INTRODUCCIÓN A LA INVESTIGACIÓN OPERATIVA

Examen del 15 de julio de 2014

1. Dado el siguiente modelo de programación lineal (PL):

Cuadro 1.

Min $Z=2X_1+3X_2$ Sujeto a: $2X_2+X_2\ge 3$ $4X_1+6X_2\ge 24$ $2X_1+8X_2\ge 16$ $5X_1+6X_2\le 60$ $X_1, X_2\ge 0$

- a. Analizad gráficamente y describa la solución o soluciones del modelo del Cuadro 1, en el caso de que existan. (0,75 puntos)
- b. Analizad gráficamente y describa la solución o soluciones del modelo del Cuadro 1, en el caso de que existan, suponiendo que el objetivo es de máximo, es decir: (0,5 puntos)

$$Max Z=2X_1+3X_2$$

- c. Escribid el programa de SAS/OR con el que obtendría la solución del modelo planteado al inicio del enunciado. (0,75 punto)
- 2. Una empresa manufacturera produce dos tipos de mesas: A y B, para ello utiliza tres tipos de máquinas: I, II y III. Los tiempos de producción requeridos (en horas) en cada máquina para cada mesa se muestran en la Tabla 1:

Tabla 1.

Máquina	Mesa Tipo A	Mesa Tipo B	Tiempo Total		
			Disponible		
I	1,5	2,0	1.000		
II	3,0	4,5	2.000		
III	2,5	1,5	1.500		

Las mesas del tipo A se venden a 350 € la unidad y las de tipo B a 450€ la unidad. El gerente de la empresa determina que al menos el 20% de las mesas deben ser de tipo A y al menos el 30% de las mesas debe ser de tipo B.

- a. Plantead el modelo de programación lineal (PL) que permita determinar cuántas mesas deben producirse de cada tipo, de modo que se maximicen las ventas y se cumplan las restricciones de disponibilidad de horas de producción y exigencias del gerente. (0,75 puntos)
- b. La empresa se replantea su único objetivo de maximización de las ventas y a cambio desea determinar cuál es la producción óptima si se quieren alcanzar al máximo posible las siguientes metas:
 - I. Alcanzar al menos unas ventas de 250.000 euros.
 - II. Cumplir con las exigencias del gerente.
 - III. No subutilizar la capacidad de producción de la empresa (horas de trabajo).

Plantead el modelo de programación por metas. (1 punto)

c. Interpretad los resultados de la Figura 1. Describid el algoritmo de optimización que se ha utilizado para calcular el óptimo. (0,5 puntos)

1 2 3 ΣЗ Parámetros de Solver 4 5 x1 x2 Nombre d'unitats 405 174 Benefici total 6 Benefici unitari 350 450 220.050 Establecer objetivo: \$D\$6 8 I 9 II Máx. Min Utilitzat Disponible 1,5 955.5 1000 Cambiando las celdas de variables: 10 III 3 4,5 1998 2000 \$B\$5:\$C\$5 2,5 1,5 1273,5 1500 11 A 12 B 8,0 -0 289.2 0 Sujeto a las restricciones: \$B\$5:\$C\$5 = entero \$B\$6:\$C\$6 >= 0 \$D\$12:\$D\$13 >= \$E\$12:\$E\$13 \$D\$9:\$D\$11 <= \$E\$9:\$E\$11 13 -0 0,7 0,3 0 <u>Ag</u>regar 14 15 17 Eliminar 18 19 20 21 22 23 24 25 26 27 Cargar/Guardar Convertir variables sin restricciones en no negativas Método de resolución: Simplex LP • Seleccione el motor GRG Nonlinear para problemas de Solver no lineales suavizados. Seleccione el motor LP Simplex para problemas de Solver lineales, y seleccione el motor Evolutionary para proble de Solver no suavizados. 28 29 Cerrar Ayuda Resolver 31

Figura 1.

3. Una compañía produce dos tipos de cortadoras de césped: eléctricas y de gas. La compañía ha contratado un pedido de 30.000 modelos eléctricos y 15.000 de gas, que está obligada a servir. Sin embargo, la compañía tiene una capacidad de producción limitada, que se resume en la Tabla 2:

Tabla 2: Horas requeridas por cortacésped.

Proceso	Modelo	Modelo de	Tiempo Total
	Eléctrico	Gas	Disponible
Producción	0,2	0,4	10.000
Ensamblaje	0,3	0,5	15.000
Embalaje	0,1	0,1	5.000

El coste de producir un cortacésped eléctrico es de 55€ y el de producir un cortacésped de gas es de 85€. Alternativamente, la compañía puede comprar cortacésped eléctricos y de gas a un precio de 67€ y 95€, respectivamente. La compañía quiere saber cuántos cortacéspedes producir y cuantos tiene que comprar a un tercero para satisfacer el pedido. El modelo de PL a resolver es:

Cuadro 2.

Donde P₁ y P₂ son, respectivamente, el número de cortacéspedes que se fabrican: eléctricos y de gas; C₁ y C₂ son, respectivamente, el número de cortacéspedes que se compran a un tercero: eléctricos y de gas. A continuación, en las tablas 3 y 4 se muestran los resultados de la solución del modelo de PL anterior en SAS.

Tabla 3.

		The	e LP Procedu	re				
				-				
		Vai	riable Summa	ry				
	Variable					Reduced		
Col	Name	Status	Туре	Price	Activity	Cost		
1	p1	BASIC	NON - NEG	55	30000	0		
	p2	BASIC	NON-NEG	85	10000			
	c1		NON-NEG	67	0	=		
-	c2	BASIC	NON-NEG	95	5000			
	Produccion		SLACK	0	0			
	Emsamblaje	BASIC		0	1000			
7	Embalaje	BASIC	SLACK	0	1000	0		
		Cons	straint Summ	ary				
	Constraint		S/S			Dual		
Row	Name	Type	Col	Rhs	Activity	Activity		
1	coste	OBJECT\	/E .	0	2975000			
2	demandaElec	EQ		30000	30000	60		
3	demandaGas	EQ		15000	15000	95		
	Produccion	LE	5	10000	10000	- 25		
	Emsamblaje	LE	6	15000	14000			
6	Embalaje	LE	7	5000	4000	0		
		RHS	Range Analy	sis				
	Mi				Maxi	mum Phi		
Row	Rhs Lea	aving	Objective		Rhs Leavi	ng Obj	jective	
demandaElec	20000 c2		2375000	50	0000 p2	2	1175000	
demandaGas	10000 c2		2500000	INFIN	NITY .			
Produccion	6000 p2		3075000	10	0800 Emsam	blaje 2	2955000	
Emsamblaje	14000 Ems	samblaje	2975000	INFIN	NITY .			
Embalaje	4000 Emb	oalaje	2975000	INFIN	NITY .			
		Price	e Range Anal	veie				
Variable			n Phi	•	M	aximum Phi		
Col Name		Enterin			Price En		Objective	
1 p1	-INFINITY		-INFIN	ITY	62 c1		3185000	
2 p2	71	c1	2835	000	95 Pr	oduccion	3075000	
3 c1	60	c1	2975	000 IN	WFINITY .		2975000	
4 c2	85	Produce	ion 2925	000	109 c1		3045000	
5 Produccion	-25	Produce	ion 2975	000 IN	WINITY .		2975000	
6 Emsamblaje	-20	Produce	ion 2955	000 IN	WINITY .		INFINITY	
7 Embalaje	-100	Produce	ion 2875	000 IN	WEINITY .		INFINITY	

Tabla 4.

												Р		
												Н		
									Р	Ε		Α		
									r	m		S		
	_	_							0	s	Ε	Ε		
	0	R							d	а	m			
	В	Н	_ B	I					u	m	b	1		
	J	S	Α	N					С	b	а		С	
			S	V					С	1	1	0	0	
C	_ I	Ī	I	В					i	а	а	В	s	
b		D	C	_	р	р	С	С	0	i	i	J	t	
		5	Ü	— В	1	2	1	2		7	7	E		
S	· –	_	_	n	ı	2	ı	2	n	е	е		е	
1	coste	rhs	R_COSTS		0	0	7.00	0	25.00	0	0	0	0	
2			_ p1	30000	1	0	1.00	0	0.00	0	0	0	0	
3			c2	5000	- 0	-0	0.50	1	-2.50	0	0	0	0	
4			p2	10000	0	1	-0.50	0	2.50	0	0	0	0	ļ
			•			-		_		_				
5			Emsamblaje	1000	0	0	-0.05	0	-1.25	1	0	0	0	
6	coste	_rhs_	Embalaje	1000	0	0	-0.05	0	-0.25	0	1	0	0	
7	' coste		PHASE_1_0BJE	0	0	0	0.00	0	0.00	0	0	1	0	
8	coste		coste	2975000	- 0	-0	-7.00	0	-25.00	0	0	0	1	

- a. Interprete en términos económicos el modelo planteado al inicio del enunciado (función objetivo y restricciones y sus coeficientes). (0,5 puntos)
- b. Interprete en términos económicos la solución óptima (función objetivo, variables de decisión y restricciones). (0,25 puntos)
- c. ¿Qué ocurriría con la solución óptima (función objetivo y variables) si la empresa se viera obligada a comprar 1000 cortacéspedes eléctricos?. Justificad la respuesta. (0,5 puntos)
- d. ¿Hasta qué valor tendría que aumentar el coste de producción de los cortacéspedes eléctricos para que sea rentable su compra por parte de la empresa proveedora? Justifique la respuesta. (0,75 puntos)
- e. ¿Qué ocurriría con la solución óptima (función objetivo y variables) si el tiempo disponible para embalaje pasara a ser de 3.500 horas?. Justifique la respuesta. (1 punto)

NOTA: Si en alguno de los apartados la solución resultante no es factible, no hace falta que calcule la nueva solución, simplemente debe explicar con qué algoritmo la calcularía y cómo lo haría (variable saliente y variable entrante).

4. Una empresa manufactura tres tipos de *chips* para ordenadores, cada tipo de *chip* requiere diferente cantidad de tiempo en tres departamentos distintos que se resumen en la Tabla 5.

Tabla 5.							
	Chip A	Chip A Chip B Chip C					
				disponibles			
Dept. 1	3	2	4	80			
Dept. 2	2	4	3	90			
Dept. 3	3	4	2	90			

Siendo X_1 , X_2 y X_3 el número de unidades de *chips* A, B y C, respectivamente, el beneficio total asociado a cada tipo de *chip* es:

- ✓ para el *chip* A el beneficio es $-0.35X_1^2 + 8.3X_1 + 540$
- ✓ para el el *chip* B el beneficio es -0.60 X_2^2 +9,45 X_2 +1.108
- ✓ para el el *chip* C el beneficio es -0.47 X_3^2 +11,0 X_3 +850
- a. Plantead el modelo de programación a resolver si el objetivo es maximizar el beneficio sujeto a la disponibilidad de horas en cada departamento. ¿Se trata de un modelo lineal o no lineal?

 Justifique la respuesta. (0,5 puntos)
- b. En la Tabla 6 se muestra algunos resultados relacionados con la solución del modelo obtenida con Excel:
 - b.1. Interpretad la solución óptima (valores de las variables y las restricciones). (0,5 puntos)
 - b.2. Interpretad los valores de los multiplicadores de Lagrange. (1 punto)

Tabla 6.

NOM DELS PRODUCTES	A	В	С		
Número de unidades (producción)	9,517618151	6,965183911	9,379194431	Beneficio Total	
Efecto Lineal	8,3	9,45	11	146	
Efecto Cuadrático	-0,35	-0,6	-0,47		
Restricciones				Utilizado	Disponible
Dept. 1	3	2	4	80	80
Dept. 2	2	4	3	75,03355524	90
Dept. 3	3	4	2	75,17197896	90

Restricciones

		Final	Lagrange
Celda	Nombre	Valor	Multiplicador
\$E\$10	Dept. 1 Utilizado	80	0,545888066
\$E\$11	Dept. 2 Utilizado	75,03355524	0
\$E\$12	Dept. 3 Utilizado	75,17197896	0

c. Escribid el programa de SAS/OR con el que obtendría la solución del modelo de programación que ha planteado en el apartado a.. (0,75 puntos)