Department of Mathematics, IIT Madras MA1020 Series & Matrices

Assignment-4 Linear Systems & Eigenvalue Problem

1. Solve the following system by Gauss-Jordan elimination:

- 2. Let $A \in \mathbb{F}^{m \times n}$ have columns A_1, \ldots, A_n . Let $b \in \mathbb{F}^m$. Show the following:
 - (a) The equation Ax = 0 has a non-zero solution iff A_1, \ldots, A_n are linearly dependent.
 - (b) The equation Ax = b has at least one solution iff $b \in \text{span}\{A_1, \dots, A_n\}$.
 - (c) The equation Ax = b has at most one solution iff A_1, \ldots, A_n are linearly independent.
 - (d) The equation Ax = b has a unique solution iff rank A = rank[A|b] = number of unknowns.
- 3. Check if the system is consistent. If so, determine the solution set.

(a)
$$x_1 - x_2 + 2x_3 - 3x_4 = 7$$
, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 - 5x_2 + x_3 = -2$, $3x_1 - 2x_2 - 2x_3 + 10x_4 = -12$.

(b)
$$x_1 - x_2 + 2x_3 - 3x_4 = 7$$
, $4x_1 + 3x_3 + x_4 = 9$, $2x_1 - 5x_2 + x_3 = -2$, $3x_1 - 2x_2 - 2x_3 + 10x_4 = -14$.

4. Using Gauss-Jordan elimination determine the values of $k \in \mathbb{R}$ so that the system of linear equations

$$x + y - z = 1$$
, $2x + 3y + kz = 3$, $x + ky + 3z = 2$

has (a) no solution, (b) infinitely many solutions, (c) exactly one solution.

5. Find the eigenvalues and the associated eigenvectors for the matrices given below.

(a)
$$\begin{bmatrix} 3 & 10 \\ 8 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 13 & 2 \\ -1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} -2 & -1 \\ 15 & 12 \end{bmatrix}$ (d) $\begin{bmatrix} -2 & 0 & 3 \\ -2 & 3 & 0 \\ 10 & 0 & 5 \end{bmatrix}$

- 6. Let $A \in \mathbb{C}^{n \times n}$ be invertible. Show that $\lambda \in \mathbb{C}$ is an eigenvalue of A if and only if $1/\lambda$ is an eigenvalue of A^{-1} .
- 7. Let A be an $n \times n$ matrix and α be a scalar such that each row (or each column) sums to α . Show that α is an eigenvalue of A.
- 8. Give an example of an $n \times n$ matrix that cannot be diagonalized.
- 9. Find the matrix $A \in \mathbb{R}^{3\times 3}$ that satisfies the given condition. Diagonalize it if possible.

(a)
$$A(a, b, c)^T = (a + b + c, a + b - c, a - b + c)^T$$
 for all $a, b, c \in \mathbb{R}$.

(b)
$$Ae_1 = 0$$
, $Ae_2 = e_1$, $Ae_3 = e_2$.

(c)
$$Ae_1 = e_2$$
, $Ae_2 = e_3$, $Ae_3 = 0$.

(d)
$$Ae_1 = e_3$$
, $Ae_2 = e_2$, $Ae_3 = e_1$.

10. Which of the following matrices is/are diagonalizable? If one is diagonalizable, then diagonalize it.

(a)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$.