## MOCK TEST 10, 2024 HS 2ND YEAR SCIENCE

MARKS: 120( JEE), 200( NEET

| THATE ! I LIOOK!            | E- 1                         |                               | •                             |  |  |
|-----------------------------|------------------------------|-------------------------------|-------------------------------|--|--|
| ,                           | BIO                          | LOGY                          | daac                          |  |  |
| 1. Rate of decomposition    | depends upon                 |                               | 3 7 89                        |  |  |
| · a. Chemical composition   | of detritus b. Temperatu     | re c. Soil moisture           | and soil pH d All of these    |  |  |
|                             |                              | erbivores and the decompose   | ers is called                 |  |  |
| a. Net primary productivity |                              | b. Secondary productivity     |                               |  |  |
| Standing crop               |                              |                               | d. Gross primary productivity |  |  |
| 3. A series of organisms    | through which energy is to   | ransferred in the form of foo | d is called                   |  |  |
| a. food web                 | b. Food chain                | c. Food cycle                 | d. ecosystem                  |  |  |
| 4. A network of intercor    | nnected food chains is calle | ed                            |                               |  |  |
| a food web                  | b. web cycle                 | c. chain web                  | d. ecosystem                  |  |  |
| 5. Carnivores and omni      | vores are considered as      |                               |                               |  |  |
| a. producers                | b. consumers                 | c. primary consumers          | va. secondary consumers       |  |  |
| 6. Identify the properti    | es of a good vector used in  | rDNA technology:              |                               |  |  |
| a. It should have origin    | of replication supporting a  | high copy number              |                               |  |  |
| b. It should have prefer    | ably more than '2' recognit  | ion sites                     | <u>.</u>                      |  |  |
| e. The restriction sites i  | n vector should be in the a  | intibiotic-resistant genes    |                               |  |  |
| d. It should have suitab    | le marker genes              |                               |                               |  |  |
| e. It should be easy to i   | solate and purify            |                               |                               |  |  |
| Choose the most appro       | priate answer from the opt   | tions given below:            |                               |  |  |
| a. (a), (c) and (e) only    | b.(c), (d) and (e) only      | c.(a), (b) and (c) only       | d. (a), (c), (d) and (e) only |  |  |
| 7.1. Which of the follow    | owing is a type of autoimm   | nune disease?                 |                               |  |  |
| a) Tuberculosis             | b) Cancer                    | (c) Rheumatoid arthritis      | d) Malaria                    |  |  |
| 8 rop segment codes f       | for pBR322?                  | _                             |                               |  |  |

b. Protein for replication a. Resistance protein

c. Proteins for translation d. Cloning site

In genetic engineering, a DNA segment (gene) of interest is transferred to the host cell through a vector. Consider the following four agents (A-D) in this regard and select the correct option about which one or more of these can be used as a vector/vectors:

|                  | Latty war                                        |                       | 1                       |                   |                           |
|------------------|--------------------------------------------------|-----------------------|-------------------------|-------------------|---------------------------|
| 2   Page         | no Back bury                                     |                       |                         |                   |                           |
| A a bacterium    | B. plasmid                                       | / C                   | Plasmodium              | D. bacter         | riophage                  |
| Options:         | Ţ                                                |                       |                         |                   | 1                         |
| a. (A) only      | b. (A) and                                       | (C) only              | (D) only                | (A), (I           | B) and (D) only           |
|                  | which of the followin                            | g respectively rej    | present recognition     | sequences of te   | tracycline resistant      |
| genes            | $\delta \circlearrowleft$                        |                       | 10.11                   | · d Sall          | and Hind I                |
| a. BamH I and    |                                                  |                       | o. BamHI and Sal I      |                   |                           |
| 11. Which of t   | he following options is                          | s correct about Ag    | grobacterium tumifa     | ciens in genetic  | engineering?              |
|                  | gen of angiosperms                               |                       |                         |                   |                           |
| b. It is able to | deliver a piece of DN/<br>quired by the pathogen | A known as T-DN       | IA to transform bact    | erial cell and d  | irect the cell to produce |
|                  |                                                  | to an expression \    | rector                  |                   |                           |
|                  | nid is now modified int                          |                       |                         | ogenic            |                           |
|                  | mid is modified into a c                         |                       |                         | ~,                |                           |
| 12. Which m      | nicrobe is used in the pr                        |                       |                         | e) Yeast          | d) Mould                  |
| a) Acetic ac     |                                                  | b) Lactic acid ba     |                         | ) Teast           | d) Medic                  |
| 13. What is      | the primary role of mic                          |                       |                         |                   |                           |
| a) To produ      | ce antibiotics                                   | (b) To b              | reak down complex       |                   |                           |
|                  | ice vitamins                                     |                       | d) To produce hor       |                   |                           |
| 14. Which        | microbe is used as a bio                         | ofertilizer to fix at | mospheric nitrogen?     |                   |                           |
| a) Rhizobii      |                                                  | spirillum             | c) Azotob               |                   | d) All of the above       |
| 15. Which        | h microbe is used as a b                         | ocontrol agent to     | control insect pests?   |                   |                           |
| a Trichoo        | derma Bac                                        | illus thuringiensis   | c) Pseudomonas          | d) Rhizobium      |                           |
| 16. Asser        | tion (A): Microbes are t                         | ised in the produc    | tion of yogurt.         |                   |                           |
| Reason (         | R): Microbes convert la                          | ctose into lactic ac  |                         |                   |                           |
| a) A is tr       | ue, R is true, and A is co                       | orrect because of     |                         | rue, R is false   | . cn                      |
| c) A is fa       | alse, R is true                                  |                       | is true, R is true, but |                   | because of K              |
| /(17) Ovu        | lation in the human fem                          | ale normally takes    | place during the me     | nstrual cycle     | and any phase             |
| a. at the        | mind secretory phase                             |                       |                         |                   | the secretory phase       |
| e. at the        | e beginning of the prolife                       | erative phase         | d. at the end of t      | he proliferative  | phase                     |
| 18. Aft          | er ovulation Graafian fo                         | llicle regresses int  | 0 /                     |                   | 1                         |
| a. corp          |                                                  | orpus callosum        | o. corpus luteun        | n d. corpus albie | cans                      |
| 19. Im           | mediately after ovulation                        | n, the mammalian      | egg is covered by a r   | nembrane knowi    | 1 45                      |

|                                                                               | Ussaid                            | Corona and the same                   | 1                                     |  |  |
|-------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|--|--|
| a.chorion                                                                     | b. zona pellucid                  | c/corona radiate d. vit               |                                       |  |  |
| 20. Which one of the                                                          | following events is correctly     | natched with the time per             | iod in a normal menstrual cycle?      |  |  |
| a. Release of egg:                                                            | 5 th day                          |                                       |                                       |  |  |
| b. Endometrium rege                                                           | nerates8-10 days                  | ·                                     |                                       |  |  |
|                                                                               | etes nutrients for implantation-  | 11 – 18da                             | ys /                                  |  |  |
| d. Rise in progestero                                                         | ne level 1 - 1                    | 5 days                                |                                       |  |  |
| 21) If mammalian ov                                                           | um fails to get fertilised, which | one of the following is               | nlikely?                              |  |  |
| a. Corpus luteum wil                                                          | l disintegrate. b. Prog           | gesterone secretion rapidl            | y declines.                           |  |  |
| e. Estrogen secretion                                                         | increases                         | d. Primary follicle start             | d. Primary follicle starts developing |  |  |
| 22. A human female                                                            | reaches menopause around the      | age of                                |                                       |  |  |
| a. 50 years                                                                   | b. 15 years                       | c. 70 years                           | d.25 years                            |  |  |
| 23. Which of the foll                                                         | lowing is NOT a type of immu      | nity?                                 |                                       |  |  |
| a) Active immunity                                                            | b) Passive immunity               | c) Innate immunity                    | d) Acquired tolerance                 |  |  |
| 24. The primary fun                                                           | ction of the immune system is     | to:                                   |                                       |  |  |
| . a) Produce antibodic                                                        | es                                | b) Destroy foreign sub-               | stances                               |  |  |
| c) Protect against pa                                                         | thogens                           | d) Regulate body temperature          |                                       |  |  |
| 25. Which disease is                                                          | caused by the bacterium Myc       | obacterium tuberculosis?              |                                       |  |  |
| a) Malaria                                                                    | b) Tuberculosis                   | c) Cancer                             | d) AIDS                               |  |  |
| 26.)The term "vaccir                                                          | ne" was coined by:                | $\mathcal{I}_{\mathcal{I}}$           |                                       |  |  |
| a) Louis Pasteur                                                              | b) Edward Jenner c) Ro            | bert Koch d) A                        | lexander Fleming                      |  |  |
| 27 What is the prim                                                           | ary cause of AIDS?                | +                                     |                                       |  |  |
| HIV virus                                                                     | b) Cancer cells                   | c) Bacterial infection                | d) Viral hepatitis                    |  |  |
|                                                                               |                                   |                                       | odel of DNA replication in plants,    |  |  |
| and what was the pri                                                          | imary method of visualizing th    | e DNA replication proces              | ss?                                   |  |  |
| (a) Meselson-Stahl ex                                                         | xperiment using cesium chlori     | de gradients; Density grad            | lient centrifugation                  |  |  |
| b Taylor et al. expe                                                          | riment using radioactive label    | ing; Autoradiography                  |                                       |  |  |
| c) Hershey-Chase ex                                                           | speriment using bacteriophage     | s; Protein labeling                   |                                       |  |  |
| d) Griffith's experiment using Streptococcus pneumoniae; Transformation assay |                                   |                                       |                                       |  |  |
| 29. After one round                                                           |                                   |                                       | what was the observed density of the  |  |  |
| / DNA?                                                                        |                                   | · · · · · · · · · · · · · · · · · · · |                                       |  |  |





 $1. \int \frac{x^3}{x+1} dx =$ 

(a)  $\frac{3}{4}$ 

(b)  $\frac{3}{10}$ 

(c)  $\frac{2}{5}$ 

 $(d)^{\frac{1}{2}}$ 

(a)  $x + \frac{x^2}{2} + \frac{x^3}{3} - \log|1 - x| + c$ 

(c)  $x - \frac{x^2}{2} + \frac{x^3}{2} - \log|1 - x| + c$ 

## **MATHEMATICS**

(b)  $x + \frac{x^2}{2} - \frac{x^3}{3} - \log|1 - x| + c$ 

(d) None of these



|         |                                                        | 7/                                                                                                                                                    | CHEMISTRY                                                      | 7                                                                    |                                       |       |
|---------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|-------|
|         | 1. What is the                                         | e oxidation number of Cr in                                                                                                                           |                                                                | (d) 16                                                               |                                       |       |
|         |                                                        | tion state of Cr in CrO <sub>5</sub> is                                                                                                               | (0)                                                            |                                                                      |                                       |       |
|         | (a)-6                                                  | (b) + 12                                                                                                                                              | (c) 4 6                                                        | (d) + 4                                                              |                                       |       |
|         | (a) The solut                                          | mid or colution                                                                                                                                       | directly proportional to the                                   | e partial pressure of the solid pr                                   |                                       |       |
|         | Aurface of lie                                         | unid or colution                                                                                                                                      |                                                                | e partial pressure of the gas pre                                    |                                       |       |
|         | curfoss of ac                                          |                                                                                                                                                       |                                                                | partial pressure of liquid preser                                    |                                       |       |
| 2 PAZ   | 4. The solub<br>(g L <sup>-1</sup> ) at 75<br>(a) 0.02 | ility of N <sub>2</sub> in water at 300 K<br>to torr partial pressure is<br>(b) 0.015                                                                 | C and 500 torr partial press (c) 0.0075                        | sure, is $0.01 \text{ g L}^{-i}$ . The solubilit  (d) $0.005$        | y in                                  |       |
| ( XIL   | 5. For the ce                                          | II, Cu   Cu <sup>2+</sup>    Ag <sup>+</sup> Ag, E°, (b) doubled                                                                                      | $_{\text{tell}} = +0.46 \text{ V}$ . If concentra (c) four tim | tion of Cu <sup>2+</sup> ions is doubled, the                        | en E° <sub>cell</sub> will be<br>same |       |
| rs v LS | 6. Standard e<br>The reducing<br>(a) X > Y > 2         | power of these metals will                                                                                                                            | be /                                                           | 2V, +0.5V and -3.0 V respecti<br>Z (d) $Z > X > Y$                   | vely.                                 | 1     |
| 19 19 9 | C₂H                                                    | 1dm <sup>3</sup> of 3M ethanol with 1<br>$_5$ OH + CH <sub>3</sub> COOH $\rightarrow$ CH <sub>3</sub> I<br>on is diluted with an equal<br>(b) 4 times | $COOC_2H_5 + H_2O$                                             | an ester is formed.  ease in the initial rate would be (d) 2 times   |                                       | Ţ     |
|         | 8. 99% comp                                            |                                                                                                                                                       | on takes place in 32 min.                                      | The time taken in 99.9% comp                                         | letion of the                         |       |
|         | (a) 48 min                                             | (b) 52 min                                                                                                                                            | (c) 56 min                                                     | (d) 44 min                                                           |                                       |       |
|         | 9. The trans-<br>(a) $H_2$ -Pd/C,                      | alkenes are formed by the re<br>BaSO <sub>4</sub> (b) NaBH <sub>4</sub>                                                                               | eduction of alkynes with<br>(c) Na/liq. N                      | WH <sub>3</sub> (d) Sn-HCl                                           |                                       |       |
| 10      | (a) activates                                          | trophilic substitution reacti<br>the ring by resonance effect<br>the ring by inductive effect                                                         |                                                                | -0                                                                   |                                       |       |
| OJ "    | (d) decreases<br>(d) increases<br>resonance            | the charge density at ortho                                                                                                                           | and para –position of the position relative tothe ort          | ring plating to meta -position  <br>ho and para -positions of the ri | ng by                                 |       |
|         | Ta t                                                   | 700                                                                                                                                                   | or F                                                           | 大之 0.6                                                               | 593<br>K                              |       |
|         | K                                                      | t = 2.303.                                                                                                                                            | 303×(20)                                                       | t = 2                                                                | 303-16 x<br>16 2.303 x                | 230}x |
|         |                                                        | ***                                                                                                                                                   | *********                                                      |                                                                      | h8                                    |       |
|         |                                                        |                                                                                                                                                       |                                                                |                                                                      |                                       |       |