CLASS QUIZ: JANUARY 10: HYPERBOLIC FUNCTIONS

MATH 153, SECTION 55 (VIPUL NAIK)

Your	name (print clearly in capital letters):
(1)	What is the limit $\lim_{x\to\infty}(\cosh x)/e^x$? (A) 0 (B) 1/2 (C) 1 (D) 2 (E) The limit does not exist.
	Your answer:
(2)	What is the limit $\lim_{x\to-\infty}(\cosh x)/e^x$? (A) 0 (B) 1/2 (C) 1 (D) 2 (E) The limit does not exist.
	Your answer:
(3)	Consider the function $y=f(x)$ where $f(x):=\arctan(\sinh x)$. Which of the following does $\cosh x$ necessarily equal? (A) $\sin y$ (B) $\cos y$ (C) $\cot y$ (D) $\sec y$ (E) $\csc y$
	Your answer:
(4)	 Consider the function y = f(x) where f(x) := arctan(sinh x) (same as in the previous question). The function is a one-to-one increasing function on its domain. What are its domain and range? (A) The domain and range are both equal to R (B) The domain and range are both equal to the open interval (-π/2, π/2) (C) The domain equals R and the range equals the open interval (-π/2, π/2) (D) The domain equals the open interval (-π/2, π/2) and the range equals R (E) The domain equals the open interval (-π/2, π/2) and the range equals the closed interval [-π/2, π/2]

- (5) sinh is a one-to-one function with domain and range both equal to \mathbb{R} . Hence, it must have an inverse function with domain and range both equal to \mathbb{R} . What is this inverse function?
 - (A) $x \mapsto (\ln(x) \ln(-x))/2$

 - (B) $x \mapsto (\ln(x) \ln(x))$ (B) $x \mapsto (1/2) \ln(x^2 + 1)$ (C) $x \mapsto \ln[x + \sqrt{x^2 + 1}]$ (D) $x \mapsto \ln[x \sqrt{x^2 + 1}]$ (E) $x \mapsto \ln[\sqrt{x^2 + 1} x]$

Your answer: _____