

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

	•	
Nazwa przedmiotu	Kod ECTS	
Inteligencja obliczeniowa (Z)	11.3.2112	
Nazwa jednostki prowadzącej przedmiot		
Instytut Informatyki		
Studia		

wydział	kierunek	poziom	drugiego stopnia
Wydział Matematyki,	Informatyka	forma	niestacjonarne (zaoczne)
Fizyki i Informatyki		moduł	wszystkie
		specjalnościowy	WSZYSINIE

specjalizacja wszystkie

Nazwisko osoby prowadzącej (osób prowadzących)

mgr Grzegorz Madejski

Formy zajęć, sposób ich realizacji i przypisana im liczba godzin	Liczba punktów ECTS
Formy zajęć	7
Wykład, Ćw. laboratoryjne	Udział w zajęciach dydaktycznych, objętych planem
Sposób realizacji zajęć	studiów: 40h.
zajęcia w sali dydaktycznej	Praca własna studenta: 135h.
Liczba godzin	RAZEM: 175h.
Wykład: 20 godz., Ćw. laboratoryjne: 20 godz.	

Termin realizacji przedmiotu

2023/2024 zimowy	
Status przedmiotu	Język wykładowy
obowiązkowy	polski
Metody dydaktyczne	Forma i sposób zaliczenia oraz podstawowe kryteria oceny lub
- Dyskusja	wymagania egzaminacyjne
	Sposób zaliczenia
- Metoda projektów (projekt badawczy, wdrożeniowy,	Egzamin
praktyczny)	
- Projektowanie doświadczeń	Formy zaliczenia
- Rozwiązywanie zadań	- wykonanie pracy zaliczeniowej - projekt lub prezentacja

- Wykład z prezentacją multimedialną

- Wykonywanie doświadczeń

- ogzamin nisomny tostowy
- egzamin pisemny testowy
- ustalenie oceny zaliczeniowej na podstawie ocen cząstkowych otrzymywanych w trakcie trwania semestru
- wykonanie pracy zaliczeniowej przeprowadzenie badań i prezentacja ich wyników

Podstawowe kryteria oceny

Na ocenę z przedmiotu składa się praca własna studenta na laboratoriach (rozwiązywanie zadań i wykonanie projektów) oraz egzamin pisemny z wykładu.

Sposób oceniania (składowe)	Próg zaliczeniowy	Składowa oceny końcowej		
Rozwiązywanie zadań (laboratoria)	50%	25%		
Wykonanie projektów (laboratoria)	50%	50%		
Egzamin (wykład)	50%	25%		

Sposób weryfikacji założonych efektów uczenia się

zakładany efekt kształcenia	egzamin	kolokwium	projekt	sprawdzian	referat	raport	aktywność w dyskusji	obserwacja post awy i umiejętności
	Wiedza							
K_W05	Х							
P_W01	Х							
P_W02	Х							
P_W03	Х							
	Umiejętności							
K_U06			Х					
P_U01			Х					
P_U02			Х					
P_U03			Х					
P_U04			Х					
	Kompetencje							
K_K03	· ·							Х
P_K01								х

Określenie przedmiotów wprowadzających wraz z wymogami wstępnymi

A. Wymagania formalne

Brak.

B. Wymagania wstępne

Podstawy programowania (język Python). Podstawy statystyki i rachunku prawdopdobieństwa.

Cele kształcenia

Celem przedmiotu jest zapoznanie studentów z możliwościami i technikami inteligencji obliczeniowej. Zakłada się, że uczestnik zajęć pozna podstawowe techniki i nabędzie umiejętność dobierania odpowiednich modeli i algorytmów do zadań i dyskutowania rozwiązań.

Treści programowe

- · Inspirowane biologicznie algorytmy metaheurystyczne, ze szczególnym uwzględnieniem algorytmu genetycznego.
- Uczenie maszynowe nadzorowane. Zadanie klasyfikacji i regresji.
- Uczenie maszynowe nienadzorowane. Grupowanie i szukanie reguł asocjacyjnych.
- Sztuczne sieci neuronowe.
- · Uczenie głębokie (Deep Learning).
- · Logika rozmyta.

Wykaz literatury

- · David E. Goldberg: Algorytmy genetyczne i ich zastosowanie, WNT 2003
- Marcin Szeliga: Praktyczne uczenie maszynowe, PWN 2019
- Joel Grus: Data science od podstaw, Helion 2018
- Drew Conway, John Myles White: Uczenie maszynowe, Helion 2015
- Marcin Szeliga: Data Science i Uczenie Maszynowe, PWN 2017
- Sebastian Raschka, Vahid Mirjalili: Python. Uczenie Maszynowe, wyd. 2, Helion 2019
- Seth Weidman: Uczenie głębokie od zera. Podstawy implementacji w Pythonie, Helion 2020
- Jacek Tabor, Marek Śmieja, Łukasz Struski Przemysław: Uczenie głębokie. Wprowadzenie, Helion 2022
- · Maciej Wenerski: Podstawy logiki rozmytej i wnioskowania rozmytego, 2013
- Samouczki internetowe, podawane na bieżąco na wykładzie

Kierunkowe efekty uczenia się

Uczestnictwo w przedmiocie zakłada realizację poniższych kierunkowych efektów kształcenia się:

K_W05: zna standardowe metody, algorytmy i techniki sztucznej inteligencji, ich własności i znaczenie w praktycznych zastosowaniach informatycznych

K_U06: potrafi rozwiązywać problemy z wykorzystaniem metod i algorytmów sztucznej inteligencji

K_K03: potrafi i jest gotów formułować opinie na temat

Wiedza

K_W05: zna standardowe metody, algorytmy i techniki sztucznej inteligencji, ich własności i znaczenie w praktycznych zastosowaniach informatycznych Efekty przedmiotowe dla K W05:

- P_W01 zna algorytmy i techniki inteligencji obliczeniowej: bioinspirowane algorytmy metaheurstyczne, algorytmy i techniki uczenia maszynowego, sieci neuronowe, podstawy logiki rozmytej
- P_W02 zna metody optymalizacji algorytmów inteligencji obliczeniowej i metody badania ich skuteczności

podstawowych zagadnień informatycznych

 P_W03 zna praktyczne zastosowania technik i algorytmów inteligencji obliczeniowej

Umiejętności

K_U06: potrafi rozwiązywać problemy z wykorzystaniem metod i algorytmów sztucznej inteligencji

Efekty przedmiotowe dla K_U06:

- P_U01 potrafi przeanalizować problem, a nastepnie dobrać odpowiedni model z dziedziny inteligencji obliczeniowej do jego rozwiązania
- P_U02 potrafi zoptymalizować algorytm inteligencji obliczeniowej rozwiązujący zadany problem , a nastepnie sprawdzić czy model działa skutecznie, stosując odpowiednie miary
- P_U03 potrafi sporządzić dokumentację wykonanego projektu, przedstawić wyniki badań, opis użytej metody oraz jej uzasadnienie
- P_U04 potrafi korzystać z narzędzi ułatwiającyh rozwiązywanie problemów metodami inteligencji obliczniowej, np. bibliotek pythonowych pygad, numpy, pandas, sklearn, keras lub tensorflow

Kompetencje społeczne (postawy)

K_K03: potrafi i jest gotów formułować opinie na temat podstawowych zagadnień informatycznych

Efekty przedmiotowe dla K K03:

• **P_K01** potrafi dostrzec korzyści i zagrożenia wynikające z rozwoju sztucznej inteligencji

Kontakt

grzegorz.madejski@ug.edu.pl