

ECE 344L Microprocessors

Numbers

By Dr. Edward Nava

Number Representations

- Bytes
- Unsigned Integer
- Two's complement
- Fractional Binary Numbers

Encoding Byte Values

- Byte = 8 bits
- Binary 000000002 to 111111112
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

		mal w	
Hex Decimal			
0	0	0000	
1	1	0001	
1 2 3 4 5 6 7	1 2 3 4	0010	
3	3	0011	
4	4	0100	
5	5 6 7	0101	
6	6	0110	
7		0111	
8	8	1000	
9	9	1001	
A	10	1010	
В	11	1011	
С	12	1100	
D	13	1101	
E	14	1110	
F	15	1111	

Encoding Integers

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

Half word - 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$
111...1

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

11111111

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

W

Arithmetic: Basic Rules

- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero)
 by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Fractional binary numbers

• What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations
- Value Representation
 - **1/3** 0.0101010101[01]...₂
 - **1/5** 0.001100110011[0011]...₂
 - **1/10** 0.0001100110011[0011]...2

Two's Complement, Fixed Point

Value =
$$(-b_{n-1} \times 2^{n-1} + \sum_{i=0}^{n-2} b_i \times 2^i) \times 2^{-p}$$

1111.0000 = -1 11110000.11110000 = -15.0625 1111.000011110000 = -0.94140625 1.111000011110000 = -0.11767578125

Fixed Point Fractional Numbers

- Can be used with Unsigned Binary or Two's Complement forms
- Include radix point p digits to left of integer position
- Value = (Value us) x r^{-p} or (Value 2 c) x r^{-p}
- A positional number system!
- ∆r = r^{-p}

Binary Coded Decimal

- Digits are represented using groups of four bits for each digit.
- Values range from 0..9.
- Typically used for providing values for alphanumeric displays and for time of day calculations.

Caution

- Your code does not know whether an operand is supposed to be an unsigned integer, a two's compliment integer, or a fixed point fractional number.
- An instruction will process an operand in whichever format you specify.