Package 'eSEM'

December 20, 2023

Type Package		
Title Enzyme activity inference from Structural Equation Modeling		
Version 1.0		
Date 2023-09-13		
Author Dehui Kong		
Maintainer Dehui Kong <dkong3@uthsc.edu></dkong3@uthsc.edu>		
Imports lavaan(>= 0.6-11), tidyr(>= 1.2.0), stringr(>= 1.4.0), dplyr(>= 1.0.9), psych(>= 2.2.5), devtools(>= 2.4.5), EFAtools(>= 0.4.1)		
Description eSEM is used to infer enzyme activity.		
Depends R (>= $3.5.0$)		
License GPL-3		
Encoding UTF-8		
LazyData true		
RoxygenNote 7.2.3		
Suggests knitr, rmarkdown VignetteBuilder knitr		
R topics documented:		
aceAdjacency catchActRaw eSEM getFa inputTransformPSP mastInput motifEx pspAdjacency pspMotifAdjacency singleEnzymeAff singleHatAct singleKinaseAct singleLigaseAct ubiAdjacency		

eSEM

djacency		
----------	--	--

Description

This script is used to build HUMAN HAT-substrate adjacency matrix.

Usage

```
aceAdjacency(databaseACE)
```

Arguments

databaseACE Default database or customized database input.

catchResults	catchResults	catchActRaw
--------------	--------------	-------------

Description

Catch Activity and Affinity. Activity contains Raw-Activity, Mean-Center, Z-scaled.

Usage

```
catchActRaw(x)
```

Arguments

x The results from modeling fitting.
rawData Input raw data (quantitative phospho-proteomics / ubiqutin-proteomics data)

Description

Infer enzyme activity from phosphoralation, ubiquitination, acetylation

eSEM 3

Usage

```
eSEM(
  input = NULL,
  datatype = NULL,
  organism = NULL,
  enzyme.organism = NULL,
  database = NULL,
  cor.off = 0.95,
  kmo.off = 0,
  enzyList = NULL,
  input.log2.norm = FALSE,
  whole.log2.trans = FALSE,
  whole.proteome = NULL,
  motif = NULL,
  output.folder = getwd()
)
```

Arguments

input

·	proteomics data.	
datatype	Factor. Data type: ubiquitination or phosphoralation or acetylation; ("ubi", "psp", "ace")	
organism	Vector. Substrate species; ("human", "mouse", "rat")	
enzyme.organism		
	Vector. Enzyme species; ("human", "mouse", "rat")	
database	$Data frame. \ Customized \ database \ input. \ Default \ is \ NULL \ using \ internal \ database.$	
cor.off	Numeric. Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95 .	
kmo.off	Numeric. Set up KMO cutoff value 0-1. Default is 0.	
enzyList	Vector. Program only calculate the enzyme in the enzyList. Default is to output ALL enzyme activities and affinities.	

input.log2.norm

Logical. FALSE or TRUE. Need program to do log2 transforming of the input file or not. Default is FALSE.

Dataframe. Your quantitative ubiquiti-proteomics, phospho-proteomic and acetyl-

whole.log2.trans

Logical. FALSE or TRUE. Need program to do log2 transforming of the whole proteome or not. (Ignore if -whole.proteome is missing). Default is FALSE.

whole.proteome Dataframe. Set up whole proteome used to normalize phosphor-proteome or ubiquitin-proteome whole proteome. Default is NULL.

motif Matrix. Added kinase-subatrate relationships from motif discovery.

output.folder Character. Character vector of location to save files if desired. Default is current

directory.

Details

You can use eSEM package to get enzyme activity.

4 getFa

Value

List

Examples

```
result <- eSEM(input = input_ubi_example,</pre>
               datatype = "ubi",
               organism = "human",
               input.log2.norm = T)
result <- eSEM(input = input_psp_example,</pre>
               datatype = "psp",
               organism = "mouse",
               enzyme.organism = c("human", "mouse", "rat"),
               cor.off = 0.8,
               input.log2.norm = TRUE,
               whole.log2.trans = TRUE,
               motif = motif_example,
               whole.proteome = wholeProteome_example)
result <- eSEM(input = input_ace_example,</pre>
               datatype = "ace",
               organism = "human",
               input.log2.norm = FALSE)
```

getFa

Build MEME input

Description

script to extract MEME input .fa file

Usage

```
getFa(ss = NULL, es = NULL, filePath)
```

Arguments

```
ss Vector; Substrate species; ("mouse", "rat", "human")
es Vector; Kinase species; ("mouse", "rat", "human")
filePath The path is used to save .fa files. Recommend to create a new folder to save all
```

.fa.files.

inputTransformPSP 5

Examples

```
getFa(ss = "human", es = c("human", "mouse", "rat"), filePath = getwd())
```

inputTransformPSP

inputTransform

Description

This script is used to log2 transform AND/OR whole proteome normalize input data.

Usage

```
inputTransformPSP(
 input_raw,
  input_log2_trans = FALSE,
 whole_log2_trans = FALSE,
 whole_proteome = NULL
```

Arguments

input_raw Input raw data (quantitative phospho-proteomics/ubiquitin-proteomics data) input_log2_trans

> FALSE or TRUE. Need program to do log2 transforming of the input file or not. Default is FALSE.

whole_log2_trans

Need program to do log2 transforming of the whole proteome or not. Ignore if -whole.proteome is missing. Default is FALSE.

whole_proteome Set up whole proteome used to normalize phospho-proteomics/ubiquitin-proteomics data by whole proteome. Default is NULL.

 ${\tt mastInput}$

Build MAST input

Description

Script to extract MAST input FASTA file.

Usage

```
mastInput(input, savePath = getwd())
```

6 pspAdjacency

Arguments

input The same quantitative phosphoproteomics data as eSEM() input file.

savePath The path to save built MAST input file. Default is the current directory.

Examples

```
mastInput(input = input_psp_example)
```

motifEx

motifEx

Description

This script is used to extract kinase-substrate relationships from motif scanning and build motif_input file for KSEM().

Usage

```
motifEx(mastFile, savePath = getwd())
```

Arguments

mastFile The output file "extract_result.txt" from Step: 03step_ExtractMASTresult.sh.
savePath Path to save motif_input.txt file. Default is current directory.

pspAdjacency

pspAdjacency

Description

This script is used to build kinase-substrate adjacency matrix with only PSP database.

Usage

```
pspAdjacency(sp, ep, databasePSP)
```

Arguments

sp Substrate species; ("mouse", "rat", "human").
ep Enzyme species; ("mouse", "rat", "human").
databasePSP Default database or customized database input.

pspMotifAdjacency 7

pMotifAdjacency pspMotifAdjacency

Description

This script is used to build enzyme-substrate adjacency matrix with PSP database + Motif.

Usage

```
pspMotifAdjacency(sp, ep, databasePSP, motif.ref)
```

Arguments

sp	Substrate species; ("mouse", "rat", "human").
ер	Enzyme species; ("mouse", "rat", "human").
databasePSP	Default database or customized database input.
motif.ref	Added enzyme-subatrate relationships from motif discovery. Same as KSEM -motif parameter.

neAff

Description

Get single enzyme affinity.

Usage

```
\verb|singleEnzymeAff(enzyme, input, adj, cor.off, kmo.off)|\\
```

Arguments

enzyme	Single enzyme name.
input	Normalized and transformed phospho-proteomics / ubiqutin-proteomics data.
adj	Adjacency matrix.
cor.off	Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.
kmo.off	Set up KMO cutoff value 0-1. Default is 0.

8 singleKinaseAct

Description

Get single HAT activity.

Usage

```
singleHatAct(HAT, input, adj, cor.off, kmo.off)
```

Arguments

HAT Single HAT name.

input Normalized and transformed acetyl-proteomics data.

adj Adjacency matrix.

cor.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default i

r.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.

).93.

kmo.off Set up KMO cutoff value 0-1. Default is 0.

singleKinaseAct singleKinaseAct

Description

Get single kinase activity.

Usage

```
singleKinaseAct(kinase, input, adj, cor.off, kmo.off)
```

Arguments

kinase Single kinase name.

input Normalized and transformed phosphoproteomics data.

adj Adjacency matrix.

cor.off Set up correlation cutoff value 0-1 to remove high collinear variables. Default is

0.95.

kmo.off Set up KMO cutoff value 0-1. Default is 0.

singleLigaseAct 9

Description

Get single ligase activity.

Usage

```
singleLigaseAct(ligase, input, adj, cor.off, kmo.off)
```

Arguments

ligase	Single ligase name.
input	Normalized and transformed ubiquiti-proteomics data.
adj	Adjacency matrix.
cor.off	Set up correlation cutoff value 0-1 to remove high collinear variables. Default is 0.95.
kmo.off	Set up KMO cutoff value 0-1. Default is 0.

Description

ubiAdjacency

This script is used to build ligase-substrate adjacency matrix with only PSP database.

Usage

```
ubiAdjacency(sp, databaseUBI)
```

Arguments

sp Substrate species; ("mouse", "rat", "human").
databaseUBI Default database or customized database input.

ubiAdjacency