«Метод конечных разностей во временной области (FDTD)»

Литература

Allen Taflove, Susan C. Hagness

Computational
Electrodynamics:
The Finite-Difference
Time-Domain Method

Литература

John B. Schneider.

Understanding the Finite-Difference Time-Domain Method

http://www.eecs.wsu.edu/~schneidj/ufdtd/

Материалы к лекциям

Исходные тексты программ:

https://github.com/Jenyay/modelling

Численный расчет производной функции

Производная функции

$$f'(x_0) = ???$$

Производная функции

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Правая конечно-разностная схема для численного дифференцирования

$$f'(x_0) = \frac{f(x_0 + \delta) - f(x_0)}{\delta} + O(\delta)$$

 $O(\delta)$ — погрешность вычислений

Ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x - x_0)^n}{n!} =$$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0)(x - x_0)^n}{n!} + R_n$$

$$R_{n} = \frac{f^{(n+1)}(\xi)(x - x_{0})^{(n+1)}}{(n+1)!}, x_{0} < \xi < x$$

Разложим функцию f(x) в ряд Тейлора вблизи точки x_0 со смещением δ $x=x_0+\delta$

$$f(x_0+\delta)=f(x_0)+\delta f'(x_0)+\frac{1}{2!}\delta^2 f''(x_0)+\frac{1}{3!}\delta^3 f'''(x_0)+\dots,$$

Правая конечно-разностная схема

Выражаем $f'(x_0)$:

$$f'(x_0) = \frac{f(x_0 + \delta) - f(x_0)}{\delta} - \frac{1}{2} \delta f''(x_0) - \frac{1}{6} \delta^2 f'''(x_0) - \dots,$$

$$O(\delta) = -\left(\frac{1}{2}\delta f''(x_0) + \dots\right)$$

Погрешность пропорциональна δ.

Разложим функцию f(x) в ряд Тейлора вблизи точки x_0 со смещением $\pm \delta/2$

$$x = x_0 \pm \frac{\delta}{2}, \quad x - x_0 = \pm \frac{\delta}{2}$$

$$f\left(x_{0} + \frac{\delta}{2}\right) = f\left(x_{0}\right) + \frac{\delta}{2}f'(x_{0}) + \frac{1}{2!}\left(\frac{\delta}{2}\right)^{2}f''(x_{0}) + \frac{1}{3!}\left(\frac{\delta}{2}\right)^{3}f'''(x_{0}) + \dots,$$

$$f\left(x_{0}-\frac{\delta}{2}\right)=f(x_{0})-\frac{\delta}{2}f'(x_{0})+\frac{1}{2!}\left(\frac{\delta}{2}\right)^{2}f''(x_{0})-\frac{1}{3!}\left(\frac{\delta}{2}\right)^{3}f'''(x_{0})+\dots,$$

Вычтем из первого выражения второе:

$$f\left(x_{0}+\frac{\delta}{2}\right)-f\left(x_{0}-\frac{\delta}{2}\right)=\delta f'(x_{0})+\frac{2}{3!}\left(\frac{\delta}{2}\right)^{3}f'''(x_{0})+...,$$

Вычтем из первого выражения второе:

$$f\left(x_{0}+\frac{\delta}{2}\right)-f\left(x_{0}-\frac{\delta}{2}\right)=\delta f'(x_{0})+\frac{2}{3!}\left(\frac{\delta}{2}\right)^{3}f'''(x_{0})+...,$$

Поделим левую и правую части на δ

$$\frac{f(x_0 + \frac{\delta}{2}) - f(x_0 - \frac{\delta}{2})}{\delta} = f'(x_0) + \frac{1}{3!} \frac{\delta^2}{2^2} f'''(x_0) + \dots,$$

Центральная конечно-разностная схема

$$f'(x_0) = \frac{f\left(x_0 + \frac{\delta}{2}\right) - f\left(x_0 - \frac{\delta}{2}\right)}{\delta} + O(\delta^2)$$

Отбрасываем $O(\delta^2)$

$$f'(x_0) \approx \frac{f\left(x_0 + \frac{\delta}{2}\right) - f\left(x_0 - \frac{\delta}{2}\right)}{\delta}$$

Погрешность пропорциональна δ^2 .

Конечно-разностные схемы

Разностная схема — конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной/интегральной задаче, описывающей математическую модель.

Примечание: Разностная схема получается применением методов дискретизации уравнений, содержащих производные по переменным фазового пространства (времени, пространственным координатам и т.п.). Для корректного описания решения дифференциальной/интегральной задачи разностная схема должна обладать свойствами <u>сходимости</u>, <u>аппроксимации</u>, <u>устойчивости</u>, <u>консервативности</u>.

Сходимость решения — стремление значений решения дискретной модели к соответствующим значениям решения исходной задачи при стремлении к нулю параметра дискретизации (например, шага интегрирования).

Порядок аппроксимации — показатель степени уменьшения значения ошибки дискретизации при измельчении интервалов дискретизации переменной фазового пространства.

Консервативность численного метода — выполнение дискретного аналога закона сохранения для любого элементарного объема в любой части расчетной области.