Claims

1. A compound of formula (I) or a pharmaceutically acceptable salt thereof:

$$\begin{array}{c|c}
B & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

in which

15

10 each of A,B,D and E is independently C-R¹ or N;

 $Y = C-R^2$, N or C=O;

Z is oxygen, sulphur, a C₁₋₆alkylene chain or a bond;

R¹ is independently selected from hydrogen, halogen, CN, nitro, S(O)_xR⁶, OR⁶, SO₂NR⁴R⁵, CONR⁴R⁵, NR⁷SO₂R⁷, NR⁷C(O)_xR⁷, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁₋₆alkyl, aryl or heteoroaryl, the latter five groups being optionally substituted by one or more substituents independently selected from 1-3 halogen atoms, -OR⁷ and -NR⁴R⁵, S(O)xR⁸, C(O)NR⁴R⁵, where x is 0,1 or 2;

 R^2 is C_{1-6} alkyl which may be optionally substituted by one or more substituents independently selected from halogen atoms, aryl, $-OR^9$ and $-NR^{10}R^{11}$;

R³ is an aryl or heteroaryl group each of which is optionally substituted by one or more substituents independently selected from halogen, CN, nitro, S(O)_xR⁶, OR⁷, SO₂NR⁴R⁵, CONR⁴R⁵, NR⁷SO₂R³, NR⁷C(O)_xR⁶, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁₋₆ alkyl, the

latter three groups being optionally substituted by one or more substituents independently selected from halogen atoms, $-OR^6$ and $-NR^4R^5$, where x=0,1 or 2;

R⁴ and R⁵ independently represent a hydrogen atom, a C₁₋₆alkyl group, or aryl group the latter two of which may be optionally substituted by one or more substituent groups independently selected from halogen atoms, aryl, -OR¹² and -NR¹³R¹⁴, -CONR¹³R¹⁴, -NR¹³COR¹⁴, -SO₂NR¹³R¹⁴, NR¹³SO₂R¹⁴;

or

15

R⁴ and R⁵ together with the nitrogen atom to which they are attached can form a 3-8

membered saturated heterocylic ring optionally containing one or more atoms selected from O, S, NR¹⁵, and itself optionally substituted by C₁₋₃ alkyl, halogen;

 R^6 represents a C_{1-6} alkyl which may be optionally substituted by one or more substituents independently selected from halogen atoms, aryl, $-OR^9$ and $-NR^{10}R^{11}$.

each of R⁷, R⁸ R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, independently represents a hydrogen atom, C₁-C₆, alkyl, an aryl or a heteroaryl group which may be optionally substituted by one or more halogen atoms, OH, O-C₁-C₆alkyl; and

- 20 R¹⁵ is hydrogen, C₁-4 alkyl, -COC₁-C₄ alkyl, -COQC₁-C₄alkyl, Q=O or NR⁶, provided that:
 the number of nitrogen atoms within the ring ABDE is 1 or 2 when Y is CR² and R³ cannot be phenyl when Y is C=O and X is nitrogen.
- 25 2. A compound according to claim 1 in which A, B, D and E are all C-R¹.
 - 3. A compound according to claim 1 in which one of A, D or E is N and D and the others are C-R¹ where R¹ is hydrogen, phenyl, CF₃, CN, alkyl or halogen.
- 4. A compound according to any one of claims 1 to 3 in which Y is C=O and X is N.
 - 5. A compound according to claim 4 in which Z is a bond.

- 6. A compound according to any one of claims 1 to 3 in which Y is nitrogen or $C-R^2$ where R^2 is methyl.
- 5 7. A compound according to claim 6 in which X is carbon,
 - 8. A compound according to claim 6 or 7 in which Z is sulfur, methylene or a bond.
 - 9. A compound according to claim 1 selected from:
- 10 5-methyl-3-(4-quinolinyl)-1H-indazole-1-acetic acid;
 - 5-cyano-3-(4-quinolinyl)-1H-indazole-1-acetic acid;
 - 3-(6-fluoro-4-quinolinyl)-4-(trifluoromethyl)-1H-indazole-1-acetic acid;
 - 4-iodo-3-(4-quinolinyl)-1H-indazole-1-acetic acid;
 - 3-[(4-chlorophenyl)thio]-5-iodo-1H-indazole-1-acetic acid;
- 3-(7-chloro-4-quinolinyl)-2-methyl-1*H*-pyrrolo[2,3-*b*]pyridine-1-acetic acid, sodium salt; 3-[(4-Chloro-2,4-cyclohexadien-1-yl)thio]-2,5-dimethyl-1*H*-pyrrolo[3,2-*b*]pyridine-1-acetic acid;
 - 2,5-Dimethyl-3-[[4-(methylsulfonyl)-2,4-cyclohexadien-1-yl]methyl]-1*H*-pyrrolo[3,2-*b*]pyridine-1-acetic acid;
- 2,5-Dimethyl-3-[[4-(methylsulfonyl)phenyl]thio]- 1*H*-pyrrolo[3,2-*b*]pyridine-1-acetic acid;
 4-Chloro-3-[(4-chlorophenyl)thio]-2-methyl-1*H*-pyrrolo[3,2-*c*]pyridine-1-acetic acid;
 4-Chloro-2-methyl-3-[[4-(methylsulfonyl)phenyl]thio]- 1*H*-pyrrolo[3,2-*c*]pyridine-1-acetic
 - 3-[(4-Chlorophenyl)thio]-2-methyl-4-phenyl-1H-pyrrolo[3,2-c]pyridine-1-acetic acid;
- 25 2-Methyl-3-[[4-(methylsulfonyl)phenyl]thio]-4-phenyl-1*H*-pyrrolo[3,2-c] pyridine-1-acetic acid;
 - and pharmaceutically acceptable salts thereof.
 - 10. A compound of formula (I) according to any one of claims 1 to 9 for use in therapy.

acid:

- 11. A method of treating a disease mediated by prostaglandin D2, which comprises administering to a patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt as defined in claims 1 to 9.
- 5 12. A method of treating according to claim 11 wherein the disease is asthma or rhinitis.
 - 13. Use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for the treatment of a disease mediated by prostaglandin D2:

$$\begin{array}{c|c} & & & & \\ & & & \\ D & & & \\ D & & & \\ \hline & & & \\ D & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & \\ \hline & & & \\ \hline$$

in which

10

- 20

15 each of A,B,D and E is independently C-R¹ or N;

$$Y = C-R^2$$
, N or $C=O$;

Z is oxygen, sulphur, a C_{1-6} alkylene chain or a bond;

R¹ is independently selected from hydrogen, halogen, CN, nitro, S(O_{)x}R⁶, OR⁶, SO₂NR⁴R⁵, CONR⁴R⁵, NR⁴R⁵, NR⁷SO₂R⁷, NR⁷C(O)_xR⁷, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁₋₆alkyl, aryl or heteoroaryl, the latter five groups being optionally substituted by one or more substituents independently selected from 1-3 halogen atoms, -OR⁷ and -NR⁴R⁵, S(O)xR⁸, C(O)NR⁴R⁵, where x is 0,1 or 2;

 R^2 is C_{1-6} alkyl which may be optionally substituted by one or more substituents independently selected from halogen atoms, aryl, $-OR^9$ and $-NR^{10}R^{11}$;

- R³ is an aryl or heteroaryl group each of which is optionally substituted by one or more substituents independently selected from halogen, CN, nitro, S(O)_xR⁶, OR⁷, SO₂NR⁴R⁵, CONR⁴R⁵, NR⁴R⁵, NR⁷SO₂R³, NR⁷C(O)_xR⁶, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁₋₆ alkyl, the latter three groups being optionally substituted by one or more substituents independently selected from halogen atoms, -OR⁶ and -NR⁴R⁵, where x= 0,1 or 2;
- 10 R⁴ and R⁵ independently represent a hydrogen atom, a C_{1-6} alkyl group, or aryl group the latter two of which may be optionally substituted by one or more substituent groups independently selected from halogen atoms, aryl, $-OR^{12}$ and $-NR^{13}R^{14}$, $-CONR^{13}R^{14}$, $-NR^{13}COR^{14}$, $-SO_2NR^{13}R^{14}$, $NR^{13}SO_2R^{14}$;

٥r

- 15 R⁴ and R⁵ together with the nitrogen atom to which they are attached can form a 3-8 membered saturated heterocylic ring optionally containing one or more atoms selected from O, S, NR¹⁵, and itself optionally substituted by C₁₋₃ alkyl, halogen;
- R⁶ represents a C₁₋₆alkyl which may be optionally substituted by one or more substituents 20 independently selected from halogen atoms, aryl, -OR⁹ and -NR¹⁰R¹¹.
 - each of R⁷, R⁸ R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, independently represents a hydrogen atom, C₁-C₆, alkyl, an aryl or a heteroaryl group which may be optionally substituted by one or more halogen atoms, OH, O-C₁-C₆alkyl; and

25

- R^{15} is hydrogen, $C_{1^{-4}}$ alkyl, $-COC_1-C_4$ alkyl, $-COQC_1-C_4$ alkyl, Q=O or NR^6 , provided that:
- the number of nitrogen atoms within the ring ABDE is 1 or 2 when Y is CR² and R³ cannot be phenyl when Y is C=O and X is nitrogen.

30

14. Use according to claim 13 wherein the disease is asthma or rhinitis.

- 15. Use according to claim 13 or 14 wherein the compound is selected from:
- 5-methyl-3-(4-quinolinyl)-1*H*-indazole-1-acetic acid;
- 5-cyano-3-(4-quinolinyl)-1H-indazole-1-acetic acid;
- 3-(6-fluoro-4-quinolinyl)-4-(trifluoromethyl)-1H-indazole-1-acetic acid;
- 5 4-iodo-3-(4-quinolinyl)-1H-indazole-1-acetic acid;
 - 3-[(4-chlorophenyl)thio]-5-iodo-1H-indazole-1-acetic acid;
 - 3-(7-chloro-4-quinolinyl)-2-methyl-1H-pyrrolo[2,3-b]pyridine-1-acetic acid, sodium salt;
 - 3-[(4-Chloro-2,4-cyclohexadien-1-yl)thio]-2,5-dimethyl-1*H*-pyrrolo[3,2-*b*]pyridine-1-acetic acid;
- 2,5-Dimethyl-3-[[4-(methylsulfonyl)-2,4-cyclohexadien-1-yl]methyl]-1*H*-pyrrolo[3,2-*b*]pyridine-1-acetic acid;
 - 2,5-Dimethyl-3-[[4-(methylsulfonyl)phenyl]thio]- 1H-pyrrolo[3,2-b]pyridine-1-acetic acid;
 - 4-Chloro-3-[(4-chlorophenyl)thio]-2-methyl-1*H*-pyrrolo[3,2-*c*]pyridine-1-acetic acid;
 - 4-Chloro-2-methyl-3-[[4-(methylsulfonyl)phenyl]thio]- 1H-pyrrolo[3,2-c]pyridine-1-acetic
- 15 acid;
 - 3-[(4-Chlorophenyl)thio]-2-methyl-4-phenyl-1*H*-pyrrolo[3,2-*c*]pyridine-1-acetic acid;
 - 2-Methyl-3-[[4-(methylsulfonyl)phenyl]thio]-4-phenyl-1*H*-pyrrolo[3,2-*c*] pyridine-1-acetic acid;
 - and pharmaceutically acceptable salts thereof.