Sung Chan Park

Stud Id: 24496738

In my BML simulation study, the simulation (bml.sim (r,c,p)) shows # of steps taken until it gets gridlock (traffic jam). If the step equals to 1000, a maximum step in my simulation, I consider it as free owning traffic, because "1000 steps", is enough to show the free owning traffic

1. For what values of p, the density of the grid, did you find free owing traffic and traffic jams? Did you find any cases of a mixture of jams and free owing traffic?

In order to answer this question, I went through the simulation of 20×20 sample and 10×10 sample and 'replicated' the simulation 1000 times. In 20×20 sample, p is less than 0.38, there were always free owning traffic, which means 1000 samples all showed "1000 steps". Therefore, p<0.32 and p=0.32 will always show free owning traffic. However, when p = 0.38, there was 1 traffic jam, which means other 999 samples showed "1000 steps". In 10×10 , when p = 0.39, there was 1 traffic jam. As a result, it is concluded that when p is greater than or equal to 0.38 and less than 1.0, a sample starts showing a mixture of jams and free owning traffic. In conclusion, as p increases, the chance of getting free owning traffic goes lower.

2. How many simulation steps did you need to run before observing this behavior?

Since replicate function was used, in 20 x 20 of 1000 samples, when p=0.38, as it is mentioned, there was 1 traffic jam out of 1000. When p=0.40 with 20 x 20 of 1000 sample, there was 4 traffic jam. In 10 x 10 of 1000 samples, when p=0.39, there was 1 traffic jam. When p=0.40 there was 2 traffic jam. It means, because I used "replicate" function, I cannot verify how max steps I have run. As a result, as p goes higher, the chance of getting the traffic jam (gridlock) get higher.

3. Does the transition depend on the size or shape of the grid?

Grid Size (r x c)	р	Traffic Jam	Free Owning Traffic
10 x 10	0.8	1000	0
5 x 20	0.8	876	124
4 x 25	0.8	603	397
2 x 50	0.8	1	999

I set p = 0.8. When p = 0.8 with 10×10 samples, there was no free owning traffic, which means all 1000 different samples of 10×10 were all traffic jammed. When p = 0.8 with 5×20 , there were 124 free owning traffics out of 1000 samples. When p = 0.8 with 4×25 , there were 397 free owning traffics. When p = 0.8 with 5×20 , there were 999 free owning traffics.

Therefore, as a rectangle (shape of sample) gets narrower, the chance of getting free owning traffic increases.

Grid Size (r x c)	р	Traffic Jam	Free Owning Traffic
10 x 10	0.8	1000	0
5 x 20	0.8	876	124
4 x 25	0.8	603	397
2 x 50	0.8	1	999

As the table shown, as the size of Grid gets larger in square shape (r = c), the chance of getting free owning traffic decreases.