VLSI Devices Lecture 21

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

GIST Lecture

Coverage

- Two YouTube lectures reserved for advanced topics
 - -L14: Substrate bias, channel mobility
 - -L15: 3.2.1
 - -L16: 3.2.1 (Continued)
 - -L17: Velocity saturation (3.2.2)
 - -L18: Channel length modulation and so on (3.2.3, 3.2.4, 3.2.5)
 - -L19: MOSFET scaling
 - L20: MOSFET scaling (Continued)
- → -L21: Quantum effect (4.2.4)
 - L22: Double-gate MOSFETs (10.3)
 - -L23: FinFETs
 - -L24: CFETs

Energy distribution, $f(\mathbf{r}, E)$

Key quantity to understand various effects

- Various ways to model it
- Boltzmann transport equation

Stochastic electron motion simulated by Monte Carlo

Distribution function ³

BTI (Bias-Temperature Instability)

- Reliability issue (NBTI in PMOSFETs, PBTI in NMOSFETS)
 - Interface trap generation & $|V_t|$ shift

BTI characteristics of gate stacks (IMEC, IEDM 2018)

MOSFET breakdown

- Impact ionization
 - –Strong dependence on ${\mathcal E}$

$$\alpha = A \exp\left(-\frac{b}{\mathcal{E}}\right)$$
 Taur, Eq. (2.258)

Impact ionization rates in silicon (Taur, Fig. 2.59)

MOSFET scaling

- First of all, we must understand the history. (~ 2011)
 - Comtemporary MOSFETs are not planar.

IMEC roadmap

Basic assumptions

- High-resolution lithographic techniques (Minimum L)
- Technological advancement in ion implantation (Shallow junction)

An architect and a construction worker (Image generated by ChatGPT)

Constant-field scaling (Dennard scaling)

• Keep short-channel effects under control,

By scaling down the vertical dimensions along with the horizontal

dimensions.

- Decrease the applied voltage.

Increase the substrate doping concentration.

Gate n^+ source t_{ox} W_D p-substrate, doping N_a

Original device

Doping κN_a

R. H. Dennard (Inventor of DRAM)

MOSFET constant-electric-field scaling (Taur, Fig. 4.1)

Rules for constant-field scaling (1)

- Scaling assumption ($\kappa > 1$)
 - Device dimensions (t_{ox} , L, W, and x_i): $1/\kappa$
 - Doping concentration (N_a and N_d): κ
 - -Voltage (V): $1/\kappa$
- Maximum drain depletion width

$$W_D = \sqrt{\frac{2\epsilon_{si}(\phi_{bi} + V_{dd})}{qN_a}} \rightarrow \sqrt{\frac{2\epsilon_{si}\left(\phi_{bi} + \frac{1}{\kappa}V_{dd}\right)}{q\kappa N_a}} \quad \text{Taur, Eq. (4.1)}$$

$$\approx \frac{1}{\kappa} \sqrt{\frac{2\epsilon_{si}(\phi_{bi} + V_{dd})}{qN_a}} = \frac{1}{\kappa} W_D$$

GIST Lecture

Rules for constant-field scaling (2)

- Capacitances
 - They scale down by κ .
- Charge per device ($\sim C \times V$)
 - It scaled down by κ^2 .
- Drain current
 - -The original one

$$I_{d} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{gs} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right]$$

$$\mu_{n} \kappa C_{ox} \frac{\frac{1}{\kappa} W}{\frac{1}{\kappa} L} \left[\left(\frac{1}{\kappa} V_{gs} - V_{t,scaled} \right) \frac{1}{\kappa} V_{ds} - \frac{1}{2} \frac{1}{\kappa^{2}} V_{ds}^{2} \right] \approx \frac{1}{\kappa} I_{d}$$
GIST Lecture

Effect of scaling on circuit parameters

- Important colcusion of constant-field scaling:
 - Once the device dimensions and the power-supply voltage are scaled down, the circuit speeds up by the same factor.

– Moreover, power dissipation per circuit, which is proportional to VI, is reduced by κ^2 .

GIST Lecture 11

Thank you!