Name:	W UPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES Class Test 1

Programme Name: B.Tech

Course Name: Discrete Mathematical Structure

Semester: III

Time: 40 Min.

Course Code : CSEG2006 Max. Marks:

Nos. of page(s) : 1 Batch: B51, B52, B53 and B54

Instructions: Do all questions.

S. No.		Marks	CO
Q 1	Prove the validity of the following argument "If I get the job and work hard, then I will get promoted. If I get promoted, then I will be happy. I will not be happy. Therefore, either I will not get the job or I will not work hard."		
Q 2	Show that $[(p \lor q) \land \sim (\sim p \land (\sim q \lor \sim r))] \lor (\sim p \land \sim q) \lor (\sim p \land \sim r)$ is tautology by using laws of logic.		
Q 3	Which elements of the poset ({2,4,5,10,12,20,25},) are maximal and which are minimal.		
Q 4	If s is a valid conclusion from the premises $p \to q, p \to r, \sim (q \land r)$ and $s \lor p$. If yes or no, justify		
Q 5	Let f and g be functions from the positive integers to the positive integers defined by $f(n) = n^2$, $g(n) = 2^n$. Find $(i)fof$, $(ii)gog$, $(iii)fog$, $(iv)gof$		