APPLICATIONS OF MATLAB IN ENGINEERING

Yan-Fu Kuo Fall 2015

Dept. of Bio-industrial Mechatronics Engineering National Taiwan University

Today:

Statistics

USA Gasoline Prices from 1984 to 2004

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1984	1.216	1.209	1.21	1.227	1.236	1.229	1.212	1.196	1.203	1.209	1.207	1.193
1985	1.148	1.131	1.159	1.205	1.231	1.241	1.242	1.229	1.216	1.204	1.207	1.208
1986	1.194	1.12	0.981	0.888	0.923	0.955	0.89	0.843	0.86	0.831	0.821	0.823
1987	0.862	0.905	0.912	0.934	0.941	0.958	0.971	0.995	0.99	0.976	0.976	0.961
1988	0.933	0.913	0.904	0.93	0.955	0.955	0.967	0.987	0.974	0.957	0.949	0.93
1989	0.918	0.926	0.94	1.065	1.119	1.114	1.092	1.057	1.029	1.027	0.999	0.98
1990	1.042	1.037	1.023	1.044	1.061	1.088	1.084	1.19	1.294	1.378	1.377	1.354
1991	1.247	1.143	1.082	1.104	1.156	1.16	1.127	1.14	1.143	1.122	1.134	1.123
1992	1.073	1.054	1.058	1.079	1.136	1.179	1.174	1.158	1.158	1.154	1.159	1.136
1993	1.117	1.108	1.098	1.112	1.129	1.13	1.109	1.097	1.085	1.127	1.113	1.07
1994	1.043	1.051	1.045	1.064	1.08	1.106	1.136	1.182	1.177	1.152	1.163	1.143
1995	1.129	1.12	1.115	1.14	1.2	1.226	1.195	1.164	1.148	1.127	1.101	1.101
1996	1.129	1.124	1.162	1.251	1.323	1.299	1.272	1.24	1.234	1.227	1.25	1.26
1997	1.261	1.255	1.235	1.231	1.226	1.229	1.205	1.253	1.277	1.242	1.213	1.177
1998	1.131	1.082	1.041	1.052	1.092	1.094	1.079	1.052	1.033	1.042	1.028	0.986
1999	0.972	0.955	0.991	1.177	1.178	1.148	1.189	1.255	1.28	1.274	1.264	1.298
2000	1.301	1.369	1.541	1.506	1.498	1.617	1.593	1.51	1.582	1.559	1.555	1.489
2001	1.472	1.484	1.447	1.564	1.729	1.64	1.482	1.427	1.531	1.362	1.263	1.131
2002	1.139	1.13	1.241	1.407	1.421	1.404	1.412	1.423	1.422	1.449	1.448	1.394
2003	1.473	1.641	1.748	1.659	1.542	1.514	1.524	1.628	1.728	1.603	1.535	1.494

USA Gasoline Prices from 1984 to 2004

Statistics

- The science of "data"
- Involving the collection, analysis, interpretation, presentation, and organization of data

Main Statistical Methodologies

Numerical and graphical methods to look for patterns, to summarize the information in a data set

Summary Measures

Mean, Median, Mode, and Quartile

mean	Average or mean value of array
median	Median value of array
<u>mode</u>	Most frequent values in array
<u>prctile</u>	Percentiles of a data set

8

Range and Interquartile Range

max	Largest elements in array
<u>min</u>	Smallest elements in array

Variance and Standard Deviation

• Variance:
$$s = \frac{\sum (x_i - \bar{x})^2}{n-1} = 14.3974$$

• Standard deviation:
$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} = 3.7944$$

std	Standard deviation
<u>var</u>	Variance

Exercise

- Find the following properties of the variable x4
 - 1. Mean, median, mode, and quartile
 - 2. Range and interquartile range
 - Variance and standard deviation

```
load stockreturns;
x4 = stocks(:,4);
```

Figures Are Always More Powerful

```
x = 1:14;
freqy = [1 0 1 0 4 0 1 0 3 1 0 0 1 1];
subplot(1,3,1); bar(x,freqy); xlim([0 15]);
subplot(1,3,2); area(x,freqy); xlim([0 15]);
subplot(1,3,3); stem(x,freqy); xlim([0 15]);
```


Exercise

Suppose we are given the samples:

 $x = [1 \ 3 \ 5 \ 5 \ 5 \ 7 \ 9 \ 9 \ 10 \ 13 \ 14];$

Plot the histograms:

Boxplot

Suppose we are given the samples:

Boxplot Example

```
marks = [80 81 81 84 88 92 92 94 96 97];
boxplot(marks)
prctile(marks, [25 50 75])
```


Exercise

Plot the boxplot of the variable stocks

load stockreturns;

Skewness

- A measure of distribution skewness
 - Left-skewed: skewness < 0
 - Right-skewed: skewness > 0

Skewness: skewness()

```
X = randn([10 3])*3;

X(X(:,1)<0, 1) = 0; X(X(:,3)>0, 3) = 0;

boxplot(X, {'Right-skewed', 'Symmetric', 'Left-skewed'});

y = skewness(X)
```


Kurtosis

- A measure of distribution flatness
- A kurtosis of a normal distribution is zero
 - Positive Kurtosis: more acute peak
 - Negative Kurtosis: more flat peak

Exercise

 Find the skewness and kurtosis for each column of the variable stocks

```
load stockreturns;
```

Main Statistical Methodologies

Methods to make estimates, decisions, and predictions using sample data

Statistical Hypothesis Testing

- A method of making decisions using data
- Example: Am I going to get grade A in this class?
- Typical hypothesis:

```
• H_0: \theta = \theta_0 v.s. H_1: \theta \neq \theta_0
```

•
$$H_0$$
: $\theta \ge \theta_0$ v.s. H_1 : $\theta < \theta_0$

•
$$H_0$$
: $\theta \leq \theta_0$ v.s. H_1 : $\theta > \theta_0$

where H_0 is null hypothesis, and H_1 is alternative hypothesis

Hypothesis Testing Procedure

- Determine a probability, say 0.95, for the hypothesis test
- Find the 95% "confidence Interval" of the H_0
- Check if your score falls into the interval

Terminology in Hypothesis Testing

- Determine a probability, say 0.95, for the hypothesis test
- Find the 95% "confidence Interval" of the H_0
- Check if your score falls into the interval
- Terminology:
 - Confidence interval
 - Confidence level (1α)
 - Significance level α
 - p-value

t-test Example

Are means of the two stock returns (#3 and #10)
 the same?

```
load stockreturns;
x1 = stocks(:,3); x2 = stocks(:,10);
boxplot([x1, x2], {'3', '10'});
[h,p] = ttest2(x1, x2)
```


Two-tailed Significance Test

Using a 5% significance level

One-tailed Significance Test

Using a 5% significance level

Common Hypothesis Tests

	Paired data	Unpaired data	More than two groups
Parametric	z-testt-test	 two-sample t- test 	 Analysis of variance (ANOVA)
Non-parametric	Sign testWilcoxon signed-rank test	Wilcoxon rank-sum test	

ranksum()	Wilcoxon rank sum test
<pre>signrank()</pre>	Wilcoxon signed rank test
ttest()	One-sample and paired-sample t-test
ttest2()	Two-sample t-test
ztest()	z-test

End of Class

