Defesa ao Grafo

Por Gustavo Stor, UFPE Serazil

Timelimit: 2

Tower Defense é um famoso jogo de estratégia onde o jogador deve posicionar torres de defesa para proteger algo - seja um castelo, um tesouro ou até você mesmo - contra uma horda de monstros. Há várias variações do jogo: em alguns tipos, o mapa se assemelha a um tabuleiro, e os monstros tem um caminho especifico a seguir; em outros tipos, o mapa é aberto e os monstros podem chegar ao destino final por vários meios diferentes.

Graph Defense é uma variação do Tower Defense comum. Aqui, o mapa é representado como um grafo de N vértices e M arestas. Cada vértice é uma posição em que um monstro ou uma torre (ou ambos) podem estar, em um dado momento, e as arestas representam conexões bidirecionais entre esses vértices (i.e. se há uma aresta de u para v, um monstro que está no vértice u em um dado momento pode ir para o vértice v no momento seguinte e vice-versa). O castelo, que você deseja proteger, se encontra no vértice F.

Cada torre i possui um alcance C_i , um ataque A_i e está no vértice V_i . Todos os vértices que estão a no máximo C_i arestas de distância de V_i receberão A_i de dano a cada unidade de tempo. As torres não se movem, e existem desde o início do jogo. O castelo possui um escudo mágico protetor que faz com que nenhuma torre consiga atacar o vértice F onde ele se encontra, tampouco propagar o ataque, ou seja, o vértice F é uma barreira e nada passa por ele, a não ser os monstros, possivelmente.

Cada monstro i surge durante o decorrer do jogo em um vértice K_i e possui H_i pontos de vida. Os monstros nunca ficam parados e, a cada unidade de tempo, se movem para um vértice adjacente. Eles sempre vão seguir para o destino final, o castelo, pelo caminho que causará o menor dano possível. Os monstros morrem quando alcançam 0 ou menos pontos de vida. Um monstro só consegue invadir o castelo quando chega ao destino F vivo. Se houver uma torre que alcança a posição inicial K_i do monstro, ela irá inflingir dano já no primeiro instante em que o monstro surge. Um monstro pode surgir já no castelo.

Você foi contratado para fazer uma simulação do jogo. Depois de todas as aparições de monstros, quantos conseguiram invadir o castelo ainda com vida?

Entrada

A primeira linha da entrada contém T ($1 \le T \le 100$), o número de casos de teste. Cada caso de teste começa com três inteiros N ($1 \le N \le 1000$), M ($0 \le M \le (N^*(N-1))/2$) e F ($1 \le F \le N$), o número de vértices, arestas e o vértice em que se encontra o castelo, respectivamente. A seguir há M linhas, cada uma com dois inteiros u ($1 \le u \le N$) e v ($1 \le v \le N$ e v != u), indicando a existência de uma aresta que liga os vértices u e v. Não haverá mais de uma aresta entre um mesmo par de vértices. A seguir há um número P ($0 \le P \le 100$), indicando o número de torres. Cada uma das próximas P linhas conterá três inteiros V_i ($1 \le V_i \le N$ e V_i != F), A_i ($1 \le A_i \le 10^5$), e C_i ($1 \le C_i \le 1000$), indicando que a i-ésima torre se encontra no vértice V_i com A_i de ataque e C_i de alcance, conforme explicado na descrição do problema. Pode haver mais de uma torre no mesmo vértice, e não haverá nenhuma torre no vértice F. Por fim, haverá um inteiro Q ($1 \le Q \le 10^4$), indicando o número de monstros. Cada uma das próximas Q linhas contém dois inteiros K_i ($1 \le K_i \le N$) e H_i ($1 \le H_i \le 10^8$), indicando o vértice onde o i-ésimo monstro nasce e a quantidade de pontos de vida que ele tem no começo, respectivamente. É garantido que existe pelo menos um caminho que, não fosse pelos ataques das torres, o monstro conseguiria chegar ao castelo.

Saída

Para cada caso imprima "Caso #X: Y", onde X é o número do caso atual, começando em 1, e Y é o número de monstros que conseguiram chegar ao castelo com vida.

Exemplo de Entrada	Exemplo de Saída
2	Caso #1: 3
1 0 1	Caso #2: 6
0	
3	
1 3	
1 2	
1 1	
9 8 1	
1 2	
2 3	
3 4	
3 5	
4 7	
5 6	
8 4	
9 5	
2	
6 2 3	
7 4 2	
9	
1 15	
2 2	
3 9	
4 14	
5 11	
6 50	
7 20	
8 15	
9 15	

Final da Seletiva UFPE - 2014