# 第三章 时序电路的分析与设计学习要求:

- 3.1 时序逻辑电路
  - > 熟悉时序电路的一般形式、分类和描述方法
  - 》 掌握时序电路双稳态元件的内部结构、逻辑符号、 次态真值表和次态方程
- 3.2 熟练掌握同步时序逻辑电路的分析和设计方法
- 3.3 掌握脉冲异步时序逻辑电路的分析和设计方法\*
- 3.4 熟练掌握常用时序中规模集成电路MSI和555定时 电路的应用

#### 3.2 同步时序电路的分析与设计

- 1. 同步时序电路的分析
- > 同步时序电路分析的一般步骤
- > 同步时序电路分析举例
- 2. 同步时序电路的设计
- > 同步时序电路设计步骤
- > 建立原始状态图和原始状态表——构图法
- 状态化简:完全给定与不完全给定同步时序电路 状态表的化简
- > 状态分配: 相邻状态分配法
- > 激励函数和输出函数的确定
- > 电路分析与说明、设计举例

#### 3.2.1 同步时序电路的分析方法



时序电路的分析是根据逻辑电路图得到反映时序电路工作特性的状态表、状态图及电路的描述。通常,工作从组合逻辑的分析着手,一般步骤如下:

(1) 列出激励函数及输出函数表达式:

激励函数 = G(输入,现态)

Mealy型输出 = F(输入,现态),

Moore型输出 = F(现态)

- (2) 根据触发器的次态方程得到各个状态的次态方程: 次态 = Q(输入,现态)
- (3) 根据状态变量的次态方程填写二进制状态表。
- (4) 根据输出表达式填写输出值,得到二进制状态输出表。
- (5) 每一个状态分配一个字母状态名,从而得到状态 输出表。
- (6) 根据状态输出表, 画出状态图。
- (7) 电路特性描述,确定电路的逻辑功能。

#### 例1 分析如图所示电路的特性。(书例3-1)



**CLK** 

用D触发器组成的Mealy型电路

#### 分析步骤如下:

(1) 列出激励函数及输出函数表达式:

$$\mathbf{D}_{0} = \mathbf{X}\overline{\mathbf{Q}}_{0} + \overline{\mathbf{X}}\mathbf{Q}_{0}$$

$$\mathbf{D}_{1} = \overline{\mathbf{X}}\mathbf{Q}_{1} + \mathbf{X}\overline{\mathbf{Q}}_{1}\mathbf{Q}_{0} + \mathbf{X}\mathbf{Q}_{1}\overline{\mathbf{Q}}_{0}$$

$$\mathbf{Z} = \mathbf{X}\mathbf{Q}_{1}\mathbf{Q}_{0}$$

(2) 写出各状态变量的次态方程。

由 D触发器的次态方程: () n+1=D, 可得:

$$Q_0^{n+1} = D_0$$
  $Q_1^{n+1} = D_1$ 

代入 $D_0$ ,  $D_1$ , 则表达式为:

$$\frac{\mathbf{Q}_0^{\mathbf{n+1}} = \mathbf{X} \mathbf{Q}_0 + \mathbf{X} \mathbf{Q}_0}{\mathbf{Q}_1^{\mathbf{n+1}} = \mathbf{X} \mathbf{Q}_1 + \mathbf{X} \mathbf{Q}_1 \mathbf{Q}_0 + \mathbf{X} \mathbf{Q}_1 \mathbf{Q}_0}$$

- (3) 填写二进制状态表, 见表(a)。
- (4) 填写二进制状态输出表,见表(b)。

#### 用激励/转换表导出状态表:

| $X Q_1 Q_0$ | $D_1 D_0$ | $Q_1^{n+1} \ Q_0^{n+1}$ | Z |
|-------------|-----------|-------------------------|---|
| 0 0 0       | 0 0       | 0 0                     | 0 |
| 0 01        | 0 1       | 0 1                     | 0 |
| 0 10        | 1 0       | 1 0                     | 0 |
| 0 11        | 1 1       | 1 1                     | 0 |
| 1 00        | 0 1       | 0 1                     | 0 |
| 1 01        | 1 0       | 1 0                     | 0 |
| 1 10        | 1 1       | 1 1                     | 0 |
| 1 11        | 0 0       | 0 0                     | 1 |

- ① 先填 D ② 再填 Qn+1 ③ 最后填 Z
- ④ 分析输入 x 、现态Q 与次态Q<sup>n+1</sup>、 输出 Z 的关系

#### (a) 二进制状态表

| $Q_1Q_0$              | 0  | 1  |  |
|-----------------------|----|----|--|
| 00                    | 00 | 01 |  |
| 01                    | 01 | 10 |  |
| 10                    | 10 | 11 |  |
| 11                    | 11 | 00 |  |
| $Q_1^{n+1} Q_0^{n+1}$ |    |    |  |

#### (b) 二进制状态/输出表

| $Q_1Q_0$ | 0    | 1           |
|----------|------|-------------|
| 00       | 00/0 | 01/0        |
| 01       | 01/0 | <b>10/0</b> |
| 10       | 10/0 | 11/0        |
| 11       | 11/0 | 00/1        |

$$Q_1^{n+1} Q_0^{n+1} / Z$$

#### (a) 二进制状态表

| 0  | 1              |
|----|----------------|
| 00 | 01             |
| 01 | 10             |
| 10 | 11             |
| 11 | 00             |
|    | 00<br>01<br>10 |

$$Q_1^{n+1} Q_0^{n+1}$$

#### (b) 二进制状态/输出表

| $Q_1Q_0$ X | 0      | 1    |
|------------|--------|------|
| 00         | 00/0   | 01/0 |
| 01         | 01/0   | 10/0 |
| 10         | 10/0   | 11/0 |
| 11         | 11/0   | 00/1 |
|            | .1 5.1 |      |

$$Q_1^{n+1} \ Q_0^{n+1} \ / Z$$

#### (c) 状态/输出表

| SX | 0           | 1           |
|----|-------------|-------------|
| A  | <b>A/0</b>  | <b>B</b> /0 |
| В  | <b>B</b> /0 | <b>C</b> /0 |
| C  | <b>C</b> /0 | <b>D</b> /0 |
| D  | <b>D</b> /0 | <b>A/1</b>  |
|    |             |             |

 $S^{n+1}/Z$ 

#### (5) 写出状态/输出表

设定 00 = A, 01 = B, 10 = C, 11 = D

则可得到状态输出表(c),

其中: S-现态 Sn+1-次态。

(6) 根据状态输出表画出状态图,

见图(d)。



#### (7) 电路特性描述

由状态图可看出,此电路功能为:当输入4个"1"时,输出为1。 假设从初态A开始,输入X为:10110010

按照状态图列出状态响应序列如下:

| 时钟节拍  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
|-------|---|---|---|---|---|---|---|---|--|
| X     | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |  |
| S     | A | B | B | C | D | D | D | A |  |
| S n+1 | B | B | C | D | D | D | A | A |  |
| Z     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |  |

在上述分析中,没有考虑触发是前沿触发还是后沿触发, 也没有考虑输入是脉冲还是电平。可根据逻辑电路中所用的触 发器类型及输入信号说明,按照上述状态响应序列画出时序波 形图。









#### 例2 分析如图所示电路。



用JK触发器组成的Moore型电路

#### 分析步骤如下:

(1) 列出激励函数及输出函数表达式:

$$J_0 = x \cdot \overline{y}$$

$$K_0 = x \cdot \overline{y} + y \cdot Q_1$$

$$J_1 = x \cdot Q_0 + y$$

$$K_1 = y \cdot \overline{Q}_0 + x \cdot \overline{y} \cdot Q_0$$

$$Z = Q_1 \cdot Q_0 + \overline{Q}_1 \cdot \overline{Q}_0$$

(2) 列出状态变量的次态方程:  $Q^{n+1} = J\overline{Q} + \overline{K}Q$ , 可得:

$$\begin{aligned} \mathbf{Q}_{0}^{n+1} &= \mathbf{J}_{0} \bullet \overline{\mathbf{Q}}_{0} + \overline{\mathbf{K}}_{0} \bullet \mathbf{Q}_{0} \\ &= \mathbf{x} \bullet \overline{\mathbf{y}} \bullet \overline{\mathbf{Q}}_{0} + \overline{\mathbf{x}} \bullet \overline{\mathbf{y}} \bullet \mathbf{Q}_{0} + \overline{\mathbf{x}} \bullet \overline{\mathbf{Q}}_{1} \bullet \mathbf{Q}_{0} + \mathbf{y} \bullet \overline{\mathbf{Q}}_{1} \bullet \mathbf{Q}_{0} \\ \mathbf{Q}_{1}^{n+1} &= \mathbf{J}_{1} \bullet \overline{\mathbf{Q}}_{1} + \overline{\mathbf{K}}_{1} \bullet \mathbf{Q}_{1} \\ &= \mathbf{x} \bullet \overline{\mathbf{Q}}_{1} \bullet \mathbf{Q}_{0} + \mathbf{y} \bullet \overline{\mathbf{Q}}_{1} + \overline{\mathbf{x}} \bullet \overline{\mathbf{y}} \bullet \mathbf{Q}_{1} + \overline{\mathbf{y}} \bullet \mathbf{Q}_{1} \bullet \overline{\mathbf{Q}}_{0} \\ &+ \mathbf{y} \bullet \mathbf{Q}_{1} \bullet \mathbf{Q}_{0} + \overline{\mathbf{x}} \bullet \mathbf{Q}_{1} \bullet \mathbf{Q}_{0} \end{aligned}$$

| $\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$ | $\mathbf{J}_1 \ \mathbf{K}_1 \ \mathbf{J}_0 \ \mathbf{K}_0$ |
|---------------------------------------------------|-------------------------------------------------------------|
| 00 00                                             | 0                                                           |
| 00 01                                             | 0                                                           |
| 00 10                                             | 0                                                           |
| 00 11                                             | 0                                                           |
| 01 00                                             | 1                                                           |
| [ ] 01 01                                         | 1                                                           |
| 01 10                                             | 1                                                           |
| 01 11                                             | 1                                                           |
| 10 00                                             | 0                                                           |
| 10 01                                             | 1                                                           |
| 10 10                                             | 0                                                           |
| 10 11                                             | 1                                                           |
| 11 00                                             | 1                                                           |
| 11 01                                             | 1                                                           |
| 11 10                                             | 1                                                           |
| 11 11                                             | 1                                                           |

$$J_0 = \mathbf{x} \cdot \overline{\mathbf{y}}$$

$$\mathbf{K}_0 = \mathbf{x} \cdot \overline{\mathbf{y}} + \mathbf{y} \cdot \mathbf{Q}_1$$

$$J_1 = \mathbf{x} \cdot \mathbf{Q}_0 + \mathbf{y}$$

$$\mathbf{K}_1 = \mathbf{y} \cdot \overline{\mathbf{Q}}_0 + \mathbf{x} \cdot \overline{\mathbf{y}} \cdot \mathbf{Q}_0$$

$$\mathbf{Z} = \mathbf{Q}_1 \cdot \mathbf{Q}_0 + \overline{\mathbf{Q}}_1 \cdot \overline{\mathbf{Q}}_0$$

| $\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$ | $\mathbf{J_1} \ \mathbf{K_1} \ \mathbf{J_0} \ \mathbf{K_0}$ |
|---------------------------------------------------|-------------------------------------------------------------|
| 0 0 0 0                                           | 0 0                                                         |
| 00 01                                             | 0 0                                                         |
| 00 10                                             | 0 0                                                         |
| 00 11                                             | 0 0                                                         |
| 01 00                                             | 1 1                                                         |
| 01 01                                             | 1 0                                                         |
| 01 10                                             | 1 1                                                         |
| 01 11                                             | 1 0                                                         |
| 10 00                                             | 0 0                                                         |
| 10 01                                             | 1 1                                                         |
| 10 10                                             | 0 0                                                         |
| 10 11                                             | 1 1                                                         |
| 11 00                                             | 1 1                                                         |
| 11 01                                             | 1 0                                                         |
| 11 10                                             | 1 1                                                         |
| 11 11                                             | 1 0                                                         |

$$J_{0} = x \cdot \overline{y}$$

$$K_{0} = x \cdot \overline{y} + y \cdot Q_{1}$$

$$J_{1} = x \cdot Q_{0} + y$$

$$K_{1} = y \cdot \overline{Q}_{0} + x \cdot \overline{y} \cdot Q_{0}$$

$$Z = Q_{1} \cdot Q_{0} + \overline{Q}_{1} \cdot \overline{Q}_{0}$$

| $\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$ | $J_1 K_1$ | $J_0 K_0$ |
|---------------------------------------------------|-----------|-----------|
| 00 00                                             | 0 0       | 0         |
| 00 01                                             | 0 0       | 0         |
| 00 10                                             | 0 0       | 0         |
| 00 11                                             | 0 0       | 0         |
| 01 00                                             | 1 1       | 0         |
| 01 01                                             | 1 0       | 0         |
| 01 10                                             | 1 1       | 0         |
| 01 11                                             | 1 0       | 0         |
| 10 00                                             | 0 0       | 1         |
| 10 01                                             | 1 1       | 1         |
| 10 10                                             | 0 0       | 1         |
| 10 11                                             | 1 1       | 1         |
| 11 00                                             | 1 1       | 0         |
| 11 01                                             | 1 0       | 0         |
| 11 10                                             | 1 1       | 0         |
| 11 11                                             | 1 0       | 0         |

$$J_0 = \mathbf{x} \cdot \overline{\mathbf{y}}$$

$$\mathbf{K}_0 = \mathbf{x} \cdot \overline{\mathbf{y}} + \mathbf{y} \cdot \mathbf{Q}_1$$

$$J_1 = \mathbf{x} \cdot \mathbf{Q}_0 + \mathbf{y}$$

$$\mathbf{K}_1 = \mathbf{y} \cdot \overline{\mathbf{Q}}_0 + \mathbf{x} \cdot \overline{\mathbf{y}} \cdot \mathbf{Q}_0$$

$$\mathbf{Z} = \mathbf{Q}_1 \cdot \mathbf{Q}_0 + \overline{\mathbf{Q}}_1 \cdot \overline{\mathbf{Q}}_0$$

| $\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$ | $\mathbf{J_1} \ \mathbf{K_1} \ \mathbf{J_0} \ \mathbf{K_0}$ |
|---------------------------------------------------|-------------------------------------------------------------|
| 0 0 0 0                                           | 0 0 0 0                                                     |
| 00 01                                             | 0 0 0 0                                                     |
| 00 10                                             | 0 0 0 0                                                     |
| 00 11                                             | 0 0 0 0                                                     |
| 01 00                                             | 1 1 0 0                                                     |
| 01 01                                             | 1  0  0  0                                                  |
| 01 10                                             | 1 1 0 1                                                     |
| 01 11                                             | 1  0  0  1                                                  |
| 10 00                                             | 0 0 1 1                                                     |
| 10 01                                             | 1111                                                        |
| 10 10                                             | $0 \ 0 \ 1 \ 1$                                             |
| 10 11                                             | 1111                                                        |
| 11 00                                             | 1 1 0 0                                                     |
| 11 01                                             | 1  0  0  0                                                  |
| 11 10                                             | 1 1 0 1                                                     |
| 11 11                                             | 1001                                                        |

$$J_{0} = x \cdot \overline{y}$$

$$K_{0} = x \cdot \overline{y} + y \cdot Q_{1}$$

$$J_{1} = x \cdot Q_{0} + y$$

$$K_{1} = y \cdot \overline{Q}_{0} + x \cdot \overline{y} \cdot Q_{0}$$

$$Z = Q_{1} \cdot Q_{0} + \overline{Q}_{1} \cdot \overline{Q}_{0}$$

| $\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$ | J <sub>1</sub> K <sub>1</sub> | $J_0 K_0$ | Z |
|---------------------------------------------------|-------------------------------|-----------|---|
| 0 0 0 0                                           | 0 0                           | 0 0       | 1 |
| $0\ 0\ 0\ 1$                                      | 0 0                           | 0 0       | 0 |
| 00 10                                             | 0 0                           | 0 0       | 0 |
| 00 11                                             | 0 0                           | 0 0       | 1 |
| 01 00                                             | 1 1                           | 0 0       | 1 |
| 01 01                                             | 1 0                           | 0 0       | 0 |
| 01 10                                             | 1 1                           | 0 1       | 0 |
| 01 11                                             | 1 0                           | 0 1       | 1 |
| 10 00                                             | 0 0                           | 1 1       | 1 |
| 10 01                                             | 1 1                           | 1 1       | 0 |
| 10 10                                             | 0 0                           | 1 1       | 0 |
| 10 11                                             | 1 1                           | 1 1       | 1 |
| 11 00                                             | 1 1                           | 0 0       | 1 |
| 11 01                                             | 1 0                           | 0 0       | 0 |
| 11 10                                             | 1 1                           | 0 1       | 0 |
| 11 11                                             | 1 0                           | 0 1       | 1 |

$$J_0 = \mathbf{x} \cdot \overline{\mathbf{y}}$$

$$\mathbf{K}_0 = \mathbf{x} \cdot \overline{\mathbf{y}} + \mathbf{y} \cdot \mathbf{Q}_1$$

$$J_1 = \mathbf{x} \cdot \mathbf{Q}_0 + \mathbf{y}$$

$$\mathbf{K}_1 = \mathbf{y} \cdot \overline{\mathbf{Q}}_0 + \mathbf{x} \cdot \overline{\mathbf{y}} \cdot \mathbf{Q}_0$$

$$\mathbf{Z} = \mathbf{Q}_1 \cdot \mathbf{Q}_0 + \overline{\mathbf{Q}}_1 \cdot \overline{\mathbf{Q}}_0$$

| $\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$ | J <sub>1</sub> K <sub>1</sub> | $J_0 K_0$ | Z |
|---------------------------------------------------|-------------------------------|-----------|---|
| 0 0 0 0                                           | 0 0                           | 0 0       | 1 |
| $0\ 0\ 0\ 1$                                      | 0 0                           | 0 0       | 0 |
| 00 10                                             | 0 0                           | 0 0       | 0 |
| 00 11                                             | 0 0                           | 0 0       | 1 |
| 01 00                                             | 1 1                           | 0 0       | 1 |
| 01 01                                             | 1 0                           | 0 0       | 0 |
| 01 10                                             | 1 1                           | 0 1       | 0 |
| 01 11                                             | 1 0                           | 0 1       | 1 |
| 10 00                                             | 0 0                           | 1 1       | 1 |
| 10 01                                             | 1 1                           | 1 1       | 0 |
| 10 10                                             | 0 0                           | 1 1       | 0 |
| 10 11                                             | 1 1                           | 1 1       | 1 |
| 11 00                                             | 1 1                           | 0 0       | 1 |
| 11 01                                             | 1 0                           | 0 0       | 0 |
| 11 10                                             | 1 1                           | 0 1       | 0 |
| 11 11                                             | 1 0                           | 0 1       | 1 |

$$J_0 = \mathbf{x} \cdot \overline{\mathbf{y}}$$

$$\mathbf{K}_0 = \mathbf{x} \cdot \overline{\mathbf{y}} + \mathbf{y} \cdot \mathbf{Q}_1$$

$$J_1 = \mathbf{x} \cdot \mathbf{Q}_0 + \mathbf{y}$$

$$\mathbf{K}_1 = \mathbf{y} \cdot \overline{\mathbf{Q}}_0 + \mathbf{x} \cdot \overline{\mathbf{y}} \cdot \mathbf{Q}_0$$

$$\mathbf{Z} = \mathbf{Q}_1 \cdot \mathbf{Q}_0 + \overline{\mathbf{Q}}_1 \cdot \overline{\mathbf{Q}}_0$$

| x y | $\mathbf{Q}_1$ | $\mathbf{Q}_{0}$ | $J_1 K_1$ | $J_0 K_0$ | Z | $Q_1^{n+1}$ | $Q_0^{n+1}$ |
|-----|----------------|------------------|-----------|-----------|---|-------------|-------------|
| 0 0 | 0              | 0                | 0 0       | 0 0       | 1 | 0           |             |
| 0 0 | 0              | 1                | 0 0       | 0 0       | 0 | 0           |             |
| 00  | 1              | 0                | 0 0       | 0 0       | 0 | 1           |             |
| 0 0 | 1              | 1                | 0 0       | 0 0       | 1 | 1           |             |
| 01  | 0              | 0                | 11        | 0 0       | 1 | 1           |             |
| 01  | 0              | 1                | 10        | 0 0       | 0 | 1           |             |
| 01  | 1              | 0                | 11        | 0 1       | 0 | 0           |             |
| 01  | 1              | 1                | 10        | 0 1       | 1 | 1           |             |
| 10  | 0              | 0                | 0 0       | 1 1       | 1 | 0           |             |
| 10  | 0              | 1                | 11        | 1 1       | 0 | 1           |             |
| 10  | 1              | 0                | 0 0       | 1 1       | 0 | 1           |             |
| 10  | 1              | 1                | 11        | 1 1       | 1 | 0           |             |
| 11  | 0              | 0                | 11        | 0 0       | 1 | 1           |             |
| 11  | 0              | 1                | 10        | 0 0       | 0 | 1           |             |
| 11  | 1              | 0                | 11        | 0 1       | 0 | 0           |             |
| 11  | 1              | 1                | 10        | 0 1       | 1 | 1           |             |

#### 次态真值表

| J | K | Q <sup>n+1</sup>        |
|---|---|-------------------------|
| 0 | 0 | Q                       |
| 0 | 1 | 0                       |
| 1 | 0 | 1                       |
| 1 | 1 | $\overline{\mathbf{Q}}$ |

| x y | $\mathbf{Q}_1$ | $Q_0$ | $J_1 K_1$ | $J_0 K_0$ | Z | $Q_1^{n+1}$ | $Q_0^{n+1}$ |
|-----|----------------|-------|-----------|-----------|---|-------------|-------------|
| 0 0 | 0              | 0     | 0 0       | 0 0       | 1 | 0           | 0           |
| 00  | 0              | 1     | 0 0       | 0 0       | 0 | 0           | 1           |
| 00  | 1              | 0     | 0 0       | 0 0       | 0 | 1           | 0           |
| 00  | 1              | 1     | 0 0       | 0 0       | 1 | 1           | 1           |
| 01  | 0              | 0     | 11        | 0 0       | 1 | 1           | 0           |
| 01  | 0              | 1     | 10        | 0 0       | 0 | 1           | 1           |
| 01  | 1              | 0     | 11        | 0 1       | 0 | 0           | 0           |
| 01  | 1              | 1     | 10        | 0 1       | 1 | 1           | 0           |
| 10  | 0              | 0     | 0 0       | 1 1       | 1 | 0           | 1           |
| 10  | 0              | 1     | 11        | 1 1       | 0 | 1           | 0           |
| 10  | 1              | 0     | 0 0       | 1 1       | 0 | 1           | 1           |
| 10  | 1              | 1     | 11        | 1 1       | 1 | 0           | 0           |
| 11  | 0              | 0     | 11        | 0 0       | 1 | 1           | 0           |
| 11  | 0              | 1     | 10        | 0 0       | 0 | 1           | 1           |
| 11  | 1              | 0     | 11        | 0 1       | 0 | 0           | 0           |
| 11  | 1              | 1     | 10        | 0 1       | 1 | 1           | 0           |

#### 次态真值表

| J | K | Q <sup>n+1</sup>        |
|---|---|-------------------------|
| 0 | 0 | Q                       |
| 0 | 1 | 0                       |
| 1 | 0 | 1                       |
| 1 | 1 | $\overline{\mathbf{Q}}$ |

## (3) 用激励/转换表平出状态表:(a) 二进制状态表

| $\mathbf{x} \mathbf{y} \mathbf{Q}_1 \mathbf{Q}_0$ | $\mathbf{J_1} \ \mathbf{K_1} \ \mathbf{J_0} \ \mathbf{K_0}$ | Z | $Q_1^{n+1} \ Q_0^{n+1}$ |
|---------------------------------------------------|-------------------------------------------------------------|---|-------------------------|
| 00 00                                             | 0 0 0 0                                                     | 1 | 0 0                     |
| 00 01                                             | $0 \ 0 \ 0 \ 0$                                             | 0 | 0 1                     |
| 00 10                                             | 0 0 0 0                                                     | 0 | 1 0                     |
| 00 11                                             | 0 0 0 0                                                     | 1 | 1 1                     |
| 01 00                                             | 1 1 0 0                                                     | 1 | 1 0                     |
| 01 01                                             | 1 0 0 0                                                     | 0 | 1 1                     |
| 01 10                                             | 1 1 0 1                                                     | 0 | 0 0                     |
| 01 11                                             | 1 0 0 1                                                     | 1 | 1 0                     |
| 1000                                              | 0 0 1 1                                                     | 1 | 0 1                     |
|                                                   | 1 1 1 1                                                     | 0 | 1 0                     |
| 10 10                                             | 0 0 1 1                                                     | 0 | 1 1                     |
| 10 11                                             | 1 1 1 1                                                     | 1 | 0 0                     |
| 11 00                                             | 1 1 0 0                                                     | 1 | 1  0                    |
| 11 01                                             | 1 0 0 0                                                     | 0 | 11                      |
| 11 10                                             | 1 1 0 1                                                     | 0 | 0 0                     |
| 1 11                                              | 1 0 0 1                                                     | 1 | 1 0                     |

| $Q_1Q_0$              | 00 01 10 11 |  |  |  |
|-----------------------|-------------|--|--|--|
| 00                    | 00 10 01 10 |  |  |  |
| 01                    | 01 11 10 11 |  |  |  |
| 10                    | 10 00 11 00 |  |  |  |
| 11                    | 11 10 00 10 |  |  |  |
| $Q_1^{n+1} Q_0^{n+1}$ |             |  |  |  |

## (b) 二进制状态/输出表

| $Q_1Q_0$ | 00 01 10 11 | Z |
|----------|-------------|---|
| 00       | 00 10 01 10 | 1 |
| 01       | 01 11 10 11 | 0 |
| 10       | 10 00 11 00 | 0 |
| 11       | 11 10 00 10 | 1 |

 $Q_1^{n+1} Q_0^{n+1} / Z$ 

#### 用激励/转换表还可得到(2)中的次态方程



| $Q_1Q_0$ | 00 01 11 10                                            |
|----------|--------------------------------------------------------|
| 00       | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |
| 01       | 1110                                                   |
| 11       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |
| 10       | 0  0  0  1                                             |
|          | $Q_0^{n+1}$                                            |

$$\begin{aligned} \mathbf{Q}_{0}^{n+1} &= \mathbf{J}_{0} \bullet \overline{\mathbf{Q}}_{0} + \overline{\mathbf{K}}_{0} \bullet \mathbf{Q}_{0} \\ &= \mathbf{x} \bullet \overline{\mathbf{y}} \bullet \overline{\mathbf{Q}}_{0} + \overline{\mathbf{x}} \bullet \overline{\mathbf{y}} \bullet \mathbf{Q}_{0} + \overline{\mathbf{x}} \bullet \overline{\mathbf{Q}}_{1} \bullet \mathbf{Q}_{0} + \mathbf{y} \bullet \overline{\mathbf{Q}}_{1} \bullet \mathbf{Q}_{0} \\ \mathbf{Q}_{1}^{n+1} &= \mathbf{J}_{1} \bullet \overline{\mathbf{Q}}_{1} + \overline{\mathbf{K}}_{1} \bullet \mathbf{Q}_{1} \\ &= \mathbf{x} \bullet \overline{\mathbf{Q}}_{1} \bullet \mathbf{Q}_{0} + \mathbf{y} \bullet \overline{\mathbf{Q}}_{1} + \overline{\mathbf{x}} \bullet \overline{\mathbf{y}} \bullet \mathbf{Q}_{1} + \overline{\mathbf{y}} \bullet \mathbf{Q}_{1} \bullet \overline{\mathbf{Q}}_{0} \\ &+ \mathbf{y} \bullet \mathbf{Q}_{1} \bullet \mathbf{Q}_{0} + \overline{\mathbf{x}} \bullet \mathbf{Q}_{1} \bullet \mathbf{Q}_{0} \end{aligned}$$

#### (4) 画状态图



#### (5) 电路特性说明:

此时序电路有 4 个状态, 状态之间的转换由x、y 控制:

- ① 当 xy = 00 时,原状态保持不变;
- ② 当 xy = 10 时,状态在 $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ 循环,并在A、D状态时输出1。

#### (4) 画状态图



- (5) 电路特性说明:
- ③ 当 xy 为 01, 11 时, 状态转换顺序与起始状态有关: 若起始状态为 A 或 C, 则状态在A、C之间循环; 若起始状态为 B, 则状态将是 B → D → C → A, 然后在 A、C 之间循环。

例3 分析下图所示同步时序电路,写出激励方程、激励转换表及状态输出表,并画出状态图。(书例3-2)



由该电路图可以知道,该电路属于没有外部输出的同步时序电路。

#### 分析如下:

(1) 在图上标注各触发器的现态和激励信号, 列出激励函数及输出函数表达式:

$$J_2=X$$
,  $K_2=Q_1 \cup J_1=X$ ,  $K_1=\bar{Q}_2 \cup J_1=X$ 

练习

#### (2) 列出状态变量的次态方程:

$$Q_2^{n+1} = J_2 \cdot \overline{Q}_2 + \overline{K}_2 \cdot Q_2 = X \cdot \overline{Q}_2 + Q_2 \cdot \overline{Q}_{1+1}$$
  
 $Q_1^{n+1} = J_1 \cdot \overline{Q}_1 + \overline{K}_1 \cdot Q_1 = X \cdot \overline{Q}_1 + Q_2 \cdot Q_1$ 

(3) 列出二进制状态表,见表(a)。上述步骤(2)、(3),也可用激励转换表一次完成,见表(b)。

| X        |    | MIC CO. NO. 36.3 | $XQ_2Q_1$ | $J_2K_2J_1K_1$ | $Q_2^{n+1}Q_1^{n+}$ |
|----------|----|------------------|-----------|----------------|---------------------|
| $Q_2Q_1$ | 0  | 1                | 000       | 0001           | 00                  |
| 2221     | 1  |                  | 001       | 0101           | 00                  |
| 00       | 00 | 11               | 010       | 0000           | 10                  |
| 01       | 00 | 10               | 011       | 0100           | 01                  |
| 01       | 00 | 10               | 100       | 1011           | 11                  |
| 11       | 01 | 01               | 101 .     | 1111           | 10                  |
| 10       | 10 |                  | 110       | 1010           | 11                  |
| 10       | 10 | - 11             | 111       | 1110           | 01                  |

表 (a)

表 (b)

练习

(4) 列出状态输出表,画出状态图。设定: 00=A,01=B,10=C,11=D,根据二进制状态表填写状态输出表,见表(c);画出状态图,如图(d)所示。

| <i>X Q</i> 2 <i>Q</i> 1 | 0.,           | 1.,           |
|-------------------------|---------------|---------------|
| A.,                     | $A_{\cdot 1}$ | D.1           |
| <b>B</b> .1             | $A_{\cdot 1}$ | C.,           |
| $D_{\cdot 1}$           | <b>B</b> .1   | B.,           |
| C.,                     | C.,           | $D_{\cdot 1}$ |
| <br>表                   | (c)           |               |



(5) 电路特性说明。

由状态图可知,此时序电路有4个状态,状态之间的转换顺序 由输入X 控制:

当X为 0 时,在时钟脉冲作用下,原状态为A、C保持不变, 原状态为B其次态为A,原状态为D其次态为B;

当X为 1 时, 在时钟脉冲上升沿触发下, 状态在  $A \rightarrow D \rightarrow B \rightarrow C \rightarrow D$ ,接着在 $D \rightarrow B \rightarrow C \rightarrow D$ 中循环。

读者可自行绘制电平或脉冲序列的状态及输出波形时序图。



### 3.2.2 同步时序电路的设计

同步时序电路分析与设计的比较:

设计过程

分析过程

逻辑电路图

逻辑表达式

二进制状态表

状态表

状态图

功能特性描述

5、画出逻辑电路图

4、选择触发器,确定激励函数 和输出函数

3、状态分配求得二进制状态表

2、状态化简求得最简状态表

1、建立原始状态图和状态表

#### 1. 建立原始状态图(表)

- 建立原始状态表的关键是确定以下三个问题:
  - 1、所描述的电路应包括多少状态?
  - 2、状态之间的转换关系如何?
  - 3、输出情况如何?
- 设计要求: 确保逻辑功能的正确性
- 设计方法:直接构图(表)法

#### 直接构图法的基本思想:

根据文字描述的设计要求,先假设一个初态,然后从这个初态出发,每加入一个输入就确定其次态。该次态可能是现态本身、或另一个已有的状态、或者新增加的状态。不断重复这个过程,直至每一个现态向次态的转换都已被确定且不再产生新的状态。

#### • 设计方法:

- 1. 先确定是哪种类型的电路(Mealy、Moore);
- 2. 假设一个初始状态;
- 3. 考虑接收到一个新的输入组合时,确定它的次态。是不是现态?是不是另一个已经存在的状态?还是应该建立一个新的状态? 即当输入信号为n位时,则每个状态发出2n条带箭头线;
- 4. 检查满足要求: 重复上述过程, 直至每一个现态向次态的转换都已被确定且不再产生新的状态。

由于状态图比状态表更直观, 因此一般先导出状态图。对于 比较明确的问题,也可直接写 出状态表。 例1.1 设计一个六进制可逆计数器, 当输入人为0时, 加1计数; 当输入x为1时, 减1计数。 (书例3-3)

由题意可知,该电路是一个没有输出的同步时序电路,状态数是6个,假设状态名为 $S_i(i=0,1,\cdots,5)$ 分别表示 $0\sim5$ 共6个计数值,则可直接写出原始状态表,见表3.6。

| $\mathcal{X}$ | 0     | 1     |
|---------------|-------|-------|
| $S_0$         | $S_1$ | $S_5$ |
| $S_1$         | $S_2$ | $S_0$ |
| $S_2$         | $S_3$ | $S_1$ |
| $S_3$         | $S_4$ | $S_2$ |
| $S_4$         | $S_5$ | $S_3$ |
| $S_5$         | $S_0$ | $S_4$ |

例1.2 设计一个五进制可逆计数器。当输入x为0时, 加1计数;x为1时,减1计数。

#### 1、画出原始状态图



#### 2、写出原始状态表

| yX             | 0                 | 1                 |
|----------------|-------------------|-------------------|
| $S_0$          | S <sub>1</sub> /0 | S <sub>4</sub> /1 |
| $\mathbf{S}_1$ | S <sub>2</sub> /0 | $S_0/0$           |
| $S_2$          | S <sub>3</sub> /0 | S <sub>1</sub> /0 |
| $S_3$          | S <sub>4</sub> /0 | S <sub>2</sub> /0 |
| $S_4$          | S <sub>0</sub> /1 | S <sub>3</sub> /0 |

例 2 设计一个 "1101"序列检测器。当输入 x 连续出现 "1101" (或在出现 "1101"后, x 一直保持为1)时, 输出 Z=1; 否则 Z=0。

#### 1、画出原始状态图



#### 2、写出原始状态表

| y                 | 0                | 1                 | Z |
|-------------------|------------------|-------------------|---|
| $S_0$             | $S_0$            | $S_1$             | 0 |
| $S_1$             | $S_0$            | S <sub>11</sub>   | 0 |
| S <sub>11</sub>   | S <sub>110</sub> | S <sub>11</sub>   | 0 |
| S <sub>110</sub>  | $S_0$            | S <sub>1101</sub> | 0 |
| S <sub>1101</sub> | $S_0$            | S <sub>1101</sub> | 1 |

例 2 设计一个"1101"序列检测器。当输入 x 连续出现"1101"(或在出现"1101"后, x 一直保持为1)时,输出 Z=1; 否则 Z=0。

### 1、画出原始状态图

# 2、写出原始状态表



| yX                | 0                   | 1                    |
|-------------------|---------------------|----------------------|
| $S_0$             | $S_0/0$             | S <sub>1</sub> /0    |
| $\mathbf{S}_{1}$  | $S_0/0$             | S <sub>11</sub> /0   |
| S <sub>11</sub>   | S <sub>110</sub> /0 | S <sub>11</sub> /0   |
| S <sub>110</sub>  | $S_0/0$             | S <sub>1101</sub> /1 |
| S <sub>1101</sub> | $S_0/0$             | S <sub>1101</sub> /1 |

## 3、化简原始状态表

由于S<sub>110</sub>和S<sub>1101</sub>的次态和输出完全一样,则可以合并。

| yX               | 0                   | 1                   |
|------------------|---------------------|---------------------|
| $S_0$            | $S_0/0$             | S <sub>1</sub> /0   |
| $S_1$            | $S_0/0$             | S <sub>11</sub> /0  |
| S <sub>11</sub>  | S <sub>110</sub> /0 | S <sub>11</sub> /0  |
| S <sub>110</sub> | S <sub>0</sub> /0   | S <sub>110</sub> /1 |



## Mealy型电路设计 比较 Moore型电路设计

| yX                | 0                   | 1                    |
|-------------------|---------------------|----------------------|
| $\mathbf{S_0}$    | $S_0/0$             | $S_1/0$              |
| $\mathbf{S}_1$    | S <sub>0</sub> /0   | S <sub>11</sub> /0   |
| S <sub>11</sub>   | S <sub>110</sub> /0 | S <sub>11</sub> /0   |
| S <sub>110</sub>  | $S_0/0$             | S <sub>1101</sub> /1 |
| S <sub>1101</sub> | $S_0/0$             | $S_{1101}/1$         |

| yX                | 0                | 1                 | Z |
|-------------------|------------------|-------------------|---|
| $S_0$             | $S_0$            | $S_1$             | 0 |
| $S_1$             | $S_0$            | S <sub>11</sub>   | 0 |
| S <sub>11</sub>   | S <sub>110</sub> | S <sub>11</sub>   | 0 |
| S <sub>110</sub>  | $S_0$            | S <sub>1101</sub> | 0 |
| S <sub>1101</sub> | $S_0$            | S <sub>1101</sub> | 1 |

例 3 设计一个同步时序电路,此电路有两个输入 X 和 y 及一个输出 Z。如果 x 连续两次输入同样的值时,输出 Z=1,并且在此之后如果 y 输入一直保持为 1,则输出 Z 保持为 1;否则,输出 Z=0。(为例3-4对应的Moore型)





例 3 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z 。如果 x 连续两次输入同样的值时,输出 z = 1,并且在此之后如果 y 输入一直保持为 1,则输出 z 保持为 1;否则,输出 z = 0。(为例3-4对应的Moore型)





例 3 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z 。如果 x 连续两次输入同样的值时,输出 z = 1,并且在此之后如果 y 输入一直保持为 1,则输出 z 保持为 1;否则,输出 z = 0。(书例3-4对应的Moore型)





例 3 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z 。如果 x 连续两次输入同样的值时,输出 z = 1,并且在此之后如果 y 输入一直保持为 1,则输出 z 保持为 1;否则,输出 z = 0。(书例3-4对应的Moore型)





例 3 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z 。如果 x 连续两次输入同样的值时,输出 z = 1,并且在此之后如果 y 输入一直保持为 1,则输出 z 保持为 1;否则,输出 z = 0。(为例3-4对应的Moore型)

1、画出原始状态图 00 01 

例 3 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z 。如果 x 连续两次输入同样的值时,输出 z = 1,并且在此之后如果 y 输入一直保持为 1,则输出 z 保持为 1;否则,输出 z = 0。(书例3-4对应的Moore型)

1、画出原始状态图 00 01 .00 00 00 10 10

例 3 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z 。如果 x 连续两次输入同样的值时,输出 z = 1,并且在此之后如果 y 输入一直保持为 1,则输出 z 保持为 1;否则,输出 z = 0。(书例3-4对应的Moore型)



例 3 设计一个同步时序电路,此电路有两个输入 x 和 y 及一个输出 z 。如果 x 连续两次输入同样的值时,输出 z=1 ,并且在此之后如果 y 输入一直保持为 1 ,则输出 z 保持为 1 ;否则,输出 z=0 。 (书例3-4对应的Moore型)



 $S_{00}$ 和 $S_0'$ 、 $S_{11}$ 和 $S_1'$ 的所有输出有向线是一样的,即次态相同。

将 $S_{00}$ 和 $S_0'$ 、 $S_{11}$ 和 $S_1'$ 分别合并成为一个状态,即状态化简。



# 2、原始状态表



| Sxy                       | 00              | 01              | 10              | 11              | Z |
|---------------------------|-----------------|-----------------|-----------------|-----------------|---|
| $\mathbf{S}_{\mathbf{I}}$ | $S_0$           | $S_0$           | $S_1$           | $S_1$           | 0 |
| $S_0$                     | S <sub>00</sub> | S <sub>00</sub> | $S_1$           | $S_1$           | 0 |
| $S_1$                     | $S_0$           | $S_0$           | S <sub>11</sub> | S <sub>11</sub> | 0 |
| S <sub>00</sub>           | S <sub>00</sub> | S <sub>00</sub> | $S_1$           | S <sub>11</sub> | 1 |
| S <sub>11</sub>           | $S_0$           | S <sub>00</sub> | S <sub>11</sub> | S <sub>11</sub> | 1 |

## 2. 状态化简

不同的状态表对应不同内部结构的逻辑电路,而同一个逻辑功能也可对应多个状态表(或逻辑电路)。状态数越少,则对应的逻辑电路越简单。

这就需要在不改变电路的外部特性的情况下,利用 状态化简技术,将原始状态表中的多余状态消去,求得 最小化状态表,这个过程称为状态化简。

最小化状态表虽然与原始状态表代表着不同内部 结构的电路,但却具有相同的功能特性,即对于所有输 入序列,它们都具有相同的输出序列。

完全给定时序电路是指其状态表中的所有次态及输出都是确定的。

不完全给定时序电路的原始状态表中次态和输出中有无关项,即不确定项。

例如,两位触发器构成的四进制计数器,和三位触发器构成的五进制计数器:

完全给定时序电 路原始状态表

|       | 0                  | 1                  |
|-------|--------------------|--------------------|
| $S_0$ | $S_1 / 0$          | $S_3/0$            |
| $S_1$ | $S_2/0$            | $S_0/1$            |
| $S_2$ | S <sub>3</sub> / 0 | S <sub>1</sub> / 0 |
| $S_3$ | S <sub>0</sub> /1  | S <sub>2</sub> / 0 |

不完全给定时序电 路原始状态表

|                  | 0                  | 1                  |
|------------------|--------------------|--------------------|
| $S_0$            | $S_1/0$            | S <sub>4</sub> /0  |
| $\mathbf{S}_{1}$ | $S_2/0$            | $S_0/1$            |
| $S_2$            | S <sub>3</sub> / 0 | S <sub>1</sub> / 0 |
| $S_3$            | S <sub>4</sub> /1  | S <sub>2</sub> / 0 |
| $S_4$            | S <sub>0</sub> / 0 | S <sub>3</sub> / 0 |
| S <sub>5</sub>   | d/d                | d/d                |
| S <sub>6</sub>   | d/d                | d/d                |
| S <sub>7</sub>   | d/d                | d/d                |

- 1) 完全给定同步时序电路状态表的化简
- > 等效的相关概念
- ① 状态等效

设:  $S_1$ 和  $S_2$ 是完全给定时序电路  $M_1$ 和  $M_2$ ( $M_1$ 和  $M_2$ 可以是同一个电路)的两个状态,作为初态同时加入任意输入序列,所产生的输出序列完全一致,则状态  $S_1$ 和  $S_2$ 是等效(或等价)的,称  $S_1$ 和  $S_2$ 是等效对,记为  $(S_1, S_2)$ 。等效状态可以合并为一个状态。

即:  $(S_1, S_2) \rightarrow S$ 

例如,某电路具有A、B、C、和D四个状态,状态表如图所示。对状态C和D,在输入为1011时状态转移及

输出如下:

|   | 0           | 1                   |
|---|-------------|---------------------|
| A | <b>A/0</b>  | <b>B</b> / <b>0</b> |
| В | <b>A</b> /0 | C / 0               |
| C | A/0         | <b>D</b> / 1        |
| D | A/0         | <b>D</b> / 1        |

两种情况下输出都是1000,新状态都是D、A、B、C。如果对"任意"输入序列,产生的输出序列都相同,则这两个状态可以合并为一个,即两者是"等效"的。

# ② 等效的传递性

如果有状态 $S_1$ 和 $S_2$ 等效,状态 $S_2$ 和 $S_3$ 等效,则状态 $S_1$ 和 $S_3$ 也等效,记为:

$$(S_1, S_2), (S_2, S_3) \rightarrow (S_1, S_3)$$

## ③ 等效类

所含状态都可以相互构成等效对的等效状态的集 合, 称为等效类。

$$\mathbb{P}: (S_1, S_2, S_3) \to (S_1, S_2)(S_2, S_3)(S_1, S_3)$$

$$(S_1, S_2)(S_2, S_3)(S_1, S_3) \to (S_1, S_2, S_3)$$

## ④ 最大等效类

在一个原始状态表中,不能被其他等效类所包含的等效类称为最大等效类。

# 产等效对的判断标准

如果两个状态,对每一组可能的输入都满足如下两个条件,则这两个状态等效。

条件1: 它们的输出完全相同identical outputs。

条件2: 它们的次态满足下列条件之一:

- ①次态相同
- ② 次态交错
- ③次态维持
- ④ 后续状态等效
- ⑤ 次态循环

# 等效关系判断条件的说明

### ① 次态相同



### ②次态交错



# 等效关系判断条件的说明

### ③次态维持



#### 4 后继状态等效



# 等效关系判断条件的说明

#### ⑤ 次态循环



图中次态的等效依赖关系

如果分别以某个状态对中的两个 状态作为初态,加入任意输入序 列,虽然产生何种状态可能不同, 但产生的状态却是属于同一状态 对,因此产生的输出序列必然相 同,故状态对为等效对。





#### 状态化简的原则:

在原始状态表中找出所有的最大等效类,并将每个最大等效类合并为一个状态。这样就可以得到简化的状态表。

| y                                 | 00   | 01   | 10   | 11   |
|-----------------------------------|------|------|------|------|
| A'                                | C'/0 | C'/0 | A'/0 | A'/0 |
| <b>B'</b>                         | B'/1 | C'/0 | D'/1 | A'/0 |
| C'                                | C'/0 | B'/0 | A'/0 | A'/0 |
| D'                                | B'/1 | A'/0 | D'/1 | A'/0 |
| E'                                | E'/0 | E'/0 | A'/0 | A'/0 |
| (A,F) $(B,C,H)$ $(D)$ $(E)$ $(G)$ |      |      |      |      |

| (A,F)        | $(\mathbf{B},\mathbf{C},\mathbf{H})$ |              | <b>(E)</b>    | <b>(G)</b>   |
|--------------|--------------------------------------|--------------|---------------|--------------|
| $\downarrow$ | $\downarrow$                         | $\downarrow$ | $\downarrow$  | $\downarrow$ |
| A'           | <b>B'</b>                            | C'           | $\mathbf{D'}$ | E'           |

| y | 00          | 01  | 10  | 11  |
|---|-------------|-----|-----|-----|
| A | D/0         | D/0 | F/0 | A/0 |
| В | <b>C</b> /1 | D/0 | E/1 | F/0 |
| C | C/1         | D/0 | E/1 | A/0 |
| D | D/0         | B/0 | A/0 | F/0 |
| E | <b>C</b> /1 | F/0 | E/1 | A/0 |
| F | D/0         | D/0 | A/0 | F/0 |
| G | G/0         | G/0 | A/0 | A/0 |
| Н | B/1         | D/0 | E/1 | A/0 |

y<sup>n+1</sup>/z

# > 利用隐含表进行状态化简

## 例 化简下图所示的原始状态表

| y            | 00          | 01          | 10          | 11         |
|--------------|-------------|-------------|-------------|------------|
| A            | <b>D</b> /0 | <b>D</b> /0 | F/0         | <b>A/0</b> |
| В            | <b>C/1</b>  | <b>D</b> /0 | <b>E/1</b>  | F/0        |
| C            | C/1         | <b>D</b> /0 | E/1         | <b>A/0</b> |
| D            | <b>D</b> /0 | <b>B</b> /0 | <b>A/0</b>  | F/0        |
| E            | C/1         | F/0         | E/1         | <b>A/0</b> |
| $\mathbf{F}$ | <b>D</b> /0 | <b>D</b> /0 | <b>A/0</b>  | F/0        |
| G            | <b>G</b> /0 | G/0         | <b>A/0</b>  | <b>A/0</b> |
| H            | <b>B</b> /1 | <b>D</b> /0 | <b>E</b> /1 | <b>A/0</b> |

 $\sqrt{n+1/2}$ 

# ① 画隐含表(缺头少尾表)

|   | A | В | C | D | E | F | G |
|---|---|---|---|---|---|---|---|
| H |   |   |   |   |   |   |   |
| G |   |   |   |   |   |   |   |
| F |   |   |   |   |   |   |   |
| E |   |   |   |   |   |   |   |
| D |   |   |   |   |   |   |   |
| C |   |   |   |   |   |   |   |
| В |   |   |   |   |   |   |   |
|   |   | , |   |   |   |   |   |

























































#### ③关联比较

X

隐含表中有三种状态结果:

X

G

"×"表示状态不等效; X B "√"表示状态等效; 2 其他情况是需要进一步确 X **AF** 定状态对是否等效。 **AF** D BD **AF** E X **DF DF** F X 1 BD **AF AF AF** G DG **BG DG** BC **AF** 

X

D

**DF** 

E

F

BC

BC

B

































# ④列出最大等效类 由关联比较得到如下 等效对:

(A,F), (B,C)

(B,H), (C,H)



X (B,C), (B,H),  $(C,H) \rightarrow (B,C,H)$ 

因而得到两个最大等效类: (A,F)和(B,C,H)

重新命名状态名

$$(A,F) \qquad (B,C,H) \qquad (D) \qquad (E) \qquad (G)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A' \qquad B' \qquad C' \qquad D' \qquad E'$$

| yX         | 00   | 01   | 10   | 11   |
|------------|------|------|------|------|
| A'         | C'/0 | C'/0 | A'/0 | A'/0 |
| <b>B</b> ' |      |      |      |      |
| C'         |      |      |      |      |
| D'         |      |      |      |      |
| E'         |      |      |      |      |

| yX | 00          | 01          | 10  | 11  |
|----|-------------|-------------|-----|-----|
| A  | <b>D</b> /0 | <b>D</b> /0 | F/0 | A/0 |
| В  | C/1         | <b>D</b> /0 | E/1 | F/0 |
| C  | C/1         | D/0         | E/1 | A/0 |
| D  | <b>D</b> /0 | B/0         | A/0 | F/0 |
| E  | C/1         | F/0         | E/1 | A/0 |
| F  | <b>D</b> /0 | D/0         | A/0 | F/0 |
| G  | G/0         | G/0         | A/0 | A/0 |
| Н  | B/1         | D/0         | E/1 | A/0 |

| y         | 00   | 01   | 10           | 11   |
|-----------|------|------|--------------|------|
| A'        | C'/0 | C'/0 | A'/0         | A'/0 |
| <b>B'</b> | B'/1 | C'/0 | <b>D</b> '/1 | A'/0 |
| C'        |      |      |              |      |
| D'        |      |      |              |      |
| E'        |      |      |              |      |

| yX | 00          | 01          | 10         | 11  |
|----|-------------|-------------|------------|-----|
| A  | <b>D</b> /0 | <b>D</b> /0 | F/0        | A/0 |
| В  | C/1         | <b>D</b> /0 | E/1        | F/0 |
| C  | C/1         | <b>D</b> /0 | E/1        | A/0 |
| D  | <b>D</b> /0 | B/0         | A/0        | F/0 |
| E  | C/1         | F/0         | E/1        | A/0 |
| F  | <b>D</b> /0 | <b>D</b> /0 | <b>A/0</b> | F/0 |
| G  | G/0         | G/0         | A/0        | A/0 |
| Н  | B/1         | <b>D</b> /0 | E/1        | A/0 |

# ④ 最小化状态表

| yX | 00   | 01   | 10           | 11   |
|----|------|------|--------------|------|
| A' | C'/0 | C'/0 | A'/0         | A'/0 |
| B' | B'/1 | C'/0 | <b>D</b> '/1 | A'/0 |
| C' | C'/0 | B'/0 | A'/0         | A'/0 |
| D' |      |      |              |      |
| E' |      |      |              |      |

| yX | 00          | 01          | 10  | 11         |
|----|-------------|-------------|-----|------------|
| A  | <b>D</b> /0 | <b>D</b> /0 | F/0 | A/0        |
| В  | C/1         | <b>D</b> /0 | E/1 | F/0        |
| C  | C/1         | <b>D</b> /0 | E/1 | A/0        |
| D  | <b>D</b> /0 | B/0         | A/0 | F/0        |
| E  | C/1         | F/0         | E/1 | A/0        |
| F  | <b>D</b> /0 | <b>D</b> /0 | A/0 | F/0        |
| G  | G/0         | G/0         | A/0 | A/0        |
| Н  | B/1         | <b>D</b> /0 | E/1 | <b>A/0</b> |

| yX         | 00   | 01   | 10   | 11   |
|------------|------|------|------|------|
| A'         | C'/0 | C'/0 | A'/0 | A'/0 |
| <b>B</b> ' | B'/1 | C'/0 | D'/1 | A'/0 |
| C'         | C'/0 | B'/0 | A'/0 | A'/0 |
| D'         | B'/1 | A'/0 | D'/1 | A'/0 |
| E'         |      |      |      |      |

| yX | 00          | 01          | 10  | 11  |
|----|-------------|-------------|-----|-----|
| A  | <b>D</b> /0 | <b>D</b> /0 | F/0 | A/0 |
| В  | C/1         | <b>D</b> /0 | E/1 | F/0 |
| C  | C/1         | <b>D</b> /0 | E/1 | A/0 |
| D  | <b>D</b> /0 | B/0         | A/0 | F/0 |
| E  | C/1         | F/0         | E/1 | A/0 |
| F  | <b>D</b> /0 | <b>D</b> /0 | A/0 | F/0 |
| G  | G/0         | G/0         | A/0 | A/0 |
| Н  | B/1         | D/0         | E/1 | A/0 |

$$(A,F) \qquad (B,C,H) \qquad (D) \qquad (E) \qquad (G)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A' \qquad B' \qquad C' \qquad D' \qquad E'$$

| yX         | 00   | 01   | 10   | 11   |
|------------|------|------|------|------|
| A'         | C'/0 | C'/0 | A'/0 | A'/0 |
| <b>B</b> ' | B'/1 | C'/0 | D'/1 | A'/0 |
| C'         | C'/0 | B'/0 | A'/0 | A'/0 |
| D'         | B'/1 | A'/0 | D'/1 | A'/0 |
| E'         | E'/0 | E'/0 | A'/0 | A'/0 |

| yX | 00          | 01          | 10         | 11         |
|----|-------------|-------------|------------|------------|
| A  | <b>D</b> /0 | <b>D</b> /0 | F/0        | A/0        |
| В  | C/1         | <b>D</b> /0 | E/1        | F/0        |
| C  | C/1         | <b>D</b> /0 | E/1        | A/0        |
| D  | <b>D</b> /0 | B/0         | <b>A/0</b> | F/0        |
| E  | C/1         | F/0         | E/1        | A/0        |
| F  | <b>D</b> /0 | <b>D</b> /0 | <b>A/0</b> | F/0        |
| G  | G/0         | G/0         | <b>A/0</b> | <b>A/0</b> |
| Н  | B/1         | <b>D</b> /0 | E/1        | <b>A/0</b> |

| yX         | 00   | 01   | 10   | 11   |
|------------|------|------|------|------|
| A'         | C'/0 | C'/0 | A'/0 | A'/0 |
| <b>B</b> ' | B'/1 | C'/0 | D'/1 | A'/0 |
| C'         | C'/0 | B'/0 | A'/0 | A'/0 |
| D'         | B'/1 | A'/0 | D'/1 | A'/0 |
| E'         | E'/0 | E'/0 | A'/0 | A'/0 |

| yx | 00  | 01  | 10  | 11  |
|----|-----|-----|-----|-----|
| A  | D/0 | D/0 | F/0 | A/0 |
| В  | C/1 | D/0 | E/1 | F/0 |
| C  | C/1 | D/0 | E/1 | A/0 |
| D  | D/0 | B/0 | A/0 | F/0 |
| E  | C/1 | F/0 | E/1 | A/0 |
| F  | D/0 | D/0 | A/0 | F/0 |
| G  | G/0 | G/0 | A/0 | A/0 |
| Н  | B/1 | D/0 | E/1 | A/0 |

