

The Meet-up Between openEuler and Zephyr

Huawei / openEuler

Wayne Ren

Self-introduction

Huawei Tech. Inc.(2020-now)

- Embedded OS Technical Expert
- openEuler TC member (embedded scenario), SIG-Yocto & SIG-Zephyr
 Maintainer
- openEuler Embedded Architect
- Zephyr Project Ambassador

Synopsys Wuhan (2013-2020)

- Senior software engineer->Software R&D Manager(2016)
- Embedded system software for Synopsys Designware ARC processor
- embARC Open Source Platform(2014)
- Zephyr Project(2016), the maintainer of ARC architecture

Ph.D. of Huazhong Univ. of Sci. and Tech. (2013)

- Embedded system, RTOS, Robots
- TOPPERS Special Member (2011-2016)

- 1 Introduction of openEuler
- 2 Introduction of openEuler Embedded
- 3 Introduction of SIG-Zephyr
- 4 OS Mixed Criticality Deployment

What is openEuler? An Unified OS Distribution Platform

What is openEuler? An OS Supports Multiple Architectures

Collaborative Development of One Set of Code and Release of Four Images for All Scenarios

openEuler Community Status Until May 2022

User

532,555

Contributor

8,808

Organization Member

337

 PR
 Issue
 Comment
 SIG
 Repositories

 57.8K
 32K
 307.1K
 97
 8,819

Dec. 31, 2019 Officially went open source
Mar. 31, 2020 Released openEuler 20.03 LTS version
Nov. 9, 2021 Donated openEuler OS to the OpenAtom Foundation
Dec. 31, 2021 Reached 1M downloads
Mar. 31, 2022 Released openEuler 22.03 LTS version

Explore more

openEuler Release Management

openEuler welcome more groundbreaking innovations

What Can You Do with openEuler?

All kinds of contributions are welcomed. Join the openEuler Community to start your innovation journey!

Compatibility certification New features enablement

.....

OSVs

Release commercial distribution Build up business model Contribute PR

.....

Application certification Full-stack tuning

•••••

Build your own distribution to migrate business Raise requirement and issue

.....

- 1 Introduction of openEuler
- 2 Introduction of openEuler Embedded
- 3 Introduction of SIG-Zephyr
- 4 OS Mixed Criticality Deployment

openEuler Embedded

A Linux-Centric Comprehensive Embedded Software Platform

- As the sun of solar system, openEuler Embedded provides **Unified Build, Rich Features, Ecosystem, Interface** to attract other planets
- Planets provides characteristic features: Hard Real Time (Zephyr), Security (TFM), Low Power, Embedded Virtualization

openEuler Embedded Architecture

Soft Bus

Unified connection solution to interconnect openEuler and openHarmony

Auto Detect and Connection

Interoperation

Resources Sharing

Unified Build

A unified way to build OS for different scenarios

openEuler Embedded 22.03

Kernel

- Kernel: 5.10.0-60.17.0
- Preempt-RT patch
- Raspberry Pi 4B patch

Software packages

• 80+ software packages: busybox, iSulad, openssl...

Key Features

- Mixed Deployment of openEuler Embedded + Zephyr
- SoftBus to connect openEuler Embedded nodes
- Security configuration and enhancement
- Preempt-RT to improve real-time

BSP

- QEMU
- Raspberry PI 4B

Build System

- Yocto-based build system
- Container-based Build
- Sphinx-based doc system

- 1 Introduction of openEuler
- 2 Introduction of openEuler Embedded
- 3 Introduction of SIG-Zephyr
- 4 OS Mixed Critical Deployment

Why SIG-Zephyr

© OpenEuler

A Win-Win approach for Zephyr and openEuler

For Zephyr:

- Challenge: the ecosystem of Zephyr inside and outside China is poles apart
 - World: very hot, github, website, discord, events
 - China: limited, only WeChat, QQ group, because of languages, time zone, access, competition
- Appeal: cooperate with openEuler to set up Zephyr China ecosystem and accelerate the promotion and usage of Zephyr

For openEuler:

- Background: 2021.09, openEuler upgrades to open OS for digital infrastructure, covering embedded scenario(openEuler Embedded). openEuler community also upgrades to ubiquitous OS community
- The setup of SIG-Zephyr
 - A high-quality of "Little OS" for openEuler Linux
 - Similar develop way, coding style, flow like Linux, most important Vendor Neutral
 - The position of Zephyr is "Fits where Linux is too big"
 - Potential benefits for openEuler internationalization
 - Zephyr Project is TOP IoT OS platform world-wide, talk openEuler's story in Zephyr Project's channel
 - openEuler Linux + Zephyr is "Win-Win" combination.

SIG-Zephyr

A Bridge to Connect openEuler and Zephyr

Vision:

- Introduction and promotion of Zephyr in China, attract more users and developers
- A bridge to connect openEuler community and Zephyr community, mutual support and interaction to benefit the localization of Zephyr and internationalization of openEuler

Work Scope:

- Mirrors of Zephyr release, keep sync with upstream(https://gitee.com/src-openeuler/zephyr/)
- A local way to share and discuss Zephyr (Wechat, QQ group, gitee issues)
- Zephyr related Chinese docs, e.g., blogs, wiki(https://openeuler.gitee.io/zephyr-cn/)
- Periodic online meetings(https://www.openeuler.org/zh/sig/sig-list/)
- Events by openEuler and Zephyr(openEuler Developer Day, Zephyr Developer Summit)
- Demos of openEuler + Zephyr(OS Mixed Criticality Deployment)
- Interaction of other SIGs, e.g., SIG-Yocto, SIG-Industry, SIG-embedded

The Scenarios of openEuler + Zephyr

Fits where Linux is too big

- Data plane OS
- Firmware
- BIOS of Zephyr
-

The Organization of SIG-Zephyr

Call for more volunteers!!!

Role	Name	Gitee Account	Domain
Maintainer	Wayne Ren	@vonhust	RTOS, Zephyr Ambassador, Embedded Linux
Maintainer	Hongbo Wang	@hwang37	Intel Shanghai Zephyr team leader
Maintainer	Guoliang Li	@lgl88911	Embedded System, Doc, Tutorial
Committer	Lingao Meng	@menglingao	Bluetooth, Zephyr Ambassador
Committer	Kai Xu	@overheat-cn	IoT Connection

- Mirrors of Zephyr LTS2 and 3.
- Initial Docs and tutorials
- Zephyr + openEuler Embedded AMP Demo
- Zephyr Developer Summit
- Zephyr + openEuler Embedded on Raspberry Pi 4B

- Service oriented deployment
- Zephyr + openEuler Embedded Virtualization Mode (Challenge)

- 1 Introduction of openEuler
- 2 Introduction of openEuler Embedded
- 3 Introduction of SIG-Zephyr
- 4 OS Mixed Criticality Deployment

CASE: Motion Control System(Robots, CNC Machines)

Cons: HW Complexity, COM Efficiency, SW Flexibility, Difficult to develop and maintain

Challenge: How SW fully utilize HW, How SW define HW

Mixed Criticality System

The future trend of embedded system

Path 1: From distributed to centralized

Smart Vehicle

vPLC/Cloud PLC

Path 2: The evolution of node device

Al Smart Robot ARM

Drone

The Architecture of MCS

- Mixed Criticality System:
 - Criticality: mainly Safety, also extended to other index: real-time, security, power, etc.
 - MCS= Deployment + Quarantine + Scheduling, Mixed OS
 Deployment-> Resource Quarantine->Scheduling for better resource utilization
 - Academy: more focus on the Mixed Criticality Scheduling of shared resources, less on quarantine
 - Industry: more focus on Time and Space Quarantine, static allocated resources->low resource utilization

Multi-OS Mixed Criticality Deployment

Multiple OS Integration

- System DTS to express resource allocation and OS relations
- Integrate Build System to build multiple OS in a unified way and generate the integrate image

Efficient Cross OS Communication

- Virtio-based lock free share memory mechanism to connect multiple OS
- Hardware independent abstract Front-end and Multi Back-ends (IPI, HW mailbox, HW event)

Service Oriented Deployment

- Service oriented deployment, different OS provides its best services
- Linux is centric, define standard interfaces: manage, communicate, debug, life-cycle.....

22.03: Basic Ability of Multi-OS Mixed Deployment openEuler Embedded + Zephyr

Scope:

- OpenAMP based basic multi-OS mixed deployment, 3 cores for openEuler Embedded, 1 core for Zephyr
- openEuler Embedded as host, Zephyr as client, Proof Of Concept on QEMU virt, then Raspberry Pi 4B (WIP)

https://gitee.com/openeuler/yocto-embedded-tools/tree/openEuler-22.03-LTS/mcs

openEuler Embedded

- Integration of OpenAMP and Libmetal in Yocto
- Resource Allocation: memory for Zephyr, shared memory, IPI and peripherals
- OpenAMP Adaption: kernel module
- Demo: echo server

QEMU

Extra peripherals: extra UART console, extra reserved mem

Zephyr

- Integration of Zephyr build in Yocto
- OpenAMP Adaption: port to QEMU aarch64, modification of GIC driver, SGI based IPM driver
- Demo: echo client

22.09: Service Oriented Deployment

Scope:

- Improvements based on 22.03, service oriented deployment (log, shell, debug)
- Deployment on hardware boards (Raspberry PI 4B, RISC-V boards)
- More RTOS options: Zephyr, RT-Thread

openEuler Embedded

- **File system service**: Zephyr can access file system in Linux side
- Network service: Zephyr can access network in Linux side
- **Library service**: Zephyr can access library(math, tool) in Linux sides

Zephyr

- Shell: communicate with Zephyr by shell
- Debug: debug Zephyr APP from Linux side
- RT Ctrl: Zephyr provides real-time ctrl service

Summary

- openEuler: a ubiquitous open OS for the digital infrastructure, covering Cloud, Sever, Edge,
 Embedded
- openEuler Embedded: a Linux-centric comprehensive embedded software platform based on openEuler ecosystem
- SIG-Zephyr: a bridge to connect openEuler and Zephyr, devoted to Zephyr localization and innovation of openEuler Embedded + Zephyr
- **Mixed Criticality System**: the future trend of embedded system, deployment -> quarantine -> scheduling, the cooperation point of openEuler Embedded + Zephyr

OpenEuler