PUBLICATIONS

OF THE

DOMINION OBSERVATORY

OTTAWA, CANADA

BELYOTTEOLE DE

Vol. IV, No. 22

RADIAL VELOCITIES OF 30 STARS

BY W. E. HARPER, M.A.

During the course of several years' work at this observatory a considerable number of miscellaneous measures of radial velocity have accumulated. Some of these are of spectroscopic binaries already announced, while others are of stars for which no previous measures were known. In the case of the latter, a few have been found to be variable in velocity and are so indicated in the column of remarks of the following table or in the text. Some of the binaries could with profit be continued, while others are either too uncertain for measurement or have such a small range that greater dispersion is necessary to successfully tackle them. The stars with their approximate positions for 1900, the number of plates secured, and other data are given in the following table.

Star	(χ *	δ		Plates	Remarks
	h	m	D	,		
Piscium	1	26	+14	50	40	uncertain binary
Ceti	2	14	- 3	26	4	
35 Arietis	2	38	+27	17	5	constant velocity
Boss 678	2	54	+51	57	5	suspected binary
Boss 744	3	12	+49	43	4	
Boss 783	3	22	+49	30	2	
Boss 839	3	36	+33	39	7	new spec, binary
12 Persei	3	43	+32	48	4	
Boss 898	3	49	+47	35	2	
Boss 947	-1	01	+47	27	5	new spec. binary
V Orionis.	5	22	+ 3	01	16	
Orionis	5	30	- 5	59	30	
30 Canis Majoris	7	15	-24	47	3	
Boss 2381	8	47	- 6	49	2	
36 Lyncis	9	07	+43	38	5	
Leonis	10	11	+23	55	3	

MT 403 PO4-22

66716-1

Star	α		ô		Plates	Remarks
	h	m	0	,		+
	11	56	+7	10	15	
π 8 Virginis.	12	22	+27	22	4	1. Second
6 Coma	12	51	+38	52	4	new spec. binary
12 Canum Venaticorum	13	57	+ 2	0.5	12	constant velocity, -2
Virginis	14	35	+44	50	2	
33 Boötis	15	24	+ 2	12	4	
10 Serpentis	15	52	+38	14	3	
12 Corone Boreaus	16	46	+ 1	23	4	
21 Ophiuchi	18	05	+20	01	4	
Boss 4669	18	22	+29	46	2	additional measures
50 Draconis	18	50	+75	20	28	additional measures
Boss 5070	19	47	+40	20	7	
13 Vulpeculæ	19	49	+23		6	
Boss 5535	21	28	+60	01	4	

n PISCIUM

(1900,
$$\alpha = 1^h 26^m \cdot 1$$
, $\delta = + 14^{\circ} 50'$, mag. $3 \cdot 72$, type G5)

In the Astrophysical Journal, volume XIX, page 249 and volume XXI, page 313, are given the measures of 15 plates taken by Lord at the Emerson McMillan Observatory in the years 1901 to 1905. The range shown is from +9.5 to +24.9, and Lord suspected that the star was a spectroscopic binary of long period. Giving his plates equal weight would bring the mean velocity about +16.4 km. per second.

From 1897 to 1904 there were 7 plates of the star secured at the Lick Observatory with practically no range in velocity shown. Campbell used the mean +15.5 km. per sec. as the velocity of the star, though he stated that Lord's contention of its spectroscopic character was neither proved nor disproved by his plates.

From 1904 to 1907 Küstner secured 4 plates with a single-prism spectrograph showing no appreciable range and giving a mean velocity of +14.8 km. per second.

In 1906, 1907 and 1908 there were 44 plates secured here as given in the table following. For reasons given in the column of remarks the numbers 606, 624, 1057 and 1254 have not been considered in the discussion. Of the remaining 40 plates, 16 were made with the three-prism universal spectroscope adapted for radial velocity work, 5 with the single-prism long-focus camera, and the remaining 19 with the regular three-prism long-focus camera arrangement. From our early plates it was felt that the variation was real and the period short, and a number of plates were made and measured—the labourious method of applying the Hartman-Cornu formula for each line being used—before it was suspected that some systematic error in the instrument might be the cause of the variations measured. This suspicion is probably the correct view for the universal and single-prism instruments, as in the early stages of the work they were not so perfect as later experience made them.

48-035-348

The range shown by the plates of the regular three-prism instrument is 11 km. but if three of these are omitted, in which only about half the usual number of lines are measured, the greatest range is about 3 km. It would appear only reasonable, then, to assume that if the star is a spectroscopic binary its range of variation is very small. On the assumption that its velocity is constant, the mean of either the universal plates or the single-prism plates is $+12\cdot3$ km. per sec., while for the three-prism it is $+14\cdot1$ km. per sec. Weighting the single, universal and three-prism arrangements as 1, 2 and 3 the mean velocity is $+13\cdot3$ km. per second.

MEASURES OF 7 PISCIUM

Plate	Inst.	Date	Vel.	96	Remarks
A-B-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-		1906			
103	U	Sept. 27-8 1907	+10.7	7	
554	64	Jan. 18-3	543 + 3.6	26	
562		" 21·	550 + 16.3	25	
568		4 22 4	604 + 10.7	28	
584		u 28.	526 + 10.0	28	
588		· 30·	552 + 5.1	23	
		Feb. 4.	$542 + 16 \cdot 3$	17	
595			521 + 6.5	. 29	
606		11 7.	529 +26.4	10	plate underexposed
		66 8.	542 +17.9	14	
608		" 21.	$487 + 5 \cdot 2$	18	
		. 21.	529 + 18-1	23	
617		" 22.	500 + 3.8	20	temperature change
624		" 25.	539 +21.4	24	
625		" 25	543 +18.6	24	
634		" 25	580 +18.5	8	
635		a 27	507 +10.9	25	
641		u 27	544 +16.0	15	
642		July 18	+ 0.6	7	
955,		0.111	494 +18.4	9	
1003		2 81 081	.750 + 8.0	17	
1036		40.00	·767 +12·9	17	
1041			-660 +19·i	18	
1051			781 +13.2	19	
1054		1	885 + 8.5	1.0	plate underexposed
1057			-734 +12-2	0.3	
1095			·799 +12·2	25	
1096		4 18	-670 +13.0	16	
1102			-647 +15-1		
1103			-644 +11-8		
1104			-697 +13-9	4.0	
1105	66		633 +13.2	19	
1107			0.543 +14.3		
1164			0.589 +12.3		
1165	4	-	1.577 +11.4		
1173		4000	1.483 +14.1		

MEASURES OF η PISCIUM—Concluded

Plate	Inst.	Date	Vel.	n	Remarks
205 211 254 796 869 982 902	11 1, c4 c5 c6	1908 Jan. 1.544 " 3.501 " 22.516 Aug. 19.840 Sept. 7.716 Nov. 21.688 Dec. 5.473 " 23.538	+13·9 +10·9 +8·5 +14·3 +12·8 +13·9 +22·4 +20·9	16 10 9 13 21 12 8 10	underexposed

o CETI

(1900, $\alpha = 2^{\rm h}$ 14^m·3, $\delta = -3^{\circ}$ 26', mag. var., type Md)

Four spectra of this well known variable star have been made since the extended series at the December 1906 maximum. Apart from the emission band at H_{β} , which was present at the 1906 maximum and is not seen at the time of these observations, the other emission and absorption bands seem to be similar to those of the earlier date. The measures of the sharp H_{γ} and H_{δ} emission are fairly reliable, those for the absorption lines only approximate. H_{β} emission seems to appear only at the brighter maxima.

		Absorption		Emission	
Plate	Date, G.M.T.	Vel.	Lines	Vel.	Lines
6786	0 0 00	+58	3 4	+48.7 $+45.1$ $+49.2$ $+45.3$	2 1 2 2

MEASURES OF OCETI

λ	6786	6834	8655	8659						
	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4535 · 965 4404 · 927 4395 · 286 4325 · 939 4308 · 081 4340 · 634 em 4101 · 890 em		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+36·4 1 +35·3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Weighted mean V. V. V. Curv.	+ 76·24 - 25·74 - 22 - 28	+ 79·67 - 21·39 - ·25 - ·28	+ 13·45 + ·17 - ·28	+ 59·40 + 10·81 + ·14 - ·28						
Radial Velocity Emission	+ 50·0 + 48·7	+ 57·8 + 45·1	+ 49.2	+ 70·1 + 45·3						

35 ARIETIS

(1900, α = 2h 37m·6, δ = +27° 17′, mag. 4·58, type B8)

No measures seem to have been published for this star. The lines of hydrogen and helium while fairly broad should give reasonable accuracy in the measures. Plate 3667 is underexposed, so that a variation in velocity cannot be said to be established.

Plate	Date, G.M.T.	Velocity	Lines
2708	1909, Aug. 2·837 Oct. 6·787	+17 +23	8 7
2858. 3650. 3667. 8717.	1910, Sept. 14 · 839 " 16 · 758 1019, Fab. 24 · 526	+14 +35	3 7

MEASURES OF 35 ARIETIS

	2708	2858	3650	3667	8717		
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wa	Vel. Wt
4861 - 527		+ 0.3 1	+ 1.0 1		+83-6 1		
4481 400	- 9-3 1				43.0 1		
4471-676	-17:6	+ 5.4 1	- 4.5	- 7-1	38-1 1		
4388-100	+ 6.7 1		+ 6-7	1 - 4.4 1 [4]	44-7		
4340-634	-21-2 1	+33-2 1	-20.0	+13-8 1	48-7		
4143 928	+ 7-2 1	+21-0 1	+20.0	3 900 1 1	58-9 4		
4101-890	- 6-7	-24-9 1	-13.7	+30-1 1	+20.0		
$4026 \cdot 352$	-19.3 $\frac{1}{2}$	0.0 1	-21.6 ½ -17.2 ⅓		120.0 4		
3933 - 825	-17-6 1	+ 8-4 1	-17:2				
•							
Weighted			0.07	+ 12-27	+ 47-16		
mean	- 11-80	+ 8.52	- 9:37 + 23:24	+ 12-27 + 22-66	- 27.91		
Va	+ 28-66	+ 15.20	+ 23-24	+ .11	20		
Vd	+ +18		28	28	28		
Curv.	28	- 120	-				
Radial		+ 23.4	+ 13.6	+ 34.8	+ 18-8		

(1900, $\alpha\,=\,2^{\rm h}$ 53°-7, $\delta\,=+\,51^{\rm o}$ 57′, mag. 5·42, type B5)

The star's spectrum consists of broad lines of hydrogen and traces of the magnesium λ 4481. The probable error of measurement is high, and the values given below may be as much as 10 km. in error. The H_{γ} line, however, is fairly uniform throughout its breadth and is thus fairly reliable, and judging by it alone there would seem to be good reason for considering the velocity of the star to be variable.

Plate	Date, G.M.T.	Number of lines	Velocity
8335	1917, Nov. 5-685	2	+11 -44
8347	1918, Oct. 21-649	4	+ 3 ± 0
8706	1010 Y 07 FEG	-	+4

MEASURES OF BOSS 678

	8335	8347	8668	8688	8706		
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
4861 · 527 4340 · 634 4101 · 890 3970 · 177	+ 9·8 1 + 4·6 1	-43·0 4 -53·3 \$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Weighted mean V ₄ V _d Cury.	+ 6.33 + 5.08 + .03 - 28	- 46·43 + 3·00 + ·14 - ·28	- 9·10 + 12·03 + ·11 - ·28	+ 8·80 - 8·58 - ·03 - ·28	+ 28·19 - 23·48 - ·09 - ·28	13464141144521 14444521 14444521	
Radial Velocity	+ 11.2	- 43.6	+ 2.8	- 0.1	+ 4.3	* * * * * * * * * * * * * *	

 $(1900, \alpha = 3^{\text{h}} \ 12^{\text{m}} \cdot 0, \delta = +49^{\circ} \ 43', \text{mag. } 5 \cdot 08, \text{ type B3})$

The hydrogen lines in the spectrum of this star are about 10 angstroms wide and thus there is considerable uncertainty in the measures. The lines $\lambda\,4471$ and $\lambda\,4026$ are the only ones seen of the helium series and they are very faint. It is not likely that the range shown in the measures represents a real variation in velocity.

Plate	Date, G.M.T.	Number of lines	Velocity
\$220	917, Nov. 4:787 " 7:779 918, Nov. 5:659 Dec. 9:694	6 4	- 6 -32 - 1 -16

MEASURES OF BOSS 744

	8331	8339	8678	8689				
λ	Vel. Wt	Vel. Wt	Vel. Wt	Vel. Wt	Vel. W	t. Vel.	Wt	Vel. W
4861 · 527 4471 · 676 4340 · 634 4101 · 890 4026 · 352 3970 · 177	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+22.3 -18.7 -23.8 -23.8 -23.8 -23.8 -23.8 -23.8 -23.8 -23.8	-39·3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
Weighted mean Va Va Curv.	- 13·09 + 7·55 - ·09 - ·28	- 38·11 + 6·25 - ·09 - ·28	- 8.00 + 7.28 + .09 28	- 8·12 - 7·88 - ·09 - ·28	2 + 1 + 2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	- 1		
Radial Velocity	- 5.9	- 32.2	- 0.9	- 16.4				1))+(0)>>

(1900,
$$\alpha \! = \! 3^{\rm h} \ 21^{\rm m} \! \cdot \! 7, \; \delta \! = \! +49^{\circ} \ 30', \; {\rm mag.} \; 5 \! \cdot \! 64, \; {\rm type } \; {\rm B5})$$

The hydrogen lines are from 10 to 15 angstroms broad and consequently the velocities obtained are only approximate. If the star is not a binary, the velocities should be about zero as it is one of the stars in the Taurus cluster. No results have hitherto been published.

Plate	Date, G.M.T.	Velocity	Lines
8357	. 1917, Nov. 14 · 661	+25	1 3
8694	1918, Dec. 26 · 564	+29	

BOSS 839 or 40 PERSEI

(1900,
$$\alpha = 3^{\rm h} \ 36^{\rm m} \cdot 0$$
, $\delta = +33^{\circ} \ 39'$, mag $5 \cdot 04$, type B2)

The measures on the 7 plates secured here are sufficiently reliable to show that this star has a variable radial velocity. A line of unknown origin, whose wave-length has been assumed as $4070 \cdot 118$, is quite sharp on some of the plates.

Plate	Date, G.M.T.	Velocit*	Lines
	1917, Nov. 7·663	+23.2	
8338	1918, Jan. 23 490	+23.7	6
8428	Dec. 18-719	+ 3.6	7
8693	" 26.668	8.8	6
8696	1919, Jan. 6.506	+33.7	4
8698	" 27.484	- 8.8	7
8705	Feb. 10-631	- 1.7	6
8711	100. 10 001		

MEASURES OF BOSS 839

	8338	8428	8693	8696	8698	8705	8711
λ	Vel. Wt.	Vel. Wt					
4861 · 527 4471 · 676 4388 · 100 4340 · 634 4143 · 928 4101 · 890 4070 · 118 4026 · 352 3933 · 825	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+20·2
Weighted mean V ₄ V ₄ Curv.	+ 16·57 + 7·05 - ·11 - ·28	÷ 50·04 - 26·11 + ·05 - ·28	+ 17:24 - 13:23 - :14 - :28	+ 8.36 - 16.74 12 28	+ 54·89 - 20·99 + ·10 - ·28	+ 18·40 - 26·92 + ·03 - ·28	+ 27·65 - 28·89 - ·20 - ·28
Radial Velocity	+ 23.2	+ 23.7	+ 3.6	- 8.8	+ 33.7	* 8.8	1.7

42 PERSEI

(1900, $\alpha = 3^{\rm h} \ 43^{\rm m} \cdot 2$, $\delta = +32^{\circ} \ 48'$, mag. $5 \cdot 10$, type A)

This star was announced a binary by Adams in Astrophysical Journal, XXXV, 174, from 4 plates in 1911. Our measures indicate that the period is short.

Plate	Date, G.M.T.	Velocity	Lines
	•		-
11	1914, Aug. 25 870	-44	7
59	Oct. 1·802 4 2·744	$-28 \\ +19$	6
68	Nov. 27-697	-50	

MEASURES OF 42 PERSEI

	6311 6459 6468		6468	65×2						
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4549 4534 4501 4481 4340 4233 4202 4143 4101 4063 4045 3933	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-49·6 \frac{1}{4} 46·0 \frac{1}{4} 54·4 \frac{1}{2} 43·3 \frac{3}{4} 47·2 \frac{1}{2} -66·6 \frac{1}{3}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-40·3						
Weighted mean V ₄ V ₄ Curv.	- 72·73 + 28·71 + ·11 - ·28	- 51·11 + 22·86 + ·07 - ·28	- 3·24 + 22·57 + ·14 - ·28	- 47·42 - 2·29 - ·02 - ·28						
Radial Velocity	- 44.2	- 28.5	÷ 10·2	- 50.0						

66716-21

1900, $\alpha = 3^{\text{h}} 48^{\text{m}} \cdot 7$, $\delta = \pm 47^{\circ} 35'$, mag. $5 \cdot 34$, type B5:

The helium λ 4471 and H_{γ} are the only measurable lines on our plates, both being very broad and ill-defined. The star belongs to the Taurus moving cluster and should have a velocity around zero.

	Plate	1	Date	Velocity 1 aa
\$348 \$363			1917, Nov. 12-62 26-65	7

BOSS 947 or 48 PERSEI

1900, $\alpha = 4^{\text{h}} \cdot 01^{\text{m}} \cdot 4$, $\delta = \pm 47^{\circ} \cdot 27'$, mag. $4 \cdot 03$, type B3.

This spectrum was described by Frost in Astrophysical Journal, XVIII, 389, 1903, as having bright hydrogen lines on broader absorption bands. H_{β} and H_{γ} were doubly bright, while H_{δ} only faintly visible. Adams and Lasby in Publications of the Astronomical Society of the Pacific, 23, 240, record H_{β} and H_{γ} as being bright, presumably single as there is no mention of components. Merrill in Lick Observatory Bulletin, 237, describes 5 plates made in 1912, in which the emission showed sometimes as double and sometimes as single on the absorption bands. He gives a velocity, $+7\cdot1$ km. per sec., for H_{β} emission on the plate of August 21st.

On the 5 plates secured here the emission never occurs in the double form. H_{β} is always present, while H_{γ} is absent on the third and fourth plates and very dim on the fifth plate. From measures made upon the emission lines, there seems no doubt of a real variation in velocity of the hydrogen envelope giving rise to them. Whether this can be explained through orbital motion or not cannot be stated, but the star is worthy of further investigation. The probable error for the absorption bands is so high that the velocities given, while approximate, are not to be considered as showing a variation. The absorption bands on plate 8716 are unusually faint.

Plate	Plate Date, G.M.T.		Fig. 1 ston	
		V doeity 1 Times	a Velocity 1 - Line	
* 6.6	jaja 154, 17.607		-30	

MEASURES OF BOSS 947

	- 136	8343	8387	8716	8718		
	vel. Wt.	Vel. Wt	Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
1471-676 1388-100 1143-928 1401-890 4026-352 3033-825 1861-527 cm 1340-634 cm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16·7; ½ -26·7;	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Word 1 1 me of V V v Curv.	= 10·20 - 11·08 - 04 28	+ 9·40 + ·13 - ·28	+ 2.86 - 10.36 + .13 28	+ 36·60 - 26·55 - ·18 - ·28	+ 28·95 - 26·92 - ·13 - ·28	· —	
Radial Velocity Emission	+ 21·2 + 5·1	- 10.8	- 7·6 + 19·0	+ 9·6 - 30·2	+ 1.6 - 10.3		

& ORIONIS

This star ($\alpha = 5^{\circ} 22^{\circ}$, $\delta = \pm 3^{\circ} 01'$) was announced a binary by Frost and Adams in 1903, and its orbit published by Plaskett in Astrophysical Journal, XXVIII 266, 1908. Some of the plates of this star and a number of those of vOrionis were measured by the writer, who noted cases where the K-line of calcium was discrepant and where lines appeared to be double. For the purposes of the papers on "H and K lines of Calcium" and "Secondary Disturbances" given before the Ottawa Section of the R.A.S.C. sometime about 1910, the writer remeasure I all the plates of these two stars where the K-line could be seen and where the lines were double. As these results were never published it has been thought well to give them here. In the table immediately following, the velocity of the system, ± 12.0 km. per sec., has been subtracted from the measured velocities so as to get the relative orbital motion from which is deduced the ratios of the masses given in the fifth column. The second column simply gives Plaskett's velocities with 12 km. subtracted from each. From the last two columns the mean ratio of the masses is 0.63.

VELOCITIES OF COMPONENT STARS

	Velo			
Plate	Primary	Secondary	Lines	mo m
· ·				
1158	-157.5	+222.9	4	.71
183	1 1 1 1 1	-186.7	6	-68
1208	1 1 12 13 C	$-242 \cdot 3$	4	- 5/
1209	1 196 A	$-229 \cdot 0$	1	- 59
238	100 5	+224 - 4	5	- 5t
271	1 107 0	-240.7	2	+ 53
304	1 120 0	-226.8	1	-57
1812	1 1 9 9 9	$-202 \cdot 5$	4	- 60
1317	1 1 1 4 4 0	-198-3	4	.7:
	1 1490 =	-180.8	5	-7
	0.1.0	$-168 \cdot 7$	3	- 5
1336	147.1	+245.5	4	· 60
1347 1395	147.0	+279.8	3	-5

The K-line seems to vary, though the range is less than that for the other lines. A check plate, No. 4852 taken Feb. 23·502, 1912, agrees in the case of the main lines with the curve within the limits of the probable error, and its value for K is added in the table following. To clear the fractions, the weights assigned at the time of measurement are multiplied by 4 in the table following, in which the velocities quoted are simply those as measured relative to the sun. The error of measurement is large, but it should be within 15 or 20 km

K-LINE VELOCITY

Plate	1	Velocity	Weight		Plate	Velocity	Weig
	-	_				-	
38	1	+82	2	-	1239	- 9	2
83	i	+14	1		1296	- 8	2
09		-25	2	ii.	1312	+ 4	2
14		+55	1		1317	+53	2
15	i	+55	2		1333	+33	4
20		+23	2		1347	-94	2
21		+81	2		1349	-65	1
33		+16	1		4852,	+12	4

CORIONIS

The orbit of this star ($\alpha=5^{\rm h}~30^{\rm m}$, $\delta=-5^{\circ}~59'$) was published by Plaskett in Astrophysical Journal, volume XXX, 373, 1909. On a fine-grained plate, No. 4847 taken Feb. 20·469, 1912, five lines belonging to the secondary component were measured and from these a ratio of the masses of 0·58 was obtained. Unlike ψ Orionis the K-line velocity seems constant, or at least of very small range. The weighted mean velocity for 30 plates, using the wave-length 3933·825, is $+30\cdot1$ km. per second, agreeing closely with that for the velocity of the system, $+21\cdot3$ km. per second. Here, as in ψ Orionis, the weights published are four times those given at measurement.

VELOCITY K-LINE

Plate	Velocity	Weight	Plate	Velocity	Weigh
nwe	+12.6	2	1162	+16.1	2
076	90.4	3	1170	23 · 2	4
077	40.41	3	1190	24 - 4	4
078	96.9	3	1194	35.6	2
112		1	1201	8.8 (3.	1
116		-	1207	4.00 (3)	1
119				612 7	4
120		2	1212	49 6	3
122	34.6	1	1213	077 19	7
123	36.0	4	1219	19.9	1 3
124	41.2	2	1263		
125	99.0	4	1266		
	0.1	1	1275		
126	0.0 43	2	1277	18-2	1
136	00.0	2	1278	38.4	1 2
143	+27.6	4	4847	1.99.0	1

30 CANIS MAJORIS

(1900, α = 7^h 14^m · 5, δ = - 24° 47′, mag. 4 · 40, type 0e5)

This star was announced a spectroscopic binary by Frost in a footnote in Astrophysical Journal, XXIII, page 265. Later Lee gave the velocities of five plates in Astrophysical Journal XXXIX, page 45. Four measures are also given by Campbell in Lick Observatory Bulletin, 199. The star would be a profitable and easy one to work up here but for its southern declination.

Plate	Date, G.M.T.	Velocity	Lines
8383	1917, Dec. 11·833	+32	2
	1918, Jan. 3·733	+71	2
	Feb. 20·604	+ 1	3

MEASURES OF 30 CANIS MAJORIS

λ	\$383 Vel. Wt	8408 Vel. Wt.	Vel. Wt. Vel
4861 · 527 4471 · 676 4340 · 634	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+28·6 1 15·4
$\begin{array}{c} \text{Weighted} \\ \text{mean} \\ V_a \\ V_d \\ \text{Curv.} \end{array}$	+ 20·00 + 11·96 - ·09 - ·28	+ 67:37 + 4:33 - 00 - :28	+ 13·07 - 12·22 - ·02 - ·28
Radial Velocity	+ 31.6	+ 71.4	+ 0.6

BOSS 2381

(1900, $\alpha=8^{\rm h}~46^{\rm m}\!\cdot\!6,~\delta=-6^{\circ}~49',$ mag. 5·60, type A2)

This star was announced as a spectroscopic binary by Adams in Publications of the Astronomical Society of the Pacific, XXVI, 261.

Our two measures follow:

	Plate	1	Date, G.M.T.	Velocity	Lines
7972 \$000			1917, Dec. 29-807 "1918, Jan. 16-773	+49 +33	9 4

MEASURES OF BOSS 2381

Vel. Wt.	Vel. Wt.	97.1									
		Vel.	Wt.	Vel.	Wt.	Vel.	∤Wt.	Vel.	Wt.	Vel.	Wi
+ 12 3 - 1	- 1-66 4										ŀ
30 () ()	21 6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 8-21 1										1
$10.8 \frac{1}{28.01}$,
00	01										
-28	28		-				-		~ ~ ·		
	25.5 1 30.0 1 13.9 1 16.8 1 12.2 1 40.4 3 10.8 1 + 28.0 1 + 32.04 + 17.06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

36 LYNCIS

(1900.
$$\alpha = 9^{\rm h}$$
 07° · 3, $\delta = +$ 43° 38′, mag. 5·30, type B8)

While no range is shown in our measures, Jordan at the Allegheny Observatory gets a range of 20 km. on 7 plates—from + 4 to + 24—so the star is probably a spectroscopic binary as the lines are narrow and well adapted for measurement.

Plate	Date, G.M.T	C. Velocity	Lines	Weight	
6939 6953 6978 6993 8511	May 10 4 14	·612 +19·5 ·577 +17·5 ·575 +15·2	6 3 9 6 4	4 2 5 4 2	

MEASURES OF 36 LYNCIS

	6540 (40	6953	6075	t ₃ 6101.}	8511					
λ	Vel Wi	Vel Wt	Vel Wi	Vel Wt	Vel Wr	Vel	\ t \ \	Cel	W t	
4572-156 1549-766 4481-160 1340-634 4338-084 4233-328 4131-047 1128-211 4401-890 .933-825	+31 6 1 38 5 4 50 6 1 42 0 4 14 7 1 +12 2 1	+47 9 ½ 41 2 ½ +50 4 ½	+ 63 1 2 41 4 4 30 0 4 38 0 1 55 3 4 52 5 4 46 6 4 + 36 8 2	+34 4	+45 6 1 26 4 1 43-6 1 +32 7 1					
Weighted mean Va V t Curv.	40 70 26 44 13 -28	+ 46 50 26 59 17 28	+43 80 25 80 - 17 - 28	+ 41 03 25 42 - 18 - 28	+ 37 73 - 26 58 - + 13 - + 28					
Radiał Velocity	+ 13 8	→ 19 5	17.5	t 15 2	+ 10.7					

ζLEONIS

(1900, α = 10^h 11^m·1, δ = + 23° 55′, mag. 3·65, type F)

This star was announced a binary by Campbell in *Lick Observatory Bulletin*, 199. Our measures follow:

Plute	Date, G.M.T.	Velocity	Lines
5325	1913, Jan. 27·734	-12·7	10
	" 28·722	-16·3	9
	Feb. 3·857	- 8·5	5

MEASURES OF | LEONIS

	5325	5331	5342						
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel.	Wt.	Vel.	Wt.
4395 · 286 4352 · '06 4340 · 634 4325 · 939 4271 · 760 4198 · 494 4143 · 928 4101 · 890 4063 · 756 4045 · 975 4005 · 597	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-36·4 ½ 11·6 ⅓ 24·8 ½ 29·3 ½ 0·8 ½ 25·0 ½ 36·2 ¼ -21 ⅓ ½	-3·7 ½ -11·3 ½ -30·4 ½ -20·0 ½ +3·7 ½						
Weighted mean Va Vd Curv.	- 22·11 + 9·64 + ·07 - ·28	- 25·24 + 9·13 + ·08 - ·28	- 14·12 + 6·09 - ·17 - ·28						
Radial Velocity	- 12.7	- 16.3	- 8.5						

-4/11/01/1/-

1900, α - 11° 55 - 7, δ - 3 - 7 - 10° 3 a.g. 1 57° (spc Δ3°)

The star was autounced a postrouscole linear to Albrecht in I e Otherwise Rolletin A, 175, then, three plate in 1505 greaty grange from <math>e 18 to e 21. In Astronomial Rolletin A, 175, then, three plate in 1505 greaty grands from e 18 to e 21. In Astronomial Journal vol XXXIX 46. Freighve, the remains of local plates made in 1506, p 1, and 1859 showing a variable from e 6 to e 27. Two plates were e ade here in 1507 and 1859 showing a variable from the Caret Veterior er's profit for 1911. Their velocities are slightly changed in the table halow to agree with the uncerent waveslengths used in the recent mere e 26. The dilution additional days connected all give quite negative velocities and it would appear that the trace when positive velocities are possible is very short relative to the valid appear that it, there when positive velocities are possible is very short relative to the valid open decrease, a constituent value when the vector would seem to be about 20 fairly high and ω around zero. The velocity of the system on our single-prisin plates. The measures follow.

	11 •	Pass GMT	\	1.11
- 3 (49 3)53		1010. Mar. 18 868 April 11 702 1017. Leb. 18 800	21 %	3 3 12
5075		War 1 77	15.8	13
er to f		·· 2 ×10 ··	26 1	4.6
\$1.36 \$1.36		April 3 00 × 550	1 1	6) 5) 54
\$145 \$147		· 10 64 · 10 7 · 12 7	.0.7	9
S152 S155			2 12 3	* * * * * * * * * * * * * * * * * * *
\$159 \$166		May 11.72	-	1

MIASTER OF REVIEWING

	. , 49		×1.16.1F	KU, S	NON'1	41111	\$1.55
	V.+ W	, , ,	1 11	Vil Wi	V.; W.	V-1 W.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
4584-018 1549-71 - 1534-1 -8 1515-508 1-01-147	.1 · . (5 2]	29.15	20.5	or 4 g	46 6 2 3 6 7 6 7 14 7 1	12 * 1 18 7 4 18 7 4	\$5 C }
1481 477 1395-155 1340 645 1325-698 1397-971 1290 0-3 1282-584	27.5	0 0 1	47 4	46 22 6 10 0	55 % () 50 7	17 %	37 7 1 22 0 1 21 1 1
4271+765 4236-000 4233+425 4227+107 4215-733 4198-677 4143+839		3.1 1	17 2 1 39 2 1 8 4 1 29 1 1	29 × 7 62 4 7 22 3 1 06 × 1	10 2 1 65 3 1 37 5 4	34 5 1 35 5 1	- 33 % ,
1071 865 1063 730 1045 940 1005 414			40 6 1 23 1 23 2 1	15 6 } 	-11 2 1	-	-
Weighted mean V. V. Curv	- 25 13 - 0 - 6 - 26 - 28	9-19 	.0 27 13 69 01 28	55 23 - 9 24 - 12 - 28	- 43 74 - 8 20 - 02 - 28	37 23 , 7-76 00 = 28	= 20 55 5 11 09 2 -28
Radial Velocity	_e; ()	21 8	16. 9	26 1	.35 %	. 29 8	- 26 1

MEASURES OF π 8 VIRGINIS—Concluded

λ	8136 8139		8143 8147		8152	8155	8159	
	Vel. Wt	Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. W	
1584-018		,		-11.5	-22.7		- 9.6	
1572 - 190	-21 1 3	$-11 \cdot 1$. $\frac{1}{4}$	-49.71 4					
1563 939	10-1 3		34-6 1	24.5	- 8.7	-27.5	+17.6	
1549+743 4481+477	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26-1 1	32.7	23.9 1	-10.2	33.9	-30.2	
4351 977	215 17 4			14.6		10.0	04 81	
4340 645	5.2 1	13-2	33.81 1	14.4 1	-15.0	10.6	$ \begin{array}{r} -24 \cdot 5 \\ -27 \cdot 0 \end{array} $	
4325 o98			21 - 2 1	31.6	- 7.8	29.2	+12.4	
4307 - 974			38.6		- 1.0 3	20.2		
4300 - 211	$52 \cdot 1 = \frac{1}{2}$					22.9		
4294 359		34.0 1	•			1		
4290+053 4282+584		94.0. 7			+10.6			
4246 - 996					- 5.21 1			
4236-000					100	-30.8	-16-1	
4233 - 425		18 2 4		10.6	-12.2		-10.1	
4227 - 107		38-4						
4215-733		31-4 1	23.9 1					
4101-898		21.4	-21.7	0.0	-37.9			
4071 · 865 4045 · 940	-26.9	-38.5 1		-18-1	-23.2			
Weigi I	00.00	- 24.84	- 32.20	- 15.82	- 13.10	- 24.74	- 12.5	
mean Va	- 26 67 - 8 36	- 24.84	- 11.69	- 14.43	- 16.90	- 17.35	- 17.7	
V a	+ .14	+ .14	+ .03	21	+ .09	1 - 16		
Curv.	28	25	- ·28	- ·28	28	28	,	
Radial	- 35 2	- 35 7	- 41 2	- 30.7	- 30.2	- 42.5	- 30	

16 COMÆ

(1900, α = 12^h 22^m ·0, δ = + 27° 22′, mag. 5 ·04, type A2)

The hydrogen lines and the calcium K are very strong in this spectrum, the magnesium $\lambda\,4481$ fairly strong, while numerous other metallic lines are faint and hard to measure. The results, which are the means of two independent measures, do not establish a variable velocity.

Plate	Date, G.1	М.Т.	Velocity	Lines	
6941	June	20 · 666 9 · 704 14 · 676 17 · 594	± 0 - 4 -13 - 4	11 11 14 15	

MEASURES OF 16 COMÆ

	6941	6974	6995	7062						
λ	Vel. Wt.	Vel. Wt.	Vel. W .	Vel. Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wi
1584 - 018				+15.71						
4572 - 190		+10.4								
4549.743	+ 2.1 1	+17.6	+ 2.0	+26.2		i ,				
4534 - 158				+34.1						1
4508 - 445				- 6.9				1 11		1
4481 - 477	+14 0	+19.2	+17.2	+31.8				1		
4415-345				+39.6					·	1
4404 - 861				+30.8			1			
4351 - 977	+43.0, 1									1.
4340 - 645	+26.0 1	+ 3-1 1	- 0.8	+34.3						
4325 - 698			+ 4.8	+30.3			1	1		
4307 - 974	+ 5.8, 1					1		1		
4250 - 586				+33.3		1 .				
4233 - 425	+32.5	+21.0	+25.6				1			
4227 - 107			-21.6							
1202 - 192		+28.1	+31.9							1
4198-677		+28.4 1	+13.8	: 3		,				
4143 - 839				- 4.5		1				1
4128-211	+36.5		+18.6			т.				1
4101-898	- 1.6	+ 5.6 1	+ 2.4 1	+40.0					1	, .
1071 - 865			+17.2	+25.9		ш				1.
4063 - 730	- 2.8	+18-1 1	+ 4.5	- 0.9						
4045-940	+26.1 1	+29.0	+ 9.0 1	1 00 1 1						
1005 - 414				$+20 \cdot 1$ 2						
3933 - 825	+10-6	- 3-8 1	- 4.0 1		_					
Weighted				1 00 00						
mean	+ 15.73	+ 17.89	+ 10.24	+ 22.96						
Va	- 15.36	- 21 · 28	- 22.48	-						
V _d	11	16	16							
Curv.	28	28	28	28						~
Radial				- 3.5						

12 CANUM VENATICORUM

(1900, $\alpha = 12^{\rm h} \ 51^{\rm m} \ 4$, $\delta = + 38^{\circ} \ 52'$, mag. 5·39, type Ap)

This is the fainter of the pair No. 6313 in Burnham's General Catalogue, whose distance apart of 20" seems to be constant. The stars have a common proper motion of 0" 257, and thus, if the components of the pair should differ appreciably in their radial velocities, it would suggest a binary character for at least one of them. For the brighter star Campbell quotes a velocity of -1.6 km, per sec. in Lick Observatory Bulletin, 211, and Hnatek in A.N., 197, 185, gives five velocities, the mean of which is ± 2.0 km, per sec. Thus, a velocity in the neighbourhood of ± 0 km, per sec. may be accepted for this star. For the fainter star, here dealt with, Ludendorff gives a velocity of -0.3 km, per sec., being the mean of 12 accordant plates and agreeing well with the result for the main star. Our results, however, reveal a variable velocity, as either the first or second plate, both of which have quite sharp and well measurable lines, gives a velocity too divergent from the other measures to consider it as constant.

Plate	Date, G.M.T.	Velocity	Lines	
7028	 1915, May 30-613 July 15-616 1917, Feb. 27-884 Mar. 1-812	-21.0 -3.6	16 14 10 12	

MEASURES OF 12 CANUM VENATICORUM (fainter

	7028	7104	8079	8086						
λ	Vel Wt	Vel Wt	Vel Wt.	Vel Wt	Vel.	Wt	Vel.	Wt.	Vel.	Wt.
		-				_				
4584 - 018			+ 5.8 1	-18.1 $\frac{1}{4}$ -11.3 $\frac{1}{2}$						
1572 - 156	+ 29 - 3	-2.0						1		
4563 · 939	+ 29 - 21 1		-14 4 3							
4558 - 827	+ 8.0 3.1		-10.6	-20.5 1						
4549 - 766	+ 10 -7 →	- 6.5	11.5	20 11						
4534 - 139	1		1 1 0 1							
4481 - 400			1 1 1 2							
1168 - 663	+21-21-1	$+15 \cdot 1 \frac{1}{2}$								
4415.301	- 8.0	+75 1	-11.8	-15-9 1						
1404 - 927	+ 9.7 1		-11.0 3						ļ	
4395 - 286	+ 4.0 1		$=16\cdot6$ $=\frac{1}{2}$							
4383 - 720		- 9.6	-10.0 2	÷26·4 ½						,
4352 - 006				+ 9.7						
4340 - 634		- 7.5 1	-19.6	= 8 0 1						
4325 - 939	+ 7.5 1	- 3.6	-10 0 3	-16.5 $\frac{1}{2}$					1	
4308-081		-10-8 1								1
4294 - 301		-10-55 1		-13-2 1					1	
4289-915	+ 10.0 1	+ 7.3		-21.8 }						
4271 - 760	-10.6 1	7 . 0								
4260 - 640	+ 1.3 1	+18.6 1								
4250 - 616	T 1.01 3	- 8.8 1		-16.5 1						
4236 · 107 4233 · 328	+ 6.2 1	+ 1.2 1		+13.5 1						
4215 - 668	7 0.51 3	11 -	-11.9 1							
1202-198	+ 1.1 1					11				
4143 - 928	1 2 2 1 4	- 9.4 1	- 4.5 1							
4045 975	+ 9.5									
		Mar vales represented		***************************************						
Weighted				10.51						
menn	7.84	= 0.95	9.11	12 51						
V.	- 21.65	19.52	1 5 92	02						
∇a	(99)	22	= -11	-28						
Curv.	28	28	28	2.1						
					*==	-	-			
Radial				. 5.0						
Velocity	- 14.8	21.0	- 3.6	7.0						

7 93 VIRGINIS

 $(1900, \alpha = 13^{h} 56^{m} \cdot 6, \delta = +2^{\circ} 02', \text{ mag. } 4 \cdot 34, \text{ type A2})$

The spectrum of this star consists of broad hydrogen lines and calcium K, while hazy ill-defined λ 4481 and λ 4549 are also seen. Occasionally traces of other metallic lines appear, but the measures are confined to the ones above mentioned. While the range of 46 km. obtained from the measures might suggest a real variation in the radial velocity, the writer is inclined to ascribe the greatest portion of it at least to errors of measurement. Treating it as of constant velocity, we get a value -2 km. per sec. Campbell in L. O. B., 211, uses the value -10: in his statistical treatment of the velocities of A-type stars.

Plate		Date, G.M.T.		Velocity		Lines	
342		21.88		- 9	5		
382			Mar.	4.86		+18	3
389			44	9.81		+10	3
399			64	16.83	ĺ	- 3	3
510			April	$22 \cdot 82$		-12	3
			May	18-61		-26	3
570			June	$3 \cdot 65$	ì	-15	3
2417		1909.	Mar.	22.82		- 1	4
453			44	31.80		- 1	2
2502			April	19.84		+21	. 2
2512			66	23.77		+ 2	3
2532			66	28.80		-20	2

MEASURES OF τ VIRGINIS

λ	1342	1382	1389	1399	1510	1535	1570
	Vel. Wt.	Vel. Wt.	Vel. [Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
4861 · 527 4549 · 766					-10.4		-13.4
1481 · 400 1340 · 634 1101 · 890	$\begin{array}{c cccc} -49 \cdot 8 & \frac{1}{4} \\ 40 \cdot 4 & \frac{1}{2} \\ 28 \cdot 8 & \frac{1}{2} \end{array}$	+17.3 1 -12.1 1 +0.9 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-22·3 1 + 4·5 1	$ \begin{array}{c cccc} -16 \cdot 0 & \frac{1}{2} \\ 13 \cdot 4 & \frac{1}{4} \end{array} $	+ 5.4 1
$3970 \cdot 177$ $3933 \cdot 825$	13·6 1 -43·4 1			-20.2 1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 27 · 0 - 4
Weighted mean Va Vd Curv.	- 32·34 + 23·96 - ·04 - ·28	- 1·51 + 19·89 - ·04 - ·28	- 8·74 + 17·97 + ·04 - ·28	- 18·00 + 15·02 - ·04 - ·28	- 9·40 - 1·90 - ·20 - ·28	- 19·28 - 6·73 + ·04 - ·28	+ 6·10 - 20·61 - ·12 - ·28
Radial Velocity	- 8.7	+ 18.1	+ 10.0	- 3.3	- 11.8	- 26.2	- 14.9

MEASURES OF τ VIRGINIS—Concluded

	2417 2453 250		2502	2512	2532		
λ	Vel. Wt.	Vel Wt.	Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
4861 · 527 4549 · 766 4481 · 400 4340 · 634 4101 · 890	- 6·6 1 1 - 22·6 1 - 0·6 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+24·3 ½ +21·1 ¼	+16·7	-19·7 1 +11·2 1		
Weigh No. Va. Va. Curv.	- 12·89 + 12·45 - ·04 - ·28	- 9·00 + 8·23 - ·08 - ·28	+ 22·74 - 1·09 - ·22 - ·28	+ 5·42 - 3·05 - ·10 - ·28	- 13·52 - 5·49 - ·23 - ·28		
Radial Velocity	- 0.8	- 1.1	+ 21.2	+ 2.0	- 19.5		

33 BOOTIS

(1900, $\alpha = 14^{\rm h} 35^{\rm m} \cdot 1$, $\delta = +44^{\circ} 50'$, mag. 5·39, type A)

This star was announced a spectroscopic binary by Lee, in Astrophysical Journal, XXXIX, page 41, from three plates giving a range of 36 km. On our plates the lines do not seem to be sufficiently dependable to attempt its orbit.

Plate	Date, G.M.T.	Velocity	Lines
6927	1915, April 14-742 1917, May 30-681	+ 9	4

MEASURES OF 33 BOOTIS

,	6927	8187		
	Vel. Wr.	Vel. Wt. Vel. , Wt. Vel	Vel. Wt.	Vel, Wt. Vel. Wt.
4549+743 4481+477 4340+645 3933+825	$\begin{array}{c ccccc} -13 \cdot 2 & \frac{1}{2} \\ +15 \cdot 7 & \frac{1}{2} \\ +23 \cdot 7 & \frac{1}{2} \\ +22 \cdot 0 & \frac{1}{2} \end{array}$	- 0.7		
Weighted preen V V Curv	+ 12 05 2 05 - 02 28	0 70 18 71 -08 -28		
Radial Velocij		11 \		

10 SERPENTIS

(1900, $\alpha = 15^{\rm h}~23^{\rm m}\cdot 6$, $\delta = +~2^{\circ}~12'$, mag. $5\cdot 12$, type A5)

The lines in this spectrum are very diffuse and ill-defined. Plate 7728 is much underexposed, so that the star's variable velocity is not established by these measures.

Plate	Date, G.M.T.	Velocity	n	Weight
7030	1915, May 30·709 July 1·551 " 9·546 1916, " 13·545	-30 -35	7 7 10 5	2 2 3 2

MEASURES OF 10 SERPENTIS

,	7030	7082	7091	7728						
λ	Vel Wr	Vel. Wt	Vel Wt	Vel Wt	Vel	Wt	Vel.	Wt	Vel	W t
4584 · 191	-			+29.7						
4549 - 766	-13.0	-32.6	$-12 \cdot 2 \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$	-11.6						
4481 - 400	-17.0	-1.8 $\frac{1}{4}$	-19·2 1	+49.9						
4468 663	- 0.1 4			,						
4352.006		+ 1.3	+ 8-7 1						, .	
4340 - 634	$\begin{array}{c cccc} + 1 \cdot 6 & \frac{1}{4} \\ -19 \cdot 4 & \frac{1}{4} \end{array}$	$ \begin{array}{c cccc} -10 \cdot 0 & \frac{1}{4} \\ -12 \cdot 1 & \frac{1}{4} \end{array} $	-20.6	- 1.1						
4325 · 939 4308 · 081	-19.4	-12.1	+17.4	1.4						
4289 - 915			- 0.8							
4233 - 328	-18-4 1	-11-0 1	-17.9							
4227-010	-28.1			+21.8 4						
4198 - 494			+1.2 -1							
4143-928			$-22 \cdot 2 \frac{1}{4}$			4				
4045 · 975		+ 5.5 1	-43.3 4							t
Weighted										
mean	- 13.47	- 8.66	10.89	+ 21.20						
V a	- 9.42	- 21.34	- 23 48	- 24·55 - ·09						
V_d	09	04	- ·06 - ·28	09	1					
Curv.	28	28	28	20						
Radial Velocity	- 23.3	- 30.3	- 34.7	- 3.7						

12 CORONÆ BOREALIS

(1900, $\alpha = 15^{\text{h}} 52^{\text{m}} \cdot 1$, $\delta = +38^{\circ} 14'$, mag. $5 \cdot 47$, type A)

The hydrogen lines in this star are fairly well defined, the other lines are more or less diffuse.

Plate	Date, G.	м.Т.	Velocity	Lines	Weight
6982	- 64	10 · 810 14 · 740 31 · 700	-13·9 -13·9 -13·0	10 14 10	4 4 6

MEASURES OF 12 CORONÆ BOREALIS

λ	6982	6996	7036 Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
	Vel. +Wt.	Vel. Wt.	vei. wt.	Ven W.			
4549 · 766 4481 · 400 4395 · 286	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-15·6 1 - 9·1 1	-31·0 1 + 5·7 1	. (.			
4352 · 006 4340 · 634 4325 · 939 4289 · 915	$ \begin{array}{c cccc} -8.8 & \frac{1}{4} \\ -7.8 & \frac{1}{2} \\ -20.9 & \frac{1}{4} \\ -5.2 & \frac{1}{4} \end{array} $	$\begin{array}{c ccccc} + & 1 \cdot 1 & \frac{1}{3} \\ - & 4 \cdot 6 & \frac{1}{4} \\ - & 7 \cdot 2 & \frac{1}{4} \end{array}$	$\begin{array}{c c} +11 \cdot 0 & 1 \\ -16 \cdot 6 & \frac{1}{2} \\ +40 \cdot 0 & \frac{1}{2} \end{array}$				
4271 · 760 4233 · 328 4227 · 010 4198 · 494	-13.2	$\begin{array}{c ccccc} + & 8 \cdot 7 & \frac{1}{4} \\ + & 6 \cdot 3 & \frac{1}{4} \\ - & 8 \cdot 8 & \frac{1}{4} \\ - & 14 \cdot 3 & \frac{1}{2} \\ - & 23 \cdot 4 & \frac{3}{4} \end{array}$	-30·3 1				
4143 · 928 4101 · 890 4077 · 885 4071 · 901	-16.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
4063 · 756 4045 · 975 4005 · 355	-18:0 3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+11.4 ½				
Weighted mean V, V, Curv.	- 11·44 - 2 07 - ·11 - ·28	- 10·42 - 3·15 - · 02 - · 28	- 5·17 - 7·53 - ·02 - ·28				
Radial Velocity	- 13.9	- 13.9	- 13 0	,			

21 OPHIUCHI

(1900, $\alpha = 16^{\rm h} 46^{\rm m} \cdot 4$, $\delta = + 1^{\circ} 23'$, mag. $5 \cdot 47$, type A)

The lines $\lambda\,4549$ and $\lambda\,4481$ are fairly good lines in this spectrum. Plate 7009 is underexposed.

Plate !	Dat	e, G.M	1.T.	Wildeline -	Velocity	Lines	i	Weight
B985	1915,	May	11.777	ı	-27	4		2
7009		66	$23\cdot 765$		-25	3	i	1
7037		68	31.773	}	-33	4		1
7063		June	17 - 645	1	-32 - 1	В	-	3

MEASURES OF 21 OPHIUCHI

	6985	7009	7037	7063				
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel.	Wt. Vel.	Wt.
4584 · 191 4549 · 766 4481 · 400 4340 · 634 4325 · 939 4308 · 081 4233 · 328 4045 · 975	-37·1 \(\frac{1}{4} \) 40·7 \(\frac{1}{2} \) 33·8 \(\frac{1}{4} \) -22·8 \(\frac{1}{4} \)	-51·2 \\ 36·0 \\\ \\ 2 - 9·4 \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	-43·7 \\ 31·8 \\ 31·7 \\ \\ 29·4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	-29·0 ½ 12·9 ¾ 17·9 ¼ 23·2 ¼ 22·5 ¼ -37·7 ¾				
Weighted mean V _a V _d Curv.	- 36·30 + 9·38 ·00 - ·28	- 28·40 + 4·05 - ·04 - ·28	- 32·64 + 0·40 - ·10 - ·28	- 24.60 - 7.18 + .07 28				
Radial Velocity	- 27.2	- 24.7	- 32.6	- 32.0				

101 HERCULIS

1900, $\alpha = 18^{\circ} .04 - 6$, $\delta = -20 - 01$ ', mag. 5-24, type $\lambda 2 =$

The lines in this spectrum are excellent for measurement. No variation is indicated by the measures which follow.

	Pret	Date, G.M.T.	Velociv	Line	Walafit
		1915, May 9-812	16, 6,	[1)	10
£31+4 £3		1 1 7 701	'1 \	12	12
6 3 1 1 1 E		0 20 711	21 ,	15	1.2
7024 7075		July 25 642		17	15

All ASURES OF THE RULLS

						1	
	1						
	6976	651411	7021	7075			
,							
				Vol. : Wt	\.\ \\ \\ \\ \\ \\ \\ \	V(1 W)	1// 1//
	1.1 1/1	Vel. W1	Vel. W	(1)			
1549 - 746	-36-2: 1	-33.7[1	.0.9 1	6-6-1			
4534 - 139				28-1 2		i	
1481 - 464	20-8 1	40-21-1	.14 - 4 1	16.91			
4415 333			24-0 1	$\frac{7 \times 3}{22 \cdot 9}$			
4404 557				10.1, 1			
1395 147				S S 1			r
4351 991	45.0 431 9	32 - 21 1		·			
4340 - 667	36 · 8 1 57 · 0 1	52-7, 1	38.7, 3	30-0-1			
1325 - 707	37.0 1	4700 6, 4	16.7	31.5.1			
4307 - 980 4290 - 070			11 0 }	22.5 1			
1271 - 645			31-31-1	21.4 1			
4250 - 685				28 0 1			
4235 0			25 7 1	15 to 1			
42.00 421	28-3: 1	24 - 7 - 1	32 · 0r 1	10 () 1			
1227 124			31.31 \$				
4202 278			37 5 }				
1198 719	24.3 1	39-4' 1	24-61 1	7.0 1			
1143 839	26.0 l	32.8. 1					
4101 890	35.9 1	33.0 1					
4077 862 4071 861	100 to 1	35.0		23.5 1			
1063-706		30.5 1	19.3: 1				
1045 - 929	18-0 1	37.7, 1	26.0 1	13 8 1			
1005-402	-18-6: 1	-29-2-1	- 26 - 6 - 1				
			-				
Weighted				15 117			
no en	- 31.09	- 35.31	29 81	0.60			
V.a	+ 14.82	+ 13.73	1 11	11			
V.a	01	+ ·10	25	25			
Curv.	28	25					
Radial							
Velocity	16-6	= 21.8	21 3	19.7		1	

1900, $\alpha = 18^{\rm h} 22^{\rm m} \cdot 1$, $\delta = \pm 29^{\circ} 46'$, mag. 5·71, type A)

While the two plates secured are not sufficiently exposed they show the stellar lineto be sharp and very suitable for measurement. The star has been announced as a binary by Adams.

	Dete, G.M.T	Velocity	1.00
1917, Sept. 24-551		1 -7:6	1 10 6

MEASURES OF BOSS 466+

λ	N305	8310										
	Vel (Wt.	Vel. Wt	Vel.	Wt.	Vel.] W t	Vel.	1 Wt.	Vel.	₁ W t.	Vel.	ł Wt.
1584 - 018	+ 4.0 4											
4572 - 190	23.0 1											10
1549 - 748	17.8 1	+ 8.7										.0
4534 · 158 4481 · 477	1.3:1	+ 4.4' 1										
4325-698	10.01 l	+16-11 1										1
1236 - 000	0.21 1	4. 443. 11. 5										1
1233 - 425	21.2							1 1				
1143 - 839	11.5	+11.5 1						- 1				
1071 · S65	14 - 4 4											
1045-940	+10.9 1	+14-4 4										
Weighted											^ ^ ^	
mean	+ 10.60	+ 8.43										
V_a	- 17.74	- 17.80										
V_{d}	14	15										
Curv.	→ ·28	28										
			- +						-			
Radial												
Velocity	- 7.6	- 9.8										

ADDITIONAL OBSERVATIONS OF 50 DRACONIS

The orbit of this star was published by the writer in the *Dominion Observatory Publications*, volume II, page 423, and therein it was indicated that further observations would be made to improve the value of the period which was determined solely from one season's observations.

To the 32 plates obtained in * .14 were added eight in 1915 and twelve in 1916, and from these 52 plates a solut ... was made which changed the value of the period from 4·120 days to 4·118 days and made small changes in the other elements. Eight plates have been obtained at odd times since then and these would indicate an even smaller value for the period, namely 4·1175, which is thus given as the best value from all the observations.

With the exception of T, the time of periastron passage, which was adjusted to conform to the revised period, the other elements from the solution of the 52 plates have been retained and are as follows

P = 4.1175 days $e = .012 \pm .009$ $K_1 = 79.12 \text{ km.} \pm 0.97 \text{ km.}$ $K_2 = 83.90 \text{ km.} \pm 0.97 \text{ km.}$ $\gamma = -8.79 \text{ km.} \pm 0.49 \text{ km.}$ $\omega_1 = 107^{\circ} \cdot 6 \pm 8^{\circ} \cdot 9$ $\omega_2 = 287^{\circ} \cdot 6 \pm 8^{\circ} \cdot 9$ $T = \text{J. D. } 2.420.293 \cdot 519 \pm .102$ $a_1 \sin i = 4.480.000 \text{ km.}$ $a_2 \sin i = 4.750.600 \text{ km.}$ $m_1 \sin^3 i = .95$

 $m_0 \sin^3 i = -90$

The probable error of a plate is \pm 4.6 km, per sec, for component I, and \pm 4.8 km, per sec, for component II. The table of measures following is a continuation of the table on page 123 of the volume mentioned above, but the phases there given, if used, should be revised to suit the new P and T.

ADDITIONAL MEASURES OF 50 DRACONIS

							C	OH	1 2 1 2 1	[}(*])	t I				€'	6123	1]10]	nen	t 1	1
l'Int.	Olisit-	Dat	1.	Julian Date	111.1		•	R	Ť		i		Ħ						f	-
						16	11.8	I	1	Vel		()	C	Ħ	11 1		1	1		0 €
		191	-					Ή												
7124	(,	July	26	2,420,705,770	501		3	١,		6/1	4.		3 (1		1	ľ				45 -
7133	ìı		1943	705 721	3 452								0.3		.;			59		6 5
7144	H	Ang.	9	719 682	2 061					-0 0 N			Ua	19	()			(11)	- 6	-1 ,
7163)	110000	- > 5	733 611	3 639		_						9 2	.,	2			444		- 1 -
7179	,		27	737 632	3 541	13							1.7							+ 1 (
7272	,	Sept.	21	762 563	3 766	-				13:3			8.4	-		ŀ		.))	1	1 1 1
7282	ii	14.	22	703 553	(5, 51)		3					A	1) 4		3		1	- 1	•)	+11
7290	11		27	765 610	1 579		ī						5 0		1					
1 4 707	11	191		1111 11111	1 -74 7	_				. 10.7	2.8		20	div.				~ ~	0=	• 1
7665	н	May	21	2 421 008 625	2 779		72	1	al.	5063		1. 1	3.3		.)			ECMS	po.	1.1
7671	,	14	1,	010 610	616		2						4-3	1						1 7 1
7674	,	4.6		012 691	2 7.30		ī						5.6	- 5						+ 2 1
7682	ii	June	1	(50)	2 569	-	6						1.0	,	1					+ 9 (
7720	11	July	6		156	- 6	-						6.3	3						+ 15 7
7723	ii	910	8	(1	2 543			F.I	1			,	4-3		3					.,
7726	11	**	9	054 (78	3 - 6.39		i						2-9	,	1.2			5363	()	13 .
7749	H	6.6	21	066 763	3 272	,	5						2.1		õ			7%		F 3 7
7762	11	90	26	071-612	1 003		6		de		. 63				47			8 3	(3	1 13 6
776%	H	Aug.	1	077 760	1 916	11		i			-									
7755	H	44	1.5	091 703	5 107	-			6-	1565				-	3			61.5)	- 1:3
7788	H	60	16	002 573	-259		6						5.0		6					+ 8-7
		191						а		6727	.,		., .,	1	',	н		3.72	**	1
8210	11	June	27	407 691	2 447	- 9	1.	Zil.	+	58	. 13	-	5 - 4	33	2		_	6.1	.)	+ 9.4
8214	11	July	2	412 661	3 300	1	1	1	-				ti ti	1)	-					1 1 (
8279	11	Sept.	3	475 - 603	-362	7.	5			64				_						d- 0-3
8301	11	1	15	190 570	2 976		5	i					4 - 5		4					- 1 :
8307	H	10	24	496 698	- 569	.)	2	1					2.2	2						- 15-6
		191:				3	П	i			-		_				1	37.7		417
5654	H	Sept.	24	861 650	3 481	3	2	1	+	39	ć	_	0 3	•)	1	.)	_	51	, <u>, , , , , , , , , , , , , , , , , , </u>	+ 5.4
8658	11	110	30	867 640	1 - 236	3	2	1					4.0		2	1				-12.7
	i	191	9								,					,		847	1	
\$725	H	Mar.	13	2,422,031,862	-758	1	1	ī	-	103	- 14	1	5.5	1	1		+	61	3	-13-5

 $^{^{\}bullet}$ C = Cannon; H = Harper; Y = Young

MEASURES OF 50 DRACONIS (primary

,	7121 	7133 Vel Wt	7144 Vel. Wt	7163 Vel. Wt.	7179 Vel. W(7272 A.1 W.	7282
1549 1481 4.340 1308 1250 11 c - 1101 1077 1063 1015	59 6 2 62:5 4 56:5 1 70 5	- 15-9' 2	15 -12 -24·6		+18·2 + +21·0 .	25 7 1 20 7 21 9 4	91·2
W = 220 A TO THE STATE OF THE	\$2 \ 1] \$7 07 \$ 3 \ 57 \$ 00 = 20	+ 40·30 + 4·02 - ·05 - 25 + 44·0	$ \begin{array}{c cccc} -15 \cdot 8 & 1 \\ -12 \cdot 52 \\ + 4 \cdot 38 \\ - 05 \\ - 28 \\ - 8 \cdot 5 \end{array} $	+ 41·03 + 41·03 + 4·83 - 03 - 28 + 45·6	+ 20·30 + 4·93 - ·05 - ·28 + 24·9	20, 80 • 1.72 = 03 • 28 • 28	\$\ 20 \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

MEASURES OF 50 DRACONIS (primary)+($m^{\pm}r^{\pm}r^{\pm}t^{\pm}$

,	7290 Vel. Wt.	7665 Vel. Wt.	7071 Vel. Wt.	7074 Vel. Wt.	7682 Vel. Wt.	7720 Vel. Wt.	7723 Vel. Wt
1549 1520 181 1340 1271 4260 4227 1143 4101 1077 1045 2003	-61-Si 18-3	+71·1 ½ 116·1 ¼	-111·2 ½ 79·6 ; -86·2 ¼	+78-6 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} -72 \cdot 7 & \frac{3}{2} \\ 62 \cdot 8 & \frac{1}{2} \\ 50 \cdot 3 & \frac{1}{4} \\ 79 \cdot 7 & \frac{1}{4} \end{array} $	+61·8 1 +49·1 1
Weighted mean V. V. V. Curv. Radial Velocity	- 55·05 + 4·50 - ·06 - ·28	+ 81·33 - 0·70 + ·12 - ·28 - + 80·5	- 97·00 - 9·53 + ·08 - ·28 97·7	+ 71·00 - 0·36 + ·06 - ·28 ·	+ 71·57 - 0·03 + ·06 - ·28 + 71·3	- 68 50 + 2·70 + ·05 - ·28	+ 56 95 + 2·81 + ·02 - ·28 + 59·5

MEASURES OF 50 DRACONIS (primary)—Continued

	7726	7749	7762	7769	7785	7788	8210
λ	Vel. Wt.	vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt	Vel. W1.
	~-				~		
4584							
4563		+61.7		+ 0.5			
4549			+17-1	-24.6	1	-58-8	+58.0 1
4481		76-1	+ 2.9	19 · 4 1 1 1 1 1 1 1 1 1		- 00 0 2	, 000 0 1
1468				+ 1.2 3		56.91 1	
1415				- 9.5 1		00 0	
4352		22 4 3		-12.5		64.9	
4340		55 4		-12.0		77-4	
1325			+ 4.0 1	+ 1.2			
4308 4294			1 0 2	-11.7			
4294				+ 8.6			
4271			= 9.2 1		' '	54.9° $\frac{3}{2}$	
4236			+ 8.6 1	$-21 \cdot 1 = \frac{1}{2}$			
4233		73.2 1	+20.9 1	- 1.0	+29.4 1	47 4 1	
4215			-16.6				
4143		63 - 5 4					
4077			+11.8 1	-10.7			
4063				+ 1.0 }	22.7	67.7	
4045		45.2			21.8 }	71.9	11
4005					52 2 1		1.00.0
3933	+25.2 1	+61.2			+32·3	-80.0	+53.3
eighted							
mean	+ 25.20	+ 59-44	+ 2.22	- 8-48	+ 31.68	- 64.03	+ 56.42
V _a	+ 2.91	+ 3.65	+ 3.90	+ 4.19	+ 4.68	+ 4.71	+ 2.04
V_d	- 04	05	+ .03		05	+ .02	+ .03
Curv.	28	28	28	28	28	→ ·28	- ⋅28
adial							
Velocity	+ 27.8	+ 62.8	+ 5.9	- 4.5	+ 36.0	- 59.6	+ 58-2

MEASURES OF 50 DRACONIS (primary)—Continued

	8214	8279	8301	8307	8654	8658	8725
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
1549							632.43
1481	+46.7	66 - 41 - 1	+64·9 1 78·6 1	- 67.6 1	+31.2	72-1	-98-2 3
4415 4340		68-8 1			12.51 1		
4143			64.0			1	
4101		74.2	73.2				
4077		58-1 1					
4045		69 - 2 1				B O OI 1	
3933		-75·2 ½	+16.3		+59-2	- 78-2 1	
Veighted							
mean	+ 46.70	- 69.45	+ 69.32	89-44	+ 34.88	80·96	98-20
V_a	+ 2.40	+ 4.93	+ 4.78	+ 4.62	+ 4.84	+ 4.43	
V_d	+ .03	02	04	08	+ .07	07	+ .09
Curv.	- ·28	- ·28	28	28	- ·28	- ·28	28
Radial							- 103 · 3

MESSURES OF 50 DRACONS (conday) Consult

	1		1			1	
	71.11	7121	71.13	73163	7179	7242	i = 11111
,	V-1 Wi	1., 11.	1.1 1/1) Wr	Vel Wit	Vel Wr	V-1 Wit
1549 1534				-51.2 1		+70.0 4	
1340 4308 1271			-59·3 1			82-4 4	
1143 1101 1077 1063	+67·5; }	11.14		60 3 1	-69.0	84.3 4	
1045	44-4 1	47.0 1	67 - 9, - 5		-57.0	1	+24.3 4
.,623	+59-0 11	4 58-3, 11	-61-8, 1	-54-5- 1	,	+78.8 12	+11.6 }
Ny ahita 1 Taona V V	· · · · · · · · · · · · · · · · · · ·	; 56 54 ; 187 (m)	+ 63.36 + 4.62 - 05 - 28	51 15 1 181 01 28	1 0 00 1 9.4 05 28	4 75 54 t 4 60 05	+ 18 00 + 4 50 = 06 28
			-				
R . hal Velocity	+ 57.0	+ 60.0	- 59.7	- 49.8	- 55 1	. 88.2	+ 22-2

MEASURES OF 50 DRACONIS (secondary)—Continued

	7665	7671	7674	7682	7720	7723	7726
λ	Vel Wi	Vel Wt	Vel Wt	Vel Wt	Vel. \\ t	Vel Wt	Vel Wt.
4549				-64-4	+51.7	-93.2	
4520 4481 4340	117-0 1	+85.0 }	- 78·6 ½	62 · 9 4	74.9 1	84-6 1	
4325 4308 4271	84-2 1		91·3 ½ 106·0 ¼			71-8 4	
4260 4233 4227		95·0 4 73·6 1	80-2 1	81.8 1			
4143 4077 4045	103.8 1	+63.3 1		90·3 4 83·5 4 51·9 4		-83.0 4	
3933	- 94.3 1		- 54.7	-77.8	+91.2		-39.2
Veighted							
mean V.	- 99·80 - 0·70	+ 80·40 - 0·53	- 83·60 - 0·36	- 69·73 - 0·03	+ 72·60 + 2·70	- 83·15 + 2·84	+ 39·20 + 2·91
V _d Curv.	+ ·12 - ·28	+ ·08 ·28	+ ·06 - ·28	+ ·06 ·28	+ ·05 - ·28	+ ·02 - ·28	- ·04 - ·28
Radial Velocity	- 100 · 7	+ 79.7	- 84.2	- 70.0	+ 75.1	- 80.6	- 36.6

 ${\bf MEASURES~Ol~50~DRACONIS~(secondary)} - Continued$

	7749	77%	7744	8210	8214	8279	8301
, -			-	-			
	Vel Wt	Vid Wt	Vel Wt	Vel Wt	V.1 W.	Vel Wi	\(\(\text{t}\)
474.1	-98 0 1					+40-9 4	
4563 4549 4481	74 % 1 101 1 1		+ 28 1 1	=74.5	-82-1 1	34.2	-105-8
4405 4415 4352 4340	64 0 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		3× 2 3 42 6 1 6× 1 1		- m = E 3	38-4 1	93-8] 1
4325 4271 4233 4143	55 5 1 67 5 4	-66.5	54 3 - 4 54 1			75.0 1	117·8 85·7
4101 4077 4063 4045		54 9 1 70 4 2	59 4 ½ 40 3 ½	56-6 }		53 · 5 = ½ 63 · 1 = ½ 40 · 1 = ½	
4005 3933	-57:7 1	74·4 4 -81·0 4	+30.0 }	-76.5		+60.0	- 97.6
Veighted			. 45 10	- 66.00	- 78-10	+ 52.53	- 97-1
mean Va Va	= 82.16 + 3.65 = .05 = .28	- 69 50 + 4-68 - 05 28	4 71 - 02 - 28	+ 2·04 + ·03 - ·28	+ 2·40 + ·03 - ·28	+ 4·93 - ·02 - ·28	+ 4.7
Curv.	_	-		-			
Radial	- 78.8	- 65.2	÷ 40.6	- 64.2	- 76.0	+ 57.2	- 92

MEASURES OF 50 DRACONIS (secondary)—Concluded

	8397	8654	46.58	8725			
`	Vel. † Wt	Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
1549 1481 3943	+ 47·4 } + 62·4 }	-80·2] = 1	+41·3] 1 43·2 1 +40 > 1	+66-4 }	-		
Weighted mean V_a V_a^b $Cu_{\overline{x}}v$.	+ 54·90 + 4·62 - ·08 - ·28	- 59·13 + 4·84 + ·07 - ·28	+ 41·77 + 4·43 - ·07 - ·28	+ 66·40 - 4·91 + ·09 - ·28			
Radial Velocity	+ 59·2	- 54.5	+ 45.8	+ 61.3			

(1900,
$$\alpha =$$
 19h 47m-2, δ = + 40° 20′, mag. 5+62, type A)

This star was announced as a spectroscopic binary by Adams in the *Publications of the Astronomical Society of the Pacific*, vol. 26, page 261. From the measures, the period is evidently short. The K line of calcium does not share in the large oscillations of the other lines. Sufficient plates for an orbit have been secured at Allegheny and the star is dropped from our list.

Our measures follow.

Plate	Date, G.M	Т,	Velocity	n	Weight
6804 6842 6928 8285 8290 8294		3 · 910 14 · 803	$ \begin{array}{r} -23 \\ +19 \\ +88 \\ -86 \\ +4 \\ +67 \\ +73 \end{array} $	9 10 7 5 6 7	3 4 3 2 2 2 3 2

MEASURES OF BOSS 5070

λ	6804	6842	6928	8285	8290	8294	8297
^	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
4567 · 967 4552 · 762	+11·5 1 -26·3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$+99.5 \frac{1}{4} +101.6 \frac{1}{2}$		+40.9 1	+77-4 3	+ 58.4 1
4481 · 400 4471 · 676 4388 · 100 4340 · 634	-12·0 1 -33·6 2 -54·4 1	$+18.7$ $\frac{1}{2}$ $+28.5$ $\frac{1}{4}$ -4.5 $\frac{1}{2}$	+ 69·6 1 + 75·4 1 + 43·0 1	$\begin{array}{c cccc} -73 \cdot 1 & 1 & 1 \\ -97 \cdot 0 & 1 & 1 \\ -66 \cdot 4 & 1 & 1 \end{array}$	$\begin{array}{cccc} -11 \cdot 0 & \frac{1}{2} \\ +18 \cdot 3 & \frac{1}{2} \\ +16 \cdot 1 & \frac{1}{2} \end{array}$	$+82 \cdot 1$ $\frac{3}{4}$ $+65 \cdot 3$ $\frac{1}{4}$ $+77 \cdot 7$ $\frac{3}{4}$	+115·5
4325 · 939 4267 · 301 4143 · 928	-23·8 ¼ -16·1 ¼	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 54-6 1	-78·9 1 -72·7 1	- 1.9 1	+94·8 +52·0	
4101 · 890 4026 · 352 3933 · 825	$\begin{bmatrix} -19.0 & \frac{1}{4} \\ -5.8 & \frac{1}{2} \end{bmatrix}$				+ 1.5	+72-0 1	11+19+11
Weighted mean V _a V _d Curv.	- 26·87 + 4·07 + ·22 - ·28	+ 12·31 + 7·20 + ·21 - ·28	+ 74-47 + 13-99 + -21 28	- 77·56 - 7·74 - ·21 - ·28	+ 12·76 - 8·13 + 07 - ·28	+ 76·56 - 8·78 - ·11 - ·28	+ 82·80 - 8·99 - ·13 - ·28
Radial Velocity	- 22.9	+ 19.4	+ 88-4	- 85.8	+ 4.4	+ 67.4	+ 73.4

13 VULPECULÆ

(1900, $\alpha =$ 19^h 49^m·2, δ = + 23° 50′, mag. 4·50, type A)

This star was announced a binary by Lee, in Astrophysical Journal, XXXII, 307, from eight plates giving a range from -15 to -36. Campbell used as the velocity for the star, -28. While the lines are in general fairly sharp there is a bare suspicion that $H\gamma$ on plate 8221 is double.

Plate	Date, G.	M.T.	Velocity	Lines	Weight	
E000	1917, June	18-714	-37.8	1	1	
8218	Y. T.	5.740	$-24 \cdot 2$	4	2	
8221	44	6.690	-30.8	2	1	
8222	u	14.678	-30.4	5	2	
225	11	15.777	$-32 \cdot 5$	5	2	
8228	64	16-691	-24-1	1	1	

MEASURES OF 13 VILPECULE

	8202	8218	8221	8222	8225	8228	
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
4584 · 018 4549 · 743 4481 · 477 4340 · 645 4233 · 425 3933 · 825	-50.9 3	-15·6 \\ 44·0 \\\ 25·8 \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	-43·1 ½	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-28.1 4	
Weighted mean Va Vd Curv.	- 50·90 + 13·20 + ·14 - ·28	- 31-93 + 7-99 + -0. 28	$ \begin{array}{rrrr} & - & 38 \cdot 27 \\ & + & 7 \cdot 64 \\ & + & \cdot 08 \\ & - & \cdot 28 \end{array} $	- 35·15 + 4·96 + ·08 - ·28	- 36·70 + 4·58 - ·08 - ·28	- 28·10 + 4·20 + ·04 - ·28	
Radial Velocity	- 37:8	- 24.2	- 30-8	- 30-4	- 32.5	- 24:1	

 $(1900, \alpha = 21^{h} 28^{m} \cdot 3, \delta = +60^{\circ} 01', \text{ mag. } 5 \cdot 52, \text{ type A})$

This star is in Kapteyn's Area No. 18. It is listed as of A-type in Harrard Annals, vol. 50, but would more properly fall under the classification B2. Besides the hydrogen and helium series, there are the characteristic lines of this type at $\lambda\lambda$ 4089 and 4649 variously ascribed to argon, silicon and other substances. The third member of the group, that at λ 4116, does not appear on the plates. The three silicon lines $\lambda\lambda$ 4575·52, 4568·13 and 4552·89 are seen in the spectrum, the latter two being 0·5 as intense as $H\gamma$ or the helium λ 4471. The wave-lengths indicated for them are somewhat greater than the generally accepted values, but were adjusted to agree with the velocities obtained from the hydrogen and helium series. Other absorption lines, whose normal wave-lengths are approximately $\lambda\lambda$ 4366·9, 4620·5, 4630·7 and 4641·4, were noted but not used in the results.

Plate		Date, G.M.T.			Number of Lines	Velocity	
				28-465	5	-28·3 -18·7	
		1918,	Jan.	2 · 481 4 · 455	5 6	-19·4 -33·8	
			Oct.		4 · 455 23 · 605	-	

MEASURES OF BOSS 5535

	8394	8404	8410	8672						
λ	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
4568 - 13 -	-14.0 1	+19-1	- 9.7	-38·6 1			,			
4552 - 89 -	12.3 1	- 1.4	- 5.3 1	31.0						
4471 - 676	19-7 3	-29.0	+ 1.8 1	22.3	CLUTHERS				2199000	2.27
4388 - 100	19-6	- 2-1	- 0.9	26.4	and the same		4.4.5.1.4.1.4.2	1000		150
4340 - 634	-11.2	+ 4.6	-16.7 1	34-2					F E	
4143-928			-18-4	17.3					-411111	
4121-016				$-35 \cdot 5$ $\frac{1}{2}$						1
Weighted										
mean	- 15:84	- 6.20	- 6.96	- 29.01	111×1111+		********		.5-11018	
Va	- 12.07	- 12.07	- 12.04	- 4.42					F+1++7X+	
Va	11	- 14	12	09				11000		
Curv.	28	- ⋅28	- +28	- +28		4444	((() () - 2)	(223		
Radial Velocity	- 28.3	- 18-7	- 19.4	- 33.8						****

Dominion Observatory Ottawa April, 1919. CAL MT 403 PO4-22

1 5 JUN 1999 REB

190344