In the Name of God

Communication Systems (25751-1) Problem Set 01

Department of Electrical Engineering Sharif University of Technology Fall Semester 1398-99

Instructor: Dr. M. Pakravan Due on Mehr 28, 1398 at 7:30 a.m.

1 Fourier Series of Periodic Signals

Determine the Fourier series expression of following signals:

1.
$$x_1(t) = \sum_{n=-\infty}^{\infty} (-1)^n \Lambda(t-2n)$$

2.
$$x_2(t) = \sum_{n=-\infty}^{\infty} (-1)^n \delta'(t - nT)$$

3.
$$x_3(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \sum_{n=-\infty}^{\infty} e^{-\frac{(t-\mu-nT_s)^2}{2\sigma^2}}$$

4.
$$x_4(t) = |\cos(2\pi f_0 t)|$$

5.
$$x_5(t) = f(t)^* e^{j\frac{2\pi t}{T_0}}$$
 (in terms of $f(t)$ (periodic with period T_0) Fourier series coefficients)

6. $x_6(t) = y_1(t)y_2(t)$ (where y_1 and y_2 are signals of period T, whose Fourier series coefficients are a_n and b_n . Find the answer in terms of a_n and b_n .)

2 Parseval's Theorem

Let x(t) and y(t) be two energy-type signals, and let X(f) and Y(f) denote their Fourier transforms, respectively. Show that:

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y(f)^*df$$

3 Averaging Operator

Let f(t) be a periodic signal of period T and define the averaging operator depending on a parameter h > 0 by

$$\mathcal{A}_h f(x) = \frac{1}{2h} \int_{x-h}^{x+h} f(t) dt$$

Thus $\mathcal{A}_h f(x)$ is a new signal.

1. Show that $\mathcal{A}_h f(x)$ is periodic of period T as a function of x, i.e.,

$$\mathcal{A}_h f(x+T) = \mathcal{A}_h f(x)$$

2. Find the Fourier series of $\mathcal{A}_h f(x)$ in terms of the Fourier series of f(t).

4 Poisson Sum Formula

1. By computing the Fourier series coefficients for the periodic signal $s(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT_s)$, shows that:

$$\sum_{n=-\infty}^{\infty} \delta(t - nT_s) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} e^{jn\frac{2\pi t}{T_s}}$$

2. Using the result of part (1), prove that for any signal x(t) and any T_s , the following identity holds:

$$\sum_{r=-\infty}^{\infty} x(t - nT_s) = \frac{1}{T_s} \sum_{r=-\infty}^{\infty} X\left(\frac{n}{T_s}\right) e^{jn\frac{2\pi t}{T_s}}$$

3. Conclude the following relation known as *Poisson's sum formula*.

$$\sum_{n=-\infty}^{\infty} x(nT_s) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} X\left(\frac{n}{T_s}\right)$$

5 Types of Signals

Classify the following signals into energy-type, power-type, and neither energy-type nor power-type signals. For energy-type or power-type signals find the energy or the power contents of the signal.

2

1.
$$x_1(t) = e^{-\alpha|t|}\cos(\beta t)$$
 $(\alpha > 0)$

2.
$$x_2(t) = \frac{1}{\pi t}$$

3.
$$x_3(t) = \sum_{n=-\infty}^{\infty} (-1)^n \Lambda(t-2n)$$

4.
$$x_4(t) = Ae^{j(2\pi f_0 t + \theta)}$$

5.
$$x_5(t) = \begin{cases} Kt^{-\frac{1}{4}} & t > 0\\ 0 & t \le 0 \end{cases}$$

6 Fourier Transform

Determine the Fourier transform of each of the following signals:

1.
$$x_1(t) = \frac{t}{a^2 + t^2}$$

2.
$$x_2(t) = \Lambda(2t+3) + \Lambda(3t-2)$$

3.
$$x_3(t) = t^n \operatorname{sinc}(t)$$
 $(n > 1)$

4.
$$x_4(t) = te^{-\alpha|t|}\cos(\beta t)$$
 $(\alpha > 0)$

7 Fourier Transform and Real Integrals

Use the known properties of the Fourier transform to obtain the following:

1.
$$I_1 = \int_0^{+\infty} \frac{1}{(a^2 + x^2)^2} dx$$

2.
$$I_2 = \int_0^{+\infty} e^{-\alpha t} \operatorname{sinc}^2(\beta t) dt$$
 $(\alpha > 0)$

3.
$$I_3 = \int_0^{+\infty} \frac{\sin^4(t)}{t^4} dt$$

8 Fourier Transform Properties

(*Hint:* In each part of this problem, you may use the results from previous parts or the Fourier transform of common functions such as $\Pi(t)$, $\Lambda(t)$, etc.)

Consider the functions g(x) and f(x), shown in figure 1.

Figure 1

Denote the Fourier transforms by G(f) and H(f), respectively.

1. Consider the imaginary part of G(f):

$$\mathbf{Im}\,G(f) = \frac{\sin(2\pi f) - 2\pi f}{4\pi^2 f^2}$$

How do you explain the singularity of $\mathbf{Im} G(f)$ at f=0 while g(x) is absolutely integrable?

3

- 2. What are the two possible values of $\measuredangle\{H(f)\}$, i.e., the phase of H(f)? Express your answer in radians.
- 3. Evaluate $\int_{-\infty}^{\infty} G(f) \cos(\pi f) df$.
- 4. Evaluate $\int_{-\infty}^{\infty} H(f)e^{j4\pi f} df$.
- 5. Without performing any integration, what is the real part of G(f)? Explain your reasoning.
- 6. Without performing any integration, what is H(f)? Explain your reasoning.
- 7. Suppose h(x) is periodized to have period T=2. Without performing any integration, what are the Fourier series coefficients, c_k , of this periodic signal?