Zadania - funkcje

Teoria i potrzebne zależności

Podstawowe symbole i sposoby zapisu:

- \in należy do; używamy gdy jakaś liczba x jest w jakimś przedziale/zbiorze; np. $x \in \langle 3, 5 \rangle$ znaczy że x to liczba między 3 a 5 czyli $3 \le x \le 5$
- $\langle a,b \rangle$ przedział obustronnie zamknięty od a do b; czyli wszystkie liczby x takie że: $a \leq x \leq b$; zapis [a,b] znaczy to samo
- (a,b) przedział obustronnie otwarty od a do b; czyli wszystkie liczby x takie że; a < x < b
- \cup "lub" między zbiorami; używamy gdy jakaś liczba należy do jednego zbioru lub do drugiego np. zbiór wszystkich liczb takich że są między 0 a 2 lub między 4 a 8 zapiszemy: $x \in (0,2) \cup (4,8)$
- ullet D oznaczenie dziedziny funkcji czyli tych x których możemy użyć/ które wrzucamy do funkcji
- ZW_f lub ZW oznaczenie zbioru wartości funkcji, czyli liczb f(x) lub y które powstają po wrzuceniu x z dziedziny do funkcji
- miejsce zerowe x_0 taki x który jest w dziedzinie że $f(x_0) = 0$; czyli wykres funkcji przecina oś x-sów Ox
- x nazywane rozwiązaniami, argumentami

Zadanie 1.

Na rysunku przedstawiony jest wykres funkcji y = f(x).

a)	Dziedziną	funkcji	f	jest:	
----	-----------	---------	---	-------	--

Zadanie 2.

Na rysunku przedstawiony jest wykres funkcji y = f(x).

b) Zbiór wartości funkcji to:

c) Zbiór argumentów dla których funkcja przyjmuje wartości niedodatnie: ______

d) Wartość f(2) jest równa:

e) Zbiór rozwiązań nierówności $f(x) \leq -1$: _____

	a)	Dziedziną	funkcji	f jest:	
--	----	-----------	---------	---------	--

b) Zbiór wartości funkcji to: __

c) Podaj wszystkie miejsca zerowe funkcji f : _____

d) Podaj wartość najmniejszą i największą funkcji: _____

2) F dag wartooo najiimojoza majiiniyiloza tarikoji

e) Podaj przedziały w których funkcja jest:

- stała: _____

- rosnąca:

- malejąca: ____

f) Podaj zbiór argumentów dla których funkcja przyjmuje wartości niedodatnie:

h) Wartość f(0) jest równa: _____

Zadanie 3.

Na rysunku przedstawiony jest wykres funkcji y = f(x).

- a) Dziedziną funkcji f jest: ___
- b) Zbiór wartości funkcji to: _____
- c) Podaj wszystkie miejsca zerowe funkcji f : _____
- d) Podaj wartość najmniejszą i największą funkcji: ____

- stała:
- rosnąca:
- malejąca:
f) Podaj zbiór argumentów dla których funkcja przyjmuje wartości nieujemne:
h) Podaj zbiór rozwiązań nierówności $f(x)>0$:
Zadanie 4.
Na rysunku przedstawiony jest wykres funkcji $y = f(x)$.

e) Podaj przedziały w których funkcja jest:

a) Dziedziną funkcji f jest:	
--------------------------------	--

Zadanie 5.

Na rysunku przedstawiony jest wykres funkcji y = f(x).

b) Zbiór wartości funkcji to: __

c) Podaj wartość najmniejszą i największą funkcji: ___

d) Podaj przedziały w których funkcja jest malejąca: _____

e) Podaj zbiór rozwiązań nierówności f(x) < -1 : _____

- a) Dziedziną funkcji f jest: _____
- b) Zbiór wartości funkcji to: ___
- c) Podaj wartość najmniejszą i największą funkcji: _____
- d) Podaj przedziały w których funkcja jest rosnąca: _____
- e) Podaj zbiór rozwiązań nierówności f(x) < 0 : _____
- f) Podaj wszystkie miejsca zerowe funkcji f : _____