Problem: Find two different smooth structures on a topological space which are still diffeomorphic.

Solution

our topological space will be IR.

smooth structure #1: $\{U, \phi\}$ given by U=R $\{\psi\}$ $\{\psi\}$ given by $\{V\}=R$ $\{\psi\}$ $\{\psi\}$ given by $\{V\}$ $\{\psi\}$ given by $\{\psi\}$ $\{\psi\}$ $\{\psi\}$ $\{\psi\}$ given by $\{\psi\}$ $\{\psi\}$

Denote IR with these structures as R. & Rz, respectively.

These are not compatible as the transition map $(\psi \circ \phi^{-1})(t) = t^{1/3}$ is not smooth. Thus R_1 , R_2 are indeed distinct.

To show they are diffeomorphic, define $F: R_1 \to R_2$ by $t \mapsto t^3$. Then $[N \circ F \circ \phi^{-1}](t) = t$, which is smooth. Therefore F is the desired diffeomorphism.