1关于时间序列线图图像创建的更多细节

2实现。时间序列到图像的转换可以使用 Matplotlib 实现 package1中包含以下几行代码。

```
1 def TS2Image(t, v,D,颜色,图像高度,图像宽度,网格高度,网格宽度):
2 导入matplotlib.pyplot作为plt
3 plt.figure(figsize=(图像高度/100,图像宽度/100), dpi=100)
4 for d in range(D): # 枚举多个变量
5 plt.subplot(grid_height, grid_width, d+1) # 网格中的位置
6 # 绘制变量 d 的线图
7 plt.plot(t[d], v[d], color=colors[d], linestyle= - , marker= * )
```

4除了主要论文中提到的绘制线图图像的设计外,我们还探索 5.以下几个方面。

6折线图的轴限值。轴限值决定了折线图的绘图区域和

7显示时间戳和值的范围。默认情况下,我们将 x 轴和 y 轴的限制设置为

8个范围内的所有观察到的时间戳和值。然而,我们发现一些

9某些变量的极端观测值可能会使 y 轴的范围非常大,从而导致大多数

10个观测点绘制在一个小区域内,形成平线图。常见

11归一化和标准化方法无法解决这个问题,因为相对量级仍然

12在创建的图像中保持不变。因此,我们尝试了以下策略来消除极端值

13并缩小 y 轴的范围:

```
14
       ·四分位距 (IQR):IQR 是用于异常值分析的最广泛使用的方法之一
15
        检测和去除。四分位距是根据第一和第三
        数据集中每个变量的所有观测值的四分位数,然后用于计算
16
17
        上限和下限。
18
       ·标准差 (SD):上边界和下边界通过取 3 个标准差计算得出
        数据集中每个变量观测值与平均值的偏差。这
19
20
        方法通常假设数据呈正态分布。
21
       ·修正的 Z 分数 (MZ):Z 分数衡量某个值偏离标准差的多少
        该方法与检测异常值的标准差方法类似。然而,
22
       z分数可能受到极端值的影响,而修改后的z分数可以更好地处理这种影响。
23
```

我们将上限和下限设置为修改后的 z 分数为 3.5 和 -3.5 的值。

25我们在图 1 中展示了使用这些策略创建的图像的示例。

表 1:关于确定线图极限的不同策略的消融研究。默认策略是 直接将轴限制设置为数据集上所有观测值的范围。"IQR"、"SD"和"MZS" 表示三种消除极值的策略,即四分位距、标准差和

修改后的 Z 分数。报告的数字是 5 个数据分割的平均值。

	P.	19	P	12		服丙烯	焼胺	
策略	澳大利亚奥罗克	澳大利亚统一政事研究中心	澳大利亚奥罗克	发大利亚统一改革研究中心	准确性	精确	记起	F1 分数
默认	89.4 ±1.9 52.8	±3.8 85.6 ±1.1 49.	8 ±2.5 96.1 ±0.7			96.8 ± 1.1	96.5 ±0.7	96.6 ±0.9
四分仙啊 标准差 米茲山	88.2 ±0.8 87.4 ±1.6 87.3 ±1.0	49.6 ±1.7 51.2 ±3.6 50.8 ±3.7	84.5 ±1.1 84.6 ±1.7 84.3 ±1.4	47.1 ±2.9 96.6 ±	$0.997.1\pm0.8$	96.1 ±0.7 96.4 ±0.7 97.0 ±0.6 97.0 ±0.7 9 96.4 ±0.9 96.6 ±0.9		

26显示了使用不同策略创建的图像训练的模型的性能比较 27在表 1 中。我们观察到,去除极端值的方法会损害性能,除了 28 SD 在 PAM 数据集上。虽然这些方法缩小了值范围并突出了动态 29种线图模式,它们会丢弃可能本身就很有价值的极端值。这 30观察结果表明我们的方法可能不需要额外的数据预处理 31系列,进一步彰显其简洁的优势。

¹https://matplotlib.org/

图 1:使用不同策略对 P19、P12 和 PAM 的三个样本创建的图像数据集(样本 "p000019"代表 P19,"132548"代表 P12,"0"代表 PAM)。

表 2:网格布局和图像的消融研究 尺寸请参见 P19。

表 3:网格布局和图像的消融研究 P12 上的尺寸。

网格布局 图像	大小 AUROC AUPRC	_	网格布局 图像	大小 AUROC AUPRC
4×9	256×576 87.4 ±1.9 48.1 ±4.5		4×9	$256 \times 576 \ 84.0 \pm 1.4 \ 47.9 \pm 2.6$
5×7	$320 \times 44887.9 \pm 1.949.6 \pm 2.7$		5×8	$320 \times 51284.1 \pm 1.647.2 \pm 2.3$
6×6	$384 \times 38489.4 \pm 1.952.8 \pm 3.8$		6×6	384×384 85.6 ±1.1 49.8 ±2.5
6×6	224×224 88.7 ±1.4 52.3 ±0.6		6×6	224×224 85.2 ±2.1 48.8 ±3.7

表 4:PAM 上的网格布局和图像大小的消融研究。

网格布局 图像	大小 准确率 精确度 召回率	F1 分数
2 × 9	$128 \times 57695.9 \pm 1.496.5 \pm 1.095.9 \pm 1.296.0 \pm 0.5$	
3×6	$192 \times 38496.1 \pm 0.896.7 \pm 0.595.9 \pm 0.996.2 \pm 0.7$	
4×5	$256 \times 320 96.1 \pm 0.7 96.8 \pm 1.1 96.5 \pm 0.7 96.6 \pm 0.9$	
4×5	$224 \times 22495.9 \pm 0.696.7 \pm 0.895.9 \pm 0.696.3 \pm 0.7$	

- 32网格布局和图像大小。我们进行了实验来研究网格布局和
- 33种图像尺寸对我们方法的性能的影响。为了公平比较不同的网格布局,
- 34我们将每个网格单元的大小固定为64 × 64,并改变了网格布局。P19 上的结果
- 35 P12、PAM 数据集分别列于表 2、表 3 和表 4。我们观察到
- 36 个方格网格布局在所有三个数据集上始终产生良好的结果。我们推测这
- 37是因为正方形布局确保任意两个线图之间的距离最短。我们
- 38还测试了224×224标准图像尺寸的性能,发现
- 39是边际的,表明我们的方法对各种图像尺寸都具有稳健性。

40 B 更多实验细节

41 B.1 数据集

42我们使用了[7]处理的数据集,其详细信息如下。

43 P19:2019 年 PhysioNet 败血症早期预测挑战赛。

² P19 数据集[5]包括临床

- 44个数据,用于38,803名患者,旨在预测未来6小时内是否会发生败血症。
- 45数据集包括 34 个不规则采样的传感器,每个传感器有 8 个生命体征和 26 个实验室值
- 46 名患者,以及 6 个人口统计学特征。为了处理静态特征,我们使用了以下模板
- 47,如表 5 所示,并利用预先训练的 Roberta 基模型提取文本特征。这些文本
- 然后将48个特征与从视觉转换器获得的视觉特征相结合,执行
- 49二分类。数据集高度不平衡,只有4%的样本为正,并且

50的缺失率为94.9%。

51 P12:2012 年 PhysioNet 死亡率预测挑战赛。

³ P12数据集[2]包括临床数据

从 11,988 名 ICU 患者中抽取的52 个数据,其中 36 个为不规则采样的传感器观测数据,6 个为静态人口统计数据为每个患者提供53 个特征。目标是预测患者死亡率,这是一个二元

54分类任务。数据集高度不平衡,约86%的样本为负数。

55该数据集的缺失率为88.4%。

56 PAM:PAMAP2 体力活动监测。

4 PAM 数据集最初包含 18

57 项体育活动,9 名受试者佩戴 3 个惯性测量装置。然而,为了使其适合

58用于不规则时间序列分类,[7]排除了第九个主题,因为它的传感器长度较短

59个读数,18个活动中有10个少于500个样本也被排除在外。作为

60结果,该任务是一个8路分类,有5,333个样本,每个样本有600个连续观察。

61为了模拟不规则的时间序列设置,60%的观测值被随机删除。没有

静态特征共62个,8个类别大致均衡,缺失率为

63 60.0%。

²https://phyonet.org/content/challenge-2019/1.0.0/

³https://phyonet.org/content/challenge-2012/1.0.0/

⁴https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring

表 5:将静态特征转换为自然语言句子的模板。

数据集静态	特征	模板A 患者	例子
D10	年龄、性别、单位 1(内科	年龄为 {Age} 岁,	患者今年65岁,
	ICU)、单位 2(外科	{性别},前往{Unit1&Unit2}	女性,10小时后被送往重症监护室
P19	ICU)、住院时间;	入院后 {HospAdmTime} 小时,住院时间已达	医院承认,已经住院
	ICULOS(ICU 住院时间)	{ICU- LOS} 小时。	在那里呆了20个小时。
P12	记录ID、年龄、性别、	患者年龄为 {Age} 岁,{Gender},{Height} cm,	患者今年48岁,
	身高(厘米)、ICU类型、	{Weight} kg,	男性,171厘米,78公斤,
	重量(公斤)	住在{ICUType}。	住在外科ICU。

表 6:对静态特征进行编码的不同方法的消融研究。

	P:	19		P12			
方法	澳大利亚奥罗克	漫大利証状一政策研究中心	1	澳大利亚奥罗克	液大利压纳一致繁研究中心		
雨滴	87.0 ±2.3	51.8 ±5.5		82.8 ±1.7 44.0 :	±3.0		
	3 ±896449:3.8:3.7 7 848.6:0:9.38.7 ± 1.9 52.8 ± 3.8 85.6						

64 B.2 静态特征实验

65时间序列数据通常与其他模态信息相关,例如文本

66 份医疗领域电子健康记录 (EHR) 中的临床记录。我们的方法自然是

67适合纳入此类信息,因为我们将时间序列数据转换为图像,因此

68各种视觉语言和多模态技术可用于将视觉(时间

69系列)信息和来自其他模态的信息。例如,CLIP [4]学习共享

70个隐藏特征空间,其中配对图像和文本保持接近。在我们的框架下,这样一个共享

71空间也可以为成对的视觉时间序列图像和文本临床记录进行学习,这是

72我们未来的方向。它也为 GPT - 4 [3]等多模态模型的应用铺平了道路,可以同时处理可视化的时间序列数据和临床记录。 在我们目前的

74个实验中,我们使用了文本编码器 Roberta-base,对文本人口统计信息进行编码。

75 P19 和 P12 数据集。我们还尝试对原始分类特征进行归一化,并

76使用 MLP 对它们进行编码,就像以前的工作一样,并与强基线 Raindrop 进行比较。

77结果如表 6 所示。我们观察到,即使不使用静态特征,我们的方法也具有

78已经超越了 Raindrop。此外,利用 Roberta 编码并整合文本

79特征比在分类特征上应用 MLP 更有效。

表 7:评估的规则多元时间序列的统计数据和超参数设置数据集。

电子商务		4	1,751	261	2×2	256 × 256	1e-4	20
你的		8	315	120	2×2	256 × 256	1e-4	100
SCP1	3	2	896	268	2×3	256 × 384	1e-4	100
SCP2	3	2	1,152	200	3×3	384×384	5e-5	100
合资	6	9	29	270	4×4	384×384	1e-4	100
伤心	7	10	93	6599	4×4	384×384	1e-5	20
乙肝	12	2	405	204	4×4	$384 \times 384 12$	1e-4	100
FD	13	2	62	5890	× 12 384 ×	384 32 × 32 384	5e-4	100
附言	61	7	144	267	× 384 2 × 1	3 256 × 384	5e-4	100
那个	144 963 6	5	17984	128			2e-5	100

80 B.3 规则时间序列实验

我们从 UEA 时间序列分类档案 [1] 中选择了 10 个具有代表性的多变量时间序列数据集,这些数据集具有不同的特征,包括类别、变量和时间的数量。

83系列长度。我们选择的数据集是 EthanolConcentration (EC)、Handwriting (HW)、UWaveGestureLibrary (UW)、SelfRegulationSCP1 (SCP1)、SelfRegulationSCP2 (SCP2)、JapaneseVowels (JV)、

85 SpokenArabicDigits (SAD)、Heartbeat (HB)、FaceDetection (FD)、PEMS-SF (PS) 和 EigenWorms

86(EW)。值得注意的是,PS 数据集的变量数量异常多(963),而 EW 87数据集具有极长的时间序列(17984)。这两个数据集使我们能够评估 88在处理大量变量和长时间序列时,我们的方法非常有用。我们应用了 根据这些数据集的网格布局,有89种不同的图像大小。超参数设置 90如表 7 所示,我们将剪切数据增强方法应用于 SCP1、SCP2 和 JV 91 个数据集,因为它们的训练集规模较小。

92 B.4 自监督学习

- 93我们初步探索了蒙版图像建模在时间序列线上的自监督预训练
- 94 张图形图像。我们在每个线图上随机屏蔽宽度为 32 的斑块列
- 95 个网格单元。掩蔽率设置为 50%。我们对 Swin Transformer 模型进行了 10 个 epoch 的微调
- 96,批处理大小为48。学习率为2e-5。根据[6],我们使用线性层来重构
- 97 个像素值并对掩码像素采用纪损失:

$$L = \frac{1}{pM / 1, \Omega(pM)} M -$$
 (1)

98其中pM和p M分别为掩蔽像素和重建像素; $\Omega(\cdot)$ 表示 99 个元素。

100 B.5 完整实验结果

101我们在表8中展示了不考虑传感器的设置下的完整实验结果,以及完整的表9列出了102项针对骨干视觉模型的消融研究的结果。

表 8:PAM 数据集上保留传感器设置的完整结果。"缺失率"表示 掩蔽变量的比例。

失的	方法		PAM (保留固定传	感器)			PAM (不考虑随机传感器)			
比率	Ĭ	准确性	精确	记起	F1 分数	准确性	精确	记起	F1 分数	
	变压器 60.3 ± 2.4	均值 60.4 ± 11.2	57.8 ±9.3	59.8 ±5.4	57.2 ±8.0	60.9 ±12.8	58.4 ±18.4 59.	1 ±16.2 56.9 ±18.9		
	61.8 ± 14.9 60.2	± 13.8 58.0 ± 15.2 6	3.5 GRU-D 68	3.4 ± 3.7 SeFT 40.0	\pm 1.9 mTAND 53.4 \pm	2.0 76.7 ± 1.8	59.6 ±7.2 63.7	±8.1 62.7 ±6.4		
		65.4 ±1.7	72.6 ± 2.6	64.3 ± 5.3	63.6 ± 0.4		$74.2 \pm 3.070.8$	±4.2 72.0 ±3.7		
10%		58.9 ±2.3	62.5 ± 1.8	59.6 ±2.6	59.6 ±2.6		40.8 ±3.2 41.0	$\pm 0.739.9 \pm 1.5$		
		58.8 ±2.7	59.5 ±5.3	64.4 ± 2.9	61.8 ± 4.1		54.8 ±2.7 57.0	±1.9 55.9 ±2.2		
	雨滴	77.2 ±2.1	82.3 ±1.1	78.4 ±1.9	75.2 ±3.1		79.9 ±1.7 77.9	±2.3 78.6 ±1.8		
	维特斯特	92.7 ±0.9 94.2 ±	0.9 93.2 ±0.4 93.6	± 0.6 88.4 ±1.4 92.	3 ±0.5 88.6 ±1.9 89.	8 ± 1.5				
	变压器 63.1 ± 7.6	均值 61.2 ± 3.0	71.1 ±7.1	62.2 ±8.2	63.2 ±8.7	62.3 ±11.5 65.9	±12.7 61.4 ±13.9	61.8 ±15.6		
	GRU-D 64.6 ± 1.8	SeFT 35.7 ± 0.5	74.2 ± 1.8	63.5 ±4.4	64.1 ±4.1	56.8 ±4.1	59.4 ±3.4	53.2 ±3.9	55.3 ±3.5	
	mTAND 33.2 \pm 5.	0雨滴 66.5 ± 4.0	73.3 ± 3.6	63.5 ±4.6	64.8 ±3.6	64.8 ±0.4	69.8 ± 0.8	65.8 ± 0.5	67.2 ±0.0	
20%			42.1 ±4.8	38.1 ± 1.3	35.0 ±2.2	34.2 ±2.8	34.9 ±5.2	34.6 ± 2.1	33.3 ±2.7	
			36.9 ±3.7	37.7 ± 3.7	37.3 ± 3.4	45.6 ±1.6	49.2 ±2.1	49.0 ± 1.6	49.0 ± 1.0	
			72.0 ± 3.9	67.9 ±5.8	65.1 ±7.0	71.3 ±2.5	75.8 ±2.2	72.5 ± 2.0	73.4 ± 2.1	
	维特斯特	88.4 ±1.0 90.4 ±	1.4 89.3 ±0.8 89.7	±1.0 85.1 ±1.2			$91.1 \pm 1.0 \ 85.6 \pm 1.0 \ 87.0 \pm 1.0$			
	变压器 31.6 ± 10.	0 26.4 ± 9.7均值 42.	5 ± 8.6 45.3 ±	24.0 ±10.0 19.	±12.8 52.0 ±11.9 3	7.0 ±7.9 33.9 ±8.2	55.2 ±15.3 50.	1 ±13.3 48.4 ±18.2		
	9.6 GRU-D 45.1 \pm	2.9 51.7 ± 6.2 SeFT	32.7 ± 2.3 27.9	$65.1 \pm 1.942.1$	±6.6 47.2 ±3.9 58.0	±2.0 34.5 ±3.0	63.8 ±1.2 67.9	$\pm 1.864.9 \pm 1.7$		
30%	\pm 2.4 mTAND 27.	5 ± 4.5 31.2 ± 7.3雨	滴 52.4 ± 2.8	28.0 ±1.4 31.7	28.0 ±1.4 31.7 ±1.5 30.6 ±4.0 30.8 ± 5.6 34.7 ±5.5			63.2 ±1.7 58.2 ±3.1 59.3 ±3.5		
	60.9 ± 3.8			$51.3 \pm 7.148.4$	± 1.8 60.3 ±3.5		$31.0 \pm 2.7 32.0$	$\pm 1.228.0 \pm 1.6$		
							43.4 ±4.0 36.3	±4.7 39.5 ±4.4		
							68.1 ±3.1 60.3	±3.6 61.9 ±3.9		
	维特斯特	84.1 ±1.3 86.5 ±	:0.4 83.1 ±0.8 84.9	±1.0 80.6 ±1.2 89.5	5 ±1.3 80.9 ±1.1 82.6	5 ‡ 1.1				
	变压器 23.0 ± 3.5	均值 25.7 ± 2.5	7.4 ±6.0	14.5 ±2.6	6.9 ±2.6	43.8 ± 14.0 44.6	±23.0 40.5 ±15.9	40.2 ±20.1		
	GRU-D 46.4 ± 2.5	SeFT 26.3 ± 0.9	9.1 ±2.3	18.5 ± 1.4	9.9 ± 1.1	48.7 ±2.7	55.8 ±2.6	54.2 ±3.0	55.1 ±2.9	
	mTAND 19.4 \pm 4.	5 52.5 ± 3.7	64.5 ± 6.8	42.6 ± 7.4	44.3 ± 7.9	47.7 ±1.4	63.4 ± 1.6	44.5 ± 0.5	47.5 ± 0.0	
40%			29.9 ±4.5	27.3 ±1.6	22.3 ± 1.9	26.8 ±2.6	2.41 ± 3.4	28.0 ± 1.2	23.3 ±3.0	
			15.1 ± 4.4	20.2 ± 3.8	17.0 ± 3.4	23.7 ±1.0	33.9 ± 6.5	26.4 ±1.6	29.3 ±1.9	
	雨滴		53.4 ±5.6	48.6 ±1.9	44.7 ±3.4	57.0 ±3.1	65.4 ±2.7	56.7 ±3.1	58.9 ±2.5	
	维特斯特	76.5 ±1.9 83.5 ±0.9 76.7 ±2.4 78.3 ± 2.1 73.7 ±2.2 86.4 ±1.1 74.0 ±2.2 75.8 ±1.8								
	变压器 21.4 ± 1.8	均值 21.3 ± 1.6	2.7 ±0.2	12.5 ±0.4	4.4 ±0.3	43.2 ±2.5	52.0 ±2.5	36.9 ±3.1	41.9 ±3.2	
	GRU-D 37.3 ± 2.7	SeFT 24.7 ± 1.7	2.8 ± 0.4	12.5 ±0.7	4.6 ± 0.2	46.4 ± 1.4	59.1 ±3.2	43.1 ±2.2	46.5 ±3.1	
	mTAND 16.9 \pm 3.	1 46.6 ± 2.6	29.6 ±5.9	32.8 ±4.6	26.6 ±5.9	49.7 ±1.2	52.4 ±0.3	42.5 ± 1.7	47.5 ±1.2	
50%			15.9 ± 2.7	25.3 ±2.6	18.2 ±2.4	26.4 ± 1.4	23.0 ±2.9	27.5 ± 0.4	23.5 ±1.8	
			12.6 ±5.5	17.0 ±1.6	13.9 ±4.0	20.9 ±3.1	35.1 ± 6.1	23.0 ±3.2	27.7 ±3.9	
	雨滴		44.5 ± 2.6	42.4 ±3.9	38.0 ±4.0	47.2 ±4.4	59.4 ±3.9	44.8 ±5.3	47.6 ±5.2	
	维特斯特	70.0 ±2.7 79.9 ±		70.5 ±3.172.2 ±3.0 70.9 ±1.2 83.6 ±2.4 71.5 ±1.4 73.3 ±2.1						

表 9:我们的方法与不同骨干视觉模型的完整结果以及比较结果基线。粗体表示表现最佳,下划线表示表现第二佳。

		P19	P	12	服內地酰胺				
方法	澳大利亚奥罗克	发大利范明一改革研究中心	澳大利亚奥罗克	发大利国统一改革研究中心	准确性	精确	记起	F1 分数	
变压器	80.7 ±3.8	42.7 ±7.7 83.3 ±	0.7 45.8 ±3.2	47.9 ±3.6	83.5 ±1.5	84.8 ±1.5	86.0 ±1.2	85.0 ±1.3	
跨均值	83.7 ±1.8	82.6 ±2.0 46.9 ±	2.1 81.9 ±2.1	46.3 ±4.0	83.7 ±2.3	84.9 ±2.6	86.4 ±2.1	85.1 ±2.4	
GRU-D	83.9 ±1.7	41.9 ±3.1 73.9 ±	2.5 50.6 ±2.0	46.1 ± 4.7	83.3 ±1.6	84.6 ±1.2	85.2 ± 1.6	84.8 ±1.2	
硒化FT	81.2 ±2.3	84.2 ±0.8 38.1 ±	3.7 82.6 ±1.4 44	31.1 ±4.1	67.1 ±2.2	70.0 ± 2.4	68.2 ± 1.5	68.5 ± 1.8	
抗心律失常	84.4 ±1.3	$.7 \pm 11.7 84.4 \pm 1$	6 39.9 ±8.9	48.2 ±3.4	74.6 ±4.3	74.3 ± 4.0	79.5 ± 2.8	76.8 ± 3.4	
IP网络	84.6 ±1.3	74.4 ±6.7 51.8 ±	5.5 82.8 ±1.7	47.6 ± 3.1	74.3 ±3.8	75.6 ± 2.1	77.9 ± 2.2	76.6 ± 2.8	
DGM2 -O型	86.7 ±3.4			47.3 ±3.6	82.4 ±2.3	85.2 ±1.2	83.9 ±2.3	84.3 ±1.8	
多功型全连接神经网络	81.9 ±6.2			35.5 ±6.0	83.4 ± 1.9	85.2 ±1.7	86.1 ±1.9	85.9 ±2.4	
雨滴	87.0 ±2.3			44.0 ±3.0	88.5 ±1.5	89.9 ±1.5	89.9 ±0.6	89.8 ±1.0	
ResNet	76.3 ±3.3 71.4	±1.84.7 ±4.1	72.9 ± 1.0	28.8 ±2.4	73.1 ±0.9	82.4 ±5.6	69.7 ±0.9		
ViT	87.9 ± 2.5 94.3	±0.751.6 ±3.7	84.8 ±1.3	48.1 ± 3.8	93.4 ± 0.7	94.7 ±0.9	94.1 ± 0.7		
Swin	89.4 ± 1.9 52.8	±3.8 85.6 ±1.1 49.8	2.5 96.1 ±0.7 96.8	3 ±1.1 96.5 ±0.7 96.	6 ±0.9				
Swin-scratch 74	1.6 ± 2.5	29.9 ±4.6	66.9 ±1.6	26.5 ±2.6	84.5 ±0.5	86.6 ±0.6	87.1 ± 1.2	86.6 ± 0.6	

103参考文献

104 [1] Bagnall, A.、Dau, HA、Lines, J.、Flynn, M.、Large, J.、Bostrom, A.、Southam, P. 和 Keogh, E.

uea 多元时间序列分类档案,2018年。arXiv 预印本 arXiv:1811.00075,

106 2018年。

107 [2] Goldberger, AL.Amaral, LA.Glass, L..Hausdorff, JM.Ivanov, PC.Mark, RG.Mietus,

JE、Moody、GB、Peng、C.-K. 和 Stanley、HE Physiobank、physiotoolkit 和 physionet:

109 复杂生理信号新研究资源的组成部分。循环,101(23):

110 e215-e220, 2000年。

111 [3]OpenAl。Gpt-4技术报告,2023年。

112 [4] Radford, A., Kim, JW, Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,

113 A.、Mishkin、P.、Clark、J. 等人。从自然语言中学习可迁移的视觉模型

114 监督。在国际机器学习会议上,第8748-8763页。PMLR,2021年。

115 [5] Reyna, MA.Josef, C., Seyedi, S., Jeter, R., Shashikumar, SP, Westover, MB, Sharma,

116 A.、Nemati、S.和 Clifford、GD,根据临床数据对脓毒症进行早期预测:2019年心脏病学计算挑战赛。2019年心脏

117 病学计算 (CinC),第 37 页。

118 第1页。IEEE,2019年。

119 [6] Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., 和 Hu, H. Simmim: 简单

120 蒙版图像建模框架。在 IEEE/CVF 会议论文集上

121 计算机视觉和模式识别,第 9653-9663 页,2022 年。

122 [7] Zhang, X.、Zeman, M.、Tsiligkaridis, T. 和 Zitnik, M. 图形引导网络用于不规则

123 采样多元时间序列。在国际学习表征会议上,

124 2022年。