Markov chains - Examples

1 Finite state space

1.1 Gambler's ruin

1.1.1 Simple case

Model At each step, flip a coin. The bank gives you 1\$ if you get heads, but you lose 1\$ if you get tails. You win if you reach an amount of 5\$, and obviously lose if you do not have any more money.

State space S =

Transition matrix

$$P =$$

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

1.1.2 General case

Model At each step, flip a coin. The bank gives you 1\$ if you get heads, which happens with probability $p \in (0,1)$, but you lose 1\$ if you get tails (which happens with probability 1-p). You win if you reach an amount of N coins, and lose if you do not have any more money.

State space S =

Transition matrix

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

1.2 Social mobility (Durrett, p. 3)

Model Let X_n to be the social class of a family in the n-th generation, which can be lower- (L), middle- (M) or upper-class (U). A simple model is that the status changes at each generation according to a Markov chain with transition matrix P below.

State space $S = \{L, M, U\}.$

Transition matrix

$$P = \begin{array}{ccc} L & M & U \\ L & 0.7 & 0.2 & 0.1 \\ M & 0.5 & 0.3 & 0.2 \\ U & 0.3 & 0.3 & 0.4 \end{array}$$

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

1.3 Random walk on a graph

1.3.1 Random walk on a square

Model

State space S =

Transition matrix

$$P = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$$

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

1.3.2 On another graph

Model

State space S =

Transition matrix

$$P = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$$

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

1.3.3 Simple random walk

Model In the following graph, from some vertex, jump to a neighbor with equal probability.

State space S =

Transition matrix

$$P =$$

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

1.4 Ehrenfest model

Model Consider two urns, containing a total number of N balls. At each step, pick a ball uniformly at random among all the possible balls, and move it to the other urn. The number X_n of urns in the left urn is a Markov chain called Ehrenfest chain.

State space S =

Transition matrix

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

2 Infinite state space

2.1 Random Walk

2.1.1 Asymmetric simple random walk in 1D

Model Consider $(X_i)_{i\geq 1}$ a sequence of i.i.d. random variables with values in \mathbb{Z} , with $\mathbb{P}(X_i = +1) = p$, $\mathbb{P}(X_i = -1) = 1 - p$, $p \neq 1/2$. The Markov chain defined by

$$S_n = X_1 + \dots + X_n, \quad n \ge 1$$

is called an asymmetric simple random walk.

State space S =

Transition probabilities

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

2.1.2	Symmetric simple random walk in 1D
Model	It is the same, with $p = 1/2$.

State space S =

Transition probabilities

 \mathbf{Graph}

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

2.2 Symmetric random walk in d dimensions

\mathbf{Model}	Consider (S_n)) a Markov	chain	on \mathbb{Z}^d ,	where,	at each	step,	the cha	ain ju	mps to	one of
the $2d$ ne	eighbors with p	probability	1/(2d)). It is	called a	symme	tric ra	andom	walk	on \mathbb{Z}^d .	

State space S =

Transition probabilities and properties

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

2.3 Gambling strategies

2.3.1 A very bad strategy

Model Play a game, where at each step, you bet all your money. You win 1\$ with probability p, and lose (everything) with probability 1 - p. You lose when you have nothing remaining.

State space S =

Transition matrix

$$P = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{pmatrix}$$

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	

2.3.2 A very bad strategy, but a nice dealer

Model Play a game, where at each step, you bet all your money. You win 1\$ with probability p, and lose (everything) with probability 1 - p. However, when you do not have any money left, the dealer still allows you to play.

State space S =

Transition matrix and properties

$$P = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{pmatrix}$$

Irreducible?	
Irreducible classes	
Absorbing states	
Recurrent states	
Transient states	
Period	