

REGRESI LINIER

Mulia Sulistiyono, M.Kom

muliasulistiyono@amikom.ac.id

Bahan Bacaan

- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J., 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, pp.2825-2830.
- Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F. and Mueller, A., 2015. Scikit-learn: Machine learning without learning the machinery. *GetMobile: Mobile Computing and Communications*, 19(1), pp.29-33.
- https://scikit-learn.org/stable/index.html

Pengertian Regresi

x : variabel bebas

y : variabel tak bebas

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	COZEMISSIONS	
0	2.0	4	8.5	196	
1	2.4	4	9.6	221	ı
2	1.5	4	5.9	136	1
3	3.5	6	11.1	255	[]
4	3.5	6	10.6	244	Regresi adalah proses
5	3.5	6	10.0	230	Memprediksi nilai kontinu
6	3,5	6	10,1	232	4
7	3.7	6	11,1	255	V
B	3.7	6	11.6	267	•
9	2.4	4	9.2	7	

Model Regresi

Tipe Model Regresi

Regresi Sederhana:

- Regresi sederhana linier
- Regresi sederhana non-linier
- Contoh: memprediksi co2emission vs EngineSize dari semua mobil.

Regresi Variabel Jamak:

- Regresi variabel jamak linier
- Regreasi variabel jamak non-linier
- Contoh: meprediksi co2emission vs EngineSize dan Cylinders dari semua mobil.

Apa itu telaah data (data understanding)?

- Dilakukan setelah problem bisnis terdefinisikan sebagai hasil tahapan business understanding.
- Tujuan: mendapatkan gambaran utuh atas data.
- Dilanjutkan ke persiapan data (data preparation), jika pemahaman awal data cukup atau kembali ke business understanding jika definisi permasalahan bisnis harus direvisi.

Aplikasi Regresi

- Prakiraan penjualan produk
- Analisis kepuasan
- Estimasi harga
- Pendapatan pekerjaan
- dst.

Algoritma Regresi

- Linier Regression
- Polynomial Regression
- Support Vector Regression
- Decision Tree Regression
- Random Forest Regression
- LASSO Regression
- ANN Regression
- K-NN Regression
- dst.

Regresi Linier Sederhana

Regresi Linier Untuk Memprediksi Nilai Kontinu

x : variabel bebas y : variabel tak bebas

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	COZEMISSIONS)	
0	2.0	4	8.5	196		
1	2.4	4	9.6	221	١	
2	1.5	4	5.9	136	\	
3	3.5	6	11.1	255	二八	
4	3,5	6	10.5	244	}	Nilai kontinyu / numerik
5	3.5	6	10.0	230		
6	3.5	6	10.1	232	5/	
7	3.7	6	11.1	255		
8	3.7	6	11.6	267	'	
9	2.4	4	9.2	?	D	

Topologi Regresi Linier

Regresi Linier Sederhana:

- Memprediksi co2emission vs EngineSize dari semua mobil
 - variabel bebas (x): EngineSize
 - variabel tak bebas (y): co2emission

Regresi Linier Variabel Jamak:

- Memprediksi co2emission vs EngineSize dan Cylinders dari semua mobil
 - variabel bebas (x): EngineSize, Cylinders, dst.
 - variabel tak bebas (y): co2emission

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	COZEMISSIONS
0	2.0	4	8,5	196
1	2.4	4	9.6	221
2	1.5	A	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10,1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	3

Cara Mencari Parameter Model Terbaik

x₁ = 5.4 independent variable y= 250 actual Co2 emission of x1

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $\hat{y} = 340$ the predicted emission of x1

Error = y-
$$\hat{y}$$

= 250 - 340
= -90

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Estimasi Parameter

ENG	INESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	(2.0	4	8.5	(196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4 X ₁ -	3.5	6	10.6	y 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\theta_1 = \frac{\sum_{i=1}^{8} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{8} (x_i - \overline{x})^2}$$

$$\widehat{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.34$$

$$\widehat{y} = (196 + 221 + 136 + \dots)/9 = 256$$

$$\theta_1 = \frac{(2.0 - 3.34)(196 - 256) + (2.4 - 3.34)(221 - 256) + \dots}{(2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}$$

$$\theta_1 = 39$$

$$\theta_0 = \widehat{y} - \theta_1 \overline{x}$$

$$\theta_0 = 256 - 39 * 3.34$$

$$\theta_0 = 125.74$$

$$\widehat{y} = 125.74 + 39x_1$$

Prediksi dengan Model Regresi Linier

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $Co2Emission = \theta_0 + \theta_1 EngineSize$

Co2Emission = 125 + 39 EngineSize

 $Co2Emission = 125 + 39 \times 2.4$

Co2Emission = 218.6

Kelebihan Regresi Linier

- Ringan
- Tidak perlu tuning parameter
- Mudah dipahami dan diinterpretasikan

Lab

 Jalankan file Jupyter Notebook untuk Regresi Linier Sederhana

Regresi Linier Variabel Jamak

Contoh Regresi Linier Variabel Jamak

Efektivitas variabel-variabel bebas terhadap prediksi

 Apakah kegelisahan, kehadiran dosen, dan jenis kelamin mempunyai efek pada kinerja ujian mahasiswa?

Prediksi dampak perubahan

 Seberapa besar kenaikan/penurunan tekanan darah terhadap kenaikan/penurunan BMI dari pasien?

Prediksi Nilai Kontinu pada Regresi Linier Variabel

X: Independent variable
Y: Dependent variable

X: Independent variable

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
)	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
1	3.5	6	10.6	244
,	3.5	6	10.0	230
3	3.5	6	10.1	232
,	3.7	6	11.1	255
3	3.7	6	11.6	267
9	2.4	4	9.2	3

$$Co2 Em = \theta_0 + \theta_1 Engine \ size + \theta_2 Cylinders + ...$$

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\hat{y} = \theta^T X$$

$$\theta^T = [\theta_0, \theta_1, \theta_2, \dots] \qquad X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

MSE Untuk Menunjukkan Error Pada Model

$$\hat{y} = \theta^T X$$
 $\hat{y}_i = 140$ the predicted emission of x_i
 $y_i = 196$ actual value of x_i
 $y_i - \hat{y}_i = 196 - 140 = 56$ residual error

$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$
--

EN	IGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

Estimasi Parameter Regresi Linier Variabel Jamak

Cara-cara mengestimasi parameter θ

Least Squares

- Operasi aljabar linier
- Perlu waktu yang lama untuk dataset yang besar (lebih dari 10000 baris)

Algoritma optimisasi

- Gradient Descent
- Metode yang sesuai apabila dataset sangat besar

Prediksi Menggunakan Regresi Linier Variabel Jamak

					$\hat{y} = \theta^T X$
	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	COZEMISSIONS	$\theta^T = [125, 6.2, 14,]$
0	2.0	4	8.5	196	B' = [125, 6.2, 14,]
1	2.4	4	9.6	221	$\hat{y} = 125 + 6.2x_1 + 14x_2 +$
2	1.5	4	5.9	136	2
3	3.5	6	11.1	255	Co2Em = 125 + 6.2EngSize + 14 Cylinders +
4	3.5	6	10.6	244	
5	3.5	6	10.0	230	$Co2Em = 125 + 6.2 \times 2.4 + 14 \times 4 +$
6	3.5	6	10.1	232	
7	3.7	6	11.1	255	Co2Em = 214.1
8	3.7	6	11.6	267	COZEM = Z14.1
9	2.4	4	9.2	?	

Lab

Jalankan file Jupyter Notebook untuk Regresi
 Linier Variabel Jamak

Terima Kasih