Contributeurs

Note The moments of a mixture, are the mixture of the moments.

Lesson 25: Estimator Quality

Sample Statistics

Sample Mean Unbiased estimator of the true mean u.

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Sample Variance Unbiased estimator of the true variance σ^2 .

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Empirical Variance Biased estimator of the true variance σ^2 .

$$\hat{\sigma}^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$

Lesson 27: Method of Moments

Notation

 μ'_k k^{th} moment centred around 0, $\mu'_k = E[X^k]$

Exponential Distribution There is only one parameter θ which is the mean, we set $\hat{\theta} = \mu_1'$

Gamma Distribution We have:

$$\mathrm{E}\left[X\right] = \alpha\theta \mathrel{\hat{=}} \bar{x}$$

$$\therefore \hat{\theta} = \frac{\hat{\sigma}^2}{\bar{x}} = \frac{\hat{\mu}_2' - \hat{\mu}_1'^2}{\hat{\mu}_1'}$$

Pareto Distribution

$$E[X] = \frac{\theta}{\alpha - 1} \stackrel{\triangle}{=} \hat{\mu}'_1$$
$$\therefore \hat{\alpha} = \frac{2(\hat{\mu}'_2 - \hat{\mu}'^2_1)}{(\hat{\mu}'_2 - 2\hat{\mu}'^2_1)}$$

Lognormal Distribution

$$\hat{\mu} = 2\ln(\hat{\mu}_1') - 0.5\ln(\hat{\mu}_2')$$

$$Var(X) = \alpha \theta^2 \stackrel{\triangle}{=} \hat{\sigma}^2$$

$$\hat{\alpha} = \frac{\bar{x}^2}{\hat{\sigma}^2} = \frac{\hat{\mu}_1'^2}{\hat{\mu}_2' - \hat{\mu}_1'^2}$$

E [X] =
$$\frac{\theta}{\alpha - 1} = \hat{\mu}'_1$$
 E $[X^2] = \frac{2\theta^2}{(\alpha - 1)(\alpha - 2)} = \hat{\mu}'_2$

$$\therefore \hat{\alpha} = \frac{2(\hat{\mu}'_2 - \hat{\mu}'^2_1)}{(\hat{\mu}'_2 - 2\hat{\mu}'^2_1)} \qquad \hat{\theta} = \frac{\hat{\mu}'_1 \hat{\mu}'_2}{\hat{\mu}'_2 - 2\hat{\mu}'^2_1}$$

$$\hat{\sigma}^2 = \ln(\hat{\mu}_2') - 2\ln(\hat{\mu}_1')$$

Uniform Distribution

$$E[X] = \frac{\theta}{2}$$

$$\therefore \hat{\theta} = 2\hat{\mu}_1'$$

Lesson 28: Percentile Matching

Note: Exams don't typically ask a lot of percentile matching questions, thus it's not really worth memorizing each distribution's formulas as it can easily be about a random distribution.

Exponential Distribution

$$\hat{\theta} = \frac{-\pi_g}{\ln(1-g)}$$

Weibull Distribution

$$\hat{\tau} = \frac{\ln\left(\ln(1-g_1)/\ln(1-g_2)\right)}{\ln(\pi_{g_1}/\pi_{g_2})} \qquad \qquad \hat{\theta} = \frac{\pi_{g_1}}{\sqrt[7]{-\ln(1-g_1)}}$$

$$\hat{\theta} = \frac{\pi_{g_1}}{\sqrt[\hat{\tau}]{-\ln(1-g_1)}}$$

Lognormal Distribution (use the percentiles of a normal distribution z_n)

$$\hat{\sigma} = \frac{\ln(\pi_{g_2}) - \ln(\pi_{g_1})}{z_{g_2} - z_{g_1}}$$

$$\hat{\mu} = \ln(\pi_{g_1}) - z_{g_1}\hat{\sigma}$$

Truncated data

For (X|X>d):

$$F_X(x|X > d) = \frac{F_X(x) - F_X(d)}{S_X(d)}$$
 $S_X(x|X > d) = \frac{S_X(x)}{S_X(d)}$

$$S_X(x|X > d) = \frac{S_X(x)}{S_X(d)}$$

Lesson 29:

Lesson 30: MLE Special Techniques

If the likelihood function is of the form $\mathcal{L}(\gamma) = \gamma^{-a} e^{-b/\gamma}$ then $\hat{\gamma}^{\text{MLE}} = \frac{b}{a}$

$$\mathcal{L}(\gamma) = \gamma^{-a} \mathrm{e}^{-b/\gamma}$$
 then $\hat{\gamma}^{\mathrm{MLE}} = \hat{\gamma}^{\mathrm{MLE}}$

If the likelihood function is of the form $\mathcal{L}(\lambda) = \lambda^a e^{-\lambda b}$ then $\hat{\lambda}^{\text{MLE}} = \frac{a}{b}$

$$\lambda \left[\mathcal{L}(\lambda) = \lambda^a \mathrm{e}^{-\lambda b} \right]$$
 then $\lambda^{\mathrm{MLE}} = rac{a}{b}$

If the likelihood function is of the form $\mathcal{L}(\lambda) = \theta^a (1-\theta)^b$ then $\hat{\theta}^{\text{MLE}} = \frac{a}{a+b}$

$$\mathcal{L}(\lambda) = \theta^a (1 - \theta)^b$$
 then $\hat{\theta}^{\text{MLE}}$

Exponential

$$\hat{\theta} = \frac{\sum_{i=1}^{n+c} (x_i - d_i)}{n}$$

Weibull with a fixed τ

$$\hat{\theta} = \sqrt{\frac{\sum_{i=1}^{n+c} x_i^{\tau} - \sum_{i=1}^{n+c} d_i^{\tau}}{n}}$$

Lognormal (use the percentiles of a normal distribution z_p)

$$\hat{\sigma} = \sqrt{\frac{\sum\limits_{i=1}^{n} \ln^2 x_i}{n} - \hat{\mu}^2}$$

$$\hat{\mu} = \frac{\sum_{i=1}^{n} \ln x_i}{n}$$

Uniform $(0, \theta)$ for individual data

$$\hat{\theta} = \max x_i$$

Uniform $(0, \theta)$ for grouped data

 c_j Upper bound of highest finite interval

 n_j Number of observations below c_j

$$\hat{\theta} = c_j \left(\frac{n}{n_j} \right)$$

Inverse exponential

$$\hat{\theta} = \frac{n}{\sum_{i=1}^{n} (1/x_i)}$$

Two-parameter Pareto, fixed θ

$$\hat{\alpha} = -\frac{n}{K}$$

$$K = \sum_{i=1}^{n+c} \left\{ \ln(\theta + d_i) - \ln(\theta + x_i) \right\}$$

Single-parameter Pareto, fixed θ

$$\hat{\alpha} = -\frac{n}{K}$$

$$K = \sum_{i=1}^{n+c} \left\{ \ln \max(\theta, d_i) - \ln x_i \right\}$$

Beta, fixed θ , $\beta = 1$

$$\hat{\alpha} = -\frac{n}{K}$$

$$K = \sum_{i=1}^{n+c} \left\{ \ln(x_i) \right\} - n \ln \theta$$

Beta, fixed θ , $\alpha = 1$

$$\hat{\beta} = -\frac{n}{K}$$

$$K = \sum_{i=1}^{n+c} \left\{ \ln(\theta - x_i) \right\} - n \ln \theta$$

Lesson 51: Time Series: Trend and Seasonality

Notation

At time *t*,

 $\{x_t\}$ Observed time series.

- > Formally, a time series of length n is written as $\{x_t : t = 1, 2, ..., n\} = \{x_1, x_2, ..., x_n\}$.
- > For simplicity, we write x_t .
- m_t Trend.
- s_t Seasonal effect.
- z_t Error term.
- > It is generally a sequence of correlated variables with mean zero.

■ Additive decomposition model

$$x_t = m_t + s_t + z_t$$

Estimation of seasonal variation:

$$\hat{s}_t = x_t - \hat{m}_t$$

■ Multiplicative model

When the seasonal effect s_t tends to increase as the trend m_t increases (i.e., $s_t \propto m_t$):

$$x_t = m_t \cdot s_t + z_t$$

When the trend itself is multiplicative:

$$x_t = m_t \cdot s_t \cdot z_t$$

or

$$\ln(x_t) = \ln(m_t) + \ln(s_t) + \ln(z_t)$$

> However, The logarithmic model must be used with caution; If z_t is normally distributed then $\ln(z_t)$ is lognormally distributed and thus has a *greater mean*.

Estimation of seasonal variation:

$$\hat{s}_t = \frac{x_t}{\hat{m}_t}$$

Calculating seasonal variation

For example, we suppose monthly data.

So,

- 1. We average the seasonal variations \hat{s}_t for each month.
- 2. For an additive model, we then subtract from the respective month's seasonal variations these twelve averages.
- 3. For a multiplicative model, we then divide the respective month's seasonal variations by these twelve averages.

This leads to an average seasonal variation of 0 for each month.

Center moving average for monthly data:

$$\hat{m}_t = \frac{0.5m_{t-6} + \sum\limits_{i=t-5}^{t+5} m_i + 0.5m_{t+6}}{12}$$

Première partie R functions

Time Series

Time Series Data (Introductory Time Series with R)

Time Series Data				
Function	Description	Possible Values	Example	
ts	Produces a time series object.		<pre>series.obj <- ts(data = sample(x = seq(from = 98, to = 102), size = 10, frequency = 4, start = c(1956, 2)) series.obj ## Qtr1 Qtr2 Qtr3 Qtr4 ## 1956 99 100 101 ## 1957 98 99 99 99 ## 1958 98 102 98</pre>	
aggregate	Creates an aggregated series.		<pre>aggregate(x = series.obj,</pre>	
ts.plot	Produces a time series plot for one (or more) series.			

Function	Description	Possible Values	Example
window	Extracts a subset of a time series.	Same arguments as the other time series functions.	<pre>window(x = series.obj, start = c(1957), end = c(1957, 4)) ## Qtr1 Qtr2 Qtr3 Qtr4 ## 1957 98 99 99 99</pre>
time	Extracts the time from a time series object.		<pre>time(series.obj) ## Qtr1 Qtr2 Qtr3 Qtr4 ## 1956 1956.25 1956.50 1956.75 ## 1957 1957.00 1957.25 1957.50 1957.75 ## 1958 1958.00 1958.25 1958.50 series.obj2 <- ts(</pre>
			<pre>data = sample(x = seq(from = 98, to = 102), size = 10, frequency = 4, start = c(1957, 2))</pre>
ts.intersect	Creates the intersection of one (or more) time series.	Chiffre.	<pre>ts.intersect(series.obj, series.obj2) ## series.obj series.obj2 ## 1957 Q2 99 102 ## 1957 Q3 99 99</pre>
			## 1957 Q4 99 102 ## 1958 Q1 98 102 ## 1958 Q2 102 100 ## 1958 Q3 98 100
cycle	Returns the season for each value in a time series.	Booléen.	importance = TRUE
decompose	Decompose a time series into the components.	Chiffre.	nodesize = 5
nessource sti ct/Guide d	Decomposes a time series using loess smoothing.	Chiffre.	nodesize = 5