MA 126-103 — Summer 2017 — Dr. Clontz

Name:		Exercise T	Type (Cost):
J#:		In-Class	s (1AP)
Date: 2017 June 29			
Standard: This student is able to			Mark:
C08: Work. Express the wonite integral.	ork done in a system as a defi-		
4/4	* reat	tempt due on:	

A 100 pound wrecking ball hanging from a 20 foot, 40 pound cable was hoisted up from a crane. Give a definite integral equal to the work required to pull up the ball and cable. (Do not solve your integral.)

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):	
J#:	In-Class	In-Class (1AP)	
Date: 2017 June 29			
Standard: This student is able to C09: Param. Parametrize planar curves and sketch parametrized curves.		Mark:	
2/4	\star reattempt due on:		

Parametrize the line segment beginning at the point (3, -4) and ending at the point (-1, -1).

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	ype (Cost):
J#:	In-Class (1AP)	
Date: 2017 June 29		
Standard: This student is able to So9: PolarAppl. Parametrize a curve to find arclengths, surface areas, and slopes.		Mark:
1/3 * reat	tempt due on:	

The arclength of a curve parametrized by x,y in terms of t from $a \le t \le b$ is given by $\int_a^b \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, dt$. Give a definite integral equal to the length of the arc along the curve $y = x^3$ from (-1, -1) to (2, 8).