

FACULTY OF COMPUTING

SEMESTER 1 2024/2025

SECI 1013 DISCRETE STRUCTURE

SECTION 03

EXERCISE CHAPTER 1

LECTURER: DR. MUHAMMAD ALIIF BIN AHMAD

Student name	Matric Number
TOH SHEE THONG	A24CS0309
NUR ALIA ATHIRAH BINTI SUZUDDIN	A24CS0153
LEE PEI YUAN	A24CS0262
MUHAMMAD ALIFF BIN HELMI	A24CS0272

Determine whether each pair of sets is equal {1, 2, 2, 3}, {1, 3, 2}

Exercise

• If *M* is finite, determine the |*M*|

$$- If M = \{1, 2, 3, 4\}$$

$$- If M = \{4, 4, 4\}$$

$$- If M = \{\}$$

$$- \text{ If } M = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$$

$$M = \{4,4,4,3 \rightarrow 1M1 = 1$$

$$M = \{ \emptyset, \{ \emptyset \}, \{ \emptyset \}, \{ \emptyset \} \} \} \rightarrow IMI = 3$$

• Find:

 $|A \cup B|$, A - B dan A'.

- Let A, B and C be sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$
- Prove that B = C

ANB = ANC } AUB = AUC
Prove B = C
$\beta = \beta$
B=Bn(AUB) -> Absorption law
B=Bn (Auc) -> condition
B= (BnA)U(Bnc) -> distributio law
B= (Anc) v (Bnc) -> condition
B = cn (AUB) -> distributio law
B= CT (AUC) -> condition
B=C & Cproven) -> absorption law

•
$$A = \{a, b\}, B = \{1, 2\}, C = \{x, y\}$$

- Determine the following set nad their cardinality,
 - a) $B \times C$
 - b) $A \times B \times C$,

$$\frac{(2, y)^{\frac{2}{3}}}{(2, y)^{\frac{2}{3}}}$$

1Bxc1 = 2x2 = 4

6) A×B×C =
$$\{(a,1,n), (a,1,y)\}$$

 $(a,2,n), (a,2,y)$
 $(b,1,n), (b,1,y),$
 $(b,2,y)$

Part 3: Fundamental and Elements of Logic

Exercise

Suppose x is a particular real number. Let p, q and r symbolize "0 < x", "x < 3" and "x = 3", respectively. Write the following inequalities symbolically:

- a) $x \le 3$
- b) 0 < x < 3
- c) $0 < x \le 3$

innovative • entrepreneurial • global

www.utm.my

- a) q ^ r
- b) p v q
- c) p v (q^r)

Propositional functions p, q and r are defined as follows:

Write the following expressions in terms of p, q and r, and show that each pair of expressions is **logically equivalent**. State carefully which of the above laws are used at each stage.

(a)
$$((n = 7) \text{ or } (a > 5)) \text{ and } (x = 0)$$

 $((n = 7) \text{ and } (x = 0)) \text{ or } ((a > 5) \text{ and } (x = 0))$

(b)
$$\neg((n = 7) \text{ and } (a \le 5))$$

 $(n \ne 7) \text{ or } (a > 5)$

(c)
$$(n = 7)$$
 or $(\neg((a \le 5) \text{ and } (x = 0)))$
 $((n = 7) \text{ or } (a > 5))$ or $(x \ne 0)$

innovative • entrepreneurial • global

www.utm.my

р	q	r	pvq	p ^ r	q^r	(p v q) ^ r	(p ^ r) v (q ^ r)
Т	Т	Т	Т	Т	Т	Т	Т
T	Т	F	Т	F	F	F	F
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	Т	F	F	F	F
F	Т	Т	Т	F	Т	Т	Т
F	Т	F	Т	F	F	F	F
F	F	Т	F	F	F	F	F
F	F	F	F	F	F	F	F

$$(p \vee q) \wedge r \equiv (p \wedge r) \vee (q \wedge r)$$

-Distributive Laws

b)
$$_{7}(p ^{n}q)$$

$$_{\mathsf{T}}\,\mathsf{p}\,\mathsf{v}\,\mathsf{q}$$

р	q	٦р	79	p ^ ¬q	7 (b ^ 1d)	pvqг
Т	Т	F	F	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

$$p \vee q = (p \wedge q)$$

-De Morgan's Laws

р	q	r	ηq	٦r	79 ^ r	7 (7 q ^ r)	p v (₇ (₇ q ^ r))	pvq	(pvq) v ₇ r
Т	Т	Т	F	F	F	Т	Т	Т	Т
Т	Т	F	F	Т	F	Т	Т	Т	Т
Т	F	Т	Т	F	Т	F	Т	Т	Т
Т	F	F	Т	Т	F	Т	Т	Т	Т
F	Т	Т	F	F	F	Т	Т	Т	Т
F	Т	F	F	Т	F	Т	Т	Т	Т
F	F	Т	Т	F	Т	F	F	F	F
F	F	F	Т	Т	F	Т	Т	F	Т

$$p v (\gamma (\gamma q r)) \equiv (p v q) v \gamma r$$

-Associative Laws

Propositions **p**, **q**, **r** and **s** are defined as follows:

p is "I shall finish my Coursework Assignment"

q is "I shall work for forty hours this week"

r is "I shall pass Maths"

s is "I like Maths"

Write each sentence in symbols:

- (a) I shall not finish my Coursework Assignment.
- (b) I don't like Maths, but I shall finish my Coursework Assignment.
- (c) If I finish my Coursework Assignment, I shall pass Maths.
- (d) I shall pass Maths only if I work for forty hours this week and finish my Coursework Assignment.

Write each expression as a sensible (if untrue!) English sentence:

- (e) q V p
- (f) $\neg p \rightarrow \neg r$

innovative a entrepreneurial a global

www.utm.mv

- a) ₁p
- b) ₁ s ^ p
- c) $p \rightarrow r$
- d) $r \leftrightarrow (q \land p)$
- e) I shall work for forty hours this week or I shall finish my coursework assignment
- f) If I shall not finish my coursework assignment, then I shall not pass maths

For each pair of expressions, construct truth tables to see if the two compound propositions are logically equivalent:

(a)
$$p \lor (q \land \neg p)$$

 $p \lor q$

(b)
$$(\neg p \land q) \lor (p \land \neg q)$$

 $(\neg p \land \neg q) \lor (p \land q)$

a)

p	q	ηp	q ^ ¬p	p v (q ^ ¬p)	pvq
Т	Т	F	F	Т	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	F

$$p v (q \wedge_{T} p) \equiv p v q$$

р	q	ηp	7 q	¬p^q	p ^ ¬ q	7p^7q	p ^ q	(₇ p ^ q) v (p ^ ₇ q)	(p ^ q q) v
									(p ^ q)
Т	Т	F	F	F	F	F	Т	F	Т
Т	F	F	Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F	F	Т	F
F	F	Т	Т	F	F	Т	F	F	Т

 $(_{7}p^{} q) v (p^{} _{7}q) \neq (_{7}p^{} _{7}q) v (p^{} q)$

PART 4: Quantifiers and Proof Technique

Exercise

- 1. Prove that if x is an even integer, then $x^2 6x + 5$ is odd (Direct Proof)
- 2. Prove that if n is an integer and n^3+5 is odd, then n is even (Indirect Proof)
- 3. Prove that if x is odd, then x^2 is odd (Contradiction)

innovative • entrepreneurial • global

www.utm.mv

1. P(x) = x is an even integer

$$Q(x)=x^2-6x+5$$
 is odd

$$x = 2n$$

$$x^{2}-6x+5=(2n)^{2}-6(2n)+5$$

$$=4n^{2}-12n+5$$

$$=2(2n^{2}-6n)+5$$
 m=2n²-6n is an integer

$$x^2 - 6x + 5$$
 is odd

=2m+5

2.P(x)=n is an integer and
$$n^3 + 5$$
 is odd

$$Q(x)=n \text{ is even}$$

$$P(x) = n^3 + 5 \text{ is even}$$

$$Q(x) = n \text{ is odd}$$

$$n=2m+1$$

$$n^3+5 = (2m+1)^3 + 5$$

$$= 8m^3 + 12m^2 + 6m + 6$$

$$= 2(4m^3 + 6m^2 + 3m + 3) \quad t = 4m^3 + 6m^2 + 3m + 3$$

$$= 2t$$

$$n^3+5 = 2t$$

3.P(x)= x is odd
Q(x) =
$$x^2$$
 is odd
Contradiction : x is odd , x^2 is even
x = 2m + 1 (odd)
 x^2 = $(2m + 1)^2$
= $4m^2 + 4m + 1$

 n^3+5 is even integer.

n is odd

$$=2(2m^2 + 2m) + 1$$
 $t=2m^2 + 2m$

$$= 2t + 1 (odd)$$