Flip-flop e Registri

Flip-flop S-R (Set-Reset) o bistabile (macchina asincrona)

Tabella verità NOR

- Se un ingresso è uguale ad 1
 allora l'uscita vale 0
- Se un ingresso è uguale a 0
 allora l'uscita è uguale
 al valore dell'altro
 ingresso negato

Bistabile (cont.)

il termine bistabile nasce dal fatto che sono "circuiti" con due stati stabili

Equazioni bistabile

C) 5	R	I Q'
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	d.c.c.
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	d.c.c.

$$Q' = S + RQ$$

· Q' prossimo stato

Caratteristiche

La configurazione di ingresso S=R=1 non è ammessa, poiché se da questa si passa a S=R=0 sono possibili due configurazioni per l'uscita. La configurazione effettiva non è cioè prevedibile

Con S=R=0 il bistabile mantiene (hold) lo stato acquisito in precedenza (Q'=Q) Questa rete è cioè in grado di memorizzare una informazione elementare (bit)

Segnale di sincronizzazione

- Un segnale di sincronizzazione è una variabile binaria che viene utilizzata per abilitare la commutazione di un flip-flop (sincronizzato)
- L'abilitazione alla commutazione può essere fatta:
 - all'istante in cui avviene la commutazione della variabile da 0 ad 1 (fronte di salita);
 - All'istante in cui avviene la commutazione della variabile da 1 a 0 (fronte di discesa)
 - Nel periodo in cui è stabile ad 1 oppure a 0 (a livello)

·nella realtà le transizioni 0->1 e 1->0 non sono istantanee

Segnale di sincronizzazione (cont.)

- ·Alcune volte il **segnale di abilitazione** per la commutazione può avere un comportamento periodico (periodo T), in questi casi viene chiamato anche **clock** (CK)
- Spesso il segnale di abilitazione per la commutazione viene identificato con CK anche se non ha un comportamento periodico

Flip-flop (bistabili) sincronizzati

- Sono ottenuti dai bistabili asincroni aggiungendo un segnale di controllo CK
- Abilitazione sul livello (Level-triggered), chiamati <u>Latch</u>
 - L'uscita può cambiare durante tutto il periodo in cui CK=1 o 0.
- Abilitazione sul fronte di salita (positive edge triggered)
 - L'ingresso viene considerato solo quando CK varia da 0 ad 1 e lo stato può cambiare in corrispondenza di tale transizione
- Abilitazione sul fronte di discesa (negative edge triggered)
 - L'ingresso viene considerato solo quando CK varia da 1 a 0 e lo stato può cambiare in corrispondenza di tale transizione
- Master-Slave
 - L'ingresso viene considerato solo quando CK varia da 0 ad 1, mentre l'uscita cambia in corrispondenza della transizione 1->0
 - Eventuali cambiamenti dell'ingresso dopo la transizione 0->1 sono ignorati dal circuito

Esempio, Latch S-R

CK	5	S R	
0	0	0	Q
0	0	1	Q
0	1	0	Q
0	1	1	Q
1	0	0	Q
1	0	1	0
1	1	0	1
1	1	1	?

Quando CK=1 allora si ha il consenso alla transizione

Perché abilitare sui fronti?

- Sia δ il tempo in cui CK=1 e τ il tempo di commutazione del FF
- Si supponga che $\delta > \tau$
- L'uscita può cambiare più volte se l'ingresso varia e questo in alcuni casi può creare problemi

Abilitazione sul fronte

Usando FF con abilitazione sul fronte (di salita o di discesa) si campiona il valore delle altre variabili di ingresso in un intervallo più ristretto (teoricamente di ampiezza nulla).

Campionamento sul fronte di salita

Flip/flop D (delay) latch

- · Un solo ingresso più uno di abilitazione
- · Usato come unità elementare di memorizzazione
 - Presenta in uscita ciò che è presente in ingresso quando il CK = 1, altrimenti presenta l'ultimo valore di D quando il CK commuta da 1 a 0.

Master-Slave

. L'ingresso viene campionato durante il fronte di salita, l'uscita commuta in corrispondenza del fronte di discesa.

Registri

- Un registro è un elemento di memoria
 - in grado di memorizzare un insieme di n bit
 - composto da un insieme di flip-flop
 - l'informazione memorizzata in un registro prende il nome di parola (se 8 bit si identifica anche come byte)

Registri

- Modalità di scrittura/lettura dei dati
 - Parallelo
 - Seriale
- · Operazioni sui dati:
 - Scorrimento a destra
 - Scorrimento a sinistra
 - Scorrimento circolare

Registro parallelo-parallelo

Shift register

Registro circolare (n=4)

