(Roland van der Veen)

characters of representations

We will work over &, G finite group.

Lemma p: G -> GL(V) representation. Then
product. Then
product.

I.e. Fan invariant inner prod.

YU, WEY → C with the property

YU, WEY = <U, W?.

Therefore p(g) has a basis of eigenvectors.

pick any inner product (\cdot, \cdot) . Now the average is $\langle v, w \rangle = \frac{1}{|G|} \cdot \sum_{g} (p(g)v, p(g)w)$.
This satisfies property (*).

(gv, gw) = 1 (xgr, xgw) = 161 \(\frac{1}{61} \) (hv, hw)

h=xg = (v, w).

Example $6 = S_3$. $V = \mathbb{C}^3$, $\mathcal{D}: S_3 \rightarrow GL(V)$ $\langle e_i, e_2, e_3 \rangle$. $\langle \sigma \rangle e_i = e_{\sigma(i)}$

T=Span (e1+e2+e3) is a subrepresentation, it is 1-dimensional. And T^{\perp} is also a subrep. of V. $V \stackrel{\sim}{=} T \oplus T^{\perp}$.

irreducible

Ex. (The characters of G-repr.). For a s: 6 -> GL(V) a repr., the character $X_{p} = X_{v} : G \rightarrow C$ is defined by g → Tr(p(g)). Claim: X, (23 gxg-1) = X, (x). Theorem (Cass (6) has an orthonormal basis formed by an characters of the irreducible Ex. $6 = \langle g \mid g^n = e \rangle$ cyclic group. A complete list of the irred. repr. of 6 (all 1-dim.) is given by $p:G \rightarrow GL(C) \cong C^*$ g → e 2 mik / K= 0, ..., n-1. Then Kn of Pu is pu Theorem says: any function f: G - C can be written uniquely as $f(x) = \sum_{k=0}^{n-1} \hat{f}(k) \chi_k(x)$, (Fourier sum). where $\hat{f}(k) = \langle f, \chi_k \rangle$.

Ex. The characters of the irred repr. of S3. We have: trivial repr. P = T (P(g) = id c). alternating P (P(g) = sign(g)·id c) 2-dim. $T^{\perp} = P_2$ (permutation P, not irred.) $P(F)e: = e_{F(i)}$.

Let's compute the values of the corresponding characters α $\chi_1, \chi_{-1}, \chi_2, \chi_p$.

Character table

repr.	conj. classes		
	(1)	(12)	(123)
χ ,	1	1	1
$\chi_{\vec{A}}$	1	-1	1
χ_2	a=2	b	С
(×p	3	1	٥)

$$\chi_{I}(u) = Tr(P_{I}(1)) = Tr(P_{I}(id_{C}) = dim_{C}(C) = 1.$$

$$\chi_{P}(\sigma) = Tr(P_{I}(\sigma))$$

$$\chi_{P}(u) = Tr(id_{C3}) = 3.$$

$$\chi_{P}(u) = Tr(P_{I}(u)) = Tr(P_{I}(u)) = Tr(P_{I}(u)) = 1.$$

$$\chi_{P}(u) = *fixed pts. of G.$$

$$=> 2 + 3b + 2c = 0$$
Moreover, $\langle \chi_{-1}, \chi_{2} \rangle = 0$

$$= \frac{1}{6} \left(\overline{1.} \chi_{1}(1) + 3. (-1) \chi_{2}(12) + 2.\overline{1} \chi_{2}(123) \right)$$

$$=> 2 - 3b + 2c = 0.$$

we find C=-1 & b=0. Note: Up = TO Th so Xp = X2 + X1 Lemma For repr. V, W of G we have more repr. VOW with Xvow = Xv + Xw vow with Xvow = Xv. Xw Hom (U, W) with $\chi_{\text{Hom}(V,W)} = \overline{\chi_{V}}$. V⊕W via p (g) = pg⊕ p (g), $V\otimes \omega$ via $V\otimes \omega$ = $V(g)\otimes V(g)$, V^* via $(p_{V^*}(q_1)(v_1) = q(p_{V^*}(q^{-1})v_1),$ \Hom(V, W) via (p (g)(f))(v) = p (g) f (p (g)) Define for representation V. of 6 the space of fixed pts. V = {v \ 1 \ Gv = v \}. The element $\varphi \in End(v)$ defined by

 $\varphi = \frac{1}{161} \sum_{g \in G} \mathcal{D}(g)$ is a projection onto V^G . dimy = Tr(q) = 161 \(\int \text{Tr}(\mathcal{P}_{\q}(g)) = \frac{1}{161} \(\int \text{Xr}(\q).

& Take V = Hom(v, w).

dim (Hom(v,w) = <xv, xw>

161 \(\text{X} \) Home(\(\mu, \omega) = \frac{1}{161} \) \(\text{X} \) \(\text

demma

The charactes of the irred repr. are orthonormal.

proof If V, W irred., then dim Home (V, W)=1
if V= W and o otherwise.

But (xu, xu) = dim Homo (U, W).

Cor V= Vi @ V2 @ V3

then Ky=aKi+bK2+cK3.