M 383: Assignment 3

Nathan Stouffer

Exercises 2.2.4 — Problem 3

Problem. If x is a real number, show that there exists a Cauchy sequence of rationals x_1, x_2, \ldots representing x such that $x_n < x$ for all n.

Proof. Pick $y_1, y_2, ...$ a Cauchy sequence of rationals with $\lim_{k \to \infty} y_k = x$, we know that $\forall n \in \mathbb{N}, \exists m(n) \in \mathbb{N}$ such that $|y - y_k| < 1/n$ for all $k \ge m(n)$. We will then edit the sequence $\{y_k\}$ such that every $y_k < y$ but we will not change the limit x.

First, choose some rational number $q \in \mathbb{Q}$ such that q < y. Then change the first m(1) elements of $\{y_k\}$ to have the value q. Since the sequence is Cauchy, m(1) must be finite so we have just changed a finite number of terms of $\{y_k\}$. Thus, the $\lim_{k\to\infty} y_k$ did not change must still be x.

Next we construct a sequence $\{m_k\}$ where the first m(1) elements are 0, the next m(2) elements are 1, the next m(3) elements are 1/2, the next m(4) elements are 1/3, and so on:

$$0, 0, ..., 0, 1, 1, ..., 1, 1/2, 1/2, ..., 1/2, 1/3, 1/3, ... 1/3, 1/4, ...$$

We can see that $\{m_k\}$ is Cauchy and that $\lim_{k\to\infty} m_k = 0$. This implies that $\lim_{k\to\infty} (y_k - m_k) = x - 0 = x$. However, for each k, we have constructed m_k such that $y_k - m_k < x$. Then let $x_k = y_k - m_k$ and we have a Cauchy sequence of rationals x_1, x_2, \ldots that represents x such that $x_k < x$ for all $k \in \mathbb{N}$.

Exercises 2.2.4 — Problem 7

Problem. Prove that $|x-y| \ge |x| - |y|$ for any real numbers x and y.

Proof. We must show that $|x-y| \ge |x| - |y|$ holds for all real numbers x and y. We take $|x+y| \le |x| + |y|$ (the triangle inequality) to be true. Then let x and y be any real numbers. Certainly it is true that |x| = |x-y+y| since $\mathbb R$ is an ordered field. Also, by the triangle inequality, $|x-y+y| \le |x-y| + |y|$. Since |x-y+y| = |x|, we can say that $|x-y| + |y| \ge |x|$ which we can reorder to be $|x-y| \ge |x| - |y|$. So we have shown the desired inequality for all real numbers x and y.

Exercises 2.3.3 — Problem 1

Problem. Write out a proof that $\lim_{k\to\infty}(x_k+y_k)=x+y$ if $\lim_{k\to\infty}x_k=x$ and $\lim_{k\to\infty}y_k=y$ for sequences of real numbers.

Proof. We want to show (for sequences of real numbers) that the limit of a sum is the same as the sum of the limits. Given that $\lim_{k\to\infty} x_k = x$ and $\lim_{k\to\infty} y_k = y$, we want to show that $\{x_k + y_k\}$ satisfies the Cauchy criterion and converges to x + y.

Saying that $\{x_k\}$ and $\{y_k\}$ have limits is equivalent to saying $\{x_k\}$ and $\{y_k\}$ are Cauchy. We also know the sum of two Cauchy sequences to be Cauchy, so certainly $\{x_k + y_k\}$ is Cauchy.

But what is the limit of $\{x_k+y_k\}$? Let's begin by noting that $\lim_{k\to\infty}x_k=x\implies \forall n, \exists m_a$ such that $|x_a-x|\le 1/2n$ for all $a\ge m_a$. Similarly $\lim_{k\to\infty}y_k=y\implies \forall n, \exists m_b$ such that $|y_b-y|\le 1/2n$ for all $b\ge m_b$. Choose $k=\max\{a,b\}$. Then $|(x_k+y_k)-(x+y)|=|(x_k-x)+(y_k-y)|\le 1/2n+1/2n=1/n$. So x+y satisfies the definition of a limit for the sequence $\{x_k+y_k\}$. Thus the limit of a sum is equal the sum of the limits.

Exercises 2.3.3 — Problem 3

Problem. Let $x_1, x_2, ...$ be a sequence of real numbers such that $|x_n| \le 1/2^n$, and set $y_n = x_1 + x_2 + ... + x_n$. Show that the sequence $y_1, y_2, ...$ converges.

Proof. We must show that y_1, y_2, \ldots converges. To this end, we introduce the following result for any natural number n: $1/2^n = \sum_{k=n+1}^{\infty} 1/2^k$. Let's now prove this result. First note that for some natural number a, $1/2^{a+1} = 1/2 * 1/2^a$. Then for any a, we have

$$1/2^{a} + 1/2^{a+1} + 1/2^{a+2} + \dots = 1/2^{a} + 1/2 + 1/2^{a} + 1/2 + 1/2^{a+1} + \dots = 1/2^{a} + 1/2 + (1/2^{a} + 1/2^{a+1} + \dots)$$

which implies that

$$1/2^a = 1/2*(1/2^a + 1/2^{a+1} + \cdots) = 1/2*1/2^a + 1/2*1/2^{a+1} + \cdots = 1/2^{a+1} + 1/2^{a+2} + \cdots = \sum_{k=a+1}^{\infty} 1/2^k$$

Now to show that $y_1, y_2, ...$ converges, we will show that $y_1, y_2, ...$ is Cauchy. So, given a natural number n, we must show the existence of an index m such that $|y_j - y_k| \le 1/n$ for all $j, k \ge m$. For any index m, we can provide an upper bound for $|y_j - y_k|$ by choosing the largest possible y_j and the smallest possible y_k . Because $1/2^n = \sum_{k=n+1}^{\infty} 1/2^k$ and $x_n \le 1/2^n$, we can say that the largest y_j could be is $y_m + 1/2^m$ and the smallest y_k could be is $y_m - 1/2^m$. Then

$$|y_i - y_k| \le |(y_m + 1/2^m) - (y_k - 1/2^m)| = |2/2^m| = 1/2^{m-1}$$

Choosing m=n, we can say that $1/2^{m-1}=1/2^{n-1}\leq 1/n$ for all n. So there exists an index m such that $|y_i-y_k|\leq 1/n$ for all $j,k\geq m$. Thus y_1,y_2,\ldots satisfies the Cauchy criterion and must also converge.