WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		}	(1	1) International Publication Number:	WO 97/40062	
C07J 73/00, 41/00		Al	(4	3) International Publication Date:	30 October 1997 (30.10.97)	
(21) International Application Number:	PCT/EP	97/016:	26	(81) Designated States: JP, European	patent (AT, BE, CH, DE, DK,	

GB

(22) International Filing Date: 26 March 1997 (26.03.97)

ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

26 March 1997 (26.03.97)

18 April 1996 (18.04.96)

(71) Applicant: PHARMACIA & UPJOHN S.P.A. [IT/IT]; Via Robert Koch, I.2, I-20152 Milan (IT).

(71)(72) Applicants and Inventors: PANZERI, Achille [IT/IT]; Via San Francesco d'Assisi, 14, I-22055 Merate (IT). NESI, Marcella [IT/IT]; Via Mario Donati, 12, I-20146 Milan (IT). Published
With international search report.

(54) Title: PROCESS FOR PREPARING STEROIDS HAVING A CARBOXAMIDE SIDE-CHAIN

(57) Abstract

(30) Priority Data:

9608045.2

Process for preparing steroids having a carboxamide side-chain of formula (I) wherein: the formula $\underline{}$ are each independently, single or double bonds; z is a single bond, or a straight or branched $C_1\text{-}C_5$ alkylene; the moiety represents the A and B rings of a steroid; R_{18} is hydrogen or $C_1\text{-}C_4$ alkyl; R_{22} , R_{23} , and R_{24} are, each independently, selected from: hydrogen, optionally substituted $C_1\text{-}C_{10}$ alkyl, $C_5\text{-}C_7$ cycloalkyl, $C_6\text{-}C_{10}$ alkylcycloalkyl or cycloalkylakyl, $C_6\text{-}C_{10}$ aryl, $C_7\text{-}C_{14}$ arylalkyl or alkylarly, heterocyclylalkyl, and heteroarylalkyl. The process comprises reacting the corresponding 17-cyanosteroids with an alcohol, and alkene or a halide. The compounds of formula (I) are useful as testosterone 5α -reductase inhibitors.

$$0 \longrightarrow NH \xrightarrow{R_{22}} R_{23}$$

$$R_{18}$$

$$R_{18}$$

$$R_{18}$$

$$R_{18}$$

$$R_{18}$$

$$R_{24}$$

$$R_{24}$$

$$R_{23}$$

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	freland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzhekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland'	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
i e							

WO 97/40062 PCT/EP97/01626

PROCESS FOR PREPARING STEROIDS HAVING A CARBOXAMIDE SIDE-CHAIN.

The present invention relates to a process for preparing steroids having a carboxamide side-chain. More particularly, the present invention relates to a process for preparing steroids of the general formula:

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein:

10 the symbols --- are, each independently, single or double bonds;

Z is a single bond, or a straight or branched C_1 - C_5 alkylene;

the moiety represents the A and B rings of a steroid;

R₁₈ is hydrogen or C₁-C₄ alkyl;
R₂₂, R₂₃, and R₂₄ are, each independently, selected from: hydrogen; C₁-C₁₀ alkyl, optionally substituted by one or more halogen atoms; C₅-C₇ cycloalkyl; C₆-C₁₀ alkylcycloalkyl or cycloalkylalkyl; C₆-C₁₀ aryl; C₇-C₁₄ arylalkyl or alkylaryl; heterocyclyl; heterocyclylalkyl; and heteroarylalkyl.

ety A B

Particularly, the moiety

may be selected from:

WO 97/40062 PCT/EP97/01626

1)

$$R_{3}$$
 (VI)

wherein: R_3 is hydrogen or C_1 - C_4 alkyl; and R_2 is hydrogen or $-OR_2$, wherein R_2 is hydrogen or C_1 - C_4 alkyl;

2

5

2)

wherein: the symbols $\frac{---}{-}$ are, each independently, single or double bonds; R_1 , R_6 , R_7 , and R_{19} are, each independently, hydrogen or C_1 - C_4 alkyl;

3)

$$R_{19}$$
 (VIII)

wherein: the symbol $\frac{---}{-}$ is a single or a double bond; R_7 is hydrogen or C_1 - C_4 alkyl; and R_{19} is hydrogen or C_1 - C_4 alkyl;

4)

$$\begin{array}{c}
R_{19} \\
N \\
R_{4}
\end{array}$$
(IX)

wherein: the symbols $\frac{---}{-}$ are, each independently, single or double bonds; R_4 is hydrogen, C_1 - C_4 alkyl, C_6 - C_{10} aryl, C_7 - C_{10} arylalkyl, acetyl, benzoyl, or tosyl; R_7 is hydrogen or C_1 - C_4 alkyl; R_{19} is hydrogen or C_1 - C_4 alkyl;

5)

$$\begin{array}{cccc}
& & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$
(X)

wherein: the symbol _-- is a single or a double bond; R₄ is hydrogen, C₁-C₄ alkyl, C₆-C₁₀ aryl, C₇-C₁₀ arylalkyl, acetyl, 5 benzoyl, or tosyl; R₇ is hydrogen or C₁-C₄ alkyl; R₁₉ is hydrogen or C₁-C₄ alkyl;

6)

HO
$$R_{19}$$
 R_{7}

wherein: the symbols $\frac{---}{--}$ are, each independently, single or double bonds; R_{19} is hydrogen, C_1-C_4 alkyl, or it is absent when linked to a double-bonded carbon atom; R_7 is hydrogen or C_1-C_4 alkyl;

15 7)

$$0 \xrightarrow{R_{19}} R_{7}$$

$$R_{13} R_{14}$$
(XII)

wherein: the symbols $\frac{---}{--}$ are, each independently, single or double bonds; R_7 is hydrogen or C_1 - C_4 alkyl; C_{19} is hydrogen or C_1 - C_4 alkyl; R_{13} and R_{14} are, each independently, hydrogen, C_1 - C_4 alkyl, C_6 - C_{10} aryl, C_7 - C_{10} arylalkyl, acetyl, benzoyl, tosyl or, taken together, phthalyl.

The steroid compounds of formula (I) are known as

pharmacologically active products. For example, the compounds of formula (I) wherein the AB ring moiety has formula (VII) are reported to be testosterone 5α -reductase inhibitors (see. e.g., U.S. Patents No. 4,191,759, 4,220,775, and 4,377,584). 5 The compounds of formula (I) wherein the AB ring moiety has formula (IX) are reported to be testosterone 5α -reductase inhibitors (see, e.g., EP-4949, EP-155046, WO 94/20104, EP-484094, EP-200859, WO 94/03475, WO 95/07927, EP-277002; J. Med. Chem. <u>27</u>, 1690-1701 (1984) and <u>29</u>, 2298-2315 (1986)). 10 The compounds of formula (I) wherein the AB ring moiety has formula (X) are reported to be testosterone 5α -reductase inhibitors (see, for example, WO 93/13124; J. Med. Chem. 37, 2352-2360 (1994)). The compounds of formula (I) wherein the ring moiety has formula (XI) are reported to 15 testosterone 5α -reductase inhibitors (see, for example, EP-289327, EP-567271; J. Med. Chem. <u>33</u>, 937-942 and 943-950 (1990)). The compounds of formula (I) wherein the AB ring moiety has formula (XII) are reported to be testosterone 5α reductase inhibitors (see, for example, EP-469548, 469549). 20

The compounds of formula (I) are usually prepared by condensation reaction of the corresponding 17-carboxylic acid or derivative thereof, such as for example a chloride, a pyridyl thioester, an imidazole or a hydroxybenzotriazole derivative, with a suitable amine.

Such process shows some drawbacks, especially when the amine that has to be condensed with the carboxylic acid is scarcely reactive, because of its sterical hindrance or its poor nucleophilicity, or it is not readily available by synthesis. For example, in the case of the reaction between 3-oxo-4-aza-

 5α -androst-1-ene-17 β -carboxylic acid and 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propyl amine the corresponding amide is obtained with a yield of about 20% at most. On the contrary, the reaction between 17-cyano-4-aza-5 α -androst-1-en-3-one and 1,1,1,3,3,3,-hexafluoro-2-phenyl-2-propyl triflate according to the present invention provides the amide with a yield of about 40%.

The Applicant has now found that the steroids of formula (I)

10 having a carboxamide side-chain can be advantageously prepared by reacting the corresponding 17-cyanosteroids with a suitable alcohol or one of its activated derivative as defined hereinunder.

Therefore, the present invention provides a process for preparing a compound of formula:

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein:

the symbols --- are, each independently, single or double 20 bonds;

Z is a single bond, or a straight or branched C_1 - C_5 alkylene;

A B represents t

the moiety represents the A and B rings of a steroid;

R₁₈ is hydrogen or C₁-C₄ alkyl;

25 R_{22} , R_{23} , and R_{24} are, each independently, selected from:

hydrogen; optionally substituted C_1-C_{10} alkyl, C_5-C_7 cycloalkyl, C_6-C_{10} alkylcycloalkyl or cycloalkylalkyl, C_6-C_{10} aryl, C_7-C_{14} arylalkyl or alkylaryl, heterocyclyl, heteroaryl, heterocyclylalkyl, and heteroarylalkyl;

5 said process comprising reacting a compound of formula:

AB

wherein the symbols $\underline{\ \ }$, Z, $R_{18},$ and the moiety are defined as above;

with a compound of formula:

$$Y-O-\frac{R_{22}}{R_{23}}R_{23}$$
 (III)

10

wherein R_{22} , R_{23} , and R_{24} are defined as above, and Y is hydrogen or a group such that -O-Y is an activated leaving group.

In formula (III), Y is preferably: an alkylsulphonyl group (e.g. methanesulphonyl (mesyl)), optionally substituted by one or more fluorine atoms (e.g. trifluoromethanesulphonyl (trifyl) or 1,1,1-trifluoroethanesulphonyl); or an arylsulphonyl group (e.g. p-toluensulphonyl (tosyl), p-bromophenylsulphonyl (brosyl)).

Preferably it is:

$$CF_3SO_2O \xrightarrow{R_{22}} R_{23}$$
 (IV) or $CH_3 \xrightarrow{CH_3} SO_2O \xrightarrow{R_{22}} R_{23}$ (V

In formula (I) and (II) R_{18} is preferably hydrogen or methyl,

moiety A B

while the moiety

may be selected, e.g., from:

1)

$$R_{3}$$
 (VI)

wherein: R_3 is hydrogen or C_1 - C_4 alkyl; and R_2 is hydrogen or $-OR_2$, wherein R_2 is hydrogen or C_1 - C_4 alkyl;

2)

wherein: the symbols $\frac{---}{--}$ are, each independently, single or double bonds; R_1 , R_6 , R_7 , and R_{19} are, each independently, hydrogen or C_1 - C_4 alkyl;

3)

$$R_{19}$$
 (VIII)

wherein: the symbol $\frac{---}{-}$ is a single or a double bond; R_7 is hydrogen or C_1 - C_4 alkyl; and R_{19} is hydrogen or C_1 - C_4 alkyl; 4)

wherein: the symbols $\frac{---}{--}$ are, each independently, single or double bonds; R_4 is hydrogen, C_1 - C_4 alkyl, C_6 - C_{10} aryl, C_7 - C_{10} arylalkyl, acetyl, benzoyl, or tosyl; R_7 is hydrogen or C_1 - C_4

alkyl; R_{19} is hydrogen or C_1-C_4 alkyl;

5)

$$0 \xrightarrow{R_{19} \atop N} R_{7} \qquad (X)$$

wherein: the symbol _--- is a single or a double bond; R₄ is hydrogen, C₁-C₄ alkyl, C₆-C₁₀ aryl, C₇-C₁₀ arylalkyl, acetyl, benzoyl, or tosyl; R₇ is hydrogen or C₁-C₄ alkyl; R₁₉ is hydrogen or C₁-C₄ alkyl;

6)

$$R_{19}$$

$$R_{7}$$

$$(XI)$$

wherein: the symbols $\frac{--}{--}$ are, each independently, single or double bonds; R_{19} is hydrogen, C_1 - C_4 alkyl, or it is absent when linked to a double-bonded carbon atom; R_7 is hydrogen or C_1 - C_4 alkyl;

7)

$$0 \xrightarrow{R_{19}} R_{7}$$

$$R_{13} R_{14}$$
(XII)

15

20

wherein: the symbols $\frac{---}{-}$ are, each independently, single or double bonds; R_7 is hydrogen or C_1 - C_4 alkyl; C_{19} is hydrogen or C_1 - C_4 alkyl; R_{13} and R_{14} are, each independently, hydrogen, C_1 - C_4 alkyl, C_6 - C_{10} aryl, C_7 - C_{10} arylalkyl, acetyl, benzoyl, tosyl or, taken together, phthalyl.

A C_1-C_5 alkylene may be e.g.: $-CH_2-$, $-CH_2CH_2-$, $-CH_2CH_2CH_2-$, $-CH_2CH_2CH_2-$, $-CH(CH_3)-$, $-CH(CH_3)CH_2-$, $-CH(CH_3)CH_2-$, or

-CH(CH₃)CH₂CH₂CH₂-.

- A C_1 - C_4 alkyl may have a straight or branched chain; for example it may be: methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, or tert-butyl.
- A C₁-C₁₀ alkyl may have a straight or branched chain; for example, it may be: methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, sec-pentyl, neo-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, or n-decyl.
- When substituted, a C_1 - C_{10} alkyl is preferably substituted by one or more halogen atoms, such as iodine, bromine, chlorine and/or fluorine. Chlorine and fluorine are preferred, fluorine is the most preferred. Particularly preferred substituted C_1 - C_{10} alkyl groups are those wherein all the
- hydrogen atoms are substituted by fluorine atoms, namely perfluoro groups such as, e.g.: $-CF_3$, $-CF_2CF_3$, $-CF_2CF_2CF_3$, or $-CF(CF_3)_2$.
 - A C_5 - C_7 cycloalkyl may be, e.g.: cyclopentyl, cyclohexyl or cycloheptyl.
- A C_6 - C_{10} cycloalkylalkyl may be, for example, cyclohexylmethyl, cyclohexylethyl, cyclohexylpropyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cycloheptylmethyl, cycloheptylethyl, or cycloheptylpropyl.
- An optionally substituted C_6-C_{10} aryl is, e.g.: phenyl or naphthyl, optionally mono- or di-substituted by: halogen (preferably chlorine or fluorine), C_1-C_4 alkyl (preferably methyl, ethyl, n-propyl, n-butyl, iso-butyl), trifluoromethyl, cyano, methoxy, ethoxy, and/or nitro. Preferred optionally substituted C_6-C_{10} aryls are, for example: phenyl,
- naphthyl, p-chlorophenyl, p-fluorophenyl, p-trifluorophenyl, p-cyanophenyl, p-methylphenyl, p-ethylphenyl, p-n-propylphenyl, p-n-butylphenyl, p-isobutylphenyl, p-methoxyphenyl,

p-ethoxyphenyl, p-nitrophenyl, m-chlorophenyl, m-fluorophenyl, m-trifluorophenyl, m-cyanophenyl, m-methylphenyl, methylphenyl, m-n-propylphenyl, m-n-butylphenyl, m-isobutylphenyl, m-methoxyphenyl, m-ethoxyphenyl, m-nitrophenyl, ochlorophenyl, o-fluorophenyl, o-trifluorophenyl, o-cyanophenyl, o-methylphenyl, o-ethylphenyl, o-n-propylphenyl, o-nbutylphenyl, o-isobutylphenyl, o-methoxyphenyl, o-ethoxyphenyl, o-nitrophenyl, o,p-dimethylphenyl, o,p-difluorophenyl, o,p-dichlorophenyl, o,p-bistrifluoromethylphenyl, o, m-dimethylphenyl, o, m-difluorophenyl, o, m-dichlorophenyl, 10 o, m-bistrifluoromethylphenyl, m, m-dimethylphenyl, dichlorophenyl, m,m-difluorophenyl, or m, m-bistrifluoromethylphenyl. Particularly preferred groups are: chlorophenyl, p-fluorophenyl, p-trifluorophenyl, p-cyano-15 phenyl, p-methylphenyl, p-ethylphenyl, p-n-propylphenyl, p-nbutylphenyl, p-isobutylphenyl, p-methoxyphenyl, p-ethoxyphenyl, or p-nitrophenyl. An optionally substituted C₇-C₁₄ arylalkyl may be, e.g.: benzyl or p-methoxybenzyl.

- An optionally substituted C_7 - C_{14} alkylaryl group may be a C_1 - C_4 alkyl substituted by one of the optionally substituted C_6 - C_{10} aryl groups as indicated hereinbefore, such as e.g.: p-chlorophenylmethyl, p-fluorophenylmethyl, p-trifluorophenylmethyl, p-methylphenylmethyl, p-ethylphenylmethyl, p-n-propylphenylmethyl, p-n-butylphenylmethyl, p-isobutylphenylmethyl, p-methyl, p-methoxyphenylmethyl, p-ethoxyphenylmethyl, p-nitrophenylmethyl, p-chlorophenylethyl, p-fluorophenylethyl, or p-trifluorophenylethyl. Among them, particularly preferred are: p-chlorophenylmethyl or p-fluorophenylmethyl.
- A heterocyclyl group may be, e.g., 4-piperidyl. A heteroaryl group may be, e.g., 4-pyridyl or 4,6-dimethyl-3-pyridyl. A heterocyclylalkyl group may be, e.g., N-piperidylmethyl, 2-N-

piperidylethyl, or N-morpholinomethyl. A heteroarylalkyl group may be, e.g., 4-pyridylmethyl.

When the moiety has formula (VI), the R_3 group is preferably: hydrogen, methyl or ethyl, and the group R_2 is preferably: hydrogen, hydroxy, methoxy, or ethoxy. Particularly preferred moieties of formula (VI) are the following:

When the moiety has formula (VII), the symbols --
may be single or double bonds, and the groups R₁, R₆, R₇ and R₁₉ are preferably, each independently, hydrogen or methyl. Particularly preferred moieties of formula (VII) are the following:

When the moiety has formula (VIII), the symbol $\frac{1}{2}$ may be a single or a double bond, and the groups R_7 and R_{19} are preferably, each independently, hydrogen or methyl.

10

15

Particularly preferred moieties of formula (VIII) are the following:

when the moiety has formula (IX), the symbols ——
may be, each independently, single or double bonds, the
groups R₇ and R₁₉ are preferably, each independently, hydrogen
or methyl, and the group R₄ is preferably: hydrogen, methyl,
phenyl, benzyl, p-methoxyphenyl, acetyl, benzoyl, or tosyl.
Particularly preferred moieties of formula (IX) are the
following:

When the moiety has formula (X), the symbol $\frac{---}{---}$ may be a single or a double bond, R_7 and R_{19} are preferably, each independently, hydrogen or methyl, and R_4 is preferably: hydrogen, methyl, phenyl, benzyl, p-methoxyphenyl, acetyl,

15

benzoyl, or tosyl. Particularly preferred moieties of formula (IX) are the following:

When the moiety has formula (XI), the symbols $\frac{---}{---}$ may be, each independently, single or double bonds, R_7 is preferably hydrogen or methyl, and R_{19} is preferably hydrogen or methyl, or it is absent when linked to a double-bonded carbon atom. Particularly preferred moieties of formula (XI) are the following:

When the moiety has formula (XII), the symbols $\frac{1}{2}$ may be, each independently, single or double bonds, R_7 and R_{19} are preferably, each independently, hydrogen or methyl; and R_{13} and R_{14} are preferably, each independently, hydrogen, methyl, phenyl, benzyl, acetyl, benzoyl, or tosyl, or, taken

15

20

25

together, phthalyl. Particularly preferred moieties of formula (XII) are the following:

The process of the present invention can be employed to prepare both 17α and 17β epimers, however 17β epimers are preferred.

The process object of the present invention advantageously carried out particularly to prepare steroids of formula (I) having at least one of R_{22} , R_{23} and R_{24} different from hydrogen, more particularly steroids of formula (I) having the carboxamide side-chain derivable from low reacting and/or sterically hindered amines. Therefore, the process of the present invention is preferably carried out to prepare steroids of formula (I) having a primary carboxamide side-chain (one of R_{22} , R_{23} and R_{24} different from hydrogen), more preferably a secondary carboxamide side-chain (two of R_{22} , R_{23} , and R_{24} different from hydrogen), even more preferably a tertiary carboxamide side-chain $(R_{22},\ R_{23},\ and\ R_{24}$ different from hydrogen). Among the compounds of formula (I) having a tertiary carboxamide side-chain, those wherein one of R_{22} , R_{23} and R_{24} is an optionally substituted $C_6 - C_{10}$ aryl group, and the other two are C_1-C_4 alkyl groups or C_1-C_3 perfluoroalkyl groups, are particularly preferred. Even more preferred are those compounds of formula (I) wherein one of the groups R_{22} , R_{23} , R_{24} is an optionally substituted $C_6 - C_{10}$

25

aryl group, and the other two are the same and are selected from $C_1\text{-}C_3$ perfluoroalkyl.

The process according to the present invention is preferably carried out to prepare one of the following steroids having a carboxamide side-chain:

- 1) N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide;
- 2) N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androstane-17 β -carboxamide;
- N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-methyl-3oxo-4-aza-5α-androst-1-ene-17β-carboxamide;
 - 4) N- $\{1,1,3,3,3,3-\text{hexafluoro-2-phenylprop-2-yl}\}$ -4-methyl-3-oxo-4-aza-5 α -androstane-17 β -carboxamide;
 - 5) N-(1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androst-16-ene-17 β -carboxamide:
 - 6) N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-methyl-3oxo-4-aza-5α-androst-16-ene-17β-carboxamide;
 - 7) N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-androst-4-ene-17 β -carboxamide;
- N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3β-hydroxyandrost-5-ene-17β-carboxamide;
 - 9) N-[1,1,1,3,3,3-hexafluoro-2-(p-methylphenyl)prop-2-yl]-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide;
 - 10) N-[1,1,3,3,3-hexafluoro-2-(p-methylphenyl)prop-2-yl]-3oxo-androst-4-ene-17β-carboxamide;
 - 11) N-[1,1,1,3,3,3-hexafluoro-2-(p-fluorophenyl)prop-2-yl]-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide;
 - 12) N-[1,1,1,3,3,3-hexafluoro-2-(p-fluorophenyl)prop-2-yl]-3oxo-androst-4-ene-17β-carboxamide;
- 30 13) N-[1,1,1,3,3,3-hexafluoro-2-(p-chlorophenyl)prop-2-yl]-3-

- $oxo-4-aza-5\alpha$ -androst-1-ene-17 β -carboxamide;
- 14) N-[1,1,1,3,3,3-hexafluoro-2-(p-chlorophenyl)prop-2-yl]-3oxo-androst-4-ene-17β-carboxamide;
- 15) N-[1,1,1,3,3,3-hexafluoro-2-(p-trifluoromethyl)phenyl)
- prop-2-yl]3-oxo-4-aza-5α-androst-1-ene-17β-carboxamide;
 - 16) N-[1,1,1,3,3,3-hexafluoro-2-(p-trifluoromethylphenyl)
 prop-2-yl]3-oxo-androst-4-ene-17β-carboxamide;
 - 17) N-(1,1,1-trifluoro-2-phenylprop-2-y1)-3-oxo-4-aza-5 α androst-1-ene-17 β -carboxamide;
- 10 18) N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5α-androstane-17β-carboxamide;
 - 19) N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4aza-5α-androst-1-ene-17β-carboxamide;
 - 20) N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4aza-5α-androstane-17β-carboxamide:
 - 21) N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α androst-16-ene-17 β -carboxamide;
 - 22) N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4aza-5α-androst-16-ene-17β-carboxamide;
- 20 23) N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-androst-4-ene-17β-carboxamide;
 - 24) N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3 β -hydroxy-androst-5-ene-17 β -carboxamide;
- 25) N-(2-phenylprop-2-y1)-3-oxo-4-aza-5 α -androst-1-ene-17 β carboxamide;
 - 26) N-(2-phenylprop-2-yl)-3-oxo-androst-4-ene-17βcarboxamide;
 - 27) 17β-N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)carbamoyl-androsta-4,6-diene-3-carboxylate;

- 28) 17β-N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2yl)carbamoyl-1,3,5(10)-estratriene-3-carboxylate;
- 29) N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)]-3-oxo-6aza-androst-4-ene-17β-carboxamide; and
- 5 30) N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-hydroxyestra-1,3,5(10)-triene-17 β -carboxamide.

In general, the reaction of a nitrile with an alcohol, an alkene, or an alkyl or aryl halide to yield the corresponding amide is known in organic chemistry as Ritter reaction or its 10 modifications (see e.g. J. J. Ritter and P. P. Minieri, J. Am. Chem. Soc. 70, 4045 (1948); L. I. Krimen and D. J. Cota, Organic Reaction 17, 213-325 (1969); A. L. J. Beckwith in J. Zabicky, "The Chemistry of amides", Wiley, New York, 1970, pp. 125-130; J. Casanova in Z. Rappoport, "The chemistry of 15 the cyano group", Wiley, New York, 1970, pp. 913-915; D. Dopp and H. Dopp in "Methoden der Organischen Chemie (Huben-Weil)", vol. E5, pp. 1032-1041; R. Bishop in B. Trost, "Comprehensive Organic Synthesis", Pergamon Press, 1991, vol. 6, pp. 261-300; Synthesis 274-276 (1979); Tetr. Lett. 30 (5), 20 581-582 (1989)).

The process according to the present invention may be generally carried out by treating a mixture of a nitrile of formula (II) and a compound of formula (III) or (IV) or (V), optionally in the presence of a solvent such as, for example, glacial acetic acid, acetic anhydride, di-n-butylether, chloroform, carbon tetrachloride, n-hexane, nitrobenzene, with a strong inorganic acid such as, for example, perchloric acid, phosphoric acid, 98% sulfuric acid, fluorosulfonic acid, or with a strong organic acid, such as, for example, trifluoromethanesulfonic acid, trifluoroacetic acid, at a

temperature ranging from about room temperature to about the reflux temperature of the reaction mixture, for a time varying from about 30 minutes to about 8 hours, preferably in inert atmosphere of, for example, nitrogen or argon.

Preferably, the process of the present invention is carried out using a compound of formula (III), wherein Y is a trifluoromethanesulfonyl group. In this case the process is generally carried out by adding to the mixture of the nitrile of formula (II) and the triflate of formula (III), as pure liquids or dissolved in a solvent, an organic acid such as, 10 for example, trifluoroacetic acid or trifluoroethanol or trifluoromethanesulfonic acid or glacial acetic acid, and then stirring the mixture at a temperature ranging from about room temperature to the reflux temperature of the reaction mixture, preferably from 50° to 70°C, for a time varying from 15 about 30 minutes to about 8 hours, in inert atmosphere of, for example, nitrogen. The reaction mixture is worked up by treatment with an aqueous alkaline solution (for example, a saturated sodium bicarbonate solution) and extracted with an 20 organic solvent.

The starting compounds of formula (II), (III), (IV) and (V) are known compounds and/or can be obtained by methods well known to anyone skilled in the art. Particularly, the compounds of formula (II) wherein the AB ring moiety has formula (VI) are disclosed e.g. in EP-A-6-134; the compounds of formula (II) wherein the AB ring moie has formula (VII) may be obtained from the corresponding 17-carboxylic acids described e.g. in U.S. Patents No. 4,191,759, 4,220,775 and 4,377,584; the compounds of formula (II) wherein the AB ring moiety has formula (VIII) are described e.g. in: Collection Czechoslov. 18, 407, 410, 412 (1953); Berichte 71, 1487-1492

25

30

. 43 L ...

(1938); the compounds of formula (II) wherein the AB ring moiety has formula (IX) are described e.g. in: EP-A-4949, EP-A-277002, J. Med. Chem. 27, 1690-1701 (1984) and 29, 2298-2351 (1986); the compounds of formula (II), wherein the AB ring moiety has formula (X) may be obtained from the corresponding 17-carboxylic acids described e.g in WO 93/13124 and J.Med.Chem. 37, 2352-2360 (1994); the compounds of formula (II) wherein the AB ring moiety has formula (XI) are described e.g. in EP-A-289327; the compounds of formula (II) wherein the AB ring moiety has formula (XII) may be obtained from the corresponding 17-carboxylic acids described e.g in EP-469,548 and EP-469,548.

The 17-cyanosteroids of formula (II) can be advantageously obtained by dehydration of the corresponding 17-carboxamides, according to the method reported in Synthesis 591-592 (1982). This synthetic route is especially advantageous for those compounds, such as the azasteroids, that cannot be subjected to severe dehydration conditions, such as chlorinating dehydratating agents in refluxing high-boiling solvents (e.g. thionyl chloride in dimethylformamide).

The following working examples are given to better illustrate the present invention, and cannot be construed as a limitation to the scope of the invention itself.

EXAMPLE 1

25

N-(1,1,1,3,3,3-hexafluoro-2-phenyl-2-propyl)-3-oxoandrost-4-ene-17 β -carboxamide

[compound (I), wherein the moiety AB has formula (VII), wherein R_1 =H, R_6 =H, R_7 =H and R_{19} =Me, the C_4 - C_5 bond is a double bond, R_{18} =Me, Z=single bond, R_{22} = R_{24} = CF_3 , R_{23} =Ph].

20

To a stirred mixture of 17β -cyanoandrost-4-en-3-one (100 mg, 0.335 mmol) and 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propyl trifluoromethanesulfonate (252 mg, 0.669 mmol), nitrogen atmosphere, trifluoroacetic acid (0.13 ml, 1.806 mmol) was added at room temperature. The mixture was then stirred at 60°C for 3 hrs. The reaction mixture was cooled in an ice bath, a saturated aqueous solution of sodium hydrogen carbonate (5 ml) was added, and the mixture was extracted with diethylether (3 x 10 ml). The combined organic extracts were washed with water until neutral, dried on sodium sulfate and the solvent was removed under vacuum. The crude product was purified by flash chromatography (eluant: n-hexane/ethyl acetate 70:30) to yield 72 mg (40%) of the title compound.

NMR (CDCl₃) δ : 0.77 (s, 3H, Me (18)), 1.29 (s, 3H, Me (19)), 5.72 (m, 1H, CH (4)), 5.93 (s, 1H, NH), 7.36-7.55 (m, 5H, Ph).

Following an analogous procedure, starting from the corresponding 17β -cyanosteroids and the suitable triflate, the compounds listed below were prepared:

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3 β -hydroxy-androst-5-ene-17 β -carboxamide;

N-[1,1,1,3,3,3-hexafluoro-2-(p-methylphenyl)prop-2-yl]-3-oxo-androst-4-ene-17 β -carboxamide;

N-[1,1,1,3,3,3-hexafluoro-2-(p-fluorophenyl)prop-2-yl]-3-oxoandrost-4-ene-17β-carboxamide;

N-[1,1,1,3,3,3-hexafluoro-2-(p-chlorophenyl)prop-2-yl]-3-oxo-androst-4-ene-17 β -carboxamide;

N-[1,1,1,3,3,3-hexafluoro-2-(p-trifluoromethylphenyl) prop-2-

y1]-3-oxo-androst-4-ene-17β-carboxamide; N-(1,1,1-trifluoro-2-phenylprop-2-y1)-3-oxo-androst-4-ene 17β -carboxamide;

N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3 β -hydroxy-androst-5-ene-17 β -carboxamide; and

N-(2-phenylprop-2-yl)-3-oxo-androst-4-ene-17 β -carboxamide.

5

EXAMPLE 2

N-(1,1,1,3,3,3-hexafluoro-2-phenyl-2-propyl)-4-methyl-3-oxo-4-aza-5 α -androst-16-ene-17 β -carboxamide

[compound (I), wherein the moiety AB has formula (IX), wherein R_4 =Me, R_7 =H, and R_{19} = Me, the C_{16} - C_{17} bond is a double bond, R_{18} = Me, A = single bond, R_{22} = R_{24} = CF_3 , R_{23} =Ph].

To a stirred mixture of 17β -cyano-4-methyl-4-aza- 5α -androst-16-en-3-one (100 mg, 0.321 mmol) and 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propyl trifluoromethanesulfonate (241 mg, 0.642 15 mmol), under nitrogen atmosphere, trifluoroacetic acid (129 mg, 1.605 mmol) was added at room temperature. The mixture was heated to 80°C for 5 hrs. After cooling in an ice bath, water (5 ml) and then a saturated aqueous solution of sodium hydrogen carbonate (5 ml) were added and the mixture was 20 extracted with methylene chloride (2 \times 5 ml). The combined organic extracts were washed with water until neutral, dried with sodium sulfate, and the solvent was evaporated under vacuum. The crude product was purified by 25 chromatography (eluant: toluene/ethyl acetate/methanol 75:20:5) to yield 76 mg (42%) of the title compound.

NMR (CDCl₃) δ : 0.93 (s, 3H, Me (19)), 1.00 (s, 3H, Me (18)), 2.93 (s, 3H, N-Me), 3.07 (dd, 1H, H (5 α)), 6.17 (s, 1H, NH), 6.54 (m, 1H, H (16)), 7.77-7.55 (m, 5H, Ph).

 $MS (FAB^{+}): 557 (M + H)^{+}$

30

in the state of th

Following an analogous procedure, starting from the corresponding 17β -cyano-16-unsaturated-steroids and the suitable triflate, the compounds listed below were obtained:

N-(1,1,1,3,3,3-Hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5α-androst-16-ene-17β-carboxamide;

N-(1,1,1,3,3,3-Hexafluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-5 α -androst-16-ene-17 β -carboxamide;

N-(1,1,1-Trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-

10 5α -androst-16-ene-17 β -carboxamide; and N-(1,1,1-Trifluoro-2-phenylprop-2-yl)-3-oxo-androst-4-ene-17 β -carboxamide.

EXAMPLE 3

15 (a) 3-0x0-4-aza-5 α -androst-1-ene-17 β -carboxamide

A solution of thionyl chloride (25 ml) in anhydrous chloroform (10 ml) was added dropwise, under nitrogen atmosphere, to a suspension of $3-\infty-4-aza-5\alpha-androst-1-ene-$ 20 17β -carboxylic acid (5.0 g) in anhydrous chloroform (250 ml). over about 30 minutes, at 0°C. After stirring at room temperature for 1 h, the volatile products were removed under reduced pressure and the white solid of $3-oxo-4-aza-5\alpha$ androst-1-ene-17 β -carbonyl chloride so obtained was dissolved 25 in anhydrous chloroform (800 ml), cooled to 0°C and treated with gaseous anhydrous ammonia for 30 minutes. After stirring the solution for 1 h at room temperature, the solvent was removed under vacuum, the residue treated with 1N sodium carbonate aqueous solution (100 ml) and extracted with 30 methylene chloride (3 x 100 ml). The combined organic extracts were dried with sodium sulfate and the solvent

10

20

25

, + ' , + ' , + +

evaporated under reduced pressure. 5.0 g of the crude title compound were obtained.

NMR (CDCl₃) δ : 0.73 (s, 3H, Me (18)), 0.96 (s, 3H, Me (19)), 3.33 (dd, 1H, H (5 α)), 5.25 (bs, 1H, NH (4)), 5.37 (bs, 2H, CONH₂) 5.81 (dd, 1H, H (2)), 6.80 (d, 1H, H (1)).

NMR (DMSO) δ : 0.59 (s, 3H, Me (18)), 0.84 (s, 3H, Me (19)), 3.18 (dd, 1H, H(5 α)), 5.62 (dd, 1H, H(2)), 6.75 and 6.95 (d, 2H, CONH₂), 6.84 (d, 1H, H(1)), 7.43 (m, 1H, NH).

IR (nujol) cm⁻¹: 3430, 3185, 1690, 1675, 1655, 1610.

(b) 17β -cyano-4-aza-5 α -androst-1-en-3-one

[compound (II) wherein the moiety AB has formula (IX), wherein R_4 =H, R_7 =H, R_{19} =Me and the C_1 - C_2 is a double bond, R_{18} =Me, A=single bond].

 $3\text{-}0xo\text{-}4\text{-}aza\text{-}5\alpha\text{-}androst\text{-}1\text{-}ene\text{-}17\beta\text{-}carboxamide}$ (1.00 g) was added to a solution of trimethylsilylpolyphosphate (2.94 g) in chloroform (35 ml) and the mixture was refluxed for 4 hrs. After cooling, a 25% aqueous solution of sodium carbonate (100 ml) was added, the organic layer was separated and the aqueous phase was extracted with methylene chloride (3 x 100 ml). The combined organic extracts were washed with water until neutral, dried with sodium sulfate and the solvent was evaporated under vacuum. The crude product was purified by flash chromatography on silica gel (eluant: methylene chloride/acetone 70:30) to yield 580 mg of the title compound.

30 NMR (CDCl₃) δ : 0.93 (s, 3H, Me (18)), 0.98 (s, 3H, Me (19)), 3.33 (dd, 1H, H (5 α)), 5.66 (bs, 1H, NH (4)),

5.81 (dd, 1H, H (2)), 6.80 (d, 1H, H (1)).

IR (nujol) cm⁻¹: 3400, 2240, 1670, 1597.

- (c) N-[1,1,1,3,3,3-Hexafluoro-2-phenylprop-2-yl]-3-oxo-4-aza-
- 5 5α -androst-1-ene-17 β -carboxamide

[compound (I) wherein the moiety AB has formula (IX), wherein R_4 =H, R_7 =H, R_{19} =Me and the C_1 - C_2 is a double bond, R_{18} =Me, A= single bond, R_{22} = R_{24} =CF₃, R_{23} =Ph].

- 10 To a stirred mixture of 17β -cyano-4-aza-5 α -androst-1-en-3-one g) and 1,1,1,3,3,3-hexafluoro-2-phenyl-2-propyl trifluoromethanesulfonate (6.4 g), trifluoroacetic acid (3.139 ml) was added at room temperature, under nitrogen atmosphere. The reaction mixture was heated at 60°C for 3 hrs. After cooling to about 0°C, the reaction mixture is 15 diluted with diethylether (10 ml), additioned with a saturated sodium bicarbonate aqueous solution (20 ml), and then extracted with ethyl acetate $(3 \times 30 \text{ ml})$. The combined organic extracts were washed with water until neutral, dried with sodium sulfate, and the solvent was evaporated at 20 reduced pressure. The crude solid so obtained was purified by flash chromatography on silica gel (eluant: toluene/ethyl acetate/methanol 75:20:5) to yield 1.90 g (42%) of the title compound.
- 25 NMR (CDCl₃) δ : 0.76 (s, 3H, Me(18)), 0.98 (s, 3H, Me(19)), 3.33 (dd, 1H, H(5 α)), 5.39 (s, 1H, NH(4)), 5.82 (dd, 2H, H(2)), 5.89 (s, 1H, NH(21)), 6.79 (d, 1H, H(1)), 7.38-7.54 (m, 5H, Ph).

MS (FAB) (m/z): 542 [M-H], 471 $[M-CHF_3-H]$.

30 IR (nujol) cm⁻¹: 3440, 3260, 3210, 1705, 1670, 1597.

Following an analogous procedure, starting from the

corresponding 17β -cyano-4-aza-5 α -androstanes and the suitable triflate, the compounds listed below were prepared:

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide;

- 5 N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androstane-17 β -carboxamide;
 - N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide:

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-phenylprop-2-yl)

10 4-aza-5 α -androstane-17 β -carboxamide;

N-[1,1,1,3,3,3-hexafluoro-2-(p-methylphenyl)prop-2-yl]-3-oxo-

 $4-aza-5\alpha-androst-1-ene-17\beta-carboxamide;$

N-[1,1,1,3,3,3-hexafluoro-2-(p-fluorophenyl)prop-2-yl]-3-oxo-

 $4-aza-5\alpha-androst-1-ene-17\beta-carboxamide;$

N-[1,1,1,3,3,3-hexafluoro-2-(p-chlorophenyl)prop-2-yl]-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide;

N-[1,1,1,3,3,3-hexafluoro-2-(p-trifluoromethyl)phenyl)prop-2-

yl]-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide;

N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androst-

20 1-ene-17β-carboxamide:

N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -

androstane-17 β -carboxamide:

N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-

 5α -androst-1-ene-17 β -carboxamide;

N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-

 5α -androstane-17 β -carboxamide; and

N-(2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide.

30 Analogously, starting from the corresponding 17β -

cyanosteroids and triflates, the following compounds may be obtained:

- 17β -N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)carbamoyl-androsta-4,6-diene-3-carboxylate;
- 5 17β -N-(2-methyl-2-propyl)carbamoyl-androsta-4,6-diene-3-carboxylate;
 - 17β -N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)carbamoyl-1,3,5(10)-estratriene-3-carboxylate;
 - 17β -N-(2-methyl-2-propyl)carbamoyl-1,3,5(10)-estratriene-3-
- 10 carboxylate;
 - N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-amino-3-oxoandrost-4-ene-17 β -carboxamide;
 - N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-amino-3-oxoandrosta-4,6-diene-17 β -carboxamide;
- 15 N-(2-methyl-2-propyl)-4-amino-3-oxoandrost-4-ene-17 β -carboxamide;
 - N-(2-methyl-2-propyl)-4-amino-3-oxoandrosta-4,6-diene-17 β -carboxamide;
 - N-(diphenylmethyl)-3-oxo-6-aza-androst-4-ene-17β-carboxamide;
- N-[bis-(p-fluorophenyl)methyl]-3-oxo-6-aza-androst-4-ene-17 β -carboxamide;
 - N-[bis-(p-chlorophenyl)methyl]-3-oxo-6-aza-androst-4-ene-17 β -carboxamide;
 - N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-6-aza-
- 25 androst-4-ene-17 β -carboxamide; and
 - N- $(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-hydroxyestra-1,3,5(10)-triene-17<math>\beta$ -carboxamide.

EXAMPLE 4

N-[1,1,1,3,3,3-Hexafluoro-2-phenylprop-2-yl]-3-oxo-4-azaandrost-5-ene-17 β -carboxamide

[compound (I) wherein the moiety AB has formula (IX), wherein $R_4=H$, $R_7=H$, $R_{19}=Me$ and the C_1-C_2 is a single bond, C_5-C_6 is a double bond, R_5 is not present, $R_{18}=Me$, $R_{23}=Ph$].

To a stirred mixture of 17β -cyano-4-azaandrost-5-en-3-one 10 (2.98)1,1,1,3,3,3-hexafluoro-2-phenyl-2-propyl g) and trifluoromethanesulfonate (7.23 g) trifluoroacetic acid (3.7 mL) is added at room temperature, under nitrogen atmosphere. The reaction mixture is heated to 60°C for 5 h. cooling to about 0°C, the reaction mixture is diluted with 15 methylene chloride (15 mL), a 35% NaOH solution (5mL) is added dropwise at 4°C followed by water (21 mL) and extracted with methylene chloride (2 x 15 mL). The combined organic extracts are washed with water until neutral, dried over sodium sulfate and the solvent is evaporated at reduced pressure. The crude solid so obtained is purified by flash 20 chromatography on silica gel (eluant: ethyl acetate/nhexane/methanol 75:20:5) to yield 912 mg of the title compound.

NMR (CDCl₃) δ : 0.76 (s, 3H, Me(18)), 1.13 (s, 3H, Me(19)), 2.34 (t, 1H, H(17 α)), 2.46-2.52 (m, 2H, CH₂(2)), 4.82 (m, 1H, H(6)), 5.82 (s, 1H, NH(21)), 7.38 (s,1H,NH(4)), 7.35-7.55 (m, 5H, Ph).

CLAIMS

Process for preparing a compound of formula:

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

5 wherein:

15

the symbols --- are, each independently, single or double bonds;

Z is a single bond, or a straight or branched C₁-C₅ alkylene;

the moiety represents the A and B rings of a 10 steroid;

 R_{18} is hydrogen or C_1-C_4 alkyl;

 R_{22} , R_{23} , and R_{24} are, each independently, selected from: hydrogen; optionally substituted C_1 - C_{10} alkyl, C_5 - C_7 cycloalkyl, C_6 - C_{10} alkylcycloalkyl or cycloalkylalkyl, C_6 - C_{10} aryl, C_7 - C_{14} arylalkyl or alkylaryl, heterocyclyl, heteroaryl, heterocyclylalkyl, and heteroarylalkyl;

said process comprising reacting a compound of formula:

AB

wherein the symbols $\underline{---}$, Z, R_{18} , and the moiety

are defined as above;

with a compound of formula:

$$Y-O = R_{22} R_{23}$$
 (III)

wherein R_{22} , R_{23} , and R_{24} are defined as above, and Y is hydrogen or a group such that -O-Y is an activated leaving group.

2. The process according to claim 1, wherein the moiety

is selected from:

10 1)

$$R_{2}$$
 (VI)

wherein: R_3 is hydrogen or $C_1 - C_4$ alkyl; and R_2 is hydrogen or $-OR_2$, wherein R_2 is hydrogen or $C_1 - C_4$ alkyl;

2)

$$\begin{array}{c}
R_1 \\
R_{19} \\
R_6
\end{array}$$
(VII)

15

wherein: the symbols $\frac{---}{--}$ are, each independently, single or double bonds; R_1 , R_6 , R_7 , and R_{19} are, each independently, hydrogen or C_1 - C_4 alkyl;

3)

$$R_{19}$$
 (VIII)

20

wherein: the symbol $\frac{--}{-}$ is a single or a double bond; R_7 is hydrogen or C_1 - C_4 alkyl; and R_{19} is hydrogen or C_1 - C_4 alkyl;

4)

$$0 = \frac{R_{19}}{R_{4}}$$

$$R_{7}$$

$$R_{19}$$

$$R_{7}$$

$$R_{19}$$

$$R_{7}$$

wherein: the symbols --- are, each independently, single or double bonds; R_4 is hydrogen, C_1-C_4 alkyl, C_6-C_{10} aryl, C_7-C_{10} arylalkyl, acetyl, benzoyl, or tosyl; R_7 is hydrogen or C_1-C_4 alkyl; R_{19} is hydrogen or C_1-C_4 alkyl; R_{19} is hydrogen or C_1-C_4 alkyl;

$$0 \xrightarrow{R_{19}} R_{7} \qquad (X$$

wherein: the symbol _--- is a single or a double bond; R₄ is hydrogen, C₁-C₄ alkyl, C₆-C₁₀ aryl, C₇-C₁₀ arylalkyl, acetyl, benzoyl, or tosyl; R₇ is hydrogen or C₁-C₄ alkyl; R₁₉ is hydrogen or C₁-C₄ alkyl;

6)

HO
$$R_{19}$$
 R_{7}

wherein: the symbols $\frac{--}{-}$ are, each independently, single or double bonds; R_{19} is hydrogen, C_1 - C_4 alkyl, or it is absent when linked to a double-bonded carbon atom; R_7 is hydrogen or C_1 - C_4 alkyl;

7)

wherein: the symbols _--- are, each independently, single or double bonds; R₇ is hydrogen or C₁-C₄ alkyl; C₁₉ is hydrogen or C₁-C₄ alkyl; R₁₃ and R₁₄ are, each independently, hydrogen, C₁-C₄ alkyl, C₆-C₁₀ aryl, C₇-C₁₀ arylalkyl, acetyl, benzoyl, tosyl or, taken together, phthalyl.

- 3. The process according to claim 1, wherein one of R_{22} , R_{23} and R_{24} is an optionally substituted C_6 - C_{10} aryl group, and the other two are C_1 - C_4 alkyl groups or C_1 - C_3 perfluoroalkyl groups.
- 4. The process according to claim 1, wherein the compound of formula (I) is selected from:

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androst-1-ene-17 β -carboxamide;

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androstane-17 β -carboxamide;

N- $(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-5<math>\alpha$ -androst-1-ene-17 β -carboxamide;

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-5 α -androstane-17 β -carboxamide;

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5 α -

25 androst-16-ene-17 β -carboxamide;

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-5 α -androst-16-ene-17 β -carboxamide;

N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-oxo-androst-4-

```
ene-17β-carboxamide;
    N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-y1)-3\beta-hydroxy-
    androst-5-ene-17\beta-carboxamide;
    N-[1,1,1,3,3,3-hexafluoro-2-(p-methylphenyl)prop-2-yl]-3-oxo-
 5 4-aza-5\alpha-androst-1-ene-17\beta-carboxamide;
    N-[1,1,3,3,3] hexafluoro-2-(p-methylphenyl)prop-2-yl]-3-oxo-
    androst-4-ene-17\beta-carboxamide;
    N-[1,1,1,3,3,3-hexafluoro-2-(p-fluorophenyl)prop-2-yl]-3-oxo-
    4-aza-5\alpha-androst-1-ene-17\beta-carboxamide;
   N-[1,1,1,3,3,3-hexafluoro-2-(p-fluorophenyl)prop-2-yl]-3-oxo-
10
    androst-4-ene-17\beta-carboxamide;
    N-[1,1,1,3,3,3-hexafluoro-2-(p-chlorophenyl)prop-2-yl]-3-oxo-
    4-aza-5\alpha-androst-1-ene-17\beta-carboxamide;
    N-[1,1,1,3,3,3-hexafluoro-2-(p-chlorophenyl)prop-2-yl]-3-oxo-
15
    androst-4-ene-17\beta-carboxamide;
    N-[1,1,1,3,3,3-hexafluoro-2-(p-trifluoromethyl)phenyl) prop-
    2-y1]3-oxo-4-aza-5\alpha-androst-1-ene-17\beta-carboxamide;
    N-[1,1,1,3,3,3-hexafluoro-2-(p-trifluoromethylphenyl) prop-2-
    yl] 3-oxo-androst-4-ene-17\beta-carboxamide;
   N-(1,1,1-trifluoro-2-phenylprop-2-y1)-3-oxo-4-aza-5α-androst-
    1-ene-17\beta-carboxamide;
    N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5\alpha-
    androstane-17\beta-carboxamide;
    N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-meth 1-3-oxo-4-aza-
25
   5\alpha-androst-1-ene-17\beta-carboxamide;
    N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-
    5\alpha-androstane-17\beta-carboxamide;
    N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-4-aza-5\alpha-androst-
    16-ene-17\beta-carboxamide;
    N-(1,1,1-trifluoro-2-phenylprop-2-yl)-4-methyl-3-oxo-4-aza-
```

 5α -androst-16-ene-17 β -carboxamide: N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3-oxo-androst-4-ene- 17β -carboxamide: N-(1,1,1-trifluoro-2-phenylprop-2-yl)-3 β -hydroxy-androst-5ene-17 β -carboxamide; 5 N-(2-phenylprop-2-yl)-3-oxo-4-aza-5 α -androst-1-ene-17 β carboxamide; N-(2-phenylprop-2-yl)-3-oxo-androst-4-ene-17 β -carboxamide; 17β -N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)carbamoyl-10 androsta-4,6-diene-3-carboxylate; $17\beta-N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)$ carbamoyl-1,3,5(10)-estratriene-3-carboxylate; N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)]-3-oxo-6-azaand $rost-4-ene-17\beta$ -carboxamide; and N-(1,1,1,3,3,3-hexafluoro-2-phenylprop-2-yl)-3-hydroxyestra-15 1,3,5(10)-triene-17 β -carboxamide.

5. The process according to claim 1, wherein in formula (III) Y is selected from: alkylsulphonyl groups, optionally substituted by one or more fluorine atoms; and aryl-sulphonyl groups.

INTERNATIONAL SEARCH REPORT

Interr at Application No PCT/EP 97/01626

A. CLASS	SIFICATION OF SUBJECT MATTER C07J73/00 C07J41/00				
According	to International Patent Classification (IPC) or to both national	classification and IPC			
B. FIELD	S SEARCHED				
Minimum o	documentation searched (classification system followed by class	ification symbols)	· · · · · · · · · · · · · · · · · · ·		
IPC 6	C07J				
Documenta	tion searched other than minimum documentation to the extent	that such documents are included in the fields sea	arched		
Electronic	data base consulted during the international search (name of dat	a base and, where practical, search terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.		
х	WO 93 14107 A (SMITHKLINE BEEC July 1993 see example 7E	HAM CORP) 22	1-5		
X	US 4 348 327 A (NICKOLSON ROBE September 1982 see the whole document	RT ET AL) 7	1-5		
Furt	her documents are listed in the continuation of box C.	Patent family members are listed in	annex.		
* Special cal	tegories of cited documents:	"T" later dominant muldished after the fetter	shanal Glina deta		
"A" docum	ent defining the general state of the art which is not	or priority date and not in conflict with	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the		
conside	ered to be of particular relevance document but published on or after the international	invention			
filing c	late	"X" document of particular relevance; the cla cannot be considered novel or cannot be	umed invention considered to		
which :	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step when the docu-	ment is taken alone		
citation	or other special reason (as specified)	"Y" document of particular relevance; the cla cannot be considered to involve an inver	ntive step when the		
other n		document is combined with one or more ments, such combination being obvious			
later th	ent published prior to the international filing date but can the priority date claimed		in the art. *& document member of the same patent family		
	actual completion of the international search	Date of mailing of the international search	th report		
	5 June 1997	1 6. 07. 9	7		
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer			
	NI 2280 HV Ripswik Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,				
	Fax: (+31-70) 340-3016	Watchorn, P			

1

INTERNATIONAL SEARCH REPORT

...ormation on patent family members

Intern tal Application No PCT/EP 97/01626

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9314107 A	22-07-93	AP 361 A AU 3434793 A BG 98888 A BR 9305707 A CN 1077200 A EP 0621866 A FI 943213 A HU 67566 A JP 7503008 T NO 942531 A OA 9959 A SK 80194 A ZA 9300008 A	09-09-94 03-08-93 31-05-95 31-12-96 13-10-93 02-11-94 05-07-94 28-04-95 30-03-95 05-07-94 11-12-95 07-12-94 16-06-94
US 4348327 A	07-09-82	DE 3024008 A AT 4118 T CA 1173027 A EP 0042606 A JP 1022278 B JP 1535167 C JP 57062295 A	21-01-82 15-07-83 21-08-84 30-12-81 25-04-89 21-12-89 15-04-82