

10/560977

IAP9 Rec'd PCT/PTO 14 DEC 2009

WO 2005/003399

PCT/EP2004/007201

Beta-Titanlegierung, Verfahren zur Herstellung eines
Warmwalzproduktes aus einer solchen Legierung
und deren Verwendungen

Beta-Titanlegierungen mit hohen Vanadiumgehalten zeichnen
sich durch gute Festigkeiten bei gleichzeitig guter
Zähigkeit bzw. Duktilität aus. Sie werden üblicherweise in
einem Warmformgebungsverfahren zu Halbzeugen, wie Blechen,
Stäben, Hohl- oder Vollprofilen, Drähten, verarbeitet, aus
denen dann hochwertige Leichtbaukomponenten hergestellt
werden.

Die Grundlagen der Herstellung und Eigenschaften von Beta-
Titanlegierungen sind in U. Zwicker "Titan- und
Titanlegierungen", Springer-Verlag Berlin, Heidelberg, New
York, 1974 erläutert. Neben Titan als Matrixmetall
enthalten demnach Beta-Titanlegierungen als den krz β -
Mischkristall stabilisierende Hauptlegierungselemente
üblicherweise V, Nb, Ta, Mo, Fe und Cr sowie gewisse
Gehalte an Zr, Sn, Al und Zusätze an Si.

Eine Beta-Titanlegierung und ein Verfahren zur Herstellung
von Bauteilen aus dieser Legierung sind auch aus der
DD 281 422 A5 bekannt. Bei der bekannten Legierung betragen
die Gehalte an Cr und V in Summe 1,5 - 4,5 Masse-%.
Gleichzeitig ist der Gehalt an Cr auf weniger als
2,5 Masse-% beschränkt. Zusätzlich enthält die bekannte
Legierung weniger als 2,0 Masse-% Fe, 3,8 - 4,8 Masse-% Al,
1,5 - 4,5 Masse-% Mo sowie 1,5 - 2,5 Masse-% Sn,
2,8 - 4,8 Masse-% Zr und weniger als 0,3 Masse-% Si. Gemäß-

BESTÄTIGUNGSKOPIE

dem bekannten Verfahren wird eine derart zusammengesetzte Schmelze zu Barren vergossen, die anschließend in einem zweistufig durchgeföhrten Vorgang zu einem Bauteil warmverformt werden. Das erhaltene Bauteil wird durch eine Wärmebehandlung, bei der seine Temperatur 10 °C bis 40 °C unter einem in der DD 281 422 A5 "transus β "-Echtwert bezeichneten Wert gehalten wird, in feste Lösung gebracht. Nach dieser Wärmebehandlung wird das Teil für vier bis zwölf Stunden zwischen 550 °C bis 650 °C gehalten. Die so behandelten Teile weisen eine Dehngrenze $R_{p0,2}$ von mindestens 1100 MPa und Zugfestigkeit R_a von mindestens 1200 MPa auf.

Weitere Beispiele für Beta-Titanlegierungen sind in der AT-P 272 677, der EP 0 408 313 B1 und der EP 0 600 579 B1 gegeben. Dem in diesen Druckschriften dokumentierten Stand der Technik gemeinsam ist das Bestreben, eine möglichst gut vergießbare Titanlegierung zur Verfügung zu stellen, die gleichzeitig gute mechanische Eigenschaften besitzt und sich kostengünstig erzeugen lässt.

Die Praxis zeigt jedoch, dass die bekannten Legierungen einerseits hinsichtlich ihrer Festigkeiten und andererseits hinsichtlich ihres Dehnungsverhaltens die von den Verarbeitern und Verwendern gestellten Anforderungen nicht ausreichend erfüllen.

Der Erfahrung lag daher die Aufgabe zugrunde, eine hochfeste Beta-Titanlegierung mit guten plastischen Eigenschaften vor der Aushärtung zum Zwecke einer guten Umformbarkeit sowie hoher Dauerfestigkeit nach der Aushärtung zu schaffen, die sich kostengünstig erzeugen lässt. Darüber hinaus sollte ein Verfahren angegeben

werden, mit dem sich aus einer solchen Legierung hochbelastbare Bauteile kostengünstig herstellen lassen.

In Bezug auf den Werkstoff wird diese Aufgabe durch eine Beta-Titanlegierung gelöst, die (in Masse-%) V: 10 - 17 %, Fe: 2 - 5 %, Al: 2 - 5 %, Mo: 0,1 - 3 %, sowie optional eines oder mehrere Legierungselemente aus der Gruppe Sn, Si, Cr, Nb, Zr gemäß folgender Maßgabe: Sn: 0,1 - 3 %, Si: 0,1 ≤ 2 %, Cr: ≤ 2 %, Nb: ≤ 2 %, Zr: ≤ 2, wobei die Beta-Titanlegierung zusätzlich Gehalte an C und an Elementen der Gruppe der Lanthanide aufweisen kann, und als Rest Ti und unvermeidbare Verunreinigungen enthält.

Eine erfindungsgemäß zusammengesetzte Beta-Titanlegierung erreicht bei Raumtemperatur sicher eine Dehngrenze $R_{p0,2}$ von mindestens 1400 MPa, eine Zugfestigkeit R_u von mindestens 1500 MPa und eine plastische Dehnung $\delta_{p0,2}$ von mehr als 4 %. Dabei übersteigt ihre Dichte ρ 4,8 g/cm³ nicht, so dass sich mit einer erfindungsgemäßen Beta-Titanlegierung nicht nur extrem feste, sondern auch gewichtsoptimierte Bauteile erzeugen lassen.

Dies wird zum einen dadurch erreicht, dass die erfindungsgemäße Legierung Vanadium-Gehalte aufweist, die deutlich über denen liegen, die beim Stand der Technik in Beta-Titanlegierungen vorgesehen sind. Durch die hohen V-Gehalte wird die β -Phase des Gefüges stabilisiert und die Warmfestigkeit erhöht. Daher liegt der V-Gehalt in einer erfindungsgemäßen Legierung bevorzugt im Bereich von 12 - 17 Masse-%, insbesondere im Bereich von 13 - 17 Masse-%.

Gehalte von 2 - 5 Masse-% Aluminium stabilisieren die α -Phase des Gefüges und bewirken eine effektive Mischkristallhärtung.

Die Wirkung des Eisens in der erfindungsgemäß zusammengesetzten Titanlegierung besteht in einer Stabilisierung der β -Phase des Gefüges, einer Erhöhung der Warmfestigkeit und einer Verbesserung der Mischkristallbildung.

Molybdän in Gehalten von 0,1 - 3 Masse-%, bevorzugt mindestens 0,5 Masse-%, ist in einem erfindungsgemäßen Titanwerkstoff enthalten, um die β -Phase des Gefüges zu stabilisieren und die Warmfestigkeit zu erhöhen.

Optional enthält eine erfindungsgemäße Beta-Titanlegierung darüber hinaus eines oder mehrere Legierungselemente aus der Gruppe Sn, Si, Cr, Nb, Zr.

Die Anwesenheit von Zinn wirkt sich dabei günstig auf die Mischkristallhärtung und die Warmfestigkeit aus. Daher liegen die Sn-Gehalte bevorzugt im Bereich von 0,5 - 3 Masse-%.

Silizium erhöht in einer erfindungsgemäßen Legierung die Warmfestigkeit und die Oxidationsresistenz.

Chrom kann der Legierung zugegeben werden, um die β -Phase des Gefüges zu stabilisieren und die Warmfestigkeit zu erhöhen.

Zugaben an Niob haben darüber hinaus einen günstigen Einfluss auf die Warmfestigkeit und die Oxidationsresistenz der Legierung.

Schließlich kann es zur Verbesserung der Mischkristallbildung und der Oxidationsresistenz auch vorteilhaft sein, der erfindungsgemäßen Legierung Zirconium zuzugeben.

Neben den voranstehend hinsichtlich ihrer Wirkung im Einzelnen erläuterten Bestandteilen kann die erfindungsgemäße Legierung weitere Bestandteile enthalten, solange diese die erfindungsgemäß erzielten Eigenschaften nicht negativ beeinflussen. In diesem Zusammenhang zu nennen sind insbesondere Gehalte an Kohlenstoff und Gehalte an Elementen, die der Gruppe der Lanthaniden zugeordnet sind.

Optimale Eigenschaften der erfindungsgemäßen Beta-Titanlegierungen stellen sich dann ein, wenn die voranstehend angegebenen Grenzwerte auf mindestens zwei Dezimalstellen genau eingehalten werden.

In Bezug auf das Verfahren wird die oben angegebene Aufgabe dadurch gelöst, dass bei der Herstellung eines aus einer Beta-Titanlegierung erzeugten Produktes folgende Arbeitsschritte durchlaufen werden:

- Erschmelzen einer erfindungsgemäß beschaffenen Beta-Titan-Schmelze zu einem blockförmigen Vorprodukt,
- Warmumformen des Vorprodukts,
- Warmendumformen des warmumgeformten Vorprodukts zu einem Warmendprodukt,
- Lösungsglühen des Warmendproduktes,
- Kaltumformen des Warmendproduktes zu einem Endprodukt,
- Aushärtungsbehandlung des Endproduktes.

Dabei kann die Warmumformung für die Herstellung von Bändern oder Blechen als Warmwalzen ausgeführt werden, an das sich erforderlichenfalls ein Haspeln anschließen kann.

Besonders kostengünstig lässt sich die erfindungsgemäße Ti-Legierung dadurch erzeugen, dass die Legierungselemente V, Fe und Al in an sich bekannter Weise nicht einzeln, sondern in Form einer Vorlegierung zulegiert werden. Derartige Vorlegierungen sind im Handel erhältlich.

Das durch das erfindungsgemäße Verfahren nach der Warmendumformung erhaltene Warmendprodukt besteht aus einphasigem, metastabilen Beta-Titan, dessen Transstabilitätsgrenze T_g bei ca. 788 °C liegt. Wird das Warmendprodukt durch Warmwalzen erzeugt, so weist es in Walzrichtung gestreckte Kristalle auf und besitzt ein teilweise dynamisch rekristallisiertes Gefüge.

Das im Zuge des erfindungsgemäßen Verfahrens verarbeitete blockförmige Vorprodukt wird durch ein Umschmelzen gewonnen. Dazu kann in an sich bekannter Weise ein Vakuumumschmelzofen ("Vacuum Arc Remelt - Ofen") eingesetzt werden.

Bei dem Vorprodukt kann es sich beispielsweise um Rundblöcke handeln, die dann im Zuge der Warmumformung zu Knüppeln oder Platinen warmumgeformt werden. Knüppel dieser Art sind typischerweise vierkantförmig mit Kantenlängen von beispielsweise 70 mm oder rund mit einem Durchmesser von beispielsweise 60 mm ausgebildet.

Die Warmendumformung wird typischerweise bei Umformtemperaturen durchgeführt, die im Bereich von 950 °C bis 1150 °C liegen, um eine effektive

Querschnittsreduzierung und eine Homogenisierung der Zusammensetzung und des Gefüges zu erreichen.

Für den Fall, dass die Warmendumformung als Warmwalzen durchgeführt wird, sieht eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass das Warmendprodukt nach der Warmendumformung lösungsgeglüht wird. An die Lösungsglühung schließt sich die Kaltumformung an. Die Lösungsglühung erfolgt typischerweise für 30 Minuten bei 875 °C.

Zur weiteren Steigerung der Werte der mechanischen Eigenschaften wird das ggf. lösungsgeglühte Warmendprodukt rekristallisierend geglüht. Die Temperaturen während dieser Glühbehandlung liegen bei Haltezeiten von 20 bis 40 Minuten typischerweise im Bereich von 775 °C bis 875 °C.

Anschließend erfolgt die Kaltumformung, beispielsweise durch Kaltwalzen. Das nach der Kaltumformung erhaltene Endprodukt besitzt eine Dehngrenze $R_{p0,2}$ von mindestens 870 MPa bis 900 MPa, eine Zugfestigkeit R_m , die 890 MPa bis 944 MPa beträgt, sowie eine plastische Dehnung von 14 - 17 %.

Nachdem das rekristallisierend geglühte Walzprodukt dann einer Aushärtungsbehandlung unterzogen worden ist, weist das erhaltene Produkt eine Dehngrenze $R_{p0,2}$ von mindestens 1.400 MPa, eine Streckgrenze R_u von mindestens 1.500 MPa und eine Dehnung ϵ_p von mindestens 4 % auf. Bei einer Behandlungsdauer von typischerweise 5 Stunden liegt die typische Temperatur der Aushärtungsbehandlung bei ca. 480 °C. Bei Einhaltung dieser Zeit- und Temperaturvorgaben stellt sich ein optimales Eigenschaftsspektrum der erfindungsgemäß erzeugten Endprodukte ein.

Aus einer erfindungsgemäß beschaffenen Beta-Titanlegierung lassen sich Halbzeuge, wie Platinen, Bleche, Stäbe, Profile oder Drähte herstellen, die sich aufgrund ihres Eigenschaftsprofils hervorragend zu hoch belastbaren Bauelementen eignen. Dabei lassen sich die Halbzeuge insbesondere durch Anwendung des erfindungsgemäßen Verfahrens kostengünstig erzeugen.

Als besonders geeignet erweisen sich erfindungsgemäße Beta-Titanlegierungen als Konstruktionswerkstoff für die Fertigung von Komponenten, die bei schienen- oder straßengebundenen Fahrzeugen sowie in der Luft- und Raumfahrt eingesetzt werden. Als Beispiele für diese Verwendung sind Achsfedern, Pleuel, Kolbenbolzen, hochfeste Schrauben, Bremskolben und -scheiben zu nennen.

Ebenso eignen sich erfindungsgemäße Beta-Titanlegierungen aufgrund ihrer besonderen Eigenschaften besonders gut zur Herstellung von Komponenten, die im Bereich des allgemeinen Maschinenbaus, des Apparatebaus, des Anlagenbaus, des Behälterbaus, der Kryogentechnik, des Fahrzeugbaus oder im Bereich des Sports eingesetzt werden.

Dabei hat sich gezeigt, dass sich erfindungsgemäß beschaffene Beta-Titanlegierungen insbesondere für die Herstellung von Bauteilen eignen, die im Temperaturbereich von -196 °C bis 300 °C eingesetzt werden.

Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert.

In einem VAR-Ofen sind Rundblöcke, die (Angaben in Masse-%) 15 % V, 4 % Fe, 3 % Al, 1 % Mo, 1 % Sn und 0,3 % Si, Rest Ti und unvermeidbare Verunreinigungen enthielten,

erschmolzen worden, die anschließend in einer Schmiedeoperation zu vierkantförmigen Knüppeln warmverformt worden sind. Beim Legieren der Schmelze sind die Legierungsbestandteile V, Fe und Al in Form einer kostengünstig erhältlichen Vorlegierung gemeinsam dem Matrixwerkstoff Ti zugegeben worden.

Nach dem Schmieden sind die Knüppel bei Warmwalztemperaturen, die im Bereich von 1100 °C bis 950 °C lagen, zu Draht warmgewalzt und anschließend zu Coils gehästelt worden. Nach dem Warmwalzen wies der Draht einphasiges metastabiles β -Titan (Transustemperatur T_b ca. 788 °C) mit in Richtung der Drahtachse gestreckten Kristalliten und teilweise dynamisch rekristallisiertem Gefüge auf.

Im Anschluss an das Hästeln ist der Draht bei 875 °C für 30 Minuten lösungsgeglüht worden. Im Anschluss an die Lösungsglühung erfolgte die Kaltumformung des Drahtes. Nach der Kaltumformung ist der Draht bei Temperaturen, die zwischen 775 °C und 875 °C lagen, bei einer Haltedauer, die im Bereich von 20 Minuten bis 40 Minuten lag, rekristallisierend geeglüht worden. Der derart geeglühte Draht wies eine zwischen 870 MPa und 900 MPa liegende Dehngrenze $R_{p0,2}$, eine zwischen 890 MPa - 944 MPa liegende Zugfestigkeit R_m und eine zwischen 14 % - 17 % liegende Dehnung A auf. An die Rekristallisationsglühung schloss sich eine Aushärtungsbehandlung an, bei der der Draht für 5 Stunden bei 480 °C gehalten worden ist.

Der derart fertig behandelte Draht wies bei Raumtemperatur eine Dehngrenze $R_{p0,2}$ von mehr als 1400 MPa, eine Zugfestigkeit R_m von mehr als 1500 MPa und eine Dehnung A auf, die mindestens im Bereich von 4 % bis 5 % lag.

P A T E N T A N S P R Ü C H E

1. Beta-Titanlegierung enthaltend (in Masse-%)

V: 10 - 17 %,
Fe: 2 - 5 %,
Al: 2 - 5 %,
Mo: 0,1 - 3 %,

sowie optional eines oder mehrere Legierungselemente aus der Gruppe Sn, Si, Cr, Nb, Zr gemäß folgender Maßgabe:

Sn: 0,1 - 3 %,
Si: 0,1 ≤ 2 %,
Cr: ≤ 2 %,
Nb: ≤ 2 %,
Zr: ≤ 2 %,

wobei die Beta-Titanlegierung zusätzlich Gehalte an C und an Elementen der Gruppe der Lanthanide aufweisen kann,

und als Rest Ti und unvermeidbare Verunreinigungen.

2. Beta-Titanlegierung enthaltend (in Masse-%)

V: 10,00 - 17,00 %,
Fe: 2,00 - 5,00 %,
Al: 2,00 - 5,00 %,
Mo: 0,10 - 3,00 %,

sowie optional eines oder mehrere Legierungselemente aus der Gruppe Sn, Si, Cr, Nb, Zr gemäß folgender Maßgabe:

Sn: 0,10 - 3,00 %,
Si: 0,10 - 2,00 %,
Cr: ≤ 2,00 %,
Nb: ≤ 2,00 %,
Zr: ≤ 2,00 %,

und als Rest Ti und unvermeidbare Verunreinigungen.

3. Beta-Titanlegierung nach einem der voranstehenden Ansprüche, enthaltend 12 - 17 Masse-% V.

4. Beta-Titanlegierung nach einem der voranstehenden Ansprüche, enthaltend 0,5 - 3 Masse-% Mo.

5. Beta-Titanlegierung nach einem der voranstehenden Ansprüche, enthaltend 0,5 - 3 Masse-% Sn.

6. Beta-Titanlegierung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s s i e b e i

Raumtemperatur eine Dehngrenze $R_{p0,2}$ von mindestens 1400 MPa aufweist.

7. Beta-Titanlegierung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s sie bei Raumtemperatur eine Zugfestigkeit R_m von mindestens 1500 MPa aufweist.
8. Beta-Titanlegierung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s sie bei Raumtemperatur eine plastische Dehnung $\epsilon_{p0,2}$ von mehr als 4 % besitzt.
9. Beta-Titanlegierung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s ihre Dichte ρ 4,8 g/cm³ nicht übersteigt.
10. Verfahren zum Herstellen eines aus einer Beta-Titanlegierung erzeugten Produktes umfassend folgende Arbeitsschritte:
 - Erschmelzen einer gemäß einem der Ansprüche 1 bis 9 beschaffenen Beta-Titan-Schmelze zu einem blockförmigen Vorprodukt,
 - Warmumformen des Vorprodukts,
 - Warmendumformen des warmumgeformten Vorprodukts zu einem Warmendprodukt,
 - Lösungsglühen des Warmendproduktes,

- Kaltumformen des Warmendproduktes zu einem Endprodukt,
 - Aushärtungsbehandlung des Endproduktes.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Warmendumformung als Warmwalzen ausgeführt wird.
 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass sich an das Warmwalzen ein Haspeln anschließt.
 13. Verfahren nach Anspruch 10 bis 12, dadurch gekennzeichnet, dass die Legierungselemente V, Fe und Al in Form einer Vorlegierung zulegiert werden.
 14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Vorprodukt Rundblöcke sind, die im Zuge der Warmumformung zu Knüppeln oder Platinen warmumgeformt werden.
 15. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass das Warmendprodukt ein Draht oder ein Blech ist.

16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass das Warmendprodukt nach dem Haspeln lösungsgeglüht wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass das lösungsgeglühte Warmendprodukt kaltverformt wird.
18. Halbzeug hergestellt aus einer gemäß einem der Ansprüche 1 bis 9 beschaffenen Beta-Titanlegierung.
19. Verwendung einer gemäß einem der Ansprüche 1 bis 9 beschaffenen Beta-Titanlegierung für die Herstellung von Bauteilen, die im Temperaturbereich von -196 °C bis 300 °C eingesetzt werden.
20. Verwendung einer gemäß einem der Ansprüche 1 bis 9 beschaffenen Beta-Titanlegierung für die Herstellung von Fahrzeugkomponenten.
21. Verwendung einer gemäß einem der Ansprüche 1 bis 9 beschaffenen Beta-Titanlegierung für die Herstellung von in Anlagen- oder Apparatebau eingesetzten Komponenten.
22. Verwendung einer gemäß einem der Ansprüche 1 bis 9 beschaffenen Beta-Titanlegierung für die Herstellung von Sportgeräten.

BEST AVAILABLE COPY
INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/007201

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C22C14/00 C22F1/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C22C C22F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 04, 31 March 1998 (1998-03-31) -& JP 09 316572 A (MITSUBISHI MATERIALS CORP), 9 December 1997. (1997-12-09) abstract; example E; table 1	1,2
A	SU 443 090 A (S.G.GLAZINOV ET AL) 15 September 1974 (1974-09-15) claim 1	1,2 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubt on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

22 November 2004

Date of mailing of the international search report

29/11/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentaan 2
NL - 2200 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax. (+31-70) 340-3016

Authorized officer

Gregg, N

BEST AVAILABLE COPY
INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/007201

(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	SPIEKERMANN P: "LEGIERUNGEN - EIN BESONDERES PATENTRECHTLICHES PROBLEM? - LEGIERUNGSPRUEFUNG IM EUROPAEISCHEN PATENTAMT -" MITTEILUNGEN DER DEUTSCHEN PATENTANWAELTE, HEYMANN, KOLN,, DE, 1993, pages 178-190, XP000961882 ISSN: 0026-6884 page 181, column 2, paragraph 3	1
A	M.J.DONACHIE JR: "Titanium - A Technical Guide" 1988, ASM , OHIO US , XP002305815 page 14 page 39 page 62 - page 63	1,2,10

BEST AVAILABLE COPY
INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP2004/007201

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP 09316572	A 09-12-1997	NONE	
SU 443090	A 15-09-1974	SU 443090 A1	15-09-1974

BEST AVAILABLE COPY
INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/007201

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C22C14/00 C22F1/18

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestpräilstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C22C C22F

Recherchierte aber nicht zum Mindestpräilstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationale Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal, PAJ, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN Bd. 1998, Nr. 04, 31. März 1998 (1998-03-31) -& JP 09 316572 A (MITSUBISHI MATERIALS CORP), 9. Dezember 1997 (1997-12-09) Zusammenfassung; Beispiel E; Tabelle 1	1,2
A	SU 443 090 A (S.G.GLAZINOV ET AL) 15. September 1974 (1974-09-15) Anspruch 1	1,2
	-----	-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besonders Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist

"L" Veröffentlichung, die gezeigt ist, einen Prioritätsanspruch zweckmäßig erscheint, obwohl sie später als die im Recherchenbericht genannte Veröffentlichung beigelegt werden soll oder die aus einem anderen besondern Grund angegeben ist (wie ausgetragen)

"O" Veröffentlichung, die sich auf eine mindländische Offenlegung einer Benutzung, eine Ausstellung oder anderes Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem bezeugten Prioritätsatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsatum veröffentlicht worden ist und mit der Anmeldung nicht konkurriert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie dient

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung, die berücksichtigt werden muss, um die beanspruchte Erfindung nicht als auf erfindenderischer Tätigkeit beruhend bezeichnen zu können, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

"S" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationale Recherche

Abschlussdatum des internationalen Recherchenberichts

22. November 2004

29/11/2004

Name und Postanschrift der internationalen Recherchenbehörde

Europäisches Patentamt, P.O. 5810 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax. (+31-70) 340-3015

Bevollmächtigter Bediensteter

Gregg, N

BEST AVAILABLE COPY
INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/007201

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	SPIEKERMANN P: "LEGIERUNGEN - EIN BESONDERES PATENTRECHTLICHES PROBLEM? - LEGIERUNGSPRUEFUNG IM EUROPAEISCHEN PATENTANT -" MITTEILUNGEN DER DEUTSCHEN PATENTANWAELTE, HEYMANN, KOLN., DE, 1993, Seiten 178-190, XP000961882 ISSN: 0026-6884 Seite 181, Spalte 2, Absatz 3	1
A	M.J.DONACHIE JR: "Titanium - A Technical Guide" 1988, ASM , OHIO US , XP002305815 Seite 14 Seite 39 Seite 62 - Seite 63	1,2,10

BEST AVAILABLE COPY**INTERNATIONALER RECHERCHENBERICHT**

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Altenzeichen

PCT/EP2004/007201

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
JP 09316572	A 09-12-1997	KEINE	
SU 443090	A 15-09-1974	SU 443090 A1	15-09-1974