

Projeto 1

Técnicas de Busca Heurística

Dayany Lima Santos Deise Santana dos Santos Jefeson Martins Delazeri

Introdução

Relatório - Tópicos

Definição do Problema

Revisão Bibliográfica

Descrição da Heurística

Resultados

Conclusão

01 Introdução

- Jogo de lógica matemática
- Popular no Japão em 1986
- Popularizou no mundo a partir de 2005

7	6	3	1	5	2	4	8	9
4	9	5	7	6	8	3	2	1
2	1	8	4	3	9	5	6	7
3	5	9	8	7	6	2	1	4
8	7	1	2	9	4	6	3	5
6	2	4	3	1	5	9	7	8
1	8	2	5	4	3	7	9	6
9	4	7	6	2	6	8	5	3
5	3	6	9	8	7	1	4	2

Definição de um Sudoku

01

Contém um tabuleiro (matriz ou grade) de tamanho n × n.

02

Cada célula pode ser preenchida com números de 1 a n.

03

N sub-grades (blocos) de tamanho $k \times k$, com $k = \sqrt{n}$.

04

Todo o tabuleiro precisa ser preenchido de forma que em nenhuma das linhas, colunas ou sub-grades k × k tenha repetição de um número.

Definição do Problema

Definição do Sudoku - Escolhido

Preenchimento com números de 1 a 9.

9 sub-grades de tam. 3 × 3.

Somente uma solução.

O3 Revisão Bibliográfica

Complexidade Computacional NP-completude

• •

Sudoku como um problema de restrição

Sudoku na Inteligência Artificial

Descrição da da Heurística

Backtracking

- Técnica de busca recursiva para resolver problemas de decisão.
- Usado em problemas como Sudoku, labirintos e otimização.
- Explora soluções parciais e retrocede quando uma escolha é inválida.
- Simples, mas pode ser ineficiente sem heurísticas de otimização.

Candidate Reduction

2	8	5	4 9	6	4 9	4 7 9	7 9	1
9	4	1	5	8	7	2	6	3
6 7	3	6 7	2 4 9	1	2 4 9	4 7 9	8	5
3 7	7 9	4	2 3	2 9	5	8	1	6
8	5	3 8 9	1	7	6	3 4 9	2 3	4 2
1	6	2	8	4 9	3 4 9	5	3 7 9	4
3 6 7 8	2 7 9	3 6 7 8 9	2 6 9	5	1 2 8 9	1 3 6	4	2 7 8
5	1	3 6 8 9	7	2 4 9	2 4 8 9	3 6	2 3	2
4	7	6 7 8	2 6	3	1 2	1 6 7	5	9

- Heurística para reduzir os locais a serem explorados
- Pré-processa anteriormente o sudoku

Minimum Remaining Values

- Também conhecida como most constrained variable
- Heuristica para selecionar o próximo lugar a ser explorado.
- Escolhe o lugar com menos possibilidades legais
- Falhará imediatamente se X não tiver um valor legal

05 Resultados

Tabela de Resultados

Heurística	Instâncias	Menor tempo(ms)	Maior tempo(ms)	Média(ms)
Backtracking puro	95	0.0696	12728.2057	450.72650105
BackTracking + Minimum Remaining Values	95	0.2167	16111.6688	1061.50412105
Backtracking + Candidate Reduction	95	0.0963	9313.6346	331.97826526

Tabela 1: Comparação de heurísticas para resolução de Sudoku.

Backtracking Puro

Backtracking + Minimum Remaining Values

Backtracking + Candidate Reduction

06 Conclusão

