Chromatic Polynomial

Graph Connectivity

Assume that student can not change their position

7 ways x 6 ways x 6 ways x 6 ways x 6 ways = 9072

choices choices choices choices

In how many ways can you color this graph with λ colors so that no two adjacent have the same color?

$$\lambda \times (\lambda - 1)^4$$
 for P_5

G

In how many ways can you color this graph with a colors so that no two adjacent have the same color? Chromatic polynomial

 $C(P_5) = \lambda(\lambda-1)^4$

Chromatic polynomial of complete graphs

$$C(K_3) = \lambda(\lambda - 1)(\lambda - 2)$$

$$\lambda - 2$$

$$C(K_4) = \lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)$$

$$C(K_5) = \lambda(\lambda - 1)(\lambda - 2)$$

$$(\lambda - 3)(\lambda - 4)$$

$$C(k_n) = \lambda(\lambda-1)(\lambda-2)...(\lambda-n+1)$$

$$C(C_4)$$

$$C(C_4) = ?$$

4 3 4 3 4
$$C(\square, \lambda) = C(\square, \lambda) + C(/, \lambda)$$

$$C(\square, \lambda) = \lambda(\lambda - 1)(\lambda - 2)(\lambda - 2) + \lambda(\lambda - 1)(\lambda - 1)$$

$$= \lambda^{4} - 5\lambda^{3} + 8\lambda^{2} - 4\lambda + \lambda^{3} + \lambda - 2\lambda^{2}$$

$$= \lambda^{4} - 4\lambda^{3} + 6\lambda^{2} - 3\lambda$$

$$C(\square,\lambda) = C(\square,\lambda) + C(\nearrow,\lambda)$$

$$\Rightarrow c(\square_3, \lambda) = c(\square_3, \lambda) - c(1, \lambda)$$

$$C(G, \lambda) = C(G-e, \lambda) - C(G, e, \lambda)$$

Edge e removed from G Edge e coalesced in G.

Examples

(1)
$$|V| = n$$
 and $E = \emptyset$, then $P(G, \lambda) = \lambda^n$

$$\lambda_0 \lambda_0 \lambda_0 \lambda_0 \lambda_0$$

$$\lambda_0 \lambda_0 \lambda_0 \lambda_0$$

(2) $G: K_n$, then $P(G, \lambda) = \lambda(\lambda - 1)(\lambda - 2) \cdot (\lambda - n + 1) = \frac{\lambda!}{(\lambda - n)!}$

3 For paths, consider the number of choices from vertex to vertex.

P(G, X) = 2(2-1)4

(4) If G has components, multiply using the product rule.

$$\int_{0}^{\pi} \int_{0}^{\pi} \frac{1}{(\lambda \lambda - 1)^{2}} \left(\frac{\lambda (\lambda - 1)^{2}}{(\lambda - 3)!}\right)$$

What is $\chi(K_{m,1})$?

$$K_{3} = \lambda(\lambda - 1)(\lambda - 2) = 0$$

$$\lambda = 2$$

$$\lambda = 3$$

3 (3-1)(3-2)

3(2)(1)