

ESTADÍSTICA AMB R i RStudio

- INSTAL·LAR R https://cran.r-project.org/
- INSTAL·LAR R-STUDIO
 https://rstudio.com/products/rstudio/
 Download RStudio Desktop
- CREAR UN SCRIPT D'R
 - Des de RStudio: File-> New file -> R script
- GUARDAR L'SCRIPT

File -> Save as...

- ESPECIFICAR DIRECTORI DE TREBALL
 - Directament des de RStudio: Session -> Set working directory -> choose directory
 - També es pot fer amb codi:

setwd() # Exemple: setwd("C:/Bioestadistica") Atenció: les barres són cap a la dreta /

• ENTRAR LES DADES COM A VECTOR

```
c() # Exemple:

tractament<-c(0, 0, 0, 1, 1)

bmi<-c(21.52, 22.73, 21.89, 20.17, 24.13)

diagnostic<-c("malalt", "sa", "sa", "malalt", "sa")
```

 CREAR UNA TAULA DE DADES (data frame): taula de dades on la primera fila conté el nom de les columnes o variables i cada columna és del mateix tipus (numèrica o caràcter)

data.frame() # Exemple: Dades <-data.frame(diagnostic, tractament, bmi)
Amb aquesta instrucció hem creat un data frame que conté 3 variables o columnes

IMPORTAR UN FITXER D'EXCEL

Des de RStudio: File -> Import Data Set -> From Excel

IMPORTAR LES DADES DES D'UN FITXER DE TEXT O CSV

dec="." vol dir que el símbol decimal és un punt

```
read.csv() # Exemple: Dades <- read.csv("dades.csv", header=T, sep=",", dec=".");

# header=T vol dir que a la primera fila del fitxer hi ha el nom de les columnes o variables
# sep="\t" vol dir que els valors de cada fila estan separats per tabulacions
# sep="" vol dir que els valors de cada fila estan separats per un espai
# sep="," vol dir que els valors de cada fila estan separats per comes
```

read.table() # Exemple: Dades <-read.table("dades.txt",header=TRUE,sep="",dec=".")</pre>

MIRAR LES PRIMERES FILES D'UNA TAULA

head() # Exemple: head(Dades)

NOMBRE DE FILES D'UNA TAULA

nrow() # Exemple: nrow(Dades)

NOMBRE DE COLUMNES D'UNA TAULA

ncol() # Exemple: ncol(Dades)

CRIDAR UN ELEMENT D'UNA TAULA

taula[fila, columna]

Dades[2,3] # Exemple: L'element de la fila 2 i columna 3 de la taula Dades

CRIDAR UNA VARIABLE D'UNA TAULA

Per cridar una variable que està dins d'una taula cal especificar taula\$\(\sqrt{variable} \) # Exemple: La variable bmi de la taula Dades: Dades\$\(\sqrt{bmi} \)

També es pot cridar especificant la columna que ocupa dins la taula: Dades[,3] # bmi està a la 3a columna del data frame Dades

LONGITUD O NOMBRE D'ELEMENTS D'UNA VARIABLE

length() # Exemple: length(Dades\$bmi)

SELECCIONAR SUBCONJUNTS DE DADES

Exemple: Volem seleccionar els individus (files) que tenen un bmi>22: Dades[Dades\$bmi>22 ,]

Podem guardar aquest subconjunt de dades en un nou data frame anomenat, per exemple, "dades.bmi22" amb la següent instrucció:

dades.bmi22 <- Dades[Dades\$bmi>22 ,] # cal assignar amb una fletxa a l'esquerra el nom

DEFINIR LES VARIABLES CATEGÒRIQUES I ELS NOMS DE LES CATEGORIES

De vegades entrem les variables categòriques amb números i hem d'indicar què significa cada valor numèric amb la funció *factor()*:

Per exemple, en la variable tractament:

tractament<-c(0, 0, 0, 1, 1)

el valor 0 significa "placebo" i el valor 1 significa "tractat". Això ho podem indicar així:

tractament<-factor(tractament, levels=c(0,1), labels=c("placebo", "tractat"))
levels són les diferents categories
labels és el nom de la categoria

ANÀLISI D'UNA VARIABLE

Variable Contínua	0	Resums numèrics (summary statistics)	
		summary() # Exemple summary(bmi)	
		min() # mínim	
		max() # màxim	
		mean() # mitjana (mean, average)	
		median() # mediana (median)	
		sd() # desviació típica (standard deviation)	
		IQR() # rang interquartíl·lic (interquartile rang)	
		quantile(,) # percentil Ex. percentil 95%: quantile(x, 0.95)	
	0	Histograma	
		hist() # Exemple hist(bmi)	
	0	Diagrama de Caixa (box plot / box-and-whisker plot)	
		boxplot() # Exemple boxplot(bmi)	
	0	Taula de freqüències (frequency table)	
Variable Categòrica		table() # Taula freq. absolutes	
		prop.table(table()) # Taula freq. relatives	
		100*prop.table(table()) # Taula percentatges	
		# Exemples:	
		table(tractament)	
		prop.table(table(tractament))	
		100*prop.table(table(tractament))	
	0	Diagrama de barres (bar plot)	
		barplot(table()) # Exemple barplot(table(tractament))	
		Diagrama de sectors (pie chart)	
		pie(table()) # Exemple pie(table(tractament))	

RELACIÓ ENTRE DUES VARIABLES

	Relació entre dues variables			
Contínua & contínua	 Coeficient de correlació cor() # Exemple: x<-c(2, 4, 1, 3, 6, 5) y<-c(3, 5, 2, 2, 6, 3) cor(x,y) Recta de regressió lm(y~x) Diagrama de dispersió i recta de regressió plot(x,y) abline(lm(y~x)) 			
Contínua & categòrica	 Resums numèrics de la variable contínua per a cada categoria de la variable categòrica tapply(<continua>, <categòrica>, <funció>) # Exemple: tapply(bmi, tractament, summary) tapply(bmi, tractament, mean)</funció></categòrica></continua> Diagrames de caixes múltiples boxplot(<contínua>~<categòrica>) # Exemple: boxplot(bmi~tractament)</categòrica></contínua> 			
Categòrica & categòrica	 Taula de contingència table(,) # taula freq. absolutes prop.table() # proporció total prop.table(,1) # proporció columna 100*prop.table(,1) # percentatge fila # Exemples: taula taula taula taula Diagrames de barres apilats barplot(table()) # Exemple: barplot(table(tractament, diagnostic)) 			

Proves d'hipòtesis d'igualtat de mitjanes

y variable continua x variable categòrica	Test de normalitat: Shapiro-Wilk H0: les dades y en cada categoria segueixen una distribució normal H1: les dades y en alguna categoria no segueixen una distribució normal			
	tapply(<contínua>,<categòrica>,function(x) shapiro.test(x))</categòrica></contínua>			
	Si p-valor de Shapiro >0.05 Les dades segueixen una distribució normal	Si p-valor de Shapiro <0.05 Les dades NO segueixen una distribució normal		
Test per a una mitjana	Test t per a una mostra	Test de Wilcoxon per a una mostra		
H0: mitjana=valor predeterminat H1: mitjana≠valor predeterminat	t.test(y, mu=valor)	wilcox.test(y, mu=valor)		
Test d'igualtat de dues mitjanes H0: mitjana1=mitjana2	Test t per a mostres independents (cal fer prèviament el test d'igualtat de variàncies)	Test de Wilcoxon per a mostres independents		
H1: mitjana1≠ mitjana2	t.test(y~x,var.equal=T) # si les variàncies són iguals t.test(y~x,var.equal=F) # si les variàncies són diferents	wilcox.test(y~x)		
Test d'igualtat de dues mitjanes amb dades	Test t per a dades aparellades	Test de Wilcoxon per a dades aparellades		
aparellades H0: mitjana1=mitjana2 H1: mitjana1≠ mitjana2	d<-y1-y2 t.test(d,mu=0)	wilcox.test(y1,y2,paired=TRUE)		
Test d'igualtat de més de dues mitjanes	ANOVA d'un factor (cal fer el bptest de variàncies)	Test de Kruskal-Wallis		
H0: mitjana1 = mitjana2 = mitjana3 = = mitjanak H1: alguna de les mitjanes és diferent	summary(aov(y~x)) Post-hoc analysis: TukeyHSD(aov)	kruskal.test(y~x)		
Test d'igualtat de 2 variàncies H0: variància1= variància2	Prova F d'igualtat de variàncies			
H1: variància1≠ variància2	var.test(y~x)			
Test d'igualtat de més de 2 variàncies H0: variàncies iguals H1: algun grup té var dif	bptest d'igualtat de variàncies bptest(lm(y ~x),studentize = FALSE)			

Altres proves d'hipòtesis

Test d'igualtat de proporcions H0: proporció1= proporció2 H1: proporció1≠ proporció2	Prova d'igualtat de dues proporcions prop.test(table(x1,x2)) # x1 i x2 són factors amb 2 categories	
Test d'independència de dos variables categòriques H0: X i Y són independents H1: X i Y estan relacionades	Prova xi-quadrat d'independència de dos factors chisq.test(table(x1,x2)) # x1 i x2 són variables categòriques	

Resum models de regressió amb R

Regressió lineal Y numèrica contínua X1, X2 variables explicatives	model<-lm(y~x1+x2, data = data) summary(model) Cal verificar la normalitat dels residus: shapiro.test(residuals(model))
Regressió logística Y binària X1, X2 variables explicatives	model<-glm(y~x1+x2, data = data, family = "binomial") summary(model)
Selecció de variables en regressió (step-wise regression)	step(model)
Diagnòstics en regressió: Plots de residus vs predicció	plot(predict(model), residuals(model)) abline(a=0, b=0)

VARIABLES ALEATÒRIES AMB R

 $f(x) \ or \ P(X=x) \qquad P(X \le x) \qquad P(X \le q) = \alpha$ Table 3.2: Built-in-functions for random variables used in this chapter.

	para-				random
Distribution	meters	density	distribution	quantiles	sampling
Bin	n, p	$\mathtt{dbinom}(x, n, p)$	pbinom(x, n, p)	$qbinom(\alpha, n, p)$	rbinom(10, n, p)
Normal	μ, σ	$\mathtt{dnorm}(x,\mu,\sigma)$	$\mathtt{pnorm}(x,\mu,\sigma)$	$qnorm(\alpha, \mu, \sigma)$	$\mathtt{rnorm}(10,\mu,\sigma)$
Chi-squared	m	dchisq(x,m)	pchisq(x, m)	$qchisq(\alpha, m)$	rchisq(10, m)
T	m	dt(x,m)	pt(x,m)	$qt(\alpha,m)$	rt(10, m)
F	$_{\mathrm{m,n}}$	df(x, m, n)	pf(x, m, n)	$\mathtt{qf}(\alpha,m,n)$	rf(10, m, n)

• Altres distribucions:

Geomètrica: dgeom()

Binomial negativa: dnbinom()

Poisson: dpois()

Hipergeomètrica: dhyper()

Exponencial: dexp()

• Exemples Binomial

X Binomial de paràmetres n=8 i p=0.35

P(X = 4): dbinom(4, 8, 0.35)

 $P(X \le 4)$: pbinom(4, 8, 0.35)

Percentil del 95%: qbinom(0.95, 8, 0.35)

Mostra aleatòria de 25 valors de *X*: rbinom(25, 8, 0.35)

• Exemples distribució Normal

X Normal de paràmetres $\mu=10$ i $\sigma=3$

 $P(X \le 15)$: pnorm(15, 10, 3)

P(X > 20): 1-pnorm(20, 10, 3)

 $P(12 \le X \le 20)$: pnorm(20, 10, 3)- pnorm(12, 10, 3)

Percentil del 95%: qnorm(0.95, 10, 3)

Mostra aleatòria de 25 valors de X: rnorm(25, 10, 3)