All problem sets are optional. If you turn in solutions to problems, I will read and return them to you with feedback.

Problem D: Prove that the 1-dimensional Hausdorff content \mathcal{H}^1_{∞} is not a Borel measure on \mathbb{R}^n when $n \geq 2$. (One approach is to show $0 < \mathcal{H}^1_{\infty}(B(0,1)) = \mathcal{H}^1_{\infty}(U(0,1)) = \mathcal{H}^1_{\infty}(\partial B(0,1)) < \infty$ in \mathbb{R}^2 .)

Problem E: Let $n \geq 1$ and $0 \leq s < \infty$. The s-dimensional spherical measure S^s on \mathbb{R}^n is defined by the rule

$$\mathcal{S}^s(E) = \lim_{\delta \downarrow 0} \mathcal{S}^s_{\delta}(E); \quad \mathcal{S}^s_{\delta}(E) := \inf \left\{ \sum_{i=1}^{\infty} (2r_i)^s : E \text{ is covered by balls } B(x_i, r_i) \text{ with } 2r_i \leq \delta \right\}.$$

- (a) Describe the difference in the definition of \mathcal{S}^s and the s-dimensional Hausdorff measure \mathcal{H}^s .
- (b) Prove that S^s is a Borel regular measure. (c) Find constants c_1 and c_2 depending on at most n and s such that $c_1\mathcal{H}^s(E) \leq S^s(E) \leq c_2\mathcal{H}^s(E)$ for all $E \subset \mathbb{R}^n$.

Problem F: Let $0 < \lambda < 1/2$ be given. Let $C_{\lambda} \subset [0,1]$ be the generalized Cantor set in \mathbb{R} that is obtained by replacing [0,1] by intervals $[0,\lambda] \cup [1-\lambda,1]$ and iterating. Find the Hausdorff dimension s of C_{λ} and compute $\mathcal{H}^{s}(C_{\lambda})$.