编 者 按

近年来,中华人民共和国教育部组织了一个强大的研究班子,探索制定"普通高中数学课程标 准"(实验稿),以求参照世界先进水平对现行高中数学课程进行改进和提高,特别是尽早实现学生的分 流。因材施教.

标准在必修课的基础上,提出了若干选修课题,"开关电路与布尔代数",就是选修系列4中的一个 题目.

刘绍学教授,曾为中学生和中学教师做过多次 普及数学的通俗演讲,在此基础上,整理出"开关电路 与布尔代数"的初稿,布尔代数原来是一个非常抽象的概念,刘绍学先生结合开关电路来讲,深入浅出, 生动活泼, 十分具体化、生活化, 易干被中学生接受, 引导学生们循序渐近地走近和了解深奥的数学王 国

数学通报热切地邀请数学家们,中学教师们为我们的中学生撰写类似的数学读物,让数学在我们的 国家 普及, 为提高我们全民族的文化素养尽一份力量.

数学通报编委会

开关电路与布尔代数

刘绍学 (北京师范大学数学系 100875)

引言 对数和数的运算我们非常熟悉,其重 要性怎么说都不讨份,物理中有一个有趣科幻问 题"如果没有摩擦力,世界该是什么样子?"我们 可以模仿地问"如果人类只知道数,而不知道数的 运算,我们的社会该是什么样子?,稍微一想,你 就会同意,现代文明的绝大部分都不存在了,我们 的社会将是非常原始.数的运算是数的灵魂,是数 学世界的灵魂, 是人类文明的支柱, 其威力是非常 大的. 在数学中仿照"数的运算"作一些事, 非常 有益.

下面,我们以开关电路设计为背景引入一种 类似数的对象并引入这些对象之间的运算,对这 个新的运算系统讲行讨论,得出类似于"数的运 算"的各种性质.最后应用这个数学理论,彻底解 决开关电路设计的基本问题.

开关电路

开关电路就是由开关经多次并联、串联与反 演所得到的电路, 每一开关 有两种状态:通和不通,每一 电路也有两种状态:通和不 通.下面将用小写英文字母

 $\{1\}1\}1$ 表示开关, 大写英文字母表 冬 1 示电路,但由一个开关 a 组

成的电路(如图 1), 仍记作 a.

图2(3)表示开关a和开关b并联(串联)得到 的电路, 而图 4 表示开关 a 经反演得到的电路 A(开关 a" 通" 时, 电路 A 的状态是"不通", 开关 a"不通"时, 电路 A 的状态是"通", 这样的电路在 物理 上是可以实现的)

一般地对任意电路 A, B 也可经并联, 串联或 反演得到新的电路,它们顺序记作"A 并联B"、"A串联 B"、"A 的反演". 原来 $A \setminus B$ 的状态与这些新

作成的电路的状态之间的关系列表如下:

电路 A	电路 В		A 并联 B			
	通		通			
通	不通		通			
不通	通		通			
不通	不通		不通			
表1						
电路 A	电路 В		A 串联 B			
 通	通		通			
通	不通		不通			
不通	通		不通			
不通	不通		不通			
表 2						
电路 A		A	的反演			
通			 不通			
不通			通			
表 3						

我们已很习惯数学中常用的符号化方法. 只要把上面各表中的状态"通"、"不通"用简单符号表示, 就能大大简化. 我们借用数字"1"表示"通", 借用数字"0"表示"不通". 当然在这里"1", "0"已失去原来的数字意义, 只是代表"通", "不通"这些电路的状态(但也考虑到它们原有属性, 我们不愿用"0"表示"通"). 我们再进一步符号化, 而将用"十"表示"并联", 用" $^{\circ}$ "表示"串联", 用" $^{\circ}$ "表示"反演", 这样 $^{\circ}$ $^{\circ}$

A	B	A+B		
1	1	1		
1	0	1		
0	1	1		
0	0	0		
表 1				
A	B	$A \circ B$		
1	1	1		
1	0	0		
0	1	0		
0	0	0		
表 2				
	A	\overline{A}		
	1	0		
	0	1		
表 3				

现在来看看,经过这些符号化后,我们能得什么.

任何一个电路,例如电路 A(右图)

可表成一个"代数"

这样由一些小写字母(表示开关)经"十","。", "一",以及适当的括号连接起来的式子也给出一个电路来.

欲知电路 A 的效应,例如当 a = 1 (开关 a 处于"通"状态),b = 0,c = 1,d = 1 时 A 的状态是什么,只把这些值代入上面的式子,按照表 1 - 3 提供的规则进行计算一下便得,这就是:

$$((1 \circ 0) + (1 \circ 1)) + \overline{1} = (0+1) + 0 = 1 + 0 = 1$$

即此时 A 的状态是"通".

在本节最后,我们提出下面一个具体问题:

设计一个使三个人控制一个电灯的电路. 也就是说,设计一个由三个开关 a, b, c 组成的电路 A = f(a, b, c) 使得任一开关状态的改变都使电路 A = f(a, b, c) 的状态改变,即实现下表效应的电路 A

a	b	c	A = f(a, b, c)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

这是电路设计最基本最重要的问题:实现我们所要求效应的电路. 我们将在下一节完全解决这一问题.

2 布尔(Boole) 代数

在上一节开关电路的介绍之后,在数学中引入下面定义就是水到渠成的事了:

定义1 设集合 $B = \{0, 1\}$. 在集合 B 上规定 三个运算,分别记作"十"(加),"。"(乘),"一"(非),如下:

集合 B 连同这三个运算一起

$$\left\{ {}_{B}=\left\{ 0,1\right\} ,+,\cdot,\cdot
ight. ,\left. -
ight\}$$
称之为布尔代数.

让我们把新定义的布尔代数和我们熟悉的整数系相对比.这里的 $B = \{0, 1\}$ 相当于整数集 $Z = \{0, \pm 1, \pm 2, \cdots\}$, B 的加法"十"("。")可和Z 的加(乘)法对比. B 中还有运算"一", 这是 Z 中没有的.这一简单对比使我们想到数的加法,乘法适合交换律,结合律,还有乘法对加法的分配律,而这些算律在我们进行计算时提供很大方便. 现在来看一看, 这些算律对布尔代数是否成立.

和初中代数中用字母 a, b, c, …, 代数任意数一样, 我们对布尔代数 B 也引入变元 a, b, c, …, 但这里该提醒的是: B 上的变元只能代表 B 中的元素, 即 0 或 1.

今证布尔代数中加法,乘法适合交换律和结合律,即证在 B 中有:

$$a+b=b+a$$
, $a \circ b=b \circ a$
 $(a+b)+c=a+(b+c)$, (1)
 $(a \circ b) \circ c=a \circ (b \circ c)$

在数学证明 之前,我们看一下 (a°b)°c=a°I: (b°c)在开关电 路中说明什么.

路中说明什么. $(a^{\circ}b)^{\circ}c$ 可解释 Π : 为开关电路 I,而 $a^{\circ}(b^{\circ}c)$ 可解释为开关电路

Ⅱ. 一眼就看出,

这两个电路是等效的,这说明

 $(a \circ b) \circ c = a \circ (b \circ c)$. 你可以把这个说明看成 B 中乘法适合结合律的"物理证明",也可以把这个电路背景的说明看成是物理上强烈支持这个数学结果,因而仍需要一个数学证明.

下面给出 $(a \circ b) \circ c = a \circ (b \circ c)$ 的数学证明, 这就是验算, 当 a, b, c 取 $B = \{0, 1\}$ 中任意值时, $(a \circ b) \circ c$ 都等于 $a \circ (b \circ c)$, 这可从下表中看出

这里我们严格地按照定义 1 中的规定进行讨论的,在数学上定义 1 是我们对布尔代数 B 进行讨论的唯一依据.

类似地可以给出(1) 中其它三个等式的数学证明(以及"物理证明").

把布尔代数与数系相对比,数系还提示我们: 应该考虑考虑乘法对加法的分配律是否在布尔代数 B 中也成立,有趣的是,不但在 B 中a ° (b+c) = a ° b + a ° c 成立,并且也有加法对乘法的分配律, a + (b ° c) = (a+b) ° (a+c),请你给出它们的数学证明以及"物理证明".

把布尔代数与开关电路相联系,物理也会给我们一些启示,那样一些等式在布尔代数 B 中可能是对的,例如,两个开关 a 并联和由一个开关 a 作成的电路是等效的,这提示我们 a+a=a 在 B 中该是对的,类似地 $a \circ a=a$ 在 B 中也该是对的,

下面定理汇集了布尔代数中常用的基本等式.

定理 1 在布尔代数 $B = \left\{ \{0, 1\}, +, \cdot, -\right\}$ 中下列等式成立:

- 1) a + b = b + a(加法交换律), $a \circ b = b \circ a$ (乘法交换律):
- 2) (a+b)+c=a+(b+c) (加法结合律), $(a \circ b) \circ c=a \circ (b \circ c)$ (乘法结合律):
- 3) $a \circ (b+c) = a \circ b + a \circ c$ (乘法对加法的分配律),

 $a + (b \circ c) = (a+b) \circ (a+c)$ (加法对 乘法的分配律)

- 4) a + 0 = a, $a \cdot 1 = a$, a + 1 = 1, $a \cdot 0 = 0$;
- 5) a + a = a(加法的幂等律), $a \cdot a = a$ (乘法的幂等律);
- 6) $\overline{a} = a$; 7) $\overline{(a+b)} = \overline{a} \circ \overline{b}$, $\overline{a \circ b} = \overline{a} + \overline{b}$ 8) $a + \overline{a} = 1$, $a \circ \overline{a} = 0$

证明 6)的证明: 当a=0时, $\overline{0}=\overline{1}=0$ 元

当 a = 1 时,1 = 0 = 1,故当 a 取任意值时,都有a = a,即 a 得证.

7) 中
$$\overline{a \cdot b} = \overline{a} + \overline{b}$$
 的证明, 如下表

а	b	$\overline{a \circ b}$	$\overline{a} + \overline{b}$
0	0	$\overline{0 \cdot 0} = \overline{0} = 1$	$\bar{0} + \bar{0} = 1 + 1 = 1$
0	1	$\overline{0 \cdot 1} = \overline{0} = 1$	$\bar{0} + \bar{1} = 1 + 0 = 1$
1	0	$\overline{1 \cdot 0} = \overline{0} = 1$	$\bar{1} + \bar{0} = 0 + 1 = 1$
1	1	$\overline{1 \cdot 1} = \overline{1} = 0$	$\bar{1} + \bar{1} = 0 + 0 = 0$

其它的证明都留给大家自己去作,定理证完.

这里许多算律,特别是 5),是和数的运算规则很不一样的,可以说是很奇怪的,但在布尔代数中的确成立.

至此我们构建了布尔代数的"算术",很自然的下一步我们立刻该作的是,彷照数系上的代数,去构建布尔代数的"代数",也就是引入布尔代数 B 上的"代数式"的概念.

把布尔代数 B 上的一些变元以及 0 和 1 用布尔代数 B 的三个运算逐次运算(合理联结)起来的式子,就叫做布尔多项式,例如(注意:其中运用了结合律)

$$a \circ b \circ \overline{c} + a \circ \overline{b} \circ c + \overline{a} \circ \overline{b} \circ \overline{c};$$

 $a \circ (b + \overline{c}) + \overline{(a + b) \circ c} + a \circ b$

等等都是布尔多项式,但,例如, $a+^{\circ}\overline{b}$,这不是布尔多项式,它不是合理联结起来,对它我们无法逐次进行运算.

在引入布尔多项式之后, 立刻该说明的是, 什么时候两个布尔多项式是相等的, 我们规定: 两个布尔多项式相等, 当且仅当其中变元取定任意值时, 这两个布尔多项式的值相等, 即我们是从"函数观点"来看待它们的相等, 而不管它们形式上是否一样, 例如布尔多项式 $a \circ a$ 和 a 是相等的.

中学讨论数系上的多项式时有两个问题,一是化简(脱括号、合并同类项等),二是标准形式.

先来说布尔多项式的化简, 化简时每一步只能依据定理1中的各种算律, 不能有一点马虎, 为了方便, 我们约定"先乘后加", 略去乘号"。", 并将随时随地使用结合律、交换律而不再一一注明.

根据幂等律,永远可用 a 代替 aa,因而化简后,可使乘积中同一因子只出现一次,类似地,化简时可用 a 代替 a+a,因而在求和时可认定每一加项只出现一次,根据定理 1 中4),布尔多项式在化简后没有"常数项",因为若"常数项"是 0,则可略去,若它是 1,则整个布尔多项式就等于 1 了,所

以除布尔多项式本身是0或1外,可认定它们没有"常数项",类似地,我们可认定每一乘积前是没有"系数"的.

作为举例,我们来化简上面第二个布尔多项式.

$$a(b+\overline{c})+\overline{(a+b)\overline{c}}+ab$$

- $= ab + ac + \overline{(a+b)} + c + ab$ (据 2, (定理 1 中的, 下同)3,7)
- $= ab + ab + a\bar{c} + a\bar{b} + c(\text{If } 1, 2, 6, 7)$
- $= ab + a\overline{c} + \overline{a}\overline{b} + c$ (据 5)

我们不喜欢括号,不喜欢架在一个布尔多项式上的"一"运算(如上式中的第二项),然而依据定理 1,特别是算律 3,6,7,是能够把它们化掉的,最后得到的式子就是变元 (a,b,c,\cdots)) 及在"一"运算下的变元 $(\overline{a},\overline{b},\overline{c},\cdots)$ 的乘积之和,如上例所示.

$$ab + a c + a b + c$$

- $= \underline{a}\underline{b}(c+\underline{c}) + \underline{a}(b+\overline{b})\underline{c} + \overline{a}\underline{b}(c+\overline{c}) + (\underline{a} + \overline{a})(b+\overline{b})\underline{c}$
- $= abc + a \underline{b}\underline{c} + ab\underline{c} + a \underline{b}\underline{c} + a \underline{b}c + a$
- = abc + a b c + a b

由 $\{a, \overline{a}\}, \{b, \overline{b}\}, \{c, \overline{c}\}$ 中各取一个元素作成的乘积共 $2^3 = 8$ 个,除上式中最后一个式子所出现的 7 个外,还有一个,就是 \overline{abc} ,而三元布尔多项式的标准形式就是从这 8 个乘积中取出一部分作和而得,这样,三元布尔多项式的标准形式共有 2^8 个(取全部 8 个乘积作和而得到的布尔多项式,你将知道,就是布尔多项式 1,而一个乘积都不取的情况,我们把它理解为布尔多项式 0),一般地我们有,n 个变元布尔多项式的标准形式的个数

是 2^{2^n} 直接按照两个布尔多项式相等的定义去判

断布尔多项式的相等,就得进行大量的验算,很麻烦,在这里标准形式提供极大的方便,因为我们有

定理 2 两个标准形式的布尔多项式相等当 且仅当它们具有完全相同的形式.

这样,只需把它们化成标准形式,再看看这两个标准形式是不是完全一样就可判断它们是否相等,方便多了.

这个定理的证明留给同学们,不过从我们在 下面的讨论你就会看出证明的路子.

至此我们对布尔代数的"代数"部分的讨论 暂告一段落.

中学中关于数系的讨论对我们还有启示吗? 中学中关于数系的讨论有三个层次: 算术、代数、函数. 下面也是受数系的启发, 也是电路设计的要求, 我们来讨论布尔代数上的函数 —— 布尔函数.

定义 2 以布尔代数 $B \perp n$ 个变元 x_1, x_2 … x_n 为自变量,且在 $B = \{0, 1\}$ 中取值的函数 $f(x_1, x_2, ..., x_n)$ 称为 n 元布尔函数.

例如在 $\S1$ 最末的那个表就给出一个三元布尔函数. 我们知道数系上的 n 元函数多得不得了,复杂的不得了,而 n 元多项式函数只是其中非常特殊的一小部分,打个比喻,如果把所有 n 元函数放在一个袋子中,从中抓出一个 n 元多项式函数来,这种情况相当于"大海捞针".

然而对布尔代数上的 n 元布尔函数情况就简单多了,熟悉排列组合的同学可以很快算出,共有 2^{2^n} 个不同的 n 元布尔函数,这样由定理 2, n 元布尔多项式的个数也是 2^{2^n} ,所以每一个 n 元布尔函数都可以用 n 元布尔多项式去实现,这就等于说。每一布尔函数都可以用一个开关电路实现,然而实际上我们必需要知道,对给定的 n 元布尔函数究竟是哪个 n 元布尔多项式能实现它,这是该进一步要解决的问题.

下面我们直接、彻底地解决用 n 元布尔多项式实现 n 元布尔函数的问题,并且不依赖于上面这个计数结果,通过 1 末这个具体例子来说明,它是一个三元布尔函数,其定义域由 8 个形如(a, b, c) 的点组成,并且要求在(a, b, c) 的点组成,并且要求在(a, b, c) 电(0, 0, 0), (1, 0, 0), (1, 1, 1) 处布尔函数 f(a, b, c) 取值 1, 在其它处 f(a, b, c) 取值 0.

如果我们会造一个布尔多项式,它在一点(说 是(0,0,1)上取值1,而在其余点上取值0,则一切 问题就解决了; 只要把取值为 1 的各点相应的这种布尔多项式加起来就行了, 找到这样的布尔多项式是很容易的; $a\bar{b}c$ 就是, 它只当 a=0, b=0, c=1时取值 1, 而在其它情形, a, b, c中必至少有一个是 0, 因而其乘积 $a\bar{b}c$ 必是 0. 这样

在(0,0,1)上取1,在其余点上取0的布尔多项式是 $\bar{a}\bar{b}c$:

在(0, 1, 0)上取1,在其余点上取0的布尔多项式是 $\frac{1}{abc}$;

在(1,0,0)上取1,在其余点上取0的布尔多项式是 $a\bar{b}$ c:

在(1,1,1)上取1,在其余点上取0的布尔多项式是abc,

而实现布尔函数 f(a, b, c) 的布尔多项式就是它们的和, 即

 $f(a, b, c) = \overline{a}\overline{b}c + \overline{abc} + a\overline{b}\overline{c} + abc$

通过这个例子,我相信大家会总结出规律,而对任意给定的 n 元布尔函数会很快写出实现它的 n 元布尔多项式.

很多实际问题都希望能在某种输入的情况下有某种输出,就像1中三人控制一灯的情形,这往往可抽象成一个n元布尔函数,这里告诉你布尔函数都可用布尔多项式实现,而在以前我们知道布尔多项式都可以由一个开关电路实现,这样那个实际问题也就可以由一个开关电路来实现,现在你应该能画出实现三人控制一灯的开关电路了.

上面我们经历了"实际问题 —— 数学理论 —— 问题解决"这样一个全过程,很实际,很理论,很美,没有讨论布尔多项式的化简是美中不足;如果说中学中对于多项式的化简常给我们理论上的方便,这里的布尔多项式的化简,立刻简化相应的开关电路而带来经济上的效果.

最后说一点历史,英国数学家 G. Boole 于 1847年为了研究思维规律引入今日被称为的布尔代数, 大约一百年后美国电气工程师 C. E. Shannon 把它用于开关电路上,开关电路与布尔代数之间的联系是这样密切和自然,如果你是一位研究开关电路设计而又听说有这么一个布尔代数的话,相信咱们也能作出和 Shannon 类似的工作.

(本文是由作者给中学教师和高中生所作的 几次通俗介绍的讲稿整理而成的)