

Økt 6 (av 12)

DB1100 Databaser

(Tomas Sandnes / tomas.sandnes@kristiania.no)

Dagens temaer

Dagens tema: Relasjonsmodellen.

Dagens pensum: Læreboka, kapittel 6.

- Relasjonsalgebra
- Sniktitt på modellering
- Repetisjon
- (I øvingstimene etterpå: 2t multiple choice prøve, for egentesting.)

Resultat, forrige Kahoot

- Forrige gang var formen tilbake: Dere slo fjorårets studenter igjen! :-P
 - Stillingen er nå 3-1 i favør dere.

3

Lærdom fra Kahoot

Spm.4: Hvilken forutsetning er korrekt for oppdatering av underliggende data via views?

- A) Viewet kan referere til flere tabeller.(42 svar)
- B) DISTINCT kan være en del av viewet. (8 svar)
- C) GROUP BY eller HAVING kan benyttes i viewet. (23 svar)
- D) Alle elementer i view'ets select-del må være kolonner. (25 svar)

Kanskje ikke "... oppdatering av ..." kom godt nok frem i spm.?

- Vi må kunne finne frem til unike kolonner/celler i de underliggende tabellene for å kunne kjøre oppdateringer gjennom Views.
- Se kap 5.2.4 i pensumboka og slide 18 fra økt 5 (forrige gang).

Lærdom fra Kahoot #2

Sp.m9: Spørringen gir hva slags resultat?

SELECT * FROM city WHERE ID IN(SELECT capital FROM country);

- A) Informasjon om alle hovedsteder. (24 svar)
- B) Informasjon om alle byer som har en ID.(25 svar)
- C) Informasjon om alle land som har en hovedstad.(39 svar)
- D) Informasjon om alle kapitalistiske stater.(5 svar)

Her ga jeg nok litt for knapp tid? Ken tenke meg at 20 sek. ble litt lite for å tenke godt over spørringen. Sorry. :-\

Relasjonsalgebra

Relasjonsalgebra

- Relasjonsalgebra er et teoretisk språk.
 - Definert av Codd.
 - SQL er basert på dette.
- Fra emnebeskrivelsen, læringsutbytte:
 - Etter å ha fullført emnet skal studenten kunne:
 - ... beskrive hva relasjonsalgebra er, og forklare mulighetene det gir ved å benytte begrepene kartesisk produkt, union, snitt og mengde.

Relasjonsalgebra – forts.

- Relasjonsalgebra (og dermed også SQL) har noen viktige prinsipper:
- Resultatet skal dannes uten å endre kildene (SELECT).
- Resultatet skal følge samme format som kildene.
 - Resultatet fra en operasjon kan dermed være kilden til en annen! (Ref. Subqueries senere.)
- Resultatet av en operasjon omtales gjerne som en mengde.

OBS

- Trykkleif, s 143: «(...) ariteten tilsvarer antall tupler.»
- Hva skulle det egentlig ha stått?

format dd-mon-vv

Seleksjon og projeksjon

- En projeksjon av tabellen (relasjonen) R er en mengde bestående av kolonner fra R.
- En seleksjon av tabellen R er en mengde bestående av rader fra R.

Kartesisk produkt

- Kartesisk produkt operasjonen gir som output mengden som kombinerer hver eneste rad ("tuple") i tabell R med hver eneste rad i tabell S.
 - Formel: R x S

Snitt

 Snittet av R og S er definert som mengden som inneholder radene som finnes i både R og S.

Formel: R ∩ S

Union

 Unionen av R og S er definert som mengden som inneholder radene som finnes i R eller S. (Duplikater tas ikke med.)

- Formel: RUS

Union i SQL

Reserverte ord i MySQL:

UNDEFINED
UNDO_BUFFER_SIZE
UNION(R)
UNLOCK (R)
UPDATE (R)
.=.

ACTION
AGAINST
ALL(R)
ANALYSE
ANY

Union i SQL

w3schools:

The SQL UNION Operator

The UNION operator is used to combine the result-set of two or more SELECT statements.

Notice that each SELECT statement within the UNION must have the same number of columns. The columns must also have similar data types. Also, the columns in each SELECT statement must be in the same order.

SQL UNION Syntax

```
SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2;
```

Note: The UNION operator selects only distinct values by default. To allow duplicate values, use the ALL keyword with UNION.

16

Union eksempel

• Navn på land og byer som begynner på bokstavene Ar:

```
SELECT Name
FROM country
WHERE Name LIKE 'Ar%';
```

```
Aruba
Argentina
Armenia
```

```
SELECT Name
FROM city
WHERE Name LIKE 'Ar%';
```

30 rader, deriblant:

Union eksempel

Navn på land og byer som begynner på bokstavene Ar:

```
FROM country
WHERE Name LIKE 'Ar%'
UNION
SELECT Name
FROM city
WHERE Name LIKE 'Ar%';
```


31 rader, deriblant:

Union ALL eksempel

• Navn på land og byer som begynner på bokstavene Ar:

```
SELECT Name
FROM country
WHERE Name LIKE 'Ar%'
UNION ALL
SELECT Name
FROM city
WHERE Name LIKE 'Ar%';
```


33 rader, deriblant:

Hvilke verdier er duplikater?

Kanskje vi kan finne dem ved å ta snittet? (Snitt = INTERSECT)

```
FROM country
WHERE Name LIKE 'Ar%'
INTERSECT
SELECT Name
FROM city
WHERE Name LIKE 'Ar%';
```

Ser ikke lovende ut...

```
SELECT Name
FROM country
WHERE Name LIKE 'Ar%'
INTERSECT
SELECT Name
FROM city
WHERE Name LIKE 'Ar%';
```

INDEKI_HEIHOD	THOTADD	INDIANOL
INT (R)	INT1 (R)	INT2 (R)
INT3 (R)	INT4 (R)	INT8 (R)
INTEGER (R)	INTERVAL (R)	INTO(R)
INVOKER	10	IO_AFTER_GTIDS (R)
IO BEFORE GTIDS (R)	IO THREAD	IPC

Eksempel på variasjon i DBMS'er

• Oracle, <u>reserverte ord</u> (utdrag):

Men vi får det til...

• Vi ønsker altså å finne navnene som forekommer i både land og by.

```
SELECT Name
FROM country
WHERE Name IN (
SELECT Name
FROM city
WHERE Name LIKE 'Ar%');
```

Arnhem Aracaju Arapiraca Araraguara 31+1!=33 Araçatuba AraguaÃna Araras Kan noen forklare? Araguari Arica Land på Ar (3): Arayat Aruba Arrah (Ara) Arak Argentina Ardebil Armenia Arezzo Armenia Arequipa Arecibo Byer på Ar (30): Argenteuil Arad AraÂ'ar → Arusha Ariana Araure Snitt(1): Arkangeli Armavir Name **Arzamas** Armenia Arlington Arlington Arvada Arden-Arcade

Aracaju Arapiraca Araraquara Araçatuba AraguaÃna Araras Araguari Arica Arayat Arrah (Ara) Arak Ardebil Arezzo Armenia Arequipa UNION ALL(33): Arecibo Argenteuil Arad →Ara´ar Arusha Ariana Araure Arkangeli Armavir Arzamas Arlington Arlington Arvada Arden-Arcade 24

Aruba

Argentina

Armenia

Arnhem

Altså...

- Vi har direkte støtte for UNION i (My)SQL. Vi kan benytte UNION ALL hvis vi vil beholde duplikater.
- Vi har ikke noe reservert ord for snitt (INTERSECT) i MySQL, men vi kan finne det i andre DBMSer som f.eks Oracle.
- Men vi kan utføre snitt vha blant annet JOIN og IN. Ta gjerne en titt på EXISTS også...

SQL: Søk over flere tabeller

Hva om vi vil hente ut data fra flere tabeller?

Eier_id	Navn
1	Per Persen
2	Ola Olsen
3	Kari Normann

Bileier

Regnr	Modell	Eier_id
KH22222	Skoda	1
KH33333	Ferrari	NULL
DE22222	Volvo	2

Bil

Jeg vil hente ut bileiers navn + bileiers registrerte biler (registreringsnummer og modell).

Kartesisk produkt

```
SELECT * FROM bileier, bil;
```

Result Grid 1						
	eier_id	navn	regnr	modell	eier_id	
Þ	1	Per Persen	DE22222	Volvo	2	
	2	Ola Olsen	DE22222	Volvo	2	
	3	Kari Normann	DE22222	Volvo	2	
	1	Per Persen	KH22222	Skoda	1	
	2	Ola Olsen	KH22222	Skoda	1	
	3	Kari Normann	KH22222	Skoda	1	
	1	Per Persen	KH33333	Ferrari	NULL	
	2	Ola Olsen	KH33333	Ferrari	NULL	
	3	Kari Normann	KH33333	Ferrari	NULL	

Sniktitt: Modellering

Sniktitt på modellering

- Vi har alt jobbet mot world databasen og dens 3 tabeller (entiteter).
 - Innholdet (attributtene) per tabell er greie: de ser vi i venstrekolonnen i MySQL Workbench.
- Men hvordan ser egentlig koplingene (relasjonene) mellom tabellene ut?
 - Hvilke relasjoner har vi mellom tabellene country, city og countryLanguage?

ER modell

- Vi kan vise modellen som et ER diagram:
- Entity
- Relationship
- Modell laget i Gliffy: https://www.gliffy.com/

30

Neste gang

- Neste gang:
 - Kapittel 7: Datamodellering med ER
 - Vi skal benytte <u>LearnER</u>

Repetisjon

Spm. eller ting dere lurer på?

- Kom gjerne med det nå!
- Evt. kjører jeg det jeg rekker av noen lsides jeg har funnet frem selv.

Database begreper

• SQL (Structured Query Language) er et språk for å kommunisere med relasjons-databaser.

Relasjonsdatabaser – forts.

Relasjonsmodellen: Terminologi

- En relasjon er en tabell med kolonner og rader.
 - En tuppel er et annet navn for en rad i tabellen.
 - En attributt er en navngitt kolonne i tabellen.
 - Et domene er mengden tillatte verdier for et eller flere attributter.
- Vi sier noe om størrelsen til en tabell (relasjon) ut i fra:
 - Graden til en tabell: antall kolonner den inneholder.
 - Kardinaliteten til en tabell: antall rader den inneholder.
- En relasjonsdatabase er en samling relasjoner.
 - Nivået av strukturering angir normaliseringen (kommer tilbake til normalisering på en senere forelesning).

Egenskaper for å være en tabell

- Hver tabell må ha et unikt navn (innenfor denne database / dette schema).
- Hver kolonne må ha et unikt navn (innenfor denne tabell).
 - Verdiene til en kolonne må være fra samme domene.
 - Rekkefølgen på kolonnene kan ikke ha betydning.
- Det skal ikke finnes like rader (alle er unike).
 - Rekkefølgen på radene kan ikke ha betydning.
- Hver celle skal inneholde én gyldig verdi fra kolonnens domene (eller NULL hvis tillatt).

SQL

- select, insert, update, delete, mm
- DDL
- join
- subquery
- datatyper
- funksjoner

Noen SQL funksjoner

SQL har noen innebygde funksjoner, bl.a.:

– COUNT(*)	\rightarrow	antall
AVG(kolonne_navn)	\rightarrow	gjennomsnitt
SUM(kolonne_navn)	\rightarrow	sum
MIN(kolonne_navn)	\rightarrow	minimum
MAX(kolonne navn)	\rightarrow	maksimum

- Det var disse vi var innom først. Men vi har også benyttet:
 - STR_TO_DATE(str, format)
 - DATE_FORMAT(date, format)

Verdien NULL

 NULL representerer en kolonneverdi som ikke er satt for denne raden i tabellen.

MERK:

- NULL er ikke det samme som tallet 0.
- NULL er ikke det samme som en blank/space.

Datatyper

- (Navn og syntaks for datatyper varierer litt fra database til database.)
- MySQL inneholder en rekke datatyper. Blant de vanligere er: char, varchar, int, float, date og enum.
- Fullstendig oversikt (for både MySQL og andre, kjente relasjonsdatabaser) finner dere bl.a. på: <u>SQL datatypes @ w3schools.com</u>.

Nøkler

- Primærnøkkel (PK primary key) er den unike identifikatoren for radene i en tabell. PK kan være sammensatt av flere kolonner.
- Fremmednøkkel (FK foreign key) er en (eller flere) kolonne(r) i en tabell som viser til (har samme verdi som) en primærnøkkel i en annen (evt. samme) tabell.
- (Supernøkler og kandidatnøkler var lesestoff til i dag...)

LEIEKONTR	AKT			
EIENDOMNR	FRADATO	TILDATO	LNR	LEIE
1	01-JUN-05	31-MAY-10	3	6500
1	01-JUN-08		3	7500
2	01-AUG-98	31-JAN-06	4	11000
			<u>FK</u>	
	PK			

Oppgaver (rep)

Eier:

ld	Navn	Adresse	TIf	Epost
1	Ola Olsen	Liksomveien 2	2222222	ola@online.no
2	Ola Olsen	Januarveien 2	33333333	ola@is.com
3	Ina Jensen	Juliveien 3	4444444	ina@is.com

Husdyr:

ld	Dyr	Navn	Eier
1	Katt	Mia	2
2	Hund	Passop	2
3	Papegøye	Polly	1
4	Katt	Kitty	3

- Hvilke tabeller har vi?
- 2. Hvilken kardinalitet og grad har tabellene?
- 3. Hvilke kolonner kan være primærnøkler?
- 4. Hvilke kolonner kan være fremmednøkler?

Oppgaver (rep)

City

	_			
ID	Name	CountryCode	District	Population
1	Kabul	AFG	Kabol	1780000
2	Qandahar	AFG	Qandahar	237500
3	Herat	AFG	Herat	186800
4	Mazar-e	AFG	Balkh	127800
5	Amster	NLD	Noord-H	731200
6	Rotterd	NLD	Zuid-Holl	593321
7	Haag	NLD	Zuid-Holl	440900
8	Utrecht	NLD	Utrecht	234323

Countrylanguage

CountryCode	Language	IsOfficial	Percentage
ABW	Dutch	T	5.3
ABW	English	F	9.5
ABW	Papiamento	F	76.7
ABW	Spanish	F	7.4
AFG	Balochi	F	0.9
AFG	Dari	Т	32.1
AFG	Pashto	Т	52.4
AFG	Turkmenian	F	1.9

Country

Code	Name	Continent	Region	SurfaceArea	IndepYear	Population	LifeExpectancy	GNP	GNPOld	LocalName	GovernmentForm	HeadOfState	Capital	Code2
ABW	Aruba	North America	Caribbean	193.00	NULL	103000	78.4	828.00	793.00	Aruba	Nonmetropolitan T	Beatrix	129	AW
AFG	Afghani	Asia	Souther	652090.00	1919	22720000	45.9	5976.00	NULL	Afganistan/A	Islamic Emirate	Mohammad Omar	1	AF
AGO	Angola	Africa	Central	1246700.00	1975	12878000	38.3	6648.00	7984.00	Angola	Republic	José Eduard	56	AO
AIA	Anguilla	North America	Caribbean	96.00	NULL	8000	76.1	63.20	NULL	Anguilla	Dependent Territor	Elisabeth II	62	AI
ALB	Albania	Europe	Souther	28748.00	1912	3401200	71.6	3205.00	2500.00	Shqipëria	Republic	Rexhep Mejdani	34	AL
AND	Andorra	Europe	Souther	468.00	1278	78000	83.5	1630.00	NULL	Andorra	Parliamentary Copri		55	AD
ANT	Netherl	North America	Caribbean	800.00	NULL	217000	74.7	1941.00	NULL	Nederlandse	Nonmetropolitan T	Beatrix	33	AN

- 1. Hvilke kolonner kan være primærnøkler?
- 2. Hvilke kolonner kan være fremmednøkler?

Select - distinct

- Et select-utvalg for et begrenset antall kolonner kan gi like rader i svaret (fordi unike kolonner for disse radene er fjernet).
- For å fjerne evt. duplikater ved select:

```
SELECT DISTINCT CountryCode
FROM city
ORDER BY CountryCode ASC
```

where

Operatorer:

```
lik (ikke v/wildcards!)
eller != forskjellig fra
mindre enn
større enn
mindre eller lik
større eller lik
```

like	lik, godtar wildcards
in	i gitt utvalg
between	utvalg, følges av and
_	wildcard, enkelt tegn
90	wildcard, flere tegn
is null	evt. is not null

• Logiske operatorer – setter sammen kriterier:

and	og
or	eller
not	ikke

limit

- Begrenser antall rader i resultatet ditt.
- Eksempel:

Jeg vil finne de tre største landene i verden.

order by

- Sorterer utvalget, basert på kolonnenavn.
 - Kan også benytte kolonnenummer, men dette er "deprecated". (← Utgått standard, men fortsatt støttet. ->Vi bruker det altså IKKE...)
- Kan sortere flere kolonner (kommaseparert).
- Rekkefølge styres med asc (ascending stigende) og desc (descending synkende).
 - Uten asc eller desc blir rekkefølgen stigende.

group by og having

- group by lar oss gruppere summerings-resultater til mer enn én rad.
- Summeringsresultater får vi når vi bruker funksjoner som count, sum, avg, ...
- Ønsker vi i tillegg å fjerne rader, bruker vi ikke where, men having.

group by og having – Oppgave!

 Hent ut informasjon om de distriktene som har minst 50 byer. Du kan forutsette at navn på distrikter er unike innenfor et land, men ikke på tvers av land...

Hent ut: Landskode, distriktets navn, antall byer og samlet innbyggertall i byene. Hint: Jeg får 3 rader...

Subqueries

- Som nevnt, er resultatet av en SELECT formatert som en ny tabell:
 - Det danner kolonner og rader på samme måte som databasens eksisterende tabeller.
- Derfor er det ikke noe problem å bruke resultatet av en SELECT som et element i en annen!
- Å putte en SELECT inne i en annen på denne måten kalles en subquery.

Oppgave

 Hent ut navn på alle byer som er hovedsteder (vha subquery). Hint: kolonnen «Capital» i Country-tabellen angir hovedstad...

	ID	Name	CountryCode	District	Population
SELECT name	1	Kabul	AFG	Kabol	1780000
	2	Qandahar	AFG	Qandahar	237500
FROM City	3	Herat	AFG	Herat	186800
WHERE id IN(?);	4	Mazar-e	AFG	Balkh	127800
	5	Amster	NLD	Noord-H	731200
	6	Rotterd	NLD	Zuid-Holl	593321
	7	Haag	NLD	Zuid-Holl	440900
	8	Utrecht	NLD	Utrecht	234323

Code	Name	Continent	Region	SurfaceArea	IndepYear	Population	LifeExpectancy	GNP	GNPOld	LocalName	GovernmentForm	HeadOfState	Capital	Code2
ABW	Aruba	North America	Caribbean	193.00	NULL	103000	78.4	828.00	793.00	Aruba	Nonmetropolitan T	Beatrix	129	AW
AFG	Afghani	Asia	Souther	652090.00	1919	22720000	45.9	5976.00	NULL	Afganistan/A	Islamic Emirate	Mohammad Omar	1	AF
AGO	Angola	Africa	Central	1246700.00	1975	12878000	38.3	6648.00	7984.00	Angola	Republic	José Eduard	56	AO
AIA	Anguilla	North America	Caribbean	96.00	NULL	8000	76.1	63.20	NULL	Anguilla	Dependent Territor	Elisabeth II	62	AI
ALB	Albania	Europe	Souther	28748.00	1912	3401200	71.6	3205.00	2500.00	Shqipëria	Republic	Rexhep Mejdani	34	AL
AND	Andorra	Europe	Souther	468.00	1278	78000	83.5	1630.00	HULL	Andorra	Parliamentary Copri		55	AD
ANT	Netherl	North America	Caribbean	800.00	HULL	217000	74.7	1941.00	NULL	Nederlandse	Nonmetropolitan T	Beatrix	33	AN

Løsning

```
SELECT name
FROM City
WHERE id IN(SELECT capital FROM Country);
```

• Du finner videoer med oppgaver og løsning med subqueries i <u>spillelisten</u> til emnet..

Join

- Hva om vi ønsker å vise både navnet på landet (Country tabellen) og prosent-andelen i landet som snakker spansk (CountryLanguage tabellen) samtidig?
- Dette kan vi få til ved å join'e flere tabeller sammen under spørringen!

Join - forts.

• Eksempel:

```
SELECT Name, Percentage
FROM country

JOIN countrylanguage ON Code = CountryCode
WHERE Language = 'spanish' AND IsOfficial = 'T'
ORDER BY Name;
```

• Denne type join kalles også inner join.

Left Join og Right Join

- (Inner) join tar bare med resultater som matches i alle involverte tabeller.
- Det finnes to andre varianter av join også:
 - Left join og right join (felles kalt outer join).
- Dette er varianter som tar med rader som ikke matches i alle involverte tabeller.

Left Join og Right Join – forts.

• Eks.: Vi ønsker å hente ut landene som begynner på 'An', og byene i dem.

```
select country.Name, city.Name
from Country
join City on Code = CountryCode
where country.Name like 'An%'
order by country.Name;
```

- Men henter denne alle land på 'An%'?
 - Tja, time will show! Eller neste slide da ... :-)

Left Join og Right Join – forts.

- Antarctica mangler, fordi det ikke inneholder noen byer!
 - For å få med Antarctica må vi gjøre en LEFT JOIN: (eller "LEFT OUTER JOIN" om du vil)

SELECT country.Name, city.Name

FROM Country

LEFT JOIN City ON Code = CountryCode

WHERE country.Name like 'An%'

ORDER BY country.Name;

Left Join og Right Join – forts.

- En LEFT JOIN tar med rader fra den første/venstre tabellen (Country) som ikke finnes i den siste/høyre tabellen (City).
- Tilsvarende har vi RIGHT JOIN (eller "RIGHT OUTER JOIN") som tar med rader fra den siste/høyre tabellen som ikke finnes i den første/venstre.
- (Merk: Det finnes andre typer outer join og, men left/right er de vanlige, og de som er viktige (pensum) ifbm. DB1100.)

Join - oversikt

• Disse skal dere kunne:

Vi skriver	Kan også skrives
JOIN	INNER JOIN
LEFT JOIN	LEFT OUTER JOIN
RIGHT JOIN	RIGHT OUTER JOIN

Oppgave (rep)

id	name	email
123	Bart	bart@fox.com
456	Milhouse	milhouse@fox.com
888	Lisa	lisa@fox.com
404	Ralph	ralph@fox.com

id	name	teacher_id	
10001	Computer Science 142	1234	
10002	Computer Science 143	5678	
10003	Computer Science 190M 9012		
10004 Informatics 100		1234	

student_id	course_id	grade	
123	10001	B-	
123	10002	C	
456	10001	B+	
888	10002	A+	
888	10003	A+	
404	10004	D+	
•			

id	name		
1234	Krabappel		
5678	Hoover		
9012	Stepp		
teachers			

students

courses

grades

Hentet fra University of Washington

 Lag en spørring (med join) som henter ut navn på alle lærere og navn på alle kurs de underviser i.

```
SELECT teachers.name, courses.name
FROM teachers LEFT JOIN courses
ON teachers.id = courses.teacher_id;
```

SQL DDL m.m: endring tabeller

- DDL = Data Definition Language. Del av SQL. Vi har følgende SQL kommandoer for å modifisere tabeller:
 - CREATE TABLE
 - ALTER TABLE
 - DROP TABLE
- Og følgende SQL kommandoer for å modifisere innhold: (NB "vanlig" SQL, ikke del av DDL)
 - INSERT INTO
 - UPDATE
 - DELETE FROM

Videre arbeid i dag, og kort om neste gang

- Neste gang, nytt tema: Modellering av databaser (torsdag om 1 uke)
 - "Flipped" struktur, 2t øving 12:15 14:00, 2t teori 14:15 til 16:00.
 - Pensum: Kapittel 7 Datamodellering med ER.
- Snart: 2t multiple choice prøve for å teste deg selv.
 - Finnes på Canvas når øving starter, fasit legges der mot slutten av øvingstiden. (Ingen karakter, skal ikke leveres inn – for å teste deg selv.)
 - Evt. prioriter å jobbe med oppgaver fra tidligere økter.
- NÅ: Kahoot!

Kahoot - hva husker vi fra dagens innhold?

- https://kahoot.it/#/
 - Eller gjerne Kahoot appen for mobil.
- Dagens 12 spm. er hentet fra tidligere eksamener!
- Fortsetter dere å slå fjorårets studenter? :-)
- Fjorårets score: 64,17 %

Overall Performance				
Total correct answers (%)	64,17%			
Total incorrect answers (%)	35,83%			
Average score (points)	7481,00 points			