In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Out[2]:		date	BEN	CO	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PM
		2009-										
	0	10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.2600
	1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.5800
	2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.1900
	3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.5300
	4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.7600
	215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.8300
	215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.9200
	215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.4600
	215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.0300
	215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.3600

215688 rows × 17 columns

In [3]: data.head(10)

Out[3]:		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PΝ
	0	2009- 10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.260000	٨
	1	2009- 10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.580000	N
	2	2009- 10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.190001	٨
	3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.530001	6
	4	2009- 10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.760000	٨
	5	2009- 10-01 01:00:00	NaN	0.29	NaN	NaN	NaN	43.200001	50.080002	NaN	35.840000	21.870001	N
	6	2009- 10-01 01:00:00	NaN	0.20	NaN	NaN	NaN	35.430000	38.520000	NaN	33.549999	17.350000	Ν
	7	2009- 10-01 01:00:00	NaN	0.15	NaN	NaN	NaN	27.309999	33.150002	NaN	53.549999	16.520000	11
	8	2009- 10-01 01:00:00	NaN	0.21	NaN	NaN	0.39	33.889999	40.799999	NaN	58.549999	16.650000	٨
	9	2009- 10-01 01:00:00	NaN	0.32	NaN	NaN	NaN	46.349998	60.540001	NaN	45.340000	15.160000	N

In [4]: data.tail(20)

Out[4]:		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM
	215668	2009- 06-01 00:00:00	NaN	0.21	NaN	NaN	0.13	44.130001	46.730000	NaN	75.720001	6.1000
	215669	2009- 06-01 00:00:00	0.15	0.31	0.39	NaN	0.18	49.000000	55.669998	NaN	57.200001	18.0300
	215670	2009- 06-01 00:00:00	NaN	0.34	NaN	NaN	NaN	56.799999	74.120003	NaN	22.860001	15.7300
	215671	2009- 06-01 00:00:00	NaN	0.37	NaN	NaN	NaN	62.450001	81.910004	NaN	55.360001	35.5999
	215672	2009- 06-01 00:00:00	NaN	0.28	NaN	NaN	0.15	25.340000	28.260000	NaN	65.750000	12.0400
	215673	2009- 06-01 00:00:00	NaN	0.35	NaN	NaN	NaN	40.160000	42.959999	NaN	87.650002	7.5600
	215674	2009- 06-01 00:00:00	NaN	0.61	NaN	NaN	NaN	46.200001	48.880001	NaN	57.340000	24.2500
	215675	2009- 06-01 00:00:00	NaN	0.33	NaN	NaN	NaN	75.980003	96.919998	NaN	43.139999	16.3400
	215676	2009- 06-01 00:00:00	NaN	0.35	NaN	NaN	NaN	40.799999	43.430000	NaN	71.209999	23.3899
	215677	2009- 06-01 00:00:00	NaN	0.25	NaN	NaN	NaN	45.299999	51.400002	NaN	62.939999	22.6299
	215678	2009- 06-01 00:00:00	NaN	0.40	NaN	NaN	NaN	87.239998	100.099998	NaN	27.410000	13.1200
	215679	2009- 06-01 00:00:00	NaN	0.21	NaN	NaN	NaN	39.650002	41.270000	NaN	66.870003	11.2700
	215680	2009- 06-01 00:00:00	NaN	0.51	NaN	NaN	NaN	21.750000	24.480000	NaN	84.900002	3.0500
	215681	2009- 06-01 00:00:00	NaN	0.32	NaN	NaN	NaN	62.630001	77.580002	NaN	49.529999	25.2700
	215682	2009- 06-01 00:00:00	0.41	0.30	0.37	NaN	0.18	75.290001	89.139999	NaN	33.330002	N
	215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.8300
	215684	2009- 06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.9200

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM
215685	2009- 06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.4600
215686	2009- 06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.0300
215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.3600

In [5]: data.describe()

Out[5]:

	BEN	со	EBE	MXY	NMHC	NO_2	
count	60082.000000	190801.000000	60081.000000	24846.000000	74748.000000	214562.000000	2
mean	0.757749	0.393615	1.220672	2.248822	0.205894	54.345375	
std	1.011530	0.262863	1.266637	2.251823	0.124562	34.868690	
min	0.100000	0.060000	0.100000	0.240000	0.000000	0.600000	
25%	0.220000	0.240000	0.560000	0.990000	0.130000	28.379999	
50%	0.470000	0.320000	0.940000	1.490000	0.180000	47.599998	
75%	0.840000	0.470000	1.390000	2.830000	0.250000	72.339996	
max	37.720001	5.570000	81.480003	56.500000	4.330000	477.399994	
4							

In [6]: np.shape(data)

Out[6]: (215688, 17)

In [7]: | np.size(data)

Out[7]: 3666696

In [8]: data.isna()

\sim			F 0	-
<i>ا</i> ۱	111	-	ıv	
v	u	L	10	1.

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10	PM25	PXY
0	False	True	False	True	True	True	False	False	True	False	False	True	True
1	False	True	False	True	True	True	False	False	True	False	False	True	True
2	False	True	False	True	True	True	False	False	True	False	False	True	True
3	False												
4	False	True	False	True	True	False	False	False	True	False	False	True	True
215683	False												
215684	False	True	False	True	True	True	False	False	True	False	False	True	True
215685	False	False	True	False	True	False	False	False	True	False	False	False	True
215686	False	False	True	False	True	False	False	False	True	True	False	True	True
215687	False												

215688 rows × 17 columns

In [9]: data.dropna()

Out[9]:		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM1
	3	2009- 10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.53000
	20	2009- 10-01 01:00:00	0.38	0.32	0.32	0.89	0.01	17.969999	19.240000	1.00	65.870003	10.52000
	24	2009- 10-01 01:00:00	0.55	0.24	0.65	1.79	0.18	36.619999	43.919998	1.28	48.070000	19.15000
	28	2009- 10-01 02:00:00	0.65	0.21	1.20	2.04	0.18	37.169998	48.869999	1.21	26.950001	32.20000
	45	2009- 10-01 02:00:00	0.38	0.30	0.50	1.15	0.00	17.889999	19.299999	1.00	60.009998	12.26000
	215659	2009- 05-31 23:00:00	0.54	0.27	1.00	0.69	0.09	28.280001	29.490000	0.86	78.750000	15.17000
	215663	2009- 05-31 23:00:00	0.74	0.35	1.13	1.65	0.15	56.410000	69.870003	1.26	56.799999	11.80000
	215667	2009- 06-01 00:00:00	0.78	0.29	0.99	1.96	0.04	64.870003	82.629997	1.13	58.000000	12.67000
	215683	2009- 06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.83000
	215687	2009- 06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.36000
	24717 rd	ows × 17 (columi	ns								
	1						_					•
n [10]:	data.co	lumns										
											', 'OXY',	

In [12]: dd=sd.head(20) dd

Out[12]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx
0	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002
1	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000
2	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001
3	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001
4	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002
5	NaN	0.29	NaN	NaN	NaN	43.200001	50.080002
6	NaN	0.20	NaN	NaN	NaN	35.430000	38.520000
7	NaN	0.15	NaN	NaN	NaN	27.309999	33.150002
8	NaN	0.21	NaN	NaN	0.39	33.889999	40.799999
9	NaN	0.32	NaN	NaN	NaN	46.349998	60.540001
10	NaN	0.24	NaN	NaN	NaN	30.860001	35.590000
11	NaN	0.18	NaN	NaN	NaN	37.230000	37.830002
12	NaN	0.19	NaN	NaN	NaN	35.680000	39.619999
13	NaN	NaN	NaN	NaN	NaN	28.000000	31.950001
14	NaN	0.17	NaN	NaN	NaN	22.629999	28.330000
15	NaN	0.21	NaN	NaN	NaN	38.340000	41.759998
16	NaN	0.26	NaN	NaN	NaN	26.209999	46.580002
17	NaN	0.21	NaN	NaN	NaN	33.759998	40.439999
18	NaN	0.21	NaN	NaN	NaN	30.180000	37.240002
19	0.20	0.25	0.62	NaN	0.13	29.930000	33.610001

In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>


```
In [14]: dd.plot.bar(color='r')
```

Out[14]: <AxesSubplot:>


```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO_2'>


```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO_2'>

In [17]: dd.plot.box()

Out[17]: <AxesSubplot:>


```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: | dd.plot.line()

Out[19]: <AxesSubplot:>


```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>

In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>

In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x1e10f1e0e80>


```
In [23]: sns.distplot(dd['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>


```
In [24]: ds=data.fillna(20)
```

In [25]: ssd=ds.head(20)

```
In [26]: sd1=ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
```

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>


```
In [28]: x= ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         y=ssd['station']
In [29]: from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]: print(lr.intercept_)
         28079032.65398972
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [32]:
         coeff
Out[32]:
                 Co-efficient
                   -0.316216
            BEN
             CO
                  -0.123839
            EBE
                   -0.309508
            MXY
                   0.000000
          NMHC
                   0.386665
           NO_2
                  -1.156499
            NOx
                   0.749654
         prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[33]: <matplotlib.collections.PathCollection at 0x1e115feb760>
             +2.8079e7
           28
           26
           24
           22
```

20

18

16

15

20

25

30

35 40 +2.8079e7

```
In [34]: |print(lr.score(x_test,y_test))
         -0.2086749635985623
In [35]: |lr.score(x_test,y_test)
Out[35]: -0.2086749635985623
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.346321238823563
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: | dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: |dr.score(x_test,y_test)
Out[39]: -0.1668064167808725
In [40]: |dr.score(x_train,y_train)
Out[40]: 0.3453487068753818
In [41]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: la.score(x_test,y_test)
Out[42]: 0.21225155924918837
In [43]: la.score(x_train,y_train)
Out[43]: 0.15037239677932068
         ElasticNet
```

```
In [45]: |print(en.coef_)
         [-0.29468731 -0.10936129 -0.26206997 0.
                                                            0.35004509 -1.052275
           0.65896394]
In [46]: |print(en.intercept_)
         28079032.09424193
In [47]: | prediction=en.predict(x_test)
In [48]: print(en.score(x_test,y_test))
         -0.1318676264866061
         import numpy as np
In [49]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: | from sklearn.linear_model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         target vector=ssd['station']
In [52]: | feature_matrix.shape
Out[52]: (20, 7)
In [53]: |target_vector.shape
Out[53]: (20,)
In [54]: from sklearn.preprocessing import StandardScaler
In [55]: | fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3,6.3,7.3]]
In [58]: | prediction=logr.predict(observation)
         print(prediction)
         [28079012]
```

```
In [59]: logr.classes
Out[59]: array([28079003, 28079004, 28079006, 28079007, 28079008, 28079009,
                28079011, 28079012, 28079014, 28079016, 28079017, 28079018,
                28079019, 28079021, 28079022, 28079023, 28079036, 28079038,
                28079039, 28079040], dtype=int64)
In [60]: logr.predict_proba(observation)[0][0]
Out[60]: 0.0036763862551488853
In [61]: |ged=data[['BEN','CO','EBE','MXY','NMHC','NO_2','NOx','OXY','O_3','PM10','PXY',
In [62]: | d=ged.fillna(20)
In [63]: dg=d.head(100)
In [64]: x=dg[['BEN','CO','EBE','MXY','NMHC','NO 2','NOX','OXY','O 3','PM10','PXY','SO 2
         y=dg['station']
In [65]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [66]: from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[66]: RandomForestClassifier()
In [67]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                        'min samples leaf':[5,10,15,20,25,30,35],
                        'n estimators':[10,20,30,40,50,60,70]}
In [68]: from sklearn.model selection import GridSearchCV
         grid_search= GridSearchCV(estimator = rfc,param_grid=paramets,cv=2,scoring="ac
         grid_search.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
         less than n splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[68]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5, 6, 7],
                                   'min_samples_leaf': [5, 10, 15, 20, 25, 30, 35],
                                   'n_estimators': [10, 20, 30, 40, 50, 60, 70]},
                      scoring='accuracy')
In [69]: |grid_search.best_score_
Out[69]: 0.3
```

In [70]: | rfc_best=grid_search.best_estimator_

Conclusion: LinearRegression() 28079032.65398972 HIGH RANGE