Отчёт по лабораторной работе №4

Дистиплина: архитектура компьютера

Худдыева Дженнет

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Создание программы Hello world!	11 12 12
5	Выводы	15

Список иллюстраций

4.1	Перемещение между директориями	10
4.2	Создание пустого файла	10
	Заполнение файла	11
	Компиляция текста программы	11
4.5	Компиляция текста программы	12
4.6	Передача объектного файла на обработку компоновщику	12
4.7	Передача объектного файла на обработку компоновщику	12
4.8	Запуск исполняемого файла	12
	Создание копии файла	13
	Изменение программы	13
4.11	Компиляция текста программы	13
4.12	Передача объектного файла на обработку компоновщику	14
4.13	Запуск исполняемого файла	14

Список таблиц

1 Цель работы

Цель данной лабораторной работы-освоить процедуры компиляции и сборки программ, написанных на ассембдера NASM.

2 Задание

1.Создание программы Hello world! 2.Работа с транслятором NASM. 3.Работа с расширенным синтаксисом командной строки NASM. 4.Работа с компоновщиком LD. 5.Запуск исполняемого файла. 6.Выполнение заданий для самостоятельной работы.

3 Теоретическое введение

Основными функциональными элементами любой ЭВМ являются центральный процессор,память и периферийные устройства. Взаимодействие этих устройств осуществляется через общую шину, к которой они подключены. Физически шина представляет собой большое количество проводников, соединяющих устройства друг с другом. В современных компьютерах проводники выполнены в виде электропроводящих дорожек на материнской плате. Основной задачей процессора является обработка информации, а также организация координации всех узлов компьютеров.В состав центрального процессора входят следующие устройства: - арифметико-логическое устройства (АЛУ) - выполняет логические и арифметические действия, необходимые для обработки информации, хранящейся в памяти. - устройства управления (УУ) - обеспечивает управление и контроль всех устройств компьютера. - регистры - сверхбыстрая оперативная память небольшого объёма, входящая в состав процессора, для временного хранения промежуточных результатов выполнения инструкций. Регистры процессора делятся на два типа:Регистры общего назначения и специальные регистры. Для того чтобы писать программы на ассемблера, необходимо знать, какие регистры процессора существуют и как их можно использовать. Большинство команд в программах написанных на ассемблера используют регистры в качестве операндов. Практически все команды представляют с собой преобразование данных хранящихся в регистрах процессоров, это например пересылка данных между регистрами или памятью,преобразование (арифметические или логические операции) данных хранящихся в регистрах. Доступ к регистрам осущечтвляется

не по адресам,как к основной памяти,а по именам.каждый регистор процессора архитектуры х86 имеет свое название,состоящее из 3 или 3 букв латинского алфавита.В качестве примера приведём названия основных регистров общего назначения (именноэти регистры чаще всего используются при написании программ): - RAX,RCX,RDX,RBX,RSI,RDI-64 bit - EAX,ECX,EDX,EBX,ESI,EDI-32 bit - AX,CX,DX,BX,SI,DI-16 bit - AH,AL,CH,DH,DL,BH,BL-8 bit

Другим важным узлом ЭВМ является оперативное запоминающее устройство (ОЗУ).ОЗУ-это быстродействующее энергозависимое запоминающее устройство, которое напрямую взаимодействует с узлами процесоора,предназначенное для хранения программ и данных,с которыми процес- сор непосредственно работает в текущий момент,ОЗУ состоит из одинаковых ячеек памяти. Номер ячейки памяти - это адрес хранящихся в ней данных. Периферийные утсройства в составе ЭВМ: - устройства внешней памяти, которые предназначеныдля долговременного хранения больших объёмов данных. - устройства ввода-вывода, которые обеспечивают взаимодействие ЦП с внешной средой.

В основе вычислительного процесса ЭВМ лежит принцип программного управления. Это означает, что компьютер решает поставленную задачу как последовательность действий, записанных в виде программы.

Коды команды представляют собой многозарядные двоичные комбинации из 0 и 1.В коде машинной команды можно выделить две части: операционную и адресную.В операционной части хранится код команды,которую необходимо выполнить.В адресной части хранятся данные или данных,которые участвуют в выполнении данной операции.При выполнении каждой команды процессор выполняет определённую последовательность стандартных действий,которая называется командым циклом процессора.Он заключается в следующем: 1.Формирование адреса в памяти очередной команды. 2.Считывание кода команды из памяти и её дешифрация. 3.Выполнение команды. 4.Переход к следующей команде.

Язык ассемблера (assembly language, сокращённо asm)-машинно-ориентированный

язык низкого уровня. NASM-это открытый проект ассемблера,версии которого доступны под различные операционные системы и который позволяет получать объектные файлы для этих систем.

4 Выполнение лабораторной работы

4.1 Создание программы Hello world!

С помощью утилиты cd перемещаюсь в каталог,в котором буду работать (рис. [4.1]).

```
dkhuddiheva@dkhuddiheva-VirtualBox:-$ cd ~/work/study/2023-2024/"Архитектура компьютера"/arch-pc dkhuddiheva@dkhuddiheva-VirtualBox:-/work/study/2023-2024/Архитектура компьютера/arch-pc$ cd labs dkhuddiheva@dkhuddiheva-VirtualBox:-/work/study/2023-2024/Архитектура компьютера/arch-pc/labs$ cd lab04 dkhuddiheva@dkhuddiheva-VirtualBox:-/work/study/2023-2024/Архитектура компьютера/arch-pc/labs/lab04$
```

Рис. 4.1: Перемещение между директориями

Создаю в текущем каталоге пустой текстовый файл hello.asm с помощью утилиты touch (рис. [4.2]).

Рис. 4.2: Создание пустого файла

Открываю созданный файл в текстовом редакторе gedit.Заполняю файл,вставляя в него программу для вывода "Hello world!" (рис. [4.3]).

```
Текстовый редактор
                                                                                 Сб, 28 октября 15:45 📮
                                                                                      *hello.asm
                                                             ~/work/study/2023-2024/Apx
                                                                                                  мпьютера/arch-pc/labs/lab0
    hello.asm
2 SECTION .data
                                                                 ; начало секции днных
                             DB 'Hello world!',10
                                                                   'Hello world!' плюс
                                                                 ; символ перевода строки
             helloLen: EQU $-hello
                                                                 ; длина строки hello
                                          ;начало секции кода
7 SECTION .text
             GLOBAL _start
                                         ; точка входа программы
                                  ; точка входа программы
; системный вызов для записи (sys_write)
; описатель файла '1' - стандартный вывод
; адрес строки hello в есх
; размер строки hello
         mov eax.4
         mov ebx,1
         mov ecx,hello
mov edx,helloLen
                                        ; вызов ядра
         int 80h
                                 ; системный вызов для выхода (sys_exit)
; выход с кодом возврата '0' (без ошибок)
; вызов ядра
         mov eax.1
       mov ebx,0
int 80h
```

Рис. 4.3: Заполнение файла

4.2 Работа с транслятором NASM

Превращаю текст программы для вывода "Hello world!" в объектный код с помощью транслятора NASM, используя команду -f elf hello.asm ключ -f указывает транслятору nasm,что требуется создать бинарный файл в формате ELF.Далее проверяю выполнение команды с помощью ls (рис. [4.4]).

Рис. 4.4: Компиляция текста программы

4.3 Работа с расширенным синтаксисом командной строки NASM

Ввожу команду,которая скомпилирует файл hello.asm в файл obj.o,при этом в файл будут включены символы для отладки (ключ-g), также с помощью ключа -l будет создан файл листинга list.lst (рис. [4.5]).

```
dkhuddtheva@dkhuddtheva-VtrtualBox:-/work/study/2023-2024/Apx#rekrypa kommorrepa/arch-pc/labs/labb#$ nasm -o obj.o -f elf -g -l list .lst hello.asm additional state of the st
```

Рис. 4.5: Компиляция текста программы

4.4 Работа с компоновщиком LD

Передаю объектный файл hello.o на обработку компоновщику LD,чтобы получить исполняемый файл hello (рис. [4.6]).

```
dkhuddthevagdkhuddtheva-VirtualBox:-/work/study/2023-2024/Apxwrekrypa компьютера/arch-pc/labs/labo#$ ld -m elf_l386 hello.o -o hello dkhuddthevagdkhuddtheva-VirtualBox:-/work/study/2023-2024/Apxwrekrypa компьютера/arch-pc/labs/labo#$ ls hello hello.asm hello.o llst.lst nain obj.o presentation report dkhuddtheva@dkhuddtheva-VirtualBox:-/work/study/2023-2024/Apxwrekrypa компьютера/arch-pc/labs/labo#$
```

Рис. 4.6: Передача объектного файла на обработку компоновщику

Выполняю следующую команду (рис. [4.7]). Исполняемый файл будет иметь имя main,после ключа -о было задано значение main. Объектный файл,из которого собран этот исполняемый файл имеет имя obj.o

```
dkhuddthevagdkhuddtheva-VirtualBox:-/work/study/2023-2024/Apxwrekrypa компьютера/arch-pc/tabs/tabos$ ld -m elf_1386 obj.o -o main dkhuddthevagdkhuddtheva-VirtualBox:-/work/study/2023-2024/Apxwrekrypa kommowrepa/arch-pc/tabs/tabos$ ls hello.a list.lst main obj.o presentation report dkhuddthevagdkhuddtheva-VirtualBox:-/work/study/2023-2024/Apxwrekrypa компьютера/arch-pc/tabs/tabos$
```

Рис. 4.7: Передача объектного файла на обработку компоновщику

4.5 Запуск исполняемого файла

Запускаю на выполнение созданный исполняемый файл hello (рис. [4.8]).

Рис. 4.8: Запуск исполняемого файла

4.6 Выполнение заданий для самостоятельной работы

С помощью утилиты ср создаю в текущем каталоге копию файла hello.asm с именем lab4.asm (рис. [4.9]).

Рис. 4.9: Создание копии файла

С помощью текстового редактора gedit открываю файл lab4.asm и вношу изменения в программу так, чтобы она выводила моё имя и фамилию (рис. [4.10]).

```
1; lab4.asm
2 SECTION .data
                                                              ; начало секции данных
                      DB 'Jennet Huddyyewa',10
             lab4:
                                                               : символ перевода строки
            lab4Len: EQU $-lab4
                                                           ; длина строки lab4
7 SECTION .text
                                 ; начало секции кода
             GLOBAL start
10 _start:
                                 ; точка входа в праграмму
                              , .... олодо в программу
; системный вызов для записи (sys_write)
        mov eax,4 ; системный вызов для за ; описать файла '1' - ст mov ecx,lab4 ; адрес строки lab4 в есх ; размер строки lab
         mov eax,4
                                 ; описать файла '1' - стандартный вывод
14
15
        int 80h
                                ; вызов ядра
16
                                ; системный вызов для выхода (sys_exit)
; выход с кодом возврата '0' (без ошибок)
17
        mov eax,1
18
         mov ebx,0
19
         int 80h
                                 :вызов ядра
```

Рис. 4.10: Изменение программы

Компилирую текст программы в объектный файл (рис. [4.11]).Проверяю с помощью утилиты ls?что файл lab5.asm создан.

```
dkhuddtheva@dkhuddtheva-VtrtualBox:-/mork/study/2023-2024/Apxmrexrypa kommoreps/arch-pc/labs/labbs/S gedtt lab4.asm dkhuddtheva@dkhuddtheva-VtrtualBox:-/mork/study/2023-2024/Apxmrexrypa kommoreps/arch-pc/labs/labbs/S nasm -f elf lab4.asm dkhuddtheva-VtrtualBox:-/mork/study/2023-2024/Apxmrexrypa kommoreps/arch-pc/labs/labbs/S lass -f elf lab4.asm dkhuddtheva-VtrtualBox:-/mork/study/2023-2024/Apxmrexrypa kommoreps/arch-pc/labs/labbs/S lass -lab4.asm lab4.asm l
```

Рис. 4.11: Компиляция текста программы

Передаю объектный файл lab4.o на обработку компоновщику LD,чтобы получить исполняемый файл lab4 (рис. [4.12]).

```
hello hello.asm hello.o lab4.asm lab4.o list.lst main obj.o presentation report dkhuddthevagdkhuddtheva-Vtrtusläox:-\work/study/2023-2024/Apxxrexrppa xommwrepa/arch-pc/labs/lab045 ld -m elf_t386 lab4.o -o lab4 dkhuddthevagdkhuddtheva-Vtrtusläox:-\work/study/2023-2024/Apxxrexrppa xommwrepa/arch-pc/labs/lab045 ls hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o presentation report dkhuddtheva-Vtrtusläox:-\work/study/2023-2024/Apxxrexrppa xommwrepa/arch-pc/labs/lab045
```

Рис. 4.12: Передача объектного файла на обработку компоновщику

Запускаю исполняемый файл lab4,на экран действительно выводятся моё имя и фамилия (рис. [4.13]).

Рис. 4.13: Запуск исполняемого файла

С помощью команд git add .u git commit добавляю файлы на GitHub (рис. [??]).

```
dkhuddthevagdkhuddtheva-VtrtualBox:-/work/study/2023-2024/Apxurexrypa компьитера/arch-pc/labs/lab055 git add .dkhuddtheva-VtrtualBox:-/work/study/2023-2024/Apxurexrypa компьитера/arch-pc/labs/lab055 git connit -n "Add fales for lab04"
[naster 80ba832] Add fales for lab04
2 files changed, 38 insertions(+)
create node 100644 labs/lab05/hello.asn
```

.Отправляю файлы на

сервер с помощью команды git push.

5 Выводы

При выполнении данной лабораторной работы я освоила процедуры компиляции и сборки программ, написанных на ассемблера NASM.