

XIII Brazilian Symposium on Computing Systems Engineering

November 21-24, 2023 - Porto Alegre - RS

RDSF: Everything at Same Place All at Once - A Random Decision Single Forest

Olavo A. B. Silva, Alysson K. C. Silva, Ícaro G. S. Moreira, José A. M. Nacif, Ricardo S. Ferreira Universidade Federal de Viçosa

Summary

- Decision Trees and Random Forest
- Mapping a Random Forest in a single Decision Graph
 - Random Decision Single Forest (RDSF)
 - Blt adder Function, Majority and Priority Encoder
 - Binary Decision Diagram BDD
- Experimental Results
- Conclusion

Decision Tree and Boolean Equations: Three Classes

A= Length > 15.2 ? B= Depth > 3.8 ?

. .

Each path generates one product term

1 = ABD or ABC

Each class has a conjunctive logic equation

- 1 = ABD or ABC
- $2 = \overline{A}B$ or $A\overline{C}E$ or $AC\overline{B}$

 $3 = \overline{ABD}$ or $A\overline{CE}$

- Resilience against outliers and noisy data.
- By employing an ensemble of decision trees, Random Forest effectively reduces the vulnerability of individual trees to overfitting
- Enhancing its prediction accuracy.

Random Forest

Votes: 1 has 2 Votes ——
2 has 0 votes
3 has 1 votes

Our Proposal: Generate a single Boolean Function

Features

How to do that? embedded the adder

- Tree 1 generates "paths" equation Tree1Class1 = A & B | C
- Tree 2 generates "paths" equation Tree2Class1 = D' & E | A
- By using an "adder function operator", we could merge Trees 1 and 2
- For X and Y, sum = X ^ Y and carry on = X & Y

• S1 = $(A\&B|C) \land (D'\&E|A) = F(A,B,C,D,E)$

• Con1 = (A&B|C) & (D'&E|A) = F(A,B,C,D,E)

What to do next to "adding the class trees"?

- Each Class generates a Sum Function Vector with Log N bits, for N trees
- Assuming a simple example of 3 trees => 2 bits

```
• Class1Sum = C1S1 C1S0
```

- o Class2Sum = C2S1 C2S0
- Class3Sum = C3S1 C3S0
- Compare Function
 - C1S1 = 1 means Class 1 has "10" ou "11" votes (2 or 3)
 - Therefore Maj1 = C1S1 or
 - o Maj2 = C2S1 or
 - Maj3 = C3S1 or ...
- One-Hot Code Maj (C1,C2,C3) function(a,b,c,d,e)

What to do event of a tie in the voting process?

- Priority Encoder
- Assuming 4 class example One Hot Maj(c0,c1,c2,c3)
 - Encoder E1= C3 or C2
 - Encoder E0 = not E1 and C1 or C3
 - \circ F= 0,0,1,1 E1E0 = 11 = C3
 - \circ F= 1,0,1,0 E1E0 = 10 = C2
 - o F= 1,1,0,0 E1E0 = 01 = C1

以SBESC

Embedded Boolean Function depends on the primary inputs

- Final = Encoder (Maj (Adding (primary input)))
- We use BDD to manipulate the Boolean Functions
 - compact
 - canonical representation
 - CUDD C++ efficient BDD package
 - Variable ORDER

Final Boolean Function depends on the primary inputs

A simple example with 3 trees and 3 classes

ASBESC Tree 1 Order=c,b,a,e,d **Features Order** Tree1 F0 F1 A, C, B Random **Forest** Tree 2 Tree 2 (b < 4) D,C,B (e < 3)Tree 3 Tree 3 (c < 4)E, B, C (b)

Order=c,b,a,e,d

Experimental Results BDD versus Previous Approach

Execution Time (ms)								
		Ger	nerate	Inference				
Trees	Depth	CUDD	ADD-lib	CUDD	ADD-Lib			
3	3	9 77		78	509			
3	7	9 895		110	918			
3	-	9 -		290	[6-1			
7	3	9	269	94	745			

Dry beam Dataset 13K samples, 16 features, 4 classes

Experimental Results BDD generation Size

Tree	Depth	Var	Eq	Add	Vote	All
3	3	15	30	72	74	51
3	7	91	136	1364	1387	1006
3	-	271	377	29027	26059	20647
7	3	39	81	433	973	759
3	3	12	29	80	47	37

Dry beam Dataset 13K samples, 16 features, 4 classes

☆SBESC

Congress Voting, 16 attributes, 2 classes, 435 samples

Tree	Depth	Var	Eq	Add	Vote
3	3	16	10	16	10
3	7	16	93	265	117
3	7-	16	99	431	222
7	3	16	21	66	24
7	7	16	225	1639	470
7	10-1	16	289	2057	552

≱SBESC

Congress Voting, 16 attributes, 2 classes, 435 samples

Tree	Depth	Var	Eq	Add	Vote
3	3	16	10	16	10

ASBESC

Heart disease, 9 features, 400k samples

Tree	Depth	Var	Eq	Add	Vote
3	3	9	5	7	5
3	7	9	7	13	10
3	-	9	189	147	74
7	3	9	8	13	6
7	7	9	218	163	46
7	-	9	383	213	79

Heart disease, 9 features, 400k samples

Depth	Var	Eq	Add	Vote	
3	9	5	7	5	
7	9	7	13	10	
Ctrol	Dift Walk	ing ——	\Rightarrow		
Strok			\geq	\rightarrow	Heart Disease
Kidn			1		
	3 7 Strok	3 9 7 9 Dift Walk Stroke —	Depth Var Eq 3 9 5 7 9 7 Stroke Diabetic — Kidney Disease	3 9 5 7 7 7 9 7 13 Stroke Diabetic Diabetic	3 9 5 7 5 7 7 7 9 7 13 10 Stroke Diabetic Diabetic

ASBESC

Thyroid, 20 features, 4 classes, 9k samples

Tree	Depth	Var	Eq	Add	Vote	All
3	3	20	5	7	5	5
3	7	20	105	282	132	109
3	-	20	364	875	333	287
7	7	20	18	53	19	15
7	7	20	252	2,612	868	718
7	1	20	968	7,055	1,383	1162

Thyroid, 20 features, 4 classes, 9k samples

Tree	Depth	Var	Eq	Add	Vote	All	
3	3	20	5	7	5	5	
3	7	2					
3	-	2					
7	7	2	T4U Measu	red			
7	7	2		Goitre			
7	-	2	Pregnar			F1	
			T3 Meas	ured			

Cluster Classification

Maj vote (c0,c1,c2,c3,c4,c5,c6,c7)

Maj vote (c0,c5,c6,c3,c4,c1,c2,c7)

Maj vote (c0,c5,c6,c3,c4,c1,c2,c7)

Conclusions

- Random Decision Single Forest (RDSF)
- Improved scalability and reduced execution time compared to ADD approaches.

- Advantage of controlling input data order during inference
- Facilitating direct class clustering, enhancing its versatility.

- Numerical and categorical datasets.
- Mapping some datasets in simple functions for categorical ones

Questions?

ricardo@ufv.br Acknowledgments

Financial support from FAPEMIG APQ-01577-22, CNPq, and UFV. This work was also carried out with the support of the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Financing Code 001