

MC34063AB, MC34063AC, MC34063EB, MC34063EC

DC-DC converter control circuits

Datasheet - production data

Features

- Output switch current in excess of 1.5 A
- 2 % reference accuracy
- Low quiescent current: 2.5 mA (typ.)
- Operating from 3 V to 40 V
- Frequency operation to 100 kHz
- · Active current limiting

Description

The MC34063A/E series is a monolithic control circuit which delivers the main functions for DC-DC voltage converting.

The device contains an internal temperature compensated reference, comparator, duty cycle controlled oscillator with an active current limit circuit, driver and high current output switch. Output voltage is adjustable through two external resistors with a 2% reference accuracy.

Employing a minimum number of external components, the MC34063A/E device series is designed for step-down, step-up and voltage-inverting applications.

Table 1. Device summary

Order codes		
DIP-8	SO-8	
MC34063ABN	MC34063ABD-TR	
MC34063ACN	MC34063ACD-TR	
MC34063EBN	MC34063EBD-TR	
MC34063ECN	MC34063ECD-TR	

Contents

1	Diagram	3
2	Pin configuration	4
3	Maximum ratings	5
4	Electrical characteristics	6
5	Typical performance characteristics	8
6	Typical application circuit	0
7	Package mechanical data	8
8	Revision history	22

1 Diagram

Drive Collector

| Post Sense | Post | Post

Figure 1. Block diagram

2 Pin configuration

Figure 2. Pin connections

Table 2. Pin description

Pin n°	Symbol	Name and function
1	SWC	Switch collector
2	SWE	Switch emitter
3	TC	Timing capacitor
4	GND	Ground
5	CII	Comparator inverting input
6	V _{CC}	Voltage supply
7	I _{PK}	I _{PK} sense
8	DRC	Voltage driver collector

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	•	Value	Unit
V _{CC}	Power supply voltage	Power supply voltage		V
V _{IR}	Comparator input voltage range	omparator input voltage range		V
V _{SWC}	Switch collector voltage		40	V
V _{SWE}	witch emitter voltage (V _{SWC} = 40V)		40	V
V _{CE}	Switch collector to emitter voltage	itch collector to emitter voltage		V
V _{DC}	Driver collector voltage		40	V
I _{DC}	Driver collector current		100	mA
I _{SW}	Switch current		1.5	Α
Б	Davida disabatian at T. 0500	for DIP-8	1.25	14/
P _{TOT}	Power dissipation at T _A = 25°C	for SO-8	0.625	W
TJ	Operating junction temperature		150	°C
T _{STG}	Storage temperature range		-40 to 150	°C
	Operating ambient temperature	for AC and EC series	0 to 70	
T _{OP}	T _{OP} range	for AB series	-40 to 85	°C
		for EB series	-40 to 125	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 4. Thermal data

Symbol	Parameter	DIP-8	SO-8	Unit
R _{thJA}	Thermal resistance junction-ambient (1)	100	160	°C/W
R_{thJC}	Thermal resistance junction-case	42	20	°C/W

^{1.} This value depends from thermal design of PCB on which the device is mounted.

4 Electrical characteristics

Refer to the test circuits, $V_{CC} = 5 \text{ V}$, $T_A = T_{LOW}$ to T_{HIGH} , unless otherwise specified. (a)

Table 5. Oscillator

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
fosc	Frequency	$V_{PIN5} = 0V, C_T = 1 \text{ nF}, T_A = 25^{\circ}C$	24	33	42	kHz
I _{CHG}	Charge current	$V_{CC} = 5 \text{ to } 40V, T_A = 25^{\circ}C$	24	33	42	μΑ
I _{DISCHG}	Discharge current	$V_{CC} = 5 \text{ to } 40V, T_A = 25^{\circ}C$	140	200	260	μΑ
I _{DISCHG} /I _{CHG}	Discharge to charge current ratio	PIN 7 = V _{CC} , T _A = 25°C	5.2	6.2	7.5	μА
V _{IPK(sense)}	Current limit sense voltage	I _{CHG} = I _{DISCHG} , T _A = 25°C	250	300	350	mV

Table 6. Output switch

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CE(sat)}	Saturation voltage, Darlington connection	I _{SW} = 1 A, PIN 1, 8 connected		1	1.3	V
V _{CE(sat)}	Saturation voltage	I_{SW} = 1 A, R_{PIN8} = 82 Ω to V_{CC} Forced β ~ 20		0.45	0.7	V
h _{FE}	DC current gain	I _{SW} = 1 A,V _{CE} = 5 V, T _A = 25°C	50	120		
I _{C(off)}	Collector off-state current	V _{CE} = 40 V		0.01	100	μΑ

Table 7. Comparator

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Threshold voltage	T _A = 25°C	1.225	1.25	1.275	V
V _{TH}	Threshold voltage	$T_A = T_{LOW}$ to T_{HIGH}	1.21		1.29	v
Reg _{line}	Threshold voltage line regulation	V _{CC} = 3 to 40 V		1	10	mV
I _{IB}	Input bias current	V _{IN} = 0 V		-5	-400	nA

6/23 DocID5257 Rev 13

a. T_{LOW} = 0 °C, T_{HIGH} = 70 °C (AC and EC series); T_{LOW} = -40 °C, T_{HIGH} = 85 °C (AB series); T_{LOW} = -40 °C, T_{HIGH} = 125 °C (EB series)

Table 8. Total device

Symbol	Parameter	Test condi	tions	Min.	Тур.	Max.	Unit
		V _{CC} = 5 to 40 V	for MC34063A		2.5	4	
lcc	Supply current	C_T = 1 nF PIN 7 = V_{CC} $V_{PIN5} > V_{TH}$ PIN 2 = GND Remaining pins open	for MC34063E		1.5	4	mA
V	Start-up voltage ⁽¹⁾	T _A = 25°C	for MC34063A		2.1		٧
V _{START-UP}	otant-up voltage	$C_T = 1 \mu F, PIN 5 = 0$	for MC34063E		1.5		٧

^{1.} Start-up voltage is the minimum power supply voltage at which the internal oscillator begins to work.

Note: Maximum package power dissipation limit must be observed.

If Darlington configuration is not used, care must be taken to avoid deep saturation of output switch. The resulting switch-off time may be adversely affected. In a non-Darlington configuration the following output driver condition is suggested:

Forced β of output current switch = $I_{COUTPUT}/(I_{CDRIVER} - 1 \text{ mA}) \ge 10$

5 Typical performance characteristics

Figure 3. Emitter follower configuration output saturation voltage vs. emitter current

Figure 4. Output switch ON-OFF time vs. oscillator timing capacitor

Figure 5. Common emitter configuration output switch saturation voltage vs. collector current

800

1200

I_E(mA)

400

Figure 6. Darlington configuration collector emitter saturation voltage (V_{CEsat}) vs. temperature

8/23 DocID5257 Rev 13

Figure 7. Power collector emitter saturation voltage (V_{CEsat}) vs. temperature

Figure 8. Current limit sense voltage (V_{IPK}) vs. temperature

Figure 9. Reference voltage vs. temperature

Figure 10. Bias current vs. temperature

Figure 11. Supply current vs. temperature

Figure 12. Supply current vs. input voltage

47/

6 Typical application circuit

 $170 \mu H$ 8 DRC SWC 180Ω SWE 2 D_1 TC V_{CC} 0.22Ω GND 4 O V OUT V_{IN}O CII 28V/175mA MC34063A/E ⊥ C₃ 1.5nF C₂ = 100μF R₁ R_2 2.2ΚΩ 47ΚΩ ⊒ C₁ 330 μF SC11093

Figure 13. Step-up converter

Figure 14. Printed evaluation board

Table 9. Test condition (V_{OUT} = 28 V)

Test	Conditions	Value (Typ.)	Unit
Line Regulation	V _{IN} = 8 to 16 V, I _O = 175 mA	30	mV
Load Regulation	V _{IN} = 12 V, I _O = 75 to 175 mA	10	mV
Output Ripple	V _{IN} = 12 V, I _O = 175 mA	300	mV
Efficiency	V _{IN} = 12 V, I _O = 175 mA	89	%

Figure 15. Step-down converter

Figure 16. Printed evaluation board

Table 10. Test condition (V_{OUT} = 5 V)

Test	Conditions	Value (typ.)	Unit
Line regulation	$V_{IN} = 15 \text{ to } 25 \text{ V}, I_{O} = 500 \text{ mA}$	5	mV
Load regulation	$V_{IN} = 25 \text{ V}, I_{O} = 50 \text{ to } 500 \text{ mA}$	30	mV
Output ripple	V _{IN} = 25 V, I _O = 500 mA	100	mV
Efficiency	V _{IN} = 25 V, I _O = 500 mA	80	%
I _{SC}	V_{IN} = 25 V, R_{LOAD} = 0.1 Ω	1.2	Α

Figure 17. Voltage inverting converter

Figure 18. Printed evaluation board

Table 11. Test condition (V_{OUT} = 12 V)

Test	Conditions	Value (typ.)	Unit
Line regulation	$V_{IN} = 4.5 \text{ to } 6 \text{ V}, I_{O} = 100 \text{ mA}$	15	mV
Load regulation	V _{IN} = 5 V, I _O = 10 to 100 mA	20	mV
Output ripple	V _{IN} = 5 V, I _O = 100 mA	230	mV
Efficiency	V _{IN} = 5 V, I _O = 100 mA	58	%
I _{SC}	$V_{IN} = 5 \text{ V}, R_{LOAD} = 0.1 \Omega$	0.9	Α

Table 12. Calculation

Parameter	Step-Up Step-Down (Discontinuous mode) (Continuous mode)		Voltage Inverting (Discontinuous mode)	
$t_{\rm on}/t_{\rm off}$	$\frac{V_{OUT} + V_F - V_{IN(min)}}{V_{IN(min)} - V_{sat}}$	$\frac{V_{OUT} + V_F}{V_{IN(min)} - V_{sat} - V_{OUT}}$	$\frac{ V_{OUT} + V_F}{V_{IN} - V_{sat}}$	
(t _{on} + t _{off}) max	1/f _{min}	1/f _{min}	1/f _{min}	
C _T	4.5x10 ⁻⁵ t _{on}	4.5x10 ⁻⁵ t _{on}	4.5x10 ⁻⁵ t _{on}	
I _{PK(switch)}	$2I_{out(max)}[(t_{on}/t_{off})+1]$ $2I_{out(max)}$		$2I_{out(max)}[(t_{on}/t_{off})+1]$	
R _{SC}	0.3/I _{PK(switch)}	0.3/I _{PK(switch)}	0.3/I _{PK(switch)}	
Со	$\frac{I_{out}t_{on}}{V_{ripple(p-p)}}$	$\frac{I_{PK(switch)}(t_{on} + t_{off})}{8V_{ripple(p-p)}}$	$\frac{I_{out}t_{on}}{V_{ripple(p-p)}}$	
L _(min)	$\frac{V_{IN(min)} - V_{sat}}{I_{PK(switch)}} \times t_{on(min)}$	$\frac{I_{IN(min)} - V_{sat} - V_{out}}{I_{PK(switch)}} \times t_{on(min)}$	$\frac{V_{\text{IN}(\text{min})} - V_{\text{sat}}}{I_{\text{PK(switch)}}} \times t_{\text{on(min)}}$	

Note: $V_{SAT} = Saturation \ voltage \ of \ the \ output \ switch$

 V_F = Forward voltage drop of the output rectifier

The following power supply characteristics must be chosen:

 V_{IN} = Nominal input voltage

 V_{OUT} = Desired output voltage, $|V_{OUT}|$ = 1.25 (1 + R_2/R_1)

I_{OUT} = Desired output current

 f_{MIN} = Minimum desired output switching frequency at the selected values of V_{IN} and I_{O}

 V_{RIPPLE} = Desired peak to peak output ripple voltage. In practice, the calculated capacitor value will and to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

Figure 19. Step-up with external NPN switch

Figure 21. Step-down with external PNP switch

Figure 23. Voltage inverting with external PNP saturated switch

16/23 DocID5257 Rev 13

Figure 25. Higher output power, higher input voltage

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Plastic DIP-8 mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
I			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

47/ DocID5257 Rev 13

SO-8 mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04

Tape & reel SO-8 mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

8 Revision history

Table 13. Document revision history

Date	Revision	Changes
20-Nov-2007	10	Added Table 1.
24-Apr-2013	11	Removed note in Table 1.
11-Feb-2020	12	Corrected a typo on Reg _{line} parameter (from 5 mV Max. to 10 mV Max.) in Table 7: Comparator.
14-Jan-2025	13	Updated Note in <i>Table 8</i> .

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

