$$\gamma_0 = (1 + \theta^2)(1 + \Theta^2)$$

$$\gamma_1 = -\theta(1 + \Theta^2)$$

$$\gamma_{s-1} = \theta\Theta$$

$$\gamma_s = -\Theta(1 + \theta^2)$$

$$(a) \gamma_{s-1} = \gamma_{s+1}$$

(b) $\rho_{s-1} = \rho_{s+1} = \rho_1 \rho_s$

(a) $\gamma_{s-1} = \gamma_{s+1}$

(2)
$$(1 - \Phi B^s)w_t = (1 - \theta B)(1 - \Theta B^s)a_t$$

 $w_t - \Phi w_{t-s} = a_t - \theta a_{t-1} - \Theta a_{t-s} + \theta \Theta a_{t-s-1}$
 $s \ge 3$

$$\gamma_0 = (1 + \theta^2) \left[1 + \frac{(\Theta - \Phi)^2}{1 - \Phi^2} \right]$$

All other autocovariances are zero.

 $\gamma_{s+1} = \gamma_{s-1}$

(a)
$$\gamma_{s-1} = \gamma_{s+1}$$

(b) $\gamma_j = \Phi \gamma_{j-s}$ $j \ge s + 1$

$$\gamma_1 = -\theta \left[1 + \frac{(\Theta - \Phi)^2}{1 - \Phi^2} \right]$$

$$\gamma_{s-1} = \theta \left[\Theta - \Phi - \frac{\Phi(\Theta - \Phi)^2}{1 - \Phi^2} \right]$$

$$\gamma_s = -(1+ heta^2)igg[\Theta-\Phi-rac{\Phi(\Theta-\Phi)^2}{1-\Phi^2}igg]$$

$$\gamma_{s+1} = \gamma_{s-1}$$

 $\gamma_j = \Phi \gamma_{j-s}$ $j \ge s+2$
For $s \ge 4$, γ_2 , γ_3 , ..., γ_{s-2} are all zero.

$$\gamma_0 = (1 + \theta_1^2 + \theta_2^2)(1 + \Theta_1^2 + \Theta_2^2)$$

$$\gamma_1 = -\theta_1(1 - \theta_2)(1 + \Theta_1^2 + \Theta_2^2)$$

$$\gamma_1 = -\sigma_1(1 - \sigma_2)(1 + \Theta_1)$$

 $\gamma_2 = -\theta_2(1 + \Theta_1^2 + \Theta_2^2)$

 $w_{t} = a_{t} - \theta_{1}a_{t-1} - \theta_{2}a_{t-2} - \Theta_{1}a_{t-s} + \theta_{1}\Theta_{1}a_{t-s-1} + \theta_{2}\Theta_{1}a_{t-s-2}$

 $-\Theta_2 a_{1-2s} + \theta_1 \Theta_2 a_{1-2s-1}$

 $+ \theta_2\Theta_2a_{1-2s-2}$

s № 5

 $\times (1 - \Theta_1 B^s - \Theta_2 B^{2s}) a_t$

(3) $w_t = (1 - \theta_1 B - \theta_2 B^2)$

(c) $\gamma_{2s-2} = \gamma_{2s+2}$ (d) $\gamma_{2s-1} = \gamma_{2s+1}$

(b) $\gamma_{s-1} = \gamma_{s+1}$

(a) $\gamma_{s-2} = \gamma_{s+2}$

$$\gamma_{s+1} = \gamma_{s-1}$$

$$\gamma_{s+2} = \gamma_{s-2}$$
$$\gamma_{2s-2} = \theta_2 \Theta_2$$

$$\gamma_{2s-1} = \theta_1 \Theta_2 (1 - \theta_2)$$

 $\gamma_{2s} = -\Theta_2 (1 + \theta_1^2 + \theta_2^2)$

$$\gamma_{2s+1} = \gamma_{2s-1}$$

$$\gamma_{2s+2} = \gamma_{2s-2}$$

 $\gamma_{2s+2} = \gamma_{2s-2}$ All other autocovariances are zero.

Model	(Autocovariance of w_i)/ σ_a^2	Special Characteristics
(3a) Special case of model 3 $w_t = (1 - \theta_1 B - \theta_2 B^2)(1 - \Theta B^s)a_t$ $w_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2} - \Theta a_{t-s} + \theta_1 \Theta a_{t-s-1} + \theta_2 \Theta a_{t-s-2}$ $s \ge 5$	$ \gamma_0 = (1 + \theta_1^2 + \theta_2^2)(1 + \Theta^2) \gamma_1 = -\theta_1(1 - \theta_2)(1 + \Theta^2) \gamma_2 = -\theta_2(1 + \Theta^2) \gamma_{s-2} = \theta_2\Theta \gamma_{s-1} = \theta_1\Theta(1 - \theta_2) $	(a) $\gamma_{s-2} = \gamma_{s+2}$ (b) $\gamma_{s-1} = \gamma_{s-1}$
(3b) Special case of model 3 $w_{t} = (1 - \theta B)(1 - \Theta_{1}B^{s} - \Theta_{2}B^{2s})a_{t}$ $w_{t} = a_{t} - \theta a_{t-1} - \Theta_{1}a_{t-s} + \theta\Theta_{1}a_{t-s-1}$	$ \gamma_s = -\Theta(1 + \theta_1^2 + \theta_2^2) $ $ \gamma_{s+1} = \gamma_{s-1} $ $ \gamma_{s+2} = \gamma_{s-2} $ All other autocovariances are zero. $ \gamma_0 = (1 + \theta^2)(1 + \Theta_1^2 + \Theta_2^2) $ $ \gamma_1 = -\theta(1 + \Theta_1^2 + \Theta_2^2) $ $ \gamma_{s-1} = \theta\Theta_1(1 - \Theta_2) $	(a) $\gamma_{s-1} = \gamma_{s-1}$ (b) $\gamma_{2s-1} = \gamma_{2s-1}$
$S \geqslant 3$	$\gamma_{s} = -\Theta_{1}(1 + \theta^{2})(1 - \Theta_{2})$ $\gamma_{s+1} = \gamma_{s-1}$ $\gamma_{2s-1} = \theta\Theta_{2}$ $\gamma_{2s} = -\Theta_{2}(1 + \theta^{2})$ $\gamma_{2s+1} = \gamma_{2s-1}$ All other autocovariances are zero.	
(4) $w_t = (1 - \theta_1 B - \theta_s B^s - \theta_{s+1} B^{s+1}) a_t$ $w_t = a_t - \theta_t a_{t-1} - \theta_s a_{t-s}$ $-\theta_{s+1} a_{t-s-1}$	$\gamma_0 = 1 + \theta_1^2 + \theta_s^2 + \theta_{s+1}^2$ $\gamma_1 = -\theta_1 + \theta_s\theta_{s-1}$ $\gamma_{s-1} = \theta_1\theta_s$	(a) In general, $\gamma_{s-1} \neq \gamma_{s-1}$ $\gamma_1 \gamma_s \neq \gamma_{s-1}$
s	$\gamma_s = \theta_1 \theta_{s+1} - \theta_s$ $\gamma_{s+1} = -\theta_{s+1}$ All other autocovariances are zero.	
(4a) Special case of model 4 $w_{t} = (1 - \theta_{t}B - \theta_{s}B^{s})a_{t}$ $w_{t} = a_{t} - \theta_{1}a_{t-1} - \theta_{s}a_{t-s}$ $s \ge 3$	$\gamma_0 = 1 + \theta_1^2 + \theta_s^2$ $\gamma_1 = -\theta_1$ $\gamma_{s-1} = \theta_1 \theta_s$ $\gamma_s = -\theta_s$ All other autocovariances are zero	(a) Unlike model 4, $\gamma_{s-1} = 0$
	in citic delocatement elo toto.	

(5)
$$(1 - \Phi B^s)w_t = (1 - \theta_1 B - \theta_s B^s - \theta_{s+1} B^{s+1})a_t$$

$$- \theta_{s+1} B^{s+1} a_t$$

$$w_t - \Phi w_{t-s} = a_t - \theta_1 a_{t-1} - \theta_s a_{t-s}$$

$$- \theta_{s+1} a_{t-s-1}$$

$$s \ge 3$$

$$\gamma_0 = 1 + \theta_1^2 + \frac{(\theta_s - \Phi)^2}{1 - \Phi^2} + \frac{(\theta_{s+1} + \theta_1 \Phi)^2}{1 - \Phi^2}$$
$$\gamma_1 = -\theta_1 + \frac{(\theta_s - \Phi)(\theta_{s+1} + \theta_1 \Phi)}{1 - \Phi^2}$$

$$\gamma_{s-1} = (\theta_s - \Phi) \left[\theta_1 + \Phi \frac{\theta_{s+1} + \Phi \theta_1}{1 - \Phi^2} \right]$$

$$\gamma_s = -(\theta_s - \Phi) \left[1 - \Phi \frac{\theta_s - \Phi}{1 - \Phi^2} \right]$$

$$+ (\theta_{s+1} + \theta_1 \Phi) \left[\theta_1 + \Phi \frac{\theta_{s+1} + \theta_1 \Phi}{1 - \Phi^2} \right]$$

$$\gamma_{s+1} = -(\theta_{s+1} + \theta_1 \Phi) \left[1 - \Phi \cdot \frac{\theta_s - \Phi}{1 - \Phi^2} \right]$$

$$\gamma_j = \Phi \gamma_{j-s}$$
 $j \ge s+2$
For $s \ge 4$, γ_2 , ..., γ_{s-2} are all zero.
 $\gamma_0 = 1 + \frac{\theta_1^2 + (\theta_s - \Phi)^2}{1 - \Phi^2}$

 $(1 - \Phi B^s)w_t = (1 - \theta_1 B - \theta_s B^s)a_t$

(5a) Special case of model 5

 $w_t - \Phi w_{t-s} = a_t - \theta_1 a_{t-1} - \theta_s a_{t-s}$

$$\gamma_1 = -\theta_1 \bigg[1 - \Phi \frac{\theta_s - \Phi}{1 - \Phi^2} \bigg]$$

$$\gamma_{s-1} = \frac{\theta_1(\theta_s - \overline{\Phi})}{1 - \overline{\Phi}^2}$$

$$\gamma_s = \frac{\Phi \theta_1^2 - (\theta_s - \Phi)(1 - \Phi \theta_s)}{1 - \Phi^2}$$

$$\gamma_j = \Phi \gamma_{j-s}$$
 $j \ge s+1$
For $s \ge 4, \gamma_2, \dots, \gamma_{s-2}$ are all zero.

(a)
$$\gamma_{s-1} \neq \gamma_{s+1}$$

(b) $\gamma_j = \Phi \gamma_{j-s} \quad j \geqslant s + 1$

(a)
$$\gamma_{s-1} \neq \gamma_{s+1}$$

(b) $\gamma_j = \Phi \gamma_{j-s} \quad j \ge s+2$

 $\gamma_{s+1} = \Phi \gamma_1$