SC4/SM8 Advanced Topics in Statistical Machine Learning Kernel Methods

Yee Whye Teh Department of Statistics Oxford

https://github.com/ywteh/advml2020

Dual C-SVM

$$\text{maximize} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j,$$

subject to the constraints

$$0 \le \alpha_i \le C, \quad \sum_{i=1}^n y_i \alpha_i = 0$$

From α , obtain the hyperplane with

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i.$$

Offset b can be obtained from any of the margin SVs (for which $\alpha_i \in (0, C)$): $1 = y_i (w^T x_i + b)$.

Dual form and Inner Products

We have stumbled across something quite interesting. Dual program

$$\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \qquad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$

only depends on inputs x_i through their inner products (similarities) with other inputs.

Decision function

$$f(x) = \operatorname{sign}(w^{\top}x + b) = \operatorname{sign}(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{\top} x + b)$$

also depends only on the similarity of a test point x to the training points x_i . Thus, we do not need explicit inputs - just their pairwise similarities. Key property: even if p > n, it is still the case that $w \in \text{span } \{x_i : i = 1, \dots, n\}$ (normal vector of the hyperplane lives in the subspace spanned by the datapoints).

Beyond Linear Classifiers

- No linear classifier separates red from blue.
- Linear separation after mapping to a higher dimensional feature space:

$$\mathbb{R}^2 \ni \left(\begin{array}{ccc} x^{(1)} & x^{(2)} \end{array} \right)^{\top} = x \ \mapsto \ \varphi(x) = \left(\begin{array}{ccc} x^{(1)} & x^{(2)} & x^{(1)}x^{(2)} \end{array} \right)^{\top} \in \mathbb{R}^3$$

Non-Linear SVM

 Consider the dual C-SVM with explicit non-linear transformation $x \mapsto \varphi(x)$:

$$\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{i})^{\top} \varphi(x_{j}) \quad \text{ subject to } \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$
 • Suppose $p=2$, and we would like to introduce quadratic non-linearities,

$$\varphi(x) = \left(1, \sqrt{2}x^{(1)}, \sqrt{2}x^{(2)}, \sqrt{2}x^{(1)}x^{(2)}, \left(x^{(1)}\right)^2, \left(x^{(2)}\right)^2\right)^\top.$$

Then

$$\begin{split} \varphi(x_i)^\top \varphi(x_j) &= 1 + 2x_i^{(1)} x_j^{(1)} + 2x_i^{(2)} x_j^{(2)} + 2x_i^{(1)} x_i^{(2)} x_j^{(1)} x_j^{(2)} \\ &+ \left(x_i^{(1)}\right)^2 \left(x_j^{(1)}\right)^2 + \left(x_i^{(2)}\right)^2 \left(x_j^{(2)}\right)^2 = (1 + x_i^\top x_j)^2 \end{split}$$

- Since only inner products are needed, non-linear transform need not be computed explicitly - inner product between features can be a simple function (**kernel**) of x_i and x_i : $k(x_i, x_i) = \varphi(x_i)^{\top} \varphi(x_i) = (1 + x_i^{\top} x_i)^2$
- *d*-order interactions can be implemented by $k(x_i, x_i) = (1 + x_i^{\top} x_i)^d$ (polynomial kernel). Never need to compute explicit feature expansion of dimension $\binom{p+d}{d}$ where this inner product happens!

Kernel SVM: Kernel trick

• Kernel SVM with $k(x_i, x_j)$. Non-linear transformation $x \mapsto \varphi(x)$ still present, but **implicit** (coordinates of the vector $\varphi(x)$ are never computed).

$$\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k(x_{i}, x_{j}) \quad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ 0 \leq \alpha \leq C \end{cases}$$

- Prediction? $f(x) = \operatorname{sign} \left(w^{\top} \varphi(x) + b \right)$, where $w = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)$ and offset b obtained from a margin support vector x_j with $\alpha_j \in (0, C)$.
 - No need to compute w either! Just need

$$w^{\top}\varphi(x) = \sum_{i=1}^{n} \alpha_i y_i \varphi(x_i)^{\top} \varphi(x) = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x).$$

Get offset from

$$b = y_j - w^{\top} \varphi(x_j) = y_j - \sum_{i=1}^n \alpha_i y_i k(x_i, x_j)$$

for any margin support-vector x_j ($\alpha_j \in (0, C)$).

 Fitted a separating hyperplane in a high-dimensional feature space without ever mapping explicitly to that space.

Kernel trick in general

- In a learning algorithm, if only inner products $x_i^{\top} x_j$ are explicitly used, rather than data items x_i, x_j directly, we can replace them with a kernel function $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$, where $\varphi(x)$ could be **nonlinear**, **high-and potentially infinite-dimensional** features of the original data.
 - Kernel ridge regression
 - Kernel logistic regression
 - Kernel PCA, CCA, ICA
 - Kernel K-means

Kernel Methods and Reproducing Kernel Hilbert Spaces

slides based on Arthur Gretton's Reproducing kernel Hilbert spaces in Machine Learning course

Kernel: an inner product between feature maps

Definition (kernel)

Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel** if there exists a **Hilbert space** and a map $\varphi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(x,x') := \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}.$$

- Almost no conditions on \mathcal{X} (eg, \mathcal{X} itself need not have an inner product, e.g., documents).
- Think of kernel as a similarity measure between features

What are some simple kernels? E.g., for text documents? For images?

A single kernel can correspond to multiple sets of underlying features.

$$\varphi_1(x) = x$$
 and $\varphi_2(x) = \begin{pmatrix} x/\sqrt{2} & x/\sqrt{2} \end{pmatrix}^{\top}$

Positive semidefinite functions

If we are given a "measure of similarity" with two arguments, k(x, x'), how can we determine if it is a valid kernel?

- Find a feature map?
 - Sometimes not obvious (especially if the feature vector is infinite dimensional)
- A simpler direct property of the function: positive semidefiniteness.

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semidefinite if $\forall n \geq 1, \ \forall (a_1, \dots a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j \kappa(x_i, x_j) \ge 0.$$

• Kernel $k(x,y) := \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}}$ for a Hilbert space \mathcal{H} is positive semidefinite.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle a_i \varphi(x_i), a_j \varphi(x_j) \rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^{n} a_i \varphi(x_i) \right\|_{\mathcal{U}}^2 \ge 0.$$

Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space \mathcal{H} .

 H is usually thought of as a space of functions (Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel $k(x, x') = \exp\left(-\frac{1}{2\gamma^2} \|x - x'\|^2\right)$ has an infinite-dimensional \mathcal{H} with elements $h(x) = \sum_{i=1}^m \alpha_i k(x_i, x)$ and their pointwise limits.

Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called **a reproducing kernel** of \mathcal{H} if it satisfies

- $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H},$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

In particular, for any
$$x, y \in \mathcal{X}$$
, $k(x, y) = \langle k(\cdot, y), k(\cdot, x) \rangle_{\mathcal{H}} = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}$.

Can forget all about $\varphi(x)$ and just treat $k(\cdot,x)$ as a feature of x (it is a perfectly valid Hilbert-space valued feature)!

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space \mathcal{H} of functions $f: \mathcal{X} \to \mathbb{R}$, defined on a non-empty set \mathcal{X} is said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation functionals $\delta_x: \mathcal{H} \to \mathbb{R}$, $\delta_x f = f(x)$ are continuous $\forall x \in \mathcal{X}$.

Theorem (Norm convergence implies pointwise convergence)

If
$$\lim_{n\to\infty} \|f_n - f\|_{\mathcal{H}} = 0$$
, then $\lim_{n\to\infty} f_n(x) = f(x)$, $\forall x \in \mathcal{X}$.

- If two functions $f,g \in \mathcal{H}$ are close in the norm of \mathcal{H} , then f(x) and g(x) are close for all $x \in \mathcal{X}$
- This is a property of particularly "nice" functional spaces. For example, does not hold on spaces endowed with L_2 norm: x^n on [0, 1] converges to 0 in L_2 but not pointwise.

Back to SVMs

Maximum margin classifier in RKHS: Looking for a decision function of form sign(f(x)) where $f \in \mathcal{H}_k$. Because we are in an RKHS, $f(x) = \langle f, k(\cdot, x) \rangle_{\mathcal{H}_k}$.

$$\min_{f \in \mathcal{H}_k} \left(\frac{1}{2} \|f\|_{\mathcal{H}_k}^2 + C \sum_{i=1}^n \left(1 - y_i \left\langle f, k(\cdot, x_i) \right\rangle_{\mathcal{H}_k} \right)_+ \right)$$

for the RKHS \mathcal{H} with kernel k(x,x'). Maximizing the margin equivalent to minimizing $||f||_{\mathcal{H}}^2$: for many RKHSs a smoothness constraint on function f (more about this later).

Why can we solve this infinite-dimensional optimization problem? Because we know that $f \in \text{span}\{k(\cdot,x_i): i=1,\ldots,n\}$ – Representer Theorem.

Representer Theorem

Representer theorem

Standard supervised learning setup: we are given a set of paired observations $(x_1, y_1), \dots (x_n, y_n)$.

Goal: find the function f^* in the RKHS \mathcal{H} which solves the regularized empirical risk minimization problem.

$$\min_{f \in \mathcal{H}} \hat{R}(f) + \Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right),\,$$

where empirical risk is

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i), x_i),$$

and Ω is a non-decreasing function.

- Classification: L could be a hinge loss $L(y, f(x), x) = (1 yf(x))_+$ or a logistic loss $L(y, f(x), x) = \log(1 + \exp(-yf(x)))$.
- Regression: $L(y, f(x), x) = (y f(x))^2$.

Representer theorem

Theorem (Representer Theorem)

There is a solution to

$$\min_{f \in \mathcal{H}} \hat{R}(f) + \Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right)$$

that takes the form

$$f^* = \sum_{i=1}^n \alpha_i k(\cdot, x_i).$$

If Ω is strictly increasing, all solutions have this form.

Representer theorem: proof

Proof: Denote f_s projection of f onto the subspace

span
$$\{k(\cdot, x_i) : i = 1, ..., n\}$$

such that

$$f = f_s + f_{\perp},$$

where $f_s = \sum_{i=1}^n \alpha_i k(\cdot, x_i)$ and f_{\perp} is orthogonal to span $\{k(\cdot, x_i) : i = 1, \dots, n\}$.

Regularizer:

$$||f||_{\mathcal{H}}^2 = ||f_s||_{\mathcal{H}}^2 + ||f_{\perp}||_{\mathcal{H}}^2 \ge ||f_s||_{\mathcal{H}}^2,$$

then

$$\Omega\left(\left\|f\right\|_{\mathcal{H}}^{2}\right) \geq \Omega\left(\left\|f_{s}\right\|_{\mathcal{H}}^{2}\right).$$

Representer theorem: proof

Proof (cont.): Individual terms $f(x_i)$ in the loss:

$$f(x_i) = \langle f, k(\cdot, x_i) \rangle_{\mathcal{H}} = \langle f_s + f_{\perp}, k(\cdot, x_i) \rangle_{\mathcal{H}} = \langle f_s, k(\cdot, x_i) \rangle_{\mathcal{H}},$$

so

$$L(y_i, f(x_i), x_i) = L(y_i, f_s(x_i), x_i) \forall i \implies \hat{R}(f) = \hat{R}(f_s).$$

Hence

- The empirical risk only depends on the components of f lying in the subspace spanned by canonical features.
- Regularizer $\Omega(...)$ is minimized when $f = f_s$.
- If Ω is strictly non-decreasing, then $\|f_{\perp}\|_{\mathcal{H}} = 0$ is required at the minimum.

Kernel Ridge Regression

Regularised Least Squares

We are given *n* training points $\{x_i\}_{i=1}^n$ in \mathbb{R}^p : Define some $\lambda > 0$. Our goal is:

$$w^* = \arg\min_{w \in \mathbb{R}^p} \left(\sum_{i=1}^n (y_i - x_i^\top w)^2 + \lambda ||w||^2 \right)$$
$$= \arg\min_{w \in \mathbb{R}^p} \left(||\mathbf{y} - \mathbf{X}w||^2 + \lambda ||w||^2 \right),$$

Solution is:

$$w^* = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y},$$

which is the standard regularised least squares solution.

Kernel ridge regression

Use features $\phi(x_i)$ in the place of x_i :

$$w^* = \arg\min_{w \in \mathcal{H}} \left(\sum_{i=1}^n (y_i - \langle w, \phi(x_i) \rangle_{\mathcal{H}})^2 + \lambda \|w\|_{\mathcal{H}}^2 \right).$$

E.g. for finite dimensional feature spaces,

$$\phi_p(x) = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^{\ell} \end{bmatrix} \qquad \phi_s(x) = \begin{bmatrix} \sin(x) \\ \cos(x) \\ \sin(2x) \\ \vdots \\ \cos(\frac{\ell}{2}x) \end{bmatrix}$$

In finite dimensions, w is a vector of length ℓ giving weight to each of these features so that learned function is $f_w(x) = w^\top \phi(x)$. Feature vectors can also have **infinite** length.

Kernel ridge regression

Recall that feature maps ϕ and feature spaces $\mathcal H$ are not unique, but RKHS $\mathcal H_k$ is. Thus, we can identify w with the function f_w (there is an isometry between w and f_w : $\|w\|_{\mathcal H} = \|f_w\|_{\mathcal H_k}$ regardless of the choice of the feature space $\mathcal H$) and write

$$f^* = \arg\min_{f \in \mathcal{H}_k} \left(\sum_{i=1}^n (y_i - \langle f, k(\cdot, x_i) \rangle_{\mathcal{H}})^2 + \lambda \|f\|_{\mathcal{H}_k}^2 \right)$$
$$= \arg\min_{f \in \mathcal{H}_k} \left(\sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_k}^2 \right).$$

Kernel ridge regression

Recall the representer theorem: f is a linear combination of feature space mappings of data points

$$f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i).$$

Then

$$\sum_{i=1}^{n} (y_i - \langle f, k(\cdot, x_i) \rangle_{\mathcal{H}_k})^2 + \lambda \|f\|_{\mathcal{H}_k}^2 = \|\mathbf{y} - \mathbf{K}\alpha\|^2 + \lambda \alpha^\top \mathbf{K}\alpha$$
$$= \mathbf{y}^\top \mathbf{y} - 2\mathbf{y}^\top \mathbf{K}\alpha + \alpha^\top (\mathbf{K}^2 + \lambda \mathbf{K}) \alpha$$

Differentiating wrt α and setting this to zero, we get

$$\alpha^* = (\mathbf{K} + \lambda I_n)^{-1} y.$$

$$\text{Recall: } \tfrac{\partial \alpha^\top U \alpha}{\partial \alpha} = (U + U^\top) \alpha, \qquad \tfrac{\partial \nu^\top \alpha}{\partial \alpha} = \tfrac{\partial \alpha^\top \nu}{\partial \alpha} = \nu$$

Parameter selection for KRR

Given the objective

$$f^* = \arg\min_{f \in \mathcal{H}_k} \left(\sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}_k}^2 \right).$$

How do we choose

- The regularization parameter λ ?
- The kernel parameter: for Gaussian kernel, σ in

$$k(x, y) = \exp\left(\frac{-\|x - y\|^2}{\sigma}\right).$$

Beware: Gaussian kernel has many different parametrisations in the literature and software packages!

Typically use cross-validation.

Choice of λ

Choice of σ

Kernel families and operations with kernels

Examples of kernels

- Linear: $k(x, x') = x^{\top}x'$.
- Polynomial: $k(x, x') = (c + x^{\top} x')^m$, $c \in \mathbb{R}$, $m \in \mathbb{N}$.
- Periodic (1d): $k(x,x') = \exp\left(-\frac{2\sin^2(\pi|x-x'|/p)}{\gamma^2}\right)$, period $p, \gamma > 0$.
- Exponential: $k(x, x') = \exp(\frac{x^{\top} x'}{\gamma}), \gamma > 0.$
- Gaussian RBF: $k(x, x') = \exp\left(-\frac{1}{2\gamma^2} \|x x'\|^2\right), \gamma > 0.$
- Laplace: $k(x, x') = \exp\left(-\frac{1}{\gamma} \|x x'\|\right), \gamma > 0.$
- Rational quadratic: $k(x, x') = \left(1 + \frac{\|x x'\|^2}{2\alpha\gamma^2}\right)^{-\alpha}, \ \alpha, \gamma > 0.$
- Brownian covariance: $k(x, x') = \frac{1}{2} (\|x\|^{\gamma} + \|x'\|^{\gamma} \|x x'\|^{\gamma}), \gamma \in [0, 2].$

all norms are 2-norms unless specified otherwise

Matérn Family

$$k(x,x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\gamma} \left\| x - x' \right\| \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\gamma} \left\| x - x' \right\| \right), \quad \nu > 0, \gamma > 0,$$

where K_{ν} is the modified Bessel function of the second kind of order ν .

•
$$\nu = 1/2$$
: $k(x, x') = \exp\left(-\frac{1}{\gamma} \|x - x'\|\right)$

•
$$\nu = 3/2$$
: $k(x, x') = \left(1 + \frac{\sqrt{3}}{\gamma} \|x - x'\|\right) \exp\left(-\frac{\sqrt{3}}{\gamma} \|x - x'\|\right)$

•
$$\nu = 5/2$$
: $k(x, x') = \left(1 + \frac{\sqrt{5}}{\gamma} \|x - x'\| + \frac{5}{3\gamma^2} \|x - x'\|^2\right) \exp\left(-\frac{\sqrt{5}}{\gamma} \|x - x'\|\right)$

• as
$$\nu \to \infty$$
, converges to Gaussian RBF $k(x,x') = \exp\left(-\frac{1}{2\gamma^2} \|x - x'\|^2\right)$

Matérn family norms penalize the derivatives of f. In particular, for $\nu = s + 1/2$, it penalizes the derivatives up to order s + 1, e.g. for $\nu = 3/2$ and in one dimension:

$$||f||_{\mathcal{H}_k}^2 \propto \int f''(x)^2 dx + \frac{6}{\gamma^2} \int f'(x)^2 dx + \frac{9}{\gamma^4} \int f(x)^2 dx$$

New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given $\alpha > 0$ and k, k_1 and k_2 all kernels on \mathcal{X} , then αk and $k_1 + k_2$ are kernels on \mathcal{X} .

To prove this, just check inner product definition (features get scaled with $\sqrt{\alpha}$ or concatenated). A difference of kernels need not be a kernel (**why?**)

Lemma (Space transformation)

Let \mathcal{X} and $\widetilde{\mathcal{X}}$ be sets, and consider any map $s: \mathcal{X} \to \widetilde{\mathcal{X}}$. Let \tilde{k} be a kernel on $\widetilde{\mathcal{X}}$. Then $k(x,x') = \tilde{k}(s(x),s(x'))$ is a kernel on \mathcal{X} .

Proof: if $\tilde{\varphi}$ is a feature map for \tilde{k} , then $\varphi = \tilde{\varphi} \circ s$ is a feature map for k.

New kernels from old: products

Lemma (Products of kernels are kernels)

Given k_1 on \mathcal{X}_1 and k_2 on \mathcal{X}_2 , then $k_1 \times k_2$ is a kernel on $\mathcal{X}_1 \times \mathcal{X}_2$.

Proof.

Sketch for finite-dimensional spaces only. Assume \mathcal{H}_1 corresponding to k_1 is \mathbb{R}^m , and \mathcal{H}_2 corresponding to k_2 is \mathbb{R}^n . Define:

- $k_1 := u^\top v$ for $u, v \in \mathbb{R}^m$ (e.g.: kernel between two images)
- $k_2 := p^{\top}q$ for $p, q \in \mathbb{R}^n$ (e.g.: kernel between two captions)

Is the following a kernel?

$$K[(u,p);(v,q)] = k_1 \times k_2$$

(e.g. kernel between one image-caption pair and another)

New kernels from old: products

Proof.

(continued)

$$k_1 k_2 = (u^{\top} v) (q^{\top} p)$$

$$= \operatorname{trace}(u^{\top} v q^{\top} p)$$

$$= \operatorname{trace}(p u^{\top} v q^{\top})$$

$$= \langle A, B \rangle,$$

where $A := pu^{\top}$, $B := qv^{\top}$ (features of image-caption pairs) Thus k_1k_2 is a valid kernel, since inner product between $A, B \in \mathbb{R}^{m \times n}$ is

$$\langle A, B \rangle = \operatorname{trace}(AB^{\top}).$$

Another way: just note that the **Kronecker product of positive definite** matrices is positive definite!

More products and Taylor expansions

Lemma (Products of kernels are kernels)

Given kernels k_1 and k_2 on \mathcal{X} $k_1 \times k_2$ is a kernel on \mathcal{X} .

Proof: It is certainly a kernel on $\mathcal{X} \times \mathcal{X}$, so just consider space transformation $s: \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ with s(x) = (x, x).

Another way: just note that the **Hadamard product of positive definite** matrices is positive definite!

As a corollary:

$$k(x, x') = c + \sum_{j=1}^{d} a_j \langle x, x' \rangle^d$$
 (1)

is certainly a kernel. Readily extends to

$$k(x, x') = g(\langle x, x' \rangle) \tag{2}$$

for an analytic function g with nonnegative Taylor coefficients, e.g., exp.

Gaussian RBF is a kernel

As a product of an exponential kernel and a kernel with 1-d feature $x \mapsto \exp\left(-\frac{\|x\|^2}{2\gamma^2}\right)$.

$$k(x, x') = \exp\left(-\frac{1}{2\gamma^2} \|x - x'\|^2\right)$$
$$= \exp\left(-\frac{\|x\|^2}{2\gamma^2}\right) \exp\left(-\frac{\|x'\|^2}{2\gamma^2}\right) \exp\left(\frac{1}{\gamma^2} \langle x, x' \rangle\right)$$

All of the proofs above are constructive: they give a way of constructing new features from old. But the resulting features quickly become very difficult to interpret. There is another, much cleaner way to do this: Mercer's Theorem.

Mercer's theorem

- Assume that \mathcal{X} is a compact metric space, $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel and fix a finite measure ν on \mathcal{X} with supp $\nu = \mathcal{X}$.
- To k we can associate a certain operator T_k on $L_2(\mathcal{X}; \nu)$ which is compact, positive and self-adjoint

$$[T_k f](y) = \int f(x)k(x, y)\nu(dx)$$

• There exist an orthonormal set of **continuous** L_2 functions $\{e_j\}_{j\in J}$ and $\{\lambda_j\}_{j\in J}$ (strictly positive eigenvalues with $\lambda_j\to 0$; J at most countable).

Theorem (Mercer's theorem)

 $\forall x, y \in \mathcal{X}$ with convergence uniform on $\mathcal{X} \times \mathcal{X}$:

$$k(x, y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y).$$

Mercer's theorem

$$k(x,y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y)$$
$$= \left\langle \left\{ \sqrt{\lambda_j} e_j(x) \right\}, \left\{ \sqrt{\lambda_j} e_j(y) \right\} \right\rangle_{\ell^2(J)}$$

Another (Mercer) feature map:

$$\varphi: \mathcal{X} \to \ell^2(J)$$

$$\varphi: x \mapsto \left\{ \sqrt{\lambda_j} e_j(x) \right\}_{j \in J}$$

Mercer's Theorem and Smoothness

What does $||f||_{\mathcal{H}}$ have to do with smoothing? For the Gaussian kernel:

$$f(x) = \sum_{r=1}^{\infty} a_r e_r(x), \qquad ||f||_{\mathcal{H}}^2 = \sum_{r=1}^{\infty} \frac{a_r^2}{\lambda_r}.$$

 $\lambda_r \sim B^r \to 0$, as $r \to \infty$ for $B \in (0,1)$ and $e_r(x)$ are functions of increasing complexity as r increases (r zero-crossings) — related to r-th order **Hermite polynomials**. Figure from Rasmussen and Williams, 2006

RKHS Embeddings of Distributions

Kernel Trick and Kernel Mean Trick

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\varphi_1(x), \dots, \varphi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot,x),k(\cdot,y)\rangle_{\mathcal{H}_k}=k(x,y)$ inner products readily available
 - nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

Kernel Trick and Kernel Mean Trick

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\varphi_1(x), \dots, \varphi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot,x),k(\cdot,y)\rangle_{\mathcal{H}_k}=k(x,y)$ inner products readily available
 - nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data
- RKHS embedding: implicit feature mean

[Smola et al, 2007; Sriperumbudur et al, 2010]
$$P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$$
 replaces $P \mapsto [\mathbb{E}\varphi_1(X), \dots, \mathbb{E}\varphi_s(X)] \in \mathbb{R}^s$

- $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X \sim P, Y \sim Q} k(X, Y)$ inner products easy to estimate
 - multiple instance learning / learning on distributions, nonparametric testing for homogeneity, independence, conditional independence, three-variable interaction

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

[Gretton et al, 2005; Gretton et al, 2006; Fukumizu et al, 2007; DS, Bergsma & Gretton, 2013; Szabo et al, 2015]

Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
 between P and Q:

$$\mathsf{MMD}_k(P, \underline{Q}) = \|\mu_k(P) - \mu_k(\underline{Q})\|_{\mathcal{H}_k} = \sup_{f \in \mathcal{H}_k: \|f\|_{\mathcal{H}_k} \le 1} |\mathbb{E}f(X) - \mathbb{E}f(\underline{Y})|$$

- Characteristic kernels: $\mathsf{MMD}_k(P, Q) = 0$ iff P = Q (also metrizes weak* [Sriperumbudur,2010]).
 - Gaussian RBF $\exp(-\frac{1}{2\sigma^2} ||x x'||_2^2)$, Matérn family, inverse multiquadrics.
- Can encode structural properties in the data: kernels on non-Euclidean domains, networks, images, text...

Two-sample testing on nonstandard domains

Figure by Arthur Gretton

Average similarity within two samples vs average similarity across two samples.

MMD has been applied to:

- independence tests on text data [Gretton et al, 2009]
- two-sample tests on graphs [Gretton et al, 2012]
- training generative neural networks for image data [Dziugaite, Roy and Ghahramani, 2015]
- two-sample tests on persistence diagrams in topological data analysis [Kwitt et al, 2015]
- similarity measure between observed and simulated data in ABC [Park, Jitkrittum and DS, 2015]

Kernel dependence measures: HSIC

- $HSIC^2(X, Y; \kappa) = \|\mu_{\kappa}(P_{XY}) \mu_{\kappa}(P_{X}P_{Y})\|_{\mathcal{H}_{\kappa}}^2$
- Hilbert-Schmidt norm of the feature-space cross-covariance [Gretton et al, 2009]
- dependence witness is a smooth function in the RKHS \mathcal{H}_{κ} of functions on $\mathcal{X} \times \mathcal{Y}$

- Independence testing framework that generalises Distance Correlation (dcor) of [Szekely et al, 2007]: HSIC with Brownian motion kernels [DS et al, 2013]
- Extends to multivariate interaction and joint dependence measures [DS et al, 2013; Pfister et al, 2017]

Kernel dependence measures: HSIC (2)

Hilbert-Schmidt Independence Criterion (**HSIC**): similarity between the kernel matrices $\left\langle \tilde{\mathbf{K}}, \tilde{\mathbf{L}} \right\rangle = \boxed{\text{Tr}\left(\tilde{\mathbf{K}}\tilde{\mathbf{L}}\right)}$, where $\tilde{\mathbf{K}} = \mathbf{H}\mathbf{K}\mathbf{H}$, and $\mathbf{H} = \mathbf{I} - \frac{1}{n}\mathbb{1}\mathbb{1}^{\top}$ is the centering matrix. [Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]

Distribution Regression

 supervised learning where labels are available at the group, rather than at the individual level.

Figure from Flaxman et al, 2015

Figure from Mooij et al, 2014

- classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
- aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
- image labels based on a distribution of small patches [Szabo et al, 2016]
- "traditional" parametric statistical inference by learning a function from sets of samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]
- identify the cause-effect direction between a pair of variables from a joint sample [Lopez-Paz et al,2015]

Distribution Regression (2)

- Multiple-Instance Learning: Input is a bag of B_i vectors $\{x_{i1}, \dots, x_{iB_i}\}$, each $x_{ia} \in X$ assumed to arise from a probability distribution P_i on \mathcal{X} .
- Represent the *i*-th bag by the corresponding empirical kernel embedding $\mathfrak{m}_i = \mu_k \left[\mathsf{P}_i \right] = \frac{1}{B_i} \sum_{a=1}^{B_i} k(\cdot, x_{ia})$ w.r.t. a kernel k on \mathcal{X} .
- Now treat the problem as having inputs m_i ∈ H_k: just need to define a kernel K on H_k.

Linear:
$$K(\mathfrak{m}_i,\mathfrak{m}_j) = \langle \mathfrak{m}_i,\mathfrak{m}_j \rangle_{\mathcal{H}_k} = \frac{1}{B_i B_j} \sum_{a=1}^{B_i} \sum_{b=1}^{B_j} k(x_{ia},x_{jb})$$

Gaussian: $K(\mathfrak{m}_i,\mathfrak{m}_j) = \exp\left(-\frac{1}{2\gamma^2} \left\|\mathfrak{m}_i - \mathfrak{m}_j\right\|_{\mathcal{H}_k}^2\right).$

Term $\|\mathfrak{m}_i - \mathfrak{m}_j\|_{\mathcal{H}_k}^2$ can be thought of as a distance between empirical measures corresponding to bags i and j (this is empirical Maximum Mean Discrepancy (MMD)).

Kernel Methods – Discussion

- Kernel methods allows for very flexible and powerful machine learning models.
- **Nonparametric** method: parameter space (e.g., normal vector *w* in SVM) can be infinite-dimensional
- Kernels can be defined over more complex structures than vectors, e.g. graphs, strings, images, bags of instances, probability distributions.
- In naïve implementation, computational cost is at least quadratic in the number of observations, often $O(n^3)$ computation and $O(n^2)$ memory, but there are various approximations with good scaling up properties.
- Further reading:
 - Schölkopf and Smola, Learning with Kernels, 2001.
 - Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.
 - Steinwart and Christmann, Support Vector Machines, 2008.
 - Berlinet and Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, 2004.
 - Bishop, Pattern Recognition and Machine Learning, Chapter 6.