Practical 4

Problem 1. Find A + B and $A \cdot B$, when

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & -2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 3 & -2 & 3 \end{bmatrix}$$

Do the matrices A, B commute (AB = BA)?

Problem 2. Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Find conditions for a, b, c, d which make A:

- (a) A diagonal matrix
- (b) A symmetric matrix
- (c) An upper triangular matrix
- (d) A skew-symmetric matrix $(A^T = -A)$

Problem 3. Let $A\mathbf{x} = \mathbf{0}$ be a homogeneous system with 3 equations and 3 unknowns. Find the rank of the matrix A, when the system has:

- (a) a unique solution.
- (b) infinite solutions of the form x = 2z, y = -z, z in \mathbb{R} .

Problem 4. Determine the rank of following matrices

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 1/2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

and of their matrix powers A^2 and B^2 .

Problem 5. (a) Is $(A - B)(A + B) = A^2 - B^2$ true for any $n \times n$ A, B matrices? Justify your answer.

(b) Show that AA^T is a symmetric matrix.

Problem 6. Let \mathbf{u}, \mathbf{v} be two linearly independent vectors in \mathbb{R}^2 and A the matrix with columns the vectors \mathbf{u}, \mathbf{v} . Which is the rank of A?