

Rodzaj dokumentu:	Zasady oceniania rozwiązań	
койгај иокиттетки.	zadań	
Egzamin maturalny		
_g_a	Test diagnostyczny	
Przedmiot:	Matematyka	
Poziom:	Poziom rozszerzony	
	MMAP-R0-100-2212, MMAP-R0-200-2212,	
Formy arkusza:	MMAP-R0-300-2212, MMAP-R0-400-2212,	
FOITIY AIKUSZA.	MMAP-R0-700-2212, MMAP-R0-Q00-2212,	
	MMAP-R0-Z00-2212	
Data publikacji dokumentu:	20 grudnia 2022 r.	

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 1. (0-2)

Wymagania egzaminacyjne 2023 i 2024 ¹		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	Zdający:	
reprezentacji.	I.9) stosuje związek logarytmowania	
1. Stosowanie obiektów matematycznych	z potęgowaniem, posługuje się wzorami na	
i operowanie nimi, interpretowanie pojęć	logarytm iloczynu, logarytm ilorazu	
matematycznych.	i logarytm potęgi.	
	I.R1) stosuje wzór na zamianę podstawy	
	logarytmu.	

Zasady oceniania

2 pkt – poprawne zastosowanie wzorów na logarytm potęgi oraz na zamianę podstawy logarytmu i poprawny wynik: $\frac{9}{2}$.

1 pkt – zastosowanie wzoru na zamianę podstawy logarytmu i zapisanie wyrażenia

$$\frac{\log_3 5 \cdot \log_{25} 27}{\log_7 \sqrt[6]{49}} \text{ w postaci np.: } \frac{\log_3 5 \cdot \frac{\log_3 27}{\log_3 25}}{\log_7 \sqrt[6]{49}}, \frac{\frac{\log_{10} 5}{\log_{10} 3} \cdot \frac{\log_{10} 27}{\log_{10} 25}}{\frac{\log_{10} 6\sqrt{49}}{\log_{10} 7}}.$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Stosujemy wzór na zamianę podstawy logarytmu i otrzymujemy

$$\frac{\log_3 5 \cdot \log_{25} 27}{\log_7 \sqrt[6]{49}} = \frac{\log_3 5 \cdot \frac{\log_3 27}{\log_3 25}}{\log_7 \sqrt[6]{49}} = \frac{\log_3 5 \cdot \frac{\log_3 27}{\log_3 5^2}}{\log_7 (7^2)^{\frac{1}{6}}}$$

Stosujemy wzór na logarytm potęgi i korzystamy z definicji logarytmu, otrzymując

$$\frac{\log_3 5 \cdot \frac{\log_3 27}{\log_3 5^2}}{\log_7 (7^2)^{\frac{1}{6}}} = \frac{\log_3 5 \cdot \frac{3}{2 \log_3 5}}{\frac{1}{3} \log_7 7} = \frac{\frac{3}{2}}{\frac{1}{3}} = \frac{9}{2}$$

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 10 czerwca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu maturalnego przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (<u>Dz.U. poz. 1246</u>).

Zadanie 2.1. (0-2)

Wymaganie ogólne	Wymaganie szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	V.R1) na podstawie wykresu funkcji
informacjami przedstawionymi w tekście, zarówno matematycznym, jak	y = f(x) rysuje wykres funkcji $y = f(x) $.
i popularnonaukowym, a także w formie	J 10 (47)
wykresów, diagramów, tabel.	

Zasady oceniania

- 2 pkt obliczenie wartości funkcji g(11) oraz zapisanie zbioru wszystkich wartości, jakie funkcja g przyjmuje w przedziale [9,11]: $g(11)=\frac{9}{4}$ oraz $\left[0,\frac{9}{4}\right]$.
- 1 pkt obliczenie miejsc zerowych funkcji g i obliczenie pierwszej współrzędnej p punktu, w którym funkcja ma maksimum lokalne (lub zapisanie, że $p \notin [9,11]$): 2 i 10 oraz p=6.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Obliczamy miejsca zerowe funkcji g:

$$\left| -\frac{1}{4}x^2 + 3x - 5 \right| = 0$$
$$-\frac{1}{4}x^2 + 3x - 5 = 0$$
$$x = 2 \quad \text{lub} \quad x = 10$$

Niech f będzie funkcją kwadratową określoną wzorem $f(x) = -\frac{1}{4}x^2 + 3x - 5$.

W przedziale [2,10] funkcja f przyjmuje wartości nieujemne, więc w tym przedziale wykres funkcji g pokrywa się z wykresem funkcji f. W przedziałach $(-\infty,2)$ oraz $(10,+\infty)$ funkcja f przyjmuje wartości ujemne, więc w tych przedziałach wykres funkcji g jest obrazem wykresu funkcji f w symetrii względem osi Ox układu współrzędnych. Obliczamy pierwszą współrzędną p wierzchołka paraboli będącej wykresem funkcji f:

$$p = -\frac{3}{2 \cdot \left(-\frac{1}{4}\right)} = 6.$$

Ponieważ p < 9, więc funkcja g w przedziale [9,10] jest malejąca, a w przedziale [10,11] jest rosnąca. Obliczamy g(9) i g(11):

$$g(9) = \left| -\frac{1}{4} \cdot 9^2 + 3 \cdot 9 - 5 \right| = \left| -\frac{1}{4} \cdot 81 + 27 - 5 \right| = \left| -20\frac{1}{4} + 22 \right| = \frac{7}{4}$$

$$g(11) = \left| -\frac{1}{4} \cdot 11^2 + 3 \cdot 11 - 5 \right| = \left| -\frac{1}{4} \cdot 121 + 33 - 5 \right| = \left| -30\frac{1}{4} + 28 \right| = \frac{9}{4}$$

Zbiorem wszystkich wartości, jakie funkcja g przyjmuje w zbiorze $\left[9,11\right]$, jest $\left[0,\frac{9}{4}\right]$.

Zadanie 2.2. (0-2)

Wymaganie ogólne	Wymagania szczegółowe
II. Wykorzystanie i tworzenie informacji.	Zdający:
1. Interpretowanie i operowanie	III.R4) rozwiązuje równania i nierówności
informacjami przedstawionymi w tekście,	z wartością bezwzględną [];
zarówno matematycznym, jak	III.R5) analizuje […] równania i nierówności
i popularnonaukowym, a także w formie	kwadratowe z parametrami,
wykresów, diagramów, tabel.	w szczególności wyznacza liczbę rozwiązań
	w zależności od parametrów, podaje
	warunki, przy których rozwiązania mają
	żądaną własność, i wyznacza rozwiązania
	w zależności od parametrów.

Zasady oceniania

- 2 pkt obliczenie wartości m dla których równanie g(x) = |m| posiada dwa rozwiązania tego samego znaku: $m \in (-5, -4) \cup \{0\} \cup (4, 5)$.
- 1 pkt obliczenie/zapisanie drugiej współrzędnej punktu przecięcia wykresu funkcji $\,g\,$ z osią $\,0y\,$ oraz obliczenie wartości $\,q\,$ lokalnego maksimum funkcji $\,g\colon$ 5 oraz $\,q=4.$
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Obliczamy drugą współrzędną punktu przecięcia wykresu funkcji g z osią Oy:

$$g(0) = |-5| = 5$$

Niech f będzie funkcją kwadratową określoną wzorem $f(x) = -\frac{1}{4}x^2 + 3x - 5$. Obliczamy drugą współrzędną q wierzchołka paraboli będącej wykresem funkcji f:

$$q = -\frac{3^2 - 4 \cdot \left(-\frac{1}{4}\right) \cdot (-5)}{4 \cdot \left(-\frac{1}{4}\right)} = 4$$

Wykres funkcji g jest wykresem funkcji y = |f(x)|, więc funkcja g ma lokalne maksimum równe 4.

Przyjmijmy k=|m|. Na podstawie analizy własności funkcji g wyznaczamy wartości k dla których równanie g(x)=k posiada dwa rozwiązania dodatnie: $k\in (4,5)\cup\{0\}$. Obliczamy wartości parametru m:

$$|m| = 0$$
 lub $4 < |m| < 5$

Stąd m = 0 lub $m \in (-5, -4) \cup (4, 5)$. Zatem $m \in (-5, -4) \cup \{0\} \cup (4, 5)$.

Zadanie 3. (0-3)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	II.R3) korzysta ze wzorów na: $(a + b)^3$,
kilkuetapowych, podawanie argumentów	$(a-b)^3$, a^3+b^3 i a^3-b^3 .
uzasadniających poprawność rozumowania,	
odróżnianie dowodu od przykładu.	

Zasady oceniania

- 3 pkt przeprowadzenie pełnego dowodu, tj. przekształcenie nierówności do postaci $(x+y-1)(x-y)^2 \ge 0$ oraz uzasadnienie jej prawdziwości dla wszystkich liczb rzeczywistych x oraz y spełniających warunek $x+y \ge 1$.
- 2 pkt przekształcenie nierówności do postaci $(x + y 1)(x y)^2 \ge 0$.
- 1 pkt przekształcenie nierówności do postaci, w której wyrażenie (x + y) występuje jako wspólny czynnik w co najmniej dwóch iloczynach, np.

$$(x+y)(x^2 - xy + y^2) - xy(x+y) - x^2 + 2xy - y^2 \ge 0$$

ALBO

przekształcenie nierówności do postaci, w której wyrażenie (x-y) występuje jako wspólny czynnik w co najmniej dwóch iloczynach, np.

$$x^{2}(x-y) - y^{2}(x-y) - (x-y)^{2} \ge 0.$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązania

Sposób I

Przekształcamy nierówność $x^3 + 2xy + y^3 \ge x^2 + xy(x+y) + y^2$ w sposób równoważny

$$x^{3} + y^{3} - xy(x + y) - x^{2} + 2xy - y^{2} \ge 0$$

$$(x + y)(x^{2} - xy + y^{2}) - xy(x + y) - (x^{2} - 2xy + y^{2}) \ge 0$$

$$(x + y)[(x^{2} - xy + y^{2}) - xy] - (x - y)^{2} \ge 0$$

$$(x + y)(x^{2} - 2xy + y^{2}) - (x - y)^{2} \ge 0$$

$$(x + y)(x - y)^{2} - (x - y)^{2} \ge 0$$

$$(x - y)^{2}(x + y - 1) \ge 0$$

Ponieważ:

- z założenia $x + y \ge 1$ wynika, że $x + y 1 \ge 0$
- kwadrat każdej liczby rzeczywistej jest liczbą nieujemną,

więc iloczyn $(x-y)^2(x+y-1)$ jest liczbą nieujemną jako iloczyn liczb nieujemnych x+y-1 oraz $(x-y)^2$.

To oznacza, że nierówność $x^3+2xy+y^3\geq x^2+xy(x+y)+y^2$ jest prawdziwa dla wszystkich liczb rzeczywistych x oraz y spełniających warunek $x+y\geq 1$. To należało wykazać.

Egzamin maturalny z matematyki (poziom rozszerzony). Test diagnostyczny – grudzień 2022 r.

Sposób II

Przekształcamy nierówność $x^3+2xy+y^3 \ge x^2+xy(x+y)+y^2$ w sposób równoważny $x^3+y^3-xy(x+y)-x^2+2xy-y^2 \ge 0$ $x^3-x^2y+y^3-xy^2-(x^2-2xy+y^2) \ge 0$ $x^2(x-y)-y^2(x-y)-(x-y)^2 \ge 0$ $(x^2-y^2)(x-y)-(x-y)^2 \ge 0$

$$(x+y)(x-y)^2 - (x-y)^2 \ge 0$$

$$(x-y)^2(x+y-1) \ge 0$$

Ponieważ:

- z założenia $x + y \ge 1$ wynika, że $x + y 1 \ge 0$
- kwadrat każdej liczby rzeczywistej jest liczbą nieujemną,

więc iloczyn $(x-y)^2(x+y-1)$ jest liczbą nieujemną jako iloczyn liczb nieujemnych x+y-1 oraz $(x-y)^2$.

To oznacza, że nierówność $x^3+2xy+y^3\geq x^2+xy(x+y)+y^2$ jest prawdziwa dla wszystkich liczb rzeczywistych x oraz y spełniających warunek $x+y\geq 1$. To należało wykazać.

Zadanie 4. (0-3)

Wymagania ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	XII.R2) stosuje schemat Bernoullego.
2. Dobieranie i tworzenie modeli	
matematycznych przy rozwiązywaniu	
problemów praktycznych i teoretycznych.	
I. Sprawność rachunkowa.	
Wykonywanie obliczeń na liczbach	
rzeczywistych, także przy użyciu	
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

- 3 pkt poprawna metoda obliczenia prawdopodobieństwa i poprawny wynik: $P(A) \approx 0.68$.
- 2 pkt poprawne zastosowanie wzoru na prawdopodobieństwo uzyskania k sukcesów w n próbach Bernoullego i zapisanie prawdopodobieństwa zdarzenia A w postaci $P(A) = \binom{20}{0} \cdot (0,1)^0 \cdot (0,9)^{20} + \binom{20}{1} \cdot (0,1)^1 \cdot (0,9)^{19} + \binom{20}{2} \cdot (0,1)^2 \cdot (0,9)^{18}.$
- 1 pkt określenie sukcesu i porażki w pojedynczej próbie Bernoullego oraz podanie ich prawdopodobieństw: p = 0.1 oraz q = 0.9.
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Próbą Bernoullego jest kontrola masy herbaty nasypanej przez maszynę do torebki. Sukcesem w tej próbie jest uzyskanie torebki herbaty z niedowagą. Prawdopodobieństwo p sukcesu jest równe 0,1, natomiast prawdopodobieństwo q porażki jest równe 0,9. Niech A oznacza zdarzenie polegające na tym, że wśród wylosowanych do kontroli 20 torebek znajdą się co najwyżej dwie torebki z niedowagą. Przez $P_{20}(k)$ oznaczmy prawdopodobieństwo zdarzenia polegającego na tym, że wśród skontrolowanych 20 torebek znajdzie się dokładnie k torebek z niedowagą.

Wtedy
$$P(A) = P_{20}(0) + P_{20}(1) + P_{20}(2)$$
. Zatem

$$P(A) = {20 \choose 0} \cdot (0,1)^0 \cdot (0,9)^{20} + {20 \choose 1} \cdot (0,1)^1 \cdot (0,9)^{19} + {20 \choose 2} \cdot (0,1)^2 \cdot (0,9)^{18}$$
$$P(A) = (0,9)^{18} \cdot 4,51 \approx 0,68$$

Zadanie 5. (0-4)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VII.R6) rozwiązuje równania
rozwiązywaniu zadań, również w sytuacjach	trygonometryczne o stopniu trudności nie
nietypowych.	większym niż w przykładzie
	$4\cos 2x\cos 5x = 2\cos 7x + 1.$

Zasady oceniania

- 4 pkt poprawna metoda rozwiązania równania i poprawny wynik: $x=-\frac{\pi}{6}+k\pi$ lub $x=\frac{2\pi}{3}+2k\pi$ lub $x=-\frac{2\pi}{3}+2k\pi$, gdzie $k\in\mathbb{Z}$.
- 3 pkt rozwiązanie równania elementarnego $\mbox{tg}\,x=-\frac{\sqrt{3}}{3}$ (lub $\cos x=-\frac{1}{2}$): $x=-\frac{\pi}{6}+k\pi,\,k\in Z$ (lub: $x=\frac{2\pi}{3}+2k\pi$ oraz $x=-\frac{2\pi}{3}+2k\pi,\,\mbox{gdzie}\,\,k\in\mathbb{Z}$).
- 2 pkt przekształcenie równania $6\sin x + 2\sqrt{3}\cos x + 3\tan x + \sqrt{3} = 0$ do postaci alternatywy równań trygonometrycznych, np. $3\tan x + \sqrt{3} = 0$ lub $2\cos x + 1 = 0$, dla $x \neq \frac{\pi}{2} + k\pi$.
- 1 pkt zapisanie, że lewa strona równania ma sens liczbowy dla $x \neq \frac{\pi}{2} + k\pi$ oraz przekształcenie lewej strony równania do postaci iloczynu, np. $(3 \operatorname{tg} x + \sqrt{3})(2 \cos x + 1) = 0.$
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Rozwiązań równania szukamy wśród liczb $x \neq \frac{\pi}{2} + k\pi$, gdzie $k \in \mathbb{Z}$, gdyż tangens nie jest określony dla liczb postaci $\frac{\pi}{2} + k\pi$ (gdzie $k \in \mathbb{Z}$).

Przekształcamy lewą stronę równania do postaci iloczynu:

$$6 \cdot \frac{\sin x}{\cos x} \cdot \cos x + 2\sqrt{3}\cos x + 3 \operatorname{tg} x + \sqrt{3} = 0$$

$$6 \operatorname{tg} x \cdot \cos x + 2\sqrt{3}\cos x + 3 \operatorname{tg} x + \sqrt{3} = 0$$

$$2 \cos x \left(3 \operatorname{tg} x + \sqrt{3}\right) + \left(3 \operatorname{tg} x + \sqrt{3}\right) = 0$$

$$\left(3 \operatorname{tg} x + \sqrt{3}\right) (2 \cos x + 1) = 0$$

Otrzymane równanie jest równoważne alternatywie równań:

$$3 \operatorname{tg} x + \sqrt{3} = 0$$
 lub $2 \cos x + 1 = 0$

Stad

$$tg x = -\frac{\sqrt{3}}{3} \quad lub \quad \cos x = -\frac{1}{2}$$

$$x = -\frac{\pi}{6} + k\pi$$
 lub $x = \frac{2\pi}{3} + 2k\pi$ lub $x = -\frac{2\pi}{3} + 2k\pi$

gdzie $k \in \mathbb{Z}$. Żadna z otrzymanych liczb nie jest postaci $\frac{\pi}{2} + k\pi$.

Rozwiązaniami równania są liczby postaci: $-\frac{\pi}{6}+k\pi$ oraz $\frac{2\pi}{3}+2k\pi$, oraz $-\frac{2\pi}{3}+2k\pi$, gdzie $k\in\mathbb{Z}$.

Zadanie 6. (0-4)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także	VIII.R1) stosuje własności czworokątów
kilkuetapowych, podawanie argumentów	wpisanych w okrąg i opisanych na okręgu.
uzasadniających poprawność rozumowania,	
odróżnianie dowodu od przykładu.	

Zasady oceniania

- 4 pkt wyznaczenie miar pozostałych kątów trójkąta ABC.
- 3 pkt obliczenie miary kąta γ : $\gamma = 60^{\circ}$.
- 2 pkt zastosowanie twierdzenia o kątach wierzchołkowych i zapisanie zależności $\gamma=\alpha+\beta$.
- 1 pkt zastosowanie twierdzenia o okręgu opisanym na czworokącie i zapisanie zależności $| \not \perp LPK | = 180^\circ \gamma$ ALBO

zastosowanie twierdzenia o sumie miar kątów wewnętrznych trójkąta i zapisanie zależności $|4APB|=180^{\circ}-\alpha-\beta$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Przyjmijmy oznaczenia jak na rysunku.

Ponieważ na czworokącie $\it CLPK$ można opisać okrąg, więc $| \not \perp LPK | = 180^\circ - \gamma$. Z własności kątów wierzchołkowych

$$| \angle LPK | = | \angle APB | = 180^{\circ} - \alpha - \beta$$

Zatem

$$180^{\circ} - \gamma = 180^{\circ} - \alpha - \beta$$

Stad

$$\gamma = \alpha + \beta$$

Korzystamy z twierdzenia o sumie miar kątów wewnętrznych trójkąta i otrzymujemy:

$$\gamma + 2\alpha + 2\beta = 180^{\circ}$$

$$\gamma + 2(\alpha + \beta) = 180^{\circ}$$
$$3\gamma = 180^{\circ}$$
$$\gamma = 60^{\circ}$$

Analogicznie, ponieważ na czworokącie BKPM można opisać okrąg, więc $| \not \triangle ABC | = 60^{\circ}$. Stąd

$$| \angle CAB | = 180^{\circ} - | \angle ABC | - | \angle BCA | = 60^{\circ}$$

Zatem trójkąt *ABC* jest równoboczny. To należało wykazać.

Zadanie 7. (0-4)

Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
3. Dobieranie argumentów do uzasadnienia	XIII.R3) oblicza pochodną funkcji potęgowej
poprawności rozwiązywania problemów,	o wykładniku rzeczywistym oraz oblicza
tworzenie ciągu argumentów,	pochodną, korzystając z twierdzeń
gwarantujących poprawność rozwiązania	o pochodnej sumy, różnicy, iloczynu
i skuteczność w poszukiwaniu rozwiązań	i ilorazu;
zagadnienia.	XIII.R5) rozwiązuje zadania optymalizacyjne
I. Sprawność rachunkowa.	z zastosowaniem pochodnej.
Wykonywanie obliczeń na liczbach	
rzeczywistych, także przy użyciu	
kalkulatora, stosowanie praw działań	
matematycznych przy przekształcaniu	
wyrażeń algebraicznych oraz	
wykorzystywanie tych umiejętności przy	
rozwiązywaniu problemów w kontekstach	
rzeczywistych i teoretycznych.	

Zasady oceniania

- 4 pkt wyznaczenie poziomu produkcji, przy którym przeciętny koszt produkcji jednego litra oleju jest najmniejszy oraz obliczenie najmniejszego przeciętnego kosztu produkcji: x = 15 oraz K(15) = 38,50 zł.
- 3 pkt zbadanie znaku pochodnej funkcji K: K'(x) < 0 dla $x \in [0,15)$ oraz K'(x) > 0 dla $x \in (15,50]$, oraz wyznaczenie (z uzasadnieniem) wartości zmiennej x, dla której funkcja K osiąga wartość najmniejszą, np.: funkcja K (określona na przedziale [0,50]) jest malejąca w przedziale [0,15] oraz rosnąca w przedziale [15,50], więc w punkcie x=15 osiąga najmniejszą wartość.
- 2 pkt obliczenie miejsca zerowego pochodnej funkcji K: x = 15.
- 1 pkt wyznaczenie pochodnej funkcji *K*:

$$K'(x) = \frac{(44x - 621,5)(480 + x) - 1 \cdot (22x^2 - 621,5x + 23430)}{(480 + x)^2}$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaqi:

- 1. Badanie znaku pochodnej zdający może opisać w inny sposób, np. szkicując wykres funkcji, która w ten sam sposób jak pochodna zmienia znak, i zaznaczając na rysunku, np. znakami "+" i "-", znak pochodnej.
- 2. Za poprawne uzasadnienie, że rozważana funkcja K posiada wartość najmniejszą dla wyznaczonej wartości x, przy której pochodna się zeruje, można uznać sytuację, gdy zdający:
 - -opisuje (słownie lub graficznie, np. przy użyciu strzałek) monotoniczność funkcji $\,K\,$ lub
 - zapisuje, że dla wyznaczonej wartości x funkcja K ma minimum lokalne i jest to jednocześnie jej najmniejsza wartość w przyjętej dziedzinie.

- Jeśli zdający nie przedstawi takiego uzasadnienia, to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie.
- 3. Jeśli zdający uzasadnia istnienie najmniejszej wartości funkcji K w zbiorze \mathbb{R} , to może otrzymać co najwyżej **3 punkty** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Wyznaczamy pochodną funkcji $K(x) = \frac{22x^2 - 621,5x + 23430}{480 + x}$:

$$K'(x) = \frac{(44x - 621,5)(480 + x) - 1 \cdot (22x^2 - 621,5x + 23430)}{(480 + x)^2}$$

Obliczamy miejsca zerowe pochodnej:

$$K'(x) = 0$$

$$\frac{22x^2 + 44 \cdot 480x - 321750}{(480 + x)^2} = 0$$

$$22x^2 + 44 \cdot 480x - 321750 = 0$$

$$x^2 + 960x - 14625 = 0$$

$$x = -975 \notin [0, 50] \text{ lub } x = 15 \in [0, 50]$$

Ponieważ K'(x) < 0 dla $x \in [0,15)$ oraz K'(x) > 0 dla $x \in (15,50]$, więc funkcja K (określona na przedziale [0,50]) jest malejąca w przedziale [0,15] oraz rosnąca w przedziale [15,50]. Stąd funkcja K osiąga wartość najmniejszą dla argumentu x=15.

Przeciętny koszt wytworzenia jednego litra oleju jest najmniejszy przy poziomie produkcji 495 litrów dziennie.

Obliczamy najmniejszy przeciętny koszt wytworzenia jednego litra oleju:

$$K(15) = \frac{22 \cdot 15^2 - 621.5 \cdot 15 + 23430}{480 + 15} = 38,50 \text{ z}$$

Zadanie 8. (0-5)

Wymaganie ogólne	Wymaganie szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.R2) rozwiązuje równania i nierówności
1. Stosowanie obiektów matematycznych	wymierne nie trudniejsze niż
i operowanie nimi, interpretowanie pojęć	$(x+1)$ $+$ $\frac{1}{x} > \frac{2x}{x}$
matematycznych.	$\frac{(x+1)}{x(x-1)} + \frac{1}{x+1} \ge \frac{2x}{(x-1)(x+1)}.$

Zasady oceniania

- 5 pkt zastosowanie poprawnej metody rozwiązania nierówności wymiernej oraz poprawny wynik: $[-3,-2) \cup \left(2,\frac{5}{2}\right]$.
- 4 pkt wyznaczenie dziedziny nierówności: $R\setminus\{-2,2\}$ oraz zapisanie nierówności w postaci $\frac{-2(x-\frac{5}{2})(x+3)}{(x-2)(x+2)}\geq 0$

ALBO

rozwiązanie nierówności wielomianowej $-2\left(x-\frac{5}{2}\right)(x+3)(x-2)(x+2) \ge 0$: $[-3,-2] \cup \left[2,\frac{5}{2}\right]$.

3 pkt – wyznaczenie dziedziny nierówności: $R\setminus\{-2,2\}$ oraz zapisanie nierówności w postaci $\frac{-2x^2-x+15}{(x-2)(x+2)}\geq 0$

ALBO

zapisanie nierówności w postaci $\frac{-2(x-\frac{5}{2})(x+3)}{(x-2)(x+2)} \ge 0.$

2 pkt – wyznaczenie dziedziny nierówności: $R \setminus \{-2, 2\}$ oraz zapisanie nierówności w postaci $\frac{x-1+x+2}{(x-2)(x+2)} \ge \frac{2x+7}{2+x}$

ALBO

zapisanie nierówności w postaci $\frac{-2x^2-x+15}{(x-2)(x+2)} \ge 0$.

1 pkt – wyznaczenie dziedziny nierówności: $R \setminus \{-2, 2\}$

ALBO

zapisanie nierówności w postaci $\frac{x-1+x+2}{(x-2)(x+2)} \ge \frac{2x+7}{2+x}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Wyznaczamy dziedzinę nierówności $\frac{x-1}{x^2-4} - \frac{1}{2-x} \ge \frac{3}{2+x} + 2$:

$$x^2 - 4 \neq 0$$
 i $2 - x \neq 0$ i $2 + x \neq 0$

Zatem nierówność ma sens liczbowy dla $x \in R \setminus \{-2, 2\}$.

Przekształcamy kolejno nierówność, otrzymując:

$$\frac{x-1+x+2}{(x-2)(x+2)} \ge \frac{2x+7}{2+x}$$

$$\frac{2x+1}{(x-2)(x+2)} \ge \frac{(2x+7)(x-2)}{(x-2)(x+2)}$$

$$\frac{2x+1}{(x-2)(x+2)} - \frac{(2x+7)(x-2)}{(x-2)(x+2)} \ge 0$$

$$\frac{2x+1}{(x-2)(x+2)} - \frac{2x^2+3x-14}{(x-2)(x+2)} \ge 0$$

$$\frac{-2x^2-x+15}{(x-2)(x+2)} \ge 0$$

$$\frac{-2\left(x-\frac{5}{2}\right)(x+3)}{(x-2)(x+2)} \ge 0$$

Ponieważ znak wyrażenia wymiernego $\frac{-2(x-\frac{5}{2})(x+3)}{(x-2)(x+2)}$ jest taki sam, jak wyrażenia będącego iloczynem licznika i mianownika tego ułamka algebraicznego, więc

$$-2\left(x - \frac{5}{2}\right)(x+3)(x-2)(x+2) \ge 0$$

Zbiorem wszystkich rozwiązań nierówności wielomianowej

$$-2\left(x - \frac{5}{2}\right)(x+3)(x-2)(x+2) \ge 0 \text{ jest zbiór } [-3, -2] \cup \left[2, \frac{5}{2}\right].$$

Uwzględniamy dziedzinę nierówności wymiernej i otrzymujemy zbiór wszystkich rozwiązań nierówności wymiernej: $[-3,-2) \cup \left(2,\frac{5}{2}\right]$.

Zadanie 9. (0-5)

Wymaganie ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie	Zdający:
reprezentacji.	III.R3) stosuje wzory Viète'a dla równań
2. Dobieranie i tworzenie modeli	kwadratowych;
matematycznych przy rozwiązywaniu	III.R5) analizuje równania i nierówności []
problemów praktycznych i teoretycznych.	kwadratowe z parametrami,
	w szczególności wyznacza liczbę rozwiązań
	w zależności od parametrów, podaje
	warunki, przy których rozwiązania mają
	żądaną własność, i wyznacza rozwiązania
	w zależności od parametrów.

Zasady oceniania

5 pkt – zastosowanie poprawnej metody oraz poprawny wynik: $m \in \left(\frac{20}{7}, 4\right)$.

4 pkt – poprawne rozwiązanie nierówności $\Delta>0$: $m\in\left(\frac{8}{3},4\right)$ oraz zapisanie nierówności z jedną niewiadomą m (wynikającej z warunku $x_1^3+x_2^3<5x_1^2x_2+5x_1x_2^2$) w postaci $-7m^3+76m^2-272m+320<0$ lub

$$(m-4)(-7m^2+48m-80) < 0$$
, lub $-7(m-4)^2(m-\frac{20}{7}) < 0$
ALBO

poprawne rozwiązanie nierówności z jedną niewiadomą m (wynikającej z warunku $x_1^3+x_2^3<5x_1^2x_2+5x_1x_2^2$): $m\in\left(\frac{20}{7},4\right)\cup(4,+\infty)$.

3 pkt – poprawne rozwiązanie nierówności $\Delta>0$: $m\in\left(\frac{8}{3},4\right)$ oraz zapisanie nierówności z jedną niewiadomą m, która wynika z warunku $x_1^3+x_2^3<5x_1^2x_2+5x_1x_2^2$, np.

$$(m-4)[(m-4)^2 - 3(m^2 - 7m + 12)] < 5(m^2 - 7m + 12)(m-4)$$

ALBO

zapisanie nierówności z jedną niewiadomą m (wynikającej z warunku $x_1^3+x_2^3<5x_1^2x_2+5x_1x_2^2$) w postaci $-7m^3+76m^2-272m+320<0$ lub $(m-4)(-7m^2+48m-80)<0$, lub $-7(m-4)^2(m-\frac{20}{7})<0$.

2 pkt – poprawne rozwiązanie nierówności $\Delta > 0$: $m \in \left(\frac{8}{3}, 4\right)$ oraz przekształcenie warunku $x_1^3 + x_2^3 < 5x_1^2x_2 + 5x_1x_2^2$ do postaci pozwalającej na bezpośrednie zastosowanie wzorów Viète'a. np.

$$(x_1 + x_2)[(x_1 + x_2)^2 - 3x_1x_2] < 5x_1x_2(x_1 + x_2)$$

ALBO

zastosowanie wzorów Viète'a i zapisanie nierówności z jedną niewiadomą m, która wynika z warunku $x_1^3 + x_2^3 < 5x_1^2x_2 + 5x_1x_2^2$, np.

$$(m-4)[(m-4)^2 - 3(m^2 - 7m + 12)] < 5(m^2 - 7m + 12)(m-4).$$

1 pkt – poprawne rozwiązanie nierówności $\Delta > 0$: $m \in \left(\frac{8}{3}, 4\right)$

ALBO

przekształcenie warunku $x_1^3 + x_2^3 < 5x_1^2x_2 + 5x_1x_2^2$ do postaci pozwalającej na bezpośrednie zastosowanie wzorów Viète'a, np.

$$(x_1 + x_2)[(x_1 + x_2)^2 - 3x_1x_2] < 5x_1x_2(x_1 + x_2).$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Trójmian $x^2 - (m-4)x + m^2 - 7m + 12$ ma dwa różne pierwiastki rzeczywiste tylko wtedy, gdy jego wyróżnik Δ jest dodatni, tj.

$$(m-4)^{2} - 4(m^{2} - 7m + 12) > 0$$
$$-3m^{2} + 20m - 32 > 0$$
$$-3(m-4)\left(m - \frac{8}{3}\right) > 0$$

Zatem $m \in \left(\frac{8}{3}, 4\right)$.

Nierówność $x_1^3 + x_2^3 < 5x_1^2x_2 + 5x_1x_2^2$ przekształcamy równoważnie do postaci, która pozwoli na bezpośrednie zastosowanie wzorów Viète'a:

$$x_1^3 + x_2^3 < 5x_1^2x_2 + 5x_1x_2^2$$

$$(x_1 + x_2)[x_1^2 - x_1x_2 + x_2^2] < 5x_1x_2(x_1 + x_2)$$

$$(x_1 + x_2)[(x_1 + x_2)^2 - 3x_1x_2] < 5x_1x_2(x_1 + x_2)$$

Stosujemy wzory Viète'a i otrzymujemy:

$$(m-4)[(m-4)^2 - 3(m^2 - 7m + 12)] < 5(m^2 - 7m + 12)(m-4)$$

$$(m-4)[(m-4)^2 - 8(m^2 - 7m + 12)] < 0$$

$$(m-4)(-7m^2 + 48m - 80) < 0$$

$$-7(m-4)^2(m - \frac{20}{7}) < 0$$

$$m \in \left(\frac{20}{7}, 4\right) \cup (4, +\infty)$$

Częścią wspólną zbiorów $\left(\frac{8}{3},4\right)$ i $\left(\frac{20}{7},4\right) \cup (4,+\infty)$ jest $\left(\frac{20}{7},4\right)$. Równanie $x^2-(m-4)x+m^2-7m+12=0$ ma dwa różne rozwiązania rzeczywiste, spełniające warunki zadania, dla $m \in \left(\frac{20}{7},4\right)$.

Zadanie 10. (0-5)

Wymaganie ogólne	Wymaganie szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	X.R5) wyznacza przekroje sześcianu
rozwiązywaniu zadań, również w sytuacjach	i ostrosłupów prawidłowych oraz oblicza ich
nietypowych.	pola, także z wykorzystaniem trygonometrii.

Zasady oceniania

5 pkt – zastosowanie poprawnej metody i poprawny wynik: $P_{\text{przekroju}} = \frac{27\sqrt{10}}{100}a^2$.

4 pkt – obliczenie wysokości h oraz długości podstawy EF trapezu BCFE: $h=\frac{3\sqrt{10}}{10}a$ oraz |EF|=0.8a.

3 pkt – obliczenie długości podstawy $\it EF$ trapezu $\it BCFE$: $|\it EF|=0.8a$ ALBO

obliczenie wysokości h trapezu BCFE: $h=\frac{3\sqrt{10}}{10}a$.

2 pkt – zapisanie zależności prowadzącej do obliczenia długości podstawy EF trapezu, np.

$$\frac{|EF|}{|AD|} = \frac{|RS|}{|SG|}$$

ALBO

obliczenie
$$|SG| = \frac{\sqrt{10}}{2}a$$
 oraz $|RS| = \frac{2\sqrt{10}}{5}a$,

ALBO

zapisanie zależności prowadzącej do obliczenia wysokości h trapezu BCFE, np.

$$\frac{3\sqrt{10}}{10} = \frac{h}{a} \,.$$

1 pkt – zapisanie, że przekrój jest trapezem (równoramiennym).

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga.

Jeśli zdający nie zapisze, że przekrój jest trapezem, lecz realizuje strategię rozwiązania zadania, to może otrzymać co najwyżej **4 punkty** za całe rozwiązanie.

Przykładowe pełne rozwiązanie Odpowiedni przekrój przedstawiono na rysunku obok.

а

В

P i G – środki krawędzi, odpowiednio, BC i AD.

 $E \in AS$ i $F \in DS$, i $EF \parallel AD$. Podstawa ABCD jest kwadratem o boku a. Krawędzie boczne są równej długości.

Otrzymany przekrój BCFE jest trapezem równoramiennym.

Wprowadzamy oznaczenia:

0 – punkt przecięcia przekątnych podstawy ABCD,

R – środek odcinka EF,

H – rzut prostokątny punktu R na płaszczyznę podstawy ABCD,

h – wysokość trapezu BCFE.

Trójkąt SOG jest prostokątny, więc z definicji funkcji cosinus otrzymujemy

$$\cos \alpha = \frac{|OG|}{|SG|}$$

$$\frac{\sqrt{10}}{10} = \frac{\frac{1}{2}a}{|SG|}$$

Stąd wysokość ściany bocznej ostrosłupa jest równa $|SG| = \frac{\sqrt{10}}{2}a$.

Trójkąt GPR jest prostokątny, więc z definicji funkcji cosinus otrzymujemy

$$\cos \alpha = \frac{|RG|}{|GP|}$$

$$\frac{\sqrt{10}}{10} = \frac{|RG|}{a}$$

$$|RG| = \frac{\sqrt{10}}{10}a$$

Obliczamy długość odcinka RS:

$$|RS| = |SG| - |RG|$$

Egzamin maturalny z matematyki (poziom rozszerzony). Test diagnostyczny – grudzień 2022 r.

$$|RS| = \frac{\sqrt{10}}{2}a - \frac{\sqrt{10}}{10}a$$
 $|RS| = \frac{2\sqrt{10}}{5}a$

Trójkąty ADS i EFS na mocy cechy kkk są podobne, więc

$$\frac{|EF|}{|AD|} = \frac{|RS|}{|SG|}$$

Stąd wyznaczamy długość podstawy EF trapezu BCFE:

$$\frac{|EF|}{a} = \frac{\frac{2\sqrt{10}}{5}a}{\frac{\sqrt{10}}{2}a}$$

$$|EF| = 0.8a$$

Korzystamy z jedynki trygonometrycznej i obliczamy $\sin \alpha$:

$$\sin^2\alpha + \left(\frac{\sqrt{10}}{10}\right)^2 = 1$$

$$\sin \alpha = \frac{3\sqrt{10}}{10}$$

Trójkąt GRP jest prostokątny. Korzystamy z definicji funkcji sinus i obliczamy wysokość h przekroju:

$$\sin \alpha = \frac{|RP|}{|GP|}$$

$$\sin \alpha = \frac{h}{a}$$

$$\frac{3\sqrt{10}}{10} = \frac{h}{a}$$

$$h = \frac{3\sqrt{10}}{10}a$$

Obliczamy pole przekroju: $P_{\text{przekroju}} = \frac{a+0.8a}{2} \cdot \frac{3\sqrt{10}}{10} a = 0.9a \cdot \frac{3\sqrt{10}}{10} a = \frac{27\sqrt{10}}{100} a^2$.

Zadanie 11. (0-5)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	VII.R7) stosuje twierdzenie sinusów;
rozwiązywaniu zadań, również w sytuacjach	VII.R5) korzysta ze wzorów na sinus,
nietypowych.	cosinus i tangens sumy i różnicy kątów,
	a także na funkcje trygonometryczne kątów
	podwojonych.

Zasady oceniania

5 pkt – obliczenie pola P i obwodu L trapezu i poprawne wyniki: $P = \frac{27648}{625}$, L = 27,36.

4 pkt – obliczenie długości dłuższej podstawy oraz obliczenie wysokości trapezu: $a=\frac{234}{25}$,

$$h = \frac{144}{25}$$

ALBO

obliczenie długości dłuższej i krótszej podstawy: $a = \frac{234}{25}$ oraz b = 6,

ALBO

obliczenie pola P trapezu: $P = \frac{27648}{625}$,

ALBO

obliczenie obwodu L trapezu: L = 27,36.

3 pkt – obliczenie długości dłuższej podstawy: $a = \frac{234}{25}$

ALBO

obliczenie wysokości trapezu oraz obliczenie długości odcinka EB: $h = \frac{144}{25}$ oraz

$$|EB| = \frac{42}{25},$$

ALBO

obliczenie długości odcinka AE: $|AE| = \frac{192}{25}$.

2 pkt – obliczenie sinusa kąta ACB: $\sin(\alpha + \beta) = \frac{117}{125}$

ALBO

obliczenie wysokości trapezu: $h = \frac{144}{25}$,

ALBO

obliczenie długości odcinka EB: $|EB| = \frac{42}{25}$,

ALBO

obliczenie długości odcinka AC: $|AC| = \frac{48}{5}$.

1 pkt – obliczenie sinusa kąta BAC: $\sin \alpha = \frac{3}{5}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Przyjmijmy oznaczenia:

a – długość dłuższej podstawy trapezu,

b − długość krótszej podstawy trapezu,

 $| \not \perp BAC | = \alpha, | \not \perp ABC | = \beta,$

CE – wysokość poprowadzona z wierzchołka C trapezu na podstawę AB.

Ponieważ na trapezie ABCD opisano okrąg, więc trapez jest równoramienny. Promień okręgu opisanego na trójkącie ABC jest równy promieniowi okręgu opisanego na trapezie ABCD. Ponieważ |AB| > |CD|, więc $\alpha < 90^{\circ}$ i $\beta < 90^{\circ}$.

Stosujemy twierdzenie sinusów w trójkącie ABC i obliczamy sinus kąta α :

$$\frac{|BC|}{\sin \alpha} = 2R$$
$$\frac{6}{\sin \alpha} = 10$$
$$\sin \alpha = \frac{3}{5}$$

Korzystając z jedynki trygonometrycznej, otrzymujemy $\cos \alpha = \frac{4}{5}$.

Obliczamy sinus kąta β .

Ponieważ $\frac{\sin|\angle BAC|}{\sin|\angle ABC|} = \frac{5}{8}$, więc

$$\sin \beta = \frac{8}{5} \cdot \sin \alpha$$

$$\sin\beta = \frac{8}{5} \cdot \frac{3}{5} = \frac{24}{25}$$

Korzystając z jedynki trygonometrycznej, otrzymujemy $\cos \beta = \frac{7}{25}$.

Obliczamy sinus kąta $(\alpha + \beta)$, korzystając ze wzoru na sinus sumy kątów:

$$\sin(\alpha + \beta) = \frac{3}{5} \cdot \frac{7}{25} + \frac{4}{5} \cdot \frac{24}{25} = \frac{117}{125}$$

Stosujemy twierdzenie sinusów do trójkąta ABC i obliczamy długość dłuższej podstawy trapezu:

$$\frac{a}{\sin[180^{\circ} - (\alpha + \beta)]} = 2R$$

$$\frac{a}{\sin(\alpha + \beta)} = 10$$

$$\frac{a}{\frac{117}{125}} = 10$$

$$a = \frac{234}{25}$$

Trójkąt BEC jest prostokątny. Obliczamy wysokość h trapezu, długość odcinka EB oraz długość krótszej podstawy trapezu:

$$\frac{h}{|BC|} = \sin \beta \quad \text{oraz} \quad \frac{|EB|}{|BC|} = \cos \beta$$

$$\frac{h}{6} = \frac{24}{25} \quad \text{oraz} \quad \frac{|EB|}{6} = \frac{7}{25}$$

$$h = \frac{144}{25} \quad \text{oraz} \quad |EB| = \frac{42}{25}$$

$$b = a - 2 \cdot |EB|$$

$$b = \frac{234}{25} - 2 \cdot \frac{42}{25} = 6$$

Obliczamy pole P i obwód L trapezu:

$$P = \frac{\frac{234}{25} + 6}{2} \cdot \frac{144}{25} = \frac{27648}{625}$$
$$L = 3 \cdot 6 + \frac{234}{25} = 27,36$$

Zadanie 12. (0-6)

Wymaganie ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy	IX.R1) posługuje się równaniem prostej
rozwiązywaniu zadań, również w sytuacjach	w postaci ogólnej na płaszczyźnie [];
nietypowych.	IX.R3) znajduje punkty wspólne prostej
	i okręgu oraz prostej i paraboli będącej
	wykresem funkcji kwadratowej.

Zasady oceniania

6 pkt – obliczenie odległości $\,h_{\mathcal{C}}\,$ punktu $\,\mathcal{C}\,$ od prostej $\,k\,$ oraz pola $\,P\,$ trójkąta $\,AB\,\mathcal{C}$:

$$h_C = \frac{9}{\sqrt{2}}$$
 i $P = 54$.

5 pkt – obliczenie pola P trójkąta ABC: P=54

ALBO

obliczenie odległości h_C punktu C od prostej k oraz obliczenie współrzędnych punktów A i B: $h_C=\frac{9}{\sqrt{2}}$ oraz A=(7,2) i B=(-5,14).

4 pkt – obliczenie współrzędnych punktów A, B oraz C: A = (7, 2), B = (-5, 14)

i
$$C = (1, -1)$$

ALBO

obliczenie odległości $h_{\mathcal{C}}$ punktu \mathcal{C} od prostej k oraz zapisanie układu równań prowadzącego do obliczenia współrzędnych punktów A i B:

$$h_C = \frac{9}{\sqrt{2}} \text{ oraz } \begin{cases} x + y - 9 = 0 \\ y = \frac{1}{4}x^2 - \frac{3}{2}x + \frac{1}{4} \end{cases}$$

3 pkt – obliczenie współrzędnych punktów A i B oraz wyznaczenie pochodnej funkcji

$$y = \frac{1}{4}x^2 - \frac{3}{2}x + \frac{1}{4}$$
: $A = (7,2)$ i $B = (-5,14)$ oraz $y' = \frac{1}{2}x - \frac{3}{2}$ ALBO

obliczenie współrzędnych punktu $\,\mathcal{C}\,\,$ oraz zapisanie układu równań prowadzącego do

obliczenia współrzędnych punktów
$$A$$
 i B : $C=(1,-1)$ oraz
$$\begin{cases} x+y-9=0\\ y=\frac{1}{4}x^2-\frac{3}{2}x+\frac{1}{4} \end{cases}$$

ALBO

obliczenie odległości $h_{\mathcal{C}}$ punktu \mathcal{C} od prostej k: $h_{\mathcal{C}} = \frac{9}{\sqrt{2}}$.

2 pkt – obliczenie współrzędnych punktów A i B: A = (7,2) i B = (-5,14)

ALBO

obliczenie współrzędnych punktu C: C = (1, -1),

ALBO

zapisanie układu równań prowadzącego do obliczenia współrzędnych punktów A i B oraz wyznaczenie pochodnej funkcji $y=\frac{1}{4}x^2-\frac{3}{2}x+\frac{1}{4}$:

$$\begin{cases} x + y - 9 = 0 \\ y = \frac{1}{4}x^2 - \frac{3}{2}x + \frac{1}{4} \end{cases} \text{ oraz } y' = \frac{1}{2}x - \frac{3}{2}.$$

1 pkt – zapisanie układu równań prowadzącego do obliczenia współrzędnych punktów A i B:

$$\begin{cases} x + y - 9 = 0 \\ y = \frac{1}{4}x^2 - \frac{3}{2}x + \frac{1}{4} \end{cases}$$

wyznaczenie pochodnej funkcji $y = \frac{1}{4}x^2 - \frac{3}{2}x + \frac{1}{4}$: $y' = \frac{1}{2}x - \frac{3}{2}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Zapisujemy układ równań prowadzący do obliczenia współrzędnych punktów A i B.

$$\begin{cases} x + y - 9 = 0 \\ y = \frac{1}{4}x^2 - \frac{3}{2}x + \frac{1}{4} \end{cases}$$

Z pierwszego równania wyznaczamy y = -x + 9 i podstawiamy wyrażenie -x + 9w miejsce y do drugiego równania, otrzymując:

$$-x + 9 = \frac{1}{4}x^2 - \frac{3}{2}x + \frac{1}{4}$$
$$x^2 - 2x - 35 = 0$$
$$x = -5 \quad \text{lub} \quad x = 7$$

Dla x = -5 otrzymujemy y = 14, więc B = (-5, 14). Dla x = 7 otrzymujemy y = 2, więc A = (7, 2).

Oznaczmy pierwszą współrzędną punktu C przez x_C . Prosta l jest równoległa do prostej k, więc współczynnik kierunkowy obu prostych jest równy (-1). Prosta l jest styczna do paraboli w punkcie C, więc współczynnik kierunkowy prostej l jest równy

pochodnej funkcji
$$y=\frac{1}{4}x^2-\frac{3}{2}x+\frac{1}{4}$$
 w punkcie $x=x_{\mathcal{C}}.$ Zatem

$$y' = \frac{1}{2}x - \frac{3}{2}$$
 i $y'(x_c) = -1$
$$\frac{1}{2}x_c - \frac{3}{2} = -1$$

$$x_c = 1$$

czyli C = (1, -1).

Obliczamy wysokość $h_{\mathcal{C}}$ trójkąta $AB\mathcal{C}$ poprowadzoną z wierzchołka \mathcal{C} na podstawę AB(wysokość ta jest równa odległości punktu C od prostej k):

$$h_C = \frac{|1 + (-1) - 9|}{\sqrt{1^2 + 1^2}} = \frac{9}{\sqrt{2}}$$

Obliczamy długość boku AB: $|AB| = \sqrt{(-5-7)^2 + (14-2)^2} = 12\sqrt{2}$.

Obliczamy pole P trójkąta ABC: $P = \frac{1}{2} \cdot |AB| \cdot h_C = \frac{1}{2} \cdot 12\sqrt{2} \cdot \frac{9}{\sqrt{2}} = 54$.

Egzamin maturalny z matematyki (poziom rozszerzony). Test diagnostyczny – grudzień 2022 r.

Uwaga.

Pole P trójkąta ABC można również obliczyć ze wzoru

$$P = \frac{1}{2} \cdot |(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)|$$

Wówczas otrzymujemy

$$P = \frac{1}{2} \cdot |(-5 - 7)(-1 - 2) - (14 - 2)(1 - 7)| = \frac{1}{2} \cdot |36 - (-72)| = 54$$