$X \to \mathbb{R}$  is  $\mathcal{M}$ -measurable if

**Definition.** Let  $(X, \mathcal{M})$  be a measurable space. A function f:

$$f^{-1}((a,\infty)) = \{x : f(x) > a\} \in \mathcal{M} \text{ for all } a \in \mathbb{R}.$$

We could have replaced the > in the definition with <,  $\geq$ , or  $\leq$ .

**Proposition.** If 
$$(X, \mathcal{M})$$
 is a measurable space and  $f: X \to \mathbb{R}$ , then the following are equivalent:  $T \in A \subset \mathbb{R}$ .

- 1.  $f^{-1}((a,\infty)) = \{x : f(x) > a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$
- 2.  $f^{-1}([a,\infty)) = \{x : f(x) \ge a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$   $f(a,\infty) = \{x : f(x) \le a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$
- **4.**  $f^{-1}((-\infty, a]) = \{x : f(x) \le a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$



then the following are equivalent:

Let  $(X, \mathcal{M})$  be a measurable space. A function f:

 $X \to \mathbb{R}$  is  $\mathcal{M}$ -measurable if

 $f^{-1}((a,\infty)) = \{x : f(x) > a\} \in \mathcal{M} \text{ for all } a \in \mathbb{R}.$ 

We could have replaced the > in the definition with <, >, or <.

**Proposition.** If  $(X, \mathcal{M})$  is a measurable space and  $f: X \to \mathbb{R}$ .

**1.**  $f^{-1}((a,\infty)) = \{x : f(x) > a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$ 

**2.**  $f^{-1}([a,\infty)) = \{x : f(x) \ge a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$ 

3.  $f^{-1}((-\infty, a)) = \{x : f(x) < a\} \in \mathcal{M} \ \forall a \in \mathbb{R}.$ 

**4.**  $f^{-1}((-\infty, a]) = \{x : f(x) \le a\} \in \mathcal{M} \ \forall a \in \mathbb{R}. \ \forall a \in \mathbb{R$ 

Ex: fi Bore Measurable" if M= {Bord of algebra} = alg

Lecture 4

Measure Theory, EDGE 2020

1 => 2 f-([a, 00])

since M is closed

and Exif(x) > a-7, }

ey (by)

wholer intersections,

{x:f(x) = a3 &d

( {20, f(a) > a-1-}

]={x; f(x) = a3

y 2 a 75 the union of open intervals user closed? 0 = = = 8  $\left(\frac{1}{n}, \infty\right) = \left(0, \infty\right)$ Does this contain 0? No since of (th, so) for any n. ( (-in, to) = [0, to] € This intersection contains O sirce O∈ (-1,00) An -1 -1 -1 -0 ヨハミナーかくも

For example,  $1 \Longleftrightarrow 4$  because

$$\{x: f(x) \leq a\} = X \setminus \{x: f(x) > a\}.$$

A few of the other parts of this proposition are on your homework. The following identities may be helpful.

$$\{x: f(x) \geq a\} = \bigcap_{n=1}^{\infty} \left\{x: f(x) > a - \frac{1}{n}\right\}$$

$$\{x:f(x)>a\}=\bigcup_{n=1}^{\infty}\left\{x:f(x)\geq a+\frac{1}{n}\right\}$$

# Examples of measurable functions

1. Let  $(X, \mathcal{M})$  be any measurable space. Then every constant function  $f: X \to \mathbb{R}$  is  $\mathcal{M}$ -measurable.

function 
$$f: X \to \mathbb{R}$$
 is  $M$ -measurable.  
Let  $f(x) = c$  all  $x \in X$ ,  $c$  some real number.  
W.T.S.  $\forall a \in \mathbb{R}$   $f^{-1}(ca, on) \in M$ 

Let 
$$f(x) = c$$
 all  $x \in \Lambda$ , with  $c \in \mathbb{R}$   $f^{-1}(ca, on) \in \mathbb{M}$ 

Lecture 4

f(x)=c, >a=>

## Examples of measurable functions

- **1.** Let  $(X, \mathcal{M})$  be any measurable space. Then every constant function  $f: X \to \mathbb{R}$  is  $\mathcal{M}$ -measurable.
- **2.** Let X be a metric space. Then every continuous function  $f: X \to \mathbb{R}$  is  $\mathcal{B}(X)$ -measurable (where  $\mathcal{B}(X)$  is the Borel  $\sigma$ -algebra on X).

If 
$$f$$
 is continuous,  $f^{-1}((a, \omega))$  is open.

Only open set is a countable union of open intervals

 $f^{-1}((a, \omega))$  is a countable union of open intervals

 $f^{-1}((a, \omega)) \in B(X)$ .

## Examples of measurable functions

- 1. Let  $(X, \mathcal{M})$  be any measurable space. Then every constant function  $f: X \to \mathbb{R}$  is  $\mathcal{M}$ -measurable.
- **2.** Let X be a metric space. Then every continuous function  $f: X \to \mathbb{R}$  is  $\mathcal{B}(X)$ -measurable (where  $\mathcal{B}(X)$  is the Borel  $\sigma$ -algebra on X).
- characteristic function (or indicator function)  $\mathbf{1}_A:X\to\mathbb{R}$  is

$$f: X \to \mathbb{R}$$
 is  $\mathcal{B}(X)$ -measurable (where  $\mathcal{B}(X)$  is the Borel  $\sigma$ -algebra on  $X$ ).

3. Let  $(X, \mathcal{M})$  be any measurable space, and let  $A \in \mathcal{M}$ . Then the characteristic function (or indicator function)  $\mathbf{1}_A: X \to \mathbb{R}$  is  $\mathcal{M}$ -measurable.

Note  $\mathbf{1}_A = \mathbf{1}_A = \mathbf{1}$ 

Measure Theory, EDGE 2020

Lecture 4

**Proposition.** If  $f,g:(X,\mathcal{M})\to\mathbb{R}$  are measurable functions, and  $c\in\mathbb{R}$ , then the following are also  $\mathcal{M}$ -measurable:

$$-f$$
,  $f+c$ ,  $cf$ ,  $f+g$ ,  $g-f$ , and  $fg$ .

For example, let's show that f+c is measurable. Since f is measurable, then for any  $a\in\mathbb{R}$ ,

$$\{x: f(x) > a\} \in \mathcal{M}.$$

Therefore

$${x: f(x) + c > a} = {x: f(x) > a - c} \in \mathcal{M}$$

for all  $a \in \mathbb{R}$ , so f + c is measurable.

## Pre-images of Borel sets

**Proposition.** Let  $(X, \mathcal{M}, \mu)$  be a measure space, and let  $f: X \to \mathbb{R}$  $\mathbb{R}$  be  $\mu$ -measurable. If  $A \in \mathcal{B}(\mathbb{R})$ , then  $f^{-1}(A) \in \mathcal{M}$ .

<sup>a</sup>Note: this is the same as saying that f is  $\mathcal{M}$ -measurable

The strategy of this proof may be a bit unexpected. Start by defining  $\mathcal{C} = \{B \in \mathcal{B}(\mathbb{R}) : f^{-1}(B) \in \mathcal{M}\}$ . By definition  $\mathcal{C} \subseteq \mathcal{B}(\mathbb{R})$ . To show the reverse inclusion, show that  $\mathcal{C}$  is a sigma algebra containing all the open intervals  $(a, \infty)$ .

reverse inclusion, show that 
$$C$$
 is a sigma algebra containing all the open intervals  $(a, \infty)$ .

(a,  $\infty$ )  $\in$  C for all  $a$ . True, since  $C$  is how  $(a, \infty) \in$  C for all  $a$ . True, since  $C$  is  $C$  in  $C$ 

Measure Theory, EDGE 2020

Lecture 4

 $f^{-1}(C, U C_{2}) \subset f^{-1}(C_{1}) \cup f^{-1}(C_{2})$ het  $x \in f^{-1}(C_{1}) \cup f^{-1}(C_{2})$   $\Rightarrow \text{ other } f(x) \in C_{1}$   $\Rightarrow x \in f^{-1}(C_{1}) \cup f^{-1}(C_{2})$   $\Rightarrow x \in f^{-1}(C_{1}) \cup f^{-1}(C_{2})$   $\Rightarrow x \in f^{-1}(C_{1}) \cup f^{-1}(C_{2})$ 

## $\mu$ -almost everywhere

**Definition.** Let  $f, g: (X, \mathcal{M}, \mu) \to \mathbb{R}$ . We say f = g almost everywhere (or  $\mu$ -almost everywhere) if

$$\mu({x: f(x) \neq g(x)}) = 0.$$

That is, f(x) = g(x) for all  $x \in X$  except perhaps on a set of measure zero.

For example, the Dirichlet function equals the constant zero function *m*-almost everywhere.

f= g a.e. M

## Simple functions

**Definition.** Let  $(X, \mathcal{M})$  be a measurable space. A **simple function** is a finite linear combination, with non-negative coefficients, of characteristic functions on sets in  $\mathcal{M}$ . That is,

$$f(x) = \sum_{j=1}^{n} a_j \chi_{E_j}(x),$$

where  $E_j \in \mathcal{M}$  for all j, and  $a_j \in \mathbb{R}$ .

**Example.** 
$$f = 2\chi_{(-5,0)} + 1\chi_{[0,3)}$$
 is a simple function on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ .

**Definition.** (For  $X = \mathbb{R}$ ) A **step function** is a simple function where each  $E_i$  is an interval.



# Simple functions

**Theorem.** Let  $f: X \to \mathbb{R}$  be non-negative and measurable. Then

- there exists a sequence  $S_n$  of simple functions such that: **1.**  $S_n(x) \leq S_{n+1}(x) \leq f(x)$  for all  $n \geq 1$ , and almost every  $x \in X$
- **2.**  $\lim_{n\to\infty} S_n(x) = f(x)$  for almost every  $x\in X$

Outline of proof. Let 
$$E_{n,k} = \{x : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \}$$
,  $F_n = \{x : f(x) \ge n\}$  for  $n \ge 1$ ,  $k = 1, 2, ..., n2^n$ .

Note  $E_{n,k}$ ,  $F_n$  all measurable sets.

$$S_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{E_{n,k}} + n \chi_{F_n} = \begin{cases} n & \text{if } f(x) \ge n \\ \frac{k-1}{2^n} & \text{if } \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \le n \end{cases}$$

So  $S_n \to f$  as desired.

divide vest. axes

into pieces of

Measure Theory, EDGE 2020

Lecture 4

### Simple functions

**Theorem.** Let  $f: X \to \mathbb{R}$  be non-negative and measurable. Then there exists a sequence  $S_n$  of simple functions such that:

- **1.**  $S_n(x) \leq S_{n+1}(x) \leq f(x)$  for all  $n \geq 1$ , and almost every  $x \in X$
- **2.**  $\lim_{n\to\infty} S_n(x) = f(x)$  for almost every  $x \in X$

Outline of proof. Let 
$$E_{n,k} = \{x : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \},$$
  
 $F_n = \{x : f(x) \ge n\} \text{ for } n \ge 1, \ k = 1, 2, ..., n2^n.$ 

Note  $E_{n,k}$ ,  $F_n$  all measurable sets.

$$S_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{E_{n,k}} + n \chi_{F_n} = \begin{cases} n & \text{if } f(x) \ge n \\ \frac{k-1}{2^n} & \text{if } \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \le n \end{cases}$$

So  $S_n \to f$  as desired.