Прерывания от внешних устройств в системе x86. Часть 2. Опции загрузки ядра Linux

- Настройка Linux,
- Системное программирование

В предыдущей части мы рассмотрели эволюцию доставки прерываний от устройств в x86 системах (PIC ightarrow APIC ightarrow MSI), общую теорию и все необходимые термины.

В этой практической части мы рассмотрим как откатиться к использованию устаревших методов доставки прерываний в Linux, а именно рассмотрим опции загрузки ядра:

- pci=nomsi
- noapic
- nolapic

Также мы посмотрим на порядок, в котором ОС смотрит таблицы роутинга прерываний (ACPI/MPtable/\$PIR) и какое влияние на него окажет добавление опций загрузки:

- pci=noacpi
- acpi=noirq
- acpi=off

Возможно вы пробовали комбинации из всех этих опций, когда какое-либо устройство не работало из-за проблемы с прерываниями. Разберём, что именно они делают и как они меняют вывод /proc/interrupts.

Загрузка без дополнительных опций

Смотреть прерывания в данной статье мы будем на кастомной плате с Intel Haswell i7 с чипсетом lynxPoint-LP на которой запущен coreboot.

Информацию о прерываниях мы будем выводить через команду

Вывод при загрузке без дополнительных опций:

0:	15	0	0	0	IO-APIC-edge	timer
1:	0	1	0	1	IO-APIC-edge	i8042
8:	0	0	0	1	IO-APIC-edge	rtc0
9:	0	0	0	0	IO-APIC-fasteoi	acpi
12:	0	0	0	1	IO-APIC-edge	
23:	16	247	7	10	IO-APIC-fasteoi	ehci_hcd:usb1
56:	0	0	0	0	PCI-MSI-edge	aerdrv,PCIe PME
57:	0	0	0	0	PCI-MSI-edge	aerdrv,PCIe PME
58:	0	0	0	0	PCI-MSI-edge	aerdrv,PCIe PME
59:	0	0	0	0	PCI-MSI-edge	aerdrv,PCIe PME
60:	0	0	0	0	PCI-MSI-edge	aerdrv,PCIe PME
61:	0	0	0	0	PCI-MSI-edge	aerdrv,PCIe PME
62:	3118	1984	972	3454	PCI-MSI-edge	ahci
63:	1	0	0	0	PCI-MSI-edge	eth59
64:	2095	57	4	832	PCI-MSI-edge	eth59-rx-0
65:	6	18	1	1309	PCI-MSI-edge	eth59-rx-1
66:	13	512	2	1	PCI-MSI-edge	eth59-rx-2
67:	10	61	232	2	PCI-MSI-edge	eth59-rx-3
68:	169	0	0	0	PCI-MSI-edge	eth59-tx-0

69:	14	14	4	205	PCI-MSI-edge	eth59-tx-1
70:	11	491	3	0	PCI-MSI-edge	eth59-tx-2
71:	20	19	134	50	PCI-MSI-edge	eth59-tx-3
72:	0	0	0	0	PCI-MSI-edge	eth58
73:	2	1	0	152	PCI-MSI-edge	eth58-rx-0
74:	3	150	2	0	PCI-MSI-edge	eth58-rx-1
75:	2	34	117	2	PCI-MSI-edge	eth58-rx-2
76:	153	0	2	0	PCI-MSI-edge	eth58-rx-3
77:	4	0	2	149	PCI-MSI-edge	eth58-tx-0
78:	4	149	2	0	PCI-MSI-edge	eth58-tx-1
79:	4	0	117	34	PCI-MSI-edge	eth58-tx-2
80:	153	0	2	0	PCI-MSI-edge	eth58-tx-3
81:	66	106	2	101	PCI-MSI-edge	snd_hda_intel
82:	928	5657	262	224	PCI-MSI-edge	i915
83:	545	56	32	15	PCI-MSI-edge	snd_hda_intel
NMI:	0	0	0	0	Non-maskable in	terrupts
LOC:	4193	3644	3326	3499	Local timer int	errupts
SPU:	0	0	0	0	Spurious interr	upts
PMI:	0	0	0	0	Performance mon	itoring interrupts

IWI:	290	233	590	111	IRQ work interrupts
RTR:	3	0	0	0	APIC ICR read retries
RES:	1339	2163	2404	1946	Rescheduling interrupts
CAL:	607	537	475	559	Function call interrupts
TLB:	163	202	164	251	TLB shootdowns
TRM:	48	48	48	48	Thermal event interrupts
THR:	0	0	0	0	Threshold APIC interrupts
MCE:	0	0	0	0	Machine check exceptions
MCP:	3	3	3	3	Machine check polls
ERR:	0				
MIS:	0				

Файл /proc/interrupts предоставляет таблицу о количестве прерываний на каждом из процессоров в следующем виде:

- Первая колонка: номер прерывания
- Колонки CPUx: счётчики прерываний на каждом из процессоров
- Следующая колонка: вид прерывания:
 - IO-APIC-edge прерывание по фронту на контроллер I/O APIC
 - IO-APIC-fasteoi прерывание по уровню на контроллер I/O APIC
 - PCI-MSI-edge MSI прерывание
 - XT-PIC-XT-PIC прерывание на PIC контроллер (увидим позже)
- Последняя колонка: устройство, ассоциированное с данным прерыванием

Так вот, как и положено в современной системе, для устройств и драйверов, поддерживающих прерывания MSI/MSI-X, используются именно они. Остальные прерывания роутятся через I/O APIC.

Упрощённо схему роутинга прерываний можно нарисовать так (красным помечены активные пути, чёрным неиспользуемые).

Поддержка MSI/MSI-X устройством должна быть обозначена как соответствующая Capability в его конфигурационном пространстве PCI.

В подтверждении приведём небольшой фрагмент вывода Іspci для устройств, для которых обозначено, что они используют MSI/MSI-X. В нашем случае это SATA контроллер (прерывание ahci), 2 ethernet контроллера (прерывания eth58* и eth59*), графический контроллер (i915) и 2 контроллера HD Audio (snd_hda_intel).

```
O0:02.0 VGA compatible controller: Intel Corporation Haswell-ULT Integrated Graphics Contro

ller (rev 09) (prog-if 00 [VGA controller])

...

Capabilities: [90] MSI: Enable+ Count=1/1 Maskable- 64bit-

Capabilities: [d0] Power Management version 2

Capabilities: [a4] PCI Advanced Features

Kernel driver in use: i915

O0:03.0 Audio device: Intel Corporation Haswell-ULT HD Audio Controller (rev 09

...

Capabilities: [60] MSI: Enable+ Count=1/1 Maskable- 64bit-
```

Capabilities: [70] Express Root Complex Integrated Endpoint, MSI 00

```
Kernel driver in use: snd hda intel
00:1b.0 Audio device: Intel Corporation 8 Series HD Audio Controller (rev 04)
        . . .
        Capabilities: [60] MSI: Enable+ Count=1/1 Maskable- 64bit+
        Capabilities: [70] Express Root Complex Integrated Endpoint, MSI 00
        Capabilities: [100] Virtual Channel
        Kernel driver in use: snd_hda_intel
00:1f.2 SATA controller: Intel Corporation 8 Series SATA Controller 1 [AHCI mode] (rev 04)
(prog-if 01 [AHCI 1.0])
        Capabilities: [80] MSI: Enable+ Count=1/1 Maskable- 64bit-
        Capabilities: [70] Power Management version 3
Capabilities: [a8] SATA HBA v1.0
        Kernel driver in use: ahci
05:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)
        Capabilities: [50] MSI: Enable- Count=1/1 Maskable+ 64bit+
        Capabilities: [70] MSI-X: Enable+ Count=10 Masked-
        Capabilities: [a0] Express Endpoint, MSI 00
        Kernel driver in use: igb
05:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)
       Capabilities: [50] MSI: Enable- Count=1/1 Maskable+ 64bit+
        Capabilities: [70] MSI-X: Enable+ Count=10 Masked-
```

Capabilities: [a0] Express Endpoint, MSI 00

Kernel driver in use: igb

Как мы видим, у этих устройств присутствует строка либо «MSI: Enable+», либо «MSI-X: Enable+»

Начнём деградировать систему. Для начала загрузимся с опцией pci=nomsi.

pci=nomsi

Благодаря этой опции MSI прерывания станут IO-APIC/XT-PIC в зависимости от используемого контроллера прерываний

В данном случае у нас всё ещё приоритетный контроллер прерываний АРІС, так что картина будет такая:

Вывод /proc/interrupts:

	CPU0	CPU1	CPU2	CPU3		
0:	15	0	0	0	IO-APIC-edge	timer
1:	0	1	0	1	IO-APIC-edge	i8042
8:	0	0	1	0	IO-APIC-edge	rtc0
9:	0	0	0	0	IO-APIC-fasteoi	acpi

12:	0	0	0	1	IO-APIC-edge
16:	1314	5625	342	555	IO-APIC-fasteoi i915, snd_hda_intel, e
th59					
17:	5	0	1	34	IO-APIC-fasteoi eth58
21:	2882	2558	963	2088	IO-APIC-fasteoi ahci
22:	26	81	2	170	IO-APIC-fasteoi snd_hda_intel
23:	23	369	8	8	IO-APIC-fasteoi ehci_hcd:usb1
NMI:	0	0	0	0	Non-maskable interrupts
LOC:	3011	3331	2435	2617	Local timer interrupts
SPU:	0	0	0	0	Spurious interrupts
PMI:	0	0	0	0	Performance monitoring interrupts
IWI:	197	228	544	85	IRQ work interrupts
RTR:	3	0	0	0	APIC ICR read retries
RES:	1708	2349	1821	1569	Rescheduling interrupts
CAL:	520	554	509	555	Function call interrupts
TLB:	187	181	205	179	TLB shootdowns
TRM:	102	102	102	102	Thermal event interrupts
THR:	0	0	0	0	Threshold APIC interrupts
MCE:	0	0	0	0	Machine check exceptions

```
MCP: 2 2 2 2 Machine check polls

ERR: 0

MIS: 0
```

Все прерывания MSI/MSI-X ожидаемо исчезли. Вместо них устройства теперь используют прерывания вида IO-APIC-fasteoi.

Обратим внимание на то, что раньше до включения этой опции у eth58 и eth59 было по 9 прерываний! А сейчас только по одному. Ведь как мы помним, без MSI одной функции PCI доступно только одно прерывание!

Немного информации из dmesg по инициализации ethernet контроллеров:

— загрузка без опции pci=nomsi:

```
igb: Intel(R) Gigabit Ethernet Network Driver - version 5.0.5-k
igb: Copyright (c) 2007-2013 Intel Corporation.
acpi:acpi pci irq enable: igb 0000:05:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16
igb 0000:05:00.0: irq 63 for MSI/MSI-X
igb 0000:05:00.0: irq 64 for MSI/MSI-X
igb 0000:05:00.0: irq 65 for MSI/MSI-X
igb 0000:05:00.0: irq 66 for MSI/MSI-X
igb 0000:05:00.0: irq 67 for MSI/MSI-X
igb 0000:05:00.0: irq 68 for MSI/MSI-X
igb 0000:05:00.0: irq 69 for MSI/MSI-X
igb 0000:05:00.0: irq 70 for MSI/MSI-X
igb 0000:05:00.0: irq 71 for MSI/MSI-X
```

```
igb 0000:05:00.0: irq 63 for MSI/MSI-X
igb 0000:05:00.0: irq 64 for MSI/MSI-X
igb 0000:05:00.0: irq 65 for MSI/MSI-X
igb 0000:05:00.0: irq 66 for MSI/MSI-X
igb 0000:05:00.0: irq 67 for MSI/MSI-X
igb 0000:05:00.0: irq 68 for MSI/MSI-X
igb 0000:05:00.0: irq 69 for MSI/MSI-X
igb 0000:05:00.0: irq 70 for MSI/MSI-X
igb 0000:05:00.0: irq 71 for MSI/MSI-X
igb 0000:05:00.0: added PHC on eth0
igb 0000:05:00.0: Intel(R) Gigabit Ethernet Network Connection
igb 0000:05:00.0: eth0: (PCIe:5.0Gb/s:Width x1) 00:15:d5:03:00:2a
igb 0000:05:00.0: eth0: PBA No: 106300-000
igb 0000:05:00.0: Using MSI-X interrupts. 4 rx queue(s), 4 tx queue(s)
acpi:acpi pci irq enable: igb 0000:05:00.1: PCI INT B -> GSI 17 (level, low) -> IRQ 17
igb 0000:05:00.1: irq 72 for MSI/MSI-X
igb 0000:05:00.1: irq 73 for MSI/MSI-X
igb 0000:05:00.1: irq 74 for MSI/MSI-X
igb 0000:05:00.1: irq 75 for MSI/MSI-X
```

```
igb 0000:05:00.1: irq 76 for MSI/MSI-X
igb 0000:05:00.1: irq 77 for MSI/MSI-X
igb 0000:05:00.1: irq 78 for MSI/MSI-X
igb 0000:05:00.1: irq 79 for MSI/MSI-X
igb 0000:05:00.1: irq 80 for MSI/MSI-X
igb 0000:05:00.1: irq 72 for MSI/MSI-X
igb 0000:05:00.1: irq 73 for MSI/MSI-X
igb 0000:05:00.1: irq 74 for MSI/MSI-X
igb 0000:05:00.1: irq 75 for MSI/MSI-X
igb 0000:05:00.1: irq 76 for MSI/MSI-X
igb 0000:05:00.1: irq 77 for MSI/MSI-X
igb 0000:05:00.1: irq 78 for MSI/MSI-X
igb 0000:05:00.1: irq 79 for MSI/MSI-X
igb 0000:05:00.1: irq 80 for MSI/MSI-X
igb 0000:05:00.1: added PHC on eth1
igb 0000:05:00.1: Intel(R) Gigabit Ethernet Network Connection
igb 0000:05:00.1: eth1: (PCIe:5.0Gb/s:Width x1) 00:15:d5:03:00:2b
igb 0000:05:00.1: eth1: PBA No: 106300-000
igb 0000:05:00.1: Using MSI-X interrupts. 4 rx queue(s), 4 tx queue(s)
```

— загрузка с опцией pci=nomsi

```
igb: Intel(R) Gigabit Ethernet Network Driver - version 5.0.5-k
igb: Copyright (c) 2007-2013 Intel Corporation.
acpi:acpi pci irq enable: igb 0000:05:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16
igb 0000:05:00.0: added PHC on eth0
igb 0000:05:00.0: Intel(R) Gigabit Ethernet Network Connection
igb 0000:05:00.0: eth0: (PCIe:5.0Gb/s:Width x1) 00:15:d5:03:00:2a
igb 0000:05:00.0: eth0: PBA No: 106300-000
igb 0000:05:00.0: Using legacy interrupts. 1 rx queue(s), 1 tx queue(s)
acpi:acpi pci irq enable: igb 0000:05:00.1: PCI INT B \rightarrow GSI 17 (level, low) \rightarrow IRQ 17
igb 0000:05:00.1: added PHC on eth1
igb 0000:05:00.1: Intel(R) Gigabit Ethernet Network Connection
igb 0000:05:00.1: eth1: (PCIe:5.0Gb/s:Width x1) 00:15:d5:03:00:2b
igb 0000:05:00.1: eth1: PBA No: 106300-000
igb 0000:05:00.1: Using legacy interrupts. 1 rx queue(s), 1 tx queue(s)
```

Из-за уменьшения количества прерываний на устройство, включение данной опции может приводить к существенному ограничению производительности работы драйвера (это без учёта того, что согласно исследованию Intel Reducing Interrupt Latency Through the Use of Message Signaled Interruptsпрерывания через MSI в 3 раза быстрее чем через IO-APIC и в 5 раз быстрее чем через PIC).

noapic

Данная опция отключает I/O APIC. MSI прерывания всё ещё могут идти на все CPU, но прерывания от устройств смогут идти только на CPU0, так как PIC связан только с CPU0. Но LAPIC работает и другие CPU могут работать и обрабатывать прерывания.

	CPU0	CPU1	CPU2	CPU3		
0:	5	0	0	0	XT-PIC-XT-PIC	timer
1:	2	0	0	0	XT-PIC-XT-PIC	18042
2:	0	0	0	0	XT-PIC-XT-PIC	cascade
8:	1	0	0	0	XT-PIC-XT-PIC	rtc0
9:	0	0	0	0	XT-PIC-XT-PIC	acpi
12:	172	0	0	0	XT-PIC-XT-PIC	ehci_hcd:usb1
56:	0	0	0	0	PCI-MSI-edge	aerdrv, PCIe PME
57:	0	0	0	0	PCI-MSI-edge	aerdrv, PCIe PME
58:	0	0	0	0	PCI-MSI-edge	aerdrv, PCIe PME
59:	0	0	0	0	PCI-MSI-edge	aerdrv, PCIe PME
60:	0	0	0	0	PCI-MSI-edge	aerdrv, PCIe PME
61:	0	0	0	0	PCI-MSI-edge	aerdrv, PCIe PME

62:	2833	2989	1021	811	PCI-MSI-edge	ahci
63:	0	1	0	0	PCI-MSI-edge	eth59
64:	301	52	9	3	PCI-MSI-edge	eth59-rx-0
65:	12	24	3	178	PCI-MSI-edge	eth59-rx-1
66:	14	85	6	2	PCI-MSI-edge	eth59-rx-2
67:	17	24	307	1	PCI-MSI-edge	eth59-rx-3
68:	70	18	8	10	PCI-MSI-edge	eth59-tx-0
69:	7	0	0	23	PCI-MSI-edge	eth59-tx-1
70:	15	227	2	2	PCI-MSI-edge	eth59-tx-2
71:	18	6	27	2	PCI-MSI-edge	eth59-tx-3
72:	0	0	0	0	PCI-MSI-edge	eth58
73:	1	0	0	27	PCI-MSI-edge	eth58-rx-0
74:	1	22	0	5	PCI-MSI-edge	eth58-rx-1
75:	1	0	22	5	PCI-MSI-edge	eth58-rx-2
76:	23	0	0	5	PCI-MSI-edge	eth58-rx-3
77:	1	0	0	27	PCI-MSI-edge	eth58-tx-0
78:	1	22	0	5	PCI-MSI-edge	eth58-tx-1
79:	1	0	22	5	PCI-MSI-edge	eth58-tx-2
80:	23	0	0	5	PCI-MSI-edge	eth58-tx-3

81:	187	17	70	7	PCI-MSI-edge snd_hda_intel
82:	698	1647	247	129	PCI-MSI-edge i915
83:	438	135	16	59	PCI-MSI-edge snd_hda_intel
NMI:	0	0	0	0	Non-maskable interrupts
LOC:	1975	2499	2245	1474	Local timer interrupts
SPU:	0	0	0	0	Spurious interrupts
PMI:	0	0	0	0	Performance monitoring interrupts
IWI:	132	67	429	91	IRQ work interrupts
RTR:	3	0	0	0	APIC ICR read retries
RES:	1697	2178	1903	1541	Rescheduling interrupts
CAL:	561	496	534	567	Function call interrupts
TLB:	229	254	170	137	TLB shootdowns
TRM:	78	78	78	78	Thermal event interrupts
THR:	0	0	0	0	Threshold APIC interrupts
MCE:	0	0	0	0	Machine check exceptions
MCP:	2	2	2	2	Machine check polls
ERR:	0				
MIS:	0				

Как видим, все прерывания IO-APIC-* превратились в XT-PIC-XT-PIC, причём эти прерывания роутятся только на CPU0. Прерывания MSI остались без изменений и идут на все CPU0-3.

nolapic

Отключает LAPIC. MSI прерывания не могут работать без LAPIC, I/O APIC не может работать без LAPIC. Поэтому все прерывания от устройств будут идти на PIC, а он работает только с CPU0. И без LAPIC остальные CPU даже работать в системе не будут.

Вывод /proc/interrupts:

	CPU0		
0:	6416	XT-PIC-XT-PIC	timer
1:	2	XT-PIC-XT-PIC	i8042
2:	0	XT-PIC-XT-PIC	cascade
3:	5067	XT-PIC-XT-PIC	aerdrv, aerdrv, PCIe PME, PCIe PME, i915, snd_hda_intel
, eth59			
4:	32	XT-PIC-XT-PIC	aerdrv, aerdrv, PCIe PME, PCIe PME, eth58
5:	0	XT-PIC-XT-PIC	aerdrv, PCIe PME
6:	0	XT-PIC-XT-PIC	aerdrv, PCIe PME

8:	1	XT-PIC-XT-PIC rtc0
9:	0	XT-PIC-XT-PIC acpi
11:	274	XT-PIC-XT-PIC snd_hda_intel
12:	202	XT-PIC-XT-PIC ehci_hcd:usb1
15:	7903	XT-PIC-XT-PIC ahci
NMI:	0	Non-maskable interrupts
LOC:	0	Local timer interrupts
SPU:	0	Spurious interrupts
PMI:	0	Performance monitoring interrupts
IWI:	0	IRQ work interrupts
RTR:	0	APIC ICR read retries
RES:	0	Rescheduling interrupts
CAL:	0	Function call interrupts
TLB:	0	TLB shootdowns
TRM:	0	Thermal event interrupts
THR:	0	Threshold APIC interrupts
MCE:	0	Machine check exceptions
MCP:	1	Machine check polls
ERR:	0	

MIS: 0

Комбинации:

На самом деле всего одна для нового варианта: «noapic pci=nomsi». Все прерывания от устройств смогут идти только на CPU0 через PIC. Но LAPIC работает и другие CPU могут работать и обрабатывать прерывания.

Одна, потому что с «nolapic» можно ничего не комбинировать, т.к. эта опция и так сделает недоступным I/O APIC и MSI. Так что если вы когда-то прописывали опции загрузки «noapic nolapic» (или самый распространённый вариант «acpi=off noapic nolapic»), то судя по всему вы набирали лишние буквы.

Итак, что будет от опций «noapic pci=nomsi»:

Вывод /proc/interrupts:

	CPU0	CPU1	CPU2	CPU3		
0:	5	0	0	0	XT-PIC-XT-PIC	timer
1:	2	0	0	0	XT-PIC-XT-PIC	i8042
2:	0	0	0	0	XT-PIC-XT-PIC	cascade

3:	5072	0	0	0	XT-PIC-XT-PIC i915, snd_hda_intel, eth
59					
4:	32	0	0	0	XT-PIC-XT-PIC eth58
8:	1	0	0	0	XT-PIC-XT-PIC rtc0
9:	0	0	0	0	XT-PIC-XT-PIC acpi
11:	281	0	0	0	XT-PIC-XT-PIC snd_hda_intel
12:	200	0	0	0	XT-PIC-XT-PIC ehci_hcd:usb1
15:	7930	0	0	0	XT-PIC-XT-PIC ahci
NMI:	0	0	0	0	Non-maskable interrupts
LOC:	2595	2387	2129	1697	Local timer interrupts
SPU:	0	0	0	0	Spurious interrupts
PMI:	0	0	0	0	Performance monitoring interrupts
IWI:	159	90	482	135	IRQ work interrupts
RTR:	3	0	0	0	APIC ICR read retries
RES:	1568	1666	1810	1833	Rescheduling interrupts
CAL:	431	556	549	558	Function call interrupts
TLB:	124	184	156	274	TLB shootdowns
TRM:	116	116	116	116	Thermal event interrupts
THR:	0	0	0	0	Threshold APIC interrupts

MCE:	0	0	0	0 Machine check exceptions
MCP:	2	2	2	2 Machine check polls
ERR:	0			
MIS:	0			

Таблицы роутинга прерываний и опции «acpi=noirq», «pci=noacpi», «acpi=off»

Как операционная система получает информацию о роутинге прерываний от устройств? BIOS подготавливает информацию для ОС в виде:

- ACPI таблиц (методы PIC/ PRT)
- _MP_ таблицы (MPtable)
- \$PIR таблицы
- Регистров 0x3C/0x3D конфигурационного пространства PCI устройств

Следует отметить, что для обозначения прерываний MSI BIOSy не надо ничего дополнительно делать, вся вышеупомянутая информация нужна только для линий APIC/PIC прерываний.

Таблицы в списке выше обозначены в порядке приоритета. Рассмотрим это подробней.

Допустим BIOS предоставил все эти данные и мы грузимся без каких-либо дополнительных опций:

- ОС находит таблицы АСРІ
- ОС выполняет метод АСРІ "_PIС", передаёт ему аргумент, что нужно грузиться в режиме APIC. Тут код метода обычно сохраняет выбранный режим в переменной (допустим PICM=1)
- Для получения данных о прерываниях ОС вызывает метод АСРІ "_PRT". Он внутри себя проверяет переменную РІСМ и возвращает роутинг для AРІС случая

В случае если мы грузимся с опцией **noapic**:

- ОС находит таблицы АСРІ
- ОС выполняет метод АСРІ "_PIС", передаёт ему аргумент, что нужно грузиться в режиме РІС. Тут код метода обычно сохраняет выбранный режим в переменной (допустим PICM=0)
- Для получения данных о прерываниях ОС вызывает метод АСРІ "_PRT". Он внутри себя проверяет переменную PICM и возвращает роутинг для PIC случая

Если таблица ACPI отсутствует или функционал роутинга прерываний через ACPI отключен с помощью опций **acpi=noirq** или **pci=noacpi** (или ACPI полностью выключен с помощью **acpi=off**), то OC смотрит для роутинга прерываний таблицу MPtable (_MP_):

- ОС не находит/не смотрит таблицы АСРІ
- ОС находит таблицу MPtable (MP)

Если таблица ACPI отсутствует или функционал роутинга прерываний через ACPI отключен с помощью опций **acpi=noirq** или **pci=noacpi** (или ACPI полностью выключен с помощью **acpi=off**) и если таблица MPtable (_MP_) отсутствует (или передана опция загрузки **noapic** или **nolapic**):

- ОС не находит/не смотрит таблицу АСРІ
- ОС не находит/не смотрит таблицу MPtable (_MP_)
- ОС находит таблицу \$PIR Если и таблицы \$PIR нет, или она не полна, то операционная система для угадывания прерываний будет смотреть значения регистров 0x3C/0x3D конфигурационного пространства PCI устройств.

Суммируем всё вышеизложенное следующей картинкой:

Следует помнить, что не каждый BIOS предоставляет все 3 таблицы (ACPI/MPtable/\$PIR), так что если вы передали опцию загрузчику отказаться от использования ACPI или ACPI и MPtable для роутинга прерываний, далеко не факт, что ваша система загрузится.

Замечание 1: в случае если мы попытаемся загрузиться в режиме APIC с опцией асрі=noirq и без наличия MPtable, то картина прерываний будет как и в случае обычной загрузки с единственной опцией noapic. Операционная система сама перейдёт в режим PIC прерываний.

В случае если мы попытаемся загрузиться вообще без таблиц ACPI (acpi=off) и не предоставив MPtable, то картина будет такая:

	CPU0		
0:	6	XT-PIC-XT-PIC	timer
1:	2	XT-PIC-XT-PIC	i8042
2:	0	XT-PIC-XT-PIC	cascade
8:	0	XT-PIC-XT-PIC	rtc0
12:	373	XT-PIC-XT-PIC	ehci_hcd:usb1
16:	0	PCI-MSI-edge	PCIe PME
17:	0	PCI-MSI-edge	PCIe PME
18:	0	PCI-MSI-edge	PCIe PME
19:	0	PCI-MSI-edge	PCIe PME
20:	0	PCI-MSI-edge	PCIe PME
21:	0	PCI-MSI-edge	PCIe PME
22:	8728	PCI-MSI-edge	ahci
23:	1	PCI-MSI-edge	eth59
24:	1301	PCI-MSI-edge	eth59-rx-0
25:	113	PCI-MSI-edge	eth59-tx-0
26:	0	PCI-MSI-edge	eth58
27:	45	PCI-MSI-edge	eth58-rx-0
28:	45	PCI-MSI-edge	eth58-tx-0

29:	1280	PCI-MSI-edge snd_hda_intel
NMI:	2	Non-maskable interrupts
LOC:	24076	Local timer interrupts
SPU:	0	Spurious interrupts
PMI:	2	Performance monitoring interrupts
IWI:	2856	IRQ work interrupts
RTR:	0	APIC ICR read retries
RES:	0	Rescheduling interrupts
CAL:	0	Function call interrupts
TLB:	0	TLB shootdowns
TRM:	34	Thermal event interrupts
THR:	0	Threshold APIC interrupts
MCE:	0	Machine check exceptions
MCP:	2	Machine check polls
ERR:	0	
MIS:	0	

Это происходит из-за того, что без ACPI таблицы MADT (Multiple APIC Description Table) и необходимой информации из MPtable, операционная система не знает APIC идентификаторы (APIC ID) для других процессоров и не может с ними работать, но LAPIC основного процессора работает, так как мы это не запрещали, и MSI прерывания могут на него приходить. То есть будет так:

Замечание 2: в целом роутинг прерываний при использовании ACPI в случае APIC совпадает с роутингом прерываний через MPtable. А роутинг прерываний через ACPI в случае использования PIC совпадает с роутингом прерываний через \$PIR. Так что и выводы /proc/interrupts отличаться не должны. Однако в процессе исследований заметил одну странность. При роутинге через MPtable в выводе почему-то присутствует каскадное прерывание «XT-PIC-XT-PIC cascade».

	CPU0	CPU1	CPU2	CPU3		
0:	15	0	0	0	IO-APIC-edge	timer
1:	2	0	0	0	IO-APIC-edge	i8042
2:	0	0	0	0	XT-PIC-XT-PIC	cascade
8:	0	1	0	0	IO-APIC-edge	rtc0
9:	0	0	0	0	IO-APIC-edge	acpi

Немного странно, что так происходит, но в документации ядра вроде говорится, что это нормально.

Заключение:

В заключении ещё раз обозначим разобранные опции.

Опции выбора контроллера прерываний:

- **pci=nomsi** MSI прерывания станут IO-APIC/XT-PIC в зависимости от используемого контроллера прерываний
- **noapic** Отключает I/O APIC. MSI прерывания всё ещё могут идти на все CPU, остальные прерывания от устройств смогут идти только на PIC, а он работает только с CPU0. Но LAPIC работает и другие CPU могут работать и обрабатывать прерывания
- **noapic pci=nomsi** Все прерывания от устройств могут идти только на PIC, а он работает только с CPU0. Но LAPIC работает и другие CPU могут работать и обрабатывать прерывания
- **nolapic** Отключает LAPIC. MSI прерывания не могут работать без LAPIC, I/O APIC не может работать без LAPIC. Все прерывания от устройств будут идти на PIC, а он работает только с CPU0. И без LAPIC остальные CPU не будут работать.

Опции выбора приоритетной таблицы роутинга прерываний:

- без опций роутинг через APIC с помощью таблиц ACPI
- **noapic** роутинг через PIC с помощью таблиц ACPI
- acpi=noirq (pci=noacpi/acpi=off) роутинг через APIC с помощью таблицы MPtable
- acpi=noirq (pci=noacpi/acpi=off) noapic (nolapic) роутинг через PIC с помощью таблицы \$PIR

В следующей части посмотрим как coreboot настраивает чипсет для роутинга прерываний.