

IEEE - CSULB Branch February 26, 2021 Kiyo Terao John Abrahem

Agenda

- Project
- Resistors
- capacitors
- Inductors
- Breadboard

Project- Arduino Piano

- Sound Reactive Arduino Floor Piano
- Modules used
 - Arduino Uno/nano
- Components
 - Resistors
 - Jumper wires
 - Piezo

Resistor

- What is a resistor
 - A passive electrical component
 - create resistance in the flow of electric current
 - Reduces electric current
 - Divides voltages

Resistors - continued

- Ohm's Law
 - To calculate the resistance in a circuit
 - V = IR
 - R = Resistance (ohms)
 - V = Voltage (volts)
 - I = current (amps)

Resistors-continued

- Types of resistors
 - Wire wound round resistors
 - Metal Film Resistors
 - Thick and thin film resistors
 - Surface mount resistors

Resistor-Continued

Resistors in Series

$$\circ R_{\text{series}} = R_1 + R_2 + R_3$$

- Parallel Resistors

Parallel Resistor

Series Resistor

Capacitors

- What are capacitors?
 - Stores and releases electrical energy
 - Same as a battery
 - Can charge and discharge faster
 - Capacitance is measured in farads
 - Mostly used μF

Capacitors- continued

- How to find the capacitance
 - I = C dv/dt
 - I = instantaneous current through the capacitor
 - C = capacitance in Farads
 - dv/dt = instantaneous rate of voltage change

Capacitors- continued

- What is it made out of
 - Dielectric
 - Polyester
 - Polystyrene
 - Tantalum

Capacitor - continued

- Parallel Capacitors
 - o Ceq=C1+C2+C3.....+Cn

- Series Capacitors
 - 1/Ceq=(1/C1)+(1/C2)+(1/C3).....+(1/Cn)

Inductors

- What are Inductors
 - Coil of conducting wires
 - Stores energy in electromagnetic field
- Inductance
 - Measured in Henrys
 - The greater number of turns of wire the greeted inductance

$$L = \frac{n^2 \times \mu_0 \times a}{I}$$

where: L = inductance in henrys

n = number of turns

 $\mu_0\!\!=\!\!$ permeability of free space (4 π x 10 7 hermys/metre)

a = cross-sectional area of winding in square metres

1 = length of winding in metres

Inductor- continued

- Inductor Ohm's law
 - \circ V = L (di/dt)
 - V = Voltage
 - L = Inductance in Henrys
 - di/dt = instantaneous rate of current
 change (amps per sec)

Inductances

$$\mathbf{L}_{\text{series}} = \mathbf{L}_1 + \mathbf{L}_2 + \dots \, \mathbf{L}_n$$

$$L_{\text{parallel}} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}}$$

Where,

L = Inductance in henrys

Breadboards

- What are breadboards
 - "Circuit Builder"
 - Plastic board with arrays of metal contacts
 - Easy access through the holes
- Accept 22 American Wire Gauge (AWG)

Breadboard-continued

- What is American Wire Gauge (AWG) ?
 - Logarithmic Stepped Standard wire gauge
 - Copper wires
 - Best and cheapest conductor
 - Smaller the number the thicker the wire
 - Common AWG we use is 18-24 (AWG)

	CII	RCUIT	TYPE							CUF	RREN	IT FL	.0W	IN AI	MPS
10% voltage drop Non Critical			3% voltage drop Critical		5A	10A	15A	20A	25A	30A	40A	50A	60A	70A	80A
	0 to 20 ft.	0 to 6.1 M	0 to 6 ft.	0 to 1.8 M		16 AWG	14 AWG	14 AWG	12 AWG	10		6	6	6	
	30 ft.	9.1 M	10 ft.	3.0 M	16 AWG	14 AWG	12 AWG	12 AWG	10 AWG	AWG	AWG	AWG	AWG	AWG	4 AWG
	50 ft.	15.2 M	15 ft.	4.6 M		12 AWG	10	10 AWG	8 AWG	8 AWG	6		4	4 AWG	
CIRCUIT LENGTH	65 ft.	19.8 M	20 ft.	6.1 M	14 AWG		AWG	8 AWG		6	AWG	4	AWG	2	2
	80 ft.	24.4 M	25 ft.	7.6 M	12	10 AWG	8 AWG		6 AWG	AWG	4	AWG	2	AWG	AWG
	100 ft.	30.5 M	30 ft.	9.1 M	AWG			6 AWG		4	AWG	2	AWG	1 AWG	1 AWG
	130 ft.	39.6 M	40 ft.	12.2 M		8 AWG			4	AWG	2	AWG	1 AWG	O AWG	O AWG
	165 ft.	50.3 M	50 ft.	15.2 M	10 AWG		6 AWG	4	AWG	2	AWG	1 AWG	0 AWG	2 0 AWG	3 0
	200 ft.	61.0 M	60 ft.	18.3 M		6		AWG		AWG	1 AWG	0 AWG	2 0 AWG	310	AWG
		ı	70 ft.	21.3 M		AWG	4		2 AWG	1	0	210	310	3 0 AWG	410
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			80 ft.	24.4 M	8 AWG		AWG	2		AWG	AWG	2 0 AWG	3 0 AWG	410	4 0 AWG
			90 ft.	27.4 M				AWG	1		2 0	310		4 0 AWG	
			100 ft.	30.5 M		4			AWG	0 AWG	AWG	3 0 AWG	4 0 AWG		
			110 ft.	33.5 M	6	AWG	2 AWG								
			120 ft.	36.6 M	AWG			1 AWG	0 AWG	210	3 0 AWG	4 0 AWG			
			130 ft.	39.6 M		2 AWG				2 0 AWG					

Breadboards - continued

- Why Breadboard
 - It is solderless circuit board
 - Good using before moving into an actual circuit board.

