4CCS1ELA: Tutorial list — Week 7

- 1. Consider the following predicate symbols with which we associate the following meanings:
 - S(x) represents "x is a student"
 - L(x) represents "x is a lecture"
 - A(x, y) represents "x attends y"

Provide a first-order formula encoding the following sentence:

"At least one student attended every lecture"

(be careful, this sentence is ambiguous..., provide a formula for each of the two different meanings)

- 2. Consider the following predicate symbols with which we associate the following meanings:
 - B(x) means "x is a bird"
 - W(x) means "x is a worm"
 - E(x,y) means "x eats y"

Using these predicates, represent in first-order logic each of the following statements:

- (i) Every bird eats every worm
- (ii) Some birds do not eat some worms
- (iii) No bird is eaten by a worm
- (iv) Some worms do not get eaten by birds
- **3.** Identify which occurrences of variables in the formulas below are free and which occurrences are bound. Justify you answers.
 - (i) $y \ge 0 \land \forall x (N(x) \to x \ge y)$
 - (ii) $x \ge 0 \land \forall x (N(x) \to x \ge y)$
 - (i) $\forall x(N(x) \to \exists y(N(y) \land x \ge y))$

Here N is a unary predicate symbol, \geq is a binary predicate symbol in infix notation, and $x \geq y$ is an atom in infix notation (infix notation means that the predicate symbol appears in between the terms).

4. Let ϕ be a well-formed formula (wff), i.e. a σ -formula belonging to $\mathcal{L}[\sigma]$, interpreted over the domain set D and $d \in D$. Then $\phi(x/d)$ denotes the wff obtained from ϕ by replacing all *free* occurrences of X in ϕ by d.

Compute the following substitutions and determine the meaning (the truth-values) of the resulting sentences over the set $\mathbb{N} = \{0, 1, 2, \dots\}$ of natural numbers. Here N(x) denotes "x is a natural number", predicates \geq and > have their usual interpretation and are expressed with their usual infix notation.

- (i) $(y \ge 0 \land \forall x (N(x) \to x \ge y))(y/3)$
- (ii) $(x \ge 0 \land \exists y (N(y) \land x \ge y))(x/3)$
- (iii) $(\forall x(N(x) \to \exists y(N(y) \land x > y)))(x/3)$
- (iv) $(\forall x(N(x) \to \exists y(N(y) \land y > x)))(y/3)$