ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: TOÁN; Khối A và khối A1

Câu	Đáp án	Điểm
1	a. (1,0 điểm)	•
(2,0 điểm)	Khi $m=0$ ta có $y=-x^3+3x^2-1$. • Tập xác định: $D=\mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y'=-3x^2+6x$; $y'=0 \Leftrightarrow x=0$ hoặc $x=2$. Khoảng đồng biến: $(0; 2)$; các khoảng nghịch biến: $(-\infty; 0)$ và $(2; +\infty)$. - Cực trị: Hàm số đạt cực tiểu tại $x=0$, $y_{\rm CT}=-1$; đạt cực đại tại $x=2$, $y_{\rm CD}=3$. - Giới hạn: $\lim_{x\to -\infty} y=+\infty$; $\lim_{x\to +\infty} y=-\infty$.	0,25
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	• Đồ thị: y 3	0,25
	b. (1,0 điểm)	-
	Ta có $y' = -3x^2 + 6x + 3m$. Hàm số (1) nghịch biến trên khoảng $(0; +\infty)$ khi và chỉ khi $y' \le 0, \forall x > 0$	0,25
	$\Leftrightarrow m \le x^2 - 2x, \forall x > 0.$ $X \text{ \'et } f(x) = x^2 - 2x \text{ v\'et } x > 0. \text{ Ta c\'et } f'(x) = 2x - 2; f'(x) = 0 \Leftrightarrow x = 1.$	0,25
	Bảng biến thiên: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	f(x) 0 -1	

Câu	Đáp án	Điểm
2 (1,0 điểm)	Điều kiện: $\cos x \neq 0$. Phương trình đã cho tương đương với $1 + \frac{\sin x}{\cos x} = 2(\sin x + \cos x)$	0,25
	$\Leftrightarrow (\sin x + \cos x)(2\cos x - 1) = 0.$	0,25
	• $\sin x + \cos x = 0 \Leftrightarrow x = -\frac{\pi}{4} + k\pi \ (k \in \mathbb{Z}).$	0,25
	• $2\cos x - 1 = 0 \Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$	0,25
	Đối chiếu điều kiện ta được nghiệm: $x = -\frac{\pi}{4} + k\pi$ hoặc $x = \pm \frac{\pi}{3} + k2\pi$ $(k \in \mathbb{Z})$.	
3 (1,0 điểm)	$\begin{cases} \sqrt{x+1} + \sqrt[4]{x-1} - \sqrt{y^4 + 2} = y & (1) \\ x^2 + 2x(y-1) + y^2 - 6y + 1 = 0 & (2) \end{cases}$	0,25
	Điều kiện: $x \ge 1$. Từ (2) ta được $4y = (x + y - 1)^2$, suy ra $y \ge 0$.	
	Đặt $u = \sqrt[4]{x-1}$, suy ra $u \ge 0$. Phương trình (1) trở thành: $\sqrt{u^4 + 2 + u} = \sqrt{y^4 + 2 + y}$ (3). Xét $f(t) = \sqrt{t^4 + 2} + t$, với $t \ge 0$. Ta có $f'(t) = \frac{2t^3}{\sqrt{t^4 + 2}} + 1 > 0, \forall t \ge 0$.	0,25
	Do đó phương trình (3) tương đương với $y = u$, nghĩa là $x = y^4 + 1$.	
	Thay vào phương trình (2) ta được $y(y^7 + 2y^4 + y - 4) = 0$ (4). Hàm $g(y) = y^7 + 2y^4 + y - 4$ có $g'(y) = 7y^6 + 8y^3 + 1 > 0$ với mọi $y \ge 0$.	0,25
	Mà $g(1)=0$, nên (4) có hai nghiệm không âm là $y=0$ và $y=1$. Với $y=0$ ta được nghiệm $(x;y)=(1;0)$; với $y=1$ ta được nghiệm $(x;y)=(2;1)$. Vậy nghiệm $(x;y)$ của hệ đã cho là $(1;0)$ và $(2;1)$.	0,25
4 (1,0 điểm)	Đặt $u = \ln x$, $dv = \frac{x^2 - 1}{x^2} dx \Rightarrow du = \frac{dx}{x}$, $v = x + \frac{1}{x}$.	0,25
	Ta có $I = \left(x + \frac{1}{x}\right) \ln x \Big _{1}^{2} - \int_{1}^{2} \left(x + \frac{1}{x}\right) \frac{1}{x} dx$	0,25
	$= \left(x + \frac{1}{x}\right) \ln x \Big _{1}^{2} - \left(x - \frac{1}{x}\right) \Big _{1}^{2}$	0,25
	$=\frac{5}{2}\ln 2 - \frac{3}{2}$.	0,25
5 (1,0 điểm)	Gọi H là trung điểm của BC , suy ra $SH \perp BC$. Mà (SBC) vuông góc với (ABC) theo giao tuyến BC , nên $SH \perp (ABC)$.	0,25
	Ta có $BC = a$, suy ra $SH = \frac{a\sqrt{3}}{2}$; $AC = BC \sin 30^\circ = \frac{a}{2}$;	
	$AB = BC\cos 30^{\circ} = \frac{a\sqrt{3}}{2}.$	0,25
	Do đó $V_{S.ABC} = \frac{1}{6}SH.AB.AC = \frac{a^3}{16}$.	
	Tam giác ABC vuông tại A và H là trung điểm của BC nên $HA = HB$. Mà $SH \perp (ABC)$, suy ra $SA = SB = a$. Gọi I là trung điểm của AB , suy ra $SI \perp AB$.	0,25
	Do đó $SI = \sqrt{SB^2 - \frac{AB^2}{4}} = \frac{a\sqrt{13}}{4}$.	0,25
	Suy ra $d(C,(SAB)) = \frac{3V_{S.ABC}}{S_{\Delta SAB}} = \frac{6V_{S.ABC}}{SI.AB} = \frac{a\sqrt{39}}{13}.$	

Câu	Đáp án	Điểm
6 (1,0 điểm)	Đặt $x = \frac{a}{c}$, $y = \frac{b}{c}$. Ta được $x > 0$, $y > 0$. Điều kiện của bài toán trở thành $xy + x + y = 3$.	
(, ,	Khi đó $P = \frac{32x^3}{(y+3)^3} + \frac{32y^3}{(x+3)^3} - \sqrt{x^2 + y^2}$.	0.25
	Với mọi $u > 0$, $v > 0$ ta có $u^3 + v^3 = (u + v)^3 - 3uv(u + v) \ge (u + v)^3 - \frac{3}{4}(u + v)^3 = \frac{(u + v)^3}{4}$.	0,25
	Do đó $\frac{32x^3}{(y+3)^3} + \frac{32y^3}{(x+3)^3} \ge 8\left(\frac{x}{y+3} + \frac{y}{x+3}\right)^3 = 8\left(\frac{(x+y)^2 - 2xy + 3x + 3y}{xy + 3x + 3y + 9}\right)^3.$	
	Thay $xy = 3 - x - y$ vào biểu thức trên ta được $32x^3 \qquad 32y^3 \qquad ((x+y-1)(x+y+6))^3$	
	$\frac{32x^3}{(y+3)^3} + \frac{32y^3}{(x+3)^3} \ge 8\left(\frac{(x+y-1)(x+y+6)}{2(x+y+6)}\right)^3 = (x+y-1)^3. \text{ Do d\'o}$	0,25
	$P \ge (x+y-1)^3 - \sqrt{x^2 + y^2} = (x+y-1)^3 - \sqrt{(x+y)^2 - 2xy} = (x+y-1)^3 - \sqrt{(x+y)^2 + 2(x+y) - 6}.$	
	Đặt $t = x + y$. Suy ra $t > 0$ và $P \ge (t - 1)^3 - \sqrt{t^2 + 2t - 6}$.	
	Ta có $3 = x + y + xy \le (x + y) + \frac{(x + y)^2}{4} = t + \frac{t^2}{4}$ nên $(t - 2)(t + 6) \ge 0$. Do đó $t \ge 2$.	
	Xét $f(t) = (t-1)^3 - \sqrt{t^2 + 2t - 6}$, với $t \ge 2$. Ta có $f'(t) = 3(t-1)^2 - \frac{t+1}{\sqrt{t^2 + 2t - 6}}$.	0,25
	Với mọi $t \ge 2$ ta có $3(t-1)^2 \ge 3$ và $\frac{t+1}{\sqrt{t^2+2t-6}} = \sqrt{1+\frac{7}{(t+1)^2-7}} \le \sqrt{1+\frac{7}{2}} = \frac{3\sqrt{2}}{2}$, nên	
	$f'(t) \ge 3 - \frac{3\sqrt{2}}{2} > 0$. Suy ra $f(t) \ge f(2) = 1 - \sqrt{2}$. Do đó $P \ge 1 - \sqrt{2}$.	
	Khi $a = b = c$ thì $P = 1 - \sqrt{2}$. Do đó giá trị nhỏ nhất của P là $1 - \sqrt{2}$.	0,25
7.a (1,0 điểm)	Do $C \in d$ nên $C(t; -2t - 5)$. Gọi I là tâm của hình chữ nhật $ABCD$, suy ra I là trung điểm của AC . Do đó $I\left(\frac{t-4}{2}; \frac{-2t+3}{2}\right)$.	0,25
	Tam giác BDN vuông tại N nên IN = IB. Suy ra IN = IA. Do đó ta có phương trình $\left(5 - \frac{t-4}{2}\right)^2 + \left(-4 - \frac{-2t+3}{2}\right)^2 = \left(-4 - \frac{t-4}{2}\right)^2 + \left(8 - \frac{-2t+3}{2}\right)^2$ $\Leftrightarrow t = 1. \text{ Suy ra } C(1; -7).$	0,25
	Do M đối xứng với B qua C nên $CM = CB$. Mà $CB = AD$ và $CM//AD$ nên tứ giác $ACMD$ là hình bình hành. Suy ra $AC//DM$. Theo giả thiết, $BN \perp DM$, suy ra $BN \perp AC$ và $CB = CN$. Vậy B là điểm đối xứng của N qua AC .	0,25
	Đường thẳng AC có phương trình: $3x + y + 4 = 0$. Đường thẳng BN qua N và vuông góc với AC nên có phương trình $x - 3y - 17 = 0$. Do đó $B(3a + 17; a)$. Trung điểm của BN thuộc AC nên $3\left(\frac{3a + 17 + 5}{2}\right) + \frac{a - 4}{2} + 4 = 0 \Leftrightarrow a = -7$. Vậy $B(-4; -7)$.	0,25
8.a (1,0 điểm)	Δ có vécto chỉ phương là $\vec{u} = (-3; -2; 1)$.	0,25
, , , ,	(P) qua A và nhận \overrightarrow{u} làm vécto pháp tuyến, nên (P) có phương trình $-3(x-1)-2(y-7)+(z-3)=0 \Leftrightarrow 3x+2y-z-14=0$.	0,25
	$M \text{ thuộc } \Delta \text{ nên } M(6-3t;-1-2t;-2+t).$	0,25
	$AM = 2\sqrt{30} \Leftrightarrow (6-3t-1)^2 + (-1-2t-7)^2 + (-2+t-3)^2 = 120 \Leftrightarrow 7t^2 - 4t - 3 = 0$	0.25
	$\Leftrightarrow t = 1 \text{ hoặc } t = -\frac{3}{7}$. Suy ra $M(3; -3; -1)$ hoặc $M(\frac{51}{7}; -\frac{1}{7}; -\frac{17}{7})$.	0,25

Câu	Đáp án	Điểm
9.a	Số phần tử của S là A_7^3	0,25
(1,0 <i>điếm</i>)	= 210.	0,25
	Số cách chọn một số chẵn từ S là $3.6.5 = 90$ (cách).	0,25
	Xác suất cần tính bằng $\frac{90}{210} = \frac{3}{7}$.	0,25
7.b (1,0 điểm)	Gọi M là giao điểm của tiếp tuyến tại A và B của (C) , H là giao điểm của AB và IM . Khi đó $M(0;t)$, với $t \ge 0$; H là trung điểm của AB . Suy ra $AH = \frac{AB}{2} = 2\sqrt{2}$.	0,25
	$\frac{1}{AH^{2}} = \frac{1}{AM^{2}} + \frac{1}{AI^{2}}, \text{ suy ra } AM = 2\sqrt{10}.$ Do đó $MH = \sqrt{AM^{2} - AH^{2}} = 4\sqrt{2}.$ Mà $MH = d(M, \Delta) = \frac{ t }{\sqrt{2}}, \text{ nên } t = 8. \text{ Do đó } M(0; 8).$	0,25
	Dường thẳng <i>IM</i> qua <i>M</i> và vuông góc với Δ nên có phương trình $x + y - 8 = 0$. Do đó tọa độ điểm <i>H</i> thỏa mãn hệ $\begin{cases} x - y = 0 \\ x + y - 8 = 0 \end{cases} \Rightarrow H(4;4).$	0,25
	Ta có $IH = \sqrt{IA^2 - AH^2} = \sqrt{2} = \frac{1}{4}HM$, nên $\overline{IH} = \frac{1}{4}\overline{HM}$. Do đó $I(5;3)$. Vậy đường tròn (C) có phương trình $(x-5)^2 + (y-3)^2 = 10$.	0,25
8.b	(S) có tâm $I(1;-2;1)$ và bán kính $R = \sqrt{14}$.	0,25
(1,0 điểm)	$d(I,(P)) = \frac{ 2.1+3(-2)+1.1-11 }{\sqrt{2^2+3^2+1^2}} = \frac{14}{\sqrt{14}} = R. \text{ Do d\'o}(P) \text{ ti\'ep x\'uc v\'oi}(S).$	0,25
	Gọi M là tiếp điểm của (P) và (S) . Suy ra M thuộc đường thẳng qua I và vuông góc với (P) . Do đó $M(1+2t;-2+3t;1+t)$.	0,25
	Do M thuộc (P) nên $2(1+2t)+3(-2+3t)+(1+t)-11=0 \Leftrightarrow t=1$. Vậy $M(3;1;2)$.	0,25
9.b (1,0 điểm)	$z = 1 + \sqrt{3}i = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$	0,25
	$=2\bigg(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\bigg).$	0,25
	Suy ra $z^5 = 2^5 \left(\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} \right) = 16(1 - \sqrt{3}i).$	0,25
	Do đó $w = 16(\sqrt{3} + 1) + 16(1 - \sqrt{3})i$. Vậy w có phần thực là $16(\sqrt{3} + 1)$ và phần ảo là $16(1 - \sqrt{3})$.	0,25

----- Hết -----