Enhancing DGEMO with Bayesian Optimization Properties: Towards DGEBO

Summary

 Adding more Bayesian Optimization properties to DGEMO may improve its performance.

How?

1. Stochastic multivariate objective in First order approximation

- ullet As is) \circ $ilde{F} = (\mu_1, \cdots, \mu_d) ext{ where } \mu_j = k_j K_j^{-1} Y orall j$
- ullet To be) $\circ ilde{F} \sim N(\mu, \Sigma)$

2. Modify Stochastic Sampling to use a BO approach

As is)

i.
$$\mathbf{x}_s = \mathbf{x}^j + rac{1}{2^{\delta_p}}\mathbf{d}_p$$
 : random sampling

- To be)
 - Exploration method from BO.
 - Acquisition functions like El.

DGEMO Review

- ullet MOO problem with $F=(f_1,\cdots,f_d)$
- ullet Use GP as a surrogate model of F as

$$0 \circ ilde{F} = (ilde{f}_1, \cdots, ilde{f}_d) \quad ext{where } ilde{f}_j \sim N(m_j, k_j), \quad egin{cases} m_j = 0 \ k_j ext{ is a Matern Kernel}, orall j \end{cases}$$

- Use the mean function as the acquisition function.
 - $egin{aligned} \circ & ilde{f}_j = \mu_j = k_j K_j^{-1} Y orall j \end{aligned}$
- Use affine subspaces A_i near the samples derived with the First-Order Approximation.
 - $\,^{\circ}\,$ Jacobian and Hessian of μ_{j}
- ullet Use batch selection X_B to run parallel when deriving the final Pareto front.

DGEMO's Limit

1. Not fully utilizes the GP.

- Simply using the posterior μ_i for the first order approximation.
- ullet Not fully utilizing the posterior variance Σ_i^2 might be wasting the valuable info.

2. Arbitrary Sampling procedure in the First-Order Approximation.

- ullet From the previous candidate ${f x}_i$ in the performance buffer B(j), it generates the
 - new sample ${f x}_s$ as ${f x}_s={f x}^j+rac{1}{2^{\delta_p}}{f d}_p$ where ${f d}_p$ is a uniform random unit vector that defines the

3. Treats \tilde{F} as definitive but in reality it is stochastic.

• When optimizing the newly generated sample is uses the single objective of $\mathbf{x}_o = \arg\min_{\mathbf{x} \in \mathcal{X}} \|F(\mathbf{x}) - \mathbf{z}(\mathbf{x_s})\|^2$

Suggestion: DGEBO

- 1. What if we treat $ilde{F} \sim N(\mu, \Sigma)$ as we did in BO.
 - ullet According to the assumption of the model, each f_j was independent of each other.

1-1. Since we want to define \tilde{F} to be stochastic, the following optimization problem should be modified as well.

$$ullet \mathbf{x}_o = rg\min_{\mathbf{x} \in \mathcal{X}} \|F(\mathbf{x}) - \mathbf{z}(\mathbf{x_s})\|^2$$

- Why doing this?)
 - The reason that we are optimizing this is to make our sample closer to the Pareto Front.
 - \circ Zeleny's Compromise Programming says using various weightings and distance functions L_p norms may obtain efficient solutions close to the ideal point.
 - \circ Schulz et al. used the L_2 Norm.
- Problem)
 - \circ F is not deterministic anymore.

- Sol?)
 - Use Distance Metrics for Probability Distributions
 - KL Divergence : $KL(\tilde{F}, \delta(\mathbf{z}(\mathbf{x_s})))$
 - Mutual Information
 - Wasserstein Distance?

$$lacksquare W_2(P,Q) = \left(\inf_{\gamma \in \Pi(P,Q)} \int_{\mathcal{X} imes \mathcal{X}} \|x-y\|^2 \, d\gamma(x,y)
ight)^{rac{1}{2}}$$

- \circ Making $\mathbf{z}(\mathbf{x}_s)$ a probability distribution?
 - lacktriangle Dirac Delta : $\mathbf{z}(\mathbf{x}_{\mathrm{s}}) \sim \delta(\mathbf{z}(\mathbf{x}_{\mathrm{s}}))$
 - lacktriangle Gaussian : $\mathbf{z}(\mathbf{x_s}) \sim N(\mathbf{z}(\mathbf{x_s}), \sigma^2)$

1-2. First order approximation should be changed as well.

- ullet Deterministic F
 - \circ Calculate the Jacobian and Hessian of μ
- Stochastic *F*
 - \circ We should get the Jacobian and Hessian of $F \sim N(\mu, \Sigma)$
 - Is this possible? Gaussian, so yeah?

2. When sampling a new point in the performance buffer, what if we use BO acquisition function such as EI?

As is)

$$ullet \mathbf{x}_s = \mathbf{x}^j + rac{1}{2^{\delta_p}} \mathbf{d}_p$$

To be)

Expected Improvement with Information Gain

Possible Costs and Improvements?

- 1. Treating F to be stochastic may be more expensive than treating it to be deterministic.
 - Check if the simple kernels like low dimensional polynomials work.
- 2. Treating the multivariate stochastic function $F \sim N(\mu, \Sigma)$
 - Is this set up compatible with the performance buffer set up in DGEMO?
 - Is the new sampling scheme compatible with this?

3. Will this approach have advantage?

- More accurate approximation on the Pareto front may be available.
- More efficient sampling using the BO approach.
- DGEMO's batch selection strategy is **NOT** deteriorated by this approach.
 - Stochastic modification is applied only to the First-order approximation.
 - We do not change any of these key factors.
 - Initial LHS sampling
 - lacktriangle Local optimization on $\mathbf{z}(\mathbf{x_s}) = \mathbf{x}_s + \mathbf{s}(\mathbf{x_s})C(\mathbf{x}_s)$
 - First order approximation using the affine subspace
 - Use Graph-cut algorithm to achieve continuity
 - Thus, we can still take advantage of the DGEMO's efficiency.