Desempenho: benchmarks

Estudo de caso 1: SPEC CPU

- Tempos de execução normalizados
 - Relativos a uma máquina de referência

$$Raz\~{ao}\,SPEC = \frac{TempoEx\,\,sun\,\,ultraSparc@296MHz}{TempoEx\,\,medido}$$

- Para os 12 programas inteiros
 - CINT2006 = média geométrica das razões SPEC
- Para os 17 programas de ponto flutuante
 - CFP2006 = média geométrica das razões SPEC

Exemplo: CINT2006 para Opteron X4, modelo 2356 (Barcelona)

Desc ription	Nam e	Inst ruction Count × 10 °	CPI	Cloc k cy clet ime (seco nds ×10 °)	Execut ion Time (seco nds)	Reference Time (seco nds)	SPE Crat io
Interpreted string proces sing	perl	2,11 8	0.75	0.4	637	9,770	15.3
Block-sor ting compression	bzip2	2,389	0.85	0.4	817	9,650	11.8
GNU C compile r	gcc	1,050	1.72	0.4	724	8,050	11.1
Combinatorial optimization	mcf	336	10.00	0.4	1,345	9,120	6.8
Go game (AI)	go	1,658	1.09	0.4	721	10,490	14.6
Search gene sequence	hmmer	2,783	0.80	0.4	890	9,330	10.5
Chess game (AI)	sjeng	2,176	0.96	0.4	837	12,100	14.5
Quantum computer simulati on	libquantum	1,623	1.61	0.4	1,047	20,720	19.8
Video compressio n	h264a vc	3,102	0.80	0.4	993	22,130	22.3
Discre te e vent simulati on library	omnetpp	587	2.94	0.4	690	6,250	9.1
Games/path finding	astar	1,082	1.79	0.4	773	7,020	9.1
XML parsing	xalancbmk	1,058	2.70	0.4	1,1 43	6,900	6.0
Geometric Mean							11.7

$$f = 2.5 \text{ GHz} \Rightarrow T = 0.4 \ 10^{-9} = 0.4 \text{ ns}$$
 I x CPI x T = t_{ex} $t_{referência}/t_{ex} = SPEC \text{ ratio}$
CINT2006 = $(r_1 \times r_2 \times r_3 \times ... \times r_{11} \times r_{12})^{1/12}$

Exemplo: CINT2006 para Opteron X4, modelo 2356 (Barcelona)

Desc ription	Nam e	Inst ruct ion Count × 10 9	СЫ	Cloc k cy clet ime (seco nds ×10 °)	Execut ion Time (seco nds)	Reference Time (seco nds)	SPE Crat io
Interpreted string proces sing	perl	2,11 8	0.75	0.4	637	9,770	15.3
Block-sor ting compression	bzip2	2,389	0.85	0.4	817	9,650	11.8
GNU C compile r	gcc	1,050	1.72	0.4	724	8,050	11.1
Combinatorial optimization	optimization mcf 336		10.00	0.4	1,345 9,120		6.8
Go game (AI)	go 1,658		1.09	0.4	721	10,490	14.6
Search gene sequence	hmmer	2,783	0.80	0.4	890	9,330	10.5
Chess game (AI)	sjeng	2,176	0.96	0.4	837	12,100	14.5
Quantum computer simulati on	libquantum	1,623	1.61	0.4	1,047	20,720	19.8
Video compressio n	h264a vc	3,102	0.80	0.4	993	22,130	22.3
		587	2.94	0.4	690	6,250	9.1
Games/path finding	astar	1,082	1.79	0.4	773	7,020	9.1
XML parsing	xalancbmk	1,058	2.70	0.4	1,1 43	6,900	6.0
Geometric Mean							11.7

Pior CPI Melhor CPI

Exemplo: CINT2006 para Opteron X4, modelo 2356 (Barcelona)

Desc ription	Nam e	Inst ruction Count × 10 °	СЫ	Cloc k cy clet ime (seco nds × 10 °)	Execut ion Time (seco nds)	Reference Time (seco nds)	SPE Crat io	
Interpreted string proces sing	perl	2,11 8	0.75	0.4	637	9,770	15.3	
Block-sor ting compression	bzip2	2,389	0.85	0.4	817	9,650	11.8	
GNU C compile r	gcc	1,050	1.72	0.4	724	8,050	11.1	
Combinatorial optimization	mcf	336	10.00	0.4	1,345	9,120	6.8	
Go game (AI)	go	1,658	1.09	0.4	721	10,490	14.6	
Search gene sequence	hmmer	2,783	0.80	0.4	890	9,330	10.5	
Chess game (AI)	sjeng	2,176	0.96	0.4	837	12,100	14.5	
Quantum computer simulati on	libquantum	1,623	1.61	0.4	1,047	20,720	19.8	
Video compressio n	h264a vc	3,102	0.80	0.4	993	22,130	22.3	
Discre te e vent simulati on library	omnetpp	587	2.94	0.4	690	6,250	9.1	
Games/path finding	astar	1,082	1.79	0.4	773	7,020	9.1	
XML parsing	xalancbmk	1,058	2.70	0.4	1,1 43	6,900	6.0	
Geometric Mean							11.7	

Pior/melhor = 13 vezes

- Dada ISA, como melhorar o desempenho?
 - Aumento da freqüência do relógio
 - Melhorias na organização que diminuam CPI
 - Melhorias no compilador
 - » Que reduzam número de instruções ou
 - » Que gerem instruções com menor CPI médio

• É um erro comum assumir que:

"A introdução de uma melhoria afetando apenas <u>parte</u> de uma máquina aumente o desempenho <u>total</u> proporcionalmente à melhoria."

Exemplo:

- Um programa executa em 100ns.
- As multiplicações contribuem com 80ns.
- De quanto preciso acelerar a multiplicação para que o programa execute 5× mais rápido ?

$$TempoEx_{\text{c/melhoria}} = \frac{TempoEx_{\text{afetado p/melhoria}}}{proporç\~{a}o\ de\ melhoria} + TempoEx_{n\~{a}o\ afetado\ p/melhoria}$$

$$\frac{100}{5} = \frac{80}{n} + (100 - 80) \iff 20 = \frac{80}{n} + 20 \iff 0 = \frac{80}{n} \quad !?$$

• É um erro comum:

"Utilizar apenas parte da equação de desempenho como métrica."

- Exemplo: MIPS para medir desempenho.
 - Milhões de instruções por segundo

$$MIPS = \frac{I}{TempoEx \times 10^6}$$

- Noção intuitiva, mas:
 - » Não leva em conta diferenças no conj. de instruções
 - » Varia entre programas num mesmo computador
 - » Pode variar inversamente com o desempenho!?

Se f_r = 4 GHz, qual código é mais rápido ?

classe	CPI
А	1
В	2
С	3

$$TempoEx = \frac{ciclos_{CPU}}{f} = \frac{\sum_{i=1}^{n} (CPI_i \times C_i)}{f}$$

$$MIPS = \frac{I}{TempoEx \times 10^6}$$

$$MIPS = \frac{I}{TempoEx \times 10^6}$$

TempoEx₁ =
$$\frac{(5 \times 1 + 1 \times 2 + 1 \times 3) \times 10^9}{4 \times 10^9}$$
 = 2,5 s MIPS₁ = $\frac{(5 + 1 + 1) \times 10^9}{2,5 \times 10^6}$ = 2800

MIPS₁ =
$$\frac{(5+1+1)\times10^9}{2,5\times10^6}$$
 = 2800

TempoEx₂ =
$$\frac{(10 \times 1 + 1 \times 2 + 1 \times 3) \times 10^9}{4 \times 10^9}$$
 = 3,75 s MIPS₂ = $\frac{(10 + 1 + 1) \times 10^9}{3,75 \times 10^6}$ = 3200

$$MIPS_2 = \frac{(10+1+1)\times10^9}{3,75\times10^6} = 3200$$

Cálculo do MIPS (alternativo)

$$\frac{\text{instruções}}{\text{segundo}} = \frac{\text{instruções}}{\text{ciclo}} \times \frac{\text{ciclos}}{\text{segundo}} = \frac{1}{\text{CPI}} \times f = \frac{f}{\text{CPI}}$$

$$MIPS = \frac{\text{instruções}/s}{10^6} = \frac{f}{10^6 \times CPI}$$

Classe	CPI	Fração
Α	5	0,33
В	2	0,50
С	4	0,10
D	4	0,07

$$f = 200 MHz$$

$$CPI = 5 \times 0.33 + 2 \times 0.50 + 4 \times 0.10 + 4 \times 0.07 = 3.33$$

$$MIPS = \frac{200 \times 10^6}{10^6 \times 3{,}33} = 60$$

Consumo de energia e potência

- Computação móvel
 - Celulares e outros dispositivos móveis
 - » Maximizar tempo de bateria ⇒
 - » Minimizar consumo de energia
- Computação de uso geral
 - Laptops
 - » Maximizar tempo de bateria ⇒
 - » Minimizar consumo de energia
 - Laptops, desktops, servers
 - » Viabilizar resfriamento
 - » ⇒ Minimizar consumo de potência
 - Servers
 - » Maximizar a eficiência energética (operações/J)

Estudo de caso 2: SPEC Power

- Começou com
 - SPEC benchmark for Java business applications
- Consumo de potência de servidores sob diferentes níveis de carga
 - Desempenho: operações/s (ssj_ops)
 - Potência: Watts (Joules/s)
- Métrica de eficiência energética
 - Quantas operações por Joule?

Exemplo: SPECpower_ssj2008 Opteron X4, modelo 2356

Target Loa d %	Pe rfor man ce (ssj_op s)	Averag e Power (Watts)
100 %	231,86 7	295
90%	211 ,282	286
80%	185,80 3	275
70%	163,42 7	265
60%	140,16 0	256
50%	118,32 4	246
40%	92,03 5	233
30%	70,50 0	222
20%	47,12 6	206
10%	23,06 6	180
0%	0	141
Overall Sum	1,283, 590	2,605
Σ ssj_ops / Σ power =		493

Overall ssj_ops per Watt =
$$\left(\sum_{i=0}^{10} ssj_ops_i\right) / \left(\sum_{i=0}^{10} power_i\right)$$

• É um erro comum assumir que:

"Computadores com baixa utilização consomem pouca potência"

Ser ver Man ufact urer	Micro- proc esso r	Total Cor es/ Sock ets	Cloc k Rat e	Pe ak Pe rfor man ce (ssj_op s)	100 % Loa d Po we r	50% Loa d Po we r	50% Loa d/ 100 % Po we r	10% Loa d Po we r	10% Loa d/ 100 % Po we r	Act ive Idle Po we r	Act ive Idle/ 100 % Po we r
HP	Xeon E5440	8/2	3.0 GHz	308, 022	269 W	227 W	84%	174 W	65%	160 W	59%
Dell	Xeon E5440	8/2	2.8 GHz	305, 413	276 W	230 W	83%	173 W	63%	157 W	57%
Fujitsu Sei mens	Xeon X3220	4/1	2.4 GHz	143, 742	132 W	110 W	83%	85 W	65%	80 W	60%

A utilização de CPU dos Servidores da Google:

- 100% cerca de 1% do tempo
- Entre 10% e 50% a maior parte do tempo

• É um erro comum assumir que:

"Computadores com baixa utilização consomem pouca potência"

Ser ver Man ufact urer	Micro- proc esso r	Total Cor es/ Sock ets	Cloc k Rat e	Pe ak Pe rfor man ce (ssj_op s)	100 % Loa d Po we r	50% Loa d Po we r	50% Loa d/ 100 % Po we r	10% Loa d Po we r	10% Loa d/ 100 % Po we r	Act ive Idle Po we r	Act ive Idle/ 100 % Po we r
НР	Xeon E5440	8/2	3.0 GHz	308, 022	269 W	227 W	84%	174 W	65%	160 W	59%
Dell	Xeon E5440	8/2	2.8 GHz	305, 413	276 W	230 W	83%	173 W	63%	157 W	57%
Fujitsu Sei mens	Xeon X3220	4/1	2.4 GHz	143, 742	132 W	110 W	83%	85 W	65%	80 W	60%

A utilização de CPU dos Servidores da Google:

- 100% cerca de 1% do tempo
- Entre 10% e 50% a maior parte do tempo

Por que não gastar 10% da potência com 10% de carga?

→ Green Computing, Green Data Centers

Mais informações?

- Acesso aos SPEC benchmarks:
 - http://www.spec.org/cpu2006/ (CPU)
 - http://www.spec.org/power_ssj2008/ (Power)
- Green computing:
 - IEEE Computer Magazine, Dezembro 2007
 - » www.computer.org/computer
 - Referência: "The Case for Energy-Proportional Computing"
 - » Luiz André Barroso, Google
 - » Urs Hölze, Google