```
In [1]: import pandas as pd
```

Feature Engineering

Table of contents:

- Encoding categorical features
- Normalization and Standardization
- Data imputation
- · Polynomial features

```
In [2]: # Load titanic dataset
    url = 'https://raw.githubusercontent.com/um-perez-alvaro/Data-Science-Practic
    e/master/Data/titanic.csv'
    titanic = pd.read_csv(url ,index_col = 'PassengerId')
    titanic.head()
```

Out[2]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabir
Passengerld										
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Nal
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8!
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Nal
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12(
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
4										•

Dataframe Columns:

```
    survived: 0 = No; 1 = Yes
```

Pclass: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

name: Namesex: Sexage: Age

sibsp: Number of Siblings/Spouses Aboard

parch: Number of Parents/Children Aboard

ticket: - Ticket Numberfare: Passenger Fare

· cabin: Cabin

embarked: Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

Categorical features in the Titanic dataset: sex, ticket, cabin, embarked.

Numerical features in the Titanic dataset: Pclass, Age, SibSp, Parch, Fare

```
In [3]: | # missing values
         titanic.isnull().sum()
Out[3]: Survived
                       0
        Pclass
        Name
         Sex
                     177
        Age
        SibSp
        Parch
                       0
        Ticket
         Fare
         Cabin
                     687
         Embarked
         dtype: int64
```

1. Enconding categorical features

- Ordinal encoding
- One hot encoding

Often features are not given as continuous values but categorical. For example a person could have features ["male", "female"], ["from Europe", "from US", "from Asia"], ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]. Such features can be efficiently coded as integers. To convert categorical features to such integer codes, we can use the OrdinalEncoder.

1.1. Ordinal encoding

```
In [4]: | from sklearn.preprocessing import OrdinalEncoder
          encoder = OrdinalEncoder()
 In [5]: # ordingal encoding of the "Sex" feature
         titanic.Sex.unique()
Out[5]: array(['male', 'female'], dtype=object)
 In [6]: encoder.fit(titanic[['Sex']])
          encoder.transform(titanic[['Sex']])[:10]
Out[6]: array([[1.],
                 [0.],
                 [0.],
                 [0.],
                 [1.],
                 [1.],
                [1.],
                [1.],
                 [0.],
                 [0.]])
 In [7]: encoder.categories_
 Out[7]: [array(['female', 'male'], dtype=object)]
 In [8]: # ordinal encoding of the "Embarked" feature
         titanic.Embarked.unique()
 Out[8]: array(['S', 'C', 'Q', nan], dtype=object)
In [10]: # OrdinarEncoder does not work where there are missing values;
          # for this example, we'll drop the 2 missing values in the "Embarked" column
          titanic.dropna(subset=['Embarked'], how='any', axis=0, inplace=True)
          encoder.fit(titanic[['Embarked']])
          encoder.transform(titanic[['Embarked']])[:10]
Out[10]: array([[2.],
                 [0.],
                 [2.],
                 [2.],
                 [2.],
                 [1.],
                 [2.],
                [2.],
                [2.],
                 [0.]])
```

Such integer representation can, however, not be used directly with all scikit-learn models, as these expect continuous input, and would interpret the categories as being ordered, which is often not desired

1.2. One hot encoding

Another possibility to convert categorical features to features that can be used with scikit-learn models is to use a one-of-K, also known as one-hot encoding. This type of encoding can be obtained with the OneHotEncoder, which transforms each categorical feature with n_categories possible values into n_categories binary features, with one of them 1, and all others 0.

```
In [15]: | encoder.fit(titanic[['Sex']])
          encoder.transform(titanic[['Sex']])
Out[15]: array([[0., 1.],
                 [1., 0.],
                 [1., 0.],
                 [1., 0.],
                 [0., 1.],
                 [0., 1.]])
In [16]: encoder.categories_
Out[16]: [array(['female', 'male'], dtype=object)]
In [17]: # one hot encoding of the "Embarked" feature
         titanic.Embarked.head(10)
Out[17]: PassengerId
               S
               C
         2
                S
         3
               S
               Q
                S
         10
               C
         Name: Embarked, dtype: object
In [18]: | encoder.fit(titanic[['Embarked']])
          encoder.transform(titanic[['Embarked']])
Out[18]: array([[0., 0., 1.],
                 [1., 0., 0.],
                 [0., 0., 1.],
                 [0., 0., 1.],
                 [1., 0., 0.],
                 [0., 1., 0.]])
In [19]: | encoder.categories_
Out[19]: [array(['C', 'Q', 'S'], dtype=object)]
```

2. Normalization and Standardization

- Normalization
- Standardization

```
In [22]: X = titanic[['Pclass','Age','Fare']] # feature matrix
X
```

Out[22]:

	Pclass	Age	Fare
Passengerld			
1	3	22.0	7.2500
2	1	38.0	71.2833
3	3	26.0	7.9250
4	1	35.0	53.1000
5	3	35.0	8.0500
•••			
887	2	27.0	13.0000
888	1	19.0	30.0000
889	3	NaN	23.4500
890	1	26.0	30.0000
891	3	32.0	7.7500

889 rows × 3 columns

2.1. Normalization

Normalization is the process of converting an actual range of values which a numerical feature can take, into a standard range of values, typically in the interval [-1,1] or [0,1]. This can be achieved using MinMaxScaler or MaxAbsScaler, respectively.

Normalizing the data is not a strict requirement. However, in practice, it can lead to an increased speed of training.

```
In [23]: # minmaxscaler scales data to the [0, 1] range
         from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
         scaler.fit(X)
         scaler.transform(X)
Out[23]: array([[1.
                           , 0.27117366, 0.01415106],
                [0.
                           , 0.4722292 , 0.13913574],
                           , 0.32143755, 0.01546857],
                [1.
                . . . ,
                [1.
                                    nan, 0.04577135],
                           , 0.32143755, 0.0585561 ],
                [0.
                           , 0.39683338, 0.01512699]])
                [1.
         # maxabsscaler scales data to the [-1, 1] range
In [24]:
         from sklearn.preprocessing import MaxAbsScaler
         scaler = MaxAbsScaler()
         scaler.fit(X)
         scaler.transform(X)
Out[24]: array([[1.
                           , 0.275 , 0.01415106],
                [0.33333333, 0.475
                                       , 0.13913574],
                [1.
                           , 0.325
                                       , 0.01546857],
                . . . ,
                [1.
                                    nan, 0.04577135],
                [0.33333333, 0.325 , 0.0585561 ],
                         , 0.4 , 0.01512699]])
                [1.
```

2.2. Standardization

Standardization (or mean removal and variance scaling) is the procedure during which the feature values are rescaled so that they have the properties of a standard normal distribution with mean 0 and standard deviation 1.

3. Data Imputation

```
In [26]: X.isnull().sum()
Out[26]: Pclass    0
    Age    177
    Fare    0
    dtype: int64
```

The typical approaches of dealing with missing values for a feature include:

- remove rows with missing features from the dataset (this can be done if your dataset is big enough)
- · using a data imputation technique

The SimpleImputer class provides basic strategies for imputing missing values. Missing values can be imputed with a provided constant value, or using the statistics (mean, median or most frequent) of each column in which the missing values are located.

```
In [27]: from sklearn.impute import SimpleImputer
In [28]: titanic.Age.mean()
Out[28]: 29.64209269662921
```

```
In [29]:
         imputer = SimpleImputer(strategy='mean')
         imputer.fit(X)
         imputed X = imputer.transform(X)
         imputed X
Out[29]: array([[ 3.
                           , 22.
                                         7.25
                                                   ],
                           , 38.
                                       , 71.2833
                [ 1.
                                                   ],
                [ 3.
                           , 26.
                                          7.925
                                                   ],
                           , 29.6420927, 23.45
                [ 3.
                                                   ],
                [ 1.
                           , 26. , 30.
                                                   ],
                                  , 7.75
                [ 3.
                           , 32.
                                                   11)
```

4. Polynomial features

Often it's useful to add complexity to the model by considering nonlinear features of the input data. A simple and common method to use is **polynomial features**, which can get features' high-order and interaction terms. It is implemented in PolynomialFeatures

```
In [30]: from sklearn.preprocessing import PolynomialFeatures
         poly = PolynomialFeatures(degree=2)
In [31]:
         poly.fit(imputed X)
         poly.transform(imputed X)
Out[31]: array([[1.00000000e+00, 3.00000000e+00, 2.20000000e+01, ...,
                 4.84000000e+02, 1.59500000e+02, 5.25625000e+01],
                 [1.00000000e+00, 1.00000000e+00, 3.80000000e+01, ...,
                 1.44400000e+03, 2.70876540e+03, 5.08130886e+03],
                [1.00000000e+00, 3.00000000e+00, 2.60000000e+01, ...,
                 6.76000000e+02, 2.06050000e+02, 6.28056250e+01],
                 [1.00000000e+00, 3.00000000e+00, 2.96420927e+01, ...,
                 8.78653659e+02, 6.95107074e+02, 5.49902500e+02],
                 [1.00000000e+00, 1.00000000e+00, 2.60000000e+01, ...,
                 6.76000000e+02, 7.80000000e+02, 9.00000000e+02],
                 [1.00000000e+00, 3.00000000e+00, 3.20000000e+01, ...,
                 1.02400000e+03, 2.48000000e+02, 6.00625000e+01]])
In [32]: poly.get feature names(X.columns)
Out[32]: ['1',
           'Pclass',
          'Age',
          'Fare',
          'Pclass^2',
          'Pclass Age',
          'Pclass Fare',
           'Age^2',
           'Age Fare',
           'Fare^2']
```