Exercise 8.1. What vector in \mathbb{R}^3 has homogeneous coordinates (10, 20, 30, 5)?

Answer. We have [10:20:30:5] = [2:4:6:1] which represents the point $(2,4,6) \in \mathbb{R}^3$.

*

Exercise 8.2. Show that a rotation through γ can be represented as a composition of two shear-and-sclae transformations:

 $T_1 = \begin{pmatrix} 1 & 0 \\ \sin \gamma & \cos \gamma \end{pmatrix} \; ; \; \begin{pmatrix} \sec \gamma & -\tan \gamma \\ 0 & 1 \end{pmatrix}.$

In what order the transformations should be taken?

Answer. Since we want $\cos \gamma$ in the (1,1) position the correct order is as below. Multiplying out we have

$$T_2 T_1 = \begin{pmatrix} \sec \gamma & -\tan \gamma \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin \gamma & \cos \gamma \end{pmatrix} = \begin{pmatrix} \frac{1-\sin^2 \gamma}{\cos \gamma} & -\frac{\sin \gamma \cos \gamma}{\cos \gamma} \\ \sin \gamma & \cos \gamma \end{pmatrix} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix}.$$

*

Exercise 8.3. Multiplication of a 2-vector by an arbitrary 2×2 matrix usually requires four multiplications. Suppose a 2×1000 matrix D contains the coordinates of 1000 points in \mathbb{R}^2 . How many multiplications are required to transform these points using two arbitrary 2×2 matrices A and B. Compare two possibilities: A(BD) and (AB)D.

Answer. The question refers to the fact that in carrying out the calculation

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by & cx + dy \end{pmatrix}$$

we have performed the four multiplications ax, by, cx, dy (we have also performed two addition operations). The number of such operations are a fundamental measure of algorithmic efficiency, which is why we care.

Now, when we multiply a 2×2 matrix $M_{2\times 2}$ by a 2×1000 matrix $M_{2\times 1000}$ we would need to perform four multiplications for each column of $M_{2\times 1000}$ for a total of 4000 multiplication. Since the result is again an 2×1000 matrix, we would need 8000 multiplications for A(BD).

In contrast, we require 8 multiplications for (AB) and since the result is again a 2×2 matrix, an additional 4000 multiplications for (AB)D, for a total of 4008 multiplications.

In summary, while the resulting matrix is the same A(BD) = (AB)D, the efficiency of computation is significantly different.

*

Exercise 8.4. Write 4×4 matrix performing perspective projection to xy plane with center $(d_1, d_2, d_3)^T$.

Answer. As the texts says, we first translate by the fixed vector $(-d_1, -d_2, d_3)^T$. This is represented by a linear transformation in \mathbb{R}^4 , as in the text. Then we apply the perspective projection onto the xy plane, also represented by a linear transformation in \mathbb{R}^4 , as in the text. Finally, we translate by the fixed vector $(d_1, d_2, d_3)^T$.

$$\begin{pmatrix} 1 & 0 & 0 & d_1 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d_3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -d_1 \\ 0 & 1 & 0 & -d_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -d_1/d_3 & 0 \\ 0 & 1 & -d_2/d_3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d_3 & 1 \end{pmatrix}.$$

*

Exercise 8.5. A transformation T in \mathbb{R}^3 is a rotation about the line y = x + 3 in the xy-plane through and angle γ . Write a 4×4 matrix corresponding to this transformation.

Answer. We first translate the line so it goes through the origin (this is the reason we need to work in \mathbb{R}^4 , we want this translation to be a linear transformation). We then rotation the line in the xy-plane so it lies on the y-axis. We perform our rotation by an angle γ , and finally we reverse our transformations.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ -\sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \gamma & 0 & -\sin \gamma & 0 \\ 0 & 1 & 0 & 0 \\ \sin \gamma & 0 & \cos \gamma & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$