Interpreting Models for Categorical and Count Outcomes

Rose Medeiros StataCorp LLC

Stata Webinar October 2018

Contents

1	Introduction 1.1 Goals	1 1
2	Estimation 2.1 Factor Variables	1 1
3	Postestimation 3.1 Tests of Coefficients	10 25
	Conclusion 4.1. Conclusion	36

1 Introduction

1.1 Goals

Goals

- Learn how to fit models that include categorical variables and/or interactions using factor variable syntax
- Get an overview of tools available for investigating models
- Learn a bit about how Stata partitions model fitting and model testing tasks

2 Estimation

2.1 Factor Variables

A Logistic Regression Model

- We'll use data from the National Health and Nutrition Examination Survey (NHANES) for our examples
 - . webuse nhanes2
- We'll start with a model for high blood pressure (highbp) using age, body mass index (bmi) and sex (female)
- Before we fit the model, let's investigate the variables

. codebook highbp age bmi female

1 if bpsystol >= 140|bpdiast >= 90, 0 otherwise highbp

type: numeric (byte)

range: [0,1] units: 1

missing .: 0/10,351 unique values: 2

tabulation: Freq. Value

5,975 0 4,376 1

age age in years

type: numeric (byte)

range: [20,74] units: 1

unique values: 55 missing .: 0/10,351

mean: 47.5797 std. dev: 17.2148

25% 50% 75% 90% 31 49 63 69 10% percentiles:

49 24 31

Body Mass Index (BMI) ______

type: numeric (float)

range: [12.385596,61.129696] units: 1.000e-07

missing .: 0/10,351 unique values: 9,941

mean: 25.5376 std. dev: 4.91497

10% 25% 50% 75% 90% percentiles:

20.1037 22.142 24.8181 28.0267 31.7259

1=female, 0=male

type: numeric (byte)

range: [0,1] units: 1

unique values: 2 missing .: 0/10,351

tabulation: Freq. Value 4,915 0

5,436 1

• Now we can fit the model

. logit highbp age bmi female

```
Iteration 0: \log likelihood = -7050.7655
Iteration 1: log likelihood = -5859.5273
Iteration 2: log likelihood = -5845.5355
Iteration 3: log likelihood = -5845.4948
Iteration 4: log likelihood = -5845.4948
                                          Number of obs =

LR chi2(3) =

Prob > chi2 =
                                                               10,351
Logistic regression
                                                               2410.54
                                          Prob > chi2
                                                               0.0000
                                          Pseudo R2
Log likelihood = -5845.4948
                                                                0.1709
     highbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
       age | .0459846 .0013974 32.91 0.000 .0432457 .0487235
        bmi | .1371553 .0050802 27.00 0.000 .1271983 .1471123
     female | -.4824464 .0451382 -10.69 0.000 -.5709156 -.3939771
      _cons | -5.84101 .1523939 -38.33 0.000 -6.139697 -5.542324
```

Working with Categorical Variables

Now we would like to include region in the model, let's take a look at this variable

. codebook region

______ 1=NE, 2=MW, 3=S, 4=W ______

type: numeric (byte)

label: region

range: [1,4] units: 1 unique values: 4 missing .: 0/10,351

tabulation: Freq. Numeric Label 2,096 1 NE 2,774 2 MW 2,853 3 S

4 W 2,628

- region cannot simply be added to the list of covariates because it has 4 categories
- To include a categorical variable, put an i. in front of its name—this declares the variable to be a categorical variable, or in Stataese, a factor variable
- For example
 - . logit highbp age bmi i.female i.region

Iteration 0: $\log likelihood = -7050.7655$ Iteration 1: log likelihood = -5857.277 Iteration 2: log likelihood = -5843.2102
Iteration 3: log likelihood = -5843.169 Iteration 4: log likelihood = -5843.169

Number of obs = LR chi2(6) = Prob > chi2 = 10,351 Logistic regression 2415.19

0.0000

			_		_		_
Pseudo	R2	=	()	1	1	1	Э

Log likelihood =	-5843.169	Pseudo R2	=	0.1713

highbp		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	İ	.0459318	.0013982	32.85	0.000	.0431914	.0486722
bmi	1	. 1372797	.0050825	27.01	0.000	.1273182	.1472411
female	1						
0	1	0	(base)				
1		4811765	.0451517	-10.66	0.000	5696723	3926807
region							
NE		0	(base)				
MW	1	1324591	.0662441	-2.00	0.046	2622952	002623
S	1	0887067	.0653787	-1.36	0.175	2168466	.0394331
W	1	0403994	.0667441	-0.61	0.545	1712154	.0904166
_cons	1	-5.772271	.1584937	-36.42	0.000	-6.082913	-5.461629

Niceities

- Starting in Stata 13, value labels associated with factor variables are displayed in the regression table
- We can tell Stata to show the base categories for our factor variables
 - . set showbaselevels on
 - ♦ This means the base category will always be clearly documented in the output

Factor Notation as Operators

- The i. operator can be applied to many variables at once:
 - . logit highbp age bmi i.(female region)

```
Iteration 0: log likelihood = -7050.7655
Iteration 1: log likelihood = -5857.277
Iteration 2: log likelihood = -5843.2102
Iteration 3: log likelihood = -5843.169
Iteration 4: log likelihood = -5843.169
```

Logistic regression	Number of obs	=	10,351
	LR chi2(6)	=	2415.19
	Prob > chi2	=	0.0000
Log likelihood = -5843.169	Pseudo R2	=	0.1713

highbp	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	.0459318	.0013982	32.85	0.000	.0431914	.0486722
bmi	.1372797	.0050825	27.01	0.000	.1273182	.1472411
female						
0	0	(base)				
1	4811765	.0451517	-10.66	0.000	5696723	3926807
	l					

```
region |
NE | 0 (base)
MW | -.1324591 .0662441 -2.00 0.046 -.2622952 -.002623
S | -.0887067 .0653787 -1.36 0.175 -.2168466 .0394331
W | -.0403994 .0667441 -0.61 0.545 -.1712154 .0904166
|
__cons | -5.772271 .1584937 -36.42 0.000 -6.082913 -5.461629
```

- In other words, it understands the distributive property
 - This is useful when using variable ranges, for example
- For the curious, factor variable notation works with wildcards
 - ♦ If there were many variables starting with u, then i.u* would include them all as factor variables

Using Different Base Categories

- By default, the smallest-valued category is the base category
- This can be overridden within commands
 - ♦ b#. specifies the value # as the base
 - \diamond b(##). specifies the #'th largest value as the base
 - \$ b(first). specifies the smallest value as the base
 - ⋄ b(last). specifies the largest value as the base
 - b(freq). specifies the most prevalent value as the base
 - bn. specifies there should be no base
- The base can also be permanently changed using fvset; see help fvset for more information

Playing with the Base

- We can use region=3 as the base class on the fly:
 - . logit highbp age bmi i.female b3.region
- We can use the most prevalent category as the base
 - . logit highbp age bmi i.female b(freq).region
- Factor variables can be distributed across many variables
 - . logit highbp age bmi $b(freq).(female\ region)$
- The base category can be omitted (with some care here)
 - . logit highbp age bmi i.female bn.region, noconstant
- We can also include a term for region=4 only
 - . logit highbp age bmi i.female 4.region

Specifying Interactions

- Factor variables are also used for specifying interactions
 - ⋄ This is where they really shine
- To include both main effects and interaction terms in a model, put ## between the variables
- To include only the interaction terms, put # between the terms
- Variables involved in interactions are treated as categorical by default
 - ♦ Prefix a variable with c. to specify that a variable is continuous
- Here is our model with an interaction between age and female
 - . logit highbp bmi c.age##female i.region

```
Iteration 0: log likelihood = -7050.7655
Iteration 1: log likelihood = -5824.3249
Iteration 2: log likelihood = -5795.4621
Iteration 3: log likelihood = -5795.4025
Iteration 4: log likelihood = -5795.4025
```

Logistic regression	Number of obs	=	10,351
	LR chi2(7)	=	2510.73
	Prob > chi2	=	0.0000
Log likelihood = -5795.4025	Pseudo R2	=	0.1780

highbp	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
bmi	. 1378163	.005139	26.82	0.000	.1277441	.1478886
age 	.0334439	.0018514	18.06	0.000	.0298151	.0370727
female						
0	0	(base)				
1	-1.883645	.1530275	-12.31	0.000	-2.183574	-1.583717
1						
female#c.age						
1	.0276653	.0028606	9.67	0.000	.0220585	.033272
region						
NE I	0	(base)				
MW I	1359488	.0664206	-2.05	0.041	2661308	0057668
S I	0902012	.0655982	-1.38	0.169	2187713	.0383689
w I	0379412	.066944	-0.57	0.571	169149	.0932666
" i			3.01	0.011	. 100110	
_cons	-5.176679	.1687139	-30.68	0.000	-5.507352	-4.846006

Some Factor Variable Notes

- If you plan to look at marginal effects of any kind, it is best to
 - ♦ Explicitly mark all categorical variables with i.
 - \diamond Specify all interactions using # or ##
 - Specify powers of a variable as interactions of the variable with itself

- There can be up to 8 categorical and 8 continuous interactions in one expression
 - ♦ Have fun with the interpretation

3 Postestimation

3.1 Tests of Coefficients

Introduction to Postestimation

- In Stata jargon, postestimation commands are commands that can be run after a model is fit, for example
 - ♦ Predictions
 - Additional hypothesis tests
 - ♦ Checks of assumptions
- We'll explore postestimation tools that can be used to help interpret model results
 - ♦ The main example here is after logit models, but these tools can be used with most estimation commands
- The usefulness of specific tools will depend on the types of hypotheses you wish to examine

Finding the Coefficient Names

- Some postestimation commands require that you know the names used to store the coefficients
- To see these names we can replay the model showing the coefficient legend
 - . logit, coeflegend

ssion		Number of obs	=	10,351
		LR chi2(7)	=	2510.73
		Prob > chi2	=	0.0000
= -5795.402	5	Pseudo R2	=	0.1780
Coef.	Legend			
.1378163	b[bmi]			
	_ 121012			
0	_b[Ob.female]			
-1.883645	_b[1.female]			
.0276653	_b[1.female#c.age]			
	_			
	_			
0902012	_b[3.region]			
0379412	_b[4.region]			
-5.176679	_b[_cons]			
	= -5795.402 Coef. .1378163 .0334439 0 -1.883645 .0276653 0 1359488 0902012 0379412	= -5795.4025 Coef. Legend .1378163 _b[bmi] .0334439 _b[age] 0 _b[0b.female] -1.883645 _b[1.female] .0276653 _b[1.female#c.age] 0 _b[1b.region]1359488 _b[2.region]	LR chi2(7) Prob > chi2 Pseudo R2 Coef. Legend .1378163 _b[bmi] .0334439 _b[age] 0 _b[0b.female] -1.883645 _b[1.female] .0276653 _b[1.female#c.age] 0 _b[1b.region]1359488 _b[2.region]0902012 _b[3.region]0379412 _b[4.region]	LR chi2(7) = Prob > chi2 = Pseudo R2 = Coef. Legend .1378163 _b[bmi] .0334439 _b[age] 0 _b[0b.female] -1.883645 _b[1.female#c.age] .0276653 _b[1.female#c.age] 0 _b[1b.region]1359488 _b[2.region]0902012 _b[3.region]0379412 _b[4.region]

- From here, we can see the full specification of the factor levels:
 - ♦ _b[2.region] corresponds to region=2 which is "MW" or midwest
 - ♦ _b[3.region] corresponds to region=3 which is "S" or south
- The coefficient for the female by age interaction is stored as _b[1.female#c.age]

Joint Tests

- The test command performs a Wald test of the specified null hypothesis
 - ♦ The default test is that the listed terms are equal to 0
- test takes a list of terms, which may be variable names, but can also be terms associated with factor variables
- To specify a joint test of the null hypothesis that the coefficients for the levels of region are all equal to 0

Testing Sets of Coefficients

- If you are testing a large number of terms, typing them all out can be laborious
- testparm also performs Wald tests, but it accepts lists of variables, rather than coefficients in the model
- For example, to test all coefficients associated with i.region

Likelihood Ratio Tests

- Likelihood ratio tests provide an alternative method of testing sets of coefficients
- To test the coefficients associated with region we need to store our model results. The name is arbitrary, we'll call them m1
 - . estimates store m1
- Now we can rerun our model without region
 - . logit highbp bmi c.age##female if e(sample)

```
Iteration 0: \log likelihood = -7050.7655
Iteration 1: log likelihood = -5826.855
Iteration 2: log likelihood = -5797.9206
Iteration 3: log likelihood = -5797.8856
Iteration 4: log likelihood = -5797.8856
                                            Number of obs =

LR chi2(4) =

Prob > chi2 =
Logistic regression
                                                                 10,351
                                                                  2505.76
                                            Prob > chi2
                                                                  0.0000
Log likelihood = -5797.8856
                                            Pseudo R2
                                                                   0.1777
     highbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
        bmi | .1376855 .0051366 26.80 0.000 .127618 .147753
age | .0335286 .0018501 18.12 0.000 .0299025 .0371548
          female |
         0 | 0 (base)
         1 | -1.882479 .1530115 -12.30 0.000 -2.182376 -1.582582
female#c.age |
       1 | .027615 .0028601 9.66 0.000
                                                     .0220092 .0332207
      _cons | -5.247536 .1628488 -32.22 0.000 -5.566713 -4.928358
```

Adding if e(sample) makes sure the same sample, what Stata calls the estimation sample, is used for both models

Likelihood Ratio Tests (Continued)

- Now we store the second set of estimates
 - . estimates store m2
- And use the lrtest command to perform the likelihood ratio test
 - . lrtest m1 m2

```
Likelihood-ratio test LR chi2(3) = 4.97 (Assumption: m2 nested in m1) Prob > chi2 = 0.1743
```

- We'll restore the results from m1 which includes region even though the terms are not collectively significant
 - . estimates restore m1
 (results m1 are active now)
- Now it's as though we just ran the model stored as m1

Tests of Differences

• test can also be used to the equality of coefficients

- A likelihood ratio test can also be used; see help constraint for information on setting the necessary constraints
- The lincom command calculates linear combinations of coefficients, along with standard errors, hypothesis tests, and confidence intervals
- For example, to obtain the difference in coefficients
 - . lincom 3.region 4.region
 - (1) [highbp]3.region [highbp]4.region = 0

highbp			[95% Conf.	
•			1734012	

3.2 Predictions

What are margins?

- Stata defines margins as "statistics calculated from predictions of a previously fit model at fixed values of some covariates and averaging or otherwise integrating over the remaining covariates."
 - Also known as counterfactuals, or when we fix a categorical variable, potential outcomes
- What sorts of predictions does margins work with?
 - Predicted means, probabilities, and counts
 - ⋄ Derivatives
 - ♦ Elasticities
- We'll also see contrasts and pairwise comparisons of the above

Average Predictions

- Let's start with margins in its most basic form
 - . margins

- What happened here?
 - 1. The predicted probability of highbp=1 was calculated for each case, using each case's observed values of bmi, age, female, and region
 - 2. The average of those predictions was calculated and displayed
- Unless we tell it to do otherwise, margins works with the estimation sample

Predictions at the Average

• An alternative is to calculate the predicted probability fixing all the covariates at some value, often the mean

. margins, atmeans

- What happened here?
 - 1. The mean of each independent variable was calculated
 - 2. The predicted probability of highbp=1 was calculated using the means from step 1

Predictions at Each Level of a Factor Variable

Adding a factor variable specifies that the predictions be repeated at each level of the variable, for example

. margins region

Predictive margins Number of obs = 10,351
Model VCE : OIM

Expression : Pr(highbp), predict()

	 		 Delta-method				
	İ	Margin	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
region	-+ 						
NE	1	.4362592	.0095422	45.72	0.000	.4175568	.4549616
MW	1	.4103455	.0083278	49.27	0.000	.3940234	.4266677
S	1	.4190352	.0081188	51.61	0.000	.4031226	.4349477
W	ا 	.4290013	.0085434	50.21	0.000	.4122565	.4457461

- What happened here?
 - 1. The predicted probability is calculated treating all cases as if region=1 and using each case's observed values of bmi, age, and female
 - 2. The mean of the predictions from step 1 is calculated
 - 3. Repeat steps 1 and 2 for each value of region

Multiple Factor Variables

• We can obtain margins for multiple variables

. margins region female

Predictive margins Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()

 	Margin	Delta-method	 l z	 P> z		Intervall
	0					
region						
NE	.4362592	.0095422	45.72	0.000	.4175568	.4549616
MW	.4103455	.0083278	49.27	0.000	.3940234	.4266677
S I	.4190352	.0081188	51.61	0.000	.4031226	.4349477
W I	.4290013	.0085434	50.21	0.000	.4122565	.4457461
I						
female						
0	.4692315	.006393	73.40	0.000	.4567014	.4817616
1	.3766361	.0057397	65.62	0.000	.3653866	.3878857

• Or combinations of values, for example each combination of region and female

. margins region#female

Predictive margins Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()

	1	I	Delta-method				
	1	Margin	Std. Err.	z	P> z	[95% Conf.	Interval]
	-+-						
region#female	ı						
NE#O		.4839466	.0112276	43.10	0.000	.461941	.5059522
NE#1	1	.3889131	.0097392	39.93	0.000	.3698246	.4080015
MW#O	1	.4556986	.0100844	45.19	0.000	.4359337	.4754636
MW#1	1	.3652888	.0086372	42.29	0.000	.3483602	.3822173
S#0	1	.4651826	.0099214	46.89	0.000	.4457369	.4846282
S#1	1	.3731942	.0084524	44.15	0.000	.3566278	.3897605
W#O	1	.4760455	.0102535	46.43	0.000	. 455949	.496142
W#1	I	.3822812	.0088891	43.01	0.000	.3648589	.3997034

• We can graph the resulting predictions using the marginsplot command

Graphing Predicted Probabilities

- For example to graph the last set of margins
 - . marginsplot

Predictions at Specified Values of Covariates

- The at() option is used to specify values at which margins should be calculated
- To obtain the average predicted probability setting age=40 specify
 - . margins, at(age=40)

at() accepts number lists, so we can obtain predictions setting age to 20, 30, ..., 70

. margins, at(age=(20(10)70)) vsquish

Predictive margins Number of obs = 10,351 Model VCE : OIM Expression : Pr(highbp), predict() 1._at : age 20 2._at : age 30 3._at 40 : age 50 4._at : age 5._at 60 : age 6._at : age 70

	1]	Delta-method				
	1	Margin	Std. Err.	z	P> z	[95% Conf.	Interval]
	-+-						
_at	1						
1		. 1826464	.006436	28.38	0.000	.170032	. 1952608
2		.247219	.0060245	41.04	0.000	.2354113	. 2590268
3	1	.3287856	.0053346	61.63	0.000	.31833	.3392413
4	1	.425936	.0050064	85.08	0.000	.4161236	.4357485
5	1	.5326646	.0059775	89.11	0.000	.5209488	.5443804
6	I	.6387994	.0076524	83.48	0.000	.6238009	.6537979

• The vsquish option reduces the amount of vertical space the header for margins takes up

Graphing Across Values of Continuous Variables

. marginsplot

Specifying Values of Multiple Variables

- We can specify values of multiple variables using at()
- If we set values of all the independent variables in our model, we can ask very specific questions
- For example, what is the predicted probability of high blood pressure for an male who is age 40, with a bmi of 25 and living in the midwest (region=2)? What is the predicted probability if the person is female?
 - . margins female, at(age=40 bmi=25 region=2)

```
Adjusted predictions

Model VCE : OIM

Expression : Pr(highbp), predict()
at : bmi = 25
age = 40
```

	Margin	Delta-method Std. Err.			2 - 10	Interval]
female	.3706418	.0118974	31.15	0.000	.3473232	. 3939603
0	.2130731	.0096757	22.02		.194109	. 2320372

• We can use the contrast operator r. to compare the predicted probabilities for males and females

25

40

. margins r.female, at(age=40 bmi=25 region=2) $\,$

 ${\tt Contrasts} \ {\tt of} \ {\tt adjusted} \ {\tt predictions}$

Model VCE : OIM

Expression : Pr(highbp), predict()

at : bmi = age =

region =

1	df	chi2	P>chi2
female			0.0000

	 	Contrast	Delta-method Std. Err.		Interval]
female	i		.0111296	1793822	1357551

• We'll see more on contrasts below

Specifying Ranges of Multiple Variables

- We can also specify ranges of values for multiple variables, for example multiple values of age and bmi
 - . margins, at(age=(20(10)70) bmi=(20(10)40))
- We can also combine the use of factor and continuous variables, for example
 - . margins female, at(age=(20(10)70)) vsquish

Predictive n	margins			Number of obs	=	10,351
Model VCE	: OIM					
Expression	: Pr(highbp),	<pre>predict()</pre>				
1at	: age	=	20			
2at	: age	=	30			
3at	: age	=	40			
4at	: age	=	50			
5at	: age	=	60			
6at	: age	=	70			
	-					

	 I		 Delta-method				
	 	Margin	Std. Err.	z	P> z	[95% Conf.	Interval]
_at#female	İ						
1 0		.2728133	.0110381	24.72	0.000	.2511789	.2944477
1 1		.0997683	.0065837	15.15	0.000	.0868644	.1126722
2 0		.3369363	.0093499	36.04	0.000	.3186108	.3552617
2 1		.1629921	.0074737	21.81	0.000	.148344	.1776402
3 0		.4076871	.0075866	53.74	0.000	.3928176	.4225566
3 1		.2537634	.0074437	34.09	0.000	.2391741	.2683527
4 0		.4826887	.0070403	68.56	0.000	.46889	.4964874
4 1	1	.3718821	.0071293	52.16	0.000	.357909	.3858552
5 0		.5588757	.0084852	65.87	0.000	.5422451	.5755063
5 1		.5079403	.0083938	60.51	0.000	.4914886	.5243919
6 0		.6329264	.0108508	58.33	0.000	.6116592	.6541935
6 1	 	.6442392	.0106744	60.35	0.000	.6233177	.6651607

More Plots

. marginsplot, legend(order(3 "Males" 4 "Females"))

The standard errors are drawn before the lines for the predictions, so we want the legend to show the third and fourth plots

More Predictions

- We can use at() with the generate() suboption to answer different sorts of questions
- For example, what would the averaged predicted probability be if everyone aged 5 years, while their values female and region remained the same?
- The generate(age+5) requests margins calculated at each observations value of age plus 5

. margins, at(age=generate(age+5))

Predictive margins Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()
at : age = age+5

| Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons | .4672688 .004476 104.39 0.000 .458496 .4760416

We can specify at() multiple times, to obtain predictions under different scenarios

. margins, at(age=generate(age)) ///
 at(age=generate(age+5)) at(age=generate(age+10))

Predictive margins Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()

1._at : age = age

 $2._at$: age = age+5

 $3._at$: age = age+10

Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

_at |
1 | .4227611 .0042898 98.55 0.000 .4143533 .4311689
2 | .4672688 .004476 104.39 0.000 .458496 .4760416
3 | .512185 .0048335 105.97 0.000 .5027115 .5216585

Predictions Over Groups

• The over() option produces predictions averaging within groups defined by the factor variable, for example, female

. margins, over(female)

Predictive margins Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()

over : female

- What happened here?
 - 1. The predicted probability for each case is calculated, using the case's observed values on all variables
 - 2. The average predicted probability is calculated using only cases where female=0
 - 3. Repeat step 2 using only cases where female=1

Pairwise Comparisons of Predictions

- Earlier we obtained average predicted probabilities at each level of region using
 - . margins region
- For pairwise comparisons of these margins we can add the pwcompare option
 - . margins region, pwcompare

Pairwise comparisons of predictive margins

Model VCE : OIM

Expression : Pr(highbp), predict()

	1		Delta-method	Unadj	ısted
	I	Contrast	Std. Err.	[95% Conf.	Interval]
	-+-				
region					
MW vs NE	1	0259137	.0126665	0507396	0010878
S vs NE	-	017224	.0125288	0417801	.007332
W vs NE	-	0072579	.0128075	0323601	.0178443
S vs MW	1	.0086896	.0116321	0141089	.0314882
W vs MW	1	.0186558	.0119339	0047343	.0420459
W vs S	I	.0099661	.0117862	0131345	.0330667

- Adding the groups option will allow us to see which levels are statistically distinguishable
 - . margins region, pwcompare(groups)

Pairwise comparisons of predictive margins

Model VCE : OIM

Expression : Pr(highbp), predict()

	1	Margin	Delta-method Std. Err.	Unadjusted Groups
region				
NE	1	.4362592	.0095422	В
MW	1	.4103455	.0083278	A
S	1	.4190352	.0081188	AB
W	1	.4290013	.0085434	AB

Note: Margins sharing a letter in the group label are not significantly different at the 5% level.

• The pwcompare() option can be used to specify other suboptions; see help margins pwcompare for more information

Contrasts of Predictions

- The margins command allows contrast operators which are used to request comparisons of the margins
 - In this case the margins are predicted probabilities
- For example, to compare average predicted probabilities setting female=0 versus female=1 add the r. prefix
 - . margins r.female

Contrasts of predictive margins

Model VCE : OIM

Expression : Pr(highbp), predict()

l	df	 P>chi2
female	1	0.0000

	Contrast	Delta-method Std. Err.		Interval]
female	•		1094338	0757569

• We can use the @ operator to contrast female at each level of region

. margins r.female@region

Contrasts of predictive margins

Model VCE : OIM

Expression : Pr(highbp), predict()

	l d	lf	chi2	P>chi2
female@region	I			
(1 vs 0) NE	1	1	117.89	0.0000
(1 vs 0) MW	1	1	109.28	0.0000
(1 vs 0) S	1	1	112.04	0.0000
(1 vs 0) W	1	1	115.96	0.0000
Joint	1	4	119.65	0.0000

	1		Delta-method		
	1	Contrast	Std. Err.	[95% Conf.	Interval]
	-+-				
female@region					
(1 vs 0) NE		0950335	.0087525	1121881	0778789
(1 vs 0) MW		0904099	.0086485	1073606	0734592
(1 vs 0) S	1	0919884	.0086906	1090216	0749552
(1 vs 0) W	1	0937643	.0087074	1108305	0766982

• This reports the differences in predicted probabilities when female=1 versus female=0 at each level of region

Contrasts of Predictions (Continued)

- To perform contrasts at different values of a continuous variable use the at() option
 - . margins r.female, at(age=(20(10)70)) vsquish

 ${\tt Contrasts} \ {\tt of} \ {\tt predictive} \ {\tt margins}$

Model VCE : OIM

Expression	:	Pr(highbp),	predict()	
1at		age	=	20
2at		age	=	30
3at		age	=	40
4at		age	=	50
5at	:	age	=	60
6at	:	age	=	70

		df	chi2	P>chi2
female@_at	ı			
(1 vs 0) 1	-	1	182.15	0.0000
(1 vs 0) 2		1	211.82	0.0000
(1 vs 0) 3	-	1	209.80	0.0000
(1 vs 0) 4	-	1	122.51	0.0000
(1 vs 0) 5	-	1	18.36	0.0000
(1 vs 0) 6	-	1	0.56	0.4552
Joint	I	6	123716.83	0.0000

		Contrast	Delta-method Std. Err.	[95% Conf.	Interval]
female@_at	;				
(1 vs 0) 1		173045	.0128218	1981752	1479147
(1 vs 0) 2		1739442	.0119516	1973689	1505195
(1 vs 0) 3		1539237	.0106268	1747518	1330956
(1 vs 0) 4		1108066	.0100111	130428	0911851
(1 vs 0) 5	-	0509354	.0118889	0742372	0276335
(1 vs 0) 6	- 1	.0113128	.0151483	0183773	.041003

- The output gives tests of the differences in predicted probabilities for female=1 versus female=0 at each of the specified values of age
 - $\diamond~\mbox{The joint test}$ is statistically significant
 - ♦ The differences get smaller in absolute value as age increases

Plotting Contrasts

. marginsplot, yline(0)

Contrast Operators

- A few common contrast operators are

 - a. differences from the next (adjacent) level

 - ⋄ g. differences from the balanced grand mean
 - ♦ gw. differences from the observeration-weighted grand mean
 - There are also operators for Helmert contrats and contrasts using orthogonal polynomials for balanced and unbalanced cases

contrast suboptions

- So far we've obtained contrasts using contrast operators, but margins also allows a contrast() option
- The contrast() option is particularly useful for specifying options to contrast
- For example, to obtain contrasts for continuous variables the atcontrast() suboption is used
 - ♦ The effects suboption requests a table showing the contrasts along with confidence intervals and p-values
 - ♦ In atcontrast(a) the a contrast operator requests comparisons of adjacent categories
 - . margins, at(age=(20(10)70)) contrast(atcontrast(a) effects) vsquish

```
Model VCE
            : OIM
Expression
            : Pr(highbp), predict()
                                          20
1._at
             : age
2._at
                                          30
             : age
                                          40
3._at
             : age
                                          50
4._at
             : age
```

Contrasts of predictive margins

5at	: age		=	60
6at	: age		=	70
	1	df	chi2	P>chi2
_at				
(1 vs 2)	1	1	1947.70	0.0000
(2 vs 3)	1	1	1565.44	0.0000
(3 vs 4)	1	1	1191.96	0.0000
(4 vs 5)	1	1	1064.35	0.0000
(5 vs 6)	1	1	1301.80	0.0000
Joint	1	5	278027.30	0.0000

	Delta-method Contrast Std. Err. z P> z [95% Conf. Interv						
_at							
(1 vs 2)	0645726	.0014631	-44.13	0.000	0674403	0617049	
(2 vs 3)	0815666	.0020616	-39.57	0.000	0856072	077526	
(3 vs 4)	0971504	.0028139	-34.52	0.000	1026656	0916352	
(4 vs 5)	1067286	.0032714	-32.62	0.000	1131405	1003167	
(5 vs 6)	1061348	.0029416	-36.08	0.000	1119002	1003693	

Contrasts with generate()

- Earlier we used the generate() suboption to obtain predicted probabilities modifying the observed values
- ullet Specifically, we obtained predicted probabilities using each case's observed value of age and each case's observed value +5 years
 - . margins, at(age=generate(age)) at(age=generate(age+5))

- Using the contrast option, we can compare the two
 - . margins, at(age=generate(age)) ///
 at(age=generate(age+5)) contrast(atcontrast(r))

Contrasts of predictive margins

Model VCE : OIM

Expression : Pr(highbp), predict()

1._at : age = age

 $2._at$: age = age+5

Contrasts of Differences

- We can also request contrasts of contrasts by combining contrast operators
- For example, to compare the differences between males and females across levels of region use
 - . margins r.female#r.region

Contrasts of predictive margins

Model VCE : OIM

Expression : Pr(highbp), predict()

	1	df	chi2	P>chi2
	-+-			
female#region	-			
(1 vs 0) (MW vs NE)	-	1	4.11	0.0426
(1 vs 0) (S vs NE)	1	1	1.88	0.1703
(1 vs 0) (W vs NE)	1	1	0.32	0.5709
Joint	I	3	4.83	0.1851

	1	1	Delta-method		
	1	Contrast	Std. Err.	[95% Conf.	<pre>Interval]</pre>
	-+-				
female#region	ı				
(1 vs 0) (MW vs NE)	-	.0046236	.0022806	.0001537	.0090935
(1 vs 0) (S vs NE)	1	.0030451	.0022208	0013077	.0073979
(1 vs 0) (W vs NE)	1	.0012692	.0022396	0031203	.0056586

Adjusting for Multiple Comparisons

- Use of contrast and pwcompare can result in a large number of hypothesis tests
- The mcompare() option can be used to adjust p-values and confidence intervals for multiple comparisons within factor variable terms
- The available methods are
 - ⋄ noadjust
 - ⋄ bonferroni
 - ♦ sidak
 - \diamond scheffe

Using mcompare()

• To apply Bonferroni's adjustment to an earlier contrast

. margins r.female@region, mcompare(bonferroni)

 ${\tt Contrasts} \ {\tt of} \ {\tt predictive} \ {\tt margins}$

Model VCE : OIM

Expression : Pr(highbp), predict()

		df	chi2	Bon P>chi2	ferroni P>chi2
female@region (1 vs 0) NE (1 vs 0) MW (1 vs 0) S	 	1 1 1	117.89 109.28 112.04	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000
(1 vs 0) W Joint	 	1 4	115.96 119.65	0.0000	0.0000

Note: Bonferroni-adjusted p-values are reported for tests on individual contrasts only.

	1	Number of
	1	Comparisons
female@region		4

	1		Delta-method	Bonferroni		
	1	Contrast	Std. Err.	[95% Conf.	<pre>Interval]</pre>	
	-+-					
female@region	1					
(1 vs 0) NE	1	0950335	.0087525	1168946	0731723	
(1 vs 0) MW	1	0904099	.0086485	1120112	0688085	
(1 vs 0) S	1	0919884	.0086906	1136949	0702819	
(1 vs 0) W	1	0937643	.0087074	1155128	0720159	

• Specifying adjusted p-values with the pwcompare option

. margins region, mcompare(sidak) pwcompare

Pairwise comparisons of predictive margins

Model VCE : OIM

Expression : Pr(highbp), predict()

| Number of | Comparisons | region | 6

	1	Contrast	Delta-method Std. Err.	Sida [95% Conf.	
region	1				
MW vs NE	- [0259137	.0126665	0592398	.0074124
S vs NE	- [017224	.0125288	0501878	.0157398
W vs NE	- [0072579	.0128075	0409548	.026439
S vs MW	- [.0086896	.0116321	021915	.0392943
W vs MW	- [.0186558	.0119339	0127429	.0500544
W vs S	- [.0099661	.0117862	0210439	.0409762

3.3 Marginal Effects

Marginal Effects

ullet In a straightforward linear model, the marginal effect of a variable is the coefficient b

$$y = b_0 + b_1 x_1 + b_2 x_2 + e$$

- In more complex models, this is no longer true
 - models with interactions
 - models with polynomial terms
 - ♦ generalized linear models when the margin is not on the linear scale
- For example, in a logistic regression model, the marginal effect of covariates is not constant on the probability scale
- margins can be used to estimate the margins of the derivative of a response

A Closer Look at Slopes

- Here is a graph of predicted probabilities across values of bmi
 - . margins, at(bmi=(12(5)62))
 - . marginsplot

Average Marginal Effects

- The slope of bmi is not constant, but we might want to know what it is on average
- We can obtain the average marginal effect of bmi
 - . margins, dydx(bmi)

Average marginal effects Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()

dy/dx w.r.t. : bmi

dy/dx	Delta-method Std. Err.		[95% Conf.	Interval]
•	.000852		.0245816	.0279212

- What happened here?
 - 1. Calculate the derivative of the predicted probability with respect to bmi for each observation
 - 2. Calculate the average of derivatives from step 1
- We can do the same for all variables in our model
 - . margins, dydx(*)

Average marginal effects Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()

dy/dx w.r.t. : bmi age 1.female 2.region 3.region 4.region

		Delta-method			FW	
	dy/dx 	Std. Err.	z 	P> z	L95% Conf.	. Interval]
bmi	.0262514	.000852	30.81	0.000	.0245816	.0279212
age	.0088181	.0002145	41.11	0.000	.0083976	.0092385
	 -					
female	l					
0	0	(base)				
1	0925953	.0085912	-10.78	0.000	1094338	0757569
	l					
region	l					
NE	0	(base)				
MW	0259137	.0126665	-2.05	0.041	0507396	0010878
S	017224	.0125288	-1.37	0.169	0417801	.007332
W	0072579	.0128075	-0.57	0.571	0323601	.0178443

Note: dy/dx for factor levels is the discrete change from the base level.

Marginal Effects Over the Response Surface

- It can also be informative to estimate the marginal effect of x at different values of x
- For example, we can obtain the derviative with respect to age at age=20, 30, ..., 70
 - . margins, dydx(age) at(age=(20(10)70)) vsquish

Average marginal effects Model VCE : OIM						of	obs =	10,351
Expression	: Pr(highbp),	<pre>predict()</pre>					
dy/dx w.r.t.	: age		_					
1at	: age		=	20				
2at	: age		=	30				
3at	: age		=	40				
4at	: age		=	50				
5at	: age		=	60				
6at	: age		=	70				
			Delta-metho	 od				
	İ		Std. Err.		P> z		[95% Conf.	<pre>Interval]</pre>
age	+							
_at	1							
1	١.	0056454	.0001263	44.70	0.000		.0053978	.0058929
2	١.	0072988	.0001734	42.09	0.000		.0069589	.0076387
3	١.	0089942	.000245	36.71	0.000		.008514	.0094744
4	Ι.	0103355	.0003148	32.83	0.000		.0097184	.0109526
5	١.	0108342	.0003262	33.21	0.000		.0101949	.0114736
6	١	0102041	.0002508	40.69	0.000		.0097125	.0106957

- Here we do something similar, setting female=0 and then female=1
 - . margins female, dydx(age) at(age=(20(10)70)) vsquish

Average marginal effects Number of obs = 10,351

Model VCE : OIM

Expression : Pr(highbp), predict()

```
dy/dx w.r.t. : age
1._at
                                           20
      : age
2._at
                                           30
             : age
3._at
                                           40
             : age
4._at
                                           50
             : age
5._at
                                           60
             : age
                                           70
6._at
             : age
             1
                           Delta-method
             dy/dx
                           Std. Err.
                                            z
                                                 P>|z|
                                                            [95% Conf. Interval]
             1
age
  _at#female |
        10 |
                             .0002192
                                         27.48
                                                 0.000
                                                            .0055945
                                                                         .0064538
                 .0060242
        1 1
                 .0050964
                             .0001457
                                         34.98
                                                 0.000
                                                            .0048108
                                                                          .005382
            2 0
            - 1
                 .0067761
                             .0003143
                                         21.56
                                                 0.000
                                                            .0061601
                                                                          .007392
        2 1
                 .0076423
                             .0001587
                                         48.17
                                                 0.000
                                                            .0073313
                                                                         .0079532
        3 0
            - 1
                 .0073341
                             .0003896
                                         18.82
                                                 0.000
                                                            .0065704
                                                                         .0080978
                             .0002922
                                                                          .011089
        3 1
                 .0105163
                                         35.99
                                                 0.000
                                                            .0099436
        4 0
                 .0076144
                             .0004244
                                         17.94
                                                 0.000
                                                            .0067825
                                                                         .0084463
             4 1
                 .0129499
                             .0004576
                                         28.30
                                                 0.000
                                                            .0120531
                                                                         .0138467
        5 0
             .0075668
                              .000407
                                         18.59
                                                 0.000
                                                             .006769
                                                                         .0083645
        5 1
                 .0139526
                             .0005002
                                         27.89
                                                 0.000
                                                            .0129722
                                                                         .0149331
        6 0
             .0071918
                               .00034
                                         21.15
                                                 0.000
                                                            .0065255
                                                                         .0078581
        6 1
            .0129829
                             .0003617
                                         35.90
                                                 0.000
                                                             .012274
                                                                         .0136917
```

Plots of Marginal Effects

- We can, of course, plot these marginal effects, to see how they change with different values of female and age
 - $.\ {\tt marginsplot}$

3.4 Other Models

margins with Other Estimation Commands

- margins works after most estimation commands
- The default prediction for margins is the same as the default prediction for predict after a given command
- See help command postestimation for information on postestimation commands and their defaults after a given command
- You can specify different predictions from margins using the predict() option

Modeling Household Size

- For the next set of examples we will model the number of individuals in a household (houssiz) using a Poisson model
- Our model will include covariates age, age², region, rural, and a region by rural interaction
- We've been working with age and region but we'll take a look at the new variables
 - . codebook houssiz rural

```
houssiz # persons in household, 1-14
```

type: numeric (byte)

range: [1,14] units: 1

unique values: 14 missing .: 0/10,351

mean: 2.94377 std. dev: 1.69516

percentiles: 10% 25% 50% 75% 90% 1 2 2 4 5

rural 1=rural, 0=urban

type: numeric (byte)

range: [0,1] units: 1

unique values: 2 missing .: 0/10,351

tabulation: Freq. Value 6,548 0

3,803 1

Now we can fit our model

. poisson houssiz i.region##i.rural age c.age#c.age

Iteration 0: log likelihood = -18385.275
Iteration 1: log likelihood = -18385.272
Iteration 2: log likelihood = -18385.272

Poisson regression Number of obs = 10,351

				LR chi2	(9) =	1780.26
				Prob >	chi2 =	0.0000
Log likelihood	= -18385.27	2		Pseudo	R2 =	0.0462
· ·						
houssiz	Coef.	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
region						
NE	0	(base)				
MW	0586473	.0204129	-2.87	0.004	0986558	0186387
S	.0021845	.021345	0.10	0.918	0396509	.04402
W	0305816	.0208232	-1.47	0.142	0713943	.0102311
rural						
0	0	(base)				
1	.0441422	.0278741	1.58	0.113	0104901	.0987745
region#rural						
MW#1	.0474625	.036487	1.30	0.193	0240508	.1189758
S#1	0013947	.0352449	-0.04	0.968	0704734	.0676839
W#1	.0300379	.0366293	0.82	0.412	0417541	.10183
age	.0561718	.0025069	22.41	0.000	.0512584	.0610852
١						
c.age#c.age	0007312	.0000272	-26.87	0.000	0007845	0006779
I						
_cons	. 2472973	.0539633	4.58	0.000	.1415311	.3530634

margins after poisson

- predict's default after poisson is the predicted count
- To obtain the average predicted count, using the observed values of all covarites use
 - . margins

- As before, we can request predicted counts at specified values of factor variables
 - . margins region#rural

Predictive margins Number of obs = 10,351
Model VCE : OIM

Expression : Predicted number of events, predict()

Delta-method

	1	Margin	Std. Err.	z	P> z	[95% Conf.	Interval]
region#rural NE#0	 	2.942144	.0441807	66.59	0.000	2.855552	3.028737
NE#1	İ	3.074926	.0722057	42.59	0.000	2.933405	3.216447
MW#O	1	2.774558	.0383527	72.34	0.000	2.699388	2.849728
MW#1	1	3.040725	.0579537	52.47	0.000	2.927138	3.154312
S#0	1	2.948578	.0447353	65.91	0.000	2.860899	3.036258
S#1	1	3.077355	.0472768	65.09	0.000	2.984695	3.170016
W#O	1	2.853531	.0411629	69.32	0.000	2.772853	2.934209
W#1	 	3.073255	.0580446	52.95 	0.000	2.959489	3.18702

And continuous variables

Predictive margins

. margins, at(age=(20(10)70)) vsquish

Model VCE	:	OIM					
Expression	:	Predicted n	umber of eve	ents, pred	dict()		
1at	:	age	=	20			
2at	:	age	=	30			
3at	:	age	=	40			
4at	:	age	=	50			
5at	:	age	=	60			
6at	:	age	=	70			
	 I	 I	 Delta-method	 I			
	İ				P> z	[95% Conf.	Interval]
	-+- 						
1	-	2.94187	.0438937	67.02	0.000	2.85584	3.0279
2	-	3.579277	.0276575	129.41	0.000	3.525069	3.633484
3	-	3.762318	.0326109	115.37	0.000	3.698402	3.826234
4	-	3.416678	.0306675	111.41	0.000	3.356571	3.476785
5	-	2.680655	.0216814	123.64	0.000	2.63816	2.72315
6	-1	1.817047	.0254912	71.28	0.000	1.767085	1.867009

Number of obs

10,351

Plotting Predicted Counts

. marginsplot

Other Margins

- After poisson, margins can be used to predict the following
 - \diamond n number of events; the default
 - \diamond ir incidence rate, exp(xb), n when the exposure variable =1
 - ⋄ pr(n) probability that y=n
 - \diamond pr(a,b) probability that a \leq y \leq b
 - ⋄ xb the linear predcition
- Predicted probability that houssiz=1
 - . margins rural, predict(pr(1))

Predictive margins Number of obs = 10,351

Model VCE : OIM

Expression : Pr(houssiz=1), predict(pr(1))

1		Delta-method				
1	Margin	Std. Err.	z	P> z	[95% Conf.	<pre>Interval]</pre>
+						
rural						
0	.1714666	.0020282	84.54	0.000	.1674915	.1754417
1	.1541716	.0025566	60.30	0.000	.1491608	.1591823

- Predicted probability that $3 \leq \mathtt{houssiz} \leq 5$
 - . margins region#rural, predict(pr(3,5))

Predictive margins Number of obs = 10,351

Model VCE : OIM

Expression : Pr(3<=houssiz<=5), predict(pr(3,5))</pre>

		I	 Delta-method	 1			
	İ	Margin	Std. Err.	z	P> z	[95% Conf.	Interval]
region#rural	-+- 						
NE#O	1	.4557062	.0047091	96.77	0.000	.4464765	.464936
NE#1	1	.4682528	.0063677	73.54	0.000	.4557723	.4807332
MW#O	1	.4365671	.0049383	88.41	0.000	.4268883	.4462459
MW#1	1	.4652407	.005386	86.38	0.000	.4546843	.4757971
S#0	1	.4563673	.0047189	96.71	0.000	.4471185	.4656162
S#1	1	.468461	.004296	109.05	0.000	.460041	.4768809
W#O	1	.4460472	.004858	91.82	0.000	.4365256	.4555688
W#1	1	.4681091	.0051371	91.12	0.000	.4580405	.4781777

Multiple Responses

- Starting in Stata 14, margins can compute margins for multiple responses at the same time
 - ♦ After, for example, ologit, mlogit, mvreg
- To demonstrate this, we'll model self-rated health in a different version of the NHANES dataset
 - . webuse nhanes2f
 - . codebook health

health 1=poor,..., 5=excellent

type: numeric (byte)
label: hlthgrp

range: [1,5] units: 1 unique values: 5 missing .: 2/10,337

tabulation: Freq. Numeric Label
729 1 poor
1,670 2 fair
2,938 3 average
2,591 4 good
2,407 5 excellent

2

- Our model is
 - . ologit health i.female age c.age#c.age

Iteration 0: log likelihood = -15764.397
Iteration 1: log likelihood = -15042.53
Iteration 2: log likelihood = -15036.362
Iteration 3: log likelihood = -15036.355
Iteration 4: log likelihood = -15036.355

health	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
female						
0	0	(base)				
1	1223788	.0355107	-3.45	0.001	1919786	052779
1						
age	0251916	.0076063	-3.31	0.001	0400997	0102834
1						
c.age#c.age	00016	.0000812	-1.97	0.049	0003191	-9.73e-07
/cut1	-4.442363	.1659171			-4.767554	-4.117171
/cut2	-2.975821	.1632372			-3.29576	-2.655882
/cut3	-1.573015	.1618158			-1.890168	-1.255862
/cut4	3384551	.1606298			6532838	0236264

Specifying the Response

By default margins will produce the average predicted probability of each value of health

. margins

- To request a single outcome we can use predict(outcome(#))
 - . margins, predict(outcome(2))

• For multiple responses from a single command, repeat the predict() option

```
. margins, predict(outcome(1)) predict(outcome(2))
```

To obtain predictions across values of age

. margins, at(age=(20(10)70)) pr(out(1)) pr(out(2)) vsquish

Plots with Multiple Responses

. marginsplot, legend(order(3 "Poor" 4 "Fair"))

4 Conclusion

4.1 Conclusion

Conclusion

- We've seen how to obtain a variety of predictions and marginal effects after regression models
- We now know how to perform contrasts of predictions and marginal effects
- We've also seen how to graph these results

Index