2022 ACJC H2 Math Promo Marking Scheme

Qn	Solution	Remarks
1(i)	$y = \ln\left(\frac{e^{\sqrt{x}}}{\cos^3 x}\right)$ $= \sqrt{x} \ln e - \ln\left(\cos^3 x\right)$ $= \sqrt{x} - 3\ln\left(\cos x\right)$	Setter: YXF M1 apply laws of logarithm
(ii)	$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - 3\frac{-\sin x}{\cos x}$ $= \frac{1}{2\sqrt{x}} + 3\tan x$	A1
(11)	$y^{\frac{1}{x}} = x^{\ln x}$ $\frac{1}{x} \ln y = \ln x \ln x$ $\ln y = x (\ln x)^2$ $\frac{1}{y} \frac{dy}{dx} = (\ln x)^2 + 2x \ln x \left(\frac{1}{x}\right)$ $\frac{dy}{dx} = y \ln x (\ln x + 2)$	B1 apply ln on both sides and apply laws of logarithm M1 apply implicit differentiation A1
	Alternative: $y^{\frac{1}{x}} = x^{\ln x}$ $\frac{1}{x} \ln y = \ln x \ln x$ $\frac{1}{x} \frac{1}{y} \frac{dy}{dx} - \frac{1}{x^2} \ln y = 2 \frac{1}{x} \ln x$ $\frac{1}{y} \frac{dy}{dx} - \frac{1}{x} \ln y = 2 \ln x$ $\frac{dy}{dx} = y \left(2 \ln x + \frac{1}{x} \ln y \right)$	OR B1 apply ln on both sides and apply laws of logarithm M1 apply implicit differentiation A1

2(i)	$51 - \frac{88}{x+2} \le 10x, \qquad x \ne -2$	Setter: NSH
	$\frac{51(x+2) - 88 - 10x(x+2)}{x+2} \le 0$	M1 move to LHS and
	$x+2$ $51x+14 = 10x^2 = 20x$	combine
	$\frac{51x + 14 - 10x^2 - 20x}{x + 2} \le 0$	
	$\frac{-10x^2 + 31x + 14}{x + 2} \le 0$	
		M1 factorising the
	$\frac{10x^2 - 31x - 14}{x + 2} \ge 0$	numerator
	$\frac{(2x-7)(5x+2)}{x+2} \ge 0$	
	$-2 < x \le -\frac{2}{5} \text{or} \qquad x \ge \frac{7}{2}$	A1
	$\begin{vmatrix} -2 < x \le -\frac{1}{5} & \text{or} & x \ge \frac{1}{2} \end{vmatrix}$	
(ii)	$51 - \frac{88 x }{1+2 x } \le \frac{10}{ x }$ or $x = 0$	
	$51 - \frac{88}{\frac{1}{ x } + 2} \le \frac{10}{ x }$ or $x = 0$	
	$-2 < \frac{1}{ x } \le -\frac{2}{5} \text{or} \frac{1}{ x } \ge \frac{7}{2} \text{or} x = 0$	M1 replace x with $\frac{1}{ x }$
	No solution. $-\frac{2}{7} \le x \le \frac{2}{7}$	
		A1
	$\therefore -\frac{2}{7} \le x \le \frac{2}{7}$	
3(i)	$y = \frac{ax^2 + bx + c}{3x + 1}$	Setter: NSH
	Substitute $(-1, -4)$ and $(-3, -2)$ into equation,	
	a-b+c=8 (1)	M1 substituting in $(-1, -4)$ or $(-3, -2)$.
	9a - 3b + c = 16 (2)	(1, +) OI (3, 2).
	(2, 1)(2, 1), 2(2, 1, 1)	
	$\frac{dy}{dx} = \frac{(2ax+b)(3x+1)-3(ax^2+bx+c)}{(3x+1)^2}$	
	,	d.
	Substitute $x = -3$ and $\frac{dy}{dx} = 0$,	$\mathbf{M1} \ \frac{\mathrm{d}y}{\mathrm{d}x} = 0$
	0 = (-6a+b)(-8)-3(9a-3b+c)	
	21a + b - 3c = 0 (3)	
	From GC, $a = 1$, $b = 0$ and $c = 7$.	A1

(ii)	

$$y = \frac{x^2 + 7}{3x + 1}$$
$$= \frac{x}{3} - \frac{1}{9} + \frac{64}{9(3x + 1)}$$

$$\frac{x^{2}-\frac{1}{9}}{3x+1)x^{2}+0x+7}$$

$$\frac{x^2 + \frac{x}{3}}{x + 7}$$

$$-\frac{x}{3} - \frac{1}{9}$$

$$7\frac{1}{9}$$

B1 vertical asymptote and y-intercept [ECF allowed based on value of c found in part (i).]

B1 equation of oblique asymptote

4(i)

Setter: YKX

B1 equations of asymptotes

B1 shape of graph

B1 coordinates of axes intercepts (Do not penalise if not in coordinate form.)

(iii)	Let <i>D</i> denote the point(s) that are $3\sqrt{3}$ units away from <i>A</i> on line <i>L</i> .	
	Then $\overrightarrow{OD} = \begin{pmatrix} 6 - 2\lambda \\ \lambda \\ 1 - \lambda \end{pmatrix}$ and $\overrightarrow{AD} = \begin{pmatrix} 3 - 2\lambda \\ -6 + \lambda \\ -\lambda \end{pmatrix}$. (can be taken from	
	(i)).	
	$ \begin{vmatrix} 3 - 2\lambda \\ -6 + \lambda \\ -\lambda \end{vmatrix} = 3\sqrt{3} $	
	$(3-2\lambda)^{2} + (-6+\lambda)^{2} + (-\lambda)^{2} = 27$ $6\lambda^{2} - 24\lambda + 18 = 0$	M1 distance formula to find λ
	$\lambda^2 - 4\lambda + 3 = 0$	
	$(\lambda - 3)(\lambda - 1) = 0$ $\lambda = 1 \text{or} \lambda = 3$	A1 both coordinates
	D(4,1,0) or $D(0,3,-2)$	A1 both coordinates
6(i)	$f(2(r-1))-f(2r) = \cos(2r-2)\theta - \cos 2r\theta$	Setter: YKX B1 usage of factor
	$= -2\sin(2r-1)\theta\sin(-\theta)$	formula
	$= 2\sin(2r-1)\theta\sin\theta$ $k = 2$	B1 $k = 2$
(ii)	$\frac{\sum_{r=1}^{n} \sin[(2r-1)\theta] = \frac{1}{2\sin\theta} \sum_{r=1}^{n} f(2(r-1)) - f(2r)}{\begin{bmatrix} f(0) & -f(2) \\ f(2) & f(2) \end{bmatrix}}$	$\sqrt{\mathbf{B1}}$ using (i)
	$ \begin{bmatrix} f(0) & -f(2) \\ f(2) & -f(4) \\ f(4) & -f(6) \end{bmatrix} $	
	$= \frac{1}{2\sin\theta} \begin{bmatrix} f(2) & -f(4) \\ f(4) & -f(6) \\ \dots & \dots \\ f(2(n-3)) & -f(2(n-2)) \\ f(2(n-2)) & -f(2(n-1)) \\ f(2(n-1)) & -f(2n) \end{bmatrix}$	M1 method of difference
	$=\frac{1}{2\sin\theta}(\cos 0 - \cos 2n\theta)$	
	$=\frac{1}{2\sin\theta}\big(1-\cos2n\theta\big)$	
	$= \frac{1}{2\sin\theta} \left(2\sin^2 n\theta \right)$ $\sin^2 n\theta$	A1 cosine double angle formula leading to given
	$=\frac{\sin^2 n\theta}{\sin \theta}$	answer

(iii)	$\sum_{r=1}^{n} \sin\left[\left(2r+1\right)\theta\right] = \sum_{r-1=1}^{r-1=n} \sin\left[\left(2\left(r-1\right)+1\right)\theta\right]$ $= \sum_{r=2}^{n+1} \sin\left[\left(2r-1\right)\theta\right]$	M1 changing running index
	$=\frac{\sin^2\left[(n+1)\theta\right]}{\sin\theta}-\sin\theta$	A1 final answer
7(a)	$\overrightarrow{OE} = \overrightarrow{OA} + \lambda \overrightarrow{AB}$	Setter: LCH
	$= \mathbf{a} + \lambda (\mathbf{b} - \mathbf{a})$ $= (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$ $\overrightarrow{OE} = \overrightarrow{OC} + \mu \overrightarrow{CD}$ $= \frac{2}{3}\mathbf{a} + \mu \left(\mathbf{6b} - \frac{2}{3}\mathbf{a} \right)$	B1 \overrightarrow{OE} (at least 1 correct) or equivalently equation of any one of the two lines.
	$= \frac{2}{3}(1-\mu)\mathbf{a} + 6\mu\mathbf{b}$ Comparing the coefficients of a and b , $(1-\lambda) = \frac{2}{3}(1-\mu)$ $\lambda = 6\mu$ $\lambda = \frac{6}{16}, \ \mu = \frac{1}{16}$	M1 comparing coefficients
	$\overrightarrow{OE} = \left(1 - \frac{6}{16}\right)\mathbf{a} + \frac{6}{16}\mathbf{b} = \frac{5}{8}\mathbf{a} + \frac{3}{8}\mathbf{b}$	A1
(b)(i)	Let the foot of perpendicular from point <i>D</i> to line <i>OE</i> be <i>N</i> , with position vector \mathbf{n} . Then $\mathbf{n} = \frac{(\mathbf{d} \cdot \mathbf{e})}{ \mathbf{e} } \frac{\mathbf{e}}{ \mathbf{e} }$ $(\mathbf{d} \cdot \mathbf{e})$	B1 obtaining foot of perpendicular using vector projection M1 applying ratio
	$\mathbf{f} = 2\frac{(\mathbf{d} \cdot \mathbf{e})}{ \mathbf{e} } \frac{\mathbf{e}}{ \mathbf{e} } - \mathbf{d}$ $= 2\frac{\pm 3}{4}\mathbf{e} - \mathbf{d}$ $= \pm \frac{3}{2}\mathbf{e} - \mathbf{d}$	theorem or addition of vectors
	$=\pm\frac{3}{2}\mathbf{e}-\mathbf{d}$	A1 both answers
(ii)	$\frac{1}{2}(OD)(OF) = \frac{1}{2} \left \mathbf{d} \times \left(\pm \frac{3}{2} \mathbf{e} - \mathbf{d} \right) \right = \frac{3}{4} \left \mathbf{d} \times \mathbf{e} \right $	M1 area of triangle formula
	OR $2\left(\frac{1}{2}\right)(OE)(DE) = 2\left(\frac{1}{2}\right)\left \frac{\mathbf{d} \cdot \mathbf{e}}{2}\right \left \frac{\mathbf{d} \times \mathbf{e}}{2}\right = \frac{3}{4}\left \mathbf{d} \times \mathbf{e}\right $	$\mathbf{A1}$ value of k

	T	1
8(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{a}{t^2}$ and $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{a}{t}$	Setter: YXF
		dv
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{a}{t} \times \left(-\frac{t^2}{a}\right) = -t$	$\mathbf{M1} \frac{\mathrm{d}y}{\mathrm{d}x}$
	When $t = p$, $x = \frac{a}{p}$, $y = a \ln p$ and $\frac{dy}{dx} = -p$	
	Equation of tangent:	
	$y - a \ln p = -p \left(x - \frac{a}{p} \right)$	M1 – finding equation
	$y = -px + a + a \ln p$	using formula or
	Equation of normal:	substituting to find c .
	$y - a \ln p = \frac{1}{p} \left(x - \frac{a}{p} \right)$	
	$y = \frac{1}{p}x - \frac{a}{p^2} + a \ln p$	
	$p p^2$	A1 equation of tangent and normal
(ii)	When $x = 0$, $y = a + a \ln p$	
	When $x = 0$, $y = -\frac{a}{p^2} + a \ln p$	M1 – subtracting the y-
	Area of $APB = \frac{1}{2} \left(a + a \ln p + \frac{a}{p^2} - a \ln p \right) \left(\frac{a}{p} \right)$	intercepts or finding lengths using pythagoras theorem
	$=\frac{1}{2}\left(a+\frac{a}{p^2}\right)\left(\frac{a}{p}\right)$	
	$=\frac{a^2(p^2+1)}{2p^3}$	A1
(iii)	y 1	
	x	B1 correct shape with x-
		intercept labelled
	O $(a, 0)$	
(iv)	Equation of tangent when $p = 1$: $y = -x + a + a \ln 1$	$\sqrt{\mathbf{B1}}$ equation of tangent
	= -x + a	voi equation of tangent
	Note that both the tangent and the line $y = mx + a$ pass through	
	the point $(0, a)$.	
	Range of $m: -1 < m < 0$.	B1 correct range of <i>m</i>

9(i)	$f(x) = (x-1)(x-5) = (x-3)^{2} - 4$ $R_{f} = [-4, 0]$	Setter: NSH B1
9(ii)	The line $y = k$ where $k \in \mathbb{R}$ cuts the graph of $y = g(x)$ at most once. Hence g is one-one and g^{-1} exists. y $(1,0)$ $y = k$ $y = k$ $y = x$ $y = x$	B1
(iii)	$y = (x-3)^{2} - 4$ $(x-3)^{2} = y+4$ $x = 3 \pm \sqrt{y+4}$ $= 3 - \sqrt{y+4} \because x < 3$	M1 making x the subject A1 for $g^{-1}(x)$ A1 for $D_{g^{-1}}$
(iv)	$g^{-1}(x) = 3 - \sqrt{x+4}, \ D_{g^{-1}} = (-4,0)$ $h\left(\frac{11}{2}\right) + h(-2)$ $= h\left(\frac{1}{2}\right) + h(3)$	M1 Getting $h\left(\frac{1}{2}\right)$ or $h(3)$.
	$=\ln\left(\frac{1}{2}\right)-4$	A1
(v)	y $x = 5$ $(-4, 0)$ $(0, 0)$ $(1, 0)$ $(5, 0)$ $(6, 0)$ x	B1 one cycle drawn B1 2nd cycle drawn B1 end points and
	$(-4,0) \qquad (0,0) \qquad (1,0) \qquad (5,0) \qquad (6,0) \qquad x$ $x = 0$	asymptotes labelled
10(i)	Equation of planes are: $\begin{pmatrix} -6 \\ -4 \end{pmatrix}$	Setter: LCH
	$\mathbf{r} \cdot \frac{2}{\sqrt{56}} = \frac{4}{\sqrt{56}} \pm 10$ $\begin{pmatrix} -3 \\ -2 \end{pmatrix}$	M1 dividing by magnitude of normal to both sides, or any equivalent method
	$\mathbf{r} \cdot \frac{1}{\sqrt{14}} = \frac{2}{\sqrt{14}} \pm 10$	A1 equations of both planes

(ii)	(-6) (-1)	
()	$\theta = \cos^{-1} \frac{\begin{pmatrix} -6 \\ -4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}}{\begin{vmatrix} -6 \\ -1 \\ -4 \\ -1 \\ 2 \end{vmatrix} = 2} = \cos^{-1} \frac{14}{\sqrt{56}\sqrt{6}} = 40.2^{\circ}$	M1 formula to find angle between 2 planes
	$\begin{vmatrix} -0 & -1 & \sqrt{56\sqrt{6}} \\ -4 & -1 \\ 2 & 2 \end{vmatrix}$	A1
(iii)	$ \begin{pmatrix} -6 \\ -4 \\ 2 \end{pmatrix} \times \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -6 \\ 10 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix} $	M1 cross product of normals to find direction of line
	Let $z = 0$, -6x - 4y = 4 (1) $-x - y = k \Rightarrow x = -k - y (2)$ Subst. (2) into (1)	M1 Let $z = 0$ to find position vector that lies on both planes
	$-6(-k-y)-4y=4$ $2y=4-6k \Rightarrow y=2-3k$ $\therefore x=-k-(2-3k) \Rightarrow x=2k-2$ $(2k-2) \qquad (-3)$	
	$\therefore L_1 : \mathbf{r} = \begin{pmatrix} 2k - 2 \\ 2 - 3k \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R}$	A1 working leading to show
(iv)	$P_{3}: 5x + \beta y + 5z = \mu$ $P_{3}: \mathbf{r} \cdot \begin{pmatrix} 5 \\ \beta \\ 5 \end{pmatrix} = \mu$	
	$ \begin{bmatrix} -3 \\ 5 \\ 1 \end{bmatrix} \bullet \begin{bmatrix} 5 \\ \beta \\ 5 \end{bmatrix} = 0 $ $ -15 + 5\beta + 5 = 0 $	
	$\beta = 2$ Subst. $\mathbf{r} = \begin{pmatrix} 2k-2\\2-3k\\0 \end{pmatrix}$ into $P_3 : \mathbf{r} \cdot \begin{pmatrix} 5\\2\\5 \end{pmatrix} = \mu$	B1
	$ \begin{pmatrix} 2k-2 \\ 2-3k \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ 5 \end{pmatrix} = \mu $	
		B1
(v)	$\mu = 4k - 6$ $\beta = 2, \ \mu \neq 4k - 6$	√ B1 for both, ecf

11(i)	\$(7500(1.02)-x)		Setter: YKX B1
(ii)			
(11)	1 st Nov 2022 (1st repayment)	7500(1.02)-x	
	1st Dec 2022 (2nd repayment)	(7500(1.02)-x)(1.02)-x	
		$= 7500(1.02)^{2} - x(1.02) - x$ $= 7500(1.02)^{2} - x(1+1.02)$	
	1 st Jan 2023 (3rd repayment)	$ \frac{-7500(1.02)^{2} - x(1+1.02)}{(7500(1.02)^{2} - x(1+1.02))(1.02) - x} $	
	(Sid repayment)	$= 7500(1.02)^3 - x(1+1.02+1.02^2)$	
	nth repayment	$7500(1.02)^{n} - x(1+1.02++1.02^{n-1})$	
	$7500(1.02)^n - x(1+1)$,	B1 sequence of <i>n</i> terms, seen or implied
	$= 7500(1.02)^n - x \left(\frac{1.1}{1}\right)^n$	$\frac{02^n-1}{.02-1}$	B1 applying sum of GP
	$= 7500(1.02)^n - 50x($	$1.02^n + 50x$	B1 working leading to given answer
	$=(7500-50x)(1.02)^{t}$	$t^{1}+50x$	
(iii)	$(7500-50x)(1.02)^{60}$		M1 forming inequality
	By GC, $x \ge 215.7597$	$4 \approx 215.76 .	A1 215.76
	<u>OR</u>		
	$(7500-50x)(1.02)^{60}$		
	$\left(50-50(1.02)^{60}\right)x \le$	$-7500(1.02)^{60}$	
	$\left(50 - 50(1.02)^{60}\right)x \le $ $x \ge \frac{-7500(1.02)^{60}}{50 - 50(1.02)^{60}} \approx $	\$215.76	
	215.75974(60) – 7500	0 = \$5445.58	M1 60 <i>x</i> -7500
	$\frac{\mathbf{OR}}{215.76(60) - 7500} = 3$	\$5445.60	A1 either answer
(iv)	_	0, $n = 12$, the amount Antonio still owes $(02)^{12} + 50(500) = 2805.768595.$	M1 Substituting in values of x and n (n may be wrong)

$$2805.77(1.01)^{n} - 500(1+1.01+...+1.01^{n-1})$$

$$= 2805.77(1.01)^{n} - 500\left(\frac{1.01^{n}-1}{1.01-1}\right)$$

$$= 2805.77(1.01)^{n} - 50000(1.01^{n}) + 50000$$

$$=(2805.77-50000)(1.01)^n+50000$$

n	$(2805.77 - 50000)(1.01)^n + 50000$
5	398.39
6	-97.63 √
7	-598.6

Antonio's last repayment will be on 1st April 2024, and the amount he will be repaying is \$402.37.

<u>OR</u>

$$(2805.77 - 50000)(1.01)^n + 50000 \le 0$$

$$(1.01)^n \ge \frac{-50000}{2805.77 - 50000}$$

$$n \ge \frac{\ln 1.059451547}{\ln 1.01} \approx 5.80$$

Least *n* is 6.

After the 5th repayment, Antonio will still owe

 $(2805.77-50000)(1.01)^5+50000=398.39$, and with the 1% interest charged on this amount, he will have to repay \$402.37 on 1st April 2024.

(v) Let the number of additional tables (on top of 10 tables) be t. Gomez Hotel cost: 1500(t+10).

Grande Hotel cost: $20000 + \frac{t}{2}(2(1950) + (t-1)(-50))$.

By GC,

t	1500(t+10)	$20000 + \frac{t}{2}(2(1950) + (t-1)(-50))$
26	54000	54450
27	55500	55100 √
28	57000	55700

The couple should need at least 37 tables.

M1 Recalculating general term for what Antonio owes after repayments (substituting in new ratio, new *a*)

M1 using GC to solve their new equation/inequality

A1 1st April 2024 and \$402.37

M1 Sum of AP formula (first term and number of terms may be wrong, common difference should be correct)

M1 GC table or any other method

A1 37

Setter: YXF $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$AD = x \tan 60^{\circ} = \sqrt{3}x$ $AD = x \tan 60^{\circ} = \sqrt{3}x$ $BC = \frac{x}{\cos 60^{\circ}} = 2x$ $V = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times y$ $5\sqrt{3}k = \frac{5\sqrt{3}x^2}{2}y$ $y = \frac{2k}{x^2}$ $A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})x(\frac{2k}{x^2})$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x}$ (Shown) All substitution of y and correct working leading to answer
AD = $x \tan 60^\circ = \sqrt{3}x$ BI either AD or BC BC = $\frac{x}{\cos 60^\circ} = 2x$ $V = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times y$ MI expressing V in terms of x and y $5\sqrt{3}k = \frac{5\sqrt{3}x^2}{2}y$ $y = \frac{2k}{x^2}$ A = $\frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})xy$ MI expressing A in terms of x and y MI expressing A in terms of x and y A1 substitution of y and correct working leading to answer
AD = $x \tan 60^\circ = \sqrt{3}x$ BI either AD or BC BC = $\frac{x}{\cos 60^\circ} = 2x$ $V = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times y$ MI expressing V in terms of x and y $5\sqrt{3}k = \frac{5\sqrt{3}x^2}{2}y$ $y = \frac{2k}{x^2}$ A = $\frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})xy$ MI expressing A in terms of x and y MI expressing A in terms of x and y A1 substitution of y and correct working leading to answer
$AD = x \tan 60^{\circ} = \sqrt{3}x$ $BC = \frac{x}{\cos 60^{\circ}} = 2x$ $V = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times y$ $5\sqrt{3}k = \frac{5\sqrt{3}x^{2}}{2}y$ $y = \frac{2k}{x^{2}}$ $A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^{2} + (5+\sqrt{3})xy$ $= 5\sqrt{3}x^{2} + (5+\sqrt{3})x\left(\frac{2k}{x^{2}}\right)$ $= 5\sqrt{3}x^{2} + \frac{2(5+\sqrt{3})k}{x}$ (Shown) All expressing <i>A</i> in terms of <i>x</i> and <i>y</i> All substitution of <i>y</i> and correct working leading to answer
$BC = \frac{x}{\cos 60^{\circ}} = 2x$ $V = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times y$ $5\sqrt{3}k = \frac{5\sqrt{3}x^{2}}{2}y$ $y = \frac{2k}{x^{2}}$ $A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^{2} + (5+\sqrt{3})xy$ $= 5\sqrt{3}x^{2} + (5+\sqrt{3})x\left(\frac{2k}{x^{2}}\right)$ $= 5\sqrt{3}x^{2} + \frac{2(5+\sqrt{3})k}{x} \text{ (Shown)}$ A1 substitution of y and correct working leading to answer
$V = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times y$ $5\sqrt{3}k = \frac{5\sqrt{3}x^2}{2}y$ $y = \frac{2k}{x^2}$ $A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})x(\frac{2k}{x^2})$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x} \text{ (Shown)}$ All substitution of y and correct working leading to answer
$V = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times y$ $5\sqrt{3}k = \frac{5\sqrt{3}x^2}{2}y$ $y = \frac{2k}{x^2}$ $A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})x(\frac{2k}{x^2})$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x} \text{ (Shown)}$ All substitution of y and correct working leading to answer
$5\sqrt{3}k = \frac{5\sqrt{3}x^2}{2}y$ $y = \frac{2k}{x^2}$ $A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \left(5+\sqrt{3}\right)k\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x}$ (Shown) (ii) For minimum 4, $\frac{dA}{dA} = 0$
$y = \frac{2k}{x^2}$ $A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \left(\frac{5+\sqrt{3}}{x}\right)x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x}$ (Shown) (ii) For minimum $A = \frac{dA}{dA} = 0$
$A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x} \text{ (Shown)}$ All substitution of y and correct working leading to answer
$A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + (5+\sqrt{3})x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x} \text{ (Shown)}$ A1 substitution of y and correct working leading to answer
$A = \frac{1}{2}(2x+3x) \times \sqrt{3}x \times 2 + 3xy + 2xy + \sqrt{3}xy$ $= 5\sqrt{3}x^2 + \left(5 + \sqrt{3}\right)xy$ $= 5\sqrt{3}x^2 + \left(5 + \sqrt{3}\right)x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x} \text{ (Shown)}$ A1 substitution of y and correct working leading to answer
$= 5\sqrt{3}x^2 + \left(5 + \sqrt{3}\right)xy$ $= 5\sqrt{3}x^2 + \left(5 + \sqrt{3}\right)x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \frac{2(5 + \sqrt{3})k}{x} \text{ (Shown)}$ A1 substitution of y and correct working leading to answer
$= 5\sqrt{3}x^2 + \left(5 + \sqrt{3}\right)x\left(\frac{2k}{x^2}\right)$ $= 5\sqrt{3}x^2 + \frac{2(5 + \sqrt{3})k}{x} \text{ (Shown)}$ A1 substitution of y and correct working leading to answer
$= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})k}{x}$ (Shown) correct working leading to answer
$= 5\sqrt{3}x^2 + \frac{2(5+\sqrt{3})^{k}}{x} \text{ (Shown)}$ answer (ii) For minimum $A = 0$
(ii) For minimum A , $\frac{dA}{dx} = 0$
dx dx $R1$ correct dA
Di concet d.
$10\sqrt{3}x - \frac{2(5+\sqrt{3})k}{x^2} = 0$
$5\sqrt{3}x = \frac{\left(5 + \sqrt{3}\right)k}{x^2}$ M1 $\frac{dx}{dx} = 0$ and making x the subject
$x^3 = \frac{\left(5 + \sqrt{3}\right)k}{5\sqrt{3}}$
$x = \left(\left(\frac{\sqrt{3}}{3} + \frac{1}{5} \right) k \right)^{\frac{1}{3}}$
$ \left[\left(\begin{array}{cc} 3 & 5 \end{array} \right]^{n} \right] $
$\frac{d^2 A}{dx^2} = 10\sqrt{3} + \frac{4(5+\sqrt{3})k}{x^3} = 10\sqrt{3} + \frac{4(5+\sqrt{3})k}{(5+\sqrt{3})k} = 30\sqrt{3} > 0$ B1 for checking minimum using 2 nd derivative test of 1 st derivative test.
5√3

	Hence, A is minimum when $x = \left(\left(\frac{\sqrt{3}}{3} + \frac{1}{5} \right) k \right)^{\frac{1}{3}}$.	
(iii)	When $k = \frac{3}{160}$ and $y = 0.6$, $0.6 = \frac{2}{x^2} \times \frac{3}{160} \Rightarrow x = 0.25$	B1 finding <i>x</i>
	Hence, $AB = 0.25 \times 3 = 0.75 = \frac{3}{4}$ and $AD = \sqrt{3} \times 0.25 = \frac{\sqrt{3}}{4}$	
	$h = \begin{pmatrix} C \\ A \end{pmatrix}$	
	$\frac{3}{4} - \frac{h}{\sqrt{3}} \qquad \frac{h}{\sqrt{3}}$	
	V now denotes the volume of water in the fish tank. $V = \frac{1}{2} \left(\frac{3}{4} - \frac{h}{\sqrt{3}} + \frac{3}{4} \right) \times h \times 0.6$	M1 finding <i>V</i> in terms of <i>h</i> (with value of <i>x</i> found earlier)
	$=0.3h\left(\frac{3}{2}-\frac{h}{\sqrt{3}}\right)$	carrier)
	$=0.45h - \frac{0.3}{\sqrt{3}}h^2$	
	When the fish tank is half filled, $V = \frac{1}{2} \left(5\sqrt{3} \times \frac{3}{160} \right) = \frac{3\sqrt{3}}{64}$ $0.45h - \frac{0.3}{\sqrt{3}}h^2 = \frac{3\sqrt{3}}{64}$	M1 finding h when the fish tank is half filled
	$\frac{0.3}{\sqrt{3}}h^2 - 0.45h + \frac{3\sqrt{3}}{64} = 0$	
	$h = 0.19507 or \ h = 2.40301 $ (rejected since $h < AD \approx 0.433$)	
	$\frac{\mathrm{d}V}{\mathrm{d}h} = 0.45 - \frac{0.6}{\sqrt{3}}h$	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$	
	$0.015 = \left(0.45 - \frac{0.6}{\sqrt{3}} \times 0.19507\right) \times \frac{\mathrm{d}h}{\mathrm{d}t}$	M1 for applying chain rule to find $\frac{dh}{dt}$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.03922$	A1

Hence the rate of change of height is 0.03922 m per minute.