

Grundbegriffe der Elektrotechnik Elektrischer Widerstand

Blatt-Nr.: 2.5

Alle elektrischen Bauelemente, z.B. Motoren, Heizungen oder Leitungen, besitzen einen Widerstand, durch den der Strom beeinflusst wird. Bei Stromfluss durch einen Widerstand entsteht Nutzwärme oder Verlustwärme.

1.	Was versteht man unter elektrischem V				ingen.				
	•								
2.	Durch das Widerstandsverhalten der La) In welche Energieform wird die Bev b) Was geschieht mit dieser Energie? a)	vegungsenergie d	er Ladungs	träger umge	ewandelt?	-	Energi	e.	
	b)								
3.	Ergänzen Sie die Tabelle 1 .		4. Was g	gibt a) der s	spezifische Wic	derstand	ϱ und	b)	die
	Tabelle 1: Elektrischer Widerstand		elektr	ische Leitfäh	nigkeit γ eines L	eiters an	?		
	Formelzeichen		a)						
	Einheitenname								
	Einheitenzeichen	2							
		=50	b)						
			-						
5.	Der elektrische Widerstand ist von den			abhängig. Er	gänzen Sie die	Tabelle 2.	6		_
	Tabelle 2: Materialabhängigkeit des e Materialgrößen des Leiters		standes eispiele		Elektrice	her Wide	retone		
	Materialgroiseri des Leiters	_	eispieie	aroß	Elektrisc		istaiit	•	
	Leiterlänge l			groß		groß			
				klein	7/1				
	Leiterquerschnitt A	z. B. 25 mm ²		-					_
		z. B. 1,5 mm² ⊂			-				
	spezifischer Widerstand $arrho$	z.B. Wolfram		J. S.					
	Sportmostor vitadiotatia g	z.B. Kupfer			_				_
6.	Geben Sie zwei Formeln zur Berechnur Leiter-Widerstandswertes mithilfe der		und γ an.	Leiterw	riderstand R=	:=:			
7.	Berechnen Sie den Widerstand in mΩ Betrieb der Leitung zwei Adern stromfü		Kupfer-Le	itung NYM-	J 3 x 1,5 mm². l	Beachten	Sie, d	lass	im
	Geg.: $l = \gamma_{cu} =$	A =	Ge	es.: R _{Leitung}					
	7 GU			Leitung					
	Lösung:								

Grundschaltungen der Elektrotechnik Reihenschaltung von Widerständen (1)

Blatt-Nr.: 3.1

Eine Reihenschaltung von mehreren elektrischen Bauelementen (Bild 1) liegt vor, wenn der Anschluss eines Bauelementes nur mit einem Anschluss des nächstfolgenden Bauelementes verbunden wird.

١.	Nennen Sie zwei Beispiele für die technische Anwendung von Reihenschaltun-
	gen.

2. Tragen Sie in die Reihenschaltung (Bild 2) die Gesamtspannung U, den Strom I und die Teilspannungen U_1 an R_1 , U_2 an R_2 und U_3 an R_3 mit den dazugehörigen Bezugspfeilen ein.

Bild 1: Lichterkette

Bild 2: Reihenschaltung von Widerständen

3. Ergänzen Sie die Gesetzmäßigkeiten der Reihenschaltung Bild 2 a) als Formel und b) mit Worten.

a)	Stromstärke	Gesamtspannung	Gesamtwiderstand	Spannungsteiler für U_1 , U_2
	I = konstant	U =	R=	$\frac{U_1}{U_2}$ =

b) Der Strom ist an allen Stellen der Reihenschaltung gleich groß.

Die Gesamtspannung

Der Gesamtwiderstand

Die Spannungen

4.	Ziehen Sie Schlus	sstolgerungen a	aus den (Besetzmäßigkeiten	der l	Reihenschaltung,	indem	Sie folgende /	Aussagen mi	t
	"größten/größte"	oder "kleinsten	/kleinste	" ergänzen.						

Die größte Teilspannung tritt am ______ Teilwiderstand auf.

Am kleinsten Teilwiderstand tritt die ______ Teilspannung auf.

5. Nennen Sie zwei Nachteile der Reihenschaltung.

•

•

6. Nennen Sie die Maschenregel (2. kirchhoffsche Regel).

Die Zählrichtung innerhalb einer Masche kann frei gewählt werden, entweder im Uhrzeigersinn oder gegen den Uhrzeigersinn. Beachten Sie, dass alle Spannungen in der Zählrichtung ein positives Vorzeichen, alle Spannungen gegen die Zählrichtung ein negatives Vorzeichen erhalten.

- 7. a) Stellen Sie die Maschenregel für die Reihenschaltung nach Bild 1 auf und berechnen Sie daraus die Spannung U₂ für die Zählrichtung im Uhrzeigersinn und
 - b) für die Zählrichtung gegen den Uhrzeigersinn.
 - c) Welche Schlussfolgerung ziehen Sie aus dem Vergleich beider Ergebnisse?

Bild 1: Reihenschaltung von drei Widerständen

Bild 2: Reihenschaltung von vier Widerständen

- 8. Vier Teilwiderstände $R_1 = 22 \Omega$, $R_2 = 47 \Omega$, $R_3 = 15 \Omega$ und $R_4 = 33 \Omega$ sind in Reihe an eine Spannungsquelle mit $U_0 = 24 \text{ V}$ geschaltet.
 - a) Verbinden Sie die Bauelemente im **Bild 2** und tragen Sie für den Strom I und alle Teilspannungen U_1 bis U_4 die Bezugspfeile ein.
 - b) Berechnen Sie den Ersatzwiderstand R.
- c) Berechnen Sie die Stromstärke I.
- d) Berechnen Sie die Teilspannungen U_1 bis U_4 .
- e) Berechnen Sie die Summe U_1 bis U_4 .

Grundschaltungen der Elektrotechnik Parallelschaltung von Widerständen (1)

Blatt-Nr.: 3.4

Eine Parallelschaltung von mehreren elektrischen Bauelementen liegt vor, wenn alle Eingänge bzw. alle Ausgänge der Bauelemente jeweils in einem Knotenpunkt verbunden sind, z. B. Steckdosenleiste (Bild 1).

- Nennen Sie zwei Beispiele für die technische Anwendung von Parallelschaltungen.
 - •

Bild 1: Steckdosenleiste

2. Tragen Sie in die Parallelschaltung **Bild 2** die Gesamtspannung U, den Gesamtstrom I, die Teilströme I_1 , I_2 und I_3 , sowie die Teilspannungen U_1 an R_1 , U_2 an R_2 und U_3 an R_3 mit den dazugehörigen Bezugspfeilen ein.

Bild 2: Parallelschaltung mit drei Widerständen

3. Ergänzen Sie die Gesetzmäßigkeiten der Parallelschaltung Bild 2 a) als Formel und b) allgemein mit Worten

a) [Spannungen	Gesamtstromstärke	Gesamtwiderstand	Stromteiler für R_1 , R_2
	$U_1 = U_2 = U_3 = U$	I =	$\frac{1}{R}$ =	$\frac{I_1}{I_2}$ =

b) Die Spannungen sind an allen Widerständen der Parallelschaltung gleich groß.

Der Gesamtstrom

Der Kehrwert des Gesamtwiderstandes

Die Ströme

4. Ziehen Sie Schlussfolgerungen aus den Gesetzmäßigkeiten der Parallelschaltung, indem Sie folgende Aussagen mit "größten/größte/größer" oder "kleinsten/kleinste/kleiner" ergänzen.

Der größte Teilstrom tritt am _____ Teilwiderstand auf.

Am größten Teilwiderstand tritt der ______ Teilstrom auf.

Der Gesamtwiderstand einer Parallelschaltung ist

stets als der Teilwiderstand.

5. Zu einem Widerstand R₁ wird ein weiterer Widerstand R₂ parallel geschaltet. Wie verhalten sich a) die Stromstärke I in der Zuleitung, b) die Spannung U₁ am Widerstand R₁ und c) der Gesamtwiderstand R (Bild 3)?

a)_____

b)_____

c)_____

Bild 3: R₂ wird zugeschaltet

- (
- 6. Nennen Sie die Knotenpunktregel (1. kirchhoffsche Regel).
- 7. Stellen Sie
 - a) die Knotenpunktregel zur Berechnung der Ströme für die Schaltung nach Bild 1 auf und
 - b) berechnen Sie daraus die Stromstärke I3.

- 8. Nehmen Sie an: Das Ergebnis der **Aufgabe 7** hätte $I_3 = -0.6$ A gelautet. Ziehen Sie daraus die Schlussfolgerung für die Schaltung nach **Bild 1**.
- **9.** Für einen Gleichstrommotor (**Bild 2**) werden 12 A benötigt, die aus zwei gleichen Spannungsquellen mit je 6 A zu entnehmen sind.
 - a) Ergänzen Sie die Schaltung in Bild 2, um die Forderung zu erfüllen.
 - b) Welche Bedingung lässt sich aus Bild 2 für eine korrekte Parallelschaltung von Spannungsquellen ableiten?
 - c) Welchen Strom würde der Motor (Bild 2) erhalten, wenn irrtümlicherweise eine Spannungsquelle umgepolt würde?
 - b) _____
- 10. Berechnen Sie für die Schaltung nach Bild 3
 - a) den Ersatzwiderstand $R_{\rm I}$, der drei parallel geschalteten Widerstände,
 - b) den Gesamtstrom I und
 - c) die Teilströme I_1 , I_2 und I_3 .
 - d) Wie groß müsste ein parallelgeschalteter Widerstand R_4 sein, damit der Ersatzwiderstand $R_{\rm II}=60~\Omega$ beträgt?

Bild 1: Knotenpunkt (Beispiel)

Bild 2: Stromversorgung Gleichstrommotor

Bild 3: Parallelschaltung mit 4 Widerständen

Grundbegriffe der Elektrotechnik Ohmsches Gesetz (1)

-			-	
B	att-	Nr	.: 2	.6

Das ohmsche Gesetz erklärt den Zusammenhang zwischen Strom I, Spannung U und Widerstand R. Wichtig ist, dass man unterscheiden kann, welche Größe jeweils die Ursache und welche Größe die Wirkung bzw. die Folge der Ursache ist. Im ohmschen Gesetz ist der Widerstand R immer die Größe, die zwischen Ursache und Wirkung die Bedingung darstellt.

- Der Physiker Ohm hat den Zusammenhang zwischen Stromstärke I und Spannung U erforscht. Ergänzen Sie a) die Beziehung zwischen Spannung U und Stromstärke I und b) die Formel für das ohmsche Gesetz.
- **2.** Nennen Sie mithilfe des ohmschen Gesetzes die Formeln zur Berechnung von *I*, *U* und *R*.

Ohmsch	nes Gesetz (gleich	nbleibende Bedingungen)
a)	b)	
	\Rightarrow	= konstant $=$ R

Berechnung der Spannung <i>U</i>	Berechnung des Widerstandes R
	•

- 3. a) Erläutern Sie für die Größen Spannung, Strom und Widerstand die Beziehung zwischen Ursache und Wirkung in den Bildern 1 und 2.
 - b) Nennen Sie die zugehörige Formel zur Berechnung der Wirkungsgröße.

4. Die Tabelle zeigt drei Beispiele der Veränderung einer elektrischen Größe im Bild 3. Ergänzen Sie mithilfe des ohmschen Gesetzes für jedes Beispiel die Reaktion der fehlenden Größe.

Tabelle: Zusammenwirken der elektrischen Größen: Spannung, Strom, Widerstand				
elektrische Größen	Beispiel 1	Beispiel 2	Beispiel 3	
Widerstand R	bleibt gleich	bleibt gleich	wird kleiner	
Stromstärke I	wird kleiner		wird größer	
Spannung <i>U</i>		wird größer	bleibt gleich	

Bild 3: Stromkreisausschnitt

 Berechnen Sie den Wert eines Heizwiderstandes, wenn bei einer Spannung von 230 V ein Strom von 4,35 A fließt.

6. Trotz Verbot arbeitete der Azubi unter Spannung an einer Schutzkontaktsteckdose für 230 V/16 A. Der Leitungswiderstand beträgt 0,9 Ω. Er berührte versehentlich mit dem Schraubendreher gleichzeitig den Außenleiter und den Schutzkontakt. Es kam zum Kurzschluss. Berechnen Sie die Stromstärke.

Hinweis: Der Widerstand des Schraubendrehers kann vernachlässigt werden.

Geg.:	Ges.:	
Lösung:		