

PROBLEMA DE LA MOCHILA 0/1 (CON PROGRAMACIÓN DINÁMICA)

Algoritmos y Programación

Escuela de Ingeniería Informática
Universidad de Las Palmas de Gran Canaria

Ejemplo

Entrada: Peso de N items {w₁, w₂, ..., w_n} Beneficio de N items {b₁, b₂, ..., b_n} Mochila con un límite W

Salida: Elección $\{x_1, x_2, ..., x_n\}$

... donde $x_i \in \{0,1\}$.

Elección binaria

Ejemplo

$$W = 2, 3, 4, 5$$

B = 3, 4, 5, 6

Peso

Beneficio

W = 2, 3, 4,
$$\underline{5}$$
 Peso
B = 3, 4, 5, 6 Beneficio
N = 1, 2, 3, 4

Peso

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

N=4 w=5

$$W = 2, 3, 4, 5$$
 Peso
 $B = 3, 4, 5, 6$ Beneficio
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

 $N = 0 \rightarrow Fin de los items$

$$W = 2, 3, \underline{4}, 5$$

$$B = 3, 4, 5, 6$$

$$N = 1, 2, 3, 4$$

$$N = 1$$

$$N = 3$$

$$W = 2, 3, \underline{4}, 5$$

$$N = 3, 4, 5, 6$$

$$N = 4, 5, 6$$

$$N = 4, 6$$

$$N = 3, 6$$

N=0

w=0

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

 $N = 0 \rightarrow Fin de los items$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

¡ Árbol completo de llamadas!

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$
 $B = 3, 4, 5, \underline{6}$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

El beneficio de cada elección lo calculamos al

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Peso Beneficio Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

volver de las llamadas recursivas!

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$
 $N = 1, 2, 3, 4$

Peso Beneficio Debemos calcular la mejor combinación que tenga un peso máximo de <u>5 kilos</u>

volver de las llamadas recursivas!

Árbol de todas las posibles llamadas recursivas con su beneficio

$$W = 2, 3, 4, 5$$

 $B = 3, 4, 5, 6$

¿ Cual es la ecuación de recurrencia?

Árbol de todas las posibles llamadas recursivas con su beneficio

Caso 1: No quedan items

Caso 1: No quedan items

Caso 2: No puedo cogerlo

Caso 2: No puedo cogerlo

Caso 3: Caso general

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - max(t(n-1,w), t(n-1,w-W_n) + B_n)$
 0 : $n <= 0$

```
t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max (t(n-1,w), t(n-1,w-W_n) + B_n) \\ 0 & : n <= 0 \end{cases}
```

El beneficio máximo que puedo obtener cuando no me queda ningún elemento es 0

```
t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max(t(n-1, w), t(n-1, w-W_n) + B_n) \\ 0 & : n \le 0 \end{cases}
```

Si el peso del elemento *n* excede el peso que puedo añadir a la mochila, no podemos añadirlo y pasamos al siguiente

```
t(n,w) = \begin{cases} t(n-1, w) & : W_n > w \\ max(t(n-1,w), t(n-1,w-W_n) + B_n) & : n <= 0 \end{cases}
```

En el resto de los casos, tenemos dos posibilidades:

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) = max(t(n-1,w))$; $t(n-1,w-W_n) + B_n$
 $t(n,w) = max(t(n-1,w))$; $t(n-1,w-W_n) + B_n$
 $t(n,w) = max(t(n-1,w))$; $t(n-1,w-W_n) + B_n$

En el resto de los casos, tenemos dos posibilidades:

 No añadir el elemento n, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta n

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - max (t(n-1,w), t(n-1,w-W_n) + B_n)$
 0 : $n <= 0$

En el resto de los casos, tenemos dos posibilidades:

- No añadir el elemento n, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta n
- 2. Añadir el elemento n, con lo que ahora tenemos que calcular la mochila óptima restando su peso $(w-W_n)$ pero teniendo en cuenta su beneficio (B_n)

Caso 3: Caso general

Caso 3: Caso general

$$t(n-1, w)$$
 : $W_n > w$
 $t(n,w) - max(t(n-1,w), t(n-1,w-W_n) + B_n)$
: $n <= 0$

En el resto de los casos, tenemos dos posibilidades:

- No añadir el elemento n, con lo que el problema se reduce a calcular la mochila óptima sin tener en cuenta n
- 2. Añadir n, con lo que ahora temenos que calcular la mochila óptima restando su peso (w- W_n) pero teniendo en cuenta su beneficio (B_n)

Y nos quedamos con la opción que maximice nuestro beneficio!