IDS 575 Machine Learning Statistics Final Project Report

Project on Flight Delay Prediction

Professor: Dr. Theja Tulabandhula

Date of Submission:17/04/2022

Group Members: Anand Sabbineni, Srinivas Gundluri ,Shivani Erigineni, Keerthan Devineni.

Aim

This project is aimed at developing a model to predict weather delays in airports which in turn result in flight delays. In this project we used past data to train the model itself using supervised learning algorithms. The model is scaled to improve the accuracy. Then we used StackingCVRegressor to select the best prediction from the individual outcomes of models.

Data

We have collected 3 years of flight data and weather data and joined both data sets to get the final data set containing weather attributes and weather delay.

Attributes of Dataset

Independent variables/Explanatory variables

- 1. Temperature
- 2. Humidity
- 3. Dew point
- 4. Wind speed
- 5. Precipitation
- 6. Pressure
- 7. Month and hours

Dependent variable

1. Weather Delay: target variable which gives approximate flight delay due to weather conditions given the independent variables.

Sample screenshots of data Final data.csv (flight data+weather data)

Final dataset:

	Α	В	C	D	E	F	G	Н	1	1	J	K	L	M
1		Temperatu	Dew Point	Humidity	Wind Speed	Pressure	Precipitation	month	h	hours	WEATHER.	DELAY		
2	0	25	8	49	12	29.36		0	1	18	0	1		
3	1	19	5	54	13	29.27		0	1	1 7	0	1		
4	2	28	11	49	9	29.33		0	1	15	0	1		
5	3	27	10	49	13	29.35		0	1	1 17	. 0	1		
6	4	19	6	57	15	29.36		0	1	10	0	1		
7	5	0	0	0	0	0		0	1	1 20	0	1		
8	6	19	6	57	15	29.36		0	1	10	0	1		
9	7	23	8	53	13	29.34		0	1	1 13	0	1		
10	8	20	7	57	10	29.37		0	1	1 11		1		
11	9	0	0	0	0	0		0	1	1 20	0	1		
12	10	24	8	51	14	29.38		0	1	19	0	1		
13	11	25	9	50	12	29.34		0	1	14)		
14	12	27	10	49	13	29.35		0	1	17	0	1		
15	13	21	6	53	17	29.23		0	1	. 6	0	1		
16	14	28	11	49	9	29.33		0	1	1 15	0	1		
17	15	19	6	57	15	29.36		0	1	10	68			
18	16	19	6	57	9	29.39		0	1	1 12	0			
19	17	28	11	49	9	29.33		0	1	1 15	0			
20	18	0	0	0	0	0		0	1	1 20	0	1		
21	19	21	7	55	13	29.39		0	1	1 22	0	1		
22	20	0	0	0	0	0		0	1	1 20	0	1		
23	21	21	7	55	13	29.39		0	1	L 22	0)		
24	22	21	7	55	13	29.39		0	1	1 22		1		

Weather dataset:

A	В	C		D	E	F	G	Н	1	J	K	L
	Time	Temper	ratu D	ew Point	Humidity	Wind Speed	Wind Gust	Pressure	Precipitation	Wind	Condition	Date
0	2:22 AN	1	45	38	76	15	0	29.06	0	WNW	Cloudy	01-01-2016
1	3:22 AN	1	43	37	80	14	0	29.05	0	NW	Cloudy	01-01-2016
2	4:22 AN	1	42	36	79	14	0	29.05	0	NW	Cloudy	01-01-2016
3	5:22 AN	1	42	35	76	13	0	29.05	0	NW	Cloudy	01-01-2016
4	6:22 AN	1	41	35	79	15	0	29.05	0	NNW	Cloudy	01-01-2016
5	6:22 AN	1	41	35	79	15	0	29.05	0	NW	Cloudy	01-01-2016
6	7:22 AN		40	34	79	15	0			NW	Cloudy	01-01-2016
7	8:22 AN		40	34	79	14	0			NW	Mostly Clo	
8	9:22 AN		40	33	77	13	0			NW	Cloudy	01-01-2016
9			41	33	73	13	0			NW	Mostly Clo	
	11:22 AN		45	34	65	8	0			NW	Cloudy	01-01-2016
11			45	34	65	10	0			WNW	Cloudy	01-01-2016
17	B 1.22 DA	C C	Ď	E 31	F 65	G 1/1	^	J ²⁰ 1	K	VIVA/	Mondy	N-01-2016
Un	named: Tim			Dew Point	Humidity Wi	nd Spee Wind					Date time	
0		22 AM	45	38	76	15	0 29.			oudy		01-01-2016 02:22
1		22 AM	43	37	80	14	0 29.			udy		01-01-2016 03:22
2		22 AM	42	36	79	14	0 29.			udy		01-01-2016 04:22
3		22 AM	42	35	76	13	0 29.			udy		01-01-2016 05:22
4		22 AM	41	35	79	15	0 29.			udy		01-01-2016 06:22
5		22 AM	41	35	79	15	0 29.			oudy		01-01-2016 06:22
6		22 AM	40	34	79	15	0 29.			oudy		01-01-2016 07:22
7		22 AM	40	34	79	14	0 29.					01-01-2016 08:22
8		22 AM	40	33	77	13	0 29.			oudy		01-01-2016 09:22
9		22 AM	41	33	73	13	0 29.					01-01-2016 10:22
		22 AM	45	34	65	8	0 29.		NW Clo	udy	01-01-2016	01-01-2016 11:22

Flight Dataset:

A	В	C	D	E	F	G	Н	1	J	K	L	M	-	N	0	p	Q	R	S	T	U		V	W	X	Y		Z	AA	AB	AC	AD
	FL_DATE	ORIGIN	DEST	CRS_DEP_1D	EP_TIME D	EP_DELATW	HEELS_OW	HEELS_OTAX	IN C	RS_ARR_	ARR_DEL	A' CANCE	LLECDIVE	RTED CR	ELAPS AC	TUAL_ELAN	R_TIME	DISTANCE	CARRIER	CWEATHER	LATE	AIRC T	emperatus De	w Point F	lumidity	Wind 5	pee:Wir	d Gust Pr	essure	Precipita	atic Condition	time
	01-01-201	16 LAX	ATL	2255	2256	1	2315	542	5	600	-1	3	0	0	245	231	207	1947					42	27	5	5	16	0	29.14		0 Cloudy	01-01-2016 22:5
	01-01-201	L6 SLC	ATL	1656	1700	4	1712	2205	8	2225	-1	6	0	0	213	193	173	1590					45	31	5	3	15	.0	29.09		0 Mostly Clea	01-01-2016 17:0
	01-01-201	16 BNA	ATL	1320	1446	86	1501	1638	6	1530	7	4	0	0	70	58	37	214		3	0	71	46	34	6	3	12	0	29.07		0 Cloudy	01-01-2016 14:
	01-01-201	XAL 91	ATL	1145	1144	-1	1156	1239	8	1300	-1	5	0	0	77	63	43	270					45	34	6	5	8	0	29.11		0 Cloudy	01-01-2016 11:
	01-01-201	16 MOT	ATL	1737	1727	-10	1738	1923	11	1949	-1	5	0	0	132	127	105	620					45	31	S	3	15	0	29.09		0 Mostly Clea	01-01-2016 17:
	01-01-201	16 SAV	ATL	1408	1403	-5	1418	1459	6	1523	-1	8	0	0	75	62	41	214					46	34	6	3	12	0	29.07		0 Cloudy	01-01-2016 14:
	01-01-201	16 BUF	ATL	615	612	-3	650	844	5	843		6	0	0	148	157	114	712					41	35	7	9	15	0	29.05		0 Cloudy	01-01-2016 06:
	7 01-01-201	L6 PNS	ATL	1435	1431	-4	1441	1622	6	1648	-2	0	0	0	73	57	41	271					46	34	6	3	12	0	29.07		0 Cloudy	01-01-2016 14:
	8 01-01-201	6 CMH	ATL	1123	1117	-6	1130	1244	7	1307	-1	1	0	0	99	94	74	447					45	34	6	5	8	0	29.11		0 Cloudy	01-01-2016 11:
	01-01-201	16 DAL	ATL	1005	1016	11	1026	1252	8	1304		4	0	0	119	104	86	721					41	33	7.	3	13	.0	29.12		0 Mostly Clou	01-01-2016 10:
1	01-01-201	16 MEM	ATL	1600	1555	-5	1603	1751	7	1826	-2	8	0	0	86	63	48	332					45	33	6	3	13	0	29.05		0 Cloudy	01-01-2016 15:5
1	01-01-201	L6 SEA	ATL	745	742	-3	802	1518	6	1527		3	0	0	282	282	256	2182					40	34	7	9	15	0	29.07		0 Cloudy	01-01-2016 07:
	01-01-201	16 2011	ATI	1100	1104		1115	1216	- 5	122		9	0	0	9.4	77	61	956					45	9.4	6	i.		.0	20.11		A Cloudy	01-01-2016 11-0

Data Pre-Processing:

Changing the time format:

```
def preprocess(year):
    for i in range(1,13):
    if(int):
        int):
        int):
```

Merging the data:

EDA:

We performed EDA to find the correlation between the variables. As part of EDA various graphs were plotted as below

From the above plot, we can analyse that the delay tends to rise in months around June, July and August due to rain and tend to be high in December and January due to snowfall.

Line Plots of the weather conditions

ල 🗖 🌣 🎣

Model and Methodology:

An ensemble model is used where multiple models with different algorithms are used to build a single best model to predict the weather delay, which would give information about the flight delays.

Different types of models used are discussed in detail below:

Lasso Model:

Lasso model is like the linear regression model but would allow regularizing coefficients to avoid overfitting. Linear regression chooses the best model to minimize the RSS and to it, the lasso regression, adds a penalizing factor to the least square, and this way the regularized model may have a slightly high bias but less variance for future prediction than linear regression

To find the best values for Lamba (penalizing factor), a module of Sklearn model_selection package GridSearchCV is used for hyperparameter tuning. GridSearchCV goes through

various values and combinations of the hyperparameters and fits the model on the training dataset

```
# lasso model
alphas = 10**np.arange(-7,0,0.1)
params = {"alpha":alphas}
lassocv = GridSearchCV(Lasso(max_iter=1e7),param_grid=params,verbose = 5)
lassocv.fit(x_train,ytrain)
lassomodel = Lasso(alpha = lassocv.best_params_['alpha'],max_iter=1e7)
```

Random Forest Regressor:

The next ensemble learning technique used is Random Forest Regressor. This technique uses prediction based on the trees as it is more accurate since it takes many predictions because it uses the average value. This also guarantees stability as any changes in the dataset wouldn't impact the forest of trees but only to one tree where the change is made.

Random forest regressor parameters included in our dataset are n_estimators and max_depth and it is used to get the less biased and low variance result with the use of the ensembling method.

In our code we employed it as follows:

RandomForestRegressor(n_estimators=200, max_depth=15)

```
#random forest regressor

rfc = RandomForestRegressor()

rfc.fit(x_train,ytrain)

rfcpred = rfc.predict(x_test)
```

```
# xgb random forest regression
xgrmodel = XGBRFRegressor(gamma=10)
xgrmodel.fit(x_train,ytrain)
xgrpred = xgrmodel.predict(x_test)
```

Extreme Gradient Boost Regressor:

XGboost regressor is similar to the random forest, in this the model makes various decision trees to predict and the learning rate is based on the descent, it adjusts itself in each boosting round. In order to find the best values for learning rate, a module of Sklearn model_selection package GridSearchCV is used for hyperparameter tuning.

GridCVSearch is used for finding the best learning rate for the algorithm to work.

```
#xgb regressor
lrate = 10**(np.arange(-3,0.2,0.01))
cvxg = GridSearchCV(XGBRegressor(n_estimators=150),param_grid={"learning_rate":lrate},verbose=5).fit(x_train,ytrain)
xgbmodel = XGBRegressor(n_estimators=150,learning_rate=cvxg.best_params_['learning_rate'])
xgbmodel.fit(x_train,ytrain)
xgbpred = xgbmodel.predict(x_test)
```

Final Model:

To get at our solution, we had to go beyond linearity. Using the StackingCVRegressor, we employed the ensembling / stacking approach to acquire the best results.

The final model we utilized was a mixture of all the forecasts, and the final projection was the average of all the weather delays projected.

Further Improvements in development of the current project

We aimed at making our model as flexible as possible and in doing so we avoided including various other factors such as security delay, airline maintenance delay etc. that contribute to airline delays at airport. Model can be improved by considering those other factors and training the model. While we tried regression algorithms, we tried to get the best fit by tuning the parameters.

Group Member Contributions:

Data Preparation was performed by Anand Sabineni, Keerthan Devineni

EDA by Shivani Erigineni, Srinivas Gundluri

Model Building, Evaluation and Analysis by Anand Sabineni, Keerthan Devineni, Shivani Erigineni, Srinivas Gundluri