Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-школа радиотехники и компьютерных технологий Кафедра Микропроцессорных технологий в интеллектуальных системах управления Syntacore

Выпускная квалификационная работа бакалавра

Гибкий подход к подъёму LLVM MIR кода открытой архитектуры RISC-V в SSA форму LLVM IR

Автор:

Студент Б01-110 группы Романов Александр Викторович

Научный руководитель:

Владимиров Константин Игоревич

Аннотация

Гибкий подход к подъёму LLVM MIR кода открытой архитектуры RISC-V в SSA форму LLVM IR

Романов Александр Викторович

Проблема бинарной совместимости програм и их переносимости на разные архитектуры без возможности перекомпиляции часто решается при помощи бинарных трансляторов. Существует большое колличество статических и динамических бинарных трансляторов. Большинство из них работают либо за счёт прямого сопоставления инструкциям и регистрам исходной архитектуры инструкции и регистры целевой архитектуры, либо за счёт паттерн матчинга. Такие решения делают сложным поддержание новых исходных архитектур ввиду чего поддержка относительно молодой микропроцессорной архитектуры RISC-V в существующих трансляторах либо отсутсвует, либо сильно ограничена.

В данной работе рассмотрен новый инструмент для подъёма машинно зависимого представления RISC-V кода LLVM MIR в высокоуровневое машинно-независимое представление LLVM IR и его применение для простой статической трансляции бинарного RISC-V кода на любую поддержанную LLVM архитектуру.

Contents

1	Intro	duction	1
	1.1	Problem	1
	1.2	Motivation	1
	1.3	Objectives	1
	1.4	Outline	1
2	Back	ground	1
	2.1	e.g. User Feedback	1
	2.2	e.g. Representational State Transfer	1
	2.3	e.g. Scrum	1
3	Rela	ted Work	1
4	Requ	irements	1
	4.1	Overview	1
	4.2	Existing System	1
	4.3	Proposed System	1
		4.3.1 Functional Requirements	1
		4.3.2 Quality Attributes	1
		4.3.3 Constraints	1
	4.4	System Models	1
		4.4.1 Scenarios	1
		4.4.2 Use Case Model	1
		4.4.3 Analysis Object Model	1
		4.4.4 Dynamic Model	1
		4.4.5 User Interface	2
5	Arch	itecture	2
	5.1	Overview	2
	5.2	Design Goals	2
	5.3	Subsystem Decomposition	2
	5.4	Hardware Software Mapping	2
	5.5	Persistent Data Management	2
	5.6	Access Control	2
	5.7	Global Software Control	2
	5.8	Boundry Conditions	2

Гибкий подход к подъёму LLVM MIR кода открытой архитектуры RISC-V в SSA форму LLVM IR

6 Case Study / Evaluation	2	
6.1 Design	2	
6.2 Objectives	2	
6.3 Results	2	
6.4 Findings	2	
6.5 Discussion	2	
6.6 Limitations	2	
7 Summary	2	
7.1 Status	2	
7.1.1 Realized Goals	2	
7.1.2 Open Goals	2	
7.2 Conclusion	3	
7.3 Future Work	3	
List of Figures		
Appendix A: Supplementary Material		
Bibliography		

1 Introduction

- 1.1 Problem
- 1.2 Motivation
- 1.3 Objectives
- 1.4 Outline
- 2 Background
- 2.1 e.g. User Feedback
- 2.2 e.g. Representational State Transfer
- 2.3 e.g. Scrum
- 3 Related Work
- 4 Requirements
- 4.1 Overview
- 4.2 Existing System
- 4.3 Proposed System
- 4.3.1 Functional Requirements
- 4.3.2 Quality Attributes
- 4.3.3 Constraints
- 4.4 System Models
- 4.4.1 Scenarios
- 4.4.2 Use Case Model
- 4.4.3 Analysis Object Model
- 4.4.4 Dynamic Model

4.4.5 User Interface

5 Architecture

- 5.1 Overview
- 5.2 Design Goals
- 5.3 Subsystem Decomposition
- 5.4 Hardware Software Mapping
- 5.5 Persistent Data Management
- 5.6 Access Control
- 5.7 Global Software Control
- 5.8 Boundry Conditions
- 6 Case Study / Evaluation
- 6.1 Design
- 6.2 Objectives
- 6.3 Results
- 6.4 Findings
- 6.5 Discussion
- 6.6 Limitations
- 7 Summary
- 7.1 Status
- 7.1.1 Realized Goals
- 7.1.2 Open Goals

7.2 Conclusion

7.3 Future Work

List of Figures

Appendix A: Supplementary Material

– Supplementary Material –

Bibliography

[1] Marcus Aurelius, "Meditations."