

US entific Advisory Board 1999 S&T Program Review **Knowledge Representation Technologies** for Human Performance **Enh** Air Force Research Laboratory | AFRL

ORCE RESEARCH LABORET

Dr. Wesley Regian Warfighter Training Research Division

Science and Technology for Tomorrow's Aerospace Force

Challenge

- Cognitive Engineering on DoD Agenda
 - Distributed Mission Training
 - Advanced Distributed Learning
 - Air Expeditionary Forces
- Required Cognitive Technologies on Back Burner
 - Effective courseware can be reliably engineered
 - Enhanced performance can be reliably engineered
 - Distributed performance enhancement imaginable

CAI and ICAI Effectiveness

Computer Assisted Instruction (Instructional Systems Design-based)

• Instructional Effect 0.39 Sigma (65%tile)

• Instruct. Efficiency 24% learning time reduction

Cost Effectiveness lowest cost per Sigma gain

<u>Intelligent Computer Assisted Instruction</u> (Cognitive Science-based)

• Instructional Effect 1.00 Sigma (84%tile)

• Instruct. Efficiency 55% learning time reduction

Cost Effectiveness Similar to CAI when authored

The Approach

- Phase I (Done)
 - Instructional Engineering Achieved
 - »Intelligent Computer Assisted Instruction (ICAI) highly effective
 - »R&D spins off Knowledge Representation (KR) Technologies
 - »KR Technologies enable Cognitive Engineering
- Phase II (You are Here)
 - Practical Knowledge Representation
 - »Standardized & Streamlined Cognitive (KR) Modeling
 - » Practical knowledge acquisition & application
 - »Tools for distributed KR-based agents
- Phase III (Stay Tuned)
 - Global Performance Engineering
 - Warfighter Operations Center Training & Perf. Support
 - Integrate into Distributed Mission Training

Basic Research Foundation AFOSR 6.1 TRAIN

Training Research for Automated

<u>INstruction</u>

Recognition

- National
 - Federal Lab Consortium Award: Tech Transfer
 - VP Gore Hammer Award (1998)
- DoD Reliance center for cognitive science
- Air Force
 - World-Class Rating by AF SAB
- AFOSR
 - USAF Basic Science Award (1997)
 - STAR Team TRAIN (FY95-98)
- •AFRL/HRL
 - **Scientific Excellence (1990, 1993-95)**

Productivity

- •Since May 1992
 - 129 experiments
 - » 12,633 subjects
 - » 177,052 hours
 - 5 books
 - » 52 peer reviewed publications
 - » 115 unreviewed publications
 - 25+ ICAI systems delivered
 - » World's largest research base on human performance
 - » Performance models based on 300,000+ hours of lab & field data

Basic Research Foundation Team

Government

- Regian (PhD U.Cal / LRDC)
 »Cognitive modeling & modelbased pedagogy
- Schiflett (PhD Texas Tech)
 »Performance modeling & team-based pedagogy
- Goettl (PhD U.III/Clemson)
 »Practice schedules,
 observational learning
- Ashworth (PhD Yale)
 »Visual cognition,
 recognition, discrimination
- Gluck (PhD CMU)
 »Student modeling, knowledge engineering, ATI

Contract

- Command Technologies
 Carol Horwitz, MS,
 Artificial Intelligence
- Galaxy Scientific
 *Kevin Kline, MS,
 Computer Science
 *Randy Morlen,MS,
 Computer Science
- Veridian»Linda Elliott, PhD, IOPsychology
- Aptima
 »Daniel Serfaty, EE,
 Organizational
 Modeling

"Collaborators"

Basic Research Foundation Strategy

SynTeam TRAIN C3STARS WOC/TPS

AWACS E3 DMT

Engineering

Electrical/Mecha

Formal methods and quantitative models applied to practical ends such as structures, machines, processes, and

Cognitive

Formal methods/models for designing technologies that capitalize on human strengths and

Courseware Effectiveness Regian & Fletcher 1999

Instructional Setting	Number of Studies	Effect Size	Outcome Percentile	
& Courseware Type Elementary School CAI	28	0.47	68	
Licinately School CA	20	∪. -± <i>y</i>	00	
Secondary School CAI	42	0.42	66	
Higher Education CAI	101	0.26	60	
Adult Education CAI	24	0.42	66	
Military Training CAI	38	0.40	66	
Overall CAI	233	0.39	65	
Higher Education ICAI	1	0.9 7	83	
Military Training ICAI	1	1.02	84	
Secondary School ICAI	1	1.00	84	
Overall ICAI	3	1.00	84	

Courseware is decidedly effective in

Courseware Costs and Benefits Regian and Fletcher 1999

Cheapest
way to
improve
mathemati
cs
scores.

Treatment	Setting	Minutes	Cost per
		per Day	SD Gain
Add Instruction Time	Class	30	2,667
Tutoring by Adults	Private	20	1,612
Reduce Class Size	Class	N/A	1,179
Minicomputer CAI	Lab	N/A	375
Tutoring by Peers	Private	20	286
Microcomputer CAI	Class	N/A	199

Fastest
way to
reach
instructio
nal
objectives

Instructional Setting & Courseware Type	Number of Studies	% Time Reduction
Military Training	23	28
CAI Military Training	N/A	30
CAI Higher Education	17	34
CAI Adult Education	15	24
CAI		
Overall CAI	55+	29
Higher Education ICAI	3	55

Model-based Instruction Superior to Curriculum-based (Shute, Regian)

Introductory College Statistics

High School Mathematics

10% improvement on statistics problem solving performance.

One letter grade improvement on word problem solving performance.

Optimized Transfer At Minimal Expense (Regian)

	VR	CAI
Tour 1	2.1	1.3
Tour 2	1.2	1.2
Tour 3	2.1	1.8
Tour 4	0.5	0.4
Tour 5	1.4	0.8
Average Errors	1.5	1.1

No difference in building navigation performance after

	VR	CAI
Test 1	1.7	1.0
Test 2	1.1	0.6
Test 3	0.5	0.4
Average Errors	1.1	0.7
Test 1	65.2	59.1
Test 2	48.0	37.5
Test 3	25.1	29.3
Average Latency	46.1	42.0

No difference in console operation performance after₁₃

Principled Part Task Training via Backward Transfer (Goettl)

Engineering an Old Problem

- Part-task (PTT) training of complex tasks
 - Whole task is dangerous, expensive, or impossible
- Technique to identify critical component tasks
 - Degree of transfer between components and whole task

	A	T., .,	Backward
	Acquisition	Transfer	Transfer
Evporimonto	Whole	Whole	Componen
Experimenta	Task	Task	Tasks
Control	Component	Whole	
Control	Tasks	Task	

Alternative Design Methods

- Rational Part Task Training
 - Part-tasks based on intuitive decomposition
 - Often less effective than whole task training
- Principled Part Task Training
 - Part-tasks based on empirical decomposition
 - Generate candidate part-tasks rationally
 - Select effective part-tasks empirically

Component Task	Backward Transfer
Gate Aiming	63.12
Sp. Orientation	n 8.74
Recovery	- 4.84
Heading	- 5.20
Roll	34.61

Deficiencies Principled Part Task Training

For students with higher aptitude, Principled PTT is equivalent to Whole Task Training, and significantly better than Rational PTT.

For students with lower aptitude, Principled PTT raises their performance to rival the performance of high aptitude students.

Resolving Aptitude Differences

Guidance When Needed (Regian)

Model-based tutoring produced an overall effect equivalent to one letter grade improvement on word problem solving performance.

Detailed guidance was better for students with lower aptitude.

Brief guidance was better for students with higher aptitude.

Enhancing Performance? Near Transfer (Ashworth)

When learning aircraft identification, homogeneous grouping of stimuli produces slower performance and more errors than heterogeneous grouping.

Slower Performance During Learning

Higher Error Rates During Learning

Performance Far Transfer (Ashworth)

When actually performing aircraft identification, subjects who had studied homogeneously grouped stimuli were faster and more accurate than subjects who had studied heterogeneously

Cognitively Principled Instruction **Effective but Expensive (Regian)**

- ICAI is extremely effective
- Hand-made ICAI is expensive
 - 1000 hours for 1 hour of instruction
- Object oriented tools are helping
 - 250 hours for 1 hour of instruction
 - Productivity now comparable 19

Transition Domains

<u>Domain</u>	CUSTOMER	<u>Domain</u>	CUSTOMER	
Joint Suppression of Enemy Air Defense	JSEAD-JTF Nellis AFB	Crisis Action Planning	OSD/P&R & J7 Pentagon	
Liver Tutor	Wilford Hall Medical Center (Organ Transplant Ward) Lackland AFB TX	Air Traffic Control Tutor	AF Special Operations Command Hurlbert Field FL	
Auxiliary Power Unit Tutor	AETC Aircraft Maintenance School Keesler AFB MS		AETC Air Traffic Control School Keesler AFB MS	
C-130 Inter Phone Troubleshooting Tutor	AETC Keesler AFB MS	Missile Launch Control Room Tutor Training	AETC Undergraduate Space & Missile	
J		naming	Keesler AFB MS	
Orbital Elements Tutor	AFSPACECOM, 20th Space Surveillance Sqdn, Peterson AFB CO	K-G194 Troubleshooting Tutor	AETC Crypto Maintenance School	
	AETC Undergraduate Space & Missile Training		Lackland AFB TX	
	Vandenberg AFB CA	Horizontal Situation Indicator Tutor	AETC Tech Trng School Keesler AFB MS	
Tactical Orbital Display	AFSPACECOM, 20th Space Surveillance	B2 Landing Gear Tutor	Air Combat Command	
Console Tutor Sqdn, Peters	on AFB CO	•		
	AETC Undergraduate Space & Missile Training	M-16 Assembly - Disassembly Tutor	AETC Combat Arms School	
Submarine Refrigeration System Tutor California	Keesler AFB MS bubmarine Refrigeration Mare Island Naval Shipyard		Crypto Tech School 3 TX	
·	DAND	1502B TDR (Time	Avionics Tech School	
Aircraft Engine Maintenance Tutor	RAND	Domain Reflectometer)	Keesler AFB MS	
The Light-Weight Multi Band Satellite Terminal	AFMC Electronic Systems Center Air Mobility Command	AN/ARC-190 High Frequency Radio	Avionics Tech School Keesler AFB MS	
Tutor		Pulse Oximeter	AETC Tech Trng School Sheppard AFB TX	

Emerging Solutions

Practical Cognitive Technologies

- Standardized knowledge/skills modeling technology
 - **ENGRAMS** Encoding Normative Grammar for Representing Acquired Memory and Skill
 - SMART Student Modeling Approach for Responsive Tutoring
- Automated extraction of existing, knowledge-bearing data
 - NOSETTA Rational Overlay System for Exploiting Traditional Task Analyses
- Efficient methods for extraction of human expert knowledge
 - >> **DNA** Decompose, Network, Assess
- Authoring tools for model-based tutoring, coaching, support
 - > HISIDE High-level Simulation with Instructional Design Expertise
 - >> VIVIDS Virtual Interactive Intelligent Tutoring System Development Shell

Exit Criteria

Practical Cognitive Technologies

- Standardized knowledge/skills modeling technology
 - » Demonstrate utility for diverse ICAI development
- Automated extraction of existing knowledge-bearing data
 - » 50% reduction in time to complete cognitive task analysis
- Efficient methods for extraction of human expert knowledge
 - » 70% reduction in time to develop student models ICAI
- Authoring tools for model-based tutoring, coaching, support
 - » 80% reduction in time to develop ICAI

Next Step: Global Performance Engineering Warfighter Operations Center Training and Performance Support

Leveraging

Brooks

Mesa

1ndividu al

models tutors agents

Team

models tutors agents

Processes

Ind. Learning Team Procedures

Outcome

Cognitive Measures Procedure Measures

Individu

al KSAs

Teamwork T<u>a</u>skwork

Team

KSAs Structure

Processes

Perception Attention Action

Outcome

Team Performance Individual Performance

Leader

KSAs Style

Team

Structure

Processes

Situation Assessment
Problem Solving
Decision Making
Planning
Metacognition
Social

Outcome

Mission Success
Organizational Satisfaction
Individual Satisfaction