

(۷)	Preliminary Specifications
1)	Final Specifications

Module	15.4" WXGA+ Color TFT-LCD
Model Name	B154PW04 V2

Customer	Date	Approved by	Date
		Jerry Chen	12/10/2007
Checked & Approved by	Date	Prepared by	Date
		Wisdom Che	12/10/2007
Note: This Specification is notice.	subject to change without	NBBU Marketi AU Optronics	

AUO NBBU spec. Template 1.0 1 of 36

Contents

1.	. Handling Precautions	4
2.	. General Description	5
	2.1 General Specification	5
	2.2 Optical Characteristics	6
3.	. Functional Block Diagram	9
4.	. Absolute Maximum Ratings	9
	4.1 Absolute Ratings of TFT LCD Module	9
	4.2 Absolute Ratings of Backlight Unit	9
	4.3 Absolute Ratings of Environment	9
5.	. Electrical characteristics	9
	5.1 TFT LCD Module	9
	5.2 Backlight Unit	
6.	. Signal Characteristic	9
	6.1 Pixel Format Image	98
	6.2 The input data format	
	6.3 Signal Description/Pin Assignment	
	6.4 Interface Timing	
	6.5 Power ON/OFF Sequence	
7.	. Connector Description	
	7.1 TFT LCD Module	
8.	. Dynamic Test	
	8.1 Vibration Test	
	8.2 Shock Test Spec:	
	. Reliability	
10	0. Mechanical Characteristics	
	10.1 LCM Outline Dimension	
	10.2 Screw Hole Depth and Center Position	
11	1. Shipping and Package	
	11.1 Shipping Label Format	
	11.2 Carton package	
	11.3 Shipping package of palletizing sequence	
12	2. Appendix: EDID description	9

Record of Revision

Ver	sion and Date	Date Page Old description		New Description	Remark
0.1	2007/10/26	AII	First Edition for Customer		
0.2	2007/10/27	27	No back side drawing	Add back side drawing	
0.3	2007/11/29	30	No LED power sequence No 15 years environmentally safety period mark	Add LED power sequence Change Shipping Label Format and adds 15 years environmentally safety period mark	
0.4	2007/12/10	17	No LED Driver Pull-up resistor	Add LED Driver Pull-up resistor	

AU OPTRONICS CORPORATION

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lamp Reflector edge. Instead, press at the far ends of the LED lamp Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) The LCD module is designed so that the LED in it is supplied by Limited Current Circuit (IEC60950 or UL1950). Do not connect the LED in Hazardous Voltage Circuit.

AUO NBBU spec. Template 1.0 4 of 36

AU OPTRONICS CORPORATION

2. General Description

B154PW04 V2 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and backlight system. The screen format is intended to support the WXGA+ (1440(H) x 900(V)) screen and 262k colors (RGB 6-bits data driver) without backlight inverter. All input signals are LVDS interface compatible.

B154PW04 V2 is designed for a display unit of notebook style personal computer and industrial machine.

2.1 General Specification

The following items are characteristics summary on the table at 25 $^{\circ}\mathrm{C}$ condition:

Items	Unit	Specifications					
Screen Diagonal	[mm]	391 (15.4W")					
Active Area	[mm]	331.560 (H) X	331.560 (H) X 207.225 (V)				
Pixels H x V		1440x3(RGB)) x 900				
Pixel Pitch	[mm]	0.23025X0.23	3025				
Pixel Format		R.G.B. Vertic	al Stripe				
Display Mode		Normally Wh	ite				
White Luminance (ILED=19mA) Note: ILED is lamp current	[cd/m ²]	300 typ.(5 points average) 270 min.(5 points average) (Note1)					
Luminance Uniformity		1.25 max. (5 points) 1.53 max. (13 points)					
Contrast Ratio		600 typ					
Response Time	[ms]	16 typ					
Nominal Input Voltage VDD	[Volt]	+3.3 typ.					
Power Consumption	[Watt]	5.8 max.					
Weight	[Grams]	460 max.					
Physical Size	[mm]	L W T Max 344.5 222.5 6.1 Typical 344.0 222.0 - Min 343.5 221.5 -					
Electrical Interface		Dual channel LVDS					
Surface Treatment		Glare, Hardness 3H,					

AUO NBBU spec. Template 1.0 5 of 36

Support Color		262K colors (RGB 6-bit)
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -25 to +65
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics The optical characteristics are measured under stable conditions at 25° C (Room Temperature) :

Item	Unit	Conditions	Min.	Тур.	Max.	Note
White Luminance ILED=19mA	[cd/m ²]	5 points average	270	300	-	1, 4, 5.
Viouing Anglo	[degree] [degree]	Horizontal (Right) CR = 10 (Left)	55 55	60 60	-	
Viewing Angle	[degree] [degree]	Vertical (Upper) CR = 10 (Lower)	45 45	50 55	-	8
Luminance Uniformity		5 Points	-	1	1.25	1
Luminance Uniformity		13 Points		1	1.53	2
CR: Contrast Ratio			500	600	-	6
Cross talk	Cross talk %				4	7
	[msec]	Rising	-	4	8	
Response Time	[msec]	Falling	-	12	17	8
	[msec]	Rising + Falling	-	16	25	
		Red x	0.570	0.600	0.630	
		Red y	0.315	0.345	0.375	
		Green x	0.290	0.320	0.350	
Chromaticity of color Coordinates		Green y	0.525	0.555	0.585	0.0
(CIE 1931)		Blue x	0.120	0.150	0.180	2,8
, ,		Blue y	0.090	0.120	0.150	
		White x	0.283	0.313	0.343	
		White y	0.299	0.329	0.359	
NTSC	%	CIE 1931	-	45		

AUO NBBU spec. Template 1.0 6 of 36

AU OPTRONICS CORPORATION

Note 1: 5 points position (Ref: Active area)

Note 2: 13 points position (Ref: Active area)

Note 3: The luminance uniformity of 5 or13 points is defined by dividing the maximum luminance values by the minimum test point luminance

0		Maximum Brightness of five points
δ w5		Minimum Brightness of five points
2		Maximum Brightness of thirteen points
δ w13		Minimum Brightness of thirteen points

Note 4: Measurement method

AUO NBBU spec. Template 1.0 7 of 36

AU OPTRONICS CORPORATION

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 5: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points $\cdot Y_L = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$ L(x) is corresponding to the luminance of the point X at Figure in Note (1).

Note 6: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Note 7: Definition of Cross Talk (CT)

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where

Y_A = Luminance of measured location without gray level 0 pattern (cd/m₂)

AU OPTRONICS CORPORATION

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m₂)

Note 8: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

AUO NBBU spec. Template 1.0 9 of 36

AU OPTRONICS CORPORATION

Note 8. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 15.4 inches wide Color TFT/LCD Module:

AUO NBBU spec. Template 1.0 11 of 36

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
LED Current	ILED	-	20	[mA] rms	Note 1,2

4.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 3
Operation Humidity	HOP	5	95	[%RH]	Note 3
Storage Temperature	TST	-20	+60	[°C]	Note 3
Storage Humidity	HST	5	95	[%RH]	Note 3

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

AU OPTRONICS CORPORATION

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
PDD	VDD Power	_	-	2	[Watt]	Note 1/2
IDD	IDD Current	-	380	562	[mA]	Note 1/2
lRush	Inrush Current	-	-	2000	[mA]	Note 3
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1: Maximum Measurement Condition: Black Pattern

Note 2: Typical Measurement Condition: Mosaic Pattern

Note 3: Measure Condition

Vin rising time

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

It is recommended to refer the specifications of THC63LVDF84A (Thine Electronics Inc.) in detail.

Signal electrical characteristics are as follows;

Parameter	Condition	Min	Max	Unit
Vth	Differential Input High Threshold (Vcm=+1.2V)	-	100	[mV]
Vtl	Differential Input Low Threshold (Vcm=+1.2V)	-100	-	[mV]
Vcm	Differential Input Common Mode Voltage	1.1	1.45	[V]

Note: LVDS Signal Waveform

AUO NBBU spec. Template 1.0 14 of 36

The BLU system is an edge type light source with LED (Light Emitting Diode) light bar

Item	Symbol	Min	Тур	Max	Units	Condition
Fixed input current	ILt			20	[mA] rms	
Light bar Voltage	VL		32.	34	[Volt] rms	
Light bar Power	PL		3.7	3.88	Wt	

Light bar PIN assignment:

PIN NO.	Pin assignment	Function
1	VOUT	LED Anode (Positive)
2	VOUT	LED Anode (Positive)
3	VOUT	LED Anode (Positive)
4	NC	NC
5	FB6	LED Cathode (Negative)
6	FB5	LED Cathode (Negative)
7	FB4	LED Cathode (Negative)
8	FB3	LED Cathode (Negative)
9	FB2	LED Cathode (Negative)
10	FB1	LED Cathode (Negative)

AUO NBBU spec. Template 1.0 15 of 36

Symbol	Min	Тур	Max	Unit
T1	10			ms
T2	100			ms
Т3	10			ms

Note: The duty of LED dimming signal should be more than 20% in T2..

LED Driver SMBUS Pull-up resistor

SMBUS Pull-up Circuitry

Setting value for Pull-up resistor Rp

 $(VDD - 0.4)/(100*10^{-6}) \ge Rp \ge (VDD - 0.4)/(350*10^{-6})$

Suggestion: IF VDD=3.3V, Rp=10K ohm; IF VDD=5V, Rp=15K ohm

Note: Rp is the equivalent resistor for SMBUS Pull-up Circuitry

AUO NBBU spec. Template 1.0 17 of 36

AU OPTRONICS CORPORATION

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

6.2 The input data format

Signal Name	Description
VEEDID (3.3V)	+3.3V EDID Power
CLK EEDID	EDID Clock Input
DATA EEDID	EDID Data Input
ORXIN0-, ORXIN0+	Odd LVDS differential data input(ORed0-ORed5, OGreen0)
ORXIN1-, ORXIN1+	Odd LVDS differential data input(OGreen1-OGreen5, OBlue0-OBlue1)
ORXIN2-, ORXIN2+	Odd LVDS differential data input(OBlue2-OBlue5, Hsync, Vsync, DE)
ORXCLKIN-, ORXCLKIN+	Odd LVDS differential clock input
ERXIN0-, ERXIN0+	Even LVDS differential data input(ERed0-ERed5, EGreen0)
ERXIN1-, ERXIN1+	Even LVDS differential data input(EGreen1-EGreen5, EBlue0-EBlue1)
ERXIN2-, ERXIN2+	Even LVDS differential data input(EBlue2-EBlue5)
ERXCLKIN-, ERXCLKIN+	Even LVDS differential clock input
VDD	+3.3V Power Supply
VSS	Ground

Note: Output signals from any system shall be low or High-impedance state when VDD is off.

6.3 Signal Description/Pin Assignment

LVDS is a differential signal technology for LCD interface and high speed data transfer device.

PIN#	Signal Name	Description
1	Test Loop (only to pin 30)	Diag. pin for test
2	VEEDID (3.3v)	DDC 3.3Vpower
3	VSS	Ground
4	CLK EEDID	DDC Clock
5	DATA EEDID	DDC Data
6	VSS	Ground
7	Odd_Rin0-	Odd channel Differential Data Input
8	Odd_Rin0+	Odd channel Differential Data Input
9	VSS	Ground
10	Odd_Rin1-	Odd channel Differential Data Input
11	Odd_Rin1+	Odd channel Differential Data Input
12	VSS	Ground
13	Odd_Rin2-	Odd channel Differential Data Input
14	Odd_Rin2+	Odd channel Differential Data Input
15	VSS	Ground
16	Odd_ClkIN-	Odd channel Differential Clock Input
17	Odd_ClkIN+	Odd channel Differential Clock Input
18	VSS	Ground
19	Even_Rin0-	Even channel Differential Data Input
20	Even_Rin0+	Even channel Differential Data Input
21	VSS	Ground
22	Even_Rin1-	Even channel Differential Data Input
23	Even_Rin1+	Even channel Differential Data Input
24	VSS	Ground
25	Even_Rin2-	Even channel Differential Data Input
26	Even_Rin2+	Even channel Differential Data Input
27	VSS	Ground
28	Even_ClkIN-	Even channel Differential Clock Input
29	Even_ClkIN+	Even channel Differential Clock Input
30	Test Loop (only to pin 1)	Diag. pin for test
31	Test Loop (only to pin 50)	Diag. pin for test
32	VDD	Power Supply (+3.3V)
33	VDD	Power Supply (+3.3V)

			<u>. </u>	
	34	TEST (BIST_EN)	BIST Function	
	35	+5V_ALW	Power Supply (+5V)	
	36	VSS	Ground	
	37	VSS	Ground	
	38	PWM_BL	Systwm side PWM input signal for brightness control	
	39	VBL-	LED Power Ground	
	40	VBL-	LED Power Ground	
	41	VBL-	LED Power Ground	
	42	VBL-	LED Power Ground	
	43	NC	No Connection	
	44	VBL+	Backlight Input Voltage	
	45	VBL+	Backlight Input Voltage	
	46	VBL+	Backlight Input Voltage	
	47	VBL+	Backlight Input Voltage	
	48	SMB_DATA	SMBus interface for sending brightness information	
ľ	49	SMB_CLK	SMBus interface for sending brightness information	
ŀ	50	Test Loop (only to pin 31		
_			,, <u> </u>	

Note1: Start from right side

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings should match the 1440x900 /60Hz manufacturing guide line timing.

Parameter		Symbol	Min.	Тур.	Max.	Unit
Frame	e Rate	-	50	60	-	Hz
Clock fr	equency	1/ T _{Clock}	ı	48.2	60.2	MHz
	Period	T _V	904	912	2048	
Vertical	Active	T _{VD}	900	900	900	T_{Line}
Section	Blanking	T _{VB}	4	12	•	
	Period	T _H	760	880	1024	
Horizontal	Active	T _{HD}	720	720	720	T _{Clock}
Section	Blanking	T _{HB}	40	160	-	

Note: DE mode only

6.4.2 Timing diagram

AU OPTRONICS CORPORATION

6.5 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power Sequence Timing

Davamatav		Haita		
Parameter	Min.	Тур.	Max.	Units
T1	0.5	-	10	(ms)
T2	5	-	50	(ms)
Т3	0.5	-	50	(ms)
T4	400	-	-	(ms)
T5	200	-	-	(ms)
Т6	200	-	-	(ms)
T7	0	-	10	(ms)

AUO NBBU spec. Template 1.0 24 of 36

7. Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	For Signal Connector
Manufacturer	JAE or compatible
Type / Part Number	JAE FI-VHP50S-A-HF11 or compatible
Mating Housing/Part Number	JAE FI-VHP50C-A or compatible

8. Dynamic Test

8.1 Vibration Test

Test condition:

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

30 Minutes each Axis (X, Y, Z) Sweep:

8.2 Shock Test Spec:

Test condition:

Acceleration: 220 G, Half sine wave

Active time: 2 ms

Pulse: +/-X,+/-Y,+/-Z, one time for each side

Remark:

Ambient condition is 25 ± 5°C, Relative humidity: 40% ~ 70%

2. Non-packaged and Non-operation

AUO NBBU spec. Template 1.0 26 of 36

9. Reliability

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40℃, 95%RH, 300h	
High Temperature Operation	Ta= 50℃, Dry, 300h	
Low Temperature Operation	Ta= 0℃, 300h	
High Temperature Storage	Ta= 65℃, 35%RH, 300h	
Low Temperature Storage	Ta= -25℃, 50%RH, 300h	
Thermal Shock Test	Ta=-40°C to 65°C, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV Air : ±15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

10. Mechanical Characteristics

10.1 LCM Outline Dimension

AUO NBBU spec. Template 1.0 28 of 36

AU OPTRONICS CORPORATION

10.2 Screw Hole Depth and Center Position

Screw hole minimum depth, from side surface = 2.3 mm (Ref. drawing)

Screw hole center location, from front surface = 3.7 ± 0.2 mm (Ref. drawing) Screw Torque: Maximum 2.5 kgf-cm

AUO NBBU spec. Template 1.0 30 of 36

11. Shipping and Package

11.1 Shipping Label Format

Manufactured 07/52 Model No: B154PW04 V.3 0AXXG

AU Optronics MADE IN TAIWAN (M01)

H/W: 0A F/W:1

REV A00

c 🕦 us

E204356

RoHS

11.2 Carton package

The outside dimension of carton is 455 (L)mm x 380 (W)mm x 355 (H)mm

12. Appendix: EDID description

Byte	Field Name and Comments	Value	Value	\
(hex)	Field Name and Comments	(hex)	(binary)	(
0	Header	00	00000000	
1	Header	FF	11111111	
2	Header	FF	11111111	
3	Header	FF	11111111	
4	Header	FF	11111111	
5	Header	FF	11111111	
6	Header	FF	11111111	
7	Header	00	00000000	
8	EISA manufacture code = 3 Character ID	06	00000110	
9	EISA manufacture code (Compressed ASCII)	AF	10101111	
0A	Panel Supplier Reserved – Product Code	77	01110111	
0B	Panel Supplier Reserved – Product Code	43	01000011	
0C	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000	
0D	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000	
0E	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000	
0F	LCD module Serial No - Preferred but Optional ("0" if not used)	00	00000000	
10	Week of manufacture	01	00000001	
11	Year of manufacture	11	00010001	
12	EDID structure version # = 1	01	00000001	
13	EDID revision # = 3	03	00000011	
14	Video I/P definition = Digital I/P (80h)	90	10010000	
15	Max H image size = (Rounded to cm)	21	00100001	
16	Max V image size = (Rounded to cm)	15	00010101	
17	Display gamma = (gamma ×100)-100 = Example: (2.2×100) - 100 = 120	78	01111000	
18	Feature support (no DPMS, Active off, RGB, timing BLK 1)	0A	00001010	
19	Red/Green Low bit (RxRy/GxGy)	90	10010000	
1A	Blue/White Low bit (BxBy/WxWy)	B5	10110101	
1B	Red X $Rx = 0.6$	99	10011001	
1C	Red Y $Ry = 0.345$	58	01011000	
1D	Green X Gx = 0.32	52	01010010	
1E	Green Y Gy = 0.555	8E	10001110	
1F	Blue X $Bx = 0.15$	26	00100110	
20	Blue Y By = 0.12	1E	00011110	
21	White X $Wx = 0.313$	50	01010000	
22	White Y $Wy = 0.329$	54	01010100	
23	Established timings 1 (00h if not used)	00	00000000	
24	Established timings 2 (00h if not used)	00	00000000	
25	Manufacturer's timings (00h if not used)	00	00000000	
26	Standard timing ID1 (01h if not used)	01	00000001	
27	Standard timing ID1 (01h if not used)	01	00000001	
28	Standard timing ID2 (01h if not used)	01	0000001	

	AO OF THOMOS CONFORMATION			_
29	Standard timing ID2 (01h if not used)	01	0000001	
2A	Standard timing ID3 (01h if not used)	01	0000001	
2B	Standard timing ID3 (01h if not used)	01	00000001	
2C	Standard timing ID4 (01h if not used)	01	0000001	
2D	Standard timing ID4 (01h if not used)	01	0000001	
2E	Standard timing ID5 (01h if not used)	01	0000001	
2F	Standard timing ID5 (01h if not used)	01	0000001	
30	Standard timing ID6 (01h if not used)	01	0000001	
31	Standard timing ID6 (01h if not used)	01	0000001	
32	Standard timing ID7 (01h if not used)	01	0000001	
33	Standard timing ID7 (01h if not used)	01	0000001	
34	Standard timing ID8 (01h if not used)	01	0000001	
35	Standard timing ID8 (01h if not used)	01	0000001	
36	Pixel Clock/10,000 = 96310000 /10000 (LSB)	9F	10011111	
37	Pixel Clock/10,000 = 96310000 /10000 (MSB)	25	00100101	
- 0,	Horizontal Active = 1440 pixels		00100101	
38	(lower 8 bits)	A 0	10100000	
39	Horizontal Blanking (Thbp) = 320 pixels (lower 8 bits)	40	01000000	
3A	Horizontal Active/Horizontal blanking (Thbp) (upper4:4 bits)	51	01010001	
3B	Vertical Active = 900 lines	84	10000100	
	Vertical Blanking (Tvbp) = 12 lines (DE Blanking typ. for DE only			
3C	panels)	0C	00001100	
3D	Vertical Active : Vertical Blanking (Tvbp) (upper4:4 bits)	30	00110000	
3E	Horizontal Sync, Offset (Thfp) = 64 pixels	40	01000000	
3F	Horizontal Sync, Pulse Width = 32 pixels	20	00100000	
40	Vertical Sync, Offset (Tvfp) = 3 lines Sync Width = 3 lines	33	00110011	
41	Horizontal Vertical Sync Offset/Width upper 2 bits	00	00000000	
42	Horizontal Image Size = 331.2 mm	4B	01001011	
43	Vertical image Size = 207 mm	CF	11001111	
44	Horizontal Image Size / Vertical image size	10	00010000	
45	Horizontal Border = 0 (Zero for Notebook LCD)	00	00000000	
46	Vertical Border = 0 (Zero for Notebook LCD)	00	00000000	
40	if display uses standard blanking (HSyncPolarity = POS,		0000000	
47	VSyncPolarity = NEG), for DVD compliance.	1A	00011010	
48	Pixel Clock/10,000 = 96310000 /10000 (LSB)	9F	10011111	
49	Pixel Clock/10,000 = 96310000 /10000 (MSB)	25	00100101	
	Horizontal Active = 1440 pixels			
4A	(lower 8 bits)	A0	10100000	
4B	Horizontal Blanking (Thbp) = 320 pixels (lower 8 bits)	40	01000000	
4C	Horizontal Active/Horizontal blanking (Thbp) (upper4:4 bits)	51	01010001	
4D	Vertical Active = 900 lines	84	10000100	
4E	Vertical Blanking (Tvbp) = 12 lines (DE Blanking typ. for DE only panels)	0C	00001100	
40	Vertical Active: Vertical Blanking (Tvbp) (upper4:4	00	00001100	
4F	bits)	30	00110000	
50	Horizontal Sync, Offset (Thfp) = 64 pixels	40	01000000	
51	Horizontal Sync, Pulse Width = 32 pixels	20	00100000	
52	Vertical Sync, Offset (Tvfp) = 3 lines Sync Width = 3 lines	33	00110011	
ALIO NIDDILI -	noc Tompleto 1.0		24 of 26	

	AO OF THORICS CONFORMATION			
53	Horizontal Vertical Sync Offset/Width upper 2 bits	00	00000000	
54	Horizontal Image Size = 331.2 mm	4B	01001011	
55	Vertical image Size = 207 mm	CF	11001111	
56	Horizontal Image Size / Vertical image size	10	00010000	
57	Horizontal Border = 0 (Zero for Notebook LCD)	00	00000000	
58	Vertical Border = 0 (Zero for Notebook LCD)	00	00000000	
59	if display uses standard blanking (HSyncPolarity = POS, VSyncPolarity = NEG) , for DVD compliance.	1A	00011010	
5A	Flag	00	00000000	
5B	Flag	00	00000000	
5C	Flag	00	00000000	
5D	Dummy Descriptor	FE	11111110	
5E	Flag	00	00000000	
5F	Dell P/N 1 st Character	48	01001000	
60	Dell P/N 2 nd Character	57	01010111	
61	Dell P/N 3 rd Character	36	00110110	
62	Dell P/N 4 th Character	36	00110110	
63	Dell P/N 5 th Character	33	00110011	
64	EEDID Revision = X10	0A	00001010	
65	Manufacturer P/N	42	01000010	
66	Manufacturer P/N	31	00110001	
67	Manufacturer P/N	35	00110101	
68	Manufacturer P/N	34	00110100	
69	Manufacturer P/N	50	01010000	
6A	Manufacturer P/N	57	01010111	
6B	Manufacturer P/N (If <13 char, then terminate with ASCII code 0Ah, set remaining char = 20h)	34	00110100	
6C	Flag	00	00000000	
6D	Flag	00	00000000	
6E	Flag	00	00000000	
6F	Data Type Tag:	00	00000000	
70	Flag	00	00000000	
71	SMBUS Value = XX nits	26	00100110	
72	SMBUS Value = XX nits	35	00110101	
73	SMBUS Value = XX nits	41	01000001	
74	SMBUS Value = XX nits	4A	01001010	
75	SMBUS Value = XX nits	67	01100111	
76	SMBUS Value = XXX nits	89	10001001	
77	SMBUS Value = XXX nits	B6	10110110	
78	SMBUS Value = max nits (Typically = 00h, XXX nits)	FF	11111111	
79	Bit[1:0] 00: reserved, 01: single LVDS, 10: dual LVDS, 11: reserved Bit[2] 0: No RTC support, 1: RTC support Bit[7:3] Reserved	02	00000010	
7A	Bit[0] 0: No BIST support, 1: BIST support Bit[7:1] Reserved	01	0000001	

	(If <13 char, then terminate with ASCII code 0Ah, set remaining char			
7B	= 20h)	0A	00001010	
	(If <13 char, then terminate with ASCII code 0Ah, set remaining char			
7C	= 20h)	20	00100000	
	(If <13 char, then terminate with ASCII code 0Ah, set remaining char			
7D	= 20h)	20	00100000	
	Extension flag (# of optional 128 EDID extension blocks to follow,			
7E	Typ = 0	00	00000000	
	Observation (The dilute come of all 400 better in this EDID block			
	Checksum (The 1-byte sum of all 128 bytes in this EDID block			
7F	shall = 0)	3E	00111110	