Non-Interactive Zero-Knowledge

Ron Rothblum

Technion

Zero-Knowledge

- So far today: Zero-Knowledge is really awesome!
- ZK Crucially relies on a combination of interaction and randomness.
- Even more awesome ZK with "no" interaction! Prover just sends a ZK proof and verifier is convinced (a la NP proof).
- Non-interactive proofs are very important in some domains. For example, can simply post proof on website (or blockchain).

Non-interactive Zero-knowledge?

Claim: If L has a ZK proof in which prover sends a single message then $L \in BPP$.

Proof: Decision procedure for *L*:

- 1. Given $x \in L$, run Sim(x) to get a simulated proof π .
- 2. Output $V(x, \pi)$.
- Completeness: If $x \in L$ then simulated proof indis. from real proof $\Rightarrow V$ accepts.
- Soundness: If $x \notin L$ then V rejects all proofs (whp).

Thanks!

Non-Interactive Zero-Knowledge [BFM88]

• **Key idea:** trusted setup.

• Typically, the Common Reference String (CRS) model.

A trusted party generates a CRS that all parties can see.

• Even Better: common uniform random string (CURS).

Definition: NIZK

Completeness: if $x \in L \Rightarrow \Pr[V \ accepts] = 1 - negl$

Soundness: if $x \notin L \Rightarrow \forall PPT P^*$, $Pr[V \ accepts] = negl$

Definition: NIZK

Zero-Knowledge: "Can simulate view of the verifier"

 $\exists Sim \text{ such that for } x \in L$ $Sim(x) \approx^c (CRS, \pi)$

Philosophical Detour: is NIZK actually ZK?

You can share an NIZK proof with your friends and convince them that $x \in L!$

Q: you've not learned only that $x \in L$ but also a convincing proof for that fact. How can this be ZK???

A: you've learned a proof for this specific CRS. Arguably did not learn directly about x.

Regardless of philosophical mumbo jumbo, very useful in applications!

Impossibility Results No Longer Applies!

False Claim: If L has an NIZK in CRS model then $L \in BPP$.

Wrong Proof: Decision procedure for *L*:

- 1. Given $x \in L$, run Sim(x) to get (π, CRS) .
- 2. Output $V(x, CRS, \pi)$.
- Completeness: If $x \in L$ then simulated proof indis. from real proof $\Rightarrow V$ accepts.
- Soundness: If $x \notin L$ then V rejects all proofs (whp).

NIZK Applications

- *CCA* secure encryption [NY90].
- Unique signatures [BG89].
- MPC with low round complexity [AJJTVW12].
- CS proofs [Micali94]
- Mechanism design [LMPS04]
- Cryptocurrencies zk-SNARGS, zk-STARKS [BCGGMTV14,...]

• ...

Variants of NIZKs (aka the Boring Slide)

- Multi theorem: can-reuse CRS for many x's.
- Adaptive soundness: sound even if $x \notin L$ chosen after CRS.
- Adaptive ZK: ZK distinguisher can choose $x \in L$ after CRS.
- Statistical soundness (proof): sound against unbounded provers.
- Statistical ZK: ZK for unbounded distinguishers.

Feasibility Results [Circa 2018]

[FLS90]: NIZK for all of NP from Trapdoor Permutations*.

Corollary: NIZK based on hardness of factoring.

Other known results:

- Bilinear maps [GOS06].
- Random oracle model (tomorrow).
- Obfuscation [SW13,BP15].
- Optimal hardness assumptions [CCRR18,CCHLRR18].

New & Exciting Feasibility Results [2019]

- LWE + circular security [CLW19]
- Last week: LWE! [PS19]

Still Open:

- 1. From discrete log type assumptions (in standard group).
- 2. From less structured generic assumptions.
 - One way functions???

Feasibility Results [Circa 2018]

[FLS90]: NIZK for all of NP from Trapdoor Permutations*.

Corollary: NIZK based on hardness of factoring.

Other known results:

- Bilinear maps [GOS06].
- Random oracle model (tomorrow).
- Obfuscation [SW13,BP15].
- Optimal hardness assumptions [CCRR18,CCHLRR18].

Feasibility Results [Circa 2018]

[FLS90]: NIZK for all of NP from Trapdoor Permutations*.

Corollary: NIZK based on hardness of factoring.

Other known results:

- Bilinear maps [GOS06].
- Random oracle model (tomorrow).
- Obfuscation [SW13,BP15].
- Optimal hardness assumptions [CCRR18,CCHLRR18].

The FLS Paradigm

Construction has two main steps:

1. Construct NIZK in the "hidden bits" model.

2. Compile hidden bits NIZK to standard NIZK.

The Hidden Bits Model

Think of CRS model, except verifier only sees a part of the CRS determined by the prover.

The FLS Paradigm

Construction has two main steps:

1. Construct NIZK in the "hidden bits model".

2. Compile any hidden bits NIZK to standard NIZK.

NIZK in the Hidden Bits Model

Construct hidden bits NIZK for Hamiltonicity - given a graph G, does it contain a Hamiltonian cycle?

Hamiltonicity is NP complete \Rightarrow Hidden bits NIZK for all of NP.

Construction is information theoretic.

- Prover is polynomial-time (given the cycle).
- Perfect completeness.
- Perfect* soundness even against unbounded prover!

Hidden Bits NIZK for Hamiltonicity

Common Input: A graph G = (V, E)

Auxiliary Prover Input: Hamiltonian cycle $H \subseteq E$.

CRS: random cycle graph C on |V| vertices (represented by adjacency matrix).*

Hidden Bits NIZK for Hamiltonicity

Random cycle graph $C = (V_C, E_C)$

Find injective mapping $\pi: V \to V_C$ that preserves cycle structure

Reveal
$$S \subseteq V_C \times V_C$$
 s.t.: $S = \pi(V^2 \setminus E)$

Check that

1. π is injective

2. $\forall e \notin E$, the edge $\pi(e)$ was revealed (as a non-edge)

Completeness

Random cycle graph $C = (V_C, E_C)$

Find injective mapping $\pi: V \to V_C$ that preserves cycle structure

Reveal
$$S \subseteq V_C \times V_C$$
 s.t.:
 $S = \pi(V^2 \setminus E)$

Check that

1. π is injective

 \frown 2. $\forall e \notin E$, the edge $\pi(e)$

was revealed (as a non-edge)

Soundness

Suppose *V* accepts.

- 1. π is injective.
- 2. All non-edges of *E*

Actually, for CURS (instead of CRS) pay exponentially small soundness error.

Consider the inverse E'

- 1. $E' \subseteq E$ (i.e,. contains only a
- 2. E' forms a Hamiltonian Q'
- \Rightarrow G is Hamiltonian.

Perfect soundness!

Hidden Bits NIZK for Hamiltonicity: Zero-Knowledge

Intuitively, all the verifier sees is a mapping $\pi: V \to V_C$ and that all the non-edges of G were revealed.

How to simulate? Given graph *G*:

- Choose random injective function $\pi \to [n]$.
- Output (π, S, CRS_S) where $S = \pi(V^2 \setminus E)$ and $CRS_S = 000 \dots 0$.

<u>Claim 1:</u> for every fixed choice of π the simulated view is identical to the real.

<u>Claim 2:</u> mapping in real execution is a random injective function.

The FLS Paradigm

Construction has two main steps:

1. Construct NIZK in the "hidden bits model".

2. Compile any hidden bits NIZK to standard NIZK.

From Hidden Bits to CRS

Hidden bits model is a fictitious abstraction.

Will use crypto to compile into standard CRS model.

Main tool: Trapdoor Permutations (TDP).

Trapdoor Permutations

Will use an idealized definition.

• Actual candidates don't satisfy this... 😊

To make a long story short, it causes massive headaches.

See: enhanced TDP [G04], doubly-enhanced TDP [G11,GR13], certifying TDP [BY96,CL18]...

Idealized Trapdoor Permutations

<u>Definition:</u> a collection of efficiently computable permutations

$$\{p_{\alpha}: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}\}_{\alpha \in \{0,1\}^{\lambda}}$$
 such that:

- 1. $\exists PPT \ algorithm \ that \ samples \ \alpha \ together \ with \ a "trapdoor" \tau$
- 2. $\alpha, p_{\alpha}(x) \nrightarrow x$.
- 3. $\tau, p_{\alpha}(x) \rightarrow x$.

Examples*: RSA, Rabin.

<u>Hardcore bit of TDP:</u> efficient $h: \{0,1\}^{\lambda} \to \{0,1\}$ s.t. $\alpha, p_{\alpha}(x) \not\to h(x)$.

Implementing Hidden Bits Model – Bird's Eye

CRS consists of $y_1, ..., y_\ell \in \{0,1\}^{\lambda}$.

Prover chooses a TDP (α, τ) .

Hidden bits are defined as $b_i = h(y_i)$.

To reveal a bit the prover sends x_i .

Implementing Hidden Bits – Frog's Eye

- 1. Choose (α, τ) .
- 2. Define $x_i = p_{\alpha}^{-1}(y_i)$.
- 3. Hidden bits are $b_i = h(x_i)$
- 4. Run HB prover on $(x, w, (b_1, ..., b_\ell))$
- 5. Get proof π and $S \subseteq [\ell]$.

- 1. Check α in collection
- 2. $\forall i \in S$, check $p_{\alpha}(x_i) = y_i$.
- 3. Define $b_i = h(x_i)$
- 4. Check that HB verifier accepts $(x, \pi, \{b_i\}_{\{i \in S\}})$

Completeness

- 1. Choose (α, τ) .
- 2. Define $x_i = p_{\alpha}^{-1}(y_i)$.
- 3. Hidden bits are $b_i = h(x_i)$
- 4. Run HB prover on $(x, w, (b_1, ..., b_\ell))$
- 5. Get proof π and $S \subseteq [\ell]$.

- 1. Check α in collection
- 2. $\forall i \in S$, check $p_{\alpha}(x_i) = y_i$.
- 3. Define $b_i = h(x_i)$
- 4. Check that HB verifier accepts $(x, \pi, \{b_i\}_{\{i \in S\}})$

From Hidden Bits to NIZK – Zero Knowledge

- Intuitively the bits $\{b_i\}_{i\in S}$ are revealed and by the hard-core property + hybrid argument the bits $\{b_i\}_{i\notin S}$ are hidden.
- Formally(ish) can construct a simulator Sim(x) as follows:
 - Run $Sim_{HB}(x)$ to get $(\pi, S, \{b_i\}_{i \in S})$.
 - Sample (α, τ) .
 - For every $i \in S$ sample x_i s.t. $h(x_i) = b_i$. Set $y_i = p_\alpha(x_i)$.
 - For every $i \notin S$ sample $y_i \in \{0,1\}^{\lambda}$.
 - Output $((\alpha, \pi, S), (y_1, \dots, y_\ell))$.
- Exercise: show that $Sim(x) \approx_C Real$.

Suppose α is fixed (Important!).

Then, the hidden bits are automatically defined as $b_i = h(f_{\alpha}^{-1}(y_i))$

Now soundness follows immediately from HB soundness.

<u>Problem:</u> cannot assume α is fixed – choice of α gives prover leverage in deciding the values of b_1, \dots, b_ℓ .

<u>Idea:</u> repeat HB proof-system enough times so that the soundness is $2^{-2\lambda}$.

Now:

 $Pr[\exists \alpha \ on \ which \ Prover \ can \ cheat]$

<u>Idea:</u> repeat HB proof-system enough times so that the soundness is $2^{-2\lambda}$.

Now:

$$\Pr[\exists \alpha \text{ on which Prover can cheat}] \leq \sum_{\alpha} \Pr[Prover \text{ can cheat on } \alpha]$$

<u>Idea:</u> repeat HB proof-system enough times so that the soundness is $2^{-2\lambda}$.

Now:

$$\Pr[\exists \alpha \ on \ which \ Prover \ can \ cheat] \leq \sum_{\alpha} \Pr[Prover \ can \ cheat \ on \ \alpha]$$

$$\leq 2^{\frac{\alpha}{\lambda}} \cdot 2^{-2\lambda}$$

<u>Idea:</u> repeat HB proof-system enough times so that the soundness is $2^{-2\lambda}$.

Now:

$$\Pr[\exists \alpha \text{ on which Prover can cheat}] \leq \sum_{\alpha} \Pr[Prover \text{ can cheat on } \alpha]$$
$$\leq 2^{\lambda} \cdot 2^{-2\lambda}$$
$$= 2^{-\lambda}$$

Putting it all together

Thm: if factoring is hard, then $\exists NIZK$ for all of NP.

Thanks!