Final Assignment Anna E. Hiller May 5th 2017

Divergence Time Estimation using *Diglossa* (Aves: Thraupidae) Informative Prior on the Root Age and Universal Molecular Clock

I chose to run a divergence time analysis to date a tree because I want to apply phylogenetic methods to phylogeographic analyses. One of the key components of phylogeography is understanding *when* speciation events occur (e.g., splits between taxa). Because there are often no fossils of recent taxa in birds, especially Passerines, molecular clock estimates are used instead. I choose a group I am interested in working on (the *Diglossa* tanagers). In the future I want to use this same approach to estimate phylogeographic divergence times and then compare to estimates of divergence times obtained via estimation of population genetic parameters.

Overview of Dating

Given a phylogenetic tree with branch lengths (rate*time) and a calibration to constrain the node (either a fossil calibration, or a node from a previous phylogeny, can also use tips), you can estimate divergence times for other nodes (e.g., you can date speciation events).

Obtained Data

Downloaded ND2 mitochondrial gene sequences for 8 tips representing 6 species.

Edited the nexus file and visualized in AliView.

Overview of Key Code

Types of functions in RevBayes

Table 1: Rev assignment operators, clamp function, and plate/loop syntax.

Operator	Variable
<-	constant variable
~	stochastic variable
:=	deterministic variable
node.clamp(data)	clamped variable
=	inference (i.e., non-model) variable
for(i in 1:N){}	plate

I used a GTP+G model of sequence evolution and the default settings for the model of constantrate birth-death processes.

```
rho <- n_species/18¬
```

Rho represents nTaxa / totalTaxa, the probability of sampling species at the present. For this dataset I changed the value to be 6 / 18, since there are 18 described *Diglossa* species. I am curious how altering this value effects the results though, because Diglossa is a highly polymorphic group with many subspecies that could potentially be elevated to species rank.

```
root_time \sim dnNormal(mean=10.1, sd=6.3, min=0.0, max=1000.0)
```

Root time is the informative prior used to condition the root age and inform our dating. I used the estimated date for the split between the *Diglossa lafresnayii* and *Diglossa carbonaria* species complexes as the prior, taken from:

Mauck III, W. M., & Burns, K. J. 2009. Phylogeny, biogeography, and recurrent evolution of divergent bill types in the nectar-stealing flowerpiercers (Thraupini: Diglossa and Diglossopis). Biological Journal of the Linnean Society. 98:14-28.

I then back-calculated (see code) the standard deviation based on the number of tips and 95% confidence interval given in the paper.

```
#add a deterministic variable for the age of age carbonaria superspecies clade_carbonaria = clade ("Diglossa_carbonaria", "Diglossa_humeralis", "Diglossa_brunneiventris_AMNH", "Diglossa_age_carbonaria := tmrca(psi, clade_carbonaria) = ""
#Diglossa lafresnayii superspecies clade_lafresnayii , "Diglossa_gloriosissima") = age_lafresnayii := tmrca(psi, clade_lafresnayii) = tmrca
```

Also, I added in deterministic variables for certain ages I was interested in.

This analysis used a global molecular clock rate, which assumes a constant rate of substitution across the tree (vs. a relaxed molecular clock which allows for rate variation across lineages). Because the analysis was based on an informative prior, the clock rate is estimated from the data.

I then created a model of sequence evolution, and attach the sequence data to the tip nodes using the .clamp function (used for observed data).

Executed the Analysis

I set up monitors (mni), which record the states of the Markov Chain, created the MCMC object, and ran the analysis. Note that I used 2 replicate runs and two chains (1 cold, 1 heated) to make sure I got good estimates.

Burnin

- > mymcmc = mcmcmc(mymodel, monitors, moves, nruns = 2, nchains = 2)
- > mymcmc.burnin(generations=10000,tuningInterval=250)

Running burn-in phase of Monte Carlo sampler for 10000 iterations.

This simulation runs 2 independent replicates.

The MCMCMC simulator runs 1 cold chain and 1 heated chains.

The simulator uses 13 different moves in a random move schedule with 44 moves per iteration

MCMC

> mymcmc.run(generations=30000)

Running MCMC simulation

This simulation runs 2 independent replicates.
The MCMCMC simulator runs 1 cold chain and 1 heated chains.
The simulator uses 13 different moves in a random move schedule with 44 moves per iteration

Iter	Posterior	Likelihood	Prior	I	age_lafres	1	clockRate	I	root_time	I	elapsed	1	ETA
0	-2292.1	-2257.86	-34.2383	1	12.2561	1	0.000736485	1	96.1155	1	00:00:00	1	::
1000	-2285.32	-2253.87	-31.4507	Ĺ	10.9045	Ĺ	0.000900883	Ĺ	89.4981	Ĺ	00:00:07	- İ	::
2000	-2296.31	-2260.6	-35.7118	Ĺ	11.6477	Ĺ	0.000975027	Ĺ	79.3053	Ĺ	00:00:15	- i	00:03:30
3000	-2289.56	-2255.15	-34.408	Ĺ	10.7652	- i	0.000878235	- į	90.3067	Ĺ	00:00:22	- į	00:03:18
4000	-2285.22	-2253.31	-31.9082	Ĺ	9.07479	- i	0.00090157	Ĺ	90.5803	Ĺ	00:00:29	- i	00:03:08
5000	-2287.99	-2255.13	-32.862	i .	10.7802	- i	0.000944904	i	85.4912	i.	00:00:36	- i	00:03:00
6000	-2290.26	-2257.37	-32.8902	i .	10.6718	- i	0.000822529	i	93.5729	i	00:00:43	- i	00:02:52
7000	-2285.57	-2252.56	i -33.0111	i i	12.7611	i i	0.000766938	i	88.8018	i.	00:00:50	- i	00:02:44
8000	-2295.94	-2263.57	-32.3795	i i	13.7241	- i	0.000817348	i	91.5022	i	00:00:58	- i	00:02:39
9000	i –2292.31	-2255.95	i -36.36	i .	11.4262	i i	0.000754574	- i	103.607	i.	00:01:05	- i	00:02:31
10000	-2290.68	-2255.8	i -34.8891	i .	13.2636	i i	0.000780142	i	89.6835	i.	00:01:12	- i	00:02:24
11000	-2289.99	-2257.93	-32.0568	i i	7.35357	- i	0.000865846	i i	92.3037	i.	00:01:20	- i	00:02:18
12000	-2292.48	-2257.46	-35.0192	i .	9.57762	i i	0.000782738	- i	101.631	i.	00:01:27	- i	00:02:10
13000	-2290.21	-2256.59	-33,6207	i	11.727	i.	0.000993018	i	75.5213	i.	00:01:34	- i	00:02:02
14000	-2286.77	-2253.12	-33.646	i i	12,4926	i i	0.000890559	i	87.2029	i i	00:01:41	- i -	00:01:55
15000	-2294.73	-2262.53	-32.193	i i	9.55978	i i	0.00100815	i	88.813	i.	00:01:48	- i	00:01:48
16000	-2286.26	-2253.63	-32,6342	i	11.0599	i i	0.000895169	i	93.0417	i.	00:01:56	- i	00:01:41
17000	-2287.15	-2254.31	-32.8389	i i	8.06368	i i	0.000897044	i i	87.8188	i	00:02:03	- i	00:01:34
18000	-2288.29	-2254.52	-33.7705	i i	17.7318	i i	0.000738153	i	101.399	i	00:02:10	- i	00:01:26
19000	-2287.69	-2255.46	-32.2374	i	8.67076	i	0.000917996	i	89.0355	i	00:02:17	- i	00:01:19

Outputs

^{*} The topologies and dates look similar across runs. Both recover the short branches in the D. carbonaria complex (consistent with published literature).

* This tree has a single consensus date on each node.

* This tree has the 95% confidence interval for the date on each node, taking uncertainty into account.

* Posterior Probabilities are close to 1, which corresponds to a high probability that the tree is correct assuming the models are accurate.

* All three trace plots are very "fuzzy" and linear, so the analysis had good mixing.

^{*} Histograms look similar across runs.

* Probability Distributions are similar across runs, curves overlay.

Effective Sample Size (ESS) Values:

Run 1 = 306.6

Run 2 = 452.1

Consensus = 684.8

* All are above 200 so analysis had good mixing.

Glossary

Molecular Clock: a method of using the mutation rate of nucleotide sequences (DNA) or amino acids (proteins) to estimate the time since divergence. Evidence suggests that there is a linear relationship, molecular differences between species pairs are proportional to the time since they diverged. First described by:

Zuckerkandl, E. and Pauling, L.B. (1962). "Molecular disease, evolution, and genetic heterogeneity". In Kasha, M. and Pullman, B (editors). Horizons in Biochemistry. Academic Press, New York. pp. 189–225.

Model of Sequence Evolution: Markov models of substitution, are matrices of the probability that one amino acid will 'transition' into another (e.g., A -> T). Many are described, Jukes Cantor (1969) model uses fixed values (frequencies and mutation rates) and is the simplest. GTR (Generalized Time-Reversible) uses equilibrium base frequencies (pi) and transition rate parameters (r) and is one of the most complex, but also flexible.

Birth-Death Processes: a continuous-time Markov process where states transitions are birth (increase states by 1) or death (decrease states by 1).

Prior: from "prior beliefs", parameters based on existing knowledge set *before* data are input.

Posterior: from Bayes' theorem, the prior probability of a tree P(A) combined with the likelihood of the data P(B) produce a posterior probability distribution on trees P(A|B). The posterior probability of a tree will indicate the probability of the tree being correct given the data observed and specified models.

Heated Chain: during MCMC sampling, the 'heated' chain traverses a space where the peaks and valleys have been flattened out making them easier to cross. After each iteration the cold chain traverses (unflattened peaks) then accepts or rejects a move based on the space sampled by the heated chain. Genna's Mother and baby robot analogy!

Burn-in: trees generated early in the analysis are discarded. Common method of evaluating nodal support in a Bayesian phylogenetic analysis, by calculating the percentage of trees in the posterior distribution (post-burn-in) that contain the node observed in the 'actual' tree.

Markov Chain Monte Carlo: a method or class of algorithm for sampling from a probability distribution by constructing a Markov chain that has the desired distribution as its equilibrium. The state of the chain after a number of steps is then used as a sample of the desired distribution. It is a way of approximating a distribution.

Effective Sample Size (ESS): the number of effectively independent draws from the posterior distribution that the Markov chain is equivalent to. If ESS is small then the distribution is poor, meaning there is a large standard deviation and bad mixing. ESS<100 is bad, <200 is poor, but >100 is excessive computational time (ref: BEAST documentation)

* In full disclaimer I got many of these definitions from Wikipedia, and then edited to make more phylogenetics specific. This is more for my future use than anything.