									Problem									The second amount (small) and second			Problem	The state of the s
1 3 1 0 1 16 1 11	softally as you progress through this	Since c is now greater than 1 it will increase	c. O(cn) if c> g(n) = 1 + 1 + 1 = 11 + 1 = m/ch 15 = 0(n)	n is added which is a linear increas	If c is one, hu function will only add I everytime	aprinos	If c is less than one the function will look	hat	3) c is a positive real number , g(n) = 1 + c + c + c + c *	State of the Court sould be	" 12" g(n) = 3"	air untime will be asymptotically equal	- (f=0(9)) because they you at the some rate; which	1 = 12 (a) beca	d. f(n)= 11.5 g(n) = 1/0g n	- the constant does not coffect it, therefore (f=0(a))	south ate, f=	nce this is directly proportion	- the growth	$h_{\lambda} f(n) = n^{1/2} \qquad \lambda(n) = n^{2/3}$	6 g(n) = 10000	

SUS Show also That 1 ASSA f = 2(9) 5= O(8) ٤ Must DE S 4 0(3)

lower band log (n!) = nlog (n)

F N=3 ... log(1) + log(2) + log(3) & 3[log(3) + log(3) + log(3)] 2 (n) (n) = O(nlog(n)

upper bound ...

10g(n!) ≥ nlog(n)

(1) + ... + (0) (1/2) + ... + (0) (n) IV 100 100 (M) 2) + ... (3) loy (n) 103 (11/2)

> "/2 los ("/2)

٤ S. 500 TO AND THE PROPERTY OF THE PRO Show 5 À F Appr limit Tate half they fore (02) (01) = Ω (nloyn N equestions

2000 500 limit -WC CAN 京 prouc both equations 200 1 VINSTATIONS Sand 191 equal. 250

2 10927 1+0001 1000 (100/1)
h 1033 7 5 loggn **∑** 275 to wow as pals, 5 100ger fastest inureasing asymp to tic Function S8705 26012 いたかられて Š The asymp to tic cash regardicss SIMINA 1 no time to D. かいた MIL Me linear thank 3 34 of $\Theta(n)$. 26325 12. Son France 2000 based 5 coastants. concers F 252 1000 3 expanential functions E さい 0 草 Spucst my À 120 3 する giving KIND £. Ş 7 4 Johnis 8 athur