SCALABLE VECTOR GRAPHICS

VECTOR GRAPHICS?

- Graphics are described using mathematical/geometrical primitives
 - 2D objects: Lines, curves, circles, rectangles, text
 - or 3D equivalent: meshes, nurbs, spheres, ...
 - Opposition to raster/bitmap images (pixel description)
- Rendered into pixels given a resolution
 - Can be scaled without pixel artifacts
 - · Client-side rendering vs. server-side rendering
 - Trade-off image quality vs. rendering cost
- Formats: SVG, VML, AI, PS, PDF, Flash...

VECTOR GRAPHICS ZOOMABILITY

Source: wikipedia.org

VECTOR GRAPHICS SCALABILITY

	X			Total
PNG	25x37 / 1,55 Ko	50x75 / 3,89 Ko	100x150 / 9,89 Ko	15,33 Ko
SVG	-	any resolution	-	5,93 Ko
SVGZ	-	any resolution	-	1,54 Ko

SVG A BIT OF HISTORY

- Initial ecosystem:
 - HTML 4.01: 1999
 - CSS 1.0 (2nd ed.): 1996
 - XML 1.0 (2nd ed.): 1998
- Initial competing technologies: VML (Microsoft) and PGML (Adobe)
- Latest specifications
 - SVG 1.1 (recommendation): http://www.w3.org/TR/SVG
- New ecosystem: tight integration with
 - HTML 5
 - CSS 3
 - SVG 2.0 (draft): http://www.w3.org/TR/SVG2 (https://svgwg.org/svg2-draft/ editor's draft)

WHAT IS SVG?

- XML standard for
 - 2D Vector Graphics
 - Including text & fonts
 - With specific drawing, layout, positioning rules
 - With support for:
 - Styling (CSS),
 - Animations (SMIL or JavaScript),
 - Interactivity (DOM Events),
 - Scripting (DOM, JavaScript)
 - Raster images (PNG, JPG)
 - Multimedia (audio, video)
- http://svg-wow.org/

SVG VS. FLASH

- Textual vs. binary
 - Easier to hand write
 - Larger file size if not compressed
 - Easier to search, crawl, index
 - Better Accessibilty
- Native vs. Plugin
 - Ability to translate text in a page
 - Easier to style
 - Easier to script
 - Easier to integrate with HTML

SVG

BENEFITS/DRAWBACKS FROM XML

- SVG documents can be handled by generic XML tools
 - Syntax verification, validation
 - Modification using the DOM
 - More specific manipulations possible using SVG DOM or MicroDOM
 - Transformations using XSLT
 - ...
- Verbose
 - Some attributes were designed to cope with that
 - Compression

SVG DOM INTERFACES

- Can use generic DOM
- Many additional SVG DOM interfaces
 - Tricky animation value access
- MicroDOM
 - Simplified version of the DOM for SVG Tiny 1.2
 - Less string access, more typed access
 - Element navigation
- SVG 2.0
 - Towards a better DOM but compatible with HTML
 - Inspired from JavaScript libraries

BASICS OF AN SVG DOCUMENT STRUCTURE

- Root <svg> element
 - Defines the namespace http://www.w3.org/2000/svg
- SVG Document tree
 - Dictionary of elements using <defs>
 - Grouping of elements using <g>
- References
 - Across the tree=> graph
 - Across documents (with restrictions: image vs. script)

VIEWING SVG GRAPHICS: VOCABULARY

SVG BASIC EXAMPLE

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 500 600" version="1.1">
 <rect x="100" y="100" width="400" height="200" fill="yellow" stroke="black" stroke
 <rect x="100" y="350" rx="100" ry="50" width="400" height="200" fill="salmon" stro
 <circle cx="100" cy="100" r="80" fill="orange" stroke="navy" stroke-width="10"/>
 </svg>

SVG EXAMPLE WITH GROUP

```
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 500 600" version="1.1">
    <rect x="100" y="100" width="400" height="200" fill="yellow" stroke="black" stroke
    <g>
        <rect x="100" y="350" rx="100" ry="50" width="400" height="200" fill="salmon" str
        <circle cx="100" cy="100" r="80" fill="orange" stroke="navy" stroke-width="10"/>
        </g>
    </svg>
```


SVG THE USE ELEMENT

SVG

STANDALONE VS. EMBEDDED VIEWING

- Standalone viewing
 - Width/height with fixed unit: the player creates a window of that size
 - Width/height relative units (e.g. 100%): the player allocates a size
- Embedded viewing
 - In HTML using CSS
 - The viewport is defined by the CSS Box Model

SVG FILES

- Internet Media Type (a.k.a. MIME Type)
 - image/svg+xml
- Extensions:
 - .svg
 - .svgz when compressed using GZIP
 - Possible compression using EXI

SVG SUPPORT ON THE WEB

■ Source: http://caniuse.com (nov. 2012)

■ Source: http://mobilehtml5.org/ (nov. 2012)

OTHER RENDERING ENGINES

- Deprecated IE plugin from Adobe (ASV)
- The Batik SVG Toolkit (Java, Open Source)
- Anti Grain Geometry
- PageFire (Mobile)
- GPAC
- Ikivo ...

AUTHORING TOOLS

- Your favorite text editor!
- Commercial tools
 - Adobe: Illustrator, EdgeCode, Edge Animate, Dreamweaver
 - Microsoft: Visio
 - CorelDraw
- Open Source Software
 - Inkscape (GUI editor, Free, Open Source)
 - SVG Edit (editor in the browser)
- Flash to SVG/HTML5 Converters
 - Google Swiffy
 - Mozilla Shumway
- SVG Cleaners
 - Inkscape: Save as « Plain » or « Optimized » SVG
 - Scripts for cleaning: scour, ...

HTML IN SVG

■ Use of SVG <foreignObject> element

SVG IN HTML

- Older versions of browsers: <embed>, <object> or <iframe>
- Current version:

- Future versions?
 - Real mix between element from different namespaces

```
<html:p>some text <svg:circle .../><html:img /> ...</html:p>
```

SVG IN CSS STYLING WITH SVG

Background images

element { background-image: url(test.svg); }

CSS IN SVG STYLING SVG

- using <style> elements
- using style attributes
- using <?xml-stylesheet?> Pl
- Be careful with inheritance
 - Animations (SMIL sandwich model)
 - Inheritance path and the <use> element
 - Extensions in SVG 2.0

SVG INTERACTIVITY

- All versions of SVG support ECMAScript
 - But the associated API differ
- SVG 1.1 uses
 - Traditional DOM APIs: DOM Core, DOM Events, ...
 - And a (complex) SVG DOM
 - Uses onclick, onmouseover ...
- SVG Tiny 1.2 uses
 - Typed DOM interfaces called Micro DOM
 - Ex: setFloatTrait instead of setAttribute
 - XML events: tener>, <handler>