Oppgaver for kapittel 0

0.4.1

Finn den omvendte funksjonen g til f, og bekreft at g(f) = x.

a)
$$f(x) = 3x$$

b)
$$f(x) = -9x + 2$$

a)
$$f(x) = 3x$$
 b) $f(x) = -9x + 2$ c) $f(x) = \frac{5}{2}x - 7$

d)
$$f(x) = \frac{3}{x-5}$$
 e) \sqrt{x} f) $\sqrt[3]{x}$ g) $\sqrt[4]{x+9}$

e)
$$\sqrt{x}$$

f)
$$\sqrt[3]{x}$$

g)
$$\sqrt[4]{x+9}$$

0.4.2

Finn den omvendte funksjonen g til f, og bekreft at g(f) = x.

a)
$$f(x) = e^x + 2$$

a)
$$f(x) = e^x + 2$$
 b) $f(x) = \ln(x+5)$ c) $f(x) = \frac{1}{\ln(x)}$

c)
$$f(x) = \frac{1}{\ln(x)}$$

0.4.3

Funksjonen $f(x) = a(2 - x - x^3)$ har en omvendt funksjon g(y), og g(490) = -4. Finn verdien til a.

0.5.1

Gitt en polynomfunksjon med ekstremalpunkt a og b, som er de eneste ekstremalpunktene til funksjonen på intervallet [a, b]. Forklar hvorfor funksjonen er injektiv på dette intervallet.

Gruble 1

Vis at funksjonen $f(x) = ax^2 + bx + c$ er konveks hvis a > 0 og konkav hvis a < 0.

Gruble 2

I figuren under har vi to parabler. Den grønne parabelen er tegnet ved å først speile den blå parabelen om horisontallinja gjennom bunnpunktet, for så å parallellforskyve parablene slik at de tangerer hverandre i et punkt B. A og C ligger på horisontallinja gjennom B, og D og E ligger langs samme horisontallinje.

Finn lengden til linjestykket AC, uttrykt ved s, når du vet at DE=2s.

