Ecole Nationale Supérieure Polytechnique de Yaoundé

National Advanced School of Engineering of Yaounde

Département de Génie Informatique

Computer Engineering Department

UE: ELECTRONIQUE ET INTERFAÇAGE

RAPPORT HEBDOMADAIRE (SEM 4)

Réalisé par les étudiants:

• MEKIAGE Olivier (chef)	21P369
KUATE KAMGA Brayan	21P130
• NGUEPSSI Brayanne	23P780
• NTYE EBO'O Nina	21P223
 VUIDE OUENDEU Jordan 	21P018
 KOUASSI DE YOBO G. Bryan 	21P082
 LEMOBENG NGOUANE Belviane 	21P187
• FEZEU YOUNDJE Fredy Clinton	23P751
 BADA RODOLPHE André 	21P233
DANGA PATCHOUM Blonde	21P169

Niveau 4, GI

Sous la supervision de: Dr. CHANA Anne Marie

Dr. Ngounou

Année académique: 2024-2025

Projet RTK - Système de Géolocalisation de Précision

<u>Période</u>: 28 / 10 / 2024 - 03 / 11 / 2024

SOMMAIRE

Conclusion	
F. Plans pour la semaine suivante	
E. Défis rencontrés	
D. Considérations pratiques	2
C. Apprentissages clés	
B. Activités réalisées	3
A. Objectifs de la semaine	3

A. Objectifs de la semaine

Pour cette quatrième semaine, nous avons poursuivi les travaux entamés lors de la semaine précédente, centrés sur :

- 1. Finaliser l'installation physique de la base RTK.
- 2. Assurer la configuration optimale de la base GNSS pour une transmission fiable des corrections via le réseau Centipede.
- 3. Effectuer des ajustements nécessaires en fonction des contraintes identifiées sur le terrain.

B. Activités réalisées

Progression dans l'installation de la base RTK:

- Stabilisation et sécurisation définitive de l'antenne sur son support (plot en béton ou pignon de bâtiment).
- Vérification de la visibilité dégagée du ciel pour s'assurer de l'absence d'obstacles susceptibles de perturber les signaux GNSS.

Câblage et connectivité :

- Installation des câbles d'antenne en respectant les recommandations de longueur (5 à 7 mètres pour les câbles standard).
- Mise en place des câbles Ethernet pour relier la base RTK au réseau Centipede, avec des tests pour garantir une connexion stable.
- Validation de l'option CPL en cas de besoin pour prolonger la connexion.

C. Apprentissages clés

Précision dans l'installation :

• Chaque détail de la position et de la fixation de l'antenne peut influencer la qualité des données RTK.

Adaptation aux contraintes terrain:

• La nécessité d'adapter les longueurs de câbles et les solutions réseau aux spécificités du site.

D. Considérations pratiques

Infrastructure:

 Renforcement de la stabilité de l'antenne pour minimiser les vibrations et les décalages dus aux conditions environnementales.

Connexion et flux de données :

• Importance de tester plusieurs configurations réseau pour identifier la solution la plus fiable et robuste.

E. Défis rencontrés

- Ajustement de la longueur des câbles pour éviter des pertes de signal.
- Tests de connectivité intermittents à cause des conditions locales imprévues.

F. Plans pour la semaine suivante

1. Documenter les résultats obtenus et identifier d'éventuelles optimisations.

Conclusion

Cette semaine a permis de consolider les efforts déjà réalisés pour l'installation de la base RTK. Bien que les travaux aient été une continuité des objectifs de la semaine précédente, des avancées significatives ont été faites dans l'installation et les préparations pour la configuration finale. Nous sommes désormais proches d'une validation complète du système.