CWRU DSCI351-351M-451: Week01a-p R Intro, (CWRU, Pitt, UCF, UTRGV)

Profs: R. H. French, L. S. Bruckman, P. Leu, K. Davis, S. Cirlos

TAs: W. Oltjen, K. Hernandez, M. Li, M. Li, D. Colvin

06 September, 2022

Contents

2.1.3.0.1	Foundations, Practicum and Advanced	1
2.1.3.1 Syllabu		1
2.1.3.1.1	setup for r-code chunks	3
2.1.3.2 A Simp	le Overview of R	3
2.1.3.2.1	Intro to some R: Data Types	3
2.1.3.2.2	Simple Types, and their class	3
2.1.3.2.3	Simple Types - Vectors	3
2.1.3.2.4	Generating Vectors	3
2.1.3.2.5	Indexing, c is concatenate	4
2.1.3.2.6		4
2.1.3.2.7	R is Vectorized	4
2.1.3.2.8	R is Vectorized	5
2.1.3.2.9	NOTE: Random Number Generation	5
2.1.3.3 Data Fr	rames	5
2.1.3.3.1	Data Frames are fundamental	5
2.1.3.3.2	Data Frames can be indexed	6
2.1.3.3.3	Generate a Data Frame	6
2.1.3.3.4	Data Frames	6
2.1.3.3.5	Operations on Data Frames	7
2.1.3.3.6	These Operators Are Functions	7
2.1.3.4 Exampl	les in R	7
2.1.3.4.1	Example: Median Absolute Deviation	7
2.1.3.4.2	•	8
2.1.3.4.3	*	8
2.1.3.4.4	1 0	9
2.1.3.4.5	1 0 0	9
2.1.3.4.6		9
2.1.3.4.7	Example: Using Datasets:	0
2.1.3.4.8	Links	.1

2.1.3.0.1 Foundations, Practicum and Advanced

- Foundation Topics are the background fundamentals
- Practicum is real coding and data analysis
- Advanced are introductions to advanced topics

2.1.3.1 Syllabus

Day:Date	Foundation	Practicum	Reading	Due
w01a:Tu:8/30/22	ODS Tool Chain	R, Rstudio, Git		
w01b:Th:9/1/22	Setup ODS Tool Chain	Bash, Git, Slack, Agile	PRP4-33	LE1
w02a:Tu:9/6/22	What is Data Science	OIS:Intro2R, Git	PRP35-64	
w02b:Th:9/8/22	Summarizing Data	Intro2R	OIS1,2	
w02Pr:Fr:9/9/22			PRP65-93	451 Update1
w03a:Tu:9/13/22	Summarizing Data	Git, Rmds, Loops,	PRP94-116	LE2 LE1 Due
w03b:Th:9/15/22	Rand. Var. Normal Dist.	Data Analytic Style	OIS4	
w04a:Tu:9/20/22	Tidy Check Explore	Tidy GapMinder	EDA1-31	
w04b:Th:9/22/22	Inference, DSCI Process	Other Distrib. 7 ways	R4DS1-3	LE3 LE2 Due
w04Pr:Fr:9/23/22			EDA32-58	451 Update2
w05a:Tu:9/27/22	OIS4 Rand. Var.	EDA of PET Degr.	OIS5	
w05b:Th:9/29/22	OIS5 Found. of Infer.	Multivar Corr. Plot	R4DS4-6	
w05Pr:Fr:9/30/22				451 RepOut1
w06a:Tu:10/4/22	Pred., Algorithm, Model	Anscombe's Quartets	R4DS7-8	
w06b:Th:10/6/22	EDA stats, vis	Summ. Stats & Vis.	R4DS9-16	LE4 LE3 Due
w06Pr:Fr:10/7/22	Corr. Coeff. Pairs Plots			451 Update3
w07a:Tu:10/11/22	Confidence Intervals	Penguins	OIS6.1-2	PeerRv1 Due
w07b:Th:10/13/22	Midterm Rev.	Hypo.Test, Sampl. Dist.		
w08a:Tu:10/18/22	MIDTERM	EXAM		
w08b:Th:10/20/22	Programming & Coding	Coding Expect.		LE4 Due
w08Pr:Fr:10/21/22				451 Update4
Tu:10/24,25	CWRU	FALL BREAK	R4DS17-21	
w09b:Th:10/27/22	Cat. Inf. 1 & 2 propor.	Indep. Test,2-way tables	OIS6.3-4	LE5
w09Pr:Fr:10/28/22				451 RepOut2
w10a:Tu:11/1/22	Goodness of Fit, χ^2 test	t-tests 1&2 means	OIS7.1-4	
w10b:Th:11/3/22	Num. Infer, Cont. Tables	Stat. Power		
w10Pr:Fr:11/4/22				451 Update5
w11a:Tu:11/8/22	Sample & Effect Size	Stat. Power GGmap	OIS8	PeerRv2 Due
w11b:Th:11/10/22	Inf. 4 Regr, Test & Train	Curse of Dimen.	ISLR1,2.1,2	LE6 LE5 Due
w12a:Tu:11/15/22	Lin. Regr. Part 1	Residuals	OIS9	
w12b:Th:11/17/22	Lin. Regr. Part 2	Regr. Diagnostics		
w12Pr:Fr:11/18/22				451 Update6
w13a:Tu:11/22/22	Mult. Lin. Regr.	Var. & Mod. Selec.,	ISLR3.1	LE7 LE6 due
w13b:Th:11/24/22	Log. Regr.	GIS Trends	ISLR3.2	
w13Pr:Fr:11/25/22				451 RepOut3
w14a:Tu:11/23/22	Classificat., Sup. Lrning	Caret, Broom 4 modeling	ISLR4.1-3	
Th,Fr:11/24,25	THANKSGIVIING	Vacation		
w15a:Tu:11/29/22		Clustering		PeerRv3 Due
w15b:Th:12/1/22	Big Data Analytics	Dist. Comp., Hadoop		
w15SPr:Fr:12/2/22		Read Article by	Mirletz,2015	
w16a:Tu:12/6/22	Final Exam Review			
w15b:Th:12/8/22				LE7 due
Friday 12/12	SemProj	Final Report		SemProj4 due
Monday 12/19	FINAL EXAM	12:00-3:00pm	Nord 356	or remote

Figure 1: DSCI351-351M-451 Syllabus

• License: CC-BY-SA 4.0

```
options("digits" = 5)
options("digits.secs" = 3)
```

2.1.3.1.1 setup for r-code chunks

2.1.3.2 A Simple Overview of R

• We'll look in more detail, going forward

2.1.3.2.1 Intro to some R: Data Types

- Primitives (numeric, integer, character, logical, factor)
- Data Frames
- Lists
- Tables
- Arrays
- Environments
- Others (functions, closures, promises..)

```
x <- 1
class(x)
## [1] "numeric"
y <- "Hello World"
class(y)
## [1] "character"
z <- TRUE
class(z)
## [1] "logical"
as.integer(z)
## [1] 1</pre>
```

2.1.3.2.2 Simple Types, and their class

2.1.3.2.3 Simple Types - Vectors

• The basic type unit in R is a vector

```
x <- c(1,2,3)
x
## [1] 1 2 3
    x <- 1:3
    x[1]
## [1] 1
    x[0]
## integer(0)
    x[-1]
## [1] 2 3</pre>
```

2.1.3.2.4 Generating Vectors

• R provides lots of convenience functions for data generation:

```
rep(0, 5)
## [1] 0 0 0 0 0
seq(1,10)
## [1] 1 2 3 4 5 6 7 8 9 10
seq(1,2,.1)
## [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
seq(1,2,length.out = 6)
## [1] 1.0 1.2 1.4 1.6 1.8 2.0
```

2.1.3.2.5 Indexing, c is concatenate

• to see the help on c: help(c)

```
x <- c(1, 3, 4, 10, 15, 20, 50, 1, 6)
x > 10

## [1] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
which(x > 10)

## [1] 5 6 7
    x[x > 10]

## [1] 15 20 50
    x[!x > 10]

## [1] 1 3 4 10 1 6
    x[x <= 10]

## [1] 1 3 4 10 1 6
    x[x > 10 & x < 30]

## [1] 15 20</pre>
```

2.1.3.2.6 Functions, very easy to define

• Usually take code in scripts, make functions from them

```
square <- function(x) x^2
square(2)
## [1] 4
pow <- function(x, p=2) x^p
pow(10)
## [1] 100
pow(10,3)
## [1] 1000
pow(p = 3,10)
## [1] 1000</pre>
```

• Functions can be passed as data:

```
g <- function(x, f) f(x)
g(10, square)
## [1] 100
h <- function(x,f,...) f(x,...)
h(10, pow, 3)
## [1] 1000</pre>
```

2.1.3.2.7 R is Vectorized

• Example - multiplying two vectors:

```
mult <- function(x,y) {
   z <- numeric(length(x))
   for (i in 1:length(x)) {
      z[i] <- x[i] * y[i]
      }
   z
   }
mult(1:10,1:10)</pre>
```

[1] 1 4 9 16 25 36 49 64 81 100

2.1.3.2.8 R is Vectorized

• Multiplying two vectors 'the R way':

```
1:10 * 1:10
```

```
## [1] 1 4 9 16 25 36 49 64 81 100
```

• NOTE: R recycles vectors of unequal length:

```
1:10 * 1:2
```

[1] 1 4 3 8 5 12 7 16 9 20

2.1.3.2.9 NOTE: Random Number Generation

- R contains a huge number of
 - built-in random number generators
 - for various probability distributions

```
# Normal variates, mean=0, sd=1
rnorm(10)
```

```
## [1] -0.839434  0.656447  0.458536  0.359397 -0.051743 -1.446275 -2.066105

## [8] -0.581393 -0.622831  1.127231

rnorm(10, mean = 100, sd = 5)
```

[1] 99.730 106.243 100.606 106.878 100.956 98.014 100.600 98.513 93.416 ## [10] 103.956

• Many different distributions available

2.1.3.3 Data Frames

2.1.3.3.1 Data Frames are fundamental

- Data frames are the fundamental structure
 - used in data analysis
 - Similar to a database table in spirit
 - (named columns, distinct types)

```
d \leftarrow data.frame(x = 1:6, y = "AUDUSD", z = c("one", "two"))
```

```
## x y z
## 1 1 AUDUSD one
## 2 2 AUDUSD two
```

```
## 3 3 AUDUSD one
## 4 4 AUDUSD two
## 5 5 AUDUSD one
## 6 6 AUDUSD two
```

2.1.3.3.2 Data Frames can be indexed

• Data frames can be indexed like a vector or matrix:

```
# First row
d[1,]
## x y z
## 1 1 AUDUSD one
    # First column
d[,1]
## [1] 1 2 3 4 5 6
    # First and third cols, first two rows
d[1:2,c(1,3)]
## x z
## 1 1 one
## 2 2 two
```

2.1.3.3.3 Generate a Data Frame

- Let's generate some dummy data:
 - Using data.frame

```
generateData <- function(N) data.frame(time = Sys.time() + 1:N,
    sym = "AUDUSD",
    bid = rep(1.2345,N) + runif(min = -.0010,max = .0010,N),
    ask = rep(1.2356,N) + runif(min = -.0010,max = .0010,N),
    exch = sample(c("EBS","RTM","CNX"),N, replace = TRUE))

prices <- generateData(50)
head(prices, 5)</pre>
```

```
## time sym bid ask exch
## 1 2022-09-06 12:45:59 AUDUSD 1.2353 1.2359 RTM
## 2 2022-09-06 12:46:00 AUDUSD 1.2342 1.2348 RTM
## 3 2022-09-06 12:46:01 AUDUSD 1.2336 1.2347 EBS
## 4 2022-09-06 12:46:02 AUDUSD 1.2344 1.2364 CNX
## 5 2022-09-06 12:46:03 AUDUSD 1.2335 1.2360 RTM
```

2.1.3.3.4 Data Frames

• We can add/remove columns on the fly:

```
prices$spread <- prices$ask - prices$bid
prices$mid <- (prices$bid + prices$ask) * 0.5
head(prices)</pre>
```

```
## 1 2022-09-06 12:45:59 AUDUSD 1.2353 1.2359 RTM 0.00064997 1.2356 ## 2 2022-09-06 12:46:00 AUDUSD 1.2342 1.2348 RTM 0.00066595 1.2345 ## 3 2022-09-06 12:46:01 AUDUSD 1.2336 1.2347 EBS 0.00110140 1.2341 ## 4 2022-09-06 12:46:02 AUDUSD 1.2344 1.2364 CNX 0.00205366 1.2354 ## 5 2022-09-06 12:46:03 AUDUSD 1.2335 1.2360 RTM 0.00244609 1.2347
```

2.1.3.3.5 Operations on Data Frames

• Some basic operations on data frames:

```
names(prices)
## [1] "time" "sym" "bid" "ask" "exch" "spread" "mid"
  table(prices$exch)
##
## CNX EBS RTM
## 21 11 18
  summary(prices$mid)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.23 1.24 1.24 1.24 1.24
```

```
`(`
```

2.1.3.3.6 These Operators Are Functions

```
## .Primitive("(")
    (1 + 2)

## [1] 3
    `(` <- function(x) 42
    (1 + 2)

## [1] 42
    rm("(")</pre>
```

2.1.3.4 Examples in R

2.1.3.4.1 Example: Median Absolute Deviation

$$MAD(x) = median\left(\left|Y_i - \hat{Y}\right|\right)$$

```
\mathtt{mad}
## function (x, center = median(x), constant = 1.4826, na.rm = FALSE,
       low = FALSE, high = FALSE)
##
## {
       if (na.rm)
##
##
           x \leftarrow x[!is.na(x)]
##
       n <- length(x)
##
       constant * if ((low || high) && n\%2 == 0) {
           if (low && high)
##
##
                stop("'low' and 'high' cannot be both TRUE")
##
           n2 <- n\%/\%2 + as.integer(high)
           sort(abs(x - center), partial = n2)[n2]
##
##
##
       else median(abs(x - center))
## }
## <bytecode: 0x562591a6a7a8>
## <environment: namespace:stats>
```

2.1.3.4.2 Example: Simulating Coin Tosses

- What is the probability of
 - exactly 3 heads in 10 coin tosses
 - for a fair coin?

Using binomial identity:

$$\binom{n}{k}p^k(1-p)^{(n-k)} = \binom{10}{3}\left(\frac{1}{2}\right)^3\left(\frac{1}{2}\right)^7$$

```
choose(10,3)*(.5)^3*(.5)^7
```

[1] 0.11719

Using binomial distribution density function:

```
dbinom(prob = 0.5, size = 10, x = 3)
```

[1] 0.11719

Using simulation (100,000 tosses):

```
sum(replicate(100000, sum(rbinom(prob = 1/2, size = 10, 1)) == 3))/100000
```

[1] 0.11854

2.1.3.4.3 Example: Random Walk

• Generate 1000 up-down movements based on a fair coin toss and plot:

```
x <- (cumsum(ifelse(rbinom(prob = 0.5, size = 1, 10000) == 0,-1,1)))
plot(x, type = 'l', main = 'Random Walk')</pre>
```

Random Walk


```
randomWalk <- function(N)(cumsum(ifelse(rbinom(prob = 0.5, size = 1, N) == 0,-1,1)))
AUDUSD <- 1.2345 + randomWalk(1000)*.0001

plot(AUDUSD, type = 'l')</pre>
```

2.1.3.4.4 Example: Generating Random Data

2.1.3.4.5 Example: Reading Log Data From File

2.1.3.4.6 Example: Using already existing Datasets

• The famous 'Air passengers' dataset

plot(AirPassengers)

${\bf 2.1.3.4.7} \quad {\bf Example: \ Using \ Datasets:}$

• 'Anscombe Quartet':4 x-y datasets, same stats props, Yet quite different.

par(op)

2.1.3.4.8 Links

- $\bullet \ \ http://www.r-project.org$
- Rory Winston, for the Learning R intro
 - http://www.theresearchkitchen.com/archives/1017
- kdb+ is an online database of open time-series data
 - http://kx.com/kdb-plus.php