Modelo Relacional

Database System Concepts, 5th Ed. ©Silberschatz, Korth and Sudarshan

20018/2019

- Estrutura das Bases de Dados Relacionais
- Operações fundamentais da Álgebra Relacional
- Operações adicionais da Álgebra Relacional
- Operações estendidas da Álgebra Relacional
- Valores Nulos
- Modificação da base de dados

Exemplo de uma Relação no domínio da Banca:

account_number	branch_name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

- account_number numero da conta
- branch_name nome da agência
- balance saldo

Uma **relação** é um conjunto de tuplos de aridade n, $(a_1, a_2, ..., a_n)$ com $a_i \in D_i$

- Dados os conjuntos $D_1, D_2, \dots D_n$, a **relação** r é um subconjunto de $D_1 \times D_2 \times \dots \times D_n$
- $r \subseteq D_1 x D_2 x \dots x D_n$

Exemplo:

- customer_name = {Jones, Smith, Curry, Lindsay, ...} /* Conjunto de todos os nomes de clientes */
- customer_street = {Main, North, Park, ...} /* Conjunto de todas as ruas de clientes*/
- customer_city = {Harrison, Rye, Pittsfield, ...} /* Conjunto de todas as cidades de clientes */

costumer é uma relação de aridade 3 sobre customer_name x customer_street x customer_city

Tipos de Atributos

- Cada atributo de uma relação tem um nome
- Ao conjunto dos valores permitidos para cada atributo chama-se domínio do atributo
- Os valores dos atributos são normalmente atómicos; isto é, indivisíveis
 - E.g. O valor de um atributo pode ser o número de uma conta (account number), mas não pode ser um conjunto de números de conta
- O domínio é atómico se todos os seus membros são atómicos
- O valor especial null (nulo) é membro de todos os domínios
- O valor null complica a definição de muitas operações
 Na apresentação inicial dos operadores vamos ignorar os casos em que o valor é null

Esquema de uma relação

- A_1, A_2, \ldots, A_n são atributos
- $R = (A_1, A_2, ..., A_n)$ é o esquema da relação Exemplo: Customer_schema =
 - (customer_name, customer_street, customer_city)
- r(R) denota a relação r no esquema de relação R
 Exemplo:
 customer (Customer_schema)

Instância de uma relação

- Os valores actuais (instância da relação) da relação são especificados numa tabela
- Um elemento t de r é um tuplo, representado numa linha da tabela

Atributos

/`			
customer_name	customer_street	customer_city	
Jones	Main	Harrison	
Smith	North	Rye	\longrightarrow Tuplos
Curry	North	Rye	
Lindsay	Park	Pittsfield	

As relações não têm ordem A ordem dos tuplos não é relevante (os tuplos podem ser guardados por uma ordem arbitrária) Exemplo:

account_number	branch_name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Base de Dados relacional

Uma base de dados é um conjunto de relações

A informação de uma empresa é separada em várias partes e cada relação guarda uma parte da informação

account : (conta) guarda a informação sobre contas

depositor : (depositante) guarda a informação sobre que cliente tem q

customer: (cliente) guarda a informação sobre clientes

Guardar toda a informação numa única relação como por exemplo: bank(account_number, balance, customer_name, ..) resulta na:

- Repetição de informação
 e.g., se dois clientes têm a mesma conta (o que é que se
 repete?)
- Necessidade de usar valores nulll
 e.g., para representar um cliente que não tem conta

No capítulo 7 vamos lidar com o desenho de esquemas relacionais usando a teorias de normalização.

A relação cliente (costumer)

customer_name	customer_street	customer_city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

A relação depositante (depositor)

customer_name	account_number
Hayes	A-102
Johnson	A-101
Johnson	A-201
Jones	A-217
Lindsay	A-222
Smith	A-215
Turner	A-305

Chaves

Seja K um conjunto de atributos do esquema $R, K \in R$

 K é uma super chave de R se os valores de K são suficientes para identificar um tuplo único de cada relação possível r(R)

"relação possível r" é a relação r que poderá existir na empresa que estamos a modelar.

Exemplo:

{customer_name, customer_street} e {customer_name} são ambas super chaves de Customer se não é possível que dois clientes tenham o mesmo nome

Na vida real, seria necessário usar um atributo customer_id em vez de customer_name para identificar univocamente um cliente, mas nos exemplos para ficarem mais pequenos assumimos que os nomes dos clientes são únicos.

K é uma chave candidata se K é minimal

Exemplo:

{customer_name} é uma chave candidata para Customer, pois é uma super chave e não tem nenhum subconjunto que seja super chave.

Chave primária: uma chave candidata escolhida como a forma principal para identificar os tuplos de uma relação Deve-se escolher uma atributo que nunca ou raramente muda. E.g. o endereço de email é único, mas pode mudar, o CC não muda.

Chaves estrangeiras

O esquema de uma relação pode ter uma atributo que é a chave primária de outra relação. A este atributo nesta relação chama-se chave estrangeira.

E.g. os atributos customer_name e account_number de depositante são chaves estrangeiras de cliente e conta respectivamente.

Só os valores que ocorrem no atributo chave primária da relação referenciada podem ocorrer no atributo chave estrangeira da relação que referencia.

Diagrama do esquema

Álgebra Relacional

Linguagem de interrogação (Query Language)

- Linguagem em que o utilizador pede a informação à base de dados.
- Categorias das Linguagens
 - Procedimental
 - Não-procedimentall, ou declarativa
- Linguagens "Puras":
 - Álgebra Relacional
 - Tuple relational calculus
 - Domain relational calculus

As linguagens puras estão na origem das linguagens de interrogação implementadas e usadas nos sistemas de gestão de bases de dados

Álgebra Relacional / operadores básicos

Seis operadores básicos:

- Selecciona (select): σ
- Projecta (project): π
- União (union): ∪
- Diferença conjuntos (set difference): —
- ullet Produto cartesiano (Cartesian product): imes
- Renomear (rename): ρ

Os operadores tem uma ou duas relações como argumentos e retornam uma nova relação como resultado.

Álgebra Relacional - Operação seleciona (select) σ

Operação seleciona (select) σ Exemplo:

$$\sigma_{A=B \wedge D > 5}(r) = \begin{vmatrix} A & B & C & D \\ \alpha & \alpha & 1 & 7 \\ \beta & \beta & 23 & 10 \end{vmatrix}$$

Álgebra Relacional - Operação seleciona (select) σ

Operação seleciona (select) σ

- Notação: $\sigma_p(r)$
- A p chama-se o predicado de selecção
- : σ_p(r) = {t | t ∈ r ∧ p(t)}
 p é uma fórmula do cálculo de proposições que consiste em termos ligados com : ∧ (e), ∨ (ou), ¬ (negação)
 Cada termo é da forma:
 < atributo > op < atributo > ou < constante > onde op é: =, <, >, < ou >

Exemplo de uma selecção:

 $\sigma_{branch_name=Perryridge}(account)$

Álgebra Relacional - Operação projeção (project) π

Operação projeção (project) π Exemplo:

$$\pi_{A,C}(r) = egin{array}{c|ccc} A & C & & & \\ \hline lpha & 1 & & \\ lpha & 1 & & \\ eta & 1 & & \\ eta & 1 & & \\ eta & 2 & & \\ \hline \end{array} = egin{array}{c|ccc} A & C & & \\ \hline lpha & 1 & & \\ eta & 1 & & \\ eta & 1 & & \\ eta & 2 & & \\ \hline \end{array}$$

Álgebra Relacional - Operação projeção (project) π

Operação projeção (project) π

- Notação: $\pi_{A_1,A_2,...,A_k}(r)$ onde $A_1,A_2,...$ sáo nome de atributos de r
- O resultado é uma relação de k colunas que se obtém eliminando as colunas que não foram listadas
 As linhas duplicadas são removidas, uma vez que as relações são conjuntos

Exemplo: Para eliminar o atributo $branch_name$ da relação conta $\pi_{account_number,balance}(account)$

Álgebra Relacional - Operação união (union) ∪

Operação uniáo (union) \cup Exemplo:

$$r = \begin{bmatrix} A & B \\ \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \end{bmatrix} s = \begin{bmatrix} A & B \\ \alpha & 2 \\ \beta & 3 \end{bmatrix}$$

$$r \cup s = \begin{bmatrix} A & C \\ \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \\ \beta & 3 \end{bmatrix}$$

Álgebra Relacional - Operação união (union) ∪

Operação união (union) ∪

- Notação: r∪s
- Definição:

$$r \cup s = \{t \mid t \in r \lor t \in s\}$$

- Para que r ∪ s seja uma operação válida:
 - r e s devem ter a mesma aridade (o mesmo número de atributos)
 - O domínio dos atributos deve ser compatível (exemplo: a 2^a coluna de r tem o mesmo tipo de valores que a 2^a coluna de s)

Exemplo: para encontrar todos os clientes que têm uma conta ou um empréstimo

 $\pi_{customer_name}(depositor) \cup \pi_{customer_name}(borrower)$

Álgebra Relacional - Operação diferença de conjuntos —

Operação diferença de conjuntos — Exemplo:

$$r = \begin{bmatrix} A & B \\ \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \end{bmatrix} s = \begin{bmatrix} A & B \\ \alpha & 2 \\ \beta & 3 \end{bmatrix}$$

$$r-s = egin{array}{|c|c} A & C \\ \hline lpha & 1 \\ eta & 1 \\ \hline \end{array}$$

Álgebra Relacional - Operação diferença de conjuntos —

Operação diferença de conjuntos -

- Notação: r s
- Definição:

$$r - s = \{t \mid t \in r \land t \notin s\}$$

- Para que r-s seja uma operação válida:
 - r e s devem ter a mesma aridade (o mesmo número de atributos)
 - O domínio dos atributos deve ser compatível (exemplo: a 2ª coluna de r tem o mesmo tipo de valores que a 2ª coluna de s)

Álgebra Relacional - Operação produto cartesiano ×

Exemplo da Operação produto cartesiano imes

$$r = \begin{bmatrix} A & B \\ \alpha & 1 \\ \beta & 2 \end{bmatrix} s = \begin{bmatrix} C & D & E \\ \alpha & 10 & a \\ \beta & 10 & a \\ \beta & 20 & b \\ \gamma & 20 & b \end{bmatrix}$$

	Α	В	С	D	Е
	α	1	α	10	а
	α	1	β	10	a
	α	1	β	20	b
$r \times s =$	α	1	γ	20	b
	β	2	α	10	a
	β	2	β	10	a
	β	2	β	20	b
	β	2	γ	20	b

Álgebra Relacional - Operação produto cartesiano ×

Operação produto cartesiano \times

- Notação: $r \times s$
- Definição:

$$r \times s = \{tq \mid t \in r \land q \in s\}$$

- Para que $r \times s$ seja uma operação válida:
 - Os atributos de r(R) e s(S) são disjuntos. (Isto é, R ∩ S = ∅).
 Se os atributos de r(R) e s(S) não são disjuntos é necessário usar a operação renomear.

Álgebra Relacional - Composição de operações

Podem-se construir expressões usando vários operadores

Exemplo: $\sigma_{A=C}(r \times s)$

				C	D	E
	Α	В		α	10	а
r=	α	1	s=	β	10	а
	β	2		β	20	b
			,	γ	20	b

	Α	В	С	D	Е
	α	1	α	10	а
	α	1	β	10	a
	α	1	β	20	b
$r \times s =$	α	1	γ	20	b
	β	2	α	10	а
	β	2	β	10	а
	β	2	β	20	b
	β	2	$ \gamma $	20	b

$$\sigma_{A=C}(r \times s) = \begin{bmatrix} A & B & C & D & E \\ \alpha & 1 & \alpha & 10 & a \\ \beta & 2 & \beta & 10 & a \\ \beta & 2 & \beta & 20 & b \end{bmatrix}$$

Álgebra Relacional - Operação renomear ho

- Permite dar um nome aos resultados das expressões da álgebra relacional.
- Permite a referência a uma relação com mais do que um nome
- Exemplo: $\rho_X(E) \leftarrow \text{retorna } E \text{ com o nome } X$
- Se a expressão da álgebra relacional, E, tem aridade n, então $\rho_{X(A_1,A_2,...,A_n)}(E) \leftarrow$ retorna o resultado da expressão E com o nome X, e com o nome dos atributos renomeados A_1,A_2,\ldots,A_n .

Tabelas

- branch (branch_name, branch_city, assets)
 agencia(agencia_nome, agencia_cidade, agencia_negocios)
- customer (customer_name, customer_street, customer_city)
 cliente(cliente_nome, cliente_rua, cliente_cidade)
- account (account_number, branch_name, balance)
 conta(conta_numero, agencia_nome, saldo)
- loan (loan_number, branch_name, amount)
 emprestimo(emprestimo_numero, agencia_nome,valor)
- depositor (customer_name, account_number)
 depositante(cliente_nome, conta_numero)
- borrower (customer_name, loan_number)
 credito(cliente_nome, emprestimo_numero)

Exemplos de perguntas:

• Encontrar todos os empréstimos maiores de \$1200

- Encontrar todos os empréstimos maiores de \$1200
- loan (loan_number, branch_name, amount) ou emprestimo(emprestimo_numero, agencia_nome,valor)

- Encontrar todos os empréstimos maiores de \$1200
- loan (loan_number, branch_name, amount) ou emprestimo(emprestimo_numero, agencia_nome,valor)
- $\sigma_{amount>1200}(loan)$ ou $\sigma_{valor>1200}(emprestimo)$

- Encontrar todos os empréstimos maiores de \$1200
- loan (loan_number, branch_name, amount) ou emprestimo(emprestimo_numero, agencia_nome,valor)
- $\sigma_{amount>1200}(loan)$ ou $\sigma_{valor>1200}(emprestimo)$
- \bullet $\sigma_{amount>1200}(loan) =$

loan_number	branch_name	amount
L-11	Round I III	200
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
1, 17	Downtown	1000
L-23	Redwood	2000
L 93	Mianus	500

Exemplos de perguntas:

• Encontrar os números dos empréstimos maiores de \$1200

- Encontrar os números dos empréstimos maiores de \$1200
- loan (loan_number, branch_name, amount) ou emprestimo(emprestimo_numero, agencia_nome,valor)

- Encontrar os números dos empréstimos maiores de \$1200
- loan (loan_number, branch_name, amount) ou emprestimo(emprestimo_numero, agencia_nome,valor)
- $\pi_{loan_number}(\sigma_{amount>1200}(loan))$

- Encontrar os números dos empréstimos maiores de \$1200
- loan (loan_number, branch_name, amount) ou emprestimo(emprestimo_numero, agencia_nome,valor)
- $\pi_{loan_number}(\sigma_{amount>1200}(loan))$
- \bullet $\pi_{loan_number}(\sigma_{amount>1200}(loan)) =$

loan_number
L-11
L-14
L-15
L-16
- 1, 17
L-23
I 03

Exemplos de perguntas:

 Encontrar os nomes dos cliente que têm um empréstimo uma conta ou ambos.

- Encontrar os nomes dos cliente que têm um empréstimo uma conta ou ambos.
- depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)

- Encontrar os nomes dos cliente que têm um empréstimo uma conta ou ambos.
- depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)
- $\pi_{customer_name}(depositor) \cup \pi_{customer_name}(borrower)$

- Encontrar os nomes dos cliente que têm um empréstimo uma conta ou ambos.
- depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)
- $\bullet \ \pi_{\textit{customer_name}}(\textit{depositor}) \cup \pi_{\textit{customer_name}}(\textit{borrower})$
- depositor =

customer_name	account_number
Hayes	A-102
Johnson	A-101
Johnson	A-201
Jones	A-217
Lindsay	A-222
Smith	A-215
Turner	A-305

borrower=

customer_name	loan_number
Adams	L-16
Curry	L-93
Hayes	L-15
Jackson	L-14
Jones	L-17
Smith	L-11
Smith	L-23
Williams	L-17

$$\pi_{customer_name}(depositor) \cup \pi_{customer_name}(borrower) =$$

customer_name Adams Curry Hayes Jackson **Jones** Smith Williams Lindsay Johnson Turner

Exemplos de perguntas:

• Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge.

- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge.
- loan (loan_number, branch_name, amount)
 ou emprestimo(emprestimo_numero, agencia_nome,valor)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)

Exemplos de perguntas:

- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge.
- loan (loan_number, branch_name, amount)
 ou emprestimo(emprestimo_numero, agencia_nome,valor)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)

۰

```
\pi_{customer\_name}(\sigma \mid loan.number = borrower.number \land (borrower \mid borrower))
branch\_name = Perryridge
```

loan × *borrower* =

	borrower.	loan.		
customer_name	loan_number	loan_number	branch_name	amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	L-14	Downtown	1500
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Adams	L-16	L-17	Downtown	1000
Adams	L-16	L-23	Redwood	2000
Adams	L-16	L-93	Mianus	500
Curry	L-93	L-11	Round Hill	900
Curry	L-93	L-14	Downtown	1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	L-93	L-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	L-11		900
Hayes	L-15	L-14		1500
Hayes	L-15	L-15		1500
Haves	L-15	L-16		1300
Haves	L-15	L-17		1000
Haves	L-15	L-23		2000
Hayes	L-15	L-93		500
Smith	L-23	L-11	Round Hill	900
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Smith	L-23	L-17	Downtown	1000
Smith	L-23	L-23	Redwood	2000
Smith	L-23	L-93	Mianus	500
Williams	L-17	L-11	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300
Williams	L-17	L-17	Downtown	1000
Williams	L-17	L-23	Redwood	2000
Williams	L-17	L-93	Mianus	500

 $\sigma_{\textit{loan.number} = \textit{borrower.number}}(\textit{loan} \times \textit{borrower}) =$

customer_name	borrower. loan_number	loan. loan_number	branch_name	amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	L-14	Downtown	1500
Adams	L-16	1, 15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Adams	L-16	L-23	Redwood	2000
Adams	L-16	L-23 L-93	Mianus	500
Curry	L-16 L-93	L-11	Round Hill	900
	L-93		Downtown	
Curry		L-14		1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	D-95	1,-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	L-11		900
Hayes	L-15	L-15	Perryridge	1500
Hayes	D-15	L-16		1300
Hayes	L-15 L-15	L-17		1000
Hayes		L-23		2000
Hayes	L-15	L-93		500
Smith	L-23	L-11	Round Hill	900
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Smith	1.22	1.17	Dotentous	1000
Smith	L-23	L-23	Redwood	2000
Smith	1,-20	1,-93	Manus	500
Williams	L-17	L-11	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
Williams	1-17	1.16	Perryridge	1200
Williams	L-17	L-17	Downtown	1000
Williams	L-17	L-23	Mianus	500
wintams	12-17	1,493	Midnus	500

 σ loan.number = borrower.number \land $\begin{pmatrix} loan \times \\ borrower \end{pmatrix}$ branch_name = Perryridge

customer_name	borrower.	loan. loan number	branch_name	amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	1.11	Dougntourn	1500
Lilama	1.16	1.15	Description	1500
Adams	L-16	L-16	Perryridge	1300
Adams	L-16	1,-17	Donntown	1000
Adams	L-16	L-23	Kedwood	2000
Adams	L-16	L-93	Mianus	500
Curry	L-93	L-11	Round Hill	900
Curry	L-93	L-14	Downtown	1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	L-93	1,-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	Lett		900
Hayes	L-15	L-15	Perryridge	1500
Hayes	1213	1219	renynage	1300
Haves	L-15	1217		1000
Haves	L-15	L-23		2000
Haves	L-15	L-93		500
Smith	L-23	L-11	Round Hill	900
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Smith	L 22	1.17	Dotentous	1000
Smith	L-23	L-23	Redwood	2000
Williams	L-17	L-II	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
MARIN	1.17	L-13	Domeridae	1200
Williams	L-17	L-17	Downtown	1000
rrimants	117	1,-23	Redwood	2000
Williams	L-17	L-93	Mianus	500

```
\pi_{customer\_name}(\sigma \mid loan.number = borrower.number \land (borrower \mid borrower))
branch\_name = Perryridge
```

customer_name
Adams
Hayes

Exemplos de perguntas:

 Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge mas não têm nenhuma conta em nenhuma agência do banco.

- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge mas não têm nenhuma conta em nenhuma agência do banco.
- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge

Exemplos de perguntas:

- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge mas não têm nenhuma conta em nenhuma agência do banco.
- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge

•

```
\pi_{\textit{customer\_name}}(\sigma \mid \textit{loan.number} = \textit{borrower.number} \land (\begin{array}{c} \textit{loan} \times \\ \textit{borrower} \end{array})) \textit{branch\_name} = \textit{Perryridge}
```

Exemplos de perguntas:

- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge mas não têm nenhuma conta em nenhuma agência do banco.
- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge

•

$$\pi_{\textit{customer_name}}(\sigma \mid \textit{loan.number} = \textit{borrower.number} \land (\begin{array}{c} \textit{loan} \times \\ \textit{borrower} \end{array}))$$

$$\textit{branch_name} = \textit{Perryridge}$$

 Encontrar os nomes de todos os clientes que têm uma conta numa agência do banco.

Exemplos de perguntas:

- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge mas não têm nenhuma conta em nenhuma agência do banco.
- Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge

•

```
\pi_{\textit{customer\_name}}(\sigma \mid \textit{loan.number} = \textit{borrower.number} \land ( \mid \textit{borrower} \mid \textit{borrower} \mid)) \textit{branch\_name} = \textit{Perryridge}
```

- Encontrar os nomes de todos os clientes que têm uma conta numa agência do banco.
- π_{customer_name}(depositor)

Encontrar os nomes de todos os clientes que têm um empréstimo na agência Perryridge mas não têm nenhuma conta em nenhuma agência do banco.

```
\pi_{cust\_name}(\sigma \mid loan.num = borrower.num \land (borrower \mid borrower)) - \pi_{cust\_name}(depositor)
branch\_name = Perryridge
```

Encontrar o maior saldo das contas do banco

- Encontrar o maior saldo das contas do banco
- Estratégia:

- Encontrar o maior saldo das contas do banco
- Estratégia:
- Encontrar os saldos que não são o maior

- Encontrar o maior saldo das contas do banco
- Estratégia:
- Encontrar os saldos que não são o maior
- Renomear a relação account por d para que se possa compara cada conta com as outras

- Encontrar o maior saldo das contas do banco
- Estratégia:
- Encontrar os saldos que não são o maior
- Renomear a relação account por d para que se possa compara cada conta com as outras
- Usar a operação diferença de conjuntos para encontrar as contas que não estão no passo anterior.

- Encontrar o maior saldo das contas do banco
- Estratégia:
- Encontrar os saldos que não são o maior
- Renomear a relação account por d para que se possa compara cada conta com as outras
- Usar a operação diferença de conjuntos para encontrar as contas que não estão no passo anterior.
- $\pi_{balance}(account) \pi_{account.balance}(\sigma_{account.balance} < b.balance(account \times \rho_d(account))$

$$r = \begin{bmatrix} A & B \\ a & 1 \\ b & 2 \\ c & 3 \end{bmatrix} r \times \rho_d(r) = \begin{bmatrix} A & B & d.A & d.B \\ a & 1 & a & 1 \\ a & 1 & b & 2 \\ a & 1 & c & 3 \\ b & 2 & a & 1 \\ b & 2 & b & 2 \\ b & 2 & c & 3 \\ c & 3 & a & 1 \\ c & 3 & b & 2 \\ c & 3 & c & 3 \end{bmatrix}$$

	Α	В	d.A	d.B
	а	1	a	1
	а	1	b	2
	а	1	С	3
$r \times \rho_d(r) =$	b	2	a	1
	b	2	b	1 2 3
	b	2	С	3
	С	3	а	1
	С	3	b	1 2 3
	С	3	С	3

$$\sigma_{B < d.B}(r \times \rho_d(r)) = \begin{vmatrix} A & B & d.A & d.B \\ a & 1 & b & 2 \\ a & 1 & c & 3 \\ b & 2 & c & 3 \end{vmatrix}$$

$$\sigma_{B < d.B}(r \times \rho_d(r)) = \begin{vmatrix} A & B & d.A & d.B \\ a & 1 & b & 2 \\ a & 1 & c & 3 \\ b & 2 & c & 3 \end{vmatrix} \pi_{\sigma_{B < d.B}(r \times \rho_d(r))} = \begin{bmatrix} B \\ 1 \\ 2 \end{bmatrix}$$

$$\pi_B(r)) = egin{bmatrix} \mathsf{B} \ 1 \ 2 \ 3 \end{bmatrix} \pi_B(r)) - \pi_{\sigma_{B < d.B}(r \times
ho_d(r))} = egin{bmatrix} \mathsf{B} \ 3 \end{bmatrix}$$

Álgebra Relacional - Definição formal

- Uma expressão básica da álgebra relacional é:
 - Uma relação da base de dados
 - Ou uma relação constante
- Se e₁ e e₂ são expressões da álgebra relacional; as expressões seguintes também são:
 - $e_1 \cup e_2$
 - $e_1 e_2$
 - $e_1 \times e_2$
 - $\sigma_P(e_1)$, P é um predicado sobre atributos de e_1
 - $\pi_{S_1,S_2,...,S_n}(e_1)$, $S_1,S_2,...,S_n$, são atributos de e_1
 - $\rho_X(e_1)$, X é um nome para o resultado de e_1

Álgebra Relacional - Operações adicionais

- Intersecção de conjuntos (Set intersection) ∩
- Junção natural (Natural join) ⋈
- Divisão (Division) ÷
- ullet Afectação (Assignment) \leftarrow

Álgebra Relacional - Intersecção de conjuntos (Set intersection) ∩

- Notação: r ∩ s
- Definição:

$$r \cap s = \{t \mid t \in r \land t \in s\}$$

- Para que a operação possa ser definida é necessário que:
 - r, s tenham a mesma aridade
 - Os atributos de r e s sejam compatíveis
- Nota: $r \cap s = r (r s)$

Álgebra Relacional - Intersecção de conjuntos (Set intersection) ∩

$$r = \begin{bmatrix} A & B \\ \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \end{bmatrix} s = \begin{bmatrix} A & B \\ \alpha & 2 \\ \beta & 3 \end{bmatrix}$$

- Notação: r ⋈ s
- Sejam r e s relações nos esquemas R e S respectivamente.
 r ⋈ s é uma relação no esquema R ∪ S obtida da seguinte forma:
 - Considere os pares de tuplos t_r da relação r e t_s da relação s.
 - Se t_r e t_s tem o mesmo valor em cada um dos atributos de $R \cup S$, adiciona-se o tuplo t ao resultado, com
- Exemplo:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

- Esquema resultado = (A, B, C, D, E)
- $r \bowtie s$ é definido como: $\pi_{(r,A,r,B,r,C,r,D,s,E)}(\sigma_{r,B=s,B}(\sigma_{r,D=s,D}(r \times s)))$

Álgebra Relacional - Operação Junção natural (join) 🛭

Ε

D

$$\bullet \ r = \begin{bmatrix} A & B & C & D \\ \alpha & 1 & \alpha & a \\ \beta & 2 & \gamma & a \\ \gamma & 4 & \beta & b \\ \alpha & 1 & \gamma & a \\ \delta & 2 & \beta & b \end{bmatrix} s = \begin{bmatrix} B & D & E \\ 1 & a & \alpha \\ 3 & a & \beta \\ 1 & a & \gamma \\ 2 & b & \delta \\ 3 & b & \epsilon \end{bmatrix}$$

В

Α

Álgebra Relacional - Operação Divisão ÷

- Notação: r ÷ s
- Usa-se para perguntas com a expressão "para todos"
- Sejam r e s relações nos esquemas R e S respectivamente.
 - $R = (A_1, ..., A_m, B_1, ..., B_n)$
 - $S = (B_1, \ldots, B_n)$
- O resultado de $r \div s$ é uma relação no esquema $R S = (B_1, \dots, B_n)$
- $r \div s = \{t \mid t \in \pi_{R-S}(r) \land \forall u \in s, tu \in r\}$ tu é a concatenação dos tuplos $t \in u$.

Álgebra Relacional - Operação Divisão ÷

Exemplo

$$\bullet \ r = \begin{bmatrix} A & B \\ \alpha & 1 \\ \alpha & 2 \\ \alpha & 3 \\ \beta & 1 \\ \gamma & 1 \\ \delta & 1 \\ \delta & 3 \\ \delta & 4 \\ \epsilon & 6 \\ \epsilon & 1 \\ \beta & 2 \end{bmatrix}$$

Álgebra Relacional - Operação Divisão ÷

	Α	В	C	D	Е
	α	а	α	а	1
	α	а	γ	а	1
	α	а	γ	b	1
• <i>r</i> =	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	а	β	b	1

$$s = \begin{bmatrix} \mathsf{D} & \mathsf{E} \\ \mathsf{a} & 1 \\ \mathsf{b} & 1 \end{bmatrix} r \div s = \begin{bmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} \\ \alpha & \mathsf{a} & \gamma \\ \gamma & \mathsf{a} & \gamma \end{bmatrix}$$

Álgebra Relacional - Operação Divisão ÷

- Propriedade
 - Seja $q = r \div s$
 - Então q é a maior relação que satisfaz $q \times s \subseteq r$
- Definição usando os operadores básicos:

Sejam
$$r(R)$$
 e $s(S)$ relações, e seja $S \subseteq R$
 $r \div s = \pi_{R-S}(r) - \pi_{R-S}((\pi_{R-S}(r) \times s) - \pi_{R-S,S}(r))$

- $\pi_{R-S,S}(r)$ reordena os atributos de r
- $\pi_{R-S}(\pi_{R-S}(r) \times s) \pi_{R-S,S}(r)$ tem os tuplos t pertencentes a $\pi_{R-S}(r)$ tal que para algum tuplo $u \in s$, $tu \notin r$.

Álgebra Relacional - Operação Afectação ←

A operação afectação (temp $\leftarrow e_1$) permite representar as perguntas mais complexas de forma conveniente

- Escrever uma pergunta com uma série de afectações
- Seguida de uma expressão cujo valor é apresentado como resultado da pergunta.
- A Afectação é sempre feita para uma variável de relação temporária.
- O resultado à direita de ← é atribuido à variável de relação do lado esquerdo de ←.
- Pode-se usar a variável em expressões subsequentes.

Exemplo:

- Escrever $r \div s$ como
- $temp_1 \leftarrow \pi_{R-S}(r)$
- $temp_2 \leftarrow \pi_{R-S}(temp_1 \times s) \pi_{R-S,S}(r)$
- $resultado = temp_1 temp_2$

 Encontrar os nomes de todos os cliente que têm um empréstimo e uma conta no banco

- Encontrar os nomes de todos os cliente que têm um empréstimo e uma conta no banco
- depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)

- Encontrar os nomes de todos os cliente que têm um empréstimo e uma conta no banco
- depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)
- $\pi_{customer_name}(borrower) \cap \pi_{customer_name}(depositor)$

 Encontrar o nome de todos os clientes que têm um empréstimo e o valor do empréstimo

- Encontrar o nome de todos os clientes que têm um empréstimo e o valor do empréstimo
- loan (loan_number, branch_name, amount)
 ou emprestimo(emprestimo_numero, agencia_nome,valor)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)

- Encontrar o nome de todos os clientes que têm um empréstimo e o valor do empréstimo
- loan (loan_number, branch_name, amount)
 ou emprestimo(emprestimo_numero, agencia_nome,valor)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)
- $\pi_{customer_name,,amount}(borrower \bowtie loan)$

- Encontrar o nome de todos os clientes que têm um empréstimo e o valor do empréstimo
- loan (loan_number, branch_name, amount)
 ou emprestimo(emprestimo_numero, agencia_nome,valor)
 e borrower (customer_name, loan_number)
 ou credito(cliente_nome, emprestimo_numero)
- $\pi_{customer_name,,amount}(borrower \bowtie loan)$
- $\pi_{customer_name,amount}(\sigma_{borrower.number=loan.number}(borrower imes loan))$

 Encontrar todos os clientes que têm pelo menos uma conta nas agências de Downtown e Uptwon

- Encontrar todos os clientes que têm pelo menos uma conta nas agências de Downtown e Uptwon
- account (account_number, branch_name, balance)
 conta(conta_numero, agencia_nome, saldo)
 e depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)

- Encontrar todos os clientes que têm pelo menos uma conta nas agências de Downtown e Uptwon
- account (account_number, branch_name, balance)
 conta(conta_numero, agencia_nome, saldo)
 e depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)
- $\pi_{customer_name}(\sigma_{branch_name=Downtown}(account \bowtie depositor)) \cap \pi_{customer_name}(\sigma_{branch_name=Uptown}(account \bowtie depositor))$

- Encontrar todos os clientes que têm pelo menos uma conta nas agências de Downtown e Uptwon
- account (account_number, branch_name, balance)
 conta(conta_numero, agencia_nome, saldo)
 e depositor (customer_name, account_number)
 ou depositante(cliente_nome, conta_numero)
- $\pi_{customer_name}(\sigma_{branch_name=Downtown}(account \bowtie depositor)) \cap \pi_{customer_name}(\sigma_{branch_name=Uptown}(account \bowtie depositor))$
- $\pi_{customer_name,branch_name}(account \bowtie depositor) \div \rho_{t(branch_name}(\{("Downtown"), ("Uptown")\})$ Nota: $\{("Downtown"), ("Uptown")\}$ é uma relação constante

 Encontrar todos os clientes que têm uma conta em todas as agências na cidade de Brooklyn.

- Encontrar todos os clientes que têm uma conta em todas as agências na cidade de Brooklyn.
- account (account_number, branch_name, balance) depositor (customer_name, account_number) branch (branch_name, branch_city, assets)

- Encontrar todos os clientes que têm uma conta em todas as agências na cidade de Brooklyn.
- account (account_number, branch_name, balance)
 depositor (customer_name, account_number)
 branch (branch_name, branch_city, assets)
- $\pi_{customer_name,branch_name}(account \bowtie depositor) \div \pi_{branch_name}(\sigma_{branch_city=Brooklyn}(branch))$

Álgebra Relacional - - Operações da Algebra Relacional estendidas

- Operação Projecção Generalizada (Generalized Projection) Π
- ullet Funções de Agregação (Aggregate Functions) ${\cal F}$
- ullet Operação Agregação ${\cal G}$
- Operações Junção exterior (Outer Join) (¬⋈, ⋈¬, ¬⋈¬)

Álgebra Relacional - Projecção generalizada Π

- Estende a operação projecção permitindo o uso de funções aritméticas na lista de atributos da projecção.
 - $\Pi_{F_1,F_2,...,F_n}(e)$
 - e é uma expressão da Álgebra relacional
 - F_1, F_2, \dots, F_n são expressões aritméticas com constantes e atributos do esquema de e, E
- Exemplo:
 - Considere a relação: credit_info(customer_name, limit, credit_balance) ou info_credito(nome_cliente, limite, balanço_credito)
 - encontrar o valor que cada pessoa pode gastar:
 Π_{customer_name,limite_credit_balance}(credit_info)

Álgebra Relacional - Funções de Agregação

- Funções de agregação recebem uma colecção de valores e retornam um único valor
 - avg: valor médio $avg(\{1, 2, 3, 4, 5\}) = 3$
 - min: valor minimo $min(\{1, 2, 3, 4, 5\}) = 1$
 - max: valor máximo $max(\{1, 2, 3, 4, 5\}) = 5$
 - sum: soma dos valores $sum(\{1, 2, 3, 4, 5\}) = 15$
 - count: numero de valores count({1,2,3,4,5}) = 5

Álgebra Relacional - Operação Agregação ${\cal G}$

ullet operação agregação ${\cal G}$

$$g_1,g_2,...,g_n G_{F_1(A_1),F_2(A_2),...,F_m(A_m)}(e)$$

- e é uma expressão da álgebra relacional
- g_1, g_2, \dots, g_n é a lista de atributos onde se pretende agrupar (pode ser vazia)
- F_i é uma função de agregação
- A_i é o nome de um atributo do esquema E

Álgebra Relacional - Operação Agregação Exemplo

$$\bullet \ r = \begin{vmatrix} A & B & C \\ \alpha & \alpha & 7 \\ \alpha & \beta & 7 \\ \beta & \beta & 3 \\ \beta & \beta & 10 \end{vmatrix}$$

•
$$\mathcal{G}_{sum(C)}(r) = \frac{sum(C)}{27}$$

Álgebra Relacional - Operação Agregação Exemplo

Para cada agência indique valor total dos depósitos

	Account_number	Branch_name	Balance
	Perryridge	A - 102	400
• account —	Perryridge	A - 201	900
• account =	Brighton	<i>A</i> − 217	750
	Brighton	<i>A</i> − 215	750
	Redwood	<i>A</i> − 222	700

• $Branch_name \mathcal{G}_{sum(Balance)}(account) =$

Branch_name	sum(Balance)
Perryridge	1300
Brighton	1500
Redwood	700

Álgebra Relacional - Operação Agregação Exemplo

- O resultado da agregação não tem nome
 - Pode-se dar um nome ao resultado
 - i.e Pode-se renomear o resultado na operação agregação

 ${\it Branch_name} {\it G}_{\it sum(Balance)asSum_balance}({\it account}) =$

Branch_name	Sum_balance
Perryridge	1300
Brighton	1500
Redwood	700

Álgebra Relacional - Junção exterior (Outer Join)

- A Junção exterior é uma extensão da operação junção para evitar perder informação.
 - Calcula a junção e adiciona tuplos de uma relação que não encaixam na outra relação
 - Usa valores nulos (null values):
 Nulo (null) significa que o valor é desconhecido ou não existe
 - Todas as comparações que envolvem valores nulos retornam Falso por definição

	Loan_number	$Branch_name$	Amount
a loon —	L-170	L-170 Downtown	
• loan =	L-230	Redwood	4000
	L-260	Perryridge	1700
	L-260	Perryridge	1700

	Customer_name	Loan_number
a harrawar —	Jones	L-170
• borrower =	Smith	L-230
	Hayes	L-155

• loan ⋈ borrower =

Loan_number	Branch_name	Amount	Customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

		Loan_number	$Branch_name$	Amount
•	loan =	L-170	Downtown	3000
		L-230	Redwood	4000
		L-260	Perryridge	1700
		L-200	Perryriage	1700

• Left outer join *loan* ⊐⋈ *borrower* =

Loan_number	$Branch_name$	Amount	Customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

		Loan_number	$Branch_name$	Amount
•	loan =	L-170	Downtown	3000
		L-230	Redwood	4000
		L-260	Perryridge	1700
		L-200	Perryriage	1700

• Rigth outer join *loan* ⋈ borrower =

$Loan_{number}$	$Branch_name$	Amount	Customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

$$\bullet \ \textit{loan} = \begin{array}{|c|c|c|c|c|} \hline Loan_number & Branch_name & Amount \\ \hline L-170 & Downtown & 3000 \\ L-230 & Redwood & 4000 \\ L-260 & Perryridge & 1700 \\ \hline \end{array}$$

	0400011101=1141110	
a horrower —	Jones	L-170
• borrower =	Smith	L-230
	Hayes	L-155

Customer name

• Full outer join *loan* ⊐x□ *borrower* =

$Loan_number$	$Branch_name$	Amount	Customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Loan number

Álgebra Relacional -Valores Nulos (Null Values)

Valores Nulos (Null Values)

- É possivel os tuplos terem valores nulos (null) em alguns dos seus atributos
 null significa que o valor é desconhecido ou que não existe
- O resultado de qualquer operação aritmética que envolva valores null é null.
- As funções de agregação ignoram os valores null (no SQL também)
- Para eliminar duplicados e agrupar o null é tratado como outro valor qualquer (no SQL também)

Álgebra Relacional -Valores Nulos (Null Values)

- As comparações com valores nulos retornam o valor: unknown Se false fosse usado em vez de unknown, então (A < 5) não seria equivalente a $A \ge 5$
- Lógica a três valores o valor unknown:

```
(unknown or true) = true,
OR: (unknown or false) = unknown (unknown or unknown) = unknown
(true and unknown) = unknown,
AND: (false and unknown) = false, (unknown and unknown) = unknown
NOT: (not unknown) = unknown
```

- Em SQL "P is unknown" é verdade (true) se o predicado P é unknown
- Na selecção (σ) quando o resultado do predicado é *unknown* o efeito é igual ao caso em que é *false*.

Álgebra Relacional -Modificação da base de dados

- O conteúdo da base de dados pode ser alterado usando as seguintes operações:
 - Deletion (remover ou apagar)
 - Insertion (inserir)
 - Updating (actualizar)
- Estas operações são representadas usando o operador afectação ←.

Álgebra Relacional - Remover (Deletion)

- Um pedido de remoção representa-se como uma pergunta, mas o seu resultado é a remoção de um conjunto de tuplos de uma tabela da base de dados.
- Só se podem remover tuplos inteiros, não se podem remover valores de alguns atributos
- A remoção representa-se com a seguinte expressão da álgebra relacional:
 - $r \leftarrow r e$
 - onde r é uma relação e e é uma expressão da álgebra relacional.

Álgebra Relacional - Remover: Exemplos

- Remover todas as contas da agência Perryridge.
 - $account \leftarrow account \sigma_{Branch_name = Perryridge}(account)$
- Remover todos empréstimos com o valor entre 0 e 50
 - $loan \leftarrow loan \sigma_{Amount > 0 \land < 50}(loan)$
- Remover todas as contas da agência de Needham.
 - $r_1 \leftarrow \sigma_{Branch_citv=Needham}(account \bowtie branch)$
 - $r_2 \leftarrow \pi_{Account_number,Branch_name,Balance}(r_1)$
 - $r_3 \leftarrow \pi_{Customer_name,Account_number}(r_2 \bowtie depositor)$
 - $account \leftarrow account r2$
 - depositor ← depositor − r3

Álgebra Relacional - Inserção (Insert)

- Para inserir dados numa relação podemos:
 - Especificar o tuplo
 - Ou escrever uma pergunta cujo resultado é o conjunto de tuplos a ser inserido
- Na álgebra relacional, uma inserção exprime-se com a expressão:
 - $r \leftarrow r \cup e$
 - onde r é uma relação e e é uma expressão da álgebra relacional.
- A inserção de um único tuplo obtém-se quando e é uma relação constante com um só tuplo.

Álgebra Relacional - Inserção: Exemplos

- Inserir na base de dados a informação de que o Sr Smith tem 1200 dólares na conta A-973 na agência Perryridge .
 - $account \leftarrow account \cup \{("A 937", "Perryridge", 1200)\}$ • $depositor \leftarrow depositor \cup \{("Smith", "A - 937")\}$
- Ofereça a todos os clientes com empréstimos na agência Perryridge, 200 dólares numa nova conta poupança.
 Considere que o número do empréstimo será o número da nova conta.
 - $r_1 \leftarrow (\sigma_{Branch_name = Perryridge}(borrower \bowtie loan))$
 - $account \leftarrow account \cup \Pi_{Loan_number, Branch_name, 200}(r1)$
 - depositor \leftarrow depositor $\cup \pi_{Customer_name,Loan_number}(r1)$

Álgebra Relacional - Actualização

- A actualização é um mecanismo para alterar um valor num tuplo sem alterar todos os valores do tuplo.
- Usa-se o operador projecção generalizada para a actualização:
 - $r \leftarrow \Pi_{F_1,F_2,...,F_m}(r)$
 - Cada F_i é:
 - o i-ésimo atributo de r se o i-ésimo atributo não é actualizado
 - ou é uma expressão com constantes e atributos de r se o i-ésimo atributo é actualizado

Álgebra Relacional - Actualização: Exemplos

- Faça o pagamento dos juros aumentando 5% em todos os saldos de todas as contas.
 - $account \leftarrow \Pi_{Account_number, Branch_name, Balance*1.05}(r)$
- Pague 6% de juro às contas com um saldo superior a 10.000 e 5% de juro às outras contas.
 - $account \leftarrow \prod_{Account_number, Branch_name, Balance*1.06} (\sigma_{Balance}>_{10000}(r)) \cup \prod_{Account_number, Branch_name, Balance*1.05} (\sigma_{Balance}\leq_{10000}(r))$