DAA Theory | End-sem Exam

Your email will be recorded when you submit this form.

Not u19cs012@coed.svnit.ac.in? Switch account

DAA Theory | End-sem Exam

What is the best-case running time of the following algorithm? Array A of n integers is an input to the algorithm.

```
for j = 2 to A.length

key = A[j]

// Insert A[j] into the sorted sequence A[1..j-1].

i = j - 1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i - 1

A[i+1] = key
```

- (n)
- O(n log n)
- () O(log n)
- O(n^2)

NP-complete problems are the hardest problems in NP.

Can't Say

True

False
Insufficient Information

Clear selection

Consider the tree shown in the figure here. It _____ represent a prefix code.

- O does not
- does
- cannot be predicted whether it does or it does not

The recurrence relation of a merge sort is ______.

$$T(n) = T\left(\frac{n}{2}\right) + C$$

$$T(n) = T\left(\frac{n}{2}\right) + O(n)$$

Option 1

$$T(n) = 2T\left(\frac{n}{2}\right) + C$$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

Option 3

Clear selection

Solve: $T(n) = 2T(n/2) + \sqrt{3}$

- O Θ(√n logn)
- \bigcirc $\Theta(\sqrt{n})$
- **Θ**(n)
- \bigcirc $\Theta(\sqrt{n} \log \sqrt{n})$

Let c>3/2, which of the following statements is TRUE for large values of n?

- **A)** $0^{\left(n^{\frac{3}{2}}\right)} < 0(n) < 0(n^{c}) < 0(c^{n})$
- **B)** $0^{\left(n^{\frac{3}{2}}\right)} < 0(n) < 0(c^n) < 0(n^c)$ **C)** $0(n) < 0^{\left(n^{\frac{3}{2}}\right)} < 0(n^c) < 0(c^n)$
- **D)** $O(n) < O(n^{\frac{3}{2}}) < O(c^n) < O(n^c)$

Clear selection

The minimum number of scalar multiplications required to calculate a matrix-chain product of dimensions (70, 120, 90, 30, 60, 100, 50, 90, 10) is

- 3,30,000
- 3,92,000
- 3,81,000
- 4,55,000

The following functions are arranged as per their growth from slowest growing function to the fastest growing function. Which of the following is incorrect?	
n, n * log n, n^(1.1), n^2	
n, n^(1.1), n * log n, n^2	
O log n, n * log n, n^2, 2^n	
1, n^2, (3/2)^n , 2^n	
Clear selection	
What is the worst-case running time of Max-Heapify algorithm?	
O(log n)	
O(n)	
O(1)	
O(n log n)	
Clear selection	
If T(n) = 5 * n^2, then T(n) =	
O(n^2)	
O(n^2 * log n)	
O(n^3)	
All of the above	
Clear selection	

Consider the problem of scheduling the lectures in a classroom. Given that a lecture j starts at sj and finishes at fj, and the the goal is to find the minimum number of classrooms to schedule all lectures, so that no two occur at the same time in the same room.

task	Stant- time Sj	finish- time fi	time orequired
A	0	2	2
В	3	7	4
С	4	7	3
D	9	11	2
E	7	10	3
F	1	5	4
G	6	8	2

- 0 7
- 3
- O 4
- \bigcirc 5

If $T(n) = n^2 + 5 * n + 7$, then $T(n) = _____.$

- 0(1)
- O(n^2)
- O(n)
- O(n * log n)

Clear selection

Find the possible vector cover in the below mentioned graph.

- (b,c,d,e,f,g)
- (e,f)
- (c,g)
- (a, e, d, g)

What is the time complexity for below recurrence relation?

 $T(n) = T(\sqrt{n}) + c$

- O(log log n)
- O(n^2)
- O(log n)
- O(n)

Clear selection

Given a figure, which of the following relations is correct?

- $\bigcirc O(g(n)) = f(n)$
- \bigcirc g(n) = O(f(n))
- $\bigcirc O(f(n)) = g(n)$

One of the spanning tree of the graph shown in the figure is $__$, whereas its one of the MST is $__$

- **G**1, G2
- G3, G1
- G3, G2
- **G**1, G3

Given the following recurrence relation of an algorithm, what is the running time of the algorithm?

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

- O(n * log n)
- O(n)
- 0(1)
- O(log n)

Clear selection

If f(n) = log n and g(n) = n, then _____.

- The function f(n) grows faster than g(n) when n approaches infinity.
- The function f(n) grows slower than g(n) when n approaches infinity.
- The function f(n) and g(n) grow at the same rate when n approaches infinity.
- None of the above

Clear selection

The best-case running time of binary search algorithm is ______.

- O(n log n)
- O(log n)
- O(n)
- **O**(1)

Which of the following complexity class is not solvable in polynomial time but verifiable in polynomial time?

- P Class
- NP Class
- NP Complete
- All of the above

Clear selection

The recurrence relation of a binary search is ______.

$$T(n) = T\left(\frac{n}{2}\right) + C$$

$$T(n) = T\left(\frac{n}{2}\right) + O(n)$$

Option 1

Option 2

$$T(n) = 2T\left(\frac{n}{2}\right) + C$$

 $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$

Option 3

Option 4

You are given a rod of length 5 and the prices of each length are as follows:

length	price
1	2
2	5
3	6
4	9
5	9

Calculate the maximum value that you can get after cutting the rod and selling the pieces?

- **1**3
- 12
- **1**0
- O 11

Clear selection

Let T(n) be a function defined by the recurrence. T(n) = $4T(n/4) + \sqrt{n}$ for n>=4 and T(1) = 1. Which of the following statement is TRUE?

- $T(n) = \Theta(\log n)$
- $T(n) = \Theta(n)$
- $T(n) = \Theta(\sqrt{n})$
- $T(n) = \Theta(n \log n)$

In the worst-case, the number of swaps required to sort n elements using selection sort is ______.

O(log n)
O(n log n)
O(n)
O(n)
Clear selection

Fill up the empty space in the following code:

```
MergeSort(A, p, r):
    if
        return
    q = (p+r)/2
    mergeSort(A, p, q)
    mergeSort(A, q+1, r)
    merge(A, p, q, r)
```

p<r</p>

p==r

p>r

p!=r

Which of the following algorithms follows divide and conquer strategy?

- Insertion sort
- Selection sort
- Merge sort
- Heap sort

Clear selection

Which of the following statements is correct?

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

- Function f grows faster than function g as input n approaches infinity.
- Function g grows faster than function g as input n approaches infinity.
- Function f and g grows at the same rate as input n approaches infinity.
- None of the above

Let an array A = {11, 9, 17, 19, 22, 26, 6, 14}. Which of the following options represents the partially sorted array after the first four passes of the insertion sort?
(6, 9, 11, 14, 17, 19, 22, 26)
(9, 11, 17, 19, 22, 26, 6, 14)
(9, 11, 19, 17, 22, 26, 6, 14)
None of the above
Clear selection
Comment on following statements:
S1: Any two real numbers can be compared.
S2: All functions are asymptotically comparable.
$S3: For \ any \ two \ functions \ f(n) \ and \ g(n), \ it \ is \ possible \ that \ neither \ f(n) = O(g(n)) \ nor \ f(n) = \Omega(g(n)).$
(A). S1 and S2 is true and S3 is false
(B). S1, S2, and S3 all are false
(C). S1, S2, and S3 all are true
(D). S1 and S3 true and S2 is false
O A
ОВ
○ c
D
Clear selection

State True or False	
(1). $(logn)^{1/2} = O(loglogn)$	
(2). $2^{2n} = O(2^n)$	
(A). TRUE, TRUE	
(B). TRUE, FALSE	
(C). FALSE, TRUE	
(B) FALSE, FALSE	
O A	
B	
○ c	
O D	
	Clear selection

The best-case running time of linear search algorithm is	·
O (1)	
O(n log n)	
O(n)	
O(log n)	
	Clear selection

Consider the selection sort algorithm for sorting n numbers. The maximum number of swaps possible are _____. n^2 (n-1) Clear selection Consider the tree shown in the figure here. Given that it encodes the character string as shown below, the characters encoded are _____. Encoding -000100111010011 ABDDDB ABCDDC ABDDDC ABDEBC Clear selection

If we will be able solve satisfiability problem in Polynomial time then travelling salesperson problem can also be solved in polynomial time
Can't Say
→ False
Insufficient Information
True
Clear selection
Which data structure is used in dijkstra's shortest path algorithm on weighed graph to implement it in linear time?
○ Stack
O B-tree
Queue
Неар
Clear selection
If f(n) = 2n + 5 and g(n) = 3n - 2, then
\bigcap The function f(n) grows faster than g(n) when n approaches infinity.
\bigcirc The function f(n) grows slower than g(n) when n approaches infinity.
The function f(n) and g(n) grow at the same rate when n approches infinity.
None of the above
Clear selection

To sort the following list in ascending order using insertion sort, how many times elements have to be shifted from their positions? {40, 14, 70, 57, 38, 27}

10
7
9
8

Clear selection

The worst-case running time of binary search algorithm is ______.

O(log n)
O(n log n)
O(n)
O(n)
Clear selection

Which of the following statements is correct?

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Function f grows faster than function g as input n approaches infinity.

Function g grows faster than function f as input n approaches infinity.

Function f and g grows at the same rate as input n approaches infinity.

None of the above

The worst-ca	ase ru	nning	ı time	of lin	ear se	earch	algor	ithm	is			_•
O(n^2)												
O(n log n))											
O (n)												
O(log n)												
										С	lear se	lection
Consider a ty A2,,A12 nee shown, in the that can be o	ed to u e figui	use th re her	ne san re. The	ne res en,	source	e. The is t	ir stai he ma	rt and aximu	d finish ım nuı	n times mber c	s are a of activ	s ⁄ities
Activity	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}
Start T Finish T	6	3 5	7	8	6 9	8 9	7	7	9	10 14	5	7 10
2 3 • 4 • 5												
										С	lear se	lection

After try, we can find the existence of an element containing 1000 elements using binary search.	t in a sorted array
O 100	
31.6227	
10	
O 1000	
	Clear selection
Suppose T(n) = $n\sqrt{n}$. Consider the following statements. a) T(n) O(nlogn)	is O(n^3) b) T(n) is
	is O(n^3) b) T(n) is
O(nlogn)	is O(n^3) b) T(n) is
O(nlogn) Both a) and b) corect	is O(n^3) b) T(n) is
O(nlogn) Both a) and b) corect Neither a) nor b) correct	is O(n^3) b) T(n) is

Let T(m) and S(m) are running time of an algorithm with input size 'm' where T(m) is worst case and S(m) is average case running time respectively. What is correct based on this?

- (A). $S(m) = \Omega (T(m))$
- (B). $S(m) = \Theta(T(m))$
- (C). S(m) = O(T(m))
- (D). S(m) = o(T(m))
- () A
- () (C

Clear selection

What is the worst-case running time of the following algorithm? Array A of n integers is an input to the algorithm.

for j = 2 to A.length key = A[j]// Insert A[j] into the sorted sequence A[1..j-1]. i = j-1while i > 0 and A[i] > key A[i+1] = A[i] i = i-1A[i+1] = key

- O(log n)
- O(n)
- O(n^2)
- O(n log n)

Consider the following two sequences:

$$A = < Q, R, S, R, P, Q, R >$$
, and $B = < R, P, S, Q, R, Q >$

Find the length of longest common subsequence of A and B.

- O 5
- O 2
- 3

Clear selection

Back

Submit

Never submit passwords through Google Forms.

This form was created inside of Sardar Vallabhbhai National Institute of Technology, Surat. Report Abuse

Google Forms