Let X be a metric space and $f: X \to X$ be a function. We say that f is a contraction if there exists a constant 0 < c < 1 such that $d(f(x), f(y)) \le cd(x, y)$ for all $x, y \in X$. Iterations serve an approximation. For instance, Taylor's series provides an approximation. $e^x = 1 + \frac{x}{1!} + \ldots$ In other words, $a_n = \sum_{k=0}^n \frac{x^k}{k!} \to e^x$. A fixed point of $f: X \to X$ is a point $x \in X$ such that f(x) = x. Example:

- Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{2}$ is a contraction. 0 is the only fixed point.
- Let $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (\frac{x}{3} + y, \frac{y}{2})$. Is this a contraction? Work with a suitable metric. (0,0) is the only fixed point.
- Let $f: C[0,1] \to C[0,1]$ given by $f(u)(x) = \frac{1}{2} \int_0^x u(t) dt$. f is a contraction and 0 is the only fixed point.

Contraction Mapping Principle:

Let X be a complete metric space and $f: X \to X$ be a contraction. Then, f has a unique fixed point x_0 such that $f^n(x) \to x_0$.

Proof. Let x_1, x_2 be fixed points. $d(x_1, x_2) = d(f(x_1), f(x_2)) \le cd(x_1, x_2)$ for some 0 < c < 1. This implies that $d(x_1, x_2) = 0$ Let $x \in X$. Consider an "orbit" - $(f^n(x))_{n \ge 1}$. Let $x_n = f^n(x), n \ge 1$. For m > n, $d(x_m, x_n) = d(f^m(x), f^n(x)) \le cd(f^{m-1}(x), f^{n-1}(x)) \le \dots \le c^{n-1}d(f^{m-n-1}(x), x)$. Therefore, $d(x_m, x_n) \le c^{n-1}d(f^{m-n-1}(x), x)$. Let n > 1. $d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n) \le (1 + c + c^2 + \dots + c^{n-1})d(x^2, x_1) \le \frac{d(x_2, x_1)}{1 - c}$. Similarly, for m > n, $d(x_m, x_n) \le \sum_{n=1}^{m-2} d(x_k, x_{k-1}) \le (\sum_{n=1}^{m-2} c^k)d(x_2, x_1) \le \frac{c^{n-1}}{1 - c}d(x_1, x_2) \xrightarrow{n \to \infty} 0$. Therefore, (x_n) is Cauchy. Since X is complete, $x_n \to x_0$ (let). That is, $\lim_{n \to \infty} f^n(x) = x_0$. $f(x_n) = x_{n+1} \to x_0$. If f is a contraction, then f is continuous. Therefore, $f(x_0) = x_0$. Since the fixed point is unique, $f^n(y) \to x_0$ for any $y \in X$. □

Without the completeness assumption, contraction mapping principle need not hold

Differentiation of several variables

Let U be an open subset of \mathbb{R}^n and $f:U\to\mathbb{R}^m$. We say that f is differentiable at a point $x\in U$ if there is a linear map $T:\mathbb{R}^n\to\mathbb{R}^m$ such that $\lim_{h\to 0}\frac{f(x+h)-f(x)-T(h)}{\|h\|}=0$. In that case, T is denoted by f'(x). If f is differentiable at all points $x\in U$, we say that f is differentiable on U. $L(\mathbb{R}^n,\mathbb{R}^m):=\{\alpha:\mathbb{R}^n\to\mathbb{R}^m \text{ is a linear map}\}\cong\mathbb{R}^{nm}$. Let $A\in L(\mathbb{R}^n,\mathbb{R}^m)$, $\|A\|=\text{norm of }A:=\sup_{\|x\|\le 1}\|Ax\|=\sup_{\|x\|=1}\|Ax\|<\infty$.

Let f be differential on U and $f'(x) \in L(\mathbb{R}^n, \mathbb{R}^m)$. Let $x \mapsto f'(x)$. $L(\mathbb{R}^n, \mathbb{R}^m)$ is a metric space with metric d(A, B) = ||A - B||. We say that $f \in C^1(U)$ if f is differentiable on U and $x \mapsto f'(x)$ is continuous.

Proposition 1 Let U be a convex open set in \mathbb{R}^n and $f: U \to \mathbb{R}^m$ be a differentiable function such that $||f'(x)|| \leq M$ for all $x \in U$. Then, $||f(x) - f(y)|| \leq M||x - y||$ for all $x, y \in U$. (U is convex if $\lambda x + (1 - \lambda)y \in U$ for all $\lambda \in [0, 1]$ and $x, y \in U$)

Proposition 2 Let U be an open set in \mathbb{R}^n and V be an open set in \mathbb{R}^m . Let $f: U \to \mathbb{R}^m$ is such that $f(U) \subseteq V$ and $g: V \to \mathbb{R}^k$. If f is differentiable at x and g is differentiable at f(x), then $g \circ f$ is differentiable at x and $(g \circ f)'(x) = g'(f(x))f'(x)$.

Example: If $f: \mathbb{R}^n \to \mathbb{R}^m$ is a linear map, then $f \in C^1$. f' = f.

Inverse Function Theorem:

Let E be an open set in \mathbb{R}^n and $f: E \to \mathbb{R}^n$ be C^1 . If f'(x) is invertible at some point $x \in E$, then there exists an open set $U \subseteq E$ such that

- $x \in U$
- V:=f(U) is open in \mathbb{R}^n
- $f|_U$ is injective
- If q is the inverse of f defined on V, then q is C^1 .

Proof: Deferred to the next lecture.

Lemma: Let $\Omega = \{A \in L(\mathbb{R}^n, \mathbb{R}^n) | A \text{ is ivertible} \}.$

- 1. If $A \in \Omega$, $B \in L(\mathbb{R}^n, \mathbb{R}^n)$ such that $||A B|| ||A^{-1}|| || < 1$, then $B \in \Omega$.
- 2. Ω is open.
- 3. $A \mapsto A^{-1}$ is continuous on Ω

Proof. $A \in \Omega$. $B \in L(\mathbb{R}^n, \mathbb{R}^n)$. Let $\alpha = \frac{1}{\|A^{-1}\|}$. Let $\beta = \|A - B\|$. We assume that $\beta < \alpha$. $\|x\| \leqslant \|A^{-1}\| \|Ax\| \leqslant \frac{1}{\alpha} \|(A - B)(x)\| + \frac{1}{\alpha} \|B(x)\| \leqslant \frac{\beta}{\alpha} \|x\| + \frac{1}{\alpha} \|Bx\|$. Hence, we have $\|x\|(\alpha - \beta) \leqslant \frac{1}{\alpha} \|Bx\|$. $Bx \neq 0$ if $x \neq 0$. Thus, B is injective. This implies that B is invertible. Statement (2) is left as an exercise. For $A \neq B$, $\|A^{-1}\|^{-1} = \alpha$, $\beta = \|A - B\|$. $(\alpha - \beta)\|B^{-1}y\| \leqslant \|y\|$. So, for any B such that $\beta < \alpha \|B^{-1}\| \leqslant \frac{1}{\alpha - \beta}$.

$$\|A^{-1}-B^{-1}\| \leqslant \|A^{-1}\| \|A-B\| \|B^{-1}\| \leqslant \frac{1}{\alpha(\alpha-\beta)} \|A-B\| = \frac{\beta}{\alpha(\alpha-\beta)}.$$
 So, as $B \longrightarrow A, \ \beta \longrightarrow 0$. This implies that $\|A^{-1}-B^{-1}\| \longrightarrow 0$. Therefore, $A \mapsto A^{-1}$ on Ω is continuous. \square