprávy a zajímavosti z pásem i od krbu

Posluchačský žebříček opustili OK1-2455 se 79 a OK1-939 s 95 potvrzenými zeměmi. Dostali koncese pod značkami OK1AKS a OK1ADD. OK1ADD, s. St. Voženilek pracoval jako RP posluchač 5 let. Za tu dobu rozeslal na 3000 QSL lístků a odposlouchal 154 zemí. Má některé vzácné rarity, po kterých by toužilo srdce každého dx-mana, např. VR6, FK8, KX6, FY7 atd. I posluchačský WAZ odposlouchal a má potvrzeno 36 zón. Získal diplomy DUFI, 2 a 3, HAC, HEC, RADM 4, HAOH, RP OK-DX III. tř., P-ZMT, S6K a pro další má připraveny lístky. další má přípraveny listky.

Přejeme oběma pilným posluchačům, aby praco-

vali s neutuchajícím zájmem a stejně dobrými vý-sledky i jako vysílači.

Také se chytil drápkem - a uvázl nadosmrti

Totiž Valentin V. Antonov, UB5-5263, který svému přiteli Karlu Kuncovi do Znojma napsal; "O radio jsem se začal zajímat asi před dvanácti lety, ještě jako zák 4. třídy. Tehdy jsem si také postavil svůj prvý přijímač, jednoduchý 0-V-1. A tehdy jsem navždy onemocněl radioamatérskou loszáku. horečkou

noreckou.

Přešly roky. Zakončíl jsem školu a institut a nyní
už druhým rokem pracují v závodě. I když můj obor
má k radiotechnice daleko, vénují, stejně jako dříve,
všechen svůj volný čas činnosti mně tak milé –

Casem se mé amatérské zájmy rozšířily a diferencovaly: stále se zabývám konstrukcí přijímačů, magnetofonů a dalších přístrojů. Kromě toho mě však nadchly krátké vlny. Samostatně jsem se naučil telegrafní abecedu a v r. 1954 mi byla přidělena značka UB5-5263.

značka UB5-5263 V. 1934 ini dyla přidečna značka UB5-5263 Doma poslouchám výhradně na amatérských přijmačích. Nejprve to byl obyčejný 2-V-2 a čtyřelektronkový superhet, později je vystřídaly dokonalejší přijímače. Nyní pracují na 12elektronkovém přijímači, který jsem postavil na kostru radiokompasu "Bendix".

Odposlouchal isem amatéry z více než 160 zemí, ze 106 zemí mám QSL listky. V r. 1958 jsem přestal shromaždovat QSL listky živelně, soustředil jsem se na získání zahraničních diplomů. Dosud jsem ziskal P-100 OK. P-ZMT, RADM IV., HEC, HAC-JA, HAC-SM, S6K II., S50, OHHA-WAC, HAOH, HAOHE, DUF I. a čekám XAC I., SWL-DC-25, DUF II., RADM III., které jsou na cestě. Kromě toho jsem ziskal 14 diplomů za účast v různých závodech, pořádaných našími i zahraničními radiokulov.

Od podzimu r. 1959 jsem členem reprezentačního mužstva naší klubové stanice UBŠKAD a ve všech soutěžích nyn pracují jako jeden ze tři jejích ope-rátorů. Můžeme se pochlubit tím, že naše stanice

se stala v r. 1959 přeborníkem Sovětského svazu. Její značku znají stovky radioamatérů v celém světě. Při práci v éteru jsem se seznámil s amatéry ze všech koutů zeměkoule. S amatéry 16 zemí v 5 kontinentech si dopisují. Mám dopisy z Českoslosominentech si dopisul. Mam dopisy z Ceskoslo-venska, Polska, Bulharska, Anglie, USA, Argen-tiny, Finska, Jihoafrické unie atd. Píšeme si o svých uspěších, potižích, bliže se poznáváme. Už nejedna takto předaná rada nám přispěla k vyřešení někte-rého problemu. rého problému.

icho protemu. Zádného ze svých zahraničních přátel jsem nikdy neviděl, známe se jen z fotografií. Naše dopisy jsou však srdečné a právem je možno je nazvat "dopisy míru a přátelství".

Zádáme všechny amatéry vysílače i posluchače, zvláště pak ty, kteří mají z časté účastí v soutěžích a závodech zkušenosti, o pomoc. Provozni odbor sekce radia ÚV Svazarmu chce pro rok 1961 a dal zlepšít nejen podmínky pro krátkodobé závody všeho druhu, které pořádá, ale i pro OK-kroužek. Aby vaše připomínky mohly být jíž pro příští rok použity, pošlete je obratem, nejdéle však do konce tohoto měsíce.

U závodů jde především o připomínky k době závody, použivání pásem, předávání kódů, k odstupňování podle tříd A, B, C nebo by bylo vhodno stanovit horní mez pro používaný příkon? Jak jej pak kontrolovat? Dalším problémem zůstává netečnost některých stanic k zasílání QSL-lístků. Jak uto netečnost zjišťovat a jak přesvědčit stanice o amatérské slušnosti v zasílání lístků? Nebo—při hodnocení soutěží dosud závislých na QSL-lístích, jak je nahradit a čim? Výpisem z deníku a čestným prohlášením, nebo seznamy potvrzenými

při hodnocem soutezí dosud zavistých na QSLIlistích, jak je nahradit a čím? Výpisem z deníku
a čestným prohlášením, nebo seznamy potvrzenými
svědky?
Hledáme nové formy práce, nové způsoby soutěžení. Kritiky účastníků závodů a soutěží poukazují
většinou na závady a nedostatky v nich, málokterá
však současně radí, jak závady a nedostatky odstranit a jak podminky závodů a soutěží upravit.
Právě tak nepomohou rady, které vplývání z mistnich nebo osobních podmínek účastníků (např.
nezávodit na 160 m, poněvadž — nemám vysílač
nebo příjímač, stanovte jinak dobu závodu, jsem
v zaměstnání nebo – ruším televizi a tak pod.).
Podmínky, které chceme pro rok 1961 stanovit,
mají vycházet z přání většiny a tak mají být i připomínky uvažovány.
K záležitosti se ještě vrátíme, vynasnažíme se
dobré návrhy předložit druhým k posouzení, aby
vedení výcvíku a sportu radioamatérů bylo co nejtěčlnější.
Naše adresa je: Provozní odbor ÚSR, nebo spo-

Naše adresa je: Provozni odbor ÚSR, nebo spo-jovací oddělení ÚV Svazarmu, Praha Braník, Vlnitá 33, OK1CX

Závod "Den radia"

Ústřední radioklub Sovětského svazu stejně tak Ústřední radioklub Sovětského svazu stejně tak jako i v jiných letech uspořádá v květnu t. r. tradiční mezinárodní závod radioamatéřů "Den radia" a těší se, že závodu se zúčastní radioamatéři Československa v co největším počtu. Závod: Bude zahájen dne 7. května v 2100 GMT a potrvá do 8. května 2100 GMT. Aby byla stanice hodnocena, musí pracovat nepřetržitě nejméně 12 hodin.

nice hodnocena, musi pracovat nepřetržítě nej-méně 12 hodin.

Pásma: Závodí se v pásmech 28, 21, 14, 7 a 3,5 MHz pouze telegraficky.

Kód I Při spojení se vyměňuje šestimístná kontrolní skupina, složená z RST a pořadového čísla spo-jení jako je na příkl. 599001.

Výzva: CQM (Mir). Na každém pásmu je možno navázat s každou stanicí jen jedno spojení. Spoje-ni ze stejného QTH se nezapočítávají.

Bodování: Za každé uskutečného smojení se počítá

ni ze stejněho QTH se nezapočitavají.

Bodování: Za každé uskutečněné spojení se počítá

1 bod. Celkový počet dosažených bodů se násobí
počtem zemí, se kterými bylo navázáno spojení.
Ncúplně spojení ncbo špatně přijatá značka či
špatně zachycené pořadové číslo se nehodnotí.
Umístění: Bude určováno podle dosažených výsledků jednotlivců a dále podle dosažených výsledků kolektivních stanic, a to z každé země

zvlášť.

Hodnocení: Stanice se hodnotí v kategorii práce na všech pásmech a v kategorii práce na jednom

pásmu. Účastníci závodu, kteří navážou spojení se 100 různými sovětskými stanicemi, budou odměnění diplomem W 100-U. Za navázané spojení s radio-amatéry všech šesti světadilů obdrží diplom R6K. Díplomy budou odeslány na základě soutěžních

Dipiony budou odešiany na zamenadeniků.

Soutěžní deníky odešlete na adresu: Ústřední radioklub, Praha 15 – Braník, Vlnitá 33 nejpozději do 12. května 1960. Upozorňujeme, že rozhodující je datum poštovního razitka.

Připomínáme Ti zas: Poslals všechny

kvesle včas?

Rubriku vede Jiří Mrázek, OKIGM, mistr radioamatérského sportu

Předpověď podmínek na červen

Květen bývá zpravidla měsícem, kdy šíření krátkých vln nabývá pozvolna letního charakteru. To se neprojevuje jenom vzrůstající hladinou atmosférických poruch způsobených bouřkovými výboji, ale i nápadnou změnou denního průběhu kritického kmitočtu vrstvy

Sluneční kotouč se stále dříve a dříve v ranních hodinách vyhupuje nad rozkvetlou přírodou, zahalenou do rannich mlh a začíná ohřívat nejen zemský povrch, ale i vzduchové masy nízké atmosféry. V poledních hodinách intenzita slunečního záření je již tak velká, že stačí ohřát i část vysoké atmosféry --- ionosféru.

Proto nalézáme ve vrstvě F2 náznak poklesu hustoty ionizace, neboť ohřátím se ionosféra, představující přece jenom plyn, i když velmi zředěný a ionizovaný, počíná rozpinat. Tím nastává zředění a pokles koncentrace elektronů v objemové jednotce, spadající do doby těsně před polednem.

Později odpoledne, kdy sluneční kotouč se opět sklání k západnímu obzoru, nastává smrštění, vzrůst elektronové koncentrace a stoupnutí kritických kmitočtů vrstvy F2, které v tě době dosahují svého druhého denního maxima. Po západu Slunce podržuje ionosféra celkem dosti dlouho svoji hustotu a rekombinace jejích částic nastává mnohem pomaleji. než tomu bylo v zimních a prvních jarních měsicích. Nesmíme však zapomenout na okolnost, že po východu Slunce je opětný vzrůst ionizace pomalejší, než v zimním období.

Je tedy průběh kritických kmitočtů charakterizován pozvolným vzrůstem od východu Slunce až do dopoledních hodin, kdy se projeví slabé maximum. Následující mírný pokles trvá do odpoledních hodin, kdy nastoupí zřetelné maximum, tak typické pro tuto roční

Po jeho přechodu ve večerních hodinách nastává opětný pokles, který je tím mírnější, čím se nalézáme severněji. Víme dobře, že v severních oblastech neklesá Slunce příliš hluboko pod obzor a stačí udržet i po celou noc dostatečně velkou hustotu ionizace.

Podle chodu kritických kmitočtů vypadají i podmínky šíření, ovšem jen potud, pokud není ionosféra rušena náhlým vzplanutím slu-

Sledujeme-li např. vyšší pásma, seznáme, že pásmo ticha se po východu Slunce postupně zmenšuje a před západem Slunce může i na 14 MHz na chvíli vymizet vůbec, takže toto pásmo se na okamžik podobá téměř pásmu 80 metrů. Na pásmu 40 metrů se nebude pásmo ticha vyskytovat přes den prakticky vůbec a tak se toto pásmo může stát vhodnou náhradou osmdesátky, na které v té době budou signály velmi slabé vlivem zvýšeného útlumu.

Všeobecně však denní hodnoty kritických kmitočtů vrstvy F2 budou o něco nižší a tak zvláště na pásmu 28 MHz budeme pozorovat zhoršení podmínek proti těm, které jsme v zimě označovali za velmi dobré. Naopak se budou zpočátku sice nesměle, ale později stále důraznějí objevovat shortskipové podmínky, způsobené již občasným výskytem vrstvy Es. Samozřejmě, že četnost takových

výskytů nedosahuje v měsíci květnu zdaleka svého maxima, avšak tyto na první pohled yýjimky, nám budou jen potvrzovat staré pravidlo.

Počátkem měsíce můžeme očekávat neklidný stav ionosféry, který bude pravděpodobně variantou poruchy z prvních dnů měsíce dubna, kdy na Slunci byla pozorována rozsáhlá chromosférická erupce. Je možné, že následující otočka Slunce vyvolá podobné ievy. V té době se může stát, že budete pozorovat větší odchylky od naších grafů, které jako obvykle připojujeme.

Za tyto odchylky autor těchto řádků ovšem nebude odpověden, neboť jeho přání je i přáním čtenářů: Aby podmínky na všech pásmech byly tak příznivé, jak je to z hlediska vlastností vysoké atmosféry maximálně možné.

18 MHz 0 2 4 6 8 40 42 44 46 48 20 22 24

0/f	35 MHz OK EVROPA DX	
35 MHz OK E YROPA 7 MHz OK W2 KH6 ZS LU VK-7L 14 MHz UA3 UA4 W2 KH6 ZS LU VK-7L 14 MHz UA3 UA4 W2 KH6 ZS LU VK-7L 21 MHz UA3 UA4 W2 KH6 ZS LU VK-ZL 21 MHz UA3 UA4 W2 VX-ZL 22 KH6 ZS LU VX-ZL ZS LU VX-ZL VX-ZL ZS LU VX-ZL VX-ZL ZS LU VX-ZL VX-ZL ZS LU VX-ZL ZX	35 MHz OK EVROPA DX	
35 MHz OK EVROPA DX 7 MHz OK UA3 UA4 W2 KH6 ZS LU VK-7L 44 MHz UA3 UA4 W2 KH6 W2 LU VK-ZL VK-ZL ZS LU VK-ZL	3.5 MHz OK EYROPA DX	
OK	EVROPA DX	
OK	EVROPA DX	
OK	EVROPA DX	
EVROPA	EYROPA DX	
7 MHz OK VA 3 UA 4 W2 KH6 ZS LU VK-7L VY-7L 21 MHz UA3 UA 4 W2 KH6 ZS LU VK-7L 22 MHz VX-7L VX	DX	
7 MHz OK UA 3 UA 4 W2 KH 6 ZS LU VK-7L VA MHz UA3 UA4 W2 KH 6 ZS LU VK-ZL VX-ZL VX		
OK UA 3 UA 4 UB 2 UB 3 UB 4 UB	7 401	
OK UA 3 UA 4 UB 2 UB 3 UB 4 UB	5 AJ1 /	
OK UA 3 UA 4 UB 2 UB 3 UB 4 UB	2 MH7	
UA 3		
WA		
W2		
W2	UA 4	
KH6	1W 2	
ZS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
LU	770	
VK-7L 14 MHz UA3 WA2 KH6 VK-ZL VK-ZL UHA3 UU U U U U U U U U U U U U U U U U U	<u> </u>	1 1 1
VK-7L 14 MHz UA3 WA2 KH6 VK-ZL VK-ZL UHA3 UU U U U U U U U U U U U U U U U U U	LU	
14. MHz UA3 UA4 W 2 KH6 ZS ULU VK-ZL UA3 UA # UA3 UA # UA 3 UA # UA 2 KH6 ZS UA W 2 ZS UA W 2 W 2 KH6 ZS UA W 2 KH6 ZS UA W 2 KH6 ZS UA W 2 KH8 ZS UA W 2 KH8 ZS UA W 2 ZS UA3 W 2 ZS UA3 W 2 ZS	VK-71	
UA 3		
UA 3	46 MU-	
UA		
W 2		~~~~
W 2	UA ¢	!
KH 6	W 2	
ZS	KUR	
LÜ VK-ZI	140	-7
VK-ZL		
24 MHz UA 3 UA \$\psi\$ WY 2 WK-7L UA 3 WA 2 UA 4 WY-7L UA 3 WY 2 ZS UA 5 UA 3 WY 2 ZS	LU	
24 MHz UA 3 UA \$\psi\$ WY 2 WK-7L UA 3 WA 2 UA 4 WY-7L UA 3 WY 2 ZS UA 5 UA 3 WY 2 ZS	VK-71	-3
UA 3 UA 6 W 2 KH 6 ZS LU VK-ZL UA 3 W 2 ZS MHz ZS Z		
UA 3 UA 6 W 2 KH 6 ZS LU VK-ZL UA 3 W 2 ZS MHz ZS Z	DA MIL	
UA		
W 2 KHB ZS LU VK-7L VA3 W 2 ZS UA3 ZS UA3 ZS UA3 ZS UA3 ZS	[UA 3	
W 2 KHB ZS LU VK-7L VA3 W 2 ZS UA3 ZS UA3 ZS UA3 ZS UA3 ZS	UA 6	
ZS	W 2	
ZS LU VY-7ZL		-1
28 MHz W2 ZS	1400	
28 MHz UA.3 W.2 ZS	25	
28 MHz UA.3 W.2 ZS	LU	
28 MHz UA 3 W 2 ZS	VK-71	
W2		
W2	DC 1411	
<u>W2</u> ZS	28 MHZ	
<u>W2</u> ZS	LUA3	
ZS	W2	
149		
	168-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
VK-2L +	LU	
	VK • ZL	

Podminky: ~~~

Inž. Jaroslav Zuzánek a Jiří Deutsch:

velmi dobré nebo providelné dobré nebo méně providelné

špalné nebo nepravidelné

ČESKOSLOVENSKÉ MINIATURNÍ ELEKTRONKY

Druhý díl: "Novalové elektronky pro rozhla-sové příjímače"

PŘEČTEME SI Státní nakladatelství technické líteratury, Praha 1960. Formát B5, 220 stran, 119 obrázků, obrázků, obrázků, výtisk v deskách nakladatelství

ciagramu a 15 tabulek. Vázaný výtisk v deskách z umělé hmoty, cena 21, 80 Kčs. Kniha je pokračováním katalogu "Českosloven-ské miniaturní elektronky" – prvý díl "Heptalové elektronky", vydaného SNTL Praha, v dubnu 1959 (viz AR 6/1959 str. 175 a SO 6/1959 str. 141). Obě knihy na sebe navazují celkovým upořádáním a grafickou úpravou.

Autoři nyní rozdělilí novalové elektronky na dvě skupiny: pro rozhlasové přijímače a pro televizory. V druhém dílu, který se nám právě dostává do ru-kou, jsou data novalových elektronek, používaných

Co máš připraveno pro letošní celostátní výstavu?

v rozhlasových přijímačích. Třetí díl, jednající o terozmasovych primnacien. I reti all, jednající o televizních elektronkách, se podle zpráv SNTL připravuje. Stávající rozdělení je logické, protože lze pokládat novalové elektronky za konečné konstrukční i ekonomické řešení před právě se rodicí érou polovodičových pretřá.

ní i ekonomické resem před přavé se řodicí eron polovodličových prvků.

Kniha je rozdělena na pět částí. Po krátké před-mluvě jsou vysvětleny znaky elektrických veličin elektronek. Vlastní úvod je rovněž krátký a je v něm shrnut obsah knihy. Druhá kapitola začíná vývo-jovým stadiem a konstrukcí novalových elektronek. Jsou vysvětlena všechna kriteria, vztahující se k je-jich zavedení a rozšíření. Velmi vhodně jsou provedena srovnání se staršími elektronkami ve formě tabulek, snímků a grafů. Dále se mluví o technologii, o výrobě polotovarů apod. Vhodná a historicky zajímavá je zmínka o světové produkci a o světových výrobcích elektronek. Ve třetí části jsou moderní rozhlasové přijímače

pro AM a FM posuzovány z hlediska elektronek.

Jsou vysvětleny důvody, které vedly k zavedení elektronek dosavadně neběžných nebo vzácných, připadně sdružených systémů. Výklad je doplněn přiléhavými snímky přijímačů a jiných výrobků.

Nejčastějí vyhledávaná bude čtvrtá část knihy, ve

Nejcasteji vyniecavana bude ctvrta cast kniny, ve které jsou souhrmé údaje a technická data. Začínají nejvýhodnější konstrukcí, trojnásobnou elektronkou EABC80, resp. UABC80. Dále jsou publikovány typy: E/UBF89, ECC83, ECC84, E/UCC85, E/UCH81, E/UCL82, EF86, EL84, EL86, EM80, EM81, EZ80 a EZ81

EM81, EZ80 a EZ81. Mezi tzv. různé elektronky je zařazená strmá vf mezi tzv. ruzne elektronky je zarazena satna vi pentoda s dzkyni tolerancemi E180F (která je v zahraničí včleněna do tzv. "červené" řady a označována "SQ", SPECIAL QUALITY, LONG LIFE TUBE, nebo Zuverlássige Röhre), jako prvá čs. elektronka s dlouhou životností. Dále jsou mezi různé elektronky zařazeny: oktalová pozoruhodná vý-konná pentoda EL34, zastaralá novelová dvojitá trioda 6CC41 a exponenciální svazková tetroda, novalová 6L41.

valova 01.41.

Tyto údaje, asi na 150 stranách, jsou podstatnou částí knihy. U každé elektronky je identifikační popis, dále nejvhodnější použítí, obdobné zahraniční typy a elektrické vlastnosti. Samoziejmě ještě snímek systému nebo celé elektronky, typické zapojení v obvodu, někde řez systémem, grafy, chateristiky a tabulky. Charakteristiky jsou kresleny jednotně a vzorně.

Seznam doporučené literatury obsahuje odvolání na 83 prameny. V závěru knihy, tj. v pátě kapitole, je celkem osm tabulek, a to: srovnávací, dále tabulka elektronek které budou uveřejněny ve třetím svazku, data některých zahraničních miniaturních elektro-nek a konečně jestě data některých starších a sta-rých příjimacích elektronek. Pokud byly shledány nějaké závady, nejsou pod-

Pokud byly shledány nějaké závady, nejsou podstatné a nesnižují celkovou úroveň kníhy. Jen zapojení patice u elektronky ELS4 na str. 144 se mi nelibi, protože není uvedeno přesně. Koliky 6 a 8 nejsou vnítřními spojí. Rovněž se autoří nezmiňují o dvojím vyvedení řídicí mřižky, podobně jako u starší 6L31. Je sice pravda, že žádný výrobce na tuto skutečnost neupozorňuje, ale zmínka by zde mohla být. Autor referátu má za to, že dvojí vyvedení řídicí mřižky má svůj význam také proto, že to je přávě na prvém a druhém kolíku. O tomto jevu bylo podrobněji referováno ve ST 8/1959 str. 301 a dále ve ST 1/1960 str. 24, kde "díky" šotku jsou obrázky patic nesprávně.

date ve S 1 1/900 str. 24, kde "drky" sotki jsou obrázky patic nesprávné.

Postrádám informace o elektronkách EF89, EM84, UL84, UM84 a UY82, které jednak náleží do výrobního programu n. p. TESLA a jednak mezi "rozhlasové elektronky". Mimochodem, novalová řada "U" je velmí žádoucí. Dále chybí ve srovnávací rada "U" je velmi zadouci, Daie chybi ve stoviavati tabulce I na str. 212 v prvém sloupci řada "U". V tabulce II na str. 212 chybi data typů ECF82, EL81, EL83 a EY83, zatím co jejich "televizní" varianty zde jsou. Ze zahraničních elektronek nejsou uvedeny ždíně.

jen několík zdařilých snímků vyrobků RFT, SSSR a TELEFUNKEN.

Jen tekona zaraty.

a TELEFUNKEN.

Publikace je důležitou pomůckou těm, kteří se zabývají elektronkami. Je dobře udělána a zaplňuje dlouholetou mezeru v řadě informatívní literatury o elektronkách. Je velmi důležité si uvědomit, že není oficiálním katalogem n. p. TESLA (jak také říká o prvém dílu inž. V. Kratochvil ve SO 6/1959).

Tim spíše zde vyvstává záslužný čin autorů, kteří díky vlastní iniciativě předkládají u nás vůbec porvé ucelený knižní seriál o čs. miniaturních elektronkách.

TECHNICKÉ ZPRÁVY O NOVÝCH ELEKTRONKÁCH.

Vydavatel TESLA - Rožnov, národní podnik oddělení dokumentace a propagace Rožnov pod Radhoštěm.

TESLA - Rožnov dodržela slovo. Nejen že vydala slibený malý katalog elektronek a polovodičů 1959, ale jsou zde i prvé vlaštovky: "Technické zprávy o nových elektronkách". Technická inforzpravy o nových elektronkách". Technická i mační služba se sídlem v Praze dodává tyto z macni služba se sicilem v Praze dodava tyto zpravy zájemcům o nové elektronky. Jako praví je technická zpráva "E-1" o elektronce EL86. Je to výkonná strmá novalová pentoda pro zesilovač výkonu bez výstupního transformátoru. Na sedmí stránkách křidového papiru formátu A5 jsou soustředěny základní technické informace a elektrické údaje včetně snímků, nákresů a zapojení. Tři typická pro-

Amasérské DAD 0 149

VKVĚTNU

- ... 2. a 16. se koná jarní část CW ligy od 2100 do 2200 SEČ.
- ... 7.—8. bude uspořádán sovětský závod ke Dni radia. Podrobnosti v tomto sešitě. Současně v téže době probíhá telefonní část PACC Contestu.
- ... 7.—8. probíhá II. VKV subregionální soutěž. Deníky je nutno odeslat ÚRK ČSR do týdne.
- ... do 12. V. je nutno odeslat soutěžní deníky ze sovětského závodu ke Dni radia.
- ... 15. proběhne poslední jarní část Fone ligy od 0900 do 1000 SEČ.
- ... do 31. května bude vyhodnocen Závod krajských družstev radia. Výsledky obdrží každý účastník závodu a budou oznámeny ve vysílání OKICRA.
- během měsíce zašlete do ÚRK ČSR Praha-Bráník, Vlnitá 33, přihlášku kóty na PD 1960 a pro EVHFC 1960.
- ... je nutno nejméně jednou za 60 dní obnovovat hlášení do DX žebříčku, i když nedojde ke změně!

vozní zapojení, čtyři charakteristiky a jiné podrob-nější údaje dávají dobrý přehled jinak neinformovanému zájemci.

Vzhledově i obsahově je velmi podobná zpráva "E-2" o koncové novalové strme pentodě PL84-UL84. (Mimochodem: novalová řada 100mA je potřebná jako sůl.)

Jen se nám nelibí poznámka na konci brožurky; "Tato technická zpráva obsahuje pouze základní technické informace o elektrických údajích a použití nových typů elektronek. Podrobná data včetně charakteristických průběhů jsou uvedena v 2. svazku katalogu elektronek TESLA." Podle názoru referenta by se neměli rozlišovat zájemci o elektronky

a informacemi v těchto zprávách by se nemčlo šetřit. Vždyť především dobrá informace je předpokladem k úspěchu. Jsou známy zahraniční katalogy, zasílané za režijní poplatek. Jisté by to šlo i u nás. Na příklad firma Philips ve svém objemném "Philips electron tube manual 1959" předkládá vžechov zakledstvana po předkládá předkladá se předkladá "Philips electron tube manual 1959" předkládá všechny své elektronky a není zvláštnosti typ s více než 10 (až 14) nakreslenými charakteristikamí. Pokud bylo možno zjistit u studující mládeže, je velký zájem o malý katalog TESLA 1959. O podobném zájmu by jistě podala podrobnou zprávu informacní služba n. p. TESLA – Rožnov. A tak si musime přát za velkou amatérskou rodinu, aby technické informace o elektronkách byly hojně poskytovány a aby se jejich úroveň stále zvyšovala. V. M. Bolšov a J. M. Bolšov: PROSTYJE KONSTRUKCH NAČINAJUŠČEGO RADIO-LJUBITĒLJA. (Jednoduché konstrukce začinajicího radioamatéra.) 72 str., 42 obr., 13×20 cm, Gosenergoizdat, Moskva 1959, Masovaja radiobibliotéka, svazek 346, brož. 1 rub. 60 kop.

V publikaci jsou popsány konstrukce amatérských radiových přijímačů a nizkofrekvenčních zesilovačů, radžených za střídavé stře Konstrukce mají iedno-

radnových prijnaču a razkorieveneních zesnovacu, napájených ze střídavé sitě. Konstrukce mají jedno-duchá zapojení, malý počet součástek a jsou vhodné pro začínající amatéry. Vysvětlena je činnost základ-ních prvků konstrukci a jsou udány pokyny pro je-jich voľbu, zhotovení a pro sladění přijimače. Kniha je určena pro začínající radioamatéry.

G. V. Družinin: RELE VREMENI. (Časová

G. V. Družinin: RELE VREMENI. (Časová relé.) 80 str., 34 obr., 13×20 cm, Gosenergoizdat, Moskva 1959, Bibliotěka po avtomatikě, svazek 9, brož. 2 rub. 40 kop.
V knize jsou vysvětleny principy činnosti časových relé různých typů. Popsána jsou časová relé s elektrickým zpožděním, s magnetickým tlumením, relé s magnetickými zesilovači, relé s časovými mechanizmy a motorová relé, dvojkovová a dílatační relé, termistorová relé a relé s elektrochemickým zpožděním. Kniha je určena pro širší okruh techniků.

F. M. Juferov: ELEKTRIČESKIJE DVIGATELI AVTOMATIČESKICH USTROJSTV. (Elektrické motorky automatických zařízení.) 224 str., 13×20 cm, Gosenergoizdat, Moskva 1959, Bibliotěka po avtomatikě, svazek 8, váz. 7 rub.

Konstrukce, princip činnosti, zvláštnosti a charakteristiky elektrických motorků, používaných v automatice, telemechanice a počítací technice. Kniha je určena pro širší okruh techniků. Kr

A. G. Sobolevskij: IZMĚRENIJA V PRAKTIKE RADIOLJUBITELJA. (Měření v radioamatérově praxi.) 112 str., 57 obr., 13×20 cm,
Gosenergoizdat, Moskva 1959, Masovaja radiobibliotéka, svazek 340, brož. 3 rub.
V knize, určené pro širší okruh radioamatérů, je
vysvětleno měření, seřizování a sladování rozhlasových a televizních měřímažů nězkeřakvanáních

vých a televizních přijímačů, nízkofrekvenčních zesilovačů a nahrávačů.

G. A. Bortnovskij: PEČATNYJE SCHEMY V RADIOLJUBITELSKICH KONSTRUKCI-JACH. 40 str., 44 obr., 20 × 26 cm, Gosenergoizdat, Moskva 1959, Masovaja radiobibliotěka, svazek 345, brož. i pr. 75 km². brož. i rub. 75 kop. Průmyslová technika a technologie plošných spo-

jů a obvodů. Konstrukce, technologie possných spo-jů a obvodů. Konstrukce, technologie a montáž plošných spojů a obvodů v amatérských podmín-kách. Praktické příklady amatérských konstrukcí s plošnými obvody: miniaturní reflexní přijímač a přiklady použití v televiznich přijímačich. Publikace je určena pro konstruktéry – radioamatéry.

Malý oznamovatel

První tučný řádek Kčs 10,20, další Kčs 5,10. Na inzeráty s oznámením jednotlivé koupě, prodeje nebo výměny 20% sleva. Příslušnou částku poukažte na účet č. 01-006-44.465

Vydavatelství časopisů MNO — inzerce, Praha II., Vladislavova 26. Uzávěrka vždy 6 týdnů před uve-řejněním, tj. 20. v měsíci. Neopomeňte uvést prodejni cenu.

Benz. agregát 16 V =, 400 W, přenos. nepouž. (1900). M. Sklenář, Ostrava I., Gregorova 11.

Zdroj stabil. stejnosměrného proudu 70, 140, 210, 280 V/80 mA pro AZ12 a STV 280/80 s vývody stř. napětí 6,3, 12,6, 19 a 25 V/1,2 A v occi. přenosné skřiňce 220/280/360 mm bez elektronek, elyty bez záruky (200). Budicí cívky ze smalt. drátu 0,2 mm Cu nepoužité 0,5 kg (15). M. Macounová, Praha II., Na pořičním právu 4.

Sdělovací technika 1953-1959 (à 32). Jar. Dráb, Olomouc, Komenského 29,

Telefunken-Super 542 BK, 4 clektr. bat. přijimač nepoužívaný, s ak. Nife 1,2 V (400). K. Honsa, Bohdaneč 86 u Pardubic.

Sovět. magnet. adapt. s předzes. a páskem (850). Tesla Minor, dobře hrající (400). K. Hron, Vestec 31 p. Jesenice u Prahy.

V-meter 0—520 V s bočníkom tov, výr. (400), mikro Signál (200), el. $1\times$ DF21, $1\times$ DC21 (à 15). M. Havlíková, Trenčín, kpt. Nálepku 1691.

150 amaserské RADIO 500

Něk. ks MSTV 140/60Z, RE134, RE034, EF22 (à 15), otoč. kond. 4×500 pF (50), 4×40 pF (35), 2×200 pF (25), 10 nF 3/9 kV (à 6), měř. 2 mA (100) 5×400 pA (200), objimky RV12P2000 (à 3), Fokaflex zblíž. šoš. a půzdro (120), vše bezv. M. Bušík, Malacky 6.

Walacky 6.

Voltmetr 0—2 V Ø 10 cm (120), ak. Nife 2,4 V (60), reprod. Ø 16 (28), Ø 20 (34), Ø 25 (30), buzený Ø 16 (20), závit. a očka od M1—10 s vrtáky a vratidly, komplet v dřev. pouzdru (420), W 3/16 až 1/2″ rovněž komplet (420), gramo ve skřiní 78 ot (180), drát 0,4 2 × B Cu 1 kg (45), komplet, dily na el. sporák (1300), trafoplechy ze sit. transf. 60 mA (10), kondenzátor 2 µF 1500—3000 V (8), sit. tlumivka 90 mA (13), kovář. ventilátor s pošk. motorkem (100), trafo nf (15), výst. trafo (30), trafoplechy průřez jádra 64 cm³ se sek. cívkou (80), zářívk. těleso se start. a tlumivkou (40), smalt. drát od 0,08—1 mm. V. Veselý, Fotografia, Ždánice u Kyjova.

Výprodej levných volt- a ampérmetrů Ø 13 až 20 cm (a Kčs 23). Výprodejni materiál pro radio-amatéry: kryty na mezifrekvence kulaté (0,50), čtyřhranné (1,—), keramické svorkovnice (1,10), lineární potenciometry 50 kú (2,95), všechny typy elektronek II. za poloviční ceny, objimky vojenských elektronek I.V, LS, RG, RD (à 1,62), transformátory, kondenzýtory, krytichě sectioně. formátory, kondenzátory, vypinače, přepňače, keram izolátory, odpory, sklenčné radiostupnice pro všechny starší přijímače apod. Pražský obchod potřebami pro domácnost, prodejna radiotechn. zboží, Praha II., Jindřišská 12, tel. 226 276, 227 409,

 $2\times~1T4T,~2\times~1F34$ (à 10), 1R5T, 1H34, 1S4T (à 15). J. Dokoupil, Valchov 12 p. Žďárná.

Elektronky, fréz. lad. kond., keram. trímry, trafa a jiné v ceně 1400 (za 700) i jednoti. J. Bokr, Malinovského 13, Znojmo.

KOUPĚ

Dobrý komunik. RX 3,5-14 MHz. J. Holeva,

RA roč. 1947, 48, 49, depréz, relè F, obraz. pro osciloskop, selsyn přij. + vysil. Jar. Chýle, V. D. O., Solenice 9.

Zán. elektr. RV2P800. O. Klíč, Drahany, Prostějov Radiový konstruktér roč. 1956, kompl. B. Havliš, Šluknov, Karlova 864.

E10aK, MWeC pôv. stav. J. Garažia, SU 5/M N. Mesto n. Váh.

Schéma Emila a el. RV12P4000. Nesporý F., Kunžak 131 o. J. Hradec.

E10aK jen bezvadný, J. Bokr, Malinovského 13,

Emil pův. v chodu, zamont, záz. osc. K. Radoš, Petrovice 21 u Rakovníka.

VÝMĚNA

Foto-zväčšovák zn. Magnifax za oscilátor nebo Avomet nebo kompl. stavebnicu Alfa. Homola M., Sidl. 1224-C/5, Prievidza.

Za dobrý Rx 160—10m dám moto zn. Ogar 250, za Torn dám zesil. 25 W. J. Malák, Děčínská 60, Č. Kamenice.

Za MwEc dám Emil, Cézar. EL10 a 813, prip. za EZ6 dám EL10. S. Vážecký, Tr. sov. arm. 191, Košice.

2 ks OC16 za malý bateriový přijímač. L. Dostál, Polička, Havlíčkova 308.

2 motor. magnetofon bez skřiňky za dobrý tran-zist. přij. P. Brabenec, Jevíčko.

Servis oscilátor Telefunken zánovny za fotokomoru nejr. Super Ikontu $6\times 6,\ 6\times 9$ nebo prodám. Ing. V. Pék, Nové Mesto n. V., Marxova 1138.

Výzkumný ústav přijme pracovníka pro dokumentaci a vydávání pravidelných technických informačních zpráv. Podmínka: povšechné znalosti z oboru radiotechniky, znalost cizích jazyků a psaní na stroji. Zn.: Praha 6—97 (adm. t. 1).

přepínač nepotřebujeme. vlnné. Pro náš improvizovaný přijímač však Po provedení popsaných úprav a zapojeni

ností. Jak se s tím vypořádat? Jedině tím což je opět způsobováno malou selektiva tudíž i nejsilněji zachycovaného vysílače ších stanic jsou rušeny pořadem místního od své vlnové délky. To proto, že náš přizjistíme, že zachycená stanice není slyšitelná poloze ladicího kondenzátoru se ozve z rese laděním zachytit nějakou stanici. V určité přijímač připraven k provozu a pokusíme malé chvilce, až se nažhaví elektronky, je pneme tento nejjednodušší přijímač. Po k prvním zkouškám. Připojíme anténu a zadiodou do našeho zesilovače přistoupíme kmitavého obvodu s detekční germaniovou počtu stanic jiných. S kladnou zpětnou vazumožňuje lépe vybrat jednu stanici z většího že použijeme zpětnou vazbu, která zvyšuje vybíravý. Dále pak zjistíme, že pořady slabně dosti značné vzdálenosti vpravo a vlevo chách to bude většinou pořad vysílače Praproduktoru pořad místního vysílače -- ν Ce· řízení zpětné vazby u audionu. na obr. 30–2 jsou zachyceny různé způsoby bou jsme se již seznámili v kapitolce 30, kde velice citlivost přijímače, a co hlavního, jen na jednom místě stupnice, ale i v poměrímač není dostatečně selektivní – nebol po případě i vysilače další. Při tom

vazby pro zvětšení citlivosti přijímače, je na obr. 32–8. Zde však se již nepoužívá pro Schéma zapojení, používajícího zpětné

77-0-1X 25 H 5-40k

vodu, vybaveného kladnou zpětnou vazbou, Obr. 32-8: Zapojení kmitavého laděného obriditelnou potenciometrem.

ce 28, na obr. 28-5 detekci samostatné diody, ale detekce mříž kové – tak, jak již bylo vysvětleno v kapitol-

denzátorem C_s k výkonovému zesilovači. opačné fáze. Toto zesílené detekované nf na mřížce. Je však několikanásobně větší a napětí, který sleduje přesně kolisání napětí vého proudu napěťová ztráta - tzv. spád covním odporu R₄ vzniká průtokem anododulace změny anodového proudu. Na prazachyceného signálu, vyvolat v rytmu mozměnami svého napětí anodový proud, musi signál detekován. Protože mřížka elektronspojena se zemí odporem R₁₇. Na mřížce je stává signál na mřížku elektronky, která je kondenzátorem C21 rezonanční kmitavý obmače z antény či její náhražky po projití odvf části přijímače. Signál se dostává do přijínapětí se pak dále přivádí vazebním kontedy kolisající ví napěti, úměrné intenzite na mřížkovou cívku, která tvoří s ladicím cívky. Odtud induktivní vazbou je přenesen dělovacím kondenzátorem C_{20} do anténní žádanou stanici. Přes kondenzátor C_{22} se dovod. Otočným kondenzátorem C_{21} si ladime Projděme si tedy několika slovy zapojení má schopnost řídit poměrně malými

rem C_{10} je odebíráno zesílené vf napětí směrné a nf napětí, ale i zbytky vysokostává toto napětí do mřížkové cívky a tam nec je uzemněn. Induktivní vazbou se dodo zpětnovazebního vinutí, jehož jeden koz anody detekční elektronky a příváděno skyt nežádaných oscilací koncové elektronzvukového spektra a mnohdy neochotné elektronky a zem (na obr. značeno čárkozujeme je kondenzátorem o kapacitě cca nevitané oscilace koncového stupně, ome-Jinými slovy řečeno, nahrazuje ztráty v obna kmitavém obvodu zvyšuje napěťovou zavedení kladné zpětné vazby. Kondenzátome jen tehdy, je-li to nezbytně nutné (vyzátor způsobuje odřezávání vysokých tónů vaně). Na druhé straně však tento konden-100 pF, který vkládáme mezi anodu detekčni někdy příliš velké a způsobuje mnohdy Protože však toto zesílené ví napětí je frekvenčního napětí nosné. Také toto nauroveň právě příjímaného signálu – neboli ky). Jinak používame tohoto ví napetí pro nasazování zpětné vazby. Proto jej používápětí vstoupl do elektronky a je zesíleno. Při detekci je na mřížce nejen stejno-

vodu a tím zvětšuje citlivost přijímače. Víme však, že napětí na anodě elektronky

110

Obr. 32-9: Schéma razložení jednotlivých spojů, doplněné zapojením ladicího obvodu (srovnej s obr. 20-4!).

5/60

nahrazovat ztráty kmitavého obvodu. To novazební vinutí cívky tvoří vlastně vf me pouhým prohozením vývodů jednoho zpětnovazební cívky buďe vždy zavedena neboli má opačnou fázi. Proto též je nutné, chceme-li dosáhnout kladné zpětné vazby, abychom na mřížkovou cívku přiváděli navšak není nijaký problém. Mřížkové a zpěttransformátor, kde otočení fáze dosáhnevinutí. Z toho vyplývá, že po připojení do mřížkového obvodu zpětná vazba, Otom, zda je kladná či záporná, ukáže hlasitost přív druhém pak klesne. (Je to obdoba zavádění záporné zpětné vazby z výstupního ně našeho zesilovače, což bylo popsáno v kapitolce 20. Tentokrát však jde o vazbu kladnou, která zesílení zvětšuje, zatím co pětí ve stejné fázi, má-li se přičítat, a tak stroje, která v prvém případě stoupne, transformátoru do katody prvního ní stupproti napětí na její mřížce je otočeno o 180°

vinutí mezi sebou. Řízení zpětné vazby se stačí jen prohodit vývody zpětnovazebního provádí různými způsoby, s nimíž jsme se seznámili na obr. 30-2. Nejčastěji se používá toru. Zvětšováním jeho kapacity prochází zpětnovazební cívkou větší vf proud, a tím vodu byly vyrovnány. Přívedeme-li více energie než je přípustno, elektronka se lemných hvízdů při ladění. Zpětnou vazbu nastavujeme právě tak, aby ještě nedošlo k těmto hvizdům (oscilacím), neboť v tomto proměnného zpětnovazebního kondenzározkmitá, což lehko poznáme podle nepří-Nebude-li tedy zpětná vazba nasazovat, se na kmitavém obvodu indukuje i větší napětí. Kondenzátorem se tedy nastavuje právě takový účinek, aby ztráty kmitavého ob· bodě je přijímač nejcitlivější

V našem případě jsme pro řízení zpětné vazby nepoužili proměnného kondenzátoru, ale potenciometru, připojeného paralelně k zpětnovazební cívce. Otáčením běžce potenciometru utlumujeme (zkratujeme) zpětnovazební cívku, a tak řídíme stupeň zpětné vazby, zatím co zpětnovazební kondenžátor je pevný o stálé hodnotě. Tento způsob řízení zpětné vazby je zvláště výhodný na rozsahu krátkých vin, kde je jinak třeba používat proměnného kondenzátoru o malé

počáteční kapacitě, což však u většiny výrobků nebývá vždy splněno. A nyní několik slov o nově použitých součástkách detekčního obvodu. Jsou to oddělovací kondenátor C₂₂ a mřížkový odpor Igeme-li malý C₂₂ a mřížkový ouživjeme-li malý C₂₂ a mříž R₁₇, je účinnost detekce mala. Pří vekých hodnotách těchto dvou členů potlačujeme výšky. Jako další kombinace může být použito malého C₂₃ a velkého R₁₇ (R₁₇ nesmí překročit hodnotu udanou výrobcem elektronky), což je výhodné pro příjem na krátkých vlnách. Naproti tomu, použijeme-li velkého C₂₃ a malého R₁₇, bude ladicí obvod tlumen; rezonanční křivka by v tomto případě byla plochá na úkor selektivity.

Z předchozího tedy vidíme, že můžeme používat různých hodnot pro kondenzátor C_{2a} a odpor R_{17} ; udané hodnoty ve schématu na obr. 32–8 jsou hodnotami obvyklými.

která sice zmenšuje zesílení, avšak zlepšuje kmitočtovou charakteristiku zesilovače Jako

v minulém případě šlo o vazbu zápornou,

je pevný kondenzátor o kapacitě 100 pF. Použijeme-li menší hodnoty, nasazuje zpětná vazba dříve, po případě vůbec nevysadí. Zvětšením hodnoty kondenzátoru možna jeho velikostí jednou pro vždy sepitelně to však není jediný parametr, který určuje stupeň vazby. Pro úplnost musíme dodat, že "ochota" k nasazovaní zpětné vazby je ještě dána počtem závitů zpětnosobem vinutí a velikostí anodového napětí přestane zpětná vazba nasazovat. Je tedy řídit velikost zpětnovazebního napětí tak, aby zpětná vazba spolehlivě nasazovala a vysazovala po celém vlnovém rozsahu. Pochovazebního vinutí a jejich vzdáleností, způelektronky (při použití pentody i velikostí napětí stínicí mřížky) apod.

A nakonec - jako obvykle - uvedeme výčet použítých součástí.

Odpory: $R_{17} - 1 M\Omega/0,25 W$

Kondenzátory: $C_{19} = 300 \text{ pF}/250 \text{ V}$ $C_{20} = 1000 \text{ pF}/250 \text{ V}$

 $C_{21} - 2 \times 400 \text{ pF}$, EK 215 240 $C_{22} - 100 \text{ pF}/160 \text{ V}$

C₂₃ – 100 pF/250 V

Potenciometry: $P_{\rm g} \sim 5000~\Omega$ lineární

Cívková souprava: Jiskra SKV 157. Třípólový spínač, izolovaná zdířka, spol. ma-

Obr. 32 – 7: Stupnice a kovová nasná maska. Uprostřed dole jsou distanční rozpěrky a šroubky. Všimněme si, že použitý typ stupnice je označen jen vlnovými délkami a kmitočty. To je zvlášť výhodné, neboť amatér obsluhující přijímač má tak "stále na očích" vazbu mezi vlnovou délkou vyslače a jeho kmitočtem.

ná maska je dále prostřednictvím dvou šroubů M2 a distančních trubiček připevněna k přední části kostry přijímače. Aby se sklo stupnice nepoškodilo a nevyštíplo přihnutím příchytek, je na okrajích chráněno pásky pružné gumy. Připevněni stupnice ke kostře jen dvěma šroubky je dostatečně tuhé. Šroubky jsou umístěny v dolní části masky, která je širší než sklo. Nákres masky neuvádíme, neboť její tvar je jasně vidět na obr. 32–7. Je provedena z duralového plechu, tlustého 0,8 mm a je natřena z čelní strany neutrální černou matnou barvou.

Oddálením masky od kostry přijímače vznikne dostatečně velká mezera pro volný pohyb převodního kotouče a lanka. Hotový ladicí náhon poskytuje dosti jemný převod do pomala, který zvláště oceníme pozdějí při poslechu na krátkých vlnách.

Avšak vratme se k zapojení na obr. 32–4. Vidíme, že bylo použíto cívkové soupravy běžného provedení pro dva vlnové rozsaly, tj. pro střední a krátké vlny. Čívka každého rozsahu má tři vinutí, a to – směrem zleva doprava – anténní, dále ladicí (mřížkové) a posléze zpětnovazební. Z těchto tři vinutí má ladicí pro nás největší důležitost, neboť

jeho počet závitů a druh vinutí přímo určuje překrytý vlnový rozsah. Společně s anténním vinutím představuje cívka ví transformátor, jehož primárem přivádíme ví signal z antény do kmitavého (rezonančního) obvodu a dále. Anténní vinuti lze vypustit a přivádět ví signál z antény rovnou do ladicího vinutí přes vazební kondenzátor. V tom případě mluvíme o vazbě kapacitní, která však je méně výhodná než induktívní. Poslední vinutí – zpětnovazební – zatím máme odpojeno. Využijeme je až později.

každá na vlastním formeru, třebaže se setkáme v praxi u lacinějších starších přijímačů s opakem (tj. jedním formerem pro obě cívky). Cívky jsou zapojeny v sérii, přičemž vlnový rozsah celku určuje cívka pracující na nejnižším kmitočtu. To znamená, že v našem případě při sériovém spojení pstále přijímaný rozsah v pásmu středních vln. Indukčnost krátkovlnné cívky je daleko menši proti středovlnné cívky je daleko menši proti středovlnné cívky do krátká. Šepnutí na krátké vlny provádíme spojení m vinutí středovlnné cívky do krátka, čímž její indukčnost skoro vyřadíme a uplatní se pak plně jen indukčnost cívky krátko-

teriál.