

COMP90038 Algorithms and Complexity

Lecture 11: Shttps://eduassistpro.githundinconquer (with thanks to Hara edu_assist_pro

Toby Murray

@tobycmurray

Divide and Conquer

- We earlier studied recursion as a powerful problem solving technique.
- The divide-and-conquer strategy tries to make the most of this idea:

Assignment Project Exam Help

into smaller 1. Divide the given https://eduassistpro.github.io/ instances.

- Add WeChat edu_assist_pro

 2. Solve the smaller instances ely.
- 3. Combine the smaller solutions to solve the original instance.
- This works best when the smaller instances can be made to be of equal (or near-equal) size.

Split-Solve-and-Join Approach

Assignment Project Exam Help

https://eduassistpro.github.io/

Divide and Conquer Algorithms

- We will discuss:
 - The Master Theorem Project Exam Help
 - Mergesort https://eduassistpro.github.io/
 - Quicksort
 Add WeChat edu_assist_pro
 - Tree traversal
 - Closest Pair revisited

Divide-and-Conqer General Case

problem of size n

problem of size *n/b*

Assignment Project Exam Help of siz https://eduassistpro.github.io/

problem of size *n/b*

Add WeChat edu_assist_pro

b sub-problems

Divide-and-Conqer General Case

problem of size n

problem of size *n/b*

Assignment Project Exam Help

https://eduassistpro.github.io/

problem of size *n/b*

Add WeChat edu_assist_pro

only a sub-problems need to be solved

Divide-and-Conqer General Case

problem of size n

problem of size *n/b*

Assignment Project Exam Help

https://eduassistpro.github.io/

problem of size *n/b*

Add WeChat edu_assist_pro

only a sub-problems need to be solved

combine the a solutions

Divide-and-Conquer Recurrences

- What is the time required to solve a problem of size n by divide-and-conquer?
- For the general case, assume we split the problem into b instances (each of size n/b), of which a need to be solved:

T(https://eduassistpro.github.io/

Add WeChat edu_assist_pro

where f(n) expresses the time spent on dividing a problem into b sub-problems and combining the a results.

- (A very common case is T(n) = 2T(n/2) + n.)
- How to find closed forms for these recurrences?

The Master Theorem

- (A proof is in Levitin's Appendix B.)
- For integer constants $a \ge 1$ and b > 1, and function f with $f(n) \in \Theta(n^d)$, $d \ge 0$, the recurrence Assignment Project Exam Help

 $T(\frac{n}{\text{https://eduassistpro.github.io/}}$

(with T(1) = c) has by the edu_assist_pro

$$T(n) = \left\{ egin{array}{ll} \Theta(n^d) & ext{if } a < b^d \ \Theta(n^d \log n) & ext{if } a = b^d \ \Theta(n^{\log_b a}) & ext{if } a > b^d \end{array}
ight.$$

Note that we also allow a to be greater than b.

$$T(n) = 2T(n/2) + n$$

$$a = 2$$
, $b = 2$, $d = 1$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$

$$a = 2$$
, $b = 2$, $d = 1$

$$a = b^d$$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

So, by the Master Theorem, $T(n) \in \Theta(n \log n)$

$$T(n) = 2T(n/2) + n$$

$$a = 2$$
, $b = 2$, $d = 1$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$
 $a = 2, b = 2, d = 1$
 $T(n) = 2(2T(n/4) + (n/2)) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$

 $T(n) = 4T(n/4) + 2(n/2) + n$

$$a = 2$$
, $b = 2$, $d = 1$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$
 $a = 2$, $b = 2$, $d = 1$
 $T(n) = 4(2T(n/8) + n/4) + 2(n/2) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$
 $a = 2$, $b = 2$, $d = 1$
 $T(n) = 8T(n/8) + 4(n/4) + 2(n/2) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$
 $a = 2, b = 2, d = 1$
 $T(n) = 8(2T(n/16) + n/8) + 4(n/4) + 2(n/2) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$
 $a = 2, b = 2, d = 1$
 $T(n) = 16T(n/16) + 8(n/8) + 4(n/4) + 2(n/2) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$

$$a = 2$$
, $b = 2$, $d = 1$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n$$
$$T(n) \in \Theta(n \log n)$$

$$a = 2$$
, $b = 2$, $d = 1$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 4T(n/4) + n$$
 $a = 4, b = 4, d = 1$ $a = b^d$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

So, by the Master Theorem, $T(n) \in \Theta(n \log n)$

$$T(n) = 4T(n/4) + n$$

$$a = 4$$
, $b = 4$, $d = 1$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 4T(n/4) + n$$
 $a = 4, b = 4, d = 1$
 $T(n) = 4(4T(n/16) + (n/4)) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 4T(n/4) + n$$
 $a = 4, b = 4, d = 1$
 $T(n) = 16T(n/16) + 4(n/4) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 4T(n/4) + n$$
 $a = 4, b = 4, d = 1$
 $T(n) = 16T(n/16) + 4(n/4) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 4T(n/4) + n$$
 $a = 4$, $b = 4$, $d = 1$
 $T(n) = 16(4T(n/64) + n/16) 4(n/4) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 4T(n/4) + n$$
 $a = 4$, $b = 4$, $d = 1$
 $T(n) = 64T(n/64) + 16(n/16) + 4(n/4) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 4T(n/4) + n$$
 $a = 4$, $b = 4$, $d = 1$
 $T(n) = 64T(n/64) + 16(n/16) + 4(n/4) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

(log₄ n times)

$$T(n) = 4T(n/4) + n$$
 $a = 4$, $b = 4$, $d = 1$
 $T(n) = 64T(n/64) + 16(n/16) + 4(n/4) + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

-

(log₄ n times)

$$T(n) = 4T(n/4) + n$$
 $a = 4$, $b = 4$, $d = 1$
 $T(n) = 64T(n/64) + 16(n/16) + 4(n/4) + n$
 $T(n) \in \Theta(n \log n)$
Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = T(n/2) + n$$

$$a = 1, b = 2, d = 1$$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = T(n/2) + n$$
 $a = 1, b = 2, d = 1$
 $a < b^d$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

So, by the Master Theorem, $T(n) \in \Theta(n)$

$$T(n) = T(n/2) + n$$

$$a = 1, b = 2, d = 1$$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = T(n/2) + n$$

$$a = 1, b = 2, d = 1$$

$$T(n) = T(n/4) + n/2 + n$$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = T(n/2) + n$$
 $a = 1, b = 2, d = 1$
 $T(n) = T(n/8) + n/4 + n/2 + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = T(n/2) + n$$
 $a = 1, b = 2, d = 1$
 $T(n) = T(n/8) + n/4 + n/2 + n$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = T(n/2) + n$$
 $a = 1, b = 2, d = 1$
 $T(n) = T(n/8) + n/4 + n/2 + n$

 $T(n) \in \Theta(n)$ Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$

$$a = 2$$
, $b = 2$, $d = 2$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$
 $a = 2, b = 2, d = 2$
 $a < b^d$

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

So, by the Master Theorem, $T(n) \in \Theta(n^2)$

$$T(n) = 2T(n/2) + n^2$$

$$a = 2$$
, $b = 2$, $d = 2$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$
 $a = 2, b = 2, d = 2$
 $T(n) = 2(2T(n/4) + (n/2)^2) + n^2$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$
 $a = 2, b = 2, d = 2$
 $T(n) = 4T(n/4) + 2(n/2)^2 + n^2$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$
 $a = 2$, $b = 2$, $d = 2$
 $T(n) = 4(2T(n/8) + (n/4)^2) + 2(n/2)^2 + n^2$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$
 $a = 2$, $b = 2$, $d = 2$
 $T(n) = 8T(n/8) + 4(n/4)^2 + 2(n/2)^2 + n^2$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$
 $a = 2$, $b = 2$, $d = 2$
 $T(n) = 8T(n/8) + 4(n/4)^2 + 2(n/2)^2 + n^2$

Assignment Project Exam Help

https://eduassistpro.github.io/

$$T(n) = 2T(n/2) + n^2$$
 $a = 2$, $b = 2$, $d = 2$
 $T(n) = 8T(n/8) + 4(n/4)^2 + 2(n/2)^2 + n^2$
 $T(n) \in \Theta(n^2)$ Assignment Project Exam Help

https://eduassistpro.github.io/

- Perhaps the most obvious application of divide-and-conquer:
- To sort an array (or a list), cut it into two halves, sort each half, and merge the two results.

Assignment Project Exam Help

https://eduassistpro.github.io/

k

A:

A:

k

A:

k

Assignment Project Exam Help

p: 4 q: 4

https://eduassistpro.github.io/

Assignment Project Exam Help

p: 4 q: 4

https://eduassistpro.github.io/

Assignment Project Exam Help

p: 4 q: 4

Assignment Project Exam Help

p: 4 q: 4

https://eduassistpro.github.io/

k

Add WeChat edu_assist_pro A: 2 3 5 4 2 5 3 6 7 4 ()

Assignment Project Exam Help

p: 4

q: 4

https://eduassistpro.github.io/

Assignment Project Exam Help

; p: 4

q: 4

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

A: k

B: 2 3 8 9 0 1 2 3

C: 1 4 5 7 0 1 2 3

Assignment Project Exam Help

i p: 4

q: 4

https://eduassistpro.github.io/

A: 1 2 3 4 5 7 8

B: 2 3 8 9 0 1 2 3

C: 1 4 5 7

Assignment Project Exam Help

i p: 4

q: 4

https://eduassistpro.github.io/

Assignment Project Exam Help

_i p:4

q: 4

https://eduassistpro.github.io/

Mergesort: Analysis

 How many comparisons will MERGE need to make in the worst case, when given arrays of size [n/2] and [n/2]?

Assignment Project Exam Help

• If the largest and https://eduassistpro.githlb.io/ents are in different arrays, then n = 1 risons. Hence the cost equation for Mergesor

$$C(n) = \begin{cases} 0 & \text{if } n < 2\\ 2C(n/2) + n - 1 & \text{otherwise} \end{cases}$$

• By the Master Theorem, $C(n) \in \Theta(n \log n)$.

Mergesort: Properties

- For large n, the number of comparisons made tends to be around 75% of the worst-case scenario.
- Is mergesort stable?

Assignment Project Exam Help

- Is mergesort in-pl_{https://eduassistpro.github.io/}
- If comparisons are fast, me ranks between quicksort and heapsort (covered next week) for time, assuming random data.
- Mergesort is the method of choice for linked lists and for very large collections of data.

Mergesort: Stability

Mergesort: Properties

- For large n, the number of comparisons made tends to be around 75% of the worst-case scenario.
- Is mergesort stable?

Assignment Project Exam Help

- Is mergesort in-pl_{https://eduassistpro.github.io/}
- If comparisons are fast, me ranks between quicksort and heapsort (covered next week) for time, assuming random data.
- Mergesort is the method of choice for linked lists and for very large collections of data.

Bottom-Up Mergesort

- An alternative way of doing mergesort:
- Generate runs of length 2, then of length 4, and so on:

Assignment Project Exam Help

https://eduassistpro.github.io/

Quicksort

- Quicksort takes a divide-and-conquer approach that is different to mergesort's.
- It uses the **partitioning** idea from QuickSelect, picking a
 pivot element, and partitioning the array around that, so as to
 obtain this situations; ignment Project Exam Help

https://eduassistpro.github.io/

- The element A[s] will be in its final position (it is the (s + 1)th smallest element).
- All that then needs to be done is to sort the segment to the left, recursively, as well as the segment to the right.

Quicksort

Very short and elegant:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Initial call: Quicksort(A, 0, n – 1).

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Hoare Partitioning

The standard way of doing partitioning in Quicksort

Assignment Project Exam Help

https://eduassistpro.github.io/

Hoare Partitioning

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

p: 9

Hoare Partitioning

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

p: 9

108

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Quicksort Analysis: Best Case Analysis

 The best case happens when the pivot is the median; that results in two sub-tasks of equal size.

Assignment Project Exam Help

The 'n' is for the https://eduassistpro.githgbj@rformed by Partition.

Add WeChat edu_assist_pro

 By the Master Theorem, C_{best}(n) ∈ Θ(n log n), just as for mergesort, so quicksort's best case is (asymptotically) no better than mergesort's worst case.

Quicksort Worst Case

A:

Assignment Project Exam Help

https://eduassistpro.github.io/

Quicksort Analysis: Worst Case Analysis

- The worst case happens if the array is already sorted.
- In that case, we don't really have divide-andconquer, becausignment Project Exam Help II deals with a problem size that https://eduassistpro.githe/brie/mented by 1:
 Add WeChat edu_assist_pro

• That is, $C_{worst}(n) = n + (n - 1) + \cdots + 3 + 2 \in \Theta(n^2)$.

Quicksort Improvements: Median-of-Three

It would be better if the pivot was chosen randomly.

• A cheap and useful approximation to this is to take the median of three candidates. A[[p], A[hi], and A[[(lo + hi)/2]].

https://eduassistpro.github.io/

- Reorganise the three elements so that p₁ is the median, and p₃ is the largest of the three.
- Now run quicksort as before.

Quicksort Improvements: Median-of-Three

 In fact, with median-of-three, we can have a much faster version than before, simplifying tests in the innermost loops:

Assignment Project Exam Help

https://eduassistpro.github.io/

Quicksort Improvements: Early Cut-Off

 A second useful improvement is to stop quicksort early and switch to insertion sort. This is easily implemented:

Assignment Project Exam Help

https://eduassistpro.github.io/

Quicksort Properties

- With these (and other) improvements, quicksort is considered the best available sorting method for arrays of random data.
- A major reason for its speed is the very tight inner loop in PARTITION.
- Although mergesort has an heatter performance pulsas is faster on average.

https://eduassistpro.github.io/

- In the best case, we getategreeched edu_assistent It can be shown that on random data, the expected number is 2 log_e n ≈ 1.38 log₂ n. So quicksort's average behaviour is very close to the best-case behaviour.
- Is quicksort stable?
- Is it in-place?

yes

2 2 1 i j

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

2 2 1

j i

Assignment Project Exam Help

https://eduassistpro.github.io/

1 2 2

j i

Assignment Project Exam Help

https://eduassistpro.github.io/

1 2 2

Assignment Project Exam Help

https://eduassistpro.github.io/

This is where we finished

Assignment Project Exam Help

https://eduassistpro.github.io/ 2 2 1 Add WeChat edu_assist_pro

This is where we started

Not stable

Quicksort Properties

- With these (and other) improvements, quicksort is considered the best available sorting method for arrays of random data.
- A major reason for its speed is the very tight inner loop in PARTITION.
- Although mergesort has an heatter performance pulsas is faster on average.

https://eduassistpro.github.io/

- In the best case, we getategrate that on random data, the expected number is 2 log_e n ≈ 1.38 log₂ n. So quicksort's average behaviour is very close to the best-case behaviour.
- Is quicksort stable?
- Is it in-place?

yes

Next up

Assignment Project Exam Help

• Tree traversal m https://eduassistpro.git/publig/the divide-and-conquer techniquector edu_assistest-pair problem.