

Technical Note

SMART Command Feature Set for the 5300

Introduction

This technical note provides the self-monitoring, analysis, and reporting technology (SMART) command (B0h) feature set for the Micron 5300 SSD.

The intent of the SMART command feature set is to protect user data and minimize the likelihood of unscheduled system downtime that may be caused by predictable degradation and/or fault of the device. By monitoring and storing critical performance and calibration parameters, SMART feature set devices attempt to predict the likelihood of a near-term degradation or fault condition. Providing the host system the knowledge of a negative reliability condition allows the host system to warn the user of the impending risk of a data loss and advise the user of the appropriate action. Support of this feature set is indicated in the IDENTIFY DEVICE data.

Table 1: SMART Attribute Summary

Attrib ID	Hex ID	Name	SMART Trip	Implementation
1	01h	Raw Read Error Rate	Yes	Raw correctable and uncorrectable read error rate
5	05h	Reallocated NAND Block Count	Yes	Number of reallocated flash blocks
9	09h	Power-On Hours Count	No	Lifetime hours powered-on
12	0Ch	Power Cycle Count	No	Lifetime power cycle count
170	AAh	Reserved Block Count	Yes	Unused reserved block count
171	ABh	Program Fail Count	No	Number of NAND program status failures
172	ACh	Erase Fail Count	Yes	Number of NAND erase Status failures
173	AD	Average Block Erase Count	No	Average erase count of all good blocks
174	AEh	Unexpected Power Loss Count	No	Number of times the device has been power-cycled unexpectedly
180	B4h	Unused Reserved (Spare) Block Count	No	The number of spare blocks remaining on the SSD
183	B7h	SATA Interface Downshift	No	Count of SATA link rate downshift events
184	B8h	Error Correction Count	No	Number of end-to-end data path errors
187	BBh	Reported Uncorrectable Errors	No	Number of UECC correction failures
188	BCh	Command Timeouts	No	Upon any HRESET, COMRESET, SRST: adds active ATA commands in the queue to a lifetime counter
194	C2h	Drive Temperature	No	Drive temperature
195	C3h	Cumulative Corrected ECC	No	Tracks the total number of bits corrected over the lifetime of the device
196	C4h	Reallocation Event Count	No	Represents the total number of grown bad blocks
197	C5h	Current Pending Sector Count	No	Number of sectors waiting to be remapped
198	C6h	Smart Off-line Scan Uncorrecta- ble Error Count	No	Uncorrectable error count detected during SMART offline scan
199	C7h	Ultra DMA CRC Error Rate	No	All SATA (general) FIS CRC errors
202	CAh	Percentage of Lifetime Remaining	Yes	Percentage lifetime remaining
206	CEh	Write Error Rate	No	Ratio of the number of NAND Program Fails to the Number of Host Sectors written
210	D2h	RAIN Success Recovered Page Count	No	The total number of NAND pages successfully recovered by RAIN
211	D3h	Integrity Scan Completed Count	No	Number of periodic data integrity scans completed
212	D4h	Integrity Scan Folding Count	No	Number of folding events as a result of the periodic data integrity scan
246	F6h	Cumulative Host Sectors Written	No	The total number of sectors (LBAs) written by the host over the life of the device
247	F7h	Host Program Page Count	No	Number of NAND pages of data written by the host
248	F8h	FTL Program Page Count	No	Number of NAND pages written by the FTL

SMART Attribute: Raw Read Error Rate (ID 1)

Attribute Flags (2Fh)

- Warranty = 1
- Offline = 1
- Performance = 1
- Error rate = 1
- Event count = 0
- Self-preservation = 1

Current Value (8 bits)

This value is the total number of correctable and uncorrectable ECC error events divided by the total number of NAND pages read due to host READ commands.

Worst Value (8 bits)

The worst value of this field is the lowest value of the Current Value field ever calculated over the life of the drive, always between 1% and 100% (01h to 64h).

Raw Data (48 bits)

This data field holds the raw sum of correctable and uncorrectable ECC error events over the life of the drive. This value will saturate at FFFFFFFh.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 32h, meaning that a SMART threshold trip occurs when the value becomes 50%.

SMART Attribute: Reallocated NAND Block Count (ID 5)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is calculated as:

$$V_C = S_M - \left(\frac{S_M x B_G}{B_R} \right)$$

Where:

 $S_M = SMART_MAX_ATTRIBUTE_VALUE$

 B_G = Number of grown bad blocks

B_R = Total number of blocks reserved for use by the device

Worst Value (8 bits)

This field contains the value of the Current Value field.

Raw Data (48 bits)

The total number of reallocated blocks.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 1 and will result in a SMART threshold trip when only 1% of the reserved blocks are remaining.

SMART Attribute: Power-On Hours Count (ID 9)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value gives the raw number of hours that the drive has been under power (online) over its lifetime.

Reserved/Threshold (8 bits)

SMART Attribute: Power-Cycle Count (ID 12)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value gives the raw number of power-cycle events experienced over the life of the drive.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 1, however since the Current Value is hard-coded to 100% it will never result in a SMART threshold trip.

SMART Attribute: Reserved Block Count (ID 170)

Attribute Flags (33h)

- Warranty = 1
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value represents the percentage of unused or remaining reserved blocks available. It is normalized as a percentage from 100% down to 1% (64h to 01h). This value is calculated as:

$$V_C = 100 \left(1 - \frac{R_{USED}}{R_T} \right)$$

Where:

 R_{USED} = Total number of reserved blocks currently used R_T = Total number of blocks reserved by the device.

7

Worst Value (8 bits)

This value is always equal to the Current Value.

Raw Data (48 bits)

This value is the number of reserved blocks that have been used on the drive.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 0Ah, which results in a threshold trip when the number of reserved blocks is 10% or less remaining.

SMART Attribute: Program Fail Count (ID 171)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is calculated as:

$$V_C = 100 - 100 \left(\frac{F_P}{F_P + B_R} \right)$$

Where:

 F_P = Total number of program fails

 B_R = The number of reserved blocks remaining

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value contains the raw number of PROGRAM failure events over the life of the drive.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 0 and will never cause a SMART threshold trip.

8

SMART Attribute: Erase Fail Count (ID 172)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is calculated as:

$$V_C = 100 - 100 \left(\frac{E_F}{E_F + B_R} \right)$$

Where:

 E_F = Total number of erase failures

B_R = Current number of reserved blocks

Worst Value (8 bits)

This value is the lowest Current Value recorded over the life of the drive.

9

Raw Data (48 bits)

This value contains the raw number of ERASE failure events over the lifetime of the device.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 1.

SMART Attribute: Average Block-Erase Count (ID 173)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is calculated as:

$$V_C = 100 \left(1 - \frac{E_{AVG}}{B_I} \right)$$

Where:

 E_{AVG} = The average erase count

B_L = The rated life of a block (the erase count for which the NAND part is rated.)

Worst Value (8 bits)

This value is always equal to the Current Value.

Raw Data (48 bits)

This value is the average erase count of all good blocks.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Unexpected Power Loss Count (ID 174)

SMART Attribute: Unexpected Power Loss Count (ID 174)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value is the total number of times the device has been power-cycled unexpectedly.

Unexpected power loss can be avoided by preceding a power off with an ATA STBI (STANDBY IMMEDIATE) command, and allowing the SSD to properly complete this command before removing power to the SSD.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Unused Reserved (Spare) Block Count (ID 180)

SMART Attribute: Unused Reserved (Spare) Block Count (ID 180)

Attribute Flags (33h)

- Warranty = 1
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is hard-coded to 100% (64h).

Worst Value (8 bits)

This value is hard-coded to 100% (64h).

Raw Data (48 bits)

This value is calculated as:

 $U_{RBC} = B_T - B_G$

Where:

U_{RBC} = Total unused reserved block count

 B_T = Total number of spare blocks when the drive left the factory. The spare block count represents the number of grown bad blocks the drive can handle in the field before it enters write protect.

 B_G = Total number of grown bad blocks.

Reserved/Threshold (8 bits)

SMART Attribute: SATA Interface Downshift (ID 183)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is hard-coded to 100% (64h).

Worst Value (8 bits)

This value is hard-coded to 100% (64h).

Raw Data (48 bits)

Represents the total number of host interface speed downshifts on the SATA link. For example, the SATA link shifts to a lower-generation speed (1.5 Gb/s or 3.0 Gb/s) than what was previously negotiated (6 Gb/s).

Reserved/Threshold (8 bits)

SMART Attribute: Error Correction Count (ID 184)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This attribute indicates how many end-to-end data path errors have occurred. The formula for the current value is:

 $V_C = 100 - E_{NR} - (E_R/2)$

where:

 E_{NR} = Number of nonrecoverable errors

 E_N = Number of recoverable errors

Worst Value (8 bits)

This value holds the lowest-ever current value.

Raw Data (48 bits)

This value is the count of end-to-end error corrections.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Reported Uncorrectable Errors (ID 187)

SMART Attribute: Reported Uncorrectable Errors (ID 187)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This values represents the total number of UECC errors reported by the drive as a result of host commands (e.g. READS).

Reserved/Threshold (8 bits)

SMART Attribute: Command Timeouts (ID 188)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This counter is incremented by the number of outstanding commands when the host issues a soft reset or a comreset. This value saturates to FFFF FFFF FFFFh.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 0 and will never cause a SMART threshold trip.

16

SMART Attribute: Drive Temperature (ID 194)

Attribute Flags (22h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 0
- Self-preservation = 1

Current Value (8 bits)

This value is calculated as 100 - Current Temperature in degrees Celsius. The valid range for Current Temperature is limited to 1-99.

Worst Value (8 bits)

This value is calculated as 100 - MAX temperature. The valid range for MAX Temperature is limited to 1-99.

Raw Data (48 bits)

The value is defined as:

	Bytes								
5	4	3	2	1	0				
MAX tempe	erature (T _M)	MIN tem	perature	Current tem	perature (T _C)				

Reserved/Threshold (8 bits)

SMART Attribute: Cumulative Corrected ECC (ID 195)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

Represents the total number of correctable ECC (CECC) events found as a result of host READ commands over the life of the drive.

Reserved/Threshold (8 bits)

SMART Attribute: Reallocation Even Count (ID 196)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is hard-coded to 100% (64h).

Worst Value (8 bits)

This value is hard-coded to 100% (64h).

Raw Data (48 bits)

This value is calculated as:

 $V_R = B_T - B_F$

Where:

 B_T = Total number of bad blocks on the drive.

19

 $B_{\rm F}$ = Total number of factory-marked (OTP) bad blocks and manufacturing burn-in blocks.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Current Pending Sector Count (ID 197)

SMART Attribute: Current Pending Sector Count (ID 197)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value contains the number of sectors waiting to be remapped.

20

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: SMART Off-line Scan Uncorrectable Error Count (ID 198)

SMART Attribute: SMART Off-line Scan Uncorrectable Error Count (ID 198)

Attribute Flags (30h)

- Warranty = 0
- Offline = 0
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value is the cumulative number of unrecoverable read errors (UECC) found in the most recent media scan triggered by a SMART EXECUTE OFF-LINE IMMEDIATE command. At the beginning of each media scan, this value shall reset to zero. If no media scan has been previously run, this field shall be cleared to zero.

Reserved/Threshold (8 bits)

SMART Attribute: Ultra-DMA CRC Error Rate (ID 199)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

Represents the total number of CRC errors that the drive has detected occurred on the SATA interface over the life of the drive. A CRC error is generated when the CRC check fails on a SATA Transport Layer FIS.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Percent Lifetime Remaining (ID 202)

SMART Attribute: Percent Lifetime Remaining (ID 202)

Attribute Flags (30h)

- Warranty = 0
- Offline = 0
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

The Current Value indicates the estimated percentage of lifetime remaining based upon the average block erase count and the rated block erase count. That is, if 30% of the lifetime has been used, this value reports 70%. A value of 0% indicates that 100% of the expected lifetime has been used. Note that the Current Value differs from the Raw Data value below which gives the threshold inverted value of the Current Value. The Current Value starts at 100% and counts down to 0% whereas the Raw Data value starts at 0% and counts up.

Worst Value (8 bits)

This field holds the same value as the Current Value because the Current Value is monotonically decreasing.

Raw Data (48 bits)

This value is expressed as a percentage of the average erase count and the rated erase count of the media, which is the percentage of lifetime used as opposed to the Current Value which is the percentage of lifetime remaining. The Raw Value will saturate at FFFF FFFF FFFFh.

Reserved/Threshold (8 bits)

The threshold for this attribute is set to 1 and will result in a SMART threshold trip when only 1% of the estimated lifetime is remaining.

SMART Attribute: Write Error Rate (ID 206)

Attribute Flags (0Eh)

- Warranty = 0
- Offline = 1
- Performance = 1
- Error rate = 1
- Event count = 0
- Self-preservation = 0

Current Value (8 bits)

Represents a ratio of the number of NAND Program Fails to the Number of Host Sectors written.

 $VC=100 * (F_N/S_T)$

where:

 F_N = Total number of NAND program failures

S_T = Total number of Host sectors written

Worst Value (8 bits)

This is the lowest calculated Current Value in the overall device history.

Raw Data (48 bits)

This value stores the number of NAND program failures.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: RAIN Success Recovered Page Count (ID 210)

SMART Attribute: RAIN Success Recovered Page Count (ID 210)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is hard-coded to 100% (64h).

Worst Value (8 bits)

This value is hard-coded to 100% (64h).

Raw Data (48 bits)

The total number of NAND pages successfully recovered by Micron's redundant array of independent NAND (RAIN) technology; increments when RAIN successfully recovers user data.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Integrity Scan Completed Count (ID 211)

SMART Attribute: Integrity Scan Completed Count (ID 211)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value gives the total count of the periodic data integrity scans that have been completed.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Integrity Scan Folding Completed Count (ID 212)

SMART Attribute: Integrity Scan Folding Completed Count (ID 212)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value gives the total count of folding events completed as a result of the periodic data integrity scan.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Cumulative Host Sectors Written (ID 246)

SMART Attribute: Cumulative Host Sectors Written (ID 246)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is hard-coded to 100% (64h).

Worst Value (8 bits)

This value is hard-coded to 100% (64h).

Raw Data (48 bits)

This value gives the total number of host sectors (LBAs) written by the host over the life of the drive.

Reserved/Threshold (8 bits)

TN-FD-48: 5300 SSD SMART Implementation SMART Attribute: Host Program NAND Pages Count (ID 247)

SMART Attribute: Host Program NAND Pages Count (ID 247)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value stores the cumulative host program NAND page count.

Reserved/Threshold (8 bits)

SMART Attribute: FTL Program Page Count (ID 248)

Attribute Flags (32h)

- Warranty = 0
- Offline = 1
- Performance = 0
- Error rate = 0
- Event count = 1
- Self-preservation = 1

Current Value (8 bits)

This value is always 100% (64h).

Worst Value (8 bits)

This value is always 100% (64h).

Raw Data (48 bits)

This value stores the cumulative FTL program page count. This attribute tracks the number of NAND pages programed by the FTL which are in addition to operations programed by the host. Write amplification factor can be calculated by WAF = (Attrib_247 + Attrib_248) / Attrib_247.

Reserved/Threshold (8 bits)

SMART Commands

Table 2: SMART Commands

		Sector	LBA	LBA Mid-	LBA	Drive	
Command	Feature	Count	Low	dle	High	Head	Command
SMART READ DATA	D0h	01h	XX	4Fh	C2h	A0h	B0h
SMART ENABLE ATTRIBUTE AUTOSAVE	D2h	F1h	XX	4Fh	C2h	A0h	B0h
SMART DISABLE ATTRIBUTE AUTOSAVE	D2h	00h	XX	4Fh	C2h	A0h	B0h
SMART EXECUTE OFF-LINE IMMEDIATE	D4h	Sub-cmd	XX	4Fh	C2h	A0h	B0h
SMART READ LOG	D5h	Number of pages	Log ad- dress	4Fh	C2h	A0h	B0h
SMART WRITE LOG	D6h	Number of pages	Log ad- dress	4Fh	C2h	A0h	B0h
SMART ENABLE OPS	D8h	XX	XX	XX	C2h	A0h	B0h
SMART DISABLE OPS	D9h	XX	XX	XX	C2h	A0h	B0h
SMART RETURN STATUS	DAh	XX	XX	XX	C2h	A0h	B0h

Command Interface with Host

Communication to or from the device is through the data register and command block registers.

Table 3: Register Addressing

Offset Address	Read	Write	Value Type
00h	Data	Data	Word
01h	Error	Feature	Byte
02h	Sector count	Sector count	Byte
03h	LBA low	LBA low	Byte
04h	LBA middle	LBA middle	Byte
05h	LBA high	LBA high	Byte
06h	Drive head	Drive head	Byte
07h	Status	Command	Byte

Note: 1. Input = from host to device; output = from device to host

SMART Read Data

Protocol PIO Data-In

Table 4: Input

Register	7	6	5	4	3	2	1	0
Feature		D0h						
Sector count		01h						
LBA low		XX						
LBA middle				41	h			
LBA high				C	2h			
Drive head	1	0	1	0	0	0	0	0
Command	B0h							

Table 5: Normal Output

Register	7	6	5	4	3	2	1	0	
Error		XX							
Sector count		XX							
LBA low		XX							
LBA middle				Х	X				
LBA high				Х	X				
Drive head		XX							
Status				50)h				

32

Description

A SMART attribute is retrieved when the host issues the SMART READ DATA command. In the 512 bytes returned by the SMART READ DATA command, bytes 0–361 (169h) are marked as vendor-specific in the ACS-3 specification. These contain the SMART attribute data.

Table 6: SMART Attribute Table Layout

Byte Offset	Length (Bytes)	Value	Description
0	2	0010h	SMART structure version
2 + (12 x 0)	12	XXh	Attribute entry 1
2 + (12 x 1)	12	XXh	Attribute entry 2
2 + (12 x n)	12	XXh	Attribute entry n
2 + (12 x 29)	-	(Reserved)	-

Each attribute entry contains 12 bytes that are comprised of the following fields: ID, Flag, Current Value, Worst Value, Raw Data, and Reserved. There are no requirements on the order of the attributes in the table.

Table 7: Attribute Data Structure

Length (Bytes)	Description	Value
1	Attribute ID	01h, 09h, 12h
2	Flags: Bit 0 – Warranty Bit 1 – Offline Bit 2 – Performance Bit 3 – Error rate Bit 4 – Event count Bit 5 – Self-preservation Bits 6–15 – Reserved	Feature
1	Current value	Attribute specific
1	Worst value	Attribute specific
4	LBA middle	32 bits of raw attribute data
2	LBA high	Attributes use these bytes to store raw data
1	Drive head	Attribute specific

For each attribute, there is a corresponding threshold that is retrieved when the host issues the SMART READ ATTRIBUTE THRESHOLDS command. In the 512 bytes of data returned by the command, the host can compare the threshold with the current value of each attribute. If the current value is less than or equal to the threshold, the device is in a status that requires further attention from the system. This procedure is also called a SMART threshold trip.

The SMART RETURN STATUS command compares the current value attributes with the threshold and returns a status that specifies if the self test has either completed without error (C24Fh) or detected a threshold has been exceeded (2CF4h).

SMART Enable/Disable Attribute Auto Save

Protocol PIO Non-Data

Table 8: Input

Register	7	6	5	4	3	2	1	0
Feature		D2h						
Sector count		00h or F1h						
LBA low		XX						
LBA middle				41	-h			
LBA high				C	2h			
Drive head	1	0	1	0	0	0	0	0
Command		B0h						

Table 9: Normal Output

Register	7	6	5	4	3	2	1	0	
Error		XX							
Sector count		XX							
LBA low		XX							
LBA middle				Х	X				
LBA high				Х	X				
Drive head		XX							
Status				50)h				

Description

- If the sector count is 00h, the SMART Auto Save attribute is disabled.
- If the sector count is F1h, the SMART Auto Save attribute is enabled.
- This command has no practical effect on the drive at this point.

34

SMART Disable Operations

Protocol PIO Non-Data

Table 10: Input

Register	7	6	5	4	3	2	1	0
Feature		D9h						
Sector count		XX						
LBA low		XX						
LBA middle				41	-h			
LBA high				C	2h			
Drive head	1	0	1	0	0	0	0	0
Command	B0h							

Table 11: Normal Output

Register	7	6	5	4	3	2	1	0	
Error		XX							
Sector count		XX							
LBA low		XX							
LBA middle				Х	X				
LBA high				Х	X				
Drive head		XX							
Status				50)h				

Description

This command disables access to all SMART capabilities within the device. After receipt of this command by the device, with the exception of the SMART ENABLE OPERATIONS command, all other SMART commands including SMART DISABLE OPERATIONS commands are disabled and are command-terminated by the device. The SMART disabled state is preserved by the device during all power and reset events.

Any offline self-test/data collection is also terminated.

SMART Return Status

Protocol PIO Non-Data

Table 12: Input

Register	7	6	5	4	3	2	1	0
Feature		DAh						
Sector count				Х	X			
LBA low				Х	X			
LBA middle				41	Fh			
LBA high				C	2h			
Drive head	1	1 0 1 0 0 0 0						
Command		ВО						

Table 13: Normal Output

Register	7	6	5	4	3	2	1	0
Error				Х	X			
Sector count				Х	X			
LBA low				Х	X			
LBA middle				41	-h			
LBA high				C	2h			
Drive head				Х	X			
Status				50)h			

Table 14: Trip Output

Register	7	6	5	4	3	2	1	0		
Error			•	Х	X	•		•		
Sector count				Х	X					
LBA low				Х	X					
LBA middle				F4	ŀh					
LBA high				20	Ch Ch					
Drive head		XX								
Status				50)h					

Description

In the normal output case, all SMART attribute values are currently higher than the threshold value associated with the attribute.

In the trip output case, at least a single SMART attribute value has fallen below the threshold value associated with the attribute.

SMART Read Warranty Thresholds

Protocol PIO Non-Data

Table 15: Input

Register	7	6	5	4	3	2	1	0	
Feature		D1h							
Sector count				Х	Χ				
LBA low				Х	Χ				
LBA middle				41	-h				
LBA high				C	2h				
Drive head	1	1 0 1 0 0 0 0							
Command	B0h								

Table 16: Normal Output

Register	7	6	5	4	3	2	1	0
Feature				Х	X			
Sector count				Х	X			
LBA low				Х	X			
LBA middle				Х	X			
LBA high				Х	X			
Drive head				Х	X			
Status				50)h			

Description

Returns a sector in the following format, n, varying from 0 to 29, one for each table entry.

Table 17: SMART Attribute Entry Format

Byte Offset	Length (bytes)	Contents ID	Description
0	2	00h10	SMART structure version
2 + (12 x n)	1	AttributeID	The attribute ID
2 + (12 x n) + 1	1	Flag	The flag value
2 + (12 x n) + 2	10	00h	Reserved
362	18	00h	Reserved
380	131	VU	VU space
511	1	Checksum	Two's compliment checksum of preceding 511B

SMART Execute Off-Line Immediate

Protocol PIO Non-Data

Table 18: Input

Register	7	6	5	4	3	2	1	0	
Feature		D4h							
Sector count				Х	X				
LBA low				Subcor	nmand				
LBA middle				41	-h				
LBA high				C	2h				
Drive head	1	1 0 1 0 0 0 0 0							
Command				В)h				

Table 19: Normal Output

Register	7	6	5	4	3	2	1	0
Error				Х	X			
Sector count				Х	Х			
LBA low	XX							
LBA middle				Х	X			•
LBA high				Х	Х			
Drive head				Х	Х			
Status				50)h			

38

Description

This command allows the host to request various self-tests. Refer to the ACS-3 specification for more information.

The implementation resumes the offline self-test upon completing a new host command unless the command is SMART DISABLE OPERATIONS, SMART ABORT OFF-LINE MODE SELF-TEST, IDLE IMMEDIATE, STANDBY IMMEDIATE, or SLEEP.

SMART Logging

Supported SMART/GPL (General Purpose Logging) Logs

Table 20: Supported SMART/GPL Logs

Log Address	Page Count	Log Name	R/W	Access
00h	1	SMART Log Directory	RO	SMART/GPL
01h	1	Summary SMART Error Log	RO	SMART
02h	51	Comprehensive SMART Error Log	RO	SMART
03h	16383	Extended Comprehensive SMART Error Log	RO	GPL
04h	255	Device Statistics	RO	SMART/GPL
06h	1	SMART Self-Test Log	RO	SMART
07h	3449	Extended SMART Self-Test Log	RO	GPL
09h	1	Selective Self-Test Log	R/W	SMART
10h	1	NCQ Command Error	RO	GPL
11h	1	SATA Phy Event Counters	RO	GPL
21h	1	Write Stream Error Log	RO	GPL
22h	1	Read Stream Error Log	RO	GPL
80h–9Fh	16 each	Host Vendor-Specific Logs	R/W	SMART/GPL
A0h		Vender Specific	RO	SMART/GPL
E0h	1	SCT Command/Status	R/W	SMART/GPL
E1h	1	SCT Data Transfer	R/W	SMART/GPL

- Notes: 1. Refer to Annex A of ACS-3 for a detailed description of these logs.
 - 2. For log address 6/7 (SMART Self-Test Logs), the entry is logged after the self-test starts and the test is com-
 - 3. As indicated in the table, these Logs can be read and written with the SMART READ LOG and SMART WRITE LOG commands and/or the READ LOG EXT, READ LOG DMA EXT, WRITE LOG EXT, and WRITE LOG DMA EXT commands.

SMART Read Log

Protocol PIO Data-In

Table 21: Input

Register	7	6	5	4	3	2	1	0	
Feature		D5h							
Sector count				0.	Ih				
LBA low				Log a	ddress				
LBA middle				41	-h				
LBA high				C	2h				
Drive head	1	1 0 1 0 0 0 0							
Command		B0h							

Table 22: Normal Output

Register	7	6	5	4	3	2	1	0		
Error				X	X					
Sector count				0.	lh					
LBA low				Х	X					
LBA middle				Х	X					
LBA high				Х	X					
Drive head		XX								
Status				50)h					

40

SMART Write Log

Protocol PIO Data-In

Table 23: Input

Register	7	6	5	4	3	2	1	0	
Feature		D5h							
Sector count				0.	1h				
LBA low				Log a	ddress				
LBA middle				41	-h				
LBA high				C	2h				
Drive head	1	1 0 1 0 0 0 0							
Command		B0h							

Table 24: Normal Output

Register	7	6	5	4	3	2	1	0
Error	XX							
Sector count	01h							
LBA low	XX							
LBA middle	XX							
LBA high	XX							
Drive head	XX							
Status	50h							

Reference

T13/2061-D, "Information technology - ATA/ATAPI Command Set - 3 (ACS-3)," Revision 5, American National Standard of Accredited Standards Committee INCITS, October 28, 2013.

TN-FD-48: 5300 SSD SMART Implementation Revision History

Revision History

Rev. C - 09/2020

• Corrected naming mismatch of attribute 194 to Table 1 entry.

Rev. B - 11/19

• Updated Attributes 12 and 202 threshold descriptions

Rev. A - 9/19

• Initial release

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.