Public Key Cryptography (PKC)

Introduction

- Traditional private/secret/single key cryptography uses one key
 - shared by both sender and receiver symmetric, parties are equal
 - does not protect the sender,
 - receiver can forge a message & claim that it has sent by sender
- if this key is disclosed, communications are compromised
- Therefore, a secure channel is required
 - to secretly transfer the key to receiver
- How to establish the secure channel a practical problem
- Why can't the message itself be communicated through this?

PKC - Motivation

• How many pairs of keys are required for say *n users*? (symmetric key)

PKC - Motivation

• total of (n² –n)/2 potential pairs: who wish to communicate privately !!

• it is unrealistic to assume that $(n^2 - n)/2$ pairs can be arranged

- PKC was proposed as
 - communication over a public channel
 - using publicly known techniques

- PKC is modern cryptography
 - probably most significant advance in the 3000 year history of cryptography
 - uses two keys a public & a private key
 - asymmetric since parties are not equal
 - uses clever application of number theoretic concepts to function

- developed to address two key issues:
 - key distribution how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender

- Symmetric and asymmetric-key cryptography will exist in parallel and continue to serve the community.
 - they are complements of each other;
 - the advantages of one can compensate for the disadvantages of the other.

Symmetric-key cryptography is based on sharing secrecy; Asymmetric-key cryptography is based on personal secrecy.

Asymmetric key cryptography uses two separate keys: one private and one public.

General Idea of PKC

- Plaintext/Ciphertext
 - Unlike in symmetric-key cryptography, plaintext and ciphertext are treated as integers in asymmetric-key cryptography.
- The main idea behind asymmetric-key cryptography is the concept of the trapdoor oneway function.

A function as rule mapping a domain to a range

One-Way Function (OWF)

1. f is easy to compute. 2. f^{-1} is difficult to compute.

Trapdoor One-Way Function (TOWF)

3. Given y and a trapdoor, x can be computed easily.

Example

Example 1:

- When n is large, $n = p \times q$ is a one-way function.
- Given p and q , it is always easy to calculate n ;
- given n, it is very difficult to compute p and q. This is the factorization problem.

Example 2:

- When n is large, the function $y = x^k \mod n$ is a trapdoor one-way function.
- Given x, k, and n, it is easy to calculate y.
- Given y, k, and n, it is very difficult to calculate x.

Example

1024 bit Prime Number:

 $14926660406676521425746589984505259593698043308528112047243863356010910984506208081319567489713652594984018496531250529886994872297764946902308436155041298948606020791758\\0540454081140587353862234445577520476872543676486167892443872308705026778461121261224322495328346630383486386663628878772838449087770123303$

Now, In real life applications, 2048 bit prime numbers are used.

Asymmetric Encryption

PKC Authentication

PKC – Encryption & Authentication

PKC Applications

- can classify uses into 3 categories
 - encryption/decryption
 - the sender encrypts a message with the recipient's public key.
 - digital signature
 - the sender "signs" a message with its private key.
 - key exchange
 - two sides cooperate two exchange a session key.

some algorithms are suitable for all uses, others are specific to one

Public key Characteristics

- Public-Key algorithms rely on two keys where:
 - it is computationally infeasible to find decryption key knowing only algorithm & encryption key
 - it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)
- a problem being computationally easy means
 - it can be solved in polynomial time as a function of its input n i.e.
 - if the length of the input is n bits,
 - then the time to compute is proportional to n^a (a = some constant value)

Public key Characteristics

- computationally infeasible is difficult to define
- a problem is infeasible to solve
 - if grows faster than the polynomial time as a function of input size
 - i.e., if the length of the input is **n** bits, then
 - the time to compute is proportional to 2ⁿ
- A one way trap door function

Security of public key

- brute force exhaustive search attack is always possible
 - like private key schemes
 - but keys proposed and used are too large (>1024bits)
 - For example: p=170141183460469231731687303715884105727,
 - renders brute force attack impractical
 - solution (security) relies
 - on a large enough difference in difficulty
 - between easy (en/decrypt) and hard (cryptanalyse) problems