Dans tout l'exercice, a est un réel strictement positif.

Partie A

On considère la fonction φ définie sur \mathbb{R}_+^* par : $\forall x > 0$, $\varphi(x) = \ln(x) - ax^{2a}$.

- **1.** (Déterminer $\lim_{x\to 0} \varphi(x)$ et $\lim_{x\to +\infty} \varphi(x)$.)
 - ▶ Limite pour $x \to 0^+$ On a, pour $x \to 0$, les limites : $\ln(x) \to -\infty$ $\Rightarrow x^{2a} \to 0$

Ainsi: $\lim_{0^+} \varphi = -\infty$.

▶ Limite pour $x \to +\infty$ On a, pour $x \to +\infty$, les limites : $\ln(x) \to +\infty$ ▶ $x^{2a} \to +\infty$

On a donc une forme indéterminée : $(+\infty - \infty)$. Par croissances comparées, il vient : $\lim_{+\infty} \varphi = -\infty$.

- **2.** (Étudier les variations de la fonction φ et dresser son tableau de variations. On fera apparaître dans ce tableau le réel : $x_0 = \left(\frac{1}{2a^2}\right)^{\frac{1}{2a}}$.)
 - ▶ **Dérivation** La fonction φ est dérivable sur $]0; +\infty[$. On trouve : $\varphi(x) = \ln(x) - ax^{2a}$

$$\varphi'(x) = \frac{1}{x} - 2a \cdot ax^{2a-1} = \frac{2a^2}{x} \cdot \left(\frac{1}{2a^2} - x^{2a}\right)$$

- Variations de φ
- ▶ Calcul du maximum

Le maximum de φ sur $]0; +\infty[$ est donné par : $M_a = \max_{\mathbb{R}_+^*}(\varphi) = \varphi(x_0)$ $= \frac{1}{2a} \cdot \ln\left(\frac{1}{2a^2}\right) - a \cdot \frac{1}{2a^2}$ $= \frac{1}{2a} \cdot \left[\ln\left(\frac{1}{2a^2}\right) - 1\right]$

- **3.** (Démontrer que si $a < \sqrt{\frac{1}{2e}}$, l'équation $\varphi(x) = 0$ admet exactement deux solutions z_1 et z_2 , vérifiant $z_1 < x_0 < z_2$.

 Que se passe-t-il si $a = \sqrt{\frac{1}{2e}}$? Si $a > \sqrt{\frac{1}{2e}}$?)
 - ightharpoonup Valeurs prises par φ

La fonction φ est \bullet continue sur $]0; +\infty[$,

- strictement croissante sur $]0; x_0[,$
- strictement décroissante sur $]x_0; +\infty[,$

D'après le théorème de la bijection monotone, elle réalise donc deux bijections,

- $\varphi:]0; x_0[\to \varphi(]0; x_0[) =]\lim_0 \varphi; \varphi(x_0)[=] -\infty; M_a[\qquad (où M_a = \varphi(x_0))$
- $\qquad \varphi:]x_0; +\infty[\rightarrow \varphi(]x_0; +\infty[) = \lim_{+\infty} \varphi; \varphi(x_0)[=]-\infty; M_a[$

Ainsi l'ensemble des valeurs prises est $]-\infty; M_a]$ et l'équation $\varphi(x)=m$ admet

- $\,\blacktriangleright\,$ si $m < M_a$: exactement deux solutions z_1 et $z_2,$ vérifiant $z_1 < x_0 < z_2$
- si $m = M_a$: exactement une solution: c'est x_0
- si $m > M_a$: aucune solution.

▶ Valeur du maximum On a :
$$M_a = \frac{1}{2a} \cdot \left[\ln \left(\frac{1}{2a^2} \right) - 1 \right] = -\frac{1}{2a} \cdot \left[\ln(a) - \ln \left(\sqrt{\frac{1}{2e}} \right) \right].$$

- Conclusion : nombre de solutions de $\varphi(x) = 0$
 - ▶ Cas où $a > \sqrt{\frac{1}{2e}}$ On a $M_a > 0$, et on a donc deux solutions ▶ $z_1 \in]0; x_0[$ $z_2 \in]x_0; +\infty[$
 - ▶ Cas où $a = \sqrt{\frac{1}{2e}}$ Alors $M_a = 0$, et la seule solution est $z = x_0$
 - ▶ Cas où $a > \sqrt{\frac{1}{2e}}$ Alors $M_a < 0$, et il n'y a donc pas de solution.

Partie B

Soit f la fonction définie sur l'ouvert $U = (\mathbb{R}_+^*)^2$ par : $\forall (x,y) \in U, \quad f(x,y) = \ln(x) \ln(y) - 1$

4. (Justifier que f est de classe C^2 sur U.)

Les fonctions \bullet $(x,y) \mapsto \ln(x)$ sont de classe \mathcal{C}^2 sur U. Ainsi, la fonction f l'est aussi.

$$(x,y) \mapsto \ln(y)$$

$$(x,y) \mapsto xy$$

- **5.** (Calculer les dérivées partielles premières de f.)
 - Dérivation par rapport à x

On trouve:
$$\partial_1(f)(x,y) = \partial_1 \left(\ln(x) \ln(y) - (xy)^a \right)$$
$$= \frac{1}{x} \cdot \ln(y) - a \cdot x^{a-1} \cdot y^a = \frac{1}{x} \cdot \left[\ln(y) - a \cdot (xy)^a \right]$$

Dérivation par rapport à y

Par symétrie, il vient : $\partial_2(f)(x,y) = \frac{1}{y} \cdot [\ln(x) - a \cdot (xy)^a].$

6. (Démontrer que pout tout $(x,y) \in U$: (x,y) est un point critique de $f \iff \begin{cases} x=y, \\ \varphi(y)=0. \end{cases}$

On résout : $[(x,y) \text{ pt crit. de } f] \iff \begin{cases} \partial_1(f)(x,y) = 0 \\ \partial_2(f)(x,y) = 0 \end{cases} \iff \begin{cases} \ln(y) - a \cdot (xy)^a = 0 \\ \ln(x) - a \cdot (xy)^a = 0 \end{cases}$ $\iff \begin{cases} \ln(y) - \ln(x) = 0 \\ \ln(x) - a \cdot (xy)^a = 0 \end{cases} \iff \begin{cases} y = x \\ \ln(y) - a \cdot (y^2)^a = 0 \end{cases}$

$$\iff \begin{cases} \ln(y) - \ln(x) = 0 \\ \ln(x) - a \cdot (xy)^a = 0 \end{cases} \iff \begin{cases} y = x \\ \ln(y) - a \cdot (y^2)^a = 0 \end{cases}$$

On a donc bien trouvé les conditions :

- 7. (Démontrer que si $a < \sqrt{\frac{1}{2e}}$, la fonction f admet exactement deux points critiques : (z_1, z_1) et (z_2, z_2) , où z_1 et z_2 sont les réels définies dans la partie A. Déterminer aussi les eventuels points critiques de f dans les cas où $a = \sqrt{\frac{1}{2e}}$ et $a > \sqrt{\frac{1}{2e}}$.)
 - ▶ Cas où $a < \sqrt{\frac{1}{2e}}$ Alors l'équation $\varphi(y) = 0$ a deux solutions z_1 et z_2 . D'après l'autre équation : x = y, les deux points seuls critiques demandés $\rightarrow (z_1, z_1)$ $(z_2, z_2).$
 - ▶ Cas où $a = \sqrt{\frac{1}{2e}}$ Il n'y a lors qu'une seule solution : $\varphi(y) = 0$, c'est $y = x_0$. Il n'y a donc qu'un seul point critique : (x_0, x_0)
 - ▶ Cas où $a = \sqrt{\frac{1}{2e}}$ Il n'y a pas de solution à $\varphi(y) = 0$, donc pas de point critique.

Partie C

Dans cette partie, on suppose que $a<\sqrt{\frac{1}{2\,\mathrm{e}}}$. On rappelle alors que la fonction f admet exactement deux points critiques :

- 8. (Calculer les dérivées partielles d'ordre 2 de la fonction f.)
 - ▶ Dérivées doubles On a $\partial_{1,1}^2 f(x,y) = \partial_1 \left(\underbrace{\frac{1}{x} \cdot \ln(y) a \cdot x^{a-1} \cdot y^a}_{\partial_1 f}\right)$ $= -\frac{1}{x^2} \cdot \ln(y) a(a-1) \cdot x^{a-2} \cdot y^a$ $= -\frac{1}{x^2} \cdot \left[\ln(y) a(a-1) \cdot (xy)^a\right].$

De même, on a : $\partial_{2,2}^{2} f(x,y) = -\frac{1}{y^{2}} \left[\ln(x) - a(a-1) \cdot (xy)^{a} \right]$.

- ▶ **Dérivées croisées** Par la propriéte de symétrie de Schwarz pour la fonction f de classe \mathcal{C}^2 , il suffit de calculer : $\partial_{1,2}^2 f(x,y) = \partial_{2,1}^2 f(x,y) = \partial_2 \underbrace{\left(\frac{1}{x} \cdot \ln(y) a \cdot x^{a-1} \cdot y^a\right)}_{\partial_1 f}$ $= \frac{1}{x} a^2 \cdot x^{a-1} \cdot y^{a-1}.$
- **9.** (Calculer la matrice hessienne de f au point (z_1, z_1) . Vérifier que cette matrice peut s'écrire sous la forme : ...)

On pose: $x = y = z_1$.

- ▶ **Dérivées doubles**Il vient : $\partial_{1,1}^2 f(z_1, z_1) = -\frac{1}{z_1^2} \cdot \left[\overline{\ln(z_1)} a(a-1) \cdot (z_1^2)^a \right] = \frac{1}{z_1^2} \cdot a^2 z_1^{2a} = a^2 z_1^{2a-2}$.

 De même : $\partial_{2,2}^2 f(z_1, z_1) = a^2 z_1^{2a-2}$.
- ▶ Dérivées croisées On trouve : $\partial_{1,2}^2 f(z_1,z_1) = \frac{1}{z_1^2} a^2 z_1^{2a-2}$
- ► Conclusion
 On trouve la Hessienne demandée : $\nabla^2(f)(z_1, z_1) = \begin{bmatrix} -a^2 z_1^{2a-2} & \frac{1}{z_1^2} a^2 z_1^{2a-2} \\ \frac{1}{z_1^2} a^2 z_1^{2a-2} & -a^2 z_1^{2a-2} \end{bmatrix}.$

On pose $M = \nabla^2(f)(z_1, z_1), X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \text{ et } X_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$

- **10.** (Calculer $M \cdot X_1$ et $M \cdot X_2$, et en déduire les valeurs propres de M.)
 - ► Calcul de $M \cdot X_1$ On trouve: $M \cdot X_1 = M \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -a^2 z_1^{2a-2} + \frac{1}{z^2} - a^2 z_1^{2a-2} \\ \frac{1}{z_1^2} - a^2 z_1^{2a-2} + -a^2 z_1^{2a-2} \end{pmatrix} = \begin{pmatrix} \frac{1}{z_1^2} - 2a^2 z_1^{2a-2} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$
 - ► Calcul de $M \cdot X_2$ On trouve : $M \cdot X_2 = M \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} a^2 z_1^{2a-2} + \frac{1}{z_1^2} - a^2 z_1^{2a-2} \\ -\frac{1}{z_1^2} - a^2 z_1^{2a-2} + -a^2 z_1^{2a-2} \end{pmatrix} = -\frac{1}{z_1^2} \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$
 - ▶ Conclusion sur les valeurs propres

On a vérifié que les vecteurs X_1 et X_2 sont propres, respectivement associés aux valeurs propres : $\lambda_1 = \frac{1}{z_1^2} - 2a^2 z_1^{2a-2}$

$$\lambda_2 = -\frac{1}{z_1^2}$$

- 11. (La fonction f présente-t-elle un extremum local en (z_1, z_1) ? Si oui, est-ce un minimum? Un maximum?) Les valeurs propres de la Hessienne en ce point sont ci-dessus.
 - Signe de λ_2 On a : $\lambda_2 = -\frac{1}{z_1^2} < 0$

- ▶ Signe de λ_1 On a : $\lambda_1 = \frac{1}{z_1^2} 2a^2z_1^{2a-2} = \frac{1}{z_1} \cdot \left[\frac{1}{z_1} 2a^2z_1^{2a-1}\right]$ Avec la sagacité qui nous caractérise, on reconnaît : $\lambda_1 = \frac{1}{z_1} \cdot \varphi'(z_1)$ Or $z_1 \in]0$; $x_0[$. donc, $\varphi'(z_1) > 0$. Ainsi $\lambda_1 > 0$.
- ▶ Conclusion Les deux valeurs propres de la Hessienne sont de signe opposé, donc ce point critique est un point selle.
- **12.** (La fonction f présente-t-elle un extremum local en (z_2, z_2) ? Si oui, est-ce un minimum? Un maximum?)

Tout se passe comme en (z_2, z_2) , mais avec pour valeurs propres :

- Signe de λ_2 On a : $\lambda_2 = -\frac{1}{z_2^2} < 0$
- ▶ Signe de λ_1 On a : $\lambda_1 = \frac{1}{z_2^2} 2a^2 z_2^{2a-2} = \frac{1}{z_2} \cdot \varphi'(z_2)$ Or $z_2 \in]x_0; +\infty[$. donc, $\varphi'(z_2) < 0$. Ainsi $\lambda_1 < 0$.
- ▶ Conclusion

Les deux valeurs propres de la Hessienne ont même signe : on a un extremum local. Comme elles sont <0, c'est un maximum local.