Christian B. Mendl, Irene López Gutiérrez, Keefe Huang

Tutorial 2 (Dirac notation and inner products)

The Dirac notation (also called bra-ket notation), which you have seen being used in the lecture, uses "kets", such as $|\psi\rangle$, to represent a quantum state. For our purposes, a ket is always a complex (column) vector. ψ is usually the actual vector itself, or can be an identifier or index for the quantum state, as for $|0\rangle$ and $|1\rangle$.

The corresponding "bra" $\langle \psi |$ is then the conjugate-transposed $|\psi \rangle$, i.e., a row vector with complex-conjugated entries of $|\psi \rangle$. A motivation for this notation is that "bras" are linear maps from quantum states to complex numbers via the inner product. Namely, given $\phi \in \mathbb{C}^n$:

$$\langle \phi | : \mathbb{C}^n \to \mathbb{C}, \quad |\psi\rangle \mapsto \langle \phi | \psi\rangle = \sum_{j=1}^n \phi_j^* \psi_j.$$

- (a) Write down the matrix representation of the following expressions:
 - $|0\rangle\langle 1|$
 - $|0\rangle\langle 0| + |1\rangle\langle 1|$
 - $|+\rangle \langle 0|$, with $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- (b) Express the Hadamard gate H using Dirac notation in the computational basis (i.e. $\{|0\rangle, |1\rangle\}$).
- (c) Given the qubit state $|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$, compute $H|\psi\rangle$ using only the bra-ket notation.
- (d) For any $\psi, \phi \in \mathbb{C}^n$ and $A \in \mathbb{C}^{n \times n}$, verify that

$$\langle \phi | A \psi \rangle = \langle A^{\dagger} \phi | \psi \rangle,$$

with $A^{\dagger} = (A^*)^T$ denoting the conjugate transpose (adjoint) of A.

(e) Prove that unitary matrices are norm-preserving, i.e., $||U\psi|| = ||\psi||$ for all unitary $U \in \mathbb{C}^{n \times n}$ and $\psi \in \mathbb{C}^n$. Hint: Use that $||\psi||^2 = \langle \psi | \psi \rangle$ and part (d).

Solution

(a) Using the column and row vector forms leads to

$$\begin{split} |0\rangle \left\langle 1| &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \\ |0\rangle \left\langle 0| + |1\rangle \left\langle 1| &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 \quad \text{(identity matrix)}, \\ |+\rangle \left\langle 0| &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}. \end{split}$$

(b) Recall that the Hadamard gate is defined as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

We can re-write this in bra-ket notation as

$$H = \frac{1}{\sqrt{2}}(|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1|).$$

(c) Here we can use the fact that $|0\rangle$ and $|1\rangle$ form an orthonormal basis, and therefore: $\langle a|b\rangle=\delta_{ab}$ for $a,b\in\{0,1\}$. Thus

$$H |\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 0| - |1\rangle \langle 1|) \cdot \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$
$$= \frac{1}{2} (|0\rangle + |1\rangle + |0\rangle - |1\rangle) = |0\rangle.$$

¹In general, quantum states can also be complex-valued functions (e.g., electronic orbitals of atoms), but these will not play a role in this course.

For comparison, the equivalent vector notation for the same operation reads

$$H |\psi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

(d) Using the definition of the inner product and the index notation for a matrix-vector product, we can write

$$\langle \phi | A\psi \rangle = \sum_{j=1}^{n} \phi_j^* \sum_{k=1}^{n} A_{jk} \psi_k = \sum_{j,k=1}^{n} \phi_j^* A_{jk} \psi_k.$$

Now, note that $A_{jk}=(A^\dagger)_{kj}^*$ which we can use to rewrite the above expression as

$$\langle \phi | A \psi \rangle = \sum_{j,k=1}^{n} (A^{\dagger})_{kj}^{*} \phi_{j}^{*} \psi_{k} = \langle A^{\dagger} \phi | \psi \rangle.$$

(e) Using our result from part (d) and that $U^{\dagger}U=I$ by definition of a unitary matrix,

$$\|U\psi\|^2 = \langle U\psi|U\psi\rangle = \langle U^\dagger U\psi|\psi\rangle = \langle \psi|\psi\rangle = \|\psi\|^2.$$

This means that $||U\psi|| = ||\psi||$.