Introduction to Bioinformatics

JTMS-19

Marc-Thorsten Hütt

mhuett@constructor.university

Felix Jonas

fjonas@constructor.university

session Wed, October 2, 2024

Algorithms for pairwise sequence alignments

What is this session about?

Pairwise sequence alignment is discussed in detail (scoring functions, Needleman-Wunsch algorithm, Smith-Waterman algorithms). Some background on heuristic sequence alignment methods (FastA and BLAST) is given.

How can you revise the material after the session?

Read Baxevanis/Oullette chapter 11

Read Durbin et al. chapters 2.1-2.5

Read Frédérique Galisson, The Fasta and Blast programs, 2000 alternative reading: Hütt/Dehnert chapters 3.1.1-3.1.3, 3.2.1

DNA sequences: the case of global sequence alignment

	0	1	2	3	4	5	6			
		T	G	С	Α	T	A_			
0	0	0	0	0	0	0	0			
1 A	0	0	0	0	1	1	1			
2 T	0	1	1	1	1	2	2			
3 C	0	1	1	2	2	2	2			
4 T	0	1	1	2	2	3	3			
5 G	0	1	2	2	2	3	3			
6 A	0	1	2	2	3	3	4			
7 T	0	1	2	2	3	4	4			
-tgcat-a-										

	0	1	2	3	4	5	6
		T	G	C	A	T	A_
0	0	0	0	0	0	0	0
1 A	0	0	0	0	1	1	1
2 T	0	1	1	1	1	2	2
3 C	0	1	1	2	2	2	2
4 T	0	1	1	2	2	3	3
5 G	0	1	2	2	2	3	3
6 A	0	1	2	2	3	3	4
7 T	0	1	2	2	3	4	4

$$x = C, G, A, T, C, C, T, G, T$$

 $y = C, A, T, C, G, C, C, T, T$

$$x_{i} = y_{j}: F_{i,j} = \max \begin{cases} F_{i-1,j} \\ F_{i,j-1} \\ F_{i-1,j-1} + 1 \end{cases}$$

$$x_{i} \neq y_{j}: F_{i,j} = \max \begin{cases} F_{i-1,j} \\ F_{i-1,j-1} \\ F_{i,j-1} \\ F_{i-1,j-1} \end{cases}$$

		С	A	Т	С	G	С	С	Т	Т	(
	0 👞	0	0	0	0	0	0	0	0	0	
C	0	1	1	1	1	1	1	1	1	1	
G	0	1	1	1	1	2	2	2	2	2	
Δ	0	1	2	2	2	2	2	2	2	2	
T	0	1	2	3 🕶	— 3 - -	— 3 _ _	3	3	3	3	
C	0	1	2	3	4	4	4	4	4	4	
С	0	1	2	3	4	4	5	5 🖜	5	5	CGAT CCTG
T	0	1	2	3	4	4	5	5	6	6	
G	0	1	2	3	4	5	5	5	۴ 凗	6	
T	0	1	2	3	4	5	5	5	6	7	C-ATCGCCT-

moving around in the dotplot plane

moving around in the dotplot plane

translation of a path into an alignment

horizontal segment: gap in x + sympol in y

• vertical segment: symbol in x + gap in y

• diagonal segment: symbol in x + symbol in y

moving around in the dotplot plane

EXAMPLE
$$x = CACTG$$
 $y = ATG$

- initialize the matrix
- fill out the entries (including the arrows)

heuristic for the arrows

- in case of ties, prefer diagonals
- highlight the remaining ambiguous cases and see, if they matter
- extract the optimal alignment

EXAMPLE
$$x = CACTG$$
 $y = ATG$

C A C T G

$$0 \leftarrow 0 \leftarrow 0 \leftarrow 0 \leftarrow 0 \leftarrow 0$$

A $0 \quad 0 \quad 1 \leftarrow 1 \leftarrow 1 \leftarrow 1$

T $0 \quad 0 \quad 1 \quad 1 \quad 2 \leftarrow 2$

G $0 \quad 0 \quad 1 \quad 1 \quad 2 \quad 3$

- initialize the matrix
- fill out the entries (including the arrows)

heuristic for the arrows

- in case of ties, prefer diagonals
- highlight the remaining ambiguous cases and see, if they matter
- extract the optimal alignment

Global sequence alignment for protein sequences: the Needleman-Wunsch algorithm

BLOSUM 62

1. x_i is matched with y_i :

$$\left. \begin{array}{c} \dots x_i \\ \mid \\ \dots y_j \end{array} \right\} \rightarrow F_{i,j} = F_{i-1,j-1} + s(x_i, y_j)$$

2. x_i is matched with a gap:

$$\left. \begin{array}{c} \dots \ x_i \\ | \\ \dots \ - \end{array} \right\} \to F_{i,j} = F_{i-1,j} - d$$

3. y_i is matched with a gap:

$$\left. \begin{array}{c} \dots & - \\ & \mid \\ \dots & y_j \end{array} \right\} \rightarrow F_{i,j} = F_{i,j-1} - d$$

•

1. x_i is matched with y_i:

$$\left. \begin{array}{c} \dots x_i \\ \mid \\ \dots y_j \end{array} \right\} \rightarrow F_{i,j} = F_{i-1,j-1} + s(x_i, y_j)$$

2. x_i is matched with a gap:

$$\left. \begin{array}{c} \dots \ x_i \\ | \\ \dots \ - \end{array} \right\} \to F_{i,j} = F_{i-1,j} - d$$

3. y_i is matched with a gap:

$$\left. \begin{array}{c} \dots & - \\ & \mid \\ \dots & y_j \end{array} \right\} \rightarrow F_{i,j} = F_{i,j-1} - d$$

•

$$F_{i,j} = \max \begin{cases} F_{i-1,j-1} + s(x_i, y_j) \\ F_{i-1,j} - d \\ F_{i,j-1} - d \end{cases}$$

[from Durbin et al. (1998)]

HEAGAWGHE-E --P-AW-HEAE

[from Durbin et al. (1998)]

$$x = K, E, F, H, N, G, H, T$$

 $y = K, Y, F, H, K, A, G, N, Q, H, S, P, T$

Local sequence alignment for protein sequences: the Smith-Waterman algorithm

0

z-score of an alignment score S:

- alignments of all permutations of x and y
- set of alignment scores {S_i}
- average value A and standard deviation w for {S_i}

z-score (S) =
$$\frac{S - A}{w}$$

z-score

0 alignment score S coincides with that of the surrogate data

> 5 S is significant

other quantitative assessments of an alignment score S:

P-value

probability to obtain the score S with a random alignment

 $P \le 10^{-100}$ exact match, $10^{-100} \le P \le 10^{-50}$ nearly identical (SNPs) $10^{-50} \le P \le 10^{-10}$ homology certain $10^{-5} \le P \le 10^{-1}$ usually distant relative $P > 10^{-1}$ probably insignificant

E-value

expected frequency of S in a random alignment with a database

 $E \le 0.02$ significant result 0.02 < E < 1 unclear; homology uncertain $E \ge 1$ score corresponds to a random alignment

P = E * {size of the database}

heuristic methods of sequence alignment

FastA = **fast Alignment**

D.J. Lipman and W.W.R. Pearson. Rapid and sensitive protein similarity searches. *Science*, 227:1435–1441, 1985.

W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.

BLAST = Basic Local Alignment Search Tool

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. *J. Mol. Biol.*, 215:403–410, 1990.

[a good introduction to these methods: Frédérique Galisson, The fasta and blast programs, 2002]

•

A: For each position p of the query, find the list or words of length w scoring more than T when paired with the word starting at p:

query sequence: QLNFSAGW

(1) parameters

word length w = 2 score threshold T = 8

(2) determine all words of length w in the query sequence:

QL LN NF FS SA AG GW

(3) for each word determine a word list with an alignment score larger than (or equal to) the threshold T:

QL: QL=11, QM=9, HL=8, ZL=9

LN: LN=9, LB=8

NF: NF=12, AF=8, NY=8, DF=10, ...

•••

C: For each word match («hit»), extend ungapped alignment in both directions. Stop when S decreases by more than X from the highest value reached by S.

C: For each word match («hit»), extend ungapped alignment in both directions. Stop when S decreases by more than X from the highest value reached by S.

heuristic methods of sequence alignment

FastA = fast Alignment

D.J. Lipman and W.W.R. Pearson. Rapid and sensitive protein similarity searches. *Science*, 227:1435–1441, 1985.

W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA, 85:2444-2448, 1988.

BLAST = Basic Local Alignment Search Tool

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. *J. Mol. Biol.*, 215:403–410, 1990.

[a good introduction to these methods: Frédérique Galisson, The fasta and blast programs, 2002]

Looking inside FastA

Looking inside FastA

Step 3: Linking the segments with gaps (initn score)

Step 4: SW on a region of the plane; construction of the optimal alignment

(1)
$$x_i \longleftrightarrow y_j$$
 $M_{i,j}$: best score up to (i, j) in the case (1)
(2) $x_i \longleftrightarrow I_{i,j}^{(x)}$: best score up to (i, j) in the case (2)
(3) $-\longleftrightarrow y_j$ $I_{i,j}^{(y)}$: best score up to (i, j) in the case (3)

2)
$$X_i \longleftrightarrow - I_{i,j}^{(x)}$$
: best score up to (i, j) in the case (2)

$$I_{i,j}^{(y)}$$
: best score up to (i, j) in the case (3)

$$M_{i,j} = \max \begin{cases} M_{i-1,j-1} + s(x_i, y_j) \\ I_{i-1,j-1}^{(x)} + s(x_i, y_j) \\ I_{i-1,j-1}^{(y)} + s(x_i, y_j) \end{cases}$$

$$I_{i,j}^{(x)} = \max \left\{ \frac{M_{i-1,j} - d}{I_{i-1,j}^{(x)} - e} \right\}$$

$$I_{i,j}^{(y)} = \max \left\{ \frac{M_{i,j-1} - d}{I_{i,j-1}^{(y)} - e} \right\}$$

[from Durbin et al. (1998)]