

Posedanje delcev v disperziji

 V disperziji delcev tekmujeta urejevalna sila (težnost) in termično gibanje

• V: Kakšna je mejna velikost delcev v disperziji?

 \rightarrow Stabilnost disperzije določa masa/teža delcev (gostota x volumen, torej $\propto R^3$)

Posedanje delcev v disperziji

• Med posedanjem se delcem povečuje hitrost (v), dokler sila upora (F_{ij}) ne izenači razlike med težo in vzgonom:

$$F_U = f v$$
 $f \dots$ koeficient upora: $kT/D = 1/\mu$ (za kroglo $6\pi\eta R$) $\mu \dots$ mobilnost

$$F_g - F_V = \Delta \rho V g$$
 $\Delta \rho ...$ razlika v gostoti delca in tekočine q ... gravitacijski pospešek

- V: Oceni hitrost in čas posedanja delcev v epruveti.
- → Posedanje je pogosto počasno. Ga lahko pospešimo?

$$v \propto \frac{\Delta \rho R^3 g}{\eta R}$$

Centrifuga

 Posedanje delcev pospešimo s "povečanjem njihove teže" v centrifugi. Vrtenje povzroča centrifugalno silo, ki je sorazmerna s kvadratom frekvence vrtenja:

$$F_C = m \, a_r$$
 $a_r \dots$ radialni pospešek $a_r = \omega^2 \, r$ $\omega \dots$ krožna frekvenca (2π št. obratov/s) $r \dots$ radij vrtenja

s ... koeficient sedimentacije (odvisen od delca, topila in T)

$$v = \frac{\Delta \rho \, V}{f} \omega^2 r = s \, \omega^2 r$$

Centrifuga

- Ločevanje delcev po gostoti in velikosti:
 - Diferencialno (zaporedno pri različnih hitrostih)
 - Centrifugiranje v mediju z gradientom gostote
- Natančno določanje hitrosti posedanja
 - Analitsko centrifugiranje

• V: Pretvarjanje enot vrtenja: $rpm \Leftrightarrow g$.

Elektroforeza

• Nabite delce lahko ločujemo tudi z električnim poljem (*E*), ki deluje na delce s silo:

$$F_E = Ze_0 E$$
 $Ze_0 \dots$ naboj delcev

• Ko vlek električnega polja uravnovesi upor, je hitrost potovanja delcev odvisna od razmerja med nabojem in uporom (t.i. električno gibljivost delcev, μ_e):

$$v = \frac{Ze_0}{f}E = \mu_e E$$

Elektroforeza

- Različne izvedbe:
 - gelska: zaradi premreženosti prostora še močnejša odvisnost hitrosti potovanja od velikosti delcev
 - SDS-PAGE: detergent pretvori dolžino proteinov v naboj
 - izoelektrično fokusiranje (2D: odvisnost naboja od pH)
 - kapilarna (hitra, natančna)

Elektroforeza

• Električno polje lahko deluje tudi na mobilno fazo, zaradi česar se pri kapilarni elektroforezi pojavi t.i. elektroosmozni tok (EOF).

- Ob negativnem naboju na steni steklene kapilare se nabere pozitiven naboj iz raztopine; difuzni del el. dvojne plasti je mobilen in drsi proti katodi (–)
- Hitrost toka se prišteje hitrosti potovanja ionov; tudi negativni ioni potujejo proti katodi (detektorju)

Meritev naboja: ζ -potencial

- ζ-potencial ∞ efektivni naboj delca
- izmerimo električno mobilnost μ_e , tj. hitrost (v) v danem električnem polju (E), iz nje nato izračunamo ζ

$$\mu_e = \frac{v}{E} \rightarrow \zeta \propto \mu$$

 merjenje hitrosti z "laserskim radarjem" (Dopplerjev pojav)

https://en.wikipedia.org/wiki/Zeta_potential

