TEMA 8

MÁQUINAS DE VECTORES SOPORTE

SUPPORT VECTOR MACHINES (SVMs)

Índice

- 1. Introducción
- 2. Regresión logística, SVMs y el margen
- 3. Frontera de decisión en SVM
- 4. Funciones Kernel y fronteras no lineales
- 5. SVM para problemas de regresión
- Comentarios finales

Índice

- 1. Introducción
- 2. Regresión logística, SVMs y el margen
- 3. Frontera de decisión en SVM
- 4. Funciones Kernel y fronteras no lineales
- 5. SVM para problemas de regresión
- 6. Comentarios finales

Máquinas de Vectores Soporte Support Vector Machines (SVMs)

- Uno de los mejores algoritmos de aprendizaje
 - Algunos creen (erróneamente no free lunch) que no puede haber otro mejor
- □ Clasificador de margen óptimo

- $lue{}$ Dado un conjunto separable de m ejemplos de entrenamiento
 - Cada ejemplo con n atributos
 - □ Cada ejemplo pertenece a una clase {+1, -1}
- □ Se puede definir un hiperplano que los separe

$$D(x) = b + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = \theta^T x + b = \langle \theta, x \rangle + b$$

- $\blacksquare \theta_i$ y b son coeficientes reales
- $lue{}$ Regresión logística: $b= heta_0$

 \Box El hiperplano de separación cumple las siguientes restricciones para todos los ejemplos de entrenamiento x_i

$$\bullet^T x^{(i)} y_i \ge 0$$

- El hiperplano no es único
 - Hay infinitos

¿Existe algún criterio que permita establecer el hiperplano óptimo?

■ Margen

- Distancia mínima entre el hiperplano y el(los) ejemplo(s) más cercano(s) de cualquier clase
- □ Un hiperplano será óptimo si su margen es de tamaño máximo
 - □ Equidista del ejemplo(s) más cercano(s) de cada clase

- □ Los ejemplos que definen el margen son llamados **vectores soporte**
 - □ Son los únicos utilizados a la hora de construir el hiperplano óptimo

Índice

- 1. Introducción
- 2. Regresión logística, SVMs y el margen
- 3. Frontera de decisión en SVM
- 4. Funciones Kernel y fronteras no lineales
- 5. SVM para problemas de regresión
- 6. Comentarios finales

Regresión logística

Buscamos una clasificación lo más segura posible

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Si
$$y=1$$
 , queremos $h_{\theta}(x)\approx 1$, $\theta^T x\gg 0$ Si $y=0$, queremos $h_{\theta}(x)\approx 0$, $\theta^T x\ll 0$

y = 0 en regresión logística es y = -1 en SVM

Visión alternativa de la regresión logística

 \Box Cambiamos la función de coste para un ejemplo (x, y)

Regr. Logística:
$$-(y \log\left(\frac{1}{1+e^{-\theta^T x}}\right) + (1-y)\log(1-\frac{1}{1+e^{-\theta^T x}}))$$

SVM (Hinge loss): $coste(D(x), y) = max(0, 1 - y * \theta^T x)$

Si y = 1 (queremos $\theta^T x \gg 0$):

Si y = -1 (queremos $\theta^T x \ll 0$):

Hinge loss en SVMs

Support Vector Machine

□ Regresión logística

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} (-\log(h_{\theta}(x^{(i)}))) + (1 - y^{(i)}) (-\log(1 - h_{\theta}(x^{(i)}))) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

■ Support vector machine

$$\min_{\theta} C \sum_{i=1}^{m} cost(\theta^{T} * x^{(i)}, y^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

- \square Eliminamos $\frac{1}{m}$ (no cambia el resultado)
- $lue{}$ El parámetro de regularización es C
 - lacksquare Juega el papel contrario a λ
 - $C = \frac{1}{\lambda}$, es decir, si C es muy grande no regularizamos

Support Vector Machine

$$\min_{\theta} C \sum_{i=1}^{m} cost(\theta^{T} * x^{(i)}, y^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

Hipótesis

$$h_{\theta}(x) = \begin{cases} 1 & si & \theta^T x \ge 0 \\ -1 & si & \theta^T x < 0 \end{cases}$$

- Es decir, las SVMs no devuelven una probabilidad
 - Es un clasificador discriminativo (pero no probabilístico)

□ Función de coste

$$\min_{\theta} C \sum_{i=1}^{m} cost(\theta^{T} * x^{(i)}, y^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

■ No nos basta con acertar, queremos hacerlo con un margen

Si y=1, queremos $\theta^T x \ge 1$ (no solo ≥ 0) Si y=-1, queremos $\theta^T x \le -1$ (no solo < 0)

□ Función de coste

$$\min_{\theta} C \sum_{i=1}^{m} cost(\theta^{T} * x^{(i)}, y^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

- □ Si tomamos un **valor de C muy grande** (100000)
 - Nos centraremos en que la primera parte sea 0
 - Es decir, nos centramos en acertar todos los ejemplos
 - CON UN MARGEN DE SEGURIDAD

□ Función de coste

$$\min_{\theta} C \sum_{i=1}^{m} cost(\theta^{T} * x^{(i)}, y^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$= 0$$

- □ Si tomamos un **valor de C muy grande** (100000)
 - Para acertar todos los ejemplos (y que el coste sea 0)

Si
$$y^{(i)}=1$$
:
$$\theta^T x^{(i)} \geq 1$$
 Si $y^{(i)}=-1$:
$$\theta^T x^{(i)} \leq -1$$

Podemos rescribirlo

$$\min_{\theta} \frac{C \cdot 0 + \frac{1}{2} \sum_{i=1}^{2} \theta_{j}^{2}}{sujeto \ a \ \theta^{T} x^{(i)} \ge 1 \ si \ y^{(i)} = 1}$$
$$\theta^{T} x^{(i)} \le -1 \ si \ y^{(i)} = -1$$

- Datos linealmente separables
 - Se pueden separar con una línea recta

"Large margin classifier"

□ El margen en la presencia de outliers

La SVM es capaz de manejar estos casos gracias al margen "suave" Podemos jugar con C para permitir "fallos" a costa de un mejor margen para el resto de ejemplos

El margen en la presencia de outliers

La SVM es capaz de manejar estos casos gracias al margen "suave" Podemos jugar con C para permitir "fallos" a costa de un mejor margen para el resto de ejemplos

Producto interno (escalar) - repaso

 $u^T v = ||u|| \cdot ||v|| \cdot \cos(\theta)$

 $||v||\cos(\theta)|$ es la longitud de la proyección de v en u=P

> 90⁰

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
$$u^T v = ? \qquad [u_1, u_2] \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$||u|| =$$
longitud del vector $u = \sqrt{u_1^2 + u_2^2} \in \mathbb{R}$

P =longitud de la proyección de v en u (con signo)

$$u^{T}v = P \cdot ||u|| = v^{T}u$$
$$= u_{1}v_{1} + u_{2}v_{2} \qquad P \in \mathbb{R}$$

$$u^{T}v = P \cdot ||u||$$

$$P < 0$$

Índice

- 1. Introducción
- 2. Regresión logística, SVMs y el margen
- 3. Frontera de decisión en SVM
- 4. Funciones Kernel y fronteras no lineales
- 5. SVM para problemas de regresión
- 6. Comentarios finales

- □ ¿Cómo calcular el hiperplano óptimo?
 - $lue{}$ La distancia entre un hiperplano de separación, D(x), y un ejemplo x es

$$\theta^T x = P \cdot \big| |\theta| \big| \qquad P \in \mathbb{R}$$

$$\theta^T x = d \cdot ||\theta|| \qquad d \in \mathbb{R}$$

$$d = \frac{|\theta^T x|}{||\theta||}$$

- □ ¿Cómo calcular el hiperplano óptimo?
 - \blacksquare Tenemos que $y_i \theta^T x_i \ge 0$ para todos los ejemplos de entrenamiento
 - Por tanto

$$d = \frac{|\theta^T x|}{||\theta||} = \frac{y_i \theta^T x_i}{||\theta||}$$

lacktriangleq Y queremos que esta distancia sea mayor que el margen au

$$\frac{y_i \theta^T x_i}{||\theta||} \ge \tau \to y_i \theta^T x_i \ge \tau ||\theta||$$

Encontrar el hiperplano óptimo es equivalente a encontrar el vector heta que maximice el margen

- $_{\Box}$ Infinitas soluciones que difieren solamente en la escala de heta
 - $lue{}$ Las funciones lineales $\lambda((\theta^Tx_i+b)$ con $\lambda\in\mathbb{R}$ representan el mismo plano
- \blacksquare Para evitarlo se limita a la unidad (arbitrariamente) la escala del producto de T y θ

$$\tau ||\theta|| = 1$$
 $\tau = \frac{1}{||\theta||}$

- lue Aumentar el margen es equivalente a reducir la norma de heta
 - Por tanto: un hiperplano de separación óptimo es el que posee un margen máximo (valor mínimo de $||\theta||$) sujeto a 1 (por la restricción)

$$y_i * (\theta^T x_i + b) \ge 1, i \in \{1, ..., m\}$$

- El concepto de margen máximo está relacionado con la capacidad de generalización
- Los ejemplos que cumplen $y_i * (\theta^T x_i + b) = 1$ son los vectores soporte

Objetivo SVMs

Asumiendo la simplificación de $\theta_0=0$ y n=2 (conjunto bidimensional) (Es extensible al modelo completo)

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{i}^{2} \implies = \frac{1}{2} (\theta_{1}^{2} + \theta_{2}^{2}) = \frac{1}{2} \left(\sqrt{\theta_{1}^{2} + \theta_{2}^{2}} \right)^{2} = \frac{1}{2} ||\theta||^{2}$$

sujeto a
$$\theta^T x^{(i)} \ge 1$$
 si $y^{(i)} = 1$
 $\theta^T x^{(i)} \le -1$ si $y^{(i)} = -1$

Por tanto, la SVM se centra en minimizar la norma de θ ¿Qué significa esto?

Objetivo SVMs

Asumiendo la simplificación de $\theta_0=0$ y n=2 (conjunto bidimensional) Es extensible al modelo completo

 θ_1

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2} \longrightarrow = \frac{1}{2} (\theta_{1}^{2} + \theta_{2}^{2}) = \frac{1}{2} \left(\sqrt{\theta_{1}^{2} + \theta_{2}^{2}} \right)^{2} = \frac{1}{2} \left| |\theta| \right|^{2}$$

$$sujeto a \begin{bmatrix} \theta^{T} x^{(i)} \ge 1 & si & y^{(i)} = 1 \\ \theta^{T} x^{(i)} \le -1 & si & y^{(i)} = -1 \end{bmatrix}$$
Por tanto, la SVM minimizar la norm

Por tanto, la SVM se centra en minimizar la norma de θ

Ejemplo positivo

 $\mathbf{p}(i)$

Veamos cómo calcular esta parte

 $x^{(i)}$

Podemos rescribir las restricciones

Objetivo SVMs

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_j^2 = \frac{1}{2} ||\theta||^2$$
sujeto a $P^{(i)} \cdot ||\theta|| \ge 1$ si $y^{(i)} = 1$

$$P^{(i)} \cdot ||\theta|| \le -1$$
 si $y^{(i)} = -1$

Donde $P^{(i)}$ es la proyección de $\mathbf{x}^{(i)}$ en el vector $\boldsymbol{\theta}$ Simplificación: $\boldsymbol{\theta}_0 = 0$

Objetivo SVMs

El vector $oldsymbol{ heta}$ es perpendicular a la frontera de decisión

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2} = \frac{1}{2} \left| |\theta| \right|^{2}$$

$$sujeto \ a \ P^{(i)} \cdot \left| |\theta| \right| \ge 1 \quad si \ y^{(i)} = 1$$

$$P^{(i)} \cdot \left| |\theta| \right| \le -1 \quad si \ y^{(i)} = -1$$

$$C \ \text{muy grand}$$

Donde $P^{(i)}$ es la proyección de $x^{(i)}$ en el vector θ

Simplificación: $\theta_0=0$

$$P^{(1)} \cdot ||\theta|| \ge 1$$

Como $P^{(1)}$ es pequeño $||\theta||$ debe ser grande

$$P^{(2)} \cdot ||\theta|| \le -1$$

Como $P^{(2)}$ es pequeño $||\theta||$ debe ser grande

Pero queremos minimizar $||\theta||$

Objetivo SVMs

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_j^2 = \frac{1}{2} \big| |\theta| \big|^2$$
 sujeto a $P^{(i)} \cdot \big| |\theta| \big| \ge 1$ si $y^{(i)} = 1$ C muy grande
$$P^{(i)} \cdot \big| |\theta| \big| \le -1$$
 si $y^{(i)} = -1$

Donde $P^{(i)}$ es la proyección de $x^{(i)}$ en el vector θ

□ Objetivo SVMs

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2} = \frac{1}{2} \left| |\theta| \right|^{2}$$

$$sujeto \ a \ P^{(i)} \cdot \left| |\theta| \right| \ge 1 \quad si \ y^{(i)} = 1$$

$$P^{(i)} \cdot \left| |\theta| \right| \le -1 \quad si \ y^{(i)} = -1$$

$$C \ \text{muy grande}$$

Donde $P^{(i)}$ es la proyección de $x^{(i)}$ en el vector θ Simplificación: $\theta_0=0$

Por tanto

- lacktriangle Buscamos que las proyecciones de los ejemplos sobre heta sean lo más grandes posibles
- Esto es lo que provoca que la SVM busque márgenes grandes
- lacktriangle Haciendo los márgenes grandes, la SVM puede obtener una norma de heta menor

Objetivo SVMs

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_j^2 = \frac{1}{2} \big| |\theta| \big|$$
 sujeto a $P^{(i)} \cdot \big| |\theta| \big| \ge 1$ si $y^{(i)} = 1$ C muy grande
$$P^{(i)} \cdot \big| |\theta| \big| \le -1$$
 si $y^{(i)} = -1$

Donde $P^{(i)}$ es la proyección de $x^{(i)}$ en el vector θ Simplificación: $\theta_0=0$

Diferencia entre $\theta_0=0$ y $\theta_0\neq 0$

Pero lo estudiado anteriormente es extensible al caso donde $\theta_0 \neq 0$

Objetivo SVMs

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{n} \theta_{j}^{2} = \frac{1}{2} ||\theta||^{2}$$

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} ||\theta||^{2}$$

$$sujeto \ a \ P^{(i)} \cdot ||\theta|| \ge 1 \quad si \ y^{(i)} = 1$$

$$P^{(i)} \cdot ||\theta|| \le -1 \quad si \ y^{(i)} = -1$$

$$sujeto \ a \ y_{i} * (\theta^{T} x_{i} + b) \ge 1$$

Donde $P^{(i)}$ es la proyección de $x^{(i)}$ en el vector θ

- Es un problema de minimización cuadrática con restricciones
 - La función de coste de las SVMs, al igual que la de la regresión logística, es convexa
 - Tiene una única solución global El hiperplano con margen máximo
 - Las restricciones también son convexas
- No entraremos en el algoritmo que permite encontrar dicho mínimo
 - Sequential Minimization Optimization (SMO)
- Utilizaremos el software incluido en scikit-learn (otros interesantes son Liblinear y libSVM)

Índice

- 1. Introducción
- 2. Regresión logística, SVMs y el margen
- 3. Frontera de decisión en SVM
- 4. Funciones Kernel y fronteras no lineales
- 5. SVM para problemas de regresión
- 6. Comentarios finales

Fronteras de decisión no lineales

Características polinomiales

Podemos rescribir el modelo

$$\theta_0 + \theta_1 f_1 + \theta_2 f_2 + \theta_3 f_3 + \cdots$$

 $f_1 = x_1, f_2 = x_2, f_3 = x_1 x_2, f_4 = x_1^2, f_5 = x_2^2, \dots$

¿Hay una forma diferente/mejor de elegir las características $\,f_1,f_2,f_3,\dots\,$?

Funciones Kernel

Cálculo de características

Dado x, calculamos nuevas características dependiendo de su proximidad a los puntos de referencia $l^{(1)}, l^{(2)}, l^{(3)}$

$$\begin{array}{c|c} & l^{(1)} & & l^{(2)} \\ & & l^{(3)} \\ & & \\ &$$

Distancia euclidea entre x y $l^{(1)}$

Dado
$$x$$

$$f_1 = similitud(x, l^{(1)}) = \exp\left(-\frac{\left|\left|x - l^{(1)}\right|\right|^2}{2\sigma^2}\right)$$

$$f_2 = similitud(x, l^{(2)}) = \exp\left(-\frac{\left|\left|x - l^{(2)}\right|\right|^2}{2\sigma^2}\right)$$

$$f_3 = similitud(x, l^{(3)}) = \exp\left(-\frac{\left|\left|x - l^{(3)}\right|\right|^2}{2\sigma^2}\right)$$
Kernel $k(x, l^{(i)})$ Kernel Gaussiano

Funciones Kernel y similitud

- El kernel mide la similitud entre un ejemplo y cada marcador
 - Mapeamos el ejemplo a un espacio de características mayor

$$f_1 = similitud(x, l^{(1)}) = \exp\left(-\frac{\left|\left|x - l^{(1)}\right|\right|^2}{2\sigma^2}\right) = \exp\left(-\frac{\sum_{j=1}^n \left(x_j - l_j^{(1)}\right)^2}{2\sigma^2}\right)$$

Si
$$x \approx l^{(1)}$$
:

$$f_1 \approx \exp\left(-\frac{0^2}{2\sigma^2}\right) \approx 1$$

Si x está lejos de $l^{(1)}$:

$$f_1 = \exp\left(-\frac{(n\acute{u}mero\ grande)^2}{2\sigma^2}\right) \approx 0$$

$$l^{(1)} \rightarrow f_1$$

$$l^{(2)} \to f_2$$

$$l^{(1)} \rightarrow f_1$$

$$l^{(2)} \rightarrow f_2$$

$$l^{(3)} \rightarrow f_3$$

Nueva representación
$$_{\chi}^{\parallel}$$

Ejemplo

Mayor sigma, la similitud tiende a 0 más lentamente

Fronteras de decisión no lineales

□ Nuevo modelo con nuevas características

Cómo elegir los marcadores

Predecir y=1 si $\theta_0+\theta_1f_1+\theta_2f_2+\theta_3f_3\geq 0$ ¿De dónde sacamos $l^{(1)}, l^{(2)}, l^{(3)}, \dots$?

Utilizamos cada ejemplo como marcador

SVM con Kernels

$$\begin{aligned} &\mathsf{Dados}(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), \dots, (x^{(m)},y^{(m)}), \\ &\mathsf{elegir} \quad l^{(1)} = x^{(1)}, l^{(2)} = x^{(2)}, \dots, l^{(m)} = x^{(m)}. \end{aligned}$$

Dado un ejemplo x

ejemplo
$$x$$

$$f_1 = similitud(x, l^{(1)})$$

$$f_2 = similitud(x, l^{(2)})$$

$$f = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}$$

$$f = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}$$

$$f = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}$$

Para el ejemplo de entrenamiento $(x^{(i)}, y^{(i)})$:

$$x^{(i)} \rightarrow \begin{bmatrix} f_1^{(i)} \\ f_2^{(i)} \\ \vdots \\ f_m^{(i)} \end{bmatrix} = sim(x^{(i)}, l^{(1)})$$

$$= sim(x^{(i)}, l^{(2)})$$

$$\leftarrow f_i^{(i)} = sim(x^{(i)}, l^{(i)}) = exp(-\frac{0}{2\sigma^2}) = 1$$

$$= sim(x^{(i)}, l^{(3)})$$

Todos los ejemplos tendrán 1 característica a 1 (a parte del bias)

Es decir, aplicamos el kernel para cada ejemplo con todos los demás y por tanto mapeamos el ejemplo a un vector mdimensional

SVM con Kernels

Hipótesis: Dado x, calcular las características $f \in \mathbb{R}^{m+1}$ **Predecir** "y=1" si $\theta^T f \geq 0 \rightarrow \theta_0 f_0 + \theta_1 f_1 + \dots + \theta_m f_m \quad \theta \in \mathbb{R}^{m+1}$

Entrenamiento:

$$\min_{\theta} C \sum_{i=1}^m y^{(i)} cost_1(\theta^T f^{(i)}) + (1-y^{(i)}) cost_0(\theta^T f^{(i)}) + \underbrace{\frac{1}{2} \sum_{j=1}^n \theta_j^2}_{\text{En este caso } n = m}$$

En este caso n=m $heta_0$ no se regulariza

Modificación para mejorar la eficiencia:

- $\qquad \text{Rescribimos } \sum_{j=1}^m \theta_j^2 = \theta^T \theta \ \leftarrow \theta = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta_m \end{bmatrix} \text{ ignorando } \theta_0$
- Se sustituye por $\theta^T M \theta$ donde M es una matriz que depende del kernel y modifica las distancias
- Hace el aprendizaje de la SVM más eficiente (no entraremos en detalles)

No vamos a meternos en cómo minimizar esta función, utilizaremos paquetes que lo hacen

Intuición Kernel

- La idea intuitiva bajo el uso de los kernels es que mapeamos nuestros ejemplos a un espacio de características mucho mayor
- ☐ Y buscamos el hiperplano con máximo margen en dicho espacio

- Φ es la función de transformación
 - Convierte un ejemplo x en un punto del espacio de características $\Phi(x) = [\phi_1(x), ..., \phi_m(x)]$
 - lacksquare Cada función ϕ_i es una función no lineal
 - lacktriangleq m es el número de variables del nuevo espacio creado

Intuición Kernel

- Gracias al uso de las funciones kernel, evitamos que el coste computacional aumente
 - Ya que el resultado de la función kernel entre dos ejemplos es el mismo que el de trasladar cada ejemplo por separado a un espacio de características mucho mayor y luego calcular su producto escalar
 - Es decir, en realidad no necesitamos calcular el nuevo conjunto de características para cada ejemplo

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle = (\phi_1(x)\phi_1(x') + ... + \phi_m(x)\phi_m(x'))$$

- El kernel entre dos ejemplos es igual al producto escalar entre el mapeo de dichos ejemplos a otro espacio de características
- Cada kernel se corresponde con un mapeo diferente
- El kernel Gaussiano corresponde a un mapeo polinomial a infinitas características

SVM con kernel

 Una vez realizada la transformación se aprende el hiperplano óptimo en el espacio de características

$$D(x) = \theta_1 \phi_1(x) + \dots + \theta_m \phi_m(x) = \langle \theta, \Phi(x) \rangle$$

La frontera de decisión lineal aprendida en el espacio de características se convierte en una frontera de decisión no lineal en el espacio original

Índice

- 1. Introducción
- 2. Regresión logística, SVMs y el margen
- 3. Frontera de decisión en SVM
- 4. Funciones Kernel y fronteras no lineales
- 5. SVM para problemas de regresión
- 6. Comentarios finales

lacktriangle Dado un conjunto de m ejemplos de entrenamiento

$$\Box S = ((x_i, y_i), i \in \{1, ..., m\}, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$$

lacktriangle Se asume que todos los y_i se puede ajustar (o casi) mediante una función lineal

 \square Objetivo: encontrar el vector de parámetros θ que permita definir la función lineal

$$f(x) = \theta_1 x_1 + ... + \theta_n x_n + b = \theta^T x + b = <\theta, x > +b$$

- Para permitir cierto ruido en los ejemplos de entrenamiento se puede relajar la condición de error entre el valor predicho y el real
 - \blacksquare Función de pérdida ϵ -sensible, L_{ϵ} : función lineal con una zona insensible (anchura 2ϵ) en la que el error es 0

- □ Es muy difícil que los ejemplos se ajusten al modelo con error 0
 - ■Se recurre al margen
 - Con dos variables de holgura ξ^+ y ξ^- que cuantifican el error
 - $\mathbf{E}\xi_i^+>0$ cuando $\mathbf{f}(x_i)-y_i>\epsilon$ y $\xi_i^+=0$ en otro caso
 - $\xi_i^- > 0$ cuando $y_i f(x_i) > \epsilon$ y $\xi_i^- = 0$ en otro caso
 - $\xi_{i}^{+} * \xi_{i}^{-} = 0$
 - La suma de todas las variables de holgura permite cuantificar el coste asociado a los ejemplos con error de predicción no nulo
 - lacktriangle En clasificación tenemos solo una variable de holgura por cada ejemplo: ξ_i

- □ Problema de optimización
 - Igual al de clasificación pero con dos variables de holgura

$$\min_{\theta} \frac{1}{2} ||\theta||^{2} + C \sum_{i=1}^{m} (\xi_{i}^{+} + \xi_{i}^{-})$$
sujeto a $(\theta^{T} x_{i} + b) - y_{i} - \epsilon - \xi_{i}^{+} \le 0$

$$y_{i} - (\theta^{T} x_{i} + b) - \epsilon - \xi_{i}^{-} \le 0$$

$$\xi_{i}^{+}, \xi_{i}^{-} \ge 0, i \in \{1, ..., m\}$$

- □ Si los ejemplos no pueden ajustarse por una función lineal
 - Uso de las funciones kernel

Índice

- 1. Introducción
- 2. Regresión logística, SVMs y el margen
- 3. Frontera de decisión en SVM
 - Frontera dura (hard margin)
 - Frontera suave (soft margin)
- 4. Funciones Kernel y fronteras no lineales
- 5. SVM para problemas de regresión
- Comentarios finales

Comentarios finales

Utilizaremos cualquier software de SVMs para encontrar los parámetros θ (ej., scikit-learn, liblinear, libsym, ...)

Es necesario especificar:

Elección del parámetro C.

Elección del kernel (función de similitud):

Ej. Sin kernel ("kernel lineal") Predecir "y = 1"si $\theta^T x \ge 0$

$$\theta_0 + \theta_1 x_1 + \dots + \theta_n x_n \geq 0$$

$$n \text{ grande, } m \text{ pequeño} \quad x \in \mathbb{R}^{n+1}$$

Kernel Gaussiano:

 $f_i = \exp\left(-rac{||x-l^{(i)}||^2}{2\sigma^2}
ight)$, donde $l^{(i)} = x^{(i)}$

Necesario elegir σ^2

Comentarios finales

□ Sobre las funciones kernel

- Es necesario el escalado antes de usar el kernel Gaussiano
- □ Sino la distancia Euclídea viene influenciada por la magnitud de las características

$$||x - l||^2 = (x_1 - l_1)^2 + (x_2 - l_2)^2 + \dots + (x_n - l_n)^2$$

$$m^2$$
1-5 habitaciones

Los metros cuadrados tendrán mucha más influencia que el número de habitaciones si no están normalizadas

- Hay muchas funciones kernel
 - Generalmente con la Gaussiana es suficiente
 - El **kernel polinomial** también suele usarse
 - Otras: String kernel, chi-square kernel, histogram intersection kernel,...

Comentarios finales

Clasificación multiclase

- Las SVMs no soportan múltiples clases de manera nativa
- □ Veremos más adelante cómo utilizarlas
 - One-vs-One
 - One-vs-All

