Лабораторна робота №4

Завдання 1

Мій номер у списку 43, що в двійковому вигляді 0101011. Отже, будуємо такий лічильник:

Q ₄	Q₃	Q ₂	Q_1
Q ₄	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Таблиця переходів лічильника:

Q ₄ ^S	Q ₃ ^S	Q ₂ ^S	Q ₁ ^S	Q ₄ S+1	Q ₃ ^{S+1}	Q ₂ ^{S+1}	Q ₁ S+1	D ₄	D ₃	D ₂	D ₁	T ₄	T ₃	T ₂	T ₁	J ₄	K ₄	J ₃	K ₃	J ₂	K ₂	J ₁	K ₁
0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	1	0	*	0	*	1	*	*	1
0	0	1	0	0	0	1	1	0	0	1	1	0	0	0	1	0	*	0	*	*	0	1	*
0	0	1	1	0	1	0	0	0	1	0	0	0	1	1	1	0	*	1	*	*	1	*	1
0	1	0	0	0	1	0	1	0	1	0	1	0	0	0	1	0	*	*	0	0	*	1	*
0	1	0	1	0	1	1	1	0	1	1	1	0	0	1	0	0	*	*	0	1	*	*	0
0	1	1	1	1	0	0	0	1	0	0	0	1	1	1	1	1	*	*	1	*	1	*	1
1	0	0	0	1	0	1	1	1	0	1	1	0	0	1	1	*	0	0	*	1	*	1	*
1	0	1	1	1	1	0	0	1	1	0	0	0	1	1	1	*	0	1	*	*	1	*	1
1	1	0	0	1	1	1	1	1	1	1	1	0	0	1	1	*	0	*	0	1	*	1	*
1	1	1	1	0	0	0	1	0	0	0	1	1	1	1	0	*	1	*	1	*	1	*	0

D 0 5 0	\overline{a}	\overline{a}	$\overline{}$
$D_4 = Q_4 \overline{Q}_2 \vee Q$	() \/	(1) (1)	()
$D_1 - U_1 U_2 \vee U$	4 ∪ 2 ∨	\cup	່າປາ

		С	Q_1		_
	0	0	0	-	
Q_3	E	1	0	0	
	-	0	-	1	Q_4
	_	1	-	1	
	C) ₂			,

$$D_3 = Q_3 \bar{Q}_2 \vee \bar{Q}_3 Q_2 Q_1$$

		C	\mathbf{Q}_1		_
	0	1	0	-	
Q_3	-	0	1	1	
	-	0	-	1	Q_4
	-	1	-	0	
	() ₂			•

 $D_2 = Q_2 \bar{Q_1} \vee \bar{Q_2} Q_1 \vee Q_4 \bar{Q_2}$

		C	Q_1		_
	1	0	1	-	
Q ₃	-	0	1	0	
	-	0	-	1	Q_4
	-	0	-	1	
	C) ₂			

$$D_1 = \bar{Q}_1 \vee Q_3 \bar{Q}_2$$

1 1 1 2 2									
			C	L 1		_			
		1	0	0	-				
Q	3	-	0	1	1				
	ŀ	-	0	-	1	Q ₄			
	Ŀ	-	0	-	1				
		C	L ₂						

$$\begin{split} T_4 &= Q_3 Q_2 = \overline{\overline{Q_3 Q_2}} \\ T_3 &= Q_2 Q_1 = \overline{\overline{Q_2 Q_1}} \\ T_2 &= Q_1 \vee Q_4 = \overline{\overline{Q_1} \overline{Q_4}} \\ T_1 &= \overline{Q_3} \vee \overline{Q_1} \vee \overline{Q_4} Q_2 = \overline{Q_3} \wedge Q_1 \wedge \overline{\overline{Q_4} Q_2} \end{split}$$

$$J_4 = Q_3 Q_2$$

$$K_4 = Q_3 Q_2$$

$$J_3 = Q_2 Q_1$$
$$K_3 = Q_2$$

$$J_2 = Q_1 \lor Q_4$$
$$K_2 = Q_1$$

$$J_1=1$$

Найпростішу схему отримуємо при використанні Т-тригерів.

Завдання 2

Пропускаємо стан 01011 (11 у десятковій)

			EM		ган
Q ₅	Q_4	Q ₃	Q ₂	Q ₁	
0	0	0	0	0	
0	0	0	0	1	
0	0	0	1	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	0	1	
0	0	1	1	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	0	1	
0	1	0	1	0	Α
0	1	0	1	1	В
0	1	1	0	0	С
0	1	1	0	1	
0	1	1	1	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	0	0	1	
1	0	0	1	0	
1	0	0	1	1	
1	0	1	0	0	
1	0	1	0	1	
1	0	1	1	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	0	0	1	
1	1	0	1	0	
1	1	0	1	1	
1	1	1	0	0	
1	1	1	0	1	
1	1	1	1	0	
1	1	1	1	1	

Потрібно модифікувати функції збудження. Порівнюємо переходи $A \rightarrow B$ і $A \rightarrow C$: Переходи розрядів Q_5 , Q_4 не відрізняються, отже $f_5*=f_5$, $f_4*=f_4$.

При А \rightarrow В не переключаються розряди Q₃, Q₂, але це повинно виконуватися для А \rightarrow С. Отже $f_3^* = f_3 \lor f_A$ $f_2^* = f_2 \lor f_A$

При А \rightarrow В переключається розряд Q₁, але це не повинно виконуватися для А \rightarrow С. Отже $f_1^* = f_1 \wedge \bar{f_A} = 1 \wedge \bar{f_A} = \bar{f_A}$

 $f_A = \bar{Q_5} \, Q_4 \, \bar{Q_3} \, Q_2 \, \bar{Q_1} \,$ - функція, що приймає значення 1 лише при поданні на вхід А.

Будуємо схему збільшуючого лічильника з паралельним переносом, потім модифікуємо функції збудження. Отримуємо:

Завдання 3

Будуємо кільцевий лічильник з коефіцієнтом перерахунку $K=4+2a_2+a_1=7$, використовуємо елементи 2АБО-НІ. ($a_5a_4a_3=010$)

Розрядність регістра ceil(log_2K) = ceil(log_27) = 3

Використовуємо граф переходів з рис. 1.37:

Рис. 1.37

Бачимо 4 цикли довжиною 7:

- 1. $000 \rightarrow 100 \rightarrow 110 \rightarrow 011 \rightarrow 101 \rightarrow 010 \rightarrow 001 \rightarrow ...$
- 2. $000 \rightarrow 100 \rightarrow 010 \rightarrow 101 \rightarrow 110 \rightarrow 011 \rightarrow 001 \rightarrow ...$
- 3. $111 \rightarrow 011 \rightarrow 001 \rightarrow 100 \rightarrow 010 \rightarrow 101 \rightarrow 110 \rightarrow ...$
- 4. $111 \rightarrow 011 \rightarrow 101 \rightarrow 010 \rightarrow 001 \rightarrow 100 \rightarrow 110 \rightarrow ...$

В цих випадках на вхід DR зсуваючого регістра треба подавати:

- 1. $1\rightarrow1\rightarrow0\rightarrow1\rightarrow0\rightarrow0\rightarrow0\rightarrow...$ (f₁)
- 2. $1 \rightarrow 0 \rightarrow 1 \rightarrow 1 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow ... (f_2)$
- 3. $0 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow ... (f_3)$
- 4. $0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow ... (f_4)$

Будуємо таблицю істинності функцій:

Q_3	Q_2	Q_1	f_1	f_2	f_3	f_4
0	0	0	1	1	*	*
0	0	1	0	0	1	1
0	1	0	0	1	1	0
0	1	1	1	0	0	1
1	0	0	1	0	0	1
1	0	1	0	1	1	0
1	1	0	0	0	1	1
1	1	1	*	*	0	0

$f_1 = \overline{Q_2 \bar{Q}_1 \vee \bar{Q}_2 Q_1}$								
		C) 1					
	0	1	0	1				
Q_3	0	*	0	1				
	C) ₂		-				

$$f_2 = \overline{Q_3 \overline{Q_1} \vee \overline{Q_3} Q_1}$$

$$f_{3} = \overline{Q_{2}}\overline{Q_{1}} \vee Q_{2}Q_{1}$$

$$Q_{1}$$

$$1 \quad 0 \quad 1 \quad *$$

$$Q_{3} \quad 1 \quad 0 \quad 1 \quad 0$$

$$Q_{2}$$

$$f_2 = \overline{\overline{Q}_3 \overline{Q}_1} \vee \overline{Q}_3 \overline{Q}_1$$

При реалізації на елементах 2АБО-НІ всі функції матимемо однакову складність і швидкодію КС. Оберемо

$$f_2 = \overline{Q_3 \overline{Q_1} \vee \overline{Q_3} Q_1} = \overline{Q_3 \overline{Q_1}} \wedge \overline{\overline{Q_3} Q_1} = (\overline{Q_3} \vee Q_1)(Q_3 \vee \overline{Q_1}) = \overline{(\overline{Q_3} \vee Q_1)} \vee \overline{(Q_3 \vee \overline{Q_1})}$$

Маємо таку схему:

Виходи якої приймають значення $000 \rightarrow 100 \rightarrow 010 \rightarrow 101 \rightarrow 110 \rightarrow 011 \rightarrow 001 \rightarrow ...$