

Counting and Finding Homomorphisms is Universal for Parameterized Complexity Theory

Marc Roth (Merton College, Oxford University, United Kingdom), **Philip Wellnitz** (MPII, SIC, Saarbrücken, Germany)

SODA 2020

Graph Homomorphism

Mapping from graph H to G that preserves edges;

Graph Homomorphism

Mapping from graph H to G that preserves edges;

Graph Homomorphism

Mapping from graph H to G that preserves edges;

Graph Homomorphism

Mapping from graph H to G that preserves edges;

$$\#\text{Hom}(H \rightarrow G) = 14$$

Graph Homomorphism

Mapping from graph H to G that preserves edges;

Graph Homomorphism

Mapping from graph H to G that preserves edges;

Write $Hom(H \rightarrow G)$ for the set of all graph hom's from H to G.

No homomorphisms from H to G.

 $\mathsf{Hom}(\mathcal{H} o \mathcal{G})$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

 $\mathsf{Hom}(\mathcal{H} o \mathcal{G})$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

 $\mathsf{Hom}(\mathcal{H} o \mathcal{G})$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

NP-complete

 $\mathsf{Hom}(\top \to \top)$

$$\mathsf{Hom}(\mathcal{H} \to \mathcal{G})$$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

$$\mathsf{Hom}(\mathcal{H} o \mathcal{G})$$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

$$\mathsf{Hom}(\mathcal{H} o \mathcal{G})$$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

Are there fast algorithms for special cases of $Hom(T \to T)$?

$$\mathsf{Hom}(\mathcal{H} o \mathcal{G})$$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

What makes $Hom(T \rightarrow T)$ hard?

 $\mathsf{Hom}(\mathcal{H} o \mathcal{G})$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

	poly-time solvable	NP-complete
$Hom(op \mathcal{G})$	${\cal G}$ contains only	${\cal G}$ contains a
	bipartite graphs	non-bipartite graph
	[Hell, Nešetřil '90]	[Hell, Nešetřil '90]

#Hom($\mathcal{H} o \mathcal{G}$)

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

	poly-time solvable	#P-complete
#Ном($ op \mathcal{G}$)	(explicit criterion exists)	(explicit criterion exists)
	[Dyer, Greenhill '00]	[Dyer, Greenhill '00]

$$\mathsf{Hom}(\mathcal{H} o \mathcal{G})$$

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

What about *the other side*, $Hom(\mathcal{H} \to \top)$?

 $\mathsf{Hom}(\mathcal{H} o \mathcal{G})$ Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

What about *the other side*, $Hom(\mathcal{H} \to \top)$?

 $\mathsf{Hom}(\mathcal{H} o \mathcal{G})$ Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, check if there is a graph hom from H to G.

	FPT	W[1]-hard
	$(f(V(H)) \cdot poly(V(G)) \text{ time})$	(not faster than K-CLIQUE)
$Hom(\mathcal{H} o o)$	" ${\cal H}$ contains only graphs	" ${\cal H}$ contains graphs with
	with small treewidth"	arbitrary large tw"
	[Grohe '03]	[Grohe '03]

#Hom $(\mathcal{H} \to \mathcal{G})$ Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

	FPT	#W[1]-hard
	$(f(V(H)) \cdot poly(V(G)) \text{ time})$	(not faster than #K-CLIQUE)
#Hom $(\mathcal{H} o op)$	" ${\cal H}$ contains only graphs	" ${\cal H}$ contains a graph
	with small treewidth"	with large treewidth"
	[Dalmau, Jonsson '04]	[Dalmau, Jonsson '04]

#Hom($\mathcal{H} \to \mathcal{G}$)

Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Complexity dichotomies when restricting either ${\mathcal G}$ or ${\mathcal H}.$

#Hom($\mathcal{H} \to \mathcal{G}$) Parameter: |V(H)| Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Complexity dichotomies when restricting either \mathcal{G} or \mathcal{H} .

What if we restrict both sides?

#Hom($\mathcal{H} \to \mathcal{G}$) Parameter: |V(H)| Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Complexity dichotomies when restricting either \mathcal{G} or \mathcal{H} .

What if we restrict *both sides*? **This talk.**

Main Result

#Hom($\mathcal{H} o \mathcal{G}$)

Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Theorem

For any problem P in #W[1] (or W[1]), there are graph classes \mathcal{H}_P and \mathcal{G}_P such that P is equivalent to $\#HOM(\mathcal{H}_P \to \mathcal{G}_P)$ (or $HOM(\mathcal{H}_P \to \mathcal{G}_P)$).

Main Result

#Hom($\mathcal{H} o \mathcal{G}$)

Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Theorem

For any problem P in #W[1] (or W[1]), there are graph classes \mathcal{H}_P and \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$) (or HOM($\mathcal{H}_P \to \mathcal{G}_P$)).

■ Cannot hope for clear categorization into FPT/W[1]-hard for all pairs $(\mathcal{H}, \mathcal{G})$ (think of Ladner's Theorem)

#Hom($\mathcal{H} o \mathcal{G}$)

Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Theorem

For any problem P in #W[1] (or W[1]), there are graph classes \mathcal{H}_P and \mathcal{G}_P such that P is equivalent to $\#HOM(\mathcal{H}_P \to \mathcal{G}_P)$ (or $HOM(\mathcal{H}_P \to \mathcal{G}_P)$).

#Hom($\mathcal{H} o \mathcal{G}$)

Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Theorem

For any problem P in #W[1] (or W[1]), there are graph classes \mathcal{H}_P and \mathcal{G}_P such that P is equivalent to $\#HOM(\mathcal{H}_P \to \mathcal{G}_P)$ (or $HOM(\mathcal{H}_P \to \mathcal{G}_P)$).

Recall: #Hom($\mathcal{H} \to \top$) is #W[1]-hard if \mathcal{H} has "unbounded treewidth" [DalJon'04]

#Hom($\mathcal{H} \to \mathcal{G}$) Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count the number of graph hom's from H to G.

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$).

#Hom($\mathcal{H} \to \mathcal{G}$) Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count the number of graph hom's from H to G.

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

#Hom($\mathcal{H} \to \mathcal{G}$) Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count the number of graph hom's from H to G.

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$).

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Problem $P \longrightarrow \#Hom(\mathcal{H} \to \top)$

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Approach: $\mathcal{H}_P := \{H_J \mid \text{instance } J \text{ of } P\}$ $\mathcal{G}_P := \{G_J \mid \text{instance } J \text{ of } P\}$

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Instance
$$J$$
 Problem P #Hom $(\mathcal{H} \to \top)$ Graphs H_J, G_J

Approach:
$$\mathcal{H}_P := \{H_J \mid \text{instance } J \text{ of } P\}$$

 $\mathcal{G}_P := \{G_J \mid \text{instance } J \text{ of } P\}$

$$\mathsf{P} \preccurlyeq \mathsf{\#Hom}(\mathcal{H}_P \to \mathcal{G}_P) \checkmark$$

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Instance
$$J$$
 Problem P #Hom $(\mathcal{H} \to \top)$ Graphs H_J, G_J

Approach:
$$\mathcal{H}_P := \{H_J \mid \text{instance } J \text{ of } P\}$$

 $\mathcal{G}_P := \{G_J \mid \text{instance } J \text{ of } P\}$

$$P \leq \#Hom(\mathcal{H}_P \to \mathcal{G}_P) \checkmark$$

$$\#\mathsf{HOM}(\mathcal{H}_P \to \mathcal{G}_P) \stackrel{?}{\preccurlyeq} \mathsf{P}$$

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Instance
$$J$$
 Problem P #Hom $(\mathcal{H} \to \top)$ Graphs H_J, G_J

Approach:
$$\mathcal{H}_P := \{H_J \mid \text{instance } J \text{ of } P\}$$

 $\mathcal{G}_P := \{G_J \mid \text{instance } J \text{ of } P\}$

$$P \leq \#Hom(\mathcal{H}_P \to \mathcal{G}_P) \checkmark$$

$$\#HOM(\mathcal{H}_P \to \mathcal{G}_P) \not\preccurlyeq P$$

How do we obtain instance J from (H_J, G_J) ?

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

Approach: $\mathcal{H}_P := \{H_J \mid \text{instance } J \text{ of } P\}$ $\mathcal{G}_P := \{G_J \cup \langle J \rangle \mid \text{instance } J \text{ of } P\}$

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$).

Approach: $\mathcal{H}_P := \{H_J \mid \text{instance } J \text{ of } P\}$ $\mathcal{G}_P := \{G_J \cup \langle J \rangle \mid \text{instance } J \text{ of } P\}$

$$\mathsf{P} \preccurlyeq \mathsf{\#Hom}(\mathcal{H}_P \to \mathcal{G}_P) \checkmark$$

(ensure $\mathsf{\#Hom}(\mathcal{H}_J \to \langle J \rangle) = 0$)

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$).

$$P \leq \#Hom(\mathcal{H}_P \to \mathcal{G}_P) \checkmark$$

$$\#\mathsf{Hom}(\mathcal{H}_P \to \mathcal{G}_P) \stackrel{?}{\preccurlyeq} \mathsf{P}$$

(ensure
$$\# \text{Hom}(H_J \rightarrow \langle J \rangle) = 0$$
)

Theorem

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$).

 $\mathcal{H}_P := \{H_J \mid \text{ instance } J \text{ of } P\}$ Approach: $\mathcal{G}_P := \{ G_J \cup \langle J \rangle \mid \text{instance } J \text{ of } P \}$

$$\mathsf{P}\preccurlyeq \mathsf{\#Hom}(\mathcal{H}_P \to \mathcal{G}_P) \checkmark$$

$$\mathsf{#HoM}(\mathcal{H}_P o \mathcal{G}_P) \stackrel{\iota}{\preccurlyeq} \mathsf{P}$$

(ensure #Hom $(H_I \rightarrow \langle J \rangle) = 0$) How do we handle malformed input (H_I, G_I) ?

Theorem

For any *P* in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that *P* is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$).

Approach: $\mathcal{H}_P := \{H_J \mid \text{instance } J \text{ of } P\}$ $\mathcal{G}_P := \{G_J \cup \langle J \rangle \mid \text{instance } J \text{ of } P\}$

$$P \leqslant \# Hom(\mathcal{H}_P \to \mathcal{G}_P) \checkmark \qquad \qquad \# Hom(\mathcal{H}_P \to \mathcal{G}_P) \stackrel{?}{\leqslant} P$$
 (ensure $\# Hom(H_J \to \langle J \rangle) = 0$) How do we ensure $\# Hom(H_J \to G_L \cup \langle L \rangle) = 0$?

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$).

$$\mathsf{P} \preccurlyeq \mathsf{\#Hom}(\mathcal{H}_P \to \mathcal{G}_P)$$

Can solve instance J with $(H_J, G_J \cup \langle J \rangle)$ by computing $\#\text{Hom}(H_J \to G_J \cup \langle J \rangle)$ (ensuring $\#\text{Hom}(H_J \to \langle J \rangle) = 0$)

$$\mathsf{#Hom}(\mathcal{H}_P o \mathcal{G}_P) \preccurlyeq \mathsf{P}$$

Can extract instance J from pair $(H_J, G_J \cup \langle J \rangle)$

How do we ensure $\#\text{Hom}(H_J \to G_L \cup \langle L \rangle) = 0$?

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to #HoM($\mathcal{H}_P \to \mathcal{G}_P$).

$$P \preccurlyeq \# \mathsf{HOM}(\mathcal{H}_P \to \mathcal{G}_P) \qquad \qquad \# \mathsf{HOM}(\mathcal{H}_P \to \mathcal{G}_P) \preccurlyeq P$$
Can solve instance J with $(H_J, G_J \cup \langle J \rangle)$ Can extract instance J from pair by computing $\# \mathsf{Hom}(H_J \to G_J \cup \langle J \rangle) \qquad (H_J, G_J \cup \langle J \rangle)$ (ensuring $\# \mathsf{Hom}(H_J \to \langle J \rangle) = 0$) How do we ensure $\# \mathsf{Hom}(H_J \to G_L \cup \langle L \rangle) = 0$?

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

$$\mathsf{P} \preccurlyeq \mathsf{\#Hom}(\mathcal{H}_P \to \mathcal{G}_P)$$

Can solve instance J with $(H_J, G_J \cup \langle J \rangle)$ by computing $\#\text{Hom}(H_J \to G_J \cup \langle J \rangle)$ (ensuring $\#\text{Hom}(H_J \to \langle J \rangle) = 0$)

$$\#\mathsf{HOM}(\mathcal{H}_P \to \mathcal{G}_P) \preccurlyeq \mathsf{P}$$

Can extract instance J from pair $(H_J, G_J \cup \langle J \rangle)$

How do we ensure $\#\text{Hom}(H_J \to G_L \cup \langle L \rangle) = 0$?

For any P in #W[1], there are \mathcal{H}_P , \mathcal{G}_P such that P is equivalent to $\#Hom(\mathcal{H}_P \to \mathcal{G}_P)$.

$$\mathsf{P} \preccurlyeq \mathsf{\#Hom}(\mathcal{H}_P \to \mathcal{G}_P)$$

Can solve instance J with $(H_J, G_J \cup \langle J \rangle)$ by computing $\#\text{Hom}(H_J \to G_J \cup \langle J \rangle)$ (ensuring $\#\text{Hom}(H_J \to \langle J \rangle) = 0$)

$$\#\mathsf{HOM}(\mathcal{H}_P o \mathcal{G}_P) \preccurlyeq \mathsf{P}$$

Can extract instance J from pair $(H_J, G_J \cup \langle J \rangle)$

How do we ensure $\#\text{Hom}(H_J \to G_L \cup \langle L \rangle) = 0$?

Main Result

#Hom($\mathcal{H} o \mathcal{G}$)

Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Theorem ~

For any problem P in #W[1] (or W[1]), there are graph classes \mathcal{H}_P and \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$) (or HOM($\mathcal{H}_P \to \mathcal{G}_P$)).

- Cannot hope for clear categorization into FPT/W[1]-hard for all pairs $(\mathcal{H}, \mathcal{G})$
- Need to look at specific pairs of graph classes

Main Result

#Hom($\mathcal{H} o \mathcal{G}$)

Parameter: |V(H)|

Given graphs $H \in \mathcal{H}$ and $G \in \mathcal{G}$, count all graph homomorphisms from H to G.

Theorem <

For any problem P in #W[1] (or W[1]), there are graph classes \mathcal{H}_P and \mathcal{G}_P such that P is equivalent to #HOM($\mathcal{H}_P \to \mathcal{G}_P$) (or HOM($\mathcal{H}_P \to \mathcal{G}_P$)).

- Cannot hope for clear categorization into FPT/W[1]-hard for all pairs $(\mathcal{H}, \mathcal{G})$
- Need to look at specific pairs of graph classes

Open Problems

- Can we find a "hierarchy" of homomorphism problems? #HOM($\mathcal{H}_1 \to \mathcal{G}_1$) "≤" #HOM($\mathcal{H}_2 \to \mathcal{G}_2$) "≤" · · · "≤" #HOM($\top \to \top$)
- (Grunt work?) Obtain algorithms/hardness for specific pairs of graph classes \mathcal{H} , \mathcal{G} (Done for $\mathcal{G} = F$ -colorable graphs, line graphs, claw-free graphs, ...)

Thank you!

TikZ code for Kneser graphs available on GitHub github.com/PH111P/tikz-kneser

Navigation

```
Start

Graph hom's 1 Graph hom's 2 Graph hom's 3

Graph classes

Known results 1 Known results 2 Known results 3 Known results 4

Main result

Proof ideas 1 Proof ideas 2 Proof ideas 3

Open Problems

End
```


