

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA CIENCIAS DE LA COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Tarea 05

FECHA DE ENTREGA LÍMITE: 04/05/2025

ALUMNO: Freire Ismael

TEMA

Método de la bisección

OBJETIVOS

- Implementar en código python el método de la bisección y comprobar su funcionamiento
- Resolver una ejercicios prácticos aplicando el método

DESARROLLO

1. Codificar el pseudocódigo dado en clase

```
# Codificar el método de la bisección con función signum
def signum(value):
  if value > 0:
     return 1
  elif value < 0:
     return -1
  else:
     return 0
def biseccion(func, a, b, tolerance, max_iter=1000):
  FA = func(a)
  while i <= max_iter:
     p = a + (b - a) / 2
     FP = func(p)
     if FP == 0 or (b - a) / 2 < tolerance:
        print("Procedimiento completado exitosamente. Solución aproximada p =", p)
     i += 1
     if signum(FA) * signum(FP) > 0: #Implementación de la función signum para manejar el signo
        FA = FP
     else:
        b = p
  print(f"El método fracasó despues de {max iter} iteraciones.")
  return None
```

Figura 1: Código método de la bisección

Prueba de código usando la función del primer ejercicio, literal a.

```
# Función de ejemplo: f(x) = x^3 - 7x^2 + 14x - 6
def func(x):
return x**3 - 7*x**2 + 14*x - 6
```

Figura 2: Función de ejemplo

Figura 3: Ejecución del código

2. Use el método de bisección para encontrar soluciones precisas dentro de $10^{-2}~{\rm para}$

$$x^3 - 7x^2 + 14x - 6 = 0$$

en cada intervalo.

a. [0; 1]

а	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-2)
0	1	0,5	-6	2	-0,625	0,5
0,5	1	0,75	-0,625	2	0,984375	0,25
0,5	0,75	0,625	-0,625	0,984375	0,259765625	0,125
0,5	0,625	0,5625	-0,625	0,259765625	-0,161865234	0,0625
0,5625	0,625	0,59375	-0,161865234	0,259765625	0,054046631	0,03125
0,5625	0,59375	0,578125	-0,161865234	0,054046631	-0,052623749	0,015625
0,578125	0,59375	0,5859375	-0,052623749	0,054046631	0,001031399	0,0078125

Figura 4: Soluciones intervalo [0,1]

а	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-2)
1	3,2	2,1	2	-0,112	1,791	1,1
2,1	3,2	2,65	1,791	-0,112	0,552125	0,55
2,65	3,2	2,925	0,552125	-0,112	0,085828125	0,275
2,925	3,2	3,0625	0,085828125	-0,112	-0,054443359	0,1375
2,925	3,0625	2,99375	0,085828125	-0,054443359	0,006327881	0,06875
2,99375	3,0625	3,028125	0,006327881	-0,054443359	-0,026520721	0,034375
2,99375	3,028125	3,0109375	0,006327881	-0,026520721	-0,010696934	0,0171875
2,99375	3,0109375	3,00234375	0,006327881	-0,010696934	-0,002332751	0,00859375

Figura 5: Soluciones intervalo [1, 3.2]

c. [3,2;4]

a	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-2)
3,2	4	3,6	-0,112	2	0,336	0,4
3,2	3,6	3,4	-0,112	0,336	-0,016	0,2
3,4	3,6	3,5	-0,016	0,336	0,125	0,1
3,4	3,5	3,45	-0,016	0,125	0,046125	0,05
3,4	3,45	3,425	-0,016	0,046125	0,013015625	0,025
3,4	3,425	3,4125	-0,016	0,013015625	-0,001998047	0,0125
3,4125	3,425	3,41875	-0,001998047	0,013015625	0,005381592	0,00625

Figura 6: Soluciones intervalo [3.2, 4]

3. Resuelva

a. Dibuje las gráficas para y = x y $y = \sin x$.

Figura 7: Gráfica 1

b. Use el método de bisección para encontrar soluciones precisas dentro de 10^{-5} para el primer valor positivo de x con $x=2\sin x$.

Primero se parte de la ecuación original:

$$x = 2\sin(x)$$

Se pasa a restar $2\sin(x)$ a ambos lados para igualar a cero, obteniendo:

$$f(x) = x - 2\sin(x) = 0$$

Luego, se evalúa la función hasta encontrar el primer positivo:

• Para x = 1.8:

$$f(1,8) = 1.8 - 2 \times 0.9738$$

= -0.1476 (negativo)

• Para x = 1.9:

$$f(1,9) = 1,9 - 2 \times 0,9463$$

= +0,0074 (positivo)

Entonces, por el **Teorema del Valor Intermedio**, al cumplirse que:

$$f(1.8) = -0.1476 < 0$$
 y $f(1.9) = +0.0074 > 0$

existe al menos una raíz de f en el intervalo [1,8, 1,9].

Por tanto, las soluciones en el intervalo son:

a	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-5)
1,8	1,9	1,85	-0,147695262	0,007399825	-0,072550406	0,05
1,85	1,9	1,875	-0,072550406	0,007399825	-0,033171563	0,025
1,875	1,9	1,8875	-0,033171563	0,007399825	-0,013034347	0,0125
1,8875	1,9	1,89375	-0,013034347	0,007399825	-0,002854304	0,00625
1,89375	1,9	1,896875	-0,002854304	0,007399825	0,002263509	0,003125
1,89375	1,896875	1,8953125	-0,002854304	0,002263509	-0,000297711	0,0015625
1,8953125	1,896875	1,89609375	-0,000297711	0,002263509	0,000982321	0,00078125
1,8953125	1,89609375	1,895703125	-0,000297711	0,000982321	0,00034216	0,000390625
1,8953125	1,895703125	1,895507813	-0,000297711	0,00034216	2,21883E-05	0,000195313
1,8953125	1,895507813	1,895410156	-0,000297711	2,21883E-05	-0,000137771	9,765625E-05
1,895410156	1,895507813	1,895458984	-0,000137771	2,21883E-05	-5,77934E-05	4,882813E-05
1,895458984	1,895507813	1,895483398	-5,77934E-05	2,21883E-05	-1,78031E-05	2,441406E-05
1,895483398	1,895507813	1,895495605	-1,78031E-05	2,21883E-05	2,19242E-06	1,220703E-05
1,895483398	1,895495605	1,895489502	-1,78031E-05	2,19242E-06	-7,8054E-06	6,103516E-06

Figura 8: Soluciones intervalo [1.8; 1.9]

4. Resuelva

a. Dibuje las gráficas para y = x y $y = \tan x$.

Figura 9: Gráfica 2

b. Use el método de bisección para para encontrar una aproximación dentro de 10^{-5} para el primer valor positivo de x con $x = \tan x$.

Primero se parte de la ecuación original:

$$x = \tan(x)$$

Se pasa a restar tan(x) a ambos lados para igualar a cero, obteniendo:

$$f(x) = x - \tan(x) = 0$$

Luego, se evalúa la función hasta encontrar el primer positivo:

• Para x = 1.5:

$$f(1,5) = 1,5 - \tan(1,5)$$

= -12,6014 (negativo)

• Para x = 1.9:

$$f(1,9) = 1,9 - \tan(1,9)$$

= +4,8270 (positivo)

Entonces, por el **Teorema del Valor Intermedio**, al cumplirse que:

$$f(1,5) = -12,6014 < 0$$
 y $f(1,9) = +4,8270 > 0$

existe al menos una raíz de f en el intervalo [1,5, 1,9].

Por tanto, las soluciones en el intervalo son:

а	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-5)
1,5	1,9	1,7	-12,60141995	4,827097515	9,396602139	0,2
1,5	1,7	1,6	-12,60141995	9,396602139	35,83253274	0,1
1,5	1,6	1,55	-12,60141995	35,83253274	-46,52848248	0,05
1,55	1,6	1,575	-46,52848248	35,83253274	239,4607872	0,025
1,55	1,575	1,5625	-46,52848248	239,4607872	-118,9700057	0,0125
1,5625	1,575	1,56875	-118,9700057	239,4607872	-487,1110673	0,00625
1,56875	1,575	1,571875	-487,1110673	239,4607872	928,6363533	0,003125
1,56875	1,571875	1,5703125	-487,1110673	928,6363533	-2065,284877	0,0015625
1,5703125	1,571875	1,57109375	-2065,284877	928,6363533	3363,783434	0,00078125
1,5703125	1,57109375	1,570703125	-2065,284877	3363,783434	-10727,83637	3,906250E-04
1,570703125	1,57109375	1,570898438	-10727,83637	3363,783434	9794,86334	1,953125E-04
1,570703125	1,570898438	1,570800781	-10727,83637	9794,86334	224495,9201	9,765625E-05
1,570703125	1,570800781	1,570751953	-10727,83637	224495,9201	-22534,316	4,882812E-05
1,570751953	1,570800781	1,570776367	-22534,316	224495,9201	-50099,61508	2,441406E-05
1,570776367	1,570800781	1,570788574	-50099,61508	224495,9201	-128987,8104	1,220703E-05
1,570788574	1,570800781	1,570794678	-128987,8104	224495,9201	-606404,3112	6,103516E-06

Figura 10: Soluciones intervalo [1.5; 1.9]

5. Resuelva

a. Dibuje las gráficas para:

$$y = x^2 - 1$$
 y $y = e^{1-x^2}$

Figura 11: Gráfica 3

b. Use el método de bisección para encontrar una aproximación dentro de 10^{-3} para un valor en [-2, 0] con

$$x^2 - 1 = e^{1 - x^2}$$

Primero se parte de la ecuación original:

$$x^2 - 1 = e^{1 - x^2}$$

Se pasa a restar e^{1-x^2} a ambos lados para igualar a cero, obteniendo:

$$f(x) = x^2 - 1 - e^{1 - x^2} = 0$$

Con ello, las soluciones en el intervalo son:

a	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-3)
-2	0	-1	2,950212932	-3,718281828	-1	1
-2	-1	-1,5	2,950212932	-1	0,963495203	0,5
-1,5	-1	-1,25	0,963495203	-1	-0,007282825	0,25
-1,5	-1,25	-1,375	0,963495203	-0,007282825	0,480225827	0,125
-1,375	-1,25	-1,3125	0,480225827	-0,007282825	0,237195214	0,0625
-1,3125	-1,25	-1,28125	0,237195214	-0,007282825	0,115152954	0,03125
-1,28125	-1,25	-1,265625	0,115152954	-0,007282825	0,053985615	0,015625
-1,265625	-1,25	-1,2578125	0,053985615	-0,007282825	0,023364161	0,0078125
-1,2578125	-1,25	-1,25390625	0,023364161	-0,007282825	0,008043873	0,00390625
-1,25390625	-1,25	-1,251953125	0,008043873	-0,007282825	0,000381327	1,953125E-03
-1,251953125	-1,25	-1,250976563	0,000381327	-0,007282825	-0,003450548	9,765625E-04

Figura 12: Soluciones intervalo [-2;0]

6. Sea

$$f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$$

¿ En qué cero de f converge el método de bisección cuando se aplica en los siguientes intervalos?

a.
$$[-1,5,2,5]$$

а	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-3)
-1,5	2,5	0,5	-10,25390625	232,5585938	0,52734375	2
-1,5	0,5	-0,5	-10,25390625	0,52734375	-1,58203125	1
-0,5	0,5	0	-1,58203125	0,52734375	0	0,5

Figura 13: Soluciones intervalo [-1.5; 2.5]

f converge en p=0

b.
$$[-0.5, 2.4]$$

a	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-3)
-0,50000000	2,40000000	0,95000000	-1,58203125	133,98798336	0,00139867	1,45000000
-0,50000000	0,95000000	0,22500000	-1,58203125	0,00139867	0,62070919	0,72500000
-0,50000000	0,22500000	-0,13750000	-1,58203125	0,62070919	-0,59934588	0,36250000
-0,13750000	0,22500000	0,04375000	-0,59934588	0,62070919	0,16662398	0,18125000
-0,13750000	0,04375000	-0,04687500	-0,59934588	0,16662398	-0,19532006	0,09062500
-0,04687500	0,04375000	-0,00156250	-0,19532006	0,16662398	-0,00625973	0,04531250
-0,00156250	0,04375000	0,02109375	-0,00625973	0,16662398	0,08251255	0,02265625
-0,00156250	0,02109375	0,00976562	-0,00625973	0,08251255	0,03867273	0,01132813
-0,00156250	0,00976562	0,00410156	-0,00625973	0,03867273	0,01633834	0,00566406
-0,00156250	0,00410156	0,00126953	-0,00625973	0,01633834	0,00507166	0,00283203
-0,00156250	0,00126953	-0,00014648	-0,00625973	0,00507166	-0,00058602	0,00141602
-0,00014648	0,00126953	0,00056152	-0,00058602	0,00507166	0,00224483	0,00070801
-0,00014648	0,00056152	0,00020752	-0,00058602	0,00224483	0,00082991	0,00035400
-0,00014648	0,00020752	0,00003052	-0,00058602	0,00082991	0,00012207	0,00017700
-0,00014648	0,00003052	-0,00005798	-0,00058602	0,00012207	-0,00023195	0,00008850
-0,00005798	0,00003052	-0,00001373	-0,00023195	0,00012207	-0,00005493	0,00004425
-0,00001373	0,00003052	0,00000839	-0,00005493	0,00012207	0,00003357	0,00002213
-0,00001373	0,00000839	-0,00000267	-0,00005493	0,00003357	-0,00001068	0,00001106
-0,00000267	0,00000839	0,00000286	-0,00001068	0,00003357	0,00001144	0,00000553
-0,00000267	0,00000286	0,00000010	-0,00001068	0,00001144	0,00000038	0,00000277
-0,00000267	0,00000010	-0,00000129	-0,00001068	0,00000038	-0,00000515	0,00000138
-0,00000129	0,00000010	-0,00000060	-0,00000515	0,00000038	-0,00000238	0,00000069
-0,00000060	0,00000010	-0,00000025	-0,00000238	0,00000038	-0,00000100	0,00000035
-0,00000025	0,00000010	-0,00000008	-0,00000100	0,00000038	-0,00000031	0,0000017
-0,00000008	0,00000010	0,00000001	-0,00000031	0,00000038	0,00000004	0,00000009
-0,00000008	0,00000001	-0,00000003	-0,00000031	0,00000004	-0,00000014	0,00000004
-0,00000003	0,00000001	-0,00000001	-0,00000014	0,00000004	-0,00000005	0,00000002
-0,00000001	0,00000001	0,00000000	-0,00000005	0,00000004	-0,00000001	0,00000001

Figura 14: Soluciones intervalo $\left[\text{-}0.5;\,2.4\right]$

f converge en $p=0,\!000000000\simeq 0$ $\label{eq:c.p} \textbf{c.} \ [-0,\!5,\!3]$

a	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-3)
-0,50000000	3,00000000	1,25000000	-1,58203125	1920,00000000	-0,24101257	1,75000000
1,25000000	3,00000000	2,12500000	-0,24101257	1920,00000000	15,23528248	0,87500000
1,25000000	2,12500000	1,68750000	-0,24101257	15,23528248	-4,56395008	0,43750000
1,68750000	2,12500000	1,90625000	-4,56395008	15,23528248	-4,38855117	0,21875000
1,90625000	2,12500000	2,01562500	-4,38855117	15,23528248	1,20486317	0,10937500
1,90625000	2,01562500	1,96093750	-4,38855117	1,20486317	-2,36029172	0,05468750
1,96093750	2,01562500	1,98828125	-2,36029172	1,20486317	-0,80099442	0,02734375
1,98828125	2,01562500	2,00195313	-0,80099442	1,20486317	0,14184237	0,01367188
1,98828125	2,00195313	1,99511719	-0,80099442	0,14184237	-0,34404742	0,00683594
1,99511719	2,00195313	1,99853516	-0,34404742	0,14184237	-0,10478820	0,00341797
1,99853516	2,00195313	2,00024414	-0,10478820	0,14184237	0,01759709	0,00170898
1,99853516	2,00024414	1,99938965	-0,10478820	0,01759709	-0,04382698	0,00085449
1,99938965	2,00024414	1,99981689	-0,04382698	0,01759709	-0,01317294	0,00042725
1,99981689	2,00024414	2,00003052	-0,01317294	0,01759709	0,00219756	0,00021362
1,99981689	2,00003052	1,99992371	-0,01317294	0,00219756	-0,00549131	0,00010681
1,99992371	2,00003052	1,99997711	-0,00549131	0,00219756	-0,00164778	0,00005341
1,99997711	2,00003052	2,00000381	-0,00164778	0,00219756	0,00027466	0,00002670
1,99997711	2,00000381	1,99999046	-0,00164778	0,00027466	-0,00068662	0,00001335
1,99999046	2,00000381	1,99999714	-0,00068662	0,00027466	-0,00020599	0,00000668
1,99999714	2,00000381	2,00000048	-0,00020599	0,00027466	0,00003433	0,00000334
1,99999714	2,00000048	1,99999881	-0,00020599	0,00003433	-0,00008583	0,00000167
1,99999881	2,00000048	1,99999964	-0,00008583	0,00003433	-0,00002575	0,00000083
1,99999964	2,00000048	2,00000006	-0,00002575	0,00003433	0,00000429	0,00000042
1,99999964	2,00000006	1,99999985	-0,00002575	0,00000429	-0,00001073	0,00000021
1,99999985	2,00000006	1,99999996	-0,00001073	0,00000429	-0,00000322	0,00000010
1,99999996	2,00000006	2,00000001	-0,00000322	0,00000429	0,00000054	0,00000005
1,99999996	2,00000001	1,99999998	-0,00000322	0,00000054	-0,00000134	0,00000003
1,99999998	2,00000001	1,99999999	-0,00000134	0,00000054	-0,00000040	0,00000001

Figura 15: Solución intervalo $\left[\text{-}0.5;\,3\right]$

f converge en $p=1{,}99999999 \simeq 2$

d. [-3, -0.5]

a	b	р	f(a)	f(b)	f(p)	error estimado < 10^(-3)
-3,00000000	-0,50000000	-1,75000000	3840,00000000	-1,58203125	-19,19242859	1,25000000
-3,00000000	-1,75000000	-2,37500000	3840,00000000	-19,19242859	283,20418507	0,62500000
-2,37500000	-1,75000000	-2,06250000	283,20418507	-19,19242859	16,98061902	0,31250000
-2,06250000	-1,75000000	-1,90625000	16,98061902	-19,19242859	-14,07362963	0,15625000
-2,06250000	-1,90625000	-1,98437500	16,98061902	-14,07362963	-3,18189109	0,07812500
-2,06250000	-1,98437500	-2,02343750	16,98061902	-3,18189109	5,52362233	0,03906250
-2,02343750	-1,98437500	-2,00390625	5,52362233	-3,18189109	0,85618334	0,01953125
-2,00390625	-1,98437500	-1,99414063	0,85618334	-3,18189109	-1,23806273	0,00976563
-2,00390625	-1,99414063	-1,99902344	0,85618334	-1,23806273	-0,21016617	0,00488281
-2,00390625	-1,99902344	-2,00146484	0,85618334	-0,21016617	0,31814820	0,00244141
-2,00146484	-1,99902344	-2,00024414	0,31814820	-0,21016617	0,05278267	0,00122070
-2,00024414	-1,99902344	-1,99963379	0,05278267	-0,21016617	-0,07899299	0,00061035
-2,00024414	-1,99963379	-1,99993896	0,05278267	-0,07899299	-0,01318058	0,00030518
-2,00024414	-1,99993896	-2,00009155	0,05278267	-0,01318058	0,01978218	0,00015259
-2,00009155	-1,99993896	-2,00001526	0,01978218	-0,01318058	0,00329609	0,00007629
-2,00001526	-1,99993896	-1,99997711	0,00329609	-0,01318058	-0,00494342	0,00003815
-2,00001526	-1,99997711	-1,99999619	0,00329609	-0,00494342	-0,00082396	0,00001907
-2,00001526	-1,99999619	-2,00000572	0,00329609	-0,00082396	0,00123599	0,00000954
-2,00000572	-1,99999619	-2,00000095	0,00123599	-0,00082396	0,00020599	0,00000477
-2,00000095	-1,99999619	-1,99999857	0,00020599	-0,00082396	-0,00030899	0,00000238
-2,00000095	-1,99999857	-1,99999976	0,00020599	-0,00030899	-0,00005150	0,00000119
-2,00000095	-1,99999976	-2,00000036	0,00020599	-0,00005150	0,00007725	0,00000060
-2,00000036	-1,99999976	-2,00000006	0,00007725	-0,00005150	0,00001287	0,00000030
-2,00000006	-1,99999976	-1,99999991	0,00001287	-0,00005150	-0,00001931	0,00000015
-2,00000006	-1,99999991	-1,99999999	0,00001287	-0,00001931	-0,00000322	0,0000007
-2,00000006	-1,99999999	-2,00000002	0,00001287	-0,00000322	0,00000483	0,0000004
-2,00000002	-1,99999999	-2,00000000	0,00000483	-0,00000322	0,00000080	0,00000002
-2,00000000	-1,99999999	-1,99999999	0,00000080	-0,00000322	-0,00000121	0,0000001

Figura 16: Solución intervalo $\left[\text{-3; -0.5}\right]$

f converge en $p=-2,\!000000000\simeq -2$