南京邮电大学 2016 / 2017 学年第一学期

《数字信号处理》期末试卷

相分	】二、判断题(对的写"√",错的写"×",每	小题 2分, 共 10 分
	1、具有递归结构的系统一定是 UR 系统。	(Χ
	2、可以采用对有限长序列补零的方法提高 OFT 的基	^{英军分辨} 率。 (
3、某系约	统的 h(n)={3,6,6,3},0≤n≤3,该系统不能用夹设计低通	重和带通滤波器。(X
4、矩形图	窗截断产生的肩锋。增加了通带内的波动并减少了阻	带内的衰减。 (, /
	上,数字滤波器的极点位置与滤波器结构无关,因此	
	滤波器结构无关。	(X)
	<u> </u>	
得 分	三、简答题 (10 分)	
	1、利用模拟被波器设计数层渗波器。5平面虚轴和	。左半平面分别映射到
J. 12	z平面的什么位置?(4分) 到包	到图的
AND THE PERSON		

2. 在实际的数字信号处理系统中,抽样器前和D/A 变换器后都有一个模拟低通滤液器,请分别说明这两个滤波器有何作用? 截止频率各为多少? (6分)

在海童 6) 7样为46人数年 得分

四、计算分析题(10分)

已知某线性时不变系统的单位脉冲响应为 $h(n) = a^n u(n)$,0 < |a| < 1,输

入序列为 $x(n) = \delta^n u(n)$. 0 < |b| < 1.

- (1) 请用z域关系式计算该系统的输出序列y(n):
- (2) 请分析该系统的因果稳定性。

解

$$= \frac{1}{1-62^{-1}} \cdot \frac{1}{1-a2^{-1}} = \frac{A}{1-62^{-1}} + \frac{B}{1-a2^{-1}}$$
 [21 > max (6, a)]

$$A = \frac{-1}{a-b}$$
, $B = \frac{a}{ab}$.

$$\frac{-\frac{1}{2} \cdot y(n) - \frac{-1}{a-b} \cdot b^{\alpha} u(n) + \frac{\alpha}{a-b} \cdot a^{\alpha} u(n)}{a-b}$$

(2) BP(K

《数字信号处理) 试卷 第 3 页 共 6 页

五、计算及画图题(15分)

某二阶归一化模拟低通原型滤波器的系统函数为

$$H_a(S) = \frac{1}{S^2 + \sqrt{3S + 3}}$$
,请用双线性变换法设计一个对应的数字低通

滤波器,采样频率为6000 Hz. 3dB截止频率为1000Hz. 试求数字低道滤波器的系统函数H(z), 并用直接Ⅱ型结构实现之。

解: fi=foorHz, fz=lovoHz

(1)
$$W_{\epsilon} = zz\frac{f_{\epsilon}}{f_{s}} = \frac{z}{3}$$

$$= \frac{1}{(s/\frac{2}{67})^{2} + B(s/\frac{2}{67}) + 3}$$

$$(47)$$
 $4(8)=4a(8)$
 $S=\frac{1}{T}\frac{1-8^{-7}}{112^{-7}}$

$$\frac{3(1-2^{-1})^2}{1+2^{-1}} + 3(\frac{1-2^{-1}}{1+2^{-1}}) + 3$$

自觉遵守考试规则,诚言等点,答:题::-

若某有限长序列橘足关系 x(n)=x(N-n), 试证明其 DFT 满足

$$X(k) = X(N-k)$$
. Part 9.

iÆ:

七、设计题(15分)

率为 8 f. 采用窗口大小为9的矩形窗。求设计出的滤波器的h(r)。

提示:
$$h_c(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-j\omega n} e^{j\omega n} d\omega = \frac{\sin(\omega_c(n-\alpha))}{\pi(n-\alpha)}$$

$$d = \frac{N-1}{3} = 4^{2}, \quad w_{0} = 22\frac{f_{0}}{f_{0}} = \frac{1}{4}.$$

$$d_{0}(4) = \lim_{n \to 4} \frac{\sin^{2}(n-4)}{2(n-4)} = \frac{w_{0}}{2} \cdot \lim_{n \to 4} \frac{\sin^{2}(n-4)}{w_{0}(n-4)} = \frac{w_{0}}{2} = \frac{1}{4}.$$

$$L(s) = \frac{-sh \hat{\phi}}{-x} = + \frac{\pi}{n} = -l_{e(s)}$$

$$hd(2) = \frac{-514\frac{3}{2}}{-22} = \frac{1}{22} = -hd(2)$$

\$\$ 5}

八、计算题(10分)

一个二阶IIX滤波器,其传递函数为 $H(z) = \frac{0.45}{1-0.7z^{-1}} + \frac{-0.36}{1-0.85z^{-1}}$,试

来用并联型结构实现时定点含入运算的有限字长效应造成的输出噪声方差。

白黄遵守考译规则"诚信号试"绝不作] 数 订 玖 內 不 要 签 题

南京邮电大学 2015 / 2016 学年第二学期

数字信号处理 期末试卷

院(系)										
挺号 —		=	6 3		六	七	八	九	t	总分
得分										
	一 因 因 以 与 周 期 然后 之 不 变 法 中	ω是模型 ア的 fd を积的 の与Ω	2.	大 全 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在	1000 24 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	的。 登得可介 二、死	性等D! \长度着	[[] 运算 [[同的情	尽量分; 酸长序 の与Ω	列进行 的关系
z平面单位圆」									1	
6、用矩形窗影	计线性	相位 FI	R ŒŨ	滤波器	. <u>当</u> a	v = W	<u>- </u>	时, <i>H</i> (ω)为最	大值.
频响出现正肩	峰(设知	巨形窗长	为 Ni	理想他	6通截止	- 频率为	ω_c).	矩形質	长增加	不会改
变肩峰的相对	直。这种	中现象称	为	中期	Í	效应.				

7、IIR 系统的并联型结构其系统函数为各子系统系统函数之<u>术</u>7 , 这种结构便于准 《数字信号处理 】试卷 第 1 页 共 4 页

		1.7
确确实现	L滤波器的	\$36

- 8、为了不产生重叠失真,脉冲响应不变法只能用于设计。14.60 和 艺 面
- 9、实现数字信号处理系统时共有三种因量化引起的误差因素:401/52300亿分/、 北京发生和水水发和数字运算过程中的有限字长效应。
- 判断题(对的写"√"。 1、FFT 是 DTFT 的快速算法。 2、深祥频率也就是折叠频率。 3、正弦序列不一定是周期序列。 4. 用窗口注设计 FDx 线波器, 若窗的形状不变。窗长 N 增加,则减小了设计所得速波 器的过渡带宽, 5、提高 DFT 分辩率的一个方法是在原序列的末端填

银分

三、简答题(10分)

i、两线性时不变系统,单位脉冲响应分别为h₁(n),h₂(n),系统函数分别

为 $H_1(z)$, $H_2(z)$ 。试用 $h_1(n)$, $h_2(n)$ 及 $H_1(z)$, $H_2(z)$ 分别写出以下等

统的h(n)和H(z) (4分)

明它适合设计低通、高通、带通、带阻滤波

偶对 中心一和二些的 加克力工型下水、所成都是 毒础 ♦(w)= dw-五

(数字信号处理) 试卷 第 2 页 共 4 页

3、模拟传递函数: $H_s(s) = \frac{2}{s^2 + 5s + 6}$, 试使用 (1) 双线性变换法 (2) 冲微响应不

(1) h(n) (2) 差分方程 (3) 相位函数 (4) 当采用定点制算法, 尾数做舍入处

理时,写出横截型结构的输出噪声方差(设字长为b,不含符号位)(5)当系统输入

11) \$(w) = - dw = - 14 w . N=6.

4(h)=2X(h+1) ··· 2X(h+5)

得 分

六、设计题(10分)

为 8 fc, 采用窗口大小为9的矩形窗, 求设计出的滤波器的h(n), 写出其所有样值, 提

示:
$$h_y(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega}^{c_k} e^{-j\omega c} e^{j\omega n} d\omega = \frac{\sin(\omega_c(n-\alpha))}{\pi(n-\alpha)}$$
 $h(n) = h_d(n) \cdot P_{LV}(n)$
 $h(n) = \sqrt{\frac{\sin(\omega_c(n-d))}{\pi(n-d)}}$
 $0 \le h \in S$
 $|\omega(z) \pi f(f)| = \frac{T_d}{\sqrt{2}} = 0$

$$\frac{\partial z}{\partial z} = b$$

$$\frac{\partial z}{\partial z$$

ß 遊 波 26

南京邮电大学 2014 / 2015 学年第二学期

《数字信号处理》期末试卷

院(系)____

													2.7
	題号				ភិជ	£1_	六	も	Λ	九	+.	总分	
	得分.							-	-				
			1 4 - 1 - 1	. ~ .		. ~	• .						
	得 分		-、項3	2题(時至1	分,并	520分)	•				
		-	*	•							-		
ł			-			ri J ě	1:514	क्षा है है	-5-17	色实			
	1. \$	女子信号	与模拟	信号的	区别是	(1)	a i a Niv	字件	3.49bv		·		
	n ii	7 SE 112 T	经的趋	位脉冲	磁应针	新为九!	(n), h .	(n) . J	等效系	统函数	时域和	领域表	
	** 6	C-Tr-Apox	,	DZ,50711		<u> </u>	(-)1	(V) /				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Ž	支分别	Eh: h	(n) =(<u>2)</u> .	$H(e^{ja}$)=_(3	<u>)</u>					-
	3. ŧ	2知信号	÷ x(n)υ	(百) 约	2. 变数	为 <i>义</i> (z). P16	ŧθx(r	-m)v	(n-m)	By Z	变换为	
	_	<u>(4)</u> -		٠.						2	145.	<i>a</i> 1	14200
R	4. \$	表接单位	(इंद्रेस) प][空 h(n)	判断结	性时不3	变系统是	き否为医	1果系统	的条件		()三() (<u>3)</u> ・	16-0
1				统中,									
-		*											
				F列 x(n)									
	3	· B出其它	八个口)FT 值:	X(0):	ل (7 (<u>7) </u>	. <i>X</i> (i)	<u>= (8</u>	, X($(2) = \frac{17}{12}$	<u>3</u> .,	X(3) =	,
?				۵			65 X			•		,	~
		<u>(10)</u> .							<u>ب</u> ب	·	P.	Lores	•
	7, ì	拉多克	长序列	的 DF1	"需要_	(1) Y &	复乘。	石用 对	1048	活用 (<u>12)</u> €	ζ 复梁・ ζΛι Ι	har w
	8. Ì	eil fir	数字数	该器时	,为实	现线性	相位,	高要 h(n)流走:	(13)	N	(ア()= ユ	-h(N-1-N)
				滤波器	-								
		高温	à	英姐			-	•				_	
	不宜	F''(1'4	77_和_	(15)	滤波器	•							· V

(数字信号处理) 试卷 第 1 页 共 4 页

注】 文财间信号 建叶变球 工 企業

ist.

ſĖ

用_(17) 法。 A [D量化设务	· 」 □ 17H6年		
	· · · · · · · · · · · · · · · · · · ·	*	
			•
□ 1	×", 每题2分, 共10	分)	
$\sqrt{1}$ 、设 $x(n)$ 为系统激励。 $y(n)$ 表示响应,且 $y(n)=2x$ 变系统。 γ	x(n)+3,则该系统为线性 非线相庄	时不 /	
2 差分方程不能唯一确定一个系统。		.5T S.L.	
3、x(n) = e (是周期序列). (是周期序列). (大). (大). (大). (大). (大). (大). (大). (大		152 Am	
、大多人以DFT分析连续信号频益时,通过转变可以提高DFT分析连续信号频益时,通过转变可以提高DFT分析连续信号频益时,通过转变可以提高DFT分析符号/	WIT 的领导分辨率 本 《KIN》 任意形式多	田芝丝左	
	entra de la compania	والمناب والمرابع والمجيد والمتابع	
三、简答及画图题(共 25 分)	t√ ∧	Ha(s) -	> ha(t) -
1、(5分)写出用脉冲响应不变法设计 III 数字被波器的 介付: W=SCT、全别生才复价中的	连本思想,优、教点.	iT MH H(1)<	-h(n)-halt)
	的人的 英语	· · · · · · · · · · · · · · · · · · · ·	
卷积计算 $y(n) = x(n) * h(n)$. 请利用本题所给符号,简单	—————————————————————————————————————	Y FFT	
D H(R)= FFT [KM) (LR,) D X(R)= FFT [XM) (LR,)) I=MtV-I		e e
3 Y(k)= H(k) X(k) (k=	on1-1)		
D Y(n)= IFFT LY(k)] (n=			•
(数字信号处理) 对数 第 2 页 共 4		•	

滤波器,从时域出发,可以采用__(1 +25x5

$$y(n) = 8x(n) - 4x(n-1) + 11x(n-2) - 2x(n-3) + \frac{5}{4}y(n-1) - \frac{3}{4}y(n-2) + \frac{1}{8}y(n-3)$$

4、(10分) FFT 是求 DFT 的快速算法,用輕形图也可以求 IDFT,即由 X(k)求得 x(n)。

W. - 64 27

 $(2)=|+0.3^{-1}+|\times 2^{-2}+|\times 2^{-3}|$ = $|+2^{-2}+2^{-3}|$ 图、计算题 (共 35 分) 1= (x(n)+ K(n-2)+ M(n-2)

1: (5分) 已知 $X(z) = z^2 + \frac{5Z^4}{1 + Z^4 - 6Z^{-2}}$,写出X(z)的零、极点,并求2 < |z| < 3

时对应的序列x(n).

- 2、(4分) 用基 2FFT 算法估计某一三角脉冲的频谱。要求频率分辨率 户=100 Hz / 最高频率范围限于 $f_1 = 25KHz$,试确定:
- (1) 最小记录长度7.:
- (2) 采样点间的最大时间间隔 T;
- (3) 在一个记录中的最少采样点数 N.

单说明如何用圆周卷积求线性卷积。

 $(x_i(n))$ 1/2(n)

11.5.7, 11.8.5.3

4、(8分) 试求序列{1、1、1}的频谱和 DFT。并说明两者间的关系。(在10方 3 人间

歷. 其中频谐写出表达式即可,不必写出最后计算结果,DFT 要给出基等结果) $H(e^{Jw}) = -\frac{1}{4} \cdot \frac{1}{4} \cdot \frac$

- (2) 求系统的单位脉冲响应 h(n),系统函数 H(z),并判断系统的稳定性。
- (3) 若系统的等状态响应为 y(n) = u(n-1). 求激励信号x(n).

母分 五、设计题 (共10分)

已知。某一低道被波器的各种指挥和参赛要求为。(1) 巴特沃思黎率响应,采用双线性变换设计法,考虑预畸。(2) 当 $0 \le f \le 2.5 Hz$ 时,衰减小于3 dB。(3) 当 $f \ge 50 Hz$

时, 变减大于或等于 40dB: (4) 采样级率 $f_* = 200Hz$. 求:系统函数 H(z).

表 1 低阶巴特沃思滤波器 H(s)的分母(归一化)

阶数 N	H(s)的分母	
1	s+1	*
2	$s^2 + \sqrt{2}s + 1$	

(数字信号处理) 试卷 第 4 页共 4 页

南京邮电大学 2013/2014 学年第二学期

《数字信号处理》》期末试卷

本试卷共 4 页; 考试时间 100 分钟:

学号 姓名----专业 题号 一、填空题(20分) 得分 1、要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率 的 ____ 倍。

- 2、已知 $DTFT[x(n)] = X(e^{jw})$. $x(n\pm n_0)$ 的 DTFT 是 $e^{\pm j\pi v x} X(e^{jw})$
- 3、Parseval定理 $\sum_{n=0}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{\mathbb{R}} |X(e^{i\alpha})|^2 d\omega$ 的物理含义是 <u>附述率对系列录</u> 能量占轨域中来能量是一致的
- 4、两序列长度分别为 $L_{\rm i}$ 和 $L_{\rm 2}$,用循环卷积 (circular convolution) 正确计算两个序列
- 5、LTI系统 $H(z) = \frac{a}{1-bz^{-1}}$ 为因果稳定系统的必要条件为 by 月 区 |z| 为
- 6、IIR DF设计时,模拟低通原型到数字低通原型的映射即S平面到Z平面的映射常 用的方法是旅游的产品变法。和双线性的发法。其中一脉冲响产品变法 不会产生畸变。

得分 二、判断题(10分)	. (
1、某系统差分方程为 y(n)=5x(n+3)+5, 该系统是线性时不变系统。	$\langle \chi \rangle$
LP系统 HW)ARDAAR (FIR 滤波器极点全部在原点(永远稳定),无稳定性问题。	$\langle \sqrt{\rangle}$
上文面的上有私名、某系统的差分方程为 y(n) = 10.4x(n) - 2.7y(n-1),该系统是非递归系统。	(%)
LD系统总是 1842 因果系统的 z 变换收敛域区间为 z 平面单位圆内。 LD系统总是 1842 — 个数字滤波器如果其幅度谱在 π 处为零,那么该滤波器不能是高通滤波	(\checkmark)
12-2010615-14-75-一个数字滤波器如果其幅度谱在π处为零,那么该滤波器不能是高通滤波	技器和带 (含人)
因为系统内部。理论波器,数据分为发错	(A),

得分

三、简答题(共20分)

1、(10分) 试写出 DTFF与 ZT、 DFT与 DTFT 及 DFT与 ZT 之间的关

K.

答:DTFT-ZI: 在解系列字在国上的Z支换就等广敦采料店列如DTFT

OFT-DIFT: OFT就是对DIFT的条件给决,其条件间陷为Wi-兴

1092 1310

OFT-ZT: 如是Z交换在学位国上们等距离各样值、

2、(10分)线性时不变系统的单位脉冲响应为 h(n)长度为 M,输入信号 x(n)长度为 N,写出用快速卷积的方法求输出序列 y(n)的过程。

OFHIR) = OFT[hoo], M+N-1X,

OF NO DETITION, MINIS

②计算的=H的和的

西美yon = IDFT[YO]. MNTA

得分

四、分析题(共10分)

1、(10分)以下是系统的单位脉冲响应表达式。试分析写出这些系统的因

(1)
$$\delta(n-1)$$
: (2) $2^n u(-n)$

(1)当似的胜 111-111-11 P-how= 2" to 1. 小田录

得分

五、计算题(共20分)

1、(15分)已知序列a(n)为 { 2,3,4 } ,序列b(n)为{ 3,2,1 },

求: (1) 求线性卷积 a(n)*b(n) 值:

- (2) 分别求3点、5点的循环卷积 $a(n) \otimes b(n)$:
- (3) 比较并解释 (2) 的结果。

解初

amxbon= 16, 13, 20, 11, 4]

e) 3 kg: am 8 bun = {17, 17, 20}

5 % : am@ bon = {6, 13, 20, 11.4}

(3) 当周期从MHN:1=5 对, 那么gon=aon#kn;31 周期延起必然有一部8种原序到恒县支盘起来 从而出现混叠通纸,只有各上三层的工艺、才没 有混查现象。

(所以要使偏环危旅等于线性危秘,而不平止混 叠的必要各件是 Linthot)

F Qm *600 = {6.13, 20, 11.4}

六、设计题(共20分)

1、(20 分) 某二阶模拟低通原型滤波器的传递函数是

$$H_a(s) = \frac{9}{\left(\frac{s}{\Omega_c}\right)^2 + \sqrt{3}\left(\frac{s}{\Omega_c}\right) + 3}$$

其 3dB 截止频率是 $f_c=500Hz$ 。(1)双线性法设计一个数字低通: 截止频率 同上,采样频率是 3000Hz:(2)用直接 II 型结构实现之。

 $\frac{1}{3}$ $\frac{1}{3}$

自觉遵守考试规则,诚信考试,绝不作员。 电电影 订外线 內 不 要 答 题

南京邮电大学 2011/2012 学年第二学期

《数字信号处理》期末试卷二十

院(系	9	· 	~~	班级	···	**************************************	学号			姓名_		·
 题号 得分				ÑЗ		六	七	八	九	-	<u> </u>	
	<u> </u>	<u> </u>										

1. 填空题(每空 1 分, 共 20 分)

- (1)在数字系统中共有三种因量化引起的误差因素,一种是输入信号的量化效应。另两种分 别是 系数量化效应 和 运算中的有限字长效应 。
- (2)用 24kHz 的采样频率对一段 6kHz 的正弦信号采样 64 点。若用 64 点离散傅里叶变换 (DFT)对其作频谱分析,则第<u>16</u>根和第<u>48</u> 根谱线上会看到峰值。
- (3)线管时不变图果系统的差分方程为y(n)=3z(n)-2x(n-1)+4x(n-3),则该系统的单位脉冲 响应为 h(n)=38(n)-28(n-1)+48(n-3)。
- (4)如果 日(z)是一个数字低通滤波器的传递函数,那么 H(-z)代表的滤波器类型是_数字高通 遊遊監 , H(z¹)代表的遊遊器类型是 <u>帶阻</u>。
- (5)双续性变换注在频域的变换是非线性的,它把模拟频率00变为数字频率 _工。
- (6) 谱估计中。谱分辨率是指 区分紧邻频率谱密度峰谷的能力 。
- (7)实现 IR 数字滤波器时,如果想方便地对系统频响的零点进行控制和调节,那么常用的 IR 滤波器结构中,首选 级联 型结构来实现该 IR 系统。
- (8)如果平稳随机过程是各态遍历的,则可以用___集合平均_代替__时间平均
- (9)一个长度为 N 的有限长序列 x(n)。通过单位脉冲响应 h(n)的长度为 M 的 FIR 滤波器。 其输出序列 y(n)的长度为_N+M-1_。 若用 FFT 计算 x(n)*h(n)。那么进行 FFT 运算的 长度L应满足≥N+M-L。
- (10) 离散傅里叶变换表示式中的 W_N 因子等于 $e^{-J\frac{\epsilon_0}{H}}$,且 $W_N^{N/2} = -1$ 。
- (11)有限长序列在<u>有限 z 平面</u>上一定收敛,该区域可以表示为<u>0~12/×</u>。
- (12)为避免因系数量化引起的系统不稳定,在采用频率采样型结构实现 FIR 数字滤波器时。 通常将所有谐振器的频率采样点取在 =0.9 的圆周。
- (13)对于一个低级信号,如果给它在某一时刻增加一个冲激,那么它的频谱会发生怎样的 变化 _ 展宽 .
 - 2. 判断题(每题 2 分, 共 10 分)

(错的请指出错误之处,并解释原因或给出正确结果)

- (1)用 DTFT 对 $x(nT)=\cos(2\pi f_1 nT)+\cos(2\pi f_2 nT)$ 作频谱分析时,如果时域分析窗不够长, 将无法分辨频率 fi 和 fg. 对. P104
- (2)无限长非能量序列的 Z 变换不存在。

错。无限长非能量序列的 DTFT 不存在,Z 变换未必不存在。

(3)离散时间系统的输出等于输入序列与系统单位脉冲响应的线性卷积、 错。仅适用于线性时不变系统。

(4)用两种方法对随机序列 x(n)的某数字特征进行估计。用第一种估计方法得到的是无偏估 计,用第二种估计方法得到的是有偏估计,这说明第一种估计的一致性好。

错。估计偏差与一致性是两个不同的概念。

(5)若 $x(n)=0.5^nu(n)$, $y(n)=0.5^nu(-n)$, 则 Z[x(n)y(n)]在整个 z 平面上都收敛。 对。x(n)y(n)=δ(n), 在整个z平面上都收敛。

- 3. 问答题(共 20 分) (给出必要的说明或推导过程)
- (1) (8 分)若离散时间系统的输入和输出分别为 x(n)和 y(n), 且 y(n)=x(n-1)-x(1-n). 那么该

系统是否为线性的、时不变的、因果的和稳定的?

n=0 时, y(0)=x(-1)-x(!), 所以 y(n)是非图果的。

输入后逻辑: a₁[x₁(n-1)-x₁(1-n)]+a₂[x₂(n-1)-x₂(1-n)]=a₁x₁(n-1)-a₁x₂(1-n)+a₂x₂(n-1)-a₂x₂(1-n) 选加后输入: $\{a_1x_1(n-1)+a_2x_2(n-1)\}-\{a_1x_1(1-n)+a_2x_2(1-n)\}$

$$= a_1 x_1(n-1) + a_2 x_2(n-1) - \{a_1 x_1(1-n) + a_2 x_2(1-n) = a_1 x_1(n-1) + a_2 x_2(n-1) - a_1 x_1(1-n) - a_2 x_2(1-n) \}$$

所以系统是线性的。常系数,时不变的。有界,稳定的。

(2) (6 分)请说明如何用输入输出互相关定理测定系统的单位脉冲响应 h(n)。(p99)

解:输入输出互相关定理为 R_{xy}(m)= R_x(m)*h(n)

将方差为!的台粤声η(n)输入系统。求系统响应 y(n)与白粤 /^{Eq(n)}的互相关 R_{vo}(m)。

因为 $\eta(n)$ 的自格关 $R_{\eta}(m) = \sigma_{\eta}^{-2} \cdot \delta(m) = 1 \times \delta(m) (p97)$,

因此 $R_{yq}(m) = \delta(m) + h(m) = h(m)$, $R_{yq}(m)$ 就是测定系统的单位脉冲响应 h(n)

(3) (6 分)序列 x(n)的 乙变换为 X(z)。其零极点分布如下图。

①若己知序列的傅氏变换是收敛的。何 X(z)的收敛域是 什么?序列 %(n)是左边序列、右边序列还是双边序列?

②若已知序列是双边序列,且其文变换存在,何对应的 序列可能有几种(不需求出序列的表达式)? 并分别指出它 们对应的收敛域。

- 解:① 序列傳氏变换收敛说明在单位圆上收益。收敛域内不能有极点 :: ROC: 0.5 < [2] 是双边序列
 - ②序列是双边序列,说明收敛域是环、收敛域内不能有极点。对应序列可能有两种。 ROC: 0.544/2 或者 ROC:242/3
- 二. 证明题(每题 6 分, 共 12 分)
- 己知 x(n)是长度为 N 的有限长序列。证明:如果 x(n)是纯实序列。则其 DFT X(k)具有 共轭偶对称性, 即 X(k)= X*(N-k)

证明思路:纯实满足 x(n)= x*(n)、纯虚满足 x(n)= -x*(n)、

由定义。
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$
,

$$X^{*}(N-k) = \left(\sum_{n=0}^{N-1} x(n) W_{N}^{n(N-k)}\right)^{*} = \left(\sum_{n=0}^{N-1} x(n) W_{N}^{-nk}\right)^{*} = \sum_{n=0}^{N-1} x^{*}(n) W_{N}^{nk} = \sum_{n=0}^{N-1} x(n) W_{N}^{nk} = X(k)$$

2. 有一单位脉冲响应为 h(n)的线性时不变离散时间系统,其输入 x(n)是周期为 N 的周期序列,试证系统的输出 y(n)也是周期为 N 的周期序列。

解: 目标是要证明 y(n+rN)=y(n) , r=0,1,2…

证明:设 $x_c(n)$ 是x(n)的一个周期, $y_c(n)$ 是输入 $x_c(n)$ 时的输出。

$$y_c(n) = T[x_c(n)], y_c(n-m) = T[x_c(n-m)],$$

$$x(n) = \sum_{k=0}^{\infty} x_{k}(n+rN).$$

$$y(n)=T[x(n)]=T[\sum_{r=-\infty}^{\infty}x_r(n+rN)]^{\frac{1}{2}}=\sum_{r=-\infty}^{\infty}T(x_r(n+rN))=\sum_{r=-\infty}^{\infty}y_r(n+rN)$$
 周期延拓后仍是周期的

政:
$$y(n+pN)=T[x(n+pN)]=T[\sum_{r=-n}^{\infty}x_{c}(n+pN+rN)]=T[\sum_{q=-\infty}^{\infty}x_{c}(n+qN)=T[x(n)]=y(n)$$

三. 画图题(每题7分,共14分)

1. 已知线性时不变离散时间系统的阶跃响应(系统在单位阶跃序列激励下的响应)为 $s(n)=n(0.5)^4u(n)$, 画出该系统的正准型实现结构。

解:面系统结构器知 H(z),或单位脉冲响应 h(n),因此要从阶跃响应求单位脉冲响应

$$\delta(n) \downarrow i \ u(n) 的 关系 \ u(n) = \sum_{m=0}^{\infty} \delta(n-m) \ , \ s(n) = T[u(n)], \quad h(n) = T[\delta(n)], \ h(n-m) = T[\delta(n-m)],$$

一阶跃响应和单位脉冲响应的关系:

$$T[u(n)] = T[\sum_{n=0}^{\infty} \delta(n-m)] = \sum_{n=0}^{\infty} T[\delta(n-m)] = \sum_{n=0}^{\infty} h(n-m) = h(n) + h(n-1) + h(n-2) + \dots = h(0.5)^{n} u(n)$$

两边 z 变换:
$$H(z)(1+z^{-1}+z^{-2}-\cdot)=z(\frac{1}{1-0.5z^{-1}})$$

H(z)
$$\frac{1}{1-z^{-1}} = -z \cdot -\frac{0.5z^{-2}}{(1-0.5z^{-1})^2} = \frac{0.5z^{-1}}{1-z^{-1}+0.25z^{-2}}$$

$$H(z) = \frac{0.5z^{-1} - 0.5z^{-2}}{1 - z^{-1} + 0.25z^{-2}}$$

 	v	
	7. T	
4 L	0.5	7.
0.25	-0.5	

2. 系统结构如图所示,请画出琴、极点分布图,并积略画出其幅频曲线。

- 四. 设计题(共32分)
- (10分)设计一长度为 N=4 的 FIR 数字滤波器,要求其须响在ω=0 时为 1, 在ω=π/2 和ω=π时为 0,求其单位脉冲响应 h(n)={h(0) h(!) h(2) h(3)}.

解: 长度为 N=4, 是 3 阶 FIR DF, 根据零点位置,

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n} = a(z+1)(z+j)(z-j)/z^3 = a(z+1)(z^2+1)/z^3$$

$$X H(z)|_{z=1} = a(z+1)(z^2+1)/z^3|_{z=1} = 2 \times 2a = 1$$
, $a = 1/4$
 $H(z) = 1/4 \cdot (z+1) \cdot (z^2+1)/z^3 = 0.25 + 0.25z^{-1} + 0.25z^{-2} + 0.25z^{-3}$
 $h(n) = \{0.25, 0.25, 0.25, 0.25\}$

- 2. (10 分)己知某线性相位 FIR 數字滤波器具有下列符征: (1)单位脉冲响应 h(n)偶对称:

 - (2)h(n)的长度为奇数;
 - (3)系统函数 H(z)的零点中,有一个是 z=0.5+0.5j;
 - (4)在ω=0 时,系统频响为 0.5。

至求:设计满足上述条件且1(n)的长度最短的数字滤波器,写出其 h(n):画出 线性相位型实现结构。

解:报据 4 零点组性质,另外三个零点分别是 0.5-0.5j、1+j、1-j $H(z)=a(z-0.5-0.5j)(z-0.5+0.5j)(z-1+j)(z-1-j)/z^4$

$$= a(z^2-z+0.5)(z^2-2z+2)/z^4 = a(z^2-z+0.5)(z^2-2z+2)/z^4$$

$$= a(z^4-3z^3+4.5z^2-3z+i)/z^4 = a(z^2-z+0.5)(z^2-2z+2)/z^4$$

$$H(z)|_{z=1} = 0.5 = a(1-3+4.5-3+1) = 0.5$$

$$H(z)|_{z=1}=0.5=a(1-3+4.5-3+1)=0.5a$$

 $H(z)|_{z=1}=0.5=a(1-3+4.5-3+1)=0.5a$
 $H(z)=\{-3z^{-1}+4.5z^{-2}.3z^{-3}, 4.45z^{-2}.3z^{-3}, 4.45z^{-2}.3z^{-3}\}$

$$H(z) = \{-3z^{-1} + 4.5z^{-2} - 3z^{-3} + z^{-4}, h(n) = \{1 - 3, 4.5, -3, 1\}$$

- 3. (12分)用脉冲响应不变注设计一个低通数字滤波器。已知模拟低通滤波器的传递函数为 $H_s(s) = \frac{2}{s^2 + 3s + 2}$,模型碳止频率为 $f_s = 1kHz$,果样频率为 $f_s = 4kHz$ 。 (1)设计该低通数字滤波器的系统函数 日(2);
- (2)该数字流波器的数字截止频率为多少?
- (3)一个以 2kHz 频率采样的输入信号通过该数字滤波器后,输出信号的最大频率范围

$$H_{a}(s) = \frac{2}{(s+1)(s+2)} - \frac{2}{S+1} - \frac{2}{S+2},$$

$$H(z) = \sum_{i=1}^{2} \frac{A_i}{1 - e^{iT_z - 1}} = \frac{2T}{1 - e^{-iT_z - 1}} - \frac{2T}{1 - e^{-iT_z - 1}} = (\frac{1}{1 - e^{-1/2000_z - 1}})/2000$$
(2) 数字截止频率是 $\omega_c = 2\pi \cdot 1000/4000 = \pi/2$

- (3) 采样频率 4kHz 时的模拟截止频率为 {=1kHz, 采样频率 2kHz 时的模拟截止频率为 f。=0.5kHz

五. 分析计算题(共 42分)

(8分)一连续时间信号 (0)的持续时间为 2.048 秒,信号在 256 个等距点处抽样,。求抽样 所得序列的频谱的周期为多少赫兹?如要求不产生频谱混叠,则对 f(t)的频谱有何限制? 解: T= 2.048÷256=0.008 秒, fs=1/T=125Hz, 抽样所得序列的频谱的周期为 2π,对应 fs = 125Hz。

如不产生频谱混叠,要求 f(t)的频谱不大于 fs/2 即 62.5Hz。

(8分)一个未知的线性时不变因果滤波器,在输入 x(n)=0.7° u(n)时的输出 为 y(n)=0.7" u(n)+ 0.5" u(n), 要求

(i)求出使输出为 y(n)= 0.5* u(n)的因果输入 x_i(n)是什么?

(2) 束系统的系统函数 H(z)和单位脉冲响应 b(n)

(2)
$$H(z) = \frac{2 - 1.2z^{-1}}{1 - 0.5z^{-1}}$$
,

$$h(n) = Z^{-1}\{H(z)\} = Z^{-1}\{\frac{2}{1 - 0.5z^{-1}}\} - Z^{-1}\{\frac{1.2z^{-1}}{1 - 0.5z^{-1}}\} = 2 \times 0.5^{n} u(n) - 1.2 \times 0.5^{n-1} u(n-1)$$

3. (8 分)某 4 点序列 x(n). 已知其偶数点的两点 DFT 为: F(0)=4,F(1)=-2. 其奇数点的 2 点 DFT 为: G(0)=6. G(1)=-2. 请利用时域抽收 FFT 计算 x(n)的 4 点 DFT $X(k)=\{X(0)|X(1)|X(2)|X(3)\}$. 写出具体结果。

解:画出四点时域插取 FFT 流图,

$$x(n)=(1,2,3,4)$$

- 4. (12分)线性时不变离散时间系统如图,要求。
- (1)确定系统的系统函数 H(z):
- (2)确定系统的单位脉冲响应 h(n):
- (3)确定系统的频响: H(e^{je})=H(w)e^{jo(w)};
- (4)根据幅度函数Η(ω)和相位函数φ(ω)的表达式, 画出系统的幅频特性曲线和相频特性曲线,
- (5) 确定系统的 3d3 带宽 wade.
- 解: (1) H(z)=1+z1
- (2) $h(n)=\delta(n)+\delta(n-1)$;

相位函数
$$\varphi(\omega)=-\omega/2$$
(或FIR $-\omega\frac{N-1}{2}=-\frac{\omega}{2}$)

(5) -20log
$$\left| \frac{H(\omega_{3db})}{H(0)} \right| = 3$$
, $\left| \frac{H(\omega_{3db})}{H(0)} \right| = 0.707 = \frac{\sqrt{2}}{2}$

 $H(\omega_{3db}) = 2\cos(\omega_{3db}/2) = \frac{\sqrt{2}}{2}H(0) = \sqrt{2}$ (此处 H(0)=2),得 $\omega_{3db}/2 = \pi/4$, ...3dB 带觉 $\omega_{3db} = \pi/2$

5. (6分) 已知
$$f(n) = a^n u(n)$$
, $\{a|<1, x g(n) = \sum_{k=0}^n f(k)$ 的终值 $\lim_{n \to \infty} g(n)$ 解:

$$g(n)=1+a+o^2+\cdots a^n$$
是有限长等比级数和, $\lim_{n\to\infty}g(n)$ 是无限长等比级数和,就是 $\frac{1}{1-a}$

若用终值定理:
$$\lim_{n\to\infty} g(n) = \lim_{z\to 1} [(1-z^4)G(z)]$$

$$g(n) = 1 + a + a^{2} + \cdots + a^{n} = \frac{1 - a^{n+1}}{1 - a} = \frac{1}{1 - a} \left[u(n) - a^{n+1} u(n) \right] = \frac{1}{1 - a} \left[u(n) - a \cdot a^{n} u(n) \right],$$

G(z)=Z[g(n)]=
$$\frac{1}{1-a}(\frac{1}{1-z^4},\frac{a}{1-az^4})$$

$$\lim_{z \to 1} \{(1-z^{-1})G(z)\} = \lim_{z \to 1} \{\frac{1}{1-a}(1-\frac{\sigma(1-z^{-1})}{1-az^{-1}})\} = \frac{1}{1-a}$$

$$\triangle g(n)$$
的終值 $\lim_{n\to\infty} g(n) = \frac{1}{1-a}$

南京邮电大学 2009/2010 学年第一学期

[数字信号处理 / 期末试卷

:	院(系)	•	班级	.,	学专.		·	姓名_			-	
:	Do (2/14					<u> </u>	T	1	· · · ·		· I	
	題号 —	<u> </u>	, K3	<i>L</i> . ↓ ∴	1 5	\ <u>^</u>	九	 	8	分:		
i. Ci	得介.								i L			
克 西 智	[14 /7] -	、填空题	(毎空1分	- , 共 20	分)							,
**************************************							6					
ix tg							Đ					
19) Ed. de	+, α*u(n) *	$\delta(n+2)=.$	<u>(1)</u> . (AUD.	2)	Ž						
를 다. - (G) - (B)	2. z*+= 0	{z {≈ ∞) Ø	河底的肝头	4为 <u>(2</u>) d(ht2) ï	€ (.il)	EZ,				
	. 3. §(n-n	,)的頻率响图	У.Х(с ^{эт}) У	j= <u>(3)</u>	e	-jym		30H3				:
14 - 14 年 - 1 本 年	4 华德特娃	高頻率カ 1.	20Hz、采锌	須果为 7	50Hz.	则其频;		2	H-66	A7.53	`	
arthur Min	5、报纸单位											J-Pa
i h (n) < 16	6. 己知 8.3	i长实序列 x	(n)的肝列和	対 5: ボ	.DET的	后四个	值为 (0	,1- j ₋ 2,	÷ €	<i>j</i> } .	U.	`.
$(101 = \frac{7}{2} xn.)$	医组长的	E几个DET (<u>ŭ</u> ; λ(ῦ) =	(<u>6)</u> , 2	3. ((1) = _9	$\frac{d}{dx}$. x	(2) = _	(8). X	(3)	÷ (9	+7 <u>)</u> .	
7(E) = X(N-K)	7、设计 FII	2.数字滤波器	时,为实现	见线性相	位,需要	∈h(a)tĂ	足。	<u>1161 h</u>	(N) =	ETT	热有家	持
	8、由于脉》	中的应不变法	存在频谱和	(景的特)	5、在设	计 IIR	数字波	波斯时	, 不	适于	设。	••
	计以下两种	频率特性的	地波器,包含	身 物(12年			. •	` '	\(A', \	•	
) Z-1-	优点是17	神 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	是 (14)	加拉作	f							
The second secon	10、已知一 [一] 安点 <u>(1</u> 5	一个段性相位)、 さる		海一个 ⁸ <u>力</u>	美点 1 约。	那么也	比线性书	H& FIR	ik ii	(2 8 92)	र्भ	
R	E. (\$96) 47.	. 	(数字值段) [一) 「一	小爺 鬼	1 菜、辛	页式 4	i Jį					•
		1.7	*									

if THE (LINT)

3) . You = IDETLYCHI/

月之一种的一种

(5.9) 没序码 $y(n) = x_i(n) * x_j(n)$,且 y(n) 长 L, $x_i(n)$ 长 R,试写出用快速卷

ELR表現實是有限於自己的問題的自己的表面主義的自己的人。即有不是達要的一段。

3、(5分) 画出下列数字系统的正准型结构

 $y(n) = 8x(n) - 4x(n-1) + 11x(n-2) - 2x(n-3) + \frac{5}{4}y(n-1) - \frac{3}{4}y(n-2) + \frac{1}{8}y(n-3)$

4、(10 分)這画出 8 点长枝时间抽取差-2FFT 葉形图(要求輸出順序)。并利用蝶形


```
四、计算题 (共35分) 242 + 42 = 25+ 4 + 8 = 2-2 = 25+ 4 + 4 = 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2-2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 4 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 26 + 2 = 
                                                            1<{21<204, MIN = 8(n+5)-4MIN)-42M(-n-1)
                                                                                               (4分.) 语音信号的有效常宽为 3.4KHz。以 f, = 8 KHz 的频率取样。取样点数为
                                                                                                                                   分)OSP 做成的一个数字滤波器可以用差分方程描述为。
                                                                                                   195部存储器在输入信号前未被置6、所以输出滤波器受初始条件 y(-1)=1 的影响。
(3). n=0; y(0)= 3y(7)+ 8(0) = 4
```

hanot. Whi = 2" + 4

五、设计题(共10分)

已知:某一低通滤波器的各种指标和多数要求为:(1) 巴特沃思德率响应,采用双线 一般是势率 fu:50 fb。 性变换设计法,考虑预略:(2)当0三人公28位对:变定4千分86、13)至7250位

中扩展较大于强等于40df; 4dd 采样频率 f. = 200 Hz. 求: 系统函数 H(z)。

表 1 低阶巴特沃思能波器 H(s)的分母(归一化)

阶数が	H(s)的分句
Į	 . 24 [
ż	s + \(\frac{1}{2}s + 1\)

$$\begin{array}{lll}
\Omega_{stt} \cdot h_{c} & & \Pi_{c} & \Pi_{c} \\
h \cdot w_{c} = 2\lambda \frac{f_{c}}{f_{s}} = 2\lambda \frac{f_{o}}{100} = \frac{\lambda}{2} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c} = \frac{\lambda}{100} \left(\frac{1}{2} \right) = \frac{\lambda}{100} \\
\Omega_{c}$$

双种蝮旋。

(数字信号析理) 设在 矿石缸 化石缸

南京邮电大学 2009/2010 学年第二学期

《数字信号处理》期末试卷(塔客附后)

趋号			19 mm	E3	Б.	<u> </u>	Tŧ	\ \	九	+	总分			
得分	(-7.		7 -				-							
tc '-4 B	.	`												
专以是	K (,												
, que tamén	·. 判的	絕 (1	上确的	函 〇.	不正面	角的圆	x) ·	,						
	tw ffi		ario g	红菜 (b)	i.i V (a		ግ"(/)	i abla	ਬਰੋਰਵਨ	CVC	Carabiticaca	AEB V (»Ř	9 ,	
	311.2[0	white	DO FRI W	2137721	.s (E	j≈r	r (XÇir)	[- 30]	m tu r,	(2) A.J.	Navar vo	ijau a te T	2.0	ì
							1.							1
2.	x(n)	= a*u(n). 贝	X(z)	= 211	x(n)]=	1 - 01					. ()
								. ,	通行作	対渡る	· 平柱占来	改善通常	· ·	Ť
						1 450	c tiple 3 is	13.00	V.E.V.E.101	1 K. J. W. V.	a Méti vana	(*~~	<u>`</u>
4.	. 若瓦	n) 是じ	しいめ	周期的	周期月	手列,	Ŋźĸ) 也是	一个以	נל א ג	周期的周期	序列。()
									, -			()
									混磨性	÷Α		()
											 S S -1	. ()
			. •	• .		~ 41 ~	7	~, 24 (4)	n 2 (x 2)		-14	,		-
	2 3. 特性和 4. 5.	得分 (二) 考试题 (二 一、 判的 1. 如果 2. x(n) 3. 在用 转性和阻带量 4. 若式 5. 时间 6. 用次	考示 (二) 考試题 (二) 一、判断題 (i ! 如果 x(n)是 2. x(n) = a u(3. 在用類率果 特性和阻带最小泉と 4. 若え(n)是じ 5. 时间寒散、 6. 用双线性変	得分 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	考试题 (二) — 判断题 (证确的画) 1 如果 x(n)是实因果序列, 2. x(n) = a u(n),则 X(z) 3. 在用频率采样法设计 F 特性和阻带最小衰减。 4. 若元(n)是以 N 为周期的 5. 时间离散、幅度连续的 6. 用双线性变换法设计 II	考试题 (二) — 判断题 (正确的画O, 不正面	考试题 (二) — 判断题 (证确的画O. 不正确的画) 如果 x(n)是实因果序列, X(e ⁱⁿ)=F 2. x(n)=a ⁿ u(n),则 X(z)=ZI[x(n)]= 3. 在用频率采样法设计 FIR 数字滤波特性和阻带最小衰减。 4. 若元(n)是以 N 为周期的周期序列, 5. 时间离散、幅度连续的信号称为数率 6. 用双线性变换法设计 IIR 数字滤波器	考试题 (二) — 判断题 (证确的画O, 不正确的画×) 1 如果 x(n)是实图果序列, X(e ⁱⁿ)=FT(x(n)) 2. x(n)=a ⁿ u(n),则X(z)=ZT[x(n)]= 1/1-az 3. 在用频率采样法设计 FIR 数字滤波器时,特性和阻带最小衰减。 4. 若 z(n)是以 N 为周期的周期序列,则 x(k 5. 时间离散、幅度连续的信号称为数字信号 6. 用双线性变换法设计 IIR 数字滤波器时存	考试题 (二) — 判断题 (证确的画 O, 不正确的画 x) ! 如果 x(n)是实因果序列, X(e ^{jee}) = FT[x(n)], 则 2. x(n) = a ⁿ u(n), 则 X(z) = ZT[x(n)] = 1/(1-az ⁻¹) 3. 在用频率采样法设计 FIR 数字滤波器时,可以特性和阻带最小衰减。 4. 若云(n)是以 N 为周期的周期序列,则 X(k) 也是 5. 时间离散、幅度连续的信号称为数字信号。 6. 用双线性变换法设计 IIR 数字滤波器时存在频率	考试题 (二) — 判断题 (证确的画O, 不正确的画×) 1 如果 x(n)是实因果序列, X(e ^{im})=FT[x(n)],则可由 R 2. x(n)=a ⁿ u(n),则 X(z)=ZT[x(n)]= 1/(1-az ⁻¹). 3. 在用频率采样法设计 FIR 数字滤波器时,可以通过加特性和阻带最小衰减。 4. 若 z(n)是以 N 为周期的周期序列,则 x(k)也是一个以5. 时间离散、幅度连续的信号称为数字信号。 6. 用双线性变换法设计 IIR 数字滤波器时存在频率混叠分	考试题 (二) — 判断题 (证确的画 O, 不正确的画 x) 1. 如果 x(n)是实因果序列, X(e ^{jee}) = FT(x(n)), 则可也 R _e (X(e ^{jee}) 2. x(n) = a ⁿ u(n), 则 X(z) = ZT(x(n)) = 1/(1-az ⁻¹ 3. 在用频率采样法设计 FIR 数字滤波器时,可以通过加过渡费特性和阻带最小衰减。 4. 若元(n)是以 N 为周期的周期序列,则 x(k) 也是一个以 N 为 l 5. 时间离散、幅度连续的信号称为数字信号。 6. 用双线性变换法设计 IIR 数字滤波器时存在频率混叠失真。	考试题(二) — 判断题(证确的画O,不正确的画×) 1 如果 x(n)是实因果序列, X(e ^{ins})=FT[x(n)],则可由 R _c (X(e ^{ins})]求出 x(c 2. x(n)=a ⁿ u(n),则 X(z)=ZT[x(n)]= 1/(1-az ⁻¹ 。 3. 在用频率采样法设计 FIR 数字滤波器时,可以通过加过渡带采样点来特性和阻带最小衰减。 4. 若元(n)是以 N 为周期的周期序列,则 元(k) 也是一个以 N 为周期的周期5. 时间离散、幅度连续的信号称为数字信号。 6. 用双线性变换法设计 IIR 数字滤波器时存在频率混叠失真。	考试题(二) — 判断题(证确的画O,不正确的画×) 1. 如果 x(n)是实因果序列, X(e ^{i**}) = FT[x(n)],则可也 R _c (X(e ^{i**})] 求也 x(n)和 X(e ^{i**}) 2. x(n) = a ⁿ u(n),则 X(z) = ZT[x(n)] = 1/(1-az ⁻¹) 3. 在用频率采样法设计 FIR 数字滤波器时,可以通过加过渡带采样点来改善通带特性和阻带最小衰减。 4. 若 z(n) 是以 N 为周期的周期序列,则 x(k) 也是一个以 N 为周期的周期序列。(5. 时间离散、幅度连续的信号称为数字信号。	考试题 (二) — 判断题 (正确的画 O . 不正确的画 x) ! 如果 x(n)是实图果序列, X(e ^{jee}) = FT[x(n)] . 则可由 R _c {X(e ^{jee})] 求出 x(n)和 X(e ^{jee}) . 2. x(n) = a ⁿ u(n) . 则 X(z) = ZT[x(n)] = 1/(1-az ⁻¹) . 3. 在用频率采样法设计 FIR 数字滤波器时,可以通过加过渡带采样点来改善通带波等特性和阻带最小衰减。 (4. 若 z(n) 是以 N 为周期的周期序列,则 x(k) 也是一个以 N 为周期的周期序列。(5. 时间离散、幅度连续的信号称为数字信号。 (6. 用双线性变换法设计 IIR 数字滤波器时存在频率混叠失真。 (6.

9. 已知 y(n) = x(n) * h(n) 。 再分别对 x(n)和 y(n)进行 20 点 DFT。得到 X(k)和 H(k)。 令

 $Y_i(k) = H(k) \cdot X(k)$ $k = 0,1,2,\cdots,19$, $\emptyset y(n) = \text{IDF}[Y_i(k)]$.

二、填空题

- 1. 设 $X(e^{j\omega}) = F\Pi[x(n)]$. 與 $F\Pi[nx(n)] = ($
- 2. 已知序列 $x(n) = \delta(n-1)$.

则
$$X(z) = Z\Pi[z(n)] =$$
 (

3、已知线性非时变因果系统用下面差分方程描述:

$$y(n) = y(n-1) + y(n-2) + x(n-1)$$
, \emptyset

 $H(z) = Y(z)/X(z) = \langle$

H(z)的极点为(

H(z)的零点为(

4. 如果截止頻率为 $\pi/8$ 的低通数字滤波器,采样频率为 $F_s=1/T=10~{
m kHz}$,那么等效的模拟滤波器的截止频率为(

5. 若 $h(n) = R_{\epsilon}(n)$, $x(n) = R_{\epsilon}(n)$. 则

$$y(n) = h(n) \cdot x(n) = 0$$

6. 采用脉冲响应不变法, 边界频率的转换关系为《

三、综合计算题

1. FTR 滤波器的系统函数为

$$H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-1} + 2z^{-4} + z^{-5}$$

- 求:(1) 写出滤波器的单位脉冲响应 h(n)的表达式:
 - (2) 该滤波器是否具有线性相位:为什么?
 - (3) 试画出该滤波器的结构流图(要求用最少的乘法器)。
 - 2. 已知归一化的二阶巴特沃思低通滤波器的传输函数为。

$$H_{*}(s) = \frac{1}{s^{2} + \sqrt{2}s + 1}$$

用双线性变换法设计 3db 截止频率 $\omega_c=2\pi/3$ rad 数字低通差波器。 果样间隔 T=2 s. 要求:

- (1) 求出该数字低通滤波器的系统函数 B(z);
- (2) 画出该数字低通滤波器的直接型结构图。
- 3. 已知 $x_n(t) = 2\cos(2\pi \cdot 100t)$. 以采样须率 $F_n = 400$ Hz 进行采样,得到采样信号 $f_n(t)$ 和时域离散信号 $f_n(t)$, 试完成下面各题:
 - (1) 写出 $x_{\epsilon}(t) = 2\cos(2\pi \cdot 100t)$ 的傅里叶变换表达式 $X_{\epsilon}(j\Omega)$:
 - (2) 写出 £ (t) 和 x(n)的表达式:
 - (3) 分别写出 £ (r) 和 x(n)的傅里叶变换表达式。
- 4. 试写出用窗函数法设计 FIR 数字滤波器的设计步骤, 并说明选择窗函数类型和窗函数长度的依据。

一、已知數字网络用下面差分方程推述

$$y(n) = 0.64y(n-2) + x(n)$$

- (1) 设输入信号 $x(n) = \delta(n)$, y(-1) = 0, y(-2) = 1, 当 $n \le -3$ 时 y(n) = 0, 求输出信号 y(n)
- (2) 求该网络的单位脉冲响应 h(n)。
- (1) 设 $x(n) = R_2(n)$, 求X(z) = ZT[x(n)], 以及收敛域:
- (2) $x(n) = R_2(n)$, 求 $X(e^{i\omega}) = FT[x(n)]$, 并定性画出幅频特性曲线;
- (3) $x(n) = R_2(n)$. 将 x(n)以 5 为周期进行周期性延拓,形成周期序列 $\overline{x}(n)$. 画出 $\overline{x}(n)$ 的 波形,并求出 $\bar{x}(n)$ 的离散傅里叶级数 $\bar{x}(k)$:
 - (4) $x(n) = R_2(n)$, 求 x(n)的 5 点 DFT, 得到 X(k), 画出 $[X(k)] \sim k$ 曲线:
 - (5) 求出(3)中 x(n) 的傅里叶变换表示式, 并画出相应的幅频特性。

如果限定网络是因果的,选定 H(z)的收敛域,求出其单位脉冲响应 h(n),这种情况下 络是否稳定,为什么?

- 四、己知 FIR 滤波器的网络结构如图 10.3.1 所示。
- (1) 写出滤波器的系统函数 H(z), 以及单位脉冲响应 h(n):
- (2) 该滤波器是否具有线性相位特性? 为什么?
- (3) 设 $x(n) = \sum \delta(n-6k)$, 试画出y(n)的波形。

五、已知模拟网络如图 10.3.2 所示,现用数字信号处理技术完成其处理作用。求:

- (1) 画出模拟信号数字处理的总方块图,输入输出仍为天(r)和y,(r),并说明各分方框 的作用:
 - (2) 求出数字滤波网络的系统函数(采用双线性变换法)。 井画出其结构图。

判断题

1. 如果 $x(n)$ 是实因果序列,则可由 $R_c[X(e^{j\alpha})]$ 求出 $x(n)$ 和 $X(e^{j\alpha})$ 。	
$Z\Pi(x(n)) = Z\Pi(x(n)) = 1$	(0)
* 20世紀期以服衛米謹吾東本華宝里。	. (0)
4. X(k) 也是一个以 N 为周期的周期序列。 5. 时间离散、幅度连续的信号称为数字信号	. (0)
6. 用双线性变换法语是 200 8	(0)
6. 用双线性变换法设计 IIR 数字滤波器时存在频率混叠失真。	(×)
7. 令 $x(n) = a^n$, $0 < a < 1$. 则 $X(z)$ 的收敛域为 $0 \le z \le a^{-1}$.	(×)
8. 因果系统其单位脉冲响应 $h(n)$ 一定满足当 $n < 0$ 时, $h(n) = 0$.	(x).
	(0)
二、填空廳	(×)

- 1. 设 $X(e^{j\omega}) = FT(x(n))$. 则 $FT[nx(n)] = (j\frac{dX(e^{j\omega})}{d\omega})$ 。
- 2. $X(z) = Z\Pi(x(n)) = (z^{-1})$. 收敛域为($0 < |z| < \infty$)。
- $H(z) = F(z)/X(z) = (-z^{-1}/(1-z^{-1}))$,H(z)的极点为($\frac{1}{2}(1\pm\sqrt{5})$),H(z)是意义。 等效的模拟滤波器的截止频率为 (0.625 kHz)。
- 5. $y(n) = h(n) * x(n) = \{1,2,3,4,4,4,3,2,1; n = 0,1,2,3,4,5,6,7,8\}$
- 采用脉冲响应不变法。边界频率的转换关系为($\omega = \Omega T$)。

三、综合计算题。

- 1. 解: FIR 滤波器的系统函数为 $H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + 2z^{-4} + z^{-5}$.
- (1) $h(n) = \delta(n) + 2\delta(n-1) + 3\delta(n-2) + 2\delta(n-3) + 2\delta(n-4) + \delta(n-5)$.
- (2) 该滤波器不具有线性相位性质。因为 h(n)不满足对 N/2 对称的条件。
- (3) 该滤波器的结构流图 (要求用最少的乘法器) 如图 \$10.2.1 所示。

2. 解: (1) 模拟滤波器的 3 dB 截止频率为 $\Omega_c = \omega_c/T = \pi/3$ rad

$$H_{s}(s) = \frac{\Omega_{c}^{2}}{s^{2} + \sqrt{2} x \Omega_{c} + \Omega_{c}^{2}}$$

(4)
$$X(k) = DFT[x(n)] = \sum_{n=0}^{i} e^{-j\frac{2\pi}{5}kn} = 1 + e^{-j\frac{2\pi}{5}k}, k = 0,1,2,3,4.$$

因为 DFT 是单位圆上 N 等间隔的采样。所以可以按照图 S10.3.1 定性画出 $|X(k)| \sim k$ 曲线如图 S10.3.3 所示。

(5)
$$X(e^{j\omega}) = DFT[\bar{x}(n)] = \frac{2\pi}{5} \sum_{k=-\infty}^{\infty} \bar{X}(k) \delta\left(\omega - \frac{2\pi}{5} \hat{k}\right)$$

$$= \frac{2\pi}{5} \sum_{k=-\infty}^{\infty} (1 + e^{-\frac{7\pi}{5}k}) \delta\left(\omega - \frac{2\pi}{5}k\right)$$

定性地画出相应的幅频特性;如图 \$10.3.4 所示。

三、解:

$$H(z) = \frac{1 - a^2}{(1 - az)(1 - az^{-1})}, \quad 0 \le a \le 1$$

限定网络是图果的。 选收敛版为67个上下。

$$x(n) = \frac{1}{2\pi i} \oint_{c} H(z) z^{n-1} dz . \quad F(z) = \frac{(1-a^{2})z^{n}}{-a(z-a^{-1})(z-a)}$$

$$n \ge 0$$
, $h(n) = \text{Res}[F(z), a^{-1}] + \text{Res}[F(z), a] = -a^{-n} + a^{n}$

因为是因果系统,所以当n < 0时。y(n) = 0.

因此, $h(n) = [-a^{-n} + a^n]u(n)$.

系统不稳定,因为当 $n \to \infty$ 时, $h(n) \to \infty$.

四、解:

(1)
$$H(z) = 0.4(1+z^{-6}) + 0.3(z^{-1}+z^{-5}) + 0.2(z^{-2}+z^{-4}) + 0.1z^{-3}$$

= $0.4 + 0.3z^{-1} + 0.2z^{-2} + 0.1z^{-3} + 0.2z^{-4} + 0.3z^{-5} + 0.4z^{-6}$
 $h(n) = \{0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4; n = 0, 1, 2, 3, 4, 5, 6\}$

- (2) 滤波器具有线性相位特性,因为单位脉冲响应 h(n)服从公式 h(n) = h(N-1-n), N是序列的长度。
 - (3) y(n) = x(n) * h(n),画出 y(n)的波形的波形,如图 S10.3.5 所示。

五、解:

(I) 画出模拟信号数字处理的总方块图,如图 S10.3.6 所示。

预滤的作用是防止频率混叠现象。A/D 的作用是将模拟信号转换成数字信号。数字信号 处理部分完成对信号的处理。D/A 完成将数字信号转换成模拟信号。平滑滤波部分完成对信 号的平滑作用。

(2) 按照图 10.3.2. 模拟信号网络的传输函数为 $H_*(s) = \frac{\alpha}{\alpha + s}$, $\alpha = \frac{1}{RC}$

采用双线性变换法将其转换成数字滤波器的系统函数为

向 N 至少应取多少?为什么?按照最少采样点数画出采样结构,不考虑稳定性,也可以用复数乘法。

- 五、设 $x(t) = x_1(t) + x_2(t) + x_3(t)$, 式中 $x_1(t) = \cos(8\pi t)$, $x_1(t) = \cos(16\pi t)$, $x_2(t) = \cos(20\pi t)$.
- (1) 如果用 FFT 对 x(t)进行频谱分析,问采样频率 F, 和采样点数 N 应如何选择,才能精确地求出x(t)、 $x_2(t)$ 、 $x_3(t)$ 的频率。
- (2) 按照你选择的 F_i 、N 对x(t)采样,然后得到x(n),进行 FFT,得到X(k),画出 $[X(k)] \sim k$ 的曲线,并分别注明 $x_1(t)$ 、 $x_2(t)$ 、 $x_3(t)$ 的频率。

$$H(z) = H_{4}(s) \Big|_{t=\frac{1-t^{-1}}{1+\sqrt{2}\Omega_{c}}} = \frac{\Omega_{c}^{1}(1+2z^{-1}+z^{-2})}{(1+\sqrt{2}\Omega_{c}+\Omega_{c}^{2})+2(\Omega_{c}^{2}-1)z^{-1}+(1-\sqrt{2}\Omega_{c}+\Omega_{c}^{2})z^{-2}}$$

$$k_{1} = \frac{\Omega_{c}^{2}-1}{1+\sqrt{2}\Omega_{c}+\Omega_{c}^{2}} \qquad k_{1} = \frac{1-\sqrt{2}\Omega_{c}+\Omega_{c}^{2}}{1+\sqrt{2}\Omega_{c}+\Omega_{c}^{2}}$$

$$H(z) = \frac{k_{1}(1+2z^{-1}+z^{-2})}{1+2k_{1}z^{-1}+k_{1}z^{-2}}$$

(2) 画出该数字低通滤波器的直接型结构图如图 S10.2. 所示。

3. 17:

程 S10.2.2

(1) $X_*(j\Omega) = FT[X_*(t)] = 2\pi(\delta(\Omega - 200\pi) + \delta(\Omega + 200\pi))$

(2)
$$\bar{x}_{i}(t) = \sum_{n=-\infty}^{\infty} 2\cos(200\pi n/F_{i})\delta(t-n/F_{i}) = \sum_{n=-\infty}^{\infty} 2\cos(0.5\pi n)\delta(t-n/F_{i})$$

$$x(n) = 2\cos(200\pi n/F_s) = 2\cos(0.5\pi n)$$

(3) 分别写出系(i) 和 x(n)的傅里叶变换表达式,

$$\begin{split} \hat{X}_{s}(j\Omega) &= \text{FT}[\hat{x}_{s}(t)] = F_{s} \sum_{m=-\infty}^{\infty} X_{s}(j\Omega - jm \cdot 2\pi F_{s}) \\ &= 2F_{s} \sum_{m=-\infty}^{\infty} \left[\delta(\Omega - 200\pi - jm \cdot 2\pi F_{s}) + \delta(\Omega + 200\pi - jm \cdot 2\pi F_{s})\right] \end{split}$$

$$X(e^{j\omega}) = FT[x(n)] = 2\pi \sum_{n=0}^{\infty} \left[\delta(\omega - \omega_n - 2\pi r) + \delta(\omega + \omega_n - 2\pi r)\right], \quad \omega_n = 200\pi/F, = 0.5\pi$$

- 4. 解: 用窗函数法设计 FIR 数字滤波器的设计步骤有:
- (1) 构造希望逼近的频率响应函数 $H_{\mathfrak{o}}(e^{i\omega})$,一般用理想滤波器作为逼近滤波器。
- (2) 求出逼近滤波器的单位脉冲响应h,(n)。
- (3) 加窗得到 FIRDF 的单位脉冲响应 h(n), $h(n) = h_a(n) w(n)$.

选择窗函数类型的依据是阻带的最小衰减。选择窗函数长度的依据是过渡带的宽度。

考试题 (三) 解答

一、解:

(1) 此题用递推法求解。

$$n=0$$
 $y(0)=0.64y(-2)+x(0)=1.64$
 $n=1$ $y(1)=0.64y(-1)=0$
 $n=2$ $y(2)=0.64y(0)=0.64\times1.64=0.8^2\times1.64$
 $n=3$ $y(3)=0.64y(1)=0$
 $n=4$ $y(4)=0.64y(2)=0.64^2\times1.64=0.8^4\times1.64$
 $y(n)=\begin{cases} 1.64\times0.8^n, & n 取偶数 \\ 0, & n 取奇数 \end{cases}$

(2) 令
$$x(n) = \delta(n)$$
, $y(-1) = 0$, $y(-2) = 0$, 当 $n \le -3$ 时 $y(n) = 0$

$$n=0$$
 $y(0) = x(0) = 1$
 $n=1$ $y(1) = 0.64 y(-1) = 0$ $n=3$ $y(3) = 0.64 y(1) = 0$
 $n=2$ $y(2) = 0.64 y(0) = 0.8^2$ $n=4$ $y(4) = 0.64 y(2) = 0.8^4$
 $h(n) = \begin{cases} 0.8^n, & n \text{ 收偶数} \\ 0, & n \text{ 取奇数} \end{cases}$

二、解.

- (1) X(z)=1+z-1, 收敛域为0<|z|≤∞,
- (2) $X(e^{j\omega}) = FI(x(n))$

$$X(e^{j\omega}) = 1 + e^{-j\omega}$$

根据零极点分布定性画出幅频特性曲线,如图 S10.3.1 所示。

(3) 画出 x(n) 的波形如图 \$10.3.2 所示。

$$\tilde{X}(k) = DFT[\tilde{x}(n)] = \sum_{n=0}^{L} e^{-j\frac{2\pi}{5}kn} = 1 + e^{-j\frac{2\pi}{5}k}$$
 $-\infty < k < \infty$

18 510 3 1

南京邮电大学 2008/2009 学年第 一 学期

《数字信号处理 B》期末试卷

一、填空题

- 1. 单位脉冲响应分别为 $h_1(n)$ 和 $h_2(n)$ 的两线性系统相串联,其等效系统函数 时域表达式 $h(n) = h_1(n) * h_2(n)$,系统频响 $H(e^{jn}) = H_1(e^{jn}) H_2(e^{jn})$ 。
- 2、要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的 西倍。
- 3、FFT算法之所以能减少运算量是利用了 $W_N=e^{-\frac{2\pi}{N}}$ 的<u>周期</u>和<u>对称</u>的特性。
- 4、用矩形窗设计线性相位的FIR低通滤波器, 矩形窗长度增加不会改变肩峰的相对值, 这种现象称为_吉布斯_效应。
- 5、两序列长度分别为 L_1 和 L_2 ,用循环卷积(circular convolution)正确计算两个序列卷积结果,循环卷积的点数N至少为 L_1+L_2-1
- 7、 [IR 9F 设计时,模拟低通原型到数字低通原型的映射即S平面到Z平面的映射常用的方法是 双线性变换法 和 冲激响应不变法 其中 冲激响应不变法 不会产生畸变。
- 8、设计线性相位FIR数字滤波器, h(n)需满足 <u>倡</u>对称或者 奇 对称。
- 9、在用定点数做乘法运算不会造成溢出,但是字长要增加一倍,在定点乘法运算后需要对于尾数做<u>截尾或舍入操作,以保证字长的不变。</u>
- 10、在做基2的快速傅里叶算法时,有 按时间抽取法 、 按频率抽取法 两种
- 11、己知 $DTFT[x(n)] = X(e^{fr})$, $x(n \pm n_0)$ 的 DTFT 是_ $e^{\pm fn_0 r} X(e^{fr})$ ___。
- 12. Parseval定理 $\sum_{n=1}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(e^{f^2})|^2 d\omega$ 的物理含义是 <u>时域中对序列求能量与</u>

频域中求能量是一致的

- 13、IIR DF可以用直接型、级联型和并联型三种网络结构实现,相同条件下<u>级联型</u>结构可同时调整零点和极点位置,<u>并联型</u>结构只容易调整极点。<u>并联型</u>结构运算速度最快、
- 14. 线性时不变系统的单位采样响应为h(n),输入x(n), 则输出y(n)=x(n)*h(n).

15. 线性时不变系统是因果的充要条件是,单位采样响应 $h(n)$ 满足 $h(n)=0,n<0$.
在 设因果性序列 $x(n)$ 的 Z 变换为 $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$,则 $x(0) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$, $x(0) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$
下设 $x(n) = \delta(n-3)$,则 $x(n)$ 的傅里叶变换为 $e^{-j3\omega}$
18. 设 $x(n) = R_4(n)$, 则 $x(n)$ 的 8 点 DFT 为 $e^{-\frac{1}{4}e^4} \sin \frac{\pi}{2} k / \sin \frac{\pi}{8} k$
19. 线性移不变系统是因果系统的充分必要条件是h(n)=0,n<0
$20.$ $x(n) = a^n u(n)$ 的 DTFT 绝对可加条件 $ o < 1$.
二、判断题
1、当输入不同序列时,线性时不变系统的单位抽样响应也不同。(×) 2、FIR 被波器极点全部在原点(永远稳定),无稳定性问题。 (√) 3、任何离散系统的输出序列都等于输入序列和系统单位抽样响应的线性卷积。(×) 4、IIR 滤波器可以用快速傅里叶变换(FFT)算法减少计算量 (×) 5、IIR 滤波器结构对于有限字长效应噪声累积效应的比较;直接性>级联型>并联型 (√) 6、某系统的差分方程为 p(n) = 10.4x(n) - 2.7y(n-1),该系统是非递归系统。 (×) 7、因果系统的 2 变换收敛域区间为 2 平面单位圈内。 (×) 8、一个数字滤波器如果其幅度谱在 n处为等,那么该滤波器不能是高遍滤波器和带阻滤波器
(√) . 抽样信号的频率不会超过抽样频率的一半 。 (/) 0. 信号在频域中压缩等效于在时域中扩展。 (√)

三、简答题

- 1、请写出数字信号处理系统相对于模拟信号处理系统的优点 课本 P2 相信, 自分社位,可会现在和战星和对达时间战战争特性。 写真到优倍为人是
- 2、DTFT 与 ZT、 DFT 与 DTFT 及 DFT 与 ZT 之间的关系。 答: DTFT 与 ZT 关系: $X(e^{h^{*}}) = X(z)_{local}$

DFT 与 DTFT 关系:
$$X(k) = X(e^{jr})$$
 $\log 2\pi k$
DFT 与 ZT 关系: $X(k) = X(z)$ $\log 2\pi k$

3、线性时不变系统的单位脉冲响应为 h(n) 长度为 M,输入信号 x(n) 长度为 N,写出用快速卷积的方法求输出序列 y(n) 的过程。 答: x(n)、h(n) 补零到 $L \ge N + M - 1$

- (1) 求 H(K) = DFT[h(n)], L点
- (2) 求X(K)=DFT[x(n)]. L点
- (3) 计算Y(k) = H(K) * X(K)
- (4) 求 y(n) = IDFT[Y(k)], L点
- 4、某线性时不变系统的单位脉冲响应为 $\frac{1}{n}U(n)$,判断该系统的因果性和稳定性。

(1).
$$\delta(n-1)$$
 (2). $2^n u(-n)$

解: 1、因果稳定 2、非因果稳定

- 气、简述设计一个数字滤波器的一般步骤 课本 P141
- FIR 于 IIR 滤波器各有什么优缺点(如何选择) 课本 P227
- 名、简述 FIR 滤波器各实现结构的类型及如何选择 , 课本 P232

四、计算题

- 1、课本习题 3.10
- 2、已知序列 a(n) 为 【 2,3,4 】, 序列 b(n) 为 { 3,2,1 },
 - 求 (1) 求线性卷积 a(n)*b(n) 值:
 - (2) 分别求3点、5点的循环卷积 a(n)⊗b(n):
 - (3) 比较并解释 (2) 的结果。
 - 解 (1) 线性卷积:

线性卷积结果为{6, 13, 20, 11, 4}, 0≤n≤4

(2) 3点循环卷积: 法一

m	0	1	A (U)
	2		54
x (m)	2	3	
	4	-	
y (m)	3	2	· · · · · · · · · · · · · · · · · · ·
	1	Į	
y (-m)	3	1	w (0) = 1
	2		7
y (1-m	2	3	w(l)=1
	1		7
у (2- _{ві}	Ĭ	2	*(2)=2
)	3		0

法二: ...

6 13 20:11 4

6 13 20:11 4

6 13 20:11 4

... 17 17 20 17 17 20 ...

(2) 5 点圆周卷积: 法一:

n	С]	2.	3	w (u)
	4				
x (m)	2	3	4	0	
	0				ĺ
y (m)	3	2	1	. 0	
	0				
λ (-w)	3	0	0	1	¥(0)=6
	2				
у (1-т	2	3	0.	0	w(1)=1
)	1			ļ	3
y (2−m	ì	2	3	0	* (2)=2
)	0				0
у (3- _т	0	1	2 .	3	w (3)=1
)	0 ~				1
у (4п	0	0	1	2	w(4)=4
)	3				"(1)"

法二:

6 13 20 11 4

:6 13 20 11 4

6 13 20 11 4

- (3) 3 点圆周卷积和线性卷积的结果不一样,这是因为对线性卷积结果进行周期延拓而产生了叠加失真所引起的,5 点圆周卷积没有叠加失真,和线性卷积的结果一样。
- 3、函出一个完整的 N = 8 按频率抽取 FFT 法的分解图。 课本 P109
- 4 课本习题 6.1
- 5. 设一因果的线性时不变系统的系统函数为:

$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})} = \frac{\frac{10}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{7}{3}}{1 - \frac{1}{4}z^{-1}}$$

分别画出系统的直接型, 级联型和并联型结构。

$$\mathbb{A}^{2}: (1) \ H(z) = \frac{1 + \frac{1}{3}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})} = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

直接型为:

(2)
$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \frac{1}{1 - \frac{1}{4}z^{-1}} = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \frac{1 + \frac{1}{4}z^{-1}}{1 - \frac{1}{4}z^{-1}}$$

级联型为

(3)
$$H(z) = \frac{\frac{10}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{7}{3}}{1 - \frac{1}{2}z^{-1}}$$

并联型为:

五、设计题

4.7 课本习题 4.7

% 课本习题 5.1

3、某二阶模拟低通原型滤波器的传递函数是

$$H_{\alpha}(s) = \frac{9}{\left(\frac{s}{\Omega_{c}}\right)^{2} + \sqrt{3}\left(\frac{s}{\Omega_{c}}\right) + 3}$$

其 3dB 數止頻率是 $f_c=500Hz$. (1) 双线性法设计一个数字低通: 截止頻率

同上,采样频率是 3000Hz; (2) 用直接 II 型结构实现之。

解 (1)
$$\Omega_c = \frac{2}{T} tg(\frac{2\pi f_c T}{2}) = \frac{2}{T} tg(\frac{2\pi \times 500}{2 \times 300}) = \frac{2}{T} \cdot \frac{1}{\sqrt{3}}$$

$$H(z) = H_a(s) \Big|_{z=\frac{2}{T}, \frac{1-z^{-1}}{1+z^{-1}}} = \frac{9}{3\left(\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + 3\left(\frac{1-z^{-1}}{1+z^{-1}}\right) + 3}$$

$$= \frac{9 \cdot 14 \cdot 2z^{-1} + z^{-2}}{9 + 3z^{-2}} = \frac{1 + 2z^{-1} + z^{-2}}{1 + \frac{1}{3}z^{-2}}$$

(2)

自觉遵守者试规则"诚信考试" 薮 江 线 內 不 要 如

- 4、用窗口法设计一个线性相位的低通FIR滤波器,截止频率为 f., 采样频率为 8f., 采用窗口大小N为 7 的矩形窗。
- 求(1)确定 α 与该FIR DF阶数N的关系;(2)设计出滤波器的 $\delta(n)$ 。

$$\frac{42\pi}{12\pi} \cdot h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d\left(e^{f\omega}\right) e^{f\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-f\omega \alpha} e^{f\omega n} d\omega = \frac{\sin(\omega_c(n-\alpha))}{\pi(n-\alpha)}$$

$$\frac{42\pi}{12\pi} \cdot \left(1\right) \quad \alpha = \frac{N-1}{2} = \frac{7-1}{2} = 3$$

$$\alpha = \frac{N-1}{2} = \frac{7-1}{2} = 3$$

理想冲激响应为:

$$h_{d}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{d}(e^{i\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_{c}}^{\omega_{c}} e^{-j\omega \sigma} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \times 2 \times \int_{0}^{\omega_{c}} \cos \omega (n - \alpha) d\omega$$

$$= \frac{\sin \omega_{c} (n - \alpha)}{\pi (n - \alpha)} = \frac{\sin[(n - 3) \times \pi / 4]}{\pi (n - 3)}$$

加矩形窗:
$$h(n) = h_2(n)R_n(n) = \left\{ \frac{\sqrt{2}}{6\pi}, \frac{1}{2\pi}, \frac{\sqrt{2}}{2\pi}, \frac{1}{4}, \frac{\sqrt{2}}{2\pi}, \frac{1}{2\pi}, \frac{\sqrt{2}}{6\pi} \right\}$$

1、简答题

- (1) 由"模拟信号的数字化处理"方框图回答以下问题:
- a、A/D 变换有哪几个过程? 其中哪个过程为线性, 那个过程为非线性?
- b、模拟信号、离散时间信号、数字信号各自的特点和关系。
- (2) 离散时间信号作为理想化、线性化的数字信号的条件是什么?
- (3) 对数字信号和系统进行分析的总思路是什么?
- 2、有一理想采样系统,采样频率 $\Omega_s=6\pi$,采样后经理想低通滤波器 $H_s(j\Omega)$ 还原,已知

$$H_{\alpha}(j\Omega) = \begin{cases} \frac{1}{3}, & |\Omega| < 3\pi \\ 0, & |\Omega| \ge 3\pi \end{cases}$$

现有两个输入 $x_{a1}=\cos 2\pi t$ 和 $x_{a2}=\cos 5\pi t$,输出信号 $y_{a1}(t)$ 、 $y_{a2}(t)$ 分别为多少?有无失真?

参考答案

分析:该题要运用采样定理来解题。要理解采样信号的频谱是原来信号频谱以 Ω_s 为周期的周期延拓。要会画信号频谱及延拓以后的信号频谱,这样,信号经过滤波器后可以直观地看到哪些频率的信号可以输出。

或者直接按照奈奎斯特采样定理,要想时域采样后不失真地还原原来的信号,则采样频率一定要大于等于 2 倍信号的最高频率,即 $f_s \geq 2f_{\max}$,或 $\Omega_s \geq 2\Omega_{\max}$ 。

按照奈奎斯特采样定理。

因为 $x_{e1}=\cos 2\pi t$,信号最高频率 $\Omega_1=2\pi$,采样频率 $\Omega_s=6\pi$,满足 $\Omega_s\geq 2\Omega_1$,所以 $y_{1e}(t)=\cos 2\pi t$,没有混叠失真。

因为 $x_{a2}=\cos 5\pi t$,信号最高频率 $\Omega_2=5\pi$,采样频率 $\Omega_s=6\pi$,此时不满足 $\Omega_s\geq 2\Omega_2$,所以 $y_{a2}(t)$ 一定会产生混叠失真,输出 $y_{2a}(t)=\cos(\Omega_s-\Omega_2)t=\cos\pi$ 。
3、推导样值形式傅里叶变换式,并证明它也能反映"周期延拓"性。

参考答案:

$$\begin{split} X_A(j\Omega) &= \int_{-\infty}^{\infty} x_A(t) e^{-j\Omega t} dt \\ &= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x_a(nT) \delta(t-nT) e^{-j\Omega t} dt \\ &= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} x_a(nT) \delta(t-nT) e^{-j\Omega nT} dt \end{split}$$

由于 $x_s(nT)$ 和 $e^{-j\Omega nT}$ 与积分变量t无关,可以提取到积分号之外,且 $\delta(t-nT)$ 的积分

为 1. 从面可得:

$$X_{A}(j\Omega) = \sum_{n=-\infty}^{\infty} x_{n}(nT)e^{-jn\Omega T}$$

周期延拓性:

$$\begin{split} X_A[j(\Omega_s + \Omega_1)] &= \sum_{n = -\infty}^{\infty} x_a (nT) e^{-jn(\Omega_s + \Omega_1)T} \\ &= \sum_{n = -\infty}^{\infty} x_a (nT) e^{-jn\Omega_s T} \cdot e^{-jn\Omega_1 T} \\ &e^{-jn\Omega_s T} = e^{-jn\Omega_s T/f_s} = e^{-jn*2\pi} = 1 \end{split}$$

$$X_{A}[j(\Omega_{s} + \Omega_{1})] = \sum_{n=-\infty}^{\infty} x_{a}(nT)e^{jn\Omega_{1}T}$$

4 P. 30 1-3

参考答案

分析: 要满足x(n+N)=x(n),则要求 $N=\frac{2\pi}{\omega}\cdot k$ 式中 k 与 N 均取整数,且 k 的取值要保证 N 是最小的正整数,满足这些条件,正弦序列才是以 N 为周期的周期序列,即: $\frac{2\pi}{\omega}=\frac{P}{Q}=\frac{N}{k}$, P、Q 为互素的整数时。显然当 k=Q 时(含 k=Q=1),N=P。

(1) 因为 $\omega = \frac{3\pi}{7}, \frac{2\pi}{\omega} = \frac{14}{3}, k = 3$,所以该序列为周期序列,周期为 N=14。

(2) 因为 $\omega = \frac{2\pi}{7}, \frac{2\pi}{\omega} = 7, k = 1$, 所以该序列为周期序列, 周期为 N=7。

(3) 因为 $\omega = \frac{1}{8}, \frac{2\pi}{\omega} = 16\pi$ 是无理数,所以该序列不是周期序列。

5、填空题

(1) 有一连续信号 $x_a(t) = \cos(40\pi)$,用采样间隔 T = 0.02s 对 $x_a(t)$ 进行采样,则采样信号 $\hat{x}_a(t)$ 的表达式为 $\hat{x}_a(t) = \sum_{n=-\infty}^{\infty} x_a(nT)\delta(t-nT) = \sum_{n=-\infty}^{\infty} \cos(0.8\pi n)\delta(t-0.02n)$;采样后所得时域离散信号 x(n)的周期为 N=5 。

(2) 若一个理想采样及恢复系统,采样频率为 $\Omega_s=6\pi$,采样后经一个带宽为 3π ,增益为1/3 的理想低通还原。现有输入 $x_a(t)=\cos\pi+\cos2\pi +\cos5\pi t$,输出信号y(n)为 $y(t)=\cos2\pi+2\cos\pi t$

第二次习题

1、简答题

(1) 请写出线性系统的定义及判定公式。

答: 线性系统是指系统对信号的处理是符合叠加原理的。

判定条件: 若系统输入序列分别为 $x_1(n)$ 和 $x_2(n)$ 时, 输出序列分别为 $y_1(n)$ 和 $y_2(n)$,

即:
$$\frac{y_1(n) = T[x_1(n)]}{y_2(n) = T[x_2(n)]}$$
, 那么当系统输入为 $ax_1(n) + bx_2(n)$ 时,有:

T[ax,(n)+bx,(n)]=ay,(n)+by,(n)成立,则该系统为线性系统。

(2) 请写出时不变系统的定义及判定公式。

答: 时不变系统是指系统对信号的处理(运算)不随时间的改变面改变。

判定条件: 若系统输入序列为x(n)时, 输出序列为y(n), 即: y(n) = T[x(n)], 那么

当系统输入为 $x(n-n_0)$ 时,有:

 $T[x(n-n_0)] = y(n-n_0)$ 成立,则该系统为时不变系统。

2、请图示下述序列

(1)
$$\sin(\omega_0 n)R_8(n) + \delta(n-6)$$
, $\sharp + \omega_0 = 2\pi/8$

(2)
$$2^{-n}u(-n-2)$$

(3)
$$2^{-n}u(n-2)$$

0.707 1 0.707

0 1 2 3 4 5 6

4

3, P.301-4 (2) (10)

(2)
$$y(n) = 3x(n) + 5$$

设

$$y_1(n) = T[x_1(n)] = 3x_1(n) + 5$$

$$y_2(n) = T[x_2(n)] = 3x_2(n) + 5$$

$$T[ax_1(n) + bx_2(n)] = 3ax_1(n) + 3bx_2(n) + 5$$

III

$$ay_1(n) + by_2(n) = 3ax_1(n) + 5a + 3bx_2(n) + 5b$$

可见 $T[ax_1(n)+bx_2(n)]\neq ay_1(n)+by_2(n)$, 故此系统不是线性系统。又y(n-k)=3x(n-k)+5=T[x(n-k)],所以系统是时不变系统。

(10)
$$y(n) = x(2n)$$

$$y_1(n) = T[x_1(n)] = x_1(2n),$$

 $y_2(n) = T[x_2(n)] = x_2(2n),$
 $T[ax_1(n) + bx_2(n)] = ax_1(2n) + bx_2(2n),$

丽

$$ay_1(n) + by_2(n) = ax_1(2n) + bx_2(2n)$$

可 见 $T[ay_1(n)+by_2(n)]=ay_1(n)+by_2(n)$, 故 此 系 统 是 线 性 系 统 。 又 y(n-k)=x[2(n-k)]=x(2n-2k), T[x(n-k)]=x(2n-k)=x(2n-k) , 不 满 足 y(n-k)=T[x(n-k)] ,所以系统不是时不变系统。

4、已知线性移不变系统的输入为x(n),系统的单位抽样响应为h(n),试求系统的输出y(n)。

(1)
$$x(n) = \delta(n), \qquad h(n) = R_s(n)$$

(2)
$$x(n) = R_3(n), h(n) = R_A(n)$$

(3)
$$x(n) = \delta(n-2), \qquad h(n) = 0.5^n R_1(n)$$

(4)
$$x(n) = 2^n u(-n-1)$$
, $h(n) = 0.5^n u(n)$ 分析

① 如果是因果序列, y(n) 可表示成 $y(n) = \{y(0), y(1), y(2), \cdots\}$ 。例如, 小题 (2) 的

结果可表示为 $y(n) = \{1,2,3,3,2,1\}$ 。

③ 卷积和求解时,对 n 要分段处理。 参考答案:

(1)
$$y(n) = x(n) * h(n) = R_s(n)$$

(2)
$$y(n) = x(n) * h(n) = \{1, 2, 3, 3, 2, 1\}$$

(3)
$$y(n) = \delta(n-2) * 0.5^n R_3(n) = 0.5^{n-2} R_3(n-2)$$

(4)
$$x(n) = 2^n u(-n-1), h(n) = 0.5^n u(n)$$

得:

$$y(n) = \sum_{m=-\infty}^{-1} 0.5^{n-m} 2^m = \frac{1}{3} \cdot 2^{-n}, \quad n \ge 0$$

$$y(n) = \sum_{m=-\infty}^{n} 0.5^{n-m} 2^m = \frac{4}{3} \cdot 2^n, \quad n \leq -1$$

第三次习题

1、填空题

- (1) 某线性时不变离散系统的单位脉冲响应为 h(n) = 0.3"u(n),则该系统的因果性及稳定性分别为__因果__、_非稳定 。
- (2) 已知某离散系统的输入输出关系是 y(n) = x(n-1) + 2x(n-2), 试判断系统的线性、时不变和因果特性分别为_线性, 时不变, 因果 。
- (3) 已知系统的输入输出关系为 y(n) = 3x(n) + 8,则系统的线性性和时不变性分别为_非线性_及_时不变_。
- 2、以下序列是系统的单位抽样响应h(n),试说明该系统是否因果的、稳定的。

$$(1) \ \frac{1}{n^2} u(n)$$

(2)
$$\frac{1}{n!}u(n)$$

分析

$$(1) 0! = 1.$$

48

② 已知 LSI 系统的单位抽样响应,可用 $\sum_{n=-\infty}^{\infty} |h(n)| = M < \infty$ 来判断稳定性,用

h(n) = 0, n < 0来判断因果性。

参考答案:

(1) 当n < 0 时,h(n) = 0,所以系统是因果的。

因为

$$\sum_{n=0}^{\infty} |h(n)| = \frac{1}{0^2} + \frac{1}{1^2} + \cdots \Rightarrow \infty$$

所以系统不稳定。

(2) 当n < 0 时,h(n) = 0,所以系统是因果的。

因为

$$\sum_{n=-\infty}^{\infty} |h(n)| = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \cdots$$

$$= 1 + 1 + \frac{1}{2 \times 1} + \frac{1}{3 \times 2 \times 1} + \cdots$$

$$< 1 + 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 3$$

所以系统是稳定的。

3. P.31 1-11

参考答案:

$$\begin{cases} x(n) + \frac{1}{2}w(n-1) = w(n) & (1) \\ \Rightarrow w(n) = \frac{1}{3}y(n) + \frac{2}{3}x(n) \\ w(n) + w(n-1) = y(n) & (2) \end{cases}$$

将 w(n)代入(1)或(2)得:

$$y(n) = x(n) + x(n-1) + 0.5y(n-1)$$

$$n = 0, y(0) = u(0) + u(-1) + 0.5 \times 0 = 1,$$

$$n = 1, y(1) = u(1) + u(0) + 0.5 \times 1 = 2 + 0.5,$$

$$n = 2, y(2) = u(2) + u(1) + 0.5 \times (2 + 0.5) = 2(1 + 0.5) + 0.5^{2},$$

$$n = 3, y(3) = u(3) + u(2) + 0.5 \times [2(1 + 0.5) + 0.5^{2}]$$

$$= 2(1 + 0.5 + 0.5^{2}) + 0.5^{3}$$

$$y(n) = 2(1 + 0.5 + \dots + 0.5^{n-1}) + 0.5^{n}$$
$$= 2\frac{1 - 0.5^{n}}{1 - 0.5} + 0.5^{n}$$
$$= 4 - 3(0.5)^{n} n \ge 0$$

第四次习题

1、简答题

(1) 请给出 2 变换收敛域的定义和充要条件。

答:使 X(z)一致收敛的 z 的取值范围称为 Z 变换的收敛域(ROC),由 X(z)的定义式和收敛域的概念不难给出级数收敛的充分必要条件是满足绝对可和条件,即:

$$\sum_{n=-\infty}^{\infty} |x(n)z^{-n}| < \infty$$

$$|z = re^{j\omega}$$

$$\sum_{n=-\infty}^{\infty} |x(n)| r^{-n} < \infty$$

由此可知:一般来说, 2变换在 2 平面上的一个环形区域中收敛, 即:

$$R_{\chi_{-}} < |z| < R_{\chi_{+}}$$

(2)请列表表示 x(n)的不同形式与 X(z) 的 ROC 的对应关系。 答:

x(n) 的形式	X(z)的 ROC
有限长序列n(n ₁ ~ n ₂)	0 < z < ∞ 0? ?∞
右边序列 n(n ₁ ~ +∞)	$R_{X_{-}} < z < \infty$ $?\infty$
左边序列 n(-∞ ~ n ₂)	0 < z < R _{X+} 0?
双边序列n(-∞,+∞)	$R_{\chi_{-}} \lessdot z < R_{\chi_{+}}$

2.

a.利用X(z)的收敛域的充要条件来确定,即满足

$$\sum_{n=-\infty}^{\infty} |x(n)z^{-n}| < \infty$$

的z的范围。

此方法由于是依据了收敛的X(z)的概念,所以是理论上一定成立的方法。

b.利用 X(z) 的解析式是一个等比级数的有限求和公式来确定,即若

$$X(z) = \frac{a_o}{1-a}$$

则 |q|<1 右边序列 |q|>1 左边序列

此方法由于是依据了等比级数有限求和公式成立的概念,所以是有条件成立的方法。

c.利用 X(z) 收敛域定义的一个推论来确定,即收敛域内无 X(z) 的极点,则推论: X(z)的极点只可能在 ROC 外,但一定有极点在 ROC 上。

此方法由于依据了收敛域定义的推论的概念,所以是无条件成立的方法。又由于X(z)的 极点的判断较容易。所以此方法较实用。

(4) 请给出 Z 反变换的计算方法。

答:求 Z 反变换的方法通常有以下几种:

- a. 围线积分法 (留数法);
- b. 部分分式展开法(部分分式法):
- c. 长除法(幂级数展开法):
- ·d. 利用基本 Z 变换公式和基本 Z 变换性质。
- 2、利用 Z 变换性质求下列序列 x(n)的 Z 变换:

(1)
$$(-1)^n nu(n)$$
 (2) $(n-1)^2 u(n-1)$ (3) $0.5^n u(n-1)$ (4) $n^2 x(n)$ $\%$ 48%:

(4) 设
$$Z[x(n)] = X(z)$$

$$Z[n \cdot x(n)] = -z \frac{d}{dz} X(z) = -z X'(z)$$

$$Z[n \cdot nx(n)] = -z \frac{d}{dz} [-z X'(z)]$$

$$= z^2 X''(z) + z X'(z)$$

3、假如x(n)的 2 变换表示式是下式, 闷X(z)可能有多少不同的收敛域, 它们分别对应什 么序列?

$$X(z) = \frac{1 - \frac{1}{4}z^{-2}}{\left(1 + \frac{1}{4}z^{-2}\right)\left(1 + \frac{5}{4}z^{-1} + \frac{3}{8}z^{-2}\right)}$$

分析

(1)有限长序列的收敛域为 $0 < |z| < \infty$, $n_1 \le n \le n$,

特殊状况有: $0 < |z| \le \infty$, $n_i \ge 0$

$$0 \le |z| < \infty$$
, $n_2 \le 0$

(2) 右边序列的收敛域为 $R_{x-} < |z| < \infty, n \ge n$,

如果序列是右边序列的一个特例,其收敛域为 $R_{x-} < |z| \le \infty$, $n \ge n_1 \ge 0$

(3) 左边序列的收敛域为 $0 < |z| < R_{x+}, n \leq n_{y}$

特殊情况有: $|z| < R_{x+}$, $n \le n_x \le 0$

(4) 双边序列的收敛域为 $R_{z} < |z| < R_{z}$

有三种收敛域: 圆内、圆外、环状 $(z=0,z=\infty$ 需单独讨论)。

参差答案.

对X(z)的分子和分母进行因式分解,得

$$X(z) = \frac{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1}\right)}{\left(1 + \frac{1}{4}z^{-2}\right)\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{3}{4}z^{-1}\right)}$$
$$= \frac{1 - \frac{1}{2}z^{-1}}{\left(1 + \frac{1}{2}jz^{-1}\right)\left(1 - \frac{1}{2}jz^{-1}\right)\left(1 + \frac{3}{4}z^{-1}\right)}$$

从上式得出,X(z)的零点为1/2,极点为j/2,-j/2,-3/4。

所以X(z)的收敛域为: (1) 1/2 < |z| < 3/4,为双边序列 (2) |z| < 1/2,为左边序列 (3) |z| > 3/4,为右边序列。

53

1、简答题

(1)请写出数字信号处理中常用 2 变换的三条性质。

答: a. 线性性质: 如果: Z[x(n)] = X(z) , $R_{r} < |z| < R_{r+1}$

$$Z[y(n)] = Y(z)$$
 , $R_{y-} < |z| < R_{y+}$

则对任意常数 a、b, Z 变换都能满足以下等式:

$$Z[ax(n) + by(n)] = aX(z) + bY(z)$$
, $max(R_{x-}, R_{y-}) < |z| < min(R_{x+}, R_{y+})$

b. 移位性质: 如果: Z[x(n)] = X(z) , $R_{x-} \triangleleft z \mid < R_{x+}$

则序列 $x(n-n_0)$ 的 Z 变换为: $Z[x(n-n_0)] = z^{-n_0}X(z)$, $R_{z-} < |z| < R_{z+}$

c. 序列卷积: 如果: Z[x(n)] = X(z) , $R_{r-} \triangleleft z \triangleleft R_{r+}$

$$Z[y(n)] = Y(z)$$
, $R_{v-} < |z| < R_{v+}$

且: w(n) = x(n) * v(n)

则:
$$Z[w(n)] = X(z) \cdot Y(z)$$
 , $\max(R_{x_-}, R_{y_-}) < |z| < \min(R_{x_+}, R_{y_+})$

- (2) 请写出 S 平面和 Z 平面的对应关系。
- 答: S 平面的虚轴对应于 Z 平面的单位圆上:
 - S 平面的左半平面对应于 Z 平面的单位圆内的区域:
 - S平面的右半平面对应于Z平面的单位圆外的区域。
- (3) 简述系统函数的频率响应 $H(e^{j\omega})$ 的作用。

答: 系统函数的频率响应 $H(e^{j\omega})$ 是一个非常重要的物理量,它通常为复数,且为 ω 的函数:

$$H(e^{j\omega}) = H(z)|_{z=j\omega} = |H(e^{j\omega})|e^{j\varphi(\omega)}$$

其中 $|H(e^{j\omega})|$ 称为系统函数的幅频特性,而 $\varphi(\omega)$ 称为系统函数的相频特性,它们分别表示了系统的幅度和相位特性。由于 $|H(e^{j\omega})|$ 决定着输出幅度的大小,所以系统的滤波特性可以由幅频特性直接给出,而 $\varphi(\omega)$ 决定着输出相位的大小,所以系统的延时特性可以由相频特性直接给出。

(4)从差分方程出发,给出时域分析法和 Z 域分析法的内容。

答:
$$y(n) = \sum_{i=0}^{M} b_i x(n-i) - \sum_{k=1}^{N} a_k y(n-k)$$

$$\frac{h(n)}{y(n) = x(n) * h(n)}$$

$$h(n) = 0n < 0$$

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

$$\frac{H(z)}{Y(z) = X(z) \cdot H(z)}$$

$$H(z) 的 ROC : R_{\star} < |z| \le \infty$$

$$H(z) 的 ROC : 含单位园$$

$$H(e^{j\omega}) = H(z)\big|_{z=e^{j\omega}}$$

2、已知: $H(z) = \frac{3}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 2z^{-1}}$, 求出对应H(z)的各种可能的单位脉冲响应h(n)的

表达式。

参考答案:

由 H(z)的表达式可求得极点为 $z_1 = \frac{1}{2}$, $z_2 = 2$, 则收敛域有 3 种可能:

$$|z| < \frac{1}{2}$$
, $\frac{1}{2} < |z| < 2$, $|z| > 2$

(1) 当收敛域为 $|z| < \frac{1}{2}$ 时,H(z)式中第 1、2 项都为左边序列,则对应的序列为:

$$h(n) = -\left[3\left(\frac{1}{2}\right)^{n} + 2^{n+1}\right]u(-n-1)$$

(2) 当收敛域为 $\frac{1}{2}$ 4z | 2 时,H(z)第 1 项为右边序列,第 2 项为左边序列,则对应的序列为:

$$h(n) = 3\left(\frac{1}{2}\right)^n u(n) - 2^{n+1}u(-n-1)$$

(3) 当收敛域为|z| > 2时,H(z)式中第 1、2 项都为右边序列,则对应的序列为:

$$h(n) = \left[3\left(\frac{1}{2}\right)^n + 2^{n+1}\right]u(n)$$

3、研究一个输入为x(n) 和输出为y(n) 的时域线性离散移不变系统,已知它满足

$$y(n-1) - \frac{10}{3}y(n) + y(n+1) = x(n)$$
, 并已知系统是稳定的。试求其单位抽样响应。

参考答室:

对给定的差分方程两边取 Z 变换, 得

$$z^{-1}Y(z) - \frac{10}{3}Y(z) + zY(z) = X(z)$$

则

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z^{-1} - \frac{10}{3} + z} = \frac{z}{(z - 3)\left(z - \frac{1}{3}\right)}$$
$$= \frac{1}{3 - \frac{1}{3}} \left[\frac{z}{z - 3} - \frac{z}{z - \frac{1}{3}} \right]$$
$$= \frac{3}{8} \left[\frac{1}{1 - 3z^{-1}} - \frac{1}{1 - \frac{1}{3}z^{-1}} \right]$$

可求得极点为

$$z_1 = 3$$
, $z_2 = \frac{1}{3}$

为了使系统稳定,收敛区域必须包括单位圆,故取1/3 < |z| < 3;当收敛域为1/3 < |z| < 3时, H(z)第 1 项为左边序列,第 2 项为右边序列,则对应的序列为:

$$h(n) = -\frac{3}{8} \left[3^{n} u(-n-1) + \left(\frac{1}{3}\right)^{n} u(n) \right]$$

第一、二章综合练习

一、填空题

- 1. 线性系统对信号的处理是符合叠加原理的。
- 2. 因果系统的时域充要条件是 b(n)=0, n<0。
- 3. 序列 x(n)的傅立叶变换是 x(n)在 Z 平面单位圆上的 Z 变换。
- 4. 从模拟信号到数字信号要经过抽样、量化、编码三个过程。
- 5. 数字角频率 π 对应的模拟角频率为 π . $f_{f_{g}}$.
- 6. 离散时间系统的时域特征可用 h(n)来描述,也可用差分方程来描述。

$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$ 1. 稳定系统的时域充要条件是 $n=-\infty$

- 2. 因果、稳定系统的系统函数 H(z)的收敛域可表示为 R- </z|≤∞, R-<1。
- 3. Z 变换在单位圆上的值表示序列的频谱。
- 4. 从模拟信号到数字信号要经过抽样、量化、编码三个过程, 其中抽样过程是线性的。
- 5. 数字角频率 2^{π} 对应的模拟角频率为 2^{π} . f_s

- 6. 离散时间系统的时域特征可用差分方程来描述,也可用 h(n)来描述。
- 1. 从模拟信号到数字信号要经过抽样、量化、编码三个过程。其中量化过程是非线性的。
- 2. 序列 x(n)的傅立叶变换在 S 平面为<u>虚轴对应的拉氏变换</u>,而在 Z 平面为单位圆对应的 Z 变换。
- 3. 描述离散时间系统的方法, 时域有 h(n) 、差分方程, 频域有 H(z)。
- 4. 线性时不变离散时间系统的时域分析和频域分析的方法有差分方程、单位脉冲响应和系统 函数,其中瞬态分析是<u>差分方程</u>和单位脉冲响应。
- 5. 系统函数称为全通函数的要求是幅频特性为常数 1。
- 6. 数字域频率 $\omega = 2\pi$ 所对应的信号的实际频率为采样频率 f_{co}
- 1. 序列 x(n)的傅立叶变换在 S 平面为虚轴对应的拉氏变换,而在 Z 平面 为<u>单位圆对应的 Z 变换</u>。
- 2. 描述离散时间系统的方法, 时域有 h(n)、差分方程, 频域有 H(z)。
- 3. 线性时不变离散时间系统的时域分析和频域分析的方法有差分方程、单位脉冲响应和系统 函数,其中稳态分析是系统函数。
 - 4. 系统函数称为纯振幅函数的要求是相频特性为常数 0。
- 5. 序列 $x(n) = \sin\left(\frac{\pi}{6}n\right)$ 的周期是 12。
- 6. 采样信号的频谱是原模拟信号频谱的周期函数,其周期为 Ω_s 或 f_s 。
- 1. 描述离散时间系统的方法, 时域有 h(n)、差分方程, 频域有 H(z)。
- 2. 序列 $x(n) = \cos\left(\frac{\pi}{4}n\right) + \sin\left(\frac{\pi}{6}n\right)$ 的周期是 24。
- 3. 某线性时不变离散时间系统的单位脉冲响应为 $h(n) = 0.3^n u(n)$,则该系统的因果性为因果。
- 4. 已知某离散时间系统的输入输出关系是 y(n) = x(n-1) + 2x(n-2), 试判断系统的线性 为线性。
- 5. 有一连续信号 $x_a(t) = \cos(40\pi t)$,用采样间隔T = 0.02s 对 $x_a(t)$ 进行采样,则采样信号

$$\hat{x}_{a}(t)$$
的表达式为 $\hat{x}_{a}(t) = \sum_{n=-\infty}^{\infty} x_{a}(nT)\delta(t-nT) = \sum_{n=-\infty}^{\infty} \cos(0.8m)\delta(t-0.02n)$ 。

- 6. 对于稳定的因果系统,如果输入一个频率为 ω_0 的复正弦序列 $x(n)=e^{j\omega_0 n}$,则其输出 y(n) 为 $e^{j\omega_0 n}H(e^{j\omega_0})$,设系统的频率响应 $H(e^{j\omega})$ 已知。
- 1. 要使一个正弦序列 $x(n) = A\sin(\omega n + \varphi)$ 是周期序列,必须满足的条件是:数字频率 ω 是 ρ 的函数。
- 2. 某线性时不变离散时间系统的单位脉冲响应为 $h(n) = 0.3^n u(n)$,则该系统的稳定性为<u>稳</u>定。
- 3. 已知某离散时间系统的输入输出关系是 y(n) = x(n-1) + 2x(n-2), 试判断系统的时不变性为时不变。
- 4. 若一个理想采样及恢复系统,采样频率为 $\Omega_s=6\pi$,采样后经一个带宽为 3π ,增益为 1/3 的理想低通还原。现有输入 $x_s(t)=\cos\pi+\cos2\pi t+\cos5\pi t$,输出信号 y(n) 为 $y(t)=\cos2\pi t+2\cos\pi t$ 。
- 5. 设序列 $h(n) = 2\delta(n+1) + \delta(n) \delta(n-1)$, 则 $H(e^{j\omega})|_{\omega=0}$ 的值为 2。
- 6. 已知一个线性时不变离散系统的系统函数为 $H(z) = \frac{0.5}{(1-0.3z^{-1})(1-0.1z)}$,若收敛域为 $10<|z| \leq \infty$,系统的因果稳定性为因果非稳定性。
- 1. 序列的傅里叶变换 $X(e^{j\omega})$ 是 ω 的连续周期函数,周期为 2ω 。
- 2. 若 h(n)为实序列,则 $|H(e^{j\omega})|$ 是偶对称的。
- 3. 稳定系统的收敛域必须包括单位圆。
- 4. 表达式 $X(e^{j\omega}) = X(z)|_{z=z}$ 的物理意义是单位圆上的 Z 变换。
- 5. 己知系统的输入输出关系为y(n) = 3x(n) + 8,则系统的线性性为<u>非线性</u>。
- 6. 已知某离散时间系统的输入输出关系是 y(n) = x(n-1) + 2x(n-2), 试判断系统的因果

特性为因果。

- 1. 己知系统的输入输出关系为 y(n) = 3x(n) + 8,则系统的时不变性为时不变。
- 2. 有一连续信号 $x_a(t) = \cos(40nt)$,用采样间隔T = 0.02s 对 $x_a(t)$ 进行采样,则采样后所得时域离散信号x(n)的周期为 5。
- 3. 已知一个线性时不变离散系统的系统函数为 $H(z) = \frac{0.5}{(1-0.3z^{-1})(1-0.1z)}$, 若收敛域为
- 0.3 < |z| < 10,系统的因果稳定性为<u>非因果稳定性</u>。
- 4. 若 h(n)为实序列,则 $arg[H(e^{i\omega})]$ 是<u>奇</u>对称的。
- 5.2变换在单位圆上的值表示序列的频谱。
- 6. 某线性时不变离散时间系统的单位脉冲响应为 $h(n) = 3^n u(n)$,则该系统的因果性及稳定性为因果非稳定。

二、判断改错题

在题后的括号内,正确的打" /",错误的打" X",并在题下空处进行改正。

- 1. 实际工作中,抽样频率总是选得大于或等于两倍模拟信号的最高频率。 (/)
- 2. 稳定系统一定是因果系统。 (×)

不一定

- 3. 差分方程的求解方法有递推法、时域经典法、卷积法和变换域法,其中递推法的求解依赖于初始条件和给定输入。 (/)

可实现性

- 1. 当输入序列不同时,线性时不变系统的单位脉冲响应不会改变。 (/)
- 2. 只要因果序列 x(n)有收敛的 Z 变换形式,则其"序列傅氏变换"就一定存在。 (\times)不一定
- 3. 差分方程的求解方法有递推法、时域经典法、卷积法和变换域法, 其中递推法的求解依赖

于初始条件和给定输入。	(1)
4. 稳定性反映了系统的可实现性。	(×)
合理性	
1. 离散时间系统的滤波器特性可以由其幅频特性直接看出。	(1)
2. 右边序列一定是因果序列。	(×)
不一定	
3. 稳定系统的收敛域必须包括单位圆。	(1)
4. 因果性反映了系统的合理性。	(×)
可实现性	-
1. 某系统满足 T[kx(n)]=ky(n), 并不可判断系统为线性系统。	(1)
2. 一个线性时不变系统,在时域可由差分方程确定。	(×)
由差分方程加初始条件	
3. 因果系统的收敛域必须包括 $z=\infty$ 。	(4)
4: 稳定性反映了系统的可实现性。	(×)
合理性	
1. 某系统满足 $T[x_1(n) + x_2(n)] = y_1(n) + y_2(n)$,并不可判断系统为线性系统。	(1)
2. 一个线性时不变系统,在 Z 域可由系统函数确定。	(×)
由系统函数加收敛域	
3. 因果稳定系统的系统函数的极点均在单位圆内。	(1)
4. 时不变性反映了系统的可叠加性。	(×)
延时不变性	
1. 离散时间系统的延时器特性可以由其相频特性直接看出。	(√)
2. 有限长序列一定是因果序列。	(×)
不一定	

3. 因果稳定系统的系统函数的极点均在单位圆内。	(1)
4. 线性性反映了系统的延时不变性。	(×)
可叠加性	
1. 序列 x(n)有收敛的 Z 变换形式,其"序列傅氏变换"并不一定存在。	(4)
2. 当输入序列不变时,线性时不变系统的单位脉冲响应也不变。	(×)
线性时不变系统的单位脉冲响应与输入序列无关	
3. 右边序列的收敛域总在某个圆的圆外区。	(4)
4. 时不变性反映了系统的可叠加性。	(×)
延时不变性	
1. 实际工作中, 抽样频率总是选得大于或等于两倍模拟信号的最高频率。	(1)
2. 因果系统一定是稳定系统。	(×)
不一定	
3. 左边序列的收敛域总在某个圆的圆内区。	(√)
4. 线性性反映了系统的延时不变性。	(×)
可叠加性	

三、简答题

- 1. 由"模拟信号的数字化处理"方框图回答以下问题:
 - (1) A/D 变换有哪几个过程? 其中哪个过程为线性, 哪个过程为非线性?
 - (2) 简述模拟信号、离散时间信号、数字信号各自的特点和关系。
- 答:(1)抽样、量化和编码。其中抽样过程是线性的,量化和编码过程是非线性的。。
- (2) t和x(t)均连续为模拟信号; t=nT、x(t)的为连续为离散时间信号; t和x(t)均 离散为数字信号。离散时间信号是模拟信号成为数字信号的桥梁。
- 2. 列表表示 x(n)的不同形式与 X(z) 的 ROC 的对应关系。 答:

x(n) 的形式	X(z)的 ROC
有限长序列 n(n ₁ ~ n ₂)	0 < z < ∞ 0? ?∞
右边序列n(n ₁ ~ +∞)	$R_{X-} < z < \infty$
左边序列 $n(-\infty-n_2)$	$0 < z < R_{x_+}$ $0?$
双边序列n(-∞,+∞)	$R_{X-} \triangleleft z \mid < R_{X+}$

1. 离散时间信号作为理想化、线性化的数字信号的条件是什么?对数字信号和系统进行分析的总思路是什么?

答:理想化、线性化的条件是(1)抽样是理想的(2)量化等级是无限长的。分析的总思路是:首先把模拟信号和系统变为离散时间信号和系统进行分析:然后再做有限字长效应的研究,把离散时间信号和系统变为数字信号和系统。

- 2. 简述确定 X(Z)的确切收敛域 (ROC) 的方法。
- 答: (1) 利用X(z)的收敛域的充要条件来确定,即满足

$$\sum_{n=-\infty}^{\infty} |x(n)z^{-n}| < \infty$$

的z的范围。

此方法由于是依据了收敛的X(z)的概念,所以是理论上一定成立的方法。

(2) 利用 X(z) 的解析式是一个等比级数的有限求和公式来确定,即若

$$X(z) = \frac{a_o}{1 - a}$$

则 q < 1 右边序列

|q|>1 左边序列

此方法由于是依据了等比级数有限求和公式成立的概念,所以是有条件成立的方法。

(3) 利用X(z)收敛域定义的一个推论来确定,即收敛域内无X(z)的极点,则推论:

X(z)的极点只可能在ROC外,但一定有极点在ROC上。

此方法由于依据了收敛域定义的推论的概念,所以是无条件成立的方法。又由于 X(z) 的极点的判断较容易,所以此方法较实用。

- 1. 简述采样定理的内容。
- 答:如果要求信号经理想抽样后的频谱不发生混叠,抽样频率 Ω_s 必须大于或等于原信号频谱中最高频率 Ω_m 的两倍。
- 2. 简述数字信号处理中常用 2 变换的三条性质。
- 答: (1) 线性性质: 如果: Z[x(n)] = X(z) , $R_{z-} < z < R_{z+}$

$$Z[y(n)] = Y(z)$$
 , $R_{v-} < |z| < R_{v+}$

则对任意常数 a、b, Z变换都能满足以下等式:

$$Z[ax(n) + by(n)] = aX(z) + bY(z)$$
, $max(R_{x-}, R_{y-}) < |z| < min(R_{x+}, R_{y+})$

- (2) 移位性质: 如果: Z[x(n)] = X(z) , $R_{x-} < |z| < R_{x+}$ 则序列 $x(n-n_0)$ 的 Z 变换为: $Z[x(n-n_0)] = z^{-n_0}X(z)$, $R_{x-} < |z| < R_{x+}$
- (3) 序列卷积: 如果: Z[x(n)] = X(z) , $R_{x-} < |z| < R_{x+}$

$$Z[y(n)] = Y(z)$$
, $R_{y-} < |z| < R_{y+}$

$$\mathbb{H}\colon \ w(n)=x(n)*y(n)$$

则:
$$Z[w(n)] = X(z) \cdot Y(z)$$
 , $\max(R_{x-}, R_{y-}) < |z| < \min(R_{x+}, R_{y+})$

1. 试用单位脉冲序列表示单位阶跃序列和矩形序列。

答:

$$u(n) = \sum_{k=0}^{\infty} \delta(n-k)$$
$$R_N(n) = \sum_{k=0}^{N-1} \delta(n-k)$$

2. 试写出 S 平面和 Z 平面的对应关系。

- 答: S 平面的虚轴对应于 Z 平面的单位圆上:
 - S 平面的左半平面对应于 Z 平面的单位圆内的区域:
 - S 平面的右半平面对应于 Z 平面的单位圆外的区域。
- 1. 简述线性系统的定义及判定条件。
- 答:定义:线性系统是指系统对信号的处理是符合叠加原理的。

判定条件: 若系统输入序列分别为 $x_1(n)$ 和 $x_2(n)$ 时,系统输出序列分别为 $y_1(n)$ 和 $y_2(n)$,那么当系统输入序列为 $ax_1(n)+bx_2(n)$ 时,有:

$$T[ax_1(n) + bx_2(n)] = ay_1(n) + by_2(n)$$

则该系统为线性系统。

- 2. 简述系统函数的频率响应 $H(e^{i\omega})$ 的作用。
- 答: 系统函数的频率响应 $H(e^{i\omega})$ 是一个非常重要的物理量,它通常为复数,且为 ω 的函数:

$$H(e^{j\omega}) = H(z)|_{z=e^{j\omega}} = |H(e^{j\omega})|e^{j\varphi(\omega)}$$

其中 $|H(e^{j\omega})|$ 称为系统函数的幅频特性;而 $\varphi(\omega)$ 称为系统函数的相频特性,它们分别表示了系统的幅度和相位特性。由于 $|H(e^{j\omega})|$ 决定着输出幅度的大小,所以系统的滤波特性可以由幅频特性直接给出;而 $\varphi(\omega)$ 决定着输出相位的大小,所以系统的延时特性可以由相频特性直接给出。

- 1. 简述时不变系统的定义及判定条件。
- 答: 定义: 时不变系统是指系统对信号的处理(运算)不随时间的改变而改变。

判定条件: 若系统输入序列为x(n)时,系统输出序列为y(n),那么当系统输入为 $x(n-n_0)$ 时,有:

$$T[x(n-n_0)] = y(n-n_0)$$

则该系统为时不变系统。

2. 从差分方程出发,简述时域分析法和 Z 域分析法的内容。

答:

$$y(n) = \sum_{i=0}^{M} b_i x(n-i) - \sum_{k=1}^{N} a_k y(n-k)$$

$$\frac{h(n)}{y(n) = x(n) * h(n)}$$

$$h(n) = 0, n < 0$$

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

$$H(z) 的 ROC : R_{x-} < |z| \le \infty$$

$$H(z) 的 ROC : 含单位园$$

$$H(e^{j\omega}) = H(z) |_{x=-\delta^{\omega}}$$

- 1. 简述因果系统的定义及判定条件。
- 答: 因果系统是指系统现时刻的输出值 y(n) 仅决定于现时刻的输入值 x(n) 以及以前各时刻的若干输入值 x(n-1)、x(n-2)、……,而与现时刻以后即"未来时刻"的输入值 x(n+1)、x(n+2)、……等无关;或者说,系统是符合;"有因才有果";"前因后果"关系的。

判定条件: $h(n) \equiv 0$, n < 0 。

- 2. 简述 2 变换收敛域的定义和充要条件。
- 答:使X(z)一致收敛的z的取值范围称为Z变换的收敛域(ROC),由X(z)的定义式和收敛域的概念不难给出级数收敛的充分必要条件是满足绝对可和条件,即:

$$\sum_{n=-\infty}^{\infty} |x(n)z^{-n}| < \infty$$

$$|z = re^{j\omega}$$

$$\sum_{n=-\infty}^{\infty} |x(n)| r^{-n} < \infty$$

由此可知:一般来说, Z变换在 Z 平面上的一个环形区域中收敛, 即:,

$$R_{X-} \triangleleft z \mid < R_{X+}$$

- 1. 简述稳定系统的定义及判定条件。
- 答: 稳定系统是指在系统输入序列幅度有界的情况下,系统输出序列的幅度亦有界。

判定条件:
$$\sum_{n=0}^{\infty} |h(n)| < \infty$$

- 2. 简述 Z 反变换的计算方法。
- 答:求 Z 反变换的方法通常有以下几种:
 - a. 围线积分法(留数法);
 - b. 部分分式展开法(部分分式法):
 - c. 长除法(幂级数展开法);
 - d. 利用基本 Z 变换公式和基本 Z 变换性质。

四、画图题

- 1. 请图示下述序列:
- (1) $\sin(\omega_0 n)R_8(n) + \delta(n-6)$, 其中 $\omega_0 = 2\pi/8$
- (2) $2^{-n}u(-n-2)$
- (3) $2^{-n}u(n-2)$

2. 请给出模拟信号数字化处理系统的基本组成方框图,并说明其中所需滤波器的作用和相应的截止频率。

模拟信号数字化处理系统的基本组成方框图

需要前置滤波器和后置滤波器共两个,它们的截止频率均为 fs/2。

3. 某线性移不变系统当输入 $x(n) = \delta(n-3)$ 时,输出

$$y(n) = \delta(n-3) + 2\delta(n-5) - 3\delta(n-6)$$
, 试画出其单位脉冲抽样响应 $h(n)$ 波形。

$$y(n) = x(n) * h(n)$$
 有: $\delta(n-3) + 2\delta(n-5) - 3\delta(n-6) = \delta(n-3) * h(n)$, $h(n-3) = \delta(n-3) + 2\delta(n-5) - 3\delta(n-6)$, $h(n) = \delta(n) + 2\delta(n-2) - 3\delta(n-3)$, 单位抽样响应 $h(n)$ 的波形:

五、计算题

1. 已知: $H(z) = \frac{3}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 2z^{-1}}$, 求出对应H(z)的各种可能的单位脉冲响应h(n)的

表达式。

参考答案:

由 H(z)的表达式可求得极点为 $z_1 = \frac{1}{2}, z_2 = 2$,则收敛域有 3 种可能:

$$|z| < \frac{1}{2}$$
, $\frac{1}{2} < |z| < 2$, $|z| > 2$

(1) 当收敛域为 $|z| < \frac{1}{2}$ 时,H(z)式中第 1、2 项都为左边序列,则对应的序列为:

$$h(n) = -\left[3\left(\frac{1}{2}\right)^{n} + 2^{n+1}\right]u(-n-1)$$

(2) 当收敛域为 $\frac{1}{2}$ < | z | < 2 时,H(z)第 1 项为右边序列,第 2 项为左边序列,则对应的序列为:

67

$$h(n) = 3\left(\frac{1}{2}\right)^n u(n) - 2^{n+1}u(-n-1)$$

(3) 当收敛域为|z| > 2时,H(z)式中第 1、2 项都为右边序列,则对应的序列为:

$$h(n) = \left[3\left(\frac{1}{2}\right)^{n} + 2^{n+1}\right]u(n)$$

2. 研究一个输入为 x(n) 和输出为 y(n) 的时域线性离散移不变系统, 已知它满足

$$y(n-1) - \frac{10}{3}y(n) + y(n+1) = x(n)$$
, 并已知系统是稳定的。试求其单位抽样响应。
参考答案:

对给定的差分方程两边取Z变换,得

$$z^{-1}Y(z) - \frac{10}{3}Y(z) + zY(z) = X(z)$$

则

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z^{-1} - \frac{10}{3} + z} = \frac{z}{(z - 3)\left(z - \frac{1}{3}\right)} = \frac{3}{8} \left[\frac{1}{1 - 3z^{-1}} - \frac{1}{1 - \frac{1}{3}z^{-1}} \right]$$

可求得极点为: $z_1 = 3$, $z_2 = \frac{1}{3}$

为了使系统稳定,收敛区域必须包括单位圆,故取1/3 < z < 3; 当收敛域为1/3 < z < 3时, H(z)第1项为左边序列,第2项为右边序列,则对应的序列为:

$$h(n) = -\frac{3}{8} \left[3^{n} u(-n-1) + \left(\frac{1}{3}\right)^{n} u(n) \right]$$

3. 己知: $H(z) = \frac{4}{1 - \frac{1}{3}z^{-1}} + \frac{3}{1 - 3z^{-1}}$, 求出对应H(z)的各种可能的单位脉冲响应h(n)

的表达式。

参考答案。

由 H(z)的表达式可求得极点为 $z_1 = \frac{1}{3}$, $z_2 = 3$, 则收敛域有 3 种可能:

$$|z| < \frac{1}{3}$$
, $\frac{1}{3} < |z| < 3$, $|z| > 3$

(1) 当收敛域为 $|z|<\frac{1}{3}$ 时,H(z)式中第 1、2 项都为左边序列,则对应的序列为:

$$h(n) = -\left[4\left(\frac{1}{3}\right)^{n} + 3^{n+1}\right]u(-n-1)$$

(2) 当收敛域为 $\frac{1}{3}$ < |z| < 3时,H(z)第 1 项为右边序列,第 2 项为左边序列,则对应的序列为:

$$h(n) = 4\left(\frac{1}{3}\right)^n u(n) - 3^{n+1}u(-n-1)$$

(3) 当收敛域为 | z |> 3 时, H(z)式中第 1、2 项都为右边序列,则对应的序列为:

$$h(n) = \left[4\left(\frac{1}{3}\right)^{n} + 3^{n+1}\right]u(n)$$

4. 研究一个输入为 x(n) 和输出为 y(n) 的时域线性离散移不变系统,已知它满足

 $y(n-1) - \frac{5}{2}y(n) + y(n+1) = x(n)$,并已知系统是稳定的。试求其单位抽样响应。 参考答案:

对给定的差分方程两边取 Z 变换,得

$$z^{-1}Y(z) - \frac{5}{2}Y(z) + zY(z) = X(z)$$

则

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z^{-1} - \frac{5}{2} + z} = \frac{z}{(z - 2)\left(z - \frac{1}{2}\right)}$$
$$= \frac{1}{2 - \frac{1}{2}} \left[\frac{z}{z - 2} - \frac{z}{z - \frac{1}{2}} \right]$$
$$= \frac{2}{3} \left[\frac{1}{1 - 2z^{-1}} - \frac{1}{1 - \frac{1}{2}z^{-1}} \right]$$

可求得极点为

$$z_1 = 2$$
, $z_2 = \frac{1}{2}$

为了使系统稳定,收敛区域必须包括单位圆,故取1/2 < z | 2;当收敛域为1/2 < z | < 2时, H(z)第1项为左边序列,第2项为右边序列,则对应的序列为:

$$h(n) = -\frac{2}{3} \left[2^{n} u(-n-1) + \left(\frac{1}{2}\right)^{n} u(n) \right]$$

5. 研究一个满足下列差分方程的线性移不变系统,该系统不限定为因果、稳定系统。利用 方程的零极点图,试求系统单位抽样响应的三种可能选择方案。

$$y(n-1) - \frac{5}{2}y(n) + y(n+1) = x(n)$$

参考答案:

$$Y(z)z^{-1} - \frac{5}{2}Y(z) + Y(z)z = X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z^{-1} - \frac{5}{2} + z}$$

$$= \frac{z}{(z - 2)(z - \frac{1}{2})}$$

$$= \frac{2}{3} \left[\frac{1}{1 - 2z^{-1}} - \frac{1}{1 - \frac{1}{2}z^{-1}} \right]$$

(1) 此题 $z_1 = 2$, $z_2 = 1/2$,可知当收敛区域为|z| > 2, 则系统是非稳定的,但是因果的。当收敛域为|z| > 2时,H(z)式中第 1、2 项都为右边序列,其单位抽样响应为:

$$h(n) = \frac{2}{3}(2^{n} - 2^{-n})u(n)$$

(2) 当收敛区域为 $\frac{1}{2}$ < |z| < 2, 则系统是稳定的但是非因果的。当收敛域为 $\frac{1}{2}$ < |z| < 2 时,H(z)第 1 项为左边序列,第 2 项为右边序列,其单位抽样响应为:

$$h(n) = -\frac{2}{3} \left[2^{n} u(-n-1) + \left(\frac{1}{2}\right)^{n} u(n) \right]$$

(3) 类似地,当收敛区域为 $|z| < \frac{1}{2}$ 时,则系统是非稳定的,又是非因果的。当收敛域为 $|z| < \frac{1}{2}$ 时,H(z)式中第 1、2 项都为左边序列,其单位抽样响应为:

$$h(n) = -\frac{2}{3}(2^{n} - 2^{-n})u(-n - 1)$$

6. 已知下列差分方程描述的是一个线性移不变因果系统:

$$y(n) = y(n-1) + y(n-2) + x(n-1)$$

(1) 求此系统的系统函数,并指出其收敛域;

(2) 求此系统的单位抽样响应。

参考答案:

(1) 对题中给出的差分方程的两边作 2 变换,得

$$Y(z) = z^{-1}Y(z) + z^{-2}Y(z) + z^{-1}X(z)$$

所以:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z^{-1}}{1 - z^{-1} - z^{-2}} = \frac{z}{(z - a_1)(z - a_2)}$$

可求得零点为

$$z=0$$
, $z=\infty$

极点为

$$z = a_1 = 0.5(1 + \sqrt{5}) = 1.62, \quad z = a_2 = 0.5(1 - \sqrt{5}) = -0.62$$

又因为是因果系统,所以|2|>1.62是其收敛区域。

(2) 因为
$$H(z) = \frac{z}{(z-a_1)(z-a_2)} = \frac{1}{a_1 - a_2} \left[\frac{z}{z-a_1} - \frac{z}{z-a_2} \right]$$

$$= \frac{1}{a_1 - a_2} \left[\frac{1}{1 - a_1 z^{-1}} - \frac{1}{1 - a_2 z^{-1}} \right]$$

$$= \frac{1}{a_1 - a_2} \left[\sum_{n=0}^{\infty} a_1^n z^{-n} - \sum_{n=0}^{\infty} a_2^n z^{-n} \right]$$

所以

$$h(n) = \frac{1}{a_1 - a_2} (a_1^n - a_2^n) u(n)$$

式中

$$a_1 = 1.62$$
. $a_2 = -0.62$

由于H(z)的收敛区域不包括单位圆,故这是个不稳定系统。

7. 研究一个满足下列差分方程的线性移不变系统,该系统不限定为因果、稳定系统。利用 方程的零极点图,试求系统单位抽样响应的三种可能选择方案。

$$y(n-1)-\frac{17}{4}y(n)+y(n+1)=x(n)$$

参考答案:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z^{-1} - \frac{17}{4} + z}$$

$$Y(z)z^{-1} - \frac{17}{4}Y(z) + Y(z)z = X(z) = \frac{z}{(z-4)(z-\frac{1}{4})}$$

$$= \frac{4}{15} \left[\frac{1}{1-4z^{-1}} - \frac{1}{1-\frac{1}{4}z^{-1}} \right]$$

(1) 此题 $z_1 = 4$, $z_2 = 1/4$,可知当收敛区域为|z| > 4, 则系统是非稳定的,但是因果的。当收敛域为|z| > 4时,H(z)式中第 1、2 项都为右边序列,其单位抽样响应为:

$$h(n) = \frac{4}{15}(4^n - 4^{-n})u(n)$$

(2) 当收敛区域为 $\frac{1}{4}$ < |z| < 4, 则系统是稳定的但是非因果的。当收敛域为 $\frac{1}{4}$ < |z| < 4 时,H(z) 第 1 项为左边序列,第 2 项为右边序列,其单位抽样响应为:

$$h(n) = -\frac{4}{15} \left[4^n u(-n-1) + \left(\frac{1}{4}\right)^n u(n) \right]$$

(3) 类似地,当收敛区域为 $|z|<\frac{1}{4}$ 时,则系统是非稳定的,又是非因果的。当收敛 域为 $|z|<\frac{1}{4}$ 时,H(z)式中第 1、2 项都为左边序列,其单位抽样响应为:

$$h(n) = -\frac{4}{15}(4^n - 4^{-n})u(-n - 1)$$

8. 已知下列差分方程描述的是一个线性移不变因果系统:

$$y(n) = y(n-1) + y(n-2) + x(n-1)$$

- (1) 求此系统的系统函数,并指出其收敛域;
- (2) 此系统是一个不稳定系统,请找一个满足上述差分方程的稳定(非因果)系统的单位抽样响应。

参考答案:

(1) 对题中给出的差分方程的两边作 Z 变换,得

$$Y(z) = z^{-1}Y(z) + z^{-2}Y(z) + z^{-1}X(z)$$

所以

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z^{-1}}{1 - z^{-1} - z^{-2}} = \frac{z}{(z - a_1)(z - a_2)}$$

极点为: $z = a_1 = 0.5(1 + \sqrt{5}) = 1.62$, $z = a_2 = 0.5(1 - \sqrt{5}) = -0.62$ 又因为是因果系统,所以z > 1.62 是其收敛区域。

(2) 若要使系统稳定,则收敛区域应包括单位圆,因此选H(z)的收敛区域为

 $|a_2| < |z| < |a_1|$, $|a_2| < |z| < 1.62$, $|a_2| < 1.62$

$$H(z) = \frac{1}{a_1 - a_2} \left[\frac{z}{z - a_1} - \frac{z}{z - a_2} \right]$$

式中第一项对应一个非因果序列, 而第二项对应一个因果序列。所以有:

$$h(n) = \frac{1}{a_2 - a_1} [a_1^n u(-n - 1) + a_2^n u(n)]$$

$$= -0.447 \times [(1.62)^n u(-n-1) + (-0.62)^n u(n)]$$

此系统是稳定的, 但不是因果的。

第三章综合练习

- 一、填空题
- 1. 表达式 $X(k) = X(e^{j\omega})|_{\omega = \frac{2\pi}{N}k}$ 的物理意义是

序列傅里叶变换 $X(e^{j\omega})$ 在区间[0,2p]上的 N 点等间隔采样。

- 2. 设实序列x(n) 的 10 点 DFT 为 $X(k)(0 \le k \le 9)$,已知 X(1) = 3 + j ,则 X(9) 为 3 j 。
- 1. 设实连续信号 x(t) 中含有频率 40Hz 的余弦信号,现用 $f_s=120Hz$ 的采用频率对其进行 采样,并利用 N=1024 点 DFT 分析信号的频谱,计算频谱的峰值出现在第 <u>341</u> 条谱线附近。
- 2. DFT 与 DFS 有密切关系,因为有限长序列可以看成周期序列的主值区间。
- 1. DFT 与 DFS 有密切关系,因为周期序列可以看成有限长序列的<u>周期延拓</u>。
- 2. 频域 N 点采样造成时域的周期延拓, 其周期是 N。
- 1. 有限长序列 x(n)的离散傅立叶变换 X(k)就是 x(n)在 Z 平面单位圆上的等距离抽样点上的 Z 变换。
- 2. 补零是改善栅栏效应的一个方法, 通过补零运算可得到高密度谐。

73

- 1. 有限长序列 x(n)的离散傅立叶变换 X(k)就是 x(n)在 Z 平面单位圆上的<u>等距离</u>抽样点上的 Z 变换。
- 2. 若序列为无限长序列,可以存在 DTFT,但不存在 DFT。
- 1. 某序列的 DFT 表达式为 $X(k) = \sum_{n=0}^{M-1} x(n) W_N^{nk}$ 。由此可看出,该序列的时域长度是 \underline{M} 。
- 2. 模拟时域抽样不失真条件为 $f_s \ge 2f_m$ 。数字频域抽样不失真条件为 N=M。
- 1. 某序列的 DFT 表达式为 $X(k) = \sum_{n=0}^{M-1} x(n) W_N^{nk}$ 。由此可看出,变换后数字域上相邻两个频率样点的间隔是 2p/N。
- 2. 对信号进行频谱分析时, 截断信号引起的截断效应表现为频谱泄露和谱间干扰两个方面。
- 1. 对信号进行频谱分析时,截断信号引起的截断效应表现为频谱泄露和谱间干扰。
- 2. DFT与 DFS 有密切关系,因为有限长序列隐含周期性。

二、判断改错题

在题后的括号内,正确的打"J",错误的打"×",并在题下空处进行改正。

- 1. 有限长序列的离散傅立叶变换 X(k) 就是在 Z 平面单位圆上的等分点上的 Z 变换。 (J)
- 2. FFT 与 DFT 在本质上根本不相同。 (×)

根本相同

- 1. FFT 算法使信号的实时处理成为可能。
- 2. 有限长序列由于不存在离散时间傅立叶变换, 所以才去求它的离散傅立叶变换。 (×) 存在
- 1. 对于离散傅里叶变换而言, 其信号特点是: 时域、频域均离散周期。 (√)
- 2. 实序列x(n)的 10点DFT[x(n)] = X(k) (0 $\leq k \leq 9$),已知X(1) = 1 + j,

则X(9) = 1 + i。 (X)X(9) = 1 - i1. FFT 是序列傅里叶变换 DFT 的快速算法。 (J)2. 离散傅里叶变换 DFT 与离散傅里叶级数变换 DFS 之间有密切的联系,如 DFT 经过截取 主值可得到对应的 DFS。 (\times) 周期延拓 1. FFT 不是离散傅里叶级数变换 DFS 的快速算法。 (\lor) 2. 离散傅里叶变换 DFT 与离散傅里叶级数变换 DFS 之间有密切的联系,如 DFS 经过 周期延拓可得到对应的 DFT。 (X)截取主值 1. 对于离散傅里叶变换而言,其信号特点是:时域、频域均离散周期。 (√) 2. 实序列x(n) 的 10 点 DFT[x(n)] = X(k) $(0 \le k \le 9)$, 已知X(2) = 1 + j, 则X(8) = 1 + i。 (X)X(8) = 1 - j. 1. FFT 算法使信号的实时处理成为可能。 **(**√) 2. 有限长序列由于不存在离散时间的 Z 变换, 所以才去求它的离散傅立叶变换。 存在 1. 有限长序列 x(n)的离散傅立叶变换 X(k) 就是在 2 平面单位圆上的等分点上的 2变换。 (1) 2. DFS 与 DFT 在本质上没有联系。 (\times) 有联系

三、简答题

1. 简述 DFT 隐含周期性(离散傅氏变换 DFT 与离散傅氏级数变换 DFS 有什么关系?)。 答:

$$x(n) \stackrel{DFT}{\longleftarrow} X(k)$$

截取主值↓周期延拓 周期延拓 ↑ 截取主值

$$X_p(n) \stackrel{DFS}{\longleftrightarrow} X_p(k)$$

2. 简述用圆周卷积计算线性卷积的条件。

答:设 $x_1(n)$ 是长度为 N_1 的有限长序列, $x_2(n)$ 是长度为 N_2 的有限长序列,则线性卷积为

$$y_t(n) = x_1(n) * x_2(n)$$

 $y_1(n)$ 是一个长度为 N_1+N_2-1 的有限长序列。

设 $x_1(n)$ 是长度为L的有限长序列, $x_2(n)$ 也是长度为L的有限长序列,则圆周卷积为

$$y_c(n) = x_1(n) \odot x_2(n)$$

 $y_{c}(n)$ 是一个长度为L的有限长序列。

所以 L 点圆周卷积 $y_{\epsilon}(n)$ 是线性卷积 $y_{i}(n)$ 以 L 为周期的周期延拓序列的主值序列。因

为 $y_1(n)$ 有 N_1+N_2-1 个非零值,所以只有当 $L=N_1+N_2-1$ 时,各延拓周期才不会混叠,也即要使圆周卷积等于线性卷积而不产生混叠失真的充要条件是: $L=N_1+N_2-1$ 。

3. DFT 和离散时间傅里叶变换 DTFT 之间的关系是什么? 和 2 变换之间的关系又是什么?

答: X(k) 是离散时间的傅里叶变换 $X(e^{i\omega})$ 在区间 $[0,2\pi]$ 上的等间隔采样值,采样间隔为

 $\Delta\omega=2\pi/N$,即 $X(k)=X(e^{j\omega})$ 。 X(k) 是序列 Z 变换 X(z) 在单位圆上的等距离

采样,即 $X(k) = X(z)|_{z=w^{-1}}$ 。

4. 试给出 x(n)离散时域到 X(k)离散频域变换的三条途径(允许在中间添加某些域), 注明变换的名称,写出变换的表达式(或叙述其含义)。

答: (1) DFT:
$$X(k) = \sum_{j=1}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk}$$

(2) Z变换后采样:
$$X(z) = \sum_{n=0}^{N-1} x(n)z^{-n}, X(k) = X(z)\Big|_{z=W_N^{-k}} = \sum_{n=0}^{N-1} x(n)W_N^{nk}$$

(3) DTFT 变换后采样:
$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x(n)e^{-j\omega n}, X(k) = X(e^{j\omega}) \Big|_{\omega = \frac{2\pi}{N}k}$$

5. 在离散傅里叶变换中引起频谱混叠和泄漏的原因是什么,怎样减小这种效应?

答: 頻谱混叠是因为不等式 $f_s \geq 2f_c$ 没有得到满足,可令 $f_s \geq 2f_c$; 漏泄是因截断而起,可选用其他形式的窗函数。

6. 试用表归纳 4 种傅里叶变换的形式,并给出四种变换形式中最一般的规律。答:

4种傅里叶变换形式的归纳

时间函数	频率函数
连续和非周期	非周期和连续
连续和周期(Tp)	非周期和离散 $\left(\Omega_0 = \frac{2\pi}{T_r}\right)$
离散 (T) 和非周期	周期 $\left(\Omega_{r} = \frac{2\pi}{T}\right)$ 和连续
离散 (T) 和周期 (T _P)	周期 $\left(\Omega_{\bullet} = \frac{2\pi}{T}\right)$ 和离散 $\left(\Omega_{\bullet} = \frac{2\pi}{T_{\bullet}}\right)$

由上可见: 时域和频域变换的一般规律是,一个域的离散对应另一个域的周期函数(周期延拓),一个域的连续必定对应另一个域的非周期函数。

7. 简述时域采样定理和频域采样定理的内容。

答:做一个概念的类比,时域采样、频域周期延拓,如不造成频域混叠,延拓周期 Ω_s (或

 f_s)必须大于或等于原模拟信号(非序列x(n))频宽,即满足 $f_s=2f_c$ 。则频域采样、时域周期延拓,如不造成时域混叠,延拓周期 N(时间周期 NT)必须大于或等于原非周期信号(非周期序列)时宽,即满足 N=M。

8. 写出序列 $x(n)(0 \le n \le N-1)$ 的离散时间傅氏变换 $X(e^{j\omega})$ 、离散傅氏变换 X(k)和 Z 变换 X(z)的定义式,并说明这三种变换之间的关系。 答:

$$X(e^{j\omega}) = \sum_{n=0}^{N-1} x(n)e^{-j\omega n}$$

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{nk} \quad 0 \le k \le N-1$$

$$X(z) = \sum_{n=0}^{N-1} x(n)z^{-n}$$

77

$$X(k)=X(e^{j\omega})\Big|_{\omega=rac{2\pi}{N^k}}$$
 或 $X(k)$ 是序列傅氏变换的采样值。
$$X(k)=X(z)\Big|_{z=W_N^k}, \quad$$
或 $X(k)$ 是该序列 Z 变换单位圆上等距离的采样值。
$$X(e^{j\omega})=X(z)\Big|_{z=e^{j\omega}}, \quad$$
或序列傅氏变换实质上就是单位圆上的 Z 变换。

四、画图题

暂无。

五、计算题

- 1. 已知某有限长序列 $x(n) = (n+1)R_4(n)$, 求该序列的离散傅里叶变换X(k)。
- $\frac{1}{2}$ 已知某有限长序列 $x(n) = \sum_{k=0}^{3} (k+1)\delta(n-k)$,求该序列的离散傅里叶变换X(k)。
- 3. 己知某有限长序列 $x(n) = \{1,2,3,4\}$, n=0,1,2,3, 求该序列的离散傅里叶变换X(k)。
- 4. 已知某有限长序列x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4, 求该序列的离散傅里叶变换 X(k)。

参考答案:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{N}nk}; \quad k=0,1,2,3; \quad N=4, \quad \{\frac{\pi}{4}: \\ X(0) = \sum_{n=0}^{N-1} x(n) = 1+2+3+4=10$$

$$X(1) = \sum_{n=0}^{N-1} x(n)e^{-j\frac{2\pi}{4}nk}$$

$$= e^{-j\frac{2\pi}{4}0} + 2e^{-j\frac{2\pi}{4}1} + 3e^{-j\frac{2\pi}{4}2} + 4e^{-j\frac{2\pi}{4}3}$$

$$= 1+2(-j)+3(-1)+4j=-2+2j$$

$$X(2) = e^{-j\frac{2\pi}{4}2.0} + 2e^{-j\frac{2\pi}{4}2.1} + 3e^{-j\frac{2\pi}{4}2.2} + 4e^{-j\frac{2\pi}{4}2.3}$$

$$= 1+(-2)+3+4(-1)=-2$$

$$X(3) = e^{-j\frac{2\pi}{4}3.0} + 2e^{-j\frac{2\pi}{4}3.1} + 3e^{-j\frac{2\pi}{4}3.2} + 4e^{-j\frac{2\pi}{4}3.3}$$

$$= 1+2j+(-3)+(-4j)=-2-2j$$