

Automazione e Robotica

Laurea Magistrale in Ingegneria Informatica

ES03 - Cinematica dei Robot

Ing. Marco Minelli

Tel. 0522 523531 E-mail: marco.minelli@unimore.it www.arscontrol.org

Introduzione a V-REP

Download:

https://www.coppeliarobotics.com/downloads

Universal Robot UR5

Creazione di un robot

Descrizione manipolatore seriale

Un manipolatore seriale è composto da un insieme di bracci, detti link, connessi tra loro mediante accoppiamenti meccanici, detti giunti.

Parametri DH

Per rappresentare una chain in modo sistematico si posso utilizzare i parametri di Denavit–Hartenberg (parametri DH)

Il Robotics Toolbox permette di descrivere un singolo link con il seguente comando:

```
>> L(1) = Link('d', 0, 'a', 1, 'alpha', 0, 'revolute')
```

Esempio: manipolatore planare a 2 bracci

Link	θ_i	di	ai	α_i	σ_i	
1	q_1	0	1	0	0	
2	q_2	0	1	0	0	

Esempio: manipolatore planare a 2 bracci

Per visualizzare il robot data una certa configurazione:

Costruzione modello UR5

Parametri DH:

	Link 1	Link 2	Link 3	Link 4	Link 5	Link 6
d	0.08915	0.00000	0.00000	0.10915	0.09465	0.08230
a	0.00000	0.42500	0.39225	0.00000	0.00000	0.00000
alpha	1.5707	0.0000	0.0000	1.5707	-1.5707	0.0000

Costruzione modello UR5

Costruzione modello UR5

Cinematica diretta e cinematica inversa

Cinematica diretta

La cinematica diretta permette di esprimere la posa dell'endeffector in funzione delle coordinate dei giunti

$$\begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \quad \Longrightarrow \quad \begin{bmatrix} x \\ R^{3x3} & y \\ z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La posa dell'end-effector ha 6 gradi di libertà, 3 in traslazione e 3 in rotazione, ed è rappresentata con una matrice di trasformazione omogenea, una matrice 4x4.

A partire da un vettore dei giunti q si può calcolare la posa relativa nello spazio cartesiano utilizzando il comando fkine:

Esempio: manipolatore planare a 2 bracci

Esempio: ur5 Matlab

Esempio: ur5 VREP

Cinematica inversa

La cinematica inversa permette di esprimere le coordinate dei giunti in funzione della posa dell'end-effector

$$\begin{bmatrix} R^{3x3} & x \\ y \\ z \\ 0 & 0 & 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

In generale la soluzione della cinematica inversa non è unica e per alcune classi di manipolatori non esiste una soluzione in forma chiusa, rendendo quindi necessaria la ricerca di una soluzione numerica.

Nel caso di un generico robot, per cui sia necessaria la soluzione in forma numerica, si usa la funzione ikine

```
>> q = ikine(robot, T);
```

Esempio: ur5 Matlab

Esempio: ur5 VREP

- >> simulator = UR5VrepSimulator();
- >> simulator.setq(q);

Esercizio Pick&Place semplice

Realizzare un semplice script Matlab in grado di eseguire sul simulatore VREP un semplice Pick&Place aventi i seguenti vincoli

- Punto di Pick: [0.4, 0.6, 0.0] x 5s
- Punto di place: [0.4, 0.0, 0.0] x 3s
- ➤ N° cicli: 5

Prevedere un'altezza di sicurezza (solamente lungo l'asse Z) pari a 0,2 durante i movimenti intermedi tra la posa di Pick e quella di Place.

Tra un movimento e il successivo inserire un tempo di attesa di 1 secondi

Pick&Place workflow

Punto di Pick e punto di Place

Punti di Pick, Pick_sicurezza, Place e Place_sicurezza

Pose

Configurazioni (giunti)

Comando configurazioni temporizzate

Singolarità

Si vuole ora esaminare il comportamento di un robot nel caso in cui la traiettoria che il robot passi per un punto di singolarità; si consideri la traiettoria con i seguenti punti iniziale e finale:

Questa traiettoria descrive un moto lungo l'asse y con l'asse x dell'end-effector orientato in direzione dell'asse z.

Singolarità

Si noti che in prossimità di t = 0.7s gli angoli q4 e q6 hanno delle variazioni repentine, dovute al fatto che q5 in quel tratto della traiettoria diventa quasi nullo provocando quindi l'allineamento del quarto e del sesto asse di rotazione.

Singolarità

- Quando il robot si muove nello spazio dei giunti non è affetto da questo tipo di problemi in quanto, in quel caso, la cinematica inversa non viene utilizzata
- Lavorando nello spazio dei giunti c'è però il problema che la posa del tool non rimane la medesima lungo tutto il percorso ma l'orientamento è garantito solamente agli estremi della traiettoria