МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра КСУ

ОТЧЕТ

по лабораторной работе № 6 по дисциплине «Математическое моделирование объектов и систем управления»

ТЕМА: ИССЛЕДОВАНИЕ ХАОТИЧЕСКИХ СИСТЕМ Вариант 5

CTANTONIA DO 0402	Викторов А.Д.
Студенты гр. 9492	Керимов М.М.
Преподаватель	Шпекторов А.Г.

Санкт-Петербург 2023 **Цель работы:** ознакомиться с классом хаотических систем, освоить средства MATLAB для моделирования «странных аттракторов», изучить практические способы определения параметров хаотических систем.

Задание

В качестве исследуемой хаотической системы, согласно варианту, была выбрана следующая система, в которой присутствует аттрактор Томаса (циклически симметричный):

$$\dot{x}_1 = -bx_1 + sinx_2$$
;
 $\dot{x}_2 = -bx_2 + sinx_3$;
 $\dot{x}_3 = -bx_3 + sinx_1$;

где b = 0.19.

Необходимо выполнить следующие пункты:

- 1) Написать программу решения системы уравнений;
- 2) Построить график фазовой траектории странного аттрактора;
- 3) Определить фрактальную размерность аттрактора хаотической системы.

Определение фрактальной размерности странного аттрактора

Фрактальная размерность характеризует густоту наполнения аттрактора фазовыми траекториями. Определение фрактальной размерности представляет собой достаточно сложную задачу, однако существуют косвенные методы, позволяющие получить размерность аттрактора, близкую к фрактальной. Подобным примером является метод корреляционной размерности. В этом случае необходимо определить корреляционный

интеграл, как среднее количество точек аттрактора, не превышающих заданного расстояния

$$C(r, N) = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(r - |x_i - x_j|), \quad i \neq j,$$

Размерность аттрактора определяется по формуле:

$$D_r = \lim_{r \to 0} \lim_{N \to \infty} \frac{\log(C(r, N))}{\log(r)}.$$

ХОД РАБОТЫ

Исходный код программы для решения системы уравнений и построения фазовых траекторий хаотической системы представлен в листингах 1-2:

Листинг 1. Основной скрипт

```
clc, clear, close all
x 0 = 0.72;
y_0 = -4.02;
z = -1.41;
T = 800;
b = 0.19;
sys = @(t,x) [ -b*x(1) + sin(x(2)); -b*x(2) + sin(x(3)); -b*x(3) +
sin(x(1))];
[t, sol] = ode45(sys, [0 T], [x 0 y 0 z 0]);
D = frac dim(sol, 0.0004, 2800)
figure(1)
plot3(sol(:,1),sol(:,2),sol(:,3))
grid on
figure(2)
plot(t, sol(:,1), t, sol(:,2), t, sol(:,3))
grid on
```

```
function D = frac dim(x, r, N)
C = 0;
     for i = 1:N
           for j = 1:N
                if(i ~= j)
                      dist = sqrt((x(j, 1)-x(i, 1))^2 + ...
                                     (x(j, 2)-x(i, 2))^2 + ...
                                     (x(j, 3)-x(i, 3))^2;
                      if (r - dist > 0)
                           C = C + 1;
                      end
                end
           end
     end
     C = C / N / (N - 1);
     D = \log(C)/\log(r);
end
```

В результате выполнения программы получена фазовая траектория странного аттрактора, которая представлена на рисунке 1.

Рисунок 1 — Фазовая траектория странного аттрактора

Полученный переходный процесс представлен на рисунке 2.

Рисунок 2 – Переходный процесс

Выберем в качестве начальных условий точку, которая уже принадлежит аттрактору и построим новый аттрактор без значительного переходного процесса для вычисления фрактальной размерности, его траекторию можно видеть на рисунке 3.

Рисунок 3 – аттрактор

Произведем расчет размерности аттрактора, используя функцию, описанную в листинге 2. В таблице 1 представлен расчет размерности с уменьшением значения r, для расчета использовались все полученные точки аттрактора. В нашем случае размерность аттрактора составила D = 2,11.

Таблица 1 – Вычисление размерности аттрактора

Значение <i>r</i>	Фрактальная размерность
0.1	2.86
0.01	2.1
0.001	2.2
0.0008	2.13
0.00074	2.11

вывод

В результате выполнения лабораторной работы был исследован класс хаотических систем, а также освоены средства МАТLAB для моделирования «странных аттракторов», изучены практические способы определения параметров хаотических систем.