A Deep Learning approach to Estimate CERES Broadband Flux with 1km MODIS Pixels.

AES 690 - Project Update 2 - Mitchell Dodson

<u>Goal</u>: develop a data-driven deep learning model to characterize the relationship between EOS-MODIS' 36 spectral radiance bands, the sun/pixel/satellite viewing geometry, and the full-sky broadband radiative flux observed by the EOS-CERES instrument over a diverse set of regions.

- 1 Use the LARC downloader to acquire CERES SSF data over a series of desired regions and time periods.
- Select fields, restrict valid viewing geometry, and apply other constraints, then call get_ceres_swath.py, which extracts, subsets, and preprocesses CERES footprints, then groups them into individual overpasses per region and satellite. These are stored with their meta-info in a new pickle file.
- Select a series of MODIS bands to extract, and set file storage parameters in get_modis_swath.py, then run the script to download MxD021KM and MxD03 L1b granules from LAADS corresponding to each swath. Extract the desired bands in range of the CERES data, and combine the MODIS and CERES data for each overpass in a custom 'swath' HDF5.
- generate_samples.py loads several swath HDF5s concurrently, extracts CERES footprints and surrounding MODIS tiles, then calculates the CERES point spread function over each sub-domain. Samples from the loaded swaths' PSFs, MODIS/CERES data, and viewing geometry are interleaved and vielded as tensors.

Acquired regional data:

Using the described data pipeline, I acquired every third available EOS Terra and Aqua swath in the 3 years between Jan 1, 2018 and Dec 31, 2020, within the regional boundaries described below, for a total of about 2,600 overpasses, each of which contain about 300 individual samples on average.

Label			Avg	Std
lat			38.566	
		29.845		
		46.063		
swflux	90.989			120.906
lwflux		285.003		
				28.979
oct_l1		99.300		
pct_l2	0.000	93.300		23.803
l1_cod			12.805	
l2_cod	0.000	72.005		8.280
aer_land_pct				
aod_land	0.000	0.380	0.037	0.063
aer_ocean_pct	0.006			
aod_ocean	0.000		0.024	0.045
aod_ocean_small	0.000			0.028

Northeast United States

lat ∈ [34,43] lon ∈ [-69,-79]

Swath count: 532

			Avg	
		32.308		
swflux				
lwflux		291.400		33.949
	0.000			
l1_cod	0.119	88.985	7.904	
12_cod	0.000			7.609
aer_land_pct	0.000			
aod_land	0.000			
aer_ocean_pct	0.000			
aod_ocean	0.000			
aod_ocean_small	0.000			

Indonesia
lat ∈ [-5,5] lon ∈ [120,130]
Swath count: 493

(alk)				
Label			Avg	
lat		60.926	59.490	
lon				
	50.844			
swflux				
lwflux	183.409	252.280		15.006
pct_clr		76.016		19.179
pct_l1	1.941		60.437	28.288
pct_l2	0.000		14.198	20.830
l1_cod	1.684	71.662	17.545	13.079
l2_cod	0.000	54.584		8.809
aer land pct	0.008		5.602	7.379
aod land	0.000	0.242	0.043	0.056
aer_ocean_pct	0.000	32.833	1.176	4.748
aod_ocean	0.000		0.008	0.027
aod_ocean_small	0.000			

Alaska
lat ∈ [58,61] lon ∈ [-160,-154]
Swath count: 383

Label			Avg	
lat	34.040	37.989	36.052	
lon				
swflux	173.794			79.409
lwflux			242.395	20.083
pct_clr				
pct_l1				
	0.003			
l1_cod				10.614
l2_cod	0.000		4.084	
aer_land_pct				
aod_land	0.002		0.082	0.078
aer_ocean_pct	0.000	0.000	0.000	0.000
aod_ocean	0.000	0.000	0.000	0.000
aod_ocean_smal	l 0.000	0.000	0.000	0.000

Southeast United States

lat ∈ [34,38] lon ∈ [-90,-85]

Swath count: 356

			Avg	
				7.363
			38.904	1.502
swflux	150.927	661.060	345.650	113.011
pct_clr	1.460		41.651	
pct_l1	0.154	97.405		29.464
pct_l2	0.000	89.662		22.979
l1_cod				
l2_cod	0.000	61.636	3.812	
aer_land_pct	0.000			
aod_land	0.000	1.043	0.128	
aer_ocean_pct	0.000	0.000	0.000	0.000
aod_ocean	0.000	0.000	0.000	0.000
aod ocean small	0.000	0.000	0.000	0.000

Hindu Kush Himalayas
lat ∈ [32,38] lon ∈ [69,79]
Swath count: 520

				•
			Avg	
				0.910
			17.302	6.608
				110.928
lwflux		277.341	236.693	26.385
pct_clr		84.800	30.260	
pct_l1	1.094			
pct_l2	0.000	91.002		
l1_cod				
12_cod	0.000		4.526	8.378
aer_land_pct	0.179		16.845	
aod_land	0.002		0.135	0.122
aer_ocean_pct	0.000	0.000	0.000	0.000
aod_ocean	0.000	0.000	0.000	0.000

Amazon Rainforest

lat ∈ [-3,-8] lon ∈ [-65,-70]

Swath count: 305

Challenge: Point Spread Function

Equatorial geometry of the observation, and MODIS/CERES centroid offset schematic

Implementing the CERES point spread function (PSF) over the co-located MODIS domain has presented a major development challenge. The algorithm to do so is specified in CERES ATBD subsystem 4.4, which I vectorized and implemented in generate samples.py and geom utils.py.

One issue I encountered is that the analytic equation approximating the PSF (specified to the right) was producing a result with very negative values near the aft border of the oblong CERES centroid.

I found that the cause of the error was that the 'xi' angle in the formula is assumed to be in radians rather than degrees, despite having been bounded and scaled previously by values in degrees.

One related challenge that is still yet to be resolved is that the orientation of the MODIS grid centroid relative to the CERES footprint centroid is determined by the time derivative of CERES' cross-track scan elevation α (satellite viewing cone angle), which alternates between cross-track sweeps, as diagrammed by the figure to the right.

Despite being specified in the ATBD, the derivative quantity isn't included in the CERES SSF data product. Since the above geometry is entirely calculated from relative geodetic values, it also cannot be directly inferred from the data.

Corrected PSF

$$\begin{split} F(\xi) &= 1 - (1 + a_1 + a_2)e^{-c_1\xi} \\ &+ e^{-6.35465\xi}[a_1\cos(1.90282\xi) + b_1\sin(1.90282\xi)] \\ &+ e^{-4.61598\xi}[a_2\cos(5.83072\xi) + b_2\sin(5.83072\xi)] \\ \\ a_1 &= 1.84205 \qquad a_2 = -0.22502 \\ b_1 &= 1.47034 \qquad b_2 = 0.45904 \\ c_1 &= 1.98412 \end{split}$$

Empirical convolution equation (silently given in radians)

CERES' alternating scan direction

The next steps:

Data Source:

The data tensors yielded by generate_samples.gen_swaths_samples are structured as tuples: ((M, G, P), C), each containing B batch samples:

 $M := (B,W,W,F_{M})$ MODIS reflectance or brightness temperature in F_{M} bands

G := (B,1,1,F_G) Full-footprint viewing geometry F_G:=(sol_zen, sat_zen, rel_azi)

P := (B,W,W,1) 2D PSF probability distribution over the MODIS domain

 $C := (B,1,1,F_c)$ CERES footprint over the MODIS domain $F_c := (lw_flux, sw_flux)$

The generator also provides options for linear normalization, and for constraining the parameters and sources of the data it returns.

The full dataset includes observations from 2 different sensors, which were collected over 6 distinct regions having widely varying characteristics.

These statistical sub-populations may make the flux prediction significantly more complex, so I will train separate models using stratified sampling techniques on subsets of the data.

The basic model architecture consists of a sequence of 1D convolutions over the MODIS pixels to produce an independent latent representation of the radiance. The latent domain is concatenated with the viewing geometry (which is the same for all the pixels). Next, a second sequence of pixel-wise convolutional layers decodes the intermediate data to pixel-wise SW/LW predictions. Finally, the predictions are aggregated by a weighted sum over the PSF, and the loss is calculated with the result relative to the CERES footprints over the domain.

If time allows, I will experiment with applying the PSF aggregation to the latent grid before concatenating the resulting vector with the viewing geometry, and decoding with a simple multi-layer perceptron.

Since the entire model is pixel-wise, the full range of its predictions can be evaluated by modulating a single vector of input features. As such, it will also be interesting to see how predictions change with respect to the viewing geometry and MODIS spectral response.

Model training plan:

First, do a broad random search of model hyper--parameters on the simplest possible task (ie, a single region/season/satellite combination)

Then, using the most promising learning rate schedule and regularization method:

- Train a large and small model on each individual region, using only one satellite.
- Train a large and small model combining all swaths, seasons, and satellites.

Finally, evaluate each of the models on unseen data from all of the input sub-populations.

