Métodos de primer orden

Axel Sirota

Departamento de Matemática

Panorama

- Introduction
- 2 Delayed systems
- 3 Periodic solutions, existence and...
- 4 ...nonexistence: 0 is a global attractor
- 6 References

Motivación

The whole truth about Nicholson

1 $p \leqslant d \Longrightarrow$ no positive equilibrium points. Furthermore, 0 is a global attractor of the solutions with $\varphi > 0$.

The whole truth about Nicholson

- $p \leqslant d \Longrightarrow$ no positive equilibrium points. Furthermore, 0 is a global attractor of the solutions with $\varphi > 0$.
- ② $p > d \Longrightarrow$ unique equilibrium point, which is locally asymptotically stable:
 - ▶ for all τ when $p < de^2$,
 - for $\tau < \tau^*(p)$ when $p \geqslant de^2$.

Moreover if $\varphi > 0$ then

$$\liminf_{t\to +\infty} x(t) \geqslant \min\{\ln\left(\frac{p}{d}\right), \mathrm{e}^{-\tau d}\}.$$

The whole truth about Nicholson

- **1** $p \le d \Longrightarrow$ no positive equilibrium points. Furthermore, 0 is a global attractor of the solutions with $\varphi > 0$.
- ② $p > d \Longrightarrow$ unique equilibrium point, which is locally asymptotically stable:
 - for all τ when $p < de^2$,
 - for $\tau < \tau^*(p)$ when $p \geqslant de^2$.

Moreover if $\varphi > 0$ then

$$\liminf_{t\to+\infty} x(t) \geqslant \min\{\ln\left(\frac{p}{d}\right), e^{-\tau d}\}.$$

9 $p, d \in C_T \Longrightarrow$ positive T-periodic solutions if p(t) > d(t) for all t and no T-periodic solutions if $p(t) \le d(t)$ for all t (furthermore, 0 is a global attractor).

Generalisation: Nicholson system

$$\begin{cases} x_1'(t) = -d_1 x_1(t) + b_1 x_2(t) + p_1 x_1(t-\tau) e^{-x_1(t-\tau)} \\ x_2'(t) = -d_2 x_2(t) + b_2 x_1(t) + p_2 x_2(t-\tau) e^{-x_2(t-\tau)} \end{cases}$$
(1)

- **1** $p_i + b_i \leqslant d_i \Longrightarrow 0$ is a global attractor of positive solutions.
- 2 Uniform persistence if $p_i + b_i > d_i$.
- **3** T-periodic solutions $b_i(t) < d_i(t) < p_i(t) + d_i(t)$ for all t.

Persistence definitions

Let $X \neq \emptyset$ and $\rho: X \to \mathbb{R}^+$. A semiflow $\Phi: J \times X \to X$ is called

ullet weakly ho-persistent, if

$$\limsup_{t\to +\infty} \rho(\Phi(t,x)) > 0 \qquad \forall \, x\in X, \rho(x) > 0.$$

• strongly ρ -persistent, if

$$\liminf_{t\to +\infty} \rho(\Phi(t,x)) > 0 \qquad \forall \, x\in X, \rho(x) > 0.$$

• uniformly weakly (strongly) ρ -persistent, if there exists some $\varepsilon>0$ such that

$$\limsup_{t\to +\infty} \rho(\Phi(t,x)) > \varepsilon \qquad \forall \, x\in X, \, \rho(x) > 0 \qquad \text{(resp. liminf)}.$$

In our case $\rho(x) = |x|$ (persistence of some species).

Clearly,

$$(\mathsf{USP}) \Longrightarrow (\mathsf{UWP}) \Longrightarrow (\mathsf{WP}) \text{ and } (\mathsf{SP}) \Longrightarrow (\mathsf{WP}).$$

Results for *X* locally compact, $X \setminus \{0\}$ positively invariant:

$$(\mathsf{UWP}) \Longrightarrow (\mathsf{USP}), \ \mathsf{but} \ (\mathsf{WP}) \not\Longrightarrow (\mathsf{SP}) \ \mathsf{and} \ (\mathsf{SP}) \not\Longrightarrow (\mathsf{USP}).$$

Extra conditions \implies all definitions are equivalent (see [2]).

Clearly,

$$(\mathsf{USP}) \Longrightarrow (\mathsf{UWP}) \Longrightarrow (\mathsf{WP}) \text{ and } (\mathsf{SP}) \Longrightarrow (\mathsf{WP}).$$

Results for X locally compact, $X \setminus \{0\}$ positively invariant:

$$(UWP) \Longrightarrow (USP)$$
, but $(WP) \not\Longrightarrow (SP)$ and $(SP) \not\Longrightarrow (USP)$.

Extra conditions \Longrightarrow all definitions are equivalent (see [2]).

Fonda [3]:

(USP)
$$\iff \exists \ U \ni 0 \text{ open and } V : U \to [0, +\infty) \text{ continuous such that:}$$

- $\forall x \neq 0 \exists t_x > 0 \text{ such that } V(\Phi(t_x, x)) > V(x).$

Panorama

- 2 Delayed systems
- ...nonexistence: 0 is a global attractor

8 / 28

Our system reads

$$x'(t) = f(t, x(t), x(t-\tau))$$
 (2)

with $f:[0,+\infty)\times[0,+\infty)^{2N}\to\mathbb{R}^N$ continuous.

Initial condition:

$$x(t) = \varphi(t) \qquad -\tau \leqslant t \leqslant 0 \tag{3}$$

$$\varphi \in X := \text{positive cone of } C([-\tau, 0], \mathbb{R}^N),$$

which is **not** locally compact.

Basic assumption:

(H1) If $x_j = 0$ for some j and $y \neq 0$ then $f_j(t, x, y) > 0$ for all t > 0.

Our system reads

$$x'(t) = f(t, x(t), x(t-\tau))$$
 (2)

with $f:[0,+\infty)\times[0,+\infty)^{2N}\to\mathbb{R}^N$ continuous.

Initial condition:

$$x(t) = \varphi(t) \qquad -\tau \leqslant t \leqslant 0 \tag{3}$$

$$\varphi \in X := \text{positive cone of } C([-\tau, 0], \mathbb{R}^N),$$

which is **not** locally compact.

Basic assumption:

(H1) If $x_j = 0$ for some j and $y \neq 0$ then $f_j(t, x, y) > 0$ for all t > 0.

(H1) $\Longrightarrow X^{\circ}$ pos. invariant, i.e.: $\varphi > 0 \Longrightarrow x > 0$, but **(H1)** \oiint (WP).

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Consider $V: (0, +\infty)^N \to (0, +\infty)$ smooth such that $V(x) \to 0$ as $x \to 0$ in $(0, +\infty)^N$.

Obvious choice: $V(x) = |x|^2$. Nicholson system $V = \min x_i$ (nonsmooth).

Consider $V: (0, +\infty)^N \to (0, +\infty)$ smooth such that $V(x) \to 0$ as $x \to 0$ in $(0, +\infty)^N$.

Obvious choice: $V(x) = |x|^2$. Nicholson system $V = \min x_i$ (nonsmooth).

Idea: find conditions that guarantee $\dot{V}>0$ for x(t) close to 0, where $\dot{V}(t)=v'(t):=(V\circ x)'(t)$.

Consider $V: (0, +\infty)^N \to (0, +\infty)$ smooth such that $V(x) \to 0$ as $x \to 0$ in $(0, +\infty)^N$.

Obvious choice: $V(x) = |x|^2$. Nicholson system $V = \min x_i$ (nonsmooth).

Idea: find conditions that guarantee $\dot{V}>0$ for x(t) close to 0, where $\dot{V}(t)=v'(t):=(V\circ x)'(t)$.

Easy case:

(H2) There exist $t_0, r > 0$ such that

$$\langle \nabla V(x), f(t, x, y) \rangle > 0$$
 for $t > t_0, V(x), V(y) < r$.

$$(H1) + (H2) \Longrightarrow (WP)$$

(H2) \Longrightarrow (Fonda) when $\tau = 0$. However, **(H2)** is not satisfied e.g. in (??).

Axel Sirota (Facultad de Ciencias Exactas y l'Métodos de primer orden: Análisis de converg

More realistic:

(H2') There exist $t_0, r > 0$ such that

$$\langle \nabla V(x), f(t, x, x) \rangle > 0$$
 for $t > t_0$ and $V(x) < r$.

(H1) + **(H2')** do not suffice because $x(t) - x(t - \tau)$ may be large.

Proposition: (SP) holds if we also assume monotonicity:

(H3)

$$\langle \nabla V(x), f(t, x, y) \rangle \geqslant \langle \nabla V(x), f(t, x, x) \rangle$$

whenever $V(x) \leqslant V(y)$.

Axel Sirota (Facultad de Ciencias Exactas y I<mark>Métodos de primer orden: Análisis de converg</mark>

Proof. Suppose $s_n \to +\infty$, $x(s_n) \to 0 \Longrightarrow v(s_n) \to 0$.

Set t_n such that $v(t_n) = \min_{t \leq s_n} v(t)$. For $n \gg 0$,

$$v'(t_n) \leqslant 0$$
 and $v(t_n - \tau) \geqslant v(t_n)$.

Thus,

$$0 \geqslant v'(t_n) = \langle \nabla V(x(t_n)), f(t_n, x(t_n), x(t_n - \tau)) \rangle$$

$$\geqslant \langle \nabla V(x(t_n)), f(t_n, x(t_n), x(t_n)) \rangle > 0,$$

a contradiction.

Axel Sirota (Facultad de Ciencias Exactas y l'Métodos de primer orden: Análisis de converg

Proof. Suppose $s_n \to +\infty$, $x(s_n) \to 0 \Longrightarrow v(s_n) \to 0$.

Set t_n such that $v(t_n) = \min_{t \leq s_n} v(t)$. For $n \gg 0$,

$$v'(t_n) \leqslant 0$$
 and $v(t_n - \tau) \geqslant v(t_n)$.

Thus,

$$0 \geqslant v'(t_n) = \langle \nabla V(x(t_n)), f(t_n, x(t_n), x(t_n - \tau)) \rangle$$

$$\geqslant \langle \nabla V(x(t_n)), f(t_n, x(t_n), x(t_n)) \rangle > 0,$$

a contradiction.

Nicholson does not satisfy (H3), then: why is it (USP)?

Axel Sirota (Facultad de Ciencias Exactas y l<mark>Métodos de primer orden: Análisis de converg</mark>

Local monotonicity

(H3') There exists $\eta > 0$ such that

$$\langle \nabla V(x), f(t, x, y) \rangle \geqslant \langle \nabla V(x), f(t, x, x) \rangle$$

whenever $V(x) \leqslant V(y) \leqslant \eta$.

Nicholson: $f(x,y) = -dx + pye^{-y} \Longrightarrow$ **(H3')** with $\eta = 1$ and V(x) = x.

Local monotonicity

(H3') There exists $\eta > 0$ such that

$$\langle \nabla V(x), f(t, x, y) \rangle \geqslant \langle \nabla V(x), f(t, x, x) \rangle$$

whenever $V(x) \leqslant V(y) \leqslant \eta$.

Nicholson:
$$f(x,y) = -dx + pye^{-y} \Longrightarrow$$
 (H3') with $\eta = 1$ and $V(x) = x$.

(H3') is not enough! Reason: $x(t) - x(t - \tau)$ may be large.

Axel Sirota (Facultad de Ciencias Exactas y l'Métodos de primer orden: Análisis de converg

A standard assumption in population models

(H4)
$$\langle \nabla V(x), f(t, x, y) \rangle \ge -kV(x)$$
 for some constant k .

Thus,

$$v'(t) = \langle \nabla V(x(t)), f(t, x(t), x(t-\tau)) \rangle \geqslant -kv(t),$$

whence

$$v(t-\tau) \leqslant e^{k\tau}v(t)$$
 for all $t \geqslant \tau$.

Consequence:

$$(H1) + (H2') + (H3') + (H4) \Longrightarrow (SP).$$

Axel Sirota (Facultad de Ciencias Exactas y l'Métodos de primer orden: Análisis de converg

But... why is Nicholson (USP)?

Assume **(H1)** + **(H2')** + **(H3')** + **(H4)** and $i = \liminf_{t \to +\infty} v(t) \ll 1$. Then i > 0 and there are 3 cases:

• $v(t) \ge i$ for all $t \gg 0$. Then choose as before $t_n \to +\infty$ such that $v(t_n) \to i$, $v(t_n - \tau) \ge v(t_n)$ and $v'(t_n) \le 0$ and a contradiction yields.

But... why is Nicholson (USP)?

Assume **(H1)** + **(H2')** + **(H3')** + **(H4)** and $i = \liminf_{t \to +\infty} v(t) \ll 1$. Then i > 0 and there are 3 cases:

- $v(t) \ge i$ for all $t \gg 0$. Then choose as before $t_n \to +\infty$ such that $v(t_n) \to i$, $v(t_n \tau) \ge v(t_n)$ and $v'(t_n) \le 0$ and a contradiction yields.
- ② v(t) oscillates around i. Then we may choose a sequence $t_n \to +\infty$ such that $v(t_n) \to i^-$ and $v'(t_n) \leqslant 0$. However, it might happen that $v(t_n \tau) < v(t_n)$ for n large, then **(H3')** + **(H4)** are not of any help.

But... why is Nicholson (USP)?

Assume **(H1)** + **(H2')** + **(H3')** + **(H4)** and $i = \liminf_{t \to +\infty} v(t) \ll 1$. Then i > 0 and there are 3 cases:

- ① $v(t) \ge i$ for all $t \gg 0$. Then choose as before $t_n \to +\infty$ such that $v(t_n) \to i$, $v(t_n \tau) \ge v(t_n)$ and $v'(t_n) \le 0$ and a contradiction yields.
- ② v(t) oscillates around i. Then we may choose a sequence $t_n \to +\infty$ such that $v(t_n) \to i^-$ and $v'(t_n) \leqslant 0$. However, it might happen that $v(t_n \tau) < v(t_n)$ for n large, then **(H3')** + **(H4)** are not of any help.
- $v(t) \rightarrow i^-$ as $t \rightarrow +\infty$: same situation.

Wouldn't it be great if

$$\langle \nabla V(x), f(t, x, y) \rangle \geqslant c(i) > 0$$

whenever V(x), V(y) are close to i?

For example, if $v(t) \rightarrow i^-$, then

$$v'(t) = \langle \nabla V(x(t)), f(t, x(t), x(t-\tau)) \rangle \geqslant c$$

for t large, a contradiction.

Axel Sirota (Facultad de Ciencias Exactas y l'Métodos de primer orden: Análisis de converg

Wouldn't it be great if

$$\langle \nabla V(x), f(t, x, y) \rangle \geqslant c(i) > 0$$

whenever V(x), V(y) are close to i?

For example, if $v(t) \rightarrow i^-$, then

$$v'(t) = \langle \nabla V(x(t)), f(t, x(t), x(t-\tau)) \rangle \geqslant c$$

for t large, a contradiction.

OK for (??) but too ambitious when N > 1: the condition fails for example if $V(x) = |x|^2$ and f(x, y) = y.

And yet it works

Let

$$\theta_i := \limsup_{t \to +\infty, V(x), V(y) \to i^-} |f(t, x, y)|$$

and observe that if $v(t) o i^-$ then

$$|x(t) - x(t - \tau)| \le \tau |x'(\xi)|$$
 $\xi \in [t - \tau, t]$

and hence:

$$\limsup_{t\to+\infty}|x(t)-x(t-\tau)|\leqslant \tau\theta_i.$$

Axel Sirota (Facultad de Ciencias Exactas y l'Métodos de primer orden: Análisis de converg

At last we get (USP)

(H2"')
$$\exists r > 0$$
 such that, $\forall i \in (0, r)$ and some $C_i > \tau \theta_i$

$$\liminf_{t\to +\infty, V(x), V(y)\to i^-, |y-x|\leqslant C_i} \langle x, f(t,x,y)\rangle > 0.$$

Teorema

$$(H1) + (H2") + (H3') + (H4) \Longrightarrow (USP).$$

More precisely, all solutions of (2)-(3) with $\varphi_j(t) > 0$ for all j and $t \in [-\tau, 0]$ satisfy

$$\liminf_{t\to+\infty}V(x(t))\geqslant \min\{r,e^{-k\tau}\eta\}.$$

Panorama

- Introduction
- Delayed systems
- 3 Periodic solutions, existence and...
- 4 ...nonexistence: 0 is a global attractor
- References

Periodic solutions

Consider a continuous function $a:[0,+\infty) o (0,+\infty)$ and define

$$K(t,x,y) := \langle \nabla V(x), f(t,x,y) \rangle + a(t)V(x),$$

$$\phi(t,r) := \sup_{V(x),V(y) \leqslant r} \frac{K(t,x,y)}{a(t)}.$$

Autonomous system: **(H1)** + **(H2')** and $\phi(R) < R$ for some R, then there exists a positive equilibrium point in the region

$$V_{\varepsilon}^R := \{ \varepsilon < V(x) < R \}.$$

Indeed, the field f(x,x) points outwards over $\partial V_{\varepsilon}^{R}$.

Axel Sirota (Facultad de Ciencias Exactas y l'Métodos de primer orden: Análisis de converg

Faces $V_{\varepsilon}^R \cap \{x_i = 0\}$: use **(H1)**.

Bottom cap $\{V = \varepsilon\}$: the outer normal is $-\nabla V$ and **(H2')** guarantees $\langle \nabla V(x), f(x,x) \rangle > 0$.

Top cap $\{V = R\}$: the outer normal is ∇V and the inequality $\phi(R) < R$ implies $\langle \nabla V(x), f(x, x) \rangle < 0$.

Faces $V_{\varepsilon}^R \cap \{x_i = 0\}$: use **(H1)**.

Bottom cap $\{V = \varepsilon\}$: the outer normal is $-\nabla V$ and **(H2')** guarantees $\langle \nabla V(x), f(x,x) \rangle > 0$.

Top cap $\{V = R\}$: the outer normal is ∇V and the inequality $\phi(R) < R$ implies $\langle \nabla V(x), f(x,x) \rangle < 0$.

Important condition: $\chi(V_{\varepsilon}^R) \neq 0$ (e.g. $\overline{V_{\varepsilon}^R}$ is a retract of $C \simeq \overline{B}$).

Closed orbits for the non-autonomous system

Let $T\geqslant au$ and consider the assumption:

(H5) There exists
$$R > 0$$
 such that $\phi(t, R) < R$ for $0 \leqslant t \leqslant T$.

Teorema

$$(H1) + (H2') + (H3') + (H4) + (H5) \Longrightarrow Positive T-periodic solutions.$$

Closed orbits for the non-autonomous system

Let $T\geqslant au$ and consider the assumption:

(H5) There exists R > 0 such that $\phi(t, R) < R$ for $0 \le t \le T$.

Teorema

$$(H1) + (H2') + (H3') + (H4) + (H5) \Longrightarrow Positive T-periodic solutions.$$

Idea of the proof: $deg(I - K) = \chi(V_{\varepsilon}^{R})$.

Panorama

- Introduction
- Delayed systems
- 3 Periodic solutions, existence and...
- 4 ...nonexistence: 0 is a global attractor
- 6 References

Conversely...

Assume that

$$\phi^*(r) := \sup_{t \geqslant 0} \phi(t, r).$$

is continuous and

(H6) For every $\varepsilon > 0$ there exists $\mu > 0$ such that $V^{-1}(0,\mu) \subset B_{\varepsilon}(0)$.

Teorema

Assume **(H6)** and suppose there exists R_0 such that $\phi^*(r) < r$ for $0 < r < R_0$. Then every solution with initial data $\varphi(t) \in (0, R_0)$ for all $t \in [-\tau, 0]$ tends to 0 as $t \to +\infty$.

Sketch of the proof

If $v \leqslant r$ on $[t - \tau, t]$ and $v'(t) \geqslant 0$, then

$$v(t) \leqslant \phi(r)$$
.

Let $R_{j+1} := \phi^*(R_j) < R_j$, then two different situations may occur:

• There exists $t_j \to +\infty$ such that $v(t) \in (0, R_j]$ for $t \geqslant t_j$. Then $v(t) \to 0$ because

$$\phi^*(\lim_{j\to\infty}R_j)=\lim_{j\to\infty}\phi^*(R_j)=\lim_{j\to\infty}R_j,$$

.

② There exist j and t_j such that $v(t) \in (R_{j+1}, R_j]$ and decreases strictly for $t \geqslant t_j$. Let $r := \lim_{t \to +\infty} v(t)$, fix $\tilde{r} > r$ such that $\phi^*(\tilde{r}) < r$ and \tilde{t} such that $v(t) \leqslant \tilde{r}$ for $t \geqslant \tilde{t}$. Thus $v(t) \leqslant \phi^*(\tilde{r}) < r$ for $t \geqslant t^* + \tau$, a contradiction.

Panorama

- Introduction
- Delayed systems
- 3 Periodic solutions, existence and...
- 4 ...nonexistence: 0 is a global attractor
- References

References I

- L. Berezansky, E. Braverman, L. Idels, *Nicholson's blowflies differential equation revisited: main results and open problems.* Appl. Math. Model, **34**, (2010) 1405–1417.
- H. Freedman, P. Moson, *Persistence definitions and their connections*, Proc. Am. Math. Soc. 109, 4 (1990), 1025–1033.
- A. Fonda, *Uniformly persistent semidynamical systems* Proc. Am. Math. Soc. 104, 1 (1988)
- H. Smith, H. Thieme, *Dynamical Systems and Population Persistence*. American Mathematical Society, 2011.
- J. So, J. S. Yu, Global attractivity and uniform persistence in Nicholson's blowflies, Diff. Eqns. Dynam. Syst. 2 (1) (1994) 11–18

Thanks for your attention!