Teoría de Automatas

Diego Soto - Universidad Austral De Chile

${\bf \acute{I}ndice}$

1.	Introducción	
2.	Alfabetos y Lenguajes	9
3.	Operaciones Con Lenguajes	4

1. Introducción

La teoría de autómatas constituye uno de los pilares fundamentales de la computación teórica y el análisis formal de lenguajes. Esta disciplina permite modelar y analizar el comportamiento de sistemas computacionales mediante representaciones abstractas conocidas como autómatas. A través del estudio de estos modelos, es posible comprender mejor cómo funcionan los lenguajes formales, los compiladores, y las máquinas que los procesan.

Para comenzar, definiremos y repasaremos algunos conceptos que son previamente sabidos del ramo Estructuras Discretas y luego de a poco, nos iremos adentrando en materia.

2. Alfabetos y Lenguajes

Cuando hablamos comunmente de un lenguaje, se nos puede venir a la distintas ideas, como palabras, letras, etcétera. Comenzaremos dando algunas definiciones de estas, para poder empezar a contruir otras fokin definiciones.

Definición 1 Un Alfabeto es un conjunto finito de símbolos.

$$\Sigma = \{a, b, c, ..., z\}$$

Definición 2 Una Palabra es una secuencia ordenada de símbolos de un alfabeto.

$$x = a_1 a_2 a_3 \dots a_4$$

Definición 3 El largo de una palabra es el número de símbolos que los conforman.

$$|x| = n$$

Definición 4 La palabra vacía es una palabra que no tiene ningún símbolo.

Palabra vacía:
$$\varepsilon \Rightarrow |\varepsilon| = 0$$

Definición 5 Si Σ es un alfabeto, anotaremos como Σ^* el conjunto de todas las palabras posibles sobre Σ .

$$\Sigma^* = \bigcup_{k>0} \Sigma^k = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$$

En donde Σ^k es el conjunto de palabras de largo k.

Ejemplo:

Si
$$\Sigma = \{a, b\}$$
, entonces:
$$\Sigma^0 = \{\epsilon\}$$

$$\Sigma^1 = \{a, b\}$$

$$\Sigma^2 = \{aa, ab, ba, bb\}$$

$$\dots$$

$$\Sigma^n = \{\epsilon, a, b, aa, ab, ba, bb, aaa, \dots\}$$

Definición 6 Un lenguaje es un conjunto de palabras que se pueden armar sobre un alfabeto Σ , el cual denotaremos por la letra L

Con esto, tenemos que
$$L \subseteq \Sigma^*$$

Ejemplo:

- $L = \{x \in \{a, b\}^* \mid x \text{ comienza con 'a'}\}$ $L = \{a, aa, ab, aab, aba, \dots\}$
- $L = \{x \in \{0, 1\}^* \mid x \text{ es palindromo'}\}$ $L = \{0, 1, 00, 11, 101, 010, 11011, 0110, \dots\}$
- $L = \{0, 1, 00, 11, 101, 010, 11011, 0110, \dots\}$ $L = \{x \in 6^+ \mid \text{Los dígitos de x suman } 10\}$ $L = \{64, 22222, 235, \dots\} \text{ (Notar que las palabras acá son finitas)}$

Entonces, podemos decir que existen lenguajes que pueden ser finitos, o infinitos, donde los lenguajes infinitos son aquellos que son compuestos por infinitas palabras que pertenecen al lenguaje, mientras que en los finitos no.

En Σ^* se definen las siguientes operaciones:

• Concatenacion:

Sean
$$x = a_1 a_2 \dots a_n$$
, $y = b_1 b_2 \dots b_n$, entonces:

$$x \cdot y = xy = a_1 a_2 \dots a_n b_1 b_2 \dots b_n$$

• Reflexión:

Si
$$x = a_1 a_2 \dots a_n$$
, entonces:

$$x^r = a_n \dots a_2 a_1$$

 x^r se denomina "Palabra Refleja"

3. Operaciones Con Lenguajes