

## **COMSATS** University Islamabad, Lahore Campus

## Assignment 2 – FALL 2024

| Course Title:           | Computer Organization & Architecture |        |      |                | Course Code:         | CPE 343     | Credit Hours: 4               | 4(3,1) |
|-------------------------|--------------------------------------|--------|------|----------------|----------------------|-------------|-------------------------------|--------|
| Course Instructor:      | Dr. Muhammad Naeem Awais             |        |      |                | Program Name:        | ВСЕ         |                               |        |
| Semester:               | 5 <sup>th</sup>                      | Batch: | FA21 | Section:       | A, B                 | Date Given: | 8 <sup>th</sup> October, 2024 | 4      |
| <b>Submission Date:</b> | 15 <sup>th</sup> October, 2024       |        |      | Maximum Marks: |                      | 30          |                               |        |
| Name:                   |                                      |        |      |                | Registration Number: |             |                               |        |

## **Important Instructions / Guidelines:**

- Draw neat schematics wherever needed
- Do your own work, PLAGARISM will be graded as ZERO
- No late submission.

Question 1: [CLO3-PLO2-C3] [10 Marks]

For the given piece of C code, *produce* the equivalent MIPS assembly code.

For 
$$(i = 20; i >= 0; i = i - 1)$$
  
 $W[i+1] = X[i-1] + s*Y[i];$ 

While generating the assembly code, assume that W, X and Y are arrays and their base addresses are in registers \$s0 to \$s2. Whereas s is a 32-bit number that corresponds to \$t0 and i is an array index that corresponds to \$t1.

Question 2: [CLO3-PLO2-C3] [10 Marks]

For the given piece of C code, *produce* the equivalent MIPS assembly code.

While generating the assembly code, assume that X and Y are arrays and their base addresses are in registers \$s0 to \$s1. Whereas s is a 32-bit number that corresponds to \$t0 and i and j are array indices that corresponds to \$t1 and \$t2 respectively.

Question 3: [CLO3-PLO2-C3] [10 Marks]

For the given piece of C code, *produce* the equivalent MIPS assembly code using **STACK**:

```
int exampleprocedure (int g, int h, int i)
     {int f = 0;

while (g!=h)
     {f = f*i*X[h];h--;}
```

While translating the code, assume that g, h, i correspond to parameter registers a0 to a2 and f corresponds to a2 whereas X is an array and its base address is stored in registers a1. Assume array X is accessed in descending order and has total a10 elements.