

520 181

Ersetzt SIA 181:2006

Protection contre le bruit dans le bätiment La protezione dal rumore nelle costruzioni edilizie

Schallschutz im Hochbau

Referenznummer SN 520181:2020 de

Gültig ab: 2020-11-01

Herausgeber Schweizerischer Ingenieurund Architektenverein Postfach, CH-8027 Zürich Section Singerieure AG | 08.05.2023

In der vorliegenden Publikation gelten die männlichen Funktions- und Personenbezeichnungen sinngemäss auch für weibliche Personen.

Allfällige Korrekturen zur vorliegenden Publikation sind zu finden unter www.sia.ch/korrigenda.

Der SIA haftet nicht für Schäden, die durch die Anwendung der vorliegenden Publikation entstehen können.

Norm License by SIA ZPF Ingenieure AG | 08.05.2023

INHALTSVERZEICHNIS

	S	Seite
Vorw	ort	4
0	Geltungsbereich	5
0.1	Abgrenzung	5
0.2	Normative Verweisungen	
0.3	Abweichungen	6
1	Verständigung	7
1.1	Begriffe und Definitionen	7
1.2	Symbole, Begriffe und Einheiten	15
2	Grundsätze	17
2.1	Allgemeines	17
2.2	Anforderungsstufen	17
2.3	Lärmempfindlichkeit	18
3	Anforderungen	19
3.1	Luftschallschutz gegenüber	
	externen Lärmquellen	19
3.2	Luftschallschutzgegenüber	00
3.3	internen Lärmquellen Trittschallschutz	20 22
3.4	Schutz gegenüber Geräuschen	22
· · ·	gebäudetechnischer Anlagen	
	und fester Einrichtungen	23
Anha	ing	
Α	(normativ) Bewertung des Schall-	
	schutzes	_
В	(informativ) Publikationen	34
С	(informativ) Verzeichnis der Begriffe	36

3

VORWORT

Die erste schweizerische Richtlinie zum baulichen Schallschutz erschien im Jahre 1970 als Empfehlung SIA 181. Es folgten die Normversionen in den Jahren 1976, 1988 und 2006. Ein Meilenstein ist die Erwähnung der Mindestanforderungen und der erhöhten Anforderungen der Norm SIA 181 im Art. 32 der Lärmschutz-Verordnung (LSV) [2] vom 15. Dezember 1986.

Dem Schallschutz kommt eine immer grössere Bedeutung zu. Das zeigt sich einerseits an den gestiegenen Bedürfnissen der Bewohner und Benutzer von Hochbauten, anderseits aber auch an der wachsenden Anzahl von Beschwerden und rechtlichen Verfahren. Die vorliegende Ausgabe trägt diesem Umstand Rechnung, indem verschiedene Anpassungen an die internationalen Normen vorgenommen und Ergebnisse aus Grundlagenuntersuchungen integriert wurden. Zusätzlich wurde die Norm zum Teil neu gegliedert und mit textlichen Anpassungen die Lesbarkeit verbessert. Im Folgenden sind die wichtigsten Neuerungen gegenüber der Ausgabe 2006 aufgelistet.

- Der Raumakustik kommt in der Praxis eine grosse Bedeutung zu. Die entsprechende Ziffer 4.6 der Ausgabe 2006 trägt diesem Umstand nicht mehr genügend Rechnung. Um die Anforderungen an den Schallschutz und die Raumakustik zu entflechten, wurde diese Ziffer aus der Norm entfernt. Die raumakustischen Anforderungen werden neu in der Norm SIA 181/1 behandelt.
- Die Norm soll Anforderungen definieren und deren Anwendung regeln. Dementsprechend wurden die informativen Anhänge C bis J der Ausgabe 2006 nicht übernommen. Diese sollen neu in einer SIA-Wegleitung aufgeführt werden.
- In Anlehnung an internationale Empfehlungen wurde die Differenz zwischen Mindestanforderungen und erhöhten Anforderungen, mit Ausnahme des Luftschallschutzes gegenüber externen Lärmquellen, von 3 dB auf 4 dB erhöht. Die Werte der Mindestanforderungen wurden unverändert übernommen.
- Die mit der Ausgabe 2006 eingeführte Messmethode mit dem Empa-Pendelfallhämmer wurde, basierend auf den Erfahrungen aus der Praxis und einer ausführlichen Studie, präzisiert. Für den Nachweis verschiedener Benutzungsgeräusche wird die Anwendung des Empa-Pendelfallhammers als alleinige Messmethode vorgeschrieben.
- Die Volumenkorrektur C_v wurde beim Luftschallschutz implizit durch Mindestwerte für das resultierende, spektral angepasste, bewertete Bau-Schalldämm-Mass $(R'_w + C)_{res}$ ersetzt. Beim Trittschallschutz und beim Schutz gegenüber Geräuschen gebäudetechnischer Anlagen und fester Einrichtungen wurde C_v ersatzlos gestrichen.
- Die Anforderung an die Schalldämmung von Abschlusstüren gegenüber Erschliessungszonen wurde mit einem Anforderungswert an den Luftschallschutz D ergänzt. Für Empfangsräume mit geringer Lärmempfindlichkeit gelten abgeminderte Anforderungen.
- Der Anhang A wurde gekürzt und in die Ziffer 3.2 integriert. Die Anforderungen regeln den baulichen Schallschutz, abhängig vom Grad der Lärmbelastung. Für die Definition des zulässigen Beschallungspegels wird auf die Bestimmungen des Umweltschutzgesetzes USG [1] verwiesen.
- Auf die Erweiterung des Frequenzbereichs unter WO Hz beim Trittschall musste verzichtet werden. Für die Messungen in diesem Frequenzbereich gibt es noch keine Messverfahren, welche für die unterschiedlichen Situationen in der Praxis befriedigende Ergebnisse liefern.

Die Norm gilt unter der Voraussetzung einer üblichen Nutzung, die auf einer angemessenen Rücksichtnahme und Toleranz gegenüber den angrenzenden Nutzungseinheiten basiert.

Kommission SIA 181

0 GELTUNGSBEREICH

o.i Abgrenzung

- 0.1.1 Die vorliegende Norm gilt für den baulichen Schallschutz gegenüber externen und internen Lärmquellen bei Neubauten sowie bei Umbauten und Umnutzungen.
- 0.1.2 Der Schallschutz gegenüber internen Lärmquellen wird in der Norm zwischen Nutzungseinheiten geregelt.
- 0.1.3 Die Norm gilt nicht für den Schallschutz gegenüber externen Körperschallquellen (z.B. Anlagen des öffentlichen oder privaten Verkehrs, Einrichtungen und Maschinen in Industrie und Gewerbe, Ramm- und Sprengarbeiten).

0.2 Normative Verweisungen

Im Text dieser Norm wird auf die nachfolgend aufgeführten Publikationen verwiesen, die im Sinne der Verweisungen ganz oder teilweise mitgelten. Bei undatierten Verweisungen gilt die letzte Ausgabe (bei SN EN einschliesslich aller Änderungen), bei datierten Verweisungen die entsprechende Ausgabe der betreffenden Publikation.

0.2.1 Europäische Normen

SN EN ISO 266 Akustik - Normfreguenzen

SN EN ISO 717-1 und -2 Akustik - Bewertung der Schalldämmung in Gebäuden und

von Bauteilen -

Teil 1: Luftschalldämmung Teil 2: Trittschalldämmung

SN EN ISO 10140-2 und -3 Akustik - Messung der Schalldämmung von Bauteilen

im Prüfstand -

Teil 2: Messung der Luftschalldämmung Teil 3: Messung der Trittschalldämmung

SN EN 12354-1 bis -3 und -5 Bauakustik-Berechnung der akustischen Eigenschaften

von Gebäuden aus den Bauteileigenschaften -Teil 1: Luftschalldämmung zwischen Räumen Teil 2: Trittschalldämmung zwischen Räumen

Teil 3: Luftschalldämmung von Aussenbauteilen gegen Aussenlärm

Teil 5: Installationsgeräusche

SN EN ISO 15186-2 Akustik - Bestimmung der Schalldämmung in Gebäuden und

von Bauteilen aus Schallintensitätsmessungen -

Teil 2: Messungen am Bau

SN EN ISO 16032 Akustik - Messung des Schalldruckpegels von haustechnischen

Anlagen in Gebäuden - Standardverfahren

SN EN ISO 16283-1 bis 3 Akustik - Messung der Schalldämmung in Gebäuden und

von Bauteilen am Bau -Teil 1: Luftschalldämmung Teil 2: Trittschalldämmung Teil 3: Fassadenschalldämmung

SN EN 60942 Elektroakustik - Schallkalibratoren

SN EN 61260 Elektroakustik - Bandfilter für Oktaven und Bruchteile von Oktaven

SN EN 61672-1 Elektroakustik - Schallpegelmesser - Teil 1: Anforderungen

0.3 Abweichungen

- 0.3.1 Abweichungen von der vorliegenden Norm sind zulässig, wenn sie durch Theorie oder Versuche ausreichend begründet werden oder wenn neue Entwicklungen und Erkenntnisse dies rechtfertigen.
- 0.3.2 Falls in einem Bauvorhaben einzelne Bestimmungen dieser Norm nicht eingehalten werden können, sind die Abweichungen im Rahmen der Verhältnismässigkeit festzulegen.
- 0.3.3 Abweichungen sind in den Bauwerksakten mit nachvollziehbarer Begründung zu dokumentieren.

1 VERSTÄNDIGUNG

Nutzungseinheit

Für die Anwendung der vorliegenden Norm gelten diefolgenden Begriffe und Definitionen. Diese Begriffe sind im Anhang C in alphabetischer Reihenfolge in drei Sprachen aufgelistet.

Räume oder zusammenhängende Raumgruppen, welche in Bezug

1.1 Begriffe und Definitionen

1.1.1 Allgemeines

1.1.1.1

1.1.1.1	Nutzungseimen	auf die Nutzung eine selbständige organisatorische Einheit bilden oder bilden können und gegenüber externen und internen Lärmquellen zu schützen sind, z.B. Wohnungseinheiten, Bürobetriebe, Industrie- und Gewerbebetriebe.
		Spitäler, Pflegeheime ohne abgeschlossene Wohneinheiten, Hotels, Schulen, Gemeinschaftsbüros, medizinische Gemeinschaftspraxen usw. sind jeweils eine Nutzungseinheit.
		Räume sowie mit dem Gebäude verbundene Bauteile, gebäudetechnische Anlagen und feste Einrichtungen, die nicht einzelnen Nutzungseinheiten zugeordnet werden können, sondern der Gemeinschaftsnutzung dienen, sind sinngemäss wie eine Nutzungseinheit zu behandeln, z.B. Korridore, Treppenhäuser oder Laubengänge, Fassaden, gebäudetechnische Anlagen, Dachentwässerungen.
1.1.1.2	Neubauten	Neben neu erstellten Gebäuden gelten auch Umbauten als Neubauten, wenn die Eingriffstiefe eine umfassende Verbesserung des Schallschutzes ermöglicht (z.B. Auskernung eines bestehenden Gebäudes).
1.1.1.3	Umbauten	Umbauten im Sinne dieser Norm liegen dann vor, wenn die Eingriffstiefe eine Verbesserung des Schallschutzes ermöglicht (z.B. Ersatz oder Einbau von Fenstern, Bodenaufbauten, abgehängten Decken, gebäudetechnischen Anlagen und festen Einrichtungen, Sanitärinstallationen), wenn weiche Bodenbeläge (Teppiche) durch Hartbeläge (Parkett, Laminat, Keramik, Stein, Kunststoff usw.) ersetzt oder wenn Nutzungseinheiten neu erstellt oder verändert werden (z.B. Grundrissänderungen). Die Anforderungen gelten für die vom Umbau betroffenen Bauteile.
1.1.1.4	Umnutzungen	Umnutzungen im Sinne dieser Norm liegen dann vor, wenn bestehende Räume neu mit höherer Lärmbelastung oder höherer Lärmempfindlichkeit einzustufen sind oder neu zu Wohnzwecken genutzt werden.

gen.

1.1.1.5

1.1.1.6

1.1.1.7

Schallwellen, die sich in Luft ausbreiten.

tragen und als Luftschall abgestrahlt wird.

Teilgebiet der Akustik, das sich mit dem Schallschutz in Bauten befasst: Luftschall-, Körperschall- und Trittschallschutz sowie Schutz vor Geräuschen gebäudetechnischer Anlagen und fester Einrichtun-

Beim Begehen und ähnlicher Anregung einer begehbaren Konstruktion entstehender Körperschall, der durch die Konstruktion über-

Bauakustik

Luftschall

Trittschall

1.1.1.9	Interne Lärmquellen	Lärmquellen innerhalb des Gebäudes sowie mit dem Gebäude verbundene Bauteile, gebäudetechnische Anlagen und feste Einrichtungen.
1.1.1.10	Externe Lärmquellen	Lärmquellen ausserhalb des Gebäudes.
1.1.1.11	Schalldruck <i>P</i> Pa	Druckschwankungen der Luft, die bei der Ausbreitung von Schall entstehen.
1.1.1.12	Bezugswert für Luftschall Po Pa	International festgelegt: p ₀ = 20 ■10′ ⁶ Pa
1.1.1.13	Schalldruckpegel L_{P} dB	Zehnfacher dekadischer Logarithmus des Verhältnisses der Quadrate des Schalldrucks p zum Bezugswert für Luftschall p_0 . $L_p = 10 \lg(p^2/p_0^2)$
1.1.1.14	Mittelungspegel Aeq dB	Zehnfacher dekadischer Logarithmus des Verhältnisses eines über die Zeit T gemittelten Schalldruckquadrates p 2 zum quadrierten Bezugswert für Luftschall p $_0^2$.
	r-Ceq dB	Es werden die Frequenzbewertungen A oder C gemäss SN EN 61672-1 angewendet. Sie berücksichtigen näherungsweise die unterschiedliche Empfindlichkeit des menschlichen Gehörs für Töne verschiedener Frequenzen und Intensitäten.
		7

1.1.1.15 Mittlerer Schalldruckpegel *L* dB

1.1.1.16 Frequenzanalyse

Räumlicher Mittelwert der Schalldruckpegel in einem Raum.

Verfahren zur Bestimmung der Energieanteile in den verschiedenen

Bei kontinuierlicher Abtastung des Schallfeldes:

$$L = 10 \operatorname{lg} \left[\frac{1}{T} \int_0^T \frac{p^2}{p_0^2} dt \right]$$

T Mittelungszeit, in s

'-'"'∎lvf.s-

T Mittelungszeit, in s

Bei Abtastung über N Punkte:

	,	Frequenzbändern eines Schallsignals.
1.1.1.17	Terzband	Frequenzband zwischen einer unteren und einer oberen Eckfrequenz f_u und f_o . Das Frequenzverhältnis $f_o/f_u = 2 = 1,26$ entspricht einer Dritteloktave (Terz). Charakterisiert wird das Terzband durch Angabe seiner Mittenfrequenz $f_m = 7f_u \blacksquare f_o$, wobei die Frequenzen gemäss SN EN ISO 266 verwendet werden.

1.1.1.18 Terzbandanalyse Frequenzanalyse in Terzbandbreite mit Filtern gemäss SN EN 61260-1.

1.1.1.19 Hintergrundgeräusch Geräusch, das nicht zu der zu beurteilenden Schallquelle gehört und die Messwerte beeinflussen kann.

1.1.1.20	Beurteilungspegel L_r dB	Mass für die Beurteilung der Aussenlärmimmission gemäss Lärmschutz-Verordnung (LSV) [2].
1.1.1.21	Nachhallzeit T s	Zeitdauer Tin Sekunden, während welcher der Schalldruckpegel in einem Raum nach dem Beenden einer Schallfeldanregung um 60 dB abfällt.
1.1.1.22	Bezugsnachhallzeit T_o s	Dient der Standardisierung von Schalldruckpegeln in einem Raum. Die Bezugsnachhallzeit $T_{\rm o}$ beträgt 0,5 s.
1.1.1.23	Äquivalente Absorptionsfläche A m²	Hypothetische Grösse einer Fläche in m² mit dem Schallabsorptionsgrad 1, welche die gleiche Schallleistung absorbiert wie die Summe aller schallabsorbierenden Elemente und Oberflächen im Raum. Bei bauakustischen Messungen wird dieäquivalente Absorptionsfläche mit der Sabine'schen Formel berechnet.
		4 = 0.16 (V/T)
		V Volumen, in m ³ T Nachhallzeit, in s
1.1.1.24	Bezugs-Absorptions- fläche A_0 m ²	$A_o = 10 \text{ m}^2 \text{ gemäss SN EN ISO 16283.}$
1.1.1.25	Volumen V m ³	Netto-Raumvolumen (ohne geschlossene Festeinbauten, wie z.B. Einbaumöbel).
1.1.1.26	Trennbauteil	Bauteil zwischen zwei Nutzungseinheiten (z.B. Wand, Decke).
1.1.1.27	Fläche S m²	Netto-Bauteilfläche (aus lichten Abmessungen).
1.1.1.28	Spektrum-Anpassungswert C, C_{tr} , $C_{tr50\cdot3150}$, C/dB	Anpassungswerte gemäss SN EN ISO 717-1 und -2, die auf Grund besonderer Frequenzabhängigkeiten von Geräuschen erforderlich sind, um Messwerte an die Gehörempfindung anzupassen.
1.1.1.29	Zuschlag für Flanken-	Zuschlag zur Berücksichtigung der Flankenübertragung (fakultativ).
	übertragung <i>k_f</i> dB	Bei der Prognose durch einfache numerische Rechenverfahren oder Abschätzung nach Erfahrung wird der Prognosewert durch einen Vergleich mit Labor-Messergebnissen und/oder Ergebnissen aus Messungen an ähnlichen Bausituationen gebildet. Die Werte können dabei anhand des Zuschlags für Flankenübertragungen / gauf die gegebene individuelle Situation angepasst werden. Eine allfällige indirekte Luftschall-Übertragung muss zusätzlich mitberücksichtigt werden.
1.1.1.30	Prognosewert	Erwartungswert fürden Schallschutz einer Situation. Prognosen für den Schallschutz können erbracht werden - durch einfache numerische Rechenverfahren oder Abschätzung

nach Erfahrung,

- durch Berechnung mit Verfahren gemäss SN EN 12354-1 bis -3

Zuschlag zum Prognosewert zur Berücksichtigung von Prognose-

unsicherheiten und Abweichungen in der Ausführungsqualität.

 K_P dB

1.1.1.31

Projektierungszuschlag

1.1.1.32	Projektierungswert D_{θ} , di Di, di L_d , L_h d dB	Prognosewert für den Schallschutz einer geplanten Konstruktion, welcher die zu erwartenden Nebenweg-Übertragungen, den Spektrum-Anpassungswert, die Prognoseunsicherheit und die Abweichungen in der Ausführungsqualität beinhaltet.		
1.1.2	Luftschall			
1.1.2.1	Luftschallschutz	Schutz vor Immissionen durch Luftschall.		
1.1.2.2	Luftschalldämmung	Verminderung der Übertragung von Luftschall.		
1.1.2.3	Direktübertragung bei Luftschall	Übertragung von Luftschall von einem Raum zum anderen durch Trennbauteile (Wand, Decke, Türe, Fenster usw.) sowie durch Öffnungen oder Spalte.		
1.1.2.4 Nebenweg-Übertragung bei Luftschall		Übertragung von Luftschall von einem Senderaum in einen Empfangsraum über andere Wege als den direkten Übertragungsweg. Sie lässt sich unterteilen in indirekte Luftschall- und Körperschall- übertragung. Die letztgenannte wird als Flankenübertragung bezeichnet.		
1.1.2.5	Indirekte Luftschall- Übertragung	Nebenweg-Übertragung von Schallenergie ausschliesslich über einen Luftschall-Übertragungsweg, z.B. Lüftungsanlagen, Unterdecken und Korridore (Luftschall-Nebenweg-Übertragung).		
1.1.2.6	Flankenübertragung bei Luftschall	Übertragung von Schallenergie aus einem Senderaum in einen Empfangsraum ausschliesslich über Körperschall-ÜbertragungswegederGebäudekonstruktion, z.B. Wände, Fussböden und Decken (Körperschall-Nebenweg-Übertragung).		
1.1.2.7	Schalldämm-Mass <i>R</i>	Im Labor mit unterdrückter Flankenübertragung gemäss SN EN ISO 10140-2 gemessen.		
dB		$R = D + 10 \log(S/A)$		
		 D= L, - L₂ Schallpegeldifferenz, in dB L, mittlerer Schalldruckpegel im Senderaum, in dB L₂ mittlerer Schalldruckpegel im Empfangsraum, in dB S gemeinsame Fläche des Trennbauteils zwischen Sende- und Empfangsraum, in m² A äquivalente Absorptionsfläche im Empfangsraum, in m² Rwird pro Terzband angegeben. 		
1.1.2.8	Bewertetes Schalldämm-Mass $R_{\rm w}$ dB	Einzahlangabe gemäss SN EN ISO 717-1 für das in den einzelnen Terzbändern ermittelte Schalldämm-Mass <i>R</i> .		
1.1.2.9	Bau-Schalldämm-Mass <i>R</i> '	Am Bau gemäss SN EN ISO 16283-1 (oder im Labor im früher üblichen Prüfstand mit Flankenübertragung) gemessen.		
	dB	$R' = D + 10 \log(S/A)$		
		D- L - L ₂ Schallpegeldifferenz, in dB L _y mittlerer Schalldruckpegel im Senderaum, in dB L ₂ mittlerer Schalldruckpegel im Empfangsraum, in dB S gemeinsame Fläche des Trennbauteils zwischen Sender und Empfangsraum in m ²		

in m²

äquivalente Absorptionsfläche im Empfangsraum,

Sende- und Empfangsraum, in m²

1.1.2.10 Bewertetes Bau-Schalldämm-Mass R'_w dB

Einzahlangabe gemäss SN EN ISO 717-1 für das in den einzelnen Terzbändern ermittelte Bau-Schalldämm-Mass R'.

1.1.2.11 Bau-Schalldämm-Mass für Aussenbauteile f? 450 dΒ

Am Bau gemäss SN EN ISO 16283-3 mit einem Lautsprecher mit 45° (räumlichem) Schalleinfallswinkel gemessen.

$$/?'_{45} = D + 10 \text{ IgfS/A} - 1,5$$

 $D = L_{Vs} - L_2$ Schallpegeldifferenz, in dB

Schalldruckpegel direkt auf der Aussenseite des Prüfelements (energetischer Mittelwert über die Fläche),

in dB

mittlerer Schalldruckpegel im Empfangsraum, in dB L_2 S Fläche des Trennbauteils zwischen Aussenraum und Empfangsraum gemäss SN EN ISO 16283-3,

Anhang A, in m²

Α äquivalente Absorptionsfläche im Empfangsraum, in m^2

R45« wird pro Terzband angegeben.

1.1.2.12 Bewertetes Bau-Schalldämm-Mass für Aussenbauteile

R 45°, W dΒ

Einzahlangabe gemäss SN EN ISO 717-1 für das in den einzelnen Terzbändern ermittelte Bau-Schalldämm-Mass für Aussenbauteile F?₄₅..

1.1.2.13 Resultierendes bewertetes Bau-Schalldämm-Mass

R' w,res dΒ

Einzahlangabe des resultierenden Bau-Schalldämm-Masses für Trennbauteile, die aus mehreren Einzelbauteilen verschiedener Schalldämmungen bestehen.

$$(R'_w + C)_{,,,} = -10 \text{ lg } \underbrace{\text{f.}}_{j=1}^n \underbrace{\text{S} = 10 - (\text{L+c})/jo}_{\text{Sres}}$$

Fläche des Bauteils j, in m2 Si

Gesamtfläche aller n Bauteile, in m² S_{res}

Der analoge Formelzusammenhang gilt für den Luftschallschutz gegenüber externen Lärmquellen mit C_{tr} statt C_{tr}

1.1.2.14 Standard-Schallpegeldifferenz

 D_{nT} dB

Am Bau gemäss SN EN ISO 16283-1 gemessen.

$$D_{n7} = D + 1Olg(T/T_0)$$

 $D = L - t - L_2$ Schallpegeldifferenz, in dB

L, mittlerer Schalldruckpegel im Senderaum, in dB L_2 mittlerer Schalldruckpegel im Empfangsraum, in dB

Nachhallzeit im Empfangsraum, in s

Bezugsnachhallzeit (0,5 s) D_{n7}-wird pro Terzband angegeben.

1.1.2.15 Bewertete Standard-Schallpegeldifferenz

DnT,w dB Einzahlangabe gemäss SN EN ISO 717-1 für die in den einzelnen Terzbändern ermittelte Standard-Schallpegeldifferenz D_{nT} .

1.1.2.16 Standard-Schallpegeldifferenz für die Gebäudehülle $\mathcal{D}_{45^\circ,nT}$ dB

Am Bau gemäss Ziffer A.2.4.1 mit einem Lautsprecher mit 45° (räumlichem) Schalleinfallswinkel gemessen (Schallpegeldifferenz-Verfahren mit Lautsprecher).

$$^{\circ}45w =$$
 D + 10 lg (77T₀) - 1,5

D= L_{1s} - L_{2} Schallpegeldifferenz, in dB

 L_{ys} Schalldruckpegel direkt auf der Aussenseite des Prüfelements (Mittelwert über die Fläche), in dB L_2 mittlerer Schalldruckpegel im Empfangsraum, in dB

T Nachhallzeit im Empfangsraum, in s

 T_o Bezugsnachhallzeit (0,5 s) $D_{45} \circ nT$ wird pro Terzband angegeben.

1.1.2.17 Bewertete Standard-Schallpegeldifferenz für die Gebäudehülle $\mathcal{D}_{45^{\circ},nT,w}$

Einzahlangabe gemäss SN EN ISO 717-1 für die in den einzelnen Terzbändern ermittelte Standard-Schallpegeldifferenz für die Gebäudehülle $0_{45>T}$.

1.1.2.18 Standard-Schallpegeldifferenz für die Gebäudehülle $D_{ls,2m,nT}$ dB Am Bau gemäss SN EN ISO 16283-3 mit einem Lautsprecher mit 45° (räumlichem) Schalleinfallswinkel gemessen (globales Verfahren mit Lautsprecher).

$$Dis, 2m, nT$$
- D/s_{r2m} + 10 lg (77T₀)

Dis 12m - 1-1,2m ~ -2 Schallpegeldifferenz, in dB

L_{A2}m mittlerer Schalldruckpegel aussen 2 m vor der Fassade oder 1 m vor vorspringenden Gebäude-

teilen gemessen, in dB

L₂ mittlerer Schalldruckpegel im Empfangsraum,

in dB

T Nachhallzeit im Empfangsraum, in s

 T_o Bezugsnachhallzeit (0,5 s) \mathfrak{L}^2 _{$s \ge m/n T$} wird pro Terzband angegeben.

1.1.2.19 Bewertete Standard-Schallpegeldifferenz für die Gebäudehülle

DI s,2m,nT,w

Einzahlangabe gemäss SN EN ISO 717-1 für die in den einzelnen Terzbändern ermittelte Standard-Schallpegeldifferenz für die Gebäudehülle D ISIZUMIT .

1.1.2.20 Gesamtwert für den Luftschallschutz gegenüber externen Lärmquellen $D_{e,tot}$ dB

Summe der Kennwerte, die in der jeweiligen Anforderung an den Luftschallschutz gegenüber externen Lärmquellen zu berücksichtigen sind.

1.1.2.21 Gesamtwert für den Luftschallschutz gegenüber internen Lärmquellen

Di _{rto} t, D _{150 tot}

Summe der Kennwerte, die in der jeweiligen Anforderung an den Luftschallschutz gegenüber internen Lärmquellen zu berücksichtigen sind.

Dj,tot ~ D $_\textit{n}$ r,w + C bzw. $D/_{50}$ tot - D $_\textit{nTw}$ + C_{fr50} -3150

1.1.3	Trittschall	
1.1.3.1	Trittschallschutz	Schutz vor Immissionen durch Trittschall.
1.1.3.2	Trittschalldämmung	Verminderung der Übertragung von Trittschall.
1.1.3.3	Direktübertragung bei Trittschall	Übertragung durch Trittschallanregung und Schallabstrahlung von einem Trennbauteil.
1.1.3.4	FlankenÜbertragung bei Trittschall	Übertragung von Schallenergie von einem in einem Senderaum angeregten Bauteil in einen Empfangsraum über Körperschall-Übertragungswege der Gebäudekonstruktion, z.B. Wände, Fussböden und Decken (Körperschall-Nebenweg-Übertragung).
1.1.3.5	Norm-Hammerwerk	Trittschallquelle zur Anregung von begehbaren Konstruktionen gemäss SN EN ISO 16283-2.
1.1.3.6	Trittschallpegel Li dB	Mittlerer Schalldruckpegel im Empfangsraum, wenn die begehbare Konstruktion im Senderaum mit dem Norm-Hammerwerk angeregt wird.
		L_i wird pro Terzband angegeben.
1.1.3.7	Norm-Trittschallpegel L n dB	Im Labor mit unterdrückter Flankenübertragung gemäss SN EN ISO 10140-3 gemessen. Die Anregung erfolgt mit dem Norm-Hammerwerk.
		$L_n = L_{i+1} \log(A/A_0)$
		L, Trittschallpegel, in dB A äquivalente Absorptionsfläche im Empfangsraum, in m ² A_o Bezugs-Absorptionsfläche (10 m ²) L_n wird pro Terzband angegeben.
1.1.3.8	Norm-Trittschallpegel ^{L'n} dB	Am Bau gemäss SN EN ISO 16283-2 (oder im Labor im früher üblichen Prüfstand mit FlankenÜbertragung) gemessen. Die Anregung erfolgt mit dem Norm-Hammerwerk.
		$L'_n = L_s + 10 \log(A/A_o)$
		Li Trittschallpegel, in dB A äquivalente Absorptionsfläche im Empfangsraum, in m 2 A $_o$ Bezugs-Absorptionsfläche (10 m 2) L $'_n$ wird pro Terzband angegeben.
1.1.3.9	Bewerteter Norm-Trittschallpegel Ln,w L n/w dB	Einzahlangabe gemäss SN EN ISO 717-2 für den in den einzelnen Terzbändern ermittelten Norm-Trittschallpegel L_n bzw. L'_n .
1.1.3.10	Standard-Trittschallpegel	Am Bau gemäss SN EN ISO 16283-2 gemessen. Die Anregung erfolgt mit dem Norm-Hammerwerk.
	dB	$L'_{nT} = Li - 10 \lg (777''_0)$
		Li Trittschallpegel, in dB T Nachhallzeit im Empfangsraum, in s T_o Bezugsnachhallzeit (0,5 s) L'_{nT} wird pro Terzband angegeben.
1.1.3.11	Bewerteter Standard-Trittschallpegel L nT,w dB	Einzahlangabe gemäss SN EN ISO 717-2 für den in den einzelnen Terzbändern ermittelten Standard-Trittschallpegel L'_{nT} .

1.1.3.12	Gesamtwert für den Trittschallschutz $L'_{ m tot}$ dB	Summe der Kennwerte, die in der jeweiligen Anforderung an der Trittschallschutz zu berücksichtigen sind.	
1.1.4	Geräusche gebäudetechr	nischer Anlagen und fester Einrichtungen	
1.1.4.1	Geräusche gebäude- technischer Anlagen und fester Einrichtungen	Beim Betrieb oderder Benutzung gebäudetechnischer Anlagen und fester Einrichtungen, von Freizeitanlagen und von Anlagen der Industrie und des Gewerbes entstehender Körperschall und Luftschall, der durch die Konstruktion übertragen und als Luftschall abgestrahlt wird.	
1.1.4.2	Funktionsgeräusch	Geräusch gebäudetechnischer Anlagen und fester Einrichtungen, dessen Intensität und zeitlicher Ablauf weitgehend unabhängig vom Benutzer ist.	
1.1.4.3	Benutzungsgeräusch	Geräusch gebäudetechnischer Anlagen und fester Einrichtungen, dessen Intensität und zeitlicher Ablauf weitgehend abhängig vom Benutzer ist.	
1.1.4.4	Einzelgeräusch	Geräusch mit einer Dauer von maximal 3 Minuten und einer geringen Häufigkeit des Auftretens.	
1.1.4.5	Dauergeräusch	Geräusch mit einer Dauer von mehr als 3 Minuten oder einer sehr grossen Häufigkeit des Auftretens.	
1.1.4.6	Maximalpegel I-A,F,max dB	Mit der Zeitbewertung FAST ermittelter und mit dem A-Filter bewerteter Maximalpegel gemäss IEC bzw. SN EN 61672-1.	
1.1.4.7	Standard-Schalldruck- pegel ^{LnT} dB	Auf die Bezugsnachhallzeit $T_0von0,5sstandardisierterSchalldruckpegel.$	
1.1.4.8	A-bewerteter Standard- Schalldruckpegel L , T,A, 50-5000 dB	Energetische Summe der A-bewerteten Standard-Schalldruckpegel Lar über die Terzbänder von 50 Hz bis 5000 Hz.	
1.1.4.9	Empa-Pendelfallhämmer	Gerät zur Erzeugung von Körperschallimpulsen zum Nachweis von Benutzungsgeräuschen, welches die Anforderungen gemäss A.3.7 dieser Norm erfüllt.	
1.1.4.10	Gesamtwert für Geräusche gebäude- technischer Anlagen und fester Einrichtungen L _{H,tot} dB	Summe der Kennwerte, die in der jeweiligen Anforderung an den Schutz gegenüber Geräuschen gebäudetechnischer Anlagen und fester Einrichtungen zu berücksichtigen sind.	

iNorm License by SIA ZPF Ingenieure AG | 08.05.2023

1.2 Symbole, Begriffe und Einheiten

Symbol	Begriff	Einheit
Α	äquivalente Absorptionsfläche	m²
A)	Bezugs-Absorptionsfläche	m²
C, C _{tr} ,	Spektrum-Anpassungswert	dB
Cfr, 50 3150' G		
D _e	Anforderungswert an den Luftschallschutz gegenüber externen Lärmquellen	dB
D_e,d	Projektierungswert für den Luftschallschutz gegenüber externen Lärmquellen	dB
De,tot	Gesamtwert für den Luftschallschutz gegenüber externen Lärmquellen	dB
Di	Anforderungswert an den Luftschallschutz gegenüber internen Lärmquellen	dB
Di ₅₀	Anforderungswert an den Luftschallschutz gegenüber Räumen mit erheblich tieffrequenten Emissionen in der Nacht	dB
Di ,d> D j50 d	Projektierungswert für den Luftschallschutz gegenüber internen Lärmquellen	dB
Di ,tot	Gesamtwert für den Luftschallschutz gegenüber internen Lärmquellen	dB
Di50 ,tot	Gesamtwert für den Luftschallschutz gegenüber Räumen mit erheblich tieffrequenten Emissionen in der Nacht	dB
D_{nT}	Standard-Schallpegeldifferenz	dB
$D_nT_t w$	Bewertete Standard-Schallpegeldifferenz	dB
D nTi D _{ISf} 2m,nT	Standard-Schallpegeldifferenz für die Gebäudehülle	dB
D4.5°,nT,W Di s'2m,nT,w	Bewertete Standard-Schallpegeldifferenz für die Gebäudehülle	dB
K _F	Zuschlag für Flankenübertragung	dB
K _P	Projektierungszuschlag	dB
K_v K_2 , K_{3i} K_a	Pegelkorrekturen für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen	dB
	 K₁ zur Berücksichtigung der Schallabsorption im Empfangsraum K₂ zur Berücksichtigung der Tonhaltigkeit 	
	 K₃ zur Berücksichtigung der Impulshaltigkeit K₄ für den Nachweis mit dem Empa-Pendelfallhammer 	
L	mittlerer Schalldruckpegel	dB
L'	Anforderungswert an den Trittschallschutz	dB
I-Aeq	A-bewerteter Mittelungspegel	dB
I~A,F,max	Maximalpegel	dB
Lceq	C-bewerteter Mittelungspegel	dB
L' d	Projektierungswert für den Trittschallschutz	dB
Li	Trittschallpegel	dB
L _h	Anforderungswert an gebäudetechnische Anlagen und feste Eirichtungen	dB
Lh,cl	Projektierungswert für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen	dB
Lpiftot	Gesamtwert für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen	dB
L , , L' ,	Norm-Trittschallpegel	dB
Ln,w' L n w	bewerteter Norm-Trittschallpegel	dB
L _n r	Standard-Schalldruckpegel	dB
L nT	Standard-Trittschallpegel	dB

Symbol	Begriff	Einheit
L , T,A, 50-5000	A-bewerteter Standard-Schalldruckpegel	dB
L nTtw	bewerteter Standard-Trittschallpegel	dB
L_{P}	Schalldruckpegel	dB
L_r	Beurteilungspegel	dB
L tot	Gesamtwert für den Trittschallschutz	dB
AL_W	Bewertete Trittschallminderung	dB
p	Schalldruck	Pa
Po	Bezugswert für Luftschall	Pa
FI	Schalldämm-Mass	dB
R'	Bau-Schalldämm-Mass	dB
R_w	bewertetes Schalldämm-Mass	dB
R'_w	bewertetes Bau-Schalldämm-Mass	dB
R' _{w,res}	resultierendes bewertetes Bau-Schalldämm-Mass	dB
R ₄₅ »	Bau-Schalldämm-Mass für Aussenbauteile	dB
R 45°, w	bewertetes Bau-Schalldämm-Mass für Aussenbauteile	dB
S	Fläche	m²
Τ	Nachhallzeit	S
То	Bezugsnachhallzeit	S
V	Volumen	${\sf m}^{3}$

Norm License by SIA ZPF Ingenieure AG | 08.05.2023

2 GRUNDSÄTZE

2.1 Allgemeines

- Zur Beschreibung des Schallschutzes wird beim Luftschall die Schallpegeldifferenz zwischen zwei Innenräumen bzw. zwischen dem Aussen- und dem Innenraum verwendet. Beim Trittschall wird der Schalldruckpegel im Empfangsraum bei sendeseitiger Anregung begehbarer Konstruktionen mit dem Norm-Hammerwerk verwendet. Bei Geräuschen gebäudetechnischer Anlagen und fester Einrichtungen wird der Schalldruckpegel bei üblicher Nutzung oder bei üblichem Betrieb der Anlagen bzw. bei Anregung mit dem Empa-Pendelfallhammer verwendet.
- 2.1.2 Die Anforderungen gelten dauerhaft und ohne Toleranzen.
- 2.1.3 Die Anforderungen gelten für den nutzungsbereiten Zustand des Gebäudes.
- 2.1.4 Massgebend für die Beurteilung sinddie am Bau messtechnisch ermittelten, ganzzahligen Werte.
- 2.1.5 Die Anforderungen sind einerseits nach dem Grad der Lärmbelastung, anderseits nach der Lärmempfindlichkeit der Raumnutzung eingestuft. Die Einstufung erfolgt anhand der Beschreibungen in der Tabelle 1 (Lärmempfindlichkeit) und in den Tabellen 2 bis 6 (Lärmbelastung) sowie in Tabelle 7 (Geräuschart).

2.2 Anforderungsstufen

2.2.1 Mindestanforderungen

Die Mindestanforderungen gewährleisten bei üblicher Nutzung einen Schallschutz zur Verhinderung erheblicher Störungen.

2.2.2 Erhöhte Anforderungen

Die erhöhten Anforderungen bieten gegenüber den Mindestanforderungen einen besseren Schallschutz.

Bei Neubauten von Einfamilienhäusern, Doppel- und Reiheneinfamilienhäusern sowie von Wohnungen, die als Stockwerkeigentum begründet werden, gelten die erhöhten Anforderungen.

2.2.3 Spezielle Anforderungen

Bei höheren Ruheansprüchen oder bei besonderen Nutzungen können spezielle Anforderungen festgelegt werden, auch für einzelne Räume oder Lärmarten.

2.3 Lärmempfindlichkeit

Die Einstufung der Lärmempfindlichkeit erfolgt durch sinngemässe Interpretation der Beschreibungen und Beispiele in Tabelle 1.

Tabelle 1 Einstufung der Lärmempfindlichkeit nach der immissionsseitigen Raumart und Nutzung

Lärmempfindlichkeit	Beschreibung der immissionsseitigen Raumart und Raumnutzung (Empfangsraum)
keine	Verkehrs- und Funktionsflächen, nur gelegentlich genutzte Räume oder Räume mit erheblichem Betriebslärm.
	Beispiele: Abstell-, Lager- und Kellerraum, Heizungs-, Lüftungs- und Haustechnikraum, Hobbyraum, Einstellhalle, Treppenhaus, Laubengang.
gering	Räume für vorwiegend manuelle Tätigkeit. Räume, die von vielen Personen oder nur kurzzeitig benutzt werden.
	Beispiele: Werkstatt, Handarbeitsraum, Kantine, Restaurant, Küche ohne Wohnanteil, Bad, Dusche, WC, Verkaufsraum, wohnungsinterner Korridor, Warteraum.
mittel	Räume für Wohnen, Schlafen und für geistige Arbeiten.
	Beispiele: Wohnzimmer, Schlafzimmer, Studio, Schulzimmer, Musik- übungsraum, Wohnküche, Büroraum, Empfangsraum, Hotelzimmer.
hoch	Räume für Benutzer mit besonders hohem Ruhebedürfnis.
	Beispiele: spezielle Ruheräume in Spitälern und Sanatorien, spezielle Therapieräume mit hohem Ruhebedarf, Lese-, Studierzimmer.

3 ANFORDERUNGEN

3.1 Luftschallschutz gegenüber externen Lärmquellen

3.1.1 Anforderungen

Die Einstufung der Lärmempfindlichkeit erfolgt gemäss 2.3. Der Grad der Lärmbelastung durch Aussenlärm wird durch den Beurteilungspegel L_r gemäss Lärmschutz-Verordnung (LSV) [2] erfasst.

Tabelle 2 Mindestanforderungen De an den Luftschallschutz gegenüber externen Lärmquellen

Lärmbelastung	klein bis mässig		erheblich bis sehr stark	
Beurteilungsperiode	Tag	Nacht	Tag	Nacht
Beurteilungspegel dB	L _r < 60	L _r < 52	<i>L</i> _r > 60	L _r > 52
Lärmempfindlichkeit		Anforderur	gswerte D _e	
gering	22 dB	22 dB	L _r -38 dB	L_r - 3 Q dB
mittel	27 dB	27 dB	<i>L_r-33</i> dB	<i>L_r-25</i> dB
hoch	32 dB	32 dB	L _r -28 dB	L _r - 20 dB

Für die erhöhten Anforderungen gelten die um 3 dB erhöhten Werte gegenüber den Werten nach Tabelle 2.

Das resultierende, spektral angepasste, bewertete Bau-Schalldämm-Mass der Aussenbauteile darf höchstens 5 dB kleiner sein als der Anforderungswert D_e , d. h. $(F?4_5)_w + C_{tr})_{res}$ dB.

3.1.2 Spezielle Fälle

3.1.2.1 Lärmquellen ohne Beurteilungspegel L_r gemäss LSV

Gegenüber Lärmquellen ohne Beurteilungspegel L_r gemäss LSV ist ein angemessener Schallschutz zu vereinbaren.

3.1.2.2 Ausschliessliche Tagesnutzung oder ausschliessliche Nachtnutzung

Für Räume, in denen sich Personen regelmässig während längerer Zeit nur am Tag oder nur in der Nacht aufhalten, bestimmt der entsprechende Aufenthaltszeitraum die Anforderung. Die Tag- und Nachtzeiten richten sich nach der LSV.

3.1.3 Nachweis

3.1.3.1 Messung

Die Anforderung ist erfüllt, wenn der Gesamtwert für den Luftschallschutz gegenüber externen Lärmquellen D_{etot} den Anforderungswert D_{e} nicht unterschreitet:

 $D_{e,tot} > D_{e}$, in dB

 D_{e} , tot = D , $T:W + C_{tr}$ bzw. $D'_{B tot} = D_{sS/2m,nTiW} + C_{tr}$, in dB

Zusätzlich gilt: $\{R'_4 \mid W + C_{tr}\}$ res > D e ~ 5 dB

3.1.3.2 Projektierung

Die Anforderung ist erfüllt, wenn der Projektierungswert für den Luftschallschutz gegenüber externen Lärmquellen D_{ed} den Anforderungswert D_{e} nicht unterschreitet:

 $D_{e,d} > D_e$, in dB

 $D_{e,d} = D_4$ $_{nT/W} + C_{tr} - K$ $_{Pl}$ in dB

Zusätzlich gilt: $(F?4_5 \%_w + C_{tr})_{res} > D_e - 5 dB$

Für die Projektierung darf D_{4-nTw} mit der folgenden Gleichung aus $R'_{45/W}$ ermittelt werden:

 $C = nTp/v^{-} R45^{\circ}, w+10 \lg(V7S)-4,9 dB$

Bei einfachen numerischen Berechnungsverfahren ist: $f?'_{45>1}$, = R_w - K_F , in dB

3.2 Luftschallschutz gegenüber internen Lärmquellen

3.2.1 Anforderungen

Die Einstufung der Lärmempfindlichkeit erfolgt gemäss 2.3. Der Grad der Lärmbelastung wird durch sinngemässe Interpretation der Beispiele in Tabelle 3 eingestuft.

Tabelle 3 Mindestanforderungen D, an den Luftschallschutz gegenüber internen Lärmquellen

Lärmbelastung	klein	mässig	stark	sehr stark
Nutzung	geräuscharm	normal	lärmig	lärmintensiv
Beispiele für emissionsseitige Raumart und Nutzung (Senderaum)	Lese-, Warte- raum, Archiv, Abstellraum, Lager- und Kellerraum, Veloraum	Wohn-, Schlaf- raum, Küche, Bad, Dusche, WC, Korridor, Aufzugs- schacht, Auf- zugsmaschinen- raum, Treppen- haus, Winter- garten, Ein- stellhalle, Büro- raum, Sitzungs- zimmer, Labor, Verkaufsraum ohne Beschal- lung	Saal, Schul- zimmer, Kinder- krippe, Kinder- garten, Technik- raum, Restau- rant ohne Be- schallung, Verkaufsraum mit Beschallung und dazuge- hörende Er- schliessungs- räume, Einstell- halle mit ge- werblicher Nutzung	Gewerbebe- trieb, Werkstatt, Musikübungs- raum, Sport- halle, Restau- rant mit Be- schallung und dazugehörende Erschliessungs- räume
Lärmempfindlichkeit	Anforderungswerte D,			
gering	42 dB	47 dB	52 dB	57 dB
mittel	47 dB	52 dB	57 dB	62 dB
hoch	52 dB	57 dB	62 dB	67 dB

Für die erhöhten Anforderungen gelten die um 4 dB erhöhten Werte gegenüber den Werten nach Tabelle 3.

Das resultierende, spektral angepasste, bewertete Bau-Schalldämm-Mass der Trennbauteile darf höchstens 5 dB kleiner sein als der Anforderungswert D, d. h. $(R'_w + C)_{res} > D$, 5 dB.

3.2.2 Spezielle Fälle

3.2.2.1 Räume mit Abschlusstüren gegen Erschliessungszonen

Für Räume mittlerer und hoher Lärmempfindlichkeit gelten gegen Erschliessungszonen die um 5 dB reduzierten Werte gegenüber den Werten nach Tabelle 3. Das spektral angepasste, bewertete Bau-Schalldämm-Mass der Türe und weiterer Trennbauteile darf jeweils den Wert von 37 dB nicht unterschreiten, d. h. R'_w + C> 37 dB.

Für Räume geringer Lärmempfindlichkeit gelten gegen Erschliessungszonen die um 10 dB reduzierten Werte gegenüber den Werten nach Tabelle 3. Das spektral angepasste, bewertete Bau-Schalldämm-Mass der Türe und weiterer Trennbauteile darf jeweils den Wert von 32 dB nicht unterschreiten, d. h. R'_w + C > 32 dB.

Zwischen Mindestanforderungen und erhöhten Anforderungen wird nicht unterschieden.

3.2.2.2 Erheblich tieffrequente Emissionen in der Nacht (19.00 bis 07.00 Uhr)

Als erheblich tieffrequent gelten Emissionen mit einer Differenz zwischen dem Mittelungspegel mit C-Bewertung L_{Ceq} und dem Mittelungspegel mit A-Bewertung L_{Aeq} über 5 dB, d. h. L_{Ceq} - L_{Aeq} 5 dB.

Die Einstufung der Lärmempfindlichkeit erfolgt gemäss 2.3. Der Grad der Lärmbelastung wird durch sinngemässe Interpretation der Beispiele in Tabelle 4 oder anhand des zu erwartenden Mittelungspegels L_{Aeq} im Raum eingestuft.

Tabelle 4 Mindestanforderungen D_{/50} an den Luftschallschutz gegenüber Räumen mit erheblich tieffrequenten Emissionen in der Nacht (19.00 bis 07.00 Uhr)

Lärmbelastung	mittel	erheblich	stark	sehr stark
Beispiele für emissionsseitige Raumart und Nutzung (Senderaum)	Restaurant oder Cafe mit er- höhtem Schall- pegel	Pub, Bar	Nachtclub, Lokal mit sehr hohem Schall- pegel	Diskothek, Dancing, erheb- lich verstärkte Live-Musik
I-Aeq	ca. 80 dB	ca. 85 dB	ca. 90 dB	>90 dB
Lärmempfindlichkeit		Anforderungswerte D _{i50}		
gering	55 dB	60 dB	65 dB	>65 dB
mittel	60 dB	65 dB	70 dB	>70 dB
hoch	65 dB	70 dB	75 dB	>75 dB

Für die erhöhten Anforderungen geltendieum 4dB erhöhten Werte gegenüber den Werten nach Tabelle 4.

Das resultierende, spektral angepasste, bewertete Bau-Schalldämm-Mass der Trennbauteile darf höchstens 5 dB kleiner sein als der Anforderungswert D_{i50} , d. h. $(R'_w + C_{tr50.3150})_{res} > D_{i50}$ - 5 dB.

3.2.2.3 Massgebend tieffrequente Emissionen in der Nacht (19.00 bis 07.00 Uhr)

Als massgebend tieffrequent gelten Emissionen mit einer Differenz zwischen dem Mittelungspegel mit C-Bewertung L_{Ceq} und dem Mittelungspegel mit A-Bewertung L_{Aeq} über 12 dB, d. h. -Ceq~ I-Aeq> 12 dB.

Gegenüber Räumen mit massgebend tieffrequenten Emissionen in der Nacht gelten die um 3 dB erhöhten Werte gegenüber den Werten nach 3.2.2.2.

3.2.2.4 Abgrenzung bezüglich immissionsseitiger Beurteilung von Beschallungen

Die Anforderungen gemäss 3.2.1, 3.2.2.2 und 3.2.2.3 regeln den baulichen Schallschutz, abhängig vom eingestuften Grad der Lärmbelastung.

Der im Betrieb mögliche Beschallungspegel ist abhängig vom spektralen sowie vom zeitlichen Charakter und wird in der vorliegenden Norm nicht festgelegt. Dieser ergibt sich aus der Einhaltung der Bestimmungen des Umweltschutzgesetzes [1].

3.2.3 Nachweis

3.2.3.1 Messung

Die Anforderung ist erfüllt, wenn der Gesamtwert für den Luftschallschutz gegenüber internen Lärmquellen $D_{/tof}$ bzw. $D_{/50}$ tot den Anforderungswert D, bzw. $D_{/50}$ nicht unterschreitet:

$$D_{irtot} > D_{,sofof} > D_{,50}$$
, in dB

 Di,tot^{-} DnT,w+ Cbzw. $D_{;b0,tot}=$ DnT,w+ Cfr,50-3150'in dB

Zusätzlich gilt: $(R'_w + C)_{res} > D - 5 dB bzw. (R'_w + C_{trr50.3150})_{res} > D_{i50} - 5 dB$

3.2.3.2 Projektierung

Die Anforderung ist erfüllt, wenn der Projektierungswert für den Luftschallschutz gegenüber internen Lärmquellen D_{id} bzw. $D_{.50\,d}$ den Anforderungswert $D_{.00\,d}$, bzw. $D_{.00\,d}$ nicht unterschreitet:

$$D_{1/d} > D_i bzw. D_{50;d} > D_{50}$$
, in dB

 $L_{i,d} = DnT,w + C - K_P bzw. D_{50 d} = D_{nTw} + C_{tr503150} - K_P, in dB$

Zusätzlich gilt: $[R'_w + C)_{res} > D$ - 5 dB bzw. $(H'_w + C_{trr503150})_{res} > D_{l50}$ - 5 dB

Für die Projektierung darf D_{nTw} mit der folgenden Gleichung aus R'_w ermittelt werden:

$$D_{nTrW} = R'_w + 10 \text{ lg}(V7S) - 4.9 \text{ dB}$$

Bei einfachen numerischen Berechnungsverfahren ist:

 $R'_{w} = Rw \sim Kpbzw$. $R'_{w} = R'_{w}$ (ähnliche Bausituation) - $K_{F_{v}}$ in dB

3.3 Trittschallschutz

3.3.1 Anforderungen

Die Einstufung der Lärmempfindlichkeit erfolgt gemäss 2.3. Der Grad der Lärmbelastung wird durch sinngemässe Interpretation der Beispiele in Tabelle 5 eingestuft.

Tabelle 5 Mindestanforderungen L'an den Trittschallschutz

Lärmbelastung	klein	mässig	stark	sehr stark
Beispiele für emis- sionsseitige Raum- art und Nutzung (Senderaum)	Archiv, Warte-, Leseraum, Balkone (siehe 3.3.2.2)	Wohn-, Schlaf- raum, Küche, Bad, Dusche, WC, Büroraum, Korridor, Treppe, Laubengang, Passage, Terrasse, Ein- stellhalle	Verkaufsraum, Restaurant, Saal, Schul- zimmer, Kinder- krippe, Kinder- garten, Sport- halle, Werk- statt, Musik- übungsraum	Die in der Stufe «stark» fest- gehaltenen Nutzungen, wenn diese auch in der Nacht von 19.00 h bis 07.00 h vor- kommen.
Lärmempfindlichkeit		Anforderur	ngswerte L'	
gering	63 dB	58 dB	53 dB	48 dB
mittel	58 dB	53 dB	48 dB	43 dB
hoch	53 dB	48 dB	43 dB	38 dB

Für die erhöhten Anforderungen gelten die um 4 dB verringerten Werte gegenüber den Werten nach Tabelle 5.

3.3.2 Spezielle Fälle

3.3.2.1 Umbauten und Umnutzungen

Für Umbauten und Umnutzungen gelten die um 2 dB erhöhten Werte gegenüber den Werten gemäss 3.3.1.

3.3.2.2 Balkone

Für Trittschallübertragungen von Baikonen gelten die um 5 dB erhöhten Werte gegenüber den Werten gemäss 3.3.1.

3.3.2.3 Duschen

Der Duschbereich (auch bei bodenebenen Duschen) ist ausschliesslich gemäss 3.4zu beurteilen.

3.3.2.4 Gelegentlich genutzte begehbare Konstruktionen

Für gelegentlich genutzte begehbare Konstruktionen (z.B. in Heizungsräumen, Klimazentralen, Lagerräumen, Kellern, Dachböden, Nottreppenhäusern sowie in den zu diesen Räumen gehörenden Verkehrsflächen) sind keine Massnahmen zum Trittschallschutz erforderlich. In diesen Fällen gelten keine Anforderungen an den Trittschallschutz.

3.3.2.5 Intensiv genutzte begehbare Konstruktionen

Für intensiv genutzte begehbare Konstruktionen (z.B. durch Einrichtungen und Maschinen in Industrie und Gewerbe, manuelle Tätigkeiten in Industrie und Gewerbe, innerbetriebliche Lastentransporte, Veranstaltungsräume, Freizeitanlagen, Fitnessräume, Tanzflächen) gelten zusätzlich die Anforderungen gemäss 3.4.

3.3.3 Nachweis

3.3.3.1 Messung

Die Anforderung ist erfüllt, wenn der Gesamtwert für den Trittschallschutz L'_{fot} den Anforderungswert /.'nicht überschreitet:

$$L'_{tot} < L'$$
, $\ln dB$

$$L tot \sim L'nT_{,w} + C/$$
, in dB
Für C , < 0 gilt: C , $= 0$

3.3.3.2 Projektierung

Die Anforderung ist erfüllt, wenn der Projektierungswert für den Trittschallschutz L'_d den Anforderungswert /.'nicht überschreitet:

$$L'_d < L'$$
, in dB

$$L'd= l\sim'_{nT,w} + C/+ Kp, in dB$$

Für
$$C_{,<} 0$$
 gilt: $C_{,=} 0$

Für die Projektierung darf L'_{nTw} mit der folgenden Gleichung aus L'_{nw} ermittelt werden:

$$L'_{nT,w} = L'_{n,w} - 10 \text{ Ig } (\Z) + 14,9 \text{ dB}$$

Bei einfachen numerischen Berechnungsverfahren ist:

$$L'_{nw} = L_{nw} + AL_W + K_f$$
 bzw. $L'_{nw} - L'_{nw}$ (ähnliche Bausituation) + $AL_W + K_F$, in dB

3.4 Schutz gegenüber Geräuschen gebäudetechnischer Anlagen und fester Einrichtungen

3.4.1 Anforderungen

Die Einstufung der Lärmempfindlichkeit erfolgt gemäss 2.3. Die Geräuscharten sind in die Rubriken der Tabelle 6 eingeteilt. Die Zuordnung richtet sich nach den Definitionen gemäss 1.1.4.2 bis 1.1.4.5 und erfolgt durch sinngemässe Interpretation der Beispiele gemäss 3.4.2.

Tabelle 6 Mindestanforderungen L_H an den Schutz gegenüber Geräuschen gebäudetechnischer Anlagen und fester Einrichtungen

Emissionsseitige	Einzelge	Dauergeräusche	
Geräuschart (Senderaum)	Funktionsgeräusche	Benutzungsgeräusche	Funktions- oder Benutzungsgeräusche
Lärmempfindlichkeit	Anforderungswerte L_H		
gering	38 dB	43 dB	33 dB
mittel	33 dB	38 dB	28 dB
hoch	28 dB	33 dB	25 dB

Für die erhöhten Anforderungen gelten die um 4 dB verringerten Werte gegenüber den Werten nach Tabelle 6. Dabei gilt 25 dB als Kleinstwert.

3.4.2 Geräuscharten

Tabelle 7 Beispiele der Zuordnung von Geräuschen zu Geräuscharten

	<u> </u>
Einzel-	Funktionsgeräusche (Nachweis mit Originalgeräusch)
geräusche	Waschtisch, Spülbecken und Badewanne füllen bzw. auslaufen lassen; WC spülen inklusive Spülvorgang auslösen (ohne Feststoffanteile); Betriebsgeräusche von Wasser- und Abwasserinstallationen; An-, Um-, Abstellen von Ventilen und sonstigen Armaturen; Aufzugsanlagen; Geräusche automatisch betätigter Garagentore, automatische Türschliesser und Storenanlagen; Schaltgeräusche elektrischer Anlagen
	Benutzungsgeräusche (Nachweis mit Originalgeräusch)
	Manuelles Betätigen von Duschtrennwänden, Garagentoren, Stören und Rollladen, Hauseingangs- und Abschlusstüren, Schiebetüren und -fenstern
	Benutzungsgeräusche (Nachweis mit Empa-Pendelfallhammer)
	Nutzen von Badewanne, Duschtasse und bodenebene Duschfläche, WC, Waschtisch, Waschtischkombination, Bidet, Spülbecken, Arbeitsfläche in Küche, Schrank, Unter- und Oberbau, Spiegelschrank
Dauer-	Funktionsgeräusche (Nachweis mit Originalgeräusch)
geräusche	Betrieb von Lüftungs- und Klimaanlage, Geschirrspüler, Waschmaschine, Tumbler, Kühlanlage, Ventilator, Heizung, Kompressor, Wärmepumpe, Whirlpool, Dachentwässerung
	Benutzungsgeräusche (Nachweis mit Originalgeräusch)
	Geräusche industrieller oder gewerblicher Einrichtungen mit manueller Betätigung

- 3.4.2.1 Wenn die Zuordnung von Geräuschen nicht eindeutig möglich ist, müssen diese bezüglich mehrerer Geräuscharten untersucht und beurteilt werden (z.B. Einrichtungen und Maschinen in Industrie und Gewerbe, manuelle Tätigkeiten in Industrie und Gewerbe, innerbetriebliche Lastentransporte, Veranstaltungsräume, Freizeitanlagen, Fitnessräume, Tanzflächen).
- 3.4.2.2 Einfach vermeidbare Störungen (z.B. Nutzen von Seifenschalen und baulichen Abstellflächen, Betätigen von Papierrollenhaltern, Duschvorhängen und Duschschlauch, Bedienen von Kurbelstangen) rechtfertigen keine Beurteilung im Sinne dieser Norm. Verbesserungsmassnahmen sind im Sinne des Vorsorgeprinzips zu treffen.
- 3.4.2.3 Geräusche, die bei direkter meteorologischer Einwirkung auf die Gebäudehülle entstehen, wie Regen und Wind, werden nicht von dieser Norm erfasst. Für die durch Sonneneinstrahlung verursachten Geräusche gilt 3.4.3.3.

3.4.3 Spezielle Fälle

3.4.3.1 Mischnutzungen

In einem Gebäude mit störenden Betrieben gelten gegenüber Räumen mittlerer und hoher Lärmempfindlichkeit, die zu Wohnzwecken genutzt werden, die um 5 dB verringerten Anforderungswerte gegenüber den Werten gemäss 3.4.1. Dabei gilt 25 dB als Kleinstwert.

In diesem Zusammenhang werden als störend Betriebe beurteilt, in denen die Häufigkeit der störenden Geräusche im Vergleich zu üblicher Wohnnutzung deutlich grösser ist.

3.4.3.2 Ausschliessliche Tagesnutzung

Wenn zweifelsfrei sichergestellt ist, dass Störungen nur am Tag (07.00 h bis 19.00 h) auftreten, gelten die um 5 dB erhöhten Werte gegenüber den Werten gemäss 3.4.1 und 3.4.3.1.

3.4.3.3 Konstruktionsbedingte Geräusche

Häufig auftretende, konstruktionsbedingte Geräusche (z.B. Knackgeräusche) sind sinngemäss wie Funktionsgeräusche zu beurteilen. Dabei sind deren Stärke, deren Häufigkeit und die Tageszeit des Auftretens zu berücksichtigen.

3.4.4 Nachweis

3.4.4.1 Messung

Die Anforderung ist erfüllt, wenn der Gesamtwert für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen L_{Htot} den Anforderungswert L_{H} nicht überschreitet:

$$L_{H,t}ot$$
 L_{Hr} in dB

Für Einzelgeräusche gilt:
$$L_{Htot} = L_{AFmax} + K_4$$
, in dB

Für Dauergeräusche (einfache Messmethode) gilt:
$$L_{Htot} = I - Aeq^+ X_1 + X_2 + 3/in dB$$

Für Dauergeräusche (erweiterte Messmethode) gilt:
$$L_{Hitot} = L_{nTAr50.5000} + K_2 + K_s$$
, in dB

3.4.4.2 Projektierung

Die Anforderung ist erfüllt, wenn der Projektierungswert für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen L_{Hrd} den Anforderungswert L_{H} nicht überschreitet:

$$L_{H}$$
, d L_{h} , in dB

Für Einzelgeräusche gilt:
$$L_{Hd} = L_{AFmax} + + X_4 + K_p$$
, in dB

Für Dauergeräusche (einfache Messmethode) gilt:
$$L_{Hd} = L_{Aeq} + X$$
, + $K_2 + K_3 + K_p$, in dB

Für Dauergeräusche (Messmethode) gilt:
$$L_{Hd} = L_{nTA50.5000} + K_2 + K_3 + K_{pl}$$
 in dB

Erfahrungswerte aus ähnlichen Bausituationen oder aus Labormessungen werden nach Erfahrung auf die gegebene Situation angepasst:

$$I-A,F,max = L_{Ar}F,m_ax$$
 (ähnliche Bausituation) + K_F , in dB

$$L_{Aeq} = L_{AS}q$$
 (ähnliche Bausituation) + K_F , in dB

Anhang A (normativ)

Bewertung des Schallschutzes

A.i Messung allgemein

Die gültigen Verfahren sind in A.2 und A.3 definiert. Erfolgt die Messung mit einem abweichenden Verfahren, darf bei der Weitergabe des Resultats kein direkter Bezug auf die vorliegende Norm gemacht werden.

a.2 Messung von Luft- und Trittschall

A.2.1 Allgemeines

- A.2.1.1 Die zur Erfüllung der Anforderungen massgebenden Mess- und Bewertungsnormen sind in 0.2 und teilweise in den nachfolgenden Ziffern aufgeführt. Für Luft- und Trittschallmessungen sind insbesondere die Normenreihen SN EN ISO 16283 und SN EN ISO 717 massgebend.
- A.2.1.2 Bei zusammenhängenden grösseren Räumen ohne feste Unterteilung liegt in der Regel kein diffuses Schallfeld vor. Bei der Messanordnung ist diesem Aspekt entsprechend Rechnung zu tragen.
- A.2.1.3 In der Normenreihe SN EN ISO 16283 werden Beispiele für zulässige Messanordnungen bei besonderen Raumtypen aufgezeigt. Die angegebenen Messanordnungen sind zu prüfen und ggf. so anzupassen, dass die ganze in den Empfangsraum übertragene Schallenergie erfasst wird. Alternativ können z.B. Teilbereiche des Empfangsraums provisorisch abgetrennt und ein Mindestwert der Schalldämmung gemessen werden. Dabei sind die Messbedingungen (z.B. Mikrofonpositionen) der Normenreihe SN EN ISO 16283 zu beachten.

A.2.2 Ermittlung der spektral angepassten, bewerteten Standard-Schallpegeldifferenz $D_{nT,w}$ + C (bzW. $C_{trSo-315o}$)

- Die Messung der Standard-Schallpegeldifferenz D_{nT} erfolgt gemäss SN EN ISO 16283-1. Die Einzahlangabe (D_{nTw}) und die Spektrum-Anpassungswerte (C bzw. $C_{tr50\cdot3150}$) werden gemäss SN EN ISO 717-1 bestimmt.
- Im Sende- und im Empfangsraum werden die mittleren Schalldruckpegel gemessen. Der mittlere Schalldruckpegel im Empfangsraum wird auf die Bezugsnachhallzeit $T_{\rm o}$ von 0,5 s standardisiert.

A.2.3 Ermittlung des spektral angepassten, bewerteten Bau-Schalldämm-Masses $R'_w + C$ (bzw. $C_{tr503150}$)

- A.2.3.1 Ermittlung bei einer Trennwand bzw. einer Trenndecke:
 - Die Messung des Bau-Schalldämm-Masses Verfolgt gemäss SN EN ISO 16283-1. Die Einzahlangabe (R'_w) und die Spektrum-Anpassungswerte (Cbzw. $C_{tr50\cdot3150}$)werden gemäss SN EN ISO 717-1 bestimmt.
 - Im Sende- und im Empfangsraum werden die mittleren Schalldruckpegel gemessen.
 - Alternativ kann die Schalldämmung unter Anwendung des Schallintensitätsverfahrens gemäss SN EN ISO 15186-2 bestimmt werden.
- A.2.3.2 Ermittlung bei einer Abschlusstüre (und weiteren Trennbauteilen gemäss 3.2.2.1):
 - Die Ermittlung und Bewertung erfolgen gemäss A.2.3.1.
 - Als Senderaum ist die Erschliessungszone zu wählen und der Sendepegel ist an Positionen im Bereich der Abschlusstüre zu messen.
 - Sind neben der Abschlusstüre weitere Bauteile vorhanden, so kann die übertragene Schallenergie jedem Bauteil separat zugeordnet und jeweils ein Mindestwert für die Schalldämmung bestimmt werden. Für die Ermittlung eines genaueren Wertes können einzelne Bauteile durch provisorische Behelfskonstruktionen schalltechnisch verbessert werden.

Norm License by SIA ZPF Ingenieure AG | 08.05.2023

A.2.4 Ermittlung der spektral angepassten, bewerteten Standard-Schallpegeldifferenz $D_{45\ nT_{1W}} + C_{tr}$ für die Gebäudehülle

A.2.4.1 Räumlich wenig gegliederte Gebäudehüllen mit reflektierenden Oberflächen:

- Es gilt das Schallpegeldifferenz-Verfahren mit Lautsprecher. Das Verfahren ist angelehnt an das Bauteilverfahren mit Lautsprecher gemäss SN EN ISO 16283-3. Die Standard-Schallpegeldifferenz D_{45 n7} für die Gebäudehülle wird gemäss 1.1.2.16 berechnet. Die Einzahlangabe (D₄₅»_{nTw}) und der Spektrum-Anpassungswert (C_{fr}) werden gemäss SN EN ISO 717-1 bestimmt.
- Der Schalldruckpegel wird aussen direkt auf dem Prüfelement (energetischer Mittelwert über die Fläche des ganzen Aussenbauteils, z.B. Aussenwand inkl. Fenster) sowie im Empfangsraum gemessen. Der mittlere Schalldruckpegel im Empfangsraum wird auf die Bezugsnachhallzeit To von 0,5 s standardisiert.
- Die Aufstellung der Lautsprecher erfolgt gemäss A.2.4.3. Wenn die Anforderungen an die Lautsprecherposition nicht eingehalten werden können (z.B. Eckräume, erforderlicher Lautsprecherabstand ist nicht einhaltbar), besteht folgende Alternative: Ermittlung des bewerteten Bau-Schalldämm-Masses für Aussenbauteile R'_{45·w}gemäss A.2.5 für einzelne Bauteile separat und Berechnung der Standard-Schallpegeldifferenz D₄₅»_{n,7}-auf Basis der Messergebnisse.
- Die Positionierung und die Anzahl der Mikrofone erfolgt gemäss A.2.4.4.

A.2.4.2 Räumlich stark gegliederte Gebäudehüllen oder schallabsorbierende Oberflächen:

- Bei absorbierenden oder räumlich stark gegliederten Gebäudehüllen mit Erkern, ausladenden Gesimsen o.Ä. gilt das globale Verfahren mit Lautsprecher gemäss SN EN ISO 16283-3. Die Standard-Schallpegeldifferenz D_{/s2mnT} für die Gebäudehülle wird gemäss 1.1.2.18 berechnet. Die Einzahlangabe (Di_{s2mnTfW}) und der Spektrum-Anpassungswert (C_{tr}) werden gemäss SN EN ISO 717-1 bestimmt.
- Der Schalldruckpegel wird aussen in einem Abstand von 2 m von der Fassadenebene oder 1 m vor vorspringenden Gebäudeteilen sowie im Empfangsraum gemessen. Der mittlere Schalldruckpegel im Empfangsraum wird auf die Bezugsnachhallzeit To von 0,5 s standardisiert.

A.2.4.3 Lautsprecher:

- Die Positionierung der Lautsprecher erfolgt gemäss SN EN ISO 16283-3.
- Räumlicher Schalleinfallswinkel 0 = 45° ± 5° (cos0 = cosß x cos<p).

Figur 1 Prüfanordnung im Grundriss (links) und Schnitt (rechts)

A.2.4.4 Aussenmikrofone:

- Die Positionierung und die Anzahl der Mikrofone erfolgt gemäss SN EN ISO 16283-3.

Figur 2 Anordnung der Mikrofone

Mikrofondurchmesser max. 13 mm

Windschirme sind den maximalen Abständen anzupassen.

Ein Direktkontakt zwischen Bauteil und Mikrofon ist zu vermeiden.

A.2.5 Ermittlung des spektral angepassten, bewerteten Bau-Schalldämm-Masses $R 4_{5^{-1}W} + C_{tr}$ für Aussenbauteile

- Es gilt das Bauteilverfahren mit Lautsprecher gemäss SN EN ISO 16283-3. Das Bau-Schalldämm-Mass /? 4_5 <.für Aussenbauteile wird gemäss 1.1.2.11berechnet. Die Einzahlangabe ($R'_{45^\circ,w}$) und der Spektrum-Anpassungswert ($C_{\rm fr}$) werden gemäss SN EN ISO 717-1 bestimmt.
- Der Schalldruckpegel wird aussen direkt auf dem Prüfelement (energetischer Mittelwert über die Fläche des Prüfelements) sowie im Empfangsraum gemessen.
- Die Aufstellung der Lautsprecher erfolgt gemäss A.2.4.3. Wenn die Anforderungen an die Lautsprecherposition nicht eingehalten werden können oder wenn aufgrund von Reflexionen (z. B. an Erkern, ausladenden Gesimsen) verschiedene Schalleinfallswinkel auftreten, darf kein direkter Bezug auf die vorliegende Norm gemacht werden.
- Die Positionierung und die Anzahl der Mikrofone erfolgt gemäss A.2.4.4.
- Sind mehrere Bauteile vorhanden, so kann die übertragene Schallenergie jedem Bauteil separat zugeordnet und jeweils ein Mindestwert für die Schalldämmung bestimmt werden. Für die Ermittlung eines genaueren Wertes können einzelne Bauteile durch provisorische Behelfskonstruktionen schalltechnisch verbessert werden.
- Alternativ kann die Schalldämmung unter Anwendung des Schallintensitätsverfahrens, in Anlehnung an SN EN ISO 15186-2, bestimmt werden.

A.2.6 Ermittlung des spektral angepassten, bewerteten Standard-Trittschallpegels $L'_{nTw} + C$,

- Die Messung des Standard-Trittschallpegels £'nr erfolgt gemäss SN EN ISO 16283-2. Die Einzahlangabe (L'nrw) und der Spektrum-Anpassungswert (C) werden gemäss SN EN ISO 717-2 bestimmt.
- Die begehbare Konstruktion im Senderaum wird mit dem Norm-Hammerwerk angeregt. Im Empfangsraum wird der mittlere Schalldruckpegel gemessen. Der mittlere Schalldruckpegel im Empfangsraum wird auf die Bezugsnachhallzeit *T_o* von 0,5 s standardisiert.

Norm License by SIA ZPF Ingenieure AG | 08.05.2023

a.3 Messung von Geräuschen gebäudetechnischer Anlagen und fester Einrichtungen

A.3.1 Allgemeines

- A.3.1.1 Die zur Erfüllung der Anforderungen massgebenden Mess- und Bewertungsmethoden sind in den nachfolgenden Ziffern beschrieben. Es ist methodisch zwischen Einzel- und Dauergeräuschen wie folgt zu unterscheiden:
 - Messmethode für Einzelgeräusche,
 - einfache Messmethode für Dauergeräusche,
 - erweiterte Messmethode für Dauergeräusche von 50 Hz bis 5000 Hz.
- A.3.1.2 Gemessen wird an Orten, an denen sich üblicherweise Personen aufhalten. Es sind mindestens 2 Mikrofonpositionen zu verwenden. Die Anzahl der Mikrofonpositionen und Ereignisse ist bis zum Erreichen gesicherter Werte zu erhöhen (insbesondere bei tieftonhaltigen Geräuschen).
- A.3.1.3 Unterschiedliche Störungen von Geräuschen sind separat zu beurteilen (z.B. Auslösegeräusch und Wassergeräusch beim WC-Spülen, manuelle Tätigkeiten in Industrie und Gewerbe).

A.3.2 Messmethode für Einzelgeräusche

- Gemessen wird der Maximalpegel L_{AFmaxn} pro Ereignis n.
- Die Maximalpegel werden über alle Ereignisse und Mikrofonpositionen bei Benutzungsgeräuschen arithmetisch und bei Funktionsgeräuschen energetisch gemittelt.
- Zum Maximalpegel sind die nachfolgend genannten Pegelkorrekturen zu addieren.

Für den Gesamtwert *L*_{Hitot} für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen nach der Messmethode für Einzelgeräusche gilt:

$$L_{H,tot} = L_A, F, max + K. + K_A, in dB$$

I-A,F,max A-bewerteter Maximalpegel, gemessen mit der Zeitkonstante FAST; arithmetisch bzw. energetisch gemittelt über die Ereignisse

Ki Pegelkorrektur zur Berücksichtigung der Schallabsorption im Empfangsraum

 $K_1 = 0$ für Räume mit stark absorbierender Ausstattung

 $K_1 = -1$ für Räume mit gering absorbierender Ausstattung

K-)= -2 für Räume ohne absorbierende Ausstattung

K_A Pegelkorrektur für den Nachweis mit dem Empa-Pendelfallhämmer (siehe Tabelle 8)

A.3.3 Einfache Messmethode für Dauergeräusche

- Gemessen wird der Mittelungspegel LAeq.
- Zum Mittelungspegel sind die nachfolgend genannten Pegelkorrekturen zu addieren.

Für den Gesamtwert L_{Htot} für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen nach der einfachen Messmethode für Dauergeräusche gilt:

$$L_{H,tot} = L_{Aeq} + Ki + K_2 + K_{3i} in dB$$

 L_{Aeq} A-bewerteter Mittelungspegel

 K_1 Pegelkorrektur zur Berücksichtigung der Schallabsorption im Empfangsraum

 $K_1 = 0$ für Räume mit stark absorbierender Ausstattung

K-\= -2 für Räume mit gering absorbierender Ausstattung

Ki = -4 für Räume ohne absorbierende Ausstattung

K₂ Pegelkorrektur zur Berücksichtigung der Tonhaltigkeit im Empfangsraum

 $K_2 = 0$ bei nicht hörbarem Tongehalt

 $K_2 = 2$ bei schwach hörbarem Tongehalt

 K_2 - 4 bei deutlich hörbarem Tongehalt

 $K_2 = 6$ bei stark hörbarem Tongehalt

K₃ Pegelkorrektur zur Berücksichtigung der Impulshaltigkeit im Empfangsraum

 K_3 - 0 bei nicht hörbarem Impulsgehalt

 $K_3 = 2$ bei schwach hörbarem Impulsgehalt

 $K_3 = 4$ bei deutlich hörbarem Impulsgehalt

K₃ - 6 bei stark hörbarem Impulsgehalt

A.3.4 Erweiterte Messmethode für Dauergeräusche von 50 Hz bis 5000 Hz

- Die erweiterte Messmethode ermöglicht eine geringere Messunsicherheit.
- Gemessen werden die Schalldruckpegel *L* und die Nachhallzeiten Tin den Terzbändern von 50 Hz bis 5000 Hz. Es sind mindestens 5 Mikrofonpositionen zu verwenden.

Der Schalldruckpegel wird auf die Bezugsnachhallzeit T₀ von 0,5 s standardisiert.

 $L_{nT} = L - 10 \text{ Ig } (T/T_o)$, in dB

 L_{nT} Standard-Schalldruckpegel

- Durch terzbandweises A-Bewerten und energetisches Summieren über die Terzbänder von 50 Hz bis 5000 Hz wird der A-bewertete Standard-Schalldruckpegel *L_{nTA50_5000}* gebildet.
- Zum A-bewerteten Standard-Schalldruckpegel sind die in A.3.3 genannten Pegelkorrekturen K_2 und K_3 zu addieren.

Für den Gesamtwert *L*_{Hitot} für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen nach der erweiterten Messmethode für Dauergeräusche gilt:

 $I-H,tot = L_{\pi}T,A,50-5000 + 2 + K_{3}, in dB$

I-nT,A, 50-5000 A-bewerteter Standard-Schalldruckpegel

A.3.5 Erzeugung von Funktionsgeräuschen

- Funktionsgeräusche sind so zu erzeugen, dass diese der üblichen Nutzung bzw. dem üblichen Betrieb der gebäudetechnischen Anlagen und festen Einrichtungen entsprechen. Zur Festlegung der massgebenden Betriebszustände kann SN EN ISO 16032 beigezogen werden. Die WC-Spülung erfolgt für die Messung unter Vernachlässigung von Feststoffanteilen.
- Bei Einzelgeräuschen sind mindestens 3 Ereignisse pro Mikrofonposition zu messen.

A.3.6 Erzeugung von Benutzungsgeräuschen

A.3.6.1 Erzeugung mit den Originalgeräuschen:

- Benutzungsgeräusche sind so zu erzeugen, dass diese der üblichen Nutzung bzw. dem üblichen Betrieb der gebäudetechnischen Anlagen und festen Einrichtungen entsprechen.
- Bei Einzelgeräuschen sind mindestens 6 Ereignisse pro Mikrofonposition zu messen.
- Die K\u00f6rperschallanregung f\u00fcr die in Tabelle 8 aufgef\u00fchrten Benutzungsger\u00e4usche erfolgt mit dem Empa-Pendelfallhammer gem\u00e4ss A.3.6.2.

A.3.6.2 Körperschallanregung mit dem Empa-Pendelfallhammer:

Für die Messung wird der Empa-Pendelfallhammer auf das Bauteil aufgesetzt und der Hammer von einer Fallhöhe fallen gelassen, die bezogen auf den Hammerkopfschwerpunkt zwischen Ausgangs- und Endposition 100 mm beträgt-dies unabhängig von der Neigung der Aufschlagsfläche. Die Messverfahren für die verschiedenen Bauteile sind nachfolgend für jeweils eine Mikrofonposition beschrieben.

Die Einhaltung der Mindestanforderungen an den Luftschallschutz gegenüber internen Lärmquellen wird vorausgesetzt.

Tabelle 8 Nachweis von Benutzungsgeräuschen mit dem Empa-Pendelfallhammer

Bauteil	Anregung	Beschreibung der Messung	Pegel- korrektur C ₄ , in dB
Badewanne	Horizontal- und Vertikalschlag	Die Badewanne wird auf den drei Prüfbereichen Boden, Wände und Rand an jeweils mindestens 6 zufällig verteilten Punkten angeregt. Die arithmetischen Mittelwerte der Maximalpegel der drei Prüfbereiche werden arithmetisch gemittelt.	–12
Duschtasse und bodenebene Dusch- fläche	Vertikalschlag	Die Dusche wird ausschliesslich auf dem Boden an mindestens 6 zufällig verteilten Punkten angeregt. Bei bodenebenen Duschen gilt die Fläche des Duschbereichs.	-12

Tabelle 8 (Fortsetzung)

Bauteil	Anregung	Beschreibung der Messung	Pegel- korrektur <i>K</i> ₄ , in dB
WC*	Vertikalschlag	Es wird die vordere Seite der WC- Schüssel (von der Wand entfernt) mindestens 4-mal angeregt.	— 7
Bidet	Vertikalschlag	Es wird an mindestens 6 zufällig	-12
Waschtisch, Waschtischkombination inkl. Unterbau*	Vertikalschlag	verteilten Punkten angeregt.	
Spülbecken, Arbeits- fläche, Schrank*, Unter- und Oberbau* (Küche)	Vertikalschlag	Es wird an mindestens 6 zufällig verteilten Punkten angeregt. Abstell- flächen in Schränken werden einzeln gemessen.	-10
Spiegelschrank*			

^{*} Bei dauerhaft wirksamen Dämpfungseinrichtungen gelten die Anforderungen für die entsprechenden Benutzungsgeräusche ohne Prüfung als erfüllt. Beispiele: Absenkautomatik bei WC, Rollstoppbeschläge bei Schubladen.

Die Messunsicherheit der in Tabelle 8 beschriebenen Messverfahren beträgt 1,5 dB(A).

A.3.7 Spezifikation des Empa-Pendelfallhammers

- A.3.7.1 Anstelle des Empa-Pendelfallhammers können auch andere Geräte zur Körperschallanregung verwendet werden, welche die im Folgenden beschriebenen Spezifikationen erfüllen.
- A.3.7.2 Die Konstruktion des Empa-Pendelfallhammers ist in Figur 3 dargestellt.

Figur 3 Konstruktion des Empa-Pendelfallhammers zum Nachweis von Benutzungsgeräuschen

Fallhammer an senkrechter Fläche (Horizontalschlag)

Fallhammer auf waagrechter Fläche (Vertikalschlag)

A.3.7.3 Die Körperschallanregung mit dem Empa-Pendelfallhammer zeichnet sich durch die Amplitude und den Zeit-Verlauf des Kraftstosses aus, welcher damit auf die zu untersuchende Struktur eingeleitet wird (siehe Figur 4).

A.3.7.4 Bei der Kalibrierung des Empa-Pendelfallhammers wird die Wirkung der erzeugten Schläge auf eine frei beweglich gelagerte Kalibriermasse (pi_{Kslib} = 12 kg) gemessen. Beim Aufprall des Empa-Pendelfallhammers auf der ruhenden Kalibriermasse wirkt für eine kurze Zeit eine Kraft, welche die Masse beschleunigt und eine Impulsänderung bewirkt. Die Messung erfolgt mit Hilfe eines an der Kalibriermasse befestigten Beschleunigungs-Aufnehmers, mit welchem der Kraft-Zeit-Verlauf und der Impuls-Zeit-Verlauf ermittelt werden können. Die Kraft entspricht der mit der Kalibriermasse multiplizierten Beschleunigung und der Impuls dem Integral der Kraft (siehe Figur 4).

Für die Kalibrierung des Empa-Pendelfallhammers wird der Impuls-Zeit-Verlauf ausgewertet. Die erzeugten Schläge sind durch den total auf die Kalibriermasse übertragenen Impuls sowie durch die Impulsanstiegszeit (10%-90%) charakterisiert. Diese beiden Parameter sind in Figur 4 dargestellt.

Anforderungen an den Empa-Pendelfallhammer:

- Der bei einem Vertikalschlag ermittelte Wert von $p_{Ka}|_{ib}$ beträgt 0,830 Ns ± 10%.
- Der bei einem Vertikalschlag ermittelte Wert von T_{KaHb}beträgt 0,220 ms ± 20%.

Die Differenz zwischen Horizontal- und Vertikalschlägen dieser beiden Parameter beträgt weniger als 20%.

Figur 4 Typischer Verlauf der vom Empa-Pendelfallhammer erzeugten Kraft bzw. des auf die Kalibriermasse übertragenen Impulses

A.3.7.5 Die Kalibiermasse ist bevorzugt aus Stahl gefertigt und hat bevorzugterweise eine Masse von m Kaiib= 12 kg. Wird eine abweichende Kalibriermasse m Kaiib verwendet, müssen die Messwerte korrigiert und auf eine Masse von 12 kg referenziert werden. Aus der Theorie hergeleitete Korrekturterme (beispielsweise aus der Kontaktmechanik) erfordern eine experimentelle Validierung. Die Kalibriermasse hat zwei planparallele und polierte Seitenflächen im Abstand von ca. 10 cm (Parallelität < 0,1 mm, Ebenheit < 0,02 mm). Auf eine dieser Flächen erfolgt der Schlag des Empa-Pendelfallhammers (senkrecht zur Fläche), auf der gegenüberliegenden Seite ist der Beschleunigungs-Aufnehmer fixiert. Aufschlagspunkt, Schwerpunkt der Kalibriermasse und Beschleunigungs-Aufnehmer liegen auf einer Linie senkrecht zur Aufschlagsfläche. Die Kalibriermasse muss so aufgestellt werden, dass alle anderen darauf wirkenden Kräfte vernachlässigbar sind. Wird die Kalibriermasse mittels Federn fixiert, muss die resultierende Federkonstante so klein sein, dass die resultierende Resonanzfrequenz höchstens 30 Hz beträgt. Die tiefste Resonanzfrequenz der Kalibriermasse (inkl. Beschleunigungs-Aufnehmer) liegt oberhalb von 15 kHz.

A.3.8 Hintergrundgeräusche

Beträgt die Differenz zwischen Messwert und Hintergrundgeräusch weniger als 10 dB(A), ist das Hintergrundgeräusch energetisch zu subtrahieren. Wenn die Differenz kleiner ist als 4 dB(A), dürfen maximal 2,2 dB(A) vom Messwert arithmetisch subtrahiert werden.

A.4 Messgeräte

A.4.1 Für akustische Messungen müssen Mess- und Kalibriergeräte verwendet werden, die den Anforderungen der Klasse 1 der folgenden Normen entsprechen:

SN EN 60942: Elektroakustik - Schallkalibratoren

SN EN 61260: Elektroakustik - Bandfilter für Oktaven und Bruchteile von Oktaven

SN EN 61672-1: Elektroakustik - Schallpegelmesser - Teil 1: Anforderungen

Die Messgeräte müssen die Anforderungen der eidgenössischen Messmittelverordnung (MessMV) bzw. der Verordnung des EJPD über Messmittel für die Schallmessung (MesSch) SR 941.210.1 erfüllen.

- A.4.2 Das Norm-Hammerwerk muss die Anforderungen gemäss SN EN ISO 16283-2 erfüllen und periodisch durch das Eidgenössische Institut für Metrologie METAS oder ein akkreditiertes Kalibrierlabor überprüft werden.
- A.4.3 Der Empa-Pendelfallhammer oder andere Geräte zum Nachweis der Benutzungsgeräusche gemäss Tabelle 8 müssen die Anforderungen gemäss A.3.7 erfüllen und periodisch durch das Eidgenössische Institut für Metrologie METAS oder ein akkreditiertes Kalibrierlabor überprüft werden.
- A.4.4 Die Lautsprecher müssen die Anforderungen gemäss SN EN ISO 16283-1 und -3 erfüllen und periodisch geprüft werden.

A.5 Messunsicherheit

Für jeden Nachweis ist die Grösse der Messunsicherheit anzugeben. Ohne weitere Angaben wird darunter eine Schätzung der Standardabweichung verstanden.

Anhang B (informativ) Publikationen

Dieser Anhang verweist auf Publikationen zum Thema der vorliegenden Norm.

B.1 Gesetze und Verordnungen

- [1] Bundesgesetz über den Umweltschutz (Umweltschutzgesetz, USG), SR 814.01, www.admin.ch
- [2] Lärmschutz-Verordnung (LSV), SR 814.41, www.admin.ch

B.2 Publikationen des SIA Herausgeber: SIA, Zürich (www.sia.ch)

SIA 180 Wärmeschutz, Feuchteschutz und Raumklima in Gebäuden

SIA 382/5 Mechanische Lüftung in Wohngebäuden

B.3 Europäische Normen Herausgeber: SIA, Zürich (www.sia.ch)

B.3.1 Zu Messungen im Labor

SN EN ISO 140-18 Akustik - Messung der Schalldämmung in Gebäuden und

von Bauteilen - Teil 18: Messung des durch Regenfall auf Bauteile

verursachten Schalls im Prüfstand

SN EN ISO 10140-1,-4, -5 Akustik - Messung der Schalldämmung von Bauteilen im Prüf-

stand -

Teil 1: Anwendungsregeln für bestimmte Produkte

Teil 4: Messverfahren und Anforderungen

Teil 5: Anforderungen an Prüfstände und Prüfeinrichtungen

SN EN ISO 15186-1 und -3 Akustik- Bestimmung der Schalldämmung in Gebäuden und

von Bauteilen aus Schallintensitätsmessungen -

Teil 1: Messungen im Prüfstand

Teil 3: Messungen bei niedrigen Frequenzen im Prüfstand

SN EN ISO 16251-1 Akustik - Labormessung der Trittschallminderung von Decken-

auflagen auf kleinflächigen Prüfdeckennachbildungen -

Teil 1: Schwere Massivdecke

B.3.2 Zu Messungen im Labor und am Bau

SN EN ISO 10848-1 bis -4 Akustik - Messung der Flankenübertragung von Luftschall,

Trittschall und Schall von gebäudetechnischen Anlagen zwischen

benachbarten Räumen im Prüfstand und am Bau-

Teil 1: Rahmendokument

Teil 2: Anwendung auf Typ B-Bauteile, wenn die Verbindung

geringen Einfluss hat

Teil 3: Anwendung auf Typ B-Bauteile, wenn die Verbindung

wesentlichen Einfluss hat

Teil 4: Anwendung auf Stossstellen mit mindestens einem

Typ-A-Bauteil

B.3.3 Zu Messungen in Gebäuden

SN EN ISO 10052 Akustik - Messung der Luftschalldämmung und Trittschall-

dämmung und des Schalls von haustechnischen Anlagen

in Gebäuden - Kurzverfahren

SN EN ISO 18233 Akustik - Anwendung neuer Messverfahren in der Bau- und

Raumakustik

B.3.4 Zu Schallschutzprognosen mit bekannten zugehörigen Kennwerten für Trennbauteile und flankierende Bauteile

SN EN 12354-4 Bauakustik - Berechnung der akustischen Eigenschaften von

Gebäuden aus den Bauteileigenschaften - Teil 4: Schallüber-

tragung von Räumen ins Freie

B.3.5 Weitere Normen

SN EN ISO 3382-2 Akustik - Messung von Parametern der Raumakustik -

Teil 2: Nachhallzeit in gewöhnlichen Räumen

Anhang C (informativ) Verzeichnis der Begriffe

Tabelle 9 Alphabetisches Verzeichnis der in Kapitel 1 definierten Begriffe

Deutsch	Französisch	Italienisch	Ziffer
A-bewerteter Standard- Schalldruckpegel	Niveau normalisä pondere A du bruit continu	Livello di pressione sonora normalizzato ponderato A	1.1.4.8
Äquivalente Absorptions- fläche	Aire d'absorption äquivalente	Superficie assorbente equivalente	1.1.1.23
Bauakustik	Acoustique du bätiment	Acustica edile	1.1.1.5
Bau-Schalldämm-Mass	Indice d'affaiblissement acoustique apparent	Indice di fonoisolamento in opera	1.1.2.9
Bau-Schalldämm-Mass für Aussenbauteile	Indice d'affaiblissement acoustique apparent des elements de fagade	Indice di fonoisolamento in opera per elementi esterni	1.1.2.11
Benutzungsgeräusch	Bruit provoque par l'utilisateur	Rumore causato dall'utente	1.1.4.3
Beurteilungspegel	Niveau d'evaluation	Livello di valutazione	1.1.1.20
Bewertete Standard- Schallpegeldifferenz	Isolement acoustique normalise pondere	Fonoisolamento ponderato normalizzato	1.1.2.15
Bewertete Standard- Schallpegeldifferenz für die Gebäudehülle	Isolement acoustique normalise pondere pour l'enveloppe du bätiment	Fonoisolamento ponderato normalizzato per l'involucro dell'edificio	1.1.2.17 1.1.2.19
Bewerteter Norm-Trittschall- pegel	Niveau de pression pondere du bruit de choc normalise	Livello sonoro normalizzato ponderato percalpestio	1.1.3.9
Bewerteter Standard- Trittschallpegel	Niveau de pression pondere du bruit de choc standardisä	Livello sonoro standardizzato ponderato percalpestio	1.1.3.11
Bewertetes Bau-Schalldämm- Mass	Indice d'affaiblissement acoustique apparent pondere	Indice di fonoisolamento in opera ponderato	1.1.2.10
Bewertetes Bau-Schalldämm- Mass für Aussenbauteile	Indice d'affaiblissement acoustique apparent pondere des elements de fagade	Indice di fonoisolamento in opera ponderato per elementi esterni	1.1.2.12
Bewertetes Schalldämm- Mass	Indice d'affaiblissement acoustique pondere	Indice di fonoisolamento ponderato	1.1.2.8
Bezugs-Absorptionsfläche	Aire d'absorption äquivalente de räfärence	Superficie assorbente di riferimento	1.1.1.24
Bezugsnachhallzeit	Temps de räverbäration de räfärence	Tempo di riverbero di riferimento	1.1.1.22
Bezugswert für Luftschall	Pression acoustique de räfärence	Valore di riferimento per il rumore per via aerea	1.1.1.12
Dauergeräusch	Bruit continu	Rumore continuo	1.1.4.5
Direktübertragung bei Luftschall	Transmission directe du bruit aärien	Trasmissione diretta del rumore per via aerea	1.1.2.3
Direktübertragung bei Trittschall	Transmission directe du bruit de choc	Trasmissione diretta del rumore da calpestio	1.1.3.3
Einzelgeräusch	Bruit de courte duräe	Rumore singolo (di breve durata)	1.1.4.4
Empa-Pendelfallhämmer	Marteau basculant Empa	Martello a caduta Empa	1.1.4.9
Externe Lärmquellen	Sources de bruit extärieures	Fonti di rumore esterne	1.1.1.10
Fläche	Superficie	Superficie	1.1.1.27

Tabelle 9 (Fortsetzung)

Deutsch	Französisch	Italienisch	Ziffer
Flankenübertragung bei Luftschall	Transmission laterale de bruit aerien	Trasmissione laterale del rumore per via aerea	1.1.2.6
Flankenübertragung bei Trittschall	Transmission laterale de bruit de choc	Trasmissione laterale del rumore per calpestio	1.1.3.4
Frequenzanalyse	Analyse frequentielle	Analisi in frequenza	1.1.1.16
Funktionsgeräusch	Bruit produit par le fonction- nement des installations	Rumore generato dal funzionamento di impianti	1.1.4.2
Geräusche gebäude- technischer Anlagen und fester Einrichtungen	Bruit des equipements techniques et des installa- tions fixes du bätiment	Rumori di impianti tecnici e di installazioni fisse dell'edificio	1.1.4.1
Gesamtwert für den Luft- schallschutz gegenüber externen Lärmquellen	Valeur globale de la protection contre le bruit aerien pour les sources de bruit exterieures	Valore globale di fonoisola- mento per via aerea per fonti esterne	1.1.2.20
Gesamtwert für den Luft- schallschutz gegenüber internen Lärmquellen	Valeur globale de la protec- tion contre le bruit aerien pour les sources de bruit interieures	Valore globale di fonoisola- mento per via aerea per fonti interne	1.1.2.21
Gesamtwert für den Tritt- schallschutz	Valeur globale pour la protection contre le bruit de choc	Valore globale del rumore per calpestio	1.1.3.12
Gesamtwert für Geräusche gebäudetechnischer Anlagen und fester Einrichtungen	Valeur globale du bruit des equipements techniques et des installations fixes	Valore globale del rumore degli impianti tecnici e delle installazioni fisse	1.1.4.10
Hintergrundgeräusch	Bruit de fond	Rumore di fondo	1.1.1.19
Indirekte Luftschall-Über- tragung	Transmission indirecte du bruit par voie aerienne	Trasmissione indiretta del rumore per via aerea	1.1.2.5
Interne Lärmquellen	Sources de bruit interieures	Fonti di rumore interne	1.1.1.9
Körperschall	Bruit solidien	Rumore per via solida	1.1.1.8
Luftschall	Bruit aerien	Rumore per via aerea	1.1.1.6
Luftschalldämmung	Isolement au bruit aerien	Fonoisolamento per via aerea	1.1.2.2
Luftschallschutz	Protection contre le bruit aerien	Protezione dal rumore per via aerea	1.1.2.1
Maximalpegel	Niveau maximal	Livello massimo	1.1.4.6
Mittelungspegel	Niveau moyen	Livello medio	1.1.1.14
Mittlerer Schalldruckpegel	Niveau de pression acoustique moyen	Livello medio di pressione sonora	1.1.1.15
Nachhallzeit	Temps de reverberation	Tempo di riverbero	1.1.1.21
Nebenweg-Übertragung bei Luftschall	Transmission indirecte du bruit aerien	Trasmissione indiretta del rumore aereo	1.1.2.4
Neubauten	Nouvelles constructions	Costruzioni nuove	1.1.1.2
Norm-Hammerwerk	Systeme avec marteau normalise	Generatore di rumore di calpestio normalizzato	1.1.3.5
Norm-Trittschallpegel	Niveau de pression du bruit de choc normalise	Livello sonoro normalizzato per calpestio	1.1.3.7 1.1.3.8
Nutzungseinheit	Unite d'utilisation	Unitä d'utenza	1.1.1.1
Prognosewert	Valeur previsible	Valore di previsione	1.1.1.30
Projektierungswert	Valeur de projet	Valore di progetto	1.1.1.32
Projektierungszuschlag	Supplement de projet	Supplemento di progetto	1.1.1.31

Tabelle 9 (Fortsetzung)

Deutsch	Französisch	Italienisch	Ziffer
Resultierendes bewertetes Bau-Schalldämm-Mass	Indice d'affaiblissement acoustique apparent pondere resultant	Indice di fonoisolamento in opera ponderato risultante	1.1.2.13
Schalldämm-Mass	Indice d'affaiblissement acoustique	Indice di fonoisolamento	1.1.2.7
Schalldruck	Pression acoustique	Pressione sonora	1.1.1.11
Schalldruckpegel	Niveau de pression acoustique (Niveau sonore)	Livello di pressione sonora	1.1.1.13
Spektrum-Anpassungswert	Terme d'adaptation du spectre	Termini d'adattamento allo spettro	1.1.1.28
Standard-Schalldruckpegel	Niveau de pression acoustique standardise	Livello di pressione sonora normalizzato	1.1.4.7
Standard-Schallpegel- differenz	Isolement acoustique normalise	Fonoisolamento normalizzato	1.1.2.14
Standard-Schallpegel- differenz für die Gebäude- hülle	Isolement acoustique normalise pour l'enveloppe	Fonoisolamento normalizzato per l'involucro dell'edificio	1.1.2.16 1.1.2.18
Standard-Trittschallpegel	Niveau standardise de pression acoustique du bruit de choc	Livello sonoro standardizzato per il rumore da calpestio	1.1.3.10
Terzband	Bande de tiers d'octave	Banda di terzo d'ottava	1.1.1.17
Terzbandanalyse	Analyse par bande de tiers d'octave	Analisi in banda di terzo d'ottava	1.1.1.18
Trennbauteil	Element de Separation	Elemento divisorio	1.1.1.26
Trittschall	Bruit de choc	Rumore per calpestio	1.1.1.7
Trittschalldämmung	Isolement au bruit de choc	Fonoisolamento da calpestio	1.1.3.2
Trittschallpegel	Niveau de pression du bruit de choc	Livello sonoro per calpestio	1.1.3.6
Trittschallschutz	Protection contre le bruit de choc	Protezione dal rumore per calpestio	1.1.3.1
Umbauten	Transformations	Trasformazioni	1.1.1.3
Umnutzungen	Changements d'affectation	Cambi di destinazione	1.1.1.4
Volumen	Volume	Volume	1.1.1.25
Zuschlag für Flanken- übertragung	Supplement pour trans- mission laterale	Supplemento per la tras- missione laterale	1.1.1.29

In der Kommission SIA 181 vertretene Organisationen

BAFU Bundesamt für Umwelt

Empa Eidgenössische Materialprüfungs- und Forschungsanstalt

SGA Schweizerische Gesellschaft für Akustik

suissetec Schweizerisch-Liechtensteinischer Gebäudetechnikverband

Kommission SIA 181, Schallschutz im Hochbau

Vertreter von

Planer

Planer

Empa

BAFU

Präsident Samuel Rütti, dipl. Bau-Ing. FH/SIA, Basel Planer

Mitglieder Robert Beffa, Prof., arch. dipl. EAUG/SIA, Genf

Victor Desarnaulds, Dr es sc., ing. phys. dipl. EPF/SIA, Lausanne

Kurt Eggenschwiler, dipl. El.-Ing. ETH, Dübendorf

Sandro Ferrari, Dr. Phil. II, Biologe, Bern Markus-Urs Kläusli, Sanitärtechniker TS/FH, Bolligen (bis 01.2019)

Markus-Urs Kläusli, Sanitärtechniker TS/FH, Bolligen (bis 01.2019)
Urs Lippuner, dipl. Ing. FH/SIA, Zürich
Stefanie Litjens, dipl. Bau-Ing. TU, Bern
Jürg Schiitknecht, dipl. Bau-Ing. FH, Winterthur
Markus Strobel, dipl. Arch. FH/SIA, Sempach Station
Planer
SGA

Verantwortliche SIA Geschäftsstelle Olga Moatsou-Ess, Dr es sc., dipl. Arch.-Ing. NTUA, Zürich

Genehmigung und Gültigkeit

Die Zentralkommission für Normen des SIA hat die vorliegende Norm SIA 181 am 8. September 2020 genehmigt.

Sie ist gültig ab 1. November 2020.

Sie ersetzt die Norm SIA 181 Schallschutz im Hochbau, Ausgabe 2006.

Copyright © 2020 by SIA Zurich

Alle Rechte, auch die des auszugsweisen Nachdrucks, der auszugsweisen oder vollständigen Wiedergabe und Speicherung sowie das der Übersetzung, sind vorbehalten.