几何选讲-2

例 1. 锐角 $\triangle ABC$ 中, AB > AC , CP, BQ 分别为 AB, AC 边上的高, P, Q 为垂足。直线 PQ 交 BC 于 X 。 $\triangle AXC$ 外接圆与 $\triangle PQC$ 外接圆再次相交于点 Y 。 求证: PY 平分 AX 。

例 2. 四边形 ABCD 内接于 $\bigcirc O$,直线 CD 交 AB 于 M (MB < MA , MC < MD), K 是 $\bigcirc (AOC)$ 与 $\bigcirc (DOB)$ 除点 O 外的另一个交点。求证: $\angle MKO = \frac{\pi}{2}$ 。

例 3. 圆 ω 是 $\triangle ABC$ 的外接圆,M是弧AB的中点,过A作 ω 的切线交直线BC于P,直线PM交 ω 于Q(异于M),过Q作 ω 的切线交AC于K。求证: $AB/\!\!/PK$ 。

例 4. 过以 AB 为直径的 $\bigcirc O$ 外一点 S 作该圆的切线 SP , P 为切点,直线 SB 与 $\bigcirc O$ 相交于 B 和 C ,过 B 作 PS 的平行线,分别与直线 OS ,PC 相交于 D 和 E ,延长 AE 与 $\bigcirc O$ 相交于 F 。求证: $PD/\!\!/BF$ 。

例 5. (加强的欧拉不等式)回忆:设 $\triangle ABC$ 的外心、内心分别为O,I,则由欧拉定理,我们有 $R^2-2Rr=OI^2\geq 0,R\geq 2r$ 。试证明下列不等式,它比上述欧拉不等式更强:

$$\frac{R}{r} \ge \frac{abc + a^3 + b^3 + c^3}{2abc} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a} - 1 \ge \frac{2}{3} \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a}\right) \ge 2.$$

例 6. 设 $\odot O$ 是 $\triangle ABC$ 的外接圆,D 是弧BC (不含A)上的一点,S 是弧BAC 的中点。P 为线段 SD 上一点,过P 作 DB 的平行线交AB 于点E,过P 作 DC 的平行线交AC 于点F,过O 作 SD 的平行线交弧 BDC 于点T。已知 $\odot O$ 上的点Q满足 $\angle QAP$ 被AT 平分,求证:QE = QF。

例 7. 设四边形 APDQ 内接于圆 Γ ,过 D 作 Γ 的切线与直线 AP , AQ 分别交于 B , C 两 点。延长 PD 交 $\triangle CDQ$ 的外接圆于点 X , 延长 QD 交 $\triangle BDP$ 的外接圆于点 Y 。设 $\triangle DXY$ 的外接圆交 BC 于点 D , E , 求证: BD = CE 。

例 8. 设凸四边形 ABCD 满足 $\angle ABC > \frac{\pi}{2}$, $\angle CDA > \frac{\pi}{2}$, $\angle DAB = \angle BCD$ 。 记 E, F 分别 为点 A 关于直线 BC, CD 的对称点。设线段 AE, AF 分别与直线 BD 交于点 K, L。求证: $\triangle BEK$ 和 $\triangle DFL$ 的外接圆相切。

例 9. 不等边 $\triangle ABC$ 的内切圆与边 BC, CA, AB 分别相切于点 D, E, F 。在 $\triangle ABC$ 外部构造 $\triangle APE$, $\triangle AQF$,使得 AP=PE, AQ=QF, $\angle APE=\angle ACB$, $\angle AQF=\angle ABC$ 。设 M 是 边 BC 的中点,请用 $\triangle ABC$ 的三个内角来表示 $\angle QMP$ 。

例 10. 设锐角 $\triangle ABC$ 的内心为 I ,点 A 所对的旁心为 I_A 。若 AB < AC ,设 D 为 $\triangle ABC$ 内切圆与边 BC 的切点,直线 AD 直线 BI_A , CI_A 分别交于点 E,F 。求证: $\bigcirc (AID)$ 与 $\bigcirc (I_AEF)$ 相切。

例 11. 在 $\triangle ABC$ 中, $\angle A$ 的平分线交 BC 于点 D , 交 $\triangle ABC$ 的外接圆于点 E 。设 K,L,M,N 分别为 AB,BD,DC,CA 的中点, P,Q 分别是 $\triangle EKL$, $\triangle EMN$ 的外心。求证: $\angle PEQ=A$ 。

例 12. 四边形 ABCD 外切于圆 ω ,设 E 是 AC 与 ω 的交点中离 A 较近的那一个,F 是 E 在 ω 上的对径点。设 ω 过F 的切线与直线 AB, BC, CD, DA 分别交于点 P, Q, R, S 。求证: PQ = RS 。

例 13. 设 O,H 分别是锐角 $\triangle ABC$ 的外心和垂心, Γ 是其外接圆。延长 AH,BH,CH 分别 交 Γ 于点 A_1,B_1,C_1 ,过 A_1,B_1,C_1 分别作 BC,CA,AB 的平行线与 Γ 再交于点 A_2,B_2,C_2 。 设 M,N,P 分别是 AC_2 与 BC_1 , BA_2 与 CA_1 , CB_2 与 AB_1 的交点。求证: $\angle MNB = \angle AMP$ 。

例 14. $\triangle ABC$ 中, I_A 是点 A 所对的旁心。一个经过 A,I_A 的圆与 AB,AC 的延长线分别交 于点 X,Y。线段 I_AB 上一点 S 满足 $\angle CSI_A = \angle AYI_A$,线段 I_AC 上一点 T 满足 $\angle BTI_A = \angle AXI_A$ 。设 K 是 BT,CS 的交点, Z 是 ST,I_AK 的交点。求证: X,Y,Z 三点 共线。

例 15. (2015, 欧洲女奥)设 H,G分别是锐角 $\triangle ABC$ ($AB \ne AC$)的垂心和重心,直线 AG与 $\triangle ABC$ 的外接圆交于另一点 P。设 P'是点 P关于直线 BC的对称点。求证: $\angle A = \frac{\pi}{3}$ 当且仅当 HG = GP'。

