SECTION -A (20 M)

Choose the correct answer from the given options for each question given below and each carries 2 marks.

1. If
$$A + 2B = \begin{bmatrix} 2 & -4 \\ 1 & 6 \end{bmatrix}$$
, $A' + B' = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$ then $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$

A
$$\begin{bmatrix} 0 & 4 \\ 3 & -8 \end{bmatrix}$$
 B. $\begin{bmatrix} 1 & -4 \\ -1 & 7 \end{bmatrix}$ C. $\begin{bmatrix} 0 & -4 \\ 3 & 8 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 4 \\ 1 & -7 \end{bmatrix}$

B.
$$\begin{bmatrix} 1 & -4 \\ -1 & 7 \end{bmatrix}$$

$$C.\begin{bmatrix} 0 & -4 \\ 3 & 8 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 & 4 \\ 1 & -7 \end{bmatrix}$$

2. If
$$\begin{pmatrix} 1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6 \end{pmatrix}$$
 is singular matrix, then $x = \frac{1}{2}$

A.
$$-3$$

3. The rank of the matrix
$$\begin{bmatrix} 1 & 2 & -1 \\ 4 & 1 & 2 \\ 3 & -1 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$
 is

4. The system of equations x+y+z=6, x+2y+3z=10, $x+2y+\lambda z=\mu$ have infinite solutions. If

A.
$$\lambda = 3, \mu = -10$$

B.
$$\lambda = -3, \mu = -10$$

$$\zeta/\lambda = 3, \mu = 10$$

D.
$$\lambda = -3, \mu = 10$$

5. If
$$f(x) = \begin{cases} 4x - 1, & x > 4 \\ x^2 - 2, & -2 \le x \le 3 \text{ is a function, then } f(5) + f(2) + f(-3) = \\ 3x + 4, & x < -2 \end{cases}$$
A. 5 B. 11 C. 16 D. 19

6. If $f(x) = \sqrt{1+x} - 3\sqrt[4]{4-x}$, then the domain of the function

is

- A. [-2,2] B. (-2,2) C. [-1,5] D. [-1,4]

- 7. If f(x) and g(x) are two functions such that $f(x) + g(x) = e^x$ and $f(x) - g(x) = e^{-x}$ then consider the following statements.

I. f(x) is an even function

II. g(x) is an odd function

- A. Only *I* is true
- B. Only II is true
- C. Neither I nor II is true
- D. Both I and II are true
- 8. If $f: \mathbf{R} \to \mathbf{R}$ and $g: \mathbf{R} \to \mathbf{R}$ defined by f(x) = 5x 3, $g(x) = x^2 + 3$ then $(gof^{-1})(0) =$
 - A. $\frac{25}{84}$
- B. $\frac{18}{5}$ C. $\frac{24}{25}$

D. $\frac{84}{25}$

- 9. $7^{2n} + 3^{n-1} \cdot 2^{3n-3}$ is divisible by
 - A. 26

- B. 25
- C. 9

D. 7

10. For all integers $n \geq 1$, then which of the following is divisible by 9.

A.
$$8^{n} + 1$$

B.
$$4^n - 3n - 1$$

A.
$$8^n + 1$$
 B. $4^n - 3n - 1$ C. $3^{2n} + 3n - 1$ D. $10^n + 1$

D.
$$10^n + 1$$

Section B
$$(2 \times 5 = 10 M)$$

Answer any TWO of the following questions

- 11. Let $f:A\longrightarrow B$, $g:B\longrightarrow \mathcal{C}$ be bijections then prove that $(a \circ f)^{-1} = f^{-1} \circ a^{-1}$
- 12. Use Mathematical Induction to prove that $2.4^{2n+1} + 3^{3n+1}$ is divisible by 11. \forall *n* ∈ N.
- 13. Use Mathematical Induction to prove that

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

14. Solve the system of Non-Homogeneous equation by crammer's rule:

$$3x + 4y + 5z = 18$$

 $2x - y + 8z = 13$
 $5x - 2y + 7z = 20$