Taken Out of Context

Towards Mitigating Contextual Bias in Computer Vision

Overview

1. Problem

2. Problem Set Up

3. Meta Learning

When does context induce bias?

Quantifying Contextual Bias, Baseline Models Stacking Method

4. Decision Rule

5. Improve Decisions

Identify exclusive image using model scores

Additional methods to Identify exclusive images post hoc

Contextual Bias

Exclusive: Skateboard Co-occur: Skateboard & Person

"Microsoft COCO: Common Objects in COntext" by Tsung-Yi Lin et.al

When does context induce bias?

P(skateboard) = 46% (test)

2473 images where "skateboard" occurs **with** person (train)

P(skateboard) = 79% (test)

Exclusive: Skateboard

Co-occur: Skateboard & Person

"Microsoft COCO: Common Objects in Context" by Tsung-Yi Lin et.al

Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias (CVPR 2020) Singh et. al

Our Reproduced Results

[Re] Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias (Rescience C 2021) Kim et. al

Main Figure (Source: Singh et.al)

Exclusive and Co-occur Distributions

Biased category pairs		Bias		Biased category pairs (Ours)		
Biased (b)	$\frac{\text{Context}(c)}{\text{Context}(c)}$	Paper	Ours	Biased (b)	$\frac{\text{Context}(c)}{\text{Context}(c)}$	Bias
cup	dining table	1.76	1.85	car	road	1.73
wine glass	person	1.80	1.59	potted plant	furniture-other	1.75
handbag	person	1.81	2.25	spoon	bowl	1.75
apple	fruit	1.91	2.12	fork	dining table	1.78
car	road	1.94	1.73	bus	road	1.79
bus	road	1.94	1.79	cup	dining table	1.85
potted plant	vase	1.99	1.73	mouse	keyboard	1.87
spoon	bowl	2.04	1.75	remote	person	1.89
microwave	oven	2.08	1.59	wine glass	dining table	1.94
keyboard	mouse	2.25	2.11	clock	building-other	1.97
skis	person	2.28	2.21	keyboard	mouse	2.11
clock	building	2.39	1.97	apple	fruit	2.12
sports ball	person	2.45	3.61	skis	snow	2.22
remote	person	2.45	1.89	handbag	person	2.25
snowboard	person	2.86	2.40	snowboard	person	2.40
toaster	ceiling ⁶	3.70	1.98	skateboard	person	3.41
hair drier	towel	4.00	3.49	sports ball	person	3.61
tennis racket	person	4.15	1.26	hair drier	sink	6.11
skateboard	person	7.36	3.41	toaster	oven	8.56
baseball glove	person	339.15	31.32	baseball glove	person	31.32

Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias (CVPR 2020) Singh et. al

Exclusive and Co-occur Distributions

	road 10	120	0170	rlapping	dining table	
	vase 10	7/40	Ove	ιαμμιτιξ	keyboard	
	oven •	2.08	1.59	wine glass	dining table	
	modla	sea (cate	gory pai	S ilding-other	
			2.21	keyboard		

Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias (CVPR 2020) Singh et. al

Reproducing Baseline Models

	COCO-Stuff (mAP)					
Method	Exclu	ısive	Co-occur			
	Paper	Ours	Paper	Ours		
standard4	24.5	23.9	66.2	65.0		
remove labels	25.2	24.5	65.9	64.6		
remove images	28.4	29.0	28.7	59.6		
split-biased	19.1	25.4	64.3	64.7		
weighted	30.4	28.5	60.8	60.0		
negative penalty	23.8	23.9	66.1	64.7		
class-balancing	25.0	24.6	66.1	64.7		
attribute decorr.		-	-	-		
CAM-based	26.4	26.9	64.9	64.2		
feature-split	28.8	28.1	66.0	64.8		

ResNet-50 pretrained on ImageNet, optimized with SGD, momentum=0.9, $lr = 0.1 \rightarrow 0.01$

For each b, apply 10 times higher weight to the loss for class b when b occurs exclusively

Methods

Stacking

Decision Rule Algorithm

Decision Rule Method

	COCO-Stuff (mAP)					
Method	Exclu	isive	Co-occur			
	Paper	Ours	Paper	Ours		
standard4	24.5	23.9	66.2	65.0		
remove labels	25.2	24.5	65.9	64.6		
remove images	28.4	29.0	28.7	59.6		
split-biased	19.1	25.4	64.3	64.7		
weighted	30.4	28.5	60.8	60.0		
negative penalty	23.8	23.9	66.1	64.7		
class-balancing	25.0	24.6	66.1	64.7		
attribute decorr.	-	=	-	-		
CAM-based	26.4	26.9	64.9	64.2		
feature-split	28.8	28.1	66.0	64.8		

Decision Rule Upper Bound

Decision Rule Upper Bound

mAP	Exclusive	Co-Occur
Standard Model	20.7	65.2
Weighted Model	24.4	60.0
Decision with Ground-Truth labels	38.8	65.2

miagos in uno exclusivo distribution are rea unioagn une weighteen model, une comer amagos are fed through the standard model. We developed this insight by looking at mean probability scores for label b, $\bar{P}(b)$ where for exclusive images, a larger $\bar{P}(\hat{b})$ indicates a better model and for "other" images, a lower $\bar{P}(\hat{b})$ indicates a better model because it recognizes that the biased class does not exist in the image. On exclusive images, $\bar{P}_{\text{standard}}(\hat{b}) = 0.33$ and $\bar{P}_{\text{weighted}}(\hat{b}) = 0.45$. On the "other" images, $\bar{P}_{\text{standard}}(\hat{b}) = 0.019$ and $\bar{P}_{\text{weighted}}(\hat{b}) = 0.035$.

Since there exist many more "other" images in the dataset than exclusive images, when the standard model's performance on the "other" images is leveraged, the mAP on the exclusive distribution (both the exclusive and "other" images) increases.

c: co-occur class

α: probability cutoff

 $P(b) > \alpha$ $P(c) < 1-\alpha$

Exclusive Images

Weighted Model

All other images

Non-exclusive Images

Standard Model

Results

mAP	Exclusive	Co-Occur
Standard	20.7	65.2
Weighted	24.4	60.0
Ground Truth	38.8	65.2
Decision with standard probabilities (alpha=.53)	22.4	63.9
Feature-split (Singh et. al)	22.4	64.5

Extensions - Train Model to Identify Exclusive Images

Results

low precision & high recall for exclusive class

Implemented 3 different <u>reweighting methods</u>, <u>training from scratch</u>, and <u>training from</u> <u>standard model to leverage learned features</u>

Explanation: Identifying exclusive images is a more complex task than image classification

Acknowledgements

Professor Olga Russakovsky

Sunnie S. Y. Kim

Sharon Zhang

Visual AI Lab

Professor Jason Lee

Extensions - Class Activation Maps (CAM)

Quantifying Contextual Bias

$$bias(b,z) = \frac{\frac{1}{|\mathbb{I}_b \cap \mathbb{I}_z|} \sum\limits_{I \in \mathbb{I}_b \cap \mathbb{I}_z} \hat{p}(i,b)}{\frac{1}{|\mathbb{I}_b \setminus \mathbb{I}_z|} \sum\limits_{I \in \mathbb{I}_b \setminus \mathbb{I}_z} \hat{p}(i,b)} \frac{\text{Average prediction probability of b with z}}{\text{Average prediction probability of b without z}}$$

$$c = rg \max_{z} bias(b, z)$$
b: biased class
z: Other class
c: co-occurring class

Meta Learning - Stacking Method

	COCO-Stuff (mAP)					
Method	Exclu	ısive	Co-occur			
	Paper	Ours	Paper	Ours		
standard4	24.5	23.9	66.2	65.0		
remove labels	25.2	24.5	65.9	64.6		
remove images	28.4	29.0	28.7	59.6		
split-biased	19.1	25.4	64.3	64.7		
weighted	30.4	28.5	60.8	60.0		
negative penalty	23.8	23.9	66.1	64.7		
class-balancing	25.0	24.6	66.1	64.7		
attribute decorr.	-	=	-	-		
CAM-based	26.4	26.9	64.9	64.2		
feature-split	28.8	28.1	66.0	64.8		

^{*}Partitioned the train 80 split into 5 folds so that each model is trained on % th of the training set and computes features for the remaining %

Stacking Method - Linear Model

1xM

Learned Weights

M: Number of models stacked C: Classes

MxC

Sigmoid Probabilities from single image fed through M models

Meta-Learner learns to weight each model equally

Explanation: Given that exclusive images are so rare, meta learner is not complex enough to pick up on small differences in each model