1

Assignment 5 (Cbse 12 ex 13.2 12)

Busireddy Asli Nitej Reddy (CS21BTECH11011)

Abstract—This document contains the solution to Cbse 12 ex 13.2 12

PROBLEM

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that

- i) the youngest is a girl
- ii) at least one is a girl

SOLUTION

Let the random variables X_i map to the set $\{0,1\}$ as described in Table where Event A denotes first child or older child is girl and Event B denotes second child or youngest is girl and also Event C where at least one girl is born

variable	event
$X_1 = 1$	A
$X_2 = 1$	В
$X_3 = 1$	С
TABLE I	

RANDOM VARIABLES

as given girl and boy are likely to born so the below probability can be written

$$\Pr\left(X_1 = 1\right) = \frac{1}{2}$$
 (1)

$$\Pr(X_2 = 1) = \frac{1}{2}$$
 (2)

$$\Pr(X_1 = 1, X_2 = 1) = \frac{1}{4}$$
 (3)

as both events are independent because one doesn't depend on other so

(i) here the youngest is a girl and let us denote the event as C where conditional probability that both are girls given that youngest is a girl

$$\Pr(C) = \Pr((X_1 = 1, X_2 = 1) | X_2 = 1)$$
 (4)

$$= \frac{\Pr(X_1 = 1, X_2 = 1)}{\Pr(X_2 = 1)}$$
 (5)

$$=\Pr\left(X_{1}=1\right) \tag{6}$$

$$=\frac{1}{2}\tag{7}$$

: the conditional probability that both are girls given that the youngest is a girl is 0.5

(ii) here given that at least one girl is born find conditional probability that both are girls lets us denote that event by D as is given by

$$\Pr(D) = \Pr((X_1 = 1, X_2 = 1) | X_3 = 1)$$
 (8)

$$= \frac{\Pr(X_1 = 1, X_2 = 1, X_3 = 1)}{\Pr(X_3 = 1)} \quad (9)$$

$$= \frac{\Pr(X_1 = 1, X_2 = 1)}{\Pr(X_3 = 1)}$$
 (10)

Eq(10) numerator is same as Eq(9) numerator because the event where both are gorls is same as both are girls and alleast one girl

$$\Pr(X_3 = 1) = 1 - \Pr(X_1 = 0, X_2 = 0)$$
(11)

$$=1-\frac{1}{4}$$
 (12)

$$=\frac{3}{4}\tag{13}$$

on substituting values in Eq(10) we will get

$$\Pr(D) = \frac{\frac{1}{4}}{\frac{3}{4}}$$
 (14)
= $\frac{1}{3}$ (15)

$$=\frac{1}{2}\tag{15}$$

: the conditional probability that both are girls given that the there is atleast one girl is born is $\frac{1}{3}$