Discrete Mathematics Generating combinatorial configurations

Pham Quang Dung

Hanoi, 2012

Outline

Introduction

Quantification of the second of the secon

BackTracking algorithm

Introduction

- List all configurations satisfying some given constraints
 - permutations
 - subsets of a given set
 - etc.
- A_1, \ldots, A_n are finite sets and $X = \{(a_1, \ldots, a_n) \mid a_i \in A_i, \forall 1 \leq i \leq n\}$
- ullet \mathcal{P} is a property on X
- Generate all configurations (a_1, \ldots, a_n) having $\mathcal P$

Introduction

- In many cases, listing is a final way for solving some combinatorial problems
- Two popular methods
 - Generating method
 - BackTracking algorithm

Outline

Introduction

② Generating method

BackTracking algorithm

Generating method

- Define an order on a set of configurations
- Generating algorithm: generate a successive configuration from a current (not final) configuration

Algorithm 1: Generate()

```
1 C \leftarrow Generate an initial configuration;

2 STOP \leftarrow FALSE;

3 while not STOP do

4 | C \leftarrow GenerateNext(C);

5 | if C = \emptyset then

6 | STOP \leftarrow true;
```

Generating method: Lexical order

- $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$
- A < B if there exists $1 \le k \le n$ such that
 - $a_i = b_i, \forall i = 1, ..., k-1$
 - $a_k < b_k$

Generating method: binary sequence

		I	
00000	01000	10000	11000
00001	01001	10001	11001
00010	01010	10010	11010
00011	01011	10011	11011
00100	01100	10100	11100
00101	01101	10101	11101
00110	01110	10110	11110
00111	01111	10111	11111

• Current configuration: 010110111

• Next configuration: 010111000

Generating method: binary sequence

Generate next configuration of (b_1, \ldots, b_n)

- From right to left, find the first position k s.t. $b_k = 0$
- set $b_k = 1$
- set $b_i = 0, \forall i = k + 1, ..., n$

Generating method: binary sequence

```
int stop = 0;
while (!stop) {
int k = n:
while (k >= 1 \&\& b[k] == 1)
 k--:
  if(k >= 1){
    b[k] = 1;
    for (int i = k+1; i \le n; i++)
      b[i] = 0;
    printConfiguration();
  }else{
    stop = 1;
```

Generating method: combination

1 2 3 4 5	12457	14567
12346	12467	23456
12347	12567	23457
12356	13456	23467
12357	13457	23567
12367	13467	24567
12456	1 3 5 6 7	3 4 5 6 7

- n = 9, k = 6
- Current configuration:1 2 3 7 8 9
- Next configuration: 1 2 4 5 6 7

Generating method: combination

Generate next configuration of (c_1, \ldots, c_k)

- From right to left, find the first position i s.t. $c_k < n k + i$
- Increase c_i by 1
- Set $c_{j+1} = c_j + 1, \forall j = i, \dots, k-1$

Generating method: combination

```
for (int i = 1; i \le k; i++)
 c[i] = i;
printConfiguration();
int stop = 0:
while (!stop) {
  int i = k:
  while (i >= 1 && c[i] >= n-k+i)
   i --:
  if(i <= 0)
    stop = 1;
  else {
    c[i] = c[i] + 1;
    for (int j = i; j \le k-1; j++)
      c[j+1] = c[j] + 1;
    printConfiguration();
```

Generating method: permutation

1 2 3 4	2 1 3 4	3 1 2 4	4123
1243	2143	3 1 4 2	4 1 3 2
1324	2314	3 2 1 4	4213
1342	2341	3 2 4 1	4231
1 4 2 3	2413	3 4 1 2	4 3 1 2
1 4 3 2	2 4 3 1	3 4 2 1	4 3 2 1

• Current configuration: 8 7 6 3 5 4 2 1

• Next configuration: 8 7 6 4 1 2 3 5

Generating method: permutation

Generate next configuration of (p_1, \ldots, p_n)

- From right to left, find the first position k s.t. $p_k < p_{k+1}$
- From position k+1 to the right, find the first position i s.t. $p_k < p_i$
- Swap p_k and p_i
- Reverse the p_{k+1}, \ldots, p_n

Generating method - permutation

```
int stop = 0;
2 while (!stop) {
    int k = n-1:
   while (k >= 1 \&\& p[k] > p[k+1])
     k--;
    if(k \ll 0)
      stop = 1;
    else {
      int i = k+1:
      while (p[i] > p[k]) i++;
      i --:
      swap(p[k],p[i]);
      reverse (p, k+1, n);
      printConfiguration();
```

Outline

Introduction

Quantification of the second of the secon

BackTracking algorithm

BackTracking algorithm

Construct elements of the configuration step-by-step

- Initialization: Constructed configuration is null: ()
- Step 1:
 - Compute (base on \mathcal{P}) a set S_1 of candidates for the first position of the configuration under construction
 - Select an item of S_1 and put it in the first position

BackTracking algorithm

At Step k: Suppose we have partial configuration a_1, \ldots, a_{k-1}

- Compute (base on \mathcal{P}) a set S_k of candidates for the k^{th} position of the configuration under construction
 - If $S_k \neq \emptyset$, then select an item of S_k and put it in the k^{th} position and obtain $(a_1, \ldots, a_{k-1}, a_k)$
 - If k = n, then process the complete configuration a_1, \ldots, a_n
 - ullet Otherwise, construct the $k+1^{th}$ element of the partial configuration in the same schema
 - If $S_k = \emptyset$, then backtrack for trying another item a'_{k-1} for the $k-1^{th}$ position
 - ullet If a_{k-1}' exists, then put it in the $k-1^{th}$ position
 - Otherwise, backtrack for trying another item for the $k-2^{th}$ position, ...

BackTracking algorithm

```
Algorithm 2: BackTracking(k)

Construct a candidate set S_k;

foreach y \in S_k do

a_k \leftarrow y;

if (a_1, \dots, a_k) is a complete configuration then

ProcessConfiguration(a_1, \dots, a_k);

else

BackTracking(k + 1);
```

```
Algorithm 3: Main()
```

1 BackTracking(1);

BackTracking algorithm - binary sequence

```
void BackTracking(int k) {
    for(int i = 0; i <= 1; i++) {
        b[k] = i;
        if(k == n)
            printConfiguration();
    else
        BackTracking(k+1);
    }
}</pre>
```

BackTracking algorithm - combination

```
void BackTracking(int i){
    for(int j = c[i-1]+2; j <= n-k+i; j++){
        c[i] = j;
        if(i == k){
            printConfiguration();
        } else
            BackTracking(i+1);
    }
}</pre>
```

BackTracking algorithm - permutation

```
void BackTracking(int k){
  for (int i = 1; i <= n; i++){
    if (!b[i]) {
      p[k] = i;
      b[i] = 1;
      if(k == n)
         printConfiguration();
      }else
         BackTracking(k+1);
      b[i] = 0;
```

BackTracking algorithm - Linear integer equation

Solve the linear equations in a set of positive integers

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = M$$

where $(a_i)_{1 \le i \le n}$ and M are positive integers

- Partial solution $(x_1, x_2, \dots, x_{k-1})$
- $\bullet \ m = \sum_{i=1}^{k-1} a_i x_i$
- $A = \sum_{i=k+1}^{n} a_i$
- $\overline{M} = M m A$
- Candidates of x_k is $\{v \in \mathbb{Z} \mid 1 \leq v \leq \frac{\overline{M}}{a_k}\}$

BackTracking algorithm - Linear integer equation

```
1 \mid \text{void TRY(int } k) \{ // \text{ try a value for variable } x[k] \}
    for (int val = 1; val \leq (M-m-A)/a[k]; val++){
     x[k] = val;
     m = m + a[k] * x[k];
    A = A - a[k];
    if(k == n)
    if(m = M)
      printSolution();
    }else
      TRY(k+1);
     m = m - a[k] * x[k];
      A = A + a[k]:
int main(int argc, char** argv){
   m = 0:
   A = 0:
  for (int i = 2; i <= n; i++)
   A = A + a[i];
   TRY(1);
```

BackTracking algorithm - n-queens problem

- Problem: Place *n* queens on a chess board such that no two queens attack each other
- Solution model: (x_1, x_2, \dots, x_n) where x_i represents the row on which the gueen in column i is located
- Constraints:

Pham Quang Dung ()

- $x_i \neq x_j, \forall 1 \leq i < j \leq n$
- $|x_i x_i| \neq |i j|, \forall 1 < i < j < n$

BackTracking algorithm - n-queens problem

```
int \times[100];
2 int n;
 int candidate(int k, int v){
  for (int i = 1; i \le k-1; i++)
      if(x[i] = v \mid | abs(x[i]-v) = abs(i-k)) return 0;
    return 1;
8 void BTrack(int k){
    for (int v = 1; v \le n; v++)
      if(candidate(k,v) == 1){
        x[k] = v;
        if(k = n)
          printSolution();
        else
          BTrack(k+1);
18 int main(int agrc, char** args){
   n = 8;
    BTrack(1);
```

BackTracking algorithm - n-queens problem - refinement

- Use arrays for marking forbiden cells
 - r[1..n]: r[i] = false if the cells on row i are forbiden
 - $d_1[1-n..n-1]$: $d_1[q]$ = false if cells (r,c) s.t. c-r=q are forbiden
 - in C++, indices of elements of an array cannot be negative (i.e., indices are 0, 1, ...). Hence making a deplacement: $d_1[q+n-1]$ instead of $d_1[q]$
 - $d_2[2...2n-2]$: $d_2[q]$ =false if cells (r,c) s.t. r+c=q are forbiden

BackTracking algorithm - n-queens problem

```
void BTrack(int i){// try values for x[i]
   for (int val = 1; val \leq n; val +)
      if(r[val] = true \&\& d1[i-val+n-1] = true \&\& d2[i+val]
         == true ) {
       x[i] = val;
       r[val] = false;// marking forbiden cells
       d1[i-val+n-1] = false;// marking forbiden cells
       d2[i+val] = false;// marking forbiden cells
       if(i == n){
          printSolution();
        } else
          BTrack(i+1);
        r[val] = true;// recovering marking
       d1[i-val+n-1] = true; // recovering marking
        d2[i+val] = true; // recovering marking
```

Pham Quang Dung ()

BackTracking algorithm - n-queens problem

```
int main(int argc, char** argv){
   n = atoi(argv[1]);
    for (int i = 1; i <= n; i++)
      r[i] = true;
    for (int i = 0; i \le 2*n; i++){
     d1[i] = true;
     d2[i] = true;
    BTrack(1);
```

BackTracking algorithm - Exercises

Sudoku problem

Pham Quang Dung ()

- Subset Sum problem
- List all the ways to decompose a positive integer N into a sum of positive integers