Bias reduction in Y-90 PET with reconstruction that relaxes the non-negativity constraint

Hongki Lim¹ Kyungsang Kim³ Quanzheng Li³ Jeffrey A. Fessler¹ Yuni K. Dewaraja²

> ¹Electrical Engineering and Computer Science University of Michigan

> > ²Radiology University of Michigan

³Gordon Center for Medical Imaging Massachusetts General Hospital

SNMMI Annual Meeting 2018

Particulars about Y-90 imaging

- Y-90: Radioisotope for radioembolization
 - Almost pure beta emitter
 - Very low probability of positron emission: 3.2 ×10⁻⁵
 - 176Lu and Bremsstrahlung photons contribute to random coincidences
 - → Low true coincidence counts & very high random fraction

Figure: True/Random counts in measurement of our Y90 phantom study

Reported Problems

- Several Y-90 PET papers^{1,2} reported bias in quantification
- Bias direction in calculation of the absorbed dose
 - Underestimation in hot (lesion) and warm (liver) region
 - → Inaccurate absorbed dose-effect relationship
 - Overestimation in cold (no activity) region and total dose
 - → False alarm due to high extra-hepatic (i.e., lung) deposition

¹Carlier, Thomas, et al. "Y90 PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction." Medical physics 42.7 (2015): 4295-4309.

²Pasciak, Alexander S., et al. "Radioembolization and the dynamic role of 90Y PET/CT." Frontiers in oncology 4 (2014)

Formulation of emission tomography

Measurement follows Poisson statistical model:

$$Y_i \sim \text{Poisson}(\bar{y}_i(\mathbf{x})), \quad i = 1, ..., n_d$$

where, $\bar{y}_i(\mathbf{x}) = [\mathbf{A}\mathbf{x}]_i + \bar{r}_i$

(Negative) Poisson log likelihood function f(x):

$$f(\mathbf{x}) = \sum_{i=1}^{n_d} \bar{y}_i(\mathbf{x}) - y_i \log(\bar{y}_i(\mathbf{x}))$$

Goal of conventional emission tomography:

$$\hat{x} = \underset{x}{\operatorname{argmin}} f(x)$$

subject to $x \ge 0$

Limitation of conventional constraint

Cases in negative Poisson log-likelihood function

$$f(\mathbf{x}) = \begin{cases} [\mathbf{A}\mathbf{x}]_i + \bar{r}_i - y_i \log([\mathbf{A}\mathbf{x}]_i + \bar{r}_i), & y_i > 0, \quad [\mathbf{A}\mathbf{x}]_i + \bar{r}_i > 0 \\ [\mathbf{A}\mathbf{x}]_i + \bar{r}_i, & y_i = 0 \\ \infty, & y_i > 0, \quad [\mathbf{A}\mathbf{x}]_i + \bar{r}_i \le 0 \end{cases}$$

Bias introduced in cold region

Histogram in cold region (where there is no activity)

Proposed method

Enforce non-negativity on projection space:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}),$$
subject to $\mathbf{x} \ge 0$

· Histogram in cold region (where there is no activity)

Changing the formulation to solvable form

To solve the new formulation, we introduce a function g(·) and an auxiliary variable v:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}), \quad \text{subject to } \mathbf{A}\mathbf{x} + \bar{\mathbf{r}} \geq 0$$

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}) + g(\mathbf{A}\mathbf{x} + \bar{\mathbf{r}}), \text{ where } g(\eta) = \begin{cases} \infty, & \text{any } \eta_i < 0 \\ 0, & \text{all } \eta_i \geq 0 \end{cases}$$

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmin}} \min \mathbf{1}^T(\mathbf{v} + \bar{\mathbf{r}}) - \mathbf{y}^T \log(\mathbf{v} + \bar{\mathbf{r}}) + g(\mathbf{v} + \bar{\mathbf{r}}) \quad \text{subject to } \mathbf{v} = \mathbf{A}\mathbf{x}$$

We form augmented Lagrangian based on above minimization problem:

$$\Psi(x, \mathbf{v}, \lambda) = \mathbf{1}^{T}(\mathbf{v} + \bar{\mathbf{r}}) - \mathbf{y}^{T} \log(\mathbf{v} + \bar{\mathbf{r}}) + g(\mathbf{v} + \bar{\mathbf{r}}) + \lambda^{T}(Ax - \mathbf{v}) + \frac{\rho}{2} ||Ax - \mathbf{v}||_{2}^{2}$$

$$\hat{x} = \underset{\mathbf{v}}{\operatorname{argmin min max}} \Psi(x, \mathbf{v}, \lambda)^{3}$$

³Lim, Hongki, Yuni K. Dewaraja, and Jeffrey A. Fessler. "A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging." Physics in medicine and biology (2018)

Comparison with related works

Neg-ML⁴ minimizes a modified data fit term f_{N-ML}(x):

$$\begin{split} f_{\mathrm{N-ML}}(\mathbf{x}) &= \sum_{i=1}^{n_d} \tilde{\mathbf{q}}_i([\mathbf{A}\mathbf{x}]_i) \\ \tilde{\mathbf{q}}_i(t) &= \begin{cases} t + \tilde{r}_i - y_i \log(t + \tilde{r}_i), & t + \tilde{r}_i \geq \psi \\ \frac{(y_i - t - \tilde{r}_i)^2}{2\psi} - y_i \log \psi + \psi - \frac{(y_i - \psi)^2}{2\psi}, & t + \tilde{r}_i < \psi. \end{cases} \end{split}$$

→ the Poisson distribution is replaced by Gaussian distribution when the estimated measurement is below than the parameter ψ.

⁴Nuyts, J., et al. "A dedicated ML-algorithm for non-attenuation corrected PET whole body images." Nuclear Science Symposium Conference Record, 2000 IEEE, Vol. 2. IEEE, 2000.

Regularization for extremely low-count imaging

Add regularization term to cost function to penalize the roughness and control the noise:

$$\hat{x} = \underset{x}{\operatorname{argmin}} f(x) + \beta R(x)$$

subject to $Ax + \overline{r} \ge 0$ (proposed)
or $x \ge 0$ (conventional),

Implemented a quadratic regularization for R(x):

$$R(x) = \sum_{k=1}^{K} \frac{([Cx]_k)^2}{2}$$

where C is a $K \times n_p$ finite differencing matrix.

Evaluation metrics

Contrast Recovery (CR):

$$CR = \frac{C_{hotsphere}/C_{bkg} - 1}{R - 1} \times 100(\%),$$

- Chotspot: Mean counts in hot spot.
- C_{bkg}: Mean counts in background liver.
- · R: True activity concentration ratio between hot sphere and liver.
- Noise:

Noise =
$$\frac{STD_{bkg}}{C_{bkg}} \times 100(\%)$$

- STD_{bkg}: Standard deviation of counts in background liver.
- Contrast to Noise Ratio (CNR):

$$CNR = \frac{C_{hotsphere} - C_{bkg}}{STD_{bkg}}$$

MICHIGAN

Simulation results summary

- Lim, Hongki, Yuni K. Dewaraja, and Jeffrey A. Fessler. "A PET reconstruction formulation that enforces non-negativity in projection space for bias reduction in Y-90 imaging." Physics in medicine and biology (2018).
- Simulated Y-90 PET with XCAT phantom

	Patient A		Patient B	
	CR	Noise	CR	Noise
NEG-ML-Reg ($\psi = 4$)	80.0	12.1	54.3	6.2
NEG-ML-Reg ($\psi=10^{-3}$)	91.6	40.9	87.2	39.9
Proposed (ADMM-Reg)	91.7	41.6	87.3	40.0

Experimental setting

A liver/lung torso phantom setting

- · Lung: 5% lung shunt
- Liver: 1.2 MBq/mL at Day 0
- 3 hepatic lesions: 6.5 MBq/mL at Day 0
- Scanned for 30 minutes
- Acquisition at two time points

	Day 0	Day 3	
Total Y-90 activity (GBq)	1.96	0.96	
Total Net Trues	220K	120K	
Total Randoms	2.1M	1.7M	
Total Prompts	2.3M	1.8M	
Random Fraction (%)	91	94	

^{*} Random Fraction = (Total randoms / Total prompts) × 100

Reconstructed with TOF data and TOF system model (13 time bins)

M

Reconstructed images at Day 0 & Day 3

- For visualization, iteration number selected to achieve highest CNR
- Day 0 images: Proposed method improved CNR by 12.9% compared to EM

Day 3 images: Proposed method improved CNR by 16.2% compared to EM

NEGML gave lower CNR than EM at both acquisition points

Evaluation results

- CR-H1/H2/H3: Contrast recovery at 29/16/8 ml hot spheres
- Selected iteration number to achieve equivalent noise
- Proposed method achieved highest contrast recovery in both data acquisition points.

Table: Evaluation results on methods

	Day 0			Day 3				
	CR-H1	CR-H2	CR-H3	Noise	CR-H1	CR-H2	CR-H3	Noise
EM	49.9	41.8	41.6	55.0	50.9	40.0	37.1	85.6
NEG-ML-Reg ¹	48.1	40.5	39.2	54.3	51.1	40.7	37.8	85.9
NEG-ML-Reg ²	48.0	40.5	39.2	54.0	51.2	40.8	37.9	85.6
Proposed method	65.5	50.5	49.1	55.1	74.9	53.8	46.8	85.4

- NEG-ML-Reg¹: ψ := 2×mean counts of sinogram
- NEG-ML-Reg²: $\psi := 10^{-3} \times \text{mean counts of sinogram}$

Evaluation results

- CR-H1/H2/H3: Contrast recovery at 29/16/8 ml hot spheres
- Evaluate the converged images (100 iterations)
- Proposed method achieved highest contrast recovery in both data acquisition points.

Table: Evaluation results on methods

	Day 0			Day 3				
	CR-H1	CR-H2	CR-H3	Noise	CR-H1	CR-H2	CR-H3	Noise
NEG-ML-Reg ¹	51.9	43.8	43.6	97.6	54.8	42.5	43.2	146.5
NEG-ML-Reg ²	51.9	43.8	43.6	95.0	54.5	42.4	42.5	136.8
Proposed method	66.4	51.6	51.0	62.2	80.0	57.6	52.3	106.2

- NEG-ML-Reg¹: ψ := 2×mean counts of sinogram
- NEG-ML-Reg²: $\psi := 10^{-3} \times \text{mean counts of sinogram}$

Discussion & Conclusion

- Our proposed algorithm is distinct in avoiding modifying or approximating the Poisson log-likelihood used in the data term compared to related works (NEG-ML, AB-EMML).
- Applicable to other low true count rates and high random fractions imaging situations
 - Ion-beam therapy
- Future works
 - Implement and test ordered subsets version
 - Use matched TOF projector for regularized methods
- This work is supported by NIH(NIBIB) grant R01EB022075
- We acknowledge Siemens for providing TOF projector and e7 tools

