CERTIFICATION TEST REPORT

Manufacturer: Vapor Communications

1 Broadway, 14th Floor

Cambridge, Massachusetts 02142 USA

Applicant: Same As Above

Product Name: Cyrano

Product Description: The Cyrano is a step forward in Air Control devices. It allows

consumers to control the air they breathe with a smart phone or tablet. The device is portable and battery-operated. It can be recharged via a supplied USB cable. It contains three scent chips and each chip can hold up to 4 individual scents for a total of 12 for the device. Consumers connect to the device via Bluetooth from an iPhone or iPad using our oNotes app. Users simply tap on a scent image to play an individual scent like "Suntan" or Coconut." Consumers can also create a track of scents to play

one after the other.

Model: CYR161

FCC ID: 2AHYTCYR161

Testing Commenced: Apr. 4, 2016

Testing Ended: Apr. 12, 2016

Summary of Test Results: In Compliance

The EUT complies with the EMC requirements when manufactured identically as the unit tested in this report, including any required modifications. Any changes to the design or build of this unit subsequent to this testing may deem it non-compliant.

Standards:

- FCC Part 15 Subpart C, Section 15.247
- FCC15.207 Conducted Limits
- ANSI C63.10:2013
- FCC Part 15.31(e)

011516

Report Number: F2LQ8323-01E Page 1 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

Evaluation Conducted by:

Joe Knepper, EMC Proj. Eng.

Joe Knepper

Report Reviewed by:

Ken Littell, Director of EMC & Wireless Operations

F2 Labs 26501 Ridge Road Damascus, MD 20872 Ph 301.253.4500 Fax 301.253.5179 F2 Labs 16740 Peters Road Middlefield, OH 44062 Ph 440.632.5541 Fax 440.632.5542

This test report may be reproduced in full; partial reproduction only may be made with the written consent of F2 Labs. The results in this report apply only to the equipment tested.

Report Number: F2LQ8323-01E Page 2 of 75 Issue Date: Apr. 13, 2016

Order Number: F2LQ8323

TABLE OF CONTENTS

Section	Title	Page
1	ADMINISTRATIVE INFORMATION	4
2	SUMMARY OF TEST RESULTS/MODIFICATIONS	5
3	TABLE OF MEASURED RESULTS	6
4	ENGINEERING STATEMENT	7
5	EUT INFORMATION AND DATA	8
6	LIST OF MEASUREMENT INSTRUMENTATION	9
7	FCC Part 15.247(a)(2)6dB OCCUPIED BANDWIDTH	10
8	FCC Part 15.247(b)(3) – CONDUCTED OUTPUT POWER	14
9	FCC Part 15.31(e) – EXTREME VOLTAGES	18
10	FCC Part 15.247(d) - CONDUCTED SPURIOUS EMISSIONS	25
11	FCC Part 15.247(d) – RADIATED SPURIOUS EMISSIONS	38
12	FCC Part 15.247(e) - PEAK POWER SPECTRAL DENSITY (PSD)	67
13	FCC Part 15.207 – CONDUCTED LIMITS	7 1
14	PHOTOS/EXHIBITS	74

Manufacturer: Vapor Communications

Model: CYR161

1 ADMINISTRATIVE INFORMATION

1.1 Measurement Location:

F2 Labs in Middlefield, Ohio. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.

1.2 Measurement Procedure:

All measurements were performed according to the 2013 version of ANSI C63.10 and recommended FCC procedure of measurement of DTS operating under Section 15.247 and in KDB558074. A list of the measurement equipment can be found in Section 6.

1.3 Uncertainty Budget:

The uncertainty in EMC measurements arises from several factors which affect the results, some associated with environmental conditions in the measurement room, the test equipment being used and the measurement techniques adopted.

The measurement uncertainty budgets detailed below are calculated from the test and calibration data, and are expressed with a 95% confidence factor. Note: Only measurements listed below which relate to tests included in this Test Report are applicable to it.

Measurement Range	Expanded Uncertainty	Combined Uncertainly
Radiated Emissions <1 GHz @ 3m	±5.07dB	±2.54
Radiated Emissions <1 GHz @10m	±5.09dB	±2.55
Radiated Emissions 1 GHz to 2.7 GHz	±3.62dB	±1.81
Radiated Emissions 2.7 GHz to 18 GHz	±3.10dB	±1.55
AC Power Line Conducted Emissions, 150kHz to 30 MHz	±2.76dB	±1.38

This Uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.4 Document History

Document Number	Description	Issue Date	Approved By
F2LQ8323-01E	First Issue	Apr. 13, 2016	K. Littell

011516

Report Number: F2LQ8323-01E Page 4 of 75 Issue Date: Apr. 13, 2016

F

Manufacturer: Vapor Communications Model: CYR161

2 SUMMARY OF TEST RESULTS

Test Name	Standard(s)	Results
-6dB Occupied Bandwidth	CFR 47 Part 15.247(a)(2) / KDB558074	Complies
Conducted Output Power	CFR 47 Part 15.247(b)(3) / KDB558074	Complies
Conducted Spurious Emissions	CFR 47 Part 15.247(d) / Part 15.207 / KDB558074	Complies
Radiated Spurious Emission with 4.5dBi Integral Antenna	CFR 47 Part 15.247(d) / Part 15.209 / KDB558074	Complies
Voltage Variations	CFR 47 Part 15.31(e)	Complies
Peak Power Spectral Density	CFR 47 Part 15.247(e) / KDB558074	Complies
Conducted Emissions	CFR 47 Part 15.207(a)	Complies

Modifications Made to t	he Equipment
None	

Manufacturer: Vapor Communications Model: CYR161

3 **TABLE OF MEASURED RESULTS**

Те	est	Low Channel 2.402 GHz	Mid Channel 2.44 GHz	High Channel 2.48 GHz
-6dB Oo Band	•	0.6827 MHz	0.6859 MHz	0.6923 MHz
-6dB Oo Bandwid		≥ 500KHz	≥ 500KHz	≥ 500KHz
Conducte Power a		-8.06dBm 0.156mW	-8.70dBm 0.135mW	-8.57dBm 0.139mW
Output power at	-15% (100V)	-7.32dBm 0.185mW	-7.86dBm 0.164mW	-8.78dBm 0.132mW
Extreme Voltages	+15% (140)	-7.31dBm 0.186mW	-7.56dBm 0.175mW	-8.10dBm 0.154mW
Conducte Power	ed Output r Limit	1 Watt 30dBm	1 Watt 30dBm	1 Watt 30dBm
E.I.R.P. w Integral	rith 4.5dBi Antenna	0.524mW (-2.81dBm)	0.494mW (-3.06dBm)	0.437mW (-3.60dBm)
E.I.R.F	P. Limit	4 Watts, (36.02dBm)	4 Watts, (36.02dBm)	4 Watts, (36.02dBm)
Peak I Spectral		-20.66 dBm	-19.75 dBm	-21.25 dBm
Peak Power Spectral Density Limit		8 dBm	8 dBm	8 dBm

^{*}To meet the requirements of 15.31 the nominal voltage was varied by $\pm 15\%$ and all tests below reflect the worst case output power. The +15% (140V) was the worst case.

Page 6 of 75 Report Number: F2LQ8323-01E Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

4 ENGINEERING STATEMENT

This report has been prepared on behalf of Vapor Communications to provide documentation for the testing described herein. This equipment has been tested and found to comply with Part 15.247 of the FCC Rules using ANSI C63.10 2013 and KDB558074 standards. The test results found in this test report relate only to the items tested.

Report Number: F2LQ8323-01E Page 7 of 75 Issue Date: Apr. 13, 2016

Order Number: F2LQ8323 Manufacturer: Vapor Communications

Model: CYR161

5 EUT INFORMATION AND DATA

5.1 Equipment Under Test:

Product: Cyrano Model: CYR161

Serial No.: None Spec.* FCC ID: 2AHYTCYR161

*Two samples were provided - S01 was used for Conducted Emissions tests; S02 was used for Radiated Emissions tests.

5.2 Trade Name:

Vapor Communications

5.3 Power Supply:

USB AC/DC Supply - Samsung ETA-U90JWE, s/n RT4DA15PS/B-E

5.4 Applicable Rules:

CFR 47, Part 15.247, subpart C

5.5 Equipment Category:

Radio Transmitter-DTS

5.6 Antenna:

Single Line PCB (Inverted F Antenna)

5.7 Accessories:

N/A

5.8 Test Item Condition:

The equipment to be tested was received in good condition.

5.9 Testing Algorithm:

EUT was set up in a normal testing manner, transmitting continuous at Low (2402 GHz), Mid (2.44 GHz) and High (2.48 GHz) channels.

Report Number: F2LQ8323-01E Page 8 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications Model: CYR161

6 LIST OF MEASUREMENT INSTRUMENTATION

Equipment Type	Asset Number	Manufacturer	Model	Serial Number	Calibration Due Date
Shielded Chamber	CL166	AlbatrossProjects	B83117-DF435- T261	US140023	Apr. 30, 2016
Temp/Hum. Recorder	CL137	Extech	RH520	CH16992	May 7, 2016
Spectrum Analyzer	CL138	Agilent Technologies	E4407B	US41192779	Nov. 13, 2016
Receiver	CL151	Rohde & Schwarz	ESU40	100319	Nov. 25, 2016
Loop Antenna	CL163L	A.H. Systems, Inc.	EHA-52B	100	Apr. 20, 2016
Horn Antenna	CL098	Emco	3115	9809-5580	Dec. 10, 2016
Combination Antenna	CL175	Sunol Sciences	JB3	A030315	Apr. 1, 2017
Software:	٦	Γile Version 1.0	Software Verified: Apr. 4, 2016		2016
Software:	EMC	32, Version 5.20.2	Softwa	re Verified: Apr. 4,	2016
Antenna, Horn	CL114	A. H. Systems, Inc.	SAS-572	237	Oct. 16, 2016
Temp./Hum. Rec.	CL119	Extech	RH520	H005869	Jan. 29, 2017
Transient Limiter	CL102	Hewlett Packard	11947A	3107A03325	Feb. 1, 2017
Spectrum Analyzer	CL147	Agilent	E7402A	MY45101241	Dec. 3, 2016
LISN	CL184	Com-Power	LI-125A	191213	June 9, 2016
LISN	CL185	Com-Power	LI-125A	191214	June 9, 2016

Page 9 of 75 Report Number: F2LQ8323-01E Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

7 FCC PART 15.247(a)(2) – OCCUPIED BANDWIDTH

7.1 Requirements:

The 6dB bandwidth shall be greater than 500 kHz.

Bandwidth measurements were made at the Low (2.4052GHz), Mid (2.44 GHz) and High (2.48 GHz) frequencies. The bandwidth was measured using the analyzer's marker function.

011516

Report Number: F2LQ8323-01E Page 10 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications
Model: CYR161

7.2 **Occupied Bandwidth Test Data**

Test Date(s):	Apr. 4-7, 2015	Test Engineer:	J. Knepper
	CFR 47 Part 15.247(a)(2);	Air Temperature:	19.4°C
Standards:		Relative Humidity:	45%

Low Channel

Date: 7.APR.2016 13:47:22

Mid Channel

Date: 7.APR.2016 13:48:35

Report Number: F2LQ8323-01E Page 12 of 75 Issue Date: Apr. 13, 2016

High Channel

Date: 7.APR.2016 13:42:26

Report Number: F2LQ8323-01E Page 13 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

8 FCC PART 15.247(b)(3) – CONDUCTED OUTPUT POWER

The EUT antenna port was fitted with an SMA connector and directly connected to the input of the receiver. The peak power output was measured.

8.1 Requirements:

The peak power output shall be 1 watt (30 dBm) or less when using an antenna with a gain of less than 6dBi. For antennas having a gain of more than 6dBi, the limit is reduced by 1dB for every dB the antenna gain is over 6dBi.

011516

Report Number: F2LQ8323-01E Page 14 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications Model: CYR161

8.2 Conducted Output Power Test Data

	Test Date(s):	Apr. 7, 2016	Test Engineer:	J. Knepper
	Standards:	CFR 47 Part 15.247(b)(3); KDB558074	Air Temperature:	21.2°C
Sta	Standards:		Relative Humidity:	44%

Low Channel

Date: 7.APR.2016 13:54:16

Report Number: F2LQ8323-01E Page 15 of 75 Issue Date: Apr. 13, 2016

Mid Channel

Date: 7.APR.2016 13:50:39

Report Number: F2LQ8323-01E Page 16 of 75 Issue Date: Apr. 13, 2016

High Channel

Date: 7.APR.2016 13:52:48

Report Number: F2LQ8323-01E Page 17 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

9 FCC PART 15.31(e) – EXTREME VOLTAGES

9.1 Requirements

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery-operated equipment, the equipment tests shall be performed using a new battery.

011516

Report Number: F2LQ8323-01E Page 18 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications
Model: CYR161

9.2 Extreme Voltages Test Data

Test Date(s):	Apr. 8, 2016	Test Engineer:	J. Knepper
Rule:	15.31(e)	Air Temperature:	21.3º C
Test Results:	Complies	Relative Humidity:	40%

Low Channel, 100V

Date: 8.APR.2016 12:12:58

Report Number: F2LQ8323-01E Page 19 of 75 Issue Date: Apr. 13, 2016

Low Channel, 140V

Date: 8.APR.2016 12:14:07

011516

Report Number: F2LQ8323-01E Page 20 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 100V

Date: 8.APR.2016 12:15:33

Report Number: F2LQ8323-01E Page 21 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 140V

Date: 8.APR.2016 12:14:46

Report Number: F2LQ8323-01E Page 22 of 75 Issue Date: Apr. 13, 2016

High Channel, 100V

Date: 8.APR.2016 12:16:49

High Channel, 140V

Date: 8.APR.2016 12:18:00

Report Number: F2LQ8323-01E Page 24 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

10 FCC Part 15.247(d) – CONDUCTED SPURIOUS EMISSIONS

The EUT antenna port was fitted with an SMA connector and directly connected to the input of the spectrum analyzer.

Spurious emissions measurements were made at the low, mid, and upper channels with the appropriate spectrum analyzer impulse bandwidth. Additionally, 20dB down points were measured for the low and high channels to verify band edge compliance.

10.1 Requirements:

All Spurious Emissions must be at least 20dB down from the highest emission level measured within the authorized band up through the tenth harmonic.

011516

Report Number: F2LQ8323-01E Page 25 of 75 Issue Date: Apr. 13, 2016

10.2 Test Data - Conducted Spurious Emissions

Test Date(s):	Apr. 8, 2016	Test Engineer:	J. Knepper
Standards:	CFR 47 Part 15.247(d) / Part 15.207 KDB558074	Air Temperature:	21.2°C
Stanuarus:		Relative Humidity:	40%

Low Channel, 9kHz to 150kHz

Date: 8.APR.2016 10:41:25

Low Channel, 150kHz to 30 MHz

Date: 8.APR.2016 10:42:11

Low Channel, 30 MHz to 1 GHz

Date: 8.APR.2016 10:46:32

Low Channel, 1 GHz to 2.3 GHz

Date: 8.APR.2016 10:46:51

Report Number: F2LQ8323-01E Page 27 of 75 Issue Date: Apr. 13, 2016

Low Channel, 2.3 GHz to 2.6 GHz

Date: 8.APR.2016 10:49:04

Low Channel, 2.6 GHz to 6 GHz

Date: 8.APR.2016 10:47:27

Low Channel, 6 GHz to 18 GHz

Date: 8.APR.2016 10:47:39

Low Channel, 18 GHz to 26 GHz

Date: 8.APR.2016 10:47:53

Mid Channel, 9kHz to 150kHz

Date: 8.APR.2016 10:49:39

Mid Channel, 150kHz to 30 MHz

Date: 8.APR.2016 10:50:02

Mid Channel, 30 MHz to 1 GHz

Date: 8.APR.2016 10:50:21

Mid Channel, 1 GHz to 2.3 GHz

Date: 8.APR.2016 10:50:34

Mid Channel, 2.3 GHz to 2.6 GHz

Date: 8.APR.2016 10:50:54

Mid Channel, 2.6 GHz to 6 GHz

Date: 8.APR.2016 10:51:12

Mid Channel, 6 GHz to 18 GHz

Date: 8.APR.2016 10:51:25

Mid Channel, 18 GHz to 26 GHz

Date: 8.APR.2016 10:51:39

High Channel, 9kHz to 150kHz

Date: 8.APR.2016 10:52:27

High Channel, 150kHz to 30 MHz

Date: 8.APR.2016 10:53:41

High Channel, 30 MHz to 1 GHz

Date: 8.APR.2016 10:54:40

High Channel, 1 GHz to 2.3 GHz

Date: 8.APR.2016 10:54:49

High Channel, 2.3 GHz to 2.6 GHz

High Channel, 2.6 GHz to 6 GHz

Date: 8.APR.2016 10:55:18

High Channel, 6 GHz to 18 GHz

Date: 8.APR.2016 10:55:31

High Channel, 18 GHz to 26 GHz

Date: 8.APR.2016 10:55:45

Manufacturer: Vapor Communications

Model: CYR161

11 FCC Part 15.247(d) – RADIATED SPURIOUS EMISSION

The EUT antenna port was fitted with its integral/internal chip antenna. Radiated emissions were measured in a Semi-Anechoic Chamber. All emissions generated that fall in the restricted bands per FCC Part 15.205 were examined.

11.1 Requirements:

All emissions that fall in the restricted bands defined in FCC Part 15.205 shall not exceed the maximum field strength listed in FCC Part 15.209(a).

Report Number: F2LQ8323-01E Page 38 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

11.2 Radiated Spurious Emission Test Data

Test Date(s):	Apr. 11-12, 2016	Test Engineer:	J. Knepper
Standards:	CFR 47 Part 15.247(d);	Air Temperature:	21.4°C
Standards:	Part 15.209 / KDB558074	Relative Humidity:	41%

Notes:

Emissions were checked with the final metal enclosure and the emissions went down. Emissions were run without the enclosure as worst case operation.

Plots are peak, max hold prescan data included only to determine what frequencies to investigate and measure. The EUT was initially placed in a semi-anechoic chamber, and rotated in all three orthogonal positions to maximize the emissions. Characterization measurements were then performed to determine at which frequencies significant emissions occurred. These graphs are shown below.

The equipment was fully exercised with all cabling attached to the EUT and was positioned on the OATS for maximum emissions. While the equipment was energized, the receiving antenna was scanned from 1.0 meter to 4.0 meters in both vertical and horizontal polarities while the turntable was adjusted 360 degrees to determine the maximum field strength. The tables of measured results can be found below.

Some of the frequencies did not change with the EUT on or off. At those frequencies, the test distance was shortened to 1 meter and still no emissions from the EUT were visible or over the ambient or limit.

In the following plots, the black line indicates ambient noise and the red line indicates the measurement with the EUT on. Emissions to be found by the EUT were measured and listed in tables. The plots are for reference only and the limit lines are not actual limit lines but merely a guide.

011516

Report Number: F2LQ8323-01E Page 39 of 75 Issue Date: Apr. 13, 2016

Low Channel, 9kHz to 150kHz

Low Channel, 150kHz to 0.5 MHz

Low Channel, 0.5 MHz to 5 MHz

Low Channel, 5 MHz to 30 MHz

Low Channel, 30 MHz to 1 GHz, Vertical

Low Channel, 30 MHz to 1 GHz, Horizontal

Low Channel, 1 GHz to 2.3 GHz, Vertical

Low Channel, 1 GHz to 2.3 GHz, Horizontal

Low Channel, 2.3 GHz to 2.6 GHz, Vertical

Low Channel, 2.3 GHz to 2.6 GHz, Horizontal

Report Number: F2LQ8323-01E Page 44 of 75 Issue Date: Apr. 13, 2016

Low Channel, 2.6 GHz to 6 GHz, Vertical

Low Channel, 2.6 GHz to 6 GHz, Horizontal

Report Number: F2LQ8323-01E Page 45 of 75 Issue Date: Apr. 13, 2016

Low Channel, 6 GHz to 18 GHz, Vertical

Low Channel, 6 GHz to 18 GHz, Horizontal

Report Number: F2LQ8323-01E Page 46 of 75 Issue Date: Apr. 13, 2016

Low Channel, 18 GHz to 26 GHz, Vertical

Low Channel, 18 GHz to 26 GHz, Horizontal

Report Number: F2LQ8323-01E Page 47 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 9kHz to 150kHz

Mid Channel, 150kHz to 0.5 MHz

Report Number: F2LQ8323-01E Page 48 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 0.5 MHz to 5 MHz

Mid Channel, 5 MHz to 30 MHz

Report Number: F2LQ8323-01E Page 49 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 30 MHz to 1 GHz, Vertical

Mid Channel, 30 MHz to 1 GHz, Horizontal

Mid Channel, 1 GHz to 2.3 GHz, Vertical

Mid Channel, 1 GHz to 2.3 GHz, Horizontal

Report Number: F2LQ8323-01E Page 51 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 2.3 GHz to 2.6 GHz, Vertical

Mid Channel, 2.3 GHz to 2.6 GHz, Horizontal

Report Number: F2LQ8323-01E Page 52 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 2.6 GHz to 6 GHz, Vertical

Mid Channel, 2.6 GHz to 6 GHz, Horizontal

Report Number: F2LQ8323-01E Page 53 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 6 GHz to 18 GHz, Vertical

Mid Channel, 6 GHz to 18 GHz, Horizontal

Report Number: F2LQ8323-01E Page 54 of 75 Issue Date: Apr. 13, 2016

Mid Channel, 18 GHz to 26 GHz, Vertical

Mid Channel, 18 GHz to 26 GHz, Horizontal

Report Number: F2LQ8323-01E Page 55 of 75 Issue Date: Apr. 13, 2016

High Channel, 9kHz to 150kHz

High Channel, 150kHz to 0.5 MHz

High Channel, 0.5 MHz to 5 MHz

High Channel, 5 MHz to 30 MHz

Report Number: F2LQ8323-01E Page 57 of 75 Issue Date: Apr. 13, 2016

High Channel, 30 MHz to 1 GHz, Vertical

High Channel, 30 MHz to 1 GHz, Horizontal

High Channel, 1 GHz to 2.3 GHz, Vertical

High Channel, 1 GHz to 2.3 GHz, Horizontal

Report Number: F2LQ8323-01E Page 59 of 75 Issue Date: Apr. 13, 2016

High Channel, 2.3 GHz to 2.6 GHz, Vertical

High Channel, 2.3 GHz to 2.6 GHz, Horizontal

Report Number: F2LQ8323-01E Page 60 of 75 Issue Date: Apr. 13, 2016

High Channel, 2.6 GHz to 6 GHz, Vertical

High Channel, 2.6 GHz to 6 GHz, Horizontal

Report Number: F2LQ8323-01E Page 61 of 75 Issue Date: Apr. 13, 2016

High Channel, 6 GHz to 18 GHz, Vertical

High Channel, 6 GHz to 18 GHz, Horizontal

Report Number: F2LQ8323-01E Page 62 of 75 Issue Date: Apr. 13, 2016

High Channel, 18 GHz to 26 GHz, Vertical

High Channel, 18 GHz to 26 GHz, Horizontal

Report Number: F2LQ8323-01E Page 63 of 75 Issue Date: Apr. 13, 2016

Measurements

Low Channel - MaxPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2390.000000	Н	30.5	15.7	46.20	74.0	-27.8
2390.000000	V	30.3	15.7	46.00	74.0	-28.0
2483.500000	Н	31.1	15.9	47.00	74.0	-27.0
2483.500000	V	31.4	15.9	47.30	74.0	-26.7

Low Channel - Average

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2390.000000	Н	17.3	15.7	33.00	54.0	-21.0
2390.000000	V	17.3	15.7	33.00	54.0	-21.0
2483.500000	Н	17.6	15.9	33.50	54.0	-20.5
2483.500000	V	17.6	15.9	33.50	54.0	-20.5

Low Channel - QuasiPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
37.500000	V	6.6	18.2	24.80	40.0	-15.2
38.250000	Н	6.1	17.6	23.70	40.0	-16.3
73.000000	Н	6.1	10.8	16.90	40.0	-23.1
76.948000	V	9.9	10.8	20.70	40.0	-19.3
115.360000	V	6.1	16.6	22.70	43.52	-20.8
121.940000	Н	6.1	17.2	23.30	43.52	-20.2
132.432000	V	6.1	17.3	23.40	43.52	-20.1
167.720000	Н	6.4	16.0	22.40	43.52	-21.1
285.000000	Н	6.3	19.0	25.30	46.0	-20.7
285.304000	V	6.4	19.0	25.40	46.0	-20.6
399.900000	Н	6.6	22.1	28.70	46.0	-17.3
608.000000	V	7.5	26.7	34.20	46.0	-11.8
614.000000	Н	7.5	26.9	34.40	46.0	-11.6
958.872000	V	8.4	32.9	41.30	46.0	-4.7
995.344000	Н	8.6	33.3	41.90	54.0	-12.1

Report Number: F2LQ8323-01E Page 64 of 75 Issue Date: Apr. 13, 2016

Order Number: F2LQ8323

Mid Channel - MaxPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2390.000000	V	30.8	15.7	46.50	74.0	-27.5
2390.000000	Н	31.0	15.7	46.70	74.0	-27.3
2483.500000	V	30.8	15.9	46.70	74.0	-27.3
2483.500000	Н	30.7	15.9	46.60	74.0	-27.4

Mid Channel - Average

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2390.000000	V	17.3	15.7	33.00	54.0	-21.0
2390.000000	Н	17.3	15.7	33.00	54.0	-21.0
2483.500000	V	17.6	15.9	33.50	54.0	-20.5
2483.500000	Н	17.6	15.9	33.50	54.0	-20.5

Mid Channel - QuasiPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
37.500000	Н	6.1	18.2	24.30	40.0	-15.7
38.250000	V	6.3	17.6	23.90	40.0	-16.1
74.600000	Н	6.0	10.9	16.90	40.0	-23.1
74.800000	V	9.0	10.9	19.90	40.0	-20.1
121.940000	V	6.1	17.2	23.30	43.52	-20.2
121.940000	Н	6.1	17.2	23.30	43.52	-20.2
138.000000	Н	6.1	16.9	23.00	43.52	-20.5
138.000000	V	6.1	16.9	23.00	43.52	-20.5
167.720000	Н	6.4	16.0	22.40	43.52	-21.1
173.200000	V	6.3	15.7	22.00	43.52	-21.5
285.000000	Н	6.3	19.0	25.30	46.0	-20.7
399.900000	V	6.6	22.1	28.70	46.0	-17.3
399.900000	Н	6.6	22.1	28.70	46.0	-17.3
608.000000	Н	7.5	26.7	34.20	46.0	-11.8
960.000000	Н	8.4	33.0	41.40	46.0	-4.6

Report Number: F2LQ8323-01E Page 65 of 75 Issue Date: Apr. 13, 2016

High Channel - MaxPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2390.000000	Н	30.7	15.7	46.40	74.0	-27.6
2390.000000	Н	31.1	15.7	46.80	74.0	-27.2
2483.500000	Н	31.4	15.9	47.30	74.0	-26.7
2483.500000	Н	30.9	15.9	46.80	74.0	-27.2

High Channel - Average

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2390.000000	Н	17.3	15.7	33.00	54.0	-21.0
2390.000000	Н	17.3	15.7	33.00	54.0	-21.0
2483.500000	Н	17.6	15.9	33.50	54.0	-20.5
2483.500000	Н	17.6	15.9	33.50	54.0	-20.5

High Channel - QuasiPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
36.596000	Н	6.3	18.9	25.20	40.0	-14.8
37.500000	V	6.6	18.2	24.80	40.0	-15.2
74.232000	Н	6.1	10.9	17.00	40.0	-23.0
74.800000	V	8.5	10.9	19.40	40.0	-20.6
113.808000	V	6.1	16.3	22.40	43.52	-21.1
114.972000	Н	6.1	16.5	22.60	43.52	-20.9
127.388000	V	6.2	17.4	23.60	43.52	-19.9
128.940000	Н	6.1	17.4	23.50	43.52	-20.0
173.200000	V	6.3	15.7	22.00	43.52	-21.5
173.200000	V	6.3	15.7	22.00	43.52	-21.5
173.200000	Н	6.3	15.7	22.00	43.52	-21.5
258.532000	Н	6.6	17.6	24.20	46.0	-21.8
285.000000	V	6.3	19.0	25.30	46.0	-20.7
410.000000	Н	6.6	22.6	29.20	46.0	-16.8
614.000000	V	7.4	26.9	34.30	46.0	-11.7

Report Number: F2LQ8323-01E Page 66 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications

Model: CYR161

12 FCC PART 15.247(e) - PEAK POWER SPECTRAL DENSITY (PSD)

Peak power spectral density measurements were performed.

12.1 Requirements:

The peak power spectral density shall not exceed +8dBm in any 3 kHz band during any time interval of continuous transmission.

Power spectral density measurements were performed at a resolution bandwidth of 3 kHz (video bandwidth set at 10 KHz). The peak spectral densities were measured at the low, mid, and upper channels.

Report Number: F2LQ8323-01E Page 67 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications Model: CYR161

12.2 Peak Power Spectral Density Test Data

Test Date(s):	Apr. 7, 2016	Test Engineer:	J. Knepper
Cton doude.	CFR 47 Part 15.247(e);	Air Temperature:	21.2°C
Standards:	KDB558074	Relative Humidity:	44%

Low Channel

Date: 7.APR.2016 13:55:14

Report Number: F2LQ8323-01E Page 68 of 75 Issue Date: Apr. 13, 2016

Mid Channel

Date: 7.APR.2016 13:56:19

Report Number: F2LQ8323-01E Page 69 of 75 Issue Date: Apr. 13, 2016

High Channel

Date: 7.APR.2016 13:57:12

Manufacturer: Vapor Communications

Model: CYR161

13 CONDUCTED EMISSIONS

13.1 Requirements

In accordance with FCC CFR 47 Part 15.207(a), "Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted Limit (dBµV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

13.2 Procedure

The EUT was placed on a 1.0 x 1.5 meter non-conductive table, 0.8 meter above a horizontal ground plane and 0.4 meter from a vertical ground plane. Power was provided to the EUT through a LISN bonded to a 3 x 2 meter ground plane. The LISN and peripherals were supplied power through a filtered AC power source. The output of the LISN was connected to the input of the receiver via a transient limiter, and emissions in the range 150 kHz to 30 MHz were measured. The measurements were recorded using the quasi-peak and average detectors as directed by the standard, and the resolution bandwidth during testing was 9 kHz. The raw measurements were corrected to allow for attenuation from the LISN, transient limiter and cables.

Report Number: F2LQ8323-01E Page 71 of 75 Issue Date: Apr. 13, 2016

Manufacturer: Vapor Communications Model: CYR161

13.3 Conducted Emissions Test Data

Test Date:	Apr. 8, 2016	Test Engineer:	J. Knepper
Rule:	15.207	Air Temperature:	21.3° C
Test Results:	Complies	Relative Humidity:	40%

Conducted Test - Line 1: 0.15 MHz to 30.0 MHz

	Top Discrete Measurements							
No.	Conductor	Frequency (MHz)	Detector	Level (dBµV)	Adjustment (dB)	Results (dBµV)	Limit (dBµV)	Margin (dB)
1	Line 1	0.153375	Quasi-Peak	37.208	11.546	48.754	65.816	-17.062
_ '		0.153375	Average	15.082	11.546	26.628	55.816	-29.188
2	Line 1	0.155	Quasi-Peak	34.246	11.520	45.766	65.728	-19.962
		0.155	Average	16.413	11.520	27.933	55.728	-27.795
3	Line 1	0.15675	Quasi-Peak	36.373	11.492	47.865	65.6	-17.775
3		0.15675	Average	20.689	11.492	32.181	55.6	-23.459
4	Line 1	0.16	Quasi-Peak	31.014	11.440	42.454	65.5	-23.010
		0.16	Average	16.443	11.440	27.883	55.464	-27.581
5	Line 1	0.160125	Quasi-Peak	30.223	11.439	41.662	65.230	-23.57
3		0.160125	Average	15.938	11.439	27.377	55.2	-27.853
6	Line 1	0.17	Quasi-Peak	30.357	11.320	41.677	65.0	-23.284
0		0.17	Average	16.458	11.320	27.778	54.961	-27.183
7	Line 1	0.17025	Quasi-Peak	30.834	11.317	42.151	64.949	-22.798
l ′		0.17025	Average	15.590	11.317	26.907	54.949	-28.042
8	Line 1	0.173625	Quasi-Peak	30.773	11.273	42.046	64.786	-22.740
ľ°		0.173625	Average	15.417	11.273	26.690	54.786	-28.096
9	Line 1	0.193875	Quasi-Peak	28.550	11.085	39.635	63.87	-24.235
ا		0.193875	Average	13.271	11.085	24.356	53.87	-29.514
10	Line 1	0.195	Quasi-Peak	28.956	11.075	40.031	63.821	-23.790
		0.195	Average	12.060	11.075	23.135	53.821	-30.686

Report Number: F2LQ8323-01E Page 72 of 75 Issue Date: Apr. 13, 2016

Conducted Test - Line 2: 0.15 MHz to 30.0 MHz

Top Discrete Measurements								
No.	Conductor	Frequency (MHz)	Detector	Level (dBµV)	Adjustment (dB)	Results (dBµV)	Limit (dBµV)	Margin (dB)
1	Line 2	0.153375	Quasi-Peak	30.331	11.546	41.877	65.816	-23.939
		0.153375	Average	15.814	11.546	27.360	55.816	-28.456
2	Line 2	0.155	Quasi-Peak	30.480	11.520	42.000	65.728	-23.728
		0.155	Average	15.381	11.520	26.901	55.728	-28.827
3	Line 2	0.5955	Quasi-Peak	23.371	10.381	33.752	56.0	-22.248
		0.5955	Average	18.016	10.381	28.397	46.0	-17.603
4	Line 2	0.598875	Quasi-Peak	23.888	10.380	34.268	56.0	-21.732
		0.598875	Average	17.896	10.380	28.276	46.0	-17.724
5	Line 2	0.6	Quasi-Peak	23.970	10.380	34.350	56.0	-21.65
		0.6	Average	18.300	10.380	28.680	46.0	-17.320
6	Line 2	0.60225	Quasi-Peak	23.965	10.379	34.344	56.0	-21.656
ľ		0.60225	Average	18.394	10.379	28.773	46.0	-17.227
7	Line 2	0.605625	Quasi-Peak	23.734	10.377	34.111	56.0	-21.889
		0.605625	Average	17.745	10.377	28.122	46.0	-17.878
8	Line 2	0.609	Quasi-Peak	22.778	10.375	33.153	56.0	-22.847
		0.609	Average	16.654	10.375	27.029	46.0	-18.971
9	Line 2	0.612375	Quasi-Peak	21.674	10.374	32.048	56.0	-23.952
		0.612375	Average	15.616	10.374	25.990	46.0	-20.010
10	Line 2	0.61575	Quasi-Peak	20.263	10.372	30.635	56.0	-25.365
		0.61575	Average	14.328	10.372	24.700	46.0	-21.300

Report Number: F2LQ8323-01E Page 73 of 75 Issue Date: Apr. 13, 2016

Order Number: F2LQ8323

14 PHOTOGRAPHS/EXHIBITS - PRODUCT PHOTOS, TEST SETUPS

Radiated Spurious Emission <1GHz

Radiated Spurious Emission >1GHz

Report Number: F2LQ8323-01E Page 74 of 75 Issue Date: Apr. 13, 2016

Conducted Output Power, Peak Power Spectral Density, Occupied Bandwidth, and Conducted Spurious Emissions

Conducted Emissions

