Una dualidad topológica para conjuntos parcialmente ordenados

Luciano González, Ramon Jansana & Sergio Celani

Universidad Nacional de La Pampa Universitat de Barcelona

LXII Reunión Anual de Comunicaciones Científicas - UMA 2013

Rosario

17-20 de septiembre de 2013

Sea *P* un conjunto parcialmente ordenado (poset).

Definición

Un subconjunto no vacío F de P es llamado un filtro si

- \bullet si $a \le b$ y $a \in F$ entonces, $b \in F$;
- ② si $a, b \in F$ entonces, existe $c \in F$ tal que $c \le a$ y $c \le b$.

 $\mathcal{F}i(P)$ denota la familia de todos los filtros de P.

Espacios de Scott y Espacios sober

Definición

Sea P un poset. La **topología de Scott** sobre el poset P es definida por: un subconjunto U de P es abierto syss

- U es un up-set de P;
- U es inaccesible por supremos dirigidos, esto es, si D es un subconjunto dirigido de P entonces,

$$\bigvee^{\uparrow} D \in U \Longrightarrow D \cap U \neq \emptyset.$$

Definición

Un espacio topológico X es **sober** syss cada subconjunto cerrado irreducible de X es de la forma $\overline{\{x\}}$ para un único punto x.

Espacios de Scott y Espacios sober

Definición

Sea P un poset. La **topología de Scott** sobre el poset P es definida por: un subconjunto U de P es abierto syss

- U es un up-set de P;
- U es inaccesible por supremos dirigidos, esto es, si D es un subconjunto dirigido de P entonces,

$$\bigvee^{\uparrow} D \in U \Longrightarrow D \cap U \neq \emptyset.$$

Definición

Un espacio topológico X es **sober** syss cada subconjunto cerrado irreducible de X es de la forma $\overline{\{x\}}$ para un único punto x.

Dado un poset P consideramos el espacio topológico

$$X_P = \langle \mathcal{F}i(P), \mathcal{T} \rangle$$

donde \mathcal{T} es la topología Scott del poset $\langle \mathcal{F}i(P), \subseteq \rangle$.

 $KOF(X_P)$ denota la familia de todos los filtros abiertos compactos del espacio X_P . Entonces,

$$KOF(X_P) = \{ \varphi_a : a \in P \}$$

donde para cada $a \in P$

$$\varphi_a = \{ F \in \mathcal{F}i(P) : a \in F \}.$$

Proposiciór

 $KOF(X_P)$ es una base del espacio X_P .

Dado un poset P consideramos el espacio topológico

$$X_P = \langle \mathcal{F}i(P), \mathcal{T} \rangle$$

donde \mathcal{T} es la topología Scott del poset $\langle \mathcal{F}i(P), \subseteq \rangle$.

 $KOF(X_P)$ denota la familia de todos los filtros abiertos compactos del espacio X_P . Entonces,

$$KOF(X_P) = \{ \varphi_a : a \in P \}$$

donde para cada $a \in P$

$$\varphi_a = \{ F \in \mathcal{F}i(P) : a \in F \}.$$

Proposiciór

 $KOF(X_P)$ es una base del espacio X_P

Dado un poset P consideramos el espacio topológico

$$X_P = \langle \mathcal{F}i(P), \mathcal{T} \rangle$$

donde \mathcal{T} es la topología Scott del poset $\langle \mathcal{F}i(P), \subseteq \rangle$.

 $KOF(X_P)$ denota la familia de todos los filtros abiertos compactos del espacio X_P . Entonces,

$$KOF(X_P) = \{ \varphi_a : a \in P \}$$

donde para cada $a \in P$

$$\varphi_a = \{ F \in \mathcal{F}i(P) : a \in F \}.$$

Proposición

 $KOF(X_P)$ es una base del espacio X_P .

Representación Topológica

Teorema

La aplicación $\varphi: P \to \langle KOF(X_P), \subseteq \rangle$ dada por

$$\varphi(a) = \varphi_a$$

para cada $a \in P$, es un isomorfismo de orden.

Definición

Un espacio topológico $\langle X, \mathcal{T} \rangle$ es llamado un **P-espacio** si:

- X es sober;
- KOF(X) forman una base del espacio.

Proposición

Un espacio X es un **P**-espacio syss satisface las siguientes condiciones:

- X es un espacio de Scott;
- (2) KOF(X) constituye una base para X; y
- ⑤ Existe el supremo de subconjuntos dirigidos de X (con respecto a orden especialización ⊆).

Definición

Un espacio topológico $\langle X, \mathcal{T} \rangle$ es llamado un **P-espacio** si:

- X es sober;
- KOF(X) forman una base del espacio.

Proposición

Un espacio X es un **P**-espacio syss satisface las siguientes condiciones:

- X es un espacio de Scott;
- KOF(X) constituye una base para X; y
- Sexiste el supremo de subconjuntos dirigidos de X (con respecto a orden especialización □).

Teorema

Sea X un P-espacio. Consideramos el poset $P_X = \langle KOF(X), \subseteq \rangle$. Entonces, la aplicación $\theta: X \to X_{P_X}$ definida por

$$\theta(x) = \{U \in KOF(X) : x \in U\}$$

es un homeomorfismo.

Definimos dos categorías \mathbb{P} y $\mathbb{T}op(P)$ por

- un objeto de P es un poset;
- un morfismo $j: P \to Q$ de \mathbb{P} es una función creciente de P a Q tal que j^{-1} preserva filtros.
- un objeto de la categoría $\mathbb{T}op(P)$ es un P-espacio;
- un morfismo $f: X \to Y$ de $\mathbb{T}op(P)$ es una aplicación tal que f^{-1} preserva filtros abiertos compactos.

Definimos dos categorías \mathbb{P} y $\mathbb{T}op(P)$ por

- un objeto de ℙ es un poset;
- un morfismo j : P → Q de P es una función creciente de P a Q tal que j⁻¹ preserva filtros.
- un objeto de la categoría Top(P) es un P-espacio;
- un morfismo $f: X \to Y$ de $\mathbb{T}op(P)$ es una aplicación tal que f^{-1} preserva filtros abiertos compactos.

Definimos dos categorías \mathbb{P} y $\mathbb{T}op(P)$ por

- un objeto de ℙ es un poset;
- un morfismo j : P → Q de P es una función creciente de P a Q tal que j⁻¹ preserva filtros.
- un objeto de la categoría Top(P) es un P-espacio;
- un morfismo $f: X \to Y$ de $\mathbb{T}op(P)$ es una aplicación tal que f^{-1} preserva filtros abiertos compactos.

Teorema

Las categorías \mathbb{P} y $\mathbb{T}op(P)$ son dualmente equivalentes a través de los funtores:

- **1** $\Gamma: \mathbb{P} \to \mathbb{T}op(P)$ es definido por:
 - $\Gamma(P) = X_P$;
 - Para un morfismo $j: P \to Q$ de la categoría \mathbb{P} , $\Gamma(j): X_Q \to X_P$ es dada por $\Gamma(j) = j^{-1}$.
- ② $\Delta : \mathbb{T}op(P) \to \mathbb{P}$ es definido por:
 - $\Delta(X) = \langle KOF(X), \subseteq \rangle;$
 - Para un morfismo $f: X \to Y$ de la categoría $\mathbb{T}op(P)$, $\Delta(f): KOF(Y) \to KOF(X)$ es dado por $\Delta(f) = f^{-1}$.

Dado un P-espacio X definimos el sistema clausura Fsat(X) generado por OF(X). Esto es, $S \in Fsat(X)$ syss

$$S = \bigcap \{ F \in OF(X) : S \subseteq F \}.$$

$$KOF(X) \subseteq OF(X) \subseteq Fsat(X).$$

Proposición

Dado un P-espacio X definimos el sistema clausura Fsat(X) generado por OF(X). Esto es, $S \in Fsat(X)$ syss

$$S = \bigcap \{F \in OF(X) : S \subseteq F\}.$$

$$KOF(X) \subseteq OF(X) \subseteq Fsat(X)$$
.

Proposición

Dado un P-espacio X definimos el sistema clausura Fsat(X) generado por OF(X). Esto es, $S \in Fsat(X)$ syss

$$S = \bigcap \{F \in OF(X) : S \subseteq F\}.$$

$$KOF(X) \subseteq OF(X) \subseteq Fsat(X)$$
.

Proposición

Dado un P-espacio X definimos el sistema clausura Fsat(X) generado por OF(X). Esto es, $S \in Fsat(X)$ syss

$$S = \bigcap \{F \in OF(X) : S \subseteq F\}.$$

$$KOF(X) \subseteq OF(X) \subseteq Fsat(X)$$
.

Proposición

Definición

Sean P_1, \ldots, P_{n+1} posets con último elemento. Una aplicación $j: P_1 \times \cdots \times P_n \to P_{n+1}$ es **cuasi-monótonas** si es creciente o decreciente en cada argumento.

Definición

Sean $X_1, ..., X_{n+1}$ P-espacios. Una función $f: X_1 \times \cdots \times X_n \to X_{n+1}$ es llamada **fuertemente-continuas** si es continua y preserva la relación «.

donde

$$x \ll y \iff \exists U \in KOF(X) \text{ tal que } y \in U$$

 $\forall V \in KOF(X) (x \in V \Longrightarrow U \subseteq V)$

Definición

Sean $P_1, ..., P_{n+1}$ posets con último elemento. Una aplicación $j: P_1 \times \cdots \times P_n \to P_{n+1}$ es **cuasi-monótonas** si es creciente o decreciente en cada argumento.

Definición

Sean X_1, \ldots, X_{n+1} P-espacios. Una función $f: X_1 \times \cdots \times X_n \to X_{n+1}$ es llamada **fuertemente-continuas** si es continua y preserva la relación \ll .

donde

$$x \ll y \iff \exists U \in KOF(X) \text{ tal que } y \in U$$

 $\forall V \in KOF(X) (x \in V \Longrightarrow U \subseteq V)$

Proposición

Las aplicaciones cuasi-monótonas

$$j: P_1 \times \cdots \times P_n \to P_{n+1}$$

están topologicamente representadas por funciones fuertemente-continuas

$$f: X_1 \times \cdots \times X_n \to X_{n+1}$$

donde cada X_i es el P-espacio dual de P_i .

Referencias

- J. Michael Dunn, Mai Gehrke, Alessandra Palmigiano, Canonical Extensions and Relational Completeness of Some Substructural Logics, The Journal of Symbolic Logic, Vol. 70, No. 3 (2005), pp. 713-740.
- M. A. Moshier and P. Jipsen, Topological duality and lattice expansions Part I: A topological construction of canonical extensions, preprint 2009.
- M. A. Moshier and P. Jipsen, Topological duality and lattice expansions Part I: Lattice expansions with quasioperators, preprint 2009.
- P. T. Johnstone, Stone spaces. Cambridge University Press, Cambridge, 1982.
- S. Vickers, Topology via Logic. Cambridge Tracks in Theoretical Computer Science, 5. Cambridge University Press, Cambridge, 1989.

Muchas Gracias!