Algebraic Topology

Aryaman Maithani

https://aryamanmaithani.github.io/

August 13, 2020

In what follows, I will denote the closed interval $[0,1] \subset \mathbb{R}$.

Whenever we talk about a map $f: X \to Y$ between topological spaces X and Y, we will always mean a *continuous function* f.

A path σ in a space X is a map $\sigma: I \to X$. If $x_0 = \sigma(0)$ and $x_1 = \sigma(1)$, we write this as

$$x_0 \stackrel{\sigma}{\longrightarrow} x_1$$
.

Moreover, x_0 and x_1 are called the *end points* of σ . In particular, x_0 is the initial point and x_1 is the terminal point.

All the topological spaces are assumed to be nonempty.

§1. Homotopy of Paths

§§1.1. The Fundamental Group

Definition 1.1 (Homotopy). Let σ and τ be paths in a space X with the same end points, i.e., $\sigma(0) = \tau(0)$ and $\sigma(1) = \tau(1)$.

We say that σ and τ are homotopic with ends points held fixed written

$$\sigma \simeq \tau \operatorname{rel} \{0, 1\}$$

if there is a map $F: I \times I \to X$ such that

- 1. $F(s,0) = \sigma(s)$ for all $s \in I$,
- 2. $F(s,1) = \tau(s)$ for all $s \in I$,
- 3. $F(0,t) = x_0$ for all $t \in I$,
- 4. $F(1,t) = x_1 \text{ for all } t \in I$.

F is called a *homotopy* from σ to τ . We write

$$F: \sigma \simeq \tau \text{ rel } \{0,1\}.$$

The above can be pictorially depicted as

The above picture is interpreted as follows:

Along the (bottom) line t=0, F agrees with σ and along the (top) line t=1, F agrees with t=1.

Similarly, along the (left) line s=0, F is identically equal to x_0 and along the (right) line s=1, it is x_1 .

In particular, if σ is a loop, i.e., $x_0 = x_1$ and e_{x_0} is the constant loop $s \mapsto x_0$ for $s \in I$, and if $\sigma \simeq e_{x_0}$ rel $\{0,1\}$, we say that " σ can be shrunk to a point," or is *homotopically trivial*.

Proposition 1.2 (\simeq is an equivalence relation).

- 1. $\sigma \simeq \sigma \operatorname{rel} \{0, 1\},\$
- 2. $\sigma \simeq \tau$ rel $\{0,1\} \implies \tau \simeq \sigma$ rel $\{0,1\}$,
- 3. $\sigma \simeq \tau$ rel $\{0,1\}$ and $\tau \simeq \rho$ rel $\{0,1\}$ $\Longrightarrow \sigma \simeq \rho$ rel $\{0,1\}$.

Proof. 1. Define $F(s,t) := \sigma(s)$.

- 2. Define F(s,t) := F(s, 1-t).
- 3. Given $F: \sigma \simeq \tau$ rel $\{0,1\}$ and $G: \tau \simeq \rho$ rel $\{0,1\}$, define $H: I \times I \to X$ as

$$H(s,t) := \begin{cases} F(s,2t) & 0 \le 2t \le 1, \\ G(s,2t-1) & 1 \le 2t \le 2. \end{cases}$$

Note that F and G do agree for 2t=1 since we have $F(s,1)=\tau(s)=G(s,0)$ for all $s\in I$. It is easy to see that H is well-defined.

Note that H is continuous (by the pasting lemma) and it satisfies all the four properties of a homotopy (from σ to ρ), since F and G do so.

Thus, we can consider the homotopy classes $[\sigma]$ of paths σ from x_0 to x_1 under the equivalence relation \simeq . (Note very carefully that all paths in an equivalence class have the same end points.)

Definition 1.3 (Multiplication of paths). Let σ be a path from x_0 to x_1 and τ from x_1 to x_2 .

The product $\sigma * \tau$ is a path from x_0 to x_2 defined as

$$\sigma * \tau(s) := \begin{cases} \sigma(2s) & 0 \le 2s \le 1, \\ \tau(2s-1) & 1 \le 2s \le 2. \end{cases}$$

Once again, it's an easy check that $\sigma\tau$ is well-defined and continuous (using the pasting lemma).

The above $\sigma * \tau$ is essentially the path from x_0 to x_1 obtained by first travelling from x_0 to x_1 via σ and then from x_1 to x_2 via τ .

We will now be lenient with notation and simply denote $\sigma * \tau$ as $\sigma \tau$ unless necessary. The next proposition shows how this product behaves with the equivalence relation.

Proposition 1.4.

$$\sigma \simeq \sigma' \operatorname{rel} \{0,1\}$$
 and $\tau \simeq \tau' \operatorname{rel} \{0,1\} \implies \sigma \tau \simeq \sigma' \tau' \operatorname{rel} \{0,1\}.$

Proof. The proof is motivated by the following diagram.

Given $F: \sigma \simeq \sigma'$ rel $\{0,1\}$ and $G: \tau \simeq \tau'$ rel $\{0,1\}$, define $H: I \times I \to X$ as

$$H(s,t) := \begin{cases} F(2s,t) & 0 \le 2s \le 1, \\ G(2s-1,t) & 1 \le 2s \le 2. \end{cases}$$

As earlier, H is well-defined (since $F(1,t)=x_1=G(0,t)$ for all $t\in I$) and continuous. Moreover, we have

$$H(0,t) = F(0,t) = x_0, \quad H(1,t) = G(1,t) = x_2,$$

$$H(s,0) = \begin{cases} F(2s,0) & 0 \le 2s \le 1, \\ G(2s-1,0) & 1 \le 2s \le 2 \end{cases} = \begin{cases} \sigma(2s) & 0 \le 2s \le 1, \\ \tau(2s-1) & 1 \le 2s \le 2 \end{cases} = \sigma\tau(s),$$

and similarly,

$$H(s,1) = \sigma' \tau'(s)$$
 for all $s \in I$.

This shows that

$$H: \sigma \tau \simeq \sigma' \tau' \text{ rel } \{0,1\}.$$

Definition 1.5 (Product of equivalence classes). In view of the above proposition, we define

$$[\sigma] * [\tau] := [\sigma * \tau].$$

The above, of course, is defined only when the terminal point of σ (and thus, any other representative of $[\sigma]$) equals the initial point of τ (and thus, any other representative of $[\tau]$).

As before, we shall drop the * and simply write $[\sigma][\tau]$.

Lemma 1.6. Let σ, τ, ω be paths such that the products $\sigma(\tau\omega)$ and $(\sigma\tau)\omega$ are defined. Then,

$$\sigma(\tau\omega) \simeq (\sigma\tau)\omega \text{ rel } \{0,1\}.$$

Proof. Let x_0, x_1, x_2, x_3 be points such that

$$x_0 \xrightarrow{\sigma} x_1 \xrightarrow{\tau} x_2 \xrightarrow{\omega} x_3.$$

We define a homotopy F from $\sigma(\tau\omega)$ to $(\sigma\tau)\omega$. To motivate the definition of F, we may first visualise the homotopy as follows.

One can note that the top line depicts the path $(\sigma \tau)\omega$ and the bottom $\sigma(\tau\omega)$.

We define $F: I \times I \to X$ piece-wise on the three regions (from left to right) as follows:

$$F(s,t) := \begin{cases} \sigma\left(\frac{4s}{2-t}\right) & 0 \le s \le \frac{1}{4}(2-t), \\ \tau(4s+2-t) & \frac{1}{4}(2-t) \le s \le \frac{1}{4}(3-t), \\ \omega\left(\frac{4s+t-3}{t+1}\right) & \frac{1}{4}(3-t) \le s \le 1. \end{cases}$$

It is clear that F is continuous on each piece. By the pasting lemma, it is continuous everywhere.

The four properties of being a homotopy are also clear, by construction. (The diagram makes it clear why.) \Box

Definition 1.7 (Inverse path). Given a path σ from x_0 to x_1 , its *inverse path* σ^{-1} is a path from x_1 to x_0 given by

$$\sigma^{-1}(s) := \sigma(1-s), \qquad s \in I.$$

The above is simply "travelling backwards σ ."

Lemma 1.8. Let $\sigma, \sigma': I \to X$ be paths such that $\sigma \simeq \sigma'$ rel $\{0, 1\}$. Then,

$$\sigma^{-1} \simeq \sigma'^{-1} \operatorname{rel} \{0, 1\}.$$

Proof. Let $F:\sigma\simeq\sigma'$ rel $\{0,1\}$ be a homotopy. Then, F'(s,t):=F(1-s,t) is a homotopy between the inverses. \Box

Definition 1.9 (Inverse class). Let $\sigma:I\to X$ be a path. We define the inverse of the class $[\sigma]$ as

$$[\sigma]^{-1} := [\sigma^{-1}].$$

In view of the above lemma, the above definition is indeed well-defined.

Lemma 1.10. Given any path σ from x_0 to x_1 , we have

$$e_{x_0} \simeq \sigma \sigma^{-1} \operatorname{rel} \{0, 1\},$$

where e_{x_0} denotes the constant loop at x_0 .

Proof. As usual, we motivate the proof with a diagram. In this case, it is the following:

The homotopy $F: I \times I \to X$ in this case, is defined as

$$F(s,t) := \begin{cases} \sigma(2s) & 0 \le 2s \le t, \\ \sigma(t) & t \le 2s \le 2 - t, \\ \sigma^{-1}(2s - 1) & 2 - t \le 2s \le 2. \end{cases}$$

It is clear that the piecewise definitions agree on the dashed line 2s=t. Observe that $\sigma^{-1}(2s-1)=\sigma(2-2s)$ and thus, the functions do agree on the dashed line 2s=2-t as well.

One can easily check that the four properties of the homotopy are satisfied. To see the bottom line property, note that $F(s,0)=\sigma(0)$ (using the second piece definition) and $\sigma(0)=x_0=e_{x_0}(s)$ for all $s\in I$.

Note that since $(\sigma^{-1})^{-1} = \sigma$, the above also shows that $\sigma^{-1}\sigma = e_{x_1}$.

Lemma 1.11. Let $x_0 \stackrel{\sigma}{\longrightarrow} x_1$ and e_{x_0} be the constant path at x_0 . Then,

$$\sigma \simeq e_{x_0} \sigma \operatorname{rel} \{0, 1\}.$$

Proof. The proof is motivated by this diagram.

The homotopy is $F: I \times I \to X$ defined as

$$F(s,t) := \begin{cases} x_0 & 0 \le 2s \le t, \\ \sigma\left(\frac{2s-t}{2-t}\right) & t \le 2s \le 2. \end{cases}$$

As one would expect, we have a lemma in the other direction as well.

Lemma 1.12. Let $x_1 \stackrel{\sigma}{\longrightarrow} x_0$ and e_{x_0} be the constant path at x_0 . Then,

$$\sigma \simeq \sigma e_{x_0}$$
 rel $\{0,1\}$.

Proof. Similar as in the last case and we omit it.

The astute reader might have sensed a group sneaking around the corner.

However, note that the product of equivalence classes defined above is not a binary operation unless the endpoints are the same. Due to this, we restrict ourselves to loops in the next theorem.

Theorem 1.13. Let $\pi_1(X, x_0)$ be the set of homotopy classes of loops in X at x_0 . If multiplication in $\pi_1(X, x_0)$ is defined as above, $\pi_1(X, x_0)$ becomes a group, in which the neutral element is the class $[e_{x_0}]$ and the inverse of a class $[\sigma]$ is the class of the inverse $[\sigma^{-1}]$.

Proof. Interpreting Lemmas 1.6 to 1.12 as equalities of the equivalence classes shows that $\pi_1(X, x_0)$ verifies the group axioms.

The next proposition tells us how $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are related in the case that x_0 and x_1 lie in the same path-connected component. (In the case that they do not, nothing can be said.)

Proposition 1.14. Let α be a path from x_0 to x_1 . The mapping $\widehat{\alpha}$ defined by

$$[\sigma] \mapsto [\alpha^{-1}] * [\sigma] * [\alpha] = [\alpha^{-1} \sigma \alpha]$$

is an isomorphism of the group $\pi_1(X, x_0)$ onto $\pi_1(X, x_1)$.

Note that the above is well-defined since * is well-defined.

Proof. We first note that if $[\sigma] \in \pi_1(X, x_0)$, then $\alpha^{-1}\sigma\alpha$ is path as follows:

$$x_1 \xrightarrow{\alpha^{-1}} x_0 \xrightarrow{\sigma} x_0 \xrightarrow{\alpha} x_1$$

and thus, $[\alpha^{-1}\sigma\alpha]$ is indeed an element of $\pi_1(X,x_1)$. Moreover, note that

$$\widehat{\alpha}([\sigma\sigma']) = [\alpha^{-1}\sigma\sigma'\alpha]$$

$$= [\alpha^{-1}\sigma][\sigma'\alpha]$$

$$= [\alpha^{-1}\sigma][\alpha\alpha^{-1}][\sigma'\alpha]$$

$$= [\alpha^{-1}\sigma\alpha][\alpha^{-1}\sigma'\alpha]$$

$$= \widehat{\alpha}([\sigma])\widehat{\alpha}([\sigma']).$$

This shows that $\widehat{\alpha}$ is a homomorphism. That this is an isomorphism follows by noting that it has as inverse $\widehat{\alpha^{-1}}$.

Corollary 1.15. If X is pathwise connected, the group $\pi_1(X, x_0)$ is independent of the point x_0 , up to isomorphism.

Note that if C is a connected component of X containing x_0 , then $\pi_1(X, x_0) = \pi_1(C, x_0)$ since any loop at x_0 must necessarily lie in C. For this reason, we might as well only work with pathwise connected spaces.

Definition 1.16. If X is pathwise connected, we write $\pi_1(X)$ for $\pi_1(X, x_0)$ and call it the fundamental group of X.

Note that this group depends on x_0 in the sense that the elements of the group depend on the base point x_0 but the isomorphism class does not.

Definition 1.17 (Simply connected). A space X is called simply connected if it is pathwise connected and its fundamental group is trivial.

Lemma 1.18. Let X be simply connected. If σ and τ are paths in X with the same initial and terminal points, then $\sigma \simeq \tau$ rel $\{0,1\}$.

Proof. Let the initial and terminal points be x_0 and x_1 , respectively. Consider the path $\sigma \tau^{-1}$, which is path at x_0 . Since X is simply connected, we have

$$\sigma \tau^{-1} \simeq e_{x_0} \text{ rel } \{0, 1\}.$$

By the previously seen properties, we see that

$$(\sigma \tau^{-1})\tau \simeq e_{x_0}\tau \text{ rel } \{0,1\}$$

or

$$\sigma \simeq \tau \operatorname{rel} \{0,1\}.$$

§§1.2. Functoriality

We now wish to turn π_1 into a functor. Since we need to take care of the base points, we look at the category of *Pointed Topological spaces*.

Definition 1.19 (Pointed Topological Spaces). The category Top_• of *pointed topological spaces* is the category whose objects and morphisms are given as follows:

- Objects: Pairs (X, x_0) where X is a topological space and $x_0 \in X$,
- Morphisms: $f:(X,x_0)\to (Y,y_0)$ such that $f:X\to Y$ is a continuous function and $f(x_0)=y_0$.

That the above is a category can be easily verified.

Definition 1.20. Let $h:(X,x_0)\to (Y,y_0)$ be a morphism. Define

$$h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

by the equation

$$h_*([\sigma]) = [h \circ \sigma].$$

The map h_* is called the homomorphism induced by h, relative to the base point x_0 .

To see that h_* is well-defined, we note that if

$$F: \sigma \simeq \sigma' \text{ rel } \{0,1\}$$

for loops σ , σ' in X at x_0 , then

$$h \circ F : h \circ \sigma \simeq h \circ \sigma' \text{ rel } \{0, 1\}.$$

That is to say, if two loops at x_0 are homotopic, then so are the loops obtained by precomposing h.

To see that h_* is a homomorphism, first note that

$$(h \circ \sigma)(h \circ \sigma') = h \circ (\sigma \sigma').$$

(This follows from the definition of the product of paths.) Then, we see that

$$h_*([\sigma\sigma']) = [h \circ (\sigma\sigma')] = [h \circ \sigma][h \circ \sigma'] = h_*([\sigma])h_*([\sigma']).$$

Theorem 1.21 (Functoriality). If $h:(X,x_0)\to (Y,y_0)$ and $k:(Y,y_0)\to (Z,z_0)$ are morphisms, then

$$(k \circ h)_* = k_* \circ h_*.$$

If $i:(X,x_0)\to (X,x_0)$ is the identity map, then i_* is the identity homomorphism.

Proof. By definition, we have

$$(k \circ h)_*([\sigma]) = [(k \circ h) \circ \sigma]$$

$$= [k \circ (h \circ \sigma)]$$

$$= k_*([h \circ \sigma])$$

$$= k_*(h_*([\sigma]))$$

$$= (k_* \circ h_*)([\sigma]).$$

Thus, $(k \circ h)_* = k_* \circ h_*$.

Now, if i is the identity map, then we have

$$i_*([\sigma]) = [i \circ \sigma] = [\sigma],$$

showing that i_* is the identity map of $\pi_1(X, x_0)$.

The above then shows that π_1 defines a functor from the category Top_* to Grp . Since functors preserve isomorphisms in general, we get the following corollary.

Corollary 1.22. If $h:(X,x_0)\to (Y,y_0)$ is a morphism such that $h:X\to Y$ is a homeomorphism, then

$$h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

is an isomorphism.

Since we aren't discussing Category Theory, we give a proof for this special example of functors.

Proof. Let $h^{-1}: Y \to X$ be the inverse, which is continuous since h is a homeomorphism. Moreover, $h^{-1}(y_0) = x_0$ and thus, $h^{-1}: (Y,y_0) \to (X,x_0)$ is a morphism and the inverse of h.

Now, note that,

$$(h_*) \circ ((h^{-1})^*) = (h \circ h^{-1})^* = (\mathrm{id}_{(Y,y_0)})^* = \mathrm{id}_{\pi_1(Y,y_0)},$$

by functoriality. Similarly, we have

$$((h^{-1})^*) \circ (h_*) = \mathrm{id}_{(X,x_0)},$$

proving the corollary.

§2. Homotopy of Maps

In the previous section, we talked about homotopy of special types of maps. More precisely, we only considered maps $I \to X$. However, we can replace I by an arbitrary topological space Y. In the place of endpoints, we just consider a subspace $A \subset Y$.

Definition 2.1 (Relative homotopy). Given maps $f, g: Y \to X$ such that $f|_A = g|_A$, we say f and g are homotopic relative to A written

$$f \simeq g \operatorname{rel} A$$

if there is a map $F: Y \times I \to X$ satisfying

- 1. F(y,0) = f(y) for all $y \in Y$,
- 2. F(y,1) = g(y) for all $y \in Y$,
- 3. F(a,t) = f(a) = g(a) for all $a \in A, t \in I$.

This map F is called a homotopy from f to g relative to A and we write

$$F: f \simeq q \text{ rel } A.$$

Note that the "second coordinate" above is still *I*.

Note that (3) is satisfied vacuously if $A = \emptyset$ and we have $f|_A = g|_A$ for all maps $f, g: Y \to X$. Keeping this in mind, we have the following definition.

Definition 2.2 (Homotopy). Maps $f, g: Y \to X$ are said to be *homotopic* if f and g are homotopic relative to \emptyset .

We write this more simply as

$$f \simeq q$$
.

Moreover, any F as before is simply called a homotopy from f to g. As before, we write

$$F: f \simeq q$$
.

Once again, we obtain an equivalence. The homotopies defined as in the proof of Proposition 1.2 work again.

Definition 2.3 (Contractible space). If X is a topological space such that the identity map on X is homotopic to a constant map on some point in X, we say that X is *contractible*.

Proposition 2.4. X is contractible if and only if for any space Y, any two maps of Y into X are homotopic. A contractible space is pathwise connected.

Proof. (\Longrightarrow) Let X be contractible and Y be any space. Fix any $x_0 \in X$ such that id_X is homotopic to the constant map $e_{x_0}: X \to X$.

Let $f_{x_0}: Y \to X$ denote the constant map $y \mapsto x_0$.

Now, given any map $f: Y \to X$, we show that it is homotopic to f_{x_0} .

This will prove that any two maps of Y into X are homotopic since \simeq is an equivalence relation.

Let $H : \mathrm{id}_X \simeq e_{x_0}$ be any homotopy. Then, we have

$$H(x,0) = x$$
, $H(x,1) = x_0$; for all $x \in X$.

(Note that H is continuous.)

Now, we define $F: Y \times I \to X$ as

$$F(y,t) = H(f(y),t).$$

It is clear that F is a map. (That is, F is continuous.)

Moreover, note that

$$F(y,0) = H(f(y),0) = f(y), \quad F(y,1) = H(f(y),1) = x_0 = f_{x_0}(y);$$
 for all $y \in Y$.

This shows that $F: f \simeq f_{x_0}$, as desired.

(\Leftarrow) To show that X is contractible, simply consider Y=X and consider the maps id_X and e_{x_0} . (Both of these are indeed continuous.)

By hypothesis, these maps are homotopic and by definition, X is contractible.

Now, we show that X is pathwise connected assuming that it is contractible.

Let x_0 and x_1 be any two points in X. As X is contractible, (\Longrightarrow) tells us that the maps e_{x_0} and e_{x_1} are homotopic.

Let F be any homotopy from e_{x_0} and e_{x_1} . Define $\sigma:I\to X$ as

$$\sigma(t) := F(x_0, t).$$

 σ is clearly continuous. Moreover, we have

$$\sigma(0) = F(x_0, 0) = e_{x_0}(x_0) = x_0,$$

$$\sigma(1) = F(x_0, 1) = e_{x_1}(x_0) = x_1.$$

Thus, σ is path from x_0 to x_1 in X, proving the proposition.

Example 1. Every convex subset X of Euclidean space is contractible. Given maps $f_1, f_2 : Y \to X$, we have a homotopy $F : f_1 \simeq f_2$ given by

$$F(y,t) = t f_2(y) + (1-t) f_1(y), \quad y \in Y, t \in I.$$

By the convexity assumption, the above F is indeed a map into X.

By the previous proposition, this shows that X is contractible.

Example 2. \mathbb{R}^n is contractible for any n.

To see this, we could either appeal to the previous example or do it directly by defining a homotopy $F: e_0 \simeq \mathrm{id}_{\mathbb{R}^n}$ as

$$F(x,t) = tx$$
.

We would now like to show that any contractible space is simply connected. What we do know is that any loop would be homotopic to a point. However, we do not know if this homotopy is relative to $\{0,1\}$. Indeed, to show that we do have a homotopy relative to $\{0,1\}$, we would need to use the fact that X is contractible once again. Before proving that, we first look at a lemma.

Lemma 2.5. Let $F: I \times I \to X$ be a map. Set $\alpha(t) = F(0,t)$, $\beta(t) = F(1,t)$, $\gamma(s) = F(s,0)$, and $\delta(s) = F(s,1)$, as in the diagram

Then, $\delta = \alpha^{-1} \gamma \beta$.

Proof. The proof is quite intuitive. First, we define the paths

$$\sigma: I \to I \times I, \quad \tau: I \to I \times I$$

as

$$\sigma(s) := (t, 1)$$

and

$$\tau(s) := \begin{cases} (0, 1 - 4s) & 0 \le 4s \le 1, \\ (4s - 1, 0) & 1 \le 4s \le 2, \\ (1, 2s - 1) & 1 \le 2s \le 2. \end{cases}$$

These paths are the following ones in I^2 :

As it should be clear from the diagram (and one can easily check), we have

$$\delta = F \circ \sigma, \quad (\alpha^{-1}\gamma)\beta = F \circ \tau.$$

(Note that the bracketing in $(\alpha^{-1}\gamma)\beta$ is necessary.)

Also, since I^2 is convex, we see that σ and τ are homotopic relative to $\{0,1\}$ with $H:I\times I\to I\times I$ being a required homotopy defined as

$$H(s,t) := (1-t)\sigma(s) + t\tau(s).$$

Thus,

$$F \circ H : F \circ \sigma \simeq F \circ \tau \quad \text{rel } \{0, 1\}$$

$$\implies F \circ H : \delta \simeq (\alpha^{-1} \gamma) \beta \quad \text{rel } \{0, 1\},$$

as desired. \Box

Theorem 2.6. Let X be a contractible space. Then, X is simply connected.

Proof. Note that by Proposition 2.4, we know that X is pathwise connected. Now we show that that $\pi_1(X)$ is trivial.

Let $x_0 \in X$ be arbitrary and $\alpha : I \to X$ be a loop at x_0 in X.

If we show that $\alpha \simeq e_{x_0} \quad \mathrm{rel} \ \{0,1\}$, then we are done.

To do this, we will use the earlier lemma after constructing an appropriate F.

Using that X is contractible, we fix a homotopy $H : id_X \simeq f_{x_0}$ where $f_{x_0} : X \to X$ is the constant function $x \mapsto x_0$.

(This is different from e_{x_0} since the domains are different in general.)

To recall, H has the following properties:

$$H(x,0) = x, \ H(x,1) = x_0 \text{ for all } x \in X.$$

Now, we define $F: I \times I \to X$ as

$$F(s,t) := H(\sigma(s),t).$$

Now, note that if we set $\alpha, \beta, \gamma, \delta$ as in the previous lemma, we have

$$\alpha(t) = F(0,t) = H(\sigma(0),t) = H(x_0,t)$$

$$= H(\sigma(1),t) = F(1,t) = \beta(t),$$

$$\gamma(s) = F(s,0) = H(\sigma(s),0) = \sigma(s),$$

$$\delta(s) = F(s,1) = H(\sigma(s),1) = x_0.$$

In other words, we have

$$\alpha = \beta, \gamma = \sigma, \delta = e_{x_0}.$$

By the previous lemma, we know that $[\delta] = [\alpha^{-1}\gamma\beta]$, where [.] is the homotopy class of a path relative to $\{0,1\}$. Thus, we have

$$[e_{x_0}] = [\alpha^{-1}\sigma\alpha]$$

$$\implies [\alpha][e_{x_0}][\alpha^{-1}] = [\sigma]$$

$$\implies [e_{x_0}] = [\sigma]$$

$$\implies e_{x_0} \simeq \sigma \text{ rel } \{0, 1\},$$

finishing the proof.

Proposition 2.7. Let $f, g: Y \to X$ be maps which are homotopic by means of a homotopy $F: Y \times I \to X$.

Let $y_0 \in Y$, $x_0 := f(y_0) = F(y_0, 1)$, and $x_1 := g(y_0) = F(y_0, 1)$. Let $\alpha : I \to X$ be a path from x_0 to x_1 given by

$$\alpha(t) = F(y_0, t) \quad t \in I.$$

Then, the following diagram commutes.

Proof. The diagram commuting is just saying that

$$\widehat{\alpha} \circ f_* = g_*.$$

Let $[\sigma] \in \pi_1(Y, y_0)$ be arbitrary. Showing that the above is true is equivalent to showing that

$$(\widehat{\alpha} \circ f_*)([\sigma]) = g_*([\sigma]).$$

Using the definitions of $\widehat{\alpha}$ and f_* , we note that

$$(\widehat{\alpha} \circ f_*)([\sigma]) = g_*([\sigma])$$

$$\iff \widehat{\alpha}(f_*([\sigma])) = g_*([\sigma])$$

$$\iff \widehat{\alpha}([f \circ \sigma]) = [g \circ \sigma]$$

$$\iff [\alpha^{-1}(f \circ \sigma)\alpha] = [g \circ \sigma].$$

Now, defining $\tilde{F}: I \times I \to X$ as

$$\tilde{F}(s,t) = F(\sigma(s),t).$$

Then, we have the following diagram as in Lemma 2.5 which proves the proposition.

To see that the sides are indeed as labeled, recall that σ is a loop at y_0 and note that

$$\tilde{F}(0,t) = F(\sigma(0),t) = F(y_0,t) = \alpha(t),
\tilde{F}(1,t) = F(\sigma(1),t) = F(y_0,t) = \alpha(t),
\tilde{F}(s,0) = F(\sigma(s),0) = g(\sigma(s)) = (g \circ \sigma)(s),
\tilde{F}(s,1) = F(\sigma(s),1) = f(\sigma(s)) = (f \circ \sigma)(s).$$

By the conclusion of Lemma 2.5, we are done.

Recall that $\hat{\alpha}$ is an isomorphism and thus, we get the following corollary.

Corollary 2.8. With the same setup as above, f_* is an isomorphism if and only if g_* .

What the above corollary says is that if f and g are homotopic, then f_* is an isomorphism iff g_* is.

Definition 2.9 (Homotopy equivalence). A map $f: Y \to X$ is said to be a *homotopy* equivalence if there exists a map $f': X \to Y$ such that

$$ff' \simeq \mathrm{id}_X,$$

 $f'f \simeq \mathrm{id}_Y.$

If such a map exists, we say that X and Y are homotopically equivalent spaces.

It can be checked that being homotopically equivalent is an "equivalence relation."

Corollary 2.10. If $f: Y \to X$ is a homotopy equivalence, then f_* is an isomorphism

$$\pi_1(Y, y_0) \to \pi_1(X, f(y_0))$$

for any $y_0 \in Y$.

Proof. Let $f': X \to Y$ be as in the definition.

Then, $ff' \simeq \mathrm{id}_X$. By the previous corollary, we have that $(ff')_*$ is an isomorphism. (Since $(\mathrm{id}_X)_*$ is.)

Similarly, $(f'f)_*$ is an isomorphism. Since $(ff')_* = f_* \circ f'_*$ and $(f'f)_* = f'_* \circ f_*$, we see that f_* is a bijection and hence, an isomorphism.

The above shows that the fundamental group of a path-connected space is a *homotopy invariant*. We had shown earlier that this was a topological invariant.

Note that being homotopically equivalent is a weaker concept than being topologically invariant (i.e., homeomorphic). Clearly, if $f: X \to Y$ is a homeomorphism, it also a homotopy equivalence with $f' = f^{-1}$.

However, the closed interval I is homotopically equivalent to the point space but clearly not homeomorphic. In fact, one can note that X is contractible if and only if it is homeomorphic to a point.

§3. Fundamental Group of the Circle

In this section, we prove a more general result. S^1 will turn out to be a special case of that. First, we need a lemma.

Lemma 3.1. Let K be a compact metric space and G a topological group. Let $V \subset G$ be open such that $1 \in V$.

If $f: K \to G$ is continuous, then there exists $\delta > 0$ such that

$$d(k, k') < \delta \implies f(k)(f(k'))^{-1} \in V.$$

The above is essentially mimicking something like "uniform continuity."

Proof.

Claim 1. There exists an open set $U \subset G$ such that

1.
$$1 \in U \subset V$$

1.
$$1 \in U \subset V$$
,
2. $g, g' \in U \implies gg^{-1} \in V$.

Proof. The function $\varphi: G \times G \to G$ defined as

$$\varphi(g, g') := g(g')^{-1}$$

is continuous. Thus, $\varphi^{-1}(V)$ is open.

Note that $(1,1) \in \varphi^{-1}(V)$. Thus, there exists a basis element of the form $U_1 \times U_2$ satisfying

$$(1,1) \in U_1 \times U_2 \subset \varphi^{-1}(V).$$

Let $U := U_1 \cap U_2 \cap V$. Clearly, U is open and $1 \in U \subset V$. Moreover,

$$g, g' \in U \implies (g, g') \in U_1 \times U_2 \subset \varphi^{-1}(V) \implies \varphi(g, g') \in V \implies g(g')^{-1} \in V,$$
 as desired

With this, we can mimic the proof of continuous functions being uniformly continuous on compact sets. (The above U will help us use "triangle inequality" in the codomain.) Let U be as in the above claim.

Claim 2. Given any $k \in K$, there exists $\delta_k > 0$ such that

$$d(k, k') < \delta_k \implies f(k)(f(k'))^{-1} \in U,$$

$$d(k, k') < \delta_k \implies f(k')(f(k))^{-1} \in U.$$

Proof. The function $f_k: K \to G$ defined by $f_k(k') = f(k)(f(k'))^{-1}$ is continuous with $f_k(k) = 1 \in U$.

Consider the open set $f_k^{-1}(U)$. Since it contains k, there exists $\delta > 0$ such that $B_{\delta}(k) \subset f_k^{-1}(U)$. Thus, if $k' \in B_{\delta}(k)$, then $f_k(k') \in U$, as desired for the first condition.

Note that we can find a suitable δ'_k for the other condition as well. Taking the minimum of the two proves the claim.

Let $V_k = B_{\delta_k/2}(k)$. Clearly, $\{V_k\}_{k \in K}$ is an open cover of K. Since K is compact, we may extract a finite subcover.

Let k_1, \ldots, k_n be the indices of one such. Set

$$\delta := \min_{1 \le i \le n} \frac{1}{2} \delta_{k_i}.$$

Clearly, $\delta > 0$. Moreover, it satisfies the condition of the lemma. To see this, let $k, k' \in K$ be such that $d(k, k') < \delta$.

Since $\{V_{k_i}\}_{1 \leq i \leq n}$, is an open cover, k lies in V_{k_i} for some $1 \leq i \leq n$. That is, $2d(k, k_i) < \delta_i$. Now, using triangle inequality, note that

$$d(k', k_i) \le d(k', k) + d(k, k_i) < \delta + \frac{1}{2}\delta_i \le \frac{1}{2}\delta_i + \frac{1}{2}\delta_i = \delta_i.$$

Thus, both k and k' are at most δ_i from k_i . By the definition of δ_i (from Claim 2), we see that $f(k)(f(k_i))^{-1} \in U$ and $f(k_i)(f(k'))^{-1} \in U$.

By the property of U, we have

$$(f(k)(f(k_i))^{-1})((k_i)(f(k'))^{-1}) = f(k)(f(k'))^{-1} \in V,$$

as desired. \Box

Now, for the remainder of this section, we shall fix G as any simply connected topological group and $H \leq G$ is a *discrete* normal subgroup of G. We will show that $\pi_1(G/H,1) \cong H$.

(In the special case that $G = \mathbb{R}$ and $H = \mathbb{Z}$, we see that $\pi_1(S^1, 1) \cong \mathbb{Z}$ or simply, $\pi_1(S^1) \cong \mathbb{Z}$.)

We also fix the map $\varphi: G \to G/H$ to be the projection $g \mapsto gH$.

Lemma 3.2. There exists an open neighbourhood U of 1 in G which is mapped homeomorphically onto an open neighbourhood V of 1 in G/H be φ .

Proof. Since H is discrete, $\{1\}$ is open in H. Thus, there exists an open neighbourhood U_1 of 1 in G such that $U_1 \cap H = \{1\}$.

As in claim 1 of the previous proof, we may find a subset $U \subset U_1$ such that $g, g' \in U \implies gg'^{-1} \in U_1$. Clearly, $U \cap H = \{1\}$ as well.

Claim 1. $\varphi|_U$ is injective.

Proof. Let $g_1, g_2 \in U$ with $\varphi(g_1) = \varphi(g_2)$. Then, $g_1 H = g_2 H$ or $H g_1 = H g_2$ or $H g_1 g_2^{-1} = H$ or $g_1 g_2^{-1} \in H$. Since $g_1, g_2 \in U$, we also have $g_1 g_2^{-1} \in U_1$. Since $U_1 \cap H = \{1\}$, we see that $g_1 g_2^{-1} = 1$ or $g_1 = g_2$.

Let $V = \varphi(U)$. Clearly, φ maps U bijectively onto V, in view of the previous claim. Moreover, this must be a homeomorphism. To see this, we recall a general result.

Claim 2. The quotient map $\phi: G \to G/H$ is open.

Proof. Let W be an open subset of G. The set

$$WH = \{wh : w \in W, h \in H\}$$

is open since $WH = \bigcup_{h \in H} Wh$, which is a union of open subsets of G since right multiplication is a homeomorphism.

Note that $\varphi^{-1}(\varphi(W)) = WH$. Since φ is a quotient map and WH is open, we see that $\varphi(W)$ is open, as desired.

Thus, we see that $\varphi|_U:U\to V$ is a bijective open map. In particular, it is a homeomorphism.

For the remainder of this section, we fix $U \subset G$ and $V \subset G/H$ as above. Moreover, we fix

$$\psi := (\varphi|_U)^{-1}.$$

By our above discussion, $\psi:V\to U$ is a continuous function.

For better clarity, we shall use 1 for the identity of G/H and 1_G for the identity of G.

Now, we prove two key lemmas.

Lemma 3.3 (Lifting Lemma). If σ is a path in G/H with initial point 1, there is a unique path σ' in G with initial point 1_G such that

$$\varphi \circ \sigma' = \sigma.$$

Lemma 3.4 (Covering Homotopy Lemma). If τ is also a path in G/H with the initial point 1 such that

$$F: \sigma \simeq \tau \text{ rel } \{0,1\},$$

then there is a unique $F': I \times I \to G$ such that

$$F': \sigma' \simeq \tau' \text{ rel } \{0,1\},$$

$$\varphi \circ F' = F.$$

(Note that τ' above is the unique path in G as given by the Lifting Lemma.)

Proof. We prove both results together.

Let $(K, f: Y \to G/H, 0 \in K)$ be either $(I, \sigma, 0 \in I)$ or $(I \times I, F, (0, 0) \in I \times I)$. The first choice corresponds to Lemma 3.3 and the second to Lemma 3.4.

For the sake of less ugly notation, we shall use a/b or $\frac{a}{b}$ to denote ab^{-1} for $a, b \in G/H$. (Note that we are fixing this to mean ab^{-1} without any assumption of abelianity.)

Since K is compact, there exists $\epsilon > 0$ such that

$$|k - k'| < \epsilon \implies f(k)/(f(k')) \in V$$

by Lemma 3.1.

In particular, for such k and k', $\psi\left(\frac{f(k)}{f(k')}\right)$ is defined. Fix $N\in\mathbb{N}$ large enough such that

$$|k| < N\epsilon$$

for all $k \in K$. (This can be done since K is bounded by 2.) Now, define

$$f':K\to G$$

by

$$f'(k) := \psi \left(f(k) / f\left(\frac{N-1}{N}k\right) \right)$$

$$\cdot \psi \left(f\left(\frac{N-1}{N}k\right) / f\left(\frac{N-2}{N}k\right) \right)$$

$$\cdot \cdot \cdot \psi \left(f\left(\frac{1}{N}k\right) / f(0) \right).$$

Then, f' is continuous $K \to G$, $f'(0) = (\varphi(1))^N = 1_G$, and $\varphi \circ f' = f$. To see the last point, note that φ is a homomorphism and thus,

$$(\varphi \circ f')(k) = \varphi \left[\psi \left(f(k) / f\left(\frac{N-1}{N}k\right) \right) \right]$$

$$\cdot \varphi \left[\psi \left(f\left(\frac{N-1}{N}k\right) / f\left(\frac{N-2}{N}k\right) \right) \right]$$

$$\cdot \cdot \cdot \varphi \left[\psi \left(f\left(\frac{1}{N}k\right) / f(0) \right) \right].$$

Now, using that $\varphi\psi(k)=k$, we see that the fractions cancel and we are left with

$$(\varphi \circ f')(k) = f(k)/f(0) = f(k),$$

since $f(0) = 1_G$, in either case.

Now, suppose we had $f'': K \to G$ satisfying $f''(0) = 1_G$, and $\varphi \circ f'' = f$.

Then, we would have $[\varphi \circ (f'/f'')](s) = \varphi(f'(s))/\varphi(f''(s))$, since φ is a homomorphism. However, this equals f(s)/f(s) = 1.

Thus, f'/f'' is a continuous map from Y into $\ker \varphi = H$.

Since Y is connected and H is discrete, f'/f'' is a constant. Since $f'(0)/f''(0) = 1_G$, we see that f' = f''.

This proves the uniqueness of f'.

Note that in the case of the first lemma (that is Y = I), we have $f'(0) = 1_G$ and thus, f' is the required σ' .

For the case of the second lemma, we still have to prove that F'=f' is the desired (relative) homotopy.

First, we show that F' is indeed a (not necessarily relative) homotopy. To see this, set $\alpha(s) := F'(s,0)$ and $\beta(s) = F'(s,1)$.

Note that $\varphi \circ \alpha(s) = \varphi \circ F'(s,0) = F(s,0) = \sigma(s)$ and $\alpha(0) = F'(0,0) = 1_G$.

Since σ' is the unique such path, we see that $\alpha = \sigma'$.

Similarly, we can conclude $\beta = \tau$ if we show that $\beta(0) = 1_G$. By definition, we have $\beta(0) = F'(0,1)$.

Note that F' is continuous and $\varphi \circ F'$ is 1 on $\{0\} \times I$. Thus, $F'|_{\{0\} \times I}$ maps into $\ker \varphi = H$. As before, we see that F' is constant on $\{0\} \times I$. Thus, $F'(0,1) = F'(0,0) = 1_G$ and hence, $\beta = \tau'$.

In fact, we have even proven that F' is constant on $\{0\} \times I$. This shows that F' is a homotopy relative to $\{0\}$. All that remains is to show that it is constant on $\{1\} \times I$ as well.

For that, we once again note that $\varphi \circ F' = F$ is constant on $\{1\} \times I$. Thus, $F'|_{\{1\} \times I}$ maps into a coset of $\ker \varphi = H$. Since the coset is homeomorphic to H, it must be discrete as well. This proves that F' is constant on $\{1\} \times I$ as well, proving that

$$F': \sigma' \simeq \tau' \text{ rel } \{0,1\}.$$

Corollary 3.5. The end point of σ' only depends on the homotopy class of σ . In particular, if σ is a loop at 1, then $\sigma'(1) \in H$.

Proof. Let σ, τ be paths in the same homotopy class. Let $F : \sigma \simeq \tau$ rel $\{0,1\}$ be a (relative) homotopy.

Then, F' is a homotopy from σ' to τ' relative to $\{0,1\}$.

In particular, we have $\sigma'(1) = F(1,0) = F(1,1) = \tau'(1)$. This proves the first statement.

For the second statement, note that $\varphi \circ \sigma'(1) = \sigma(1) = 1$ and thus, $\sigma'(1) \in \ker \varphi = H$.

Now, we have the following theorem.

Theorem 3.6. If G is a simply connected topological group, H a discrete normal subgroup, then

$$\pi_1(G/H, 1) \cong H.$$

Proof. Using Corollary 3.5, we define $\chi : \pi_1(G/H, 1) \to H$ by

$$\chi([\sigma]) = \sigma'(1).$$

Claim 1. χ is a homomorphism.

Proof. Let $[\sigma], [\tau] \in \pi_1(G/H, 1)$.

Let $h_1 = \sigma'(1)$ and $h_2 = \tau'(1)$. (Again, we see that these are well-defined and elements of H by Corollary 3.5.)

Let τ'' be the path from h_1 to h_1h_2 in G given by

$$\tau''(s) = h_1 \tau'(s).$$

(Note that $\tau''(0) = \tau'(0)h_1 = 1_G h_1 = h_1$ and $\tau''(1) = h_1 \tau'(1) = h_1 h_2$.)

$$(\varphi \circ \tau'')(s) = \varphi(\tau'(s)h_1) = \varphi(\tau'(s))\varphi(h_1) = \tau(s).$$

(Note that $\varphi(h_1) = 1$ since $h_1 \in H = \ker \varphi$.)

Since, $\sigma'(1) = \tau''(0) = h_1$, we can consider the path $\tau''\sigma'$ in G. Note that

$$\varphi \circ (\tau''\sigma')(s) = \begin{cases} \varphi(\sigma'(2s)) & 0 \le 2s \le 1\\ \varphi(\tau''(2s-1)) & 1 \le 2s \le 2. \end{cases} = (\sigma\tau)(s).$$

Thus, $\tau''\sigma'$ is the unique lift of $\sigma\tau$ as given by the Lifting Lemma. Thus,

$$\chi([\sigma][\tau]) = \chi[\sigma\tau] = (\tau''\sigma')(1) = h_1 h_2 = \chi[\sigma]\chi[\tau].$$

Now, we show that χ is bijective.

Claim 2. χ is injective.

Proof. It suffices to show that $\ker \chi$ is trivial.

Let $[\sigma] \in \ker \chi$. Then, $\sigma'(1) = 1_G$.

In other words, σ' is a loop at 1_G in G. Since G is simply connected, σ' is path homotopic to a constant loop. We may choose the constant loop to be e_{1_G} .

Thus, $\sigma' \simeq e_{1_G}$ rel $\{0,1\}$.

Applying φ , we get that $\sigma \simeq e_1 \operatorname{rel} \{0,1\}$ or $[\sigma] = [e_1]$, the identity of $\pi_1(G/H,1)$.

Claim 3. χ is surjective.

Proof. Let $h \in H$ be arbitrary.

Since G is simply-connected, it is pathwise connected. Let σ' be path from 1_G to h in G

Then, $\varphi \circ \sigma' : I \to G/H$ is a loop at 1 in G/H with

$$\chi[\sigma] = \sigma'(1) = h.$$

With that, we are done!

Corollary 3.7. The fundamental group of S^1 is (isomorphic to) \mathbb{Z} .

(Since S^1 is pathwise connected, we need not care about base point.)

In particular, the above corollary shows that S^1 is not simply connected. This is our first example of a non-simply connected space.

Corollary 3.8. The fundamental group of a torus is (isomorphic to) $\mathbb{Z} \times \mathbb{Z}$.

Proof. The torus is (homeomorphic to)
$$(\mathbb{R} \times \mathbb{R})/(\mathbb{Z} \times \mathbb{Z})$$
.

Note that the torus is also homeomorphic to $S^1 \times S^1$. Using this, we could've calculated the fundamental group in a different way with the help of the following proposition.

Proposition 3.9. Given spaces $X, Y, x_0 \in X, y_0 \in Y$, we have

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Proof. The isomorphism is obtained as follows. First, consider the maps of pointed topological spaces given by the projections

$$(X, x_0) \leftarrow \xrightarrow{p_X} (X \times Y, (x_0, y_0)) \xrightarrow{p_Y} (Y, y_0).$$

These maps induce the homomorphisms

$$\pi_1(X, x_0) \xleftarrow{(p_X)_*} \pi_1(X \times Y, (x_0, y_0)) \xrightarrow{(p_Y)_*} \pi_1(Y, y_0).$$

Using the universal property of product of groups, we get a homomorphism $\langle (p_X)_*, (p_Y)_* \rangle$ as follows

such that the diagram commutes. (The \twoheadrightarrow s are the usual projections.) Let $\varphi := \langle (p_X)_*, (p_Y)_* \rangle$. We show that this is an isomorphism by constructing an inverse $\psi : \pi_1(X, x_0) \times \pi_1(Y, y_0) \to \pi_1(X \times Y, (x_0, y_0))$.

Any element of $\pi_1(X, x_0) \times \pi_1(Y, y_0)$ is of the form $([\sigma], [\tau])$ for some loop σ (resp., τ) at x_0 (resp., y_0) in X (resp., Y).

We define $\psi([\sigma], [\tau])$ as the class of the loop at (x_0, y_0) in $X \times Y$ given by

$$(\sigma, \tau)(s) := (\sigma(t), \tau(t)), \quad t \in I.$$

That is, $\psi([\sigma], [\tau]) = [(\sigma, \tau)]$. One can verify that this is well-defined. (That is, if $\sigma \simeq \sigma'$ and $\tau \simeq \tau'$, then $(\sigma, \tau) \simeq (\sigma', \tau')$, all relative to $\{0, 1\}$.) Now, one can verify that $\varphi \circ \psi$ and $\psi \circ \varphi$ are both the respective identities.

Alternately, as a more category theoretic proof, one can verify that the following diagram commutes.

Thus, given any object and arrows $\pi_1(X, x_0) \longleftarrow Z \longrightarrow \pi_1(Y, y_0)$, we get an arrow $\eta: Z \longrightarrow \pi_1(X, x_0) \times \pi_1(Y, y_0)$ such that the following diagram commutes.

That is, $\pi_1(X \times Y, (x_0, y_0))$ satisfies the universal mapping property of a product. Since products are unique up to isomorphism, we see that

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Definition 3.10 (Retract). A subset Y of a topological space X is called a *retract* if there exists a map $r: X \to Y$ such that

$$ri = id_Y$$

where $i: Y \hookrightarrow X$ is the inclusion map.

Theorem 3.11. The circle S^1 is not a retract of the closed disc D^2 .

Proof. We prove a stronger result that $ri \simeq \mathrm{id}_{S^1}$ is impossible for any map $r: X \to Y$. Indeed, assume the contrary and let $r: X \to Y$ be a map such that $ri \simeq \mathrm{id}_{S^1}$. Then, $(ri)_* = r_*i_*$ is an isomorphism, by Corollary 2.8.

However, note that

Recalling that $\pi_1(S^1) \cong \mathbb{Z}$ and $\pi_1(D^2) = \{1\}$, we see that the above is impossible since $\mathbb{Z} \to \{1\} \to \mathbb{Z}$ cannot be an isomorphism.

(There is neither any injection $i_*: \mathbb{Z} \to \{1\}$ nor any surjection $r_*: \{1\} \to \mathbb{Z}$.)

Corollary 3.12 (Special Brouwer Fixed Theorem). Any continuous map of the closed disc into itself has a fixed point.

Proof. Suppose $f: D^2 \to D^2$ has no fixed point. We define $r: D^2 \to S^1$ as follows: Take the ray joining f(x) to x and extend it until it reaches the circle S^1 . Call this point on S^1 r(x).

Clearly, if $x \in S^1$, then r(x) = x. Thus, $ri = id_{S^1}$, a contradiction to the previous theorem.

Remark. This is a special case of Brouwer's fixed point theorem for n=2. The case n=1 is simple by considering the function g(x)=f(x)-x and noting that $g(-1)\geq 0$ and $g(1)\leq 1$, thereby giving us that g(c)=0 for some $c\in D^1=[-1,1]$.

Note that it must be justified that the r defined above is indeed continuous. This is a fairly straightforward calculation. An outline is as follows:

Consider the ray ζ_x given by $\zeta_x(t) = (1-t)f(x) + tx$ for $t \ge 0$. We need a solution t > 0 for $\|\zeta_x(t)\| = 1$. This turns out to be equivalent to solving

$$||x - f(x)||^2 t^2 + 2(\langle x, f(x) \rangle - ||f(x)||^2) + ||f(x)||^2 - 1 = 0.$$

By our assumption, $x \neq f(x)$ and thus, the above is a genuine quadratic expression for all x. Moreover, using $||f(x)||^2 \leq 1$, one can show that the above has one unique positive root, call this t(x). Clearly, $x \mapsto t(x)$ is continuous. (Quadratic formula.) Thus, r(x) = (1 - t(x))f(x) + t(x)x is a continuous function of x.

Theorem 3.13. Let X be a topological space and $x \in X$. Suppose \mathcal{U} is an open cover of X with the following properties:

- 1. $U_i \cap U_j$ contains x and is pathwise connected for all $U_i, U_j \in \mathcal{U}$,
- 2. U is simply connected for all $U \in \mathcal{U}$.

Then, X is simply connected.

Proof. It is clear that X is pathwise connected since it is the union of pathwise connected sets with a point in common. Thus, we just need to show that any loop is path homotopic to a constant loop. Of course, since X is pathwise connected, we can choose any base point of our choice. We choose the point x.

Let $\sigma: I \to X$ be any loop at x.

By the Lebsgue number lemma, there exists a subdivision

$$[\sigma] = [\sigma_1] * \cdots * [\sigma_n]$$

such that each $\sigma_i(I)$ is contained in some $U_i \in \mathcal{U}$.

Now, we define the paths $\tau_1, \ldots, \tau_{n+1}$ as follows:

- τ_1 and τ_{n+1} are the constant loops at x.
- For 1 < i ≤ n, τ_i is any path joining σ_i(0) to x lying in U_{i-1} ∩ U_i.
 We can do so because σ_i(0) = σ_{i1}(1) is a point in U_{i-1} ∩ U_i. Since this intersection contains x and is pathwise connected, we are done.

Now, note that the path $\tau_i^{-1}\sigma_i\tau_{i+1}$ is a loop that lies in U_i for all $1 \leq i \leq n$. Since U_i is simply connected, we see that $[\tau_i^{-1}\sigma_i\tau_{i+1}]$ is the constant element $[e_x] \in \pi_1(X)$. Moreover, observe the following product taken over all $1 \leq i \leq n$ telescopes. That is,

$$[\sigma] = [\sigma_1] \cdots [\sigma_n]$$

$$= \prod_{i=1}^n [\tau_i^{-1} \sigma_i \tau_{i+1}]$$

$$= \prod_{i=1}^n [e_x]$$

$$= [e_x],$$

as desired. (Note that $[\tau_1^{-1}] = [\tau_{n+1}] = [e_x]$ as well.)

Proposition 3.14. The space S^n is simply connected for $n \geq 2$.

Proof. We apply the above theorem with $X = S^n$, $\mathcal{U} = \{U, V\}$ with $U = S^n \setminus \{(1, 0, \dots, 0)\}$ and $V = S^n \setminus \{(-1, 0, \dots, 0)\}$.

(In other words, U is S^n with one point removed and V is S^n with the opposite point removed.)

It is clear that \mathcal{U} is open cover. Recall that \mathbb{R}^n is homeomorphic to S^n with a point removed.

Thus, both U and V are simply connected since \mathbb{R}^n is.

Moreover, $U \cap V$ is homeomorphic to \mathbb{R}^n with two points removed. Since $n \geq 2$, this space is path connected.

Thus, ${\cal U}$ satisfies the criterion of the previous theorem and the result follows. \qed

§4. Covering spaces

In this section, we try to generalise the ideas of earlier. The previous section let us calculate $\pi_1(X)$ in the particular case that X was a topological group (and could be realised as a quotient group in a particular manner).

In section, we shall consider X which is not necessarily a group but represent it as a quotient space of a simply connected space \tilde{X} . As before, we shall work in the case that the fibers of $\tilde{X} \to X$ are discrete.

Towards this end, we have the following definition.

Definition 4.1 (Covering space). $E \xrightarrow{p} X$ is a covering space of X if every $x \in X$ has an open neighbourhood U such that $p^{-1}(U)$ is a disjoint union of open sets S_i in E, each of which is mapped homeomorphically onto U by p. Such U are said to be evenly covered, and the S_i are called *sheets* over U.

Proposition 4.2 (Consequences). From the above definition, the following results follow.

- 1. The fiber $p^{-1}(x)$ over any point is discrete;
- 2. p is a local homeomorphism;
- 3. p maps E onto X and X has the quotient topology from E.
- 4. If E is locally pathwise connected, then so is X.

Proof.

1. Let $x \in X$ and U be a neighbourhood of x which is evenly covered. Then, $p^{-1}(U) = \bigsqcup S_i$.

Let $y \in p^{-1}(x)$. Then, $y \in S_i$ for some $i_0 \in I$. Moreover, since $p : S_{i_0} \to U$ is homeomorphism, it is one-one and thus, $p(y') \neq x$ for any $y \neq y' \in S_{i_0}$.

In other words, $S_{i_0} \cap p^{-1}(x) = \{y\}$ and thus, $\{y\}$ is open in $p^{-1}(x)$. (Since S_{i_0} was open.)

This shows that $p^{-1}(x)$ is discrete.

2. By definition, we need to show that given any $e \in E$, there exists a neighbourhood V of e such that p(V) is open in X and $p|_V: V \to p(V)$ is a homeomorphism.

To this end, let $e \in E$ be arbitrary and let x = p(e).

Let U an evenly covered neighbourhood of x and S_{i_0} be the sheet (over U) containing e.

By definition (of covering spaces), we have that $p_{S_{i_0}}$ is a homeomorphism, as desired.

3. The fact that p is onto follows straight from the definition. (Every $x \in X$ has a neighbourhood U which is evenly covered and thus, a sheet maps onto U and in particular, something gets mapped to $x \in U$.)

Showing that X has the quotient topology from E is the same as showing that p is a quotient map. Let $U \subset X$. We need to show that $p^{-1}(U)$ is open iff U is open. (We already know that p is surjective.)

If U is open, then $p^{-1}(U)$ is open since p is continuous. (It is a local homeomorphism.)

Conversely, let $p^{-1}(U)$ be open. We show that U is open. To this end, let $x \in U$. Consider any $e \in E$ such that p(e) = x. Then, $e \in p^{-1}(U)$. Since p is a local homeomorphism and $p^{-1}(U)$ is open, we can find a neighbourhood V of e contained in $p^{-1}(U)$ such that p(V) is open.

However, note that $x \in p(V) \subset U$. This shows that x is an interior point and thus, U is open. (Since x was arbitrary.)

4. Let $x \in X$ and U be an arbitrary neighbourhood of x.

Choose a neighbourhood U' of x which is evenly covered and let S' be a sheet over U'. Then, $p|_{S'}$ is a homeomorphism.

Let $W = U \cap U'$. Consider $p|_{S'}^{-1}(W)$; this is an open subset of S' and hence, of E. Since E is locally pathwise connected, we can find a pathwise connected neighbourhood $V \subset p|_{S'}^{-1}(W)$ of $p|_{S'}^{-1}(x) \in S'$.

Then, its image $p_{S'}(V) \subset W \subset U$ is a neighbourhood of x and is pathwise connected. (Since it is homeomorphic to V.)

This shows that X is locally pathwise connected.

Thus, covering spaces is the analogue of the previous section that we described earlier. We now give the analogues of Lemma 3.3 and Lemma 3.4.

Theorem 4.3 (Unique lifting theorem). Let $(E, e_0) \stackrel{p}{\longrightarrow} (X, x_0)$ be a covering space with base points, $(Y, y_0) \stackrel{f}{\longrightarrow} (X, x_0)$ any map. Assume that Y is connected. If there is a map $(Y, y_0) \stackrel{E, e_0}{\longrightarrow}$ such that pf' = f, then it is unique.

(Note that this is different from Lemma 3.3 since we don't guarantee the *existence* of an f'.)

Proof. With everything as in the lemma, assume that $f'':(Y,y_0)\to (E,e_0)$ is also a map such that pf''=f. We show that f'=f''.

Define $A \subset Y$ as

$$A := \{ y \in Y \mid f'(y) = f''(y) \}.$$

Note that $A \neq \emptyset$ since $y_0 \in A$. (Since $f'(y_0) = e_0 = f''(y_0)$, by assumption.) We will show that A is both open and closed. Then, since Y is connected and A is nonempty, it will follow that A = Y. In turn, that will show that f' = f''.

Claim 1. A is open.

Proof. Let $y \in A$. Let U be an evenly covered neighbourhood of f(y) = pf'(y). Then, f'(y) lies on some sheet S over U. Since $y \in A$, we have f'(y) = f''(y). Thus, the set $B := f'^{-1}(S) \cap f''^{-1}(S)$ is an open set containing y.

Subclaim 1.1. $B \subset A$.

Proof. Let $y_1 \in B$. Then, $y \in f'^{-1}(S) \cap f''^{-1}(S)$. That is $f'(y_1) \in S \ni f''(y_1)$.

Note that $p|_S$ is a homeomorphism and in particular, one-one. Since $pf'(y_1) =$ $f(y_1) = pf''(y_1)$, we see that $f'(y_1) = f''(y_1)$ and hence, $y_1 \in A$.

Thus, we have seen that given any $y \in A$, there exists an open set B with $y \in B \subset A$, showing that A is open.

Claim 2. A is closed.

Proof. We show that $Y \setminus A$ is open. Let $y \in Y \setminus A$. As before, let U be an evenly covered neighbourhood of f(y) = pf'(y).

Since p restricted to sheets is injective and pf'(y) = pf''(y), it follows that f'(y)and f''(y) lie on different sheets, say S_1 and S_2 , respectively.

Let $B' := f'^{-1}(S_1) \cap f''^{-1}(S_2)$. Clearly, $y \in B'$.

Subclaim 2.1. $B' \subset X \setminus A$.

Proof. Let $y_1 \in B'$.

Then, $f'(y_1) \in S_1$ and $f''(y_2) \in S_2$. Since S_1 and S_2 are disjoint, the claim

The above subclaim proves that $X \setminus A$ is open, as earlier.

Thus, we are done.

Theorem 4.4 (Path Lifting Theorem). For $(E, e_0) \stackrel{p}{\longrightarrow} (X, x_0)$ a covering space with base points, if σ is a path in X with initial point x_0 , there is a unique path σ'_{e_0} in E with initial point e_0 such that $p\sigma'_{e_0} = \sigma$.

Proof. Note that σ is actually a pointed map $(I,0) \stackrel{\sigma}{\longrightarrow} (X,x_0)$ and I is connected. Thus, uniqueness of σ'_{e_0} follows from Unique lifting theorem.

Special case: The whole space *X* is evenly covered.

Let S be the sheet (over X) containing e_0 . Then, $p|_S: S \to X$ is a homeomorphism.

Let $\psi: X \to S$ be the inverse to this.

Then, $\sigma'_{e_0} = \psi \circ \sigma$ is the desired map.

Note that $p\sigma'_{e_0} = p\psi\sigma = \sigma$ and $\psi\sigma(0) = \psi(x_0) = e_0$, since $p(e_0) = x_0$. Thus, σ'_{e_0} indeed is a pointed map.

General case: Note that $\sigma(I) \subset X$ is compact. Thus, we can find a finite open cover $\{U_i\}_{i=0}^{n-1}$ of $\sigma(I)$ such that each U_i is evenly covered.

Thus, by the Lebesgue number lemma, we can find a partition

$$0 = t_0 < t_1 < \dots < t_n = 1$$

such that $\sigma([t_i, t_{i+i}])$ lies in the evenly covered neighbourhood U_i of $\sigma(t_i)$ for all $0 \le i < n$.

(Well, not exactly but we can renumber U_i wlog so that they satisfy the above condition.) Thus, note that for each "sub-path" $s|_{[t_i,t_{i+1}]}:[t_i,t_{i+1}]\to U_i$, we can apply the first case. In particular, for i=0, we lift $s|_{[0,t_1]}$ to a path $\sigma_1':[0,t_i]\to E$ such that $\sigma_1'(0)=e_0$.

Assume, as induction, that we have lifted $\sigma|_{[0,t_i]}$ to a map $\sigma'_i:[0,t_i] \to E$ such that $\sigma_i(0) = e_0$. $(0 \le i < n-1.)$

Also, observe that $p\sigma'_i(t_i) = \sigma(t_i)$.

Then, we can lift $\sigma|_{[t_i,t_{i+1}]}$ to a path $\tau_i:[t_i,t_{i+1}]\to E$ with $\tau_i(t_i)=\sigma_i'(t_i)$. (This is because for the lifting theorem, all we used was that e_0 was a point that gets mapped to x_0 under p. By our previous observation, we see that $\sigma_i(t_i) \stackrel{p}{\mapsto} \sigma(t_i)$ and thus, we can lift a path preserving initial points like that.)

Thus, we get a path $\sigma'_{i+1}:[0,t_{i+1}]\to E$ given by joining σ_i and τ_i .

Thus, by induction, we get a path σ'_n which is our desired σ'_{e_0} .

Theorem 4.5 (Covering Homotopy Theorem). Let $(E, e_0) \stackrel{p}{\longrightarrow} (X, x_0)$ be a covering map as before. Let $F: I \times I \to X$ be a map with $F(0,0) = x_0$.

There is a unique lifting of F to a continuous map

$$F': I \times I \to E$$

such that $F'(0,0) = e_0$. Moreover, if F is a path homotopy, then F' is a path homotopy.

Proof. We first define $F'(0,0) = e_0$. We will construct F' piece-wise.

First, we use the preceding theorem to extend F to the left edge $\{0\} \times I$ and bottom edge $I \times \{0\}$.

Now, choose subdivision

$$0 = s_0 < s_1 < \dots < s_m = 1,$$

$$0 = t_0 < t_1 < \dots < t_n = 1$$

such that each rectangle

$$I_i \times J_i = [s_{i-1}, s_i] \times [t_{i-1}, t_i]$$

is mapped by F into an open subset of X which is evenly covered by p. (This is for all $1 \le i \le m$ and $1 \le j \le n$. Such a subdivision exists by the Lebesgue number lemma.) We now define the lift F' inductively. First we define it on $I_1 \times J_1$, continuing with the other rectangles $I_i \times J_1$ in the bottom row from left to right, then with the rectangles $I_i \times J_2$ in the second row from left to and right, and so on.

In general, given i_0 and j_0 , we assume that F' has been defined on set

$$A = \bigcup_{\substack{j < j_0 \\ 1 \le i \le n}} (I_i \times J_j) \cup \bigcup_{i < i_0} (I_i \times J_{j_0}) \cup (\{0\} \times I) \cup (I \times \{0\}).$$

(That is, A is the union of the left and bottom edges along with the "previous" rectangles.)

We also assume that F' defined on A so far is a continuous lifting of $F|_A$. Using this, we define F' on $I_{i_0} \times J_{j_0}$ such that it's continuous on $A \cup (I_{i_0} \times J_{j_0})$.

Choose an open set U which is evenly covered by p and contains $I_{i_0} \times J_{j_0}$. (Such a U exists by our construction of the subdivision.)

Let $\{S_{\alpha}\}$ be the set of sheets, each S_{α} being mapped homeomorphically onto U by p. Note that F' is already defined on the subset of $I_{i_0} \times J_{j_0}$ given by $C = A \cap (I_{i_0} \times J_{j_0})$. This subset is *connected* and hence, F'(C), being connected must lie entirely in one sheet

Let S_0 be this sheet. Let $p_0 := p|_{S_0}$. Then,

$$p_0: S_0 \to U$$

is a homeomorphism. Moreover, for $x \in C$, we have

$$p_0(F'(x)) = p(F'(x)) = F(x),$$

since F' is a lifting of $F|_A$. Thus, for $x \in C$, we have that

$$F'(x) = p_0^{-1}(F(x)).$$

Thus, if we now define

$$F'(y) = p_0^{-1}(F(y))$$

for $y \in I_{i_0} \times J_{j_0}$, we see that F' must be continuous on $A \cup (I_{i_0}) \times (J_{j_0})$, by the pasting lemma.

Moreover, it is clearly a lift of $F|_{A\cup (I_{i_0}\times J_{j_0})}$ as well. Thus, it satisfies our inductive hypothesis and we may carry out this process and define F' on all of $I\times I$.

To see uniqueness, note that we were forced to define $F'(0,0) = e_0$. Thus, considering (Y, y_0) with $Y = I \times I$ and $y_0 = (0,0)$, appealing to the Unique lifting theorem, we see that at each step, there is a unique lift to $I_{i_0} \times J_{j_0}$. Thus, defining F'(0,0) uniquely determines F'.

Now, suppose that F is a path homotopy. (Note that since we are not saying anything about the two paths between which it is a homotopy, all that matters is that F is constant on the vertical edges.)

Then, the map F carries $\{0\} \times I$ onto a singleton $\{x_0\}$. Since pF' = F, we must have that

$$(pF')(\{0\} \times I) = \{x_0\}.$$

In other words, F' carries $\{0\} \times I$ into $p^{-1}(x_0)$. However, note that $\{0\} \times I$ is connected whereas $p^{-1}(x_0)$ is discrete. Thus, F' must be constant on $\{0\} \times I$. Similarly, it must be constant on $\{1\} \times I$ as well, proving the result.

Theorem 4.6. Let $(E, e_0) \xrightarrow{p} (X, x_0)$ be a covering map as before. Let f and g be two paths in X from x_0 to x_1 ; let f' and g' be their respective liftings to paths in E beginning at e_0 . If f and g are path homotopic, then so are f' and g'. In particular, f' and g' have the same terminal point.

Proof. Let $F: f \simeq g \text{ rel } \{0,1\}$ be a path homotopy from f to g.

Let F' be given as in the preceding lemma. We wish to show that the bottom edge is f' and top g'.

To this end, define $\alpha, \beta: I \to E$ as

$$\alpha(s) := F'(s, 0),$$

 $\beta(s) := F'(s, 1).$

We show that $\alpha = f'$ and $\beta = g'$.

Note that $\alpha(0) = F'(0,0) = e_0 = F'(0,1) = \beta(0)$.

Moreover, $p(\alpha(s)) = p(F'(s,0)) = F(s,0) = f(s)$ and similarly, $p(\beta(s)) = q(s)$.

Thus, α and β are some lifts of f and g starting at e_0 . By the Unique lifting theorem, we are done.

Corollary 4.7. $p_*: \pi_1(E, e_0) \to \pi_1(X, x_0)$ is a monomorphism.

Proof. To see that p_* is a monomorphism (i.e., that is is injective), it suffices to show that ker p_* is trivial.

Let $[\sigma] \in \pi_1(E, e_0)$ be an element of ker p_* .

Then, σ is a loop at e_0 in E such that $p \circ \sigma$ is a loop at x_0 such that

$$p \circ \sigma \simeq e_{x_0}$$
 rel $\{0,1\}$.

(Where e_{x_0} denotes the constant loop as usual.)

Lifting them back and using the previous theorem, we see that

$$\sigma \simeq e_{e_0} \operatorname{rel} \{0,1\}.$$

Note that if σ is a loop at x_0 in X, its lifting σ'_{e_0} in X need not be a loop at e_0 . (For example, consider $(\mathbb{R},0) \stackrel{p}{\longrightarrow} (S^1,(1,0))$ given by $p(x) = e^{2\pi i x}$. The lift of the loop σ in S^1 given by $s \mapsto e^{2\pi i s}$ is the loop σ'_0 in \mathbb{R} given by $s \mapsto s$, which ends at 1.)

However, its terminal point will be a point in $p^{-1}(x_0)$. Moreover, as we saw earlier, the endpoint only depends on the homotopy class of the loop. Thus, we get a well-defined operation

$$: p^{-1}(x_0) \times \pi_1(X, x_0) \to p^{-1}(x_0)$$

given by

$$e \cdot [\sigma] = \sigma'_e(1).$$

Proposition 4.8 (\cdot is a group action). The above operations satisfies the following properties:

- 1. $e \cdot 1 = e$ for all $e \in p^{-1}(x_0)$,
- $2. \ e \cdot ([\sigma] * [\tau]) = (e \cdot [\sigma]) \cdot [\tau] \text{ for all } e \in p^{-1}(x_0) \text{ and all } \sigma, \tau \in \pi_1(X, x_0).$

Thus, the above \cdot is a *right group action*.

Proof. Let $e \in p^{-1}(x_0)$, $[\sigma]$, $[\tau] \in \pi_1(X, x_0)$ be arbitrary.

1. Note that $1 \in \pi_1(X, x_0)$ is simply the class of the constant loop $[e_{x_0}]$. The lift of the constant loop is again a constant loop. Thus, since $1'_e$ starts at e, it must end at e as well. In other words,

$$e = 1'_e(1) = e \cdot 1,$$

as desired.

2. Define $c \in p^{-1}(x_0)$ as $c := \sigma'_e(1) = e \cdot [\sigma]$.

We wish to show that

$$e \cdot ([\sigma * \tau]) = (e \cdot [\sigma]) \cdot [\tau].$$

In other words, we wish to show that

$$(\sigma * \tau)'_{e}(1) = \tau'_{c}(1).$$

Consider the path $\sigma'_e * \tau'_c$ in E. The product is well defined since $\sigma'_e(1) = c = \tau'_c(0)$. Now, observe that

$$p(\sigma'_e * \tau'_c)(s) = \begin{cases} p(\sigma'_e(2s)) & 0 \le 2s \le 1, \\ p(\tau'_c(2s-1)) & 1 \le 2s \le 2 \end{cases}$$
$$= \begin{cases} \sigma(2s) & 0 \le 2s \le 1, \\ \tau(2s-1) & 1 \le 2s \le 2 \end{cases}$$
$$= (\sigma * \tau)(s).$$

In other words, $\sigma'_e * \tau'_c$ is a lift of $\sigma * \tau$ with initial point e. By uniqueness of lifts, we see that

$$(\sigma * \tau)'_e = \sigma'_e * \tau'_c.$$

Thus, we see that

$$(\sigma * \tau)'_e(1) = \sigma'_e * \tau'_c(1) = \tau'_c(1),$$

as desired.

Proposition 4.9 (Description of stabilisers). The stabiliser of a point $e_0 \in p^{-1}(x_0)$ is the subgroup

$$p_*\pi_(E, e_0) \subset \pi_1(X, x_0).$$

Proof. Note that $[\sigma] \in \pi_1(E, x_0)$ belongs to the stabiliser S of e_0 iff $\sigma'_{e_0}(1) = e_0$. In other words, $[\sigma] \in S$ iff σ lifts to a loop at e_0 .

If $\sigma = p \circ \sigma'$ for some loop σ' at e_0 , then $[\sigma] \in S$.

Conversely, if $[\sigma] \in S$, then $\sigma'_{e_0}(1) = e_0$ and thus, $[\sigma'_{e_0}] \in \pi_1(E, e_0)$ with $\sigma = p \circ \sigma'_{e_0}$. \square

Proposition 4.10. If E is pathwise connected, $\pi_1(X, x_0)$ acts transitively.

Proof. Let $e, c \in p^{-1}(x_0)$. We wish to show that there exists $[\sigma] \in \pi_1(X, x_0)$ such that $e \cdot [\sigma] = c$.

Since E is pathwise connected, we can find a path σ' in E from e to c. Then, $\sigma = p \circ \sigma'$ fits the bill.

To see this, note that σ' is indeed the lift of σ with initial point σ . That is, $\sigma' = \sigma'_e$. Moreover, since it ends at c, we get

$$e \cdot [\sigma] = \sigma'_e(1) = \sigma'(1) = c.$$

Recall from group theory that given an action $\cdot: S \times G \to S$ with $s_0 \cdot g = s_1$, we have $G_{s_0} = gG_{s_1}g^{-1}$, where G_s denotes the stabiliser of s in G.

Thus, if E is pathwise connected, then all the different subgroups $p_*\pi_1(E,e)$ are conjugate, as e runs over all points in $p^{-1}(x_0)$.

Corollary 4.11. If E is pathwise connected, the map $[\sigma] \mapsto e_0 \cdot [\sigma]$ induces a bijection of the set of all cosets $p_*\pi_1(E,e_0)[\sigma]$ onto the fiber. In particular, if $p^{-1}(x_0)$ is finite, the number of points in the fiber is equal to the index of the subgroup $p_*\pi_1(E,e_0)$.

Proof. In general, let $\cdot: S \times G \to S$ be a group action.

Let $G_s \leq G$ be the stabiliser of $s \in S$.

Then, given any $g,' \in G$ we have

$$s \cdot g = s \cdot g'$$

iff

$$g \cdot g'^{-1} \in G_s \text{ or } g \in G_s g'.$$

Thus, the map $G/G_s \to S$ given by

$$G_s g \mapsto s \cdot g$$

is well defined and an injection.

Moreover, if the action is transitive, then the above map is clearly surjective as well. (In the above, G/G_s is just the *set* of right cosets, no assumptions of normality.)

Definition 4.12 (Group of covering transformations). Given a covering space $E \stackrel{p}{\longrightarrow} X$, the group G of *covering transformations* is the group of all homeomorphisms of E which preserves the fibers, that is, all those φ such that $p\varphi = p$.

Theorem 4.13. Given a covering space $(E, e_0) \xrightarrow{p} (X, x_0)$ with group of covering transformation G. If E is simply connected and locally pathwise connected, G is canonically isomorphic to $\pi_1(X, x_0)$.

This achieves the result we described at the beginning of the section.

Proof. First, we define a homomorphism

$$\chi: G \to \pi_1(X, x_0).$$

Let $\varphi \in G$. Since E is simply connected, all paths from e_0 to $\varphi(e_0)$ are homotopic relative $\{0,1\}$. (By Lemma 1.18.)

Thus, if σ' is such a path, then $p_*([\sigma'])$ depends only on e_0 and $\varphi(e_0)$; we define

$$\chi(\varphi) = [p \circ \sigma'].$$

(That is, we define $\chi(\varphi)$ to be $p_*([\sigma'])$ for any path σ' from e_0 to $\varphi(e_0)$. Note that e_0 is fixed.)

Note that since $p\varphi = p$, we see that $p(\varphi(e_0)) = p(e_0) = x_0$ and hence, $p \circ \sigma'$ is indeed a *loop* at x_0 . Thus, the above map χ indeed is a map from G to $\pi_1(X, x_0)$.

Claim 1. χ is a homomorphism.

Proof. Let $\varphi, \psi \in G$. Let σ' be any path from e_0 to $\varphi(e_0)$ and τ' be any path from e_0 to $\psi(e_0)$.

Define the path $\alpha' = \psi \circ \sigma'$. This is clearly a path from $\psi(e_0)$ to $\psi(\varphi(e_0))$. In particular, $\tau' * \beta'$ is a path from e_0 to $\psi(\varphi(e_0))$.

Moreover, since $\psi \in G$, we have

$$p \circ \alpha' = p \circ \psi \circ \sigma' = p \circ \sigma'.$$

Thus, we have

$$\chi(\psi \circ \varphi) = [p \circ (\tau' * \alpha')]$$

$$= [p \circ \tau'] * [p \circ \alpha']$$

$$= [p \circ \tau'] * [p \circ \sigma']$$

$$= \chi(\psi) * \chi(\varphi).$$

Claim 2. χ is injective.

Proof. By definition, it is clear that

$$\varphi(e_0) = e_0 \cdot \chi(\varphi).$$

Hence, $\chi(\varphi) = 1$ implies that $\varphi(e_0) = e_0 \cdot 1 = e_0$, i.e., φ fixes e_0 .

However, note that being a covering transformation, we have that $p\varphi = p$; in other words, φ lifts p. By 4.3, there is only one lift of p which fixes e_0 . Since the identity

is one such, we see that $\chi(\varphi) = 1 \implies \varphi = \mathrm{id}$, the identity of $\pi_1(X, x_0)$, proving that χ is injective.

Claim 3. χ is surjective.

Proof. Let $[\sigma] \in \pi_1(X, x_0)$ be arbitrary. We construct a $\varphi \in G$ such that $\chi(\varphi) = [\sigma]$.

We define φ as follows:

Let $e \in E$, let τ' be any path from e_0 to e, and let $\tau = p \circ \tau'$. Note that τ is a path from $p(e_0) = x_0$ to p(e) =: x. Then, $\tau^{-1} \sigma \tau$ is a loop at x. We define

$$\varphi(e) := e \cdot [\tau^{-1} \sigma \tau],$$

where the \cdot is as before. (The endpoint of the unique lift of $\tau^{-1}\sigma\tau$ in E starting at e.)

Note that the above does not depend on τ' since E is simply connected. (As earlier, we use Lemma 1.18.)

In other words, φ just depends on $[\sigma]$.

Now, taking $e = e_0$, we may take τ' as the constant map and we see that $\varphi(e_0) = e_0 \cdot [\sigma] = \sigma'_{e_0}(1)$.

Thus, to compute $\chi(\varphi)$ using the definition of χ , we may take the path joining e_0 and $\varphi(e_0)$ to be σ'_{e_0} and we get

$$\chi(\varphi) = [p \circ \sigma'_{e_0}] = [\sigma],$$

as would be desired. Thus, we just need to show that $\varphi \in G$.

It is easy to see that that $p\varphi=p$. Indeed, since $\varphi(e)$ is the endpoint of a lift of a loop at p(e), we see that that it must belong to the fiber $p^{-1}(x)$. Thus, $p(\varphi(e))=x=p(e)$.

Moreover, φ has an inverse of the same type that is obtained by replacing σ with σ^{-1} in the definition. Thus, we just need to show that φ is continuous. (The same will show that φ^{-1} is also continuous.)

To do so, we will show the following: For every $e_1 \in E$ and every neighbourhood V' of $\varphi(e_1)$, there exists a neighbourhood V of e_1 such that $\varphi(V) \subset V'$.

To this end, let $e_1 \in E$ be arbitrary. Consider $x_1 = p(e_1) \in X$.

Let U be an open neighbourhood of x_1 which is evenly covered. Since E is locally pathwise connected, so is X and thus, we may assume so is U. (Or we replace U by a smaller pathwise connected neighbourhood, which will still be evenly covered.)

Then, $e_1 \in S_1$ and $\varphi(e_1) \in S_1'$ for some sheets S_1, S_1' over U. (Recall that e_1 and

$\varphi(e_1)$ belong to the same fiber $p^{-1}(x_1)$.)	
We claim that $\varphi(S_1) \subset S_1'$.	
To see this, note that if $e \in S_1$, we can join e_1 to e by some path α' in S_1 (since E	is is
locally pathwise connected); then, consider the path $p \circ \tau$ in X from x_1 to $p(e)$; lifting	ing
this to a path $\tau'_{\varphi(e_1)}$, we see that it is in S'_1 . In particular, its end point is a point in	S_1' .
This end point is just $\varphi(e)$. Thus, we have that shown $\varphi(e) \in S'_1$ or that $\varphi(S_1) \subset S'_2$	
	1
Now, given any neighbourhood V' of $\varphi(e_1)$, we can find a neighbourhood $S'_1 \subset$	V'
of $\varphi(e_1)$ of the above type. (That is, a neighbourhood of $\varphi(e_1)$ which is a sheet of	ver
some open neighbourhood U of $x_1 \in X$.)	
This proves that φ is continuous and thus, $\varphi \in G$.	
With that, we are done!	