دوره آموزشی بینایی ماشین کاربردی

آکادمی ربوتک – آزمایشگاه تعامل انسان و ربات

جلسه 4 -الگوريتم هاي تشخيص ويژگي

آنچه گذشت؟!

آشنایی با الگوریتم های تشخیص ویژگی

با کمک KeyPoint ها و Descriptor ها

$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$	
•	
-	
-	
x_{n-3}	
x_{n-2}	
x_{n-1}	
$\lfloor x_n \rfloor$	

? چیست

√ توصیفی از نقاط کلیدی

√ از گرادیان نقاط در اطراف نقط کلیدی میتوان برای ایجاد descriptor استفاده کرد.

√ معمولا به صورت برداری از اعداد ارایه می شود.

ReyPoint چیست ؟

نقطه 3
 نقطه 1
 نقطه 2
 نقطه 2

√ مکان هایی که تغییر گرادیان در اطراف آنها زیاد است.

[Scale Invariant Feature Transform] SIFT الگوريتم

مستقل از Scale و rotation و نور و نقطه مشاهده است.

David Lowe

Computer Science Dept., <u>University of British Columbia</u>
Verified email at cs.ubc.ca - <u>Homepage</u>
Computer Vision Object Recognition

✓ FOLLOW

2004

53951

TITLE	CITED BY	YEAR

Distinctive image features from scale-invariant keypoints DG Lowe

International journal of computer vision 60 (2), 91-110

SIFT در الگوریتم Descriptor

برای تک تک بلوک ها، این نمودار استخراج می شود و در نهایت یک بردار 16 * 8 یعنی 128 تایی از اعداد تولید می شود.

دستور 32 : تعریف یک Object از

cv2.xfeatures2d.SIFT_create

یک Object از کلاس SIFT

مثال:

sift = cv2.xfeatures2d.SIFT_create()

دستور 32 : پيدا كردن KeyPoint ها

مثال:

kp = sift.detect(img, None)

flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS

مثال:

cv2.drawKeypoints(img, kp, img)

دستور 32 : پیدا کردن KeyPoint ها و descriptor ها

تصویر ورودی

sift.detectAndCompute

mask

نقاط كليدي تصوير

Descriptor نقاط

مثال:

kp, des= sift.detectAndCompute(img, None)

توصیف گر (Descriptor) چه شکلی دارد؟

(Number of Keypoints * 128)

: BFMatcher الگوريتم

یک descriptor از تصویر اول را می گیرد و با تمام descriptor های تصویر دوم مقایسه می کند و نزدیکترین descriptor را بر میگرداند.

مقایسه بین اعداد با روش های مختلفی از جمله NORM_L1 و ... انجام می گیرد.

در کنار FLANN based matcher از الگوریتم های اصلی مقایسه می باشد.

یادآوری NORM در ریاضی

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{bmatrix}$$

x نرم بردار
$$= \|X\|_p$$
 نرم بردار $= \|X\|_p$

$$||X||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$

$$||X||_2 = \sqrt[2]{(3-0)^2 + (5-0)^2}$$

مثال:

NORM L1:
$$||X||_1 = |x_1| + |x_2| + \cdots + |x_n|$$

نرم منهتن یا city-block

NORM L2:
$$||X||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_2^2}$$

نرم اقلیدسی

NORM L0: $||X||_0 = Numer of nonzero elements$

نرم Hamming

NORM Loo: $||X||_{\infty} = max(x_i)$

نرم بی نهایت

دستور 32 : تعریف یک Object از

مثال:

bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)

مثال:

match = bf.match(des1, des2)

مثال:

matching_result = cv2.drawMatches(book1, kp1, book2, kp2, match, None)

اشکالات را چگونه رفع کنیم ؟

ratio test : 2 روش

روش پیشنهادی lowe در مقاله SIFT

روش sort : 1 کردن

Sort کردن نقاط match بر حسب فاصله

روش sort : 1 کردن

match = sorted(match, key = lambda x:x.distance)

تنظیم معیار بر حسب فاصله

matching_result = cv2.drawMatches(book1, kp1, book2, kp2, match[:40], None)

قانون lowe Ratio test

تصویر پایه

$$d1 = 120$$

d2 = 123

تصویر اصلی

سوال : آیا میتوان با قطعیت گفت نقطه A متناظر با نقطه B است ؟

آزمون lowe Ratio

اگر دو feature فاصله تقریبا یکسانی با یک feature دیگر داشته باشند، احتمالا گزینه های مناسبی نیستند.

$$\frac{d_1}{d_2} < 0.7$$

A و B متناظر هستند.

دستور 32 : مقايسه بين descriptor ها با

نکته : CrossCheck باید حتما false شود.

مثال:

matches = bf.knnMatch(des1,des2, k=2)

حل یک مثال:

تشخیص حضور یک جسم به کمک الگوریتم SIFT

lan Goodflew : شخصیت هفته

نويسنده اول مقاله معروف GAN

جزو 100 متفكر برتر دنيا در 2019

OpenAl , Apple , Google

مثال : تشخیص اعداد به کمک SIFT

مرحله 2: جداسازی اعداد از تصویر اصلی

حواندن تصویر و تبدیل به Gray

inverse نویز گیری آستانه گذاری

محاسبه کانتور

جداسازی ناحیه مربوط به رقم

مرحله 3: محاسبه بردار ویژگی اعداد جدا شده

محاسبه بردار ویژگی برای هر کدام از این اعداد

مرحله 3: مقایسه بردار ویژگی با ماتریس ویژگی

ماتریس ویژگی

Feature vector