Выбрать метод построения алгоритма задачи варианта. Реализовать программу. Разработать тесты. Провести тестирование. Провести эмпирическую (практическую) оценку вычислительной сложности алгоритма.

Вариант 1

Разработать процедуру оптимальной сборки изделия для случая n конвейеров, имеющих m рабочих мест каждый.

Вариант 2

Разработать процедуру оптимального способа расстановки скобок в произведении последовательности матриц, размеры которых равны (5,10,3,12,5,50,6), чтобы количество скалярных умножений стало минимальным (максимальным).

Вариант 3

Разработать процедуру решения задачи (на основе парадигмы жадного программирования) о выборе подмножества взаимно совместимых процессов, образующих множество максимального размера.

Вариант 4

Разработать процедуру сжатия данных на основе жадного алгоритма Хаффмана.

Практическое занятие №16 Метод линейного программирования

Постановка задачи

Примените метод линейного программирования для решения задачи варианта. Разработайте программу реализации задачи варианта. Выполните тестирование. Провести эмпирическую (практическую) оценку вычислительной сложности алгоритма.

Вариант 1.

Приведите следующую задачу линейного программирования к стандартной форме.

Минимизировать $2x_1 + 7x_2$, при условиях:

1)
$$x_1 = 7$$
; 2)3 $x_1 + x_2 \ge 24$; 3) $x_1 \ge 0$; 4) $x_2 \le 0$

Вариант 2

Преобразуйте следующую задачу линейного программирования в каноническую форму.

Максимизировать $2x_1$ - $6x_3$ при условиях

1)
$$x_1 + x_2 - x_3 \le 7$$

$$2)3x_1 - x_2 \ge 8$$

3)-
$$x_1 + 2x_2 + 2x_3 \ge 0$$

4)
$$x_1$$
, x_2 , $x_3 \ge 0$

Какие переменные являются базисными, а какие небазисными?

Вариант 3

Покажите, что следующая задача линейного программирования является неразрешимой:

Максимизировать $3x_1$ - $2x_2$ при условиях

1)
$$x_1 + x_2 \le 2$$

2) -
$$2x_1 - 2x_2 \le -10$$

3)
$$x_1$$
, $x_2 \ge 0$

Вариант 4

Реализовать симплекс-метод для решения задачи о коммивояжере.

Вариант 5

Реализовать задачу о коммивояжере методом ветвей и границ.

Вариант 6

Реализовать задачу о рюкзаке методом ветвей и границ.