Technical Memorandum

CHITRAN - A 7030 (STRETCH) COMPUTER PROGRAM

FOR THE CHI-SQUARE TEST OF NORMALITY

Gary W. Gemmill Travis L. Herring Ralph L. Shade

Computation and Analysis Laboratory

U. S. Naval Weapons Laboratory

Dahlgren, Virginia

ARCHIVE COPY

U. S. NAVAL WEAPONS LABORATORY

TECHNICAL MEMORANDUM

January 1967

No. K-2/67

CHITRAN - A 7030 (STRETCH) COMPUTER PROGRAM

FOR THE CHI-SQUARE TEST OF NORMALITY

Gary W. Gemmill Travis L. Herring Ralph L. Shade

Computation and Analysis Laboratory

Approved by:

RALPH A. NIEMANN,

Director, Computation and Analysis Laboratory

Lolph a. Viervan

While the contents of this memorandum are considered to be correct, they are subject to modification upon further study.

Distribution of this document is unlimited.

TABLE OF CONTENTS

NWL Technical Memorandum No. K-2/67

		Page
ABSTRA	ACT	ii
I.		1
II.		5
III.		11
	A. Problem Deck Setup	11
	1. CARD TYPE 1 - VARIABLE FORMAT CARD	11
	2. CARD TYPE 2 - INPUT CONTROL CARD	12
	3. CARD TYPE 3 - POULED SAMPLE IDENTIFICATION CARD (OPTIONAL)	
	4. CARD TYPE 4 - POOLED SAMPLE CONTROL CARD (OPTIONAL)	14
	5. CARD TYPE 5 - SAMPLE CONTROL CARD	15
	6. CARD TYPE 6 - SAMPLE IDENTIFICATION CARD	16
	7. CARD TYPE 7 - SAMPLE DATA CARD	17
	B. Job Request Sheets	18
IV.	FORMULATION OF OUTPUT	20
V.	EXAMPLE PROBLEM	22
	A. Description of Example Problem	22
	B. Listing of Input Cards for the Example Problem	23
	C. Test Results and Example Output	26
	FLOW CHARTS	40
	PROGRAM LISTING	46
VIII.	REFERENCES	53
Initia	1 Distribution:	
Defens	e Documentation Center	
Camero	n Station	
Alexan	dria, Virginia 22314 (20)	
Local	Distribution:	
D	(1)	
K	(1)	
K-1	(1)	
KR	(1)	
KRE	(1)	
KRM	(25)	
KRS	(1)	
KRT	(1)	
KW	(1)	
KW-6	(1)	
TDM	(2)	
WDA	(2)	
WHY	(2)	
WWI	(2)	
MAL	(6)	

ABSTRACT

The CHITRAN program computes the Chi-square statistic for testing the hypothesis that a random sample is from a normal population. Also given are the degrees of freedom for the Chi-square statistic, a bar chart (frequency distribution), the mean, standard deviation, range, maximum, and the minimum of the observations comprising the sample. Eleven transformations on the observations are possible before the calculations are performed. An optional feature, "pooling," allows the grouping of samples in order to obtain a single Chi-square statistic for the grouped (pooled) data.

CHITRAN is written in FORTRAN IV for the IBM 7030 (STRETCH) computer.

I. INTRODUCTION AND SUMMARY

CHITRAN (Chi-square Test with <u>Transformations</u>) is a program to statistically compare the agreement of the distribution of a sample of observed data with a parent normal distribution having a mean and variance equal to those of the sample distribution.

The distribution of the observations in the sample is classified into a number of intervals (mutually exclusive and exhaustive) and the observed frequency in each interval is then "compared" with the frequency that would be expected in the same interval if the parent distribution were normal. Because the observed and expected frequencies seldom agree, the question is whether the discrepancies are small enough to be considered as due to chance or are so large that the hypothesis of normality must be rejected. The statistic used in CHITRAN to make the "comparison" between observed and expected frequencies, i.e., to test the hypothesis of normality is

$$\hat{\chi}^2 = \sum_{j=1}^{m} \frac{(f_1 - \hat{\phi}_1)^2}{\hat{\phi}_1}$$
 with m-3 degrees of freedom,

where

 f_j is the observed frequency in the jth interval (j=1,2,3,...,m)

 $\boldsymbol{\hat{\phi}}_j$ is the expected frequency in the $j^{\mbox{th}}$ interval

and m is the number of intervals into which the range of the sample distribution is divided.

The degrees of freedom for the Chi-square statistic are calculated as m-3 because only the general form of the normal distribution can be hypothesized, with the mean and variance being estimated from the observations of the sample. Two degrees of freedom are subtracted from m

because of the estimation of the two parameters and an additional degree of freedom is subtracted because the sum of the expected frequencies is made equal to the number of observed frequencies.

The symbol $\hat{\chi}^2$ is used because, under the hypothesis of normality, this statistic is only approximately distributed as Chi-square (χ^2) , with the degree of approximation depending mainly on the size of the expected frequencies. Many authors recommend that $\hat{\phi}_j$ should be at least 5 for each interval in order that the approximation is adequate. (The minimum number of expected observations in each of the m intervals is an input parameter in CHITRAN and adjacent intervals are combined until this minimum requirement is met.) Assuming that the expected frequency in each interval is large enough that $\hat{\chi}^2$ is approximately distributed as χ^2 , the upper tail of the tabled χ^2 distribution can be used as a critical region to test the hypothesis of normality. Examples of the test are given in section V.C.

The Chi-square test for normality, accredited to Ku.1 Pearson in 1900 (with contributions by R. A. Fisher in 1924), is often used even if the the sample is known to be non-normal. For example, physical considerations may restrict the sample observations to non-negative values, but the normal distribution may give a sufficient approximation to the sample distribution over the range of the sample variate. The possibility of approximating a sample distribution by the normal distribution is often investigated because of the characteristics of the normal curve, namely a single mode with the frequencies decreasing symmetrically on both sides of the mode, characteristics which are often found in

physical phenomena. If the normal approximation can be considered adequate, there is a considerable advantage in that the normal distribution is relatively easy to handle mathematically because of the extensive tabulation of the standard normal distribution to be found in the literature.

The numerical value of the Chi-square statistic $(\hat{\chi}^2)$, although serving as a criterion to test the hypothesis of normality (or approximate normality) does not indicate the way in which the sample data disagrees with the normal distribution if the hypothesis is rejected. In CHITRAN, therefore, a bar chart of the observed frequencies is printed, which sometimes serves as a visual aid in determining the actual form of the sample distribution if the hypothesis of normality must be rejected. The utility of the bar chart as a visual aid in case of a non-normal distribution can be illustrated by the example problem (section V). Suppose it is not known that the two samples in the example problem are approximately log-normally distributed. Visual inspection of the bar charts of the two samples indicates that the distributions are skewed such that there is a high concentration of small values of the variate and relatively few large values. Since this type of skewness is characteristic of the log-normal distribution, the bar chart should lead the analyst to consider the possibility that the parent populations are distributed log-normally (or approximately log-normally). The example problem also illustrates the aid of the transformations in determining the actual form of a non-normal distribution. If, for example, the hypothesis of normality must be rejected and the bar chart indicates a skewness of the type described above, the Chi-square test

can then be performed on the logarithms of the original values in an attempt to confirm the hypothesis that the parent distribution is actually log-normal.

As many as 500 samples may be processed by CHITRAN with a maximum of 14,000 observations in each sample. Up to 200 "different" Chi-square tests may be performed on each sample of data, where each Chi-square test begins with a different number of intervals, none of which may exceed 400. The capability of performing more than one Chi-square test on a sample of data is included in CHITRAN because the numerical value of the Chi-square statistic and its degrees of freedom are dependent upon the number of intervals into which the sample distribution is divided. Performing several Chi-square tests, each with a different number of intervals, helps protect against the possibility of incorrectly rejecting or incorrectly accepting the hypothesis of normality on the basis of a single Chi-square test. For example, if 10 Chi-square tests (each with a different number of intervals) were performed on the same sample of data, and the hypothesis of normality was found to be acceptable in 9 of the tests and rejected in 1, the multiple testing would minimize the effect of choosing by chance, in a single Chi-square test, that number of intervals which led to rejection.

An optional feature, "pooling," is incorporated into CHITRAN to allow the grouping of samples in order to obtain a single Chi-square statistic for the grouped (pooled) data. This feature was included in CHITRAN primarily for use in analysis of variance, where normality of the residuals in the cells of the classification is essential in the construction of confidence limits and/or tolerance limits and is also

required for tests of significance. CHITRAN can perform the Chi-square test only on the pooled sample or on the pooled sample and the individual samples. (Naturally, the pooled sample option need not be exercised, in which case the Chi-square test is performed only on the individual samples.) The upper limit for the total number of observations in the pooled sample is 1,779,200.

Discussions of the Chi-square test for normality and examples of its application can be found in much of the literature (see, for example, Burr [1953] or Wadsworth and Bryan [1960]). A comprehensive discussion of the test, including its development, application and limitations can be found in Cochran [1952]. Cochran also discusses alternative tests and tests which are supplementary to the Chi-square test.

II. COMPUTATIONAL PROCEDURE

The operations described in this section are performed for each sample of data, after the transformation, or transformations, specified on Card Type 2 (see section III.A.2) have been performed on the n sample observations. If the pooling option has been exercised, the pooled sample is formed as follows before the operations are performed. In each of the samples that are to be pooled, the sample mean is subtracted from the observations in the sample, i.e., the mean of the kth sample is subtracted from each of the n observations of the kth sample. The mean of each individual sample comprising the pooled sample is, therefore, translated to zero. The observations of each sample are then grouped into a single pooled sample (with mean = 0). The computational procedure is described in this section for an individual sample but is also valid for the pooled sample except for the following variations.

The minimum number, INTOVP, of expected observations in each interval of the pooled sample and the number of intervals, INTERP(I), into which the pooled sample frequency distribution is to be divided need not agree with INTOV and INTER(I), the corresponding input parameters for the individual samples. In case of a pooled sample, therefore, the values of INTOVP and INTERP(I) on Card Type 4 must be substituted for INTOV and INTER(I), respectively, in the description of the computational procedure. The only other deviation in procedure for the pooled sample is, as described later, the calculation of the degrees of freedom. $\sum_{i=1}^{n} \chi_i = \sum_{i=1}^{n} \frac{1}{(\chi_i - \overline{\chi})^2}$

The mean, $\frac{\sum_{i=1}^{n} x_i}{n}$, and the standard deviation, $\sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$, of the n sample observations are computed and printed.

A frequency distribution of the sample observations is then formed in the following way. The maximum, x_{max} , and the minimum, x_{min} , of the observations are determined and the range of the sample frequency distribution is computed as $x_{max} - x_{min}$. In order to obtain the interval width, D, the range is divided by the input value of the desired number of intervals, INTER(I), specified on Card Type 5. The maximum, minimum, range, and the interval width are printed as output. The upper bounds of each of the INTER(I) intervals are then computed by adding 1D, 2D, 3D, ---, $j^{\dagger}D$, ----, INTER(I)D, respectively, to x_{min} . The maximum, x_{max} , is thereby determined as the upper bound of the last interval. The upper bounds are then printed as output.

NOTE: j' is used to denote the general interval of the INTER(I) intervals into which the sample frequency distribution is divided according to input specifications. j is later used to denote the general interval of the m intervals that result from the restriction

that a minimum number of expected observations must be in each interval. The j'th interval may or may not coincide with the jth interval.

Each observation is then assigned to its proper interval, i.e., to the "first" interval which has an upper bound that is larger than the observation. In other words, the observation x_i is assigned to the j'th interval if x_i is $\geq x_{\min} + (j'-1)D$ but $< x_{\min} + j'D$. The number of observations in each interval is counted and printed as output under the heading "FREQUENCY." The count in each interval is printed to the right of the upper bound of the interval. A bar chart is then printed in which each observation is represented by an "X".

NOTE: If the number of observations in any interval exceeds 65, the number of X's used in the bar chart to represent the observations is scaled such that only 65 X's are printed for the interval with the largest observed frequency. This scaling is performed in order to preserve the relative proportions of the bar chart, which would otherwise be lost because of printing limitations. The following method is used when scaling is necessary. The maximum observed frequency is divided by 65, giving the number of observations to be represented by each printed X. For example, if the maximum frequency is 98, each X represents $\frac{98}{65} = 1.5077$ observations and the statement "X REPRESENTS 1.5077 CBSERVATIONS" is printed as output. The number of X's to be printed in this case for each

interval is then obtained by dividing the observed frequency in each interval by 1.5077. The number of X's printed is always rounded off to the nearest integer.

After the bar chart has been formed, the quantity $\frac{n}{\text{INTOV}}$ - 3 is computed, where INTOV (see Card Type 5, columns 6-10) is the minimum for the expected number of observations to be found in each interval. If $\frac{n}{\text{INTOV}}$ - 3 is \leq 0, the observed frequencies and the bar chart are printed and the statement "CHISQUARE COULD NOT BE COMPUTED" is printed. No attempt is made in this case to compute the Chi-square statistic because of the joint consequence of (a) the restriction that $\hat{\phi}_{j}$, the expected number of observations in each interval, must be greater than INTOV and (b) the definition of the degrees of freedom for the Chi-square statistic as the number of intervals, m (for which $\hat{\phi}_{j} > \text{INTOV}$), minus 3. If the quantity $\frac{n}{\text{INTOV}}$ - 3 is \leq 0, the degrees of freedom could not be > 0 and further computations would, therefore, be meaningless.

If the quantity $\frac{n}{\text{INTOV}}$ - 3 is > 0, an attempt is made to compute the Chi-square statistic. The expected frequency distribution is formed. This distribution gives the number of observations that would be expected in each of the INTER(I) intervals if the sample of n observations was actually from a parent normal distribution having a mean and standard deviation equal to those of the sample observations. Under the hypothesis of normality, the expected frequency $(\hat{\phi}_{j'})$ in each of the INTER(I) intervals is obtained by multiplying the total number of observations, n, by the probability that an observation will be in a given interval. The probabilities are computed by a system subroutine which uses the standardized normal distribution function,

$$p(X) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Consequently, the upper bounds in each interval must be standardized by subtracting the sample mean, \bar{x} , and dividing by the sample standard deviation, s. The probability that an observation will be in the first interval is then

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{T_1} e^{-\frac{x^2}{2}} dx,$$

where T_1 is the smallest standardized upper bound. The probability that an observation will be in the second interval is obtained by integrating from T_1 to T_2 , where T_2 is the standardized upper bound of the second interval. This procedure is continued until probabilities have been computed for each interval.

Each time an expected frequency, $\hat{\phi}_{,j'}$, is found for an interval $(\hat{\phi}_{j'})$ = the number of sample observations multiplied by the probability that an observation is in the j'th interval), the value of $\hat{\phi}_{,j'}$ is tested to determine if it is \leq INTOV. If $\hat{\phi}_{,j'}$ is \leq INTOV, the expected frequency is added to that of the next interval, i.e., the intervals are "combined." The procedure is continued, if necessary, until a combined interval does have an expected frequency > INTOV. The expected frequencies of succeeding intervals are also examined and, if necessary, combined with the next interval or intervals. Each time an interval (or group of combined intervals) is found to have an expected frequency > INTOV, the expected frequency for the remaining intervals is examined. If INTOV or less expected frequencies remain, the remaining intervals are combined

with the preceding interval. In this way m "new" intervals result from the original INTER(I) intervals, each of the m intervals having an expected frequency, $\hat{\phi}_j$ (j=1,2,...,m), greater than INTOV.

A count is then made of the number of sample observations, f_j , that actually fall in each of the m intervals and the contribution of each interval to the Chi-square statistic is computed and printed, the contribution of the j^{th} interval being

$$\frac{1}{\hat{\varphi}_{i}}(f_{i}-\hat{\varphi}_{j})^{2}$$
.

The observed and expected number of observations in each of the m intervals are then printed as output under the headings "OBS FR" and "EXPD FR," respectively.

The quantity m-3, the degrees of freedom, is computed and if < 0, the statement "CHISQUARE COULD NOT BE COMPUTED" is printed. (In case of a pooled sample, the number of degrees of freedom is computed as m-K-2, where K = the number of samples comprising the pooled sample.)

If the number of degrees of freedom is > 0, the Chi-square statistic is computed by summing the contributions of each of the m intervals, i.e.,

$$\hat{\chi}^2 = \sum_{j=1}^m \frac{(f_j - \hat{\varphi}_j)^2}{\hat{\varphi}_j}.$$

The value of $\hat{\chi}^*$ is printed as output, along with the degrees of freedom.

III. INPUT PREPARATION

A. Problem Deck Setup

The problem deck is listed below by card type. More than one card of a given type may be necessary for a specific problem. Two sets of Card Type 1 to 7 may be processed at one time, i.e., another problem deck may be stacked behind the first one.

CARD TYPE 1 - VARIABLE FORMAT CARD

CARD TYPE 2 - INPUT CONTROL CARD

CARD TYPE 3 - POOLED SAMPLE IDENTIFICATION CARD (OPTIONAL)*

CARD TYPE 4 - POOLED SAMPLE CONTROL CARD (OPTIONAL)*

CARD TYPE 5 - SAMPLE CONTROL CARD

CARD TYPE 6 - SAMPLE IDENTIF! LATION CARD**

CARD TYPE 7 - SAMPLE DATA CARD**

** This "pair" of Card Types (6 and 7) comprises the data input for one sample. (More than one Card Type 7 may be necessary.) These cards may be input on punched cards or on tape as indicated in column 10 of the INPUT CONTROL CARD (Card Type 2).

1. CARD TYPE 1 - VARIABLE FORMAT CARD

Column	Format	Program Variable	Explanation
1-80	iOA8	FØRM	The format specifications by which each Card Type 7 (or data input record, if data is on tape) is to be read. The format specifications must be enclosed by parentheses.

^{*} Omit if samples are not to be pooled.

2. CARD TYPE 2 - INPUT CONTROL CARD

Column	Format	Program Variable	Explanation				
1-5	15	NØSAM	The number of samples for which the Chi-square test is to be performed. N β SAM \leq 500.				
10	I1	TAPE	2 - The information on Card Types 6 and 7 is on punched cards.				
			5 - The information on Card Types 6 and 7 is on magnetic tape.				
15	I 1	GR ØUP	<pre>0 - Do not pool the samples, i.e., perform the Chi-square test(s) only on the individual sample(s).</pre>				
			l - Perform the Chi-square tests on the individual samples <u>and</u> on the pooled sample.				
			2 - Perform the Chi-square test on the pooled sample only. Print the observations comprising the pooled sample.				
			3 - Perform the Chi-square test on the pooled sample only. Do <u>not</u> print the observations.				
19-20	12	NØTRAN	The number of transformations which are to be performed on all observations comprising each of the samples. The Chi-square test is performed on each transformed set of data. If more than one transformation is desired, the input data must be on tape (i.e., if $NØTRAN > 1$, then $TAPE = 5$). X to X is considered to be a transformation, therefore, $NØTRAN = 1$ if the Chi-square test is to be performed on the original observations only. $1 \le NØTRAN < 11$.				

Card Type 2 (Cont'd)

Column	Format	Program Variable	Explanation
21-25	15	IT(1)	An integer designating the first transformation to be performed on the observations. See the list of 11 available transformations below and the corresponding integer to be entered.
26-30	T 5	IT(2)	There are NØTRAN of these entries.
20-30	13	11(2)	If NOTRAN = 2, e.g., the first
•	•	•	
•	1.	•	transformation is specified by an
•	•	•	integer in columns 21 to 25 and the
•		•	second by an integer in columns 26
	•		to 30. The remaining columns are
•	•	•	left blank. If only transformation
•	•	•	number 6 (the square root) is desired,
•	•	•	for example, a six is entered in
•		•	column 25 and the remaining columns
71-75	15	IT(11)	are left blank.

Transformations:

The following integers are used to designate the available transformations:

- 1. $X \leftarrow X$.
- 2. $X \leftarrow \ln X$.
- 3. $X \leftarrow \ln[\ln(X)]$.
- 4. $X \leftarrow \ln(1+X)$.
- 5. $X \leftarrow [1+\ln(1+X)]$.
- 6. $X \leftarrow \sqrt{X}$. This transformation is identified as SQRT X in the printout:
- 7. $X \leftarrow \frac{1}{X}$.
- 8. $X \leftarrow 1 + \frac{1}{X}$.
- 9. $X \leftarrow \sin^{-1}X$. This transformation is identified as ARCSIN(X).
- 10. $X \leftarrow 2 \sin^{-1}/X$. Identified as 2* ARCSIN(SQRT(X)).
- 11. $X \leftarrow \sin^{-1}/X$. Identified as ARCSIN(SQRT(X)).

3. CARD TYPE 3 - POOLED SAMPLE IDENTIFICATION CARD (OPTIONAL)

This card is omitted if the samples are not pooled, i.e., if column 15 of Card Type 2 = 0.

Column	Format	Program Variable	Explanation				
1-80	1 0 A8	PØØLID	Eighty columns to be used for the identification of the pooled sample.				

4. CARD TYPE 4 - POOLED SAMPLE CONTROL CARD (OPTIONAL)

This card is omitted if the samples are not pooled.

Column	Format	Program Variable	Explanation		
1-5	5X		These columns are not read by the program and may, therefore, be used for additional identification of the problem.		
6-10	15	INT Ø VP	The minimum for the theoretical (expected) number of observations which must be in each of the m intervals used in calculating the Chi-square statistic for the pooled sample. 5 is recommended as a lower limit for this number.		
11-15	15	NØINTP	The number of Chi-square tests to be performed on the pooled sample, where each Chi-square test begins with a different number of intervals, i.e., a different number, INTERP(I). (See below.) NØINTP < 100.		
16-20	15	INTERP(1)	The number of intervals into which the range of pooled observations is		
21-25	15	INTERP(2)	to be divided for the Chi-square tests. There are NOINTP of these entries.		
•	15	INTERP(I)	For example, if three Chi-square tests		
•	•		are desired on the pooled sample (i.e.,		
•			NØINTP = 3 in column 15), with the range to be divided into 40, 50 and 60 intervals,		
76-80	15	INTERP(13)	respectively, then 40 must be entered in columns 19-20, 50 in columns 24-25 and 60 in columns 29-30. The value of INTERP(I) must be < 400.		

If NØINTP > 13 but < 30, continue on an additional Card Type 4 in the following manner:

If NØINTP > 29, continue on additional card(s) in the same format as the second Card Type 4.

5. CARD TYPE 5 - SAMPLE CONTROL CARD

There are NØSAM (see columns 1-5, Card Type 2) of these sample control cards, one for each sample of input data. If the number of samples is greater than 1, the sample control cards are stacked consecutively and must be in the same order in which the samples are input on Card Types 6 and 7. If GRØUP = 2 or 3 (column 15, Card Type 2), i.e., if the Chi-square test is to be performed only on the pooled sample, then only NØBS (columns 1-5) and NØINT = 1 (column 15) must be entered on Card Type 5.

Column	<u>Format</u>	Program Variable	Explanation
1-5	15	NØBS	The number of observations comprising the k^{th} sample (assuming this is the k^{th} sample control card). NØBS \leq 14,000.
6-10	15	INTØV	The minimum for the theoretical (expected) number of observations which must be in each of the m intervals used in calculating the Chi-square statistic for the kth sample. 5 is recommended as a lower limit for this number.

Card Type 5 (Cont'd)

Column	Format	Program Variable	Explanation		
11-15	15	NØINT	The number of Chi-square tests to be performed on the kth sample, where each Chi-square test begins with a different number of intervals, i.e., a different number, INTER(I). (See below.) NOINT \(\leq \) 200.		
16-20 21-25 ·	I5 I5	INTER(1) INTER(2) .	The number of intervals into which the range of the observations of the k th sample is to be divided for the Chisquare tests. There are NOINT of these entries.		
76-80	15 15	INTER(I) INTER(13)	For example, if two Chi-square tests are desired on the kth sample (i.e., NØINT = 2 in column 15), with the range to be divided into 10 and 15 intervals, respectively, then 10 must be entered in columns 19-20 and 15 in columns 24-25. The value of INTER(I) must be ≤ 400 .		

If NØINT > 13 but < 30, continue on an additional Card Type 5 in the following manner:

1-5	15	INTER (14)
•	•	•
•	•	•
76-80	1.5	INTER(29)

If NØINT > 29, continue on additional card(s) in the same format as described above for the second Card Type 5.

6. CARD TYPE 6 - SAMPLE IDENTIFICATION CARD

The data input for each sample consists of a "pair" of card types, the sample identification card (Card Type 6) and the sample data card or cards (Card Type 7). If there is more than one sample, the pair

of card types for sample number 2 follows immediately after those for sample number 1, additional pairs following for each of the remaining samples (if any). The pairs of card types must be in the same order as their corresponding sample control cards (Card Type 5).

Column	Format	Program Variable	Explanation
1-80	10A8	IDENT	Eight; columns to be used for the identification of the observations comprising the kth sample. The observations follow on Card Type 7.

7. CARD TYPE 7 - SAMPLE DATA CARD

Column	Format Program Variable	Explanation
1-80	Variable ØBSERV	The numerical values of the observations comprising the kth sample. These values must be input in accordance with the format specified on Card Type 1 (Variable Format Card). If more than one Card Type 7 is necessary for the kth sample, the data is continued on succeeding cards.

B. Job Request Sheets

P RI				SECURITY CLASSIFICATION TOP SECRET SECHET CONF. X UNCLASS.			
N A	R. SHADE A3			1200 A-143 8361 12-19-66			
V	INSTRUCTIONS		V	~*	INSTRU		
	HOLD TAPE #				156		
	LIST TAPE #			TAPE #			
	7030 OUTPUT 7090 OUTPUT 7030 BINARY				PE #	USING TAP	E #
	7090 BINARY OTHER				HE 1401.		AU TO CODER
_	PUNCH TAPE # CARD FORMAT: BINARY 5081				tinued on rev		
				ERATOR'S I		DATE AND TH	ME COMPLETED

A 1401 request sheet is necessary in order to have Card

Types 6 and 7 put on tape. After the data has been put on tape, the

proper tape number must be entered on the 7030 job request sheet as

shown below. If Card Types 6 and 7 are not on tape but are punched

cards in the problem deck, a scratch tape instead of a specific tape

should be called for on the 7030 job request sheet.

SECURITY CLASSIFICAT	ION	NAME						IDEN	T.NO.	ROOM	BLDG.	PHONE		
☐ ts ☐ s. ☐ c.	x u.	R.	SHA	DE				A	3	A-143	1200	8361	SETUP N_	OF
COMPILE X GO	CK		CHARG	E CO		CARD	ENT.	PROG	RAMME R	JOB TI	TLE			
COMPILGO	X PROD	2	1	5	8	С	Т	A	3		ILER TIM	est. exec	TION TIME	12-19-6
			TAPES	CAL	LED	FOR	BY P	ROBLE	M PR	OGRAM				
TAPE NUMBER	4156													
FILE PROTECT ON	Yes													
PROGRAMMER NUMBER														
SPECIAL HANDLING (See attached Inst.)														
ABEOJ HOLD	r	00P		SIDE	FOR A		E REVE IONAL	RSE COMME	NTS.		WALT F	OR TAPE	5	

7050 JOB REQUEST PRNC-NWL-5230/29 (REV. 2-63)

The number of the tape containing the data on Card Types 6 and 7 must be punched in the IOD deck (for example, 4156 is punched in place of XXXX on the "REEL, PULXXXX" card of the IOD deck if Card Types 6 and 7 are on tape 4156).

IV. FORMULATION OF OUTPUT

(Identification of sample as given on Card Type 3 or Card Type 6)

CHI SQUARE TEST WITH OBSERVATIONS AND INTERVALS. TRANSFORMATION X TO

A LISTING OF THE OBSERVATIONS IN SAMPLE NO. ____ FOLLOWS.*

- 1) x₁ x₂ ------
- 2) x₉ x₁₀ ---- x₁
- ---- 'x ----- (
- X----- (

* The Chi-square tests for a given problem deck setup are numbered consecutively. The sequence of the tests on the 1st transformation of the second sample, etc., the INTERP(I) tests on the pooled sample tests is as follows: the INTER(I) tests on the 1st transformation of the first sample, the INTER(I) This sequence is repeated for the second transformation, third transformation, etc. The number of observations in each test, the value of INTER(I), and the transformation identification (see Transformations, Section III.A.) is printed for each test.

OBSERVATIONS IN EACH SUBSET OF THE INTERVALS. TRANSFORMATION X TO (Identification of sample as given on Card Type 3 or Card Type 6.) THE DEGREES OF FREEDOM WAS COMPUTED ON THE BASIS OF AT LEAST OBSERVATIONS AND WITH CHI SQUARE TEST

MEAN =
$$\frac{1}{1=1} \times \frac{1}{x}$$
 STANDARD DEVIATION = $\sqrt{\frac{\sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})^2}{n-1}} = s$

INTERVALS.

RANGE =
$$x_{nax} - x_{nin}$$
 MAXIMUM = x_{nax} MINIMUM = x_{min} INTERVAL WIDTH = $\frac{x_{max} - x_{min}}{INTER(I)}$ INTER(I)

RANGE =
$$x_{x_{1}}$$
 MAXLMUM = $x_{x_{1}}$ MINIMUM = $x_{x_{1}}$ INTERVAL WIDTH = INTER(I) INTER(I)

UPPER BOUND FREQUENCY BAR CHART

$$x_{z_{1}} + 1D \qquad f_{1}^{1} \qquad I$$

$$x_{z_{1}} + 2D \qquad f_{2}^{2} \qquad I$$

$$x_{z_{1}} + 2D \qquad f_{2}^{2} \qquad I$$

(Number of X's in the contraction of X's i

$$x_{\pi in} + i^{y}D \qquad f'_{i} = \frac{(Number of X's represents the observed frequency}{(E_{1} - \hat{\phi}_{1})^{2}}$$

$$x_{\pi in} + i^{y}D \qquad f'_{i} \qquad I \qquad (f_{1} - \hat{\phi}_{1})^{2}$$

$$x_{\pi in} + i^{y}D \qquad f'_{i} \qquad I \qquad (f_{\pi} - \hat{\phi}_{\pi})^{2}$$

$$x_{\pi in} + i^{y}D \qquad f'_{i} = INTER(I)D \qquad f'_{i} = INTER(I)D \qquad (f_{\pi} - \hat{\phi}_{\pi})^{2}$$

()-

X REPRESENTS OBSERVATIONS CHISQUARE =
$$\sum_{t=1}^{m} \frac{(f_1 - \hat{\phi}_1)^2}{\hat{\phi}_t}$$
 WITH m-3 DEGREES OF FREEDOM

(9)

V. EXAMPLE PROBLEM

A. Description of Example Problem

The example problem consists of two samples, one with 150 observations (sample No. 1) and the other with 125 observations (sample No. 2). Both samples are approximately log-normally distributed. (The observations of sample No. 1 are the antilogs of 150 numbers generated from an approximately normal distribution with mean = 2.50 and standard deviation = 0.30. The observations of sample No. 2 are the antilogs of 125 numbers generated from an approximately normal distribution with mean = 2.20 and standard deviation = 0.30.) Samples No. 1 and 2 should, therefore, appear to be from non-normal parent populations, but the logarithmically transformed observations of both samples should appear to have been sampled from normal parent populations.

In the example problem, the Chi-square test was performed on the original values (X to X transformation) and on the logarithms (X to ln X transformation) for both sample No. 1 and sample No. 2.

Two sets of intervals (20 and 25) were chosen for sample No. 1, i.e., two Chi-square tests were performed on the original values of sample No. 1 and two on the logarithms of the original values.

Only one set of intervals (15) was chosen for sample No. 2, amounting to two Chi-square tests, one on the original values of sample No. 2 and one on the logarithms.

The option for pooling the two samples was exercised, with only one set of intervals (40) being chosen for the pooled sample. Two Chi-square tests were performed, therefore, on the pooled sample, one on

the pooled original observations and one on the pooled logarithms of the original observations. Therefore, a total of 8 Chi-square tests were performed for the example problem. In each of the 8 tests the minimum number of expected observations in each interval was specified as 5.

This example problem was fabricated merely to illustrate the various features of the CHITRAN program, especially the transformation option, and is not intended as a guide to the choice of input parameters for the general problem.

B. Listing of Input Cards for the Example Problem

A listing of the input for the previously described example problem is given on the following two pages. Because two transformations (X to X and X to ln X) were specified, it was necessary to put Card Types 6 and 7 on tape.

CARD TYPE

(8F10.0)

2

2

3

SAMPLE NO.1 AND SAMPLE PROBLEM

COLUMN NUMBER

1 2

1 2

3 4

4 4

1 55

5 1 40

5 1 155

5 1 155

5 1 155

5 1 155

5 1 155

C. Test Results and Example Output

Test Results

The output from the example problem is given here in order to exhibit a sample of the program output and also to illustrate the the use of the $\hat{\chi}^2$ statistic in testing the hypothesis of normality.

The first Chi-square test performed in the example problem is performed on sample No. 1 (with 150 observations). The sample frequency distribution is divided into 20 intervals, i.e., INTER(1) = 20 on the first Card Type 5 of the input deck. The "transformation" used is X to X. The computed $\hat{\chi}^2$ statistic for this first test is 30.64 with 12 degrees of freedom. Because $\hat{\chi}^2$ (12 degrees of freedom) is approximately distributed as χ^2 (12 degrees of freedom), the upper tail of the tabled χ^2 distribution can be used as a critical (rejection) region for testing the hypothesis of normality. For any given significance level, α , where α is the probability of rejecting the hypothesis of normality when the hypothesis is true, the lower bound of the critical region is defined as that value of χ^2 (12 degrees of freedom) for which the probability of $\hat{\chi}^2$ (12 degrees of freedom) being greater than or equal to χ^2 (12 degrees of freedom) is equal to α . At the $\alpha = 0.01$ level of significance, for example, the tabled value of χ^2 (12 degrees of freedom) is 26.22. Testing at the 1% level of significance, therefore, the critical region is $\hat{\chi}^2 > 26.22$. Since the computed value of $\hat{\chi}^2$ (= 30.64) is within the critical region, the hypothesis of normality must be rejected at this level of significance. (Rejection of normality is to be expected since this sample of data is, as mentioned, approximately log normally distributed.)

As a second example of the application of the $\hat{\chi}^2$ statistic in testing the hypothesis of normality and as an illustration of the effect of the logarithmic transformation, consider the fifth Chi-square test printed in the output. This Chi-square test uses the same input parameters as the first test, but the fifth test is performed on the logarithms of sample No. 1, not on the original values. The fifth test resulted in a $\hat{\chi}^2$ value of 15.79 with 12 degrees of freedom. Testing at the α = .01 significance level, the critical region is, again, $\hat{\chi}^2$ > 26.22. Since $\hat{\chi}^2$ is not in the critical region, the hypothesis of normality cannot be rejected, for this sample, at the .01 level of significance. (Again, this conclusion is to be expected since the logarithms of the observations of an approximately log normal distribution should be approximately normally distributed.) It should be mentioned that although the number of degrees of freedom (12) calculated for the fifth test was the same as that calculated for the first test, the degrees of freedom of $\hat{\chi}^{2}$ for the transformed observations of a sample do not always agree with the degrees of freedom for the original observations.

The other six $\hat{\chi}^2$ statistics calculated for the example problem (and given in the example output) may be tested in a similar manner against tabled χ^2 values. The tabled χ^2 distribution is not included in this report since it can be found in many elementary statistical texts.

Example Output

I ATTH I TO UMSFRVATIONS AND 20 INTERVALS, TRANSFORMATION X TO X. A LISTING OF THE OPSTRVATIONS IN SAMPLE NO. I FULLOWS. 15 iL . . VI . . ! F)

.180000005+02 .104000006+02	. 1 / 1000 50E +02 . 86 500 5 0 0 E + 0 1	.65000000000000000000000000000000000000	.93000000E+01	.65000000E+01	. 12200000E+02	.15400000E+32 .14700000F+92	.135000006+62 .157000006+02	.80000000E+01
.12000000E+02 .22600000E+02	. 14800000E+01	.10700000E+02 .11500000E+02	.16500000E+02	.20300000E+U2	1820000E+02	. (1009090401 .890000000E+01	.12406063E+02 .11900000E+02	.12500000E+02 .12800000E+02
.15806300E+02 .85000000E+01	. \$5000000E+01 . \$5000000E+01	.12100000E+32	. 90000000E +01	.13300000E+02	.1690000E+02	.16630000E+92	.15600000E+02 .24700000E+02	.76000000E+01 .11000000E+02 .12600000E+02
.100000099E+02 .13600009E+02	. 70000000E+01 . 11800000E+02	.10500000E+72	.91000000E+31	.10800000E+02	.23100000E+32	. 10100000F +02	.82000000E+01 .17200000E+02	.93000000E+01 .12700000E+02 .11400000E+02
. 4 7000000E+01 . 2 3000000F+02 . 1 5300000F+02	. 1750000F+02 . 9500000E+01	.24500000E+02 .71000000F+01	. H 700 3000E +01	.14500000E+02	.15900000E+02	.1240000E+02	.16203000E+02	.9300)9906+91 .18203900F+02 .19800000E+02
. 1600 1000 6 + 92 . 9 70000 90 6 + 01	.122773 34 E + 02 .17090090E + 02	.12630000E+02	.8000000000000000000000000000000000000	.13000000E+02 .95000000E+01	.10870900E+02	.88070000E+01	- 91000000E + 01 - 11500000F + 02	.15930000E+02 .17900000F+02 .21700000E+02
.12003000E+02 .17503000E+02	.22433949E+02	.20600000E+02	.17430000E+02 .12130000E+02	.171300000E+02	.12730000E+02	- 4 3470000E+01	.134770001E+02	.24300000E+02 .22800000E+02 .15200000E+02
. 204000001402 .1 43000014002 .1520001400	. 1 14 10: 10: + 1x	10+ 300000065*	. 121000 Jar +02	1047067066401	-117 JOHOLE + 92	1049000001	11570030E+02	.1** JOUGUE +02 .132^00000 + 12 .100_JUOUR + 02
250	<u>.</u>	ÇÇ	D 72	[]	2.2	22	[7]	<u> </u>

I . A Alder

20 INTERVALS. THE SUIDEFEREST I WITH 150 OBSERVATIONS AND 29 INTERVALS.TRANSFORMATION X IN X.

THE OFFICE OF FEFTIM AS CUMPUTED ON THE BASIS OF AT LEAST - 5 OBSERVATIONS IN FACH OF A SURSET OF THE

4FAV= .12445333F+92 ...STANDARD DEVIATION= .42691745E+01

.95000000E+00	
INTERVAL WIOTH =	
.57000000F+01	
- MUMINIM	
.24700000E+02	
MAXIMUM =	
.193099638+32	
FANGE =	

6.6500 4. IXXXX 7.5000 8. IXXXXXXXXX 17. IXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ALNOD DCS IHD	UBS FR	THEO FR
4 8 7 0 0 0 1 1 1 2 0 0 0 0 1 1 1 2 0 0 0 0 0	4.045	6. 0	10.524
8.7.0 1.7.7.1.2.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4	0.305	4.0	5.267
20.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.158	8.0	6.951
20	7.828	17.0	0.732
2	8.748	20.0	10.442
12. 7. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	0.299	10.0	11.486
2	2.036	18.0	12.87
	0.124	12.0	13.28
	2.199	7.0	13.04
	2.208	7.0	12.187
	0.002	11.0	10.84
« • • • • • • • • • • • • • • • • • • •	1.101	0.9	9.180
*	0,049	0.8	7. 39
	0.495	0.4	5.677
			•
22			
٦.٠٤			
2. 1			
24_7000 3. IXXX	877.0	14.0	11.710

X PERRESENTS 1.0070 DESERVATIONS.

CHIS MAPF = 30.644881 WITH 12 DEGREES OF FREEDOM.

1 . W. . M. . 1

25 INTERVALS. (PEL ACTARY INST. - 2 MITH - 150 OBSERVATIONS AND - 25 INTERVALS.TRANSFORMATION X TO X.
THE CORRECT OF FREEDOM MAS COMPUTED ON THE BASIS OF AT LEAST - 5 OBSERVATIONS IN FACH OF A SUBSET OF THE

MINIMUM = .57300000E+01 INTERVAL WIDTH = .7600000E+00 A . 1 . 1415 1030++12 MAXIMUM = .24700030E+02

	ONITION TIDES	FUELGIFFEY	PAR CHART	STADE SOLL SONTE	SE FR	TH C HE
	4.46)0	1.	×	,		7
	1.2200		IXXXXX			
	1.000	,	××	750.0	0.8	8.705
	4.7430		IXXXXXXXXXX	8.273	13.0	5,985
	0()4.	11.	IXXXXXXXXX	2.102	11.0	7.129
	19.2630	1.	IXXXXXXXXXX	1.730	12.0	8.227
	11.3230	_	IXXXXXXXXXXXI	3.658	15.0	561.6
	11.7800	٠ <u>.</u>	IXXXXXXX	760.0	0.6	9.466
	17.5400	15.	1×××××××××××××××××××××××××××××××××××××	016-1	15.0	10.461
3	14.4030	•	IXXXXXXX	0.252	0.6	10.539
ſ	14.1.90	.	IXXXXX	11.917	٥-4	10.463
	14.3793	,	IXXXXX	1.605	0.9	10.308
	15.4600	٠,	IXXXXX	1.146	0.9	157.6
	15.3400	ď	IXXXXXXX	0.011	ے م	8.297
	17.1000	v *	XXXXXI	0.674	5.0	7.204
	17.8500	•	IXXXXI	0.186	5.0	6. 761
	14.5200	•	1 x x x x x 1			
	19.3800	-	×-	784.0	7.0	H . 843
	01.410	-	*		•	
	20.9000	*	ועאא			
	21.5400	c.				
	72.4703	~	××I			
	0691.85	. 7	X X X			
	73.9400	<u>_</u>				
	24.7000		ואא	1.717	0.41	9.881

X 8-BRESENTS 1.3000 BISERVALIDES.

CPTSQUAPE = 33.494312 #11P 14 0E53EES OF FREEDOM.

SAMPI NO. 2

CHE SUJARE TEST 2 MITH 125 OBSERVATIONS AND 15 INTERVALS.TRANSFORMATION X FOX.

A LESTING OF THE UBSERVATIONS IN SAMPLE NO. 2 FOLLOWS.

.5 3000000F +01	7130000F+01	1030000F+02	85 900000F+31	1320000F+02	573C0000F+01	. 76300000F+01	73000000F+01	10200000F+02	.75000000F+01	19500000E+02	5400000E+01	167000000+02	7400000E+01	9:300000E+01	
.18500000F+02	•			•	•		_						_	-97000005E+01	
.1750u000F+02	. 10230300E +02	.11100000E+02	• 13∪00000E +U2	.670000000 +01	. 70000000E+01	.51000000E+01	. 57000000E+01	.16500000F+02	.14800000F+02	-12500000F+02	. 5900000F+01	1490000044	-8100000E+01	- 80000000F+01	
.10500000F+02	. 380000008 +01	.10000000F+02	.14100000E+U2	.860000008+01	. 920000005+01	.73000000E+01	.82000000E+01	.81000000F+01	.63000000F+01	.89000000E+01	. 17 100000 E+02	-15600000E+02	.88000000E+01	.10500000E+02	. 75000000E+01
.73000000E+01	.94000000E+01	.87000000E+01	. 79000000E+01	.5700000E+01	. 74000000E+01	.67000000E+01	.84000000E+01	.64000000E+01	.12801000F+02	. 780000000E+01	.92000000E+01	.760000000E+01	. 73000000E+01	.94000000E+01	.1030)000E+02
.56000000000000	- 109 JOHNOE +02	.140000000F+02	.99000000F+01	• 11800000E +02	.10900000E+C2	.54000000E+01	.110000000£+02	.66000000E+01	.11190090E+02	.11300000E+02	.12300000E+02	.66000000E+01	.11300000E+02	.16500000E+02	.54000000E+01
.11500000E+02	.10000000E+02	.70000000E+01	.49000000E+01	.11900000E+02	.94000000F+01	.75000000F+01	.14500000E+02	.52000000E+01	.10300000E+02	.10500000E+02	. 42900000E+01	.10800000E+02	.97000000E+01	.74000000E+01	.73000000F+01
.13370UCOF+02	.15P)U3A0F+72	10+3000000eg*	.1.400000F+02	. F4000000 +4.	.650000000F+01	.7470000C+C1	.10800000€+02	. 720300000 + 01	* ***00000000 ** •	.7100000006+01	. 06m10030F+31	.95000000F+11	.12800000F+02	.12800000F+02	.12600000F+02
_	5.1	3.)	7 }	<u> </u>	•	()	٦)	Î	[]	111	1 , 1	131	1 +)	15)	1~1

15 INTERVALS. CHI CHAST TEST S WITH 125 DASERVATIONS AND IN INTERVALS.TRANSFORMATION X TO X.

WEARE .WARROSSET ... STANDARD DEVIATION= .33426523E+01

MINIMUM = .51000000E+01 INTERVAL MIDIH = .89333333E+00 = .1340000F+02 MAXIMUM = .13500000F+02

IDPER FRUITO	FPFQUENCY	BAR CHART	CHI SOU CUNTR	UBS FR	THEO FR
5.4433	œ	IXXXXXX		0.8	13-686
6.4867	11.	IXXXXXXXXX	0.993	11.0	6.155
7.7430	21.	1XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	9.882	21.0	10.712
8.6733	15.	IXXXXXXXXXXXX	0.336	15.0	12.916
1445.6	13.	IXXXXXXXXXX	0.118	13.0	14.297
1).4600	12.	IXXXXXXXXX	077.0	12.0	14.528
11.3533	16.	IXXXXXXXXXXXX	0.443	16.0	13.551
12-2467	.,	IXXXX	4.982	0.4	11.603
13.1400	۲.	IXXXXXX	0,493	7.0	9.121
14.0333	, ,	IXXXX	1.012	\frac{1}{2}	[XC.5K]
14.9767	4.	IXXXX			
15.8200	٠,	IXXX			
15.7113	4.	IXXXI			
17.6057	۲.	IXX			
14.5000	١.	× -	H47-1	14.0	154.9

X PERSENTS 1.0000 DASFRVATIONS.

CHIS MITH A DEGREES OF FREEDOM.

SAMPLE NO.1 AND SAMPLE NO.2 POOLED

40 INTERVALS. CHI SUJARE TEST — 4 AITH — 275, POOLED OBSERVATIONS AND — 40 INTERVALS,THANSFORMATION X TO X. THE OPGREES OF FREEDIM WAS COMPUTED ON THE HASIS OF AT LEAST — 5 ORSERVATIONS IN EACH OF A SUBSET OF THE

MEAN: JORGINGENE OD ...STANDARD DEVIATION: .37619702E+01

5.6 M. 1 - 19 16 30 30 5 F + 12 4 5 4 6 6 7 F + 0 MINIMUM = - . 72 4 5 3 3 3 E + 0 1 INTERVAL WIDTH = . 47500 6 C E - 30

	7.489 7.489 8.734 9.037 11.943 9.021 2.997 *** *** ** ** ** ** ** ** *	1.0 6.0 6.0 17.0 17.0 17.0 11.0 11.0 11.0	6 0 C0 ~ 800 O H N M M M M
2953 3453 3453 3953 3953 3953 3953 3953 3953 3047	× × × × ×	6.0 17.0 17.0 17.0 18.0 18.0	6.86 0.12 76.49 76.40 76
2503 2453 2453 2703 2703 2703 2703 2703 2703 2703 2704	x x x x x x x x x x x x x x x x x x x	6.0 17.0 17.0 20.0 11.0 11.0 11.0	6.86 6.49 6.49 6.49 6.49 6.49 6.49 6.49 6.4
4453 4703 3953 3953 3953 4653	x x x x x x x x x x x x x x x x x x x	11.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3. 1. 50 1.
3953 3953 3953 3953 3003 3003 3003 3003 3003 3003 3004	x x x x x x x x x x x x x x x x x x x	11.00 14.00 17.00 17.00 11.00 11.00 11.00	3.50 3.50 3.50 3.50 3.50 3.50 3.50 3.50
3953 4453 4453 6453 6453 6203	x x x x x x x x x x x x x x x x x x x	17.0 20.0 20.0 20.0 11.0 11.0 11.0	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
2003 2003 2003 2003 2003 2003 2003 2003	x x x x x x x x x x x x x x x x x x x	17.0 20.0 20.0 20.0 11.0 11.0 11.0	3.52 3.52 3.53 3.53 3.53 3.53
4453 49703 49703 5453 520 5203 5203 1203	x x x x x x x x x x x x x x x x x x x	15.0 20.1 20.0 17.0 18.0 18.0	88.57 9.65 9.65 9.65 9.65 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.7
20203 15.	x x x x x x x x x x x x x x x x x x x	15.0 20.0 20.0 12.0 18.0 17.0	9-62 0-63 1-56 2-37 2-37 3-03 3-78
20203 20. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	xxx xx xx xx xx xx xx xx xx xx 0.0	20.0 20.0 12.0 14.0 17.0	0.63 11.56 2.37 3.03 3.50 3.83
20203 5953 11203 11203 11203 11203 11303 114. 116. 117. 117. 118. 119.	6-1 0-0 0-0 1-4 1-4 0-0	20.0 12.0 14.0 18.0 17.0	1.56 2.37 3.03 3.50 3.83
5453 1203 1203 1203 1203 1203 1203 1203 1204	0.0 0.0 1.4 4.0 2.0	12.0 14.0 18.0 17.0 8.0	2.37 3.03 3.50 3.78 3.83
1.0703 1.0703 1.0703 1.0.3547 1.0.3547 1.0.3047 1.0.3047 1.0.5297	0.0 1.4 0.7 2.4	14.0 17.0 14.0	3.50 3.50 3.78
1203 1203 1203 1203 1204 1204 1204 1204 1204 1204 1204 1204	1.4 0.7 0.7 2.4	18.0 17.0 8.0	3.50
1203 170 18297 190 1797 100 110 110 110 110 110 110 11	0.7 2.4 0.0	17.0 8.0 14.0	3.83
8547 8. 11. 11. 11. 11. 11. 11. 11. 11. 11.	2.5 2.0	8 4 6	3.83
2597 14. 19.	0-0	14.0	
1047 1297 1297 1297 1347 1347 1347 1347 1397			9
2947 2.0 2947 6.0 2947 6.0 2947 6.0 3047 6.0 3047 7.0 3047 7.0 3047 7.0 3047 7.0 3047 3.0 3047 3.0 3047 3.0 3047 3.0	30) • O T	3.29
2547 2047 11. 1547 1047 1	3	10.0	. 72
2047 2047 11. 12. 12. 12. 10. 10. 10. 10. 10. 10. 10. 10	•	5.0	65
2047 1547 1047		6.0	1.1
1547 6	0	11.0	. 14
1547 4. 11. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	æ	5.0	
1047 6. 1 1047 6. 1 10547 2. 1 10547 2. 1 10647 4. 1 1797 3. 1 1297 0. 1	0	7. 0	3
1047 6. 1 1797 6. 1 1047 7. 1 1047 4. 1 1797 3. 1 1297 0. 1 1797 2. 1	7	6.0	0
5797 5247 5247 5047 797 547 6247 6247 6247 6247 625 647 647 647	•	0.9	C
5247 2. 1 5247 2. 1 5247 4. 1 5247 3. 1 5247 3. 1 1247 2. 1	• 2	•	.05
5247			
1047 4. 1 1797 3. 1 1297 0. 1 1047 2. 1 1797 0. 1	1.719	0.4	7.619
1797 3. 1 1297 3. 1 1067 2. 1 1797 0. 1			
3547 3. 1 6297 0. 1 9047 2. 1 1797 0. 1			
1297 0. 1 1047 2. 1 1797 0. 1			
1797 2. I			
1797 0. [
1 2 2			
1			
•			
11.7547 3. IXXX	6.571	20.0	11.360

X PERSENTS 1.00 JO PRSERVATIONS.

- HIS JUNKE =

64.376345 WITH 23 DEGREES OF FREEDOM.

CHISTAL TO THE SOUNDERVATIONS AND ZO INTERVALS. TRANSFORMATION X TO LN X. A . of a . it.

A LISTING OF THE COSERVATIONS IN SAMPLE NO. | FOLLOWS.

.24932095FF01 .27278528FF01 .21633230FF01 .21603099EF01 .24849066FF01 .2727837679FF01 .27278528FF01 .2493209EF01 .21400662FF01 .24849066EF01 .2727837679FF01 .27278528FF01 .2493209EF01 .24423470FF01 .27278528FF01 .2493209EF01 .24423470FF01 .27278528FF01 .2493209EF01 .24423470FF01 .2493209EF01 .24423470FF01 .2493209EF01 .2493209EF01 .2493209EF01 .2493209EF01 .259425348F01 .26946272EF01 .27929BFF01 .259429EF01 .259429EF01 .259429EF01 .259429EF01 .259429EF01 .259429EF01 .259429EF01 .259429EF01 .259429EF01 .259438FF01 .259438FF01 .2493209EF01 .2493209EF01 .2493209EF01 .24032476EF01 .226178BFF01 .2294386FF01 .226178BFF01 .2294386FF01 .2493209EF01 .2594390789EF01 .2493209EF01 .2594390789EF01 .25944452EF01 .25944452EF01 .2594390789EF01 .25943909EF01 .25944452EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25944452EF01 .25944452EF01 .25943909EF01 .25943909EF01 .25944452EF01 .25944452EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25943909EF01 .25944452EF01 .25944452EF01 .25944452EF01 .25944452EF01 .25944452EF01 .2594999EF01 .2594999EF01 .25943909EF01 .2594999EF01 .2594999EF01 .2594999EF01 .25944452EF01 .259494452EF01 .259499EF01 .2594999EF01 .2594999EF01 .2594999EF01 .2594999EF01 .259499EF01 .25944452EF01 .259499EF01 .		11451205411	10.474.0004.45	10. 3500 10550	0.000				
.24522009F401 .22721259F+01 .31354942E+01 .26100693E+01 .21400662E+01 .311794.99j.c01 .29522078F401 .2592547F+01 .27278528E+01 .2492055F+01 .24629476F+01 .25914360E+01 .25914360E+01 .25914360E+01 .25914360E+01 .25914360E+01 .25914360E+01 .25914360E+01 .25914360E+01 .25914360E+01 .22914360E+01 .22914360E+01 .22914360E+01 .22914360E+01 .22914360E+01 .22914360E+01 .22914360E+01 .22914361E+01 .2591436E+01 .2291436E+01 .2291436E+01 .2291437E+01 .229146E+01 .2291436E+01 .2291436E+01 .2291436E+01 .2291436E+01 .2291437E+01 .2291436E+01 .279146E+01 .279146E+01 .279146E+01 .279146E+01 .279146E+01 .279146E+01 .279146E+01 .279146E+01 .279146E+01 .279149E+01		-	10+1000t+u+/*	10+4/4462117.	.21633230E+01	.23025851E+01	.27600099E+01	.24849066F+01	.23103718E+01
.2337439E+01 .25952547F+01 .27278528E+01 .24423470F+01 .24849066E+01 .31090610E+01 .25014360E+01 .25014360E+01 .25014360E+01 .25014360E+01 .25512918E+01 .25512918E+01 .22925348F+01 .22925348F+01 .25946272E+01 .25946272E+01 .25946272E+01 .25946272E+01 .25946272E+01 .2593696E+01 .25649696E+01 .25649696E+01 .25649696E+01 .2593696E+01 .259326E+01 .259326E	10+3850m1557*	, 	.28622709F+01	.22721259F+01	.31354942E+01	.26100698E+01	.21400662F+01	311 794 341 201	-23418058E+01
31090610E+01	.27212454F+U1	10+	. 23321439E+01	.25952547F+01	.27278528F+01	. 24932055F+01	244234705401	248490445401	10.300.10.00
.20018641E+01 3832133E+01 .25512918E+01 .224680995E+01 .22925348F+01 .25946272E+01 .25336964E+01 .2253648F+01 .22925348F+01 .2533696E+01 .22423470E+01 .22923534E+01 .22923534E+01 .22923534E+01 .22923534E+01 .22923534E+01 .22923534E+01 .22923534E+01 .22923055E+01 .24932055E+01 .22932055E+01 .2293205E+01 .2293205E+01 .229172246E+01 .2291729E+01 .2291729E+01 .2291729E+01 .2291729E+01 .2291729E+01 .2291729E+01 .239173E+01 .2291729E+01 .239173123E+01 .2291729E+01 .2291729E+01 .2291729E+01 .229173123E+01 .2291729E+01 .229173123E+01 .2291729E+01 .2291729F+01 .2291729E+01 .2	.24418052++01	10+.	.31090610E+01	-25014360F+01	28622009F+01	194591016401	187180226401	210722646401	10+369106663
3.0755911E+01	10+4014101.	10+4	.20918641E+01	78332133E+01	.22512918F+01	24680995F+01	229252553 229253485401	769662726401	104328116174
.2436134E+01 .22617631E+01 .19600948E+01 .27080502E+01 .24159138E+01 .24423470E+01 .23418058E+01 .20794415E+01 .21633230E+01 .22082744E+01 .22082744E+01 .28033604E+01 .28033604E+01 .28033604E+01 .28033604E+01 .28033604E+01 .287256E+01 .2872576E+01 .2872576E+01 .2872576E+01 .2872576E+01 .2872576E+01 .2872576E+01 .28725776E+01	.21041342F+01	F+01	.30252911E+01	.25336968E+01	.31986731E+01	.23513753F+01	.24932055F+01	-23702437F+01	1971×022F+01
.23418058E+01 .20794415E+01 .21633230E+01 .22082744E+01 .21972246E+01 .28033604E+01 .24765384F+01 .28903718E+01 .25416020E+01 .23321439E+01 .27725887E+01 .2832055E+01 .25649494E+01 .26741486E+01 .23795461E+01 .25877640E+01 .2106209E+01 .27725887E+01 .25649494E+01 .26741486E+01 .23795461E+01 .25877640E+01 .28332133F+01 .283795461E+01 .283795461E+01 .283321439E+01 .28332133F+01 .2574249E+01 .27653191E+01 .28449094E+01 .269846101 .27653191E+01 .28449094E+01 .269846101 .256846191E+01 .27653191E+01 .276531	. 223001441+01	10+4	.24336134E+01	.22617631E+01	.19600948E+01	.27080502E+01	.24159138F+01	244234 70++01	23391419E401
.2493055E+01 .24765384F+01 .28903718E+01 .25416020E+01 .23321439E+01 .27725887E+01 .28370785E+01 .25649494E+01 .26741486E+01 .23795461E+01 .25877640E+01 .2106209E+01 .25649494E+01 .26741486E+01 .23795461E+01 .25877640E+01 .28332133F+01 .257725887E+01 .257725887E+01 .257725887E+01 .28373136E+01 .28332133F+01 .25772587E+01 .28795461E+01 .28795491 .28795461 .28795461 .28795461 .28795461 .28795461 .28795461 .28795461E+01 .28795461E+01 .28795461E+01 .28795461E+01 .28795461E+01 .28795461E+01 .28795461E+01 .28795461E+01 .28795461E+01 .287978953E+01 .287978952E+01 .28797895E+01 .287978952E+01 .28797895E+01 .287978952E+01 .28797895E+01 .287978952E+01 .28797895E+01 .287978952E+01 .2879789	*24432055F+01	10+40	.23419058E+01	.20794415E+01	.21633230E+01	.220827445+01	.21972246E+01	-28033604F+01	21372246F±01
.29390785E+01 .25649494E+01 .26741486E+01 .23795461E+01 .25877640E+01 .30106209E+01 .23702437E+01 .22512918E+01 .26878475E+01 .24510051E+01 .23321439E+01 .28332133E+01 .25416020E+01 .23795461E+01 .27653191E+01 .24510051E+01 .28273136E+01 .29014216E+01 .21633230F+01 .23795461E+01 .27653191E+01 .27653191E+01 .27653191E+01 .27653191E+01 .27653191E+01 .27653191E+01 .276727610 .2772709E+01 .25176965E+01 .276727610 .277276109E+01 .25176965E+01 .276727610 .2772769E+01 .25176965E+01 .25952547F+01 .24623470E+01 .27859112F+01 .28449094E+01 .2291482E+01 .25592547F+01 .27653191E+01 .27859112F+01 .22300144E+01 .20281482E+01 .2557286E+01 .276529191E+01 .2591426E+01 .25978953E+01 .25694452E+01 .27653191E+01 .2591426E+01 .25978953E+01 .25978953E+01 .25978968E+01 .276727964E+01 .27653191E+01 .25978968E+01 .25978968E+01 .27672796E+01 .2767286E+01 .276727969E+01 .2767286E+01 .276727969E+01 .2767286E+01 .276727969E+01 .2767286E+01 .27	.114344625+01	10+4	.24932055E+01	.247653848+01	.28903718E+01	.25416020E+01	.233214396+01	-27725887F+01	24359119F+01
23702437E+01 .22512918E+01 .26878475E+01 .24510051E+01 .23321439E+01 .28332133F+01 .25416020E+01 .23795461E+01 .27663191E+01 .31398326E+01 .28273136E+01 .29014216E+01 .21633230F+01 .30204249E+01 .27600099E+01 .21517622E+01 .23125354E+01 .216094E+01 .21747517E+01 .25176965E+01 .23125354E+01 .21747517E+01 .25176965E+01 .23125354E+01 .27472709E+01 .21747517E+01 .25176965E+01 .21041342E+01 .27472709E+01 .25176965E+01 .25176965E+01 .27472709E+01 .27472709E+01 .25176965E+01 .25423470E+01 .27850117F+01 .22300144E+01 .20281482E+01 .2557286E+01 .27663191E+01 .22300144E+01 .25316968E+01 .25494452E+01 .25416020E+01 .25318953E+01 .25494452E+01 .2761294E+01 .25494452E+01 .25416020E+01 .25318953E+01 .25494452E+01 .2761294E+01 .25416020E+01 .25318968E+01 .25494452E+01 .2761294E+01 .2761294E+01 .25416020E+01 .2531696E+01 .25494452E+01 .25494452E+01 .25416020E+01 .2531696E+01 .25494452E+01 .25494452E+01 .25416020E+01 .2531696E+01 .25494452E+01 .2549445E+01 .25494452E+01 .25494462E+01 .25494462E+01 .25494462E+01 .25494462E+01 .25494462E+01 .25494462E+01 .254944646E+01 .254944640E+01 .254944646E+01 .2549446E+01 .254944646E+01 .254944646E+01 .254944646E+01 .254944646E+01	. 224176311+01	10+1	.29390785E+01	.25649494E+01	.26741486E+01	.23795461E+01	.25877640E+01	-30106209E+01	18718022F+01
25416020E+01	.21125154[+D]	10+1	.23702437E+01	.225129186+01	.76878475E+01	.24510051E+01	.23321439E+01	. 28332133F+01	-21633230F+01
21633230F+01 30204249E+01 27600099E+01 21517622E+01 28125354E+01 1960094E+01 21162555E+01 21747517E+01 25176965E+01 23125354E+01 28094027E+01 21660513E+01 25176965E+01 25176965E+01 25176965E+01 25336968E+01 22082744E+01 24510051E+01 21041342E+01 27472709E+01 2517695E+01 25423476E+01 224423470E+01 27450112E+01 28449094E+01 32068032E+01 24765384E+01 254423476E+01 22300144E+01 20281482E+01 25257286E+01 31267675E+01 28848007E+01 29014216E+01 25416020E+01 23978953E+01 25494452E+01 27212954E+01 23795461E+01 23436134E+01 2533696E+01 25494452E+01 27212954E+01 30773123E+01 23795461E+01 24336134E+01 2533696E+01	.7457884E+01	16+01	.25416020E+01	.23795461E+01	.27663191E+01	.313983256+01	.28273136E+U1	290142165+01	-25714350F+U1
.21162555E+01 .21747517E+01 .25176965E+01 .23125354E+01 .28094027E+01 .21660513E+01 .25336968E+01 .22082744E+01 .24510051E+01 .21041342E+01 .27472709E+01 .25176965E+01 .255354E+01 .25952547F+01 .24423470E+01 .27850112F+01 .28449094E+01 .32088032E+01 .24765384E+01 .25952547F+01 .27423470E+01 .22300144E+01 .22300144E+01 .20281482E+01 .25257286E+01 .31267675E+01 .29848007E+01 .29014216E+01 .25416020E+01 .23978953E+01 .25494452E+01 .27212954F+01 .30773123E+01 .23795461E+01 .24336134E+01 .2533695E+01	.23C25851F+01	10+3	.21633230F+01	.30204249E+01	.27600099E+01	.21517622E+01	.23125354F+01	196009426+01	27344675F+01
.25336968F+01 .22082744E+01 .24510051E+01 .21041342E+01 .27472709E+01 .25176955E+01 .25952547F+01 .24423470E+01 .27850112F+01 .28449094E+01 .32068032E+01 .24765384E+01 .21904764E+01 .224081482E+01 .25257286E+01 .31904764E+01 .224081482E+01 .25257286E+01 .31267675E+01 .28848007E+01 .29014216E+01 .25416020E+01 .23978953E+01 .25494452E+01 .27212954E+01 .30773123E+01 .23795461E+01 .24336134E+01 .2533695E+01	. 223701446+01	F + 0 1	.211625556+01	.21747517E+01	.25176965E+01	.23125354E+01	-28094027F+U1	-216605146+01	26476475F±01
. 25952547F+01 .24423470E+01 .27850112F+01 .28449094E+0! .32068032E+01 .24765384E+01 .31904764E+0! .27663191E+0! .22300144E+0! .22300144E+0! .20281482E+0! .25257286E+0! .31267675E+0! .28848007E+0! .29014216E+0! .25416020E+0! .23978953E+0! .25494452E+0! .27212954E+0! .30773123E+0! .23795461E+0! .24336134E+0! .2533695E+0!	.29734145E+01	F+01	.25336968F+01	.22082744E+01	.24510051E+01	.21041342E+01	.27472709E+01	.25176955F+01	26100698F+31
.31904764E+01 .27663191E+01 .22300144E+01 .22300144E+01 .20281482E+01 .25257286E+01 .31267675E+01 .28848007E+01 .29014216E+01 .25416020E+01 .23978953E+01 .25494452E+01 .27212954E+01 .30773123E+01 .23795461E+01 .24336134E+01 .2533696E+01	.24.173958E+01	E+01	.25952547F+01	.24423470E+01	.27850112F+01	-28449094E+01	.32068032E+01	-24765384F+01	.27080502F+31
.31267605E+01 .28848007E+01 .29014216E+01 .25416020E+01 .23978953E+01 .25494452E+01 .27212954E+01 .30773123E+01 .23795461E+01 .24336134E+01 .25336968E+01	.26410215E+01	E+01	.31904764E+01	.27663191E+01	.22300144F+01	.22300144E+01	.20281482E+U1	-25257286E+01	207944156+01
.27212954E+01 .30773123E+01 .23795461E+01 .24336134E+01 .25336968E+01	.25#02158F+01	10+1	.312676C5E+01	.28848007E+01	.29014216E+01	.25416020E+01	.23978953F+01	25494452E+01	76461748F+01
	.23025851F+01	10+3	.27212954F+01	.30773123E+01	.23795461E+01	.24336134F+01	25336968F+01		

SAMPLE NO. 1

20 INTERVALS. CHT SUDARE TEST - SHITH - 150 DRSFRVATIONS AND - 20 INTERVALS.TRANSFORMATION X TO TH X.
THE DIGNEES OF ELFEDDM WAS COMPUTED ON THE BASIS OF AT LEAST - 5 OBSERVATIONS IN FACH OF A SUBSET OF THE

7445 = .14663371++31 MAXIMUM = .32068032+401 MINIMUM = .17404662E+01 INTERVAL MIDTH = .73316653F-01

THEJ FR			6.430						12.152											10.137
CBS FR			7.0		7.0	0.6	12.0	16.0	15.0	10.0	20.0	0.7	5.0	12.0	10.0	0.6	2.0			13.0
CHI SOU CONTR			0 ° 0		0.510	0.487	716.0	0.065	0.568	0.843	2.896	1.411	4.351	0.133	0.114	0.512	790-7			608.0
BAR CHART	*	XXXI	IXXX	1 X X	ואאאא	1 x x x x x x x x x	IXXXXXXXXXXI	IXXXXXXXXI	1 x x x x x x x x x x x x x x x x x x x	IXXXXXXXX	IXXXXXXXXXXXXXII	IXXXXXXX	IXXXX	IXXXXXXXXX	IXXXXXXXX	IXXXXXXX	1 x x	IXXXX	IXXXX	IXXXXI
トントレロコント	:	3.	3.	٧.	u*	°	12.	1 0•	15.	10.	20.	•6	5.	12.	10.	ϡ	٠,	4.	**	5.
CANO	HÉTH.	1.3871	4096-1	7.0317	2.1071	2.1434	7.25.17	01 61 6	2.4003	2.4736	2.5470	2-4-203	2.6936	2.7669	2044.0	2,3135	2.9479	3.0692	3.1335	3907.1
UNDO CENTAL	-	-1		~	2					•	~	~		•	• •					

X REPRESENTS 1.0000 DESERVATIONS.

CHISQUARE = 15.793015 WITH 12 DEGREES OF FREEDOM.

MEASE .250 MARRICHOL ... STANDAPO DEVIATION= .31952035E-60

SAMPLE NO. 1

25 INTERVALS. CHI SOUAPE TEST & WITH 150 OBSERVATIONS AND 25 INTERVALS.TRANSFORMATION X TO LN X. THE DEGREES OF ERFEDUM WAS COMPUTED ON THE BASIS OF AT LEAST 5 OBSERVATIONS IN EACH OF A SUBSET OF THE MFAN= .25094583E+01 ...STANDARD DEVIATION= .31952035E-00

HANGE = .14663371F+01 MAXIMUM = .32068032E+01 MINIMUM = .17404662E+01 INTERVAL WIDTH = .58653483E-01

THEO FK	ı			7.083		7,301					9.782											7.746			0 7.705
OBS FR				7.0		5.0	4	13.0	8.0	8.0	14.0	7. (15.0	10.	8.0	2.(10.0	· &	8.	8.0		0.4			0.6
CHI SQU CONTR				0.001		0.725	0.303	6.610	0.014	0.075	1.818	1.168	1.541	0.081	0.646	6.368	0.101	0.001	0.238	1,109		0.393			0.218
BAR CHART	×.		IXXX	IXXX	IXX	IXXX	IXXXX	IXXXXXXXXX	IXXXXXXXI	IXXXXXXX	IXXXXXXXXXX	IXXXXXX	IXXXXXXXXXXI	IXXXXXXXXI	IXXXXXX	IXX	IXXXXXXX	IXXXXXXI	IXXXXXXI	IXXXXXXXI	1xx	IXXXX	<u>×</u> 1	IXXXXI	IXXX
FREQUENCY	-	0	3.	*	2.	3.	*	13.	œ.	8	14.	7.	15.	10.	£	5 •	10.	.	.	a.	2.	,	:	5.	3.
UPPER BOUND	1.7991	1.8578	1.9164	1.9751	2.0337	2.0924	2.1510	2.2097	2.2683	2.3270	2.3857	2.4443	2.5030	2.5616	2.6203	2.6749	2.1376	2.1962	2.4549	2.9135	2.4722	3.0308	3.0895	3.1481	3.2068
											3	36													

* REPHESENTS 1.0000 DBSERVATIONS.

CHISQUARE =

21.409583 WITH IS DEGREES OF FREEDOM.

SAMPLE NO. ?

CHT STUAME TEST 7 WITH 125 OBSERVATIONS AND 15 INTERVALS.TRANSFORMATION X TO IN X.

A LISTING OF THE OBSERVATIONS IN SAMPLE NO. 2 FOLLOWS.

.17)47481E+01 .19400948E+01 .23795461E+01 .21400562F+01 .2323877E+01 .20281482E+01 .19478743E+01 .23223877E+01	.236CB540E+01 .1757B579E+01 .291540B7E+01 .29541237E+01 .72617631E+01
.291777C7E+01 .19315214E+01 .238876245E+01 .23702437E+01 .26390573E+01 .26346197E+01 .2434134E+01 .19459101E+01 .20794415E+01	.22082744E+01 .27663191E+01 .1868288E+01 .27146947E+01
.286.227096+01 .232.38.776+01 .240694516+01 .256494946+01 .190.210756+01 .162924056+01 .162924056+01 .260940272401	.25257286E+01 .17749524E+01 .20014800E+01 .20918641E+01 .20794415F+01
.23513753E+01 .21747517E+01 .23025851E+01 .25461748E+01 .21517622E+01 .22192035E+01 .19878743E+01 .20918641E+01	.21860513F+01 .28390785E+01 .27472709F+01 .21747517E+01 .23513753E+01
.19878743E+01 .22407097E+01 .21633230E+01 .20668628E+01 .19021075E+01 .20014800E+01 .19021075E+01 .19562980E+01	.20541237E+01 .22192035E+01 .20281482F+01 .19878743E+01 .22407097E+01
.1727666 F + 01 .23887628 E + 01 .26390573 E + 01 .22925348 E + 01 .24680995 E + 01 .23887628 E + 01 .16863990 F + 01 .23978953 E + 01 .168870696 F + 01	.2509593F+01 .2509593F+01 .18870696F+01 .24248027F+01 .28033604F+01
.24423470E+01 .23025851E+01 .19459101E+01 .21860513E+01 .24765384E+01 .22823824E+01 .2741486E+01 .24741486E+01	.23713475461 .210413426401 .237954616401 .227212596401 .200148006401
.25477640E+01 .27690994F+01 .20794415E+01 .26672782E+01 .71242317E+01 .18718022E+01 .20014809E+01 .2379541E+01	.196,00444 .215,176,22E+01 .254,9445,25+01 .254,9445,25+01
	123 133 145 153

C . IN Tide V.

15 INTERVALS. CHE ALDARE TEST I WITH 125 DESERVATIONS AND 15 INTERVALS.TRANSFORMATION X TO UN X.
THE HELF OF HER TO BE FREED WE WAS COMPUTED ON THE RASIS OF AT LEAST SOBSERVATIONS IN EACH OF A SUBSET OF THE

*147 .2730/3228401 ... STANDARD DEVIATION= .30007938E-00

MAXIMUM = .23177707F+1 MINIMUM = .16292435E+01 INTERVAL MIDTH = .859624337-01 .12n453021+11 1, 50, 5

THEO FR	5.387		10.420	8.657	11.045	12.991	14.046	14.379	12.972	11.018	8.627	162.07			06.7.5
0.85 FR	4.0		0.6	12.0	17.0	11.0	15.0	10.0	17.0	≎ •	7.0	0.5			13.0
CHI SOU CONIR	0.357		6,143	1.291	3.210	0.305	0.309	1.142	1.251	1.827	0.307	0.242			1.298
BAR CHART	1 x x x x	IXXXX	IXXXX	1×××××××××××××	IXXXXXXXXXXXXXXI	IXXXXXXXXX	IXXXXXXXXXI	1××××××××××	IXXXXXXXXXXXXXXXXI	IXXXXXXI	IXXXXXX	1 x x x x	ı xxx	1 X X X X X	IXXX
アンドロロドンロイ	4. IXXX	4. IXXXX	-	17. IXXXXXXXXX	-	_	12. IXXXXXXXXXX	_	17. IXXXXXXXXXXXXXXXX	_	7. IXXXXXX	5. INNNX	XXXXI -7	6. IXXXXX	3. IXXX
F A F COFNEY	7	7.	-	12.	17.		12.	•01	17.				_	.,	2.017H 3. IXXX

* GEORGSENTS 1.0000 CBSERVATIONS.

CHISDUAPE = 10.771929 AITH 9 DEGREES OF FREEDOM.

CAMPLE NO.1 AND SAMPLE NO.2 PURED

40 INTERVALS. CHI SOUARE TEST - R'MITH - 275, POOLE) UBSFRVATIONS AND - 40 INTERVALS,TRANSFORMATION X TO LN X. The Trgrees of Fredom was computed on the Pasts of at least - 5 observations in Fach of a subset of the FEATE . OFFICE OF ... STANDARD DEVIATIONS . 310840776-00

MINIMUM = -. 76899217E+03 INTERVAL WIDTH = .36658427E-0.1 MAXIMUM = .697344916+00 + Ath = . 14663371F+01

	HOPER MOUND	FREDUENCY	BAR CHART	CHI SUU CONTR	OBS FR	THFU FR
	1777.	٦.	×			
	7569-	٠,	-			
	6590	•	-			
	4224	3.	IXXX	0.795	0.4	6.724
	5857	-	×			
	5440	3.	×××I			
	5124	۳.	xxxI	0.024	7.0	7.426
	14751	٠,	xxxi			
	1064	2.	××I	0.521	0.9	7.40.1
	5205°-	7 .	IXXXXXX	044.0	7.0	42173
	3657	. 7	IXXXX	0.645	0.4	5.032
	1.3291	<u>.</u> ر	IXXXXXXXX	1.361	0.01	6-429
	2924	11.	IXXXXXXXXX	1.265	11.0	1.849
39	255R	12.	XXXXXXXXX I	1.190	12.0	991.8
)	1612	12.	IXXXXXXXXX	0.566	12.0	9.662
	1825	12.	IXXXXXXXXXX	0.215	1.2 = 0	10.498
	145R	15.	IXXXXXXXXXXXX	1.250	15.0	11.250
	1091	10.	1xxxxxxxx	0.300	10.0	11,389
	0725	nc.	ואאאאא	0.5.1	в. О•8	12,391
	035K	٠.	IXXXXXXXXXXXX	500.0	13.0	12.736
	J.000H	. 5.	IXXXXXXXXXXXXX	0.338	15.0	12.910
	0.0375	13.	IXXXXXXXXXXX	0.001	13.0	12.900
	0.0742	c•	IXXXXXXXI	1.090	0.3	12.724
	0.1108	11.	IXXXXXXXXX	0.152	11.0	12.172
	0.1475	• 9	IXXXXX	2.897	6.0	11.463
	0.1841	13.	IXXXXXXXXXXXI	0.283	13.0	11.218
	0.2208	10.	IXXXXXXXX	0.020	10.0	10.462
	0.2574	œ	IXXXXXXX	0.273	C • 8	9.622
	0.2941		IXXXX	1.592	6.5	H.728
	7. 1308	11.		1.306	11.0	7.807
	0.3674	5.	×××××	0.517	ۍ د ر	6.3HB
	0.4041	7.	וואאאאא	0.169	7.0	5.442
	704407	5.	I XXXXX	700.0	5.0	2.142
	0.4774	٦.	XXX			
	0.5141	•	IXXXX	0.121	7.0	7.431
	705c.	. 4	ואאא			
	7.5874	. 4	1 x x x x	1.236	€ 0	5.413
	7.0240	• •	IXXXX			
	0.0407	3.	IXXX			
	0.6973	• 7	I KXXX	0.00.1	11.0	4.017

1.0030 GRSERVATIONS. X PEPPESFNIS

CHISCHARE =

21.423144 WITH 26 DEGREES OF FREEDOM.

VI. FLOW CHARTS


```
PROGRAM LISTING
 VII.
Т
         SUBTYPE . FIOD
В
    20
         IOD. SREADER
В
          100. SPRINTER
    30
          IOD . TAPE . . . EVEN . . SAVE
В
    50
          REEL . PUL
В
В
   128
          10D.DISK...2899
          10D.DISK . . . 101
В
   108
          END
          SUBTYPE . FORTRAN . LMAP . PBIN
   CHITRAN-CHI SQUARF TEST WITH TRANSFORMATIONS.
      COMMON MAX.MIN.OBSERV(14000).NOBS.STIP(400).IFREQ(401).SDEV.IDE
      COMMON CHS(400), CHISUM, 10BFR(400), CMPFR(400)
      COMMON INTOV. FNOBS, INTER (103), FGRAPH (65), STEP (400), TAPE, IGC
      COMMON NOJOBS, FORM(10), POOL(D(10), OBSERP(14000), INTERP(100)
      COMMON NOBSA(500), INTOVP, NOINTP, GROUP, INTERV, IPRINT, Q
      DIMENSION IT(12)
      EQUIVALENCE (NOSAM NOJOBS)
      INTEGER TAPE , GROUP , SAVE , Q
      EXTERNAL T1.T2.T3.T4.T5.T6.T7.T8.T9.T10.T11
   99 REWIND 10
C READ VARIABLE FORMAT CARD. THIS FORMAT IS USED TO READ THE OBSERVATIONS
      READ 400 FORM
  400 FORMAT (1048)
      Q = 0
      READ 100.NOSAM .TAPE.GROUP.NOTRAN.(!T(!).!=1.NOTRAN)
  100 FORMAT (1615)
      IF (GROUP . GT . 3) STOP
      IPRINT=1
      GROUP=GROUP+1
      IF (GROUP .GT .1 . AND .NOSAM .EQ . 1)GROUP = 1
      IF (GROUP . LE . 3)GO TO 98
      IPRINT=2
      GROUP=3
   98 SAVE GROUP
      IF (GROUP . EQ. 1)GO TO 201
C READ ID FUR THE POOLED DATA.
      REAL 400 POOLID
C READ POOL ENTROL CARD.
      READ 101.INTOVP.NOINTF. (INTERP(L).L=1.NOINTP)
  1"1 FORMAT(5X.1515/((1615)))
  201 DO 200 I=1.NOJOBS
C READ CONTROL CARDS FOR EACH SAMPLE.
      READ 100.NOBS.INTOV.NOINT.(INTER(L).L=1.NOINT)
      NOBSA(I)=NOBS
  and WRITE(10)NOBS.INTOV.NOINT.(INTER (K).K=1.NOINT)
      DO 300 1=1 . NOTRAN
      IGO=1T(1)
      GROUP = SAVE
      GO TO(1.2.3.4.5.6.7.8.2.17.11).1GO
    1 CALL CHI(TI)
      GO TO 257
    2 CALL CHI(T2)
      GO TO 251
    3 CALL CHICTES
      GO TO 250
    4 CALL CHI(T4)
     00 to 251
    5 CALL CHI(T5)
      40 TO 251
    A (ALL CH! (TA)
```

```
GO TO 250
    7 CALL CHI(T7)
      GO TO 250
    B CALL CHI (TB)
      GO TO 250
    9 CALL CHI(T9)
      GO T) 250
   10 CALL CHI(T10)
      GO TO 250
   11 CALL CHI(T11)
  250 IF (TAPE-2)251+300+251
  251 REWIND TAPE
  300 CONTINUE
      GO 10 99
      END
T
         SUBTYPE . FORTRAN . LMAP . PBIN
      SUBROUTINE CHI(TFUNC)
      COMMON MAX.MIN.OBSERV(14000).NOBS.STIP(400).IFREQ(401).SDEV.1DF
      COMMON CHS (400) . CHISUM . 10BFR (400) . CMPFR (400)
      COMMON INTOV. FNOBS. INTER(100), FGRAPH(65), STEP(400), TAPE, IGO
      COMMON NOJOBS.FORM(10).POOLID(10).OBSERP(14000).INTERP(100)
      COMMON NOBSA (500) . INTOVP . NOINTP . GROUP . INTERV . IPRINT . Q
      DIMENSION TOENT (6) . TADD(11) . TADD2(11)
      DIMENSION IDENT(10)
      EQUIVALENCE (BLANK, TADD2(1)) . (XXX, TADD(1))
      REAL MEAN, MAX, MIN, MAXP, MINP, IFREQ, IOBFR
      INTEGER TAPE GROUP G
      DATA TOENT(1)(8HTRANSFOR)
      DATA TDENT(2)(8HMATION X)
      DATA TDENT(3)(8H TO
      DATA (TADD (I) . I = 1 . 11) (8HX.
                                         . BHLN X.
                                                     .8HLN(LN(X).8HLN(1+X)..8
     1HLN(1+LN(.BHSQRT(X).BH1/X.
                                         .8H1/(1+x)..8HARCSIN(X.8H2*AFCSIN.8
     2HARCSIN( )
                                          .84
                                                      ·8H).
                                                                   . 8H
      DATA(TADD2(1),1=1,11)(8H
                                                                   .8H(SQRT(X).
     18H1+X)). .8H
                             *8H
                                          . BH
                                                      .8H).
     28HSQRT(X)))
      DATA PLUS (8H.
      IF (IGO-10)103+104+103
  104 TDENT(6) = BOOL (TADD2(3))
      GC TC 107
  103 IF (IGO-11)105.106.105
  106 TDENT(6)=BOOL(PLUS)
      GO TO 107
  105 TDENT(6)=BOOL(TADD2(1))
  107 TDENT(4)=BOOL(TADD(IGO))
      TDEN'f(5) = BOOL (TADD2(1GO))
      IGG=1
      REWIND 10
      REWIND 12
      NOG=NOJORS
      COMSE-J'U
      FNORCP=0.0
      1DF E - 3
 1002 DO 1001 JUX=1.NOG
      QUOQD, 120, 20, 20, 201, GPQUP
   20 READ (1 ") NOBS . INTOV. NOINT . INTER (1) . I = I . NOINT)
    1 FORMAT (1615)
      READ (TARF , 100) 11 FY
  100 FORMAT (1 AS )
      REAR ( TAPE . " PRM / " "FR / 1 " . 1 = 1 . NOBS )
```

```
C COMPUTE STANDARD DEVIATION OF THE OBSERVATIONS
      NUINT=NOINT
      FNOBS=NOBS
      SUM=0.0
      SUM2=0.0
      DO 3 1=1.NOBS
      OBSERV(1)=TFUNC(OBSERV(1))
    3 SUM =SUM +OBSERV(1)
      MEAN=SUM/FNOBS
      DO 4 1=1 . NOBS
      OBSERP(I)=OBSERV(I)-MEAN
    4 SUM2=SUM2+OBSERP(I)+OBSERP(I)
      SDEV=SQRT(SUM2/(FNOBS-1.))
      CALL MAXMIN (OBSERV , NOBS , MAX , MIN)
      GO TO(202,203,203,220),GROUP
 203 IF(JJX.GT.1)GO TO 208
      MAXP=MAX-MEAN
      MINP=MIN-MEAN
      GO T1 209
  208 MAXP=AMAX1 (MAXP + MAX-MEAN)
      MINP=AMIN1 (MINP . MIN-MEAN)
  209 SUM2P=SUM2P+SUM2
      FNOBSP=FNOBSP+FNOBS
      WRITE(12)(OBSERP(1), 1=1, NOBS)
      GO TO(220,202,1001,220), GROUP
  224 MAX=MAXP
      MINEMINP
      MEAN=0.0
      SDEV=SQRT (SUM2P/(FNOBSP-FLOAT (NOJOBS)))
 202 RANGE=MAX-MIN
      DO 1000 1=1.NUINT
      IF (GROUP.LT.4)GO TO 198
      INTERV=INTERP(I)
      GO TO 199
 198 INTERV=INTER(I)
 199 ENTERVEINTERV
      DELTA = PANGE / FNTERV
      STEP(1)=MIN+DELTA
      IFREQ(1)=0.0
      IEREQ(INTERV+1)=0.0
      DO 5 J=2. INTERV
      IEREO(J)=0.0
   5 STEP(J)=STEP(J-1)+DELTA
      STEP (INTERV) = MAX
     GO TO (205, 205, 220, 206), GROUP
 205 DO 6201 L=1.INTERV
6201 STIP(L)=STEP(L)-MEAN
     DO 6 K=1.NOBS
      JJ= (OBSERV(K)-MIN)/DELTA
   6 [FREQ(JJ+1)=[FREQ(JJ+1)+1.0
      IFREC(INTERV) = IFREC(INTERV) + IFREC(INTERV+1)
     0=0+1
     PPINT 13. IDENT
     PRINT 7.0.NORS. INTERV. TDENT
    7 FORMATILEHOCHI QUARE TEST. 14.5H WITH. 16.17H OBSERVATIONS AND. 15.1
    TIH INT EVAL C. , ZAR, A4, 3AR)
     CALL ICAN(STIP, IDFF, FNORS)
     JF(1 -1)37,00,07
  OR CALL PRINT! (JUX)
  27 POINT 17. IDENT
```

```
13 FORMAT (1H1 + 10AB)
     PRINT 7.Q.NOBS.INTERV.TDENT
     GO TO 97
 206 PRINT 13. POOLID
     Q=Q+1
     PRINT 77.Q.FNOBSP.INTERV.TDENT
  77 FORMAT (16HOCHI SQUARE TEST. 14.5H WITH. F8.0.24H POOLED OESERVATIONS
    1 AND. 15.11H INTERVALS. (2AR. A4. 3AB)
     REWIND 12
     DO 368 K=1 . NOJOBS
     NOBS=NOBSA(K)
     READ(12)(OBSERV(L)+L=1+NOBS)
     GO TO (444.445) . IPRINT
444 IF (I.EQ.1.AND. IGG. EQ.2) CALL PRINT1 (K)
 445 DO 66 IFG=1.NOBS
     JJ=(OBSERV(IFG)-MIN)/DELTA
 66 IFREQ(JJ+1)=IFREQ(JJ+1)+1.0
 368 CONTINUE
     IFREQ(INTERV)=IFREQ(INTERV)+IFREQ(INTERV+1)
     IF (1.GT.1)GO TO 207
     GC TO (442.207) . IPRINT
 442 GO TO (207.447) . 1GG
 447 PRINT 13.POOLID
     PRINT 77.Q.FNOBSP.INTERV.TDENT
 207 CALL TRAN(STEP. IDFF. FNOBSP)
 97 PRINT 88. INTOV. INTERV
  88 FORMAT ( 61H THE DEGREES OF FREEDOM WAS COMPUTED ON THE BASIS OF AT
    1 LEASTIS. 40H OBSERVATIONS IN EACH OF A SUBSET OF THE . 15.11H INTERV
    2ALS.1
     PRINT 30 . MEAN . SDEY
  30 FORM \T (6HOMEAN= . E14.8.23H ...STANDARD DEVIATION=.E14.8)
     PRINT B.RANGE, MAX, MIN, DELTA
   8 FORMAT (8HORANGE = .E15.8.12H
                                     MAXIMUM = . E15.8 . 12H
                                                             MI'VIMUM = . E1'5.
    18.19H
              INTERVAL WIDTH = . E15.81
     PRINT 888
                      UPPER BOUND FREQUENCY
                                                   BAR CHART.50X.35HCHI SQ
 888 FORMAT (42HO
                 OBS FR
    1U CONTR
                             THEO FR)
     CALL MAXMIN(IFREG. INTERV. XAM. SCALE)
     IF (XAM.GT.65.0)GO TO 91
     SCALE=1.0
     GO TO 92
  91 SCALE=XAM/65.0
  92 DO 9 K=1.INTERV
     IFGRPH= IFREQ (K)/SCALE+.5
     IF (IFGRPH.LE.O)GO TO 12
  11 DO 10 IFG=1 . IFGRPH
  10 FGRAPH (IFG) = XXX
  12 IFGRPH=IFGRPH+1
     IF (IFGRPH-66)2033,2035,2035
2033 DO 2027 IFG=IFGRPH.65
2027 FGRAPH (IFG) = BLANK
2035 IF (CHS (K))2040 . 2041 . 2041
2040 PRINT 2029 STEP (K) , IFREQ (K) , FGRAPH
2041 PRINT 2029.STEP(K).IFREQ(K).FGRAPH.CHS(K).IOBFR(K).CMPFR(K)
2029 FORMAT (2X.F15.4.2X.F7.0.4X.1HI.65A1.1X.F8.3.1X.F10.1.2X.F10.3)
   9 CONTINUE
     PRINT 694 SCALE
 604 FORMAT (13HOX REPRESENTS . F10 . 4 . 14H OBSERVATIONS . )
```

IF (IDF)2048,2048,2049

```
2048 PRINT 2050
 2050 FORMAT (35HL CHISQUARE COULD NOT BE COMPUTED.)
      GO TO 1000
 2049 PRINT 2039 CHISUM . IDF
 2039 FORMAT (12HOCHISQUARE = F16 66 5H WITH 14 20H DEGREES OF FREEDOM )
 1000 CONTINUE
      GO TO(1001 . 1001 . 1001 . 221 ) . GROUP
 1001 CONTINUE
      GO TO(221.223.222.221).GROUP
  222 IGG=2
  223 GROUP=4
      IDFF=NOJOBS+2
      NOG = 1
      NUINT=NOINTP
      INTOV= INTOVP
      GO TO 1002
  220 STOP
  221 RETURN
      END
         SUBTYPE . FORTRAN . LMAP . PRIN
T
      SUBROUTINE TRAN(STEP. IDFF. OB)
C THIS SUBROUTINE FITS A NORMAL CURVE WITH MEAN ZERO AND STANDARD
C DEVIATION SDEV TO THE DATA IN IFREQ WHERE THE UPPER BOUND OF EACH
C INTERVAL IS IN THE CORRESPONDING ENTRY IN STEP(I). OB IS THE TOTAL
C NUMBER OF OBSERVATIONS. THE ROUTINE GROUPS THE DATA SO THAT THERE ARE
C AT LEAST INTOV THEORETICAL VALUES PER INTERVAL AND THEN COMPUTES THE
C CHISQUARE STATISTIC (CHISUM) TO GIVE AN ESTIMATION OF THE GOODNESS OF
C FIT.ON EXIT FROM THE ROUTINE. IDF CONTAINS THE NUMBER OF DEGREES OF
C FREEDOM.CHI(J) =- 1 IF THE JTH INTERVAL WAS NOT THE LAST OF A GROL ?.
C OTHERWISE IT CONTAINS (OBSERVED FREQUENCY-THEORETICAL FREQUENCY) **2
C DIVIDED BY THEORETICAL FREQUENCY.
                  ON EXIT. THE OBSERVED FREQUENCY . IF THE JTH INTERVAL WAS
C TOBFR(J) IS
C THE LAST OF A GROUP.OTHERWISE ITS CONTENTS ARE MEANINGLESS.LIKEWISE.
C CMPFR(J) CONTAINS THE THEORETICAL FREQUENCIES.
      COMMON MAX.MIN.OBSERV(14000).NOBS.STIP(400).IFREQ(401).SDEV.IDF
      COMMON CHI (400) . CHI SUM . 10BFR (400) . CMPFR (400)
      COMMON INTOV, FNOBS, INTER (100), FGRAPH (65), STAP (400), TAPE, IGO
      COMMON NOJOBS, FORM(10), POOLID(10), OBSERP(14000), INTERP(100)
      COMMON NOBSA (500) . INTOVP . NOINTP . GROUP . INTERV . IPRINT
      DIMENSION STEP (400)
      REAL MAX.MIN. IFREO. IOBFR
      FNTOV= INTOV
      FOT= 1.0
      KOUNT=0
      CHISUM=0.0
      PROB0=0.0
      F0=0.0
      INTM1 = INTERV-1
    3 DO 10 J=1. INTERV
      IF (J.NE. INTERVIGO TO 1
      PROBNET . 0
      GO TO 2
    1 PROBN=FREG(STEP(J)/SDEV)
    2 FOC=OB*(PROBN-PROBO)
      FO=IFREG(J)+FO
      IF (FOC-FNTOV)4.4.5
    4 CHI(J)=-1.0
      GO TO 10
    5 FOT=FOT+FO
      REMAIN=OB*(1.0-PROBO)
```

```
IF(0B*(1.0-PROBN)-FNTOV)6.6.9
 6 FO=FO+(OB-FOT)
    FOMRE=FO- REMAIN
    CHI (INTERV) = FOMRE + FOMRE / REMAIN
    IOBFR (INTERV)=FO
    CMPFR (INTERV) = REMAIN
    CHISUM=CHISUM+CHI (INTERV)
    KOUNT=KOUNT+1
    JJ=J
    GO TO 12
  9 FOMFOC=FO-FOC
    CHI(J)=FOMFOC*FOMFOC/FOC
    CHISUM=CHISUM+CHI(J)
    IOBFR(J)=FO
    CMPFR(J)=FOC
    KOUNT=KOUNT+1
    F0=0.0
    PROBO=PROBN
 10 CONTINUE
    GO TO 17
 12 IF (JJ-INTM1)14.14.17
 14 DO 16 J=JJ. INTM1
 16 CHI(J)=-1.0
 17 IDF = KOUNT - IDFF
    RETURN
    END
       SUBTYPE . FORTRAN . LMAP . PBIN
    SUBROUTINE MAXMIN (A.K. AMAX. AMIN)
    DIMENSION A (14000)
    AMAX=A(1)
    AMIN=A(1)
    DO 900 1=2.K
    IF (AMAX-A(I))1.5.5
  1 AMAXEA(I)
    GO TO 900
  5 IF (AMIN-A(I))900.900.3
  3 AMIN=A(I)
900 CONTINUE
220 RETURN
    END
       SUBTYPE . FORTRAN . LMAP . PBIN
    SUBROUTINE PRINTI(K)
    COMMON MAX.MIN.OBSERV(14000).NOBS.STIP(400).IFREQ(401).SDEV.IDF
    COMMON CHS (400) . CHISUM . IOBFR (400) . CMPFR (400)
    COMMON INTOV. FNOBS, INTER (100), FGRAPH (65) . STEP (400) . TAPE . IGO
    COMMON NOJOBS.FORM(10).POOLIC(10).OBSERP(14000).INTERP(100)
    COMMON NOBSA (500) . INTOVP . NOINTP . GROUP . INTERV . IPRINT
    PRINT 91.K
 91 FORMAT (44HCA LISTING OF THE CBSERVATIONS IN SAMPLE NO. 14.9H FOLLOW
   15./1HO)
    LC=0
 98 DO 92 LL=1 . NOBS . 8
    LC=LC+1
    KM=LL+7
    IF (N )85-KM)41.95.95
 41 KM=NUES
 95 PRINT 93.LC. (OBSERV(L).L=LL.KM)
 93 FORMAT (1H .15.3H) .9E15.8)
 92 CONTINUE
    RETURN
```

T

T

```
END
          SUBTYPE . FORTRAN . LMAP . PBIN
T
       FUNCTION T1(X)
       T1 = X
       RETURN
       END
          SUBTYPE . FORTRAN . LMAP . PBIN
Т
       FUNCTION T2(X)
       T2=ALOG(X)
       RETURN
       END
          SUBTYPE FORTRAN . LMAP . PBIN
       FUNCTION T3(X)
       T3=ALOG(ALOG(X))
       RETURN
       END
          SUBTYPE . FORTRAN . LMAP . PBIN
       FUNCTION T4(X)
       T4=4LOG(1.0+X)
       RETURN
       END
          SUBTYPE . FORTRAN : LMAP . PBIN
T
       FUNCTION T5(X)
       T5=ALOG(1.0+ALOG(1.0+X))
       RETURN
       END
          SUBTYPE . FORTRAN . LMAP . PBIN
T
       FUNCTION T6(X)
       T6=SURT(X)
       RETURN
       END
          SUBTYPE . FORTRAN . LMAP . PBIN
       FUNCTION T7(X)
       T7=1.0/X
       RETURN
       END
          SUBTYPE . FORTRAN . LMAP . PBIN
T
       FUNCTION TB(X)
       T8=1.0/(1.0+x)
       RETURN
      END
          SUBTYPE . FORTRAN . LMAP . PBIN
      FUNCTION T9(X)
       T9=ATAN(X/SQRT(1.0-X#X))
      RETURN
      END
          SUBTYPE . FORTRAN . LMAP . PBIN
T
      FUNCTION TIO(X)
       T10=2.0*ATAN(SQRT(X)/SQRT(1.0-X))
      RETURN
       END
          SUBTYPE . FORTRAN . L.MAP . PBIN
      FUNCTION TIL(X)
       T11 = ATAN(SORT(X)/SORT(1.0-X))
      RETURN
      END
```

VIII. REFERENCES

- 1. Burr, I. W. [1953], Engineering Statistics and Quality Control, McGraw-Hill Book Company, Inc., New York.
- 2. Cochran, W. G. [1952], The χ^2 Test of Goodness of Fit, Annals of Mathematical Statistics, Vol. 23, pp. 315-345.
- 3. Wadsworth, G. P. and Bryan, J. G. [1960], <u>Introduction to Probability and Random Variables</u>, McGraw-Hill Book Company, Inc., New York.

END

FEB 20 1967