## Data Structures and Algorithm

#### Xiaoqing Zheng zhengxq@fudan.edu.cn



#### String matching problem

Pattern P occurs with shift s in text T (or, equivalently, that pattern P occurs beginning at position s+1 in text T) if  $T[s+1 \dots s+m] = P[1 \dots m]$  and  $0 \le s \le n-m$ . If P occurs with shift s in T, the we call s a valid shift. The string-matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a given text T.



#### Notation and terminology

```
finite alphabet. \Sigma = \{a, b, ..., z\}.
           set of all finite-length strings formed using
           characters from the alphabet \sum.
           zero-length empty string belongs to \Sigma^*.
           length of a string x.
|\mathcal{X}|
\chi y
           concatenation of two string x and y.
w \triangleright x w is a prefix of a string x, if x = wy for some
           string y \in \sum^*.
        w is a suffix of a string x, if x = yw for some
w \triangleleft x
           string y \in \sum^*.
          k-character prefix P[1 ... k] of the pattern P.
```

### Naive string-matching algorithm

#### NAIVE-STRING-MATCHER(T, P)

```
1. n \leftarrow length[T]
```

2. 
$$m \leftarrow length[P]$$

3. for 
$$s \leftarrow 0$$
 to  $n - m$ 

4. **do if** 
$$P[1 ... m] = T[s+1 ... s+m]$$

5. **then** print "Pattern occurs with shift" s

**Running time is** O((n-m+1)m)

## Idea of Rabin-Karp algorithm

Input characters and string can be represented by *graphical symbols* or *digits*.

Given a pattern  $P[1 \dots m]$ , let p denote its corresponding decimal value.

$$p = P[m] + 10(P[m-1]) + 10(P[m-2] + ... + 10(P[2] + 10P[1])...))$$

We also let  $t_s$  denote the decimal value of the length-m substring T[s+1...s+m], for s=0, 1, ..., n-m.

Then,  $t_s = p$  if and only if T[s + 1 ... s + m] = P[1 ... m].

#### Idea of Rabin-Karp algorithm

 $t_{s+1}$  can be computed from  $t_s$  in constant time, since,  $t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s+m+1].$ 

Constant is precomputed which can be done in time O(lgm)

For example, if m = 5 and  $t_s = 31415$ , then we remove the high-order digit T[s+1] = 3 and bring in the new low-order digit T[s+5+1] = 2 to obtain  $t_{s+1} = 10(31415 - 10000 \cdot 3) + 2 = 14152$ .

#### Improved Rabin-Karp algorithm

$$t_{s+1} = (10(t_s - T[s+1]h) + T[s+m+1]) \mod q.$$

- q is typically chosen as a prime such that 10q just fits within one computer word.
- $h \equiv 10^{m-1} \pmod{q}$ .

#### Improved Rabin-Karp algorithm



$$14152 \equiv 10 \cdot (31415 - 3 \cdot 10000) + 2 \pmod{13}$$
$$\equiv 10 \cdot (31415 - 3 \cdot 3) + 2 \pmod{13}$$
$$\equiv 8 \pmod{13}$$

### Improved Rabin-Karp algorithm



 $t_s \equiv p \pmod{q}$  does not imply that  $t_s = p$ .

### Rabin-Karp algorithm

```
RABIN-KARP-MATCHER(T, P, d, q)
1. n \leftarrow length[T]
2. m \leftarrow length[P]
                                                   Preprocessing
3. h \leftarrow d^{m-1} \mod q
                                                   \Phi(m)
4. p \leftarrow 0
5. t_0 \leftarrow 0
6. for i \leftarrow 1 to m // Preprocessing.
7. do p \leftarrow (dp + P[i]) \mod q
                                                   Matching
       do t_0 \leftarrow (dt_0 + T[i]) \mod q
                                                   O((n-m+1)m)
9. for s \leftarrow 0 to n - m // Matching.
10.
        do if p = t_s
11.
              then if P[1 ... m] = T[s+1 ... s+m]
12.
                       then print "Pattern occurs with shift" s
13.
     if s < n - m
14.
              then t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \bmod q
```

#### Finite automaton



#### Finite automaton

A *finite automaton M* is a 5-tuple  $(Q, q_0, A, \Sigma, \delta)$ 

- Q is a finite set of states,
- $q_0 \in Q$  is the *start states*,
- $A \subseteq Q$  is a distinguished set of accepting states,
- $\sum$  is a finite *input alphabet*,
- $\delta$  is a function from  $Q \times \sum$  into Q, called the *transition function* of M.



























## String matching with finite automata

#### FINITE-AUTOMATON-MATCHER(T, $\delta$ , m)

```
    n ← length[T]
    q ← 0
    for i ← 1 to n
    do q ← δ(q, T[i])
    if q = m
    then print "Pattern occurs with shift" i − m
```

Running time is  $\Theta(n)$ 

#### Computing the transition function

#### COMPUTE-TRANSITION-FUNCTION( $P, \Sigma$ )

```
1. m \leftarrow length[P]

2. for q \leftarrow 0 to m

3. do for each character a \in \Sigma

4. do k \leftarrow \min(m+1, q+2)

5. repeat k \leftarrow k-1

6. until P_k \triangleleft P_q a

7. \delta(q, a) \leftarrow k

8. return \delta
```

Running time is  $O(m^3|\Sigma|)$ 

## Computing the transition function

| Step | m   | q   | а   | k   | $P_k \triangleleft P_q a$      | $\delta$           |
|------|-----|-----|-----|-----|--------------------------------|--------------------|
| 1    | 7   | 0   | а   | 1   | $a \triangleleft a$            | $\delta(0, a) = 1$ |
| 2    |     |     | b   | 1   | $a \triangleleft b$            |                    |
| 3    |     |     |     | 0   | $\mathcal{E} \triangleleft b$  | $\delta(0,b)=0$    |
| 4    |     |     | С   | 1   | $a \triangleleft c$            |                    |
| 5    |     |     |     | 0   | $\mathcal{E} \triangleleft c$  | $\delta(0, c) = 0$ |
| 6    |     | 1   | а   | 2   | ab ⊲ aa                        |                    |
| 7    |     |     |     | 1   | a ⊲ aa                         | $\delta(1, a) = 1$ |
| 8    |     |     | b   | 2   | $ab \triangleleft ab$          | $\delta(1,b)=2$    |
| 9    |     |     | С   | 2   | $ab \triangleleft ac$          |                    |
| 10   |     |     |     | 1   | $a \triangleleft ac$           |                    |
| 11   |     |     |     | 0   | $\varepsilon \triangleleft ac$ | $\delta(1,c)=0$    |
| 12   | ••• | ••• | ••• | ••• | •••                            | •••                |

#### Idea of Knuth-Morris-Pratt algorithm



#### Idea of Knuth-Morris-Pratt algorithm

| i        | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|----------|---|---|---|---|---|---|---|---|---|----|
| P[i]     |   |   |   |   |   |   |   |   |   |    |
| $\pi[i]$ | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1  |
|          |   |   |   |   |   |   |   |   |   |    |



## Knuth-Morris-Pratt algorithm

```
KMP-MATCHER(T, P)
1. n \leftarrow length[T]
2. m \leftarrow length[P]
3. \pi \leftarrow \text{COMPUTE-PREFIX-FUNCTION}(P)
4. q \leftarrow 0
5. for i \leftarrow 1 to n
            do while q > 0 and P[q + 1] \neq T[i]
6.
                        do q \leftarrow \pi[q]
7.
8.
                 if P[q + 1] = T[i]
9.
                   then q \leftarrow q + 1
10.
                 if q = m
11.
                   then print "Pattern occurs with shift" i - m
12.
                          q \leftarrow \pi[q]
                   Running time is \Theta(n)
```

## Computing prefix function

#### COMPUTE-PREFIX-FUNCTION(P)

```
1. m \leftarrow length[P]

2. \pi[1] \leftarrow 0

3. k \leftarrow 0

4. for q \leftarrow 2 to m

5. do while k > 0 and P[k+1] \neq P[q]

6. do k \leftarrow \pi[k]

7. if P[k+1] = P[q]

8. then k \leftarrow k+1

9. \pi[q] \leftarrow k

10. return \pi
```

Running time is  $\Theta(m)$ 

## Computing prefix function

| Step | m  | q | k | P[k+1] = P[q]            | $\pi$        |
|------|----|---|---|--------------------------|--------------|
| 1    | 10 |   | 0 |                          | $\pi(1) = 0$ |
| 2    |    | 2 |   | $P[1] = a \neq b = P[2]$ | $\pi(2)=0$   |
| 3    |    | 3 |   | P[1] = a = a = P[3]      |              |
| 4    |    |   | 1 |                          | $\pi(3)=1$   |
| 5    |    | 4 |   | P[2] = b = b = P[4]      |              |
| 6    |    |   | 2 |                          | $\pi(4)=2$   |
| 7    |    | 5 |   | P[3] = a = a = P[5]      |              |
| 8    |    |   | 3 |                          | $\pi(5)=3$   |
| 9    |    | 6 |   | P[4] = b = b = P[6]      |              |
| 10   |    |   | 4 |                          | $\pi(6) = 4$ |
| 11   |    | 7 |   | P[5] = a = a = P[7]      |              |
| 12   |    |   | 5 |                          | $\pi(7)=5$   |

## Computing prefix function (cont.)

| Step | m  | q | k | P[k+1] = P[q]            | $\pi$        |
|------|----|---|---|--------------------------|--------------|
| 13   | 10 | 8 |   | P[6] = b = b = P[8]      |              |
| 14   |    |   | 6 |                          | $\pi(8) = 6$ |
| 15   |    | 9 |   | $P[7] = a \neq c = P[9]$ |              |
| 16   |    |   | 4 | $P[5] = a \neq c = P[9]$ |              |
| 17   |    |   | 2 | $P[3] = a \neq c = P[9]$ |              |
| 18   |    |   | 0 |                          | $\pi(9)=0$   |

## String matching algorithms

| Algorithms         | <b>Preprocessing time</b> | Matching time |
|--------------------|---------------------------|---------------|
| Naive              | 0                         | O((n-m+1)m)   |
| Rabin-Karp         | $\Theta(m)$               | O((n-m+1)m)   |
| Finite automaton   | $O(m \Sigma )$            | $\Theta(n)$   |
| Knuth-Morris-Pratt | $\Theta(m)$               | $\Theta(n)$   |

# Any question?

Xiaoqing Zheng Fundan University