ЛЕКЦИЯ #7 Корлякова М.О. 2022

СВЕРТОЧНЫЕ СЕТИ

ПЛАН

- Тензор
- Сверточные слои
- Слои Пуллинга
- Слои Нормализации
- Обратные слои
- Почему возможен перенос обучения

- 1) это математическое представление некоторого объекта (геометрического или физического), существующего в пространстве, в виде таблицы величин компонент тензора;
- 2) значения компонент зависят от принятой системы координат и изменяются (преобразуются) при переходе к другим координатам;

Ранг тензора — это количество его индексов

Тензор — объект линейной алгебры, линейно преобразующий элементы одного линейного пространства в элементы другого.

ТЕНЗОР ОПЕРАЦИИ

• Операции над тензорами приводят к тензорам

- •Сумма тензоров
- •Сумма двух векторов это тензор 1-го ранга А=<a1, a2, a3>, B=<b1,b2, b3>
- •Тензор 1 ранга

$$C = A B = \begin{bmatrix} a1+b1 & a2+b2 & a3+b3 \end{bmatrix}$$

- •Произведение тензора и скаляра
- •Произведение вектора (тензор 1-го ранга) и В А=<a1, a2, a3>, В
- •Тензор 1-го ранга

$$C = A B = \begin{bmatrix} Ba1 & Ba2 & Ba3 \end{bmatrix}$$

- •Произведение тензоров
- •Произведение двух векторов это тензор 2-го ранга

•Тензор второго ранга - диада

$$C = A^{T}B = \begin{bmatrix} a1b1 & a1b2 & a1,b3 \\ a2b1 & a2b2 & a2b3 \\ a3b1 & a3b2 & a3b3 \end{bmatrix}$$

TensorFlow

- •У тензоров есть имена.
- •Существует понятие формы тензора.
- •Тензоры типизированы и типы для них задаются из библиотеки.

Сверточный слой

СВЕРТКА ПРЯМОЙ ПРОХОД

СВЕРТКА ПРЯМОЙ ПРОХОД

$$If = I \circ h$$

If
$$(x, y) = \sum_{i=1}^{w} \sum_{j=1}^{w} I(x, y)[i, j] *h[i, j]$$

Conv1D

Conv2D

Conv3D

$$[-1, 0, 1]$$

 $h = [-2, 0, 2]$
 $[-1, 0, 1]$

СВЕРТКА ПРЯМОЙ ПРОХОД

Conv2D

СВЕРТКА ПРЯМОЙ ПРОХОД

$$y(I) = I \circ K$$

$$K = \begin{bmatrix} k11 & k12 & k13 \\ k21 & k22 & k23 \\ k31 & k32 & k33 \end{bmatrix}$$

$$K = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Входной образец

Свертка с ядром К

СВЕРТКА ПРЯМОЙ ПРОХОД

СВЕРТКА ОБРАТНЫЙ ПРОХОД

СВЕРТКА. ОБРАТНЫЙ ПРОХОД

$$\begin{split} I \circ K_n & : \to \hat{I}_{x,y,n} = \sum_{i = k/2, k/2} \sum_{j = k/2, k/2} I_{x+i,y+j} \cdot K_{n,i,j} = I_{i-k/2:i+k/2,j-k/2:j+k/2} \circ K_n \\ \widetilde{I}_{x,y,n} & = f(\hat{I}_{x,y,n}), \quad E = \sum_{x} \sum_{y} \sum_{n} e_{x,y,n}, \quad k \text{ - размер } \quad \text{ядра} \\ \Delta K_{n,i,j} & = -\eta \frac{\partial E}{\partial K_{n,i,j}} = -\eta \sum_{x} \sum_{y} \frac{\partial E}{\partial \widetilde{I}_{x,y,n}} \frac{\partial \widetilde{I}_{x,y,n}}{\partial K_{n,i,j}} \\ \frac{\partial \widetilde{I}_{x,y,n}}{\partial K_{n,i,j}} & = \frac{\partial f(\widehat{I}_{x,y,n})}{\partial \widehat{I}_{x,y,n}} \frac{\partial \widehat{I}_{x,y,n}}{\partial K_{n,i,j}} = f'(\widehat{I}_{x,y,n})I_{x+i,y+j} \\ \frac{\partial E}{\partial \widetilde{I}_{x,y,n}} & = e_{x,y,n} \\ \Delta K_{n,i,j} & = -\eta \sum_{x} \sum_{y} f'(\widehat{I}_{x,y,n})e_{x,y,n}I_{x+i,y+j}, \\ \Delta K_{n,i,j} & = -\eta \sum_{x} \sum_{y} \delta_{x,y,n}I_{x+i,y+j}, \qquad \widehat{\delta}_{n,x,y} & = \sum_{i} \sum_{j} \delta_{x,y,n}K_{i,j} \end{split}$$

СВЕРТКА. ОБРАТНЫЙ ПРОХОД

$$I \circ K_{n} : \to \hat{I}_{x,y,n} = \sum_{i = \frac{k}{2}, \frac{k}{2}} \sum_{j = \frac{k}{2}, \frac{k}{2}} I_{x+i,y+j} \cdot K_{n,i,j} = I_{i-k/2:i+k/2,j-k/2:j+k/2} \circ K_{n}$$

$$\Delta K_{n,i,j} = -\eta \sum_{x} \sum_{y} \delta_{x,y,n} I_{x+i,y+j},$$

$$\hat{\delta}_{x,y,n} = \sum_{i} \sum_{j} \delta_{x,y,n} K_{n,i,j}$$

СВЕРТКА ВИЗУАЛИЗАЦИЯ

Примеры фильтров 5х5

Свёртка двух функций:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

Поэлементное умножение и сумма изображения f[x,y] и фильтра g[x,y]

https://www.reg.ru/blog/stehnfordskij-kurs-lekciya-5-svyortochnye-nejronnye-seti/

СВЕРТКА. РЕЗУЛЬТАТ

СВЕРТКА. ОСОБЕННОСТИ

- 1. Локальные связи
- 2. Совместное использование параметров ядер
- 3. Принимает данные размера W1xH1xC1
 - количество фильтров n,
 - размер ядер **k**,
 - шаг **S**,
 - количественное выражение дополнения нулями Р.
- 4. Создает объем размера **W2xH2xC2**, где:
 - W2=(W1-k+2P)/S+1
 - H2=(H1-k+2P)/S+1 (ширина и высота вычисляются в равной степени)
 - C2=n
- 5. Настраиваем (k-k-C1)-n весов и n смещений

Пулинг слой

СЛОЙ ПУЛИНГА ПРЯМОЙ ПРОХОД

MaxPooling2D

MaxPooling1D

MaxPooling3D

$$I :\rightarrow \hat{I}_{x,y,n} = \max(I_{x+i,y+j})_{i,j=0,h}$$

h-размер ядра

ПУЛИНГ. ОБРАТНЫЙ ПРОХОД

$$\delta_{n,x,y} = \frac{\partial E}{\partial I_{n,x,y}} = \frac{\partial E}{\partial \widetilde{I}_{x/s,y/s,n}} \frac{\partial \widetilde{I}_{x/s,y/s,n}}{\partial I_{n,x,n}}$$

$$\delta_{n,x,y} = \frac{\partial E}{\partial I_{n,x,y}} = \frac{\partial E}{\partial \widetilde{I}_{x/s,y/s,n}} \frac{\partial \widetilde{I}_{x/s,y/s,n}}{\partial I_{n,x,n}} \qquad \qquad f'(\widehat{I}_{x,y,n}) = \frac{\partial \widetilde{I}_{x/s,y/s,n}}{\partial I_{n,x,y}} = \frac{\partial f(I_{x-k/2:x+k/2,y-k/2:y+k/2,n})}{\partial I_{x,y,n}} = f'(I_{x-k/2:x+k/2,y-k/2:y+k/2,n})$$

$$f'(I_{x-k/2:x+k/2,y-k/2:y+k/2,n}) = \begin{cases} 1, I_{x,y,n} = \max(I_{x-k/2:x+k/2,y-k/2:y+k/2,n}) \\ 0, \end{cases}$$

$$\frac{\partial E}{\partial \widetilde{I}_{x/s,y/s,n}} = e_{x/s,y/s,n}$$

$$\delta_{n,x,y} = f'(I_{x-k/2:x+k/2,y-k/2:y+k/2,n})e_{x/s,y/s,n}$$

Средний суммарный

$$f'(\hat{I}_{x,y,n})=1,$$

$$f'(\hat{I}_{x,y,n}) = 1, \qquad f'(\hat{I}_{x,y,n}) = 1/k^2,$$

https://habr.com/ru/company/ods/blog/344116/

ПУЛИНГ ВИЗУАЛИЗАЦИЯ

https://www.reg.ru/blog/stehnfordskij-kurs-lekciya-5-svyortochnye-nejronnye-seti/

ПУЛЛИНГ. ОСОБЕННОСТИ

- 1. Получает объем на входе размером **W1xH1xC1**
- 2. Требует 2 гиперпараметра:
 - Размер ядра k,
 - шаг S.
- 3. Вводит нулевые параметры, поскольку производится вычисление фиксированной функции ввода.
- 4. Изменяет размер тензора на выходе (уменьшает в пропорции с S)

Обратные свертки (развертки:))

Слой увеличения размера

```
Conv2DTranspose(64, (2, 2), strides=(2, 2),
padding='same', activation='relu')
```

UpSampling()

ОБРАТНЫЕ СВЕРТКИ ПРЯМОЙ ПРОХОД

	1	1	1		1	1	1	1
	1	1	1		1	1	1	1
	1	1	11		21	1	1	1
	1	1	1 ³		41	1	1	3
	1	1	1		1	1	1	3
	1	1	1		1	1	1	3
							•	
1		1	1	1	•	G 80/	_	
<u>.</u>		1	1	1		ядро	J	

1	1	1	2	2	2	
1	1	1	2	2	2	
1	1	1	2	2	2	
3	3	3	4	4	4	
3	3	3	4	4	4	
3	3	3	4	4	4	

CovTranspose2D

ОБРАТНЫЕ СВЕРТКИ. ОБРАТНЫЙ ПРОХОД

$$\begin{aligned} &s1 = s2 = 2, k = 3 \\ &I \circ K_n : \rightarrow \hat{I}_{b,m,n} = I_{b/s1,m/s2} \cdot K_{n,1+s1,1+s2} + I_{b/s1+1,m/s2} \cdot K_{n,1,1+s2} + I_{b/s1,m/s2+1} \cdot K_{n,1+s1,1} + I_{b/s1+1,m/s2+1} \cdot K_{n,1,1} = I_{x,y} \circ K_n \\ &\widetilde{I}_{b,m,n} = f(\hat{I}_{b,m,n}), \quad E = \sum_{b=1,xs1} \sum_{m=1,ys2} \sum_{n} e_{b,m,n} \\ &\Delta K_{n,i,j} = -\eta \frac{\partial E}{\partial K_{n,i,j}} = -\eta \sum_{b} \sum_{m} \frac{\partial E}{\partial \widetilde{I}_{b,m,n}} \frac{\partial \widetilde{I}_{b,m,n}}{\partial K_{n,i,j}} \\ &\frac{\partial \widetilde{I}_{b,m,n}}{\partial K_{n,i,j}} = \frac{\partial f(\widehat{I}_{b,m,n})}{\partial \widehat{I}_{b,m,n}} \frac{\partial \widehat{I}_{b,m,n}}{\partial K_{n,i,j}} = f'(\widehat{I}_{b,m,n})I_{x,y}, \\ &\Delta K_{n,i,j} = -\eta \sum_{b} \sum_{s} f'(\widehat{I}_{b,m,n})e_{b,m,n}I_{x,y}, \\ &\Delta K_{n,i,j} = -\eta \sum_{b} \sum_{m} \delta_{b,m,n}I_{x,y}, \qquad \hat{\delta}_{n,x,y} = \sum_{i=1,k} \sum_{i=1,k} \delta_{xs1+i,xs2+j,n}K_{i,j} \end{aligned}$$

ОБРАТНЫЕ СВЕРТКИ ОСОБЕННОСТИ

- 1. Локальные связи
- 2. Совместное использование параметров ядер
- 3. Принимает данные размера W1xH1xC1
 - количество фильтров **n**,
 - их пространственную протяженность **k**,
 - шаг **S**,
- 4. Создает объем размера W2xH2xD2, где:
 - W2=(W1*S)
 - H2=(H1*S) (ширина и высота вычисляются в равной степени)
 - C2=n
- 5. Настраиваем (k-k-C1)-и весов и и смещений

Слой Нормализации и др.

СЛОЙ НОРМАЛИЗАЦИИ ПРЯМОЙ ПРОХОД

BatchNormalization

$$\hat{X}_{ij} = \frac{X_{ij} - E[X_j]}{\sigma(X_j)}$$

СЛОЙ НОРМАЛИЗАЦИИ ВИЗУАЛИЗАЦИЯ

СЛОЙ АКТИВАЦИИ

Название	Функция	Производная	Область значений	График функции	График производной
Sigmoid	1 1 + e ^{-x}	f(x)(1 - f(x))	(0, 1)		
Tanh	$\frac{e^{2x} - 1}{e^{2x} + 1}$	1 - f ² (x)	(-1, 1)		
ReLU	x, x > 0 0, x ≤ 0	1, x > 0 0, x ≤ 0	[0, +∞)		
Leaky ReLU	x, x > 0 $\alpha x, x \le 0$	1, x > 0 α, x ≤ 0	(-∞, +∞)		
ELU	x, x > 0 $\alpha(e^{x} - 1), x \le 0$	1, x > 0 αe ^x , x ≤ 0	[-α, +∞)		
Softplus	In(1 + e ^x)	1 1 + e ^{-x}	(0, +∞)		
Softsign	x 1 + x	$\frac{1}{(1+ x)^2}$	(-1, 1)		

СЛОЙ DROPOUT

https://habr.com/ru/post/155235/

СЛОЙ SOFTMAX

$$y_i(z_i) = \frac{e^{z_i}}{\sum_{j} e^{z_j}}$$

$$\sum_{j} y_i(z_i) = 1$$

https://habr.com/ru/post/155235/

SOFTMAX. ОБРАТНОЕ РАСПРОСТРАНЕНИЕ ОШИБКИ

$$y_{i}(z_{i}) = \frac{e^{z_{i}}}{\sum_{j} e^{z_{j}}} \qquad Z_{i} = \sum_{k=0}^{K} y_{k} w_{ik}$$

$$L(y_{i}) = -\sum_{i} \hat{y}_{i} \log(y_{i}(z_{i}))$$

$$Q = -\frac{1}{N} \sum_{m=1,N} \sum_{i} \hat{y}_{i}(X_{m}) \log(y_{i}(z_{i}(X_{m})))$$

$$\frac{\partial Q(y_{i})}{\partial z_{k}} = \sum_{i} \frac{\partial L(y_{i})}{\partial y_{i}} \frac{\partial y_{i}}{\partial z_{k}} = (y_{i} - \hat{y}_{i})$$

Перенос обучения

Transfer Learning

Transfer Learning

Transfer learning:

применение к решению задачи знаний, извлеченных нейронной сетью при решении другой задачи

Целевая задача: G(f(X))

Существующая задача : H(f(X))

Варианты:

- Адаптация к предметной области
- Многозадачное обучение (Multi-task learning)
- Многозадачная оптимизация (Multitask optimization)

Transfer Learning

самостоятельное обучение

	MNIST	CIFAR-10	CIFAR-100	Fashion MNIST	STL-10	ASL Alphabet	Chest X-RAY Images	10 Monkey Species
L								
AlexNet	0,9534	0,9497	0,6350	0,8043	0,9366	0,9497	0,8562	0,9405
VGG 16	0,9687	0,9251	0,5913	0,7513	0,9436	0,8067	0,7949	0,9428
VGG 19	0,9686	0,9172	0,6199	0,7664	0,9487	0,8705	0,7865	0,9488

Перенос обучения

	MNIST	CIFAR-10	CIFAR-100	Fashion MNIST	STL-10	ASL Alphabet	Chest X-RAY Images	10 Monkey Species
AlexNet	0,9479	0,8381	0,6206	0,8709	0,9016	0,9643	0,9016	0,9540
VGG 16	0,9230	0,8423	0,6240	0,8627	0,9528	0,8214	0,8188	0,9717
VGG 19	0,9180	0,8438	0,6300	0,8619	0,9520		0,7938	0,9817
					http:/	/www.appl	led-research.ru	/ru/article/viev

ПРОБЛЕМЫ ОБУЧЕНИЯ СВЕРТОЧНЫХ СЛОЕВ

- Нужно много примеров
- Недообучение
- Нужно следить за размером
- Затухание Градиента

Затухание градиента

$$f'(\hat{I}_{x,y,n}) f'(\hat{I}_{x,y,n}) f'(\hat{I}_{x,y,n}) f'(\hat{I}_{x,y,n})$$

$$0.25 * 0.25 * 0.25 * 0.25$$

Сложные модели

ResNet

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

Inception

Figure 2: Inception module

Inception

Width of **inception modules** ranges from 256 filters (in early modules) to 1024 in top inception modules.

ResNet+Inception

Figure 10. The schema for 35×35 grid (Inception-ResNet-A) module of Inception-ResNet-v1 network.

Автоэнкодер

- шумоподавление данных
- уменьшение размерности

Слой увеличения размера

```
Conv2DTranspose(64, (2, 2), strides=(2, 2),
padding='same', activation='relu')
```

UpSampling()

Обработка МНИСТ

Сегментация

SegNet

Работает!

Сеть UNet

Loss: Дайса

$$DSC = rac{2|X\cap Y|}{|X|+|Y|}$$

