Insoon Yang

Department of Electrical and Computer Engineering Seoul National University

Review: Max-entropy stochastic control

$$\max_{\pi} \mathbb{E}^{\pi} \left[\sum_{t} [r(s_t, u_t) + \alpha \underbrace{H(\pi_t(\cdot|s_t))]}_{\text{entropy of } \pi} \right]$$

Review: Max-entropy stochastic control

$$\max_{\pi} \mathbb{E}^{\pi} \left[\sum_{t} [r(s_{t}, u_{t}) + \alpha \underbrace{H(\pi_{t}(\cdot|s_{t}))}_{\text{entropy of } \pi}] \right]$$

Bellman equation:

$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s'}[V^*(s')]$$
$$V^*(s) = \alpha \log \int \exp\left(\frac{1}{\alpha}Q^*(s, a)\right) da$$

Review: Max-entropy stochastic control

$$\max_{\pi} \mathbb{E}^{\pi} \left[\sum_{t} [r(s_{t}, u_{t}) + \alpha \underbrace{H(\pi_{t}(\cdot|s_{t}))]}_{\text{entropy of } \pi} \right]$$

Bellman equation:

$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s'}[V^*(s')]$$
$$V^*(s) = \alpha \log \int \exp\left(\frac{1}{\alpha}Q^*(s, a)\right) da$$

Optimal policy:

$$\pi^*(a|s) = \exp\left(\frac{1}{\alpha}[Q^*(s,a) - V^*(s)]\right)$$

Exploration

- Exploration
- Sample efficiency

- Exploration
- Sample efficiency
- Stable convergence

- Exploration
- Sample efficiency
- Stable convergence
- Little hyperparameter tuning

- Exploration
- Sample efficiency
- Stable convergence
- Little hyperparameter tuning
- Q) Can we use max-entropy method in RL to have all the desired features?

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Tuomas Haarnoja 1 Aurick Zhou 1 Pieter Abbeel 1 Sergey Levine 1

Idea:

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Tuomas Haarnoja 1 Aurick Zhou 1 Pieter Abbeel 1 Sergey Levine 1

Idea:

Max-entropy + off-policy actor-critic

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Tuomas Haarnoja 1 Aurick Zhou 1 Pieter Abbeel 1 Sergey Levine 1

Idea:

Max-entropy + off-policy actor-critic

Advantages:

- Exploration
- Sample efficiency
- Stable convergence
- Little hyperparameter tuning

Q) What's the idea of policy iteration?

- Q) What's the idea of policy iteration?
 - Soft policy evaluation: Evaluate Q^{π}

- Q) What's the idea of policy iteration?
 - Soft policy evaluation: Evaluate Q^{π}
 - $\textbf{ Soft policy improvement:} \\ \textbf{ Update } \pi$

- Q) What's the idea of policy iteration?
 - Soft policy evaluation: Evaluate Q^{π}
 - $\textbf{ Soft policy improvement:} \\ \textbf{ Update } \pi$

- Q) What's the idea of policy iteration?
 - Soft policy evaluation: Evaluate Q^{π}
 - $\textbf{ § Soft policy improvement:} \\ \textbf{Update } \pi$
 - It's just a max-entropy variant of standard PI

Soft policy evaluation

• Modified Bellman operator:

$$T^\pi Q(s,a) := r(s,a) + \gamma \mathbb{E}_{s'}[V(s')],$$
 where $V(s) := \mathbb{E}_{a \sim \pi(\cdot|s)} \big[Q(s,a) \underbrace{-\log \pi(a|s)}_{\text{takes into account entropy}} \big]$

Soft policy evaluation

Modified Bellman operator:

$$T^\pi Q(s,a) := r(s,a) + \gamma \mathbb{E}_{s'}[V(s')],$$
 where $V(s) := \mathbb{E}_{a \sim \pi(\cdot \mid s)} \big[Q(s,a) \underbrace{-\log \pi(a \mid s)}_{\text{takes into account entropy}} \big]$

• Repeatedly apply T^{π} to Q_k :

$$Q_{k+1} \leftarrow T^{\pi}Q_k$$

Soft policy evaluation

Modified Bellman operator:

$$T^{\pi}Q(s,a):=r(s,a)+\gamma\mathbb{E}_{s'}[V(s')],$$
 where $V(s):=\mathbb{E}_{a\sim\pi(\cdot|s)}\big[Q(s,a)\underbrace{-\log\pi(a|s)}_{\text{takes into account entropy}}\big]$

• Repeatedly apply T^{π} to Q_k :

$$Q_{k+1} \leftarrow T^{\pi}Q_k$$

• Result: Q_k converges to Q^{π} !

• If no constraint on policies,

$$\pi_{new}(a|s) := \exp\left(\frac{1}{\alpha}[Q^{\pi_{old}}(s,a) - V^{\pi_{old}}(s)]\right)$$

• If no constraint on policies,

$$\pi_{new}(a|s) := \exp\left(\frac{1}{\alpha}[Q^{\pi_{old}}(s, a) - V^{\pi_{old}}(s)]\right)$$

ullet When constraints need to be satisfied (i.e., $\pi\in\Pi$),

• If no constraint on policies,

$$\pi_{new}(a|s) := \exp\left(\frac{1}{\alpha}[Q^{\pi_{old}}(s, a) - V^{\pi_{old}}(s)]\right)$$

• When constraints need to be satisfied (i.e., $\pi \in \Pi$), Information projection:

$$\pi_{new}(\cdot|s) \in \mathop{\arg\min}_{\pi'(\cdot|s) \in \Pi} D_{KL}\bigg(\pi'(\cdot|s) \parallel \underbrace{\exp\bigg(\frac{1}{\alpha}[Q^{\pi_{old}}(s,\cdot) - V^{\pi_{old}}(s)]\bigg)}_{\text{target policy}}\bigg)$$

• If no constraint on policies,

$$\pi_{new}(a|s) := \exp\left(\frac{1}{\alpha}[Q^{\pi_{old}}(s, a) - V^{\pi_{old}}(s)]\right)$$

• When constraints need to be satisfied (i.e., $\pi \in \Pi$), Information projection:

$$\pi_{new}(\cdot|s) \in \mathop{\arg\min}_{\pi'(\cdot|s) \in \Pi} D_{KL}\bigg(\pi'(\cdot|s) \parallel \underbrace{\exp\bigg(\frac{1}{\alpha}[Q^{\pi_{old}}(s,\cdot) - V^{\pi_{old}}(s)]\bigg)}_{\text{target policy}}\bigg)$$

• Result: Monotonic improvement on policy! $(\pi_{new}$ better than $\pi_{old})$

• Soft PI: max-entropy variant of PI

- Soft PI: max-entropy variant of PI
- Soft actor-critic (SAC): max-entropy variant of actor-critic

- Soft PI: max-entropy variant of PI
- Soft actor-critic (SAC): max-entropy variant of actor-critic
 - Soft critic: evaluates soft Q-function Q_{ϕ} of policy π

- Soft PI: max-entropy variant of PI
- Soft actor-critic (SAC): max-entropy variant of actor-critic
 - Soft critic: evaluates soft Q-function Q_{ϕ} of policy π
 - Soft actor: improves max-entropy policy using critic's evaluation

Critic: evaluates soft Q-function Q_ϕ of policy π

Critic: evaluates soft Q-function Q_ϕ of policy π

Q) How?

Critic: evaluates soft Q-function Q_ϕ of policy π

Q) How?

 $Idea: \ DQN + Max\text{-entropy}$

Critic: evaluates soft Q-function Q_ϕ of policy π

Q) How?

 $Idea: \ DQN + Max\text{-entropy}$

• Training soft Q-function:

Critic: evaluates soft Q-function Q_ϕ of policy π

Q) How?

Idea: DQN + Max-entropy

Training soft Q-function:

$$\min_{\phi} \ J_Q(\phi) := \mathbb{E}_{(s_t,a_t)} \bigg[\frac{1}{2} (Q_\phi(s_t,a_t) - \underbrace{[r(s_t,a_t) + \gamma \mathbb{E}_{s_{t+1}}[V_{\phi^-}(s_{t+1})]}_{=:y_t^- \ \text{target}})^2 \bigg]$$

Critic: evaluates soft Q-function Q_ϕ of policy π

Q) How?

Idea: DQN + Max-entropy

Training soft Q-function:

$$\min_{\phi} \ J_Q(\phi) := \mathbb{E}_{(s_t,a_t)} \bigg[\frac{1}{2} (Q_{\phi}(s_t,a_t) - \underbrace{[r(s_t,a_t) + \gamma \mathbb{E}_{s_{t+1}}[V_{\phi^-}(s_{t+1})]}_{=:y_t^- \ \text{target}})^2 \bigg]$$

Stochastic gradient:

Critic: evaluates soft Q-function Q_ϕ of policy π

Q) How?

Idea: DQN + Max-entropy

Training soft Q-function:

$$\min_{\phi} \ J_Q(\phi) := \mathbb{E}_{(s_t, a_t)} \bigg[\frac{1}{2} (Q_{\phi}(s_t, a_t) - \underbrace{[r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}}[V_{\phi^-}(s_{t+1})]}_{=:y_t^- \ \text{target}})^2 \bigg]$$

Stochastic gradient:

$$\begin{split} \hat{\nabla}_{\phi} \ J_{Q}(\phi) &= \nabla_{\phi} Q_{\phi}(s_{t}, a_{t}) \times \\ & \left[Q_{\phi}(s_{t}, a_{t}) - \left[r(s_{t}, a_{t}) + \gamma \underbrace{\left(Q_{\phi^{-}}(s_{t+1}, a_{t+1}) - \alpha \log(\pi_{\theta}(a_{t+1}|s_{t+1}) \right)}_{\text{sample estimate of } \mathbb{E}_{s_{t+1}}[V_{\phi^{-}}(s_{t+1})] \right] \end{split}$$

Actor: updates policy using critic's evaluation

Actor: updates policy using critic's evaluation

Q) How?

Actor: updates policy using critic's evaluation

Q) How?

Idea: Policy gradient + Max-entropy:

Actor: updates policy using critic's evaluation

Q) How?

Idea: Policy gradient + Max-entropy:

Minimizing the expected KL-divergence:

$$\min_{\theta} D_{KL} \bigg(\pi_{\theta}(\cdot | s_t) \parallel \underbrace{\exp \left(\frac{1}{\alpha} [Q_{\phi}(s_t, \cdot) - V_{\phi}(s_t)] \right)}_{\text{target policy}} \bigg),$$

Actor: updates policy using critic's evaluation

Q) How?

Idea: Policy gradient + Max-entropy:

• Minimizing the expected KL-divergence:

$$\min_{\theta} D_{KL}\bigg(\pi_{\theta}(\cdot|s_t) \parallel \underbrace{\exp\left(\frac{1}{\alpha}[Q_{\phi}(s_t,\cdot) - V_{\phi}(s_t)]\right)}_{\text{target policy}}\bigg),$$

which is equivalent to

$$\min_{\theta} J_{\pi}(\theta) := \mathbb{E}_{s_t} \big[\mathbb{E}_{a_t \sim \pi_{\theta}(\cdot|s_t)} [\alpha \log \pi_{\theta}(a_t|s_t) - Q_{\phi}(s_t, a_t)] \big]$$

• Reparameterize the policy as

$$a_t := f_{\theta}(\epsilon_t; s_t),$$

where ϵ_t is an input noise with some fixed distribution (e.g., Gaussian)

• Reparameterize the policy as

$$a_t := f_{\theta}(\epsilon_t; s_t),$$

where ϵ_t is an input noise with some fixed distribution (e.g., Gaussian)

Benefit: lower variance

• Reparameterize the policy as

$$a_t := f_{\theta}(\epsilon_t; s_t),$$

where ϵ_t is an input noise with some fixed distribution (e.g., Gaussian)

- Benefit: lower variance
- Rewrite the policy optimization problem as

$$\min_{\theta} J_{\pi}(\theta) := \mathbb{E}_{s_t, \epsilon_t} \left[\alpha \log \pi_{\theta}(f_{\theta}(\epsilon_t; s_t) | s_t) - Q_{\phi}(s_t, f_{\theta}(\epsilon_t; s_t)) \right]$$

• Reparameterize the policy as

$$a_t := f_{\theta}(\epsilon_t; s_t),$$

where ϵ_t is an input noise with some fixed distribution (e.g., Gaussian)

- Benefit: lower variance
- Rewrite the policy optimization problem as

$$\min_{\theta} J_{\pi}(\theta) := \mathbb{E}_{s_t, \epsilon_t} \left[\alpha \log \pi_{\theta}(f_{\theta}(\epsilon_t; s_t) | s_t) - Q_{\phi}(s_t, f_{\theta}(\epsilon_t; s_t)) \right]$$

Stochastic gradient:

$$\hat{\nabla}_{\theta} J_{\pi}(\theta) = \nabla_{\theta} \alpha \log \pi_{\theta}(a_t | s_t) + [\nabla_a \alpha \log \pi_{\phi}(a_t | s_t) - \nabla_a Q_{\phi}(s_t, a_t)] \nabla_{\theta} f_{\theta}(\epsilon_t; s_t),$$

where a_t is evaluated at $f_{\theta}(\epsilon_t; s_t)$

Putting everything together: Soft Actor-Critic (SAC)

Algorithm 1 Soft Actor-Critic

Output: θ_1, θ_2, ϕ

```
Input: \theta_1, \theta_2, \phi
                                                                                                                                       ▶ Initial parameters
\theta_1 \leftarrow \theta_1, \theta_2 \leftarrow \theta_2

 ▷ Initialize target network weights

 \mathcal{D} \leftarrow \emptyset
                                                                                                                ▶ Initialize an empty replay pool
for each iteration do
       for each environment step do
             \mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t|\mathbf{s}_t)
                                                                                                                 ▶ Sample action from the policy
             \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)
                                                                                                ▶ Sample transition from the environment
             \mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_t, \mathbf{a}_t, r(\mathbf{s}_t, \mathbf{a}_t), \mathbf{s}_{t+1})\}

 Store the transition in the replay pool

       end for
       for each gradient step do
             \theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
                                                                                                          ▶ Update the Q-function parameters
             \phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)

 □ Update policy weights

             \alpha \leftarrow \alpha - \lambda \hat{\nabla}_{\alpha} J(\alpha)

 Adjust temperature

             \bar{\theta}_i \leftarrow \tau \theta_i + (\tilde{1} - \tau) \bar{\theta}_i for i \in \{1, 2\}
                                                                                                                ▶ Update target network weights
       end for
end for
```

> Optimized parameters

Results

 Soft actor-critic (blue and yellow) performs consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging tasks.

Dynamixel Claw task from vision

- The robot must rotate the valve so that the colored peg faces the right.
- The video embedded in the bottom right corner shows the frames as seen by the policy

Testing robustness of the learned policy against visual perturbations

 The robot must rotate the valve so that the colored peg faces the right.

Train the Minitaure robot to walk in 2 hours

Which algorithm should I use?

Which algorithm should I use?

Guideline from Sergey Levine (UC Berkeley)

