Paul Gustafson Representations of Lie Algebras

HW 1

1 Prove that over an algebraically closed field of characteristic not equal 2, if B is a nondegenerate symmetric bilinear form over an f.d. vector space V, then $\mathfrak{so}(V,B) \simeq \mathfrak{so}(V)$.

Proof. I claim that there exists a vector $v \in V$ such that $B(v,v) \neq 0$. Suppose not. By nondegeneracy, there exist vectors x,y with $B(x,y) \neq 0$. By assumption, 0 = B(x+y,x+y) = B(x,x) + 2B(x,y) + B(y,y) = 2B(x,y), a contradiction.

Thus, we may choose a vector v such that $B(v,v) \neq 0$. By dividing if necessary, WLOG B(v,v) = 1. Let $v^{\perp} = \{w \in V : B(v,w) = 0\}$.

I claim that v^{\perp} has codimension 1. Suppose $x \in V$. Let p = B(x,v)v. It suffices to show that $x - p \in v^{\perp}$. We have B(x - p, v) = B(x, v) - B(p, v) = B(x, v) - B(x, v)B(v, v) = 0. Thus $V = v^{\perp} + \lambda v$. Since $B(v, v) \neq 0$, $v^{\perp} \cap \lambda v = \{0\}$. Thus $V = v^{\perp} \oplus \lambda v$.

By induction, we get an orthonormal basis v_1, \ldots, v_n for V with respect to B.

2 Show that (\mathbb{R}^3, \times) is a real Lie algebra. Is this related to $\mathfrak{su}(2)$?

Proof. The cross-product is antisymmetric and bilinear by definition. To check that the Jacobi identity holds, it suffices to check it on basis vectors $i := e_1, j := e_2, k := e_3$. Moreover, the Jacobi identity is invariant under cyclic permutations of its arguments. Hence, it suffices to check the following cases, where v, w are arbitrary:

$$i \times (j \times k) + k \times (i \times j) + j \times (k \times i) = i \times i + k \times k + j \times j = 0$$
$$j \times (i \times k) + k \times (j \times i) + i \times (k \times j) = -j \times j - k \times k - i \times i = 0$$
$$v \times (w \times w) + w \times (v \times w) + w \times (w \times v) = 0 + w \times (v \times w) - w \times (v \times w) = 0$$

For the comparison to $\mathfrak{su}(2)$, first we have the commutation relations

$$\begin{aligned} [i\sigma_x, i\sigma_y] &= -2i\sigma_z \\ [i\sigma_y, i\sigma_z] &= -2i\sigma_x \\ [i\sigma_z, i\sigma_x] &= -2i\sigma_y \end{aligned}$$

Thus, by swapping the cyclic orders, we get an isomorphism $(\mathbb{R}^3, \times) \simeq \mathfrak{su}(2)$. For example $i \mapsto \frac{i}{2}\sigma_x$, $j \mapsto \frac{i}{2}\sigma_z$, and $k \mapsto \frac{i}{2}\sigma_y$.

3 Consider \mathbb{H} .

Proof. The quaternions are not a Lie algebra. For example, the Jacobi identity fails since $1ij + j1i + ij1 = k - k + k \neq 0$. However if we mod out the subspace spanned by 1, we have $\mathbb{H}/\mathbb{R} \simeq (\mathbb{R}^3, \times) \simeq \mathfrak{su}(2)$ as real Lie algebras.

4 Check that the radical $\operatorname{rad}(K)$ of the Killing form of $\mathfrak g$ satisfies the conditions of Cartan's criterion for solvability.

Proof. Let $v \in \operatorname{rad}(K)$ and $w \in \operatorname{rad}(K)'$. By a lemma from class, the Killing form $K_{\operatorname{rad}(K)}$ of the Lie algebra $\operatorname{rad}(K)$ is the restriction of the Killing form K of $\mathfrak g$ to $\operatorname{rad}(K) \times \operatorname{rad}(K)$. Thus $K_{\operatorname{rad}(K)}(v,w) = K(v,w) = 0$, by the definition of $\operatorname{rad}(K)$.