EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Characteristics of JFETs

Applying Shockley's Equation:

Obtaining transfer curve →

$$V_{GS} = 0 \text{ V gives } I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = I_{DSS} \left(1 - \frac{0}{V_P} \right)^2 = I_{DSS}$$

$$V_{GS} = V_P \text{ yields } I_D = I_{DSS} \left(1 - \frac{V_P}{V_P} \right)^2 = I_{DSS} (1 - 1)^2 = 0$$

$$V_{GS} = -1 \text{ V gives } I_D = I_{DSS} \left(1 - \frac{-1}{-4} \right)^2 = 8 \times 10^{-3} \left(1 - \frac{1}{4} \right)^2 = 4.5 \text{ mA}$$

Equation for resulting level of V_{GS} for given level of $I_D \rightarrow$

$$V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$$
 $I_D = 4.5 \text{ mA gives } V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right) = -4 \left(1 - \sqrt{\frac{4.5 \times 10^{-3}}{8 \times 10^{-3}}} \right)$
 $= -4(1 - 0.75) = -1 \text{ V}$

Characteristics of JFETs

Problem-34:

Sketch the transfer curve for an *n*-channel JFET defined by I_{DSS} = 12 mA and V_P = -6 V.

2 plot points are

$$I_{DSS}$$
 = 12 mA and V_{GS} = 0 V
 I_D = 0 mA and V_{GS} = V_P = -6 V

Another 2 points are

At
$$V_{GS} = V_P/2 = -6/2 = -3 \text{ V}$$
 $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)$ $I_D = I_{DSS}/4 = 12/4 = 3 \text{ mA}.$ At $I_D = I_{DSS}/2 = 12/2 = 6 \text{ mA}$ $V_{GS} = 0.3 V_P = 0.3(-6) = -1.8 \text{ V}.$ $V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$

Characteristics of JFETs

Problem-35:

Sketch the transfer curve for a *p*-channel JFET with $I_{DSS} = 4$ mA and $V_P = 3$ V.

2 plot points are

$$I_{DSS}$$
 = 4 mA and V_{GS} = 0 V
 I_D = 0 mA and V_{GS} = V_P = 3 V

Another 2 points are

At
$$V_{GS} = V_P/2 = 3/2 = 1.5 \text{ V}$$

 $I_D = I_{DSS}/4 = 4/4 = 1 \text{ mA}.$
At $I_D = I_{DSS}/2 = 4/2 = 2 \text{ mA}$
 $V_{GS} = 0.3 V_P = 0.3(3) = 0.9 \text{ V}.$

Depletion-Type MOSFET

<u>Construction of *n*-channel DMOSFET:</u>

SiO₂ insulator = dielectric. Exposed to externally applied field → sets up opposing electric fields within dielectric. Very desirable high input impedance.

Depletion-Type MOSFET

Basic operation and characteristics:

Enhancement region → region of +ve gate voltages on drain or transfer characteristics.

Depletion region \rightarrow region between cutoff and saturation level of I_{DSS} .

Depletion-Type MOSFET

Problem-36:

Sketch the transfer characteristics for an *n*-channel depletion-type MOSFET with I_{DSS} = 10 mA and V_P = -4 V.

$$V_{GS} = 0 \text{ V},$$
 $I_D = I_{DSS} = 10 \text{ mA}$ $V_{GS} = V_P = -4 \text{ V},$ $I_D = 0 \text{ mA}$ $I_D = 0 \text{ mA}$ $I_D = I_{DSS}/4 = 10/4 = 2.5 \text{ mA}$ $I_D = I_{DSS}/2,$ $V_{GS} = 0.3 V_P = 0.3(-4) = -1.2 \text{ V}$ $V_{GS} = +1 \text{ V} \Rightarrow$ $I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2 = 10 \times 10^{-3} \left(1 - \frac{+1}{-4}\right)^2 = 15.63 \text{ mA}$

Construction of *n*-channel EMOSFET:

Channel is nonexistent with $V_{GS} = 0$ V.

Enhanced by application of +ve gate-to-source voltage.

Basic operation and characteristics:

Basic operation and characteristics:

Threshold voltage $V_T = V_{GS}$ that results in significant increase in I_D .

Pinch-off and saturation condition \rightarrow

 $V_{DG} = V_{DS} - V_{GS}$

 V_{GS} = fixed at +ve voltage.

 V_{DS} is increased \rightarrow

gate becomes less +ve, attractive forces for free carriers reduces → channel width reduces.

Further increase in V_{DS} will not affect I_{DSS} .

Basic operation and characteristics:

For
$$V_{GS} > V_T \rightarrow I_D = k(V_{GS} - V_T)^2$$

$$k = \text{constant} = \text{function of construction of device.}$$

$$k = \frac{I_{D(on)}}{(V_{GS(on)} - V_T)^2}$$

Drain and transfer characteristics →

Problem-37:

Assuming $I_{D(on)} = 3$ mA, $V_{GS(on)} = 7$ V and an average threshold voltage of $V_{GS(Th)} = 3$ V, determine:

- a) The resulting value of k for the MOSFET.
- b) The transfer characteristics.

a)
$$k = \frac{I_{D(on)}}{(V_{GS(on)} - V_T)^2} = \frac{3 \times 10^{-3}}{(7-3)^2} = 0.61 \times 10^{-3} \text{ A/V}^2$$

b)
$$I_D = k(V_{GS} - V_T)^2 = 0.061 \times 10^{-3} (V_{GS} - 3V)^2$$

For $V_{GS} = 5$ V,
 $I_D = 0.061 \times 10^{-3} (5 - 3)^2 = 0.244$ mA

For V_{GS} = 8, 10, 12, and 14 V,

 $I_D = 1.525$, 3, 4.94, and 7.38 mA, respectively.

Complementary MOSFET (CMOS)

Construction:

CMOS as inverter:

