Wer hery	
212	
-	FMU -> AT FMU
	$F^{MV} = 10 - E_{x} - E_{y} - E_{z}$
	$F^{MS} = \begin{pmatrix} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \end{pmatrix}$
	Ey Bz O -Bx
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	The nace lector is in y, polarization by concention is E
	The nave vector is in \vec{j} , polarization by convention is \vec{E} 8 in \vec{z} , so \vec{R} is in direction $\vec{k} \times \vec{E} = \vec{y} \times \vec{z} = \vec{z}$.
	Then we have Fmu
	$F^{\mu\nu}$ (as sheared by θ) = $\begin{pmatrix} 0 & 0 & -E_7 \\ \end{pmatrix}$
-	(as sherred by 6)
	0 0 0 -80
	Ez O Bo O
	1 = borst in = 1 8 0 0 - 18
	0 1 0 0
	-8B 0 0 7
	Fru = JA - drAn , where AM = (Ic, A)
	transforms as a tensor, we wish to find F'M' as
	observed by O', this will give us a complete description
	of the EM wave in O' frame.

The corresponding E, B' are

$$\vec{E}' = (O, \gamma \beta B_0, \gamma^2 (1-\beta^2) E_0)$$

$$\gamma = \sqrt{\frac{1}{1-\beta^2}} = 7 \quad \gamma^2 (1-\beta^2) = 1$$
, then

Comparing this with the original polarization $\vec{E} = (0, 0, E_0)$, we see that the polarization direction has changed, it now gamed an $\vec{\eta}$ component, non in y-z plane. Since \vec{B}' is still in the \vec{z} plane, \vec{E}' and \vec{B}' remain orthogonal, we are good, but this implies the nace sector \vec{E}' must differ from \vec{k} & \vec{y} .

As a check, we compute
$$\vec{k} = \vec{E} \times \vec{B}$$

Bo = 1/2 Eo, in our formulish, c=1 => B=Eo This renders the direction of The as Pro (o, rEo, -1 sE3) => 1/ & (O, 1, - YB). This would be consistent if (2, 2) is a 4-vector: k''' = //k'' = //TB () $= \begin{pmatrix} |k| \\ -|k| \\ 3\beta \end{pmatrix}$ which also gives $R' \propto (0, 1, -1)$ Daidson Chan

2.18.2024