INDEX

Belford, G.G., 138

Abort, 3-5, 25-27, 89, 168, 179, 270, 321 Ben-Ari, M., 23 Berard, P., 105 ABORT message; see Two phase commit; Three phase commit Bernstein, P.A., 41, 104, 138, 164, 209, 307, Abort list, 176, 179, 321 308 Abort record, 187, 321 Bertino, E., 104 Aborted transaction, 4, 30, 321 Bjork, L.A., 23, 209 Blaustein, B.T., 308 Access validation, 283-287, 289, 292 ACP; see Atomic commitment protocol Blind write, 42, 322 Active list, 176, 179, 321 Block; see Disk page Blocking, 225-229, 234, 236, 240-241, 246, Active transaction, 4, 30, 321 255-256 Adaplex, 162, 210 After image, 175, 187, 321 Blocking policy, 89–91, 105, 322 Aggressive scheduler, 47–49, 321 Bos, L., 105 Boyce, R.F., 23 Agrawal, R., 105, 210 Alsberg, P.A., 307 Breitwieser, H., 308 Ancestor, 316, 321 Briatico, D., 210 Brinch Hansen, P., 23 Anderson, T., 24, 209 Archive, 177ff, 179ff, 207-209, 321-322 Broadcasting, 235, 322 Atomic commitment protocol, 218, 222-260, B-tree, 194, 322 268, 270, 284, 292ff, 322 B-tree locking, 99-105 Buckley, G.N., 105 Atomicity, 1–2, 63–64, 171, 322 Buffer; see Cache manager Attar, R., 308 Available copies algorithms, 281–294, 308, Cache consistent checkpointing, 184-185, 322 Available copy, 269, 322 208, 322 Avoid cascading aborts, 9, 34-37, 97, 125, Cache directory, 173, 322 Cache manager (CM), 18-20, 171, 173-174, 175, 223, 322 210, 322 Badal, D.Z., 138 Careful replacement algorithm, 205, 323; see Balter, R., 105 also Shadowing Bayer, R., 105, 210 Carey, M.J., 104, 105, 138 Beeri, C., 24, 104, 105 Carlesi, C., 104 Before image, 10, 175, 187, 190, 322 Carlson, C.R., 105

Casanova, M.A., 138

conservative

Cascadeless; see Avoid cascading aborts Conservative serialization graph testing, Cascading abort, 6, 210; see also Avoid 123-125, 324 cascading aborts Conservative TO; see Timestamp ordering, Centralized computer system, 17 conservative Certifier, 128-132, 138, 164, 223, 271, Conservative 2PL; see Two phase locking, conservative Certify locks, 156-159 Consistency preservation, 15, 167 Chamberlin, D.D., 23 Conversion; see Lock conversion Chan, A., 164, 210, 308 Cooper, E.C., 260 Chandy, K.M., 104 Cooperative termination protocol, 228-229, Checkpoint, 183-185, 188, 197, 323; 231, 233, 236-237, 260, 324; see also see also Archive Termination protocol Checkpoint record, 187-190, 209, 323 Coordinator, 224, 324; see also Atomic Cheng, W.K., 138 commitment protocol Chesnais, A., 105 Copier transaction, 207ff, 279, 303, 324 Cheung, D., 260 Cristian, F., 308 Chin, F., 260 Critical section, 16-17, 324 Chung, J., 210 CSR; see Conflict serializable Ciuffoletti, A., 210 Cycle, 315, 324 Class, 121, 138, 311 Cyclic restart, 58, 84-86, 324 CM; see Cache manager Collmeyer, A.J., 104 Dag; see Directed acyclic graph Commit, 3-5, 25-27, 30, 122-123, 125, Dag locking, 98-99, 324 Data contention, 87, 91-93, 325 128, 179, 217-218, 223, 323; see also Atomic commitment protocol Data items, 2, 325 Commit consistent checkpoint, 184, 190, Data manager (DM), 20, 169-174, 268 207-208, 323 Data tree, 96, 325 Commit list, 161–163, 176, 179, 323 Database, 2, 324 COMMIT message; see Two phase commit; Database machines, 210 Three phase commit Database management system (DBMS), 1, 2ff Commit record, 187, 323 Database manager, 17ff, 325 Committed database state, 169, 323 Database operations, 2, 325 Committed projection, 30, 36-37, 147, 169, Database system (DBS), 2, 17-23, 325 323 Davidson, S.B., 308 Communication failure, 220-222, 225, Davies, C.T., 23 240-241, 256, 259, 269, 294-297, Day, J.D., 307 301-302, 305, 323 DBMS; see Database management system Communication topology, 237–239, 323 DBS; see Database system Compatibility matrix, 38, 68-69, 74, 138, DB2, 87, 210 323 DC-thrashing; see Thrashing; data contention Complete history, 29, 323-324 Deadlock, 104-105, 325 centralized, 52-53, 56-58 Complete multiversion history; see History, multiversion distributed, 79-87, 126, 325 Component, 324; see also Partition effect on performance, 88 Computer Corporation of America; see phantom, 80-81, 331 see also Timestamp-based deadlock pre-Adaplex; SDD-1 Computer network, 218-219 vention Concurrency control, 1–3, 11–17, 44 Decentralized 2PC protocol, 237-240, 325 Conflict based schedulers, 41, 324 Decision; see Atomic commitment protocol Conflict equivalence; see Equivalence DECISION-REQ message; see Cooperative termi-Conflict graph, 121, 138, 139 nation protocol Conflict serializable (CSR) history, 40 Decitre, P., 105 Decrement operation, 37-38, 68 Conflicting operations, 28-29, 37-38, 48, 145, 149, 272 Deferred output, 8, 325 Conflicting transactions, 33ff Deferred writing, 270-271, 325 Connected graph, 313, 324 Degree 3 consistent, 11ff Conservative scheduler, 47-49, 118-121, Delay, 20, 47-48 324; see also Two phase locking, Delayed commit, 186, 325 conservative; Timestamp ordering, Delayed writes, 166

Descendant, 316, 325

	r, C., 105	Fair scheduling, 62
	itt, D.J., 210	Fault tolerance; see Recovery
Digra	ph; see Directed graph	Faults; see Failures
	ted acyclic graph, 315-319, 325; see	Fetch, 19, 171, 174, 326
	also History	File systems, 1
	ted graph, 314–319, 325	Final write, 39, 273–274, 326 First in first our replacement strategy 174
	tory, 325	First-in-first-out replacement strategy, 174 Flush, 19, 171, 174, 176–178, 180, 327
	replicated data, 268–269, 289–294,	Force, 177ff; see also Redo
	305 shadowing, 172–174, 201–205	Ford, R., 105
	tory-oriented available copies algorithm,	Franaszek, P., 105
	289–294, 305, 325; see also Available	FRSG; see Failure-recovery serialization
	copies algorithms	graph
	bit, 173–174, 182, 208, 325	Fuzzy checkpointing, 185, 209, 327
	page, 171–172	1 455, 4100th politically, 100, 200, 02.
	ibuted computer system, 17	Galler, B.I., 105
Distri	ibuted database system (DDBS), 22-23,	Garbage Collection Rule, 178-179, 183,
	326	200, 327
	ibuted deadlock; see Deadlock,	Garbage collection of DT log, 231, 233; see
	distributed	also Distributed transaction log
	ibuted scheduler, 125, 131-132; see	Garcia-Molina, H., 104, 210, 260, 308
	also Two phase locking, distributed;	Garey, M.R., 42
	Timestamp ordering, distributed	Gawlick, D., 104
	ibuted transaction (DT) log, 224, 227,	Gelenbe, E., 105
	229–235, 249–253, 255, 260, 326	Gifford, D.K., 308
Distri	ibuted two phase locking, see Two phase	Gligor, V.D., 104
]	locking, distributed	Global deadlock detection; see Deadlock,
DL; s	see Dag locking	distributed
	see Data manager	Global waits-for graph; see Waits-for graph,
	og; see Distributed transaction log	distributed
	ourdieu, D.J., 164, 210, 260	Goodman, N., 104, 105, 138, 164, 209,
	p; see Archive	307, 308
Dwor	rk, C., 260	Graham, M.H., 24
τ	D.I. 200	Granularity
	r, D.L., 308	of data items, 2, 171–172, 327
	perg, M., 104	of locks, 69–70, 92–94
	, 313, 315	Granularity curve, 93, 327 Gray, J.N., 11ff, 17ff, 23, 24, 41, 104, 105,
	sberg, W., 210 obadi, A., 308	210, 260
	ion protocol, 244, 245, 254–256, 259,	Gray, R., 164
	326	Griffith, N., 24, 210
	rdt, K., 210	Group commit, 186, 327
	C.S., 105	,,,
	valence, 326	Haas, L.M., 104
of :	histories, 30–31	Hadzilacos, T., 138, 164
of.	MV histories, 145-146, 148-149	Hadzilacos, V., 41, 209, 210
of i	RD histories, 273–274	Haerder, T., 138, 177ff, 209, 210
see	also View equivalence	Hammer, M., 260
	r detection, 168, 171, 222, 269	Handshake, 22, 115, 120, 124, 137, 327;
Eswa	aran, K.P., 23, 104	see also Redo Rule; Undo Rule
	ade; see Directory-oriented available	Heller, H., 164
	copies algorithm	Herlihy, M., 308
Expli	icit lock, 71–73	Hierarchical deadlock detection, 105; see also
Eail a	stop 219 269 326	Deadlock, distributed History, 28–30, 327
Fair-S	stop, 219, 269, 326 re, 167–168, 218–222, 269; see also	replicated data, 271–275, 332
	Communication failure; Error detection;	for 2PL, 53–56
	Site failure; System failure	multiversion, 144–149, 328
	re-recovery serialization graph (FRSG),	Holt, R.C., 23, 104
	280–281, 288, 309, 310, 326	Home site, 217–218, 223, 282, 304

366 INDEX

Landherr, G., 104

Last committed value, 169, 328 Horning, J.J., 24 Hot spot, 67-69, 94-95, 104, 327 Lausen, G., 164 Hunt, H.B., 104 Lavenberg, S.S., 105 Least recently used, 174, 328 Ibaraki, T., 164 Leblanc, Ph., 105 Lee, P.A., 24, 209 IBM; see System R; IMS Idempotence, 179-180, 183, 190, 327; see Lehman, P.L., 105 LeLann, G., 260 also Restart Leszak, M., 308 Immediate writing, 270, 327 Implicit lock, 71–73 Lewis, P.M., 23, 41, 104, 260 Lin, W.K., 104, 105 IMS, 67, 105, 210 Lindsay, B.G., 210, 260 Include; see Directory-oriented available Linear 2PC, 238-240, 328 copies algorithm Incomparability of sets, 35 Links for B-tree locking, 102-105 Inconsistent retrieval, 12-14, 327 Liskov, B., 24 Increment operation, 37–38, 68 Livelock; see Cyclic restart Livny, M., 105 Indefinite postponement, 62 Independent failure modes, 206, 327 Lock table, 61-63, 107 Independent recovery, 225, 229, 328 Lock conversion, 53, 74-75, 101-102, 157, Index entry, 66, 328 Index locking, 66-67, 76-77, 328 Lock coupling, 96, 105, 328; see also Tree INGRES, 87, 210 locking Lock escalation, 75-76, 328; see also Multi-In-place updating, 172, 175, 328 granularity locking Input statements, 3-4, 28 Lock instance graph, 71, 77, 96ff, 328 Insert, 66 in a B-tree, 101-103; see also Lock manager, 60-64, 107, 328 Phantom problem Lock type graph, 70-71, 76-77, 328 Integrated schedulers, 132-138, 328 Locked point, 106, 328 Intention lock, 72, 328; see also Multi-Locking, see Two phase locking granularity locking Locking granularity; see Granularity, of locks; Multigranularity locking Intentions list, 200-201, 270, 328 Interference between concurrent programs, Log sequence number, 186, 192–195, 210, 11-13, 328328 Interleaved executions, 11, 44, 328 Logging, 175–179, 186–195, 207–209, Isloor, S.S., 104 213-214, 224, 297; see also Distributed transaction log Logical logging, 176, 191-194, 213-214, Jipping, M., 105 Johnson, D.S., 42 328 Lomet, D.B., 24, 104 Kameda, T., 164, 260 Lorie, R.A., 104, 209, 210 Kaneko, A., 138 Lost updates, 12-14, 328 Kanellakis, P.C., 164 LSN; see Log sequence number Kawazu, S., 104 Lynch, N.S., 24 Kedem, Z.M., 105 Kent, J., 210 McLean, G., Jr., 138 Kersten, M., 138 Macri, P.M., 104 Kiessling, W., 104 MADMAN, 87 King, P.F., 104 Majority consensus, 256-258, 307, 329; see Kinkade, D., 104 also Quorum consensus Korth, H.F., 104 Manber, U., 105 Krenz, G., 105 Marsland, T., 104 Kung, H.T., 105, 138 Media failures, 19-20, 168, 171, 177, 179ff, Kwong, Y.S., 105 206-209, 329 Menasce, D.A., 104, 138, 210 Ladner, R.E., 105 Messages, 6, 24, 220, 329 Lai, M.Y., 138, 164 MGL; see Multigranularity locking Lampson, B.W., 210, 260 Might-write lock, 102 Landes, O.E., 210 Miller, J.A., 210

Millstein, R.E., 138, 307

N/I	0
Mirroring, 206–207, 329	Operating systems, 23, 88, 97, 168
Misra, J., 104	Operations, 2
Missing writes algorithm, 301–304, 308, 329	Optimistic scheduler; see Certifier
Missing writes validation, 283–287, 289, 292	Ordering operations, 21–22; see also
Mitra, D., 105	Handshake
Mitrani, I., 105	Ordering transactions, 15–16
Mixed integrated schedulers, 133, 135–138,	Output statement, 4, 28
160–164, 329; see also Integrated	Page, see Dick page
schedulers Mohan C 260	Page; see Disk page
Mohan, C., 260	Papadimitriou, C.H., 41, 42, 104, 164 Partial data item logging, 186-191, 330
Monitor, 62–63 Moore, J.E., 24	Partial failures, 218–219, 330
Morris, R.J.T., 138, 105	Partial order, 26–28, 319, 330; see also
Moss, J.E.B., 24	History
MPL; see Multiprogramming level	Participant; see Atomic commitment protocol
Mueller, E., 24	Partition, 313-314, 330; see also Network
Multigranularity locking (MGL), 69-77, 104,	partition
107–108, 138, 329	Path, 313-315, 330
Multiprogramming level (MPL), 89, 329	Path pushing; see Deadlock, distributed
Multiversion (MV) history; see History,	Peinl, P., 104
multiversion	Penultimate checkpoint, 185, 189, 193, 331
Multiversion scheduler, 143-164, 197-198,	Performance
200ff, 329	of aggressive vs. conservative schedulers, 48
Multiversion serialization graph (MVSG),	of recovery, 210
146, 149–153, 329–330; see also	of three phase commit, 240, 255
Serialization graph	of tree locking, 97
Multiversion timestamp ordering (MVTO);	of two phase commit, 234–240
see Timestamp ordering, multiversion	see also Two phase locking, performance of
Muntz, R.R., 104	Performance failures; see Timeout failures
Munz, R., 105	Peterson, R.J., 210
Mutual exclusion, 16-17, 330	Phantom deadlocks; see Deadlock, phantom
MV history; see History, multiversion	Phantom problem, 64–67, 104, 331
MVSG; see Multiversion serialization graph	Physical logging, 176, 194, 210, 331
MVTO; see Timestamp ordering, multi-	Piggybacking, 80, 298, 331
version	Pin, 174, 182, 331
N. J	Popek, G., 24
Nakanishi, T., 138	Potier, D., 105
Nested transactions, 24, 101ff	PRE-COMMIT message; see Three phase
Network partition, 220–221, 294, 305, 308,	commit
311, 330; see also Communication	Predeclaration, 49, 58, 119, 121, 123, 331
failure	Predicate locking, 67, 331
Network topology, 241 Node, 313–315	Prefix commit-closed, 36–37, 44, 150ff, 331 Prefix of a partial order, 319, 331
Nolte, J., 104, 105	Preserves reflexive reads-from relationships,
Non-blocking property, 241–244, 247–248;	147, 155, 159, 273, 331
see also Uncertainty period; Blocking	Preserve database consistency; see Consistency
No-undo/no-redo algorithm, 156ff, 201–205	preservation
No-undo/redo algorithm, 198–201	Primary copy, 271, 331
Null operation, 120	Prime Computer, 162, 164, 198, 210, 260
Trum operation, 120	Programming language, 4
Obermarck, R., 104, 105	Pure integrated schedulers, 133, 135, 331; see
1SR; see One-copy serializability	also Integrated schedulers
Ong, K.S., 210	Pure restart policy, 89–91, 105, 331
One-copy history; see History	Purging versions, 144, 162–163
One-copy serializability, 330	Putzolu, G.R., 104
in MV histories, 150-153, 155-156, 159	
in RD histories, 266-267, 274-281,	QC; see Quorum consensus algorithm
285–288, 292–293, 296–297, 301,	Queries, 5, 104, 160–164, 296–297, 331
307, 308	Queues, 22

Quorum, 260, 295–296, 298–304, 331 Quorum consensus (QC) algorithm, 296–304, 331	rw synchronization, 133, 333 Ryu, I.K., 105
Ramarao, K.V.S., 260 Rappaport, R.L., 210 RC-thrashing; see Thrashing RDSG; see Replicated data serialization graph Read, 2, 26, 28, 179, 217, 266, 304, 332 Read lock, 50, 60, 94, 98–99, 234, 332 Read order, 276–277, 301, 303–304, 332 Reads-from relationship, 7, 34, 332 in MV history, 148–149 in RD history, 272–275 see also View equivalence Readset, 48, 121, 126, 127, 129 Ready, 119, 124 Record level locking, 194–195	Samadi, B., 105 Sargeant, G., 308 Scheduler, 20, 21, 28, 333; see also Multiversion scheduler; Serialization graph testing; Timestamp ordering; Two phase locking Scheifler, R., 24 Schkolnick, M., 105 Schlageter, G., 138 Schultz, T., 105 SDD-1, 138 Sector, 210 Semaphores, 63, 175 Sequential operations, 2 Sequin, J., 308 Schiller, M., 211, 150, 274, 223
Recoverability, 6-11, 34-37, 125, 130, 153, 175, 210, 223, 268, 273, 332 Recovery, 1, 6	Serial history, 13, 31, 150, 274, 333 Serializability, 11–17; see also Serializability theory
centralized, 167–209 distributed, 217–260 see also Recoverability Recovery block, 24 Recovery manager (RM), 19–20, 171, 174–	Serializability Theorem, 32–34, 114, 129, 333 Serializability theory, 25–41, 308 for MV histories, 144–153, 158–159, 164 in proving correctness of 2PL, 53–56
180, 332 Recovery procedure; <i>see</i> Restart Redo, 177–178, 192, 194	for RD histories, 271–281, 286–288, 299–301 Serialization graph (SG), 32–33, 42, 57ff,
Redo Rule, 178, 183, 186, 197, 200, 205, 223, 332 Reed, D.P., 24, 164 Reiser, A., 164	136, 333–334 in proving TO correct, 114 in proving 2PL correct, 54–56, 129 for RD histories, 273–275, 303–304
Reject, 20, 47-48 Replacement strategy, 174, 176, 180, 332 Replicated data, 138, 265-308	and tree locking, 96–97 see also Replicated data serialization graph; Failure-recovery serialization graph;
Replicated data history; see History, replicated data Replicated data serialization graph (RDSG), 276-277, 301, 303-304, 309, 333	Stored serialization graph Serialization graph testing (SGT), 121–128, 133, 138, 334 Sevcik, K.C., 308
Resource contention, 87–93, 105, 333 Restart, 169–170, 175, 177–184, 188–196, 198, 199, 204, 219, 234, 333	SG; see Serialization graph SGT; see Serialization graph testing Shadow version algorithm, 205, 334; see also
Reuter, A., 104, 177ff, 209, 210 Ries, D., 104, 105 RM; see Recovery manager RM-Abort, 175, 204, 181, 190, 198, 199	Shadowing Shadowing, 172, 174, 192, 201–205, 208– 209, 334 Shapiro, R.M., 138, 307
RM-Commit, 175, 181, 182, 196–197, 199, 201, 202, 204, 205 RM-Read, 174, 181, 198–199, 201, 204, 205	Shasha, D., 105 Shattuck, S.H., 104 Shipman, D.W., 41, 104, 138, 260, 307 Shrivastava, S.K., 24, 209
RM-Write, 174, 181, 182, 186–187, 193, 198, 204 Robinson, J.T., 105, 138	Shum, A.W., 105 Siewiorek, D.P., 24, 209 Silberschatz, A., 105, 164
Root, 315 Rosenkrantz, D.J., 23, 41, 104, 164, 260 Rothnie, J.B., Jr., 138, 307 Rounds, 234–236, 238, 239, 255 rw phased, 141	Simoncini, L., 210 Sirius-Delta, 260 Site failure, 219–220, 226, 240, 241, 254, 269, 305, 334; see also Failure Site quorum, 295–297, 334; see also Quorum
The principal of the	one quotum, 270-277, 304, see moo Quotum

Siton 22	Timestama andoning (acutional)
Sites, 22	Timestamp ordering (continued)
Skeen, D., 260, 308	conservative, 118–121, 324
Source, 315, 334	distributed, 136–138
Spirakis, P.G., 105	multiversion, 153–156, 160–161,
Spontaneous abort, 80–81	164, 330
Spooler, 309	strict, 116–117, 335
SSG; see Stored serialization graph	Timestamp table, 117-118
Stable checkpoint; see Checkpoint	Timestamp-based deadlock prevention,
Stable database, 172, 177, 334	84–87, 115, 139, 164
Stable-LSN, 187, 188, 190, 334	Tirri, T., 104
Stable storage, 18, 168, 171-174, 178-180,	TL, see Tree locking
184, 202, 334	TM; see Transaction manager
Start, 3, 334	TO; see Timestamp ordering
State, 2	TO rule, 114, 116, 120, 131, 335
Static 2PL; see Two phase locking, con-	
•	Topological sort, 33, 317, 335
servative	Total failure, 219, 226, 240, 245, 249–255,
Steal, 177ff; see also Undo	294, 335
Stearns, R.E., 23, 41, 104, 164, 260	Toueg, S., 308
Stonebraker, M., 104, 105, 210, 307	Traiger, I.L., 23, 210
Stored serialization graph (SSG), 122-128,	Transaction, 1–6, 25–28, 146–148, 335–336
130–131, 334	Transaction class; see Class
Strickland, J.P., 210	Transaction failure; see Abort; Failure
Strict, 9-11, 34-37, 175, 335	Translation function, 146-147, 271
Strict TO; see Timestamp ordering, strict	Transaction identifier, 3, 61, 83, 162, 176
Strict 2PL; see Two phase locking, strict	Transaction manager (TM), 17ff, 21, 23,
Sturgis, H., 210, 260	268–269, 336
Subgraph, 313, 335	Transaction processing systems, 1
Suri, R., 104, 105	Transitive closure, 127, 317-319, 336
Swarz, R.S., 209	Tree locking (TL), 95–104, 164, 336
Synapse, 210	Two phase commit (2PC), 132, 223,
System failure, 19, 168, 177, 179, 182, 206,	226–240, 260, 336
335; see also Failure	Two phase locking, 16ff, 49-95, 117, 123,
System R, 87, 105, 192, 210	133, 275, 336
5,000m 11, 57, 200, 27 2 , 22 5	conservative, 58–59, 91, 105, 119, 324
Tandem Computers, 56	distributed, 77–78, 118, 136–138
Tay, Y.C., 104, 105	implementation of, 60-64
Tebra, H., 138	multiversion, 156–159
Terminal I/O, 8, 16ff	performance of, 69–70, 87–95, 104,
	109-111
Termination protocol, 228, 244–248,	strict, 59–60, 78, 135–138, 160–161,
252–260, 263, 335; see also Coop-	
erative termination protocol	281–282, 285, 286, 290ff, 335; see also
Termination rule, 244–245, 258	Certifier; Deadlock, distributed
Thanos, C., 104	Two phase rule, 51, 55, 78, 105, 117, 336
Thomas, R.H., 138, 307	Two version two phase locking; see Two
Thomas' Write Rule (TWR), 134-138, 160,	phase locking, multiversion
335 Theresian A 105	TWR; see Thomas' Write Rule
Thomasian, A., 105	III . ID 101
Thrashing, 87–88, 91–93, 105, 325, 332,	Ullman, J.D., 104
335 There all the remark (2DC) 240, 260, 235	Uncertainty period, 225, 227–229, 231,
Three phase commit (3PC), 240–260, 335	241–245, 247–249, 336
Timeout, 56, 222, 231, 235, 269, 335	Uncommitted, 4
Timeout action, 335	Undeliverable message, 221–222
for three phase commit, 243–246	Undirected graph, 313–314, 336
for two phase commit, 227–229, 231–233	Undo, 6, 177–178, 191–192, 194–195
Timeout failures, 222, 306ff, 335	Undo Rule, 177, 183, 186, 197, 200, 205,
Timestamp, 85–87, 117–118, 136–137, 160,	337
335	Undo/no-redo algorithm, 177, 196-198
Timestamp interval, 154	Undo/redo algorithm, 177, 180–195
Timestamp ordering (TO), 114-121, 123,	Uninterpreted, 27–28, 337
131, 133, 335	Unpin, 174, 337

370 INDEX

Update record, 187, 191, 192, 337 Updater, 5, 104, 160-164, 337

Validation protocol; see Missing writes validation; Access validation
Value of a data item, 2
Venn diagram, 35, 42
Verhofstad, J.S.M., 209, 210
Version; see Multiversion scheduler
Version number, 298, 300, 303, 307, 337
Version order, 151–153, 155, 160–161, 337
Version order edge, 152–153, 159, 337

Victim selection, 57–58, 80
View; see Virtual partition algorithm
View equivalence, 38–41, 145–146, 148, 273, 337

273, 337
View graph, 43
View serializability, 39–41, 337
Virtual partition (VP) algorithm, 296–297, 304–307, 308, 337
Volatile storage, 18, 168, 173, 337
Vote; see Atomic commitment protocol VOTE-REQ message; see Two phase commit; Three phase commit

VP; see Virtual partition algorithm

VSR; see View serializability

Wait-die deadlock prevention; see Timestampbased deadlock prevention Waits-for graph (WFG), 56-57, 79-82, 105-126, 337 Weihl, W.E., 164 Weinberger, P.I., 104, 105 WFG; see Waits-for graph Wiederhold, G., 308 Wilkinson, W.K., 138, 164 Wilnes, P., 308 Wong, K.C., 41, 104 Wong, W.S., 104, 105, 138 Wood, D., 105 Workload, 92-95, 325 Workspace model, 141, 327 Wound-wait; see Timestamp-based deadlock prevention Wright, D., 308 Write, 2, 26, 28, 171-172, 179, 217, 266, 269-272, 337 Write ahead log protocol, 177ff; see also Undo Rule Write-all approach, 266-267, 299, 304, 337 Write-all-available approach, 267-268, 276, 281, 337 Write lock, 50, 60, 337 Write order, 276-277, 301, 303, 337 Writeset, 48, 121, 126, 127, 129, 337 ww synchronization, 133, 337

Yannakakis, M., 41, 138 Yao, S.B., 105