Financial Engineering and Risk Management

Interest rates and fixed income instruments

Martin Haugh Garud Iyengar

Columbia University
Industrial Engineering and Operations Research

Simple and compound interest

Definition. An amount A invested for n periods at a simple interest rate of r per period is worth $A(1+n\cdot r)$ at maturity.

Definition. An amount A invested for n periods at a compound interest rate of r per period is worth $A(1+r)^n$ at maturity.

Interest rates are typically quoted on annual basis, even if the compounding period is less than 1 year.

- ullet n compounding periods in each year
- rate of interest r
- A invested for y years yields $A(1+\frac{r}{n})^{y\cdot n}$

Definition. Continuous compounding corresponds to the situation where the length of the compounding period goes to zero. Therefore, an amount A invested for y years is worth $\lim_{n\to\infty}A(1+r/n)^{yn}=Ae^{ry}$ at maturity.

Present value

Price p of a contract that pays $\mathbf{c} = (c_0, c_1, c_2, \dots, c_N)$

ullet $c_k>0\equiv$ cash inflow, and $c_k<0\equiv$ cash outflow

Present Value (PV) assuming interest rate r per period

$$PV(\mathbf{c}; r) = c_0 + \frac{c_1}{(1+r)} + \frac{c_2}{(1+r)^2} + \dots + \frac{c_N}{(1+r)^N} = \sum_{k=0}^N \frac{c_k}{(1+r)^k}.$$

No-arbitrage argument: Suppose one can borrow and lend at rate $\it r$

Cash flows	t = 0	t=1	t=2	t = k	t = T
Buy contract	$-p + c_0$	c_1	c_2	c_k	c_T
Borrow $c_1/(1+r)$ up to time 1	$c_1/(1+r)$	$-c_1$			
Borrow $c_2/(1+r)^2$ up to time 2	$c_2/(1+r)^2$		$-c_2$		
Borrow $c_k/(1+r)^k$ up to time k	$c_k/(1+r)^k$			$-c_k$	
Borrow $c_T/(1+r)^T$ up to time T	$c_T/(1+r)^T$				$-c_T$

- Portfolio cash flows = 0 for times k > 1
- Price of portfolio: $p \sum_{k=0}^T c_k/(1+r)^k \ge 0 \Rightarrow p \ge \sum_{k=0}^T c_k/(1+r)^k$

Present value (contd.)

To obtain the upper bound: reverse the portfolio.

Cash flows	t = 0	t = 1	t=2	t = k	t = T
Sell contract	$p-c_0$	$-c_1$	$-c_2$	$-c_k$	$-c_T$
Lend $c_1/(1+r)$ up to time 1	$-c_1/(1+r)$	c_1			
Lend $c_2/(1+r)^2$ up to time 2	$-c_2/(1+r)^2$		c_2		
Lend $c_k/(1+r)^k$ up to time k	$-c_k/(1+r)^k$			c_k	
Lend $c_T/(1+r)^T$ up to time T	$-c_T/(1+r)^T$				c_T

- Portfolio cash flows = 0 for times $k \ge 1$
- Price of portfolio: $\sum_{k=0}^{T} c_k/(1+r)^k p \ge 0 \Rightarrow p \le \sum_{k=0}^{T} c_k/(1+r)^k$

The two bounds together imply: $p = PV(\mathbf{c}; r)$

Important we could both lend and borrow at rate $\it r$

What if the lending rate is different from borrowing rate?

Different lending and borrowing rates

Can lend at rate r_L and borrow rate at rate r_B : $r_L \le r_B$

Portfolio: buy contract, and borrow $\frac{c_k}{(1+r_B)^k}$ for k years, $k=1,\ldots,N$

- Cash flow in year k: $c_k \frac{c_k}{(1+r_B)^k} (1+r_B)^k = 0$ for $k \ge 1$
- No-arbitrage: price = $p c_0 \sum_{k=1}^{N} \frac{c_k}{(1+r_k)^k} \ge 0$
- Lower bound on price $p \geq PV(\mathbf{c}; r_B)$

Portfolio: sell contract, and lend $\frac{c_k}{(1+r_k)^k}$ for k years, $k=1,\ldots,N$

- Cash flow in year k: $-c_k + \frac{c_k}{(1+r_L)^k}(1+r_L)^k = 0$ for $k \ge 1$
- No-arbitrage: price = $-p + c_0 + \sum_{k=1}^{N} \frac{c_k}{(1+r_k)^k} \ge 0$
- Upper bound on price $p \leq PV(\mathbf{c}; r_L)$

Bounds on the price $PV(\mathbf{c}; r_B) \leq p \leq PV(\mathbf{c}; r_L)$

How is the price set?

Fixed income securities

Fixed income securities "guarantee" a fixed cash flow. Are these risk-free?

- Default risk
- Inflation risk
- Market risk

Perpetuity: $c_k = A$ for all $k \ge 1$

$$p = \sum_{k=1}^{\infty} \frac{A}{(1+r)^k} = \frac{A}{r}$$

Annuity: $c_k = A$ for all $k = 1, \ldots, n$

Annuity = Perpetuity - Perpetuity starting in year n + 1 $A \qquad 1 \qquad A \qquad A \qquad 1$

$$\operatorname{Price} \; p \quad = \quad \frac{A}{r} - \frac{1}{(1+r)^n} \cdot \frac{A}{r} = \frac{A}{r} \left(1 - \frac{1}{(1+r)^n} \right)$$

Bonds

Features of bonds

- Face value F: usually 100 or 1000
- Coupon rate α : pays $c = \alpha F/2$ every six months
- Maturity T: Date of the payment of the face value and the last coupon
- Price P
- Quality rating: S&P Ratings AAA, AA, BBB, BB, CCC, CC

Bonds differ in many dimensions ... hard to compare bonds

Yield to maturity λ

$$P = \sum_{k=1}^{2T} \frac{c}{(1+\lambda/2)^k} + \frac{F}{(1+\lambda/2)^{2T}}$$

Annual interest rate at which price P =present value of coupon payments

Yield to maturity

Yield to maturity λ

$$P = \sum_{k=1}^{2T} \frac{c}{(1+\lambda/2)^k} + \frac{F}{(1+\lambda/2)^{2T}}$$

Why do we think in terms of yields?

- Summarizes face value, coupon, maturity, and quality
- ullet Relates to quality: lower quality o lower price o higher yield to maturity
- Relates to interest rate movements

But ... yield to maturity is a crude measure. Does not capture everything.