Test-4-version A

No work = No credit!

1. Surface S is hemisphere $z = \sqrt{x^2 + y^2}$, $1 \le z \le 2.(6 + 7 + 7 = 20 \text{pt})$

a) Find the parametric equation $\overrightarrow{r}(\rho,\theta)$ of the surface with spherical coordinates and find the domain D for ρ and θ ;

b) Find $\overrightarrow{r_{\phi}}$, $\overrightarrow{r_{\theta}}$ and $\overrightarrow{r_{\rho}} \times \overrightarrow{r_{\theta}}$;

c) Find $\iint_{\mathcal{S}} (x^2 + y^2 + z^2) d\mathcal{S}$.

2. Surface S is part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above z = 0, upward oriented.(5+7+8=20pt)

a) Find the parametric equation $\overrightarrow{r}(\phi, \theta)$ of the surface;

b) Find $\overrightarrow{r_{\phi}}$, $\overrightarrow{r_{\theta}}$ and $\overrightarrow{r_{\phi}} \times \overrightarrow{r_{\theta}}$;

c) $\overrightarrow{F} = \langle x, y, z \rangle$, find $\iint_{\mathcal{S}} \overrightarrow{F} \cdot d\overrightarrow{S}$.

3. Surface S is part of the sphere $x^2 + y^2 + (z-3)^2 = 25$, $z \ge 0$, outward oriented and $\overrightarrow{F} = \langle -y + e^{2017z}, x + \sin(z) \tan(z), xyz \rangle$. (10+8+12=30pt)

a) Find the parametric equation for the boundary \mathcal{C} of \mathcal{S} :

b) Find the parametric equation for region enclosed by \mathcal{C} on xy-

c) Use Stoke's Theorem to find $\iint_{\mathcal{S}} curl \overrightarrow{F} \cdot d\overrightarrow{\mathcal{S}}$.

4. Curve C is the positively oriented boundary of surface S: z = 1 - x - y in the first octant and $\overrightarrow{F} = \langle xy, yz, zx \rangle$. (5+7+8=20pt) a) Find $curl \overrightarrow{F}$;

b) Find the parametric equation for S;

c) Use Stoke's Theorem to find $\oint_{C} \overrightarrow{F} \cdot d\overrightarrow{r}$.

5. S is $z = 2 - x^2 - y^2$, $z \ge 1$, upward oriented. $\overrightarrow{F} = \langle z \tan^{-1}(y^2), z^3 ln(1+x^2), z \rangle$. (7+13=20pt)

a) Find $div \overrightarrow{F}$:

b) Use Divergence Theorem to find $\iint_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{S}$.

Test-2-version B

No work = No credit!

1. Surface S is $z = 4 - x^2 - y^2$, $z \ge 0.(6+7+7=20\text{pt})$

a) Find the parametric equation $\overrightarrow{r}(\phi, \theta)$ of the surface with spherical coordinates and find the domain D for ϕ and θ ;

b) Find $\overrightarrow{r_{\phi}}$, $\overrightarrow{r_{\theta}}$ and $\overrightarrow{r_{\phi}} \times \overrightarrow{r_{\theta}}$;

c) Find
$$\iint_{\mathcal{S}} (y^2z + x^2z) d\mathcal{S}$$
.

2. Surface \mathcal{S} is part of the cone $z=\sqrt{x^2+y^2}$ that lies between z=1 and z=2, upward oriented.(5+7+8=20pt)

a) Find the parametric equation $\overrightarrow{r}(u,v)$ of the surface with polar coordinates $x = u\cos(v)$ and $y = u\sin(v)$ and find the domain D for u and v;

b) Find \overrightarrow{r}_u , \overrightarrow{r}_v and $\overrightarrow{r}_u \times \overrightarrow{r}_v$;

c)
$$\overrightarrow{F} = \langle x, y, -z^3 \rangle$$
, find $\iint_{\mathcal{S}} \overrightarrow{F} \cdot d\overrightarrow{\mathcal{S}}$.

3. Surface S is part of the sphere $x^2 + y^2 + (z - 4)^2 = 25$, $z \ge 0$, outward oriented and $\overrightarrow{F} = \langle y + \tan(z), -x + \sin(z), -xyz \rangle$. (10+8+12=30pt)

a) Find the parametric equation for the boundary C of S;

b) Find the parametric equation for region enclosed by $\mathcal C$ on xy-plane;

c) Use Stoke's Theorem to find $\iint_{\mathcal{S}} curl \overrightarrow{F} \cdot d\overrightarrow{S}$.

4. Curve \mathcal{C} is the positively oriented boundary of surface \mathcal{S} : $z = 1-x^2-y^2$ in the first octant and $\overrightarrow{F} = \langle -xy, -yz, -zx \rangle$. (5+7+8=20p-t)

b) Find the parametric equation for S;

c) Use Stoke's Theorem to find $\oint_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{r}$.

5. $\mathcal S$ is the outward oriented surface of solid ball $\mathbf E$ centered at origin with radius 2 and $\overrightarrow F=\langle x^3+y^3,y^3+z^3,z^3+x^3\rangle$. (5+7+8=20pt)

a) Find $div \overrightarrow{F}$;

b) Use spherical coordinates (ρ, θ, ϕ) to describe region **E**

c) Use Divergence Theorem to find $\iint_{\mathcal{S}} \overrightarrow{F} \cdot d\overrightarrow{\mathcal{S}}$.