Completeness for Propositional Logic

Chapter 2, Section 10

Adequacy Theorem

Our target in this section is the following theorem. Throughout the section, σ is assumed to be the default signature $\{p_0, p_1, \cdots\}$. We will briefly discuss this assumption at the end of the section.

Theorem 3.10.1 (Adequacy of Natural Deduction for Propositional Logic)

Let Γ be a set of formulas of LP(σ) and ψ a formula of LP(σ). If $\Gamma \vDash_{\sigma} \psi$ then $\Gamma \vdash_{\sigma} \psi$.

Syntactically Consistent Set

Definition 3.10.2

We say that a set Γ of formulas of $LP(\sigma)$ is *syntactically consistent* if $\Gamma \not\vdash_{\sigma} \bot$. (This notion is independent of what signature σ we choose, so long as $LP(\sigma)$ contains all of Γ .)

Lemma 3.10.3

To prove the Adequacy Theorem it is enough to show that every syntactically consistent set of formulas of LP(σ) has a model.

Hintikka Set

Definition 3.10.4

We say that a set Γ of formulas of (the stripped-down) LP is a *Hintikka set* (for LP) if it has the following properties :

- (H1) If a formula $(\phi \land \psi)$ is in Γ , then ϕ is in Γ and ψ is in Γ .
- (H2) If a formula $(\neg(\phi \land \psi))$ is in Γ , then at least one of $(\neg\phi)$ and $(\neg\psi)$ is in Γ .
- (H3) If a formula $(\neg(\neg\phi))$ is in Γ , then ϕ is in Γ .
- (H4) \perp is not in Γ .
- (H5) There is no propositional symbol p such that both p and $(\neg p)$ are in Γ .

Hintikka Set Properties

Lemma 3.10.5

Every Hintikka set has a model.

Lemma 3.10.6

If Γ is a syntactically consistent set of formulas of LP(σ), then there is a Hintikka set Δ of formulas of LP(σ) with $\Gamma \subseteq \Delta$.

Proof of Adequacy Theorem

Proof

From Lemma 3.10.3, it suffices to show that every syntactically consistent set of formulas has a model.

Let Γ be a syntactically consistent set of formulas. By Lemma 3.10.6, there exists a Hintikka set Δ of formulas of LP(σ) such that $\Gamma \subseteq \Delta$.

By Lemma 3.10.5, Δ has a model A. Since $\Gamma \subseteq \Delta$, then A is also a model of Γ .

Completeness Theorem

Theorem 3.10.7 (Completeness Theorem)

Let Γ be a set of formulas of $LP(\sigma)$ and ψ a formula of $LP(\sigma)$. Then $\Gamma \vdash_{\sigma} \psi \iff \Gamma \vDash_{\sigma} \psi$.

Proof This is the Soundness and Adequacy Theorems combined.