Tax cases Project: Project number: BF7387 EKL F1.0 Description: 8: Other permanent taxes Tax case There are various permanent loads on the bridge. A distinction is made between the permanent loads on the flank side, the inspection path next to the For the main span, the asphalt load is extended to the edge of the steel deck. There is no grazing edge, only a guardrail. For the side span, the flank side is split into a UDL load on the deck and a line load due to the edge element. $\begin{array}{c} p \text{ edge} \\ \\ p \text{ scratch side} \end{array}$

Edge (h = 500 mm)

(based on [A.23315-I, average height)

1.88 kN/m

0.14 kNm/m

BG8a BG8a

Concrete deck edge height 500 (based on [A.23315-I]) b edge = 150 mm kN Concrete deck edge width (based on [A.23315-I]) 1258 (based on [Renovation States 1906 folder 22A] Guardrail weight Total length of guardrail Taxes Schampkant p scratch side = d scratch side 5.88 kN/m 2 Schampkant concrete deck BG8aEdge concrete deck The load on the edge has been translated into a line load and a moment on the edge of the (structural) concrete deck

0.15

0.075

Side span

Inspection path next to the bridge deck (BG8b)

Line load edge concrete deck

Line moment edge concrete deck

Main span

Q guardrail

The consoles are loaded by the handrail, the grid floor and the cable tray. The loads are determined based on the specifications and are entered as point or line load

 \mathbf{q} $\mathbf{edge} = \mathbf{p}$ \mathbf{edge}

 \mathbf{m} edge = \mathbf{q} edge

in the calculation by multiplying the load by the center-to-center distance of the console.

Main span			Side span	
Handrail weight	F handrail =	243	kN	(based on [Renovation States 1906 folder 22A]
Inspection path weight	F inspection path =	479	kN	(based on [Renovation States 1906 folder 22A]
Length inspection path br	1 inspection path =	960	m	(4 pieces)
Width inspection path br	b inspection path =	0.60	m	
Length inspection path hfdbr	1 inspection path	1200	m	(4 pieces)
Inspection path width hdbr	b inspection path	0.84	m	
Surface inspection path	A inspection path =	1580	m ²	
Console	q console =	0.11	kN / m 1	(based on drawing A.50928-C, IPE120 profile)
Length console bracket	1 console =	0.60	m	(based on drawing A.50928-C)
Length console bridge	1 console =	0.86	m	(based on drawing A.50928-C)
Cable tray lighting	q cable tray =	0.75	kN / m 1	(estimate based on drawing [A.50928-C]

T.								
Tax cases Project:	Recalculation IJssel Bridge A12			Date:		5/25/2018		
Project number:	BF7387			Name:		EKL		
Description:	Permanent taxes			Version:		F1.0		
Tax case	8: Oth	er permanent ta	ixes					
Loads Inspection path (normal consol	e)							
Handrail	q handrail =	F handrail	/	1 inspection p	eath =		0.30 kN/m 1	
Inspection path	p inspection path = F i	nspection path	/	A inspection	path =		$0.40\; kN/m^2$	
Console	q console =						0.11 kN / m 1	
Cable tray lighting	q cable tray =						0.75 kN/m 1	
Loads Inspection pad (normal console) on bridges							
The load is translated into a point load or		deck, based on t	he center-	to-center distance of	of the consoles			
Heart to heart	hoh	2000 m	nm	(based on drawi	ng [A.50937]			
Handrail	F handrail =	q handrail	*	2.00	m =		0.60 kN	
Inspection path	$F \ {}_{inspection \ path} = p$		*	2.00	m * b inspection path =		0.48 kN	
Console	F console =	q console	*	0.60	m =		0.07 kN	
Cable tray lighting	F cable tray =	q cable tray	*	2.00	m =		1.50 kN +	
							2.65 kN	BG8b
In addition to a point load, a moment als	o occurs through the arm relative to t	he edge of the str	nictural de	ek				
1 ,								
Armrest to deck edge	a handrail =	841 m						
Arm inspection path	a inspection path =	462 m	nm					
Arm console	a console =		nm					
Arm cable tray	a cable tray =	620 m	nm					
Handrail	M handrail =	F handrail		0.84	m =		0.50 kNm	
Inspection path	M inspection path =	F inspection path		0.46	m =		0.22 kNm	
Console	M console =	F console		0.45	m =		0.03 kNm	
Cable tray lighting	M cable tray =	F cable tray		0.62	m =		0.93 kNm+	
							1.69 kNm	BG8b
Loads Inspection pad (normal console The load is translated into a point load or		deals been done	h		64h			
The load is translated into a point load of	n the edge of the (structurar) concrete	ucck, based on t	ne center-	to-center distance o	i the consoles			
Heart to heart	hoh	1800 m	nm	(based on drawi	ng [A.50937]			
Handrail	F handrail =	q handrail	*	1.80	m =		0.54 kN	
Inspection path	F inspection path $= p$		*	1.80	m * b inspection path =		0.60 kN	
Console	F console =	q console	*	0.86	m =		0.09 kN	
Cable tray lighting	F cable tray =	q cable tray	*	1.80	m =		1.35 kN +	
							2.59 kN	BG8b
In addition to a point load, a moment als	o occurs through the arm relative to the	he edge of the sto	eel deck					
1 ,								
Armrest to deck edge	a handrail =	720	nm					
Arm inspection path	a inspection path =		nm					
Arm console	a console =		nm					
Arm cable tray	a cable tray =	705 m	nm					
Handrail	M handrail =	F handrail		0.93	m =		0.50 kNm	
Inspection path	M inspection path =	F inspection path	*	0.43	m =		0.26 kNm	
Console	M console =	F console	*	0.43	m =		0.04 kNm	
Cable tray lighting	M cable tray =	F cable tray	*	0.71	m =		0.95 kNm+	
							1.75 kNm	BG8b

Recalculation IJssel Bridge A12 BF7387 Permanent taxes 5/25/2018 EKL F1.0

Tax case

Reinforced console with lighting (BGSe)

At the location of the light poles mounted in a "reinforced" console which is longer than the other consoles. There is a light pole on this extension. There is also a heavier console applied. The other taxes are equal to the normal consoles.

Tax cases
Project number:
BF7887
Perioget number:
BF7887
Permanent taxes

Recalculation Ussel Bridge A12
Date:
S25/2018
Permanent
Permanent taxes

Recalculation Ussel Bridge A12
Permanent taxes

Recalculation Ussel Bridge A12
Permanent taxes

Recalculation Ussel Bridge A12
Recalculation Ussel Bridge A12
Permanent taxes

Recalculation Ussel Bridge A12
Recalculation Ussel

	Number	Length	Width	Weight	Total
Cross beam (L50 * 6)	0.50 x	0.88 mx		0.04469 kN / m i =	0.02 kN
Pendants (L50 * 6)	1.00 x	1.407 mx		0.04469 kN / m i =	0.06 kN
Bottom rail (L50 * 6)	1 x	1.8 mx		0.04469 kN / m 1 =	0.08 kN
Handrail (L50 * 6)	1 x	1.8 mx		0.04469 kN / m i =	0.08 kN
Grate (25 mm)	0.5 x	1.8 mx	0.75 mx	$0.40 \text{ kN} / \text{m}^2 =$	0.27 kN
Surcharge for confirmations				10%	0.05 kN +
				F inspection path =	0.60 kN (BG8d)
Source: Drawing [A 85343]. [A 85401]					

680

1220

F ww, dw

Hot water pipe (BG8e)

The WOM how there pipes (two pieces) are only present under the western bridge, under the main bridge (1st to 4th spans). The tax case is therefore introduced as a separate tax case, so that if necessary, a distinction can be made for the eastern and western bridges.

Leadership Outer diameter

Wall thickness 7.11 mm Specific weight ρ sample = 7850 kg/m 3 Inner diameter Ø inside = 300 mm Wall thickness t inside = 10 mm 1000 kg/m3 Specific weight PE Specific weight PE 60 kg/m 3

Point loads due to weight of hot water pipe and suspension frame Tube 100x100x8 $0.21\;kN\,/\,m$

Length A 1670 mm L= 580 mm Length B 2 pieces 1800 mm Shaft around 35 mm 0.08 kN/m Length L= 580 mm 1 piece

0.50 kN/m1 NUON hot water pipe Heart to heart size frame hoh = 10.71 m

Total force per suspension frame $F_{ww} =$ q WW management * 10.71 m + F frame = 7.4 kN $F_{\rm \,ww}\,/\,4 =$ Force on cross beam 1.86 kN

Page 5

Creep and shrinkage according to Eurocode 2

IJssel Bridge 5/25/2018 Date: Project: Project number: BF7387 Name: Ernst Klamer Description: Shrinkage load Version: v0.5 Beta

Tax case Shrinkage load

The shrinkgage strain is determined in correspondence with NEN-EN1992-1-1 art. 3.1.4 (6)

 $\epsilon_{cd} + \epsilon_{approx}$ € cs formula 3.8 € cd

drying shrinkage autogenous shrinkage

Drying shrinkage

ε cd, ∞ $k \; {}_{h} \; \epsilon \; {}_{cd, \, 0}$ shrinkage at $t = \infty$ β ds (t, t s) * k h * ϵ cd, 0 $\epsilon_{\text{ cd }}(t)$ shrinkage at t = t formula 3.9

Environment: Out 80 % Relative humidity: C32 / 40

Type of cement CEM 32.5 N (Portland is rapid and blast furness is normal) S

Cement class 3 0.13 $f_{\,\rm cm}$ 40 N / mm² f cmo 10 N / mm² RH 80% RH o 100% β RH

0.756

```
€ cd, 0
                                   0.21 ‰
                                   200 mm
h
                                  1000 mm
                                  2000 mm
you
hо
                                    200 mm
\mathbf{k}_{\,\text{h}}
                                   0.85
                                   0.85
                                                         0.21 ‰ =
                                                                               0.18 ‰
                                 36500 days
                                      1 days
                                                                (age at the beginning of the drying shrinkage)
t_{\rm s}
\beta ds (t, t s )
                                  0.997
                                                                                                 formula 3.10
\epsilon_{\text{ cd }}(t)
                                 0.178 ‰
                                                                                                 formula 3.8
```

Creep and shrinkage according to Eurocode 2 Project: Ussel Bridge Date: 5/25/2018 Project number: BF7387 Ernst Klamer Name: Description: Shrinkage load v0.5 Beta autogenous shrinkage $\epsilon_{\text{ approx}}$ autogenous shrinkage β axis (t) ϵ ca (\infty) $\epsilon_{\,\,ca}\left(t\right)$ formula 3.11 shrinkage at t = t ε ca (∞) 2.5 (f ck - 10) * 10 - 6 shrinkage at $t = \infty$ formula 3.12 $f_{\,\,ck}$ 32 N / mm² $\epsilon_{ca}\left(\infty\right)$ 0.055 ‰ long term 1 - exp (-0.2t 0.5) formula 3.13 36500 days β axis (t) 1 $\epsilon_{\,\,ca}\left(t\right)$ 0.055 ‰ Shrinkage $\epsilon_{cd} + \epsilon_{approx}$ € cd 0.178 ‰ 0.055 ‰ € cs 0.233 ‰

Prestressing losses according to RVB 1962

Quality prestressing steel QP105 $\sigma ar \ 1\dot{\theta}\bar{S}$. $\frac{kgf}{mm^2}$ $\sigma ar \ 1\bar{Q}$ 9.7 MPa ·

fpu.rep := σar

Elasticity modulus prestressing steel Ep := $2.06 \ 10^{-6} \cdot \text{kgf}$ Ep = $202.0 \ \text{GP}$

Cable cross-section Ap := 531mm

Initial prestressing force Fpo $:= 1.1 \ 0.538$ ' \circ ar ' Ap Fpo $:= 33.0 \ \text{tf}$. Fpo $:= 324 \ \text{kN}$ $\text{Gpo} ::= \frac{\text{Fpo}}{\text{Ap}}$ $\text{Gpo} := \frac{\text{Fpo}}{\text{Ap}} = \frac{1.1 \ 0.538}{\text{Ap}} = \frac{1.1$

Average cube compressive strength (rib 20 cm) after 28 days $(450 \text{ o'w} 28) = 450 \cdot \text{kgf}$ $(200 \cdot \text{kgf} + 1) \cdot \text{o'w} 28$ $(200 \cdot \text{kgf} + 1) \cdot \text$

 $\begin{array}{ccc} L & = & \\ & 6.0 \ m \end{array}$

Assumption of angular displacement over half cable length $\phi = 0.0 \text{ deg}$ $\phi = 0.0000 \text{ rad}$

Friction coefficient μ :

Wobble factor $1 := \underset{m}{:=} \underset{0.01}{:} \cdot \overset{rad}{\underset{m}{\text{rad}}}$ $-\underset{\mu}{:} \cdot \left(\underset{\phi}{\downarrow} \underset{0}{\uparrow} \right) = -\underset{0.0150}{:} \cdot \underset{m}{:} \cdot \underset{m}{:$

 $\Delta \text{Fp.friction x ()} \qquad := \text{Fpo f } \left[\begin{array}{ccc} & & & & \\ & & & \\ & & & \end{array} \right] \qquad \qquad \text{e} \quad \begin{array}{c} & & & \\ & & & \\ & & & \end{array} \qquad \begin{array}{c} & & \\ & & & \\ & & & \\ & & & \end{array} \right] \qquad \qquad \qquad \text{e} \quad 0.0150 \qquad = \quad 0.985$

 $\Delta Fp.friction.max \qquad \quad := Fpo \ l^*0.985 \qquad \qquad) \qquad \qquad \Delta Fp.friction.max \ 0.5 \ tf \cdot ^=$

ΔFp.friction.max 4.9 kN⁼

 $\Delta \sigma p. friction.max \\ \Delta \sigma p. friction.max \\ Ap \\ \Delta \sigma p. friction.max \\ 93 \\ cm \\ \Delta \sigma p. friction.max \\ 9 \\ MPa^{=} \\ \cdot$

 $\tan\gamma\,() \ := \ \begin{array}{c} \Delta\sigma p. friction. max \\ \tan\gamma\,() \ 0.\overline{155} \end{array} \quad \begin{array}{c} kgf \\ \\ mm \end{array}^2 \\ wedge setting \qquad \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \quad \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$

Influence length wedge setting
$$a := \frac{we p}{tan y(0)}$$
 $a = 11.5 m$

$$\Delta \sigma p. wigetting.max \quad := 2 \text{ a} \cdot \tan \gamma \text{ ()} \qquad \qquad \Delta \sigma p. wigetting.max \quad 358 \quad = \quad \cdot \text{ kgf} \\ \qquad \qquad \qquad \Delta \sigma p. wigetting.max \quad 35 \text{ MPa} \quad = \quad \cdot \\ \qquad \qquad \Delta \sigma p. wigetting.max \quad 35 \text{ MPa} \quad = \quad \cdot \\ \qquad \Delta \Delta \sigma p. wigetting.max \quad 1.9 \text{ tf} \cdot \quad = \quad \\ \qquad \Delta \sigma p. wigetting.max \quad 2 \text{ } \Delta \sigma p. \text{ friction.max} \qquad \qquad \Delta \sigma p. \text{ wigetting.max} \quad 1.9 \text{ tf} \cdot \quad = \quad \\ \qquad \Delta \sigma p. wigetting.max \quad 2 \text{ } \Delta \sigma p. \text{ friction.max} \qquad \qquad \Delta \sigma p. \text{ wigetting.max} \quad 1.9 \text{ tf} \cdot \quad = \quad \\ \qquad \Delta \sigma p. \text{ wigetting.max} \quad 2 \text{ } \Delta \sigma p. \text{ friction.max} \qquad \qquad \Delta \sigma p. \text{ wigetting.max} \quad 1.9 \text{ tf} \cdot \quad = \quad \\ \qquad \Delta \sigma p. \text{ wigetting.max} \quad 2 \text{ } \Delta \sigma p. \text{ friction.max} \qquad \qquad \Delta \sigma p. \text{ wigetting.max} \quad 1.9 \text{ tf} \cdot \quad = \quad \\ \qquad \Delta \sigma p. \text{ wigetting.max} \quad 2 \text{ } \Delta \sigma p. \text{ friction.max} \qquad \qquad \Delta \sigma p. \text{ wigetting.max} \quad 1.9 \text{ tf} \cdot \quad = \quad \\ \qquad \Delta \sigma p. \text{ wigetting.max} \quad 2 \text{ } \Delta \sigma p. \text{ friction.max} \qquad \qquad \Delta \sigma p. \qquad \Delta$$

 $\Delta \sigma po :=$ 2 $\Delta \sigma po = 19.8 \text{ MPa}$

 $\sigma pi \ := \sigma po \ \Delta \bar{\sigma} po$

Relative humidity R := 80

Amount of cement paste (in percent by volume) p:=27.5

Shrinkage reduction
$$\epsilon'k.oo := 3\ 10^{-7}\ p \cdot 1000\ R. \ \) \ \epsilon'k.oo = 16\ 10^{-5} \qquad (art.\ 8.1.1.\ RVB)$$

t
$$2\overline{\Gamma}$$
 o'w := 375 · $^{\text{Ng1}}$ cm 2

At the time of tension (t days) ϵ kt $0.\overline{00}$ 5 t · ϵ 1k.00 ϵ 1kt $1.\overline{73}$ 10

$$\left(\epsilon'k.oo\ \epsilon'kt\right)$$
 = 4.8 10 · 5

$$\Delta \sigma p.k.oo$$
 := $\left(\varepsilon'k.oo \varepsilon'kt\right)$ Ep $\Delta \sigma p.k.oo$ = 304.2 · $\frac{kgf}{cm}^2$ $\Delta \sigma p.k.oo$ = 29.8 MPa

Shrinkage Voltage drop
$$2.8 \cdot \frac{\text{kgf}}{2.8} = \frac{27.5 \text{ MPa}}{2.5 \text{ MPa}}$$

Surface concrete section $Ab \; := \; 0.2 \; 0.215 \qquad \cdot \; m^{\; 2}$

$$\sigma$$
bag := $\frac{N}{2}$

Creep shortening
$$\epsilon'k\text{t.oo} \quad := \underset{}{100} \cdot \underset{}{\left(40\,0\text{30}\,\text{R.} \quad \right)} \text{o'bag} \qquad \cdot \underset{}{\left(\epsilon'k\text{.oo}\,\epsilon'kt\right)} \qquad \qquad \qquad \\ \quad \epsilon'k\text{t.oo} \quad = \underset{}{5.02\,10} \quad \stackrel{\circ}{\text{5}}$$

$$\Delta \sigma p.kt.oo$$
 := $\epsilon'kt.oo \, E\dot{p}$ $\Delta \sigma p.kt.oo$ = 103.4 · $\frac{kgf}{cm}$ $\Delta \sigma p.kt.oo$ = $10.1 \, MPe$

Shrinkage + creep shortening after tensioning

$$\left(\epsilon'k.oo\ \epsilon'k\bar{t}\right)$$
 $\epsilon'kt.oo$ = $20\ 10$

Relaxation := 10%

 $\sigma pw \quad := \sigma pi \; \Delta \overline{\sigma} pk.kr$

Position

Anchoring (x = 0 m) Fpo Δ Fp.wigetting.max = 31.1 tf.

End wedge setting (x = a = 18.2 m) Fpo $^{-}$ a $^{\cdot}$ $^{\Delta}$ Fp.friction.max = 32.8 tf $^{\cdot}$

 $\label{eq:Fpo_DeltaFp.friction.max} \text{Half cable length } (x = L2 = 35 \text{ m}) \\ \text{Fpo } \Delta \text{Fp.friction.max} \\ = 32.5 \text{ tf}$

 $An choring \ (x=0 \ m) \\ Fpo \ \Delta Fp. wigetting.max \\ - \ \Delta Fpk.kr \\ = 25.6 \ tf \, .$

End wedge setting (x = a = 18.2 m) Fpo $\frac{a}{20.11}$ $\Delta Fp. friction.max$ $\Delta Fpk. kr$ = 27.3 tf.

 $\label{eq:FpoDFp} Half cable length (x = L2 = 35 \ m) \\ \qquad \qquad Fpo \, \Delta Fp. friction.max \\ \qquad \qquad - \, \Delta Fpk.kr \\ \qquad = \, 27.0 \ tf \, .$

Losses in a row

Initial preload $\sigma po = 609 \text{ MPa}$

Lose wedge + friction $\Delta \sigma po = 19.8 \text{ MPa}$ = 3.3%

Elastic losses

Shrinkage $\Delta \sigma p.k.oo = 29.8 \text{ MPa} \qquad \frac{\Delta \sigma p.k.oo}{\sigma pi} = \frac{5.06\%}{5.06\%}$

Crawl $\Delta \sigma p.kt.oo = 10.1 \, MPa \qquad \begin{array}{c} \Delta \sigma p.kt.oo \\ = 1.72\% \end{array}$

Relaxation $\Delta \sigma p.r \ 60.\overline{9} \ MPa \qquad \qquad \Delta \sigma p.r \\ \sigma pi \qquad \qquad \sigma pi$

Shrink creep + relaxation $\Delta \sigma p k.kr$ $100.\overline{9}$ MPa · $\Delta \sigma p k.kr$ = 17.1% $\sigma p i$

Completely delayed

Work preload $\sigma pw = 488.6 \text{ MPa}$

Page 10

Appendix

Appendix F - Traffic taxes

IJssel Bridge

Page 11

Froject:
Recalculation Ussel Bridge A12
Date:
5/25/2018
Project number:
BF7387
Name:
EKL
Description:
Traffic taxes
Traffic taxes
100-109: BM1 - UDL - V1 - Normal situation - Main spar

For the main beams, the loads of BM1 are placed in the middle of the lanes. The load is split lengthwise into separate load cases per span. A checkerboard tax is applied for the local models. The load is multiplied by a reduction factor for LM1, 30 years, depending on the influence length.

Lane I put $1 = 9kN/m^2$ width 3.00

Actual lane layout VI - Normal situation - Main beam load

Tax case 110-199: BM1 - TS - V			· V1 - Normal situation - Main spar		
General					
Wheel load	FQI	=	150 kN	(Axis system lane 1)	
width wheel dim.	B wheel	=.	0.55 m		
Length wheel dim	L wheel	=-	0.55 m		
Distributed wheel load	p Q1	=-	495.9 kN / m2	= F Q1 / (B wheel * L wheel)	
Wheel load	F Q2	=	100 kN	(Axis system lane 2)	
width wheel dim.	B wheel	=	0.55 m		
Length wheel dim	L wheel	=.	0.55 m		
Distributed wheel load	p Q2	=-	330.6 kN / m2	= F Q2 / (B wheel * L wheel)	

The above load configuration is applied at the location of each cross beam up to the symmetry line from the bridge. The load is multiplied by a reduction factor for LM1, 30 years, depending on the

Page 12

Tax cases			
Project:	Recalculation IJssel Bridge A12	Date:	5/25/2018
Project number:	BF7387	Name:	EKL
Description:	Traffic taxes	Version:	F1.0

200-219: BM1 - UDL - V1 - Normal situation - Cross beam

Within this load case, the load is as far as possible towards the center of the crossbar. For the normal situation (V1), the UDL load is divided into 2 lanes 1 and lane 2. The loads on lanes 1 and 2 outside the main beams and on the residual lanes are omitted because they work favorably. The load is applied alternately in the odd and even fields. The load is multiplied by a reduction factor for LM1, 30 years, depending on the influence length

Lane 1	p udl. 1	=	9 kN / m 2	width	2.85 m
Lane 2	p udl. 2	=	2.5 kN / m 2	width	2.85 m

Actual lane layout V1 - Normal situation - Load cross section field

220-249: BM1 - TS - V1 - Normal situation - Cross beam

General Wheel load

FQI 150 kN (Axis system lane 1) width wheel dim. B wheel

5/25/2018

3.00 m

3.00 m

Distributed wheel load	p Q1	=	495.9 kN / m2	= F Q1 / (B wheel * L wheel)
Wheel load	F Q2	=	100 kN	(Axis system lane 2)
width wheel dim.	B wheel	=	0.55 m	
Length wheel dim	L wheel	=	0.55 m	
Distributed wheel load	p Q2	=	330.6 kN / m2	= F Q2 / (B wheel * L wheel)

Specifically

The above load configuration is provided locally for the bridging at the location of some determinative placed crossbars (at fields and supports). For the main bridge, the load is applied in the local model. The axle loads between the two lanes are center to center 0.5 m instead of the usual 1.0 m (local assessment) see 4.3.2 (5) of NEN-EN 1991-2. The load is multiplied by a reduction factor for LM1, 30 years, depending on the influence length.

Page 13

Project number:	BF7387	Name:	EKL					
Description:	Traffic taxes	Version:	F1.0					
Tax case	Tax case 250-269: BM1 - UDL - V1 - Normal situation - Steel deck with bulbs between cross beams							
For the maximum field and su	apport moment in the steel deck with bulbs b	etween the cross bars, the UDL load is as much as possible to	vards the center of the					
placed crossbeam. For the nor	placed crossbeam. For the normal situation (V1), the UDL load is divided into 2 parts, lane 1 and lane 2. The load is split lengthwise							
in separate load cases per field	in separate load cases per field (odd and even fields). The load is multiplied by a reduction factor for LM1, 30 years, depending on the							
influence length	influence length							

9 kN / m 2

2.5 kN/m2

Recalculation IJssel Bridge A12

Actual lane layout V1 - Normal situation - Load of steel deck with bulbs between cross beams

Tax case		270-299: BM1 - TS -	V1 - Normal situat	ion - steel deck with bulbs between cross bars
General				
Wheel load	F Q1	=	150 kN	(Axis system lane 1)
width wheel dim.	B wheel	=	0.55 m	
Length wheel dim	L wheel	=	0.55 m	
Distributed wheel load	p Q1	=	495.9 kN / m2	= F Q1 / (B wheel * L wheel)
Wheel load	F Q2	=	100 kN	(Axis system lane 2)
width wheel dim.	B wheel	=	0.55 m	
Length wheel dim	L wheel	=	0.55 m	
Distributed wheel load	p Q2	=	330.6 kN / m2	= F Q2 / (B wheel * L wheel)

The load configuration above is placed in such a way that the maximum voltage in the field and at the support point is found in the steel deck and the bulbs. For this the load in SCIA has been moved in steps of 0.1 m, up to that the maximum load has been found (see separate Excel spreadsheet at the end of this appendix). Only the positions with the maximum stresses are stored in the model due to calculation time. The axle loads between the two positions with the maximum stresses are sorter in the modern due to calculation time. The axie modes between lanes is centre to centre 0.5 in instead of the usual 1.0 mt (local assessment) ef.43.2 (or NEN-EN 1991-2. The load is multiplied by a reduction factor for LM1, 30 years, depending on the influence length.

Project: Project number: Recalculation IJssel Bridge A12 5/25/2018 F1.0 Description: Traffic taxes

250-269: BM1 - UDL - V1 - Normal situation - Concrete deck between cross members

For the maximum field moment in the concrete deck between the crossbars, the UDL load is placed as far as possible towards the center of the crossbeam. For the In normal situation (V1), the UDL load is divided into 2 parts, lane 1 and lane 2. The load is split lengthwise into separate load cases per field (odd and even fields). The load is multiplied by a reduction factor for LM1, 30 years, depending on the influence length

9 kN / m 2 2.5 kN / m 2

Actual lane layout VI - Normal situation - Concrete deck load between cross members

270-299: BM1 - TS - V1 - Normal situation - Concrete deck between cross members Tax case Wheel load 150 kN (Axis system lane 1) Length wheel dim 0.74 m Distributed wheel load 273.9 kN / m2 = F Q1 / (B wheel * L wheel) (Axis system lane 2) width wheel dim. 0.74 m Length wheel dim L wheel 0.74 m = F Q2 / (B wheel * L wheel) Distributed wheel load 182.6 kN / m2

The above load configuration is positioned so that the maximum voltage in the field is found in the concrete deck. For this, the load in SCIA has been moved in steps of 0.1 m, up to the maximum load found (see separate Excel spreadsheet at the end of this appendix). Only the positions with the maximum voltages are stored in the model due to calculation time. The axle loads between both lanes are center to center 0.5 m instead of the usual 1.0 m (local assessment) of 4.3.2 (5) of NEN-EN 1991-2. The tax becomes multiplied by a reduction factor for LM1, 30 years, depending on the influence length.

Tax cases Project: Recalculation IJssel Bridge A12 5/25/2018 EKL F1.0 BF7387 Traffic taxes Description:

300-319: BM1 - UDL - V1 - Normal situation - Console / cantilever concrete deck

relevant and has therefore been omitted. The load is applied alternately in the odd and even fields. The tax is multiplied by one reduction factor for LMI, 30 years, depending on the influence length.

p udl. 1 9 kN / m 2 3.00 m p udl. 2 Lane 2 0 kN/m 2 width 0.00 m

Actual lane layout V1 - Normal situation - Console load / concrete deck cantilever (BM1)

Tax case		320-349: BM1 - TS - VI - Normal situation - Console / cantilever concrete de			
General					
Wheel load	F Q1	=	150 kN	(Axis system lane 1)	
width wheel dim.	B wheel	=	0.55 m		
Length wheel dim	L wheel	=	0.55 m		
Distributed wheel load	p QI	=	495.9 kN / m2	= F Q1 / (B wheel * L wheel)	
Wheel load	F Q2	=	0 kN	(Axis system lane 2)	
width wheel dim.	B wheel	=	0.55 m		
Length wheel dim	L wheel	=	0.55 m		
Distributed wheel load	p Q2	=	0.0 kN / m2	= F Q2 / (B wheel * L wheel)	

Specifically

The above load configuration will be on site for bridging in line with some determinative crossbars placed (at fields and supports). The load is applied to the main bridge in the local model. The axle loads between the two lanes are center to center 0.5 m instead of the usual 1.0 m (local assessment) see 4.3.2 (5) of NEN-EN 1991-2. The load is multiplied by a reduction factor for LM1, 30 years, depending on the influence length.

Tax cases

 Project:
 Recalculation Ussel Bridge A12
 Date:
 5/25/201

 Project number:
 BF757
 Name:
 EKL

 Description:
 Traffic taxes
 Version:
 F1.0

Tax case 350-369: BM1 - UDL - V1 - Normal situation - Steel deck with bulbs between consoles

For the steel deck, the bulbs and the edge strips between the consoles, the loads of BM1 are placed on the edge of lane 1. The load is longitudinal split into separate load cases for the even and odd fields. The load is multiplied by a reduction factor for LM1, 30 years, depending on the influence length.

Actual lane layout V1 - Normal situation - Steel deck load with bulbs between consoles (BM1)

 Tax case
 370-399: BMI - TS - VI - Normal situation - Steel deck with bulbs between consoles

 General
 Wheel load
 F QI
 = 150 kN
 (Axis system lane I)

width wheel dim. B wheel = 0.55 mLength wheel dim L wheel = 0.55 m

Distributed wheel load $p_{Q1} = 495.9 \text{ kN/m2} = F_{Q1}/(B \text{ wheel} *L \text{ wheel})$ Wheel load $F_{Q2} = 100 \text{ kN}$ (Axis system lane 2)

width wheel dim. B wheel = $0.55 \, \mathrm{m}$ Length wheel dim L wheel = $0.55 \, \mathrm{m}$

 $Distributed \ wheel \ load \\ p \ Q2 \\ = 330.6 \ kN \ / \ m2 \\ = F \ Q2 \ / \ (B \ wheel \ * L \ wheel \)$

Specifically

The design positions of the tandem systems for the maximum stresses in the field and at the location of The support point was determined using SCIA by sliding it in steps of 0.1 m (see Appendix F.3). Only the normative positions are kept in the model because of the calculation time. The tax is multiplied with a reduction factor for LMI, 30 years, depending on the influence length.

Page 17

Tax case 400-449: BM2 - TS - V1 - Normal situation - Console / cantilever concrete deck

load configuration is used for the bridges as an extension of the crossbars at the supports and the fields. For the main bridge is the load applied to the center consoles. The load is multiplied by a reduction factor for LM2, 30 years, depending on the influence length.

BM2 - Normal situation V1 - Console load / concrete deck cantilever (BM2)

General

Wheel load F QI = 200 kN (Axle system BM2)

width wheel dim. B wheel = 0.75 mLength wheel dim L wheel = 0.50 m

Distributed wheel load p QI = 533.3 kN/m2 = F QI / (B wheel * L wheel)

Tax case 450-499: BM2 - TS - V1 - Normal situation - Steel deck with bulbs between consoles

Load model 2 may also be indicative of the steel deck between consoles. In Appendix F.3 the normative position is determined for both the steel deck with bulbs between the cross bars and between the brackets and compared to BM1. This shows that BM2 is only indicative of the steel deck between the consoles. The tax is multiplied by a reduction factor for LM2, 30 years, depending on the influence length.

BM2 - Normal situation VI - Load steel deck with bulbs between consoles (BM2)

General

 $Wheel \ load \qquad \qquad F \ Q \ I \qquad \qquad = \qquad 200 \ kN \qquad \qquad (Axle \ system \ BM2)$

width wheel dim. B wheel = 0.75 mLength wheel dim L wheel = 0.50 m

Distributed wheel load $p \ QI$ = $533.3 \ kN / m2$ = $F \ QI / (B \ wheel * L \ wheel)$

Page 18

Tax cases

 Project:
 Readculation Ussel Bridge A12
 Date:
 \$725/2018

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Traffic axes
 Version:
 F1.0

Tax case 500-549: BM1 - UDL - V2 - Emergency - Main spar

Within this load case, the load is directed to the right main beam as much as possible. The carriageway may be maintained at 0.3 m from the vehicle barrier. The load is split lengthwise into separate load cases per span. A checkerboard tax is applied for the local models. The load is multiplied by a reduction factor for LM1, 6 months, depending on the influence length.

Lane 1 $p_{udl,1} = 9 kN/m 2$ width 3.00 m

Lane 2 $p_{udl. 2} = 2.5 \, kN / m_2$ width $3.00 \, m$

 $Fictitious\ lane\ layout\ V2-Emergency-Main\ beam\ load$

Tax case	550-599: BM1 - TS - V2 - Emergency - Main spar				
General					
Wheel load	F Q1	=	150 kN	(Axis system lane 1)	
width wheel dim.	B wheel	=	0.55 m		
Length wheel dim	L wheel	=	0.55 m		
Distributed wheel load	p QI	=	495.9 kN / m2	= F Q1 / (B wheel * L wheel)	
Wheel load	F Q2	=	100 kN	(Axis system lane 2)	
width wheel dim.	B wheel	=	0.55 m		
Length wheel dim	L wheel	=	0.55 m		
Distributed wheel load	p Q2	=	330.6 kN / m2	= F Q2 / (B wheel * L wheel)	

The above load configuration is used at the location of each cross beam up to the symmetry line from the bridge (between North and South). The load is multiplied by a reduction factor for LM1, 6 months, depending on the influence length.

Page 19

Tax cases				
Project:	Recalculation IJssel Bridge A12	Date:		5/25/2018
Project number:	BF7387	Name:		EKL
Description:	Traffic taxes	Version:		F1.0
Tax case	600-619: BM1 -	UDL - V2 - Emergency - Cross beam		
The position of the UDL load	and the axle loads for the field moment in the co	oss beam has been estimated on the basis	of a beam calculation and v	vill be included in the final model
be validated. For this situation	n, the UDL load on the overhang works favorable	y and has been omitted. The wheel loads	for this situation are 0.5 m a	part.
The load is applied alternately	in the odd and even fields. The load is multipli	ed by a reduction factor for LM1, 6 month	is, depending on	
the influence length.				
Lane 1	p udl. 1 =	9 kN / m 2	width	3.00 m
Lane 2	p udl. 2 =	2.5 kN / m 2	width	3.00 m

 $Fictitious\ lane\ layout\ V2-Emergency-Load\ crossbar$

General				
Wheel load	FQI	=	150 kN	(Axis system lane 1)
width wheel dim.	B wheel	=	0.55 m	
Length wheel dim	L wheel	=	0.55 m	
Distributed wheel load	p QI	=	495.9 kN / m2	$= F_{Q1} / (B_{wheel} * L_{wheel})$
Wheel load	F Q2	=	100 kN	(Axis system lane 2)
width wheel dim.	B wheel	=	0.55 m	
Length wheel dim	L wheel	=	0.55 m	
Distributed wheel load	p Q2	=	330.6 kN / m2	$= F Q2 / \big(B \mathrm{wheel} \mathbin{\raisebox{.3ex}{$^{\circ}$}} L \mathrm{wheel} \big)$

Specifically

The above load configuration is provided locally for the bridging at the location of some determinative placed crossbars (at fields and supports). For the main bridge, the load is applied in the local model. The axle loads between the two lanes are center to center 0.5 m instead of the usual 1.0 m (local assessment) see 4.3.2 (5) of NEN-EN 1991-2. The load is multiplied by a reduction factor for LMI, 6 months, depending on the influence length.

ax case

650-669: BM1 - UDL - V2 - Emergency - Steel deck with bulbs / concrete deck between down carriers

The load due to BM1 and BM2 in the emergency situation (V2) will not be decisive for the steel deck and the concrete deck between the cross beams relative to the normal situation (V1), due to the higher reduction factor for V2 due to the reduced service life that may be maintained. Because the axes are equal V1 will always be decisive in both vituations.

Tax case

670-699: BM1 - TS - V2 - Emergency - Steel deck with bulbs / concrete deck between bearers

The load due to BM1 and BM2 in the emergency situation (V2) will not be decisive for the steel deck and the concrete deck between the cross beams relative to the normal situation (V1), due to the higher reduction factor for V2 due to the reduced service life that may be maintained. Because the axes are equal V1 will always be decisive in both situations.

Page 20

Tax cases			
Project:	Recalculation IJssel Bridge A12	Date:	5/25/2018
Project number:	BF7387	Name:	EKL
Description:	Traffic taxes	Version:	F1.0

Tax case 700-719: BM1 - UDL - V2 - Emergency - Console / concrete deck cantilever

BM1 wheel loads are on the rim for the maximum support moment in the console (main span) and in the cantilever part of the concrete deck (bridging), of the fictional lane, with the rim of the wheel 0.3 m from the vehicle barrier. Assuming a distance from the vehicle barrier of 0.30 m and a wheel width of 0.40 m, the center of the wheel is 0.695 m from the main beam. The load on lane 2 is irrelevant to the cantilever and is omitted left. The load is applied alternately in the odd and even fields. The load is multiplied by a reduction factor for LM1, 6 months, depending on the influence length.

Lane 1	p udl. 1	=	9 kN / m 2	width	3.00 m
Lane 2	p udl. 2	=	0 kN / m 2	width	3.00 m

Fictitious lane layout V2 - Emergency - Load console / cantilever concrete deck

Tax case		720-749: BM1 - TS	- V2 - Emergency - C	Console / concrete deck cantilever
General				
Wheel load	F Q1	=	150 kN	(Axis system lane 1)
width wheel dim.	B wheel	=	0.55 m	
Length wheel dim	L wheel	=	0.55 m	
Distributed wheel load	p Q1	=	495.9 kN / m2	$= F_{Q1} / (B_{wheel} * L_{wheel})$
Wheel load	F Q2	=	100 kN	(Axis system lane 2)
width wheel dim.	B wheel	=	0.55 m	
Length wheel dim	L wheel	=	0.55 m	
Distributed wheel load	p Q2	=	330.6 kN / m2	= F Q2 / (B wheel * L wheel)

Specifically

The above load configuration will be on site for bridging in line with some determinative crossbars placed (at fields and supports). The load is applied to the main bridge in the local model. The axle loads between the two lanes are center to center 0.5 m instead of the usual 1.0 m (local assessment) see 4.3.2 (5) of NEN-EN 1991-2. The load is multiplied by a reduction factor for LM1, 6 months, depending on the influence length.

Page 21

Tax cases

 Project:
 Recalculation Ussel Bridge A12
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Traffic taxes
 Version:
 F1.0

ax case 750-769: BM1 - UDL - V2 - Emergency - Steel deck with bulbs between conso

For the steel deck, the bulbs and the edge strips between the consoles, the loads of BM1 are placed at the edge of the fictional lanes, with the edge of the wheel on 0.3 m from the vehicle barrier can be used to 10.40 m, the center of the wheel is 0.695 m from the main girder. The load on lane 2 is relevant for the bulbs and therefore included. The load is split lengthwise into separate ones load cases for the even and odd fields. The load is multiplied by a reduction factor for LM1, 6 months, depending on the influence length.

 $Fictitious\ lane\ layout\ V2-Emergency-Steel\ deck\ load\ with\ bulbs\ between\ the\ consoles$

Tax case		770-779: BM1 - TS - V2 - Emergency - Steel deck with bulbs between console					
General							
Wheel load	FQI	=	150 kN	(Axis system lane 1)			
width wheel dim.	B wheel	=	0.55 m				
Length wheel dim	L wheel	=	0.55 m				
Distributed wheel load	p QI	=	495.9 kN / m2	= F Q1 / (B wheel * L wheel)			
Wheel load	F Q2	=	100 kN	(Axis system lane 2)			
width wheel dim.	B wheel	=	0.55 m				
Length wheel dim	L wheel	=	0.55 m				
Distributed wheel load	p Q2	=	330.6 kN / m2	= F Q2 / (B wheel * L wheel)			

Specificall

The design positions of the tundem systems for the maximum stresses in the field and at the location of the The support point was determined using SCIA by sliding it in steps of 0.1 m (see Appendix F.3). Only the normative positions are kept in the model because of the calculation time. The tax is multiplied with a reduction factor for LMI, 6 months, depending on the influence length.

Tax case 780-789: BM2 - TS - V2 - Emergency - Steel deck / concrete deck between cross members

The load due to BM2 in the emergency situation (V2) will not be compared to the normal situation (V1) for the steel deck and the concrete deck between the cross beams are decisive, due to the higher reduction factor in connection with the reduced service life that may be used.

Tax case

790-799: BM2 - TS - V2 - Emergency - Steel deck / concrete deck between consoles

For BM2 the wheel loads are placed against the vehicle barrier. Since the load case BM2 - emergency is exactly equal to BM2 - normal situation, it continues not taken into account as the reduction factors for the emergency situation are lower.

Page 22

I	ax	cases

Tax case 900-949: Brake load

In the model, the brake load is entered as a line load along the length of the bridge. A distinction is made for the calculation made in situation VI (normal situation) and situation V2 (emergency). Taxes take into account the reduction factors.

The load is maintained for the normal situation in the heart of lane 1 or 2. For the fictional situation, the most unfavorable location is chosen, once with lane 1 on the edge and 1 time in the middle of the bridge. This means that a distinction is made between situation V1 (normal situation) and V2 (emergency).

Brake load position

Location	Eccentricity to heart bridge	
V1 - normal use - Main beam cf BG 100-199	1.8125 m	shown in blue
V1 - normal use - Cross beam cf BG 200-249	0 m	shown in green
V1 - normal use - Steel / concrete deck between crossbar cf BG 250-299	0	shown in green
V1 - normal use - Console cf BG 300-349	2.125 m	shown in red
V1 - normal use - Steel deck between console cf BG 350-399	2.125 m	shown in red
V2 - emergency - Main beam cf BG 500-599	2,245 m	shown in purple
V2 - emergency - Cross beam cf BG 600-649	0 m	shown in green
V2 - emergency - Steel / concrete deck between crossbar of BG 650-699	0 m	shown in green
V2 - emergency - Console of BG 700-749	2,245 m	shown in purple
V2 - emergency - Steel deck between console of BG 750-769	2,245 m	shown in purple

Tax cases

Recalculation IJssel Bridge A12 BF7387 Project: Project number: Description: EKL F1.0 Traffic taxes

1200-1299: Tax inspection path

 $The inspection path next to the bridge is loaded by a load of 2.0 kN/m^2. In addition, a point load of 7 kN is applied for local tests. The handrail becomes the following the properties of t$ loaded with $0.8\,\mathrm{kN/m}$. The tax is not charged simultaneously with traffic. Given the size of the load, it is only used for manual calculations of the console itself and the connections on the deck.

UDL inspection paths next to the bridge

UDL $2\;kN\,/\,m^2$ Point load 7 kN Handrail 0.8 kN/m

1300-1399 = UDL 2.0 kN / m $_{\rm 2}$ - Inspection path under the bridge

The inspection path under the bridge is taken into account as 2 point loads on the cross beams, center to center 700 mm, symmetrical with respect to the center of the crossbars. Given the magnitude of the loads, it is only used for testing the connection to the cross beam.

700 mm F inspection path

UDL inspection path on the bridge

Length $\label{eq:weight} \textbf{Weight}$ $2.00~kN~/~m^2 =$ 0.5 x 1.8 mx 0.75 mx 1.35 kN

Page 24

Recalculation IJssel Bridge A12 5/25/2018 Project: Date: Project number: BF7387 EKL Name: F1.0 Reduction factors Description: Version:

0.92

Traffic load reduction factors

Main bridg

Axle loads (TS)											
Part	L	α Q1 and α q1	LM1 a trend	LM2 0. trend	αL.	ψ factor	ψ factor	LM1	LM1	LM2	LM2
						(30 yrs)	(6 m)	(30 yrs)	(6 m)	(30 yrs)	(6 m)
Main spar field 1	45 m	0.99	0.96	0.98	1	0.99	0.92	0.94	0.87	0.96	0.89
Main girder field 2 (pos. M)	50 m	0.99	0.96	0.98	1	0.99	0.92	0.94	0.87	0.96	0.89
Main girder field 2 (neg. M)	150 m	0.99	0.96	0.98	1	0.98	0.84	0.93	0.80	0.95	0.81
Main spar field 3	105 m	0.99	0.96	0.98	1	0.98	0.84	0.93	0.80	0.95	0.81
Main beam support point 2	95 m	0.99	0.96	0.98	1	0.98	0.85	0.93	0.81	0.95	0.82
Main beam support point 3	155 m	0.99	0.96	0.98	1	0.97	0.84	0.92	0.80	0.94	0.81
Cross beam / console	12 m	0.99	0.99	0.98	1	0.99	0.93	0.97	0.91	0.96	0.90
Bulb, steel deck	<2.5 m	0.99	1	0.98	1	0.99	0.93	0.98	0.92	0.96	0.90
Evenly distributed load (UD)	L)										
Part	L	α Q1 and α q1	LM1 a trend	LM2 trend	αL.	ψ factor	ψ factor	LM1	LM1	LM2	LM2
						(30 yrs)	(6 m)	(30 yrs)	(6 m)	(30 yrs)	(6 m)
Main spar field 1	45 m	0.99	0.96	0.98	1	0.99	0.92	0.94	0.87	0.96	0.89
Main girder field 2 (pos. M)	50 m	0.99	0.96	0.98	1	0.99	0.92	0.94	0.87	0.96	0.89
Main girder field 2 (neg. M)	150 m	0.99	0.96	0.98	0.90	0.98	0.84	0.84	0.72	0.86	0.73
Main spar field 3 Main beam support point 2	105 m 95 m	0.99	0.96	0.98	0.99	0.98	0.84	0.92	0.79	0.94	0.81
Main beam support point 3	155 m	0.99	0.96	0.98	0.89	0.97	0.84	0.82	0.71	0.84	0.73
Cross beam / console	155 m	0.99	0.99	0.98	0.89	0.97	0.93	0.97	0.71	0.96	0.73
Bulb, steel deck	<2.5 m	0.99	1	0.98	1	0.99	0.93	0.98	0.92	0.96	0.90
Bridge											
Axle loads (TS)											
		αQ1 and αq1	LM1	LM2	α L.	ψ factor	ψ factor	LM1	LM1	LM2	LM2
Part	L	a Qi ana a qi	Ctrend	Ct trend	0. 1	(30 yrs)	(6 m)	(30 yrs)	(6 m)	(30 yrs)	(6 m)
Main spar field 1	40 m	0.99	0.97	0.98	1	0.99	0.92	0.95	0.88	0.96	0.89
Main girder field 2 (pos. M)	40 m	0.99	0.97	0.98	1	0.99	0.92	0.95	0.88	0.96	0.89
Main girder field 2 (neg. M)	80 m	0.99	0.96	0.98	1	0.98	0.87	0.93	0.83	0.95	0.84
Main beam support point 2	80 m	0.99	0.96	0.98	1	0.98	0.87	0.93	0.83	0.95	0.84
Cross beam	12 m	0.99	0.99	0.98	1	0.99	0.93	0.97	0.91	0.96	0.90
Concrete deck	<2.5 m	0.99	1	0.98	1	0.99	0.93	0.98	0.92	0.96	0.90
Evenly distributed load (UD)	L)										
	,	αQ1 and αq1	LM1	LM2	α L.	ψ factor	ψ factor	LM1	LM1	LM2	LM2
Part	L	a Qi anu a qi	C trend	Ct trend	U. L.	(30 yrs)	(6 m)	(30 yrs)	(6 m)	(30 yrs)	(6 m)
Main spar field 1	40 m	0.99	0.97	0.98	1	0.99	0.92	0.95	0.88	0.96	0.89
Main girder field 2 (pos. M)	40 m	0.99	0.97	0.98	1	0.99	0.92	0.95	0.88	0.96	0.89
Main girder field 2 (neg. M)	80 m	0.99	0.96	0.98	1	0.98	0.87	0.93	0.83	0.95	0.84
Main beam support point 2	80 m	0.99	0.96	0.98	1	0.98	0.87	0.93	0.83	0.95	0.84
Construction Construction	16	0.00	0.00	0.00		0.00	0.02	0.07	0.01	0.06	0.00

Page 25

Determining the location of wheel loads for testing bulbs

<2.5 m

Concrete deck

 Project:
 Recalculation IJssel Bridge A12
 Date:
 5/23/2018

 Project number:
 BF7387
 Name:
 AKA

 Description:
 Determining the position of the wheel loads

Two locations are considered for the testing of the bulbs, one at the location of the bulbs between the cross bars and one at the location of the bulbs between the crossles. For the bulbs between the crossbars is made use of the road layout that was also used for the maximum field moment in the crossbars, however with full lane widths. For the bulbs between the consoles, the load is as far as possible placed to the outside.

The tandem systems have shifted from one crossbeam to another crossbeam in steps of 0.1m determine the position at which the maximum field and support moment occurs. This is for both BM1 and BM2 done, and for BM1 both for the normal situation and the situation in an accident. The effect of one transverse shift has also been controlled.

BM1 V1 Bulbs between cross bars

BM1 V1 Bulbs between consoles

192.9

96.6

BG

270

 $\sigma_{x,\,max}$

150.1

σ x, min

-101.7

270	150.1	101.7	3,0	,0.0	1,2.,
270-1	170.5	-103.5	370-1	114.7	-195.4
270-2	184.9	-97.7	370-2	125.9	-187.5
270-3	187.7	-90.6	370-3	135.5	-169.7
270-4	199.4	-93.9	370-4	144.3	-143.2
270-5	200.2	-96.5	370-5	143.0	-118.0
270-6	193.7	-97.0	370-6	134.6	-124.4
270-7	184.2	-97.7	370-7	126.9	-133.1
270-8	173.8	91.7	370-8	113.5	-133.6
270-9	165.0	-80.1	370-9	102.5	-129.1
BM2 V1 Bi	ulbs between c	ross bars	BM2 V1 B	ulbs between co	onsoles
BG	$\sigma_{x,max}$	$\sigma_{x, min}$	BG	$\sigma_{x,max}$	$\sigma_{x,min}$
460-0	66.8	-21.8	450-0	37.6	-18.6
460-1	86.1	-28.7	450-1	57.1	-28.9
460-2	113.3	-36.3	450-2	84.4	-33.0
460-3	132.9	-46.4	450-3	104.3	-46.2
460-4	141.0	-53.2	450-4	116.7	-57.8
460-5	162.5	-62.0	450-5	137.8	-71.0
460-6	170.7	-68.9	450-6	146.9	-77.0
460-7	185.6	-76.4	450-7	163.0	-87.5
460-8	191.4	-80.7	450-8	169.5	-94.8
460-9	188.3	-85.6	450-9	166.2	-102.6
460-10	190.9	-86.0	450-10	169.0	-105.9
460-11	183.4	-86.6	450-11	160.9	-109.3
460-12	168.7	-82.2	450-12	144.8	-107.3
460-13	158.5	-78.3	450-13	134.0	-105.9
			450-14	111.4	-95.4
			450-15	95.8	-79.8
BM1 V2 Bi	ulbs between c	ross bars	BM1 V2 B	ulbs between co	onsoles
BG	σ x, max	σx, min	BG	$\sigma_{x, max}$	σ x, min
	142.7	-104.9	770-0	93.0	-169.1
670-1	163.1	-108.3	770-1	113.5	-170.9
670-2	175.7	-101.5	770-2	123.0	-163.9
670-3	179.5	-89.8	770-3	132.3	-148.8
670-4	189.8	-93.3	770-4	139.4	-125.5
670-5	190.6	-96.2	770-5	139.2	-108.1
670-6	183.6	-97.0	770-6	128.8	-133.7

BG

370

In addition to the above longitudinal variation, the load has also been shifted in the width direction. This has no significant effect on the voltages in the bulbs and deck.

770-7

770-8

770-9

124.5

109.0

97.4

-122.0

-120.1

-116.4

Page 26

Appendix

670-7

670-8

175.1

-98.3

-92.6

-82.1

Appendix G - Wind loads

IJssel Bridge


```
Reference height (z e ) =

Terrain category =

height =
                                                            12.5 m
                             height = 17.2

Distance R = 858 m

z 0 = 0.2
                                                                                           Distance R according to table NB. 4
                   Terein factor (k r ) = 0.209
                                                                                          k r = 0.19 x (z 0 / Z 0, H) 0.07
                                                    0.866
                                                                                          c r(z) = k r x ln(z/z0)
                                                                                                                                             for \ z \ min \leq z \leq z \ max
               roughness factor c r (z) =
                                                                                           c r(z) = c r(z min)
H4.3.1
             reference height (z e ) =
                                                  1.00
             orography factor c o (z) =
     Avg. wind speed v m (z) =
            Turbulence factor k l =
   Turbulence intensity I v (z) =
                                                       0.2418
                                     \rho = \begin{array}{ccc} Extreme thrust & & \\ \rho = & 1.25 & kg \, / \, m3 \\ & 0.70 & kN \, / \, m \, 2 \\ & 0.67 & kN \, / \, m \, 2 \end{array}
                                                                                                     c e (z)
        Extreme thrust q p(z) =
                                                                                                    2,019
       Extreme thrust q * p(z) =
```

Tax cases Project:	Barrel and advantage	Ussel Bridge A1		Date:	***************************************
Project number:	BF7387	Dssei Bridge A1.	2	Name:	EKL
-	Wind load at b			Version:	D0.1
Description:	Wind load at t	ondge (5 °)		Version:	D0.1
Power coefficients					
wind in X direction	b / d to	c fx; 0	c fx; 0 incl surcha	arge cross slope line function	
without traffic	2.07	1.91	1.96	Construction stage, open bridge ra	ilings, etc.
with traffic	1.84	1.98	2.04	Construction stage, open bridge re	nilings, etc.
wind in Z direction without traffic b / d tot	2.00	7			
angle α of the wind with fly screen.		5 gr			
$\theta = \alpha + \beta$		6 gr			
figure NB.8 c fz =	0.76	5	note also use the	negative value for wind in opposite direction	
Wind load					
wind in X direction					
wind in X direction representative tax		Tota			D rep
•	Fwk			per m1	
without traffic			879 kN	7.3 kN / m1	1.38 kN / m 2
with traffic	Fwk		029 kN	8.6 kN / m1	1.44 kN / m 2
with traffic, reduced	ψ0Fwk	-	309 kN	2.6 kN / m1	0.43 kN / m 2
with traffic	F*w	-	975 kN	8.1 kN / m1	1.36 kN / m 2
wind in Y direction	= 40% of wine	d forces in the x d	irection (in the x directio	n, the same force as in the y direction occurs simultaneously)	
representative tax		Tota	d		p rep (about 9.44 n
without traffic	Fwk	-	351 kN		0.31 kN / m 2
with traffic	F wk	-	412 kN		0.36 kN / m 2
with traffic, reduced	ψ0Fwk	-	123 kN		0.11 kN / m 2
with traffic	F * w		390 kN		0.34 kN / m 2
wind in Z direction	If a load in the			simultaneously with the x direction	
representative tax		Tota	d		p rep (about 10,964 m)
without traffic	Fwk	-	709 kN		0.54 kN / m 2
moment with e = b / 4	M wk	- 19	942 kNm		$\pm~0.81~kN$ / m ²
with traffic	F * w	_	671 kN		0.51 kN / m 2
moment with $e = b / 4$	M * w		339 kNm		±0.77 kN / m ²
		10,964 m			
0.762 m			9.44 m	0.762 m	
0.762 m			9.44 III	0.702 III	
0.77 kN/m 2 0.66 kN/m2					
U. / / kN / m 2 0.66 kN / m2					

0.66 kN / m 2 0.77 kN / m 2

0.51 kN / m 2

Scia import

0,66 kN/m 2 0.16kN/m 0,66 kN/m2 9.44 m 0.36 kN/m Page 29 Tax cases Recalculation IJssel Bridge A12 Wind load at bridge (5 °) Description: plate bridge or box bridge 10.1 m + NAP Type total length 21.3 m + NAP 10,964 m width 1st main beam 2.4 m bark side 0.225 m 2nd main spar 2.2 m construction height bridge (d) inclined windward and slate side (α) 2.5 gr bridge deck slope (β) 1 gr NB - cross slope supplement must be included Traffic type road traffic Traffic band wind in X direction A ref, x table 1 Separation type open bridge railing and open safety barrier Separation type closed or open barrier On both sides open bridge railing or open safety barrier $d + 0.3m \\ \qquad \qquad d + 0.6m$ 0.85 m 5.29 m tight bridge railing or tight safety barrier d + d 1 handrail / screen height (d 1) d + 2d 1 d to - without traffic open bridge railing and open safety barrier At deck with main beams A ref; x - without traffic 635 m 2 article NB 8.3.1 (4) number of main beams A ref; x - with traffic 716 m 2 deck height 0.525 m 4.03 m equivalent construction height v b; 0 = 24.5 m/s 23.6 m/s 23.0 m/s 17.2 height = 0.2 Terein factor (k r) = k r = 0.19 x (z 0 / Z 0, II) 0.07 0.209 for z $\min \leq z \leq z$ \max roughness factor c r (z) = c r (z) = k r x ln (z / z 0) H4.3.1 reference height (z e) = 1.00 orography factor c o (z) = Avg. wind speed v m (z) = Turbulence factor k I = Turbulence intensity I v (z) = 0.2418 $\rho = \begin{array}{ccc} & \text{Extreme thrust} \\ \rho = & 1.25 & kg \, / \, m3 \\ & 0.70 & kN \, / \, m \, 2 \\ & 0.67 & kN \, / \, m \, 2 \end{array}$

c e (z)

2,019

Extreme thrust q p (z) =

Extreme thrust q * p (z) =

Tax cases					
Project:	Recalculation IJ	ssel Bridge A12			***************************************
Project number:	BF7387				EKL
Description:	Wind load at bri	dge (5°)		Version:	D0.1
Power coefficients					
wind in X direction without traffic	b / d to 2.07	e fx; 0		rge cross slope line function	
without traffic with traffic	2.07 1.84	1.91 1.98	1.96 2.04	Construction stage, open bridge railings, Construction stage, open bridge railings,	
with trainic	1.64	1.98	2.04	Construction stage, open bridge rattings,	etc.
wind in Z direction					
without traffic b / d tot	2.07				
angle α of the wind with fly screen.	2.5	gr			
$\theta = \alpha + \beta$	3.5	gr			
figure NB.8 c fz =	0.66		note also use the ne	egative value for wind in opposite direction	
Wind load					
wind in X direction					
representative tax		Total		per m1	p rep
without traffic	F wk =	879 1	ίΝ	7.3 kN / m1	1.38 kN / m 2
with traffic	F wk =	1029 ki	N	8.6 kN / m1	1.44 kN / m 2
with traffic, reduced	$\psi \ 0 \ F \ wk =$	3091	ίN	2.6 kN/m1	0.43 kN / m 2
with traffic	F*w=	975 1	ίN	8.1 kN / m1	1.36 kN / m 2
wind in Y direction	= 40% of wind t	orces in the x directi	on (in the x direction	s, the same force as in the y direction occurs simultaneously)	
representative tax		Total			p rep (about 9.44 m)
without traffic	F wk =	3511	ίN		0.31 kN / m 2
with traffic	F wk =	4121	ίN		0.36 kN / m 2
with traffic, reduced	ψ 0 F wk =	123 1	rN		0.11 kN / m 2
with traffic	F*w=	390 1			0.34 kN / m 2
wan name	. "	3,01			0.54 814 7 111 2
wind in Z direction	If a load in the 2	direction works unf	avorably, it occurs si	imultaneously with the x direction	
representative tax		Total	-	•	p rep (about 10,964 m)
without traffic	F wk =	613 1	(N		0.47 kN / m 2
moment with e = b / 4	M wk =	1681 ki	Nm		± 0.7 kN / m 2
with traffic	F*w=	5811			0.44 kN / m 2
	F*w= M*w=				
moment with e = b / 4	M * w =	1592 ki	Nm		\pm 0.66 kN / m ²
		10,964 m			
		10,904 III			
0.762 m		9.44	m	0.762 m	
0.702 m		7.44		0.702 III	
0.66 kN / m 2 0.57 kN / m2					
0.00 2.17 111 2 0.57 2.11 1112					
				0.57 kN / m 2 0.66 kN / m 2	
	0.44~kN/m2				
Scia imports					
0.57 kN / m 2				0.13 kN / m	
				0.57 kN / m 2	
				0.57 KN / m 2	
			9.44 m		
				0.05 kNm / m	
0.31 kN/m					
	0.44 kN / m 2				
0.80 kN/m					

Page 31

Tax cases

Recalculation IJssel Bridge A12 BF7387 10/19/2018 EKL Project: Project number: Date: Name: Main span wind load (5°) D0.1 Description: Version:

Wind load

Tax case 950-951 Wind load x direction

kN

155

The wind load in x direction is distributed between the K-bandages and the deck. On the K-beams, the wind load of a half (main) beam height (d &

relation) times the center-to-center distance of the K-relations is charged as a point load (F^* w_{k. k-connection}). On the side of the second main beam, 2/3 of it this tax is charged on the k-connection (F^* w_{k. k-connection, 2}). The remaining wind load is charged as line load on the steel deck (q deck)

						K-band	ages			deck
Position	Cross beam	To x vs. 0	h main beam	p * w	d k bandage	A k bandage	$\mathbb{F} *_{w,k\;bandage,1}$	\mathbb{F}^{st} w, k bandage, 2	d to	d deck
		[mm]	[m]	$[kN/m^2]$	[m]	$[m^2]$	[kN]	[kN]	[m]	[m]
		-325	2400	1.40	1200				6.37	4.37
Pillar f	portal A	0	2400	1.40	1200	3.63	5.1	3.4	6.37	4.37
	1	5400	2400	1.40	1200	6.48	9.1	6.0	6.37	4.37
	2	10800	2400	1.40	1200	6.48	9.1	6.0	6.37	4.37
	3	16200	2400	1.40	1200	5.40	7.6	5.0	6.37	4.37
	4	19798	2400	1.40	1200	4.32	6.0	4.0	6.37	4.37
field 1	5	23398	2400	1.40	1200	5.40	7.6	5.0	6.37	4.37
	6	28798	2400	1.40	1200	6.48	9.1	6.1	6.37	4.37
	7	34198	2400	1.40	1200	6.48	9.1	6.1	6.37	4.37
	8	39596	2400	1.41	1200	6.48	9.1	6.1	6.37	4.37
Pillar G	Portal B	44996	2400	1.41	1200	6.48	9.1	6.1	6.37	4.37
	9	50394	2443	1.42	1222	6.57	9.3	6.2	6.44	4.41
	10	55749	2541	1.43	1271	6.80	9.7	6.5	6.61	4.49
	11	61104	2720	1.44	1360	7.28	10.5	7.0	6.90	4.64
	12	66457	2963	1.45	1482	6.61	9.6	6.4	7.31	4.84
field 2	13	70027	3159	1.46	1580	5.64	8.2	5.5	7.64	5.00
	14	73597	3374	1.49	1687	7.53	11.2	7.5	7.99	5.18
	15	78952	3781	1.53	1891	10.12	15.5	10.3	8.67	5.52
	16	84305	4245	1.57	2123	11.36	17.9	11.9	9.45	5.91
	17	89660	4766	1.62	2383	12.76	20.6	13.7	10.31	6.34
Pillar H	Portal C	95015	5300	1.66	2650	14.05	23.3	15.5	11.20	6.79
	18	100265	4880	1.65	2440	12.81	21.1	14.1	10.50	6.44
	19	105515	4440	1.64	2220	11.65	19.1	12.7	9.77	6.07
	20	110763	4063	1.63	2032	10.66	17.4	11.6	9.14	5.76
	21	116013	3725	1.62	1863	9.78	15.8	10.6	8.58	5.47
	22	121263	3444	1.61	1722	9.03	14.6	9.7	8.11	5.24
	23	126506	3224	1.60	1612	8.46	13.5	9.0	7.74	5.06
	24	131756	3034	1.59	1517	7.96	12.7	8.5	7.43	4.90
	25	137006	2916	1.58	1458	7.67	12.1	8.1	7.23	4.80
	26	142 275.5	2838	1.57	1419	7.46	11.7	7.8	7.10	4.74
Field 3	27	147,525.5	2800	1.56	1400	7.35	11.5	7.7	7.04	4.70
	26	152775.5	2838	1.57	1419					
Global model	:	3318	kN							

Local model:

Tax case 952-953 : Wind load 40% xy direction

For these load cases, a wind force of 40% in x and y direction occurs. This was introduced by multiplying the wind in x direction by 40%. For the y-direction (longitudinal direction) a UDL load is applied to the deck.

Loaded deck wi	dth	b deck	= 9.29) m			
					x direction		y direction
		To x vs. 0	d to	\mathbb{F}^{*} w, k bandage, 1	\mathbb{F} * w, k bandage, 2	¶ deck	pdek
Position	Cross beam	[mm]	[m]	[kN]	[kN]	[kN / m]	[kN/m]2
		-325	6.37			2.44	0.38
Pillar f	portal A	0	6.37	2.0	1.4	2.44	0.38
	1	5400	6.37	3.6	2.4	2.44	0.38
	2	10800	6.37	3.6	2.4	2.44	0.38
	3	16200	6.37	3.0	2.0	2.45	0.38
	4	19798	6.37	2.4	1.6	2.45	0.38
field 1	5	23398	6.37	3.0	2.0	2.45	0.38
	6	28798	6.37	3.6	2.4	2.45	0.38
	7	34198	6.37	3.6	2.4	2.45	0.39
	8	39596	6.37	3.6	2.4	2.46	0.39
Pillar G	Portal B	44996	6.37	3.6	2.4	2.46	0.39
	9	50394	6.44	3.7	2.5	2.50	0.39
	10	55749	6.61	3.9	2.6	2.56	0.41
	11	61104	6.90	4.2	2.8	2.67	0.43
	12	66457	7.31	3.8	2.6	2.81	0.46
field 2	13	70027	7.64	3.3	2.2	2.92	0.48
	14	73597	7.99	4.5	3.0	3.08	0.51
	15	78952	8.67	6.2	4.1	3.38	0.57
	16	84305	9.45	7.1	4.8	3.72	0.64
	17	89660	10.31	8.2	5.5	4.10	0.72
Pillar H	Portal C	95015	11.20	9.3	6.2	4.50	0.80
	18	100265	10.50	8.5	5.6	4.25	0.75
	19	105515	9.77	7.6	5.1	3.98	0.69
	20	110763	9.14	7.0	4.6	3.75	0.64
	21	116013	8.58	6.3	4.2	3.55	0.60
	22	121263	8.11	5.8	3.9	3.38	0.56
	23	126506	7.74	5.4	3.6	3.24	0.53
	24	131756	7.43	5.1	3.4	3.12	0.51
	25	137006	7.23	4.9	3.2	3.04	0.49
	26	142 275.5	7.10	4.7	3.1	2.98	0.48
Field 3	27	147,525.5	7.04	4.6	3.1	2.94	0.47
	26	152775.5					
Global model:		1327	kN				
Local model:		62	kN				

Tax case 954-955 : Wind load z direction

The wind load in Z direction is applied as a UDL load on the deck. The wind load on the inspection paths is used as line load and line moment on the edge from the deck.

	p * w,z	∆ p * w,z	p * w, z, left	p * w, z, right	Q * w, z, left	Q * w, z, right	$m \stackrel{\star}{\times} _{w,z, \mathrm{left}}$	m ★ w, z, right
Position	$[kN/m^2]$	$[kN/m^2]~2$	$[kN/m^2]$ 2	$[kN/m^2]~22$	[kN/m]	[kN/m]	[kN/m] 2	[kN/m] 2
field 1	0.52	0.77	1.15	-0.12	1.02	-0.16	0.43	0.07
field 2	0.51	0.77	1.14	-0.12	1.01	-0.16	0.43	0.07
Field 3	0.56	0.84	1.25	-0.13	1.11	-0.17	0.47	0.08
0.837			9.29				0.837	

Δp * w, z

p * w, z

-∆p * w, z

Import SCIA

Global model: 1703 kN Local model: 72 kN

Page 34

Tax cases

Project:Recalculation IJssel Bridge A12Date:########Project number:BF7387Name:EKLDescription:Main span wind load (5°)Version:D0.1

Wind load

Tax case 800-809 : Wind load at pillar F and abutment south

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry Coordinate system

		_		-			
Туре	plate bridge or box bridge		X	width	Ground level		10.1 m + NAP
total length	295 m		у	length	Bottom of main be	eam	21.5 m + NAP
width	10,964 m		z	height			
free height bottom bridge	11.4 m						
1st main beam	2.4						
sheep's edge / deck	0.37						
2nd main spar	2.4						
construction height bridge (d)	2.77 m						
inclined windward and slate side (α)	5 gr						
bridge deck slope (β)	1 gr	NB -	- cross slo	pe supplement	must be included		
Traffic type	road traffic	Traf	fic band		2	meter	
Reference surfaces							
wind in X direction	A ref. x	table	e 1				

Reference surfaces				
wind in X direction	A ref, x	table 1		
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both sides	
closed or open barrier	On both sides	open bridge railing or open safety barrier	d + 0.3m	d + 0.6n
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	d + d 1	d + 2d
d to - without traffic	5.57 m	open bridge railing and open safety barrier	d + 0.6m	d + 1.2n
d to - with traffic	6.37 m			
		table 2		
A $_{ref; x}$ - without traffic	1643 m	At deck with main beams	article NB 8.3.1 (4)	
A ref ; x - with traffic	1879 m	number of main beams	2	
		deck height	0.37 m	
		height of main beams	2.4 m	
wind in Z direction	A ref, z	equivalent construction height	4.37 m	

Wind loads

A ref, z

winu ioa	us	
H4.2	Ba	sic values
	Design life span =	30 years
	$C_{prob} =$	0.96
	Wind area =	III
	$_{ m V}$ b; 0 =	24.5 m/s
	v _b =	23.6 m/s
	V * b; 0 =	23.0 m/s
	v * b =	23.0 m/s
H4.3.2	Te	rrain roughness

114.3.2		ici i aini rougiiness		
	Reference height (z e) =	12.8 m		
	Terrain category =	II	Unbuilt	
	height =	17.8		
	Distance R =	889 m	Distance R according to table NB.	. 4
	Z 0 =	0.2		
	Terein factor (k r) =	0.209	k $_{r}$ = 0.19 x (z $_{0}$ / Z $_{0,\rm II}$) $_{0.07}$	
	roughness factor $c_r(z) =$	0.870	$c_r(z) = k_r x ln(z/z_0)$	for $z_{\text{ min}} \leq z \leq z_{\text{ max}}$
			$c_{-1}(z) \equiv c_{-1}(z_{\min})$	for z < z

		$c_r(z) = c_r(z_{min})$	for $z \le z_{min}$	
H4.3.1	Variation with height			
reference height (z $_{e}$) =	12.8			
orography factor $c \circ (z) =$	1.00			
Avg. wind speed $v_m(z) =$ Avg. wind speed $v_m(z) =$	20.6 m/s	$V_{m}(z) = c_{r}(z) x c_{0}(z) x V_{b}$ $V_{m}^{*}(z) = c_{r}(z) x c_{0}(z) x V_{b}^{*}$		
Avg. wild speed v m (z) –	20.0 m/s	v m(Z) - Cr(Z) AC ((Z) AV b		
H4.4	Wind turbulence			

2,033

H4.4			Wind turbule	nce	
	Turbulence factor $k_1 =$		1.00		
Turbulence intensity I $_{\rm v}$ (z) =		0.2405			
H4.5			Extreme thrus	st	
		$\rho =$	1.25	kg / m3	c e (z)
Ext	reme thrust $q_{p}(z) =$		0.71	kN / m 2	2,033

kN / m 2

0.67

3234 m

Extreme thrust $q *_p (z) =$

Fav	cases

 Project:
 Recalculation IJssel Bridge A12
 Date:
 #########

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (5°)
 Version:
 D0.1

Power coefficients

wind in X direction	b / d to	C fx; 0	$c_{fx;0}$ incl surcharge cross slope line fur	nction
without traffic	1.97	1.94	2.00	Construction stage, open bridge railings, etc.
with traffic	1.72	2.02	2.08	Construction stage, open bridge railings, etc.

wind in Z direction

without traffic b / d $_{\text{tot}}$ 1.97 angle α of the wind with fly screen. 5 gr $\theta=\alpha+\beta$ 6 gr figure NB.8 c $_{\text{fi}}=$ 0.76

note also use the negative value for wind in opposite direction

Wind load

wind in X direction

representative tax		Total	per m1	р гер
without traffic	$F_{wk} =$	2329 kN	7.9 kN / m1	1.42 kN / m
with traffic	$F_{\rm \ wk} =$	2770 kN	9.4 kN / m1	1.47 kN / m
with traffic, reduced	$\psi \circ F_{wk} =$	831 kN	2.8 kN / m1	0.44 kN / m
with traffic	F * w =	2624 kN	8.9 kN / m1	1.40 kN / m

wind in Y direction = 40% of wind forces in the x dir	ection (in the x direction, the same force as in the y direction occurs simultaneously)
--	---

representative tax		Total	$p_{rep} (about b = 9.29 m)$
without traffic	$F_{wk} =$	932 kN	$0.34\mathrm{kN/m}^{-2}$
with traffic	$F_{wk} =$	1108 kN	$0.40 \mathrm{kN/m}^{-2}$
with traffic, reduced	$\psi \circ F_{wk} =$	332 kN	$0.12 \mathrm{kN/m}^{-2}$
with traffic	F * w =	1049 kN	$0.38\mathrm{kN/m}^{-2}$

wind in Z direction If a load in the Z direction works unfavorably, it occurs simultaneously with the x direction

representative tax		Total	p_{rep} (about $b = 10,964 \text{ m}$)
without traffic	$F_{\rm \ wk} =$	1753 kN	0.54 kN / m
moment with $e = b / 4$	$M_{\rm wk} =$	4805 kNm	\pm 0.81 kN / m
with traffic	F * w =	1660 kN	0.51 kN / m
moment with $e = b / 4$	M * w =	4550 kNm	\pm 0.77 kN / m 2

Tax cases

 Project:
 Recalculation IJssel Bridge A12
 Date:
 #########

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (5°)
 Version:
 D0.1

Wind load

Tax case 800-809 : Wind load at the 1st and 5th span

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry		Coord	inate sy	stem			
Type	plate bridge or box bridge		X	width	Ground level		10.1 m + NAP
total length	295 m		y	length	Bottom of main b	eam	21.65 m + NAP
width	10,964 m		z	height			
free height bottom bridge	11.55 m						
1st main beam	2.4						
sheep's edge / deck	0.37						
2nd main spar	2.4						
construction height bridge (d)	2.77 m						
inclined windward and slate side (α)	5 gr						
bridge deck slope (β)	1 gr	NB - 0	ross slo	pe supplement	must be included		
Traffic type	road traffic	Traffic	band		2	meter	
Reference surfaces							

Reference surfaces				
wind in X direction	A ref, x	table 1		
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both side	es
closed or open barrier	On both sides	open bridge railing or open safety barrier	d + 0.3m	d + 0.6n
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	$d + d_{1}$	d + 2d
d to - without traffic	5.57 m	open bridge railing and open safety barrier	$d \pm 0.6m$	d+1.2n
d $_{\text{to}}$ - with traffic	6.37 m			
		table 2		
A $_{ref; x}$ - without traffic	1643 m	At deck with main beams	article NB 8.3.1 (4)	
A ref; x - with traffic	1879 m	number of main beams	2	

deck height

height of main beams

0.37 m

2.4 m

4.37 m wind in Z direction equivalent construction height A ref. z 3234 m

Wind loads

H4.2 Basic values

Design life span = 30 years $C_{\text{ prob}} =$ 0.96

> Wind area = Ш 24.5 m/s23.6 m/s v * b: 0 = 23.0 m/s 23.0 m/s

H4.3.2 Terrain roughness

> Reference height (z e) = 12.9 m Terrain category =

17.9 height =

Distance R = 896 m

Distance R according to table NB. 4 0.2

 $k_r = 0.19 \text{ x} \left(z_0 / Z_{0, II} \right) 0.07$ Terein factor (k r) = 0.209

roughness factor $c_r(z) =$ 0.873 $c_r(z) = k_r x ln(z/z_0)$ for z $_{min} \leq z \leq z$ $_{max}$ $c_r(z) = c_r(z_{min})$ for $z \le z$ min

Unbuilt

H4.3.1 Variation with height

> 12.9 reference height (z e) = orography factor $c \circ (z) =$ 1.00

Avg. wind speed $v_m(z) =$ 20.6 m/s $V_m(z) = c_r(z) x c_0(z) x V_b$ Avg. wind speed $v *_m (z) =$ $v *_{m}(z) = c_{r}(z) x c_{0}(z) x v *_{b}$ 20.1 m/s

H4.4 Wind turbulence

Turbulence factor k = 1.00 Turbulence intensity I $_{\rm v}$ (z) = 0.2398

H4.5 Extreme thrust

1.25 kg / m3 c e (z) Extreme thrust $q_p(z) =$ 0.71 2,041 kN/m_2 Extreme thrust $q *_{p}(z) =$ 0.67 kN / m 2 2,041

Page 37

Tax cases

Project: Recalculation IJssel Bridge A12 Date: ######### Project number: BF7387 Name: EKL Main span wind load (5 $^{\circ})$ D0.1 Description: Version:

Power coefficients

wind in X direction c fs; 0 incl surcharge cross slope line function **b** / **d** to C fx; 0 without traffic 1.97 1.94 2.00 Construction stage, open bridge railings, etc. with traffic 1.72 2.02 2.08 Construction stage, open bridge railings, etc.

wind in Z direction

without traffic b / d tot 1.97 angle α of the wind with fly screen. 5 gr $\theta=\alpha+\beta$ \$6~gr\$ figure NB.8 c $_{\text{\tiny fig}}=$ 0.76 \$ note also use the negative value for wind in opposite direction

Wind load
wind in X direction

representative tax		Total	per m1	р гер	
without traffic	$F_{\rm \ wk} =$	2338 kN	7.9 kN / m1	$1.42\;kN/m$	2
with traffic	$F_{wk} =$	2781 kN	9.4 kN / m1	$1.48\;kN/m$	2
with traffic, reduced	$\psi \circ F_{wk} =$	834 kN	2.8 kN / m1	$0.44\;kN/m$	2
with traffic	F * w =	2634 kN	8.9 kN / m1	$1.40\;kN/m$	2

wind in Y direction	= 40% of wind forces	in the x direction	(in the x direction, the same force as in the y direction occurs simultaneously)	
representative tax		Total		p rep (about b = 9.29 m)
without traffic	$F_{wk} =$	935 kN		0.34 kN / m
with traffic	$F_{wk} =$	1112 kN		0.41 kN / m
with traffic, reduced	$\psi _0 \; F_{wk} =$	334 kN		0.12 kN / m
with traffic	F * w =	1053 kN		0.38 kN / m

wind in Z direction	If a load in the Z direc	ion works unfavorably, it occurs simultaneously with the	e x direction
representative tax		Total	p_{rep} (about $b = 10,964 \text{ m}$)
without traffic	$F_{wk} =$	1760 kN	0.54 kN / m
moment with $e = b / 4$	$M_{\mathrm{wk}} =$	4823 kNm	\pm 0.82 kN / m $^{^{2}}$
with traffic	F * w =	1666 kN	$0.52 \mathrm{kN}/\mathrm{m}^{-2}$
moment with $e = b / 4$	M * w =	4568 kNm	$\pm 0.77 \text{ kN/m}$

Tax cases

Project:Recalculation IJssel Bridge A12Date:########Project number:BF7387Name:EKLDescription:Main span wind load (5°)Version:D0.1

Wind load

Tax case 800-809 : Wind load at pillar G and K

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry		Coordinate system				
Type	plate bridge or box bridge	X	width	Ground level		10.1 m + NAP
total length	295 m	y	length	Bottom of main bea	ım	21.8 m + NAP
width	10,964 m	z	height			
free height bottom bridge	11.7 m					
1st main beam	2.4					
sheep's edge / deck	0.37					
2nd main spar	2.4					
construction height bridge (d)	2.77 m					
inclined windward and slate side (α)	5 gr					
bridge deck slope (β)	1 gr	NB - cross slo	ope supplement n	must be included		
Traffic type	road traffic	Traffic band		2	meter	

Reference surfaces

wind in X direction	A ref, x	table 1		
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both side:	s
closed or open barrier	On both sides	open bridge railing or open safety barrier	d + 0.3m	d + 0.6n
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	d + d 1	d + 2d
d to - without traffic	5.57 m	open bridge railing and open safety barrier	d + 0.6m	d + 1.2n
d to - with traffic	6.37 m			
		table 2		
A $_{ref; x}$ - without traffic	1643 m	At deck with main beams	article NB 8.3.1 (4)	
A $_{ref; x}$ - with traffic	1879 m	number of main beams	2	
		deck height	0.37 m	
		height of main beams	2.4 m	
wind in Z direction	A ref, z	equivalent construction height	4.37 m	
	2			

Wind loads

Willia loads			
H4.2		Basic values	
Design life span =		30 years	
	$C_{prob} =$	0.96	
Wind are	ea =	III	
	$\mathbf{v}_{\;b;0} =$	24.5 m/s	
	$\mathbf{v}_{\;b} \! = \!$	23.6 m/s	
	$\mathbf{v} * _{b; 0} = $	23.0 m/s	
	v * b =	23.0 m/s	

3234 m

H4.3.2 Terrain roughness $\text{Reference height } (z \circ) = \\ 13.1 \text{ m}$

Terrain category = II Unbuilt	
retrain category – ii Onbuitt	
height = 18.1	
Distance R = 904 m Distance R according to table NB. 4	
$z_0 = 0.2$	
Terein factor (k $_{\rm r}$) = 0.209 k $_{\rm r}$ = 0.19 x (z $_{\rm 0}$ / Z $_{\rm 0,II}$) 0.07	
$ roughness \ factor \ c_{\ r} \ (z) = \\ 0.875 \qquad \qquad c_{\ r} \ (z) = k_{\ r} \ x \ ln \ (z \ / \ z_{\ 0} \) $ for $z_{\ min} \le z$	≤ z max
c $_{r}$ $(z) = c$ $_{r}$ $(z$ $_{min}$ $)$ for $z \le z$ $_{min}$	

H4.3.1 Variation with height reference height (z e) = 13.1

orography factor c $_{\circ}$ (z) = 1.00

Avg. wind speed $v_m(z) =$ $V_m(z) = c_r(z) x c_0(z) x V_b$ 20.7 m/s Avg. wind speed $v *_m (z) =$ $V *_{m} (z) = c_{r} (z) xc_{0} (z) xV *_{b}$ 20.1 m/s

H4.4 Wind turbulence

Turbulence factor k = 1.00 Turbulence intensity I v (z) = 0.2392

H4.5 Extreme thrust

> 1.25 kg / m3c e (z) Extreme thrust $q_p(z) =$ 0.72 2,049 kN / m 2 Extreme thrust $q *_{p}(z) =$ 0.68 2,049 kN / m 2

Page 39

Tax cases

Project: Recalculation IJssel Bridge A12 Date: ########## Project number: BF7387 Name: EKL Main span wind load (5 °) D0.1 Description: Version:

Power coefficients

wind in X direction **b** / **d** to c $_{fx;\,0}$ incl surcharge cross slope line function without traffic 1.97 1.94 2.00 Construction stage, open bridge railings, etc. with traffic 1.72 2.02 2.08 Construction stage, open bridge railings, etc.

wind in Z direction

without traffic b / d $_{tot}$ 1.97 angle α of the wind with fly screen. 5 $\theta = \alpha + \beta$ 6 gr figure NB.8 c fz = 0.76 note also use the negative value for wind in opposite direction

Wind load

wind in X direction

representative tax Total per m1 p rep without traffic $F_{wk} =$ 2347 kN 8.0 kN / m11.43 kN/m 1.49 kN/m with traffic 2792 kN 9.5 kN/m1 ψ 0 F wk = 837 kN 2.8 kN/m1 with traffic, reduced 0.45 kN/m with traffic F * w = 2644 kN 9.0 kN/m1 1.41 kN/m

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)

p rep (about b = 9.29 m) representative tax Total $F_{\rm \ wk} =$ without traffic 0.34 kN/m 939 kN with traffic $F_{\rm \ wk} =$ 1117 kN 0.41 kN/m $\psi \circ F|_{wk} =$ with traffic, reduced 335 kN 0.12 kN / mwith traffic F * w = 1057 kN 0.39 kN/m

wind in Z direction If a load in the Z direction works unfavorably, it occurs simultaneously with the x direction

p rep (about b = 10,964 m) representative tax Total without traffic $F_{\rm \ wk} =$ 1766 kN 0.55 kN/m \pm 0.82 kN / m $M_{\rm \ wk} =$ 4842 kNm moment with e = b / 4

with traffic F * w = 1673 kN $0.52 \text{ kN} / \text{m}^{-2}$ $\pm~0.78~kN\,/\,m$ moment with e = b / 4M * w = 4585 kNm

Page 40

Tax cases

Recalculation IJssel Bridge A12 Project:

BF7387 Project number: EKL Name: Description: Main span wind load (5 °) Version: D0.1

Wind load

800-809 Wind load at the 2nd and 4th span Tax case

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry Coordinate system plate bridge or box bridge 10.1 m + NAPType X width Ground level 21.1 m + NAP total length 295 m length Bottom of main beam 10,964 m width

Date:

height

free height bottom bridge 11 m 3,159 1st main beam

##########

table 1

table 2

deck height

At deck with main beams

number of main beams

height of main beams

equivalent construction height

Separation type

Traffic type road traffic

NB - cross slope supplement must be included

open bridge railing or open safety barrier

tight bridge railing or tight safety barrier

open bridge railing and open safety barrier

Traffic band 2 meter

On 1 side Both sides d + 0.3m

 $d + d_1$

d + 0.6m

article NB 8.3.1 (4)

2

0.37 m

5.64 m

3.159 m

d + 0.6n

d + 2d

d+1.2n

Reference surfaces wind in X direction

Separation type open bridge railing and open safety barrier

A ref. x

closed or open barrier On both sides handrail / screen height (d $_{1}$) 1 m d $_{10}$ - without traffic 6.84 m d $_{10}$ - with traffic 7.64 m

A $_{\rm ref.\,x}$ - without traffic 2016 m 2 A $_{\rm ref.\,x}$ - with traffic 2252 m 2

wind in Z direction A ref, z

A ref, z 3234 m

Wind loads

H4.2 Basic values

H4.3.2 Terrain roughness

Reference height (z $_{e}$) = 12.8 m Terrain category = II

Terrain category = II Unbuilt

 $\begin{array}{ll} height = & 18.6 \\ Distance R = & 932 m \end{array}$

Distance R = 932 m Distance R according to table NB. 4 $z_0 = 0.2$

0.2

 $\label{eq:continuous} \begin{array}{lll} \text{Terein factor (k $_{\rm r}$)} = & 0.209 & k_{\rm r} = 0.19 \text{ x (z o / Z 0, II) 0.67} \\ \\ \text{roughness factor c $_{\rm r}$ (z) = } & 0.870 & c_{\rm r}$ (z) = k_{\rm r}$ x ln (z / z 0) \\ \end{array}$

 $c_r(z) = c_r(z_{min})$ for $z \le z_{min}$

for z $_{min} \leq z \leq z$ $_{max}$

H4.3.1 Variation with height

reference height (z $_{\rm e}$) = 12.8 orography factor c $_{\rm o}$ (z) = 1.00

Avg. wind speed v $_{\text{m}}$ (z) = 20.6 m/s v_{m} (z) = c_{r} (z) xc $_{\text{0}}$ (z) xv $_{\text{b}}$ Avg. wind speed v $_{\text{m}}$ (z) = 20.0 m/s v_{m} (z) = c_{r} (z) xc $_{\text{0}}$ (z) xv $_{\text{b}}$

H4.4 Wind turbulence

Turbulence factor k $_{1}$ = 1.00 Turbulence intensity I $_{v}$ (z) = 0.2406

H4.5 Extreme thrust

Tax cases

 Project:
 Recalculation IJssel Bridge A12
 Date:
 #########

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (5°)
 Version:
 D0.1

Power coefficients

wind in X direction	b / d to	C fx; 0	c fx; 0 incl surcharge cro	oss slope line function
without traffic	1.60	2.05	2.11	Construction stage, open bridge railings, etc.
with traffic	1.44	2.11	2.17	Construction stage, open bridge railings, etc.
and a liter of all and a second				

wind in Z direction

without traffic b / d $_{\text{tot}}$ 1.60 angle α of the wind with fly screen. 5 gr $\theta=\alpha+\beta$ 6 gr figure NB.8 c $_{\text{fi}}=$ 0.76

note also use the negative value for wind in opposite direction

Wind load

wind in X direction

representative tax		Total	per m1	p rep
without traffic	$F_{\rm \ wk} =$	3025 kN	10.3 kN / m1	1.50 kN / m
with traffic	$F_{wk} =$	3466 kN	11.8 kN / m1	1.54 kN / m
with traffic, reduced	$\psi \circ F_{wk} =$	1040 kN	3.5 kN / m1	0.46 kN / m
with traffic	F * w =	3283 kN	11.1 kN / m1	1.46 kN / m

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)

representative tax		Total	$p_{rep} (about b = 9.29 m)$
without traffic	$F_{wk} =$	1210 kN	$0.44\mathrm{kN}\mathrm{/m}^{^{2}}$
with traffic	$F_{wk} =$	1387 kN	0.51 kN / m
with traffic, reduced	$\psi \circ F_{wk} =$	416 kN	0.15 kN / m
with traffic	F * w =	1313 kN	0.48 kN / m

wind in Z direction If a load in the Z direction works unfavorably, it occurs simultaneously with the x direction

representative tax		Total	p_{rep} (about $b = 10.964 \text{ m}$)
without traffic	$F_{wk} =$	1746 kN	$0.54 \mathrm{kN}\mathrm{/m}^{-2}$
moment with $e = b / 4$	$M_{\mathrm{wk}} =$	4787 kNm	\pm 0.81 kN / m 2
with traffic	F * w =	1654 kN	$0.51 \mathrm{kN}\mathrm{/m}^{-2}$
moment with $e = b / 4$	M * w =	4533 kNm	\pm 0.77 kN / m 2

Tax cases

 Project:
 Recalculation Ussel Bridge A12
 Date:
 #########

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (5°)
 Version:
 D0.1

Wind load

Tax case 800-809 : Wind load at pillar H and J

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry		Coor	rdinate sy	stem		
Type	plate bridge or box bridge		X	width	Ground level	6.5 m + NAP
total length	295 m		у	length	Bottom of main beam	19.2 m + NAP
width	10,964 m		z	height		
free height bottom bridge	12.7 m					
1st main beam	5.3					
sheep's edge / deck	0.37					
2nd main spar	5.3					
construction height bridge (d)	5.67 m					
inclined windward and slate side (α)	5 gr					
bridge deck slope (β)	1 gr	NB -	- cross slo	pe supplement	must be included	
Traffic type	road traffic	Traf	fic band		2 meter	

Reference surfaces			
wind in X direction	\mathbf{A} ref, x	table 1	
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both sides
closed or open barrier	On both sides	open bridge railing or open safety barrier	d + 0.3m $d + 0.6m$
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	$d+d_1$ $d+2d$
d $_{\text{to}}$ - without traffic	10.40 m	open bridge railing and open safety barrier	$d+0.6m \hspace{1.5cm} d+1.2n$
d $_{\text{to}}$ - with traffic	11.20 m		
		table 2	
A ref; x - without traffic	3069 m	At deck with main beams	article NB 8.3.1 (4)
A ref; x - with traffic	3305 m	number of main beams	2
		deck height	0.37 m
		height of main beams	5.3 m
wind in Z direction	A ref, z	equivalent construction height	9.20 m
A ref, z	3234 m		

Wind loads

H4.2 Basic values

30 years Design life span = C prob = 0.96

> Wind area = Ш V b: 0 = 24.5 m/s V ь = 23.6 m/s v * b; 0 = 23.0 m/s v * b = 23.0 m / s

H4.3.2 Terrain roughness

> Reference height (z $_{e}$) = 15.5 m Terrain category = Unbuilt

> > height = 23.9 Distance R = 1195 m

Distance R according to table NB. 4 0.2

Terein factor (k r) = $k_r = 0.19 \text{ x } (z_0 / Z_{0, II})_{0.07}$ 0.209

roughness factor $c_r(z) =$ 0.911 $c_r(z) = k_r x \ln(z/z_0)$ for z $_{min} \leq z \leq z$ $_{max}$ $c_r(z) = c_r(z_{min})$ for $z \leq z_{\text{ min}}$

H4.3.1 Variation with height

> reference height (z e) = 15.5 orography factor $c \circ (z) =$ 1.00

Avg. wind speed $v_m(z) =$ 21.5 m/s $v_{m}(z) = c_{r}(z) xc_{0}(z) xv_{b}$ Avg. wind speed $v *_{m}(z) =$ 21.0 m/s $v *_{m}(z) = c_{r}(z) x c_{0}(z) x v *_{b}$

H4.4 Wind turbulence Turbulence factor k = 1.00

Turbulence intensity I $_{v}(z) =$ 0.2298

H4.5 Extreme thrust

> 1.25 kg / m3 $c\ _{e}\left(z\right)$ Extreme thrust $q_{p}(z) =$ 0.76 2,166 kN/m_2 Extreme thrust $q *_{p}(z) =$ 0.72 2,166 kN/m_2

Page 43

Tax cases

########## Project: Recalculation IJssel Bridge A12 Date: Project number: BF7387 Name: EKL D0.1 Version:

Main span wind load (5 °) Description:

Power coefficients

wind in X direction b / d to c $_{\rm fx;\,0}$ incl surcharge cross slope line function without traffic 1.05 2.23 2.29 Construction stage, open bridge railings, etc. with traffic 0.98 2.25 2.32 Construction stage, open bridge railings, etc.

wind in Z direction

without traffic b / d tot 1.05 angle $\boldsymbol{\alpha}$ of the wind with fly screen. 5 gr $\theta = \alpha + \beta$ 6 gr figure NB.8 c fz = 0.76 note also use the negative value for wind in opposite direction

Wind load

wind in X direction				
representative tax		Total	per m1	р гер
without traffic	$F_{wk} =$	5321 kN	18.0 kN / m1	1.73 kN / m
with traffic	$F_{wk} =$	5791 kN	19.6 kN / m1	1.75 kN / m
with traffic, reduced	$\psi _0 \; F_{wk} =$	1737 kN	5.9 kN / m1	0.53 kN/m^2
with traffic	F * w =	5484 kN	18.6 kN / m1	1.66 kN / m
wind in Y direction	= 40% of wind force	s in the x direction (i	n the x direction, the same force as in the y direction occurs simultaneous	• /
representative tax		Total		p_{rep} (about $b = 9.29 \text{ m}$)
without traffic	$F_{wk} =$	2128 kN		0.78 kN / m
with traffic	$F_{wk} =$	2316 kN		0.85 kN / m
with traffic, reduced	$\psi \ _0 \ F \ _{wk} =$	695 kN		0.25 kN / m
with traffic	F * w =	2193 kN		$0.80~\mathrm{kN}$ / m 2
wind in Z direction	If a load in the Z dire	ection works unfavor	ably, it occurs simultaneously with the x direction	
representative tax		Total		p_{rep} (about $b = 10,964 \text{ m}$)
without traffic	$F_{wk} =$	1852 kN		0.57 kN / m
moment with $e = b / 4$	$M_{\mathrm{wk}} =$	5076 kNm		\pm 0.86 kN / m
with traffic	F * w =	1754 kN		0.54 kN / m
moment with $e = b / 4$	M * w =	4807 kNm		\pm 0.81 kN / m $^{^{2}}$

Tax cases

Recalculation IJssel Bridge A12 ########## Project: Date: Project number: BF7387 Name: EKL Main span wind load (5 °) Description: Version: D0.1

Wind load

Tax case 800-809 Wind load at the 3rd span

1840 m

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry		Coordinate sys	stem			
Туре	plate bridge or box bridge	X	width	Ground level	6.5 n	n + NAP
total length	295 m	у	length	Bottom of main beam	21.7 m	+ NAP
width	10,964 m	z	height			
free height bottom bridge	15.2 m					
1st main beam	2.8					
sheep's edge / deck	0.37					
2nd main spar	2.8					
construction height bridge (d)	3.17 m					
inclined windward and slate side (α)	5 gr					
bridge deck slope (β)	1 gr	NB - cross slo	pe supplemen	t must be included		
Traffic type	road traffic	Traffic band		2 me	eter	

Reference surfaces

A ref; x - without traffic

wind in X direction	A ref, x	table 1		
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both sides	
closed or open barrier	On both sides	open bridge railing or open safety barrier	$d+0.3m \hspace{1.5cm} d+0.6n$	
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	d+d 1 $d+2d$	
d to - without traffic	6.24 m	open bridge railing and open safety barrier	$d+0.6m \\ \qquad d+1.2n$	
d to - with traffic	7.04 m			
		table 2		

A ref; x - with traffic 2076 m

wind in Z direction		A rei, z		
			2	
	A ref. z	3234 m		

Wind loads

H4.2		1	Basic values
	Design life span =		30 years
		$C_{prob} =$	0.96
	Wind are	ea =	III
		$\mathbf{v}_{b;0} =$	24.5 m/s
		$_{V\ b}\!=\!$	23.6 m/s
		$v \ast_{b; 0} =$	23.0 m/s
		$v *_b =$	23.0 m/s

H4.3.2 Terrain roughness

Reference height (z e) =	16.8 m	
Terrain category =	II	Unbuilt
height	= 22.2	
Distance R	= 1112 m	Distance R according to table NB. 4
	z ₀ = 0.2	
Terein factor (k r)	0.209	k $_{r}$ = 0.19 x (z $_{0}$ / Z $_{0,\mathrm{II}}$) $_{0.07}$
roughness factor c r (z) =	0.927	$c_r(z) = k_r x ln(z/z_0)$

 $c_r(z) = c_r(z_{min})$

H4.3.1 Variation with height

reference height (z e) = 16.8 orography factor c $_{\circ}$ (z) = 1.00

Avg. wind speed v $_m$ (z) = 21.9 m/s $V_{m}(z) = c_{r}(z) x c_{0}(z) x V_{b}$

table 2	
At deck with main beams	article NB 8.3.1 (4)
number of main beams	2
deck height	0.37 m
height of main beams	2.8 m
equivalent construction height	5.04 m

for z $_{min} \leq z \leq z$ $_{max}$

for $z \le z_{min}$

Avg. wind speed $v *_m (z) = 21.3 \text{ m/s}$ $v *_m (z) = c_r (z) xc_0 (z) xv *_b (z)$

H4.5 Extreme thrust

Page 45

Tax cases

 Project:
 Recalculation IJssel Bridge A12
 Date:
 ########

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (5°)
 Version:
 D0.1

Power coefficients

 wind in X direction
 b / d to
 c reso incl surcharge cross slope line function

 without traffic
 1.76
 2.00
 2.06
 Construction stage, open bridge railings, etc.

 with traffic
 1.56
 2.07
 2.13
 Construction stage, open bridge railings, etc.

wind in Z direction without traffic b / d tot

angle α of the wind with fly screen. 5 gr $\theta = \alpha + \beta \hspace{1cm} 6 \text{ gr}$ figure NB.8 c α = 0.76 note also use the negative value for wind in opposite direction

1.76

Wind load

wind in X direction

representative tax Total $F_{\rm \ wk} =$ without traffic 2944 kN 10.0 kN / m1 1.60 kN/m with traffic 3425 kN 11.6 kN/m1 1.65 kN/m $\psi _0 \; F_{wk} =$ with traffic, reduced 1028 kN 3.5 kN/m1 0.50 kN / m3244 kN with traffic F * w = $11.0\;kN\,/\,m1$ $1.56\;kN\,/\,m$

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)

p rep (about b = 9.29 m) representative tax Total without traffic $F_{\rm \ wk} =$ 1177 kN 0.43 kN/m F wk = 1370 kN 0.50~kN / mwith traffic $\psi \circ F_{wk} =$ 411 kN 0.15 kN/m with traffic, reduced with traffic F * w = 1297 kN 0.47 kN / m

wind in Z direction If a load in the Z direction works unfavorably, it occurs simultaneously with the x direction

representative tax Total p rep (about b = 10,964 m) 0.59 kN/m without traffic $F_{wk} =$ 1910 kN moment with e = b / 4 $M_{\rm \ wk} =$ 5234 kNm \pm 0.89 kN / m with traffic F * w = 1808 kN 0.56 kN/m M * w = 4957 kNm \pm 0.84 kN / m moment with e = b / 4

Tax cases

 Project:
 Recalculation IJssel Bridge A12
 Date:
 10/19/2018

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (2.5°)
 Version:
 D0.1

Wind load

Tax case 950-951 : Wind load x direction

relation) times the center-to-center distance of the K-relations is charged as a point load (F* wk.k-connection). On the side of the second main beam, 2/3 of this will be tax is charged on the k connection (F* wk.k-connection, 2). The remaining wind load is charged as line load on the steel deck (q deck)

				K-bandages						deck		
Position	Cross beam	To x vs. 0	h main beam	p * w	d k bandage	A k bandage	\mathbb{F} * w, k bandage, 1	\mathbb{F} * w, k bandage, 2	d to	d deck		
		[mm]	[m]	$[kN/m^2]$	[m]	$[m^2]$	[kN]	[kN]	[m]	[m]		
		-325	2400	1.40	1200				6.37	4.37		
Pillar f	portal A	0	2400	1.40	1200	3.63	5.1	3.4	6.37	4.37		
	1	5400	2400	1.40	1200	6.48	9.1	6.0	6.37	4.37		
	2	10800	2400	1.40	1200	6.48	9.1	6.0	6.37	4.37		
	3	16200	2400	1.40	1200	5.40	7.6	5.0	6.37	4.37		

field 1	4 5	19798 23398	2400 2400	1.40 1.40	1200 1200	4.32 5.40	6.0 7.6	4.0 5.0	6.37 6.37	4.37 4.37
	6	28798	2400	1.40	1200	6.48	9.1	6.1	6.37	4.37
	7	34198	2400	1.40	1200	6.48	9.1	6.1	6.37	4.37
	8	39596	2400	1.41	1200	6.48	9.1	6.1	6.37	4.37
Pillar G	Portal B	44996	2400	1.41	1200	6.48	9.1	6.1	6.37	4.37
	9	50394	2443	1.42	1222	6.57	9.3	6.2	6.44	4.41
	10	55749	2541	1.43	1271	6.80	9.7	6.5	6.61	4.49
	11	61104	2720	1.44	1360	7.28	10.5	7.0	6.90	4.64
	12	66457	2963	1.45	1482	6.61	9.6	6.4	7.31	4.84
field 2	13	70027	3159	1.46	1580	5.64	8.2	5.5	7.64	5.00
	14	73597	3374	1.49	1687	7.53	11.2	7.5	7.99	5.18
	15	78952	3781	1.53	1891	10.12	15.5	10.3	8.67	5.52
	16	84305	4245	1.57	2123	11.36	17.9	11.9	9.45	5.91
	17	89660	4766	1.62	2383	12.76	20.6	13.7	10.31	6.34
Pillar H	Portal C	95015	5300	1.66	2650	14.05	23.3	15.5	11.20	6.79
	18	100265	4880	1.65	2440	12.81	21.1	14.1	10.50	6.44
	19	105515	4440	1.64	2220	11.65	19.1	12.7	9.77	6.07
	20	110763	4063	1.63	2032	10.66	17.4	11.6	9.14	5.76
	21	116013	3725	1.62	1863	9.78	15.8	10.6	8.58	5.47
	22	121263	3444	1.61	1722	9.03	14.6	9.7	8.11	5.24
	23	126506	3224	1.60	1612	8.46	13.5	9.0	7.74	5.06
	24	131756	3034	1.59	1517	7.96	12.7	8.5	7.43	4.90
	25	137006	2916	1.58	1458	7.67	12.1	8.1	7.23	4.80
	26	142 275.5	2838	1.57	1419	7.46	11.7	7.8	7.10	4.74
Field 3	27	147,525.5	2800	1.56	1400	7.35	11.5	7.7	7.04	4.70
	26	152775.5	2838	1.57	1419					

Global model: 3318 kN Local model: 155 kN Tax case 952-953 : Wind load 40% xy direction

For these load cases, a wind force of 40% in x and y direction occurs. This was introduced by multiplying the wind in x direction by 40%. For the y-direction (longitudinal direction) a UDL load is applied to the deck.

Loaded deck wid	dth	b deck	= 9.	29 m			
					x direction		y direction
		To x vs. 0	d to	\mathbb{F}^* w, k bandage, 1	\mathbb{F}^{\star} w, k bandage, 2	q deck	pdek
Position	Cross beam	[mm]	[m]	[kN]	[kN]	[kN/m]	[kN/m] 2
		-325	6.37			2.44	0.38
Pillar f	portal A	0	6.37	2.0	1.4	2.44	0.38
	1	5400	6.37	3.6	2.4	2.44	0.38
	2	10800	6.37	3.6	2.4	2.44	0.38
	3	16200	6.37	3.0	2.0	2.45	0.38
	4	19798	6.37	2.4	1.6	2.45	0.38
field 1	5	23398	6.37	3.0	2.0	2.45	0.38
	6	28798	6.37	3.6	2.4	2.45	0.38
	7	34198	6.37	3.6	2.4	2.45	0.39
	8	39596	6.37	3.6	2.4	2.46	0.39
Pillar G	Portal B	44996	6.37	3.6	2.4	2.46	0.39
	9	50394	6.44	3.7	2.5	2.50	0.39
	10	55749	6.61	3.9	2.6	2.56	0.41
	11	61104	6.90	4.2	2.8	2.67	0.43
	12	66457	7.31	3.8	2.6	2.81	0.46
field 2	13	70027	7.64	3.3	2.2	2.92	0.48
	14	73597	7.99	4.5	3.0	3.08	0.51
	15	78952	8.67	6.2	4.1	3.38	0.57
	16	84305	9.45	7.1	4.8	3.72	0.64
	17	89660	10.31	8.2	5.5	4.10	0.72
Pillar H	Portal C	95015	11.20	9.3	6.2	4.50	0.80
	18	100265	10.50	8.5	5.6	4.25	0.75
	19	105515	9.77	7.6	5.1	3.98	0.69
	20	110763	9.14	7.0	4.6	3.75	0.64
	21	116013	8.58	6.3	4.2	3.55	0.60
	22	121263	8.11	5.8	3.9	3.38	0.56
	23	126506	7.74	5.4	3.6	3.24	0.53
	24	131756	7.43	5.1	3.4	3.12	0.51
	25	137006	7.23	4.9	3.2	3.04	0.49
	26	142 275.5	7.10	4.7	3.1	2.98	0.48
Field 3	27	147,525.5	7.04	4.6	3.1	2.94	0.47
	26	152775.5					
Global model:		1327	kN				
Local model:		62	kN				

Tax case 954-955 : Wind load z direction

The wind load in Z direction is applied as a UDL load on the deck. The wind load on the inspection paths is used as line load and line moment on the edge of installed on the deck.

	p * w, z	Δ p * w, z	p * w, z, left	$p *_{w,z,\mathrm{right}}$	Q * w, z, left	Q * w, z, right	m * w, z, left	$\mathbf{m}^{-\star} \ w, z, right$
Position	$[kN/m^2]$	$[kN/m^2]~2$	$[kN/m^2]~2$	$[kN/m^{z}]~22$	[kN/m]	[kN/m]	[kN/m] 2	[kN/m] 2
field 1	0.45	0.67	1.00	-0.10	0.89	-0.13	0.38	0.06
field 2	0.46	0.69	1.02	-0.11	0.91	-0.14	0.39	0.07
Field 3	0.50	0.74	1.10	-0.11	0.98	-0.15	0.42	0.07
0.837			9.29				0.837	

 $\Delta p \, *_{\rm w,\,z}$

p * w, z

-∆p * w, z

Import SCIA

 q*w.z.left
 q*w.z.right

 m*w.z.left
 p*w.z.right

Global model: 1512 kN Local model: 65 kN

Page 49

Tax cases

Project:Recalculation IJssel Bridge A12Date:########Project number:BF7387Name:EKLDescription:Main span wind load (2.5°)Version:D0.1

Wind load

Tax case 800-809 : Wind load at pillar F and abutment south

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry Coordinate system 10.1 m + NAPType plate bridge or box bridge X width Ground level Bottom of main beam 21.5 m + NAP 295 m total length length width 10,964 m height free height bottom bridge 11.4 m 1st main beam 2.4 sheep's edge / deck 0.37 2nd main spar 2.4 2.77 m construction height bridge (d) inclined windward and slate side (α) 2.5 gr bridge deck slope (β) 1 gr NB - cross slope supplement must be included Traffic type road traffic Traffic band 2 meter

Reference surfaces wind in X direction	A ref, x	table 1	
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both sides
closed or open barrier	On both sides	open bridge railing or open safety barrier	d + 0.3m $d + 0.6n$
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	$d+d\ _{1} \qquad \qquad d+2d$
d to - without traffic	5.57 m	open bridge railing and open safety barrier	d + 0.6m $d + 1.2n$
d_{to} - with traffic	6.37 m		
		table 2	
A $ref; x$ - without traffic	1643 m	At deck with main beams	article NB 8.3.1 (4)
A ref; x - with traffic	1879 m	number of main beams	2
		deck height	0.37 m
		height of main beams	2.4 m
wind in Z direction	A ref, z	equivalent construction height	4.37 m
\mathbf{A} ref, z	3234 m		

Wind loads

H4.2	Ba	sic values
	Design life span =	30 years
	C prob =	0.96
	Wind area =	III
	$\mathbf{v}_{\;b;0} =$	24.5 m/s
	$_{V\ b}$ =	23.6 m/s
	$_{\mathrm{V}}$ * $_{\mathrm{b;0}}$ =	23.0 m/s
	V * P =	23.0 m/s

H4.3.2		Terrain roughness		
	Reference height (z $_{\rm e}$) =	12.8 m		
	Terrain category =	II	Unbuilt	
	height =	17.8		
	Distance R =	889 m	Distance R according to table NB. 4	
	Z 0 =	0.2		
	Terein factor (k r) =	0.209	k $_{\rm r} = 0.19$ x (z $_{\rm 0}$ / Z $_{\rm 0,II}$) $_{\rm 0.07}$	
	roughness factor $c_r(z) =$	0.870	$c_r(z) = k_r x ln(z/z_0)$	for z $_{min} \leq z \leq z$ $_{max}$
			$c_r(z) = c_r(z_{min})$	for $z \le z_{min}$

H4.3.1	Variation with height	
reference height (z_e) =	12.8	
orography factor c $_{\circ}$ (z) =	1.00	
Avg. wind speed $v_m(z) =$	20.6 m/s	$V_{m}(z) = c_{r}(z) x c_{0}(z) x V_{b}$
Avg. wind speed $v *_{m} (z) =$	20.0 m/s	$V *_{m}(z) = c_{r}(z) x c_{0}(z) x V *_{b}$
H4.4	Wind turbulence	

H4.5	I	Extreme thi	rust	
	$\rho =$	1.25	kg / m3	c e (z)
Extreme thrust $q_{P}(z) =$		0.71	kN / m 2	2,033
Extreme thrust $q *_p (z) =$		0.67	kN / m 2	2,033

1.00 0.2405

Turbulence factor k =

Turbulence intensity I $_{\rm v}$ (z) =

Page 50

Recalculation IJssel Bridge A12 BF/38/ Project: Project number: Main span wind load (2.5 °) D0.1 Description: Version:

Power coefficients	
wind in V direction	

wind in X direction	b / d to	C fx; 0	c fs; 0 incl surcharge cross slope line function		
without traffic	1.97	1.94	2.00	Construction stage, open bridge railings, etc.	
with traffic	1.72	2.02	2.08	Construction stage, open bridge railings, etc.	

wind in Z direction

without traffic b / d tot	1.97
angle $\boldsymbol{\alpha}$ of the wind with fly screen.	2.5 gr
$\theta = \alpha + \beta$	3.5 gr
figure NB.8 c $_{\rm fz}$ =	0.67

note also use the negative value for wind in opposite direction

Wind load

wind in X direction

representative tax		Total	per m1	p rep
without traffic	$F_{wk} =$	2329 kN	7.9 kN / m1	1.42 kN / m
with traffic	$F_{wk} =$	2770 kN	9.4 kN / m1	1.47 kN / m
with traffic, reduced	$\psi \ _0 \ F \ _{\mathrm{wk}} =$	831 kN	2.8 kN / m1	0.44 kN / m
with traffic	F * w =	2624 kN	8.9 kN / m1	1.40 kN / m

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)

representative tax		Total	$p_{rep} (about b = 9.29 m)$
without traffic	$F_{\rm \ wk} =$	932 kN	$0.34 \mathrm{kN}\mathrm{/m}^{^{2}}$
with traffic	$F_{wk} =$	1108 kN	0.40 kN / m
with traffic, reduced	$\psi \circ F_{wk} =$	332 kN	0.12 kN/m^{2}
with traffic	F * w =	1049 kN	$0.38 \mathrm{kN/m}^{2}$

wind in Z direction If a load in the Z direction works unfavorably, it occurs simultaneously with the x direction

wind in Z direction	ii a ioau iii tile Z tillectio	on works unravorably, it occurs simultaneously with the x unrection		
representative tax		Total	p rep (about	b = 10,964 m)
without traffic	$F_{wk} =$	1528 kN	0.47~kN / m	2
moment with $e = b / 4$	$M_{wk} =$	4189 kNm	$\pm~0.71~kN$ / m	2
with traffic	F * w =	1447 kN	0.45~kN / m	2
moment with $e = b / 4$	M * w =	3967 kNm	$\pm~0.67~kN$ / m	2

Tax cases

Project: Recalculation IJssel Bridge A12 Date: ########## Project number: BF7387 Name: EKL Description: Main span wind load (2.5 °) D0.1 Version:

Wind load

Tax case Wind load at the 1st and 5th span

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry			Coordinate system			
Type	plate bridge or box bridge		X	width	Ground level	10.1 m + NAP
total length	295 m		у	length	Bottom of main beam	21.65 m + NAP
width	10,964 m		z	height		
free height bottom bridge	11.55 m					
1st main beam	2.4					
sheep's edge / deck	0.37					
2nd main spar	2.4					
construction height bridge (d)	2.77 m					
inclined windward and slate side (α)	2.5 gr					
bridge deck slope (β)	1 gr	N	NB - cross slo	pe supplement	must be included	
Traffic type	road traffic	Т	Traffic band		2 meter	

Reference surfaces

reference surfaces				
wind in X direction	A ref, x	table 1		
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both sides	
closed or open barrier	On both sides	open bridge railing or open safety barrier	d + 0.3m d +	+ 0.6n
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	d + d ₁ d	+ 2d
d to - without traffic	5.57 m	open bridge railing and open safety barrier	d + 0.6m d +	+ 1.2n
d $_{\text{to}}$ - with traffic	6.37 m			
		table 2		
A $_{ref; x}$ - without traffic	1643 m	At deck with main beams	article NB 8.3.1 (4)	

A ref; x - with traffic	1879 m	number of main beams	2
		deck height	0.37 m
		height of main beams	2.4 m
wind in Z direction	A ref, z	equivalent construction height	4.37 m
A ref, z	3234 m		

A ref, z		3234 m
A rel, z		3234 III
Wind lo	ads	
H4.2	В	asic values
	Design life span =	30 years
	$C_{prob} =$	0.96
	Wind area =	III
	$V_{b;0} =$	24.5 m/s
	V b =	23.6 m/s

23.0 m/s

 $v *_{b} = 23.0 \text{ m} / \text{ s}$

H4.3.2 Terrain roughness

Reference height (z $_{c}$) = 12.9 m Terrain category = II

height = 17.9

Distance R = 896 m

z 0 = 0.2

Terein factor $(k_r) = 0.209$

roughness factor $c_r(z) = 0.873$

Distance R according to table NB. 4

 $k_r = 0.19 \ x \ (z_0 \ / \ Z_{0,II})$ 0.07

 $c_r(z) = k_r x \ln(z / z_0)$ $c_r(z) = c_r(z_{min})$

Unbuilt

 $\label{eq:continuous_problem} \begin{aligned} & \text{for } z_{\text{ min}} \leq z \leq z_{\text{ max}} \\ & \text{for } z \leq z_{\text{ min}} \end{aligned}$

H4.3.1 Variation with height

reference height (z $_{\circ}$) = 12.9 orography factor c $_{\circ}$ (z) = 1.00

Avg. wind speed v m (z) = $20.6 \text{ m/s} \qquad \qquad \text{v m}(z) = c \text{ r}(z) \text{ xc o}(z) \text{ xv b}$

Avg. wind speed $v *_{m} (z) = 20.1 \text{ m/s}$ $v *_{m} (z) = c \cdot_{r} (z) xc \cdot_{0} (z) xv *_{b} ($

H4.4 Wind turbulence

Turbulence factor k $_{1}$ = 1.00 Turbulence intensity I $_{v}$ (z) = 0.2398

H4.5 Extreme thrust

 $\rho = 1.25 \qquad kg \, / \, m3 \qquad \qquad c \, \varepsilon \, (z)$ Extreme thrust q $_{P} \, (z) = 0.71 \qquad kN \, / \, m_{\, 2} \qquad 2,041$ Extreme thrust q $_{P} \, (z) = 0.67 \qquad kN \, / \, m_{\, 2} \qquad 2,041$

Page 52

Tax cases

Project: Recalculation IJssel Bridge A12

Project number: BF7387

Description: Main span wind load (2.5 $^{\circ}$)

Date: Name:

Version:

EKL D0.1

Power coefficients

wind in X direction b / d_{to} $c_{fx;0}$ $c_{fx;0}$ incl surcharge cross slope line function

without traffic 1.97 1.94 2.00 Construction stage, open bridge railings, etc. with traffic 1.72 2.02 2.08 Construction stage, open bridge railings, etc.

wind in Z direction

 $\begin{array}{ll} \mbox{without traffic b / d }_{\mbox{tot}} & 1.97 \\ \mbox{angle α of the wind with fly screen.} & 2.5 \mbox{ gr} \\ \mbox{$\theta = \alpha + \beta$} & 3.5 \mbox{ gr} \end{array}$

figure NB.8 c $_{\text{fi}}$ = 0.67 note also use the negative value for wind in opposite direction

Wind load

wind in X direction

representative tax Total per m1 p rep 2338 kN 1.42 kN / m without traffic 7.9 kN / m1with traffic $F_{\rm \ wk} =$ 2781 kN 9.4 kN/m1 1.48 kN/m ψ 0 F wk = 0.44 kN/m with traffic, reduced 834 kN 2.8 kN/m1 with traffic F * w = 2634 kN 8.9 kN/m1 1.40 kN / m

wind in Y direction	= 40% of wind forces	in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)	
representative tax		Total	p_{rep} (about $b = 9.29 \text{ m}$)
without traffic	$F_{wk} =$	935 kN	0.34 kN / m
with traffic	$F_{wk} =$	1112 kN	0.41 kN / m
with traffic, reduced	$\psi_0 \; F_{wk} =$	334 kN	0.12 kN / m
with traffic	F * w =	1053 kN	0.38 kN / m
wind in Z direction	If a load in the Z direct	ction works unfavorably, it occurs simultaneously with the x direction	
wind in Z direction representative tax	If a load in the Z direct	ction works unfavorably, it occurs simultaneously with the x direction Total	p rep (about b = 10,964 m)
	If a load in the Z directly $F_{wk} =$	•	p_{rep} (about b = 10,964 m) 0.47 kN/m ²
representative tax		Total	2
representative tax without traffic	$F_{\rm wk} =$	Total 1534 kN	0.47 kN / m

Tax cases

 Project:
 Recalculation IJssel Bridge A12
 Date:
 #########

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (2.5°)
 Version:
 D0.1

Wind load

Tax case 800-809 : Wind load at pillar G and K

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry	
Туре	plate bridge or box bridge
total length	295 m
width	10,964 m
free height bottom bridge	11.7 m
1st main beam	2.4
sheep's edge / deck	0.37
2nd main spar	2.4
construction height bridge (d)	2.77 m
inclined windward and slate side (α)	2.5 gr
bridge deck slope (β)	1 gr
Traffic type	road traffic

Coordinate system

 $\begin{array}{cccc} X & \text{width} & \text{Ground level} & 10.1 \text{ m} + \text{NAP} \\ y & \text{length} & \text{Bottom of main beam} & 21.8 \text{ m} + \text{NAP} \end{array}$

z height

NB - cross slope supplement must be included

Traffic band 2 meter

Reference surfaces

wind in X direction	A ref, x		
Separation type	open bridge railing and open safety barrier		
closed or open barrier	On both sides		
handrail / screen height (d 1)	1 m		
d_{to} - without traffic	5.57 m		
d $_{\text{to}}$ - with traffic	6.37 m		
A ref; x - without traffic	1643 m		
A ref; x - with traffic	1879 m		

table 1

article NB 8.3.1 (4)

table 2

At deck with main beams

number of main beams 2
deck height 0.37 m
height of main beams 2.4 m
equivalent construction height 4.37 m

wind in Z direction A ref, z

A ref, z 3234 m

Wind loads

H4.2 Basic values $Design \ life \ span = 30 \ years$ $C_{prob} = 0.96$ $Wind \ area = III$

 $\begin{array}{ccc} v_{b;0} = & & 24.5 \text{ m/s} \\ v_b = & & 23.6 \text{ m/s} \\ v_{b;0} = & & 23.0 \text{ m/s} \\ v_{b;0} = & & 23.0 \text{ m/s} \end{array}$

H4.3.2 Terrain roughness

Reference height (z $_{\circ}$) = 13.1 m Terrain category = II Unbuilt

height = 18.1

Distance R = 904 m Distance R according to table NB. 4 $z_0 = 0.2$

20- 0.2

 $\begin{array}{ll} \text{Terein factor (k r.)} = & 0.209 & k_{\text{ r}} = 0.19 \text{ x (z o / Z o, II.)}) \text{ 0.07} \\ \\ \text{roughness factor c r. (z)} = & 0.875 & c_{\text{ r.}} \text{ (z)} = k_{\text{ r.}} \text{ x ln (z / z o.)} \end{array}$

 $\begin{array}{ll} 0.875 & c_{\,\,\mathrm{r}}\left(z\right) = k_{\,\,\mathrm{r}}\,x\,\ln\left(z\,/\,z_{\,\,0}\,\right) & \text{for }z_{\,\,\mathrm{min}} \leq z \leq z_{\,\,\mathrm{max}} \\ \\ c_{\,\,\mathrm{r}}\left(z\right) = c_{\,\,\mathrm{r}}\left(z_{\,\,\mathrm{min}}\,\right) & \text{for }z \leq z_{\,\,\mathrm{min}} \end{array}$

H4.3.1 Variation with height

reference height (z \circ) = 13.1 orography factor c \circ (z) = 1.00

H4.4 Wind turbulence $\label{eq:Wind} \text{Turbulence factor } k_1 = 1.00$

Turbulence factor k_{\perp} = 1.00 Turbulence intensity I $_{\nu}$ (z) = 0.2392

H4.5 Extreme thrust

	$\rho =$	1.25	kg / m3	c e (z)
Extreme thrust $q_{p}(z) =$		0.72	kN / m 2	2,049
Extreme thrust $q *_p (z) =$		0.68	kN / m 2	2,049

Tax cases

Project:Recalculation IJssel Bridge A12Date:#########Project number:BF7387Name:EKLDescription:Main span wind load (2.5°)Version:D0.1

Power coefficients

wind in X direction	b / d to	C fx; 0	c $fx;0$ incl surcharge cross slope line fund	ction
without traffic	1.97	1.94	2.00	Construction stage, open bridge railings, etc.
with traffic	1.72	2.02	2.08	Construction stage, open bridge railings, etc.
wind in Z direction				
without traffic b / d tot	1.97			
angle $\boldsymbol{\alpha}$ of the wind with fly screen.	2.5			
$\theta = \alpha + \beta$	3.5	gr		
figure NB.8 c $_{\rm fz}$ =	0.67		note also use the negative value for wind in opposite direction	

Wind load

wind in X direction

representative tax		Total	per m1	p rep	
without traffic	$F_{wk} =$	2347 kN	8.0 kN / m1	1.43~kN/m	2
with traffic	$F_{wk} =$	2792 kN	9.5 kN / m1	1.49 kN / m	2
with traffic, reduced	$\psi \circ F_{wk} =$	837 kN	2.8 kN / m1	$0.45~kN\ /\ m$	2
with traffic	F * w =	2644 kN	9.0 kN / m1	$1.41\;kN/m$	2

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously) p rep (about b = 9.29 m) representative tax Total $F_{\rm \ wk} =$ without traffic 939 kN 0.34 kN/m $F_{\rm \ wk} =$ 1117 kN 0.41 kN/m with traffic $\psi \circ F_{wk} =$ 0.12 kN / m with traffic, reduced 335 kN with traffic F * w = 1057 kN 0.39 kN/m

wind in Z direction If a load in the Z direction works unfavorably, it occurs simultaneously with the x direction

representative tax		Total	p_{rep} (about $b = 10,964 m$)
without traffic	$F_{wk} =$	1540 kN	$0.48~\mathrm{kN}$ / m
moment with $e = b / 4$	$M_{\mathrm{wk}} =$	4221 kNm	\pm 0.71 kN / m 2
with traffic	F * w =	1459 kN	$0.45 \text{ kN} / \text{m}^{-2}$
moment with $e = b / 4$	M * w =	3998 kNm	\pm 0.68 kN / m 2

Tax cases

 Project:
 Recalculation IJssel Bridge A12
 Date:
 #########

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Main span wind load (2.5 °)
 Version:
 D0.1

Wind load

Tax case 800-809 : Wind load at the 2nd and 4th span

A ref, x

NEN-EN 1991-1-4 - H8 wind loads on bridges

Coordinate system Geometry Ground level 10.1 m + NAP plate bridge or box bridge X Type width total length 295 m length Bottom of main beam 21.1 m + NAP width 10,964 m height free height bottom bridge 11 m 1st main beam 3,159 sheep's edge / deck 0.37 2nd main spar 3,159 3,529 m construction height bridge (d) inclined windward and slate side (α) 2.5 gr bridge deck slope (β) NB - cross slope supplement must be included 1 gr Traffic type road traffic Traffic band 2 meter

Reference surfaces wind in X direction

Separation type open bridge railing and open safety barrier Separation type On 1 side Both sides closed or open barrier On both sides open bridge railing or open safety barrier d+0.3m d+0.6m handrail / screen height (d+1) 1 m tight bridge railing or tight safety barrier d+d+1 d+2d

table 1

705 mm 470 mm Edge (h = 500 mm)

d to - without traffic 6.84 m open bridge railing and open safety barrier d + 0.6m d + 1.2n d to - with traffic 7.64 m table 2

A ref; x - without traffic article NB 8.3.1 (4) 2016 m At deck with main beams 2252 m A ref; x - with traffic number of main beams 2 deck height 0.37 m 3.159 m height of main beams $\mathbf{A}_{\text{ref, z}}$ wind in Z direction equivalent construction height 5.64 m

3234 m A ref, z

Wind loads

H4.2 Basic values Design life span = 30 years $C_{prob} =$ 0.96

> Ш Wind area = V b: 0 = 24.5 m/s V b = 23.6 m/s23.0 m/s 23.0 m/s

H4.3.2 Terrain roughness

> Reference height (z e)12.8 m Terrain category = II Unbuilt height = 18.6

932 m Distance R = 0.2

Terein factor (k r) = 0.209 roughness factor c r (z) = 0.870 Distance R according to table NB. 4

 $c_r(z) = c_r(z_{min})$

 $k_r = 0.19 \ x \ (z_0 / Z_{0, II})$ 0.07 $c_r(z) = k_r x \ln(z/z_0)$ for z $_{min} \leq z \leq z$ $_{max}$

for $z \leq z_{\text{ min}}$

H4.3.1 Variation with height

reference height (z e) = 12.8 orography factor $c \circ (z) =$ 1.00

Avg. wind speed $v_m(z) =$ 20.6 m / s $v_{m}(z) = c_{r}(z) xc_{0}(z) xv_{b}$ Avg. wind speed v * $_m$ (z) = 20.0 m/s $v *_{m}(z) = c_{r}(z) xc_{0}(z) xv *_{b}$

H4.4 Wind turbulence Turbulence factor $k_1 =$ 1.00 Turbulence intensity I $_{v}(z) =$ 0.2406

H4.5 Extreme thrust

 $c \cdot (z)$ 1.25 kg / m3Extreme thrust $q_p(z) =$ 0.71 2,032 kN/m_2 Extreme thrust $q *_{p}(z) =$ 0.67 2,032 kN / m 2

Page 56

Tax cases

Recalculation IJssel Bridge A12 Project: Date: Project number: BF7387 EKL Name: Main span wind load (2.5 °) D0.1 Description: Version:

Power coefficients wind in X direction	b / d to	C fx; 0	c fx; 0 incl surcharge cross slope line fun	ction
without traffic	1.60	2.05	2.11	Construction stage, open bridge railings, etc.
with traffic	1.44	2.11	2.17	Construction stage, open bridge railings, etc.
wind in Z direction				
without traffic b / d tot	1.60)		
angle $\boldsymbol{\alpha}$ of the wind with fly screen.	2.:	5 gr		
$\theta = \alpha + \beta$	3.:	5 gr		
figure NB.8 c $_{\rm fz}$ =	0.68	3	note also use the negative value for wind	in opposite direction

Wind load

wind		

representative tax		Total	per m1	p rep	
without traffic	$F_{wk} =$	3025 kN	10.3 kN / m1	1.50 kN / m	
with traffic	$F_{wk} =$	3466 kN	11.8 kN / m1	1.54 kN / m	
with traffic, reduced	$\psi \circ F_{wk} =$	1040 kN	3.5 kN / m1	0.46 kN / m	
with traffic	F * w =	3283 kN	11.1 kN / m1	1.46 kN / m	

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)					
representative tax		Total		p_{rep} (about $b = 9.2$	29 m)
without traffic	$F_{wk} =$	1210 kN		0.44 kN / m	
with traffic	$F_{wk} =$	1387 kN		0.51 kN / m	
with traffic, reduced	$\psi \circ F_{wk} =$	416 kN		0.15 kN / m	
with traffic	F * w =	1313 kN		0.48 kN / m	

wind in Z direction If a load in the Z direction works unfavorably, it occurs simultaneously with the x direction			s simultaneously with the x direction
representative tax		Total	p_{rep} (about $b = 10,964 m$)
without traffic	$F_{wk} =$	1563 kN	$0.48 \mathrm{kN/m}^{-2}$
moment with $e = b / 4$	$M_{\mathrm{wk}} =$	4285 kNm	±0.73 kN / m $^{^{2}}$
with traffic	F * w =	1481 kN	$0.46 \mathrm{kN/m}^{-2}$
moment with $e = b / 4$	M * w =	4058 kNm	$+0.69 \mathrm{kN/m}^{2}$

Tax cases

Recalculation IJssel Bridge A12 ########## Project: Date: Project number: BF7387 EKL Name: D0.1 Main span wind load (2.5 °) Description: Version:

Wind load

Tax case 800-809 Wind load at pillar H and J

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry		Co	ordinate sy	/stem		
Type	plate bridge or box bridge		X	width	Ground level	
total length	295 m		У	length	Bottom of main b	eam
width	10,964 m		z	height		
free height bottom bridge	12.7 m					
1st main beam	5.3					
sheep's edge / deck	0.37					
2nd main spar	5.3					
construction height bridge (d)	5.67 m					
inclined windward and slate side (α)	2.5 gr					
bridge deck slope (β)	1 gr	NE	3 - cross slo	ope supplement i	nust be included	
Traffic type	road traffic	Tra	affic band		2	meter

Reference surfaces

wind in X direction	A ref, x	table 1	
Separation type	open bridge railing and open safety barrier	Separation type	On 1 side Both sides
closed or open barrier	On both sides	open bridge railing or open safety barrier	$d+0.3m \hspace{1.5cm} d+0.6n$
handrail / screen height (d 1)	1 m	tight bridge railing or tight safety barrier	d+d 1 $d+2d$
d to - without traffic	10.40 m	open bridge railing and open safety barrier	$d + 0.6m \qquad \qquad d + 1.2n$
d to - with traffic	11.20 m		
		table 2	
A ref; x - without traffic	3069 m	At deck with main beams	article NB 8.3.1 (4)

number of main beams

equivalent construction height

deck height height of main beams

A ref, z wind in Z direction 3234 m A ref, z

3305 m

A ref; x - with traffic

Wind lo	ads	
H4.2	Ba	asic values
	Design life span =	30 years
	$C_{prob} =$	0.96
	Wind area =	III
	$V_{b;0} =$	24.5 m/s
	$_{ m V}$ $_{ m b}$ $=$	23.6 m/s
	$_{V}$ * $_{b;0}$ =	23.0 m/s
	v * b=	23.0 m/s

H4.3.2 Terrain roughness Reference height $(z_e) =$ 15.5 m

6.5 m + NAP 19.2 m + NAP

2

0.37 m

5.3 m

9.20 m

705 mm 470 mm Edge (h = 500 mm)

 $\begin{array}{l} \text{Terrain category} = \\ \text{height} = \end{array}$ $_{\rm II}_{23.9}$ 1195 m Distance R =

0.2 $z_{0} =$

k $_{\rm r}$ = 0.19 x (z $_{\rm 0}$ / Z $_{\rm 0,\,II}$) $_{\rm 0.07}$

Distance R according to table NB. 4

Unbuilt

Terein factor (k r) = 0.209 roughness factor c r (z) = 0.911

 $c_r(z) = k_r x \ln(z / z_0)$ for $z_{min} \le z \le z_{max}$ $c_{\mathrm{\;r\;}}(z)=c_{\mathrm{\;r\;}}(z_{\mathrm{\;min\;}})$ for $z \leq z$ $_{\text{min}}$

H4.3.1 Variation with height

> reference height (z e) = 15.5 orography factor c o (z) = 1.00

Avg. wind speed $v_m(z) =$ $V_m(z) = c_r(z) \times c_0(z) \times v_b$ 21.5 m/s Avg. wind speed $v *_{m}(z) =$ $v *_{m}(z) = c_{r}(z) xc_{0}(z) xv *_{b}$ 21.0 m/s

Wind turbulence

Turbulence factor $k_1 =$ 1.00 Turbulence intensity I $_{v}(z) =$ 0.2298

H4.5 Extreme thrust

1.25 kg / m3 c e (z) Extreme thrust $q_{P}(z) =$ 0.76 2,166 kN / m 2 Extreme thrust $q *_p (z) =$ 0.72 2,166 kN / m 2

Page 58

Tax cases

Recalculation IJssel Bridge A12 ########## Project: Date: BF7387 EKL Project number: Name: Description: Main span wind load (2.5 °) Version: D0.1

Power coefficients

wind in X direction b / d to c $f_{X;\,0}$ incl surcharge cross slope line function C fx; 0 without traffic 1.05 2.23 2.29 Construction stage, open bridge railings, etc. with traffic 0.98 2.25 2.32 Construction stage, open bridge railings, etc.

wind in Z direction

without traffic b / d tot 1.05 angle α of the wind with fly screen. 2.5 gr $\theta = \alpha + \beta$ 3.5 gr

figure NB.8 c fz = 0.70 note also use the negative value for wind in opposite direction

Wind load

wind in X direction

representative tax		Total	per m1	p rep
without traffic	$F_{wk} =$	5321 kN	18.0 kN / m1	1.73 kN / m
with traffic	$F_{wk} =$	5791 kN	19.6 kN / m1	1.75 kN / m
with traffic, reduced	$\psi \circ F_{wk} =$	1737 kN	5.9 kN / m1	0.53 kN / m
with traffic	F * w =	5484 kN	18.6 kN / m1	1.66 kN / m

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)

p rep (about b = 9.29 m) representative tax Total without traffic $F_{\rm \ wk} =$ 2128 kN 0.78 kN/m 0.85 kN/m with traffic $F_{\rm \ wk} =$ 2316 kN

with traffic, reduced with traffic	$\psi \circ F_{wk} =$ $F * w =$	695 kN 2193 kN	0.25 kN / m 2 0.80 kN / m 2
wind in Z direction representative tax	If a load in the Z direct	ion works unfavorably, it occurs simultaneously with the x direction Total	p_{rep} (about $b = 10,964 \text{ m}$)
without traffic	$F_{wk} =$	1724 kN	0.53 kN / m
moment with $e = b / 4$	$M_{wk} =$	4725 kNm	\pm 0.8 kN / m $^{^{2}}$
with traffic	F * w =	1632 kN	$0.50~\mathrm{kN}$ / m
moment with $e = b / 4$	M * w =	4475 kNm	\pm 0.76 kN / m 2

Tax cases

Recalculation IJssel Bridge A12 ########## Project: Date: BF7387 Project number: Name: EKL Version: D0.1

Main span wind load (2.5 °) Description:

Wind load

Tax case 800-809 Wind load at the 3rd span

NEN-EN 1991-1-4 - H8 wind loads on bridges

Geometry			Coordinate sy	stem			
Туре	plate bridge or box bridge		X	width	Ground level		6.5 m + NAP
total length	295 m		y	length	Bottom of main beam		21.7 m + NAP
width	10,964 m		z	height			
free height bottom bridge	15.2 m			0			
1st main beam	2.8						
sheep's edge / deck	0.37						
2nd main spar	2.8						
construction height bridge (d)	3.17 m						
inclined windward and slate side (α)	2.5 gr						
bridge deck slope (β)	2.5 g. 1 gr		NR - cross slo	ne sunnlement	must be included		
Traffic type	road traffic		Traffic band	ре заррістен	2 mete	er	
Talle type	Toda dame		Traine band		2		
Reference surfaces							
wind in X direction	A ref, x		table 1				
Separation type	open bridge railing and open sa	fety barrier	Separation typ	ne		On 1 side I	Both sides
closed or open barrier	On both sides		open bridge ra	ailing or open s	afety barrier	d + 0.3r	m d + 0.6n
handrail / screen height (d 1)	1 m		tight bridge ra	iling or tight sa	afety barrier	d + d	1 d + 2d
d to - without traffic	6.24 m			iling and open		d + 0.6r	m d+1.2n
d to - with traffic	7.04 m		open onage it	and open	sarety sarrier	4 . 0.01	u - 1.21
d to - with traffic	7.04 III		table 2				
A ref; x - without traffic	1840 m		At deck with i	main beams	artic	ele NB 8.3.1 (4)	
A ref; x - with traffic	2		number of ma		artic	` '	
A ref; x - With traffic	2076 m			in beams		2	
			deck height			0.37 m	
	Α .		height of mair			2.8 m	
wind in Z direction	A ref, z		equivalent cor	nstruction heigh	nt	5.04 m	
A ref, z	3234 m						
W2 11 1							
Wind loads	Dosio volu						
H4.2	Basic values						
Design life span = $C_{prob} =$	30 years 0.96						
C p.00	0.90						
Wind area =	III						
v _{b; 0} =	24.5 m/s						
v _b =	23.6 m/s						
v * _{b; 0} =	23.0 m/s						
V * b =	23.0 m/s						
H4.3.2	Terrain roughness						
Reference height (z e) =	16.8 m						
		I Imbovile					
Terrain category =	II	Unbuilt					
height =	22.2	Distance B	takla NID 4				
Distance R =	1112 m	Distance R according to	table NB. 4				
Z 0 =	0.2						
Terein factor (k r) =	0.209	$k_r = 0.19 \ x \ (z_0 \ / \ Z_{0,II}) \ 0$.07				
roughness factor $c_r(z) =$	0.927	$c_{r}(z) = k_{r} x \ln(z/z_{0})$		for $z_{min} \le z \le$	≤ z max		
		$c_{r}\left(z\right)=c_{r}\left(z_{min}\right)$		for $z \leq z$ $_{\text{min}}$			
H4.3.1	Variation with height						
reference height $(z_e) =$	16.8						
orography factor $c \circ (z) =$	1.00						
Avg. wind speed $v_m(z) =$	21.9 m/s	$V_{m}(z) = c_{r}(z) x c_{0}(z) x^{r}$					
Avg. wind speed $v *_{m} (z) =$	21.3 m/s	$v *_{m}(z) = c_{r}(z) xc_{0}(z)$	XV * b				
114.4	West descharter						
H4.4 Turbulence factor k =	Wind turbulence						
Turbulence intensity I $_{v}$ (z) =	1.00						
rurburence intensity i v (z) =	0.2257						
H4.5	Extreme thrust						
$\rho =$	1.25 kg/m3	c e (z)					
Extreme thrust $q_p(z) =$	0.77 kN/m2	2,219					
Extreme thrust $q *_p (z) =$	0.73 kN/m ₂	2,219					
1 . (/	KIN / III 2	=>====					

Tax	cases

Project:Recalculation IJssel Bridge A12Date:########Project number:BF7387Name:EKLDescription:Main span wind load (2.5°)Version:D0.1

Power coefficients

wind in X direction	b / d to	C fx; 0	c 6:0 incl surcharge cross slope line function			
without traffic	1.76	2.00	2.06	Construction stage, open bridge railings, etc.		
with traffic	1.56	2.07	2.13	Construction stage, open bridge railings, etc.		
wind in Z direction						
without traffic b / d tot	1.7	6				
angle $\boldsymbol{\alpha}$ of the wind with fly screen.	2	.5 gr				
$\theta = \alpha + \beta$	3	.5 gr				
figure NB.8 c fz =	0.6	7	note also use the negative	note also use the negative value for wind in opposite direction		

Wind load

wind in X direction

representative tax	Total		per m1	р гер
without traffic	$F_{wk} =$	2944 kN	10.0 kN / m1	1.60 kN / m
with traffic	$F_{\rm \ wk} =$	3425 kN	11.6 kN / m1	1.65 kN / m
with traffic, reduced	$\psi \circ F_{wk} =$	1028 kN	3.5 kN / m1	0.50 kN / m
with traffic	F * w =	3244 kN	11.0 kN / m1	$1.56 \text{ kN} / \text{m}^{-2}$

wind in Y direction = 40% of wind forces in the x direction (in the x direction, the same force as in the y direction occurs simultaneously)

representative tax		Total	$p_{rep} (about b = 9.29 m)$
without traffic	$F_{wk} =$	1177 kN	0.43 kN/m^{2}
with traffic	$F_{wk} =$	1370 kN	$0.50 \mathrm{kN}/\mathrm{m}^{-2}$
with traffic, reduced	$\psi_0 \; F_{wk} =$	411 kN	$0.15 \mathrm{kN}\mathrm{/m}^{-2}$
with traffic	F * w =	1297 kN	0.47 kN/m^{2}

representative tax		Total	p_{rep} (about $b = 10,964 \text{ m}$
without traffic	$F_{wk} =$	1691 kN	$0.52 \mathrm{kN/m}^{-2}$
moment with $e = b / 4$	$M_{wk} =$	4634 kNm	\pm 0.78 kN / m $^{^{2}}$
with traffic	F * w =	1601 kN	$0.50~\mathrm{kN}$ / m 2
moment with $e = b / 4$	M * w =	4389 kNm	\pm 0.74 kN / m 2

Appendix

Appendix H - Temperature load

IJssel Bridge

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Temperature load Main bridge
 Version
 v1.3

Uniform temperature component of steel-concrete deck [deck type 2]

Air temperature

The uniform temperature component depends on the minimum and maximum air temperature and the

Lifespan. A distinction is made between the service life of the bridge and the joint transitions.

Lifespan		Bridge 30 years	Joint transition 30 years
Min. air temp. in the shadow	$T_{\text{ min, p}} = T_{\text{ min}} \; \{0.393\text{-}0.156 \; ln \; [\text{-ln} \; (1\text{-p})]\} =$	-23.0 ° C	-23.0 ° C
Max. air temp. in the shadow	$T_{\rm \; max,p} = T_{\rm \; max} \; \{0.781\text{-}0.056 \; ln \; [\text{-}ln \; (1\text{-}p)]\} =$	29.1 ° C	29.1 ° C

Uniform temperature component

This follows, in accordance with figure NB.1-6.1 from the National Annex, for a steel concrete deck

(type 2) the following uniform temperature components:

(71)	9			Bridge	Joint transition
Minimum eve	en temperature	component (c, min)	= −26 ° C	-26 ° C
Maximum un	iform temperat	ure compone	nt (T c, max)	= 45 ° C	45 ° C

Figure 5.2 - Correlation between the minimum $\!\!/$ maximum air temperature in the shade

 $(T_{min,\,p}\,/\,T_{max,\,p}\,) \ and \ the \ minimum\,/\,maximum \ uniform \ temperature \ component \ of \ the \ bridge \ (T_{e,\,min}\,/\,T_{e,\,max}\,)$

Starting temperature

The initial temp. of the bridge (T $_0$) with regard to the Eurocode has been determined in accordance with appendix A of NEN-EN 1991-1-5.

The initial temp. of the bridge (T o) with respect to the RTD 1007-2 has been determined on the basis of:

			medsurements			
			Bı	idge	Joint transition	
Starting temper	iture (T o)		=	10 ° C	10 ° C	

Range of the even temperature component

The maximum range of the bridge's uniform temperature components in a shortening (ΔT $_{\text{N, con}}$)

and an extension ($\Delta T_{\ N,\ exp}$) is:

	Briage	Joint transition
Shortening (ΔT N, con) = T 0 - T c, min	= 36 ° C	36 ° C
Elongation ($\Delta T \bowtie, exp$) = $T_{e, max}$ - T_{0}	= 35 ° C	35 ° C
Total range $(\Delta T \times) = (\Delta T \times_{,con}) + (\Delta T \times_{,exp})$	= 71 ° C	71 ° C

45 ° C

91 ° C

Joint transition

46 ° C

45 ° C

91 ° C

Range of the uniform temperature component for the supports and joints

Total range (ΔT N, add / add) = (ΔT N, con, add / add) + (ΔT N, exp, add)

For supports and joints, the maximum expansion and shrinkage range of the bridge is:

Temperature at which the supports and joints are placed is: prescribed Bridge Shortening ($\Delta T_{N, \text{con, add/solve}}$) = $\Delta T_{N, \text{con}}$ + 10 ° C (10 ° C conforming to RTD) 46 ° C Elongation ($\Delta T N$, exp, add / add) = $\Delta T N$, exp + 10 ° C (10 ° C conforming to RTD)

Page 63

Determination of temperature load on bridge deck

5/25/2018 Project name: IJssel Bridge Date: Project number: BF7387 Ernst Klamer Temperature load Main bridge Description: Version

Vertical temperature component with non-linear effects

The vertical temperature component is determined according to approach 2 (article 6.1.4.2), in accordance with the

National Annex to NEN-EN 1991-1-5. The table below shows the effect of any

different thickness of the wear layer included.

Wear layer: With wear layer Thickness: 70 mm Wear layer thickness 200 mm Steel-concrete deck thickness (h):

Construction type

Temperature difference (Δ T)

(a) Global warming (b) Cooling

procedure

ale $h_{\ i} = 0.6 \ h =$ 120 mm 120 mm 400 mm 400 mm ΔT 1 ΔT 2 ΔT 1 ΔT 2 ° C °C ° C ° C m m 0.2 16.0 4.0 0.2 -4.0 -8.0

0.3 18.7 0.3 -6.1 4.0 -8.0

procedure Simplified

1T = -10 ° C 1T 1 = 10 ° C

For steel-concrete bridges, the simplified procedure given above may have been used to determine the

upper limit of the thermal effects. Values for ΔT in this procedure are indicative.

Vertical temperature -5 component 0 16.0 -4.0 0 $\begin{array}{c} \text{(normal procedure)} \\ \Delta T \end{array}$ 120 4.0 2.9 200 0.0 400 600

NOTE The temperature difference ΔT includes ΔT M and ΔT E (see NEN-EN 1991-1-5 art 4 (3)) and a small part of component ΔT N;

the latter part is contained in the uniform temperature component of the bridge

Determination of temperature load on bridge deck

Page 64

Determination of temp	erature load on bridg	e deck							
Project name:	IJssel Bridge				Date:	5/25/2018			
Project number:	BF7387				Name:	Ernst Klamer			
Description:	Temperature load	Main bridge			Version	v1.3			
Resume									
Temperature o	component				Temperatu	re difference (Δ			
•	•		(a) Global	warming			(b) Cooling	!	
Even temperature		0	2	20	40	-40	-20		0
component NT N					35	-36			
		200			35	-36			200
V									
Vertical temperature component		0		10	20	-10	-5		0
МТ м		0			16.0		-4.0		0
		120	4.0						120 200
		200	2.9						200
		400 0.	.0			-8.0			600
Combination 1		ΔT 1 + ω N ΔT N	, exp =	28.3	°C	ΔΤι-ωνΔΤ	N, con =	-16	.6 ° C
MT M + ω N ΔT N	$\omega_N = 0.35$	$\Delta T_2 + \omega_N \Delta T_N$, exp =	16.3		HT h1 - ω N Δ	Γ _{N, con} =		.6 ° C
		ΔT o + ω n ΔT n	exp =	15.1		HT h - ω N ΔΤ			6°C
		$\Delta T_s + \omega_N \Delta T_N$	exp =	12.3		ΔΤ 2 - ω Ν ΔΤ	N, con =		.6 ° C
		_							
		0	10	20	30	-30	-20	-10	0
		0			28.3		-16.6		0
		120		16.3			-12.6 -12.6		120 200
		200		15.1					
						-20.6	5		600
		400		12.3		-20.0	,		000
Combination 2		$ω$ m ΔT 1 $\pm \Delta T$ N		47.1	° C	ω μ ΔΤ ι - ΔΤ		-39.	.1 ° C
$ω$ m ΔT m + ΔT n	$\omega_{M} = 0.75$	$ω$ M ΔT $2 + \Delta T$ N		38.1	°C	ω M ΔT h1 - Δ		-36	.0 ° C
		$ω$ M ΔT o $+$ ΔT N		37.3	°C	ω M Δ T h + Δ T		-36.	.0 ° C
		$ω$ M ΔT s $+$ ΔT N	, exp =	35.1	° C	$\omega M \Delta T 2 + \Delta T$	Γ _{N, exp} =	-42.	.0 ° C
		0	20	40	60	-60	-40	-20	0
		0			47.1	-39			0
							36.0		120
		120		38.			36.0		200
		200		37.3	,				
		400		35.1		-42.0)		600
				33.1					

Page 65

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Temperature load Main bridge
 Version
 v1.3

Uniform temperature component steel deck [deck type 1b]

Air temperature

The uniform temperature component depends on the minimum and maximum air temperature and the

Lifespan. A distinction is made between the service life of the bridge and the joint transitions.

Lifespan		Bridge 30 years	Joint transition 30 years
Min. air temp. in the shadow	$T_{\mathrm{\;min,p}} = T_{\mathrm{\;min}} \; \{0.393\text{-}0.156 \; ln \; [\text{-ln} \; (1\text{-p})]\} =$	-23.0 ° C	-23.0 ° C
Max. air temp. in the shadow	$T_{\text{max, p}} = T_{\text{max}} \{0.781\text{-}0.056 \text{ ln [-ln (1-p)]}\} =$	29.1 ° C	29.1 ° C

Uniform temperature component

This follows, in accordance with figure NB.1–6.1 from the National Annex, for a steel deck

(type 1) the following uniform temperature components:

	1	Bridge	Joint transitio		
Minimum even temperature component (T c, min)	=	-26 ° C	-26 ° C		
Maximum uniform temperature component (T e, max)	=	45 ° C	45 ° C		

Figure 5.2 - Correlation between the minimum / maximum air temperature in the shade

 $(T_{min,\,p}\,/\,T_{max,\,p})$ and the minimum / maximum uniform temperature component of the bridge $(T_{e,\,min}\,/\,T_{e,\,max})$

Starting temperature

The initial temp. of the bridge (T o) with regard to the Eurocode has been determined in accordance with appendix A of NEN-EN 1991-1-5.

The initial temp. of the bridge (T $_0$) with respect to the RTD 1007-2 has been determined on the basis of: measurements $\frac{\textbf{Bridge}}{\textbf{Bridge}} = \frac{\textbf{Joint transition}}{\textbf{Starting temperature}}$ Starting temperature (T $_0$) $= \frac{\textbf{10 °C}}{\textbf{10 °C}}$

Range of the even temperature component

The maximum range of the bridge's uniform temperature components in a shortening (ΔT N, con)

and an extension ($\Delta T N$, exp.) is:

	Bi	Joint transition		
Shortening (ΔT N, con) = T 0 - T e, min	=	36 ° C	36 ° C	
Elongation (ΔT N, exp.) = T e, max - T 0	=	35 ° C	35 ° C	
Total range (ΔT_{N}) = ($\Delta T_{N, con}$) + ($\Delta T_{N, exp}$)	=	71 ° C	71 ° C	

Range of the uniform temperature component for the supports and joints

For supports and joints, the maximum expansion and shrinkage range of the bridge is:

reinperature at which the supports and joints are placed is.	I I	rescribed					
			В	ridge	Joint transition		
Shortening (ΔT N, con, add / solve) = ΔT N, con +	10 ° C	(10 ° C conforming to RTD)	=	46 ° C	46 ° C		
Elongation (ΔT N, exp, add / add) = ΔT N, exp +	10 ° C	(10 ° C conforming to RTD)	=	45 ° C	45 ° C		
Total range $(\Lambda T \times add/add) = (\Lambda T \times con add/add) + (\Lambda T \times con add)$			=	91 ° C	91 ° C		

Page 66

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Temperature load Main bridge
 Version
 v1.3

Vertical temperature component with non-linear effects

The vertical temperature component is determined according to approach 2 (article 6.1.4.2), in accordance with the National Annex to NEN-EN 1991-1-5. The table below shows the effect of any

different thickness of the wear layer included.

Wear layer thickness: 70 mm
Construction height: 2400 mm

Construction type $\begin{array}{c} \text{Temperature difference (ΔT)$} \\ \text{(a) Global warming} & \text{(b) Cooling} \end{array}$

 $\begin{array}{ll} h_{\perp} = 0.5 \; m & \qquad \qquad h_{\perp} = 0.1 \; m \\ 1T_{\perp} = 15 \; ^{\circ} C & \qquad \qquad 1T_{\perp} = \text{-}6 \; ^{\circ} C \end{array}$

T		Temperature difference (Δ T)									
Temperature component		(a) Global warming		(b) Cooling	(b) Cooling						
Vertical temperature	(2 4 6 8 10 12 14 16		-7 -6 -5 -4 -3 -2 -1 0							
component MT м	0 500	0.0	15.0	-6.0	0.0	0100					
	2400	0.0			0.0	2400					

NOTE The temperature difference ΔT includes ΔT M and ΔT E (see NEN-EN 1991-1-5 art 4 (3)) and a small part of component ΔT N; this last part is included in the uniform temperature component of the bridge (see previous paragraph)

Page 67

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Emst Klamer

 Description:
 Temperature load Main bridge
 Version
 v1.3

Resume

resume													
Temperature compo	nent			$\label{eq:Temperature difference} Temperature \ difference \ (\ \triangle \ T)$ (a) Global warming (b) Cooling									
component NT N			0 5 10 15 20 25 30 35 4	10	35	-40 -36	-30	-20	-10	0			
		2400			35	-36					2400		
Vertical temperature component MT M		0 500	0 2 4 6 8 10 12 14 16		15.0	-7 -6 - -6.0	5 -4 -3 -2	-1 0		0.0	0100		
		2400	0.0							0.0	2400		
Combination 1 MT $_M + \omega$ $_N \Delta T$ $_N$	$\omega_{\text{ N}}=0.35$		$ω$ N Δ T N, exp = $ω$ N Δ T N, exp =	27.3 ° C 12.3 ° C		ΔT b - ω N HT h1 - ω			-18.6 -12.6				

The tables below provide a summary tor summer and winter.																			
Linear vertical temperature component (summer)																			
																		Underside	
												Topside	Underside	Underside	Underside	Underside	Underside	End transvers	
Ash	Cross beam	To x vs. 0	h	Plate 1	Plate 2	tpo1	tpo2	tdek	, TN, N		aboteTN, M, botterglumn1	deck	deck	strip 8x100	bulb	main beam	crossbeam	interdental	
0	Portal A	1800	2400	500 * 30 500 * 30		30	0	10	8.8	4.4	-11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9
	intermediate crossbeam intermediate crossbeam	3600	2400	500 * 30 500 * 30		30 30	0	10 10	8.8 8.8	4.4	-11.0 -11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9 8.9
	Intermediate crossbeam	5400	2400	500 * 30		30	0	10	8.8	4.4	-11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9
	intermediate crossbeam	7200	2400	500 * 30		30	0	10	8.8	4.4	-11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9
	intermediate crossbeam	9000	2400	500 * 30		30	0	10	8.8	4.4	-11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9
		10000	2400	500 * 30		30	0	10	8.8	4.4	-11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9
	2	10000	2400	500 * 30	350 * 30 350 * 30	30	30	10	8.1	5.0	-9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
	intermediate crossbeam	10800 12600	2400	500 * 30 500 * 30		30 30	30 30	10	8.1 8.1	5.0 5.0	.9.9 .9.9	13.1 13.1	13.0 13.0	12.4 12.4	12.1 12.1	-1.8 -1.8	10.0	11.2 11.2	9.0 9.0
	intermediate crossbeam	14400	2400	500 * 30		30	30	10	8.1	5.0	-9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
	3	16200	2400	500 * 30	350 * 30	30	30	10	8.1	5.0	-9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
2	intermediate crossbeam	18000	2400	500 * 30	350 * 30	30	30	10	8.1	5.0	-9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
2	. 4	19798	2400	500 * 30 500 * 30	350 * 30 350 * 30	30 30	30 30	10	8.1	5.0	-9.9 -9.9	13.1	13.0	12.4	12.1	-1.8 -1.8	10.0	11.2	9.0
	intermediate crossbeam	21598	2400			30	30	10	8.1	5.0	-9.9 -9.9	13.1	13.0	12.4	12.1	-1.8 -1.8	10.0	11.2	9.0 9.0
	intermediate crossbeam	25198	2400			30	30	10	8.1	5.0	.9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
	intermediate crossbeam	26998	2400	500 * 30	350 * 30	30	30	10	8.1	5.0	-9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
	6	28798	2400	500 * 30	350 * 30	30	30	10	8.1	5.0	-9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
	intermediate crossbeam	30598	2400	500 * 30	350 * 30	30	30	10	8.1	5.0	-9.9	13.1	13.0	12.4	12.1	-1.8	10.0	11.2	9.0
	intermediate crossbeam	32398 33498	2400 2400	500 * 30	350 * 30 350 * 30	30 30	30 30	10 10	8.1 8.1	5.0 5.0	-9.9 -9.9	13.1	13.0	12.4 12.4	12.1 12.1	-1.8 -1.8	10.0	11.2 11.2	9.0 9.0
		33498	2400	500 * 30		30	0	10	8.8	4.4	-9.9 -11.0	13.1	13.1	12.4	12.1	-1.8	9.9	11.2	8.9
	7	34198	2400	500 * 30		30	0	10	8.8	4.4	-11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9
		34997	2400	500 * 30		30	0	10	8.8	4.4	-11.0	13.2	13.1	12.5	12.1	-2.2	9.9	11.2	8.9
		34997	2400	500 * 20		20	0	10	9.2	4.0	-11.7	13.2	13.1	12.5	12.1	-2.5	9.8	11.2	8.8
4	intermediate crossbeam intermediate crossbeam	35998 37796	2400 2400	500 * 20 500 * 20		20 20	0	10 10	9.2 9.2	4.0	-11.7 -11.7	13.2 13.2	13.1	12.5 12.5	12.1 12.1	-2.5 -2.5	9.8 9.8	11.2 11.2	8.8
4	intermediate crossbeam 8	39596	2400	500 + 20		20	0	10	9.2	4.0	-11.7	13.2	13.1	12.5	12.1	-2.5	9.8	11.2	8.8
	intermediate crossbeam		2400	500 + 20		20	0	10	9.2	4.0	-11.7	13.2	13.1	12.5	12.1	-2.5	9.8	11.2	8.8
	intermediate crossbeam	43196	2400	500 * 20		20	0	10	9.2	4.0	-11.7	13.2	13.1	12.5	12.1	-2.5	9.8	11.2	8.8
	Portal B	44996	2400	500 * 20		20	0	10	9.2	4.0	-11.7	13.2	13.1	12.5	12.1	-2.5	9.8	11.2	8.8
	intermediate crossbeam	46796	2406	500 * 20		20	0	10	9.2	4.1	-11.7	13.3	13.2	12.6	12.2	-2.5	9.9	11.3	8.9
5	intermediate crossbeam	48596 50394	2416	500 * 20 500 * 20		20	0	10	9.2	4.1	-11.7 -11.7	13.3	13.2	12.6	12.2	-2.5	9.9	11.3	8.9 8.8
,	intermediate crossbeam	52179	2476	500 * 20		20	0	10	9.1	4.1	-11.7	13.2	13.1	12.5	12.1	-2.6	9.9	11.2	8.9
	intermediate crossbeam	53964	2508	500 * 20		20	0	10	9.1	4.1	-11.7	13.2	13.1	12.5	12.1	-2.6	10.0	11.3	8.9
	10	55749	2541	500 * 20		20	0	10	9.0	4.1	-11.6	13.1	13.0	12.4	12.1	-2.6	9.9	11.2	8.9
	intermediate crossbeam	57534	2593	500 * 20		20	0	10	9.0	4.1	-11.6	13.1	13.0	12.4	12.1	-2.6	10.0	11.2	9.0
	intermediate crossbeam	59319	2657 2720	500 * 20 500 * 20		20 20	0	10	9.0 8.9	4.2	-11.6 -11.6	13.2 13.1	13.1	12.6	12.2	-2.6	10.1	11.4	9.2 9.2
7	intermediate crossbeam	62889	2720	500 + 20		20	0	10	8.9	4.2	-11.6 -11.5	13.1	12.9	12.5	12.1	-2.7	10.1	11.3	9.2
7	intermediate crossbeam	64672	2865	500 * 20		20	0	10	8.8	4.2	-11.5	13.0	12.9	12.4	12.1	-2.7	10.2	11.3	9.3
		66020	2939	500 * 20		20	0	10	8.7	4.2	-11.5	12.9	12.8	12.3	12.0	-2.8	10.1	11.3	9.3
		66020	2939	500 * 30		30	0	10	8.4	4.6	-10.8	13.0	12.9	12.4	12.1	-2.4	10.3	11.4	9.5
	12 intermediate crossbeam	66457	2963 3061	500 * 30 500 * 30		30 30	0	10	8.4	4.7	-11.1 -10.7	13.1	13.0	12.5	12.2	-2.7	10.4	11.5	9.5
	intermediate crossbeam	68962	3101	500 * 30		30	0	10	8.2	4.6	-10.7	12.7	12.7	12.4	11.9	-2.4	10.3	11.4	9.4
		68962	3101	500 * 30	550 * 30	30	30	10	7.5	5.7	-9.2	13.2	13.2	12.7	12.4	-1.7	10.7	11.7	10.0
	13	70027	3159	500 * 30	550 * 30	30	30	10	7.3	5.4	-9.1	12.7	12.7	12.2	11.9	-1.8	10.4	11.3	9.6
	intermediate crossbeam	71812	3257	500 * 30	550 * 30	30	30	10	7.2	5.4	-9.0	12.6	12.6	12.1	11.9	-1.8	10.3	11.3	9.6
	14 intermediate crossbeam	73597 75382	3374 3510	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	10 10	7.2	5.4	-9.0 -8.9	12.6 12.5	12.6 12.5	12.1	11.9 11.8	-1.8 -1.8	10.4	11.3	9.7 9.8
	intermediate crossbeam	77167	3645	500 * 30	550 * 30	30	30	10	7.0	5.4	-8.9	12.4	12.4	12.0	11.7	-1.9	10.4	11.2	9.8
	15	78952	3781	500 * 30	550 * 30	30	30	10	7.0	5.4	-8.9	12.4	12.4	12.0	11.8	-1.9	10.5	11.2	9.9
9	intermediate crossbeam		3917	500 * 30	550 * 30	30	30	10	6.9	5.4	-8.8	12.3	12.3	11.9	11.7	-1.9	10.4	11.2	9.9
9	intermediate crossbeam	82520	4071	500 * 30	550 * 30	30	30	10	6.8	5.4	-8.8	12.2	12.2	11.8	11.6	-2.0	10.4	11.1	9.9
	16	84305	4245	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	12	7.1	5.2	-9.2	12.3	12.3	11.9	11.7	-2.1	10.6	11.3	10.0
	intermediate crossbeam intermediate crossbeam	86090 87875	4419	500 * 30 500 * 30	550 * 30 550 * 30	30	30	12	7.1	5.3	-9.1 -9.1	12.4	12.4	12.0	11.8	-2.0 -2.1	10.7	11.4	10.2
	17	89660	4766	500 * 30	550 * 30	30	30	12	6.9	5.3	-9.0	12.2	12.2	11.9	11.7	-2.1	10.7	11.3	10.2
	intermediate crossbeam	91445	4950	500 * 30	550 * 30	30	30	12	6.8	5.3	-9.0	12.1	12.1	11.8	11.6	-2.2	10.6	11.2	10.1
	intermediate crossbeam	93230	5134	500 * 30	550 * 30	30	30	12	6.7	5.3	-8.9	12.0	12.0	11.7	11.5	-2.2	10.6	11.1	10.1
	Portal C	95015	5300	500 * 30 500 * 30	550 * 30 550 * 30	30	30	12	6.7	5.3	-8.9	12.0	12.0	11.7	11.5	-2.2	10.6	11.2	10.2
	intermediate crossbeam intermediate crossbeam	96765 98515	5182 5026	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	12 12	6.7	5.3	-8.9 -9.0	12.0	12.0	11.7	11.5	-2.2	10.6	11.2	10.1
	18	100265	4880	500 * 30	550 * 30	30	30	12	6.8	5.2	-9.0	12.0	12.0	11.7	11.5	-2.2	10.5	11.1	10.0
		100953	4822	500 * 30	550 * 30	30	30	12	6.9	5.3	-9.0	12.2	12.2	11.9	11.7	-2.1	10.7	11.3	10.2
		100953	4822	500 * 30		30	0	12	7.6	4.7	-10.5	12.3	12.3	12.0	11.8	-2.9	10.7	11.3	10.2
								_											

	intermediate crossbeam	102015	4733	500 * 30		30	0	12	7.6	4.6	-10.6	12.2	12.2	11.8	11.7	-3.0	10.5	11.2	10.0
		103765	4587	500 * 30		30	0	10	7.5	5.1	-10.3	12.6	12.6	12.2	12.0	-2.8	10.9	11.6	10.3
12	19	105515	4440	500 * 30		30	0	10	7.4	4.8	-10.2	12.2	12.2	11.8	11.6	-2.8	10.5	11.2	9.9
12	intermediate crossbeam	107263	4301	500 * 30		30	0	10	7.4	4.8	-10.3	12.2	12.2	11.8	11.6	-2.9	10.4	11.1	9.8
	intermediate crossbeam	109013	4182	500 * 30		30	0	10	7.5	4.8	-10.3	12.3	12.3	11.9	11.7	-2.8	10.4	11.2	9.9
	20	110763	4063	500 * 30		30	0	10	7.6	4.8	-10.4	12.4	12.4	12.0	11.8	-2.8	10.5	11.3	9.9
		111064	4042	500 * 30		30	0	10	7.6	4.7	-10.4	12.3	12.3	11.9	11.7	-2.8	10.4	11.2	9.8
		111064	4042	500 * 20		20	0	10	7.9	4.5	-11.0	12.4	12.4	12.0	11.8	-3.1	10.4	11.2	9.8
		112513	3943	500 * 20		20	0	10	7.9	4.5	-11.1	12.4	12.4	12.0	11.7	-3.2	10.4	11.2	9.7
	intermediate crossbeam	114263	3823	500 * 20		20	0	10	8.0	4.5	-11.1	12.5	12.5	12.1	11.8	-3.1	10.4	11.2	9.7
	21	116013	3725	500 * 20		20	0	10	8.1	4.4	-11.2	12.5	12.5	12.0	11.8	-3.1	10.3	11.2	9.7
	intermediate crossbeam	117763	3631	500 * 20		20	0	10	8.2	4.4	-11.2	12.6	12.6	12.1	11.9	-3.0	10.4	11.3	9.7
	intermediate crossbeam	119513	3538	500 * 20		20	0	10	8.2	4.4	-11.2	12.6	12.6	12.1	11.9	-3.0	10.3	11.2	9.6
14	22	121263	3444	500 * 20		20	0	10	8.3	4.4	-11.3	12.7	12.7	12.2	11.9	-3.0	10.3	11.3	9.6
14	intermediate crossbeam	123006	3358	500 * 20		20	0	10	8.4	4.4	-11.3	12.8	12.8	12.3	12.0	-2.9	10.4	11.4	9.6
		123357	3345	500 * 20		20	0	10	8.4	4.3	-11.3	12.7	12.7	12.2	11.9	-2.9	10.3	11.3	9.5
		123357	3345	500 * 30		30	0	10	8.1	4.6	-10.6	12.7	12.7	12.2	11.9	-2.5	10.4	11.3	9.6
		124584	3298	500 * 30		30	0	10	8.1	4.6	-10.6	12.7	12.7	12.2	11.9	-2.5	10.3	11.3	9.6
		124584	3298	500 * 30	530 * 10	30	10	10	7.8	4.9	-10.0	12.7	12.7	12.2	11.9	-2.2	10.4	11.3	9.7
	intermediate crossbeam	124756	3291	500 * 30	530 * 10	30	10	10	7.8	4.9	-10.0	12.7	12.7	12.2	11.9	-2.2	10.4	11.3	9.6
	23	126506	3224	500 * 30	530 * 10	30	10	10	7.9	4.9	-10.0	12.8	12.8	12.3	12.0	-2.1	10.4	11.4	9.7
	intermediate crossbeam	128256	3157	500 * 30	530 * 10	30	10	10	7.9	4.8	-10.0	12.7	12.7	12.2	11.9	-2.1	10.3	11.3	9.5
	intermediate crossbeam	130006	3090	500 * 30	530 * 10	30	10	10	7.9	4.8	-10.1	12.7	12.7	12.2	11.9	-2.2	10.2	11.2	9.4
		130284	3081	500 * 30	530 * 10	30	10	10	8.0	4.9	-10.1	12.9	12.9	12.4	12.1	-2.1	10.4	11.4	9.6
		130284	3081	500 * 30	550 * 30	30	30	10	7.4	5.4	-9.1	12.8	12.8	12.3	12.0	-1.7	10.4	11.4	9.6
	24	131756	3034	500 * 30	550 * 30	30	30	12	7.8	5.2	-9.5	13.0	12.9	12.5	12.2	-1.7	10.5	11.5	9.7
	intermediate crossbeam	133506	2995	500 * 30	550 * 30	30	30	12	7.8	5.2	-9.5	13.0	12.9	12.5	12.2	-1.7	10.5	11.5	9.7
	intermediate crossbeam	135256	2955	500 * 30	550 * 30	30	30	12	7.8	5.2	-9.6	13.0	12.9	12.5	12.2	-1.8	10.4	11.5	9.6
	25	137006	2916	500 * 30	550 * 30	30	30	12	7.9	5.1	-9.6	13.0	12.9	12.4	12.2	-1.7	10.4	11.5	9.6
	intermediate crossbeam	138756	2876	500 * 30	550 * 30	30	30	12	7.9	5.2	-9.6	13.1	13.0	12.5	12.2	-1.7	10.5	11.5	9.7
	intermediate crossbeam	140526	2851	500 * 30	550 * 30	30	30	12	7.9	5.2	-9.6	13.1	13.0	12.5	12.2	-1.7	10.4	11.5	9.6
	26	142276	2838	500 * 30	550 * 30	30	30	12	7.9	5.1	-9.6	13.0	12.9	12.4	12.1	-1.7	10.4	11.4	9.5
	intermediate crossbeam	144026	2825	500 * 30	550 * 30	30	30	12	7.9	5.1	-9.6	13.0	12.9	12.4	12.1	-1.7	10.3	11.4	9.5
	intermediate crossbeam	145776	2813	500 * 30	550 * 30	30	30	12	7.9	5.2	-9.6	13.1	13.0	12.5	12.2	-1.7	10.4	11.5	9.6
17	27	147526	2800	500 * 30	550 * 30	30	30	12	7.9	5.2	-9.6	13.1	13.0	12.5	12.2	-1.7	10.4	11.5	9.6

	nation of temperature los																		
Project n Project n	ame:	Ussel Brid BF7387	ge			Date:		5/25/201 Frast KI											
Descripti	ion:	Temperatu	re load Ma	ain bridge		Version		v1.0											
Linear v	ertical temperature comp	onent (wi	nter)																
																		Underside	
		To x vs. 0							, TN, N		∆TN, M, bott@hlumn1	Topside deck	Underside	Underside strip 8x100	Underside bulb	Underside main beam	Underside crossbeam	End transvers	eTop edge
Ash 0	Cross beam Portal A	0	h 2400	Plate 1 500 * 30	Plate 2	tpo1	tpo2	tdek 10	-2.6	-1.3 -1.4	3.4	-4.0	deck -4.0	-3.8	-3.7	0.8	-3.0	interdenta -3.4	-2.7
	intermediate crossbeam	1800 3600	2400 2400	500 * 30 500 * 30		30 30	0	10 10	-2.6 -2.6	-1.4 -1.4	3.4 3.4	4.0 4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.8	-3.0 -3.0	-3.4 -3.4	-2.7
	intermediate crossbeam	5400	2400	500 * 30		30	0	10	-2.6	-1.4	3.4	4.0	4.0	-3.8	-3.7	0.8	-3.0	-3.4	-2.7 -2.7
	intermediate crossbeam intermediate crossbeam	7200 9000	2400 2400	500 * 30 500 * 30		30 30	0	10 10	-2.6 -2.6	-1.4 -1.4	3.4	4.0 -4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.8	-3.0 -3.0	-3.4 -3.4	-2.7 -2.7
	memedane crosscani	10000	2400	500 * 30		30	0	10	-2.6	-1.4	3.4	4.0	4.0	-3.8	-3.7	0.8	-3.0	-3.4	-2.7
	2	10000 10800	2400 2400	500 * 30 500 * 30	350 * 30 350 * 30	30 30	30 30	10 10	-2.4	-1.6 -1.6	3.0	4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.6	-3.0 -3.0	-3.4 -3.4	-2.7 -2.7
	intermediate crossbeam	12600	2400	500 * 30	350 * 30	30	30	10	-2.4	-1.6	3.0	-4.0	4.0	-3.8	-3.7	0.6	-3.0	-3.4	-2.7
	intermediate crossbeam 3	14400 16200	2400 2400	500 * 30 500 * 30	350 * 30 350 * 30	30 30	30 30	10 10	-2.4 -2.4	-1.6 -1.6	3.0	-4.0 -4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.6	-3.0 -3.0	-3.4 -3.4	-2.7 -2.7
2	intermediate crossbeam	18000 19798	2400	500 * 30 500 * 30	350 * 30 350 * 30	30	30	10	-2.4	-1.6	3.0	-4.0	4.0	-3.8	-3.7	0.6	-3.0	-3.4	-2.7
2	4 intermediate crossbeam	21598	2400 2400			30 30	30 30	10 10	-2.4 -2.4	-1.6 -1.6	3.0	4.0 -4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.6	-3.0 -3.0	-3.4 -3.4	-2.7 -2.7 -2.7
	5 intermediate crossbeam	23398 25198	2400 2400	500 * 30 500 * 30	350 * 30 350 * 30	30 30	30 30	10	-2.4	-1.6 -1.6	3.0	4.0	4.0	-3.8 -3.8	-3.7	0.6	-3.0	-3.4 -3.4	-2.7 -2.7
	intermediate crossbeam	26998	2400			30	30	10	-2.4	-1.6	3.0	-4.0	4.0	-3.8	-3.7	0.6	-3.0	-3.4	-2.7
	6 intermediate crossbeam	28798 30598	2400 2400	500 * 30 500 * 30	350 * 30 350 * 30	30 30	30 30	10 10	-2.4 -2.4	-1.6 -1.6	3.0	-4.0 -4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.6	-3.0 -3.0	-3.4 -3.4	-2.7 -2.7
	intermediate crossbeam	32398	2400	500 * 30	350 * 30	30	30	10	-2.4	-1.6	3.0	4.0	4.0	-3.8	-3.7	0.6	-3.0	-3.4	-2.7
		33498 33498	2400 2400	500 * 30 500 * 30	350 * 30	30 30	30 0	10 10	-2.4 -2.6	-1.6 -1.4	3.0 3.4	4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.6	-3.0 -3.0	-3.4 -3.4	-2.7 -2.7
	7	34198 34997	2400 2400	500 * 30 500 * 30		30 30	0	10 10	-2.6 -2.6	-1.4 -1.4	3.4	4.0 4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.8	-3.0 -3.0	-3.4 -3.4	-2.7
		34997	2400	500 * 20		20	0	10	-2.8	-1.3	3.6	4.1	4.1	-3.9	-3.8	0.8	-3.0	-3.5	-2.7 -2.7
4	intermediate crossbeam intermediate crossbeam	35998 37796	2400 2400	500 * 20 500 * 20		20 20	0	10 10	-2.8 -2.8	-1.3 -1.3	3.6 3.6	4.1 4.1	4.1 4.1	-3.9 -3.9	-3.8 -3.8	0.8	-3.0 -3.0	-3.5 -3.5	-2.7 -2.7
•	8	39596	2400	500 * 20		20	0	10	-2.8	-1.3	3.6	4.1	4.1	-3.9	-3.8	0.8	-3.0	-3.5	-2.7
	intermediate crossbeam intermediate crossbeam	41396 43196	2400 2400	500 * 20 500 * 20		20 20	0	10 10	-2.8 -2.8	-1.3 -1.3	3.6 3.6	4.1 4.1	-4.1 -4.1	-3.9 -3.9	-3.8 -3.8	0.8	-3.0 -3.0	-3.5 -3.5	-2.7 -2.7
	Portal B intermediate crossbeam	44996 46796	2400	500 * 20 500 * 20		20	0	10 10	-2.8 -2.8	-1.3	3.6	4.1 4.1	4.1	-3.9 -3.9	-3.8 -3.8	0.8	-3.0	-3.5 -3.5	-2.7 -2.7
5	intermediate crossbeam intermediate crossbeam	48596	2406 2416	500 * 20		20 20	0	10	-2.8	-1.3 -1.3	3.6 3.6	4.1	-4.1 -4.1	-3.9	-3.8	0.8	-3.1 -3.1	-3.5	-2.7
5	9 intermediate crossbeam	50394 52179	2443 2476	500 * 20 500 * 20		20 20	0	10 10	-2.7 -2.7	-1.3 -1.3	3.6	-4.0 -4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.9	-3.0 -3.0	-3.4 -3.4	-2.6 -2.7
	intermediate crossbeam	53964	2508	500 * 20		20	0	10	-2.7	-1.3	3.6	4.0	4.0	-3.8	-3.7	0.9	-3.0	-3.4	-2.7
	10 intermediate crossbeam	55749 57534	2541 2593	500 * 20 500 * 20		20 20	0	10 10	-2.7 -2.7	-1.3 -1.3	3.6	-4.0 -4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.9	-3.0 -3.0	-3.4 -3.4	-2.7 -2.7
	intermediate crossbeam	59319	2657	500 * 20		20	0	10	-2.7	-1.3	3.6	-4.0	-4.0	-3.8	-3.7	0.9	-3.0	-3.4	-2.8
7	11 intermediate crossbeam	61104 62889	2720 2784	500 * 20 500 * 20		20 20	0	10 10	-2.7 -2.7	-1.3 -1.3	3.6 3.6	-4.0 -4.0	-4.0 -4.0	-3.8 -3.8	-3.7 -3.7	0.9	-3.1 -3.1	-3.4 -3.5	-2.8 -2.8
7	intermediate crossbeam	64672 66020	2865 2939	500 * 20 500 * 20		20 20	0	10 10	-2.6 -2.6	-1.3 -1.3	3.6 3.6	-3.9 -3.9	-3.9 -3.9	-3.7 -3.7	-3.6 -3.6	1.0	-3.0 -3.0	-3.4 -3.4	-2.7 -2.8
		66020	2939	500 * 30		30	0	10	-2.5	-1.4	3.3	-3.9	-3.9	-3.7	-3.6	0.8	-3.1	-3.4	-2.8
	12 intermediate crossbeam	66457 68242	2963 3061	500 * 30 500 * 30		30 30	0	10 10	-2.5 -2.5	-1.4 -1.4	3.4	-3.9 -3.9	-3.9 -3.9	-3.7 -3.7	-3.6 -3.6	0.9	-3.1 -3.1	-3.4 -3.4	-2.8 -2.9
	incincume cross-can	68962 68962	3101 3101	500 * 30 500 * 30	550 * 30	30	0	10	-2.5	-1.4	3.3	-3.9	-3.9	-3.7 -3.8	-3.6	0.8	-3.1	-3.4	-2.9
	13	70027	3159	500 * 30	550 * 30	30 30	30 30	10 10	-2.3 -2.2	-1.7 -1.7	2.8	-4.0 -3.9	-4.0 -3.9	-3.8	-3.8 -3.7	0.5	-3.3	-3.6 -3.5	-3.0 -2.9
	intermediate crossbeam 14	71812 73597	3257 3374	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	10 10	-2.2 -2.2	-1.7 -1.7	2.8 2.8	-3.9 -3.9	-3.9 -3.9	-3.8 -3.8	-3.7 -3.7	0.6	-3.2 -3.2	-3.5 -3.5	-3.0 -3.0
	intermediate crossbeam	75382	3510	500 * 30	550 * 30	30	30	10	-2.1	-1.7	2.7	-3.8	-3.8	-3.7	-3.6	0.6	-3.2	-3.4	-3.0
	intermediate crossbeam 15	77167 78952	3645 3781	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	10 10	-2.1 -2.1	-1.7 -1.7	2.7	-3.8 -3.8	-3.8 -3.8	-3.7 -3.7	-3.6 -3.6	0.6	-3.2 -3.2	-3.4 -3.4	-3.0 -3.0
9	intermediate crossbeam	80737 82520	3917 4071	500 * 30 500 * 30	550 * 30 550 * 30	30	30	10	-2.1	-1.7	2.7	-3.8	-3.8	-3.7	-3.6	0.6	-3.2	-3.5	-3.0
9	intermediate crossbeam 16	82520 84305	4245	500 * 30	550 * 30	30 30	30 30	10 12	-2.0 -2.2	-1.7 -1.6	2.7	-3.7 -3.8	-3.7 -3.8	-3.6 -3.7	-3.5 -3.6	0.7	-3.1	-3.4 -3.5	-3.0 -3.1
	intermediate crossbeam intermediate crossbeam	86090 87875	4419 4592	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	12 12	-2.2 -2.1	-1.6 -1.6	2.8 2.8	-3.8 -3.7	-3.8 -3.7	-3.7 -3.6	-3.6 -3.5	0.6	-3.3 -3.2	-3.5 -3.4	-3.1 -3.1
	17	89660	4766	500 * 30	550 * 30	30	30	12	-2.1	-1.6	2.8	-3.7	-3.7	-3.6	-3.5	0.7	-3.2	-3.4	-3.1
	intermediate crossbeam intermediate crossbeam	91445 93230	4950 5134	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	12 12	-2.1 -2.1	-1.6 -1.6	2.8 2.8	-3.7 -3.7	-3.7 -3.7	-3.6 -3.6	-3.5 -3.6	0.7	-3.2 -3.3	-3.4 -3.4	-3.1 -3.1
	Portal C	95015 96765	5300 5182	500 * 30	550 * 30	30	30 30	12	-2.0	-1.6	2.8 2.8	-3.6	-3.6	-3.5	-3.5	0.8	-3.2	-3.3	-3.0
	intermediate crossbeam intermediate crossbeam	98515	5026	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30	12 12	-2.1 -2.1	-1.6 -1.6	2.8	-3.7 -3.7	-3.7 -3.7	-3.6 -3.6	-3.6 -3.6	0.7	-3.3 -3.2	-3.4 -3.4	-3.1 -3.1
	18	100265	4880 4822	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30 30	12 12	-2.1 -2.1	-1.6 -1.6	2.8	-3.7	-3.7	-3.6 -3.6	-3.5	0.7	-3.2	-3.4 -3.4	-3.1
		100953	4822	500 * 30		30	0	12	-2.3	-1.4	3.3	-3.7	-3.7	-3.6	-3.5	1.0	-3.2	-3.4	-3.0
	intermediate crossbeam intermediate crossbeam	102015 103765	4733 4587	500 * 30 500 * 30		30 30	0	12 10	-2.3 -2.3	-1.4 -1.6	3.3 3.1	-3.7 -3.9	-3.7 -3.9	-3.6 -3.8	-3.5 -3.7	1.0 0.8	-3.2 -3.4	-3.4 -3.6	-3.0 -3.2
12 12	19 intermediate crossbeam	105515	4440 4301	500 * 30 500 * 30		30 30	0	10 10	-2.2 -2.2	-1.5 -1.5	3.1 3.1	-3.7 -3.7	-3.7 -3.7	-3.6 -3.6	-3.5 -3.5	0.9	-3.2 -3.1	-3.4 -3.4	-3.0 -3.0
12	intermediate crossbeam	109013	4182	500 * 30		30	0	10	-2.3	-1.5	3.1	-3.8	-3.8	-3.7	-3.6	0.8	-3.2	-3.5	-3.1
	20	1110763	4063	500 * 30 500 * 30		30 30	0	10	-2.3	-1.5 -1.5	3.2	-3.8	-3.8	-3.7	-3.6	0.9	-3.2	-3.4 -3.4	-3.0 -3.0
		111064	4042	500 * 20		20	0	10	-2.4	-1.4	3.4	-3.8	-3.8	-3.7	-3.6	1.0	-3.2	-3.4	-3.0
	intermediate crossbeam intermediate crossbeam	112513 114263	3943 3823	500 * 20 500 * 20		20 20	0	10 10	-2.4 -2.4	-1.4 -1.4	3.4 3.4	-3.8 -3.8	-3.8 -3.8	-3.7 -3.7	-3.6 -3.6	1.0	-3.2 -3.1	-3.4 -3.4	-3.0 -2.9
	21 intermediate crossbeam	116013	3725	500 * 20 500 * 20		20	0	10	-2.4 -2.5	-1.4	3.4	-3.8	-3.8	-3.7	-3.6	1.0	-3.1	-3.4	-2.9
	intermediate crossbeam intermediate crossbeam 22	119513	3631 3538	500 + 20 500 + 20 500 + 20		20 20	0	10 10	-2.5 -2.5	-1.4 -1.4	3.4 3.5	-3.9 -3.9	-3.9 -3.9	-3.8 -3.7	-3.7 -3.7	0.9 1.0	-3.2 -3.2	-3.5 -3.5	-3.0 -3.0
14 14	22 intermediate crossbeam	121263 123006	3444 3358	500 * 20 500 * 20		20 20	0	10 10	-2.5 -2.5	-1.4 -1.3	3.5 3.5	-3.9 -3.8	-3.9 -3.8	-3.7 -3.6	-3.7 -3.6	1.0	-3.2 -3.1	-3.5 -3.4	-2.9 -2.8
		123357	3345	500 * 20		20	0	10	-2.5	-1.3	3.5	-3.8	-3.8	-3.6	-3.6	1.0	-3.1	-3.4	-2.8
		123357 124584	3345 3298	500 * 30 500 * 30		30 30	0	10 10	-2.4 -2.4	-1.4 -1.4	3.3 3.3	-3.8 -3.8	-3.8 -3.8	-3.6 -3.6	-3.6 -3.6	0.9	-3.1 -3.1	-3.4 -3.4	-2.8 -2.8
	intermediate crossbeam	124584 124756	3298 3291	500 + 30 500 + 30	530 * 10 530 * 10	30 30	10 10	10	-2.3 -2.3	-1.5 -1.5	3.1	-3.8 -3.8	-3.8 -3.8	-3.6 -3.6	-3.6 -3.6	0.8	-3.1	-3.4 -3.4	-2.9 -2.9
	23	126506	3224	500 * 30	530 * 10	30	10	10	-2.4	-1.5	3.1	-3.9	-3.9	-3.7	-3.7	0.7	-3.2	-3.5	-2.9
	intermediate crossbeam intermediate crossbeam		3157 3090	500 * 30 500 * 30	530 * 10 530 * 10	30 30	10 10	10 10	-2.4	-1.5 -1.5	3.1	-3.9 -3.9	-3.9 -3.9	-3.7 -3.7	-3.7 -3.7	0.7	-3.2 -3.1	-3.5 -3.4	-2.9 -2.9
		130284	3081	500 * 30	530 * 10 550 * 30	30	10	10	-2.4	-1.5	3.1	-3.9	-3.9	-3.7	-3.7	0.7	-3.1	-3.4	-2.9
	24	130284 131756	3081 3034	500 * 30 500 * 30	550 * 30	30 30	30 30	10 12	-2.2 -2.4	-1.7 -1.6	2.8 3.0	-3.9 -4.0	-3.9 -4.0	-3.7 -3.8	-3.7 -3.7	0.6	-3.2 -3.2	-3.5 -3.5	-2.9 -3.0
	intermediate crossbeam intermediate crossbeam	133506	2995 2955	500 * 30 500 * 30	550 * 30 550 * 30	30 30	30	12	-2.4	-1.6	3.0	4.0	4.0 4.0	-3.8	-3.7	0.6	-3.2	-3.5	-3.0
	intermediate crossbeam	135256	2955	500 * 30	550 * 30	30	30	12	-2.4	-1.6	5.0	-4.0	4.0	-3.8	-3.7	0.6	-3.2	-3.5	-3.0

		137006	2916	500 * 30	550 * 30	30	30	12	-2.4	-1.6	3.0	-4.0	-4.0	-3.8	-3.7	0.6	-3.2	-3.5	-2.9
	intermediate crossbeam	138756	2876	500 * 30	550 * 30	30	30	12	-2.4	-1.6	3.0	-4.0	-4.0	-3.8	-3.7	0.6	-3.2	-3.5	-2.9
	intermediate crossbeam	140526	2851	500 * 30	550 * 30	30	30	12	-2.4	-1.6	3.0	-4.0	4.0	-3.8	-3.7	0.6	-3.2	-3.5	-2.9
	26	142276	2838	500 * 30	550 * 30	30	30	12	-2.4	-1.6	3.0	4.0	4.0	-3.8	-3.7	0.6	-3.2	-3.5	-2.9
	intermediate crossbeam	144026	2825	500 * 30	550 * 30	30	30	12	-2.4	-1.6	3.0	-4.0	4.0	-3.8	-3.7	0.6	-3.2	-3.5	-2.9
	intermediate crossbeam	145776	2813	500 * 30	550 * 30	30	30	12	-2.4	-1.6	3.0	4.0	-4.0	-3.8	-3.7	0.6	-3.2	-3.5	-2.9
17	27	147526	2800	500 * 30	550 * 30	30	30	12	-2.4	-1.6	3.0	4.0	4.0	-3.8	-3.7	0.6	-3.2	-3.5	-2.9

Determination of temperat Project name:	ture load on bridge deck Ussel Bridge		Date:		5/25/2018						
Project number:	BF7387		Name:		Ernst Klar						
Description:	Temperature load Main bridge		Version		v1.0						
Vertical temperature comm	onent with non-linear effects										
For the purpose of the input,	, the vertical temperature component has bee	n divided into	a number	of areas	with (almo	st) the same	temperature k	oad.			
The relevant imports are sun In addition, the combination	nmarized below, as entered in SCIA (BG 100 s of the uniform and vertical temperature con	02 and BG 10 riponent are a	03) ilso shown	(BG 100	4-1007)						
	BG1002 - Sum										
					Upstairs				Undervide	Underside	Underride
					silk l	Underside	Underside	Underside	head lying	transverse l	e Enddr ansverseTop edge
	Plate 1 500 * 30	Plate 2	from Portal A	until 2	deck 13.2	deck 13.1	strip 8x100 12.5	bulb 12.1	-2.2	there 9.9	interdental benefital
	500 * 30 500 * 30	350 * 30	2 7	7	13.1	13.0	12.4	12.1	-1.8	10.0	
	500 * 20		7		13.2 12.9	13.1	12.5	12.1	-2.6	9.9	
	500 * 30 500 * 30	550 * 30	12 13 16			12.9 12.5					
	500 * 30 500 * 30	550 * 30	16 18	18 20	12.5 12.1 12.3	12.1 12.3					
	500 * 20 500 * 30		20	22 + 1	12.6 12.7	12.5 12.7	12.1 12.2	11.9 11.9			
	500 * 30	530 * 10	22 + 2	24	12.8	12.7	12.2	12.0	-2.2	10.3	
	500 * 30	550 * 30	24 +1 is on	27 e crossb	13.0 eam after ti	13.0 he relevant a	12.5 xle	12.2	-1.7	10.4	
	BG1003 - Vert	ical tempera	ture comp	onent w	inter						
					Upstairs silk U	Underside	Underside	Underside	head lying		e Emd dransverseTop edge
	Plate 1 500 * 30		from Portal A		-4.0	-4.0	strip 8x100 -3.8	-3.7			-3.4
	500 * 30 500 * 30	350 * 30	2 7	7	-4.0 -4.0	-4.0 -4.0	-3.8	-3.7 -3.7			
	500 * 20 500 * 30		7	12	-4.0 -3.9	-4.0	-3.8		0.9	-3.0	
	500 * 30	550 * 30 550 * 30	13	16	-3.8	-3.8	-3.7	-3.6	0.6	-3.2	
	500 * 30 500 * 30	550 * 30	18	18 20	-3.7 -3.8	-3.7 -3.8	-3.6	-3.6	0.9	-3.2	
	500 * 20 500 * 30		20 22 + 1	22 + 1 22 + 2	-3.8 -3.8	-3.8 -3.8					
	500 * 30 500 * 30	530 * 10 550 * 30	22 + 2 24	24	-3.9 -4.0	-3.9 -4.0	-3.7	-3.6	0.7	-3.1	
			+1 is on	e crossb	eam after ti	he relevant a	xle				
	BG1005 - Tem	perature con	nbination	1 - sumr	uer Upstairs		+TM + ωN Δ	TN esN		NTN = Underside	35
					silk l	Underside	Underside	Underside			elimderansverseTop edge
	Plate 1 500 * 30		from Portal A	2	25.5	25.4		24.4		22.2	
	500 * 30 500 * 30	350 * 30	7	7	25.4 25.5	25.3 25.4	24.8	24.4	10.1	22.2	
	500 * 20 500 * 30		7	12	25.4 25.2	25.4 25.2		24.4 24.4	9.5 9.8	22.2	
	500 * 30 500 * 30	550 * 30 550 * 30	13	16	24.8 24.4	24.8	24.4	24.1	10.4	22.7	
	500 * 30	550 * 30	18	20	24.6	24.4 24.6	24.2	24.0	9.4	22.9	
	500 * 20 500 * 30		20 22 + 1	22 + 1 22 + 2	24.9 25.0	24.8 24.9	24.4 24.5			22.6	
	500 * 30 500 * 30	530 * 10 550 * 30	22 + 2 24	24	25.0 25.3	25.0 25.3	24.5	24.3 24.5	10.1	22.6	
			+1 is on	e crossb	eam after ti	he relevant a	xle				
	BG1006 - Tem	perature con	nbination	1 - winte	Upstairs		+TM + ωN Δ	TN esN		NTN = Underside	-36 Underside
	Plate 1	Plate 2	from		silk l	Underside	Underside	Underside	head lying		oeländstransverseTop edgi interdental bipushtal
	500 * 30		Portal A	2	-16.6	-16.6	strip 8x100 -16.4	-16.3		-15.6	-16.0 -1
	500 * 30 500 * 30	350 * 30	7	7	-16.6 -16.6	-16.6 -16.6	-16.4	-16.3	-11.8		
	500 * 20 500 * 30		7	12 13	-16.6 -16.5	-16.6 -16.5	-16.4 -16.3		-11.7 -11.8		
	500 + 30 500 + 30	550 * 30 550 * 30	13	16 18	-16.4 -16.3	-16.4 -16.3	-16.3	-16.2	-12.0	-15.8	
	500 * 30	330 - 30	18	20	-16.4	-16.4	-16.3	-16.2	-11.7	-15.8	
	500 * 20 500 * 30		20 22 + 1	22 + 2	-16.4 -16.4	-16.4 -16.4	-16.3	-16.2	-11.7	-15.7	
	500 * 30 500 * 30	530 * 10 550 * 30	22 + 2 24	27	-16.6	-16.5 -16.6	-16.4	-16.2 -16.3	-11.9 -12.0		
			+1 is on			he relevant a	xle ωM ΔTM + /		= 0.75	NTN =	
	BG1007 - Tem	perature con	ntination :	z - sumr	Upstairs				Underside	Underside	35 Underside
	Plate 1	Plate 2	from	until	silk U deck	Underside deck	Underside strip 8x100	Underside bulb	head lying	transverse l	elimderansverseTop edge interdental bepusital
	500 * 30 500 * 30		Portal A	2 7	45.0 44.9	45.0 44.9	44.5	44.2	33.5	42.5	43.5
	500 * 30		7	7	45.0	45.0	44.5	44.2	33.5	42.5	
	500 * 20 500 * 30		7 12	1.5	45.0 44.8	44.9 44.8	44.4	44.2	33.2	42.8	
	500 * 30 500 * 30	550 * 30 550 * 30	13 16	16 18	44.5 44.2	44.5 44.2	44.0	43.8	33.5	43.1	
	500 * 30 500 * 20		18 20	20 22 + 1	44.3 44.5	44.3 44.5	44.1 44.2	43.9 44.0			
	500 * 30 500 * 30	530 * 10	22 + 1	22 + 2	44.6	44.6 44.6	44.3	44.1 44.1	33.2	42.9	
	500 * 30	550 * 30	24	27	44.9	44.6 44.8 he relevant a	44.5	44.1			
	BG1008 - Tem	perature con					ωΜ ΔΤΜ + Δ	ΔTN αιΜ	= 0.75	NTN =	-36
						Underside	Underside	Underside		Underside transverse l	elimderansverseTop edge
	Plate 1 500 * 30	Plate 2	from Portal A	until 2	deck	deck	strip 8x100	bulb -38.8	r	there	interdental bposital
	500 * 30	350 * 30	2	7	-39.0	-39.0 -39.0	-38.9		-35.6	-38.3	
	500 * 30 500 * 20		7	7 12	-39.0 -39.1 -38.9	-39.0	-38.9 -38.9	-38.8	-35.4	-38.3	
	500 * 30 500 * 30	550 * 30	13	16	.28.0	-38.9 -38.9		-38.7	-35.6	-38.4	
	500 * 30 500 * 30	550 * 30	16 18	18 20	-38.8 -38.8	-38.8 -38.8	-38.7	-38.7	-35.5	-38.5	-3
	500 * 30 500 * 20 500 * 30		20	22 + 1	-38.9 -38.9	-38.9 -38.9	-38.8 -38.8		-35.3	-38.4	
	500 * 30	530 * 10	22 + 2	24	-38.9	-38.9	-38.8	-38.7	-35.5	-38.4	
	500 * 30	550 * 30	24	27	-39.0	-39.0	-38.9	-38.8	-35.6	-38.4	

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Main beam 500x20 (deck = 10 mm)
 Version:
 v1.0

Temperature load over the height

Temperature component

Temperature difference (Δ T)

(a) Global warming	(b) Cooling
--------------------	-------------

 Vertical temperature
 0 2 4 6 8 10 12 14 16
 -7 -6 -5 -4 -3 -2 -1 0

 component
 15 0
 6 0

Component 0 15.0 -6.0 0.0 0100 AT 500 0.0

2400 0.0 0.0 2400

 $\Delta T1a := 15 \text{gr}$ $\Delta T1b := -\text{gr}$ $\Delta T1b := -\text{gr}$ $\Delta T1b := -\text{gr}$ $\Delta T1b := 100 \text{mm}$ $\Delta T1b := 100 \text{mm}$ $\Delta T1b := -\text{gr}$ $\Delta T1b := -\text{gr}$

3973

3943

Geometric cross-section properties

Cover plate thickness $tdek \ \ ^{:=} 10mm$ Cover plate width $bdek \ \ ^{:=} 4630mm$

Number of bulbs nbulb := 13 Surface bulbs Abulb := 1712mm 2 Height bulbs hbulb := 160mm

 $\label{eq:width bulbs} \text{Width bulbs} \hspace{20mm} := \frac{\text{Abulb}}{\text{blub}} \hspace{20mm} = \hspace{20mm} 10.7 \hspace{20mm} \text{mm}$

Center of gravity bulb from the top zbulb := 98.3mm The calculation is performed for the following heights

 $Stiffening \ strip \ height \\ hstrip \ \ := 100mm$

Stiffening strip thickness = 8mmtstrip Height bottom deck -Total height including deck and bottom plate bottom bottom flange DIN Top flange thickness tfb := 20mm $_{\hbox{\scriptsize hhl}}$:= 2430 2400 Top flange width bfb := 300mm 2436 2406 tfo := 20mm Bottom flange thickness 2446 2416 Bottom flange width bfo := 300mm 2473 2443 tpo1 := 20mm Plate flange thickness 2506 2476 := 500mm Bottom flange width 2538 2508 2571 Plate flange thickness tpo2 = 0mm 2541 2623 Bottom flange width bpo2 := 0mm2593 h = 2687 2657 2720 2750 Body thickness adv := 12mm2814 2784 Body height hwh() := h fdek- tfb - tfo ... 2895 2865 + - tpo1 tpo2 2969 2939 4072 4042

 $< z \le tdekhstrip$

Page 72

Function width over the height

bxh, := bdek if z tdek

bwnbulbtbulb.

bfbn \dot{b} ulbtbulb \dot{b} + tstrip if tdekz \dot{b} \dot{b} tdektf \dot{b}

+ tstrip if tdektfb

https://translate.googleusercontent.com/translate_f

0 otherwise $\begin{array}{l} A\ h\ ()\ :=\ \displaystyle\int\limits_0^h\ bz(h,\quad dz \\ \\ zbh\ ()\ :=\ \displaystyle\frac{1}{A\ h\ ()} \left(\int\limits_0^h\ bz(h,z\cdot \quad dz\right) \end{array}$ Surface Neutral axis

 $zoh() := h \bar{z}bh()$

 $Ih() := \int_{0}^{h} b db z \, z b h \left(- \right) \, dz$ Resistance moment

A (() =	zbl() =	zol(i) =	I ('') =
119357 · mm ²	625 mm	1805 · mm	100641864842 · mm 4
119695	628	1808	101289006788
119969	632	1814	102250086037
120254	641	1832	104636370948
120583	652	1854	107892732478
120938	663	1875	111000535431
121447	673	1898	114483877526
121974	690	1933	119902738169
122465	713	1974	126609624264
123498	730	2020	132891868709
124254	750	2064	140726283002
125 170	778	2117	150162905869
126398	799	2170	159147054521
139306	1182	2890	330480619681
138312	1146	2827	312136334635

Page 73

Temperature components Summer $\Delta TN.ah()$:= $\frac{1}{Ah()} \int_{0}^{h} \Delta T laz() b\dot{z}h,()$ dz $\Delta TN.bh\ () \qquad := \ \ \, \frac{1}{A\ h\ ()} \int\limits_0^h \ \, \Delta T1bz\ ()\ b\dot{z}h,() \qquad dz$ Average temperature $\Delta TN.heatz h()$:= $\Delta TN.ah ()$ $\Delta TN.coolz h() := \Delta TN.bh ()$ $\Delta TN.cool0m(m~h~i~~,~~)~=$ $\Delta TN.heat1mm h i$,) = 2400 9.2 -2.8 2406 9.2 -2.8 2416 9.2 -2.8 2443 9.1 -2.7 2476 9.1 -2.7 2508 9.1 -2.7 -2.7

hhl =	2593	·mm	9	-2.7	7
11111	2657	111111	9	-2.:	7
	2720		8.9	-2.:	7
	2784		8.8	-2.1	7
	2865		8.8	-2.6	5
	2939		8.7	-2.0	5
	4042		7.9	-2.4	4
	3943		7.9	-2.4	4

Linear temperature component			Summer		Winter					
		ΔTM.ah ()			$\int_{0}^{h} dz \qquad \Delta TM.bh() \qquad := -\frac{h}{1 h()} \int_{0}^{h} \Delta T1bz() b\dot{z}h() \qquad \cdot (z \vec{z}bh())$) _{dz}				
		ΔTM.he	$\operatorname{atz} h() \qquad := \frac{-\left(z \bar{z} b\right)}{z \bar{z} b}$	h	$\Delta TM.coolz h()$:= $-\left(z \ \bar{z}bh \ ()\right) \Delta TM.bh \ ()$					
			$\Delta TM.ah i$ =		$\Delta TM.bh$ i() =					
	2400		15.7 gr		-4.9 · gr					
	2406		15.7		-4.9					
	2416		15.7		-4.9					
	2443		15.8		-4.9					
	2476		15.8		-4.9					
	2508		15.8		-4.9					
	2541		15.8		-4.9					
hhl =	2593		15.8		-4.9					
nnı	2657	mm	15.9		-4.9					
	2720		15.8		-4.9					
	2784		15.7		-4.9					
	2865		15.8		-4.9					
	2939		15.7		-4.9					
	4042		15.5		-4.8					

-4.8

3943 15.6

			Top tem	perature		Bottom temperature				
			Summer	Winter		Summer	Winter			
			ΔTM.hea	t_{0} th h_{i} , $\Delta TM.cool0$	mm l(i ,) =	ΔTM.heath i 🕻 i	,) = $\Delta TM.coolh i h i (,) =$			
	2400		4	· gr -1.3	gr	-11.7 g	r 3.6 gr			
	2406		4.1	-1.3		-11.7	3.6			
	2416		4.1	-1.3		-11.7	3.6			
	2443		4.1	-1.3		-11.7	3.6			
	2476		4.1	-1.3		-11.7	3.6			
	2508		4.1	-1.3		-11.7	3.6			
	2541		4.1	-1.3		-11.6	3.6			
hhl =	2593	·mm	4.1	-1.3		-11.6	3.6			
	2657	111111	4.2	-1.3		-11.6	3.6			
	2720		4.2	-1.3		-11.6	3.6			
	2784		4.2	-1.3		-11.5	3.6			
	2865		4.2	-1.3		-11.5	3.6			
	2939		4.2	-1.3		-11.5	3.6			
	4042		4.5	-1.4		-11	3.4			
	3943		4.5	-1.4		-11.1	3.4			

Page 75

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/24/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Main beam 500x20 (deck = 10 mm)
 Version:
 v1.0

Temperature load over the height				
1emperature toda over the neight		TD	1:00 (A 7E)	
Temperature component	(a) Clobe	Temperature	difference (Δ T) (b) Cooling	
Vertical temperature	` `	<u> </u>	.,	
component	0 2 4 6 8 10 12	2 14 16	-7 -6 -5 -4 -3 -2 -1 0	0100
ΔΤ	0 500 0.0	13.0	-6.0	0.0 0100
	2400 0.0			0.0 2400
	$\Delta T1a := 15gr$	h1a := 500mm	$\Delta T 1 b := - \mathcal{E} $ $\Delta T 1 b z () := \min \Delta T 1 b$	h1b := 100mm
	$\Delta T 1 az () := \max_{T} \Delta T 1$	a - ^Z ·∆T1a ·0gr h1a	$\Delta T_{1bz}() := \min \Delta T_{1b}$	- ΔT1b · 0gr
Geometric cross-section properties				
Cover plate thickness	tdek := 10mm			
Cover plate width	bdek := 4630mm			
Number of bulbs	nbulb := 13			
Surface bulbs	Abulb := 1712 mm ²			
Height bulbs	hbulb := 160mm			
Width bulbs	tbulb := Abulb = 10.7 inm			
Center of gravity bulb from the top	zbulb := 98.3mm	The calculation is perfo	ormed for the following heights	

Height bottom deck -

bottom bottom flange DIN

Total height including deck

and bottom plate

https://translate.googleusercontent.com/translate_f

 $\begin{array}{ll} hstrip & := 100mm \\ \\ tstrip & := 8mm \end{array}$

Stiffening strip height

Stiffening strip thickness

```
Top flange thickness
                                                                             hhl :=
                                     tfb := 20mm
                                                                                                                              3853
                                                                                                 3823
                                     bfb := 300mm
Top flange width
                                                                                                                              3755
                                                                                                 3725
Bottom flange thickness
                                     _{tfo} := _{20mm}
                                                                                                 3631
                                                                                                                              3661
                                     bfo := 300mm
Bottom flange width
                                                                                                                              3568
                                                                                                 3538
Plate flange thickness
                                     _{tpo1} \ := {}_{20mm}
                                                                                                                              3474
                                                                                                 3444
Bottom flange width
                                     bpo1 := 500mm
                                                                                                                              3388
                                                                                                 3358
                                                                                                                              3375
Plate flange thickness
                                     tpo2 := 0mm
                                                                                                 3345
Bottom flange width
                                     bpo2 := 0mm
                                                                                                                   _{h}\,=\,
                                                                                                                                        mm
```

Body thickness adv := 12mm

Body height hwh() := h fdek- tfb - tfo ···

+ - tpo1 - tpo2

Page 76

Function width over the height

:= bdek if z tdek

 $bfbn\overline{b}ulbtbulb$ $^+$ tstrip if tdekz $^<$ \le tdektfb

< z ≤ tdekhstrip bwnbulbtbulb + tstrip if tdektfb

if tdekhstrip $< z \le tdekhbulb$ bwnbulbtbulb

adv if tdekhbulb $< z \le tdektfb^{+}$ + hwh ()

 $+ \text{hwh}() < z \leq \text{tdektfb}^+$ + hwh () + tfo bfo if tdektfb

 $+ \text{ hwh ()} + \text{ tfo } < z \le \text{ h tpo } 2$ bpo1 if tdektfb

 $< z \le h$ bpo2 if h tpo2

0 otherwise

Surface

 $A h () := \begin{cases} h \\ b \neq h, & dz \end{cases}$ $zbh () := \begin{cases} 1 \\ A h () \end{cases} \begin{pmatrix} h \\ 0 & b \neq h, z \end{cases} \cdot dz$

Resistance moment

Neutral axis

$$zoh() := h \bar{z}bh()$$

$$Ih() := \int_0^h bz dbz \, zbh() - \qquad) \, 2dz$$

		zolki) =	I (b) =
. _{mm} ²	1106 'mm	2747 · mm	290802869182 · mm ⁴
	1070	2685	273703572618
	1036	2625	258133254996
	1003	2565	243140375778
	973	2501	228596487340
	942	2446	215734086520
	934	2441	213990303459
	. _{mm} ²	106 mm 1070 1036 1003 973 942	1106 mm 2747 mm 1070 2685 1036 2625 1003 2565 973 2501 942 2446

Temperature components Summer Average temperature $\Delta TN.heatz h() := \Delta TN.ah ()$ $\Delta TN.heat1mm(n h i ,) =$ 0 8 gr 3823 8.1 3725 8.2 3631 8.2 3538 8.3 3444 8.4 3358 3345 $_{\mathrm{hhl}} =$ \cdot_{mm} 8 10 11 12 13 14 15

 $\Delta T N. ah () = \frac{1}{A h ()} \int_{0}^{h} \Delta T 1 az () b \dot{z} h, () \qquad dz \qquad \qquad \Delta T N. bh () = \frac{1}{A h ()} \int_{0}^{h} \Delta T 1 bz () b \dot{z} h, () \qquad dz$ Δ TN.coolz h() := Δ TN.bh () $\Delta TN.cool0m(n h i ,) =$ -2.4 gr -2.4 -2.5 -2.5 -2.5 -2.5 -2.5

Linear temperature comp	onent Summer	Winter
ΔΊ	0	$bh()$ dz $\Delta TM.bh()$:= - h $h()$ $\Delta T1bz()bzh()$ · $(z zbh())$ dz
	$\Delta TM.heatz \ h() \qquad := \begin{array}{c} -\left(z \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	$\Delta TM.ah i$ =	$\Delta TM.bh i$ =
3823	15.6 · gr	-4.8 gr
3725	15.6	-4.8
3631	15.6	-4.8
3538	15.6	-4.8
3444	15.7	-4.8
3358	15.7	-4.8
3345	15.6	-4.8
hhl = ·mn		

	Top temperature	Bottom temperatu	re	
	Summer	Winter	Summer	Winter
	ΔTM.heat0mm h i	$,) = \Delta TM.cool0mm I(i \qquad ,)$	Δ TM.heath i $\int_{\mathbf{n}}$ i	$= \Delta TM.coolh i h i (,) =$
3823	4.5 gr	-1.4 gr	-11.1 gr	3.4 gr
3725	4.4	-1.4	-11.2	3.4
3631	4.4	-1.4	-11.2	3.4
3538	4.4	-1.4	-11.2	3.5
3444	4.4	-1.4	-11.3	3.5
3358	4.4	-1.3	-11.3	3.5
3345	4.3	-1.3	-11.3	3.5
hhl = ·m	m			

Page 79

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Main beam 500x30 (deck = 10 mm) h = 2400 mm Version:
 v1.0

Temperature load over the height

Temperature component

Temperature difference (Δ T) (a) Global warming

(b) Cooling

Vertical temperature component

0 2 4 6 8 10 12 14 16 0

-7 -6 -5 -4 -3 -2 -1 0 15.0 -6.0

 ΔT 500 0.0

0100 0.0

2400

2400 0.0

0.0

Geometric cross-section properties

Cover plate thickness tdek = 10 mmCover plate width bdek := 4630mm

Number of bulbs nbulb := 13 $Abulb := {}_{1712mm} \quad ^2$ Surface bulbs Height bulbs hbulb := 160mm Abulb = 10.7 inm Width bulbs hbulb

Center of gravity bulb from the top zbulb := 98.3mm

Stiffening strip height hstrip := 100mm Stiffening strip thickness tstrip := 8mm

Top flange thickness tfb := 20mm Top flange width bfb := 300mmtfo := 20mm Bottom flange thickness Bottom flange width bfo := 300mm tpo1 := 30mm Plate flange thickness Bottom flange width bpo1 := 500mm Plate flange thickness $_{tpo2}\ :={_{0mm}}$ Bottom flange width bpo2 := 0mm

 $+ _{tpo2} + _{tdek} = _{2440 \text{ imm}}$ Height (including cover plate) $h := 2400 \text{mm tpol}^+$

adv := 12mm Body thickness

Body height hw := h tdek - tfb - tfo - tpo1 - tpo2 = 2360 mm

Page 80

Function width over the height bz() := bdek if z t dek

> bfbnbulbtbulb + tstrip if tdekz < ≤ tdektfb

> > bwnbulbtbulb if tdektfb < z ≤ tdekhstrip

 $< z \le tdekhbulb$ bwnbulbtbulbif tdekhstrip

adv if tdekhbulb < z ≤ tdektfb + hw

+ hw < $z \le tdektfb$ + hw + tfo bfo if tdektfb

+ hw + tfo < z \leq h tpo2 bpo1 if tdektfb

 $< z \le h$ bpo2 if h tpo2

0 otherwise

$$a := \int_{0}^{h} bz() dz = 124903 \text{ mm}^{2}$$

$$zb := \frac{1}{a} \left(\int_{0}^{h} bz() z \cdot dz \right) = 700 \text{ mm}$$

Neutral axis

so
$$:= \frac{1740 \text{ mm}}{1}$$

$$I := \int_{0}^{h} bz()\dot{z}(b^{2}) dz = 1.161\% \quad ^{11} \cdot_{mm}^{4}$$

Page 81

$$\Delta TN.a$$
 := $\frac{1}{a} \int_{0}^{h} \Delta T laz() b\dot{z}()$ $dz = 8.8 \ \dot{g}r$

$$\Delta TN.a := \frac{1}{a} \int_{0}^{h} \Delta T \log () \operatorname{b}\dot{z} () \quad dz = 8.8 \, \dot{g}r \qquad \qquad \Delta TN.b := \frac{1}{a} \int_{0}^{h} \Delta T \log () \operatorname{b}\dot{z} () \quad dz = -2.6 \cdot gr$$

 $\Delta TN.heatz()$:= $\Delta TN.a$

$$\Delta TN.coolz()$$
 := $\Delta TN.b$

0

Linear temp. comp. ΔTM.a

$$0 \quad 2 \quad 4 \quad 6 \quad 8 \qquad \qquad 3 \quad 2 \quad 1 \\ \Delta T N \cdot \text{heat z ()} \qquad \qquad \Delta T N \cdot \text{cool z ()}$$

$$:= - \frac{h}{I} \int_{0}^{h} \Delta T \cdot 1 \text{az ()} \, \text{bż ()} \quad \cdot \left(z \, \bar{z} \text{b} \right) \, \text{d}z = 15.4 \, \text{gr} \quad \Delta T M \cdot \text{b} \quad := - \frac{h}{I} \int_{0}^{h} \Delta T \cdot 1 \text{bz ()} \, \text{bż ()} \quad \cdot \left(z \, \bar{z} \text{b} \right) \, \text{d}z = -4.8 \, \text{gr}$$

$$\Delta T M \cdot \text{heatz ()} \qquad := - \left(z \, \bar{z} \text{b} \right) \, \Delta T M \cdot \text{b}$$

$$\Delta T M \cdot \text{coolz ()} \qquad := - \left(z \, \bar{z} \text{b} \right) \, \Delta T M \cdot \text{b}$$

Input data in SCIA Engineer

underside bulb
$$\Delta T$$
input.atdekhbulb $^+$ $)$ ± 2.1 gr $^{\circ}$ ΔT input.btdekhbulb $^+$ $)$ ± 3.7 $^{\circ}$ gr bottom side of main beam ΔT input.ah () = -2.2 $^{\circ}$ gr ΔT input.bh () 0.8 \overline{g} r $^{\circ}$ crossbeam ΔT input.a51 \overline{g} mm tdek $^+$ $)$ 9.9 gr ΔT input.b51 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mm tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $)$ ± 0.0 gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$ $\rightarrow 0.0$ gr ΔT input.b50 \overline{g} mr tdek $^+$

Determination of temperature load on bridge deck

5/25/2018 IJssel Bridge Project name: Date: BF7387 Ernst Klamer Project number: Name: Main beam 500x30 (deck = 10 mm) Description: Version: v1.0

Temperature load over the height

Temperature component	(a) Global v
Vertical temperature	0 2 4 6 8 10 12 1

warming (b) Cooling 14 16 -7 -6 -5 -4 -3 -2 -1 0

Temperature difference (Δ T)

component 0 15.0 -6.0 0100 0.0 ΔT 500 0.0

> 2400 0.0 2400 0.0

$$\Delta T1a := 15 \text{gr}$$

$$\Delta T1b := -\text{gr}$$

$$\Delta T1b := -\text{gr}$$

$$\Delta T1b := -\text{gr}$$

$$\Delta T1b := 100 \text{mm}$$

$$\Delta T1b := 100 \text{mm}$$

$$\Delta T1b := \frac{z}{h1b} \cdot \frac{z}{h1$$

Geometric cross-section properties

tdek := 10mm Cover plate thickness bdek := 4630mm Cover plate width nbulb := 13 Number of bulbs Surface bulbs Abulb := 1712mm

hbulb := 160mm Height bulbs

Abulb = 10.7 mm Width bulbs thulb hbulb

tstrip

Center of gravity bulb from the top zbulb := 98.3mm The calculation is performed for the following heights

hstrip := 100mm Stiffening strip height Stiffening strip thickness = 8 mm

Height bottom deck -Total height including deck bottom bottom flange DIN and bottom plate tfb := 20mm hhl := Top flange thickness 2440 2400 bfb := 300mm Top flange width 2979 2939 Bottom flange thickness tfo := 20mm 3003 2963 Bottom flange width bfo := 300mm 3101 3061 Plate flange thickness = 30 mm3141 3101 Bottom flange width bpo1 := 500mm 4627 4587 Plate flange thickness 4480 tpo2 := 0mm4440

Bottom flange width	bpo2 := 0mm	4301	h =	4341	·mm
		4182		4222	111111
B 1 111	=	4063		4103	
Body thickness	adv := 12mm	4042		4082	
Body height	hwh () := h fdek - tfb - tfo	3345		3385	
	+ - tpo1 - tpo2	3298		3338	

Function width over the height bth, := bdek if z tdek

bfbnbulbtbulb' + tstrip if tdek
$$z$$
 \leq tdektfb bwnbulbtbulb' + tstrip if tdektfb $<$ z \leq tdekhsbrightpulbtbulb'

adv if tdekhbulb

bfo if
$$tdektfb$$
 + $hwh()$ < $z \le tdektfb$ + $hwh()$ + tfo

bpo1 if tdektfb
$$^+$$
 hwh () $^+$ tfo $^<$ z $^{\leq}$ h tpo2

$$bpo2 \quad \text{if} \ \ h \ t\bar{p}o2 \qquad < \ z \leq \ \ h$$

$$\text{Surface} \qquad \qquad \text{A h ()} := \int_0^h b dh, \quad dz$$

$$\text{Neutral axis} \qquad \qquad \text{Subh ()} := \frac{1}{A \text{ h ()}} \left(\int_0^h b dh z \cdot \dots \cdot dz \right)$$

$$zoh() := h \bar{z}bh()$$

$$Ih() := \int_{0}^{h} bx db z zbh \left(- \right) dz$$

A () =	= (j) _{ldz}	zol(i) =	I (b) =	
124903	mm ² 700	·mm 1740	·mm 116251265736	· mm 4
131201	886	2093	181787984803	
131462	892	2111	179421993088	
132591	926	2175	198982442285	
133330	937	2204	204821069172	
146393	1534	3093	494568725023	
149148	1433	3047	459298048252	
147427	1381	2960	426939298237	
145810	1337	2885	399998774799	
144609	1293	2810	375440532389	
144414	1283	2799	370921354301	
136032	1026	2359	242646112732	
135440	1007	2331	234930368314	

Temperature	components Summer		Winter
Average temp	perature	$\Delta TN.ah~()$:= $\frac{1}{A~h~()}\int_{0}^{h}\Delta T1az~()~b\dot{z}h,()$ dz	$\Delta TN.bh()$:= $\frac{1}{Ah()} \int_{0}^{h} \Delta T1bz() b\dot{z}h,()$ dz
		$\Delta TN.heatz h()$:= $\Delta TN.ah ()$	Δ TN.coolz h() := Δ TN.bh ()
		$\Delta TN.heatlmm h i ,) =$	$\Delta TN.cool0m(n h i ,) =$
	2400	8.8 gr	-2.6 gr
	2939	8.4	-2.5
	2963	8.4	-2.5
	3061	8.3	-2.5
	3101	8.2	-2.5
	4587	7.5	-2.3
	4440	7.4	-2.2
hhl =	4301 . _{mm}	7.4	-2.2
11111	4182	7.5	-2.3
	4063	7.6	-2.3
40	4042	7.6	-2.3
	3345	8.1	-2.4
	3298	8.1	-2.4

Page 86

705 mm 470 mm Edge (h = 500 mm)

		I h () ∫ 0	I h () J 0
		$\Delta TM.heatz h()$:= $-\left(z \vec{z}bh()\right)$	$ \Delta TM.ah () $ $ \Delta TM.coolz h() := -\left(z \vec{z}bh ()\right) \Delta TM.bh () $ $ h $
		$\Delta TM.ah i$ =	$\Delta TM.bh$ i $O =$
	2400	15.4 gr	-4.8 gr
	2939	15.3	-4.7
	2963	15.8	-4.9
	3061	15.3	-4.7
	3101	15.2	-4.7
	4587	15.4	-4.7
	4440	15	-4.6
hhl =	4301	15	-4.6
шп	4182	mm 15.1	-4.6
	4063	15.1	-4.6
	4042	15.1	-4.6
	3345	15.2	-4.7
	3298	15.2	-4.7

			Top ten	perature			Bottom tem	perature		
			Summer		Winter		Summer		Winter	
			ΔTM.hea	nt0mkn h i ,	$= \Delta TM.cool0mm$	II (i ,) =	ΔTM.heath	i (,	$) = \Delta TM.coolh i h i$	(,)=
	2400		4.4	gr	-1.4	gr	-11	gr	3.4 gr	
	2939		4.6		-1.4		-10.8		3.3	
	2963		4.7		-1.4		-11.1		3.4	
	3061		4.6		-1.4		-10.7		3.3	
	3101		4.5		-1.4		-10.7		3.3	
	4587		5.1		-1.6		-10.3		3.1	
	4440		4.8		-1.5		-10.2		3.1	
hhl =	4301	· mm	4.8		-1.5		-10.3		3.1	
IIIII	4182	111111	4.8		-1.5		-10.3		3.2	
	4063		4.8		-1.5		-10.4		3.2	
	4042		4.7		-1.5		-10.4		3.2	
	3345		4.6		-1.4		-10.6		3.3	
	3298		4.6		-1.4		-10.6		3.3	

Page 87

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 main beam 500x30 (deck = 12 mm)
 Version:
 v1.0

Temperature load over the height

Temperature component	Temperature difference (Δ T)				
remperature component	(a) Global warming		(b) Cooling		
Vertical temperature	0 2 4 6 8 10 12 14 16		-7 -6 -5 -4 -3 -2 -1 0		
component ΔT	0	15.0	-6.0	0.0	0100

2400

Total height including deck

4864

4775

mm

and bottom plate

h =

Height bottom deck -

4822

4733

Geometric cross-section properties

Cover plate thickness tdek := 12mm bdek := 4630mm Cover plate width Number of bulbs nbulb := 13 Abulb := 1712mm Surface bulbs hbulb := 160mm Height bulbs Abulb

= 10.7 inm Width bulbs

Center of gravity bulb from the top The calculation is performed for the following heights zbulb := 98.3mm

Stiffening strip height hstrip := 100mm Stiffening strip thickness tstrip := 8mm

bottom bottom flange DIN tfb := 20mm Top flange thickness hhl := Top flange width bfb := 300mm Bottom flange thickness tfo := 20mm

Bottom flange width bfo := 300mm Plate flange thickness tpo1 := 30mm Bottom flange width bpo1 := 500mmPlate flange thickness tpo2 := 0mm Bottom flange width bpo2 := 0mm

Body thickness adv := 12mm

- tfb - tfo ... Body height hwh () := h tdek

+ - tpo1 - tpo2

Page 88

Function width over the height

:= bdek if z tdek

+ tstrip if tdekz < ≤ tdektfb bfbnbulbtbulb

< z ≤ tdekhstrip bwnbulbtbulb' + tstrip if tdektfb

 $< z \le tdekh bulb$ if tdekhstrip bwnbulbtbulb

 $< z \le tdektfb$ + hwh () adv if tdekhbulb

 $hwh() < z \le tdektfb^{\dagger}$ ⁺ hwh () ⁺ tfo if tdektfb

bpol if tdektfb $+ hwh() + tfo < z \le h tpo2$

 $< z \le h$ bpo2 if h tpo2

0 otherwise

 $\begin{array}{l} A\ h\ ()\ :=\ \displaystyle\int\limits_0^h\ bz /h, \qquad dz \\ \\ zbh\ ()\ :=\ \displaystyle\frac{1}{A\ h\ ()} \left(\int\limits_0^h\ bz /h, z\cdot \qquad dz\right) \end{array}$ Surface

Neutral axis

 $zoh() := h \bar{z}bh()$

 $Ih() := \int_{0}^{h} bx dy zbh() - 2dz$ Resistance moment

$$AO = 2bO = 2bO = 100 = 100 = 100 = 162915 \text{ 'mm}^2 1492 \text{ 'mm} 3372 \text{ 'mm} 575596363904 \text{ 'mm}^4 161901 1455 3320 551699691150}$$

Temperature components Summer

Average temperature

-2.3 gr

-2.3

$$\Delta TN.bh() := \frac{1}{A h()} \int_{0}^{h} \Delta T1bz() b\dot{z}h,() \qquad dz$$

$$\Delta TN.coolz h() := \Delta TN.bh()$$

$$\Delta TN.cool0mhn h i ,) =$$

$$_{\text{hhl}} = \begin{pmatrix} 4822 \\ 4733 \end{pmatrix}_{\text{mm}}$$

Linear temperature component Summer Winter
$$\Delta TM.ah\ () := -\frac{h}{I\ h\ ()} \int_0^h \Delta T Iaz\ ()\ b\dot{z}h, () \qquad \cdot \left(z\ \bar{z}bh\ () \qquad \right) dz \qquad \Delta TM.bh\ () := -\frac{h}{I\ h\ ()} \int_0^h \Delta T Ibz\ ()\ b\dot{z}h, () \qquad \cdot \left(z\ \bar{z}bh\ () \qquad \right) dz$$

$$\Delta TM.ah\ () = -\frac{h}{I\ h\ ()} \int_0^h \Delta T Ibz\ ()\ b\dot{z}h, () \qquad \cdot \left(z\ \bar{z}bh\ () \qquad \right) dz$$

$$\Delta TM.ah\ () = -\frac{h}{I\ h\ ()} \int_0^h \Delta T Ibz\ ()\ b\dot{z}h, () \qquad \cdot \left(z\ \bar{z}bh\ () \qquad \right) dz$$

$$\Delta TM.coolz\ h() = -\frac{h}{I\ h\ ()} \int_0^h \Delta T Ibz\ ()\ b\dot{z}h, () \qquad \cdot \left(z\ \bar{z}bh\ () \qquad \right) dz$$

$$\Delta TM.bh\ () = -\frac{h}{I\ h\ ()} \int_0^h \Delta T Ibz\ ()\ b\dot{z}h, () \qquad \cdot \left(z\ \bar{z}bh\ () \qquad \right) dz$$

$$\Delta TM.bh\ () = -\frac{h}{I\ h\ ()} \int_0^h \Delta T Ibz\ ()\ b\dot{z}h, () \qquad \cdot \left(z\ \bar{z}bh\ () \qquad \right) dz$$

$$_{hhl} = \begin{pmatrix} 4822 \\ 4733 \end{pmatrix}_{mm}$$

$$_{hhl} = \begin{pmatrix} 4822 \\ 4733 \end{pmatrix}_{mm}$$

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Main beam 500x30 + 350x30 (deck = 10 mm)
 Version:
 v1.0

Temperature load over the height

Vertical temperature

Temperature component

Temperature difference (Δ T)

(a) Global warming (b) Cooling 0 2 4 6 8 10 12 14 16 -7 -6 -5 -4 -3 -2 -1 0

2400 0.0 0.0 2400

Geometric cross-section properties

Cover plate thickness tdek := 10mm Cover plate width bdek := 4630mm

Number of bulbs $\begin{array}{cccc} nbulb & := 13 \\ & Surface \ bulbs & Abulb & := 1712mm \end{array} ^2 \\ Height \ bulbs & hbulb & := 160mm \\ Width \ bulbs & tbulb & := \frac{Abulb}{10.7 \ mm} = 10.7 \ mm \end{array}$

Center of gravity bulb from the top zbulb := 98.3mm

Stiffening strip height hstrip := 100 mmStiffening strip thickness tstrip := 8 mm

 $_{tfb} := _{20mm}$ Top flange thickness Top flange width bfb := 300mm Bottom flange thickness tfo := 20mmBottom flange width $_{bfo}$:= $_{300mm}$ Plate flange thickness tpo1 := 30mm Bottom flange width bpo1 := 500mm Plate flange thickness tpo2 := 30mm Bottom flange width bpo2 := 350mm

 $\mbox{Height (including cover plate)} \qquad \qquad \mbox{h := 2400mm tp$$$$$$$$$$$$$$^+$ tpo2 $^+$ tdek $^-$ 2470 mm$}$

Body thickness adv := 12mm

Body height hw := h tdek - tfb - tfo - tpo1 - tpo2 = 2360 mm

Function width over the height bz () := bdek if z tdek bfbntbulb' + tstrip if tdekz <
$$\leq$$
 tdektfb bfbntbulbtbulb' + tstrip if tdektfb < $z \leq$ tdektfbntbulb' if tdektfb < $z \leq$ tdekhtbulb adv if tdektfbulb < $z \leq$ tdektfb + hw bfo if tdektfb + hw < $z \leq$ tdektfb + hw + tfo bpol if tdektfb + hw + tfo < $z \leq$ h tpol otherwise

Surface

$$a := \int_{0}^{h} bz() dz = {}_{135454 \text{ mm}}^{2}$$

$$zb := \frac{1}{a} \left(\int_{0}^{h} bz() z \cdot dz \right) = {}_{835 \text{ mm}}^{2}$$

Neutral axis

so
$$:= h \bar{z}b = 1635 \text{ mm}$$

Resistance moment

$$I := \int_{0}^{h} bz()\dot{z}(b^{2}) dz = 1.46 \text{ l}\dot{0}$$
 11 ·mm 4

Page 93

Temperature components

 $\Delta TN.a := 1 \begin{cases} h \\ \Delta T1az() b\dot{z}() & dz = 8.1 \ \dot{gr} \end{cases} \qquad \Delta TN.b := 1 \begin{cases} h \\ \Delta T1bz() b\dot{z}() & dz = -2.4 \ \dot{gr} \end{cases}$

z 1000 z 1000 mm mm

ΔTE.heat z ()

3 2 1 0 -1 ΔTM.heat z () ΔTM.cool z () Δ TM.cool0mm () = - 1.6 gr Δ TM.heat0mm () 5.0 g \overline{r} Δ TM.heath () = -9.9 gr ΔTM.coolh () 3.0gr $\Delta TE.coolz()$:= $\Delta T1bz()$ - $\Delta TN.coolz()$... $\Delta TN.coolz()$

z 1000

ΔTE.cool z ()

ΔTcool z ()

mm mm - 10 - 5 0 5 - 10 - 5 0 5 10

Page 94

Property temperature

z 1000

 Δ Theatz () := Δ TN.heatz () ... ΔTcoolz () := $\Delta \text{TN.coolz}$ () ... + ΔTM.heatz () ΔTE.heatz () ⁺ ΔTM.coolz () ΔTE.coolz () 0 0 1000 z 1000 mm mm - 10 - 5 0 10 20

ΔTheat z ()

Input data in SCIA Engineer

Page 95

Determination of temperature load on bridge deck

Project name: IJssel Bridge Date: 5/25/2018 BF7387 Ernst Klamer Project number: Name: Main beam 500x30 + 530x10 (deck = 10 mm) v1.0

Temperature load over the height				
Temperature component		Temperature diff	` /	
•	(a) Global warming		(b) Cooling	
Vertical temperature component	0 2 4 6 8 10 12 14 16		-7 -6 -5 -4 -3 -2 -1 0	
ΔT	0 500 0.0	15.0	-6.0	0.0 0100
	2400 0.0			0.0 2400
	$\Delta T1a := 15 \text{gr}$ $\Delta T1az() := \max_{\text{hla}} A _{\text{T1a}} - \frac{z}{\text{hla}}$:= 500mm ΔT1a '0gr	$\Delta T1b$:= - gr $\Delta T1bz()$:= min $\Delta T1b$	$h1b := 100mm$ $- \begin{array}{c} z \\ \Delta T1b \end{array} , 0gr$
Geometric cross-section properties				
	=			

Cover plate thickness tdek := 10mm

bdek := 4630mm Cover plate width nbulb := 13 Number of bulbs Abulb := $_{1712mm}$ ² Surface bulbs hbulb := 160mm Height bulbs $_{tbulb} \; := \; {}^{Abulb}$ = 10.7 imm Width bulbs

Center of gravity bulb from the top zbulb := 98.3mm The calculation is performed for the following heights

hstrip := 100mm Stiffening strip height Stiffening strip thickness tstrip := 8mm

Stiffening strip thickness	tstrip := 8mm	Height bottom deck - bottom bottom flange DIN	Total height including deck and bottom plate
Top flange thickness	tfb := 20mm	hhl :=	3348
Top flange width	bfb := 300mm	3298	3346
Top Hange width	bib · 300mm	3291	3341
Bottom flange thickness	tfo := 20mm	3224	3274
Bottom flange width	bfo := 300mm	3157	3207
District district	=	3137	
Plate flange thickness	tpo1 := 30mm	3090	3140
Bottom flange width	bpo1 := 500 mm	3081	3131

Plate flange thickness tpo2 := 10mm Bottom flange width bpo2 := 530mm

·mm

Body thickness adv := 12mm

Body height $hwh() := h tdek - tfb - tfo \cdots$

 $^+$ - $_{tpo1}$ - $_{tpo2}$

Page 96

Function width over the height

$$bx$$
 := $bdek$ if $z tdek$

+ tstrip if tdekz < ≤ tdektfb bfbnbulbtbulb

 $bwn \dot{\overline{b}}ulbtbulb\dot{}$ + tstrip if tdektfb < z ≤ tdekhstrip

 $< z \le tdekh bulb$ bwnbulbtbulb if tdekhstrip

 $< z \le tdektfb^+$ adv if tdekhbulb + hwh ()

bfo if tdektfb $+ \text{ hwh ()} < z \le \text{ tdektfb} + \text{ hwh ()} + \text{ tfo}$

 $+ hwh() + tfo < z \le h tpo2$ bpo1 if tdektfb

 $< z \le h$ bpo2 if h tpo2

0 otherwise

 $A h () := \begin{cases} h \\ b \neq b, & dz \end{cases}$ $zbh () := \begin{cases} 1 \\ A h () \end{cases} \begin{pmatrix} h \\ 0 & b \neq b, z \end{cases} dz$ Surface

Neutral axis

 $zoh() := h \bar{z}bh()$

 $Ih() := \int_{0}^{h} bx \partial_{x} z bh \Big(- \Big) 2dz$ Resistance moment

A () =	zb]() =	zolkj =	$^{\mathrm{I}}O$ =	
140739 'mm ²	1097 ·mm	2251 ·mm	262739162098 · r	mm ⁴
140617	1095	2246	261487545885	
139873	1071	2203	249960916711	
139142	1041	2166	238738235100	
138453	1018	2122	227953614644	

138181 1017 2114 225997060959

Page 97

hhl =

 $\dot{}_{mm}$

$\Delta TN.ah\ () \qquad := \begin{array}{c} 1 \\ A\ h\ () \end{array} \int_0^h \Delta T1az\ ()\ b\dot{z}h, () \qquad d$
$\Delta TN.heatz h()$:= $\Delta TN.ah ()$
$\Delta TN.heat1mm h i ,) =$
7.8 gr
7.8
7.9
7.9
7.9
8

Winter
$$\Delta TN.bh() := \frac{1}{A h()} \int_{0}^{h} \Delta T1bz() b\dot{z}h,() \qquad dz$$

$$\Delta TN.coolOm(n h i) := \Delta TN.bh()$$

$$\Delta TN.coolOm(n h i) ,) = -2.3 \quad gr$$

$$-2.3$$

$$-2.4$$

$$-2.4$$

$$-2.4$$

$$-2.4$$

$$-2.4$$

Linear temperature compo	nent Summer		Winter	
ΔΤΙ	$M.ah()$:= - h $Ih()$ $\int_{0}^{h} \Delta T laz() b\dot{z}l$	$h_{h,()}$ $\cdot (z \bar{z}bh_{()})_{dz}$	$\Delta TM.bh()$:= - $h \int_{0}^{h} \Delta T1bz()b\dot{z}h,()$ · $(z\dot{z}bh()$) _{dz}
	$\Delta TM.heatz h() := \begin{pmatrix} z \bar{z}bh () \\ & & \end{pmatrix}$) _{ΔTM.ah ()}	$\Delta TM.coolz h() := \begin{pmatrix} -\left(z \ \bar{z}bh \ () \end{pmatrix} \Delta TM.bh \ () \\ h$	
	$\Delta TM.ah i$ =		$\Delta TM.bh i$ =	
3298	14.9 gr		-4.6 gr	
3291	14.9		-4.6	
3224	14.9		-4.6	
3157	14.9		-4.6	
3090	14.9		-4.6	
3081	15		-4.6	

hhl = ·mm

	Top temperature		Bottom temperature	
	Summer	Winter	Summer	Winter
	ΔTM.heat0mm h i ,	$) = \Delta TM.cool0mm 1 (i , ,)$	$) = \Delta TM.heath i \begin{pmatrix} i \\ i \end{pmatrix},$) = $\Delta TM.coolh i h i (,) =$
3298	4.9 · gr	-1.5 gr	-10 gr	3.1 · gr
3291	4.9	-1.5	-10	3.1
3224	4.9	-1.5	-10	3.1
3157	4.8	-1.5	-10	3.1
3090	4.8	-1.5	-10.1	3.1
3081	4.9	-1.5	-10.1	3.1

 $_{hhl}$ = \cdot_{mm}

Determination of temperature load on bridge deck

 Project name:
 Ussel Bridge
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Main beam 500x30 + 550x30 (deck = 10 mm)
 Version:
 v1.0

Temperature load over the height

Temperature difference (Δ T) Temperature component (a) Global warming (b) Cooling Vertical temperature 0 2 4 6 8 10 12 14 16 -7 -6 -5 -4 -3 -2 -1 0 component 0 15.0 -6.0 0100 0.0 500 0.0 2400 0.0 0.0 2400

Geometric cross-section properties

Cover plate thickness $\begin{array}{ll} \text{tdek} & := 10 \text{mm} \\ \\ \text{Cover plate width} \\ \\ \text{Number of bulbs} \\ \\ \text{Surface bulbs} \\ \text{Height bulbs} \\ \\ \text{Width bulbs} \\ \end{array} \begin{array}{ll} \text{abulb} & := 13 \\ \\ \text{Abulb} & := 1712 \text{mm} \\ \\ \text{bulb} & := 160 \text{mm} \\ \\ \text{bulb} & := \frac{\text{Abulb}}{\text{hbulb}} = 10.7 \text{ mm} \\ \\ \end{array}$

Center of gravity bulb from the top zbulb := 98.3mm The calculation is performed for the following heights

+ - tpo1 - tpo2

Stiffening strip height hstrip := 100 mmStiffening strip thickness tstrip := 8 mm

Surrelling surp unestices	Strip Omni	Height bottom deck - bottom bottom flange DIN	Total heig and bottor	ht including n plate	g deck
Top flange thickness	tfb := 20mm	hhl := 3101		3171	
Top flange width	bfb := 300mm	3159		3229	
Bottom flange thickness	tfo := 20mm	3257		3327	
Bottom flange width	bfo := 300mm	3374		3444	
Plate flange thickness	tpo1 := 30mm	3510		3580	
Bottom flange width	bpo1 := 500mm	3645		3715	
Plate flange thickness	tpo2 := 30mm	3781		3851	
Bottom flange width	bpo2 := 550mm	3917	h =	3987	·mm
		4071	_	4141	
Body thickness	adv := 12mm	3081		3151	
Body height	$hwh () := h fdek - tfb - tfo \cdots$				

bath, := bdek if ztdek + tstrip if tdekz < ≤ tdektfb bfbnbulbtbulb $^+$ tstrip if tdektfb $^+$ $z \le tdekhstrip$ bwnbulbtbulb' $< z \le tdekh bulb$ if tdekhstrip bwnbulbtbulb' $< z \le tdektfb^+ + hwh()$ adv if tdekhbulb bfo if tdektfb $+ \text{ hwh ()} < z \le \text{ tdektfb} + \text{ hwh ()} + \text{ tfo}$ + hwh () + tfo $< z \le h \text{ tpo } 2$ bpo1 if tdektfb $< z \le h$ bpo2 if h tpo2 0 otherwise

 $\begin{array}{l} A\ h\ ()\ :=\ \displaystyle\int\limits_0^h\ bz /h, \qquad dz \\ \\ zbh\ ()\ :=\ \displaystyle\frac{1}{A\ h\ ()} \left(\int\limits_0^h\ bz /hz \, , \qquad dz \right) \end{array}$ Surface Neutral axis

 $zoh() := h \bar{z}bh()$

 $Ih() := \int_{0}^{h} b dh z zbh() - \qquad) 2dz$ Resistance moment

A () =	zbl(;) =	zol(j) =	I () =	
146352	mm ² 1211	·mm 1960	·mm 276968056448	. mm 4
150340	1207	2022	287993279487	,
151547	1246	2081	307386249421	
152916	1295	2149	329698788295	
154510	1353	2227	360637096286	;
156094	1406	2309	390932453763	
157571	1465	2386	422604500424	ŀ
159335	1520	2467	455449717480)
161258	1581	2560	495079876955	
149320	1174	1977	273055148121	

Page 101

Temperature components Summer

 $\Delta TN.ah()$:= $\frac{1}{Ah()} \int_{0}^{h} \Delta T laz() b\dot{z}h,()$ dz $\Delta TN.bh\left(\right) \quad := \frac{1}{A\;h\left(\right)} \int\limits_{0}^{h} \Delta T1bz\left(\right)\;b\dot{z}h,\!\left(\right) \qquad dz$ Average temperature $\Delta TN.heatz h() := \Delta TN.ah ()$ $\Delta TN.coolz h()$:= $\Delta TN.bh ()$ $\Delta TN.heat1mm_{in h i}$,) = $\Delta T.N.cool0m(n h i ,) =$ 3101 7.5 -2.3 3159 7.3 -2.2 3257 -2.2 7.2

	3374 3510		7.2 7.1		-2.2 -2.1
	3645		7		-2.1
hhl = 3781 3917 4071 3081		7		-2.1	
	·	6.9		-2.1	
	4071	IIIII	6.8		-2
	3081		7.4		-2.2

Linear temperature of	component	Summer	Winter
	ΔTM.ah () := -	$ \frac{h}{h(i)} \int_{0}^{h} \Delta T \log(i) b\dot{z}h, (i) \qquad \cdot \left(z z\dot{z}bh(i)\right) $	$\int_{0}^{h} \int_{dz}^{h} \Delta T M.bh() := -\frac{h}{1 h()} \int_{0}^{h} \Delta T Ibz() b\dot{z}h() \qquad (z \bar{z}bh() \qquad)dz$
	ΔTM.heatz h()	$:= \frac{-\left(z \bar{z} b h ()\right)}{h} \Delta T M.ah ()$	$\Delta TM.coolz h() := -\left(z \overline{z}bh () \right) \Delta TM.bh ()$
		M.ah i() =	$\Delta TM.bh i() =$
3101	1	14.8 gr	-4.5 gr
3159	1	14.5	-4.4
3257	1	14.4	-4.4
3374	1	14.5	-4.4
3510	1	14.4	-4.4
3645]	14.3	-4.4
3781	1	14.3	-4.4
hhl = 3917		14.3	-4.4
4071	mm	14.2	-4.3
3081	1	14.5	-4.4

		Top temperature		Bottom temperature	
		Summer	Winter	Summer	Winter
		ΔTM.heat0mm h i	,) = $\Delta TM.cool0mm l(i ,) =$	ΔTM.heath i h i ,	$) = \Delta TM.coolh i h i (,) = $
	3101	5.7 gr	-1.7 · gr	-9.2 gr	2.8 gr
	3159	5.4	-1.7	-9.1	2.8
	3257	5.4	-1.7	-9	2.8
	3374	5.4	-1.7	-9	2.8
	3510	5.4	-1.7	-8.9	2.7
	3645	5.4	-1.7	-8.9	2.7
	3781	5.4	-1.7	-8.9	2.7
hhl =	3917	5.4	-1.7	-8.8	2.7
4071 m	5.4	-1.7	-8.8	2.7	
	3081	5.4	-1.7	-9.1	2.8

Determination of temperature load on bridge deck

Project name: IJssel Bridge 5/25/2018 Date: BF7387 Ernst Klamer Project number: Name: Description: Main beam 500x30 + 550x30 (deck = 12 mm)Version: v1.0

Temperature load over the height				
Temperature component		Temperature d	lifference (Δ T)	
remperature component	(a) Global warming		(b) Cooling	
Vertical temperature	0 2 4 6 8 10 12 14 16		-7 -6 -5 -4 -3 -2 -1 0	
$\begin{array}{c} \textbf{component} \\ \Delta T \end{array}$	0 500 0.0	15.0	-6.0	0.0 0100
	2400 0.0			0.0 2400
	$\Delta T 1a$:= 15gr	a := 500mm 'ΔT1a '0gr	$\Delta T1b$:= - gr $\Delta T1bz()$:= min $\Delta T1b$	$h_{1b} := 100 \text{mm}$ $- \frac{z}{h_{1b}} \cdot \Delta T_{1b} \cdot 0 \text{gr}$
Geometric cross-section properties				
Cover plate thickness	tdek := 12mm			
Cover plate width	bdek := 4630mm			
Number of bulbs	nbulb := 13			
Surface bulbs	Abulb $:= 1712$ mm ²			
Height bulbs	hbulb := 160mm			

Center of gravity bulb from the top zbulb := 98.3mm The calculation is performed for the following heights

= 10.7 inm

tbulb := Abulb

hbulb

Width bulbs

Stiffening strip height	hstrip := 100mm				
Stiffening strip thickness	tstrip := 8mm	Height bottom deck - bottom bottom flange DIN	Total heigh	nt including	deck
Top flange thickness	tfb := 20mm	hhl := 4245		4317	
Top flange width	bfb := 300mm	4243		4491	
Bottom flange thickness	tfo := 20mm	4592		4664	
Bottom flange width	bfo := 300mm	4766		4838	
Plate flange thickness	$_{\text{tpo1}} := _{30\text{mm}}$	4950		5022	
Bottom flange width	bpo1 := 500mm	5134		5206	
Plate flange thickness	$_{\text{tpo2}} := _{30\text{mm}}$	5300		5372	
Bottom flange width	bpo2 := 550mm	5182	h =	5254	·mm
		5026	п	5098	111111
D 1 411	, '= .o	4880		4952	
Body thickness	adv := 12mm	4822		4894	
Body height	hwh () := h tdek - tfb - tfo				
	+ - tpo1 - tpo2				

```
Function width over the height
         := bdek if z tdek
                                            ^+ tstrip if tdekz ^< ^< tdektfb
                  bfbn \rlap{/}bulbtbulb \rlap{/}
                                           ^+ \ tstrip \quad if \ tdektfb \qquad < \ z \leq \ tdekhstrip
                  bwnbulbtbulb'
                                             if tdekhstrip < z ≤ tdekhbulb
                                              < z \le tdektfb + hwh()
                  adv if tdekhbulb
                                            + hwh () < z \le tdektfb + hwh () + tfo
                                             ^{+} hwh () ^{+} tfo ^{<} z ^{\leq} h tpo2
                  bpo1 if tdektfb
                                            < z \le h
                  bpo2 if h tpo2
                                            A h () := \begin{cases} h \\ 0 \end{cases} b x (h), \quad dz
zbh () := \begin{cases} 1 \\ A h () \end{cases} \left( \begin{cases} h \\ 0 \end{cases} b x (h) z \cdot dz \right)
                  0 otherwise
Surface
Neutral axis
                                              zoh() := h \bar{z}bh()
Ih() := \int_{0}^{h} bz(hz)zbh() - y^{2}dz
Resistance moment
```

A () =	zbł) = zo.	- (_i) =	I() =
172531	·mm 2 1	570 ·mm	2747 · mm	566875603447 · mm 4
174639	1	640	2851	618408740391
176742	1	710	2954	672082815285
178759	1	782	3056	728769898768
181023	1	856	3166	791479278327
183287	1	932	3274	857162266492
185216	2	001	3371	918877797481
183931	1	951	3303	874838376254
181580	1	891	3207	817316731983
180233	1	821	3131	766860190906
179478	1	802	3092	747378509554

Temperature components Summer	Winter
Average temperature $\Delta TN.ah\left(\right) := \begin{array}{c} 1 \\ A \ h \left(\right) \end{array}$	$\Delta T laz () b\dot{z}h,() \qquad dz \qquad \qquad \Delta T N.bh () \qquad := \frac{1}{A h ()} \int_{0}^{h} \Delta T lbz () b\dot{z}h,() \qquad dz$
$\Delta TN.heatz h()$:= ΔT	N.ah () $\Delta TN.coolz h() := \Delta TN.bh ()$
ΔTN.heat1mm h i ,)	$\Delta TN.cool0m_{mhi},) =$
4245 7.1 gr	-2.2 · gr
4419 7.1	-2.2
4592 7	-2.1
4766 6.9	-2.1
4950 6.8	-2.1
5134 6.7	-2.1
5300 6.7	-2
hhl = 5182 .mm 6.7	-2.1
5026 mm	-2.1
4880 6.8	-2.1
4822 6.9	-2.1

Linear temperature component		Summer		Winter	
	ΔTM.ah () := -			$\int_{0}^{h} dz = \Delta TM.bh() := -\frac{h}{1 h()} \int_{0}^{h} \Delta T1bz() b\dot{z}h() = \cdot (z zbh()) dz$	z
	ΔTM.heatz h()) _{ΔTM.ah ()}	$\Delta TM.coolz h() := \begin{pmatrix} -\left(z \not zbh () \right) \Delta TM.bh () \\ h \end{pmatrix}$	
	Δ΄	TM.ah i() =		$\Delta TM.bh i$ =	
4245		14.4 gr		-4.5 gr	
4419		14.4		-4.5	
4592		14.4		-4.5	
4766		14.3		-4.4	
4950		14.3		-4.4	
5134		14.2		-4.4	
5300		14.2		-4.4	
hhl = 5182		14.2		-4.4	
5026	mm	14.3		-4.4	
4880		14.2		-4.4	
4822		14.3		-4.4	

	Top temperature						Bottom temperature				
		Summer			Winter			Summer		Winter	
			ΔTM.hea	t0m(n h i ,	$) = \Delta TM.cool0m$	m l(i ,) =	ΔTM.heat	thi (i ,	$) = \Delta TM.coolh i$	hi(,) =
	4245		5.2	gr	-1.6	gr		-9.2	gr	2.9	gr
	4419		5.3		-1.6			-9.1		2.8	
	4592		5.3		-1.6			-9.1		2.8	
	4766		5.3		-1.6			-9		2.8	
	4950		5.3		-1.6			-9		2.8	
	5134		5.3		-1.6			-8.9		2.8	
hhl =	5300	·mm	5.3		-1.6			-8.9		2.8	
	5182		5.3		-1.6			-8.9		2.8	
	5026		5.3		-1.6			-9		2.8	
	4880		5.2		-1.6			-9		2.8	
	4822		5.3		-1.6			-9		2.8	

Determination of temperature load on bridge deck

Project name: IJssel Bridge
Project number: BF7387

Description: Main beam 500x30 + 550x30 (deck = 12 mm)

Date: 5/25/2018 Name: Ernst Klamer Version: v1.0

Temperature load over the height

Temperature component Temperature difference (Δ T)

(a) Global warming (b) Cooling

 Vertical temperature
 0 2 4 6 8 10 12 14 16
 -7 -6 -5 -4 -3 -2 -1 0

2400 0.0 0.0 2400

$$\Delta T1a := 15 \text{gr}$$

$$\Delta T1b := - \text{gr}$$

$$\Delta T1b := - \text{gr}$$

$$\Delta T1b := 100 \text{mm}$$

Geometric cross-section properties

Cover plate thickness $\begin{array}{cccc} \text{tdek} & := 12 \text{mm} \\ \text{bdek} & := 4630 \text{mm} \\ \\ \text{Number of bulbs} & \text{nbulb} & := 13 \\ \\ \text{Surface bulbs} & \text{Abulb} & := 1712 \text{mm} \\ \\ \text{Height bulbs} & \text{hbulb} & := 160 \text{mm} \\ \\ \text{Width bulbs} & \text{tbulb} & := \frac{\text{Abulb}}{\text{hbulb}} & = 10.7 \text{ mm} \\ \end{array}$

Center of gravity bulb from the top zbulb := 98.3mm The calculation is performed for the following heights

 $\begin{array}{lll} \text{Stiffening strip height} & & \text{hstrip} & := 100 \text{mm} \\ \\ \text{Stiffening strip thickness} & & \text{tstrip} & := 8 \text{mm} \\ \end{array}$

Stiffening strip thickness	tstrip := 8mm	Height bottom deck bottom bottom flang		Total height and bottom	_	deck
Top flange thickness	tfb := 20mm	hhl :=	3034		3106	
Top flange width	bfb := 300mm		2995		3067	
Bottom flange thickness	tfo := 20mm	2	2955		3027	
Bottom flange width	bfo := 300mm	2	2916		2988	
Plate flange thickness	tpo1 := 30mm	2	2876		2948	
Bottom flange width	bpo1 := 500mm	2	2851		2923	
Plate flange thickness	tpo2 := $30mm$	2	2838		2910	
Bottom flange width	bpo2 := 550mm	2	2825	h =	2897	·mm
		2	2813		2885	
D. L. d.: L.	1 := 12	2	2800		2872	

Body thickness adv := 12mm

Body height $hwh \; () \;\; \stackrel{:=}{:=} \; h \; fdek \qquad \stackrel{\cdot}{\cdot} \;\; tfb \; \stackrel{\cdot}{\cdot} \;\; tfo \;\; \cdots$

+ - tpo1 - tpo2

Page 108

Function width over the height
bth, := bdek if z tdek

bfbnbulbtbulb' + tstrip if
$$tdekz^{<} \le tdektfb$$

bwnbulbtbulb' + tstrip if tdektfb $< z \le$ tdekhbulb bwnbulbtbulb' if tdekhburp $< z \le$ tdekhbulb

adv if $tdekh\overline{b}ulb$ $< z \le tdektf\overline{b}$ + hwh()

bfo if tdektfb + hwh() < $z \le tdektfb$ + hwh() + tfo

+ + + + < ≤ -

0 otherwise $A h () := \begin{cases} h \\ b \neq h, & dz \end{cases}$ $zbh () := \begin{cases} 1 \\ A h () \end{cases} \begin{pmatrix} h \\ b \neq h, z \cdot dz \end{pmatrix}$ Surface

Neutral axis

Resistance moment

$$Ih() := \int_{0}^{h} bx dh z z bh \left(- \right) 2dz$$

A () =	zbl(j) =	zoh(.) =	I (2) =
158053 mr	1092 ·mm	2014 'mm	276130327687 · mm ⁴
157491	1078	1989	268431597611
157013	1062	1965	260922188585
156631	1044	1944	253748057544
156146	1032	1916	246486596179
155814	1027	1896	241627000140
156221	1015	1895	239589706039
155809	1011	1886	237299669142
155068	1009	1876	235162596441
155198	1003	1869	232824248134

Page 109

 $\Delta T N.ah \ () \qquad := \frac{1}{A \ h \ ()} \int\limits_0^h \Delta T 1 az \ () \ b\dot{z}h, () \qquad dz \qquad \qquad \Delta T N.bh \ () \qquad := \frac{1}{A \ h \ ()} \int\limits_0^h \Delta T 1 bz \ () \ b\dot{z}h, () \qquad dz$ Temperature components Summer Average temperature $\Delta TN.heatz h() := \Delta TN.ah ()$ ΔTN.coolz h() $\Delta TN.heat1mm(n h i ,) =$ $\Delta TN.cool0m(m h i ,) =$ 3034 7.8 gr -2.4 gr 2995 7.8 -2.4 2955 7.8 -2.4 2916 7.9 -2.4 2876 7.9 -2.4 2851 7.9 -2.4 2838 7.9 -2.4 2825 7.9 -2.4 2813 7.9 -2.4 2800 7.9 -2.4

Linear temperature component		omponent	Summer		Winter					
		ΔTM.ah () := -	$ \int_{0}^{h} \Delta T \log () b $	żh,() · (z žbh ()	$)_{dz}$	$\Delta TM.bh() := -\frac{h}{Ih()} \int_{0}^{h} \Delta T1bz()b\dot{z}h() \qquad \cdot \left(z\dot{z}bh()\right)$) _{dz}			
$\Delta TM.heatz h() := \begin{cases} -\left(z \vec{z}bh ()\right) & \Delta TM.ah () \\ h & \end{cases}$						$\Delta TM.coolz h() := \frac{-\left(z \bar{z}bh ()\right)}{h} \Delta TM.bh ()$				
		ΔΤ	$\Gamma_{M.ah}$ i() =	$\Delta TM.bh i$ =						
:	3034		14.7 gr			-4.6 gr				
2	2995		14.7		-4.6					
1	2955		14.7			-4.6				
3	2916		14.7			-4.6				
1	2876		14.7			-4.6				
1	2851		14.8			-4.6				
1	2838		14.7			-4.6				
	2825		14.7			-4.6				
11111	2813	mm	14.8			-4.6				
3	2800		14.8			-4.6				

			Summer ΔTM.heat0mkn h i		Winter $, \Big) = \Delta TM.cool0mm \ I\!\!\! \left(i \qquad , \right) =$		Summer		Winter	
							ΔTM.heath i (i ,		$\Big) = \Delta TM.coolh i h i \Big(,$) =
	3034		5.2	gr	-1.6 gr		-9.5	gr	3 · gr	
	2995		5.2		-1.6		-9.5		3	
	2955		5.2		-1.6		-9.6		3	
	2916		5.1		-1.6		-9.6		3	
	2876		5.2		-1.6		-9.6		3	
	2851		5.2		-1.6		-9.6		3	
hhl =	2838	·mm	5.1		-1.6		-9.6		3	
	2825		5.1		-1.6		-9.6		3	
	2813		5.2		-1.6		-9.6		3	
	2800		5.2		-1.6		-9.6		3	

Appendix

Annex I - Other variable taxes

IJssel Bridge