# Lecture 8: CNN Architectures

# Assignment 3

#### Assignment 3 is released! It covers:

- Fully-connected networks
- Dropout
- Update rules: SGD+Momentum, RMSprop, Adam
- Convolutional networks
- Batch normalization

Due Friday February 11, 11:59pm ET

# Last Time: Components of Convolutional Networks

#### **Convolution Layers**



#### **Pooling Layers**



#### **Fully-Connected Layers**



#### **Activation Function**



#### Normalization

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

# Last Time: Components of Convolutional Networks

#### Convolution Layers



#### **Pooling Layers**



#### Fully-Connected Layers



#### **Activation Function**



#### Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Consider a single layer y = Wx

The following could lead to tough optimization:

- Inputs x are not centered around zero (need large bias)
- Inputs x have different scaling per-element (entries in W will need to vary a lot)

Idea: force inputs to be "nicely scaled" at each layer!

Idea: "Normalize" the inputs of a layer so they have zero mean and unit variance

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

Input:  $x \in \mathbb{R}^{N \times D}$ 



$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Input:  $x \in \mathbb{R}^{N \times D}$ 



$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Problem: What if zero-mean, unit variance is too hard of a constraint?

Input: 
$$x \in \mathbb{R}^{N \times D}$$

# Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning  $\gamma = \sigma$ ,  $\beta = \mu$  will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,  
Shape is N x D

**Problem:** Estimates depend on minibatch; can't do this at test-time!

Input: 
$$x \in \mathbb{R}^{N \times D}$$

Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning  $\gamma = \sigma$ ,  $\beta = \mu$  will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
 Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
 Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,  
Shape is N x D

Input: 
$$x \in \mathbb{R}^{N \times D}$$

 $\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$ 

Per-channel mean, shape is D

# Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning  $\gamma = \sigma$ ,  $\beta = \mu$  will recover the identity function (in expectation)

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{values seen during training}} Per-channel std, shape is D$$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,  
Shape is N x D

Input: 
$$x \in \mathbb{R}^{N \times D}$$

$$\mu_j = \begin{array}{l} \text{(Running) average of} \\ \text{values seen during} \\ \text{training} \end{array}$$

Per-channel mean, shape is D

# Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

Learning  $\gamma = \sigma$ ,  $\beta = \mu$  will recover the identity function (in expectation)

$$\mu_i^{test} = 0$$

For each training iteration:

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$

$$\mu_{j}^{test} = 0.99 \,\mu_{j}^{test} + 0.01 \,\mu_{j}$$

(Similar for  $\sigma$ )

Input: 
$$x \in \mathbb{R}^{N \times D}$$

(Running) average of 
$$\mu_j = \text{values seen during}$$
 training

Per-channel mean, shape is D

$$\gamma, \beta \in \mathbb{R}^D$$

Learning  $\gamma = \sigma$ ,  $\beta = \mu$  will recover the identity function (in expectation)

$$\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{values seen during training}} Per-channel std, shape is D$$

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,  
Shape is N x D

Input: 
$$x \in \mathbb{R}^{N \times D}$$

(Running) average of 
$$\mu_j = \text{values seen during}$$
 training

Per-channel mean, shape is D

Per-channel

std, shape is D

# Learnable scale and shift parameters:

$$\gamma, \beta \in \mathbb{R}^D$$

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

$$\sigma_j^2 = \frac{\text{(Running) average of}}{\text{values seen during training}}$$

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \text{Normalized x,} \\ \text{Shape is N x D}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output,  
Shape is N x D

#### Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

Normalize 
$$x: N \times D$$
 $\mu, \sigma: 1 \times D$ 
 $\gamma, \beta: 1 \times D$ 
 $y = \frac{(x - \mu)}{\sigma} \gamma + \beta$ 

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

Normalize 
$$x : N \times C \times H \times W$$

$$\mu, \sigma : 1 \times C \times 1 \times 1$$

$$\gamma, \beta : 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$



Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$



- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!





- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

# Layer Normalization

Batch Normalization for **fully-connected** networks

Normalize Normalize 
$$\mu, \sigma: 1 \times D$$
 
$$\gamma, \beta: 1 \times D$$
 
$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers

Normalize 
$$y, \sigma : N \times D$$

$$\gamma, \beta : 1 \times D$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

#### Instance Normalization

**Batch Normalization** for convolutional networks

$$x: N \times C \times H \times W$$
Normalize
$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

**Instance Normalization** for convolutional networks

Normalize 
$$x: N \times C \times H \times W$$
 $\mu, \sigma: N \times C \times 1 \times 1$ 
 $\gamma, \beta: 1 \times C \times 1 \times 1$ 

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

# Comparison of Normalization Layers



Wu and He, "Group Normalization", ECCV 2018

# Group Normalization



Wu and He, "Group Normalization", ECCV 2018

# Components of Convolutional Networks

#### **Convolution Layers**



#### **Pooling Layers**



#### **Fully-Connected Layers**



#### **Activation Function**



#### Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

**Question**: How should we put them together?

# ImageNet Classification Challenge



# ImageNet Classification Challenge





227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities



227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities

Used "Local response normalization"; Not used anymore

Trained on two GTX 580 GPUs – only 3GB of memory each! Model split over two GPUs





Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

# AlexNet Citations per year (as of 2/2/2022)



Total Citations: 102,486







Total Citations: 102,486



#### **Citation Counts**

Darwin, "On the origin of species", 1859: **60,117** 

Shannon, "A mathematical theory of communication", 1948: **140,459** 

Watson and Crick, "Molecular Structure of Nucleic Acids", 1953: **16,298** 



|       | Inpu | ıt size |                    | Layer  |    |        |     |   |   |   | Output size |     |   |  |
|-------|------|---------|--------------------|--------|----|--------|-----|---|---|---|-------------|-----|---|--|
| Layer | С    | H / W   | / filters          | kernel |    | stride | pad |   | C |   | Η /         | ' W | / |  |
| conv1 | 3    | 22      | <mark>.7</mark> 64 | 1 :    | 11 | 4      | 1   | 2 |   | ? |             |     |   |  |



|       | I | nput | size | Layer   |        |    |        |   |     |   | <b>Output size</b> |   |  |
|-------|---|------|------|---------|--------|----|--------|---|-----|---|--------------------|---|--|
| Layer | С | Н    | / W  | filters | kernel |    | stride |   | pad | C | н /                | W |  |
| conv1 |   | 3    | 227  | 64      |        | 11 |        | 4 | 2   |   | 64                 | ? |  |

Recall: Output channels = number of filters



|       | I | nput | size  | Layer   |        |    |        |   |     |   | <b>Output size</b> |   |    |
|-------|---|------|-------|---------|--------|----|--------|---|-----|---|--------------------|---|----|
| Layer | С | H    | 1 / W | filters | kernel |    | stride |   | pad | C | H                  | / | W  |
| conv1 |   | 3    | 227   | 64      |        | 11 |        | 4 | 2   | 2 | 64                 |   | 56 |

Recall: W' = 
$$(W - K + 2P) / S + 1$$
  
=  $227 - 11 + 2*2) / 4 + 1$   
=  $220/4 + 1 = 56$ 



|       |   | Input size |   |   |     |         |        |        |   | Outp | ut s | ize |     |    |             |
|-------|---|------------|---|---|-----|---------|--------|--------|---|------|------|-----|-----|----|-------------|
| Layer | C |            | Н | / | W   | filters | kernel | stride |   | pad  | С    |     | H / | W  | memory (KB) |
| conv1 |   | 3          |   |   | 227 | 64      | 1:     | 1      | 4 | 2    | 2    | 64  |     | 56 | j           |



|       |   | Input size |   |   |     | Layer   |        |    |        |   |     |   | Outp | uts | size |             |
|-------|---|------------|---|---|-----|---------|--------|----|--------|---|-----|---|------|-----|------|-------------|
| Layer | C |            | Н | / | W   | filters | kernel |    | stride | Ķ | pad | С |      | H / | ' W  | memory (KB) |
| conv1 |   | 3          |   | 2 | 227 | 64      | 1      | 11 |        | 4 | 2   |   | 64   |     | 56   | 784         |

Number of output elements = 
$$C * H' * W'$$
  
=  $64*56*56 = 200,704$ 

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) \* (bytes per elem) / 1024

= 200704 \* 4 / 1024

**= 784** 



|       |   | Input size |   |   |     |         | Lay    | er     |     |   | Output | t size |             |            |
|-------|---|------------|---|---|-----|---------|--------|--------|-----|---|--------|--------|-------------|------------|
| Layer | C |            | Н | / | W   | filters | kernel | stride | pad | C | Н      | / W    | memory (KB) | params (k) |
| conv1 |   | 3          |   | 2 | 227 | 64      | 11     | _      | 4   | 2 | 64     | 56     | 784         | ?          |



|       |   | Inpu | t s | ize | )   |         | Lay    | er     |     |   | Output size | 9  |             |            |
|-------|---|------|-----|-----|-----|---------|--------|--------|-----|---|-------------|----|-------------|------------|
| Layer | C |      | Н   | /   | W   | filters | kernel | stride | pad | С | H / V       | V  | memory (KB) | params (k) |
| conv1 |   | 3    |     | 2   | 227 | 64      | 13     | L 4    | 1 2 | 2 | 64          | 56 | 784         | 23         |

Weight shape = 
$$C_{out} \times C_{in} \times K \times K$$
  
=  $64 \times 3 \times 11 \times 11$   
Bias shape =  $C_{out} = 64$   
Number of weights =  $64*3*11*11 + 64$   
=  $23,296$ 



|       |   | Input | size  |         | Laye   | er     |     | Ou | tpu | t size |             |            |          |
|-------|---|-------|-------|---------|--------|--------|-----|----|-----|--------|-------------|------------|----------|
| Layer | С | Н     | 1 / W | filters | kernel | stride | pad | С  | Н   | / W    | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3     | 227   | 64      | 11     | . 4    | . 2 | 2  | 64  | 56     | 784         | . 23       | Ş        |



|       |   | Input | siz | e   |         | Lay    | er     |     |   | Outpu | ut size |             |            |          |
|-------|---|-------|-----|-----|---------|--------|--------|-----|---|-------|---------|-------------|------------|----------|
| Layer | С |       | H / | W   | filters | kernel | stride | pad | С | ŀ     | 1 / W   | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3     |     | 227 | 64      | . 11   |        |     | 2 | 64    | 56      | 784         | 23         | 73       |

Number of floating point operations (multiply+add)

- = (number of output elements) \* (ops per output elem)
- =  $(C_{out} \times H' \times W') * (C_{in} \times K \times K)$
- = (64 \* 56 \* 56) \* (3 \* 11 \* 11)
- = 200,704 \* 363
- **= 72,855,552**



|       |   | Inpu | t size |     |        | L      | .ay | er     |    |     | Outp | out | size |             |            |          |
|-------|---|------|--------|-----|--------|--------|-----|--------|----|-----|------|-----|------|-------------|------------|----------|
| Layer | C |      | H / V  | V f | ilters | kernel |     | stride | pa | d ( |      | Н   | / W  | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3    | 22     | 27  | 64     |        | 11  |        | 4  | 2   | 64   |     | 56   | 78          | 4 2        | 3 73     |
| pool1 |   | 64   | . [    | 56  |        |        | 3   | 3      | 2  | 0   |      | ?   |      |             |            |          |



|       |   | Inpu | t si | ze  |         | Lay    | er     |     |   | Outp | ut size |             |            |          |
|-------|---|------|------|-----|---------|--------|--------|-----|---|------|---------|-------------|------------|----------|
| Layer | C |      | Η.   | / W | filters | kernel | stride | pad | С |      | H / W   | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3    |      | 227 | 64      | 11     | . 4    | 1 : | 2 | 64   | 56      | 784         | 23         | 73       |
| pool1 |   | 64   |      | 56  |         | 3      |        | 2 ( | 0 | 64   | 27      |             |            |          |

For pooling layer:

#output channels = #input channels = 64



|       |   | Inpu | t s | ize |         | Lay    | er     |     |   | Outp | ut size |             |            |          |
|-------|---|------|-----|-----|---------|--------|--------|-----|---|------|---------|-------------|------------|----------|
| Layer | С |      | Н   | / W | filters | kernel | stride | pad | С |      | H / W   | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3    | ,   | 227 | 64      | 11     |        | 4   | 2 | 64   | 56      | 784         | 23         | 73       |
| pool1 |   | 64   |     | 56  |         | 3      | 3      | 2   | 0 | 64   | 27      | 182         | ?          |          |

#output elems = 
$$C_{out} \times H' \times W'$$
  
Bytes per elem = 4  
KB =  $C_{out} * H' * W' * 4 / 1024$   
= 64 \* 27 \* 27 \* 4 / 1024  
= **182.25**



|       |   | Inpu | t siz | :e  |         | Lay    | er     |     |   | Outp | ut size |             |            |          |
|-------|---|------|-------|-----|---------|--------|--------|-----|---|------|---------|-------------|------------|----------|
| Layer | C |      | H /   | W   | filters | kernel | stride | pad | С |      | H / W   | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3    |       | 227 | 64      | 1:     | 1 4    | 1   | 2 | 64   | 56      | 784         | 23         | 73       |
| pool1 |   | 64   |       | 56  |         |        | 3 2    | 2   | 0 | 64   | 27      | 182         | C          | ?        |

Pooling layers have no learnable parameters!



|       |   | Inpu | t si | ize |         | Lay    | er     |     |   | Outp | ut size |             |            |          |
|-------|---|------|------|-----|---------|--------|--------|-----|---|------|---------|-------------|------------|----------|
| Layer | C |      | Н    | / W | filters | kernel | stride | pad | C | I    | H / W   | memory (KB) | params (k) | flop (M) |
| conv1 |   | 3    |      | 227 | 64      | 13     | L 4    | l : | 2 | 64   | 56      | 784         | 23         | 73       |
| pool1 |   | 64   |      | 56  |         | 3      | 3 2    | 2   | 0 | 64   | 27      | 182         | C          | 0        |

Floating-point ops for pooling layer

= (number of output positions) \* (flops per output position)

 $= (C_{out} * H' * W') * (K * K)$ 

= (64 \* 27 \* 27) \* (3 \* 3)

= 419,904

**= 0.4 MFLOP** 



|         | Inp | ut si | ize |         | Laye   | er     |     | Outp | ut size |             |            |          |
|---------|-----|-------|-----|---------|--------|--------|-----|------|---------|-------------|------------|----------|
| Layer   | С   | Н     | / W | filters | kernel | stride | pad | С    | H / W   | memory (KB) | params (k) | flop (M) |
| conv1   |     | 3     | 227 | 64      | 11     | 4      | 2   | 64   | 56      | 784         | 23         | 73       |
| pool1   | (   | 64    | 56  |         | 3      | 2      | C   | 64   | 27      | 182         | O          | 0        |
| conv2   | (   | 64    | 27  | 192     | 5      | 1      | 2   | 192  | 27      | 547         | 307        | 224      |
| pool2   | 19  | 92    | 27  |         | 3      | 2      | O   | 192  | 13      | 127         | O          | 0        |
| conv3   | 19  | 92    | 13  | 384     | 3      | 1      | 1   | 384  | 13      | 254         | 664        | 112      |
| conv4   | 38  | 34    | 13  | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 885        | 145      |
| conv5   | 25  | 6     | 13  | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 590        | 100      |
| pool5   | 25  | 6     | 13  |         | 3      | 2      | O   | 256  | 6       | 36          | O          | 0        |
| flatten | 25  | 6     | 6   |         |        |        |     | 9216 |         | 36          | 0          | 0        |

Flatten output size = 
$$C_{in} \times H \times W$$
  
= 256 \* 6 \* 6  
= **9216**

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson Lecture 8 - 45 February 2, 2022



|         | Inpu | ıt size |         | Laye   | er     |     | Outp | ut size |             |            |          |
|---------|------|---------|---------|--------|--------|-----|------|---------|-------------|------------|----------|
| Layer   | С    | H / W   | filters | kernel | stride | pad | С    | H / W   | memory (KB) | params (k) | flop (M) |
| conv1   | 3    | 3 227   | 64      | 11     | 4      | 2   | 64   | 56      | 784         | 23         | 73       |
| pool1   | 64   | 1 56    |         | 3      | 2      | 0   | 64   | 27      | 182         |            | 0        |
| conv2   | 64   | 1 27    | 192     | 5      | 1      | 2   | 192  | 27      | 547         | 307        | 224      |
| pool2   | 192  | 2 27    |         | 3      | 2      | 0   | 192  | 13      | 127         | O          | 0        |
| conv3   | 192  | 2 13    | 384     | 3      | 1      | 1   | 384  | 13      | 254         | 664        | 112      |
| conv4   | 384  | 13      | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 885        | 145      |
| conv5   | 256  | 5 13    | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 590        | 100      |
| pool5   | 256  | 5 13    |         | 3      | 2      | 0   | 256  | 6       | 36          | O          | 0        |
| flatten | 256  | 6       |         |        |        |     | 9216 |         | 36          | 0          | 0        |
| fc6     | 9216 | 5       | 4096    |        |        |     | 4096 |         | 16          | 37,726     | 38       |

FC params = 
$$C_{in} * C_{out} + C_{out}$$
 FC flops =  $C_{in} * C_{out}$   
= 9216 \* 4096 + 4096 = 9216 \* 4096  
= 37,725,832 = 37,748,736



|         |      |         |         |        |        |     |      | - 40    |             |            |          |
|---------|------|---------|---------|--------|--------|-----|------|---------|-------------|------------|----------|
|         | Inpu | ıt size |         | Laye   | er     |     | Outp | ut size |             |            |          |
| Layer   | С    | H / W   | filters | kernel | stride | pad | С    | H / W   | memory (KB) | params (k) | flop (M) |
| conv1   | 3    | 227     | 64      | 11     | 4      | 2   | 64   | 56      | 784         | 23         | 73       |
| pool1   | 64   | 56      |         | 3      | 2      | C   | 64   | 27      | 182         | O          | 0        |
| conv2   | 64   | 27      | 192     | 5      | 1      | 2   | 192  | 27      | 547         | 307        | 224      |
| pool2   | 192  | 2 27    |         | 3      | 2      | C   | 192  | 13      | 127         | O          | 0        |
| conv3   | 192  | 2 13    | 384     | 3      | 1      | 1   | 384  | 13      | 254         | 664        | 112      |
| conv4   | 384  | 13      | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 885        | 145      |
| conv5   | 256  | 13      | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 590        | 100      |
| pool5   | 256  | 13      |         | 3      | 2      | C   | 256  | 6       | 36          | O          | 0        |
| flatten | 256  | 6       |         |        |        |     | 9216 |         | 36          | C          | 0        |
| fc6     | 9216 | Ö       | 4096    |        |        |     | 4096 |         | 16          | 37,749     | 38       |
| fc7     | 4096 | 5       | 4096    |        |        |     | 4096 |         | 16          | 16,777     | 17       |
| fc8     | 4096 | j       | 1000    |        |        |     | 1000 |         | 4           | 4,096      | 4        |

### How to choose this? Trial and error =(



|         |      |         |         |        |        |     |      | -       |             |            |          |
|---------|------|---------|---------|--------|--------|-----|------|---------|-------------|------------|----------|
|         | Inpu | ıt size |         | Laye   | er     |     | Outp | ut size |             |            |          |
| Layer   | С    | H / W   | filters | kernel | stride | pad | C    | H/W     | memory (KB) | params (k) | flop (M) |
| conv1   | 3    | 3 227   | 64      | 11     | 4      | . 2 | 64   | 56      | 784         | 23         | 73       |
| pool1   | 64   | 1 56    |         | 3      | 2      | . 0 | 64   | 27      | 182         | C          | 0        |
| conv2   | 64   | 1 27    | 192     | 5      | 1      | . 2 | 192  | 27      | 547         | 307        | 224      |
| pool2   | 192  | 2 27    |         | 3      | 2      | . 0 | 192  | 13      | 127         | C          | 0        |
| conv3   | 192  | 2 13    | 384     | 3      | 1      | . 1 | 384  | 13      | 254         | 664        | 112      |
| conv4   | 384  | 13      | 256     | 3      | 1      | . 1 | 256  | 13      | 169         | 885        | 145      |
| conv5   | 256  | 5 13    | 256     | 3      | 1      | . 1 | 256  | 13      | 169         | 590        | 100      |
| pool5   | 256  | 5 13    |         | 3      | 2      | . 0 | 256  | 6       | 36          | C          | 0        |
| flatten | 256  | 6       |         |        |        |     | 9216 |         | 36          | C          | 0        |
| fc6     | 9216 | 5       | 4096    |        |        |     | 4096 |         | 16          | 37,749     | 38       |
| fc7     | 4096 | 5       | 4096    |        |        |     | 4096 |         | 16          | 16,777     | 17       |
| fc8     | 4096 | 5       | 1000    |        |        |     | 1000 |         | 4           | 4,096      | 4        |

Justin Johnson Lecture 8 - 48 February 2, 2022

#### Interesting trends here!



|         |   | Input size |       |         | Laye   | er     |     | Outp | ut size |             |            |          |
|---------|---|------------|-------|---------|--------|--------|-----|------|---------|-------------|------------|----------|
| Layer   | С | ŀ          | 1 / W | filters | kernel | stride | pad | С    | H / W   | memory (KB) | params (k) | flop (M) |
| conv1   |   | 3          | 227   | 64      | 11     | 4      | 2   | 64   | 56      | 784         | 23         | 73       |
| pool1   |   | 64         | 56    |         | 3      | 2      | 0   | 64   | 27      | 182         | 0          | 0        |
| conv2   |   | 64         | 27    | 192     | 5      | 1      | 2   | 192  | 27      | 547         | 307        | 224      |
| pool2   |   | 192        | 27    |         | 3      | 2      | 0   | 192  | 13      | 127         | 0          | 0        |
| conv3   |   | 192        | 13    | 384     | 3      | 1      | 1   | 384  | 13      | 254         | 664        | 112      |
| conv4   |   | 384        | 13    | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 885        | 145      |
| conv5   |   | 256        | 13    | 256     | 3      | 1      | 1   | 256  | 13      | 169         | 590        | 100      |
| pool5   |   | 256        | 13    |         | 3      | 2      | 0   | 256  | 6       | 36          | 0          | 0        |
| flatten |   | 256        | 6     |         |        |        |     | 9216 |         | 36          | 0          | 0        |
| fc6     |   | 9216       |       | 4096    |        |        |     | 4096 |         | 16          | 37,749     | 38       |
| fc7     |   | 4096       |       | 4096    |        |        |     | 4096 |         | 16          | 16,777     | 17       |
| fc8     |   | 4096       |       | 1000    |        |        |     | 1000 |         | 4           | 4,096      | 4        |

Most of the **memory** usage is in the early convolution layers

Memory (KB)



Nearly all parameters are in

the fully-connected layers

Params (K)

40000

35000

30000

25000

20000

15000

10000

5000

pooling

Most **floating-point** ops occur in the convolution layers



**Justin Johnson** February 2, 2022 Lecture 8 - 50

# ImageNet Classification Challenge



# ImageNet Classification Challenge



### ZFNet: A Bigger AlexNet

#### ImageNet top 5 error: 16.4% -> 11.7%



AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error =(

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

# ImageNet Classification Challenge



# ImageNet Classification Challenge



#### VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

| Softmax        |  |  |  |  |  |  |  |
|----------------|--|--|--|--|--|--|--|
| FC 1000        |  |  |  |  |  |  |  |
| FC 4096        |  |  |  |  |  |  |  |
| FC 4096        |  |  |  |  |  |  |  |
| Pool           |  |  |  |  |  |  |  |
| 3x3 conv, 256  |  |  |  |  |  |  |  |
| 3x3 conv, 384  |  |  |  |  |  |  |  |
| Pool           |  |  |  |  |  |  |  |
| 3x3 conv, 384  |  |  |  |  |  |  |  |
| Pool           |  |  |  |  |  |  |  |
| 5x5 conv, 256  |  |  |  |  |  |  |  |
| 11x11 conv, 96 |  |  |  |  |  |  |  |
| Input          |  |  |  |  |  |  |  |
| AlexNet        |  |  |  |  |  |  |  |

| FC 4007       |  |
|---------------|--|
| FC 4096       |  |
| FC 4096       |  |
| Pool          |  |
| 3x3 conv, 512 |  |
| 3x3 conv, 512 |  |
| 3x3 conv, 512 |  |
| Pool          |  |
| 3x3 conv, 512 |  |
| 3x3 conv, 512 |  |
| 3x3 conv, 512 |  |
| Pool          |  |
| 3x3 conv, 256 |  |
| 3x3 conv, 256 |  |
| Pool          |  |
| 3x3 conv, 128 |  |
| 3x3 conv, 128 |  |
| Pool          |  |
| 3x3 conv, 64  |  |
| 3x3 conv, 64  |  |
| Input         |  |

|               | FC 1000       |
|---------------|---------------|
| Softmax       | FC 4096       |
| FC 1000       | FC 4096       |
| FC 4096       | Pool          |
| FC 4096       | 3x3 conv, 512 |
| Pool          | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | Pool          |
| Pool          | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| Pool          | Pool          |
| 3x3 conv, 256 | 3x3 conv, 256 |
| 3x3 conv, 256 | 3x3 conv, 256 |
| Pool          | Pool          |
| 3x3 conv, 128 | 3x3 conv, 128 |
| 3x3 conv, 128 | 3x3 conv, 128 |
| Pool          | Pool          |
| 3x3 conv, 64  | 3x3 conv, 64  |
| 3x3 conv, 64  | 3x3 conv, 64  |
| Input         | Input         |
| VGG16         | VGG19         |

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

February 2, 2022 **Justin Johnson** Lecture 8 - 56

#### VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

#### Network has 5 convolutional **stages**:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool

**AlexNet** 

FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool

VGG16

Softmax

FC 1000

Softmax

FC 1000

FC 4096

VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

**Justin Johnson** Lecture 8 - 57 February 2, 2022

#### VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

#### Option 1:

 $Conv(5x5, C \rightarrow C)$ 

Params: 25C<sup>2</sup>

FLOPs: 25C<sup>2</sup>HW

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

**AlexNet** 

FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool Pool Input Input VGG16 VGG19

Softmax

Softmax

FC 1000

FC 4096

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Justin Johnson Lecture 8 - 58 February 2, 2022

#### VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Option 1: Option 2:

Conv(5x5, C -> C) Conv(3x3, C -> C)

 $Conv(3x3, C \rightarrow C)$ 

Params: 25C<sup>2</sup> Params: 18C<sup>2</sup>

FLOPs: 25C<sup>2</sup>HW FLOPs: 18C<sup>2</sup>HW

Softmax FC 1000

FC 4096

FC 4096

Pool

3x3 conv. 384

Pool

7X3 CONV, 304

5x5 conv 256

11x11 conv, 96

Input

AlexNet

Softmax

FC 1000

FC 4096

Pool

3x3 conv, 512

3X3 CONV, 512

3x3 conv,

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Pool

3x3 conv. 128

SXS CUIIV, 120

Pool

3x3 conv, 64

3x3 conv, 64

IIIput

VGG16

VGG19

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

Pool

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

#### VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

| Option 1: Option |
|------------------|
| ODUON 1. ODUON   |

Conv(5x5, C -> C) Conv(3x3, C -> C)

 $Conv(3x3, C \rightarrow C)$ 

Params: 25C<sup>2</sup> Params: 18C<sup>2</sup>

FLOPs: 25C<sup>2</sup>HW FLOPs: 18C<sup>2</sup>HW

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

Softmax

**AlexNet** 

|               | FC 1000       |
|---------------|---------------|
| Softmax       | FC 4096       |
| FC 1000       | FC 4096       |
| FC 4096       | Pool          |
| FC 4096       | 3x3 conv, 512 |
| Pool          | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | Pool          |
| Pool          | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| 3x3 conv, 512 | 3x3 conv, 512 |
| Pool          | Pool          |
| 3x3 conv, 256 | 3x3 conv, 256 |
| 3x3 conv, 256 | 3x3 conv, 256 |
| Pool          | Pool          |
| 3x3 conv, 128 | 3x3 conv, 128 |
| 3x3 conv, 128 | 3x3 conv, 128 |
| Pool          | Pool          |
| 3x3 conv, 64  | 3x3 conv, 64  |
| 3x3 conv, 64  | 3x3 conv, 64  |
| Input         | Input         |
|               |               |

VGG16 VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Justin Johnson Lecture 8 - 60 February 2, 2022

#### VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C<sup>2</sup>

FLOPs: 36HWC<sup>2</sup>

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

**AlexNet** 

Softmax

Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool Pool Input VGG16 VGG19

Softmax

FC 1000

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Justin Johnson Lecture 8 - 61 February 2, 2022

#### VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Input: C x 2H x 2W Input: 2C x H x W

Layer: Conv(3x3, C->C) Conv(3x3, 2C -> 2C)

Memory: 4HWC Memory: 2HWC

Params: 9C<sup>2</sup> Params: 36C<sup>2</sup>

FLOPs: 36HWC<sup>2</sup> FLOPs: 36HWC<sup>2</sup>

Softmax FC 1000

FC 4096

FC 4096 Pool

3x3 conv. 256

3x3 conv, 384

Pool

5. 1

5x5 conv, 256

11x11 conv, 96

**AlexNet** 

Input

Softmax FC 1000 Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Pool

Pool

Pool

FC 4096

FC 4096

Pool

3X3 CONV, 512

2v2 copy 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256
Pool

3x3 conv, 128

3x3 conv, 120

Pool

3x3 conv, 64

3x3 conv, 64

трас

VGG16 VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Justin Johnson Lecture 8 - 62 February 2, 2022

#### VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C<sup>2</sup>

FLOPs: 36HWC<sup>2</sup>

Input: 2C x H x W

Conv(3x3, 2C -> 2C)

Memory: 2HWC

Params: 36C<sup>2</sup>

FLOPs: 36HWC<sup>2</sup>

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool

Softmax

AlexNet

Input

FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 Pool Pool Pool Pool Pool Pool Pool Pool

VGG16

VGG19

Softmax

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Justin Johnson Lecture 8 - 63 February 2, 2022

## AlexNet vs VGG-16: Much bigger network!



AlexNet total: 1.9 MB

VGG-16 total: 48.6 MB (25x)



AlexNet total: 61M

VGG-16 total: 138M (2.3x)



AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)

# ImageNet Classification Challenge



# ImageNet Classification Challenge



# GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation



## GoogLeNet: Aggressive Stem

**Stem network** at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)



# GoogLeNet: Aggressive Stem

**Stem network** at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

|          | Inp | ut size |         | Laye   | er     |     | Outpu | ut size |             |            |          |
|----------|-----|---------|---------|--------|--------|-----|-------|---------|-------------|------------|----------|
| Layer    | С   | H / W   | filters | kernel | stride | pad | С     | H/W     | memory (KB) | params (K) | flop (M) |
| conv     | 3   | 224     | 64      | . 7    | 2      | 3   | 64    | 112     | 3136        | 9          | 118      |
| max-pool | 64  | 112     |         | 3      | 2      | 1   | 64    | 56      | 784         | 0          | 2        |
| conv     | 64  | - 56    | 64      | 1      | 1      | 0   | 64    | 56      | 784         | 4          | 13       |
| conv     | 64  | - 56    | 192     | 3      | 1      | 1   | 192   | 56      | 2352        | 111        | 347      |
| max-pool | 192 | 56      |         | 3      | 2      | 1   | 192   | 28      | 588         | 0          | 1        |

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

# GoogLeNet: Aggressive Stem

**Stem network** at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

|          | Inp | ut size |         | Laye   | er     |     | Outpu | ut size |             |            |          |
|----------|-----|---------|---------|--------|--------|-----|-------|---------|-------------|------------|----------|
| Layer    | C   | H / W   | filters | kernel | stride | pad | С     | H/W     | memory (KB) | params (K) | flop (M) |
| conv     | 3   | 224     | 64      | . 7    | 2      | 2 3 | 64    | 112     | 3136        | 9          | 118      |
| max-pool | 64  | 112     |         | 3      | 2      | . 1 | . 64  | - 56    | 784         | 0          | 2        |
| conv     | 64  | 56      | 64      | . 1    | 1      | . 0 | 64    | - 56    | 784         | . 4        | 13       |
| conv     | 64  | 56      | 192     | 2 3    | 1      | . 1 | 192   | 56      | 2352        | 111        | 347      |
| max-pool | 192 | 56      | ,       | 3      | 2      | . 1 | 192   | 28      | 588         | 0          | 1        |

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

Compare VGG-16:

Memory: 42.9 MB (5.7x)

Params: 1.1M (8.9x)

MFLOP: 7485 (17.8x)

# GoogLeNet: Inception Module

#### **Inception module**

Local unit with parallel branches

Local structure repeated many times throughout the network



# GoogLeNet: Inception Module

#### **Inception module**

Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)



# GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

|          | Input | size |         | Lay    | er     |     | Outpu | t size |             |            |          |
|----------|-------|------|---------|--------|--------|-----|-------|--------|-------------|------------|----------|
| Layer    | С     | H/W  | filters | kernel | stride | pad | С     | H/W    | memory (KB) | params (k) | flop (M) |
| avg-pool | 1024  | . 7  |         | 7      | 1      | 0   | 1024  | 1      | 4           | 0          | 0        |
| fc       | 1024  |      | 1000    |        |        |     | 1000  |        | 0           | 1025       | 1        |



Justin Johnson Lecture 8 - 73 February 2, 2022

# GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

|          | Input size |     |         | Lay    | er     |     | Outpu | t size |             |            |          |
|----------|------------|-----|---------|--------|--------|-----|-------|--------|-------------|------------|----------|
| Layer    | С          | H/W | filters | kernel | stride | pad | С     | H/W    | memory (KB) | params (k) | flop (M) |
| avg-pool | 1024       | 7   |         | 7      | 1      | 0   | 1024  | 1      | 4           | . 0        | 0        |
| fc       | 1024       |     | 1000    |        |        |     | 1000  |        | 0           | 1025       | 1        |

#### Compare with VGG-16:

| Layer   | С     | H/W | filters | kernel | stride | pad | С     | H/W | memory (KB) | params (K) | flop (M) |
|---------|-------|-----|---------|--------|--------|-----|-------|-----|-------------|------------|----------|
| flatten | 512   | 7   |         |        |        |     | 25088 |     | 98          |            |          |
| fc6     | 25088 |     |         | 4096   |        |     | 4096  |     | 16          | 102760     | 103      |
| fc7     | 4096  |     |         | 4096   |        |     | 4096  |     | 16          | 16777      | 17       |
| fc8     | 4096  |     |         | 1000   |        |     | 1000  |     | 4           | 4096       | 4        |



Justin Johnson Lecture 8 - 74 February 2, 2022

# GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick



# ImageNet Classification Challenge



# ImageNet Classification Challenge



Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model



Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?



In fact the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting** 

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

**Hypothesis**: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

**Hypothesis**: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

**Solution**: Change the network so learning identity functions with extra layers is easy!

**Solution**: Change the network so learning identity functions with extra layers is easy!





**Residual Block** 

**Solution**: Change the network so learning identity functions with extra layers is easy!



A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels



Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

|          | lr | put  |         |        |        |     |    | ıtput |             |        |      |
|----------|----|------|---------|--------|--------|-----|----|-------|-------------|--------|------|
|          | S  | size |         | Layer  |        |     | S  | size  |             |        |      |
|          |    |      |         |        |        |     |    |       |             | params | flop |
| Layer    | С  | H/W  | filters | kernel | stride | pad | С  | H/W   | memory (KB) | (k)    | (M)  |
| conv     | 3  | 224  | 64      | 7      | 2      | 3   | 64 | 112   | 3136        | 9      | 118  |
| max-pool | 64 | 112  |         | 3      | 2      | 1   | 64 | 56    | 784         | 0      | 2    |



Like GoogLeNet, no big fully-connected-layers: instead use **global average pooling** and a single linear layer at the end



#### ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

**GFLOP: 1.8** 

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision



#### ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

**GFLOP: 1.8** 

#### ResNet-34:

Stem: 1 conv layer

Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6



He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

#### ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

**GFLOP: 1.8** 

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

#### ResNet-34:

Stem: 1 conv layer

Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6

#### **VGG-16**:

ImageNet top-5 error: 9.62

GFLOP: 13.6



Justin Johnson Lecture 8 - 90 February 2, 2022

## Residual Networks: Basic Block



"Basic" Residual block

## Residual Networks: Basic Block



## Residual Networks: Bottleneck Block



Conv(1x1, C->4C) Conv(3x3, C->C)Conv(1x1, 4C->C) "Bottleneck"

Residual block

## Residual Networks: Bottleneck Block



|           |       |        | Stage 1 |        | Stage 2 |        | Stage 3 |        | Stage 4 |        |        |       |           |     |
|-----------|-------|--------|---------|--------|---------|--------|---------|--------|---------|--------|--------|-------|-----------|-----|
|           | Block | Stem   |         |        |         |        |         |        |         |        | FC     |       | ImageNe   | et  |
|           | type  | layers | Blocks  | Layers | Blocks  | Layers | Blocks  | Layers | Blocks  | Layers | layers | GFLOP | top-5 err | or  |
| ResNet-18 | Basic | 1      | 2       | 4      | 2       | 4      | 2       | 4      | 2       | 4      | 1      | 1.8   | 10        | .92 |
| ResNet-34 | Basic | 1      | 3       | 6      | 4       | 8      | 6       | 12     | 3       | 6      | 1      | 3.6   | 8         | .58 |

FC 1000 Pool 3x3 conv, 512 3x3 conv, 512, /2 3x3 conv, 128 3x3 conv. 128 3x3 conv, 128 3x3 conv, 64 3x3 conv. 64 3x3 conv. 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

|           |        |        | Stage 1 |        | Stage 2 |        | Stage 3 |        | Stage 4 |        |        |       |             |
|-----------|--------|--------|---------|--------|---------|--------|---------|--------|---------|--------|--------|-------|-------------|
|           | Block  | Stem   |         |        |         |        |         |        |         |        | FC     |       | ImageNet    |
|           | type   | layers | Blocks  | Layers | Blocks  | Layers | Blocks  | Layers | Blocks  | Layers | layers | GFLOP | top-5 error |
| ResNet-18 | Basic  | 1      | 2       | 4      | - 2     | 4      | 2       | 4      | 2       | 4      | 1      | 1.8   | 10.92       |
| ResNet-34 | Basic  | 1      | 3       | 6      | 4       | 8      | 6       | 12     | . 3     | 6      | 1      | 3.6   | 8.58        |
| ResNet-50 | Bottle | 1      | 3       | 9      | 4       | 12     | 6       | 18     | 3       | 9      | 1      | 3.8   | 7.13        |

FC 1000 Pool 3x3 conv, 512 3x3 conv, 512, /2 3x3 conv. 64 3x3 conv. 64 3x3 conv. 64 3x3 conv. 64 3x3 conv, 64 3x3 conv, 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

|            |        |        | Stag   | ge 1   | Stag   | Stage 2 |        | Stage 3 |        | Stage 4 |        |       |             |
|------------|--------|--------|--------|--------|--------|---------|--------|---------|--------|---------|--------|-------|-------------|
|            | Block  | Stem   |        |        |        |         |        |         |        |         | FC     |       | ImageNet    |
|            | type   | layers | Blocks | Layers | Blocks | Layers  | Blocks | Layers  | Blocks | Layers  | layers | GFLOP | top-5 error |
| ResNet-18  | Basic  | 1      | 2      | 4      | 2      | 4       | 2      | 4       | 2      | 4       | 1      | 1.8   | 10.92       |
| ResNet-34  | Basic  | 1      | 3      | 6      | 4      | 8       | 6      | 12      | 3      | 6       | 1      | 3.6   | 8.58        |
| ResNet-50  | Bottle | 1      | 3      | 9      | 4      | 12      | 6      | 18      | 3      | 9       | 1      | 3.8   | 7.13        |
| ResNet-101 | Bottle | 1      | 3      | 9      | 4      | 12      | 23     | 69      | 3      | 9       | 1      | 7.6   | 6.44        |
| ResNet-152 | Bottle | 1      | 3      | 9      | 8      | 24      | 36     | 108     | 3      | 9       | 1      | 11.3  | 5.94        |

FC 1000 Pool 3x3 conv, 512 3x3 conv, 512, /2 3x3 conv. 64 3x3 conv. 64 3x3 conv. 64 3x3 conv. 64 3x3 conv, 64 3x3 conv, 64 Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today!

#### MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
  - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
  - ImageNet Detection: 16% better than 2nd
  - ImageNet Localization: 27% better than 2nd
  - COCO Detection: 11% better than 2nd
  - COCO Segmentation: 12% better than 2nd

# Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block



Note ReLU after residual:

Cannot actually learn identity function since outputs are nonnegative!

Note ReLU inside residual:

Can learn true identity function by setting Conv weights to zero!



He et al, "Identity mappings in deep residual networks", ECCV 2016

# Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block



Slight improvement in accuracy (ImageNet top-1 error)

ResNet-152: 21.3 vs **21.1** 

ResNet-200: 21.8 vs **20.7** 

Not actually used that much in practice



He et al, "Identity mappings in deep residual networks", ECCV 2016



#### Inception-v4: Resnet + Inception!

155M-

40









# Top-1 accuracy [%] 55 AlexNet NIN ENet Net 18 16 19 34 50 101 152 NA GOODRESNET VGG VGG 19 ResNet SNet Net 152 Inception VA

# GoogLeNet: Very efficient!





AlexNet: Low compute, lots of parameters





ResNet: Simple design, moderate efficiency, high accuracy



# ImageNet Classification Challenge



# ImageNet Classification Challenge



CNN architectures have continued to evolve!

We will see more in Lecture 11



# Next Time: How to Train your CNN

- Activation functions
- Initialization
- Data preprocessing
- Data Augmentation
- Regularization