ADAPTIVE FILTER MODEL OF THE CEREBELLUM WITH MULTIPLE MODELS (for sound source localisation)

Mark Baxendale
School of mathematics, Computer Science and
Engineering, Liverpool Hope University

Cerebellum

Densely populated part of the hindbrain of vertebrates

Highly regular structure

Appears to take part in a wide range of functions

Determined by connectivity

e.g. fine-tuning of motor control; providing a subconscious sense of agency and self

Analysis-synthesis

Mossy fibressensory input

Analysed into many parallel fibres

<u>Dean P, Porrill J. Evaluating the adaptive-filter model of the cerebellum. The Journal of physiology. 2011;589(14):3459-70.</u>

Analysis-synthesis

Synthesised at PF-PC synapses

Dean P, Porrill J. Evaluating the adaptive-filter model of the cerebellum. The Journal of physiology. 2011;589(14):3459-70.

Climbing fibres update PF-PC synapses

$$\Delta w_i = -\beta e p_i$$

<u>Dean P, Porrill J. Evaluating the adaptive-filter model of the cerebellum. The Journal of physiology. 2011;589(14):3459-70.</u>

Basis filters

Rich analysis of inputs

E.g. progressive delays convey historical behaviour-predictive

<u>Dean P, Porrill J. Evaluating the adaptive-filter model of the cerebellum. The Journal of physiology. 2011;589(14):3459-70.</u>

Sound source localisation (SSL)

The problem(s)

SSL estimate error introduced by environmental acoustics, in non-systematic way

(Cerebellar calibration-learn the error at each azimuth)

Different environments-> different errors

(multiple models)

SSL calibration

SSL algorithm generates estimate (with error)

Adaptive filter model of the cerebellum learns error in azimuth estimate

SSL calibration

Responsibility signals

3 different acoustic contexts

RE determines responsibility based on feedback after action

Sound, source

Microphones

PTU

Bibliography

Bodznick D, Montgomery J. Evolution of the Cerebellar Sense of Self. Oxford: Oxford University Press; 2016.

Dean P, Porrill J. Evaluating the adaptive-filter model of the cerebellum. The Journal of physiology. 2011;589(14):3459-70.

Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Networks. 1998;11(7–8):1317-29.

Baxendale MD, Pearson MJ, Nibouche M, Secco EL, Pipe AG. Audio Localization for Robots Using Parallel Cerebellar Models. IEEE Robotics and Automation Letters. 2018;3(4):3185-92.

M. D. Baxendale, M. J. Pearson, M. Nibouche, E. L. Secco, and A. G. Pipe, Feed-forward selection of cerebellar models for calibration of robot sound source localization, Biomimetic and Biohybrid Systems: 8th International Conference, Living Machines 2019.