回帰分析

モデルの評価

村田 昇

講義の内容

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

• 目的変数 を 説明変数 で説明する関係式を構成

- 説明変数: $x_1, ..., x_p$ (p 次元)

- 目的変数: y(1 次元)

• 回帰係数 $\beta_0,\beta_1,\ldots,\beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 回帰式の推定: **残差平方和** の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: 正規方程式

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

• 解の一意性 : **Gram 行列 X**^T**X** が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{y} = X\hat{\beta}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\epsilon}^{\mathsf{T}}\hat{\mathbf{v}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\beta}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ (再掲)
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

• データの一部

Table 1: 東京の 8 月の気候

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2022-08-01	30.6	0	24.53	0	SSE	2.8	1010.1	72	8.8
2022-08-02	31.6	0	24.78	0	SSE	2.5	1008.8	71	9.8
2022-08-03	31.5	0	21.24	0	SSE	2.3	1005.1	75	7.3
2022-08-04	24.6	18	3.46	0	NE	2.7	1006	89	10
2022-08-05	23.8	0	7.65	0	NE	2.9	1006.1	83	9.8
2022-08-06	25.2	0	17.06	0	SSE	2.4	1008.1	73	10
2022-08-07	27.6	0	14.45	0	SSE	2.2	1009.3	80	8.3
2022-08-08	29.8	0	22.52	0	S	4.5	1008.5	75	4.8
2022-08-09	30.9	0	25.5	0	S	5.5	1006.9	69	6.8
2022-08-10	30.5	0	25.99	0	S	5.3	1007.2	70	6
2022-08-11	29.5	0	22.9	0	S	5.4	1007.5	75	6
2022-08-12	28.3	2	15.36	0	S	5.8	1007.5	81	9.8
2022-08-13	25.5	47.5	4.53	0	S	4.8	1005.6	94	10
2022-08-14	28.2	0	16.28	0	SSE	2.6	1003	84	8.8
2022-08-15	29.4	0	18.65	0	S	2.5	1003.4	78	8.8
2022-08-16	31	0	20.5	0	SSW	4.8	1000.6	70	8.3
2022-08-17	27.3	5	8.87	0	NE	2.5	1005.8	77	10
2022-08-18	26.8	13	8.74	0	S	2.8	1001.7	81	6
2022-08-19	27.5	0	23.52	0	SSE	3.4	1001.7	62	3
2022-08-20	26.4	1.5	13.5	0	NW	1.8	1000.6	82	9.8
2022-08-21	26	1	8.96	0	NE	2.1	1002.3	87	10
2022-08-22	26.2	0	9.05	0	NNE	2.5	1005.5	82	10
2022-08-23	28.7	0	17.94	0	S	3.2	1003.2	83	8.3
2022-08-24	27.8	2	12.86	0	NE	2.9	1003.2	79	10
2022-08-25	25.7	0	9.83	0	SE	2	1004.1	77	10
2022-08-26	27	3.5	10.05	0	SSE	2.1	1002.5	89	10
2022-08-27	29	0	19.87	0	SSE	3.3	1002.7	80	5.5
2022-08-28	23.7	5	4.58	0	NE	3	1009.2	87	9.8
2022-08-29	23.3	0.5	15.45	0	NE	2.8	1016.1	69	8
2022-08-30	22.8	5	10.12	0	NNE	1.9	1012.5	88	10
2022-08-31	27.1	1	17.46	0	S	3.2	1007.6	85	8.8

- 気温を説明する 5 種類の線形回帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

• 関連するデータの散布図

Figure 1: 散布図

- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 決定係数 $(R^2, Adjusted R^2)$

あてはめ値の性質

あてはめ値

• さまざまな表現

Figure 2: モデル 1

Figure 3: モデル 2

Figure 4: モデル 3

Figure 5: モデルの比較

Table 2: 寄与率によるモデルの比較

	目的変数								
	モデル 1	モデル 2	気温 モデル 3	モデル 4	モデル 5				
		C) /V Z			- , , , -				
気圧 日射 湿度	-0.178 (0.127)	0.297 (0.041)	-0.223 (0.068) 0.306 (0.036)	-0.214 (0.067) 0.366 (0.056) 0.071 (0.051)	-0.242 (0.068) 0.348 (0.045)				
雲量				,	0.238 (0.161)				
Constant	206.535 (127.430)	22.969 (0.690)	247.477 (68.433)	231.843 (68.254)	263.717 (67.941)				
\mathbb{R}^2	0.064	0.641	0.741	0.758	0.760				
Adjusted R ²	0.031	0.628	0.722	0.731	0.733				

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$$

$$(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$
(B)

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は 誤差項 の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は 誤差の重み付けの和 で表される

ハット行列

定義

$$H = X(X^\mathsf{T} X)^{-1} X^\mathsf{T}$$

• ハット行列 H による表現

$$\hat{y} = Hy$$

$$\hat{\epsilon} = (I - H)\epsilon$$

- あてはめ値や残差は H を用いて簡潔に表現される

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分 (テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_i = (H)_{ij}y_i + (それ以外のデータの寄与)$$

- (A)_{ij} は行列 A の (i, j) 成分
- テコ比が小さい:他のデータでも予測が可能
- テコ比が大きい:他のデータでは予測が困難

演習

問題

- ハット行列 H について以下を示しなさい
 - H は対称行列であること
 - H は羃等であること

$$H^2 = H$$
, $(I - H)^2 = I - H$

- 以下の等式が成り立つこと

$$HX = X$$
, $X^{\mathsf{T}}H = X^{\mathsf{T}}$

ヒント

• いずれも H の定義にもとづいて計算すればよい

$$H^{\mathsf{T}} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})^{\mathsf{T}}$$

$$H^{2} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})(X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})$$

$$(I - H)^{2} = I - 2H + H^{2}$$

$$HX = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})X$$

$$X^{\mathsf{T}}H = (HX)^{\mathsf{T}}$$

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

• 正規分布の重要な性質 (**再生性**)

正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

- ・ 誤差の仮定: 独立、平均 0 分散 σ^2 の 正規分布
- 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^{2} (X^{\mathsf{T}} X)^{-1}$$

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2} (X^{\mathsf{T}} X)^{-1})$$

演習

問題

- 誤差が独立で、平均0分散 σ^2 の正規分布に従うとき、最小二乗推定量 $\hat{\beta}$ について以下を示しなさい
 - 平均は **β**(真の母数) となること
 - 共分散行列は $\sigma^2(X^\mathsf{T} X)^{-1}$ となること

解答例

• 定義にもとづいて計算する

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta}$$

- 定義にもとづいて計算する

$$\begin{aligned} \operatorname{Cov}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}] \\ &= \mathbb{E}[(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}X(X^{\mathsf{T}}X)^{-1}] \\ &= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}]X(X^{\mathsf{T}}X)^{-1} \\ &= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(\sigma^{2}I)X(X^{\mathsf{T}}X)^{-1} \\ &= \sigma^{2}(X^{\mathsf{T}}X)^{-1} \end{aligned}$$

誤差の評価

寄与率 (再掲)

- 決定係数 (R-squared)
 - 回帰式で説明できるばらつきの比率

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- 自由度調整済み決定係数 (adjusted R-squared)
 - 決定係数を不偏分散で補正

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

各係数の推定量の分布

- 推定された回帰係数の精度を評価
 - 誤差 ϵ の分布は平均 0 分散 σ^2 の正規分布
 - **ĝ** の分布: p+1 変量正規分布

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

- β̂_i の分布: 1 変量正規分布

$$\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2((X^\mathsf{T} X)^{-1})_{jj}) = \mathcal{N}(\beta_j, \sigma^2 \zeta_j^2)$$

* (A)_{ii} は行列 A の (j, j) (対角) 成分

標準誤差

- 標準誤差 (standard error)
 - $-\hat{\beta}_i$ の標準偏差の推定量

s.e.
$$(\hat{\beta}_j) = \hat{\sigma}\zeta_j = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^{\mathsf{T}}X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- $-\hat{\beta}_i$ の精度の評価指標

演習

問題

- 以下を示しなさい
 - 不偏分散 $\hat{\sigma}^2$ が母数 σ^2 の不偏な推定量となる以下が成り立つことを示せばよい

$$\mathbb{E}\left[\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}\right] = (n-p-1)\sigma^{2}$$

解答例

• ハット行列 H を用いた表現を利用する

$$\hat{\boldsymbol{\epsilon}} = (I_n - H)\boldsymbol{\epsilon}$$

$$\mathbb{E}\left[\sum_{i=1}^n \hat{\boldsymbol{\epsilon}}_i^2\right] = \mathbb{E}[\hat{\boldsymbol{\epsilon}}^\mathsf{T}\hat{\boldsymbol{\epsilon}}]$$

$$= \mathbb{E}[\operatorname{tr}(\hat{\boldsymbol{\epsilon}}\hat{\boldsymbol{\epsilon}}^\mathsf{T})]$$

$$= \mathbb{E}[\operatorname{tr}(I_n - H)\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\mathsf{T}(I_n - H)]$$

$$= \operatorname{tr}(I_n - H)\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\mathsf{T}](I_n - H)$$

$$= \operatorname{tr}(I_n - H)(\sigma^2 I_n)(I_n - H)$$

$$= \sigma^2 \operatorname{tr}(I_n - H)$$

- *I_n* は *n*×*n* 単位行列
- さらに以下が成立する

$$trH = trX(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$
$$= tr(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X$$
$$= trI_{p+1}$$
$$= p+1$$

- 行列のサイズに注意

係数の評価

t 統計量

• 回帰係数の分布 に関する定理

t 統計量 (t-statistic)

$$t = \frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_j}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - * $\hat{\sigma}^2$ と $\hat{\beta}$ は独立となる
 - * $(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - * $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\beta})/\sigma^2$ は自由度 n-p-1 の χ^2 分布に従う

t 統計量による検定

- ・ 回帰係数 β_i が回帰式に寄与するか否かを検定
 - 帰無仮説 H_0 : $β_i$ = 0 (t 統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p値:確率変数の絶対値が |t| を超える確率
 - -f(x) は自由度 n-p-1 の t 分布の確率密度関数

$$(p \ \text{値}) = 2 \int_{|t|}^{\infty} f(x) dx \quad (両側検定)$$

帰無仮説 H_0 が正しければ p 値は小さくならない

モデルの評価

F 統計量

・ ばらつきの比 に関する定理

$$\beta_1 = \cdots = \beta_p = 0$$
 ならば F 統計量 (F -statistic)

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{n-n-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F 分布に従う

- 証明には以下の性質を用いる
 - * S_r と S は独立となる
 - * S_r/σ^2 は自由度 p の χ^2 分布に従う
 - * S/σ^2 は自由度 n-p-1 の χ^2 分布に従う

F統計量を用いた検定

- ・ 説明変数のうち1つでも役に立つか否かを検定
 - 帰無仮説 $H_0: \beta_1 = \cdots = \beta_p = 0$ (S_r が χ^2 分布になる)
 - 対立仮説 H_1 : ∃j $β_i ≠ 0$
- p値:確率変数の値がFを超える確率
 - -f(x) は自由度 p,n-p-1 の F 分布の確率密度関数

$$(p \ \mbox{\'e}) = \int_{F}^{\infty} f(x) dx \quad (片側検定)$$

帰無仮説 H_0 が正しければ p 値は小さくならない

解析の事例

東京の8月の気候の分析 (再掲)

- データの一部
- 気温を説明する5種類の線形同帰モデルを検討
 - モデル1: 気温 = F(気圧)
 - モデル2: 気温 = F(日射)
 - モデル3: 気温 = F(気圧, 日射)
 - モデル4: 気温 = F(気圧, 日射, 湿度)
 - モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化 (再掲)

• 観測値とあてはめ値の比較

モデルの比較

- t 統計量 F 統計量
- ・診断プロット(モデル4)
- ・診断プロット (モデル 5)

次回の予定

- 第1回: 回帰モデルの考え方と推定
- 第2回: モデルの評価
- 第3回:モデルによる予測と発展的なモデル

Table 3: 東京の 8 月の気候

————— 日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2022-08-01	30.6	0	24.53	0	SSE	2.8	1010.1	72	8.8
2022-08-02	31.6	0	24.78	0	SSE	2.5	1008.8	71	9.8
2022-08-03	31.5	0	21.24	0	SSE	2.3	1005.1	75	7.3
2022-08-04	24.6	18	3.46	0	NE	2.7	1006	89	10
2022-08-05	23.8	0	7.65	0	NE	2.9	1006.1	83	9.8
2022-08-06	25.2	0	17.06	0	SSE	2.4	1008.1	73	10
2022-08-07	27.6	0	14.45	0	SSE	2.2	1009.3	80	8.3
2022-08-08	29.8	0	22.52	0	S	4.5	1008.5	75	4.8
2022-08-09	30.9	0	25.5	0	S	5.5	1006.9	69	6.8
2022-08-10	30.5	0	25.99	0	S	5.3	1007.2	70	6
2022-08-11	29.5	0	22.9	0	S	5.4	1007.5	75	6
2022-08-12	28.3	2	15.36	0	S	5.8	1007.5	81	9.8
2022-08-13	25.5	47.5	4.53	0	S	4.8	1005.6	94	10
2022-08-14	28.2	0	16.28	0	SSE	2.6	1003	84	8.8
2022-08-15	29.4	0	18.65	0	S	2.5	1003.4	78	8.8
2022-08-16	31	0	20.5	0	SSW	4.8	1000.6	70	8.3
2022-08-17	27.3	5	8.87	0	NE	2.5	1005.8	77	10
2022-08-18	26.8	13	8.74	0	S	2.8	1001.7	81	6
2022-08-19	27.5	0	23.52	0	SSE	3.4	1001.7	62	3
2022-08-20	26.4	1.5	13.5	0	NW	1.8	1000.6	82	9.8
2022-08-21	26	1	8.96	0	NE	2.1	1002.3	87	10
2022-08-22	26.2	0	9.05	0	NNE	2.5	1005.5	82	10
2022-08-23	28.7	0	17.94	0	S	3.2	1003.2	83	8.3
2022-08-24	27.8	2	12.86	0	NE	2.9	1003.2	79	10
2022-08-25	25.7	0	9.83	0	SE	2	1004.1	77	10
2022-08-26	27	3.5	10.05	0	SSE	2.1	1002.5	89	10
2022-08-27	29	0	19.87	0	SSE	3.3	1002.7	80	5.5
2022-08-28	23.7	5	4.58	0	NE	3	1009.2	87	9.8
2022-08-29	23.3	0.5	15.45	0	NE	2.8	1016.1	69	8
2022-08-30	22.8	5	10.12	0	NNE	1.9	1012.5	88	10
2022-08-31	27.1	1	17.46	0	S	3.2	1007.6	85	8.8

Table 4: t 統計量・F 統計量によるモデルの比較

			目的変数		
	モデル 1	モデル 2	 気温 モデル 3	モデル 4	モデル 5
気圧	-0.178 (0.127) $t = -1.405$		$-0.223^{***} (0.068)$ $t = -3.281$	$-0.214^{***} (0.067)$ $t = -3.185$	$-0.242^{***} (0.068)$ $t = -3.566$
日射	t = 1.103	0.297*** (0.041) t = 7.193	$0.306^{***} (0.036)$ $t = 8.547$	$0.366^{***} (0.056)$ $t = 6.582$	$0.348^{***} (0.045)$ $t = 7.699$
湿度				0.071 (0.051) t = 1.390	
雲量					0.238 (0.161) t = 1.474
Constant	206.535 (127.430) $t = 1.621$	$22.969^{***} (0.690)$ t = 33.277	247.477*** (68.433) t = 3.616	231.843*** (68.254) t = 3.397	263.717*** (67.941 t = 3.882
Observations P ²	31	31	31	31	31
R ² Adjusted R ²	0.064 0.031	0.641 0.628	0.741 0.722	0.758 0.731	0.760 0.733
Residual Std. Error F Statistic	2.463 (df = 29) 1.973 (df = 1; 29)	1.526 (df = 29) 51.743*** (df = 1; 29)	1.320 (df = 28) 39.964*** (df = 2; 28)	1.298 (df = 27) 28.174*** (df = 3; 27)	1.293 (df = 27) 28.484*** (df = 3; 2

*p<0.1; **p<0.05; ***p<0.05

Figure 6: モデルの比較

Figure 7: モデルの比較

Figure 8: モデルの比較