C. Lucky Tickets

time limit per test: 1.5 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

In Walrusland public transport tickets are characterized by two integers: by the number of the series and by the number of the ticket in the series. Let the series number be represented by a and the ticket number — by b, then a ticket is described by the ordered pair of numbers (a, b).

The walruses believe that a ticket is lucky if a * b = rev(a) * rev(b). The function rev(x) reverses a number written in the decimal system, at that the leading zeroes disappear. For example, rev(12343) = 34321, rev(1200) = 21.

The Public Transport Management Committee wants to release x series, each containing y tickets, so that **at least** w lucky tickets were released and the total number of released tickets (x * y) were minimum. The series are numbered from 1 to x inclusive. The tickets in each series are numbered from x inclusive. The Transport Committee cannot release more than x0 series and more than x1 to x2 tickets in one series.

Input

The first line contains three integers max_x , max_y , w ($1 \le max_x$, $max_y \le 10^5$, $1 \le w \le 10^7$).

Output

Print on a single line two space-separated numbers, the x and the y. If there are several possible variants, print any of them. If such x and y do not exist, print a single number - 1.

Examples

input	
2 2 1	
output	
1 1	

input	
132 10 35	
output	
7 5	

input			
5 18 1000			
output			
-1			

input	
48 132 235	
output	