Optimization Theory and Methods

Prof. Xiaoe Ruan

Email: wruanxe@xjtu.edu.cn

Tel:13279321898

2019, Fall

Chap.3 Unconstrained Optimization Methods

Global Convergence of Descent Algorithm

Steepest Descent Algorithm and Newton's

Method

Quasi-Newton's Method

1. Global Convergence of Descent Algorithm

(1).Descent Algorithm

Construct sequence $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$

s.t.
$$f(x^{(k+1)}) = f(x^{(k)} + \alpha_k d^{(k)}) < f(x^{(k)}).$$

Because of

$$f(x^{(k)} + \alpha_k d^{(k)}) = f(x^{(k)}) + \alpha_k \nabla f(x^{(k)})^{\mathrm{T}} d^{(k)} + o(\|\alpha_k d^{(k)}\|).$$

Then

$$-\varepsilon < \nabla f\left(x^{(k)}\right)^{\mathrm{T}} d^{(k)} < 0$$

Let

$$\cos \theta_k = \frac{-\nabla f\left(x^{(k)}\right)^{\mathrm{T}} d^{(k)}}{\left\|\nabla f\left(x^{(k)}\right)\right\| \left\|d^{(k)}\right\|}$$

Then
$$0 \le \theta_k \le \frac{\pi}{2} - \overline{\mu}_k$$
, $(\overline{\mu}_k > 0)$, $k = 1, 2, \cdots$

Th.1. Let $\nabla f(x)$ be consistently continuous on level set

$$L\left(x^{(0)}\right) = \left\{x \mid f\left(x\right) \le f\left(x^{(0)}\right)\right\} \quad \text{and} \quad 0 \le \theta_k \le \frac{\pi}{2} - \overline{\mu}, (\overline{\mu} > 0), k = 1, 2, \cdots$$

$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \ge 0} f\left(x^{(k)} + \alpha d^{(k)}\right).$$

Iterative sequence
$$\chi^{(k+1)} = \chi^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$$

Then (1) There exists
$$k$$
, s.t. $\nabla f(x^{(k)}) = 0$

or (2)
$$f(x^{(k)}) \rightarrow -\infty(k \rightarrow \infty)$$

or (3)
$$\nabla f(x^{(k)}) \to 0(k \to \infty)$$

Proof: If both (1) and (2) are not true.

Then
$$\nabla f(x^{(k)}) \neq 0 (k = 0, 1, \cdots)$$
 and $-M \leq f(x^{(k)})$

Prove (3) following.

As
$$-M < \cdots < f\left(x^{(k+1)}\right) < f\left(x^{(k)}\right)$$
, then $\lim_{k \to \infty} f\left(x^{(k)}\right)$ exists. That is $\left\| f\left(x^{(k)}\right) - f\left(x^{(k+1)}\right) \right\| \to 0 \ (k \to \infty)$ (**)

Assume that, by contradiction, (3) $\nabla f(x^{(k)}) \rightarrow 0$ does not hold.

Then there exists subsequence $\nabla f(x^{(k_i)})$ s.t. $\left\|\nabla f(x^{(k_i)})\right\| > \varepsilon$

Thus
$$\frac{-\nabla f\left(x^{(k_i)}\right)^{\mathsf{T}}d^{(k_i)}}{\left\|d^{(k_i)}\right\|} = \left\|\nabla f\left(x^{(k_i)}\right)\right\|\cos\theta_{k_i}$$

$$\geq \left\| \nabla f \left(x^{(k_i)} \right) \right\| \cos \left(\frac{\pi}{2} - \overline{\mu} \right) = \left\| \nabla f \left(x^{(k_i)} \right) \right\| \sin \overline{\mu} > \varepsilon \sin \overline{\mu} \triangleq \mathcal{E}_1$$

Then

$$f(x^{(k_i)} + \alpha d^{(k_i)}) = f(x^{(k_i)}) + \alpha \nabla f(x^{(k_i)} + \theta \alpha d^{(k_i)})^{\mathrm{T}} d^{(k_i)}$$

$$= f\left(x^{(k_i)}\right) + \alpha \nabla f\left(x^{(k_i)}\right)^{\mathrm{T}} d^{(k_i)} + \alpha \left[\nabla f\left(x^{(k_i)} + \theta \alpha d^{(k_i)}\right) - \nabla f\left(x^{(k_i)}\right)\right]^{\mathrm{T}} d^{(k_i)}$$

From consistent continuity of $\nabla f(x)$ on level set $L(x^{(0)})$ Yields,

$$\| \mathbf{x} \| \mathbf{x}^{(k_i)} \| \leq \overline{\alpha} \quad \text{then} \quad \| \nabla f \left(\mathbf{x}^{(k_i)} + \theta \alpha d^{(k_i)} \right) - \nabla f \left(\mathbf{x}^{(k_i)} \right) \| \leq \frac{1}{2} \varepsilon_1.$$

Let
$$\alpha = \frac{\overline{\alpha}}{\|d^{(k_i)}\|}$$
 Then $f\left(x^{(k_i)} + \frac{\overline{\alpha}}{\|d^{(k_i)}\|}d^{(k_i)}\right) - f\left(x^{(k_i)}\right) \le -\overline{\alpha}\varepsilon_1 + \frac{1}{2}\overline{\alpha}\varepsilon_1 = -\frac{1}{2}\overline{\alpha}\varepsilon_1.$

That is
$$\left\| f \left(x^{(k_i)} + \frac{\overline{\alpha}}{\left\| d^{(k_i)} \right\|} d^{(k_i)} \right) - f \left(x^{(k_i)} \right) \right\| > \frac{1}{2} \overline{\alpha} \varepsilon_1.$$

As
$$f\left(x^{(k_i)} + \alpha_{k_i}d^{(k_i)}\right) \le f\left(x^{(k_i)} + \frac{\bar{\alpha}}{\|d^{(k_i)}\|}d^{(k_i)}\right)$$
,

Therefore
$$\left\| f\left(x^{(k_i)} + \alpha_{k_i} d^{(k_i)}\right) - f\left(x^{(k_i)}\right) \right\| > \frac{1}{2} \overline{\alpha} \varepsilon_1.$$

Which contradicts to (**).

(2).Convergence Rate

Lemma1 Let $\varphi(lpha)$ be 2nd-order continuously differentiable on

$$[0,b]$$
. $\varphi'(0) < 0$ and $\exists M > 0$ s.t. $\varphi''(\alpha) \le M, \forall \alpha \in [0,b]$.

If $\alpha^* \in (0,b)$ is the unique minimizer of $\varphi(\alpha)$ then $\alpha^* \ge -\frac{\varphi'(0)}{M}$.

Proof: Let
$$\bar{\alpha} = -\frac{\varphi'(0)}{M}$$
. From $\varphi(\alpha) = \varphi(0) + \varphi'(0)\alpha + \frac{1}{2}\varphi''(\xi)\alpha^2$

yields
$$\varphi(\alpha^*) = \varphi(0) + \varphi'(0)\alpha^* + \frac{1}{2}\varphi''(\xi_1)\alpha^{*2}$$
 (1)

Further from
$$\varphi(\alpha) = \varphi(\alpha^*) + \frac{1}{2}\varphi''(\eta)(\alpha - \alpha^*)^2$$

makes
$$\varphi(0) = \varphi(\alpha^*) + \frac{1}{2}\varphi''(\xi_2)\alpha^{*2}$$
 (2)

(1)+(2) delivers
$$0 < \alpha^* = -\frac{2\varphi'(0)}{\varphi''(\xi_1) + \varphi''(\xi_2)} \ge -\frac{\varphi'(0)}{M} = \bar{\alpha}$$

Lemma2 Let x^* be a minimizer of f(x). If f(x) is 2^{nd} -order

continuously differentiable in
$$N_{\delta}\left(x^{*}\right)$$
 and exist $\varepsilon>0$, $0< m< M$,

s.t.
$$m\|u\|^2 \le u^{\mathrm{T}} \nabla^2 f(x) u \le M \|u\|^2$$
 for $\forall u \in \mathbb{R}^n$ and $\|x - x^*\| < \varepsilon$

Then
$$\frac{1}{2}m\|x-x^*\|^2 \le f(x)-f(x^*) \le \frac{1}{2}M\|x-x^*\|^2$$
, $\|\nabla f(x)\| \ge m\|x-x^*\|$.

Proof:
$$f(x) = f(x^*) + \frac{1}{2}(x - x^*)^T \nabla^2 f(\xi_1)(x - x^*)$$

Then
$$\frac{1}{2}m\|x-x^*\|^2 \le f(x)-f(x^*) \le \frac{1}{2}M\|x-x^*\|^2$$
,

From
$$f(x^*) = f(x) + \nabla f(x)^{\mathrm{T}} (x^* - x) + \frac{1}{2} (x^* - x)^{\mathrm{T}} \nabla^2 f(\xi_2) (x^* - x)$$

makes
$$\nabla f(x)^{T}(x-x^{*}) = f(x) - f(x^{*}) + \frac{1}{2}(x-x^{*})^{T} \nabla^{2} f(\xi_{2})(x-x^{*})$$

Therefore
$$\|\nabla f(x)\| \ge m \|x - x^*\|$$
.

Th.2. Let
$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \geq 0} f\left(x^{(k)} + \alpha d^{(k)}\right)$$
. $f\left(x^*\right) = \min_{x \in N(x')} f\left(x\right)$. Iterative sequence $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$ satisfies $\lim_{k \to \infty} x^{(k)} = x^*$. If $f\left(x\right)$ is 2^{nd} -orde continuously differentiable in $N_{\delta}\left(x^*\right)$ and there exist $\varepsilon > 0$, $0 < m < M$, s.t.
$$m\|u\|^2 \leq u^{\text{T}} \nabla^2 f\left(x\right) u \leq M \|u\|^2 \text{ for } \forall u \in R^n \text{ and } \|x - x^*\| < \varepsilon. \text{ Then } \{f\left(x^{(k)}\right)\} \text{ is Q-linearly convergent. } \left\{x^{(k)}\right\} \text{ is R-linearly convergent.}$$
 Proof: Let $\left\{x^{(k)}\right\} \in N_{\varepsilon}\left(x^*\right)$, $\varphi(\alpha) = f\left(x^{(k)} + \alpha d^{(k)}\right)$. Then there exists $0 < \delta <<1$ s.t. $x^{(k)} + (\alpha_k + \delta) d^{(k)} \in N_{\varepsilon}\left(x^*\right)$. where $\varphi(\alpha_k) = \min \varphi(\alpha)$, $\varphi'(0) = \nabla f\left(x^{(k)}\right)^T d^{(k)} < 0$,
$$\varphi''(\alpha) = d^{(k)\text{T}} \nabla^2 f\left(x^{(k)} + \alpha d^{(k)}\right) d^{(k)} < M \|d^{(k)}\|^2.$$

From Lemma1 conducts

$$\alpha_{k} \geq \frac{-\varphi'(0)}{M \|d^{(k)}\|^{2}} \geq \frac{\left\|\nabla f\left(x^{(k)}\right)\right\| \|d^{(k)}\| \sin \overline{\mu}}{M \|d^{(k)}\|^{2}} = \frac{\left\|\nabla f\left(x^{(k)}\right)\right\| \sin \overline{\mu}}{M \|d^{(k)}\|} \stackrel{\triangle}{=} \overline{\alpha}_{k}$$
Let $\overline{x}^{(k)} = x^{(k)} + \overline{\alpha}_{k} d^{(k)}$ Then $\overline{x}^{(k)} \in N\left(x^{*}, \varepsilon\right)$ Thus
$$f\left(x^{(k)} + \alpha_{k} d^{(k)}\right) - f\left(x^{(k)}\right) \leq f\left(x^{(k)} + \overline{\alpha}_{k} d^{(k)}\right) - f\left(x^{(k)}\right)$$

$$= \overline{\alpha}_{k} \nabla f\left(x^{(k)}\right)^{\mathrm{T}} d^{(k)} + \frac{1}{2} \overline{\alpha}_{k}^{2} d^{(k)\mathrm{T}} \nabla^{2} f\left(\xi^{(k)}\right) d^{(k)}$$

$$\leq -\overline{\alpha}_{k} \left\|\nabla f\left(x^{(k)}\right)\right\| \left\|d^{(k)}\right\| \sin \overline{\mu} + \frac{1}{2} \overline{\alpha}_{k}^{2} \left\|d^{(k)}\right\|^{2} M$$

$$\leq -\frac{\left\|\nabla f\left(x^{(k)}\right)\right\|^{2} \left\|d^{(k)}\right\| \sin^{2} \overline{\mu}}{M \left\|d^{(k)}\right\|} + \frac{1}{2} \frac{\left\|\nabla f\left(x^{(k)}\right)\right\|^{2} \sin^{2} \overline{\mu} \left\|d^{(k)}\right\|^{2} M}{M \left\|d^{(k)}\right\|}$$

$$= -\frac{1}{2} \frac{\left\| \nabla f \left(x^{(k)} \right) \right\|^2 \sin^2 \overline{\mu}}{M} \le -\frac{1}{2} \frac{m^2 \sin^2 \overline{\mu}}{M} \left\| x^{(k)} - x^* \right\|^2$$

$$\leq -\frac{m^2 \sin^2 \overline{\mu}}{M^2} \left[f\left(x^{(k)}\right) - f\left(x^*\right) \right]$$

Therefore
$$f\left(x^{(k+1)}\right) - f\left(x^*\right) \le \left(1 - \frac{m^2 \sin^2 \overline{\mu}}{M^2}\right) \left[f\left(x^{(k)}\right) - f\left(x^*\right)\right]$$

That means $\{f(x^{(k)})\}$ is Q-linearly convergent. And

$$\frac{1}{2}m\|x^{(k+1)} - x^*\|^2 \le f(x^{(k+1)}) - f(x^*) \le \left(1 - \frac{m^2 \sin^2 \overline{\mu}}{M^2}\right)^{k+1} \left[f(x^{(0)}) - f(x^*)\right]$$

Then

$$\|x^{(k+1)} - x^*\| \le \frac{2(k+1)}{m} \left[f\left(x^{(0)}\right) - f\left(x^*\right) \right] \sqrt{1 - \frac{m^2 \sin^2 \overline{\mu}}{M^2}} \to \sqrt{1 - \frac{m^2 \sin^2 \overline{\mu}}{M^2}} < 1$$

Therefore $\{x^{(k)}\}$ is R-linearly convergent.

Th.3. Iterative sequence
$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$$

$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \geq 0} f\left(x^{(k)} + \alpha d^{(k)}\right).$$
 If $f\left(x\right)$ is consistently convex.

i.e.
$$\exists \eta > 0$$
, s.t. $\left[\nabla f(x) - \nabla f(y)\right]^{\mathrm{T}} (x - y) \ge \eta \|x - y\|^2$, $\forall x, y \in R^n$.

Then
$$f(x^{(k)}) - f(x^{(k+1)}) \ge \frac{1}{2} \eta \|\alpha_k d^{(k)}\|^2$$
.

Proof: Let
$$\varphi(\alpha) = f\left(x^{(k)} + \alpha d^{(k)}\right)$$
 Then $\varphi'(\alpha) = \nabla f\left(x^{(k)} + \alpha d^{(k)}\right)^{\mathsf{T}} d^{(k)}$.

$$\varphi(0) - \varphi(\alpha_k) = -\int_0^{\alpha_k} \varphi'(\alpha) d\alpha. \qquad \varphi'(\alpha_k) = \nabla f(x^{(k)} + \alpha_k d^{(k)})^{\mathrm{T}} d^{(k)} = 0.$$

Thus
$$f(x^{(k)}) - f(x^{(k)} + \alpha_k d^{(k)}) = -\int_0^{\alpha_k} \nabla f(x^{(k)} + \alpha d^{(k)})^T d^{(k)} d\alpha.$$

$$= \int_0^{\alpha_k} \frac{\left[\nabla f\left(x^{(k)} + \alpha_k d^{(k)}\right) - \nabla f\left(x^{(k)} + \alpha d^{(k)}\right)\right]^{\mathsf{T}} \left(\alpha_k - \alpha\right) d^{(k)}}{\left(\alpha_k - \alpha\right)} d\alpha.$$

$$\geq \int_0^{\alpha_k} \eta(\alpha_k - \alpha) \|d^{(k)}\|^2 d\alpha = \frac{1}{2} \eta \|\alpha_k d^{(k)}\|^2.$$

2. Steepest Descent Algorithm and Newton's Method

(1). Steepest Descent Algorithm

Let iterative sequence $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$ where $f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha > 0} f\left(x^{(k)} + \alpha d^{(k)}\right).$

Remind

$$f(x^{(k)} + \alpha_k d^{(k)}) = f(x^{(k)}) + \alpha_k \nabla f(x^{(k)})^{\mathrm{T}} d^{(k)} + o(\|\alpha_k d^{(k)}\|)$$

Therefore For the case when $d^{(k)} = -\nabla f(x^{(k)})$

the descent quantity of objective fcn is maximal.

Then, Steepest Descent Algorithm:

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f\left(x^{(k)}\right), k = 0, 1, \cdots.$$
 with
$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \geq 0} f\left(x^{(k)} + \alpha d^{(k)}\right).$$

Lemma3 Let
$$f(x^{(k)} + \alpha_k d^{(k)}) = \min_{\alpha \ge 0} f(x^{(k)} + \alpha d^{(k)})$$
. If $\exists M > 0$,

s.t.
$$\left\| \nabla^2 f \left(x^{(k)} + \alpha d^{(k)} \right) \right\| \le M$$
, $\forall \alpha > 0, k = 1, 2, \cdots$. Then

$$f(x^{(k)}) - f(x^{(k)} + \alpha_k d^{(k)}) \ge \frac{1}{2M} \|\nabla f(x^{(k)})\|^2 \cos^2 \theta_k, k = 1, 2, \dots$$

Proof: Let
$$\overline{\alpha}_k = -\frac{\nabla f\left(x^{(k)}\right)^T d^{(k)}}{M \left\|d^{(k)}\right\|^2}$$
 Then $\overline{\alpha}_k > 0$ and

$$f\left(x^{(k)} + \bar{\alpha}_k d^{(k)}\right) - f\left(x^{(k)}\right) = \bar{\alpha}_k \nabla f\left(x^{(k)}\right)^{\mathrm{T}} d^{(k)} + \frac{1}{2} \bar{\alpha}_k^2 d^{(k)\mathrm{T}} \nabla^2 f\left(\xi^{(k)}\right) d^{(k)}$$

$$\leq \overline{\alpha}_{k} \nabla f \left(x^{(k)} \right)^{\mathrm{T}} d^{(k)} + \frac{1}{2} \overline{\alpha}_{k}^{2} \left\| d^{(k)} \right\|^{2} M = -\frac{\left(\nabla f \left(x^{(k)} \right)^{\mathrm{T}} d^{(k)} \right)^{2}}{2M \left\| d^{(k)} \right\|^{2}} = -\frac{1}{2M} \left\| \nabla f \left(x^{(k)} \right) \right\|^{2} \cos^{2} \theta_{k}.$$
In particular

$$f(x^{(k)}) - f(x^{(k)} + \alpha_k d^{(k)}) \ge f(x^{(k)}) - f(x^{(k)} + \overline{\alpha}_k d^{(k)}) \ge \frac{1}{2M} \|\nabla f(x^{(k)})\|^2 \cos^2 \theta_k.$$

Lemma4 Iterative sequence $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$ with $f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \geq 0} f\left(x^{(k)} + \alpha d^{(k)}\right)$. Let $f\left(x\right)$ be continuously differentiable in open set $D \subset R^n$ and $\overline{x} \in D$ be

an accumulation point of $\left\{x^{(k)}\right\}$ i.e. $\lim_{k_i \to \infty} x^{(k_i)} = \overline{x}$.

If $\exists M>0$ s.t. $\left\|d^{(k_i)}\right\|\leq M$ and \overline{d} is an accumulation

point of $\left\{d^{(k_i)}\right\}$. Then $\nabla f\left(\overline{x}\right)^{\mathrm{T}}\overline{d}=0$.

Proof: If
$$\lim_{k_{i_j} \to \infty} d^{\binom{k_{i_j}}{2}} = \overline{d} = 0$$
, then $\nabla f(\overline{x})^{\mathrm{T}} \overline{d} = 0$.

If $\lim_{k_{i_j} \to \infty} d^{\binom{k_{i_j}}{2}} = \overline{d} \neq 0$, but $\lim_{k_{i_j} \to \infty} \alpha^{\binom{k_{i_{j_l}}}{2}} = \overline{\alpha} = 0$,

From $\lim_{k_{i_{j_{l}}}\to\infty} \nabla f\left(x^{\left(k_{i_{j_{l}}}\right)} + \alpha_{k_{i_{j_{l}}}}d^{\left(k_{i_{j_{l}}}\right)}\right)^{\mathrm{T}}d^{\left(k_{i_{j_{l}}}\right)} = 0.$ yields $\nabla f\left(\overline{x}\right)^{\mathrm{T}}\overline{d} = 0.$

$$\begin{aligned} & \text{If} \quad \lim_{k_{i_{j}} \to \infty} \sup \alpha^{\binom{k_{i_{j}}}{2}} = \overline{\alpha} > 0. \quad \text{Then there exists} \quad \left\{\alpha^{\binom{k_{i_{j_{m}}}}{2}}\right\} \\ & \text{s.t.} \quad \lim_{k_{i_{j_{m}}} \to \infty} \alpha^{\binom{k_{i_{j_{m}}}}{2}} \geq \frac{\overline{\alpha}}{2} > 0. \end{aligned}$$

$$& \text{If} \quad \lim_{k_{i_{j_{m}}} \to \infty} \nabla f \left(x^{\binom{k_{i_{j_{m}}}}{2}} + \alpha_{k_{i_{j_{m}}}} d^{\binom{k_{i_{j_{m}}}}{2}}\right)^{\mathrm{T}} d^{\binom{k_{i_{j_{m}}}}{2}} = \nabla f \left(\overline{x}\right)^{\mathrm{T}} \overline{d} \neq 0$$

$$& \text{Then} \quad \exists \delta > 0, \ \widetilde{\alpha} > 0. \quad \text{s.t.} \quad \nabla f \left(x^{\binom{k_{i_{j_{m_{n}}}}}{2}} + \widetilde{\alpha} d^{\binom{k_{i_{j_{m_{n}}}}}{2}}\right)^{\mathrm{T}} d^{\binom{k_{i_{j_{m_{n}}}}}{2}} < -\frac{1}{2}\delta \end{aligned}$$

$$& \text{Thus} \quad f \left(\overline{x}\right) - f \left(x^{\binom{0}{2}}\right) = \sum_{k_{i_{j_{m}}}} \left[f \left(x^{\binom{k_{i_{j_{m_{n}}}}}{2}}\right) - f \left(x^{\binom{k_{i_{j_{m_{n}}}}}{2}}\right) \right]$$

$$& \leq \sum_{k_{i_{j_{m_{n}}}}} \alpha_{k_{i_{j_{m_{n-1}}}}}} \nabla f \left(\xi^{\binom{k_{i_{j_{m-1}}}}{2}}\right) d^{\binom{k_{i_{j_{m-1}}}}{2}} \leq \sum_{k_{i_{j_{m_{n}}}}} \frac{\overline{\alpha}}{2} \left(-\frac{\delta}{2}\right) \longrightarrow -\infty$$

This contradicts to boundedness of $f(\overline{x}) - f(x^{(0)})$

Therefore
$$\nabla f(\overline{x})^{\mathrm{T}} \overline{d} = 0.$$

Let
$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$$

$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \ge 0} f\left(x^{(k)} + \alpha d^{(k)}\right). \quad d^{(k)} = -\nabla f\left(x^{(k)}\right), k = 0, 1, \cdots.$$

If \overline{x} is an accumulation point of $\{x^{(k)}\}$ Then $\nabla f(\overline{x}) = 0$.

Th.5. Let
$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$$

$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \ge 0} f\left(x^{(k)} + \alpha d^{(k)}\right). \quad d^{(k)} = -\nabla f\left(x^{(k)}\right), k = 0, 1, \cdots.$$

If there exists
$$M > 0$$
 s.t. $\|\nabla^2 f(x)\| \le M$.

Then
$$\lim_{k \to \infty} \nabla f\left(x^{(k)}\right) = 0$$
 or $\lim_{k \to \infty} f\left(x^{(k)}\right) = -\infty$

From
$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \geq 0} f\left(x^{(k)} + \alpha d^{(k)}\right) \quad \text{gives rise to}$$

$$0 = \frac{\mathrm{d}f\left(x^{(k)} + \alpha d^{(k)}\right)}{1} \qquad = \nabla f\left(x^{(k)} + \alpha_k d^{(k)}\right)^{\mathrm{T}} d^{(k)} = -d^{(k+1)\mathrm{T}} d^{(k)}.$$

This means that two adjacent directions are orthogonal.

When the iterative point approaches to the minimizer, the convergent rate is not the fastest. It depends on the flatness of equilevel circle.

From defs. of convergence rate and condition number it conveys that more round implies faster the convergent rate.

Lemma 5 (Kantorovich-inequality) Let $A_{n \times n}$ be RSPD and

$$0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$$
 be eigenvalues. Then for any

$$0 \neq x \in R^{(n)}, \quad \text{we have} \quad \frac{\left(x^{\mathsf{T}} x\right)^{2}}{\left(x^{\mathsf{T}} A x\right) \left(x^{\mathsf{T}} A^{-1} x\right)} \geq \frac{4\lambda_{1} \lambda_{n}}{\left(\lambda_{1} + \lambda_{n}\right)^{2}}$$

Proof: Let $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$. Then there exists orthogonal

matrix
$$P$$
, s.t. $A = P\Lambda P^{T}$. Let $x = Py$. Then

$$\frac{\left(x^{\mathsf{T}}x\right)^{2}}{\left(x^{\mathsf{T}}Ax\right)\left(x^{\mathsf{T}}A^{-1}x\right)} = \frac{\left(y^{\mathsf{T}}y\right)^{2}}{\left(y^{\mathsf{T}}\Lambda y\right)\left(y^{\mathsf{T}}\Lambda^{-1}y\right)} = \frac{\left(\sum_{i=1}^{n}y_{i}^{2}\right)^{2}}{\left(\sum_{i=1}^{n}\lambda_{i}y_{i}^{2}\right)\left(\sum_{i=1}^{n}\frac{1}{\lambda_{i}}y_{i}^{2}\right)}$$

$$= \frac{1}{\left(\sum_{i=1}^{n}\lambda_{i}\xi_{i}\right)\left(\sum_{i=1}^{n}\frac{1}{\lambda_{i}}\xi_{i}\right)} \quad \text{where} \quad \xi_{i} = \frac{y_{i}^{2}}{\sum_{i=1}^{n}y_{i}^{2}}$$

$$\xi_i = \frac{1}{\sum_{i=1}^{n} y_i^2}$$

$$\lambda = \sum_{i=1}^n \lambda_i \xi_i$$

$$\mathbf{nen} \quad \lambda_1 \leq \lambda \leq \lambda_r$$

Denote
$$\lambda = \sum_{i=1}^n \lambda_i \xi_i$$
 Then $\lambda_1 \le \lambda \le \lambda_n$ As $\lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

$$(\lambda_i - \lambda_1)(\lambda_i - \lambda_n) \leq 0$$
 i.e.

$$(\lambda_i - \lambda_1)(\lambda_i - \lambda_n) \le 0$$
 i.e. $\frac{1}{\lambda_i} \le \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n}$

Then
$$\left(\sum_{i=1}^n \lambda_i \xi_i\right) \left(\sum_{i=1}^n \frac{1}{\lambda_i} \xi_i\right) \leq \lambda \left(\sum_{i=1}^n \frac{\lambda_1 + \lambda_n - \lambda_i}{\lambda_1 \lambda_n} \xi_i\right)$$

$$=\lambda\frac{\lambda_1+\lambda_n}{\lambda_1\lambda_n}\sum_{i=1}^n\xi_i-\frac{\lambda}{\lambda_1\lambda_n}\left(\sum_{i=1}^n\lambda_i\xi_i\right) = \frac{\lambda\left(\lambda_1+\lambda_n-\lambda\right)}{\lambda_1\lambda_n}$$
 Therefore

$$\frac{\left(x^{\mathsf{T}}x\right)^{2}}{\left(x^{\mathsf{T}}Ax\right)\left(x^{\mathsf{T}}A^{-1}x\right)} = \frac{1}{\left(\sum_{i=1}^{n}\lambda_{i}\xi_{i}\right)\left(\sum_{i=1}^{n}\frac{1}{\lambda_{i}}\xi_{i}\right)} \geq \frac{\lambda_{1}\lambda_{n}}{\lambda\left(\lambda_{1}+\lambda_{n}-\lambda\right)} \geq \frac{4\lambda_{1}\lambda_{n}}{\left(\lambda_{1}+\lambda_{n}\right)^{2}}$$

Th.6. Unconstrained Optimization $min f(x) = \frac{1}{2}x^{T}Ax$

where $A_{n \times n}$ is RSPD. Let $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ be eigenvalues.

Iterative sequence
$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$$

with
$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \geq 0} f\left(x^{(k)} + \alpha d^{(k)}\right)$$
, $d^{(k)} = -\nabla f\left(x^{(k)}\right)$.

Then
$$f\left(x^{(k+1)}\right) \leq \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2 f\left(x^{(k)}\right),$$

$$\left\|x^{(k+1)}\right\|_{2} \leq \sqrt{\frac{\lambda_{n}}{\lambda_{1}}} \left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right) \left\|x^{(k)}\right\|_{2}.$$

That is,
$$\{f(x^{(k)})\}$$
 is Q-superlinearly/linearly convergent.

Further
$$\left\{x^{(k)}\right\}$$
 is

Further $\left\{ x^{(k)} \right\}$ is R-superlinearly/linearly convergent.

$$\mathbf{Proof:} d^{(k)} = -\nabla f\left(x^{(k)}\right) = -Ax^{(k)}. \quad \mathbf{From} \ f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \geq 0} f\left(x^{(k)} + \alpha d^{(k)}\right) \ \mathbf{yields}$$

$$\frac{\mathrm{d}f\left(x^{(k)} + \alpha d^{(k)}\right)}{\mathrm{d}\alpha} = \nabla f\left(x^{(k)} + \alpha_k d^{(k)}\right)^{\mathrm{T}} d^{(k)} = \left(Ax^{(k)} + \alpha_k Ad^{(k)}\right)^{\mathrm{T}} d^{(k)} = 0$$

Then
$$\alpha_k = \frac{d^{(k)T}d^{(k)}}{d^{(k)T}Ad^{(k)}}$$
 Due to $x^{(k)T}Ax^{(k)} = d^{(k)T}A^{-1}d^{(k)}$ Thus

$$f(x^{(k+1)}) = \frac{1}{2} (x^{(k)} + \alpha_k d^{(k)})^{\mathsf{T}} A(x^{(k)} + \alpha_k d^{(k)})$$

$$= \frac{1}{2} \left[x^{(k)\mathsf{T}} A x^{(k)} + 2\alpha_k d^{(k)\mathsf{T}} A x^{(k)} + \alpha_k^2 d^{(k)\mathsf{T}} A d^{(k)} \right]$$

$$= \frac{1}{2} \left[x^{(k)\mathsf{T}} A x^{(k)} + 2\alpha_k d^{(k)\mathsf{T}} A x^{(k)} + \alpha_k^2 d^{(k)\mathsf{T}} A d^{(k)} \right]$$

$$= \frac{1}{2} x^{(k)T} A x^{(k)} \left[1 - \frac{\left(d^{(k)T} d^{(k)}\right)^2}{\left(d^{(k)T} A d^{(k)}\right) \left(d^{(k)T} A^{-1} d^{(k)}\right)} \right]$$

$$\leq f\left(x^{(k)}\right)\left[1 - \frac{4\lambda_1\lambda_n}{\left(\lambda_1 + \lambda_n\right)^2}\right] = f\left(x^{(k)}\right)\left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1}\right)^2$$

Then for any $x \in \mathbb{R}^n$. In addition $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

 $||\lambda_1|| ||x|||_2^2 \le 2f(x) = x^T A x \le \lambda_n ||x||_2^2$ we have **Therefore**

$$\frac{1}{\lambda_{1} \|x^{(k+1)}\|_{2}^{2}} \leq 2f\left(x^{(k+1)}\right) \leq 2f\left(x^{(k)}\right) \left(\frac{\lambda_{n} - \lambda_{1}}{\lambda_{n} + \lambda_{1}}\right)^{2} \leq \lambda_{n} \left(\frac{\lambda_{n} - \lambda_{1}}{\lambda_{n} + \lambda_{1}}\right)^{2} \|x^{(k)}\|_{2}^{2}$$

i.e. $\left\|x^{(k+1)}\right\|_{2} \leq \sqrt{\frac{\lambda_{n}}{\lambda_{n}}} \frac{\lambda_{n} - \lambda_{1}}{\lambda_{n} + \lambda_{1}} \left\|x^{(k)}\right\|_{2}$

$$\text{and } \left\| \boldsymbol{x}^{(k+1)} \right\|_2^2 \leq \frac{1}{\lambda_1} \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} \right)^2 2f\left(\boldsymbol{x}^{(k)}\right) \leq \dots \leq \frac{2f\left(\boldsymbol{x}^{(0)}\right)}{\lambda_1} \left(\frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} \right)^{2(k+1)}$$

This indicates $\{x^{(k)}\}_{\gamma}$ is R-superlinearly/linearly convergent.

Define $cond(A) = \frac{\lambda_n}{\lambda_1}$ as condition number or matrix AThen, the larger of cond(A) the slower of the convergent rate.

On the contrary,

The smaller of cond(A) implies faster convergent rate.

Th.7. Suppose f(x) is 2nd-order continuously differentiable and $\nabla^2 f(x) = H(x) = \left[H_{ij}(x)\right]$ satisfies Lipschitz condition.

That is $\exists \beta > 0$, such that

$$|H_{ij}(x)-H_{ij}(y)| \leq \beta ||x-y||, \quad \forall x, y \in \mathbb{R}^n, i, j=1,\dots,n.$$

Let
$$d^{(k)} = -\nabla f\left(x^{(k)}\right), k = 0, 1, \cdots$$
$$f\left(x^{(k)} + \alpha_k d^{(k)}\right) = \min_{\alpha \ge 0} f\left(x^{(k)} + \alpha d^{(k)}\right).$$

Iterative sequence
$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k = 0, 1, \cdots$$

Then
$$\left\{ f\left(x^{(k)}\right) \right\}$$
 is Q-linearly convergent.

(2) Newton's Method

Quadratic approximation

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^{\mathsf{T}} (x - x^{(k)}) + \frac{1}{2} (x - x^{(k)})^{\mathsf{T}} \nabla^2 f(x^{(k)}) (x - x^{(k)})$$

$$+o(||x-x^{(k)}||^2), \quad x \in N_1(x^{(k)}), x^{(k)} \in N_2(x^*)$$

Then $f(x) \approx q_k(x)$ If $\nabla^2 f(x^{(k)})$ is positive definite, $q_k(x)$

From
$$\nabla q_k(x) = \nabla f(x^{(k)}) + \nabla^2 f(x^{(k)})(x - x^{(k)}) = 0$$
 makes

$$x - x^{(k)} = -\left[\nabla^2 f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$$

Thus, construct iterative sequence

$$x^{(k+1)} = x^{(k)} - \left[\nabla^2 f(x^{(k)}) \right]^{-1} \nabla f(x^{(k)}) = x^{(k)} + d^{(k)}$$

 $d^{(k)} \text{ satisfying } \nabla^2 f\left(x^{(k)}\right) d^{(k)} = -\nabla f\left(x^{(k)}\right)$

named as Newton's Formula.

Th.8. Suppose f(x) is 2nd-order continuously differentiable and $f(x^*) = min \ f(x), x \in N(x^*), \quad \nabla f(x^*) = 0,$

$$\nabla^2 f(x^*) = H(x^*) = \left[H_{ij}(x^*) \right]$$
 is positive definite.

$$\nabla^2 f(x) = H(x)$$
 satisfies Lipschitz condition, i.e. $\exists \beta > 0$,

s.t.
$$|H_{ij}(x) - H_{ij}(y)| \le \beta ||x - y||, \forall x, y \in \mathbb{R}^n, i, j = 1, \dots, n.$$

Then, for the case when $||x^{(0)} - x^*|| << 1$,

Sequence
$$x^{(k+1)} = x^{(k)} - \left[\nabla^2 f(x^{(k)}) \right]^{-1} \nabla f(x^{(k)})$$
 is well-defined

and
$$\lim_{k \to \infty} x^{(k)} = x^*$$
, $\lim_{k \to \infty} \frac{\|x^{(k+1)} - x^*\|}{\|x^{(k)} - x^*\|^2} = \eta$, $\lim_{k \to \infty} k+1/\|x^{(k+1)} - x^*\| < 1$.

That is $\{x^{(k)}\}$ is R-linearly convergent.

25

(3) Damped Newton's Method

$$x^{(k+1)} = x^{(k)} - \alpha_k \left[\nabla^2 f(x^{(k)}) \right]^{-1} \nabla f(x^{(k)}) \qquad k = 0, 1, \dots$$

Th.9 Suppose that $f(x) \in C^2$ and for any $x^{(0)} \in R^n$,

there exists m>0, s.t. $m\|u\|^2 \le u^{\mathrm{T}}H(x)u$, $\forall x \in L(x^{(0)})$.

that is, f(x) is consistently convex.

Then

(1) For the case when
$$\left\{x^{(k)}\right\} = \left\{x^{(0)}, x^{(1)}, \dots, x^{(k_0)}\right\}$$

$$f\left(x^{(k_0)}\right) = min f\left(x\right), x \in \mathbb{R}^n$$

(2) For the case when $\lim_{k\to\infty} x^{(k)} = x^*$,

$$f(x^*) = min f(x), x \in \mathbb{R}^n$$

(4) Damped Newton's with protection

$$x^{(k+1)} = x^{(k)} + d^{(k)}$$
, where $d^{(k)}$ is chosen as:

(1) $\nabla f(x^{(k)}) \neq 0$ and $\nabla^2 f(x^{(k)})$ is positive definite.

Then
$$d^{(k)} = -\left[\nabla^2 f\left(x^{(k)}\right)\right]^{-1} \nabla f\left(x^{(k)}\right)$$

(2) $\nabla^2 f\left(x^{(k)}\right)$ not positive definite but $\nabla f\left(x^{(k)}\right)^{\mathsf{T}} \nabla^2 f\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right) < 0$.

Then $d^{(k)} = \nabla^2 f\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right)$

(3)
$$\nabla^2 f\left(x^{(k)}\right)^{-1} \nabla f\left(x^{(k)}\right) = 0$$
 or $\nabla^2 f\left(x^{(k)}\right)$ singular.

Then
$$d^{(k)} = -\nabla f(x^{(k)})$$

Remark:

At the beginning iterations we adopt Steepest Descent Method and nearing the minimizer we adopt Newton's Method.

