```
In []: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error, r2_score
import matplotlib.pyplot as plt

# Load data from CSV file
df = pd.read_csv('/Users/danteschrantz/Desktop/UNAV/2024-2025/Modeling Trabajo Final/CSV/dairy.csv')
df.head()
Out[]: FARM YEAR COWS LAND MILK LABOR FEED YIT X1 X2 ... X14 X23 X24 X34 YEAR93
```

			X23	X14	•••	~-	X1	YIT	FEED	LABOR		_,,,,	cows	,		
3272 1	-0.063272	0.102187	-0.090008	0.067232		-0.381269	-0.250847	11.207039	33435.738	2.0	73647	8.0	15.3	93	1	0
.0197 0	-0.040197	0.064919	-0.090008	0.014096		-0.381269	-0.082788	11.421468	36869.040	2.0	91260	8.0	18.1	94	1	1
6461 0	0.036461	-0.079510	-0.121532	-0.021564		-0.514801	-0.139622	11.612037	51013.578	2.0	110419	7.0	17.1	97	1	2
5060 0	0.035060	-0.056622	-0.090008	-0.019008		-0.381269	-0.127994	11.621367	50711.570	2.0	111454	8.0	17.3	96	1	3
0563 0	0.050563	-0.081660	-0.090008	-0.021311		-0.381269	-0.099502	11.682651	54153.586	2.0	118498	8.0	17.8	95	1	4
0.04 0.03 0.03	- (0.064919 -0.079510 -0.056622	-0.090008 -0.121532 -0.090008	0.014096 -0.021564 -0.019008		-0.381269 -0.514801 -0.381269	-0.082788 -0.139622 -0.127994	11.421468 11.612037 11.621367	36869.040 51013.578 50711.570	2.0 2.0 2.0	91260 110419 111454	8.0 7.0 8.0	18.1 17.1 17.3	94 97 96	1	1 2 3

5 rows × 28 columns

Gráficos en Python

```
In [ ]: # Bar Chart
        def plot_bar_chart(df):
            plt.figure(figsize=(10, 6))
            plt.bar(df['FARM'], df['MILK'], color='skyblue')
            plt.xlabel('Farm')
            plt.ylabel('Milk Production')
            plt.title('Bar Chart of Farm vs Milk Production')
            plt.show()
        # Line Chart
        def plot_line_chart(df):
            plt.figure(figsize=(10, 6))
            plt.plot(df['YEAR'], df['MILK'], marker='o', linestyle='-', color='green')
            plt.xlabel('Year')
            plt.ylabel('Milk Production')
            plt.title('Line Chart of Year vs Milk Production')
            plt.show()
        # Scatter Plot
        def plot_scatter_chart(df):
            plt.figure(figsize=(10, 6))
            plt.scatter(df['YEAR'], df['MILK'], color='red')
            plt.xlabel('Year')
            plt.ylabel('Milk Production')
            plt.title('Scatter Plot of Year vs Milk Production')
            plt.show()
        # Correlation Heatmap
        def plot_heatmap(df):
            plt.figure(figsize=(8, 6))
            sns.heatmap(df[['COWS', 'LAND', 'LABOR', 'FEED', 'YIT']].corr(), annot=True, cmap='coolwarm', linewidths=0.5)
            plt.title('Correlation Heatmap')
            plt.show()
        # Regression Plot
        def plot_regression(df):
            plt.figure(figsize=(10, 6))
            sns.regplot(x='COWS', y='MILK', data=df, scatter_kws={'color': 'blue'}, line_kws={'color': 'red'})
            plt.xlabel('Number of Cows')
            plt.ylabel('Milk Production')
            plt.title('Regression Plot of Number of Cows vs Milk Production')
            plt.show()
        # Function Calls
        plot_bar_chart(df)
        plot_line_chart(df)
        plot_scatter_chart(df)
        plot_heatmap(df)
        plot_regression(df)
```

Bar Chart of Farm vs Milk Production

Scatter Plot of Year vs Milk Production

Regression Plot of Number of Cows vs Milk Production

Modelo de Machine Learning con Random Forest

Raíz del Error Cuadrático Medio (RMSE): 18696.607719825704

Coeficiente de Determinación (R2): 0.9520491058859036

Porcentaje de Error Promedio (MAPE): 11.12%

```
In []: # También eliminar variables relacionadas con años si no aportan información relevante
       X = df.drop(columns=['MILK', 'YIT', 'X1', 'X2', 'X3', 'X4', 'X11', 'X12', 'X13', 'X14', 'X22', 'X33', 'X44', 'X23', 'X24', 'X34', 'YEAR
       y = df['MILK'] # 'MILK' como objetivo
        # Dividir los datos en conjuntos de entrenamiento y prueba
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        # Crear y ajustar el modelo Random Forest
        model = RandomForestRegressor(n_estimators=100, random_state=42)
       model.fit(X_train, y_train)
        # Predecir en el conjunto de prueba
        y_pred = model.predict(X_test)
        # Evaluar el modelo
        mse = mean_squared_error(y_test, y_pred)
        rmse = np.sqrt(mse)
        mape = mean_absolute_percentage_error(y_test, y_pred) * 100
        r2 = r2_score(y_test, y_pred)
        print(f"Error Cuadrático Medio (MSE): {mse}")
        print(f"Raíz del Error Cuadrático Medio (RMSE): {rmse}")
        print(f"Porcentaje de Error Promedio (MAPE): {mape:.2f}%")
        print(f"Coeficiente de Determinación (R²): {r2}")
        # Visualizar Predicciones vs Valores Reales
        plt.figure(figsize=(8, 6))
       plt.scatter(y_test, y_pred, color="blue", alpha=0.6)
        plt.xlabel("Valores Reales")
       plt.ylabel("Predicciones")
        plt.title("Comparación de Valores Reales vs Predicciones")
        plt.show()
      Error Cuadrático Medio (MSE): 349563140.22904617
```



```
In []: # ---- Explicabilidad del Modelo con SHAP ----
import shap
# Crear un objeto explainer para el modelo Random Forest
explainer = shap.TreeExplainer(model)

# Calcular los valores SHAP para el conjunto de datos de prueba
shap_values = explainer.shap_values(X_test)

# Resumen de los valores SHAP
shap.summary_plot(shap_values, X_test) # Gráfico de resumen

# Gráfico de barras con la importancia media de las características
shap.summary_plot(shap_values, X_test, plot_type="bar")
```


