Тема уроку. Складання рівнянь окисно-відновних реакцій. Метод електронного балансу.

Мета: навчитись складати рівняння найпростіших окисновідновних реакцій на основі електронного балансу.

Основний принцип складання електронного балансу полягає в тому, що в окисно-відновних реакціях електрони переходять від одного атома до іншого, тому число електронів, відданих відновником, має дорівнювати числу електронів, прийнятих окисником.

Алгоритм складання рівняння окисно-відновної реакції

Nº	Дія	Результат
1	У схемі реакції над формулами реагентів і продуктів реакції позначають ступені окиснення всіх елементів	0 +3 -2 0 +4-2 $C + Fe_2O_3 \rightarrow Fe + CO_2$
2	Визначають елементи, що змінили ступені окиснення	Карбон і Ферум
3	Складають електронний баланс, до якого включають елементи зі зміненими ступенями окиснення. Визначають кількість відданих і приєднаних електро- нів. Відповідні числа записують праворуч від симво- лів елементів у балансі	$ \begin{array}{ccccc} 0 & & +4 \\ C & -4\overline{e} & \rightarrow C & & 4 \\ +3 & & 0 \\ Fe & +3\overline{e} & \rightarrow Fe & & 3 \end{array} $
4	Увага! У ході окисно-відновної реакції кількість відданих і приєднаних електронів однакова. Тому визначають найменше спільне кратне для кількості відданих і приєднаних електронів	Для 4 і 3 найменшим спільним кратним є 12
5	Найменше спільне кратне по черзі ділять на кількість відданих і приєднаних електронів. Одержані частки від ділення записують в електронному балансі після спільного кратного	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6	Знайдені частки є коефіцієнтами, які записують зде- більшого перед формулами продуктів реакції, що містять елемент, який змінив ступінь окиснення	У нашому прикладі— це формули заліза й вуглекислого газу: C + Fe ₂ O ₃ → 4Fe + 3CO ₂
7	Перетворюють схему на рівняння, дописуючи коефі- цієнти в лівій частині рівняння, і стрілку замінюють на знак рівності	3C + 2Fe ₂ O ₃ = 4Fe + 3CO ₂

Приклад. Доберіть коефіцієнти методом електронного балансу для рівняння реакції взаємодії ферум(III) оксиду з чадним газом:

 Визначаємо ступені окиснення всіх хімічних елементів, що містяться у складі реагентів і продуктів реакції:

$$\stackrel{+3}{\mathrm{Fe}_2} \stackrel{-2}{\mathrm{O}_3} + \stackrel{+2-2}{\mathrm{C}} \stackrel{0}{\mathrm{O}} \rightarrow \stackrel{+4-2}{\mathrm{Fe}} + \stackrel{}{\mathrm{C}} \stackrel{\mathrm{O}_2}{\mathrm{O}_2}$$

2. Визначаємо елементи, що змінюють ступені окиснення.

Для зрівняння зарядів в обох частинах схем необхідно дописати число відданих або прийнятих електронів. Отримуємо схеми окиснення та відновлення:

схема відновлення: $\stackrel{+3}{{\rm Fe}} + 3e^- \to \stackrel{0}{{\rm Fe}}$ схема окиснення: $\stackrel{+2}{{\rm C}} - 2e^- \to \stackrel{+4}{{\rm C}}$

Суть електронного балансу полягає в тому, що число прийнятих та відданих електронів має бути однаковим.

Отримуємо сумарну схему:

$${}^{+3}_{2Fe} + {}^{+2}_{3C} \rightarrow {}^{0}_{2Fe} + {}^{+4}_{3C}$$

Коефіцієнти в сумарній схемі показують, скільки атомів того чи іншого елемента має бути в молекулярному рівнянні. Зважаючи на це, розставляємо коефіцієнти в молекулярному рівнянні.

$$Fe_2O_3 + 3CO = 2Fe + 3CO_2$$

Отже, отримуємо електронний баланс, оформлений у такий спосіб:

$$Fe_2O_3 + 3CO = 2Fe + 3CO_2$$

$$Fe + 3e^- \rightarrow Fe$$
 \times 2 відновлення; $Fe -$ окисник $C - 2e^- \rightarrow C$ \times 3 окиснення; $C - 2e^- \rightarrow C$ \times 3 окиснення; $C - 2e^- \rightarrow C$

Висновок.

- Окисно-відновні реакції це перебіг двох взаємно протилежних процесів окиснення (віддачі електронів) та відновлення (приєднання електронів).
- Віддають електрони відновники, приєднують (одержують) окисники. Унаслідок цього відновники окиснюються, а окисники відновлюються.
- Сума відданих під час окисно-відновної реакції електронів дорівнює сумі приєднаних.
- Складання електронного балансу полегшує добір коефіцієнтів у рівняннях окисновідновних реакцій.

Завдання.

1. Опрацюйте §17.