Devoir à la maison n° 7

À rendre le 28 novembre

On se propose ici de démontrer le théorème de Cantor-Bernstein, qui s'énonce comme suit.

Soit E et F deux ensembles. S'il existe une injection de f de E dans F et une injection g de F dans E, alors il existe nécessairement une bijection de E sur F.

Partie A

On se place d'abord dans le cas particulier où F est un sous-ensemble de E. Dans cette partie, on notera \overline{A} le complémentaire dans E de toute partie A de E.

- 1) Dans ce cas, il existe évidemment une injection de F dans E, laquelle?
- 2) On suppose alors qu'il existe une injection f de E dans F et on construit par récurrence des parties de E, H_0 , H_1 , ..., H_n ,... définies par :

$$H_0 = E \setminus F$$

$$\forall n \in \mathbb{N} \quad H_{n+1} = f(H_n)$$

Et on pose $H = \bigcup_{n \in \mathbb{N}} H_n$.

- a) Montrer que $\overline{H} \subset F$ et en déduire que $\overline{H} = \overline{H} \cap F$.
- **b)** Montrer que $f(H) = H \setminus H_0$ et en déduire que $f(H) = H \cap F$.
- 3) On note alors φ l'application de E dans E qui à tout élément x de E associe f(x) si $x \in H$ et x sinon. Montrer que φ est injective.
- 4) Que vaut Im φ ? En déduire le résultat attendu dans le cas où $F \subset E$.

Partie B

On se place maintenant dans le cas général. On se donne donc deux ensembles E et F, une injection f de E dans F et une injection g de F dans E.

- 1) Montrer qu'il existe une injection de E dans Im g. En déduire qu'il existe une bijection de E sur Im g.
- 2) Remarquer qu'il existe une bijection de F sur Im g et en déduire le résultat.

— FIN —