Package 'tfNeuralODE'

October 16, 2023

Type Package
Title Create Neural Ordinary Differential Equations with 'tensorflow'
Version 0.1.0
Maintainer Shayaan Emran <shayaan.emran@gmail.com></shayaan.emran@gmail.com>
Description Provides a framework for the creation and use of Neural ordinary differential equations with the 'tensorflow' and 'keras' packages. The idea of Neural ordinary differential equations comes from Chen et al. (2018) <doi:10.48550 arxiv.1806.07366="">, and presents a novel way of learning and solving differential systems.</doi:10.48550>
License MIT + file LICENSE
Encoding UTF-8
Imports tensorflow, keras, reticulate, deSolve
RoxygenNote 7.2.3
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
VignetteBuilder knitr
<pre>URL https://github.com/semran9/tfNeuralODE</pre>
<pre>BugReports https://github.com/semran9/tfNeuralODE/issues</pre>
NeedsCompilation no
Author Shayaan Emran [aut, cre, cph]
Repository CRAN
Date/Publication 2023-10-16 17:30:02 UTC
R topics documented:
backward 2 forward 3 rk4_step 4
Index

2 backward

backward

Backward pass of the Neural ODE

Description

Backward pass of the Neural ODE

Usage

```
backward(model, tsteps, outputs, output_gradients = NULL)
```

Arguments

model A keras neural network that defines the Neural ODE.

tsteps A vector of each time step upon which the Neural ODE is solved to get to the

final solution.

outputs The tensor outputs of the forward pass of the Neural ODE.

output_gradients

The tensor gradients of the loss function.

Value

The model input at the last time step.

The gradient of loss with respect to the inputs for use with the Adjoint Method.

The gradients of loss the neural ODE.

Examples

```
reticulate::py_module_available("tensorflow")

# example code
# single training example
OdeModel(keras$Model) %py_class% {
  initialize <- function() {
    super$initialize()
    self$block_1 <- layer_dense(units = 50, activation = 'tanh')
    self$block_2 <- layer_dense(units = 2, activation = 'linear')
}

call <- function(inputs) {
    x<- inputs ^ 3
    x <- self$block_1(x)
    self$block_2(x)
  }
}

tsteps <- seq(0, 2.5, by = 2.5/10)</pre>
```

forward 3

```
true_y0 = t(c(2., 0.))
model<- OdeModel()
optimizer = tf$keras$optimizers$legacy$Adam(learning_rate = 1e-3)
# single training iteration
pred = forward(model, true_y0, tsteps)
with(tf$GradientTape() %as% tape, {
   tape$watch(pred)
   loss = tf$reduce_mean(tf$abs(pred - inp[[2]]))
})
dLoss = tape$gradient(loss, pred)
list_w = backward(model, tsteps[1:batch_time], pred, output_gradients = dLoss)
optimizer$apply_gradients(zip_lists(list_w[[3]], model$trainable_variables))</pre>
```

forward

Forward pass of the Neural ODE network

Description

Forward pass of the Neural ODE network

Usage

```
forward(model, inputs, tsteps, return_states = FALSE)
```

Arguments

model A keras neural network that defines the Neural ODE.

inputs Matrix or vector inputs to the neural network.

tsteps A vector of each time step upon which the Neural ODE is solved to get to the

final solution.

return_states A boolean which dictates whether the intermediary states between the input and

the final solution are returned.

Value

solution of the forward pass of Neural ODE

Examples

```
reticulate::py_module_available("tensorflow")
# example code
library(tensorflow)
library(keras)
```

rk4_step

```
OdeModel(keras$Model) %py_class% {
  initialize <- function() {
    super$initialize()
    self$block_1 <- layer_dense(units = 50, activation = 'tanh')
    self$block_2 <- layer_dense(units = 2, activation = 'linear')
}

call <- function(inputs) {
    x<- inputs ^ 3
    x <- self$block_1(x)
    self$block_2(x)
}
}

tsteps <- seq(0, 2.5, by = 2.5/10)
true_y0 = t(c(2., 0.))
model<- OdeModel()
forward(model, true_y0, tsteps)</pre>
```

rk4_step

Runge Kutta solver for ordinary differential equations

Description

Runge Kutta solver for ordinary differential equations

Usage

```
rk4_step(func, dt, state)
```

Arguments

func The function to be numerically integrated.

dt Time step.

state A list describing the state of the function, with the first element being 1, and the

second being a tensor that represents state

Value

A list containing a new time and the numerical integration of of the function across the time step to the new time.

rk4_step 5

Examples

Index

backward, 2

forward, 3

rk4_step, 4