Scilab Textbook Companion for Fiber Optic Communications by J. C. Palais¹

Created by
Lochan Jolly
Optical Communication
Electrical Engineering
Mumbai,TCET
College Teacher
None
Cross-Checked by
None

November 28, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fiber Optic Communications

Author: J. C. Palais

Publisher: Pearson Education, India

Edition: 4

Year: 2001

ISBN: 81-7808-456-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Fiber optic communications systems	6
2	Optics Review	13
3	Lightwave fundamentals	25
4	Integrated Optic waveguides	45
5	Optic fiber waveguides	51
6	Light Sources	64
7	Light Detectors	70
8	Couplers and connectors	83
9	Distribution networks and Fiber components	97
10	Modulation	103
11	Noise and Detection	112
12	System Design	134

List of Scilab Codes

Exa 1.1	1	6
Exa 1.2	2	8
Exa 1.3	3	9
Exa 1.4	4	10
Exa 2.1	1	13
Exa 2.2	2	14
Exa 2.3	3	16
Exa 2.4	4	20
Exa 2.5	5	22
Exa 2.6	6	22
Exa 3.1	1	25
Exa 3.2	2	27
Exa 3.3	3	28
Exa 3.4	4	30
Exa 3.5	5	31
Exa 3.6	6	35
Exa 3.7	7	37
Exa 3.8	8	39
Exa 3.9	9	41
Exa 3.10	10	42
Exa 4.1	1	45
Exa 4.2	2	48
Exa 4.3	3	48
Exa 5.1	1	51
Exa 5.2	2	54
Exa 5.3	3	54
Exa 5.4	4	56
Exa 5.5	5	57

Exa 5.6	6	59
Exa 5.7	7	60
Exa 5.8	8	62
Exa 6.1	1	64
Exa 6.2	2	67
Exa 6.3	3	67
Exa 7.1	1	70
Exa 7.2	2	70
Exa 7.3	3	73
Exa 7.4	4	75
Exa 7.5	5	76
Exa 7.6	6	77
Exa 7.7	7	79
Exa 7.8	8	81
Exa 8.1	1	83
Exa 8.2	2	85
Exa 8.3	3	87
Exa 8.4	4	89
Exa 8.5	5	90
Exa 8.6	6	92
Exa 8.7	7	94
Exa 9.1	1	97
Exa 9.2	2	99
Exa 9.3	3	100
Exa 10.1	1	103
Exa 10.2	2	106
Exa 10.3	3	106
Exa 10.4	4	109
Exa 10.5	5	109
Exa 11.1	1	112
Exa 11.2	2	116
Exa 11.3	3	117
Exa 11.4	4	120
Exa 11.5		121
Exa 11.6	6	124
Exa 11.7		127
Exa 11.8	8	129
Exa 11.9		130

Exa 11.10	10															13
Exa 12.1	1.															13
Exa 12.2	2 .															13

List of Figures

1.1	1 .																			7
1.2	2 .																			8
1.3	3 .																			9
1.4	4 .																			11
2.1	1 .																			14
2.2	2 .																			15
2.3	3.																			17
2.4	3 .																			18
2.5	4 .																			19
2.6	5 .																			21
2.7	6 .																			23
3.1		•					•			•	•	•	•	•	•				•	26
3.2		•								•	•			•						27
3.3	3 .																			29
3.4	4 .																			30
3.5	5 .																			32
3.6	6.																			35
3.7	7.																			38
3.8	8 .																			40
3.9	9 .																			41
3.10	10																			43
4.1	1 .																			46
4.2																				47
4.3	3.																			49
F 4	1																			52
5.1	1													_						52

5.2	2																								53
5.3	3																								55
5.4	4																								56
5.5	5																								58
5.6	6																								59
5.7	7																								61
5.8	8	•				•	•													•					62
6.1	1																								65
6.2	2																								66
6.3	3	•		•		•																			68
7.1	1																								71
7.2	2																								72
7.3	3																								74
7.4	4																								75
7.5	5																								76
7.6	6																								78
7.7	7																								80
7.8	8	•	•	•		•	•			•	•	•	•	•	•		•	•	•	•	•	•	•	•	81
8.1	1																								84
8.2	2																								86
8.3	3																								88
8.4	4																								89
8.5	5																								91
8.6	6																								93
8.7	7					•														•					94
9.1	1																								98
9.2	2																								99
9.3	3																								101
10.1	1																								104
10.2	2																								105
10.3	3																								107
10.4	4																								108
10.5	5				_			_				_						_	_			_			110

11.1	1																																		113
11.2	2																																		115
11.3	3																																		118
11.4	4																																		122
11.5	4																																		123
11.6	5																																		125
11.7	6																																		126
11.8	7																																		128
11.9	8																																		129
11.10	9																																		131
11.11	110)																																	132
12.1	1		_						_								_		_	_						_	_					_	_	_	135
19 9		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	136

Chapter 1

Fiber optic communications systems

Scilab code Exa 1.1 1

```
1 // fiber optic communications by joseph c. palais
2 //example 1.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 LP1=-11// Loss in element 1 in dB
9 LP2=-6// Loss in element 2 in dB
10 LP3=-3// Loss in element 3 in dB
11 //to find
12 total_Loss=LP1+LP2+LP3//total Loss in dB
13 mprintf("total Loss=%fdB",total_Loss)
14 input_power=5e-3// input power in Watt
15 output_power=input_power*10^(total_Loss/10)//output
     power in Watt
16 mprintf("\nOutput power=%fmW",output_power*1e3)
```


Figure 1.1: 1

Figure 1.2: 2

Scilab code Exa 1.2 2

```
1 //fiber optic communications by joseph c. palais
2 //example 1.2
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
```


Figure 1.3: 3

```
9 Loss=-23// total loss in dB

10 //to find

11 P2byP1=10^(Loss/10)//P2/P1 gives efficiency

12 mprintf(" System Efficiency=%fpercent", P2byP1*100)
```

Scilab code Exa 1.3 3

```
1 //fiber optic communications by joseph c. palais
2 //example 1.3
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
```

Scilab code Exa 1.4 4

```
//fiber optic communications by joseph c. palais
//example 1.4
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
he6.626e-34// plancks constant
c=3e8// velocity of light in m/s
lambda=0.8e-6//wavelength in m
P=1e-6//input power in W
t=1// time in sec
//to find
Wp=h*c/lambda// energy of one photon
W=P*t//energy in J
```


Figure 1.4: 4

Chapter 2

Optics Review

Scilab code Exa 2.1 1

```
1 //fiber optic communications by joseph c. palais
2 //example 2.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 n1=1//refractive index of air
9 n2=1.5//refractive index of glass medium
10 theta_i_1=0//angle of incidence case 1 in degrees
11 theta_i_2=15//angle of incidence case 2 in degrees
12 //to find
13 theta_t_1=(asind(n1/n2*sind(theta_i_1)))//
     Tramsmission angle in degrees
14 mprintf("Transmission angle for %f degree incident
     angle = \%fdegree", theta_i_1, theta_t_1)
15 theta_t_2=(asind(n1/n2*sind(theta_i_2)))
16 mprintf("\nTransmission angle for %f degree incident
      angle=\%fdegree",theta_i_2,theta_t_2)
```


Figure 2.1: 1

Scilab code Exa 2.2 2

```
1 //fiber optic communications by joseph c. palais 2 //example 2.2 3 //OS=Windows XP sp3 4 //Scilab version 5.4.1 5 clc 6 clear all
```


Figure 2.2: 2

```
7 //given
8 n1=-1//refractive index of air
9 n2=1.5//refractive index of glass medium
10 theta_i_1=0//angle of incidence case 1 in degree
11 theta_i_2=15//angle of incidence case 2 in degree
12 //to find
13 theta_t_1=abs(asind(n1/n2*sind(theta_i_1)))//
     transmission angle in degree for case 1
14 mprintf("Transmission angle=%fdegree",theta_t_1)
15 theta_t_2=abs(asind(n1/n2*sind(theta_i_2)))
16 mprintf("\nTransmission angle=\%fdegree",theta_t_2)//
     transmission angle in degree for case 2
17
18 theta_t_3=abs(asind(n2/n1*sind(theta_t_2)))// trans
      mission angle for example 2_1 if ray travels
     from glass to air in degrees
19 mprintf("\nTransmission angle if ray travels from
     glass to air=%fdegree", theta_t_3)
```

Scilab code Exa 2.3 3

```
//fiber optic communications by joseph c. palais
//example 2.3
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clc
clear all
//given
M=1//magnification
f=1e-3// focal length in m
do=2*f//since di=do object image distance in m
mprintf('object and image distance for unity magnification=%fm',do)
//to find
for j = 1:5
```


Figure 2.3: 3

Figure 2.4: 3

Figure 2.5: 4

Scilab code Exa 2.4 4

```
1 //fiber optic communications by joseph c. palais
\frac{2}{\sqrt{\text{example } 2.4}}
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 alpha0=40//source radiation cone angle (beam spread)
       in degree
9 alphai=10// new system source radiation cone angle (
      beam spread) in degree
10 f=10e-2/focal length in m
11 do=2*f//since di=do object image distance in m
12 SS=20e-6//source size in m
13 mprintf ('object and image distance for unity
      magnification = \%fm \setminus n', do)
14 //to find
15 M=alpha0/alphai/magnification
16 dobyf = (1/M) + 1//object distance to focal length
17 do=dobyf*f//object distance in m
18 di=M*do//image distance in m
19 SIS=M*SS//source image size in m
20 mprintf ( 'magnification=%f\nobject distance to focal
       length=%fm\nobject distance=%fcm\nimage distance
     =\%fcm\nsource image size=\%fum', M, dobyf, do*100, di
      *100,SIS*10^6);//multiplication factors in
      results to convert it into required format
```


Figure 2.6: 5

Scilab code Exa 2.5 5

```
1 // fiber optic communications by joseph c. palais
2 // example 2.5
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 n1=1//refractive index of air
9 d=1e-2//daimeter of circular photodetector in m
10 f=10e-2//lense focal length in m
11 //to find
12 theta=asind(d/(2*f))//acceptance angle in degrees
13 mprintf ("Acceptance angle=%fdegree", theta)
14 NA=n1*(sind(theta))//numerical aperture
15 mprintf("\nNumerical Aperture=%f", NA)
16 FCA=2*theta//full cone angle
17 mprintf("\nFull cone angle=%fdegree",FCA)
```

Scilab code Exa 2.6 6

```
//fiber optic communications by joseph c. palais
//example 2.6
//OS=Windows XP sp3
//Scilab version 5.4.1
//given
spotsize=1e-3//spot size
lambda=0.82e-6//wave length
d1=10//distance in m
d2=1e3//distance in m
//to find
```


Figure 2.7: 6

```
12 div1=2*lambda/(%pi*spotsize)
13 wo1=lambda*d1/(%pi*spotsize)
14 wo2=lambda*d2/(%pi*spotsize)
15 wo3=lambda*d3/(%pi*spotsize)
16 disp("mm", wo1*1e3, "spot size1=", "mm", wo2*1e3, "spot size1=", "mm", wo3*1e3, "spot size1=")
```

Chapter 3

Lightwave fundamentals

Scilab code Exa 3.1 1

```
1 // fiber optic communications by joseph c. palais
2 //example 3.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 SW1=20//spectral width in nm
9 SW2=50//spectral width in nm
10 lambda1=0.82e-6//wave length in m
11 d=10//path length in km
12 lambda2=1.5e-6//wave length in m
13 M1=110 // Material dispersion ps/(nmxKm)
14 M2=15//Material dispersion ps/(nmxKm)
15
16 // to find
17 delta_taubyL1=M1*SW1*d// pulse spreading per unit
     length in ps for lambda1
18 delta_taubyL2=M2*SW2*d// pulse spreading per unit
```


Figure 3.1: 1

Figure 3.2: 2

```
length in ps for lambda2
19 //multiplication by 1e-3 converts unit from ps to ns
20 mprintf("Pulse spreading case 1=%fns",delta_taubyL1
     *1e-3)
21 mprintf("\nPulse spreading case 2=%fns",
     delta_taubyL2*1e-3)
```

Scilab code Exa 3.2 2

```
1 //fiber optic communications by joseph c. palais 2 //example 3.2
```

```
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 SW=1//spectral width of laser in nm
9 lambda1=0.82e-6//wave length in m
10 d=10//path length in km
11 \quad lambda2=1.5e-6//wave length in m
12 M1=110//Material dispersion ps/(nmxKm) for lambda1
13 M2=15//Material dispersion ps/(nmxKm) for lambda2
14
15 //to find
16 delta_taubyL1=M1*SW*d// pulse spreading per unit
     length in ps for lambda1
17 delta_taubyL2=M2*SW*d// pulse spreading per unit
     length in ps for lambda2
18 //multiplication by 1e-3 converts unit from ps to ns
19 mprintf("Pulse spreading case 1=\%fns", delta_taubyL1
     *1e-3)
20 mprintf("\nPulse spreading case 2=\%fns",
     delta_taubyL2*1e-3)
```

Scilab code Exa 3.3 3

```
//fiber optic communications by joseph c. palais
//example 3.3
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
lambda=1.55e-6*1e9//wave length in nm
```


Figure 3.3: 3

Figure 3.4: 4

Scilab code Exa 3.4 4

```
1 //fiber optic communications by joseph c. palais
2 // example 3.4
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 lambda=1.32e-6*1e9//wave length in nm
9 lambda0=1.3e-6*1e9//Zero dispersion wave length in
10 M0 = -0.095 // \text{slope} at zero dispersion wave length ps/(
     nm^2xKm
11 sw=2//spectral width in nm
12 d=10// length of material in Km
13 //to find
14 M1 = abs((M0/4)*(lambda-(lambda0)^4/(lambda)^3))//
      Material dispersion ps/(nmxKm)
15 delta_taubyL=M1*sw*d// pulse spreading per unit
     length in ps
16 mprintf("Material dispersion=%fps/(nm.km)",M1)
17 mprintf("\nProduces Pulse spreading=%fns",
     delta_taubyL*1e-3) // multiplication by 1e-3
     converts unit from ps to ns
```

Scilab code Exa 3.5 5

```
1 //fiber optic communications by joseph c. palais
2 //example 3.5
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
```


Figure 3.5: 5

```
6 clear all
7 //given
8 lambda1=0.82e-6//wave length
9 lambda2=1.5e-6//wave length
10
11 \det_{\text{tau-by}}L1=2.2*10^-9//\det_{\text{tau-by}}L for LED at
     0.82 \, \mathrm{um} \, \mathrm{in} \, \mathrm{ns/Km}
  deta_tau_by_L2=0.75*10^-9//delta tau by L for LED at
       1.5um in ns/Km
  deta_tau_by_L3=0.11*10^-9//delta tau by L for LD at
      0.82um in ns/Km
  deta_tau_by_L4=0.015*10^-9//delta tau by L for LD at
       1.5um in ns/Km
15 //to find
16 f3dB1=1/(2*deta_tau_by_L1)//frequency length in Hzx
     Km for LED at 0.82um
17 f3dB2=1/(2*deta_tau_by_L2)//frequency length in Hzx
     Km for LED at 1.5um
18 f3dB3=1/(2*deta_tau_by_L3)//frequency length in Hzx
     Km for LD at 0.82um
  f3dB4=1/(2*deta_tau_by_L4)//frequency length in Hzx
     Km for LD at 1.5um
20
21 f3dBE1=0.35/(deta_tau_by_L1)//Electrical frequency
     length in Hzx Km for LED at 0.82um
22 f3dBE2=0.35/(deta_tau_by_L2)//Electrical frequency
     length in Hzx Km for LED at 1.5um
23 f3dBE3=0.35/(deta_tau_by_L3)//Electrical frequency
     length in Hzx Km for LD at 0.82um
24 f3dBE4=0.35/(deta_tau_by_L4)//Electrical frequency
     length in Hzx Km for LD at 1.5um
25
26 RRZ1=0.35/(deta_tau_by_L1)//Rate length FOR RETURN
     TO ZERO in bpsx Km for LED at 0.82um
  RRZ2=0.35/(deta_tau_by_L2)//Rate length FOR RETURN
     TO ZERO in bpsx Km for LED at 1.5um
28 RRZ3=0.35/(deta_tau_by_L3)//Rate length FOR RETURN
     TO ZERO in bpsx Km for LD at 0.82um
```

```
29 RRZ4=0.35/(deta_tau_by_L4)//Rate length FOR RETURN
      TO ZERO in bpsx Km for LD at 1.5um
30
31 NRZ1=0.7/(deta_tau_by_L1)//Rate length FOR RETURN
      Not TO ZERO in bpsx Km for LED at 0.82um
32 NRZ2=0.7/(deta_tau_by_L2)//Rate length FOR RETURN
      Not TO ZERO in bpsx Km for LED at 1.5um
33 NRZ3=0.7/(deta_tau_by_L3)//Rate length FOR RETURN
      Not TO ZERO in bpsx Km for LD at 0.82um
  NRZ4=0.7/(deta_tau_by_L4)//Rate length FOR RETURN
      Not TO ZERO in bpsx Km for LD at 1.
35
36
37 mprintf(" for LED at 0.82um \n Optic frequency
      length product = %f GHz. Km \nRate length product
      FOR Not RETURN TO ZERO = %f Gbps. Km \n Electrical
      3dB frequency length product =\%f GHz. Km\nRate
      length product FOR RETURN TO ZERO = %f Gbps.Km ",
      f3dB1/10<sup>9</sup>, NRZ1/10<sup>9</sup>, f3dBE1/10<sup>9</sup>, RRZ1/10<sup>9</sup>);
38 mprintf(" \n\nfor LED at 1.5um \n Optic frequency
      length product = %f GHz. Km \nRate length product
      FOR Not RETURN TO ZERO = %f Gbps. Km \n Electrical
      3dB frequency length product =\%f GHz. Km\nRate
      length product FOR RETURN TO ZERO = %f Gbps.Km",
      f3dB2/10<sup>9</sup>, NRZ2/10<sup>9</sup>, f3dBE2/10<sup>9</sup>, RRZ2/10<sup>9</sup>);
39 mprintf(" \n\nfor LD at 0.82um \n Optic frequency
      length product = %f GHz. Km \nRate length product
      FOR Not RETURN TO ZERO = %f Gbps. Km \n Electrical
      3dB frequency length product =\%f GHz. Km\nRate
      length product FOR RETURN TO ZERO = %f Gbps.Km ",
      f3dB3/10<sup>9</sup>, NRZ3/10<sup>9</sup>, f3dBE3/10<sup>9</sup>, RRZ3/10<sup>9</sup>);
40 mprintf(" \n\nfor LD at 1.5um \n Optic frequency
      length product = %f GHz. Km \nRate length product
      FOR Not RETURN TO ZERO = %f Gbps. Km \n Electrical
      3dB frequency length product =\%f GHz. Km\nRate
      length product FOR RETURN TO ZERO = %f Gbps.Km ",
      f3dB4/10<sup>9</sup>, NRZ4/10<sup>9</sup>, f3dBE4/10<sup>9</sup>, RRZ4/10<sup>9</sup>);
```


Figure 3.6: 6

Scilab code Exa 3.6 6

```
//fiber optic communications by joseph c. palais
//example 3.6
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
lambda1=0.82e-6//wave length
```

```
9 lambda2=1.5e-6//wave length
10 L=10//link length in Km
11 deta_tau_by_L1=2.2*10^-9/delta tau by L for LED at
      0.82um in ns/Km
12 \det_{\text{tau-by}} L2 = 0.75*10^-9 / \det_{\text{tau-by}} L \text{ for LED at}
       1.5um in ns/Km
  deta_tau_by_L3=0.11*10^-9//delta tau by L for LD at
      0.82um in ns/Km
14 deta_tau_by_L4=0.015*10^-9//delta tau by L for LD at
       1.5um in ns/Km
15 // to find
16 f3dB1=1/(2*L*deta_tau_by_L1)//frequency in Hz
     LED at 0.82um
  f3dB2=1/(2*L*deta_tau_by_L2)//frequency in Hz
                                                    for
     LED at 1.5um
  f3dB3=1/(2*L*deta_tau_by_L3)//frequency in Hz
                                                    for
     LD at 0.82um
  f3dB4=1/(2*L*deta_tau_by_L4)//frequency in Hz
                                                    for
     LD at 1.5um
20
21 f3dBE1=0.35/(L*deta_tau_by_L1)//Electrical frequency
      in Hz for LED at 0.82um
  f3dBE2=0.35/(L*deta_tau_by_L2)//Electrical frequency
      in Hz for LED at 1.5um
23 f3dBE3=0.35/(L*deta_tau_by_L3)//Electrical frequency
      in Hz for LD at 0.82um
  f3dBE4=0.35/(L*deta_tau_by_L4)//Electrical frequency
      in Hz for LD at 1.5um
25
26 RRZ1=0.35/(L*deta_tau_by_L1)//DaTA LIMIT FOR RETURN
     TO ZERO in bps for LED at 0.82um
27
  RRZ2=0.35/(L*deta_tau_by_L2)//DaTA LIMIT FOR RETURN
                     for LED at 1.5um
     TO ZERO in bps
  RRZ3=0.35/(L*deta_tau_by_L3)//DaTA LIMIT FOR RETURN
     TO ZERO in bps for LD at 0.82um
  RRZ4=0.35/(L*deta_tau_by_L4)//DaTA LIMIT FOR RETURN
29
```

TO ZERO in bps for LD at 1.5um

30

```
31 NRZ1=0.7/(L*deta_tau_by_L1)//DaTA LIMIT FOR Not
     RETURN TO ZERO in bps for LED at 0.82um
32 NRZ2=0.7/(L*deta_tau_by_L2)//DaTA LIMIT FOR Not
     RETURN TO ZERO in bps for LED at 1.5um
33 NRZ3=0.7/(L*deta_tau_by_L3)//DaTA LIMIT FOR Not
     RETURN TO ZERO in bps for LD at 0.82um
34 NRZ4=0.7/(L*deta_tau_by_L4)//DaTA LIMIT FOR Not
     RETURN TO ZERO in bps for LD at 1.
35
36
37 mprintf(" for LED at 0.82um \nfrequency = %f MHz \
      nDaTA LIMIT FOR Not RETURN TO ZERO =%f Mbps \
      n Electrical 3dB frequency = %f MHz\nDaTA LIMIT FOR
        RETURN TO ZERO = \%f Mbps ",f3dB1/10^6,NRZ1/10^6,
      f3dBE1/10<sup>6</sup>, RRZ1/10<sup>6</sup>;
38 mprintf(" \n \in ED at 1.5um \n \in EQ MHz
      nDaTA LIMIT FOR Not RETURN TO ZERO =%f Mbps \setminus
      n Electrical 3dB frequency = %f MHz\nDaTA LIMIT FOR
        RETURN TO ZERO = \%f Mbps ",f3dB2/10^6,NRZ2/10^6,
      f3dBE2/10<sup>6</sup>, RRZ2/10<sup>6</sup>;
39 mprintf(" \n \in LD at 0.82um \setminus nfrequency = \%f MHz \
      nDaTA LIMIT FOR Not RETURN TO ZERO =%f Mbps \
      n Electrical 3dB frequency = %f MHz\nDaTA LIMIT FOR
        RETURN TO ZERO = %f Mbps ",f3dB3/10^6,NRZ3/10^6,
      f3dBE3/10<sup>6</sup>, RRZ3/10<sup>6</sup>)
```

40 mprintf(" \n\nfor LD at 1.5um \nfrequency = %f GHz \nDaTA LIMIT FOR Not RETURN TO ZERO = %f Gbps \

n Electrical 3dB frequency = %f GHz\nDaTA LIMIT FOR RETURN TO ZERO = %f Gbps ",f3dB4/10^9,NRZ4/10^9,

Scilab code Exa 3.7 7

f3dBE4/10⁹,RRZ4/10⁹)

Figure 3.7: 7

```
1 //fiber optic communications by joseph c. palais
\frac{2}{\sqrt{\text{example } 3.7}}
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 c=3*10^8/velocity of light in m/s
9 1=0.3*10^{-3}/length of cavity in m
10 lambda=0.82*10^-6//mean (center) wave length in m
11 n=3.6//refractive index of AlGaAs
12
13 //to find
14 delta_fc=c/(2*1*n)//mode spacing in Hz
15 delta_lambdac=(lambda^2)*delta_fc/c//wavelength
      spread in m
16
17 mprintf("mode spacing= \%f x10^9Hz", delta_fc*10^-9)//
      for representation
18 mprintf("\nwavelength spread = %f nm", delta_lambdac
      *10^9)//multiplication factor 10^9 to convert m
      to nm
```

Scilab code Exa 3.8 8

```
//fiber optic communications by joseph c. palais
//example 3.8
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
n=1.5//refractive index of the glass
```


Figure 3.8: 8

Figure 3.9: 9

Scilab code Exa 3.9 9

```
1 //fiber optic communications by joseph c. palais
2 //example 3.9
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 n2=1.5//refractive index of the glass
9 n1=1//refractive index of the air
10
11 //to find
12 theta_B1=atand(n2/n1)//brewster angle in degree for
     air to glass interface
13 theta_B2=atand(n1/n2)//brewster angle in degree for
     glass to air interface
14 mprintf("Brewster angle for air to glass interface
     =\%f degree",theta_B1)
15 mprintf("\nBrewster angle for glass to air
     interface = \%f degree", theta_B2)
```

Scilab code Exa 3.10 10

```
//fiber optic communications by joseph c. palais
//example 3.10
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
n3=1.5//refractive index of the glass
n1=1//refractive index of the air
lambda=0.8e-6//wave length in m
n4=1.38//refractive index of magnesium fluoride
```


Figure 3.10: 10

```
//to find
13 n2=n3^0.5// index of coating layer for zero
    reflection
14 R=(n3-n4^2)^2/(n3+n4^2)^2*100//Fraction of relected
    light in percent
15 lambda_mf=lambda/n4//wavelength in magnesium
    flouride
16 t=lambda_mf/4//coating thickness in m
17 mprintf("Fraction of relected light with coating =
    %fpercent",R)
18 mprintf("\ncoating thickness =%fum",t*10^6)//
    multiplication factor 10^6 to convert unit from m
    to um
```

Chapter 4

Integrated Optic waveguides

Scilab code Exa 4.1 1

```
1 // fiber optic communications by joseph c. palais
2 //example 4.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 d=1.64//Daimeter of waveguide in um
9 lambda=0.82//wavelength in um
10
11 //to find
12 dbylambda=d/lambda//d by lambda ratio normalized
     thickness
13 neff1=3.594//for TEO mode from figure 4.5 for
     calculated normalized thickness
14 theta1=86.7//for TEO mode from figure 4.5 for
     calculated normalized thickness
15 neff2=3.578//for TE1 mode from figure 4.5 for
     calculated normalized thickness
```


Figure 4.1: 1

Figure 4.2: 2

16 theta2=83.7//for TE1 mode from figure 4.5 for
 calculated normalized thickness
17 neff3=3.577//for TE2 mode from figure 4.5 for
 calculated normalized thickness
18 theta3=81.1//for TE2 mode from figure 4.5 for
 calculated normalized thickness
19 mprintf('For TE0 mode \n neff =\%f theta=\%f degree'
 ,neff1,theta1)
20 mprintf('\nFor TE1 mode \n neff =\%f theta=\%f degree',neff2,theta2)
21 mprintf('\nFor TE2 mode \n neff =\%f theta=\%f degree',neff3,theta3)

Scilab code Exa 4.2 2

```
1 //fiber optic communications by joseph c. palais
2 // example 4.2
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 lambda=0.82//wavelength in um
9 n1=3.6//refractive index of core AlGaAs slab
10 n2=3.55//refractive index of cladding
11 //to find
12 d=lambda/(2*sqrt(n1^2-n2^2))/Largest thickness in
13
14 mprintf (' Maximum thickness that will guarantee
      single TE-mode operation at 0.82 umin AlGaAs slab
     waveguide = %f um',d)
```

Scilab code Exa 4.3 3

```
//fiber optic communications by joseph c. palais
//example 4.3
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
lambda=0.82//wavelength in um
```


Figure 4.3: 3

```
9 n1=3.6//refractive index of core AlGaAs slab
10 n2=3.55//refractive index of cladding
11 n3=3.55//refractive index of cladding
12 n0=1//refractive index of Air
13
14
15 //to find
16 NA=sqrt(n1^2-n2^2)//Numerical aperture
17 alpha0=asind(NA/n0)//Acceptance angle in degree
18
19 mprintf(' Numerical aperture =%f',NA)
20 mprintf(' \nAcceptance angle in range =+%fdegree to -+%fdegree',alpha0,alpha0)
```

Chapter 5

Optic fiber waveguides

Scilab code Exa 5.1 1

```
//fiber optic communications by joseph c. palais
//example 5.1
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clc
clear all
//given
n1=1.46//core refractive index
n2=1//cladding refractive index (air)
//to find
Thetac=asind(n2/n1)//critical angle in degree
// mprintf(' Critical angle =%i degree', Thetac)
```


Figure 5.1: 1

Figure 5.2: 2

Scilab code Exa 5.2 2

```
// fiber optic communications by joseph c. palais
// example 5.2
//OS=Windows XP sp3
// Scilab version 5.4.1
clc
clear all
// given
d=1// Daimeter in mm
delta=0.01// change in reractive index
// to find
a=d/2// radius in mm
P=a*%pi*sqrt(2/delta)// Pitch of GRIN rod lens in mm
mprintf(' Pitch of GRIN rod lens =%f mm', P)
```

Scilab code Exa 5.3 3

```
//fiber optic communications by joseph c. palais
//example 5.3
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clar all
//given
d=62.5*10^-3//Daimeter in mm
delta=0.01//change in reractive index
//to find
//to find
a=d/2//radius in mm
P=a*%pi*sqrt(2/delta)//Pitch of GRIN rod lens in mm
```


Figure 5.3: 3

Figure 5.4: 4

```
14
15 mprintf(' Pitch of GRIN rod lens =%f mm',P)//
converting P to mm
```

Scilab code Exa 5.4 4

```
1 //fiber optic communications by joseph c. palais
2 //example 5.4
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
```

```
6 clear all
7 //given
8 led_output_power=2//led output power in dBm
9 fiber_loss=0.5//fiber loss /dB
10 receiver_sensitivity=30//receiver sensitivity in dBm
11 coupling_loss=16//coupling loss in dB
12 connector_and_splices=6//connector and splices loss
13 power_margin=4//power margin in dB
14 // to find
15 loss_budget=led_output_power+receiver_sensitivity;//
     loss budget in dB
16 total_losses=coupling_loss+connector_and_splices+
     power_margin; // total losses in dB
17 available_fibre_loss=loss_budget-total_losses;//
      available fibre loss in dB
18 maximum_allowable_fibre =available_fibre_loss/
     fiber_loss; //maximum allowable fibre length in Km
19 mprintf(' Maximum allowable fibre length=%fKm',
     maximum_allowable_fibre)
```

Scilab code Exa 5.5 5

```
//fiber optic communications by joseph c. palais
//example 5.5
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
d=50//core diameter in um
a=d/2//core radius in um
n1=1.48//core refractive index
```


Figure 5.5: 5

Figure 5.6: 6

```
11  n2=1.46//cladding refractive index
12  lambda=0.82//wavelength in um
13  //to find
14  V=((2*%pi*a*sqrt((n1^2)-(n2^2)))/lambda)// V number
15  n=(V^2/2)//number of modes
16  mprintf("Number of modes=%i",n)
```

Scilab code Exa 5.6 6

```
1 //fiber optic communications by joseph c. palais 2 //example 5.6\,
```

```
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
n1=1.465//core refractive index
n2=1.46//cladding refractive index
lambda=1250*10^-3//wavelength in um
//to find
a=((2.405*lambda)/(2*%pi*sqrt((n1^2)-(n2^2))))//
    radius of the core in um
d=a*2//core diameter=%fum,d)
```

Scilab code Exa 5.7 7

```
1 // fiber optic communications by joseph c. palais
2 //example 5.7
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc;
6 clear all;
7 //given
8 n1=1.47//core refractive index
9 n2=1.46//cladding refractive index
10 lambda=1.3//wavelength in um
11 //to find
12 delta=((n1-n2)/n1)//fractional refractive index
13 abylambda=(1.4/(\%pi*sqrt(n1*(n1-n2))))//radius to
     wavelength ratio
14 a=lambda*abylambda//radius of core in m
15 d=a*2//core diameter in m
16 neff=n1-((sqrt(2*delta))/(2*%pi*abylambda))//value
```


Figure 5.7: 7

Figure 5.8: 8

```
of neff. 17 mprintf("Value of neff=\%f.",neff)
```

Scilab code Exa 5.8 8

```
1 //fiber optic communications by joseph c. palais
2 //example 5.8
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc;
6 clear all;
```

```
7 //given
8 detla_tauby_Lp=20; //linear pulse spread in ns/Km
9 Le=1; //equilibrum length in km
10 //to find
11 L=0.25:0.5:4.25//Length in Km
12 for i=1:9
       if L(i) > 1 then
13
14 f3db(i)=(25/(sqrt(L(i))))//for lengths beyound 1km
15 else
16 f3db(i)=25/L(i);//maximum vandwidth(3db) for length
      less than 1 km
17 \text{ end}
18 end
19 plot(L,f3db)
20 xtitle("3dB bandwidth for multimode fiber having
     linear pulse spread per unit length is 20ns/Km",
     "Length", "3dB optical Bandwidth(MHz)");
```

Chapter 6

Light Sources

Scilab code Exa 6.1 1

```
//fiber optic communications by joseph c. palais
//example 6.1
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
w=25//spot size in um
lambda=0.633//wavelength in um
//to find
thetar=(2*lambda)/(%pi*w)//divergence angle in radians
thetad=thetar*180/(%pi)//divergence angle in degrees
mprintf("divergence angle is=%fradians or =%fdegrees",thetar,thetad)
```


Figure 6.1: 1

Figure 6.2: 2

Scilab code Exa 6.2 2

```
1 //fiber optic communications by joseph c. palais
2 // \text{example } 6.2
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc;
6 clear all;
7 //given
8 n=3.51; //for GaAsP refractive index
9 Lambda=1.55; //wavelength in um
10 //to find
11 grating_period1=Lambda/(2*n);//grating period in um
     for firstorder diffraction
12 grating_period2=2*grating_period1; // grating_period
     in um for second order diffraction
13 mprintf("Grating period for First order diffraction=
     %fum", grating_period1);
14 mprintf("\nGrating period for Second order
      diffraction=%fum", grating_period2);
```

Scilab code Exa 6.3 3

```
//fiber optic communications by joseph c. palais
//example 6.3
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
```


Figure 6.3: 3

```
8 NFdb=3.2//noise figure in dB
9 SNRidb=50//input snr in dB
10 //to find
11 NF=10^(NFdb/10)//converting from decibels to ratios
12 SNRi=10^(SNRidb/10)//converting from decibels to ratios
13 SNRo=SNRi/NF//output signal to noise ratio
14 SNRodb=10*log10(SNRo)//converting from ratios to decibels
15 mprintf("Output SNR=%fdB",SNRodb)
```

Light Detectors

Scilab code Exa 7.1 1

```
//fiber optic communications by joseph c. palais
//example 7.1
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
phi=1.9//workfunction of photoemmissive material
Cesium in eV
//to find
lambda=1.24/(phi)//cutoff wavelength in um
mprintf("Cutoff wavelength =%f um",lambda)
```

Scilab code Exa 7.2 2

Figure 7.1: 1

Figure 7.2: 2

```
1 //fiber optic communications by joseph c. palais
2 //example 7.2
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc;
6 clear all;
7 //given
8 eta=0.01//quantum efficiency of a detector
9 lambda=0.8*(10^-6)/wavelength in m
10 e=1.6*10^-19//charge of an electron in columb
11 h=6.63*10^-34/plancks constant
12 c=3*10^8/velocity of light in m/s
13 // to find
14 Row=(eta*e*lambda)/(h*c)//responsivity of detector
     in mA/W
15 mprintf ("Responsivity of detector=\%f mA/W", Row*10^3)
     //multiplication with 10<sup>3</sup> converts the unit from
      A/W to mA/W
```

Scilab code Exa 7.3 3

```
//fiber optic communications by joseph c. palais
//example 7.3
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
R=50;//load resistor in ohm
P=1*10^-6;//optic power absorbed by the detector
Row=6.4*10^-3;//responsivity in A/W
//to find
lear i=Row*P;//current produced by detector in A
```


Figure 7.3: 3

Figure 7.4: 4

Scilab code Exa 7.4 4

```
1 //fiber optic communications by joseph c. palais
2 //example 7.4
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
```


Figure 7.5: 5

Scilab code Exa 7.5 5

```
1 //fiber optic communications by joseph c. palais
2 //example 7.5
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc;
6 clear all;
7 //given
8 R=50//load resistor in ohms
9 eta=0.01//efficiency
10 e=1.6*10^-19//Charge of electron in columbs
11 lambda=0.8*10^-6//wavelength in m
12 h=6.63*10^{-34}/planks constant
13 c=3*10^8/speed of light in m/s
14 P=1*10^-6//optic power in W
15 G=5^9//current amplification
16 Row=.0064//reponsivity in A/W
17 //to find
18 Row_amp=G*Row//amplified responsivity in A/W
19 i=Row_amp*P//current in A
20 v=i*R//output voltage in V
21 mprintf ('Responsivity=\%fkA/W', Row_amp/1000)//
      division by 1000 to make unit from A to KA
22 mprintf('\nCurrent=%fmA',i*1000)//multiplication by
     1000 to make unit from A to mA
23 mprintf('\nVoltage across the 50 ohm load resistor=
     % \text{fmV}', v*1000) // multiplication by 1000 to make
     unit from V to mV
```

Scilab code Exa 7.6 6

```
1 //fiber optic communications by joseph c. palais
```


Figure 7.6: 6

```
2 //example 7.6
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 \text{ clc};
6 clear all;
7 //given
8 Wg1=1.1//band gap energy of silicon pin diode in eV
9 Wg2=0.67//band gap energy of germanium pin diode in
     eV
10 //to find
11 lambda_c1=1.24/Wg1//wavelength in um
12 lambda_c2=1.24/Wg2//wavelength in um
13 mprintf('Cutoff wavelength for silicon pin diode=
     %fum',lambda_c1)
14 mprintf('\nCutoff wavelength for germanium pin diode
     =\%fum',lambda_c2)
```

Scilab code Exa 7.7 7

```
//fiber optic communications by joseph c. palais
//example 7.7
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
Row=0.5//responsivity in A/W
Id=1*10^-9//dark current in A
//to find
P=Id/Row//minimum detectable power in W
mprintf('minimum detectable power =%fnW',P*10^9)//multiplication by 10^9 to convert unit from W to nW
```


Figure 7.7: 7

Figure 7.8: 8

Scilab code Exa 7.8 8

```
//fiber optic communications by joseph c. palais
//example 7.8
//OS=Windows XP sp3
//Scilab version 5.4.1
clc;
clear all;
//given
Cd=5*(10^-12)//capacitance in Farads
```

```
9 tr=2*(10^-9) // transit time in s
10 f3db=0.35/tr//3dB bandwidth in Hz
11 mprintf("3-db bandwidth=%fMhz",f3db*10^-6) //
    multiplcation by 10^-6 to convert bandwith unit
    from Hz to MHz
12 Tc=tr/4// RC time constant condition for
    insignificant Load resistance in s
13 Rl=Tc/(2.19*Cd)//largest load resistance in ohm
14 mprintf("\nLarger load resistor=%fohm",Rl)
```

Couplers and connectors

Scilab code Exa 8.1 1

```
1 // fiber optic communications by joseph c. palais
2 //example 8.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 d=50//core daimeter in um
9 a=d/2//core radius in um
10 L1=1//coupling loss in dB case 1
11 L2=0.5//coupling loss in dB case 2
12 L3=0.1//coupling loss in dB case 3
13 //to find
14 eta1=10^(-L1/10) //coupling efficiency for L1
15 eta2=10^(-L2/10) //coupling efficiency for L2
16 eta3=10^(-L3/10) //coupling efficiency for L3
17 dby2a1=(1-eta1)*(\%pi/4)//displacement by twice
      radius ratio d/2a for case 1
18 dby2a2=(1-eta2)*(\%pi/4)//displacement by twice
```


Figure 8.1: 1

```
radius ratio d/2a for case 2

19 dby2a3=(1-eta3)*(%pi/4)//displacement by twice radius ratio d/2a for case 3

20 d1=(1-eta1)*(%pi*a/2)//axial displacement for coupling loss=1dB since d/2a<0.2

21 d2=(1-eta2)*(%pi*a/2)//axial displacement for coupling loss=0.5dB since d/2a<0.2

22 d3=(1-eta3)*(%pi*a/2)//axial displacement for coupling loss=0.1dB since d/2a<0.2

23 mprintf('Axial displacement for coupling loss=1dB with d/2a=%f is=%fum',dby2a1,d1)

24 mprintf('\nAxial displacement for coupling loss=0.5 dB with d/2a=%f is=%fum',dby2a2,d2)

25 mprintf('\nAxial displacement for coupling loss=0.1 dB with d/2a=%f is=%fum',dby2a3,d3)
```

Scilab code Exa 8.2 2

```
//fiber optic communications by joseph c. palais
//example 8.2
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
n1=1.465//core refractive index
n2=1.46//cladding refractive index
lambda1=1.3//wavelength in um
lambda2=1.55//wavelength in um
a=3.96//core radius in um
d=0:0.1:5//offset in um
//to find
V1=2*%pi*a/lambda1*(sqrt(n1^2-n2^2))//V number for
```


Figure 8.2: 2

```
lambda1
16 V2=2*\%pi*a/lambda2*(sqrt(n1^2-n2^2))/V number for
     lambda2
17 wbya1=0.65+1.69*V1^{(-1.5)}+2.879*V1^{(-6)}/mode field
      radiusto core radius for lambda1
18 wbya2=0.65+1.69*V2^{(-1.5)}+2.879*V2^{(-6)}/mode field
      radiusto core radius for lambda2
19 w1=wbya1*a//mode field radius in um for lambda1
20 w2=wbya2*a//mode field radius in um for lambda2
21 dbyw1=d./w1//d/w ratio for lambda1
22 dbyw2=d./w2//d/w ratio for lambda2
23 L1=-10*\log(\exp(-(dbyw1)^2))/Coupling Loss for
     lambda1
24 L2=-10*log(exp(-(dbyw2)^2))/Coupling Loss for
     lambda2
  xtitle ('Coupling Loss Vs Lateral misalignment', '
      Lateral misalignment in um', 'Coupling Loss in dB
      <sup>'</sup>);
26 plot(d,L1, 'd')
27 plot(d, L2, '*cya--')
28 hl=legend(['Loss at Lambda1=1.3um'; 'Loss at Lambda2
      =1.55 \text{um}']);
```

Scilab code Exa 8.3 3

```
//fiber optic communications by joseph c. palais
//example 8.3
//OS=Windows XP sp3
//Scilab version 5.4.1
//given
clear all
n1=1.465//refrative index of core
```


Figure 8.3: 3

Figure 8.4: 4

```
9 n2=1.46//refractive index of cladding
10 lambda=0.8//wave length in um
11 V=2.4//normalized frequency
12 wbya=1.1//w/a ratio for V=2.4
13 na=sqrt((n1^2)-(n2^2))//numerical aperture
14 mprintf("Numerical aperture=%f",na)
15 a=(lambda*V)/(2*%pi*na)//core radius
16 mprintf("\nCore radius=%fum",a)
17 spot_size=wbya*a//spot_size in um
18 mprintf("\nSpot_Size=%fum",spot_size)
```

Scilab code Exa 8.4 4

```
1 // fiber optic communications by joseph c. palais
2 //example 8.4
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc
7 clear all
8 loss=0.25//loss for each type of misalignment in dB
9 a=50//core radius in um
10 NA=0.24//numerical aperture
11 dby2a=0.045//lateral offset from given plots for
     loss of 0.25dB
12 theta=2.4//angular misalignment from given plots for
      loss of 0.25dB
13 xbya=0.94//end separation from given plots for loss
     of 0.25dB
14
15 //tofind
16 d=dby2a*a*2//lateral offset in um
17 x=xbya*a//end separation in um
18 mprintf("lateral offset in =\%fum",d)
19 mprintf("\nangular misalignment=%fdegrees",theta)
20 mprintf("\n End separation = \%fum",x)
```

Scilab code Exa 8.5 5

```
//fiber optic communications by joseph c. palais
//example 8.5
//OS=Windows XP sp3
//Scilab version 5.4.1
//given
```


Figure 8.5: 5

```
6 clc
7 clear all
8 NA=0.2//numerical aperture
9 dia=50*(10^{(-6)})/core\ diameter\ in\ m
10 a=dia/2//core radius in m
11 lateral_loss=0.5//allowable lateral loss in dB
12 Beam_dai=2//beam daimeter in mm
13 dby2a=0.09//since loss is 0.5dB d/2a is 0.09 from
     given figure 8.3
14 //to find
15 r=Beam_dai/2//beam radius in mm
16 Beam_divergence=asind(NA)//beam diverges in degrees
17 f=r/tand(Beam_divergence)//focal length in mm
18 d=dby2a*2*a//allowed offset in m
19 mprintf("Focal Length=%fmm",f)
20 mprintf("\nDisplacement=\%fum",d*1e6)//multiplication
      by 1e6 will convert the unit from m to um
```

Scilab code Exa 8.6 6

```
//fiber optic communications by joseph c. palais
//example 8.6
//OS=Windows XP sp3
//Scilab version 5.4.1
//given
clear all
NA1=0.24//numerical aperture SI fiber 1 ALl glass
NA2=0.41//numerical aperture SI fiber 2 PCS
NA3=0.48//numerical aperture SI fiber 3 All plastic
NA_loss1=-10*log10(NA1^2)//losses SI fiber 1
NA_loss2=-10*log10(NA2^2)//losses SI fiber 3
NA_loss3=-10*log10(NA3^2)//losses SI fiber 3
```


Figure 8.6: 6

Figure 8.7: 7

```
14 ref_loss=0.2// Reflection_loss in dB
15 total_loss1=NA_loss1+ref_loss// Total Loss in dB
16 mprintf('Total Loss SI fiber 1=%fdB',total_loss1)
17 total_loss2=NA_loss2+ref_loss
18 mprintf('\nTotal Loss SI fiber 2=%fdB',total_loss2)
19 total_loss3=NA_loss3+ref_loss
20 mprintf('\nTotal Loss SI fiber 3=%fdB',total_loss3)
```

Scilab code Exa 8.7 7

1 // fiber optic communications by joseph c. palais

```
2 //example 8.7
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc
7 clear all
8 Ps=3//source power in dBm
9 NA_glass=0.24//numerical aperture for glass
10 NA_plastic=0.48//numerical aperure for plastic
11 loss_glass=12.4//loss for glass fiber in dB
12 loss_plastic=6.4//loss for plastic fiber in dB
13 reflectn_loss=0.2// reflection losses in dB
14 atten_glass=5//attenuation in glass dB/Km
15 atten_plastic=200//attenuation in plastic dB/Km
16 L1=10*10^-3//fiber length in Km
17 L2=100*10^-3//fiber length in Km
18 //to find
19 glass_coup_loss=Ps-(reflectn_loss + loss_glass)//
     Glass fiber coupling Loss in dBW
20 mprintf ('Coupling glass loss = \%fdBW', glass_coup_loss
21 plastic_coup_loss=Ps-(reflectn_loss + loss_plastic)
     //plastic coupling fiber loss in dBW
22 mprintf('\nCoupling
                       loss in plastic=%fdBW',
     plastic_coup_loss)
23 glass_cp= glass_coup_loss-atten_glass*L1//Coupled
     power in glass in dBW for 10m
24 mprintf('\nCoupled power in glass=%fdBW after 10m',
     glass_cp)
25 plastic_cp=plastic_coup_loss-atten_plastic*L1//
     Coupled power in plastic in dBW for 10m
26 mprintf('\nCoupled power in plastic=%fdBW after 10m'
     ,plastic_cp)
27 glass_cp= glass_coup_loss-atten_glass*L2// Coupled
     power in glass in dBW for 100m
28 mprintf('\nCoupled power in glass=%fdBW after 100m',
     glass_cp)
29 plastic_cp=plastic_coup_loss-atten_plastic*L2 //
```

Coupled power in plastic in dBW for 100m 30 <code>mprintf('\nCoupled power in plastic=%fdBW after 100m',plastic_cp)</code>

Distribution networks and Fiber components

Scilab code Exa 9.1 1

```
1 // fiber optic communications by joseph c. palais
2 // \text{example } 9.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 LE=1//coupler has excess loss of 1dB
9 P2byP1=(10^(-LE/10))/2//since P2/P1 is equal to P3/
     p1 since spliting ratio is 1:1
10 Ltap=-10*\log 10 (P2byP1) // Taploss in dB
11 Lthp=-10*log10(P2byP1)//throughput Loss in dB
12 Ltap1=Ltap-LE//excess loss of 1 dB
13 Lthp2=Lthp-LE//\exp s loss of 1dB
14 mprintf('\nThe portion of the input power reaching
     output for splitting ratio 1:1 is =\%f', P2byP1)
```


Figure 9.1: 1

Figure 9.2: 2

Scilab code Exa 9.2 2

```
//fiber optic communications by joseph c. palais
//example 9.2
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
terminals_in=10//initial terminals
```

```
9 terminals_ex=11//extended terminals
10 S_ratio=9//splitting ratio
11 ELT=1//excess losss tee coupler in dB
12 connector_loss=1//connector loss in dB
13 //to find
14 P2byP1=10^-0.1*0.9//P2/P1 for spliting ratio 9:1
15 lthp=-10*log10(P2byP1)//through loss loss for a 9:1
     coupler having 1dB of excess loss
16 tee_adlos=lthp+2//loss of one directional coupler
     plus the loss of two connectors
17 star_adlos1= -10*log10(1/terminals_in)/Loss for
     star network with 10 terminals in dB
18 star_adlos2= -10*log10(1/terminals_ex)/Loss for
     star network with 11 terminals in dB
19 d2=star_adlos2 - star_adlos1//Change in loss with
     change in no. of terminals from 10-11
20 mprintf('Throughput losses for a 9:1 coupler having
     1dB of excess loss = %fdB',1thp)
21 mprintf('\nAdded losses for star with 10 terminals =
     %fdB',star_adlos1)
22 mprintf('\nAdded losses for star with 11 terminals =
     %fdB',star_adlos2)
23 mprintf('\nDifference in star added losses=%fdB',d2)
```

Scilab code Exa 9.3 3

```
1 //fiber optic communications by joseph c. palais
2 //example 9.3
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc;
7 clear all;
```


Figure 9.3: 3

```
8 n2=1.5//Assuming refractive index of glass fiber
9 n1=1//refractive index if air
10 R=((n1-n2)/(n1+n2))^2// fraction of light reflected
11 //to find
12 LR=-10*log10(R)//Return loss in dB
13 mprintf('Return loss=%fdB',LR)
```

Modulation

Scilab code Exa 10.1 1

```
1 //fiber optic communications by joseph c. palais
2 //example 10.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 clc;
9 clear all;
10 Vdc=5; //Power supply across transistor in V
11 R=45 // Resistancein ohm
12 vd=1.4//forward bias voltage drop in V
13 vce=0.3//cut-off voltage in V
14 //to find
15 ic=(Vdc-vce-vd)/R//diode current when fully on in A
16 mprintf("Collector current=%fmA",ic*1000)
```


Figure 10.1: 1

Figure 10.2: 2

Scilab code Exa 10.2 2

```
1 //fiber optic communications by joseph c. palais
2 //example 10.2
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc;
7 clear all;
8 lambda=0.82*(10^--6)//wavelength in m
9 pulse=10^-9//duration of pulse in sec
10 c=3*10^8//velocity of light in m/s
11 //to find
12 f=c/lambda; //frequency of oscillation in Hz
13 mprintf ("Frequency is=\%fx10^14Hz",f/10^14) //
      division by 10<sup>14</sup> AND SHOWING THE RESULT AS X
     10 14
14 T=1/f; // Pulse duration in sec
15 mprintf("\nPeriod is=\%fx10^--15sec", T*10^-15) //
     MULTIPLICATION by 10^15 AND SHOWING THE RESULT AS
      X 10^{-15}
16 Oscillations=pulse/T;//no. of oscillations
17 mprintf("\ntotal oscillations=%ioptic cycles",
     Oscillations)
```

Scilab code Exa 10.3 3

```
1 //fiber optic communications by joseph c. palais
2 //example 10.3
3 //OS=Windows XP sp3
```


Figure 10.3: 3

Figure 10.4: 4

```
4 //Scilab version 5.4.1
5 //given
6 clc;
7 clear all;
8 wc=20//wavelength change in Ghz/degree celcius
9 fo=100//frequency offset in MHz
10
11 //to find
12 allowed_change=fo*10^-3/wc//allowed change in temperature in degree celcius
13 mprintf("Allowed change is =%f degree Celcius", allowed_change)
```

Scilab code Exa 10.4 4

```
1 //fiber optic communications by joseph c. palais
2 // \text{example } 10.4
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc;
7 clear all;
8 deltaf=200//Frequency deviation in MHz/mA
9 fm=300//modulation frequency in MHz
10 pac_current1=1//peak ac current in mA
11 pac_current2=5//peak ac current in mA
12
13
14 // to find
15 deltaf1=deltaf*pac_current1//frequency deviation for
       1mA in MHz
16 deltaf2=deltaf*pac_current2//frequency deviation for
       5mA in MHz
17 beta1=deltaf1/fm//modulation index at 1mA
18 mprintf("Modulation index at 1mA=%f", beta1)
19 beta2=deltaf2/fm//modulation index at 5mA
20 mprintf("\nModulation index at 5mA=\%f", beta2)
```

Scilab code Exa 10.5 5

```
1 //fiber optic communications by joseph c. palais
2 //example 10.5
3 //OS=Windows XP sp3
```


Figure 10.5: 5

```
4 //Scilab version 5.4.1
5 clc
6 //given
7 lambda=850*10^-9/spectral width in m
8 f_bw=0.01//fractional bandwidth
9 OS=1*10^9//optic separation in short wavelength
     window and IF frequency in Hz
10 delta_lambda=lambda*f_bw//spectral separation in m
11 c=3*10^8/speed of light
12 delta_f1=c*delta_lambda/(lambda^2)//channel
      separation in GHz in WDM
13 delta_f2=OS*f_bw//channel separation in GHz in OFDM
14 mprintf ('Channel separation for WDM system = \%fx10
      ^12\mathrm{Hz}, delta_f1/10^12) // division by 10^12 to
      convert the result in the form x10^12
15 mprintf('\nChannel separation for OFDM = \%fx10^7Hz',
     delta_f2/10^7) // division by 10^7 to convert the
      result in the form x10<sup>7</sup>
```

Chapter 11

Noise and Detection

Scilab code Exa 11.1 1

```
1 //fiber optic communications by joseph c. palais
2 //example 11.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc
7 clear all
8 //given
9 lambda=0.85e-6//wave length in um
10 Pi=10*10^-3//led Power in W
11 L=20//fiber cable loss in dB
12 Row=0.5//responsivity in A/W
13 ID=2*10^-9//Detector dark current in A
14 RL=50//load resistance in ohm
15 BW=10*10^6//receiver 's bandwidth in Hz
16 Ta=300//temperature in Kelvin
17 SCL=14//source coupling loss in dB
18 CL=10//connector loss in dB
19 e=1.6*10^-19/charge of electron in columbs
```


Figure 11.1: 1

```
20 \text{ k=1.38e-23//boltzman constant}
21 //to find
22 TL=SCL+CL+L//total Loss in dB
23 Tn=10^(-TL/10)//transmission efficiency
24 PR=Pi*Tn//received power in W
25 is=Row*PR//photo current in A
26 PES=is^2*RL//Electrical signal power in W
27 PNS=2*e*is*BW*RL//shot noise power in W
28 PNT=4*k*Ta*BW//Thermal noise power in W
29 SNR=PES/PNT//signal to noise ratio
30 SNRdB=10*log10(SNR)//signal to noise ratio in dB
31 SNRQL=is/(2*e*BW)//quantum limited SNR
32
33
34 mprintf("Received power = %fuW", PR*10^6)//
      multiplication by 10<sup>6</sup> to convert the unit from W
       to uW
35 mprintf("\nPhoto current=\%fnA", is*10^9)//
      multiplication by 10<sup>9</sup> to convert the unit from A
       to nA
36 mprintf("\nElectrical signal power=\%f*10^--12W", PES
      *10^12) // multiplication by 10^12 to convert the
      unit from W to x10^-12W
37 mprintf("\nShot noise power=\%f*10^-17W', PNS*10^17)//
      multiplication by 10<sup>17</sup> to convert the unit from
     W to x10^-17W
38 mprintf("\nThermal noise power=\%f*10^-13W",PNT
      *10^13) // multiplication by 10^13 to convert the
      unit from W to x10^-13W
39 mprintf("\nSignal to noise ratio=%fdB", SNRdB)
40 mprintf("\nQuantum limited SNR=%f", SNRQL)
41 //this is the exact answer, book has taken
      approximated values of parameters
     Quantum limited SNR is 62500
```


Figure 11.2: 2

Scilab code Exa 11.2 2

```
1 //fiber optic communications by joseph c. palais
2 //example 11.2
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc
7 clear all
8 //given
9 lambda=0.85e-6//wave length in um
10 Pi=10*10^{-3}/led Power in W
11 L=20//fiber cable loss in dB
12 Row=0.5//responsivity in A/W
13 ID=2*10^-9//Detector dark current in A
14 RL=50//load resistance in ohm
15 BW=10*10^6//receiver's bandwidth in Hz
16 Ta=300//temperature in Kelvin
17 SCL=14//source coupling loss in dB
18 CL=10//connector loss in dB
19 e=1.6*10^-19//charge of electron in columbs
20 k=1.38e-23//boltzman constant
21 DL=6//decreased loss in dB
22 //to find
23 TL=SCL+CL+L-DL//total Loss in dB
24 Tn=10^(-TL/10)//transmission efficiency
25 PR=Pi*Tn//received power in W
26 is=Row*PR//photo current in A
27 PES=is^2*RL//Electrical signal power in W
28 PNS=2*e*is*BW*RL//shot noise power in W
29 PNT=4*k*Ta*BW//Thermal noise power in W
30 SNR=PES/PNT//signal to noise ratio
31 SNRdB=10*log10(SNR)//signal to noise ratio in dB
32
```

Scilab code Exa 11.3 3

```
//fiber optic communications by joseph c. palais
//example 11.3
//OS=Windows XP sp3
//Scilab version 5.4.1
//given
clear all
//given
lambda=0.85e-6//wave length in um
Pi=10*10^-3//led Power in W
L=20//fiber cable loss in dB
Row=0.5//respomsivity in A/W
ID=2*10^-9//Detector dark current in A
RL=50//load resistance in ohm
```


Figure 11.3: 3

```
15 BW=10*10^6//receiver's bandwidth in Hz
16 Ta=300//temperature in Kelvin
17 SCL=14//source coupling loss in dB
18 CL=10//connector loss in dB
19 e=1.6*10^-19//charge of electron in columbs
20 \text{ k=1.38e-23//boltzman constant}
21 M=160//multiplication factor
22 //to find
23 TL=SCL+CL+L//total Loss in dB
24 Tn=10^(-TL/10)//transmission efficiency
25 PR=Pi*Tn//received power in W
26 is=Row*PR//photo current in A
27 PES=is^2*RL*M^2//Electrical signal power in W
28 PNS=2*e*is*BW*RL*M^2//shot noise power in W
29 PNT=4*k*Ta*BW//Thermal noise power in W
30 SNR=PES/(PNT+PNS)//signal to noise ratio
31 SNRdB=10*log10(SNR)//signal to noise ratio in dB
32 SNRQL=is/(2*e*BW)//quantum limited SNR
33 SNRQLdB=10*log10(SNRQL)//quantum limited SNR in dB
34 //mprintf("Received power = \%fx10^-8W", PR*10^8)//
      multiplication by 10<sup>8</sup> to convert the unit from W
       to x10^-8W
35 //mprintf("\nPhoto current=\%fnA", is *10^9)//
      multiplication by 10<sup>9</sup> to convert the unit from A
36 mprintf("\nElectrical signal power=\%f*10^-8W", PES
      *10^8) // multiplication by 10^12 to convert the
      unit from W to x10^-8W
37 mprintf("\nShot noise power=\%f*10^-13W", PNS*10^13)//
      multiplication by 10<sup>13</sup> to convert the unit from
     W to x10^-13W
  mprintf("\nThermal noise power=\%f*10^--13W", PNT
      *10^13) // multiplication by 10^13 to convert the
      unit from W to x10<sup>-13</sup>W
  mprintf("\nSignal to noise ratio=%fdB", SNRdB)//The
      answers vary due to round off error
40 mprintf("\nSignal to noise ratio quantum limited=
     %fdB", SNRQLdB) // The answers vary due to round
```

Scilab code Exa 11.4 4

```
1 // fiber optic communications by joseph c. palais
2 //example 11.4
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 //given
6 clc
7 clear all
8 //given
9 lambda=0.85e-6//wave length in um
10 Row=0.5//responsivity in A/W
11 ID=2*10^-9//Detector dark current in A
12 RL=100//load resistance in ohm
13 deltaf=1*10^6//receiver 's bandwidth in Hz
14 T=300//temperature in Kelvin
15 e=1.6*10^-19//charge of electron in columbs
16 \text{ k=1.38e-23//boltzman constant}
17
18 // to find
19
20 \text{ for } i=1:6
       RL1(i)=10^(i*2);//range of load resistance in
21
          ohm
       logRL(i)=log10(RL1(i))//log scale representation
22
           of load resistance
23
       iNT(i)=sqrt(4*k*T*deltaf/RL1(i))//rms thermal
          noise current in A
24 iNSD(i)=sqrt(2*e*ID*deltaf)//rms shot noise current
NEP(i)=sqrt(iNSD(i)^2+iNT(i)^2)/(R*sqrt(deltaf))//
      Noise equivalent power (NEP) in W/Hz<sup>1</sup>/2
26
```

```
27 \log NEP(i) = \log 10(NEP(i))
28 end
29 iNT1=sqrt(4*k*T*deltaf/RL)//rms thermal noise
      current in A
30 iNSD1=sqrt(2*e*ID*deltaf)//rms shot noise current in
31 NEP1=sqrt(iNSD1^2+iNT1^2)/(R*sqrt(deltaf))//Noise
      equivalent power (NEP) in W/Hz<sup>1</sup>/2
32 Pmin=NEP1*sqrt(deltaf)//minimum detectable power
33 mprintf("Minimum detectable power = \%fnW", Pmin * 10^9)
      //multiplication by 10<sup>9</sup> to convert unit from W
      to nW
34 plot2d('ll', RL1, NEP)
35
36 xtitle ("Noise equivalent power for a PIN diode
      having 2nA of Dark current and a 0.5W/A
      responsivity at 300K", "Load Resistance (Ohms)",
      "NEP
            (W/Hz^1/2)";
```

Scilab code Exa 11.5 5

```
//fiber optic communications by joseph c. palais
//example 11.5
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clc
clear all
//given
RL=100//load in ohm
T=300//temperature in kelvin
lambda=0.82*10^-6//wavelength in um
```


Figure 11.4: 4

Figure 11.5: 4

```
11 e=1.6e-19//charge of electron in colums
12 k=1.38e-23//boltzman constant
13 h=6.63e-34//plancks constant
14 deltaf=1e6//link bandwidth in Hz
15 Error_rate=10^-4//desired error rate
16 eta=1//quantum efficiency
17 c=3*10^8/speed of light in m/s
18 snr=17.5//Signal to noise ratio from plot
      corresponding to error rate of 10<sup>-4</sup> in dB
  SNR=10^(snr/10)//signal to noise ratio in normal
      scale
20 tau=10^-6//bit interval in Sec
21 //to find
22 f=c/lambda//optic frequency in Hz
23 P=(h*f/(eta*e))*sqrt((4*k*T*deltaf)/RL)*sqrt(SNR)//
      Optic power incident in Watts
24 mprintf("Optic power incident=%fnW",P*10^9)//
      multiplication by 10<sup>9</sup> is to convert the unit
      from W to nW
25 i=eta*e*P/(h*f)//current in Amperes
26 mprintf("\nCurrent=\%fnA",i*10^9)/multiplication by
      10<sup>9</sup> is to convert the unit from A to nA
27 np=P/(h*f)*tau// No. of photons per bit
28 mprintf("\nNo. of Photons per bit=\%fx10^5 photons/
      bit", np/10<sup>5</sup>)//multiplication by 10<sup>5</sup> is to
      convert the unit x10<sup>5</sup>
```

Scilab code Exa 11.6 6

```
1 //fiber optic communications by joseph c. palais 2 //example 11.6\,
```


Figure 11.6: 5

Figure 11.7: 6

```
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 lambda=0.82e-6//wave length in m
9 h=6.63e-34//planks constant
10 tau=1e-6//bit period in Sec
11 c=3e8//light speed in m/s
12 ns=10//no. of photons required per bit
13 eta=1//Quantum efficiency
14 Pt=146*10^-9//power in thermal system from Ex11
     .5 = 146 \text{nW}
15 //to find
16 P=(h*c*ns)/(eta*lambda*tau)// optic power in W
17 mprintf("Power=%fpW",P*10^12)
18 sensitivity=10*log10(Pt/P)//The shot noise limited
     system sensitivity
19 mprintf("\nThe shot noise limited system is more
      sensitive by=%fdB", sensitivity)
```

Scilab code Exa 11.7 7

```
//fiber optic communications by joseph c. palais
//example 11.7
//OS=Windows XP sp3

clc
clear all
//given
Pi=2e-12//signal power in W
K=1.38e-23//temperature in kelvin
deltaf=1e7//bandwidth in Hz
TA=300//Ambient temperature in Kelvin
```


Figure 11.8: 7

Figure 11.9: 8

```
11 T=454//noise temperature in Kelvin
12 PNT=1.66*10^-11//thermal noise power in W at 300K
13 G=10//power gain of amplifier in dB
14 //to find
15 Te=T+TA//equivalent noise temperature in Kelvin
16 PN=4*K*Te*deltaf//Noise power in W
17 SNR=Pi/PN//Signal to noise ratio
18 SNRdb=10*log10(SNR)//Signal to noise ratio in dB
19 mprintf("Output Signal to noise ratio=%fdB", SNRdb)
```

Scilab code Exa 11.8 8

```
//fiber optic communications by joseph c. palais
//example 11.8
//given
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clc
clear all
//given
TA=300//Ambient temperature in Kelvin
T=454//noise temperature in Kelvin
//to find
F=1+(T/TA)//Noise figure
Fdb=10*log10(F)//Noise figure in dB
mprintf("Noise figure =%f db",Fdb)
```

Scilab code Exa 11.9 9

```
1 //fiber optic communications by joseph c. palais
2 //given
3 //example 11.9
4 //OS=Windows XP sp3
5 // Scilab version 5.4.1
6 clc
7 clear all
8 //given
9 alphadb=30//transmission loss in dB
10 Gi=1e3//gain
11 Fidb=3//noise figure of amplifier in dB
12 N=10//Number of amps
13 SNRin=1e8//signal to noise at transmitter at input
14 //to find
15 alpha=10^(alphadb/10)//transmission loss in normal
     scale
```


Figure 11.10: 9

Figure 11.11: 10

Scilab code Exa 11.10 10

1 //fiber optic communications by joseph c. palais

```
2 //example 11.10
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 RINdB=-140//RIN in dB/Hz
9 deltaf=100*10^6//bandwidth in Hz
10 P=10*10^-6//Average incident power in Watts
11 Row=0.5//Responsivity in uA/uW
12
13 //to find
14 RIN=10^(RINdB/10)/RIN in /Hz
15 PNL=sqrt(RIN*P^2*deltaf)//Laser Noise power in Watt
16 mprintf("Laser Noise power=%fuW", PNL*10^6)//
      multiplication by 10<sup>6</sup> to cinvert the unit from W
       to uW
17 IN=Row*PNL// Noise current in A
18 mprintf("\nNoise current=\%fuA",IN*10^6)//
      multiplication by 10<sup>6</sup> to cinvert the unit from A
       to uA
```

Chapter 12

System Design

Scilab code Exa 12.1 1

```
1 //fiber optic communications by joseph c. palais
2 //example 12.1
3 //OS=Windows XP sp3
4 //Scilab version 5.4.1
5 clc
6 clear all
7 //given
8 lambda=0.82//wavelength in um
9 ER=10^-9/Error rate
10 datarate=100//dta rate for RZ system in Mbps
11 NRZ_Qpl=-63//powerl level for NRZ in dBm from figure
      12.4
12 NRZ_TL=-36//thermal limit for NRZ in dBm from figure
      12.4
13 //to find
14 RZ_Qpl=NRZ_Qpl+3//powerl level for RZ in dBm
15 RZ_TL=NRZ_TL+3//thermal limit for RZ in dBm
16 //mprintf("Power level for NRZ=%fdBm", NRZ_Qpl)
17 //mprintf("\nThermal limit for NRZ = %fdBm", NRZ_TL)
18 mprintf("Power level for RZ=%fdBm", RZ_Qpl)
19 mprintf("\nThermal limit for RZ = %fdBm", RZ_TL)
```


Figure 12.1: 1

Scilab code Exa 12.2 2

```
1 //fiber optic communications by joseph c. palais 2 //example 12.2 3 //OS=Windows XP sp3 4 //Scilab version 5.4.1 5 clc 6 clear all
```


Figure 12.2: 2

```
7 // given
8 //from example 12.1
9 lambda=0.82//wavelength in um
10 ER=10^-9//Error rate
11 datarate=100//dta rate for RZ system in Mbps
12 NRZ_Qpl=-63//powerl level for NRZ in dBm
13 NRZ_TL=-36//thermal limit for NRZ in dBm
14 // to find
15 RZ_Qpl=NRZ_Qpl+3//powerl level for RZ in dBm from
      fig 12.4
16 RZ_TL=NRZ_TL+3//thermal limit for RZ in dBm from fig
  Avg_NRZ_Qpl=NRZ_Qpl-3//Average for NRZ is half so 3
17
     db LESS in dBm
18 Avg_NRZ_TL=NRZ_TL-3//Average for NRZ is half so 3db
     LESS in dBm
  Avg_RZ_Qpl=RZ_Qpl-6//Average for RZ is ONE FOURTH so
      6db LESS in dBm
20 Avg_RZ_TL=RZ_TL-6//Average for RZ is ONE FOURTH so 6
     db LESS in dBm
21
22 mprintf("Average Powerl level for NRZ=%fdBm",
     Avg_NRZ_Qpl)
23 mprintf("\nAverage Thermal limit for NRZ =\%fdBm",
     Avg_NRZ_TL)
24 mprintf("\nAverage Power level for RZ=%fdBm",
     Avg_RZ_Qpl)
25 mprintf("\nAverage Thermal limit for RZ = %fdBm",
     Avg_RZ_TL)
```