Sistemas Probabilísticos

Inteligência Artificial – Prof. Flávio Varejão Departamento de Informática Programa de Pós-Graduação em Informática Universidade Federal do Espírito Santo

Sumário

- Introdução ao Teorema de Bayes
- Sistemas Classificadores Probabilísticos
- Naive Bayes

Teorema de Bayes

- Proposto por Thomas Bayes
- Usado na inferência estatística
- Atualiza estimativas da probabilidade de que diferentes hipóteses sejam verdadeiras
 - Baseia-se nas observações e no conhecimento de como essas observações se relacionam com as hipóteses

Breve Revisão da Estatística

Probabilidade Condicional de um evento A, tendo ocorrido um evento B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Eventos independentes:

$$P(A|B)=P(A)$$

$$P(B|A)=P(B)$$

$$P(A\cap B)=P(A).P(B)$$

Teorema de Bayes

Teorema de Bayes

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

- P(H) é a probabilidade a priori de H
 - Probabilidade do evento antes que a evidência seja vista
- P(H|E) é a probabilidade a posteriori de H
 - Probabilidade do evento depois que a evidência foi vista

Teorema de Bayes

- Dado uma base de exemplos
 - Mais fácil estimar P(E|H) do que P(H|E)
 - Normalmente E = combinação de valores
 - Número de combinações é grande
 - P(E|H) pode ser fatorado em probabilidades mais simples
 - P(H|E) não pode ser fatorado

Sistemas Classificadores Probabilísticos

Naive Bayes

- Em geral, as relações de dependência entre os dados de entrada utilizadas por um classificador são desconhecidas
- Assume-se que os dados são condicionalmente independentes dado a classe
- Naive = "ingênuo"
 - Na maioria dos problemas práticos, essa suposição não é verdade
- Simplifica a abordagem sem comprometer significativamente a precisão do resultado
- Funciona bem na prática

Naive Bayes e a Classificação

- Qual é a probabilidade de uma classe dada uma evidência?
- Naive: evidência é fatorada em partes independentes
 - $P(E|H) = P(E_1|H).P(E_2|H)....P(E_n|H)$

$$P(H|E) = \frac{P(E_1|H).P(E_2|H)...P(E_n|H).P(H)}{P(E)}$$

Exemplo de Classificação

					F
Outlook	Temp	Humidity	Windy	Play	E
Sunny	Hot	High	False	No	
Sunny	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Rainy	Mild	High	False	Yes	E
Rainy	Cool	Normal	False	Yes	
Rainy	Cool	Normal	True	No	
Overcast	Cool	Normal	True	Yes	
Sunny	Mild	High	False	No	E
Sunny	Cool	Normal	False	Yes	
Rainy	Mild	Normal	False	Yes	
Sunny	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	
Rainy	Mild	High	True	No	E

Exemplo de Classificação

Outlook			Tempe	rature		Hur	nidity		V	Vindy		PI	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Como classificar um novo dia?

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Exemplo de Classificação

Evidência E:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Probabilidade "yes": $P(yes|E) = \frac{P(Sunny|yes).P(Cool|yes).P(High|yes).P(True|yes).P(yes)}{P(E)}$

$$P(yes|E) = \frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{P(E)} = \frac{0,0053}{P(E)}$$

Probabilidade "no": $P(no|E) = \frac{P(Sunny|no).P(Cool|no).P(High|no).P(True|no).P(no)}{P(E)}$ $P(no|E) = \frac{\frac{5}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14}}{P(E)} = \frac{0,0206}{P(E)}$

Conclusão: "no"

Cálculo das Probabilidades

- A soma das probabilidades de todas as classes é 1
 - -P(yes|E) + P(no|E) = 1
 - -0.0053/P(E) + 0.0206/P(E) = 1
 - -0.0053 + 0.0206 = P(E)
 - -P(yes|E) = 0.0053/(0.0053 + 0.0206) = 0.2046
 - -P(no|E) = 0.0206/(0.0053 + 0.0206) = 0.7954

Problema da Freqüência Zero

- O que fazer se um valor de atributo não ocorre em uma classe?
 - Ex: "Humidity = high" para a classe "yes"
 - Probabilidade será zero! (indesejado)
- Solução 1: alguns autores sugerem assumir o valor
 1/n² para a probabilidade do atributo que não ocorre, onde n é número de exemplos de treino

Problema da Freqüência Zero

- Solução 2: adicionar 1 unidade a cada combinação de classes e evidências (Laplace estimator).
 - Resultado: Probabilidade nunca será zero.
- Em alguns casos, adicionar uma constante diferente de 1 pode ser mais apropriado.
 - Exemplo: atributo "outlook" para classe "yes"

$$\frac{2+\mu/3}{9+\mu}$$

$$\frac{4+\mu/3}{9+\mu}$$

$$\frac{3+\mu/3}{9+\mu}$$

Sunny

Overcast

Rainy

Os pesos não precisam ser iguais (porém a soma deve ser igual a 1);

$$\frac{2+\mu p_1}{9+\mu}$$

$$\frac{4 + \mu p_2}{9 + \mu}$$

$$\frac{3+\mu p_3}{9+\mu}$$

Problema dos Atributos Numéricos

- Nos exemplos anteriores, os atributos eram discretos. O que fazer no caso de atributos contínuos (numéricos)?
- Solução usuais
 - O atributo é discretizado e tratado como um atributo nominal;
 - Ou assumir que os atributos têm uma distribuição de probabilidade Normal ou Gaussiana.

Problema dos Atributos Numéricos

- Solução: Dicretização
 - Quantos intervalos?
 - min(10, número de valores diferentes);
 - Qual amplitude de cada intervalo?
 - Intervalos com mesma amplitude;
 - Intervalos com a mesma freqüência de valores observados;
 - Alternância de classes
 - K-means: K intervalos que minimizem a soma da distância do centro de gravidade de cada intervalo

Problema dos atributos numéricos

- Solução: Assumir distribuição Normal
 - Requer o conhecimento da média (μ) e do desvio padrão (δ) da variável aleatória.

Função densidade de Probabilidade:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Atributos Numéricos

Atributos contínuos (numéricos):

Outlook		Temperature		Humidity		Windy			Play		
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	$\mu = 73$	$\mu = 75$	$\mu = 79$	$\mu = 86$	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	σ =6.2	σ =7.9	σ =10.2	σ =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

Exemplo de valor de densidade:

$$f(temperature = 66 | yes) = \frac{1}{\sqrt{2\pi} 6.2} e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Problema de Valores Desconhecidos

- Pode ocorrer que algum dos valores dos atributos das entradas de treinamento seja desconhecido
- Solução: Basta não incluir o atributo no cálculo da probabilidade
- Exemplo:

	Outlook	Temp.	Humidity	Windy	Play
I	?	Cool	High	True	?

$$P(class | E) = \frac{P(Cool|class).P(High|class).P(True|class).P(class)}{P(E)}$$

Problema de Valores Desconhecidos

- Outras soluções:
 - No caso de valores nominais:
 - Substituir pela moda;
 - Considerar outro valor possível;
 - No caso de valores contínuos:
 - Substituir pela média;

Naive Bayes: Discussões

- Naive Bayes trabalha surpreendentemente bem, mesmo que a suposição de independência entre os atributos seja claramente violada
- Porque? Classificação não requer estimativas precisas de probabilidade desde que a maior probabilidade seja atribuída a classe correta
- Entretanto, adicionar muitos atributos redundantes irá causar problemas
- Muitos atributos numéricos não seguem uma distribuição normal