

FIG. 1

FIG. 2A

FIG. 2B

FIG. 3

FIG. 3A

FIG. 4

FIG. 4A

FIG. 5

FIG. 5A

FIG. 5B

FIG. 5D

FIG. 6

FIG. 7A

FIG. 8

FIG. 7B

FIG. 11

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

FIG. 13A

FIG. 13B

PULL OUT FORCES OF VARIOUS THREADED SCREWS

DESCRIPTION	THREADS PER INCH	HEIGHT OF THREADS	SHAFT DIAMETER	AVERAGE PULL OUT FORCE (LBS)
DRYWALL SCREW	15	0.023	0.093	1.80
DRYWALL SCREW	15	0.024	0.088	1.80
DRYWALL SCREW	8	0.028	0.122	1.75
HEX BOLT	30	0.015	0.132	<0.250
SHEET METAL SCREW	10	0.032	0.156	3.00

FIG. 14

PULL OUT FORCES OF BARBED SHUNTS

DESCRIPTION	NUMBER OF	BARB	IMBER OF BARB BARB BARB	BARB	BARB HEICHT (IN)	AVERAGE REMOVAL
(ALL BARBS ARE AININOLAR)	DANDS	DANING	(VIII) LI LOIVA	טואוניו בא	חבוסחו (ווע)	LONGE (EDS)
ANGLED BARBS FACING ONE DIRECTION	ဒ	0.140	0.040	0.110	0.0065	0.38
CONTINUOUS ANGLED BARBS, NO SPACING BETWEEN EACH ONE	8	NONE	0.068	0.109	0.0055	0.42
ANGLED BARBS FACING ONE DIRECTION, FLANGE AT ONE END (TESTED IN DIFFERENT HEART)	9	NONE	0.085	0.108	0.0065	0.13
FLAT BARBS	4	0.062	0.049	0.108	0.0060	0.29
FLAT BARBS	2	0.140	0.054	0.110	0.0065	0.25
STENT ANGLED AT ONE END, FLAT BARBS, FLANGE AT OPPOSITE END (TESTED IN DIFFERENT HEART)	3	0.094	0.097	0.109	0.0035	<.13
CONTROL SAMPLE	NONE	NONE	NONE	NONE	NONE	0~
*ALL INSERTION FORCES ARE APPROXIMATELY 1.0 LB *THE APPROXIMATE WAI! THICKNESS OF THE LEFT VENTRICLE IS 67-84 IN NEAR	SOXIMATELY 1.0 LB	ENTRICLE IS	6784 IN. NEA	<u>~</u>		
THE APEX OF THE HEART IT IS APPROXIMATELY .51 IN	ROXIMATELY .51 IN					

FIG. 15

PULL THROUGH FORCES FOR FLANGES THROUGH ARTERIAL WALL

FORCE (LBS)
0.114
0.097
0.108
0.109
0.094

FIG. 16