CONVERGENCE

Xie zejian

xiezej@gmail.com

November 29, 2020

In the following paragraph, Ω is a space and τ is a topology on Ω , τ is a filter on Ω .

1 Filter

A **filter** is a non-empty collection F of subset in Ω s.t.

- 1. $A \in F, A \subset B \implies B \in F$
- 2. Closed under finite intersection.
- $3. \notin F$

Note the definition of F is independent with topology τ .

A collection B of subset in Ω is a **base** for the fliter if

- 1. $B \subset F$
- 2. $\forall V \in F, \exists W \in B \ni W \subset V$

We say B generates F. For example, suppose A is any non-empty subset of Ω , all the subsets of Ω include A is a filter while $\{A\}$ is a base for it. What's more, suppose $a \in \Omega$ then all neighbourhoods is a filter on E, that is, **neighbourhood filter**, while each neighborhood base is a base for this filter. To assert a collection is a base, we have

Theorem 1 Let B be a collection of nonempty subsets. Then B is a filter base, that is, B may generates a filter iff 1. The intersection of each finite family of sets in B includes a set in B 2. B is non-empty and $\notin B$.

Proof

$$F = \{ X \in \mathcal{P}(\Omega) : \exists A \in B \ni X \supset A \}$$

F is the filter generated by B.

Let A be a collection of subsets of nonempty subsets, then construct A' by taking all finite intersection, if $\notin A'$, it's a base for some filter F, we call F the filter generated by A.

Suppose F and G be filters on Ω . Then

$$X \in F \cap G \iff \exists P \in F \text{ and } Q \in G \ni X = P \cup G$$

$$X \in \{ \text{finite intersection in } F \cup G \} \iff \exists P \in F \text{ and } Q \in G \ni X = P \cap Q \}$$

Suppose R is an order relation on Ω , then Ω is said to be **inductivelt ordered** by R if every totally ordered subset has an **supremum**.

Zorn's Lemma states that every inductively ordered set has a maximal element.

Theorem 2 The set of all filters on Ω is inductively ordered by inclusion.

Proof Suppose a collection A of filters is totally ordered, it's a base by theorem 1 since it's finite intersection is just a fliter in A with totally ordered. Then the supremum is just the fliter generates by A.

By Zorn's lemma, the set of all filters has maximal filters and we call such fliters ultrafilters.

Theorem 3 Let F be an ultrafilter on Ω , if A and B are subsets of Ω s.t. $A \cup B \in F$ then either $A \in F$ or $B \in F$.

Proof If $A \notin F$ and $B \notin F$, suppose $F' = \{X : A \cup X \in F\}$, and easy to verify $F' \supset F$, a contradiction.

To assert a filter is ultra, we have:

Theorem 4 Let A be a collection of subsets and F the filter generates by A. If

$$\forall X \subset \Omega$$
, either $X \in A$ or $X^c \in A$

then A is an ultrafilter on Ω .

Proof Suppose F' is an ultrafilter include F, we have $F' \supset A$ clearly. Consider any $X \in F'$, we claim that $X \in A$ since if $X^c \in A$ then $X^c \in F'$ as $F' \supset F \supset A$ and $X \cap X^c = \emptyset \in F'$ results in a contradiction. It follows that $A \supset F'$ and thus A = F'.

Suppose any $x \in \Omega$, the filter generates by $\{x\}$ is an ultrafilter as above theorem and we claim that all the ultrafilter may be generates this way.

Theorem 5 Every filter F is the intersection of all the ultrafilter which include F.

Proof We claim that

$$F = \bigcap \{ \text{ultrafilter generates by } \{x\} : x \in \bigcap F \}$$

Theorem 6 Let f be a mapping from Ω to Ω' and B a base for a fliter F on Ω . Then f(B) =

 $\{f(X)\}_{X\in B}$ is also a base on Ω' . Moreover, if F is ultra then f(B) also generates an ultrafilter. **Proof** First assertion is straightforward and the second follows from B is collection of supset for some $\{x\}$, then f(B) generates the fliter that generates by $\{f(x)\}$.

Theorem 7 In the same situation as previous theorem. If B' is a base on Ω' , then $f^{-1}(B')$ is a base on Ω iff every set in B' meets $f(\Omega)$

Proof We have

$$\Omega \in f^{-1}(B') \implies f(\Omega) \subset X'$$

for some $X' \in f^{-1}(B')$, by definition, \implies is immediately. For \iff , suppose any finite family $X_i \in B'$, then

$$\bigcap_{i=1} f^{-1}(X_i) = f^{-1}(\bigcap_i X_i) \in f^{-1}(B')$$

Then the claim follows from theorem 1. ■

2 Limit

A point $x \in \Omega$ is said to be a **limit** or a **limit point** of the fliter F and F is said to **converge** to x if the neighborhood filter $V(x) \subset F$. For filter base B, we define similarly on the filter generated by B.

This implies a equivalent definition of finer topology:

$$\tau \supset \tau' \iff V_{\tau}(x) \supset V_{\tau'}(X) \iff F \text{ converges to } a \text{ in } \tau \implies F \text{ converges to } a \text{ in } \tau'$$

Then we may define continuous as:

 $f:(\Omega,\tau)\to (\Omega',\tau')$ is continous at x if for every filter F converges to x, f(F)(a filter base) converges to f(x).

Proof By definition, f(F) converges to f(x) implies

$$V'(f(x)) \subset \{X \in \mathcal{P}(\Omega) : \exists A \in f(F) \ni X \supset A\}$$

That is, for any neighbourhood V' of f(x), there exist some $A \in f(F)$ s.t. $A \subset V'$, note A = f(V) for some neighbourhood V of x. Then the claim follows from definition of continuity.

A point $x \in \Omega$ is said to be an **adherent point** of F if x is an adherent point of every set in F. The **adherence** of F, $Adh_{\tau}(F)$ or \overline{F} is the set of all adherent points, thus

$$\overline{F} = \bigcap_{X \in F} \overline{X}$$

Define similarly on filter base B by the filter generated. By definition, we have

$$\overline{B} = \bigcap_{X \in B} \overline{X}$$

Suppose A be a subset of Ω , then $x \in \overline{A}$ iff there is a filter F s.t. $A \in F$ and F converges to x.

Proof If $x \in \overline{A}$ then $F = V(x) \cup \{A\}$ generates a fliter as required. Conversely,

$$V(x) \in F \implies V \cap A \neq \forall V \in V(x)$$

Then the calim follows. ■

Theorem 8 Suppose BN(x) a neighbourhood base of x, then

- 1. B converges to x iff every set in BN(x) includes a set in B.
- 2. $x \in \overline{B}$ iff every set in BN(x) meets every set in B.

Proof Directly from definition. ■

As consequence, we have

Corollary 1 x is adherent to a filter F iff there is $F' \supset F$ and converges to x

Proof By above argument in finer topology, we have F converges to x, that is, x is a limit point. Then the calim follows from corollar 2.

Corollary 2 Every limit point of F is adherent to F

Proof Clearly holds by applying corollary 1 and corollary 2.

Corollary 3 Every adherent point of an ultra-filter is a limit point of it.

Proof An ultrafilter can only converges to one point and it's a adherent point by corollary 2.

Suppose $f:(\Omega,\tau)\to(\Omega',\tau')$, a point $x'\in\Omega'$ is called

- 1. a limit point of f relative to F if x' is a limit point of the filter base f(F).
- 2. an **adherent point** of f relative F if it's adherent point of f(F).

Theorem 9

- 1. x' is a limit point of f relative to F iff for any τ' neighbourhood $V' \in V'(x)$, we have $f^{-1}(V') \in F$.
- 2. x' is an adherent point of f relative to F iff for any τ' neighbourhood $V' \in V'(x')$, it meets f(X) for any $X \in F$.

Proof x' is limit is equivalent to

$$V'(x) \subset \{X \in \mathcal{P}(\Omega) : \exists A \in f(F) \ni X \supset A\}$$

That is, there exist some $A = f(X) \subset V'$ for any V', followed by $X \subset f^{-1}f(X) \subset f^{-1}(V')$, then the claim follows from the definition of filter.

By theorem 8, x' is adherent to f(F) iff

$$\forall N' \in BN(x'), \forall X \in F, f(X) \cap N' \neq \emptyset$$

note for any $V' \in V'(x')$, there exist $N' \in BN(x') \ni N' \subset V'$, thus $f(X) \cap V' \neq \emptyset$ also holds. Conversely, making use of $BN(x') \subset V'(x')$.