Discriminacion y clasificacion.

Objetivo: separar datos (observcaciones) y posicionarlos en grupos diferentes previamente definidos.

Discriminación: Normalmente exploratorio y usado para investigar/ratificar diferencias en objetos representados en la muestra.

Clasificación: menos exploratorio, se fijan reglas de antemano para clasificar nuevos objetos u observaciones.

Concretamente:

- 1. Describir graficamente o algebraicamente las diferencias entre objetos de distintas poblaciones conocidas.
- 2. Organizar observaciones en 2 o más grupos.
- 3. Derivar una regla de clasificación para asignar nuevos objetos.

Separación y clasificación de 2 poblaciones

Se buscan separar 2 clases de objetos o asignar nuebos objetos a una de dos clases.

Clases:

$$\Pi_1,~\Pi_2$$

Los objetos se separan o se clasifican basados en p v.a's.

$$\mathbb{X} = egin{bmatrix} x_1 \ dots \ x_2 \end{bmatrix}$$

Los valores observados deberian tener alguna diferencia asociada a las clases. *ej: los hombres suelen pesar un poco más que las mujeres*.

La clase Π_1 se asocia a una población 1 con PDF $f_1(\mathbb{X})$, la clase Π_2 se asocia a una población 2 con PDF $f_2(\mathbb{X})$.

Clasificación:

método general:

Se usan reglas "aprendidas" de muestras de aprendizaje (o entrenamiento).

Plot de pesos en hombres (rojo) y mujeres (verde), separados por un plano que ayuda a la clasificación

Se examinan dos aleatorias cuya población es conocida y se estudian las diferencias.

Buscamos dividir el conjunto de todas las observaciones en 2 regiones R_1 , R_2 tales que si una nueva observación cae en R_1 se clasifica como Π_1 (igual con R_2 y Π_2).

Observación: en general las clasificaciones tienen errores (la distribución entre Π_1 y Π_2 no es perfecta dada las mediciones).

Pude haber un error, ejemplo el punto medio de la gráfica, es más probable que sea de la clase R_2 , esto es como el error tipo II, clasificar como R_1 cuando es realmente de R_2 . Si queremos minimizar el error tipo II, recuerde que necesitamos una muestra más grande.

Ejemplo:

Note que la variable de ingresos discrimina mucho mejor que la de tamaño del terreno. Pero juntas hacen una combinación más clara para clasificar.

Obs:

- 1. si es muy improbable ser de Π_2 , no se debería clasificar como Π_2 .
- 2. Si es muy costoso clasificar un Π_1 como Π_2 pero no un Π_2 como Π_1 se debería ser cauto.

Suele existir un error que es más grave de cometer que otro.

Sea $f_1(x)$, $f_2(x)$ las PDF's de $X_{p\times 1}$ (vector aleatorio) de las poblaciones Π_1 Π_2 .

Sea Ω el espacio muestral (todos los posibles valores de \mathbb{X}).

ej: Si $p=2, \ \Omega=\mathbb{R}^2$

p(211) prob. de clasificar de J como ITZ silendo ITA

$$P(211) = P(X \in \mathbb{R}_2 \mid \mathbb{T}_1)$$

$$= \int_{\mathbb{R}_2} f(X) dX$$

$$p(1|2)=P(\mathbb{X}\in R_1|\Pi_2)=\int_{R_1}f_2(\mathbb{X})dx$$

Sean p_1,p_2 las probabilidades previas de Π_1 y Π_2 entonces: $p_1+p_2=1$.

1.
$$P(obs \in \Pi_1 \;\; y \;\; clasif \in \Pi_1) = P(lpha \in R_1 | \Pi_1) P(\Pi_1) \ = P(1|1)p_1$$

2. Clasificacion correcta de Π_2

$$P(\mathbb{X}\in R_2|\Pi_2)P(\Pi_2)=P(2|2)p_2$$

3. P(Clasificacion erronea de Π_1):

$$P(\mathbb{X} \in R_1|\Pi_2)P(\Pi_2) = P(1|2)p_2$$

4. P(Clasificación erronea de Π_2):

$$P(\mathbb{X} \in R_2|\Pi_1)P(\Pi_1) = P(1|2)p_1$$

Def:

El costo esperado o promedio del costo de clasificacion. incorrecta (formulita de valor esperado aplicado):

$$(1) \ \ ECM = c(2|1) \cdot p(2|1)p_1 + c(1|2) \cdot p(1|2)p_2$$

El objetivo es minimizar (1) al clasificar.

Teorema:

Las regiones R_1, R_2 que minimizan (1) se definen por la x que satisfacen

$$R_{1}: \frac{\int_{1}^{1}(x)}{\int_{2}(x)} \ge \frac{C(1|2)}{C(2|1)} \frac{P_{2}}{P_{1}}$$

$$\frac{\int_{2}^{1}(x)}{\int_{2}^{1}(x)} \ge \frac{C(1|2)}{C(2|1)} \frac{P_{2}}{P_{1}}$$

$$\frac{\int_{2}^{1}(x)}{\int_{2}^{1}(x)} \ge \frac{C(1|2)}{C(2|1)} \frac{P_{2}}{P_{1}}$$

$$\frac{\int_{2}^{1}(x)}{\int_{2}^{1}(x)} \ge \frac{C(1|2)}{C(2|1)} \frac{P_{2}}{P_{1}}$$

Tarea

La Demostración es ejercicio pero está en → 11.3 del libro.

Observación:

Para usar esto necesitamos:

- 1. La densidad evaluada en una observación x_0
- 2. Costos.
- 3. Probabilidad previa (p_1, p_2) .

Casos especiales

1)
$$si \ P2/P1 = 1 \ (P2 = P1)$$

$$R_{1}: \frac{f_{1}(x)}{f_{2}(x)} \ge \frac{c(112)}{c(211)}$$

$$R_{2}: \frac{f_{2}(x)}{f_{2}(x)} \ge \frac{c(112)}{c(211)}$$

$$R_{1}: \frac{f_{1}(x)}{f_{2}(x)} \ge \frac{P2}{P1} \quad R_{2}: \frac{3}{3} < \frac{3}{3}$$

$$R_{1}: \frac{f_{1}(x)}{f_{2}(x)} \ge \frac{1}{P1} \quad R_{2}: \frac{1}{3} < \frac{3}{3}$$

$$R_{1}: \frac{f_{1}(x)}{f_{2}(x)} \ge 1, \quad R_{2}: \frac{f_{1}(x)}{f_{2}(x)} < 1$$

• ejemplo:

Example 11.2 (Classifying a new observation into one of the two populations) A researcher has enough data available to estimate the density functions $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$ associated with populations π_1 and π_2 , respectively. Suppose c(2|1) = 5 units and c(1|2) = 10 units. In addition, it is known that about 20% of all objects (for which the measurements \mathbf{x} can be recorded) belong to π_2 . Thus, the prior probabilities are $p_1 = .8$ and $p_2 = .2$.

Given the prior probabilities and costs of misclassification, we can use (11-6) to derive the classification regions R_1 and R_2 . Specifically, we have

$$R_1$$
: $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ge \left(\frac{10}{5}\right) \left(\frac{.2}{.8}\right) = .5$

$$R_2$$
: $\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} < \left(\frac{10}{5}\right) \left(\frac{2}{.8}\right) = .5$

Suppose the density functions evaluated at a new observation \mathbf{x}_0 give $f_1(\mathbf{x}_0) = .3$ and $f_2(\mathbf{x}_0) = .4$. Do we classify the new observation as π_1 or π_2 ? To answer the question, we form the ratio

$$\frac{f_1(\mathbf{x}_0)}{f_2(\mathbf{x}_0)} = \frac{.3}{.4} = .75$$

and compare it with .5 obtained before. Since

$$\frac{f_1(\mathbf{x}_0)}{f_2(\mathbf{x}_0)} = .75 > \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right) = .5$$

we find that $x_0 \in R_1$ and classify it as belonging to π_1 .