MATH 2130 Summer Evening 2012 Problem Workshop 3

- 1. If z = f(u, v, t), u = g(x, y, t), v = h(x, y, t) and y = k(t), find the chain rule for $\frac{\partial z}{\partial t}$ _x
- 2. If f(s) and g(t) are differentiable functions, show that $\nabla f(x^2 y^2) \cdot \nabla g(xy) = 0$.
- 3. If $z = x^2 + y^2$, $x = u \cos v$, and $y = u \sin v$, find and simplify $\frac{\partial^2 z}{\partial v^2} \Big|_{u}$
- 4. If f(v) is differentiable, show that $u(x,y) = x^3 f(x/y)$ satisfies the equation

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3u.$$

5. The equations

$$x^{2} + y + 3s^{2} + s = 2t - 1,$$
 $y^{2} - x^{4} + 2st + 7 = 6s^{2}t^{2}$

define s and t are functions of x and y. Find $\frac{\partial s}{\partial x}$ when s=0 and t=1. Assume x>0.

6. The equations

$$x = r \sin \phi \cos \theta$$
, $y = r \sin \phi \sin \theta$, $z = r \cos \phi$

define r, ϕ, θ as functions of x, y and z. Find $\frac{\partial \phi}{\partial y}$.

- 7. Find the rate of change of the function $f(x, y, z) = \sin(xy) z^3$ at the point (2, 0, 3) in the direction of the upward normal to the surface $xz^2 x^2z = 6$.
- 8. Find equations for the tangent line to the following curve at the point (1, -1, 3):

$$xyz + z^3 = 24$$
, $x^3y^2z + y^3 = 4x - 2$.

9. Find an equation for the tangent plane to the following surface at the point (2, -1, -1):

$$x^2y + y^2z + z^2x + 3 = 0.$$

- 10. Find all critical points for the function $f(x,y) = x^3y^3 x^2y^2 + 6$.
- 11. Find all critical points for the function $f(x,y) = x^3y^2 xy + 3y$.
- 12. Find and classify all critical points of the function as giving relative minima, maxima, saddle points or neither.

(a)
$$f(x,y) = x^3 + xy + y^3$$

(b)
$$f(x,y) = x^3 - xy^2 + 3xy$$

(c)
$$f(x,y) = x^4 - 3x^2y^2 + y^4$$

(d)
$$f(x,y) = y^2 + |x-1|$$

Answers:

- 1. $\frac{\partial z}{\partial u} \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial z}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial t} + \frac{\partial z}{\partial t}$
- 2.
- 3. 0
- 4.
- 5. 16
- 6. $r^{-1}\cos\phi\sin\theta$
- 7. $-216/\sqrt{73}$
- 8. x = 1 + 81t, y = -1 + 133t, z = 3 6t
- 9. x 2y + z = 3.
- 10. All points on the x-axis, y-axis and on the curve y = 2/(3x).
- 11. (3,0), (9,1/243)
- 12. (a) (0,0) gives a saddle point. (-1/3,-1/3) gives a relative maximum.
 - (b) (0,0),(0,3) both give saddle points.
 - (c) (0,0) gives a saddle point.
 - (d) (1,0) gives a relative minimum. Points (1, y) for $y \neq 0$ give neither.