Issues in the inverse modeling of a single ring infiltration experiment

Michal Kuraz^a, Lukas Jacka^a, Johanna Ruth Bloecher^a, Matej Leps^b

^aCzech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Water Resources and Environmental Modeling ^bCzech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics

Abstract

This contribution addresses issues in the identification of soil hydraulic properties (SHP) of the top soil layer obtained from inverse modeling of a single ring (SR) infiltration experiment. The SR experimental data were obtained from a series of in situ experiments conducted on a highly heterogeneous mountainous podzolic soil profile. The SHP of the topsoil layer are very difficult to measure directly, since the thickness of the top soil layer is often much smaller than the depth required to embed the SR or Guelph permeameter device or to obtain undisturbed samples for further laboratory experiments.

A common problem with automatic optimization procedures are convergence issues. This problem is not trivial and can be difficult to deal with. We present a methodology to avoid convergence issues with the nonlinear operator. With this methodology, we can answer (1) to what extent the well-known SR experiment is robust enough to provide a unique estimate of SHP parameters using the unsteady part of the infiltration experiment and (2) whether all parameters are vulnerable to non-uniqueness. We validated our methodology with synthetic infiltration benchmark problems for clay and sand. To evaluate non-uniqueness, local optima were identified and mapped using a modified genetic algorithm with niching, which is not possible with commonly used gradient methods.

Our results show the existence of multimodality in, both, the benchmark problems and the real-world problem. This is an important finding as local optima can be identified, which are not necessarily physical and also for systems that do not exhibit multimodal grain size distributions. The identified local optima were distinct and showed different retention and hydraulic conductivity curves. The most physical set of SHP could be identified with the knowledge of saturated water content, which makes it yet more obvious that expert knowledge is key in inverse modeling.

Keywords: soil hydraulic properties, inverse modeling, Richards equation, convergence issues, automatic calibration, computational issues in geosciences

1. Introduction

- Soil hydraulic properties (hereafter SHP) are im-
- portant for many hydrological models and engineer-
- ing applications. The mountainous podzolic soil eval-
- 5 uated here is typical for the source areas of many ma-
- 6 jor rivers in the Central European region. The top
- 7 layer of the soil plays a key role in the rainfall-runoff
- 8 process, because it is the top-soil that separates the

rainfall into surface runoff and subsurface runoff.

10

11

12

13

15

Due to the rocks present and the dense root system of the covering vegetation, and due to the possible extension of the representative elementary volume, it is often impossible to collect undisturbed samples of top-soil for laboratory measurements in order to obtain the SHP parameters (Jačka et al., 2014). The SHP of the topsoil are therefore very difficult to measure directly (Fodor et al., 2011; Jačka et al., 2014).

In our study, the well-known single ring (hereafter SR) method was used to obtain experimental in-19 put data (cumulative infiltration) for inverse model-20 ing. The SR infiltrometer is a widely accepted, sim-21 ple, robust field method, which is able to measure the infiltration process, which affects the entire soil profile including the top-soil, and can sample a relatively large volume (depending on the diameter of the ring) (Cheng et al., 2011; Reynolds, 2008a). The SR infiltration experiment is an in situ experiment, 27 which does not require soil samples to be collected, so the porous medium is kept relatively undisturbed. With the widely-used ring diameter of 30 cm, the affected porous media is far more representative than any soil sample we were able to collect. The topsoil can also be measured (with some alteration of the surface) using other well-known field infiltration methods, e.g. the tension infiltrometer or the well permeameter (Angulo-Jaramillo et al., 2000; Reynolds, 2008b). 37

The Richards equation (Richards, 1931) describes
flow in variably saturated porous media. In order to
model environmental processes and engineering applications with the Richards equation knowledge of
the SHP is essential. SHP can be summarized by

the soil water retention curve and soil hydraulic conductivity curve. In this contribution, the SHP are parametrized with the frequently used Mualem-van Genuchten model (van Genuchten, 1980). We refer to this model as REVG.

Several studies compared REVG inverse modeling of tension infiltrometers (Simunek et al., 1998, 1999; Schwartz and Evett, 2002; Ventrella et al., 2005; Ramos et al., 2006; Verbist et al., 2009; Rezaei et al., 2016). They state that the retention curves obtained from inverse modeling using tension infiltrometer data are often not in good agreement with laboratory experiments on undisturbed samples. In particular, the saturated water content obtained from an inverse model of REVG is typically distinctly lower than the experimentally established value (Simunek et al., 1998; Verbist et al., 2009). There are various theories explaining the issue to be due to (i) the effect of hysteresis as the drying process in the laboratory differs from the wetting process in the field, (ii) the effect of entrapped air in the field (Fodor et al., 2011), where the saturation may not fully correspond to the pressure head, and (iii) the effect of macropores, which are excluded when a tension infiltrometer is used. Most importantly the soil samples usually examined in the laboratory are typically much smaller than the representative elementary volume (Scharnagl et al., 2011). However, several studies reported a close correspondence between the retention curve parameters obtained from laboratory experiments and from REVG analyses (Ramos et al., 2006; Schwartz and Evett, 2002). The identification of SHP from transient infiltration experiments has been a subject of numerous publications in past decades (Inoue et al., 2000;

Lassabatère et al., 2006; Kohne et al., 2006; Xu et al., 111
2012; Bagarello et al., 2017; Younes et al., 2017). 112
Inoue et al. (2000) reported a close correspondence 113
between the SHP obtained from the inverse model- 114
ing of dynamic transient infiltration experiments with 115
those obtained from steady-state laboratory experi- 116
ments, where the uniqueness of the inverse model was 117
preserved by considering the dynamically changing 118
pressure head, water content and even tracer concen- 119
tration. 120

The non-uniqueness of the REVG inverse model is already a very well-known issue, and has been described by a number of publications over the last 89 decades (Kool et al., 1985; Mous, 1993; Hwang and Powers, 2003; Binley and Beven, 2003; Kowalsky 125 91 et al., 2004; Nakhaei and Amiri, 2015; Kamali and Zand-Parsa, 2016; Peña-Sancho et al., 2017). Mous (1993) defined criteria for model identifiability based on the sensitivity matrix rank, however numerical computation of the sensitivity matrix, which is defined by the derivatives of the objective function, often involves difficulties in managing truncation and round-off errors. Binley and Beven (2003) demonstrated on a real world case study of Sherwood Sand-100 stone Aquifer that many different SHP parameters of 101 macroscopic media can represent the layered unsatu-102 rated zone and provide acceptable simulations of the 103 observed aquifer recharges. Mous (1993) explained 136 104 that in case of the absence of water content data, the 137 105 residual water content should be excluded from the 138 identification to avoid non-uniqueness. However, Bin- 139 107 ley and Beven (2003) used a non-unique definition 140 where both the unknown residual and saturated water 141 109 content were considered. The definition of a unique 142 110

inverse function for identification of macroscopic media was treated in (Zou et al., 2001), where the recommended approach was to assemble the objective function from transient data of the capillary pressure and from the steady state water content data.

A challenging issue is the treatment of the nonlinear operator of the Richards equation. Binley and Beven (2003) reported that 56% of the simulations were rejected during Monte Carlo simulations on a wide range of parameters, because of convergence problems. Their study did not mention explicitly why. We assume that these convergence issues originated from the nonlinear operator treatment.

The following questions arise:

- How can convergence issues be avoided, especially when the parameter range is wide?
- Is it possible to approximate the unsteady SR experiment using the REVG model, where the only unknown parameters represent the thin topsoil layer, by a unique set of parameters?
- If not, are all parameters vulnerable to non-uniqueness?

To answer these questions we employed a new calibration methodology.

1.1. Comment on system of units applied in this manuscript

Due to spatial and temporal scales of all model scenarios evaluated in this manuscript, instead of the base SI units we preferred to make use of *non-SI units accepted for use with the SI*. The length [L] will be always given in [cm], and the time [T] will be always given in [hrs].

2. Methodology

143

150

151

152

153

155

156

157

158

159

160

165

168

169

170

171

172

173

174

This section is divided into two parts. The first part, section 2.1, is focused on assembling the experimental data, which were later used as input for the inverse model. The site description, the reconstruction of the parameters of the SHP for the lower profiles, and the processing of the experimental data is given.

The second part of the methodology covers issues in the REVG inverse model. Section 2.2 derives governing equations and is given together with notes on the numerical stability of the REVG model for rotational symmetric problems. Section 2.3 discusses issues in creating the domain scheme and selecting appropriate boundary conditions, since it is not always easy to find an agreement between the mathematical model setup and physical interpretation. Section 2.4.1 concludes with a description of the construction of the objective function, and the methodology of the automatic calibration.

2.1. Obtaining the input data for the inverse problem

2.1.1. Site description and assembling the experimental data

The study site is located in the Šumava National 197
Park, and has been described in (Jačka et al., 2014). 198
The location of the site in a map of Modrava 2 catchment is presented by Jačka et al. (2012). A haplic 200
podzol with distinct soil horizons is dominant on this 201
site. The mean depths of the podzolic horizons are as 202
follows: 203

- organic horizon O and humus horizon Ah altogether (the top-soil) 7.5 cm,
- eluvial bleached horizon E 12.5 cm,

- spodic horizons Bhs and Bs 40 cm,
- weathered bedrock C.

175

The average groundwater table level can be roughly estimated at -280 cm below the surface.

The soil characteristics of the horizons below the top-soil are given in the table 1.

2.1.2. Obtaining SHP parameters for lower horizons

Guelph permeameter measurements (GP) were used to estimate the saturated hydraulic conductivity of the lower horizons. The constant head GP method is described in (Jačka et al., 2014). Pedotransfer functions work well for spodic and eluvial horizons characterized by high percentage of sand, without a distinct structure, and with a bulk density and porosity corresponding to a standard mineral soil. Table 2 shows SHP parameters for spodic and eluvial horizons E, Bhs/BS and C below the top-soil calculated with the pedotransfer function implemented in Rosetta (Schaap et al., 2001) based on soil texture and the bulk density measurements.

2.1.3. Obtaining unsteady infiltration data for the top soil

The purpose of this section is to explain the methodology used to obtain the input data for the inverse analysis.

For the O+Ah horizon smoothed experimental data from unsteady single ring (SR) infiltration were used as input for inverse modeling of REVG. The experimental setup was as follows. A steel ring 30 cm in inner diameter, 25 cm in length, and 2 mm in thickness was inserted into the soil to a depth of 12.5 cm, see figure 1. The depth of ponding was kept approximately at a constant level defined by a reference spike,

Table 1: Fractions of the fine soil (< 2 mm) and skeleton (> 2 mm) and bulk density of the E and Bhs+Bs horizons.

horizon	clay	silt	silt sand		bulk density
	$< 2 \mu\mathrm{m}$	$2 \mu \text{m} - 0.05 \text{ mm}$	0.05-2 mm	> 2 mm	$\rm g.cm^{-3}$
E		32%	1.4		
Z	1%	20%	79%	•	
Bhs + Bs		70%		30%	1.3
	7%	32%	61%	•	

Table 2: Soil hydraulic properties for the lower horizons.

horizon	GP experiment sites	θ_s [-]	$\alpha [\mathrm{cm}^{-1}]$	n [-]	K_s [cm.hrs ⁻¹]	S_s [cm ⁻¹]
Е	28	0.46	0.046	1.741	1.584	0
Bhs + Bs	19	0.47	0.022	1.450	0.540	0
C	8	0.50	0.035	4.030	3.060	0

222

225

229

Figure 1: Scheme of the single ring infiltration experiment and the soil layers.

which was placed 4 cm above the surface of the soil.

The average experiment duration was 60 minutes.

208

209

210

211

212

214

216

A total of 22 SR experiments were conducted on the site. In order to eliminate noise from the experimental values, each SR experiment data set was 231 smoothed with the Swartzendruber analytical model 232 (Swartzendruber, 1987) of one-dimensional infiltration, which exhibited an excellent fitting quality, with 234 a mean Nash-Sutcliffe model efficiency coefficient 235 0.9974. The Swartzendruber equation for cumulative 236

infiltration states that

$$I(t) = \frac{c_0 \left(1 - \exp\left(-c_1 \sqrt{t}\right)\right)}{c_1} + c_2 t,\tag{1}$$

where I is the cumulative infiltration [L], and $c_{0,1,2}$ are parameters. The Swartzendruber model can estimate 1D saturated conductivity and sorptivity of the soil. However, the model does not account for water moving horizontally and therefore overestimates the hydraulic conductivity and gives no information on water retention or unsaturated hydraulic conductivity and is therefore not sufficient. The Swartzendruber model was only considered as an exponential smoothing and interpolating function.

A statistical description of the Swartzendruber parameters and their fitting quality is given in (Jačka et al., 2016), see datasets collected on site 3. Representative mean values are as follows: $c_0 = 5.130 \text{ cm.hrs}^{-0.5}$, $c_1 = 1.13 \times 10^{-1}$ [-], and $c_2 = 1.858 \text{ cm.hrs}^{-1}$. The parameter set was used to compute the infiltration curve with Eq. 1 for the identifi-

cation of the SHP in the top soil layer.

237

241

242

243

244

245

254

256

257

258

238 2.2. Mathematical model of the field infiltration ex-239 periment – governing equation

The field infiltration experiment is characterized by variably saturated conditions. The flux in porous media under variably saturated conditions can be expressed by the Darcy-Buckingham law (Buckingham, 1907)

$$\mathbf{q} = -\mathbf{K}(\theta)\nabla H,\tag{2}$$

where **q** is the volumetric flux [L.T⁻¹], H is the to- 269
tal hydraulic head [L] defined as H = h + z, where 270 h is the pressure head [L], z is the potential head [L], θ is the water content [-], and $\mathbf{K}(\theta)$ is the unsaturated
hydraulic conductivity [L.T⁻¹]; in general it is a sec- 271
ond order tensor. The relation $\theta(h)$ is referred to as the 272
retention curve (van Genuchten, 1980).

The geometry of the flow is inherently three- 274 dimensional, but the domain dimension can be re- 275 duced by considering the axisymmetric geometry. 276 The law of mass conservation for incompressible flow 277 in cylindric coordinates is expressed as (Bear, 1979). 278

$$-\frac{\partial V}{\partial t} = \frac{\partial q_r}{\partial r} + \frac{q_r}{r} + \frac{\partial q_\alpha}{\partial \alpha} + \frac{\partial q_z}{\partial z},\tag{3}$$

where V is the volume function [-], r is the radial co-259 ordinate, α is the angular coordinate, z is the vertical 260 coordinate, and $q_{r,\alpha,z}$ is the volume flux [L.T⁻¹]. The 261 ring infiltration experiment is characterized by rota-262 tional symmetric flow, so the angular derivative vanishes. Then the governing equation for variably saturated and rotational symmetric flow is obtained by 265 substituting the flux in (3) by the Darcy-Buckingham law (2). Together with the consideration of linear elas-267 ticity (expressed by specific storage S_s) for a porous 288 268

Figure 2: Scheme of the flow domain and the streamlines of infiltration experiment.

medium the variably saturated axisymmetric flow in isotropic media is governed by

$$\left(\frac{\mathrm{d}\theta}{\mathrm{d}h} + S_s \frac{\theta(h)}{\theta_s}\right) \frac{\partial h}{\partial t} = \frac{\partial K(h) \frac{\partial H}{\partial z}}{\partial z} + \frac{\partial K(h) \frac{\partial H}{\partial r}}{\partial r} + c(\mathbf{x}) \frac{\partial H}{\partial r},\tag{4}$$

where S_s is the specific storage $[L^{-1}]$, θ_s is the saturated water content [-], $c(\mathbf{x})$ is the coefficient of the convection for r coordinate $[T^{-1}]$, which is explained below, and the vector x is a vector of the spatial coordinates $\mathbf{x} = \begin{pmatrix} r \\ z \end{pmatrix}$.

If we consider the model of the infiltration experiment depicted in figure 2 with the entire flow domain $\Omega = \Omega_{inner} \cup \Omega_{outer}$, where Ω_{outer} is the flow domain outside the infiltration ring and Ω_{inner} is the flow domain within the infiltration ring, exactly as depicted in figure 3. It is then apparent that the streamlines inside subdomain Ω_{inner} are parallel, but the streamlines outside the infiltration ring (inside Ω_{outer}) are only axisymmetric. The convection coefficient $c(\mathbf{x})$ is then defined as follows

$$c(\mathbf{x}) = \begin{cases} 0, & \forall \mathbf{x} \in \Omega_{inner} \\ \frac{1}{r}K(h), & \forall \mathbf{x} \in \Omega_{outer}. \end{cases}$$
 (5)

Note that we should avoid using the coordinates,

where r = 0.

292

293

296

297

298

301

302

303

304

305

306

307

311

312

313

314

315

316

317

318

2.3. Domain setup

2.3.1. Domain shape restrictions

with incorrect triangular mesh setup while modeling the SR experiment, we tried to avoid possible numerical issues connected with domains with sharp spikes. Sudden changes in domain shapes, spikes and discontinuities yield numerical difficulties (e.g. the Lipschitz boundary restrictions (Braess, 1997)). In order to avoid computational difficulties during the automatic calibration procedure the infiltration ring thickness was oversized to 2.5 cm. It is obvious that the real ring thickness is much smaller (in our case 2 mm), but using the real ring thickness yields possible numerical issues. It is expected, that oversizing the ring thickness does not significantly affect the fluxes through the top Dirichlet boundary, which is the only important part of the solution of (4) for our calibration process.

Dusek et al. (2009) mentioned several difficulties

2.3.2. Stability restrictions of convection dominant
 problems

The equation (5) refers to coefficient of the first order derivative term in (4), and so the well known stability restrictions for the numerical solutions of the
convection-diffusion problems appear here Christie
et al. (1976). The Peclet number representing the numerical stability of convection-diffusion problems is
defined as (Knobloch, 2008)

$$Pe = \frac{c\Delta x}{2D},\tag{6}$$

where c is the convection coefficient defined in (5), Δx is the discretization step, and D is the diffusion (for isotropic setup). Based on the definitions given above, equation (6) can be formulated as

319

321

$$Pe = \frac{\frac{1}{r}K(h)\Delta x}{2K(h)} = \frac{\Delta x}{2r}.$$
 (7)

Since our mesh is triangular, Δx can be roughly assumed to be the greatest triangle altitude (since we assume some mesh quality properties). Then a sufficient distance from the axis of anisotropy is such that the Peclet number is sufficiently low. If we want to make our computation free of the well known spurious oscillations Christie et al. (1976); Roos et al. (1996), a sufficiently low Peclet number $Pe \leq 1$ is required. Therefore, the distance from the axis of anisotropy is given by the domain discretization step at the left hand side boundary. The selected discretization step at the left hand side boundary was assumed as $\Delta x = 2$ cm. The domain was therefore detached by 2 cm from the axis of anisotropy, and thus the Peclet number was 0.5 only.

2.3.3. Initial and boundary condition setup

The initial condition was assumed as a steady state solution of (4) with the boundary $\Gamma_1 \cup \Gamma_2$ assumed as a no-flow boundary – thus the entire domain Ω was considered to be in hydrostatic state. The initial condition states that

$$H(x) = -280.0 \text{ cm}; \quad \forall x \in \Omega, \tag{8}$$

and thus $\frac{\partial h}{\partial z} = -1$.

As discussed in 2.3.2 the left hand side boundary was located at r = 2 cm. The right hand side bound-

Figure 3: Scheme of the computational domain geometry and domain triangularization.

ary was located at a distance $r=73~\rm cm$ and 60 cm 369 from the infiltration ring. The computational domain 370 is depicted in figure 3 together with the discretization 371 mesh. The location of the top boundary was natural - 372 the soil surface. Inside the ring, a Dirichlet condition 373 defines the ponding depth; outside the infiltration ring a Neumann condition defines the no-flow boundary. 374 The depth and definition of the bottom boundary was more problematic. We consider following commonly used options:

• the no-flow boundary (Neumann)

350

351

354

355

356

357

358

360

- the free drainage boundary (Neumann)
- the groundwater level zero pressure head

 (Dirichlet)

It is apparent that the wetting front originating from 381 our infiltration experiment affects the soil column only 382 to a certain depth. Defining the Neumann no-flow 383 boundary at a sufficient depth would probably not 384 have a significant effect on the derivative of the so- 385 lution of (4) at the top boundary. At the same time, 386

the only physically acceptable location of the no-flow boundary is the groundwater table. The second option – the free drainage boundary – would be completely incorrect for any depth, because we consider the initial condition to represent a hydrostatic state, and so

$$\frac{\partial h}{\partial z}(x) = -1, \quad \forall x \in \Omega.$$
 (9)

The free drainage boundary condition, which is defined as

$$\frac{\partial h}{\partial \mathbf{n}}(x) = 0, \quad \forall (x, t) \in \Gamma_{\text{free drainage}} \times [0, T). \quad (10)$$

is in a conflict with the initial condition (since the outer normal vector $\mathbf{n} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$), and produces extra computational costs. The computed fluxes produced at the bottom boundary in the beginning of the simulation with such a boundary setup, originates from the initial and boundary condition mismatch, and has no physical meaning.

Physically correct boundary conditions for the bottom boundary is either the Neumann no-flow bound-

377

Figure 4: Scheme of the computational domain geometry and the domain boundaries.

ary or Dirichlet boundary both at the groundwater ta-387 ble. We chose a constant Dirichlet boundary condi-388 tion. The average depth of the groundwater table is 416 389 approximately -280 cm below the surface, and we as-390 sume that the water table remains constant during the 391 experiment. With this particular setup the domain be-392 came extremely narrow and deep, see figure 3. The locations of the domain boundaries are de-394 picted in figure 4. The boundary conditions are speci-395 fied as follows (with the reference level z = 0 located 396 at the top boundary) 397

$$h(x,t) = 4 \text{ cm} \Rightarrow H(x,t) = 4 \text{ cm}; \quad \forall (x,t) \in \Gamma_1 \times [0,T)_{23}$$
$$\frac{\partial H}{\partial \mathbf{n}} = 0; \quad \forall (x,t) \in \Gamma_2 \times [0,T),$$

 $h(x,t) = 0 \text{ cm} \implies H(x,t) = -280.0 \text{ cm}; \quad \forall (x,t) \in \Gamma_3 \stackrel{\text{425}}{\sim} [0,T).$

where T is the simulation end time [T], and \mathbf{n} is the 399 boundary normal vector.

2.4.1. Objective function 402

The soil hydraulic parameters (SHP) of the top 403 soil that will be identified were specified in sec- 430 404 tion 2.1.2. Since the parameters will be identified us- 431 405

ing a stochastic method, we have to introduce a physically reasonable range for each parameter. The ranges for the SHP are specified in table 3.

406

The objective function is defined in the following paragraph.

Let $\bar{I}(\mathbf{p},t)$ be the cumulative infiltration obtained from solving the mathematical model (4) bounded by the initial and boundary conditions defined in section 2.3 for a certain vector of SHP parameters **p** considered as

$$\bar{I}(\mathbf{p},t) = \frac{\int_{0}^{t} \int_{\Gamma_{1}} -K \frac{\partial H}{\partial \mathbf{n}}(t) d\Gamma_{1} dt}{\int_{\Gamma_{1}} d\Gamma_{1}}.$$
 (12)

Let I(t) be the cumulative infiltration defined by (1) with parameters given in section 2.1.3. Then the objective function was defined for three different criteria in order to avoid ill-posed objective function definition.

The objective functions were defined as follows:

I. First criterion Ψ_1 was defined as L_2 norm of the difference between the experimental and model data and thus

$$\Psi_1(\mathbf{p}) = \sqrt{\int_0^{T_{end}} \left(\bar{I}(\mathbf{p}, t) - I(t)\right)^2 dt}, \qquad (13)$$

where T_{end} is the final simulation time [T], which is indeed the root mean square error (RMSE) for continuous functions.

II. Second criterion was the L_{∞} norm of the difference between the experimental and model data

428

422

(11)

Table 3: Ranges of SHP (\mathbf{p}_{max} and \mathbf{p}_{min}) for identifying the SHP in the top-soil layer for refinement level $r_f = 0$. Note that the initial ranges are extremely broad especially for the saturated water content θ_s . This broad range was selected in order to explore the uniqueess of the REVG inverse model of SR experiment even beyond the physically acceptable solutions.

θ_s [-]	$\alpha [\mathrm{cm}^{-1}]$	n [-]	K_s [m.s ⁻¹]	$S_s [m^{-1}]$
0.25 - 0.90	$1 \times 10^{-4} - 5.000 \times 10^{-2}$	1.05 – 4.5	0.300 - 300.0	0.0 - 0.1

and thus

432

433

438

439

453

 $\Psi_{2}(\mathbf{p}) = \sup \left(\sqrt{\left(\bar{I}(\mathbf{p}, t) - I(t)\right)^{2}} \right), \quad t \in (0, T_{end}).$ (14)

III. Third criterion was considered as the difference 434 between the infiltration rates (final derivatives) 435 between the model data and the experimental 436 data 437

$$\Psi_3(\mathbf{p}) = \sqrt{\left(\frac{\mathrm{d}\bar{I}(\mathbf{p}, T_{end})}{\mathrm{d}t} - \frac{\mathrm{d}I(T_{end})}{\mathrm{d}t}\right)^2}.$$
 (15)

We conducted multi-objective optimization. How- 469 ever, it is apparent that minimizing the objective func- 470 tion (13) also minimizes the objective functions (14) 471 442 and (15). The aim of this multi-objective definition 472 443 was to improve the conditioning of this inverse prob-473 444 lem. If we only considered the objective function (13), 474 445 then we were probably able to obtain the same solu- 475 446 tion as with this multi-objective definition with slower 476 447 convergence of optimization procedure only (the se- 477 lection of the optimization algorithm will be explained 478 in the following section 2.4.2). This multi-objective 479 450 function definition is based on our experience from 480 451 previous attempts of inverse analysis of this infiltra- 481 452 tion problem.

2.4.2. Optimization algorithm

In this contribution we used the modified genetic algorithm GRADE (Ibrahimbegović et al., 2004; Kucerova, 2007) supported by niching method CERAF (Hrstka and Kučerová, 2004) enhancing the algorithm with memory and restarts. GRADE is a real-coded genetic algorithm combining the ideas of genetic operators: cross-over, mutation and selection taken from the standard genetic algorithm and differential operators taken from differential evolution. When GRADE converges, the current position of the optimization algorithm is marked as a local extreme and a forbidden area is built around it in order to forbid the optimization algorithm to fall into the same local extreme again. The main setting of the optimization procedure was as follows: the population of the genetic algorithm contains 30 independent solutions, the whole identification stops after 20.000 objective function evaluations and a local extreme was marked after 600 evaluations without any improvement.

GRADE project is capable for multi-objective definition for the objective function, which is achieved with so-called Average Ranking (AR) (Leps, 2007). It sums ranks of the objective functions instead of the objective functions' values. Therefore, no weights are needed, however, the Pareto-dominance is not preserved as described in Vitingerova (2010). An application of the AR algorithm to parameters identification can be found in Kuráž et al. (2010).

484

497

499

500

501

502

503

504

505

508

509

510

511

513

515

516

Equation (4) was implemented into the DRUtES

requires an iterative solution of

library (Kuraz and Mayer, 2008). It is an object-485 oriented library written in Fortran 2003/2008 standard 519 486 for solving nonlinear coupled convection-diffusion-487 reaction type problems. The problem was approximated by the linear finite element method for spatial 521 derivatives and Rothe's method for temporal derivatives. The nonlinear operator was treated with the 522 Schwarz-Picard method – an adaptive domain decom-492 position (dd-adaptivity) – with the ability to activate 493 and deactivate subregions of the computational do- 525 494 main sequentially (Kuraz et al., 2013a, 2014, 2015). 495 The domain was non-uniformly discretized by a

triangular mesh. The smallest spatial step was considered for the top layers inside the infiltration ring, close to the Dirichlet boundary. The mesh is depicted on figure 3. The minimum spatial length was 0.5 cm, and the maximum spatial length was 20 cm. The domain was discretized with 2097 nodes and 3861 elements. The coarse mesh for the *dd*-adaptivity method was a uniform quadrilateral mesh with elements 17.75×28.0 cm, i.e. a total of 40 coarse elements and 55 nodes. The purpose of the coarse mesh is to organize the elements of the domain triangularization into so-called clusters, which form a basic unit for the adaptive domain decomposition used here for solving the nonlinear problem, details can be found in (Kuraz et al., 2015).

The spatial and temporal discretization of (4) leads 540 to sequential solutions of systems of non-linear equations, see e.g. (Kuraz et al., 2013a). The system was 542 linearized as discussed in Kuraz and Mayer (2013); 543 Kuraz et al. (2013b), and so the numerical solution 544

$$\mathbf{A}(\mathbf{x}_l^k)\mathbf{x}_l^{k+1} = \mathbf{b}(\mathbf{x}_l^k),\tag{16}$$

where k denotes the iteration level, and l denotes the time level, until

$$\|\mathbf{x}_{l}^{k+1} - \mathbf{x}_{l}^{k}\|_{2} < \varepsilon, \tag{17}$$

where ε is the desired iteration criterion. It is apparent that the number of required iterations depends on the ε criterion.

The method (16) degenerates into a kind of semiexplicit approximation if the error criterion ε was "infinitely huge" – inn theory it means taken from the extended real numbers, $\varepsilon \in \overline{\mathbb{R}}$, and assigned as $\varepsilon = +\infty$. This semiexplicit approximation is denoted as

$$\mathbf{A}(\mathbf{x}_{l-1})\mathbf{x}_l = \mathbf{b}(\mathbf{x}_{l-1}). \tag{18}$$

This semiexplicit method always requires just a single iteration. With a short time step the method converges to the exact solution. For inappropriate time steps, the method diverges from the exact solution faster than the method (16). Nonetheless, the method (18) is free of possible issues related to the convergence of the nonlinear operator.

3. Automatic calibration methodology

MICHAL: We need a better introduction for this section

The infiltration flux is obtained from the numerical derivative of the solution of (4), and it is known that inaccurate approximation of the capacity term ties (Celia et al., 1990). We are aware of the possible impact of spatial and temporal discretization on the identified SHP values. We are also aware of possible difficulties with convergence of the linearized discrete system (16) for certain combinations of SHP parameters during the automatic calibration, as discussed by Binley and Beven (2003).

Following the concerns about effects of numerical 583 treatment for the identified values of SHP parameters a specific automatic calibration methodology was proposed. The technique is explained in brief in figure 5, and details are given in the following paragraph. 586

Before we start with automatic calibration description, the following nomenclature will be defined

 r_f - "refinement level", the problem is treated with different spatial and temporal discretization setups, each setup is denoted by value of r_f index,

 i_e – local extreme index,

553

554

555

570

571

572

576

p – vector of SHP parameters, vector contains the values of α , n, θ_s , K_s , S_s ,

 $\mathbf{p}_{max,min}^{r_f}$ — maximal, resp. minimal values of SHP parameters defining a parameter range for a certain refinement level r_f ,

 $\mathbf{p}_{max,min}^{i_e,r_f}$ - maximal, resp. minimal values of SHP parameters defining a parameter range for a certain refinement level r_f in a certain vicinity of a local extreme i_e ,

extreme i_e , $\Delta(\mathbf{x})$ – spatial discretization (mesh density, mesh is

non-uniform).

The calibration algorithm is described as follows:

- (i) **Do** initial calibration with semiexplicit treatment of (16) ($\varepsilon \leftrightarrow +\infty$), r_f =0, vectors $\mathbf{p}_{max,min}^{r_f}$ are taken from table 3.
- (ii) If the problem is multimodal
 - Then sequence of vectors $\mathbf{p}_{r_f}^{i_e}$ is generated.
- (iii) Do validation:
 - select local extremes with good fitting qualities,
 - increase $r_f = r_f + 1$ as follows

$$\Delta(\mathbf{x})^{r_f} = \frac{\Delta(\mathbf{x})^{r_f-1}}{2},$$

$$\varepsilon^{r_f} = 10^{-3} \text{ cm} \quad \text{if } r_f = 1, \text{ else } \varepsilon^{r_f} = \frac{\varepsilon^{r_f-1}}{10},$$

$$t_{init}^{r_f} = \frac{t_{init}^{r_f-1}}{10} \text{ hrs.}$$
(19)

create a response plot of the objective function (13) for current r_f and r_f - 1 in the neighborhood defined as

$$\mathbf{p}_{max}^{i_e,r_f} = 1.20\mathbf{p}^{i_e},$$

$$\mathbf{p}_{min}^{i_e,r_f} = 0.70\mathbf{p}^{i_e}.$$
(20)

- (a) Validation methodology:
 - i. Compare the response plots for the selected local extreme i_e created with discretization r_f and $r_f 1$.
 - ii. If the response plots differ significantly.
 - Then do the calibration at parameter range defined in (20). New sets
 of vectors p^{ie}_{rf} will be generated.

589

Figure 5: The proposed methodology for the automatic calibration avoiding effects of numerical treatment for the identified SHP values.

• Increase the discretization level r_f 630 as $r_f = r_f + 1$, perform the up- 631 date (19), return to (iii)(a)i, and 632 check the condition (iii)(a)ii. 633

635

639

640

iii. else

601

602

605

606

619

621

629

• Exit the calibration process.

The following sections will further explain the definition of the objective function and the parameter identification algorithm.

4. Results and discussion

611 4.1. Synthetic problem

The purpose of this benchmark example was to demonstrate, whether this class of problem – identification of SHP parameters from cumulative flux measured at Dirichlet boundary – can be affected by multimodality.

For simplicity only a one-dimensional Richards equation problem was considered here. Dirichlet boundary conditions were presumed for both boundaries. The model setup state as follows. Computational domain was $\Omega = (0, 100 \text{ cm})$, and the boundary and initial conditions stated as follows

$$h(x,t) = 0 cm, \quad \forall (x,t) \in \Gamma_{bot} \times t \in [0,T_{end})$$

$$h(x,t) = 0 cm, \quad \forall (x,t) \in \Gamma_{top} \times t \in [0,T_{end}) \quad (21)$$

$$H(x,t_0) = 0 cm, \quad \forall x \in \Omega,$$

where $\Gamma_{bot}=0.0$ cm, $\Gamma_{top}=100.0$ cm, and 658 $T_{end}=10^{-1}$ hrs. Two distinguished soil types were 659 considered here – clay loam and sand, the parameters 660 were obtained from (van Genuchten et al., 2009). 661 The computational domain Ω was uniformly dis-

cretized with Δx =0.5 cm, the initial time step was

 $\Delta t = 10^{-7}$ hrs, and the error criterion from (17) for solving the nonlinear system (16) was $\varepsilon = 10^{-3}$ cm.

The reference solutions both for sand and gravel media were obtained from cumulative flux over the top Dirichlet boundary Γ_{top} .

For the given reference solutions the inverse modeling algorithm described in section 2.4.2 was employed for searching the original SHP parameters in broad ranges given in table 3. In order to avoid effects of numerical treatment of the Richards equation, the numerical solver had exactly the same configuration as the one used for the reference solution.

Results of the synthetic problem are given in table 4. For these two different soil types involved the inverse modeling algorithm has found several local optima, and the low value of an objective function doesn't necessarily point to the correct solution. Thus the problem is multi-modal. Several distinct SHP parameter sets can lead to acceptable solutions. However, the most distinct SHP parameter is the saturated water content θ_s . It turns out that an expert knowledge is required here, to select an acceptable solution of this inverse problem.

4.2. Real-world problem

We found multiple optima for the real-world problem. The local extremes for the refinement level $r_f = 0$ are given in table 6, where the gray lines refer to local extremes with bad fitting properties (extremes 1-5), the local extremes 6-8 refer to inverse model solutions with good fitting properties. The results were visually inspected. An example of bad fitting dataset is depicted on figure 6 - left, and the example of the good fitting dataset is depicted on figure 6 - right. Solution for each dataset is given in Appendix. Complete

653

654

Table 4: Results of the synthetic problem. The grey highlighted rows refer to the physically acceptable solution of this benchmark inverse problem, and the red highlighted rows contain the exact solution of this inverse problem.

			*						
				parameters					
			α [cm ⁻¹]	n [-]	θ_s [-]	K_s [cm.hrs ⁻¹]	RMSE error		
	exact solut	ion	0.019	1.31	0.41	6.24			
clay loam identified	idontified	1	0.020	1.321	0.395	6.226	4.787×10^{-2}		
	solutions	2	0.012	1.050	0.250	7.011	2.830×10^{-1}		
	Solutions	3	1.280×10^{-4}	1.146	0.900	94.904	3.724×10^{-1}		
	exact solut	ion	0.145	2.68	0.43	29.7			
sand	identified -	1	0.039	1.050	0.250	35.563	2.978×10^{-2}		
	solutions	2	0.026	1.087	0.587	37.877	2.406×10^{-2}		
	Solutions	3	0.154	2.654	0.460	30.145	2.199×10^{-2}		

Figure 6: Left: Local extreme 2 – bad fitting properties, Right: Local extreme 5 – good fitting properties.

settings specifications for each r_f level involved here are given in table 5.

In the next step the refinement level was increased, new mesh was generated.

For the local extreme 6, the refined numerical treat- 692 ment $r_f=1$ has not affected the objective function, 693 the figure 7 depicts two examples of the scatter plots 694

– for the parameter α and n. The scatter plots of all parameters are given in Appendix. The response for the α parameter (figure 7 - left) seems adequate, which was not the case of n parameter (figure 7 - right). It turns out that for this parameter set the objective function exhibits poor local sensitivity. However, this was not the case of the other local extremes, see figure 8 - left.

The local extreme 8 is characterized by nonzero specific storage S_s . However, if we look closer to the scatter plot 8 - right, it becomes apparent, that the specific storage should vanish even for this parametric set. Both local extremes 7 and 8 exhibit similar local sensitivity and similar response for changing the r_f level, as the one depicted in figure 8 - right.

For the local extremes 7 and 8, the inverse process was restarted with discretization level $r_f=1$. The new inverse solution was searched in vicinity of both extremes, and thus two different narrow parameter ranges were defined now – see table 7. Based on the results discussed above the specific storage was assumed to vanish from our model.

The updated solutions maintained similar fitting qualities as the solutions obtained at $r_f = 0$, see fig-

 $\label{thm:condition} \textbf{Table 5: Settings for different } r_f \ \textbf{levels. Computer architecture 32-core Intel(R) Xeon(R) CPU E5-2630, bogomips 4801.67, objective functions } \\$ were evaluated in parallel.

r_f	Picard criterion number of number of		initial	number of	CPU time for				
level	ε [cm]		nodes elements	elements Δt [hrs]	alamanta			objective function	objective function
icvei	elements nodes elements	Δt [III8]	evaluations	computation [min]					
0	~ +∞	2097	3861	10-6	40 000	3			
1	10^{-3}	4503	8488	10 ⁻⁷	1 000	20			
2	10-4	9637	18588	10-8	1 000	60			

Table 6: Identified local extremes of Pareto front during the first run of parameter search procedure.

no.	$\alpha [\mathrm{cm}^{-1}]$	n [-]	θ_s [-]	K_s [cm.hrs ⁻¹]	S_s [cm ⁻¹]
1	2.447×10^{-4}	2.45	0.25	2.500×10^{-2}	4.190×10^{-3}
2	1.010×10^{-3}	0.6517	0.271	1.092	2.879×10^{-2}
3	1.840×10^{-2}	2.098	0.353	1.092	1.845×10^{-4}
4	1.570×10^{-3}	1.968	0.720	2.070	1.053×10^{-5}
5	1.500×10^{-3}	1.586	0.720	1.093	7.641×10^{-3}
6	2.580×10^{-3}	2.152	0.401	1.095	0
7	3.802×10^{-3}	1.279	0.594	1.165	0
8	2.550×10^{-3}	1.384	0.254	1.119	1.922×10^{-4}

Figure 7: Scatter plots of the objective function (13) for the parameter α (left) and n (right) for extreme 6.

Figure 8: Scatter plots of the objective function (13) for the parameter n at extreme 7 (left) and S_s at extreme 8 (right)

Table 7: Ranges of SHP (\mathbf{p}_{max} and \mathbf{p}_{min}) for identifying the SHP in the top-soil layer for refinement level $r_f = 1$.

extreme	θ_s [-]	α [cm ⁻¹]	n [-]	K_s [cm.hrs ⁻¹]
7	0.475 - 0.712	$3.042 \times 10^{-3} - 4.562 \times 10^{-3}$	1.023 - 1.534	0.932 - 1.398
8	0.203 - 0.305	$2.040 \times 10^{-3} - 3.060 \times 10^{-3}$	1.107 - 1.661	0.8952 - 1.342

ure 9 - right. Whereas the solution depicted on figure 9 - left was created with SHP dataset obtained at previous discretization level ($r_f = 0$) tested on model with increased discretization level ($r_f = 1$).

In order to evaluate the results obtained at $r_f = 1$ discretization level, the discretization level was inrot creased again for $r_f = 2$. New scatter plots were generated, an example is given in figure 4.2. For all scatter plots see Appendix.

Figure 9: Left: Local extreme 7 infiltration curve for the original parameter set obtained at $r_f = 0$ and solved on model with discretization $r_f = 1$, right: solution for the updated parameter set in vicinity of the extreme 7.

Figure 10: Scatter plots for $r_f=1,2$ for extreme 8 for parameters θ_S and n.

The location of peaks of the scatter plots for these two sequential disceretization levels do not vary significantly, and so no further refinements were re-

Figure 11: Resulting retention curves obtained from the inverse model.

quired. The table 6 provides the final results of this $_{738}$ inverse problem. As mentioned above the solution for $_{739}$ the extreme 6 didn't require further updates, except $_{740}$ for the n parameter, which has been slightly updated $_{741}$ from the identified value 2.152 for new value 1.950 in $_{742}$ accordance with the scatter plot in figure 7 - right. $_{743}$

4.3. Limitations and realism of results

707

710

711

712

714

718

719

720

721

722

723

724

726

728

729

Local optima 7 resulted in the most realistic results for the podzolic top O+Ah soil layer. The saturated conductivity is similar across identified optima 748 and slightly lower than in the lower horizon E. The 749 O+Ah top layer horizon can swell up and the infil- 750 tration may reduce the volume of the effective pores. 751 The identified saturated conductivity is highly limited 752 by the input data and will always be lower than the 753 1D saturated conductivity fitted with the Swartzen-754 druber equation. The porosity is slightly lower than 755 expected. The humidification process and the high or- 756 ganic content can cause high curvature in the pore sys-757 tem, which may have caused an overestimation of the 758 horizon. The identified values for α are also similar in 759 range across the optima. α is related to the inverse of the air entry value, which in terms of suction is greater 761

than the initial condition. In the evaluation of the realism of the optimization we the treatment of the initial condition and the representativeness of the input curve as the greatest limitation. This however, does not delimit the applicability of the proposed calibration methodology.

5. Conclusions

We presented an automated calibration procedure that is able to identify optima from a relatively wide range of input parameters without convergence issues of the nonlinear operator. We also showed numerical considerations in the domain set-up of a challenging problem. We show that starting with the semi-explicit scheme can identify regions of interest. However, the identified SHP can change dramatically with an improved numerical set-up, so that several stages of refinement are required until SHP estimates can be confirmed. We also acknowledge that for this calibration to work, the optimization algorithm needs to be able to identify multiple optima.

We applied the methodology to synthetic and a real transient SR infiltration data. Our synthetic infiltration problems show that identification of soils with unimodal grain size distribution can result in multiple distinct optima with good fitting properties. Although some optima show good fits, the parameters are not necessarily physical/reasonable in the eyes of the expert. For both, the synthetic and real problems, expert knowledge on the saturated water content can aid the identification of the most reasonable optimum.

Research outlook: MICHAL: Add research outlook

Table 8: The resulting SHP data sets.

	1			K_s [cm.hrs ⁻¹]	S_s [cm ⁻¹]
6	2.580×10^{-3} 3.229×10^{-3} 2.276×10^{-3}	1.950	0.401	1.095	0
7	3.229×10^{-3}	1.442	0.513	1.100	0
8	2.276×10^{-3}	1.519	0.236	1.036	0

801

802

6. Acknowledgement

Funding: Financial support from the internal grant 797
agency of the faculty of environmental science with 798
project number: 42200/1312/3149 is gratefully acknowledged.

7 References

Angulo-Jaramillo, R., Vandervaere, J.P., Roulier, S., Thony, J.L., 768 Gaudet, J.P., Vauclin, M., 2000. Field measurement of soil 769 surface hydraulic properties by disc and ring infiltrometers: A 770 review and recent developments. Soil Tillage Res. 55, 1-29. 771 doi:10.1016/S0167-1987(00)00098-2. 772 Bagarello, V., Prima, S.D., Iovino, M., 2017. 773 Estimating saturated soil hydraulic conductivity by the near steady-774 state phase of a beerkan infiltration test. Geoderma 775 303, 70 - 77. URL: http://www.sciencedirect.com/ science/article/pii/S001670611730201X, doi:https: //doi.org/10.1016/j.geoderma.2017.04.030. 778 Bear, J., 1979. Hydraulics of groundwater. McGraw-Hill series in water resources and environmental engineering, McGraw-Hill 780 International Book Co. 781 Bellman, R., Åström, K., 1970. On structural identifiabil-Mathematical Biosciences 7, 329 - 339. URL: 783 http://www.sciencedirect.com/science/article/ 784 pii/002555647090132X, doi:https://doi.org/10.1016/ 785

pii/002555647090132X, doi:https://doi.org/10.1016/
0025-5564(70)90132-X.

Binley, A., Beven, K., 2003. Vadose zone flow model uncertainty
as conditioned on geophysical data. Ground Water 41, 119–127.

URL: http://dx.doi.org/10.1111/j.1745-6584.2003.
tb02576.x, doi:10.1111/j.1745-6584.2003.tb02576.x.

Braess, D., 1997. Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge University Press.

Buckingham, E., 1907. Studies on the movement of soil moisture.
 USDA Bureau of Soils – Bulletin 38.

Celia, M.A., Bouloutas, E.T., Zarba, R.L., 1990. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resources Research 26, 1483–1496. doi:10.1029/WR026i007p01483.

Cheng, Q., Chen, X., Chen, X., Zhang, Z., Ling, M., 2011. Water infiltration underneath single-ring permeameters and hydraulic conductivity determination. J. Hydrol. 398, 135–143. doi:10. 1016/j.jhydrol.2010.12.017.

Christie, I., Griffiths, D.F., Mitchell, A.R., Zienkiewicz, O.C., 1976.

Finite element methods for second order differential equations with significant first derivatives. International Journal for Numerical Methods in Engineering 10, 1389–1396. URL: http://dx.doi.org/10.1002/nme.1620100617, doi:10.1002/nme.1620100617.

Dusek, J., Dohnal, M., Vogel, T., 2009. Numerical analysis of ponded infiltration experiment under different experimental conditions. Soil and Water Research 4, 22–27.

Fodor, N., Sándor, R., Orfánus, T., Lichner, L., Rajkai, K., 2011. Evaluation method dependency of measured saturated hydraulic conductivity. Geoderma 165, 60–68. doi:10.1016/j.geoderma.2011.07.004.

van Genuchten, M., 1980. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils.

Soil Science Society of America Journal 44, 892-898.

URL: http://www.scopus.com/inward/record.

url?eid=2-s2.0-0019057216&partnerID=40&md5=
1a9a45e1c2b571c00ebb9a9f9ebaaf92.

van Genuchten, M.T., Simunek, J., Leiji, F.J., Sejna, M., 2009.

RETC, version 6.02 – code for quantifying the hydraulic functions of unsaturated soils. URL: http://www.hydrus3d.com.

Hrstka, O., Kučerová, A., 2004. Improvements of real coded genetic algorithms based on differential operators preventing premature convergence. Advances in Engineering Software 35, 237 – 246. URL: http://www.sciencedirect.com/science/article/pii/S0965997803001133, doi:https://doi.org/10.1016/S0965-9978(03)00113-3.

```
Hwang, S.I., Powers, S.E., 2003.
                                          Estimating unique soil 874
831
       hydraulic parameters for sandy media from multi-step out- 875
832
       flow experiments.
                             Advances in Water Resources 26,
       445 - 456.
                       URL: http://www.sciencedirect.com/ 877
834
       science/article/pii/S0309170802001070, doi:https: 878
835
       //doi.org/10.1016/S0309-1708(02)00107-0.
836
    Ibrahimbegović, A., Knopf-Lenoir, C., Kucerova, A., Villon, P., 880
837
       2004. Optimal design and optimal control of structures undergo-
       ing finite rotations and elastic deformations. International Jour- 882
839
       nal for Numerical Methods in Engineering 61, 2428-2460.
840
    Inoue, M., Šimøunek, J., Shiozawa, S., Hopmans, J., 884
841
       2000.
                 Simultaneous estimation of soil hydraulic and 885
842
       solute
               transport parameters from
                                            transient infiltration
       experiments.
                        Advances in Water Resources 23, 677 887
844
       - 688.
                      URL: http://www.sciencedirect.com/ 888
845
       science/article/pii/S0309170800000117, doi:https: 889
       //doi.org/10.1016/S0309-1708(00)00011-7.
847
    Jačka, L., Pavlásek, J., Jindrová, M., Bašta, P., Černý, M., Balvín, 891
       A., Pech, P., 2012. Steady infiltration rates estimated for a moun-
849
       tain forest catchment based on the distribution of plant species. 893
850
       J. For. Sci. 58, 536-544.
    Jačka, L., Pavlásek, J., Kuráž, V., Pech, P., 2014. A comparison of 895
852
       three measuring methods for estimating the saturated hydraulic
853
       conductivity in the shallow subsurface layer of mountain pod-
       zols. Geoderma 219-220, 82 - 88. doi:10.1016/j.geoderma. 898
855
       2013.12.027.
856
    Jačka, L., Pavlásek, J., Pech, P., Kuráž, V., 2016.
                                                            As- 900
857
       sessment of evaluation methods using infiltration data mea-
858
       sured in heterogeneous mountain soils. Geoderma 276, 74 902
       - 83. URL: http://www.sciencedirect.com/science/ 903
860
       article/pii/S0016706116301823, doi:http://dx.doi. 904
861
       org/10.1016/j.geoderma.2016.04.023.
862
                                                                  905
    Kamali, H.R., Zand-Parsa, S., 2016. OPTIMIZATION OF A NEW
863
       INVERSE METHOD FOR ESTIMATION OF INDIVIDUAL 907
864
       SOIL HYDRAULIC PARAMETERS UNDER FIELD CONDI- 908
865
       TIONS. Transactions of the ASABE 59, 1257-1266. doi:{10. 909
866
       13031/trans.59.11414}.
    Knobloch, P., 2008.
                            On the choice of the supg parame- 911
868
       ter at outflow boundary layers. Advances in Computational
869
       Mathematics 31, 369. URL: https://doi.org/10.1007/ 913
870
       s10444-008-9075-6, doi:10.1007/s10444-008-9075-6.
871
     Kohne, J., Mohanty, B., Simunek, J., 2006. Inverse dual- 915
       permeability modeling of preferential water flow in a soil col-916
873
```

umn and implications for field-scale solute transport. Vadose zone journal 5, 59 – 76. doi:http://dx.doi.org/10.2136/vzj2005.0008.

Kool, J., Parker, J., Van Genuchten, M., 1985. Determining soil hydraulic properties from one-step outflow experiments by parameter estimation. i. theory and numerical studies. Soil Science Society of America 49, 1348 – 1354.

Kowalsky, M., Finsterle, S., Rubin, Y., 2004. Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. ADVANCES IN WATER RESOURCES 27, 583–599. doi:{10.1016/j.advwatres.2004.03.003}.

Kucerova, A., 2007. Identification of nonlinear mechanical model parameters based on softcomputing methods. Ph.D. thesis. Ecole Normale Supérieure de Cachan, Laboratoire de Mécanique et Technologie.

Kuráž, M., Mayer, P., Lepš, M., Trpkošová, D., 2010. An adaptive time discretization of the classical and the dual porosity model of Richards' equation. Journal of Computational and Applied Mathematics 233, 3167–3177. ISSN: 0377-0427.

Kuraz, M., Mayer, P., 2008. Drutes – an opensource library for solving coupled nonlinear convection-diffusion-reaction equations.

URL: http://www.drutes.org.

Kuraz, M., Mayer, P., 2013. Algorithms for solving darcian flow in structured porous media. Acta Polytecnica 53, 347–358.

Kuraz, M., Mayer, P., Havlicek, V., Pech, P., 2013a. Domain decomposition adaptivity for the richards equation model. Computing 95, 501–519. URL: http://dx.doi.org/10.1007/s00607-012-0279-8, doi:10.1007/s00607-012-0279-8.

Kuraz, M., Mayer, P., Havlicek, V., Pech, P., Pavlasek, J., 2013b.
Dual permeability variably saturated flow and contaminant transport modeling of a nuclear waste repository with capillary barrier protection. Applied Mathematics and Computation 219, 7127 – 7138. doi:http://dx.doi.org/10.1016/j.amc.2011.08.109.

Kuraz, M., Mayer, P., Pech, P., 2014. Solving the nonlinear richards equation model with adaptive domain decomposition. Journal of Computational and Applied Mathematics 270, 2 – 11. URL: http://www.sciencedirect.com/science/article/pii/S0377042714001502, doi:http://dx.doi.org/10.1016/j.cam.2014.03.010. fourth International Conference on Finite Element Methods in Engineering and Sciences (FEMTEC 2013).

```
Kuraz, M., Mayer, P., Pech, P., 2015. Solving the nonlinear and 960
917
       nonstationary richards equation with two-level adaptive domain 961
918
       decomposition (dd-adaptivity). Applied Mathematics and Com-
       putation 267, 207 - 222.
920
                                                                    963
     Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, 964
921
       R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil 965
922
       transfer parameters through infiltration experiments-best. Soil 966
923
       Science Society of America Journal 70, 521 – 532. doi:http:
       //dx.doi.org/10.2136/sssaj2005.0026.
925
     Leps, M., 2007. Parallel multi-objective identification of material 969
926
       parameters for concrete, in: Proceedings of the Ninth Interna- 970
927
       tional Conference on the Application of Artificial Intelligence to 971
928
       Civil, Structural and Environmental Engineering, Stirling: Civil-
       Comp Press Ltd.
                                                                    973
930
                          Identification of the movement of wa- 974
     Mous, S., 1993.
931
       ter in unsaturated soils:
                                     the problem of identifiabil- 975
932
       ity of the model.
                              Journal of Hydrology 143, 153 - 976
933
        167. URL: http://www.sciencedirect.com/science/ 977
934
       article/pii/0022169493900930, doi:https://doi.org/ 978
935
       10.1016/0022-1694(93)90093-0. xVI General Assembly 979
936
       of the European Geophysical Society.
     Nakhaei, M., Amiri, V., 2015. ESTIMATING THE UNSAT- 981
938
       URATED SOIL HYDRAULIC PROPERTIES FROM A RE- 982
939
       DISTRIBUTION EXPERIMENT: APPLICATION TO SYN- 983
       THETIC DATA. JOURNAL OF POROUS MEDIA 18, 717- 984
941
       729.
942
     Peña-Sancho, C., Ghezzehei, T., Latorre, B., González- 986
943
       Cebollada, C., Moret-Fernández, D., 2017.
                                                      Upward in- 987
944
       filtration-evaporation method to estimate soil hydraulic 988
       properties.
                      Hydrological Sciences Journal 62, 1683- 989
946
        1693.
                  URL: https://doi.org/10.1080/02626667. 990
947
       2017.1343476,
                          doi:10.1080/02626667.2017.1343476, 991
948
       arXiv:https://doi.org/10.1080/02626667.2017.134347662
949
     Ramos, T., Goncalves, M., Martins, J., van Genuchten, M., Pires, 993
950
       F., 2006. Estimation of soil hydraulic properties from numerical 994
951
       inversion of tension disk infiltrometer data. VADOSE ZONE 995
952
       JOURNAL 5, 684-696. doi:10.2136/vzj2005.0076.
953
     Reynolds, W.D., 2008a. Saturated hydraulic properties: Ring infil- 997
954
       trometer, in: Carter M.R., Gregorich, E.G. [Eds.], Soil Sampling 998
955
       and Methods of Analysis, 2nd ed. CRC Press Taylor & Francis,
956
       Boca Raton, USA, pp. 1043-1056.
957
     Reynolds, W.D., 2008b. Saturated hydraulic properties: Well per- 1001
       meameter, in: Carter M.R., Gregorich, E.G. [Eds.], Soil Sam- 1002
959
```

pling and Methods of Analysis, 2nd ed. CRC Press Taylor & Francis, Boca Raton, USA, pp. 1025–1042.

Rezaei, M., Seuntjens, P., Shahidi, R., Joris, I., Boënne, W., Al-Barri, B., Cornelis, W., 2016. The relevance of insitu and laboratory characterization of sandy soil hydraulic properties for soil water simulations. Journal of Hydrology 534, 251 - 265. URL: http://www.sciencedirect.com/ science/article/pii/S0022169416000044, doi:http:// dx.doi.org/10.1016/j.jhydrol.2015.12.062.

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Journal of Applied Physics 1, 318–333. doi:10.1063/1.1745010.

Roos, H., G., Stynes, M., Tobiska, L., 1996. Numerical Methods for Singularly Perturbed Differential Equations, Convection-Diffusion and Flow Problems. Springer-Verlag Berlin Heidelberg.

Rypl, D., 2004. T3D Mesh Generator. Department of Mechanics, CTU in Prague, Czech Republic. Prague, Czech Republic. URL: http://mech.fsv.cvut.cz/~dr/t3d.html.

Saltelli, A., Chan, K., Scott, E., 2000. Sensitivity Analysis. Wiley series in probability analysis, John Wiley & Sons.

Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 251, 163 – 176. doi:http://dx.doi.org/10.1016/S0022-1694(01) 00466-8.

Scharnagl, B., Vrugt, J.A., Vereecken, H., Herbst, M., 2011. Inverse modelling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrology and Earth System Sciences 15, 3043–3059. URL: http://www.hydrol-earth-syst-sci.net/15/3043/2011/, doi:10.5194/hess-15-3043-2011.

Schwartz, R., Evett, S., 2002. Estimating hydraulic properties of a fine-textured soil using a disc infiltrometer. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL 66, 1409–1423.

Simunek, J., van Genuchten, M., T., Gribb, M., Hopmans, J.W., 1998. Parameter estimation of unsaturated soil hydraulic properties from transient flow processes1. Soil Tillage Res. 47, 27 – 36. doi:http://dx.doi.org/10.1016/S0167-1987(98) 00069-5.

Simunek, J., Wendroth, O., van Genuchten, M., 1999. Estimating unsaturated soil hydraulic properties from laboratory tension disc infiltrometer experiments. WATER RESOURCES RE-

SEARCH 35, 2965-2979, doi:{10.1029/1999WR900179}. 1003 Swartzendruber, D., 1987. A Quasi-Solution of Richards Equation 1004 for the Downward Infiltration of Water into Soil. Water Resour. Res. 23, 809-817. doi:10.1029/WR023i005p00809. 1006 Ventrella, D., Losavio, N., Vonella, A., Leij, F., 2005. Estimating 1046 1007 hydraulic conductivity of a fine-textured soil using tension in- 1047 1008 filtrometry. Geoderma 124, 267 - 277. doi:http://dx.doi. 1009 org/10.1016/j.geoderma.2004.05.005. Verbist, K., Cornelis, W.M., Gabriels, D., Alaerts, K., Soto, G., 1011 2009. Using an inverse modelling approach to evaluate the wa-1012 ter retention in a simple water harvesting technique. HYDROL- 1051 1013 OGY AND EARTH SYSTEM SCIENCES 13, 1979-1992. 1014 Vitingerova, Z., 2010. Evolutionary Algorithms for Multi-1015 Objective Parameter Estimation. Ph.D. thesis. CTU in Prague, 1016 Fac. of Civil Eng. 1017 Xu, X., Lewis, C., Liu, W., Albertson, J., Kiely, 2012 Analysis of single-ring infiltrometer data for 1019 soil hydraulic properties estimation: Comparison of best 1020 Agricultural Water Management 107, and wu methods. 1021 URL: http://www.sciencedirect.com/ 1022 science/article/pii/S0378377412000200, doi:https: //doi.org/10.1016/j.agwat.2012.01.004. 1024 Younes, A., Mara, T., Fahs, M., Grunberger, O., Ackerer, 1025 P., 2017. Hydraulic and transport parameter assessment using column infiltration experiments. Hydrology and 1027 Earth System Sciences 21, 2263-2275. URL: https: 1028 //www.hydrol-earth-syst-sci.net/21/2263/2017/, 1029 doi:10.5194/hess-21-2263-2017. 1030 Zou, Z.Y., Young, M., Li, Z., Wierenga, P., 2001. 1031 mation of depth averaged unsaturated soil hydraulic prop-1032 erties from infiltration experiments. Journal of Hydrology

Appendix A. Sensitivity analyses

1033

1034

1035

1036

1037

1039

1040

1041

1042

The first procedure, which is typically required before proceeding the inverse modeling procedures, is the global sensitivity analyses on selected parameter ranges, see table 3. For simplicity the sensitivity anal- 1056 yses was conducted just for the first objective func- 1057

242, 26 - 42. URL: http://www.sciencedirect.com/

science/article/pii/S0022169400003851, doi:http://

dx.doi.org/10.1016/S0022-1694(00)00385-1.

tion (13). This strategy is in line with the statements given in the last paragraph of the section 2.4.1. In total 10.000 samples of the objective function (13) were evaluated, in order to obtain the Total Sobol Index for each parameter (Saltelli et al., 2000). The values of the Total Sobol Indices are given in table A.9. Since the evaluated Total Sobol Index for each parameter was nearly 0.9, our model exhibits an excellent sensitivity for all SHP parameters.

Appendix B. Solutions after the first identification run with $r_f = 0$ and $r_f = 1$.

Figure B.12: Refinement level $r_f = 0$: Local extreme 1, Right: Local extreme 2.

Appendix C. Scatter plots for objective functions, $r_f = 0, 1$

Scatter plots of the objective functions for the local extreme 6 are depicted in figures Appendix C -

Table A.9: Total Sobol indices for the searched SHP parameters.

parameter	α	n	K_s	$ heta_s$	S_s
Total Sobol Index	0.850	0.921	0.876	0.868	0.884

Figure B.13: Refinement level $r_f = 0$: Local extreme 3, Right: Local extreme 4.

Figure B.14: Refinement level $r_f = 0$: Local extreme 5 , Right: Local extreme 6.

Appendix C.

1058

1064

Scatter plots of the objective functions for the lo- 1070 1059 cal extreme 7 are depicted in figures Appendix C-Appendix C. 1061 Scatter plots of the objective functions for the lo-1062 cal extreme 8 are depicted in figures Appendix C -1063 Appendix C.

Appendix D. New solutions for $r_f = 1$

The updated solutions for the local extremes 7 and 1066 8 are depicted in figures Appendix D and Appendix 1067 D. 1068

Appendix E. Scatter plots for objective functions,

 $r_f = 1, 2$

Scatter plots of the objective functions for the updated local extreme 7 for $r_f = 1, 2$ is depicted in figures Appendix E - Appendix E.

Figure B.15: Refinement level $r_f=0$: Local extreme 7 , Right: Local extreme 8.

Figure C.16: Scatter plots for $r_f=0,1$ for extreme 6 for parameters α and n.

Figure C.17: Scatter plots for $r_f = 0$, 1 for extreme 6 for parameters K_s and θ_s .

θ [-]

Figure C.18: Scatter plots for $r_f=0,1$ for extreme 6 for parameter S .

Figure C.19: Scatter plots for $r_f=$ 0, 1 for extreme 7 for parameters α and n.

Figure C.20: Scatter plots for $r_f=0,1$ for extreme 7 for parameters K_s and θ_s .

Figure C.21: Scatter plots for $r_f=0,1$ for extreme 7 for parameter $\mathcal{S}_{\mathfrak{s}}$

Figure C.22: Scatter plots for $r_f=0,1$ for extreme 8 for parameters α and n.

Figure C.23: Scatter plots for $r_f = 0, 1$ for extreme 8 for parameters K_s and θ_s .

Figure C.24: Scatter plots for $r_f=0,1$ for extreme 8 for parameter S_s .

Figure D.25: Left: Local extreme 7 infiltration curve for the original parameter set obtained at $r_f = 0$ and solved on model with discretization $r_f = 1$, right: solution for the updated parameter set in vicinity of the extreme 7.

Figure D.26: Left: Local extreme 8 infiltration curve for the original parameter set obtained at $r_f=0$ and solved on model with discretization $r_f=1$, right: solution for the updated parameter set in vicinity of the extreme 7.

Figure E.27: Scatter plots for $r_f=1,2$ for extreme 7 for parameters α and n.

Figure E.29: Scatter plots for $r_f=1,2$ for extreme 8 for parameters α and n.

Figure E.28: Scatter plots for $r_f = 1, 2$ for extreme 7 for parameters K_s and θ_s .

Figure E.30: Scatter plots for $r_f = 1, 2$ for extreme 8 for parameters K_s and θ_s .