2022-2023 MP2I

DM 6, corrigé

Exercice.

1)

a) On a $\sqrt{n^2+1}=o(n^3)$ (il suffit de faire le rapport pour le montrer) donc le numérateur est équivalent à n^3 . On a $ln(n)=o(n^2)$ (par croissances comparées) donc le dénominateur est équivalent à $-4n^2$. Par quotient, on en déduit que :

$$u_n \sim \frac{n^3}{-4n^2} \sim -\frac{n}{4}.$$

On en déduit que (u_n) tend vers $-\infty$.

b) On a $\ln(n+1) - \ln(n) = \ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n}$ car $\frac{1}{n}$ tend vers 0 quand n tend vers l'infini. Puisque l'on peut prendre des puissances (fixes) d'équivalents, on a alors :

$$v_n \sim \frac{1}{\sqrt{n}}.$$

On en déduit que (v_n) tend vers 0.

c) On passe sous forme exponentielle. On a $w_n = e^{n \ln(1+\sin(\frac{\pi}{n}))}$. Or, puisque $\sin(\frac{\pi}{n})$ tend vers 0 quand n tend vers l'infini, on a :

$$n \ln \left(1 + \sin\left(\frac{\pi}{n}\right)\right) \sim n \sin\left(\frac{\pi}{n}\right) \sim n \times \frac{\pi}{n} \sim \pi$$

ceci étant justifié car $\lim_{n\to+\infty}\frac{\pi}{n}=0$. On a donc que le terme dans l'exponentielle tend vers π , et donc par composition de limites, (w_n) tend vers e^{π} quand n tend vers l'infini (et est donc équivalent à e^{π} car $e^{\pi} \neq 0$).

d) On a $e^n = o(n!)$ par comparaison usuelle donc le numérateur est équivalent à n!. Pour le dénominateur, on remarque que :

$$\pi^n + 2^n + n^2 \ln(n) = \pi^n \left(1 + \left(\frac{2}{\pi}\right)^n + \frac{n^2 \ln(n)}{\pi^n} \right).$$

On en déduit puisque $-1 < \frac{2}{\pi} < 1$ et par croissance comparée que le terme dans la parenthèse tend vers 1 et donc que le dénominateur est équivalent à π^n . On en déduit que :

$$x_n \sim \frac{n!}{\pi^n}.$$

Puisque $\pi^n = o(n!)$, ceci entraine que (x_n) tend vers l'infini. On peut trouver un équivalent ne faisant pas intervenir la factorielle à l'aide de la formule de Stirling :

$$x_n \sim \frac{n^n}{(e\pi)^n} \sqrt{2\pi n}.$$

2)

- a) (x_n) tend aussi vers l'infini (puisque (x_n) et (y_n) ont la même limite. En appliquant la définition de tendre vers l'infini en M=2 par exemple, on a qu'il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, x_n \geq 1$. On a la même chose pour (y_n) et si on se place au maximum des deux rangs, on a bien la propriété voulue.
- b) On sait qu'à partir d'un certain rang, on peut écrire $x_n = a_n y_n$ avec (a_n) une suite qui tend vers 1. Plaçons nous à un rang à partir duquel (x_n) et (y_n) sont strictement plus grands que 1 (d'après le a). On a alors automatiquement $a_n > 0$). Ceci entraine alors que :

$$\ln(x_n) = \ln(a_n y_n) = \ln(y_n) + \ln(a_n).$$

On a donc $\frac{\ln(x_n)}{\ln(y_n)} = 1 + \frac{\ln(a_n)}{\ln(y_n)}$. Or, puisque (a_n) tend vers 1, $\ln(a_n)$ tend vers 0 par composition de limites et puisque (y_n) tend vers l'infini, alors $(\ln(y_n))$ tend également vers l'infini. On en déduit que :

$$\lim_{n \to +\infty} \frac{\ln(x_n)}{\ln(y_n)} = 1,$$

c'est à dire que $\ln(x_n) \sim \ln(y_n)$.

c) Puisque (x_n) et (y_n) sont équivalentes, (y_n) tend aussi vers 0. Toujours en écrivant la définition de la limite, les deux suites sont donc plus petites que 1 à partir d'un certain rang. Comme dans la question précédente, on a :

$$\ln(x_n) - \ln(y_n) = \ln\left(\frac{x_n}{y_n}\right)$$

et puisque $\lim_{n\to+\infty}\frac{x_n}{y_n}=1$, par composition de limites, on en déduit que $\lim_{n\to+\infty}\ln(x_n)-\ln(y_n)=0$. On peut alors faire un quotient de limites en divisant tout par $\ln(y_n)$ (qui tend vers $-\infty$ par composition de limites et qui est non nul à partir d'un certain rang car (y_n) est strictement plus petite que 1 à partir d'un certain rang), ce qui donne :

$$\lim_{n \to +\infty} \frac{\ln(x_n)}{\ln(y_n)} - 1 = 0$$

ce qui donne bien que $\ln(x_n) \sim \ln(y_n)$.

3)

- a) Posons $f: x \mapsto x + e^x$. f est strictement croissante sur \mathbb{R} (elle est dérivable et sa dérivée est strictement positive), elle est continue comme somme de fonctions continues et f(0) = 1 et $\lim_{x \to +\infty} f(x) = +\infty$. D'après le théorème de la bijection continue, on en déduit que f est bijective de \mathbb{R}_+ dans $[1, +\infty[$.
- b) Pour tout $n \in \mathbb{N}^*$, on a $n \geq 1$. On en déduit par définition d'une fonction bijective que pour tout $n \in \mathbb{N}^*$, l'équation f(x) = n admet une unique solution $x_n \in \mathbb{R}_+$.
- c) Pour $n \in \mathbb{N}^*$, on a $f(x_n) = n$ donc $x_n = f^{-1}(n)$. Or, f^{-1} est strictement croissante (car f l'est) et tend vers $+\infty$ en $+\infty$ (comme f) donc (x_n) est strictement croissante et tend vers $+\infty$ en $+\infty$.
- d) Puisque (x_n) tend vers l'infini, on a alors $x_n = o(e^{x_n})$. Ceci entraine, en reprenant la définition de la suite (x_n) que :

$$e^{x_n} + o(e^{x_n}) = n.$$

On a donc $e^{x_n} \sim n$. D'après la question 2, on a des suites qui tendent vers l'infini équivalente. On peut donc appliquer le logarithme, ce qui entraine $x_n \sim \ln(n)$.

PROBLÈME

Sous groupes de \mathbb{R} et densité de $\{\cos(n), n \in \mathbb{N}\}$

Partie I. Étude des sous groupes de \mathbb{R}

- 1) Exemples.
 - a) Soit $\alpha \in \mathbb{R}_+$. On a $0 \in \alpha \mathbb{Z}$ (car $0 = \alpha \times 0$). De plus, si $x, y \in \alpha \mathbb{Z}$, alors il existe $n_1, n_2 \in \mathbb{Z}$ tels que $x = \alpha n_1$ et $y = \alpha n_2$ d'où $x y = \alpha (n_1 n_2)$. Puisque $n_1 n_2 \in \mathbb{Z}$, on a donc $x y \in \alpha \mathbb{Z}$. Par caractérisation des sous-groupes, on en déduit que $\alpha \mathbb{Z}$ est un sous groupe de \mathbb{R} .

- b) \mathbb{Q} est un sous groupe de \mathbb{R} (il est stable par somme, opposé et contient 0), est différent de \mathbb{R} et est dense dans \mathbb{R} .
- 2) Puisque G n'est pas réduit au singleton $\{0\}$, il existe $x_0 \in G$ avec $x_0 \neq 0$. Puisque $-x_0 \in G$, on en déduit que G admet au moins un élément strictement positif $(x_0 \text{ ou } -x_0)$. Ceci entraîne que G_+^* est non vide. De plus cet ensemble est minoré (par 0) donc il admet une borne inférieure que l'on notera α . Puisque 0 minore G_+^* et que α est le plus grand des minorants, on en déduit que $0 \leq \alpha$.
- 3) On suppose dans cette question que $\alpha > 0$ et $\alpha \notin G$.
 - a) Par définition de la borne inférieure, on a $\forall x \in G \cap \mathbb{R}_+^*$, $\alpha \leq x$ et puisque $\alpha \notin G$, on a $\alpha \notin G$, on a $\alpha \notin G \cap \mathbb{R}_+^*$ et donc $\forall x \in G \cap \mathbb{R}_+^*$, $x \neq \alpha$ et donc $\alpha < x$.
 - b) Par caractérisation epsilonesque de la borne inférieure appliquée en $\varepsilon = \alpha > 0$, on en déduit qu'il existe $g_1 \in G_+^*$ tel que $g_1 < \alpha + \varepsilon$. On a donc $g_1 < 2\alpha$. De plus, g_1 est supérieur ou égal à α car α minore G_+^* . On a donc $\alpha \leq g_1 < 2\alpha$. De plus, $\alpha \neq g_1$ car sinon on aurait $\alpha \in G_+^*$ et donc $\alpha \in G$: absurde! On en déduit que:

$$\alpha < g_1 < 2\alpha$$
.

c) On peut alors réappliquer la caractérisation epsilonesque de la borne inférieure en $\varepsilon'=g_1-\alpha>0$. Il existe donc $g_2\in G_+^*$ tel que $g_2<\alpha+\varepsilon'$. On a donc $g_2< g_1$. De plus, pour les mêmes raisons que précedemment on a $\alpha< g_2$. On en déduit finalement qu'il existe g_1 et g_2 dans G_+^* (et donc dans G) tels que :

$$\alpha < g_2 < g_1 < 2\alpha$$
.

- d) On a g_1 2α et $\alpha < g_2$ donc $-g_2 < -\alpha$. On en déduit que $g_1 g_2 < \alpha$. De plus, puisque $g_2 < g_1$, on a également $0 < g_2 g_1$. Ceci entraine plusieurs choses :
- Tout d'abord $g_1 g_2 \in \mathbb{R}_+^*$.
- Ensuite, puisque $g_2 \in G$, alors $-g_2 \in G$. Puisque G est stable par addition et que $g_2 \in G$, on a également $g_1 g_2 \in G$. Ceci avec le point précédent entraine que $g_1 g_2 \in G_+^*$.
- On a donc construit un élément de G_+^* strictement inférieur à sa borne inférieur : c'est absurde!

Ceci entraine que notre hypothèse comme quoi $\alpha \notin G$ est absurde. On a donc $\alpha \in G$.

- e) Puisque $\alpha \in G$ et que G est stable par somme, on a alors $\alpha + \alpha = 2\alpha$ qui est dans G. De même, on peut montrer par récurrence pour $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: « $n\alpha \in G$ ». La propriété est vraie pour n = 0 (G contient 0 par hypothèse de l'énoncé), au rang 1 et 2 comme on vient de le voir. Si elle est vraie au rang n, alors $n\alpha + \alpha \in G$, ce qui entraine $(n+1)\alpha \in G$. On en déduit que $\mathcal{P}(n+1)$ est vraie. Enfin, puisque G est stable par passage à l'opposé et que pour tout $n \in \mathbb{N}$, $n\alpha \in G$, alors on a également pour tout $n \in \mathbb{N}$, $-n\alpha \in G$. On a finalement montré que $\forall n \in \mathbb{Z}$, $n\alpha \in G$, c'est à dire que $\{n\alpha, n \in \mathbb{Z}\} \subset G$.
- f) Soit $g \in G$.
 - i) Puisque $\alpha>0$, on peut considérer $\frac{g}{\alpha}\in\mathbb{R}$. Il existe un unique $n\in\mathbb{Z}$ tel que $n\leq\frac{g}{\alpha}< n+1$ (il s'agit de la partie entière de $\frac{g}{\alpha}$). En multipliant par $\alpha>0$, on obtient alors qu'il existe un unique entier $n\in\mathbb{Z}$ tel que $n\alpha\leq g<(n+1)\alpha$.
 - ii) Supposons par l'absurde que $g \neq n\alpha$. On a alors $n\alpha < g < (n+1)\alpha$. Puisque $n\alpha \in G$ (d'après la question précédente) et que $g \in G$, alors $g n\alpha \in G$ (toujours car G est stable par passage à l'opposé et par somme). On a alors :

$$0 < q - n\alpha < \alpha$$
.

On a donc encore une fois construit un élément de G_+^* strictement inférieur à α qui est sa borne inférieure : c'est absurde! On en déduit que $g = n\alpha$.

- iii) On a montré à la question 3.e une inclusion et à la question 3.f.ii l'autre inclusion (tous les éléments de G sont de la forme $n\alpha$). On en déduit que $G = \{n\alpha, n \in \mathbb{Z}\}$, ce que l'on note $G = \alpha \mathbb{Z}$.
- 4) On suppose dans cette question que $\alpha = 0$. Soit $\varepsilon > 0$.
 - a) Par caractérisation epsilonesque de la borne inférieure, il existe $g \in G_+^*$ tel que $g < \alpha + \varepsilon$. Puisque $\alpha = 0$, on a $g < \varepsilon$. Puisque $g \in \mathbb{R}_+^*$, on a 0 < g, ce qui entraine l'encadrement voulu.
 - b) Soit $x \in \mathbb{R}$. On voit sur notre dessin que si l'on considère l'intervalle $]x \varepsilon, x + \varepsilon[$ centré en x, puisque $g < \varepsilon$, on va finir en considérant des multiples de g (dont deux termes successifs sont à distance égale à g inférieure à ε) par tomber dans le bon intervalle. Pour définir le n, on va utiliser une partie entière. Posons $n = \left\lfloor \frac{x}{q} \right\rfloor$. On a alors :

$$n \le \frac{x}{a} < n + 1.$$

Ceci entraine (puisque g>0) que $ng \leq x < ng+g,$ ce qui implique :

$$0 \le x - ng < g.$$

On en déduit que |x-ng| < g, ce qui implique puisque $g < \varepsilon$ que $|x-ng| < \varepsilon$.

c) On a montré que quelque soit $\varepsilon > 0$, il existe un élément de G (qui est ng et qui est bien dans G car $ng = g + g + \ldots + g$ avec $g \in G$ et G est stable par somme) à distance inférieure ou égale à ε de x. Ceci est la caractérisation epsilonesque de la densité. On en déduit que G est dense dans \mathbb{R} .

Partie II. Densité de $\{\cos(n), n \in \mathbb{N}\}\$

- 5) On a $0 \in G$ (il suffit de considérer p = q = 0). Si $x_0 \in G$, on a $x_0 = p + 2\pi q$ avec $p, q \in \mathbb{Z}$. On a alors $-x_0 = (-p) + 2\pi(-q)$ qui est dans G car $-p \in \mathbb{Z}$ et $-q \in \mathbb{Z}$. Enfin, si $x_0 = p_0 + 2\pi q_0$ et $x_1 = p_1 + 2\pi q_1$ sont dans G, alors $x_0 + x_1 = (p_0 + p_1) + 2\pi(q_0 + q_1) \in G$ car $p_0 + p_1 \in G$ et $q_0 + q_1 \in G$. On en déduit que G est bien un sous groupe de \mathbb{R} .
- 6) Par définition, $\cos(G) = \{\cos(p + 2\pi q), (p,q) \in \mathbb{Z}^2\}$. Par 2π périodicité du cosinus, on a $\cos(G) = \{\cos(p), p \in \mathbb{Z}\}$. Enfin, puisque le cosinus est pair, il suffit de prendre les valeurs de p positives donc $\cos(G) = \{\cos(p), p \in \mathbb{N}\}$.
- 7) On a $1 \in G$ car $1 = 1 + 2\pi \times 0$ et $2\pi \in G$ car $2\pi = 0 + 2\pi \times 1$. Supposons par l'absurde qu'il existe $\alpha \in \mathbb{R}_+$ tel que $G = \alpha \mathbb{Z}$. Il existe alors $n_1, n_2 \in \mathbb{Z}$ tels que $1 = \alpha n_1$ et $2\pi = \alpha n_2$. On a alors $\alpha \neq 0$ (sinon on a une absurdité) et :

$$\pi = \frac{\alpha n_2}{2} = \frac{n_2}{2n_1}.$$

On a alors $\pi \in \mathbb{Q}$: c'est absurde!

8) D'après la première partie, on en déduit que G est dense dans \mathbb{R} (c'est un sous groupe de \mathbb{R} qui n'est pas de la forme $\alpha \mathbb{Z}$).

De plus, on a $\cos(G) \subset [-1,1]$ (car cosinus prend ses valeurs entre -1 et 1). Fixons à présent $y \in [-1,1]$ et posons $x = \arccos(y)$. Par définition de la densité, il existe une suite $(g_n)_{n \in \mathbb{N}} \in G^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} g_n = x$. Par continuité du cosinus, on a alors :

$$\lim_{n \to +\infty} \cos(g_n) = \cos(x) = y.$$

On en déduit que pour tout $y \in [-1,1]$, il existe une suite d'éléments de $\cos(G)$ qui tend vers ce y. On en déduit que $\cos(G)$ est dense dans [-1,1], ce qui entraîne bien que $\{\cos(n), n \in \mathbb{N}\}$ est dense dans [-1,1].