cours 4 Apprentissage de structure de réseau bayésien

Aix*Marseille Master SID — Raisonnement dans l'incertain

Algorithme fondé sur les contraintes

L'algorithme PC – Phase 1 : le squelette

Apprentissage du squelette

```
1 \mathcal{G} \leftarrow graphe non orienté complet
 2 d \leftarrow 0 // taille de l'ensemble de conditionnement
 3 SepSet_{XY} \leftarrow \emptyset pour tout couple de nœuds X, Y
 4 répéter
         pour chaque couple (X, Y) t.q. X - Y \in \mathcal{G} et |Adj(X) \setminus \{Y\}| \ge d faire
 5
              répéter
 6
                    Choisir un \mathbf{Z} \subseteq \mathbf{Adj}(X) \setminus \{Y\} t.q. |\mathbf{Z}| = d
                    si X \perp \!\!\!\perp_P Y | \mathbf{Z} alors
 8
                         Supprimer l'arête X - Y de \mathcal{G}
                         SepSet_{XY} \leftarrow \mathbf{Z}
10
                         break
11
              jusqu'à Tous les Z de taille d ont été testés;
12
         d \leftarrow d + 1
13
14 jusqu'à |Adj(X)| \le d pour tout nœud X;
```

Exemple d'application (1/3)

- $\rightarrow A \perp \!\!\! \perp B, A \perp \!\!\! \perp L, A \perp \!\!\! \perp S$
- B⊥⊥T
- $L \perp \perp T$
- > S⊥⊥T

Exemple d'application (2/3)

RB réel

- $\perp \! \! \perp$ ordre d=0
- $ightharpoonup A \perp \perp D \mid T, A \perp \perp D \mid T$
- $ightharpoonup A \perp \!\!\! \perp \!\!\! X | T, B \perp \!\!\! \perp \!\!\! L | S$
- \blacktriangleright $B \perp \!\!\! \perp O|S, B \perp \!\!\! \perp X|S$
- $ightharpoonup O \perp \!\!\! \perp \!\!\! S | L, S \perp \!\!\! \perp \!\!\! X | L$
- ▶ T⊥⊥X|O

Exemple d'application (3/3)

RB réel

 $\perp \! \! \perp$ ordre d=1

- $\triangleright D \perp \perp L | \{O, B\}$
- \triangleright $D \perp \!\!\! \perp S | \{O, B\}$
- $ightharpoonup D \perp \!\!\! \perp T | \{O, S\}$

L'algorithme PC – Phase 2 : l'orientation (1/2)

Définition

- ▶ unshielded triple : triplet $\langle X, Z, Y \rangle$ de nœuds de \mathcal{G} t.q. :
 - $X Z Y \in \mathcal{G}$
 - $X Y \notin \mathcal{G}$
- ► équivalent non orienté d'une v-structure

Orientation des arêtes

- 1 // 1. Orientation des v-structures
- 2 $\mathcal{G}_{PDAG} \leftarrow \mathcal{G}$
- 3 pour chaque unshielded triple $\langle X, Z, Y \rangle$ de $\mathcal G$ faire
- 4 | si $Z \notin SepSet_{XY}$ alors
- 5 R0: dans \mathcal{G}_{PDAG} , remplacer X-Z et Z-Y par X o Z et $Z\leftarrow Y$
 - $\Longrightarrow \mathcal{G}_{PDAG} = \text{squelette} + \text{v-structures} = \text{pattern}$

L'algorithme PC – Phase 2 : les propagations (1/2)

4 règles de propagation :

pas de v-structure :

ni circuit ni v-structure :

pas de circuit :

R2: (2) (2) (2) (2) (4)

ni circuit ni v-structure :

L'algorithme PC – Phase 2 : les propagations (2/2)

- ▶ CPDAG = completed partially directed acyclic graph
 = représentant de la classe d'équivalence de Markov
- Théorème Orientation soundness Meek(95)
- Les règles R1 à R4 sont sûres (soundness) : pas respectées ⇒ ∃ nouvelle v-structure ou un circuit

Théorème – Orientation completeness – Meek(95)

▶ Appliquer R1, R2, R3 sur un pattern ⇒ CPDAG

Théorème – Completeness with background knowledge – Meek (95)

- ightharpoonup Background knowledge ${\cal K}$: ensemble d'arcs interdits + ensemble d'arcs oblogatoires
- ▶ Appliquer R1 à R4 sur un pattern et orienter les arêtes selon \mathcal{K} ⇒ CPDAG

L'algorithme PC – Phase 2 : l'orientation (2/2)

Orientation des arêtes

```
1 // Orientation des v-structures
2 \mathcal{G}_{PDAG} \leftarrow \mathcal{G}
3 pour chaque unshielded triple \langle X, Z, Y \rangle de \mathcal{G} faire
4 | si Z \notin SepSet_{XY} alors
5 | R0: dans \mathcal{G}_{PDAG}, remplacer X - Z et Z - Y par X \rightarrow Z et Z \leftarrow Y
6 // Propagations
7 répéter
8 | pour chaque arête \ X - Y \in \mathcal{G}_{PDAG} faire
9 | si (X - Y) arête rouge d'une règle R1, R2, R3 ou R4 alors
10 | Orienter l'arête selon la règle
```

jusqu'à ce que plus aucune arête ne puisse être orientée;

Exemple d'application (1/2)

- 1 pour chaque unshielded triple (X, Z, Y) de \mathcal{G} faire
- si $Z \notin SepSet_{XY}$ alors R0: dans G_{PDAG} . re
- R0: dans \mathcal{G}_{PDAG} , remplacer X-Z et Z-Y par $X \to Z$ et $Z \leftarrow Y$

Sepsets:
$$\triangleright S_{AB} = S_{AL} = S_{AS} = \emptyset$$
 $S_{AD} = S_{AO} = S_{AX} = \{T\}$

►
$$S_{BT} = \emptyset$$
 $S_{BL} = S_{BO} = S_{BX} = \{S\}$
► $S_{DL} = S_{DS} = \{O, B\}$ $S_{DT} = \{O, S\}$ $S_{DX} = \{O\}$

$$lacksquare S_{DL} = S_{DS} = \{ \emph{O}, \emph{B} \}$$

$$S_{o\tau} - \emptyset$$
 $S_{o\tau}$

$$S_{TV} = \{C\}$$

$$\triangleright S_{ST} = \emptyset \qquad S_{SX} = \{L\} \qquad S_{TX} = \{O\}$$

$$S_{TX} = \{O\}$$

Après phase 1

Après R0

Exemple d'application (2/2)

- 1 // Propagation sans rajouter de v-structure
- 2 pour chaque $ar\hat{e}te(X, Y) \in \mathcal{G}_{PDAG}$ faire
- 3 | $\mathbf{si}(X-Y)$ arête rouge de R1 $(Z \to X \text{ et } X-Y)$ alors | remplacer X-Y par $X \to Y$

Résultat : représentant de la classe d'équivalence de Markov

► CPDAG : completed partially directed acyclic graph

Phase 3 : compléter les orientations sans créer de v-structure

ightharpoonup 3 autres possibilités similaires mais avec T o A

Tests d'indépendance conditionnelle (1/2)

- ► X. Y : 2 variables aléatoires, **Z** : ensemble de variables
- \triangleright N_{xyz} : nombre d'occurrences de $(X = x, Y = y, \mathbf{Z} = \mathbf{z})$ dans **D**

$$ightharpoonup N_{xz} = \sum_{y \in \Omega_Y} N_{xyz}$$
 $N_{yz} = \sum_{x \in \Omega_X} N_{xyz}$ $N_z = \sum_{x \in \Omega_X} N_{xz}$

Test du χ^2

$$\chi^{2}_{statistics}(X, Y|\mathbf{Z}) = \sum_{\mathbf{X} \in \Omega_{X}} \sum_{\mathbf{y} \in \Omega_{Y}} \frac{\left(N_{xyz} - \frac{N_{xz}N_{yz}}{N_{z}}\right)^{2}}{\frac{N_{xz}N_{yz}}{N_{z}}}$$

- ▶ Nb degrés de liberté : $df = (|\Omega_X| 1) \times (|\Omega_Y| 1) \times |\Omega_Z|$
- $\triangleright \alpha$: niveau de risque (souvent 5%)
- ▶ Si $\chi^2_{\text{statistics}}(X, Y|\mathbf{Z}) \leq \chi^2(df, \alpha)$ alors $X \perp \!\!\! \perp Y|\mathbf{Z}$

 \bigwedge Règle usuelle : ne faire le test que si $N_{xyz} \ge 5$ pour tout x, y, z

Tests d'indépendance conditionnelle (2/2)

Test du G²

$$G_{statistics}^{2}(X, Y|\mathbf{Z}) = 2\sum_{x \in \Omega_{X}} \sum_{y \in \Omega_{Y}} \sum_{\mathbf{z} \in \Omega_{\mathbf{Z}}} N_{xy\mathbf{z}} \ln \frac{N_{xy\mathbf{z}} N_{\mathbf{z}}}{N_{xz} N_{yz}}$$

- ▶ Nb degrés de liberté : $df = (|\Omega_X| 1) \times (|\Omega_Y| 1) \times |\Omega_Z|$
- $ightharpoonup \alpha$: niveau de risque (e.g. 5%)
- ▶ Si $G_{statistics}^2(X, Y|\mathbf{Z}) \le \chi^2(df, \alpha)$ alors $X \perp \!\!\!\perp Y|\mathbf{Z}$
- ▶ En pratique, tests du G^2 plus robustes que ceux du χ^2

Problèmes de l'algorithme PC

Résultat dépendant de l'ordre des calculs :

```
1 pour chaque ar\hat{e}te\ X-Y\ t.q.\ |\mathbf{Adj}(X)\backslash\{Y\}|\geq d faire 2 ... Supprimer l'arête X-Y de \mathcal G ...
```

- ⇒ PC-stable, variante de Colombo et Maathuis (2014)
- ▶ $|\mathbf{D}|$ petite \Longrightarrow tests χ^2 et G^2 peu fiables
- Phase 3 : pas d'orientation possible :

- ▶ cause 1 : pas de DAG-faithfulness (relations déterministes ?) Luo (2006), Rodrigues de Morais et al. (2008), Mabrouk et al. (2014)
- cause 2 : erreurs dans les tests statistiques
- cause 3 : présence de variables latentes (non observées)
 - ⇒ IC* Verma (1993), FCI Spirtes, Glymour et Scheines (2000)

Apprentissage à base de scores

Apprentissage fondé sur les scores

Meilleure structure : celle qui colle le mieux aux données

- \Longrightarrow lacksquare vraisemblance : $\mathcal{G}^* = \operatorname{Argmax}_{\mathcal{G}} \mathcal{L}(\mathcal{G}: \mathbf{D})$
 - ② $\mathcal{G}^* = \text{structure choisie avec le moins de} \ll \text{regret} \gg$
- ⇒ différents scores

Propriétés souhaitables des scores

- ► Rasoir d'Occam : Privilégier les G simples plutôt que complexes
- ➤ Consistance locale :
 Ajouter un arc « utile » devrait augmenter le score
 Ajouter un arc « inutile » devrait diminuer le score
- Score équivalence :
 2 RB Markov-équivalents devraient avoir le même score
- ▶ Décomposition locale : L'ajout/retrait d'un arc ⇒ score mis à jour en ne regardant que la partie de G autour de l'arc

En route vers Greedy Hill Climbing

Voisinage d'un DAG G

Voisinage de G = ensemble des graphes G' t.q. :

- \triangleright \mathcal{G}' est un DAG
- $\triangleright \mathcal{G}'$ s'obtient en appliquant à \mathcal{G} un opérateur parmi :
 - l'ajout d'un arc
 - la suppression d'un arc
 - le retournement d'un arc

On note $\mathcal{N}(\mathcal{G})$ le voisinage de \mathcal{G}

- $lue{f 0}$ Parcourir l'espace des DAG en partant d'un graphe ${\cal G}_{f 0}$
- ② en trouvant dans son voisinage le graphe \mathcal{G}' de score plus élevé
- $oldsymbol{0}$ en itérant le processus avec \mathcal{G}' jusqu'à un optimum (local)
- ⇒ Algorithme « Greedy Hill Climbing »

Greedy Hill Climbing

Algorithme d'apprentissage « glouton » :

```
1 // étape 
 2 \mathcal{G}_{best} \leftarrow graphe orienté vide (sans arc) // meilleur graphe trouvé
 sc_{best} \leftarrow Score(\mathcal{G}_{best}) // score du meilleur DAG
 4
      parcours de l'espace des DAG – étape (3)
   répéter
          // recherche du meilleur voisin
 7
          \mathcal{N} \leftarrow \text{voisinage de } \mathcal{G}_{best} // \text{ calcul du voisinage}
 8
          trouvé ← false // meilleur voisin pas encore trouvé
 9
          // parcours du voisinage – étape 2
10
          pour chaque \mathcal{G}' \in \mathcal{N} faire
11
                sc' \leftarrow Score(\mathcal{G}')
12
                si sc' > sc_{hest} alors
13
                     \mathcal{G}_{best} \leftarrow \mathcal{G}', \mathsf{sc}_{best} \leftarrow \mathsf{sc}'
14
                     trouvé ← true
15
16 jusqu'à trouvé = false;
```

Retourner \mathcal{G}_{hest} // graphe localement optimal

Exemple d'application

Le score BD (1/2)

Score $BD(\mathcal{G}|\mathbf{D})$

[Heckerman, Geiger and Chickering (1995)]

$$Score_{BD}(\mathcal{G}|\mathbf{D}) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

ightharpoonup $\Gamma(\cdot)$: généralisation continue de la factorielle

$$\Gamma(n) = (n-1)!$$
 pour tout $n \in \mathbb{N}^*$

- ► Score_{BD}($X_i | \mathbf{Pa}(X_i), \mathbf{D}$) = $\prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(N_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$
- ► Score_{BD}($\mathcal{G}|\mathbf{D}$) = $\prod_{i=1}^{n}$ Score_{BD}($X_{i}|\mathbf{Pa}(X_{i}),\mathbf{D}$)

Le score BD (2/2)

En pratique, on calcule plutôt $log(Score_{BD}(\mathcal{G}|\mathbf{D}))$

Score $BD(\mathcal{G}|\mathbf{D})$ [Heckerman, Geiger and Chickering (1995)]

 $log(Score_{BD}(X_i|\mathbf{Pa}(X_i),\mathbf{D}))$

$$= \sum_{j=1}^{q_i} \log \Gamma(\alpha_{ij}) - \log \Gamma(N_{ij} + \alpha_{ij}) + \sum_{k=1}^{r_i} \log \Gamma(N_{ijk} + \alpha_{ijk}) - \log \Gamma(\alpha_{ijk})$$

Le score K2

Score K2

[Cooper et Herskovits (1992)]

- ▶ $Score_{K2}(G|\mathbf{D}) = log(Score_{BD}(G|\mathbf{D}))$ avec :
 - $\alpha_{ijk} = 1$ pour tout i, j, k
 - ⇒ revient à rajouter 1 dans chaque cellule des tableaux de contingence (de comptage)
 - \implies revient à rajouter $r_i q_i$ observations dans **D**
- ► Score_{K2}($X_i | \mathbf{Pa}(X_i), \mathbf{D}$) = $\sum_{j=1}^{q_i} \left[\log \left(\frac{(r_i 1)!}{(N_{ij} + r_i 1)!} \right) + \sum_{k=1}^{r_i} \log(N_{ijk}!) \right]$
- ► Score_{K2}($\mathcal{G}|\mathbf{D}$) = $\sum_{i=1}^{n}$ Score_{K2}($X_i|\mathbf{Pa}(X_i),\mathbf{D}$)

Exemple d'application (1/2)

Α В b_1 a_1

 a_1

 a_1

 a_2 b_2 C_1

 a_2 b_2 c_2

 b_2 C_1

 b_2 a_2

 b_1 a_2

 C_2

 C_1

$$Score_{\mathcal{K}2}(X_i|\textbf{Pa}(X_i),\textbf{D}) = \sum_{j=1}^{q_i} \left[\log \left(\frac{(r_i-1)!}{(N_{ij}+r_i-1)!} \right) + \sum_{k=1}^{r_i} \log(N_{ijk}!) \right]$$

▶ **D**
$$\Longrightarrow$$
 $r_i = 2$ pour tout i ($|\Omega_A| = |\Omega_B| = |\Omega_C| = 2$)

$$ightharpoonup \mathcal{G} \Longrightarrow q_i = 1$$
 (pas de parent) et $N_{ij} = |\mathbf{D}| = 7 \ \forall i$

▶
$$i = 1$$
 (A): $\begin{vmatrix} a_1 & a_2 \\ 3 & 4 \end{vmatrix}$ $r_1 = |\Omega_A| = 2$ $p_1 = 1$

$$r_1 = |\Omega_A| = 2$$

 $Pa(A) = \emptyset \longrightarrow \alpha$

$$Score_{K2}(A) = log\left(\frac{(2-1)!}{(7+2-1)!}\right) + log(3!) + log(4!) \approx -5,6348$$

$$i = 2$$
 (B): $\begin{vmatrix} b_1 & b_2 \\ 3 & a_2 \end{vmatrix}$

▶
$$i = 2$$
 (B): $\begin{vmatrix} b_1 & b_2 \\ 3 & 4 \end{vmatrix}$ Score_{K2}(B) $\approx -5,6348$

$$Score_{K2}(C) \approx -5,6348$$

► Score_{$$K2$$}(\mathcal{G}) $\approx -5,6348 - 5,6348 = -16.9044$

Exemple d'application (2/2)

$$Score_{K2}(X_i | \mathbf{Pa}(X_i), \mathbf{D}) = \sum_{j=1}^{q_i} \left[log \left(\frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!} \right) + \sum_{k=1}^{r_i} log(N_{ijk}!) \right]$$

▶ Score_{K_2}(B) et Score_{K_2}(C) inchangés $\approx -5,6348$

► Score_{K2}(
$$\mathcal{G}$$
) $\approx -6,1738-5,6348-5,6348=-17.4434$

⇒ Graphe moins probable que celui du slide précédent

Le score BDeu

- ▶ Problème : Score K2 non score-équivalent :
 - 2 RB Markov-équivalents n'ont pas forcément le même score!

Score BDeu

[Buntine (1991)]

ightharpoonup Score $_{BDeu}(\mathcal{G}|\mathbf{D}) = \log(\mathrm{Score}_{BD}(\mathcal{G}|\mathbf{D}))$ avec :

$$\alpha_{ijk} = \frac{N'}{r_i q_i}$$
 pour tout i, j, k $N' = \ll$ effective sample size \gg

- \implies revient à rajouter $\frac{N'}{r_iq_i}$ dans chaque cellule des tableaux de contingence (de comptage)
- \implies revient à rajouter N' observations dans **D**
- Score_{BDeu}($X_i | \mathbf{Pa}(X_i), \mathbf{D}$) $= \sum_{i=1}^{q_i} \log \Gamma\left(\frac{N'}{q_i}\right) \log \Gamma\left(N_{ij} + \frac{N'}{q_i}\right) + \sum_{i=1}^{r_i} \log \Gamma\left(N_{ijk} + \frac{N'}{r_i q_i}\right) \log \Gamma\left(\frac{N'}{r_i q_i}\right)$
 - ► Score_{BDeu}($\mathcal{G}|\mathbf{D}$) = $\sum_{i=1}^{n}$ Score_{BDeu}($X_i|\mathbf{Pa}(X_i),\mathbf{D}$)
 - ▶ BDeu : score équivalent [Heckerman, Geiger, Chickering (1995)]

Scores issus de la théorie de l'information (1/3)

- ► Score BD(\mathcal{G}) : $\int_{\Theta} P(\mathbf{D}|\mathcal{G},\Theta)\pi(\Theta|\mathcal{G})d\Theta$
 - \implies vraisemblance movenne sur {RB de structure \mathcal{G} }
 - ⇒ moyenne sur tous les paramètres
- Et si on utilisait les paramètres optimaux plutôt que la moyenne?
 Score(*G*): max_Θ P(**D**|*G*, Θ)
 - ⇒ Paramètres qui « collent » le plus aux données
 - \Longrightarrow Apprentissage de paramètres par max de vraisemblance

Fondement des scores issus de la théorie de l'information

Scores issus de la théorie de l'information (2/3)

▶ Optimisation des paramètres de G par max de vraisemblance ⇒ score « log-likelihood »

Score log-likelihood (LL)

► Score_{LL}(
$$\mathcal{G}|\mathbf{D}$$
) = $\sum_{i=1}^{n}$ Score_{LL}($X_{i}|\mathbf{Pa}(X_{i}),\mathbf{D}$)

► Score_{LL}(
$$X_i | \mathbf{Pa}(X_i), \mathbf{D}$$
) = $\sum_{j=1}^{q_i} \sum_{k=1}^{r_i} N_{ijk} \log \left(\frac{N_{ijk}}{N_{ij}} \right)$

🚺 En pratique, apprend des graphes trop denses

- ⇒ « Sur-apprentissage »
- ⇒ Rajouter une pénalité s'il y a trop d'arcs

Scores issus de la théorie de l'information (3/3)

Score MDL (minimum description length)

- Score_{MDL}($\mathcal{G}|\mathbf{D}$) = Score_{LL}($\mathcal{G}|\mathbf{D}$) $\frac{1}{2}\log(N)|\mathcal{G}|$
- $ightharpoonup |\mathcal{G}| = \sum_{i=1}^n (r_i 1) \times q_i$: nb de paramètres θ_{ijk} à choisir
- ▶ $-\frac{1}{2}\log(N)|\mathcal{G}|$: pénalité Permet de minimiser la taille mémoire pour stocker le RB

Score BIC (Bayesian Information Criterion)

- ➤ S'appuie sur le critère BIC [Schwarz (1978)]
- ightharpoonup Score_{BIC}($\mathcal{G}|\mathbf{D}$) = Score_{MDL}($\mathcal{G}|\mathbf{D}$)

Score AIC (Akaike Information Criterion)

- ➤ S'appuie sur le critère d'information d'Akaike (1973)
- ▶ $Score_{AIC}(\mathcal{G}|\mathbf{D}) = Score_{LL}(\mathcal{G}|\mathbf{D}) |\mathcal{G}|$

Exemple d'application (1/2)

$$Score_{MDL}(\mathcal{G}|\mathbf{D}) = Score_{LL}(\mathcal{G}|\mathbf{D}) - \frac{1}{2}\log(N)|\mathcal{G}| \quad Score_{LL}(\mathcal{G}|\mathbf{D}) = \sum_{j=1}^{q_i} \sum_{k=1}^{r_j} N_{ijk} \log\left(\frac{N_{ijk}}{N_{ij}}\right)$$

▶ **D**
$$\Longrightarrow$$
 $r_i = 2$, $\mathcal{G} \Longrightarrow q_i = 1$ (pas de parent)

 a_2 b_1

$$=$$
 total ligne $=$ 3 $+$ 4

$$Score_{LL}(A) = 3 \log \left(\frac{3}{7}\right) + 4 \log \left(\frac{4}{7}\right) \approx -4,78$$

$$Score_{LL}(B) \approx -4,78$$

▶
$$i = 3$$
 (C): $\begin{bmatrix} c_1 & c_2 \\ 4 & 3 \end{bmatrix}$ Score_{LL}(C) $\approx -4,78$

$$|\mathcal{G}| = \sum_{i=1}^{n} (r_i - 1) \times q_i = (1 \times 1) + (1 \times 1) + (1 \times 1) = 3$$

► Score_{MDL}(
$$\mathcal{G}$$
) $\approx -4.78 \times 3 - 0.5 \times \log(7) \times 3 \approx -17.259$

Exemple d'application (2/2)

$$Score_{MDL}(X_i|\mathbf{Pa}(X_i),\mathbf{D}) = \sum_{k=1}^{r_i} \left[N_{ijk} \log \left(\frac{N_{ijk}}{N_{ij}} \right) \right] - \frac{1}{2} \log(N) \times (r_i - 1) \times q_i$$

Α	В	C
a ₁	b_1	<i>C</i> ₁
a_1	b_1	c ₂
a ₁	b_2	<i>C</i> ₁
a_2	b_2	c ₂
a_2	b_2	<i>C</i> ₁
a_2	b_2	C ₂
a_2	b_1	<i>C</i> ₁

$$N_{ij} = \sum$$
 sur chaque ligne

$$Score_{MDL}(A|B) = 2 \times \log\left(\frac{2}{3}\right) + 1 \times \log\left(\frac{1}{3}\right) \qquad \text{(ligne } b_1\text{)}$$

$$+ 1 \times \log\left(\frac{1}{4}\right) + 3 \times \log\left(\frac{3}{4}\right) \qquad \text{(ligne } b_2\text{)}$$

$$- \frac{1}{2}\log(7) \times 1 \times 2 \approx -6,105 \qquad \text{(pénalité)}$$

- ► Score_{MDI} $(G) \approx -6,105 5.753 5.753 = -17,611$
 - ⇒ Graphe moins probable que celui du slide précédent

Bibliographie

- Akaike, H. (1973) « Information theory and an extension of the maximum likelihood principle », Proceedings of the 2nd International Symposium on Information Theory, 267–281
- Buntime W. (1991)

 Theory refinement on Bayesian networks

 Proceedings of Uncertainty in Artificial Intelligence, 52–60
- Colombo D. et Maathuis M.H. (2014) « Order-Independent Constraint-Based Causal Structure Learning », Journal of Machine Learning Research, 15:3921–3962
- ► Geiger D. et Heckerman D. (1997) « A Characterization of the Dirichlet Distribution through Global and Local Parameter Independence », The Annals of Statistics, 25(3):1344–1369
- Heckerman D., Geiger D. et Chickering D. (1995)
 « Learning Bayesian Networks : The Combination of Knowledge and Statistical Data », Machine Learning, 20:197–243

Bibliographie

- ► Luo W. (2006) « Learning Bayesian networks in semi-deterministic systems », Proceedings of the Canadian Conference on Artificial Intelligence, 230–241
- Mabrouk A., Gonzales C., Jabet-Chevalier K. et Chojnaki E. (2014)

 ≪ An Efficient Bayesian Network Structure Learning Algorithm in the Presence of Deterministic Relations

 », Proceedings of the European Conference on Artificial Intelligence, 567–572
- Meek C. (1995) « Causal inference and causal explanation with background knowledge », Proceedings of the Conference on Uncertainty in Artificial Intelligence, 403—410
- ▶ Pearl J. et Verma T. (1991) « A theory of inferred causation », Proceedings of the 2nd International Conference on Knowledge Representation and Reasoning, 441–452

Bibliographie

- ► Rodrigues de Morais, S. Aussem, A. et Corbex M. (2008) « Handling almost-deterministic relationships in constraint-based Bayesian network discovery: Application to cancer risk factor identification », Proceedings of the European Symposium on Artificial Neural Networks, 101–106
- Schwarz, G.E. (1978) « Estimating the dimension of a model », Annals of Statistics, 6(2):461–464
- ➤ Spirtes E., Glymour C. et Scheines R. (2000) Causation, Prediction and Search, 2nd edition, Springer-Verlag
- Verma T. (1993) « Graphical aspects of causal models », Technical report R-191, UCLA, Computer Science Department