

PREPARATIONS

- . Oxidation of 1° alcohols $RCH_2OH \xrightarrow{(i)alk. KMnO_4} R - COOH$
- . Hydrolysis of Nitriles and Amides $R - C \equiv N + 2H_2O \xrightarrow{H^+ \text{ or}} RCOOH + N_3H$
- . Hydrolysis of Esters $RCOOR' + H_2O \xrightarrow{H^+} RCOOH + R'OH$
- . From Grignard Reagent
- $CO_2 + RMgBr \xrightarrow{Dry \text{ ether}} RCOOH + Mg(OH)Br$

PHYSICAL PROPERTIES

- Physical State: Polar Substances Soluble in organic Solvents.
- Acidity: The acidic character is due to the presence of resonance.

$$\begin{array}{ccc} R-C-\ddot{\odot}-H & \longleftrightarrow R-C-\overset{\oplus}{\circ}H \\ : \circlearrowleft & \circlearrowleft & \end{array}$$

Boiling Points: High boiling point due to intermolecular hydrogen bonding.

COMPARISON OF METLING AND BOILING POINT OF AROMATIC AND ALIPHATIC ACID

. Melting Point and Boiling Point of aromatic acid greater than aliphatic acid.

 $RCOOH + R'OH \Longrightarrow RCOOR' + H_2O$

Ring Substitution in Aromatic Acids: COOH group is deactivating and meta directing. COOH

COOH

$$Br_2$$
 $FeBr_3, \Delta$
 $COOH$
 $Conc.\ HNO_3$
 $Conc.\ H_3SO_4 \Delta$

Reduction of Carboxylic Acid

Decarboxylation of Carboxylic Acid

$$\begin{array}{c}
O \\
II \\
R-C-OH \xrightarrow{\text{NaOH or}} R- H+ \text{Na}_2CO_3
\end{array}$$

Reaction involving cleavage of -OH group

Hell-volkard Zelinsky Reaction

$$R-CH_2-OH \xrightarrow{(i) X_2, Red P} R-CH(x)COOH$$

ACIDIC ORDER

Caboxylic Acid > Phenol > Alcohol

. Oxidation of alcohol

1° Alcohol $\xrightarrow{K_2 \operatorname{Cr}_2 \operatorname{O}_7 + \operatorname{H}_2 \operatorname{SO}_4}$ Aldehyde 2° Alcohol — K₂Cr₂O₇+H₂SO₄ → Ketone

R CH₂OH $\frac{K_2 Cr_2 O_7 + H_2 SO_4}{}$ RCHO H₂O

PREPARATIONS

ALDEHYDE. KETONES AND

CARBOXYLIC ACID

 $R - CH(OH)R' \xrightarrow{\kappa_2 Cr_2 O_7 + H_2 SO_4} R - CO - R' + H_2 O$

Ozonolysis of alkenes

 $CH_3 - CH = CH - CH_3 + O_3 \xrightarrow{H_2O, Zn} 2CH_3 CHO$

. From Gem-Dihalides:

R'
R-C-CI

$$\xrightarrow{\text{aq. KOH}}$$
 $\xrightarrow{\text{Or Ba(OH)}_2}$
 $\xrightarrow{\text{R-C=O}}$

CI

(Aldehyde when R' = H

Ketone when R' = alkyl group)

. Hydroboration Oxidation of Alkynes

. Rosenmund Reduction

$$\begin{array}{c}
O \\
R-C-CI \xrightarrow{H_2, Pd-BaSO_4} R-C-H \\
O
\end{array}$$

DISTINCTION TEST FOR CARBOXYLIC ACID

- . Brisk effervescence of CO, gas with NaHCO₃
- . Gives buff coloured PPt. with FeCl,

PHYSICAL PROPERTIES

GENERAL FORMULA

Aldehyde:

R - C - H

Hydrogen.

where R is alkyl and H is

Odour: Lower Aldehyde have an impleasant odour.

Physical State: HCHO is a gas. All other aldehyde and ketone upto C,, are volatile liquids.

Solubility: Larger Carbonyl compounds are Soluble in water due to the formation of H-bond.

Boiling Point and Melting Point: Boiling Point or Melting Point & Molecular weight A

Branching

Due to electron donating alkyl group ketones have higher boiling point than aldehye.

Reactivity: It depends on the nature of alkyl group. Smaller the group. more reactive will be compound.

DISTINCTION TEST FOR ALDEHYDE

TEST	ALDEHYDE	KETONES
Schiff'S	PiNk	No colou
reagent	Colour	
Fehling's	Red PPt.	No PPt.
Solution		
Tollen's	Silver	No PPt.
reagent	Mirror	

Aldehyde > Ketones

AliPhatic

ALDEHYDES AND KETONES

Ketones

where R and R' can be

Same or different.

Reactivity ∞ Stearic factor and electronic factror

CHEMICAL PROPERTIES

CLASSIFICATION

Aromatic

Nucleophilic Addition-reaction

$$>$$
C=O + $\stackrel{\circ}{\text{CN}} \longrightarrow >$ C $\stackrel{\circ}{\text{CN}}$

$$C=O + NaHSO_3 \longrightarrow CCOH$$

$$C=O + H_2N-Z \longrightarrow C=N-z+H_2O$$

Clemmensen Reduction:

$$C=O \xrightarrow{Zn-Hg} CH_2 + H_2O$$

wolff-kiShner reduction

$$C=O \xrightarrow{\text{(i) } NH_2-NH_2} CH_2 + N_2$$

Aldol Condensation

Cannizaro reaction