Topic: High spatial and temporal resolution model of soil moisture and temperature time series using machine learning approach.

Advisor: Prof. Su

Research Scientist: Dr. Nieman

Intern Name: Anne Ekong Date: October 25th, 2024.

content

- Introduction
- Data Collection/Data Preprocessing
- Machine Learning Approach
- Model Training
- Evaluation Metrics
- Result/Discussion
- Acknowledgements
- Questions & Answers

Introduction

- Soil moisture and temperature are critically important factors affecting seed germination and monitoring these conditions are essential for understanding environmental dynamics.
- The in-situ soil temperature and soil moisture data loggers is used to capture continuous soil moisture and temperature time series data, located on 16 of 64 research site. Due to cost, it could be installed on the 64 research sites.
- The portable probe is used to collect additional data point on the research site, but they lack the temporal resolution needed to build continuous time series.
- The aim is to integrate the situ soil temperature and moisture data loggers with the portable probes using machine learning to estimate soil conditions in the unmonitored research sites.

An Aerial view of USDA-ARS Dale Bumpers Small Farms Research Center in Booneville, AR.

Data Collection

- The in-situ soil moisture and temperature data loggers recorded a high-resolution temporal data from February 28th,2024 to June 5th, 2024.
- The portable probe recorded soil moisture and temperature with limited temporal resolution from February 23rd,2024 to June 5th, 2024.
- A few of the data collected in various research site is shown below.

Logger data

Plot 211: 550	40 observations	
	Ch:1 - Water Content (m3/m3)	Ch:3 - Temperature (°C)
Date-Time (CDT)		
2024-02-28 08:40:28	-0.056	17.200
2024-02-28 08:41:28	-0.055	17.329
2024-02-28 08:42:28	-0.060	17.372
2024-02-28 08:43:28	-0.054	17.372
2024-02-28 08:44:28	-0.055	17.415
2024-06-05 08:06:09	0.412	23.507
2024-06-05 08:21:09	0.422	23.507
2024-06-05 08:36:09	0.423	23.464
2024-06-05 08:51:09	0.420	23.507
2024-06-05 09:06:09	0.413	23.635
55040 rows × 2 column	ns	

Logger data

Plo	Plot 133: 48387 observations	
	Ch:1 - Water Content (m3/m3)	Ch:3 - Temperature (°C)
Date-Time (CDT)		
2024-02-28 08:34:47	-0.054	17.458
2024-02-28 08:35:47	-0.056	17.501
2024-02-28 08:36:47	-0.057	17.543
2024-02-28 08:37:47	-0.056	17.586
2024-02-28 08:38:47	-0.058	17.586
2024-06-05 07:57:46	0.380	22.820
2024-06-05 08:12:46	0.381	22.820
2024-06-05 08:27:46	0.380	22.820
2024-06-05 08:42:46	0.378	22.906
2024-06-05 08:57:46	0.378	22.949
48387 rows × 2 column	s	

Exploratory Data Analysis

Data Preprocessing

- The negative values of soil moisture/ outliers was replaced with NaN.
- Resampled the logger data to a minute frequency to align with the portable probe data.
- Ensured Date time column is in chronological order.
- Checked for missing values.
- Convert the datetime column to a format that handles date time object.

Correlation matrix/Heat Map

Machine Learning Techniques for gap filling

- Separate nan and non-nan rows.
- Select target variable and predictors
- Split the data into training and testing sets
- Train the RF /Lasso model
- · Hyperparameter tuning using grid search cross validation.
- Evaluate the model performance
- Validate the model performance.

Model performance metrics for continuous loggers

Lasso Regression			
Site	R2	RMSE	
101	0.7093	0.00636	
111	0.248	0.0105	
123	0.907	0.022	
133	0.6917	0.146	
203	0.906	0.022	
211	0.7093	0.0064	
222	0.9503	0.0101	
234	0.8974	0.02817	
322	0.8972	0.0093	
323	0.9160	0.0218	
331	0.9278	0.0132	
332	0.59	0.020	
401	0.9345	0.0117	
412	0.8503	0.0137	
413	0.9075	0.0219	
424	0.9357	0.0127	

Random Forest			
site	R2	RMSE	
101	0.98148	0.0016	
111	0.98545	0.00146	
123	0.9997	0.00129	
133	0.99789	0.00121	
203	0.9992	0.00119	
211	0.9990	0.0013	
222	0.9994	0.00107	
234	0.9781	0.0130	
322	0.9974	0.00149	
323	0.9997	0.0013	
331	0.9992	0.00138	
332	0.9977	0.0015	
401	0.9992	0.00126	
412	0.9978	0.00168	
413	0.9996	0.00138	
424	0.9995	0.0011	

Validating metrics performance/Model interpretation

- The point are clustered around the red dashed lines. this indicates that the model predictions are quite close to the actual values.
- There are some points that deviate from the line which represent prediction errors.
- The linear pattern also suggest the linear relationship that exist between the predictors and the target variable.

Validating metrics performance

- Points that lie far from the zero line indicates outliers as result of external factors like precipitation.
- The residuals is centered around zero, indicating the model is unbiased.
- The clustering in the upper predicted values indicate the data points.

Portable probe data

logger_	data		
	Date-Time (CDT)	Plot Number	Moisture_logger
0	2024-02-28 08:27:00	101	0.338168
1	2024-02-28 08:28:00	101	0.338168
2	2024-02-28 08:29:00	101	0.338168
3	2024-02-28 08:30:00	101	0.338168
4	2024-02-28 08:31:00	101	0.338168
2258923	2024-06-05 09:25:00	424	0.422867
2258924	2024-06-05 09:26:00	424	0.423000
2258925	2024-06-05 09:27:00	424	0.417507
2258926	2024-06-05 09:28:00	424	0.417507
2258927	2024-06-05 09:29:00	424	0.417507
2258928	rows × 3 columns		

	DateTime	Plot Number	Moisture (m3/m3)	Temp (°F)	E.C. (M.S.)
0	2024-02-23 07:52:00	134	0.429	51.0	0.62
1	2024-02-23 07:52:00	134	0.429	51.0	0.62
2	2024-02-23 07:53:00	132	0.421	50.0	0.53
3	2024-02-23 07:53:00	133	0.422	50.0	0.54
4	2024-02-23 07:53:00	132	0.421	50.0	0.53
3771	NaN	423	NaN	NaN	NaN
3772	NaN	431	NaN	NaN	NaN
3773	NaN	432	NaN	NaN	NaN
3774	NaN	433	NaN	NaN	NaN
3775	NaN	434	NaN	NaN	NaN
2776 ,	rowe v 5 columns				

3776 rows x 5 columns

Data Preprocessing to gap fill the portable probe

- Use the complete logger data from the monitored plots and portable probe data as input features.
- Organize the logger and probe data to align time points.
- Ensured Date time is in chronological order.
- Logger data from the monitored plots is aligned with portable probe data from unmonitored plots based on site numbers and time stamp.
- For time points where probe data is unavailable, the model will use the aligned time series data from the logger plots to predict soil moisture and temperature for the unmonitored plots

Steps to merge the portable probe data and logger data

- Merges the portable probe data and logger data on Date-Time (CDT) and Plot Number.
- Trains a Random Forest model on rows where both Moisture (m3/m3) and Moisture_logger are present.
- Use the model to predict and fill in missing moisture values in the portable dataset.

Gap filled soil moisture data

	Date-Time (CDT)	Plot Number	Moisture (m3/m3)
0	2024-02-23 07:52:00	134	0.429
1	2024-02-23 07:52:00	134	0.429
2	2024-02-23 07:53:00	132	0.421
3	2024-02-23 07:53:00	133	0.422
4	2024-02-23 07:53:00	132	0.421
3376	2024-05-31 10:09:00	434	0.520
3377	2024-05-31 10:10:00	401	0.609
3378	2024-05-31 10:10:00	402	0.507
3577	2024-05-28 13:30:00	322	0.530
3775	2024-05-28 13:30:00	321	0.338
2864 rows × 3 columns			

Conclusion

- The in -situ logger, hand -held portable soil moisture and temperature probe and machine learning approaches has been used create time series data of soil moisture and temperature.
- The Random Forest algorithm appears to perform well for predicting soil moisture with a good prediction accuracy for the in- situ measurements which occurred because of sensor malfunction.
- The low correlation that exist between covariates(in-situ measurements) indicate that in-situ may not be directly predictive of the portable soil moisture and temperature probe.
- · Improve Model Performance by integrating external data and augmenting the data.

Questions