Целая и дробная части числа

- 1. Докажите, что $\sum_{i=1}^{n} \left[x + \frac{i-1}{n} \right] = [nx], x \in \mathbb{R}, n \in \mathbb{N}.$
- **2.** Для любого натурального числа $n \ge 2$ докажите, что $[\sqrt{1}] + [\sqrt{2}] + \ldots + [\sqrt{n^2 1}] = \frac{n(n-1)(4n+1)}{6}$.
- **3.** Действительное число a удовлетворяет равенству $\{a\} + \{\frac{1}{a}\} = 1$. Докажите, что $\{a^n\} + \{\frac{1}{a^n}\} = 1, n \in \mathbb{N}$.
- **4.** Докажите, что простое число p входит в разложение числа n! на простые множители с показателем

$$\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \dots$$

- **5.** Докажите, что число $[(2+\sqrt{3})^n], n \in \mathbb{N}$, нечётное.
- 6. Найдите наименьшее значение выражения

$$\left[\frac{a+b+c}{d} \right] + \left[\frac{b+c+d}{a} \right] + \left[\frac{c+d+a}{b} \right] + \left[\frac{d+a+b}{c} \right],$$
 где a,b,c,d – натуральные числа.

- 7. Докажите, что $[\sqrt{n} + \sqrt{n+1}] = [\sqrt{4n+2}], n \in \mathbb{N}.$
- 8. Через $\sigma(k)$ обозначим сумму всех натуральных делителей числа $k \in \mathbb{N}$. Докажите, что

$$\sigma(1) + \ldots + \sigma(n) = n + 2\left[\frac{n}{2}\right] + \ldots + n\left[\frac{n}{n}\right], n \in \mathbb{N}.$$

- 9. Числа $p, q \in \mathbb{N}$ взаимно просты. Докажите, что $\left\lceil \frac{q}{p} \right\rceil + \left\lceil \frac{2q}{p} \right\rceil + \ldots + \left\lceil \frac{(p-1)q}{p} \right\rceil = \frac{(p-1)(q-1)}{2}.$
- 10. Пусть α , $\beta > 1$. Докажите, что каждое натуральное число встречается в последовательности $[\alpha]$, $[\beta]$, $[2\alpha]$, $[3\beta]$, $[3\beta]$, ... ровно один раз, если и только если α иррациональное число и $1/\alpha + 1/\beta = 1$.