Метод стохастического градиента (Stochastic Gradient)

Достоинства:

- легко реализуется;
- применим к любым моделям и функциям потерь;
- допускает онлайновое (потоковое) обучение;
- **4** на сверхбольших выборках позволяет получать неплохие решения, даже не обработав все (x_i, y_i) ;
- всё чаще применяется для Big Data.

Недостатки:

- возможно застревание в локальных экстремумах;
- 2 возможна расходимость или медленная сходимость;
- возможно переобучение;
- подбор комплекса эвристик является искусством.

Варианты инициализации весов

- $\mathbf{0} \ \, w_j := 0$ для всех $j = 0, \ldots, n$;
- $w_j := \frac{\langle y, f_j \rangle}{\langle f_j, f_j \rangle}$, $f_j = \left(f_j(x_i) \right)_{i=1}^{\ell}$ вектор значений признака; эта оценка w оптимальна при квадратичной функции потерь, если признаки некоррелированы, $\langle f_i, f_k \rangle = 0$, $j \neq k$.
- $w_j := \ln \frac{\sum_i [y_i = +1] f_j(x_i)}{\sum_i [y_i = -1]};$ эта оценка w оптимальна для задач классификации, $Y = \{-1, +1\}$, если признаки независимы.
- оценки w_i по небольшой случайной подвыборке объектов;
- мультистарт: многократные запуски из разных случайных начальных приближений и выбор лучшего решения.

Варианты порядка предъявления объектов

Возможны варианты:

- перетасовка объектов (shuffling): попеременно брать объекты из разных классов;
- $oldsymbol{oldsymbol{arphi}}$ чаще брать те объекты, на которых была допущена бо́льшая ошибка (чем меньше M_i , тем больше вероятность взять объект) (чем меньше $|M_i|$, тем больше вероятность взять объект);
- § вообще не брать «хорошие» объекты, у которых $M_i > \mu_+$ (при этом немного ускоряется сходимость);
- **1** вообще не брать объекты-«выбросы», у которых $M_i < \mu_-$ (при этом может улучшиться качество классификации);

Параметры μ_+ , μ_- придётся подбирать.

Варианты выбора градиентного шага

💿 сходимость гарантируется (для выпуклых функций) при

$$h_t o 0, \quad \sum\limits_{t=1}^{\infty} h_t = \infty, \quad \sum\limits_{t=1}^{\infty} h_t^2 < \infty,$$

в частности можно положить $h_t = 1/t$;

метод скорейшего градиентного спуска:

$$\mathscr{L}_i(w-h\nabla\mathscr{L}_i(w))\to \min_h$$

позволяет найти *адаптивный шаг* h^* ;

при квадратичной функции потерь $h^* = ||x_i||^{-2}$;

- периодически можно делать пробные случайные шаги для «выбивания» из локальных минимумов;
- метод Левенберга-Марквардта (второго порядка)

Диагональный метод Левенберга-Марквардта

Метод Ньютона-Рафсона, $\mathscr{L}_i(w) \equiv \mathscr{L}(\langle w, x_i \rangle y_i)$:

$$w := w - h(\mathscr{L}_{i}^{"}(w))^{-1} \nabla \mathscr{L}_{i}(w),$$

где
$$\mathscr{L}_i''(w) = \left(rac{\partial^2 \mathscr{L}_i(w)}{\partial w_j \partial w_{i'}}
ight)$$
 — гессиан, $n imes n$ -матрица

Эвристика: считаем, что гессиан диагонален. Тогда

$$w_j := w_j - h \left(\frac{\partial^2 \mathscr{L}_i(w)}{\partial w_j^2} + \mu \right)^{-1} \frac{\partial \mathscr{L}_i(w)}{\partial w_j},$$

h — темп обучения, можно полагать h=1 — параметр, предотвращающий обнуление знаменателя.

Отношение h/μ есть темп обучения на ровных участках функционала $\mathcal{L}_i(w)$, где вторая производная обнуляется.