Homework 2 Solution

AI 539 - Machine Learning for Non-AI Majors Instructor: Alireza Aghasi

April 25, 2024

Q1. (a) We take n independent samples x_1, x_2, \ldots, x_n from the distribution:

$$f(x) = \frac{2x}{\lambda^2} \exp\left(-\left(\frac{x}{\lambda}\right)^2\right).$$

The goal is estimating the unknown parameter λ .

(a) Derive the maximum likelihood estimates of λ in terms of the samples x_1, x_2, \ldots, x_n . Notice that $\lambda \neq 0$, and you would need this assumption to estimate λ without too much work.

(b) Suppose that n = 3, and $x_1 = 1.35$, $x_2 = 2.76$, $x_3 = 3.12$. Evaluate your ML estimate $\hat{\lambda}$.

Solution. (a) The likelihood function is

$$f(x_1, \dots, x_n | \lambda) = \frac{2^n \prod_{i=1}^n x_i}{\lambda^{2n}} \exp\left(-\sum_{i=1}^n \left(\frac{x_i}{\lambda}\right)^2\right).$$

By taking the log of the likelihood function we get

$$L(\lambda) = \log (f(x_1, \dots, x_n | \lambda))$$

= $n \log 2 + \sum_{i=1}^{n} \log x_i - 2n \log \lambda - \sum_{i=1}^{n} \left(\frac{x_i}{\lambda}\right)^2$.

After taking a derivative we get

$$\frac{\partial L}{\partial \lambda} = -\frac{2n}{\lambda} + \frac{2}{\lambda^3} \sum_{i=1}^n x_i^2 = 0.$$

Since $\lambda \neq 0$, we can eliminate a λ from the equation and get

$$n = \frac{1}{\lambda^2} \sum_{i=1}^n x_i^2,$$

which gives

$$\hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}.$$

(b) By plugging in the values we get

$$\hat{\lambda} = 2.528.$$

Q2. We take n independent samples x_1, x_2, \ldots, x_n from the distribution

$$f(x) = \frac{\exp\left(-\frac{x-\alpha}{\beta}\right)}{\beta\left(1 + \exp\left(-\frac{x-\alpha}{\beta}\right)\right)^2}.$$

The goal is estimating the parameters α and β based on the observed samples x_1, x_2, \ldots, x_n . We would not be able to find closed-form expressions for the ML estimates of α and β , and need to consider a numerical minimization technique. Let's go through this task step by step.

(a) Formulate the likelihood function

$$f(x_1,\ldots,x_n|\alpha,\beta)=\ldots$$

$$f(x_1, \dots, x_n | \alpha, \beta) = \frac{1}{\beta^n} \prod_{i=1}^n \frac{\exp\left(-\frac{x_i - \alpha}{\beta}\right)}{\left(1 + \exp\left(-\frac{x_i - \alpha}{\beta}\right)\right)^2}.$$

(b) Formulate the negative log-likelihood function

$$L(\alpha, \beta) = -\log (f(x_1, \dots, x_n | \alpha, \beta)).$$

To estimate the ML estimates $\hat{\alpha}$ and $\hat{\beta}$ we can minimize the negative log likelihood function $L(\lambda, \alpha)$. For this purpose we decide to use a gradient descent scheme. Derive the expression for the gradient components below:

$$\frac{\partial L}{\partial \alpha} = \dots, \qquad \frac{\partial L}{\partial \beta} = \dots$$
 (1)

$$L(\alpha, \beta) = -\log\left(f(x_1, \dots, x_n | \alpha, \beta)\right) = n\log\beta + \sum_{i=1}^n \frac{x_i - \alpha}{\beta} + 2\sum_{i=1}^n \log\left(1 + \exp\left(-\frac{x_i - \alpha}{\beta}\right)\right).$$

Taking a derivative with respect to α gives

$$\frac{\partial L}{\partial \alpha} = -\frac{n}{\beta} + 2\sum_{i=1}^{n} \frac{\beta^{-1} \exp\left(-\frac{x_i - \alpha}{\beta}\right)}{1 + \exp\left(-\frac{x_i - \alpha}{\beta}\right)},$$

$$\frac{\partial L}{\partial \beta} = \frac{n}{\beta} - \frac{1}{\beta^2} \sum_{i=1}^{n} (x_i - \alpha) + 2\sum_{i=1}^{n} \frac{\frac{x_i - \alpha}{\beta^2} \exp\left(-\frac{x_i - \alpha}{\beta}\right)}{1 + \exp\left(-\frac{x_i - \alpha}{\beta}\right)}.$$

(c) Suppose that n = 5, and $x_1 = 0.30753$, $x_2 = 0.56678$, $x_3 = -0.25177$, $x_4 = 0.37243$, $x_5 = 0.26375$. Use the Matlab or Python 3D surface tools to plot $L(\alpha, \beta)$ as a function of α and β , in the following region:

$$0.2 \le \alpha \le 0.4$$
, $0.1 \le \beta \le 0.2$.

```
Solution. We use MATLAB to do this:
x = [.30753, .56678, -.25177, .37243,
                                          .26375];
n = length(x);
[alpha, beta] = meshgrid(linspace(0.2, .4, 100), linspace(0.1, .2, 100));
sumterm1 = 0;
sumterm2 = 0;
for i = 1:n
sumterm1 = sumterm1 + (x(i) - alpha)./beta;
sumterm2 = sumterm2 + log(1+exp(-(x(i) - alpha)./beta));
end
L = n*log(beta) + sumterm1 + 2*sumterm2;
mesh(alpha, beta, L)
xlabel('alph')
ylabel('beta')
                           0.18
                                                               0.4
                                                          0.35
                                                0.25
                                          0.2
```

(d) Again, suppose that n=5, and $x_1=0.30753, x_2=0.56678, x_3=-0.25177, x_4=0.37243, x_5=0.26375$. Pick a programming language of your choice and write up a gradient descent (GD) scheme using the gradient components you derived in (1). For your scheme set the gradient learning rate to $\eta=0.001$, and use the initial values $\alpha_0=2$ and $\beta_0=2$. Run the GD scheme for 1000 iterates, and report the final estimates of α and β . Also provide a plot showing the iterative values of α for the iterates from 1 to 1000. Provide a similar plot showing the iterative values of β for the iterates from 1 to 1000. Also attach your code.

```
Solution. The ultimate answer is \hat{\alpha} = 0.2921 and \hat{\beta} = 0.1483. Below is the MATLAB code:
close all
clear all;
x = [.30753, .56678, -.25177, .37243, .26375];
n = length(x);
grad = @(alpha,beta) [-n/beta+2*sum((exp(-(x-alpha)./beta)/beta)./...
(1+exp(-(x-alpha)./beta))); ...
n/beta-(sum(x-alpha))/(beta^2)+2*sum((exp(-(x-alpha)./beta).*...
(x-alpha)./(beta^2) )./(1+exp(-(x-alpha)./beta))) ];
% initialization
p = [2;2];
eta = 0.001;
alphIterate = zeros(1000,1);
betIterate = zeros(1000,1);
for i = 1 : 1000
alphIterate(i) = p(1);
betIterate(i) = p(2);
p = p - eta*grad(p(1),p(2));
end
%printing the answer
% the result is:
%p =
% 0.2921
% 0.1483
figure;
subplot(121)
plot(1:1000,alphIterate);title('alpha iterates')
subplot(122)
plot(1:1000,betIterate);title('beta iterates')
```


(e) Use an exact same setup as part (d), but this time in your gradient descent scheme use a momentum term of $\gamma=0.9$. Report the final estimates of α and β . Also provide a plot showing the iterative values of α for the iterates from 1 to 1000. Provide a similar plot showing the iterative values of β for the iterates from 1 to 1000. Comparing these plots with those in part (d), which scheme seems to have converged faster? Attach your code.

```
Solution.
close all
clear all;
x = [.30753, .56678, -.25177, .37243, .26375];
n = length(x);
grad = @(alpha,beta) [-n/beta+2*sum((exp(-(x-alpha)./beta)/beta)./...
(1+exp(-(x-alpha)./beta))); ...
n/beta-(sum(x-alpha))/(beta^2)+2*sum((exp(-(x-alpha)./beta).*...
(x-alpha)./(beta^2))./(1+exp(-(x-alpha)./beta)))];
% initialization
p = [2;2];
eta = 0.001;
gamma = 0.9;
theta = [0;0];
alphIterate = zeros(1000,1);
betIterate = zeros(1000,1);
for i = 1 : 1000
alphIterate(i) = p(1);
betIterate(i) = p(2);
theta = gamma*theta + eta*grad(p(1),p(2));
p = p - theta;
end
%printing the answer
% the result is:
%p =
% 0.2921
% 0.1483
figure;
subplot(121)
plot(1:1000,alphIterate);title('alpha iterates')
subplot(122)
plot(1:1000,betIterate);title('beta iterates')
```

Below is the MATLAB output plot. Based on the comparison of the plots with part (d), we clearly see that the scheme with momentum is faster.

