Problem B. Knapsack Problem (Real)

- 2023.12.08 03:30 Update: Strengthen tests, rejudged solutions.
- 2023.12.06 18:30 Update: Memory Limit 4 MiB \rightarrow 16 MiB, rejudged solutions.

Problem Description

There are n items, each item i has a cost c_i and a value v_i , and can be picked infinitely many times. Let S be the multiset of items you picked, please find the maximum value of $\sum_{i \in S} v_i$ under the constraint of $\sum_{i \in S} c_i \leq V$.

There are t test cases.

Input Format

• line 1: t

t blocks:

- line 1: n V
- line 2: c_1 c_2 ... c_n
- line 3: v_1 v_2 ... v_n

Output Format

t blocks:

• line 1: ans

Constraints

- $1 \le t \le 10$.
- $1 \le n \le 100\,000$.
 - Sum of *n* across all test cases ≤ 100000 .
- $1 \le V \le 10^9$.
- $1 \le c_i \le 1200$ for $i = 1, 2, \dots, n$.
- $1 \le v_i \le 10^9$ for $i = 1, 2, \dots, n$.
- All input values are integers.

Subtasks

```
1. (25 points) c_i \leq 20 for i=1,2,\ldots,n; \ V \leq 20.
2. (35 points) c_i \leq 100 for i=1,2,\ldots,n; \ V \leq 500.
```

3. (15 points) $c_i \leq 100$ for i = 1, 2, ..., n; $V \leq 60000$.

4. (10 points) $c_i \leq 100$ for $i = 1, 2, \ldots, n$.

5. (10 points) $v_i = c_i$ for i = 1, 2, ..., n.

6. (5 points) No additional constraints.

- \bullet You can get 60% of a subtask's score if you use no more than 256 MiB of memory;
- furthermore, you can get another 40% if you use no more than 16 MiB.

No.	Testdata Range	Time Limit (ms)	Memory Limit (KiB)
Samples	1	2000	262144
1	2	2000	262144
2	2-4	2000	262144
3	2-7	2000	262144
4	2-9	2000	262144
5	10-11	2000	262144
6	1-15	2000	262144

Samples

Sample Input 1

```
4
5 23
5 9 8 8 3
1 11 9 6 3
3 8
3 4 5
7 5 6
1 3
1
1000000000
1 1199
1200
1000000000
```

This sample input satisfies the constraints of Subtask 6.

Sample Output 1

```
26
14
300000000
0
```

- In the first test case, one possible solution is to pick the multiset $\{2,3,5,5\}$, which has a total cost of $23 = c_2 + c_3 + c_5 + c_5$ and a total value of $26 = v_2 + v_3 + v_5 + v_5$.
- In the second test case, the best solution is to pick the multiset $\{1,1\}$ with cost 6 and value 14.
- In the third test case, the best solution is to pick the multiset $\{1,1,1\}$ with cost 3 and value $3\cdot 10^9$.
- In the fourth test case, you can not afford any item, thus the maximum value is 0.