Name: Ujwal Sahu

Branch:B.Voc-AIDS

Experiment 3

Title: Demonstrate Handling of Outliers and Missing Data using Python in Machine Learning.

Tool: Python libraries (e.g., Pandas, NumPy, Scikit-learn)

Theory: Outliers can skew results, and missing data can lead to inaccurate models; thus, proper handling is crucial for model performance.

Outlier detection and Removal

Outliers are data points that deviate significantly from the rest of the dataset, potentially skewing results.

Common methods for detecting outliers include:

Interquartile Range (IQR): Calculates Q1 and Q3 to determine the IQR, then identifies outliers as points outside the range defined by 1.5 * IQR.

Z-Score: Measures how many standard deviations a data point is from the mean; typically, a threshold of 2 or 3 is used to identify outliers.

Visualization: Boxplots and scatter plots can visually highlight outliers.

Handling Missing Data:

Missing values can lead to biased results and reduced sample sizes.

Common strategies for handling missing data include:

Imputation: Filling missing values with mean, median, or mode.

Forward/Backward Fill: Using the last or next observed value to fill gaps.

Interpolation: Estimating missing values based on surrounding data points. Dropping Rows/Columns: Removing data points or features with excessive missing values.

```
Code:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.impute import SimpleImputer
# Create a sample DataFrame
data = {
  'A': [1, 2, 3, 4, 5, 100], # Outlier in column A
  'B': [5, np.nan, 7, 8, np.nan, 10], # Missing values in column B
  'C': [10, 20, 30, 40, 50, 60]
}
df = pd.DataFrame(data)
# Display the original DataFrame
print("Original DataFrame:")
print(df)
# Visualize the data to identify outliers
plt.figure(figsize=(10, 5))
sns.boxplot(data=df)
plt.title("Boxplot to Identify Outliers")
plt.show()
```

```
# Handling Outliers using IQR
Q1 = df['A'].quantile(0.25)
Q3 = df['A'].quantile(0.75)
IQR = Q3 - Q1
# Define bounds for outliers
lower bound = Q1 - 1.5 * IQR
upper bound = Q3 + 1.5 * IQR
# Remove outliers
df no outliers = df[(df['A'] >= lower bound) & (df['A'] <= upper bound)]
print("\nDataFrame after removing outliers in column A:")
print(df no outliers)
# Handling Missing Data
# Using SimpleImputer to fill missing values in column B with the mean
imputer = SimpleImputer(strategy='mean')
df_no_outliers['B'] = imputer.fit_transform(df_no_outliers[['B']])
print("\nDataFrame after imputing missing values in column B:")
print(df_no_outliers)
# Visualize the cleaned data
plt.figure(figsize=(10, 5))
sns.boxplot(data=df_no_outliers)
```

plt.title("Boxplot after Handling Outliers and Missing Data")
plt.show()

Explanation of the Code:

Data Creation: A sample DataFrame is created with some outliers and missing values.

Visualization: A boxplot is generated to visualize the presence of outliers in the dataset.

Outlier Handling:

The Interquartile Range (IQR) method is used to identify and remove outliers from column 'A'.

Missing Data Handling:

The Simple Imputer from Scikit-learn is used to fill missing values in column 'B' with the mean of the column.

Final Visualization: A boxplot is generated again to show the cleaned data after handling outliers and missing values.

Output:

• Original DataFrame:

A B C

0 1 5.0 10

1 2 NaN 20

2 3 7.0 30

3 4 8.0 40

4 5 NaN 50

5 100 10.0 60

• DataFrame after removing outliers in column A:

A B C

0 1 5.0 10

1 2 NaN 20

- 2 3 7.0 30
- 3 4 8.0 40
- 4 5 NaN 50
- DataFrame after imputing missing values in column B:
 - A B C
- 0 1 5.0 10
- 1 2 7.5 20
- 2 3 7.0 30
- 3 4 8.0 40
- 4 5 7.5 50

Conclusion:

This code demonstrates how to effectively handle outliers and missing data in a dataset using Python, which is crucial for preparing data for machine learning

For Faculty Use

Correction Parameters	Formative Assessmen t [40%]	Timely completion of Practical [40%]	
Marks Obtained			