

Optimizing Breeding Programs

COST-BENEFIT

Armidale Animal Breeding Summer Course 2014

Cost - Benefit of breeding programs

<u>Cost</u> of breeding programs for genetic improvement

Fixed costs (logistics, scientists etc. etc.)

Cost related to breeding strategy

- cost of phenotyping
- cost of genotyping
- cost of reproduction

Benefits

Benefit of more genetic gain Market share

 Assuming the benefit is expressed by the breeding objective (economic values of trait improvement

Variation in breeding objective is variation in genetic

Difference between best and worst is about 6 σ_H

Benefit is transmitted is multiplied over many animals

• Benefit is cumulative

					selection
				selection	round 5
			selection	round 4	
		selection	round 3		
	selection	round 2			
selection	round 1				
yr1	yr2	yr3	yr4	yr5	yr6
		= dG/yr			

Benefit is

- Cumulative
- Multiplied over many

Benefits can be expected to be large

- But:
 - Are they achieved?
 - Who gets the benefit?
 - Breeders, Producer? Retail? Consumer?

Economic value of genetic improvement

- Value difference between two bulls
- Value of selecting better bulls
 - Bulls sold to Commercial
 - Bulls used in Stud
- Value of genetic improvement whole herd

Two Commercial Bulls

EBV YWT

Bull 1: Kevin +10 kg

Bull 2: Tony +15 kg

Nr Progeny: 100

Value of 1 kg YWT \$4

Difference in progeny 2.5 kg

Difference in value: 5*\$4 * 100 * 0.5

as commercial bulls

Selection

Nr of

Expression

Difference

Progeny

per progeny

= \$1000.-

Two Commercial Bulls

\$Index

Bull 1: Kevin +190

Bull 2: Tony +180

Nr Progeny: 100

Difference in progeny \$5

Difference in value: \$10 * 100 * 0.5

as commercial bulls

Selection

Nr of

Difference

Progeny

= \$500.-

Expression

per progeny

Selecting Better Bulls

Average of 100 rams sold: With Genomics +182

No Genomics +180

\$Index

Nr Progeny: 100 per bull

Difference in progeny \$1.0

Difference in value: \$2 * 100 * 0.5

as commercial bulls

Selection

Nr of

Expression

Difference

Progeny

per progeny

= \$100.- * 100 rams = \$10,000.

So principles are

Value of a superior bull

= Selection Difference * Nr.Progeny * expressions per progeny

We look at all expressions in commercial progeny

To evaluate benefit we need to predict

• the extra Selection Difference we can get this will depend a lot on extra accuracy

the number of expressions

How about selection of stud bulls?

Value of a superior bull

= Selection Difference * Nr.Progeny * expression per progeny

Progeny in commercial, so for a stud bulls these are actually grand progeny, great grand progeny, etc

(allele) frequency of one unit of superiority as expressed in commercial herd

The fate of superiority from commercial bull vs a stud bull

Noting that a commercial bull also transmits the superiority from a stud bull ?!

males to males	females to males
males to females	females to females

Donors of genes

		Sir	es of N	lucleus				Dams of N	lucleus								
P m	atri	х	1	2	3	4	5	1	2	3	4	5	6	7	8	9	10
		1	0	0.5	0	0	0	0	0.166667	0.166667	0.166667	0	0	0	0	0	0
		2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
S		4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
genes		5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ge		1	0	0.5	0	0	0	0	0.166667	0.166667	0.166667	0	0	0	0	0	0
of		2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
		3	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
15		4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Recipients		5	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
<u>.</u>		6	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
<u>S</u>		7	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
26		8	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
		9	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	Sal	10	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Donors of genes

	Sn <sn< th=""><th>Sn<dn< th=""><th>Sn<sc< th=""><th>Sn<cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<></th></sc<></th></dn<></th></sn<>	Sn <dn< th=""><th>Sn<sc< th=""><th>Sn<cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<></th></sc<></th></dn<>	Sn <sc< th=""><th>Sn<cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<></th></sc<>	Sn <cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<>	Sn <cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<>	Sn	Sires of Nucleus
)	Dn <sn< td=""><td>Dn<dn< td=""><td>Sf<sc< td=""><td>Dn<cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Dn <dn< td=""><td>Sf<sc< td=""><td>Dn<cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<></td></sc<></td></dn<>	Sf <sc< td=""><td>Dn<cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<></td></sc<>	Dn <cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<>	Dn <cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<>	Dn	Dams of Nucleus
	Sc <sn< td=""><td>Sc<dn< td=""><td>Sc<sc< td=""><td>Sc<cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Sc <dn< td=""><td>Sc<sc< td=""><td>Sc<cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<></td></sc<></td></dn<>	Sc <sc< td=""><td>Sc<cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<></td></sc<>	Sc <cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<>	Sc <cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<>	Sc	Stud born males to sire commercial
	Cm <sn< td=""><td>Cm<dn< td=""><td>Cm<sc< td=""><td>Cm<cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Cm <dn< td=""><td>Cm<sc< td=""><td>Cm<cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<></td></sc<></td></dn<>	Cm <sc< td=""><td>Cm<cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<></td></sc<>	Cm <cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<>	Cm <cf< td=""><td>Cm</td><td>Commercial born males</td></cf<>	Cm	Commercial born males
_	Cf <sn< td=""><td>Cf<dn< td=""><td>Cf<sc< td=""><td>Cf<cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Cf <dn< td=""><td>Cf<sc< td=""><td>Cf<cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<></td></sc<></td></dn<>	Cf <sc< td=""><td>Cf<cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<></td></sc<>	Cf <cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<>	Cf <cf< td=""><td>Cf</td><td>Commercial born females</td></cf<>	Cf	Commercial born females

Donors of genes

P = matrix describing transmission of genes

• R = a matrix defining gene transmission of some superiority (or particular allele)

 Q= a matrix describing aging

			Sires of N	ucleus				Dams of Nucleus						
F	mat	rix	1	2	3	4	5	1	2	3	4			
		1	0	0.5	0	0	0	0	0.166667	0.166667	0.166667			
		2	1	0	0	0	0	0	0	0	0			
		3	0	1	0	0	0	0	0	0	0			
		4	0	0	1	0	0	0	0	0	0			
		5	0	0	0	1	0	0	0	0	0			
	1 0 0 0		0.5	0	0	0.166667	0.166667	0.166667						

- P = matrix describing transmission of genes
 - P=R+Q

$$m_t = P m_{t-1} + Rn_{t-1}$$

- m vector of allele frequency in each age class
- n vector to describe inserting allele or superiority

g1	g2	g3	g4	g5	g6	g7	g8	g9	g10	g11	g12	g13	g14	g15	g16	g17	g18	g19	g20	g21	g22	g23	g24	g25
0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445	0.196265
1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445
0	1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699
0	0	1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315
0	0	0	1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477
0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445	0.196265
0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445
0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699
0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315
0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477
0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962
0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324
0	0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718
0	0	0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849
0	0	0	0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805
0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445	0.196265
0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445
0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699
0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315
0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477
0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304	0.203333	0.195378
0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304	0.203333
0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304
0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072		The second second			100.00	And the second second
0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	Car I	185903	5 l m 7	06188	D-15	90297
0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	C					
0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	G D	208424	4 0.1	25905	0.20	05128
0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479					+	
0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	ce 🗓	179479	9 0.2	08424	0.12	5905
0	0	0	0	0	0	0	0.25	0	0.208333									0.170332					+ _	
0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	cel 🗓	21107	Z 0.1	.79479	0.20	2474
0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	C	1 70777			1	
0	0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	C U	170330	2 0.2	11072	0.17	79479
0	0	0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	C-	21498	a m. 1	THEST	0.70	11077
0	0	0	0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	c"	21-300		. / (0.5.5.2	0.23	12072

Allele frequency in the limit, from on 'insertion' of superiority (or an allele) = $1/(L_m + L_f)$

Geneflow mainly useful for initial part of an action, otherwise can use Rendel and Robertson

Cumulative Discounted Expressions CDE

Value (V) in year t is worth now V.c where $c=1/(1+d)^t$

d = discount rate

c = discount factor

Expression in age class i in year t is $m(i)_t = E_{it}$

Net Present Value of Sum of expression over 25 years

$$CDE = \sum_{t=1}^{25} \sum_{i=1}^{nac} E_{it} c_t$$

(allele) frequency of one unit of superiority as expressed in commercial herd

Discount rate	CDE comm bulls	CDE stud sires
0	0.99	3.93
0.05	0.78	1.96
0.08	0.68	1.37

(allele) frequency of one unit of superiority as expressed in commercial herd

Discount rate	CDE comm bulls	CDE stud sires
0	0.99	3.93
0.05	0.78	1.96
0.08	0.68	1.37

Value of selecting Stud Sires and Comm bulls

Value of a superior bull

= Selection Difference * Nr.Progeny * expression per progeny

CDE

Comm bull

Stud Sire

Herd structure

	Nr Co	ws Commercial Herd	12,000		
		Comm Dams/sire	50		
	Comr	n Sire replacem. rate	0.33333		
		Comm Weaning rate	1		
Nr new r	rams need	ed for comm herd/yr	80		
Nr lifetim	ne Progeny	per commercial sire		150	150 prog/comm bull
Prop. St	ud.Males	sold as breeding bull	20%		
		Stud weaning rate	1		
		Stud dams/sire	40		
	N	r stud breeding cows	800		
		Nr. Of stud sires	20		
	Nr of com	m bulls sold per year	80		
Vr of comm	nercial bul	ls sold per Stud male	4		
rogeny re	ceiving ge	nes from a stud male		600	600prog/stud bull

Value of selecting Stud Sires and Comm Bulls

Value of a superior sire

Selection differential within the cohort: "The result of one round of selection"

Breeding perforn	nance					
		SD of b	reeding Objective	10.82		
		Male S	election intensity	2.06		
		Female S	election intensity	0.2		
	Male Sel	ection accuracy	without genomics	0.358	increase	
	Male	Selection accura	acy with genomics	0.432	21%	
		Female	Selection accuracy	0.358		
		Generation Ir	terval Stud males	1.53		
		Gneration Inte	erval stud females	2.97		
	approximaley	1.90	CDE stud sires	1.90		
			CDE flock sires	0.6		
				no GS	GS	
			Sire superiority	7.979534	9.628934	
			Dam Superiority	0.774712	0.774712	increase
			Rate of gain/year	1.945	2.312	19%

Comparing geneflow with dG/year method

group	int	acc	Sup	L	dG/year
sires	2.1543	0.53	10.27622255	1.0	3.233294535
dams	0.7979	0.37	2.656955587	3.0	

		Calculations	<mark>base</mark>	<mark>≥d on dG/y</mark>	ear		calculations	s based on GF	LOW				
								sire	dam				
		dG/gen						selection	selection				
		3.23				dG/yr	superiority	10.2762	2.6570			GFI	LOW
year	disc fact	genetic mean	cum	n benefit	cost	disc retruns		Expr_SS	Expr_DS	cum	n benefit	dis	sc retruns
	1 1.000		\$	-	\$0	\$0		0.000	0.000	\$	-	\$	-
	2 0.935		\$	-	\$0			0.000	0.000	\$	-	\$	-
	3 0.873			-	\$0			0.119	0.000	\$	14,694	\$	12,834
	4 0.816			-	\$0			0.174	0.048	\$	37,679	\$	30,757
	5 0.763		\$	-	\$0			0.131	0.105	\$	57,158	\$	43,606
	6 0.713			38,800	\$0			0.157	0.128	\$	80,610	\$	57,474
	7 0.666		-	77,599	\$0			0.185	0.149	\$	108,155	\$	72,068
	8 0.623		-	116,399	\$0			0.196	0.165	\$	137,537	\$	85,651
	9 0.582		-	155,198	\$0			0.197	0.178	\$	167,514	-	97,494
	.0 0.544		-	193,998	\$0			0.206	0.190	\$	198,976	\$	108,230
	0.508		-	232,797	\$0			0.213	0.199	\$	231,559	\$	117,713
	0.475		-	271,597	\$0			0.217	0.206	\$	264,833	\$	125,820
	0.444			310,396	\$0			0.220	0.211	\$	298,645	\$	132,602
	0.415		-	349,196	\$0			0.223	0.216	\$	332,996	\$	138,182
	0.388		-	387,995	\$0			0.225	0.220	\$	367,735	\$	142,614
	0.362		-	426,795	\$0			0.227	0.222	\$	402,772	\$	145,983
	0.339		-	465,594	\$0			0.228	0.225	\$	438,053	\$	148,384
1	.8 0.317		-	504,394	\$0			0.229	0.226	\$	473,539	\$	149,910
	.9 0.296		-	543,193	\$0			0.230	0.228	\$	509,179	\$	150,648
	0.277		-	581,993	\$0			0.231	0.229	\$	544,943	\$	150,681
2	21 0.258			620,793	\$0			0.231	0.230	\$	580,808	\$	150,092
	0.242		-	659,592	\$0			0.232	0.231	\$	616,754	\$	148,954
	23 0.226		-	698,392	\$0			0.232	0.231	\$	652,763	\$	147,337
2	24 0.211			737,191	\$0			0.232	0.232	\$	688,823	\$	145,305
2	25 0.197	\$64.67	\$	775,991	\$0	\$152,984		0.233	0.232	\$	724,923	\$	142,916
					NPV	\$2,607,849				NΡ\	/	\$	2,645,255

Expressed in 12,000 cows

20 nucleus sires

i.e. 600 per sire

Comparing simply dG/yr vs GFLOW

Cost - Benefit of breeding programs

Cost-Benefit industry wide

3 tier benefit

50k Nuc cows 20M Comm

Cost-Benefit Stud

2 tier benefit

No GS GS
Cost \$ 5 k \$17.5 k
dG \$20 k \$22 k

500 Nuc cows10k Comm

Value of selecting Stud Sires and Comm Bulls

Value of a superior sire

= Selection Difference * Nr.Progeny * expression per progeny

Comm Bull

With Genomics

Stud Sire

400

1.35

With Genomics

+3.4

= \$ 1,836 +216

Cost benefit analysis

• Extra benefit 120 * \$11 + 30* \$216 = \$7,800

• If all young stud males tested: 600

• Break even: \$13.00 per DNA test

summary

- Can calculate additional gain on a per bull basis, assuming returns in commercial progeny
- Those figures depend on
 - Additional accuracy
 - Age structure
 - Herd parameters such as weaning rate, mating rate, prop. Sold