RBC Model with Different Intertemporal Elasticities of Substitution

Description of Model

Utility Function	$U_0 = E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\gamma} - 1}{1 - \gamma} \right]$
TFP Evolution	$\log A_{t+1} = \rho \log A_t + \epsilon_{t+1}$
Capital Evolution	$I_t = K_{t+1} - (1 - \delta)K_t$
Production Function	$Y_t = A_t K_t^{\alpha}$
Market Clearing	$Y_t = C_t + I_t$

β	Household's subjective discount factor
γ	Household Preference Parameter
α	Cobb-Douglas production function parameter
δ	Capital depreciation rate
ρ	Autocorrelation of log TFP

Our Model VS. Prescott's RBC Model

- **Similarity**: Both models look at the effect of changing p (the autoregressive coefficient on log TFP) on the simulated impulse responses of model variables to a TFP shock
- **Key differences**: No labor supply and incorporation of one additional factor of household preference parameter

Utility Function of Prescott

$$J0 = E0 \sum_{t=0}^{\infty} \beta^{t} (\log (C_{t}) + \varphi \log (1 - L_{t}))$$

Utility Function of Our Model

$$U0 = E0 \sum_{t=0}^{\infty} \beta^{t} (\log (C_{t}) + \varphi \log (1 - L_{t})) \qquad U_{0} = E_{0} \sum_{t=0}^{\infty} \beta^{t} \left[\frac{C_{t}^{1-\gamma} - 1}{1 - \gamma} \right]$$

Our Model

$$\frac{1}{C_t^{\gamma}} = \beta E_t \left[\frac{\alpha A_{t+1} K_{t+1}^{\alpha - 1} + 1 - \delta}{C_{t+1}^{\gamma}} \right]$$

$$log A_{t+1} = \rho \log A_t + \epsilon_{t+1}$$

$$K_{t+1} = I_t + (1 - \delta)K_t$$

$$Y_t = A_t K_t^{\alpha}$$

$$Y_t = C_t + I_t$$

Prescott's RBC Model

$$\frac{1}{C_t} = \beta E_t \left[\frac{\alpha A_{t+1} K_{t+1}^{\alpha - 1} L_{t+1}^{1 - \alpha} + 1 - \delta}{C_{t+1}} \right]$$

$$\frac{\varphi}{1 - L_t} = \frac{(1 - \alpha) A_t K_t^{\alpha} L_t^{-\alpha}}{C_t}$$

$$Y_t = A_t K_t^{\alpha} L_t^{1 - \alpha}$$

$$K_{t+1} = I_t + (1 - \delta) K_t$$

$$Y_t = C_t + I_t$$

$$\log A_{t+1} = \rho \log A_t + \epsilon_{t+1}$$

Utility Function

$$U_0 = E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\gamma} - 1}{1 - \gamma} \right]$$

- γ(gamma): how willing the household is to substitute consumption
- 1/γ: household's intertemporal elasticity of substitution
- As γ increases, the household is less willing to substitute consumption today for consumption tomorrow

Solving Utility Function:

In period 0, the household solves:

$$\max_{K1} E_0 \sum_{t=0}^{\infty} \beta^t \frac{(C_t)^{1-\gamma} - 1}{1 - \gamma}$$
s.t. $C_t = A_t K_t^{\alpha} + (1 - \delta) K_t - K_{t+1}$

The problem can be written as a choice of K1 only:

$$\max_{K1} E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{(A_t K_t^{\alpha} + (1-\delta)K_t - K_{t+1})^{1-\gamma} - 1}{1-\gamma} \right]$$

Solving Utility Function:

• Generalize: $E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{(A_t K_t^{\alpha} + (1-\delta)K_t - K_{t+1})^{1-\gamma} - 1}{1-\gamma} \right]$

$$= \beta^{0} \left[\frac{(A_{0}K_{0}^{\alpha} + (1 - \delta)K_{0} - K_{1})^{1-\gamma} - 1}{1 - \gamma} \right] + \beta^{1} E_{0} \left[\frac{(A_{1}K_{1}^{\alpha} + (1 - \delta)K_{1} - K_{2})^{1-\gamma} - 1}{1 - \gamma} \right]$$

+[terms independent of K_1]

Derivative:

$$\frac{\partial}{\partial K_1} U_0 = \frac{1}{1 - \gamma} \left[(1 - \gamma)(A_0 K_0^{\alpha} + (1 - \delta)K_0 - K_1)^{-\gamma}(0 + 0 - 1) - 0 \right]$$
$$+ \beta E_0 \left[\frac{1}{1 - \gamma} \left[(1 - \gamma)(A_1 K_1^{\alpha} + (1 - \delta)K_1 - K_2)^{-\gamma}(\alpha A_1 K_1^{\alpha - 1} + (1 - \delta) - 0) - 0 \right] \right]$$

Solving Utility Function:

• The first-order condition for the optimal choice of K1 is

$$\frac{1}{(A_0 K_0^\alpha + (1-\delta) K_0 - K_1)^\gamma} = \beta E_0 \left[\frac{\alpha A_1 K_1^{\alpha-1} + 1 - \delta}{(A_1 K_1^\alpha + (1-\delta) K_1 - K_2)^\gamma} \right]$$

Euler Equation

$$\frac{1}{C_t^{\gamma}} = \beta E_0 \left[\frac{\alpha A_{t+1} K_{t+1}^{\alpha - 1} + 1 - \delta}{C_{t+1}^{\gamma}} \right]$$

Steady state values of At, Kt, Ct, Yt and It

```
# Compute the steady state numerically using .compute_ss() method of nk_model
parameters['gamma'] = 1
guess = [1, 1, 1, 1, 1]
rbc_model.compute_ss(guess)
```

Steady State: Gamma=1

 Compute the steady state numerically using .compute_ss() method of nk_model by setting guess = [1, 1, 1, 1, 1]

a (TFP)	1.000000
k (capital)	34.398226
c (consumption)	2.589794
y (output)	3.449750
i (investment)	0.859956

41 period impulse response of the model's variables to a 0.01 unit shock to TFP in period 5 for gamma=1,2,5,10

- At period 5 when TFP starts, C,Y, I
 will increase for a certain amount,and
 subsequently K will start increase at
 the beginning of period 6
- With higher gamma, consumption will become smoother, in other words, if gamma is smaller you try to spend much aggressive and decrease at a higher rate subsequently

Impulse response of the model's variables for gamma=1,2,5,10

- People like to smooth their consumption over time as much as they can.
- When households have higher-than-average income, they save most for the future and so investment rises more than consumption when incomes are high.

401 period stochastic simulation-Comparison between different elasticity

- TFP shock correlation:
 Output- most correlated
 Consumption & capital: slight similarity
- Gamma increases:
 Output and consumption: less volatile
 Investment: more volatile
 Limitation: significance of the change

Conclusion

Results Interpretation

 When gamma increases, it will cause the household's willingness to substitute consumption across time less. Ultimately, consumption and output become less volatile, and investment more volatile

Thank you