Hurtownie Danych - laboratorium Lista 5

Analysis Services

Zadania do wykonania

Baza danych: AdventureWorks

Zad. 1. Wymiar czasowy

Przygotować wymiar czasowy: utworzyć i wypełnić danymi tabelę DIM_TIME. Tabela DIM_TIME powinna być tabelą zawierającą wymiar czasowy (klucze obce do tej tabeli znajdują się w tabeli faktów).

Tabela DIM TIME powinna zawierać następujące kolumny:

- PK_TIME (klucz główny liczba całkowita postaci yyyymmdd format taki sam jak kolumn OrderDate, ShipDate)
- Rok
- Kwartał
- Miesiąc
- Miesiąc słownie (wykorzystać tabelę pomocniczą z 12 rekordami dokonać odpowiedniego złączenia)
- Dzień tygodnia słownie (wykorzystać tabelę pomocniczą z 7 rekordami dokonać odpowiedniego złączenia)
- Dzień miesiąca

Rozwiązania:

```
Stworzenie tabeli pomocniczej z nazwami miesięcy w języku polskim (12 rekordów):
CREATE TABLE STROZIK.months_names (
    month_number INTEGER,
    month_name VARCHAR(20)
);
INSERT INTO STROZIK.months_names (month_number, month_name)
VALUES (1, 'Styczeń'),
        (2, 'Luty'),
        (3, 'Marzec'),
        (4, 'Kwiecień'),
        (5, 'Maj'),
        (6, 'Czerwiec'),
        (7, 'Lipiec'),
        (8, 'Sierpień'),
        (9, 'Wrzesień'),
        (10, 'Październik'),
        (11, 'Listopad'),
        (12, 'Grudzień');

SELECT * FROM STROZIK.months_names;
```

	month_number	month_name
1	1	Styczen
2	2	Luty
3	3	Marzec
4	4	Kwiecien
5	5	Maj
6	6	Czerwiec
7	7	Lipiec
8	8	Sierpien
9	9	Wrzesien
10	10	Pazdziemik
11	11	Listopad
12	12	Grudzien

```
Stworzenie tabeli pomocniczej z nazwami dni tygodnia w języku polskim (7 rekordów):

CREATE TABLE STROZIK.weekday_names (
    weekday_number INTEGER,
    day_name VARCHAR(20)
);

INSERT INTO STROZIK.weekday_names (weekday_number, day_name)

VALUES (1, 'Poniedziałek'),
    (2, 'Wtorek'),
    (3, 'Środa'),
    (4, 'Czwartek'),
    (5, 'Piątek'),
    (6, 'Sobota'),
    (7, 'Niedziela');
```

SELECT * FROM STROZIK.weekday_names;

	weekday_number	day_name
1	1	Poniedzialek
2	2	Wtorek
3	3	Sroda
4	4	Czwartek
5	5	Piatek
6	6	Sobota
7	7	Niedziela

Stworzenie wymiaru czasu STROZIK.DIM_TIME:

```
CREATE TABLE STROZIK.DIM_TIME (
PK_TIME DATETIME PRIMARY KEY,
Rok INT,
Kwartal INT,
Miesiac INT,
Miesiac_slownie VARCHAR(20),
Dzien_tyg_slownie VARCHAR(20),
Dzien_miesiaca INT
);
```

Tutaj pewna uwaga dotycząca typu dla atrybutu i klucza głównego PK_TIME, dla bazy, na której aktualnie wykonywane są listy, atrybuty OrderDate, ShipDate z tabeli Sales.SalesOrder-Header posiadają typ DATETIME. To samo było wskazywane w raporcie dotyczącym listy 4. Zdecydowano, że dalej będziemy wykorzystywać ten typ w celu zachowania spójności między rozwiązaniami listy 4 i listy 5. Po krótkiej analizie stwierdzono, że nie wpłynie to znacząco na dalsze rozwiązania listy.

Wypełnienie danymi wymiaru czasowego odpowiednio złączając tabele pomocnicze:

```
INSERT INTO STROZIK.DIM_TIME
SELECT DISTINCT
    OrderDate AS PK_TIME,
    YEAR(OrderDate) AS Rok,
    DATEPART(Q, OrderDate) AS Kwartal,
    MONTH(OrderDate) AS Miesiac,
        mn.month_name AS Miesiac_slownie,
        wdn.day_name AS Dzien_tyg_slownie,
        DAY(OrderDate) AS Dzien_miesiaca
FROM STROZIK.FACT_SALES
    JOIN STROZIK.weekday_names wdn
    ON DATEPART(DW, OrderDate) = wdn.weekday_number
    JOIN STROZIK.months_names mn
    ON MONTH(OrderDate) = mn.month_number;

SELECT * FROM STROZIK.DIM TIME;
```

Filip Strózik 260377

	PK_TIME	Rok	Kwartal	Miesiac	Miesiac_slownie	Dzien_tyg_slownie	Dzien_miesiaca
1	2011-05-31 00:00:00.000	2011	2	5	Maj	Sroda	31
2	2011-06-01 00:00:00.000	2011	2	6	Czerwiec	Czwartek	1
3	2011-06-02 00:00:00.000	2011	2	6	Czerwiec	Piatek	2
4	2011-06-03 00:00:00.000	2011	2	6	Czerwiec	Sobota	3
5	2011-06-04 00:00:00.000	2011	2	6	Czerwiec	Niedziela	4
6	2011-06-05 00:00:00.000	2011	2	6	Czerwiec	Poniedzialek	5
7	2011-06-06 00:00:00.000	2011	2	6	Czerwiec	Wtorek	6
8	2011-06-07 00:00:00.000	2011	2	6	Czerwiec	Sroda	7
9	2011-06-08 00:00:00.000	2011	2	6	Czerwiec	Czwartek	8
10	2011-06-09 00:00:00.000	2011	2	6	Czerwiec	Piatek	9
11	2011-06-10 00:00:00.000	2011	2	6	Czerwiec	Sobota	10
12	2011-06-11 00:00:00.000	2011	2	6	Czerwiec	Niedziela	11
13	2011-06-12 00:00:00.000	2011	2	6	Czerwiec	Poniedzialek	12
14	2011-06-13 00:00:00.000	2011	2	6	Czerwiec	Wtorek	13
15	2011-06-14 00:00:00.000	2011	2	6	Czerwiec	Sroda	14
16	2011-06-15 00:00:00.000	2011	2	6	Czerwiec	Czwartek	15
17	2011-06-16 00:00:00.000	2011	2	6	Czerwiec	Piatek	16
18	2011-06-17 00:00:00.000	2011	2	6	Czerwiec	Sobota	17
19	2011-06-18 00:00:00.000	2011	2	6	Czerwiec	Niedziela	18
20	2011-06-19 00:00:00.000	2011	2	6	Czerwiec	Poniedzialek	19
21	2011-06-20 00:00:00.000	2011	2	6	Czerwiec	Wtorek	20
22	2011-06-21 00:00:00.000	2011	2	6	Czerwiec	Sroda	21
23	2011-06-22 00:00:00.000	2011	2	6	Czerwiec	Czwartek	22
24	2011-06-23 00:00:00.000	2011	2	6	Czerwiec	Piatek	23

Na koniec należało wprowadzić więzły integralności:
ALTER TABLE STROZIK.FACT_SALES
ADD CONSTRAINT FK_TIMEID FOREIGN KEY (OrderDate) REFERENCES STROZIK.DIM_TIME(PK_TIME);

Zad. 2. Tworzenie kostki

Należy utworzyć projekt Analysis Services, w którym zostanie przygotowana kostka zawierająca utworzone wymiary (klienta, produktu, sprzedawcy i czasu) oraz tabelę faktów.

Używając Visual Studio utworzyć projekt typu Analysis Services Project

a) Dodać źródło danych, które będzie wskazywało na bazę danych, która przechowuje tabele faktów i wymiarów.

Utworzyć nowe połącznie do serwera bazy danych:

Podając nazwę serwera i baze danych, wktórej utworzone tabale wymiarów i faktów:

W zakładce Impersonation Information wybieramy "Use the service account":

W ustawieniach usług sprawdzamy użytkownika na którym pracuje usługa Analysis Services:

Dodajemy tego użytkownika jako administratora serwera bazy danych:

b) Utworzyć nowy widok źródła danych. Dodać wcześniej utworzone tabele.

Dodać wcześniej utworzone tabele. Sprawdzić działanie funkcji "Add Related Tables":

c) Utworzyć nową kostkę za pomocą asystenta

Wybrać utworzenie kostki na podstawie istniejących tabel:

Wybrać, utworzony w poprzednim punkcie, widok źródła danych. Jako tabelę faktów (Measure group tables) wybrać FACT_SALES:

Na stronie dotyczącej miar wybrać OrderQty, UnitPriceDiscount, Line Total. Zastanowić się nad użytecznością wybranych miar. Dlaczego nie wszystkie atrybuty tabeli FACT_SALES mogą być użyte jako miary?

Na stronie dotyczącej wymiarów wybrać wszystkie tabele z przedrostkiem DIM.

Po utworzeniu kostki dokonać edycji wymiarów (Solution Explorer -> Dimensions lub zakładka Cube Structure -> Dimensions).

Dla każdego z wymiarów zdefiniować potrzebne atrybuty i hierarchie dla wymiaru czasu. Przykładowo wymiar produkt powinien zawierać: Nazwę, Cenę, Kolor, Podkategorię i Kategorię.

Rozwiązanie:

Rozwiązanie projektu:

Miary kostki:

Wymiary kostki:

Edycja wymiaru czasu, hierarchia:

Widok źródła danych dla kostki:

Tabela FACT SALES zawiera dane numeryczne, które mogą być użyte jako miary, takie jak ilość sprzedanego towaru, cena, wartość sprzedaży, itp. Natomiast atrybuty nie numeryczne, takie jak nazwa produktu, nazwa klienta, czy data sprzedaży, nie mogą być używane jako miary, ponieważ nie mają wartości numerycznych, które można agregować, sumować, czy obliczać średnie. Zamiast tego, atrybuty te mogą być wykorzystane jako wymiary, czyli jako kategorie, po których można grupować dane i wykonywać na nich analizy. Na przykład, można zgrupować sprzedaż według nazwy produktu, daty, czy nazwy klienta, aby uzyskać statystyki sprzedaży dla tych wymiarów.

Zad. 3. Uruchomienie kostki

- a) Sprawdzić ustawienia projektu (Solution Explorer -> Nazwa projektu -> Properties).
- b) Sprawdzić ustawienia konfiguracji wdrożenia (Configuration properties -> Deployment -> Target) projektu - Server: [NAZWA], Database: Kostka01

c) Wdrożyć projekt (Menu Build -> Deploy).

- d) Przetworzyć kostkę (Przycisk Process).
- e) Sprawdź dostępność kostki w Analysis Services (SQL Server Management Studio/New Connection):

Rozwiązanie:

Konfiguracja wdrożenia kostki:

Status wdrożenia kostki:

Przetworzenie kostki:

Filip Strózik 260377

Dostępność kostki w SSMS:

Zad. 4. Przykładowe raporty

Połączyć się z programem MS Excel i przygotować 4 przykładowe raporty (tabele i wykresy przestawne), w których zostaną ujęte ciekawe zależności pomiędzy danymi.

Połączenie powinno być zbudowane do Analysis Services:

Data Connection Wizard

Select Database and Table

Select the Database and Table/Cube which contains the data you want.

Rozwiązania:

Raport 1:

Line Total Colu	umn Labels 🔻			
Row Labels ▼ F		М	Unknown	Grand Total
AU	1421810.924	172524.4511	9061000.584	10655335.96
CA	8503338.645	5874586.947	1977771.682	16355697.27
DE	2020983.7		2894307.348	4915291.048
FR	97649.00188	4509888.931	2644012.724	7251550.657
GB	441081.6362	3837927.188	3391677.221	7670686.045
US	23757913.56	29849887.64	9389789.511	62997590.71
Grand Total	36242777.47	44244815.15	29358559.07	109846151.7

Widać, że kraje leżące na kontynencie Ameryka północna mają większą ilość jakichkolwiek zaznaczeń płci. W Kanadzie sumarycznie więcej sprzedały kobiety niż mężczyźni w sklepie. W Niemczech możemy znaleźć brak informacji o sumie sprzedanej przez mężczyzn w sklepie. Dostępnych sprzedawców dla sklepu jest dość mała liczba, dlatego możemy się domyśleć, że pracownika płci męskiej w regionie DE po prostu nie ma.

Raport 2: Zestawienie ilości dokonanych zamówień na części składające się na budowę roweru w regionach Europy.

Order Qty	Column Labels 📧			
Row Labels	DE	FR	GB	Grand Total
Brakes	46	120	89	255
Chains	43	102	55	200
Cranksets	56	131	86	273
Forks		40	46	86
Handlebars	94	236	282	612
Mountain Frames	170	789	732	1691
Pedals	103	330	259	692
Road Frames	84	752	509	1345
Saddles	118	195	163	476
Tires and Tubes	1597	1816	2026	5439
Touring Frames	473	408	323	1204
Grand Total	2784	4919	4570	12273

Oprócz oczywistego, że bardzo dużo jest zamówień na opony i dętki, to można zauważyć, że region niemiecki ma z reguły mniej zamówień w każdej części rowerowej, no chyba, że ramy do rowerów trekkingowych, co mogłoby być odpowiadające ukształtowaniu terenu w samych Niemczech. Od razu widać, że Francja ma najwięcej zamówień na ramy do rowerów szosowych, co być może jest spowodowane sławnym, kultowym wyścigiem kolarskim Tour de France. Równie dużo jest zamówień na ramy do rowerów górskich, co może być spowodowane ukształtowaniem terenu oraz mnogością ścieżek górskich.

Raport 3: Zestawienie przedstawiające wybór koloru przedmiotu wraz z latami.

Widać, że dla początkowych lat czarny oraz czerwony, były głównymi wyborami klientów. Potem popularność koloru czerwonego spadała, a kolor żółty, niebieski i szarości zyskały. Co do wyborów klientów między rokiem 2013 i 2014 to tendencje się znacznie nie zmieniły tylko odnotowano ogólny spadek zamówień.

Raport 4:

Zestawienie ilości zamówień ze względu na Rok, Kwartał.

Row Labels	Order Qty
=2011	
± 2	966
⊕3	5270
±4	6652
=2012	
⊞1	8593
⊞ 2	21423
⊞3	23003
±4	15560
■2013	
±1	18055
⊞ 2	33320
⊞3	44704
±4	35697
=2014	
±1	38331
⊞ 2	23326
Grand Total	274900

Można zauważyć, że ilość zamówień do trzeciego kwartału 2013 roku miała tendencję wzrostową. Dość normlanym jest też, że kwartał drugi oraz trzeci czyli sezony rowerowe są kluczowymi kwartałami dla sklepu co widać na wykresie. Rok 2014 i dostępne tylko dwa pierwsze kwartały rozwiązują przyczynę wcześniejszych wniosków, że w roku 2014 sklep radził sobie gorzej. Okazuje się, że nie mamy dostępnych informacji o reszcie kwartałów dla tego roku. Fakt ten stawia historie sklepu w innym świetle.

Wnioski:

Wykonanie listy oraz przejście krok po kroku stanów z instrukcji pozwala na zaznajomienie się z procesem tworzenia kostki. Prawidłowe wykonanie poprzedniej listy pozwoliło na dość łatwą konfigurację kostki oraz jej uruchomienie.

Istnieje jedna wątpliwość co do typu atrybutów OrderDate i ShipDate dla Sales.SalesOrderHeader i wszystkich tabel wytworzonych podczas listy poprzedniej i aktualnej, które taki atrybut o takim typie jak DATETIME posiadają. Mimo, że w instrukcji była mowa typie INT przedstawiającej w pewien sposób informacje o dacie. Dość intuicyjnym pomysłem byłoby przerobienie typu na zwykły typ dat Date. Zaletą takiego rozwiązania byłaby możliwość pobierania części daty za pomocą operatora DATEPART(). W przypadku używania typu INT trzeba byłoby inaczej wydzielać interesujące nas informacje o dacie.

Tworzenie kostki pozwala na przetworzenie i przechowywanie danych w sposób zoptymalizowany pod kątem analizy. Kostki danych pozwalają na szybkie i skuteczne generowanie raportów i analiz biznesowych z dużych zbiorów danych. Warto zaznaczyć, że kostki są szczególnie przydatne dla dużych zbiorów danych, gdzie tradycyjne metody analizy, takie jak filtrowanie czy sortowanie, moga być bardzo czasochłonne.

Zdecydowano się wykonać część związaną z raportami przy pomocy Excel na samej maszynie wirtualnej. Było to spowodowane brakiem połączenia z lokalnego komputera do instancji serwisu. Być może było to spowodowane niepełną konfiguracją samego serwisu Analisys Services.

Same wrażenia z wykonywania raportów w Excel za pomocą połączenia się z usługą Analisys Services były lepsze niż wykonywanie raportów w Excel i Power BI przez zwykłe połączenie do bazy danych, ponieważ nie trzeba było pracować na wcześniej przygotowanych zapytaniach, połączenie do kostki pozwalało na większą elastyczność, a wcześniej zdefiniowane wymiary pozwalają lepiej dopasować dane do potrzeb raportu i uzyskać bardziej szczegółowe wyniki, co w połączeniu z zaawansowanymi funkcjami Excela pozwoliło na jeszcze bardziej rozbudowane analizy i wizualizacje danych.

Było to pierwsze "zetknięcie" się z kostką, mimo dość długiego procesu konfiguracji to końcowe efekty wydajnościowe oraz jakość danych były zdecydowanie lepsze niż przy korzystaniu z tradycyjnych baz danych. Kostka pozwalała na szybsze i bardziej efektywne wykonywanie zapytań, a zdefiniowane wymiary i hierarchie ułatwiały analizowanie danych z różnych perspektyw. Dzięki temu proces podejmowania decyzji był bardziej precyzyjny i oparty na rzetelnych informacjach. Mimo długiego procesu konfiguracji, zdecydowanie warto było zainwestować w stworzenie kostki danych.

Uwaga!

 Sprawozdanie, bez wniosków podsumowujących aspekt zagadnień analizowanych na zajęciach laboratoryjnych i zawartych w sprawozdaniu, jest automatycznie oceniane negatywnie!