

InterLab FCC Measurement/Technical Report on

Icarus TxMini

Report Reference: MDE_ICPGROUP_1401_FCCb

FCC ID: 2ADQ3ICARUSTXMINI

Test Laboratory:

7Layers AG Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com

Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385 A Bureau Veritas Group Company

Table of Contents

o Sur	nmary	3
0.1 0.2	Technical Report Summary Measurement Summary	3 4
1 Adı	ministrative Data	5
1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2 Tes	t object Data	6
2.1 2.2 2.3 2.4 2.5 2.6 2.7	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Product labeling	6 7 7 7 7 8 8
3 Tes	t Results	9
3.1 3.2 3.3 3.4	Duty cycle measurement (based on dwell time measurement) Spurious radiated emissions Peak power output Occupied bandwidth	9 11 17 18
4 Tes	t Equipment	19
5 Pho	oto Report	25
6 Set	up Drawings	25
7 Cor	relation table FCC-IC	26
8 Anı	nex measurement plots	27
8.1 8.2 8.3	Duty cycle measurement (based on dwell time measurement) Radiated emissions Occupation bandwidth	27 29 38

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHz)

Applicable FCC Rules

Edition of FCC Rules: 10-1-13

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.231 Periodic operation in the band 40.66-40.70 MHz, above 70 MHz

Note: none

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Sub	part C	§ 15.207	
Conducted emissio			
	was performed accord	_	2009
OP-Mode	Setup	Port AC Port (power line)	Final Result N/A
		AC POIT (power line)	N/A
FCC Part 15, Sub	part C	§ 15.231	
	ement (based on dwel		
	was performed accord	_	10-1-13 Edition
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_02	Temporary antenna connector	passed
		connector	
FCC Part 15, Sub	part C	§ 15.231	
Spurious Radiated			
	was performed accord	_	2009
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_01	Enclosure	passed
FCC Part 15, Sub	part C	§ 15.231	
Peak power output			
	was performed accord		2009
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_01	Enclosure	passed
FCC Part 15, Sub	part C	§ 15.231	
Occupied Bandwidt			
	was performed accord		10-1-13 Edition
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_01	Enclosure	passed

N/A not applicable (the EUT is powered by DC internal battery)

Responsible for Accreditation Scope:

Responsible for Test Report

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7Layers AG

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version: 2012-03-14

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Dobrin Dobrinov

Date of Test(s): 2014-10-08 to 2014-10-20

Date of Report: 2014-11-26

1.3 Applicant Data

Company Name: ICP Systems b.v.

Address: Handelsweg 48 7451PJ Holten

Netherlands

Contact Person: Philipp Rasche

1.4 Manufacturer Data

Company Name: please see applicant data

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test Icarus **Type Designation:** TxMini

Kind of Device: 433 MHz transmitter

(optional)

Voltage Type: DC internal battery

Voltage level: 3.0V **Repeated Operation:** Manually

The EUT is part of a security No

or safety system:

General product description:

The Equipment Under Test (EUT) is a wireless handheld remote control unit transmitter for non-periodic operation in the band above 70 MHz. The operating frequency is in the 433 MHz ISM band.

Specific product description for the EUT:

None

The EUT provides the following ports:

Ports

- Enclosure

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: DE10 66001aa01)	Icarus	TxMini	14.000.243	92379 100	21.042.314 continuous CW/CM (for test purpose only)	-
Remark: EUT	A is equipped w	ith an integral a	ntenna (gain =	-16 dBi).		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
_	_	_	_	_	_	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
_	_	_	_	_	_	_

2.5 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A	setup for Peak Power Output, Occupied Bandwidth and
		Spurious Radiated Emissions measurements
Setup_02	EUT A	setup for Duty Cycle measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	normal operation	At each pressing of a button 6, transmitter is sending a pulse coded signal once.
op-mode 2	continuous operation	Transmitter is sending continuously a CW or CM signal (after pressing buttons 4 or 3). Special op mode for test purpose only.

2.7 Product labelling

2.7.1 FCC ID label

FCC ID: 2ADQ3ICARUSTXMINI

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Duty cycle measurement (based on dwell time measurement)

Standard FCC Part 15, 10-1-13 Edition Subpart C

The test was performed according to: FCC §15.35, §15.231

3.1.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the dwell time measurements. For analyzer settings please see measurement plots in annex.

3.1.2 Test Limits

Depending on the function of the EUT different paragraphs of FCC §15.231 apply:

Fither

(a)(1): A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Or

(a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

And

(a)(3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Otherwise

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation [...]. In addition, [...] the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

This test is also performed to determine the pulse train of the transmitter and calculate the correction factor for pulse modulated transmitters according to FCC §15.35. This factor is used as a correction factor for the field strength measurements, both for Spurious radiated emissions and Peak power output.

3.1.3 Test Protocol

Temperature: °C
Air Pressure: hPa
Humidity: %

Op. Mode Setup Port

op-mode 1 Setup_02 Temporary antenna connector

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = ((L1*N1) + (L2*N2) + ... + (Ln*Nn)) / 100 ms or T, whichever is less Correction factor = 20 * LOG (Duty cycle) [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	922 ms
Step 3	Sweep of a data word to determine the on time within a data word (L1-LN).	L1 = 20.40 ms
Step 4	Determine the number of pulses (N1-NN).	N1 = 2
	First range (trigger delay = -10 ms).	

Calculation of Duty Cycle / Correction Factor:

If T > 100 ms = T := 100 ms; L1 = 67.75 ms; N1 = 2;

In 100 ms $T_{on} = 2*20.40 \text{ ms} = 40.8 \text{ ms}$

Duty cycle = 40.8 / 100 = 0.408

Correction factor = 20*LOG(0.408) = -7.8 dB

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time:

Period of retransmission T_R . There is no periodic retransmission. After pressing a button, the EUT sends only one pulse train (RKE telegram message).

Deactivation after $T_c = 0.922 s$, Limit: $\le 5 s$

c) Determine the total duration of periodic transmissions within 1 hour, if any:

Duration t_d of all pulses/bursts during T_R ("on-time"):

 $t_d = 19*L1 =$ **387.6 ms**

d) If the result of c) exceeds 2 seconds/hour then paragraph (e) applies: Determine the duration of each transmission (one complete pulse train) and silent time:

Duration t_{PT} , Limit: ≤ 1 s (Remark: t_{PT} is identical to t_d if $T \leq 100$ ms)

Silent time between transmissions $t_S = 1$, Limit: \leq Maximum(10 s and 30* t_{PT}).

3.1.4 Test result: Duty cycle / correction factor

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 1	passed	

3.2 Spurious radiated emissions

Standard FCC Part 15, 10-1-13 Edition Subpart C

The test was performed according to: FCC §15.31, ANSI C 63.4, 2009

3.2.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0×2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 and 0.15 - 30 MHz

Frequency steps: 0.1 kHz and 5 kHz
IF-Bandwidth: 0.2 kHz and 10 kHz
Measuring time / Frequency step: 10 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the

relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 – 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 200 Hz - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μs

Test report Reference: MDE_ICPGROUP_1401_FCCb

- Turntable angle range: -180 to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180 to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -22.5° to + 22.5° around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only. Important EMI receiver settings:

- Detector: Peak, Average
- RBW = 1 MHz, VBW = 3 MHz
- Sweep time = 100 ms / per 100 MHz sweep

3.2.2 Test Requirements / Limits

- 1) A radiated emission test is relating to the fundamental frequency.
- a) Either for "non-periodic" operation of the EUT as defined in §15.231(a) the limits for the average field strength apply according to FCC Part 15, Subpart C, §15.231(b):

For fundamental frequency (MHz)	Limit Fundamental (dBµV/m)	Limit Spurious (dBµV/m)
40.66 - 40.70	67.0	47.0
70 - 130	67.0	47.0
130 - 174	67.0 - 71.5	47.0 - 51.5 *)
174 - 260	71.5	51.5
260 - 470	71.5 - 81.9	51.5 - 61.9 *)
above 470	81.9	61.9

b) Or for "periodic" operation of the EUT the limits for the average field strength apply according to FCC Part 15, Subpart C, §15.231(e):

For fundamental frequency (MHz)	Limit Fundamental (dBµV/m)	Limit Spurious (dBµV/m)
40.66 - 40.70	60.0	40.0
70 – 130	54.0	34.0
130 - 174	54.0 - 63.5	34.0 - 43.5 *)
174 - 260	63.5	43.5
260 - 470	63.5 - 74.0	43.5 - 54.0 *)
above 470	74.0	54.0

*) linear interpolation

2) A radiated emission test applies to harmonic/spurs that fall in the restricted bands as listed in § 15.205(a). The maximum permitted QP (< 1 GHz) and Average (> 1GHz) field strength is listed in § 15.209(a):

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculate Limit(dBµV/m @10m)	Limit (dBµV/m) @10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 - 13.8) + 59.1 dB	107.6 - 77.9
0.49 - 1.705	24000/F (kHz)	30	(48.9 - 23.0) + 19.1 dB	68.0 - 42.1
1.705 - 30	30	30	29.5 + 19.1 dB	48.6

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasipeak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The lats subordinate clause of $\S15.231(b)(3)$ is overruled by $\S15.205/209$, therefore within the restricted bands the limits defined at $\S15.205/209$ and outside the restricted bands the limits defined at $\S15.231(b)$ resp. $\S15.231(e)$ are applied.

Test report Reference: MDE_ICPGROUP_1401_FCCb

3.2.3 Test Protocol

3.2.3.1 Measurement up to 30 MHz

Temperature: 24 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode Setup Port

op-mode 2 Setup_01 Enclosure

Polari-sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m	Limit dBµV/m	Limit dBµV/m	Margin to limit dB	Margin to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
channel 1	l		I		L	L	I.		
0°	-	_	-	_	-	-	-	-	-
90°	-	_	-	_	-	-	-	-	-
channel 6									
0°	-	_	-	_	-	-	-	-	-
90°	_	-	-	-	-	_	_	-	-

Remark: In step 1 no spurious emissions above the limit were found using a peak detector, therefore step 2 (using a QP-detector) was not performed. Please see the measurement plots in annex.

All the Spurious radiated emissions measurements are done at the lowest and highest carrier frequencies the EUT operates on, resp. channel 1 and channel 6.All three axis (Y,Y,Z) of the device and both antenna polarizations (H/V) were considered.

3.2.3.2 Measurement 30 MHz - 1 GHz

Temperature: 24 °C Air Pressure: 1006 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 2 Setup_01 Enclosure

Polarisation of the antenna and	Frequency MHz	Corrected value dBµV/m		Limit dBµV/m	Limit dBµV/m	Limit dBµV/m	Margin to limit dB	Margin to limit dB	
the EUT		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
channel 1	channel 1								
-	-	-	-	-	-	-	-	_	-
channel 6									
_	-	-	-	-		-	-	-	ı

Remark: No spurious emissions in the range 20 dB below the limit found. The test was performed in the frequency range from 30 MHz to 1 GHz. For this test an EUT sending a CW signal was used.

All the Spurious radiated emissions measurements are done at the lowest and highest carrier frequencies the EUT operates on, resp. channel 1 and channel 6.All three axis (Y,Y,Z) of the device and both antenna polarizations (H/V) were considered.

Measurement above 1 GHz

Temperature: 24 °C Air Pressure: 1006 hPa Humidity: 42 %

Op. Mode Setup Port

op-mode 2 Setup_01 Enclosure

Polarisation	Frequency MHz	y Corrected value dBμV/m			Limit dBµV/ m	Limit dBµV/ m	Margin to limit dB	Margin to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
channel 1				l		ı		J	l .
		_			-				
channel 6									
		_			-				

Remarks: No spurious emissions in the range 20 dB below the limit found. The test was performed in the frequency range from 1 GHz to 4.5 GHz. For this test an EUT sending a CW signal was used.

All the Spurious radiated emissions measurements are done at the lowest and highest carrier frequencies the EUT operates on, resp. channel 1 and channel 6. All three axis (Y,Y,Z) of the device and both antenna polarizations (H/V) were considered.

3.2.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

3.3 Peak power output

Standard FCC Part 15, 10-1-13 Edition Subpart C

The test was performed according to: FCC §15.31, §15.231, ANSI C 63.4, 2009

3.3.1 Test Description

Please refer to sub-clause 3.2.1.

3.3.2 Test Limits

Please refer to sub-clause 3.2.2.

3.3.3 Test Protocol

Temperature: 24 °C Air Pressure: 1009 hPa Humidity: 38 %

Op. Mode	Setup	Port
op-mode 2	Setup_01	Enclosure

channel	Output power dBµV/m			Remarks
1	72.2	433.2	80.81	Maximum radiated field strength at
4	72.3	434.1	80.83	fundamental frequency
6	74.9	434.7	80.85	

Note: The maximal peak power output values shown in the table above are corrected by using the Duty Cycle Correction Factor, calculated in 3.1.3.

3.3.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

Test report Reference: MDE_ICPGROUP_1401_FCCb

Page 17 of 43

3.4 Occupied bandwidth

Standard FCC Part 15, 10-1-13 Edition Subpart C

The test was performed according to: FCC §15.231

3.4.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyzer settings please see measurement plots in annex.

3.4.2 Test Limits

FCC Part 15, Subpart C, §15.231(c)

The maximum 20 dB bandwidth of a transmitter operating at a frequency range:

70 to 900 MHz is 0.25% of the centre frequency above 900 MHz is 0.5% of the centre frequency

3.4.3 Test Protocol

Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 42 %

Op. ModeSetupPortop-mode 2Setup_01Enclosure

Channel	20 dB bandwidth kHz	99% bandwidth kHz	Limit kHz	Remarks
1	605.210	661.323	1086.75	The limit is calculated as:
4	599.198	663.327	1086.75	434.7 MHz (the maximal carrier frequency used) * 0.25% =
6	623.246	675.351	1086.75	= 1086.75 kHz.

Remark: Please see annex for the measurement plots.

3.4.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

Test report Reference: MDE_ICPGROUP_1401_FCCb Page 18 of 43

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID: Lab 2
Manufacturer: Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

NSA (FCC) 2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ FCC listing 96716 3m Part15/18	none	Frankonia 2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer:Rohde & Schwarz GmbH & Co.KGDescription:EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

	Single Device Name	Type	Serial Number	Manufacturer	
	Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner	
	Impedance Stabilization	ISN T800	36159	Teseq GmbH	
	Network	Calibration Details Standard Calibration		Last Execution 2014/02/06	<i>Next Exec.</i> 2016/02/28
	Impedance Stabilization Network, Coupling	ISN/CDN ENY41	100002	Rohde & Schwa KG	arz GmbH & Co.
	Decoupling Network	Calibration Details		Last Execution	Next Exec.
		Standard calibration		2013/03/01	2015/03/31
	Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH	
	2 decoupgded	Calibration Details		Last Execution	Next Exec.
		Standard calibration		2014/01/10	2016/01/31
ľ	Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH	
	2 cccupgcc.rc.rx	Calibration Details		Last Execution	Next Exec.
		Standard Calibration		2014/01/08	2016/01/31

Page 19 of 43

Test report Reference: MDE_ICPGROUP_1401_FCCb

Single Devices for Auxiliary Equipment for Conducted emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer	
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG	
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Exec.	
	Standard Calibration		2013/11/25 2016/11/24	
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Exec.	
	Standart Calibration		2013/03/01 2015/02/28	
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Exec.	
	Standard Calibration		2013/03/01 2015/02/28	

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer	
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH	
Antenna mast	AS 620 P	620/37	HD GmbH	
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution	Next Exec.
	Standard Calibration		2012/01/18	2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq	
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq	
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq	
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	- Kabel Kusch	
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger M	icro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwa	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard Calibration		2012/05/18	2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwa KG	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard Calibration		2012/06/26	2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic	
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic	
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic	
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright	
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170 z			
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwa	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard Calibration		2012/12/18	2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwa KG	arz GmbH & Co.
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwa KG	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard calibration		2011/10/27	2014/10/26

Test report Reference: MDE_ICPGROUP_1401_FCCb

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name Serial Number Manufacturer Type

00083069 EMCO Elektronik GmbH Pyramidal Horn Antenna 3160-09

26,5 GHz

Pyramidal Horn Antenna 3160-10 40 GHz 00086675 EMCO Elektronik GmbH

Maturo GmbH Tilt device Maturo Antrieb TD1.5-10kg TD1.5-

10kg/024/3790709 (Rohacell)

Test Equipment Auxiliary Test Equipment

Lab ID: Lab 2, Lab 3 Manufacturer: see single devices

Single Devices for various Test Equipment Description:

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer	
Broadband Power Divider1506A / 93459 N (Aux)		LM390	Weinschel Associates	
Broadband Power DividerWA1515 SMA		A855	Weinschel Associates	
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B	5.V.
,	Calibration Details		Last Execution	Next Exec.
	Customized calibration		2013/12/04	2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis	
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis	
Isolating Transformer	LTS 604	1888	Thalheimer Transformatore	enwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright	
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution	Next Exec.
	Standard		2014/02/10	2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwa	arz GmbH & Co.
	Calibration Details		Last Execution	Next Exec.
	Standard		2012/06/13	2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG	
	Calibration Details		Last Execution	Next Exec.
	Standard calibration		2013/07/29	2014/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwa Co.KG	arz GmbH &

Test report Reference: MDE_ICPGROUP_1401_FCCb

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 3

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	erWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberge Micro Coax FA210A0010003030 SMA/SMA 1,0m	r FA210A0010003030	54491-2	Rosenberger Micro-Coax
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2012/03/12 2014/03/11
	Customized calibration		2014/03/11 2016/03/10

Test Equipment Temperature Chamber 01

Lab ID: Lab 4

Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Type: Weiss

Serial Number: see single devices

Single Devices for Temperature Chamber 01

Single Device Name Type Serial Number Manufacturer

Temperature Chamber

Weiss 01

KWP 120/70 59226012190010 Weiss Umwelttechnik GmbH

Calibration DetailsLast ExecutionNext Exec.Customized calibration2012/03/122014/03/11Customized calibration2014/03/122016/03/11

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

7 Correlation table FCC-IC

Correlation of measurement requirements for Momentarily (incl. Periodically) Operated Devices and Remote Control from FCC and IC

Radio equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Transmitter spurious radiated emissions	§ 15.231 (b) / (e)	RSS Gen Issue 4: 6.10/6.13/8.9/8.10; RSS-210 Issue 8: A1.1.2, A1.1.5
Duty cycle measurement (based on dwell time measurement)	§ 15.231 (a)	RSS-210 Issue 8: A1.1.1, A1.1.5
Peak power output	§ 15.231 (b) / (e)	RSS-210 Issue 8: A1.1.2, A1.1.5; RSS Gen Issue 4: 6.12
Occupied bandwidth	§ 15.231 (c)	RSS-210 Issue 8: A1.1.3
Frequency Stability	§ 15.231 (d)	RSS-210 Issue 8: A1.1.4
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	-	RSS-210 Issue 8: 2.3 RSS Gen Issue 4: 5/7 *)

 $^{^*}$) Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

8 Annex measurement plots

8.1 Duty cycle measurement (based on dwell time measurement)

Date: 5.AUG.2014 17:14:36

The pulse train of one period T = 1377 ms

Trigger delay = -10 ms, SWT = 1s

The N1 pulse.

Trigger delay = -5 ms, SWT = 30 ms

L1 = 20.15 ms

8.2 Radiated emissions

8.2.1 Radiated emissions (f < 30 MHz)

EUT: (DE1066000aa01)

Manufacturer: ICP Group

Operating Condition: TX on 434.07 MHz, Ch: 4 Test Site: 7 layers, Ratingen

Test Specification: FCC 15c.231

Comment: Antenna position 0° Side 1 horizontal EUT position

Antenna position 90° Side 1 horizontal EUT position

Antenna position 90° Side 2 horizontal EUT position

Antenna position 0° Side 2 horizontal EUT position

Radiated emissions 30 MHz < f < 1 GHz

EUT: DE1066000aa01 Manufacturer: ICP Group Operating Condition: 433.2 Ch. 1

Test Site: 7 layers, Ratingen
Comment: Horizontal EUT position
Start of Test: 05.11.2014 / 16:30:10

SCAN TABLE: "FCC 15.231 C F433MHz"

Short Description: FCC ClassB Field Strength

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

30.0 MHz 1.0 GHz 60.0 kHz MaxPeak 1.0 ms 120 kHz HL562 1.0 GHz 1.6 GHz 500.0 kHz MaxPeak 1.0 ms 1 MHz HF 906 / 001 1.6 GHz 5.0 GHz 500.0 kHz MaxPeak 1.0 ms 1 MHz HF 906 / 001

EUT: DE1066000aa01
Manufacturer: ICP Group
Operating Condition: 434.7 Ch. 6

Test Site: 7 layers, Ratingen
Comment: Horizontal EUT position
Start of Test: 07.10.2014 / 16:12:58

8.2.2 Radiated emissions f > 1 GHz

EUT: (DE1066000aa01)

Manufacturer: ICPGROUP

Operating Condition: TX 433.18 MHz, Ch: 1 Test Site: 7 layers Ratingen

Test Specification: FCC 15.231

Comment: vertical + horizontal antenna pol.; vertical EUT pos.

Horizontal EUT position

For the detailed scan around the peak value please see the page at the end of this section.

For the detailed scan around the peak value please see the page at the end of this section.

Detailed scan for the peak value from the previous pages.

8.3 Occupation bandwidth

8.3.1 20 dB bandwidth

Op. Mode

Date: 5.AUG.2014 16:58:52 Channel 1 - 20 dB occupied bandwidth

Channel 4 – 20 dB occupied bandwidth

Date: 5.AUG.2014 16:43:57 Channel 6 - 20 dB occupied bandwidth

8.3.2 99 % bandwidth

Op. Mode

op-mode 2

Date: 5.AUG.2014 16:57:52

Channel 1: 99% bandwidth.

Channel 4: 99% bandwidth.

Channel 6: 99% bandwidth.