Geodezja wyższa

Ćwiczenie 2 Pozorna droga gwiazd na niebie Szymon Turzański 305412

Spis treści

1	Teoria	3
2	Cel ćwiczenia	3
3	Przebieg pracy	
	Dane	4
	Skrypt	4-6
4	Analiza wyników	6-9
5	Wnioski	10

Teoria

Podczas obserwacji nieba przez odpowiednio długi czas można zauważyć, że gwiazdy poruszaja sie po sferze niebieskiej ruchem kolistym wokół jednego punktu. Powszechna wiedzą jest, że ruch ten jest pozorny i wynika z ruchu Ziemi wokół własnej osi. Gwiazdą, która wyróżnia się pośród innych na półkuli północnej jest Gwiazda Polarna, ponieważ sprawia wrażenie nieruchomej. Wynika to z tego, że oś ziemska, z pewnym przybliżeniem, przechodzi przez nią, przez co jej pozorna wędrówka na niebie jest minimalna, wręcz pomijalna. Innym elementem wpływającym na ruch gwiazd na niebie jest ruch obiegowy (Ziemi wokół Słońca). W jego wyniku w trakcie roku możemy obserwować różne gwiazdozbiory, które każdej kolejnej nocy znajdują się w innym miejscu na niebie. Pozycję ciał niebieskich (i satelit) wzgledem elipsoidy ziemskiej definiujemy parametrami deklinacji i rektascensji. Deklinacja jest katem między kierunkiem poprowadzonym od środka układu równikowego, a równikiem niebieskim. Przyjmuje wartości od 0° do 90° dla deklinacji północnej od 0° do -90° dla deklinacji południwej. **Rektascensja** jest z kolei kątem między kołem godzinnym przechodzącym przez obiekt, a kołem godzinnym przechodzącym przez punkt barana. Przyjmuje wartości od 0° do 360° i rośnie w kierunku wschodnim. Jego wartości przyjmują również wartości godzinne od 0h do 24h, gdzie 15° = 1h.

Cel ćwiczenia

Celem ćwiczenia było zobrazowanie pozornego ruchu wybranej gwiazdy na niebie z określonego miejsca na Ziemi. Do tego celu wykorzystano wiedzę o geodezyjnych układach odniesienia oraz o trygonometrii sferycznej.

Przebieg pracy

Dane

Do obserwacji w ćwiczeniu wybrano gwiazdę gwiazdę Spica z gwiazdozbioru Panny. Następującymi miejscami obserwacji były:

- Norylsk (zamknięte miasto w azjatyckiej części Rosji w kraju Krasnojarskim)
- Quito (stolica Ekwadoru)
- Porto Alegre (miasto w południowej Brazylii)

Miasta zostały tak dobrane, aby poddać obserwacji dwa punkty na różnych półkulach, oraz jeden blisko równika.

Skrypt

W obliczeniach wykorzystano środowisko MATLAB, ze względu na rozwiniętą bibliotekę poleceń potrzebnych do wykonania wyliczeń, prostotę przy wykonywaniu działań na licznych zbiorach danych, a także polecenia pozwalające na wizualizację efektów końcowych. Na początku przygotowano dwie funkcje pomocnicze, mające na celu obliczenie: kąta godzinnego oraz czasu gwiazdowego Greenwich.

```
function [t] = katgodz(y, m, d, h, lambda, alfa)
    jd = juliandate(datetime(y, m, d)); % dni
    g = GMST(jd); % stopnie
    UT1 = h * 1.002737909350795; % godziny

    % obliczenie czasu gwiazdowego (w stopniach)
    S = UT1*15 + lambda + g;
    % obliczenie kąta godzinowego (w stopniach)
    t = S - alfa*15;
end

function g = GMST(jd)
    T = (jd - 2451545) / 36525;
    g = 280.46061837 + 360.98564736629 * (jd - 2451545.0) + 0.000387933*T.^2
    g = mod(g, 360);
end
```

Mając uprzednio przygotowane funkcje z zajęć wprowadzono ręcznie dane. Współrzędne gwiazdy są stałe. Została ponadto utworzona macierz zawierająca kolejne godziny ruchu gwiazdy.

```
% gwiazda Spica z gwiazdozbioru Panny
rektascensja = 13 + 25/60 + 11.579/3600; %%13h 25m 12s
deklinacja = -(11 + 9/60 + 40.75/3600); %%-11° 9′ 41″

% Norylsk |
phi = 69.33629228312138;
lambda = 88.18223614146471;

%% Quito
% phi = -0.17972737242763911;
% lambda = -78.46556813496137;

%% Porto Alegre
%phi = -30.035112361544094;
%lambda = -51.214916894632374;
h = transpose([0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24]);
% Wartości kątowe dla każdej godziny
```

Następnie obliczone zostały wartości kąta godzinnego, wartości odległości zenitalnej i azymutu gwiazdy w czasie.

```
% obliczenia kąta dla każdej z warunkiem
for i = 1:24
    if kot_godzinowy(i) > 360
        kot_godzinowy(i) = kot_godzinowy(i) - 360;
end
% odleglość zenitalna dla każdej godziny
cos_z = (sind(phi)*sind(deklinacja) + cosd(phi)*cosd(deklinacja).*cosd(kot_godzinowy));
zenit = acosd(cos_z);
wysokosc = 90 - zenit;
% Azymut gwiazdy dla każdej godziny
licznik = -cosd(deklinacja).*sind(kot godzinowy);
mianownik = cosd(phi).*sind(deklinacja) - sind(phi).*cosd(deklinacja).*cosd(kot_godzinowy);
Az = atan2d(licznik, mianownik);
for i = 1:24
   if Az(i) < 0
       Az(i) = Az(i) + 360;
   elseif Az(i) > 360
       Az(i) = Az(i) - 360;
end
```

Po tych obliczeniach przekształcono współrzędne gwiazdy na układ xyz:

```
% Obliczenie wsp do układu prostokątnego
x = 1.05.*sind(zenit).*cosd(Az);
y = 1.05.*sind(zenit).*sind(Az);
z = 1.05.*cosd(zenit);
```

Analiza wyników

Pierwsza grafika wizualizuje naniesienie punktów na półkulę (sferę niebieską). Są to położenia gwiazdy w danych godzinach. Pozwala to wyodrębnić moment wschodu i zachodu gwiazdy oraz potwierdzić ruch pozorny gwiazd.

Drugi wykres prezentuje zależność kąta zenitalnego od czasu w godzinach.Za pomocą tych danych można określić położenie zenitalne gwiazdy w danym miejscu.

Trzeci wykres ukazuje zależność kąta horyzontalnego od czasu. Dzięki czemu można określić położenie gwiazdy na horyzoncie w danym miejscu i czasie

```
%Wizualizacja półkuli
[X,Y,Z] = sphere(24);
X = X(13:end,:);
Y = Y(13:end,:);
Z = Z(13:end,:);
surf(X,Y,Z,'FaceColor','green','FaceAlpha',0.5)
axis equal,
hold on;
% Wizualizacja gwiazdy
scatter3(x,y,z, 500, 'red', '.')
%plot(h, zenit)
%plot(h, wysokosc)
```

Norylsk

Quito

Porto Alegre

Wnioski

- Gwiazdy w trakcie doby poruszają się na niebie ruchem pozornym
- Droga ruchu na niebie jest zależna od miejsca obserwacji
- ruch gwiazd ma kształt okręgu i zawsze odbywa się wokół bieguna niebieskiego (Polaris dla półkuli północnej)
- •W okolicy równika gwiazdy poruszają się prawie pionowo względem horyzontu