

Detecting Water Wells In Need of Repair In Tanzania

By Aaron Abrahamson, Karen Warmbein, and Hunter Ewing

Github

Limited Ability to Monitor/Repair a Fragile Infrastructure

- Only 50% of Tanzanian population has access to safe water
- Out of 59,400 total wells in the dataset, 27,141 in need or repair (46%)
- Our goal is to build a predictive model to indicate the point when a functional well begins to need repairs

Dataset

- "Pump It Up Data Mining the Water Table" from here
 - o 59,400 records with 40 features of water wells in Tanzania
- Large target classification imbalance
 - Ternary classification made binary
 - Wells that needs some repair & broken wells combined
 - What wells need eyes for hands on repair?
- Modeled 17 features (descriptions <u>here</u>)
 - basin, region, scheme management, scheme name, water extraction type,
 management, payment, water quality, quantity, source, waterpoint type, gps
 height, longitude, latitude, region code, district code, population, status group
- Dropped 1,812 records during data cleaning

Models

Model	Туре	Accuracy	Recall
Dummy	Decision tree classifier Used only numerical features max_depth=5, Gini criterion	40%	
Model 1	Decision tree classifier max_depth=5, Gini criterion	70.5%	43%
Model 2	Random forest classifier, 50 trees Hyperparameter tuning, GridSearch Best score: Gini criterion, max_depth=50	82%	77%
Model 3	KNN	78.6%	74%
Model 4	Logistic Regression	53.8%	47%
Model 5	AdaBoost	74.8%	61%

Best Model: Random Forest Classifier

- 50 trees
- Hyperparameter tuning
 - GridSearch with:
 - Gini and entropy criterions
 - Limited the depth of the tree to 10, 50 and 100 levels
- Best score: Gini criterion, max_depth=50
- Accuracy: 82%
- 'Needs Repair' Recall: 77%

Results

Next Steps

- More feature engineering
 - Replace construction year zeros with the average construction year
 - At least a 2% accuracy increase
 - Replace 0 population with average population; include population in models
 - Assume this is a good predictor
 - More people using the well leads to reduced functionality
- Try more ensemble models
 - Hybrid models
 - Compare ternary versus binary classification models
- Fix issues in pipeline
- Compare granular features vs. binned features

Thank you!

Questions?

