理科高等代数串讲

leoxwang at buaa.edu.cn

目录

1	数域	3
2	线性方程组的求解	3
3	线性空间的概念	4
4	线性组合与相关性	5
5	向量组的秩	6
6	线性空间的基	7
7	同态与同构	7
8	子空间的交与和	8
9	行列式	9
10	展开定理	10
11	Cramer 法则	11
12	数域上的矩阵	12
13	初等矩阵与矩阵变换	13
14	秩的第二种定义,秩不等式	14
15	数域上的多项式	15
16	有理系数多项式	17
17	多项式理论的应用	17

/ 43

18	线性映射/变换的概念	18
19	线性变换的矩阵	19
2 0	线性变换在不同基下的矩阵	20
21	像与核	22
22	特征值与特征向量	24
23	特征子空间与对角化,不变子空间与准对角化	26
24	零化多项式与最小多项式	27
25	Jordan 形简介	29
26	二次型及其矩阵	31
27	二次型的标准形与规范形	31
28	正定/半正定/负定/半负定/不定二次型及其矩阵	33
29	内积与欧氏空间	36
30	正交矩阵与正交变换	39
31	实对称矩阵的正交相似对角化,对称变换	41
32	特征值专题	43

理科高等代数 3 / 43

1 数域

定义. (数域) 集合 $F \subset \mathbb{C}$, 如果它满足

- (1) $0, 1 \in F$;
- (2) F 对于加、减、乘除封闭

则称 F 是一个数域

常见的例子: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Q} \}$, 其中 \mathbb{Q} 是最小的数域。

高等代数中的许多问题都和数域的性质有关,例如多项式理论,ℚ,ℝ,ℂ上的因式分解差别很大。

2 线性方程组的求解

Gauss 消元法/矩阵消元法,它们的本质都是通过初等行变换得到最简阶梯形,然后读出解

例 1 在数域
$$F$$
 上求解线性方程组
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1 \\ 2x_1 + 2x_2 + 5x_3 = 2 \end{cases}$$

定理 2.1 (解存在的条件,结构定理) 将 n 元方程组的增广矩阵化为最简阶梯形,记系数矩阵非零行个数为 r,增广矩阵非零行个数为 \tilde{r}

- (1) 如果 $r < \tilde{r}$,则有矛盾方程,此时方程组无解;
- (2) 如果 $r = \tilde{r}$,则方程组有解,而且通解中有 n r 个独立取值的参数

推论 2.2 齐次线性方程组总是有解,而且

- (1) 如果 r = n, 方程组只有零解;
- (2) 如果 r < n, 方程组有无穷多组解

推论 2.3 如果齐次线性方程组的未知数个数多于方程个数,那么一定有无穷组解

例 2 齐次线性方程组 $AX = 0, A \in M_{m \times n}(F)$ 有非零解的充要条件是

定理 2.4 数域 F 上的 n 元**齐次**线性方程组 AX = 0,它的解集构成一个线性空间,一组基被称为方程组的基础解系,而且满足维数公式

$$\dim V_A = n - \operatorname{rank} A$$

定理 2.5 数域 F 上的 n 元**非齐次**线性方程组 AX = B,设 γ 是一个特解,导出组 AX = 0 的一个基础解系是 X_1, \dots, X_{n-r} ,则它的通解为

$$X = \gamma + k_1 X_1 + \dots + k_{n-r} X_{n-r}$$

例 4 设 $A \in M_{n \times (n+1)}(F)$, rank A = n, 且 A 每一行的元素之和为 0, 求证 A 的任意 n 阶子式不为 0

例 5 设 $A \in M_{m \times n}(F)$,则非齐次线性方程组 AX = B 至多有_____ 个线性无关的解

- 例 6 设 α_1,α_2 是含有三个未知数的线性方程组 $AX=\beta$ 的两个不同的解,且 rank A=2,则 AX=B 的通解 为_____
 - (A) $\alpha_1 + k\alpha_2$;

(C) $2\alpha_1 + k(\alpha_1 - \alpha_2)$;

(B) $\frac{1}{2}(\alpha_1 + \alpha_2) + k(\alpha_1 - \alpha_2);$

(D) $k_1\alpha_2 + k_2(\alpha_1 - \alpha_2)$

例 7 线性方程组 AX = B 的系数矩阵 $A \in M_{4 \times 5}(\mathbb{R})$,且 A 的行向量组线性无关,则下列命题错误的是_____

- (A) 齐次线性方程组 $A^TY = 0$ 只有零解;
- (B) 齐次线性方程组 $A^TAX = 0$ 必有非零解;
- (C) $\forall B \in \mathbb{R}^4$, 方程组 AX = B 必有无穷多解;
- (D) $\forall B \in \mathbb{R}^5$, 方程组 $A^TX = B$ 必有唯一解
- 例 8 考虑数域 F 上的非齐次线性方程组 AX = B,其中 $A \in M_{4\times 6}(F)$, $B \neq 0 \in F^4$ 。已知 rank A = 3,则该线性方程组的解集生成的子空间维数为
- 例 9 设 $\alpha_1, \alpha_2, \alpha_3$ 是方程组 AX = 0 的基础解系,则下列向量组也可作为 AX = 0 基础解系的是_____
 - (A) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$;
 - (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + \alpha_3$;
 - (C) $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 \alpha_2$;
 - (D) $\alpha_1 + \alpha_2, \alpha_1 \alpha_2, \alpha_1$
- 例 10 设 $A \in M_{m \times n}(\mathbb{R})$, 证明 rank $A = \operatorname{rank} A^T A$

3 线性空间的概念

定义. (线性空间) V 是一个非空集合,F 是一个数域,如果在 V 中定义加法和数乘 $(+,\cdot)$,满足以下运算律

- (1) $\forall \alpha, \beta, \gamma \in V(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma);$
- (5) $\forall k, l \in F, \alpha \in V, k(l\alpha) = (kl)\alpha;$

(2) 存在零元 0, $\forall \alpha \in V, \alpha + 0 = \alpha$;

(6) $\forall k, l \in F, \alpha \in V, (k+l)\alpha = k\alpha + l\alpha;$

(3) $\forall \alpha \in V, \exists \beta \in V, \alpha + \beta = 0$;

(7) $\forall k \in F, \alpha, \beta \in V, k(\alpha + \beta) = k\alpha + k\beta$;

(4) $\forall \alpha, \beta \in V, \alpha + \beta = \beta + \alpha$:

(8) $\forall \alpha \in V, 1\alpha = \alpha$

则称 V 是 F 上的线性空间

定义. (子空间)设 W 是 $(V,+,\cdot)$ 的非空子集,若 $(W,+,\cdot)$ 是线性空间,则称 W 是 V 的子空间,记作 $W \leq V$ 以下总用 V 表示某个数域 F 上的线性空间,它的元素被称为向量常见的线性空间:

(1) F^n ;

(5) $C(\mathbb{R})$;

(2) $M_{m\times n}(F)$;

(6) $C_b(\mathbb{R})$;

(3) F[x];

(7) $C^k(\mathbb{R})$;

(4) $F[x]_n$;

(8) $R(\mathbb{R})$

例 11 设集合 $W = \{(y_1, y_2, y_3) \in \mathbb{R}^3 | y_1 + y_2 + y_3 = a\}$,且 W 继承了 \mathbb{R}^3 中的加法和数乘,则下列说法中一定成立的是

- (A) 对任意 a, W 都是线性空间;
- (B) 对任意 a, W 都不是线性空间;
- (C) 只有当 a=0 时, W 才是线性空间;
- (D) 只有当 $a \neq 0$ 时, W 才是线性空间

4 线性组合与相关性

定义. (线性等价)设 $S,T \subseteq V$,如果它们互为线性组合,则称它们线性等价,记作 $S \cong T$

定义.(线性相关性)设向量组 $\{\alpha_1, \cdots, \alpha_k\}$,如果存在不全为零的数 $\lambda_1, \cdots, \lambda_k$,使得 $\lambda_1\alpha_1 + \cdots + \lambda_k\alpha_k = 0$,则称这一向量组线性相关,否则称线性无关

- 例 12 设 n 元非齐次线性方程组 AX = B 的系数矩阵的秩为 r,且解集非空,则其解集中至多有_____ 个线性无关的向量
- 例 13 下列向量组中线性无关的是
 - (A) $(1,2,3,4)^T$, $(2,3,4,5)^T$, $(0,0,0,0)^T$, $(1,2,3,4)^T$;
 - (B) $(1,2,-1)^T$, $(3,5,6)^T$, $(0,7,9)^T$, $(1,0,2)^T$;
 - (C) $(a, 1, 2, 3)^T$, $(b, 1, 2, 3)^T$, $(c, 3, 4, 5)^T$, $(d, 0, 0, 0)^T$;
 - (D) (a, 1, b, 0, 0), (c, 0, d, 6, 0), (a, 0, c, 5, 6);
- 例 14 在 $V = \{(a,b)|a,b \in \mathbb{R}\}$ 中,定义加法和数乘分别为

$$(a,b) \oplus (c,d) = (a+c,b+d+ac)$$
$$k \otimes (a,b) = \left(ka,kb + \frac{2}{3}k(k-1)a^2\right), k \in \mathbb{R}$$

则 V 是 \mathbb{R} 上的线性空间。设 $p \in \mathbb{R}$,若 (1,1) 和 (2,p) 线性相关,则 p =_______例 15 设**非零**矩阵 A,B 满足 AB = 0,则必有

- (A) A 的列向量组线性相关, B 的行向量组线性相关;
- (B) A 的列向量组线性相关,B 的列向量组线性相关;
- (C) A 的行向量组线性相关, B 的行向量组线性相关;
- (D) A 的行向量组线性相关, B 的列向量组线性相关

例 16 设 $a_1, \dots, a_n \in \mathbb{R}$ 而且互不相同,证明 $\{e^{a_1x}, \dots, e^{a_nx}\}$ 是 $C(\mathbb{R})$ 中的线性无关向量组 例 17 设 $\{\alpha_1, \dots, \alpha_n\} \subseteq \mathbb{R}^m$ 线性无关, $\beta \neq 0 \in \mathbb{R}^n$,证明 $\{\alpha_1 \beta^T, \dots, \alpha_n \beta^T\} \subseteq M_{m \times n}(\mathbb{R})$ 同样线性无关

5 向量组的秩

定义.(极大线性无关组)设 $S\subseteq V$,如果 $M\subseteq S$ 线性无关,而且添加 S 中任何向量就线性相关,则称 M 是 S 的一个极大线性无关组

定义. (等价定义)设 $S \subseteq V$,如果 $M \subseteq S$ 线性无关,而且可以线性表出 S 中的所有向量,则称 M 是 S 的一个极大线性无关组

定理 5.1 设 $S_1, S_2 \subseteq V$, 而且 $\#S_1 < \#S_2$, 如果 S_2 是 S_1 的线性组合,则 S_2 线性相关

定义. (向量组的秩) 如果向量组 $S \subseteq V$ 的一个极大线性无关组含有向量的个数为 r,则称 S 的秩为 r,记作 rank A = r

例 18 设向量组 $\alpha_1, \dots, \alpha_5$ 的秩为 4,那么从该向量组中任取 3 个向量组成的向量组的秩最小可能为_____ 例 19 以下命题中正确的有_____ 个

- (1) 若向量组 $\alpha_1, \dots, \alpha_r$ 与向量组 β_1, \dots, β_s 等价,则它们的秩相等;
- (2) 若向量组 $\alpha_1, \dots, \alpha_r$ 与向量组 β_1, \dots, β_s 的秩相等,则它们等价;
- (3) 若向量组 $\alpha_1, \dots, \alpha_r$ 与向量组 β_1, \dots, β_s 的秩相等,且前者可由后者线性表出则它们等价;
- (4) 若向量组 $\alpha_1, \dots, \alpha_r$ 与向量组 β_1, \dots, β_s 不等价,则它们的秩不相等

(A) 0; (B) 1; (C) 2;

例 20 设 $A \in M_n(F)$, $\exists k \in \mathbb{N}^*$, rank $A^k = \text{rank } A^{k+1}$, 证明存在 $B \in M_n(F)$, 使得 $A^k = BA^{k+1}$ 例 21 设 $A \in M_n(F)$, $\exists k \in \mathbb{N}^*$, rank $A^k = \text{rank } A^{k+1}$, 证明存在 $B \in M_n(F)$, 使得 $A^k = A^{k+1}B$

理科高等代数 7/43

6 线性空间的基

定义. (线性空间的基和维数)如果存在线性无关向量组 $W \subseteq V$,使得 W 可以线性表出 V 中任意向量,则称 W 是 V 的一组基,称 W 中元素的个数 #W 为 V 的维数,记作 dim V

例 22 设 V 是 \mathbb{R} 上所有 4 阶反对称矩阵构成的集合,若将 V 看作 $\mathbb{R}^{4\times4}$ 的子空间,则 $\dim V =$ _____

例 23 在数域
$$F$$
 上,设 E 为 2 阶单位阵, $I=\begin{pmatrix}1\\-1\end{pmatrix}$, $J=\begin{pmatrix}-1\\1\end{pmatrix}$, $K=\begin{pmatrix}-1\\-1\end{pmatrix}$

- (1) 试证明: $E, I, J, K \in M_n(F)$ 的一组基;
- (2) 求 I^2 , JK 在这组基下的坐标

例 24 给定数域 F 上两个 n 元齐次线性方程组 AX = 0, BY = 0, 给出它们有相同解空间的充要条件

7 同态与同构

定义. (线性同态)设 V_1, V_2 是 F 上的线性空间,如果映射 $\varphi: V_1 \to V_2$ 满足

- (1) $\varphi(\alpha + \beta) = \varphi(\alpha) + \varphi(\beta), \forall \alpha, \beta \in V_1$;
- (2) $\varphi(\lambda \alpha) = \lambda \varphi(\alpha), \forall \lambda \in F, \alpha \in V_1$

则称 φ 是从 V_1 到 V_2 的同态映射

定义. (线性同构)设 V_1, V_2 是 F上的线性空间,如果映射 $\varphi: V_1 \to V_2$ 满足

- (1) φ 是同态映射;
- (2) φ 是一一映射

则称 φ 是从 V_1 到 V_2 的同构映射,并且称 V_1 和 V_2 同构,记作 $V_1 \cong V_2$

定理 7.1

- (1) 如果 $\varphi: V_1 \to V_2$ 是线性同态,则 $S \subseteq V$ 线性相关 $\Rightarrow \varphi(S)$ 线性相关;
- (2) 如果 $\varphi: V_1 \to V_2$ 是线性同构,则 $S \subseteq V$ 线性相关 $\Leftrightarrow \varphi(S)$ 线性相关

定理 7.2 F 上任意一个 n 维线性空间都和 F^n 同构

例 25 设 X_1, \dots, X_s 为 n 维列向量, $A \in M_{m \times n(F)}$,则下列说法正确的是_____

- (A) 若 X_1, \dots, X_s 线性相关,则 AX_1, \dots, AX_s 线性相关;
- (B) 若 X_1, \dots, X_s 线性相关,则 AX_1, \dots, AX_s 线性无关;
- (C) 若 X_1, \dots, X_s 线性无关,则 AX_1, \dots, AX_s 线性相关;

理科高等代数 8 / 43

(D) 若 X_1, \dots, X_s 线性无关,则 AX_1, \dots, AX_s 线性无关

例 26 任取 $c \in \mathbb{R}$

- (1) 证明在 $\mathbb{R}[x]_n$ 中, $\{1, x-c, \cdots, (x-c)^{n-1}\}$ 构成一组基;
- (2) \vec{x} $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ 在这组基下的坐标

例 27 设 $\{\alpha_1, \dots, \alpha_m\}$ 是 F^m 的一组基, $\{\beta_1, \dots, \beta_n\}$ 是 F^n 的一组基,证明 $\{\alpha_i \beta_j^T | 1 \le i \le m, 1 \le j \le n\}$ 是 $M_{m \times n}(F)$ 的一组基

8 子空间的交与和

定义. (两个子空间的交与和)设 $W_1, W_2 \subseteq V$ 是子空间

- (1) 称 $W_1 \cap W_2 = \{ \alpha \in V | \alpha \in W_1, W_2 \}$ 为它们的交;
- (2) 称 $W_1 + W_2 = \{\alpha + \beta \in V | \alpha \in W_1, \beta \in W_2\}$ 为它们的和

定理 8.1 $W_1 \cap W_2, W_1 + W_2$ 都是线性空间,而且

- (1) $W_1 \cap W_2$ 是含于 W_1, W_2 的最大的线性空间;
- (2) $W_1 + W_2$ 是包含 W_1, W_2 的最小的线性空间

从两个子空间的交与和可以(归纳地)定义更多空间的交与和,以上定理依然成立

定理 8.2 设 $W_1, W_2 \subseteq V$ 是子空间,则有

$$\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim W_1 + \dim W_2$$

例 28 给定 F^4 的子空间 W_1 的基 $\{\alpha_1,\alpha_2\}$ 和子空间 W_2 的基 $\{\beta_1,\beta_2\}$, 其中

$$\alpha_1 = (1, 1, 0, 0), \alpha_2 = (0, 1, 1, 0), \beta_1 = (1, 2, 3, 4), \beta_2 = (0, 1, 2, 2)$$

分别求 $W_1 + W_2, W_1 \cap W_2$ 的维数并各求出一组基

定义. (两个子空间的直和)设 $W_1, W_2 \subseteq V$ 是子空间,若在 $W = W_1 + W_2$ 中,每个向量的分解式

$$w = w_1 + w_2, w_1 \in W_1, w_2 \in W_2$$

唯一,则称 W 是它们的直和,记作 $W = W_1 \oplus W_2$

定理 8.3 设 $W_1, W_2 \subseteq V$ 是子空间, $W = W_1 + W_2$, 则以下条件等价

(1) W 是直和;

- (2) W 中每个向量的分解式唯一;
- (3) W 中零向量的分解式唯一;
- (4) $W_1 \cap W_2 = \{0\};$
- (5) dim $W = \dim W_1 + \dim W_2$;
- (6) 取 W_1, W_2 的极大线性无关组 S, T,则 $S \cup T$ 构成 W 的一个极大线性无关组
- 例 29 设 $A \in M_n(F)$, $A^2 = -A$, 设 $V_1 = \{X \in F^n | AX = 0\}$, $V_2 = \{X \in F^n | (A+I)X = 0\}$
 - (1) 证明 $V_1 \oplus V_2 = F^n$;
 - (2) 证明 $\operatorname{rank} A + \operatorname{rank}(A + I) = n$
- 例 30 设 $A \in M_n(F)$, rank A = n 1,记 A 的伴随矩阵为 A^* ,记齐次线性方程组 AX = 0, $A^*X = 0$ 的解空间 分别为 V_A, V_{A^*} ,试证明 $F^n = V_A \oplus V_{A^*} \iff \operatorname{tr} A^* \neq 0$

9 行列式

需要知道排序、逆序的概念,会计算逆序数,以及根据定义求行列式

定理 9.1 设
$$A \in M_m(F), B \in M_n(F), \ \mathbb{D} \mid A \quad C \\ 0 \quad B \mid = |A||B|$$

例 31 6 阶行列式 $|a_{ij}|$ 中项 $a_{23}a_{42}a_{31}a_{56}a_{14}a_{65}$ 前的符号为_____

定理 9.2

- (1) $|A| = |A^T|$;
- (2) 如果行列式的某一行(列)有公因数 k,则 k 可以提到行列式外;
- (3) 互换行列式的两行(列), 行列式的值改变符号;
- (4) 如果行列式中两行(列)对应元素成比例,那么行列式的值为0;
- (5) 如果行列式某行(列)元素可以写成两数之和,那么行列式可以拆分为两个行列式之和;
- (6) 将某一行(列)的元素同时乘 k 并加到另一行(列),行列式的值不改变
- 例 33(判断)奇数阶反对称矩阵不可逆;

例 34 (判断) $n(n \ge 2)$ 阶行列式中若所有元素都是 ± 1 ,那么行列式值不可能取 ± 1

例 35 四阶行列式
$$\begin{vmatrix} a_1 & 0 & 0 & b_1 \\ 0 & a_2 & b_2 & 0 \\ 0 & b_3 & a_3 & 0 \\ b_4 & 0 & 0 & a_4 \end{vmatrix}$$
 的值为_____

(A) $a_1a_2a_3a_4 - b_1b_2b_3b_4$;

(C) $(a_1a_2 - b_1b_2)(a_3a_4 - b_3b_4)$;

(B) $a_1a_2a_3a_4 + b_1b_2b_3b_4$;

(D) $(a_2a_3 - b_2b_3)(a_1a_4 - b_1b_4)$

例 36 设
$$A \in M_n(F)$$
,并且 $A \xrightarrow{(2,3)} B \xrightarrow{-3(4)+(1)} C \xrightarrow{\frac{1}{2}(3)} \begin{pmatrix} 2 & 1 & 0 & 0 \\ 4 & 3 & 0 & 0 \\ -5 & -2 & 4 & 5 \\ 2 & 1 & 1 & 2 \end{pmatrix}$,则 $|A| =$ ______

(A) 3;

(B) -3;

(C) 12;

(D) -12

例 37 计算 n 阶行列式

$$D_n = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & & & \\ 1 & & 3 & & & \\ \vdots & & \ddots & & \\ 1 & & & n & \end{vmatrix}$$

例 38 计算 n 阶行列式的值

$$D_n = \begin{vmatrix} x & a & a & \cdots & a \\ -a & x & a & \cdots & a \\ -a & -a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a & -a & -a & \cdots & x \end{vmatrix}$$

10 展开定理

定理 10.1 (1) 行列式的值等于它的任意一行(列) 各元素与其对应的代数余子式乘积之和;

(2) 行列式中某一行(列) 与另一行(列) 对应元素的代数余子式乘积之和为 0

以上两条即
$$\sum_{i=k}^{n} a_{ik} A_{jk} = \begin{cases} |A|, & i=j \\ 0, & i \neq j \end{cases}, \sum_{i=k}^{n} a_{ki} A_{kj} = \begin{cases} |A|, & i=j \\ 0, & i \neq j \end{cases}$$

例 39 设
$$D = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} & 0 \\ a_{31} & a_{32} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & 0 & \cdots & 0 & 0 \end{bmatrix}$$
,用 A_{ij} 表示 a_{ij} 的代数余子式,则 $\sum_{k=1}^{n} kA_{k1} = \underline{}$

例 40 求行列式 D_n 的值,其中

$$D_n = \begin{vmatrix} -2 & 1 \\ 1 & -2 & 1 \\ & 1 & -2 & \ddots \\ & & \ddots & \ddots & 1 \\ & & & 1 & -2 \end{vmatrix}$$

11 Cramer 法则

定理 11.1 (Cramer 法则)设数域 F 上线性方程组 AX = B 满足 $A \in M_n(F)$ 而且 $D = |A| \neq 0$,则这一方程组有唯一解,并且可以写成

$$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D},$$

其中 D_i 是将 D 的第 i 列替换为 B 所得的行列式

推论 11.2 设 $A \in M_n(F)$,则下列论断等价

- (1) $|A| \neq 0$;
- (2) A 的列向量组线性无关;
- (3) A 的行向量组线性无关;
- (4) rank A = n

例 41 设矩阵 $A \in M_{m \times n}(F), B \in M_{n \times m}(F)$,则_____

- (A) 当 m > n 时,必有行列式 $|AB| \neq 0$;
- (B) 当 m > n 时,必有行列式 |AB| = 0;
- (C) 当 m < n 时,必有行列式 $|AB| \neq 0$;
- (D) 当 m < n 时,必有行列式 |AB| = 0

例 42 设 $A \in M_{m \times n}(F), B \in M_{n \times m}(F), m > n$,则下列结论正确的是_____

(A) |AB| > 0;

(C) |AB| < 0;

(B) |AB| = 0;

(D) |AB| 不存在;

例 43 是否存在区间 [2022, 2023] 上的四个实连续函数 $a_{ij}(t)$, 同时满足

- (1) 对于任意 $t \in [2022, 2023]$, $A(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) \\ a_{21}(t) & a_{22}(t) \end{pmatrix}$ 可逆;
- (2) $A(2022) = \begin{pmatrix} \sin 2022 & \cos 2022 \\ -\cos 2022 & \sin 2022 \end{pmatrix}, A(2023) = \begin{pmatrix} -\sin 2023 & \cos 2023 \\ \cos 2023 & \sin 2023 \end{pmatrix}$

例 44 设 $A \in M_n(F)$, $|A| = d \neq 0$,并且每行元素之和为 c,试计算所有代数余子式之和 $\sum_{i,j=1}^n A_{ij}$

理科高等代数 12 / 43

12 数域上的矩阵

熟悉矩阵的加法、数乘、乘法运算,看清矩阵的形状

定理 12.1 设 $A, B \in M_n(F)$, 则 |AB| = |A||B|

例 45 回答下列问题

- (1) 是否存在实二阶方阵 A,使得 $A^2 = -I$?
- (2) 是否存在 5 阶方阵 A, 使得 $A^3 = 0, A^2 \neq 0$?
- (3) 设 A 为方阵,若存在 $k \in \mathbb{N}^*$,使得 $A^k = 0$,则称 A 为幂零方阵。两个同阶幂零方阵的乘积是否是幂零方阵?

学会从**线性组合**的角度理解矩阵乘法

例 46 设 $A \in M_n(F)$, $\exists k \in \mathbb{N}^*$, rank $A^k = \text{rank } A^{k+1}$, 证明存在 $B \in M_n(F)$, 使得 $A^k = BA^{k+1}$

例 47 设 $A \in M_n(F)$, $\exists k \in \mathbb{N}^*$, rank $A^k = \operatorname{rank} A^{k+1}$, 证明存在 $B \in M_n(F)$, 使得 $A^k = A^{k+1}B$

熟悉分块矩阵的运算,注意分块要保证乘法的合理性

例 48 设
$$A \in M_{m \times n}(F), B \in M_{p \times q}(F), M = \begin{pmatrix} A & C \\ O & B \end{pmatrix}$$
,则下列说法正确的有_____

- (1) 如果 C = 0,则 rank M = rank A + rank B;
- (2) 对于一般的矩阵 C,有 rank M = rank A + rank B;
- (3) 对于一般的矩阵 C,有 rank $M \leq \text{rank } A + \text{rank } B$;
- (4) 对于一般的矩阵 C,有 rank $M \ge \text{rank } A + \text{rank } B$;

(A)
$$(1)(2)$$
;

(B)
$$(1)(3)$$
;

(C)
$$(1)(4)$$
;

(D) (1)

例 49 设 $A, B \in M_n(F)$, 证明

$$\left| \begin{array}{cc} A & B \\ B & A \end{array} \right| = |A + B| \cdot |A - B|$$

熟悉可逆矩阵的定义, 掌握计算方法

定义.(逆矩阵)设 $A \in M_n(F)$,若存在 $B \in M_n(F)$,使得 AB = BA = I,则称 B 为 A 的逆矩阵,此时 A 称 为可逆矩阵

例 50 (判断) 若矩阵 A, B 的乘积 $AB = I_n$, 那么 A, B 互为逆矩阵;

例 51 下列四个关于矩阵的逆的说法正确的有

(1) 可逆对称矩阵的逆还是对称矩阵;

- (2) 可逆上三角矩阵的逆还是上三角矩阵;
- (3) 初等矩阵的逆还是初等矩阵;
- (4) 反对称矩阵一定不可逆

(A)
$$(1)(3)$$
;

(B)
$$(1)(2)(3)$$
;

(C)
$$(1)(3)(4)$$
;

(D) (1)(2)(3)(4);

例 52 设 $A, B, C \in M_n(F), B = I + AB, C = A + CA$, 则 B - C =

例 53 设矩阵
$$B = \begin{pmatrix} 2 & 3 & 0 \\ 2 & 1 & 3 \\ 0 & 3 & 1 \end{pmatrix}$$
, A, P 为 3 阶可逆矩阵,且 $(AP)^{-1} = -(PB)^{-1}$,则 $|A| = \underline{\hspace{1cm}}$

例 54 设 $A, B \in M_n(F)$,而且 I - AB 可逆,证明 $(I - BA)^{-1} = I + B(I - AB)^{-1}A$

定义. (伴随矩阵) 设 $A \in M_n(F)$, 则 $A^* := (A_{ii})$

定理 12.2
$$A^*A = AA^* = |A|I$$
,并且如果 A 可逆, $A^{-1} = \frac{1}{|A|}A^*, A^* = |A|A^{-1}$

例 55 设
$$A \in M_n(F)$$
,则 $\operatorname{rank} A^* = \left\{ \begin{array}{ll} n, & \operatorname{rank} A = n \\ 1, & \operatorname{rank} A = n-1 \\ 0, & \operatorname{rank} A < n-1 \end{array} \right.$

例 56 设 $A, B, C \in M_n(F), ABC = I$,则 $C^*B^*A^* =$

(A)
$$1 \vec{\boxtimes} -\frac{1}{3};$$

(C)
$$-\frac{1}{3}$$
;

(D) 3

例 58 设 $A \in M_n(F), n > 2$,则 $(A^*)^* =$

例 59 设
$$A$$
 的伴随矩阵为 $A^* = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 2 & 0 \\ 0 & 2 & 2 \end{pmatrix}$

- (1) 求 A;
- (2) 当 |A| < 0 时,求解矩阵方程 $A^{-1}XA = XA + I$

初等矩阵与矩阵变换 13

熟悉三类初等矩阵,掌握它们的计算,用它们来表示初等行(列)变换 熟悉矩阵的相抵标准形,掌握它的性质和计算方法

定理 13.1 设
$$A \in M_{m \times n}(F)$$
,则 A 可以经过有限次初等变换化为 $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$,其中 $r = \operatorname{rank} A$

推论 13.2 设 $A \in M_{m \times n}(F)$,则存在可逆矩阵 $P \in M_m(F)$, $Q \in M_n(F)$,使得 $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$

掌握分块矩阵的初等变换, 用矩阵的乘法进行描述

例 60 设
$$A \in M_{m \times n}(F)$$
, $B \in M_{n \times m}(F)$, 证明 $|I_m - AB| = |I_n - BA|$ 【提示:注意到 $\begin{pmatrix} I_m & 0 \\ -B & I_n \end{pmatrix} \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_m - AB & 0 \\ B & I_n \end{pmatrix} = \begin{pmatrix} I_m & A \\ 0 & I_n - BA \end{pmatrix}$ 即可】

例 61 设 $A \in M_3(F)$,将矩阵 A 的第一行加到第二行得到矩阵 B,再交换矩阵 B 的第二行与第三行得单位矩阵。

若记
$$P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 则矩阵 $A = \underline{\qquad}$

(A)
$$P_1^{-1}P_2$$
;

(B)
$$P_1P_2$$
;

(C)
$$P_1P_2^{-1}$$
;

(D)
$$P_2P_1^{-1}$$
;

例 62 若 $\alpha = (1, 2, \dots, 2021)$,则行列式 $|I_{2021} - \alpha^T \alpha|$ 的值为_____

例 63 用初等行变换将矩阵 A 化作相抵标准形 S, 并求出使 PAQ = S 的可逆矩阵 P,Q, 其中

$$A = \left(\begin{array}{rrrr} 1 & 0 & -2 & 2 \\ 0 & 1 & 3 & 4 \\ -1 & 1 & 4 & 4 \end{array}\right)$$

例 64 设 $A \in M_{m \times n}(F)$, rank A = r, 证明存在秩为 r 的 $P \in M_{m \times r}(F)$ 和秩为 r 的 $Q \in M_{r \times n}(F)$, 使得 A = PQ

14 秩的第二种定义,秩不等式

定义. (秩的子式定义)设 $A \in M_{m \times n}(F)$,如果存在一个非零 r 阶子式,并且所有 r+1 阶子式(若存在)都为零,则称 r 为 A 的秩,记作 rank A = r

定理 14.1 初等行列变换不改变矩阵的秩

熟悉通过子式定义的秩,掌握重要的秩不等式(注意使用条件)

如果时间充足,建议学会它们的证明

定理 14.2 (一些重要的秩不等式)

- $(1) \ A \in M_{n \times s}(F), B \in M_{n \times t}(F), \ \mathbb{M} \ \max\{\operatorname{rank} A, \operatorname{rank} B\} \leqslant \operatorname{rank} \left(\begin{array}{cc} A & B \end{array} \right) \leqslant \operatorname{rank} A + \operatorname{rank} B$
- (2) $A, B \in M_{m \times n}(F)$, \mathbb{N} rank $(A + B) \leq \text{rank } A + \text{rank } B$;
- (3) $A \in M_{m \times n}(F)$, $B \in M_{n \times l}(F)$, M rank $AB \leq \min\{\text{rank } A, \text{rank } B\}$;
- (4) $A \in M_{m \times n}(F), B \in M_{n \times l}(F)$, M rank $A + \text{rank } B \leq n + \text{rank } AB$
- 例 65 已知矩阵 $A \in M_{n \times (n+1)}(F)$, rank A = n,且 A 每一行的元素之和为 0,求证 A 的任意 n 阶子式不为 0

理科高等代数 15 / 43

例 66 (判断) 存在两个 3×3 秩为 2 的矩阵 A, B 使得 AB = 0

例 67 设 $A, B \in M_n(F)$, 证明

- (1) 若 AB = 0,则 rank $A + \text{rank } B \leq n$;
- (2) 若 $|A+B| \neq 0$,则 rank $A + \text{rank } B \geq n$

例 68 设 $A \in M_n(F)$, 证明存在 $m \in \mathbb{N}^*$, 使得 rank $A^m = \operatorname{rank} A^{m+1}$

例 69 设
$$A \in M_n(F)$$
, $A^2 = -A$, 设 $V_1 = \{X \in F^n | AX = O\}$, $V_2 = \{X \in F^n | (A+I)X = O\}$

- (1) 证明 $V_1 \oplus V_2 = F^n$;
- (2) 证明 $\operatorname{rank} A + \operatorname{rank}(A + I) = n$

例 70 设 $A \in M_n(F)$, $A^2 = I$, 证明 $\operatorname{rank}(A + I) + \operatorname{rank}(A - I) = n$

例 71 设 $a,b,c,d \in \mathbb{C}, A \in M_n(\mathbb{C}), ac \neq 0, ad \neq bc$,若 (aA+bI)(cA+dI) = 0,则 $\operatorname{rank}(aA+bI) + \operatorname{rank}(cA+dI) = n$ 【提示: 令 $B = \frac{2ac}{bc-ad}A + \frac{bc+ad}{bc-ad}I$,则有 (B+I)(B-I) = 0,使用上一例题结果即可】

例 72 设 $A \in M_n(F), k \in \mathbb{N}$,证明 rank $A^k - \text{rank } A^{k+1} \geqslant \text{rank } A^{k+1} - \text{rank } A^{k+2}$

例 73 设 $A \in M_n(F)$,若存在 $m \in \mathbb{N}$,使得 rank $A^m = \operatorname{rank} A^{m+1}$,证明 $\forall k \in \mathbb{N}$, rank $A^m = \operatorname{rank} A^{m+k}$

例 74 设
$$A, B \in M_{m \times n}(F)$$
, 证明 $\operatorname{rank} A + \operatorname{rank} B + \operatorname{rank}(A + B) \geqslant \operatorname{rank} \begin{pmatrix} A & B \end{pmatrix} + \operatorname{rank} \begin{pmatrix} A & B \end{pmatrix}$

15 数域上的多项式

掌握基本运算,熟悉带余除法的计算

从线性空间的角度理解多项式的相等

定理 15.1 F[x] 是数域 F 上的无穷维线性空间, $\{1,x,\cdots,x^n,\cdots\}$ 构成它的一组基

推论 15.2 两个多项式相等 ↔ 相同次数项的系数相同

定理 15.3 (帶余除法) 设 $f(x), g(x) \in F[x], g(x) \neq 0$, 则存在唯一的 $q(x), r(x) \in F[x]$, 使得

$$f(x) = q(x)g(x) + r(x), \deg r(x) < \deg g(x)$$

例 75 设 f(x) = q(x)g(x) + r(x), deg $r(x) < \deg g(x)$, $g(x) \neq 0$, $h(x) \neq 0$, 则 f(x)h(x) 除以 g(x)h(x) 所得的商为_____, 余式为____

例 76 设 $a \neq b$, 证明多项式 f(x) 除以 (x-a)(x-b) 所得的余式为 $\frac{f(a)-f(b)}{a-b}x+f(a)-a\frac{f(a)-f(b)}{a-b}$

例 77 给定 $k \in \mathbb{N}, k \ge 2$,求所有 $f(x) \ne 0 \in \mathbb{R}[x]$,使得 $f(x^k) = (f(x))^k$

熟悉最大公因式的定义((f(x),g(x)) 要求**首一**)、计算方法(辗转相除法)

特别的,熟悉多项式互素的定义和性质

定理 15.4 设 $f(x), g(x) \in F[x], d(x) = (f(x), g(x)),$ 则存在 $u(x), v(x) \in F[x],$ 使得 d(x) = u(x)f(x) + v(x)g(x)

例 78 (判断) 设 f(x), g(x) 是数域 F 上的多项式, 如果存在 u(x), $v(x) \in F[x]$, 使得 u(x)f(x) + v(x)g(x) = d(x), 则 d(x) 是 f(x), g(x) 的最大公因式;

例 79 (判断) 如果 f(x), g(x) 互素, 那么 $f(x^m), g(x^m)$ 互素, 这里 $m \in \mathbb{N}^*$;

例 80 (判断) 如果 $f_1(x), \dots, f_s(x)$ 互素,则 $f_1(x), \dots, f_s(x)$ 两两互素;

例 81 设 (f(x), g(x)) = 1,则下列论断不对的是_____

- (A) (f(x), f(x) g(x)) = 1;
- (B) (f(x) + g(x), f(x) g(x)) = 1;
- (C) $((f(x))^2, (g(x))^2) = 1$;
- (D) (xf(x) g(x), f(x) g(x)) = 1;

例 82 己知 $f(x) = 3x^3 - 4x + 5$, $g(x) = x^2 - 2x - 1$

- (1) \bar{x} (f(x), g(x));
- (2) 求多项式 u(x), v(x), 使得 (f(x), g(x)) = u(x)f(x) + v(x)g(x)

熟悉不可约多项式的定义(次数>1)和性质

定义. 设 $f(x) \in F[x]$, deg $f(x) \ge 1$, 如果 f(x) = g(x)h(x), 其中 g(x), $h(x) \in F[x]$, deg g(x), deg $h(x) \ge 1$, 则称 f(x) 在数域 F 上可约,否则称 f(x) 是数域 F 上的不可约多项式

定理 15.5 (因式分解的存在和唯一性)设 $f(x) \in F[x]$, deg $f(x) \ge 1$,则它可以分解为 F[x] 中有限个不可约多项式的乘积,并且分解式在不计次序和相差不为零常数倍的意义下是唯一的

例 83(判断)设 $p(x), f(x) \in \mathbb{Q}[x] \setminus \mathbb{Q}$,若 p(x) 不可约且和 f(x) 有公共复根,则 $p(x) \mid f(x)$

例 84 多项式 $f(x) = x^4 - x^2 - 2$ 在 \mathbb{R} 上的标准分解式为

了解重根的定义和判别方法

定理 15.6 设 $k \in \mathbb{N}, k \ge 1$, p(x) 是不可约多项式,则 p(x) 是 (f(x), f'(x)) 的 k 重因式 $\iff p(x)$ 是 f(x) 的 k+1 重因式

例 85 已知多项式 $f(x) = x^3 - 3x^2 + tx - 1$ 有重根,则 t =

例 86 (判断) 在 F[x] 中,如果不可约多项式 p(x) 是 f'(x) 的 k 重因式,则 p(x) 是 f(x) 的 k+1 重因式

例 87 (判断)设 p(x) 是数域 F 上次数 ≥ 1 的多项式,如果在 F[x] 中 p(x) 的因式只有非零常数和 p(x) 的非零常数倍,那么 p(x) 是 F 上的不可约多项式

理科高等代数 17 / 43

例 88 (判断) 设数域 K 包含数域 $F, f(x) \in F[x]$, 如果 f(x) 在 F[x] 中没有重因式,则 f(x) 在 K[x] 中可能有重因式

熟悉 ℂ 和 ℝ 上因式分解的特点

定理 15.7

- (1) 设 $f(x) \in \mathbb{C}[x]$, 则 f(x) 可以唯一分解为 $\mathbb{C}[x]$ 中一次因式的乘积;
- (2) 设 f(x) ∈ $\mathbb{R}[x]$, 则 f(x) 可以唯一分解为 $\mathbb{R}[x]$ 中一次因式或二次不可约因式的乘积

例 89 (判断) $x^4 - 3x^3 + 9x - 21$ 在 \mathbb{R} 上不可约

16 有理系数多项式

 $\mathbb{Q}[x]$ 上的因式分解实际上可以归结到 $\mathbb{Z}[x]$ 上,这是 Gauss 引理的推论

定理 16.1 (有理根定理) 设 $f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$, 如果有理数 $c = \frac{s}{t}$ 是 f(x) 的根,其中 $s, t \in \mathbb{Z}, t \neq 0$, (s,t) = 1,则 $t \mid a_n, s \mid a_0$

例 90 (判断)设 $f(x) \in \mathbb{Q}[x]$,而且首项系数为 1,则 f(x)的有理根必为整数

例 91 证明 $f(x) = x^3 - 6x - 1$ 在 \mathbb{Q} 上不可约

学会使用 Eisenstein 判别法

定理 16.2 (Eisenstein 判别法) 设 $f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$, 如果存在素数 p 满足

- (1) $p \nmid a_n$;
- (2) $p \mid a_i, \forall \ 0 \le i \le n-1;$
- (3) $p^2 \nmid a_0$

则 f(x) 在 \mathbb{Q} 上不可约

例 92 (判断) $x^4 - 3x^3 + 9x - 21$ 在 \mathbb{Q} 上不可约;

例 93 证明多项式 $f(x) = x^4 + 4kx + 1, k \in \mathbb{N}$ 在有理数域上不可约

例 94 证明多项式 $f(x) = x^p + px + 1, k \in \mathbb{N}$ 在有理数域上不可约,其中 p 是奇素数

17 多项式理论的应用

例 95 用多项式理论证明包含 $\sqrt[3]{3}$ 的最小数域是 $\mathbb{Q}[\sqrt[3]{3}] = \{a + b\sqrt[3]{3} + c\sqrt[3]{9}|a,b,c \in \mathbb{Q}\}$

以下问题使用"摄动法"解决

例 96 设 $A, B, C, D \in M_n(F)$,且 AC = CA,证明

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |AD - CB|$$

【提示:如果A可逆,对 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ 进行分块变换即可,如果A不可逆,考虑 $\lambda I + A$,上式两端都是 λ 的**多项式**】

例 97 设 $A \in M_n(F), B \in M_{1 \times n}(F), C \in M_{n \times 1}(F)$, 证明:

$$\left| \begin{array}{cc} 0 & B \\ C & A \end{array} \right| = -BA^*C$$

例 98 设 $A, B \in M_n(F), AB = BA$, 证明 $AB^* = B^*A$

如果没有特别说明,总假定数域为 F , U , V 等是 F 上的有限维线性空间。另外,从第 2 小节开始,我们总 考虑线性变换(而非线性映射)。

18 线性映射/变换的概念

定义. (线性映射和线性变换)设 $\sigma: U \to V$ 是一个映射,如果它具有线性性,即

- (1) 加法: 任意 $\alpha, \beta \in U$, 都有 $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta)$;
- (2) 数乘: 任意 $k \in F, \alpha \in U$, 都有 $\sigma(k\alpha) = k\sigma(\alpha)$

则称 σ 是从 U 到 V 的一个**线性映射**。特别的,如果 U = V,即 σ 是从 U 到 U 的一个线性映射,则称 σ 是 U 上的一个**线性变换**。

例 99 考虑 $F[x]_n, n \ge 1$ 上的变换 $\sigma : \sigma(f(x)) = f(x+3)$, σ 是否是线性变换?

线性映射的定义与上学期所学线性空间之间的同态是相同的,它具有以下性质

定理 18.1 (线性映射与线性相关性)

我们将从 U 到 V 的所有线性映射放到一起,这样可以得到一个集合,记作 L(U,V) 或者 $\mathrm{Hom}_F(U,V)$ 。如果 U=V,那么也简记为 L(U) 或者 $\mathrm{End}_F(U)$ 。赋予 L(U,V) 以下三种运算,可以验证 $(L(U,V),+,\cdot)$ 构成一个 F 上的线性空间。

定义. (L(U,V) 上的运算)

- (1) 加法 +: $(\sigma + \tau)(\alpha) := \sigma(\alpha) + \tau(\alpha)$;
- (2) 数乘 ·: $(k \cdot \sigma)(\alpha) := k(\sigma(\alpha))$;
- (3) 复合 \circ : $(\sigma \circ \tau)(\alpha) := \sigma(\tau(\alpha))$ 。 以上运算和矩阵非常相似,这启发我们通过矩阵研究线性映射。

理科高等代数 19 / 43

19 线性变换的矩阵

以下总设 U 是 F 上的 n 维线性空间, $\{\varepsilon_1, \dots, \varepsilon_n\}$ 是 U 的一组基。

定理 19.1 (线性变换与基)

(1) (一组基的像可以决定一个线性变换)设任意 n 个向量 $\alpha_1, \dots, \alpha_n \in U$,则存在一个线性变换 σ ,它满足

$$\sigma(\varepsilon_1) = \alpha_1, \cdots, \sigma(\varepsilon_n) = \alpha_n;$$

(2) (以上关系的唯一性) 设 $\sigma, \tau \in L(U)$, 如果

$$\sigma(\varepsilon_1) = \tau(\varepsilon_1), \cdots, \sigma(\varepsilon_n) = \tau(\varepsilon_n)$$

那么便有 $\sigma = \tau$ 。

例 100 考虑 n 维线性空间 $F[x]_n$,它有一组基 $\{1,x,\cdots,x^{n-1}\}$,对于 $c\in F$,定义映射 $\sigma:\{1,x,\cdots,x^{n-1}\}\to F[x]_n$

$$\sigma_c(x^m) = (x+c)^m \in F[x]_n, 0 \leqslant m \leqslant n-1$$

(1) 可以补充定义, 使得 σ_c 成为 $F[x]_n$ 上的线性变换, 并且

$$\sigma_c(f(x)) = f(x+c) \in F[x]_n, f(x) \in F[x]_n$$

(2) 如果 $c_1 \neq c_2$,那么 $\sigma_{c_2} \neq \sigma_{c_2}$ 。

定义. (线性变换的矩阵) 用 $\{\varepsilon_1,\cdots,\varepsilon_n\}$ 线性表出 $\{\sigma(\varepsilon_1),\cdots,\sigma(\varepsilon_n)\}$

$$\sigma(\varepsilon_1) = a_{11}\varepsilon_1 + \dots + a_{n1}\varepsilon_n$$

$$\dots$$

$$\sigma(\varepsilon_n) = a_{1n}\varepsilon_1 + \dots + a_{nn}\varepsilon_n$$

形式上可以记作
$$\sigma(\varepsilon_1, \cdots, \varepsilon_n) = (\sigma(\varepsilon_1), \cdots, \sigma(\varepsilon_n)) = (\varepsilon_1, \cdots, \varepsilon_n) \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = (\varepsilon_1, \cdots, \varepsilon_n) A$$
,这里的矩阵 $A = (a_{ij})$ 被称为 σ 在一组基 $\{\varepsilon_1, \cdots, \varepsilon_n\}$ 下的矩阵。

例 101 写出平面 R2 上下列线性变换在自然基下的矩阵

- (1) 逆时针旋转 $\frac{\pi}{3}$;
- (2) 关于直线 y=2x 的反射。

从**定理 2.1** 可以证明,取定一组基后一个线性变换和它的矩阵可以**唯一**地互相决定,由此我们可以通过矩阵来描述一个线性变换。作为最初步的性质,我们有

定理 19.2 (线性变换与矩阵的关系)设 $\{\varepsilon_1, \dots, \varepsilon_n\}$ 是 U 的一组基,对于任意 $\sigma \in L(U)$,记 $M(\sigma)$ 为 σ 在 $\{\varepsilon_1, \dots, \varepsilon_n\}$ 下的矩阵。则 $M: L(U) \to M_n(F)$ 有以下性质

- (1) 双射: 任意 $A \in M_n(F)$, **存在** (满的) **唯一** (单的) $\sigma \in L(U)$, 使得 $M(\sigma) = A$;
- (2) 加法: 任意 $\sigma, \tau \in L(U)$, 都有 $M(\sigma + \tau) = M(\sigma) + M(\tau)$;
- (3) 数乘: 任意 $k \in F, \sigma \in L(U)$, 都有 $M(k\sigma) = kM(\sigma)$;
- (4) 乘法: 任意 $\sigma, \tau \in L(U)$, 都有 $M(\sigma \circ \tau) = M(\sigma)M(\tau)$;
- (5) 作为 (4) 的推论, σ 可逆 \iff $M(\sigma)$ 可逆, 并且 $M(\sigma^{-1}) = (M(\sigma))^{-1}$

以上 (1)(2)(3) 说明 $M: L(U) \to M_n(F)$ 是线性空间之间的**同构**。结合 (4)(5) 说明 M 是 F-代数同构,这比线性空间的同构更强。

例 102 在 F^3 中,线性变换 $T:(x_1,x_2,x_3)\to (2x_1-x_2,x_2+x_3,x_1)$ 在基 (1,0,0),(0,1,0),(0,0,1) 下的矩阵 为____。

例 103 定义 $M_2(F)$ 上的线性变换 σ 如下:

$$\sigma(A) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) A \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

则 σ 在 $M_2(F)$ 的自然基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵为_____。

20 线性变换在不同基下的矩阵

定义. (不同基之间的过渡矩阵) 设 U 是 F 上的 n 维线性空间, $S = \{\alpha_1, \dots, \alpha_n\}, T = \{\beta_1, \dots, \beta_n\}$ 是 U 的两组基,用 S 线性表出 T 如下

$$\beta_1 = p_{11}\alpha_1 + \dots + p_{n1}\alpha_n$$

$$\beta_n = p_{1n}\alpha_1 + \dots + p_{nn}\alpha_n$$

形式上可以记作 $(\beta_1,\cdots,\beta_n)=(\alpha_1,\cdots,\alpha_n)$ $\begin{pmatrix} p_{11}&\cdots&p_{1n}\\ \vdots&\ddots&\vdots\\ p_{n1}&\cdots&p_{nn} \end{pmatrix}=(\alpha_1,\cdots,\alpha_n)P$,这里的矩阵 $P=(p_{ij})$ 被称为从 S 到 T 的过渡矩阵。

注记. 这里的顺序不能颠倒! 从 S 到 T 的过渡矩阵是 P, 可以粗略地理解为 S 通过右乘 P 得到 T.

定理 20.1 (过渡矩阵)以上定义地从 S 到 T 的过渡矩阵是唯一的,并且是可逆的,此外从 T 到 S 的过渡矩阵是 P^{-1} 。

定理 20.2 (过渡矩阵和向量坐标的关系)设 U 是 F 上的 n 维线性空间, $S = \{\alpha_1, \dots, \alpha_n\}, T = \{\beta_1, \dots, \beta_n\}$ 是 U 的两组基,P 是从 S 到 T 的过渡矩阵。对于向量 $\alpha \in U$,如果 α 在 S 下的坐标为 $X = (x_i)$,在 T 下的坐标为 $Y = (y_i)$,则我们有 X = PY。

注记. 一定要区分一个向量和它的坐标! 在这个定理中,一个向量在不同基下对应于不同的坐标,它们的关系是

$$\alpha = (\alpha_1, \cdots, \alpha_n)X = (\beta_1, \cdots, \beta_n)Y$$

下面的例子(非数组向量)有助于理解。

例 104 在 $F[x]_3$ 中, $S = \{1, x, x^2\}, T = \{1, x - 1, (x - 1)^2\}$ 是两组基,向量 $\alpha = 1 + x + 2x^2$

$$(1)$$
 $(1, x-1, (x-1)^2) = (1, x, x^2)$ $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$, 即 $P = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ 是从 S 到 T 的过渡矩阵;

(2) α 在两组基下的坐标为 $X = (1,1,2)^T$ 和 $Y = (4,5,2)^T$, 这可以通过配方或者求导计算出来,所以有

$$1 + x + 2x^{2} = (1, x, x^{2}) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = (1, x - 1, (x - 1)^{2}) \begin{pmatrix} 4 \\ 5 \\ 2 \end{pmatrix}$$

(3) 不难验证
$$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 2 \end{pmatrix}$$
,此即 $X = PY$ 。

例 105 设 σ 是 \mathbb{R}^3 上的线性变换。已知 $\sigma((2,-2,1)^T)=(4,-2,2)^T, \sigma((1,1,-2)^T)=(5,-7,2)^T$

- (1) $\vec{x} \ \sigma((-1,3,-3)^T);$
- (2) 若 $\sigma((1,1,1)^T) = (15,-9,6)^T$,求 σ 在基 $(2,-2,1)^T, (1,1,-2)^T, (1,1,1)^T$ 下的矩阵 A,并判断 σ 是 否可逆。

定理 20.3 (线性变换在不同基下矩阵的关系)设 U 是 F 上的 n 维线性空间, $S = \{\alpha_1, \dots, \alpha_n\}$, $T = \{\beta_1, \dots, \beta_n\}$ 是 U 的两组基,P 是从 S 到 T 的过渡矩阵。若 U 上线性变换 σ 在 S 和 T 下的矩阵分别为 A 和 B,则我们有 $B = P^{-1}AP$ 。

注记. 从形式上可以这样理解:

$$(\beta_1, \dots, \beta_n)B = \sigma(\beta_1, \dots, \beta_n)$$

$$= \sigma((\alpha_1, \dots, \alpha_n)P) = \sigma(\alpha_1, \dots, \alpha_n)P$$

$$= (\alpha_1, \dots, \alpha_n)AP = (\beta_1, \dots, \beta_n)P^{-1}AP$$

定义. (矩阵的相似) 设 $A, B \in M_n(F)$ 如果存在可逆矩阵 $P \in M_n(F)$ 使得 $B = P^{-1}AP$,则称 $A \subseteq B$ 相似,记作 $A \sim B$ 。

利用矩阵的运算和性质,可以证明相似矩阵具有以下性质

定理 20.4 (相似矩阵的性质)设 $A, B \in M_n(F), A \sim B$,则有

- (1) $\operatorname{rank} A = \operatorname{rank} B$;
- (2) tr A = tr B;
- (3) |A| = |B|;
- (4) 若 A 可逆,则 B 也可逆,而且有 $A^{-1} \sim B^{-1}$;
- (5) 设 $f(x) \in F[x]$, 则有 $f(A) \sim f(B)$ 。

例 106 设 $A \in M_n(F)$,且 A 可逆,则下列结论正确的是____。

(A) A 与 B 相似;

(C) AB 与 BA 相似且等价;

(B) A与B等价;

(D) AB 与 BA 等价却不一定相似

例 107 从下列矩阵中,选出与 $\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$ 相似的矩阵____。

(A)
$$\begin{pmatrix} & & 1 \\ & 1 & \\ & 3 & \end{pmatrix}$$
; (C) $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$
(B) $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$; (D) $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$

21 像与核

定义. (像与核)设 σ 是 U 上的线性变换

- (1) 定义 $\operatorname{Im} \sigma = \{ \sigma(\alpha) \in U | \alpha \in U \};$
- (2) 定义 $\operatorname{Ker} \sigma = \{\alpha \in U | \sigma(\alpha) = 0\}$ 。

容易验证以下性质

定理 21.1 (像与核都是子空间)对于 U 上的线性变换 σ , $\operatorname{Ker} \sigma$, $\operatorname{Im} \sigma$ 都是 U 的子空间。 正是因为这一点,我们可以谈论它们的维数,并且利用线性相关性的理论来研究像与核。

理科高等代数 23 / 43

定理 21.2 (像与核的维数公式)设 σ 是 U 上的线性变换,则有

$$\dim U = \dim \operatorname{Im} \sigma + \dim \operatorname{Ker} \sigma$$

定义.(线性变换的秩)我们定义 U 上线性变换 σ 的秩 $\operatorname{rank} \sigma = \dim \operatorname{Im} \sigma$ 。以上维数关系可以写成 $\dim U = \operatorname{rank} \sigma + \dim \operatorname{Ker} \sigma$ 。

通过以下定理, 我们能更好地理解线性变换和矩阵的对应关系。

定理 21.3 (线性变换和矩阵的秩)设 $\sigma \in U$ 上的线性变换, $A \in \sigma$ 在某组基下的矩阵,则我们有

- (1) rank $A = \operatorname{rank} \sigma$;
- (2) dim $V_A = \dim \operatorname{Ker} \sigma_{\circ}$

注记. 以上关系 $\dim V_A = \dim \operatorname{Ker} \sigma$ 并不表示 $V_A = \operatorname{Ker} \sigma$! 它们实际上处于两个截然不同的空间之中,只是因为维数相同而线性同构。

定理 21.4 (单射与满射等价)设 σ 是**有限维**线性空间 U 上的线性变换,则以下几条等价

- (1) σ 是可逆线性变换;
- (2) $\operatorname{Ker} \sigma = \{0\}$, 即 σ 是单射;
- (3) $\operatorname{Im} \sigma = U$,即 σ 是满射。

例 108 定义 $M_2(\mathbb{R})$ 上的线性变换如下:

$$\sigma(X) = AX - XA, \forall X \in M_2(\mathbb{R}), \ \mbox{\sharp th A} = \left(\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array} \right)$$

分别求 $\text{Im } \sigma$ 和 $\text{Ker } \sigma$ 的维数和一组基。

例 109 设 V 是数域 F 上的 n 维线性空间, σ 是 V 上的线性变换, $\mathrm{rank}\,\sigma=n-1$,并且存在 $k\in\mathbb{N}_*$,使得 $\sigma^k=0$ 。 证明:存在 $\alpha\in V$,使得

$$V = L\{\alpha, \sigma(\alpha), \cdots, \sigma^{n-1}(\alpha)\}\$$

例 110 设 V 是数域 F 上的 n 维线性空间, σ 是 V 上的线性变换。证明以下几条等价:

- (1) $V = \operatorname{Ker} \sigma \oplus \operatorname{Im} \sigma$;
- (2) Ker $\sigma = \text{Ker } \sigma^2$;
- (3) Im $\sigma = \text{Im } \sigma^2$.

例 111 设 $V \in n$ 维线性空间, $\sigma, \tau \in V$ 上的线性变换,并且 $\sigma\tau = \sigma$,证明 $\ker \sigma \cap \operatorname{Im} \tau = \{0\} \iff \operatorname{rank} \sigma = \operatorname{rank} \tau$ 。

理科高等代数 24 / 43

22 特征值与特征向量

一个矩阵能否相似对角化是非常重要的问题,我们正是以此为动机提出特征值和特征向量的概念。

定义. (特征值和特征向量)

(1) 设 $\sigma \in L(U)$ 是 U 上的线性变换,如果存在 $\lambda \in F, \alpha \neq 0 \in U$,使得

$$\sigma(\alpha) = \lambda \alpha$$

则称 $\lambda \neq \sigma$ 的一个特征值, 并称 α 是属于 λ 的一个特征向量:

(2) 设 $A \in M_n(F)$ 是 F 上的 n 阶方阵,如果存在 $\lambda \in F, X \neq 0 \in F^n$,使得

$$AX = \lambda X$$

则称 λ 是 A 的一个特征值,并称 X 是属于 λ 的一个特征向量。

出于方便,以下这些性质均以矩阵为例进行叙述,这些结论对于线性变换往往也是成立的。

定理 22.1 (特征值和特征向量的初步性质)设 $A \in M_n(F)$

- (1) 设 λ 是 A 的特征值, $X_1 \neq X_2$ 是属于 λ 的特征向量,则
 - $X_1 X_2$ 是属于 λ 的特征向量;
 - 任意 $k \neq 0 \in F$,都有 kX_1 是属于 λ 的特征向量
- (2) 由 (1) 可知, $V_{\lambda} = \{X \in F^n | X \in A \text{ 的特征向量 } \} \cup \{0\} \in F^n \text{ 的一个子空间, 称为属于 } \lambda \text{ 的特征子空间;}$
- (3) 设 $f(x) \in F[x], \lambda$ 是 A 的特征值, X 是属于 λ 的特征向量, 则
 - *f*(λ) 是 *f*(A) 的特征值;
 - $X \in f(A)$ 的属于 $f(\lambda)$ 的特征向量

注记. 以上定理的 (3) 反过来并不成立,即 $f(\lambda)$ 是 A 的特征值 $\Rightarrow \lambda$ 是 A 的特征值; X 是 f(A) 的特征向量 $\Rightarrow X$ 是 A 的特征向量,因此它们往往具有不同的特征子空间。

- 例 112 设 $A \in \mathbb{R}$ 上的 n 阶矩阵,则下列说法与"A 可逆"等价的为。
 - (1) A 的列向量组线性无关;
 - (2) Ker $A = \{0\}$;
 - (3) Im $A = \mathbb{R}^n$;
 - (4) rank A = n;
 - (5) $|A| \neq 0$;

- (6) 0 不是 A 的特征值。
- 例 113 设 U 是 \mathbb{R} 上的 3 维线性空间, σ 是 U 上的线性变换,则下列关于 σ 的特征值和特征向量的说法,错误的 是____
 - (A) σ 可能没有特征值;
 - (B) 如果 α 是 σ 的属于特征值 λ_0 的特征向量,则 $k\alpha, k \neq 0 \in \mathbb{R}$ 也是 σ 的属于 λ_0 的特征向量;
 - (C) 设 λ_1, λ_2 是 σ 的两个不同的特征值, α_1, α_2 分别为属于 λ_1, λ_2 的特征向量,则 $\alpha_1 + \alpha_2$ 一定不是 σ 的特征向量;
 - (D) 如果 λ_0 是 σ 的特征值, $f(x) \in \mathbb{R}[x]$, 则 $f(\lambda_0)$ 是 $f(\sigma)$ 的特征值。

例 114 证明

- (1) 若 α , β 分别是属于特征值 λ , μ 的特征向量,且 $\lambda \neq \mu$,则 $\alpha + \beta$ 不是特征向量;
- (2) 若线性空间 V 上的线性变换 σ 以所有非零向量为特征向量,则 σ 必是 V 上的数乘变换。

例 115 设
$$A = \begin{pmatrix} a & -2 & 0 \\ b & 1 & -2 \\ c & -2 & 0 \end{pmatrix}$$
 有三个特征值 $0, 1, -2$,则 $a =$ _____, $b =$ _____, $c =$ ____。

- 例 116 设 $A \in M_3(F)$,且 A 为对称矩阵,特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$ 。若 A 的一个属于 -1 的特征向量为 $\alpha = (0,1,1)^T$,则 $A = \underline{\hspace{1cm}}$ 。
- 例 117 设 σ 为 n 维线性空间 U 上的线性变换,满足 $\sigma^2 = \sigma$ 。证明
 - (1) σ 的特征值只可能为 0,1;
 - (2) 记 V_0, V_1 分别为特征值 0,1 的特征子空间,则

$$\dim V_0 + \dim V_1 = n$$

$$(3)$$
 σ 在 U 的某组基下的矩阵为 $B=\left(egin{array}{cccccc} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{array}\right)$ 。

定理 22.2 (特征向量和可对角化)

- (1) 设 $\sigma \in L(U)$, 其中 $U \neq F$ 上的 n 维线性空间,则 σ 可对角化 $\iff \sigma$ 有 n 个线性无关的特征向量;
- (2) 设 $A \in M_n(F)$, 则 A 可对角化 \iff A 有 n 个线性无关的特征向量。
- **定义.** (特征多项式)设 $A \in M_n(F)$,称 $f(\lambda) = |\lambda I A|$ 为 A 的特征多项式,为了区分,有时也记作 $f_A(\lambda)$ 。

定理 22.3 (特征多项式的性质)设 $A \in M_n(F)$, $f_A(\lambda) = |\lambda I - A|$ 为 A 的特征多项式。

- (1) λ_0 是 $f_A(\lambda)$ 的根 $\iff \lambda_0$ 是 A 的特征值;
- (2) 由 (1) 可知, 做分解 $f_A(\lambda) = (\lambda \lambda_1) \cdots (\lambda \lambda_n)$, 则 $\lambda_1, \cdots, \lambda_n$ 是 A 的 n 个特征值;
- (3) 由 (2) 结合 Vieta 定理可知
 - $|A| = \lambda_1 \cdots \lambda_n$;
 - $\operatorname{tr} A = \lambda_1 + \dots + \lambda_n$
- (4) 若 $A \sim B$ 则 $f_A(\lambda) = f_B(\lambda)$ 。

例 118 设 $A \in M_n(\mathbb{C}), \alpha, \beta \in \mathbb{C}^n$,并且 $\beta^T A \alpha \neq 0$ 。设 $B = A \alpha \beta^T \in M_n(\mathbb{C})$,证明矩阵 B 可对角化。

23 特征子空间与对角化,不变子空间与准对角化

定义.(特征子空间)

- (1) 设 $A \in M_n(F)$, $\lambda \in F$ 是 A 的特征值,则 $V_{\lambda} = \{X \in F^n | AX = \lambda X\} = V_{A-\lambda I}$ 称为 A 的属于特征值 λ 的特征子空间;
- (2) 设 U 是数域 F 上的线性空间, $\sigma \in L(U)$, λ 是 σ 的特征值,则 $V_{\lambda} = \{\alpha \in U | \sigma(\alpha) = \lambda \alpha\} = \operatorname{Ker}(\sigma \lambda I)$ 称为 σ 的属于 λ 的特征子空间。

例 119 给定方阵 A,下列关于 A 的那些性质在相似变换下保持不变。

(1) 特征多项式;

(4) 像空间;

(2) 特征子空间;

(5) 核空间。

(3) 最小多项式;

下面的定理是进行子空间分解的依据。

定理 23.1 (特征子空间的直和)设 U 是数域 F 上的线性空间, $\sigma \in L(U)$,则对于 σ 属于不同特征值 λ_i 的特征子空间 V_{λ_i} ,它们的和为直和。

以下定义代数重数与几何重数,并且给出矩阵可对角化的一个等价条件。

定义.(代数重数与几何重数)设 $A \in M_n(F)$,它的特征多项式为 $f_A(\lambda) = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_t)^{n_t}$,其中 $\lambda_1, \dots, \lambda_t \in \mathbb{C}$ 是 A 的全部不同的特征值

- (1) 称 n_i 为特征值 λ_i 的代数重数;
- (2) 称 $m_i = \dim V_{\lambda_i}$ 为特征值 λ_i 的几何重数。

定理 23.2 (几何重数与代数重数)

- (1) 几何重数不超过代数重数, 即 $1 \leq m_i \leq n_i, 1 \leq i \leq t$;
- (2) 矩阵 A 可对角化 $\iff m_1 + \cdots + m_t = n \iff m_i = n_i, 1 \leq i \leq t$;
- (3) 作为 (2) 的推论,如果 A 的所有特征值都是单根,则 A 在 \mathbb{C} 上可对角化。

例 120 (判断)设 $A \in M_n(F)$,则 A 可对角化当且仅当 A 的特征多项式在 F 中有 n 个根 (计重数)。

例 121 设
$$A = \begin{pmatrix} a & b & \cdots & b \\ c & a & & & \\ \vdots & & \ddots & \\ c & & & a \end{pmatrix} \in M_n(F)$$
,求 A 可对角化的充要条件。

引入不变子空间的概念,它比特征子空间更加广泛,并且可以给出矩阵可准对角化的条件。

定义. (不变子空间)设 U 是数域 F 上的线性空间, $\sigma \in L(U)$ 。若 V 是 U 的子空间,并且满足 $\sigma(V) \subseteq V$,则称 V 是一个 σ 的不变子空间。

定理 23.3 (可交换的线性变换与不变子空间)设 U 是数域 F 上的线性空间, $\sigma, \tau \in L(U)$ 。若 $\sigma\tau = \tau\sigma$,则 $\operatorname{Im} \tau$, $\operatorname{Ker} \tau$ 都是 σ 的不变子空间; $\operatorname{Im} \sigma$, $\operatorname{Ker} \sigma$ 都是 τ 的不变子空间。

如果 $U = V \oplus W$,其中 V,W 是 σ 的不变子空间,则 σ 在某组基下的矩阵是准对角阵。进行推广就能得到 **定理 23.4** (准对角化的条件)设 U 是数域 F 上的线性空间, $\sigma \in L(U)$,则 σ 在某组基下的矩阵为准对角阵 $\longleftrightarrow U$ 可以分解成一些 σ 的不变子空间的直和。

例 122 设 V 是数域 F 上的 n 维线性空间, σ , τ 是 V 上的线性变换, $\sigma\tau = \tau\sigma$,并且 σ 可对角化。证明存在 V 的一组基,使得 σ , τ 在这组基下的矩阵均为准对角矩阵。

24 零化多项式与最小多项式

定义. (零化多项式与最小多项式)

- (1) 设 $A \in M_n(F)$,如果 $f(x) \neq 0 \in F[x]$ 满足 f(A) = 0,则称 f(x) 是 A 的一个零化多项式。我们称 A 所有零化多项式中次数最低的**首一**多项式为 A 的最小多项式。
- (2) 设 U 是数域 F 上的线性空间, $\sigma \in L(U)$,如果 $f(x) \neq 0 \in F[x]$ 满足 $f(\sigma) = 0$,则称 f(x) 是 σ 的一个零化多项式。我们称 σ 所有零化多项式中次数最低的**首一**多项式为 σ 的最小多项式。

定理 24.1 (零化多项式与最小多项式)

- (1) (存在性) 任意 $A \in M_n(F)$ 都存在零化多项式;
- (2) (Hamilton-Caley) 对于任意 $A \in M_n(F)$, 它的特征多项式 $f_A(\lambda)$ 是一个零化多项式;
- (3)(最小多项式是零化多项式的因式)设 $A \in M_n(F)$,f(x) 是它的一个零化多项式,d(x) 是它的一个最小多项式,则 $d(x) \mid f(x)$;

- (4)(最小多项式的唯一性)由(3)可知,最小多项式存在且唯一;
- (5)(和矩阵相似的关系)相似的矩阵具有相同的零化多项式,因此具有相同的最小多项式;
- (6)(与特征值的关系 I)设 $A \in M_n(F)$,f(x) 是它的一个**零化**多项式,则 A 的任意特征值都是 f(x) 的根;
- (7) (与特征值的关系 II) 设 $A \in M_n(F)$, d(x) 是它的**最小**多项式,则 d(x) 的任意根都是 A 的特征值。
- 例 123 (判断) 如果矩阵 $A, B \in M_n(F)$ 有相同的特征多项式、最小多项式,则它们相似。
 - **定理 24.2** (最小多项式与可对角化)设 $A \in M_n(\mathbb{C})$,则 A 可对角化 \iff A 的最小多项式没有重根。
- 例 124 下列说法错误的是____。
 - (A) 如果 $A \in M_4(\mathbb{R})$ 满足 $A^3 A^2 4A + 4I = 0$,则 A 在 \mathbb{R} 上一定可对角化:
 - (B) 如果 $B \in M_n(F)$ 满足 $B^5 = 0$,则 B 只有一个特征值 0;
 - (C) 属于 F 上的矩阵的最小多项式和特征多项式在 F 中有相同的根;
 - (D) 有相同特征多项式和最小多项式的两个矩阵一定相似。

例 125 设
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 2 \\ 3 & 2 & 1 \end{pmatrix}$$
,则 A 的最小多项式为_____。

例 126 设 $A \in M_n(\mathbb{C})$, 证明

- (1) A 的最小多项式 $d(\lambda)$ 是 A 的任一个零化多项式 $\varphi(\lambda)$ 的因式;
- (2) 若 λ_0 是 A 的特征值,则 $d(\lambda_0) = 0$.

例 127 设 $A \in M_n(F)$, 证明

- (1) A 是幂零矩阵,即存在 $k \in \mathbb{N}_*$,使得 $A^k = 0 \iff A$ 的特征值都为 0;
- (2) 若 rank A=1,则 A 是幂零矩阵 \iff tr A=0;

现在我们可以给出判断一个矩阵在 $\mathbb C$ 上可对角化的种种条件。需要注意,即使一个矩阵在 $\mathbb C$ 上可对角化,在更小的数域 F 上也不一定可以对角化。

定理 24.3 (\mathbb{C} 上可对角化的条件)设矩阵 $A \in M_n(\mathbb{C})$,则 $A \in \mathbb{C}$ 上可对角化有如下

➤ 充分必要条件

- (1) 存在 n 个线性无关的特征向量;
- (2) 所有特征子空间的直和为 \mathbb{C}^n ;
- (3) 所有特征子空间的维数之和为 n;
- (4) 所有特征值的代数重数都等于几何重数;
- (5) A 的最小多项式 d(x) 没有重根。

> 充分条件

- (1) 所有特征值的代数重数都为 1;
- (2) 如果矩阵 A 可对角化, $f(x) \in F[x]$, 则 f(A) 也可对角化。

注记. 设 $A \in M_n(F)$, 则 A 在数域 F 上可对角化意味着:

- (1) A 的全部特征值都在 F 中,或者说特征多项式 $f_A(\lambda)$ 可以在 F 上分解为 1 次因式的乘积;
- (2) A 满足以上在 \mathbb{C} 上可对角化的任一条件,即作为 $A \in M_n(\mathbb{C})$ 是可对角化的。

例 128 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 0 & -1 & b \\ 0 & 0 & -1 \end{pmatrix}$$
 可相似对角化,求 b 。

例 130 设 V 是数域 F 上的 n 维线性空间, 试证明以下结论

- (1) 若 $A \in M_n(F)$ 满足 $A^2 = A$,则 $\operatorname{tr} A = \operatorname{rank} A$;
- (2) 设 σ 是 V 上的线性变换,满足 $\sigma^m = \mathrm{id}_V$,证明 σ 在 \mathbb{C} 上可对角化;
- (3) 对于 (2) 中的 σ ,设 V_1 为特征值 1 的特征子空间,并且定义 V 上的线性变换 $\tau = \frac{1}{m} \sum_{i=0}^{m-1} \sigma^i$,则有

$$\operatorname{tr} \tau = \dim V_1$$
.

例 131 设 $A \in M_n(F)$, A 可对角化。定义 $M_n(F)$ 上的线性变换 $\sigma: X \to AXA^T$ 。证明 σ 可对角化。

例 132 设 $A \in M_n(F)$,A 可对角化。定义 $M_n(F)$ 上的线性变换 $\sigma: X \to AX^TA^T$ 。证明 σ 可对角化。

25 Jordan 形简介

定理 25.1 (相似上三角化)设矩阵 $A \in M_n(F)$,则 A 在 \mathbb{C} 上相似于一个上三角形矩阵。

作为更强的结论,任何矩阵都在 C 上相似于一个 Jordan 形矩阵。我们并不打算给出这一结论的证明,而是打算给出一些例子,这能帮助大家理解可对角化矩阵的性质,也有助于构造反例。

定义. (Jordan 块和 Jordan 形矩阵)

$$(1) \ \ \mathcal{U} \ a \in \mathbb{C}, m \in \mathbb{N}_*, \ \ \mathbb{D}$$
 矩阵
$$\begin{pmatrix} a & 1 & & & \\ & a & 1 & & \\ & & \ddots & \ddots & \\ & & & a & 1 \\ & & & & a \end{pmatrix} \in M_m(\mathbb{C}) \ \ \text{被称为一个} \ m \ \ \mathbb{M} \ \ \text{Jordan} \ \ \mathcal{L}, \ \ \text{记作} \ J_m(a);$$

(2) 形如
$$\begin{pmatrix} J_{m_1}(a_1) \\ & \ddots \\ & & J_{m_k}(a_k) \end{pmatrix}$$
, 其中 $a_i \in \mathbb{C}, m_i \in \mathbb{N}_*, 1 \leqslant i \leqslant k$ 的矩阵被称为 Jordan 形矩阵。

例 133 以下矩阵都是 Jordan 形矩阵

(1) 任意对角形矩阵 $A \in M_n(\mathbb{C})$;

(2)
$$B = \begin{pmatrix} 0 & 1 & & \\ & 0 & & \\ & & 2 & \\ & & & 3 \end{pmatrix};$$
(3) $C = \begin{pmatrix} 1 & 1 & & \\ & 1 & & \\ & & 1 & 1 \\ & & & 1 \end{pmatrix}$.

定理 25.2 (Jordan 形的主定理) 设 $A \in M_n(\mathbb{C})$, 则 A 一定相似于一个 Jordan 形矩阵 J,并且矩阵 J 的各个 Jordan 块在不计顺序的意义下是唯一的。

注记. 这一定理的结论可以记住,但是因为课本并没有给出证明,在考试的解答题中不能使用它!

例 134 证明矩阵
$$A=\begin{pmatrix}1&&&\\&1&1&\\&&1&1\\&&&1\end{pmatrix}$$
 和矩阵 $B=\begin{pmatrix}1&1&&\\&1&&\\&&1&1\\&&&1\end{pmatrix}$ 不相似。

例 135 证明矩阵
$$A=\left(\begin{array}{ccc} 1 & 1 \\ & 1 & 1 \\ & & 1 \end{array}\right)$$
 和矩阵 $B=\left(\begin{array}{ccc} 1 & 2 & 1 \\ & 1 & 2 \\ & & 1 \end{array}\right)$ 相似。

例 136 设 V 是数域 F 上的 n 维线性空间, σ 是 V 上的线性变换, $(\sigma-\mathrm{id}_V)^n=0, (\sigma-\mathrm{id}_V)^{n-1}\neq 0$ 。证明存在

$$V$$
 的一组基,使得 σ 在这组基下的矩阵为 $\begin{pmatrix} 1 & 1 & & & \\ & 1 & 1 & & \\ & & \ddots & \ddots & \\ & & & 1 & 1 \\ & & & & 1 \end{pmatrix}$ 。

例 137 对 $a \neq 0$ 证明

$$\begin{pmatrix} a & 1 & & & & \\ & a & 1 & & & \\ & & \ddots & \ddots & & \\ & & & a & 1 \\ & & & & a \end{pmatrix} \sim \begin{pmatrix} a & a & & & \\ & a & a & & \\ & & \ddots & \ddots & \\ & & & a & a \\ & & & & a \end{pmatrix}$$

理科高等代数 31 / 43

26 二次型及其矩阵

在本节中,数域总设为F。

定义. (n 元二次型及其矩阵)

- (1) 称 F 上的 n 元二次多项式 $f = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \leq i < j \leq n} a_{ij} x_i x_j$ 为 F 上的一个 n 元二次型。如果 $F = \mathbb{R}$ 或 \mathbb{C} ,则称它为一个实二次型或复二次型;
- (2) 对于 i > j,令 $a_{ij} = a_{ji}$,由此得到一个**对称矩阵** $A = (a_{ij})$,如果令 $X = (x_1, \dots, x_n)^T$,则有 $f = X^T A X$ 。 称 A 为二次型 f 的矩阵,A 的秩为二次型 f 的秩。

注记. 不难发现,F 上的 n 元二次型和 n 阶对称矩阵形成一一对应。

例 138 二次型 $f(x_1, x_2, x_3) = (a_1x_1 + a_2x_2 + a_3x_3)^2$ 的矩阵为_____。

例 139 设实二次型 $f(x_1,x_2,x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为 2,则 c =______。

(A) 1;

(B) 2;

(C) 3;

(D) 4

27 二次型的标准形与规范形

定义.(**可逆**线性替换)设 $X=(x_1,\cdots,x_n)^T,Y=(y_1,\cdots,y_n)^T$ 。如果**可逆**矩阵 $C\in M_n(F)$ 满足 X=CY,则称 C 是从变元 x_1,\cdots,x_n 到变元 y_1,\cdots,y_n 的一个可逆线性替换。

注意到 $f=X^TAX=(CY)^TAY=Y^TC^TACY$,如果将 f 视为关于 Y 的二次型,那么 f 的矩阵变为 C^TAC 。这启发我们定义矩阵的相合关系。

定义. (矩阵的相合)设 $A, B \in M_n(F)$,如果存在可逆矩阵 $C \in M_n(F)$ 使得 $B = C^T A C$,则称 $A \subseteq B$ 相合,记作 $A \simeq B$ 。

例 140 设 $A, B \in n$ 阶实对称方阵,以下 4 个断言正确的个数是____。

- (1) 若 A 与 B 相合,则 A 与 B 相似;
- (3) 若 A 与 B 相似,则 A 与 B 相合;
- (2) 若 A 与 B 相抵,则 A 与 B 相合;
- (4) 若 A 与 B 相似,则 A 与 B 相抵;

- (A) 1 \uparrow ;
- (B) 2 个;
- (C) 3 \uparrow ;
- (D) 4 个

定理 27.1 (二次型的可逆线性替换和矩阵相合的关系) 数域 F 上的二次型 f 可以通过可逆线性替换化为二次型 g 当且仅当 f 的矩阵 A 和 g 的矩阵 B 相合。

定义. (二次型的标准形) 称只含平方项的二次型 $\sum_{i=1}^n d_i x_i^2$ 为标准二次型。如果二次型 f 通过可逆线性替换变为标准二次型 $g = \sum_{i=1}^n d_i x_i^2$,则称 g 为 f 的一个标准形。

定理 27.2 (标准形的存在性) 数域 F 上的任意一个二次型 f 都可以通过可逆线性替换化为标准形。

例 141 实二次型 $f(x_1,x_2,x_3) = -4x_1x_2 + 2x_1x_3 + 2x_2x_3$ 的标准形为______,规范形为_____。

例 142 求二次型 $f(x_1,\dots,x_n) = \sum_{i,j=1}^n \max\{i,j\}x_ix_j$ 的标准形。

定理 27.3 ($\mathbb C$ 上的规范形) 任意一个复 n 元二次型 f 可以通过 $\mathbb C$ 上的可逆线性替换化为 $z_1^2+\cdots+z_r^2$ 的形式,这称为 f 在 $\mathbb C$ 上的规范形,其中 r 为 f 的秩。

注记. 上述 ℂ 上的规范形是唯一的,并且完全由二次型的秩决定。

- **定理 27.4** (\mathbb{R} 上的规范形) *(1)* 任意一个实二次型 f 可以通过 \mathbb{R} 上的可逆线性替换化为 $z_1^2 + \dots + z_p^2 z_{p+1}^2 \dots z_r^2$ 的形式,这称为 f 在 \mathbb{R} 上的规范形,其中 r 为 f 的秩;
 - (2) 一个实二次型的在 ℝ 上的规范形是唯一的。
- 例 143 二次型 $f(x_1,x_2,x_3)=x_2^2+2x_1x_2+4x_1x_3+2x_2x_3$ 在实数域上的规范形为_____。

定义.(惯性指数)

- (1) 称实二次型 f 的规范形中正平方项的个数 p 为 f 的正惯性指数,负平方项的个数 q = r p 为 f 的负惯性指数,p q = 2p r 为 f 的符号差;
- (2) 设 A 是实对称矩阵,称二次型 $f = X^T A X$ 的正惯性指数、负惯性指数、符号差为矩阵 A 的正惯性指数、负惯性指数、符号差。

定理 27.5 (实对称矩阵的相合标准形)

- (1) 设 A 是实对称矩阵,则 A 和矩阵 $\begin{pmatrix} I_p \\ -I_{r-p} \\ 0 \end{pmatrix}$ 相合,其中 p,r-p 分别是 A 的正、负惯性指数;
- (2) 作为 (1) 的推论,两个 n 阶实对称矩阵相合当且仅当它们有相同的秩和正惯性指数;
- (3) 作为 (2) 的推论, n 阶实对称矩阵按照相合的等价关系可以划分为 $\frac{1}{2}(n+1)(n+2)$ 类。
- 例 144 设 $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,则下列矩阵中与 A 在实数域上相合的是_____,在复数域上相合的是_____。

$$(1) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \qquad (3) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \qquad (4) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 145 将所有 4 阶实对称矩阵按实数域范围内的相合关系分类,彼此相合的矩阵属于同一类,不相合的矩阵属于不同类,则一共有_____类。

例 146 设 A 为实 n 阶非奇异矩阵,若 A 与 -A 在实数域上相合,则 n 的奇偶性为____。

例 147 对于实对称矩阵 A, 记 p(A), q(A) 为它的正、负惯性指数。设 A, B 是 n 阶实对称矩阵,证明

$$p\begin{pmatrix} A \\ B \end{pmatrix} = p(A) + p(B), \ q\begin{pmatrix} A \\ B \end{pmatrix} = q(A) + q(B)$$

例 148 设 A, B 是 n 阶实对称矩阵,证明

$$p(A) + p(B) \geqslant p(A+B), q(A) + q(B) \geqslant q(A+B)$$

28 正定/半正定/负定/半负定/不定二次型及其矩阵

从本节开始,如果不特别说明,数域总设为 ℝ。

定义. (正定/半正定/负定/半负定/不定二次型及其矩阵)设 $f(X) = X^T A X$ 为 n 元实二次型, A 为实对称矩阵

- (1) 如果对于任意 $X \neq 0 \in \mathbb{R}^n$,都有 f(X) > 0,则称 f 为正定二次型,称 A 为正定矩阵,记作 A > 0;
- (2) 如果对于任意 $X \neq 0 \in \mathbb{R}^n$,都有 $f(X) \geq 0$,则称 f 为半正定二次型,称 A 为半正定矩阵,记作 $A \geq 0$;
- (3) 如果对于任意 $X \neq 0 \in \mathbb{R}^n$,都有 f(X) < 0,则称 f 为负定二次型,称 A 为负定矩阵,记作 A < 0;
- (4) 如果对于任意 $X \neq 0 \in \mathbb{R}^n$,都有 $f(X) \leq 0$,则称 f 为半负定二次型,称 A 为半负定矩阵,记作 $A \leq 0$;
- (5) 如果 f 不是半正定也不是半负定二次型,则称 f 为不定二次型,称 A 为不定矩阵。

定理 28.1 (正定性与负定性,半正定性与半负定性)设A是实对称矩阵,

- (1) A 是正定矩阵当且仅当 -A 是负定矩阵;
- (2) A 是半正定矩阵当且仅当 -A 是半负定矩阵。

注记. 这条性质说明只需要研究正定和半正定矩阵即可。

定理 28.2 (正定矩阵的等价条件) 设 A 是 n 阶实对称矩阵, 则 A 是正定矩阵当且仅当

- (1) 对于任意 $X \neq 0 \in \mathbb{R}^n$,都有 $X^T A X > 0$;
- (2) A 与单位矩阵 I 相合;
- (3) A 的正惯性指数为 n;
- (4) 存在可逆矩阵 $C \in M_n(\mathbb{R})$,使得 $A = C^T C$;

(5) A 的所有顺序主子式都大于 0。

定理 28.3 (正定矩阵的简单性质) 设 $A, B \in n$ 阶正定矩阵,

- (1) $A^{-1}, A^*, A^k, k \in \mathbb{N}_*$ 都是正定矩阵。
- (2) A+B 是正定矩阵。
- 例 149 设 A, B 是正定矩阵,则下列说法正确的是____。
 - (A) A + B, AB 都是正定矩阵;
 - (B) AB 是正定矩阵, A+B 不是正定矩阵;
 - (C) A + B 是正定矩阵, AB 不一定是正定矩阵;
 - (D) A + B 是正定矩阵, AB 不是正定矩阵

注记. 注意, 正定矩阵的乘积往往不是正定矩阵, 它甚至往往不是实对称矩阵。

例 150 已知实二次型 $f(x_1, x_2, x_3) = X^T A X$ 是半正定的, k_0 为正实数。证明: $k_0 I + A$ 是正定的。

例 151 设 $A \in M_n(F)$ 且 rank A = n。证明: $A^T A$ 是正定矩阵。

例 152 设 A 是实反对称矩阵, 试证: $I - A^2$ 是正定矩阵。

例 153 已知
$$\begin{pmatrix} 5 & x \\ 2-x & x+y \\ & x-y^2 \end{pmatrix}$$
, $x,y \in \mathbb{R}$ 是正定矩阵,则 y 的取值范围是_____。

(A)
$$-\frac{4}{5} < y < 1;$$
 (B) $-\sqrt{|x|} < y < \sqrt{|x|};$ (C) $y < -1;$ (D) $-1 < y < 1$

例 154 n 元实二次型 $Q(X) = X^T A X$ 负定的充要条件是____。

- (A) |A| < 0;
- (B) 任给 n 维非零实向量 X,都有 $X^TAX < 0$;
- (C) A 的各阶顺序主子式均为负数;
- (D) Q(X) 的正惯性指数 p=0
- 例 155 已知 A 为 n 阶实对称矩阵,则下列论断能保证 A 为正定矩阵的有。
 - (1) A 能表示为一个正定矩阵的平方;
 - (2) A 的正惯性指数等于 A 的秩;
 - (3) A 的特征值均大于 0;
 - (4) A 与单位矩阵相合

- (A) 1 个;
- (B) $2 \uparrow$;
- (C) 3 个;
- (D) 4 个

例 156 设 A 是 n 阶正定矩阵,证明实二次型 $f(X) = \left| \begin{array}{cc} A & X \\ X^T & 0 \end{array} \right|$ 是负定二次型。

下面几个问题需要使用 \mathbb{R}^n 中的 Cauchy-Schwarz 不等式。

例 157 设 $A \in \mathbb{R}$ 阶正定矩阵, $\alpha, \beta \in \mathbb{R}^n$,证明: $\alpha^T \beta \leq (\alpha^T A \alpha)(\beta^T A^{-1} \beta)$,等号成立当且仅当 $A \alpha$ 与 β 成比例。

例 158 设 A 是 n 阶正定矩阵, $\alpha, \beta \in \mathbb{R}^n$ 满足 $\alpha^T \beta > 0$,证明: $B = A - \frac{A\beta\beta^T A}{\beta^T A\beta} + \frac{\alpha\alpha^T}{\alpha^T \beta}$ 是正定矩阵。

例 159 设 $\alpha, \beta \in \mathbb{R}^n$ 满足 $\alpha^T \beta > 0$,

- (1) 证明 $A = I \frac{\beta \beta^T}{\beta^T \beta} + \frac{\alpha \alpha^T}{\alpha^T \beta}$ 是正定矩阵;
- (2) 证明 $\alpha = A\beta$ 。

定理 28.4 (半正定矩阵的等价条件) 设 $A \in \mathbb{R}$ 阶实对称矩阵,则 A 是半正定矩阵当且仅当

- (1) 对于任意 $X \neq 0 \in \mathbb{R}^n$, 都有 $X^T A X \geqslant 0$;
- (2) A 与矩阵 $\operatorname{diag}(d_1, \dots, d_n)$ 相合, 其中 $d_1, \dots, d_n \geq 0$;
- (3) A 的负惯性指数为 0;
- (4) 存在矩阵 $C \in M_n(\mathbb{R})$,使得 $A = C^T C$;
- (5) A 的所有主子式都大于等于 0。

例 160 设 $f(X) = X^T A X$ 是实数域上的半正定 n 元二次型,下列论断中正确的是____。

- (1) f 的正惯性指数是 n;
- (2) f 的标准形中, 所有平方项的系数都大于等于 0;
- (3) A 的所有顺序主子式都大于等于 0;
- (4) A 的所有特征值都大于等于 0
- (A) (2)(3)(4);
- (B) (1)(2)(3)(4);
- (C) (2)(4);
- (D) (2)

例 161 (很实用!) 设 $A \in \mathbb{R}^n$ 阶半正定矩阵, $\alpha \in \mathbb{R}^n$ 满足 $\alpha^T A \alpha = 0$, 证明 $A \alpha = 0$.

例 162 设 A 是 n 阶半正定矩阵,B 是 n 阶反对称矩阵,证明:

- (1) 对于 $X \in \mathbb{R}^n$, (A+B)X = 0 当且仅当 AX = BX = 0;
- (2) $\operatorname{rank}(A+B) = \operatorname{rank}(A B)$.
- 例 163 设 A 是 n 阶实对称矩阵,B 为 n 阶半正定矩阵,并且 |A+iB|=0。证明:存在 $\alpha \neq 0 \in \mathbb{R}^n$,使得 $A\alpha=B\alpha=0$ 。

例 164 设 A 是 n 阶半正定矩阵,将 A 分块为 $A=\left(\begin{array}{cc}A_{11}&A_{12}\\A_{12}^T&A_{22}\end{array}\right)$,其中 $A_{11}\in M_r(\mathbb{R}),A_{22}\in M_{n-r}(\mathbb{R})$ 。证明

- (1) A₁₁, A₂₂ 也是半正定矩阵;
- (2) $\operatorname{rank} A_{11} = \operatorname{rank} (A_{11} A_{12})$,因此存在矩阵 $B \in M_{r \times (n-r)}$,使得 $A_{11}B = A_{12}$;
- (3) 如果 $A_{11} = O$,那么 $A_{12} = O$ 。

例 165 设 A, B 是 n 阶半正定矩阵,证明: AB 可对角化。

例 166 设 $A \in M_n(\mathbb{R})$ 满足 $A^2 = A$,证明: 如果对于任意 $\alpha \in \mathbb{R}^n$ 都有 $\alpha^T A^T A \alpha \leqslant \alpha^T \alpha$,那么 $A = A^T A$ 。

29 内积与欧氏空间

定义. (内积与欧氏空间)设 $V \in \mathbb{R}$ 上的一个线性空间,如果映射 $(\bullet, \bullet): V \times V \to \mathbb{R}$ 满足以下性质

- (1) 对称性: 任意 $\alpha, \beta \in V$, 都有 $(\alpha, \beta) = (\beta, \alpha)$;
- (2) 线性性: 任意 $k_1, k_2 \in \mathbb{R}, \alpha, \beta, \gamma \in V$, 都有 $(k_1\alpha + k_2\beta, \gamma) = k_1(\alpha, \gamma) + k_2(\beta, \gamma)$;
- (3) 正定性: 任意 $\alpha \in V$, 都有 $(\alpha, \alpha) \ge 0$, 并且 $(\alpha, \alpha) = 0$ 当且仅当 $\alpha = 0$

则称 (\bullet, \bullet) 是 V 上的一个内积,称 $(V, (\bullet, \bullet))$ 是一个欧氏空间。

定理 29.1 (Cauchy-Schwarz 不等式) 设 V 是欧氏空间,则对于任意 $\alpha, \beta \in V$,都有 $|(\alpha, \beta)|^2 \leq (\alpha, \alpha)(\beta, \beta)$,等 号成立当且仅当 α, β 线性相关。

定义.(长度和夹角)

- (1) 设 $\alpha \in V$, 称 $\sqrt{(\alpha,\alpha)}$ 为 α 的长度, 记作 $|\alpha|$;
- 例 167 设 V 是欧氏空间, $v_1, v_2, v_3 \in V$ 。已知 $|v_1| = 1, |v_2| = 2, |v_3| = 3, (v_1, v_2) = 0, (v_2, v_3) = 6$,则向量组 v_1, v_2, v_3 的秩是____。
- 例 168 在标准内积欧氏空间 \mathbb{R}^4 中,向量 $\alpha = (1,2,2,3)$ 与向量 $\beta = (3,1,5,1)$ 的夹角为_____。

定义.(单位向量,向量的正交)

- (1) 设 $\alpha \in V$,如果 $|\alpha| = 1$,则称 α 为单位向量;
- (2) 设 $\alpha, \beta \in V$,如果 $(\alpha, \beta) = 0$,则称 α, β 相互正交,记作 $\alpha \perp \beta$ 。
- 例 169 在 \mathbb{R}^3 中定义内积 $\forall \alpha = (x_1, x_2, x_3), \beta = (y_1, y_2, y_3) \in \mathbb{R}^3$:

$$(\alpha, \beta) = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3$$

则以下向量中与向量 (1,2,3) 正交的是。

理科高等代数 37 / 43

(A)
$$(1, 2, -1)$$
; (C) $(1, 1, -1)$;

(B)
$$(0,1,0)$$
; (D) $(1,-1,0)$

定理 29.2 (勾股定理) 设 $\alpha, \beta \in V$ 满足 $\alpha \perp \beta$, 则 $|\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2$ 。

例 170 设 α, β 为 n 维实正交向量,则下列说法错误的是。

(A)
$$|\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2$$
;

(B)
$$|\alpha + \beta| = |\alpha - \beta|$$
;

(C)
$$|\alpha - \beta|^2 = |\alpha|^2 + |\beta|^2$$
;

(D)
$$|\alpha + \beta| = |\alpha| + |\beta|$$

例 171 设 V 是 n 维欧氏空间, $\alpha_0, \cdots, \alpha_n \in V$ 满足任意两个元素之间的距离为 d>0。令 $\beta_i=\alpha_i-\alpha_0, 1\leqslant i\leqslant n$,证明:

(1)
$$(\beta_i, \beta_j) = \frac{d^2}{2}, 1 \leqslant i < j \leqslant n;$$

(2) { β_1, \dots, β_n } 是 V 的一组基。

如何在一个 n 维线性空间上定义内积? 或者说 n 维线性空间上的内积取决于什么? 为了回答这些问题,我们需要给出度量矩阵的概念。

定义. (度量矩阵)设 $(V, (\bullet, \bullet))$ 是一个欧氏空间, $\{\varepsilon_1, \dots, \varepsilon_n\}$ 是一组基。记 $a_{ij} = (\varepsilon_i, \varepsilon_j)$,并且令 $A = (a_{ij})$,这称为 $\{\varepsilon_1, \dots, \varepsilon_n\}$ 关于内积 (\bullet, \bullet) 的度量矩阵。

例 172 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$,定义 \mathbb{R}^3 上的内积: $(X,Y) = X^TAY$ 。求此内积在 \mathbb{R}^3 的基 $\alpha_1 = (1,0,0)^T, \alpha_2 = (1,1,0)^T, \alpha_3 = (1,1,1)^T$ 下的度量矩阵。

对于任意 $\alpha, \beta \in V$,设 $\alpha = (\varepsilon_1, \cdots, \varepsilon_n)X, \beta = (\varepsilon_1, \cdots, \varepsilon_n)Y$,其中 $X = (x_1, \cdots, x_n)^T, Y = (y_1, \cdots, y_n)^T \in \mathbb{R}^n$,那么有

$$(\alpha, \beta) = \sum_{i,j=1}^{n} (x_i \varepsilon_i, y_j \varepsilon_j) = \sum_{i,j=1}^{n} a_{ij} x_i y_j = X^T A Y$$

上式说明,取定一组基 $\{\varepsilon_1, \dots, \varepsilon_n\}$ 后,内积 (\bullet, \bullet) 完全由度量矩阵 A 决定。度量矩阵一定是正定的:

- 由于内积的对称性, $a_{ij} = (\varepsilon_i, \varepsilon_j) = (\varepsilon_j, \varepsilon_i) = a_{ji}$, 这说明 A 是对称矩阵;
- 由于内积的正定性,对于 $X \neq 0 \in \mathbb{R}^n$,令 $\alpha = (\varepsilon_1, \dots, \varepsilon_n) X \neq 0 \in V$,则有 $X^T A X = (\alpha, \alpha) > 0$,这说明 A 是正定矩阵。

反过来,任意一个正定矩阵 A 可以决定 V 上的一个内积 (\bullet, \bullet) : 取 V 的一组基 $\{\varepsilon_1, \dots, \varepsilon_n\}$,定义 $(\varepsilon_i, \varepsilon_j) = a_{ij}$,通过线性组合将这一定义拓展到 V 上。不难验证 (\bullet, \bullet) 是 V 上的一个内积,并且 A 是 $\{\varepsilon_1, \dots, \varepsilon_n\}$ 关于 (\bullet, \bullet) 的度量矩阵。

上述两条总结起来就是下面的定理。

定理 29.3 (内积和正定矩阵——对应) 设 V 是 n 维欧氏空间,取定 V 的一组基 $\{\varepsilon_1, \cdots, \varepsilon_n\}$,则 V 上的内积 (\bullet, \bullet) 和 n 阶正定矩阵 A 形成——对应。

定理 29.4 (内积在不同基下度量矩阵的关系)设 $(V, (\bullet, \bullet))$ 是 n维欧氏空间, $S = \{\alpha_1, \dots, \alpha_n\}$, $T = \{\beta_1, \dots, \beta_n\}$ 是 V的两组基,P是从 S到 T的过渡矩阵。若 (\bullet, \bullet) 在 S和 T下的度量矩阵分别为 A和 B,则我们有 $B = P^T A P$ 。

注记. 可以这么理解: 对于任意 $\alpha, \beta \in V$,设 $\alpha = (\alpha_1, \dots, \alpha_n)X_1 = (\beta_1, \dots, \beta_n)Y_1, \beta = (\alpha_1, \dots, \alpha_n)X_2 = (\beta_1, \dots, \beta_n)Y_2$,那么有

$$(\alpha, \beta) = Y_1^T B Y_2$$
$$= X_1^T A X_2 = Y_1^T P^T A P Y_2$$

最后一步使用了坐标的变换。

上述相合关系启发我们选取 V 的一组更合适的基,使得度量矩阵 A 更加简单。

定义. (正交向量组,标准正交基)设V是n维欧氏空间,

- (1) V 中正一组两两交的非零向量称为一个正交向量组:
- (2) V 中有两两正交并且长度为 1 的向量组构成的基称为一个标准正交基。

注记. 不难证明,正交向量组一定是线性无关向量组,因此它至多含有n个向量。

定理 29.5 (Gram-Schmidt 正交化) 设 V 是 n 维欧氏空间, $\{\alpha_1, \cdots, \alpha_m\}$ 是 V 中一个线性无关组,则存在向量组 $\{\beta_1, \cdots, \beta_m\}$,满足以下性质

- (1) { β_1, \dots, β_n } 是标准正交向量组;
- (2) $\beta_i \in L\{\alpha_1, \dots, \alpha_i\}, 1 \leq i \leq m$.

注记. Gram-Schimidt 正交化的过程如下:

- (1) $\Leftrightarrow \gamma_1 = \alpha_1$;
- (2) 如果已经得到 $\gamma_1, \dots, \gamma_i$,则令

$$\gamma_{i+1} = \alpha_{i+1} - \frac{(\alpha_{i+1}, \gamma_1)}{(\gamma_1, \gamma_1)} \gamma_1 - \dots - \frac{(\alpha_{i+1}, \gamma_i)}{(\gamma_i, \gamma_i)} \gamma_i$$

(3) 继续以上过程,得到 $\{\gamma_1, \dots, \gamma_m\}$,然后令 $\beta_i = \frac{1}{|\gamma_i|} \gamma_i$,得到 $\{\beta_1, \dots, \beta_m\}$ 。

注记. 性质 (2) 说明,存在**上三角形矩阵** $P \in M_m(\mathbb{R})$ 使得 $(\beta_1, \dots, \beta_m) = (\alpha_1, \dots, \alpha_m)P$,从保持线性无关可以 看出 P 是 m 阶可逆矩阵。

例 173 在 \mathbb{R}^4 中,用 Gram-Schmidt 方法将下列向量组正交化:

$$v_1 = (1, 1, 1, 1)^T, v_2 = (2, 2, 2, -2)^T, v_3 = \left(1, \frac{1}{2}, \frac{1}{2}, 0\right)^T$$

例 174 设 V 是一个 3 维欧氏空间, $\alpha_1, \alpha_2, \alpha_3$ 是 V 的一组基。已知 $\alpha_1, \alpha_2, \alpha_3$ 的度量矩阵为 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 8 & -2 \\ 0 & -2 & 2 \end{pmatrix}$ 。

用 Schmidt 正交化给出 V 的一组标准正交基: $\eta_1 = \underline{\hspace{1cm}}, \eta_2 = \underline{\hspace{1cm}}, \eta_3 = \underline{\hspace{1cm}}$

- 例 175 设 $A \in \mathbb{R}$ 阶正定矩阵,证明:存在可逆上三角矩阵 $C \in M_n(\mathbb{R})$,使得 $A = C^T C$ 。
- 例 176 设 $V \in \mathbb{R}$ 维欧氏空间, $\varphi \in V$ 上的可逆线性变换,证明: φ 保持向量的夹角不变当且仅当 φ 保持向量的 正交关系(即如果 $\alpha \perp \beta$,那么 $\varphi(\alpha) \perp \varphi(\beta)$)。

正交矩阵与正交变换 30

定义.(正交矩阵与正交变换)

- (1) 设 $A \in M_n(\mathbb{R})$, 如果 A 满足 $AA^T = A^T A = I$, 则称 A 为正交矩阵;
- (2) 设 V 是欧氏空间, $\sigma \in L(V)$,如果对于任意 $\alpha, \beta \in V$,都有 $(\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta)$,则称 σ 为正交变换。
- 例 177 设 α 是一个非零的实数列向量, $A = I 2\alpha\alpha^T$ 。若 A 是正交矩阵,证明: α 是标准内积下的单位向量。

定理 30.1 (正交矩阵的初步性质) 设 $A, B \in n$ 阶正交矩阵

- (1) A 的行(列)向量组构成 \mathbb{R}^n 的一个标准正交基;
- (2) $A^{-1} = A^T$;
- (3) $|A| = \pm 1$;
- (4) $A^{-1}, A^*, A^T, A^k, k \in \mathbb{N}_*$ 都是正交矩阵;
- (5) AB 是正交矩阵。

例 178 若矩阵 $\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{2} & a & b \end{pmatrix}$ 为正交矩阵,则 $a = \underline{\qquad}$, $b = \underline{\qquad}$

例 179 设 $A \in \mathbb{R}$ 阶正交矩阵, X_0, Y_0 是实 n 维列向量。已知在 \mathbb{R}^n 的标准内积下, X_0 与 AY_0 的长度分别是 6 与 3。

- (1) 求 $A^{-1}X_0 + Y_0$ 的长度的最大值与最小值;
- (2) 若 $|X_0 AY_0| = 3\sqrt{3}$,求 AX_0 与 A^2Y_0 的夹角。

定义.(正交补)设 V 是欧氏空间,W 是 V 的子空间,令 $W^{\perp} = \{\beta \in V \mid \forall \alpha \in W, (\alpha, \beta) = 0\}$,这称为 W 在 V 中的正交补。

定理 30.2 (不变子空间的正交补)设 V 是欧氏空间, $\sigma \in L(V)$ 是正交变换。如果 W 是 σ 的不变子空间,那么 W^{\perp} 也是 σ 的不变子空间。

定理 30.3 (正交变换的等价条件) 设 $V \in \mathbb{R}$ 维欧氏空间, $\sigma \in L(V)$, 则 σ 是正交变换当且仅当

- (1) 保持长度: 对于任意 $\alpha \in V$, 都有 $|\sigma(\alpha)| = |\alpha|$;
- (2) 将标准正交基变为标准正交基;
- (3) 在任意一组标准正交基下的矩阵是正交矩阵。

注记. (3) 说明正交变换具有正交矩阵的各条性质,它可以这么理解: 设 $S = \{\alpha_1, \dots, \alpha_n\}$ 是 V 的一组**标准正 交基**,对于任意 $\alpha, \beta \in V$,设 $\alpha = (\alpha_1, \dots, \alpha_n)X$, $\beta = (\alpha_1, \dots, \alpha_n)Y$,那么有

$$(\alpha, \beta) = X^T I Y = X^T Y$$

$$(\sigma(\alpha), \sigma(\beta)) = (AX)^T I (AY) = X^T A^T A Y$$

例 180 已知 (I): $\{\varepsilon_1,\cdots,\varepsilon_n\}$ 和 (II): $\{\eta_1,\cdots,\eta_n\}$ 为 n 维欧氏空间的两组基,且满足

$$(\eta_1, \cdots, \eta_n) = (\varepsilon_1, \cdots, \varepsilon_n)A$$

则下列说法中错误的是。

- (A) 若 (I)(II) 都是标准正交基,则 A 是正交矩阵;
- (B) 若 (I) 是标准正交基, A 是正交矩阵, 则 (II) 是标准正交基;
- (C) 若 (II) 是标准正交基, A 是正交矩阵, 则 (I) 是标准正交基;
- (D) 若 A 是正交矩阵,则 (I)(II) 都是标准正交基

例 181 设 V 是有限维欧氏空间, σ 是 V 上的线性变换。

- (1) 若 σ 是 V 上的正交变换,证明: σ 在 V 的任意一组标准正交基下的矩阵 A 为正交矩阵:
- (2) 若 σ 在 V 的某一组标准正交基下的矩阵 A 为正交矩阵,证明: σ 是 V 上的正交变换。

例 182 设 V 是实数域上的有限维线性空间, σ 是 V 上的线性变换且满足 $\forall v \in V, \sigma^2(v) + v = 0$ 。

- (1) 证明: σ 没有实特征值;
- (2) 进一步假设 V 是欧氏空间且 σ 是一个正交变换,证明:对于任意 $\alpha \in V$,都有 $\alpha \perp \sigma(\alpha)$ 。

正交相似具有很好的性质,非常幸运的是,正交矩阵在正交相似之下可以化为更加简单的形式。

定理 30.4 (正交矩阵的特征值和正交相似标准形) 设 $A \in n$ 阶正交矩阵,

- (1) A 的特征值模长都为 1,实特征值只可能为 ±1,复特征值为共轭成对出现的单位复数;
- (2) 设 A 的全部特征值为 1 (出现 s 次), -1 (出现 t 次) 和 $\cos \theta_i \pm i \sin \theta_i$, $1 \le i \le k$ (这里应有 s+t+2k=n),

则
$$A$$
 正交相似于矩阵
$$\begin{pmatrix} I_s & & & & \\ & -I_t & & & \\ & & A_1 & & \\ & & & \ddots & \\ & & & A_k \end{pmatrix}, \ \ \sharp \ \ P A_i = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix}, 1 \leqslant i \leqslant k;$$

- (3) 作为 (2) 的推论,如果 n 是奇数,那么 A 一定有实特征值。
- 例 183 设 A 是正交矩阵,则下列关于 A 的特征值的说法,错误的是_____。
 - (A) 如果 |A| = 1,则 1 一定是 A 的特征值;
 - (B) 如果 |A| = -1,则 -1 一定是 A 的特征值;
 - (C) A 有可能没有实特征值;
 - (D) A 的复特征值的模长等于 1

例 184 设 A, B 是 n 阶正交矩阵,且 |AB| = -1,那么 $|A + B| = _____$

例 185 求正交矩阵
$$A = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
 的正交相似标准形。

例 186 欧氏空间 V 的一个保持内积不变的线性同构变换称为 V 的一个同构变换。请问欧氏空间(含无穷维)的 同构变换和正交变换是同一个概念吗?【提示:关键在于是否同构】

31 实对称矩阵的正交相似对角化,对称变换

定义. (对称变换)设 V 是欧氏空间, $\sigma \in L(V)$,如果对于任意 $\alpha, \beta \in V$,都有 $(\sigma(\alpha), \beta) = (\alpha, \sigma(\beta))$,则称 σ 为 V 上的对称变换。

例 187 设 σ 是欧氏空间 V 上的对称变换,则对任意 $\alpha, \beta \in V$,下面论断正确的是

(A)
$$(\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta);$$

(C)
$$(\alpha, \beta) = (\sigma(\beta), \alpha)$$
;

(B)
$$(\alpha, \sigma(\beta)) = (\sigma(\beta), \sigma(\alpha));$$

(D)
$$(\alpha, \sigma^2(\beta)) = (\sigma(\beta), \sigma(\alpha))$$

定理 31.1 (对称变换和实对称矩阵的关系) 设 V 是欧氏空间, $\sigma \in L(V)$, 则 σ 是对称变换当且仅当 σ 在任意一组标准正交基下的矩阵是实对称矩阵。

例 188 设 A 是实对称矩阵,证明 $A^2 = 0$ 的充分必要条件是 A = 0。

例 189 设 σ 是 n 维欧式空间上的对称变换,若 $\sigma^2 = 0$,证明 $\sigma = 0$ 。

定理 31.2 (特征子空间彼此正交) 设 V 是欧氏空间, $\sigma \in L(V)$ 是对称变换,如果 λ, μ 是 σ 的两个不同特征值,则 $V_{\lambda} \perp V_{\mu}$ 。

定理 31.3 (不变子空间的正交补)设 V 是欧氏空间, $\sigma \in L(V)$ 是对称变换。如果 W 是 σ 的不变子空间,那么 W^{\perp} 也是 σ 的不变子空间。

现在我们来到本学期最深刻且最重要的定理。

定理 31.4 (实对称矩阵的特征值和正交相似标准形) 设 A 设 n 阶实对称矩阵,

- (1) A 的特征值都为实数;
- (2) 设 A 的全部特征值为 $\lambda_1, \cdots, \lambda_n$,则 A 正交相似于矩阵 $\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$;
- (3) 作为 (2) 的推论,实二次型 $f(X) = X^T A X$ 可以通过可逆线性变换化为 $f(Y) = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2$,这称为 f 的主轴形式。
- 例 190 设 V 欧氏空间, $\sigma \in L(V)$,称 σ 为反对称的,如果对任意 $\alpha, \beta \in V$,都有 $(\sigma(\alpha), \beta) = -(\alpha, \sigma(\beta))$ 。证明
 - (1) σ 是反对称的当且仅当 σ 在一组标准正交基下的矩阵为反对称矩阵;
 - (2) 如果 W 是反对称线性变换 σ 的不变子空间,那么它的正交补空间 W^{\perp} 也是。

现在我们来看实对称矩阵正交相似对角化定理的若干应用。

计算正交相似标准形

例 191 已知矩阵 $A=\left(\begin{array}{ccc}2&2&-2\\2&5&-4\\-2&-4&5\end{array}\right)$,求正交矩阵 P 使得 P^TAP 为对角矩阵。

例 192 设实二次型 $f(x_1, x_2, x_3) = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$ 。

- (1) 写出二次型 $f(x_1, x_2, x_3)$ 的矩阵;
- (2) 用正交的线性替换化二次型 $f(x_1, x_2, x_3)$ 为标准形。

研究矩阵的性质

例 193 设 n 阶实对称方阵 A 只有一个特征值,则其特征子空间的维数是。

例 194 设 A 是 4 阶实对称矩阵, $(A^2 - A)(A^2 + I) = 0$ 。若 A 的秩为 3,则 A 相似于

(A)
$$\begin{pmatrix} 1 & & & \\ & i & & \\ & & -i & \\ & & & 0 \end{pmatrix}$$
; (B) $\begin{pmatrix} 1 & & & \\ & i & 1 & \\ & & -i & \\ & & & 0 \end{pmatrix}$;

理科高等代数 43 / 43

例 195 (判断) 两个 n 阶实对称矩阵正交相似的充要条件是它们相似。

例 196 设 $A \in \mathbb{R}$ 阶实对称矩阵,则 A 是正定矩阵当且仅当存在 n 阶正定矩阵 B 使得 $A = B^2$ 。

32 特征值专题

同时相合对角化技巧

例 197 设 $A \in n$ 阶实对称正定矩阵, $B \in n$ 阶实对称矩阵,证明:

- (1) 存在实可逆矩阵 P 使得 $P^TAP = I, P^TBP$ 为对角形;
- (2) 若矩阵 AB 的特征值都是正实数,则 B 是正定矩阵。

例 198 设 $A, B \neq n$ 阶正定矩阵,证明:如果 A - B 是正定矩阵,则 $B^{-1} - A^{-1}$ 也是正定矩阵。

其他有关特征值的问题

例 199 设 $A \in M_4(\mathbb{R})$ 既是正交方阵又是正定方阵,那么 |5A - 3I| =_____。

- 例 200 设 Q 是 n 阶正交矩阵, $A = \text{diag}\{a_1, \dots, a_n\}$, $m = \min\{|a_i|\}$, $M = \max\{|a_i|\}$ 。证明:矩阵 QA 的任意特征值 λ 都满足 $m \leq |\lambda| \leq M$ 。
- 例 201 设 A, B 是 n 阶半正定矩阵
 - (1) 如果 $\operatorname{tr} A = 0$, 证明 A = 0;
 - (2) 如果 tr(AB) = 0, 证明 AB = O。
- 例 202 设 $A, B \in n$ 阶半正定矩阵,证明: AB 的所有特征值都是非负实数。进一步地,如果 A, B 都是 n 阶正定矩阵,证明: AB 的所有特征值都是正实数。
- 例 203 设 A 是 n 阶实对称矩阵, $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ 是 A 的从小到大的全体特征值。证明

$$\lambda_n = \max_{0 \neq X \in \mathbb{R}^n} \frac{X^T A X}{X^T X}, \lambda_1 = \min_{0 \neq X \in \mathbb{R}^n} \frac{X^T A X}{X^T X}$$

例 204 设 A 是实矩阵, $\lambda = a + bi, b \neq 0$ 为 A 的一个虚特征值, $X = X_1 + X_2 i$ 为 λ 的复特征向量, X_1, X_2 分别 为其实部和虚部。证明 X_1, X_2 在复数域上线性无关。