Convolutional Neural Network (CNN) for Image Classification on CIFAR-10

Group 1 Project3

Zhaoyang Li | ZL3327 Yinpei Wana | yw4123 Yuqi Liu | yl5478 Kechen Lu| kl3458 rofessor Ving Liu

Overview

Introduction:

- Image classification is a fundamental problem in computer vision
- Labeling large datasets can be time-consuming and costly
- Presence of label noise is common in real-world scenarios

Project Objective:

- Develop robust and accurate predictive models for image classification
- Handle the presence of label noise in the training data
- Explore techniques to improve model performance and generalization

Challenges:

- Presence of label noise in the training data
- Limited availability of clean labels
- Need for models that can learn effectively from noisy data

Data Set

Original CIFAR-10 dataset:

- 60,000 32x32 pixel color images categorized into 10 distinct classes. Each class represents a kind of object like animals and vehicles.

Noisy Version (what we used)

- A subset of the original dataset containing 50,000 images, with random noises added to labels
- Noisy labels for all images in '../data/noisy_label.csv'
- Clean labels for the first 10,000 images in '../data/clean_labels.csv'

Methods

- A general procedure of machine learning
 - We tried different algorithms and models in our analyses and compared their performance.

The Baseline Model - Logistic Regression

Model: Logistic Regression

- A simple and interpretable model for classification tasks

Data Used:

- Training set: 50,000 images from the noisy CIFAR-10 dataset
- Noisy labels: Used for all 50,000 images during training

Features:

- RGB Color Histogram with 6 bins
- Extracted from each image channel (R, G, B)
- Feature vector: counts for each bin of the histogram of each channel

Training:

- The logistic regression model is trained using the noisy labels
- Treats the noisy labels as if they were clean, without considering the label noise

Model I - CNN

Model: Convolutional Neural Network (CNN)

- A more sophisticated and powerful model compared to the baseline logistic regression
- Utilizes convolutional layers to learn spatial hierarchies of features from the input images

Data Used:

- First 10,000 images from the noisy CIFAR-10 dataset
- Used Clean labels for training Model I
- Data split: 90% training (9,000 images), 10% validation (1,000 images)

Model Architecture:

- Input shape: (32, 32, 3) RGB images of size 32x32 pixels
- 3 convolutional layers with increasing depth (32, 64, 64 filters)
- 2 max pooling layers following the convolutional layers
- Flatten layer to convert the feature maps into a 1D feature vector
- Dense layer with 64 units and ReLU activation

Training:

- Optimizer: Adam
- Loss function: Sparse Categorical Cross-Entropy
- Epochs: 200

Evaluation:

- The trained model is evaluated on a separate test set with clean labels
- Uses the sklearn.metrics.classification_report to report performance metrics

Model II - CNN with Data Augmentation

Model: Convolutional Neural Network (CNN) with Data Augmentation

- Utilizes the same CNN architecture as Model I
- Incorporates data augmentation techniques to improve model robustness and generalization

Data Used:

- Training set: First 10,000 images from the noisy CIFAR-10 dataset
- Clean labels: Used for training Model II
- Data split: 70% training (7,000 images), 30% validation (3,000 images)

• Data Augmentation:

- Applies various data augmentation techniques to the training images:
- Augmentation is performed using the ImageDataGenerator from Keras

Model Architecture:

- Similar to Model I, but with some modifications:
 - Additional convolutional layers and filters (64, 128, 256)
 - Batch Normalization layers after each convolutional layer

Training:

- Optimizer: SGD (Stochastic Gradient Descent) with learning rate=0.01 and momentum=0.9
- Loss function: Sparse Categorical Cross-Entropy
- Epochs: 200

Evaluation - Baseline Model

The overall accuracy is 0.24, which is better than random guess (which should have a accuracy around 0.10).

	precision	recall	f1-score	support
0	0.33	0.46	0.38	1000
1	0.21	0.31	0.25	1000
2	0.20	0.04	0.07	1000
3	0.19	0.12	0.14	1000
4	0.24	0.48	0.32	1000
5	0.20	0.11	0.14	1000
6	0.24	0.34	0.28	1000
7	0.31	0.04	0.08	1000
8	0.27	0.43	0.33	1000
9	0.20	0.12	0.15	1000
accuracy macro avg	0.24	0.24	0.24 0.21	10000 10000
weighted avg	0.24	0.24	0.21	10000

Evaluation - Model I

Evaluation

	precision	recall	f1-score	support	
0	0.12	0.14	0.13	102	
1	0.11	0.10	0.10	112	
2	0.13	0.14	0.13	99	
3	0.06	0.07	0.06	92	
4	0.10	0.10	0.10	99	
5	0.12	0.13	0.12	85	
6	0.09	0.08	0.09	107	
7	0.08	0.07	0.07	102	
8	0.07	0.07	0.07	99	
9	0.10	0.09	0.09	103	
accuracy			0.10	1000	
macro avg	0.10	0.10	0.10	1000	
weighted avg	0.10	0.10	0.10	1000	

Test Loss: 16.529953002929688, Test Accuracy: 0.5149999856948853

Evaluation - Model II

Evaluation

	precision	recall	f1-score	support
0	0.09	0.09	0.09	102
1	0.12	0.12	0.12	112
2	0.12	0.12	0.12	99
3	0.11	0.12	0.12	92
4	0.10	0.10	0.10	99
5	0.08	0.08	0.08	85
6	0.13	0.11	0.12	107
7	0.07	0.07	0.07	102
8	0.11	0.11	0.11	99
9	0.06	0.07	0.07	103
accuracy			0.10	1000
macro avg	0.10	0.10	0.10	1000
weighted avg	0.10	0.10	0.10	1000

94/94 - 0s - loss: 3.3523 - accuracy: 0.7443

Test Loss: 3.3523166179656982, Test Accuracy: 0.7443333268165588

Summary

Results

- Baseline model accuracy: 0.24
 - Limited performance due to simple model and noisy labels
- Model I accuracy: 0.515
 - Improved performance compared to the baseline
 - Utilization of a more sophisticated CNN architecture
- Model II accuracy: **0.7443**
 - Further improvement over Model I
 - Incorporation of data augmentation and regularization techniques

Conclusions

- Demonstrated the effectiveness of using CNNs for image classification
- Highlighted the impact of label noise on model performance
- Showed the benefits of data augmentation and architectural enhancements
- Identified the need for explicit handling of label noise in future work

Discussion

- For this project, we can improve the performance by the following strategies:
 - 1. Consider a better choice of model architectures, hyperparameters, or training scheme for the predictive model;
 - 2. Use both clean_noisy_trainset and noisy_trainset for model training via **weakly supervised learning** methods. One possible solution is to train a "label-correction" model using the former, correct the labels in the latter, and train the final predictive model using the corrected dataset;
 - 3. Apply techniques such as *k*-fold cross validation to avoid overfitting.

