A Note On Spectral Clustering

Pavel Kolev and Kurt Mehlhorn

European Symposia on Algorithms'16

Outline

- Problem Formulation
 - Algorithmic Tools
- Our Contribution
 - Structural Result
 - Algorithmic Result
 - Proof Overview
- Summary

• **Def.** A **cluster** is a subset $S \subseteq V$ with small conductance

$$\phi(S) = \frac{|E(S,\bar{S})|}{\mu(S)}$$
, where the volume $\mu(S) = \sum_{v \in S} \deg(v)$.

• **Def.** A **cluster** is a subset $S \subseteq V$ with small conductance

$$\phi(S) = \frac{|E(S,\bar{S})|}{\mu(S)}$$
, where the volume $\mu(S) = \sum_{v \in S} \deg(v)$.

• **Def.** The order *k* conductance constant

$$\rho(k) = \min_{\text{partition } (P_1, \dots, P_k)} \max_{i \in [1:k]} \phi(P_i)$$

• Def. A cluster is a subset S ⊆ V with small conductance

$$\phi(S) = \frac{|E(S,\bar{S})|}{\mu(S)}$$
, where the volume $\mu(S) = \sum_{v \in S} \deg(v)$.

Def. The order k conductance constant

$$\rho(k) = \min_{\text{partition } (P_1, \dots, P_k)} \max_{i \in [1:k]} \phi(P_i)$$

• Goal: Find an approximate k-way partition w.r.t $\rho(k)$.

Def. A cluster is a subset $S \subseteq V$

$$\min_{\text{partition }(P_1,\dots,P_k)} \max_{i \in [1:k]} \phi(P_i)$$

Goal: Find an *approximate* k-way partition w.r.t $\rho(k)$.

Standard Spectral Clustering Paradigm

Input: $G = (V, E), 3 \le k \ll n$ and $\epsilon \in (0,1)$.

Output: An *approximate k*-way partition of *V*.

Andrew Ng et al [NIPS'02]:

- 1. Computes an *approximate* Spectral Embedding $(F: V \mapsto R^k)$ using the Power Method.
- 2) Run a k-means clustering algorithm to compute an approximate k-way partition of $\{F(v)\}_{v \in V}$.

Outline

- Problem Formulation
 - Algorithmic Tools
- Our Contribution
 - Structural Result
 - Algorithmic Result
 - Proof Overview
- Summary

Spectral Graph Theory

The normalized Laplacian matrix £ has eigenvalues

$$0 = \lambda_1 \le \dots \le \lambda_k \le \lambda_{k+1} \le \dots \le \lambda_n \le 2.$$

Fact. A graph has exactly k connected component iff

$$0 = \lambda_k < \lambda_{k+1}$$
.

Spectral Graph Theory

The normalized Laplacian matrix £ has eigenvalues

$$0 = \lambda_1 \le \dots \le \lambda_k \le \lambda_{k+1} \le \dots \le \lambda_n \le 2.$$

Fact. A graph has exactly k connected component iff

$$0 = \lambda_k < \lambda_{k+1}.$$

 Trevisan et al. [STOC'12, SODA'14] proved a robust version

$$\lambda_k/2 \le \rho(k) \le O(k^3)\sqrt{\lambda_k}$$
.

 $(\rho(k))$ is **NP-hard** and λ_k is in **P**) \rightarrow **approx**. scheme!

Exact Spectral Embedding

• $U_k = (v_1, v_2, ..., v_k) \in \mathbb{R}^{V \times k}$ - the bottom k eigenvectors of \mathcal{L}

Normalized Spectral Embedding:

$$F(v) = \frac{1}{\sqrt{\deg(v)}} U_k(v,:)$$
, for every $v \in V$.

Exact Spectral Embedding

• $U_k = (v_1, v_2, ..., v_k) \in \mathbb{R}^{V \times k}$ - the bottom k eigenvectors of \mathcal{L}

$$F(v) = \frac{1}{\sqrt{\deg(v)}} U_k(v,:)$$
, for every $v \in V$.

Approximate Spectral Embedding

• $\widetilde{U}_k \in \mathbb{R}^{V \times k}$ approximation of the bottom k eigenvectors of \mathcal{L}

Approximate Normalized Spectral Embedding:

$$\tilde{F}(v) = \frac{1}{\sqrt{\deg(v)}} \tilde{U}_k(v,:)$$
, for every $v \in V$.

Approximate Spectral Embedding

• $\widetilde{U}_k \in \mathbb{R}^{V \times k}$ approximation of the bottom k eigenvectors of \mathcal{L}

Approximate Normalized Spectral Embedding:

$$\widetilde{\mathcal{X}}_E = \{ \deg(v) \text{ many copies of } \widetilde{F}(v) | v \in V \}.$$

$$\widetilde{\mathcal{X}}_V = \{ \widetilde{F}(v) | v \in V \}.$$

$$\widetilde{\mathcal{X}}_{V} = \{ \widetilde{F}(v) | v \in V \}.$$

k-means Clustering

Input: $\mathcal{X} = \{p_1, \dots, p_n\}$ with $p_i \in \mathbb{R}^k$.

Output: k-way partition of X such that

$$(A_1^{\star}, \dots, A_k^{\star}) = \underset{\text{partition } (X_1, \dots, X_k) \text{ of } \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{p \in X_i} ||p - c_i||^2,$$

where c_i is the center of X_i .

k-means Clustering

Input: $\mathcal{X} = \{p_1, \dots, p_n\}$ with $p_i \in \mathbb{R}^k$.

Output: k-way partition of X such that

$$(A_1^{\star}, \dots, A_k^{\star}) = \underset{\text{partition } (X_1, \dots, X_k) \text{ of } X}{\operatorname{argmin}} \left[\sum_{i=1}^k \sum_{p \in X_i} ||p - c_i||^2 \right],$$

where c_i is the center of X_i .

Def. The optimal k-means cost is

$$\Delta_k(\mathcal{X}) = \operatorname{cost}(A_1^{\star}, \dots, A_k^{\star}).$$

Outline

- Problem Formulation
 - Algorithmic Tools
- Our Contribution
 - Structural Result
 - Algorithmic Result
 - Proof Overview
- Summary

Peng et al. [COLT'15]

$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^3)$$

$$\rho(k) = \max_{i \in [1:k]} \phi(P_i)$$

Our Result

$$\Psi \coloneqq \lambda_{k+1}/\rho_{\text{avr}}(k) \ge \Omega(k^3)$$

$$\rho_{\text{avr}}(k) = \frac{1}{k} \sum_{i=1}^{k} \phi(P_i)$$

- $(P_1, ..., P_k)$ is an optimal k-way partition of G w.r.t. $\rho(k)$.

Peng et al. [COLT'15]

$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^3)$$

$$\rho(k) = \max_{i \in [1:k]} \phi(P_i)$$

Our Result

$$\Psi \coloneqq \lambda_{k+1}/\rho_{\rm avr}(k) \ge \Omega(k^3)$$

$$\rho_{\text{avr}}(k) = \frac{1}{k} \sum_{i=1}^{k} \phi(P_i)$$

- $(P_1, ..., P_k)$ is an optimal k-way partition of G w.r.t. $\rho(k)$. $cost(A_1, ..., A_k) \le \gamma \cdot \Delta_k(\widetilde{X}_E)$ for $\gamma \ge 1$.

Peng et al. [COLT'15]

If
$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^3)$$
 then
$$\mu(A_i \Delta P_i) \le (\gamma/\Upsilon) \cdot \mu(P_i)$$

$$\rho(k) = \max_{i \in [1:k]} \phi(P_i)$$

Our Result

$$\rho_{\text{avr}}(k) = \frac{1}{k} \sum_{i=1}^{k} \phi(P_i)$$

- $(P_1, ..., P_k)$ is an optimal k-way partition of G w.r.t. $\rho(k)$. $cost(A_1, ..., A_k) \le \gamma \cdot \Delta_k(\widetilde{\mathcal{X}}_E)$ for $\gamma \ge 1$.

Peng et al. [COLT'15]

If
$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^3)$$
 then

- $\mu(A_i \Delta P_i) \leq (\gamma/\Upsilon) \cdot \mu(P_i)$
- $\Phi(A_i) \leq (1 + \gamma/\Upsilon) \cdot \phi(P_i) + \gamma/\Upsilon$

$$\rho(k) = \max_{i \in [1:k]} \phi(P_i)$$

Our Result

If
$$\Psi := \lambda_{k+1}/\rho_{\text{avr}}(k) \ge \Omega(k^3)$$
 then

$$\rho_{\text{avr}}(k) = \frac{1}{k} \sum_{i=1}^{k} \phi(P_i)$$

- $(P_1, ..., P_k)$ is an optimal k-way partition of G w.r.t. $\rho(k)$. $cost(A_1, ..., A_k) \le \gamma \cdot \Delta_k(\widetilde{\mathcal{X}}_E)$ for $\gamma \ge 1$.

Peng et al. [COLT'15]

If
$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^3)$$
 then

$$\rho(k) = \max_{i \in [1:k]} \phi(P_i)$$

Our Result

If
$$\Psi := \lambda_{k+1}/\rho_{\text{avr}}(k) \ge \Omega(k^3)$$
 then

$$\rho_{\text{avr}}(k) = \frac{1}{k} \sum_{i=1}^{k} \phi(P_i)$$

How to find such k-way partition $(A_1, ..., A_k)$?

Outline

- Problem Formulation
 - Algorithmic Tools
- Our Contribution
 - Structural Result
 - Algorithmic Result
 - Proof Overview
- Summary

Peng et al. [COLT'15]

$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^5)$$

Concentration

more restrictive by

 $\Omega(k^2)$ -factor

Heat Kernel and

Local Sensitive Hashing

Peng et al. [COLT'15]

$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^5)$$

more restrictive by

 $\Omega(k^2)$ -factor

Heat Kernel and

Local Sensitive Hashing

Our Result

$$\Psi \coloneqq \lambda_{k+1}/\rho_{\mathrm{avr}}(k) \ge \Omega(k^3)$$

and $\Delta_k(\mathcal{X}_V) \ge n^{-O(1)}$

Approx. Spectral Embedding and k-means Clustering

Peng et al. [COLT'15]

$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^5)$$

Concentration

more restrictive by

 $\Omega(k^2)$ -factor

Heat Kernel and

Local Sensitive Hashing

Our Result

$$\Psi \coloneqq \lambda_{k+1}/\rho_{\mathrm{avr}}(k) \ge \Omega(k^3)$$

and $\Delta_k(\mathcal{X}_V) \ge n^{-O(1)}$

Approx. Spectral Embedding and k-means Clustering

This is the 1st rigorous *algorithmic* analysis of the Standard Spectral Clustering Paradigm!

Peng et al. [COLT'15]

$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^5)$$

Concentration

constant = 10^5

Heat Kernel and Local Sensitive Hashing

Our Result

$$\Psi \coloneqq \lambda_{k+1}/\rho_{\mathrm{avr}}(k) \ge \Omega(k^3)$$

and $\Delta_k(\mathcal{X}_V) \ge n^{-O(1)}$

Approx. Spectral Embedding and k-means Clustering

constant =
$$10^7/\epsilon_0$$

$$\epsilon_0 = 6/10^7$$
 is Ostrovsky et al's [FOCS'13]

k-means alg. constant (is not optimized!)

Peng et al. [COLT'15]

If
$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^5)$$
 then

$$\mu(A_i \Delta P_i) \le \left(\frac{\log^2 k}{k^2} / \Upsilon\right) \cdot \mu(P_i)$$

Our Result

If
$$\Psi \coloneqq \lambda_{k+1}/\rho_{\mathrm{avr}}(k) \ge \Omega(k^3)$$

and $\Delta_k(\mathcal{X}_V) \ge n^{-O(1)}$ then

- $\phi(A_i) \le (1 + 1/\Psi k) \cdot \phi(P_i) + (1/\Psi k)$

Heat Kernel and

Local Sensitive Hashing

Approx. Spectral Embedding and k-means Clustering

Peng et al. [COLT'15]

If
$$\Upsilon \coloneqq \lambda_{k+1}/\rho(k) \ge \Omega(k^5)$$
 then

Our Result

If
$$\Psi \coloneqq \lambda_{k+1}/\rho_{\text{avr}}(k) \ge \Omega(k^3)$$

and $\Delta_k(\mathcal{X}_V) \geq n^{-O(1)}$ then

•
$$\phi(A_i) \le (1 + 1/\Psi k) \cdot \phi(P_i) + (1/\Psi k)$$

Heat Kernel and

Local Sensitive Hashing

Runtime: $O(m\log^c n)$

Approx. Spectral Embedding

and k-means Clustering

Runtime: $O\left(m\left(k^2 + \frac{\ln n}{\lambda_{k+1}}\right)\right)$

Outline

- Problem Formulation
 - Algorithmic Tools
- Our Contribution
 - Structural Result
 - Algorithmic Result
 - Proof Overview
- Summary

Boutsidos et al [ICML'15] Let $(A_1, ..., A_k)$ be a partition such that $cost(A_1, ..., A_k) \leq (1 + \gamma)\Delta_k(\widetilde{X}_V)$ then $cost(A_1, ..., A_k) \leq (1 + 4\epsilon)(1 + \gamma)\Delta_k(X_V) + 4\epsilon^2$.

Approximate Embedding

Power Method

$$p = f\left(n, \log\frac{1}{\epsilon}, \lambda_k, \lambda_{k+1}\right)$$

Boutsidos et al [ICML'15] Let $(A_1, ..., A_k)$ be a partition such that

$$cost(A_1, ..., A_k) \le (1 + \gamma) \Delta_k(\widetilde{\mathcal{X}}_V)$$

then

$$cost(A_1, ..., A_k) \le (1 + 4\epsilon)(1 + \gamma)\Delta_k(\mathcal{X}_V) + 4\epsilon^2.$$

Questions:

- 1. Find an efficient k-means clustering algorithm for $\widetilde{\mathcal{X}}_E$?
- 2. Extend Boutsidos et al's [ICML'15] analysis?

Ostrovsky et al's [FOCS'13] gave an approximate k-means algorithm

with fast runtime $O(mk^2)$, but requires $\Delta_k(X) \leq \epsilon_0^2 \cdot \Delta_{k-1}(X)$

where $\epsilon_0 = 6/10^7$.

Exact Embedding

Approximate Embedding

Ostrovsky et al's [FOCS'13] gave an approximate k-means algorithm

with fast runtime $O(mk^2)$, but requires $\Delta_k(X) \leq \epsilon_0^2 \cdot \Delta_{k-1}(X)$

where $\epsilon_0 = 6/10^7$.

$$F(v) = \frac{1}{\sqrt{d_v}} U_k(v,:)$$

Fast k-means Alg. runtime: $O(mk^2)$

Approximate Embedding

$$\widetilde{F}(v) = \frac{1}{\sqrt{d_v}} \widetilde{U}_k(v,:)$$

$$\frac{\lambda_{k+1}}{\rho_{\text{avr}}(k)} = \Omega(k^3)$$

Ostrovsky et al's [FOCS'13]

$$\Delta_{k}(\widetilde{\mathcal{X}}_{E}) \leq \epsilon_{0}^{2} \cdot \Delta_{k-1}(\widetilde{\mathcal{X}}_{E})$$

Approximate Embedding

$$F(v) = \frac{1}{\sqrt{\underline{d}_{v}}} U_{k}(v,:)$$

Fast k-means Alg. runtime:
$$O(mk^2)$$

$$\widetilde{F}(v) = \frac{1}{\sqrt{d_v}} \widetilde{U}_k(v,:)$$

$$\frac{\lambda_{k+1}}{\rho_{\text{avr}}(k)} = \Omega(k^3)$$

Ostrovsky et al's [FOCS'13]

$$\Delta_{k}(\widetilde{\mathcal{X}}_{E}) \leq \epsilon_{0}^{2} \cdot \Delta_{k-1}(\widetilde{\mathcal{X}}_{E})$$

Proof Sketch (Overview)

Outline

- Problem Formulation
 - Algorithmic Tools
- Our Contribution
 - Structural Result
 - Algorithmic Result
 - Proof Overview
- Summary

Summary

We proved rigorously that

the Standard Spectral Clustering Paradigm

efficiently computes a k-way partition

under asymptotically less restrictive gap assumption.

Open Problems

Show that the SSCP has a good behavior on small graphs.

Our approach fails due to large constants in $\Psi \ge \Omega(k^3)$:

 $-10^7/\epsilon_0$ - Ostrovsky et al. (is not optimized)

$$\Delta_k(\mathcal{X}) \leq \epsilon_0^2 \cdot \Delta_{k-1}(\mathcal{X})$$
, where $\epsilon_0 = 6/10^7$.

Open Problems

Show that the SSCP has a good behavior on small graphs.

Our approach **fails** due to **large** constants in $\Psi \ge \Omega(k^3)$:

 $-10^7/\epsilon_0$ - Ostrovsky et al. (is not optimized)

$$\Delta_k(\mathcal{X}) \leq \epsilon_0^2 \cdot \Delta_{k-1}(\mathcal{X})$$
, where $\epsilon_0 = 6/10^7$.

Can we obtain a multiplicative conductance guarantee:

$$\phi(A_i) \leq (1 + \gamma/\Psi k) \cdot \phi(P_i) + \gamma/\Psi k.$$

Thank you!

