DeepXplore: Automated Whitebox Testing of Deep Learning Systems

Kexin Pei¹, Yinzhi Cao², Junfeng Yang¹, Suman Jana¹

¹Columbia University, ²Lehigh University

Deep learning (DL) has matched human performance!

- Image recognition, speech recognition, machine translation, intrusion detection...
- Wide deployment in real-world systems

Amazon Echo Iphone X Google Earphone

Deep learning is increasingly used in safety-critical systems

Deep learning correctness and security is crucial

Self-driving car

Medical diagnosis

Malware detection

Unreliable deep learning: fooling self-driving cars

DRV_C1:right

DRV_C2:right

DRV_C3:right

Unreliable deep learning: fooling face recognition

Existing DL testing methods are seriously limited

- Common practice: measure accuracy on a test input set of randomly chosen data
- Problem 1: how good is the coverage of the test set?
 - O DL decision logic is incredibly complex
 - More fundamentally, what is testing coverage metric for DL?
- Problem 2: it requires expensive labeling effort
 - Data in test set must be manually labelled
 - O To enlarge the test set, we need to manually label more data

Existing DL testing methods are seriously limited (cont.)

- Adversarial testing (Szegedy et al. ICLR'14): find corner-case inputs imperceptible to human but induce errors
 - O Problem 1: how good is the coverage of the test set?
 - Problem 2: it requires expensive labeling effort

Problem 3: Not realistic. (Theoretical, assumes a very powerful adversary. [Sharif et al. CCS'16])

School bus

Carefully crafted noise

Ostrich

Many traditional software testing techniques don't apply to DL

DL decision logic is embedded in neurons and layers, not in code

Quick Summary of DeepXplore

- The first step towards systematic testing of Deep Neural Nets (DNNs)
- Neuron coverage: first testing coverage metric for deep nerual net
- Automated: cross-check multiple DNNs
- Realistic: physically realizable transformations
- Effective:
 - 15 State-of-the-art DNNs on 5 large datasets
 (ImageNet, Self-driving cars, PDF/Android malware)
 - Numerous corner-case errors
 - o 50% more neuron coverage than existing testing

Darker: Accident

Outline

- Quick deep learning primer
- Workflow of DeepXplore
 - o Design
 - O Detail of Neuron coverage
- Implementation
- Evaluation setup and results summary

Deep learning primer

- A neural network is a function f(X) → Y
 - O Trainable parameters (W_i) on each edge and nonlinear activation function at each neuron
 - DNN learns the weights during training
- <u>Training:</u> Given training set (X,Y), adjust W to minimize the prediction error (slow)
- Inference: Simply propagates X through layers (fast)

How DeepXplore Works?

How To Maximize Differences?

How To Maximize Differences?

MAXIMIZE

{sum of classification probabilities of other networks - classification probability of the debugging network}

$$obj_1(\boldsymbol{x}) = \sum_{k \neq j} F_k(\boldsymbol{x})[c] - \lambda_1 \cdot F_j(\boldsymbol{x})[c]$$

How To Maximize Neuron Coverage?

- Neuron coverage = # neurons activated at least once/ # total neurons
- A neuron is activated if it is output is larger than a threshold, e.g., 0.

How To Maximize Neuron Coverage?

Randomly select an inacitivated neuron and maximze its output.

$$obj_2(\mathbf{x}) = f_n(\mathbf{x})$$

Joint Optimization

Weighted sum of the above two objectives.

$$obj_{joint} = (\sum_{i \neq j} F_i(\boldsymbol{x})[c] - \lambda_1 F_j(\boldsymbol{x})[c]) + \lambda_2 \cdot f_n(\boldsymbol{x})$$

- Use Gradient Ascent to solve the above problem, the variable is x, i.e., the input of the neural network.
- Given an original input of the network **x**, we may find a modified input **x'** that causes different behaviors, but may not.

How to achieve multiple goals simultaneously

- Goal 1: systematically find corner cases
 - Generate inputs that maximize neuron coverage
- Goal 2: find DNN errors without manual labels
 - Differential testing: use multiple DNNs as cross-referencing oracles
- Goal 3: generate realistic test inputs
 - O Domain-specific constraints, e.g., a pixel value must be an integer within [0,255]

Outline

- Quick deep learning primer
- Workflow of DeepXplore
 - o Design
 - Detail of Neuron coverage
- Implementation
- Evaluation setup and results summary

Implementation

Outline

- Quick deep learning primer
- Workflow of DeepXplore
 - o Design
 - Detail of Neuron coverage
- Implementation
- Evaluation setup and results summary

Evaluation setup and results summary

Dataset	Description	DNNs	Original random testing accuracy	Avg. neuron coverage improvement over random/adversarial	Avg. Violations found by DeepXplore (2000 seeds)
MNIST	Handwritten digits	LeNet variants	98.63%	30.5% → 70%	1,289
ImageNet	General Images in 1000 categories	VGG16, VGG19, ResNet15	93.91%	1% → 69%	1,980
Driving	Udacity self-driving car competition dataset	Nvidia Dave-2 variants	99.94%	3.2% → 59%	1,839
Contagio/ VirusTotal	PDF malware	Fully connected	96.29%	18% → 70%	1,048
Drebin	Android malware	Fully connected	96.03%	18.5% → 40%	2,000

Sample corner-case errors for images

Performance

- For all tested DL models, on average DeepXplore generated one test input demonstrating incorrect behavior within one second while running only on a commodity laptop.
- Given a set of DNNs, we can use majority voting to automatically label the exceptional cases generated by DeepXplore. Using these as new labeled training examples improves accuracy by 1-3%.

Conclusions

- Systematically testing DL for realistic corner cases is a hard problem
- DeepXplore is the first step for systematic DL testing
 - O Neuron coverage: first testing coverage metric for deep nerual net
 - Automated: differential testing by cross-checking multiple DNNs
 - Realistic: physically realizable transformations
 - Effective: find neumerous unexpected corner-case errors
- A lot of exciting new research problems!
 - Build analysis tools for testing and verification of ML
 - Build better debugging support for opaque ML

Comments

- I like the ideas:
- Apply traditional software debugging techniques (code coverage, differential testing) to debug DNNs.
- Formulate the testing problem as an joint-optimization problem and solve it using gradient-based method.
- This paper focuses on **classification problem** in supervised learning.
- Neuron coverage can not cover all possible inputs.
- The constraints are not flexible enough and the resulting inputs can only be the input used for training, plus some minor modifications.
- DL systems probably can't handle all safety issues alone, we need non-DNN "safety-wrapper".

Thank you! Questions?