

The mole

A mole of a substance is the mass in grams of the substance which is numerically equal to its relative atomic mass or its relative molecular mass.

E.g. One mole of carbon weights 12g, 1 mole of oxygen molecule weights 32g. 1 mole of the compound ammonium sulphate weights 132g.

A mole of any substance contains the same number of particles. These particles can be molecules, a toms, ions or electrons.

A mole of any substance contains 6.02×10^{23} particles. These number of particles in any mole of a substance (6.02 x 10²³) is called **AVOGADRO'S NUMBER**

There are 6.02×10^{23} carbon atoms in 1 mol (12g) of carbon. There are 6.02×10^{23} oxygen molecules in 1 mol (32g) of oxygen. There are 6.02 x 10²³ formula units of ammonium sulphate in 1 mol (132g) of ammonium sulphate.

Example 1

Taking Avogadro's constant equal to 6×10^{23} How many Cu atoms are there in a copper plate, weighing 48g [Cu = 64] **Solution:**

Let the number of moles of Cu that are in 48g be X 1 mole of Cu contain 64g

X moles of Cu contain 48g

$$\therefore X = \frac{1 \times 48}{64}$$
= 0.75 moles

But 1 mole of Cu contain $6x10^3$ atoms

∴ 0.75 moles of Cu contain [
$$\frac{6 \times 10^{23} \times 0.75}{1}$$
 atoms
= **4.5** x **10**²³ atoms

$$= 4.5 \times 10^{23} \text{ atom}$$

Example 2

How many grams of Ag [Ag = 108] contain 1. 2 x 10^{23} atoms

Solution:

Let the number of moles in $1.2x10^{23}$ atoms be X 1 mole of Ag contain 6 x 10²³ atoms X moles of Ag contain 1.2 x 10²³ atoms $\therefore 1.2 \times 10^{23} \times 1$ $6x10^{23}$ = 0.2 moles

But 1 mole of Ag contain 108g

∴ 0.2 moles of Ag contain
$$[108 \times 0.2]$$
 g
$$= 21.6g$$

Example 3

How many C atoms are there in a carbon rod weighing 8 g (C = 12) Solution

12g of carbon contains 6×10^{23} atoms

$$\therefore 8g \text{ of carbon contain } \frac{8 \times 6 \times 10^{23}}{12} = 4 \times 10^{23} \text{ atoms}$$

Example 4

How many grams of copper (Cu = 64) contain 4.5×10^{23} atoms? Solution

6 x 10²³ atoms of copper weigh 64g

$$\therefore 4.5 \times 10^{23} \text{ atoms contain } \frac{4.5 \times 10^{23} \times 64}{6 \times 10^{23}} = 48g$$

Equations

If we consider the following equation:

$$C + O_2 \rightarrow CO_2$$

The equation now may mean

- a. 1 atom of carbon reacts with 1 molecule of oxygen to yield 1 molecule of carbon dioxide.
- b. 12g of carbon react with 32g of oxygen to yield 44g of carbon dioxide Or
- c. 1 mole of carbon atom react with 1 mole. of oxygen molecules to yield one mol of carbon dioxide molecules.

Similarly

$$2C + O_2 \rightarrow 2CO$$

The equation means that

- a. 2 carbon atoms react with 1 oxygen molecule to yield 2 carbon monoxide
- b. 24g of carbon react with 32g of oxygen to yield 56g of carbon monoxide.
- c. 2 mol of carbon atoms reacts with 1 mol of oxygen molecule to yield 2 mol of carbon monoxide molecules.

Example 5

What is the mass of

(a) 0.1 mole of CaSO4

R.F.M
$$CaSO_4 = 40 + 32 + 4 \times 16 = 136g$$

=> 1 mole weighs 136g

- \Rightarrow 0.1 mole weigh 136 x 0.1 = 13.6g
- (b) 3 moles of H_2O

R.F.M
$$H_2O = 18$$

 $\Rightarrow 2 \times 1 + 16 = 18$

1 mole of
$$H_2O \rightarrow 18$$

3 moles of $H_2O \rightarrow 18 \times 3$
= $54g$

Example 7:

According to the equation

$$2C + O_2 \rightarrow 2CO$$

How many moles of carbon will react with 0.2mol of oxygen?

Solution

From the equation

- 2 mol of C reacted with 1 mol of O₂
- \Rightarrow 1 mole of O_2 requires 2 moles of C
 - \therefore 0.2 moles of O₂ requires $2 \times 02 = 0.4$ moles of C

Example 8:

According to the equation

$$C_3H_8 + 50_2 \rightarrow 3CO_2 + 4H_2O$$

(a) How many moles of CO_2 will be produced in the reaction of 3.2g of O_2 ?

Solution

Mass of 5 mole of oxygen molecules = $5(2 \times 16) = 160g$

- ∴ 160g of oxygen produce 3 mole of carbon dioxide
 - $\Rightarrow 3.2g \text{ of oxygen produce } \frac{3 \times 3.2}{160} = 0.06 moles$
 - (b) How many grams of propane will react with 0.5 moles of O_2 ?

Solution

Formula mass of propane, $C_3H_8 = 12 \times 3 + 1 \times 8 = 44g$

5 moles of oxygen react with 1 mole of propane

 \therefore 0.5 moles of oxygen react with $\frac{1 \times 0.5}{5} = 0.1$ mole of propane

Calculation involving solutions

Definitions

1. The concentration of a solution is the number in gram or number of moles of the solute dissolved or contained in a known volume of solution.

Usually the concentration of a solution is expressed in either number of grams or moles of solute per litre of solution.

- 2. **Morality of a solution** is the number of moles of the solute contained in 1 litre, 1dm³ or 1000cm³ of the solution.
- 3. A two molar solution of sodium hydroxide (2M NaOH) is a solution containing two moles of the NaOH in 1000 cm³ of the solution
- 4. Some formulas

Morality =
$$\underline{\text{Concentration in gm/L}}$$
 (units for morality mol dm⁻³)

Or morality = No. of moles
$$\times 1000$$

$$\begin{array}{ccc} Mole & = & \underline{grams/mass} \\ & R.F.M \end{array}$$

Example 1

20cm³ of 0.1M NaOH completely reacted with 50cm³ of dilute HCl. Calculate the Morality of the acid and concentration of the acid in g/l

Solution

Reacting equation

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

Moles of NaOH that reacted:

1000cm³ of NaOH contained 0.1moles

1 cm³ of NaOH will contain
$$\left(\frac{0.1}{1000}\right)$$
 moles

20cm³ of NaOH will contain
$$\left(\frac{0.1}{1000}x20\right)$$
 moles

Moles of HCl. that reacted

From the equation mole ratio of NaOH: HCl

Therefore 1 mole of NaOH reacted with 1 mole of HCl

Therefore, moles of HCl = 0.002 moles

Morality of HCl

50 cm³ of HCl contained 0.002 moles

1 cm³ of HCl will contain
$$\left(\frac{0.002}{50}\right)$$
 moles

$$1000 \text{ cm}^3 \text{ of HC1 will contain } \left(\frac{0.002}{50}x1000\right) \text{moles} = 0.04 \text{ M}$$

Therefore, morality of HCl = 0.04 M

(b) formula mass HCl = 1 + 35.5 = 36.5

1 mole of HCl weighs 36.5g 0.04moles weigh 36.5 x 0.4 = 1.46g/L

EXERCISE

EXI	ERCIS	SE SE
1		The volume of 0.1M sodium hydroxide required to react exactly with 25.0cm3
		of 0.02M hydrochloric acid
	A.	12.5cm ³
	B.	25.0cm ³
	C.	50.0cm ³
	D.	75.0cm ³
2.		The mass of nitric acid required to make 200cm ³ of 2M solution is
	A.	31.5g
	B.	25.2g
	C.	15.8g
	D.	12.6g
3		The molarity of solution that contain 40g of sodium hydroxide in 500cm ³ is
		Na = 23,
	A.	0.2M
	B.	0.5M
	C.	1M
	D.	2M
4		The volume of a 0.25M hydrochloric acid required to exactly react with 20cm ³
		of 0.1M sodium carbonate solution is given by
	A.	20.0 x 0.1
		2 x 0.25
	B.	$\frac{20.0 \times 0.25}{2 \times 0.1}$
	C.	$\frac{2 \times 20.0 \times 0.25}{0.1}$
		0.1
	D.	2 x 20.0 x 0 .1
		0.25
5		A 0.2M solution of X contains 18.25g of X per litre of solution. The relative
		molecular mass of X is
	A.	18.25
	B.	36.50
	C.	45.63
	D.	91.25
6.		10cm ³ of dibasic was neutralised by 20cm ³ of a 0.2M solution of sodium
		hydroxide. The molarity of the acid is
	A.	<u>2 x 10</u>
		0.2 x 20
	B.	0.2 x 20
		2 x 1
	C.	0.2 x 10
		2 x 20
	D.	2 x 0.2 x 20
		10

7		$CaCO_3$ (s) heat $CaO(s) + CO_2(g)$
		The mass, in grams of calcium oxide formed when 20g of calcium carbonate
		completely decomposes is
		(Ca = 40, C = 12, O = 16)
	A.	<u>20 x 56</u>
		100
	B.	20 x 100
		56
	C.	44 x 56
	0.	100
	D	20 x 44
	D	$\frac{20 \times 11}{100}$
8.		What mass, in grams, of sodium carbonate-10-water, Na ₂ CO ₃ .10H ₂ O, is
		contained in 50cm ³ of a 0.1M solution?
	A.	106 x 0.1 x 1000
		50
	B.	106 x 0.1 x 50
		1000
	C.	286 x 0.1 x 1000
	С.	50
		106 0 0 1 0 50
	D.	$\frac{106 \times 0.1 \times 50}{1000}$
		1000
9		2.0g of sodium hydroxide was dissolved in water to make 500cm3 of solution
		is $(H = 1, O = 16, Na = 23)$
	A.	2M B. 0.5M C. 0.1M D. 0.05M
10		Sulphuric acid react with sodium hydroxide according to equation
		$H_2SO_4(aq) + 2NaOH(aq)$ \longrightarrow $Na_2SO_4(aq) + 2H_2O(1)$
		What volume of 0.5M sulphuric acid is required to react completely with
		10cm ³ of 2M sodium hydroxide
1 1	A.	5cm ³ B. 10cm ³ C. 20cm ³ D. 30 cm ³
11		What mass of sodium hydroxide is in 0.5litre of 2M sodium hydroxide solution
	A.	10g B. 20g C. 40g D. 0.8g
	A.	10g D. 20g C. 40g D. 0.0g
12		The volume of 0.2M sodium hydroxide solution which neutralise 25cm3 0.1M
		hydrochloric acid is
	A.	5cm ³ B. 12.5cm ³ C. 25cm ³ D. 50cm ³
13		Which one of the following contains the same number of atoms as 8g of
		sulphur?
	A.	20g of calcium
	B.	10g of calcium
	C.	12g of carbon
	D.	4 g of carbon

14 What mass of sulphuric acid (Mr 98) in 5cm ³ of 0.2M sulphuric A. $\frac{98 \times 5}{0.2 \times 1000}$ B. $\frac{98 \times 0.2 \times 5}{1000}$ C. $\frac{98 \times 0.2}{5 \times 1000}$ D. $\frac{9.8 \times 51000}{0.2}$	
B. $\frac{98 \times 0.2 \times 5}{1000}$ C. $\frac{98 \times 0.2}{5 \times 1000}$ D. $\frac{9.8 \times 51000}{0.2}$	
D. $\frac{98 \times 0.2}{5 \times 1000}$ D. $\frac{9.8 \times 51000}{0.2}$	
$ \begin{array}{c c} \hline $	
D. $\frac{9.8 \times 51000}{0.2}$	
D. $\frac{9.8 \times 51000}{0.2}$	
0.2	
0.2	
15 25 3 00 05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
25cm ³ of 0.05M sodium carbonate required 22.70cm ³ of hydroc	hloric acid for
complete neuralization. Th mority of the acid given by	
A. 0.00125 x 1000	
2 x 22.7	
B. 0.00125 x 1000	
2 x 25	
C 0.00125 x 2 x 1000	
22.7	
D. 0.00125 x 1000	
25	
16 25cm ³ of a 0.25M on an acid 25cm ³ of 0.5M sodium hydroxide	solution for
complete neutralization. The basicity of the acid is	
A. 1 B. 2 C. 2 D. 4	
Calcium reacts with hydrochloric acid according to the following	~ .
$CaCO3(s) + 2HCl(aq) \longrightarrow CaCl2(aq) + H2O(l) + CO2(l)$	
The mass of carbon dioxide formed when 20g od calcium carbon	nate 1s
completely reacted with hydrochloric acid is $(Ca = 40, H = 1. Cl = 35.5, C = 12)$	
A. 20 x 44 x 10	
D 44 x 100	
$\frac{1}{8}$ $\frac{44 \times 100}{20}$	
C. $\frac{20 \times 100}{}$	
44	
D. $\frac{20 \times 44}{100}$	
Copper reacts with oxygen according to the following equation	
$2Cu(s) + O_2(g) \longrightarrow 2CuO(s)$	
Calculate the mass of copper (II) sulphate formed when 0.64g of	t copper
powder is completely reacted with oxygen (Cu = 64, O = 16) Λ 0.64 x 80	
A. $\frac{0.64 \times 80}{96}$	
B. 0.64 x 64	
80	

	C.	0.64 x 96
	D	80 0.64 x 80
	D.	64
19		Lead (II) nitrate reacts with potassium iodide according to the following equation Pb(NO ₃) ₂ (aq) + 2KI (aq) PbI ₂ (s) + 2KNO ₃ (aq) The mass pf lead (II) iodide formed when 33.2g of potassium iodide is reacted with excess lead (II) nitrate is (K= 39, I= 127, Pb = 207)
	A.	16 g B. 46.1g C. 66.4g D. 92.2g
20		The concentration in grams per litre, of a $0.05M$ sodium carbonate solution is $(Na = 23, C = 12, O = 16)$
	A.	0.05 x 83 B. 0.05 x 106 C. $\frac{106}{0.05}$ D $\frac{83}{0.05}$
21		Copper (II) oxide reacts with hydrogen according to the equation $CuO(s) + H_2(g) \longrightarrow Cu(s) + H_2O(l)$ The mass of copper formed when 8.0g of the oxide is reacted with excess hydrogen is $(Cu = 63.5, O = 16, H = 1)$
	A.	63.5 x 80 x 8g B. $\frac{63.5 \times 80}{8}$ C. $\frac{8.0 \times 80}{62.5}$ D. $\frac{63.5 \times 8.0}{80}$
22		Copper (II) sulphate reacts with sodium carbonate according to the following equation. CuSO ₄ (aq) + Na ₂ CO ₃ (aq) CuCO ₃ (s) + Na ₂ SO ₄ (aq) The mass of copper (II) carbonate formed when 200cm3 of a solution containing 5.3g of sodium carbonate per liter of solution was reacted completely with excess copper (II) sulphate is given by
	A.	$\frac{5.3 \times 200 \times 124}{106 \times 1000} g \text{B.} \frac{5.2 \times 124 \times 1000}{106 \times 200} g \text{C.} \frac{106 \times 200 \times 124}{5.3 \times 1000} g \text{D.} \frac{106 \times 124 \times 100}{5.3 \times 200} g$
23		15cm ³ of a dibasic acis was neutralised by 30cm ³ of a 0.4M potassium hydroxide solution. The morality of the acid is A. $\frac{2 \times 15}{0.4 \times 30}$ B. $\frac{0.4 \times 30}{2 \times 15}$ C. $\frac{15 \times 0.4}{30 \times 2}$ D. $\frac{2 \times 0.4 \times 30}{15}$
24		Aluminium reacts with copper II ions according to the following equation $3\text{Cu}^{2^+}(\text{aq}) + 2\text{Al (s)} \longrightarrow 3\text{Cu(s)} + 2\text{Al}^{3^+}(\text{aq})$ Which of the following will be the mass of copper formed when copper (II) ions reacted with 2.5g of aluminium? (Al = 27, Cu = 63.5)
	A.	$\frac{2.5 \times 2 \times 63.5}{27 \times 3} \text{B.} \frac{2.5 \times 3 \times 27}{63.5 \times 2} \text{C.} \frac{2.5 \times 2 \times 27}{63.5 \times 3} \text{D.} \frac{2.5 \times 3 \times 63.5}{27 \times 2}$
25		20cm^3 of an acid HX was neutralised by 25cm^3 of a 0.05M sodium carbonate. Which of the following is the morality of the acid? A. $\frac{25 \times 05}{20} \text{M}$ B. $\frac{2 \times 25 \times 0.05}{20} \text{M}$ C. $\frac{2 \times 20 \times 0.05}{25} \text{M}$ D. $\frac{25 \times 0.05}{2 \times 2} \text{M}$
26		Hydrochloric acid reacts with calcium hydrogen carbonate according to the following equation Ca(HCO ₃) ₂ (aq) + 2HCl(aq) CaCl ₂ (aq) + 2H ₂ O(l) + 2CO ₂ (g) 25cm ³ of a solution of calcium hydrogen carbonate required 8.0cm ³ of a .05M

		hydrochloric acid for complete neutralization. The concentration of the calcium hydrogen carbonate solution is
		(Ca = 40 ; O = 16 , C = 12)
		(80 x 0.05 x 162)
		$A\left(\frac{8.0 \times 0.05 \times 162}{2 \times 25}\right) g l^{-1}$ $B.\left(\frac{8.0 \times 0.05 \times 162}{25}\right) g l^{-1}$
		B. $\left(\frac{8.0 \times 0.05 \times 162}{25}\right) g l^{-1}$
		C. $\left(\frac{25 \times 0.05 \times 162}{2 \times 8}\right) g l^{-1}$
		D. $\left(\frac{25 \times 0.05 \times 162}{8}\right) g l^{-1}$
27		Lead (II) nitrate reacts with potassium iodide according to the following equation Pb(NO ₃) ₂ (aq) + 2KI (aq) PbI ₂ (s) + 2KNO ₃ (aq) The mass pf lead (II) iodide formed when 33.2g of potassium iodide is reacted with excess lead (II) nitrate is (K= 39, I= 127, Pb = 207)
	A.	4.61g B. 9.22g C. 46.1g D. 92.2g
28		6.48 g of calcium hydrogen carbonate, $Ca(HCO_3)_2$ was dissolved in water to make 500cm^3 of solution. Which of the following is the morality of the solution? (H = 1; C = 12, O = 16, Ca = 40)
		A. 0.04M B. 0.06M C. 0.08M D. 0.12M
29		Which one of the following solutions contains the same number of moles of sodium ions as 200cm ³ of 0.5M NaHSO ₄ solution? A. 100cm ³ of 2M Na ₂ CO ₃ B. 100cm ³ of 0.5M NaNO ₃ C. 250cm ³ of 0.8M NaHCO ₃ D. 250cm ³ 0.4M NaCl
30		10cm ³ of monobasic acid completely reacted with 20cm ³ of 0.05M sodium carbonate solution. The number of moles of the acid that reacted is A. $\left(\frac{20 \times 0.05 \times 2}{1000}\right)$ moles B. $\left(\frac{20 \times 0.05 \times 2}{1000}\right)$ moles C. $\left(\frac{20 \times 0.05}{2 \times 1000}\right)$ moles D. $\left(\frac{0.05 \times 2 \times 10}{20 \times 1000}\right)$ moles
31		Iron react with oxygen to form 0.8g of Iron (III) oxide is $[O = 16, Fe = 56]$ A. $\left(\frac{0.8 \times 2 \times 56}{160}\right) g$ B. $\left(\frac{0.8 \times 2 \times 56}{320}\right) g$ C. $\left(\frac{0.8 \times 2}{160 \times 56}\right) g$ D. $\left(\frac{0.8 \times 56}{320 \times 2}\right) g$

32		Nitric acid reacts with copper (II oxide according to the following equation $CuO(s) + 2HNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) + H_2O(1)$ 0.5g of an impure copper (II) oxide reacted completely with $50cm^3$ of a 0.1M nitric acid. The mass of copper (II) oxide in a sample is A. 0.20g B. 0.24g C. 0.30g D. 0.40g
33.		Magnesium burns in air according equation $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$ The mass of oxygen required to burn 5g of magnesium completely is $[O = 16; Mg = 24]$ A. $\frac{5 \times 16}{24} g$ B. $\frac{5 \times 16}{48} g$ C. $\frac{5 \times 32}{24} g$ D. $\frac{5 \times 32}{48} g$
34		5.73g of hydrated sodium carbonate, $Na_2CO_3.10H_2O$, was dissolved in water to make 500cm^3 of solution. The morality of solution is $(Na = 23, O = 16, c = 12, H = 1)$ A. $0.05M$ B. $0.02M$ C. $0.04M$ D. $0.1M$
35		Zinc carbonate decomposes according to the following equation when $ZnCO_3(s) \longrightarrow ZnO(s) + CO_2(g)$ The mass of zinc oxide formed when 2.5g of zinc carbonate is heat is $(Zn = 65; O = 16; C = 12)$ A. 0.41g B. 0.81g C. 1.62g D. 3.24g
36		25.0cm ³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm ³ of
	(0)	HCl. Calculate the concentration of the acid as
	(a) (b)	Molarity in g/dm ³
37	(0)	In attrition 30cm ³ of 0.4 M NaOH required 40cm ³ of phosphoric acid, H ₃ PO ₄
37	(a)	How many moles of NaOH are present in 30cm ³ of solution?
	(b)	Calculate the molarity of H ₃ PO ₄ acid.
38.		In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, 25 cm ³ of 0.2 m NaOH solution required 24.6 cm ³ of the acid. Calculate the molarity of the acid.
39		20cm ³ of sodium carbonate solution reacted completely with 25cm ³ of 0.8M hydrochloric acid according to the following equation Na ₂ CO ₃ (aq) + 2HCl (aq) → NaCl(aq) + CO ₂ (g) + H ₂ O(l) Calculate the concentration of the sodium carbonate in g/l.
40		A sample of 0.106 g of pure sodium carbonate was dissolved in water to make 100cm ³ of solution.
	(a)	Calculate the mass of sodium carbonate needed to dissolve in one litre of water.
	(b)	Calculate the molarity of solution

Answer

Ans	Answer			
		Working		
1	С	Mole of hydrochloric acid		
		1000cm ³ contains 0.02mole		
		$\Rightarrow 25 \text{ cm}^3 \text{ contains } \frac{0.02 \times 25}{1000} = 0.005 \text{ moles}$		
		Equation 1000		
		1		
		NaOH (aq) + HCl (aq) \longrightarrow NaCl(aq) + H ₂ O(l) Moles of NaOH		
		From equation 1 mole of acid reacts with 1 mole of NaOH		
		⇒ Mole of NaOH = Moles of HCl = 0.005		
		Volume of sodium hydroxide solution		
		0.1 mole is contained in 1000cm ³ of 0.1M sodium hydroxide solution		
		$\therefore 0.005 \text{ moles are in } \frac{0.005 \times 1000}{0.1} = 50 \text{ cm}^3$		
2	В	Mole of nitric acid in 200cm ³ of 2M nitric acid		
		1000cm ³ contain 2mole of nitric acid		
		$200 \text{cm}^3 \text{ contain } \frac{200 \times 2}{1000} = 0.4 \text{moles}$		
		Formula mass of nitric acid, $HNO_3 = 1 + 14 + 16 \text{ x} = 3 = 63$		
		1 mole of nitric acid is equivalent to 63g		
		$\Rightarrow 0.4 \text{moles} = 04 \times 63 \text{g} = 25.2 \text{g}$		
		∴ the mass of nitric acid required to form 200cm³ of 2M nitric acid = 25.2g		
3.	D	Formula mass of NaOH = $23 + 16 + 1 = 40$		
		Moles of sodium hydroxide = $\frac{40}{40}$ = 1mole		
		Morality of sodium hydroxide		
		500cm ³ contain 1mole		
		$\therefore 1000 \text{cm}^3 \text{ contains } \frac{1000 \times 1}{500} = 2M$		
	<u> </u>	∴ molarity of a solution that contain 40g of sodium hydroxide in 500cm ³ = 2M		
4	D	Mole of sodium carbonate		
		1000cm ³ contains 0.1mole		
		$\Rightarrow 20 \text{ cm}^3 \text{ contains } \frac{0.1 \times 20}{1000} = 0.002 \text{moles}$		
		Equation		
		Na_2CO_3 (aq) + 2HCl (aq) \longrightarrow 2NaCl(aq) + H ₂ O(l) + CO ₂ (g)		
		Moles of HCl		
		From equation 1 mole of Na ₂ CO ₃ reacts with 2 moles of HCl		
		\Rightarrow Mole of HCl = 2 x Moles of Na ₂ CO ₃ = 0.002 x 2 = 0.004 moles		
		Volume of HCl solution		
		0.25moles are contained in 1000cm ³ of .25M HCl solution		
		$\therefore 0.004 \text{ moles are in } \frac{0.004 \times 1000}{0.25} = 16 cm^3$		
		0.25		
5	D	0.2 moles of X weigh 18.25g		
		1mole weigh $\frac{18.25 \times 1}{0.2} = 91.25g$		
		$\therefore \text{ formula mass of } X = 91.25$		
	1	TOTAL MAN OF THE PROPERTY OF T		

6	В	Moles of sodium hydroxide 1000cm^3 contains 0.02mole ⇒ 20 cm^3 contains $\frac{0.02 \times 20}{1000}$ Equation $2 \text{NaOH (aq)} + \text{H}_2 \text{X (aq)} \longrightarrow \text{Na}_2 \text{X (aq)} + \text{H}_2 \text{O (1)}$ Moles of acid From equation 2 mole of NaOH reacts with 1 mole of acid ⇒ Mole of aid = $\frac{1}{2} \times \text{mole of NaOH} = \frac{1}{2} \times \frac{0.02 \times 20}{1000}$ Molarity of the acid $10 \text{ cm}^3 \text{ contain } \frac{1}{2} \times \frac{0.02 \times 20}{1000} \times \frac$
7	A	Formula mass of $CaCO_3 = 40 + 12 + 16 \times 3 = 100g$ Formula mass of $CaO = 40 + 16 = 56$ $\Rightarrow 100g$ of $CaCO_3$ produce $\frac{20 \times 56}{100}$ g of CaO $\therefore 20g$ of $CaCO_3$ produce $\frac{20 \times 56}{100}$ g of CaO
8	В	Formula mass of Na ₂ CO ₃ .10H ₂ O = 23 x 2 + 12 + 16 x 3 + 10(1 x 2 + 16) = 286g Moles Na ₂ CO ₃ .10H ₂ O in 50cm ³ of 0.1M solution 1000cm ³ contain 0.1 mole 50cm ³ contain $\frac{0.1 \times 50}{1000}$ moles Mass of Na ₂ CO ₃ .10H ₂ O equivalent to $\frac{0.1 \times 50}{1000}$ moles 1 mole of Na ₂ CO ₃ .10H ₂ O weigh 286g $\therefore \frac{0.1 \times 50}{1000}$ moles of Na ₂ CO ₃ .10H ₂ O weigh $\frac{0.1 \times 50}{1000} \times 286g$
9	С	Formula mass of NaOH = $23 + 16 + 1 = 40$ Moles of sodium hydroxide = $\frac{2}{40} = 0.05$ moles Molarity of sodium hydroxide 500cm^3 contain 0.05mole 1000cm^3 contain $\frac{0.05 \cdot 1000}{500} = 0.1$ moles \Rightarrow molarity of sodium hydroxide = 0.1M
10	С	Mole of sodium hydroxide 1000cm^3 contains 2 moles ⇒ 10 cm^3 contains $\frac{2 \times 10}{1000} = 0.02 \text{moles}$ Equation $2 \text{NaOH (aq)} + \text{H}_2 \text{SO4 (aq)} \longrightarrow \text{Na}_2 \text{SO}_4(\text{aq}) + 2 \text{H}_2 \text{O(1)}$ Moles of $\text{H}_2 \text{SO}_4$ From equation 2 moles of NaOH reacts with 1 mole of $\text{H}_2 \text{SO}_4$ ⇒ Mole of $\text{H}_2 \text{SO}_4 = \frac{1}{2} \times \text{Moles of NaOH} = \frac{0.02}{2} = 0.01 \text{mole}$ Volume of sulphuric acid solution $0.5 \text{ Moles are contained in } 1000 \text{cm}^3$ ∴ $0.01 \text{ moles are in } \frac{0.01 \times 1000}{0.5} = 20 \text{cm}^3$
11	С	Formula mass of NaOH = $23 + 16 + 1 = 40g$ Mass of sodium hydroxide in 11 of 2M solution = $40 \times 2 = 80g$

		$\therefore 0.51 \operatorname{contain} \frac{0.5 \times 80}{1} = 40g$
12	В	Mole of hydrochloric acid 1000cm^3 contains 0.1mole ⇒ 25 cm^3 contains $\frac{0.1 \times 25}{1000} = 0.0025 \text{moles}$ Equation NaOH (aq) + HCl (aq) → NaCl(aq) + H ₂ O(l) Moles of NaOH From equation 1 mole of acid reacts with 1 mole of NaOH ⇒ Mole of NaOH = Moles of HCl = 0.0025 Volume of sodium hydroxide solution 0.2 mole is contained in 1000cm^3 ∴ $0.0025 \text{ moles are in } \frac{0.0025 \times 1000}{0.2} = 12.5 \text{cm}^3$
13	В	Hint: Same number of moles of an element contain the same number of atoms $Mole = \frac{mass}{ralative \ atomic \ mas}$ $Mole of sulphur in 8g = \frac{8}{32} = 0.25 moles Moles calcium in 20g = \frac{20}{40} = 0.5 moles Moles calcium in 10g = \frac{10}{4} = 0.25 mole Therefore, 8g of sulphur contain the same number of atoms as 10g of calcium$
14	В	Formula mass of $H_2SO_4 = 1 \times 2 + 32 + 16 \times 4 = 98g$ Mass of H_2SO_4 in 1000cm^3 of 0.2M solution = $(98 \times 0.2)g$ $\therefore 5 \text{cm}^3$ contain $\frac{0.2 \times 98 \times 5}{1000} \text{g}$
15	С	Mole of sodium carbonate 1000cm^3 contains 0.05 mole ⇒ 25 cm^3 contains $\frac{0.05 \times 25}{1000} = 0.00125 \text{moles}$ Equation Na ₂ CO ₃ (aq) + 2HCl (aq) \longrightarrow 2NaCl(aq) + H ₂ O(l) + CO ₂ (g) Moles of HCl From equation 1 mole of Na ₂ CO ₃ reacts with 2 moles of HCl \Longrightarrow Mole of HCl = 2 x Moles of Na ₂ CO ₃ = (0.00125 x 2) moles Molarity 22.7cm ³ contain $0.00125 \times 2 \text{ mole}$ \therefore 1000cm ³ contain $\frac{0.00125 \times 2 \times 1000}{22.7}$ M
16	С	Mole of acid = $\frac{25 \times 0.25}{1000}$ = 0.00625 moles Moles sodium hydroxide = $\frac{25 \times 0.5}{1000}$ = 0.0125 moles Basicity of acid = $\frac{moles\ of\ sodium\ hydroxide}{moles\ of\ the\ acid}$ = $\frac{0.0125}{0.00625}$ = 2

17	D	Formula mass of $CaCO_3 = 40 + 12 + 16 \times 3 = 100g$
		Formula mass of $CO_2 = 12 + 16 \times 2 = 44g$
		100g of CaCO ₃ produce 44 g of CO ₂
		$20 \text{ g of CaCO}_3 \text{ produce } \frac{44 \times 20}{100} \text{ g of } CO_2$
18	D	(2 x 64) g of Cu produce 2(64 + 16) g of CuO
		\Rightarrow 0.64g of Cu produce $\frac{0.64 \times 2 \times 80}{2 \times 64} = \frac{0.64 \times 80}{64}$
19	В	Formula mass of $KI = 39 + 127 = 166$
		Formula mass $PbI_2 = 207 + 127 \times 2 = 461$
		166 x 2g of KI produce 461g of PbI ₂
		33.2g of KI produce $\frac{461 \times 33.2}{166 \times 2} = 46.1$ g of PbI ₂
20	В	Formula mass of $Na_2CO_3 = 23 \times 2 + 12 + 16 \times 3 = 106$
		1mole weighs 106g
		0.05mole weigh 0.05 x 106
21	D	∴ 0.05M sodium carbonate contains (0.05 x 106)g of Na ₂ CO ₃ per litre
21	D	Formula mass of copper oxide (CuO) = 64 + 16 = 80 80g of CuO form 63.5 g of Cu
		$\therefore 8.0 \text{g will form } \frac{8.0 \times 63.5}{80}$
22	_	Farmerla war of CocCO (A + 12 + 16 - 2 - 124
22	В	Formula mass of $CuCO_3 = 64 + 12 + 16 \times 3 = 124$
22	В	Formula mass of sodium carbonate $Na_2CO_3 = 106$
22	В	Formula mass of sodium carbonate $Na_2CO_3 = 106$
22	В	Formula mass of sodium carbonate $Na_2CO_3 = 106$ Mass of sodium carbonate in $200cm3 = \frac{5.3 \times 200}{1000}$ But 106 g of Na_2CO_3 produce 124 g of $CuCO_3$
22	В	Formula mass of sodium carbonate $Na_2CO_3 = 106$ Mass of sodium carbonate in $200cm3 = \frac{5.3 \times 200}{1000}$ But 106 g of Na_2CO_3 produce 124 g of $CuCO_3$
	В	Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$
23	В	Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide 1000cm ³ contain 0.4 moles
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide 1000cm ³ contain 0.4 moles 30cm ³ contain $\frac{0.4 \times 30}{1000}$ moles
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide 1000cm ³ contain 0.4 moles 30cm ³ contain $\frac{0.4 \times 30}{1000}$ moles Moles of the acid
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide 1000cm ³ contain 0.4 moles 30cm ³ contain $\frac{0.4 \times 30}{1000}$ moles Moles of the acid 2mole of KOH react with 1 mole of acid
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide 1000cm ³ contain 0.4 moles 30cm ³ contain $\frac{0.4 \times 30}{1000}$ moles Moles of the acid
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide $1000\text{cm}^3 \text{ contain } 0.4 \text{ moles}$ $30\text{cm}^3 \text{ contain } \frac{0.4 \times 30}{1000} \text{ moles}$ Moles of the acid $2\text{mole of KOH react with } 1 \text{ mole of acid}$ $\frac{0.4 \times 30}{1000} \text{ of KOH react with } \frac{0.4 \times 30}{1000} \times \frac{1}{2}$ Molarity of the acid
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide $1000 \text{cm}^3 \text{ contain } 0.4 \text{ moles}$ $30 \text{cm}^3 \text{ contain } \frac{0.4 \times 30}{1000} \text{ moles}$ Moles of the acid $2 \text{mole of KOH react with } 1 \text{ mole of acid}$ $\frac{0.4 \times 30}{1000} \text{ of KOH react with } \frac{0.4 \times 30}{1000} \times \frac{1}{2}$ Molarity of the acid $15 \text{ cm}^3 \text{ contain } \frac{0.4 \times 30}{1000} \times \frac{1}{2} \text{ moles}$
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide $1000 \text{cm}^3 \text{ contain } 0.4 \text{ moles}$ $30 \text{cm}^3 \text{ contain } \frac{0.4 \times 30}{1000} \text{ moles}$ Moles of the acid $2 \text{mole of KOH react with } 1 \text{ mole of acid}$ $\frac{0.4 \times 30}{1000} \text{ of KOH react with } \frac{0.4 \times 30}{1000} \times \frac{1}{2}$ Molarity of the acid $15 \text{ cm}^3 \text{ contain } \frac{0.4 \times 30}{1000} \times \frac{1}{2} \text{ moles}$
		Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide 1000cm^3 contain 0.4 moles 30cm^3 contain $\frac{0.4 \times 30}{1000}$ moles Moles of the acid $2 \text{mole of KOH react with 1 mole of acid}$ $\frac{0.4 \times 30}{1000}$ of KOH react with $\frac{0.4 \times 30}{1000} \times \frac{1}{2}$ Molarity of the acid 15 cm^3 contain $\frac{0.4 \times 30}{1000} \times \frac{1}{2}$ moles 1000cm^3 contain $\frac{0.4 \times 30}{1000} \times \frac{1}{2} \times \frac{1000}{15} = \frac{0.4 \times 30}{2 \times 15}$ (2×27) g of aluminium produce (3×63.5) g of copper
23	В	Formula mass of sodium carbonate Na ₂ CO ₃ = 106 Mass of sodium carbonate in 200cm3 = $\frac{5.3 \times 200}{1000}$ But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃ $\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$ Moles of potassium hydroxide 1000cm^3 contain 0.4 moles 30cm^3 contain $\frac{0.4 \times 30}{1000}$ moles Moles of the acid $2 \text{mole of KOH react with 1 mole of acid}$ $\frac{0.4 \times 30}{1000}$ of KOH react with $\frac{0.4 \times 30}{1000} \times \frac{1}{2}$ Molarity of the acid 15 cm^3 contain $\frac{0.4 \times 30}{1000} \times \frac{1}{2}$ moles 1000cm^3 contain $\frac{0.4 \times 30}{1000} \times \frac{1}{2} \times \frac{1000}{15} = \frac{0.4 \times 30}{2 \times 15}$

25	В	Moles of sodium carbonate
		1000cm ³ contain 0.05 moles
		$25\text{cm}^3 \text{ contain } \frac{0.05 \times 25}{1000} \text{ moles}$
		Moles of the acid
		1mole of Na ₂ CO ₃ react with 2 moles of acid
		$\frac{0.05 \times 25}{1000}$ of KOH react with $\frac{0.4 \times 30}{1000} \times 2$
		Molarity of the acid
		$20 \text{ cm}^3 \text{ contain } \frac{0.05 \times 25}{1000} \times 2 \text{ moles}$
		$1000 \text{cm}^3 \text{ contain } \frac{\frac{0.05 \times 25}{1000}}{\frac{1000}{20}} \times 2 \times \frac{\frac{1000}{20}}{20} = \frac{0.05 \times 25 \times 2}{20}$
26	A	Moles of hydrochloric acid
20	71	1000cm ³ contain 0.05 moles
		$8.0 \text{cm}^3 \text{ contain} \frac{0.05 \times 8.0}{1000} \text{ moles}$
		Moles of the Ca(HCO ₃) ₂
		2mole of HCl react with 1 mole of Ca(HCO ₃) ₂
		$\frac{0.05 \times 8.0}{1000}$ of KOH react with $\frac{0.05 \times 8.0}{1000} \times \frac{1}{2}$
		Molarity of the Ca(HCO ₃) ₂
		$25 \text{ cm}^3 \text{ contain } \frac{0.05 \times 8.0}{1000} \times \frac{1}{2} \text{ moles}$
		25 cm ³ contain $\frac{0.05 \times 8.0}{1000} \times \frac{1}{2}$ moles $1000 \text{cm}^3 \text{ contain } \frac{0.05 \times 8.0}{1000} \times \frac{1}{2} \times \frac{1000}{25} = \frac{0.05 \times 8.0}{2 \times 25} \text{M}$
		Formula mass of Ca(HCO ₃) ₂ = $40 + 2(1 + 12 + 16 \times 3) = 162$
		: concentration of Ca(HCO ₃) ₂ = $\frac{0.05 \times 8.0}{2 \times 25} \times 162 gl^{-1}$
27	С	12 15
21	C	Formula mass of $KI = 39 + 127 = 166g$ Formula mass of $PbI_2 = 207 + 127 \times 2 = 461g$
		(166 x 2) g of KI produce 46 1g of PbI ₂
		33.2g of KI will produce $\frac{33.2 \times 461}{332} = 46.1g$
20	<u> </u>	002
28	С	Formula mass of $Ca(HCO_3)_2 = 40 + 2(1 + 12 + 16 \times 3) = 162g$
		Mas of Ca(HCO ₃) ₂ in $1000 \text{cm}^3 = \frac{1000 \text{ x } 6.48}{500} = 12.96g$
		M_{\star} 1 \sim C_{\star} (IICO) concentration gl^{-1} 12.96 0.00 M_{\star}
		Molarity of Ca(HCO ₃) ₂ $\frac{concentration gl^{-1}}{formula mass} = \frac{12.96}{162} 0.08M$
29	D	Mole of NaHSO ₄ in 200cm ³ of $0.5M = \frac{0.5 \times 200}{1000} = 0.1M$
		Mole of NaCl in 250cm ³ of $0.4M = \frac{0.4 \times 250}{1000} = 0.1M$
30	В	Moles of sodium carbonate
		1000cm ³ contain 0.05 moles
		$20 \text{cm}^3 \text{ contain } \frac{0.05 \times 20}{1000} \text{ moles}$
		Moles of the acid
		1mole of Na ₂ CO ₃ react with 2 moles of acid
		$\frac{0.05 \times 20}{1000}$ of KOH react with $\frac{0.05 \times 20}{1000} \times 2$
		Molarity of the acid
		$10 \text{ cm}^3 \text{ contain } \frac{0.05 \times 25}{1000} \times 2 \text{ moles}$
		$1000 \text{cm}^3 \text{ contain } \frac{\frac{1000}{0.05 \times 20}}{1000} \times 2 \times \frac{1000}{10} = \frac{0.05 \times 20 \times 2}{10}$
	L	1 100 10 10

31	A	Formula of $Fe_2O_3 = 56 \times 2 + 16 \times 3 = 160$
		160g of Fe ₂ O ₃ require (56 x 2)g of iron
		$0.8g ext{ of } Fe_2O_3 ext{ require } \frac{56 ext{ } x ext{ } 2 ext{ } x ext{ } 0.8}{160}$
		160
32	A	Moles of nitric acid
		1000cm ³ contain 0.1moles
		$50 \text{cm}^3 \text{ contain } \frac{0.1 \times 50}{1000} = 0.005 \text{ moles}$
		Mole of copper oxide that reacted = $\frac{0.005}{2}$ = 0.0025 moles of CuO
		Formula mass of $Cuo = 63.5 + 16 = 79.5g$
		Mass of 0.0025 mole of CuO = $0.0025 \times 79.5 = 0.2g$
33	D	(2 x 24)g of Mg require (16 x 2)g of oxygen
		5g of Mg require $\frac{5 \times 32}{48}$
34	С	Formula mass of $Na_2CO_3.10H_2O = 2 \times 23 + 12 + 16 \times 3 + 10(2 + 16) = 286g$
		Mass of Na ₂ CO ₃ .10H ₂ O in 1000 cm ³ = $\frac{5.73 \times 1000}{500}$ = 11.46
		$Molarity = \frac{concentration gl^{-1}}{2} = \frac{11.46}{2}$
35	С	Molarity = $\frac{concentration gl^{-1}}{formula mass} = \frac{11.46}{286}$ Formula of ZnCO ₃ = 65 + 12 + 16 x 3 = 125
33		Formula mass of $ZnO = 65 + 16 = 81g$
		125g of ZnCO ₃ produce 81g of ZnO
		2.5g of ZnCO ₃ produce $\frac{2.5 \times 81}{1.25} = 1.62$
36	(a)	Moles of NaOH
	(4)	1000cm ³ contain 0.1 moles
		$25.0 \text{cm}^3 \text{ contain } \frac{0.1 \times 25.0}{1000} \text{ moles}$
		Moles of the HCl
		1 mole of NaOH react with 1 mole of HCl
		$\frac{0.1 \times 25.0}{1000}$ of NaOH react with $\frac{0.1 \times 25.0}{1000}$ mole of HCl
		Molarity of the HCl
		$20 \text{ cm}^3 \text{ contain } \frac{0.1 \times 25}{1000} \text{ moles}$
		1000
		$1000 \text{cm}^3 \text{ contain } \frac{0.1 \times 25}{1000} \times \frac{1000}{20} = \frac{0.1 \times 25.0}{20} = 0.125 \text{M}$
		$\frac{100000111}{1000}$ $\frac{10000}{20}$ $\frac{10000011}{20}$ $\frac{10000011}{20}$ $\frac{10000011}{20}$
	(b)	Formula mass of $HCl = 1 + 35.5 = 36.5$
		Concentration in al. 1
		Concentration in gl-1 1mole weigh = 36.5g
		$\therefore 0.125 \text{ moles of HCl weigh } 0.125 \times 36.5 = 4.5625$
		Therefore, concentration of HCl gl ⁻¹ = 4.5625
37	(a)	Moles of NaOH
		1000cm ³ contain 0.4 moles
		$30 \text{cm}^3 \text{ contain } \frac{0.4 \times 30}{1000} = 0.012 \text{ moles}$
	(b)	Reaction equation
		$3\text{NaOH(aq)} + \text{H}_3\text{PO}_4(\text{aq}) \longrightarrow \text{Na}_3\text{PO}_4(\text{aq}) + 3\text{H}_2\text{O}(1)$
		Moles of H ₃ PO ₄

	I	2 1 (N OH 1 1 CH DO
		3moles of NaOH 1 mole of H ₃ PO ₄
		0.012 moles of NaOH react with $\frac{0.012 \times 1}{3} = 0.004$ moles
		40cm ³ contain 0.004 moles
		$1000 \text{cm}^3 \text{ contain } \frac{0.004 \times 1000}{40} = 0.1M$
		40
38		Moles of NaOH
		1000cm ³ contain 0.2 moles
		$25 \text{cm}^3 \text{ contain } \frac{0.2 \times 25}{1000} = 0.005 \text{ moles}$
		Reaction equation
		$2NaOH(aq) + H2SO4(aq) \longrightarrow Na2SO4(aq) + 2H2O(1)$
		Moles of H ₂ SO ₄
		2moles of NaOH 1 mole of H ₂ SO ₄
		0.005 moles of NaOH react with $\frac{0.005 \times 1}{2} = 0.0025$ moles
		24.6cm ³ contain 0.0025 moles
		$1000 \text{cm}^3 \text{ contain } \frac{0.0025 \times 1000}{24.60} = 0.1M$
		24.60
39		Moles of HCl
		1000cm ³ contain 0.8 moles
		$25 \text{cm}^3 \text{ contain } \frac{0.8 \times 25}{1000} = 0.02 \text{ moles}$
		Reaction equation
		$2HCl(aq) + Na_2CO_3(aq) \longrightarrow 2NaCl(aq) + H_2O(1) + CO_2(g)$
		Moles of Na ₂ CO ₃
		2moles of HCl 1 mole of Na ₂ CO ₃
		0.02 moles of HCl react with $\frac{0.02 \times 1}{2} = 0.01$ moles
		20cm ³ contain 0.01 moles
		$1000 \text{cm}^3 \text{ contain } \frac{0.01 \times 1000}{20} = 0.5M$
		Formula mass of $Na_2CO_3 = 2 \times 23 + 12 + 16 \times 3 = 106$
		mole of Na ₂ CO ₃ weigh 106g
		0.5 moles weigh $106 \times 0.5 = 53$ g
		∴ the concentration of Na ₂ CO ₃ is 53gl ⁻¹
4.0		1100 3 1100
40	(a)	100cm ³ contain 0.106g
		$1000 \text{cm}^3 \text{ contain } \frac{0.106 \times 1000}{100} = 1.06g$
	(b)	Formula mass of $Na_2CO_3 = 23 \times 2 + 12 + 16 \times 3 = 106$
		Molarity = $\frac{1.06}{106} = 0.001M$
		106