3、 序列发生器 (第 11 周)

- a) 分别用集成计数器 74161 的同步置"0"和异步清"0"功能实现模 10 计数器,
- 在 Quartus 中进行时序仿真验证,并分析比较两种方法的区别

用 74161 的异步置 0 实现模 10 计数器

列出状态

次数	Qd	Qc	Qb	Qa	CLR
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1

所以需要在 1010 时让 CLR=1 实现异步清零,所以可以得出 $CLR = \overline{Q_dQ_b}$ 所以可以根据 74161 的特性设计出电路图(注意接入使能端等信息):

时序仿真验证如下:

可以看出实现了异步清零的功能,让 Q 在 0 到 9 间切换(其中 10 为暂态),实现了模 10 计数器,但是可以看到最后的时间延迟还是占了一部分,会影响计数器的准确性,而且其他地方也存在部分时间延迟,如图所示:

这里是实现清零的部分, 可以看出清零时间会有延迟

这时其他地方的时间延迟,从 cp 脉冲变化到对应的 Q

变化由-6.777ns 的延迟,十分严重,且不同位数之间也有延迟

用 74161 的同步置 0 实现模 10 计数器(可以在进位的时候实现)

次数	Qd	Qc	Qb	Qa	RCO	LOAD
0	0	1	1	0	0	1
1	0	1	1	1	0	1
2	1	0	0	0	0	1
3	1	0	0	1	0	1
4	1	0	1	0	0	1
5	1	0	1	1	0	1
6	1	1	0	0	0	1
7	1	1	0	1	0	1
8	1	1	1	0	0	1
9	1	1	1	1	1(CP 上)	0

由于是异步置零,所以需要在 ABCD 口接成 0110, 然后在 1111 处于上升沿的时候 触发进位信号, 把进位信号导入 LOAD 里面实现异步清零, 导入 0110 从而实现循环 所以可以根据 74161 的特性设计出电路图(注意接入使能端等信息):

时序仿真验证如下:

可以看出实现了同步清零的功能,让 Q 在 6 到 15 间切换,实现了模 10 计数器,但是可以看到进位时的时间延迟还是占了一部分,会影响计数器的准确性,而且其他地方也存在部分时间延迟,如图所示:

于上升沿, 所以不会造成影响

-这时其他地方的时间延迟,和之前的时延原因相同,且不同位数之

间也有延迟

b) 分别用集成计数器 74161 和 4 位双向移位寄存器 74194 实现图 3.1 所示的环形计数器,电路必须能自启动,并在 Quartus 中进行时序仿真验证 qx ПППП

可以绘制出状态转换表为:

CTK
Q _A
Q _B
Q _c
Q _D

QAn	QBn	QCn	QDn	CLK	QAn+1	QBn+1	QCn+1	QDn+1
1	0	0	0	cp 上升	0	1	0	0

0	1	0	0	cp 上升	0	0	1	0
0	0	1	0	cp 上升	0	0	0	1
0	0	0	1	cp 上升	1	0	0	0

对于 74161 来说,要通过组合逻辑电路来实现环形计数器,且采用同步清零法 为实现自启动,当 Qb,Qa=1 的时候在下一个上升沿归为 0000,从而是实现自启动

Qd	Qc	Qb	Qa	QA	QB	QC	QD
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	0	0	1	0
0	0	1	1	0	0	0	1

所以可以绘制出卡诺图:

QA:

QdQc/QbQa	00	01	11	10
00	/1	0	0	0
01	无意义	无意义	无意义	无意义
11	无意义	无意义	无意义	无意义
10	无意义	无意义	无意义	无意义

 $\overline{Q_A}=\overline{Q_a}~\overline{Q_b}$

QB:

QdQc/QbQa	00	01	11	10
00	0	/1	0	0
01	无意义	无意义	无意义	无意义
11	无意义	无意义	无意义	无意义
10	无意义	天意义	无意义	无意义

 $\overline{Q_B}=Q_a\,\overline{\overline{Q_b}}$

QD:

QdQc/QbQa	00	01	11	10
00	0	0	1	0
01	无意义	无意义	无意义	无意义
11	无意义	无意义	无意义 /	无意义
10	无意义	无意义	天意义	无意义

 $Q_D=Q_aQ_b$

QC:

QdQc/QbQa	00	01	11	10
00	0	0	0	<u>/</u>
01	无意义	无意义	无意义	无意义
11	无意义	无意义	无意义	无意义 /
10	无意义	无意义	无意义	天意义

 $Q_C=\overline{Q_a}Q_b$

所以可以画出电路图如下:

时序仿真结果如下:

可以看出还是会出现时延现象

对于 4 位双向移位寄存器 74194 来说:

СР	CR 非	S1	S0	Dsr	功能	QA	QB	QC	QD
上升	1	0	1	0	右移	1	0	0	0
上升	1	0	1	0	右移	0	1	0	0
上升	1	0	1	0	右移	0	0	1	0
上升	1	0	1	1	右移	0	0	0	1

显然 Dsr=QD

为了实现自启动,可以让当 QD=1 时或者(QA+QB+QC+QD)非=1 时,置数为 1000,然后保持右移,这时分为两种情况,如果 QABQBQCQD 中存在 1 时,由于右移 QD 一定会出现一,这时会置数为 1000,如果全是 0,则直接置数为 0001

СР	CR 非	S1	S0	Dsr	功能	QA	QB	QC	QD
上升	1	0	1	0	右移	1	0	0	0
上升	1	0	1	0	右移	0	1	0	0
上升	1	0	1	0	右移	0	0	1	0
上升	1	1	1	0	置数	0	0	0	1

所以可以画出电路图如下

时序仿真结果如下:

- c) 完成两种方法实现序列发生器的设计方案,包含详细的设计过程和电路原理图
- d) 完成两种方案序列发生器的硬件电路搭接
- 4、 4 位并行输入-串行输出曼切斯特编码电路(第 12 周)
- a) 完成 4 位并行输入-串行输出曼切斯特编码设计方案、包含详细的设计过程和 电路原理图
 - b) 自行设计合理的电路验证方案
 - c) 完成 4 位并行输入-串行输出曼切斯特编码硬件电路搭接

三、实验内容

2、 序列发生器 (第 11 周课内验收)

分别用 MSI 计数器和移位寄存器设计一个具有自启动功能的 101001 序列信号发生器

(1) 写出设计过程,画出电路逻辑图

用 MSI 计数器实现 101001 序列信号发生器:

先画出 74161 的状态图,由题意可得应该是模 6 计数器

Qd	Qc	Qb	Qa	Q
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1

应该采用模 6 同步置 0 计数器, 所以采用 000-101 这六个状态 画出卡诺图如下

Qc\QbQa	00	01	11	10
0	0 /	1	0	0
1	1	1	无意义	无意义

所以可以得出卡诺图为 $Q = \overline{Q_b}Q_a + Q_c = \overline{\overline{Q_b}Q_a}\overline{Q_c}$

而由于当 QcQa=1 时会同步置零,所以能够自启动 画出电路图如下:

仿真结果如下:

符合预期的 010011, 即是 101001 的变种

但是可以引入74138来简化设计,

Qd	Qc	Qb	Qa	Q
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1

重新设计电路图如下:

仿真结果如下:

	Name	Value at 16.65 ns	0 ps 16.65 ns	160. ₀ ns	320.0 ns	480.0 ns	640.0 ns	800.0 ns	960.0 ns
₽ 0	CP	A 1	Jum	mmmm	nnnnnn			mmmm	
◎ 1	Q	A 0	H						

基本符合预期结果 绘制电路图如下:

电路预搭建如下:

用移位寄存器实现 101001 序列信号发生器:

由于位数为 6, 所以可以用 3 位寄存器实现,但是为了方便可以用 4 位来实现,具体考虑如下,首先是要实现 101001 的输出,但是可以用寄存器的置数功能先记忆一部分,然后再不断移位,为了方便可以把原式转化为 1101 然后 0110,0011,0001,0000,1000,

当进入 1000 时,直接置数 1011,当满足 Q=0000 时,SR=1 其余时候 SR=0。这样可以实现自启动,由于 SR=0,所以 Q 一定会转化为 0000,然后变成 1000,最后是实现置数

操作	QD	QC	QB	QA	SR	S1
右移	1	0	1	1	0	0
右移	0	1	0	1	0	0
右移	0	0	1	0	0	0
右移	0	0	0	1	0	0
右移	0	0	0	0	1	0
置数	1	0	0	0	0	1

但是实际操作发现由于我们使用与非门,只要存在 0 很容易误判为 1,所以更改为以下表格的形式为:

 D = 4/3.							
操作	QD	QC	QB	QA	SL	S0	
左移	0	0	1	0	1	0	
左移	1	0	0	1	1	0	
左移 左移	1	1	0	0	1	0	
左移 左移	1	1	1	0	1	0	
左移	1	1	1	1	0	0	
置数	0	1	1	1	1	1	

所以可以列出表达式

$$S0 = \overline{\overline{Q_A Q_B Q_C \overline{Q_D}}} \ SL = \overline{Q_A Q_B Q_C Q_D}$$

所以可以画出电路图如下:

仿真结果如下:

可以绘制电路图如下:

预搭建结果如下:

- (2) 搭接电路,并用单脉冲静态验证实验结果
- (3) 加入 TTL 连续脉冲,用示波器观察观察并记录时钟脉冲 CLK、序列输出端的波形。