

Curso de programação em R - LABIMEC (2ª parte)

Pedro Milreu Cunha

Universidade Federal da Paraíba (UFPB) - PPGE/UFPB & LABIMEC

06-12-2022

Revisão

Curso do prof. Paulo no dia 29/11/2022

```
    R, RStudio e instalação de pacotes;
    install.packages(), library(), ...
    Importação de dados;
    read.csv(), read.delim(), read.table(), ...
    Limpeza e manipulação de dados;
    %, filter(), select(), mutate(), ...
    Análise de dados;
    group_by(), summarise(), ggplot(), ...
```

Configurações necessárias para essa aula

Configurações necessárias para essa aula

```
# Ribliotecas ----
library(dplyr) # Manipulação de dados
library(readxl) # Importação de arquivos .xlsx
library(ggplot2) # Criação de gráficos
library(ggpubr) # Layout de múltiplos gráficos
library(sf) # Importação e manipulação de dados geográficos (.shp)
library(tmap) # Criação de choropleth maps
library(RColorBrewer) # Paleta de cores
library(plm) # Dados em painel
library(stargazer) # Tabelas bem formatadas
library(showtext)
font add google("EB Garamond", "Garamond")
showtext auto()
# Comando especial ----
`%notin%` <- Negate(`%in%`)
# Função para renderizar figuras em .svg corretamente no LaTeX
show fig <- function(f) # Fonte: https://stackoverflow.com/a/56044642
  {if (knitr::is latex output())
    output = xfun::with ext(f, 'pdf')
   rsvg::rsvg pdf(xfun::with ext(f,'svg'), file = output)
  } else {
    output = xfun::with_ext(f, 'svg')
  knitr::include_graphics(output)
```

Criação de mapas

Elaboração de mapas utilizando R

- Os mapas são elaborados a partir de polígonos com coordenadas geográficas, permitindo uma visualização espacial dos dados;
- Em particular, têm-se os chamados *choropleth maps*, que utilizam escalas de cores para demonstrar a distribuição espacial de alguma variável de interesse.
- Há várias bibliotecas disponíveis para esse fim: 'spplot', 'tmap' e 'ggplot2' são algumas opções. Faremos uso do pacote tmap nesse curso.

Exemplo de mapa elaborado utilizando a biblioteca tmap

Figura 1: Exemplo de mapa criado pela biblioteca 'tmap'.

O que é necessário para gerar um mapa utilizando R?

1. Shapefiles:

as informações absolutamente *necessárias* para criação de mapas são aquelas referentes à geografia e polígonos, ou seja, os valores que mostram como os dados se distribuem espacialmente. São obtidos com os shapefiles¹, conjunto de arquivos com as extensões .cpg, .dbf, .prj, .shp, .shp, .shx;

 Variáveis distribuídas de acordo com o nível geográfico utilizado para criação do mapa:

dados referentes aos fenômenos cuja distribuição espacial queremos analisar, como, por exemplo: i) a população ou PIB per capita para cada UF brasileira; ii) o nível de abertura comercial para cada país do Mercosul, etc.

 $^{^{1}}$ Esse não é o único formato possível de representação de dados geográficos.

Onde obter os *shapefiles* para o Brasil?

- Os shapefiles para o Brasil são disponibilizados pelo Instituto Brasileiro de Geografia e Estatística (IBGE) em seu site: IBGE;
- É possível obter as malhas territoriais de municípios, UFs, micro e mesorregiões, regiões geográficas imediatas e intermediárias e do país como um todo;
- Para que os arquivos sejam importados corretamente é necessário que todos os arquivos extraídos após download estejam em uma mesma pasta. No caso da malha territorial por estado, tem-se o arquivo comprimido BR_UF_2021.zip com os seguintes arquivos dentro: BR_UF_2021.cpg, BR_UF_2021.dbf, BR_UF_2021.prj, BR_UF_2021.shp, BR_UF_2021.shx.

Manipulação dos dados

 O primeiro passo é importar a geometria base do mapa. Para tanto, utilizamos o arquivo BR_UF_2021.shp e a função st_read() da biblioteca sf. Além disso, também criamos uma coluna com as siglas das UFs brasileiras no arquivo importado.

2. Em seguida, lemos o arquivo com os dados cuja distribuição espacial queremos analisar e realizamos as transformações necessárias (nesse caso adicionar as siglas dos estados ausentes, dando o valor NaN para as observações em questão). Nesse exemplo vamos utilizar os dados referentes à subnotificação de estupros disponíveis no arquivo data/sub_estimadas_estupros.xlsx.

```
dados_sub <- read_excel("data/sub_estimadas_estupros.xlsx") %>%
  select(Sigla_UF, sub_lag_end) %>%
  group_by(Sigla_UF) %>%
  mutate(sub_lag_end = mean(sub_lag_end, na.rm = TRUE)) %>%
  unique()

for (uf in dados_geo$Sigla_UF) { # Adicionar as siglas ausentes
  if (uf %notin% dados_sub$Sigla_UF) {
     dados_sub[nrow(dados_sub) + 1, ] <- list(uf, NaN)
  }
}</pre>
```

Para finalizar a manipulação dos dados, unimos as duas bases com o comando left_join.

```
dados <- dados_geo %>%
        left_join(dados_sub, by = "Sigla_UF")
str(dados)
## Classes 'sf' and 'data.frame': 27 obs. of 7 variables:
## $ CD_UF : chr "11" "12" "13" "14" ...
## $ NM UF : chr "Rondônia" "Acre" "Amazonas" "Roraima" ...
## $ SIGLA : chr "RO" "AC" "AM" "RR" ...
## $ NM REGIAO : chr "Norte" "Norte" "Norte" "Norte" ...
## $ Sigla UF : chr "RO" "AC" "AM" "RR" ...
## $ sub lag end: num 0.0175 0.4131 0.3582 0.4839 0.0383 ...
## $ geometry :sfc MULTIPOLYGON of length 27: first list element: List of 1
## ..$ :List of 1
## ....$ : num [1:8812, 1:2] -62.9 -62.9 -62.9 -62.8 -62.8 ...
## ..- attr(*, "class")= chr [1:3] "XY" "MULTIPOLYGON" "sfg"
## - attr(*, "sf column")= chr "geometry"
## - attr(*, "agr")= Factor w/ 3 levels "constant", "aggregate"...: NA NA NA NA NA NA
## ..- attr(*, "names")= chr [1:6] "CD UF" "NM UF" "SIGLA" "NM REGIAO" ...
```

Visualização dos resultados

Utilizamos três comandos básicos para criar um choropleth map: tm_shape(), tm_borders() e tm_fill(). O primeiro deles cria a base geográfica do mapa, o segundo gera as bordas entre os entes representados e o terceiro preenche o mapa de acordo com o a distribuição de valores de alguma variável. Para mais informações sobre cada um deles consulte ?tm_shape, ?tm_borders, ?tm_fill.

O resultado obtido com os parâmetros padrões das funções pode ser visto no próximo slide.

▶ Para além dos funções já apresentadas e seus parâmetros, destacam-se ?tm_credits, ?tm_logo, ?tm_text, ?tm_layout, com as três primeiras servindo para adicionar créditos (ou fonte), logos e textos ao mapa e a última servindo para customizar o «layout da imagem».²

²Por «layout da imagem» entenda-se desde a posição da legenda ou título até o tamanho e família das fontes utilizadas.

Figura 2: Mapa inicial.

Visando melhorar o mapa inicial que geramos anteriormente, iremos:

1. Afinar as bordas entre os polígonos:

```
tm_borders(1vd = 0.55)
```

Remover o título da legenda e definir seus valores, mudar a paleta de cores e associar uma cor e rótulo específicos para os valores ausentes:

3. Identificar cada UF no mapa com a sua respectiva sigla:

```
tm_text("Sigla_UF", size = 0.65, fontfamily = "serif",
    fontface = "bold", col = "black")
```

4. Adicionar uma nota e a fonte dos dados ao mapa:

 Adicionar um título principal ao gráfico, remover o "quadro" envolta do mapa e formatar a fonte da legenda e título:

```
tm_layout(main.title = paste("Distribuição espacial da
subnotificação", "de estupros de mulheres no Brasil",
sep = "\un"),
title.size = 1, main.title.position = "center",
fontfamily = "serif", main.title.fontface = "italic",
scale = 1, frame = FALSE,
legend.title.size = 1.5, legend.text.size = 0.8,
legend.outside.position = c("left", "bottom"))
```

Juntando todos os passos e salvando o mapa ao fim do processo com a função tmap_save(), temos:

```
mapa <- tm shape(dados) +
            tm borders(lwd = 0.55) +
            tm fill("sub lag end".
                    title = "",
                    textNA = "Dado ausente".
                    colorNA = "lightgrey", palette = "GnBu",
                    labels = c("< 10\%", "10\% - 20\%",
                              "20% - 30%", "30% - 40%",
                               "40% - 50%", "50% - 60%",
                               "60% - 70%")) +
            tm_text("Sigla_UF", size = 0.65, fontfamily = "serif",
                    fontface = "bold", col = "black") +
            tm_credits("Nota: Média do período jan/2012 - dez/2020.",
                      fontface = "italic", size = 0.7,
                       align = "right") +
            tm_credits("Fonte: Elaboração própria a partir dos dados das SSPs.",
                       size = 0.8, align = "right") +
            tm_layout(main.title = paste("Distribuição espacial da subnotificação",
                                         "de estupros de mulheres no Brasil",
                                         sep = "\n"),
                      title.size = 1,
                      main.title.position = "center", fontfamily = "serif",
                      main.title.fontface = "italic", scale = 1, frame = FALSE,
                      legend.title.size = 1.5, legend.text.size = 0.8,
                      legend.outside.position = c("left", "bottom"))
#tmap save(mapa, "figures/mapa sub estupros.suq",
           width = 12, height = 12, units = "cm")
```

Distribuição espacial da subnotificação de estupros de mulheres no Brasil

Figura 3: Mapa customizado.

Pacote stargazer

Introdução

- O stargazer é um famoso pacote da linguagem R que é utilizado para gerar tabelas bem formatadas contendo resultados de regressões, data.frames ou estatísticas descritivas;
- Funciona com regressões estimadas por diversos pacotes, como, por exemplo, modelos lineares (?lm), modelos lineares generalizados (?glm) e modelos para dados em painel (?plm);
- ► A biblioteca gera tabelas em três formatos: ASCII (.txt), HTML (.html) e L⁴TEX(.pdf); iremos focar apenas em ASCII e L⁴TEX nesse curso.

Utilização

► Toda a funcionalidade do pacote se dá através da função stargazer, cujo funcionamento pode ser consultado em ?stargazer::stargazer. Tem-se abaixo os parâmetros que a função aceita, bem como os valores padrões de cada um.

```
function (..., type = "latex", title = "", style = "default",
    summary = NULL, out = NULL, out, header = FALSE, column, labels = NULL,
    column.separate = NULL, covariate.labels = NULL, dep.var.caption = NULL,
    dep.var.labels = NULL, dep.var.labels.include = TRUE, align = FALSE,
    coef = NULL, se = NULL, t = NULL, p = NULL, t.auto = TRUE,
    p.auto = TRUE, ci = FALSE, ci.custom = NULL, ci.level = 0.95.
    ci.separator = NULL, add.lines = NULL, apply.coef = NULL,
    apply.se = NULL, apply.t = NULL, apply.p = NULL, apply.ci = NULL,
    colnames = NULL, column.sep.width = "5pt", decimal.mark = NULL,
    df = TRUE, digit.separate = NULL, digit.separator = NULL,
    digits = NULL, digits.extra = NULL, flip = FALSE, float = TRUE,
    float.env = "table", font.size = NULL, header = TRUE, initial.zero = NULL,
    intercept.bottom = TRUE, intercept.top = FALSE, keep = NULL,
    keep.stat = NULL, label = "", model.names = NULL, model.numbers = NULL,
    multicolumn = TRUE, no.space = NULL, notes = NULL, notes, align = NULL,
    notes.append = TRUE, notes.label = NULL, object.names = FALSE,
    omit = NULL, omit.labels = NULL, omit.stat = NULL, omit.summary.stat = NULL,
    omit.table.layout = NULL, omit.yes.no = c("Yes", "No"), order = NULL,
    ord.intercepts = FALSE, perl = FALSE, report = NULL, rownames = NULL,
    rq.se = "nid", selection.equation = FALSE, single.row = FALSE,
    star.char = NULL, star.cutoffs = NULL, suppress.errors = FALSE,
    table.layout = NULL, table.placement = "!htbp", zero.component = FALSE,
    summary.logical = TRUE, summary.stat = NULL, nobs = TRUE,
    mean.sd = TRUE, min.max = TRUE, median = FALSE, igr = FALSE)
```

Exemplos

- ▶ Vamos analisar dois usos mais comuns do pacote stargazer:
 - 1. Visualização dos resultados de análises descritivas;
 - 2. Visualização dos resultados de estimações de modelos econométricos:
 - 2.1 Caso mais simples com apenas um modelo e sem customização da tabela;
 - 2.2 Caso mais complexo com vários modelos e customização da tabela;
- Para isso iremos importar o conjunto de dados data/analise_enade.Rdata que contém informações sobre o rendimento de discentes universitários no ENADE:

```
load("data/analise_enade.Rdata")
```

Exemplos em ASCII (.txt)

Vamos agora criar uma tabela em ASCII³ contendo as estatísticas descritivas do data.frame dados_enade que importamos anteriormente. O código necessário para isso, bem como o resultado obtido podem ser vistos a seguir:

```
stargazer(dados_enade, type = "text")
##
## Statistic
                         Mean
                                St. Dev.
                 510 977.176 1,307.852
## CO_IES
                                            1
                                                 5,322
## Ano
                 510 2,011.500 1.710
                                          2,009
                                                  2,014
## idade_media 510 25.630
                                  2.760
                                         18.143
                                                 40.271
## idade2_media
                 510 664.499
                                 150.668 329.163 1.621.748
## nota media
                   510 45.971
                                  6.282
                                          2.621
                                                 65.930
## prop_brancos
                   510 0.512
                                  0.212
                                          0.000
                                                 0 915
## prop casados
                   510 0.132
                                  0.094
                                          0.000
                                                 0.542
## prop homens
                    510 0.418
                                  0.111
                                          0.077
                                                 0.795
## prop_medio_ou_mais 510 0.611
                                  0.153
                                          0.113
                                                 0.947
## prop renda 3SM
                    510 0.311
                                  0.210
                                          0.00
                                                  1 000
## Tempo
                   510 0.500
                                  0.500
                                            0
                                                  1
## log nota
                    510 3 815
                                  0 185
                                          0.963
                                                  4 189
```

³Esse formato é útil para sessões interativas no R ou estágios iniciais de estimações, momentos nos quais queremos uma visualização rápida e bem formatada das informações presentes nos dados.

Exemplos em ASCII (.txt)

Agora um exemplo clássico de formatação de tabelas simples de regressão:

```
stargazer(didreg, type = "text", single.row = TRUE)
##
                       Dependent variable:
##
                    -----
                            log nota
## Tempo
                         -0.020 (0.079)
## Tratamento1
                       -0.028 (0.054)
## idade media
                      0.315*** (0.099)
## idade2 media
                      -0.005*** (0.002)
## prop brancos
                        0.060 (0.103)
## prop casados
                     -1.427** (0.586)
## prop_homens
                       -0.004 (0.275)
## prop medio ou mais
                       -0.270 (0.262)
## prop renda 3SM
                      -0.599*** (0.216)
## Tempo:Tratamento1
                        0.010 (0.075)
## Constant
                         -0.193 (1.375)
## Observations
                              170
## R2
                             0 183
## Adjusted R2
                             0.132
## Residual Std. Error
                      0.239 \text{ (df = 159)}
## F Statistic
                     3.563*** (df = 10; 159)
## -----
                    *p<0.1; **p<0.05; ***p<0.01
## Note:
```

Exemplos em ASCII (.txt)

Por fim, temos agora o exemplo mais complexo. Utilizaremos o seguinte código:

O resultado pode ser visto no próximo slide.

Exemplo em ASCII (.txt)

```
## Efeito médio de tratamento sobre os tratados - Ciclo 2009-2012
                                                               Variável dependente
                                                                   In(Nota média)
                                   Diff-diff + FE
                                                      Diff-diff + FE + PSM (logit) Diff-diff + FE + PSM (entropia)
                                 -0.02349 (0.09032)
                                                           -0.00817 (0.08257)
                                                                                          -0.03741 (0.08719)
## Idade média
                                0.60611*** (0.14819)
                                                          0.73706*** (0.17083)
                                                                                        0.71491*** (0.16910)
## Tdade média<sup>2</sup>
                                -0.00987*** (0.00289)
                                                         -0.01299*** (0.00358)
                                                                                         -0.01234*** (0.00358)
## Prop. brancos
                               -3,10625*** (0,66278)
                                                        -3,36986*** (0,70896)
                                                                                        -3.52649*** (0.71394)
## Prop. casados
                              -2.83638*** (0.96541)
                                                       -2.07438** (1.01842)
                                                                                        -2,44368** (1,06373)
## Prop. homens
                                 0.47486 (0.39295)
                                                         0.20124 (0.41804)
                                                                                         0.24595 (0.41051)
## Prop. ensino medio ou mais -0.05687 (0.56586)
                                                          -0.27292 (0.55062)
                                                                                        -0.21725 (0.55964)
## Prop. renda per capita 3S.M. -1.11261*** (0.30127)
                                                       -1.30979*** (0.28521)
                                                                                        -1.23628*** (0.28013)
## Tempo x Tratamento
                                 -0.04373 (0.05681)
                                                           0,00191 (0,05225)
                                                                                          0.00429 (0.05363)
## Observations
                                         170
                                                                   170
                                                                                                  170
## R2
                                       0.50470
                                                                0.48109
                                                                                                0.48879
## Adjusted R2
                                      -0.10138
                                                                -0.15389
                                                                                              -0.13676
## F Statistic (df = 9; 76)
                                     8.60480***
                                                               9.29616***
                                                                                              9.49595***
## Note:
                                                                                        *p<0,1; **p<0,05; ***p<0,01
```

Exemplos em LATEX (.pdf)

 Vamos agora recriar o exemplo das estatísticas descritivas, porém utilizando o formato LATEX.

```
stargazer(dados_enade, type = "latex", header = FALSE)
```

Tabela 1:

Statistic	N	Mean	St. Dev.	Min	Max
CO_IES	510	977.176	1,307.852	1	5,322
Ano	510	2,011.500	1.710	2,009	2,014
idade_media	510	25.630	2.760	18.143	40.271
idade2_media	510	664.499	150.668	329.163	1,621.748
nota_media	510	45.971	6.282	2.621	65.930
prop_brancos	510	0.512	0.212	0.000	0.915
prop_casados	510	0.132	0.094	0.000	0.542
prop_homens	510	0.418	0.111	0.077	0.795
prop_medio_ou_mais	510	0.611	0.153	0.113	0.947
prop_renda_3SM	510	0.311	0.210	0.000	1.000
Tempo	510	0.500	0.500	0	1
log nota	510	3.815	0.185	0.963	4.189

Exemplos em LATEX(.pdf)

Em seguida, reproduzimos o exemplo de uma regressão simples:

```
stargazer(didreg, type = "latex", header = FALSE, single.row = TRUE)
```

Tabela 2:

	Dependent variable:	
	log_nota	
Tempo	-0.020 (0.079)	
Tratamento1	-0.028 (0.054)	
idade_media	0.315*** (0.099)	
idade2_media	-0.005*** ^(0.002)	
prop_brancos	0.060 (0.103)	
prop_casados	-1.427** (0.586)	
prop_homens	-0.004 (0.275)	
prop_medio_ou_mais	-0.270 (0.262)	
prop_renda_3SM	-0.599*** (0.216)	
Tempo: Tratamento1	0.010 (0.075)	
Constant	-0.193 (1.375)	
Observations	170	
R ²	0.183	
Adjusted R ²	0.132	
Residual Std. Error	0.239 (df = 159)	
F Statistic	3.563*** (df = 10; 159)	
Note:	*p<0.1; **p<0.05; ***p<0.00	

Exemplos em LATEX (.pdf)

 Por fim, com o código abaixo geramos uma tabela complexa, com diversos modelos e bem formatada.

```
stargazer(didreg_fe, didreg_fe_logit, didreg_fe_entropia,
          type = "latex".
         title = "Efeito médio de tratamento sobre os tratados - Ciclo 2009-2012",
         decimal.mark = ",", digits = 5,
          column.labels = c("Diff-diff + FE".
                            "Diff-diff + FE + PSM (logit)".
                            "Diff-diff + FE + PSM (entropia)").
         covariate.labels = c("Tempo", "Idade média", "Idade média2",
                               "Prop. brancos", "Prop. casados", "Prop. homens",
                               "Prop. ensino medio ou mais", "Prop. renda per capita 3S.M.",
                               "Tempo x Tratamento").
          model.numbers = FALSE.
          initial.zero = TRUE.
         dep.var.labels = "ln(Nota média)", dep.var.caption = "Variável dependente",
         multicolumn = TRUE, model.names = FALSE, align = TRUE, header = FALSE,
         table.placement = "H", no.space = TRUE)
```

▶ É importante destacar que alguns itens específicos não podem ser customizados diretamente através do stargazer, como, por exemplo, os rótulos *Observations* e *Adjusted R2*, que não conseguimos traduzir para o português. Apesar disso, uma vez que a função stargazer::stargazer() retorna o código em LaTeX necessário para criar a(s) tabela(s) escolhida(s) não é difícil customizar o resultado final.

Exemplos em LATEX (.pdf)

Tabela 3: Efeito médio de tratamento sobre os tratados - Ciclo 2009-2012

_	Variável dependente					
	Diff-diff + FE	$\begin{array}{c} \text{In(Nota m\'edia)} \\ \text{Diff-diff} + \text{FE} + \text{PSM (logit)} \end{array}$	$Diff ext{-diff} + FE + PSM$ (entropia)			
Тетро	-0,02349	-0,00817	-0,03741			
	(0,09032)	(0,08257)	(0,08719)			
Idade média	0,60611***	0,73706***	0,71491***			
	(0,14819)	(0,17083)	(0,16910)			
Idade média ²	-0,00987***	-0,01299***	-0,01234***			
	(0,00289)	(0,00358)	(0,00358)			
Prop. brancos	-3,10625***	-3,36986***	-3,52649***			
	(0,66278)	(0,70896)	(0,71394)			
Prop. casados	-2,83638***	-2,07438**	-2,44368**			
	(0,96541)	(1,01842)	(1,06373)			
Prop. homens	0,47486	0,20124	0,24595			
	(0,39295)	(0,41804)	(0,41051)			
Prop. ensino medio ou mais	-0,05687	-0,27292	-0,21725			
	(0,56586)	(0,55062)	(0,55964)			
Prop. renda per capita 3S.M.	-1,11261***	-1,30979***	-1,23628***			
	(0,30127)	(0,28521)	(0,28013)			
Tempo x Tratamento	-0,04373	0,00191	0,00429			
	(0,05681)	(0,05225)	(0,05363)			
Observations	170	170	170			
R ²	0,50470	0,48109	0,48879			
Adjusted R ²	-0.10138	-0.15389	-0,13676			
F Statistic (df = 9; 76)	8,60480***	9,29616***	9.49595***			

Note: *p<0,1; **p<0,05; ***p<0,01

Funcionalidades avançadas

- Dentre as funcionalidades mais avançadas do stargazer não utilizadas aqui, destacam-se:
 - Utilização de coeficientes, erros-padrões, estatísticas-t e p-valores customizados com os parâmetros coef, se, t, p, respectivamente;
 - Substituição dos erros-padrões por intervalos de confiança (parâmetros ci, ci.custom, ci.level, ci.separator);
 - Aplicação de funções nos coeficientes, erros-padrões, estatísticas-t, intervalos de confiança e p-valores (parâmetros apply.coef, apply.se, apply.t, apply.ci, apply.p);
 - Exportar o resultado do comando diretamente para um arquivo .txt com o parâmetro out.

Alternativas ao stargazer

- ▶ Embora ainda seja uma das **referências** no ecossistema do R no que diz respeito a exportação de resultados em tabelas formatadas, especialmente utilizando LATEX, o stargazer tem problemas e não é compatível com todos os tipos de modelos que podem ser gerados com os diversos pacotes existentes na linguagem;
- Boas alternativas existem e é importante procurar qual melhor se adequa em cada ocasião. Algumas opções são:
 - 1. gtsummary;
 - 2. flextable;
 - 3. etable para modelos de efeitos fixos estimados com o pacote fixest;
 - 4. xtable.

Funções

O que são funções na linguagem R?

- As funções na linguagem R seguem o mesmo princípio de funções matemáticas, ou seja, recebem uma entrada, realizam alguma operação com ela e retornam algo.
 - Uma diferença importante é que as funções na linguagem R não precisam. necessáriamente, retornar alguma coisa ou mesmo receber uma entrada. Por exemplo:

```
saudar <- function() {</pre>
  print("Saudações, usuário!")
saudar()
```

[1] "Saudações, usuário!"

Como criar funções e quando utilizá-las?

- Criamos as funções como quaisquer outros objetos da linguagem, ou seja, a associando a algum nome com o operador <-. Para tanto tem-se o comando function(argumentos) onde argumentos são os parâmetros passados à função (vazio caso a função não receba parâmetros).</p>
- É interessante utilizar as funções quando temos algum cálculo ou processamento que queremos replicar diversas vezes ou quando queremos separar as partes do código em pequenas unidades que realizam cada uma um conjunto de tarefas, contribuindo para uma lógica de programação mais fluida e mais simples de se entender.

Exemplo básico - criação da função

Função para calcular o custo do consumo energético de um local

```
custo_energia <- function(tipo_local, consumo_kwh, atraso = 0, desconto = 0) {
  # ENTRADA:
  # tipo local: string indicando se o local em questão é residencial, comercial ou industrial;
  # consumo kwh: float com o consumo de energia do local em kW/h;
  # atraso: float com o percentual a ser cobrado por atraso (padrão de 0%);
  # desconto: float com o percentual de desconto a ser aplicado (padrão de 0%);
  # SATDA ·
  # Não retorna nada
  custo kwh <- ifelse(tolower(tipo local) == "residencial".
              0.72, ifelse(tolower(tipo local) == "comercial",
              0.85, 1.07))
  total = custo kwh*consumo kwh*(1 + (atraso/100) - (desconto)/100)
  print(paste0("Consumo: ", consumo kwh, "kW/h"))
  print(pasteO("Tipo de local: ", tipo_local))
  print(paste0("Custo por atraso: R$", (atraso/100)*custo kwh*consumo kwh))
  print(paste0("Desconto: R$", (desconto/100)*custo_kwh*consumo_kwh))
  print(paste0("Custo do kW/h: R$", custo_kwh))
  print(pasteO("Total a ser pago: R$", total))
```

Exemplo básico - resultados

Os resultados podem ser vistos a seguir.

```
custo energia ("Residencial", 412)
## [1] "Consumo: 412kW/h"
## [1] "Tipo de local: Residencial"
## [1] "Custo por atraso: R$0"
## [1] "Desconto: R$0"
## [1] "Custo do kW/h: R$0.72"
## [1] "Total a ser pago: R$296.64"
custo_energia(tipo_local = "Comercial", consumo_kwh = 800, atraso = 3)
## [1] "Consumo: 800kW/h"
## [1] "Tipo de local: Comercial"
## [1] "Custo por atraso: R$20.4"
## [1] "Desconto: R$0"
## [1] "Custo do kW/h: R$0.85"
## [1] "Total a ser pago: R$700.4"
```

Exemplo aplicado - criação da função

Aproximar e visualizar graficamente a solução de equações/inequações numéricas.
 Exemplo baseado no problema do aniversário.

```
simulacao_aniversario <- function(n_pessoas) {
# ENTRADA:
# n pessoas: sequência de número inteiros;
# SATDA ·
# resultados: lista contendo um data frame com os resultados e um gráfico com a visualização deles.
# Simulação
produtorio <- rep(1, length(n_pessoas))
probabilidades <- rep(1, length(n pessoas))
for (i in 1:length(n_pessoas)) {
  for (i in 1:(n pessoas[i] - 1)) {
    produtorio[i] <- produtorio[i] * (365- i)/365
 }
probabilidades <- 1 - produtorio
# Gráfico da simulação
dados <- data.frame(n = n_pessoas, p = probabilidades)
dados$satisfazem <- ifelse(dados$p >= 0.5.
                           "Sim", "Não")
g <- ggplot(dados, aes(x = n, y = p, color = satisfazem, linetype = satisfazem)) +
geom_line(linewidth = 1.25, show.legend = FALSE ) +
geom_hline(vintercept = 0.5, linetype = "dashed", linewidth = 1, color = "black") +
geom_vline(xintercept = 23, linetype = "dashed", linewidth = 1, color = "black") +
labs(x = "Nº de pessoas", y = "Probabilidade", color = ">= 50%")
colnames(dados) <- c("Nº de pessoas", "Probabilidade", ">=50%")
resultados <- list(dados, g)
return(resultados)
resultados <- simulacao_aniversario(seq(12, 36, 1))
```

Exemplo aplicado - resultados

Os resultados podem ser vistos a seguir.

Temas gráficos customizados

O que é um tema gráfico?

- Um tema gráfico nada mais é que uma função que é utilizada para configurar as características de um gráfico. Focaremos especificamente na criação e utilização de temas gráficos para a biblioteca ggplot2 nesse curso.
- ➤ A partir dele podemos definir características padrões para a formatação e posicionamento dos textos, disposição da legenda, existência de "quadriculado" no gráfico, dentre outras diversas coisas.

Temas básicos disponíveis no ggplot2

▶ A biblioteca ggplot2 vem com 8 temas gráficos de fábrica. Seus nomes, bem como suas características podem ser vistas a seguir:

Criação de temas customizados

 Para gerar temas gráficos, criamos funções com os parâmetros gráficos de interesse dentro delas. Um exemplo extremamente simples mas que já deixa a visualização mais bacana é:

no qual alteramos a família e tamanho da fonte 4 dos gráficos, utilizando o tema base theme_bw disponível no ggplot2 como «molde» 5 do nosso tema. No próximo slide temos o resultado dessas mudanças:

⁴Lidar com fontes pode ser complicado! Uma boa discussão sobre o assunto pode ser em: https://stackoverflow.com/questions/34522732/changing-fonts-in-ggplot2.

⁵Ou seja, as características que não forem alteradas pela função serão herdadas do tema clássico.

Resultado

Parâmetros importantes

▶ A seguir, utilizando o comando ?ggplot2::theme, listo os parâmetros que você pode customizar para deixar o gráfico como quiser. Não deixe de consultar também a vinheta sobre os parâmetros do ggplot2 com vignette("ggplot2-specs").

```
theme(line, rect, text, title, aspect.ratio, axis.title,
 axis.title.x, axis.title.x.top,
 axis.title.x.bottom, axis.title.y, axis.title.y.left, axis.title.y.right,
 axis.text, axis.text.x, axis.text.x.top, axis.text.x.bottom, axis.text.y,
 axis.text.y.left, axis.text.y.right, axis.ticks, axis.ticks.x,
 axis.ticks.x.top, axis.ticks.x.bottom, axis.ticks.v. axis.ticks.v.left.
 axis.ticks.y.right, axis.ticks.length,
 axis.ticks.length.x. axis.ticks.length.x.top.
 axis.ticks.length.x.bottom. axis.ticks.length.v.
 axis.ticks.length.y.left, axis.ticks.length.y.right,
 axis.line. axis.line.x. axis.line.x.top. axis.line.x.bottom. axis.line.v.
 axis.line.y.left, axis.line.y.right, legend.background, legend.margin,
 legend.spacing, legend.spacing.x, legend.spacing.v, legend.kev,
 legend.key.size, legend.key.height, legend.key.width, legend.text,
 legend.text.align. legend.title, legend.title.align. legend.position.
 legend.direction, legend.justification, legend.box, legend.box.just.
 legend.box.margin, legend.box.background, legend.box.spacing.
 panel.background, panel.border, panel.spacing, panel.spacing.x.
 panel.spacing.y, panel.grid, panel.grid.major,
 panel.grid.minor. panel.grid.major.x. panel.grid.major.v.
 panel.grid.minor.x, panel.grid.minor.y, panel.ontop,
 plot.background, plot.title, plot.title, position, plot.subtitle,
 plot.caption. plot.caption.position.
 plot.tag. plot.tag.position. plot.margin. strip.background.
 strip.background.x, strip.background.y,
 strip.placement, strip.text, strip.text.x, strip.text.y,
 strip.switch.pad.grid, strip.switch.pad.wrap,
 complete = FALSE, validate = TRUE)
```

Funcionalidade avançada

Após criar seu tema personalizado, é interessante colocá-lo em um script separado e, fazendo uso do comando source, importá-lo no início de cada programa. Eu costumo ter um script chamado tema_customizado.R no diretório de trabalho. Assim, simplesmente adiciono

```
# Carregando o tema customizado para os gráficos ----
source("tema_customizado.R")
```

no início de cada *script* e garanto gráficos de alta qualidade e consistência em meus trabalhos.

RMarkdown (relatórios e slides) e dashboards (shiny)

Exemplos

- Para esses tópicos, em razão da quantidade de assunto a ser discutido e o pouco tempo disponível, optei por disponibilizar 5 exemplos de relatórios (além de um dashboard em shiny) que eu fiz utilizando R ao longo dos anos. De posse desse material de referência (e bastante pesquisa online), os discentes estarão prontos para criar seus próprios materiais quando necessário.
 - ▶ Todos se encontram na pasta Exemplos do diretório desse curso, inclusive o material necessário para recriar esses *slides* que estou apresentando.

Dúvidas?

Encerramento

Muito obrigado pela atenção e presença. Boa noite!

Um evento organizado pelo **Laboratório de Inteligência Artificial e Macroeconomia Computacional** (LABIMEC) da UFPB.