11. Suppose you have already stated that $\angle 6 \cong \angle 7$ and $\angle 7 \cong \angle 8$. What property of congruence justifies the conclusion that $\angle 6 \cong \angle 8$?

12. Write a proof in two-column form.

Given:
$$\overrightarrow{DC} \perp \overrightarrow{BD}$$
; $\angle 1 \cong \angle 2$

Prove: $\overrightarrow{BA} \perp \overrightarrow{BD}$

Algebra Review: Systems of Equations

Solve each system of equations by the substitution method.

Example 1 (1)
$$y = 5 - 2x$$

(2)
$$5x - 6y = 21$$

Solution Substitute
$$5 - 2x$$
 for y in (2):

$$5x - 6(5 - 2x) = 21$$

$$17x - 30 = 21; x = 3$$

Substitute 3 for x in (1):
$$y = 5 - 2(3) = -1$$

The solution is x = 3, y = -1.

1.
$$y = 3x$$

 $5x + y = 24$

2.
$$y = 2x + 5$$

 $3x - y = 4$

$$3. \ x = 8 + 3y \\ 2x - 5y = 8$$

4.
$$3x + 2y = 71$$

 $y = 4 + 2x$

5.
$$4x - 5y = 92$$

 $x = 7y$

6.
$$y = 3x + 8$$
 $x = y$

7.
$$8x + 3y = 26$$

 $2x = y - 4$

$$8. x - 7y = 13$$
$$3x - 5y = 23$$

$$9. \ 3x + y = 19 \\
2x - 5y = -10$$

Solve each system by the method of addition or subtraction.

Example 2 (1)
$$3x - y = 13$$

(1)
$$6x + 15y = 90$$

(2) $6x - 14y = 32$

$$(2) \ 4x + y = 22$$

Solution

Add (1) and (2):

Solution

Subtract (2) from (1): 29y = 58; y = 2

7x = 35; x = 5

Substitute 5 for x in (2): 4(5) + y = 22; y = 2

Substitute 2 for y in (1):

6x + 15(2) = 90; x = 10

The solution is x = 10, y = 2.

The solution is x = 5, y = 2.

10.
$$5x - y = 20$$

11.
$$x + 3y = 7$$

 $x + 2y = 4$

$$3x + y = 12$$

14.
$$8x - y = 17$$

12.
$$3x - 2y = 11$$

 $3x - y = 7$

13.
$$7x + y = 29$$

 $5x + y = 21$

15.
$$9x - 2y = 50$$

 $6x - 2y = 32$

16.
$$7y = 2x + 35$$

 $3y = 2x + 15$

17.
$$2y = 3x - 1$$

 $2y = x + 21$

18.
$$19 = 5x + 2y$$

 $1 = 3x - 4y$