

Прямое и непрямое адаптивное управление

Адаптивное управление

Прямое и непрямое адаптивное управление

Адаптивное управление

Параметры настраиваются с целью сведения

ошибки управления к нулю

Параметры настраиваются с целью сведения

ошибки идентификации к нулю

Настраиваемый регулятор:

$$u = -\hat{\Theta}x - \lambda x + \lambda g \tag{1}$$

Алгоритм адаптации:

$$\dot{\hat{\Theta}} = -\gamma x \varepsilon \tag{2}$$

с $\varepsilon = x_M - x$ и эталонной моделью

Постановка задачи:

Объект:

$$\dot{x} = \theta x + u,\tag{4}$$

где θ – неизвестный параметр.

Цель: синтезировать управление u, гарантирующее равенство

$$\lim_{t \to \infty} \left(x_M - x \right) = 0,\tag{5}$$

где x_{M} — выход эталонной модели

$$\dot{x}_M = -\lambda x_M + \lambda g,\tag{6}$$

g — кусочно-непрерывный ограниченный сигнал задания, $\lambda > 0$ — параметр, отвечающий за быстродействие.

Решение:

1. Пусть параметр θ известен.

Рассчитаем производную от сигнала ошибки $\varepsilon = x_M - x$ с учетом эталонной модели и модели объекта:

$$\dot{\varepsilon} = \dot{x}_M - \dot{x} = (-\lambda x_M + \lambda g) - (\theta x + u)$$

Пусть
$$\dot{\varepsilon} = -\lambda \varepsilon = -\lambda x_M + \lambda x \implies \varepsilon(t) = \exp(-\lambda t) \varepsilon(0)$$
. Тогда

$$(-\lambda x_M + \lambda g) - (\theta x + u) = -\lambda x_M + \lambda x$$

$$u = -\theta x - \lambda x + \lambda g$$

Решение:

2. Пусть параметр θ неизвестен. Поэтому закон управления

$$u = -\theta x - \lambda x + \lambda g$$

физически нереализуем. Заменим θ на функцию $\hat{\theta}(t)$:

$$u = -\hat{\Theta}x - \lambda x + \lambda g \tag{7}$$

Решение:

2. Пусть параметр θ неизвестен. Поэтому закон управления

$$u = -\theta x - \lambda x + \lambda g$$

физически нереализуем. Заменим θ на функцию $\hat{\theta}(t)$:

Решение:

Утверждение: объект $\dot{x} = \theta x + u$ может быть представлен в следующей параметризованной форме:

$$x = (k + \theta)\xi_{1} + \xi_{2},$$

$$\dot{\xi}_{1} = -k\xi_{1} + x,$$

$$\dot{\xi}_{2} = -k\xi_{2} + u,$$
(8)

где k > 0 — некоторая константа.

Решение:

Утверждение: объект $\dot{x} = \theta x + u$ может быть представлен в следующей параметризованной форме:

$$x = (k + \theta)\xi_{1} + \xi_{2},$$

$$\dot{\xi}_{1} = -k\xi_{1} + x,$$

$$\dot{\xi}_{2} = -k\xi_{2} + u,$$
(8)

где k > 0 — некоторая константа.

Решение:

Утверждение: объект $\dot{x} = \theta x + u$ может быть представлен в следующей параметризованной форме:

$$x = (k + \theta)\xi_{1} + \xi_{2},$$

$$\dot{\xi}_{1} = -k\xi_{1} + x,$$

$$\dot{\xi}_{2} = -k\xi_{2} + u,$$
(8)

где k > 0 — некоторая константа.

Доказательство: вычислим производную от $x = (k + \theta)\xi_1 + \xi_2$:

$$\dot{x} = (k + \theta)\dot{\xi}_1 + \dot{\xi}_2$$

Решение:

Утверждение: объект $\dot{x} = \theta x + u$ может быть представлен в следующей параметризованной форме:

$$x = (k + \theta)\xi_{1} + \xi_{2},$$

$$\dot{\xi}_{1} = -k\xi_{1} + x,$$

$$\dot{\xi}_{2} = -k\xi_{2} + u,$$
(8)

где k > 0 — некоторая константа.

Доказательство: вычислим производную от $x = (k + \theta)\xi_1 + \xi_2$:

$$\dot{x} = (k+\theta)\dot{\xi}_{1} + \dot{\xi}_{2}$$

$$\dot{x} = (k+\theta)(-k\xi_{1} + x) + (-k\xi_{2} + u)$$

$$\dot{x} = -k^{2}\xi_{1} + kx - k\theta\xi_{1} + \theta x - k\xi_{2} + u$$

Решение:

Утверждение: объект $\dot{x} = \theta x + u$ может быть представлен в следующей параметризованной форме:

$$x = (k + \theta)\xi_{1} + \xi_{2},$$

$$\dot{\xi}_{1} = -k\xi_{1} + x,$$

$$\dot{\xi}_{2} = -k\xi_{2} + u,$$
(8)

где k > 0 — некоторая константа.

Доказательство: вычислим производную от $x = (k + \theta)\xi_1 + \xi_2$:

$$\dot{x} = (k+\theta)\dot{\xi}_1 + \dot{\xi}_2$$

$$\dot{x} = (k+\theta)(-k\xi_1 + x) + (-k\xi_2 + u)$$

$$\dot{x} = -k^2\xi_1 + kx - k\theta\xi_1 + \theta x - k\xi_2 + u$$

$$\dot{x} = -kx + kx + \dot{x} \qquad \Rightarrow \quad 0 = 0$$

Решение:

Введем в рассмотрение ошибку идентификации $e = x - \hat{x}$, где \hat{x} – выход наблюдателя

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2,
\dot{\xi}_1 = -k\xi_1 + x,
\dot{\xi}_2 = -k\xi_2 + u,$$
(9)

где k > 0 — константа.

Решение:

Введем в рассмотрение ошибку идентификации $e = x - \hat{x}$, где \hat{x} – выход наблюдателя

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2,
\dot{\xi}_1 = -k\xi_1 + x,
\dot{\xi}_2 = -k\xi_2 + u,$$
(9)

где k > 0 — константа.

Вычислим ее производную в силу уравнения объекта $\dot{x} = \theta x + u$:

$$\dot{e} = \dot{x} - \dot{\hat{x}} = \theta x + u - (k + \hat{\theta})\dot{\xi}_1 - \dot{\xi}_2$$

Решение:

Введем в рассмотрение ошибку идентификации $e = x - \hat{x}$, где \hat{x} – выход наблюдателя

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2,
\dot{\xi}_1 = -k\xi_1 + x,
\dot{\xi}_2 = -k\xi_2 + u,$$
(9)

где k > 0 — константа.

Вычислим ее производную в силу уравнения объекта $\dot{x} = \theta x + u$:

$$\dot{e} = \dot{x} - \dot{\hat{x}} = \theta x + u - (k + \hat{\theta})\dot{\xi}_1 - \dot{\xi}_2$$

$$\dot{e} = \theta x + u - (k + \hat{\theta})(-k\xi_1 + x) - (-k\xi_2 + u)$$

Решение:

Введем в рассмотрение ошибку идентификации $e = x - \hat{x}$, где \hat{x} – выход наблюдателя

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2,
\dot{\xi}_1 = -k\xi_1 + x,
\dot{\xi}_2 = -k\xi_2 + u,$$
(9)

где k > 0 — константа.

Вычислим ее производную в силу уравнения объекта $\dot{x} = \theta x + u$:

$$\dot{e} = \dot{x} - \dot{\hat{x}} = \theta x + u - (k + \hat{\theta})\dot{\xi}_{1} - \dot{\xi}_{2}$$

$$\dot{e} = \theta x + u - (k + \hat{\theta})(-k\xi_{1} + x) - (-k\xi_{2} + u)$$

$$\dot{e} = \tilde{\theta}x + k^{2}\xi_{1} - kx + k\hat{\theta}\xi_{1} + k\xi_{2}$$

Решение:

Введем в рассмотрение ошибку идентификации $e = x - \hat{x}$, где \hat{x} – выход наблюдателя

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2,
\dot{\xi}_1 = -k\xi_1 + x,
\dot{\xi}_2 = -k\xi_2 + u,$$
(9)

где k > 0 — константа.

Вычислим ее производную в силу уравнения объекта $\dot{x} = \theta x + u$

$$\dot{e} = \dot{x} - \dot{\hat{x}} = \theta x + u - (k + \hat{\theta}) \dot{\xi}_1 - \dot{\xi}_2$$

$$\dot{e} = \theta x + u - (k + \hat{\theta}) (-k\xi_1 + x) - (-k\xi_2 + u)$$

$$\dot{e} = \tilde{\theta} x + k^2 \xi_1 - kx + k \hat{\theta} \xi_1 - \hat{\theta} x + k \xi_2$$

Модель ошибки идентификации

$$\dot{e} = -ke + \tilde{\theta}x \tag{10}$$

Решение:

3. Динамический блок, генерирующий функцию $\hat{\theta}(t)$:

$$\dot{\hat{\theta}} = \Omega(t) \tag{11}$$

где $\Omega(t)$ – неизвестная, но физически реализуемая функция.

Принимая во внимание, что $\tilde{\theta} = \theta - \hat{\theta}$ и

$$\dot{\tilde{\Theta}} = -\dot{\hat{\Theta}},$$

получаем

Модель параметрической ошибки

$$\dot{\tilde{\theta}} = -\Omega(t) \tag{12}$$

Решение:

4. Модели

Модель ошибки идентификации

$$\dot{e} = -ke + \tilde{\Theta}x \tag{13}$$

Модель параметрической ошибки

$$\dot{\tilde{\theta}} = -\Omega(t) \tag{14}$$

Выберем функцию Ляпунова

$$V(e,\tilde{\theta}) = \frac{1}{2}e^2 + \frac{1}{2\gamma}\tilde{\theta}^2, \qquad \gamma > 0$$
 (15)

и вычислим ее производную в силу (18) и (20):

$$\dot{V}(e,\tilde{\theta}) = e\dot{e} + \frac{1}{\gamma}\tilde{\theta}\dot{\tilde{\theta}} = -\lambda e^2 + \tilde{\theta}xe - \frac{1}{\gamma}\tilde{\theta}\Omega(t)$$

Решение:

4. Модели

Модель ошибки идентификации

$$\dot{e} = -ke + \tilde{\Theta}x \tag{13}$$

Модель параметрической ошибки

$$\dot{\tilde{\theta}} = -\Omega(t) \tag{14}$$

Выберем функцию Ляпунова

$$V(e,\tilde{\theta}) = \frac{1}{2}e^2 + \frac{1}{2\gamma}\tilde{\theta}^2, \qquad \gamma > 0$$
 (15)

и вычислим ее производную в силу (18) и (20):

$$\dot{V}(e,\tilde{\theta}) = e\dot{e} + \frac{1}{\gamma}\tilde{\theta}\dot{\tilde{\theta}} = -\lambda e^2 + \tilde{\theta}xe - \frac{1}{\gamma}\tilde{\theta}\Omega(t)$$

Если $\Omega(t) = \gamma x e$, тогда $\dot{V}(e, \tilde{\theta}) = -\lambda e^2 < 0$.

Непрямое адаптивное управление Заключение

Настраиваемый регулятор:

$$u = -\hat{\theta}x - \lambda x + \lambda g \tag{7}$$

Алгоритм адаптации:

$$\dot{\hat{\theta}} = \gamma x e \tag{15}$$

$$c e = x - \hat{x}$$
.

Настраиваемая модель объекта:

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2$$

Фильтры:
$$\dot{\xi}_1 = -k\xi_1 + x,$$
 (9) $\dot{\xi}_2 = -k\xi_2 + u$

Непрямое адаптивное управление Заключение

Заключение

Свойства в замкнутой системе:

- 1. Все сигналы в системе ограничены;
- 2. Ошибка управления $\varepsilon = x_M x$ стремится к нулю асимптотически;
- 3. Ошибка идентификации $e = x \hat{x}$ стремится к нулю асимптотически;
- 4. Параметрическая ошибка $\tilde{\theta} = \theta \hat{\theta}$ стремится к нулю при обеспечении условия неисчезающего возбуждения для x.
- 5. Если $\tilde{\theta}(t)$ стремится к нулю, то существует оптимальное значение γ , при котором скорость сходимости максимальна.

Пример: Классический закон стабилизации неустойчивого объекта

$$\dot{x} = 5x + u$$

$$u = -6x$$

k = 3

Пример: Адаптивная стабилизация объекта $\dot{x} = 5x + u$

$$u = -6x - \hat{\theta}x,$$

$$\hat{\theta} = 0.8xe, \qquad e = x - \hat{x},$$

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2, \qquad \dot{\xi}_1 = -k\xi_1 + x, \qquad \dot{\xi}_2 = -k\xi_2 + u$$

Пример: Адаптивное слежение для объекта $\dot{x} = 5x + u$

$$u = -6x - \hat{\theta}x + 6g,$$

$$\dot{\hat{\theta}} = 0.8xe, \qquad e = x - \hat{x},$$

$$\hat{x} = (k + \hat{\theta})\xi_1 + \xi_2, \quad \dot{\xi}_1 = -k\xi_1 + x, \quad \dot{\xi}_2 = -k\xi_2 + u$$

