Artificial Intelligence

Long Short Term Memory Letworks

Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology

Recurrent Neural Network

Recurrent Neural Network

- ✓ RNN limitations:
 - Vanishing gradient
 - Exploding gradient
 - Suffering from long-term dependency

Example: Language model - Character level

Training sequence: "hello"

Vocabulary: h, e, l, o

- Example: Language model Character level
 - Training sequence: "hello"
 - Vocabulary: h, e, l, o

- x_t : 4x1 h_t : 3x1
- $W_f, W_i, W_C, W_o: 3x7$
- $b_f, b_i, b_c, b_o: 3x1$
- W_{hv} : 4x3
- b_{v} : 4x1

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma\left(W_o \left[h_{t-1}, x_t\right] + b_o\right)$$

$$C_t : 3 \times 1^{\text{CMUT-CNCP}}$$

$$h_t = o_t * \tanh\left(C_t\right)$$

 $y_t = softmax(W_{hv}h_t + b_v)$