Listing of the Claims:

The following is a listing of all claims in this application, with an indication of the status of each, and a strikethrough and underlining to show changes:

1	1. (Currently Amended) An image comparison system
2	characterized by comprising:
3	threedimensional data input means for inputting input
4	three_dimensional data of an object;
5	reference image storing means for storing a reference image
6	of at least one <u>reference</u> object;
7	pose candidate deciding means for generating a plurality of
8	pose candidates at least one pose candidate as a candidate for pose
9	of the object;
10	comparison image generating means for generating, for the
11	reference image for the at least one object, a at least one
12	comparison image close to the reference image, said generating
13	including while projecting the three-dimensional data onto a two-
14	dimensional image in accordance with each of the plurality of pose
15	candidates to generate a plurality of comparison images and
16	calculating, for each of the plurality of comparison images, the
17	minimum distance between the comparison image and the
18	reference image and selecting, as the comparison image close to
19	the reference image, the comparison image having the smallest
20	minimum distance; and
21	image comparing means for performing comparison on the basis
22	of one of a distance value and a similarity degree between the reference
23	image and the generated comparison image and, based on the

24	comparison, identifying whether a match exists between the generated
25	comparison image and the reference images.
1	2. (Currently Amended) The \underline{An} image comparison system \underline{of}
2	according to claim 1, characterized in that wherein said image
3	comparing means comprises:
4	selecting means for selecting one of a minimum distance
5	value which is a smallest distance value and a maximum
6	similarity degree which is a largest similarity degree; and
7	identifies whether a match exists based on comparing means for
8	performing comparison on the basis of one of a result of comparison
9	between the minimum distance value between the reference image and
10	the generated comparison image and a threshold value and a result of
11	comparison between the maximum similarity degree between the
12	reference image and the generated comparison image and a threshold
13	value.
1	3. (Currently Amended) The An image comparison system of
2	according to claim 1, characterized in that
3	wherein said reference image storing means stores a
4	reference image for each of a plurality of objects,
5	wherein said comparison image generating means generates,
6	for each of the reference images, a comparison image close to each
7	the reference image, and
8	said image comparing means comprises:
9	calculating means for calculating, for each of the
10	reference images, one of a distance value and a
11	similarity degree between the each reference image and the
12	generated comparison image close to the reference image;

13	selecting means for selecting, for each of the
14	reference images, one of a minimum distance value which is
15	a smallest distance value and a maximum similarity degree
16	which is a largest similarity degree for each reference
17	image; and
18	comparing means for outputting, as a comparison result,
19	one of a reference image including a smallest minimum distance
20	value which is a smallest one of minimum distance values and a
21	reference image including a largest maximum similarity degree
22	which is a largest one of maximum similarity degrees.
1	4. (Currently Amended) <u>The</u> An image comparison system of
2	according to claim 1, characterized by further comprising:
3	reference correction coefficient storing means for storing a
4	correction coefficient corresponding to the reference image; and
5	correcting means for correcting one of the minimum distance
6	value and the maximum similarity degree based on by using the
7	correction coefficient.
1	5. (Currently Amended) <u>The</u> An image comparison system <u>of</u>
2	according to claim 1, characterized by further comprising reference
3	weighting coefficient storing means for storing a weighting
4	coefficient corresponding to the reference image,
5	said image comparing means comprising calculating means for
6	calculating one of the distance value and the similarity degree between
7	the reference image and the comparison image based on by using the
8	weighting coefficient corresponding to the reference image.
1	6. (Currently Amended) <u>The</u> An image comparison system of

2	according to claim 1, characterized by further comprising:
3	standard three_dimensional reference point storing means
4	for storing a standard three_dimensional reference point
5	corresponding to a standard three_dimensional object model;
6	standard three-dimensional weighting coefficient storing
7	means for storing a standard three-dimensional weighting
8	coefficient;
9	three-dimensional reference point extracting means for
10	extracting a three-dimensional reference point from the input
11	three-dimensional data; and
12	input weighting coefficient converting means for obtaining a
13	coordinate correspondence of the standard three_dimensional
14	weighting coefficient to the three-dimensional data based on by
15	using the standard three-dimensional reference point and the
16	three-dimensional reference point of the three-dimensional data,
17	and converting the standard three-dimensional weighting
18	coefficient into a two_dimensional weighting coefficient in
19	accordance with the pose candidate,
20	said image comparing means comprising calculating means for
21	calculating one of the distance value and the similarity degree between
22	the reference image and the comparison image based on by using the
23	converted two-dimensional weighting coefficient.
1	7. (Currently Amended) The An image comparison system of
2	according to claim 1, characterized by further comprising:
3	representative three-dimensional object model storing
4	means for storing representative ones of three-dimensional object
5	models as representative three-dimensional object models;
6	group storing means for storing related information of the

7	representative three_dimensional object models and reference
8	images;
9	three-dimensional comparing means for comparing the
10	input three_dimensional data with the representative three_
l 1	dimensional object models, and selecting a representative three-
12	dimensional object model similar to the three-dimensional data;
13	and
14	reference image selecting means for selecting a reference
15	image corresponding to the selected representative three-
16	dimensional object model by referring to the related information,
17	wherein said image comparing means compares the selected
18	reference image with the input three-dimensional data.
1	8. (Currently Amended) The An image comparison system of
2	according to claim 1, characterized by further comprising:
3	representative image storing means for storing
4	representative ones of images as representative images;
5	group storing means for storing related information of the
6	representative images and reference images;
7	representative image selecting means for comparing the
8	input three_dimensional data with the representative images, and
9	selecting a representative image similar to the three-dimensional
10	data; and
11	reference image selecting means for selecting a reference
12	image corresponding to the selected representative image by
13	referring to the related information,
14	wherein said image comparing means compares the selected
15	reference image with the input three-dimensional data.

1	9. (Currently Amended) <u>The</u> An image comparison system <u>of</u>
2	according to claim 4, wherein characterized in that the correction
3	coefficient is determined on the basis of at least one of a distance
4	value and a similarity degree between a representative three_
5	dimensional object model and the reference image.
1	10. (Currently Amended) An image comparison method <u>for</u>
2	identifying a match of an object to a stored reference image of at
3	<u>least one object</u> , characterized by comprising the steps of:
4	inputting input three_dimensional data of an object;
5	generating at least one pose candidate as a candidate for
6	pose of the object;
7	generating, for the reference image of the at least one object,
8	<u>a at least one</u> comparison image close to the reference image, said
9	generating including while projecting the three-dimensional data
10	onto a two-dimensional image in accordance with each of the
11	plurality of pose_candidates to generate a plurality of comparison
12	images and calculating, for each of the plurality of comparison
13	images, the minimum distance between the comparison image and
14	the reference image and selecting, as the comparison image close
15	to the reference image, the comparison image having the smallest
16	minimum distance; and
17	identifying whether a match exists between the generated
18	comparison image and the reference image, said identifying including
19	performing comparison on the basis of one of a distance value and a
20	similarity degree between the reference image and the generated
21	comparison image.

1

2	according to claim 10, wherein characterized in that the step of
3	identifying whether a match exists includes performing
4	comparison comprises the steps of:
5	calculating one of the distance value and the similarity
6	degree between the reference image and the comparison image;
7	selecting one of a minimum distance value which is a
8	smallest distance value and a maximum similarity degree which is
9	a largest similarity degree; and
10	performing comparison on the basis of one of a result of
11	comparison between the minimum distance value between the
12	reference image and the generated comparison image and a threshold
13	value and a result of comparison between the maximum similarity
14	degree between the reference image and the generated comparison
15	image and a threshold value.
1	12. (Currently Amended) <u>The</u> An image comparison method <u>of</u>
2	according to claim 10, characterized in that
3	wherein the step of generating a comparison image comprises the
4	step of generating a comparison image close to each reference image for
5	each of a plurality of objects; and
6	wherein the step of identifying whether a match exists
7	performing comparison comprises the steps of:
8	calculating, for each of the reference images, one of a distance
9	value and a similarity degree between the each reference image and the
10	generated comparison image close to the reference image;
11	selecting, for each of the reference images, one of a minimum
12	distance value which is a smallest distance value and a maximum
13	similarity degree which is a largest similarity degree for each reference
14	image; and

15	outputting, as a comparison result, one of a reference image
16	including a smallest minimum distance value which is a smallest one of
17	minimum distance values and a reference image including a largest
18	maximum similarity degree which is a largest one of maximum
19	similarity degrees.
1	13. (Currently Amended) <u>The</u> An image comparison method \underline{of}
2	according to claim 10, characterized by further comprising the step of
3	correcting one of the minimum distance value and the maximum
4	similarity degree based on by using a correction coefficient
5	corresponding to the reference image.
1	14. (Currently Amended) <u>The</u> An image comparison method \underline{of}
2	according to claim 10, wherein characterized in that the step of
3	identifying whether a match exists performing comparison comprises
4	the step of calculating one of the distance value and the similarity
5	degree between the reference image and the comparison image based
6	on by using a weighting coefficient corresponding to the reference
7	image.
1	15. (Currently Amended) The An image comparison method \underline{of}
2	according to claim 10, characterized by further comprising the
3	steps of:
4	extracting a three-dimensional reference point from the
5	input three_dimensional data; and
6	obtaining a coordinate correspondence of a standard three-
7	dimensional weighting coefficient to the three-dimensional data by
8	using a standard three-dimensional reference point corresponding
9	to a standard three_dimensional object model and the three_

10	dimensional reference point of the three-dimensional data, and
11	converting the standard three-dimensional weighting coefficient
12	into a two_dimensional weighting coefficient in accordance with
13	the pose candidate,
14	wherein the step of identifying whether a match exists comprises
15	performing comparison comprising the step of calculating one of the
16	distance value and the similarity degree between the reference image
17	and the comparison image <u>based on</u> by using the converted two-
18	dimensional weighting coefficient.
1	16. (Currently Amended) The An image comparison method $\underline{\text{of}}$
2	according to claim 10, characterized by further comprising the
3	steps of:
4	comparing the input three_dimensional data with
5	representative three-dimensional object models which are
6	representative ones of three-dimensional object models, and
7	selecting a representative three-dimensional object model similar
8	to the three_dimensional data; and
9	selecting a reference image corresponding to the selected
10	representative three_dimensional object model by referring to
11	information indicating relations between the representative three-
12	dimensional object models and reference images,
13	wherein the step of identifying whether a match exists
14	performing comparison comprises comprising the step of comparing the
15	selected reference image with the input three_dimensional data.
1	17. (Currently Amended) <u>The An</u> image comparison method <u>of</u>
2	according to claim 10, characterized by further comprising the step
3	of:

4	comparing the input three_dimensional data with
5	representative images which are representative ones of images,
6	and selecting a representative image similar to the three-
7	dimensional data; and
8	selecting a reference image corresponding to the selected
9	representative image by referring to information indicating
10	relations between the representative images and reference images,
11	wherein the step of identifying whether a match exists comprises
12	performing comparison comprising the step of comparing the selected
13	reference image with the input three-dimensional data.
1	18. (Currently Amended) <u>The</u> An image comparison method <u>of</u>
2	according to claim 13, characterized by further comprising the step of
3	determining the correction coefficient on the basis of at least one of a
4	distance value and a similarity degree between a representative three_
5	dimensional object model and the reference image.
1	19. (Currently Amended) A computer readable medium storing a
2	computer program that, when executed by the computer, causes
3	the for causing a computer to execute:
4	a procedure of inputting input three-dimensional data of
5	an object;
6	a procedure of generating at least one pose candidate as a
7	candidate for pose of the object;
8	a procedure of generating, for the reference image of the at
9	least one object, a at least one comparison image close to the
10	reference image, said generating including while projecting the
11	three-dimensional data onto a two-dimensional image in
12	accordance with each of the plurality of pose candidates to

13	generate a plurality of comparison images and calculating, for each
14	of the plurality of comparison images, the minimum distance
15	between the comparison image and the reference image and
16	selecting, as the comparison image close to the reference image,
17	the comparison image having the smallest minimum distance; and
18	a procedure of identifying whether a match exists between
19	the generated comparison image and the reference image, said
20	identifying including performing comparison on the basis of one of
21	a distance value and a similarity degree between the reference
22	image and the generated comparison image.
1	20. (Currently Amended) The computer readable storage medium
2	of A program according to claim 19, wherein the computer
3	program, when executed by the computer in the procedure of
4	identifying whether a match exists performing comparison, the
5	program causes the computer to execute:
6	a procedure of calculating one of the distance value and the
7	similarity degree between the reference image and the comparison
8	image;
9	a procedure of selecting one of a minimum distance value
10	which is a smallest distance value and a maximum similarity
11	degree which is a largest similarity degree; and
12	a procedure of performing comparison on the basis of one of a
13	result of comparison between the minimum distance value between the
14	reference image and the generated comparison image and a threshold
15	value and a result of comparison between the maximum similarity
16	degree between the reference image and the generated comparison
17	image and a threshold value.

1	21. (Currently Amended) The computer readable storage medium
2	of A program according to claim 19, wherein the computer
3	program, when executed by the computer in the procedure of
4	generating a comparison image, the program causes the computer
5	to execute a procedure of generating a comparison image close to
6	each reference image for each of a plurality of objects, and
7	in the procedure of identifying whether a match exists
8	performing comparison, the program causes the computer to
9	execute:
10	a procedure of calculating, for each of the reference images,
11	one of a distance value and a similarity degree between the each
12	reference image and the generated comparison image close to the
13	reference image;
14	a procedure of selecting, for each of the reference images,
15	one of a minimum distance value which is a smallest distance
16	value and a maximum similarity degree which is a largest
17	similarity degree for each reference image; and
18	a procedure of outputting, as a comparison result, one of a
19	reference image including a smallest minimum distance value which is
20	a smallest one of minimum distance values and a reference image
21	including a largest maximum similarity degree which is a largest one of
22	maximum similarity degrees.
1	22. (Currently Amended) The computer readable storage medium of A
2	program according to claim 19, wherein the computer program, when
3	executed by the computer which further causes the computer to execute
4	a procedure of correcting one of the minimum distance value and the

5

6	corresponding to the reference image.
1	23. (Currently Amended) The computer readable storage medium of A
2	program according to claim 10, wherein the computer program, when
3	executed by the computer in the procedure of identifying whether a
4	match exists, performing comparison, the program causes the computer
5	to execute a procedure of calculating one of the distance value and the
6	similarity degree between the reference image and the comparison
7	image by using a weighting coefficient corresponding to the reference
8	image.
1	24. (Currently Amended) The computer readable storage medium
2	of A program according to claim 19, wherein the computer
3	program, when executed by the computer which further causes the
4	computer to execute:
5	a procedure of extracting a three-dimensional reference
6	point from the input three_dimensional data; and
7	a procedure of obtaining a coordinate correspondence of a
8	standard three-dimensional weighting coefficient to the three-
9	dimensional data by using a standard three-dimensional reference
10	point corresponding to a standard three_dimensional object model
11	and the three-dimensional reference point of the three-dimensional
12	data, and converting the standard three-dimensional weighting
13	coefficient into a two-dimensional weighting coefficient in
14	accordance with the pose candidate,
15	wherein in the procedure of performing comparison, the program
16	causes the computer to execute a procedure of calculating one of the
17	distance value and the similarity degree between the reference image

maximum similarity degree <u>based on</u> by using a correction coefficient

18

19	weighting coefficient.
1	25. (Currently Amended) The computer readable storage medium
2	of A program according to claim 19, wherein the computer
3	program, when executed by the computer which further causes the
4	computer to execute:
5	a procedure of comparing the input three-dimensional data
6	with representative three_dimensional object models which are
7	representative ones of three-dimensional object models, and
8	selecting a representative three-dimensional object model similar
9	to the three_dimensional data; and
10	a procedure of selecting a reference image corresponding to
11	the selected representative three-dimensional object model by
12	referring to information indicating relations between the
13	representative three_dimensional object models and reference
14	images,
15	wherein in the procedure of performing comparison, the program
16	causes the computer to execute a procedure of comparing the selected
17	reference image with the input three_dimensional data.
1	26. (Currently Amended) The computer readable storage medium
2	of A program according to claim 19, wherein the computer
3	program, when executed by the computer which further causes the
4	computer to execute:
5	a procedure of comparing the input three-dimensional data
6	with representative images which are representative ones of

and the comparison image by using the converted two-dimensional

images, and selecting a representative image similar to the three-7 8 dimensional data; and 9 a procedure of selecting a reference image corresponding to the selected representative image by referring to information 10 11 indicating relations between the representative images and 12 reference images, wherein in the procedure of performing comparison, the program 13 14 causes the computer to execute a procedure of comparing the selected 15 reference image with the input three-dimensional data. 1 27. (Currently Amended) The computer readable storage medium of A 2 program according to claim 22, wherein the computer program, when executed by the computer which further causes the computer to execute 3 a procedure of determining the correction coefficient on the basis of at 4 5 least one of a distance value and a similarity degree between a representative three_dimensional object model and the reference image. 6