Statistical Inference with Simulation

STAT 211 - 509

2018-10-08

Statistical Inference

- There is a population we wish to study. We take a sample of data, and we want to use it learn about the population.
- We model the observed sample data as outcomes of random variables that represent the population. We want to know the parameters of these random variables, the population parameters.
- Population: the entire group of interest.
- **Sample**: a part of the population selected to draw conclusions about the population.

3 problems in statistical inference:

- Point estimation : single estimate of the parameter of interest
 - Maximum likelihood estimation
- **Confidence interval**: a range of "plausible" values for the parameter of interest, at a stated level of "confidence"
- **Hypothesis test**: a formal decision about the value of the parameter of interest, again at a stated level of "confidence"

Sampling Distribution

- We get model the data, X_1, \ldots, X_n , as independently following some distribution.
- Compute a sample **statistic** to estimate the parameter of interest.
 - Mean: $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$
 - Standard deviation: $\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i \hat{\mu})^2}$
- In general, a statistic is a function $g(X_1, ..., X_n)$. This is a function of random variables, so it too is a random variable.
 - So the statistic has a distribution, called its sampling distribution

Three distributions

Using the sampling distribution

- Confidence interval: use the sampling distribution to obtain an interval of statistic values with a specified probability, e.g. 0.95, of being observed.
- Hypothesis test: use the sampling distribution that would apply for a particular hypothesized parameter value to compute the probability of seeing data like those you saw; reject the hypothesized value if this probability, called a p-value, is sufficiently small, e.g. less than 0.05.

Computing / Approximating Sampling Distributions

- If we fully specify a probability model, we can often derive a sampling distribution exactly.
- Other times, we can approximate it using asymptotic (limiting) results, which requires that we have a "large" sample size n.
- Alternatively, if we can somehow draw random samples from the sampling distribution, we can use them to approximate the sampling distribution.
- Recall how we have used R, e.g. via the 'rbinom' function, to simulate from a distribution, enabling us to approximate probabilities as simple proportions.

The Bootstrap

• The **bootstrap** involves sampling with replacement from the observed data:

```
Repeat B times:
data_b = sample with replacement from data
statistic_b = value of statistic for 'data_b'
```

 Now you have B simulated values of the statistic, and you can use them to approximate the sampling distribution, enabling both confidence intervals and hypothesis tests.

Example: NFL

Confidence Intervals

 A procedure for generating intervals such that if you repeated your experiment and constructed intervals many times, about $100(1-\alpha)\%$ of them will cover the unknown parameter value.

Histogram of p_boot

- Any one confidence interval either contains the parameter with probability 1 or otherwise it doesn't, contains with probability o.
- α is the confidence level.

Confidence Intervals with the Bootstrap

- One way to construct an approximate $100(1 \alpha)\%$ confidence interval for a parameter (e.g., p in the Binomial case) is to:
 - Use the bootstrap to approximate the sampling distribution of p̂.
 - Obtain the $\alpha/2$ and $1 \alpha/2$ percentiles of the bootstrapped sampling distribution.
 - For example, the interval from the 2.5th percentile to the 97.5th percentile of the bootstrapped sampling distribution of is an approximate 95% confidence interval for p.

Interpretation of Confidence Intervals

• We expect of $100(1-\alpha)\%$ of all such confidence intervals to contain the parameter being estimated.

- That means we expect α % of such intervals to *not* contain the parameter being estimated.
- Once we observe data and use it to compute an actual confidence interval:
 - We can say we obtained our interval by using a technique that can be expected to 'cover' the true parameter value with probability.
 - We cannot say whether our particular interval covers the true parameter value or not.

Example: NFL

• See " nfl.r " and 'ch_5_1' lecture video.

Hypothesis Tests

- The **null hypothesis** (H_0) is what we choose to believe until shown sufficient evidence to the contrary.
- The **alternative hypothesis** (H_a) is what we will conclude if the null hypothesis is rejected.

- A p-value is the probability of seeing a statistic value like ours, or even more 'extreme', if the null hypothesis is true.
- To compute a p-value, we require the sampling distribution of our statistic when the null hypothesis is true.
- Potential errors:
 - Type I: Reject H_0 when it is true.
 - Type II: Fail to reject H_0 when it is false.

Hypothesis Tests with the Bootstrap

- One way to compute a p-value based on a statistic *T*, for which we observe the value T_o with our data:
 - Transform the data to force the null hypothesis to be true.
 - Use the bootstrap on the transformed data to approximate the sampling distribution of *T* under the null hypothesis.
 - Compute the proportion of simulated values of T that are 'as or more extreme' relative to T_o .
 - For example, in the Binomial case, 'as or more extreme' is as follows:
 - * H_0 : $p = p_0$ vs. H_a : $p > p_0$: 'as or more extreme' means
 - * H_0 : $p = p_0$ vs. H_a : $p < p_0$: 'as or more extreme' means
 - * H_0 : $p = p_0$ vs. H_a : $p \neq p_0$:: 'as or more extreme' means $\geq |T_o|$ in absolute value

Interpretation of Hypothesis Tests

- Based on our p-value and desired confidence level , we make a decision as follows:
 - If p-value ≤ α , reject H_0 in favor of H_a .
 - Otherwise, "fail to reject" H_0 .
- If H_0 is true but we observe p-value $\leq \alpha$, we reject H_0 , committing a Type I error.
- If H_a is true but we observe p-value $> \alpha$, we fail to reject H_o , committing a Type II error.
- If H_0 is true, we expect to commit a Type I error no more than $\alpha\%$ of the time.

- Once we observe data and use it to compute an actual p-value, making a decision based on whether it is:
 - We can say we made our decision based on a technique that can be expected to commit a Type I error no more than of $\alpha\%$ of the
 - We cannot say whether we have committed a Type I error in this instance.

Estimated power curve for bootstrap test

