Computer Architecture CS322 Lab 8 Report

Name: Chandrawanshi Mangesh Shivaji

Roll Number: 1801CS16

Date: 06/11/2020

Task 1: Using blocks from lab 7 and other glue logic, implement single cycle processor RISC which could run instructions/test file given.

Logisim Circuit: single cycle processor RISC

Final State of used registers after executing all instructions in instructions file

Final State of Data Memory after execution of all instructions in instructions file

Task 2: Write a program to add 5 numbers and store the result in data memory location X. (show the encoding process and machine language instruction with comments in the report). Also add screen shots of numbers in memory and result location in the report.

Logisim Circuit: Addition using single cycle processor RISC

Assembly Code with corresponding encoding

```
# Test the MIPS Processor Task 2
# Write a program to add 5 numbers and store the result in data memory location X
# First data (5(05H),22(16H),16(10H),34(22H),48(30H)) [all in decimal rep.] is stored in memory location 0 to 5
sequentially
# sum will be stored in register $6 and then at memory location 80 i.e. 50H
#
        Assembly
                        Description
                                                 Address
                                                             Machine
        lw $1,0($0)
                        # $1 = 5
                                                0
                                                             8c010000
        lw $2,1($0)
                        # $2 = 22
                                                4
                                                             8c020001
        lw $3,2($0)
                        # $3 = 16
                                                8
                                                             8c030002
                        # $4 = 34
        lw $4,3($0)
                                                12
                                                             8c040003
                        # $5 = 48
        lw $5,4($0)
                                                16
                                                             8c050004
        addi $6,$0,$0 # $6 = 0
                                                 20
                                                             20060000
        add $6,$1,$2
                       # $6 <= 5 + 22 = 27
                                                 24
                                                             00223020
        add $6,$6,$3
                      # $6 <= 27 + 16 = 43
                                                 28
                                                             00c33020
                      # $6 <= 43 + 34 = 77
        add $6,$6,$4
                                                32
                                                             00c43020
        add $6,$6,$5
                      # $6 <= 77 + 48 = 125
                                                 36
                                                             00c53020
        sw $6,80($0)
                      # write addr 80 = 125
                                                40
                                                             ac060050
# mem addr 50H(80) \Rightarrow 7DH(125)
```

Final Data Memory after Execution of Addition

Final state of used registers

