Université de Rennes

Méthodes numériques

Gwendal Le Bouffant & Adib Rahmouni.

Cours

(5)Gwendal Le Bouffant. Copyleft.

Permission vous est donnée de copier, distribuer et/ou modifier ce document selon les termes de la Licence GNU Free Documentation License, Version 1.2 ou ultérieure publiée par la Free Software Foundation; avec pas de section inaltérable, pas de texte de première page de couverture, pas de texte de dernière page de couverture.

On pourra consulter la licence sur http://www.gnu.org/licenses/fdl.html.

Table des matières

1	Généralités sur les suites 1.1 Définitions d'une suite	2 2		4.4 Applications	
2	Suites croissantes, suites décroissantes 2.1 Techniques d'étude :	3 3	5	Comparaison de suites	4
3	Suites majorées, minorées 3.1 Techniques d'étude :	3 3	6	Convergence des suites monotones 6.1 Convergence des suites adjacentes 6.2 Application	4
4	Suites convergentes 4.1 Limite finie d'une suite	3 3	7	Théorème du point fixe	5
	4.2 Limite infinie d'une suite	3 3	8	Accroissements finis 8.1 Application aux suites	Ę.

1 Généralités sur les suites

Définition 1. Une suite numérique est une fonction qui, à tout entier $n \ge n_0$, associe un réel :

$$u: n \mapsto u(n) \ ou \ u_n$$

- $(u_n)_{n>n_0}$ est la suite de terme général u_n .
- u_{n_0} est le terme initial de la suite.
- u_n est le terme de rang n de la suite.

Exercice 1.1. Soit u la suite définie sur \mathbb{N} par

$$u_n = 2n^2 - 1.$$

 $D\acute{e}terminer: u_{2n}, u_{n+1}, u_{2n+1}.$

Remarque : On identifie souvent une suite, qui est une fonction, à ses images $(u_n)_{n\geq n_0}$ qui est un sous ensemble de $\mathbb{R}^{\mathbb{N}}$.

1.1 Définitions d'une suite

Une suite peut-être définie principalement de deux manières :

- 1. Par une formule explicite : On définit une suite associée à une fonction $f:[a,+\infty[\to \mathbb{R} \text{ par } \forall n\geq a,\ u_n=f(n).$
- 2. Par récurrence : Soit f une fonction définie sur un intervalle I et $a \in I$.

La suite récurrente définie par f est la suite (u_n) :

$$\begin{cases} u_{n+1} &= f(u_n) \\ u_0 &= a \end{cases}$$

Exercice 1.2. 1. Soit f la fonction définie sur $[0, +\infty[$ par $f(x) = 2x^2 + 3$ et (u_n) la suite associée à f.

- Que vaut le terme initial u_0 ?
- Calculer u_{10} .
- 2. Soit f la fonction définie sur $[2, +\infty[$ par $f(x) = x 3\sqrt{x 2}$ et (u_n) la suite associée à f.
 - Calculer le terme initial et u_8 .
 - Représenter graphiquement la suite (u_n) .

Attention : Il se peut que le choix du terme initial ne permette pas de définir de suite :

Soit g définie sur]1; $+\infty$ [par $g(x) = \frac{1}{x-1}$.

Montrer que la suite de terme général $v_{n+1} = g(v_n)$ n'est pas définie en prenant $v_0 = 2$.

Exemple 1.1. Soit f la fonction définie sur $I = [-3, +\infty[$ par $f(x) = \sqrt{x+3}$ et (u_n) la suite récurrente définie par : $\begin{cases} u_{n+1} &= f(u_n) \\ u_0 &= -2 \end{cases}$

- 1. Démontrer que la suite est bien définie.
- 2. Calculer u_1 , u_2 et u_3 .

- 3. Soit C_f la représentation graphique de f.
 - (a) Représenter C_f .
 - (b) Construire la suite de points A_i de coordonnées $(u_i, f(u_i))$.

2 Suites croissantes, suites décroissantes

Définition 2. • On dit qu'une suite (u_n) est croissante à partir du rang n_0 si :

pour tout entier $n \ge n_0$, $u_{n+1} \ge u_n$.

• On dit qu'une suite u_n est décroissante à partir du rang n_0 si :

pour tout entier $n \ge n_0$, $u_{n+1} \le u_n$.

• On dit qu'une suite est monotone, lorsqu'elle est croissante ou décroissante.

2.1 Techniques d'étude :

Trois techniques, pour l'essentiel, permettent d'étudier la monotonie d'une suite :

1. La technique fonctionnelle qui s'applique aux suites de la forme $u_n = f(n)$ et consiste à étudier les variations de f. Par exemple :

$$u_n = n - \ln n$$
.

2. La technique algébrique : Elle consiste soit à étudier le signe de la différence $u_{n+1} - u_n$, soit à comparer les quotient $\frac{u_{n+1}}{u_n}$ à 1, si $u_n > 0$. Par exemple :

$$u_n = \cos(n^2) - 2n.$$

3. Le raisonnement par récurrence : Lorsque $u_{n+1}=f(u_n)$. Par exemple la suite (t_n) définie par : $t_0=6$ et $t_{n+1}=\sqrt{t_n}$

3 Suites majorées, minorées

Définition 3. • Une suite (u_n) est majorée, s'il existe un réel M tel que :

pour tout entier $n \in \mathbb{N}$, $u_n \leq M$.

• Une suite (u_n) est minorée, s'il existe un réel m tel que :

pour tout entier $n \in \mathbb{N}$, $m \leq u_n$.

• Une suite est bornée, si elle est à la fois majorée et minorée.

3.1 Techniques d'étude :

1. La technique fonctionnelle : lorsque $u_n = f(n)$. Par exemple :

$$u_n = \frac{\ln n}{n}.$$

2. Le raisonnement par récurrence : lorsque $u_{n+1} = f(u_n)$. Par exemple :

$$u_0 = 0$$
 et $u_{n+1} = 2\sqrt{v_n} + 1$.

4 Suites convergentes

4.1 Limite finie d'une suite

Définition 4. Une suite (u_n) converge vers une limite l si, pour tout intervalle ouvert contenant l, contient toutes les valeurs u_n à partir d'un certains rang. On écrit alors $\lim_{n\to+\infty} u_n = l$.

Exemple 4.1. Montrer que $\lim_{n\to+\infty}\frac{1}{n}=0$.

4.2 Limite infinie d'une suite

Définition 5. Soit $A \in \mathbb{R}$. La suite (u_n) admet pour limite $+\infty$ (respectivement $-\infty$) si, tout intervalle de la forme $]A; +\infty[$ (respectivement $]-\infty; A[$) contient toutes les valeurs u_n à partir d'un certain rang.

On écrit alors $\lim_{n\to+\infty} u_n = +\infty$ (respectivement $-\infty$).

Exemple 4.2. Soit x un réel strictement positif. Montrer que $\lim_{n\to+\infty} nx = +\infty$.

4.3 Calculs de limites

Théorème 4.3.1. Si (u_n) a pour terme général $u_n = f(n)$, alors (u_n) a la même limite que f en $+\infty$.

Exemple 4.3. Soit u la suite définie sur \mathbb{N} par $u_n = \frac{\ln n}{n}$. Que vaut $\lim_{n \to +\infty} u_n$?

Théorème 4.3.2. Si $\lim u_n = a$ et $\lim_a f(x) = l$, alors $\lim f(u_n) = l$.

Exemple 4.4. Étudier le comportement asymptotique de (a_n) définie par : $a_n = n \sin \frac{1}{n}$

4.4 Applications

Théorème 4.4.1. Les résultats énoncés sur la limite d'une somme, d'une différence, d'un produit, et du quotient de deux fonctions, sont encore vrais pour les suites numériques.

Exemple 4.5. Déterminer dans chacun des cas, la limite de la suite définie par :

1.
$$u_n = 3n^2 + n - 5$$
.

2.
$$u_n = 3n^2 - n - 5$$
.

3.
$$u_n = \frac{3n+5}{-2n+7}$$

Exercice 4.1. Trouver la limite éventuelle de la suite $(u_n): u_n = \frac{a^n - 2}{a^n + 3}$ où a > -1.

5 Comparaison de suites

Le théorème suivant permet de déterminer le comportement d'une suite (x_n) par comparaison à d'autres suites au comportement connu :

Théorème 5.0.1. 1. Si $u_n \le x_n$ et (u_n) tend vers $+\infty$, alors (x_n) tend vers $+\infty$.

2. Si $x_n \leq u_n$ et (u_n) tend vers $-\infty$, alors (x_n) tend vers $-\infty$.

Exercice 5.1. Déterminer la limite de la suite (u_n) définie par $u_n = n - \cos(n^2)$.

On en déduit le théorème suivant :

Théorème 5.0.2. Toute suite croissante et non majorée tend vers $+\infty$.

Corollaire 1. Soit $q \in \mathbb{R}$.

- 1. $Si 1 < q < 1 \ alors \lim_{n \to +\infty} q^n = 0$.
- 2. Si 1 < q alors $\lim_{n \to +\infty} q^n = +\infty$.
- 3. Si q < -1 alors la suite (q^n) n'admet pas de limite finie ou infinie.

Dans le cas de suite convergentes on a le résultat fondamental suivant :

Théorème 5.0.3. Soient (u_n) et (v_n) deux suites de réels convergentes. Si pour tout $n \in \mathbb{N}$, $u_n \leq v_n$, alors :

$$\lim_{n \to \infty} u_n \le \lim_{n \to \infty} v_n$$

Application : Soit (u_n) une suite de réels décroissante et de limite nulle.

Alors tous les termes de la suite (u_n) sont positifs.

Ce théorème ne permet pas de démontrer que l'une des deux suites converge, on utilise donc plutôt le corollaire suivant, dit « théorème des gendarmes \gg :

Théorème 5.0.4. Soient (u_n) , (v_n) et (w_n) trois suites de réels telles que (u_n) et (v_n) convergent vers la même limite l et pour tout $n \in \mathbb{N}$,

$$u_n \le v_n \le w_n$$

alors (v_n) converge vers l.

Exemple 5.1. Exemple Déterminer la limite de la suite définie par $u_n = \frac{n + \cos(n)}{n+3}$.

Corollaire 2. Si $|x_n - l| \le v_n$ et (u_n) tend vers 0 alors (x_n) converge vers l.

Exercice 5.2. Étudier la limite de la suite (u_n) sachant que :

$$|u_n - \sqrt{2}| \le 3 \times 0, 2^n.$$

6 Convergence des suites monotones

Théorème 6.0.1. • Si une suite est croissante et majorée, alors elle converge.

• Si une suite est décroissante et minorée, alors elle converge.

Exemple 6.1. La suite (u_n) définie, pour tout entier naturel $n \geq 1$, par $u_n = \frac{1}{n}$ est décroissante et minorée par 0. Le théorème de convergence monotone permet alors d'affirmer que (u_n) est convergente.

Remarques 1. Ce théorème permet juste d'affirmer qu'une suite converge. Il ne permet pas de déterminer sa limite.

Exercice 6.1. Soit (v_n) la suite définie par $v_0 = 2$ et, pour tout entier naturel n, $v_{n+1} = \frac{1}{2}v_n + 2$.

- 1. Montrer que cette suite est croissante.
- 2. Montrer que cette suite est majorée par 4.
- 3. En déduire que (v_n) est convergente.

Exercice 6.2. On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = \frac{9}{6-u_n}$.

1. Montrer que, pour tout entier naturel n,

$$0 < u_n < u_{n+1} < 3.$$

- 2. Justifier que la suite (u_n) converge vers un réel l.
- 3. On admet que $l \neq 6$, et que $l = \frac{9}{6-l}$. Déterminer la valeur de l.

6.1 Convergence des suites adjacentes

Définition 6. Deux suites réelles (u_n) et (v_n) sont dites adjacentes si

- (u_n) est croissante.
- (v_n) est décroissante.
- $(u_n v_n)$ tend vers 0.

On a dans ce cas le résultat suivant :

Proposition 1. Deux suites adjacentes convergent vers la $m\hat{e}me$ limite.

6.2 Application

Exercice 6.3. Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 0$ et

$$u_{n+1} = \sqrt{2 - u_n}$$

- Montrer que les suites $a_n = u_{2n}$ et $b_n = u_{2n+1}$ sont adjacentes.
- En déduire que (u_n) converge.

7 Théorème du point fixe

Théorème 7.0.1. Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$, une fonction continue, et $(u_n)_{\mathbb{N}}$ une suite récurrente définie par f et une donnée initiale $u_0 \in \mathbb{R}$.

 $Si\ (u_n)_{\mathbb{N}}$ converge vers une limite $l\ ($ c'est à dire $si\ \lim_{n\to\infty}u_n=l)$ alors $l\ v\acute{e}rifie$ l'équation l=f(l).

Remarques 2. Attention Ce théorème n'assure en aucun cas la convergence de (u_n)

Exemple 7.1. Fibonacci On appelle **nombre d'or** la solution positive ϕ de l'équation $x^2 - x - 1 = 0$. Soit u la suite définie pour tout \mathbb{N} par $u_0 = 1$ et $u_{n+1} = 1 + \frac{1}{u_n}$.

- 1. Démontrer que si la suite u converge, alors elle converge vers ϕ .
- 2. Démontrer que pour tout n, $u_{n+1} \phi = \frac{\phi u_n}{\phi u_n}$.
- 3. En déduire par récurrence que $|u_n \phi| \le (\frac{1}{\phi})^n |1 \phi|$.
- 4. En déduire que la suite u converge vers ϕ .

Exemple 7.2. Remarque : Le théorème est utile :

- Si on peut appliquer un théorème d'existence (par ex. théorème de convergence montone).
- Si on peut majorer $|u_n l|$ par le terme général d'une suite de limite 0.

Exemple 7.3. Exemple Soit (a_n) définie par : $a_0 = 1$ et $a_{n+1} = \sqrt{3a_n + 4}$.

- 1. Montrer que $\forall n \in \mathbb{N}, \ 0 \le a_n \le 4$.
- 2. Étudier les variations de (a_n) .
- 3. En déduire que (a_n) converge et calculer sa limite.

Exemple 7.4. Exercice Soit (u_n) définie par : $u_0 = 2$ et $u_{n+1} = \sqrt{u_n + 4}$.

- 1. Montrer que $\forall n \in \mathbb{N}^*, \ 2 \leq u_n \leq 5$.
- 2. Étudier les variations de (u_n) .
- 3. En déduire que (u_n) converge et calculer sa limite.

8 Accroissements finis

Théorème 8.0.1. Soit f une fonction dérivable sur un intervalle [a, b].

S'il existe $M \in \mathbb{R}$ tel que $|f'(x)| \leq M$ pour tout $x \in]a,b[,$ Alors :

$$|f(b) - f(a)| \le M|b - a|.$$

8.1 Application aux suites

Théorème 8.1.1. Soit f une fonction **dérivable** sur un intervalle [a,b] et M<1 tels que, pour tout $(x,y)\in\mathbb{R}, \quad |f(x)-f(y)|< M|x-y|.$ La suite définie par

$$x_0 \in [a, b], \quad x_{n+1} = f(x_n)$$

converge vers l'unique solution α dans [a,b] de l'équation f(x)=x et l'on a :

$$|x_n - \alpha| \le M^n |x_0 - \alpha|.$$

Exemple 8.1. Exemple On considère la fonction f définie sur \mathbb{R}_+^* par $f(x) = 4 - \frac{1}{4} \ln x$.

- 1. Montrer que l'équation f(x) = x possède une unique solution α et que cette solution est dans I =]3; 4[.
- 2. Montrer que $f(I) \subset I$ et que, pour tout $x \in I$, $|f'(x)| \leq \frac{1}{12}$.
- 3. Soit (x_n) la suite définie par récurrence par :

$$x_0 \in]3;4[$$
 et $x_{n+1} = f(x_n)$

converge vers α et trouver une approximation de α à 10^{-5} .

Exemple 8.2. 1. On pose, pour x réel $f(x) = \cos x$. En étudiant la fonction $\phi: x \mapsto x - \cos x$, montrer que l'équation f(x) = x admet une unique solution a vérifiant :

$$0, 5 \le a \le 1.$$

- 2. On désigne par I l'intervalle $\left\lfloor \frac{1}{2}, 1 \right\rfloor$. Montrer que $f(I) \subset I$ et que $|f'(x)| \leq 0,9$ pour tout $x \in I$.
- 3. On définit la suite (u_n) par $u_0 = 1$ et $u_{n+1} = \cos u_n$.
 - Montrer que, pour tout entier $n, u_n \in I$ et que $|u_n a| \le 0, 9|u_{n-1} a|$.
 - En déduire que $|u_n a| \le 0, 9^n |u_0 a|$ puis que $\lim u_n = a$.
 - Montrer que, pour tout entier $n, u_n \in I$ et que $|u_n a| \le 0, 9|u_{n-1} a|$.
 - En déduire que $|u_n a| \le 0, 9^n |u_0 a|$ puis que $\lim u_n = a$.

Travaux Dirigés

TD 1 : Raisonnement par récurrence

Exercice 9.1. On considère la suite (u_n) définie sur \mathbb{N} par :

$$u_0 = 8$$
 et $u_{n+1} = \frac{2}{5}u_n + 3$.

Démontrer que, pour tout entier naturel n:

$$u_n = 3(\frac{2}{5})^n + 5.$$

Exercice 9.2. On considère la suite (u_n) définie par :

$$u_1 = 5$$
 et pour $n \ge 2 : u_n = 2u_{n-1} - n$.

Démontrer, pour tout entier naturel non nul, que :

$$u_n = 2(2^{n-1} + 1) + n.$$

Exercice 9.3. On considère la suite (u_n) définie sur \mathbb{N} par :

$$u_0 = \frac{1}{4}$$
 et $u_{n+1} = 5u_n - 1$.

- 1. Calculer les trois premiers termes de la suite (u_n) .
- 2. Conjecturer son expression explicite.
- 3. Le démontrer.

Exercice 9.4. Montrer que pour tout entier naturel n, que :

1.
$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}.$$

2.
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$
.

3.
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

4.
$$\sum_{i=0}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$
.

Exercice 9.5. Calculer en fonction de n les sommes suivantes :

1.
$$\sum_{i=0}^{i=n} (4i-1)$$

$$3. \sum_{i=2}^{i=n} \left(\frac{1}{2}\right)^i$$

2.
$$\sum_{i=1}^{i=n-1} (3i+5)$$

4.
$$\sum_{i=1}^{i=n+1} 3 \times 5^{-i}$$

TD 2: Variations

Exercice 10.6. Étudier la monotonie des suites (u_n) à l'aide de la différence $u_{n+1} - u_n$:

1. $u_n = 2n + \sin n$.

2.
$$u_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} - n$$
.

Exercice 10.7. Étudier la monotonie des suites (u_n) à l'aide du quotient $\frac{u_{n+1}}{u_n}$:

1.
$$u_n = \frac{e^n}{n}$$
.

2.
$$u_n = \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2n-1}{2n}$$
.

Exercice 10.8. Étudier la monotonie des suites (u_n) à l'aide des variations d'une fonction bien choisie :

1. $u_n = n + \cos n$.

$$2. \ u_n = \frac{\ln n}{n^2}.$$

Exercice 10.9. Étudier la monotonie des suites (u_n) à l'aide d'un raisonnement par récurrence :

1.
$$\begin{cases} u_0 = 5, \\ u_{n+1} = \sqrt{u_n + 2} \end{cases}$$

2.
$$\begin{cases} u_0 = 1, u_1 = \frac{3}{2} \\ u_{n+2} = \frac{1}{2}u_{n+1} + \frac{2}{3}u_n \end{cases}$$

Application

Exercice 10.10. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par la donnée de $u_0=5$ et la relation de récurrence $u_{n+1}=\frac{u_n+1}{u_n+2}$.

- 1. Démontrer par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est à valeurs positives.
- 2. Etudiez les variations de la fonction $f: x \mapsto \frac{x+1}{x+2}$
- 3. Vérifiez que $u_1 < u_0$ puis démontrer par récurrence, en utilisant le sens de variation de f, que la suite est décroissante.

Exercice 10.11. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par la donnée de $u_0=2$ et la relation de récurrence $u_{n+1}=\frac{1}{2}(u_n+\frac{1}{u_n})$.

- 1. On définit la fonction f sur \mathbb{R}^{*+} par $f(x) = \frac{1}{2}(x + \frac{1}{x})$. Étudier les variations de la fonction f.
- 2. Démontrer par récurrence que $\forall n \in \mathbb{N}, u_n \in [1, +\infty]$.
- 3. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.

Exercice 10.12. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0\in]0,1[$ par f(x)=x(1-x) et la relation de récurrence $u_{n+1}=u_n(1-u_n)$.

1. Etudier les variations de la fonction f définie sur [0,1[par f(x)=x(1-x). En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée.

Plus précisément, démontrer que :

$$\forall n \in \mathbb{N}^*, 0 < u_n < \frac{1}{4}.$$

2. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.

Exercice 10.13. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0\in\mathbb{R}^{*+}$ et la relation de récurrence $\forall n\in\mathbb{N}, u_{n+1}=u_ne^{-u_n}$.

- 1. Démontrer que $u_n > 0, \forall n \in \mathbb{N}$.
- 2. Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée.

TD 3: Limites

Exercice 11.14. Déterminer les limites suivantes :

1.
$$\lim_{n \to +\infty} \frac{n^2 - n + 1}{2n^2 + n + 2}$$

2.
$$\lim_{n \to +\infty} \frac{\cos(n)}{n}$$

3.
$$\lim_{n \to +\infty} (\sqrt{n+1} - \sqrt{n})$$

4.
$$\lim_{n \to +\infty} \frac{e^{n+1}}{n}$$

5.
$$\lim_{n \to +\infty} ln(n) + cos(n)$$

Exercice 11.15. Démontrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_{2n}=0,\ u_{2n+1}=1+\frac{1}{n}$ ne converge pas.

Exercice 11.16. La suite $(u_n)_{n\in\mathbb{N}^*}$ est définie par

$$u_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

- 1. Quel est le plus petit terme de cette somme ? Quel est le plus grand terme ?
- 2. Démontrer que pour tout entier naturel non nul :

$$\frac{n}{\sqrt{n^2 + n}} \le u_n \le \frac{n}{\sqrt{n^2 + 1}}$$

3. En déduire la limite de $(u_n)_{n\in\mathbb{N}^*}$ quand n tend vers $+\infty$.

Exercice 11.17. Soit (u_n) la suite définie par $u_n = \frac{n^4}{n!}, \forall n \geq 1$.

- 1. Démontrer que $\forall x \geq 5, \ n! \geq n(n-1)(n-2)(n-3)(n-4)$.
- 2. Déduisez-en que la suite (u_n) a pour limite zéro.

TD 4 : Suites particulières, Théorème du point fixe

Exercice 13.18. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=-3$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n+32$. Exprimer u_n en fonction de n.

Exercice 13.19. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=-4$ et pour tout entier naturel n, $u_{n+1}=32u_n$.

- 1. Exprimer u_n en fonction de n.
- 2. Quelle est la limite de la suite $(u_n)_{n\in\mathbb{N}}$ quand n tend vers $+\infty$?
- 3. Calculer $\sum_{k=0}^{n-1} u_k$.

Exercice 13.20. 1. On pose $u_n = \frac{2^n + n^2}{3^n + 5}$. Calculer $\lim_{n \to +\infty} u_n$

- 2. On pose $u_n = \frac{10^n + n^{10}}{10^{3n} n^{1000}}$. Calculer $_{n \to +\infty}^{Lim} u_n$
- 3. On pose $u_n = \frac{2n^{\frac{3}{2}} + 2^n}{n^{\frac{5}{2}} + 4^n}$. Calculer $\lim_{n \to +\infty} u_n$

Exercice 13.21. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=2$ et pour tout entier naturel n, $u_{n+1}=\frac{2u_n-1}{u_n+4}$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Montrer que l'équation $x = \frac{2x-1}{x+4}$ admet une unique solution α .
- 3. Montrer que pour tout $n \in \mathbb{N}$, $u_n \neq \alpha$.
- 4. On introduit la suite $(v_n)_{n\in\mathbb{N}}$ définie par

$$v_n = \frac{1}{u_n - \alpha}$$

Montrer qu'il s'agit d'une suite arithmétique.

- 5. En déduire, pour tout \mathbb{N} , l'expression de u_n en fonction de n.
- 6. Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.

Exercice 13.22. La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=0$ et pour tout entier naturel n, $u_{n+1}=\frac{3u_n+2}{u_n+4}$.

1. (a) Démontrer que la fonction f définie de $\mathbb{R} - \{-4\}$ dans \mathbb{R} par :

$$f(x) = \frac{3x+2}{x+4}$$

est croissante sur \mathbb{R}^+ .

En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

- (b) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée, en déduire qu'elle est convergente.
- (c) Déterminer les points fixes de la fonction f, c'est à dire les nombres réels x tels que f(x) = x.
- (d) On admet que la suite $(u_n)_{n\in\mathbb{N}}$ ne peut converger que vers un point fixe de f, déterminer $\lim_{n\to+\infty} u_n$.
- 2. On définit une suite $(v_n)_{n\in\mathbb{N}}$ par $v_n=\frac{u_n-1}{u_n+2}$.
 - (a) Vérifier que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{2}{5}$.
 - (b) En déduire $\lim_{n\to +\infty} v_n$, puis $\lim_{n\to +\infty} u_n$.

Exercice 13.23. On considère la suite (u_n) définie par : $u_0 = 0$ et $u_{n+1} = u_n + e^{-u_n}$.

- 1. Établir que la suite (u_n) est croissante.
- 2. Démontrer que si la suite (u_n) a pour limite un réel l, alors l vérifie la relation $l = l + e^{-l}$.
- 3. Conclure quant à la convergence de la suite (u_n) .

TD 5: Prolongements

Exercice 12.24. Étudier la convergence de la suite $(u_n)_{n>1}$ définie par

$$u_n = \sum_{k=1}^n \frac{1}{n+k}$$

Exercice 12.25. Montrer que la suite $(u_n)_{n>0}$ définie par

$$u_n = (-1)^n \frac{n+1}{n+2}$$

est bornée. Est-elle convergente?

Exercice 12.26. Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites de réels positifs telles que pour tout n dans \mathbb{N} , $u_{n+1}=\frac{(u_n+v_n)}{2}$ et $v_{n+1}=\sqrt{u_nv_n}$. On suppose que $u_0\geq v_0$. Montrer que les suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ sont adjacentes.

Exercice 12.27. On définit les suites $(S_n)_{n\geq 1}$ et $(T_n)_{n\geq 1}$ par $S_n = \sum_{k=0}^n \frac{1}{k!}$ et $T_n = S_n + \frac{1}{nn!}$.

Montrer que les suites $(T_n)_{n\geq 1}$ et $(S_n)_{n\geq 1}$ sont adjacentes.

On admet que la limite commune à $(T_n)_{n\geq 1}$ et $(S_n)_{n\geq 1}$ est le nombre e. Montrer que e est irrationnel.

Exercice 12.28. Soit a un réel strictement positif. Étudier la suite $(u_n)_{n\geq 0}$ définie par $u_0=a$ et la relation de récurrence

$$u_{n+1} = \sqrt{a + 2u_n}$$

Exercice 12.29. On considère que la suite $(u_n)_{n\geq 1}$ définie par $u_1=1$ et par la relation de récurrence

$$u_{n+1} = 3 - \frac{1}{4}u_n^2$$

- 1. Etudier les suites (u_{2n}) et (u_{2n+1}) .
- 2. En déduire la convergence de la suite (u_n) .