Laws of Thermodynamics

- 1. Energy is conserved, it is neither created nor destroyed
 - a. dU = TdS PdV = Q + W
- 2. Entropy always increases in the universe
 - a. $dS > \frac{dQ}{T_{surr}}$
- 3. Entropy is constant at absolute $0 \circ K$ (pure perfect crystal $\Rightarrow S = 0$)
 - a. $S_0 = k_B \ln \ln (1) = 0$
- 4. Fundamental Equation: $dU = TdS PdV + \Sigma$ $\mu_i dN_i$

Properties

- Intensive = doesn't change with system size/extent
 - $\circ T, P, \mu, \rho, c_P/c_V \qquad u, h, g, f$ s, v, nk, C, viscosity
- Extensive = changes with system size/extent
 - \circ $S, V, N, m, C_P/C_V$ U, H, G, F
- Composite = combination of extensive and intensive properties
 - o Ratio of extensive properties = intensive property $(\rho = \frac{m}{\nu})$
 - o "Specific" = $\frac{extensive\ property}{mass}$ "Molar" = $\frac{extensive\ property}{mole}$ = lowercase
- **Constants**: $R = k_B N_A = 8.3144 \frac{J}{K*mol} \left(\frac{m^3*Pa}{K*mol} \right) \left(\frac{kg*m^2}{s^2*K*mol} \right) = 0.082057 \frac{L*atm}{K*mol} = 1.987204 \frac{kcal}{K*mol}$
 - Boltzmann: $k_B = 1.380648x10^{-23} \frac{J}{K}$ Avogadro: $N_A = 6.022140x10^{23} mol^{-1}$
 - <u>Faraday</u>: $F = 96485.332 \frac{c}{mal}$ • STP° = 273.15°K, 1bar = 105Pa

Equations of State & Equilibrium: f(P,V,T) = 0

- Ideal: $PV = nRT = Nk_BT$ P = CRT $PM_W = \rho RT$ Low P, High T
- Van der Waals, (Soave-)Redlich-Kwong, Peng-Robinson, Virial
- Antoine Equation: $\ln \ln (P^{sat}) = A \frac{B}{C+T} A, B, C = \text{empirical constants}$ Clausius-Clapeyron Equation: $\frac{dP}{dT} = \frac{s^{\beta} s^{\alpha}}{v^{\beta} v^{\alpha}} = \frac{\Delta H_{vap}}{(v^{\beta} v^{\alpha})T}$ for phase $\alpha\beta$ equilibrium
- Fugacity f = P of Ideal Gas @ T & G of real gas $\phi = \frac{I}{P} =$ fugacity coeff
 - o "Escaping tendency" different than mechanical, measured pressure
 - o Describes chemical equilibrium: $f_a = f_b$ $\mu_i \mu_i^\circ = RT \ln \ln \left(\frac{f_i}{f_i^\circ}\right)$
 - \circ Substitute for P in $PV = nRT \Longrightarrow fV = nRT$ to describe real gases

 - o $d\mu = dg = -sdT + vdP \implies \Delta T = 0, PV = nRT \implies d\mu = RTd \ln \ln P$ o $\ln (\phi) = \int_0^P \frac{V V_{ideal}}{nRT} dP$ $Z = \frac{PV}{nRT} \implies \ln (\phi) = \int_0^P \frac{Z 1}{P} dP$ o Condensed phases \implies Poynting: $f = \phi_{sat} P_{sat} e^{\frac{V(P P_{sat})}{RT}}$ because $f_{g,sat} = f_{l,s,sat}$

 - o Lewis Fugacity rule: $\phi_{i,pure} = \phi_{i,in\; mixture} \Longrightarrow f_{i,pure} = y_i f_{i,in\; mixture}$
- Activity $a_i = exp \; exp \; \left(\frac{\mu_i \mu_i^{\circ}}{RT}\right) = \gamma_i x_i = \frac{f_i}{P^{\circ}} \quad \gamma_i = \text{activity coeff} \quad a_{solid, liquid} = 1$
 - o "Effective concentration" of a species in a mixture/reaction
 - o Akin to chemical potential in theory but used differently
 - o Integrate fugacity: $d\mu = RTd \ln \ln P \implies \mu_i = \mu_i^{\circ} RT \ln \ln (a_i)$
 - o Substitute for C in $K = \frac{c_C c_D}{c_A c_B}$ or $r = k C_A^n$ to describe real solutions

<u>Caloric Theory</u> = obsolete theory that heat is a self-repellent fluid called caloric that could be attached to matter and later released from it <u>Bridgeman</u> = organization of 28 elementary thermodynamic equations. Shows how T, P, V, S, U, H, G, F change with each held constant

Fundamental Parameters

- Conjugate Variables: (T,S) (P,V) (μ,N) (force, displacement) (intensive, extensive)
 - o $T * S = Q[=]J \Rightarrow T$ gradients drive S change
 - Energy conservation, thermodynamics
 - o P * V = W = I gradients drive V change
 - Momentum conservation, fluid dynamics
 - $\mu * N = M = J \Rightarrow \mu$ gradients drive N change
 - Mass conservation, chemistry
- <u>Temperature</u> $T = (-1)^{\circ}K, {\circ}C, {\circ}F, {\circ}R$
 - Measure of submicroscopic motions and vibrations (NOT heat)
 - Thermal equilibrium $\Rightarrow T_{sys} = T_{surr}$
- Entropy $S = \frac{J}{\kappa}$
 - o Measure of disorder, always increasing in universe
 - \circ $S = k_B \ln \ln (\Omega)$, $\Omega = number of microstates$
 - o Only measured indirectly through Maxwell Relations
 - o At equilibrium entropy is at a maximum
- Pressure $P = \frac{J}{m^3} = Pa = \frac{N}{m^2} = \frac{kg}{m*s^2}$, bar, atm, mmHg
 - o Force applied over area, normal stress
 - o Mechanical equilibrium $\Rightarrow P_{sys} = P_{surr}$
- Volume $V = m^3 = \frac{J}{Pa}, L, ft^3$
 - Measure of physical space taken up by matter (NOT empty space)
- Chemical Potential $\mu = J$ (NOT chemical potential energy)
 - o Energy changed through chemical reaction/phase transition
 - $\circ \quad \mu = (\frac{dU}{dN})_{S,V,N} = (\frac{dH}{dN})_{S,P,N} = (\frac{dG}{dN})_{T,P,N} = (\frac{dF}{dN})_{T,V,N}$
 - o Molecules move down chemical potential gradients (like gravity)
 - o Diffusive equilibrium $\Rightarrow \mu_{sys} = \mu_{surr}$
- Composition N [=] #, unitless
 - o Measure of the number of particles in a system
 - $\circ N[=] \# n = \frac{N}{N_A} [=] mol$

Thermodynamic Potentials

Definitions change based on context/process under consideration $\{x,y,z\}$ = natural variables (held constant \Rightarrow potential = $W_{max\,useful}$)

- Internal Energy f(S, V, N)
 - $\circ \quad dU = TdS PdV + \sum \quad \mu_i dN_i \quad U = TS PV + \sum \quad \mu_i N_i \quad \Delta U = Q + W_{PV} + W_{Isochoric}$
 - o Described explicitly by microscopic energies...
 - kinetic (translation, rotation, vibration)
 - potential (chemical, electrical, nuclear)
 - $\circ dU(T,V) = C_V dT + \left(T\left(\frac{dP}{dT}\right)_V P\right) dV$
 - $0 \quad dU(T,P) = (C_P \alpha PV)dT + (\beta_T P \alpha T)VdP$
 - o Ideal Gas: $U = \frac{3}{2}nRT$
- **Enthalpy** $f{S,P,N}$
 - $\circ \quad dH = TdS + VdP + \sum \qquad \mu_i dN_i \qquad H = TS + \sum \qquad \mu_i N_i = U + PV \qquad \qquad \Delta H = Q + W_{Isochoric}$
 - \circ The energy to create system plus the work to make room for it dH = d(U + PV)
 - o $@dP = 0 \Longrightarrow \Delta H =$ heat from chemical reaction and external heat transfer
 - $\Delta H = + \Rightarrow$ endothermic reaction, \Rightarrow exothermic reaction
 - $\circ dH(T,P) = C_P dT + V(1 \alpha T) dP$
 - o Enthalpy of... formation, rxn, vap, fus, sol, combustion, mix
- Gibbs Energy $f\{T, P, N\}$
 - $\circ \quad dG = -SdT + VdP + \sum \quad \mu_i dN_i \quad G = \sum \quad \mu_i N_i = H TS \quad \Delta G = \Delta H T\Delta S = W_{Isochoric}$
 - o Chemical reaction spontaneity: $\Delta T=0, \Delta P=0 \implies$ only $\Delta \mu \neq 0$ can vary
 - $\Delta G = \Rightarrow$ spontaneous, $+ \Rightarrow$ non-spontaneous, $0 \Rightarrow$ equilibrium • $\Delta G^{\circ}_{R} = -RT \ln (K_{eq})$ $\Delta G^{\circ}_{R} = -nFE^{\circ}$ $E^{\circ} = Standard\ cell\ potential\ [=] \frac{J}{c} = V$
 - o Gibbs-Duhem: $0 = -SdT + VdP + \sum N_i d\mu_i$
- Helmholtz Energy $f\{T, V, N\}$
 - $\circ \quad dF = -SdT PdV + \sum \qquad \mu_i dN_i \qquad F = -PV + \sum \qquad \mu_i N_i = U TS \qquad \Delta F = \Delta U T\Delta S = W_{PV} + W_{Isochoric}$
 - Chemical reaction spontaneity: $\Delta T = 0, \Delta V = 0 \implies$ only $\Delta \mu \neq 0$ can vary $\Delta F = \implies$ spontaneous, $+ \implies$ non-spontaneous, $0 \implies$ equilibrium
- d(PV) = d(H U) = d(G F) d(TS) = d(U F) = d(H G)
- Exergy (Availability)
 - $\circ \quad B = U T_R S + P_R V \sum \qquad \mu_{i,R} N_i \ B = H T_R S \qquad \qquad B = F + P_R V \qquad \qquad B = G$
 - o Exergy = U + heat/entropic loss + available PV work + available chemical energy
 - o Measures how far system is from equilibrium with surroundings
 - A system in equilibrium with its surroundings has 0 exergy
 - Describes amount of available work in a system (usefulness of streams in chemical plant)
- Free Energy: energy that is readily released/freed (G,F)
- Free Entropy: entropy that is readily released/freed

 \circ Helmholtz Free Entropy (Massieu Potential) $[\Phi]$

•
$$\Phi = -\frac{F}{T} = S - \frac{1}{T}U$$
 $f\{\frac{1}{T}, V, N\}$

 \circ Gibbs Free Entropy (Planck Potential) [arepsilon]

•
$$\mathcal{E} = -\frac{G}{T} = \Phi - \frac{P}{T}V$$
 $f\{\frac{1}{T}, \frac{P}{V}, N\}$

• **Grand Potential** $f\{T, V, \mu\}$

$$\circ \quad d\Phi_G = -SdT - PdV - Nd\mu \; \Phi_G = -PV$$

o The energy extractable from a system by shrinking it to nothing

Theoretical Potentials

o Potential 6 $f\{S, P, \mu\}$

•
$$dP_6 = TdS + VdP - Nd\mu$$
 $P_6 = TS$

• The energy extractable from a system by cooling it into perfect crystal?

o Potential 7 $f\{S, V, \mu\}$

•
$$dP_7 = TdS - PdV - Nd\mu$$
 $P_7 = TS - PV$

o Potential 8
$$f\{T,P,\mu\}$$

$$\bullet dP_8 = -SdT + VdP - Nd\mu \qquad P_8 = 0$$

Energy Transfer

Path Dependent: Area under curve on graph, so curve matters, not just ends

- Heat
 - Thermal energy transfer (NOT temperature)

$$0 dQ = TdS Q = mC_P\Delta T He$$

$$dQ = TdS$$
 $Q = mC_P\Delta T$ Heat Equation: $\frac{dT}{dt} - \alpha \nabla^2 T = 0$

- \circ <u>TS Diagram</u>, area under/enclosed by curve is Q
 - Graph isobars & isochors for all fundamental parameters
- \circ Sensible heat = ΔT , Latent heat = phase change ($\Delta T = 0$)
- Work
 - Mechanical energy transfer

o
$$dW = PdV$$
 $W = Fd = PA_s$ Wave Equation: $\frac{d^2u}{dt^2} - c^2\nabla^2u = 0$

- o PV Diagram: area under/enclosed by curve is W
 - Graph isotherms & adiabats for all fundamental parameters
- o $W_{PV} = W_{reversible} =$ Mechanical work
 - Volume change (ΔV) caused a by gradient between system pressure and external pressure (P)
 - Can be performed by system on surroundings or by surroundings on system
- \circ $W_{isochoric} = W_{shaft} = W_{irreversible} =$ Non-mechanical work
 - No volume change, like pushing a viscous fluid or friction
 - Only performed on sys by surr, never on surr by sys

Processes/Systems

Model complex processes by series of these processes

Heat reservoir (water bath) ≈ Pressure reservoir (atmosphere)

- Isothermal $\Delta T = 0$
 - $\circ \quad Q_{\Delta T=0} = T\Delta S = -W_{\Delta T=0} = -RT \ln \ln \left(\frac{V_2}{V_1}\right) = -RT \ln \ln \left(\frac{P_1}{P_2}\right)$
 - \circ $\Delta U = 0$ $\Delta U_{IG} = f(T) \neq f(P, V)$ IG: $P = \frac{nRT}{V}$ isotherms on PV graph
 - o Phase transitions are isothermal
- Isobaric $\Delta P = 0$
 - $\circ \quad Q_{\Delta P=0} = \Delta H = C_P \Delta T \qquad \qquad W_{\Delta P=0} = P \Delta V = R \Delta T \qquad \qquad \Delta U = Q W = C_V \Delta T$
- **Isochoric** $\Delta V = 0$
 - $\circ \quad Q_{\Delta V=0} = \Delta U = C_V \Delta T \qquad \qquad W_{PV,\Delta V=0} = 0 \qquad \qquad W_{isochoric,\Delta V=0} = \Delta U Q$
- Adiabatic Q = 0
 - \circ $\Delta U = W = PdV = RdT$ $\Delta T = ???$
 - o Rapid processes are often idealized as adiabatic
 - Graphic adiabat = curve of constant entropy
- **Isentropic** $\Delta S = 0$
 - $\circ \quad dU = C_V dT = P dV$

$$dH = C_P dT = V dP$$

- \circ Compressors, Turbines, Pumps... $\eta_{isentropic} = \frac{W_{actual}}{W_{ideal}} || \frac{W_{ideal}}{W_{actual}} = \frac{H_{2,s} H_1}{H_2 H_1}$
 - Either only W_{PV} (Reversible adiabatic \subset Isentropic)...
 - Or $W_{PV} + W_{isochoric}$ and Q necessary to oppose $W_{isochoric}$
- Isenthalpic $\Delta H = 0$
 - o Irreversible adiabatic
 - o Throttling (<u>Joule-Thomson effect</u>)

•
$$\mu_{JT} = (\frac{dT}{dP})_H = \frac{V}{CP}(\alpha T - 1)$$
 $\mu_{JT,ideal} = 0$

- $+\mu_{IT} \Rightarrow +\Delta T$, $-\mu_{IT} \Rightarrow -\Delta T$, divided by $T_{inversion}$
- Polytropic $PV^n = const$
 - \circ Processes that can change all fundamental parameters T,P,V,S
 - $n=1 \Rightarrow \text{isothermal}$ o $n=0 \Rightarrow$ isobaric
 - $n = \infty \Rightarrow isochoric$ $n = \gamma \implies$ isentropic/adiabatic
 - o $1 < n < \gamma \Rightarrow$ heat and work in opposite directions
 - \circ $\gamma < n < \infty \Rightarrow$ heat and work in same direction
- Systems
 - \circ Open (m,Q,W)Closed (Q, W)
 - o <u>Isolated</u> () Equilibrium $\Rightarrow S$ is maximized
 - Thermally Isolated (W) insulated, adiabatic
 - Mechanically Isolated (Q) rigid
- Changes

 - o Heating = heat addition = +Q = +T, +P, +V, +S o Cooling = heat rejection = -Q = -T, -P, -V, -S o Compression = volume increase = +W = +T, +P, -V, -S
 - o Expansion = volume reduction = -W = -T, -P, +V, +S

Material Properties

• **Heat Capacity**

- o Measures relative temperature change in response to applied heat
- Measures capacity to store energy absorbed as heat (not conductivity)

$$\begin{array}{ll} \circ & C = \frac{dQ}{dT} [=] \frac{kg*m^2}{s^2*K} = \frac{J}{K} & C_V = (\frac{dQ}{dT})_V = (\frac{dU}{dT})_V = \frac{T}{N} (\frac{dS}{dT})_V & C_P = (\frac{dQ}{dT})_P = (\frac{dH}{dT})_P = \frac{T}{N} (\frac{dS}{dT})_P \\ \circ & C_P - C_V = VT \frac{\alpha^2}{\beta_T} & \text{Ideal } C_P - C_V = R & \frac{C_P}{C_V} = \gamma = \frac{\beta_T}{\beta_S} \end{array}$$

• Compressibility Coefficient

o Measures volume change in response to a pressure change

$$\beta_T = -\frac{1}{v} \left(\frac{dV}{dP} \right)_{T,N} = -\frac{1}{v} \frac{d^2 G}{dP^2}$$

$$\beta_S = -\frac{1}{v} \left(\frac{dV}{dP} \right)_{S,N} = -\frac{1}{v} \frac{d^2 H}{dP^2}$$

$$\beta_S = \beta_T - \frac{\alpha^2 T}{\rho C_P}$$

$$\beta_S = \gamma = \frac{C_P}{C_V}$$

$$\beta = \frac{m^2}{N} = Pa^{-1}$$

• Thermal Expansion Coefficient

o Measures volume change in response to a temperature change

$$\circ \quad \alpha = \frac{1}{V} \left(\frac{dV}{dT} \right)_{P,N} = \frac{1}{V} \frac{d^2 G}{dP dT} = \alpha_V \qquad \qquad \alpha_L = \frac{1}{L} \left(\frac{dL}{dT} \right)_{P,N} \qquad \qquad \alpha_A = \frac{1}{A} \left(\frac{dA}{dT} \right)_{P,N} \qquad \qquad \alpha = \frac{1}{L} \left(\frac{dA}{dT} \right)_$$

Thermodynamic Cycles

$$\Delta U_{cycle} = U_{1-2} + U_{2-3} + U_{3-4} + U_{4-1} = 0$$

$$\begin{array}{lll} \mbox{Heat Engine} & = Q \Longrightarrow W = \eta = W/Q_H \\ \mbox{Heat Pump/Refrigerator} & = W \Longrightarrow Q = \eta = Q_C/W \end{array}$$

Heat Pump/Refrigerator =
$$W \Rightarrow Q = \eta = Q_c/V$$

Carnot

$$\circ$$
 1 $+W_{\Delta T=0}$

$$\circ$$
 1 $+W_{\Delta T=0}$ **2** $+W_{\Delta S=0}$ **3** $-W_{\Delta T=0}$ **4** $-W_{\Delta S=0}$ **5**

- o Theoretical ideal cycle
- Most efficient heat engine/pump

$$\circ \ W_{12,34} = RT_{1,3} \ ln \ ln \ \left(\frac{V_{2,4}}{V_{1,3}}\right) \quad W_{23,41} = C_V \Delta T_{23,41}$$

$$Q_{12,34} = -W_{12,34} Q_{23}$$

$$\begin{array}{ccc} \circ & Q_{12,34} = -W_{12,34} & Q_{23,41} = 0 \\ \circ & \eta = \frac{W_{expansion}}{Q_{heating}} = \frac{Q_{12} - Q_{34}}{Q_{12}} = 1 - \frac{T_C}{T_H} & \frac{V_1}{V_2} = \frac{V_4}{V_3} \end{array}$$

Sterling

$$\circ$$
 1 $-Q_{\Delta T=0}$

$$\mathbf{2} + Q_{\Delta V=0}$$

$$+Q_{\Delta T=0}$$
 4 $-Q_{\Delta V=0}$ \circlearrowleft

- Ideal cycle
- o In practice stages overlap
- o Produces Simple Harmonic Motion

$$\circ W_{12,34} = RT_{1,3} \ln \ln \left(\frac{V_{2,4}}{V_{1,3}} \right) \quad W_{23,41} = 0$$

$$Q_{12,34} = -W_{12,34} Q_{23,41} = C_V \Delta T_{23,41}$$

$$Q_{12,34} = C_V \Delta T_{23,41}$$

$$Q_{12,34} = C_V \Delta T_{23,41}$$

$$0 \quad \eta = 1 - T_1/T_2 = 1 - (V_2/V_1)^{\gamma - 1}$$

Ericsson

Pressure (P)

$$+W_{\Delta T=0}$$

$$-W_{\Lambda T=0}$$

$$-W_{\Delta T=0}$$
 4 $-Q_{\Delta P=0}$ \circlearrowleft

- o Ideal cycle (Ideal Brayton cycle)
- o <<<PV diagram: stage = shown 1</pre>

o
$$W_{12,34} = RT_{1,3} \ln \ln \left(\frac{V_{2,4}}{V_{1,3}} \right)$$
 $W_{23,41} = P\Delta V = R\Delta T$

$$\begin{array}{ll} \circ & Q_{12,34} = -W_{12,34} & Q_{23,41} = C_P \Delta T_{23,41} \\ \circ & \eta = 1 - T_1/T_2 = 1 - (P_1/P_2)^{(\gamma-1)/\gamma} \\ \end{array}$$

Regenerator = Heat exchanger that stores heat temporarily in thermal storage medium before transferring again. Recycles heat in a cycle <u>Intercooler</u> = cools working fluid between compression stages, decreasing the amount of work required and making compressor/pump more isothermal Reheater = reheats working fluid between expansion stages, increasing the amount of work output and making turbine more isothermal

- Rankine (Q,P)
 - $\circ + W_{Q=0} + Q_{\Delta P=0} W_{Q=0} Q_{\Delta P=0} \qquad \eta = \frac{W_{turbine}}{Q_{boiler}}$
 - o Steam power plants, nuclear
 - \circ Exploits phase change ΔV
 - o Pump, Boiler, Turbine, Condenser
 - o Alt: Superheat steam
- Brayton (Q,P)

- $-W_{\Delta S=0}$
- 4
- $-Q_{\Delta V=0}$ Exhaust
- O
- o Internal Combustion Engines
- o Automobile Engines
- $0 \quad \eta = 1 T_1/T_2 = 1 (V_2/V_1)^{\gamma 1}$

- $\circ \ \, +W_{Q=0} + Q_{\Delta P=0} W_{Q=0} Q_{\Delta P=0}$
- $\circ \ \eta = 1 T_1/T_2 = 1 (P_1/P_2)^{(\gamma 1)/\gamma}$
- \circ Jet engines, $\Delta P = 0$

Etymology

- $(Latin) = calor \Rightarrow heat \Rightarrow caloric, calorie$
- $(Latin) = fugere \Rightarrow to flee \Rightarrow fugacity$
- $\varepsilon v \sim = en \sim \implies within, internal$
 - θάλπειν = thalpein ⇒ to heat ⇒ enthalpy
 - \circ $"\epsilon \rho \gamma o \nu = ergon \implies work \implies energy"$
 - $\circ \quad \tau \rho o \pi \dot{\eta} = trope \Longrightarrow transform \Longrightarrow entropy$
 - $\pi o \lambda \breve{v} \varsigma = polus \Rightarrow many \Rightarrow polytropic$
- $"i\sigma o \sim = iso \sim \implies same"$
 - 0 θέρμη = therme \Rightarrow heat \Rightarrow isothermal
 - $\delta v \nu \alpha \mu \iota \sigma = dynamis \Rightarrow power, strength \Rightarrow thermodynamics$
 - \circ βάρος = baros \Rightarrow weight \Rightarrow isobaric
 - $\circ \chi \tilde{\omega} \rho o \varsigma = choros \Rightarrow space \Rightarrow isochoric$
- $\dot{\alpha}\delta\iota\dot{\alpha}\beta\alpha\tau\circ\varsigma = adiabatos \Rightarrow impassable \Rightarrow adiabatic$
 - $\circ \quad \dot{\alpha} \sim = a \sim \implies not$
 - \circ διάβατος = diabatos \Rightarrow passable
 - \circ διά = dia \Longrightarrow through
 - ο βαῖνειν = bainein ⇒ to walk, go, come

Born Square

Faces = thermodynamic potentials, adjacent to natural variables (&N) $U = f\{S, V\}$ $H = f\{S, P\}$ $G = f\{T, P\}$ $F = f\{T, V\}$

Cross corners = fundamental parameters/conjugate variables: $(T,S)(P,V)(\mu,N)$

U shapes = Maxwell Relations ($\Delta N=0$), beware -'s includes constant var Or differentiate potentials by natural variables (<u>Symmetry of 2nd Derivs</u>) Or use natural vars as denominator/constant, numerators = remaining, add negatives for U & G

$$-\frac{d^2F}{dTdV} = \left(\frac{dP}{dT}\right)_V = \left(\frac{dS}{dV}\right)_T \qquad \bullet \bullet \qquad \left(\frac{dS}{dP}\right)_T = -\left(\frac{dV}{dT}\right)_P = \frac{d^2G}{dTdP}$$
$$\frac{d^2H}{dSdP} = \left(\frac{dV}{dS}\right)_P = \left(\frac{dT}{dP}\right)_S \qquad \bullet \bullet \bullet \qquad \left(\frac{dT}{dV}\right)_S = -\left(\frac{dP}{dS}\right)_V = \frac{d^2U}{dSdV}$$

Maxwell Relations

^{*}Information in this document is compiled from Wikipedia, which is often doubted for itself being a compilation of sources. However, as a source of scientific information that is very well established like in Thermodynamics, I consider it a reliable source.