Deep learning models & how to train them

Alexey Zaytsev, Evgeny Burnaev

Logistic regression recap

Recap: logistic regression

$$P(y(\mathbf{x}_i) = y_i | \mathbf{w}) = \frac{1}{1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i)} = \sigma(y_i \mathbf{w}^T \mathbf{x}_i)$$

Loss function for logistic regression

$$E(\mathbf{w}) = -\sum_{i=1}^{\infty} \log P(y(\mathbf{x}_i) = y_i | \mathbf{w})$$

Softmax: sigmoid generalization

$$P(y(x)=1)$$

$$(w_1^T x)$$

 $\frac{\exp(\mathbf{w}_{1}^{T}\mathbf{x})}{\sum_{i} \exp(\mathbf{w}_{i}^{T}\mathbf{x})}$ $\frac{\exp(\mathbf{w}_{2}^{T}\mathbf{x})}{\sum_{i} \exp(\mathbf{w}_{i}^{T}\mathbf{x})}$

 $\Sigma_i \exp(\overline{\mathbf{w}_i^T \mathbf{x}})$

Multinomial logistic loss

$$P(y(x) = i) = \frac{\exp w_i^T x}{\sum_j \exp w_j^T x}$$

Multinomial log loss (generalizes logistic loss):

Multinomial log loss (generalizes logistic logistic
$$E(w) = -\sum_i \log P(y(x_i) = y_i) = -\sum_i \log P(y(x_i) = y_i)$$

$$f(y) = -\sum_{i} \log P(y(x_i) = y_i) = -\sum_{i} \log P(y$$

$$= -\sum_{i} w_{i}^{T} x_{i} - \log \sum_{i} \exp w_{i}^{T}$$

$$= -\sum_{i} \left[w_{y_i}^T x_i - \log \sum_{j} \exp w_j^T x_i \right]$$

$$= -\sum_{i} w_{y_i}^T x_i - \log \sum_{i} \exp u$$

$$=-\sum_i \left|w_{y_i}^T x_i - \log \sum_i \exp \left(\frac{1}{2} - \frac{1}{2} -$$

$$i$$
 L j of the) gradient over $oldsymbol{w}_{i}$:

$$^{\imath}$$
 L $^{\jmath}$ of the) gradient over $oldsymbol{w}_{i}$:

(Part of the) gradient over
$$\mathbf{w}_{j}$$
:

art of the) gradient over
$$oldsymbol{w}_{j}$$
:

art of the) gradient over
$$m{w}_{\!j}$$
: $rac{dE}{dw_j} = -\sum_i x_i \left([y_i == j] - P(y(x_i) = j)
ight)$

Few notes on logistic regression

- Convex optimization problem.

 Exercise: check that Hessian is positive definite
- Requires regularization for parameters: on by default in sklearn
- Admits multiclass classification
- Logistic regression is a generalized linear model & <u>one-layer neural network</u>

Capabilities are limited: need more layers

Building blocks:

XOR function:

Fully connected neural networks

Multilayer fully-connected (FC) neural network

Input Hidden units units

Output unit

9

Universal approximation theorem

UAT: given non-polynomial non-linearity, a single hidden layer neural network can approximate any continuous function on any compact subset of R^d up to an arbitrary precision [Tsybenko, 1989].

Caveat 1: the width of the network can be a very quickly growing function of space dimension and approximation accuracy. Deeper architectures are exponentially narrower for some classes of functions [Rollnick&Tegmark 2018]

Caveat 2: no guarantees on extrapolation beyond the compact set where the approximation is computed. Thus, designing a proper parameterization of your space is useful.

Skoltech

Computer vision =
$$60\%$$

0.6 12 = 0.00217

2014

Completed • Swag • 215 teams

Dogs vs. Cats

Wed 25 Sep 2013 - Sat 1 Feb 2014 (8 months ago)

Dashboard V

Private Leaderboard - Dogs vs. Cats

This competition has completed. This leaderboard reflects the final standings.

See someone

#	Δ1w	Team Name * in the money	Score @	Entries	Last Submission UTC (Best - La
1	-	Pierre Sermanet *	0.98914	5	Sat, 01 Feb 2014 21:43:19 (
2	↑26	orchid *	0.98309	17	Sat, 01 Feb 2014 23:52:30
3		Owen	0.98171	15	Sat, 01 Feb 2014 17:04:40 (
4	new	Paul Covington	0.98171	3	Sat, 01 Feb 2014 23:05:20
5	13	Maxim Milakov	0.98137	24	Sat, 01 Feb 2014 18:20:58

 $0.989^{12} = 0.875$

2014

ASIRRA

After 8 years of operation, Asirra is shutting down effective October 1, 2014. Thank you to all of our users!

Classic Machine learning, where representations are available

u – an object A client y - true label Will leave in 3 months? x(u) – an object Salary, age representation Problem: train a model that A gradient boosting can identify the true class for model

For structured data we need representation learning

u – an object An image Cat breed? (1) y – true label x(u) – an object NA (2) representation Problems: (1) train a model A neural network: that can identify the true Encoder + class for y; (2) learn a Classifier representation

"Deep learning" is not only depth

- Previous CV systems were "deep", they used multiple layers of representation with certain success
- But they were not called "deep learning"

Deep learning

End-to-end joint learning of all layers:

- multiple assemblable blocks
- each block is piecewise-differentiable
- gradients computed by backpropagation
- gradient-based optimization

Optimization for deep learning

Sequential computation: backpropagation

$$rac{dz}{dx^3}$$
, $rac{dz}{dw_4}$ can be computed $rac{dz}{dw_3} = rac{dx^3}{dw_3}^T \cdot rac{dz}{dx^3} \qquad rac{dz}{dx^2} = rac{dx^3}{dx^2}^T \cdot rac{dz}{dx^3}$

 dx^{2T} dzdzdzdz dx^2 dx^1 dx^1 dx^2 dw_2 dw_2

Optimization for supervised ML

- R(w) denotes regularization e.g. $||w||^2$
- $l(x_{ij}y_{ij}w)$ denotes loss for *i*-th example, e.g. $-\log P(y(x_{ij}) = y_{ij} \mid w)$
- The optimization objective is:

$$E(w) = \frac{1}{N} \sum_{i=1}^{N} l(x_i, y_i, w) + \lambda R(w)$$

Small scale setting: traditional optimization

$$E(w) = \frac{1}{N} \sum_{i=1}^{N} l(x_i, y_i, w) + \lambda R(w)$$

- Data are few, we can look through it at each optimization iteration
- Use adapted versions of standard optimization methods (gradient descent, quasi-Newton, quadratic programming,...)

Large-scale learning

$$E(w) = \frac{1}{N} \sum_{i=1}^{N} l(x_i, y_i, w) + \lambda R(w)$$
$$\frac{dE}{dw} = \frac{1}{N} \sum_{i=1}^{N} \frac{dl(x_i, y_i, w)}{dw} + \lambda \frac{dR}{dw}$$

It will only be good for one (small) step

Evaluating gradient is very expensive

- Stochastic gradient descent (SGD) idea:
- Evaluate a coarse approximation to grad

Skoltech

Make "quick" steps

Stochastic gradient descent (SGD) **Gradient:**

$$\frac{dE}{dw} = \frac{1}{N} \sum_{i=1}^{N} \frac{dl(x_i, y_i, w)}{dw} + \lambda \frac{dR}{dw}$$

Stochastic gradient:

$$\frac{dE^i}{dw} = \frac{dl(x_i, y_i, w)}{dw} + \lambda \frac{dR}{dw}$$

Stochastic gradient is an unbiased estimate of the gradient: $\frac{dE}{dw} = \frac{1}{N} \sum_{i=1}^{N} \frac{dE^{i}}{dw}$

Gradient descent (GD)

GD:
$$v[t] = -\alpha[t] \nabla (E, w[t])$$

 $w[t+1] = w[t] + v[t]$

where
$$\nabla$$
(E, w[t]) = $\frac{dE}{dw}$ $(w[t])$

- $\alpha[t]$ is the learning rate, more on this later
- Converges is guaranteed for good problems (deep learning optimization is not a good problem)

Stochastic gradient descent (SGD)

SGD:
$$v[t] = -\alpha[t] \nabla(E, w[t])$$

 $w[t+1] = w[t] + v[t]$

where
$$\nabla$$
(E, w[t]) = $\frac{dE^{i(t)}}{dw}(w[t])$

- i(t) usually follow random permutations of training data
- One sweep over training data is called an epoch

Stochastic gradient descent (SGD)

SGD:
$$v[t] = -\alpha[t] \nabla (E, w[t])$$

 $w[t+1] = w[t] + v[t]$

- One sweep over training data is called an epoch
- Popular choices for schedule α[t]:
 - constant, e.g. $\alpha[t] = 0.0001$
 - piecewise constant, e.g. α[t] is decreased tenfold every N epochs
 - harmonic, e.g. $\alpha[t] = 0.001 / ([t/N] + 10)$

The efficiency of SGD ("shallow" learning)

Document classification:

Batch SGD

Gradient:

$$\frac{dE}{dw} = \frac{1}{N} \sum_{i=1}^{N} \frac{dl(x_i, y_i, w)}{dw} + \lambda \frac{dR}{dw}$$

Batch (aka mini-batch):

 $\{b_1, b_2, \dots b_{N_b}\} \subset 1 \dots N$

Batch stochastic gradient:

 $\frac{dE}{dw} = \frac{1}{N_b} \sum_{i=1}^{N_b} \frac{dl(x_{b(i)}, y_{b(i)}, w)}{dw} + \lambda \frac{dR}{dw}$

Why do batching?

$$\frac{dE}{dw} = \frac{1}{N_b} \sum_{i=1}^{N_b} \frac{dl(x_{b(i)}, y_{b(i)}, w)}{dw} + \lambda \frac{dR}{dw}$$

- "Less stochastic" approximation, more stable convergence (questionable)
- Main reason: all modern architectures have parallelism, hence computing minibatch grad is often as cheap as a single stochastic grad

SGD inherits gradient descent problems

- Gradient descent is very poor "in ravines"
- SGD is no better

Better optimization methods

- Second order methods (Newton, Quasi-Newton)
- Krylov subspace methods, in particular conjugate gradients

Improving SGD using momentum

- Conjugate gradients use a combination of the current gradient and previous direction for the next step
- Similar idea for SGD (momentum):

$$v[t] = -\alpha[t] \nabla(E, w[t])$$
 $w[t+1] = w[t] + v[t]$
 $v[t] = \mu v[t-1] - \alpha[t] \nabla(E, w[t])$
 $w[t+1] = w[t] + v[t]$

Typical $\mu = 0.9$

Exponentially decaying running average

$$v[t] = \mu v[t-1] - \alpha[t] \nabla (E, w[t])$$

 $w[t+1] = w[t] + v[t]$

$$\begin{split} v[t] &= \mu \ v[t-1] - \alpha[t] \ \nabla(E, w[t]) = \\ &= \mu^2 \ v[t-2] - \mu \alpha[t-1] \ \nabla(E, w[t-1]) \\ &- \alpha[t] \ \nabla(f, w[t]) = \\ &= \mu^3 \ v[t-3] - \mu^2 \ \alpha[t-2] \ \nabla(E, w[t-2]) \\ &- \mu \alpha[t-1] \ \nabla(E, w[t-1]) - \alpha[t] \ \nabla(E, w[t]) = \\ &= \mu^{k+1} \ v[t-k-1] + \sum_k \mu^i \alpha[t-i] \nabla(E, w[t-i]) \end{split}$$

Momentum: why it works

$$v[t] \approx \sum_{i=0}^{\infty} \mu^i \alpha[t-i] \nabla(E, w[t-i])$$

- Smoothes out noise in SGD (~bigger batches)
- Smoothes out oscilations inherent to gradient descent
- Escapes local minima

The effect of the momentum

https://distill.pub/2017/momentum/

[Goh, Distill 2017]

Phase space along a single eigenvector

R's eigenvalues are complex, and the iterates display low frequency ripples. Surprisingly, the convergence rate $2\sqrt{\beta}$ is independent of α and λ_i .

R's eigenvalues are both real, are positive, and have norm less than one. The behavior here resembles gradient descent.

When $\alpha = 1/\lambda_i$, and $\beta=0$, we converge in one step. This is a very special point, and kills the error in the eigenspace completely. When $\alpha > 1/\lambda_i$, the iterates flip between + and - at each iteration. These are often referred to as

'oscillations' in gradient descent.

When $\max\{|\sigma_1|, |\sigma_2|\} > 1$, the iterates diverge.

[Goh, Distill 2017]

Momentum: multiple eigenvalues

$$\begin{array}{ll} \text{Optimal rate \& } \\ \text{momentum:} & \alpha = \left(\frac{2}{\sqrt{\lambda_1} + \sqrt{\lambda_n}}\right)^2 \quad \beta = \left(\frac{\sqrt{\lambda_n} - \sqrt{\lambda_1}}{\sqrt{\lambda_n} + \sqrt{\lambda_1}}\right)^2 \end{array}$$

Optimal speed:

$$rac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$$
 Convergence rate, $rac{\kappa-1}{\kappa+1}$ Convergence rate, Gradient Descent [Goh, Distill 2017]

Momentum: multiple eigenvalues

Optimal rate &

momentum:
$$\alpha = \left(\frac{2}{\sqrt{\lambda_1} + \sqrt{\lambda_n}}\right)^2 \quad \beta = \left(\frac{\sqrt{\lambda_n} - \sqrt{\lambda_1}}{\sqrt{\lambda_n} + \sqrt{\lambda_1}}\right)^2$$

In real network we do not know eigenvalues, so:

- we set the momentum high (e.g. 0.9)
- then we tune the learning rate

Nesterov accelerated gradient

$$v[t] = \mu v[t-1] - \alpha[t] \nabla(E, w[t])$$

 $w[t+1] = w[t] + v[t]$

Before we even compute the gradient, we have a good approximation where we will end up: $w[t+1] \approx w[t] + \mu v[t-1]$

Let us use this knowledge:

```
v[t] = \mu v[t-1] - \alpha[t] \nabla(E, w[t] + \mu v[t-1])

w[t+1] = w[t] + v[t]
```

(Computing the gradient at a more relevant spot)

Second-order methods

- Exponential smoothing helps, but still not optimal if large anisotropy exists
- Classic (Newton) solution: estimate the Hessian and make the update $v[t+1] = -H[t]^{-1} \nabla(E, w[t])$ (the lower the curvature the faster we go)
- Quasi-Newton methods: estimate some approximation to Hessian based on observed gradients

Skoltech

40

Adagrad method [Duchi et al. 2011]

Idea: scale updates along different dimensions according to accumulated gradient magnitude

gradient magnitude
$$g[t] = g[t-1] + \nabla (\mathsf{E, w[t]}) \odot \nabla (\mathsf{E, w[t]})$$

$$w[t+1] = w[t] - \frac{\alpha}{\sqrt{g[t] + \epsilon}} \odot \nabla (\mathsf{E, w[t]})$$

Note: step lengths automatically decrease (perhaps too quickly).

 $\odot \nabla (E, w[t])$

Adagrad method [Duchi et al. 2011]

$$g[t] = g[t-1] + \nabla(E, w[t]) \odot \nabla(E, w[t])$$

$$w[t+1] = w[t] - \frac{\alpha}{\sqrt{g[t] + \epsilon}} \odot \nabla(E, w[t])$$

RMSPROP method [Hinton 2012]

Same as Adagrad, but replace accumulation of squared gradient with running averaging:

$$g[t] = \mu g[t-1] + (1-\mu) \nabla (E, w[t]) \odot \nabla (E, w[t])$$

$$w[t+1] = w[t] - \frac{\alpha[t]}{\sqrt{g[t] + \epsilon}} \odot \nabla (E, w[t])$$

Comparison: logistic regression

Image credit: Alec Redford

Further comparison

Image credit: Alec Redford

Further comparison: escaping from a saddle

ADAM method [Kingma & Ba 2015]

ADAM = "ADAptive Moment Estimation"

$$v[t] = \beta v[t-1] + (1-\beta) \nabla(E, w[t])$$

$$g[t] = \mu g[t-1] + (1-\mu)\nabla(E, w[t]) \odot \nabla(E, w[t])$$

$$w[t+1] = w[t] - \alpha \frac{1}{\sqrt{g[t] + \epsilon}} \odot v[t]$$
1 - β^t

Recommended values: $\beta = 0.9$, $\mu = 0.999$, $\alpha =$ $0.001, \varepsilon = 10^{-8}$

ADAM method [Kingma & Ba 2015]

ADAM method [Kingma & Ba 2015]

Recap: optimization methods for DL

- Stochastic optimization is used always
- Optimization methods are not trying to estimate full Hessian (ignoring interaction between variables)

Toy example:
$$z = w_4 w_3 w_2 w_1 x$$

$$\frac{dz}{dw_2} = w_4 w_3 w_1 x$$

50

Tricks for optimization of neural networks

Problems with DL optimization

Toy example: $z=w_4\,w_3\,w_2\,w_1\,x$

$$\frac{dz}{dw_2} = w_4 \, w_3 \, w_1 \, x \qquad \frac{dz}{dw_3} = w_4 \, w_2 \, w_1 \, x$$

- w = (1, 1, 1, 1) and w = (1,0.01,100,1) define the same function ("gauge freedom"), but very different derivatives
- In the first case, derivatives and values are of order 1.
- In the second case, derivatives and values are wildly different

Gauge freedom in ReLu Networks

Thus: we can easily construct ReLu networks with **different** weights implementing the **same** function

Normalizing in the toy example

Toy example: $z_i = w_4 \, w_3 \, \frac{w_2 \, w_1 \, x_i}{\frac{1}{N} \sum_{j=1}^N w_2 \, w_1 \, x_j}$

$$\left[\frac{dz}{dw_3}\right]^i = w_4 \frac{w_2 w_1 x_i}{\frac{1}{N} \sum_{j=1}^N w_2 w_1 x_j}$$

- Now, increasing w2 or w1 100x times will not change the partial derivative w.r.t. w₂!
- The learning will become more stable

Skoltech Skoltech

Batch normalization

[Szegedy and loffe 2015]

- Makes the training process invariant to some reparameterizations
- Eliminates the bulk of cross-layer correlation between derivatives (off-diagonal Hessian vals)
- Use mini-batch statistics at training time to ensure that neuron activations are distributed "nicely" and the learning proceeds

Batch normalization layer

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output:
$$\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

Parameter
$$y_i = \mathbf{E}$$

Output: $\{y_i = \mathbf{E}\}$
 $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$
 $\widehat{x}_i \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$
 $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \sigma_{\mathcal{B}}^2}}$
 $y_i \leftarrow \widehat{\gamma} \widehat{x}_i + \beta$

$$\Rightarrow \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
$$y_i \leftarrow \widehat{\gamma} \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// normalize // scale and shift

// mini-batch mean

// mini-batch variance

[Szegedy and loffe 2015] Skoltech 56

Batch normalization layer

```
\begin{split} & \textbf{Input: Values of } x \text{ over a mini-batch: } \mathcal{B} = \{x_{1...m}\}; \\ & \textbf{Parameters to be learned: } \gamma, \beta \\ & \textbf{Output: } \{y_i = \textbf{BN}_{\gamma,\beta}(x_i)\} \\ & \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean} \\ & \sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance} \\ & \widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize} \\ & y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \textbf{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift} \end{split}
```

- At training time mean and variance are estimated per batch
- At test time, usually (running) averages over the dataset are used
- At test time, batch norm can be "merged in"
- For small batches, this is a big test<->train mismatch ⊗

Solutions to train-test mismatch:

- Keep training time behavior
- Switch to test behavior and fine-tune

Alternatives to BatchNorm

- Layer Norm [Ba et al. NIPS'16], Instance Norm [Ulyanov et al. Arxiv16], Group renorm [Wu and He, ECCV₁₈] – normalize over statistics of certain specific groups of variables within the same sample
- Batch Renorm [loffe NIPS'17]: gradually switch between train and test time behavior during training

Skoltech

Weight norm [Salimans and Kingma NIPS'16]: decouple direction and magnitude of weight matrices

Initialization schemes

- Basic idea 1: units should be initialized to have comparable total input weights
- Basic idea 2: use layers which keep magnitude (otherwise both forwardprop and backprop will suffer from explosion/attenuation to zero; normalization layers solve this issue)
- E.g. [Glorot&Bengio 2010] aka "Xavier-initialization":

$$W \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j + n_{j+1}}} \right]$$

• E.g. [He et al, Arxiv15] for ReLu networks:

$$W \sim \mathcal{N}(0, \sqrt{2/n_i})$$

Recap

- Batch SGD optimization is used in largescale setting
- Advanced SGD methods use running averages to smooth and rescale SGD steps
- Normalization layers are important and used in most modern deep architectures

61

Bibliography

Léon Bottou, Olivier Bousquet:

The Tradeoffs of Large Scale Learning. NIPS 2007: 161-168

Nesterov, Yurii. "A method of solving a convex programming problem with convergence rate O (1/k2)." Soviet Mathematics Doklady. Vol. 27. No. 2. 1983.

G. Goh, Why momentum really works? DISTILL 2017 https://distill.pub/2017/momentum/

John C. Duchi, Elad Hazan, Yoram Singer: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research 12: 2121-2159 (2011)

Matthew D. Zeiler:

ADADELTA: An Adaptive Learning Rate Method. CoRR abs/1212.5701

Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." ICLR 2015

Bibliography

Sergey Ioffe, Christian Szegedy:

2015: 1026-1034

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ICML2015: 448-456

Sergey loffe, Batch Renormalization. NIPS 2017

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, Victor S. Lempitsky: Texture Networks: Feed-forward Synthesis of Textures and Stylized Images. ICML 2016: 1349-1357

Lei Jimmy Ba, Jamie Ryan Kiros, Geoffrey E. Hinton: Layer Normalization. CoRR abs/1607.06450 (2016)

Yuxin Wu, Kaiming He: Group Normalization. ECCV (13) 2018: 3-19

Tokin voj kuming ne. droop vormanzation. 2007 (15) 2010. 5 19

Tim Salimans, Diederik P. Kingma:
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks.
NIPS 2016: 901

Xavier Glorot, Yoshua Bengio:

Understanding the difficulty of training deep feedforward neural networks. AISTATS 2010: 249-256

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. ICCV

Initialization schemes

[Neyshabur, Salakhutdinov, Srebro, Path-SGD: Path-Normalized Optimization in Deep Neural Networks, NIPS2015]

Units of measurements

Let our coordinates be measured in meters. What is the unit of measurement for gradients? Assume unitless function...

• Newton method is consistent.

Adadelta method [Zeiler 2012]

$$g[t] = \mu g[t-1] + (1-\mu) \nabla(E, w[t]) \odot \nabla(E, w[t])$$

$$w[t+1] = w[t] - \frac{\sqrt{d[t] + \epsilon}}{\sqrt{g[t] + \epsilon}} \odot \nabla(E, w[t])$$

Correct units within the updates