Limits

Exercise 33. Use the definition to prove

a)
$$\lim_{x \to 3} (x-2)^2 = 1$$
, b) $\lim_{x \to \infty} \frac{2}{x} = 0$, c) $\lim_{x \to 2} \frac{1}{(x-2)^2} = \infty$.

Exercise 34. Evaluate the limit

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x + 1}$$
 b) $\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 4x + 3}$ c) $\lim_{x \to 0^+} \frac{x + \sqrt{x}}{\sqrt{x}}$ d) $\lim_{x \to 2} \frac{x^3 - 8}{x^4 - 16}$ e) $\lim_{x \to \infty} \frac{x^2 - 5x + 4}{x(x - 5)}$ f) $\lim_{x \to 6} \frac{\sqrt{x - 2} - 2}{x - 6}$ g) $\lim_{x \to -\infty} (\sqrt{x^2 + 1} + x)$ h) $\lim_{x \to \infty} \frac{2^x + 1}{3^x + 2}$ i) $\lim_{x \to \frac{\pi}{2}^-} \frac{\tan^2 x + 1}{\tan^2 x + 5}$ j) $\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x}$ k) $\lim_{x \to \infty} \frac{\sqrt{x^2 + x} + 2}{x + 1}$ l) $\lim_{x \to 1} \frac{1}{1 - x} - \frac{3}{1 - x^3}$.

Exercise 35. Find the limit, if it exists. If the limit does not exist, explain why

a)
$$\lim_{x \to 0} x \operatorname{sgn} x$$
, b) $\lim_{x \to 0} 2^{\frac{1}{x}}$, c) $\lim_{x \to 2} \frac{x^2 - 4}{|x - 2|}$, d) $\lim_{x \to 0} x \arctan \frac{1}{x}$.

Exercise 36. Use the Squeeze Theorem to show that

a)
$$\lim_{x \to 0^+} \sqrt{x} \cos \frac{1}{x^2} = 0$$
, b) $\lim_{x \to 0} x^2 \arctan \frac{1}{x} = 0$, c) $\lim_{x \to \infty} \frac{2 + \sin x}{x^2} = 0$.

Exercise 37. Evaluate the limit

a)
$$\lim_{x \to 0} \frac{\sin^2 3x}{x^2}$$
 b) $\lim_{x \to 4} \frac{\sin(x-4)}{\sqrt{x}-2}$ c) $\lim_{x \to 0} \frac{\arcsin 2x}{\arctan x}$ d) $\lim_{x \to \infty} x^2 \arctan \frac{1}{x}$ e) $\lim_{x \to \frac{\pi}{2}} \frac{\cos 5x}{\cos 3x}$ f) $\lim_{x \to 0} \frac{e^{3x}-1}{\sin 2x}$ g) $\lim_{x \to 0} \frac{\ln(1+\sqrt[3]{x})}{x}$ h) $\lim_{x \to -2} \frac{\ln(x^2-3)}{x+2}$ i) $\lim_{x \to 1} \frac{x^\pi - x^e}{x-1}$ j) $\lim_{x \to 0} (1+2x)^{\frac{1}{x}}$ k) $\lim_{x \to 0} (1+\tan 2x)^{\cot x}$ l) $\lim_{x \to 0} \frac{\sqrt[3]{1+x}-\sqrt[6]{1-x}}{x}$.

Exercise 38. Find the vertical asymptotes and the oblique asymptotes of function

a)
$$f(x) = \frac{x^3 + x^2}{x^2 - 4}$$
 b) $f(x) = \frac{x^{11} + 1}{(x - 1)^{10}}$ c) $f(x) = \frac{x - 3}{\sqrt{x^2 - 9}}$ d) $f(x) = \frac{x\sqrt{x} + 2}{x + 1}$ e) $f(x) = \frac{3^x}{3^x - 2^x}$ f) $f(x) = \frac{2x^2 + \sin x}{x}$ g) $f(x) = \frac{\cos x}{e^x - 1}$ h) $f(x) = x - \arctan x$ i) $f(x) = \frac{\sin 2x}{\sin x - 1}$.

Exercise 39. Determine $a, b \in \mathbb{R}$ such that the function is continuous on \mathbb{R}

a)
$$f(x) = \begin{cases} -1, & x < 0, \\ a + b \sin x, & 0 \le x \le \frac{\pi}{2}, \\ 1, & x > \frac{\pi}{2}, \end{cases}$$
 b) $f(x) = \begin{cases} \frac{a}{x} + 1, & x < -1, \\ b - 2x, & x \geqslant -1 \end{cases}$ c) $f(x) = \begin{cases} ax^2 + 1, & x < -1, \\ 2x, & -1 \le x \le 0, \\ x^3 + bx, & x > 0. \end{cases}$

Exercise 40. Locate the discontinuities of the function

a)
$$f(x) = \begin{cases} \frac{x+2}{x^2+x+2}, & x \neq 1, 2, \\ 0, & x = 1, \\ 1, & x = 2, \end{cases}$$
c)
$$f(x) = \begin{cases} \frac{1}{\ln x^2 - \ln(x^2+1)}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

b)
$$f(x) = \begin{cases} \arctan \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{1}{\ln x^2 - \ln(x^2 + 1)}, & x \neq 0, \\ 0, & x = 0 \end{cases}$$

d)
$$f(x) = \begin{cases} 1 - \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

 $\mathcal{D}\mathit{ominika}\;\mathcal{P}\mathit{ilarczyk}$