

root3Slides.pdf Page 2 of 9

Algorithm handles for
$$f(x)$$
 and $f'(x)$

[x, k] = newton (f, df, xo, tol, kmax)

x = xo; err = 100; k = 0

while err > tol

y = $f(x_0)$

x = xo - $y/f'(x_0)$

err = max (abs(y), abs(x-xo))

xo = x

k = k+1; if k > kmax, return

end

Created with Doceri

In while loop
$$f = f(x_0)$$

bern = ferr ferr < berr $f(x_0)$

err = max (abs(y), abs(x-x_0))

backward proxy for error

could have used similar in fixed-point Heration

err = max (abs(x_0-y), abs(x-x_0))

not in Narration

really same

thing for FPI $f(x_0)$

Convergence (CVG)

Compare
$$fixed$$
-point to Newton. Consider

 $f(x) = 0$ or $x - g(x) = 0$
 $f(x)$
 $x_{n+1} = x_n - f(x_n)$
 $f'(x_n)$
 $x_{n+1} = g(x_n)$

How fast do these

we thought CVG?

Created with Doceni

root3Slides.pdf Page 7 of 9

Newton's method

$$x_{11} = x_{11} - f(x_{11})$$
 $f'(x_{11})$
 $H(x_{11})$

Where $H(x) = x - f(x)$. Notice

 $f'(x)$
 $f'(x)$

Closer look: write
$$r = x_0 + (r - x_0)$$
 $0 = f(x_0 + (r - x_0))$
 $= f(x_0) + f'(x_0)(r - x_0) + \frac{1}{2}f''(\xi)(r - x_0)$

where ξ lies between x_0 and $x_0 + (r - x_0)$.

Taylor series x_0 remainder

Now Reapparate

 $x_0 - f(x_0) - r = \frac{1}{2}f''(\xi)(r - x_0)^2$
 $f'(x_0) - r = \frac{1}{2}f''(\xi)(r - x_0)^2$

From last slide
$$x_{n} - f(x_{n}) - r = \frac{1}{2} f''(\S) (r - x_{n})^{2}$$

$$f'(x_{n})$$

$$x_{n+1} - r = \frac{1}{2} f''(\S) (r - x_{n})^{2}$$

$$x_{n+1} - r = \frac{1}{2} f'(x_{n})$$

$$x_{n+1} - r = \frac{1}{2} f''(x_{n})$$

$$x_{n+1} - r = \frac{1}{2} f''(x_{n})$$