MATH 364: Lecture 13 (10/01/2024)

Next Tuesday (oct 8): Midterm (in-class; practice midterm is posted)

Topics: Everything before big.M method

Today: * infeasibility in tableau simplex * urs vars

We finish describing the Steps of the big-M simplex method. Recall Steps 1-4 from Lecture 12...

Step 5 Convert LP to canonical form by converting the coefficients of artificial variables a; in Row-0 to zero (using ERDs). The initial bfs will then have all slack (Bi) and all artificial variables (a;'s). Solve the resulting LP tableau using regular simplex method.

BV	Z	\times_{l}	x_{2}	e,	82	α ,	Rs	
	1	-2	-3	0	0	-M	0	$R_o + MR_1$
	$\overline{\mathcal{O}}$	2	1	-1	0	1	4	
	0	-1	l	0	1	0	1	
	1	2M-2	M-3	-M	0	0	4M	
a_{i}	0	2	1	-1	0	1	4	
82	0	<u>—1</u>	1	0	1	0	1	~ new R1
	1	0	-2	-1	0	-(M-1)	4	$R_0 - (2M-2)R_1$
\times_{ι}	0	1	1/2	-1/2	. 0	1/2	2 -	
82	0	0	3/2	1/2	١ .	1/2	3	>px-3 - (2m-2) 1
phimal	Sol	Pution:	$X_{1}=2$, <i>\$</i> 2	= 3, =	z*=4		$\rightarrow -101 + (211-2)\frac{1}{2}$ 411 - (211-2)2

If any q_i is >0 in the optimal tableau (i.e., it is basic), the original LP is infeasible.

Detecting infeasible LPs

Recall that if all constraints are \leq , all the values $(b_i \leq)$ are z_0 , then $\bar{x}=\bar{o}$ is feasible. But in more general settings, we can detect infeasible UPs using the big-M simplex method-

Cntenion

If an artificial var is basic in the optimal tableau (i.e., is >0), then the original LP is infeasible.

min
$$z = 3x_1 + Ma_1 + Ma_2$$

S.t. $2x_1 + x_2 + a_1 > 6$ e
 $3x_1 + 2x_2 + a_2 = 4$
 $x_1, x_2, a_1, a_2 \in 70$

BV	2	×,	X_2	e ₁	a_{i}	92	zhs	
•	١	-3	0	0	- M	-M	O	$R_0 + MR_1 + MR_2$
	0	2	1	-1	1	0	6	
	0	3	2	0	0	1	4	
	1	5M-3	3M	-M	0	0	10M	> optimal!
a_1	D	2	1	-1	1	\mathcal{O}	6	
Q_2	0	3	2	0	0	1	4/	sui R
		0 -	-M/3+2	² -M	O	-5gM 2	H 10/2M7	4 Ro - (5M-3) R2 > new R2
a_{i}	0	0	-1/3	-1	1	-2/3	10/3	
$\chi_{_{1}}$	_0	1	2/3	. 0	0	1/2	4/3	3M-(5M-3) = 3
·								10M - (5M-3)4/3

Since a, = 1/3 in the optimal tableau, the original LP is infearible.

Unrestricted in Sign (Urs) Variables

 \star If x_i is us, replace x_i by $x_i^t-x_i^-$ in all constraints and in the objective function, and add $x_i^t, x_i^- = 0$.

IDEA: $X_i = X_i^{\dagger} - X_i^{-}$ $(X_i^{\dagger}, X_i^{-} = 0)$ $(X_i^{\dagger}, X_i^{-} = 0)$ but we will show only If $X_i = 5$, $X_i^{\dagger} = 5$, $X_i^{=0} = 0$ works, and $X_i = -3$, $X_i^{+} = 0$, $X_i^{-} = 3$ works.

one of X_i^+, X_i^- can be basic in the optimal tableau.

 $\max \ Z = 2x_1 + x_2 > x_2 - x_2$ s.t. 3xi+x≥≤6 $x_1 + x_2 \le 4$ X,70, X2 Urs

 $\max \ 2 = 2x_1 + x_2^+ - x_2^ 3x_1 + x_2^{+} - x_2^{-} \le b$ $x_1 + x_2^+ - x_2^- \le 4$ 82 $x_{1}, x_{2}^{\dagger}, x_{2}^{-} = 0$

BV	己	×,	χ_2^+	χ_{2}^{-}	8,	<i>8</i> 2	rhs
_	1	-2	-1		0	0	0
BI	0	3	1	-1	1	0	6
82	0	<u> </u>	1	-1	O	l	4
	1	O	-1/3	1/3	2/3	0	4
Χı	0	1	1/3	-1/3	1/3	O	2
82	0	O	(2/3)	-43	-13	1	2
	1	O	0	0	1/2	1/2	5
χ_{c}	O	1	\circ	0	1/2	-b	. 1
χ_2^+	0	0	1	-1	-1/2	_ 3/2	3

optimal solution $x_1 = 1$, $x_2 = x_2^{+} - x_2^{-} = 3 - 0 = 3$, $Z^* = 5$.

Note that the columns of x_2^+ and x_2^- are -1 multiples of each other. Hence both cannot be basic in a tableau, and we get x_2 modeled correctly.

If $x_i \leq 0$ to start with, replace X_i by $-X_i$ everywhere, and add $X_i \geq 0$. In the end set $X_i = -X_i$ (in optimal solution).

Putting it all together

Futfing it all together

min
$$Z = 2x_{1} - 3x_{2}$$

s.t. $x_{1} + 3x_{2} \le 9$
 $2x_{1} + 6x_{2} = 7 - 6$
 $x_{2} = 1$
 x_{1} urs, $x_{2} = 0$

Solve this LP using the big-M method.

We outline the steps of big-M simplex method.

Step! Scale any constraint with <0 rhs $-(2x_1+5x_27-6) \Rightarrow -2x_1-5x_2 \le 6$

Steps 283

Add artificial var ai to constraint i If it is 7 ar = 3 and add aizo. add ±Mai to Z (obj. fn) (+Mai for min LP).

min $Z = 2x_{1} - 3x_{2} + Ma_{3}$ s.t. $x_1 + 3x_2 \leq 9$, & $-2x_1 - 5x_2 \le 6$ 8_2 12+a37/ l3 X, urs, X270, 9370 Step 4 Replace us variable x_i by $x_i^+ - x_i^-$, add $x_i^+ x_i^- 70$.

Replace x_i by $-x_i^-$ when $x_i \le 0$, and add $x_i^- 70$.

min
$$Z = 2x_1^{\dagger} - 2x_1^{-} - 3x_2 + Ma_3$$

s.t. $x_1^{\dagger} - x_1^{-} + 3x_2 \le 9$ & $-2x_1^{\dagger} + 2x_1^{-} - 5x_2 \le 6$ & $x_2^{\dagger} + 2x_1^{-} - 5x_2^{\dagger} = 6$ & $x_2^{\dagger} + 2x_1^{\dagger} = 6$ & $x_1^{\dagger} + 2x_1^{\dagger} = 6$ & $x_2^{\dagger} + 2x_1^{\dagger} = 6$ & $x_1^{\dagger} + 2x_1^{\dagger} = 6$ & $x_2^{\dagger} + 2x_1^{\dagger} = 6$ & $x_1^{\dagger} + 2x_1^{\dagger} = 6$ & $x_1^{\dagger} + 2x_1^{\dagger} = 6$ & $x_2^{\dagger} + 2x_1^{\dagger} = 6$ & $x_1^{\dagger} + 2x_1^{\dagger} = 6$

Step 5 Convert UP to standard form using slack/excess variables.

min
$$Z = 2x_1^{\dagger} - 2x_1^{-} - 3x_2 + Ma_3$$

s.t. $x_1^{\dagger} - x_1^{-} + 3x_2 + 8_1 = 9$
 $-2x_1^{\dagger} + 2x_1^{-} - 5x_2 + 8_2 = 6$
 $x_2 - e_3 + a_3 = 1$
 $x_1^{\dagger}, x_1^{-}, x_2 = 0$, $a_3 = 0$, $a_1, a_2, e_3 = 0$

Step 6 Use slack and artificial vars in the starting bols, convert tableau to canonical form.

Proceed with subsequent steps of tableau simplex method.

min
$$Z = 2x_1^{\dagger} - 2x_1^{-} - 3x_2 + Ma_3$$

s.t. $x_1^{\dagger} - x_1^{-} + 3x_2 + 8_1 = 9$
 $-2x_1^{\dagger} + 2x_1^{-} - 5x_2 + 8_2 = 6$
 $x_2 - e_3 + a_3 = 1$
all vars 70

BV	-	Z	x_1^{+}	×	_ I	X ₂	8,	82	_ (² 3	$a_{\underline{i}}$	3	rhs		
		1	-2	2	2_	3	0	0)	0	-r	1	0	_	Ro+MR3
		0	1	_	1	3)	0	ı	0	()	9		
		0	-2		2	-5	0	l		0	,	0	6		
	_	0	0	(0	1	O	(>	-1		l	1	_	
		1	-2		2	Mt3	0	(>	-M		0	n	1	
	$\mathcal{B}_{l}^{\overline{}}$	0	i	-	-1	3)	()	0		0	9		
	82	0	-2		2	-5	C		1	0		0	6	>	
	a3	0	0		0	(1)	O		0	-1		1	,	l	
		1	-2		2	0	()	0	3	-(M+3)		3	Ro-(M+3) R3
	81	0	1		-1	0		1	0	3		-3	(6	
	82	- 0	-2	<u>-</u>	2	O	(5	1	-5		5	1	1	
	XZ	0			0	1	(0	0	<u> </u>		1		<u>1</u>	
		_1	-9	3	3	O	_	1	0	0		-M	_	9	
	e3	C		2	-1/3	0	,	13	0	1		-1		2	
	82	. C	· 一)	3	1/3 -1/3	0	4	7/3	1	0		0	Ž	21	
	\times_2	- <u> </u>) }	3	-1/3	1		1/3	0)	0		<u>3</u>	
		l	()	Ò	C) –	-16	-9	()	-M	_	198	
	e	3 ()	0	0	C)	2	l		1	-1		23	
	χ_{i}	- () -	- [1	()	5	3		0	0		63	
	X		<u> </u>	0	С	>	l	2	1		0	Ó		24	

Optimal solution: $X_1 = X_1^+ - X_1^- = 0 - 63 = -63$, $X_2 = 24$, $\ell_3 = 23$; $Z_2^* = -198$.