Hwy n(n-1) 25 D(n2) Prove: Lee nin-1) = Cn2. :, n[(2c-1)n-1] > 0 in FCz1 Nozl, for UnzNo. Cn2 z nin-1) : According to formal definition of 63g - 0. $01n^{2} = \frac{n(n-1)}{2}$ (b) max (n3, lon3) is $\max(n^3, (n^3) = \{10n^2, n \leq 10 = f(n)\}$ let fin) < Cn3. let C=1. when n ≤ 10, bot ≤ n3., n>10 when n>10 n3 = n3. n>1 Iczl No > 10 for Un > No Cn3 > fin) : According to formal definition of big-0 $0 (n^{3}) \approx \max(n^{3}, 10n^{3})$ (c) $\sum_{i=1}^{2} i^{k}$ is $O(n^{k+1})$ and $\Omega(n^{k+1})$ (CCN and k>0Prove: O for $\sum_{i=1}^{n} i^{k} \approx \int_{i=0}^{n} i^{k} di = \frac{1}{k+1} n^{k+1}$ " Ji=m vdv < Ji= (m+1)kdi = (m+1)k : 2 1 > Sizo i dz z K+1 h(4) : (K+1) \(\frac{1}{2}\) \(\fra big- si: 7 C= Text, No), let 4 n>No Eik zinker D. .: Sik = Mcnk+1 .: Awarding to the blg-0's definition, 7021, No >1, let V n>No, Zik < nkm : Zik = O(nkm)

	•
Z. (a)	$n^{\log n}$; $(\log n)^n$.
R. 1. 10	+ 9/n) = n logn funz (logn) n.
100-1	+ g(n) z n logn f(n) z (logn) ⁿ . log(g) z logn logn log(f) z n log(logn)
	log (log (g)) = 2/09 (og n/O, log(og(f)) = logn + loglog logn @
	Let Kz log n
	: Oz 2log K (2) = K+ loglog K.
	Apparently of grows faster than (1) : fin) 2 (logn) " grows faster.
(6)	$\log n^{k}$, $(\log n)^{k}$.
Proof.	let $g(n) = \log n^k = K \log n$. $f(n) = (\log n)^k$. $(\log \log n) = \log k + (\log \log n)$.
	(09/9/n) = logk + loglogn.
	log (fin) = Klog log n. iif K>1 then.
	13m log (gm)) zhmbklog log n z /gin)=log (n) k grous faster n-sen log(fin) n-resklog log n K. ifokkel, then fin) grous
) this
if K=0	, I then gen) and fin share the same growth rate. faster
<u>(c).</u>	n/g/g/gn, (/gn)!
Proof:	let gin) z n'es log log n finiz (logn)!
, <i>)</i>	log(gin) z logn loglog(ogn log(f(n)) z log((logn):)
	Let le log n.
	then log(gm)) = k log log k log(fm)=. log(K!)
	loil kullo lankul
	12m (oglk!) - 12m (k+1)loglk+1)- Klogle
	[com [ag((k+1)) = im [com [com [com [com [com [com [com [co
	· log(k!) and klogk have the same growth rate
	'

Aparently, Kloglogk Grows slower than Klogk

i log(K!) grows faster than kloglogk

in fin) = (log in)! grows faster than gin)=11 les fin) = n" gin) = n! n | 10gt = 1 | 10gt = 2 According to the grast in (6) totage and logh! have the same growth rate fin) grows faster.

let f, (n) 2 O (g, (n1) fren) 2 O (g, (n)) f, (n) >0 f2 (n) >0 : 7 C, N, let &n>N, f.(n) < 9, (n) × C, JCz, Nzilet UnzNz fz(n) & gz(n) x Cz in then film) + frim) < Ciq, cn) + Coq, (n) :N, , N2 70; f, , f, 70 : n > max (N, N2) Then !! Cigin) + ezg, in) & (C,+Cz) max (g, in, g, is) :] No = max (N, N2), Cz (C+C) let. Hn>No f.(n) + fit) < C max (g.(n), gn(n)) According to the definition of Blg-0 $f_{i}(n) + f_{i}(n) = \Omega(\max(g_{i}(n), g_{i}(n)))$ groof. Let $n \leq C^{\frac{n}{2}}$, then $C \geq 2$. $(n \geq 0)$: 3 C=2, No>0, let 4n>No, n < C = · According to the Sefenithon of Prig-0 | [et. $3^n \in C2^n$: C>0,

then let $log 3^n \in log C2^n$. : $n log 3 \leq log C+ n log 2$. log C = log CSo there is no constant No let ny No to make 3n & Czn. in 3" # 0'(2")