Table 3.2b: Critical risks for implementation		
Description of risk	WP	Proposed risk-mitigation mea-
Description of risk		sures
	WP5	Requirements to coordinate in time
Unforeseen changes in cross-expertise synchronization		end-to-start tasks across WPs in an
		efficient manner
		The consortium as a whole will
Dissemination message is not under- standable by the targeted audience	WP4	agree on the main message to trans-
		mit to the targeted audience and,
		for this, elaborate the appropriated
		material
	WP5	Requirements to provide short
Unforeseen changes in the WPs		monthly reports to the coordinator
		to allow spotting looming changes
		soon

Table 3.4a: Summary of staff effort	WP1	WP2	WP3	WP4	WP5	Total PM
1, EAWAG	0	24	0	0	7.2	31.2
2, CSIC	48	0	0	0	0	48
3, SCITE	6	6	11	15	3	41
4, TARTU	0	24	0	0	0	24
5, EPFL	6	6	12	0	0	24
6, TU GRAZ	0	0	24	0	0	24
7, IEO	0	0	0	24	0	24
8, URV	6	6	12	0	0	24
9, SRC	0	0	24	0	0	24
Total PM (WP)	66	66	83	39	10.2	264.2

15

References

- G. F. Fussmann et al., Functional Ecology 21, 465 (2007).
- [2] N. G. Hairston et al., Ecol. Lett. 8, 1114 (2005).
- [3] R. Iten et al., Phys. Rev. Lett. **124**, 1 (2020).
- [4] E. Real et al. (2020), arXiv:2003.03384.
- [5] J. Schmidhuber, Neural Networks **61**, 85 (2015).
- 6] M. E. Mastrángelo et al., Nat. Sust. 2, 1115 (2019).
- [7] ICES, ICES Scientific Reports (2019).
- [8] U.S. National Science Foundations proposed cyberinfrastructure, URL https://www.nsf.gov/div/index.jsp?div= OAC.
- $\begin{array}{lll} [9] & \textit{Knowledge} & \textit{graph} & \textit{covid-19}, & \text{URL} \\ & \text{http://www.odbms.org/2020/03/} \\ & \text{we-build-a-knowledge-graph-on-covid-19/.} \end{array}$
- [10] C. Rackauckas et al., Proc. Natl. Acad. Sci. U.S.A. (2020), arXiv:2001.04385.
- [11] J. R. Koza, Genetic Programming: on the programming of computers by means of natural selection (MIT Press, Cambridge, Mass., 1992).
- [12] A. Darwish, Future Computing and Informatics Journal 3, 231 (2018).
- [13] O. Seehausen et al., Nat. Rev. Gen. 15, 176 (2014).
- [14] L. Govaert et al., Functional Ecology 33, 13 (2019).

- [15] M. I. O'Connor et al., Frontiers in Ecology and Evolution 7, 219 (2019).
- [16] R. Guimerà et al., Science Advances 6, 6971 (2020).
- [17] C. Steinruecken et al., The Automatic Statistician (2019).
- [18] E. Androulaki et al., Proceedings of the 13th EuroSys Conference, EuroSys 2018 (2018).
- [19] O. P. Foundation (2018), URL https://oceanprotocol. com/.
- [20] BigchainDB (2018), URL https://www.bigchaindb. com/.
- [21] J. Dilley et al. (2016), arXiv:1612.05491.
- [22] W. Maass, Proceedings of the IEEE **102**, 860 (2014).
- [23] W. Maass, Proceedings of the IEEE 103, 2219 (2015).
- [24] M. De Domenico et al., Nature Communications 6, 1 (2015).
- [25] G. Bianconi, *Multilayer Networks* (Oxford: Oxford University Press. 402 p., 2018).
- [26] E. Cozzo and Y. Moreno (2018), arXiv:1311.1759v4.
- [27] A. O'Hare, Journal of Computational Biology 22, 997 (2015).
- [28] K. Cranmer et al., pp. 1–10 (2019), arXiv:1911.01429.
- [29] M. Reichstein et al., Nature **566**, 195 (2019).