# Classification

PSTAT100 Winter 2025

Announcements

- HWY due tonight.

- Check eval: true

- Last lab due end of guarter.

- Prosects

#### From last time

We fit this model to the tree cover data:

$$\log(\text{cover}_i) = \beta_0 + \beta_1 \log(\text{income}_i) + \beta_2 \log_i + \beta_3 \text{med}_i + \beta_4 \text{high}_i + \epsilon_i$$

Each level of population density has its own intercept:

population density

Roference, low density:

very low density: 
$$\mathbb{E} \log(\text{cover}) = \beta_0 + \beta_1 \log(\text{income})$$

low density: 
$$\mathbb{E} \log(\text{cover}) = (\beta_0 + \beta_2) + \beta_1 \log(\text{income})$$

medium density: 
$$\mathbb{E} \log(\text{cover}) = (\beta_0 + \beta_3) + \beta_1 \log(\text{income})$$

high density: 
$$\mathbb{E} \log(\text{cover}) = (\beta_0 + \beta_4) + \beta_1 \log(\text{income})$$

 $\beta_2$ ,  $\beta_3$ ,  $\beta_4$  represent the *difference in expected log cover* betwee<mark>n very low density and low, medium, high density after accounting for income</mark>

 $y_i \sim N(xB, \sigma^2)$   $\Rightarrow E[y|X] = xB$   $|og(y) \sim N(xB, \sigma^2)$   $e^{x}\sim LM(x)$   $y_i \in S$   $|og(y) \sim N(xB, \sigma^2)$   $e^{x}\sim LM(x)$   $e^{x}\sim LM(x)$ 

## Interpreting estimates

| estimate   | standard error | type              |
|------------|----------------|-------------------|
| -3.9945020 | 0.5857494      | (Intercept)       |
| 0.5542274  | 0.0550729      | log_income        |
| -0.2859815 | 0.0670307      | pop_densitylow    |
| -0.6214309 | 0.0757230      | pop_densitymedium |
| -0.6607406 | 0.0963590      | pop_densityhigh   |

- each doubling of mean income is associated with an estimated 55% increase in median tree cover, after accounting for population density
- census blocks with higher population densities are estimated as having a median tree canopy up to 50% lower than census blocks with very low population densities, after accounting for mean income

## On log-transforming the response

The model is  $\log(y) \sim N(x\beta, \sigma^2)$ ; so y is what's known as a lognormal random variable.

From the properties of the lognormal distribution:

$$e^{x\beta} = \text{median}(y)$$

So when parameters are back-transformed, they should be interpreted in terms of the *median* response.

## Interpretations, again

55% increase in median tree cover :  $e^{\beta_1 \log(2)} = 1.549$ 

Median cover increases by a factor of 1.549, *i.e.*, increases by 54.9%:

- doubling income increments log income by log(2)
- $\beta_1 \log(2)$  gives the associated change in mean log cover
- exponentiating the change in mean log cover gives the multiplicative change in median cover

#### **Prediction**

```
1 x_new <- data.frame(log_income = log(115000), pop_density = factor("medium", levels=levels(regdata$pop_densi
2 pred <- predict(mlr, newdata = x_new, interval = "confidence")
3 exp(pred)

fit     lwr     upr
1 6.311072 5.248709 7.588462</pre>
```

#### Fill in the blanks:

- the median tree cover for a \_\_\_\_\_ density census block with mean income \_\_\_\_\_ is estimated to be between \_\_\_\_\_ and \_\_\_\_ percent
- the tree cover for a \_\_\_\_\_\_ density census block with mean income \_\_\_\_\_\_ is estimated to be between \_\_\_\_\_ and \_\_\_\_\_ percent

## Model checking

The linearity and constant variance assumptions can be assessed by plotting residuals against fitted values:



Should see minimal pattern:

• centered at zero : Elg) = XB.

even spread in either direction

assimphyn

#### **Diabetes data**

2055ible

4831 responses from the 2011-2012 National Health and Nutrition Examination Survey (NHANES):

```
Gender Age BMI Diabetes
1 male 14 17.3 No
2 female 43 33.3 No
3 male 80 33.9 No
4 male 80 33.9 No
```

Is BML a risk factor for diabetes after adjusting for age and sex?

8

### Model sketch

Broadly, we can answer the question by estimating the dependence of diabetes status on age, sex, and BMI.

An additive model might look something like this:

diabetes<sub>i</sub> 
$$\leftarrow \beta_1 \text{age}_i + \beta_2 \text{male}_i + \beta_3 \text{BMI}_i$$

To answer the question, fit the model and examine  $\beta_3$ .

Age, Conder

Niabetes

fork/ confandus (X)

m(gnx+Z)

## **Binary response**

Note that the response variable – whether the respondent has diabetes – is categorical.

We can encode this using an indicator variable, which results in a binary response:

Remember, a statistical model is a probability distribution, so we need to choose one that's appropriate for binary outcomes. Ideas?



### What not to do

One might think:

diabetes<sub>i</sub> = 
$$\beta_0 + \beta_1 age_i + \beta_2 male_i + \beta_3 BMI_i + \epsilon_i$$

But diabetes<sub>i</sub>  $\sim N(x\beta, \sigma^2)$ 

- discrete, not continuous
- normal model doesn't make sense for a binary response

(xTx) xTy = B Can't get good confidence intervals uncertainty.

#### What not to do

Note that you *can* still fit this model.

```
(Intercept) Male Age BMI -0.169001564 0.010836864 0.002424943 0.005601656
```

So you have to discern that it isn't appropriate. A few ways to tell:

- parameter interpretations won't make sense *e.g.* age is associated with a 0.0024 increase in diabetes presence
- model may yield predictions that are negative or greater than one
- plots will look odd

#### What not to do

Attempts at model visualization will look something like this:



## Regression with a binary response

For a binary response  $Y \in \{0, 1\}$ , we model P(Y = 1) as a function of the explanatory variable(s) x:

$$P(Y=1) = f(x)$$

Of course, we don't directly observe P(Y = 1) – but there are various ways around this.

$$P(Y=1/X) = f(X)$$
  
 $f(X) = f(X)$   
 $f(X) = f(X)$   

## Logistic regression model

The most common approach to modeling binary responses is logistic regression:



•  $\beta$  is a vector of parameters

This model holds that the log odds of the outcome of interest is a linear function of the explanatory variable(s)  $\frac{1}{1-\rho} = \frac{2}{3} = 2$   $\frac{3}{1/3} = 2$ 

## Logistic regression model

What does the model imply about the probability (rather than log-odds) of the outcome of interest?

$$|\operatorname{ogit}(\rho)| = \log\left(\frac{p}{1-p}\right) = x'\beta \iff P(Y=1) = ??$$

$$|f|_{1-\rho} = e^{x\beta} \implies \rho = \frac{e^{x\beta}}{|f|_{1-\rho}}$$

$$|f|_{1-\rho} = e^{x\beta} \implies \rho = \frac{e^{x\beta}}{|f|_{1-\rho}}$$

$$|f|_{1-\rho} = e^{x\beta} \implies \rho = \frac{e^{x\beta}}{|f|_{1-\rho}}$$

## Logistic regression model

The logistic function looks like this:



## Assumptions

The model makes two key assumptions:

- 1. the probability of the outcome changes monotonically with each explanatory variable
- 2. observations are independent (used to obtain a joint distribution)

3. Pr(Y/X) follows the inv-logit form.

Same as

#### **Estimation**

The model is fit by maximum likelihood: find the parameters for which the observed data are most likely. The likelihood (joint distribution) is constructed from the model and the Bernoulli distribution.

| ſ           | e   | stimate   | standard error |   |        |  |
|-------------|-----|-----------|----------------|---|--------|--|
| 1 II govre  | -8. | 1992313   | 0.3575649      | - |        |  |
| male, he    | 0.  | 2703777   | 0.1177993      |   | Gende, |  |
| 12 olds are | 0.  | 0532001   | 0.0035124      | _ |        |  |
| 27          | 0.  | 1006066   | 0.0078616      |   |        |  |
| higher."    |     | von o dls | Scale.         |   |        |  |

Age: The odds of diabetes

Multiply by e<sup>053</sup> for a

1 year increase.

## Parameter interpretations

Similar to linear regression, coefficients give the change in log-odds associated with incremental changes in the explanatory variables.

On the scale of the linear predictor:

A one-unit increase in BMI is associated with an estimated 0.1 increase in log odds of diabetes after adjusting for age and sex

#### On the scale of the odds:

A one-unit increase in BMI is associated with an estimated 10% increase in the odds of diabetes after adjusting for age and sex

On the probability scale, the increase depends on the starting value of BMI.

#### **Confidence intervals**

One can also give confidence intervals. These are based on large-sample approximations.

```
1 # confidence intervals
2 ci <- confint(fit)
3 exp(ci["BMI", ])
2.5 % 97.5 %
1.089027 1.123143</pre>
```

With 95% confidence, each 1-unit increase in BMI is associated with an estimated increase in odds of diabetes between 8.9% and 12.3% after adjusting for age and sex

# Fitted values (Predictions)

The fitted values for logistic regression are fitted probabilities (not outcomes).

$$p_{\hat{i}} = \frac{1}{1 + e^{-x_{\hat{i}}^{\mu}\beta}}$$

In R, we can get linear predictor values (log-odds):

```
1 # log odds

2 head(fit$linear.predictors, 5)

-5.4435581 -2.5614276 -0.2622829 -0.2622829 -5.9827228

P = EXB = XB = XB = XB + I
```

### Fitted values

To obtain probabilities, one could manually back-transform:

#### Or more simply just get the fitted.values

### Classification

For each observation (or new observations), probabilities can be computed directly from the fitted model:

$$p_{\hat{i}} = \frac{1}{1 + e^{-x_i'\beta}}$$

But what if we want to classify a person as diabetic or not diabetic? Should we declare a case when...

- more probable than not:  $\hat{p} > 0.5$ ? Set  $\hat{y} = 1.7$  highly probable, say  $\hat{p} > 0.8$ ? Set  $\hat{y} = 1.7$  somewhat probable, say  $\hat{p} > 0.2$ ?

## Sensitivity

If we use a *low* threshold for classification, say:

$$\hat{Y} = 1 \iff \hat{p} > 0.1$$

Then the classifications will be more *sensitive* to cases – most cases of diabetes will be correctly classified.

## Specificity

If we use a *high* threshold instead, say:

$$\hat{Y} = 1 \iff p > 0.9$$

Then the classification will not be very sensitive to cases, but they will be fairly <u>specific</u> – classifications will be correct for most people without diabetes.

### **Cross-tabulation**

For any given classification threshold, we can cross-tabulate the classifications with the observed outcomes:



Using the more-likely-than-not criterion is very *specific* (high true negative rate) but not at all *sensitive* (low true positive rate).

## Overall accuracy is misleading

The proportion of correctly classified observations is:

```
1 # proportion of correctly classified observations
2 sum(diag(conf_matrix)) / sum(conf_matrix)
```

[1] 0.9219623

This looks really good, but any method that classifies all or most observations as non-diabetic will achieve high accuracy because of the case imbalance in the data.

```
1 # proportion of non-diabetic respondents
2 mean(y == 0)
```

[1] 0.9242393

#### Use class-wise error rates

Examining class-wise error rates reveals how asymmetric the classifications are:

► Code

```
Predicted

Observed 0 1

0 0.995744681 0.004255319
1 0.978142077 0.021857923
```

- same layout as confusion matrix, but with entries divided by the total number of outcomes in each class
- note 97.8% error rate among diabetes cases

#### A better classifier

In this case we can do better by choosing a low classification threshold p > 0.1:

► Code

```
Predicted
Observed 0 1
0 3473 992
1 105 261
```

- higher overall error rate  $\frac{1097}{4831} = 0.227$
- but about 70% accurate within each class (diabetic and non-diabetic)

#### Class-wise errors:

► Code

```
Predicted

Observed 0 1

0 0.7778275 0.2221725

1 0.2868852 0.7131148
```

## **Characterizing Misclassifications**

|                  |                                                                          | Predicted condition                                                                                                              |                                                                    | Sources: [8][9][10][11][12][13][14][15] view·talk·edit                                                                    |                                                                                                                     |
|------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                  | Total population = P + N                                                 | Predicted positive Predicted                                                                                                     |                                                                    | Informedness, bookmaker informedness (BM) = TPR + TNR - 1                                                                 | Prevalence threshold $= \frac{(PT)}{\sqrt{TPR \times FPR} - FPR}$ $= \frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$ |
| Actual condition | Positive (P)                                                             | <b>True positive</b> (TP),<br>hit <sup>[b]</sup>                                                                                 | False negative<br>(FN),<br>miss,<br>underestimation                | True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$ | False negative rate (FNR), miss rate type II error [c] $= \frac{FN}{P} = 1 - TPR$                                   |
| Actual           | Negative<br>(N) <sup>[d]</sup>                                           | False positive (FP), false alarm, overestimation                                                                                 | True negative (TN), correct rejection <sup>[e]</sup>               | False positive rate (FPR), probability of false alarm, fall-out type I error [f] $= \frac{FP}{N} = 1 - TNR$               | True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$                                 |
|                  | $\begin{aligned} & \text{Prevalence} \\ & = \frac{P}{P+N} \end{aligned}$ | Positive predictive value (PPV), $\frac{\text{precision}}{\text{TP}} = \frac{\text{TP}}{\text{TP} + \text{FP}} = 1 - \text{FDR}$ | False omission rate (FOR) $= \frac{FN}{TN + FN}$ $= 1 - NPV$       | Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$                                                                       | Negative likelihood ratio $(LR-)$ $= \frac{FNR}{TNR}$                                                               |
|                  | Accuracy (ACC) $= \frac{TP + TN}{P + N}$                                 | False discovery rate (FDR) $= \frac{FP}{TP + FP} = 1 - PPV$                                                                      | Negative predictive value (NPV) $= \frac{TN}{TN + FN}$ $= 1 - FOR$ | $\begin{aligned} & \text{Markedness (MK), deltaP ($\Delta p$)} \\ & = PPV + NPV - 1 \end{aligned}$                        | Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$                                                                     |
|                  | Balanced accuracy (BA) $= \frac{TPR + TNR}{2}$                           | $= \frac{\frac{F_1 \text{ score}}{2 \text{ PPV} \times \text{TPR}}}{\frac{2 \text{ TP}}{2 \text{ TP} + \text{FP} + \text{FN}}}$  | Fowlkes–Mallows index (FM) $= \sqrt{PPV \times TPR}$               | Matthews correlation coefficient (MCC) = √TPR × TNR × PPV × NPV - √FNR × FPR × FOR × FDR                                  | Threat score (TS), critical success index (CSI), Jaccard index $= \frac{TP}{TP + FN + FP}$                          |