LECTURE 6 PHASE ESTIMATION, SHOR'S ALGORITHM AND HIDDEN SUBGROUP PROBLEM

INF587 Quantum computer science and applications

Thomas Debris-Alazard

Inria, École Polytechnique

THE OBJECTIVE OF THE DAY

Presentation of Shor's algorithm and hidden Abelian subgroup problem!

It will rely (partly) on:

▶ phase estimation and consequences: QFT over finite Abelian groups and order finding

COURSE OUTLINE

- 1. Phase estimation
- 2. Application 1: Quantum Fourier Transform on $\mathbb{Z}/N\mathbb{Z}$ and any finite Abelian group
- 3. Application 2: order finding
- 4. Shor's algorithm
- 5. Hidden Subgroup Problem (HSP)

PHASE ESTIMATION

THE PHASE ESTIMATION PROBLEM

Phase estimation

• Input: a unitary U with eigenstate |u>:

$$U |u\rangle = e^{2i\pi\varphi} |u\rangle$$

• Output: $\varphi \in [0, 1)$, i.e., the knowledge of the associate eigenvalue of $|u\rangle$.

 \longrightarrow Essential for computing QFT_{Z/NZ} and Shor's algorithm!

Proposition

We can determine (by using $QFT_{\mathbb{Z}/2^{l_{\pi}}}$) the first n bits of φ with probability $1 - \varepsilon$ using at least

$$O(t^2)$$
 gates where $t=n+\left\lceil \log\left(2+\frac{1}{2\varepsilon}\right)
ight
ceil$.

 $\longrightarrow n$ bits of φ with probability $1 - e^{-Cn}$ but with t = O(n)

4

Notation

Given $j_1, j_2, \dots, j_m \in \{0, 1\}$:

$$0.j_1j_2...j_m \stackrel{\text{def}}{=} \frac{j_1}{2} + \frac{j_2}{4} + \cdots + \frac{j_m}{2^m} = \sum_{i=0}^{m-1} \frac{j_i}{2^i}$$

Example:

$$0.101 = \frac{1}{2} + \frac{1}{8} = 0.625$$
, $0.111 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 0.875$ and $0.011 = \frac{1}{4} + \frac{1}{8} = 0.325$

$$2^{m} \ 0.j_{1}j_{2}...j_{m} = 2^{m-1}j_{1} + 2^{m-2}j_{2} + \cdots + j_{m} = j_{1}...j_{m} \in [0, 2^{m} - 1]$$
(binary representation of m bits)

$$2^{\ell} \ 0.j_1j_2...j_m = \underbrace{2^{\ell-1}j_1 + \dots + j_{\ell}}_{\in \mathbb{N}} + 0.j_{\ell+1}...j_m$$

$$\longrightarrow \rho^{2i\pi 2^{\ell}} 0.j_1j_2...j_m = \rho^{2i\pi 0.j} \ell+1...j_m$$

PHASE ESTIMATION ALGORITHM

The quantum algorithm to determine the phase starts from ($|u\rangle$ being the eigenstate)

$$|0^t\rangle |u\rangle$$

 $\longrightarrow t$ function of: accuracy and the probability we wish to be successful

Phase estimation, two stages algorithm:

1. Build the following quantum state:

$$\frac{1}{2^{t/2}} \left(|0\rangle + e^{2i\pi 2^{t-1}\varphi} \, |1\rangle \right) \otimes \left(|0\rangle + e^{2i\pi 2^{t-2}\varphi} \, |1\rangle \right) \otimes \cdots \otimes \left(|0\rangle + e^{2i\pi 2^{0}\varphi} \, |1\rangle \right) \otimes |u\rangle$$

2. Apply the $\mathbf{QFT}_{\mathbb{Z}/2^{\mathbf{t}}\mathbb{Z}}^{-1}$ to reach:

$$pprox \left| \lfloor 2^t \varphi \rfloor \right> \otimes \left| u \right> = \left| \varphi_1 \dots \varphi_t \right> \otimes \left| u \right>$$

Does the first step remind you of something?

The controlled U^{2j}-unitary

$$|1\rangle |u\rangle \longmapsto |1\rangle \mathbf{U}^{2^{j}} |u\rangle = e^{2i\pi\varphi_{2}^{j}} |1\rangle |u\rangle$$

 $|0\rangle |u\rangle \longmapsto |0\rangle |u\rangle$

Be careful:
$$U^{2^j} = \underbrace{U \dots U}_{2^j \text{ iterates}}$$
, in particular $U^{2^j} |u\rangle \neq (U |u\rangle)^{2^j}$.

The algorithm:

- 1. Start with $|0^t\rangle |u\rangle$
- 2. Apply $\mathbf{H}^{\otimes t} \otimes \mathbf{I}$
- 3. For i = 1 to n: apply the controlled $U^{2^{j}}$ -gate to the i-th register.

Resulting quantum state

$$\frac{1}{2^{t/2}} \left(|0\rangle + e^{2i\pi 2^{t-1}\varphi} \left| 1 \right\rangle \right) \otimes \left(|0\rangle + e^{2i\pi 2^{t-2}\varphi} \left| 1 \right\rangle \right) \otimes \cdots \otimes \left(|0\rangle + e^{2i\pi 2^{0}\varphi} \left| 1 \right\rangle \right) \otimes |u\rangle$$

THE QUANTUM CIRCUIT

But what is the cost for computing $U^{2^{j}}$? Is it 2^{j} ?

BE CAREFUL

Given an arbitrary U, computing U^{2^j} costs $2^j \times Cost(U)$...

 \longrightarrow Does it imply that phase estimation has an exponential cost?

Given an arbitrary U, computing U^{2^j} costs $2^j \times Cost(U)$...

→ Does it imply that phase estimation has an exponential cost?
No... or Yes... It depends!

As in the classical case: computing f^{2^j} is expensive $(2^j \times \text{Cost}(f))$ except for some functions...

Phase estimation: be careful

Computing \mathbf{U}^{2^j} costs $\mathbf{2}^j \times \mathbf{Cost}(\mathbf{U})$ unless one succeeds to use the particular shape of \mathbf{U} ...

--- Let us take a look at the classical case!

CLASSICAL EXPONENTIATION: FAST OR TERRIBLY SLOW, CHOOSE!

What is the cost to compute $x^{2^{j}}$? Is it 2^{j} ?

CLASSICAL EXPONENTIATION: FAST OR TERRIBLY SLOW, CHOOSE!

What is the cost to compute $x^{2^{j}}$? Is it 2^{j} ?

Of course not... fast exponentiation

- Stupid algorithm: y = x and then 2^j times: $y \leftarrow yx$; output y
- Clever algorithm: if j even, $y \leftarrow 2^{2^{j/2}}$; outputs y^2 ; otherwise $y \leftarrow 2^{2^{(j-1)/2}}$ then outputs $2y^2$.
 - \longrightarrow To compute $2^{2^{j/2}}$ or $2^{2^{(j-1)/2}}$: recursive call

Cost?

- Stupid algorithm: 2^j multiplications!
- Clever algorithm: $\log 2^j = j$ recursive calls and 1 or 2 multiplications for each call

$$\longrightarrow$$
 It costs $j \times \underbrace{j^2}_{\text{square cost}}$

→ The "clever" algorithm is exponentially faster...

Be careful: we have used the particular shape of $x \mapsto x^{2^j}$

Usually
$$f^{2^j}(\mathbf{x}) \neq f^{2^{j/2}}(\mathbf{x})^2$$
 but $f^{2^j}(\mathbf{x}) = f^{2^{j/2}}\left(f^{2^{j/2}}(\mathbf{x})\right)$

REBOOT: ANALYSIS OF THE FIRST STEP IN PHASE ESTIMATION

$$\mathbf{U} |u\rangle = e^{2i\pi\varphi} |u\rangle \implies \mathbf{U}^{2^{\mathbf{j}}} |u\rangle = e^{2i\pi2^{\mathbf{j}}\varphi} |u\rangle$$

$$\mathbf{C} - \mathbf{U}^{2^{\mathbf{j}}} |0\rangle |u\rangle = |0\rangle |u\rangle \quad \text{and} \quad \mathbf{C} - \mathbf{U}^{2^{\mathbf{j}}} |1\rangle |u\rangle = e^{2i\pi2^{\mathbf{j}}\varphi} |1\rangle |u\rangle$$

• First Step:

$$\frac{1}{\sqrt{2^t}} (|0\rangle + |1\rangle)^{\otimes t} \otimes |u\rangle$$

Second Step:

$$\frac{1}{\sqrt{2^t}} \left(|0\rangle + e^{2i\pi 2^{t-1}\varphi} |1\rangle \right) \otimes \left(|0\rangle + e^{2i\pi 2^{t-2}\varphi} |1\rangle \right) \otimes \cdots \otimes \left(|0\rangle + e^{2i\pi 2^0\varphi} |1\rangle \right) \otimes |u\rangle$$

NEXT STEP: APPLYING QFT $_{Z/2^t Z}^{-1}$

Suppose that

$$\varphi = 0.\varphi_1 \dots \varphi_t$$

(see Lecture 5)

$$\begin{split} &\frac{1}{2^{t/2}}\left(\left|0\right\rangle + e^{2i\pi 2^{t-1}\varphi}\left|1\right\rangle\right) \otimes \left(\left|0\right\rangle + e^{2i\pi 2^{t-2}\varphi}\left|1\right\rangle\right) \otimes \cdots \otimes \left(\left|0\right\rangle + e^{2i\pi 2^{0}\varphi}\left|1\right\rangle\right) \otimes \left|u\right\rangle \\ &= \frac{1}{2^{t/2}}\left(\left|0\right\rangle + e^{2i\pi 0.\varphi_{t}}\left|1\right\rangle\right) \otimes \left(\left|0\right\rangle + e^{2i\pi 0.\varphi_{t-1}\varphi_{t}}\left|1\right\rangle\right) \otimes \cdots \otimes \left(\left|0\right\rangle + e^{2i\pi 0.\varphi_{1}\varphi_{2}\dots\varphi_{t}}\left|1\right\rangle\right) \otimes \left|u\right\rangle \\ &= \mathsf{QFT}_{\mathbb{Z}/2^{t}\mathbb{Z}}\left|\varphi_{1}\dots\varphi_{t}\right\rangle \end{split}$$

Applying QFT $_{\mathbb{Z}/2^{t}\mathbb{Z}}^{-1}$ leads to:

$$|\varphi_1 \dots \varphi_t\rangle \longrightarrow$$
 we have recovered $\varphi!$

 \longrightarrow But what does happen if $\varphi = 0.\varphi_1 \dots \varphi_t \varphi_{t+1} \varphi_{t+2} \dots \varphi_\ell \dots$?

THE GENERAL CASE

Important convention

When working in $\mathbb{Z}/2^t\mathbb{Z}$ the considered Hilbert space is $\underbrace{\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2}_{t \text{ times}}$ and for all $x \in \mathbb{Z}/2^t\mathbb{Z}$,

$$|x\rangle \stackrel{\text{def}}{=} |x_1 \dots x_t\rangle$$

where $x_1 ldots x_t$ being the binary decomposition of x, i.e., $x = \sum_{\ell} x_i 2^{t-\ell}$.

$$\begin{split} &\frac{1}{2^{t/2}} \left(|0\rangle + e^{2i\pi 2^{t-1}\varphi} |1\rangle \right) \otimes \left(|0\rangle + e^{2i\pi 2^{t-2}\varphi} |1\rangle \right) \otimes \cdots \otimes \left(|0\rangle + e^{2i\pi 2^{0}\varphi} |1\rangle \right) \otimes |u\rangle \\ &= \frac{1}{2^{t/2}} \sum_{\ell=0}^{2^{t}-1} e^{2i\pi \ell \varphi} |\ell\rangle \otimes |u\rangle \end{split}$$

THE GENERAL CASE

Important convention

When working in $\mathbb{Z}/2^t\mathbb{Z}$ the considered Hilbert space is $\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$ and for all $x \in \mathbb{Z}/2^t\mathbb{Z}$, $X \mapsto 0$ and $X \mapsto 0$

where $x_1 \dots x_t$ being the binary decomposition of x, i.e., $x = \sum_{\ell} x_i 2^{t-\ell}$.

$$\begin{split} &\frac{1}{2^{t/2}} \left(|0\rangle + e^{2i\pi 2^{t-1}\varphi} \, |1\rangle \right) \otimes \left(|0\rangle + e^{2i\pi 2^{t-2}\varphi} \, |1\rangle \right) \otimes \cdots \otimes \left(|0\rangle + e^{2i\pi 2^{0}\varphi} \, |1\rangle \right) \otimes |u\rangle \\ &= \frac{1}{2^{t/2}} \, \sum_{\ell=0}^{2^{t}-1} e^{2i\pi \ell \varphi} \, |\ell\rangle \otimes |u\rangle \end{split}$$

Applying $QFT_{\mathbb{Z}/2^t\mathbb{Z}}^{-1}$ leads to

$$\mathsf{QFT}_{\mathbb{Z}/2^{\mathsf{T}}\mathbb{Z}}^{-1} \otimes \mathsf{I}\left(\frac{1}{2^{\mathsf{t}/2}} \sum_{\ell=0}^{2^{n}-1} e^{2i\pi\ell\varphi} |\ell\rangle \otimes |u\rangle\right) = \frac{1}{2^{\mathsf{t}}} \sum_{k,\ell} e^{2i\pi\ell(\varphi - \frac{k}{2^{\mathsf{t}}})} |k\rangle \otimes |u\rangle$$

ARBITRARY LONG EIGENVALUE, HOW TO PROCEED

Best approximation of φ for the first t bits:

Le $b \in \llbracket 0, 2^t - 1 \rrbracket$ be such that $b/2^t = 0.b_1 \dots b_t$ and

$$\varphi - \frac{b}{2^t} \le 2^{-t}$$
 : $b/2^t$ best t bits approximation of φ

Up to now we have the following quantum state:

$$\frac{1}{2^{t}} \sum_{k,\ell=0}^{2^{t}-1} e^{2i\pi\ell(\varphi - \frac{k}{2^{t}})} |k\rangle |u\rangle$$

Let α_j be the amplitude of $(b+j \mod 2^t)$ in the first register:

$$\left|\alpha_{j}\right|^{2} = \frac{1}{2^{2t}} \left| \sum_{\ell=0}^{2^{\ell}-1} \left(e^{2i\pi \left(\varphi - \frac{b+j}{2^{\ell}}\right)} \right)^{k} \right|^{2}$$

Measure (see Exercise session)

Let m be the outcome after measuring the first register. We have

$$\mathbb{P}\left(|m-b|>e\right)\leq \frac{1}{2(e-1)}$$

Best approximation of φ for the first t bits:

Le $b \in \llbracket 0, 2^t - 1 \rrbracket$ be such that $b/2^t = 0.b_1 \dots b_t$ and

$$\varphi - \frac{b}{2^t} \le 2^{-t} : b/2^t \text{ best } t \text{ bits approximation of } \varphi$$

Measure

Let m be the outcome after measuring the first register. We have

$$\mathbb{P}(|b-m|>e)\leq \frac{1}{2(e-1)}$$

 \longrightarrow Determining φ with n bits of accuracy thanks to the output of the measure m (t > n):

$$\left|\frac{b}{2^t} - \frac{m}{2^t}\right| < 2^{-n}$$

ARBITRARY LONG EIGENVALUE, HOW TO PROCEED

Best approximation of φ for the first t bits:

Le $b \in \llbracket 0, 2^t - 1 \rrbracket$ be such that $b/2^t = 0.b_1 \dots b_t$ and

$$\varphi - \frac{b}{2^t} \le 2^{-t}$$
 : $b/2^t$ best t bits approximation of φ

Measure

Let m be the outcome after measuring the first register. We have

$$\mathbb{P}(|b-m|>e)\leq \frac{1}{2(e-1)}$$

 \longrightarrow Determining φ with n bits of accuracy thanks to the output of the measure m (t > n):

$$\left|\frac{b}{2^t} - \frac{m}{2^t}\right| < 2^{-n}$$

 \longrightarrow Therefore: choosing $e = 2^{t-n} - 1$ in the above probability...

But to reach a probability of success $> 1 - \varepsilon$:

$$\frac{1}{2(e-1)} = \frac{1}{2(2^{t-n}-2)} \leq \varepsilon \iff t = n + \left\lceil \log\left(2 + \frac{1}{2\varepsilon}\right) \right\rceil$$

Phase estimation

Input: a unitary U with eigenstate |u⟩:

$$U |u\rangle = e^{2i\pi\varphi} |u\rangle$$

• Output: $\varphi \in [0, 1)$, i.e., the knowledge of the associate eigenvalue of $|u\rangle$.

Proposition

$$|0^t\rangle|u\rangle \mapsto |\widetilde{\varphi}\rangle|u\rangle$$

where $\widetilde{\varphi} \in \{0,1\}^t$ gives the first n bits of φ with probability $1-\varepsilon$ using at least

$$O(t^2)$$
 gates where $t = n + \left\lceil \log \left(2 + \frac{1}{2\varepsilon} \right) \right\rceil$.

- ▶ Be careful: we need to compute $\left(\mathbf{U}^{j^i}\right)_{0 \le j \le t}$ which has a cost $O(2^t)$ unless one uses the particular shape of U...
- Accuracy with a probability exponentially close to 1 at the cost of a "constant" overhead: n bits of φ with probability $1 e^{-Cn}$ but with t = O(n)
- ▶ Be careful: to run phase estimation we also need to be able to compute the eigenvector u...

APPLICATION 1: QFT OVER Z/NZ

Recall that characters of

$$ightharpoonup \mathbb{Z}/N\mathbb{Z}$$
: $\chi_x(y) = e^{-\frac{2i\pi xy}{N}}$

Lecture 5: computing efficiently

$$\mathsf{QFT}_{\mathbb{F}_{2}^{n}} = \mathsf{H}^{\otimes n} : |\mathsf{x}\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{\mathsf{y} \in \{0,1\}^{n}} (-1)^{\mathsf{x}\cdot\mathsf{y}} |\mathsf{y}\rangle \quad \text{and} \quad \mathsf{QFT}_{\mathbb{Z}/2^{n}\mathbb{Z}} : |\mathsf{x}\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{\mathsf{y} \in \mathbb{Z}/N\mathbb{Z}} e^{\frac{2i\pi xy}{2^{n}}} |\mathsf{y}\rangle$$

Aim: computing efficiently QFT $_{\mathbb{Z}/N\mathbb{Z}}$ (when N not a power of 2)

$$\mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}: |x\rangle \longmapsto \frac{1}{\sqrt{N}} \sum_{y \in \mathbb{Z}/N\mathbb{Z}} e^{\frac{2i\pi xy}{N}} |y\rangle$$

HOW TO PROCEED?

Computing $\text{QFT}_{\mathbb{Z}/N\mathbb{Z}}$: use phase estimation!

COMPUTING TWO UNITARIES

$$\mathsf{U}_{1}\left(\left|k\right\rangle \left|0\right\rangle\right) \mapsto \left|k\right\rangle \, \mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}} \left|k\right\rangle \quad \text{and} \quad \mathsf{U}_{2}\left(\mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}} \left|k\right\rangle \left|0\right\rangle\right) \mapsto \mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}} \left|k\right\rangle \left|k\right\rangle$$

 \longrightarrow These two unitaries are enough to compute $\mathbf{QFT}_{\mathbb{Z}/N\mathbb{Z}} |k\rangle$!

We can perform $QFT_{\mathbb{Z}/N\mathbb{Z}}$ as:

$$|k\rangle\:|0\rangle\: \xrightarrow{\mathsf{U_1}} |k\rangle\: \mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\:|k\rangle\: \xrightarrow{\mathsf{SWAP}} \mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\:|k\rangle\:|k\rangle\:\: \xrightarrow{\mathsf{U_2}} \mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\:|k\rangle\:|0\rangle$$

COMPUTATION OVER QUDITS

$$U_1(|k\rangle |0\rangle) \mapsto |k\rangle \operatorname{QFT}_{\mathbb{Z}/N\mathbb{Z}} |k\rangle \quad \text{and} \quad U_2(\operatorname{QFT}_{\mathbb{Z}/N\mathbb{Z}} |k\rangle |0\rangle) \mapsto \operatorname{QFT}_{\mathbb{Z}/N\mathbb{Z}} |k\rangle |k\rangle$$

Be careful: $|k\rangle$ here is such that $k\in\mathbb{Z}/N\mathbb{Z}$ and N may not be a power of two... In particular $|k\rangle$ cannot be written as $|0010\cdots 1\rangle$

 $(|k\rangle)_{k\in\mathbb{Z}/N\mathbb{Z}}$ is an orthonormal basis of an Hilbert space of dimension N

→ This quantum space is called the space of qudits!

Two possibilities to perform computation with qudits: (i) encode qudits in qubits or (ii) implement your quantum device directly with Hilbert spaces of dimension > 2

 \longrightarrow It is the same issue with classical computer! How to implement trits, namely $\mathbb{Z}/3\mathbb{Z}$?

COMPUTING THE FIRST UNITARY U₁

To build the unitary $|k\rangle |0\rangle \mapsto |k\rangle \operatorname{QFT}_{\mathbb{Z}/N\mathbb{Z}} |k\rangle$ (admitting we can perform efficiently the different unitaries over qudits)

- 1. Start from $|k\rangle$ $|0\rangle$ $|0\rangle$
- 2. Apply the "uniform superposition" over the second register

$$|k\rangle \frac{1}{\sqrt{N}} \sum_{j \in \mathbb{Z}/N\mathbb{Z}} |j\rangle |0\rangle$$

3. Apply the multiplication operator $(|x\rangle |y\rangle |0\rangle \mapsto |x\rangle |y\rangle |xy \mod N\rangle$

$$|k\rangle \frac{1}{\sqrt{N}} \sum_{j \in \mathbb{Z}/N\mathbb{Z}} |j\rangle |kj \mod N\rangle$$

4. Apply the "phase flip in $\mathbb{Z}/N\mathbb{Z}$ " $\left(|x\rangle\mapsto e^{2i\pi\frac{X}{N}}|x\rangle\right)$ on the third register

$$|k\rangle \, rac{1}{\sqrt{N}} \sum_{j \in \mathbb{Z}/N\mathbb{Z}} e^{2i\pi \, rac{kj}{N}} \, |j\rangle \, |kj \; \mathrm{mod} \; N \rangle$$

5. Apply the inverse of the multiplication operation:

$$|k\rangle\;\frac{1}{\sqrt{N}}\sum_{j\in\mathbb{Z}/N\mathbb{Z}}e^{2i\pi\;\frac{kj}{N}}\left|j\right\rangle\left|0\right\rangle=\left|k\right\rangle\mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\left|k\right\rangle\left|0\right\rangle$$

COMPUTING THE SECOND UNITARY U2: USE PHASE AMPLIFICATION

$$U: |k\rangle \mapsto |k+1 \bmod N\rangle$$

$$\longrightarrow \mathbf{U}^{2^j}: |k\rangle \mapsto \left|k+2^j \bmod N\right\rangle \text{ can be built in time } O(\log N)$$

$$\left(x\mapsto x+2^j \bmod N \text{ can be classically computed in time } O(\log N)\right)$$

We have the following computation:

$$\begin{split} \mathbf{U}\left(\mathbf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\left|k\right\rangle\right) &= \frac{1}{\sqrt{N}} \sum_{y \in \mathbb{Z}/N\mathbb{Z}} e^{\frac{2i\pi ky}{N}} \mathbf{U}|y\rangle \\ &= \frac{1}{\sqrt{N}} \sum_{y \in \mathbb{Z}/N\mathbb{Z}} e^{\frac{2i\pi ky}{N}} \left|y + 1\right\rangle \\ &= e^{\frac{-2i\pi k}{N}} \frac{1}{\sqrt{N}} \sum_{y \in \mathbb{Z}/N\mathbb{Z}} e^{\frac{2i\pi ky}{N}} \left|y\right\rangle \\ &= e^{2i\pi \frac{N-k}{N}} \mathbf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\left|k\right\rangle \end{split}$$

 \longrightarrow QFT $_{\mathbb{Z}/N\mathbb{Z}}$ $|k\rangle$ is an eigenvector of **U** with eigenvalue $e^{2i\pi\varphi}$ where

$$\varphi \stackrel{\text{def}}{=} \frac{N-k}{N}$$

COMPUTING THE SECOND UNITARY U2: USE PHASE AMPLIFICATION

 $\mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\ket{k}$ is an eigenvector of U with eigenvalue $e^{2i\pi\varphi}$ where

$$\varphi \stackrel{\text{def}}{=} \frac{N - k}{N}$$

Applying phase estimation with $n = \lceil \log N \rceil$ (bits of precision) enables to compute:

$$\mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\ket{k}\ket{0} \longmapsto \mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}}\ket{k}\ket{N-k}$$

→ Be careful: phase estimation gives only an estimation with high probability of the transform!

Therefore: after applying the unitary $|x\rangle \mapsto |N-x\rangle$ we obtain an approximation of

$$\mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}} \ket{k} \ket{0} \longmapsto \mathsf{QFT}_{\mathbb{Z}/N\mathbb{Z}} \ket{k} \ket{k}$$

Cost

We need to compute $t = O(\log^2 N)$ gates $\mathbf{U}^{2^j} : |k\rangle \mapsto \left|k + 2^j \mod N\right\rangle$ and it costs each $\log(N)$

 \longrightarrow Final cost to compute QFT_{$\mathbb{Z}/N\mathbb{Z}$}: $O\left(\log^3 N\right)$

WHAT ABOUT THE GENERAL CASE?

Is it possible to efficiently build ${\bf QFT_G}$ where ${\bf G}$ is any arbitrary finite abelian group?

WHAT ABOUT THE GENERAL CASE?

Is it possible to efficiently build $\operatorname{\bf QFT}_G$ where ${\bf G}$ is any arbitrary finite abelian group?

 \longrightarrow Yes!

How to proceed (rough explanation)?

Any finite abelian group G of size N is isomorphic to the product of cyclic groups:

$$\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_k\mathbb{Z}$$

Then (admitted).

 QFT_G can be written as $QFT_{\mathbb{Z}/n_1\mathbb{Z}}\otimes\cdots\otimes QFT_{\mathbb{Z}/n_b\mathbb{Z}}$

 \longrightarrow We deduce that QFT_G can be computed in time $O\left(\log^3 \sharp G\right)$

Be careful, given a finite Abelian group it is classically hard to compute its decomposition as cyclic groups... Quantum case: end of the lecture

APPLICATION 2: ORDER FINDING

THE ORDER FINDING PROBLEM

Order finding problem

- Input: integers x, N where gcd(x, N) = 1
- Output: least positive integer r such that $x^r = 1 \mod N$.
 - → Solving the factorization reduces to this problem

Proposition

We can quantumly determine the order $\it r$ (with high probability) in time

$$O\left(\log^3 N\right)$$

→ Best classical algorithms are sub-exponential in N:

$$\exp\left((c + o(1))\log^{\alpha}(N)\log^{1-\alpha}(\log N)\right)$$

where c, α are constants

BINARY DECOMPOSITION AND *n* QUBITS

Suppose that we work in the space of L qubits

Given
$$y \in [0, 2^L - 1]$$
, we will naturally identify $|y\rangle$ to $|y_1, \dots, y_L\rangle$
where $y_1 \dots y_L$ binary decomposition of y

For instance:

Given
$$3, 5 \in [0, 2^3 - 1]$$
,

$$|3\rangle = |011\rangle$$
 and $|5\rangle = |101\rangle$

x integer: gcd(x, N) = 1 and r its order, smallest positive integer such that $x^r = 1 \mod N$

Phase estimation applied to the following unitary and eigenvector

Let,

$$L \stackrel{\text{def}}{=} \lceil \log N \rceil$$
 (work in the space of L-qubits)

$$\forall y \in \{0,1\}^L = \llbracket 0,2^L - 1 \rrbracket, \quad \mathbf{U} \mid y \rangle \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} |xy \; \mathsf{mod} \; N \rangle & \text{if} \; 0 \leq y \leq N-1 \\ |y \rangle & \text{otherwise} \; (N-1 \leq y < 2^{\lceil \log N \rceil}). \end{array} \right.$$

$$\forall s \in \llbracket 0, r \rrbracket, \quad |u_s\rangle \stackrel{\text{def}}{=} \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2i\pi sk}{r}} \left| x^k \bmod N \right\rangle \text{ with eigenvalue } e^{2i\pi \frac{s}{r}}$$

 \longrightarrow We work here in the space of qubits (natural trick, identity if integers > N - 1)

$$\begin{aligned} \mathbf{U} \left| u_{s} \right\rangle &= \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2i\pi sk}{r}} \mathbf{U} \left| x^{k} \bmod N \right\rangle \\ &= \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2i\pi sk}{r}} \left| x^{k+1} \bmod N \right\rangle \\ &= e^{2i\pi \frac{s}{r}} \left| u_{s} \right\rangle \end{aligned}$$

 \rightarrow Be careful: in the last equality we used that x has order r modulo N, thus $x^r = 1 \mod N$

BUT TWO QUESTIONS

For the eigenvalue $\frac{s}{r}$: we work in $\mathbb{Z}/N\mathbb{Z}$ and $L = \lceil \log N \rceil$.

To perform efficiently phase estimation, two issues:

- ► How to compute efficiently the \mathbf{U}^{2^j} ?
- ▶ How to compute the eigenvector $|u_s\rangle$?

 \longrightarrow We will be able to recover approximations of $\frac{5}{r}$, not r...

BUT TWO QUESTIONS

For the eigenvalue $\frac{s}{r}$: we work in $\mathbb{Z}/N\mathbb{Z}$ and $L = \lceil \log N \rceil$.

To perform efficiently phase estimation, two issues:

- ► How to compute efficiently the \mathbf{U}^{2^j} ?
- ► How to compute the eigenvector $|u_s\rangle$?

 \longrightarrow We will be able to recover approximations of $\frac{s}{r}$, not r...

Be patient!

Parameter of phase estimation

We will determine the first 2L+1 bits of $\frac{s}{r}$ with probability $1-\varepsilon$

$$\longrightarrow$$
 Choose in phase estimation $t = 2L + 1 + \lceil \log(2 + \frac{1}{2\varepsilon}) \rceil$

In particular:
$$t = O(L)$$
 even if $\varepsilon = e^{-CL}$ with $C > 0$.

MODULAR EXPONENTIATION

The above circuit (used in the phase estimate) performs the following computation:

$$\begin{aligned} |z_t \dots z_1\rangle |y\rangle &\longrightarrow |z\rangle \ \textbf{U}^{z_1 z^{\ell-1}} \dots \ \textbf{U}^{z_1 z^0} |y\rangle \\ &= |z\rangle \left| x^{z_1 z^{\ell-1}} \times \dots \times x^{z_1 z^0} y \ \textbf{mod} \ N \right\rangle \\ &= |z\rangle \left| yx^z \ \textbf{mod} \ N \right\rangle \end{aligned}$$

 \longrightarrow To perform efficiently phase estimation: compute $|z\rangle |y\rangle \mapsto |z\rangle |yx^z \mod N\rangle$ efficiently (modular exponentiation)

MODULAR EXPONENTIATION

Aim: computing efficiently

$$|z\rangle |y\rangle \mapsto |z\rangle |yx^z \mod N\rangle$$

1. Let $U_{EM}: |z\rangle |y\rangle \mapsto |z\rangle |y \oplus (x^z \mod N)\rangle$ (be careful $z \mapsto x^z \mod N$ not bijective)

$$|z\rangle\,|y\rangle\,|0\rangle\xrightarrow{u_{EM}}|z\rangle\,|y\rangle\,|x^Z\,\,\text{mod}\,\,N\rangle\xrightarrow{mult}|z\rangle\,|yx^Z\,\,\text{mod}\,\,N\rangle\,|x^Z\,\,\text{mod}\,\,N\rangle\xrightarrow{u_{EM}^{-1}}|z\rangle\,|yx^Z\,\,\text{mod}\,\,N\rangle\,|0\rangle$$

Aim: computing efficiently

$$|z\rangle |y\rangle \mapsto |z\rangle |yx^z \mod N\rangle$$

1. Let $U_{EM}: |z\rangle |y\rangle \mapsto |z\rangle |y \oplus (x^z \mod N)\rangle$ (be careful $z \mapsto x^z \mod N$ not bijective)

$$|z\rangle\,|y\rangle\,|0\rangle\xrightarrow{u_{\text{EM}}}|z\rangle\,|y\rangle\,|x^{\text{z}}\;\text{mod}\;N\rangle\xrightarrow{\text{mult}}|z\rangle\,|yx^{\text{z}}\;\text{mod}\;N\rangle\,|x^{\text{z}}\;\text{mod}\;N\rangle\xrightarrow{u_{\text{EM}}^{-1}}|z\rangle\,|yx^{\text{z}}\;\text{mod}\;N\rangle\,|0\rangle$$

2. Computing efficiently U_{EM}: classically

$$x \mapsto x^z \mod N$$

can by computed in $O(\log z) = O(\log t) = O(\log N)$ squaring, therefore $O(\log^3 N)$ operations

Aim: computing efficiently

$$|z\rangle |y\rangle \mapsto |z\rangle |yx^z \mod N\rangle$$

1. Let $U_{EM}: |z\rangle |y\rangle \mapsto |z\rangle |y \oplus (x^z \mod N)\rangle$ (be careful $z \mapsto x^z \mod N$ not bijective)

$$|z\rangle\,|y\rangle\,|0\rangle\xrightarrow{u_{\text{EM}}}|z\rangle\,|y\rangle\,|x^{\text{z}}\;\text{mod}\;N\rangle\xrightarrow{\text{mult}}|z\rangle\,|yx^{\text{z}}\;\text{mod}\;N\rangle\,|x^{\text{z}}\;\text{mod}\;N\rangle\xrightarrow{u_{\text{EM}}^{-1}}|z\rangle\,|yx^{\text{z}}\;\text{mod}\;N\rangle\,|0\rangle$$

2. Computing efficiently U_{EM}: classically

$$x \mapsto x^z \mod N$$

can by computed in $O(\log z) = O(\log t) = O(\log N)$ squaring, therefore $O(\log^3 N)$ operations

Conclusion: using phase estimation

We determine the first 2L+1 bits of $\frac{s}{r}$ with probability $1-e^{-CL}$ in time $O(L^3)$ where $L=\lceil \log N \rceil$.

Aim: computing

$$|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2i\pi sk}{r}} \left| x^k \mod N \right\rangle$$

But we do not know r... Our aim is to find it!

The trick

$$\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle=|1\rangle$$

 \longrightarrow Plugging $|1\rangle$ in the phase estimation algorithm will give the first 2L+1 bits of $\frac{s}{r}$ for some (unknown) $s \in [0, r-1]$ with probability $1-\varepsilon$

Exercise session:

Proof of this statement

WE ARE NOT DONE...

Up to now we have recovered (with high probability) in quantum time $O(L^3)$ the first 2L+1 bits of $\frac{s}{r}$ where $0 \le s < r \in [1, N-1]$

 \longrightarrow It does not give r, even $\frac{s}{r}$...

CONTINUED FRACTION ALGORITHM

Theorem (see exercise session)

Let $\widetilde{\varphi}$ be a rational given as input, let s and r be L bits integers such that

$$\left|\frac{\mathsf{s}}{\mathsf{r}} - \varphi\right| < \frac{1}{2\mathsf{r}^2}$$

Then, there exists an algorithm (using "continued fractions") that outputs s', r' which verify

$$gcd(s', r') = 1$$
 and $\frac{s'}{r'} = \frac{s}{r}$

using $O(L^3)$ classical operations

In our case

With probability $1 - \varepsilon$, φ is an approximation of $\frac{s}{r}$ accurate to 2L + 1 bits, therefore:

$$\left|\frac{s}{r} - \varphi\right| \le \frac{1}{2^{2L+1}} \le \frac{1}{2r^2}$$
 (as $r \le N-1$)

 \longrightarrow In time $O(L^3)$ we compute s', r' co-prime such that $\frac{s'}{r'} = \frac{s}{r}$

$$s', r'$$
 are co-prime such that $\frac{s'}{r'} = \frac{s}{r}$ \longrightarrow If $\gcd(s, r) > 1$ then $r' \neq r$, only $r' \mid r$...

A solution (but inefficient...)

The number of prime numbers < r is $\approx r/\log(r)$

$$\longrightarrow \mathbb{P}(\gcd(s,r)=1) \approx \log(r)/r$$
 as s is uniformly picked in $[0,r-1]$

Therefore we need to repeat $\approx r = O(L)$ number of times the algorithm before reaching gcd(s, r) = 1. It will increase the cost from $O(L^3)$ to $O(L^4)$.

REPEAT JUST A CONSTANT NUMBER OF TIMES!

Fundamental remark

$$\frac{s_1'}{r_1'} = \frac{s_1}{r} \Rightarrow s_1' = \frac{s_1}{r}r_1'$$
 and $\frac{s_2'}{r_2'} = \frac{s_2}{r} \Rightarrow s_2' = \frac{s_2}{r}r_2'$

Supposing that $gcd(s'_1, s'_2) = 1$ implies that $r = lcm(r_1, r_2)$

 \longrightarrow Therefore: obtaining two estimations (s'_1, r'_1) and (s'_2, r'_2) and supposing that $\gcd(s'_1, s'_2) = 1$ we can recover $r = \operatorname{lcm}(r_1, r_2)$.

What is the probability that $\gcd(s_1', s_2') = 1$ given that s_1' and that s_2' are uniformly distributed in [0, r-1]?

REPEAT JUST A CONSTANT NUMBER OF TIMES!

Fundamental remark

$$\frac{s_1'}{r_1'} = \frac{s_1}{r} \Rightarrow s_1' = \frac{s_1}{r}r_1'$$
 and $\frac{s_2'}{r_2'} = \frac{s_2}{r} \Rightarrow s_2' = \frac{s_2}{r}r_2'$

Supposing that $gcd(s'_1, s'_2) = 1$ implies that $r = lcm(r_1, r_2)$

 \longrightarrow Therefore: obtaining two estimations (s'_1, r'_1) and (s'_2, r'_2) and supposing that $\gcd(s'_1, s'_2) = 1$ we can recover $r = \operatorname{lcm}(r_1, r_2)$.

What is the probability that $gcd(s'_1, s'_2) = 1$ given that s'_1 and that s'_2 are uniformly distributed in [0, r - 1]?

 \longrightarrow It is $\geq \frac{1}{4}$ (see exercise session)

In conclusion

Repeating the algorithm a constant number of times enables to recover r with probability exponentially close to one (times $(1 - \varepsilon)$)!

ORDER FINDING ALGORITHM

To compute the order r of x mod N (where gcd(x, N) = 1) we first run a constant number of times the phase estimation with $t = 2\lceil \log N \rceil + 1 + \log\left(2 + \frac{1}{2\varepsilon}\right)$. We have needed to compute:

- ▶ QFT_{$\mathbb{Z}/2^t\mathbb{Z}$}: done in time $O(t^2) = O(\log^2 N)$
- ▶ modular exponentiation $|z\rangle |y\rangle \mapsto |z\rangle |yx^z \mod N\rangle$: done in time $O(\log^3 N)$

It outputs a $2\lceil \log N \rceil + 1$ approximation of some $\frac{s}{r}$ where $s \in [0, r-1]$.

ORDER FINDING ALGORITHM

To compute the order r of x mod N (where gcd(x, N) = 1) we first run a constant number of times the phase estimation with $t = 2\lceil \log N \rceil + 1 + \log \left(2 + \frac{1}{2\varepsilon}\right)$. We have needed to compute:

- ▶ QFT_{$\mathbb{Z}/2^t\mathbb{Z}$}: done in time $O(t^2) = O(\log^2 N)$
- ▶ modular exponentiation $|z\rangle |y\rangle \mapsto |z\rangle |yx^z \mod N\rangle$: done in time $O(\log^3 N)$

It outputs a $2\lceil \log N \rceil + 1$ approximation of some $\frac{s}{r}$ where $s \in [0, r-1]$.

Then after collecting some approximations of $\frac{s_i}{r}$, apply continued fraction algorithm to obtain (s_i', r_i') in time $O(\log^3 N)$ with $\frac{s_i'}{r_i'} = \frac{s_i}{r}$. It enables to get r by computing some $\operatorname{lcm}(r_i', r_j')$.

ORDER FINDING ALGORITHM

To compute the order r of x mod N (where gcd(x, N) = 1) we first run a constant number of times the phase estimation with $t = 2\lceil \log N \rceil + 1 + \log \left(2 + \frac{1}{2\varepsilon}\right)$. We have needed to compute:

- ▶ QFT_{$\mathbb{Z}/2^t\mathbb{Z}$}: done in time $O(t^2) = O(\log^2 N)$
- ▶ modular exponentiation $|z\rangle |y\rangle \mapsto |z\rangle |yx^z \mod N\rangle$: done in time $O(\log^3 N)$

It outputs a $2\lceil \log N \rceil + 1$ approximation of some $\frac{s}{r}$ where $s \in [0, r-1]$.

Then after collecting some approximations of $\frac{s_i}{r}$, apply continued fraction algorithm to obtain (s_i', r_i') in time $O(\log^3 N)$ with $\frac{s_i'}{r_i'} = \frac{s_i}{r}$. It enables to get r by computing some $lcm(r_i', r_j')$.

 \longrightarrow This procedure works with probability $(1-e^{-C\log N})(1-\varepsilon)$ for constant C>0 depending on the number of repetitions.

Final cost

$$O\left(\log^3 N\right)$$

 \longrightarrow This could be done in time $O(\log^2(N)\operatorname{poly}(\log\log N))$

A LAST REMARK, THE REAL BREAKTHROUGH: QFT

Order finding algorithm is efficient because we know quantumly how to perform classical computations and the quantum Fourier transform over $\mathbb{Z}/2^t\mathbb{Z}$

Factoring problem

- Input: an integer N
- Output: a non-trivial factor of N
 - \longrightarrow Security of public-key encryption scheme RSA relies on the hardness of this problem...

Classically best algorithms have a complexity

$$\exp\left(\left(\mathcal{C}+\mathcal{O}(1)\right)\log^{\alpha}(N)\log^{1-\alpha}(\log N)\right)$$

SHOR'S ALGORITHM: COROLLARY OF ORDER FINDING

Shor's algorithm is basically applying order finding for some random $x \in [\![0,N-1]\!]...$

But why?

NUMBER THEORETIC RESULTS

Theorem 1

Suppose N is a L bits not prime integer and $1 \le y \le$ be a non-trivial integer such that

$$y^2 = 1 \mod N$$

Then, at least gcd(y - 1, N) or gcd(y + 1, N) is a non-trivial factor of N that can be computed in time $O(L^3)$.

Theorem 2

Suppose that $N = p_1^{\alpha_1} \cdots p_m^{\alpha_m}$ where the p_i 's are different primes. Let x be an integer chosen uniformly at random, subject to the requirements that $1 \le x \le N - 1$ and $\gcd(x, N) = 1$. Let r be the order of x. Then

$$\mathbb{P}\left(r \text{ is even} \quad \text{and} \quad x^{r/2} \neq -1 \mod N\right) \geq 1 - \frac{1}{2^m}$$

 \longrightarrow Let x be picked according to Theorem 2, then with (at least) a constant probability

$$x^{r/2}$$
 is a solution $\neq \pm 1$ of $X^2 = 1 \mod N$

According to Theorem 1: $gcd(x^{r/2} - 1, N)$ or $gcd(x^{r/2} + 1, N)$ is $a \neq \pm 1$ factor of N

NUMBER THEORETIC RESULTS

Theorem 1

Suppose N is a L bits not prime integer and $1 \le y \le$ be a non-trivial integer such that

$$y^2 = 1 \mod N$$

Then, at least gcd(y - 1, N) or gcd(y + 1, N) is a non-trivial factor of N that can be computed in time $O(L^3)$.

Theorem 2

Suppose that $N = p_1^{\alpha_1} \cdots p_m^{\alpha_m}$ where the p_i 's are different primes. Let x be an integer chosen uniformly at random, subject to the requirements that $1 \le x \le N-1$ and $\gcd(x,N)=1$. Let r be the order of x. Then

$$\mathbb{P}\left(r \text{ is even} \quad \text{and} \quad x^{r/2} \neq -1 \mod N\right) \geq 1 - \frac{1}{2^m}$$

 \longrightarrow Let x be picked according to Theorem 2, then with (at least) a constant probability

$$x^{r/2}$$
 is a solution $\neq \pm 1$ of $X^2 = 1 \mod N$

According to Theorem 1: $gcd(x^{r/2} - 1, N)$ or $gcd(x^{r/2} + 1, N)$ is $a \neq \pm 1$ factor of N

Given x, we just need to compute its order to find a non-trivial factor!

SHOR'S ALGORITHM

- 1. Pick x uniformly at random in [1, N]
- 2. Compute $d = \gcd(x, N)$. If d > 1 output d
- 3. Use the order-finding subroutine to find the order r of $x \mod N$
- 4. If r is even and $x^{r/2} \neq -1 \mod N$ then compute $\gcd(x^{r/2} 1, N)$ or $\gcd(x^{r/2} + 1, N)$ and test if one of these is a non-trivial factor of N. Otherwise go back to Step 1.

By using the law of total probability:

$$\mathbb{P}\left(\text{success}\right) \geq \mathbb{P}\left(\text{success} \mid \text{ Step 3 succeeds}\right) \mathbb{P}\left(\text{ Step 3 succeeds}\right)$$

$$= \mathbb{P}\left(r \text{ is even and } x^{r/2} \neq -1 \text{ mod } N\right) \mathbb{P}\left(\text{ order finding succeeds}\right)$$

$$\geq (1 - e^{-C \log N})(1 - \varepsilon)\left(1 - \frac{1}{2^m}\right) \quad (m \text{ number of prime factors of } N)$$

Final cost:

$$O\left(\log^3 N\right)$$
 cost of phase estimation + Step 4

SHOR'S ALGORITHM, WHAT ELSE?

Shor's algorithm relies on the order-finding which itself crucially used $\mathbf{QFT}_{\mathbb{Z}/2^t\mathbb{Z}}$ (in the phase estimation)

→ It turns out that what we did is extremely "general"

Techniques we have presented enable to compute the "period" of a wide class of functions...

- ▶ What do we mean by "general"?
- Computing the "period" of which class of functions and does it imply some interesting statements?

→ Hidden Subgroup Problem!

Hidden Subgroup Problem (HSP)

- Input: a function $f: G \to S$ where G is a known group and S is a finite set.
- Promise: f satisfies

$$f(x) = f(y)$$
 if and only if $y \in xH$
i.e., $y = xh$ for some $h \in H$

for an unknown subgroup $H \subseteq G$.

- Output: H.
- a see later for a precise definition

 \longrightarrow We say that f hides the subgroup H.

Cosets

The following set:

$$xH \stackrel{\text{def}}{=} \{xh : h \in H\}$$

is called a left-coset of H.

→ A function f that hides H is constant on each left-coset of H and distinct on different left cosets.

HSP may be seen as a purely abstract problem... But no!

Here are particular instantiations of HSP

► Simon's problem:

$$G = \mathbb{F}_2^n$$
, $H = \{0, \mathbf{s}\}$ and f being the input in Simon's problem

Order finding:

$$G = \mathbb{Z}/\Phi(N)\mathbb{Z}$$
 (Φ be the Euler function), $H = \{rx : x \in \mathbb{Z}/\Phi(N)\mathbb{Z}\}$ and $f(a) = x^a \mod N$

- Discrete logarithm problem: see exercise session!
- ► etc...

Be careful

In Shor's algorithm, when using a solver to order finding we don't know $\Phi(N)$ and therefore we don't know G...

We suppose that G is Abelian

 $f: G \longrightarrow S$ that hides some subgroup H

- 1. Start with $|0\rangle |0\rangle$, where the two registers have dimension $\sharp G$ and $\sharp S$, respectively
- 2. Create a uniform superposition over G in the first register: $\frac{1}{\sqrt{\sharp G}}\sum_{g\in G}|g\rangle\,|0\rangle$
- 3. Compute f in superposition: $\frac{1}{\sqrt{\sharp G}} \sum_{g \in G} |g\rangle |f(g)\rangle$
- 4. Measure the second register. This yields some value $s \in G$. The second register collapses to (using the promise over f)

$$\frac{1}{\sqrt{\sharp H}} \sum_{h \in H} |s + h\rangle$$

- 5. Apply QFT_G giving: $\frac{1}{\sqrt{\sharp H}} \sum_{h \in H} |\chi_{s+h}\rangle$ for some quantum state $|\chi_{s+h}\rangle$
- 6. Measure and output the resulting $g \in G$

G is Abelian, be $(\chi_q)_{q \in G}$ be its characters

$$\begin{split} |\chi_{s+h}\rangle &= \mathsf{QFT}_G \sum_{h \in H} |s+h\rangle \\ &= \frac{1}{\sqrt{G}} \sum_{h \in H} \mathsf{QFT}_G \, |s+h\rangle \\ &= \frac{1}{\sqrt{G}} \sum_{h \in H} \sum_{g \in G} \chi_g(s+h) \, |g\rangle \\ &= \frac{1}{\sqrt{G}} \sum_{g \in G} \left(\sum_{h \in H} \chi_g(h) \right) \chi_g(s) \, |g\rangle \quad \text{from Lecture 5: } \sum_{h \in H} \chi_g(h) = \left\{ \begin{array}{ll} \sharp H & \text{if } g \in H^\perp \\ 0 & \text{otherwise.} \end{array} \right. \\ &= \frac{1}{\sqrt{G}} \sum_{g \in H^\perp} \sharp H \, \chi_g(s) \, |g\rangle \end{split}$$

 \longrightarrow The quantum step before measurement is: $\sqrt{\frac{\sharp H}{\sharp G}} \sum_{g \in H^{\perp}} \chi_g(s) |g\rangle$

The quantum step before measurement is

$$\sqrt{\frac{\sharp H}{\sharp G}} \sum_{g \in H^{\perp}} \chi_g(s) |g\rangle \quad \text{ where } H^{\perp} = \{g \in G : \forall h \in H, \chi_g(h) = 1\}$$

 \longrightarrow Measuring gives a uniform $g \in H^{\perp}$ giving some information about H...

repeating a $poly(log \sharp G)$ times enables to recover H with high probability!

► For a rigorous proof of this statement: see Chapter 6 in the lecture notes by Andrew Childs

An example: Simon's problem

$$\begin{aligned} G &= \mathbb{F}_2^n, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n, \ \chi_{\mathbf{x}}(\mathbf{y}) = (-1)^{\mathbf{x} \cdot \mathbf{y}} \quad \text{and } H = \{\mathbf{0}, \mathbf{s}\} \\ &\longrightarrow H^\perp = \left\{ \mathbf{x} \in \mathbb{F}_2^n : \mathbf{x} \cdot \mathbf{s} = \mathbf{0} \right\} \end{aligned}$$

In other words, we recover Simon's algorithm...

HOW TO COMPUTE QFT OVER G?

G is an Abelian group

Recall that we compute $\operatorname{QFT}_{\mathbb{G}}$ as $\operatorname{QFT}_{\mathbb{Z}/n_1\mathbb{Z}}\otimes\cdots\otimes\operatorname{QFT}_{\mathbb{Z}/n_p\mathbb{Z}}$ where we used the isomorphism:

$$G \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z} \tag{2}$$

But is it easy to compute this isomorphism/decomposition even if we "know" G?

HOW TO COMPUTE QFT OVER G?

G is an Abelian group

Recall that we compute QFT_G as $QFT_{\mathbb{Z}/n_1\mathbb{Z}}\otimes\cdots\otimes QFT_{\mathbb{Z}/n_k\mathbb{Z}}$ where we used the isomorphism:

$$G \cong \mathbb{Z}/n_1\mathbb{Z} \times \dots \times \mathbb{Z}/n_k\mathbb{Z} \tag{2}$$

But is it easy to compute this isomorphism/decomposition even if we "know" G?

→ Yes! At least quantumly for a "good" definition of knowing G...

Quantum decomposition of Abelian groups

Suppose we have (i) a unique encoding of each element of G, (ii) the ability to perform group operations on these elements, and (iii) a generating set for G.

Then, there exists an efficient quantum algorithm that decomposes *G*, namely outputs the isomorphism given in Equation (2)

 \longrightarrow See Chapter 6 in the lecture notes by Andrew Childs

GENERALIZATION TO THE NON-ABELIAN CASE?

To solve HSP we crucially used that we restrict ourself to the Abelian case...

→ And the non-Abelian case?

No efficient algorithm is known for the non-Abelian case (even if nothing indicates that it is impossible)...

→ Finding such an algorithm would have a huge impact in theoretical computer science, (post-quantum) cryptography...

If you are interested by this topic:

- Nice reading about Fourier transform (classical & quantum) over non-Abelian group: Chapter 11 in the lectures by Andrew Child https://www.cs.umd.edu/~amchilds/qa/
- The hidden nonabelian subgroup problem and the Kuperberg algorithm, see Chapters 11-13 in the lectures by Andrew Child https://www.cs.umd.edu/~amchilds/qa/

