EE-101 Mid-Semester Response Sheet

QP Code:

SD

Invigilator's Signature:

- · Give answers in the response sheet
- · Include SI units, where necessary
- · Power factor should include lead/lag
- · Phasors use peak values of the magnitude
- All answers for electrical networks should be rounded off to 2 decimal places

Name:

Roll No:

Tutorial Group:

Division:

Q1.			
a. 4 (60° 52	b. 400 + 400 Bj VA (08) 800 + 800 Bj VA (Peat)		
C. 800 VA (08) 1600 VA (peak)	d. 400 W (0x) 800 W (peak)		
e. 400B Var (or) 800B Var (peat)	f. 0.5 lag		

Q2.

b. minimal POS = (\$1+52+ X1+X2)(\$1+52+ X1+X2)(\$1+52+X1+X2) (\$1+52+X1+X2)

Q4.

a. K Map:

YZ

0	0	0	0
0	1	1	1
1	1	1	1
1	1	1	1

b. minimal SOP =

Y+2x+ ZW

c. minimal POS =

(Y+2) (Y+w+x)

Q5.

a. Thevenin equivalent voltage = 2.165 < -50.266° V

b. The venin equivalent impedance = $3.03 < 33.32^{\circ}$ 52

c. the current $I_{AB} = 0.476 < -46.10^{\circ} \text{ A}$

Q6.

Qo.		
a. $i(0^+) = 2.4 \text{ A}$	b. $v(0^+) = 2.4 V$	
c. $\frac{d}{dt}i(0^+) = 0 \text{ A/3}$	$d. \frac{d}{dt}v(0^+) = 24 $	
e. <i>i</i> (∞) = 0 A	f. $v(\infty) = 12 V$	

Q7.

$$J_1 = I_2$$

$$K_1 = \mathbf{I}_2$$

 $J_2 = 1$

$$K_2 = \overline{1}_1$$

Q8.

a. state table

Present State		Input	Next	Next state	
A	В	M	А	В	
0	0	0	0	1	
0	0	1	0	0	
0	1	0	1	- V	
0	1	1	T.	0	
1	0	6	1	1	
1	0	1	1	0	
1	1	0	0	0	
1	1	l	t	1	

b. state equations

$$A(n+1) = \overline{AB} + \overline{BA} + WB$$

 $\overline{AB} + \overline{BA} + WA$

$$B(n+1) = WAB + WA + WB$$

c. flip-flop inputs

$$J_A = B$$

$$K_A = \overline{N} B$$

$$J_B = \overline{W}$$