Rule-based Optimal Control for Autonomous Driving

Agenda

- Introduction to the Project
- Problem formulation
- Approach to solve Algorithm
- Results
- Tools

Highlights of the Project

- Modified implementation of a Research Paper
- Optimal Control Technique
- Optimization methodology
- MATLAB Optimization tool chain
- C++ Optimization tool chain

Introduction to the Project

- With higher levels of Autonomy, the decision-making capabilities increase
- The vehicles on road must follow certain driving behaviors and traffic rules
- These rules and behaviors can be assigned certain priority and modeled as constraints
- The control algorithms must consider these rules along with on-road driving constraints to find an optimal path in the given environment
- Aim of the project is to find an optimal trajectory based on an iterative optimization algorithm with prioritized soft constraints

 Autonomous driving

Problem Formulation

- We essentially want to solve an optimization problem with soft constraints
- How to model soft constraints on a non-linear system?

Control Lyapunov Function

- CLF is used as a stability function for non-linear control systems
- CLF is needs be designed V(x)
- It is an exponentially decaying function
- It helps to construct stabilizing inputs
- We can construct a CLF constraint on our system based on its decaying condition.

Control Barrier Function

- CBF is used for imposing safety critical constraints for a non-linear control system
- We need to design the CBF B(x)
- We can design multiple CBFs
- Used in combination with CLF for stability and safety

Famous concepts in non-linear controls for MPC optimization formulation

Control Lyapunov Function

- Consider an affine control system:
- $\dot{x} = f(x) + g(x)u$
- We design our CLF V(x), such that the state reaches the target destination (or set) and impose a stability constraint
- CLF general form:

$$L_f V(x) + L_g V(x) u + \epsilon V(x) \le \delta_e$$

 L_f - Lie derivative along f(x)

V(x) - Lyapunov Function

 δ_e - CLF Slack Variable

This is adding a stability constraint to the system along with the desired target reaching constraint

• ϵ is a tuning constant. As ϵ gets bigger, the CLF constraint imposes stricter condition. It requires V(x) to decay more quickly.

Control Barrier Function

- CBFs are used to add safety critical constraints which help the system to avoid unsafe sets
- There two forms of CBFs, depending on the degree of CBF function B(x) chooses

 Gamma is the tuning parameter for CBFs, which is controls the decay rate of the function.

Priority Structure in Constraints

- The constraints in the problem are also assigned certain priority
- The framework recursively relaxes the constraints based on the priority structure
- Here we consider 3 constraints:
 - 1. Safe distance from pedestrian
 - 2. Lane Keeping
 - 3. Minimum velocity

Optimization Problem

Dynamics Model

$$\dot{x} = f(x) + g(x)u$$

$$\dot{X} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v \\ \dot{\theta} \end{bmatrix}$$

Cost Function

$$\min_{u,\delta_e,\delta_i} J = \int_0^{t_f} [c_1 v^2 + c_2 \dot{\theta}^2 + c_3 \delta_e^2 + c_4 \delta_1^2 + c_5 \delta_2^2 + c_6 \delta_3^2] dt$$

V	Linear Velocity
ω	Angular Velocity
δ_{e}	CLF Slack Variable
δ_1	Pedestrian Distance CBF Slack Variable
δ_2	Lane-keeping CBF Slack Variable
δ_3	Minimum Velocity CBF Slack Variable

Constraints

1. State and Control

$$v_{min} \le v \le v_{max} \quad \forall t \in [0, t_f]$$

$$\dot{\theta}_{min} \le \dot{\theta} \le \dot{\theta}_{max} \quad \forall t \in [0, t_f]$$

$$y_{min} \le y(t) \le y_{max} \quad \forall t \in [0, t_f]$$

$$X(t_f) = X_{goal}$$

2. Control Lyapunov Function (CLF Constraint)

Lyapunov Function:

$$V(x) = ||y||^2 = (x - x_{ref})^2 + (y - y_{ref})^2 + (\theta - \theta_{ref})^2$$

Constraint:

$$2v(x - x_{ref})\cos\theta + 2v(y - y_{ref})\sin\theta + 2(\theta - \theta_{ref})\dot{\theta} + \epsilon||y||^2 \le \delta_e$$

Constrained (continued)

3. Control Barrier Function (CBF Constraint)

• Pedestrian Avoidance (HOCBF): Function: $B(x) = (x - x_p)^2 + (y - y_p)^2 - r^2$

Constraint: $\gamma_1[(x-x_p)^2+(y-y_p)^2-r^2]+2v(x-x_p)\cos\theta+2v(y-y_p)\sin\theta-\delta_1\geq 0$

• Lane Keeping: Function: B(x) = y - l

Constraint: $\gamma_2(y-l) + v\cos\theta - \delta_2 \ge 0$

• Min Velocity: Function: $B(x) = v - v_{min}$

Constraint: $\gamma_3 v - \gamma_3 v_{min} - \delta_3 \ge 0$

Priority structure algorithm - Iterative

The algorithm iterates through the power set created which specifies which CBFs are relaxed in a priority order.


```
Algorithm 1 Recursive relaxation algorithm

Input: System dynamics, initial condition, control bounds, state constraints, rules power set R, reference trajectory \mathcal{X}.

Output: Optimal ego trajectory.

1: m rules

2: k = 0

3: while k \leq 2^m do

4: Get S_k, k^{th} priority scenario of relaxed rules from R.

5: Solve optimization problem with S_k

6: if the above problem is feasible then

7: Generate optimal trajectory \mathcal{X}^*.

8: end if

9: end while
```

Power Set

 $\{\{\emptyset\}, \{O_3\}, \{O_2\}, \{O_3, O_2\}, \{O_1\}, \{O_3, O_1\}, \{O_2, O_1\}, \{O_3, O_2, O_1\}\}$

Tuning Parameters

• Selecting appropriate hyperparameters is very important. They directly affect the performance of the controller.

- The graph shows the effect of changing hyperparameter γ associated with the Pedestrian safe circle
- Inappropriate values of hyperparameters can also render an infeasible solution

Results

We will look at 4 testing scenarios

- 1. No CBF constraints are relaxed (corresponds to relaxing $\{\emptyset\}$)
- 2. Iteratively Lane keeping constraint is relaxed (corresponds to relaxing {O2})
- 3. Iteratively Pedestrian constraint is relaxed (corresponds to relaxing {O1})
- 4. Iteratively Lane keeping and Pedestrian constraints are relaxed (corresponds to relaxing {O1,O2})

- All constraints act as hard constraints; hence we can see the slack variables for all CBFs to be zero.
- The trajectory follows a path between the gap of lane boundary and pedestrian safe circle.

- Iterative power set finds optimal trajectory when lane keeping constraint is relaxed.
- Lane keeping constraint is violated without violating the pedestrian and min velocity constraint.
- The lane keeping slack variable has a non-zero value, but only when constraint is violated.

- Here the lane keeping is made a hard constraint for test case purposes.
- We can see that the trajectory violates the pedestrian safe circle, since there is no other feasible trajectory.
- However, it tries to stay as far away as possible from the pedestrian to minimize constraint violation.

- Here both lane keeping and pedestrian constraints are relaxed at the starting point.
- We can see that the trajectory tries to move out of the circle as fast as possible.
- However, it tries to exit the pedestrian circle and go inside the lane as soon as possible to minimize constraint violation.

Pedestrian CBF Slack

Lane-keeping CBF Slack

Tools

- MATLAB Optimization Toolbox non-linear optimization function 'fmincon'
- C++ CasADi library and IPOPT optimizer for non-linear optimization

Thank you for your time!

Questions?