基礎数理 C, 第2回演習問題

2024/4/18 担当:那須

以下では \mathbb{R}^n の内積は標準内積とし、 $\mathbb{R}[x]_n$ の内積は $\langle f,g\rangle = \int_{-1}^1 f(x)g(x)dx$ により定義する.

- |1| 次のベクトル空間 V と次のベクトルの組 (\mathbf{x},\mathbf{y}) に対し, 内積 $\langle \mathbf{x},\mathbf{y}
 angle$ を計算せよ.
 - (1) $V = \mathbb{R}^3$, $\left(\begin{bmatrix} 5\\2\\-9 \end{bmatrix}, \begin{bmatrix} 3\\1\\4 \end{bmatrix}\right)$ (2) $V = \mathbb{R}^4$, $\left(\begin{bmatrix} 6\\-6\\7\\13\\14 \end{bmatrix}\right)$
 - (3) $V = \mathbb{R}[x]_2$, $(1+x+2x^2, 1-2x+3x^2)$ (4) $V = \mathbb{R}[x]_3$, $(1-x, 1+x+x^2+x^3)$

- |2| 次のベクトルのノルムを求めよ.
 - (1) $\begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$ (2) $\begin{bmatrix} 4 \\ -1 \\ 5 \\ 0 \end{bmatrix}$ (3) $f(x) = 1 x + x^2 x^3$
- ③ 次のベクトルの組が直交するような定数 a の値を求めよ.
 - $(1) \quad \left(\begin{vmatrix} 1 \\ -2 \\ 1 \end{vmatrix}, \begin{vmatrix} a \\ a+1 \\ 3 \end{vmatrix} \right) \qquad (2) \quad \left(\begin{vmatrix} a \\ -3 \\ 1 \end{vmatrix}, \begin{vmatrix} a \\ a \\ 2 \end{vmatrix} \right) \qquad (3) \quad (1-x, 1+ax+x^2)$
- |A| $V = \mathbb{R}^3$ または $V = \mathbb{R}[x]_2$ とする. 次のベクトルの組に直交するようなノルム 1 の V の元を求めよ.
 - $(1) \quad \left(\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right) \qquad (2) \quad \left(\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right) \qquad (3) \quad (1 x, 1 x^2)$
- $\boxed{5}$ 次を示せ. ただしベクトル \mathbf{x} に対し $\|\mathbf{x}\|$ は \mathbf{x} のノルムを表す.
 - (1) $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} \mathbf{y}\|^2 = 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2)$
 - (2) $\mathbf{x} \succeq \mathbf{y}$ が直交する $(\mathbf{x} \perp \mathbf{y}) \iff \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$
 - (3) $\mathbf{x} + \mathbf{y} \, \mathbf{z} \, \mathbf{x} \mathbf{y} \, \text{が直交する} \, (\mathbf{x} + \mathbf{y} \perp \mathbf{x} \mathbf{y}) \Longleftrightarrow \|\mathbf{x}\| = \|\mathbf{y}\|$

0解答:

- $\boxed{1} \ (1) \ -19 \qquad (2) \ -38 \qquad (3) \ \frac{32}{5} \qquad (4) \ \frac{8}{5}$
- $\boxed{2}$ (1) $\sqrt{83}$ (2) $\sqrt{106}$ (3) $8\sqrt{\frac{3}{35}}$
- $\boxed{3}$ (1) a = 1 (2) a = 1, 2 (3) a = 4
- $\boxed{4} \ (1) \quad \pm \frac{1}{\sqrt{3}} (1, 1, -1) \qquad (2) \quad \pm \frac{1}{\sqrt{6}} (2, -1, 1) \qquad (3) \quad \pm \frac{1}{2\sqrt{2}} (1 2x 5x^2)$
- 5 略