

Hidoop - partie 2

Daniel Hagimont Philippe Mauran

Rappel: schéma général

Objectifs

- 1ère étape
 - Consolider Hidoop
 - Votre plate-forme doit être fonctionnelle et fiable
 - Terminer première étude de scalabilité (WordCount)
- 2ième étape
 - Un thème au choix :
 - Tolérance aux pannes
 - Optimisation des performances
 - Différentes applications

Consolider Hidoop

- Doit fonctionner en réparti et être fiable pour de gros fichiers
 - Démonstration visée
 - 5-10 machines
 - 4-8 Go
- Quelques aberrations que j'ai observées

...

Consolider Hidoop

Aberrations

- HdfsWrite est une opération d'installation des données
 - Pas appelée dans startJob()
 - Pas incluse dans les mesures
- On ne charge pas un fichier entier pour l'envoyer
 - On lit et on envoie au fur et à mesure
- Les blocs sont gros
 - On ne charge pas un block en entier
- On crée des threads coté serveur
 - Pas de thread : exécution séquentielle
 - Threads coté client : ne passe pas à l'échelle
- Ne pas stocker les blocs sur NFS
 - Limite le parallélisme

Consolider Hidoop

WordCount

Vous devez pouvoir montrer une tendance et un speedup

	itératif	Hidoop	
overhead	0		Lequel est le plus grand
Speedup //	0	+++	

A l'extrême

- Avec un très grand fichier et une très grande taille de bloc
 - Très longs traitements en parallèle
 - Très peu d'overhead

Toujours essayer de prévoir le résultat avant les mesures, on cherche à vérifier une hypothèse

Tolérance aux pannes

Résister à différents types de pannes

- Pannes fail-stop : un élément tombe et ne revient pas (pas de panne intermittente)
- Détection des pannes : mécanisme de heart-beat
- Panne de processus plutot que machine
 - Panne HdfsServer
 - Réplication des blocks pour disponibilité
 - Gérer la disponibilité des blocks (NameNode)
 - Panne pendant une copie (HdfsWrite) : gérer la cohérence
 - Panne pendant une exécution : relancer les maps impactés (arrêter les maps, résultats indisponibles)
 - Panne Worker
 - · Gérer la disponibilité des Workers
 - Relancer les maps impactés
 - Panne startJob
 - Reprendre l'exécution sans ré-exécution de tous les maps

Défi

 Exécuter un processus qui tue aléatoire des processus en cours d'exécution (startJob, HdfsServer, Worker)

7

Optimisation des performances

Diagnostic / amélioration

- Recherche des possibilités d'amélioration des performances
 - Profilage de votre système
 - Pleins d'outils de profilage dans l'environnement Java (journalise le temps passé dans chaque méthode)
 - Proposer des améliorations de l'implémentation
 - Sans changements stratégiques (ex : sérialisation ou byte[])
 - Avec changements stratégiques (ci-dessous)

Améliorations stratégiques

- Envoyer directement les données des maps vers le reducer
 - Plutôt que de les stocker dans un fichier local et faire un HdfsRead
 - En particulier si les maps ne se terminent pas en même temps
 - Le reducer peut commencer le travail avant
- Gérer plusieurs reducers s'exécutant sur les slaves
 - Une fonction sur les clés (K) détermine le reducer qui reçoit
 - Un reducer génère un résultat final localement
- Exploiter les coeurs d'une machine (dans un Worker)

Défi

Un fichier de 8Go, 5 machines, obtenir le meilleur temps d'exécution

Différentes applications

- Différentes applications
 - On a différents goulots d'étranglement en fonction de la quantité de CPU utilisée dans l'application (IO bound ou CPU bound)
 - CPU bound : les IO attendent
 - IO bound : le CPU attend
 - Exemples d'applications
 - Algorithme X de Knuth
 - Page ranking
 - Décimales de Pi
 - À priori, page ranking est IO bound et X de Knuth est CPU bound.
- Etudier les tendances

Suivi du projet

- Inscription sous moodle
- 5 séances de suivi (une semaine sur 2)
 - Une semaine
 - Consolidation
 - Choix de l'option (tolérance aux pannes, optimisation des performances)
 - Choix des contributions (spécification)
- Rendu final (fin mars)
- Une séance de restitution /bilan (mi-avril)