MATH 340 - Lab Instructor: Valeria Barra LAB 13 Assignment DUE Tuesday 04-26-2016

ODEs:

Implicit Euler

We want to solve the initial value problem:

$$\begin{cases}
Y'(t) = f(x, Y(t)), & t_0 \le t \le t_f \\
Y(t_0) = Y_0
\end{cases}$$
(1)

To solve this numerically, we discretize the time interval $[t_0, t_f]$ with a grid of n+1 points $t_0 < t_1 < \ldots < t_n$ with equal step size h (or in other words $t_i = t_0 + ih$, $i = 0, 1, \ldots, n$). We seek the discrete approximated solution to this problem, say w_{i+1} . Euler's backward (or implicit) method is defined by the iterative scheme:

$$w_{i+1} = w_i + h f(t_{i+1}, w_{i+1}), \qquad 0 \le i \le n$$
(2)

with initial condition given by $w_0 = Y_0$.

Problem 1:

Recast the following problem by hand to isolate the w_{i+1} term on the LHS to implement your own Implicit Euler Method for

$$\begin{cases} y'(t) = -5y, & 0 \le t \le 2 \\ y(0) = 1 \end{cases}$$
 (3)

whose actual solution is $Y(t) = e^{-5t}$.

Implement your own Implicit Euler's scheme to find the approximated solutions at the point t=2, for $h=2^0, 2^{-1}, \ldots, 2^{-4}$. Write your results in a table with columns in order: h_i , the approximated solution $w_{h_i}(t=2)$, the error $e_{h_i}(t=2) = |Y(t=2) - w_{h_i}(t=2)|$, and the ratio $R_{h_i}(t=2) = \frac{e_{h_{i-1}}(t=2)}{e_{h_i}(t=2)}$. What is the order of convergence? How can you infer it from the table? Plot in the same figure the approximations w_h you have found for all five values of h together with the actual

solution Y(t) for $t \in [0, 2]$. Repeat the whole exercise with the code for Explicit Euler's scheme. How do the two method compare?