Benchmarking and Performance Evaluations

Todd Mytkowicz Microsoft Research

Let's pole for an upcoming election

I ask 3 of my co-workers who they are voting for.

Let's pole for an upcoming election

I ask 3 of my co-workers who they are voting for.

- My approach does not deal with
 - Variability
 - Bias

Issues with my approach

Variability

source: http://www.pollster.com

Variance in Obama's Lead Among Daily Tracking Polls

My approach is not reproducible

Issues with my approach(II)

Bias

My approach is not generalizable

Take Home Message

- Variability and Bias are two different things
 - Difference between reproducible and generalizable!

Take Home Message

- Variability and Bias are two different things
 - Difference between reproducible and generalizable!

Do we have to worry about Variability and Bias when we benchmark?

Let's evaluate the speedup of my whizbang idea

What do we do about Variability?

Let's evaluate the speedup of my whizbang idea

What do we do about Variability?

Let's evaluate the speedup of my whizbang idea

What do we do about Variability?

- Statistics to the rescue
 - mean
 - confidence interval

Intuition for T-Test

- 1-6 is uniformly likely (p = 1/6)
- Throw die 10 times: calculate mean

Intuition for T-Test

- 1-6 is uniformly likely (p = 1/6)
- Throw die 10 times: calculate mean

Trial	Mean of 10 throws
1	4.0
2	4.3
3	4.9
4	3.8
5	4.3
6	2.9
•••	•••

Intuition for T-Test

• 1-6 is uniformly likely (p = 1/6)

• Throw die 10 times: calculate mean

6	-
•	
•	
	0

Trial	Mean of 10 throws
1	4.0
2	4.3
3	4.9
4	3.8
5	4.3
6	2.9

Back to our Benchmark: Managing Variability

Back to our Benchmark: Managing Variability

> x=scan('file')
Read 20 items
> t.test(x)

One Sample t-test

data: x t = 49.277, df = 19, p-value < 2.2e-16 95 percent confidence interval:

1.146525 1.248241

sample estimates:

mean of x

1.197383


```
System = gcc -O2 perlbench
System + Innovation = gcc -O3 perlbench
```

```
System = gcc -O2 perlbench
System + Innovation = gcc -O3 perlbench
```

Madan:

speedup = 1.18 ± 0.0002

Conclusion: O3 is good

```
System = gcc -O2 perlbench
System + Innovation = gcc -O3 perlbench
```

Madan: Todd:

speedup = 1.18 ± 0.0002 speedup = 0.84 ± 0.0002

Conclusion: O3 is good Conclusion: O3 is bad

```
System = gcc -O2 perlbench
System + Innovation = gcc -O3 perlbench
```

Madan: Todd:

speedup = 1.18 ± 0.0002 speedup = 0.84 ± 0.0002

Conclusion: O3 is good Conclusion: O3 is bad

Why does this happen?

Differences in our experimental setup

Madan:

HOME=/home/madan

Todd:

HOME=/home/toddmytkowicz

Runtime of SPEC CPU 2006 perlbench depends on who runs it!

Bias from linking order

Bias from linking order

Order of .o files can lead to contradictory conclusions

Where exactly does Bias come from?

Other Sources of Bias

- JIT
- Garbage Collection
- CPU Affinity
- Domain specific (e.g. size of input data)

How do we manage these?

Other Sources of Bias

How do we manage these?

- JIT:
 - ngen to remove impact of JIT
 - "warmup" phase to JIT code before measurement
- Garbage Collection
 - Try different heap sizes (JVM)
 - "warmup" phase to build data structures
 - Ensure program is not "leaking" memory
- CPU Affinity
 - Try to bind threads to CPUs (SetProcessAffinityMask)
- Domain Specific:
 - Up to you!

R for the T-Test

- Where to download
 - http://cran.r-project.org

- Simple intro to get data into R
- Simple intro to do t.test

Some Conclusions

- Performance Evaluations are hard!
 - Variability and Bias are not easy to deal with

- Other experimental sciences go to great effort to work around variability and bias
 - We should too!