

МИНОБРНАЎКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт кибернетики Кафедра информационной безопасности

КУРСОВАЯ РАБОТА

по дисциплине «Методы программирования»

Тема курсовой работы «ЭЦП по схеме Эль-Гамаля с хэш-функцией SHA-3»

Студент группы ККСО-01-19: Алабин А.Ю
Руководитель курсовой работы: Кирюхин В.А.
Работа представлена к защите «» 2021 г.
Цопущен к защите «» 2021 г.

Москва 2021

Содержание

Введение			3	
1	Теоретическая часть			
	1.1	Описание схемы Эль-Гамаля [1]	3	
	1.2	Генерация больших простых чисел	2	
		1.2.1 Алгоритм Миллера-Рабина [2]	4	
		1.2.2 Генерация простого числа р(с оглядкой на на разложение р-1)	4	
	1.3	Криптографическая хэш-функция SHA3 [3]	6	
2	Практическая часть			
	2.1	Общая логика программы	8	
	2.2	Режимы работы программы	Ģ	
За	ключ	нение	1(
Cı	писон	с используемой литературы	11	
П	Припожения			

Введение

В данной работе рассматривается алгоритм ЭЦП по схеме Эль-Гамаля и ряд вспомогательных математических задач, связанных с генерацией ключей, созданием электронной подписи документа и обработкой докумета перед подписью.

1. Теоретическая часть

1.1. Описание схемы Эль-Гамаля [1]

Схема цифровой подписи Эль-Гамаля основана на сложности задачи вычисления значения логарифмов(т.е. обращение функции g^x) в конечном поле. В схеме Эль-Гамаля, для начала, нужно **вычислить ключи**:

Пусть p - простое число и g - примитивный элемент поля Z_p , то есть $g:g^{\varphi(p)}\equiv 1\pmod p \wedge g^l\not\equiv 1\pmod p \wedge g\in \overline{2,\varphi(p)-1}$, где $l\not=\varphi(p)$. Выберем случайное число $\mathbf k\in\overline{2,p-2}$ и вычислим значение $\mathbf y=g^k\pmod p$, тогда:

Определение 1 *priv* k = k - *секретный ключ*

Определение 2 $pub_k = (p, g, y)$ - nyбличный ключ

Как следует из названий: k - держится в секрете, а (p,g,y) - доступен всем желающим. Можно вычислить(с большой вероятностью верное) g, используя делители числа $p-1=\varphi(p)$: зная, что $p_i\mid \varphi(p)$, можно сразу исключить числа $g:g^{\varphi(p)/p_i}\equiv 1\pmod p$ - т.к. это противоречит определению g. Число g прошедшее проверку со всеми p_i - возьмём, как возможно-первообразный корень.

Чтобы сделать **подпись для сообщения М**(которое, как правило, хэшируется перед подписью), вычисляем:

- 1) случайное целое число(сессионный ключ) $k' \in \overline{1, p-2}$.
- $2) \mathbf{r} = g^{k'} \pmod{p}.$
- 3) $s = (M kr)(k')^{-1} \pmod{p-1} (*)$

Определение 3 Подписью сообщения M - считается пара (r, s).

Чтобы получить $(k')^{-1}$ - используем делители числа $p-1=\varphi(p)$, т.к. p - простое. Пусть m=p-1, то $\varphi(m)=m(1-1/t_1)...(1-1/t_k)$ где $\overline{\mathbf{t}_1,\mathbf{t}_k}$ - простые делители $m=p-1\implies (k')^{-1}=(k')^{Phi(m)-1}\pmod m$

• Формально подпись sign() сообщения M можно описать так:

$$sign(M, pub_k) = (r, s)$$

Проверка подписи заключается в проверке равенства: $y^r r^s \equiv g^M \pmod p$ Убедимся в корректности проверки:

для этого заметим, что из $(*) \implies sk' = M - xr \pmod p - 1 \implies M = xr + sk'$ $\pmod p - 1$ Тогда $g^M \iff g^{xr}g^{k's} \iff (g^x)^r(g^{k'})^s \iff y^rr^s\square$

 \bullet Формально проверку chk() подписи (r,s) сообщения M можно описать так:

$$chk(M, sign(M, pub\ k), pub\ k) = is\ correct$$

, где $is_correct \in \{0,1\}$, 1 - означает корректность подписи, 0 - противное.

Ниже приведено графическое представление подписи по схеме Эль-Гамаля:

Рисунок 1 – Схема ЭЦП Эль-Гамаля

1.2. Генерация больших простых чисел

Пусть перед нами стоит задача определить, является ли число p - простым, обычный перебор делителей до \sqrt{p} при больших p зациклится "на вечность" и даже различные решета не помогают справиться с этой проблемой, поэтому появляется необходимость в более быстром алгоритме определения простоты - для этого подходит вероятностный алгоритм Миллера-Рабина - он быстрый, но не гарантирует простоту числа (лишь высокую вероятность простоты).

1.2.1. Алгоритм Миллера-Рабина [2]

Алгоритм Миллера-Рабина - вероятностный тест, который не может выдать простое число за составное, однако обратное возможно(с тем меньшей вероятностью, чем больше проведено тестов).

Пусть нужно определить(с большой вероятностью), что число p - является простым, представим $p-1=2^st$, где s - степень двойки в канон. разложении числа $p-1 \implies t$ - нечётная часть числа p-1, тогда алгоритм выглядит следующим образом:

- 1) выбираем случайное $a \in \overline{2,p-1}$: (a,p)=1
- 2) проверяем, что выполнено хотя бы одно условие: $a^t \equiv 1 \pmod p \vee \exists k \in \overline{0, {\rm s}-1} : a^{2^k t} \equiv -1 \pmod p$
- 3) если прошлый шаг пройден, то а "свидетель простоты" \Longrightarrow переходим к п.1 алгоритма повторяем пока не найдём $log_2(p)$ свидетелей "простоты иначе число р точно составное

На выходе алгоритма имеем информацию о том, каким является р: вероятно простым либо точно составным.

1.2.2. Генерация простого числа р(с оглядкой на на разложение р-1)

Чтобы получить большое простое(вероятно простое) число p - достаточно восопльзоваться алгоритмом Миллера-Рабина с $log_2(p)$ тестами, однако в схеме Эль-Гамаля для быстрой генерации g и $(k')^{-1}$,как мы уже увидели, пригодится знать разложение p-1, учитывая это, и полагая, что нам нужно простое число порядка 2^{1024} , поступим следующим образом - построим составное число p-1 с заданным нами разложением, чтобы p - оказалось простым:

- 1) сгенерируем 2-а вероятно простых числа p_1, p_2 в диапазоне $\overline{2^{512}, 2^{513}}$ при помощи алгоритма Миллера-Рабина, тогда разложение $p-1=2\cdot p_1p_2p_3$, 2 присутствует в разложении, т.к. $2|\varphi(p)$ при простом p, а p_3 подбирём в п.2
- 2) далее будем искать как можно меньшее простое $p_3: p=2\cdot p_1p_2p_3+1$ тоже простое

На выходе имеем простое $p=2\cdot p_1p_2p_3+1$ и разложение $p-1=2\cdot p_1p_2p_3.$

1.3. Криптографическая хэш-функция SHA3 [3]

Как правило, подписываемый документ весит > 1024 бит, поэтому возникает необходимость использовать хэш функцию: она сопоставляет сообщению фиксированную по числу бит(в SHA3-256 - 256 бит) строку, которую мы уже и подписываем. Полученная строка является, как бы "слепком" сообщения, т.к. тяжело (такое требование предъявляют к хэш-функциям) найти другое сообщение, дающее такой же хэш.

Определение 4 Криптографическая хэш-функция - хеш-функция, способная противостоять всем известным типам криптоаналитических атак.

Типичный пример атаки на хэш-функцию - поиск коллизии, т.е. поиск m_1, m_2 : $h(m_1) = h(m_2)$ После нахождения коллизии злоумышленник может подменить сообщение m_1 на m_2 .

SHA3(Keccak) - является криптографической хэш-функцией, выдающей хэш произвольной разрядности.

SHA-3 основан на функции криптографической губки - рассмотрим её ниже.

Определение 5 Губкой (состоянием губки) S - называют строку поделённую на 2-е части: S_1 размера r (rate) - скорость и S_2 размера c (capacity) - ёмкость.

Условимся, что длина хэша должна быть d(digest) бит.

- Входное сообщение M дополняется последовательностью бит(по некоторому правилу) до размера кратного $|S_1|=r$ и делится на n=|M|/r блоков длины n (блоки можно сравнить с капельками воды, а M со всем обёмом, которую должна впитать часть губки (S_1))
 - 1) на стадии инициализации губка S "сухая состоит из одних нулей.
 - 2) сначала производится многократное впитывание: Часть губки S_1 вбирает в себя очередной поксоренный об себя блок P_i , затем вся губка S пропускается через функцию $f: S \to S'$ говорят, что губка S перешла в новое состояние S'
 - -продолжаем до тех пор, пока не впитаем все п блоков дополненного М.

Рисунок 2 – і-ый шаг впитывания

где $f:\{0,1\}^n{ o}\{0,1\}^*$ - многораундовая бесключевая псевдослучайная перестановка

3) производим отжим:

Если после п впитываний губка $S: |S_1| = r \geq d \implies$ возвращаем первые d бит из S_1

иначе(бит не хватает) мы запоминаем $Z=S_1$ и пропускаем S через f, получая S'=S(f) и конкатенируем Z и S_1' , если $|Z|\leq d$ - продолжаем конкатенировать Z с S_1'' , S_1''' , ... до тех пор, пока не получим $d\leq |Z|$ - возвращаем первые d бит из Z.

На выходе имеем d-битную хэш-последовательность.

"Кессак"имеет множество настраиваемых параметров(число раундов, размер S и т.д.), в стандарте SHA-3 "Кессак"принимает следующую конфигурацию:

- \bullet губка S это массив из 5х5 слов длины 64 бита, т.е. общая длина S равна 1600 бит, в которых r=1088, c=512.
- функция губки имеет особое правило дополнения pad10*1:
 - в наиболее общем случае к сообщению M, не кратному по длине к r, конкатенируется 1, затем последовательность 0...01 так, чтоб в результате дополненное M было кратно r
 - когда длина M уже кратна r происходит дополнение блоком 10...01 длины r. это делается потому, что без дополнения данное M совпало бы с дополненным сообщенем M' и их хэш был бы одинаков

- когда длина M=r-1 к M добавляется 1, завершющая первый блок, а следующий блок состоит из последовательности 00...01 длины r (размер блока), выходит мы опять дополнили сообщение 10...01 последовательностью
- функция f имеет пять шагов по 24 раунда. На каждом из 5-ти шагов(θ , ρ , π , ξ , ι) губка S воспринимается, как 3-ёхмерный массив размера 5x5x64 и над ним производятся определённые преобразования(многие из которых удобно воспринимать, как некоторые действия в 3-ёх мерном пространстве).

2. Практическая часть

В этой части приведена общая логика программы и инструкции по работе с программой, реализующей учебную модель/симуляцию РКІ с ЭЦП по схеме Эль-Гамаля.

2.1. Общая логика программы

Рассмотрим логику программы, реализующую ЭЦП:

- существует доверенное лицо Trent, которое выдаёт всем пользователям (при инициализации ("gen") или запросе ("crt")) квази-сертификат подпись пуб.ключа автора; приставка "квази" добавленна, т.к. понятие сертификата подразумевает хранение внутри себя кроме подписи М само М (в нашем случае М пуб.ключ).
- Можно (пере)создать пользователя с любым разрешённым именем(все, кроме "Trent" и "_pychache_").
- Инициализированный пользователь имеет собственную папку ./User/ в которой хранятся его приватный ключ, пуб.ключ и квазисертификат
- каждый пользователь может подписывать файлы, находящиеся в той же директории, что и программа $El_{gamal.py}$, после чего у него (в его папке ./User/) появляется подпись file_name.sig
- проверка подписанного документа включает в себя два этапа:
 - удостоверение личности автора(сверка квазисертификата и пуб. ключа автора)
 - если личность автора подтверждена, то происходит проверка на отсутствие модификации документа после подписи(проверяется подпись самого документа)

• существует возможность отозвать все существующие (старые) сертификаты, чтобы существующие/новые авторы заново подтвердили свою личность, иначе подписанные ими файлы не пройдут проверку(т.к. нельзя установить личность автора)

Стоит отметить, что описанная выше логика вписывается в известностную концепцию PKI - инфраструктура открытых ключей. Её основные принципы:

- закрытый ключ (private key) известен только его владельцу
- удостоверяющий центр (CA Certificate Authority) создает электронный документ сертификат открытого ключа, таким образом удостоверяя факт того, что закрытый (секретный) ключ известен эксклюзивно владельцу этого сертификата
- открытый ключ (public key) свободно передается
- никто не доверяет друг другу, но все доверяют удостоверяющему центру
- удостоверяющий центр подтверждает или опровергает принадлежность открытого ключа заданному лицу, которое владеет соответствующим закрытым ключом

2.2. Режимы работы программы

Пусть далее Bob - выбранный при запуске программы пользователь.

- **gen** генерация ключей и квази-сертификата для Bob; после генерации выводится ссылка с проверкой полученного р на простоту в виде: $http://factordb.com/index.php?query=p_number$, где p_number p из пуб.ключа
- sgn подпись документа от лица Bob
- **chk** проверка на то, что Воb является автором документа и на то, что документ не был изменён после подписи
- **new** просьба к Trent: перегенерировать его ключи \implies все ранее выданные сертификаты станут недействительны и тем, авторам, которые захотят продолжить взаимодействие придётся снова получать квази- сертификат у Trent
- cert выдача нового квази-сертификата для Bob(пригодится, если был использован режим "new")

Заключение

В результате проделанной работы получилось познакомиться с процессом ЭЦП, концепцией РКІ, а также реализовать их на ЯП python3, кроме того были рассмотренны криптографическая хэш-функция, важная задача определения простоты больших чисел и их построение под конкретную задачу.

Список литературы

- [1] Алфёров А.П., Зубов А.Ю., Кузьмин А.С., Черемушкин А.В. "Основы криптографии" начиная со стр. 372
- [2] Ю. В. Нестеренко "Введение в криптографию" Гл. 4
- [3] https://habr.com/ru/post/534596/ SHA3

Приложения

Реализация ЭЦП находится в файле El_Gamal.py, lib_prrime.py - вспомогательная библиотека для генерации больших простых чисел(написана самостоятельно).