# Solving Recurrence Relations

**Cunsheng Ding** 

HKUST, Hong Kong

October 10, 2015

## Contents

- Introduction
- Linear Recurrence Relations
- 3 Solving Linear Homogeneous Recurrence Relations
- Generating Functions and Linear Recursions
- 5 Solving Nonlinear Recurrence Relations

## Objectives of this Lecture

Recursions and linear recursions were introduced in the previous lecture. The objectives of this lecture are the following.

- Recall the definitions of linear recurrence relations.
- Introduce general techniques for solving linear recurrence relations.
- Solving a number of important types of linear recurrence relations.
- Solving nonlinear recurrence relations.

These techniques will be fundamental in the design and analysis of computer algorithms.

## **Linear Recurrence Relations**

#### **Definition 1**

A <u>linear recurrence relation with constant coefficients</u> for a sequence  $(s_i)_{i=0}^{\infty}$  is a formula that relates each term  $s_i$  to its predecessors  $s_{i-1}, s_{i-2}, \ldots, s_{i-\ell}$  in the form

$$s_i = c_1 s_{i-1} + c_2 s_{i-2} + \dots + c_\ell s_{i-\ell} + d \text{ for all } i \ge \ell,$$
 (1)

where  $\ell$  is some fixed integer and d is a constant.

## Example 2

Let  $(s_i)_{i=0}^{\infty}$  be defined by  $s_i = i$  for all integers  $i \ge 0$ . Then  $s_i = s_{i-1} + 1$  is a linear recurrence relation for the sequence with the initial condition that  $s_0 = 0$ .

4/25

# Linear Homogeneous Recurrence Relations

#### **Definition 3**

A linear homogeneous recurrence relation of degree  $\ell$  with constant coefficients (in sort, LHRRCC) for a sequence  $(s_i)_{i=0}^{\infty}$  is a formula that relates each term  $s_i$  to its predecessors  $s_{i-1}, s_{i-2}, \ldots, s_{i-\ell}$  in the form

$$s_i = c_1 s_{i-1} + c_2 s_{i-2} + \dots + c_\ell s_{i-\ell} \text{ for all } i \ge \ell,$$
 (2)

where  $\ell$  is some fixed integer, and  $c_i$ 's are real constants with  $c_\ell \neq 0$ . The equation

$$x^{\ell} - c_1 x^{\ell-1} - c_2 x^{\ell-2} - \dots - c_{\ell-1} x - c_{\ell} = 0$$
 (3)

is called the <u>characteristic equation</u> of the linear recursion of (2), and its roots are referred to as the <u>characteristic roots</u>.

The polynomial  $x^{\ell}-c_1x^{\ell-1}-c_2x^{\ell-2}-\cdots-c_{\ell-1}x-c_{\ell}$  is called the **characteristic polynomial** of the sequence.

# Solving Linear Homogeneous Recurrence Relations

#### Question 1

Given a sequence  $(s_i)_{i=i_0}^{\infty}$  defined by a linear homogeneous recurrence relation with constant coefficients, how do you solve the LHRRCC so that you are able to find a mathematical formula for each term of the sequence?

## Example 4

Let  $(s_i)_{i=0}^{\infty}$  be defined by the following linear homogeneous recurrence relation of degree 2:

$$s_{i+1} = 2s_i - s_{i-1}$$
 for all  $i \ge 1$ 

with initial conditions  $s_0 = 1$  and  $s_1 = 3$ . Find a mathematical formula in terms of i for each  $s_i$ .

# When the Characteristic Roots Have Multiplicity 1

**Recurrence:**  $s_i = c_1 s_{i-1} + c_2 s_{i-2} + \cdots + c_{\ell} s_{j-\ell}$  for all  $i \ge \ell$ .

Characteristic equation:  $x^{\ell} - c_1 x^{\ell-1} - c_2 x^{\ell-2} - \dots - c_{\ell-1} x - c_{\ell} = 0$ .

#### Theorem 5

If the characteristic equation has distinct roots  $r_1, r_2, \ldots, r_\ell$ , then a sequence  $(s_i)_{i=0}^{\infty}$  satisfies the linear recurrence relation if and only if

$$s_i = \alpha_1 r_1^i + \alpha_2 r_2^i + \ldots + \alpha_\ell r_\ell^i \text{ for integers } i \ge 0, \tag{4}$$

where  $\alpha_1, \alpha_2, \dots, \alpha_\ell$  are constants.

#### Remarks

A proof of the necessity will be presented in a tutorial. The proof of the sufficiency will be left as an assignment problem.

# When the Characteristic Roots Have Multiplicity 1

Recurrence:  $s_i = c_1 s_{i-1} + c_2 s_{i-2} + \cdots + c_\ell s_{i-\ell}$  for all  $i \ge \ell$ . Characteristic equation:  $x^\ell - c_1 x^{\ell-1} - c_2 x^{\ell-2} - \cdots - c_{\ell-1} x - c_\ell = 0$ .

## Steps in solving the recurrence relation

- Solving the characteristic equation to find out all the distinct roots  $r_1, r_2, ..., r_\ell$ .
- ② Use the initial conditions  $s_0, s_1, \ldots, s_{\ell-1}$  and the roots  $r_i$  to solve the following set of equations,

$$s_i = \alpha_1 r_1^i + \alpha_2 r_2^i + \ldots + \alpha_\ell r_\ell^i, \ i = 0, 1, 2, \ldots, \ell-1.$$

This will determine  $\alpha_1, \alpha_2, \dots, \alpha_\ell$ .

8 / 25

# Solving the First-order Linear Homogeneous Recurrence Relations

**Recurrence:**  $s_i = c_1 s_{i-1}$  for all  $i \ge 1$ . Characteristic equation:  $x - c_1 = 0$ .

## Steps in solving the recurrence relation

- **③** Solving the characteristic equation to find out the unique root  $r_1 = c_1$ .
- ② Use the initial condition  $s_0$  and the root  $r_1$  to solve the following equation

$$s_0 = \alpha_1$$
.

This will determine  $\alpha_1 = s_0$ .

Hence,  $s_i = s_0 c_1^i$  for all integers  $i \ge 0$ . This is the geometric sequence.

9/25

# Solving the Second-order Linear Homogeneous Recurrence Relations

**Recurrence:**  $s_i = c_1 s_{i-1} + c_2 s_{i-2}$  for all  $i \ge 2$ .

Characteristic equation:  $x^2 - c_1 x - c_2 = 0$ .

## Steps in solving the recurrence relation

- **Solving** the characteristic equation to find out the two distinct roots  $r_1, r_2$ .
- ② Use the initial conditions  $s_0$ ,  $s_1$  and the roots  $r_1$ ,  $r_2$  to solve the following set of equations,

$$s_0 = \alpha_1 + \alpha_2, \ s_1 = \alpha_1 r_1 + \alpha_2 r_2.$$

This yields  $\alpha_1$  and  $\alpha_2$ .

By Theorem 5, we have

$$s_i = \frac{s_1 - s_0 r_2}{r_1 - r_2} r_1^i + \frac{s_0 r_1 - s_1}{r_1 - r_2} r_1^i$$

# The Fibonacci Sequence

#### Problem 6

The sequence  $(F_i)_{i=0}^{\infty}$  is defined by the linear homogeneous recursion

$$F_i = F_{i-1} + F_{i-2}$$
 for all  $i \geq 2$ ,

with initial condition  $F_0 = 0$  and  $F_1 = 1$ . Solve this linear recurrence relation.

#### Solution 7

The characteristic equation  $x^2 - x - 1 = 0$  has the following distinct roots

$$r_1 = \frac{1+\sqrt{5}}{2}, \ r_2 = \frac{1-\sqrt{5}}{2}.$$

Hence,

$$F_i = \frac{1}{\sqrt{5}} \left( \frac{1 + \sqrt{5}}{2} \right)^i - \frac{1}{\sqrt{5}} \left( \frac{1 - \sqrt{5}}{2} \right)^i$$

## An Exercise

### Problem 8

Solve the following linear recurrence relation

$$s_i = 6s_{i-1} - 11s_{i-2} + 6s_{i-3}$$
 for all  $i \ge 3$ 

with initial conditions  $s_0 = 2$ ,  $s_1 = 5$  and  $s_2 = 15$ .

# When the Characteristic Roots Have Multiplicity > 1

Recurrence:  $s_i = c_1 s_{i-1} + c_2 s_{i-2} + \cdots + c_\ell s_{i-\ell}$  for all  $i \ge \ell$ . Characteristic equation:  $x^\ell - c_1 x^{\ell-1} - c_2 x^{\ell-2} - \cdots - c_{\ell-1} x - c_\ell = 0$ .

#### Theorem 9

If the characteristic equation has distinct roots  $r_1, r_2, \ldots, r_t$  with multiplicities  $m_1, m_2, \ldots, m_t$ , respectively, so that all  $m_i$ 's are positive and  $\sum_{i=1}^t m_i = \ell$ , then a sequence  $(s_i)_{i=0}^{\infty}$  satisfies the linear recurrence relation if and only if

$$s_{i} = (\alpha_{1,0} + \alpha_{1,1}i + \dots + \alpha_{1,m_{1}-1}i^{m_{1}-1})r_{1}^{i} + (\alpha_{2,0} + \alpha_{2,1}i + \dots + \alpha_{2,m_{2}-1}i^{m_{2}-1})r_{2}^{i} + \dots + (\alpha_{t,0} + \alpha_{t,1}i + \dots + \alpha_{t,m_{t}-1}i^{m_{t}-1})r_{t}^{i} \text{ for all } i \geq 0,$$

$$(5)$$

where all  $\alpha_{i,i}$ 's are constants.

# When the Characteristic Roots Have Multiplicity > 1

**Recurrence:**  $s_i = c_1 s_{i-1} + c_2 s_{i-2} + \cdots + c_\ell s_{i-\ell}$  for all  $i \ge \ell$ . Characteristic equation:  $x^\ell - c_1 x^{\ell-1} - c_2 x^{\ell-2} - \cdots - c_{\ell-1} x - c_\ell = 0$ .

## Steps in solving the recurrence relation

- Solving the characteristic equation to find out all the distinct roots  $r_1, r_2, ..., r_t$  and their multiplicities.
- ② Use the initial conditions  $s_0, s_1, \ldots, s_{\ell-1}$  and the roots  $r_i$ 's and their multiplicities  $m_i$  to solve the following set of equations,

$$s_{i} = (\alpha_{1,0} + \alpha_{1,1}i + \dots + \alpha_{1,m_{1}-1}i^{m_{1}-1})r_{1}^{i} +$$

$$= (\alpha_{2,0} + \alpha_{2,1}i + \dots + \alpha_{2,m_{2}-1}i^{m_{2}-1})r_{2}^{i} + \dots +$$

$$= (\alpha_{t,0} + \alpha_{t,1}i + \dots + \alpha_{t,m_{t}-1}i^{m_{t}-1})r_{t}^{i}, i = 0,1,\dots,\ell-1.$$

This will determine  $\alpha_{i,j}$ 's.

Remark: We will not present a proof for this theorem.



# When the Characteristic Roots Have Multiplicity > 1

**Recurrence:**  $s_i = 6s_{i-1} - 9s_{i-2}$  for all  $i \ge 2$  with  $s_0 = 1$  and  $s_1 = 6$ .

Characteristic equation:  $x^2 - 6x + 9 = 0$ .

#### Solution 10

Note that  $x^2 - 6x + 9 = 0$  has the only root x = 3 with multiplicity 2. By Theorem 9,

$$s_i = \alpha_1 3^i + \alpha_2 i 3^i.$$

Using the initial conditions, we obtain that  $\alpha_1=\alpha_2=1$ . Hence,

$$s_i=(i+1)3^i.$$

## **Rational Functions**

#### **Definition 11**

A **rational function** is the quotient of two "polynomials" of finite degree over the set of real numbers.

## Example 12

$$\frac{x + x^2}{1 - 3x + 3x^2 - x^3}.$$

# Sequences Defined by Rational Functions

## Theorem 13 (Power series expansion of a rational function)

Every rational function f(x)/g(x) can be expressed as

$$\frac{f(x)}{g(x)} = \sum_{i=0}^{\infty} s_i x^i$$

where gcd(f(x), g(x)) = 1, deg(f) < deg(g) and  $g(0) \neq 0$ .

### Proof.

Let

$$f(x) = g(x) \sum_{i=0}^{\infty} s_i x^i.$$

Solving the polynomial equation above yields  $s_i$  one by one.

**Remark:**  $(s_i)_{i=0}^{\infty}$  is the **sequence** defined by the rational function f(x)/g(x).

# Sequences Defined by Rational Functions

## Example 14

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k.$$

The sequence is  $(1)_{i=0}^{\infty}$ .

## Example 15

$$\frac{1}{1-2x}=\sum_{k=0}^{\infty}2^kx^k.$$

The sequence is  $(2^i)_{i=0}^{\infty}$ .

# Generating Functions of Sequences

### **Definition 16**

The **generating function** of an infinite sequence  $(s_i)_{i=0}^{\infty}$  is defined by

$$S(x) = \sum_{i=0}^{\infty} s_i x^i.$$

## Example 17

The generating function of the constant sequence  $(1)_{i=0}^{\infty}$  is defined by

$$S(x) = \sum_{i=0}^{\infty} x^i = \frac{1}{1-x}.$$

# Generating Functions of Sequences

#### Definition

The **generating function** of an infinite sequence  $(s_i)_{i=0}^{\infty}$  is defined by

$$S(x) = \sum_{i=0}^{\infty} s_i x^i.$$

#### Questions

- Can the generating function of a sequence always be expressed as a rational function?
- If the answer is Yes, please give a proof.
- If the answer is No, please give a counter-example and derive conditions under which the generating function of a sequence can be expressed as a rational function.

# Generating Functions and Linear Recursions

## Example 18

Let  $(s_i)_{i=0}^{\infty}$  be a sequence defined by  $s_i = 5s_{i-1} - 6s_{i-2}$ ,  $i \ge 2$ , with initial condition  $s_0 = 1$  and  $s_1 = -2$ . Employing this linear recurrence relation,

$$S(x) = s_0 + s_1 x + s_2 x^2 + s_3 x^3 + s_4 x^4 + \cdots$$

$$-5xS(x) = -5s_0 x - 5s_1 x^2 - 5s_2 x^3 - 5s_3 x^4 - \cdots$$

$$6x^2 S(x) = +6s_0 x^2 + 6s_1 x^3 + 6s_2 x^4 + \cdots$$

Hence,  $(1-5x+6x^2)S(x) = s_0 + (s_1 - 5s_0)x = 1-7x$ . The generating function is given by  $S(x) = \frac{1-7x}{1-5x+6x^2}$ .

## Question

Do you see any relation between the denominator in the generating function above and the linear recurrence formula of the sequence?

# Reciprocals of Polynomials

#### **Definition 19**

Let  $a(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$  be a polynomial. Its **reciprocal polynomial**, denoted by  $a^*(x)$ , is defined by

$$a^*(x) = a_n + x_{n-1}x + a_{n-2}x^2 + \cdots + a_0x^n.$$

## Example 20

The reciprocal of  $a(x) = 1 + 3x + 2x^5$  is  $a^*(x) = 2 + 3x^4 + x^5$ .

# From Linear Recursions to Generating Functions

#### Theorem 21

Let  $(s_i)_{i=0}^{\infty}$  be a sequence satisfying the following linear recurrence relation

$$s_i = c_1 s_{i-1} + c_2 s_{i-2} + \cdots + c_\ell s_{i-\ell}$$
 for all  $i \ge \ell$ ,

where  $c_{\ell} \neq 0$ . Then its generating function is given by S(x) = P(x)/Q(x), where

$$Q(x) = 1 - c_1 x - c_2 x^2 - \cdots - c_{\ell} x^{\ell},$$

which is the reciprocal of the characteristic polynomial of the sequence, and P(x) is some polynomial of degree less than  $\ell$ .

#### Proof.

Define P(x) = S(x)Q(x). It is straightforward to determine P(x) and prove that its degree is at most  $\ell - 1$ .



# From Generating Functions to Linear Recursions

#### Theorem 22

Let

$$Q(x) = 1 - c_1 x - c_2 x^2 - \cdots - c_\ell x^\ell,$$

where  $c_{\ell} \neq 0$ . Let P(x) be a polynomial of degree less than  $\ell$ . If  $(s_i)_{i=0}^{\infty}$  is a sequence with generating function S(x) = P(x)/Q(x), then the sequence must satisfy the following linear recurrence relation

$$s_i = c_1 s_{i-1} + c_2 s_{i-2} + \cdots + c_\ell s_{i-\ell}$$
 for all  $i \ge \ell$ .

#### Proof.

The proof is straightforward and left as an exercise.



# Solving Nonlinear Recurrence Relations

#### Comments

- Most recurrence relations are not linear, and may be very hard to solve.
- However, some of them are solvable. In this case, there is no general approach to solving nonlinear recursions.

## Example 23

Solve the recurrence relation  $s_i = s_{i-1} + i$  for all  $i \ge 1$  with the initial condition  $s_0 = 0$ .

## Example 24

Solve the recurrence relation  $s_i = s_{i-1} + i^2$  for all  $i \ge 1$  with the initial condition  $s_0 = 0$ .