Inverse Reinforcement Learning to give desired behaviors to autonomous agents in MiniGrid

Human Computer Interaction
Federico Magnolfi & Francesca Del Lungo
Prof. Andrew D. Bagdanov

15 April 2020

Overview

Scenarios

Overview 0 • 00

Real world

Scenarios

Overview 0000

Real world

- ightarrow agent
- \rightarrow environment
- ightarrow goal

Scenarios

Real world

Computer games

- ightarrow agent
- \rightarrow environment
- ightarrow goal

Overview 0000

Considered environment: MiniGrid

Objectives

Overview 000

Objectives of this study:

- create agents that show desired behaviors...
- ...from user demonstrations
- create a graphical tool that can be used by non-experts

Objectives

Overview

0000

Objectives of this study:

- create agents that show desired behaviors...
- ...from user demonstrations
- create a graphical tool that can be used by non-experts

How

Using Inverse Reinforcement Learning, in particular the T-REX* approach

^{*:} Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations (Brown et al, 2019)

Reinforcement Learning & Inverse Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

RL difficulties:

- design a reward that induces desired behaviours
- even more difficult for non Machine Learning experts

Reinforcement Learning

RL difficulties:

- design a reward that induces desired behaviours
- even more difficult for non Machine Learning experts

Possible learning-related problems:

- many unsuccessful iterations
- user cannot change agent behavior
- long time to train

Inverse Reinforcement Learning

Inverse Reinforcement Learning

Definitions

- $s \in S$: state
- $\tau \in S^n$: demonstration
- \blacksquare R(s): reward given in the state s

We want to approximate the reward function R(s) with a neural network, using the T-REX loss.

Given a sequence of m demonstrations ranked from worst to best $\tau_1,...,\tau_m$. When j>i, we want:

$$\sum_{s \in \tau_j} R_{\theta}(s) > \sum_{s \in \tau_i} R_{\theta}(s)$$

Given a sequence of m demonstrations ranked from worst to best $\tau_1,...,\tau_m$. When j>i, we want:

$$R_{ heta}(au_j) = \sum_{s \in au_j} R_{ heta}(s) > \sum_{s \in au_i} R_{ heta}(s) = R_{ heta}(au_i)$$

Given a sequence of m demonstrations ranked from worst to best $\tau_1, ..., \tau_m$. When j > i, we want:

$$R_{ heta}(au_j) = \sum_{oldsymbol{s} \in au_j} R_{ heta}(oldsymbol{s}) > \sum_{oldsymbol{s} \in au_i} R_{ heta}(oldsymbol{s}) = R_{ heta}(au_i)$$

Probability of trajectory j being better than trajectory i:

$$p(\tau_j, \tau_i) = \frac{\exp R_{\theta}(\tau_j)}{\exp R_{\theta}(\tau_i) + \exp R_{\theta}(\tau_j)}$$

Given a sequence of m demonstrations ranked from worst to best $\tau_1,...,\tau_m$. When j>i, we want:

$$R_{ heta}(au_j) = \sum_{oldsymbol{s} \in au_i} R_{ heta}(oldsymbol{s}) > \sum_{oldsymbol{s} \in au_i} R_{ heta}(oldsymbol{s}) = R_{ heta}(au_i)$$

Probability of trajectory j being better than trajectory i:

$$p(\tau_j, \tau_i) = \frac{\exp R_{\theta}(\tau_j)}{\exp R_{\theta}(\tau_i) + \exp R_{\theta}(\tau_i)}$$

T-REX loss is a *cross-entropy* over pairs:

$$\mathcal{L}(heta) = -\sum_{j>i} \log p(au_j, au_i)$$

Putting all together

 $\{\mathsf{demonstrations}\} {\rightarrow} \; \mathsf{Reward} \; R_{\theta}(s)$

Putting all together

 $\{\mathsf{demonstrations}\} o \mathsf{Reward} \ R_{\theta}(s) o \mathsf{Discounted} \ \mathsf{Reward} \ D_{R}(s)$

Discounted Reward $D_R(s)$

$$D_R(s_t) = \sum_{k < t} R_{\theta}(s_k) * \gamma^{t-k}$$

Putting all together

 $\{\mathsf{demonstrations}\} o \mathsf{Reward} \ \mathcal{R}_{ heta}(s) o \mathsf{Discounted} \ \mathsf{Reward} \ \mathcal{D}_{R}(s) o \mathsf{Policy} \ \pi(s)$

Discounted Reward $D_R(s)$

$$D_R(s_t) = \sum_{k < t} R_{\theta}(s_k) * \gamma^{t-k}$$

Policy $\pi(s)$

- $\blacksquare \pi(s)$: distribution over actions, determined by state s
- loss: $-log(p_a) * D_R(s)$

Graphical Application

Initial window

- choose one environment
- 20 different environments available

Agents management

- one tab for each environment
- list of existing agents of the selected environment
- button for new agent creation
- agent training in progress

New agent

- All games list: games played so far
- Ranked games list: selected games to train the agent
- Arrows to move games between the lists and within the ranking list

Agent details

- **■** Training status
- Play-pause training: on pause visualize previous behaviours
- Agent playing
- Used demonstrations

Experiments

MiniGrid environment

Agent state

3x7x7 integer tensor

- objects
- colors
- objects states

Environment

Empty 16x16

Desired trajectory

Objective

Force a sub-optimal trajectory

Trajectories

- 11, human created
- ranked from best to worst

Networks

reward net

input state encoded state convlx1+ReLU

fc1+ReLU

Networks

reward net

input state

encoded state

convlx1+ReLU

fc1+ReLU

policy net

Experiments

Evaluation criteria

- ordering_quality: % of correctly ranked pairs of trajectories*
- heatmap: shows the rewards obtained in each cell of the grid
- policy's behaviour after training

*: a pair (τ_i, τ_i) with j > i is correctly ranked iff:

$$R_{\theta}(\tau_i) > R_{\theta}(\tau_i)$$

Results

Directions with highest reward

For the cells in the desired path: highest reward for desired direction

1	←	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	-	-	-	-	-	-	-	-	-	1	1
1	1	-	-	-	-	←	-	-	←	-	1	1	1
1	1	1	→	→	→	→	→	1	1	1	Ť	Ť	1
1	1	1	→	→	→	→	→	1	1	1	1	1	1
1	1	1	→	→	→	→	→	1	1	1	Ť	Ť	1
1	1	1	→	→	→	→	→	1	1	1	1	1	1
1	1	1	→	→	→	→	→	1	1	1	Ť	Ť	Ť
1	1	1	→	→	→	→	→	←	←	←	1	1	1
1	1	1	→	→	→	→	→	←	←	-	Ť	Ť	Ť
4	4	1	→	→	→	→	←	←	←	←	1	1	1
1	1	1	→	Ť	1								
1	1	→	1										
→	1												

Policy trained with learned reward

Histogram of lengths

- 1000 sampled trajectories
- desired trajectory: 67.8%
- desired trajectory + spin: 18.9%
- sometimes more "laps"

Trainings details

reward net ordering quality \rightarrow 94%

Trainings details

reward net ordering quality \rightarrow 94%

policy net trajectory length $\rightarrow \sim 30$

policy net trajectory return $\rightarrow > 0$

Conclusions

Conclusions

Graphical tool

- allows to create agents from demonstrations
- no Machine Learning knowledge required

Experimental results

- learning the reward for simple trajectories is a feasible task
- learned rewards are consistent and dense

Future works

Graphical tool

- make the graphical tool more generic and customizable by the user
- visualize the same agent on different environments

Learning

- adjust the policy
- neural network architecture with **memory**

The end

Thanks for the attention