

Aprendizaje Estadístico Alfredo Garbuño

Notas clase 11 de marzo

Escribano: Alejandro Chávez

Índice general

1.	\mathbf{Reg}	gularización y estabilidad	1
	1.1.	Minimización de pérdida regularizada (RLM)	1
	1.2.	Noción de estabilidad	1
	1.3.	Regularización como estabilizador	2
		1.3.1. Bajo Lipschitz	2
	1.4.	Control de sobreajuste y estabilidad	3

Capítulo 1

Regularización y estabilidad

Hoy veremos que CLA y CSA son realmente logrables/aprendibles. Hay instancias de esos dos que son uniformes y por lo tanto aprendibles, con la regla más sencilla: ERM. El único problema es que, en general, no es cierto que la mayoría de las CLA o CSA seana aprendibles, entonces necesitamos un nuevo paradigma que nos garantice ello: minimización de pérdida regularizada.

Idea: tomamos una función de pérdida y sumamos algo que regularice.

Nota: regularización nos sirve para medir la complejidad de la hipótesis y actúa como un estabilizador).

1.1. Minimización de pérdida regularizada (RLM)

RLM = pérdida empírica + función de regularización.

El objetivo: $\underset{w \in H}{\operatorname{argmin}} L_s(w) + R(w)$. Queremos, pues, encontrar un balance entre modelos simples y soluciones con error empírico pequeño. R() normalmente se escoje con conocimiento de dominio, y las opciones clásicas son $R(w) = \lambda * \|w\|_2^2$ ó $R(w) = \lambda * \|w\|_1^2$

Regularización de Tikhonov (se usa para problemas inversos): supongamos que tenemos un problema de regresión de la forma $\frac{1}{2m}\|x_w-y\|^2+\frac{\lambda}{2}\|w\|^2$, el cual buscamos minimizar. Ya hemos visto que $\frac{1}{2m}\|x_w-y\|^2$ tiene un mínimo. La ventaja de $\frac{\lambda}{2}\|w\|^2$ es que no afecta mucho ese mínimo y, además, la solución de $\Delta_w(L_s(w)+R(w)=0$ es $(\lambda_m*\mathbbm{1}_{pxp})w=x^Ty*2w=(x^Tx+\lambda_m*\mathbbm{1}_{pxp})^{-1}x^Ty$. Por ejemplo, si $P(w)=w_0+w_1x+\cdots+w_px^p$ y $\lambda>>0$, esperaríamos que el modelo fuera parsimonioso y que los términos mayores se fueran eliminando.

Verificaremos que R(w) estabiliza y permite el sobreajuste. En particular, veremos un resultados en que

$$E_S(L_D(A(S))) \le \min_{w \in H} L_D(w) + \varepsilon$$

Otra forma de pensar el problema es: $\min_{w \in H} L_D(w)$ sujeto a $\|w\|_2^2 \leq \theta$

1.2. Noción de estabilidad

Sea A un algoritmo de aprendizaje y sea $S(\sim D^m)=(Z_1,\ldots,Z_m)$. Hablamos de sobreajuste cuando $|L_D(A(S))-L_S(A(S))|$ es grande. Sea $S^{(i)}=(Z_1,\ldots,Z_i,Z',Z_{i+1},\ldots,Z_m)$ con Z' independiente de los anteriores y $Z'\sim D^m$. Lo que esperaríamos de un buen argumento es:

$$l(A(S^{(i)})), Z_i) * l(A(S)), Z_i) \ge 0$$

.

Teorema 1. Supongamos que D es una distribución. Sea $S(\sim D^m) = (Z_1, \ldots, Z_m)$, y sea $Z' \sim D^m$ una observación independiente. Denotamos como U(m) a la distribución uniforme en el conjunto de índices $\{1, \ldots, m\}$. Entonces

$$E_S(L_D(A(S)) - L_S(A(S))) = E_{\substack{S \sim D^m \\ i \sim U(m)}}(l(A(S^{(i)})), Z_i) - l(A(S)), Z_i)$$

Demostración.
$$E_S(L_D(A(S)) = E_{S,Z'}(l(A(S),Z')) = E_{\substack{S \sim D^m \\ i \sim U(m)}}(l(A(S^{(i)})),Z_i)$$
 Por otro lado, $E_S(L_S(A(S)) = E_{S,i}(l(A(S),Z_i)) = E_S(\frac{1}{n}\sum_{i=1}^m l(A(S),Z_i))$

Definición 1. Sea $\varepsilon : \mathbb{N} \to \mathbb{R}$ monótonamente decreciente. Decimos que el algoritmo A es estable en promedio, bajo reemplazos individuales con tasa $\varepsilon(m)$, si $\forall D$ se tiene que

$$E_{\substack{S \sim D^m \\ i \sim U(m)}}(l(A(S^{(i)})), Z_i) - l(A(S)), Z_i)) \le \varepsilon(m)$$

1.3. Regularización como estabilizador

Definición 2. Una función f es λ -fuertemente convexa si $\forall u, w \ y \ \alpha \in (0,1)$ tenemos que

$$f(\alpha w + (1 - \alpha)u) \le \alpha f(w) + (1 - \alpha)f(u) - \frac{\lambda}{2}\alpha(1 - \alpha)\|w - u\|^2$$

Lema 1. 1. $f(w) = \lambda ||w||^2$ es 2λ -fuertemente convexa.

- 2. Si f es λ -fuertemente convexa y g es convexa \Rightarrow f+g es fuertemente convexa.
- 3. Si f es λ -fuertemente convexa y u es el minimizador de $f \Rightarrow \forall w, f(w) f(u) \geq \frac{\lambda}{2} ||w u||^2$

Demostración. Del inciso 3 del Lema 1.

$$f(u+\alpha(w-u))-f(u) \leq \alpha f(w) - \alpha f(u) - \frac{\lambda}{2}\alpha(1-\alpha)\|w-u\|^2$$

$$\Rightarrow \frac{f(u+\alpha(w-u))-f(u)}{\alpha} \leq f(w) - f(u) - \frac{\lambda}{2}(1-\alpha)\|w-u\|^2 \text{ Si } \alpha \to 0, \text{ el término de la derecha equivale a la derivada evaluada en el minimizados}$$

Falta ver que RLM es estable. Consideremos $S, Z', S^{(i)}$ como arriba, y A RLM. Entonces

$$A(S) = \underset{w \in H}{\operatorname{argmin}} L_s(w) + \lambda \|w\|^2 \text{ y } f_S(w) = L_S(w) + \lambda \|w\|^2 \text{ (2λ-fuertemente convexa)}.$$

Además, $f_S(w) - f_S(A(s)) \ge \lambda ||v - A(S)||^2$

$$\Rightarrow f_S(w) - f_S(u) = L_S(v) + \lambda ||v||^2 - L_S(u) - \lambda ||u||^2 L_S(u) = L_{S(i)}(v) + \frac{l(v, Z_i) - l(v, Z')}{m}$$

$$\therefore \lambda \|A(S^{(i)}) - A(S)\| \le f_S(A(S^{(i)})) - f_S(A(S)) \le \frac{l(A(S^{(i)}), Z_i) - l(A(S), Z_i)}{m} + \frac{l(A(S), Z') - l(A(S^{(i)}), Z')}{m}$$

1.3.1. Bajo Lipschitz

$$l(A(S^{(i)}), Z_i) - l(A(S), Z_i) \le \rho ||A(S^{(i)}) - A(S)|| \Rightarrow ||A(S^{(i)}) - A(S)|| \le \frac{2\rho}{\lambda m}$$
$$\Rightarrow E_S(L_D(A(S)) - L_S(A(S))) \le \frac{2\rho^2}{\lambda m}$$

1.4. Control de sobreajuste y estabilidad

 $E_S(L_D(A(S))) = E_S(L_S(A(S))) + E_S(L_D(A(S)) - L_S(A(S)) \text{ Si } \lambda \text{ crece, el error empírico también.}$

Dado que $A(S) = \operatorname{argmin} L_S(w) + \lambda ||w||^2$,

$$L_S(A(S)) \le L_S(A(S)) + \lambda ||A(S)||^2 \le L_S(w) + \lambda ||w||^2$$

$$\Rightarrow E_S(L_S(A(S))) \le L_D(w) + \lambda ||w||^2, E_S(L_D(A(S))) \le L_D(w) + \lambda ||w||^2 + estabilidad$$

$$\therefore E_S(L_D(A(S))) \le L_D(w) + \lambda ||w||^2 + \frac{2\rho}{\lambda m}$$