Óptica Geométrica

Construções geométricas em lentes delgadas

Gonçalo Figueira — goncalo.figueira@tecnico.ulisboa.pt Complexo Interdisciplinar, ext. 3375 Tel. 218 419 375

1.° semestre 2019/20

Óptica geométrica: objectivos

Reflexão, refracção e ângulo de Brewster

Traçado de raios

Lentes convergentes e divergentes

Objectos reais e virtuais

Óptica geométrica: objectivos

A **óptica geométrica**, ou óptica de raios, é uma abordagem que consiste em descrever a propagação da luz através de raios.

Para descrever a propagação de um feixe de luz através de um sistema, utilizamos um conjunto de raios, que se propagam utilizando o método do traçado de raios.

- Medição do índice de refracção de um vidro
- Polarização da luz e ângulo de Brewster
- Distância focal de lentes convergentes e divergentes: medição directa e através da ampliação

Óptica geométrica

Um raio é definido em relação ao eixo óptico:

A intensidade da luz é proporcional à densidade de raios

Software de traçado de raios

Há programas padrão na indústria óptica, usados para desenhar sistemas complexos de imagem, iluminação, transporte de luz, etc

Zemax: www.zemax.com

Code V: www.opticalres.com

Regras para traçado de raios

- 1. Num meio uniforme, um raio é uma linha recta
- 2. Um meio óptico é caracterizado por uma quantidade *n* > 1: índice de refracção
- 3. Na fronteira entre dois meios, um raio pode ser reflectido e/ou refractado:
- ângulo de reflexão = ângulo de incidência
- ângulo de refracção θ_r e ângulo de incidência θ_i :

$$n_i \sin \theta_i = n_r \sin \theta_r$$

Lei de Snell

Medição de índice de refracção de um bloco de acrílico

Polarização da luz

Ângulo de Brewster

= ângulo de incidência numa superfície para o qual a luz reflectida fica polarizada (perpendicularmente ao plano de incidência)

Nesta situação o feixe reflectido e o refractado fazem um ângulo de 90 °

$$\theta_B = \arctan\left(\frac{n_2}{n_1}\right)$$

Aplicações do ângulo de Brewster: óculos polarizados

Traçado de raios e lentes: aproximações

Lentes delgadas

Espessura da lente << distância focal

Óptica paraxial

Todos os raios se situam próximo do eixo óptico e fazem ângulos tais que sin $\alpha \approx \alpha$

Tipos de lentes esféricas

Convergentes (f > 0)

raios paralelos ao eixo passam pelo foco à direita

$$R_1 > 0, R_2 < 0$$

Divergentes (f < 0)

raios paralelos ao eixo parecem sair do foco à esquerda

$$R_1 < 0, R_2 > 0$$

Lentes, objectos e imagens

Lente Objecto Imagem distância focal f a uma distância d_{O} a uma distância d_{I}

$$\frac{1}{f} = \frac{1}{d_O} + \frac{1}{d_I}$$

$$A = \frac{d_I}{d_O}$$

Equação dos focos conjugados

Ampliação

Traçado de raios: lentes convergentes

- Desenhar um objecto simples AB (ex. uma seta) a uma dada distância à esquerda da lente.
- Desenhar 3 raios: (i) horizontal, (ii) a passar pelo centro da lente,
 (iii) a passar pelo foco-objecto
- Usar a regras em baixo para determinar a posição da imagem

Object distance (u)	Ray diagram	Type of image	lmage distance (v)	Uses
<i>U</i> = ∞	parallel rays from a distant object	- inverted - real - diminished	v = f - opposite side of the lens	- object lens of a telescope
u > 2f	object F 2F image	- inverted - real - diminished	f < v < 2f - opposite side of the lens	- camera - eye
u = 2f	object F 2F image	- inverted - real - same size	v = 2f - opposite side of the lens	- photocopier making same-sized copy

f < u < 2f	object F 2F 2F image	- inverted - real - magnified	v > 2f - opposite side of the lens	- projector - photograph enlarger
u = f	object Figure parallel rays	- upright - virtual - magnified	- image at infinity - same side of the lens	- to produce a parallel beam of light, e.g. a spotlight
u <f< th=""><th>image object F</th><th>- upright - virtual - magnified</th><th>- image is behind the object - same side of the lens</th><th>- magnifying glass</th></f<>	image object F	- upright - virtual - magnified	- image is behind the object - same side of the lens	- magnifying glass

Traçado de raios: lentes divergentes

- Desenhar um objecto simples (ex. uma seta) a uma dada distância à esquerda da lente.
- Desenhar 3 raios: (i) horizontal, (ii) a passar pelo centro da lente,
 (iii) a passar pelo foco-objecto
- Usar a regras em baixo para determinar a posição da imagem

Traçado de raios: objectos virtuais

- Desenhar um objecto simples AB (ex. uma seta) a uma dada distância à direita da lente.
- Desenhar 3 raios: (i) horizontal, (ii) a passar pelo centro da lente,
 (iii) a passar pelo foco-objecto
- Inserir a lente e determinar a alteração no trajecto dos raios

Traçado de raios: objectos virtuais

- Desenhar um objecto simples AB (ex. uma seta) a uma dada distância à direita da lente.
- Desenhar 3 raios: (i) horizontal, (ii) a passar pelo centro da lente,
 (iii) a passar pelo foco-objecto
- Inserir a lente e determinar a alteração no trajecto dos raios

Traçado de raios: casos

Tipo de lente	Objecto	Tipo de imagem	Orientação
Convergente (f > 0)	Real	Real Virtual	Invertida Direita
	Virtual	Real	Direita
Divergente (f < 0)	Real	Virtual	Direita
	Virtual d _O > f d _O < f	Virtual Real	Invertida Direita

Associações de lentes

Duas lentes de dist. focais f_1 e f_2 separadas de D

$$\frac{1}{f_{equiv}} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{D}{f_1 f_2}$$

Sugestões

Faça exercícios com traçado de raios para as diversas combinações:

- Lentes convergentes e divergentes
- Objectos reais e virtuais
- Objectos em diversas posições relativamente ao foco

Leia o Guia da Experiência e procure compreender o cálculo das ampliações e posições das imagens