Angewandte Mathematik Differentialgleichungen

Dr. Marcel Ritter
Univ.-Prof. Dr. Matthias Harders
Sommersemester 2022

Einführungsfilme

ACIN AUTOMATION & CONTROL INSTITUTE INSTITUTE FOR AUTOMATISIERUNGS-

Triple Pendulum on a Cart

Swing-up and Swing-down

Two-degrees-of-freedom design:

Constrained feedforward & optimal feedback control

© CDS - Complex Dynamical System Group, 2011

Angewandte Mathematik für die Informatik – SS2022

innsb

Einführungsfilme

Angewandte Mathematik für die Informatik – SS2022

2

Inhalt

- Einführung
- Gewöhnliche Differentialgleichungen
- Partielle Differentialgleichungen
- Numerische Lösung

universite

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Gewöhnliche Differentialgleichungen
- Partielle Differentialgleichungen
- Numerische Lösung

Angewandte Mathematik für die Informatik – SS2022

universite innsbruck

Motivation

 Räuber-Beute Modell (Lotka-Volterra Gleichungen)

$$\dot{f}(t) = \alpha \cdot f(t) - \beta \cdot f(t)g(t)$$
$$\dot{g}(t) = \delta \cdot f(t)g(t) - \gamma \cdot g(t)$$

- Populationen Beute sowie Räuber $f,g:\mathbb{R}\to\mathbb{R}$ (gesuchte Funktionen) mit Konstanten $\alpha, \beta, \delta, \gamma \in \mathbb{R}^+$
- Modell-Parameter
 - Wachstumsrate Beute α , Sterberate Räuber γ (keine Beute)
 - Verzehrrate Beute je Räuber eta, Wachstumsrate Räuber bei verzehrter Beute δ

Angewandte Mathematik für die Informatik – SS2022

Motivation

Beispielsimulation: Veränderung über Zeit

Angewandte Mathematik für die Informatik - SS2022

Beispielsimulation: Räuber-Beute Graph

Motivation

@igs

Deterministisch-chaotisches Verhalten

(Lorenz-Attraktor)

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z$$

Gesuchte Funktionen

 $x,y,z:\mathbb{R}\to\mathbb{R}$ (abhängig von t)

Angewandte Mathematik für die Informatik - SS2022

Differentialgleichung/en (DGL)

- DGL setzen eine unbekannte, gesuchte Funktion (welche z.B. eine physikalische Größe beschreibt) in Beziehung mit einer oder mehrerer ihrer Ableitungen
- Oft verwendet zur Beschreibung physikalischer Gesetze und Phänomene (z.B. Erhaltungssätze)
- Insbesondere zur Modellierung dynamischer Prozesse (z.B. Wachstum oder Zerfall)

Angewandte Mathematik für die Informatik – SS2022

11

Differentialgleichungen

- In DGL sind eine oder mehrere unbekannte
 Funktion/en gesucht, die diese Gleichung(en) erfüllen
- Bisher haben wir nur Gleichungen/Ungleichungen betrachtet, in denen die gesuchten Unbekannten bestimmte Zahlenwerte darstellen (z.B. Nullstellen)
- Schreibweise: in DGL wird anstatt f(x) oft y(x)
 verwendet, bzw. sogar nur die unbekannte Funktion y notiert (d.h. ohne Nennung der Variablen)

$$\frac{df(t)}{dt} = c \cdot f(t) \qquad \dot{y} = c \cdot y$$

Angewandte Mathematik für die Informatik – SS2022

Allgemeine und Spezielle Lösungen

- Beispiel Wachstumsgleichung $\dot{y} = \lambda \cdot y$
- Mögliche Lösung $y(t) = e^{\lambda t}$, denn es gilt $\dot{y} = (y(t))' = (e^{\lambda t})' = \lambda e^{\lambda t}$
- Weitere (allgemeine) Lösungen $y(t) = ke^{\lambda t}$, denn $\dot{y} = (y(t))' = (ke^{\lambda t})' = \lambda ke^{\lambda t}$
- Exakte (spezielle) Lösung wird fixiert durch Hinzunahme von Randbedingung bzw. eines Anfangswertes, z.B. zur Zeit t = 0 (Anfangswertproblem)

(Beispiel)
$$\dot{y} = 0.1 \cdot y \wedge y(0) = 2 \implies y(t) = 2e^{0.1t}$$

Angewandte Mathematik für die Informatik - SS2022

.3

Differentialgleichungen - Arten

Gewöhnliche Differentialgleichungen (GDGL)
beschreiben unbekannte Funktionen mittels ihrer
Ableitungen, hinsichtlich einer Veränderlichen

$$\mathbf{f}(t,\mathbf{x}(t)) = m\mathbf{a}(t) = m\ddot{\mathbf{x}}(t)$$
 (3D Bewegungsgleichung) (Zeit t)

Partielle Differentialgleichungen (PDGL)
 beschreiben unbekannte Funktionen mittels ihrer
 Ableitungen, hinsichtlich mehrerer Veränderlicher

$$\frac{\partial^2}{\partial t^2} u(x,t) = c^2 \frac{\partial^2}{\partial x^2} u(x,t)$$
 (1D Wellengleichung)

Angewandte Mathematik für die Informatik – SS2022

1 0

Ordnung

 Eine Differentialgleichung, in der die Ableitungen der unbekannten Funktion y bis zur n-ten Ordnung auftreten, hat die Ordnung n

$$y^{(n)} = f(x, y, y', y'', y''', \dots, y^{(n-1)})$$

Beispiele:

$$y' = a(x) \cdot y + b(x)$$
 (GDGL 1. Ordnung)

$$\frac{\partial^2 u(x,y,t)}{\partial t^2} = c^2 \left(\frac{\partial^2 u(x,y,t)}{\partial x^2} + \frac{\partial^2 u(x,y,t)}{\partial y^2} \right)$$
 (PDGL 2. Ordnung)

Angewandte Mathematik für die Informatik – SS2022

Linearität

 Eine lineare Differentialgleichung ist durch ein lineares Polynom gegeben, mittels der unbekannten Funktion und ihrer Ableitungen, in der Form

$$a_n(.)y^{(n)} + a_{n-1}(.)y^{(n-1)} + ... + a_1(.)y' + a_0(.)y + b(.) = 0$$

mit differenzierbaren, aber nicht notwendigerweise linearen Funktionen (oder Konstanten) $a_i(.)$ und b(.)

 Es dürfen somit z.B. keine Funktionen auf die Ableitungen angewandt werden, sowie auch keine Produkte zwischen diesen gebildet werden

Angewandte Mathematik für die Informatik – SS2022

47

Linearität - Beispiele

Lineare DGL

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0 \qquad \ddot{y} + \omega_0^2 y = 0$$

Nicht-lineare DGL

$$\frac{\partial u}{\partial x} + u \cdot \frac{\partial u}{\partial y} = 0 \qquad y'' = 2\cos(y)$$

(a) università

Angewandte Mathematik für die Informatik – SS202

Differentialgleichungssysteme

- DGL können in Systeme von (evtl. gekoppelten)
 Differentialgleichungen zusammengefasst werden
- Häufiges Beispiel: lineare Systeme von GDGL erster Ordnung, mit n unbekannten Funktionen y_i , sowie allgemeinen Funktionen $a_{ii}(x)$ und $b_i(x)$

$$y_1' = a_{11}(x)y_1 + ... + a_{1n}(x)y_n + b_1(x)$$

$$y_2' = a_{21}(x)y_1 + ... + a_{2n}(x)y_n + b_2(x)$$

 \vdots \vdots \vdots

$$y_n' = a_{n1}(x)y_1 + ... + a_{nn}(x)y_n + b_n(x)$$

Angewandte Mathematik für die Informatik - SS2022

10

Beispiel Benennung DGL

 Deterministisch-chaotisches Verhalten (Lorenz-Attraktor)

$$\frac{dx}{dt} = \sigma(y-x) \qquad \frac{dy}{dt} = x(\rho-z)-y \qquad \frac{dz}{dt} = xy-\beta z$$

- Art des Modells
 - Gewöhnliche DGL (Abhängig von Zeit t als Variable)
 - GDGL 1. Ordnung (nur 1. Ableitungen vorhanden)
 - Gekoppeltes System mit drei unbekannten Funktionen x,y,z
 - Nichtlinear (z.B. aufgrund von Term xy und xz)
 - Üblicherweise als Anfangswertproblem betrachtet

@igs

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Gewöhnliche Differentialgleichungen
- Partielle Differentialgleichungen
- Numerische Lösung

Angewandte Mathematik für die Informatik - SS2022

Explizite und Implizite GDGL

 Eine GDGL n-ter Ordnung mit unbekannter Funktion y, deren Ableitungen, sowie der unabhängigen
 Veränderlichen x wird implizit genannt in der Form:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

 Durch Auflösung der Gleichung nach der höchsten Ableitung $y^{(n)}$, ist sie in expliziter Form darstellbar

$$y^{(n)} = f(x, y, y', y'', ..., y^{(n-1)})$$

Beispiel:

$$a(\sin(y'))^{2} - bxy = 0$$

$$y'' = \ln(a + (y)^{2})$$
(implizit)
(explizit)

Angewandte Mathematik für die Informatik – SS2022

Homogene und Inhomogene GDGL

• In einer GDGL n-ter Ordnung können Terme, die nicht von der unbekannten Funktion abhängen separiert werden:

$$F(y, y', y'', ..., y^{(n)}) = g(x)$$

- Die GDGL wird homogen genannt für g(x) = 0, bzw. inhomogen für $g(x) \neq 0$
- Die Funktion g(x) wird auch Störfunktion genannt
- Oft werden zuerst allgemeine Lösungen für eine homogene GDGL bestimmt, und dann spezifisch für die Störfunktion eine partikuläre Lösung

Angewandte Mathematik für die Informatik – SS2022

22

Weitere Beispiellösungen für GDGL

- Beispiel: eine lineare GDGL 2. Ordnung y'' + y = 0
- Allgemeine Lösungen

$$y(x) = c_1 \sin x + c_2 \cos x$$

 $c_1, c_2 \in \mathbb{R}$

Nachprüfen

$$(y(x))'' = (c_1 \sin x + c_2 \cos x)''$$

= $(c_1 \cos x - c_2 \sin x)' = -c_1 \sin x - c_2 \cos x$

Bestimmung der speziellen Lösung z.B. durch
 Annahme von Anfangsbedingungen für y und y'

Angewandte Mathematik für die Informatik – SS2022

Weitere Beispiellösungen für GDGL

Beispiel: eine lineare GDGL 2. Ordnung

$$x^2y'' + x^2y' - 2y = 0$$

Eine mögliche Lösung

$$y(x) = 1 - \frac{2}{x}$$

Nachprüfen

$$y'(x) = \frac{2}{x^2}$$
 $y''(x) = -\frac{4}{x^3}$

$$-x^{2} \frac{4}{x^{3}} + x^{2} \frac{2}{x^{2}} - 2\left(1 - \frac{2}{x}\right) = -\frac{4}{x} + 2 - 2 + \frac{4}{x} = 0$$

Angewandte Mathematik für die Informatik – SS2022

24

Angewandte Mathematik für die Informatik - SS2022

Modellierung Ideales Fadenpendel

- Punktemasse m an masselosem Faden der Länge L, keine Energiedissipation, Kreisbewegung in Ebene
- Bewegung nach Newton (2. Gesetz)

$$f_{\text{tan}} = m \cdot a_{\text{tan}}$$

Tangentialkraft

$$f_{tan} = \sin(-\theta) f_g$$

Angewandte Mathematik für die Informatik – SS2022

25

Modellierung Ideales Fadenpendel

- Punktemasse m an masselosem Faden der Länge L, keine Energiedissipation, Kreisbewegung in Ebene
- Bewegung nach Newton (2. Gesetz)

$$f_{tan} = m \cdot a_{tan}$$

Tangentialkraft

$$f_{tan} = -\sin(\theta) f_g$$

Angewandte Mathematik für die Informatik – SS2022

Modellierung Ideales Fadenpendel

- Punktemasse m an masselosem Faden der Länge L, keine Energiedissipation, Kreisbewegung in Ebene
- Bewegung nach Newton (2. Gesetz)

$$f_{\rm tan} = m \cdot a_{\rm tan}$$

Tangentialkraft

$$f_{tan} = -\sin(\theta)mg$$

Tangentialbeschleunigung via θ

$$a_{\rm tan} = \dot{v}_{\rm tan} = \ddot{x}_{\rm tan}$$

$$x = \theta L$$

9igs

Angewandte Mathematik für die Informatik – SS2022

Modellierung Ideales Fadenpendel

- Punktemasse m an masselosem Faden der Länge L, keine Energiedissipation, Kreisbewegung in Ebene
- Bewegung nach Newton (2. Gesetz)

$$f_{\text{tan}} = m \cdot a_{\text{tan}}$$

Tangentialkraft

$$f_{tan} = -\sin(\theta)mg$$

Tangentialbeschleunigung via heta

$$a_{\text{tan}} = \dot{v}_{\text{tan}} = \ddot{x}_{\text{tan}}$$

 $x = \theta L \implies a_{\text{tan}} = \frac{d^2}{dt^2} \theta L$

Angewandte Mathematik für die Informatik – SS2022

Modellierung Ideales Fadenpendel

Bewegungsgleichung

$$-\sin(\theta)mg = Lm\frac{d^2}{dt^2}\theta$$

$$\frac{d^2}{dt^2}\theta = -\frac{g}{L}\sin(\theta)$$

Modellierung Ideales Fadenpendel

■ Bewegungsgleichung (unabhängig von m)

$$\frac{d^2}{dt^2}\theta + \frac{g}{L}\sin(\theta) = 0$$

- Nicht-lineare, implizite, homogene GDGL
 2. Ordnung für unbekannte Funktion θ(t)
- Es existieren für diese Gleichung keine einfachen, elementaren Lösungen
- Darstellung als System von zwei GDGL 1. Ordnung

$$\frac{d}{dt}\omega = -\frac{g}{L}\sin(\theta)$$

$$\frac{d}{dt}\theta = \omega$$

Angewandte Mathematik für die Informatik – SS202

Mathematisches Fadenpendel

- Näherung bei kleinen Winkeln (ca. <15°) $\theta \approx \sin(\theta)$
- Resultierende Vereinfachung (bei kleinen Winkeln)

$$\frac{d^2}{dt^2}\theta + \frac{g}{L}\theta = 0$$
 (lineare GDGL)

@igs

Angewandte Mathematik für die Informatik – SS2022

Darstellung im Phasenraum

• Visualisierung möglicher Zustände eines dynamischen Systems, z.B. für ein Fadenpendel über Winkel $\theta(t)$ und Winkelgeschwindigkeit $\dot{\theta}(t)$

θ

(Anfangswerte, $\theta = 1, \dot{\theta} = 0$)

@igs

Angewandte Mathematik für die Informatik – SS2022

Darstellung im Phasenraum

• Visualisierung möglicher Zustände eines dynamischen Systems, z.B. für ein Fadenpendel über Winkel $\theta(t)$ und Winkelgeschwindigkeit $\dot{\theta}(t)$

θ

(Anfangswerte, $\theta = 1$, $\dot{\theta} = 0$)

Angewandte Mathematik für die Informatik – SS2022

28

Darstellung im Phasenraum

• Visualisierung möglicher Zustände eines dynamischen Systems, z.B. für ein Fadenpendel über Winkel $\theta(t)$ und Winkelgeschwindigkeit $\dot{\theta}(t)$

θ

(Anfangswerte, $\theta = 1, \ \dot{\theta} = 0$)

@igs

Angewandte Mathematik für die Informatik – SS2022

Angewandte Mathematik für die Informatik – SS2022

@igs

Aspekte bei Analytischer Lösung von DGL

- Existenz von Lösungen: Untersuchung von Bedingungen so dass Lösungen existieren
- Eindeutigkeit von Lösungen: Reduktion mehrerer Lösungen durch Bedingungen auf eine Lösung
- Abhängigkeit von Anfangswerten: Verhalten bei geringer Änderung der Anfangszustände
- Aber: in vielen Fällen ist eine analytische Lösung nicht mehr möglich (statt dessen numerische Ansätze)

Angewandte Mathematik für die Informatik – SS2022

Beispiel Elementar Lösbarer GDGL

• Lineare GDGL mit konstanten Koeffizienten $a_i \in \mathbb{R}$

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0$$

Ansatz

$$y = e^{\lambda x}$$
 $y' = \lambda e^{\lambda x}$ $y^{(n)} = \lambda^n e^{\lambda x}$

Einsetzen

$$\lambda^{n} e^{\lambda x} + a_{n-1} \lambda^{n-1} e^{\lambda x} + \dots + a_{1} \lambda e^{\lambda x} + a_{0} e^{\lambda x} = 0$$

$$e^{\lambda x} \left(\lambda^{n} + a_{n-1} \lambda^{n-1} + \dots + a_{1} \lambda + a_{0} \right) = 0$$

$$\Leftrightarrow \lambda^{n} + a_{n-1} \lambda^{n-1} + \dots + a_{1} \lambda + a_{0} = 0$$

(charakteristisches Polynom der linearen GDGL)

Angewandte Mathematik für die Informatik – SS2022

Beispiel Elementar Lösbarer GDGL

• Annahme: das charakteristisches Polynom P hat n reelle und voneinander verschiedene Nullstellen $\lambda_1, \lambda_2, \ldots, \lambda_n$, dann ist eine allgemeine Lösung:

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + \ldots + c_n e^{\lambda_n x}$$
 $c_i \in \mathbb{R}$

Beispiel:

$$y'' - 3y' + 2y = 0$$

$$P(\lambda) = \lambda^2 - 3\lambda + 2 = 0 \Leftrightarrow \lambda = 1 \lor \lambda = 2$$

$$\Rightarrow y(x) = c_1 e^x + c_2 e^{2x}$$

$$c_1, c_2 \in \mathbb{R}$$

unisersite Unisersite

Angewandte Mathematik für die Informatik – SS202

Auswahl Elementar Lösbarer GDGL

Explizite lineare GDGL 1. Ordnung

$$y'(x) = a(x)y(x) + b(x)$$

Bernoulli-Differentialgleichung

$$y'(x) = a(x)y(x) + b(x)(y(x))^{k} \qquad k \neq 0,1, k \in \mathbb{R}$$

- Separable Differentialgleichungen (trennbare Variablen) $y'(x) = f(y(x)) \cdot g(x)$
- Spezielle GDGL 1. Ordnung (durch Substitution) y'(x) = f(ax+by(x)+c)

Angewandte Mathematik für die Informatik – SS2022

Separable Differentialgleichungen

$$y'(x) = f(y(x)) \cdot g(x)$$

Lösung über Trennung der Variablen und Integration

$$\frac{dy}{dx} = f(y(x)) \cdot g(x) \Rightarrow \frac{dy}{f(y(x))} = g(x)dx$$
$$\Rightarrow \int \frac{1}{f(y(x))} dy = \int g(x) dx$$

Angewandte Mathematik für die Informatik – SS2022

Separable Differentialgleichungen

• Beispiel:
$$y' - (y)^2 x = 0$$

$$\frac{dy}{dx} - (y)^2 x = 0$$

$$\frac{dy}{dx} = (y)^2 x$$

$$\frac{dy}{(y)^2} = xdx \qquad \bigg/ \int$$

$$\int \frac{1}{y^2} dy = \int x dx \Rightarrow -y^{-1} + C_f = \frac{1}{2} x^2 + C_g \Rightarrow y = -\frac{2}{x^2 + C}$$

Angewandte Mathematik für die Informatik - SS2022

26

Inhalt

- Einführung
- Gewöhnliche Differentialgleichungen
- Partielle Differentialgleichungen
- Numerische Lösung

universite

Partielle Differentialgleichungen

- Beschreibung unbekannter Funktionen mittels ihrer Ableitungen, hinsichtlich mehrerer Veränderlicher
- Beispiel: homogene Wärmeleitungsgleichung (bzw. allgemeine Diffusionsgleichung) in 1D

$$\frac{\partial T(x,t)}{\partial t} = \mu \cdot \frac{\partial^2 T(x,t)}{\partial x^2} \qquad T: \mathbb{R}^2 \to \mathbb{R}$$

- Änderung der Temperatur als Funktion *T*, in 1D an einem Ort x, über die Zeit t
- Parameter ist Temperaturleitfähigkeit (bzw. Diffusionskonstante) $\mu > 0$

9) igs

Angewandte Mathematik für die Informatik - SS2022

Wärmeleitungsgleichung in 1D

Intuition hinter der Formulierung

$$\frac{\partial^{2} T\left(x_{0},t\right)}{\partial x^{2}} \approx \frac{T\left(x_{0}-h,t\right)+T\left(x_{0}+h,t\right)}{2}-T\left(x_{0},t\right)$$

Angewandte Mathematik für die Informatik – SS2022

10

Differentialoperatoren

- Nabla ("Del") Operator
 - Bildet skalare Felder auf Vektoren ab
 - Gradient auf einem Skalarfeld
 - Vektoren in Richtung des größten Anstiegs

$$\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$$

$$\nabla f = \operatorname{grad} f = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) f = \left(\frac{\partial}{\partial x}f, \frac{\partial}{\partial y}f\right) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

(im Folgenden Beschränkung auf Beispiele in 2D)

Angewandte Mathematik für die Informatik – SS2022

Differentialoperatoren

- Divergenz Operator (2D Beispiel)
 - Bildet Vektoren eines Vektorfeldes auf Skalare ab
 - Vorzeichen deutet z.B. auf Quelle oder Senke im Vektorfeld hin

$$\nabla \cdot \mathbf{v} = \operatorname{div} \mathbf{v} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} \qquad \mathbf{v}(x, y) = [v_1 \ v_2]^T$$

Differentialoperatoren

- Laplace Operator (2D Beispiel)
 - Bildet skalare Felder auf Skalare ab
 - Beschreibt die Differenz zwischen einem Wert und dem Durchschnitt in seiner Nachbarschaft

$$\Delta = \nabla \cdot \nabla = \nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$$

(2D Gauss-Glocke)

(Laplace von Gauss-Glocke)

Laplace Operator auf Skalarfeld

 $\Delta f = \operatorname{div}(\operatorname{grad} f) = \nabla \cdot (\nabla f) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \cdot \left(\frac{\partial f}{\partial x}\right) = \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)$

Angewandte Mathematik für die Informatik – SS2022

Klassifizierung PDGL 2. Ordnung

 Physikalische Phänomene werden oft als lineare partielle DGL 2. Ordnung modelliert, z.B. in 2D

$$a \cdot u_{xx} + b \cdot u_{xy} + c \cdot u_{yy} + d \cdot u_x + e \cdot u_y + k \cdot u = g(x, y)$$

Typ dieser PDGL hängt von den Parametern ab

- Hyperbolisch: $b^2 - 4ac > 0$

- **Parabolisch**: $b^2 - 4ac = 0$ (Diskriminante)

- Elliptisch: $b^2 - 4ac < 0$

Angewandte Mathematik für die Informatik – SS2022

44

Hyperbolische PDGL

- Beschreiben typischerweise Phänomene der Wellenausbreitung (z.B. Schwingung Saite, Wasser, Licht, etc.)
- Meistens zeitabhängige Prozesse, mit gegebenen Anfangswert- und/oder Randbedingungen
- Beispiel: 1D Wellengleichung

 $u_{tt} = c^2 u_{xx} \qquad \qquad u(x,t)$

 $u(x,0) = g(x) x \in [0,L]$

Angewandte Mathematik für die Informatik – SS2022

Parabolische PDGL

- Beschreiben typischerweise Diffusionsprozess (z.B. Wärmeleitung, Vermischung von Chemikalien)
- Meistens zeitabhängige Prozesse, mit gegebenen Anfangswert- und/oder Randbedingungen
- Beispiel: 1D Wärmediffusion

(unten: 2D Beispiel)

$$u_t = \alpha u_{xx} + f \qquad u(x,t)$$

$$u(x,0) = g(x) \qquad x \in [0,L]$$

$$u(0,t) = c_1 \qquad t \in [0,T]$$

$$u(t,t) = c_1$$

Angewandte Mathematik für die Informatik – SS2022

46

Elliptische PDGL

- Beschreiben typischerweise zeitunabhängige Zustände minimaler Energie (z.B. Deformation einer Membran)
- Meistens (quasi-)statische Situationen, mit gegebenen Randbedingungen
- Beispiel: 2D Poisson-Gleichung

$$u_{xx} + u_{yy} = \nabla^2 u = \Delta u = f$$

$$u(x, y) = g(x, y) \quad (x, y) \in \partial\Omega$$

Angewandte Mathematik für die Informatik – SS2022

Inhalt

- Einführung
- Gewöhnliche Differentialgleichungen
- Partielle Differentialgleichungen
- Numerische Lösung

Angewandte Mathematik für die Informatik – SS2022

Lösung von Differentialgleichungen

- Analytische Lösungen können oft nur für sehr einfache Probleme gefunden werden
- Erlaubt Berechnung exakter Lösung y(t), für jede Zeit t
- Numerische Analyse zielt auf die automatische Berechnung von N\u00e4herungsl\u00f6sungen ab
- Verschiedene numerische Löser existieren
- Beispiel für eine Lösungsstrategie
 - Finite Differenzen: Annäherung der Ableitungen durch Differenzenformeln auf gegebenem Gitter/Netz

Angewandte Mathematik für die Informatik – SS2022

Numerische Lösung von DGL

- Berechnet Näherungen y_n an die exakte Lösung $y(t_n)$
- Jeweils zu einem bestimmen Zeitpunkt $t_n = t_0 + n \cdot h$ (meist basierend auf vorherigen Lösungen y_{n-1} , y_{n-2} , ...)

Angewandte Mathematik für die Informatik - SS2022

19

Numerische Lösung von DGL

- Berechnet Näherungen y_n an die exakte Lösung $y(t_n)$
- Jeweils zu einem bestimmen Zeitpunkt $t_n = t_0 + n \cdot h$ (meist basierend auf vorherigen Lösungen $y_{n-1}, y_{n-2}, ...$)

Angewandte Mathematik für die Informatik – SS2022

Numerische Lösung von DGL

- Berechnet Näherungen y_n an die exakte Lösung $y(t_n)$
- Jeweils zu einem bestimmen Zeitpunkt $t_n = t_0 + n \cdot h$ (meist basierend auf vorherigen Lösungen y_{n-1} , y_{n-2} , ...)

Beispiel Numerische Lösung

- Explizites Eulerverfahren (Euler 1768) zur Lösung eines Anfangswertproblems einer GDGL 1. Ordnung $\dot{y} = f(t, y), \qquad y(t_0) = y_0$
- Iterative Berechnung der angenäherten Lösung $y_{n+1} = y_n + h \cdot f(t_n, y_n), \qquad f(t_n, y_n) = y_n'$
- Generelle Vorgehensweise im Lösungsprozess
 - Start mit dem bekannte Anfangswert y_0 zur Zeit t_0
 - Berechnung der Ableitung zu t_n (anfangs n=0) mittels DGL
 - Schritt von t_n nach t_n+h entlang der (angenäherten) Tangente (d.h. über Ableitung an t_n)

Angewandte Mathematik für die Informatik – SS2022

- Numerische Lösung weist beträchtlichen Fehler auf
- Fehler abhängig von Schrittgröße, sowie Genauigkeit der numerischen Methode

Angewandte Mathematik für die Informatik – SS2022

Einige Hilfreiche Weblinks

- Weiteres Beispiel für hilfreiches Online-Lehrmaterial: Kurs von Prof. Gilbert Strang (MIT OpenCourseWare)
- Teil A: "Highlights of Calculus" <u>https://ocw.mit.edu/resources/res-18-005-highlights-of-calculus-spring-2010/highlights of calculus/</u>
- Teil B: "Derivatives" https://ocw.mit.edu/resources/res-18-005-highlights-0f-calculus/

Angewandte Mathematik für die Informatik – SS2022

53

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	

Angewandte Mathematik für die Informatik – SS2022