

Informe N° 9 "Ensayo curvas bomba centrifuga"

Curso: Laboratorio de Máquinas (ICM 557-3)

Profesores: Cristóbal Galleguillos Ketterer

Tomás Herrera Muñoz

Alumna: Valeska Godoy Torres

<u>Índice</u>

Introducción	.3
Desarrollo	4
Conclusión	8

Introducción

En el presente ensayo analizaremos el comportamiento de una bomba centrifuga, tomando así varias mediciones a velocidad constante, pero variando su caudal, para poder encontrar la curva característica de esta bomba, relacionándola también con la carga que es capaz de operar.

1.-Objetivos.

Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

2.-Trabajo de laboratorio.

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, en [rpm].
- pax% presión de aspiración, en [%].
- pdx% presión de descarga, en [%].
- hx caudal de la bomba, presión diferencial en el venturímetro en [mmHg].
- Fx fuerza medidas en la balanza, en [kp].
- ta temperatura de agua en el estanque, en [°C].
- Patm presión atmosférica, en [mmHg].

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo.

Mida los valores siguientes:

cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].

cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

3.- INFORME.

El informe incluye el número del ensayo, la fecha, el título, los objetivos, enumeración y características de los instrumentos utilizados y los puntos siguientes.

3.1-Tabla de valores medidos.

	VALORES MEDIDOS										
	3070 [rpm]										
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	Patm	
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7	
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7	
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7	
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7	
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7	
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7	
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7	
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7	
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7	
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7	
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7	
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7	
13											

				•	(A)		22			
	VALORES MEDIDOS									
2900 [rpm]										
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	T	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7
13										

	VALORES MEDIDOS									
					2700	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
0	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

3.2 Fórmulas

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left\lceil \frac{m^3}{h} \right\rceil$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \quad \left[m_{ca} \right]$$

cpdx=165 [mm]

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = H_{\infty} \left(\frac{n}{n_{\infty}} \right)^2 \quad [m_{ca}]$$

Potencia en el eje de la bomba:

$$Nex = 0,0007355 Fxnx [kW]$$

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

 γ peso específico del agua en [N/m³]

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete

B2 ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2} \quad [-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

3.3 Tabla de valores calculados

	2900 [RPM]											
Q	рах	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	U ₂	cm ₂	ф	ψ
[m³/h]	[m _{ca]}	[m _{ca]}	[m _{ca}]	[m _{ca}]	[Kw]	[kW]	[kW]	%	[m/s]	[m/s]	[-]	[-]
107,888	-0,965	2,645	3,61	3,6025	2,9252	2,9161	1,0796	37,0236	20,4885	2,8856	0,1408	0,1682
101,055	-0,725	5,245	5,97	5,9577	3,1387	3,1290	1,6724	53,4483	20,4885	2,7029	0,1319	0,2782
92,424	-0,485	6,725	7,21	7,1951	3,3095	3,2992	1,8472	55,9895	20,4885	2,4720	0,1207	0,3359
89,907	-0,245	8,725	8,97	8,9515	3,4590	3,4482	2,2356	64,8317	20,4885	2,4047	0,1174	0,4180
79,118	-0,065	10,605	10,67	10,6480	3,5230	3,5121	2,3401	66,6306	20,4885	2,1161	0,1033	0,4972
75,548	0,225	12,365	12,14	12,1233	3,5858	3,5784	2,5441	71,0966	20,4885	2,0206	0,0986	0,5661
68,306	0,445	14,365	13,92	13,8817	3,6097	3,5948	2,6339	73,2701	20,4885	1,8269	0,0892	0,6482
57,560	0,695	16,245	15,55	15,5286	3,5858	3,5784	2,4829	69,3843	20,4885	1,5395	0,0751	0,7250
46,752	0,885	17,885	17	16,9649	3,4163	3,4057	2,2032	64,6908	20,4885	1,2504	0,0610	0,7921
35,963	1,115	19,405	18,29	18,2522	3,1814	3,1715	1,8233	57,4907	20,4885	0,9619	0,0469	0,8522
21,570	1,345	20,645	19,3	19,2469	2,9262	2,9141	1,1532	39,5739	20,4885	0,5769	0,0282	0,8987
0,000	1,835	22,605	20,77	20,7128	2,0077	1,9995	0,0000	0,0000	20,4885	0,0000	0,0000	0,9671

						3070 [RP	M]					
Q	рах	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	U ₂	cm ₂	ф	ψ
[m³/h]	[m _{ca]}	[m _{ca]}	[m _{ca}]	[m _{ca}]	[Kw]	[kW]	[kW]	%	[m/s]	[m/s]	[-]	[-]
113,216	-1,165	2,765	3,93	3,9172	3,4830	3,4660	1,2319	35,5430	21,6896	3,0281	0,1396	0,1632
107,789	-0,915	5,605	6,52	6,4946	3,8008	3,7786	1,9446	51,4625	21,6896	2,8830	0,1329	0,2706
100,603	-0,635	7,925	8,56	8,5266	4,0497	4,0260	2,3828	59,1847	21,6896	2,6908	0,1241	0,3552
91,621	-0,415	9,965	10,38	10,3395	4,1854	4,1610	2,6314	63,2407	21,6896	2,4505	0,1130	0,4308
86,203	-0,175	11,805	11,98	11,9256	4,2773	4,2482	2,8556	67,2196	21,6896	2,3056	0,1063	0,4969
77,199	0,055	13,925	13,87	13,7980	4,3240	4,2904	2,9589	68,9652	21,6896	2,0648	0,0952	0,5749
71,813	0,405	16,685	16,28	16,1955	4,3466	4,3128	3,2307	74,9086	21,6896	1,9207	0,0886	0,6748
61,041	0,645	18,645	18	17,9066	4,2787	4,2454	3,0362	71,5168	21,6896	1,6326	0,0753	0,7460
46,678	0,885	19,845	18,96	18,8616	4,1429	4,1107	2,4456	59,4948	21,6896	1,2485	0,0576	0,7858
35,918	1,135	21,925	20,79	20,6955	3,8247	3,7987	2,0648	54,3573	21,6896	0,9607	0,0443	0,8622
25,135	1,315	22,925	21,61	21,4978	3,5090	3,4817	1,5009	43,1092	21,6896	0,6723	0,0310	0,8957
0,000	1,935	25,005	23,07	22,9502	2,5582	2,5383	0,0000	0,0000	21,6896	0,0000	0,0000	0,9562

	2700 [RPM]									VALIAR		
Q	рах	pdx	Нх	Н	Nex	Ne	Nh	η gl	U ₂	cm ₂	ф	ψ
[m³/h]	[m _{ca]}	[m _{ca]}	[m _{ca}]	[m _{ca}]	[Kw]	[kW]	[kW]	%	[m/s]	[m/s]	[-]	[-]
100,725	-0,685	2,485	3,17	3,1653	2,3053	2,3002	0,8856	38,5027	19,0755	2,6941	0,1412	0,1705
92,417	-0,435	4,365	4,8	4,7894	2,4652	2,4570	1,2295	50,0408	19,0755	2,4718	0,1296	0,2580
89,900	-0,265	5,965	6,23	6,2162	2,5845	2,5759	1,5523	60,2637	19,0755	2,4045	0,1261	0,3348
79,472	-0,115	7,405	7,52	7,5033	2,6640	2,6551	1,6564	62,3845	19,0755	2,1256	0,1114	0,4042
75,544	0,125	9,205	9,08	9,0666	2,7425	2,7364	1,9026	69,5277	19,0755	2,0205	0,1059	0,4884
71,920	0,365	10,925	10,56	10,5366	2,7833	2,7740	2,1050	75,8817	19,0755	1,9236	0,1008	0,5675
58,255	0,595	13,005	12,41	12,3825	2,7833	2,7740	2,0037	72,2321	19,0755	1,5581	0,0817	0,6670
53,960	0,795	14,605	13,81	13,7896	2,7425	2,7364	2,0669	75,5332	19,0755	1,4432	0,0757	0,7428
43,168	1,015	16,125	15,11	15,0876	2,5835	2,5778	1,8092	70,1834	19,0755	1,1546	0,0605	0,8127
25,172	1,245	17,565	16,32	16,2838	2,3459	2,3381	1,1386	48,6976	19,0755	0,6733	0,0353	0,8771
17,980	1,375	18,285	16,91	16,8725	2,0875	2,0805	0,8427	40,5038	19,0755	0,4809	0,0252	0,9088
0,000	1,845	19,805	17,96	17,9202	1,5507	1,5455	0,0000	0,0000	19,0755	0,0000	0,0000	0,9653

3.4 Gráficos.

Trace el siguiente gráfico en una hoja completa:

3.4.1 De isorendimiento y potencia vs caudal.

3.4.1.1.¿Cuáles son las condiciones óptimas de operación de esta bomba?

Las mayores eficiencias se muestran en los datos de 2700 [RPM], donde hay un caudal de 53,960 [m3/h] y se obtiene el mejor rendimiento que muestra ser 75,5332 [%].

3.4.1.2.¿Las curvas tiene la forma esperada?

Todas las curvas tienen las formas esperadas, no presentan mayores desviaciones y tiene el comportamiento esperado, como conclusión la bomba opera correctamente.

3.4.1.3. ¿Cuál es la potencia máxima consumida?

Podemos observar de nuestro grafico Potencia vs Caudal, que se encuentra cuando el motor funciona a 3070 [RPM], con un caudal de 77,199 [m3/h] y se ve que la potencia máxima en el punto es 4,2904 [kW]

Trace el siguiente gráfico en una hoja completa: 3.4.2.Curva ϕ vs ψ .

3.4.2.1. ¿La nube de puntos que conforman esta curva son muy dispersos?

Podemos visualizar en el gráfico que se mantiene la tendencia de las curvas para los 3 regímenes de velocidad, la relación entre ambos parámetros es inversa, a medida que estrangulamos la descarga, el parámetro "Ψ" crece mientras "Φ" decrece.

3.4.2.2. Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo.

De acuerdo de las velocidades obtenidas nos indican que corresponde a una bomba Francis de tipo hélice o helicoidal, ya que, están un rango de 35-80.

3.4.2.3. Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta 3.4.3.2.

	2070	2000	2700
	3070	2900	2700
	Ns	Ns	Ns
1	30,9728429	32,2441785	34,2728742
2	32,4109474	33,6886355	35,5786798
3	34,2521107	34,8430349	38,0960516
4	35,9347738	38,0975097	39,2816153
5	38,5277656	39,9089443	42,9925586
6	41,7337801	43,9116968	<mark>48,0954759</mark>
7	48,6692525	49,360583	51,9860452
8	54,9786109	55,2398832	62,4133672
9	62,0851707	65,2153791	76,4852627
10	87,5210573	87,5754943	101,556371
11	117,963004	119,372045	155,045857
12	0	0	0

CONCLUSIÓN

Sabemos que la curva de carga-caudal es muy importante dentro del mercado de las bombas, ya que los fabricantes deben generar esta curva para cada uno de los modelos de bomba que tengan en el mercado, debido a que es de vital importancia para que los interesados en comprar puedan calcular bien su sistema de bombeo y así elegir bien el producto para su función.

Es parte de nuestro desempeño ingenieril seleccionar el tipo de bomba que satisfaga las necesidades operacionales de alguna instalación (altura, caudal, velocidad, potencia consumida, torque, etc.) Además, debemos asegurarnos de que opere de manera óptima, eficiente, y a un régimen que nos asegure la mayor vida útil satisfactoria para las exigencias del trabajo.