Deep Learnig com Python

Olá! **Yan Coltro**

Mestre em TCA **Backend Developer** Professor do curso de SI FAG

Deep Learning?

O que é? Como funciona? De onde veio?

ML = IA || Big Data?

Big Data

- Google processe mais de 20 petabytes de informação por dia
- Todos os dias são criados 2,5 quintilhões de bytes

- Volume impraticável para ser analisado por humanos
- Big Data é usado em conjuntos complexos e com muitas variáveis (features)
- Deep Learning, Redes
 Neurais necessitam de
 grandes volumes de dados
 para treinamento

ML = IA || Big Data?

IA

- O cérebro da IA é a ML
- Necessidade de interagir com o ambiente
- Sensores, atuadores, feedback espacial

- O Siri, um bom exemplo de IA
- Tesla, um bom exemplo de IA
- Boston Dynamics, um bom exemplo de IA

(66)

Machine learning é um ramo da ciência da computação que se concentra no uso de dados e algoritmos para imitar a maneira como os humanos aprendem, melhorando gradualmente sua precisão.

Tipos de aprendizado

Supervisionado

Dados rotulados

Discretas: Classificação

!Discretas: Regressão

Não Supervisionado

Agrupamento de dados com base em similaridades

Por reforço

Domínios específicos

Recompensas associadas a alterações no ambiente e seu estado

Aprendizado Supervisionado

Exemplos do aprendizado supervisionado

Caixa de e-mails (Classificação)

Trabalho/Promoções/Fóruns.... Classificar antes, treinar depois Identificar palavras chaves, remetente, etc

**Classes são discretas e finitas

Exemplos do aprendizado supervisionado

Preços de imóveis (Regressão)

Recebe parâmetros (m², bairro, tipo, banheiros, ...)

f(x) = valor da casa

 $f(100m^2,A,M,..) = 100000$

 $f(\mathbf{w1}^*100m^2 + \mathbf{w2}^*A + ...) = 100000$

**Classes são indiscretas e infinitas

Árvores

Máquinas de vetor de suporte (SVM)

Aprendizado Não Supervisionado

Exemplos do aprendizado não supervisionado

PLN

Agrupar por contexto Sentimentos por contexto Tradução automática

Exemplos do aprendizado não supervisionado

Modelos generativos

Geração de imagens

Colorir imagens

Sintetizar imagens

Geração de texto

Alteração de expressões

Cluster hierárquico

Aprendizado Por reforço

Exemplos do aprendizado por reforço

Controle de autônomos

Manter-se na faixa Respeitar a sinalização Melhor rota

Exemplos do aprendizado por reforço

Carteira de ações

Venda de ações

Valor maximizado da carteira

Q-Laerning

Bônus

Componentes e processos de uma solução ML

Componentes

- Learner
- Training data
- Representation
- Goal
- Target

Processos

- Coleta de dados
- Processamento de dados
- Caso de teste
 - Treinamento
 - Teste
 - Validação

^{**}Overfitting!!!!!!!

Redes Neurais

1957, Frank Rosenblatt

Perceptron

Multilayer Perceptron

**Teorema da aproximação universal

(66)

Uma rede neural

não é um programa fixo, mas sim um modelo, um sistema que processa informações ou entradas

- O processamento da informação ocorre em sua forma mais simples, sobre elementos simples chamados **neurônios**.
- Os neurônios estão conectados e trocam sinais entre eles por meio de links de conexão.
- As ligações de conexão entre os neurônios podem ser mais fortes ou mais fracas, e isso determina como a informação é processada.
- Cada neurônio tem um estado interno que é determinado por todas as conexões de entrada de outros neurônios.
- O Cada neurônio tem uma **função de ativação** diferente que é calculada em seu estado e determina seu sinal de saída.

Como identificar redes neurais

Arquitetura

- Feedfoward
- Multicamada
- Cama única
- Número de neurônios

Aprendizagem

- Gradiente descendente
- Retropropagação

Partes de uma Rede Neural

Uma visão geral

Inputs: Dados que alimentarão a rede

Weights: Serão eles que serão ajustados durante o aprendizado

Activation: Função responsável por definir se algum neurônio atendeu as condições pra ser ativado (função de ativação)

Activation Function: Se o neurônio foi ativado, verifica se o limiar de valor atingido é suficiente para ativar a camada de saída (função de ativação ou limiar)

Output: Resultado da rede (classes ou valores)

Bias: Tendência da rede

Camadas: Neurônios ocultos da rede

Deep Learning

Fundamentos

(66)

Uma Deep Learning não aprende simplesmente a prever a saída Y dada a entrada X; ela também entende os recursos básicos da entrada. É capaz de aprender abstrações de recursos de exemplos de entrada, entender as características básicas dos exemplos e fazer previsões com base nessas características. Este é um nível de abstração que está faltando em outros algoritmos básicos de aprendizado de máquina (ML) e em redes neurais superficiais.

Como a Deep Learning aprende?

- Aprendizado de recursos
- Grande volume de dados
- Sem necessidade de engenharia de recursos

Aplicações atuais da Deep Learning

Amazon Rekognition

As razões para a popularidade da Deep Learning

- Multilayer Percepetron + 50
- Backpropagation 1986
- O Convolucionais 1990
- Memória de curto prazo -1997

- Muitos dados
- Melhores máquinas
- Melhor conexão
- O GPU e CPU

Redes Convolucionais O assunto de hoje

(66)

A visão é sem dúvida o sentido humano mais importante.
Contamos com ele para quase todas as ações que
tomamos. Mas o reconhecimento de imagem tem sido (e de
certa forma ainda é), por muito tempo, um dos
problemas mais difíceis da ciência da computação.

- CNNs conectam neurônios próximos (ótimo para imagens)
- Compartilhamento de parâmetros (pesos / overfitting)

Funcionamento

Conceitos

Slice

Dados de entrada

Stride

Tamanho da janela de transformação

Convolution

Produto da aplicação de filtros

Pooling

Produto dos destaques da convolução

Mão na massa

K Keras

