GWAS

(по материалам https://education.23andme.com/l/how-to-do-a-gwas/)

For one trait, bitter taste ability, the results from last year are as follows:

X4988235 bitter bitter no		AG 3	GG 7	NULL 1
_			11 =====	1
X7495174				
bitter			GG	
bitter_no bitter_yes		2 8		1
===========	:=====	=====	=====	
X713598				
bitter			GG	
bitter_no bitter_yes		4 13	1 10	1 1
=======================================		=====	=====	
X17822931				
bitter	CC	CT	NULL	TT
bitter_no	6	3	1	3
bitter_yes ========	13	7 =====	1 =====	4
X4401007				
X4481887 bitter	AΑ	AG	GG	NULL
bitter no			6	1
bitter_no bitter_yes	6	10	8	1

Now, let's determine the association between bitter taste and the first SNP (rs4988235) using a $\chi 2$ test:

X4988235

bitter	AA	AG	GG	NULL
bitter_no	2	3	7	1
bitter_yes	4	9	11	1

1. Get observed allele counts • There are 2 As for AA homozygotes and 1 A for AG heterozygotes. Similarly, there is 1 G for AG heterozygotes and 2 Gs for GG homozygotes.

	Bitter taster	Non-taster	TOTAL
A	2*4+1*9 = 17	2*2+1*3 = 7	24
G	2*11+1*9 = 31	2*7+1*3 = 17	48
TOTAL	48	24	72

2.Get observed frequencies • Normalize by the total

	Bitter taster	Non-taster	TOTAL
A	17/72 = 23.6%	7/72 = 9.7%	33.3%
G	31/72 = 43.1%	17/72 = 23.6%	66.7%
TOTAL	66.7%	33.3%	100%

3.Get expected frequencies • Treat events as independent and calculate the contingency table. • I.e. $P(Bitter\ taster\ \cap\ A) = P(Bitter\ taster)*P(A)$

	Bitter taster	Non-taster	TOTAL
A	.333*.667=22.2%	.333*.333=11.1%	33.3%
G	.667*.667=44.5%	.333*.667=22.2%	66.7%
TOTAL	66.7%	33.3%	100%

4.Get expected counts • Multiply the frequency by the total allele counts

	Bitter taster	Non-taster	TOTAL
A	.222*72=15.98	.111*72=8.00	23.98
G	.445*72=32.04	.222*72=15.98	48.02
TOTAL	48.02	23.98	72

5.Use the $\chi 2$ equation. Then lookup $\chi 2$ value to get p-value using 1 degree of freedom (can plug this number into an online calculator).

•
$$\chi$$
2 = Σ (O – E)2/E

O = observed

E = expected

```
\chi2 = (17–15.98)2/15.98 + (7 –8)2/8 + (31 –32.04)2/32.04 + (17 –15.98)2/15.98 = 0.07 + .13 + .03 + .07 = 0.3
```

$$P(\chi 2=0.3) = 0.58$$

ВЫВОД: нет значимой ассоциации

Поправка на множественное тестирование

Все снипы выше были исследованы на микрочипах с 500 000 маркерами. Если бы исследовали только один снип, то найденная ассоциация была бы значимой при уровне α =0.05. Но в случае тестирования 500 000 снипов, p-values =0.05/500 000 = 10-7. Таким образом, мы делаем вывод, что rs4988235 не ассоциируется статистически значимо с восприятием горького вкуса с поправкой на множественное тестирование.

Точный тест Фишера

Пример кода в R

```
chisq.test(matrix(c(top-left, top-right, bottom-left, bottom-
right), nrow=2), correct=FALSE)

•chisq.test(matrix(c(17,7,31,17), nrow=2), correct=FALSE)
```

Normally we would not set correct=FALSE, but on paper we weren't applying a continuity correction, so this will give us the results we calculated by hand.

```
•fisher.test(matrix(c(17,7,31,17), nrow=2))
```

Пример кода на питоне

#точный тест Фишера

```
from scipy import stats
table=[[17,7],[31,17]]
```

```
oddsratio, pvalue=stats.fisher_exact(table)
print(pvalue)
print(oddsratio)

Или онлайн-калькулятор:
http://medstatistic.ru/calculators/calchi.html
```

Отношение шансов (Odds ratios)

Когда мы обнаружили снип, статистически значимо ассоциированный с признаком, мы можем посчитать отношение шансов для данного снипа.

```
bitter A G
bitter_no 17 7
bitter_yes 31 17
```

Odds Ratio

Allelic odds ratio: ratio of the allele ratios in the cases divided by the allele ratios in the controls

Берем отношение A/G в группе не чувствующих горечи - контроль 17/7=2.42 Берем отношение A/G в группе, чувствующих горечь - случай 31/17=1.82

Odds ratio = 1.82/2.42=0.75

То есть люди с аллелью А в 0.75 раз менее вероятно будут ассоциированы с способностью чувствовать горький вкус, чем люди с аллелью G.

Отличие между ассоциацией признака с аллелью и с генотипом

Например, цвет глаз

Eyes rs7495174	+ Brown/ Other +	Blue/
A	55	22
G	21	0
		1
AA	22	11
AG	11	0
GG	J 5	0
		1
AA	22	11
GG / AG	16	0
		1
GG	5	0
AA / AG	33	11
+	+	++

Allelic P-value = 0.006 (значимо) -

аллель A статистически значимо ассоциируется с голубыми глазами Genotype p-value (A - рецессивный) = 0.009

генотип AA статистически значимо ассоциируется с голубыми глазами Genotype p-value (A - доминантный) =0.205 (>0.05)

нет статистической значимости

Вывод: Цвет глаз: rs7495174, генотип AA ассоциирован с голубыми глазам, при этом A - рецессивный аллель

Переносимость лактозы

+	-+	++
Lactose rs4988235	Intolerant	Tolerant
A	5	26
G	23	44
	1	
AA	1	8
AG	3	10
GG	10	17

	AA		1	8
	GG / AG	1	13	27
				1
	GG		10	17
	AA / AG	1	4	18
+.		+	+	+

Allelic P-value = 0.064 (незначимо на уровне 0.05, но близко) - аллель G близко к значимости ассоциации по переносимости лактозы Genotype p-value (G -доминантный) = 0.2 нет статистической значимости

Genotype p-value (G - рецессивный) =0.147 (>0.05) нет статистической значимости

Шанс найти фактор риска в основной группе 0.588 Но отношение шансов = 2.647 (тоже есть онлайн-калькулятор - http://medstatistic.ru/calculators/calcodds.html)

Increased risk

What is the likelihood of seeing a trait given a genotype compared to overall likelihood of seeing the trait in the population?

Изначальный шанс иметь непереносимость к лактозе = 14 (всего людей с непереносимостью) / 49 = 0.28

Для генотипа GG 10/(10+17)=10/27=0.37

Повышение риска для генотипа GG по сравнению с базовым риском 0.37/0.28=1.32

Смотря по времени - для закрепления можно разобрать другие аллели и генотипы -

http://web.stanford.edu/class/gene210/files/exercises/2015/2015_gwas_tables.txt -

Odds Ratio, Increased Risk

		P-value	OR	IR
Lactose Intolerance	rs4988235	.09	2.7	1.2
Eye Color	rs7495174	.0093	0	inf
Asparagus	rs4481887	.084	2.35	1.18
Bitter Taste	rs713598	.000498	0.22	0.519
Earwax	rs17822931	.004	4.6	2.6

Extra

Посмотреть пример результатов тестирования 23 and me

Например, об ощущении горького вкуса в продуктах - https://permalinks.23andme.com/pdf/samplereport_traits.pdf

Genetics of bitter taste detection: The TAS2R38 gene contains instructions for a protein, or taste receptor, that can detect the bitter chemical called "PTC." PTC isn't usually found in the human diet, but it is similar to chemicals present in vegetables like broccoli and brussels sprouts. People with the G variant have a taste receptor that can detect these PTC-like chemicals. This means people with the G variant may taste bitterness in these foods and avoid them all together.

Посмотреть отчеты об ассоциации с заболеваниями

https://www.23andme.com/dna-reports-list/

https://permalinks.23andme.com/pdf/samplereport_genetichealth.pdf