Fitting an All-atom Protein Model to a C_{α} -trace

Martin Dybdal, Anders Boesen Lindbo Larsen and Esben Skaarup dybber@dybber.dk, abll@diku.dk and sben@diku.dk

Supervisors: Pawel Winter and Rasmus Fonseca

Summary

In this work we investigate a strategy for predicting the structure of proteins. Given a so-called C_{α} -trace, we wish to fold the protein to match the trace.

Our problem

Currently, we are only able to predict protein structures at the C_{α} -trace level. Our goal with this project is to extend the C_{α} -trace with the remaining atoms to get an all-atom model. The difference between the two is shown in Figure 1.

Figure 1: Top: All-atom protein backbone, with R_1 , R_2 and R_3 representing side-chains. **Bottom**: C_{α} -trace.

Our approach

The folding should be conducted, such that it minimizes the number of clashes and at the same time minimizes the deviation from the target C_{α} -trace. We consider our fitting problem as two somewhat separate problems. First, we fold the backbone to the C_{α} -trace. Hereafter, the amino acid side-chains are added to the backbone.

Protein Geometry

- Proteins are built from unbranched chains of amino acids.
- All amino acids share the same basic structure and a variable sidechain.
- The structure of an amino acid can be described by bond lengths, bond

Bond Avg. length Std.dev.

C-O	1.2260 Å 0.0188 Å
CA-C	1.5272 Å 0.0191 Å
N-CA	1.4680 Å 0.0237 Å
C-N	1.3234 Å 0.0215 Å

Table 1: Average bond lengths (in ångstrøm)

angles and rotational angles.

- The bond lengths and bond angles only displays small variations between amino acids (see tables).
- Only three different rotational angles occurs along an amino acid chain. These are named ϕ , ψ and ω and are shown on Figure 2.

Angle Avg. angle Std.dev.

H-N-CA 118.9553° 1.9979°

N-CA-C 110.6099° 2.4668°

CA-C-N 116.7804° 1.7682°

 Table 2: Average bond angles

C-N-CA 121.4547° 1.9946°

Figure 2: Rotational angles in a protein backbone

- The ω -angle is almost always at 180° , except for a few occurrences where it is 0° . To simplify the problem, we have assumed that it is always locked at 180° .
- The ϕ and ψ angles are the most variable parts of the protein back-
- bone and many models use these as the only parameters when performing protein structure prediction.
- The ϕ and ψ are the only parameters we modify when folding the backbone.

Backbone folding

Given a C_{α} -trace, we wish to fold the protein backbone (only the ϕ and ψ angles) to match the trace as closely as possible. The backbone fitting problem can be regarded as an *inverse kinematics* problem.

To solve this problem, we have devised an extension to the *cyclic coordinate descent* (CCD) algorithm:

- CCD works by adjusting angles one by one in a greedy manner.
- We adjust each angle with the goal of minimizing the mean distance between the three forthcoming amino acids *C* and their corre-

sponding C_{α} -targets T.

 The angles are adjusted iteratively in both directions interchangably until the deviation has converged.

Figure 3: Adjusting an angle according to the C_{α} -targets with the CCD algorithm.

Rotamer selection

– After the backbone is folded in place and fitted to the C_{α} -trace, we remain with the problem of adding side chains to each amino acid

Figure 4: χ -angles in Lysine side chain

– The rotational angles of side chains are named χ_1 - χ_5 , but many

- amino acids only have one or two of these angles.
- Each side chain tends to have certain configurations of its χ -angles. These often occurring configurations are called rotamers of the side-chain.
- There exists rotamer libraries containing these common configurations together with their likelihood.
- We have developed a rotamer search algorithm that minimizes the number of occurences, which uses the rotamer-probabilities as a good initial guess.