Trigonometric Identities Paul L. Bailey

Definition

The wrapping function $P: \mathbb{R} \to \mathbb{R}^2$ is defined to be the point $P(\theta)$ on the unit circle $x^2 + y^2 = 1$ obtained by moving counterclockwise along the circle an arclength of θ . Then

 $\sin \theta = \text{ the } y\text{-coordinate of } P(\theta) \quad \text{ and } \quad \cos \theta = \text{ the } x\text{-coordinate of } P(\theta).$

Identities that come from Geometry

- (1) Pythagorean Identity $\cos^2 \theta + \sin^2 \theta = 1$
- (2) Symmetry $\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$
- (3) Periodicity $\sin(\theta + 2\pi) = \sin \theta$ $\cos(\theta + 2\pi) = \cos \theta$
- (4) Rotation by 180° $\sin(\theta + \pi) = -\sin\theta$ $\cos(\theta + \pi) = -\cos\theta$
- (5) Rotation by 90° $\sin(\theta + \frac{\pi}{2}) = \cos \theta$ $\cos(\theta \frac{\pi}{2}) = \sin \theta$
- (6) Reflection across 45° $\sin(\frac{\pi}{2} \theta) = \cos \theta$ $\cos(\frac{\pi}{2} \theta) = \sin \theta$
- (7) Difference of Angles Formula $\cos(\alpha \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$

Description	Identity
Pythagorean Identity	$\cos^2\theta + \sin^2\theta = 1$