Prova 1

1. Considerando a partição $P = \mathbb{N}$ e a função $f(x) = \log x$ no intervalo [1, n], pode ser afirmado que:

(a)
$$e^{n-1} n! \leq n^n e$$
.

(b)
$$e^n (n-1)! \leq n^n e$$
.

(c)
$$e^n n! \leq (n-1)^n e$$
.

(d)
$$e^n n! \leqslant n^{n-1} e$$
.

(e) Nenhuma das afirmações anteriores é correta.

2. Com relação ao limite $\lim_{n\to\infty}\frac{(n!)^{1/n}}{n}$ pode ser afirmado que:

(a) Existe e vale
$$2\sqrt{2}$$
.

(d) Existe e vale
$$\sqrt{2}/4$$
.

(e) Nenhuma das afirmações anteriores é correta.

3. Considere a função f definida como:

$$f(x) = x\sqrt{1-x^2} + 2\int_x^1 \sqrt{1-t^2} dt.$$

Com relação à função inversa $g = f^{-1}$ pode ser afirmado que:

(a)
$$g^2 - (g')^2 = 0$$
.

(b)
$$g^2 - (g')^2 = 1$$
.

(c)
$$q^2 + (q')^2 = 1$$
.

(d)
$$g^2 + (g')^2 = 0$$
.

(e) Nenhuma das afirmações anteriores é correta.

4. Com relação à função $f(n)=\int_{-\pi}^{\pi}\cos(nx)\cos(2x)\,dx$ definida para $n\in\mathbb{N}$ pode ser afirmado que:

(a) Atinge um valor mínimo mas não possui valor máximo.

(b)
$$f(n)$$
 é constante para todo $n \in \mathbb{N}$.

(c) Atinge um valor mínimo racional é possui um valor máximo irracional.

(d) Atinge um valor máximo mas não possui valor mínimo.

(e) Nenhuma das afirmações anteriores é correta.

- **5.** Sejam $n \in \mathbb{N}$ arbitrário mas fixo e g função integrável no intervalo $[-\pi, \pi]$. Com relação à função $f(a) = \int_{-\pi}^{\pi} [g(x) a \sin(nx)]^2 dx$ definida para $a \in \mathbb{R}$ pode ser afirmado que:
 - (a) f(a) é constante para todo $a \in \mathbb{R}$.
 - (b) Atinge um valor máximo mas não possui valor mínimo.
 - (c) Atinge um valor mínimo racional é possui um valor máximo irracional.
 - (d) Atinge um valor mínimo mas não possui valor máximo.
 - (e) Nenhuma das afirmações anteriores é correta.
- **6.** Com relação ao limite $\lim_{n\to\infty}\int_1^n\frac{e^x}{x^x}\,dx$ pode ser afirmado que:
 - (a) Não existe.
 - (b) Existe e seu valor é algum número positivo menor ou igual que 1.
 - (c) Existe e seu valor é maior que 1.
 - (d) Existe e vale zero.
 - (e) Nenhuma das afirmações anteriores é correta.
- 7. Com relação ao limite $\lim_{n\to\infty}\int_0^n e^{-px}\cos(ax)\,dx$ pode ser afirmado que:
 - (a) Existe para todo $p \in \mathbb{R}$ mas não para todo valor de a.
 - (b) Existe para todo $p \in \mathbb{R}$ e para todo $a \in \mathbb{R}$.
 - (c) Existe para uma quantidade finita de valores de a.
 - (d) Existe para uma quantidade infinita de valores de p.
 - (e) Nenhuma das afirmações anteriores é correta.
- 8. Considere a função $f(x) = \frac{\sin x}{1 \cos x}$. Seja g uma primitiva da função $\frac{f'}{f^2 + 1}$, tal que q(0) = 0. Com relação a esta primitiva q pode ser afirmado que:
 - (a) É uma função par com valores negativos ou zero.
 - (b) É uma função ímpar decrescente no conjunto dos números reais.
 - (c) É uma função ímpar com valores positivos no intervalo $(0, \infty)$.
 - (d) É uma função par decrescente no intervalo $(-\infty, 0)$.
 - (e) Nenhuma das afirmações anteriores é correta.
- 9. Considere a função $f(n) = 8 \int_0^n \sin^2(x^2) \cos^2(x^2) dx$, definida para $n \in \mathbb{N}$. Com relação ao limite $\lim_{n \to \infty} \frac{f(n)}{n}$ pode ser afirmado que:
 - (a) Existe, mas seu valor não é um número racional.
 - (b) Existe e vale 1.
 - (c) Não existe.

- (d) Existe e vale 0.
- (e) Nenhuma das afirmações anteriores é correta.
- 10. No link http://auil.net.br/iscool/tmp/figura-1.png tem uma figura que é obtida pela interseção de dois círculos de ráio r dispostos verticalmente, cada um deles tangente ao centro do outro. Note que a espessura do contorno foi exagerada para melhor visualização, mas deve ser considerada desprezível. Com relação à área fechada A representada em tal figura pode ser afirmado que:
 - (a) A é um número irracional, mas $A \frac{\sqrt{3}}{2}$ é racional.
 - (b) $\cos\left(\frac{A}{2r^2}\right) = \frac{\sqrt{3}}{2}$.
 - (c) sen $\left(\frac{A}{2r^2}\right) = \frac{\sqrt{3}}{2}$.
 - (d) O quociente $\frac{A}{r^2}$ é sempre racional, para todo $r \in \mathbb{R}$.
 - (e) Nenhuma das afirmações anteriores é correta.