Large Scale Optimization: Lecture 7

Jimmy Lin, Vutha Va and David Inouye

The University of Texas at Austin

September 23, 2014

Newton Step

Definition

For $x \in \text{dom } f$, the vector

$$\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \tag{1}$$

is called *Newton step* for function $f(\cdot)$ at point x.

Note that $f(\cdot)$ should be twice differentiable. In terms of positive definiteness of $\nabla^2 f(x)$,

$$\nabla f(x)^T \Delta x_{nt} = -\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) < 0$$
 (2)

unless $\nabla f(x) = 0$. So the Newton step is a descent direction unless x is already optimal.

Interpretation I

Minimizer of second-order Approximation

Second-order Taylor approximation \hat{f} of f at x is

$$\hat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$
 (3)

where RHS is minimized at direction

$$v = -\nabla^2 f(x)^{-1} \nabla f(x) = \Delta x_{nt}$$
 (4)

Combined with update rule, we have Newton update

$$x^{+} = x - t\nabla^{2} f(x)^{-1} \nabla f(x)$$
(5)

where t is fixed step size.

Interpretation I

Minimizer of second-order Approximation

Figure 1: The function f (shown solid) and its second-order approximation \hat{f} at x (dashed). The Newton step Δx_{nt} is what must be added to x to give the minimizer of \hat{f} .

1

¹Illustration and caption from *Convex Optimization*, Boyd and Vandenberghe, 2004

Interpretation II

Steepest descent direction in Hessian norm

Newton step can also be interpreted as steepest descent direction when the norm is defined as

$$||u||_{\nabla^2 f(x)} \triangleq \sqrt{u^T \nabla^2 f(x) u}$$
 (6)

Recall from our discussion over steepest descent method that $P = \nabla^2 f(x)$ is a very good choice as norm $||\cdot||_P$ inselecting steepest descent direction, when x is near x^* . Around x^* , we have $\nabla^2 f(x) \approx \nabla^2 f(x^*)$, which explains why the Newton step is a very good choice of search direction. See Figure 2.

Interpretation II

Steepest descent direction in Hessian norm

Figure 2: The dashed lines are level curves of a convex function. The ellipsoid shown (with solid line) is $\{x+v|v^T\nabla^2f(x)v\leq 1\}$. The arrow shows $-\nabla f(x)$, the gradient descent direction. The Newton step Δx_{nt} is the steepest descent direction in the norm $\|\cdot\|_{\nabla^2 f(x)}$.

2

²Illustration and caption from *Convex Optimization*, Boyd and Vandenberghe, 2004

Interpretation III

Solution of linearized optimality condition

Newton step can also be interpreted as to linear approximation over gradient $\nabla f(x)$ around x.

$$\nabla f(x+v) \approx \nabla f(x) + \nabla^2 f(x)v$$
 (7)

Set RHS to zero gives Newton step Δx_{nt}

$$v = -\nabla^2 f(x)^{-1} \nabla f(x) = \Delta x_{nt}$$
 (8)

So the Newton step Δx_{nt} is what must be added to x so that the linearized optimality condition holds.

Again, this suggests that when x is near x^* , the update $x + \Delta x_{nt}$ should be a very good approximation of x^* .

Interpretation III

Solution of linearized optimality condition

Figure 3: The solid curve is the derivative f' of the function f shown in Figure 2. \hat{f}' is the linear approximation of f' at x. The Newton step Δx_{nt} is the difference between the root of \hat{f}' and the point x.

3

³ Illustration and caption from Convex Optimization, Boyd and Vandenberghe, 2004

Affine Invariance of Newton step

Lemma

Newton step is affine invariant.

For example, let g(y) = f(Ay), y^+ be newton update on function $g(\cdot)$, and x^+ be newton update on function $f(\cdot)$. Then if x = Ay, we have $x^+ = Ay^+$.

Result

Affine Invariance indicates that Newton Method is invulnerable to the selection of coordinate system.

Result

Gradient Descent Method is not affine invariant. This means that bad coordinate choice may limit the power of Gradient Descent Method.

Proof of Affine Invariance of Newton step

Let x = Ay and g(y) = f(Ay), then we have

$$\nabla_y^2 g(y) = \nabla_y^2 f(Ay) = A^T \nabla_x^2 f(x) A \tag{9}$$

$$\nabla_{Y}g(y) = \nabla_{Y}f(Ay) = A^{T}\nabla_{X}f(X) \tag{10}$$

Newton update y^+ for $g(\cdot)$ can be extended as

$$y^{+} = y - t(\nabla_{y}^{2}g(y)^{-1}\nabla_{y}g(y)$$

$$= y - t(A^{T}\nabla_{x}^{2}f(x)A)^{-1}A^{T}\nabla_{x}f(x)$$

$$= y - t(A^{-1}\nabla_{x}^{2}f(x)^{-1}\nabla_{x}f(x))$$
(11)

Multiply both sides with affine tranformation A,

$$Ay^{+} = Ay - A \cdot t \ A^{-1} \nabla_{x}^{2} f(x)^{-1} \nabla_{x} f(x)$$

$$= x - t \ \nabla_{x}^{2} f(x)^{-1} \nabla_{x} f(x)$$

$$= x^{+}$$
(12)

Convergence Analysis: Assumption

Let $f(\cdot)$ be the function discussed for Convergence of Newton Method. Both of following assumptions are what our convergence analysis relies on.

■ Function $f(\cdot)$ is strongly convex, such that

$$mI \leq \nabla^2 f(x) \leq MI$$
 (13)

■ $\nabla^2 f(x)$ is *L*-Lipschitz with constant L > 0, such that

$$\|\nabla^2 f(y) - \nabla^2 f(x)\|_2 \le L\|x - y\|_2, \ \forall x, \ y$$
 (14)

Note that induced matrix norm $\|\cdot\|_2$ equals to the largest singluar value of inside matrix.

Convergence Analysis: Theorem

Theorem (Part I)

There exists f, η , γ , where $0 \le \eta \le \frac{m^2}{L}$, $\gamma = \frac{\alpha\beta m}{M^2}\eta^2$ such that Newton Method with BTLS has two phases:

(a) Global or Damped Phase: If $\|\nabla f(x)\|_2 \ge \eta$, then

$$f(x^+) - f(x) \le -\gamma$$
, also $f(x^+) - f^* \le c(f(x) - f^*)$ (15)

Inequality (15) has three implications:

- **E**very newton step with BTLS gets closer to global optima by at least γ .
- Damped phase has at most $\frac{f(x^{(0)})-f^*}{\gamma}$ iterations.
- The damped phase essentially conforms to property of linear convergence.

Convergence Analysis: Theorem

Theorem (Part II)

(b) Local or Quadratic Phase: If $\|\nabla f(x)\|_2 < \eta$, then BTLS will give t=1 and we have

$$\frac{L}{2m^2} \|\nabla f(x^+)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x)\|_2\right)^2 \tag{16}$$

Implications:

- To achieve an accuracy of ε , only $O(\log \log \varepsilon)$ iterations are needed once in the quadratic phase.
- Also, for strongly convex functions, $f(x) \rightarrow p^*$ quadratically.

Convergence Analysis: Part (a)

The way we prove convergence in global phase (a) is to employ a particular step size t, then show that this particular t will eventually end the loops of BTLS and the desired inequal property holds under the exiting condition of BTLS.

Lemma (BTLS Damped Lemma)

 $t = \frac{m}{M}$ satisfies the exit condition of BTLS.

Lemma (Damped Phase Lemma)

If
$$\|\nabla f(x)\|_2 \ge \eta$$
, then $f(x^+) - f(x) \le -\gamma$, where $\gamma = \frac{\alpha \beta m}{M^2} \eta^2$

Convergence Analysis: Part (a)

Proof of BTLS Damped Lemma

$$f(x^{+}) = f(x - tH^{-1}g)$$

$$\leq f(x) - tg^{T}H^{-1}g + \frac{M}{2}t^{2}g^{T}H^{-1}H^{-1}g \qquad (17)$$

$$\leq f(x) - tg^{T}H^{-1}g + \frac{M}{2m}t^{2}g^{T}H^{-1}g \qquad (18)$$

$$= f(x) - \frac{m}{2M}g^{T}H^{-1}g \qquad \text{by setting } t = \frac{m}{M}$$

$$\leq f(x) - \alpha \frac{m}{M}g^{T}H^{-1}g \qquad \text{since } \alpha < \frac{1}{2}$$

Hence, $t = \frac{m}{M}$ satisfies the BTLS exit condition. Note that derivation from (17) to (18) is given by

$$g^T H^{-1} H^{-1} g = g^T H^{-1/2} H^{-1} H^{-1/2} g \le \frac{1}{m} g^T H^{-1} g$$

Convergence Analysis: Part (a)

Proof of Damped Phase Lemma

$$t \leq \beta \frac{m}{M} \qquad \text{(BTLS Damped Lemma)}$$

$$f(x^{+}) \leq f(x) - \alpha \left(\beta \frac{m}{M}\right) g^{T} H^{-1} g \qquad \text{(BTLS condition)}$$

$$\leq f(x) - \alpha \left(\beta \frac{m}{M}\right) \left(\frac{1}{M} \|g\|_{2}^{2}\right) \qquad (H^{-1} \leq I/m)$$

$$= f(x) - \alpha \beta \frac{m}{M^{2}} \|g\|_{2}^{2}$$

$$= f(x) - \alpha \beta \frac{m}{M^{2}} \eta^{2} \qquad (19)$$

$$\implies f(x^{+}) - f(x) = -\gamma \qquad (20)$$

Convergence Analysis: Part (b)

Now cast our focus to provide the convergence guarantee when $\|\nabla f(x)\|_2 < \eta$ is the case. Smilarly, we address the proof by dividing it into two separate lemmas.

Lemma (BTLS Quad. Lemma)

With the assumptions in (b), t = 1 satisfies the exit condition of BTLS.

Note that proof of BTLS Quad. Lemma will come after the proof of the Quad. Phase Lemma.

Lemma (Quad. Phase Lemma)

If
$$\|\nabla f(x)\|_2 < \eta$$
, then $\frac{L}{2m^2} \|\nabla f(x^+)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x)\|_2\right)^2$

Convergence Analysis: Part (b)

Proof of Quad. Phase Lemma

$$\begin{split} \text{Let } x^+ &= x - H^{-1}g & (\text{BTLS Quad. Lemma}) \\ \|\nabla f(x^+)\|_2 &= \|\nabla f(x - H^{-1}g) - g + HH^{-1}g\|_2 & (\text{Add zero}) \\ &= \left\| \int_0^1 \nabla^2 f(x - tH^{-1}g)(-H^{-1}g) + HH^{-1}g \mathrm{d}t \right\|_2 \\ & (\text{Fund. Theorem of Calculus}) \\ &= \left\| \int_0^1 (\nabla^2 f(x - tH^{-1}g) - H)(-H^{-1}g) \mathrm{d}t \right\|_2 \\ & (\text{Rearrange}) \\ &\leq \int_0^1 \left\| (\nabla^2 f(x - tH^{-1}g) - H) \right\|_2 \left\| (-H^{-1}g) \right\|_2 \mathrm{d}t \\ & (\text{Triangle inequality of norms}) \end{split}$$

Convergence Analysis: Quad. Phase Lemma

Proof of Quad. Phase Lemma

$$\begin{split} \|\nabla f(x^{+})\|_{2} &\leq \int_{0}^{1} \left\| (\nabla^{2} f(x - tH^{-1}g) - H) \right\|_{2} \|H^{-1}g\|_{2} \mathrm{d}t \\ &\leq \int_{0}^{1} L \|-tH^{-1}g\|_{2} \|H^{-1}g\|_{2} \mathrm{d}t \\ &\qquad \qquad \text{(Liptschitz Continuity of Hessian)} \\ &= L \|H^{-1}g\|_{2}^{2} \int_{0}^{1} t \mathrm{d}t = \frac{L}{2} \|H^{-1}g\|_{2}^{2} \\ &\leq \frac{L}{2m^{2}} \|g\|_{2}^{2} \qquad \text{(Strong convexity } (H^{-1} \leq I/m)) \end{split}$$

 $\implies \frac{L}{2m^2} \|\nabla f(x^+)\|_2 \le \left(\frac{L}{2m^2} \|g\|_2\right)^2$

(21)

Convergence Analysis: Part (b)

Proof of BTLS Quad. Lemma

Now we show that t = 1 satisfies the exit condition of BTLS under the assumption of (b).

Setting t = 1 we have,

$$f(x + \Delta x_{\text{nt}}) \leq f(x) - \frac{1}{2}\lambda^{2}(x) + \frac{L}{6m^{3/2}}\lambda^{3}(x)$$

$$= f(x) - \lambda^{2}(x) \left(\frac{1}{2} - \frac{L\lambda(x)}{6m^{3/2}}\right)$$

$$= f(x) + g^{T} \Delta x_{\text{nt}} \left(\frac{1}{2} - \frac{L\lambda(x)}{6m^{3/2}}\right)$$
(22)

Convergence Analysis: Part (b)

Proof of BTLS Quad. Lemma

Again using strong convexity, we have

$$\lambda(x) = (g^T H^{-1} g)^{1/2} \le \frac{1}{m^{1/2}} \|g\|_2 < \frac{1}{m^{1/2}} \eta.$$
 (23)

where the last inequality follows from the assumption $\|g\|_2 < \eta$. Hence if we choose α such that,

$$\alpha < \frac{1}{2} - \frac{L\lambda(x)}{6m^{3/2}}$$

$$< \frac{1}{2} - \frac{L}{6m^2}\eta$$
(24)

then t = 1 satisfies BTLS exit condition.