Grenander-type Density Estimation under Myerson Regularity

Haitian Xie

PhD, UC San Diego Assistant Professor, Peking University

Canadian Economics Association Conference 2023

May 30, 2023

Density estimation for auctions

- Data: iid valuations V_1, V_2, \dots, V_n from second-price auctions of some product
- ullet Want to estimate the underlying density f of V_i
- Kernel density estimator
 - motivated by smoothness assumptions
 - requires bandwidth/kernel selection
 - difficult to conduct inference at the optimal convergence rate due asymptotic bias

Research question

- Is there an estimation procedure that
 - can be motivated by economic theory
 - is fully data-driven (avoid bandwidth selection)
 - no asymptotic bias under the optimal convergence rate
- Myerson (1981) regularity condition

virtual valuation
$$arphi(v) = v - rac{1 - F(v)}{f(v)}$$
 nondecreasing,

where F is the cumulative distribution function of V_i .

• This is a shape restriction on the density f. We are going to utilize it to design an estimator for f.

Main results

- Grenander-type estimation procedure motivated by Myerson regularity
 - equivalent representation of Myerson regularity as a convexity constraint
 - no tuning parameters needed in the construction
- Consistency, convergence rate, and asymptotic distribution (non-normal)
- Minimax optimal convergence rate

Roadmap

- 1 Introduction
- 2 Myerson regularity
- 3 Estimation procedure
- 4 Asymptotic properties
- 6 Conclusion

Myerson regular distributions

- Important results in mechanism design require Myerson regularity
 - e.g., the second-price auction with reserve price maximizes the revenue
- Examples:
 - any log-concave distribution: U[0, 1], N(0, 1), Exponential, logistic
 - student t, Cauchy, F (parameters > 2)
 - violations: U-shape / very heavy tails

Economic interpretation

A simple economic model (Bulow and Klemperer, 1996):

- selling a product with valuation V
- price of the product: p
- quantity demanded: $q = \mathbb{P}(V > p) = 1 F(p)$
- inverse demand function: $p = F^{-1}(1-q)$
- revenue function: $R(q) = pq = F^{-1}(1-q)q$
- marginal revenue:

$$egin{split} R'(q) &= F^{-1}(1-q) - rac{q}{F'(F^{-1}(1-q))} \ &= p - rac{1-F(p)}{f(p)} = arphi(p) \end{split}$$

Economic interpretation (cont'd)

- Myerson regularity: $\varphi(p)$ nondecreasing in p \iff marginal revenue R'(q) nonincreasing in q \iff revenue function R(q) concave in q
- Concave revenue functions are common
 - diminishing marginal returns/utility
 - risk aversion
 - equilirium considerations

Equivalent representation

- Difficult to directly apply the restriction $[\varphi]$ nondecreasing to estimation because it involves f.
- Consider an equivalent condition (Ewerhart, 2013):
 - define $\Lambda(\cdot) = (1 F(\cdot))^{-1}$, which only involves F
 - under very mild conditions (continuity):

$$\varphi(\cdot)$$
 nondecreasing $\iff \Lambda(\cdot)$ convex

$$arphi(\cdot)$$
 nondecreasing $\iff \Lambda(\cdot) = (1 - F(\cdot))^{-1}$ convex $\iff \lambda(\cdot) = \Lambda'(\cdot) = f(\cdot)(1 - F(\cdot))^{-2}$ nondecreasing

Take derivative and see that

 φ', λ' share the same sign

Equivalent representation (cont'd)

• λ as the derivative of Λ

$$\lambda(\cdot) = \Lambda'(\cdot) = f(\cdot)(1-F(\cdot))^{-2}$$

Take derivative

$$arphi' = rac{2f^2 + (1-F)f'}{f^2}, \ \lambda' = rac{2f^2 + (1-F)f'}{(1-F)^3}.$$

• φ' and λ' share the same sign

Roadmap

- Introduction
- 2 Myerson regularity
- Estimation procedure
- 4 Asymptotic properties
- 6 Conclusion

Basic idea for estimation

- Since $f = \lambda(1 F)^2$, we can first estimate λ then use empirical cdf F_n to replace F.
- How to estimate λ ?
 - λ is the derivative of the convex function $\Lambda = (1 F)^{-1}$
 - ullet replace F by empirical cdf F_n
 - "convexify" this estimate of Λ and take derivative

The estimator

Step 1 Estimate Λ by Λ_n (replace cdf by empirical cdf):

$$\Lambda_n = (1 - F_n)^{-1}$$

- Step 2 Let $\hat{\Lambda}_n$ be the greatest convex minorant (gcm) of Λ_n . Take $\hat{\lambda}_n$ as the left-derivative of $\hat{\Lambda}_n$.
- Step 3 The density estimator is $\hat{f}_n = \hat{\lambda}_n (1 F_n)^2$.
 - No tuning parameters because this estimator is not local. It uses the *global* shape restriction to estimate f.

Grenander-type estimator

- Estimators representable as the left derivative of the greatest convex minorant or least concave majorant of an estimator of a primitive function.
- Literature
 - monotone density: Grenander (1956)
 - concave distribution function: Beare and Fang (2017)
 - isotonic regression: Robertson and Wright (1975)
 - monotone hazard rate: Marshall and Proschan (1965)
 - General framework: Westling and Carone (2020), Durot et al. (2012), Durot (2007)
- This paper is the first one that uses Myerson regularity for Grenander-type estimation.

Demonstration: uniform, n = 20

Roadmap

- 1 Introduction
- 2 Myerson regularity
- 3 Estimation procedure
- Asymptotic properties
- 6 Conclusion

Consistency

- Assume the density f is continuous and Myerson regular.
- Due to inconsistency of Grenander-type of estimators at boundary points (Woodroofe and Sun, 1993; Kulikov and Lopuhaä, 2006; Balabdaoui et al., 2011), we focus on $v \in [a, b]$, where [a, b] is in the interior of the support of V_i

Theorem 1

- $\hat{f}_n(v)$ is consistent for f(v).
- ② If further assume that f is uniformly continuous, then \hat{f}_n is uniformly consistent.

Asymptotic distribution

Theorem 2

If f is continuously differentiable, then for any $v \in [a, b]$,

$$n^{1/3}(\hat{f}_n(v)-f(v))\stackrel{d}{
ightarrow} C(v)rgmax\{\mathbf{B}(t)-t^2\},$$

where $\mathbf{B}(t)$ is a two-sided Brownian motion and

$$C(v) = \left(rac{8f(v)^3}{1-F(v)} + 4f(v)f'(v)
ight)^{1/3}.$$

Chernoff's distribution

- ullet argmax $_{t\in\mathbb{R}}\{\mathbf{B}(t)-t^2\}$
- it first arose in Chernoff (1964) on mode estimation, also appeared in Venter (1967) for another mode estimator
- log-concave
- symmetric around zero (has mean zero)
- variance ≈ 0.26
- can be approximated by $N(0, (0.52)^2)$ (Dykstra and Carolan, 1999)

Density plot

Inference

- obtain consistent estimates of f' to construct the test statistic (which is possible under our assumption that f' is continuous)
- the test statistics converges at the cube root rate
- for kernel estimates under the same condition, we usually need to undersmooth to kill the bias
- therefore, the local power function for our test would be "infinitely more efficiency" than the kernel-based test

Minimax convergence rate

Question: is it possible to do better (in terms of convergence rate) under our assumptions? No.

Theorem 3

Let \mathcal{F} be the set of distributions that have a.e. continuously differentiable densities and satisfy Myerson regularity. For any $v \in [a,b]$, there exists c>0 such that

$$\inf_{ ilde{f}_n} \sup_{F \in \mathcal{F}} \mathbb{E}_F | ilde{f}_n(v) - f(v)| \geq c n^{-1/3},$$

where \mathbb{E}_F denotes the expectation with respect to the distribution F. The infimum $\inf_{\tilde{f}_n}$ is taken over the set of all estimators.

Conclusion

- A tuning-parameter-free nonparametric density estimator.
- Asymptotic properties
 - (uniform) consistency
 - cube root convergence rate
 - non-normal asymptotic distribution
- Conjecture: $\hat{\lambda}_n$ is the nonparametric maximum likelihood estimator.
- Future work: simulation and empirical application.

Thank You!

Haitian Xie

Guanghua School of Management Peking University

Website: haitianxie.org

