

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	18.56 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53$ psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approx array normano ouridoor

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>712.08</u>	<u>6854.05</u>	k
Compressive Load =	3542.83	<u>4939.47</u>	k
Lateral Load =	<u>7.96</u>	<u>3595.48</u>	k
Moment (Weak Axis) =	0.02	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (3) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 192730.6 in-lbs Resisting Force Required = 2695.53 lbs A minimum 143in long x 36in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4492.55 lbs to resist overturning. Minimum Width = <u>36 in</u> in Weight Provided = 7775.63 lbs Sliding 864.67 lbs Force = Use a 143in long x 36in wide x 18in tall Friction = 0.4 Weight Required = 2161.68 lbs ballast foundation to resist sliding. Resisting Weight = 7775.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 864.67 lbs Cohesion = 130 psf Use a 143in long x 36in wide x 18in tall 35.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3887.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

	Ballast Width				
	<u>36 in</u>	37 in	38 in	39 in	
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(3 \text{ ft}) =$	7776 lbs	7992 lbs	8208 lbs	8424 lbs	

ASD LC	1.0D + 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W						
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	983 lbs	983 lbs	983 lbs	983 lbs	1501 lbs	1501 lbs	1501 lbs	1501 lbs	1769 lbs	1769 lbs	1769 lbs	1769 lbs	-338 lbs	-338 lbs	-338 lbs	-338 lbs
FB	996 lbs	996 lbs	996 lbs	996 lbs	2168 lbs	2168 lbs	2168 lbs	2168 lbs	2279 lbs	2279 lbs	2279 lbs	2279 lbs	-3292 lbs	-3292 lbs	-3292 lbs	-3292 lbs
F _V	97 lbs	97 lbs	97 lbs	97 lbs	1533 lbs	1533 lbs	1533 lbs	1533 lbs	1215 lbs	1215 lbs	1215 lbs	1215 lbs	-1729 lbs	-1729 lbs	-1729 lbs	-1729 lbs
P _{total}	9755 lbs	9971 lbs	10187 lbs	10403 lbs	11445 lbs	11661 lbs	11877 lbs	12093 lbs	11824 lbs	12040 lbs	12256 lbs	12472 lbs	1035 lbs	1164 lbs	1294 lbs	1424 lbs
M	2424 lbs-ft	2424 lbs-ft	2424 lbs-ft	2424 lbs-ft	3880 lbs-ft	3880 lbs-ft	3880 lbs-ft	3880 lbs-ft	4498 lbs-ft	4498 lbs-ft	4498 lbs-ft	4498 lbs-ft	5302 lbs-ft	5302 lbs-ft	5302 lbs-ft	5302 lbs-ft
е	0.25 ft	0.24 ft	0.24 ft	0.23 ft	0.34 ft	0.33 ft	0.33 ft	0.32 ft	0.38 ft	0.37 ft	0.37 ft	0.36 ft	5.12 ft	4.55 ft	4.10 ft	3.72 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft						
f _{min}	238.7 psf	238.1 psf	237.6 psf	237.1 psf	265.5 psf	264.2 psf	263.0 psf	261.8 psf	267.4 psf	266.1 psf	264.8 psf	263.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	307.0 psf	304.6 psf	302.3 psf	300.1 psf	374.8 psf	370.5 psf	366.5 psf	362.7 psf	394.1 psf	389.3 psf	384.8 psf	380.5 psf	275.4 psf	179.2 psf	146.4 psf	130.7 psf

Maximum Bearing Pressure = 394 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Length =

Bearing Pressure

8 in

Weak Side Design

Overturning Check

 $M_0 = 928.3 \text{ ft-lbs}$

Resisting Force Required = 618.87 lbs S.F. = 1.67

Weight Required = 1031.45 lbs Minimum Width = 36 in in Weight Provided = 7775.63 lbs A minimum 143in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		36 in			36 in			36 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	203 lbs	465 lbs	203 lbs	627 lbs	1645 lbs	627 lbs	59 lbs	136 lbs	59 lbs	
F _V	1 lbs	0 lbs	1 lbs	3 lbs	0 lbs	3 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9830 lbs	7776 lbs	9830 lbs	9790 lbs	7776 lbs	9790 lbs	2874 lbs	7776 lbs	2874 lbs	
M	3 lbs-ft	0 lbs-ft	3 lbs-ft	12 lbs-ft	0 lbs-ft	12 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	
f _{min}	274.8 psf	217.5 psf	274.8 psf	273.2 psf	217.5 psf	273.2 psf	80.4 psf	217.5 psf	80.4 psf	
f _{max}	275.1 psf	217.5 psf	275.1 psf	274.5 psf	217.5 psf	274.5 psf	80.4 psf	217.5 psf	80.4 psf	

Maximum Bearing Pressure = 275 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.725 k	Maximum Axial Load = 4.671 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>37%</u>	Utilization = <u>63%</u>
Diagonal Strut		
Maximum Axial Load =	2.556 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>34%</u>	
		Struts under compression are shown to demo transfer from the girder. Single M12 bolts are end of the strut and are subjected to double s
		1

Struts under compression are shown to demonstrate the load ransfer from the girder. Single M12 bolts are located at each nd of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 56.48 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.130 in Max Drift, Δ_{MAX} = 0.01 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 75 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 207.485 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 75 \\ \mathsf{J} &= 0.432 \\ &= 131.948 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= 29.6 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.7 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = \varphi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L S t = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \end{array}$$

2.788 k-ft

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

h/t =

3.4.16.1

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 32.544 \text{ mm}^4$$

16.2

$$\begin{array}{ccc} \phi F_L St = & 29.0 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.323 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ \text{Sy} = & 1.409 \text{ in}^3 \\ M_{\text{max}} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

Rev. 07.29.2016

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

h/t = 24.5

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.2 ksi

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$	$\phi F_{L} = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.4 \text{ ksi}$	$\varphi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$\underline{\text{Compression}}$

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L =$ 30.0 ksi 30.0

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy \Big)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-95.761	-95.761	0	0
2	M14	٧	-95.761	-95.761	0	0
3	M15	V	-147.995	-147.995	0	0
4	M16	V	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	217.64	217.64	0	0
2	M14	V	165.406	165.406	0	0
3	M15	V	87.056	87.056	0	0
4	M16	V	87 056	87 056	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	817.262	2	1314.829	2	.371	1	.002	1	Ó	1	Ó	1
2		min	-971.437	3	-1767.566	3	.018	15	0	15	0	1	0	1
3	N7	max	.016	9	959.817	1	263	15	0	15	0	1	0	1
4		min	278	2	-154.028	3	-6.123	1	012	1	0	1	0	1
5	N15	max	.008	9	2725.257	2	0	3	0	3	0	1	0	1
6		min	-2.448	2	-547.756	3	0	11	0	2	0	1	0	1
7	N16	max	2489.108	2	3799.594	2	0	10	0	10	0	1	0	1
8		min	-2765.751	3	-5272.345	3	0	3	0	3	0	1	0	1
9	N23	max	.016	9	959.817	1	6.123	1	.012	1	0	1	0	1
10		min	278	2	-154.028	3	.263	15	0	15	0	1	0	1
11	N24	max	817.262	2	1314.829	2	018	15	0	15	0	1	0	1
12		min	-971.437	3	-1767.566	3	371	1	002	1	0	1	0	1
13	Totals:	max	4120.629	2	11060.581	2	0	12	·				·	
14		min	-4709.303	3	-9663.291	3	0	11						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	_LC_	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	36.124	1_	434.28	2	-5.091	15	0	15	.1	1_	0	2
2			min	1.535	15	-818.2	3	-124.406	1	012	3	.004	15	0	3
3		2	max	36.124	1	301.945	2	-3.886	15	0	15	.024	1	.486	3
4			min	1.535	15	-580.319	3	-94.5	1	012	3	002	10	256	2
5		3	max	36.124	1	169.611	2	-2.68	15	0	15	.006	3	.806	3
6			min	1.535	15	-342.438	3	-64.595	1	012	3	031	1	419	2
7		4	max	36.124	1	37.276	2	-1.475	15	0	15	0	3	.961	3
8			min	1.535	15	-104.558	3	-34.689	1	012	3	065	1	491	2
9		5	max	36.124	1	133.323	3	1.609	10	0	15	003	12	.951	3
10			min	1.535	15	-95.058	2	-5.588	3	012	3	079	1	471	2
11		6	max	36.124	1	371.204	3	25.122	1	0	15	003	15	.776	3
12			min	1.535	15	-227.393	2	-3.75	3	012	3	072	1	359	2
13		7	max	36.124	1	609.085	3	55.028	1	0	15	002	15	.436	3
14			min	1.535	15	-359.727	2	-1.912	3	012	3	044	1	155	2
15		8	max	36.124	1	846.966	3	84.933	1	0	15	.008	2	.14	2
16			min	1.535	15	-492.062	2	074	3	012	3	01	3	07	3
17		9	max	36.124	1	1084.847	3	114.839	1	0	15	.074	1	.528	2
18			min	1.535	15	-624.396	2	1.385	12	012	3	01	3	741	3
19		10	max	36.124	1	1322.727	3	144.744	1	.01	2	.164	1	1.008	2
20			min	1.535	15	-756.731	2	2.61	12	012	3	008	3	-1.577	3
21		11	max	36.124	1	624.396	2	-1.385	12	.012	3	.074	1	.528	2
22			min	1.535	15	-1084.847	3	-114.839	1	0	15	01	3	741	3
23		12	max	36.124	1	492.062	2	.074	3	.012	3	.008	2	.14	2
24			min	1.535	15	-846.966	3	-84.933	1	0	15	01	3	07	3
25		13	max	36.124	1	359.727	2	1.912	3	.012	3	002	15	.436	3
26			min	1.535	15	-609.085	3	-55.028	1	0	15	044	1	155	2

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec	1 1	Axial[lb]		y Shear[lb]									
27		14	max	36.124	1	227.393	2	3.75	3	.012	3_	003	15	.776	3
28			min	1.535	15	-371.204	3	-25.122	1	0	15	072	1	359	2
29		15	max	36.124	1	95.058	2	5.588	3	.012	3	003	12	.951	3
30			min	1.535	15	-133.323	3	-1.609	10	0	15	079	1	471	2
31		16	max	36.124	1	104.558	3	34.689	1	.012	3	0	3	.961	3
32			min	1.535	15	-37.276	2	1.475	15	0	15	065	1	491	2
33		17	max	36.124	1	342.438	3	64.595	1	.012	3	.006	3	.806	3
34			min	1.535	15	-169.611	2	2.68	15	0	15	031	1	419	2
35		18	max	36.124	1	580.319	3	94.5	1	.012	3	.024	1	.486	3
36			min	1.535	15	-301.945	2	3.886	15	0	15	002	10	256	2
37		19	max	36.124	1	818.2	3	124.406	1	.012	3	.1	1	0	2
38			min	1.535	15	-434.28	2	5.091	15	0	15	.004	15	0	3
39	M14	1	max	26.599	1	541.811	2	-5.351	15	.016	3	.126	1	0	2
40			min	1.119	15	-682.267	3	-130.7	1	017	2	.005	15	0	3
41		2	max	26.599	1	409.477	2	-4.145	15	.016	3	.046	1	.411	3
42		_	min	1.119	15	-502.424	3	-100.794	1	017	2	0	10	33	2
43		3	max	26.599	1	277.142	2	-2.94	15	.016	3	.009	3	.698	3
44		J	min	1.119	15	-322.581	3	-70.889	1	017	2	014	1	569	2
45		4		26.599	1	144.808	2	-1.734	15	.016	3	.002	3	.859	3
		4	max		15	-142.738			1		2		1		2
46		-	min	1.119			3	-40.983		017		053		715	
47		5	max	26.599	1	37.105	3	1.078	10	.016	3	002	12	.896	3
48			min	1.119	15	685	9	-11.078	1	017	2	071	1	77	2
49		6	max	26.599	1	216.948	3	18.828	1	.016	3_	003	15	.808	3
50			min	1.119	15	-119.861	2	-4.382	3	017	2	068	1_	733	2
51		7	max	26.599	1	396.791	3_	48.733	1	.016	3	002	15	.595	3
52			min	1.119	15	-252.196	2	-2.544	3	017	2	045	1	603	2
53		8	max	26.599	1	576.634	3	78.639	1	.016	3	.006	2	.257	3
54			min	1.119	15	-384.53	2	706	3	017	2	01	3	382	2
55		9	max	26.599	1	756.477	3	108.545	1	.016	3	.065	1	.004	9
56			min	1.119	15	-516.865	2	.973	12	017	2	01	3	206	3
57		10	max	26.599	1	936.32	3	138.45	1	.017	2	.15	1	.336	2
58			min	1.119	15	-649.199	2	-73.309	14	016	3	008	3	794	3
59		11	max	26.599	1	516.865	2	973	12	.017	2	.065	1	.004	9
60			min	1.119	15	-756.477	3	-108.545	1	016	3	01	3	206	3
61		12	max	26.599	1	384.53	2	.706	3	.017	2	.006	2	.257	3
62			min	1.119	15	-576.634	3	-78.639	1	016	3	01	3	382	2
63		13	max	26.599	1	252.196	2	2.544	3	.017	2	002	15	.595	3
64			min	1.119	15	-396.791	3	-48.733	1	016	3	045	1	603	2
65		14	max	26.599	1	119.861	2	4.382	3	.017	2	003	15	.808	3
66			min	1.119	15	-216.948	3	-18.828	1	016	3	068	1	733	2
67		15	max		1	.685	9	11.078	1	.017	2	002	12	.896	3
68		10	min	1.119	15	-37.105	3	-1.078	10	016	3	071	1	77	2
69		16	max	26.599	1	142.738	3	40.983	1	.017	2	.002	3	.859	3
70		10	min	1.119	15	-144.808	2	1.734	15	016	3	053	1	715	2
71		17		26.599	1	322.581	3	70.889	1	.017	2	.009	3	.698	3
72		17	max	1.119		-277.142	2	2.94	15		3	014	1		2
		10	min		15					016			_	<u>569</u>	
73		18	max	26.599	1 1 5	502.424	3	100.794	1	.017	2	.046	1	.411	3
74		40	min	1.119	15	-409.477	2	4.145	15	016	3	0	10	33	2
75		19	max	26.599	1	682.267	3	130.7	1	.017	2	.126	1	0	2
76	N44.5	4	min	1.119	15	-541.811	2	5.351	15	016	3	.005	15	0	3
77	M15	1	max	-1.174	15	738.01	2	-5.348	15	.017	2	.126	1	0	2
78			min	-27.558	1	-390.041	3	-130.762	1_	013	3	.005	15	0	3
79		2	max	<u>-1.174</u>	15	547.638	2	-4.143	15	.017	2	.046	1	.239	3
80			min	-27.558	1	-297.253	3	-100.856		013	3	0	10	446	2
81		3	max	-1.174	15	357.265	2	-2.937	15	.017	2	.008	3	.413	3
82			min	-27.558	1	-204.466	3	-70.951	1	013	3	014	1	761	2
83		4	max	-1.174	15	166.893	2	-1.731	15	.017	2	.002	3	.523	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-27.558	1	-111.678	3	-41.045	1	013	3	053	1	943	2
85		5	max	-1.174	15	049	15	.927	10	.017	2	002	12	.568	3
86			min	-27.558	1	-23.479	2	-11.139	1	013	3	071	1	992	2
87		6	max	-1.174	15	73.897	3	18.766	1	.017	2	003	15	.549	3
88			min	-27.558	1	-213.851	2	-3.908	3	013	3	068	1	91	2
89		7	max	-1.174	15	166.684	3	48.672	1	.017	2	002	15	.465	3
90			min	-27.558	1	-404.224	2	-2.071	3	013	3	045	1	695	2
91		8	max	-1.174	15	259.472	3	78.577	1	.017	2	.005	2	.317	3
92			min	-27.558	1	-594.596	2	233	3	013	3	009	3	349	2
93		9	max	-1.174	15	352.259	3	108.483	1	.017	2	.064	1	.13	2
94		1 3	min	-27.558	1	-784.968	2	1.27	12	013	3	009	3	0	15
95		10		-1.174	15	445.047	3	138.389	1	.013	3	.15	1	.742	2
96		10	max	-27.558	1	-975.34						007	3	172	3
		44	min				2	-73.345	14	017	2				
97		11	max	-1.174	15	784.968	2	-1.27	12	.013	3	.064	1	.13	2
98		4.0	min	-27.558	1_	-352.259	3	-108.483	1	017	2	009	3	0	15
99		12	max	-1.174	15	594.596	2	.233	3	.013	3	.005	2	.317	3
100			min	-27.558	1	-259.472	3	-78.577	1	017	2	009	3	349	2
101		13	max	-1.174	15	404.224	2	2.071	3	.013	3	002	15	.465	3
102			min	-27.558	1	-166.684	3	-48.672	1	017	2	045	1	695	2
103		14	max	-1.174	15	213.851	2	3.908	3	.013	3	003	15	.549	3
104			min	-27.558	1	-73.897	3	-18.766	1	017	2	068	1	91	2
105		15	max	-1.174	15	23.479	2	11.139	1	.013	3	002	12	.568	3
106			min	-27.558	1	.049	15	927	10	017	2	071	1	992	2
107		16	max	-1.174	15	111.678	3	41.045	1	.013	3	.002	3	.523	3
108			min	-27.558	1	-166.893	2	1.731	15	017	2	053	1	943	2
109		17	max	-1.174	15	204.466	3	70.951	1	.013	3	.008	3	.413	3
110		- '	min	-27.558	1	-357.265	2	2.937	15	017	2	014	1	761	2
111		18	max	-1.174	15	297.253	3	100.856	1	.013	3	.046	1	.239	3
112		10	min	-27.558	1	-547.638	2	4.143	15	017	2	0	10	446	2
113		19		-1.174	15	390.041	3	130.762	1	.013	3	.126	1	0	2
		19	max								2		15		3
114	MAC	4	min	-27.558	1_	-738.01	2	5.348	15	017		.005		0	
115	M16	1	max	-1.726	15	637.118	2	-5.105	15	.003	1	.103	1_	0	2
116			min	-40.917	1_	-298.702	3	-125.142	1	011	3	.004	15	0	3
117		2	max	-1.726	15	446.746	2	-3.9	15	.003	1	.026	1	.175	3
118			min	-40.917	1_	-205.915	3	-95.237	1_	011	3	0	10	376	2
119		3	max	-1.726	15	256.374	2	-2.694	15	.003	1	.004	3	.286	3
120			min	-40.917	1	-113.127	3	-65.331	1	011	3	03	1	62	2
121		4	max	-1.726	15	66.001	2	-1.488	15	.003	1	0	12	.332	3
122			min	-40.917	1	-20.34	3	-35.425	1	011	3	065	1	732	2
123		5	max	-1.726	15	72.448	3	1.079	10	.003	1	003	12	.314	3
124			min	-40.917	1	-124.371	2	-5.52	1	011	3	079	1	712	2
125		6	max	-1.726	15	165.235	3	24.386	1	.003	1	003	15	.232	3
126			min	-40.917	1	-314.743		-2.284	3	011	3	072	1	56	2
127		7	max		15	258.023	3	54.291	1	.003	1	002	15	.085	3
128			min	-40.917	1	-505.115	2	447	3	011	3	045	1	275	2
129		8	max		15	350.81	3	84.197	1	.003	1	.006	2	.142	2
130		Ť	min	-40.917	1	-695.488	2	1.077	12	011	3	007	3	127	3
131		9	max	-1.726	15	443.598	3	114.102	1	.003	1	.072	1	.691	2
132			min	-40.917	1	-885.86	2	2.302	12	011	3	006	3	402	3
133		10	max		15	536.385	3	144.008	1	.011	3	.162	1	1.372	2
134		10		-40.917	1	-1076.232	2				1	003	3	743	3
		4.4	min		_			-76.586	14	003	_				
135		11	max		15	885.86	2	-2.302	12	.011	3	.072	1	.691	2
136		40	min	-40.917	1_	-443.598	3	-114.102		003	1	006	3	402	3
137		12	max		15	695.488	2	-1.077	12	.011	3	.006	2	.142	2
138			min	-40.917	1_	-350.81	3	-84.197	1	003	1	007	3_	127	3
139		13	max		15	505.115	2	.447	3	.011	3	002	15	.085	3
140			min	-40.917	1_	-258.023	3	-54.291	1	003	1	045	1	275	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC	y-y Mome		z-z Mome	
141		14	max	-1.726	<u> 15</u>	314.743	2	2.284	3	.011	3	003	15	.232	3
142			min	-40.917	1	-165.235	3	-24.386	1	003	1	072	1	56	2
143		15	max	-1.726	15	124.371	2	5.52	1	.011	3	003	12	.314	3
144			min	-40.917	1_	-72.448	3	-1.079	10	003	1	079	1	712	2
145		16	max	-1.726	<u> 15</u>	20.34	3	35.425	1	.011	3	0	12	.332	3
146			min	-40.917	1_	-66.001	2	1.488	15	003	1	065	1	732	2
147		17	max	-1.726	<u>15</u>	113.127	3	65.331	1	.011	3	.004	3	.286	3
148		40	min	-40.917	1_	-256.374	2	2.694	15	003	1	03	1	62	2
149		18	max	-1.726	<u>15</u>	205.915	3	95.237	1	.011	3	.026	1	.175	3
150		40	min	-40.917	1_	-446.746	2	3.9	15	003	1	0	10	<u>376</u>	2
151		19	max	-1.726	<u>15</u>	298.702	3	125.142	1	.011	3	.103	1	0	2
152	140		min	-40.917	1_	-637.118	2	5.105	15	003	1	.004	15	0	3
153	<u>M2</u>	1		1113.549	2	2.026	4	.284	1	0	3	0	3	0	1
154			min	-1562.185	3	.476	15	.012	15	0	1	0	2	0	1
155		2		1114.023	2	1.989	4	.284	1	0	3	0	1	0	15
156		_	min	-1561.83	3	.468	15	.012	15	0	1	0	10	0	4
157		3		1114.497	2	1.952	4	.284	1	0	3	0	1	0	15
158		1	min	-1561.475	3	.459	15	.012	15	0	1	0	10	<u>001</u>	4
159		4		1114.97	2	1.915	4	.284	1	0	3	0	1	0	15
160			min	-1561.119	3	.45	15	.012	15	0	1	0	10	002	4
161		5		1115.444	2	1.878	4	.284	1	0	3	0	1	0	15
162			min	-1560.764	3	.441	15	.012	15	0	1	0	10	002	4
163		6		1115.918	2	1.841	4	.284	1	0	3	0	1	0	15
164		7	min	-1560.409	3_	.433	15	.012	15	0	1	0	15	003	4
165		7		1116.391	2	1.804	4	.284	1	0	3	0	1	0	15
166			min	-1560.053	3	.424	15	.012	15	0		0	15	004	4
167		8		1116.865	2	1.767	4	.284	1	0	3	0	1	0	15
168			min	-1559.698	3_	.415	15	.012	15	0	1	0	15	004	4
169		9		1117.339 -1559.343	2	1.73	4	.284	1	0	3	0	1	001	15
170 171		10	min	1117.813	<u>3</u> 2	.407 1.693	1 <u>5</u>	.012 .284	15 1	<u> </u>	3	0	1 <u>5</u>	005 001	15
172		10	min	-1558.987	3	.398	15	.012	15	0	1	0	15	001	4
173		11		1118.286		1.656	4	.284	1		3	0	1	005 001	15
174			min	-1558.632	<u>2</u> 3	.389	15	.012	15	0 0	1	0	15	001	4
175		12	max	1118.76	2	1.619	4	.284	1	0	3	0	1	002	15
176		12	min	-1558.277	3	.38	15	.012	15	0	1	0	15	002	4
177		13		1119.234	2	1.581	4	.284	1	0	3	.001	1	002	15
178		13	min	-1557.921	3	.372	15	.012	15	0	1	0	15	002	4
179		14		1119.708	2	1.544	4	.284	1	0	3	.001	1	007	15
180		14	min	-1557.566	3	.363	15	.012	15	0	1	0	15	002	4
181		15		1120.181		1.507	4	.284	1	0	3	.001	1	002	15
182		10	min		3	.354	12	.012	15	0	1	0	15	008	4
183		16		1120.655	2	1.47	4	.284	1	0	3	.001	1	002	15
184		10		-1556.856	3	.339	12	.012	15	0	1	0	15	008	4
185		17		1121.129	2	1.433	4	.284	1	0	3	.001	1	002	15
186		- ' '	min		3	.325	12	.012	15	0	1	0	15	009	4
187		18		1121.603	2	1.396	4	.284	1	0	3	.002	1	002	15
188			min		3	.31	12	.012	15	0	1	0	15	009	4
189		19		1122.076	2	1.359	4	.284	1	0	3	.002	1	002	15
190			min	-1555.79	3	.296	12	.012	15	0	1	0	15	01	4
191	M3	1		772.809	2	8.995	4	.139	1	0	5	0	1	.01	4
192			min	-902.747	3	2.114	15	.006	15	0	1	0	15	.002	15
193		2		772.639	2	8.123	4	.139	1	0	5	0	1	.006	2
194				-902.875	3	1.909	15	.006	15	0	1	0	15	0	12
195		3	max		2	7.251	4	.139	1	0	5	0	1	.003	2
196		Ĭ	min	-903.002	3	1.704	15	.006	15	0	1	0	15	0	3
197		4		772.298	2	6.379	4	.139	1	0	5	0	1	0	2
							•		•						

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-903.13	3	1.499	15	.006	15	0	1	0	15	002	3
199		5	max	772.128	2	5.507	4	.139	1	0	5	0	1	0	15
200			min	-903.258	3	1.294	15	.006	15	0	1	0	15	004	3
201		6	max	771.957	2	4.635	4	.139	1	0	5	0	1	001	15
202			min	-903.386	3	1.089	15	.006	15	0	1	0	15	006	4
203		7	max	771.787	2	3.763	4	.139	1	0	5	0	1	002	15
204			min	-903.513	3	.885	15	.006	15	0	1	0	15	008	4
205		8	max	771.617	2	2.891	4	.139	1	0	5	0	1	002	15
206			min	-903.641	3	.68	15	.006	15	0	1	0	15	01	4
207		9	max	771.446	2	2.019	4	.139	1	0	5	0	1	003	15
208			min	-903.769	3	.475	15	.006	15	0	1	0	15	011	4
209		10	max	771.276	2	1.147	4	.139	1	0	5	0	1	003	15
210			min	-903.897	3	.27	15	.006	15	0	1	0	15	012	4
211		11	max	771.106	2	.4	2	.139	1	0	5	0	1	003	15
212			min	-904.024	3	093	3	.006	15	0	1	0	15	012	4
213		12	max	770.935	2	14	15	.139	1	0	5	0	1	003	15
214			min	-904.152	3	603	3	.006	15	0	1	0	15	012	4
215		13	max	770.765	2	345	15	.139	1	0	5	0	1	003	15
216			min	-904.28	3	-1.469	4	.006	15	0	1	0	15	012	4
217		14	max	770.595	2	55	15	.139	1	0	5	0	1	003	15
218			min	-904.408	3	-2.341	4	.006	15	0	1	0	15	011	4
219		15	max	770.424	2	755	15	.139	1	0	5	.001	1	002	15
220			min	-904.535	3	-3.213	4	.006	15	0	1	0	15	009	4
221		16	max	770.254	2	96	15	.139	1	0	5	.001	1	002	15
222			min	-904.663	3	-4.085	4	.006	15	0	1	0	15	008	4
223		17	max	770.084	2	-1.165	15	.139	1	0	5	.001	1	001	15
224			min	-904.791	3	-4.957	4	.006	15	0	1	0	15	006	4
225		18	max	769.913	2	-1.37	15	.139	1	0	5	.001	1	0	15
226			min	-904.919	3	-5.829	4	.006	15	0	1	0	15	003	4
227		19	max	769.743	2	-1.575	15	.139	1	0	5	.001	1	0	1
228			min	-905.047	3	-6.701	4	.006	15	0	1	0	15	0	1
229	M4	1	max	956.751	1	0	1	264	15	0	1	0	1	0	1
230			min	-156.328	3	0	1	-6.293	1	0	1	0	15	0	1
231		2	max	956.921	1	0	1	264	15	0	1	0	1	0	1
232			min	-156.2	3	0	1	-6.293	1	0	1	0	10	0	1
233		3	max	957.091	1	0	1	264	15	0	1	0	15	0	1
234			min	-156.072	3	0	1	-6.293	1	0	1	0	1	0	1
235		4	max	957.262	1	0	1	264	15	0	1	0	15	0	1
236			min	-155.945	3	0	1	-6.293	1	0	1	001	1	0	1
237		5	max	957.432	1	0	1	264	15	0	1	0	15	0	1
238			min	-155.817	3	0	1	-6.293	1	0	1	002	1	0	1
239		6	max		1	0	1	264	15	0	1	0	15	0	1
240			min	-155.689	3	0	1	-6.293	1	0	1	003	1	0	1
241		7		957.773	1	0	1	264	15	0	1	0	15	0	1
242			min	-155.561	3	0	1	-6.293	1	0	1	003	1	0	1
243		8	max	957.943	1	0	1	264	15	0	1	0	15	0	1
244			min	-155.434	3	0	1	-6.293	1	0	1	004	1	0	1
245		9		958.113	1	0	1	264	15	0	1	0	15	0	1
246			min	-155.306	3	0	1	-6.293	1	0	1	005	1	0	1
247		10		958.284	1	0	1	264	15	0	1	0	15	0	1
248			min	-155.178	3	0	1	-6.293	1	0	1	006	1	0	1
249		11		958.454	1	0	1	264	15	0	1	0	15	0	1
250			min		3	0	1	-6.293	1	0	1	006	1	0	1
251		12		958.624	1	0	1	264	15	0	1	0	15	0	1
252			min		3	0	1	-6.293	1	0	1	007	1	0	1
253		13		958.795	1	0	1	264	15	0	1	0	15	0	1
254				-154.795	3	0	1	-6.293	1	0	1	008	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14	max		1	0	1	264	<u>15</u>	0	<u>1</u> 1	0	<u>15</u>	0	1
256 257		15	min	-154.667 959.135	<u>3</u> 1	0	1	-6.293 264	<u>1</u> 15	0	1	009 0	15	0	1
258		13	max	-154.539	3	0	1	-6.293	1	0	1	009	1	0	1
259		16	max		_ <u></u>	0	1	264	15	0	1	0	15	0	1
260		10		-154.412	3	0	1	-6.293	1	0	1	01	1	0	1
261		17		959.476	1	0	1	264	15	0	1	0	15	0	1
262		- '		-154.284	3	0	1	-6.293	1	0	1	011	1	0	1
263		18		959.646	1	0	1	264	15	0	1	0	15	0	1
264			min	-154.156	3	0	1	-6.293	1	0	1	011	1	0	1
265		19	max		1	0	1	264	15	Ö	1	0	15	0	1
266			min	-154.028	3	0	1	-6.293	1	0	1	012	1	0	1
267	M6	1	max	3214.494	2	2.405	2	0	1	0	1	0	1	0	1
268			min	-4670.996	3	.107	3	0	1	0	1	0	1	0	1
269		2	max	3214.968	2	2.376	2	0	1	0	1	0	1	0	3
270			min	-4670.64	3	.085	3	0	1	0	1	0	1	0	2
271		3		3215.442	2	2.347	2	0	1	0	1	0	1	0	3
272			min	-4670.285	3	.064	3	0	1	0	1	0	1	002	2
273		4	max	3215.915	2	2.318	2	0	1_	0	1_	0	1	0	3
274				-4669.93	3	.042	3	0	1	0	1	0	1	002	2
275		5	max	3216.389	2	2.289	2	0	1_	0	_1_	0	1	0	3
276			min	-4669.574	3	.02	3	0	1_	0	1	0	1	003	2
277		6		3216.863	2	2.261	2	0	_1_	0	1	0	1	0	3
278				-4669.219	3	001	3	0	1_	0	1	0	1	004	2
279		7		3217.337	2	2.232	2	0	_1_	0	_1_	0	1	0	3
280			min		3	023	3	0	1_	0	1	0	1	004	2
281		8	max		2	2.203	2	0	_1_	0	1	0	1	0	3
282				-4668.508	3	045	3	0	1_	0	1	0	1	005	2
283		9		3218.284	2	2.174	2	0	1_	0	1	0	1	0	3
284		40	min	-4668.153	3	066	3	0	<u>1</u> 1	0	1	0	1	006	2
285		10		3218.758 -4667.798	2	2.145 088	3	0	1	0	<u>1</u> 1	0	1	007	3
286 287		11	min	3219.232	2	2.116	2	0	1	0	1	0	1	007 0	3
288				-4667.443	3	109	3	0	1	0	1	0	1	007	2
289		12		3219.705	2	2.087	2	0	1	0	1	0	1	007 0	3
290		12	min		3	131	3	0	1	0	1	0	1	008	2
291		13		3220.179	2	2.059	2	0	1	0	1	0	1	0	3
292		10		-4666.732	3	153	3	0	1	0	1	0	1	009	2
293		14		3220.653	2	2.03	2	0	1	0	1	0	1	0	3
294			min		3	174	3	0	1	0	1	0	1	009	2
295		15		3221.127	2	2.001	2	0	1	0	1	0	1	0	3
296			min	-4666.021	3	196	3	0	1	0	1	0	1	01	2
297		16	max		2	1.972	2	0	1	0	1	0	1	0	3
298				-4665.666	3	218	3	0	1	0	1	0	1	011	2
299		17		3222.074	2	1.943	2	0	1	0	1	0	1	0	3
300			min		3	239	3	0	1	0	1	0	1	011	2
301		18		3222.548	2	1.914	2	0	1	0	1	0	1	0	3
302				-4664.955	3	261	3	0	1	0	1	0	1	012	2
303		19		3223.022	2	1.885	2	0	1	0	1	0	1	0	3
304				-4664.6	3	283	3	0	1	0	1	0	1	012	2
305	M7	1	max	2365.573	2	9.015	4	0	_1_	0	1	0	1	.012	2
306			min	-2554.167	3	2.117	15	0	1_	0	1	0	1	0	3
307		2		2365.402	2	8.143	4	0	1_	0	1	0	1	.009	2
308				-2554.295	3	1.912	15	0	1_	0	1	0	1	003	3
309		3		2365.232	2	7.271	4	0	1_	0	1	0	1	.006	2
310			min		3	1.707	15	0	1_	0	1	0	1	004	3
311		4	max	2365.062	2	6.399	4	0	_1_	0	_1_	0	1	.003	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2554.55	3	1.502	15	0	1	0	1	0	1	006	3
313		5	max	2364.891	2	5.527	4	0	1	0	1	0	1	0	2
314			min	-2554.678	3	1.297	15	0	1	0	1	0	1	007	3
315		6	max	2364.721	2	4.655	4	0	1	0	1	0	1	001	15
316			min	-2554.806	3	1.092	15	0	1	0	1	0	1	008	3
317		7	max	2364.551	2	3.783	4	0	1	0	1	0	1	002	15
318			min	-2554.933	3	.887	15	0	1	0	1	0	1	009	3
319		8	max	2364.38	2	2.911	4	0	1	0	1	0	1	002	15
320			min	-2555.061	3	.67	12	0	1	0	1	0	1	01	4
321		9	max	2364.21	2	2.133	2	0	1	0	1	0	1	003	15
322			min	-2555.189	3	.33	12	0	1	0	1	0	1	011	4
323		10		2364.039	2	1.453	2	0	1	0	1	0	1	003	15
324		1	min	-2555.317	3	059	3	0	1	0	1	0	1	012	4
325		11		2363.869	2	.774	2	0	1	0	1	0	1	003	15
326			min	-2555.445	3	569	3	0	1	0	1	0	1	012	4
327		12		2363.699	2	.094	2	0	1	0	1	0	1	003	15
328		<u> </u>	min	-2555.572	3	-1.079	3	0	1	0	1	0	1	012	4
329		13	_	2363.528	2	342	15	0	1	0	1	0	1	003	15
330			min	-2555.7	3	-1.588	3	0	1	0	1	0	1	012	4
331		14		2363.358	2	547	15	0	1	0	1	0	1	003	15
332		17	min	-2555.828	3	-2.321	4	0	1	0	1	0	1	011	4
333		15		2363.188	2	752	15	0	1	0	1	0	1	002	15
334		15	min	-2555.956	3	-3.193	4	0	1	0	1	0	1	009	4
335		16		2363.017	2	957	15	0	1	0	1	0	1	002	15
336		10	min	-2556.083	3	-4.065	4	0	1	0	1	0	1	002	4
337		17		2362.847	2	-1.162	15	0	1	0	1	0	1	001	15
338		17	min	-2556.211	3	-4.937	4	0	1	0	1	0	1	005	4
339		18		2362.677	2	-1.367	15	0	1	0	1	0	1	0	15
340		10	min	-2556.339	3	-5.809	4	0	1	0	1	0	1	003	4
341		19		2362.506	2	-5.609 -1.572	15	0	1	0	1	0	1		1
342		19	min	-2556.467	3	-6.681	4	0	1	0	1	0	1	0	1
343	M8	1			2	0	1	0	1	0	1	0	1	0	1
344	IVIO	+ -	max min		3	0	1	0	1	0	1	0	1	0	1
345		2		2722.361	2	0	1	0	1	0	1	0	1	0	1
							1		1		1		1		1
346 347		3	min	-549.928 2722.531	<u>3</u> 2	0	1	0	1	0	1	0	+	0	1
348		3		-549.801	3	0	1	0	1	0	1	0	1	0	1
349		4	min	2722.701	2	0	1	0	1	0	1	0	1	0	1
		4	_		3	0	1	0	1	0	1	0	1	0	1
350		E	min	-549.673			1		1		1		1		1
351 352		5		2722.872 -549.545	2	0	1	0	1	0	1	0	1	0	1
		G			3		4		4		4	0	1		1
353		6		2723.042	2	0	1	0	1	0	1	0	1	0	1
354		7		-549.417	3	0		0		0	1	0		0	1
355		7		2723.212	2	0	1	0	1	0	1	0	1	0	1
356		0		-549.29	3	0	1	0	1	0	1	0	1	0	1
357		8		2723.383	2	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1_	0	1
359		9		2723.553	2	0	1	0	1	0	1	0	1	0	1
360		40		-549.034	3	0	1	0	1	0	1	0	1_	0	1
361		10		2723.723	2	0	1	0	1	0	1	0	1	0	1
362			min		3	0	1	0	1	0	1	0	1	0	1
363		11_		2723.894	2	0	1	0	1	0	1	0	1	0	1
364				-548.779	3	0	1	0	1	0	1	0	1_	0	1
365		12		2724.064	2	0	1	0	1	0	1	0	1	0	1
366				-548.651	3	0	1	0	1	0	1	0	1	0	1
367		13		2724.234	2	0	1	0	1	0	1	0	1	0	1
368			min	-548.523	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC	_	LC
369		14		2724.405	2	0	1	0	1_	0	1_4	0	1	0	1
370		4.5	min	-548.395	3	0	1_	0	1_	0	1_	0	1	0	1
371		15		2724.575	2	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		4.0		-548.268	3	0		0	1	0		0	1	0	1
373		16		2724.745	2	0	1	0	1	0	<u>1</u> 1	0	1	0	1
374		17	min	-548.14	3	0	1	_	1		1	0	1	0	1
375		17		2724.916	2	0	1	0	1	0	1	0	1	0	1
376		10		-548.012	3		1	_	1		1		1		
377		18		2725.086	2	0	1	0	1	0	1	0	1	0	1
378		10	min	-547.884	3	0	1	0	1	0	1	0	1	0	1
379		19		2725.257	2	0	1	0	1	0	1	0	1	0	1
380	M10	1	min	<u>-547.756</u> 1113.549	3	2.026		012			1	0	2	0	1
381	IVITO			-1562.185	3	.476	<u>4</u> 15	012	<u>15</u> 1	0	3	0	3	0	1
383		2		1114.023					•	_	<u>ာ</u> 1	0			-
384				-1561.83	3	1.989 .468	<u>4</u> 15	012 284	<u>15</u> 1	0	3	0	10 1	0	1 <u>5</u>
385		3		1114.497		1.952	4	012	15	0	<u> </u>	0	10	0	15
386		3		-1561.475	<u>2</u> 3	.459	15	284	1	0	3	0	1	001	4
387		4		1114.97	2	1.915	4	012	15	0	<u> </u>	0	10	0	15
388		4	min	-1561.119	3	.45	15	012	1	0	3	0	1	002	4
389		5		1115.444	2	1.878	4	012	15	0	<u> </u>	0	10	002 0	15
390		3	min	-1560.764	3	.441	15	012	1	0	3	0	1	002	4
391		6		1115.918	2	1.841	4	012	15	0	<u> </u>	0	15	002 0	15
392		0		-1560.409	3	.433	15	012	1	0	3	0	1	003	4
393		7		1116.391	2	1.804	4	012	15	0	<u> </u>	0	15	003 0	15
394			min	-1560.053	3	.424	15	012	1	0	3	0	1	004	4
395		8		1116.865	2	1.767	4	012	15	0	1	0	15	0	15
396		0		-1559.698	3	.415	15	284	1	0	3	0	1	004	4
397		9		1117.339	2	1.73	4	012	15	0	<u> </u>	0	15	004	15
398		9	min	-1559.343	3	.407	15	284	1	0	3	0	1	005	4
399		10		1117.813	2	1.693	4	012	15	0	1	0	15	003 001	15
400		10	min	-1558.987	3	.398	15	284	1	0	3	0	1	005	4
401		11		1118.286	2	1.656	4	012	15	0	<u> </u>	0	15	003	15
402			min	-1558.632	3	.389	15	284	1	0	3	0	1	006	4
403		12	max	1118.76	2	1.619	4	012	15	0	1	0	15	002	15
404		12	min	-1558.277	3	.38	15	284	1	0	3	0	1	002	4
405		13	_	1119.234	2	1.581	4	012	15	0	1	0	15	002	15
406		10	min		3	.372	15	284	1	0	3	001	1	007	4
407		14		1119.708	2	1.544	4	012	15	0	1	0	15	002	15
408		17		-1557.566	3	.363	15	284	1	0	3	001	1	007	4
409		15		1120.181	2	1.507	4	012	15	0	1	0	15	002	15
410		- 10	min	-1557.211	3	.354	12	284	1	0	3	001	1	008	4
411		16	_	1120.655	2	1.47	4	012	15	0	1	0	15	002	15
412		'		-1556.856	3	.339	12	284	1	0	3	001	1	008	4
413		17		1121.129	2	1.433	4	012	15	0	1	0	15	002	15
414		- ' '		-1556.5	3	.325	12	284	1	0	3	001	1	009	4
415		18		1121.603	2	1.396	4	012	15	0	1	0	15	002	15
416				-1556.145	3	.31	12	284	1	0	3	002	1	009	4
417		19		1122.076	2	1.359	4	012	15	0	1	0	15	002	15
418		Ŭ		-1555.79	3	.296	12	284	1	0	3	002	1	01	4
419	M11	1		772.809	2	8.995	4	006	15	0	1	0	15	.01	4
420		Ė		-902.747	3	2.114	15	139	1	0	5	0	1	.002	15
421		2		772.639	2	8.123	4	006	15	0	1	0	15	.006	2
422				-902.875	3	1.909	15	139	1	0	5	0	1	0	12
423		3		772.468	2	7.251	4	006	15	0	1	0	15	.003	2
424				-903.002	3	1.704	15	139	1	0	5	0	1	0	3
425		4		772.298	2	6.379	4	006	15	0	1	0	15	0	2
											<u> </u>				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

A27		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
428	426			min	-903.13	3	1.499	15	139	1	0	5	0	1	002	3
A29	427		5	max	772.128	2	5.507	4	006	15	0	1	0	15	0	15
A30	428			min	-903.258	3	1.294	15	139	1	0	5	0	1	004	3
A31	429		6	max	771.957	2	4.635	4	006	15	0	1	0	15	001	15
A31				min				15			0	5	0	1	006	
A32			7			2				15			0	15		15
A33						3		15				5	0			
434			8							15			0	15		
435																
A36			9											15		
437																
438			10											_		-
439			10													
Head Main			11								_					
441												_				
Mat Mat			12											_		
4444			12									_				
Math			12													
445			13													
446			4.4							-						
448			14													
448														_		
449			15													
450						_					_			_		
451			16									_				
452	450			min		3	-4.085				0	5	001		008	
453	451		17	max	770.084	2	-1.165	15	006	15	0	1	0	15	001	15
454	452			min	-904.791	3	-4.957		139	1	0	5	001		006	4
455	453		18	max	769.913	2	-1.37	15	006	15	0	1	0	15	0	15
456	454			min	-904.919	3	-5.829	4	139	1	0	5	001	1	003	4
456	455		19	max	769.743	2	-1.575	15	006	15	0	1	0	15	0	1
457 M12 1 max 956.751 1 0 1 6.293 1 0 1				min		3		4			0	5	001		0	1
458 min -156.328 3 0 1 .264 15 0 1 0 1 0 1 459 2 max 956.921 1 0 1 </td <td></td> <td>M12</td> <td>1</td> <td>max</td> <td></td> <td>1</td> <td>0</td> <td>1</td> <td>6.293</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>15</td> <td>0</td> <td>1</td>		M12	1	max		1	0	1	6.293	1	0	1	0	15	0	1
459						3		1		15		1				1
460 min -156.2 3 0 1 .264 15 0 1 0 1 0 1 461 3 max 957.091 1 0 1 6.293 1 0 1 0 1 0 1 462 min -156.072 3 0 1 .264 15 0 1 0 15 0 1 463 4 max 957.262 1 0 1 6.293 1 0 1 .001 1 0 1 464 min -155.945 3 0 1 .264 15 0 1 0 1 6 15 0 1 0 1 6.293 1 0 1 0.002 1 0 1 4.629 1 0 1 6.293 1 0 1 0.002 1 0 1 4.629 1 <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>0</td> <td>1</td> <td></td> <td></td> <td>0</td> <td>1</td> <td>0</td> <td>10</td> <td>0</td> <td>1</td>			2				0	1			0	1	0	10	0	1
461 3 max 957.091 1 0 1 6.293 1 0 1 0 1 462 min -156.072 3 0 1 .264 15 0 1 0 1 463 4 max 957.262 1 0 1 6.293 1 0 1 .001 1 0 1 464 min -155.945 3 0 1 .264 15 0 1 0 1 .002 1 0 1 .6293 1 0 1 .002 1 0 1 .6293 1 0 1 .002 1 0 1 .6293 1 0 1 .002 1 0 1 .6293 1 0 1 .003 1 .003 1 .004 1 .003 1 .004 .004 .003 1 .004 .004								1				1				1
462 min -156.072 3 0 1 .264 15 0 1 0 15 0 1 463 4 max 957.262 1 0 1 6.293 1 0 1 .001 1 0 15 0 1 464 min -155.945 3 0 1 .264 15 0 1 0 15 0 1 465 5 max 957.432 1 0 1 6.293 1 0 1 .002 1 0 1 466 min -155.817 3 0 1 .264 15 0 1 0 0 15 0 1 467 6 max 957.602 1 0 1 6.293 1 0 1 .003 1 0 1 468 min -155.689 3 0 1 .264 15 0 1 0 0 15 0 1 469 7 max 957.773 1 0 1 6.293 1 0 1 .003 1 0 1 470 min -155.561 3 0 1 .264 15 0 1 0 15 0 1 471 8 max 957.943 1 0 1 6.293 1 0 1 .004 1 0 15 0 1 472 min -155.434 3 0 1 .264 15 0 1 .004 1 0 1 473 9 max 958.113 1 0 1 6.293 1 0 1 .005 1 0 1 474 min -155.306 3 0 1 .264 15 0 1 .005 1 0 1 475 10 max 958.284 1 0 1 6.293 1 0 1 .005 1 0 1 476 min -155.05 3 0 1 .264 15 0 1 0 15 0 1 477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 15 0 1 478 min -155.05 3 0 1 .264 15 0 1 0 1 .006 1 0 1 479 12 max 958.624 1 0 1 6.293 1 0 1 0 1 .007 1 0 1 480 min -154.923 3 0 1 .264 15 0 1 0 1 .007 1 0 1 481 13 max 958.795 1 0 1 6.293 1 0 1 0 1 .008 1 0 1			3					1				1		1		1
463 4 max 957.262 1 0 1 6.293 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 <				_								1				1
464 min -155.945 3 0 1 .264 15 0 1 0 15 0 1 465 5 max 957.432 1 0 1 6.293 1 0 1 .002 1 0 1 466 min -155.817 3 0 1 .264 15 0 1 0 1 0 1 467 6 max 957.602 1 0 1 6.293 1 0 1 .003 1 0 1 468 min -155.689 3 0 1 .264 15 0 1 0 1 .003 1 0 1 .469 7 max 957.773 1 0 1 .6293 1 0 1 .003 1 .004 1 .003 1 .004 1 .004 1 .004 1			4					-								
465 5 max 957.432 1 0 1 6.293 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .002 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .003 1 .00							_			_				_		
466 min -155.817 3 0 1 .264 15 0 1 0 15 0 1 467 6 max 957.602 1 0 1 6.293 1 0 1 .003 1 0 1 468 min -155.689 3 0 1 .264 15 0 1 0 1 469 7 max 957.773 1 0 1 6.293 1 0 1 .003 1 0 1 470 min -155.561 3 0 1 .264 15 0 1 0 1 471 8 max 957.943 1 0 1 6.293 1 0 1 .004 1 0 1 472 min -155.434 3 0 1 .264 15 0 1 .005 1			5									-	_			
467 6 max 957.602 1 0 1 6.293 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .003 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 .004 1 .004 1 .004 .004 .004 .004 .004			-					1				1				1
468 min -155.689 3 0 1 .264 15 0 1			6					1				1				1
469 7 max 957.773 1 0 1 6.293 1 0 1 .003 1 0 1 470 min -155.561 3 0 1 .264 15 0 1 0 15 0 1 471 8 max 957.943 1 0 1 6.293 1 0 1 .004 1 0 1 472 min -155.434 3 0 1 .264 15 0 1 .004 1 0 1 473 9 max 958.113 1 0 1 6.293 1 0 1 .005 1 0 1 474 min -155.306 3 0 1 .264 15 0 1 .005 1 0 1 475 10 max 958.284 1 0 1 6.293 1 0 1 .006 1 0 1 476 min			U							_		_				_
470 min -155.561 3 0 1 .264 15 0 1 0 15 0 1 471 8 max 957.943 1 0 1 6.293 1 0 1 .004 1 0 1 472 min -155.434 3 0 1 .264 15 0 1 0 15 0 1 473 9 max 958.113 1 0 1 6.293 1 0 1 .005 1 0 1 474 min -155.306 3 0 1 .264 15 0 1 0 1 .005 1 0 1 475 10 max 958.284 1 0 1 6.293 1 0 1 .006 1 0 1 476 min -155.178 3 0 1			7					-			_		_			
471 8 max 957.943 1 0 1 6.293 1 0 1 .004 1 0 1 472 min -155.434 3 0 1 .264 15 0 1 0 15 0 1 473 9 max 958.113 1 0 1 6.293 1 0 1 .005 1 0 1 474 min -155.306 3 0 1 .264 15 0 1 0 15 0 1 475 10 max 958.284 1 0 1 6.293 1 0 1 .006 1 0 1 476 min -155.178 3 0 1 .264 15 0 1 0 15 0 1 477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 1 479 12										_		<u> </u>				
472 min -155.434 3 0 1 .264 15 0 1 0 15 0 1 473 9 max 958.113 1 0 1 6.293 1 0 1 .005 1 0 1 474 min -155.306 3 0 1 .264 15 0 1 0 15 0 1 475 10 max 958.284 1 0 1 6.293 1 0 1 .006 1 0 1 476 min -155.178 3 0 1 .264 15 0 1 0 1 0 1 .006 1 0 1 477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 1 478 min -155.05 3			0										_			
473 9 max 958.113 1 0 1 6.293 1 0 1 .005 1 0 1 474 min -155.306 3 0 1 .264 15 0 1 0 15 0 1 475 10 max 958.284 1 0 1 6.293 1 0 1 .006 1 0 1 476 min -155.178 3 0 1 .264 15 0 1 0 15 0 1 477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 1 478 min -155.05 3 0 1 .264 15 0 1 0 1 0 1 479 12 max 958.624 1 0 1 6.293 1 0 1 0 1 0 1 480 min			B													_
474 min -155.306 3 0 1 .264 15 0 1 0 15 0 1 475 10 max 958.284 1 0 1 6.293 1 0 1 .006 1 0 1 476 min -155.178 3 0 1 .264 15 0 1 0 15 0 1 477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 1 478 min -155.05 3 0 1 .264 15 0 1 0 15 0 1 479 12 max 958.624 1 0 1 6.293 1 0 1 .007 1 0 1 480 min -154.923 3 0 1 .264 15 0 1 0 15 0 1 481 13 max																
475 10 max 958.284 1 0 1 6.293 1 0 1 .006 1 0 1 476 min -155.178 3 0 1 .264 15 0 1 0 15 0 1 477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 1 478 min -155.05 3 0 1 .264 15 0 1 0 15 0 1 479 12 max 958.624 1 0 1 6.293 1 0 1 .007 1 0 1 480 min -154.923 3 0 1 .264 15 0 1 0 15 0 1 481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1			9					_								
476 min -155.178 3 0 1 .264 15 0 1 0 15 0 1 477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 1 478 min -155.05 3 0 1 .264 15 0 1 0 15 0 1 479 12 max 958.624 1 0 1 6.293 1 0 1 .007 1 0 1 480 min -154.923 3 0 1 .264 15 0 1 0 15 0 1 481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1																
477 11 max 958.454 1 0 1 6.293 1 0 1 .006 1 0 1 478 min -155.05 3 0 1 .264 15 0 1 0 15 0 1 479 12 max 958.624 1 0 1 6.293 1 0 1 .007 1 0 1 480 min -154.923 3 0 1 .264 15 0 1 0 15 0 1 481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1			10			_		_				_				_
478 min -155.05 3 0 1 .264 15 0 1 0 15 0 1 479 12 max 958.624 1 0 1 6.293 1 0 1 .007 1 0 1 480 min -154.923 3 0 1 .264 15 0 1 0 15 0 1 481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1						3										
479 12 max 958.624 1 0 1 6.293 1 0 1 .007 1 0 1 480 min -154.923 3 0 1 .264 15 0 1 0 15 0 1 481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1			11	max								_	.006			
480 min -154.923 3 0 1 .264 15 0 1 0 15 0 1 481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1						3		_			_		_	15		
481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1			12	max	958.624	1	0	1	6.293	_	0	1	.007		0	1
481 13 max 958.795 1 0 1 6.293 1 0 1 .008 1 0 1	480			min	-154.923	3	0	1	.264	15	0	1	0	15	0	1
			13			1	0	1			0	1	.008		0	1
	482					3	0	1	.264	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC	z-z Mome	LC
483		14	max		_1_	0	1	6.293	1	0	1	.009	_1_	0	1
484			min	-154.667	3	0	1	.264	15	0	1	0	15	0	1
485		15	max	959.135	1	0	1	6.293	1	0	1	.009	1	0	1
486			min	-154.539	3	0	1	.264	15	0	1	0	15	0	1
487		16	max	959.306	1	0	1	6.293	1	0	1	.01	1	0	1
488			min	-154.412	3	0	1	.264	15	0	1	0	15	0	1
489		17	max	959.476	1	0	1	6.293	1	0	1	.011	1	0	1
490			min	-154.284	3	0	1	.264	15	0	1	0	15	0	1
491		18	max		1	0	1	6.293	1	0	1	.011	1	0	1
492			min	-154.156	3	0	1	.264	15	0	1	0	15	0	1
493		19	max		1	0	1	6.293	1	0	1	.012	1	0	1
494			min	-154.028	3	0	1	.264	15	0	1	0	15	0	1
495	M1	1	max	124.41	1	818.108	3	-1.535	15	0	2	.1	1	0	15
496	IVII	<u> </u>	min	5.091	15	-433.481	2	-36.082	1	0	3	.004	15	012	3
497		2	max	125.122	1	816.963	3	-1.535	15	0	2	.078	1	.26	2
498			min	5.306	15	-435.008	2	-36.082	1	0	3	.003	15	52	3
499		3	max		3	593.209	2	-1.523	15	0	3	.056	1	.519	2
500		3				-644.211	3	-35.878	1	0	2	.002	15	-1.01	3
		1	min	-358.072	2										
501		4	max	587.83	3	591.682	2	-1.523	15	0	3	.033	1_	.151	2
502		-	min	-357.36	2	-645.356	3	-35.878	1_	0	2	.001	15	61	3
503		5	max	588.364	3_	590.155	2	-1.523	15	0	3	.011	1_	005	15
504			min	-356.648	2	-646.501	3	-35.878	1_	0	2	0	10	216	2
505		6	max	588.898	3	588.628	2	-1.523	15	0	3	0	15	.192	3
506			min	-355.936	2	-647.646	3	-35.878	1	0	2	011	1_	581	2
507		7	max	589.432	3_	587.101	2	-1.523	15	0	3	001	15	.595	3
508			min	-355.224	2	-648.791	3	-35.878	1	0	2	034	1_	946	2
509		8	max	589.966	3	585.574	2	-1.523	15	0	3	002	15	.998	3
510			min	-354.512	2	-649.937	3	-35.878	1	0	2	056	1_	-1.31	2
511		9	max	604.071	3	48.363	2	-2.642	15	0	9	.038	1	1.161	3
512			min	-304.197	2	.465	15	-62.505	1	0	3	.002	15	-1.49	2
513		10	max	604.605	3	46.836	2	-2.642	15	0	9	0	10	1.138	3
514			min	-303.485	2	.005	15	-62.505	1	0	3	0	1	-1.52	2
515		11	max	605.139	3	45.309	2	-2.642	15	0	9	002	15	1.115	3
516			min	-302.773	2	-1.883	4	-62.505	1	0	3	039	1	-1.549	2
517		12	max		3	432.368	3	-1.468	15	0	2	.055	1	.982	3
518			min	-252.233	2	-690.051	2	-34.951	1	0	3	.002	15	-1.376	2
519		13	max		3	431.222	3	-1.468	15	0	2	.033	1	.714	3
520		1	min	-251.521	2	-691.578	2	-34.951	1	0	3	.001	15	948	2
521		14	max		3	430.077	3	-1.468	15	0	2	.012	1	.446	3
522			min	-250.809	2	-693.105	2	-34.951	1	0	3	0	15	518	2
523		15		620.374	3	428.932		-1.468	15	0	2	0	15	.18	3
524		10	min		2	-694.632	2	-34.951	1	0	3	01	1	099	1
525		16	+	620.908	3	427.787	3	-1.468	15	0	2	001	15	.344	2
526		10		-249.385	2	-696.159		-34.951	1	0	3	032	1	086	3
527		17		621.442	3	426.642	3	-1.468	15		2	002	15		2
528		17		-248.673	2	-697.686		-34.951	1	0	3	053	<u>15</u> 1	.777	3
		40								0			_	351	
529		18	max		<u>15</u>	639.366	2	-1.726	15	0	3	003	<u>15</u>	.394	2
530		10	min		1_	-297.7	3	<u>-40.957</u>	1_	0	2	077	1_	175	3
531		19	max		<u>15</u>	637.839	2	-1.726	15	0	3	004	<u>15</u>	.011	3
532	NAT.	4	min		1_	-298.845	3	-40.957	1	0	2	103	1_	003	1
533	M5	1	max		1	2645.461	3	0	1	0	1	0	1_	.025	3
534			min	5.222	12	-1510.479	2	0	1	0	1	0	1_	0	15
535		2	max		1_	2644.316	3	0	1	0	1	0	_1_	.958	2
536			min		12	-1512.006	2	0	1	0	1	0	_1_	-1.617	3
537		3		1718.371	3_	1441.136	2	0	1	0	1_	0	_1_	1.864	2
538			min		2	-1743.073	3	0	1	0	1	0	1_	-3.21	3
539		4	max	1718.905	3	1439.609	2	0	1	0	_1_	0	_1_	.97	2

Model Name

Schletter, Inc. HCV

: HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-1052.777	2	-1744.218	3	0	1	0	1	0	1	-2.128	3
541		5		1719.439	3	1438.083	2	0	1	0	1	0	1_	.107	1
542			min	-1052.065	2	-1745.364	3	0	1	0	1	0	1_	-1.045	3
543		6		1719.973	3	1436.556	2	0	1	0	1	0	1_	.039	3
544			min	-1051.353	2	-1746.509	3	0	1	0	1	0	1_	815	2
545		7	max		3	1435.029	2	0	1	0	1	0	1	1.123	3
546			min	-1050.641	2	-1747.654	3	0	1	0	1	0	1_	-1.706	2
547		8		1721.041	3	1433.502	2	0	1	0	1	0	1	2.208	3
548			min	-1049.929	2	-1748.799	3	0	1	0	1	0	1	-2.596	2
549		9		1727.516	3	166.699	2	0	1	0	1	0	1	2.552	3
550			min	-930.751	2	.458	15	0	1	0	1	0	1_	-2.982	2
551		10	max		3	165.173	2	0	1	0	1	0	1_	2.453	3
552			min	-930.039	2	003	15	0	1	0	1	0	1_	-3.085	2
553		11		1728.584	3	163.646	2	0	1	0	1	0	1_	2.354	3
554			min	-929.327	2	-1.835	4	0	1	0	1	0	1_	-3.187	2
555		12		1736.002	3	1091.333	3	0	1	0	1	0	1	2.05	3
556			min	-810.598	2	-1762.547	2	0	1	0	1	0	1_	-2.843	2
557		13	max		3	1090.188	3	0	1_	0	1	0	1	1.373	3
558			min	-809.886	2	-1764.073	2	0	1	0	1	0	1	-1.749	2
559		14	max	1737.07	3	1089.042	3	0	1	0	1	0	1	.697	3
560			min	-809.174	2	-1765.6	2	0	1	0	1	0	1	654	2
561		15		1737.604	3	1087.897	3	0	1	0	1	0	1	.442	2
562			min	-808.462	2	-1767.127	2	0	1	0	1	0	1_	.001	15
563		16		1738.138	3	1086.752	3	0	1	0	1	0	1_	1.54	2
564			min	-807.75	2	-1768.654	2	0	1	0	1	0	1	654	3
565		17	max		3	1085.607	3	0	1	0	1	0	1_	2.638	2
566			min	-807.038	2	-1770.181	2	0	1	0	1	0	1	-1.328	3
567		18	max	-7.409	12	2156.218	2	0	1	0	1	0	1_	1.342	2
568			min	-288.735	1	-1071.852	3	0	1	0	1	0	1	687	3
569		19	max	-7.053	12	2154.691	2	0	1	0	1	0	1_	.007	1
570			min	-288.023	1	-1072.997	3	0	1	0	1	0	1	021	3
571	<u>M9</u>	1	max	124.41	1_	818.108	3	36.082	1	0	3	004	15	0	15
572			min	5.091	15	-433.481	2	1.535	15	0	2	1	1_	012	3
573		2	max	125.122	1	816.963	3	36.082	1	0	3	003	15	.26	2
574			min	5.306	15	-435.008	2	1.535	15	0	2	078	1_	52	3
575		3	max	587.296	3	593.209	2	35.878	1	0	2	002	15	.519	2
576			min	-358.072	2	-644.211	3	1.523	15	0	3	056	1_	-1.01	3
577		4	max	587.83	3	591.682	2	35.878	1	0	2	001	15	.151	2
578			min	-357.36	2	-645.356	3	1.523	15	0	3	033	1_	61	3
579		5_	max		3	590.155	2	35.878	1	0	2	0	10	005	15
580		_		-356.648		-646.501		1.523	15	0	3	011	1_	216	2
581		6	max		3	588.628	2	35.878	1	0	2	.011	1	.192	3
582			min	-355.936	2	-647.646		1.523	15	0	3	0	15	581	2
583		7		589.432	3	587.101	2	35.878	1	0	2	.034	1	.595	3
584			min	-355.224	2	-648.791	3	1.523	15	0	3	.001	15	946	2
585		8		589.966	3	585.574	2	35.878	1	0	2	.056	1	.998	3
586			min		2	-649.937	3	1.523	15	0	3	.002	15	-1.31	2
587		9		604.071	3	48.363	2	62.505	1	0	3	002	15	1.161	3
588				-304.197	2	.465	15		15	0	9	038	1	-1.49	2
589		10		604.605	3	46.836	2	62.505	1	0	3	0	1	1.138	3
590				-303.485	2	.005	15		15	0	9	0	10	-1.52	2
591		11	max		3	45.309	2	62.505	1	0	3	.039	1	1.115	3
592			min		2	-1.883	4	2.642	15	0	9	.002	15	-1.549	2
593		12		618.772	3	432.368	3	34.951	1	0	3	002	15	.982	3
594			min	-252.233	2	-690.051	2	1.468	15	0	2	055	1_	-1.376	2
595		13		619.306	3	431.222	3	34.951	1	0	3	001	15	.714	3
596			min	-251.521	2	-691.578	2	1.468	15	0	2	033	1	948	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	619.84	3	430.077	3	34.951	1	0	3	0	15	.446	3
598			min	-250.809	2	-693.105	2	1.468	15	0	2	012	1	518	2
599		15	max	620.374	3	428.932	3	34.951	1	0	3	.01	1	.18	3
600			min	-250.097	2	-694.632	2	1.468	15	0	2	0	15	099	1
601		16	max	620.908	3	427.787	3	34.951	1	0	3	.032	1	.344	2
602			min	-249.385	2	-696.159	2	1.468	15	0	2	.001	15	086	3
603		17	max	621.442	3	426.642	3	34.951	1	0	3	.053	1	.777	2
604			min	-248.673	2	-697.686	2	1.468	15	0	2	.002	15	351	3
605		18	max	-5.32	15	639.366	2	40.957	1	0	2	.077	1	.394	2
606			min	-125.851	1	-297.7	3	1.726	15	0	3	.003	15	175	3
607		19	max	-5.105	15	637.839	2	40.957	1	0	2	.103	1	.011	3
608			min	-125.139	1	-298.845	3	1.726	15	0	3	.004	15	003	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.239	2	.011	3 1.635e-2	2	NC	1_	NC	1
2			min	0	15	074	3	007	2 -4.926e-3	3	NC	1	NC	1
3		2	max	0	1	.201	2	.013	3 1.695e-2	2	NC	4	NC	1
4			min	0	15	.004	15	005	2 -4.176e-3	3	1379.55	3	NC	1
5		3	max	0	1	.172	2	.017	1 1.756e-2	2	NC	4	NC	2
6			min	0	15	.004	15	004	10 -3.426e-3	3	752.234	3	7974.855	1
7		4	max	0	1	.185	3	.025	1 1.816e-2	2	NC	4	NC	2
8			min	0	15	.003	15	005	10 -2.676e-3	3	577.45	3	5562.229	1
9		5	max	0	1	.21	3	.029	1 1.876e-2	2	NC	4	NC	2
10			min	0	15	.003	15	005	10 -1.925e-3	3	528.425	3	4962.186	1
11		6	max	0	1	.198	3	.026	3 1.936e-2	2	NC	4	NC	2
12			min	0	15	.004	15	007	10 -1.175e-3	3	551.294	3	5446.971	1
13		7	max	0	1	.225	2	.029	3 1.996e-2	2	NC	2	NC	2
14			min	0	15	.004	15	009	10 -4.253e-4	3	648.957	3	7716.241	1
15		8	max	0	1	.268	2	.031	3 2.057e-2	2	NC	4	NC	1
16			min	0	15	.005	15	015	2 3.247e-4	3	861.829	3	7768.506	3
17		9	max	0	1	.305	2	.032	3 2.117e-2	2	NC	4	NC	1
18			min	0	15	.006	15	02	2 4.052e-4	15	1248.341	3	7362.902	3
19		10	max	0	1	.321	2	.032	3 2.177e-2	2	NC	4	NC	1
20			min	0	1	.006	15	022	2 4.119e-4	15	1576.577	3	7244.26	3
21		11	max	0	15	.305	2	.032	3 2.117e-2	2	NC	4	NC	1
22			min	0	1	.006	15	02	2 4.052e-4	15	1248.341	3	7362.902	3
23		12	max	0	15	.268	2	.031	3 2.057e-2	2	NC	4	NC	1
24			min	0	1	.005	15	015	2 3.247e-4	3	861.829	3	7768.506	3
25		13	max	0	15	.225	2	.029	3 1.996e-2	2	NC	2	NC	2
26			min	0	1	.004	15	009	10 -4.253e-4	3	648.957	3	7716.241	1
27		14	max	0	15	.198	3	.026	3 1.936e-2	2	NC	4	NC	2
28			min	0	1	.004	15	007	10 -1.175e-3	3	551.294	3	5446.971	1
29		15	max	0	15	.21	3	.029	1 1.876e-2	2	NC	4	NC	2
30			min	0	1	.003	15	005	10 -1.925e-3	3	528.425	3	4962.186	1
31		16	max	0	15	.185	3	.025	1 1.816e-2	2	NC	4	NC	2
32			min	0	1	.003	15	005	10 -2.676e-3	3	577.45	3	5562.229	1
33		17	max	0	15	.172	2	.017	1 1.756e-2	2	NC	4	NC	2
34			min	0	1	.004	15	004	10 -3.426e-3	3	752.234	3	7974.855	1
35		18	max	0	15	.201	2	.013	3 1.695e-2	2	NC	4	NC	1
36			min	0	1	.004	15	005	2 -4.176e-3	3	1379.55	3	NC	1
37		19	max	0	15	.239	2	.011	3 1.635e-2	2	NC	1	NC	1
38			min	0	1	074	3	007	2 -4.926e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.49	3	.01	3 8.847e-3	2	NC	1	NC	1
40			min	0	15	695	2	007	2 -7.322e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

11	Member	Sec 2	may	x [in]	LC 1	y [in] .641	LC 3	z [in] .011	LC x Rotate [r 3 9.856e-3	LC 2	(n) L/y Ratio		(n) L/z Ratio	LC 1
41			max	0	15	848	2	005	2 -8.273e-3	3	977.13	<u>5</u> 2	NC NC	1
43		3	max	0	1	.776	3	.014	3 1.086e-2	2	NC	5	NC	1
44		-	min	0	15	989	2	004	10 -9.224e-3	3	509.037	2	NC	1
45		4	max	0	1	.885	3	.02	1 1.187e-2	2	NC	5	NC	2
46		7	min	0	15	-1.109	2	004	10 -1.018e-2	3	361.998	2	7002.667	1
47		5	max	0	1	.961	3	.024	1 1.288e-2	2	NC	5	NC	2
48		-	min	0	15	-1.202	2	005	10 -1.113e-2	3	295.869	2	5939.323	1
49		6	max	0	1	1.004	3	.023	3 1.389e-2	2	NC	15	NC	2
50		10	min	0	15	-1.265	2	006	10 -1.208e-2	3	262.961		6305.075	1
51		7	max	0	1	1.016	3	.025	3 1.49e-2	2	NC	15	NC	2
52		-	min	0	15	-1.301	2	008	10 -1.303e-2	3	247.471	2	8704.632	1
53		8		0	1	1.005	3	.027	3 1.591e-2	2	NC	15	NC	1
		-	max		15	-1.314	2		2 -1.398e-2	3	242.31	2	8890.298	3
54			min	0				013		_				
55		9	max	0	1	.986	3	.028	3 1.692e-2	2	NC	<u>15</u>	NC	1
56		40	min	0	15	-1.312	2	018	2 -1.493e-2	3	242.871	2	8351.676	3
57		10	max	0	1	.974	3	.028	3 1.793e-2	2	NC 044,000	<u>15</u>	NC 0400 040	1
58		4.4	min	0	1	-1.309	2	02	2 -1.588e-2	3	244.369		8192.016	
59		11	max	0	15	.986	3	.028	3 1.692e-2	2	NC	15	NC	1
60		10	min	0	1	<u>-1.312</u>	2	018	2 -1.493e-2	3	242.871		8351.676	3
61		12	max	0	15	1.005	3	.027	3 1.591e-2	2	NC	<u>15</u>	NC	1
62		1.0	min	0	1	<u>-1.314</u>	2	013	2 -1.398e-2	3	242.31	2	8890.298	
63		13	max	0	15	1.016	3	.025	3 1.49e-2	2	NC	<u>15</u>	NC	2
64			min	0	1	-1.301	2	008	10 -1.303e-2	3	247.471	2	8704.632	1
65		14	max	0	15	1.004	3	.023	3 1.389e-2	2	NC	<u>15</u>	NC	2
66			min	0	1	-1.265	2	006	10 -1.208e-2	3	262.961	2	6305.075	1
67		15	max	0	15	.961	3	.024	1 1.288e-2	2	NC	<u>5</u>	NC	2
68			min	0	1	-1.202	2	005	10 -1.113e-2	3	295.869	2	5939.323	1
69		16	max	0	15	.885	3	.02	1 1.187e-2	2	NC	5_	NC	2
70			min	0	1	-1.109	2	004	10 -1.018e-2	3	361.998	2	7002.667	1
71		17	max	0	15	.776	3	.014	3 1.086e-2	2	NC	_5_	NC	1
72			min	0	1	989	2	004	10 -9.224e-3	3	509.037	2	NC	1
73		18	max	0	15	.641	3	.011	3 9.856e-3	2	NC	5_	NC	1
74			min	0	1	848	2	005	2 -8.273e-3	3	977.13	2	NC	1
75		19	max	0	15	.49	3	.01	3 8.847e-3	2	NC	_1_	NC	1
76			min	0	1	695	2	007	2 -7.322e-3	3	NC	1_	NC	1
77	M15	1	max	0	15	.502	3	.009	3 6.18e-3	3_	NC	_1_	NC	1
78			min	0	1	693	2	006	2 -9.183e-3	2	NC	1_	NC	1
79		2	max	0	15	.62	3	.01	3 6.963e-3	3	NC	5	NC	1
80			min	0	1	869	2	005	2 -1.024e-2	2	850.523	2	NC	1
81		3	max	0	15	.73	3	.013	1 7.747e-3	3	NC	5	NC	1
82			min	0	1	-1.029	2	004	10 -1.129e-2	2	446.346	2	NC	1
83		4	max	0	15	.824	3	.02	1 8.53e-3	3	NC	5	NC	2
84			min	0	1	-1.16	2	004	10 -1.235e-2	2	321.146	2	6940.888	1
85		5	max	0	15	.898	3	.024	1 9.313e-3	3	NC	5	NC	2
86			min	0	1	-1.256	2	004	10 -1.34e-2	2	266.695	2	5879.688	1
87		6	max	0	15	.951	3	.023	1 1.01e-2	3	NC	15	NC	2
88			min	0	1	-1.313	2	006	10 -1.445e-2	2	241.839	2	6222.13	1
89		7	max	0	15	.983	3	.023	3 1.088e-2	3	NC	15	NC	2
90			min	0	1	-1.337	2	008	10 -1.551e-2	2	233.046	2	8521.502	1
91		8	max	0	15	.997	3	.025	3 1.166e-2	3	NC	15	NC	1
92			min	0	1	-1.334	2	012	2 -1.656e-2	2	234.059	2	9582.175	3
93		9	max	0	15	.999	3	.026	3 1.245e-2	3	NC	15	NC	1
94			min	0	1	-1.318	2	017	2 -1.762e-2	2	239.939		9033.279	3
95		10	max	0	1	.998	3	.026	3 1.323e-2	3	NC	15	NC	1
96			min	0	1	-1.308	2	019	2 -1.867e-2	2	243.954		8873.908	3
97		11	max	0	1	.999	3	.026	3 1.245e-2	3	NC	15	NC	1
			,						, , L	Ĭ				<u> </u>

Model Name

: Schletter, Inc. : HCV

псу

: Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
98			min	0	15	-1.318	2	017	2 -1.762e-2	2	239.939	2	9033.279	
99		12	max	0	1	.997	3	.025	3 1.166e-2	3	NC	15	NC	1
100			min	0	15	<u>-1.334</u>	2	012	2 -1.656e-2	2	234.059	2	9582.175	
101		13	max	0	1	.983	3	.023	3 1.088e-2	3	NC	<u>15</u>	NC	2
102		4.4	min	0	15	-1.337	2	008	10 -1.551e-2	2	233.046	2	8521.502	1
103		14	max	0	1	.951	3	.023	1 1.01e-2	3	NC	<u>15</u>	NC NC	2
104			min	0	15	<u>-1.313</u>	2	006	10 -1.445e-2	2	241.839	2	6222.13	1
105		15	max	0	1	.898	3	.024	1 9.313e-3	3	NC	5	NC	2
106		4.0	min	0	15	-1.256	2	004	10 -1.34e-2	2	266.695	2	5879.688	
107		16	max	0	1	.824	3	.02	1 8.53e-3	3	NC	_5_	NC	2
108			min	0	15	<u>-1.16</u>	2	004	10 -1.235e-2	2	321.146	2	6940.888	
109		17	max	0	1	.73	3	.013	1 7.747e-3	3	NC	5	NC	1
110		10	min	0	15	-1.029	2	004	10 -1.129e-2	2	446.346	2	NC	1
111		18	max	0	1	.62	3	.01	3 6.963e-3	3	NC	5	NC	1
112		10	min	0	15	<u>869</u>	2	005	2 -1.024e-2	2	850.523	2	NC NC	1
113		19	max	0	1	.502	3	.009	3 6.18e-3	3	NC	1_	NC	1
114	1440		min	0	15	<u>693</u>	2	006	2 -9.183e-3	2	NC	1_	NC NC	1
115	M16	1_	max	0	15	.215	2	.008	3 1.225e-2	3_	NC		NC NC	1
116			min	0	1	182	3	006	2 -1.403e-2	2	NC	1_	NC	1
117		2	max	0	15	.147	2	.01	3 1.289e-2	3	NC	4_	NC	1
118			min	0	1	162	3	003	10 -1.416e-2	2	2204.582	2	NC NC	1
119		3	max	0	15	.097	1	.018	1 1.354e-2	3_	NC	4	NC	2
120			min	0	1	148	3	003	10 -1.429e-2	2	1228.504	2	7917.714	1
121		4	max	0	15	.076	1	.026	1 1.418e-2	3_	NC NC	4_	NC 5 400 04	2
122		_	min	0	1	144	3	003	10 -1.442e-2	2	981.445	2	5483.64	1
123		5	max	0	15	.076	1	.03	1 1.483e-2	3	NC 204.755	4_	NC 10.10.000	2
124			min	0	1	<u>154</u>	3	003	10 -1.456e-2	2	961.755	2	4848.823	1
125		6	max	0	15	.096	1	.027	1 1.547e-2	3	NC	3	NC NC	2
126		_	min	0	1	17 <u>5</u>	3	005	10 -1.469e-2	2	1134.11	2	5245.602	1
127		7	max	0	15	.132	1	.021	3 1.612e-2	3	NC 4740.05	4_	NC	2
128			min	0	1	205	3	007	10 -1.482e-2	2	1713.05	2	7198.41	1
129		8	max	0	15	.182	2	.022	3 1.676e-2	3_	NC	1_	NC	1
130			min	0	1	237	3	01	2 -1.495e-2	2	2711.037	3	NC	1
131		9	max	0	15	.231	2	.022	3 1.741e-2	3_	NC 1005.00	4_	NC NC	1
132		40	min	0	1	265	3	015	2 -1.508e-2	2	1805.36	3_	NC NC	1
133		10	max	0	1	.253	2	.023	3 1.805e-2	3_	NC	4	NC NC	1
134		4.4	min	0	1	277	3	017	2 -1.521e-2	2	1575.066	3	NC NC	1
135		11	max	0	1	.231	2	.022	3 1.741e-2	3_	NC 1005.00	4_	NC NC	1
136		40	min	0	15	265	3	015	2 -1.508e-2	2	1805.36	3	NC NC	1
137		12	max	0	1	.182	2	.022	3 1.676e-2	3	NC 0744 007	1_	NC NC	1
138		40	min	0	15	237	3	01	2 -1.495e-2				NC NC	1
139		13	max	0	1	.132	1	.021	3 1.612e-2	3_	NC 4740.05	4	NC	2
140		4.4	min	0	15	205	3	007	10 -1.482e-2	2	1713.05	2	7198.41	1
141		14		0	1	.096	1	.027	1 1.547e-2	3_	NC 440444	3_	NC FOAF COO	2
142		4.5	min	0	15	175	3	005	10 -1.469e-2	2	1134.11	2	5245.602	1
143		15	max	0	1	.076	1	.03	1 1.483e-2	3	NC OCA 755	4_	NC 40.40.000	2
144		4.0	min	0	15	154	3	003	10 -1.456e-2	2	961.755	2	4848.823	
145		16	max	0	1	.076	1	.026	1 1.418e-2	3_	NC OO4 445	4_	NC 5400.04	2
146		47	min	0	15	144	3	003	10 -1.442e-2	2	981.445	2	5483.64	1
147		17	max	0	1	.097	1	.018	1 1.354e-2	3	NC	4	NC 7017 74.4	2
148		40	min	0	15	148	3	003	10 -1.429e-2	2	1228.504	2	7917.714	
149		18	max	0	1	.147	2	.01	3 1.289e-2	3	NC	4	NC NC	1
150		40	min	0	15	162	3	003	10 -1.416e-2	2	2204.582	2	NC NC	1
151		19	max	0	1	.215	2	.008	3 1.225e-2	3	NC NC	1_	NC	1
152	140	4	min	0	15	182	3	006	2 -1.403e-2	2	NC NC	1_1	NC NC	1
153	M2	1	max	.007	2	.011	2	.005	1 -4.106e-6	<u>10</u>	NC	1	NC NC	1
154			min	01	3	016	3	0	15 -9.9e-5	<u> 1</u>	6435.488	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratic	LC
155		2	max	.007	2	.009	2	.004	1	-3.866e-6	10	NC	_1_	NC	1
156			min	01	3	016	3	0	15	-9.357e-5	1_	7378.064	2	NC	1
157		3	max	.007	2	.008	2	.004	1	-3.627e-6	10	NC	1_	NC	1
158			min	009	3	015	3	0	15		1	8627.563	2	NC	1
159		4	max	.006	2	.007	2	.004	1	-3.388e-6	10	NC	1_	NC	1
160			min	009	3	015	3	0	15	-8.271e-5	1	NC	1	NC	1
161		5	max	.006	2	.005	2	.003	1	-3.149e-6	10	NC	1	NC	1
162			min	008	3	014	3	0	15	-7.728e-5	1	NC	1	NC	1
163		6	max	.005	2	.004	2	.003	1	-2.909e-6	10	NC	1	NC	1
164			min	007	3	013	3	0	15	-7.186e-5	1	NC	1	NC	1
165		7	max	.005	2	.003	2	.002	1	-2.67e-6	10	NC	1	NC	1
166			min	007	3	013	3	0	15	-6.643e-5	1	NC	1	NC	1
167		8	max	.005	2	.002	2	.002	1	-2.431e-6	10	NC	1_	NC	1
168			min	006	3	012	3	0	15	-6.1e-5	1	NC	1	NC	1
169		9	max	.004	2	.001	2	.002	1	-2.191e-6	10	NC	1	NC	1
170			min	006	3	011	3	0	15	-5.557e-5	1	NC	1	NC	1
171		10	max	.004	2	0	2	.001	1	-1.952e-6	10	NC	1_	NC	1
172			min	005	3	01	3	0	15	-5.014e-5	1_	NC	1_	NC	1
173		11	max	.003	2	0	2	.001	1	-1.713e-6	10	NC	1	NC	1
174			min	005	3	009	3	0	15	-4.471e-5	1	NC	1	NC	1
175		12	max	.003	2	001	2	0	1	-1.473e-6	10	NC	1	NC	1
176			min	004	3	008	3	0	15	-3.929e-5	1	NC	1	NC	1
177		13	max	.002	2	001	15	0	1	-1.234e-6	10	NC	1	NC	1
178			min	003	3	008	3	0	15	-3.386e-5	1	NC	1	NC	1
179		14	max	.002	2	001	15	0	1	-9.948e-7	10	NC	1	NC	1
180			min	003	3	006	3	0	15	-2.843e-5	1	NC	1	NC	1
181		15	max	.002	2	001	15	0	1	-7.555e-7	10	NC	1	NC	1
182			min	002	3	005	3	0	15	-2.3e-5	1	NC	1	NC	1
183		16	max	.001	2	0	15	0	1	-5.162e-7	10	NC	1	NC	1
184			min	002	3	004	3	0	15	-1.757e-5	1	NC	1	NC	1
185		17	max	0	2	0	15	0	1	-2.768e-7	10	NC	1	NC	1
186			min	001	3	003	3	0	15	-1.214e-5	1	NC	1	NC	1
187		18	max	0	2	0	15	0	1	-3.753e-8	10	NC	1	NC	1
188			min	0	3	001	4	0	15	-6.715e-6	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.018e-7	10	NC	1	NC	1
190			min	0	1	0	1	0	1	-1.287e-6	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	1.477e-7	3	NC	1	NC	1
192			min	0	1	0	1	0	1	-3.718e-7	1	NC	1	NC	1
193		2	max	0	3	0	15	0	10	1.239e-5	1	NC	1	NC	1
194			min	0	2	003	4	0	3	5.209e-7	15	NC	1	NC	1
195		3	max	0	3	001	15	0	2	2.515e-5		NC	1	NC	1
196			min	0	2	006	4	0	3	1.054e-6	15	NC	1	NC	1
197		4	max	.001	3	002	15	0	1	3.791e-5	1	NC	1	NC	1
198			min	001	2	009	4	0	3	1.588e-6		NC	1	NC	1
199		5	max	.002	3	003	15	0	1	5.067e-5	1	NC	1	NC	1
200			min	002	2	012	4	0	3	2.121e-6	15	8807.766	4	NC	1
201		6	max	.002	3	003	15	0	1	6.343e-5	1	NC	2	NC	1
202			min	002	2	015	4	0	3	2.654e-6		7109.275	4	NC	1
203		7	max	.003	3	004	15	0	1	7.619e-5	1	NC	5	NC	1
204			min	003	2	017	4	0	12	3.187e-6	15	6087.74	4	NC	1
205		8	max	.003	3	004	15	0	1	8.895e-5	1	NC	5	NC	1
206			min	003	2	019	4	0	15			5457.351	4	NC	1
207		9	max	.004	3	005	15	0	1	1.017e-4	1	NC	5	NC	1
208			min	003	2	02	4	0	15			5083.683	4	NC	1
209		10	max	.004	3	005	15	0	1	1.145e-4	1	NC	5	NC	1
210		10	min	004	2	005 021	4	0	15	4.787e-6		4901.393	4	NC	1
211		11	max	.005	3	005	15	0	1	1.272e-4	1	NC	5	NC	1
<u> </u>			шах	.005	J	005	ΙÜ	U	<u> </u>	1.2126-4	1	INC	J	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]					LC	(n) L/z Ratio	LC
212			min	004	2	021	4	0	15	5.321e-6		4883.544	4	NC	1
213		12	max	.005	3	005	15	.001	1	1.4e-4	_1_	NC	5	NC	1
214			min	005	2	021	4	0	15	5.854e-6	15	5031.257	4	NC	1
215		13	max	.006	3	005	15	.001	1	1.527e-4	_1_	NC	_5_	NC	1
216			min	005	2	<u>019</u>	4	0	15	6.387e-6	15	5375.458	<u>4</u>	NC	1
217		14	max	.006	3	004	15	.002	1	1.655e-4	1_	NC	5_	NC	1
218		45	min	005	2	017	4	0	15	6.921e-6		5993.003	4_	NC	1
219		15	max	.007	3	003	15	.002	1	1.783e-4	1_	NC 7054.0	3	NC NC	1
220		40	min	006	2	015	4	0	15	7.454e-6	<u>15</u>	7054.6	4	NC NC	1
221		16	max	.007	3	003 012	15	.003 0	1 15	1.91e-4	<u>1</u> 15	NC 8973.962	<u>1</u> 4	NC NC	1
223		17	min	006 .008	3	012 002	15	.003		7.987e-6		NC	_ 4 _	NC NC	1
224		11/	max	007	2	002 008	4	<u>.003</u>	1 15	2.038e-4 8.521e-6	<u>1</u> 15	NC NC	1	NC NC	1
225		18	min max	.008	3	008 001	15	.004	1	2.165e-4	1 1	NC NC	1	NC NC	1
226		10	min	007	2	005	4	004 0	15	9.054e-6	15	NC	1	NC	1
227		19	max	.009	3	<u>005</u> 0	10	.004	1	2.293e-4	1	NC	1	NC	1
228		13	min	008	2	002	3	0	15	9.587e-6	15	NC	1	NC	1
229	M4	1	max	.002	1	.002	2	0	15	6.437e-5	1	NC	1	NC	2
230	IVIT		min	0	3	009	3	004	1	2.719e-6	15	NC	1	5609.227	1
231		2	max	.002	1	.007	2	<u>.004</u>	15	6.437e-5	1	NC	1	NC	2
232		_	min	0	3	009	3	004	1	2.719e-6	15	NC	1	6093.319	1
233		3	max	.002	1	.006	2	0	15	6.437e-5	1	NC	1	NC	2
234			min	0	3	008	3	004	1	2.719e-6	15	NC	1	6669.845	1
235		4	max	.002	1	.006	2	0	15	6.437e-5	1	NC	1	NC	2
236			min	0	3	008	3	003	1	2.719e-6	15	NC	1	7362.748	1
237		5	max	.002	1	.006	2	0	15	6.437e-5	1	NC	1	NC	2
238			min	0	3	007	3	003	1	2.719e-6	15	NC	1	8204.574	1
239		6	max	.002	1	.005	2	0	15	6.437e-5	1	NC	1	NC	2
240			min	0	3	007	3	003	1	2.719e-6	15	NC	1	9240.453	1
241		7	max	.002	1	.005	2	0	15	6.437e-5	1_	NC	1_	NC	1
242			min	0	3	006	3	002	1	2.719e-6	15	NC	1	NC	1
243		8	max	.001	1	.004	2	0	15	6.437e-5	_1_	NC	1	NC	1
244			min	0	3	006	3	002	1	2.719e-6	15	NC	1_	NC	1
245		9	max	.001	1	.004	2	0	15	6.437e-5	_1_	NC	_1_	NC	1
246			min	0	3	005	3	002	1	2.719e-6	15	NC	1_	NC	1
247		10	max	.001	1	.004	2	0	15	6.437e-5	_1_	NC	<u>1</u>	NC	1
248			min	0	3	005	3	001	1	2.719e-6	<u>15</u>	NC	1_	NC	1
249		11	max	.001	1	.003	2	0	15	6.437e-5	_1_	NC	1	NC NC	1
250		40	min	0	3	004	3	001	1	2.719e-6	15	NC	1_	NC	1
251		12	max	0	1	.003	2	0	15	6.437e-5	1_	NC NC	1	NC NC	1
252		40	min		3	004	3	0		2.719e-6			1	NC NC	1
253		13	max	0	1	.002	2	0		6.437e-5	1_	NC NC	1	NC NC	1
254		1.1	min	0	3	003	2	0	1 1 1 5	2.719e-6 6.437e-5		NC NC	<u>1</u> 1	NC NC	1
255		14	max	0	3	.002	3	0	1 <u>5</u>		1_		1	NC NC	1
256 257		15	min max	0	1	003 .002	2	<u> </u>	15	2.719e-6 6.437e-5	<u>15</u> 1	NC NC	1	NC NC	1
258		10	min	0	3	002	3	0	1	2.719e-6	15	NC	1	NC	1
259		16		0	1	.002	2	0	15	6.437e-5	1	NC	1	NC	1
260		10	max	0	3	002	3	0	1	2.719e-6		NC	1	NC	1
261		17	max	0	1	002 0	2	0	15	6.437e-5	1 <u>15</u> 1	NC NC	1	NC NC	1
262		11/	min	0	3	001	3	0	1	2.719e-6	15	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	6.437e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	2.719e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.437e-5	1	NC	1	NC	1
266		'	min	0	1	0	1	0	1	2.719e-6	15	NC	1	NC	1
267	M6	1	max	.021	2	.033	2	0	1	0	1	NC	4	NC	1
268			min	031	3	047	3	0	1	0	1	1479.241	3	NC	1
			1111111				_				-				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

270	
271	VC 1
272	NC 1
273	NC 1
274	NC 1
275	NC 1
276	NC 1
277 6 max .015 2 .019 2 0 1 0 1 NC 4 278 min 022 3 034 3 0 1 0 1 2047.707 3 279 7 max .014 2 .016 2 0 1 0 1 2047.707 3 280 min 021 3 031 3 0 1 0 1 2218.604 3 281 8 max .013 2 .014 2 0 1 0 1 2218.604 3 282 min 019 3 029 3 0 1 0 1 NC 1 NC 1 1 220.802 3 0 1 0 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1	NC 1
278	NC 1
279 7 max .014 2 .016 2 0 1 0 1 NC 4 280 min 021 3 031 3 0 1 0 1 2218.604 3 281 8 max .013 2 .014 2 0 1 0 1 NC 1 282 min 019 3 029 3 0 1 0 1 NC 1 283 9 max .012 2 .012 2 0 1 0 1 2420.802 3 284 min 017 3 026 3 0 1 0 1 2663.736 3 285 10 max .011 2 .009 2 0 1 0 1 NC 1 286 min 016 3 023 3	NC 1
280	NC 1
281 8 max .013 2 .014 2 0 1 0 1 NC 1 282 min 019 3 029 3 0 1 0 1 2420.802 3 283 9 max .012 2 .012 2 0 1 0 1 NC 1 284 min 017 3 026 3 0 1 0 1 2663.736 3 285 10 max .011 2 .009 2 0 1 0 1 NC	NC 1
282 min 019 3 029 3 0 1 0 1 2420.802 3 283 9 max .012 2 .012 2 0 1 0 1 NC 1 284 min 017 3 026 3 0 1 0 1 2663.736 3 285 10 max .011 2 .009 2 0 1 0 1 2663.736 3 286 min 016 3 023 3 0 1 0 1 2961.04 3 287 11 max .01 2 .008 2 0 1 0 1 NC 1 1 288 min 014 3 021 3 0 1 0 1 333.16 3 289 12 max .008 2 .0	NC 1
283 9 max .012 2 .012 2 0 1 0 1 NC 1 1 284 min017 3026 3 0 1 0 1 2663.736 3 285 10 max .011 2 .009 2 0 1 0 1 NC 1 286 min016 3023 3 0 1 0 1 2961.04 3 287 11 max .01 2 .008 2 0 1 0 1 NC 1 288 min014 3021 3 0 1 0 1 NC 1 289 12 max .008 2 0 1 0 1 NC 1 290 min012 3018 3 0 1 0 1 NC 1 291 13 max .007 2 .004 2 0 1 0 1 NC 1 292 min013 016 3 0 1 0 1 NC 1 293 14 max .006 2 .003 2 0 1 0 1 NC 1 294 min009 3013 3 0 1 0 1 NC 1 295 15 max .005 2 .002 2 0 1 0 1 NC 1 296 min007 3013 0 1 0 1 NC 1 297 16 max .004 2 0 2 0 1 0 1 NC 1	NC 1
284 min 017 3 026 3 0 1 0 1 2663.736 3 285 10 max .011 2 .009 2 0 1 0 1 NC 1 286 min 016 3 023 3 0 1 0 1 2961.04 3 287 11 max .01 2 .008 2 0 1 0 1 2961.04 3 288 min 014 3 021 3 0 1 0 1 NC 1 289 12 max .008 2 .006 2 0 1 0 1 NC 1 290 min 012 3 018 3 0 1 0 1 NC 1 291 13 max .007 2 .004 2	NC 1
285 10 max .011 2 .009 2 0 1 0 1 NC 1 286 min 016 3 023 3 0 1 0 1 2961.04 3 287 11 max .01 2 .008 2 0 1 0 1 2961.04 3 288 min 014 3 021 3 0 1 0 1 NC 1 289 12 max .008 2 .006 2 0 1 0 1 NC 1 290 min 012 3 018 3 0 1 0 1 NC 1 291 13 max .007 2 .004 2 0 1 0 1 NC 1 292 min 01 3 016 3 <	NC 1
286 min 016 3 023 3 0 1 0 1 2961.04 3 287 11 max .01 2 .008 2 0 1 0 1 NC 1 288 min 014 3 021 3 0 1 0 1 3333.16 3 289 12 max .008 2 .006 2 0 1 0 1 3333.16 3 290 min 012 3 018 3 0 1 0 1 NC 1 290 min 012 3 018 3 0 1 0 1 NC 1 291 13 max .007 2 .004 2 0 1 0 1 NC 1 292 min 01 3 016 3 0	NC 1
286 min 016 3 023 3 0 1 0 1 2961.04 3 287 11 max .01 2 .008 2 0 1 0 1 NC 1 288 min 014 3 021 3 0 1 0 1 3333.16 3 289 12 max .008 2 .006 2 0 1 0 1 3333.16 3 290 min 012 3 018 3 0 1 0 1 NC 1 290 min 012 3 018 3 0 1 0 1 NC 1 291 13 max .007 2 .004 2 0 1 0 1 NC 1 292 min 01 3 016 3 0	VC 1
287 11 max .01 2 .008 2 0 1 0 1 NC 1 1 NC 1 1 NC 1 1 NC 1	VC 1
288 min 014 3 021 3 0 1 0 1 3333.16 3 289 12 max .008 2 .006 2 0 1 0 1 NC 1 290 min 012 3 018 3 0 1 0 1 3812.229 3 291 13 max .007 2 .004 2 0 1 0 1 3812.229 3 291 13 max .007 2 .004 2 0 1 0 1 3812.229 3 292 min 01 3 016 3 0 1 0 1 4451.804 3 293 14 max .006 2 .003 2 0 1 0 1 NC 1 294 min 009 3 013	NC 1
289 12 max .008 2 .006 2 0 1 0 1 NC 1 290 min 012 3018 3 0 1 0 1 3812.229 3 291 13 max .007 2 .004 2 0 1 0 1 NC 1 292 min 01 3016 3 0 1 0 1 NC 1 293 14 max .006 2 .003 2 0 1 0 1 NC 1 294 min 009 3013 3 0 1 0 1 NC 1 295 15 max .005 2 .002 2 0 1 0 1 NC 1 296 min 007 301 3 0 1 0 1 0 1 6694.486 3 297 16 max .004 2 0 2 0 1 0 1 0 1 NC 1 1 298 min 005 3008 3 0 1 0 1 NC 1 299 17 max .002 2 0 2 0 1 0 1 NC 1 300 min 003 3005 3 0 1 0 1 NC 1 301 18 max .001 2 0 2 0 1 0 1 0 1 NC 1	NC 1
290 min 012 3 018 3 0 1 0 1 3812.229 3 291 13 max .007 2 .004 2 0 1 0 1 NC 1 292 min 01 3 016 3 0 1 0 1 4451.804 3 293 14 max .006 2 .003 2 0 1 0 1 A451.804 3 294 min 009 3 013 3 0 1 0 1 NC 1 294 min 009 3 013 3 0 1 0 1 5348.287 3 295 15 max .005 2 .002 2 0 1 0 1 NC 1 296 min 007 3 01 3 0	NC 1
291 13 max .007 2 .004 2 0 1 0 1 NC 1 292 min 01 3 016 3 0 1 0 1 4451.804 3 293 14 max .006 2 .003 2 0 1 0 1 NC 1 294 min 009 3 013 3 0 1 0 1 5348.287 3 295 15 max .005 2 .002 2 0 1 0 1 NC 1 296 min 007 3 01 3 0 1 0 1 6694.486 3 1 297 16 max .004 2 0 2 0 1 0 1 NC 1 NC 1 298 min 005 3 008 3 0 1 0 1 NC 1 <t< td=""><td>NC 1</td></t<>	NC 1
292 min 01 3 016 3 0 1 0 1 4451.804 3 293 14 max .006 2 .003 2 0 1 0 1 NC 1 294 min 009 3 013 3 0 1 0 1 5348.287 3 295 15 max .005 2 .002 2 0 1 0 1 5348.287 3 296 min 007 3 01 3 0 1 0 1 6694.486 3 1 297 16 max .004 2 0 2 0 1 0 1 NC 1 1 298 min 005 3 008 3 0 1 0 1 NC 1 300 min 003 3 005 <td>NC 1</td>	NC 1
293 14 max .006 2 .003 2 0 1 0 1 NC 1 294 min009 3013 3 0 1 0 1 5348.287 295 15 max .005 2 .002 2 0 1 0 1 NC 1 296 min007 301 3 0 1 0 1 0 1 6694.486 3 1 297 16 max .004 2 0 2 0 1 0 1 NC 1 1 NC 1 298 min005 3008 3 0 1 0 1 NC 1 1 NC 1 300 min003 3005 3 0 1 0 1 NC 1 1 NC 1 301 18 max .001 2 0 2 0 1 0 1 0 1 NC 1 1 NC 1	NC 1
294 min 009 3 013 3 0 1 0 1 5348.287 3 295 15 max .005 2 .002 2 0 1 0 1 NC 1 296 min 007 3 01 3 0 1 0 1 6694.486 3 297 16 max .004 2 0 2 0 1 0 1 NC 1 298 min 005 3 008 3 0 1 0 1 8940.288 3 299 17 max .002 2 0 2 0 1 0 1 NC 1 300 min 003 3 005 3 0 1 0 1 NC 1 301 18 max .001 2 0 2 <	NC 1
295 15 max .005 2 .002 2 0 1 0 1 NC 1 296 min 007 3 01 3 0 1 0 1 6694.486 3 297 16 max .004 2 0 2 0 1 0 1 NC 1 298 min 005 3 008 3 0 1 0 1 8940.288 3 299 17 max .002 2 0 2 0 1 0 1 NC 1 300 min 003 3 005 3 0 1 0 1 NC 1 301 18 max .001 2 0 2 0 1 0 1 NC 1	NC 1
296 min 007 3 01 3 0 1 0 1 6694.486 3 1 297 16 max .004 2 0 2 0 1 0 1 NC 1 298 min 005 3 008 3 0 1 0 1 8940.288 3 299 17 max .002 2 0 2 0 1 0 1 NC 1 300 min 003 3 005 3 0 1 0 1 NC 1 301 18 max .001 2 0 2 0 1 0 1 NC 1	NC 1
297 16 max .004 2 0 2 0 1 0 1 NC 1 298 min 005 3 008 3 0 1 0 1 8940.288 3 299 17 max .002 2 0 2 0 1 0 1 NC 1 300 min 003 3 005 3 0 1 0 1 NC 1 301 18 max .001 2 0 2 0 1 0 1 NC 1	NC 1
298 min 005 3 008 3 0 1 0 1 8940.288 3 1 299 17 max .002 2 0 2 0 1 0 1 NC 1 300 min 003 3 005 3 0 1 0 1 NC 1 301 18 max .001 2 0 2 0 1 0 1 NC 1	VC 1
299 17 max .002 2 0 2 0 1 0 1 NC 1 300 min 003 3 005 3 0 1 0 1 NC 1 301 18 max .001 2 0 2 0 1 0 1 NC 1	NC 1
300 min003 3005 3 0 1 0 1 NC 1 1 301 18 max .001 2 0 2 0 1 0 1 NC 1	NC 1
301 18 max .001 2 0 2 0 1 0 1 NC 1	NC 1
	NC 1
	NC 1
	10
	VC 1
	NC 1
	NC 1
	NC 1
	VC 1
	NC 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio) LC
326			min	013	2	022	3	0	1	0	1	4927.772	4	NC	1
327		12	max	.015	3	005	15	0	1	0	1	NC	5	NC	1
328			min	014	2	021	3	0	1	0	1	5074.684	4	NC	1
329		13	max	.017	3	005	15	0	1	0	1	NC	_5_	NC	1
330		4.4	min	015	2	02	3	0	1	0	1_	5419.941	4_	NC	1
331		14	max	.018	3	004	15	0	1	0	1	NC	2	NC	1
332		45	min	017	2	018	3	0	1	0	1	6040.825	4	NC NC	1
333		15	max	.02	3	004	15	0	1	0	1_	NC	1_	NC	1
334		10	min	018	2	016	3	0	1	0	1_	7109.195	4	NC NC	1
335		16	max	.021	3	003 014	15	<u>0</u> 	1	0	1	NC 9041.712	<u>1</u> 4	NC NC	1
336		17	min	019 .022	3	014			1			NC	1	NC NC	1
337		17	max	021	2	002 011	15	0	1	0	1	NC NC	1	NC NC	1
339		18	min	.024	3	011 001	15	0	1	0	1	NC NC	1	NC NC	1
340		10	max	022	2	008	3	0	1	0	1	NC	1	NC	1
341		19	max	.025	3	008	10	0	1	0	1	NC	1	NC	1
342		13	min	023	2	005	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	2	.022	2	0	1	0	1	NC	1	NC	1
344	IVIO	'	min	001	3	026	3	0	1	0	1	NC	1	NC	1
345		2	max	.006	2	.021	2	0	1	0	1	NC	1	NC	1
346		_	min	001	3	024	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	2	.02	2	0	1	0	1	NC	1	NC	1
348			min	001	3	023	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	2	.019	2	0	1	0	1	NC	1	NC	1
350			min	001	3	021	3	0	1	0	1	NC	1	NC	1
351		5	max	.005	2	.017	2	0	1	0	1	NC	1	NC	1
352			min	001	3	02	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	2	.016	2	0	1	0	1	NC	1	NC	1
354			min	0	3	018	3	0	1	0	1	NC	1	NC	1
355		7	max	.004	2	.015	2	0	1	0	1	NC	1_	NC	1
356			min	0	3	017	3	0	1	0	1	NC	1_	NC	1
357		8	max	.004	2	.014	2	0	1	0	1	NC	1_	NC	1
358			min	0	3	016	3	0	1	0	1	NC	1_	NC	1
359		9	max	.004	2	.012	2	00	1	0	1_	NC	_1_	NC	1
360			min	0	3	014	3	0	1	0	1	NC	1_	NC	1
361		10	max	.003	2	.011	2	0	1	0	1	NC	_1_	NC	1
362			min	0	3	<u>013</u>	3	0	1	0	1	NC	1_	NC	1
363		11	max	.003	2	.01	2	0	1	0	1	NC		NC	1
364		40	min	0	3	011	3	0	1	0	1	NC	1_	NC	1
365		12	max	.003	2	.009	2	0	1	0	1_	NC	1_	NC NC	1
366		40	min		3	01	3	0	1	0	1	NC NC	1	NC NC	1
367		13	max	.002	2	.007	2	0	1	0	1	NC	1_1	NC NC	1
368		1.1	min	0	3	<u>009</u>	2	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
369		14	max	.002	3	.006	3	0 0	1	0	1	NC NC	1	NC NC	1
370 371		15	min max	.001	2	007 .005	2	0	1	0	1	NC NC	1	NC NC	1
372		13	min	0	3	006	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	2	.004	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	2	.002	2	0	1	0	1	NC NC	1	NC NC	1
376		17	min	0	3	003	3	0	1	0	1	NC	1	NC	1
377		18	max	0	2	.003	2	0	1	0	1	NC	1	NC	1
378		10	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.5	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.011	2	0	15	9.9e-5	1	NC	1	NC	1
382			min	01	3	016	3	005	1	4.106e-6	10	6435.488	2	NC	1
												2 . 30. 100	_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			
383		2	max	.007	2	.009	2	0	15	9.357e-5	_1_	NC	1_	NC	1
384			min	01	3	016	3	004	1	3.866e-6	10	7378.064	2	NC	1
385		3	max	.007	2	.008	2	0	15	8.814e-5	1_	NC	1_	NC	1
386			min	009	3	015	3	004	1	3.627e-6	10	8627.563	2	NC	1
387		4	max	.006	2	.007	2	0	15	8.271e-5	_1_	NC	_1_	NC	1
388			min	009	3	015	3	004	1	3.388e-6	10	NC	1_	NC	1
389		5	max	.006	2	.005	2	0	15	7.728e-5	_1_	NC	1	NC	1
390			min	008	3	014	3	003	1	3.149e-6	10	NC	1_	NC	1
391		6	max	.005	2	.004	2	0	15	7.186e-5	1_	NC	1_	NC	1
392		_	min	007	3	013	3	003	1	2.909e-6	10	NC	_1_	NC	1
393		7	max	.005	2	.003	2	0	15	6.643e-5	_1_	NC	_1_	NC	1
394			min	007	3	013	3	002	1	2.67e-6	10	NC	1_	NC	1
395		8	max	.005	2	.002	2	0	15	6.1e-5	1_	NC	_1_	NC	1
396		_	min	006	3	012	3	002	1	2.431e-6	10	NC	1	NC	1
397		9	max	.004	2	.001	2	0	15	5.557e-5	_1_	NC	_1_	NC	1
398			min	006	3	011	3	002	1	2.191e-6	10	NC	1_	NC	1
399		10	max	.004	2	0	2	0	15	5.014e-5	1_	NC	1	NC	1
400			min	005	3	01	3	001	1	1.952e-6	10	NC	<u>1</u>	NC	1
401		11	max	.003	2	0	2	0	15	4.471e-5	1_	NC	1_	NC	1
402			min	005	3	009	3	001	1	1.713e-6	10	NC	1_	NC	1
403		12	max	.003	2	001	2	0	15	3.929e-5	_1_	NC	_1_	NC	1
404			min	004	3	008	3	0	1	1.473e-6	10	NC	<u>1</u>	NC	1
405		13	max	.002	2	001	15	0	15	3.386e-5	_1_	NC	_1_	NC	1
406			min	003	3	008	3	0	1	1.234e-6	10	NC	1	NC	1
407		14	max	.002	2	001	15	00	15	2.843e-5	_1_	NC	_1_	NC	1
408			min	003	3	006	3	0	1	9.948e-7	10	NC	1	NC	1
409		15	max	.002	2	001	15	0	15	2.3e-5	_1_	NC	_1_	NC	1
410			min	002	3	005	3	0	1	7.555e-7	10	NC	1_	NC	1
411		16	max	.001	2	0	15	0	15	1.757e-5	1_	NC	1_	NC	1
412			min	002	3	004	3	0	1	5.162e-7	10	NC	1_	NC	1
413		17	max	0	2	0	15	0	15	1.214e-5	_1_	NC	_1_	NC	1
414			min	001	3	003	3	0	1	2.768e-7	10	NC	1	NC	1
415		18	max	0	2	0	15	0	15	6.715e-6	_1_	NC	_1_	NC	1
416			min	0	3	001	4	0	1	3.753e-8	10	NC	1	NC	1
417		19	max	0	1	0	1	0	1	1.287e-6	_1_	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-2.018e-7	10	NC	1	NC	1
419	M11	1_	max	0	1	0	1	0	1_	3.718e-7	_1_	NC	_1_	NC	1
420			min	0	1	0	1	0	1	-1.477e-7	3	NC	1_	NC	1
421		2	max	0	3	0	15	0	3	-5.209e-7	15	NC	1_	NC	1
422			min	0	2	003	4	0	10	-1.239e-5	1_	NC	1_	NC	1
423		3	max	0	3	001	15	0		-1.054e-6		NC	_1_	NC	1
424			min	0	2	006	4	0	2	-2.515e-5	<u>1</u>	NC	1_	NC	1
425		4	max	.001	3	002	15	0	3	-1.588e-6		NC	1	NC	1
426			min	001	2	009	4	0	1	-3.791e-5		NC	1_	NC	1
427		5	max	.002	3	003	15	0	3	-2.121e-6		NC	_1_	NC	1
428			min	002	2	012	4	0	1	-5.067e-5		8807.766	4	NC	1
429		6	max	.002	3	003	15	0	3	-2.654e-6		NC	2	NC	1
430			min	002	2	015	4	0	1	-6.343e-5	1_	7109.275	4	NC	1
431		7	max	.003	3	004	15	0	12	-3.187e-6		NC	5	NC	1
432			min	003	2	017	4	0	1	-7.619e-5	1_	6087.74	4	NC	1
433		8	max	.003	3	004	15	0		-3.721e-6	15	NC	_5_	NC	1
434			min	003	2	019	4	0	1	-8.895e-5	1_	5457.351	4	NC	1
435		9	max	.004	3	005	15	0			15	NC	5	NC	1
436			min	003	2	02	4	0	1	-1.017e-4	1_	5083.683	4	NC	1
437		10	max	.004	3	005	15	0		-4.787e-6		NC	5	NC	1
438			min	004	2	021	4	0	1	-1.145e-4		4901.393	4	NC	1
439		11	max	.005	3	005	15	0	15	-5.321e-6	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
440			min	004	2	021	4	0	1	-1.272e-4	1_	4883.544	4	NC	1
441		12	max	.005	3	005	15	0	15	-5.854e-6	15	NC	5	NC	1
442			min	005	2	021	4	001	1	-1.4e-4	1_	5031.257	4	NC	1
443		13	max	.006	3	005	15	0	15		15	NC	_5_	NC	1
444			min	005	2	<u>019</u>	4	001	1	-1.527e-4	1_	5375.458	<u>4</u>	NC	1
445		14	max	.006	3	004	15	0	15	-6.921e-6	<u>15</u>	NC	5_	NC NC	1
446		45	min	005	2	017	4	002	1	-1.655e-4	1_	5993.003	4	NC NC	1
447		15	max	.007	3	003	15	0	15		<u>15</u>	NC 7054.0	3	NC NC	1
448		4.0	min	006	2	015	4	002	1	-1.783e-4	1_	7054.6	4	NC NC	1
449		16	max	.007	3	003 012	15	003	15	-7.987e-6	<u>15</u> 1	NC 8973.962	<u>1</u> 4	NC NC	1
450 451		17	min	006 .008	3	012	15	003 0	15	-1.91e-4 -8.521e-6		NC	_ 4 _	NC NC	1
451		17	max min	007	2	002 008	4	003	1	-0.521e-6 -2.038e-4	<u>15</u>	NC NC	1	NC NC	1
452		18	max	.007	3	006 001	15	<u>003</u> 0	15		<u>1</u> 15	NC NC	1	NC NC	1
454		10	min	007	2	005	4	004	1	-9.054e-0	1	NC	1	NC	1
455		19	max	.009	3	<u>003</u> 0	10	004	15		15	NC	1	NC	1
456		13	min	008	2	002	3	004	1	-2.293e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.002	2	.004	1	-2.719e-6	15	NC	1	NC	2
458	IVIIZ	'	min	0	3	009	3	0	15	-6.437e-5	1	NC	1	5609.227	1
459		2	max	.002	1	.007	2	.004	1	-2.719e-6	15	NC	1	NC	2
460			min	0	3	009	3	0	15	-6.437e-5	1	NC	1	6093.319	
461		3	max	.002	1	.006	2	.004	1	-2.719e-6	15	NC	1	NC	2
462			min	0	3	008	3	0	15	-6.437e-5	1	NC	1	6669.845	1
463		4	max	.002	1	.006	2	.003	1	-2.719e-6	15	NC	1	NC	2
464			min	0	3	008	3	0	15	-6.437e-5	1	NC	1	7362.748	1
465		5	max	.002	1	.006	2	.003	1	-2.719e-6	15	NC	1	NC	2
466			min	0	3	007	3	0	15	-6.437e-5	1	NC	1	8204.574	1
467		6	max	.002	1	.005	2	.003	1	-2.719e-6	15	NC	1	NC	2
468			min	0	3	007	3	0	15	-6.437e-5	1	NC	1	9240.453	1
469		7	max	.002	1	.005	2	.002	1	-2.719e-6	<u>15</u>	NC	1_	NC	1_
470			min	0	3	006	3	0	15	-6.437e-5	1_	NC	1	NC	1
471		8	max	.001	1	.004	2	.002	1	-2.719e-6	15	NC	_1_	NC	1
472			min	0	3	006	3	0	15	-6.437e-5	_1_	NC	_1_	NC	1
473		9	max	.001	1	.004	2	.002	1	-2.719e-6	15	NC	_1_	NC	1
474		10	min	0	3	005	3	0	15	-6.437e-5	1_	NC	1_	NC	1
475		10	max	.001	1	.004	2	.001	1	-2.719e-6	<u>15</u>	NC	1	NC NC	1
476		4.4	min	0	3	005	3	0	15	-6.437e-5	1_	NC	1_	NC NC	1
477		11	max	.001	1	.003	2	.001	1	-2.719e-6	<u>15</u>	NC	1	NC NC	1
478		40	min	0	3	004	3	0	15	-6.437e-5	1_	NC NC	1_	NC NC	1
479 480		12	max	<u> </u>	3	.003	3	0	1	-2.719e-6 -6.437e-5	<u>15</u>	NC NC	1	NC NC	1
		12	min		1	004	2					NC NC	1	NC NC	1
481 482		13	max min	0 0	3	.002 003	3	<u> </u>	1 15	-2.719e-6 -6.437e-5	10	NC NC	1	NC NC	1
483		14	max	0	1	.002	2	0	1	-0.437e-3 -2.719e-6	15	NC	1	NC NC	1
484		14	min	0	3	003	3	0	15	-6.437e-5	1	NC	1	NC	1
485		15	max	0	1	.002	2	0	1	-2.719e-6		NC	1	NC	1
486		13	min	0	3	002	3	0	15		1	NC	1	NC	1
487		16	max	0	1	.002	2	0	1	-2.719e-6		NC	1	NC	1
488		10	min	0	3	002	3	0	15		1	NC	1	NC	1
489		17	max	0	1	<u>002</u> 0	2	0	1	-0.437e-3	15	NC	1	NC	1
490		11/	min	0	3	001	3	0	15		1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-2.719e-6	•	NC	1	NC	1
492		1.0	min	0	3	0	3	0	15	-6.437e-5	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-2.719e-6	•	NC	1	NC	1
494			min	0	1	0	1	0	1	-6.437e-5	1	NC	1	NC	1
495	M1	1	max	.011	3	.239	2	0	1	4.814e-3	2	NC	1	NC	1
496			min	007	2	074	3	0	15		3	NC	1	NC	1
											_		_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio LC) LC
497		2	max	.011	3	.116	2	0	15	2.365e-3	2	NC 5	NC	1
498			min	007	2	036	3	003	1	-6.707e-3	3	1106.999 2	NC	1
499		3	max	.011	3	.017	3	0	15	2.881e-5	10	NC 5	NC	1
500			min	007	2	013	2	005	1	-8.955e-5	3	537.52 2	NC	1
501		4	max	.011	3	.095	3	0	15	3.48e-3	2	NC 5	NC	1
502			min	007	2	1 <u>55</u>	2	004	1	-3.486e-3	3	343.483 2	NC	1
503		5	max	.011	3	.19	3	0	15	6.939e-3	2	NC 15		1
504			min	007	2	302	2	003	1	-6.883e-3	3	250.407 2	NC	1
505		6	max	.011	3	.291	3	0	10	1.04e-2	2	9209.092 15	NC NC	1
506			min	007	2	442	2	001	1	-1.028e-2	3	198.758 2	NC	1
507		7	max	.01	3	.386	3	0	1	1.386e-2	2	7808.959 15	NC NC	1
508			min	007	2	567	2	0	3	-1.368e-2	3	168.092 2	NC	1
509		8	max	.01	3	.465	3	0	1	1.732e-2	2	6977.504 15	NC NC	1
510			min	007	2	665	2	0	15	-1.707e-2	3	149.88 2	NC	1
511		9	max	.01	3	.517	3	0	15	1.924e-2	2	6540.892 15	NC NC	1
512			min	006	2	727	2	0	1	-1.768e-2	3	140.364 2	NC	1
513		10	max	.01	3	.536	3	0	1	2.013e-2	2	6406.937 15	NC NC	1
514			min	006	2	748	2	0	10	-1.643e-2	3	137.576 2	NC	1
515		11	max	.01	3	.524	3	0	1	2.102e-2	2	6540.343 15		1
516			min	006	2	726	2	0	15	-1.518e-2	3	140.85 2	NC	1
517		12	max	.009	3	.481	3	0	15	1.997e-2	2	6976.305 15		1
518			min	006	2	662	2	0	1	-1.335e-2	3	151.272 2	NC	1
519		13	max	.009	3	.411	3	0	10	1.601e-2	2	7806.816 15		1
520			min	006	2	56	2	0	1	-1.068e-2	3	171.315 2	NC	1
521		14	max	.009	3	.321	3	.001	1	1.204e-2	2	9205.429 15		1
522			min	006	2	431	2	0	15	-8.014e-3	3	205.404 2	NC	1
523		15	max	.009	3	.218	3	.003	1	8.081e-3	2	NC 15		1
524			min	006	2	288	2	0	15	-5.345e-3	3	263.646 2	NC	1
525		16	max	.008	3	.111	3	.004	1	4.119e-3	2	NC 5	NC	1
526		10	min	006	2	143	2	0	15	-2.675e-3	3	370.437 2	NC	1
527		17	max	.008	3	.006	3	.004	1	3.115e-4	1	NC 5	NC	1
528		- ' '	min	006	2	007	2	0	15	-5.394e-6	3	596.281 2	NC	1
529		18	max	.008	3	.109	2	.003	1	4.268e-3	2	NC 5	NC	1
530		10	min	006	2	091	3	0	15	-1.281e-3	3	1253.473 2	NC	1
531		19	max	.008	3	.215	2	0	15	8.524e-3	2	NC 1	NC	1
532		19	min	006	2	182	3	0	1	-2.627e-3	3	NC 1	NC	1
533	M5	1	max	.032	3	.321	2	0	1	0	1	NC 1	NC NC	1
534	IVIO			022	2	.006	15	0	1	0	1	NC 1	NC NC	1
		2	min		3		2		1		+	NC 3	NC NC	1
535			max	.032		.156		0		0	1			1
536		2	min	023	2	.003	15	0	1	0		830.737 2	NC NC	1
537		3	max	.032	3	.047	3	0	1	0	1	NC 5	NC NC	1
538		4	min	023	2	036	2	0	1	0	1	383.815 2	NC NC	1
539		4	max	.031	3	.164	3	0	1	0	1	NC 15		1
540		_	min	022	2	274	2	0	1	0	1_	229.677 2		1
541		5	max	.031	3	.34	3	0	1	0	1	8143.687 15		1
542			min	022	2	<u>539</u>	2	0	1	0	1	158.666 2		1
543		6	max	.03	3	.545	3	0	1	0	1	6212.973 15		1
544			min	021	2	806	2	0	1	0	<u>1</u>	120.962 2		1
545		7	max	.029	3	.748	3	0	1	0	1	5108.749 15		1
546			min	021	2	-1.051	2	0	1	0	1_	99.368 2	NC	1
547		8	max	.029	3	.921	3	0	1	0	1	4471.47 15		1
548			min	021	2	-1.248	2	0	1	0	1	86.892 2	NC	1
549		9	max	.028	3	1.032	3	0	1	0	1	4146.004 15		1
550			min	02	2	-1.374	2	0	1	0	1	80.516 2		1
551		10	max	.027	3	1.073	3	0	1	0	1	4048.111 15		1
552			min	02	2	-1.417	2	0	1	0	1	78.656 2		1
553		11	max	.027	3	1.045	3	0	1	0	1	4146.444 15	NC NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 24, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	019	2	-1.375	2	0	1	0	1	80.831	2	NC	1
555		12	max	.026	3	.953	3	0	1	0	1	4472.484	15	NC	1
556			min	019	2	-1.244	2	0	1	0	1	87.962	2	NC	1
557		13	max	.025	3	.804	3	0	1	0	1	5110.718	15	NC	1
558			min	019	2	-1.035	2	0	1	0	1	102.241	2	NC	1
559		14	max	.025	3	.617	3	0	1	0	1	6216.679	15	NC	1
560			min	018	2	778	2	0	1	0	1	127.671	2	NC	1
561		15	max	.024	3	.411	3	0	1	0	1	8150.847	15	NC	1
562			min	018	2	503	2	0	1	0	1	173.925	2	NC	1
563		16	max	.023	3	.204	ω	0	1	0	1	NC	15	NC	1
564			min	018	2	239	2	0	1	0	1	266.116	2	NC	1
565		17	max	.023	3	.015	3	0	1	0	1	NC	5	NC	1
566			min	017	2	019	2	0	1	0	1	479.982	2	NC	1
567		18	max	.023	3	.136	2	0	1	0	1	NC	5	NC	1
568			min	017	2	141	3	0	1	0	1	1107.374	2	NC	1
569		19	max	.023	3	.253	2	0	1	0	1	NC	1	NC	1
570			min	017	2	277	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.011	3	.239	2	0	15	1.35e-2	3	NC	1	NC	1
572			min	007	2	074	3	0	1	-4.814e-3	2	NC	1	NC	1
573		2	max	.011	3	.116	2	.003	1	6.707e-3	3	NC	5	NC	1
574			min	007	2	036	3	0	15	-2.365e-3	2	1106.999	2	NC	1
575		3	max	.011	3	.017	3	.005	1	8.955e-5	3	NC	5	NC	1
576			min	007	2	013	2	0	15	-2.881e-5	10	537.52	2	NC	1
577		4	max	.011	3	.095	3	.004	1	3.486e-3	3	NC	5	NC	1
578			min	007	2	155	2	0	15	-3.48e-3	2	343.483	2	NC	1
579		5	max	.011	3	.19	3	.003	1	6.883e-3	3		15	NC	1
580			min	007	2	302	2	0	15	-6.939e-3	2	250.407	2	NC	1
581		6	max	.011	3	.291	3	.001	1	1.028e-2	3	9209.092	15	NC	1
582			min	007	2	442	2	0	10	-1.04e-2	2	198.758	2	NC	1
583		7	max	.01	3	.386	3	0	3	1.368e-2	3		15	NC	1
584			min	007	2	567	2	0	1	-1.386e-2	2	168.092	2	NC	1
585		8	max	.01	3	.465	3	0	15	1.707e-2	3	6977.504	15	NC	1
586			min	007	2	665	2	0	1	-1.732e-2	2	149.88	2	NC	1
587		9	max	.01	3	.517	3	0	1	1.768e-2	3	6540.892	15	NC	1
588			min	006	2	727	2	0	15	-1.924e-2	2	140.364	2	NC	1
589		10	max	.01	3	.536	3	0	10	1.643e-2	3	6406.937	15	NC	1
590			min	006	2	748	2	0	1	-2.013e-2	2	137.576	2	NC	1
591		11	max	.01	3	.524	3	0	15	1.518e-2	3	6540.343	15	NC	1
592			min	006	2	726	2	0	1	-2.102e-2	2	140.85	2	NC	1
593		12	max	.009	3	.481	3	0	1	1.335e-2	3		15	NC	1
594			min	006	2	662	2	0	15	-1.997e-2	2	151.272	2	NC	1
595		13	max	.009	3	.411	3	0	1	1.068e-2	3	7806.816	15	NC	1
596			min	006	2	56	2	0	10	-1.601e-2	2	171.315	2	NC	1
597		14	max	.009	3	.321	3	0		8.014e-3	3		15	NC	1
598			min	006	2	431	2	001	1	-1.204e-2	2	205.404	2	NC	1
599		15	max	.009	3	.218	3	0	15	5.345e-3	3	NC	15	NC	1
600			min	006	2	288	2	003	1	-8.081e-3	2	263.646	2	NC	1
601		16	max	.008	3	.111	3	0	15	2.675e-3	3		5	NC	1
602			min	006	2	143	2	004	1	-4.119e-3	2	370.437	2	NC	1
603		17	max	.008	3	.006	3	0	15		3	NC	5	NC	1
604			min	006	2	007	2	004	1	-3.115e-4	1	596.281	2	NC	1
605		18	max	.008	3	.109	2	0	15	1.281e-3	3	NC	5	NC	1
606			min	006	2	091	3	003	1	-4.268e-3	2		2	NC	1
607		19	max	.008	3	.215	2	0	1	2.627e-3	3	NC	1	NC	1
608			min	006	2	182	3	0	15	-8.524e-3	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	3/5				
Project:	Standard PVMax - Worst Case, 32-40 Inch Width						
Address:							
Phone:							
E-mail:							

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	† short-term	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{al}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{\text{ed},Na} \Psi_{g,Na} \Psi_{\text{ec},Na} \Psi_{p,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\Psi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{\Psi}_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	5/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.