מתמטיקה בדידה – מטלת מנחה 11

אלכסנדר טקצ'יוב סמסטר 2020א

שאלה 1

א. נכון ב. לא נכון ג. לא נכון ד. לא נכון ה. נכון ו. לא נכון ז. נכון ח. נכון

שאלה 2

נתון A B C קבוצות

שאלה 2.א

 $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C) : \underline{y''\underline{v}}$

הוכחה

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

$$A \cap (B \setminus C)^C = (A \setminus B) \cup (A \cap C)$$

$$A \cap (B \cap C^{C})^{C} = (A \setminus B) \cup (A \cap C)$$

$$A \cap (B^c \cup (C^c)^c) = (A \setminus B) \cup (A \cap C)$$

$$A \cap (B^c \cup C) = (A \setminus B) \cup (A \cap C)$$

$$A \cap (B^c \cup C) = (A \cap B^C) \cup (A \cap C)$$

$$A \cap (B^c \cup C) = A \cap (B^C \cup C)$$

<u>מ.ש.ל</u>

שאלה 2. ב

 $\{A\} \subseteq P(B)$:מתון

 $P(A) \subseteq P(B)$: \underline{V} "≤

הוכחה

 $X \subseteq Y$ אז $X \in P(Y)$ טענת עזר א: אם

מכאן $X \subseteq Y$ מכאן $P(Y) = \{X | X \subseteq Y\}$ super set הוכחה: מהגדרת

 $A \subseteq B \Leftarrow A \in P(B) \Leftarrow \{A\} \subseteq P(B)$ לפי טענת עזר א

 $P(A) \subseteq P(B)$ אז $A \subseteq B$ טענת עזר ב: אם

P(A) איבר בתוך קבוצה x

 $\exists_x (x \in P(A) \land \neg(x \in P(B)))$ כלומר $P(A) \nsubseteq P(B)$ נניח כי

 $\exists_x (x \in P(A) \land \neg(x \in P(B))) = \exists_x (x \subseteq A \land \neg(x \subseteq B))$: לפי טענת עזר א

. $x\subseteq B$ או $x\subseteq A\subseteq B$ או $x\subseteq A\subseteq B$ ידוע כי $x\subseteq A\subseteq B$ וגם $x\subseteq A\subseteq A$ מכיוון שהכלה טרנזיטיבית נובע כי $x\subseteq A\subseteq A$ אנחנו מקבלים כי הביטוי $x\subseteq A\subseteq A$ אנחנו מקבלים כי הביטוי $x\subseteq A\subseteq A$

 $x \subseteq B = t$ כי לפי הנתונים A = t וגם

 $A\subseteq B$ לא נכונה ומוביל אותנו להוכחה כי אם $P(A)\nsubseteq P(B)$ לא נכונה ומבע כי ההנחה שלנו $P(A)\nsubseteq P(B)$ על דרך השלילה. מ.ש.ל לענת עזרת ב $P(A)\subseteq P(B)$ אז

המשך הוכחת הטענה המרכזית

 $A \subseteq B \Leftarrow \{A\} \subseteq P(B)$ הוכחנו עד כה כי מ

 $P(A) \subseteq P(B) \leftarrow A \subseteq B$

 $P(A) \subseteq P(B)$ אז $A \subseteq P(B)$ מ.ש.ל

שאלה 2. ג

 $P(A \cup B) = P(A) \cup P(B)$ נתון:

 $B \subseteq A \lor A \subseteq B$:

הוכחה

 $\exists_k (K \subseteq X \to K \subseteq Y)$ או X עבור כל זוג קבוצות א: עבור כל זוג קבוצות

 $K = \emptyset$ נציב $\neg \exists_k (K \subseteq X \to K \subseteq Y)$ נציב פונה, כלומר מים שהטענה הזאת לא נכונה, כלומר מה שמוכיח את טענת עזר א על דרך השלילה ונראה כי קיבלנו סטירה מה שמוכיח את טענת עזר א על דרך השלילה

נגדיר

A ו פאשר $B=M\cup b$ ו $A=M\cup a$ כאשר $B=M\cup b$ ו $A=M\cup a$ לפונה המכילה את כל האיברים המשותפים בין $A=M\cup a$ ל

a מוגדרת כי קבוצת כל האיברים שקיימים בA ולא בM (יכולה להיות קבוצה ריקה) כך ש a זרות M ו a

b מוגדרת כי קבוצת כל האיברים שקיימים בB ולא בB (יכולה להיות קבוצה ריקה) כך ש b ו b זרות

זרות b ו a ארות **טענת עזר ב:**

הוכחה נניח כי כן לא זרות, כלומר שיש איברים שקיימים בa וb . לפי ההנחה הזאת האיברים הקיימים היו קיימים גם בM (כי M זאת קבוצת האיברים המשותפים בין B ו B ו אבל אף איבר בM לא קיים בa ולא בb. קיבלנו סטירה. ולכן b ו a זרות על דרך השלילה

המשך הוכחת הטענה המרכזית

 $A \nsubseteq B \land B \nsubseteq A \Leftarrow \neg(A \subseteq B \lor B \subseteq A)$: נניח כי הצ"ל שלנו לא נכון

מההנחה הזאת נובע כי <u>קיימים איברים</u> בA אשר לא קיימים בB, אחרת A הייתה מוכלת בB

וגם <u>קיימים איברים</u> בB אשר לא קיימים בA אחרת הקבוצה הייתה מוכלת בA.

 $a \neq \emptyset \land b \neq \emptyset$ לכן

(המשך בדף הבא)

$$P(A \cup B) = P(A) \cup P(B)$$
 מהנתון

 $\{x|x \in P(A \cup B)\} = \{x|x \in P(A)\} \cup \{x|x \in P(B)\}$

 $\{x|x \subseteq A \cup B\} = \{x|x \subseteq A\} \cup \{x|x \subseteq B\}$

 $\{x | x \subseteq M \cup a \cup M \cup b\} = \{x | x \subseteq M \cup a\} \cup \{x | x \subseteq M \cup b\}$

 $\{x|x\subseteq M\cup a\cup b\}=\{x|x\subseteq M\cup a\}\cup\{x|x\subseteq M\cup b\}$

 $\{x|x \subseteq M \cup a \cup b\} = \{x|x \subseteq M \cup a \lor x \subseteq M \cup b\}$

A או איבר כלשהו בקבוצה $K = \{a_1, b_1\}$ אנחנו יודעים שקיימת קבוצה $K = \{a_1, b_1\}$

 $(b \neq \emptyset$ ידוע b ו הוא איבר כלשהו בקבוצה b ו $(a \neq \emptyset$ ידוע)

 $\{x | x \subseteq M \cup a \lor x \subseteq M \cup b\} = \{x | x \subseteq M \cup a \cup b\} = S$ $k \subseteq s \land k \not\subseteq s$ $k \subseteq s \land \neg(k \subseteq s)$

קיבלנו סטירה מהצורה

 $t \wedge \neg(t)$

לפיכח ההנחה שלנו כי $A \nsubseteq B \land B \nsubseteq A$ היא לא נכונה והטענה $A \nsubseteq B \land B \nsubseteq A$ נכונה מפיכח לפיכח על פי דרך השלילה מ.ש.ל

שאלה 3

 $A \subseteq U, B \subseteq U, C \subseteq U$ נתון:

שאלה 3. א

 $(A \cap B)^C \subseteq A$:מתון

הוכחה

$$(A \cap B)^C \subseteq A$$

לפי משפט 1.25

$$A^{C} \subseteq ((A \cap B)^{C})^{C}$$
$$A^{C} \subseteq A \cap B$$

אז הביטוי הבא נכון \mathbf{A}^{C} לפיכך אם ורק אם קיים X לפיכך

$$x \in A^{C} \land x \in (A \cap B)$$

 $x \in A^{C} \land (x \in A \land x \in B)$

 $x \notin A$ אז $x \in A^C$ טענת עזר א: אם

המשך הוכחת הטענה המרכזית

מכאן שאם איבר שייך לA^C הוא בוודאות לא יהיה שייך לA כי אין ביניהם איברים משותפים .

מכאן

$$x \notin A \land x \in A \land x \in B$$

 $\neg(x \in A) \land x \in A \land x \in B$

(המשך בדף הבא)

סטירה סטירה ¬p \wedge p \wedge q ביטוי מהצורה: ביטוי מ

הוכחה

р	q	$\neg p \rightarrow p \land q$
0	0	0
0	1	0
1	0	0
1	1	0

לפי <u>טענת עזר ב</u> הביטוי

 $\neg(x \in A) \land x \in A \land x \in B$

 $\mathbf{A}^{\mathrm{C}} = \emptyset$, כלומר \mathbf{A}^{C} בתוך ג משמע לא קיים א

ידוע כי $\mathbf{A} = \mathbf{U}$ עמ 45) ולכן (עמ 5 $\mathbf{U}^{\mathrm{C}} = \emptyset$ ידוע כי

שאלה 3. ב

$$A^{C}\Delta B = 4\Delta C$$
 : επι]

$$C = B^C : \underline{v}''\underline{v}$$

הוכחה

$$A^{C}\Delta B = A\Delta C$$

$$A\Delta(A^{C}\Delta B) = A\Delta(A\Delta C)$$

$$(A\Delta A^{C})\Delta B = A\Delta (A\Delta C)$$

47 לפי עמוד

$$A\Delta A^{C} = U$$

$$B\Delta U = B^C$$

$$B^{C} = A\Delta(A\Delta C)$$

$$B^{C} = (A\Delta A)\Delta C$$

 $A\Delta A = \emptyset$ 43 לפי עמוד

$$B^{C} = (\emptyset)\Delta C$$

 $C\Delta\emptyset = C \ 43$ לפי עמוד

$$\mathbf{B}^{\mathbf{C}} = \mathbf{C}$$

<u>מ.ש.ל</u>

שאלה 3. ג

 $x \in (A \cap B) \setminus C$:

x ∉ A∆B∆C צ"ל:

הוכחה

 $S = (A \cap B) \setminus C$ נגדיר

 $S = (A \cap B) \setminus C = \{x | x \in A \land x \in B \land x \notin C\}$

נניח כי הטענה $x \in A\Delta B\Delta C$ נכונה

כלומר

- Cלא לB ולא לA שייך ל x שייך ל
- C. או שx שייך לB ולא ל 2
- C. או ש x שייך לC ולא לB ולא ל

 $\{x \mid x \in A \land x \in B \land x \notin C\}$ נבדוק כלפי

- אבל Bאבי את אחד נגלה כי $x \notin S$ מכיוון שלפי X S חייב להיות שייך ל $x \notin S$ אבל הנחה סוטרת את זה
- אבל Aאביב את שתיים נגלה כי $x \notin S$ מכיוון שלפי X S אם נציב את שתיים אח מוערת אר $x \notin S$ אבל ההנחה סוטרת את זה
- אבל Cטור ש אייך ל אסור ש אסור ציב את שתיים נגלה כי $x \notin S$ מכיוון שלפי אסור ש נציב את שתיים נגלה כי און אר מכיוון שלפי ההנחה סוטרת את זה

מכאן שההנחה שלנו $x \notin A\Delta B\Delta C$ לא נכונה ולכן הטענה $x \in A\Delta B\Delta C$ מכאן שההנחה שלנו דרך השלילה מ.ש.ל

שאלה 4

שאלה 4. א

עבור ח=0 $A_0^{\mathcal{C}}=\{1,2,3,\dots\}$ הקבוצה המשלימה היא $A_0^{\mathcal{C}}=\{0\}$ הקבוצה לאחריה תכיל $A_0^{\mathcal{C}}$ מכאן אפשר לראות שהאיחוד בין כל הקבוצות יכיל לפחות את $A_1^{\mathcal{C}}=\{2,3,4\dots\}$ כלומר מספרים מ 1 והילך. שזה בגדול N \ $\{0\}$

שאלה 4. ב

אפשר להגיד ש $A_0=\{0\}$ וידוע ש $A_0,A_1,A_2\cdots A_\infty$ אפשר להגיד ש $A_0,A_1,A_2\cdots A_\infty$ וידוע שלכן חיתוך בין שתי הקבוצות האלה מוביל אותנו ל $A_0=\{0\}$ כי $A_0\subseteq \mathbb{N}$ לכן התשובה היא שהמשוואה יוצאת $\{0\}$

שאלה 4. ג

- Nבדוק אם הקבוצה שווה ל

נציב 0 ונגלה שהקבוצה שקיבלנו היא קבוצה ריקה

 $\{2\}$ נציב n=1 נגלה כי $A_1=\{0,1\}$ מוביל אותנו ל $A_2=\{0,1,2\}$ נציב n=1 נציב

נציב n=2 ונגלה כי $A_4=\{0,1,2,3,4\}$ ו $A_4=\{0,1,2,3,4\}$ כך שהחיסור בין הקבוצות מובל מובל ל $\{3,4\}$.

נציב n=3 ונגלה כי הקבוצה שקיבלנו היא 4,5,6.

כפי שניתן לראות יש פה חוקיות שהמספרים שאנחנו רואים הולכים וגדלים ככל שn גדל. ואפשר להשיק מזה שלא נראה אף פעם את 0 או את 1 שהיו חסרים בקבוצות הראשונות.

מכאן זה לא N כי חסרים 0 ו 1

וזה לא קבוצה ריקה כי יש לפחות 2

וזה לא N/{0} כי חסר 1

שאלה 4. ג

$$n = 0 \Rightarrow \{0,1\} \cap \{1,2,3 \dots\} = \{1\}$$
$$n = 1 \Rightarrow \{0,1,2\} \cap \{2,3,4 \dots\} = \{2\}$$
$$n = 2 \Rightarrow \{0,1,2,3\} \cap \{3,4,5 \dots\} = \{3\}$$

...

$$n = x \Rightarrow \{x + 1\}$$

 $N\setminus\{0\}$ - או במילים אחרות במילים ווביל ל $\{1,2,3\dots\}$ ל יוביל יוביל הקבוצות מכאן איחוד א