ארכיטקטורת CPU

מעבדה 3

מגישים: אייר גלעד 300309937

038109484 דודו אבו

תוכן עניינים:

3	מטרת הפרוייקט
3	הטיימר
4	סכמה כללית של המעבד והסבר
5	Top level block review diagram
6	שלב insturction fetch שלב
7	שלב ה Instruction Decode שלב ה
8	חידת Control unit חידת
9	שלב ה Execute שלב ה
10	שלב Memory Write Back שלב
11-14	סיכונים כתוצאה ממעבר המעבד לתצורת pipline ודרכי התמודדוח
	logic usage ۱ Chip planner
16	שעונים ותדר מערכת מקסימאלי
17	חקונות

מטרת המעבדה

- Design, synthesize and analyze a simple MIPS compatible CPU.
- Understanding in FPGA memory structure

הטיימר

עקרון הפעולה של הטיימר פשוט ומבוסס על הרעיון של הטיימר מבקר ה MSP.

אנו סופרים עליות שעון ומשווים עם ערך שהוכנס לרגיסטר יעודי. בהגעת ה counter אנו סופרים עליות שעון ומשווים לאינטרפט.

כאשר מופעל קו האינטרפט מוכנס לרגיסטר ה PC כתובת הלייבל של רוטינת האינטרפט ותכנית האסמבלי ממשיכה משם.

איור 0: תרשים הטיימר

סכמה כללית של המעבד והסבר:

: ובעלת 4 שלבים Pipelined MIPS המעבד אותו יצרנו מבוסס

- Instruction Fetch
- Instruction Decode
 - Execute
- Memory and Write Back •

שלבים אלו מהווים את המודלים העיקריים ועליהם נפרט בהמשך. שלבים אלו מופרדים ביניהם על ידי רגיסטרים. בכל עלית שעון כל שלב מעביר לשלב הבא בתור את תוצאותיו, כך, ברגע נתון בכל אחד מהשלבים נמצאת פקודה אחרת, כאשר אין פגיעה באף אחד מהנתונים של השלבים אודות לרגיסטרים שחוצצים בין השלבים.

כך למעשה מתבצעת עבודה במקביל של כל השלבים ומתאפשרת עבודה עם תדר שעון גבוה יותר.

עם זאת, לתצורה זו של Pipeline מספר בעיות שצצות עקב העבודה במקביל, ועליהן נפרט בהמשך.

באיור הבא ניתן לראות תיאור סכמתי של המעבד:

איור 1

Top level block review diagram

: instruction fatch שלב

שלב זה הוא השלב הראשון מתוך ארבעת השלבים של המעבד ותפקידו הבאת פקודות מזיכרון המערכת.

איור 3

Port map:

<u>מסלול קריטי של הרכיב:</u>

איור 4

Instruction Decode שלב

שלב זה הוא השלב השני מתוך ארבעת השלבים של המעבד.

של המעבד. Pipeline שלב זה הינו אולי השלב המשמעותי ביותר מתוך ארבעת שלבי ה

תפקיד שלב זה הינו פענוח הפקודה שהתקבלה משלב ה IF הקודם, העברת קווי הבקרה השונים לרכיבי ושלבי המערכת השונים, והעברת ערכי הרגיסטרים המתאימים לשלב הבא, בנוסף שלב זה מכיל את יחידת הcontrol עליה נפרט בנפרד.

איור 5

Port map:

```
PORT ( read data 1
                         : OUT STD LOGIC VECTOR ( 31 DOWNTO 0 );
read_data_2 : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );
                   : IN STD LOGIC VECTOR ( 31 DOWNTO 0 );
Instruction
                          : IN STD LOGIC VECTOR ( 31 DOWNTO 0 );
read data
ALU result
                          : IN STD LOGIC VECTOR ( 31 DOWNTO 0 );
RegWrite, MemtoReg : IN STD LOGIC;
Add Result : OUT STD LOGIC VECTOR ( 7 DOWNTO 0 );--
                   : OUT STD LOGIC;
Zero
PC plus 4
                   : IN STD LOGIC VECTOR ( 9 DOWNTO 0 );
OUTLed, SevSeg: OUT STD_LOGIC_VECTOR(31 downto 0);
Bottons : in STD_LOGIC_VECTOR(31 downto 0);
Sign_extend : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );
clock, reset : IN STD_LOGIC;
write register address 0, write register address 1, write register address 2
       : out STD LOGIC VECTOR ( 4 DOWNTO 0 );
write register address
                                 : in STD LOGIC VECTOR( 4 DOWNTO 0 )
);
```

: מסלול קריטי של הרכיב

:Control unit יחידת

תפקידו של רכיב זה אחראי לפענוח הפקודה לאותות בקרה. כלומר, רכיב זה הינו זה שאחראי ליצור התאמה בין הפקודה שהובאה מהזיכרון לבין אותות הבקרה שיועברו לשלבים וליחידות השונות.כך שלמעשה יודעים השלבים והיחידות מה לעשות עם המידע שהגיע לידותם

איור 6

Port map:

```
PORT ( Opcode
                                         : IN STD LOGIC VECTOR ( 5 DOWNTO 0 );
                                  : OUT STD LOGIC;
RegDst
                                  : OUT STD LOGIC;
ALUSrc
MemtoReg
                           : OUT STD LOGIC;
RegWrite
                           : OUT STD LOGIC;
MemRead
                           : OUT STD LOGIC;
MemWrite
                           : OUT STD LOGIC;
Branch
                                  : OUT STD LOGIC;
ALUop
                           : OUT STD_LOGIC_VECTOR( 1 DOWNTO 0 );
clock, reset
                    : IN STD LOGIC );
                                                                  מסלול קריטי של הרכיב:
```


:Execute שלב ה

שלב זה הוא השלב השלישי מתוך ארבעת השלבים של המעבד.

תפקיד שלב זה הוא לבצע את הפעולות האריתמטיות והלוגיות בין ערכי הרגיסטרים לבין עצמם, ובין ערכי רגיסטרים לערכים קבועים. שלב זה מכיל למעשה את רכיב ה ALU כמו זה שעליו עבדנו במעבדה הקודמת.

8 איור

Port map:

```
PORT ( Read data 1
                        : IN STD LOGIC VECTOR( 31 DOWNTO 0 );
Read_data_2 : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );
Sign_Extend : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 );
Function_opcode : IN STD_LOGIC_VECTOR( 5 DOWNTO 0);
                      : IN STD_LOGIC_VECTOR( 5 DOWNTO 0 );
                              : IN STD_LOGIC_VECTOR( 1 DOWNTO 0 );
ALUOp
                                     : IN STD_LOGIC;
: OUT STD_LOGIC;
ALUSrc
--Zero
                             : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 );
ALU Result
                                             : IN STD LOGIC VECTOR ( 31 DOWNTO 0 );
ALU ResultFor, ALU ResultForFor
clock, reset : IN STD LOGIC;
write register address 0, write register address 1
                                                                    : in
STD LOGIC VECTOR ( 4 DOWNTO 0 );
RegDst
                                     : IN STD LOGIC;
forward, forward2
                                             : IN STD LOGIC VECTOR ( 1 DOWNTO 0 );
write register address
                                    : out STD LOGIC VECTOR ( 4 DOWNTO 0 )
                                                                         : מסלול קריטי של רכיב זה
```


9 איור

: Memory Write Back שלב

שלב זה הינו השלב הרביעי של המעבד.

בשלב זה מתבצעת הכתיבה לזיכרון (או הקריאה מהזיכרון), והפניית המילה חזרה לשלב השני, לכתיבה אל הרגיסטרים.

איור 10

Port map:

```
PORT( read_data : OUT STD_LOGIC_VECTOR( 31 DOWNTO 0 ); address : IN STD_LOGIC_VECTOR( 7 DOWNTO 0 ); write_data : IN STD_LOGIC_VECTOR( 31 DOWNTO 0 ); MemRead, Memwrite : IN STD_LOGIC; Clock, reset : IN STD_LOGIC );
```

: מסלול קריטי של רכיב זה

איור 11

<u>סיכונים כתוצאה ממעבר המעבד לתצורת pipline ודרכי התמודדות:</u>

כתוצאה משינוי יחידת העיבוד המרכזית לתצורת Pipelined MIPS זמן העבודה של המערכת אמנם התקצרה והמערכת הפכה יעילה יותר אך נוצרו מספר בעיות איתם יש להתמודד.

הסיכונים מתחלקים ל 3 סוגים עיקריים אותם למדנו בהרצאה:

- Data Hazards
- Structural Hazards
 - Control Hazards •

Structural Hazards

סוג סיכונים אלו נוצרים כתוצאה ממספר פניות לאותה חומרה בו זמנית משני מקורות שונים. באופן עקרוני, סיכון זה יכול להתקיים בעבודה עם הזיכרון, כאשר מצד אחד שלב ה IF דורש הבאת פקודה מהזיכרון, ובמקביל שלב ה M&WB דורש הבאת מילה מכתובת בזיכרון. במערכת שלנו לא קיים סיכון מסוג זה, לכן לא היה צורך להתמודד.

Control Hazards

במצב בו קיים בקוד הסתעפות, יכולה להווצר בעיה מכיוון שעד תהליך גילוי הסתעפות עוברות מספר פקודות נוספות וצינור, כאשר פקודות אלו לא בהכרח אמורות להתבצע לפי הלוגיקה של הקוד,

לפתרון בעיה זו נקטנו בשני צעדים, צעד ראשון הוא לפענח האם צריכה ההסתעפות להתבצע ״מוקדם יותר״, כך:

איור 12

כך שלמעשה אנו מפענחים הסתעפות כבר בשלב פענוח הפקודה עצמה, לכן תכנס לכל היותר פקודה אחת אשר לא צריכה להתבצע בוודאות להתבצע, כדי לפתור בעייה זו, השתמשנו בגישת flush, כלומר הפיכת פקודה זו לריקה-nop לפני ביצוע. עשינו זאת על ידי קו בקרה אשר קובע האם בוצעה הסתעפות.

איור 13

: של בעיה זו Single tap

Flush opCode

איור 13

(Data Hazards) סיכוני מידע 3.1.3

סיכוני המידע נוצרים כאשר ישנו שימוש בערך רגיסטר אשר תוצאתו עדיין לא התעדכנה מפקודות קודמות שבוצעו עליו. **בעיה ראשונה:** התנגשות בקריאה וכתיבה לרגיסטר, בעיה זו קורה כאשר נכנסת לצינור פקודה הטוענת ערך לרגיסטר מסויים, ולאחר 2 פקודות כלשהם, נכנסת פקודה המבקשת להשתמש בערך השמור ברגיסטר, נוצר מצב של צורך לקרוא ולכתוב לרגיסטר באותו מחזור שעוו.

כדי להתמודד עם בעיה זו יצרנו יחידה המזהה את המצב ובמקור לכתוב ולקרוא, אנו מעבירים ישירות את מה שאנו רוצים לכתוב לקריאה.

: לבעיה זו

⊞ IFIDInstruction	(01495020h	0000	0020h	X 01495020h	116CFFFFh	(1000FFF1h)
⊞ INBot						
OUTLeds OUTLeds	6					
H Idecode:ID register_array[12]						
H Idecode: Diregister_array[10]	00000	0002h	0000	00003h		00000004h
⊞ Idecode:ID read_data_1	(00000000h)	00000002h	0000	00000h	00000004h	X 000000C0h X
H Idecode:ID read_data_2	00000000h	00000001h	0000	00000h	00000001h	000000C0h
	01411020h	01094020h	00000020h	01411020h	116DFF6Fh	110877B1h
Execute:EXE/ALU_Result	00000003h	00000000h	00000004h	00000	0000h	00000005h

בעיה שנייה: המקרה הראשון הוא כאשר מתבצעות 2 פקודות ברצף, כאשר התוצאה של הפקודה הראשונה היא המידע של הפקודה הבאה אחריה. במקרה כזה הפתרון יתבצע ע"י הוספת יחידת קידום (Forwarding) אשר תחזיר את התוצאה ממוצא ה ALU, ישירות לשלב הקודם. לשלב הקודם.

בנוסף בעיה דומה היא כאשר שני הפקודות לעיל כאשר בינהם פקודה כלשהי החוצצת בינהם, ההבדל בטיפול בשני הבעיות הוא במספר מחזורי השעון שצריך לעכב את התוצאה מהALU,

: כפי שתואר בהרצאה

15 איור

במימוש שלנו:

איור 16

: לטיפול בשתי פקודות ברצף Single tap

⊞ FIDInstruction	01495020h	116C0001h	1000FFFEh	0149	5020h	X	00000020h
(+) NBot	K .						
E OUTLeds							
H	X .						
H Idecode:ID[register_array[10]				00000000h			Х
H	0000	00000h	X 000000C0h			0000	0000h
H Idecode:ID read_data_2	0000	0000h	000000C0h	00000000h	0000	0001h	X
IFIDInstruction1	014150B0h	31200000h	0108370Eh	21000000h	01495020h	01094020h	00000
Execute:EXE ALU_Result	000000C0h	X	0000	000h		00000001h	00000002h X
					2-clk:get regist 3-clk:get first a 4-clk:using for	ritmetich result	

איור 17

: לטיפול בשתי פקודות עם פקודה חוצצת בינהם Single tap

איור 18

בעיה אחרונה שיכולה להווצר היא כאשר אנו מבצעים טעינה לתוך רגיסטר ומיד לאחר מכן מנסים להשתמש בו, כדי לפתור בעיה זו יצרנו יחידה הבודקת האם מתקיים מצב כזה, במקרה וכן אנו מעכבים את שעון המערכת מלהתקדם ודוחפים ייבועהיי, פקודה ריקה כדי לעקב את המערכת ולא ליצור בעיה.

: של בעיה זו Single tap

איור 19

: logic usage1 Chip planner

איור 20

Flow Status	Successful - Tue May 28 18:26:39 2013
Quartus II 64-Bit Version	12.1 Build 177 11/07/2012 SJ Web Edition
Revision Name	MIPS
Top-level Entity Name	MIPS
Family	Cyclone II
Device	EP2C20F484C7
Timing Models	Final
Total logic elements	2,213 / 18,752 (12 %)
Total combinational functions	2,149 / 18,752 (11 %)
Dedicated logic registers	1,312 / 18,752 (7%)
Total registers	1312
Total pins	272 / 315 (86 %)
Total virtual pins	Ō
Total memory bits	16,384/239,616 (7%)
Embedded Multiplier 9-bit elements	0 / 52 (0 %)
Total PLLs	1/4(25%)

21 איור

<u>שעונים ותדר מערכת מקסימאלי:</u>

Clo	cks								
	Clock Name	Туре	Period	Frequency	Rise	Fall	Duty Cycle	Divide by	Multiply by
1	altera_reserved_tck	Base	100.000	10.0 MHz	0.000	50.000			
2	clock	Base	20.000	50.0 MHz	0.000	10.000	5		
3	PLL1 altpll_component pll clk[0]	Generated	30.769	32.5 MHz	0.000	15.384	50.00	20	13

22 איור

	Fmax	Restricted Fmax	Clock Name	Note
1	37,87 MHz	37.87 MHz	PLL1 altpll_component pl dk[0]	
2	84.84 MHz	84.84 MHz	clock	

איור 23

מסקנות

העבודה הייתה קשה מאוד מבחינת היקף ורמת העבודה

קשה מאוד היה גם לעבוד על העבודה בזוג בו זמנית.

למרות זאת העבודה שילבה בתוכה ידע רב בתכנות, במעבד ה MIPS, בתוכנות השונות, בפייפליין ועוד.

עצם מורכבות העבודה היה אתגר בפני עצמו.

נוכחנו במהלך העבודה לעוצמה הרבה של תכנון ותכנות שבבי FPGA ונפתחנו לעולם של .CPU תכנון ה

אייר ודודו