

Conjugate (dual) set

Пусть $S\subseteq\mathbb{R}^n$ - произвольное непустое множество. Тогда сопряженное к нему множество определяется, как:

$$S^* = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \ \forall x \in S \}$$

Double conjugate set

Множество S^{**} называется вторым сопряженным к множеству S, если:

$$S^{**} = \{ y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \ \forall x \in S^* \}$$

Inter-conjugate and self-conjugate sets

- Множества S_1 и S_2 называются **взаимосопряженными**, если $S_1^* = S_2, S_2^* = S_1.$
- Множество S называется **самосопряженным**, если $S^st = S.$

Properties

- Сопряженное множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S\subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

ullet Если $S_1\subseteq S_2$, то $S_2^*\subseteq S_1^*$.

 $\left(igcup_{i=1}^m S_i
ight)^* = igcap_{i=1}^m S_i^*$

ullet Если S - замкнуто, выпукло, включает 0, то $S^{**}=S.$

$$S^* = \left(\overline{S}
ight)^*$$

Examples

1

Доказать, что $S^* = \left(\overline{S}\right)^*$.

Решение:

$$S\subset \overline{S} o \left(\overline{S}
ight)^*\subset S^*$$

• Пусть $p\in S^*$ и $x_0\in \overline{S}, x_0=\lim_{k\to\infty}x_k$. Тогда в силу непрерывности функции $f(x)=p^Tx$, имеем: $p^Tx_k\geq -1\to p^Tx_0\geq -1$. Значит, $p\in \left(\overline{S}\right)^*$, отсюда $S^*\subset \left(\overline{S}\right)^*$

2

Доказать, что $(\mathbf{conv}(S))^* = S^*$.

Решение:

$$S \subset \mathbf{conv}(S) o (\mathbf{conv}(S))^* \subset S^*$$

 * Пусть $p\in S^*$, $x_0\in \mathbf{conv}(S)$, т.е. $x_0=\sum\limits_{i=1}^k heta_ix_i\mid x_i\in S, \sum\limits_{i=1}^k heta_i=1, heta_i\geq 0.$

Значит,
$$p^Tx_0=\sum\limits_{i=1}^k heta_i p^Tx_i\geq \sum\limits_{i=1}^k heta_i(-1)=1\cdot (-1)=-1$$
. Значит, $p\in (\mathbf{conv}(S))^*$, отсюда $S^*\subset (\mathbf{conv}(S))^*$

Доказать, что если B(0,r) - шар радиуса r по некоторой норме с центром в нуле, то $\left(B(0,r)\right)^*=B(0,1/r).$

Решение:

- Пусть B(0,r)=X, B(0,1/r)=Y. Возьмем вектор нормали $p\in X^*$, тогда для любого $x\in X: p^Tx\geq -1.$
- Из всех точек шара X возьмем такую $x \in X$, что скалярное произведение её на p: p^Tx было бы минимально, тогда это точка $x = -\frac{p}{\|p\|}r$

$$p^Tx = p^T\left(-rac{p}{\|p\|}r
ight) = -\|p\|r \geq -1$$
 $\|p\| \leq rac{1}{r} \in Y$

Значит, $X^*\subset Y$.

• Теперь пусть $p \in Y$. Нам надо показать, что $p \in X^*$, т.е. $\langle p, x \rangle \geq -1$. Достаточно применить неравенство Коши - Буняковского:

$$\|\langle p,x
angle\|\leq \|p\|\|x\|\leq rac{1}{r}\cdot r=1$$

Последнее исходит из того, что $p \in B(0,1/r)$, а $x \in B(0,r)$.

Значит, $Y\subset X^*$.

Dual cones

Сопряженным конусом к конусу K называется такое множество K^{st} , что:

$$K^* = \{y \mid \langle x, y \rangle \ge 0 \quad \forall x \in K\}$$

Чтобы показать, что это определение непосредственно следует из теории выше, вспомним, что такое сопряженное множество и что такое конус $\forall \lambda>0$

$$\{y \ \in \mathbb{R}^n \mid \langle y, x
angle \geq -1 \ \ orall x \in S\}
ightarrow \{\lambda y \ \in \mathbb{R}^n \mid \langle y, x
angle \geq -rac{1}{\lambda} \ \ orall x \in S\}$$

Dual cones properties

- Пусть K замкнутый выпуклый конус. Тогда $K^{**}=K.$
- Для произвольного множества $S \subseteq \mathbb{R}^n$ и конуса $K \subseteq \mathbb{R}^n$:

$$\left(S+K\right)^* = S^* \cap K^*$$

ullet Пусть K_1,\ldots,K_m - конусы в \mathbb{R}^n , тогда:

$$\left(\sum_{i=1}^m K_i
ight)^* = igcap_{i=1}^m K_i^*$$

• Пусть K_1, \ldots, K_m - конусы в \mathbb{R}^n . Пусть также их пересечение имеет внутреннюю точку, тогда:

$$\left(igcap_{i=1}^m K_i
ight)^* = \sum_{i=1}^m K_i^*$$

Examples

Найти сопряжений конус для монотонного неотрицательного конуса:

$$K = \{x \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}$$

Решение:

Заметим, что:

$$\sum_{i=1}^n x_i y_i = y_1 (x_1 - x_2) + (y_1 + y_2) (x_2 - x_3) + \ldots + (y_1 + y_2 + \ldots + y_{n-1}) (x_{n-1})$$

Так как в представленной сумме в каждом слагаемом второй множитель неотрицательный, то:

$$y_1 \ge 0$$
, $y_1 + y_2 \ge 0$, ..., $y_1 + \ldots + y_n \ge 0$

Значит,
$$K^* = \left\{ y \mid \sum\limits_{i=1}^k y_i \geq 0, k = \overline{1,n}
ight\}$$

Polyhedra

Множество решений системы линейных неравенств и равенств представляет собой многогранник:

$$Ax \leq b$$
, $Cx = d$

Здесь $A \in \mathbb{R}^{m imes n}, C \in \mathbb{R}^{p imes n}$, а неравенство - поэлементное.

TEOPEMA:

Пусть $x_1,\ldots,x_m\in\mathbb{R}^n$. Сопряженным к многогранному множеству:

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

является полиэдр (многогранник):

$$S^* = ig\{ p \in \mathbb{R}^n \mid \langle p, x_i
angle \geq -1, i = \overline{1, k}; \langle p, x_i
angle \geq 0, i = \overline{k+1, m} ig\}$$

ДОКАЗАТЕЛЬСТВО:

• Пусть $S=X, S^*=Y$. Возьмем некоторый $p\in X^*$, тогда $\langle p,x_i\rangle \geq -1, i=\overline{1,k}$. В то же время для любых $\theta>0, i=\overline{k+1,m}$:

$$\langle p, x_i \rangle \ge -1 \to \langle p, \theta x_i \rangle \ge -1$$

$$\langle p, x_i
angle \geq -rac{1}{ heta}
ightarrow \langle p, x_i
angle \geq 0$$

Значит, $p \in Y o X^* \subset Y$.

ullet Пусть, напротив, $p \in Y$. Для любой точки $x \in X$:

$$x = \sum_{i=1}^m heta_i x_i \qquad \sum_{i=1}^k heta_i = 1, heta_i \geq 0$$

Значит:

$$\langle p,x
angle = \sum_{i=1}^m heta_i \langle p,x_i
angle = \sum_{i=1}^k heta_i \langle p,x_i
angle + \sum_{i=k+1}^m heta_i \langle p,x_i
angle \geq \sum_{i=1}^k heta_i (-1) + \sum_{i=1}^k heta_i \cdot$$

Значит, $p \in X^* o Y \subset X^*$.

5

Найти и изобразить на плоскости множество, сопряженное к многогранному конусу:

$$S = \mathbf{cone} \{ (-3, 1), (2, 3), (4, 5) \}$$

Решение:

Используя теорему выше:

$$S^* = \{-3p_1 + p_2 \ge 0, 2p_1 + 3p_2 \ge 0, 4p_1 + 5p_2 \ge 0\}$$

Лемма (теорема) Фаркаша (Фаркаша - Минковского)

Пусть $A \in \mathbb{R}^{m imes n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из

следующих двух систем:

1)
$$Ax = b, x \ge 0$$

$$2)\ p^\top A \geq 0, \langle p,b \rangle < 0$$

Ax=b при $x\geq 0$ означает, что b лежит в конусе, натянутым на столбцы матрицы A.

 $pA \geq 0, \; \langle p,b \rangle < 0$ означает, что существует разделяющая гиперплоскость между вектором b и конусом из столбцов матрицы A.

СЛЕДСТВИЕ:

Пусть $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Тогда имеет решение одна и только одна из следующих двух систем:

1)
$$Ax \leq b$$

$$2) \ p^\top A = 0, \langle p,b \rangle < 0, p \geq 0$$

Если в задаче линейного программирования на минимум допустимое множество непусто и целевая функция ограничена на нём снизу, то задача имеет решение.