UTC UNISONIC TECHNOLOGIES CO., LTD

78LXX

LINEAR INTEGRATED CIRCUIT

3-TERMINAL 0.1A POSITIVE VOLTAGE REGULATOR

DESCRIPTION

The UTC 78LXX family is monolithic fixed voltage regulator integrated circuit. They are suitable for applications that required supply current up to 100mA.

FEATURES

- * Output current up to 100mA
- * Fixed output voltage of 5V, 6V, 8V, 9V, 10V, 12V, 15V and 18V available
- * Thermal overload shutdown protection
- * Short circuit current limiting

ORDERING INFORMATION

Orderin	g Number	Doolsono	Pin Assignme			nen	ıt		Dooking		
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
-	78LXXG-AB3-R	SOT-89	0	U	_	ı	-	-	-	-	Tape Reel
-	78LXXG-AB3-C-R	SOT-89	G	_	0	ı	-	-	-	-	Tape Reel
-	78LXXG-AF5-R	SOT-25	G	_	0	Z	Ν				Tape Reel
-	78LXXG-S08-R	SOP-8	0	U	G	Z	Ν	G	G	Ι	Tape Reel
78LXXL-T92-B	78LXXG-T92-B	TO-92	0	U	_	ı	-	-	-	-	Tape Box
78LXXL-T92-K	78LXXG-T92-K	TO-92	0	U	_	ı	-	-	-	-	Bulk
78LXXL-T9N-B	78LXXG-T9N-B	TO-92NL	0	U		- 1	-	-	-	-	Tape Box
78LXXL-T9N-K	78LXXG-T9N-K	TO-92NL	0	G	Ī	-	-	_	-	-	Bulk

Note: 1. XX: Output Voltage, refer to Marking Information.

2. Pin Assignment: O: Output G: GND I: Input N: No Connection

www.unisonic.com.tw 1 of 8

■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-89		Date Code Voltage Code 78LXXG Pin Code 1 2 3
SOT-25	05:5.0V 06:6.0V	Voltage Code
SOP-8	08:8.0V 09:9.0V 10:10V 12:12V	Date Code Voltage Code Voltage Code Lot Code
TO-92	15:15V 18:18V	Voltage Code Voltage Code UTC 78LXX G: Halogen Free Date Code 1 2 3
TO-92NL		Voltage Code UTC 78LXX 2 C: Lead Free G: Halogen Free Date Code

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
In must Maltage	V _{OUT} =5~9V	\/	30	V
Input Voltage	V _{OUT} =10~18V	V_{IN}	35	V
Output Current		I _{OUT}	100	mA
	SOT-89		350	mW
Dawar Dissipation	SOT-25	Б	240	mW
Power Dissipation	SOP-8	P_D	300	mW
	TO-92/TO-92NL		625	mW
Junction Temperature		T_J	+150	°C
Operating Temperature		T _{OPR}	-40~+85	°C
Storage Temperature		T _{STG}	-55~+150	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

For UTC78L05 (V_{IN} =10V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

10101010101 (1)N 1011 1001 101	,	1.00 c, c. c.cop. , cc cp. , a				-,
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	4.80	5.0	5.20	V
Output Voltage	V_{OUT}	7V≤V _{IN} ≤20V,I _{OUT} =1mA-40mA	4.75		5.25	V
		7V≤V _{IN} ≤V _{MAX} ,I _{OUT} =1mA-70mA	4.75		5.25	V (note 2)
Load Degulation	437	$T_J=25$ °C, $I_{OUT}=1$ mA-100mA		15	60	mV
Load Regulation	ΔV_{OUT} .	T _J =25°C,I _{OUT} =1mA-40mA		8	30	mV
Line very letion	Λ V Ο U.T	7V≤V _{IN} ≤20V,T _J =25°C		8	150	mV
Line regulation		8V≤V _{IN} ≤20V,T _J =25°C		6	100	mV
Quiescent Current	IQ	V _{IN} =10V,I _{OUT} =0mA,T _J =25°C		2.0	5.5	mA
Quiaccent Current Change	4.1	8V≤V _{IN} ≤20V			1.5	mA
Quiescent Current Change	ΔI_{Q}	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		40		μV
Temperature coefficient of V _{OUT}	$\Delta V_O/\Delta_T$	I _{OUT} =5mA		-0.65		mV/°C
Ripple Rejection	RR	8V≤V _{IN} ≤20V,f=120Hz,T _J =25°C	41	80		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

For UTC78L06 (V_{IN} =12V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	5.76	6.0	6.24	V
Output Voltage	V _{OUT}	8.5V≤V _{IN} ≤20V,I _{OUT} =1mA-40mA	5.70		6.30	V
		8.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	5.70		6.30	V(note 2)
Load Degulation	۸۱/	T _J =25°C,I _{OUT} =1mA-100mA		16	80	mV
Load Regulation	ΔV_{OUT}	T _J =25°C,I _{OUT} =1mA-40mA		9	40	mV
Line regulation	۸۱/	8.5V≤V _{IN} ≤20V,T _J =25°C		64	175	mV
Line regulation	ΔV _{OUT} 9V≤V _{IN}	9V≤V _{IN} ≤20V,T _J =25°C		54	125	mV
Quiescent Current	ΙQ	V _{IN} =12V,I _{OUT} =0mA,T _J =25°C		3.9	6.0	mA
Quiaccent Current Change	Λ1	9V≤V _{IN} ≤20V			1.5	mA
Quiescent Current Change	Δl _Q	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		49		μV
Temperature coefficient of V _{OUT}	$\Delta V_O/\Delta_T$	I _{OUT} =5mA		-0.75		mV/°C
Ripple Rejection	RR	10V≤V _{IN} ≤20V,f=120Hz, T _J =25°C	40	46		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

■ ELECTRICAL CHARACTERISTICS (Cont.)

For UTC78L08 (V_{IN} =14V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 0				,	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	7.68	8.0	8.32	V
Output Voltage	V_{OUT}	10.5V≤V _{IN} ≤23V,I _{OUT} =1mA-40mA	7.60		8.40	V
		10.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	7.60		8.40	V(note 2)
Load Degulation	۸۱/	T _J =25°C,I _{OUT} =1mA-100mA		18	80	mV
Load Regulation	ΔV_{OUT}	T _J =25°C,I _{OUT} =1mA-40mA		8 8.0 8.32 0 8.40 0 8.40 18 80 10 40 10 175 8 125 2.0 5.5 1.5 0.1	mV	
Line regulation	$\Lambda V_{\alpha \cup \tau}$	10.5V≤V _{IN} ≤23V,T _J =25°C		10	175	mV
		11V≤V _{IN} ≤23V,T _J =25°C		8	125	mV
Quiescent Current	ΙQ	V _{IN} =14V,I _{OUT} =0mA,T _J =25°C		2.0	5.5	mA
Quiaccent Current Change	Δ1	11V≤V _{IN} ≤23V			1.5	mA
Quiescent Current Change	ΔI_Q	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		49		μV
Temperature coefficient of Vo	$\Delta V_O/\Delta_T$	I _{OUT} =5mA		-0.75		mV/°C
Ripple Rejection	RR	11V≤V _{IN} ≤23V,f=120Hz,T _J =25°C	39	70		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

For UTC78L09 (V_{IN} =15V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

(114 -) 001 -						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	8.64	9.0	9.36	V
Output Voltage	V_{OUT}	11.5V≤V _{IN} ≤24V,I _{OUT} =1mA-40mA	8.55		9.45	V
		11.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	8.55		9.45	V(note 2)
Load Degulation	417	T _J =25°C,I _{OUT} =1mA-100mA		19	90	mV
Load Regulation	ΔV_{OUT}	T _J =25°C,I _{OUT} =1mA-40mA		11	40	mV
Line regulation	417	11.5V≤V _{IN} ≤24V,T _J =25°C		90	200	mV
Line regulation	ΔV_{OUT}	13V≤V _{IN} ≤24V,T _J =25°C		100	150	mV
Quiescent Current	ΙQ	V _{IN} =15V,I _{OUT} =0mA,T _J =25°C		2.0	6.0	mA
Quiaccant Current Change	A 1	13V≤V _{IN} ≤24V			1.5	mA
Quiescent Current Change	Δl_Q	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		70		μV
Temperature coefficient of V _{OUT}	$\Delta V_O/\Delta_T$	I _{OUT} =5mA		-0.75	·	mV/°C
Ripple Rejection	RR	12V≤V _{IN} ≤24V,f=120Hz,T _J =25°C	38	44	·	dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

For UTC78L10 (V_{IN} =16V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

Tor OTC/6E10 (VIN-16V, 160)1-40111A, 0 CC 13C 150 C, C1-0.35µF, C0-0.1µF, unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	9.6	10.0	10.4	V
Output Voltage	V_{OUT}	12.5V≤V _{IN} ≤25V,I _{OUT} =1mA-40mA	9.5		10.5	V
		12.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	9.5		10.5	V(note 2)
Load Regulation	۸۱/	T _J =25°C, I _{OUT} =1mA-100mA		20	90	mV
Load Regulation	ΔV_{OUT}	T _J =25°C, I _{OUT} =1mA-40mA		20 90 11 40 100 200 100 170 2.0 6.0	40	mV
Line regulation	۸۱/	12.5V≤V _{IN} ≤25V,T _J =25°C		100	200	mV
Line regulation	ΔV_{OUT}	14V≤V _{IN} ≤25V,T _J =25°C		100	170	mV
Quiescent Current	ΙQ	V _{IN} =17V,I _{OUT} =0mA,T _J =25°C		2.0	6.0	mA
Quiaccent Current Change	41	12.5V≤V _{IN} ≤25V			1.5	mA
Quiescent Current Change	Δl_{Q}	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		74		μV
Temperature coefficient of V _{OUT}	$\Delta V_O/\Delta_T$	I _{OUT} =5mA		-0.8		mV/°C
Ripple Rejection	RR	15V≤V _{IN} ≤25V,f=120Hz,T _J =25°C	38	43		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

■ ELECTRICAL CHARACTERISTICS (Cont.)

For UTC78L12 (V_{IN}=19V, I_{OUT}=40mA, 0°C<T_J<150°C, C1=0.33μF, Co=0.1μF, unless otherwise specified)

, • • • • • • •	1.00 0, 0.1 0.00 pl., 00 0.1 pl., 0.1 ll.	00 010		,	
SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	T _J =25°C	11.52	12.0	12.48	V
V _{OUT}	14.5V≤V _{IN} ≤27V,I _{OUT} =1mA-40mA	11.40		12.60	V
	14.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	11.40		12.60	V(note 2)
437	T _J =25°C, I _{OUT} =1mA-100mA		22	100	mV
ΔVOUT	T _J =25°C, I _{OUT} =1mA-40mA		13	50	mV
437	14.5V≤V _{IN} ≤27V,T _J =25°C		25	300	mV
ΔV _{OUT}	16V≤V _{IN} ≤27V,T _J =25°C		20	250	mV
ΙQ	V _{IN} =19V,I _{OUT} =0mA,T _J =25°C		2.0	6.0	mA
	16V≤V _{IN} ≤27V			1.5	mA
ΔIQ	1mA≤V _{IN} ≤40mA			0.1	mA
eN	10Hz≤f≤100kHz		80		μV
$\Delta V_O/\Delta_T$	I _{OUT} =5mA		-1.0		mV/°C
RR	15V≤V _{IN} ≤25V,f=120Hz,T _J =25°C	37	65		dB
V_D	T _J =25°C		1.7		V
	$\begin{array}{c} \text{SYMBOL} \\ \\ V_{\text{OUT}} \\ \\ \Delta V_{\text{OUT}} \\ \\ \Delta I_{\text{Q}} \\ \\ \Delta I_{\text{Q}} \\ \\ \text{eN} \\ \\ \Delta V_{\text{O}}/\Delta_{\text{T}} \\ \\ \text{RR} \\ \end{array}$	$\begin{array}{c c} \text{SYMBOL} & \text{TEST CONDITIONS} \\ & T_J \!\!=\!\! 25^{\circ}\text{C} \\ & V_{\text{OUT}} & 14.5 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, I_{\text{OUT}} \!\!=\!\! 1\text{mA-40mA} \\ & 14.5 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, I_{\text{OUT}} \!\!=\!\! 1\text{mA-70mA} \\ & \Delta V_{\text{OUT}} & T_J \!\!=\!\! 25^{\circ}\text{C}, I_{\text{OUT}} \!\!=\!\! 1\text{mA-40mA} \\ & \Delta V_{\text{OUT}} & 14.5 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! V_{\text{IN}} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!\leq\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!>\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!>\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!>\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!>\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!>\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!>\!\! 27 \text{V}, T_J \!\!=\!\! 25^{\circ}\text{C} \\ & 16 \text{V} \!\!>\!\! 27 \text{V}, T_J \!\!>\!\! 27 \text{V}, T_J \!\!>\!\! 27 \text{V}, T_J $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

For UTC78L15 (V_{IN} =23V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

(111 -)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	14.40	15.0	15.60	V
Output Voltage	V_{OUT}	17.5V≤V _{IN} ≤30V,I _{OUT} =1mA-40mA	14.25		15.75	V
		17.5V≤V _{IN} ≤V _{MAX} , I _{OUT} =1mA-70mA	14.25		15.75	V(note 2)
Load Regulation	41/	T _J =25°C, I _{OUT} =1mA-100mA		25	150	mV
Load Regulation	ΔV_{OUT}	T _J =25°C, I _{OUT} =1mA-40mA		15	75	mV
Line Degulation	$\Lambda V_{\alpha \cup \tau}$	17.5V≤V _{IN} ≤30V,T _J =25°C		25	150	mV
Line Regulation		20V≤V _{IN} ≤30V,T _J =25°C		15	75	mV
Quiescent Current	ΙQ	V_{IN} =23 V , I_{OUT} =0 mA , T_{J} =25 $^{\circ}C$		2.2	6.5	mA
Quiacant Current Change	4.1	20V≤V _{IN} ≤30V			1.5	mA
Quiescent Current Change	ΔI_Q	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		90		μV
Temperature Coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		-1.3		mV/°C
Ripple Rejection	RR	18.5V≤V _{IN} ≤28.5V,f=120Hz, T _J =25°C	34	63		dB
Dropout Voltage	V_D	T _J =25°C		1.7	·	V

For UTC78L18 (V_{IN} =27V, I_{OUT} =40mA, 0°C< T_{J} <150°C, C1=0.33 μ F, Co=0.1 μ F, unless otherwise specified)

10101010L10 (VIN-21 V, 1001-40	$\Pi \Lambda, \cup \cup \setminus$	17 130 C, C1-0.33pt , C0-0.1pt , unle	33 01110	I WISC SE	<i>iccilica</i>	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		T _J =25°C	17.64	18.0	18.36	V
Output Voltage	V_{OUT}	21V≤V _{IN} ≤33V,I _{OUT} =1mA-40mA	17.46		18.54	V
		21V≤V _{IN} ≤V _{MAX} ,I _{OUT} =1mA-70mA	17.46		18.54	V(note 2)
Lood Dogulation	437	T _J =25°C, I _{OUT} =1mA-100mA		27	180	mV
Load Regulation	I AVOUT I	T _J =25°C, I _{OUT} =1mA-40mA		19	90	mV
Line Deculation	437	21V≤V _{IN} ≤33V,T _J =25°C		145	300	mV
Line Regulation	ΔV_{OUT}	22V≤V _{IN} ≤33V,T _J =25°C		135	250	mV
Quiescent Current	IQ	V_{IN} =27 V , I_{OUT} =0 mA , T_J =25 $^{\circ}C$		2.0	6.0	mA
Quigagant Current Change	4.1	21V≤V _{IN} ≤33V			1.5	mA
Quiescent Current Change	ΔI_Q	1mA≤V _{IN} ≤40mA			0.1	mA
Output Noise Voltage	eN	10Hz≤f≤100kHz		150		μV
Temperature Coefficient of V _{OUT}	$\Delta V_{O}/\Delta_{T}$	I _{OUT} =5mA		-1.8		mV/°C
Ripple Rejection	RR	23V≤V _{IN} ≤33V,f=120Hz,T _J =25°C	34	48		dB
Dropout Voltage	V_D	T _J =25°C		1.7		V

Note 1. The Maximum steady state usable output current is dependent on input voltage, heat sinking, lead length of the package and copper pattern of PCB.

^{2.} Power dissipation < 0.5W

■ APPLICATION CIRCUIT

Notes: 1. To specify an output voltage, substitute voltage value for "XX".

- 2. Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.
- TEST CIRCUIT

TYPICAL CHARACTERISTICS

UTC78L05 Dropout Characteristics

Short Circuit output current 500 T_J=25°C

input-outputVoltage difference(V)

TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.