Ejercicio 4

David García Curbelo

Dado tu número n=45352609 de la lista del ejercicio 2:

Apartado I. Factoriza n-1 aplicando el método ρ de Polard. ¿Cuántas iteraciones necesitas?

Tenemos que $n-1=45352608=2^5\cdot 3\cdot 472423$. Ahora veamos si nuestro número 472423 es primo. Para ello aplicamos el test de composición de Fermat, con el que obtenemos que dicho número es compuesto, ya que $2^{472422}\equiv 64\pmod{472423}$, luego tenemos certificado de composición. Tratamos ahora de factorizar 472423 mediante el método de Polard usando como función aleatoria $f(x)=x^2+1$:

Paso	x	y	mcd
0	1	1	-
1	2	5	1
2	5	677	7

Por lo que en dos iteraciones hemos encontrado que el número primo 7 es divisor de 472423, obteniendo así la factorización $n-1=45352608=2^5\cdot 3\cdot 7\cdot 67489$. Podemos ver que efectivamente el número 67489 pasa tanto el test de Miller-Rabin como el de Solovay-Strassen para los 5 primeros números primos, luego tenemos que la probabilidad de que efectivamente sea compuesto es de 4^{-5} .

Apartado II. Si es necesario aplica recursivamente Lucas-Lehmer para certificar factores primos de n-1 mayores de 4 cifras.

Tenemos un factor mayor de cuatro cifras: el número 67489. Veamos si es primo. Para ello necesitamos calcular la factorización en primos de 67488, luego tenemos 67488 = $2^5 \cdot 3 \cdot 703$. Por la tabla de primos menores de 4 cifras, vemos que el número 703 no aparece en dicha tabla, luego es un número compuesto. Calculemos sus factores primos mediante el método ρ de Polard:

Paso	x	y	mcd
0	3	3	-
1	10	101	1
2	101	249	37

Por lo que en 2 iteraciones hemos encontrado la factorización completa de $67488 = 2^5 \cdot 3 \cdot 19 \cdot 37$. Como ya conocemos todos sus factores primos (2, 3, 19 y 37), iniciamos la búsqueda de un elemento primitivo para tratar de probar que efectivamente el número 67489 es primo. Para ello, aplicando el algoritmo de exponenciación rápida tenemos que, para a = 23 se cumple:

- 1. $23^{67488} \equiv 1 \pmod{67489}$
- 2. $23^{(67488)/2} \equiv -1 \pmod{67489}$
- 3. $23^{(67488)/3} \equiv 13861 \pmod{67489}$
- 4. $23^{(67488)/19} \equiv 52206 \pmod{67489}$
- 5. $23^{(67488)/37} \equiv 17698 \pmod{67489}$

Por lo que tenemos que 23 es un elemento primitivo de 67489 y por tanto tenemos un certificado de primalidad. Así hemos obtenido efectivamente la factorización en números primos de nuestro número original $n-1=45352608=2^5\cdot 3\cdot 7\cdot 67489$.

Apartado III. Aplica Lucas-Lehmer para encontrar un certificado de primalidad de n.

Para n=45352609 tenemos $n-1=45352608=2^5\cdot 3\cdot 7\cdot 67489$, luego conocemos todos sus factores primos (2, 3, 7 y 67489). Iniciamos la búsqueda de un elemento primitivo para tratar de probar que efectivamente nuestro número n es primo. Para ello, aplicando el algoritmo de exponenciación rápida tenemos que, para a=19 se cumple:

- 1. $19^{n-1} \equiv 1 \pmod{n}$
- 2. $19^{(n-1)/2} \equiv -1 \pmod{n}$
- 3. $19^{(n-1)/3} \equiv 3335204 \pmod{n}$
- 4. $19^{(n-1)/19} \equiv 43001658 \pmod{n}$
- 5. $19^{(n-1)/37} \equiv 14444632 \pmod{n}$

Por lo que podemos confirmar que 19 es un elemento primitivo de n. Así hemos obtenido efectivamente un certificado de primalidad y por tanto concluimos que 45352609 es un número primo.