

Esperanaça da duração de um passeio aleatório simples

Fórmula deduzida.

Sabemos que a esperança da duração de um passeio aleatório simples com início em $S_0=a$ e barreira superior em N é dada por

$$E(T_a) = \begin{cases} a(N-a), & p=q=1/2 \\ \frac{a}{q-p} - \frac{N}{q-p} \left(\frac{1-(q/p)^a}{1-(q/p)^N}\right), & p \neq q \end{cases}$$

Fórmula da aproximação

Seja X a variável aleatória que representa os passos possíveis em determinado instante de um passeio aleatório. Para um passeio simples, tomaria a seguinte forma:

$$X = \begin{cases} 1, \text{ Com probabilidade } p \\ -1, \text{ Com probabilidade } q = 1 - p \end{cases}$$

Então, podemos aproximar a esperança de duração de um passeio aleatório iniciado em a com teto $\mathcal{N}(E(T_a))$ por:

$$E(T_a) \approx \begin{cases} \frac{N-a}{E(X)}, E(X) > 0 \\ \frac{a}{|E(X)|}, E(X) < 0 \end{cases}$$

Simulaçoes

Vamos gerar 10 mil passeios em inícios diferentes (10, 30, 50, 70, 90) e confirmar a acurácia da fórmula quando comparada à Esperança real:

5×6 DataFrame

Row			Probabilidade Float64		Esperanca Float64	-
1	10	100	0.6	440.262	450.0	450.0
2	30	100	0.6	351.069	350.0	350.0

3	50	100	0.6	251.378	250.0	250.0
4	70	100	0.6	149.159	150.0	150.0
5	90	100	0.6	49.8668	50.0	50.0

Justificativa

Diferentemente da esperança teórica dessa duração, podemos usar a aproximação para estimarmos durações de passeios mais complexos, como os com os passos:

$$X = \begin{cases} 2, p = 0.37 \\ -9, q = 0.63 \end{cases}$$

Ou até com pausas e atrasos

$$X = \begin{cases} 2, p = 0.2 \\ 0, p = 0.5 \\ -1, q = 0.3 \end{cases}$$

O que não é possível com a fórmula da esperança original.

Gráficos dos erros

