21-740

Functional Analysis II Assignment 1 Due on Friday September 20

Fall 2013

Please hand in solutions to all six problems..

1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be real Banach spaces with X compactly embedded in Y and assume that X is reflexive. Let K be a closed convex subset of X having the property that

$$\alpha x \in K$$
 for all $x \in K, \alpha > 0$.

Let $A \in \mathcal{L}(X;Y)$ be given and assume that

$$\mathcal{N}(A) \cap K = \{0\},\$$

$$||x||_X \le ||x||_Y + ||Ax||_Y$$
 for all $x \in X$.

Show that there exists a constant C such that

$$||x||_Y \le C||Ax||_Y$$
 for all $x \in K$.

2. Let X be a Banach space. A closed subspace M of X is said to be complemented provided that there exists a closed subspace N such that

$$X = M + N, \text{ and } M \cap N = \{0\}.$$

Every closed subspace of a Hilbert space is complemented by the Projection Theorem. However, closed subspaces of Banach spaces need not be complemented. (In particular, c_0 is not complemented in l^{∞} .) Show that in a Banach space X, every finite-dimensional subspace is complemented.

3. Give an example of two closed subspaces M and N of a Hilbert space X such that

$$M \cap N = \{0\}$$
 and $M + N$ is dense in X ,

but $M + N \neq X$.

- 4. Let X be a Hilbert space and assume that $A \in \mathcal{L}(X;X)$ is normal. Show that A is injective if and only if $\mathcal{R}(A)$ is dense.
- 5. Let X be a complex Hilbert space and $A \in \mathcal{L}(X;X)$ be given. Show that A is compact if and only if $(Ax_n, x_n) \to 0$ for every sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to 0$ (weakly) as $n \to 0$.
- 6. Let X be a complex Hilbert space and $A \in \mathcal{L}(X;X)$ be given. Assume that A is self-adjoint. Put

$$U = \sum_{n=0}^{\infty} \frac{(iA)^n}{n!}.$$

Show that U is unitary.