

AMENDMENT

Kindly amend the application, without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

IN THE CLAIMS:

Kindly amend the claims, without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, to read as follows:

1-66 (Cancelled)

67. (New) A method of inhibiting steroid sulphatase activity comprising administering, a non-oestrogenic sulphamate compound suitable for use as an inhibitor of oestrone sulphatase to a patient in need of inhibition of steroid sulphatase activity by a compound lacking oestrogenic activity, wherein the non-oestrogenic sulphamate compound is a sulphamate compound having Formula IV;

Formula IV

wherein

X is a sulphamate group;

one of R₁ and R₂ is H and the other of R₁ and R₂ is a substituent other than H or R₁ and R₂ may be the same or different but not both being H, wherein the substituent other than H is alkyl, cycloalkyl, alkoxy, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group;

wherein Y is a suitable linking group comprising one or more of C, O, N, and S; and

each of R₃ and R₄ is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, wherein at least one of R₃ and R₄ is H.

68. (New) A method of treating endocrine-dependent cancer comprising administering non-oestrogenic sulphamate compound suitable for use as an inhibitor of oestrone sulphatase, to a patient in need of treatment of endocrine-dependent cancer by a compound lacking oestrogenic activity, wherein the compound is a sulphamate compound having Formula IV;

Formula IV

wherein

X is a sulphamate group;

one of R₁ and R₂ is H and the other of R₁ and R₂ is a substituent other than H or R₁ and R₂ may be the same or different but not both being H, wherein the substituent other than H is alkyl, cycloalkyl, alkoxy, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group;

Y is a suitable linking group comprising one or more of C, O, N, and S; and

each of R₃ and R₄ is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, wherein at least one of R₃ and R₄ is H.

69. (New) The method according to claim 67 wherein the substituent of R₁ and R₂ that is other than H is a C₁₋₆ alkyl, a C₁₋₆ cycloalkyl, a C₁₋₆ alkenyl, a substituted C₁₋₆ alkyl, a substituted C₁₋₆ cycloalkyl, a substituted C₁₋₆ alkenyl, a substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.

70. (New) The method according to claim 68 wherein the substituent of R₁ and R₂ that is other than H is a C₁₋₆ alkyl, a C₁₋₆ cycloalkyl, a C₁₋₆ alkenyl, a substituted C₁₋₆ alkyl, a substituted C₁₋₆ cycloalkyl, a substituted C₁₋₆ alkenyl, a substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.

71. (New) The method according to claim 69 wherein the substituent of R₁ and R₂ that is other than H is a C₁₋₆ alkyl, a C₁₋₆ alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.

72. (New) The method according to claim 70 wherein the substituent of R₁ and R₂ that is other than H is a C₁₋₆ alkyl, a C₁₋₆ alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.

73. (New) The method according to claim 71 wherein the substituent of R₁ and R₂ that is other than H is selected from C₁₋₆ alkyl, C₁₋₆ alkenyl, NO₂, or a carboxy group having from 1-6 carbon atoms.

74. (New) The method according to claim 72 wherein the substituent of R₁ and R₂ that is other than H is selected from C₁₋₆ alkyl, C₁₋₆ alkenyl, NO₂, or a carboxy group having from 1-6 carbon atoms.

75. (New) The method according to claim 73 wherein the substituent of R₁ and R₂ that is other than H is a C₃ alkyl, a C₃ alkenyl, NO₂, or H₃CO.

76. (New) The method according to claim 74 wherein the substituent of R₁ and R₂ that is other than H is a C₃ alkyl, a C₃ alkenyl, NO₂, or H₃CO.

77. (New) The method according to claim 67 wherein the substituent of R₁ and R₂ that is other than H is a alkoxy group.

78. (New) The method according to claim 68 wherein the substituent of R₁ and R₂ that is other than H is a alkoxy group.

79. (New) The method according to claim 77 wherein the substituent of R₁ and R₂ that is other than H is a methoxy group.

80. (New) The method according to claim 78 wherein the substituent of R₁ and R₂ that is other than H is a methoxy group.
81. (New) The method according to claim 67 wherein the group A/ring B combination contains one or more alkoxy substituents.
82. (New) The method according to claim 68 wherein the group A/ring B combination contains one or more alkoxy substituents.
83. (New) The method according to claim 67 wherein each of R₁ and R₂ is an alkoxy group.
84. (New) The method according to claim 68 wherein each of R₁ and R₂ is an alkoxy group.
85. (New) The method according to claim 83 wherein each of R₁ and R₂ is a methoxy group.
86. (New) The method according to claim 85 wherein each of R₁ and R₂ is a methoxy group.
87. (New) The method according to claim 67 wherein at least one of R₃ and R₄ is H.
88. (New) The method according to any one of claims 68 wherein each of R₃ and R₄ is H.
89. (New) The method according to claim 67 wherein Y is -C(O)-.
90. (New) The method according to claim 68 wherein Y is -C(O)-.

91. (New) The method of 68 wherein the endocrine-dependent cancer is breast, ovarian, endometrial, or prostate cancer.

92. (New) The method of claim 91 wherein the endocrine-dependent cancer is breast cancer.

93. (New) A method of treating endocrine-dependent cancer comprising administering a non-oestrogenic sulphamate compound suitable for use as an inhibitor of oestrone sulphatase to a patient in need of treatment of endocrine-dependent cancer by a compound lacking oestrogenic activity, wherein the compound has one of Formulae VI - IX

	R ₁	R ₂	Formula VI
a)	n-CH ₂ CH ₂ CH ₃	H	Formula VI
b)	H	n-CH ₂ CH ₂ CH ₃	
c)	n-CH ₂ CH ₂ CH ₃	n-CH ₂ CH ₂ CH ₃	

	R ₁	R ₂	Formula VII
a)	-CH ₂ CH=CH ₂	H	Formula VII
b)	H	-CH ₂ CH=CH ₂	
c)	-CH ₂ CH=CH ₂	-CH ₂ CH=CH ₂	

	R ₁	R ₂	Formula VIII
a)	H ₃ CO-	H	
b)	H	H ₃ CO-	
c)	H ₃ CO-	H ₃ CO-	

	R ₁	R ₂	Formula IX
a)	-NO ₂	H	
b)	H	-NO ₂	
c)	-NO ₂	-NO ₂	

94. (New) The method of 93 wherein the endocrine-dependent cancer is breast, ovarian, endometrial, or prostate cancer.

95. (New) The method of claim 94 wherein the endocrine-dependent cancer is breast cancer.

96. (New) A method of inhibiting steroid sulphatase activity comprising administering a non-oestrogenic sulphamate compound to a patient in need of inhibition of steroid sulphatase activity by a non-oestrogenic sulphamate compound, wherein the compound has one of Formulae VI - IX

	R ₁	R ₂	Formula VI
a)	n-CH ₂ CH ₂ CH ₃	H	
b)	H	n-CH ₂ CH ₂ CH ₃	
c)	n-CH ₂ CH ₂ CH ₃	n-CH ₂ CH ₂ CH ₃	

	R ₁	R ₂	Formula
a)	- CH ₂ CH=CH ₂	H	VII
b)	H	-CH ₂ CH=CH ₂	
c)	- CH ₂ CH=CH ₂	-CH ₂ CH=CH ₂	

	R ₁	R ₂	Formula
a)	H ₃ CO-	H	VIII
b)	H	H ₃ CO-	
c)	H ₃ CO-	H ₃ CO-	

	R ₁	R ₂	Formula
a)	-NO ₂	H	IX
b)	H	-NO ₂	
c)	-NO ₂	-NO ₂	