Cambridge University Engineering Dept.

Third year

Module 3F2: Systems and Control

LECTURE NOTES 3: OBSERVABILITY & OBSERVERS

Contents

Contents

1	San	npled Data Control System	3
2	Solv	ing Linear Equations	5
3	Observability		9
	3.1	Effect of Initial Condition on Output	12
	3.2	Change of State Coordinates when System is not Observable	14
		3.2.1 A subspace interpretation	16
4	Obs	ervers	19
	4.1	Differentiating signals is a bad idea	19
	4.2	Observer structure	20
	4.3	Tracking disturbances, ignoring noise	25
	4.4	Application to sensor fusion	26
	4.5	Application to sensor bias estimation	28

1 Sampled Data Control System

The sampled data system satisfies:

$$\underline{\dot{x}}(t) = A\underline{x}(t) + B\underline{u}(t)$$
, with $\underline{u}(t) = \underline{u}(kT)$, for $kT \le t < (k+1)T$.

Apply result from Handout 1, section 4.5 (Convolution integral):

$$\underline{x}((k+1)T) = \underbrace{e^{AT}}_{\Phi} \underline{x}(kT) + \int_{kT}^{(k+1)T} e^{A((k+1)T-\tau)} B d\tau \underline{u}(kT)$$

$$= \Phi \underline{x}(kT) + \Gamma \underline{u}(kT)$$
where
$$\Gamma = \int_{0}^{T} e^{A\tau'} d\tau' B = A^{-1} \left(e^{AT} - I \right) B, \text{ if } \det(A) \neq 0.$$

$$\underline{y}(kT) = C\underline{x}(kT) + D\underline{u}(kT)$$

This gives the standard state-space model in discrete time. Entirely analogous results can be obtained for the discrete time case as in the continuous time case:

- Solution of vector difference equations,
- Discrete-time convolution,
- z-transform for frequency response caculations etc,
- Notions of controllability and observability coming next.

2 Solving Linear Equations

For convenience we will repeat some results and definitions from linear algebra.

Definition 2.1 Let A be an $m \times n$ matrix then,

- (a) the set of all $\underline{x} \neq \underline{0}$ such that $\underline{A}\underline{x} = \underline{0}$ is called the **Null Space** of A (null(A)). This is sometimes referred to as the **Kernel** of A.
- (b) the set of all \underline{y} such that $\underline{y} = A\underline{x}$ for some \underline{x} is called the **Range Space** of A (or the range of A, range(A)); This is sometimes referred to as the **Column Space** or **Image** of A.
- (c) A is said to have full row rank if range(A) = \mathbb{R}^m (i.e. $\underline{z}^T A \neq \underline{0}$ for all $\underline{z} \neq \underline{0}$);
- (d) A is said to have full column rank if $null(A) = \emptyset$ (i.e. $A\underline{x} \neq \underline{0}$ for all $\underline{x} \neq \underline{0}$.)

Theorem 2.2 For any matrix A the row rank and the column rank are equal, and denoted rank(A).

Given an $m \times n$ matrix A and an $m \times 1$ vector \underline{b} , consider the equation:

$$Ax = b$$
,

in the unknown \underline{x} in \mathbb{R}^n . Two natural questions are:

- (a) Does there exist a solution, \underline{x} ?
- (b) If so, is it unique?

Fact 2.3 *For the case m* = n:

- (a) If $det(A) \neq 0$ then for any \underline{b} there exists a solution, \underline{x} , such that $A\underline{x} = \underline{b}$, and this solution is unique (Indeed it is given by $\underline{x} = A^{-1}\underline{b}$).
- (b) If det(A) = 0 then there exists $\underline{x} \neq \underline{0}$ such that $A\underline{x} = \underline{0}$.

Fact 2.4 For any $m \times n$ matrix, M,

$$M^T M \underline{x} = \underline{0} \iff M \underline{x} = \underline{0}.$$

Fact 2.5 For the case $m \le n$,

(a) If
$$det(AA^T) \neq 0$$
 then $\underline{x} = A^T (AA^T)^{-1} \underline{b}$, solves $A\underline{x} = \underline{b}$ for any \underline{b} .

(b) If
$$\det(AA^T) = 0$$
 then there exists $a \underline{b} \neq \underline{0}$ such that $\underline{b} \perp A\underline{x}$ (i.e. $\underline{b}^T A\underline{x} = \underline{0}$) for all \underline{x} .

For the case $m \geq n$,

(c) If
$$det(A^TA) \neq 0$$
 then there may not be a solution to $A\underline{x} = \underline{b}$, but if there is then it is unique.

(d) If
$$det(A^T A) = 0$$
 then there exists $\underline{x} \neq \underline{0}$ such that $A\underline{x} = \underline{0}$.

For hand calculations it is generally easiest to use the following observations:

- (a) If you can find a set of n rows of A such that the determinant of the $n \times n$ submatrix given by these rows is nonzero, then A has full column rank.
- (b) If you can find a nonzero vector, \underline{x} , such that $A\underline{x} = \underline{0}$ then clearly A does not have full column rank.
- (c) If you can find a set of m columns of A such that the determinant of the $m \times m$ submatrix given by these columns is nonzero, then A has full row rank.
- (d) If you can find a nonzero vector, \underline{z} , such that $\underline{z}^T A = \underline{0}$ then clearly A does not have full row rank.

3 Observability

A system:

$$\frac{\dot{x}}{y} = A\underline{x} + B\underline{u}$$
$$y = C\underline{x}$$

is called **observable** if we can deduce the state, $\underline{x}(t)$, from measurements of $\underline{u}(\tau)$ and $\underline{y}(\tau)$ over some time interval (t_1, t_2) with $t_1 < t < t_2$.

Now consider differentiating y(t) to give

$$\underbrace{\begin{bmatrix} \underline{y}(t) \\ \underline{\dot{y}}(t) \\ \underline{\ddot{y}}(t) \\ \vdots \\ \underline{y}^{(n-1)}(t) \end{bmatrix}}_{\text{known}} = \underbrace{\begin{bmatrix} C \\ CA \\ CA^{2} \\ \vdots \\ CA^{n-1} \end{bmatrix}}_{\mathbf{Z}} \underbrace{\underline{x}(t)}_{?} + \underbrace{\begin{bmatrix} \underline{0} \\ CB\underline{u}(t) \\ CAB\underline{u}(t) + CB\underline{\dot{u}}(t) \\ \vdots \\ CA^{n-2}B\underline{u} + \dots + CB\underline{u}^{(n-2)} \end{bmatrix}}_{\text{known}}$$

We can solve the above equation uniquely for $\underline{x}(t)$ if and only if rank Q = n. Hence, defining the **observability matrix**

$$Q = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

we obtain the Observability test:

The system is observable if and only if rank Q = n

If a system is *not* observable, there will exist a vector $\underline{x}_o \neq 0$ for which $Q\underline{x}_o = 0$. This is called an **unobservable state**, for the following reason.

$$Q\underline{x}_o = \underline{0} \implies CA^k\underline{x}_o = \underline{0} \text{ for } k = 0, \dots n-1$$

$$\Rightarrow CA^n\underline{x}_o = C\left(-\alpha_1A^{n-1}\dots - \alpha_{n-1}A - \alpha_nI\right)\underline{x}_o \text{ by Cayley-Hamilton Theorem}$$

$$= \underline{0}$$

$$\Rightarrow CA^k\underline{x}_o = \underline{0} \text{ for all } k \ge 0 \text{ by repeated use of Cayley-Hamilton theorem.}$$

$$\Rightarrow Ce^{At}\underline{x}_o = \underline{0} \text{ for all } t \text{ by the power series expansion of } e^{At}$$

Conversely, $Ce^{At}\underline{x}_o = 0$ for all t implies $\frac{d^n}{dt^n}Ce^{At}\underline{x}_o = CA^ne^{At}\underline{x}_o = \underline{0}$ and so $Q\underline{x}_o = \underline{0}$. Hence $Ce^{At}\underline{x}_0 = \underline{0}$ for all $t \Longleftrightarrow Q\underline{x}_0 = \underline{0}$.

Recall that

$$\underline{\underline{y}(t)} = \underbrace{Ce^{At}\underline{x}(0)}_{\text{initial condition response}} + \underbrace{D\underline{u}(t) + \int_{0}^{t} Ce^{A(t-\tau)}B\underline{u}(\tau) d\tau}_{\text{input response}}$$

and so if two initial states $\underline{x}_1 \neq \underline{x}_2$ give the same outputs then $\underline{0} = \underline{y}_2 - \underline{y}_1 = Ce^{At}(\underline{x}_2 - \underline{x}_1)$. In this case, $\underline{x}_0 = \underline{x}_1 - \underline{x}_2$ is an unobservable state.

3.1 Effect of Initial Condition on Output

Now consider the difference between two initial condition responses:

$$\underline{y}_o(t) = Ce^{At}\underline{x}_o$$
 and $\underline{y}(t) = Ce^{At}(\underline{x}_o + \underline{d})$ so $\underline{y}(t) - \underline{y}_o(t) = Ce^{At}\underline{d}$

Can $(\underline{y}(t) - \underline{y}_o(t))$ be small in spite of \underline{d} being large? Measure the size of $(\underline{y}(t) - \underline{y}_o(t))$ over the time interval $0 < t < t_1$ by

$$\int_0^{t_1} \left\| \underline{y}(t) - \underline{y}_o(t) \right\|^2 dt = \int_0^{t_1} \left(\underline{y}(t) - \underline{y}_o(t) \right)^T \left(\underline{y}(t) - \underline{y}_o(t) \right) dt$$

$$= \int_0^{t_1} \underline{d}^T e^{A^T t} C^T C e^{At} \underline{d} dt = \underline{d}^T W_o(t_1) \underline{d} \text{ where } W_o(t_1) = \int_0^{t_1} e^{A^T t} C^T C e^{At} dt$$

Clearly this difference must be ≥ 0 so $W_o(t_1)$ is a positive semi-definite matrix. The system will be observable if $\underline{d}^T W_o(t_1) \underline{d} > 0$ for all $\underline{d} \neq \underline{0}$, i.e. if $W_o(t_1)$ is a positive definite matrix. Also,

$$\underline{d}$$
 in Null Space of $W_o(t_1)$ \Leftrightarrow $W_o(t_1)\underline{d} = \underline{0} \Leftrightarrow \underline{d}^T W_o(t_1)\underline{d} = \underline{0} \Leftrightarrow Ce^{At}\underline{d} = \underline{0}$ for all $t < t_1$ \Leftrightarrow \underline{d} is an unobservable state.

$$\Rightarrow$$
 Null Space of $W_o(t_1)$ = Null Space of Q .

Example

$$\frac{\dot{x}}{e} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \underline{x}, \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix} \underline{x} \implies Ce^{At} = \begin{bmatrix} e^{-t} & e^{-2t} \end{bmatrix}$$

$$W_{o}(t_{1}) = \int_{0}^{t_{1}} \begin{bmatrix} e^{-2t} & e^{-3t} \\ e^{-3t} & e^{-4t} \end{bmatrix} dt = \begin{bmatrix} \frac{1}{2} (1 - e^{-2t_{1}}) & \frac{1}{3} (1 - e^{-3t_{1}}) \\ \frac{1}{3} (1 - e^{-3t_{1}}) & \frac{1}{4} (1 - e^{-4t_{1}}) \end{bmatrix} \xrightarrow{\text{as } t_{1} \to \infty} \begin{bmatrix} \frac{1}{2} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{4} \end{bmatrix}$$

3.2 Change of State Coordinates when System is not Observable

If (A, C) is not observable then we can make a change of state coordinates to isolate the unobservable states as follows.

If the rank Q = r < n then there exists a nonsingular $n \times n$ matrix T and a $pn \times r$ matrix \tilde{Q}_1 of rank r, such that (Recall QR factorization)

$$Q = \begin{bmatrix} \tilde{Q}_1 & 0 \end{bmatrix} T$$

Now change the state coordinates to $\underline{\tilde{x}} = T\underline{x}$:

$$\underline{\dot{\tilde{x}}} = \underbrace{TAT^{-1}}_{\tilde{A}} \underbrace{\tilde{x}} + \underbrace{TB}_{\tilde{B}} \underline{u}, \quad \underline{y} = \underbrace{CT^{-1}}_{\tilde{C}} \underbrace{\tilde{x}}.$$

Theorem 3.1 In these coordinates if we partition the state, $\underline{\tilde{x}} = \begin{bmatrix} \underline{\tilde{x}}_1 \\ \underline{\tilde{x}}_2 \end{bmatrix}$ with $\underline{\tilde{x}}_1$ of dimension r, and compatibly partition:

$$\tilde{A} = \begin{bmatrix} \tilde{A}_{11} & \tilde{A}_{12} \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix}; \quad \tilde{B} = \begin{bmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{bmatrix}; \quad \tilde{C} = \begin{bmatrix} \tilde{C}_1 & \tilde{C}_2 \end{bmatrix}$$

then

$$\tilde{C}_2 = 0$$
, $\tilde{A}_{12} = 0$, and $(\tilde{A}_{11}, \tilde{C}_1)$ is observable

Proof: Firstly $\tilde{C}\tilde{A}^k = CT^{-1}TA^kT^{-1} = CA^kT^{-1}$ and so the observability matrix in the transformed coordinates is given by

$$\tilde{Q} = \begin{bmatrix} \tilde{C} \\ \tilde{C}\tilde{A} \\ \vdots \\ \tilde{C}\tilde{A}^{n-1} \end{bmatrix} = \begin{bmatrix} CT^{-1} \\ CAT^{-1} \\ \vdots \\ CA^{n-1}T^{-1} \end{bmatrix} = QT^{-1} = \begin{bmatrix} \tilde{Q}_1 & 0 \end{bmatrix}$$

Hence

$$\tilde{Q} \begin{bmatrix} 0 \\ I_{n-r} \end{bmatrix} = \begin{bmatrix} \tilde{Q}_1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ I_{n-r} \end{bmatrix} = 0$$

From which it follows that

$$\tilde{C}\tilde{A}^k \begin{bmatrix} 0 \\ I_{n-r} \end{bmatrix} = 0 \text{ for all } k.$$

In particular, $\tilde{C}_2 = 0$. Furthermore

$$\tilde{Q}\tilde{A}\begin{bmatrix}0\\I_{n-r}\end{bmatrix} = \begin{bmatrix}\tilde{C}\tilde{A}\\\tilde{C}\tilde{A}^2\\\vdots\\\tilde{C}\tilde{A}^n\end{bmatrix}\begin{bmatrix}0\\I_{n-r}\end{bmatrix} = 0$$

But

$$\tilde{Q}\tilde{A}\begin{bmatrix}0\\I_{n-r}\end{bmatrix} = \begin{bmatrix}\tilde{Q}_1 & 0\end{bmatrix}\begin{bmatrix}\tilde{A}_{11} & \tilde{A}_{12}\\\tilde{A}_{21} & \tilde{A}_{22}\end{bmatrix}\begin{bmatrix}0\\I_{n-r}\end{bmatrix} = \tilde{Q}_1\tilde{A}_{12}$$

which implies that $\tilde{A}_{12} = 0$ since \tilde{Q}_1 is full column rank.

Hence in these state coordinates we have,

$$\underline{\dot{\tilde{x}}}_1 = \tilde{A}_{11}\underline{\tilde{x}}_1 + \tilde{B}_1\underline{u}, \ \underline{y} = \tilde{C}_1\underline{\tilde{x}}_1$$

and the input/output response (i.e. the transfer function) depends only on $\underline{\tilde{x}}_1$ and the states $\underline{\tilde{x}}_2$ are all unobservable.

3.2.1 A subspace interpretation

As before, we start by factorising Q as $Q = \begin{bmatrix} \tilde{Q}_1 & 0 \end{bmatrix} T$.

Now put $T^{-1} = [X \ Y]$.

Y in $\mathbb{R}^{n\times r}$ is a basis for $\operatorname{null}(Q)$, which we shall call \bar{O} , the unobservable subspace. (i.e. whenever $a=Yb,\,Qa=0$)

and X complements Y

(i.e. range[XY] = \mathbb{R}^n and, whenever $a_1 = Yb_1$ and $a_2 = Xb_2$, then $a_1^Ta_2 = 0$.)

Note that $A\bar{O} \subseteq \bar{O}$ and $\bar{O} \subseteq \text{null}(C)$.

Since $AT^{-1} = T^{-1}\hat{A}$, we have

$$A[X Y] = [X Y] \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{22} \end{bmatrix}$$

or

$$AY = [X \ Y] \begin{bmatrix} \hat{A}_{12} \\ \hat{A}_{22} \end{bmatrix} = X\hat{A}_{12} + Y\hat{A}_{22}$$

and so $\hat{A}_{12} = 0$.

Also $CT^{-1} = \hat{C}$, i.e.

$$C[X Y] = [\hat{C}_1 \ 0]$$

Observers

Differentiating signals is a bad idea

Typically the state is not available for measurement, but we can estimate $\underline{x}(t)$ from \underline{y} and \underline{u}

In the section on observability we saw how to exactly deduce $\underline{x}(t)$ from

$$y, \dot{y}, ..., y^{(n-1)}, u, \dot{u}, ... u^{(n-2)}$$

but differentiating signals has bad noise amplification problems:

 $y(t) = \sin \omega t + \epsilon \sin \omega_n t$ S/N ratio = $1/\epsilon$ $\dot{y}(t) = \omega \cos \omega t + \epsilon \omega_n \cos \omega_n t$ S/N ratio = $(\omega/\epsilon \omega_n)$ $\ddot{y}(t) = -\omega^2 \sin \omega t - \epsilon \omega_n^2 \sin \omega_n t$ S/N ratio = $\frac{1}{\epsilon} \left(\frac{\omega}{\omega_n}\right)^2$

4.2 **Observer structure**

Instead we will use a state observer (Luenberger Observer) which contains a dynamic model of the system and whose state, $\underline{\hat{x}}(t)$, approaches $\underline{x}(t)$ as $t \to \infty$.

$$\begin{cases} \frac{\dot{\hat{x}}}{\hat{x}} = A\hat{x} + B\underline{u} + L(\underline{y} - \hat{y}) \\ \frac{\hat{y}}{\hat{y}} = C\hat{x} \end{cases}$$

Consider the error $\underline{e}(t) = \underline{x}(t) - \hat{\underline{x}}(t)$

$$\underline{\dot{e}} = \underline{\dot{x}} - \dot{\hat{x}} = (A\underline{x} + B\underline{u}) - (A\underline{\hat{x}} + B\underline{u} + L(\underline{y} - \underline{\hat{y}}))$$

$$= A(\underline{x} - \underline{\hat{x}}) - LC(\underline{x} - \underline{\hat{x}}) = (A - LC)\underline{e}$$

$$\underline{\dot{e}} = (A - LC)\underline{e}$$

We want $e^{(A-LC)t} \to 0$ quickly as t increases.

This is achieved if the eigenvalues of (A - LC) are large and negative, for example.

Can we assign the eigenvalues of (A - LC) by choice of L?

Suppose (A, C) is **not** observable then in section 3.2 we found a change of coordinates, $\underline{\tilde{x}} = T\underline{x}$ such that,

$$\begin{bmatrix} \frac{\dot{x}}{\dot{x}_1} \\ \frac{\dot{x}}{\dot{x}_2} \end{bmatrix} = \begin{bmatrix} \tilde{A}_{11} & 0 \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix} \begin{bmatrix} \frac{\tilde{x}_1}{\dot{x}_2} \\ \frac{\tilde{x}_2}{\dot{x}_2} \end{bmatrix} + \begin{bmatrix} \tilde{B}_1 \\ \tilde{B}_2 \end{bmatrix} \underline{u}, \quad \underline{y} = \begin{bmatrix} \tilde{C}_1 & 0 \end{bmatrix} \underline{\tilde{x}} + D\underline{u}$$

Hence

$$T(A-LC)T^{-1} = \tilde{A} - \tilde{L}\tilde{C} = \begin{bmatrix} \tilde{A}_{11} & 0 \\ \tilde{A}_{21} & \tilde{A}_{22} \end{bmatrix} - \begin{bmatrix} \tilde{L}_1 \\ \tilde{L}_2 \end{bmatrix} \begin{bmatrix} \tilde{C}_1 & 0 \end{bmatrix} = \begin{bmatrix} (\tilde{A}_{11} - \tilde{L}_1\tilde{C}_1) & 0 \\ (\tilde{A}_{21} - \tilde{L}_2\tilde{C}_1) & \tilde{A}_{22} \end{bmatrix},$$

and the eigenvalues of the observer,

$$\lambda_i(A - LC) = \lambda_i(\tilde{A} - \tilde{L}\tilde{C}) = \lambda_i(\tilde{A}_{11} - \tilde{L}_1\tilde{C}_1) \cup \lambda_i(\tilde{A}_{22}),$$

and $\lambda_i(\tilde{A}_{22})$ are not changed by \tilde{L} .

However it can be shown that

We can arbitrarily assign the eigenvalues of (A - LC) by choice of L if and only if the system is observable.

- We can thus make the error, $\underline{e}(t) \rightarrow 0$ arbitrarily quickly.
- But high gains might imply very large transient errors and noisy estimates.

4.3 Tracking disturbances, ignoring noise

Imagine tracking aircraft by radar (1-D). Aircraft position z is affected by random turbulence. Take $\underline{x} = [z, \dot{z}]^T$:

$$\underline{\dot{x}}(t) = A\underline{x}(t) + Bd(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} d(t)$$

The radar measurement is corrupted by noise:

$$y(t) = Cx(t) + n(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + n(t)$$

Observer:
$$\hat{\underline{x}}(t) = A\hat{\underline{x}}(t) + L[y(t) - C\hat{\underline{x}}(t)]$$

NB: d(t) not known, so not used.

d large, n small: Believe the measurements. Use large L. React quickly. d small, n large: Don't trust measurements, believe model. Use small L.

— Smooth the measurements.

4.4 Application to sensor fusion

Satellite, 1 axis of rotation: $J\ddot{\theta} = u + d$ (u = control torque, d = disturbance torque).

Two noisy sensors: Star sensor: $y_1 = \theta + n_\theta$, Rate gyro: $y_2 = \dot{\theta} + n_\omega$

Let $x = [\theta, \dot{\theta}]^T$. State-space model:

$$\frac{\dot{x}}{\dot{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \underline{x} + \begin{bmatrix} 0 & 0 \\ 1/J & 1/J \end{bmatrix} \begin{bmatrix} u \\ d \end{bmatrix}$$

$$\underline{y} = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} n_{\theta} \\ n_{\omega} \end{bmatrix} = I\underline{x} + \begin{bmatrix} n_{\theta} \\ n_{\omega} \end{bmatrix}$$

Observable? Yes. $(C = I, \text{ so rank } C = 2, \text{ so rank} \begin{bmatrix} C \\ CA \end{bmatrix} = 2.)$

Observer:

$$\frac{\hat{\underline{x}}}{\hat{\underline{x}}} = A\underline{\hat{x}} + B \begin{bmatrix} u \\ 0 \end{bmatrix} + L(\underline{y} - C\underline{\hat{x}}) \qquad (d \text{ not known})$$

$$= (A - LC)\underline{\hat{x}} + \begin{bmatrix} 0 \\ 1/J \end{bmatrix} u + L\underline{y} \qquad \text{but } C = I \text{ so:}$$

$$= \begin{bmatrix} -\ell_{11} & 1 - \ell_{12} \\ -\ell_{21} & -\ell_{22} \end{bmatrix} \underline{\hat{x}} + \begin{bmatrix} 0 \\ 1/J \end{bmatrix} u + \begin{bmatrix} \ell_{11} & \ell_{12} \\ \ell_{21} & \ell_{22} \end{bmatrix} \underline{y}$$

Place both eigenvalues at -10 (say): Using $\operatorname{trace}(A-LC) = \sum_i \lambda_i$ and $\det(A-LC) = \prod_i \lambda_i$: $-\ell_{11} - \ell_{22} = -20$ and $\ell_{11}\ell_{22} + \ell_{21}(1-\ell_{12}) = 100$. This leaves some design freedom.

 $n_{\theta} \ll n_{\omega}$: Make $\ell_{11} \gg \ell_{12}$ and $\ell_{21} \gg \ell_{22}$.

Optimal trade-off: Kalman Filter -see later.

 $n_{\theta} \gg n_{\omega}$: Make $\ell_{11} \ll \ell_{12}$ and $\ell_{21} \ll \ell_{22}$.

4.5 Application to sensor bias estimation

Satellite, as before: $J\ddot{\theta} = u$

Sensors: Star tracker measures angular position: $y_1 = \theta$

Rate gyro measures angular velocity with bias: $y_2 = \dot{\theta} + b_{\omega}$.

Augment state vector: $\underline{x} = [\theta, \dot{\theta}, b_{\omega}]^T$, and assume bias is constant: $\dot{b}_{\omega} = 0$.

State-space model:

$$\frac{\dot{x}}{\dot{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \underline{x} + \begin{bmatrix} 0 \\ 1/J \\ 0 \end{bmatrix} u$$

$$\underline{y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \underline{x}$$

Is the state observable?

First 3 rows are linearly independent (Or: All three columns are linearly independent).

So rank = 3. Hence: **Observable**. So can use observer to estimate \underline{x} :

$$\underline{\hat{x}} = A\underline{\hat{x}} + Bu + L(y - C\underline{\hat{x}})$$

A-LC stable $\Rightarrow \hat{x}_3 \rightarrow b_\omega$ as $t \rightarrow \infty$. Rate of convergence depends on eigenvalues of A-LC.