Modelo Relacional Pasaje del MER al MR

Bases de Datos

Ciclo 2043

El Modelo Relacional Repaso

Repaso

- Único objeto de tratamiento del modelo relacional → relaciones
- Esquema de relación:

conjunto de atributos que la conforman

$$R = \{ A_1, A_2, ..., A_n \}$$

el domino de valores para cada atributo $dom(A_i) = D_i$

Instancia de relación: Conjunto de nuplas que conforman la relación en un instante de tiempo dado.

Prof. Norma Herrera Año 2024

Repaso

Ejemplo:

Esquema de relación:

```
Alumnos= {NroA, NbreA, DirA }

dom(NroA)=|N

dom(NbreA)=Alfa+

dom(DirA)=AlfaNco+
```

Instancia de relación:

NroA	NbreA	DirA
10	María Celi	Sucre 100
20	Juan Páez	España 200
30	Ana Mica	Junin 123
40	Juana Nohe	Caseros 345
50	José López	España 678

Repaso

El Modelo Relacional es un conjunto de relaciones que representan una realidad dada.

Esquema de la Base de Datos: conjunto de esquema de relaciones que conforman la BD.

$$\rho = \{ R_1, R_2, ..., R_n \}$$

$$R_i = \{ A_1, ..., A_m \}$$

Instancia de la Base de Datos: conjunto de instancias de las relaciones que forman el esquema de la BD.

Prof. Norma Herrera Año 2024

Esquema de la BD

ρ={ Materias, Alumnos, Regulares}

Materias= {
$$\underline{MCod}$$
, \underline{MNbreA} , \underline{MCHS} , \underline{Mcuat} }
 $dom(MCod)=\mathbb{N}$
 $dom(MNbreA)=Alfa+$
 $dom(MCHS)=\{2, 3,..,20\}$
 $dom(MCuat)=\{1, 2,A\}$

Alumnos= {NroA, NbreA, DirA }

dom(NroA)=ℕ

dom(NbreA)=Alfa+

dom(DirA)=AlfaNco+

Regulares= { $\underline{\mathsf{MCod}}$, $\underline{\mathsf{NroA}}$, $\underline{\mathsf{Fecha}}$ } $dom(\mathsf{NroA}) = dom(\mathsf{MCod}) = \mathbb{N}$ $dom(\mathsf{Fecha}) = \mathbb{N}$ $\mathsf{FK}(\mathsf{MCod}) \to \mathsf{Materias}(\mathsf{MCod})$ $\mathsf{FK}(\mathsf{NroA}) \to \mathsf{Alumnos}(\mathsf{ANroA})$

Instancia de la BD

MCod	MNbre	MCHS	MCuat
10	Base de Datos	5	2
20	Programación I	6	1
30	Lógica	2	Α
40	Programación II	4	2
50	Álgebra	6	1

NroA	NbreA	DirA
100	María Celi	Sucre 100
200	Juan Páez	España 200
300	Ana Mica	Junin 123
400	Juana Nohe	Caseros 345

MCod	NroA	Fecha
10	100	10/7/2021
20	800	30/11/2022
70	300	10/7/2021

¿ Cómo obtenemos el Modelo Relacional?

Prof. Norma Herrera Año 2024

Pasaje del MER al MR

Entidades y Relaciones Regulares Atributos Multivaluados Agregado de Códigos

Del MER al MR

Modelo Entidad Relación Entidades Relaciones Atributos que conforman los esquemas

Entidades Regulares

Por cada entidad regular generamos una relación en el MR.

Las entidades débiles se tratan especialmente junto con las relaciones que las vinculan a las entidades regulares de las cuales dependen.

 Primero consideraremos atributos univaluados. Posteriormente veremos el caso de los atributos multivaluados.

Entidades Regulares

Modelo Entidad Relación

$$\mathbf{A} = \{ x / \varphi(x) \}$$
$$dom(A_i) = D_i$$

Modelo Relacional

Pasamos al modelo relacional generando una relación cuyo esquema estará formado por los atributos de la entidad:

$$A = \{ A_1, A_2, ..., A_n \}$$

 $dom(A_i) = D_i$

Entidades Regulares

Modelo Entidad Relación

Docentes = { x/x es un docente } $dom(D-NombreyApellido) = Alfa^+ <math>dom(D-DNI) = \mathbb{N}$ $dom(D-FechaNacimiento) = \mathbb{N}$

Modelo Relacional

Docentes = { D-Nbre-Apellido, <u>D-DNI,</u> D-FechaNacimiento}

 $dom(D-NombreyApellido) = Alfa^+$ $dom(D-DNI) = \mathbb{N}$ $dom(D-FechaNacimiento) = \mathbb{N}$

El identificador de la entidad *Docentes* en el modelo ER es también identificador de la relación *Docentes* del MR. Los identificadores se indican subrayándolos.

Relaciones

- Por cada relación regular generamos una relación en el MR.
- Cada relación débil se trata junto con las entidades débiles.
 - Relación débil: aquella que vincula una entidad débil con una entidad regular.

Relaciones

 Para ver cómo pasar las relaciones del modelo ER al modelo Relacional hay que fijarse en el tipo de vinculación:

```
(1:1)
(1:n)
(n:1)
(n:m)
Irrestricta de grado mayor que 2
```

En el caso de las (1:1) además hay que ver si es total y/o suryectiva

Vamos a analizar cada uno de estos casos.

Relaciones (1:1)

Modelo Entidad Relación

R: no es total ni suryectiva

Modelo Relacional

Generamos una nueva relación para R (además de las relaciones ya generadas para A y B).

Esquema de A = {
$$\underline{A}$$
- \underline{ID} , A_1 , ..., A_m }

Esquema de B = {
$$\underline{B-ID}$$
, B_1 , ..., B_n }

La relación R tiene dos identificadores

Esquema de R = { A-ID, B-ID,
$$f_1, ..., f_k$$
} (claves),¿por qué?

Dos FK en R

Relaciones (1:1)

Modelo Entidad Relación

Asignada: no es total ni es suryectiva

Modelo Relacional

```
Becas = { B-Código, B-Monto}

Alumnos = { A-NroReg, A-Nombre}

Asignada = { B-Código-Asignada, A-NroReg-Asignada, Fecha-Asignada}

FK(B-Código-Asignada) → Becas(B-Cod)

FK(A-NroReg-Asignada) → Alumnos(A-NroReg)
```

Importante:

- Falta indicar el dominio de cada atributo.
- Recomendable: concatenar el nombre de la relación.

Relaciones (1:1), Total

R: TOTAL

(1:1) implica que cada elemento de A tiene a lo más una imagen.

Total implica que cada elemento de A tiene al menos una imagen.

(1:1) y total: todos los elementos de A tienen una y sólo una imagen.

Relaciones (1:1), Total

Modelo Entidad Relación

R: TOTAL

Modelo Relacional

La relación R se embebe en la relación generada para la entidad A.

Esquema de A = {
$$\underline{A}$$
- \underline{ID} , A_1 , ..., A_m , \underline{B} - \underline{ID} , f_1 , ..., f_k }

Esquema de B = {
$$\underline{B}$$
- \underline{ID} , B_1 , ..., B_n }

- B-ID es clave en A porque R es (1:1)
- Una KF en A.

Relaciones (1:1), Total

EsDirigido: TOTAL

Modelo Relacional

Proyectos = {P-Cod, P-Nbre, I-Cod-EsDirigido, DesdeFecha-EsDirigido} FK(I-Cod-EsDirigido) → Investigadores(I-Cod)

Investigadores = {<u>I-Cod</u>, I-Nbre,<u>I-DNI</u>}

Prof. Norma Herrera Año 2024 20

IMPORTANTE: pensar por qué esta forma de pasaje no puede usarse si la relación no es total

Relaciones (1:1), Sobreyectiva

Modelo Entidad Relación

R: Sobreyectiva

Modelo Relacional

La relación R se embebe en la relación generada para la entidad B.

Esquema de A = {
$$\underline{A}$$
- \underline{ID} , A_1 , ..., A_m }

Esquema de B = { B-ID, B₁, ..., B_n,
$$A$$
-ID, f_1 , ..., f_k }

Prof. Norma Herrera Año 2024 2

Relaciones (1:1), Sobreyectiva

Modelo Entidad Relación (1:1) E-Cod E-Nbre Empleados EsJefe Departamentos D-Nbre

EsJefe: Sobreyectiva

Modelo Relacional

Empleados= {E-Cod, E-Nbre}

Departamentos = {D-Cod, D-Nbre , E-Cod-EsJefe, DesdeFecha-EsJefe}

FK(E-Cod-EsJefe) → Empleados(E-Cod)

Prof. Norma Herrera Año 2024 23

R (1:1) ni total ni sobreyectiva:

Se genera una nueva relación.

R (1:1) total

Se embebe en la relación generada para A.

R (1:1) sobreyectiva

Se embebe en la relación generada para B.

¿Y si R (1:1) es total y sobreyectiva?

Relaciones (n:1)

Modelo Entidad Relación

Modelo Relacional

La relación R se embebe en la relación generada para la entidad A.

Esquema de A = {
$$\underline{A-ID}$$
, A₁, ..., A_m, $\underline{B-ID}$, $\underline{f_1}$, ..., $\underline{f_k}$ }

Esquema de B = {
$$\underline{B}$$
- \underline{ID} , \underline{B}_1 , ..., \underline{B}_n }

- B-ID no es clave en A porque R es (n:1)
- Una FK en A

Relaciones (n:1)

Modelo Relacional

Departamentos = {D-Cod, D-Nbre}

Prof. Norma Herrera Año 2024 26

Relaciones (n:1)

Esquema de A = {
$$\underline{A-ID}$$
, A_1 , ..., A_n , $\underline{B-Id}$, f_1 , ..., f_k }

Esquema de B = {
$$\underline{B}$$
- \underline{ID} , \underline{B}_1 , ..., \underline{B}_m }

IMPORTANTE:

- B-ID seguro que no es clave en A (pensar por qué).
- Si un elemento de A no está relacionado con ninguno de B (puede pasar porque R puede no ser total) en la instancia se colocará en B-ID un valor NULL:
 - Relación no total → atributo opcional.

Relaciones (1:n)

Modelo Entidad Relación

Modelo Relacional

La relación R se embebe en la relación generada para la entidad B.

Esquema de A = {
$$\underline{A}$$
- \underline{ID} , A_1 , ..., A_m }

Esquema de B = {
$$B-ID$$
, B₁, ..., B_n, $A-ID$ }

- A-ID no es clave en B porque R es (1:n)
- Una FK en A

Relaciones (1:n)

Modelo Entidad Relación

Modelo Relacional

Docentes= {D-Cod, D-Nbre}

Cursos = {C-Cod, C-Nbre, D-Cod-Dicta}

 $FK(D-Cod-Dicta) \rightarrow Docentes(D-Cod)$

Prof. Norma Herrera Año 2024 29

Relaciones (n:m)

Modelo Entidad Relación

Modelo Relacional

Se genera una nueva relación

Esquema de A = { \underline{A} - \underline{ID} , A_1 , ..., A_m }

Esquema de B = { \underline{B} - \underline{ID} , B_1 , ..., B_n }

Esquema de R = { \underline{A} - \underline{ID} , \underline{B} - \underline{ID} , \underline{f} , ..., \underline{f} _k}

Relaciones (n:m)

Modelo Entidad Relación

Modelo Relacional

```
Alumnos= {A-NroReg, A-Nbre}
```

Materias= {M-Cod, M-Nbre}

Cursan={A-NroReg-Cursan, M-Cod-Cursan}

 $FK(A-NroReg-Cursan) \rightarrow Alumno(A-NroReg)$ $FK(M-Cod-Cursan) \rightarrow Materias(M-Cod)$

Relaciones de grado mayor que 2

Modelo Relacional

Esquema de A = {
$$\underline{A-Id}$$
, A_1 , ..., A_n }

Esquema de B = {
$$B-Id$$
, B_1 , ..., B_m }

Esquema de C = {
$$\underline{C}$$
-Id, $C_1, ..., C_p$ }

Esquema de R = { A-Id, B-Id, C-Id,
$$f_1, \ldots, f_k$$
} La relacion compuesta

- La relación R tiene una clave compuesta
- Hay 3 FK

Resumiendo:

ENTIDADES:

Cada entidad regular del MER pasa como una relación del MR.

RELACIONES:

R (1:1)

- Ni total ni sobreyectiva: se genera una nueva relación.
- Total: se embebe en la relación generada para A.
- Sobreyectiva: se embebe en la relación generada para B.

R (1:n)

Se embebe en la relación generada para B

R (n:1)

Se embebe en la relación generada para A.

R (n:m)

Se genera una nueva relación.

R irrestricta de grado mayor que 2

Se genera una nueva relación.

Agregado de Códigos

■ A las relaciones surgidas de las entidades regulares les podemos agregar un atributo adicional cuya semántica sea codificar las nuplas de la relación, numerándolas.

Ejemplo: D-Código, M-Código, etc.

■ Conviene hacerlo cuando la clave principal de la entidad es demasiado grande (ocupa mucho espacio) y necesito esa clave para el pasaje de las relaciones.

Debe hacerse cuando la entidad no tiene identificadores.

Un Ejemplo:

- Dirige es suryectiva
- Supervisa es suryectiva
- Tomó es suryectiva

El modelo relacional resultante es:

```
Docentes = { <u>D-Codigo</u>, D-Nombre}
     dom (D-Codigo) = IN
     dom(D-Nombre)=Alfa+
Cursos = { C-Codigo, C-Nombre, C-CantHs, D-Codigo-Dirige, D-Codigo supervisa}
    dom (C-Código) = dom(C-CantHs) = dom(D-Código-Dirige) = dom (D-Código-Supervisa) = |N|
    dom(D-Nombre)=Alfa+
    FK(D-Codigo-Dirige)→ Docentes(D-Codigo)
    FK(D-Codigo-Supervisa)→ Docentes(D-Codigo)
Temas= { <u>T-Codigo</u>, T-Nombre}
     dom (T-Codigo) = AlfaNco
     dom(T-Nombre)=Alfa+
Imparte { D-Codigo-Imparte, C-Codigo-Imparte, T-Codigo-Imparte, I-CantClases}
     dom (D-Codigo-Imparte)= dom (C-Codigo-Imparte)= |N
     dom (T-Codigo-Imparte)=AlfaNco
     dom (I-CantClases)= |N
     FK(D-Codigo-Imparte)→ Docentes(D-Codigo)
     FK(C-Codigo-Imparte)→ Cursos(C-Codigo)
     FK(T-Codigo-Imparte)→ Temas(T-Codigo)
Tomó= { D-Codigo-Tomo, C-Codigo-Tomo, Fecha-Tomó}
     dom (D-Codigo-Tomo)= dom (C-Codigo-Tomo)= dom (Fecha-Tomo)= |N
     FK(D-Codigo-Tomo)→ Docentes(D-Cod)
     FK(C-Codigo-Tomo)→ Cursos(C-Codigo)
```

- Un atributo multivaluado tiene múltiples valores para un mismo elemento de la entidad.
 - Ejemplo: números de teléfonos, títulos de un profesional.
- Pueden tener cotas inferiores y/o superiores en la cantidad de valores posibles.
 - Ejemplo: tres teléfonos como máximo y uno como mínimo.

Modelo Entidad Relación

Modelo Relacional

Si $a \in A$, entonces en la instancia de (A-AM) existirán para a tantas nuplas como valores hubiera tenido a en el atributo A_m .

Prof. Norma Herrera Año 2024 3

Modelo Entidad Relación

Modelo Relacional

Socios = { S-ID, S-Nombre} Socios-Teléfonos = { S-ID, S-Teléfono}

Si el socio 10 tenía seis teléfonos, entonces en la instancia de *Socios-Teléfonos* existirán seis nuplas para el socio 10.

Modelo Relacional

Esquema:

Socios = { S-ID, S-Nombre}

Socios-Teléfonos = { S-ID, S-Teléfono}

Instancia:

S-ID	S-Nombre
1	Juan Pérez
2	Ana García

S-ID	S-Teléfono
1	1111
1	2222
1	3333
2	4444

OTRO CASO: Si para cada socio interesa registrar como máximo 3 teléfonos, podemos pasar de la siguiente forma:

Modelo Entidad Relación

Modelo Relacional

Socios = { S-ID, S-Nombre, S-Tel1, S-Tel2, S-Tel3} dom(S-Tel1) = dom(S-Tel2) = dom(S-Tel3) = |N|

Prof. Norma Herrera Año 2024 41

Preguntas?