PH101

Lecture 10

Variational principle, Brachistochrone problem

History of Variational Calculus (Wikipedia/Rana&Joag)

Pierre de Fermat (1607 –1665)

Isaac Newton (1642 – 1727)

Jacob Bernoulli (1655 – 1705) Algebra

Johann (**Jean** or **John**) **Bernoulli** (1667 –1748) Variational calculus

Leonhard Euler (1707-1783)

Joseph-Louis Lagrange

Daniel Bernoulli (1700 –1782) Bernoulli's principle on fluids

Fermat's principle of least (extremum) time ~1662

Which path light follows when it passes through a medium?

$$(n=1.33)$$

Salt solution in a container with vertically varying refractive index [n(z)]

Fermat's principle: Light travels between two points along the path that requires the least time, as compared to other nearby paths

Travels in a path for which

$$\delta \int_{A}^{B} dt = \delta \int_{A}^{B} \frac{ds}{v} = 0$$

$$n = \frac{\text{speed of light in vacuum }(c)}{\text{speed of light in medium }(v)}$$

Where, $ds \rightarrow Elementary\ length\ along\ any\ possible\ path$

Needs a condition for minima of an integral!

Pierre de Fermat (1607 –1665)

Jean Bernoulli's challenge! "Brachistochrone"

□ What should be the shape of a stone's trajectory (or, of a roller coaster track) so that released from point A it reaches point B in the shortest possible time? **Brachistochrone problem!** ~1696

Brachisto~ shortest **Chrone~** time

Jean Bernoulli (1667 –1748) Variational calculus

Isaac Newton (1642 – 1727)

Jean Bernoulli's challenge! "Brachistochrone"

□ What should be the shape of a stone's trajectory (or, of a roller coaster track) so that released from point 1 it reaches point 2 in the shortest possible time? **Brachistochrone problem!** ~1696

□ Time (from 1 to 2)
$$I = \int_A^B \frac{ds}{v} = \int_A^B \frac{\sqrt{(1+y'^2)}}{\sqrt{2gy}} dx = \int_A^B F(y, y', x) dx$$

Cycloid

Needs a condition for minima of an integral!

Wiki

Extremums!

Can we prove mathematically

☐ Shortest distance between two points is a straight line?

☐ Shortest path between two points on the surface of a sphere is along the

great-circle?

To answer these questions, one need to know necessary condition that the integral $\mathbf{I} = \int_{x_1}^{x_2} F(y, y', x) dx$, where y = y(x), $y' = \frac{dy}{dx}$ is **stationary**

(ie, an extremum! – either a maximum or a minimum!).

☐ Interestingly we are already familiar with the condition!

Integration of a functional

Let's consider a function F(y, y', x), where y = y(x) is a function of x; $y' = \frac{dy}{dx}$. I,e. F(y, y', x) is a function of a function known as **functional**.

Can you find out the value of this integration $I = \int_{x_1}^{x_2} F(y, y', x) dx$?

 \square It is surely possible if you know the integration path y = y(x).

Example: If $F = xy + x^2y'$ and you know the integration path $y = y(x) = x^2$ (for example), then $F = xx^2 + x^2(2x) = 3x^3$, hence $I = \int_{x_1}^{x_2} 3x^2 dx = [x_2^3 - x_1^3]$

Possible integration paths

 \square If exact integration path [y = y(x)] between A and B is not known, one can imagine infinite number of **possible paths** between these two points.

☐ Out of all the possible paths, in which path

$$I = \int_{x_1}^{x_2} F(y, y', x) dx$$
 is stationary?

You need to find the condition for an integral to be stationary, where variable is the integration path [y = y(x)]

Review: Finding extremum of a function

We say the function is **stationary** at, x_0 (Meaning, for small steps, Δx , at x_0 the value of the function does not change. $\Delta f = \left(\frac{df}{dx}\right)_{x0} \Delta x \to 0$

Stationary condition of function vs stationary condition of integral

The stationary condition of an integral I can easily be established by reviewing the steps we follow to get **stationary condition of a function** f(x) and making an analogy.

Step 1: Suppose x [to be determined] is the point for which f(x) is stationary.

[Analogy]: Let's consider a path y = Y(x) [to be determined], for which the integration is stationary.

Step 2: Consider all possible points $(x + \Delta x)$ which differ from stationary point x by different amount Δx .

[Analogy] Choose a function $[Y(x) + \Delta y(x)]$ to represent all possible paths between x_1 and x_2 which differ from stationary path by different amount (different value of $\Delta y(x)$)

Step 3: Use the fact that, variation of f(x) [I,e $\Delta f = f(x + \Delta x) - f(x)$] is negligibly small near stationary point (say $say \ x = x_0$) (I,e $\Delta x \to 0$), which gives the **final condition** $\frac{dy}{dx} = \mathbf{0}$

[Analogy]: Use the fact that variation of the integral value (I) [I,e $\delta I = I(Y + \Delta y) - I(Y)$] is negligibly small in the nearby paths $[\Delta y \rightarrow 0]$, Which will give a condition.....?

Smart choice of varied paths

- □ Step 1: Lets consider y = Y(x) as the path for which integration $I = \int_{x_1}^{x_2} F(y, y', x) dx$ is stationary.
- □ Step2: Lets chose $Y(x) + \Delta y(x)$, such that it can represent all possible paths between x_1 and x_2 for different Δy . How to chose this function $\Delta y(x)$?

Mathematical form of Δy should be such that

- (i) $Y(x) + \Delta y(x)$ can represent all possible paths but must not have variations at $A(x_1)$ and $B(x_2)$ (fixed points).
- (ii) Δy goes to zero in the limiting case when the varied paths are very close to Y(x).

Let's check this choice $\Delta y = \epsilon \eta(x)$

- where $\eta(x)$ is any **arbitrary function** of x such that $\eta(x_1) = \eta(x_2) = 0$. [condition (i) satisfied]
- \succ ϵ is a parameter which can vary from 0 to higher value continuously. If we take **limit** $\epsilon \rightarrow 0$, then condition (ii) satisfied.

$\eta(x)$ and ϵ are indeed smart choice

Typical choice of arbitrary function $\eta(x)$,

- By varying ϵ , different strength of $\eta(x)$ can be added to Y(x) to generate a range of possible paths between A and B $[y(x,\epsilon) = Y(x) + \Delta y(x) = Y(x) + \epsilon \eta(x)]$
- $ightharpoonup \epsilon o 0$ can give path very close to Y(x).

Another possible choice of $\eta(x)$ to generate another series of possible paths between A and B by varying ϵ .

Thus arbitrary $\eta(x)$ and ϵ can produce all possible paths.

Stationary condition of integral

Step 3: Variation of the integral value along the paths nearby to stationary path paths $[, i, e, \epsilon \rightarrow 0]$, is negligibly small.

The meaning of the statement is

The difference of integral values along two nearby paths $\delta I(\epsilon) = [I(\epsilon) - I] \rightarrow 0$, when $\epsilon \rightarrow 0$ (paths are nearly)

Where, $\mathbf{I} = \int_{x_1}^{x_2} F(Y, Y', x) dx$ along stationary path y = Y(x) and

$$I(\epsilon) = \int_{x_1}^{x_2} F\{(Y + \Delta y), (Y' + \Delta y'), x\} dx] = \int_{x_1}^{x_2} F\{y(x, \epsilon), y'(x, \epsilon), x\} dx$$

Along another path $y(x, \epsilon) = Y(x) + \Delta y(x) = Y(x) + \epsilon \eta(x)$

This is equivalent to saying,
$$\left. \frac{dI(\epsilon)}{d\epsilon} \right|_{\epsilon \to 0} = \mathbf{0}$$

For stationary path
$$\frac{dI(\epsilon)}{d\epsilon}\Big|_{\epsilon \to 0} = \mathbf{0}$$

$$\frac{dI(\epsilon)}{d\epsilon} \Big|_{\epsilon \to 0} = \frac{d}{d\epsilon} \left[\int_{x_1}^{x_2} F\{y(x,\epsilon), y'(x,\epsilon), x\} dx \right] \qquad \text{Where,} \\
y(x,\epsilon) = (Y + \epsilon \eta) \\
y'(x,\epsilon) = Y' + \epsilon \eta'$$

$$= \int_{x_1}^{x_2} \left(\frac{\partial F}{\partial y} \frac{\partial y}{\partial \epsilon} + \frac{\partial F}{\partial y'} \frac{\partial y'}{\partial \epsilon} \right) dx = \int_{x_1}^{x_2} \frac{\partial F}{\partial y} \eta \, dx + \int_{x_1}^{x_2} \frac{\partial F}{\partial y'} \eta' \, dx$$

$$= \int_{x_1}^{x_2} \frac{\partial F}{\partial y} \eta \, dx + \frac{\partial F}{\partial y'} \eta \Big|_{x_1}^{x_2} - \int_{x_1}^{x_2} \eta \, \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) \, dx$$
Integration by parts
$$= -\int_{x_1}^{x_2} \left[\frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial x_1} \right] \eta \, dx = 0$$
As $\eta(x_1) = \eta(x_2) = 0$

$$= -\int_{x_1}^{x_2} \left[\frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial y} \right] \eta \ dx = 0$$
 As $\eta(x_1) = \eta(x_2) =$

This equation is true for any possible choice of $\eta(x)$, thus

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$$
, Euler-Lagrange equation

This is necessary condition for $I = \int_{x_1}^{x_2} F(y, y', x) dx$ to be stationary

Application of Variational principle: Example 1

☐ Given two points in a plane, what is the shortest path between them? You certainly know the answer: Straight line. Let's prove it using variation method

 \square Consider an arbitrary path y(x), elementary length

$$ds = \left[(dx)^2 + (dy)^2 \right]^{1/2} = \left[\left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\} \right]^{1/2} dx = \left(1 + {y'}^2 \right)^{1/2} dx$$

- \square Total path length $\int_A^B ds = \int_{x_1}^{x_2} (1 + y'^2)^{1/2} dx$
- ☐ Necessary condition for this integral to be stationary (maximum)

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y'}\right) - \frac{\partial F}{\partial y} = 0$$
; Here $F(y, y', x) = \left(1 + {y'}^2\right)^{1/2}$

Application of variation principle: Example1

$$\frac{\partial F}{\partial y'} = \frac{\partial}{\partial y'} \left\{ \left(1 + {y'}^2 \right)^{1/2} \right\} = y' \left(1 + {y'}^2 \right)^{-1/2}; \frac{\partial F}{\partial y} = 0$$

Thus

$$\frac{d}{dx} \left\{ \mathbf{y}' (1 + \mathbf{y}'^2)^{-1/2} \right\} = 0$$

$$\mathbf{y}' (1 + \mathbf{y}'^2)^{-1/2} = constant$$

$$\mathbf{y}'^2 = Constant (1 + \mathbf{y}'^2),$$

$$\mathbf{y}'^2 = Constant;$$

$$\mathbf{y}(x) = mx + C, Where m and C are constant$$

Equation of straight line

☐ Shortest distance between two points in a plane is straight line.

Summery

$$\mathbf{I} = \int_{x_1}^{x_2} F(y, y', x) dx$$
Necessary condition for stationary
$$\frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial y} = 0$$

☐ To get stationary condition of any quantity, express the quantity in terms of integral of its infinitesimal value with known integration limit, then use Euler-Lagrange equation