Properties of Expectations

Covariance, Variance of Sums [Ross S7.4]

Proposition 31.1 If X and Y are independent, then for any functions g(x)and h(y):

- $i) \quad E[g(X)h(Y)] = E[g(X)]E[h(Y)]$
- ii) g(X) and h(Y) are independent.

 $P[g(X) \le a, h(Y) \le b]$

tion about X.

Why?

$$i) \quad E[g(X)h(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{XY}(x,y)dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_{X}(x)f_{Y}(y)dxdy$$

$$= \int_{-\infty}^{\infty} g(x)f_{X}(x)dx \int_{-\infty}^{\infty} h(y)f_{Y}(y)dy$$

$$= E[h(Y)]E[g(X)]$$

$$ii) \text{ Let } A = \{x \mid g(x) \leq a\} \text{ and } B = \{y \mid h(y) \leq b\}. \text{ Then: }$$

 $= P[X \in A, Y \in B]$

$$= P[X \in A, Y \in B]$$

$$= P[X \in A] \ P[Y \in B]$$
 since X and Y are independent
$$= P[g(X) \le a] \ P[h(Y) \le b]$$
For a single random variable X , its mean and variance give us some informa-

For two random variables X and Y, **covariance** (and **correlation**) will give us information about the relationship between the pair X and Y.

defined as Cov[X, Y] = E[(X - E[X])(Y - E[Y])]

Definition 31.1: The **covariance** between X and Y, denoted Cov[X,Y], is

Cov[X, Y] = E[(X - E[X])(Y - E[Y])]= E[XY - E[X]Y - E[Y]X + E[X]E[Y])]

$$= E[XY] + E[-E[X]Y] + E[-E[Y]X] + E[E[X]E[Y]]$$

$$= E[XY] - E[X]E[Y] - E[Y]E[X] + E[X]E[Y]$$

$$= E[XY] - E[X]E[Y]$$

Just as $Var[X] = E[X^2] - (E[X])^2$, we also have:

Note: If
$$X$$
 and Y are independent, then $E[XY] = E[X]E[Y]$ so $Cov[X,Y] = 0$.

Example 31.1: Does $Cov[X,Y] = 0$ imply X and Y are independent?

Solution:

iv) $Cov \left| \sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j \right| = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov[X_i, Y_j]$

Proposition 31.2

Why? i), ii) and iii) follow from

i) Cov[X, Y] = Cov[Y, X]ii) Cov[X, X] = Var[X]

Cov[X, Y] = E[XY] - E[X]E[Y]

iii) Cov[aX, Y] = aCov[X, Y] = Cov[X, aY]

For iv), let
$$U=\sum_{i=1}^n X_i$$
 $V=\sum_{j=1}^n Y_i$ $E[X_i]=\mu_i$ $E[Y_j]=
u_j$

Then: $E[U] = \sum_{i=1}^{n} \mu_i$ $E[V] = \sum_{j=1}^{m} \nu_j$

So, $Cov[U, V] = E\left[\left(\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i\right) \left(\sum_{j=1}^{m} Y_j - \sum_{j=1}^{m} \nu_j\right)\right]$

 $= E \left| \sum_{i=1}^{n} (X_i - \mu_i) \sum_{j=1}^{m} (Y_j - \nu_j) \right|$

$$= E\left[\sum_{i=1}^{n} \sum_{j=1}^{m} (X_i - \mu_i)(Y_j - \nu_j)\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} E\left[(X_i - \mu_i)(Y_j - \nu_j)\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} Cov[X_i, Y_j]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} Cov\left[\sum_{i=1}^{n} X_i, \sum_{j=1}^{n} X_j\right]$$
Now, say we pick $n = m$ and $Y_j = X_j$ in part iv) of Proposition 31.2:
$$Var\left[\sum_{i=1}^{n} X_i\right] = Cov\left[\sum_{i=1}^{n} X_i, \sum_{j=1}^{n} X_j\right]$$

 $= \sum_{i=1}^{n} Var[X_i] + \sum_{\substack{i,j\\j\neq i}} Cov[X_i, X_j]$ $=\sum_{i=1}^{n}Var[X_{i}]+2\sum_{\stackrel{i,j}{*}\sim i}Cov[X_{i},X_{j}]$

In the special case that each pair X_i, X_j are independent when $i \neq j$, then:

 $Var\left|\sum_{i=1}^{n} X_i\right| = \sum_{i=1}^{n} Var[X_i]$

Example 31.2: Recall (from Example 30.3) that $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is called

 $= \sum_{i=1} \sum_{j=1} Cov[X_i, X_j]$

 $= \sum_{i=1}^{n} \left(Cov[X_i, X_i] + \sum_{\substack{j=1\\ i \neq i}}^{n} Cov[X_i, X_j] \right)$

$$S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$$
 be the **sample variance**. Let X_1,\dots,X_n be iid with (common) mean μ and variance σ^2 .

Solution:

Find a) $Var[\bar{X}]$ and b) $E[S^2]$. [b) is hard]

the sample mean. Let

Example 31.3: Compute the variance of $X \sim \mathsf{Binomial}(n, p)$. Solution: