

http://circos.ca/

BCH441 - Bioinformatics Boris Steipe

http://steipe.biochemistry.utoronto.ca/abc/index.php/Bioinformatics_Main_Page

Alineamiento de Secuencias

Alineamiento global = Alineamiento óptimo

Los alineamientos globales basados en el algoritmo Needleman-Wunsch se utilizan cuando necesitamos que toda la secuencia sea alineada.

¿Qué hacemos cuando necesitamos encontrar fragmentos de la secuencia con alta similitud, comparar secuencias mucho más largas (e.g. genomas) o buscar en bases de datos?

Alineamiento de Secuencias

Alineamiento local

Smith-Waterman algorithm (1981):

Usado para buscar similitud entre dos secuencias altamente divergentes. Permite realizar alineamientos entre algunas secciones de la matriz y no ser obligado desde un principio al fin.

Alineamiento de Secuencias

Smith-Waterman algorithm (1981):

Solo hay dos diferencias con el alineamiento global:

- Cualquier valor que sea menor que 0 es rellenado con 0.
- Un valor igual a 0 significa que puede empezar otro alineamiento.

Initialize the scoring matrix

		Т	G	Т	Т	Α	С	G	G
	0	0	0	0	0	0	0	0	0
G	0								
G	0								
Т	0								
Т	0								
G	0								
Α	0								
С	0								
Т	0								
Α	0								

Substitution
$$S(a_i, b_j) = \begin{cases} +3, & a_i = b_j \\ -3, & a_i \neq b_j \end{cases}$$

matrix:

Gap penalty:
$$W_k = kW$$

 $W_1 = 2$

¿Cómo llevan a diario el seguimiento de sus experimentos de wet-lab? ¿Qué prácticas tienen regularmente en el laboratorio? ¿Cómo hacer esto mediante análisis bioinformáticos?

1. Anoten todo lo que hacen!!!

Organizar ideas; publicaciones con metodologías interesantes; programas, scripts y códigos usados; números de acceso y líneas de comando utilizadas!!

¿Cómo llevan a diario el seguimiento de sus experimentos de wet-lab? ¿Qué prácticas tienen regularmente en el laboratorio? ¿Cómo hacer esto mediante análisis bioinformáticos?

2. Reproducibilidad de resultados:

No lo hagan solo una vez! Repitan el experimento!, en general lo programas poseen una variedad de parámetros o están basados en modelos probabilísticos que no entregan el exactamente el mismo resultado cada vez que es ejecutado.

Verificar errores

Mejorar sus códigos o los datos utilizados

Probar en diferentes condiciones (usar otros parámetros)

¿Cómo llevan a diario el seguimiento de sus experimentos de wet-lab? ¿Qué prácticas tienen regularmente en el laboratorio? ¿Cómo hacer esto mediante análisis bioinformáticos?

3. Diversidad de metodologías:

¿Existe más de una forma para corroborar lo que estoy estudiando? ¿Algunas de ellas tienen mayor validez que otras o son todas igual de válidas? La técnica que conocen no siempre va a ser la mejor. Actualizar, buscar y utilizar más de una metodología es necesario al estudiar un proceso biológico. Esto les dara más robustez a sus conclusiones. (no utilicen solo el método que les dio el resultado que quieren).

¿Cómo llevan a diario el seguimiento de sus experimentos de wet-lab? ¿Qué prácticas tienen regularmente en el laboratorio? ¿Cómo hacer esto mediante análisis bioinformáticos?

4. Entiendan lo que hacen y utilizan:

No es necesario saber todos los modelos probabilísticos de fondo o los algoritmos utilizados, pero tengan una noción de por qué y cuáles son los motivos por los que utilizan ese programa.

(No usaré BLAST/MEGA porque es lo que todos hacen).

¿Cómo llevan a diario el seguimiento de sus experimentos de wet-lab? ¿Qué prácticas tienen regularmente en el laboratorio? ¿Cómo hacer esto mediante análisis bioinformáticos?

5. Conocer tus recursos (hardware/computador).

¿Puedo realizar un árbol filogenético de inferencia bayesiana de un alineamiento de 90 secuencias con un largo de 18.000 caracteres en mi PC? ¿Irá a usar toda la RAM? Deben entender las limitaciones de cada uno de sus PCs para entender que cosas pueden o no pueden hacer.

(y no pitiarse su PC).

¿Cómo llevan a diario el seguimiento de sus experimentos de wet-lab? ¿Qué prácticas tienen regularmente en el laboratorio? ¿Cómo hacer esto mediante análisis bioinformáticos?

6. Colaborar con la comunidad (open science).

Si encuentran una forma de hacer más eficiente un proceso bioinformático, crean un nuevo software o análisis de datos, publiquen sus resultados abiertamente con licencias de código abierto (open-source licenses). La comunidad bioinformática, al igual que el mundo de las ciencias en la computación, se basan en open-source softwares para facilitar la investigación a otros grupos relacionados (como Linux).

(colaboren con el mundo para que el mundo colabore con ustedes).

Taller: Alineamientos de secuencias (PSA)

16S rRNA

1400-1600 bp de largo

Identificación de taxas bacterianas/archeas

Ejercicio, fome pero informativo

Taller: Alineamientos de secuencias (PSA)

- 1. Elegir dos bacterias o archeas.
- Utilizar su secuencia en fasta como búsqueda en BLAST (blastn, usando como base de datos 16S rRNA)
- 3. Guardar 3 mejores resultados y sus porcentajes de identidad.
- 4. Extraer las 3 secuencias en fasta de esos resultados
- Realizar un alineamiento global (https://www.ebi.ac.uk/Tools/psa/emboss_needle/) entre la bacteria original y los tres resultados obtenidos.
- 6. Guardas las identidades obtenidas.
- 7. ¿Qué conclusiones pueden sacar de esto?

Taller: Tareas para próximo taller

Sistema operativo Windows/MacOS:

- 1. Descargar e instalar máquina virtual (e.g. VirtualBox)
- 2. Descargar e instalar CONDA
- 3. Descargar e instalar BLAST local
- 4. Descargar e instalar MAFFT

Sistema operativo Linux:

- 1. Descargar e instalar CONDA
- 2. Descargar e instalar BLAST local
- 3. Descargar e instalar MAFFT