Jan29

Robert Gutierrez

January 29, 2014

Contents

Lab 3: 3:30 - 5:20 Thursday 2/6

1 F-E Cycle

- 1. Get Instr
- 2. Interpret Instrc :: Binary Instructions
- 3. Execute Instrc
- 4. Go to 1

1.1 Cylces

- $\bullet \ \, {\rm Clock} \,\, {\rm Cycle} = {\rm CC}$
- Clock Period Time @ start of a CC to start of Next CC
- \bullet Clock Rate (CR) 1 / Clock Period
 - # cycles / seconds

speed	cycle/sec
MHz	10^{6}
GHz	10^{9}
THz	10^{12}

1.2 CPU Time (t) (in seconds) = (# clock cycles ina program) / (Clock Rate)

$$T = (CC) / (CR)$$

- \bullet Instruction = I
- Instruction Count = IC Depends on Architecture -> Assembly Language
- often Average of ALL Instructions In Instruction set

$$CPI = (CC) / (IC)$$

• CPU Time $T = (IC \times CPI) / (CR)$

example ::