Hoja de problemas 11

21/11/2023

Curvas algebraicas

1. Dibujar los polígonos de Newton, y determinar el primer termino de una raíz de los siguentes elementos de $k\{\{X\}\}[Y]$

$$\begin{split} f(X,Y) &= X^5 + X^2 Y^2 + Y^5, \qquad g(X,Y) = Y^2 + Y^{100} X^{1/2} + X^{101/33}, \\ h(X,Y) &= (Y^2 + X^3)(Y^3 + X^2), \qquad l(X,Y) = Y^2 - XY + X^2. \end{split}$$

- 2. Suponemos que $f(X,Y) \in k[X,Y]$ es la equación minimal de la curva $C = V(f) \subset \mathbb{A}^2$, y que $f(X,Y) = Y^b X^a + \dots$ con $bi + aj \geq ab$ si $(i,j) \in \text{supp}(f)$.
 - (a) Demostrar que la curva C tiene una parametrización formal en (0,0) de la forma (T,p(T)), con $p(T) \in k\{\{T\}\}$, y calcular el primer término de p(T).
 - (b) Demostrar que C tiene solo una rama en el punto (0,0).
- 3. Sea $f(X,Y)=(Y^2-X^3)^2-2X^5Y\in k[X,Y]$. La curva C tiene una parametrización formal $(T^4,p(T))$ en el punto (0,0). Calcular los dos primeros términos de p(T), y verificar que la parametrización formal es reducida.
- 4. Sea $p(T)=\sum a_qt^q\in k\{\{T\}\}$ una raíz cuadrada de T^3-T^4 , tal que $a_{3/2}=1$. Calcular los términos a_q para $q\leq 4$.