Econometría I Variables instrumentales y Mínimos cuadrados en dos etapas (2SLS)

Ramiro de Elejalde

Facultad de Economía y Finanzas Universidad Alberto Hurtado

Outline

Modelo simple

Identificación

Estimación

Propiedades

Instrumentos débiles

Modelo general

Identificación y Estimación

Propiedades

Validez de los instrumentos

Relevancia de los instrumentos

Exogeneidad de los instrumentos

Contraste de endogeneidad

Referencias: Cap. 4 de Angrist and Pischke, cap. 5 de Wooldridge, y cap. 12 de Stock and Watson.

Modelo simple

Modelo simple

$$y_i = \beta_0 + \beta_1 x_i + u_i,$$

donde y_i es la variable dependiente, x_i es una variable endógena y z_i es un instrumento.

Supuestos: $Cov(x_i, u_i) \neq 0$ (x_i es endógena)

- IV1 Muestra aleatoria de tamaño $N \implies \{y_i, x_i, z_i\}_{i=1}^N$ i.i.d.,
- IV2 Exogeneidad del instrumento (Restricción de exclusión): $Cov(z_i, u_i) = 0$, Dos condiciones: (1) z_i es *como si fuese* asignada en forma aleatoria, (2) z_i no tiene un efecto directo sobre y_i .
- IV3 Relevancia del instrumento: $Cov(z_i, x_i) \neq 0$

- ¿Cuál es el efecto de tener hijos en la oferta laboral de las mujeres?
- Datos: Census Public Use Micro Sample (PUMS) para 1980 y 1990.
- Muestra: Una muestra con mujeres casadas con al menos 2 hijos.
- Variable dependiente: estar empleada (workedm), semanas trabajadas (weeksm1) y horas trabajadas por semana (hourswm).
- Variable explicativa: Tener 3 hijos o más (morekids).
- Instrumentos: Hijos del mismo sexo (samesex).

• ¿El hecho que los dos primeros dos hijos sean del mismo sexo (samesex) es un buen instrumento para tener tres hijos o más (morekids)?

- ¿El hecho que los dos primeros dos hijos sean del mismo sexo (samesex) es un buen instrumento para tener tres hijos o más (morekids)?
- Exogeneidad
 - ¿Es el sexo de los hijos asignado aleatoriamente?
 - ¿El sexo de los hijos puede estar correlado con la decisión de trabajar de la madre por razones distintas de su efecto sobre el número de niños?
- Relevancia: ¿Tener dos hijos del mismo sexo afecta la decisión de tener un hijo adicional?
 - Se puede inferir de los datos.

Identificación

• ¿Qué momentos poblacionales permiten identificar los parámetros de interés?

Identificación

• ¿Qué momentos poblacionales permiten identificar los parámetros de interés?

$$\begin{aligned} & \mathsf{Cov}(z_i, u_i) = 0 \quad \mathsf{usando IV2}, \\ & \iff \mathsf{Cov}(z_i(y_i - \beta_0 - \beta_1 x_i)) = 0, \\ & \iff \mathsf{Cov}(z_i, y_i) - \beta_1 \, \mathsf{Cov}(z_i, x_i) = 0, \\ & \iff \beta_1 = \frac{\mathsf{Cov}(z_i, y_i)}{\mathsf{Cov}(z_i, x_i)} \quad \mathsf{usando IV3}. \end{aligned}$$

6

Identificación

• ¿Qué momentos poblacionales permiten identificar los parámetros de interés?

$$\begin{aligned} & \mathsf{Cov}(z_i, u_i) = 0 \quad \mathsf{usando IV2}, \\ & \iff \mathsf{Cov}(z_i(y_i - \beta_0 - \beta_1 x_i)) = 0, \\ & \iff \mathsf{Cov}(z_i, y_i) - \beta_1 \, \mathsf{Cov}(z_i, x_i) = 0, \\ & \iff \beta_1 = \frac{\mathsf{Cov}(z_i, y_i)}{\mathsf{Cov}(z_i, x_i)} \quad \mathsf{usando IV3}. \end{aligned}$$

• IV2 y IV3 son los supuestos que identifican a β_1 .

Mínimos Cuadrados Indirectos

• Primera etapa

$$x_i = \pi_{10} + \pi_{11}z_i + \epsilon_{1i}$$
.

Forma reducida

$$y_i = \pi_{20} + \pi_{21}z_i + \epsilon_{2i}.$$

Entonces,

Xi.

$$\beta_1 = \frac{\mathsf{Cov}(z_i, y_i)}{\mathsf{Cov}(z_i, x_i)},$$

$$= \frac{\mathsf{Cov}(z_i, y_i)/\mathsf{Var}(z_i)}{\mathsf{Cov}(z_i, x_i)/\mathsf{Var}(z_i)},$$

$$\implies \beta_1 = \frac{\pi_{21}}{\pi_{11}}.$$

• Intuición: Correlación entre z_i e y_i solamente se puede deber al efecto a través de

7

Mínimos Cuadrados en 2 Etapas (2SLS)

Primera etapa

$$x_i = \pi_{10} + \pi_{11}z_i + \epsilon_{1i} = x_i^* + \epsilon_{1i}.$$

• Luego reemplazar x_i por la predicción x_i^* (que no está correlada con el error).

$$y_{i} = \beta_{0} + \beta_{1}x_{i} + u_{i},$$

$$= \beta_{0} + \beta_{1}x_{i} - \beta_{1}x_{i}^{*} + \beta_{1}x_{i}^{*} + u_{i},$$

$$= \beta_{0} + \beta_{1}x_{i}^{*} + \beta_{1}(x_{i} - x_{i}^{*}) + u_{i}.$$

Entonces,

$$\beta_1 = \frac{\mathsf{Cov}(x_i^*, y_i)}{\mathsf{Var}(x_i^*)}.$$

• Intuición: Solamente utilizamos la variación exógena de x_i .

Estamos interesados en:

• Estimador por variables instrumentales (IV): utilizamos el principio de analogía para reemplazar momentos poblacionales por momentos muestrales.

$$\beta_1 = \frac{\mathsf{Cov}(z_i, y_i)}{\mathsf{Cov}(z_i, x_i)}.$$

• Estimador por variables instrumentales (IV): utilizamos el principio de analogía para reemplazar momentos poblacionales por momentos muestrales.

$$\beta_1 = \frac{\mathsf{Cov}(z_i, y_i)}{\mathsf{Cov}(z_i, x_i)}.$$

Usando el principio de analogía, lo estimamos con

Estamos interesados en:

$$\hat{\beta}_{1,IV} = \frac{\widehat{\mathsf{Cov}}(z_i, y_i)}{\widehat{\mathsf{Cov}}(z_i, x_i)}.$$

• Estimador por variables instrumentales (IV): Usando el principio de analogía, lo estimamos con

$$\hat{\beta}_{1,IV} = \frac{\widehat{\mathsf{Cov}}(z_i, y_i)}{\widehat{\mathsf{Cov}}(z_i, x_i)}.$$

• Estimador por variables instrumentales (IV): Usando el principio de analogía, lo estimamos con

$$\hat{\beta}_{1,IV} = \frac{\widehat{\mathsf{Cov}}(z_i, y_i)}{\widehat{\mathsf{Cov}}(z_i, x_i)}.$$

• En forma similar podemos motivar el estimador por Mínimos Cuadrados Indirectos

$$\hat{\beta}_{1,\mathsf{ILS}} = \frac{\hat{\pi}_{21}}{\hat{\pi}_{11}},$$

• Estimador por variables instrumentales (IV): Usando el principio de analogía, lo estimamos con

$$\hat{\beta}_{1,IV} = \frac{\widehat{\mathsf{Cov}}(z_i, y_i)}{\widehat{\mathsf{Cov}}(z_i, x_i)}.$$

• En forma similar podemos motivar el estimador por Mínimos Cuadrados Indirectos

$$\hat{\beta}_{1,\mathsf{ILS}} = \frac{\hat{\pi}_{21}}{\hat{\pi}_{11}},$$

y el estimador 2SLS

$$\hat{eta}_{1,2\mathsf{SLS}} = \frac{\widehat{\mathsf{Cov}}(\hat{x}_i, y_i)}{\widehat{\mathsf{Var}}(\hat{x}_i)}, \quad \mathsf{donde} \ \hat{x}_i = \hat{\pi}_{10} + \hat{\pi}_{11}z_i.$$

Los estimadores son equivalentes: $\hat{\beta}_{1,IV} = \hat{\beta}_{1,ILS} = \hat{\beta}_{1,2SLS}$.

Demostración:

 $\bullet \ \hat{\beta}_{1,IV} = \hat{\beta}_{1,ILS}$

$$\hat{\beta}_{1,IV} = \frac{\widehat{\mathsf{Cov}}(z_i, y_i)}{\widehat{\mathsf{Cov}}(z_i, x_i)} = \frac{\widehat{\mathsf{Cov}}(z_i, y_i)/\widehat{\mathsf{Var}}(z_i)}{\widehat{\mathsf{Cov}}(z_i, x_i)/\widehat{\mathsf{Var}}(z_i)} = \frac{\hat{\pi}_{21}}{\hat{\pi}_{11}} = \hat{\beta}_{1,ILS}.$$

donde $x_i = \hat{\pi}_{10} + \hat{\pi}_{11}z_i + \hat{\epsilon}_{1i}$ y $y_i = \hat{\pi}_{20} + \hat{\pi}_{21}z_i + \hat{\epsilon}_{2i}$.

 $\bullet \ \hat{\beta}_{1,2SLS} = \hat{\beta}_{1,IV}$

$$\hat{\beta}_{1,2\mathsf{SLS}} = \frac{\widehat{\mathsf{Cov}}(\hat{x}_i, y_i)}{\widehat{\mathsf{Var}}(\hat{x}_i)} = \frac{\widehat{\mathsf{Cov}}(\hat{x}_i, y_i)}{\widehat{\mathsf{Cov}}(\hat{x}_i, x_i)} = \frac{\hat{\pi}_{11}\widehat{\mathsf{Cov}}(z_i, y_i)}{\hat{\pi}_{11}\widehat{\mathsf{Cov}}(z_i, x_i)} = \hat{\beta}_{1, IV}.$$

donde $\hat{x}_i = \hat{\pi}_{10} + \hat{\pi}_{11}z_i$.

Variable	Obs	Mean	Std. Dev.	Min	Max
workedm	262793	.5301892	.4990887	0	1
weeksm1	262793	19.10925	21.88929	0	52
hourswm	262793	16.81808	18.37502	0	99
morekids	262793	.383686	.4862838	0	1
samesex	262793	.5053369	.4999725	0	1

Estimación MCO

Linear regression

. reg hourswm morekids, robust

```
F(1,262791) = 2540.58
                                         Prob > F = 0.0000
                                         R-squared = 0.0095
                                         Root MSE = 18.287
                   Robust
hourswm | Coef. Std. Err. t P>|t| [95% Conf. Interval]
morekids | -3.687237 .0731534 -50.40 0.000 -3.830616 -3.543858
  cons | 18.23282 .0456501 399.40 0.000 18.14335 18.32229
```

13

Number of obs = 262793

Primera etapa

. reg morekids samesex, robust

Linear regression

Number of obs = 262793 F(1,262791) = 1253.62 Prob > F = 0.0000 R-squared = 0.0047 Root MSE = .48513

 morekids 		Robust Std. Err.	t		_
samesex _cons	.0669939	.0018921	35.41 264.47	.0632854	.0707024

Se puede utilizar para contrastar el supuesto de relevancia!!!

$$Cov(x_i, z_i) \neq 0 \iff \pi_{11} \neq 0$$

donde
$$x_i = \pi_{10} + \pi_{11}z_i + e_{1i}$$
.

Forma reducida

```
reg hourswm samesex, robust
                                              Number of obs = 262793
Linear regression
                                              F(1,262791) = 25.55
                                              Prob > F
                                                          = 0.0000
                                              R-squared = 0.0001
                                              Root MSE = 18.374
                        Robust
                Coef. Std. Err. t P>|t| [95% Conf. Interval]
    hourswm
             -.3623775 .0716935 -5.05 0.000
                                              -.5028947 -.2218602
    samesev
               17.0012 .0510958 332.73 0.000
                                               16.90105
     _cons
                                                           17.10135
```

Mínimos cuadrados indirectos: -0.362/0.067 = -5.409

Mínimos cuadrados en 2 etapas: A mano

```
reg hourswm morekidshat, robust
                                               Number of obs = 262793
Linear regression
                                               F(1,262791) = 25.55
                                               Prob > F
                                                           = 0.0000
                                               R-squared = 0.0001
                                               Root MSE
                                                           = 18.374
                         Robust
    hourswm |
                 Coef. Std. Err.
                                    t P>|t| [95% Conf. Interval]
morekidshat |
             -5.409112 1.070149 -5.05 0.000
                                                -7.506575 -3.311649
              18.89348 .4123485 45.82 0.000
      cons
                                                18.08529
                                                            19.70167
```

Variables instrumentales/Mínimos cuadrados en 2 etapas

```
ivregress 2sls hourswm (morekids = samesex), robust
Instrumental variables (2SLS) regression
                                                   Number of obs =
                                                                  262793
                                                   Wald chi2(1) = 25.74
                                                   Prob > chi2 = 0.0000
                                                               = 0.0074
                                                   R-squared
                                                   Root MSE
                                                               = 18.306
                          Robust
                  Coef. Std. Err.
                                       z P>|z| [95% Conf. Interval]
    hourswm |
   morekids |
              -5.409112
                        1.066216
                                   -5.07
                                            0.000
                                                    -7.498856 -3.319368
               18.89348 .4108644
                                            0.000
      cons I
                                    45.98
                                                      18.0882
                                                                19.69876
Instrumented: morekids
Instruments:
             samesex
```

Estimador de Wald

```
. tabstat hourswm morekids, statistic(mean) by(samesex)

Summary statistics: mean
by categories of: samesex (first two kids are of same sex)

samesex | hourswm morekids

O | 17.0012 .3498315
1 | 16.63882 .4168254

Total | 16.81808 .383686
```

Estimador de Wald=(16.6-17.0)/(.417-.350)=-5.41

- ¿Cuáles son los retornos de la educación?
- Estamos interesados en el modelo

$$y_i = \alpha + \rho s_i + \gamma a_i + \nu_i$$

donde y_i es log de ingresos, s_i es escolaridad, a_i es habilidad innata y ν_i son inobservados que cumplen $Cov(s_i, \nu_i) = Cov(a_i, \nu_i) = 0$.

- Si observamos habilidad innata, podemos estimar el efecto causal por MCO.
- Desafortunadamente, no lo observamos y el modelo que podemos estimar $y_i = \alpha + \rho s_i + u_i$ donde $u_i = \gamma a_i + \nu_i$ tiene un sesgo por omisión de variable.
- Solución de variables instrumentales: una variable correlada con si pero con que no esté correlada con ui.

- Instrumento: Angrist and Krueger argumentan que las personas que nacen en los últimos trimestres del año empiezan la escuela más jóvenes, y permanecen más tiempo en la escuela a causa de las leyes de escolaridad obligatoria que dependen de la edad.
- Variables explicativas adicionales: año de nacimiento y estado donde nació.

	OLS		2SLS					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Years of education	.071 (.0004)	.067 (.0004)	.102	.13	.104	.108	.087 (.016)	.057
Exogenous Covariates Age (in quarters) Age (in quarters) squared 9 year-of-birth dummies 50 state-of-birth dummies	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	✓ ✓	,,,,,	,,	✓ ✓	✓ ✓	✓ ✓	✓ ✓ ✓
Instruments dummy for QOB = 1 dummy for QOB = 2 dummy for QOB = 3 QOB dummies interacted with year-of-birth dummies (30 instruments total)			√	√ √ √	√	√ √ √	√ √ √	√ √ √

Notes: The table reports OLS and 2SLS estimates of the returns to schooling using the Angrist and Krueger (1991) 1980 census sample. This sample includes native-born men, born 1930–39, with positive earnings and nonallocated values for key variables. The sample size is 329,509. Robust standard errors are reported in parentheses. QOB denotes quarter of birth.

- Buckles and Hungerman, "Season of Birth and Later Outcomes: Old Questions, New Answers" (REStat, 2013).
- Idea: Niños nacidos en diferentes meses del año son concebidos por madres con características socieconómicas diferentes.
- Los autores encuentran que niños nacidos en invierno tienen una mayor probabilidad de haber nacido de una madre adolescente, menor probabilidad de que la madre esté casada o la madre tenga secundario completo.
- Mecanismo: el clima en verano afecta en forma diferencial los patrones de fertilidad de los distintos grupos socieconómicos.

Propiedades de $\hat{\beta}_{IV}$

- Hasta ahora demostramos, en el modelo de regresión simple con un instrumento, el estimador IV es idéntico a 2SLS.
- Además, el estimador de Wald es un caso particular de IV cuando el instrumento es una variable dummy.

Propiedades de $\hat{\beta}_{IV}$

- Hasta ahora demostramos, en el modelo de regresión simple con un instrumento, el estimador IV es idéntico a 2SLS.
- Además, el estimador de Wald es un caso particular de IV cuando el instrumento es una variable dummy.
- Dado que los tres estimadores son idénticos, analizamos las propiedades del estimador IV:

$$\hat{\beta}_{1,IV} = \frac{\widehat{\mathsf{Cov}}(z_i, y_i)}{\widehat{\mathsf{Cov}}(z_i, x_i)},$$

bajos los supuestos de

IV1 Muestra aleatoria de tamaño $N \implies \{y_i, x_i, z_i\}_{i=1}^N$ i.i.d.,

IV2 Exogeneidad del instrumento: $Cov(z_i, u_i) = 0$,

IV3 Relevancia del instrumento: $Cov(z_i, x_i) \neq 0$

Consistencia

$$\hat{\beta}_{1,IV} = \frac{\widehat{Cov}(z_i, y_i)}{\widehat{Cov}(z_i, x_i)} = \frac{\widehat{Cov}(z_i, \beta_0 + \beta_1 x_i + u_i)}{\widehat{Cov}(z_i, x_i)},$$

$$= \beta_1 + \frac{\widehat{Cov}(z_i, u_i)}{\widehat{Cov}(z_i, x_i)},$$

usando los resultados derivados en el capítulo de Teoría asintótica, y IV2 (exogeneidad) y IV3 (relevancia)

$$\operatorname{plim}\widehat{\operatorname{Cov}}(z_i,x_i) = \operatorname{Cov}(z_i,x_i) \neq 0,$$
 $\operatorname{plim}\widehat{\operatorname{Cov}}(z_i,u_i) = \operatorname{Cov}(z_i,u_i) = 0.$

Entonces plim $\hat{\beta}_{1,IV} = \beta_1$.

Discusión: $\hat{\beta}_{1,IV}$ no es insesgado.

$$\beta_1 = 1 \text{ y } N = 500.$$

Distribución asintótica normal

$$\sqrt{N}(\hat{\beta}_{1,IV} - \beta_1) = \frac{1}{\widehat{\mathsf{Cov}}(z_i, x_i)} \sqrt{N} \widehat{\mathsf{Cov}}(z_i, u_i).$$

Usando los resultados derivados en el capítulo de Teoría asintótica, y IV2 y IV3,

$$\operatorname{plim} \widehat{\mathsf{Cov}}(z_i, x_i) = \mathsf{Cov}(z_i, x_i) \neq 0,$$

$$\sqrt{N} \widehat{\mathsf{Cov}}(z_i, u_i) \stackrel{d}{\longrightarrow} \mathsf{Normal}(0, V).$$

donde

$$V = \mathbb{E}[(z - \mathbb{E} z)^2 u^2] - \mathbb{E}[(z - \mathbb{E} z)u]^2,$$

$$= \mathbb{E}[(z - \mathbb{E} z)^2 u^2] - \text{Cov}(z, u)^2,$$

$$= \mathbb{E}[(z - \mathbb{E} z)^2 u^2].$$

Distribución asintótica normal

Usando el teorema de Slutsky

$$\sqrt{N}(\hat{\beta}_{1,IV} - \beta_1) \stackrel{d}{\longrightarrow} \mathsf{Normal}\left(0, \frac{\mathbb{E}[(z - \mathbb{E}\,z)^2 u^2]}{\mathsf{Cov}(z, x)^2}\right).$$

• Solamente para obtener intuición y comparar con MCO asumimos homoscedasticidad ($\mathbb{E}(u^2|z) = \mathbb{E}(u^2) = \sigma^2$) y obtenemos:

$$V = \mathbb{E}[(z - \mathbb{E}z)^2 u^2] = \operatorname{Var}(z) \mathbb{E}(u^2).$$

$$\sqrt{N}(\hat{\beta}_{1,IV} - \beta_1) \stackrel{d}{\longrightarrow} \text{Normal}\left(0, \frac{\text{Var}(z)\sigma^2}{\text{Cov}(z, x)^2}\right),$$

$$\stackrel{d}{\longrightarrow} \text{Normal}\left(0, \frac{\sigma^2}{\rho_{x,z}^2 \text{Var}(x)}\right).$$

Distribución asintótica normal

Decimos

$$\hat{eta}_{1,IV} \stackrel{a}{\sim} \mathsf{Normal}(eta, \mathsf{AVar}(\hat{eta}_{1,IV})), \ \mathsf{donde}$$

$$\mathsf{AVar}(\hat{eta}_{1,IV}) = \frac{1}{N} \frac{\sigma^2}{
ho_{\mathsf{x},z}^2 \, \mathsf{Var}(x)}.$$

Distribución asintótica normal

$$\begin{split} \mathsf{AVar}(\hat{\beta}_{1,OLS}) &= \frac{\sigma^2}{N} \frac{1}{\mathsf{Var}(x)}, \\ \mathsf{AVar}(\hat{\beta}_{1,IV}) &= \frac{\sigma^2}{N} \frac{1}{\rho_{\mathsf{x},\mathsf{z}}^2 \, \mathsf{Var}(x)}. \end{split}$$

Efecto de la fertilidad en la oferta laboral (Angrist y Evans, AER 1998)

Estimación MCO

```
reg hourswm morekids, robust
                                                   Number of obs = 262793
Linear regression
                                                   F(1,262791) = 2540.58
                                                   Prob > F
                                                                = 0.0000
                                                   R-squared
                                                                = 0.0095
                                                   Root MSE
                                                                = 18.287
                           Robust
    hourswm
                  Coef.
                          Std. Err.
                                            P>|t|
                                                    [95% Conf. Interval]
   morekids |
               -3.687237
                          .0731534 -50.40
                                            0.000
                                                     -3.830616
                                                                -3.543858
               18.23282
                        .0456501
                                    399.40
      _cons
                                            0.000
                                                      18.14335
                                                                 18.32229
```

Mínimos cuadrados en 2 etapas

```
ivregress 2sls hourswm (morekids = samesex), robust
Instrumental variables (2SLS) regression
                                                  Number of obs = 262793
                                                  Wald chi2(1) = 25.74
                                                  Prob > chi2 = 0.0000
                                                              = 0.0074
                                                  R-squared
                                                  Root MSE
                                                              = 18.306
                          Robust
                 Coef. Std. Err.
                                       z P>|z| [95% Conf. Interval]
    hourswm |
   morekids |
              -5.409112 1.066216 -5.07
                                           0.000
                                                   -7.498856 -3.319368
               18.89348 .4108644
                                    45.98 0.000
      cons
                                                     18.0882
                                                               19.69876
Instrumented: morekids
Instruments:
             samesex
```

Instrumentos débiles

- Instrumentos débiles: los instrumentos explican poco de la variabilidad de la variable endógena.
- ¿Por qué es un problema?
 - Si el instrumento tiene alguna correlación con el inobservado, el sesgo asintótico de IV puede ser mayor a MCO.
 - Aumentan los errores estándar de la estimación.
 - Aproximación normal es una pobre aproximación y el sesgo del estimador IV (para un tamaño de muestra) aumenta con el número de instrumentos

Instrumentos débiles

- ¿Cuando es un problema?
 - Regla práctica cuando tenemos una variable endógena: Necesitamos un $F_N > 10$ en la primera etapa en el test sobre los instrumentos (Stock and Yogo).

Instrumentos débiles

Recomendaciones

- Reportar la primera etapa y evaluar si los signos son los esperados.
- Reportar estadístico F sobre los instrumentos en la primera etapa. Criterio F > 10.
- Elegir mejor instrumento y estimar el modelo con un sólo instrumento.
- Estimar el modelo con todos los instrumentos con LIML.
- Comparar los resultados de 2SLS, 2SLS con un instrumento y LIML.

$$\begin{aligned} & \operatorname{plim} \hat{\beta}_{1,OLS} = \beta_1 + \frac{\sigma_u}{\sigma_{\scriptscriptstyle X}} \rho_{\scriptscriptstyle X,u}, \\ & \operatorname{plim} \hat{\beta}_{1,IV} = \beta_1 + \frac{\sigma_u}{\sigma_{\scriptscriptstyle X}} \frac{\rho_{z,u}}{\rho_{z,x}}, \\ & \operatorname{sesgo}(\hat{\beta}_{1,IV}) \leq \operatorname{sesgo}(\hat{\beta}_{1,OLS}), \\ & \iff \frac{\rho_{z,u}}{\rho_{z,x}} \leq \rho_{\scriptscriptstyle X,u}. \end{aligned}$$

Modelo generador de datos

$$y_i = 1 + x_i + u_i,$$

y tenemos un instrumento disponible z_i tal que

$$\begin{pmatrix} u \\ z \\ x \end{pmatrix} = \text{Normal} \left(0, \begin{pmatrix} 1, \rho_{u,z}, \rho_{u,x} \\ \rho_{u,z}, 1, \rho_{z,x} \\ \rho_{u,x}, \rho_{z,x}, 1 \end{pmatrix} \right)$$

• Tenemos un muestra aleatoria de tamaño N=500, $\{y_i,x_i,z_i\}_{i=1}^{500}$

x endógena con $ho_{u,x}=0.80$, z endógena con $ho_{z,u}=0.20$ y $ho_{z,x}=0.20$

Si el instrumento no es perfecto (está correlado con u), el sesgo de IV puede ser mayor al sesgo MCO.

Aumentan los errores estándar de la estimación en MCO y IV.

z exógena, z exógena y $ho_{z,x}=0.20$

Cuando ambos son consistentes, MCO es más eficiente que IV.

Sesgo del estimador IV el instrumento es irrelevante

x endógena con $ho_{u,x}=0.80$, z exógena pero irrelevante $ho_{z,x}=0.00$

Si el instrumento no cumple la condición de rango, el sesgo de IV es similar al sesgo de MCO. No es tan grave porque la varianza de la estimación IV hace que la estimación no sea informativa.

Sesgo del estimador IV aumenta con el número de instrumentos

x endógena con $\rho_{u,x}=0.80$, z exógena y $\rho_{z,x}=0.20$, y 20 instrumentos irrelevantes adicionales

Si tenemos muchos instrumentos débiles, a medida que aumentan los instrumentos el sesgo de IV se acerca al sesgo de MCO.

43

$$y_i = x_i'\beta + u_i,$$

donde

- x_i son K variables explicativas de donde K_1 son exógenas y K_2 son endógenas $(K = K_1 + K_2)$, y
- z_i son L variables exógenas donde K₁ son las variables exógenas incluidas en el modelo y L₁ son variables exógenas excluidas en el modelo (instrumentos)
 (L = K₁ + L₁).

$$y_i = x_i'\beta + u_i,$$

donde

- x_i son K variables explicativas de donde K_1 son exógenas y K_2 son endógenas $(K = K_1 + K_2)$, y
- z_i son L variables exógenas donde K₁ son las variables exógenas incluidas en el modelo y L₁ son variables exógenas excluidas en el modelo (instrumentos)
 (L = K₁ + L₁).

Suponemos que $L = dim(z) \ge dim(x) = K \iff L_1 \ge K_2$: Tenemos al menos tantos instrumentos como variables endógenas.

Si L = K (y se cumple una condición de rango) el modelo está exactamente identificado; si L > K el modelo está potencialmente sobreidentificado.

Efecto de la fertilidad en la oferta laboral (Angrist y Evans)

Modelo

hourswm =
$$\beta_0 + \beta_1$$
 agem $1 + \beta_2$ agefstm + β_3 boy 1 st + β_4 blackm+ + β_5 hispm + β_6 othracem + β_7 morekids + u_i .

donde tener 3 hijos o más (morekids), edad de la madre (agem1), edad de la madre cuando tuvo su primer hijo (agefstm), primer hijo varón (boy1st), raza negra (blackm), hispano (hispm), otra raza distinto de blanco (othracem).

• Instrumentos: Dos hijas mujeres (girls2) y dos hijos varones (boys2).

Efecto de la fertilidad en la oferta laboral (Angrist y Evans)

Modelo

hourswm =
$$\beta_0 + \beta_1$$
 agem $1 + \beta_2$ agefstm + β_3 boy 1 st + β_4 blackm+ + β_5 hispm + β_6 othracem + β_7 morekids + u_i .

donde tener 3 hijos o más (morekids), edad de la madre (agem1), edad de la madre cuando tuvo su primer hijo (agefstm), primer hijo varón (boy1st), raza negra (blackm), hispano (hispm), otra raza distinto de blanco (othracem).

- Instrumentos: Dos hijas mujeres (girls2) y dos hijos varones (boys2).
- Entonces K = 8, L = 9. x = (1, agem1, agefstm, boy1st, blackm, hispm, othracem, morekids)z = (1, agem1, agefstm, boy1st, blackm, hispm, othracem, girls2, boys2)

Testear competencia imperfecta en el mercado de pescado de Fulton, NY, Graddy (Rand, 1995)

- ¿Es el mercado de pescado de Fulton perfectamente competitivo?
- Evidencia de discriminación de precios (asiáticos pagan precios más bajos).
- Nos enfocamos en la estimación de la demanda de pescado.
- Datos: ventas del día, precio promedio del día, día de la semana y otras variables de un puesto de venta de pescado (merluza) en el mercado de Fulton en Nueva York desde Diciembre de 1991 a Marzo 1992

Modelo econométrico

$$\begin{aligned} \textit{Itotqty}_t &= \beta_0 + \beta_1 \, \textit{mon}_t + \beta_2 \, \textit{tues}_t + \beta_3 \, \textit{wed}_t + \beta_4 \, \textit{thurs}_t \\ &+ \alpha \, \textit{lavgprc}_t + u_t, \end{aligned}$$

donde *lavgprc*: Logaritmo del precio promedio del día (\$ por libra), *ltotqty*: Logaritmo de ventas totales del día en libras, mon=1 para Lunes, tues=1 para Martes, wed=1 para Miércoles, thurs=1 para Jueves.

Instrumentos: speed2: Mínimo en los últimos 2 días de la velocidad media del viento, speed3: Mínimo hace 3 días de la velocidad media del viento, wave2: Máximo en los últimos 2 días de la altura promedio de las olas, wave3: Máximo hace 3 y 4 días de la altura promedio de las olas.

Modelo econométrico

$$Itotqty_t = \beta_0 + \beta_1 mon_t + \beta_2 tues_t + \beta_3 wed_t + \beta_4 thurs_t + \alpha lavgprc_t + u_t,$$

• Instrumentos: speed2, speed3, wave2, wave3.

Modelo econométrico

$$Itotqty_t = \beta_0 + \beta_1 mon_t + \beta_2 tues_t + \beta_3 wed_t + \beta_4 thurs_t + \alpha lavgprc_t + u_t,$$

- Instrumentos: speed2, speed3, wave2, wave3.
- Entonces K = 6, L = 9. x = (1, mon, tues, wed, thurs, lavgprc)z = (1, mon, tues, wed, thurs, speed2, speed3, wave2, wave3)

$$y_i = x_i' \beta + u_i.$$

Supuestos: $Cov(x_i, u) \neq 0$ para $j = K_1 + 1, ..., K$.

IV1 Muestra aleatoria de tamaño $N \implies \{y_i, x_i, z_i\}_{i=1}^N$ i.i.d.,

IV2 Exogeneidad: $\mathbb{E}(zu) = 0$,

IV3 No multicolinealidad perfecta entre exógenas: $rango(\mathbb{E}(zz')) = L$

IV4 Condición de rango: $rango(\mathbb{E}(zx')) = K$. Una condición necesaria es la condición de orden: $L \ge K \iff L_1 \ge K_2$, tenemos tantos instrumentos como variables endógenas.

IV5 $\mathbb{E}(u^2zz')$ existe.

- La condición $rango(\mathbb{E}(zx')) = K$ es la generalización del supuesto de relevancia del modelo simple.
- Para modelo simple tenemos $x = \begin{pmatrix} 1 & x_1 \end{pmatrix}$ y $z = \begin{pmatrix} 1 & z_1 \end{pmatrix}$.

- La condición $rango(\mathbb{E}(zx')) = K$ es la generalización del supuesto de relevancia del modelo simple.
- Para modelo simple tenemos $x = \begin{pmatrix} 1 & x_1 \end{pmatrix}$ y $z = \begin{pmatrix} 1 & z_1 \end{pmatrix}$. Entonces:

$$\mathbb{E}(zx') = \left(\begin{array}{cc} 1 & \mathbb{E}(x_1) \\ \mathbb{E}(z_1) & \mathbb{E}(z_1x_1) \end{array} \right).$$

 $rango(\mathbb{E}(zx')) = 2$ si y sólo sí $|\mathbb{E}(zx')| \neq 0$.

- La condición $rango(\mathbb{E}(zx')) = K$ es la generalización del supuesto de relevancia del modelo simple.
- Para modelo simple tenemos $x = (1 x_1)$ y $z = (1 z_1)$. Entonces:

$$\mathbb{E}(zx') = \left(\begin{array}{cc} 1 & \mathbb{E}(x_1) \\ \mathbb{E}(z_1) & \mathbb{E}(z_1x_1) \end{array} \right).$$

$$rango(\mathbb{E}(zx')) = 2$$
 si y sólo sí $|\mathbb{E}(zx')| \neq 0$.

$$|\mathbb{E}(zx')| = \mathbb{E}(z_1x_1) - \mathbb{E}(z_1)\mathbb{E}(x_1) = \operatorname{Cov}(z_1, x_1) \neq 0.$$

- Para una variable endógena y un instrumento, la condición de rango es equivalente a contrastar si el instrumento es significativo en la primera etapa.
- Para una variable endógena y múltiples instrumentos, la condición de rango es equivalente a contrastar si al menos un instrumento es significativo en la primera etapa.
- Para más de una variable endógena, una condición suficiente es que instrumentos distintos sean significativos para distintas v. endógenas en la primera etapa.
 Existen contrastes que evalúan si la matriz E(zx') tiene rango K.
- Contraste de Wald (o F) en la primera etapa H₀: los coeficientes de los instrumentos son cero, versus H₁: al menos uno de los coeficientes de los instrumentos es distinto de cero.

Identificación para L = K

• ¿Qué momentos poblacionales permiten identificar los parámetros de interés?

Identificación para L = K

• ¿Qué momentos poblacionales permiten identificar los parámetros de interés?

$$\begin{split} \mathbb{E}(zu) &= 0 \quad \text{usando IV2}, \\ &\iff \mathbb{E}(z(y-x'\beta)) = 0, \\ &\iff \mathbb{E}(zy) - \mathbb{E}(zx')\beta = 0, \\ &\iff \beta = \mathbb{E}(zx')^{-1} \, \mathbb{E}(zy) \quad \text{usando IV3.b.} \end{split}$$

• IV2 y IV3.b son los supuestos que identifican β .

Estimador por variables instrumentales (IV)

 Principio de analogía: reemplazar momentos poblacionales por momentos muestrales.

Estimador por variables instrumentales (IV)

 Principio de analogía: reemplazar momentos poblacionales por momentos muestrales.

Estamos interesados en:

$$\beta = \mathbb{E}(zx')^{-1}\,\mathbb{E}(zy).$$

Usando el principio de analogía, lo estimamos con

$$\hat{\beta}_{IV} = \left(\frac{1}{N} \sum z_i x_i'\right)^{-1} \frac{1}{N} \sum z_i y_i.$$

• En notación matricial: $\hat{\beta}_{IV} = (Z'X)^{-1}Z'Y$ donde $Z = (z_1,...,z_N)'$.

Estimación para $L \ge K$

• Supongamos que tenemos una variable endógena y dos instrumentos: ¿Podemos combinar ambos instrumentos en la estimación? ¿Cómo?

Estimación para $L \ge K$

- Supongamos que tenemos una variable endógena y dos instrumentos: ¿Podemos combinar ambos instrumentos en la estimación? ¿Cómo?
- Bajo homoscedasticidad, el mejor instrumento es la combinación lineal de las variables exógenas que se obtiene del modelo de regresión de la primera etapa.

Estimación para $L \ge K$

- Supongamos que tenemos una variable endógena y dos instrumentos: ¿Podemos combinar ambos instrumentos en la estimación? ¿Cómo?
- Bajo homoscedasticidad, el mejor instrumento es la combinación lineal de las variables exógenas que se obtiene del modelo de regresión de la primera etapa.
- Podemos escribir la primera etapa como

$$x = \Pi'z + e$$
,

donde $\Pi: L \times K$ es igual a $\Pi = \mathbb{E}(zz')^{-1}\mathbb{E}(zx')$ y $\mathbb{E}(ze') = 0$.

• El vector de instrumentos de x es:

$$x^* = \Pi' z$$
.

• Note que para x_j exógena usamos la misma variable como instrumento: $x_j^* = x_j$.

• Podemos escribir la primera etapa como

$$x = \Pi'z + e$$

donde $\Pi = \mathbb{E}(zz')^{-1}\mathbb{E}(zx')$ y $\mathbb{E}(ze) = 0$.

• Demostración:

El sistema de ecuaciones de la primera etapa es

$$x_1 = \pi'_1 z + e_1,$$

$$\vdots$$

$$x_K = \pi'_K z + e_K.$$

Se puede escribir

$$x = \left[egin{array}{c} \pi_1' \ dots \ \pi_{\mathcal{K}}' \end{array}
ight] z + e = [\pi_1 \dots \pi_{\mathcal{K}}]'z + e = \Pi'z + e.$$

Estimación para $L \ge K$

Podemos escribir la primera etapa como

$$x = \Pi'z + e$$
,

donde
$$\Pi = \mathbb{E}(zz')^{-1} \mathbb{E}(zx')$$
 y $\mathbb{E}(ze') = 0$.

• Demostración:

El sistema de ecuaciones de la primera etapa es

$$x = \Pi'z + e$$

donde $\Pi = [\pi_1 \dots \pi_K]$.

Dado que $\pi_j = \mathbb{E}(zz')^{-1}\,\mathbb{E}(zx_j)$ entonces

$$\Pi = [\pi_1 \dots \pi_K] = \mathbb{E}(zz')^{-1}[\mathbb{E}(zx_1) \dots \mathbb{E}(zx_K)] = \mathbb{E}(zz')^{-1}\mathbb{E}(zx').$$

Estimación para $L \ge K$

- Supongamos que tenemos una variable endógena y dos instrumentos: ¿Qué instrumento utilizamos?
- Bajo homoscedasticidad, el mejor instrumento es la combinación lineal de las variables exógenas que se obtiene del modelo de regresión de la primera etapa.
- Podemos escribir la primera etapa como

$$x = \Pi'z + e$$
,

donde $\Pi: L \times K$ es igual a $\Pi = \mathbb{E}(zz')^{-1} \mathbb{E}(zx')$ y $\mathbb{E}(ze') = 0$.

• El vector de instrumentos de x es:

$$x^* = \Pi'z$$
.

• Note que para x_j exógena usamos la misma variable como instrumento: $x_j^* = x_j$.

Instrumentos

Queremos hacer una estimación de IV con $x^* = \Pi'z$. Verifiquemos que los instrumentos cumplen la condición de exogeneidad y rango.

Instrumentos

Queremos hacer una estimación de IV con $x^* = \Pi'z$. Verifiquemos que los instrumentos cumplen la condición de exogeneidad y rango.

Exogeneidad

 $rango(\mathbb{E}(x^*x')) = K.$

$$\mathbb{E}(x^*u) = \mathbb{E}(\Pi'zu) = \Pi' \mathbb{E}(zu) = 0$$
 por exogeneidad de z.

• Condición de rango: $rango(\mathbb{E}(x^*x')) = K$. $\mathbb{E}(x^*x') = \mathbb{E}(\Pi'zx') = \Pi' \mathbb{E}(zx') = \mathbb{E}(xz') \mathbb{E}(zz')^{-1} \mathbb{E}(zx')$ Como $rango(\mathbb{E}(zz')) = L$, $rango(\mathbb{E}(zx')) = K$ y $L \geq K$ entonces

60

Estimación

Estimación en dos etapas:

• Regresar x_i en z_i y obtener valores predichos

$$\hat{x}_i = \hat{\Pi}' z_i$$
.

Nota: Es lo mismo que regresar solamente las variables endógenas y utilizar las variables exógenas incluidas como su propio instrumento.

• Usar \hat{x}_i como instrumentos en un IV

$$\hat{\beta}_{IV} = \left(\frac{1}{N} \sum \hat{x}_i x_i'\right)^{-1} \frac{1}{N} \sum \hat{x}_i y_i.$$

Estimación

• Dado que $x_i = \hat{x}_i + \hat{e}_i$ y de las CPO de MCO

$$\frac{1}{N}\sum_{i}\hat{x}_{i}\hat{e}_{i}'=0,$$

entonces

$$\frac{1}{N}\sum_{i}\hat{x}_{i}x_{i}'=\frac{1}{N}\sum_{i}\hat{x}_{i}\hat{x}_{i}',$$

y el estimador IV se puede escribir como un estimador 2SLS

$$\hat{\beta}_{2SLS} = \left(\frac{1}{N} \sum \hat{x}_i \hat{x}_i'\right)^{-1} \frac{1}{N} \sum \hat{x}_i y_i,$$

donde la segunda etapa es un regresión de y en \hat{x}_i .

 Recuerde: No es recomendable computar el estimador usando el procedimiento en dos etapas porque los s.e. están mal calculados.

Propiedades

- Para probar consistencia es conveniente escribir el estimador en función de las variables originales.
- El coeficiente estimado de regresar x_j en los instrumentos es $\hat{\pi}_i = (\sum z_i z_i')^{-1} \sum z_i x_{ji}$.
- La matriz de dichos coeficientes es $\hat{\Pi} = [\hat{\pi}_1 \hat{\pi}_2 ... \hat{\pi}_K] = (\sum z_i z_i')^{-1} \sum z_i x_i'$.
- Por lo tanto podemos escribir:

$$\hat{\beta}_{2SLS} = \left(\sum \hat{x}_i \hat{x}_i'\right)^{-1} \sum \hat{x}_i y_i,$$

$$= \left[\left(\sum x_i z_i'\right) \left(\sum z_i z_i'\right)^{-1} \left(\sum z_i x_i'\right)\right]^{-1}$$

$$\left(\sum x_i z_i'\right) \left(\sum z_i z_i'\right)^{-1} \left(\sum z_i y_i\right).$$

• Si K = L, tenemos el estimador IV.

Consistencia

$$\hat{\beta}_{2SLS} = \beta + \left[\left(\sum x_i z_i' \right) \left(\sum z_i z_i' \right)^{-1} \left(\sum z_i x_i' \right) \right]^{-1}$$
$$\left(\sum x_i z_i' \right) \left(\sum z_i z_i' \right)^{-1} \left(\sum z_i u_i \right)$$

Entonces usando los resultados derivados en el capítulo de Teoría asintótica, y IV2 y IV3

$$\operatorname{plim} \hat{\beta}_{2SLS} = \beta + \left[\mathbb{E}(xz') \, \mathbb{E}(zz')^{-1} \, \mathbb{E}(zx') \right]^{-1} \, \mathbb{E}(xz') \, \mathbb{E}(zz')^{-1} \, \mathbb{E}(zu).$$

Entonces plim $\hat{\beta}_{2SLS} = \beta$.

Distribución asintótica normal

$$\sqrt{N}(\hat{\beta}_{2SLS} - \beta) = \left[\left(\sum x_i z_i' \right) \left(\sum z_i z_i' \right)^{-1} \left(\sum z_i x_i' \right) \right]^{-1}$$
$$\left(\sum x_i z_i' \right) \left(\sum z_i z_i' \right)^{-1} \sqrt{N} \left(\sum z_i u_i \right)$$

Usando los resultados derivados en el capítulo de Teoría asintótica, y IV2, IV3, y IV4, y el teorema de Slutsky,

$$\sqrt{N}(\hat{\beta}_{2SLS} - \beta) \stackrel{d}{\longrightarrow} \text{Normal}(0, B^{-1}CB^{-1}),$$

donde

$$B = \mathbb{E}(xz') \,\mathbb{E}(zz')^{-1} \,\mathbb{E}(zx'),$$

$$C = \mathbb{E}(xz') \,\mathbb{E}(zz')^{-1} \,\mathbb{E}(u^2zz') \,\mathbb{E}(zz')^{-1} \,\mathbb{E}(zx').$$

Distribución asintótica normal

Decimos

$$\begin{split} \hat{\beta}_{2SLS} &\overset{\textit{a}}{\sim} \mathsf{Normal}(\beta, \mathsf{AVar}(\hat{\beta}_{2SLS})), \ \mathsf{donde} \\ \mathsf{AVar}(\hat{\beta}_{2SLS}) &= \frac{1}{N} B^{-1} C B^{-1}. \end{split}$$

• Estimación consistente de AVar $(\hat{\beta}_{2SLS})$: Reemplazamos momentos poblacionales por muestrales y errores poblacionales (u_i) por errores estimados (\hat{u}_i) . Es decir,

$$\widehat{\mathsf{AVar}}(\hat{\beta}_{2SLS}) = \frac{1}{N}\hat{B}^{-1}\hat{C}\hat{B}^{-1},$$

donde

$$\hat{B} = \left(\frac{1}{N} \sum x_i z_i'\right) \left(\frac{1}{N} \sum z_i z_i'\right)^{-1} \left(\frac{1}{N} \sum z_i x_i'\right),$$

$$\hat{C} = \left(\frac{1}{N} \sum x_i z_i'\right) \left(\frac{1}{N} \sum z_i z_i'\right)^{-1} \left(\frac{1}{N} \sum \hat{u}_i^2 z_i z_i'\right) \left(\frac{1}{N} \sum z_i z_i'\right)^{-1} \left(\frac{1}{N} \sum z_i x_i'\right).$$

Eficiencia

• Si asumimos homoscedasticidad, es decir IV5 $\mathbb{E}(u^2|z) = \mathbb{E}(u^2) = \sigma^2$:

$$\mathsf{AVar}(\hat{\beta}_{2SLS}) = \frac{1}{N} \sigma^2 B^{-1}.$$

Efecto de la fertilidad en la oferta laboral (Angrist y Evans, AER 1998)

Modelo

hourswm =
$$\beta_0 + \beta_1$$
 agem $1 + \beta_2$ agefstm + β_3 boy 1 st + β_4 blackm+ + β_5 hispm + β_6 othracem + β_7 morekids + u_i .

donde tener 3 hijos o más (morekids), edad de la madre (agem1), edad de la madre cuando tuvo su primer hijo (agefstm), primer hijo varón (boy1st), raza negra (blackm), hispano (hispm), otra raza distinto de blanco (othracem).

• Instrumentos: Dos hijas mujeres (girls2) y dos hijos varones (boys2).

MCO

reg hourswm morekids agem1 agefstm boy1st blackm hispm othracem, robust

Linear regression

Number of obs = 262793 F(7,262785) = 2784.79 Prob > F = 0.0000 R-squared = 0.0653 Root MSE = 17.766

Robust Std. Err. [95% Conf. Interval] hourswm | Coef. t P>|t| morekids | -5.95623 .0728213 -81.79 0.000 -6.098958 -5.813503 agem1 | .8097462 .011472 70.58 0.000 .7872614 .832231 agefstm | -1.300151 .0132688 -97.99 0.000 -1.326158 -1.274145 bov1st | .0378813 .0693342 0.55 0.585 -.0980118 .1737745 blackm | 9.631453 .1541123 62.50 0.000 9.329397 9.933509 2.55643 hispm | 3.014593 . 2337595 12.90 0.000 3.472755 othracem | 5.103861 .2220974 22.98 0.000 4.668556 5.539166 cons 20.70811 .3460431 59.84 0.000 20.02988 21.38635

Primera etapa

- . * First stage
- . reg morekids boys2 girls2 agem1 agefstm boy1st blackm hispm othracem, robust

Linear regression

Number of obs = 262793 F(8,262784) = 3192.69 Prob > F = 0.0000 R-squared = 0.0794 Root MSE = .46659

morekids	1	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
boys2 girls2 agem1		.058245 .0796582 .0302071	.0025344 .0026165 .0002879	22.98 30.44 104.91	0.000 0.000 0.000	.0532776 .07453 .0296427	.0632124 .0847865 .0307714
agefstm _cons	1	0440882 .3374692	.0003225	-136.72 38.11	0.000	0447203 .3201126	0434562 .3548258

- . test boys2 girls2
- (1) boys2 = 0
- (2) girls2 = 0

```
F(2,262784) = 727.61

Prob > F = 0.0000
```

IV con prediccion de la primera etapa

ivregress 2sls hourswm (morekids = morekidshat3) agem1 agefstm boy1st blackm hispm othrace > m, robust

Instrumental variables (2SLS) regression

Number of obs = 262793 Wald chi2(7) =11845.37 Prob > chi2 = 0.0000 R-squared = 0.0637 Root MSE = 17.78

hourswm		Coef.		obust d. Err.		z	P>	> z		[95%	Conf	. Interva	1]
morekids	i	-4.426483	.99	981875	-4	. 43	0.	.000	-	6.382	2894	-2.4700	71
agem1	ı	.7636138	.03	321289	23	.77	0.	.000		.7006	6423	.82658	52
agefstm	ı	-1.232783	.04	157746	-26	.93	0.	.000		-1.3	3225	-1.14306	67
boy1st	ı	.0519022	.06	599756	0	.74	0.	458	-	.0852	2475	. 1890	52
blackm	ı	9.52702	.16	84359	56	.56	0.	.000		9.196	8891	9.8571	18
hispm	ı	2.761302	. 28	361099	9	.65	0.	.000		2.200	536	3.3220	67
othracem	ı	5.010299	. 23	303647	21	.75	0.	.000		4.558	3793	5.46180	06
_cons	I	20.13108	.5	105939	39	.43	0.	.000		19.13	3033	21.1318	32

Instrumented: morekids

Instruments: agem1 agefstm boy1st blackm hispm othracem morekidshat3

Dos veces MCO

reg hourswm morekidshat3 agem1 agefstm boy1st blackm hispm othracem, robust

Linear regression Number of obs = 262793 F(7.262785) = 1663.58Prob > F = 0.0000

> R-squared = 0.0423 Root MSE = 17.982

Robust Coef. Std. Err. P>|t| [95% Conf. Interval] hourswm morekidshat3 | -4.426483 1.009505 -4.38 0.000 -6.405085 -2.44788 .699932 .8272956 agem1 | .7636138 .0324912 23.50 0.000 agefstm | -1.232783 .0462865 -26.63 0.000 -1.323504 -1.142063 bov1st | .0519022 .0707778 0.73 0.463 -.0868204 .1906249 blackm | 9.52702 .1704203 55.90 0.000 9.193 9.861039 hispm | 2.761302 . 2896682 9.53 0.000 2.19356 3.329043 othracem | 5.010299 . 2325027 21.55 0.000 4.5546 5.465998 20.13108 .5159306 39.02 0.000 19.11987 21,14229 cons

Mínimos cuadrados en 2 etapas

ivregress 2sls hourswm (morekids = boys2 girls2) agem1 agefstm boy1st blackm hispm othracem, robust

Instrumental variables (2SLS) regression

Number of obs = 262793 Wald chi2(7) =11845.37 Prob > chi2 = 0.0000 R-squared = 0.0637 Root MSE = 17.78

Robust Coef. Std. Err. P>|z| [95% Conf. Interval] hourswm morekids | -4.426483 .9981875 -4.43 0.000 -6.382894 -2.470071 agem1 | .7636138 .0321289 23.77 0.000 .7006423 .8265852 agefstm | -1.232783 .0457746 -26.93 0.000 -1.3225 -1.143067 bov1st | .0519022 -.0852475 .189052 .0699756 0.74 0.458 blackm | 9.52702 .1684359 56.56 0.000 9.196891 9.857148 hispm | 2.761302 .2861099 9.65 0.000 2.200536 3.322067 othracem | 5.010299 .2303647 21.75 0.000 4.558793 5.461806 20.13108 .5105939 39.43 0.000 19.13033 21.13182 cons

Instrumented: morekids

Instruments: agem1 agefstm boy1st blackm hispm othracem boys2 girls2

Testear competencia imperfecta en el mercado de pescado de Fulton, NY

Modelo

$$Itotqty_t = \beta_0 + \beta_1 mon_t + \beta_2 tues_t + \beta_3 wed_t + \beta_4 thurs_t + \alpha lavgprc_t + u_t,$$

donde *lavgprc*: Logaritmo del precio promedio del día (\$ por libra), *ltotqty*: Logaritmo de ventas totales del día en libras, mon=1 para Lunes, tues=1 para Martes, wed=1 para Miércoles, thurs=1 para Jueves.

Instrumentos: speed2: Mínimo en los últimos 2 días de la velocidad media del viento, speed3: Mínimo hace 3 días de la velocidad media del viento, wave2: Máximo en los últimos 2 días de la altura promedio de las olas, wave3: Máximo hace 3 y 4 días de la altura promedio de las olas.

MCO

. reg ltotqty lavgprc mon tues wed thurs, robust

Linear regression	Numb	oer	of	obs	=	97
	F(5,		91)	=	8.63
	Prob	>	F		=	0.0000
	R-sc	quar	ed		=	0.2168
	Root	t MS	E		=	.69504

 ltotaty	Coef.	Robust Std. Err.	t	P> t	[95% Conf	Interval]
1000407	0001.	Dod. LII.		1 - 1 0 1	[50% COIII .	Intervary
+-						
lavgprc	5246552	. 161579	-3.25	0.002	8456121	2036984
mon	3109273	.2445861	-1.27	0.207	7967675	.1749129
tues	6827902	.2044422	-3.34	0.001	-1.08889	2766908
wed	5338937	.2133237	-2.50	0.014	9576351	1101524
thurs	.0672272	.1656234	0.41	0.686	2617634	.3962178
_cons	8.244317	.1345196	61.29	0.000	7.977111	8.511524

Primera etapa

. reg lavgprc mon tues wed thurs speed2 speed3 wave2 wave3, robust

Linear regression Number of obs = 97
F(8, 88) = 6.98
Prob > F = 0.0000
R-squared = 0.3048
Root MSE = .35232

1		Robust						
lavgprc	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
mon	0090364	.1184382	-0.08	0.939	2444074	.2263345		
tues	0141502	.1234927	-0.11	0.909	2595659	.2312656		
wed	.0494936	.1111364	0.45	0.657	1713665	.2703538		
thurs	.1253236	.104251	1.20	0.233	0818534	.3325006		
speed2	002625	.0087642	-0.30	0.765	0200421	.0147921		
speed3	.0014381	.007503	0.19	0.848	0134725	.0163487		
wave2	.096806	.0221069	4.38	0.000	.0528733	.1407388		
wave3	.0494724	.0220505	2.24	0.027	.0056516	.0932932		
_cons	-1.017331	.1584286	-6.42	0.000	-1.332175	7024874		

Test relevancia de los instrumentos

```
test speed2 speed3 wave2 wave3
(1) speed2 = 0
(2) speed3 = 0
(3) wave2 = 0
(4) wave3 = 0
     F(4, 88) = 10.33
        Prob > F = 0.0000
    test speed2 speed3
(1) speed2 = 0
(2) speed3 = 0
     F(2, 88) = 0.06
         Prob > F =
                    0.9416
```

Primera etapa

. reg lavgprc mon tues wed thurs wave2 wave3, robust

```
Number of obs = 97
Linear regression
                                            F(6.90) = 9.31
                                            Prob > F
                                                        = 0.0000
                                            R-squared = 0.3041
                                            Root MSE
                                                        = .34856
                       Robust
    lavgprc |
                Coef.
                      Std. Err. t P>|t| [95% Conf. Interval]
            -.0120799
                      .1148977
                                -0.11
                                       0.917
                                             -.2403442
                                                         .2161844
       mon I
                                             -.0805885 .328971
     thurs | .1241913 .1030767
                              1.20
                                      0.231
     wave2 | .0944805
                     .0180429
                              5.24
                                      0.000
                                             .0586352 .1303258
     wave3 | .052566 .0168191
                                      0.002
                                             .0191519 .0859801
                              3.13
     cons | -1.022801
                     . 136276
                                -7.51
                                      0.000
                                             -1.293537 -.7520651
```

- . test wave2 wave3
- (1) wave2 = 0
- (2) wave3 = 0

$$F(2, 90) = 20.77$$

 $Prob > F = 0.0000$

Mínimos cuadrados en 2 etapas

Instrumental variables (2SLS) regression Number of ob

Number of obs = 97
Wald chi2(5) = 29.85
Prob > chi2 = 0.0000
R-squared = 0.1933
Root MSE = .68324

ltotqty	1	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]	
	-+-							
lavgprc	-	8158181	.3234293	-2.52	0.012	-1.449728	1819083	
mon	-	3074355	.2374609	-1.29	0.195	7728503	.1579793	
tues	-	6847291	.2005469	-3.41	0.001	-1.077794	2916644	
wed	-	5206142	.2126399	-2.45	0.014	9373808	1038476	
thurs	-	.0947567	.1647731	0.58	0.565	2281926	.417706	
_cons	-	8.164099	.1569425	52.02	0.000	7.856497	8.471701	

Instrumented: lavgprc

Instruments: mon tues wed thurs wave2 wave3

Validez de los instrumentos

Validez de los instrumentos

La consistencia y la distribución asintótica del estimador dependen de la validez de los instrumentos.

- Relevancia: Los instrumentos están (parcialmente) correlados con la variables endógena.
- Exogeneidad: Los instrumentos no están correlados con los inobservados de la ecuación de interés.

Relevancia de los instrumentos

- Condición de rango: $rango(\mathbb{E}(zx')) = K$.
- Para una variable endógena y un instrumento, la condición de rango es equivalente a contrastar si el instrumento es significativo en la primera etapa.
- Para una variable endógena y múltiples instrumentos, la condición de rango es equivalente a contrastar si al menos un instrumento es significativo en la primera etapa.
- Para más de una variable endógena, una condición suficiente es que instrumentos distintos sean significativos para distintas v. endógenas en la primera etapa.
 Existen contrastes que evalúan si la matriz E(zx') tiene rango K.
- Contraste de Wald (o F) en la primera etapa H₀: los coeficientes de los instrumentos son cero, versus H₁: al menos uno de los coeficientes de los instrumentos es distinto de cero.

Condición de rango

• Podemos escribir los instrumentos de la siguiente forma

$$x^* = \Pi' z$$
,

donde
$$\Pi = \mathbb{E}(zz')^{-1} \mathbb{E}(zx')$$

- Recuerde que Π es una matriz de $L \times K$ donde cada columna corresponde a la primera etapa de cada variable explicativa.
- $\bullet\,$ Podemos contrastar la condición de rango con la matriz $\Pi.$

Condición de rango

Podemos escribir los instrumentos de la siguiente forma

$$x^* = \Pi' z$$
,

donde
$$\Pi = \mathbb{E}(zz')^{-1} \mathbb{E}(zx')$$

- Recuerde que Π es una matriz de $L \times K$ donde cada columna corresponde a la primera etapa de cada variable explicativa.
- Podemos contrastar la condición de rango con la matriz Π. Demostración:

$$\mathbb{E}(zx') = \mathbb{E}(z(x^* + e)') = \mathbb{E}(zx^{*'}) = \mathbb{E}(zz')\Pi.$$

Dado que $rango(\mathbb{E}(zz')) = L$, necesitamos $rango(\Pi) = K$.

Ejemplo 1: Modelo simple

• Modelo: $y = \beta_0 + \beta_1 x_1 + u$ con un instrumento z_1 . Escribimos la primera etapa como $x_1 = \pi_{10} + \pi_{11} z_1 + e_1$. Entonces

$$\Pi = \left[egin{array}{cc} 1 & \pi_{10} \ 0 & \pi_{11} \end{array}
ight].$$

La condición de rango es $\pi_{11} \neq 0$.

Ejemplo 2: Regresión múltiple con una variable endógena x_K

• Escribimos primera etapa como $x_K = x'_{-K}\pi_{10} + \pi'_{11}z + e_i$ donde $\pi_{10} = (K-1) \times 1$ y $\pi_{11} = L_1 \times 1$. Entonces

$$\Pi = \left[\begin{array}{cc} I_{K-1} & \pi_{10} \\ 0_{L_1,K-1} & \pi_{11} \end{array} \right].$$

Se necesita por lo menos un elemento de π_{11} distinto de cero.

Contraste de sobreidentificación (Sargan-Hansen)

• Queremos contrastar la condición de exogeneidad:

$$H_0: \mathbb{E}(zu) = 0,$$

$$H_1: \mathbb{E}(zu) \neq 0.$$

Contraste de sobreidentificación (Sargan-Hansen)

• Queremos contrastar la condición de exogeneidad:

$$H_0: \mathbb{E}(zu) = 0,$$

 $H_1: \mathbb{E}(zu) \neq 0.$

Idea: Podemos utilizar

$$\sqrt{N}\frac{1}{N}\sum z_iu_i \stackrel{d}{\longrightarrow}_{H_0} \text{Normal}(0,\mathbb{E}(u^2zz')),$$

para construir el test estadístico

$$J_N = N \left(\frac{1}{N} \sum z_i u_i \right)' \left(\frac{1}{N} \sum u_i^2 z_i z_i' \right)^{-1} \left(\frac{1}{N} \sum z_i u_i \right) \xrightarrow{d}_{H_0} \chi_L^2.$$

Contraste de sobreidentificación (Sargan-Hansen)

Queremos contrastar la condición de exogeneidad:

$$H_0: \mathbb{E}(zu)=0,$$

$$H_1: \mathbb{E}(zu) \neq 0.$$

• Idea: Podemos utilizar

$$\sqrt{N}\frac{1}{N}\sum z_i u_i \stackrel{d}{\longrightarrow}_{H_0} \text{Normal}(0, \mathbb{E}(u^2zz')),$$

para construir el test estadístico

$$J_N = N \left(\frac{1}{N} \sum z_i u_i\right)' \left(\frac{1}{N} \sum u_i^2 z_i z_i'\right)^{-1} \left(\frac{1}{N} \sum z_i u_i\right) \xrightarrow{d}_{H_0} \chi_L^2.$$

• Problema: No observamos u_i . Podemos reemplazar u_i por \hat{u}_i . Si el modelo está exactamente identificado no podemos realizar el contraste porque $\sum z_i \hat{u}_i = 0$. Al estimar \hat{u}_i perdemos K grados de libertad por lo tanto $J_N \xrightarrow{d}_{H_0} \chi^2_{L-K}$.

Discusión

1. Para modelos homoscedásticos, el test se puede realizar con el estadístico $LM_N=N\hat{R}^2$ donde \hat{R}^2 es el R^2 estimado en la regresión de \hat{u}_i sobre z_i (incluye las variables exógenas incluidas). Bajo la hipótesis nula $LM_N=N\hat{R}^2 \stackrel{d}{\longrightarrow}_{H_0} \chi^2_{I-K}$.

Discusión

- 1. Para modelos homoscedásticos, el test se puede realizar con el estadístico $LM_N=N\hat{R}^2$ donde \hat{R}^2 es el R^2 estimado en la regresión de \hat{u}_i sobre z_i (incluye las variables exógenas incluidas). Bajo la hipótesis nula $LM_N=N\hat{R}^2 \stackrel{d}{\longrightarrow}_{H_0} \chi^2_{L-K}$.
- Interpretación alternativa: Intuitivamente, el test compara las estimaciones de los modelos exactamente identificados. Rechazamos en caso que las estimaciones de los modelos exactamente identificados sean distintas. A veces no rechazamos porque los s.e. son muy grandes.

- 1. Para modelos homoscedásticos, el test se puede realizar con el estadístico $LM_N=N\hat{R}^2$ donde \hat{R}^2 es el R^2 estimado en la regresión de \hat{u}_i sobre z_i (incluye las variables exógenas incluidas). Bajo la hipótesis nula $LM_N=N\hat{R}^2 \stackrel{d}{\longrightarrow}_{H_0} \chi^2_{L-K}$.
- Interpretación alternativa: Intuitivamente, el test compara las estimaciones de los modelos exactamente identificados. Rechazamos en caso que las estimaciones de los modelos exactamente identificados sean distintas. A veces no rechazamos porque los s.e. son muy grandes.
- 3. El test de sobreidentificación no suele ser muy útil en la práctica porque los s.e. son muy grandes y es difícil rechazar H_0 . El test tiene poco poder.

- 1. Para modelos homoscedásticos, el test se puede realizar con el estadístico $LM_N=N\hat{R}^2$ donde \hat{R}^2 es el R^2 estimado en la regresión de \hat{u}_i sobre z_i (incluye las variables exógenas incluidas). Bajo la hipótesis nula $LM_N=N\hat{R}^2 \stackrel{d}{\longrightarrow}_{H_0} \chi^2_{L-K}$.
- Interpretación alternativa: Intuitivamente, el test compara las estimaciones de los modelos exactamente identificados. Rechazamos en caso que las estimaciones de los modelos exactamente identificados sean distintas. A veces no rechazamos porque los s.e. son muy grandes.
- 3. El test de sobreidentificación no suele ser muy útil en la práctica porque los s.e. son muy grandes y es difícil rechazar H_0 . El test tiene poco poder.
- 4. En Stata utilizar estat overid

Testear competencia imperfecta en el mercado de pescado de Fulton, NY

Modelo

$$Itotqty_t = \beta_0 + \beta_1 mon_t + \beta_2 tues_t + \beta_3 wed_t + \beta_4 thurs_t + \alpha lavgprc_t + u_t,$$

donde *lavgprc*: Logaritmo del precio promedio del día (\$ por libra), *ltotqty*: Logaritmo de ventas totales del día en libras, mon=1 para Lunes, tues=1 para Martes, wed=1 para Miércoles, thurs=1 para Jueves.

Instrumentos: speed2: Mínimo en los últimos 2 días de la velocidad media del viento, speed3: Mínimo hace 3 días de la velocidad media del viento, wave2: Máximo en los últimos 2 días de la altura promedio de las olas, wave3: Máximo hace 3 y 4 días de la altura promedio de las olas.

Test de sobreidentificación con wave2 y wave3

Test de sobreidentificación a mano

- ivregress 2sls ltotqty (lavgprc=wave2 wave3) mon tues wed thurs, robust
 predict uhat, resid
- . reg uhat wave2 wave3 mon tues wed thurs, robust

Linear regression

Number of obs = 97
F(6, 90) = 0.00
Prob > F = 1.0000
R-squared = 0.0003
Root MSE = .70921

uhat	 -	Coef.	_		ust Err.	 t	 P> t	 [95%	Conf.	Int	erval]
wave2	ı	0048563	.0	48	5799	-0.10	0.921	1013	3687	.0	916562
wave3	ı	.0058697	.0	39	0458	0.15	0.881	071	7017	.0	834411
mon		.0028326	. 2	45	5883	0.01	0.991	485	0714	.4	907366
tues	ı	0025088	. 2	09	5872	-0.01	0.990	418	3904	.4	138728
wed	ı	0056111	. 2	22	4295	-0.03	0.980	44	7506	.4	362839
thurs		0032378	. 1	67	7995	-0.02	0.985	336	8008	.3	301251
_cons	I 	0029474	. 2	65	7641	 -0.01	 0.991	 530	9343	.5	250395

 $LM_N = N \times \hat{R}^2 = 97 \times 0.0003 = 0.0291$

Test de sobreidentificación: intuición

ivregress 2sls ltotqty (lavgprc=wave2) mon tues wed thurs, robust

Instrumental variables (2SLS) regression Number of obs = 97

Wald chi2(5) = 26.21

Prob > chi2 = 0.0001

R-squared = 0.1891

Root MSE = .68503

	1		Robust				
ltotqty	1	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]
	-+-						
lavgprc	1	8410206	.3827023	-2.20	0.028	-1.591103	0909378
mon	1	3071333	.2374899	-1.29	0.196	772605	.1583385
tues	1	6848969	.2011967	-3.40	0.001	-1.079235	2905587
wed	1	5194648	.2131435	-2.44	0.015	9372184	1017111
thurs	1	.0971396	.1670053	0.58	0.561	2301848	.424464
_cons		8.157156	.1650797	49.41	0.000	7.833606	8.480706

Instrumented: lavgprc

Instruments: mon tues wed thurs wave2

Test de sobreidentificación: intuición

. ivregress 2sls ltotqty (lavgprc=wave3) mon tues wed thurs, robust

Instrumental variables (2SLS) regression

Number of obs = 97
Wald chi2(5) = 27.69
Prob > chi2 = 0.0000
R-squared = 0.2013
Root MSE = .67983

 ltotqty	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	. Interval]
lavgprc mon tues wed thurs	7610668 3080921 6843645 5231113	.4245699 .2375451 .1993474 .212618 .1649782	-1.79 -1.30 -3.43 -2.46 0.54	0.073 0.195 0.001 0.014 0.587	-1.593209 7736719 -1.075078 9398351 2337713	.0710749 .1574877 2936508 1063876 .4129313
_cons	8.179184	.1779939	45.95	0.000	7.830322	8.528045

Instrumented: lavgprc

Instruments: mon tues wed thurs wave3

Contraste de endogeneidad (Durbin-Wu-Hausman)

• Queremos contrastar que la variable x_K es endógena:

$$H_0: \mathbb{E}(x_K u) = 0,$$

$$H_1: \mathbb{E}(x_K u) \neq 0.$$

Contraste de endogeneidad (Durbin-Wu-Hausman)

• Queremos contrastar que la variable x_K es endógena:

$$H_0: \mathbb{E}(x_K u) = 0,$$

 $H_1: \mathbb{E}(x_K u) \neq 0.$

• Idea: Hausman (1978) propuso comparar el estimador por MCO, consistente bajo H_0 , con el estimador IV, consistente bajo H_0 y H_1 . Se puede demostrar que

$$\sqrt{N}(\hat{\beta}_{IV} - \hat{\beta}_{MCO}) \stackrel{d}{\longrightarrow} \text{Normal}(0, \text{AVar}(\sqrt{N}\,\hat{\beta}_{IV}) - \text{AVar}(\sqrt{N}\,\hat{\beta}_{MCO})),$$

para construir el test estadístico

$$H_N = (\hat{\beta}_{1,IV} - \hat{\beta}_{1,MCO})'(\mathsf{AVar}(\hat{\beta}_{1,IV}) - \mathsf{AVar}(\hat{\beta}_{1,MCO}))^{-1}(\hat{\beta}_{1,IV} - \hat{\beta}_{1,MCO}) \xrightarrow{d}_{H_0} \chi^2_{L_1}.$$

Contraste de endogeneidad (Durbin-Wu-Hausman)

• Queremos contrastar que la variable x_K es endógena:

$$H_0: \mathbb{E}(x_K u) = 0,$$

$$H_1: \mathbb{E}(x_K u) \neq 0.$$

• Idea: Hausman (1978) propuso comparar el estimador por MCO, consistente bajo H_0 , con el estimador IV, consistente bajo H_0 y H_1 . Se puede demostrar que

$$\sqrt{N}(\hat{\beta}_{IV} - \hat{\beta}_{MCO}) \stackrel{d}{\longrightarrow} \text{Normal}(0, \text{AVar}(\sqrt{N}\,\hat{\beta}_{IV}) - \text{AVar}(\sqrt{N}\,\hat{\beta}_{MCO})),$$

para construir el test estadístico

$$H_N = (\hat{\beta}_{1,IV} - \hat{\beta}_{1,MCO})'(\mathsf{AVar}(\hat{\beta}_{1,IV}) - \mathsf{AVar}(\hat{\beta}_{1,MCO}))^{-1}(\hat{\beta}_{1,IV} - \hat{\beta}_{1,MCO}) \xrightarrow{d}_{H_0} \chi^2_{L_1}.$$

En Stata se puede utilizar estat endog.

- 1. El test se puede realizar con el siguiente procedimiento:
 - 1.1 Estima la primera etapa por MCO y guarda los residuos,
 - 1.2 Estima la ecuación de interés por MCO controlando por los residuos obtenidos en 1),
 - 1.3 Hacer un contraste de Wald sobre los residuos.

- 1. El test se puede realizar con el siguiente procedimiento:
 - 1.1 Estima la primera etapa por MCO y guarda los residuos,
 - 1.2 Estima la ecuación de interés por MCO controlando por los residuos obtenidos en 1),
 - 1.3 Hacer un contraste de Wald sobre los residuos.
- Es una forma alternativa de estimar los parámetros en forma consistente: enfoque de funciones de control. Una vez que controlamos por los residuos de la primera etapa, las variables explicativas no están correladas con los inobservados y podemos estimar por MCO.

- 1. El test se puede realizar con el siguiente procedimiento:
 - 1.1 Estima la primera etapa por MCO y guarda los residuos,
 - 1.2 Estima la ecuación de interés por MCO controlando por los residuos obtenidos en 1),
 - 1.3 Hacer un contraste de Wald sobre los residuos.
- Es una forma alternativa de estimar los parámetros en forma consistente: enfoque de funciones de control. Una vez que controlamos por los residuos de la primera etapa, las variables explicativas no están correladas con los inobservados y podemos estimar por MCO.
- 3. El test de endogeneidad no suele ser muy útil en la práctica porque los s.e. son muy grandes y es difícil rechazar H_0 . El test tiene bajo poder.

Testear competencia imperfecta en el mercado de pescado de Fulton, NY

Modelo

$$Itotqty_t = \beta_0 + \beta_1 mon_t + \beta_2 tues_t + \beta_3 wed_t + \beta_4 thurs_t + \alpha lavgprc_t + u_t,$$

donde *lavgprc*: Logaritmo del precio promedio del día (\$ por libra), *ltotqty*: Logaritmo de ventas totales del día en libras, mon=1 para Lunes, tues=1 para Martes, wed=1 para Miércoles, thurs=1 para Jueves.

Instrumentos: speed2: Mínimo en los últimos 2 días de la velocidad media del viento, speed3: Mínimo hace 3 días de la velocidad media del viento, wave2: Máximo en los últimos 2 días de la altura promedio de las olas, wave3: Máximo hace 3 y 4 días de la altura promedio de las olas.

Test de endogeneidad con wave2 y wave3

Tests of endogeneity
Ho: variables are exogenous

Robust score chi2(1) = 1.10541 (p = 0.2931)
Robust regression F(1,90) = 1.10986 (p = 0.2949)

estat endogenous

Test de endogeneidad a mano

. reg lavgprc wave2 wave3 mon tues wed thurs, robust

```
Linear regression

Number of obs = 97
F( 6, 90) = 9.31
Prob > F = 0.0000
R-squared = 0.3041
Root MSE = .34856
```

lavgprc	1	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
wave2	Ī	.0944805	.0180429	5.24	0.000	.0586352	.1303258
wave3	1	.052566	.0168191	3.13	0.002	.0191519	.0859801
mon	1	0120799	.1148977	-0.11	0.917	2403442	.2161844
tues	1	0089758	.1221166	-0.07	0.942	2515817	.23363
wed	1	.0505471	.1113689	0.45	0.651	1707068	.2718009
thurs	ı	.1241913	.1030767	1.20	0.231	0805885	.328971
_cons	I	-1.022801	. 136276	-7.51	0.000	-1.293537	7520651

predict uhat, resid

Test de endogeneidad a mano

reg ltotqty lavgprc mon tues wed thurs uhat, robust

```
Linear regression Number of obs = 97
F( 6, 90) = 7.27
Prob > F = 0.0000
R-squared = 0.2268
Root MSE = .69442
```

														•				
			Ro	bust														
ltotqty		Coef.	Sto	td. Err.		Std. Err.		Std. Err.		t		P> t		[95% Conf.			Interval]	
	+-													-				
lavgprc	1	8158181	.3:	172522	-2	. 57	0.0	012	-	1.44	6095	-	.1855414	1				
mon		3074355	.24	179658	-1	. 24	0.2	218	-	.800	0628		.1851918	3				
tues		6847291	. 19	993719	-3	.43	0.0	001	-	1.08	0816		288642	2				
wed		5206142	.2	130994	-2	.44	0.0	017	-	.943	9733	-	.0972551	L				
thurs		.0947567	.16	558049	0	.57	0.5	569	-	.234	6437		.4241572	2				
uhat		.4147442	.39	936833	1	.05	0.2	295	-	.367	3763		1.196865	5				
_cons		8.164099	. 15	546984	52	.77	0.0	000		7.85	6764		8.471435	5				

Mínimos cuadrados en 2 etapas

Instrumental variables (2SLS) regression

Number of obs = 97
Wald chi2(5) = 29.85
Prob > chi2 = 0.0000
R-squared = 0.1933
Root MSE = .68324

ltotqty	1	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
	+-						
lavgprc		8158181	.3234293	-2.52	0.012	-1.449728	1819083
mon		3074355	.2374609	-1.29	0.195	7728503	.1579793
tues	1	6847291	.2005469	-3.41	0.001	-1.077794	2916644
wed	L	5206142	.2126399	-2.45	0.014	9373808	1038476
thurs		.0947567	.1647731	0.58	0.565	2281926	.417706
_cons		8.164099	.1569425	52.02	0.000	7.856497	8.471701

Instrumented: lavgprc

Instruments: mon tues wed thurs wave2 wave3

Test de endogeneidad a mano

```
. test uhat

( 1) uhat = 0

F( 1, 90) = 1.11

Prob > F = 0.2949
```