Bret Young

DSC 640

Assignment 3.2

09 October 2020

- area plot
- stacked area plot
- treemap

```
In [1]: # Import required packages
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import squarify

In [2]: # Load dataset
   url = '~/Desktop/DSC 640/ex3-3/unemployement-rate-1948-2010.csv'
   data = pd.read_csv(url, sep = ',')
```

```
In [3]: data.head()
```

Out[3]:

		Series id	Year	Period	Value
	0	LNS14000000	1948	M01	3.4
	1	LNS14000000	1948	M02	3.8
:	2	LNS14000000	1948	M03	4.0
;	3	LNS14000000	1948	M04	3.9
	4	LNS14000000	1948	M05	3.5

```
In [4]:
        data grp = data.groupby('Year', as index = False)['Value'].mean()
        print(data grp)
            Year
                     Value
            1948 3.750000
        0
        1
            1949 6.050000
        2
            1950 5.208333
        3
            1951 3.283333
        4
            1952 3.025000
             . . .
        . .
                       . . .
        58 2006 4.608333
        59
            2007 4.608333
        60 2008 5.816667
            2009 9.275000
        61
        62
            2010 9.700000
        [63 rows x 2 columns]
        # Create axes and figure
In [5]:
        fig = plt.figure()
        ax1 = fig.add subplot(111)
        # Set figure size
        fig.set size inches(18.5, 10.5)
        # Add plot to figure
        ax1.fill_between(data_grp['Year'], data_grp['Value'], color = 'skyblue
        ')
        ax1.plot(data grp['Year'], data grp['Value'], color = 'blue')
        # Set titles, caption and axis labels
        fig.suptitle("Average Yearly Unemployment Rate 1948 - 2010", x = 0.31,
        y = 0.95, fontsize=20)
        fig.text(.87, .08, 'Source: Data Collected By Nathan Yau From Bureau o
        f Labor Statistics', ha = 'right', color = 'gray')
        ax1.set title("The unemployment rates fucluate over time, but there is
        an increasing trend.", y = 1.02, loc='left', color = 'gray')
        ax1.set ylabel("Unemployment\n(%)", rotation = 0, ha = 'right')
        # Remove frame
        ax1.spines['right'].set visible(False)
        ax1.spines['top'].set visible(False)
        # Show plot
        plt.show
        # save file
        fig.savefig("python area.png")
```

Average Yearly Unemployment Rate 1948 - 2010

The unemployment rates fucluate over time, but there is an increasing trend.


```
In [6]: # group data by month
    data_grp_mon = data.groupby('Period', as_index = False)['Value'].mean()

# change period to month abbreviations
    data_grp_mon['Period'] = data_grp_mon['Period'].replace({"M01": "Jan",
        "M02": "Feb", "M03": "Mar", "M04": "Apr", "M05": "May", "M06": "Jun",
        "M07": "Jul", "M08": "Aug", "M09": "Sep", "M10": "Oct", "M11": "Nov",
        "M12": "Dec"})

# sort data
    data_grp_mon = data_grp_mon.sort_values(by = ['Value'], ascending = Fa
    lse)

    print(data_grp_mon)
```

```
Period
             Value
11
     Dec 5.706452
9
      Oct
           5.690323
10
          5.685484
      Nov
1
      Feb 5.677778
0
           5.671429
     Jan
5
      Jun 5.666129
6
      Jul
           5.664516
7
     Aug 5.662903
8
      Sep 5.661290
4
     May 5.643548
3
      Apr 5.637097
2
     Mar 5.630645
```

```
In [14]:
         # create labels
         lbl = []
         for i in range(0, len(data grp mon)):
             lbl.append('{}\n{:.2f}'.format(data grp mon['Period'][i], data grp
         mon['Value'][i]))
         # set colors
         import matplotlib
         cmap = matplotlib.cm.Blues
         mini=min(data grp mon['Value'])
         maxi=max(data grp mon['Value'])
         norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)
         colors = [cmap(norm(value)) for value in data grp mon['Value']]
         # Create axes and figure
         fig = plt.figure()
         ax1 = fig.add subplot(111)
         # Set figure size
         fig.set size_inches(18.5, 10.5)
         # Add plot to figure
         squarify.plot(sizes = data_grp_mon['Value'], label = lbl, color = colo
         rs)
         # Set titles, caption and axis labels
         fig.suptitle("Average Monthly Unemployment Rates 1948 - 2010", x = 0.3
         2, y = 0.95, fontsize=20)
         fig.text(.87, .08, 'Source: Data collected by Nathan Yau from Bureau o
         f Labor Statistics', ha = 'right', color = 'gray')
         ax1.set title("Rates vary only slightly with the begining and end of t
         hhe year having higher averages.", y = 1.02, loc='left', color = 'gray
         ')
         # Remove axis
         plt.axis('off')
         # Show plot
         plt.show
         # save file
         fig.savefig("python treemap.png")
```

Average Monthly Unemployment Rates 1948 - 2010

Rates vary only slightly with the begining and end of thhe year having higher averages.

Source: Data collected by Nathan Yau from Bureau of Labor Statistics

```
In [8]: # Load dataset
url_2 = '~/Desktop/DSC 640/ex3-3/expenditures.txt'
data_2 = pd.read_csv(url_2, sep = '\t')
```

```
In [9]: # group data
data_2_grp = data_2.groupby(['year', 'category']).agg({'expenditure':
    'sum'})

data_2_grp['percent'] = data_2_grp.groupby(level = 0).apply(lambda x:
    100 * x / x.sum())

data_2_grp = data_2_grp.reset_index()
```

In [10]: data_2_grp.head()

Out[10]:

	year	category	expenditure	percent
0	1984	Alcoholic Beverages	275	1.251593
1	1984	Apparel	1319	6.003095
2	1984	Cash Contributions	706	3.213180
3	1984	Education	303	1.379028
4	1984	Entertainment	1055	4.801566

In [11]: print(data_2_grp[:15])

	year	category	expenditure	percent
0	1984	Alcoholic Beverages	275	1.251593
1	1984	Apparel	1319	6.003095
2	1984	Cash Contributions	706	3.213180
3	1984	Education	303	1.379028
4	1984	Entertainment	1055	4.801566
5	1984	Food	3290	14.973603
6	1984	Healthcare	1049	4.774258
7	1984	Housing	6674	30.375023
8	1984	Miscellaneous	451	2.052612
9	1984	Personal Care	289	1.315310
10	1984	Personal Insurance	1897	8.633716
11	1984	Reading	132	0.600765
12	1984	Tobacco Products	228	1.037684
13	1984	Transportation	4304	19.588567
14	1985	Alcoholic Beverages	306	1.302737

```
In [12]: | x = list(pd.unique(data 2 grp['year']))
        y0 = data_2_grp[data_2_grp['category'] == 'Alcoholic Beverages']
        y0 = list(y0['percent'])
        y1 = data 2 grp[data 2 grp['category'] == 'Apparel']
        y1 = list(y1['percent'])
        y2 = data_2_grp[data_2_grp['category'] == 'Cash Contributions']
        y2 = list(y2['percent'])
        y3 = data 2 grp[data 2 grp['category'] == 'Education']
        y3 = list(y3['percent'])
        y4 = data 2 grp[data 2 grp['category'] == 'Entertainment']
        y4 = list(y4['percent'])
        y5 = data 2 grp[data_2_grp['category'] == 'Food']
        y5 = list(y5['percent'])
        y6 = data_2_grp[data_2_grp['category'] == 'Healthcare']
        y6 = list(y6['percent'])
        y7 = data 2 grp[data 2 grp['category'] == 'Housing']
        y7 = list(y7['percent'])
        y8 = data 2 grp[data 2 grp['category'] == 'Miscellaneous']
        y8 = list(y8['percent'])
        y9 = data 2 grp[data 2 grp['category'] == 'Personal Care']
        y9 = list(y9['percent'])
        y10 = data 2 grp[data 2 grp['category'] == 'Personal Insurance']
        y10 = list(y10['percent'])
        y11 = data_2_grp[data_2_grp['category'] == 'Reading']
        y11 = list(y11['percent'])
        y12 = data 2 grp[data 2 grp['category'] == 'Tobacco Products']
        y12 = list(y12['percent'])
        y13 = data_2_grp[data_2_grp['category'] == 'Transportation']
        y13 = list(y13['percent'])
        y6, 'y7': y7, 'y8': y8, 'y9': y9, 'y10': y10, 'y11': y11, 'y12': y12,
         'y13': y13}
```

```
In [13]: # set colors
```

```
colors 2 = ["#7D26CD", "#DB70DB", "#990099", "#FF82AB", "#7D26CD", "#D
B70DB", "#990099", "#FF82AB", "#7D26CD", "#DB70DB", "#990099", "#FF82A
B", "#7D26CD", "#DB70DB"]
# Create axes and figure
fig = plt.figure()
ax1 = fig.add subplot(111)
# Set figure size
fig.set size inches(18.5, 10.5)
# Add plot to figure
ax1.stackplot(x, y['y13'], y['y12'], y['y11'], y['y10'], y['y9'], y['y
8'], y['y7'], y['y6'], y['y5'], y['y4'], y['y3'], y['y2'], y['y1'], y[
'y0'],
              colors = colors 2,
             labels = np.sort(pd.unique(data 2 grp['category']))[::-1]
)
# Set titles, caption and axis labels
fig.suptitle("Expenditure Percentages by Category 1984 - 2008", x = 0.
31, y = 0.95, fontsize=20)
fig.text(.87, .08, 'Source: Data Collected By Nathan Yau From Bureau o
f Labor Statistics', ha = 'right', color = 'gray')
ax1.set title("The percent of money spent on different categories thro
ugh the years shows how spending habits have changed.", y = 1.02, loc=
'left', color = 'gray')
ax1.set ylabel("")
# set x axis labels
plt.xticks(np.arange(1984, 2009, step = 2))
# set v axis labels
plt.yticks(np.arange(0, 101, step = 5))
vals = ax1.get yticks()
ax1.set yticklabels(['\{:,.0\%\}]'.format(x/100) for x in vals])
#show legend reverse order of plot
handles, labels = ax1.get legend handles labels()
plt.legend(handles[::-1], labels[::-1], bbox to anchor=(1.1, .96))
# Remove frame
ax1.spines['right'].set visible(False)
ax1.spines['top'].set visible(False)
# Show plot
plt.show
# save file
```

fig.savefig("python_stackedarea.png")

Expenditure Percentages by Category 1984 - 2008

Source: Data Collected By Nathan Yau From Bureau of Labor Statistics

In []: