progetto

October 5, 2021

1 Predizione temperatura media della superficie di un Paese in un determinato periodo

Corso di laurea triennale di Ingegneria e Scienze Informatiche, Università di Bologna, sede di Cesena

Programmazione di Applicazioni Data Intensive

Progetto d'esame di Francesco Ercolani

2 1a. Descrizione del problema e comprensione dei dati

L'obiettivo di questo progetto è di realizzare un modello che, dato un Paese ed un periodo di tempo, sia in grado di predire la temperatura media della superficie in gradi Celsius.

Per fare ciò, si utilizzano i dati raccolti dal 1750 ad oggi.

```
[11]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
  import os.path
```

Carichiamo i due database da cui andremo ad estrarre i dati: il primo, "GlobalLandTemperatures-ByCountry.csv", mi fornisce le informazioni necessarie riguardo alle temperature, mentre il secondo "owid-co2-data.csv", mi dà le informazioni riguardanti la produzione di gas.

```
[33]: file = "GlobalLandTemperaturesByCountry.csv"
  file1 = "co2_data.cvs"
  if not os.path.exists(file):
    from urllib.request import urlretrieve
    urlretrieve("https://raw.githubusercontent.com/erco99/PADI-progetto/main/
    →GlobalLandTemperaturesByCountry.csv", file)
    urlretrieve("https://raw.githubusercontent.com/owid/co2-data/master/
    →owid-co2-data.csv", file1)
```

```
[43]: temperatures = pd.read_csv(file, index_col="date", parse_dates=["date"])

[44]: gas_consumptions = pd.read_csv(file1, index_col="year")
```

Mostriamo i dataset appena caricati:

```
[45]: temperatures.head(5)
```

[45]:		averageTemperature	${\tt averageTemperatureUncertainty}$	country
	date			
	1743-11-01	4.384	2.294	Åland
	1743-12-01	NaN	NaN	Åland
	1744-01-01	NaN	NaN	Åland
	1744-02-01	NaN	NaN	Åland
	1744-03-01	NaN	NaN	Åland

```
[46]: gas_consumptions.head(5)
```

[46]:	iso_code	country	•••	energy_per_capita	energy_per_gdp	
year			•••			
1949	AFG	Afghanistan	•••	NaN	NaN	
1950	AFG	Afghanistan	•••	NaN	NaN	
1951	AFG	Afghanistan	•••	NaN	NaN	
1952	AFG	Afghanistan	•••	NaN	NaN	
1953	AFG	Afghanistan		NaN	NaN	

[5 rows x 57 columns]

Notiamo che il primo dataset registra i dati mese per mese, mentre il secondo anno per anno. È quindi necessario, per la creazione di un dataset unico, fare una media annuale dei valori registrati anno per anno per ogni Paese all'interno del dataset **temperatures**.

Inoltre, non andremo a considerare tutte le colonne del dataset gas_consumptions, ma soltanto quelle relative alla produzione di co2, metano e ossido di diazoto.

```
[47]: temperatures['year'] = temperatures.index.year
temperatures = temperatures.groupby(['country', 'year']).mean()
temperatures.reset_index(inplace=True)
temperatures.set_index('year', inplace=True)
```

```
[48]: temperatures.head()
```

	country	${\tt averageTemperature}$	${\tt average Temperature Uncertainty}$
year			
1838	Afghanistan	18.379571	2.756000
1839	Afghanistan	NaN	NaN
1840	Afghanistan	13.413455	2.502000
1841	Afghanistan	13.997600	2.452100
1842	Afghanistan	15.154667	2.381222
	1838 1839 1840 1841	year 1838 Afghanistan 1839 Afghanistan 1840 Afghanistan 1841 Afghanistan	year 1838 Afghanistan 18.379571 1839 Afghanistan NaN 1840 Afghanistan 13.413455 1841 Afghanistan 13.997600

Per creare il dataset finale sul quale si potrà procedere con l'analisi, uniamo i due dataframe **temperatures** e **gas_consumptions** su year e country, e lasciamo soltanto le colonne che ci interessano, ovvero quelle più importanti per il nostro scopo.

```
[49]: dataset = pd.merge(temperatures, gas_consumptions, on=['year', 'country'])
dataset = dataset[['country', 'averageTemperature',

→'averageTemperatureUncertainty', 'co2', 'methane', 'nitrous_oxide',

→'population']]
```

Abbiamo così ottenuto il dataset completo.

```
[50]: dataset.tail()
```

```
[50]:
                     averageTemperature ...
                                             nitrous_oxide population
      vear
      2009
           Zimbabwe
                               21.377250
                                                      6.70 12526964.0
                               21.986250 ...
      2010 Zimbabwe
                                                      7.11 12697728.0
                               21.602417
      2011 Zimbabwe
                                                      7.26 12894323.0
      2012 Zimbabwe
                               21.521333 ...
                                                      6.92 13115149.0
      2013 Zimbabwe
                               20.710750 ...
                                                      6.67 13350378.0
```

[5 rows x 7 columns]

Come si può osservare sopra, le **features** disponibili sono: 1. **year**: anno in cui sono stati registrati i dati 2. **country**: paese a cui fanno riferimento i dati 3. **averageTemperature**: temperatura media 4. **averageTemperatureUncertainty**: incertezza media calcolata con un livello di confidenza del 95% della temperatura media 5. **co2**: produzione annuale di diossido di carbonio (CO2) misurata in milioni di tonnellate 6. **methane**: emissione annuale di metano misurata in milioni di tonnellate di CO2 equivalente 7. **nitrous_oxide**: emissione annuale di ossido di diazoto misurata in milioni di tonnellate di CO2 equivalente 8. **population**: popolazione totale del rispettivo paese nel rispettivo anno

Le features, a parte year e country che sono categoriche, sono continue.

3 1b. Analisi esplorativa dei dati

3.0.1 Esplorazione generale

Analizziamo ora i dati per avere una visione più ottimale dell'obiettivo.

```
[51]: print("Country: " + str(dataset["country"].nunique()))
print("Years: " + str(dataset.index.nunique()))
```

Country: 188
Years: 264

Vediamo che il dataset contiene dati riguardanti 187 Paesi e il range temporale massimo entro il quale sono stati raccolti dati è di 264 anni. Osserviamo quali sono i Paesi all'interno del dataset di cui si hanno più dati, ovvero che hanno il range temporale più alto.

```
[52]: ax = dataset["country"].value_counts()[:20].plot.bar(figsize=(25,5))
ax.set_title("Paesi con più dati disponibili")
plt.ylabel('time range')
```


Come si può notare, il Paese con più dati registrati è il Regno Unito. È importante sottolinere inoltre che all'interno del dataset sono presenti anche i dati relativi ai continenti, e potranno essere trattati separatamente più avanti.

Allo stesso modo, notiamo che Puerto Rico è il Paese con meno dati disponibili.

```
[54]: continents = ['Europe', 'Africa', 'Asia', 'North America', 'South America', 

→'Oceania']
```


Possiamo notare come la produzione di CO2 sia sensibilmente aumentata negli anni in tutti i continenti (escluso l'Antartide per mancanza di dati).

3.0.2 Esplorazione relazioni fra feature

Mettiamo ora a confronto l'aumento di produzione di CO2 con l'aumento della temperatura media nei continenti:

```
[56]: for continent in continents:
    fig, ax = plt.subplots(figsize=(15,5))
    ax.plot(dataset.query("country == @continent").index, dataset.query("country_\_\)
    \[ \times== @continent")[['co2']].values, color="blue")
    ax.set_xlabel("year")
    ax.set_ylabel("co2 value", color="blue")
    ax.set_title('co2 and temperature growth in ' + continent)
    ax2 = ax.twinx()
    ax2.plot(dataset.query("country == @continent").index, dataset.query("country_\_\)
    \[ \times== @continent")[['averageTemperature']].values, color="red")
    ax2.set_ylabel("average temperature", color="red")
    plt.show()
```


A sinistra abbiamo i valori di produzione di CO2, mentre a destra quelli della temperatura media, ciascuno di essi legato alla curva del colore della propria label. È evidente, in modo più marcato in South America, Oceania, Asia ed Africa, che ad un aumento della produzione di CO2 è corrisposto l'aumento della temperatura media.

Non è possibile fare una correlazione simile a causa della mancanza di dati sui continenti riguardanti metano e ossido di diazoto (sono presenti soltanto dati sui singoli Paesi).

I dati su metano e ossido di diazoto tuttavia sono presenti, per i singoli Paesi, soltanto dal 1989 in su. Per fare una giusta analisi bisogna tenere conto dei limiti imposti tramite trattati internazionali sulla produzione di gas inquinanti. Osserviamo quindi la differenza di crescita di questi due gas tra Paesi sottoposti a limiti e non:

```
[58]: plot_growth('United Kingdom', 'methane')
plot_growth('United Kingdom', 'nitrous_oxide')
plt.show()
```


Nel Regno Unito negli ultimi 25 anni c'è stata una decrescita di produzione sia di metano che di ossido di diazoto.

```
[59]: plot_growth('China', 'methane')
  plot_growth('China', 'nitrous_oxide')
  plt.show()
```


In Cina si è avuta invece una crescita, diretta conseguenza della mancanza o insufficienza di limiti.

```
[60]: def plot_mn_growth(country):
    query = dataset.query("country == @country");
    query1 = dataset.query("country == @country and year > 1990");

fig, ax = plt.subplots(figsize=(15,5))
    ax.plot(query1.index, query1[['averageTemperature']].values, color="red")
    ax.set_xlabel("year")
    ax.set_ylabel("temperature", color="red")
    ax.set_title('methane, nitrous oxide and temperature growth in ' + country)
    ax2 = ax.twinx()
    ax2.plot(query.index, query[['methane']].values, label="methane")
    ax2.plot(query.index, query[['nitrous_oxide']].values, label='nitrous oxide')
    ax2.set_ylabel("methane and nitrous oxide values")
    ax2.legend(loc=0)
```

```
[61]: plot_mn_growth('China')
   plot_mn_growth('Germany')
   plt.show()
```


I grafici mostrano come in Cina apparentemente una crescita di produzione di metano corrisponda con la crescita della temperatura media degli ultimi anni. Il metano è un inquinante di breve durata e quindi è bene tenerlo in considerazione in relazione ad aumenti/diminuzioni della temperatura drastici. In Germania, al contrario, la temperatura è rimasta stabile negli ultimi 25 anni.

3.0.3 Data cleaning

Vediamo quanti valori nulli sono presenti nel dataset:

[62]:	dataset.isna().sum()		
[62]:	country	0	
	averageTemperature	93	
	averageTemperatureUncertainty	66	
	co2	799	
	methane	14892	
	nitrous_oxide	14892	
	population	257	
	dtype: int64		

Il numero maggiore di valori nulli si ha nelle colonne indicanti la produzione di metano e di ossido di diazoto, infatti come già spiegato in precedenza i valori di queste due colonne sono stati registrati soltanto a partire dal 1989. Per il nostro obiettivo però è importante che non ci siano anni in cui non sono presenti nè dati su metano e ossido di diazoto, nè su CO2 e temperatura media. Procediamo quindi ad eliminare le righe corrispondenti:

```
[63]: dataset.dropna(subset=['averageTemperature', 'averageTemperatureUncertainty', □ → 'co2'], inplace=True)
```

Procediamo anche ad eliminare le righe i cui la colonna population ha valore nullo.

```
[64]: dataset.dropna(subset=['population'], inplace=True)
[65]: dataset.isna().sum()
[65]: country 0
```

[65]: country 0
averageTemperature 0
averageTemperatureUncertainty 0
co2 0
methane 13866
nitrous_oxide 13866
population 0
dtype: int64

[66]: dataset.nunique()

[66]:	country	185
	averageTemperature	17670
	averageTemperatureUncertainty	11040
	co2	11309
	methane	2528
	nitrous_oxide	1810
	population	17921
	dtune: int6/	

dtype: int64

Il dataset presenta un numero sufficiente di valori distinti.

Tuttavia, per la generazione dei modelli bisogna che non ci siano valori nulli. Con l'eliminazione delle righe in cui metano e diossido non hanno valori, si eliminerebbero troppi dati sulla co2, quindi creiamo due dataset distinti:

Il primo, senza i dati sul metano e il diossido

```
[67]: dataset_co2 = dataset.copy().drop(columns=["methane", "nitrous_oxide"])
```

Il secondo, senza i dati sulla co2, e quindi comprendenti il range temporale dal 1989 in poi per ogni paese

```
[68]: dataset_mn = dataset.copy().dropna(subset=["methane", "nitrous_oxide"])
dataset_mn.drop(columns=["co2"], inplace=True)
```

#2. Feature preprocessing

3.0.4 Correlazioni tra features

L'obiettivo è quello di ottenere un modello di regressione che sia in grado di stimare la temperatura media di un determinato Paese. In questa fase analizziamo eventuali dipendenze o correlazioni tra features.

```
[69]: def plot_correlation(dataset):
    cmap = sns.diverging_palette(220, 10, as_cmap=True)
    mask = np.zeros_like(dataset, dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True

    f, ax = plt.subplots(figsize=(11, 9))
    sns.heatmap(dataset, mask=mask, cmap=cmap, vmax=.3, center=0,annot = True, usquare=True, linewidths=.5, cbar_kws={"shrink": .5});
```

Iniziamo mostrando la correlazione tra features nel dataset co2:

```
[70]: plot_correlation(dataset_co2.corr())
```


Come osserviamo, i dati sembrano non coincidere con ciò che è stato evidenziato nella fase precedente, questo perché ogni Paese ha una temperatura diversa e quindi, ad esempio, se in italia la produzione di CO2 nel 1980 è stata di 386 e la temperatura media era di 12 gradi, in un altro Paese con lo stesso livello di produzione di co2 può corrispondere una temperatura media totalmente diversa per motivi geografici. Proviamo allora a mostare la correlazione tra features in un singolo Paese:

```
[71]: plot_correlation(dataset_co2.query("country == 'China'").corr())
```

averageTemperature -

averageTemperature e co2: temperatura media e produzione di CO2 sono correlate, ad una produzione maggiore di co2 corrisponde un aumento della temperatura.

averageTemperature e population: notiamo come anche il valore della popolazione di un Paese sia correlato alla temperatura media, questo probabilmente perché all'aumento della popolazione corrisponde un aumento dei consumi.

population e co2: si conferma la tesi accennata sopra. L'aumento della popolazione di un Paese genera anche un aumento della produzione dei consumi e di conseguenza anche di CO2.

Guardiamo ora la correlazione tra features in dataset mn:

```
[72]: plot_correlation(dataset_mn.query("country == 'China'").corr())
```

averageTemperature -

Come già spiegato, dataset_mn contiene soltanto dati dal 1989 in su e quindi è facile che alcune relazioni non siano veritiere, prendiamo allora in esame soltanto le più rilevanti.

methane and nitrous_oxide: metano e diossido di diazoto sono entrambi collegati all'intensificazione della produzione di cibo, ed è per questo che aumentano a livelli simili. population e methane/nitrous_oxide: anche metano e diossido di diazoto sono strettamente collegati ad un aumento della popolazione.

averageTemperature e methane/nitrous_oxide: la relazione tra la temperatura e il metano/diossido di diazoto è meno evidente rispetto a quella con la CO2, è tuttavia presente.

3.0.5 Divisione dei dati

Procediamo ora con la definizione dei metodi per la divisione dei dati che ci servirà per la modellazione.

[73]: from sklearn.model_selection import train_test_split

```
[74]: def dataset_split(dt):
    dtt = dt.copy()
    return train_test_split(
        dtt.drop(["averageTemperature"], axis=1),
        dtt["averageTemperature"],
        test_size=1/3, random_state=42
    )
```

```
[75]: def country_drop(dt):
    dt.drop(columns='country', inplace=True)
```

Prendendo l'intero dataset per il training non è una buona idea viste le differenze geografiche tra Paesi, e quindi le differenze di temperatura tra essi. Considerato questo, prendiamo un insieme di Paesi con temperatura media simile così da avere un dataset più vasto rispetto ad uno con i soli dati di un singolo Paese. Si può addestrare il modello anche sui dati di un solo Paese, però il training non sarebbe ottimale.

Selezioniamo i Paesi con una temperatura media compresa tra i 25.2 e 25.9 gradi:

```
[76]: sel = dataset.groupby("country").mean().query("averageTemperature > 25.2 & → averageTemperature < 25.9 ").filter(['country']).index print(sel)
```

```
[77]: co2_pred_test = dataset_co2.query("country in @sel")
mn_pred_test = dataset_mn.query("country in @sel")
```

```
[78]: dataset_co2_x_train, dataset_co2_x_val, dataset_co2_y_train, dataset_co2_y_val_u 

-= dataset_split(dataset_co2.query("country in @sel"))

dataset_mn_x_train, dataset_mn_x_val, dataset_mn_y_train, dataset_mn_y_val =_u
-dataset_split(dataset_mn.query("country in @sel"))
```

```
[79]: country_drop(dataset_co2_x_train) country_drop(dataset_co2_x_val) country_drop(dataset_mn_x_train) country_drop(dataset_mn_x_val)
```

```
[80]: dataset_co2_y_val = dataset_co2_y_val.astype('float')
  dataset_co2_y_train = dataset_co2_y_train.astype('float')

dataset_mn_y_val = dataset_mn_y_val.astype('float')
  dataset_mn_y_train = dataset_mn_y_train.astype('float')
```

4 3. Generazione modelli

```
[81]: from sklearn.linear_model import Perceptron
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
from sklearn.model_selection import KFold
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
```

```
[82]: def print_results(mod, xval, yval, name):
    print(name + ' score: {:.4f}%'.format(mod.score(xval, yval) * 100))
```

Prima di procedere con la generazione dei modelli, è bene sottolineare un dettaglio molto importante. La variazione della temperatura media di un Paese non è nell'ordine di numeri molto alti e spesso oscilla durante gli anni. Per alcuni Paesi l'aumento legato alla crescita di produzione di gas inquinanti è molto più evidente rispetto ad altri, ma è comunque un aumento di massimo 2-3 gradi. È necessario sottolineare questo in quanto è la motivazione per cui su un grafico in cui l'asse delle x è la linea temporale, e quello delle y la temperatura media, i dati sono sparsi, è proprio perché la temperatura è in oscillazione. Ciò è quindi la ragione per cui gli score dei modelli saranno bassi: il valore della temperatura media di un Paese varia molto di anno in anno.

4.0.1 Linear Regression

co2 dataset score: 15.7591%

4.0.2 Linear Regression with Polynomial features

co2 dataset score: 19.8788% methane and nitrous oxide dataset score: 22.8203%

4.0.3 Ridge Regression

co2 dataset score: 15.6583% methane and nitrous oxide dataset score: 15.5230%

4.0.4 Ridge Regression with Polynomial features

co2 dataset score: 19.0698% methane and nitrous oxide dataset score: 21.2460%

5 4. Valutazione dei modelli

In questa fase si procede con la valutazione dei modelli precedentemente generati al fine di avere una migliore visione su quale sarà il modello migliore. I modelli Ridge e Linear con feature polinomiali sembrano dare risultati migliori, quindi valutiamo questi due.

Osserviamo prima i dati riguardanti il dataset co2.

```
ridge = Pipeline([
          ("poly", PolynomialFeatures(include_bias=False)),
          ("scale", StandardScaler()),
         ("linreg", Ridge())
     ])
     ridge.fit(dataset_co2_x_train, dataset_co2_y_train);
     ridge mn = Pipeline([
         ("poly", PolynomialFeatures(include_bias=False)),
         ("scale", StandardScaler()),
         ("linreg", Ridge())
     ])
     ridge_mn.fit(dataset_mn_x_train, dataset_mn_y_train);
     Definiamo una funzione per mostrare le informazioni utili per mettere a confronto i modelli:
[89]: def relative_error(y_true, y_pred):
         return np.mean(np.abs((y_true - y_pred) / y_true))
[90]: def print_info(x, y, mod):
       print("Mean squared error: {:.5}".format(mean_squared_error(mod.predict(x),_
      →y)))
       print("Relative error: {:.5%}".format(relative_error(mod.predict(x), y)))
       print("R-squared coefficient: {:.5}".format(mod.score(x, y)))
[91]: print("Linear Regression co2 dataset")
     print_info(dataset_co2_x_train, dataset_co2_y_train, linear)
     print("----")
     print("Validation:")
     print_info(dataset_co2_x_val, dataset_co2_y_val, linear)
     Linear Regression co2 dataset
     Mean squared error: 0.15929
     Relative error: 1.23175%
     R-squared coefficient: 0.19879
     _____
     Validation:
     Mean squared error: 0.16293
     Relative error: 1.23757%
     R-squared coefficient: 0.095199
[92]: print("Ridge Regression co2 dataset")
     print_info(dataset_co2_x_train, dataset_co2_y_train, ridge)
     print("----")
     print("Validation:")
     print_info(dataset_co2_x_val, dataset_co2_y_val, ridge)
```

Ridge Regression co2 dataset Mean squared error: 0.15952 Relative error: 1.23224%

R-squared coefficient: 0.19763

Validation:

Mean squared error: 0.16274 Relative error: 1.23393%

R-squared coefficient: 0.096219

Notiamo come i due modelli non differiscano di tanto. Come spiegato in precedenza, gli score dei modelli sono bassi per via della variabilità dei valori; tuttavia però il **mean squared errore** ed il **relative error** sono a livelli buoni sia per il training che per il validation.

Vediamo ora i dati riguardi il dataset methane and nitrous oxide:

```
[93]: print("Linear Regression methane and nitrous oxide dataset")
print_info(dataset_mn_x_train, dataset_mn_y_train, linear_mn)
print("-----")
print("Validation:")
print_info(dataset_mn_x_val, dataset_mn_y_val, linear_mn)
```

Linear Regression methane and nitrous oxide dataset

Mean squared error: 0.12641
Relative error: 1.00213%
R-squared coefficient: 0.2282

Validation:

Mean squared error: 0.13914 Relative error: 1.14046% R-squared coefficient: 0.1851

```
[94]: print("Ridge Regression methane and nitrous oxide dataset")
    print_info(dataset_mn_x_train, dataset_mn_y_train, ridge_mn)
    print("-----")
    print("Validation:")
    print_info(dataset_mn_x_val, dataset_mn_y_val, ridge_mn)
```

Ridge Regression methane and nitrous oxide dataset

Mean squared error: 0.13107 Relative error: 1.03184%

R-squared coefficient: 0.19973

Validation:

Mean squared error: 0.13927 Relative error: 1.14179%

R-squared coefficient: 0.18436

Per quanto riguarda il secondo dataset, il modello lineare sembra essere leggermente migliore.

6 5. Analisi del modello migliore

Dalla valutazione appena effettuata dei due modelli è emerso che le differenze sono minime. Come modello migliore per il dataset co2 scegliamo però il Ridge in quanto è più generico, mentre per il secondo dataset scegliamo il Linear.

Andiamo ora a stampare le previsioni per i Paesi selezionati per l'anno 2013.

	country	${\tt averageTemperature}$	•••	co2	population
year			•••		
2013	Bahamas	26.011667	•••	2.884	367162.0
2013	Bangladesh	25.967500		61.782	152761413.0
2013	Belize	26.213333		0.476	345707.0
2013	Central African Republic	26.210875		0.286	4447945.0
2013	Cuba	26.250444		27.748	11282722.0
2013	El Salvador	25.910778		6.094	6266076.0
2013	Equatorial Guinea	25.590500		7.720	1076412.0
2013	Fiji	25.941375		1.316	865602.0
2013	Indonesia	26.467000		411.191	251805314.0
2013	Kuwait	27.273375		93.583	3526382.0
2013	Liberia	26.314000	•••	0.877	4248337.0
2013	Niue	26.047500	•••	0.007	1606.0
2013	Venezuela	25.912875		182.850	29781046.0

[13 rows x 5 columns]

```
country
                                  temp
                    Bahamas 25.478302
0
1
                 Bangladesh 25.845080
2
                     Belize
                             25.440463
3
   Central African Republic
                             25.587392
4
                       Cuba 25.638368
5
                El Salvador
                             25.535850
6
          Equatorial Guinea 25.505982
7
                       Fiji 25.441749
8
                  Indonesia 26.574998
9
                     Kuwait 27.097509
10
                    Liberia 25.517981
                       Niue 25.453858
11
```

	country	$\verb"averageTemperature"$	•••	nitrous_oxide
population				
year			•••	
2013	Bahamas	26.011667	•••	0.14
367162.0				
2013	Bangladesh	25.967500	•••	26.80
152761413.0				
2013	Belize	26.213333	•••	0.46
345707.0				
2013 Centra	l African Republic	26.210875	•••	30.44
4447945.0				
2013	Cuba	26.250444	•••	3.79
11282722.0				
2013	El Salvador	25.910778	•••	1.32
6266076.0				
2013	Equatorial Guinea	25.590500	•••	0.04
1076412.0				
2013	Fiji	25.941375	•••	0.35
865602.0				
2013	Indonesia	26.467000	•••	91.07
251805314.0				
2013	Kuwait	27.273375	•••	0.63
3526382.0				
2013	Liberia	26.314000		1.18
4248337.0				
2013	Niue	26.047500		0.00
1606.0				
2013	Venezuela	25.912875	•••	14.56
29781046.0				

[13 rows x 6 columns]

	Country	remp
0	Bahamas	25.828661
1	Bangladesh	25.816408
2	Belize	25.813357
3	Central African Republic	26.080187

```
4
                         Cuba
                                25.885626
5
                  El Salvador
                                25.880964
6
           Equatorial Guinea
                                25.661758
7
                         Fiji
                                25.805241
                    Indonesia
8
                                26.402622
9
                       Kuwait
                                26.091725
10
                      Liberia
                                25.889643
11
                         Niue
                                25.821467
12
                    Venezuela
                                25.849783
```

Osserviamo dai risultati che per alcuni Paesi la previsione è molto precisa, mentre per altri meno. Selezionando Paesi più simili per temperatura media e produzione di gas inquinanti si hanno sicuramente risultati più accurati. Notiamo inoltre come i due dataset diano risultati differenti ma che se combinati tra loro possono dare una predizione più accurata delle singole. Prendiamo ad esempio l'Indonesia:

```
[97]: co2_predictions.query("country == 'Indonesia'")
[97]:
           country
         Indonesia 26.574998
[98]: mn_predictions.query("country == 'Indonesia'")
[98]:
           country
                          temp
         Indonesia
                    26.402622
[99]: a = (co2_predictions.query("country == 'Indonesia'").temp.values[0] +
       →mn_predictions.query("country == 'Indonesia'").temp.values[0]) / 2
      b = mn pred test.query("country == 'Indonesia' & year == 2013").
       →averageTemperature.values[0]
      pd.DataFrame({'country': 'Indonesia', 'predicted_value':[a], 'actual value':...
       \rightarrow [b] \})
[99]:
           country
                    predicted_value
                                      actual_value
         Indonesia
                            26.48881
                                             26,467
```

La combinazione delle due previsioni attraverso la media tra esse restituisce, in questo caso, una previsione più accurata delle singole.

Per concludere, ciò che si può trarre complessivamente è: * Individuando un insieme più o meno grande di Paesi che godono di caratteristiche simili per quanto riguarda la posizione geografica e la produzione dei gas inquinanti presi in analisi, si riesce ad addestrare un modello in grado di fornire una previsione sulla temperatura media che, nel caso in cui non sia sufficientemente accurata, può comunque fornire informazioni molto utili sulla curva della temperatura. * La combinazione delle previsioni dei modelli addestrati su dataset diversi può essere un punto di forza per esprimere un risultato che dia più certezza. * Nuovi dati riguardanti il gruppo di Paesi sul quale si effettuano le previsioni aumentano sensibilmente l'accuratezza dei risultati.

Lo sviluppo di questo progetto mi ha permesso di apprendere numerose informazioni e di realizzare l'importanza dell'analisi dei dati e del dominio del problema sul quale si intende lavorare. È stata un'ottima esperienza formativa.