

Yapay Zeka Tabanlı Otonom Sürüş

Proje Ekibi: İsa Karaböcek - İsmail Alperhan Bay - Oğuzhan Polat - Onur Göksün

Danışman: Doç. Dr. Aydın Yeşildirek

Otonom araçlar, insan sürücülerin aracı güvenli bir şekilde sürmek için hiçbir zaman kontrolü ele almalarının gerekmediği otomobil veya kamyonlardır.

Yapay Zeka Tabanlı Otonom Sürüş; aracı kontrol etmek için sensörler, yazılım ve kontrol algoritmalarından faydalanan bir projedir.

Proje kapsamında;

- Nesne Tanıma
- Çarpışmadan Kaçınma
- Hareket Planlama
- Eş Zamanlı Lokalizasyon ve Haritalama görevleri şekildeki model araç üzerinde yerine getirilecektir.

II. MOTIVASYON

- Trafik kazalarının, dolayısıyla ölüm ve yaralanmaların sebebinin % 90 oranında sürücü olması. Otonom araçların kazaları azaltması.
- Artan işlemci gücü ve yapay zeka alanındaki çalışmaların yaygınlaşması.
- General Motors, Waymo (Google), Zoox, Tesla, Ford gibi şirketlerin ve devletlerin otonom araç teknolojilerine yatırım yapması ve otonom araç pazarının sürekli genişlemesi.

III. TEKNİK ŞARTLAR

- → Güvenli takip mesafesi minimum 3 metre
- → Çapraz yol hatası maksimum 150 mm
- → Nesne tanıma doğruluk oranı minimum %85
- \rightarrow Maksimum hız 5 m/s, maksimum İvme 2 m/s^2

IV.GENEL SISTEM MIMARISI

V. SİMÜLASYON SONUÇLARI

Lokalizasyon: Genişletilmiş Kalman Filtresi ile bir sensör füzyonu lokalizasyonu, elips olarak belirlenen bir yörüngede

- -- Mavi çizgi gerçek yörüngeyi gösterirken, siyah çizgi matematiksel modelden gelen hatalı yörüngedir.
- -- Yeşil noktalar sensörlerden (GPS, IMU) gelen konum bilgisi olurken, kırmızı çizgi Genişletilmiş Kalman Filtresi ile tahmin edilen yörüngedir.
- → Bu simülasyon sonucunda, sadece matematiksel modelden yola çıkarak elde edilen geri beslemesiz konum tahmini, aracı gerçek yörüngeden uzaklaştırmaktadır.

Yörünge Takibi:

- Yörünge takibi için aracın kinematik denklemlerinden yola çıkılarak saf takip kontrolcüsü kullanılmıştır.
- Tasarlanan kontrolcü ortamında test edilerek şekildeki simülasyon sonuçları elde edilmiştir.

RRT Exploration ROS Uygulaması

(Yörünge planlamasında kullanılan Rapidly-Exploring Random Tree algoritmasıyla ROS ortamında oluşturulan simülasyon sonuçları yukarıdaki görselde gösterilmiştir.)

Yörünge Planlama:

gözlemlenmiştir.

RRT (Rapidly-Exploring Random Tree)algoritması kullanılarak, iki nokta arasındaki olası yollar hesaplanmış ve olası yörünge planlanmıştır. Simülasyonun farklı zamanlarda çalışması sonucu farklı yollar bulduğu

- -- Mavi daireler tespit edilen engelleri temsil etmektedir.
- -- Yeşil renkli ağaç dalları algoritma tarafından uygun yörüngeyi arama sırasında oluşturulan alternatif yörüngelerdir.
- -- Kırmızı çizgi iki nokta arasındaki olası yörüngeyi temsil etmektedir.

Nesne Tespiti

- Gazebo ortamında oluşturulan test ortamının Rviz üzerinden görüntülenerek, kameradan alınan verilerin OpenCV ile işlenerek, gerçek zamanlı simülasyonu yapılmıştır.
- İlk olarak araç kamerasından alınan görseller etiketleme işlemiyle araca tanıtılmış olup, OpenCV ile işlenerek farklı bir ortam üzerinde öğrenme işlemi test edilmiştir.

VI. İŞ TAKVİMİ VE GELECEK PLANI

VII. RİSK ANALİZİ

GPU Performans

Haberlesme

Güç Tüketimi güç tüketiminin, aracın

Entegrasyon performansında sorun çıkarmasına karşılık, algoritmanın öncesinde

VIII. SONUÇ

- Elde edilen simülasyon sonuçlarına göre modelimiz: GPS ve IMU verilerini kullanarak konumunu tahmin edebiliyor.
- Kamera ve LIDAR verilerini kullanarak çevre haritalama yapabiliyor.
- Kameradan alınan verileri OpenCv kütüphanesi yardımıyla işleyerek nesneleri tanıyor ve sınıflandırabiliyor.
- RRT Algoritması ile takip edilecek en doğru yörüngeyi planlayabiliyor.
- Bisiklet modeli temel alınarak oluşturulmuş **Pure Pursuit** kontrolcü ile hedef yörüngeyi en az hata ile takip ediyor.
- Test edilen algoritmaların ROS ortamında haberleşmesi sonrası uygun hiyerarşi ile kod blokları çalışacak ve aracımız teste hazır olacaktır.

IX. REFERANSLAR

- 2019 Yılı Open Zeka MARC Yarışma Kılavuzu
- HYBRID CONTROLLER APPROACH FOR AN AUTONOMOUS GROUND VEHICLE PATH TRACKING PROBLEM- M.Sc. THESIS-Mertcan CİBOOĞLU (DECEMBER 2016)
- Automatic Steering Methods for Autonomous Automobile Path Tracking- Jarrod M. Snider- (February 2009)
- Autonomous driving of a small-scale electric truck model with dynamic wireless charging Master's thesis in Cybernetics and Robotics- Supervisor: Jon Are Suul (June 2019)
- http://wiki.ros.org/rrt_exploration