Examen Parcial Introducción a los Algoritmos - 23 de Abril de 2018 Comisiones Turno Tarde

nota	1	2	3	4	5

Apellido y Nombre:

Cantidad de hojas entregadas: ___ (Numerar cada hoja.)

- 1. [10 pto(s)] Definir la función $posCeroNeg: (Num, Num, Num) \rightarrow Bool$ que dado una terna de números devuelve True si la primer componente de la terna es un número positivo, la segunda es 0 y la tercera es un número negativo. En caso contrario devuelve False. Ejemplos:
 - (I) posCeroNeg.(3,0,-4) = True
 - (II) posCeroNeg.(4,0,7) = False
 - (III) posCeroNeg.(-3,0,5) = False
- 2. (a) [15 pto(s)] Definir la función recursiva $tama\~nos$: [[a]] \rightarrow [Num] que dada una lista de listas de elementos de tipo a, retorna la lista que contiene el tama $\~no$ de cada una de esas listas. Ejemplos:
 - (I) $tama\tilde{n}os.[[11, 2], []] = [2, 0]$
 - (II) $tama\~nos.[[True, False, False], [], [False]] = [3, 0, 1]$
 - (III) $tama\tilde{n}os.[] = []$

Ayuda: la función $\#:[a] \to Num$ que devuelve la longitud de una lista está definida en el ejercicio 4.

- (b) [5 pto(s)] Evaluar manualmente la función utilizando el ejemplo (I). Justificar cada paso.
- 3. (a) [15 pto(s)] Definir la función recursiva componer : $String \to [String] \to [(String, String)]$ que dado un String s y una lista de Strings xs retorna la lista de pares (s, x) donde la primer componente s es el String dado, y x es cada elemento de xs. Ejemplos:
 - (I) componer. "Juan". ["Perez", "Garcia"] = [("Juan", "Perez"), ("Juan", "Garcia")]
 - (II) componer. "Pepe". [] = []
 - (b) [5 pto(s)] Usar la función anterior para definir la función $saludar : [String] \rightarrow [(String, String)]$ que dada una lista de nombres xs retorna la lista de pares donde la primer componente es el String "Hola" y la segunda componente cada nombre guardado en xs. Ejemplos:
 - (I) saludar.[] = []
 - (II) saludar.["Camila", "Ana"] = [("Hola", "Camila"),("Hola", "Ana")]
- 4. [25 pto(s)] Dadas las siguientes funciones $negarLista:[Bool] \rightarrow [Bool], y \#:[a] \rightarrow Num$

demostrar por inducción la siguiente propiedad

$$\#(negarLista.xs) = \#xs$$

5. [25 pto(s)] Dada las siguientes funciones recursivas +: $[a] \rightarrow [a] \rightarrow [a] y contarCeros$: $[Num] \rightarrow Num$, definidas como:

$$[\] ++ys \ \doteq \ ys \qquad contarCeros.[\] \ \doteq \ 0$$

$$(x \triangleright xs) ++ (ys) \ \doteq \ x \triangleright (xs ++ys) \qquad contarCeros.(x \triangleright xs) \ \doteq \ ((x=0) \rightarrow 1 + contarCeros.xs$$

$$\Box (x \neq 0) \rightarrow contarCeros.xs$$

$$)$$

demuestrar por inducción que contarCeros.(xs ++ ys) = contarCeros.xs + contarCeros.ys.