

# Big Data y Machine Learning

Elementos para la digitalización de la industria

Descripción del curso



- Introducción del profesorado
- Objetivos
- Calendario y estructura
- Evaluación
- Referencias





- Introducción del profesorado
- Objetivos
- Calendario y estructura
- Evaluación
- Referencias



### **Profesorado**



Vinicius Gadelha

vinicius.gadelha@upc.edu



Antonio E. Saldaña González

antonio.emmanuel.saldana@upc.edu



Marc Jené Vinuesa

marc.jene@upc.edu





- Introducción del profesorado
- Objetivos
- Calendario y estructura
- Evaluación
- Referencias





## **Objetivos**

- 1. Entender los principales conceptos en torno a Big Data y Machine Learning.
- 2. Comprender las posibles aplicaciones de Machine Learning en el sector industrial y del vehículo eléctrico.
- 3. Aprender a desarrollar un modelo de Machine Learning.
- 4. Explorar los principales tipos de Machine Learning (Supervisado y No Supervisado).
- 5. Aprender Python para aplicaciones de Machine Learning.
- 6. Desarrollar modelos de Machine Learning para problemas relacionados con la industria.



- Introducción del profesorado
- Objetivos
- Calendario y estructura
- Evaluación
- Referencias

### Estructura del curso

- Mezcla de sesiones online con sesiones presenciales.
- Sesiones online (SO): mayoritariamente teóricas, habrá algunos ejercicios que a completar asíncronamente.
- Sesiones presenciales (SP): mezcla de teoría y práctica. Es recomendable traer el ordenador personal con los programas necesarios instalados.
- Examen: online. Consistirá en un examen tipo test a realizar estando todos en una videollamada y una parte práctica a entregar antes de que termine el día.



Digitalización en la Industria

**Big Data y Machine Learning** 

#### Calendario

|       | Lunes                                                               | Martes | Miércoles                                                    | Jueves |
|-------|---------------------------------------------------------------------|--------|--------------------------------------------------------------|--------|
| Marzo | 17 S1 – Introducción a Big Data y Machine Learning                  | 18     | 19<br>S2 – Introducción a Python                             | 20     |
|       | 24<br>S3 – Estadística descriptiva                                  | 25     | 26<br>S4 – Modelos de aprendizaje<br>no supervisado y repaso | 27     |
| Abril | 31<br>S5 – Modelos de aprendizaje<br>supervisado (I): Clasificación | 1      | 2<br>S6 – Image Recognition y IA<br>de la nueva generación   | 3      |
|       | 6 S7 – Modelos de aprendizaje supervisado (II): Regresión           | 7      | 8<br>S8 – Exámen                                             | 9      |

Sesión Online Sesión Presencial



- Introducción del profesorado
- Objetivos
- Calendario y estructura
- Evaluación
- Referencias



### **Evaluación**

 $NF = 0.4 \cdot NEP + 0.3 \cdot NET + 0.3 \cdot A$ 

NF: Nota Final

NEP: Nota Examen Práctico

NET: Nota Examen Teórico

A: Asistencia





- Introducción del profesorado
- Objetivos
- Calendario y estructura
- Evaluación
- Referencias





### Referencias

- 1. Jason Brownlee, "Machine Learning Mastery with Python: Understand Your Data, Create Accurate Models and Work Projects End-to-end", Machine Learning Mastery, 2016
- 2. Laura Igual & Santi Seguí, "Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications ", Springer, 2017
- 3. Morteza Nazari-Heris et al, "Application of Machine Learning and Deep Learning Methods to Power System Problems", Springer, 2021