Teorema de Existencia de Bolzano-Weierstrass. Dado el problema no-lineal P):

$$\mathcal{P}$$
) $Min\ f(x)$
 $x \in \mathbb{D},$
 $\mathbb{D} \subseteq \mathbb{R}^n,$

entonces, se tiene:

$$\left. \begin{array}{c} f(\cdot) \ continua \ sobre \ D \\ D \ cerrado, \ acotado \ y \ no \ vacío \end{array} \right\} \Rightarrow \mathcal{P}) \ admite \ solución \ óptima.$$

Teorema de Existencia de Bolzano-Weierstrass para Programación Lineal. Dado el problema lineal P):

$$\mathcal{P}$$
) Min $c^T x$
 $x \in P$,
 P poliedro convexo cerrado,

entonces, se tiene:

P acotado y no vacío $\Rightarrow P$) admite solución óptima.

Teorema de Existencia de la Programación Lineal. Dado el problema lineal P):

$$\mathcal{P}$$
) Min $c^T x$
 $x \in P$,
 P poliedro convexo cerrado,

entonces, se tiene:

$$\exists \ \mathrm{cte} \in \mathbb{R} : c^Tx \geq \mathrm{cte}, \forall x \in \mathbf{P} \bigg\} \Leftrightarrow \mathcal{P}) \ admite \ solución \ óptima.$$