A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 4EA

Bookmark

Show all steps: (

ON

Problem

Solve the following quadratic congruences. (If there is no solution, write "none.")

(a)
$$6x^2 \equiv 9 \pmod{15}$$

(b)
$$60x^2 \equiv 18 \pmod{24}$$

(c)
$$30x^2 \equiv 18 \pmod{24}$$

(*d*)
$$4(x + 1)^2 \equiv 14 \pmod{10}$$

(e)
$$4x^2 - 2x + 2 \equiv 0 \pmod{6}$$

(f)
$$3x^2 - 6x + 6 \equiv 0 \pmod{15}$$

Step-by-step solution

Step 1 of 6

(a)

Consider the congruence equation

$$6x^2 \equiv 9 \pmod{15}$$

Take
$$x^2 = y$$
 then $6y \equiv 9 \pmod{15}$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve the given equation.

The congruence equation $6y \equiv 9 \pmod{15}$ has a solution modulo 15 because $\gcd(6,15) = 3$ and $3 \mid 9$.

The solution of congruence equation $6y \equiv 9 \pmod{15}$ is same as the solution of

$$2y \equiv 3 \pmod{5} \left(\text{since } \frac{6}{3}y \equiv \frac{9}{3} \left(\text{mod } \frac{15}{3} \right) \right).$$

Comment

Step 2 of 6

The congruence equation $2y \equiv 3 \pmod{5}$ is equivalent to $\overline{2y} = \overline{3}$ in Z_5 .

$$\overline{y} = (\overline{2})^{-1} \overline{3} \text{ in } Z_5$$

$$\overline{y} = \overline{33} \text{ in } Z_5$$

$$\overline{y} = \overline{4} \text{ in } Z_5$$

The solution of the congruence equation $6y \equiv 9 \pmod{15}$ is $y \equiv 4 \pmod{5}$.

Therefore, the solution of congruence equation $6x^2 \equiv 9 \pmod{15}$ is same as the solution of $x^2 \equiv 4 \pmod{5}$

Comment

Step 3 of 6

The congruence equation $x^2 \equiv 4 \pmod{5}$ is equivalent to $\left(\overline{x}\right)^2 = \overline{4}$ in Z_5 .

Need to find the values for x in Z_5 such that $\left(\frac{1}{x}\right)^2 = 4$ in Z_5

So the solutions are $\bar{x} = \bar{2}$ and $\bar{x} = \bar{3}$.

Verify that

$$(\overline{2})^2 = (\overline{2})(\overline{2})$$

$$= \overline{4} \text{ in } Z_5$$

$$(\overline{3})^2 = (\overline{3})(\overline{3})$$

$$= \overline{9}$$

$$= \overline{4} \text{ in } Z_5$$

Therefore, the solutions of the congruence equation $6x^2 \equiv 9 \pmod{15}$ are

$$x \equiv 2 \pmod{5}$$
 and $x \equiv 3 \pmod{5}$

Comment

Step 4 of 6

(b)

Consider the congruence equation

$$60x^2 \equiv 18 \pmod{24}$$

Take $x^2 = y$ then $60y = 18 \pmod{24}$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve the equation.

By the result the congruence equation $60y \equiv 18 \pmod{24}$ has no solution since $\gcd(60, 24) = 12$ and 12 / 18.

Therefore, the congruence equation $60x^2 \equiv 18 \pmod{24}$ has the solution.

Hence, the solution is none.

Comment

Step 5 of 6

(c)

Consider the congruence equation

$$30x^2 \equiv 18 \pmod{24}$$

Take
$$x^2 = y$$
 then $30y \equiv 18 \pmod{24}$

Use the result, the congruence $ax \equiv b \pmod{n}$ has a solution if and only if $\gcd(a,n) \mid b$ to solve the equation.

The congruence equation $30x^2 \equiv 18 \pmod{24}$ has a solution modulo 24 because

$$gcd(30,24) = 6$$
 and $6|18$

The solution of congruence equation $30y \equiv 18 \pmod{24}$ is same as the solution of

$$5y \equiv 3 \pmod{4} \left(\text{since } \frac{30}{6} y \equiv \frac{18}{6} \left(\text{mod } \frac{24}{6} \right) \right)$$

Comment

Step 6 of 6

The congruence equation $y \equiv 3 \pmod{4}$ is equivalent to $\overline{5y} = \overline{3}$ in Z_4 or $\overline{1y} = \overline{3}$ in Z_4 .

$$\overline{y} = (\overline{1})^{-1} \overline{3} \text{ in } Z_4$$

$$\overline{y} = \overline{13}$$
 in Z_4

$$\overline{y} = \overline{3}$$
 in Z_4

The solution of the congruence equation $y \equiv 3 \pmod{4}$ is $y \equiv 3 \pmod{4}$.

The solution of congruence equation $30x^2 \equiv 18 \pmod{24}$ is same as the solution of $x^2 \equiv 3 \pmod{4}$

There is no $x \in Z_4 = \{1, 2, 3\}$ such that x = 3 in Z_4

Hence, the quadratic equation $30x^2 \equiv 18 \pmod{24}$ has no solution modulo 24.

Comment