Synapsis - Middleware per l'integrazione di Game Engine e Sistemi Multi-Agente

Tesi in: Sistemi Autonomi

Relatore:

Presentata da:

Chiar.mo Prof.

Luca Pascucci

Andrea Omicini

Correlatore:

Dott. Stefano Mariani

ALMA MATER STUDIORUM – Università di Bologna Campus di Cesena

10 Ottobre 2019

L'obiettivo della tesi

Fase 1

Studiare lo stato dell'arte delle Game Engine (GE) e dei Sistemi Multi-Agente (MAS)

Fase 2

Analizzare i due sistemi con lo scopo di:

- Evidenziare opportunità per colmare le lacune concettuali/tecniche dei due mondi
- Rilevare astrazioni e meccanismi che forniscono supporto nel riformulare le astrazioni mancanti del MAS e della GE

Fase 3

Proporre un'infrastruttura di associazione e comunicazione tra MAS e GE, rispettandone il disaccoppiamento e l'integrità concettuale delle astrazioni.

Concetti preliminari

Sistema Multi-Agente

Paradigma general-purpose utilizzato per realizzare sistemi complessi. Le astrazioni principali sono:

- Agenti: Entità autonome in grado di comunicare, possono essere situati, intelligenti;
- Società: Gruppo di agenti che cooperano / competono per realizzare goals;
- Ambiente: Il "contenitore" in cui gli agenti eseguono, che li influenza e ne viene influenzato.

Game Engine

Struttura general-purpose multipiattaforma orientata verso ogni aspetto della progettazione e dello sviluppo di videogiochi

JaCaMo

Framework per la programmazione orientata agli agenti che combina tre tecnologie già affermate e sviluppate da diversi anni

Jason

Piattaforma di sviluppo agenti basati sull'architettura BDI, implementa AgentSpeak(L).

CArtAgO

Modello per la progettazione dell'ambiente MAS, basato sul concetto di workspace ed artefatti.

Moise

Meta-modello organizzativo per MAS basato sulle nozioni di ruoli, gruppi e missioni.

Unity

Game Engine cross-platform utilizzata per la creazione di videogiochi (sia 2D che 3D), ambienti virtuali e simulazioni interattive.

Astrazioni concettuali

Entità

Componente divisibile in due parti, mente e corpo, che collegate riescono a trasmettersi informazioni utilizzate dalla mente per raggiungere i propri obiettivi e dal corpo per diventare "attivo" nell'ambiente in cui si trova.

Corpo

Componente associato alla nozione di GameObject per avere una rappresentazione fisica dell'entità da realizzare.

Mente

Componente autonomo che interagisce con l'ambiente per svolgere i propri compiti associato alla nozione di Agente.

Integrazione concettuale

Agente BDI

Focus sul concetto di Belief e Action

Artefatto

Focus sul concetto di Proprietà Osservabile e Operazione

Middleware Synapsis

Architettura di sistema

Sistema ad Attori (Akka, Play)

- attori = entità computazionali (re)attive
- message passing = asincronia, mailbox
- fault-tolerance, scalabilità

Synapsis: JaCaMo client

Contenuto

- Agente "SynapsisBaseAgent"
- Arfetatto "SynapsisMind"

API

- Invio azione generica
- Presenza di azioni già delineate (Trova, Vai a, Prendi ...)
- Gestione delle percezioni ricevute dal corpo
- Connessione WebSocket al middleware

Synapsis: Unity client

Unity

Contenuto

- Script "SynapsisBody"
- Script "SynapsisBodyChild"

API

- Invio percezione generica
- Presenza di percezioni già delineate (Trovato, Arrivato, Preso ...)
- Invio automatico di percezioni fisiche (contatto con altri oggetti in scena)
- Connessione WebSocket al middleware

Synapsis: zoom architettura

Recycling Robots

Scenario contenente robot con il compito di riciclare la spazzatura presente nell'ambiente portandola al rispettivo bidone.

Riassumendo...

Conclusioni

- Definite linee guida per l'integrazione di Game Engine e Sistemi Multi-Agente
- Realizzato middleware e librerie che permettono la costruzione di scenari relativamente complessi

Possibili sviluppi futuri

- Integrare il modello di coordinazione degli agenti tramite spazio di tuple e primitive Linda
- Realizzare nuove librerie per espandere la lista di GE e MAS collegabili
- Utilizzare le caratteristiche dei sistemi presenti per realizzare lo stesso scenario distribuito su più elaboratori

Synapsis - Middleware per l'integrazione di Game Engine e Sistemi Multi-Agente

Tesi in: Sistemi Autonomi

Relatore:

Presentata da:

Chiar.mo Prof.

Luca Pascucci

Andrea Omicini

Correlatore:

Dott. Stefano Mariani

ALMA MATER STUDIORUM – Università di Bologna Campus di Cesena

10 Ottobre 2019