Hessian Test

Lecture for 6/23

Review of Matrices: Eigenvectors

Let A be a matrix and v a vector

- If $Av = \lambda v$ and $v \neq 0$, then v is an eigenvector of A with eigenvalue λ
- Can find eigenvalues by solving $det(A-\lambda I) = 0$ for λ
 - After finding the values, solve $(A-\lambda I)v = 0$ to get vectors

Review of Matrices: Definiteness

- Matrices with $A^T = A$ are called symmetric
- Symmetric matrices with $v^TAv > 0$ for all $v \neq 0$ are positive definite
 - Negative definite if $v^T A v < 0$ for all $v \neq 0$
 - \circ Semidefinite if > and < are replaced with \ge and \le
- If all eigenvalues positive, then A is positive definite
- If all eigenvalues are <, \ge , \le 0, then neg, pos semi, neg semi resp.

Hessian Test

Consider a twice differentiable function $f(x_1, x_2, ..., x_n)$

- Let H be the n x n matrix whose (i, j) entry is $f_{x i x j}$
- H is the Hessian of f

Suppose x is a critical point of f

- If H(x) is positive definite, x is a local min
- If H(x) is negative definite, x is a local max
- If H(x) has negative and positive eigenvalues, x is a saddle point
- If H(x) is positive or negative semidefinite, no info

Derivation of Test

Other Methods

What happens if Hessian or 2nd Derivative Test inconclusive?

- Try approaching point along different directions
 - Same strategies as figuring out 2D limits
 - Will suggest which kind of point your critical point is
- If local extrema, prove your guess via inequalities

Practice Problems

Find and classify all critical points by any means necessary

- $f(x, y, z) = x^2 + y^2 + z^2 + xy + xz + yz + x + y + z + 1$
- $f(x, y) = x^4 y^4 4xy^2 2x^2$
- $f(x, y) = x^{2024} + y^{2026}$

The ends justifies the means.

~ Niccolo Machiavelli

Scratchwork