Ch. 2 Contingency Tables

Two-way contingency tables

Example: Physicians Health Study (5 year)

		Heart Attack		Total		
		YES	NO	Total		
Group	Placebo	189	10,845	11,034	<u>-</u>	
	Aspirin	104	10,933	11,037	(2×2)	table)

Contingency table – Cells contain counts of outcomes. $I \times J$ table has I rows and J columns.

lacktriangle A <u>conditional distribution</u> refers to prob. dist. of Y at fixed level of x.

Example.

		YES	Y NO	Total	
X	Placebo	0.017	0.983	1.0	
	Aspirin	0.009	0.991	1.0	

Sample conditional dist. for placebo group is

$$0.017 = \frac{189}{11,034}, \ 0.983 = \frac{10,845}{13,034}$$

Natural way to look at data when

Y = response variable

X =explanatory variable

Example. Diagnostic disease tests

Y = outcome of test : 1=positive, 2=negative

X = reality : 1=diseased, 2=not diseased

Test result

		1	Y 2	Total
X	1			
	2			

Sensitivity = P(Y=1|X=1) : Given that the subject has the disease, the prob.

the diagnostic test is positive

Specificity = P(Y=2|X=2) : Given that the subject does not have the disease,

the prob. the diagnostic test is negative

In practice, if you get positive result, more relevant to you is P(X=1|Y=1). This may be low even if sensitivity and specificity are high (See pp 23-24 of Text for example of how this can happen when disease is relatively rare)

 $lackbox{ }$ What if $X,\ Y$ both response variables? $\{\pi_{ij}\}=\{P(X=x_i,Y=y_j)\}$ from the joint distribution of X and Y

Sample cell count $\{n_{ij}\}$

Sample cell proportion
$$\left\{p_{ij}\right\}$$
 , $p_{ij}=\frac{n_{ij}}{n}$ with $n=\sum_{i}\sum_{j}n_{ij}$

Def. X and Y are <u>statistically independent</u> if true conditional dist. of Y is identical at each level of X

For example

Then, $\pi_{ij} = \pi_{i+}\pi_{+j}$, all i,j

i.e,
$$P(X=i, Y=j) = P(X=i)P(Y=j)$$
, such as

		1	Total	
X	1	0.28	0.42	0.7
	2	0.12	0.18	0.3
		0.4	0.6	1.0

Comparing proportions in 2×2 Tables

		3	Y
		S	F
X	1	π_1	$1-\pi_1$
	2	π_2	$1-\pi_2$

Conditional Distributions

$$\begin{split} \widehat{\pi_1} - \widehat{\pi_2} &= p_1 - p_2 \\ SE(p_1 - p_2) &= \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}} \end{split}$$

Example

$$\begin{split} p_1 &= 0.017, \ p_2 = 0.009, p_1 - p_2 = 0.008 \\ SE &= \sqrt{\frac{0.017 \times 0.983}{11,034} + \frac{0.009 \times 0.991}{11,037}} = 0.0015 \end{split}$$

95% C.I. for
$$\pi_1-\pi_2$$
 is
$$0.008\pm 1.96 (0.0015)=(0.005,\ 0.011)$$
 Apparently $\pi_1-\pi_2>0 (i.e.,\ \pi_1>\pi_2)$

Relative Risk =
$$\frac{\pi_1}{\pi_2}$$

Example : sample
$$\frac{p_1}{p_2} = \frac{0.017}{0.009} = 1.82$$

Sample proportion of heart attacks was 82% higher for placebo group.

95% C.I. for
$$\log\left(\frac{\pi_1}{\pi_2}\right)$$
 is

$$\log \left(\frac{p_1}{p_2}\right) \pm 1.96 \sqrt{\frac{1-p_1}{n_1 p_1} + \frac{1-p_2}{n_2 p_2}}$$

95% C.I. is (1.43, 2.31)

Independence
$$\Leftrightarrow \frac{\pi_1}{\pi_2} = 1.0$$

Odds Ratio

		3	Y
		S	F
Group	1	π_1	$1-\pi_1$
	2	π_2	$1-\pi_2$

The odds the response is a S (success) instead of an F (failure) = $\frac{prob.(S)}{prob.(F)}$

$$=\frac{\pi_1}{(1-\pi_1)}~in~row1$$

$$=\frac{\pi_2}{(1-\pi_2)}~in~row2$$

eg., if odds=3. S three times as likely as F. if odds=1/3, F three times as likely as S. odds=3 \Rightarrow P(S)=3/4, P(F)=1/4

$$P(S) = \frac{odds}{1 + odds}$$

odds=
$$1/3 \Rightarrow P(S) = \frac{1/3}{1+1/3} = 1/4$$

Def odds ratio

$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$$

- ullet can be computed using joint probabilities or either set of conditional probabilities (show ?)
- The odds ratio is appropriate when row totals are fixed, column totals are fixed, or neither set of marginal totals are fixed

Example

		Heart	Total	
		YES	NO	Total
Group	Placebo	189	10,845	11,034
	Aspirin	104	10,933	11,037

Sample proportion

Sample odds = 0.017/0.9829=189/10.845=0.0174, placebo = 104/10.933=0.0095, aspirin

Sample odds ratio

$$\hat{\theta} = \frac{0.0174}{0.0095} = 1.83$$

The odds of a heart attack for placebo group was 1.83 time odds for aspirin group(i.e., 83% higher)

Properties of odds ratio

- lacktriangle each odds ≥ 0 and $\theta \geq 0$
- \bullet $\theta = 1$ when $\pi_1 = \pi_2$; i.e, response independent of group.
- The farther θ falls from 1, the stronger the association (For Y= lung cancer, some studies have $\theta \approx 10$ for X= smoking, $\theta \approx 2$ for X=passive smoking)
- If rows interchanged, or if columns interchanged, $\theta \rightarrow \frac{1}{\theta}$.

 eg. $\theta = 3$, $\theta = 1/3$ represent same strength of association but in opposite directions
- For counts

$$egin{array}{c|c} S & F \\ \hline n_{11} & n_{12} \\ \hline n_{21} & n_{22} \\ \hline \end{array}$$

$$\hat{\theta} = \frac{n_{11}/n_{12}}{n_{21}/n_{22}} = \frac{n_{11}n_{22}}{n_{12}n_{21}} = \text{cross-product ratio}$$

(Yule, 1900) (Strongly criticized by K Pearson)

lacktriangle Treat X, Y symmetrically

$$\Rightarrow \hat{\theta} = 1.83$$

$$\bullet \ \theta = 1 \Leftrightarrow \log \theta = 0$$

log odds ratio is symmetric about 0

eg.,
$$\theta = 2 \implies \log \theta = 0.7$$

$$\theta = 1/2 \implies \log \theta = -0.7$$

 $lackbox{f }$ Sampling dist. of $\hat{ heta}$ is skewed to right pprox normal only of very large n

Note: we use "natural logs" (LN on most calculators). This is the log with e=2.718...

• Sampling dist. of $\log \hat{\theta}$ is closer to normal, so construct C.I. for $\log \theta$ and then exponentiate endpoints to get C.I. for θ . Large-sample(asymptotic) standard error of $\log \hat{\theta}$ is

$$SE(\log \hat{\theta}) = \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

C.I. for $\log \theta$ is

$$\log \hat{\theta} \pm Z_{\alpha/2} \times SE(\log \hat{\theta}) \stackrel{let}{=} (L, U)$$

C.I. for θ is (e^L, e^U) .

Example

$$\hat{\theta} = \frac{189 \times 10,933}{104 \times 10,845} = 1.83, \log \hat{\theta} = 0.605$$

$$SE(\log \hat{\theta}) = \sqrt{\frac{1}{189} + \frac{1}{10,933} + \frac{1}{104} + \frac{1}{10,845}} = 0.123$$

95% C.I. for $\log \theta$ is

$$0.605 \pm 1.96(0.123) = (0.365, 0.846)$$

95% C.I. for θ is

$$(e^{0.365}, e^{0.846}) = (1.44, 2.33) > 1$$

Apparently $\theta > 1$

<u>Note</u>

- lacktriangledark is no midpint of C.I. because of skewness to right.
- $lackbox{ If any } n_{ij}=0, \ \hat{ heta}=0 \ {
 m or} \ \infty$, any better estimate and SE results by replacing $\{n_{ij}\}$ by $\{n_{ij}+0.5\}$
- $lackbox{ }$ When π_1 and π_2 are close to 0,

$$\theta = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} \approx \frac{\pi_1}{\pi_2}$$
 (the relative risk)

```
data aspirin;
input group $ mi$ count;
cards;
placebo yes 189
placebo no 10845
aspirin yes 104
aspirin no 10933
;
proc freq order=data;
weight count;
tables group*mi/measures;
run;
```

FREQ procedure Table:group * mi

group Frequency Percent Col pct Row pct	mi yes	no	Sum
placebo	189 0.86 1.71 64.51	10845 49.14 98.29 49.80	11034 49.99
aspirin	104 0.47 0.94 35.49	10933 49.54 99.06 50.20	11037 50.01
Sum	293 1.33	21778 98.67	22071 100.00

Example: Case-Control study in London Hospitals (Doll and Hill, 1950)

 $X = \text{smoked} \ge 1 \text{ cigarette per day for at least 1 year?}$

Y = Lung cancer

Case-Control studies are "retrospective". Binomial sampling model applies to X (sampled within levels of Y), not to Y.

Cannot estimate P(Y = Yes|x)

or
$$\pi_1-\pi_2=P(\,Y\!=\,Y\!es|X\!=\,Y\!es\,)-P(\,Y\!=\,Y\!es|X\!=\,N\!o\,)$$
 or π_1/π_2

However, we can estimate P(X|Y), so can estimate θ .

$$\begin{split} \hat{\theta} &= \frac{\hat{P}(X = Yes | Y = Yes) / \hat{P}(X = No | Y = Yes)}{\hat{P}(X = Yes | Y = No) / \hat{P}(X = No | Y = No)} \\ &= \frac{(688/709) / (21/709)}{(650/709) / (59/709)} \\ &= \frac{688 \times 59}{650 \times 21} = 3.0 \end{split}$$

odds of lung cancer for smokers were 3.0 times odds for non-smokers.

In fact, if P(Y=Yes|X) is near 0, then $\theta \approx \pi_1/\pi_2 = relative \ risk$, and can conclude that prob. of lung cancer is ≈ 3.0 times as high for smokers as for non-smoker

Chi-squared Test of Independence

Example Job satisfaction and Income

	Very	Little	Moderate	Very	Total	
	Dissat	Dissat	Dissat Satisfied		Total	
< 5,000	2	4	13	3	22	
5,000~15,000	2	6	22	4	34	
15,000~25,000	0	1	15	8	24	
> 25,000	0	3	13	8	24	
Total	4	14	63	23	104	

 $H_0: X$ and Y are indep.

 H_a : X and Y are dependent.

 H_0 means P(X=i, Y=j) = P(X=i)P(Y=j)

$$\pi_{ij} = \pi_{i+}\pi_{+j}$$

Expected frequency $\mu_{ij} = n\pi_{ij}$

= mean of distribution of cell count n_{ij}

= $n\pi_{i+}\pi_{+i}$ under H_0

 $\text{ML estimates} \quad \widehat{\mu_{ij}} = n \hat{\pi}_{i+} \hat{\pi}_{+\,j} = n \bigg(\frac{n_{i+}}{n} \bigg) \bigg(\frac{n_{+\,j}}{n} \bigg) = \frac{n_{i+} n_{+\,j}}{n} \quad \text{called estimated expected frequencies}.$

Test statistic

$$X^2 = \sum_{all \ cells} \frac{(n_{ij} - \widehat{\mu_{ij}})^2}{\widehat{\mu_{ij}}}$$

called Pearson Chi-Squared statistic(Karl Pearson, 1900)

 X^2 has large-sample chi-squared dist. with $df=(I-1)(J-1)\,,$ where I=number of rows and J=number of columns.

p - value= $P(X^2 \ge x^2 observed)$ = right-tail prob. (Appendix 3)

Example: Job satisfaction and Income

$$X^2 = 11.5$$
, $df = (4-1)(4-1) = 9$

Evidence against \mathcal{H}_0 is weak, plausible that job satisfaction and income are independent.

Note

- Chi-squared dist. has $\mu = df$, $\sigma = \sqrt{2df}$, more bell-shaped as df \uparrow .
- Likelihood-ratio test statistic

$$\begin{split} G^2 &= 2 \sum_{i,j} n_{ij} \log \left(\frac{n_{ij}}{\widehat{\mu_{ij}}} \right) \\ &= -2 \log \left[\frac{\text{max}imize \ likelihood \ when \ } H_0 \ is \ true}{\text{max}imize \ likelihood \ generally} \right] \end{split}$$

 \boldsymbol{G}^2 also is approximated χ^2 with $d\boldsymbol{f} = (I\!-\!1)(J\!-\!1)$

Example: Revisit Job satisfaction

$$G^2 = 13.47$$
, $df = 9$, $p - value = .14$

ullet df for χ^2 Test = No. parameters in general - No. parameters under H_0

eg) indep.
$$\pi_{ij}=\pi_{i+}\pi_{+\,j}$$

$$df=(IJ-1)-[(I-1)+(J-1)]\\ =(I-1)(J-1)$$

$$\sum_{j}\pi_{i\,j}=1$$

$$\sum_{j}\pi_{i\,+}=1$$

(Fisher(1922), not Pearson, 1900)

- $lackbox{ As } n\uparrow$, $X^2{\longrightarrow}\chi^2$ faster than $G^2{\longrightarrow}\chi^2$, usually close if most $\hat{\mu_{ij}}{\ge}5$.
- $lackbox{lack}$ These tests treat $X,\ Y$ as nominal. Reorder rows and columns, X^2 and G^2 are unchanged.
- ullet For ordinal test, see sec 2.5 We re-analyze with ordinal model in Ch.6 (more powerful, much smaller p- value)

Standardized (Adjusted) Residuals

$$r_{ij} = \frac{n_{ij} - \widehat{\mu_{ij}}}{\sqrt{\widehat{\mu_{ij}}(1 - p_{i+1})(1 - p_{+j})}}$$

under H_0 : indep., $r_{ij}\approx$ std. normal $N(0,\ 1)$ so, $|r_{ij}|>2$ or 3 represents cell that provides strong evidence against H_0

Example Job satisfaction

$$n_{44} = 8, \ \widehat{\mu_{44}} = \frac{24 \times 23}{104} = 5.31$$

$$r_{44} = \frac{8 - 5.31}{\sqrt{5.31(1 - 24/104)(1 - 23/104)}} = 1.51$$

None of cells show much evidence of association

Example General Social Survey Data

		Religiosity				
		Very	Mod.	Slightly	Not	
Gender	Female	170	340	174	95	
		(3.2) 98	(1.0)	(-1.1)	(-3.5)	
	Male	98	266	161	123	
		(-3.2)	(-1.0)	(1.1)	(3.5)	

$$X^2 = 20.6$$
, $G^2 = 20.7$, $df = 3$, $p - value = 0.000$

• SAS (PROC GENMOD) also provides "Pearson Residuals" (label reschi)

$$e_{ij} = \frac{n_{ij} - \widehat{\mu_{ij}}}{\sqrt{\widehat{\mu_{ij}}}}$$

which are simpler nut less variable than $N(0,\ 1)\,(\sum e_i^2=X^2)$

Partitioning Chi-squared

$$\chi_a^2 + \chi_b^2 = \chi_{a+\,b}^2$$
 for indep. chi-squared stat's

Example: Job satisfication and income (Revisited)

$$G^2 = 13.47, \ X^2 = 11.52, \ df = 9$$

Compare income levels an job satisfaction

	Very	Little	Moderate	Very	Total	
	Dissat	Dissat	Dissat Satisfied		Total	
< 5,000	2	4	13	3	22	
5,000~15,000	2	6	22	4	34	
15,000~25,000	0	1	15	8	24	
> 25,000	0	3	13	8	24	
Total	4	14	63	23	104	

	Job satisfaction						Job satisfaction			
	VD	LD	MS	VS			VD	LD	MS	VS
< 5,000	2	4	13	3	•	15,000~25,000	0	1	15	8
5,000~15,000	2	6	22	4		> 25,000	0	3	13	8

	Job satisfaction				
	VD LD MS VS				
< 15,000	4	10	35	7	
> 15,000	0	4	28	16	

X^2	G^2	df
0.30	0.30	3
1.14	1.19	3
10.32	11.98	3
11.76	13.47	9

See Next SAS program and Output~!!

```
/* Partitioning Chi-squared*/
 data jobsatis;
 input income satis count @@;
 cards;
 3 1 2 3 2 4 3 3 13 3 4 3
 10 1 2 10 2 6 10 3 22 10 4 4
 20 1 0 20 2 1 20 3 15 20 4 8
 30 1 0 30 2 3 30 3 13 30 4 8
 run;
 proc freq data=jobsatis;
 weight count;
 tables income*satis/chisq expected nopercent norow nocol;
 run;
 data collapsel;
 input income satis count @@;
 cards;
 3 1 2 3 2 4 3 3 13 3 4 3
 10 1 2 10 2 6 10 3 22 10 4 4
 run;
 data collapse2;
 input income satis count @@;
 cards;
 20 1 0 20 2 1 20 3 15 20 4 8
 30 1 0 30 2 3 30 3 13 30 4 8
 run;
 data collapse3;
 input income $ satis count @@;
 cards;
 <15 1 4 <15 2 1 <15 3 35 <15 4 7
 >15 1 0 >15 2 4 >15 3 28 >15 4 16
 run;
 proc freq data=collapsel;
 weight count;
 tables income*satis/chisq expected nopercent norow nocol;
 proc freq data=collapse2;
 weight count;
 tables income*satis/chisq expected nopercent norow nocol;
 run;
 proc freq data=collapse3;
 weight count;
 tables income*satis/chisq expected nopercent norow nocol;
```

Note

- Job satisfaction appears to depend on whether incoem > or <15,000.
- $lacktriangledown G^2$ exactly partions, X^2 does not
- lackbox Text gives guidelines on how to partition so separate components indep., which is needed for G^2 to partition exactly

Small-sample test of indep.

 2×2 case(Fisher, 1935)

		Y	
v	n_{11}	n_{12}	n_{1+}
Λ	n_{21}	n_{22}	n_{2+}
	n_{+1}	n_{+2}	n

Exact null dist. of $\{n_{ij}\}$, based on fixed row and column tables, is

$$P(n_{11}|n_{1+},n_{2+},n_{+\,1},n_{+\,2}) = \frac{\binom{n_{1\,+}}{\binom{n_{2\,+}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}{\binom{n_{1\,+}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}{\binom{n_{1\,+}}}}}}}}}}}};}}}}}}}}}}}}}}}}$$

where
$$\binom{a}{b} = \frac{a!}{b!(a-b)!}$$

Example: Tea tasting (Fisher)

		Guess		Total
		Milk Tea		Total
Pour	Milk	?		4
First	Tea			4
То	tal	4	4	8

$$n_{11} = 0, 1, 2, 3, 4$$

For $n_{11} = 4$ has prob.

$$P(4) = \frac{\binom{4}{4}\binom{4}{0}}{\binom{8}{4}} = \frac{\left(\frac{4!}{4!0!}\right)\left(\frac{4!}{0!4!}\right)}{\left(\frac{8!}{4!4!}\right)} = \frac{4!4!}{8!} = 1/70 = 0.014$$

For $n_{11} = 3$

$$P(3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} = 16/70 = 0.229$$

n_{11}	$P(n_{11})$
0	0.014
1	0.229
2	0.514
3	0.229
4	0.014

IF observed table is given by

		Guess		Total
		Milk	Tea	Total
Pour	Milk	3	1	4
First	Tea	1	3	4
То	tal	4	4	8

For 2×2 tables,

$$H_0: indep. \Leftrightarrow H_0: \theta = 1 \text{ for } \theta = odds \ ratio$$

For $H_0: \theta = 1$ Vs. $H_a: \theta > 1$

$$p-$$
 value= $P(\hat{\theta} \ge \widehat{\theta_{obs}}) = 0.229 + 0.014 = 0.243$

Not much evidence against H_0 .

Test using hypergeometic called Fisher's exact test

For $H_a:\theta\neq 1,\ p-$ value=two-tail prob. of outcomes no more likely than observed. Example

$$p$$
 - value= $P(0) + P(1) + P(3) + P(4) = 0.486$

Note

- lacktriangle Fisher's Exact test extends to $I \times J$ tables (p- value=0.23 for job satisfaction and income)
- $lackbox{ }$ If make conclusion, eg, rejecting H_0 if $p \leq \alpha = 0.05$, actual $P(\mathit{Type}\ I\ error) < 0.05$ because of discreteness (see Text).

```
options ls=100 ps=200;
data fisher;
input poured guess count;
cards;
l 1 3
l 2 1
2 1 1
2 2 3;
run;
proc freq;
weight count;
table poured*guess / relrisk chisq;
exact fisher or / alpha=.05;
run;
```


Statistics for Table of poured by guess Statistic df Value Probable Probable Statistic df Value Probable Proba

Cohort (Coll Risk) 3.0000 0.5013 17.9539 Cohort (Col2 Risk) 0.3333 0.0557 1.9949 Odds Ratio (Case-Control Study)

Odds Ratio 9.0000

Asymptotic Conf Limit 95% Lower Conf Limit 0.3666
95% Upper Conf Limit 220.9270

Exact Conf. Limits
95% Lower Conf Limit 0.2117
95% Upper Conf Limit 626.2435

Samplesize = 8

Tree-way Contingency Tables

Example: FL death penalty court cases

Victim's	defendant's	Death Penalty		0/Vog	
Race	Race	Yes	No	%Yes	
White	White	53	414	11.3	
White	Black	11	37	22.9	
Dlagl	White	0	16	0.0	
Black	Black	4	139	2.8	

Let Y = death penalty(Response var.)

X = defendant's Race(Explanatory)

Z = Victim's Race(Control var.)

The partial tables are

53	414	
11	37	Z = White

0	16	
4	139	Z = Black

They control(hold constant) Z

The conditional odds ratios are

For
$$Z=White,$$
 $\hat{\theta}_{XY(1)}=\frac{53\times37}{414\times11}=0.43$
$$Z=Black,$$
 $\hat{\theta}_{XY(2)}=0.00 \, (0.94 \text{ after add } 0.5 \text{ to cells})$

Controlling for Victim's race, odds of receiving death penalty were lower for white defendants than for black defendants

Add partial tables (XY marginal table)

	Death Penalty	
	Yes	No
White	53	430
Black	15	176
		Yes White 53

$$\hat{\theta}_{XY} = 1.45$$

Ignoring victim's race, odds of death penalty higher for white defendant's

<u>Simpson's Paradox</u>: All partial tables show reverse association from that in marginal table.

Cause ?

Moral? can be dangerous to "collapse" contingency tables.

 $\underline{\mathrm{Def}}\ X$ and Y are conditionally independent given Z, if they are independent in each partial table

In $2 \times 2 \times K$ table,

$$\theta_{XY(1)} = \dots = \theta_{XY(K)} = 1.0$$

 $\underline{\text{Note}}$ The conditional independence does not imply that X and Y are marginally indep.

For Example,

Clinic(Z)	Treatment(X)	Respor	nse(Y) F	θ
1	А	18	12	1.0
1	В	12	8	
2	A	2	8	1.0
	В	8	32	
Morginal	А	20	20	2.0
Marginal	В	20	40	