计算机软件基础

主讲教师: 曾璇、朱恒亮、赵文庆

复旦大学微电子学院 CAD研究室

▶ 联系方式

主讲教师: 微电子学系CAD研究室

教师	办公室	电话	Email
曾璇	张江微电子楼329室	51355224	xzeng@fudan.edu.cn
朱恒亮	张江微电子楼319室	51355382	hlzhu@fudan.edu.cn
赵文庆	张江微电子楼331室	51355225	wqzhao@fudan.edu.cn

辅导老师: 微电子学系CAD研究室研究生

辅导老师	办公室	电话	Email
李文松	微电子楼306室	13122357991	16210720072@fudan.edu.cn
刘佳琳	微电子楼306室	13122391632	16210720076@fudan.edu.cn
陈德政	微电子楼306室	18817875776	16110720008@fudan.edu.cn
姜熠阳	微电子楼306室	18818265235	yiyangjiang16@fudan.edu.cn

▶课程性质

专业基础课(必修课) 电子类本科生计算机软件系列课程

▶课程内容

软件工作环境(Unix/Linux系统) C语言及程序标准 数据结构

Technology is Opening the World

FIRST INTEGRATED CIRCUIT BY J. S. KILBY
(US Patent 3,138,763 filed Feb. 1959, granted 1964)

FIRST MONOLITHIC IC BY R. N. NOYCE (US Patent 2,981,877 filed July 1959, granted 1961)

>Moore's Law

And Now....

1961 - 2011 A 100,000,000X Improvement...

Apollo Guidance Computer, ~100 Microns, MIT

1961 - 1981A 10,000X Improvement...

300 DMIPS

Alpha 21064,

0.75 Microns

S-1 Supercomputer,

Itanium, 180 Nanometers, Intel

4004, 10 Microns, Intel

EDA Back Then...

Ivy Bridge, 22 Nanometers, Intel

>工艺技术牵引

© R.A. Rutenbar 2005 Slide 4

> 集成电路简介

▶集成电路:晶体管+互连线

▶集成度:数亿晶体管

▶高速度: 数个GHz

▶制造工艺:7纳米

第8层

第3层

第2层

第1层

Smart Evolution With

▶半导体基因测序芯片Ion Torrent(Life Science)

半导体薄硅芯片

感应器直接检测测序反 应释放的H+离子, 无需 其它信号转化步骤

芯片上带有无数个小孔, 各自独立形成无数个微反 应体系

TCGTACC...

迄今为止,全球仅美国Ion Torrent一家公司实现了基于大规模集成电路CMOS技术的半导体基因组测序技术的产业化,该公司于2010年12月推出第一代的半导体基因组测序芯片和装备,在不到三年的时间内,获得了令人瞩目的技术和商业成功,引发了全球近十家跨国半导体或生物医药企业的竞相大规模投入。

▶SoC (System on Chip) 设计流程

➤SOC 设计流程

SOC: System On Chip

指标

设计

A 100,000,000X Improvement...

The Role of EDA & IP

Electronic

Smart Everything

Design

Increasingly Complex

Automation

More Sophisticated

▶课程内容

软件工作环境 C语言及程序标准 数据结构

>授课方式

课堂讲授 课堂答问及讨论 习题 上机实习

▶讲义下载

复旦大学网络课堂 elearning.fudan.edu.cn

> 教材

《UNIX和计算机软件技术基础》

《补充教材与习题集》

《补充教材》(答案)

续一,续二,续三

多媒体讲义打印版:

每周发放一份

>考评方法(暂定)

平时(作业,上机,上课):10%

考试(期中+期末):

> 习题及上机实习

习题

每周布置一次,次周上课交作业本(第3节下课到第4节课之间,过时不候)

上机实习

- ▶ 每周四、周五下午8-9节,上机环境为Linux操作系统
- 地点: 张江行政楼313机房
- 上机内容:

(上半学期) Linux操作系统及shell编程

(下半学期) C语言及数据结构编程

《计算机软件基础: 多媒体讲义》

		目 录					
习题集							
习题	第一章 排	操作系统及 UNIX Shell	E-1				
习题	第二章 し	JNIX 系统的软件开发工具	E-2				
习题	第三章 🕻	C语言及编程规范	E-17				
习题	第四章 数	数据结构	E-25				
		(续一) 操作系统及 UNIX Shell UNIX 系统的软件开发工具	K1-1 K1-4				
习题智	答案 第三章	(续二) C 语言及编程规范	K2-1				
习题智	答案 第四章	(续三) 数据结构	K3-1				

《计算机软件基础》

补充讲义与习题集

Version 3.1

复旦大学 微电子学系 CAD 研究室 赵文庆 曾 璇 王伶俐 陶 俊 朱恒亮 2012年1月 《计算机软件基础》 补充讲义与习题集(续一)

习题答案

第一章 操作系统及 UNIX Shell 第二章 UNIX 系统的软件开发工具

Version 3.1

复旦大学 微电子学系 CAD 研究室 起文庆 曽 璇 王伶俐 陶 俊 朱恒亮 2012年1月

《计算机软件基础》 补充讲义与习题集(续二)

习题答案

第三章 C语言及程序标准

Version 3.1

复旦大学 徽电子学系 CAD 研究室 赵文庆 曾 璇 王伶俐 陶 俊 朱恒亮 2012年1月 《计算机软件基础》 补充讲义与习题集(续三)

习题答案

第四章 数据结构

Version 3.1

复旦大学 微电子学系 CAD 研究室 赵文庆 曾 璇 王伶俐 陶 俊 朱恒亮 2012年1月

>课程内容设置

- 一、软件工作环境
 - > 操作系统
 - ▶ UNIX/Linux操作系统
 - **▶ Shell命令**
 - > Shell编程
 - ➤ B Shell/C Shell/Bash
 - ➤ UNIX/Linux软件工具
 - > vi
 - > sed
 - > awk
 - **make**
 - > SVN

二、C语言及程序标准

- > 基本问题
- > 指针
- > 结构和联合
- > 函数
- > 文件操作
- ➤ 语言和shell的通信
- > 程序标准化

三、数据结构

- > 线性表
- > 栈和队列
- > 树、二叉树
- **>**图

第一章 操作系统

本章主要内容

- 1.1 什么是操作系统
 - 1.2 操作系统的分类

第一章 操作系统

本章主要内容

1.1 什么是操作系统

- > 操作系统定义
- > 操作系统的发展史
- > 操作系统的流派
- > 工业主流的操作系统

1.2 操作系统的分类

▶1.1 什么是操作系统

▶计算机系统的组成

▶操作系统(简称OS)

用户与计算机(硬件与软件)的中介人(界面,接口,管理员)

- ➤ 对用户而言 通过OS来使用计算机的软硬件资源,操作简便亲和
- 对计算机和管理人员而言通过OS来面对用户的要求,合理组织计算机的工作流程,充分利用和发挥计算机的软硬件资源,提高计算机的效率。

▶操作系统的发展史

▶早期的计算机时代

没有操作系统 使用数据卡片或打孔纸输入程序和数据 使用控制台面板的按键启动计算机

阿兰.特宁, 1942年

1946年2月15日 「古 Flactronic Numeri

ENIAC是电子数值积分计算机(埃尼阿克,<u>E</u>lectronic <u>N</u>umerical <u>Integrator And Computer</u>)的缩写。

▶操作系统的发展史

- ▶大型机时代 每一台新的机器都会配备一套新的操作系统
- ▶小型机时代 小型机和UNIX操作系统的崛起
- ▶ 个人计算机(PC)时代 Apple, DOS, Windows, Linux
- ▶手机、PDA的兴起 用手机的人数超过用电脑的人数,市场巨大

▶操作系统流派

>操作系统起源

UNIX=> 1969, Bell Labs(贝尔实验室),

1983年度的图灵奖获得者

UNIX之父 肯尼思 汤普森 K. Thompson (美国科学院和美国工程院院士) 1970年在PDP-7上用汇编语言实现了UNIX

UNIX之父 丹尼斯·里奇 D. Ritchie 1968~1969年参与了 分时操作系统Multics的设计

>操作系统流派

>操作系统起源

DOS => 1973, Apple(苹果电脑), 加里 基尔代尔(Gary Kildall) Mac OS => 1978, Apple(苹果电脑), 杰夫 拉斯金(Jef Raskin) Windows=>1981, Microsoft(微软), 比尔 盖茨(Bill Gates) Linux=> 1991, 赫尔辛基大学生, 李纳斯 托沃兹(Linus Torvalds)

DOS之父 加里 基尔代尔 Gary Kildall

苹果电脑Mac先父 MicroSoft之父 杰夫 拉斯金 Jef Raskin

比尔 盖茨 Bill Gates

Linux之父 李纳斯 托沃兹 **Linus Torvalds**

▶主流的操作系统

UNIX的基本版本: System V(AT&T), BSD4.2(Berkeley)

UNIX的商业版本: SUNOS(Sun Microsystems),

Solaris(Sun Microsystems),

HPUX(HP, Hewlett Packard),

Aix(IBM), ...

>主流的操作系统

Linux=> RedHat, Debian, Slackware, SuSE, Ubuntus, Fedora 红旗(Redflag), 网虎, ...

>主流的操作系统

Mac OS => 1978, Apple Macintosh(苹果电脑Mac)

Windows => 1981, Microsoft

Windows 1.0, ..., Windows 2000, Windows XP, Windows Vista, Windows 7, Windows 8, Windows 10...

>主流的操作系统

IOS

WinCE

Android

第一章 操作系统

本章主要内容

1.1 什么是操作系统

1.2 操作系统的分类

- 1.2.1 实时操作系统
- 1.2.2 作业处理操作系统
- 1.2.3 批处理操作系统
- 1.2.4 分时操作系统
- 1.2.5 其他类型的操作系统
- 1.2.6 工业界的主流操作系统

▶1.2 操作系统的分类

▶ 1.2.1 实时操作系统(Real Time)

对随机发生的外部事件及时给出响应(采集现场信息,在限定时间内给出处理)

▶特点

- > 及时性强
- ▶高可靠性
- > 简单的交互性

> 典型的实时操作系统分类

- > 过程控制操作系统
- > 信息查询操作系统
- > 事务处理操作系统

- ➤(1) 过程控制OS (Process Control System)
- ▶ 特点: 系统反应速度足够快,相当于瞬时完成;工作安全可靠,极少人工干预
- ▶ 应用: 1.工业过程控制(炼钢等)
 - 2.军事(导弹控制等)
 - 3.太空技术

• • • • •

- ➤(2) 信息查询OS (File Interrogation System)
- > 特点: 配大型数据库(经过合理组织的大量数据),迅速作答
- ▶ 应用: 1.情报检索
 - 2.库存查询
 - 3.电话问讯

• • • • •

▶(3) 事务处理OS (Transaction Processing System)

▶特点:

用户存储信息;根据用户的申请,及时更新系统中的文件或数据库中的信息。要求保密性,并发处理,高可靠性和信息查询OS比较:需要及时更新系统数据。

- ▶ 应用: 1.购票
 - 2.定货
 - 3.银行业务
 - 4.股市交易
 - 5.复旦选课

0 0 0 0 0

▶1.2 操作系统的分类

▶1.2.2 作业处理操作系统

> 特点

以用户提交的作业为处理对象,没有严格的时间响应限制; 允许多个用户同时运行多个作业; 合理安排用户作业在系统运行,提高计算机效率; 及时性弱,交互性强。

➤ 作业(Task / Job)

定义:用户设计的可在计算机中运行的程序单位称为作业,一段源程序经编译后成为作业

▶作业在计算机中有四个阶段

从用户提交作业后到作业完成,由操作系统控制作业的行进。

- ▶ 提交阶段 用户把准备好的目标文件、数据以及如何运行的命令交给系统。
- ▶后备阶段 系统接受用户作业,将其安排在硬盘上,作为后备作业。

▶运行阶段

根据系统资源的忙闲程度,以及用户作业的要求和特点,及时将某些作业调入内存运行,并分配给相应的软硬件资源。

▶完成阶段

作业运行完毕,从内存退出。操作系统释放该作业所占有的资源,通知用户其作业已完成,并给出运行结果。

▶进程(Process)

处于运行状态的作业称为进程,一个作业可以被多次运行,由此将产生多个进程,分别处于不同的状态。

>进程的状态和转换

一般来说,作为处于运行阶段作业的进程,已经被装载到内存中,而要使作业运行,还必须占有CPU。因此,一个进程可以有三种状态(status),即就绪状态、执行状态或者封锁状态。在某个时刻,一个进程必定处于这三种状态之一,并且在操作系统的控制下相互转换。

- ➤ 就绪状态(ready) 各种条件均已准备完毕,等待占有 CPU而执行进程。
- ➤ 执行状态(executive) 占有CPU,执行作业中规定的指令。
- ➤ 封锁状态(block) 由于某种原因,无法占有CPU而处于 封锁状态,例如要进行I/O操作等。

>进程管理

调入内存:作业进入运行阶段,创建进程,并且处于就绪状态。调入(就绪→执行):进程被选中,占有CPU,执行进程。 剥夺(执行→就绪):进程执行的时限到,回到就绪状态,等待下一次调入。

▶进程管理

封锁(执行→封锁):由于执行进程的条件不能满足或者等待某个事件,例如需要转到执行I/O操作,由执行状态转到封锁状态。

解除封锁(封锁→就绪): 封锁条件已解除, 转到就绪状态, 等待调入。

结束:进程执行完毕,退出内存,转入僵死状态,作业进入完成阶段。

>作业和进程的关系

- ➤ 在单道程序的批处理OS中,作业和进程是一一对应的, 作业调度和进程调度可不加区分。
- ➤ 在多道程序的作业处理OS中,作业调度和进程调度是两个概念,一个作业可分别产生多个进程,而多个用户又可同时提交各种相同或不相同的作业。

>作业和进程的关系

- ▶进程控制块(Process Control Block, PCB, 或称PCB表)
 - >作业和进程的一个重要区别在于作业是静态的,进程是动态的。
 - ▶作业的静态表现为作业由目标文件、数据和运行命令所组成, 它们在作业的各个阶段,内容是不变的。
 - ▶当一个作业开始运行时,系统将创建一个进程,并且加上一个进程控制块,也就是说进程等于作业加进程控制块。一个作业每运行一次,就可以创建一个进程,因此一个作业可以创建多个进程。
 - ▶进程控制块用于记录进程的各种特性,包括作业名,进程名, 优先级,进程处于何种状态,进程占有资源的情况等。
 - ▶由于进程控制块的作用不仅仅用来识别进程,其内容是在不断变化的,因此称进程是动态的。

作业处理操作系统可以分为两类: 批处理操作系统和分时操作系统。

▶1.2.3 批处理操作系统

- > 基本特性
- ▶ 接受一系列用户提交的作业和数据,形成后备作业流,根据 某种作业调度算法,将后备作业逐个调入内存运行,待运行 结束,交给用户。
- > 在提交作业后到完成之间,用户无法干预作业的运行,
- ▶ 即使在用户已知出错的情况下也难以中止。就象批改学生的 作业本
- ▶ 特点:
 - ▶优点:作业控制的自动化程度高,资源分配合理,高吞吐率,高利用率
 - ▶缺点:不易干预

▶1.2.3 分时操作系统 Time Sharing

> 基本特性

➤ 将CPU运行的时间分成若干个时间片,例如一秒钟分成几十个时间片(tick),各进程轮流使用CPU,当一个进程在CPU中的时间片的时限已到,则不管其是否要等待I/O,还是可以继续占有CPU,都将转换到就绪状态,让位给另一个进程。由于计算机的速度足够快,可以使每个进程的用户感觉不到有间歇的时间。

> 分时系统的三大特点

- ▶ 多路性 宏观上讲,可以有多个进程同时在CPU中执行,即有多个用户在同时使用计算机
- >交互性 用户可随时进行交互操作,包括中止
- ▶独占性 用户总觉得似乎只有他一人在使用计算机

▶1.2.5. 其他类型的操作系统

> 现代操作系统

实际的操作系统往往兼有多种类型操作系统的特点。主要采用分时系统,并且具有实时和批处理的特点。

- > 按照计算机结构分类
 - ➤ 微机OS
 - > 多处理机OS
 - ➤ 分布式OS
 - 网络操作系统学校,公司非常普遍
 - ▶ 嵌入式操作系统 用于嵌入式系统

>小结

- ▶ 操作系统: 用户和计算机的界面
- **➢ OS**分类

实时OS ---- 过程控制OS 作业处理OS ---- 批处理OS

---- 信息查询OS

---- 分时OS

---- 事务处理OS

- ▶ 作业处理OS
 - ▶作业 四阶段:提交、后备、运行、完成;
 - ▶进程 三状态:就绪、运行、封锁;调度算法
 - ➤ 批处理OS 系统控制作业,用户无法干预作业运行
 - ➤分时OS及分时概念
 - 三大特点: 多路性、交互性、独占性

>作业

- ▶习题 E-1 1-1, 1-3, 1-4
- ※C语言编程练习 E-16: 3-4(每周至少完成3题)
- ▶上机课内容:
- 1,根据上机实习指南一,熟悉Linux系统(Vmware虚拟机),操作Unix/Linux命令
- 2,完成1后可自由进行编程练习 E-16: 3-4 地点:张江行政楼313机房,时间:15:30-17:00

>课程自学要求

> 按照C语言标准的要求编程

自学教材第221页3.8节: "C语言编程规范示例"。

▶ 复习和自行练习C语言编程

《补充教材》E-16页:

3-4. 要买一批文件柜,已知有4屉、6屉和9屉三种规格,单价分别为20元、25元和30元。若每种规格至少买1个,抽屉的总数为100个。请编程计算出各种方案及方案总数。

[函数实现方法限定]:方法A,方法B,方法C,三种实现方法。

[数据类型定义限定]:方法1到方法7,七种定义方法。

[编程方案共17种]:

A-1, A-2, A-3, A-4, A-5, A-6, A-7

B-3, B-4, B-5, B-6, B-7

C-3, C-4, C-5, C-6, C-7

要求每周完成至少3种方案的编程,4周内完成。

