Übungen Formale Grundlagen der Informatik II Blatt 4

Übungsaufgabe 4.3:

4.3.1:

$$L(TS_{cell}) = (ou((lu)^* + (ct^*h))^* \cdot (f + ct^*eo^*rs))^*$$

$$L^{\omega}(TS_{cell}) = (ou((lu)^* + (ct^*h))^* \cdot (f + ct^*eo^*rs))^{\omega}$$

4.3.2:

$$SS(M_{cell}) = 0(12((12) + (3^{+}2))^* \cdot (0 + 3^{+}4^{+}50))^{\omega}$$

4.3.3:

$$ES(c_0) = \{Locked, Battery\}$$

$$ES(c_1) = \{Locked, Battery, On\}$$

$$ES(c_2) = \{Battery, On\}$$

$$ES(c_3) = \{Battery, On, Active\}$$

$$ES(c_4) = \{Locked, Battery, Error\}$$

$$ES(c_5) = \{Locked\}$$

$$ES(SS(M_{cell})) = ES(c_0)(ES(c_1)ES(c_2)((ES(c_1)ES(c_2)) + (ES(c_3)^+ES(c_2)))^* \cdot (ES(c_0) + ES(c_3)^+ES(c_4)^+ES(c_5)ES(c_0)))^\omega$$

4.3.4:

$$Sat(Error) = \{c_4\}$$

$$Sat(\neg Battery) = \{c_5\}$$

$$Sat(On) = \{c_1, c_2, c_3\}$$

Immer, wenn ein Fehler auftritt, gilt, dass wenn man im nächsten Schritt die Batterie entfernt, dass das Telefon dann zukünftig wieder an sein wird.

Behauptung: Die Formel f gilt in c_0 .

Beweis:

Einen Error erreicht man von c_0 nur, indem man über c_1 c_2 und c_3 nach c_4 übergeht. In c_4 kann der nächste Schritt auf c_5 gehen. In diesem Fall gilt nun $\neg Battery$. Von c_5 kann man nur nach c_0 übergehen, von da aus nur nach c_1 . In c_1 gilt wieder On.

4.3.5:

Behauptung: Die Formel g gilt in c_0 .

Beweis: Einen Error erreicht man von c_0 nur, indem man über c_1 c_2 und c_3 nach c_4 übergeht. In c_4 kann der nächste Schritt auf c_5 gehen, von c_5 nur nach c_0 , von da aus nur nach c_1 , von und von da aus nur nach c_2 . Hier existiert nun ein Weg

nach c_3 , in dem *Active* gilt.

Ein Pfad π lautet beispielsweise:

$$\pi = c_0 c_1 c_2 c_3 c_4 c_5 c_0 c_1 c_2 c_3$$

Übungsaufgabe 4.4:

4.4.1:

#	f	$M_{cell} \models f$	$M_{cell}, \pi \models f$
1	$\Box(Active)$	Falsch	Falsch
2	$\Box \Diamond (Active)$	Falsch	Wahr
3	$\Box(\bigcirc \ Active \Rightarrow \ On)$	Wahr	Wahr
4	$\Box \diamondsuit (Active \Rightarrow \bigcirc \bigcirc \neg On)$	Wahr	Wahr
5	$\square \diamondsuit (\neg Battery \lor Active \lor \neg On \lor Error)$	Falsch	Wahr
6	$\bigcirc\bigcirc\bigcirc\bigcirc$ Active	Wahr	Wahr

- 1. $M_{cell} \not\models \Box(Active)$, denn bereits im Startzustand $c_0 \neg Active$ gilt. $M_{cell}, \pi \not\models \Box(Active)$ aus dem gleichen Grund.
- 2. $M_{cell} \not\models \Box \diamondsuit (Active)$, da mit den Pfad $\pi' := (c_0 c_1 c_2)^{\omega}$ gilt $M_{cell}, \pi' \models \Box (\neg Active)$. $M_{cell}, \pi \models \Box \diamondsuit (Active)$, da in c_3 stets Active gilt.
- 3. $M_{cell} \models \Box (\bigcirc Active \Rightarrow On)$, da Active nur in c_3 gilt, und in den vorangehenden Zuständen c_2 und c_3 On gilt. Außerdem wird der geklammerte Audruck immer wahr, falls $(\bigcirc \neg Active)$ gilt.

 $M_{cell}, \pi \models \Box(\bigcirc Active \Rightarrow On)$ aus dem gleichen Grund.

- 4. $M_{cell} \models \Box \diamondsuit (Active \Rightarrow \bigcirc \bigcirc \neg On)$, da $(Active \Rightarrow \bigcirc \bigcirc \neg On)$ immer wahr wird, wenn $\neg Active$ gilt. Da dies schon in c_0 der Fall ist, gilt die Aussage auf allen Pfaden. $M_{cell}, \pi \models \Box \diamondsuit (Active \Rightarrow \bigcirc \bigcirc \neg On)$ aus dem gleichen Grund.
- 5. $M_{cell} \not\models \Box \diamondsuit (\neg Battery \lor Active \lor \neg On \lor Error)$, da für $\pi' := (c_0(c_1c_2)^\omega)$ nach dem Startzustand nie wieder $(\neg Battery \lor Active \lor \neg On \lor Error)$ gilt. $M_{cell}, \pi \models \Box \diamondsuit (\neg Battery \lor Active \lor \neg On \lor Error)$, da hier c_0 immer wieder durchlaufen wird und hier $(\neg Battery \lor Active \lor \neg On \lor Error)$ gilt.
- 6. $M_{cell} \not\models \bigcirc \bigcirc \bigcirc Active$, da mit $\pi' := (c_0c_1c_2)^{\omega}$ niemals Active gilt. $M_{cell}, \pi \models \bigcirc \bigcirc \bigcirc Active$, da von c_0 aus startend drei Schritte weiter c_3 folgt, und hier Active gilt.

4.4.2:

(a)

 $\Box(\neg Battery \Rightarrow \neg On) \rightarrow True$

(b)

 $\Box\diamondsuit(\mathit{On})\to \mathit{True}$

(c)

 $\Box(\bigcirc \mathit{Error} \Rightarrow \mathit{Active}) \rightarrow \mathit{True}$

(d)

 $\square(\mathit{On} \vee \mathit{Error} \vee \bigcirc \mathit{On}) \rightarrow \text{Gegenbeispiel: } c_5$