Intégrales généralisées

Chapître 1 : Définition et propriétés

Nasko Karamanov

4 septembre 2023

Dans ce cours ...

C'est quoi une intégrale généralisée?

Dans ce cours

On va introduire et étudier les intégrales généralisées

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x$$

Pour l'instant garder en tête la borne +∞

On va introduire et étudier les intégrales à paramètres

$$\int_{a}^{+\infty} f(x, t) dx$$

On va décider de la convergence de suites telles d'intégrales

$$\lim_{n \to +\infty} \int_{a}^{+\infty} f_n(x) dx$$

Acquis d'apprentissages visés

Dans le contexte d'application directe du cours :

- décider de la bonne définition d'une intégrale généralisée
- décider de la convergence d'une suite d'intégrales et d'en exhiber (si possible) la limite.
- identifier les propriétés dont peut jouir une intégrale à paramètres spécifiques dans les cas les plus usuels (Transformée de Fourier ou de Laplace)
- simplifier des expressions impliquant des limites de suites d'intégrales ou des intégrales à paramètres.
- valider un raisonnement impliquant des questions de convergences de suites d'intégrales ou des intégrales à paramètres.

Dans le cadre des questions de modélisation en Mathématiques du Signal, Probabilités et Automatiques :

- calculer les moments et grandeurs probabilistes liées à une variable aléatoire à densité
- reconnaître les hypothèses et arguments utilisés dans les preuves de convergences en probabilités
- calculer la transformée de Fourier, de Laplace d'une fonction.

Dans ce cours ...

C'est quoi une intégrale généralisée?

C'est quoi une intégrale généralisée?

Type 1 : ce qui se passe à l'infini

Definition

Soit f une fonction continue sur $[a, +\infty[$.

On dit que l'intégrale généralisée $\int_{a}^{+\infty} f(t) dt$ converge si la limite

 $\lim_{x \to +\infty} \int_{a}^{x} f(t) dt$ existe et est finie.

Dans ce cas on pose :

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

C'est quoi une intégrale généralisée?

Type 1 : ce qui se passe à l'infini

Definition

Soit f une fonction continue sur $[a, +\infty[$.

On dit que l'intégrale généralisée $\int_{a}^{+\infty} f(t) dt$ converge si la limite

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$
 existe et est finie.

Dans ce cas on pose :

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

Example

$$\lim_{x\to +\infty} \int_0^x e^{-t}\,\mathrm{d}t = \lim_{x\to +\infty} (1-e^{-x}) = 1 \text{ donc } \int_0^{+\infty} e^{-t}\,\mathrm{d}t \text{ CV et vaut } 1$$

C'est quoi une intégrale généralisée

Type 2 : ce qui se passe dans une des bornes finie

Definition

Soit f une fonction continue sur [a,b[où f n'est pas continue/définie en b.

L'intégrale généralisée $\int_a^b f(t) dt$ converge si la limite

$$\lim_{x \to b} \int_{a}^{x} f(t) dt$$
 existe et est finie.

Dans ce cas on pose :

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

C'est quoi une intégrale généralisée

Type 2 : ce qui se passe dans une des bornes finie

Definition

Soit f une fonction continue sur [a,b[où f n'est pas continue/définie en b.

L'intégrale généralisée $\int_{a}^{b} f(t) dt$ converge si la limite

$$\lim_{x \to b} \int_{a}^{x} f(t) dt$$
 existe et est finie.

Dans ce cas on pose :

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Example

Si
$$-\infty < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

A retenir

Intégrale généralisée = limite (Intégrales de Riemann)

Si
$$-\infty < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

A retenir

vous savez le faire

Si
$$-\infty < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Si
$$-\infty < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Remarque : on traite de la même manière les intégrales avec une borne impropre en a.

Dans cette RMD

- Deux bornes impropres
- Relations de Chasles
- Théorèmes de comparaison
- Intégration par parties
- Changement de variables

Pour s'échauffer ...

Wooclap[1-2]

Quelques propriétés : Relation de Chasles

Proposition -

Soit $f: [a, b[\rightarrow \mathbb{R} \text{ continue avec } -\infty < a < c < b \le +\infty.]$

Les intégrales $\int_a^b f(t) dt$ et $\int_c^b f(t) dt$ sont de même nature.

Dans le cas de convergence on a :

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Quelques propriétés : Relation de Chasles

Proposition -

Soit $f: [a, b[\to \mathbb{R} \text{ continue avec } -\infty < a < c < b \le +\infty.$

Les intégrales $\int_a^b f(t) dt$ et $\int_c^b f(t) dt$ sont de même nature.

Dans le cas de convergence on a :

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Démonstration.

Pour tout x tel que $a < c < x < +\infty$ on a la relation de Chasles pour les intégrales de Riemann

$$\int_{a}^{x} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{x} f(t) dt$$

La fonction f étant continue sur [a,c] l'intégrale au milieu est finie. La résultat suit en passant à la limite.

Quelques propriétés : linéarité

Proposition

Soit $f,g:[a,b[\to \mathbb{R} \text{ continues avec } -\infty < a < b \le +\infty \text{ et } \lambda,\mu \in A$

 \mathbb{R} . Si les intégrales $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent alors

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt$$
 converge aussi et

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Quelques propriétés : linéarité

Proposition

Soit $f,g:[a,b[\to \mathbb{R} \text{ continues avec } -\infty < a < b \le +\infty \text{ et } \lambda,\mu \in \mathbb{R}$

 \mathbb{R} . Si les intégrales $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent alors

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt$$
 converge aussi et

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Démonstration.

Conséquence de la même propriété pour les intégrales classiques de Riemann + passage à la limite.

Intégrale sur $]-\infty,+\infty[$

Wooclap[3]

Intégrale à deux bornes impropres]a,b[

S'il existe un $c \in]a,b[$ tel que $\int_a^c f(t) dt$ et $\int_c^b f(t) dt$ convergent alors on dit que l'intégrale $\int_a^b f(t) dt$ converge. Dans le cas de convergence

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

La définition ne dépend pas de c (conséquence de la relation de Chasles).

Intégrale à deux bornes impropres]a,b[

S'il existe un $c \in]a,b[$ tel que $\int_a^c f(t) dt$ et $\int_c^b f(t) dt$ convergent alors on dit que l'intégrale $\int_a^b f(t) dt$ converge. Dans le cas de convergence

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

La définition ne dépend pas de c (conséquence de la relation de Chasles).

Example

$$\int_0^{+\infty} \frac{1}{x^2} \, dx : \int_0^1 \frac{1}{x^2} \, dx \text{ et } \int_1^{+\infty} \frac{1}{x^2} \, dx$$

Intégrales de référence : Riemann

Wooclap[4]

Intégrale de référence : Riemann

Theorem

Soit $\alpha \in \mathbb{R}$

•

$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \ converge \ ssi \ \alpha > 1$$

•

$$\int_0^1 \frac{1}{t^\alpha} \, \mathrm{d}t \ converge \ ssi \ \alpha < 1$$

Intégrale de référence : Riemann

Theorem

Soit
$$\alpha \in \mathbb{R}$$

•

$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \ converge \ ssi \ \alpha > 1$$

•

$$\int_0^1 \frac{1}{t^{\alpha}} dt \ converge \ ssi \ \alpha < 1$$

Aide mémoire : Série de Riemann

La série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$

Intégrales de référence : Riemann

Wooclap[5]

Intégrale de référence : exponentielle (en TD)

Theorem Soit $\alpha \in \mathbb{R}$ $\int_0^{+\infty} e^{\alpha t} \, \mathrm{d}t \ converge \ ssi \ \alpha < 0$ $\int_{-\infty}^0 e^{\alpha t} \, \mathrm{d}t \ converge \ ssi \ \alpha > 0$

Dans ce cours ..

C'est quoi une intégrale généralisée î

Comment décider d'une convergence?

Question

Comment faire quand l'intégrale de Riemann est compliquée à calculer (par exemple pas de primitive ...)?

Comment décider d'une convergence?

Question

Comment faire quand l'intégrale de Riemann est compliquée à calculer (par exemple pas de primitive ...)?

Réponse

On va comparer f avec une autre fonction g (à déterminer suivant le cas) pour laquelle la convergence de l'intégrale est plus façile à décider.

Proposition

Si f est continue et **positive** a sur [a, b[alors

$$\int_{a}^{x} f(t) dt \text{ major\'ee } \Leftrightarrow \int_{a}^{b} f(t) dt \text{ converge}$$

a. il suffit que f soit positive au **voisinage** de b, c'est-à-dire sur un intervalle A, b

Proposition

Si f est continue et **positive** ^a sur [a, b[alors

$$\int_{a}^{x} f(t) dt \text{ major\'ee } \Leftrightarrow \int_{a}^{b} f(t) dt \text{ converge}$$

a. il suffit que f soit positive au **voisinage** de b, c'est-à-dire sur un intervalle A, b

Wooclap[6]

Proposition

Si f et g sont positives sur [a,b[et $0 \le f \le g$ sur [a,b[

$$\int_{a}^{b} g(t) dt \text{ converge } \Rightarrow \int_{a}^{b} f(t) dt \text{ converge}^{a}$$

a. Que implique la contraposée?

Proposition

Si f et g sont positives sur [a, b[et $0 \le f \le g$ sur [a, b[

$$\int_a^b g(t) dt \text{ converge } \Rightarrow \int_a^b f(t) dt \text{ converge}^a$$

a. Que implique la contraposée?

Démonstration.

Pour tout $x \in [a, b[$ on a $0 \le f(x) \le g(x)$. Donc

$$0 \le \int_a^x f(t) dt \le \int_a^x g(t) dt$$

Si $\int_a^b g(t) dt$ converge alors $\int_a^x g(t) dt$ est majorée et on utilise la proposition précédente.

Proposition

Si f et g sont positives sur [a, b[et $0 \le f \le g$ sur [a, b[

$$\int_a^b g(t) dt \text{ converge } \Rightarrow \int_a^b f(t) dt \text{ converge}^a$$

a. Que implique la contraposée?

Démonstration.

Pour tout $x \in [a, b[$ on a $0 \le f(x) \le g(x)$. Donc

$$0 \le \int_a^x f(t) dt \le \int_a^x g(t) dt$$

Si $\int_a^b g(t) dt$ converge alors $\int_a^x g(t) dt$ est majorée et on utilise la proposition précédente.

Proposition

• Si f et g sont positives sur [a, b[et f = O(g) ou f = o(g) alors

$$\int_{a}^{b} g(t) dt \text{ converge } \Rightarrow \int_{a}^{b} f(t) dt \text{ converge}^{a}$$

Proposition

• Si f et g sont positives sur [a, b[et f = O(g) ou f = o(g) alors

$$\int_{a}^{b} g(t) dt \text{ converge } \Rightarrow \int_{a}^{b} f(t) dt \text{ converge}^{a}$$

• Si $f \sim g$ alors

$$\int_{a}^{b} g(t) dt \text{ converge } \Leftrightarrow \int_{a}^{b} f(t) dt \text{ converge}$$

a. Que implique la contraposée?

Rappel

Si $f,g:[a,b[\to\mathbb{R}$ sont deux fonctions et g ne s'annule pas au voisinage de b

$$f = O(g) \Leftrightarrow \frac{f}{g}$$
 est bornée au voisinage de b
$$f = o(g) \Leftrightarrow \lim_{x \to b} \frac{f(x)}{g(x)} = 0$$

$$f \approx \lim_{x \to b} \frac{f(x)}{g(x)} = 1$$

Exemples

Question

Quelle est la nature de $\int_0^1 \ln(t) dt$?

Exemples

Question

Quelle est la nature de $\int_0^1 \ln(t) dt$?

Par croissances comparées pour tout $\alpha > 0$ on a

$$t^{\alpha} \ln(t) \underset{t \to 0}{\longrightarrow} 0$$

En particulier, pour $\alpha = \frac{1}{2}$ on a

$$t^{\frac{1}{2}}\ln(t) \underset{t\to 0}{\longrightarrow} 0$$

Donc $\ln(t) = O(\frac{1}{t^2})$ (on peut aussi dire qu'au voisinage de 0 $\ln(t) < \frac{1}{t^2}$

Or l'intégrale $\int_0^1 \frac{1}{\frac{1}{2}} dt$ converge.

Proposition Convergence absolue -

$$\int_{a}^{+\infty} |f(t)| dt \text{ converge } \Rightarrow \int_{a}^{+\infty} f(t) dt \text{ converge}$$

Proposition Convergence absolue

$$\int_{a}^{+\infty} |f(t)| dt \text{ converge } \Rightarrow \int_{a}^{+\infty} f(t) dt \text{ converge }$$

Aide mémoire

Retrouver les propriétés équivalentes pour les séries

Proposition Convergence absolue

$$\int_{a}^{+\infty} |f(t)| dt \text{ converge } \Rightarrow \int_{a}^{+\infty} f(t) dt \text{ converge}$$

Aide mémoire

Retrouver les propriétés équivalentes pour les séries

Wooclap[7-9]

Dans ce cours ..

C'est quoi une intégrale généralisée î

Proposition

Si $\int_a^b u(t)v'(t) dt$ est une intégrale généralisée (u et v de classe C^1) et si l'expression

$$[u(t)v(t)]_a^b = \lim_{x \to b} u(x)v(x) - \lim_{x \to a} u(x)v(x)$$

a un sens (les limites sont finies) alors les intégrales $\int_a^b u(t)v'(t) dt$ et $\int_a^b u'(t)v(t) dt$ sont de même nature.

Dans le cas de convergence

$$\int_{a}^{b} u(t)v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t) dt$$

Remarque : Il faut toujours commencer par vérifier si $[u(t)v(t)]_a^b$ a un sens.

IPP : exemple

Wooclap[10]

Changement de variables

Proposition

Si $\int_{a}^{b} f(t) dt$ est une intégrale généralisée et $\varphi : I =]\alpha, \beta[\rightarrow]a, b[$ bijective de classe C^1 telle que

$$\lim_{t \to \alpha} \varphi(t) = a \text{ et } \lim_{t \to \beta} \varphi(t) = b$$

Alors

$$\int_{a}^{b} f(t) dt \text{ et } \int_{a}^{\beta} f(\varphi(t)) \varphi'(t) dt$$

sont de même nature. Dans le cas de convergence les intégrales ont la même valeur.

Changement de variables

Proposition

Si $\int_{a}^{b} f(t) dt$ est une intégrale généralisée et $\varphi : I =]\alpha, \beta[\rightarrow]a, b[$ bijective de classe C^{1} telle que

$$\lim_{t \to \alpha} \varphi(t) = a \text{ et } \lim_{t \to \beta} \varphi(t) = b$$

Alors

$$\int_a^b f(t) dt \text{ et } \int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$$

sont de même nature. Dans le cas de convergence les intégrales ont la même valeur.

Wooclap[11]

A retenir

- Intégrale généralisée = limite (Intégrales de Riemann)
- On retrouve les mêmes propriétés et techniques d'intégration : linéarité, Chasles, IPP, changement de variables
- A faire attention à la convergence avant de commencer les calculs.

A retenir

- Intégrale généralisée = limite (Intégrales de Riemann)
- On retrouve les mêmes propriétés et techniques d'intégration : linéarité, Chasles, IPP, changement de variables
- A faire attention à la convergence avant de commencer les calculs.

A suivre :

- Suite d'intégrales, théorème de convergence dominée
- Intégrale à paramètre