Resumo de aula 1

1 Números Racionais

Os números racionais são os números da forma $\frac{a}{b}$, sendo a e b inteiros e $b \neq o$, o conjunto dos números racionais é indicado por \mathbb{Q} , assim:

$$\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \},\$$

onde \mathbb{Z} indica o conjunto dos números inteiros:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}.$$

Indicamos, ainda, por \mathbb{N} o conjunto dos números naturais :

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}.$$

Observamos que todo número natural é também número inteiro, e todo inteiro é também número racional. Por exemplo: $-3 \in \mathbb{Z}$ e $-3 = \frac{-3}{1} \in \mathbb{Q}$.

2 Números Irracionais

Exemplo 2.1. Existe um número positivo a tal que $a^2=2$.(Pense em um triangulo retângulo cujo hipotenusa é a e dois catetos são 1. Pelo Teorema de pitágoras: $a^2=1^2+1^2$.) Este número positivo a é representado pelo símbolo $\sqrt{2}$. $\sqrt{2}=1,41421356237...$ é uma expansão decimal infinita e não periódica, que não é núemero racional, pois não tem forma $\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$. $\sqrt{2}$ é um núemero irracional.

Exemplo 2.2. $\pi=3,1415926535...$ é uma expansão decimal infinita e não periódica, que não tem a forma $\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ é um núemero irracional.

Exemplo 2.3. O número Euler e=2,71828... é uma expansão decimal infinita e não periódica, que não tem a forma $\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ é um núemero irracional.

Obserbação: Qualquer expansão decimal finita
(por exemplo: $\frac{3}{8}=0,375$) ou periódica (por exemplo: $\frac{7}{22}=0,318181818....$) é núemero racional.

3 Números Reais

O conjunto de números reais é indicado por \mathbb{R} e é o conjunto de todos os números racionais e os irracionais.

Exemplo 3.1. $\sqrt{3} \in \mathbb{R}$ e $\sqrt{-5} = \sqrt{5} \cdot \sqrt{-1} = \sqrt{5} \cdot i = \sqrt{5}i$ não é número real e o número complexo.

4 Propriedades de potenciação

Potência com expoente natural

A Potência é definida como

$$a^n = a \cdot a \cdot \cdot \cdot a$$

em que a repete - se n vezes, onde $n \in \mathbb{N}$, um natural e $a \in \mathbb{R}$, um real.

Potência com expoente racional

Agora, definimos

$$a^r = a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

onde a > 0 um real e $r = \frac{m}{n}, n > 0$, um racional.

Exemplo 4.1. $2^{\frac{1}{3}} = \sqrt[3]{2}$

Exemplo 4.2. $5^{-\frac{2}{3}} = \sqrt[3]{5^{-2}}$ (raiz de ordem 3 de 5^{-2})

Propriedades de potenciação:

1. Expoente zero

$$a^0 = 1 (a \neq 0, a \in \mathbb{R})$$

2. Expoente unitário

$$a^1 = a(a \in \mathbb{R})$$

Sejam a>0 e b>0 dois reais quaisquer e r,s dois racionais quaisquer. Seguem as seguintes propriedades:

3. Produto de potências de mesma base

$$a^r \cdot a^s = a^{r+s}$$

4. Divisão de potências de mesma base

$$\frac{a^r}{a^s} = a^{r-s}$$

5. Potência de Potência

$$(a^r)^s = a^{r \cdot s}$$

6. Potência cuja base é uma divisão ou um produto

$$(ab)^r = a^r \cdot b^r$$

$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

7. Expoente negativo

$$a^{-r} = \frac{1}{a^r}$$

Exemplo 4.3. $2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16$

$$(-3)^2 = (-3) \cdot (-3) = 9$$

$$5^0 = 1$$

$$36^{\frac{1}{2}} = \sqrt[2]{36} = \sqrt{36} = \sqrt{6^2} = 6$$

$$8^{-\frac{2}{3}} = \frac{1}{8^{\frac{2}{3}}} = \frac{1}{\sqrt[3]{8^2}} = \frac{1}{\sqrt[3]{(2^3)^2}} = \frac{1}{\sqrt[3]{(2^2)^3}} = \frac{1}{2^2} = \frac{1}{4}$$