

XOR Multiset

 a_1,a_2,\ldots,a_{n-1} غير سالبة n-1 و n-1 غدد صحيح عدد صحيح يُعطى لك عدد صحيح الم

أوجد مجموعة متعددة S من الأعداد من $\{1,2,\ldots,n-1\}$ بحيث:

- $\sum_{x \in S} x \equiv 0 \pmod{n}$ •
- $\sum_{x \in S} a_x$ أكبر ما يمكن، حيث يُمثّل الرمز \bigoplus عملية XOR (أو "أو الحصرية"). تعمل هذه العملية على التمثيل الثنائي لعددين، حيث تُطبّق عملية OR الحصرية (Exclusive OR) على كل زوج من البتات المتناظرة.

على سبيل المثال:

- العدد 5 (تمثيله الثنائي 0101)
- العدد 3 (تمثيله الثنائي 0011)

وبتطبيق XOR نحصل على 6 (التمثيل الثنائي 0110).

المُعامل المستخدم لتمثيل XOR في لغات البرمجة ++c و Java و Python هو ^.

إذا وُجدت عدّة مجموعات متعددة تحقق الشروط، فيكفى إرجاع أي واحدة منها.

تفاصيل التنفيذ

تحتاج إلى تتفيذ الدالة التالية:

(int64, int32[]) find_multiset(int32 n, int64[] a)

- قيمة المودولو.
- a_{i+1} مصفوفة طولها a=n-1 حيث أن a[i] تمثل: a
 - يجب أن تُعيد الدالة زوجًا (pair) يحتوي على:
- الصحيحة. $\bigoplus_{x\in S} a_x$ الصحيحة يعبّر عن القيمة المثلى لـ $\bigoplus_{x\in S} a_x$ بين جميع المجموعات المتعددة و الصحيحة.
- العنصر الثاني: مصفوفة تمثل أي مجموعة متعددة S تحقق هذه القيمة المثلى. يجب أن تكون عناصر المصفوفة أعدادًا من 1 إلى 1-10 ويجب ألا يتجاوز حجم S القيمة 2n2.

القيود

- $1 \leq n \leq 10^5$ •
- $i=1,2,\ldots,n-1$ لکل $0\leq a_i < 2^{62}$ •

المسائل الفرعية

المسألة الفرعية	النقاط	القيود الإضافية
1	20	$n \leq 10$
2	40	n فردي
3	40	لا قيود إضافية

S في كل مسألة فرعية، يمكنك الحصول على درجة جزئية إذا كان برنامجك يحدد القيمة المثلى لـ $\bigoplus_{x \in S} a_x$ بين جميع المجموعات المتعددة الصالحة. وبشكل أكثر دقة:

- تحصل على الدرجة الكاملة للمسألة الفرعية إذا كان العنصر الأول من الزوج الذي تُعيده الدالة find_multiset يطابق تمامًا العنصر الأول من الزوج الذي يُعيده المصحّح الرسمي في جميع حالات الاختبار، وكان العنصر الثاني مجموعة متعددة صالحة (أي تُحقق الشروط أعلاه) وتُنتج هذه القيمة المثلى.
- تحصل على 60% من درجة المسألة الفرعية إذا كان العنصر الأول من الزوج الذي تُعيده find_multiset يطابق تمامًا العنصر الأول من الزوج الذي يُعيده المصحّح الرسمي في جميع حالات الاختبار، بغض النظر عن العنصر الثاني.
 - تحصل على %0 من الدرجة في غير ذلك.

أمثلة

المثال 1

الدالة (15, {1, 2}} يجب أن تُعيد find multiset (3, {5, 10})

- .($a_1=5,a_2=10$ رأي a=[5,10] و n=3
- $\sum_{x \in S} x \equiv 0 \pmod 3$ بحيث $S \subseteq \{1,2\}$ بحيده $S \subseteq \{1,2\}$ بحيده فحتاج إلى مجموعة متعدده والم
- أمثلة صالحة: \emptyset (المجموع 0 =)، $\{1,2\}$ (المجموع 0 =)، $\{1,1,1\}$ (المجموع 0 =)، إلخ.
 - $.a_1\oplus a_2=5\oplus 10=15$ = XOR قبمهٔ: $S=\{1,2\}$ -
 - $.5 \oplus 5 \oplus 5 = 5$ = XOR فيمة: $S = \{1,1,1\}$
 - $S=\{1,2\}$ القيمة القصوى هي 15 وتتحقق بواسطة

المثال 2

الدالة (find_multiset(4, {8, 12, 6}) يجب أن تُعيد

- .($a_1=8,a_2=12,a_3=6$ رأي a=[8,12,6] و n=4
- $\sum_{x\in S}x\equiv 0\pmod 4$ نحتاج إلى $S\subseteq\{1,2,3\}$ بحيث
 - .8 \oplus 6=14 = XOR : $S=\{1,3\}$ $^{\it \bot}$
 - $.12 \oplus 12 = 0$ = XOR $:S = \{2,2\}$ extstyle
 - $S=\{1,3\}$ القيمة القصوى هي 14 وتتحقق بواسطة $S=\{1,3\}$

Sample Grader

مصحّح العيّنة يقرأ الإدخال بالتنسيق التالي:

- n السطر 1: عدد صحیح واحد
- a_1,a_2,\ldots,a_{n-1} السطر 2: n-1 أعداد صحيحة n-1

يقوم المصحّح بنداء find_multiset(n, a) ويطبع المخرجات بالتنسيق التالي:

- السطر الأول: القيمة المعادة كالعنصر الأول من الزوج (قيمة الـ XOR المثلى)
 - السطر الثاني: حجم المجموعة المتعددة
 - السطر الثالث: عناصر المجموعة المتعددة (إن وجدت) مفصولة بمسافات

ملاحظة: مصحّح العيّنة المرفق مع المسألة مخصص للاختبار المحلي فقط. المصحّح الفعلي المستخدم أثناء المسابقة قد يختلف.