Geometria różniczkowa Lista 3

- 1. Na otwartej wstędze Möbiusa zadaj strukturę 1-wymiarowej wiązki liniowej nad S^1 . Zauważ, że taka wiązka nie ma nigdzie nieznikającego cięcia (czyli takiego cięcia s, że $s(p) \neq 0$ dla każdego p).
- 2. Niech M będzie gładką rozmaitością, E zbiorem, $\pi \colon E \to M$ epimorfizmem a $\{U_{\alpha}\}_{\alpha}$ otwartym pokryciem M. Załóżmy, że mamy dane bijekcje $\phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbf{R}^{k}$ tak, że zachodzi $\pi_{1} \circ \phi_{\alpha} = \pi$ oraz złożenie $\phi_{\alpha} \circ \phi_{\beta}^{-1} \colon (U_{\alpha} \cap U_{\beta}) \times \mathbf{R}^{k} \to (U_{\alpha} \cap U_{\beta}) \times \mathbf{R}^{k}$ wyraża się wzorem $\phi_{\alpha} \circ \phi_{\beta}^{-1}(p, V) = (p, A(p)V)$ gdzie $A \colon U_{\alpha} \cap U_{\beta} \to GL_{k}(\mathbf{R})$ jest odwzorowaniem gładkim. Pokaż, że $\{\phi_{\alpha}\}_{\alpha}$ zadaje na E strukturę wiązki.
- 3. Zadaj strukturę i sprawdź definicję wiązki dla E^* , $\operatorname{Hom}(E,F)$ i $E\otimes F$ (gdzie E i F są wiązkami nad rozmaitością M).
- 4. $TS^n \oplus \epsilon = \epsilon^{n+1}$? $TS^3 = \epsilon^3$; a TS^7 ?
- 5. Grssmannian G = G(k, V) to rozmaitość k-wymiarowych podprzestrzeni liniowych V. Wiązka tautologiczna nad Grassmannianem G to podrozmaitość $\gamma = \{(W, w) : G \ni W \ni w\} \subset G \times V$. Udowodnij, że γ jest wiązką. Pokaż, że $TG = \text{Hom}(\gamma, \gamma^{\perp})$.
- 6. Sprawdź, że wiązka normalna do podrozmaitości $M \le \mathbb{R}^N$ jest wiązką.
- 7. Niech s będzie nigdzie nieznikającym cięciem wiązki E nad M. Pokaż, że dla pewnej wiązki F nad M mamy $E = \epsilon \oplus F$ (wsk. zadaj na E gładki iloczyn skalarny).
- 8. Pokaż, że $M(V_1 \times \ldots \times V_n; V_{n+1})$ jest naturalnie izomorficzna z $M(V_1 \times \ldots \times V_n \times V_{n+1}^*; \mathbf{R})$.
- 9. Pokaż, że jeżeli odwzorowanie $F: \Gamma(E_1) \times \ldots \times \Gamma(E_n) \to \Gamma(E_{n+1})$ jest C^{∞} -wieloliniowe, to F można zinterpretować jako cięcie wiązki $\Gamma(E_1^* \otimes \ldots \otimes E_n^* \otimes E_{n+1})$. Takie cięcia nazywają się polami tensorowymi.
- 10. Pokaż, że tensor krzywizny F jest C^{∞} -wieloliniowy (a zatem jest polem tensorowym).
- 11. Niech M będzie podrozmaitością \mathbf{R}^N . Na wiązce normalnej ν_M zadajemy koneksję następująco: $(\nabla_X s)(p)$ to rzut prostopadły na $T_p M^\perp$ pochodnej kierunkowej funkcji $s\colon M\to \mathbf{R}^N$ w kierunku wektora X_p . Sprawdź, że to jest naprawdę koneksja. Zrób podobną na TM. Sprawdź, że koneksje te spełniają warunek $X\langle s,s'\rangle = \langle \nabla_X s,s'\rangle + \langle s,\nabla_X s'\rangle$.
- 12. Sprawdź, że dla dowolnych funkcji $\Gamma^k_{ij} \in C^\infty U$ wzór $\nabla_{a^i\partial_i} s^j e_j = a^i (\partial_i s^k + \Gamma^k_{ij} s^j) e_k$ zadaje koneksję na $E|_U$, gdzie ∂_i i e_k to trywializacje odpowiednio $TM|_U$ i $E|_U$.
- 13. Niech ∇ będzie koneksją liniową. Pokaż, że tensor torsji $\tau(X,Y) = \nabla_X Y \nabla_Y X [X,Y]$ jest C^{∞} -dwuliniowy. Niech Γ^k_{ij} będą symbolami Christoffela ∇ w trywializacji zadanej przez współrzędne. Pokaż, że $\Gamma^k_{ij} = \Gamma^k_{ji}$ wtedy i tylko wtedy gdy ∇ jest symetryczna (wsk. zauważ, że gdy to potrzebne możemy założyć [X,Y]=0).
- 14. Załóżmy, że cięcie s wiązki E zeruje się w p. Udowodnij, że dla dowolnych dwóch koneksji ∇ , ∇' na E i dowolnego $X \in \Gamma(TM)$ mamy $(\nabla_X s)(p) = (\nabla'_X s)(p)$.
- 15. Załóżmy, że na wiązkach E, F zadane są koneksje ∇^E , ∇^F . Spróbuj wyprodukować z nich koneksje na wiązkach E^* , Hom(E,F) i $E\otimes F$. (Wsk. wymyślaj różne warianty reguły Leibniza.)
- 16. Sprawdź, że $Id \in \Gamma(\text{Hom}(E, E))$ jest cięciem równoległym (tzn. dla każdego pola wektorowego X na M zachodzi $\nabla_X Id = 0$) dla koneksji indukowanej z koneksji na E.
- 17. Niech P będzie projektywnym modułem nad $C^{\infty}M$, M zwarta. Udowodnij, że istnieje wiązka wektorowa E nad M, taka że $P = \Gamma(E)$, i odwrotnie, dla każdej wiązki wektorowej E nad M moduł $\Gamma(E)$ nad pierścieniem $C^{\infty}M$ jest projektywny.