ЛАБОРАТОРНАЯ РАБОТА 4. РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ

Теоретический материал к данной теме содержится в [1, глава 7].

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче: 1) постановка задачи; 2) необходимый теоретический материал; 3) результаты вычислительного эксперимента; 4) анализ полученных результатов; 5) графический материал (если необходимо);

6) тексты программ.

Задача 4.1. Найти с точностью $\varepsilon=10^{-6}$ все корни системы нелинейных уравнений $f_1(x_1,x_2)=0$, $f_2(x_1,x_2)=0$,

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1.Локализовать корни системы уравнений графически (см. ПРИЛОЖЕНИЕ 4.В).
- 2. Произвести линеаризацию системы. Составить программу-функцию, вычисляющую корень системы двух нелинейных уравнений по упрощенному методу Ньютона с точностью ϵ . Предусмотреть подсчет количества итераций.
- 3. Найти корни с заданной точностью.

Задача 4.2. Дана система уравнений Ax = b, где A — симметричная положительно определенная матрица. Найти решение системы с помощью метода релаксации и метода, указанного в индивидуальном варианте. Сравнить оба метода решения по числу итераций и по времени решения.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать матрицу системы при заданном значении m размерности системы. Используя встроенную функцию для нахождения собственных чисел матриц, найти собственные числа матрицы A (убедиться, что матрица A > 0).
- 2. Задать вектор x с координатами: $x_i = N$ где N номер варианта и вектор b как b = Ax.
- 3. Преобразовать систему к виду удобному для итераций y = Bx + c.
- 3. Составить программу, реализующую метод релаксации с параметром $^{\it co}$. Изменяя значения параметра $^{\it co}$ из интервала (0.2) с шагом 0.1, найти оптимальное значение параметра.
- 4. Решить систему с оптимальным значением параметра ω , найденным в п.2, при размерности системы 10m. Определить число итераций, требуемых для достижения заданной точности и время решения системы. Критерий окончания : $\frac{\|r^{(n)}\|}{\|r^{(0)}\|} \le \varepsilon, \varepsilon = 10^{-10}$
- 5. Составить программу, решающую задачу методом индивидуального варианта при размерности 10m. Критерий окончания взять такой же, как в п.4.

6. Полученные результаты свести в таблицу.

Параметр релаксации	Число итераций при m= методом релаксации	Время решения	Число итераций при 10m = методом релаксации	Время решения	Число итераций при 10m = индивидуальным методом	Время решения
------------------------	--	------------------	---	------------------	---	------------------

Задача 4.3. Задана функция f(x), определенная на отрезке [-1;1]. Требуется разложить функцию в ряд Тейлора в окрестности нуля с точностью ε = 10^{-10} и произвести экономизацию полученного степенного ряда.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

$$S(x,c) = \sum_{k=0}^{n} c_k x^k$$

- $S(x,c) = \sum_{k=0}^n c_k x^k$, вычисляющую частичную сумму ряда по 1. Определить функцию коэффициентам $\left\{c_k\right\}_{k=0}^n$.
- 2. Вычислить коэффициенты разложения и определить требуемое количество слагаемых для достижения требуемой точности, построив график.
- 3. Произвести экономизацию степенного ряда до тех пор, пока сохраняется необходимая точность (см. приложение 4В).
- 4. Построить график погрешности каждого этапа экономизации.

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 4

	Таблица к задаче 4.1					
N	Система уравнений	N	Система уравнений			
4.1.1 4.1.31	$\sin(x_1 + x_2) - x_2 - 1.2 = 0$ $2x_1 + \cos x_2 - 2 = 0$	4.1.16 4.1.46	$ \frac{\sin(0.5x_1 + x_2) - 1.2x_1 - 1 = 0}{x_1^2 + x_2^2 - 1 = 0} $			
4.1.2	$\cos(x_1 - 1) + x_2 - 0.5 = 0$	4.1.17	$\tan(x_1x_2 + 0.3) - x_1^2 = 0$ $0.9x_1^2 + 2x_2^2 - 1 = 0$			
4.1.32	$\sin x_1 + 2x_2 - 2 = 0$	4.1.47				
4.1.3	$\sin x_1 + 2x_2 - 2 = 0$ $\cos x_1 + x_2 - 1.5 = 0$	4.1.18	$\sin(x_1 + x_2) - 1.3x_1 - 1 = 0$			
4.1.33		4.1.48	$x_1^2 + 0.2x_2^2 - 1 = 0$			
4.1.4	$\cos x_1 + x_2 - 1.5 = 0$	4.1.19	$\tan(x_1 x_2) - x_1^2 = 0$ $0.8x_1^2 + 2x_2^2 - 1 = 0$			
4.1.34	2x ₁ - \sin(x ₂ - 0.5) - 1 = 0	4.1.49				
4.1.5 4.1.35	$\sin(x_1 + 1.5) - x_2 + 2.9 = 0$ $\cos(x_2 - 2) + x_1 = 0$	4.1.20 4.1.50	$\sin(x_1 + x_2) - 1.5x_1 - 0.1 = 0$ $3x_1^2 + x_2^2 - 1 = 0$			
4.1.6	$\cos(x_1 + 0.5) + x_2 - 0.8 = 0$	4.1.21	$tan(x_1x_2) - x_1^2 = 0$ $0.7x_1^2 + 2x_2^2 - 1 = 0$			
4.1.36	$\sin x_2 - 2x_1 - 1.6 = 0$	4.1.51				
4.1.7	$\sin(x_1 - 1) + x_2 - 0.1 = 0$	4.1.22	$\sin(x_1 + x_2) - 1.2x_1 - 0.1 = 0$			
4.1.37	$x_1 - \sin(x_2 + 1) - 0.8 = 0$	4.1.52	$x_1^2 + x_2^2 - 1 = 0$			
4.1.8	$\cos(x_1 + x_2) + 2x_2 = 0$	4.1.23	$\tan(x_1x_2 + 0.2) - x_1^2 = 0$ $0.6x_1^2 + 2x_2^2 - 1 = 0$			
4.1.38	$x_1 + \sin x_2 - 0.6 = 0$	4.1.53				

4.1.9	$cos(x_1 + 0.5) - x_2 - 2 = 0$	4.1.24	$\sin(x_1 + x_2) - x_1 + 0.1 = 0$
4.1.39	$sin x_2 - 2x_1 - 1 = 0$	4.1.54	$x_2 - \cos(3x_1) + 0.1 = 0$
4.1.10	$\sin(x_1 + x_2) - x_2 - 1.5 = 0$	4.1.25	$cos(x_1 + 0.5) + x_2 - 1 = 0$
4.1.40	$x_1 + \cos(x_2 - 0.5) - 0.5 = 0$	4.1.55	$sin x_2 - 2x_1 - 2 = 0$
4.1.11	$\sin(x_2 + 1) - x_1 - 1.2 = 0$ $2x_1^2 + x_2 - 2 = 0$	4.1.26	$cos(x_2 - 2) + x_1 = 0$
4.1.41		4.1.57	$sin(x_1 + 0.5) - x_2 + 2.9 = 0$
4.1.12	$cos(x_2 - 1) + x_1 - 0.5 = 0$	4.1.27	$\sin(x_1 - 1) + x_2 - 1.5 = 0$
4.1.42	$x_2 - cos x_1 - 3 = 0$	4.1.57	$x_1 - \sin(x_2 - 1) - 1 = 0$
4.1.13 4.1.43	$\tan(x_1x_2 + 0.4) - x_1^2 = 0$ $0.6x_1^2 + 2x_2^2 - 1 = 0$	4.1.28 4.1.58	$\sin(x_2 + 1) - x_1 - 1 = 0$ $2x_2 + \cos x_1 - 0.5 = 0$
4.1.14	$\sin(x_1 + x_2) - 1.6x_1 - 1 = 0$	4.1.29	$cos(x_2 - 1) + x_1 - 0.8 = 0$
4.1.44	$x_1^2 + x_2^2 - 1 = 0$	4.1.59	$x_2 - cos x_1 - 2 = 0$
4.1.15	$\tan(x_1x_2 + 0.1) - x_1^2 = 0$	4.1.30	$cos(x_1 - 1) + x_2 - 1 = 0$
4.1.45	$x_1^2 + 2x_2^2 - 1 = 0$	4.1.60	$sin x_2 + 2x_1 - 1.6 = 0$

Таблица к задаче 4.2

Элементы матрицы
$$A$$
 задаются формулами:
$$a_{ij} = \frac{\ln(\mathbf{i}+\mathbf{j})^3}{\mathsf{t}} + \operatorname{C} \mathrm{e}^{-(\mathbf{i}-\mathbf{j})^2}, \ i, \ j = 1 \cdots m, \ t = m+0.1N$$

здесь N – номер варианта, m – размерность матрицы, указанная в варианте, константа С заданы в индивидуальном варианте.

N	С	m	N	С	m	N	С	m	N	С	m
4.1.1	3.8	8	4.2.15	9.6	15	4.2.29	3.9	6	4.2.43	2.8	9
4.2.2	9.2	10	4.2.16	6.5	7	4.2.30	9.3	15	4.2.44	7.2	10
4.2.3	6.3	6	4.2.17	7.2	8	4.2.31	6.4	9	4.2.45	5.4	6
4.2.4	9.1	9	4.2.18	3.9	6	4.2.32	4.1	7	4.2.46	3.6	8
4.2.5	10.2	12	4.2.19	5.4	7	4.2.33	9.8	12	4.2.47	4.3	12
4.2.6	6.9	7	4.2.20	9.8	13	4.2.34	8.8	11	4.2.48	6.7	10
4.2.7	8.9	11	4.2.21	8.9	15	4.2.35	9.6	13	4.2.49	5.9	11
4.2.8	8.5	9	4.2.22	8.1	10	4.2.36	6.6	10	4.2.50	3.8	9
4.2.9	9.7	15	4.2.23	8.6	9	4.2.37	8.9	14	4.2.51	7.7	13
4.2.10	7.4	8	4.2.24	7.4	12	4.2.38	3.8	6	4.2.52	8.4	8
4.2.11	9.2	9	4.2.25	8.3	14	4.2.39	4.1	7	4.2.53	6.5	9
4.2.12	7.8	14	4.2.26	4.6	7	4.2.40	9.0	12	4.2.54	8.4	12
4.2.13	3.9	7	4.2.27	5.1	6	4.2.41	8.9	14	4.2.45	3.6	7
4.2.14	9.4	9	4.2.28	8.7	8	4.2.42	3.8	6	4.2.56	7.9	8

Вариант Метод решения			
N = 1, 7, 13, 19, 25, 31, 37, 43,49	Метод минимальных невязок		
N = 2, 8, 14, 20, 26, 32, 38, 44, 50	Метод простой итерации с оптимальным параметром		
N = 3, 9, 15, 21, 27, 33, 39, 45	Метод минимальных поправок, В – диагональная матрица, содержащая главную диагональ матрицы А		
N =4, 10, 16, 22, 28, 34, 40, 46	Метод наискорейшего спуска		
N = 5, 11, 17, 23, 29, 35, 41, 47	Метод Зейделя		
N = 6, 12, 18, 24, 30, 36, 42, 48	Метод сопряженных градиентов		

Таблица к задаче 4.3

					олица и задаче чьо
N	F(x)	N	F(x)	N	F(x)
4.3.1 4.3.31	xe ^x	4.3.11 4.3.41	$x\cos(x)$	4.3. 21 4.3.51	$x^2(1-\cos(x))$
4.3.2 4.3.32	sin(x)	4.3.12 4.3.42	$x^2(e^x - x - 1)$	4.3.22 4.3.52	$x\sin(x)$
4.3.3 4.3.33	e^{2x} - 1	4.3.13 4.3.43	$x\cos(x^2)$	4.3.23 4.3.53	x^2e^{-x}
4.3.4 4.3.34	$\sin(x^2)$	4.3.14 4.3.44	$\sin(2x)$	4.3.24 4.3.54	$(1-\cos(x))/x$
4.3.5 4.3.35	$x(e^x - 1)$	4.3.15 4.3.45	$\sin(x)/x$	4.3.25 4.3.55	e^x - 1
4.3.6 4.3.36	$\cos(x)$	4.3.16 4.3.46	$(e^x-x-1)x^3$	4.3.26 4.3.56	$1-\cos(x)$
4.3.7 4.3.37	$x(1-\cos(x))$	4.3.17 4.3.47	$3xe^x$	4.3.27 4.3.57	$x - \cos(x)$
4.3.8 4.3.38	$(e^x-1)x^2$	4.3.18 4.3.48	$x(e^x - x - 1)$	4.3.28 4.3.58	$\cos(x^2)$
4.3.9 4.3.39	$x^2\cos(x)$	4.3.19 4.3.49	$x^2 \sin(x)$	4.3.29 4.3.59	$x\sin(2x)$
4.3.10 4.3.40	e^x - x - 1	4.3.20 4.3.50	x^2e^x	4.3.30 4.3.60	$x^2(e^x-1)$

ПРИЛОЖЕНИЕ 4.В.

Фрагмент решения задачи 4.1.0

Уравнения системы:
$$f 1(x1, x2) := x2 + 1.5 \cdot \cos(x1 - 1) - 1$$

$$f2(x1,x2):=0.9 \cdot x2^2 + 0.4 \cdot x1^2 - 1$$

Локализация корней:

Первое уравнение, разрешенное относительно x2:

$$g1(x1) := 1 - 1.5 \cdot \cos(x1 - 1)$$

Второе уравнение, разрешенное относительно x2:

$$g2(x1) := \sqrt{\frac{1 - 0.4 \cdot x1^2}{0.9}}$$

$$x1 := -2, -2 + 0.01...2$$

Первый корень:

Начальное приближение:

$$x1:=1.7$$
 $x2:=-0.5$

Полученное приближенное решение:

$$xr1 = \begin{bmatrix} 1.5124471 \\ -0.3073209 \end{bmatrix}$$

Задача 4.3. Для экономизации степенного ряда необходимо воспользоваться многочленами Чебышёва и формулами экономизации степенного ряда.

Многочлены Чебышёва $T_n(x)$ могут быть определены с помощью рекуррентного соотношения $T_0(x)=1$, $T_1(x)=x$, $T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)$.

Формулы экономизации степенного ряда:

$$x = T_{1}, \quad x^{2} = \frac{1}{2}(1 + T_{2}), \quad x^{3} = \frac{1}{4}(3x + T_{3}), \quad x^{4} = \frac{1}{8}(8x^{2} - 1 + T_{4}), \quad x^{5} = \frac{1}{16}(20x^{3} - 5x + T_{5})$$

$$x^{6} = \frac{1}{32}(48x^{4} - 18x^{2} + 1 + T_{6}), \quad x^{7} = \frac{1}{64}(112x^{5} - 56x^{3} + 7x + T_{7}), \quad x^{8} = \frac{1}{128}(256x^{6} - 160x^{4} + 32x^{2} - 1 + T_{8})$$

$$x^{9} = \frac{1}{256}(576x^{7} - 432x^{5} + 120x^{3} - 9x + T_{9}), \quad x^{10} = \frac{1}{512}(1280x^{8} - 1120x^{6} + 400x^{4} - 50x^{2} + 1 + T_{10})$$

$$x^{11} = \frac{1}{1024}(2816x^{9} - 2816x^{7} + 1232x^{5} - 220x^{3} + 11x + T_{11})$$

Рассмотрим конкретный пример. Разложим в окрестности нуля функцию f(x) =

$$e^{x} \approx S_{n}(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!}$$
. Несложно проверить, что для вычисления e^{x} на отрезке [-1,1] с точностью ε^{-8} необходимо разложение до n=11: $|e^{x} - S_{11}(x)| < 10^{-8}$, $x \in [-1,1]$.

Попробуем уменьшить количество слагаемых используя формулы экономизации так, чтобы

точность сохранилась. Подставим
$$x^{11} = \frac{1}{1024}(2816x^9 - 2816x^7 + 1232x^5 - 220x^3 + 11x + T_{11})$$
 в $S_{11}(x)$ и после группирования слагаемых получим $S_{11}(x) = \tilde{S}_{10}(x) + \frac{1}{1024 \times 11!}T_{11}$. Отбрасывая $\frac{1}{1024 \times 11!}T_{11}$ мы приходим к новому приближению e^x с меньшим количеством слагаемых и дающее

требуемую точность: $|e^{x} - \tilde{S}_{10}(x)| < 10^{-8}$, $x \in [-1,1]$. Повторяя аналогично с x^{10} и т.д. мы приходим к тому, что ряд можно сократить до $\tilde{S}_{9}(x)$ и сохранить необходимую точность. **ЛИТЕРАТУРА**

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.