Assignment 1:

- User Keras to work on these problems
- Due date for assignment : Feb 15 11.59 pm
- Try your code locally and submit your code through github + IBM DSX
- This is an individual assignment; No collaboration allowed.
- Send a report with results and analysis to analyticsneu@gmail.com

Data to be used: http://www.cs.utoronto.ca/~kriz/cifar.html

Preparation: Review: https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py

Problem 1: (50 points)

Using Keras, build a MLP to classify the CIFAR-10 dataset. Note that each record is of size 1*3072. Starting with the MNIST example code, build a MLP to classify the data into the 10 classes.

Modify the following parameters and discuss the effect of changing parameters on loss and accuracy.

- 1. No of epochs
- 2. Batch size
- 3. Network configuration
 - a. Number of neurons in a layer
 - b. Number of layers
- 4. Learning rate
- 5. Activation functions
- 6. Dropout rates

Ensure you are building the model with the training data set and validating against the provided test data set.

- You are expected to provide a recommendation for the best model you would recommend for classification. Which model (with parameter values) would you choose and why?
- Comment on how good your model is ? Does it overfit/underfit data ? What could you do to improve the model?

We are going to continue using the CIFAR-10 dataset for Part 2 but this time around, we will use Keras to build a CNN network.

Start with this as your base code:

https://github.com/fchollet/keras/blob/master/examples/cifar10 cnn.py

See https://keras.io/getting-started/faq/ to get answers to commonly asked questions.

Part A:

I have pre-selected some of the topics I would like you to review in the Keras documentation. You will review this section and change various parameters for your given topic and discuss your findings when you change these parameters (keeping others constant).

No	Goal	Topic
	Review what	https://keras.io/preprocessing/image/
	preprocessing	Review https://medium.com/towards-data-
	you could do with	science/image-augmentation-for-deep-
	images; Discuss	<u>learning-using-keras-and-histogram-</u>
	data	equalization-9329f6ae5085
	augmentation	https://machinelearningmastery.com/image-
		augmentation-deep-learning-keras/
Team 1		for some details
	Choose different	https://keras.io/optimizers/
	optimizers (SGD,	
	Adam, RMSprop	
	etc. and compare	
	and contrast the	
	optimizers)	
	Which one would	
	you recommend	
Team 2	and why?	
	Use the sk-learn's	https://keras.io/scikit-learn-api/
	grid search api to	
	change multiple	
Team 6	parameters	
	Experiment with	https://keras.io/layers/convolutional/#conv2d
	different	
	parameters you	
	can experiment	
	with a conv-2d	
Team 4	layer	
	Discuss and use	https://keras.io/layers/core/
	different types of	https://keras.io/layers/pooling/
	layers that you	
	could use for the	
Team 5	problem	

	See Dense,	
	_	
	Dropout, Activation,	
	Flatten	
	Discuss and use	https://keras.io/activations/
	the different	https://keras.io/layers/advanced-activations/
	activation and	https://keras.io/layers/pooling/
	pooling layers	https://keras.io/layers/noise/
	function	https://keras.io/layers/writing-your-own-
	Discuss the use of	
	Noise and	keras-layers/
		https://keras.io/layers/normalization/
	Normalization	
	layers. Also try	
	writing your own	
Team 8	layer	
	Discuss different	https://keras.io/metrics/
	Metrics you could	
	use. Create your	
	own custom	
Team 7	metric	
	GPU option vs	See https://hackernoon.com/keras-with-gpu-
	CPU option	on-amazon-ec2-a-step-by-step-instruction-
	Try with CPU on	4f90364e49ac for a tutorial
	your machine.	https://keras.io/callbacks/
	Also try using	······································
	Amazon's	
	infrastructure	
	with a GPU and	
	discuss your	
	findings	
	Try different	
	callbacks	
	including the	
	Tensorboard	
Team 3	callback	
	Try different	See
	layer	https://machinelearningmastery.com/object-
	configurations	recognition-convolutional-neural-networks-
	for deeper	keras-deep-learning-library/ for examples
	network	
Team 9	topologies	
Teath 3	robologies	

Deliverables: by Thursday midnight (15th)

- 1. 5 minute youtube video to be shared through discussion board
- 2. Code through github
- 3. A 2-page report discussing your findings

Note: You will share these three with the entire class. This is not your final model but you are testing one set of parameters out of many to find what happens starting with the base code.

Part B:

You should read it from a configuration file rather than hardcoding parameters. Start from the base case code (https://github.com/fchollet/keras/blob/master/examples/cifar10_cnn.py) and abstract out constants to a configuration file (You are free to choose the format of the configuration file. It could be another .py file, csv, json etc.). Please convert the code to a jupyter notebook

Starting from the base case, try different experiments to see if you can get better accuracy. Design your model such that you can easily change parameters and rerun experiments.

Discuss at-least 3 experiments with different parameters and your best model. Also comment on which parameters you thought helped better accuracy compared to that of the base case.

Deliverables: (By Feb 15th midnight)

- 1. A new version of your code.
- 2. The new configuration and outputs
- 3. Discussion on your design, experiments and outputs in a 1-2-page report