

POWER ENGINEERING

#16 SYNCHRONOUS GENERATOR (I)

2018

Plan for Today:

- Quick recap on the main results from the introductory lecture
- Unlocking the POWER of the phasor diagram #1
- Operating Modes:
 - Stand Alone Mode
 - Grid Connected Mode
- Stand Alone Mode Operation + Example
- Unlocking the **POWER** of the phasor diagram #2

Synchronous Generators

	PM Generator	Wound Field Generator
Rotor Flux	Fixed	Set by I _f
Excitation Voltage	Set by speed	Set by speed & I _f Typically FIXED speed
Voltage Frequency	Set by speed	Set by speed Typically FIXED speed

Note: from now on we will only consider fixed speed operation of a Wound Field Generator

Per Phase Equivalent Circuit with Load Impedance Z_L:

A Phase current I_{ph} will flow through load Z_L , the magnitude and phase of which is determined by E_{ph} , X_S and Z_L . The Terminal Voltage V_{ph} can the be determined once I_{ph} is known.

Typical (per phase) Phasor Diagram

Notes:

- 1. The angle Φ is the load **Power Factor Angle** (angle between V_{ph} and I_{ph})
- 2. The Voltage across the Synchronous Reactance (V_{XS}) leads the phase current I_{ph} by 90° ($V_{XS} = I_{ph}.j_{XS}$)
- 3. $E_{ph} = V_{ph} + V_{XS}$ (phasor arithmetic)
- 4. The Angle δ between V_{ph} and E_{ph} is termed the **LOAD ANGLE**

Unlocking the Power of the Phasor Diagram #1:

Typical Phasor Diagram:

Multiply all Voltage Phasors by $\frac{3.|V_{ph}|}{X_s}$

Note: Vph is magnitude only

Output Power as a function of Load Angle (δ)

$$Sin(\delta) = \frac{O}{H}$$

 $Sin(\delta) = \frac{O}{H} = \frac{3V_{ph}.I_{ph}Cos\theta}{3E_{ph}V_{ph}}$

 X_s

$$Sin(\delta) = \frac{X_s.Power(W)}{E_{ph}V_{ph}}$$

$$Power(W) = \frac{E_{ph}V_{ph}Sin(\delta)}{X_s}$$

Result: Load Angle is kept below δ_s to avoid stability problems

Operating Modes

Stand Alone Mode

The Generator operates in isolation with a (variable) load connected across its terminals

The result is the terminal voltage (V_{ph}) varies as a function of Load (Z_L) and Excitation Voltage (E_{ph})

Grid Connected Mode

The Generator connects to a 'network' of large Generators

The result is the terminal voltage (Vph) is **FIXED**

Stand Alone Mode: Increase in Load with no change to Excitation (E_{ph})

1] Power Factor Angle θ is set by load and stays constant (approximation)

Stand Alone Mode: Example

A star connected, 398V, 25kVA rated, stand alone micro-hydro 3 phase synchronous generator is operating near Galway in Ireland. It has a Synchronous Reactance of 3.5Ω. Considering an operating point of 18kW at rated current with a lagging power factor and rated terminal voltage, calculate:

- (i) Phase Current
- (ii) Reactive Power
- (iii) Power Factor
- (iv) Required Excitation Voltage (E_{ph})
- (v) Load Angle (δ)

Also sketch a phasor diagram (to scale) indicating V_{ph} , V_{xs} , E_{ph} , I_{ph} and load angle.

Solution done on whiteboard during lecture

Unlocking the Power of the Phasor Diagram #2:

Typical Phasor Diagram:

NOTE: for Grid Connected Mode the Terminal Voltage (V_{ph}) is **FIXED**

Multiply all Voltage Phasors by CONSTANT $3.V_{ph}$ X_s

Constant Power Line #1

The length of 3.V_{ph}.I_{ph}Cosθ indicates Power

Constant Power Line #1

Constant Power Line #2

Grid Connected Generator: Example

Determine the changes to the Phasor Diagram for a x2 increase in Output Power (W) and no change to the Excitation Voltage (E_{ph})

Grid Connected Generator: Example

Now consider a x2 increase in Output Power (W):

Grid Connected Generator: Example

Now consider a x2 increase in Output Power (W):

Procedure:

- 1. Rotate E_{ph} CCW to P_2 line
- line 2. Calculate V_{xs}
- 3. Calculate I_{ph}

Example:

Part A

A 3 phase Synchronous Generator with a Synchronous Reactance of 25Ω is connected to an 10kV (Phase Voltage) grid and supplies 1MW at a 0.819 lagging Power Factor at its terminals. Calculate the phase current and resultant V_{XS} , and from the phasor diagram graphically determine the required Excitation Voltage (E_{ph}) and Load Angle (δ)

Part B

The load is increased to 3MW, calculate the resultant changes to the phase current, power factor and load angle for constant Excitation Voltage.

