目录

1	整除理论	2
	1.1 整除	
	1.2 最大公因数	
	1.3 素数	
	1.4 整数部分	4
2	不定方程	4
	2.1 二元一次不定方程	
	2.2 多元一次不定方程	4
3	同余方程	4
4	原根与指标	4

1 整除理论 2

初等数论

Fulcrum4Math

1 整除理论

1.1 整除

定义 1.1.1 整除 (Divides)

设 $a,b:\mathbb{Z}, a\neq 0$, 定义 a 整除 b 当且仅当: $\exists n:\mathbb{Z}, b=an$, 记作 $a\mid b$. 定义 a 不整除 b 当且仅当: $\neg(a\mid b)$, 记作 $a\nmid b$.

性质 1.1.1.1 整除的偏序性 (Partial Order of Divisibility)

整除关系是偏序关系.

性质 1.1.1.2 整除的线性性 (Linearity of Divisibility)

整除关系是线性关系.

性质 1.1.1.3 整除的绝对值性质

设,则:.

定理 1.1.2 余数唯一性

设 $a, b: \mathbb{Z}, a > 0$, 则: $\exists ! r: \mathbb{Z}/a\mathbb{Z}, \exists ! n: \mathbb{Z}, b = an + r$.

定义 1.1.3 不完全商

设 $a, b: \mathbb{Z}, a \neq 0$, 定义 b 除以 a 的不完全商为:, 记作 b/a.

定义 1.1.4 余数 (Remainder)

设 $a, b: \mathbb{Z}, a > 0$, 定义 b 除以 a 的余数为: $b - a \cdot (b/a)$, 记作 b%a.

1.2 最大公因数

定义 1.2.1 最大公因数 (Greatest Common Divisor)

设 $a,b:\mathbb{Z}, a\neq 0, b\neq 0$, 定义 a 和 b 的最大公因数为: $\max\{d|d\mid a\wedge d\mid b\}$, 记作 $\gcd(a,b)$. 设 S 是 \mathbb{Z} 上的集合, $S\neq \{0\}$, 定义 S 的最大公因数为: $\max\{d|\forall n\in S, d\mid n\}$, 记作 $\gcd S$.

性质 1.2.1.1 最大公因数非负

性质 1.2.1.2

设 $a, b, c, q : \mathbb{Z}, q \neq 0, a = bq + c,$ 则: gcd(a, b) = gcd(b, c).

1 整除理论 3

性质 1.2.1.3

设 $a, b, n : \mathbb{Z}$, 则: gcd(an, bn) = n gcd(a, b).

定理 1.2.2 Euclid 辗转相除法

定理 1.2.3 Bezout 定理 (Bezout's Theorem)

定义 1.2.4 互素 (Coprime)

设 $a, b: \mathbb{Z}, a \neq 0 \lor b \neq 0$, 定义 a = b 互素当且仅当: gcd(a, b) = 1. 设 $S \in \mathbb{Z}$ 上的集合, $S \neq \{0\}$, 定义 $S \in \mathbb{Z}$ 互素当且仅当: gcd S = 1.

定义 1.2.5 最小公倍数 (Least Common Multiple)

定理 1.2.6 两数之积等于其最大公因数与最小公倍数之积

1.3 素数

定义 1.3.1 素数与合数 (Prime Number & Composite Number)

设 $p: \mathbb{Z}, p > 1$, 定义 p 是素数当且仅当: $\forall a, b \in \mathbb{Z}, p = ab \Rightarrow a = 1 \lor a = p$. 设 $n: \mathbb{Z}, n > 1$, 定义 n 是合数当且仅当: $\exists a, b \in \mathbb{Z}, n = ab \land a \neq 1 \land a \neq n$.

性质 1.3.1.1

性质 1.3.1.2

设,则:.

性质 1.3.1.3 Eratosthenes 筛法

定理 1.3.2 素数无穷性 (Infinitude of Primes)

.

定理 1.3.3 算术基本定理 (Fundamental Theorem of Arithmetic)

2 不定方程 4

1.4 整数部分

定义 1.4.1 整数部分 / Gauss 函数 (Gauss Function)

设 $x: \mathbb{R}$, 定义 x 的整数部分 / Gauss 函数为: $\max\{n|n\in\mathbb{Z}\land n\leq x\}$, 记作 $\lfloor x\rfloor$.

2 不定方程

2.1 二元一次不定方程

定理 2.1.1 二元一次不定方程整数解系

设 $a, b, c, x_0, y_0 : \mathbb{Z}, a \neq 0, b \neq 0, ax_0 + by_0 = c,$ 则:

$$\forall x, y : \mathbb{Z}, ax + by = c \implies \exists k : \mathbb{Z}, \begin{cases} x = x_0 + \frac{b}{\gcd(a, b)} k \\ y = y_0 - \frac{a}{\gcd(a, b)} k \end{cases}$$

定理 2.1.2 二元一次不定方程有解的充要条件

设 $a, b, c: \mathbb{Z}, a \neq 0, b \neq 0,$ 则:

$$\exists x, y : \mathbb{Z}, ax + by = c \iff \gcd(a, b) \mid c$$

定理 2.1.3 二元一次不定方程解的形状

2.2 多元一次不定方程

定理 2.2.1

- 3 同余方程
- 4 原根与指标