F分布

カイ二乗分布

複数の変数(分散を考える)

標準正規分布

by 櫻井

力イ二乗分布

標準正規分布に従った独立した変数がいくつかあるとき、その二乗和が従う分布

カイ二乗分布の性質

正規分布N(μ, σ²)に従ったk個の変数x_iについて、偏差(平均からの差)の平方和と分散の比は、自由度kのカイ二乗分布に従う

$$\chi^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \mu)^{2}}{\sigma^{2}} = \sum_{i=1}^{k} \left(\frac{x_{i} - \mu}{\sigma}\right)^{2}$$

カイ二乗検定

	ビール 好き	ビールあんまり
男性	23	12
女性	7	8

二つのカテゴリに関連があるかを調べたい

帰無仮説:

二つのカテゴリは独立である(関連がない)

有意水準:0.05

カイ二乗検定の手順

(1) 観測データから、カテゴリーごとに割合を出す

	ビール 好き	ビール あんまり	合計
男性	69	36	105 70%
女性	21	24	45 30%
合計	90 60%	60 40%	150 100%

(2) 割合から、カテゴリーが独立な場合の度数(期待度数)を出す

	ビール 好き	ビール あんまり	合計
男性	63	42	105 70%
女性	27	18	45 30%
合計	90 60%	60 40%	150 100%

カイ二乗検定の手順

(3)観測度数と期待度数の差を出す

	ビール 好き	ビール あんまり
男性	6	-6
女性	-6	6

(4) その二乗を出す

	ビール 好き	ビール あんまり
男性	36	36
女性	36	36

(5)期待度数で割る

	ビール 好き	ビール あんまり
男性	36/63 =0.57	36/42 =0.86
女性	36/27 =1.33	36/18 =2

(6) その和を求める

$$x = 0.57 + 0.86 + 1.33 + 2 = 4.76$$

このように求めた値xは、カイ二乗分布に近似できる。 自由度は、各カテゴリ(性別、ビールの好み)の要素数をそれぞれ n_1 , n_2 とすると、 $(n_1$ -1)* $(n_2$ -1)。 この例の場合では、(2-1)*(2-1) = 1

カイ二乗検定の手順

(フ)結論

xの値が棄却域の境界値の外側(3.84 < 4.76, p=0.029 < α)なので、帰無仮説は棄却され、「二つのカテゴリは独立ではない」と判断された。

よって、この母集団においては、 「性別とビールの好みとの間に何 かしらの関連性がある」と結論づ けられた。

カイ二乗分布を扱うExcelの関数: CHISQ.DIST, CHISQ.DIST.RT, CHISQ.INV.RTなど

カイ二乗検定の留意点

観測数が少ないとカイ二乗分布への近似ができないので、 その場合はフィッシャーの正確確率検定を行う。

目安:

期待度数が5未満のセルが、全セルの20%以上で存在する場合、近似が不正確と考えられる (コクラン・ルール)

期待度数が1未満のセルがあってはならない

カイ二乗分布の性質 その2

自由度kが大きくなると、

平均值:k

分散:2k

の正規分布に近づいてゆく

F分布

カイ二乗分布

複数の変数(分散を考える)

標準正規分布

by 櫻井

F分布とカイ二乗分布の関係

自由度k₁のカイ二乗分布 χ^2 ₁ 自由度k₂のカイ二乗分布 χ^2 ₂

があるとき、次の値Fは、自由度(k₁, k₂)のF分 布に従う

$$F = \frac{\chi^2_1/k_1}{\chi^2_2/k_2}$$

F分布の活用

正規分布Ν(μ1,σ21)に従った母集団から得た標本、 標本数:n₁、不偏標本分散:v²₁

正規分布Ν(μ₂,σ²₂)に従った母集団から得た標本、 標本数: n_2 、不偏標本分散: v^2_2

があるとき、

$$F = \frac{\chi^2_1/k_1}{\chi^2_2/k_2} = \frac{v^2_1/\sigma^2_1}{v^2_2/\sigma^2_2}$$

二つの母集団の分散σ²₁とσ²₂が等しいと仮定できる場合は、

$$F = \frac{v^2}{v^2}$$

 $F = \frac{v^2_1}{v^2_2}$ これをF検定で利用している!

F分布の活用

カイ二乗分布の性質

$$\chi^2 = rac{\sum_{i=1}^k (x_i - \mu)^2}{\sigma^2}$$
 自由度k

この式を変形すると、

不偏標本分散v2になっている!

$$\chi^{2} = \frac{\mathbf{k} \times \frac{\sum_{i=1}^{k} (x_{i} - \mu)^{2}}{\mathbf{k}}}{\sigma^{2}} = \frac{\mathbf{k} \times v^{2}}{\sigma^{2}}$$

したがって、
$$\frac{\chi^2}{k} = \frac{k \times v^2}{\sigma^2} \times \frac{1}{k} = \frac{v^2}{\sigma^2}$$