Tipos de interés a 3 y 6 meses en EEUU

Datos

Datos semanales desde el 12 de diciembre de 1958 al 6 de agosto de 2004 (en total 2383 observaciones). Fuente: ejemplo 8.6.5 del libro de Ruey S. Tsay, Multivariate Time Series Analysis and its applications (w-tb3n6ms.txt).

TB3 3-month Treasury Bill

TB6 6-month Treasury Bill

```
open LetrasTesoroAmericano3y6meses.gdt
gnuplot TB3 TB6 --time-series --with-lines --output="TB3yTB6.png"
```


- Ficheros https://github.com/mbujosab/EconometriaAplicada-SRC/tree/main/Ejercicios
 - Versión en pdf
 - Datos: LetrasTesoroAmericano3y6meses.gdt
 - Guión de gretl: LetrasTesoroAmericano3y6meses.inp

Letras a tres meses

Gráfico y correlograma de la serie temporal TB3

Regresión auxiliar para TB3

Consideremos la regresión

$$\nabla TB3_t = \nu + \delta TB3_{t-1} + \sum_{j=1}^{3} \pi_j \nabla TB3_{t-j} + U_t.$$

Y consideremos la siguiente hipótesis nula acerca del parámetro δ :

```
H_0: \delta = 0, frente a H_1: \delta < 0
```

```
diff TB3
RegresionAUX_TB3 <- ols d_TB3 0 TB3(-1) d_TB3(-2) d_TB3(-3)
```

Modelo 2: MCO, usando las observaciones 1959-01-09:2004-08-06 (T = 2379) Variable dependiente: d_TB3

	coeficient	te Desv	. típica	Estadístico	t valor p		
const	0,0204353	3 0,0	 0950288	2,150	0,0316	**	
TB3_1	-0,0037113	35 0,0	0152221	-2,438	0,0148	**	
d_TB3_1	0,271457	0,0	204924	13,25	1,07e-38	***	
d_TB3_2	-0,0148460	0,0	212326	-0,6992	0,4845		
d_TB3_3	0,0381931	0,0	205139	1,862	0,0628	*	
Media de la	vble. dep.	-0,00051	3 D.T.	de la vble. dej	p. 0,21254	7	
Suma de cuad	l. residuos	99,3357	9 D.T.	de la regresión	n 0,20455	6	
R-cuadrado		0,07533	5 R-cu	adrado corregido	0,07377	7	
F(4, 2374)		48,3542	2 Valo	r p (de F)	3,80e-3	3,80e-39	
Log-verosimi	litud	402,113	5 Crit	erio de Akaike	-794,226	9	
Criterio de	Schwarz	-765,354	7 Crit	. de Hannan-Qui	nn -783,718	5	
rho		-0,00276	0 h de	Durbin	-4,32054	4	

Sin considerar la constante, el valor p más alto fue el de la variable 6 (d_TB3_2)

Contraste de la hipótesis nula

adf 3 TB3 --c

Respecto al contraste de la hipótesis nula sobre el parámetro δ de la anterior regresión auxiliar:

$$H_0: \delta = 0$$
, frente a $H_1: \delta < 0$

Para el tamaño muestral considerado, y bajo la hipótesis nula, el valor crítico del contraste para un nivel de significación del $5\,\%$ es -2.86

Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB3

```
Contraste aumentado de Dickey-Fuller para TB3 incluyendo 3 retardos de (1-L)TB3 tamaño muestral 2379 la hipótesis nula de raíz unitaria es: [a = 1] contraste con constante modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e valor estimado de (a - 1): -0,00371135 estadístico de contraste: tau_c(1) = -2,43813 valor p asintótico 0,1312 Coef. de autocorrelación de primer orden de e: -0,003 diferencias retardadas: F(3, 2374) = 63,404 [0,0000]
```

Conteste KPSS de estacionariedad para TB3

kpss 3 TB3

Contraste KPSS para TB3

T = 2383

Parámetro de truncamiento de los retardos = 3 Estadístico de contraste = 8,99282

10% 5% 1% Valores críticos: 0,348 0,462 0,744 Valor p < .01

Letras a seis meses

Gráfico y correlograma de la serie temporal TB6

gnuplot TB6 --time-series --with-lines --output="TB6.png"
corrgm TB6 --plot="TB6ACF-PACF.png"

Regresión auxiliar para TB6

Consideremos la regresión

$$\nabla TB6_t = \nu + \delta TB6_{t-1} + \sum_{j=1}^{3} \pi_j \nabla TB6_{t-j} + U_t.$$

Y consideremos la siguiente hipótesis nula acerca del parámetro δ :

$$H_0: \delta = 0$$
, frente a $H_1: \delta < 0$

diff TB6
RegresionAUX_TB6 <- ols d_TB6 0 TB6(-1) d_TB6(-1) d_TB6(-2) d_TB6(-3)

Modelo 4: MCO, usando las observaciones 1959-01-09:2004-08-06 (T = 2379) Variable dependiente: d_TB6

	coeficiente	Desv. típica	Estadístico t	valor p
const	0,0188423	0,00868102	2,171	0,0301 **
TB6_1	-0,00332840	0,00136431	-2,440	0,0148 **
d_TB6_1	0,273770	0,0204870	13,36	2,52e-39 ***
d_TB6_2	0,0535491	0,0212198	2,524	0,0117 **
d_TB6_3	0,0408834	0,0205125	1,993	0,0464 **

```
Media de la vble. dep. -0,000509
                                  D.T. de la vble. dep.
                                                          0,189439
                                  D.T. de la regresión
Suma de cuad. residuos 77,37722
                                                          0.180537
R-cuadrado
                       0,093303
                                  R-cuadrado corregido
                                                          0,091775
F(4, 2374)
                       61,07380
                                  Valor p (de F)
                                                          3.60e-49
Log-verosimilitud
                       699,2666
                                  Criterio de Akaike
                                                          -1388,533
Criterio de Schwarz
                      -1359,661
                                  Crit. de Hannan-Quinn -1378,025
                      -0,001784
                                  h de Durbin
                                                          -2,253222
```

Contraste de la hipótesis nula

Respecto al contraste de la hipótesis nula sobre el parámetro δ de la anterior regresión auxiliar:

```
H_0: \delta = 0, frente a H_1: \delta < 0
```

Para el tamaño muestral considerado, y bajo la hipótesis nula, el valor crítico del contraste para un nivel de significación del $5\,\%$ es -2.86

Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB6

```
Contraste aumentado de Dickey-Fuller para TB6 incluyendo 3 retardos de (1-L)TB6 tamaño muestral 2379 la hipótesis nula de raíz unitaria es: [a = 1] contraste con constante modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e valor estimado de (a - 1): -0,0033284 estadístico de contraste: tau_c(1) = -2,43963 valor p asintótico 0,1308 Coef. de autocorrelación de primer orden de e: -0,002 diferencias retardadas: F(3, 2374) = 80,572 [0,0000]
```

Conteste KPSS de estacionariedad para TB6

```
kpss 3 TB6

Contraste KPSS para TB6

T = 2383

Parámetro de truncamiento de los retardos = 3

Estadístico de contraste = 9,29618

10% 5% 1%

Valores críticos: 0,348 0,462 0,744

Valor p < .01
```

Contraste de cointegración de Engle y Granger

```
coint 3 TB3 TB6

Etapa 1: contrastando la existencia de una raíz unitaria en TB3

Contraste aumentado de Dickey-Fuller para TB3
incluyendo 3 retardos de (1-L)TB3
tamaño muestral 2379
la hipótesis nula de raíz unitaria es: [a = 1]
```

```
contraste con constante
  modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  valor estimado de (a - 1): -0,00371135
  estadístico de contraste: tau_c(1) = -2,43813
  valor p asintótico 0,1312
  Coef. de autocorrelación de primer orden de e: -0,003
  diferencias retardadas: F(3, 2374) = 63,404 [0,0000]
Etapa 2: contrastando la existencia de una raíz unitaria en TB6
Contraste aumentado de Dickey-Fuller para TB6
incluyendo 3 retardos de (1-L)TB6
tamaño muestral 2379
la hipótesis nula de raíz unitaria es: [a = 1]
  contraste con constante
  modelo: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  valor estimado de (a - 1): -0,0033284
  estadístico de contraste: tau_c(1) = -2,43963
  valor p asintótico 0,1308
  Coef. de autocorrelación de primer orden de e: -0,002
  diferencias retardadas: F(3, 2374) = 80,572 [0,0000]
Etapa 3: regresión cointegrante
Regresión cointegrante -
MCO, usando las observaciones 1958-12-12:2004-08-06 (T = 2383)
Variable dependiente: TB3
            coeficiente Desv. típica Estadístico t valor p
              -0,227230 0,0103472
                                                       1,73e-97 ***
                                            -21.96
  const
  TB6
             1,01277
                           0,00162648
                                            622,7
                                                         0,0000 ***
Media de la vble. dep. 5,595682
Suma de cuad. residuos 111,2926
                                  D.T. de la vble. dep. 2,766766
                                  D.T. de la regresión
                                                           0,216199
R-cuadrado
                       0,993896 R-cuadrado corregido 0,993894
Log-verosimilitud
                       269,3694 Criterio de Akaike
                                                         -534,7387
Criterio de Schwarz
                      -523,1865
                                  Crit. de Hannan-Quinn -530,5345
                        0,917536
                                 Durbin-Watson
                                                           0,164916
Etapa 4: contrastando la existencia de una raíz unitaria en uhat
Contraste aumentado de Dickey-Fuller para uhat
incluyendo 3 retardos de (1-L)uhat
tamaño muestral 2379
la hipótesis nula de raíz unitaria es: [a = 1]
  contraste sin constante
  modelo: (1-L)y = (a-1)*y(-1) + ... + e
  valor estimado de (a - 1): -0,0714629
  estadístico de contraste: tau_c(2) = -8,40176
  valor p asintótico 3,55e-13
  Coef. de autocorrelación de primer orden de e: -0,001
  diferencias retardadas: F(3, 2375) = 31,962 [0,0000]
Hay evidencia de una relación cointegrante si:
(a) La hipótesis de existencia de raíz unitaria no se rechaza para las variables individuales y
(b) La hipótesis de existencia de raíz unitaria se rechaza para los residuos (uhat) de la regresión cointegrante.
```

Regresión de los tipos a 3 meses sobre los tipos a 6 meses

```
MCO3sobre6 <- ols TB3 0 TB6
modtest --normality --quiet
modtest --white --quiet
modtest --autocorr 1 --quiet
```

Modelo 8: MCO, usando las observaciones 1958-12-12:2004-08-06 (T = 2383) Variable dependiente: TB3 $\,$

	coeficiente	Desv.	típica	Estadístico t	valor p		
const TB6	-0,227230 1,01277			-21,96 622,7	1,73e-97 *** 0,0000 ***		
Media de la vble. dep. Suma de cuad. residuos R-cuadrado F(1, 2381) Log-verosimilitud Criterio de Schwarz rho		111,2926 D.T. 0,993896 R-cua 387722,5 Valor 269,3694 Crite -523,1865 Crit.		rio de Akaike	0,216199 0,993894 0,000000 -534,7387		
Contraste de la hipótesis nula de distribución Normal: Chi-cuadrado(2) = 1605,555 con valor p 0,00000							
Contraste de heterocedasticidad de White							
Estadístico de contraste: TR^2 = 334,788512, con valor p = $P(Chi-cuadrado(2) > 334,788512) = 0,000000$							
Contraste de Breusch-Godfrey para autocorrelación de primer orden							
Estadístico de contraste: LMF = 12669,718945, con valor p = $P(F(1,2380) > 12669,7) = 0$							
Estadístico alternativo: TR^2 = 2006,146451, con valor p = P(Chi-cuadrado(1) > 2006,15) = 0							
Ljung-Box Q' = 2008,6,							

Regresión en primeras diferencias

con valor p = P(Chi-cuadrado(1) > 2008,6) = 0

```
diff TB3 TB6
MCO3sobre6_en_Diff <- ols d_TB3 0 d_TB6
modtest --normality --quiet
modtest --white --quiet
modtest --autocorr 2 --quiet</pre>
```

Modelo 10: MCO, us ando las observaciones 1958-12-19:2004-08-06 (T = 2382) Variable dependiente: d_TB3

	coeficiente	Desv.	típica	Estadístico t	valor p	
const	8,20245e-06	0,001	79898	0,004560	0,9964	
d_TB6	1,02172	0,009	50382	107,5	0,0000	***
Media de la vble. dep0,000575 D.T. de la vble. dep. 0,212426						
Suma de cuad	. residuos 1	18,34704	D.T.	de la regresión	0,0878	00
R-cuadrado	(,829239	R-cua	drado corregido	0,8291	67
F(1, 2380)	1	1557,57	Valor	p (de F)	0,0000	00
Log-verosimi	litud 2	2415,765	Crite	rio de Akaike	-4827,5	31
Criterio de	Schwarz -4	1815,979	Crit.	de Hannan-Quinn	-4823,3	27
rho	(,042154	Durbi	n-Watson	1,9155	14

Contraste de la hipótesis nula de distribución Normal: Chi-cuadrado(2) = 3551,267 con valor p 0,00000

```
Contraste de heterocedasticidad de White Estadístico de contraste: TR^2 = 271,546715, con valor p = P(Chi\text{-cuadrado}(2) > 271,546715) = 0,000000 Contraste de Breusch-Godfrey para autocorrelación hasta el orden 2 Estadístico de contraste: LMF = 57,661126, con valor p = P(F(2,2378) > 57,6611) = 3,52e-25 Estadístico alternativo: TR^2 = 110,173325, con valor p = P(Chi\text{-cuadrado}(2) > 110,173) = 1,19e-24 Ljung-Box Q' = 108,32, con valor p = P(Chi\text{-cuadrado}(2) > 108,32) = 3,01e-24
```

Preguntas

Pregunta 1

Discuta de todas las formas posibles si las series temporales de letras del tesoro norteamericano a tres meses (TB3) y a seis meses (TB6) son estacionarias en media (i.e., son la realización de procesos estocásticos estacionarios en media), usando para ello los resultados de los apartados Letras a tres meses y Letras a seis meses así como sus subapartados.

Pregunta 2

Discuta si las series temporales TB3 y TB6 están cointegradas, a partir de los resultados del apartado Contraste de cointegración de Engle y Granger.

Pregunta 3

¿Qué relación existe entre el contraste de la hipótesis $H_0: \delta = 0$ para la Regresión auxiliar para TB3 y el Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB3?

¿Qué relación existe entre el contraste de la hipótesis $H_0: \delta = 0$ para la Regresión auxiliar para TB6 y el Contraste aumentado de Dickey Fuller sobre la existencia de una raíz unitaria para TB6?

Pregunta 4

Los listados de la Regresión de los tipos a 3 meses sobre los tipos a 6 meses y la Regresión en primeras diferencias muestran los principales resultados obtenidos al estimar por MCO dos modelos de regresión.

Resuma y comente los resultados de estimación y diagnosis que le parezcan más relevantes para cada uno de los modelos (el primero en niveles y el segundo en diferencias).

¿Detecta alguna desviación del cumplimiento de las hipótesis habituales en dichos modelos?

Respuestas

Respuesta 1

Ambas series (TB3 y TB6) parecen ser NO estacionarias en media,

- Analizando los gráficos de las series, ambas parecen tener una tendencia estocástica sin deriva.
- Ambas funciones de autocorrelación (FAC) muestran persistencia (sus coeficientes decrecen despacio y
 a un ritmo aproximadamente lineal); y el primer coeficiente de la PACF está próximo a uno en ambos
 casos.
- En ambos casos el contraste Dickey-Fuller aumentado no rechaza la hipótesis nula de existencia de una raíz unitaria ni al 1 %, ni al 5 %, ni tampoco al 10 % de significación.
- En consonancia con lo anterior, en ambos casos el test KPSS rechaza contundentemente que las series sean estacionarias.
- Además (aunque el enunciado no hace referencia a la sección "Contraste de cointegración de Engle y Granger"), los test ADF calculados en las etapas 1 y 2 no rechazan la hipótesis (raíz unitaria), de hecho, son los mismos test mostrados más arriba.

(Pregunta 1)

Respuesta 2

Las conclusiones de las distintas etapas del test de cointegración son:

- **Etapa 1** El test ADF no rechaza que la serie TB3 sea I(1) para niveles de significación inferiores al 13 % (p-valor asintótico 0,1312).
- **Etapa 2** El test ADF no rechaza que la serie TB6 sea I(1) para niveles de significación inferiores al 13 % (p-valor asintótico 0,1308).
- **Etapa 3** En la regresión (cointegrante) de las letras a 3 meses sobre las letras a 6 meses ambos parámetros (constante y pendiente) resultan ser muy significativos, y el \mathbb{R}^2 está próximo a 1.
- **Etapa 4** El test ADF rechaza **contundentemente** que los residuos de la regresión cointegrante sean I(1) tanto a casi cualquier nivel de significación (p-valor asintótico 0.00000000000355)

Consecuentemente, <u>el test NO rechaza la cointegración de los tipos de interés a 3 y 6 meses.</u> (Pregunta 2)

Respuesta 3

Precisamente, ambas regresiones auxiliares son las que se han empleado en los respectivos contrastes ADF (en este caso incluyendo tres retardos)

$$\nabla Y_t = \nu + \delta Y_{t-1} + \sum_{j=1}^{3} \pi_j \nabla Y_{t-j} + U_t,$$

puesto que, bajo la hipótesis de que la serie Y_t es I(1), que resulte que $\delta = 0$ implica que la primera diferencia es estacionaria en media, pues

$$Y_t - Y_{t-1} = \nu + \underbrace{\sum_{j=1}^{3} \pi_j \nabla Y_{t-j}}_{I(0)} + U_t.$$

El ratio t correspondiente el parámetro δ no se distribuye como una t-student bajo la H_0 de que la serie es I(1), por lo que el estadístico t y el correspondiente p-valor mostrados en las regresiones auxiliares no son válidos. Por eso el contraste ADF emplea unos valores críticos distintos.

(Pregunta 3)

Respuesta 4

Regresión de los tipos a 3 meses sobre los tipos a 6 meses Los coeficientes estimados son muy significativos. El ajuste del modelo, medido por el valor del \mathbb{R}^2 es muy elevado, pero los contrastes rechazan la normalidad, la homocedasticidad y la ausencia de autocorrelación.

Regresión en primeras diferencias El único coeficiente significativo es la pendiente (es decir, al diferenciar las series NO desaparece la relación entre ellas; como cabe esperar entre series cointegradas), y el ajuste del modelo, medido por el valor del R^2 , es superior al 80 %. Los contrastes residuales rechazan la hipótesis nula de normalidad, homocedasticidad y ausencia de autocorrelación.

(Pregunta 4)