第二章 点估计

- 数理统计的任务: 用样本去推断总体的分布。
- 参数统计模型:分布依赖于一个或几个参数,参数估计就是拟合概率分布。
- 参数估计: 点估计和区间估计
- **点估计:** (【0】定义3.1.1) 设 $X = (X_1, ..., X_n)$ 为从某个总体中抽取的样本, $\hat{g}(X)$ 是样本函数,用 $\hat{g}(X)$ 作为 $g(\theta)$ 的估计,称为点估计(Point estimation).
- 主讲内容:
 - ① 求估计量的方法
 - ② 估计量的评价方法
- 第一节的主讲内容
 - 矩估计
 - ② 极大似然估计
 - ③ 贝叶斯估计

1.1 矩估计(Method of Moments, <u>简记MoM)</u>

- 约定 样本 $X = (X_1, ..., X_n)$ i.i.d. $\sim X$,k有限正整数,总体矩和样本矩
 - ① 总体k阶原点矩: $\alpha_k = \mathbb{E}(X^k)$;
 - ② 样本k阶原点矩: $\hat{\alpha}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$;
 - ③ 总体k阶中心矩: $\mu_k = \mathbb{E}(X \mathbb{E}X)^k$;
 - 4 样本k阶中心矩: $\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^k$.
 - 矩估计方法 用样本矩估计总体矩。具体而言:
- Step1 计算低阶总体矩 α_k 或 μ_k ,它们应是关于参数 θ 的函数表达式;
- Step2 建立方程,反解得到参数 θ 关于总体矩 α_k 、 μ_k 的函数表达式,记 为 $\theta(\alpha_k, \mu_k)$;
- Step3 将函数表达式中的总体矩 α_k 、 μ_k 分别替换为样本矩 $\hat{\alpha}_k$ 、 $\hat{\mu}_k$,从而 得到关于样本矩函数表达式的参数估计: $\theta = \theta(\widehat{\alpha}_k, \widehat{\mu}_k)$.
 - 注1 在Step1中,通常需要的低阶矩个数等于参数个数;
 - 注2 记 $\vec{\theta}$ 的矩估计 $\vec{\theta}_{MoM}$,则可测函数 $g(\vec{\theta})$ 的矩估计 $\hat{g}_{MoM} = g(\vec{\theta}_{MoM})$.
 - 注3 上述定义与结果可参考【0】定义3.2.1.

Example (1.1)

设 X_1, \ldots, X_n *i.i.d.* ~ $Poisson(\lambda)$, $\lambda > 0$ 未知。求 $\lambda 和g(\lambda) = \lambda^2 - \lambda$ 的矩估计。

注 计算 $Var(X) = \lambda$,得 λ 的另一估计

$$\widehat{\lambda}_{MoM}^* = \widehat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

问:哪个估计更好? (待讨论,见本章2.2小节)

Example (1.2)

设 X_1,\ldots,X_n i.i.d. $\sim N(\mu,\sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$ 均未知。求:

- **①** μ, σ^2 以及 $g(\mu, \sigma^2) = \frac{\mu}{\sigma}$ 的矩估计;
- ② 总体X的变异系数(coefficient of variation) $\nu = \frac{\sqrt{\mu_2}}{\alpha_1}$,偏度(skewness) $\beta_1 = \frac{\mu_3}{\mu_2^{3/2}}$ 和峰度(kurtosis) $\beta_2 = \frac{\mu_4}{\mu_2^2} 3$ 的矩估计。(定义参考【0】p20)

Example (1.3)

设 X_1, \ldots, X_n *i.i.d.* ~ $Gamma(\alpha, \beta)$, $\alpha, \beta > 0$ 均未知。求 α, β 的矩估计。

问题 参数估计是随机变量/向量,其分布如何?

Example (1.4)

[【0】例3.2.7] 设(X_i, Y_i), i = 1, 2, ..., n是从一个2维总体中抽取的简单随机样本,求总体分布的协方差 σ_{XY} 与相关系数 ρ 的矩估计。

练习【0】例3.2.1-3.2.6

作业 习题3: Ex. 7, 8, 9.

1.2 极大似然估计

• 定义1.1 (【0】定义3.3.1)设随机变量 X_1, \ldots, X_n 具有联合概率密度函数 $f(x_1, \ldots, x_n | \theta)$, $\theta \in \Theta$,则 θ 的似然函数(Likelihood function)定义为

$$L(\overrightarrow{\theta}) = f(x_1, \ldots, x_n | \overrightarrow{\theta}).$$

• 定义1.2 (【0】定义3.3.2)_<mark>极大似然估计</mark> (Maximum Likelihood Estimator) 是使似然函数 $L(\theta)$ 在 Θ 上(极限)达到唯一极大的 θ 值,简记 $\theta_{M(F)}$ i.e.

$$\widehat{\stackrel{\frown}{\theta}}_{\mathit{MLE}} = \arg\max_{\stackrel{\rightharpoonup}{\theta} \in \Theta} L(\stackrel{\rightharpoonup}{\theta}).$$

对数似然函数(log likelihood)定义为

$$\ell(\stackrel{\rightharpoonup}{\theta}) = \log L(\stackrel{\rightharpoonup}{\theta}).$$

注1 θ_{MLE} 亦是使对数似然 $\ell(\theta)$ 达到最大的参数值。

1.2 极大似然估计

- 注2 这里 $L(\theta)$ 的表达式虽与 $X=(X_1,\ldots,X_n)$ 的联合p.d.f./p.m.f.一样,但意义不同。
 - **①** 联合p.d.f.: $\overset{\frown}{\theta}$ 固定, $\overset{\frown}{x} = (x_1, \dots, x_n)$ 是变量;
 - ② $L(\overset{\rightarrow}{\theta})$: \vec{x} 固定, $\overset{\rightarrow}{\theta}$ 是变量; 也即, $L(\overset{\rightarrow}{\theta})$ 是给定 \vec{x} 的一个观测值 \vec{x} 后关于 $\overset{\rightarrow}{\theta}$ 的函数,i.e. $L(\overset{\rightarrow}{\theta}) = L(\overset{\rightarrow}{\theta}|\vec{x})$.
- 注3 $\theta_{MLE} = \theta_{MLE}(\vec{x})$,即 θ_{MLE} 依赖于观测值 \vec{x} ,是使观测值 \vec{x} "最有可能"出现的 θ 参数值。
- 注4 设g为定义在 Θ 上的某一可测函数,则 $\widehat{g}_{MLE} = g\begin{pmatrix} \widehat{\theta}_{MLE} \end{pmatrix}$ (参考 【1】定理7.2.10).
- 注5 对于某一特定样本观测值 \vec{x} ,若 $\vec{\theta}_{MLE}(\vec{x})$ 在 Θ 上取不到,但存在 $\{\vec{\theta}_{MLE}(\vec{x_n})\}_{n=1}^{\infty} \subset \Theta$,s.t. $\lim_{n \to \infty} \vec{\theta}_{MLE}(\vec{x_n}) = \vec{\theta}_{MLE}(\vec{x})$,则 $\vec{\theta}_{MLE}(\vec{x})$ 也是 $\vec{\theta}$ 的MLE.

Example (1.5)

[【0】例3.3.1] 单个样本 $X \sim Binomial(n, p)$, 已知 $p = \frac{1}{4}$ 或 $\frac{3}{4}$, 如何由观测值判断p取 $\frac{1}{4}$ 还是 $\frac{3}{4}$?

问题 设 X_1, \ldots, X_n $i.i.d. \sim X$,总体X的 $p.d.f.为<math>f(x|\theta)$, $\theta \in \Theta$,

则 X_1, \ldots, X_n 的联合p.d.f.为 $f(x_1, \cdots, x_n | \overrightarrow{\theta}) = \prod_{i=1}^n f(x_i | \overrightarrow{\theta})$,从而得似然函数

$$L(\overrightarrow{\theta}) = \prod_{i=1}^{n} f(x_i | \overrightarrow{\theta}).$$

对数似然

$$\ell(\overset{\rightharpoonup}{\theta}) = \sum_{i=1}^{n} \log f(x_i|\overset{\rightharpoonup}{\theta}).$$

如何求 $\widehat{\overset{\frown}{\theta}}_{\mathit{MLE}} = \arg\max_{\overset{\frown}{\theta} \in \Theta} L(\overset{\frown}{\theta}) = \arg\max_{\overset{\frown}{\theta} \in \Theta} \ell(\overset{\frown}{\theta})$?

7 / 16

September 22, 2022

如何寻找MLE 1

• 一般情形: $\ell(\vec{\theta})$ 在 Θ 内是 $\vec{\theta} = (\theta_1, ..., \theta_k)$ 的连续可微函数。

Step1 求解

$$\frac{\partial \ell}{\partial \theta_i}(\overrightarrow{\theta}) = 0, i = 1, \cdots, k,$$

 $\hat{\beta}^*$ 得 θ ;

Step2 证明 $\ell(\theta)$ 的Hessian矩阵(二阶导矩阵)在 θ 处负定,且这样 θ 唯一。这一条件也可换为"唯一极大值在 Θ 内点上达到"。

如何寻找MLE 1

• 特殊情形: 指数族

Theorem (1.1)

[【0】定理3.3.1] 设 $X_1, ..., X_n$ i.i.d. 服从具有自然参数形式

$$f(x|\overrightarrow{\eta}) = C(\overrightarrow{\eta}) \exp \left\{ \sum_{i=1}^{k} \eta_i T_i(x) \right\} h(x)$$

的指数族总体, $\vec{\eta} \in \Theta^*$. 对于其对数似然

$$\ell(\vec{\eta}) = n \log C(\vec{\eta}) + \sum_{i=1}^{k} \eta_i \sum_{j=1}^{n} T_i(x_j) + \sum_{j=1}^{n} \log h(x_j)$$

若一阶导 $\frac{\partial \ell}{\partial \eta_i}(\vec{\eta}) = 0, i = 1, \cdots, k$ 方程组的解 $\eta^{\hat{\Delta}^*}$ 存在且是参数空 间 Θ *的内点,则 η 必唯一且是 η 的*MLE*。

注 回忆定义1.2注4,对于具有自然参数形式的指数族的一般表达式,

$$f(x|\overrightarrow{\theta}) = c(\overrightarrow{\theta}) \exp \left\{ \sum_{i=1}^{k} Q_i(\overrightarrow{\theta}) T_i(x) \right\} h(x),$$

若存在函数 \overrightarrow{R} , s.t. $\overrightarrow{\theta} = \overrightarrow{R}(\overrightarrow{\eta})$, 则 $\overrightarrow{\theta}_{MLE} = \overrightarrow{R}(\overrightarrow{\eta}_{MLE})$ 。

Example (1.6)

分别求如下分布族中未知参数的MLE估计:

- **1** Poisson(λ), $\lambda > 0$;
- 问题1 回忆各个参数的矩估计,与MLE相同吗?各个参数MLE的分布?
- 问题2 考虑 $g(\lambda) = \lambda^2 \lambda \pi h(\mu, \sigma^2) = \frac{\mu}{\sigma}$ 的MLE?
- 练习 【0】例3.3.2 ~ 3.3.5, 3.3.8.

()

如何寻找MLE 2

• 当求导方法不适用时,可以从定义1.1出发求参数的MLE.

Example (1.7)

[【0】例3.3.6] 设 X_1, \ldots, X_n *i.i.d.* $\sim U(0, \theta), \theta > 0$ 未知。求 θ 的MLE。

Example (1.8)

[【0】例3.3.7] 设 X_1, \ldots, X_n i.i.d. $\sim U(\theta, \theta + 1), \theta \in \mathbb{R}$ 未知。求 θ 的MLE。

练习【0】例3.3.6, 3.3.7.

作业 习题3: Ex. 13, 15, 17, 21.

贝叶斯估计

- 矩估计和极大似然估计方法: 参数 θ 是一个未知的固定值/向量。
- 贝叶斯方法:参数θ是一个具有概率分布的随机变量。
- 基本模型 假设样本 $X = (X_1, ..., X_n)$ 具有联合概率密度/质量函数 $f(X \mid \vartheta)$,
 - ① 设定先验分布(Prior distribution)(【0】定义7.1.1): 参数 θ 是一个随机变量,具有概率密度/质量函数 $\pi(\theta)$, $\theta \in \Theta$;
 - ② 求后验分布(Posterior distribution)(【0】定义7.1.2): 给定样本观测值 \vec{x} ,求 ϑ 的条件分布 $\pi(\theta|\vec{x})$;
- 定义1.3 (【0】7.3.1) 参数ϑ的贝叶斯估计(Bayes Estimator)是其后验分布的期望:

$$\widehat{\vartheta}_B = \mathbb{E}(\vartheta | \overset{\rightharpoonup}{X}),$$

也称为∂的平方损失意义下的贝叶斯估计。

()

- 后验分布的求解步骤
 - ① 求 (\vec{X}, θ) 的联合p.d.f/p.m.f., $f(\vec{x}, \theta) = f(\vec{x}|\theta)\pi(\theta)$;
 - ② 求 \overline{X} 的边缘p.d.f/p.m.f., $f_X(\overrightarrow{x}) = \int_{\Theta} f(\overrightarrow{x}, \theta) d\theta$;
 - 3 后验分布

$$\pi(\theta|\overrightarrow{x}) = \frac{f(\overrightarrow{x},\theta)}{f_{X}(\overrightarrow{x})} = \frac{f(\overrightarrow{x}|\theta)\pi(\theta)}{\int_{\Theta} f(\overrightarrow{x}|\nu)\pi(\nu)d\nu}$$
(1)

Example (1.9)

(【1】例7.2.14) 设 X_1,\ldots,X_n i.i.d. \sim Bernoulli $(p),p\in(0,1)$ 未知,

$$P_{\theta}(X_i = 1) = p$$
, $P_{\theta}(X_i = 0) = 1 - p$, $i = 1, ..., n$.

分别求如下两种情形下p的后验分布及其贝叶斯估计:

- **1** $p \sim U(0,1)$;
- ② $p \sim Beta(a, b), a > 0, b > 0$ 已知。

"核方法"求后验分布

- 注1 由第一章第6节例6.1可知, $S = \sum_{i=1}^{n} X_i \mathbb{E}_p$ 的充分统计量,因此我们可考虑贝叶斯估计 $\hat{p}_B = \mathbb{E}(p|S)$.
- 注2 $U(0,1) \stackrel{d}{=} Beta(1,1)$,因此例1.9中(1)可看成是(2)的特例。
 - 求后验分布的更简方法: 注意到(1)中分母与 θ 无关,因此可看成(关于 θ)是常数;同时,如果只关心包含 θ 的因子部分,(i)令"核"表示一个函数中与参数 θ 有关的因子,(ii)令" α "表示"正比于",则求后验分布的过程可简化为:
 - ① 分别写出似然函数 $L(\theta) = f(\overrightarrow{x}|\theta)$ 和先验分布p.d.f./p.m.f. $\pi(\theta)$ 的核;
 - ② 后验分布p.d.f./p.m.f.的核

$$\pi(\theta|\vec{x}) \propto \{L(\theta)\text{的核}\} \cdot \{\pi(\theta)\text{的核}\}$$
 (2)

③ 将(2)式添加一个正则化常数因子(可与 \vec{x} 有关),即可得后验分布的概率密度/质量函数 $\pi(\theta|\vec{x})$.

Example (1.10)

设 X_1,\ldots,X_n i.i.d. $\sim N(\mu,\sigma^2)$. 令 $\xi=\frac{1}{\sigma^2}$,

- (1) $\Xi \mu$ 已知, $\sigma^2 > 0$ 未知,假设 ξ 的先验分布 $\xi \sim Gamma(\alpha, \beta)$,求 ξ 的后验分布及其贝叶斯估计 $\hat{\xi}_B$. (参考【0】例7.2.13逆Gamma分布)
- (2) $\Xi \mu \in \mathbb{R}$, $\sigma^2 > 0$ 均未知,假设 μ , ξ 独立,它们的先验分布分别为 $\mu \sim N(\mu_0, \tau^2)$, $\xi \sim Gamma(\alpha, \beta)$,求 (μ, ξ) 的后验分布.
- 注1 μ 未知, $\sigma^2 > 0$ 已知情形,参考【0】例7.2.4;另自行练习【0】例7.2.10,7.2.11,7.2.12,7.4.2,7.4.3。
- 注2 观察在例1.9和1.10(1)中,均有先验分布和后验分布同属同一分布 族的特点。

共轭先验分布

• 定义1.4 [【0】定义7.2.3, 【1】定义7.2.15] 假设先验分布 $\pi(\theta)$ 取自分布族 \mathcal{F} , 如果对任一样本观测值 \overrightarrow{x} , 后验分布 $\pi(\theta|\overrightarrow{x})$ 仍属于 \mathcal{F} , 则称 \mathcal{F} 是一个共轭先验分布族(Conjugate Prior Distribution Family).

Example (1.11)

设 X_1, \ldots, X_n $i.i.d. \sim Poisson(\lambda)$. 证明参数 λ 的共轭先验分布族为Gamma分布族。

注1 λ 的贝叶斯估计 $\hat{\lambda}_B = \frac{\sum_{i=1}^n X_i + \alpha}{n+\beta}$;

注2 自行练习【0】例7.2.9.

作业 习题7: Ex. 3, 4, 5, 11, 14(后验期望估计改为贝叶斯估计).

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

16 / 16