

Introduction to source coding

Dr. Yoann Altmann

B39AX – Fall 2023 Heriot-Watt University

Plan

- Types of compression
- Lossless compression
 - Expected code length
 - Prefix codes
 - Optimal codes
 - Shannon source coding theorem (symbol code)
 - Huffman code
- Based on the book:
 "Information Theory,. Inference, and Learning Algorithms". David J.C. MacKay (Chap. 4-5)

Revision (DMS)

- X takes values from the alphabet $\mathcal{A} = \{a_1, a_2, ..., a_N\}$ with probabilities $p_n = \mathbb{p}(X = a_n)$
- Information content of a_n

$$I(a_n) = \log_2\left(\frac{1}{p_n}\right) = -\log_2(p_n)$$

Entropy

$$H(X) = \mathbb{E}[I(a_n)] = \sum_{n=1}^{N} p_n I(a_n) = -\sum_{n=1}^{N} p_n \log_2 p_n$$

Continuous RV

• Information content of a_n

$$I(x) = \log_2\left(\frac{1}{f(x)}\right) = -\log_2(f(x))$$

Entropy

$$H(X) = \mathbb{E}[I(x)] = -\int f(x) \log_2(f(x)) dx$$

Joint entropy

• Let X and Y be two (discrete) RVs defined on \mathcal{A}_X and \mathcal{A}_Y

$$H(X,Y) = -\sum_{x \in \mathcal{A}_X, y \in \mathcal{A}_Y} p(x,y) \log_2(p(x,y))$$

Important property

Let X and Y be two RVs. We have

$$H(X,Y) = H(X) + H(Y)$$

if and only if X and Y are independent, i.e., p(X,Y) = p(X)p(Y)

Two main types of compression

 Lossy compression: some original messages are assigned the same code, which makes perfect reconstruction impossible. (not covered in this course)

Ex: image compression

 Lossless compression: some symbols are shorten, some are made longer. The goal is to shorten the message with high probability

Here we are not considering (channel) noise errors yet

Lossless compression

- In the lossy compression context
 - Compression of blocks of RVs
 - Same code length for each symbol
 - Parts of the alphabet are not coded
- In the lossless compression context
 - Symbol coding
 - Stream coding (not covered in this course)
 - Some codes are short, some are long
- Analysis of variable-length encoding schemes

Notations

- \mathcal{A}^N : set of ordered N-tuples of elements from \mathcal{A} , i.e., all the strings of lengths N.
- \mathcal{A}^+ : set of all strings of finite length composed of the elements of \mathcal{A}

Examples:

```
\{0,1\}^3 = \{000,001,010,011,100,101,110,111\}
\{0,1\}^+ = \{0,1,00,01,11,000,...\}
```


Binary symbol code

- A binary symbol code C for X is a mapping from
 A to {0,1}⁺
- c(x) is the codeword corresponding to x and l(x) is its length, i.e., $l_i = l(a_i)$
- Extended code C^+ is a mapping from \mathcal{A}^+ to $\{0,1\}^+$ obtained by concatenation, without punctuation of the corresponding codewords
- $c^+(x_1x_2...x_N) = c(x_1)c(x_2)...c(x_N)$

Example

•
$$\mathcal{A} = \{a, b, c, d\}, \mathcal{P} = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right\}$$

Let C by defined by

a_i	$c(a_i)$	l_i
а	1000	4
b	0100	4
С	0010	4
d	0001	4

• $c^+(acdb) = 1000001000010100$

Uniquely decodable encoding

 A code C is uniquely decodable if under C⁺no two distinct strings have the same encoding

$$\forall x, y \in \mathcal{A}^+, x \neq y \Rightarrow c^+(x) \neq c^+(y)$$

- A valid encoding should be uniquely decodable
- How to ensure this?

Example 1

•
$$\mathcal{A} = \{a, b, c, d\}, \mathcal{P} = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right\}$$

Let C by defined by

 C is uniquely decodable 	•	C	is	uniqu	ıely	decod	lable
---	---	---	----	-------	------	-------	-------

a_i	$c(a_i)$	l_i
а	1000	4
b	0100	4
С	0010	4
d	0001	4

Example 2

•
$$\mathcal{A} = \{a, b, c, d\}, \mathcal{P} = \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right\}$$

Let C by defined by

a_i	$c(a_i)$	l_i
а	1	1
b	110	3
С	0011	4
d	0001	4

C is not uniquely decodable

$$c^{+}(aada) = 1100011 = c^{+}(bc)$$

Prefix codes

- A symbol code is called prefix code if no codeword is a prefix of any other codeword
- Prefix code = instantaneous/self-punctuating code
- A prefix code is uniquely decodable
- A uniquely decodable code is not necessary a prefix code

Examples

- $C_1 = \{0,101\}$: prefix code
- $C_2 = \{1,101\}$: not prefix code (but uniquely decodable)
- $C_3 = \{0,10,110,111\}$: prefix code
- $C_4 = \{00,01,10,11\}$: prefix code