KC DATA - Automatization collection and analysis

User Manual

Updated 2021-01-25

Contents

	Introduction	3
<u>.</u>	Interface guide	4
	Start Window	4
	Action 1: Check data	4
	Action 2: Add a new Project	4
	Action 3: Open Project	6
	Action 4: Delete Project	6
	Project Window	8
	Action 1: New Season	9
	Action 2: View info of a Season	10
	Action 3: New experiment	10
	Action 4: View Data from an experiment	11
	Action 5: Delete an Experiment	12
	Action 6: Analyze data	12
	Experiment Window	13
	Action 1: Modify Experiment Attributes	13
	Action 2: Open a Point	14
	Action 3: Add a Point	14
	Action 4: View Data	14
	Action 5: Delete Data	14
	Action 6: Analyze data	14
	Action 7: Add data	15
	DATA TYPES	20
	SCADA	20
	GC data	21
	SPA data	21
	Other Files	22
	Point Window	23
	Action 1: Modify info	23
	Action 2: View Data	24
	Action 3: Delete Data	24
	Action 4: Analyze data	24
	Action 5: Link data	25
3.	How to implement code changes	25

1. Introduction

This program is used as a server to collect all the data gathered in the *Kraftcentralen (KC or Power Central)* during research. Its purpose is to store data and facilitate its analysis.

The interface is made of 4 main windows: Start, Project, Experiment and Point. The structure is as shown in the figure below. A project, for example investigating the thermochemical process for Polyethylene, consist of various seasons (ex. winter of 2020-2021), which can have one or more experiments (commonly 1 day). One experiments could be for example investigating the effect of temperature and can contain one or more points of approx. 1-hour duration, for instance two different temperatures.

As January 19th, 2021, all data collection is finished and automatized for SCADA type (i.e trend obtained from the operation conditions in the power plant), GC type (for the gas analyzed in Gas chromatography, both for the G101 and for inferno in the gasifier, for dry gas and for the mass balance, respectively) and for SPA type (i.e. data coming from the GC-430 including mainly aromatics compounds), while the analysis will be implemented later.

2. Interface guide

Start Window

The start window includes a summary table of all the data available divided by its project.

Action 1: Check data

If you want to check, open or download raw data click Check data

This function is under construction

Action 2: Add a new Project

If you need to add a project click Add Project:

Type the project name, description and responsible and click *Create*:

The new project line will now appear in the Start Window:

If you done want to create a new project click Cancel.

Action 3: Open Project

If you want to see or modify the information of a project, select the project and click Open Project:

The Project Window will open (see Project Window).

Action 4: Delete Project

If you want to delete a Project, click the experiment and click Delete Exp.

Warning! It is not recommended to delete an experiment; the analysis may also be deleted.

An are you sure message will appear; the project will be deleted if you press yes.

If no project is selected an error message will appear.

Project Window

The window includes the main information of the project: name and description; and a list with all the seasons and experiments available; and allows to do multiple actions.

To deploy more information about the experiments and points click the arrows as shown in the figure below:

Action 1: New Season

If you need to add a new Season click *New Season* and add name and decryption and click *Create*:

The new Season line will now appear in the Project Window.

If you done want to create a new project click Cancel.

Errors will appear if the information needed is not available.

Action 2: View info of a Season

If you want to see the existing information of a Season Click View Info:

You can change the description only and click *ok*, or just see the information available and close the window or click *Cancel*.

The date is automatically filled with the minimum and maximin dates of the experiments.

Action 3: New experiment

If you want to add a new experiment, click the season where the experiment takes place and click *New Experiment*:

A new window will open with the information needed for the experiment, as shown below.

The season selected will appear, but another season within the project can be selected too. If you need a new season you can click *New Season* to create a new one (See action 1 New season).

The experiment numbering is automatic, and it also take the information of the last experiments (bed material and fuel). Change those parameters if needed and add the date and times of the experiment. When finish Click *Create*.

It is important to comment what the experiment is about to make easier to everyone the data analysis.

If you don't want to add a new experiment, click Cancel.

Action 4: View Data from an experiment

If you want to open an experiment, click the experiment and click View data:

For more information see Experiment window.

Action 5: Delete an Experiment

If you want to delete an experiment, click the experiment and click *Delete Exp.*

Warning! It is not recommended to delete an experiment; the data may also be deleted.

Action 6: Analyze data

If you want to check, open or download raw data from more than one experiments click: *Analyze* data.

This function is under construction

Experiment Window

The *Experiment window* includes the main information of the Experiment: name, start and end date and time and fuel, bed material and comments. This information can be changed if needed in *Modify Experiments attributes*. Also includes a status information (highlighted).

It also includes two tables: Points available and Data available. Including multiple actions.

Action 1: Modify Experiment Attributes

In order to modify the information of an Experiment (names, dates, fuel, bed type and comments) click *Modify Exp Attributes*. The text will turn white (see image) and you can modify any attribute, when finish, click *Modify Exp Attributes* again.

Action 2: Open a Point

If you want to open Point, click the Point inside the points available table and click Open Point.

See more information at Point Window.

Action 3: Add a Point

If you want to add a new Point, click Add Point:

This action will open an empty Point Window. Fill the information and click *Create Point* when finish. See more information at Point Window.

Action 4: View Data

The table Data available shows the existing data in the given project and given season. If you want to see the raw data click *View Data*.

Action 5: Delete Data

The table Data available shows the existing data in the given project and given season. If you want to delete the raw data click *Delete Data*.

Warning! It is not recommended to delete data the data may also be deleted. It is preferable to upload the data again, a different name will be given automatically.

Action 6: Analyze data

The table Data available shows the existing data in the given project and given season. If you want to do calculation or analysis on this data click *Analyse Data*.

Action 7: Add data

If you want to add new data (which does not exist in the table Data available), select the type of data in upper right corner and click *Add data*.

Adding SCADA & GC data

When adding SCADA search your file in your computer and click *Add Data*. Add any comment if needed (recommended to write down if any anomaly happened during the experiments). See steps below:

Add SCADA window

Search for a file

Example searching for SCADA file (i.e. YYMMDD trend.xls)

If the file data does not correspond with the dates included in the season an error will occur:

If the dates are correct, the data will be added successfully:

For GC data is the same procedure, but the delay of the GC computer (not connected to internet) with respect the SCADA computer must be added (For example if GC time is 10:05 and SCADA 10:02, the delay is +3).

Adding SPA data

When adding a file type of SPA data, it will automatically fill a table with the different samples and repetitions.

Then a list appears:

Add the time of sample collection where it corresponds. You can change the dates of all the points simultaneously in the upper right corner (*Change Date*)

When clicking *Read Table*, the data will be added to the experiments:

DATA TYPES

Important!!! The data extracted from the KC measurement equipment should stay intact. Any modifications of variable or sheets names will interfere with the automatic analyses of the program.

SCADA

Definition: Power central process conditions

Format: Excel, two sheets: channel and data

Name: trenc_date.xls

Example channel sheet:

4	Α	В	С	D	E	F	G	Н
	nBlock	sPrefix	nChannelNumber	sSource	sTag	sDescription	nType	sUnits fMir
	4	С	101	CALCULATED CHANNELS	LV 210	TOTAL AIR FLOW	2	kg/s
	4	С	102	CALCULATED CHANNELS	LV 204	PRIMARY AIR FLOW	2	kg/s
	4	С	103	CALCULATED CHANNELS	RV 205	RECIRC. FLUE GAS FLOW	2	kg/s
	4	С	104	CALCULATED CHANNELS	LI 203	TOT. SEC. AIR FLOW	2	kg/s
	4	С	110	CALCULATED CHANNELS	LV 286	AIR/FLUE GAS TO PART. SEAL FLOW	2	kg/s
	4	С	115	CALCULATED CHANNELS	LI 226	FUEL SPREADER FLOW	2	kg/s
	4	С	120	CALCULATED CHANNELS	DD89+90	MEAN TEMP. IN BOTTOM BED	2	°C
	4	С	121	CALCULATED CHANNELS	DC27+DC28	MEAN TEMP. IN TOP	2	°C
)	4	С	134	CALCULATED CHANNELS	C102+C103	Gas velocity in primary zone	2	m/s
1	4	С	135	CALCULATED CHANNELS	C101	luftshastighet i toppen	2	m/s
2	4	С	136	CALCULATED CHANNELS	C103	Rökgasåterföringshastighet i top	2	m/s
3	4	С	137	CALCULATED CHANNELS	C101+C103	Gas velocity in top	2	m/s
1	4	С	153	CALCULATED CHANNELS	BUNKER NR 4	Fuel flow to gasifier	2	kg/h
5	4	С	154	CALCULATED CHANNELS	ÅI-302	Mass flow of steam to gasifier	2	kg/h
3	4	С	155	CALCULATED CHANNELS	ÅI-305	Mass flow of steam to seal 1	2	kg/h
7	4	C	156	CALCULATED CHANNELS	Al 306	Mass flow of steam to seal 2	2	kg/h
3	4	С	157	CALCULATED CHANNELS	ÅI 302	Density of steam (gas law)	2	kgm3
)	4	C	158	CALCULATED CHANNELS	ÅI-320	Mass flow of steam to dividers.	2	kg/h
)	1	DC	220	DATASCAN_1	26-27	DP 4380 _ 5385 mm	0	kPa
1	1	DC	221	DATASCAN_1	27-28	DP 5385 _ 6540 mm	0	kPa
2	1	DC	222	DATASCAN_1	28-29	DP 6540 _ 7040 mm	0	kPa
3	1	DC	223	DATASCAN_1	29-30	DP 7040 _ 7540 mm	0	kPa
1	1	DC	224	DATASCAN_1	30-31	DP 7540 _ 7940 mm	0	kPa
5	1	DC	225	DATASCAN_1	31-32	DP 7940 _ 9300 mm	0	kPa
3	1	DC	226	DATASCAN_1	32-33	DP 9300 _ 9800 mm	0	kPa
7	1	DC	227	DATASCAN_1	33-34	DP 9800 _ 10400 mm	0	kPa
3	1	DC	228	DATASCAN_1	34-35	DP 10400 _ 11820 mm	0	kPa
)	1	DC	229	DATASCAN_1	35-36	DP 11820 _ 12410 mm	0	kPa
)	1	DC	230	DATASCAN_1	36-37	DP 12410 _ 13070 mm	0	kPa
1	1	DC	231	DATASCAN 1	9300mm	P CYCLONE INLET	0	kPa

Example data sheet:

GC data

Definition: Gas measurement (H2, CO, CH4...) Format: Excel, 1 sheets with all the data

Name: mGC_date.xls

SPA data

Definition: Aromatics and other heavy molecules Format: Excel, multiple sheets with all the data

Name: 430_date_G_date.xls

4	Α	В	С	D	E	F	G	Н	1	J
	Index	Name	Time	Quantity	Height	Area	Area %			
ı			[Min]	[mg/l]	[uV]	[uV.Min]	[%]			
	1	Benzene	1.5	6.48	933.6	42.6	5.568			
	2	UNKNOWN	1.98	3.61	226.5	24	3.142			
	3	Toluene	2.29	2.4	273.1	16	2.087			
	4	Styrene	4.87	1.49	184.7	10.1	1.318			
	5	Indene	8.55	1.12	205.5	7.7	1.006			
	6	Naphthalene	11.68	8.01	1884.9	56.9	7.436			
	7	2-MethylNaphthalene	13.72	0.87	167	6.2	0.809			
	8	Intern standard 1	14.02	90.68	12621.1	391.8	51.195			
	9	1-MethylNaphthalene	14.28	0.96	178.6	6.8	0.891			
	10	Biphenyl	15.9	0.92	160.1	6.7	0.87			
	11	UNKNOWN	17.12	0.92	135.1	6.1	0.798			
	12	Acenaphthylene	18.29	3.71	561.1	24.5	3.201			
	13	Fluorene	21.2	0.9	150.8	6.6	0.859			
	14	Phenantrene	25.14	2.61	612.8	19.2	2.511			
	15	Anthracene	25.25	0.62	139.4	4.7	0.616			
	16	UNKNOWN	29.13	0.98	205.6	6.6	0.856			
	17	Fluoranthene	29.21	0.09	19.5	0.7	0.093			
	18	Pyrene	30	1.49	339.6	11.4	1.485			
	19	UNKNOWN	31.01	1	162.4	6.6	0.867			
	20	UNKNOWN	32.61	0.89	117	5.9	0.776			
	21	UNKNOWN	34.42	15.64	3385.2	104.2	13.615			
	Total	-	-	145.41	22663.8	765.3	100			
ĺ										
		430 190206 190201 G14 F		430 19020				90206_19		

Other Files

Any file needed for research (Excel, photos, etc.). The program will only store but not analyse.

Point Window

The *Point window* includes the main information of the Point: name, start and end date and time and comments. This information can be changed if needed in *Modify info*.

It also includes a table Data already linked to the point (Data linked) Including multiple actions.

If more data wants to be included/linked to the point, select the type of data and click Link Data.

Action 1: Modify info

In order to modify the information of a Point (names and comments) click *Modify Info*. The text will turn white (same as the <u>Action 1: Modify Experiment Attributes</u>) and you can modify any attribute, when finish, click *Modify Info* again.

Action 2: View Data

The table Data linked e shows the existing data linked to the point. If you want to see the data that has been linked in the point click *View Data*.

View Data: 2019-02-01 09:59:00 - 2019-02-01 12:00:00 Х DATE POINT_ROUTE SCADA GC1 INFERNO 2019-02-01 09:59:00 0/0/4/0 2019-02-01 10:00:00 0/0/4/0 2019-02-01 10:01:00 0/0/4/0 2019-02-01 10:02:00 0/0/4/0 1 2019-02-01 10:03:00 0/0/4/0 2019-02-01 10:04:00 0/0/4/0 2019-02-01 10:05:00 0/0/4/0 1 1 2019-02-01 10:06:00 0/0/4/0 2019-02-01 10:07:00 0/0/4/0 1 2019-02-01 10:08:00 0/0/4/0 1 2019-02-01 10:09:00 0/0/4/0 2019-02-01 10:10:00 0/0/4/0 1 2019-02-01 10:11:00 0/0/4/0 1 < OK

The 1s in green show where there is data, the 0s in red where there is not. If there is no data linked, the date will be empty.

Action 3: Delete Data

The table Data linked shows the existing data linked to the point. If you want to delete the raw data click *Delete Data*.

Action 4: Analyze data

The table Data linked shows the existing data linked to the point. If you want to do calculation or analysis on this data click *Analyse Data*.

This function is under construction

Action 5: Link data

If more data wants to be included/linked to the point, select the type of data and click Link Data.

For all data types is the same procedure, write down the time when the points take place (normally a point has a duration from 30 min to 1 hour and has stable operation conditions).

If there is a delay of the GC computer (not connected to internet) with respect the SCADA computer must be added (For example if GC time is 10:05 and SCADA 10:02, the delay is +3).

3. How to implement code changes

Please refer to: \Project_KC\docs\build\html and open file index in chrome or Firefox.