Fiche: Algèbre de Boole

On définit $\mathbb{B} = \{V; F\}$ (i.e l'ensemble des valeurs booléennes), ainsi que les fonctions suivantes:

$$+ = \begin{pmatrix} \mathbb{B} \times \mathbb{B} & \to & \mathbb{B} \\ (V, V) & \mapsto & V \\ (V, F) & \mapsto & V \\ (F, V) & \mapsto & V \\ (F, F) & \mapsto & F \end{pmatrix} \quad \times = \begin{pmatrix} \mathbb{B} \times \mathbb{B} & \to & \mathbb{B} \\ (V, V) & \mapsto & V \\ (V, F) & \mapsto & F \\ (F, V) & \mapsto & F \\ (F, F) & \mapsto & F \end{pmatrix} \quad \bullet = \begin{pmatrix} \mathbb{B} & \to & \mathbb{B} \\ V & \mapsto & F \\ F & \mapsto & V \end{pmatrix}$$

Ce faisant, $(\mathbb{B}, +, \times, \bar{\bullet})$ est appelé **Algèbre de Boole**.

Remarque

• est un opérateur unaire semblable à la conjugaison dans \mathbb{C} . De plus, $+, \times, \bar{\bullet}$ sont des lois internes sur la sémantique des formules propositionnelles. On les distingue des opérateur \vee, \wedge, \neg qui font sens syntaxiquement sur $\mathbb{F}_p(\mathcal{Q})$ l'ensemble des formules propositionnelles construit par induction à partir d'un ensemble de symboles \mathcal{Q} , appelés **variables propositionnelles**.

Propriété Soit $(\mathbb{B}, +, \times, \bar{\bullet})$, alors on a les propriétés suivantes:

- \rightarrow + et \times sont associatives, commutatives et distributives l'une par rapport à l'autre
- ightarrow + admet pour élément neutre ${f F}$
- ightarrow imes admet pour élément neutre ${f V}$
- \rightarrow V est absorbant pour +
- \rightarrow **F** est absorbant pour \times
- $\rightarrow \bar{\bullet}$ est involutive

Démonstrations: En utilisant les définitions ou en réalisant des tables de vérité.

Propriété Soit $a, b \in \mathbb{B}$,

$$\overline{(a+b)} = \bar{a} \times \bar{b} \ et \ \overline{(a \times b)} = \bar{a} + \bar{b}$$

Remarque

L'implémentation en C de $+, \times, \bar{\bullet}$ correspond à &&, | |,!

Ryan Bouchou 1/1