

Efficient numerical schemes for evolution equations with singularities and shocks

PhD defense

Zuodong Wang

Advisors: Zhaonan Dong, Alexandre Ern

Ecole Nationale des Ponts et Chaussées, IPP; Centre Inria de Paris

Hyperbolic conservation laws with source

- $\partial_t u + \nabla \cdot f(u) = R(u)$ Hyperbolic conservation laws with source term
- $\partial_{tt}u \Delta u = f$ Linear acoustic wave equations

photo from StockSnap, pixabay

Shocks, interfaces

Neutron transport equation

• $\Omega \cdot \nabla_{\boldsymbol{x}} \Psi + \sigma^t \Psi = \frac{\sigma^s}{4\pi} \int_{S^2} \Psi + q$ Neutron transport equations $\left(3(\boldsymbol{x}) + 2(\Omega)\right) d$

photo from kpr2, pixabay

Highly-contrasted coefficients

Phase transition models

• $\partial_t u - \Delta u + \varepsilon^{-2}(u^3 - u) = 0$ Allen–Cahn equation

photo from simon, pixabay

Sharp interfaces

Common challenges

 Physically meaningful numerical solution: bound-preserving, energy-decay, entropy-decay, ...

 Well-captured shocks and singularities: correct wave speed, as small as possible oscillation, ...

Outline

- Conservation laws with stiff reaction: [Ern, Guermond, Wang, 24, J. Sci. Comput.]
- Neutron transport equation: [Guermond, Wang, 25, J. Comput. Phys.]
- Allen–Cahn equation: [Dong, Ern, Wang, accepted, Comput. Math. Appl.]
- Linear acoustic wave equation:
 [Dong, Mascotto, Wang, submitted, Numer. Math.]
 [Dong, Georgoulis, Mascotto, Wang, submitted, Numer. Math.]

01

Conservation laws with stiff reaction

[Ern, Guermond, Wang, 24, J. Sci. Comput.]

PDE model

$$\partial_t u^{\varepsilon} + \nabla \cdot \boldsymbol{f}(u^{\varepsilon}) = \frac{1}{\varepsilon} R(u^{\varepsilon}) \quad \text{in } D \times (0, T]$$

with u_0 and suitable BC, $\varepsilon > 0$

Examples for f

- Linear:
 - f(v) = v
- Burgers: $f(v) = \frac{1}{2}v^2$
- KPP: $f(v) = (\sin v, \cos v)$

Example for R

$$R_{YL}(v) = v(1-v)(v-\frac{1}{2})$$

Example [LeVeque, Yee, 90]
$$\partial_t u^{\varepsilon} + \partial_x u^{\varepsilon} = \frac{1}{\varepsilon} R_{YL}(u^{\varepsilon})$$

We focus on $R(v) = v(1-v)(1-\alpha)$, $\alpha \in (0,1)$, for simplicity

- Invariant-domain-preserving (IDP): $u_0(\mathbf{x}) \in [0,1] \Longrightarrow u^{\varepsilon}(\mathbf{x},t) \in [0,1]$
- Entropy-inequality: $\partial_t \eta(u^{\varepsilon}) + \nabla \cdot \boldsymbol{q}(u^{\varepsilon}) \leq \frac{1}{\varepsilon} \eta'(u^{\varepsilon}) R(u^{\varepsilon}),$ η is convex, $\boldsymbol{q}(v) := \int_0^v \eta'(s) \boldsymbol{f}'(s) \mathrm{d}s$

$$\mathbf{Limit}\ u^0 := \lim_{\varepsilon \to 0} u^{\varepsilon}$$

- ullet There exists a unique u^0 (at least in 1D) [Fan, Jin, Teng, 00]
- $u^{\varepsilon} \stackrel{\varepsilon}{\to} u^0$ exponentially fast: reaction on characteristic line
- ullet u^0 is piecewise constant, what are the shock speeds?

$$f'(\alpha) \neq \frac{f(1) - f(0)}{1 - 0}$$

- In general, u^0 may not satisfy Rankin-Hugoniot relation
- Approximating u^0 is challenging

In the regime $\varepsilon \ll h$:

- Capture shocks with correct wave speed
- IDP: $u_h^{\varepsilon}(\boldsymbol{x},t) \in [0,1]$
- Asymptotic-preserving (AP): $u_h^{\varepsilon} \approx u_h^0$
- Entropy inequality:

$$\partial_t \eta(u_h^{\varepsilon}) + \nabla \cdot \boldsymbol{q}(u_h^{\varepsilon}) - \frac{1}{\varepsilon} \eta(u_h^{\varepsilon})' R(u_h^{\varepsilon}) \leq \Lambda(h) \to 0$$

Short literature review

Classical schemes are not AP.

$$\begin{split} f(v) &= v \\ u_0(x) &= \begin{cases} 0 & x < -0.5 \\ 1 & x \geq -0.5 \end{cases} \\ \varepsilon &= 10^{-3}, \ h = 3.9 \times 10^{-4} \\ R(v) &= v(1-v)(v-0.9) \end{split}$$

- Some partially successful results:
 - > [Bao, Jin, 02]: AP for 1D, convex flux, shock-type IC
 - > [Svärd, Mishra, 11]: AP for 1D, convex flux; no interaction between rarefaction and shock

Our contribution

IDP-AP scheme for arbitrary d, \boldsymbol{f} and u_0

Our scheme I: IDP

$$u_h^{n,\varepsilon} \xrightarrow{\operatorname{transport}} w_h^{n+1,\varepsilon} \xrightarrow{\operatorname{reaction}} u_h^{n+1,\varepsilon}$$

- Transport $(\frac{w_h^{n+1,\varepsilon}-u_h^{n,\varepsilon}}{\tau}+\nabla\cdot \boldsymbol{f}(u_h^{n,\varepsilon})=0)$: Stabilized FEM, upwind, Lax-Friedrichs, Godunov, ... e.g., [Eymard, Gallouet, Herbin, 00], [Guermond, Nazarov, 14]
- Reaction $(u_h^{n+1,\varepsilon} = v(\tau), d_t v = \frac{1}{\varepsilon} R(v), v(0) = w_h^{n+1,\varepsilon})$:
 - > Original ODE is expensive to solve
 - > Fast IDP update: $d_t v = \frac{1}{\varepsilon} v (1 v) (w_h^{n+1,\varepsilon} \alpha)$ $\Rightarrow u_h^{n+1,\varepsilon} = \frac{w_h^{n+1,\varepsilon} \exp((\tau/\varepsilon)(w_h^{n+1,\varepsilon} - \alpha))}{1 + w_h^{n+1,\varepsilon} \left(\exp((\tau/\varepsilon)(w_h^{n+1,\varepsilon} - \alpha)) - 1 \right)}$
- $\bullet \ u_h^{n,\varepsilon}(\boldsymbol{x}) \in [0,1] \Rightarrow w_h^{n+1,\varepsilon}(\boldsymbol{x}) \in [0,1] \Rightarrow u_h^{n+1,\varepsilon}(\boldsymbol{x}) \in [0,1]$

Our scheme II: AP

$$\frac{1}{\varepsilon}R(v) \to \frac{1}{\Phi_{\varepsilon,h}}R(v), \quad \Phi_{\varepsilon,h} := \max(\varepsilon, h^{\theta})$$

Theorem (Entropy inequalities)

Assume that $\eta \in \mathcal{C}^2$, $\varepsilon \ll h^{\theta}$ and $\psi \in W_0^{1,\infty}$, we have

$$\langle \partial_t \eta(u_h^{\varepsilon}) + \nabla \cdot \boldsymbol{q}(u_h^{\varepsilon}) - \frac{1}{\Phi_{\varepsilon,h}} \eta(u_h^{\varepsilon})' R(u_h^{\varepsilon}), \psi \rangle \leq C \left(h^{1-2\theta} \|u_h^{\varepsilon}\|_{L^1(L^1)} + h^{1-\theta} \|\nabla u_h^{\varepsilon}\|_{L^1(L^1)} \right)$$

Question: optimal θ to minimize error?

$$\begin{split} R(v) &= v(1-v)(v-0.7) \\ \boldsymbol{f}(v) &= \frac{\sin(2\pi v)}{2\pi}, \ \varepsilon = 10^{-3} \\ \bullet \colon R(\cdot)/h^{\theta}, \ \theta \in \{0.3, ..., 1\} \\ \text{dashed line: } R(\cdot)/\varepsilon \\ \text{colored vertical lines: } h^{\theta} &= \varepsilon \end{split}$$

minimizing error \Rightarrow lower envelope \Rightarrow

$$\theta \approx a + b(\log h)^{-1} \Rightarrow \Phi_{\varepsilon,h} := \max(\varepsilon, \gamma h^{\theta}), \quad \theta \approx a, \ \gamma \approx e^{b}$$

• (θ, γ) depends on model parameters

Still possible to consider all-purpose parameters

$$(\theta,\gamma) := \begin{cases} (0.1,0.05) & \text{linear flux} \\ (0.4,0.1) & \text{nonlinear flux} \end{cases}$$

Numerical tests in 1D

• $f(v) = \frac{\sin(2\pi v)}{2\pi}$, R(v) = v(1-v)(v-0.5), $\varepsilon = 10^{-3}$

 (θ,γ) : optimal values *, all-purpose values •; dashed line $\Phi_{\varepsilon,h}=\varepsilon.$

ullet Similar result for other $oldsymbol{f}$ and R

Numerical tests in 1D

- $f(v) = \frac{1}{2}v^2$, R(v) = v(1-v)(v-0.9), $\varepsilon = 10^{-3}$
- Interaction between shock and rarefaction

 Shocks incorrectly approximated in (a); correctly approximated in (b)

Conclusion & Perspectives

- An IDP-AP scheme is proposed, based on operator-splitting and cut-off techniques
- Optimal cut-off parameters are numerically investigated
- High-order schemes are a future research direction

02

Neutron transport equation

[Guermond, Wang, 25, J. Comput. Phys.]

Find $\Psi: D \times S^2 \to \mathbb{R}^+$ s.t.

$$\Omega \cdot \nabla_{\boldsymbol{x}} \Psi + \sigma^t \Psi = \frac{\sigma^s}{4\pi} \int_{S^2} \Psi + q$$

with non-negative inflow BC,

total and scattering cross sections $\sigma^t \geq \sigma^s \geq 0$ (can vary on D)

- Key properties:
 - > Positivity-preserving: $\Psi(\boldsymbol{x},\Omega) \geq 0$
 - $> |\sigma^s| \to \infty \Rightarrow$ diffusion limit Ψ^0

Short literature review

- S_N for angular discretization
- Main challenge: find a method with
 - ➤ positivity-preserving ➤ AP ➤ high-order
 - ➤ oscillation-free ➤ conservative ➤ fast post-processing

	$\Psi \ge 0$	AP	high-order	no osc.	conserv.	fast post-proc.
dG(0)	./	1	×	✓	✓	-
+ modif.	•					
dG(p)	X	√	✓	X	✓	-
dG(p)	,	1	✓	✓	✓	×
+ optim.	•					
cG	X	1	✓	Х	✓	-
$cG + h\Delta\Psi$	ling 🗸	1	X	✓	Х	
+ rescaling						_

References: [Chandrasekhar, 50], [Larsen, Morel, Miller, 87],

[Gosse, Toscani, 02], [Guermond, Kanschat, 10],

[Buet, Després, Frank, 12], [Guermond, Popov, Ragusa, 20],

[Yee, Olivier, Haut, Holec, Tomov, Maginot, 20]

Our main contribution

Novel limiting process

- ➤ positivity-preserving ➤ AP ➤ high-order
- ➤ oscillation-free ➤ conservative ➤ fast (linear complexity)

A two-step post-process:

- 1. Local limiting: temper oscillation
 - > loop on all dofs:
 - > apply local limiter based on mass redistribution
- 2. Global limiting: impose global a priori bounds
 - > apply global limiter based on cut-off technique

Prototype: linear transport equation

$$\Omega \cdot \nabla_{\boldsymbol{x}} u + \sigma u = q \qquad \text{in } D \subset \mathbb{R}^d$$

with suitable BC, fixed $\Omega \in \mathbb{R}^d$, d = 1, 2, 3, $\sigma, q \ge 0$

Solution method:

- stabilized high-order numerical method (e.g., edge stabilization/CIP [Burman, Hansbo, 04]) $\Rightarrow \{u_i\}_{i \in \mathcal{V}}$;
- local limiting to temper small oscillation (repeat a few times):
 - > estimate local bounds $\Rightarrow \{(u_i^{\max}, u_i^{\min})\}_{i \in \mathcal{V}}$
 - > apply local limiter $\Rightarrow \{\tilde{u}_i\}_{i\in\mathcal{V}}$
- Global limiting to guarantee positivity $\Rightarrow \{u_i^+\}_{i \in \mathcal{V}}$

Based on method of characteristics [Lathrop, 69]; $\sigma = const$ for simplicity

$$\begin{cases} \Omega \cdot \nabla_{\boldsymbol{x}} u + \sigma u = \frac{\boldsymbol{q}}{\boldsymbol{q}} \\ u|_{\partial D^-} = u^{\mathrm{up}} \end{cases} \Leftrightarrow u(x) = u^{\mathrm{up}} e^{\frac{\sigma}{|\Omega|}|x^{\mathrm{up}} - x|} + \int_{x^{\mathrm{up}}}^x \frac{\boldsymbol{q}}{|\Omega|} e^{\frac{\sigma}{|\Omega|}s} \, \mathrm{d}s$$

- Upwinding node i^{up} defined using local dof stencil $\mathcal{I}(i)$
- Maximizing/minimizing $q \Rightarrow$ local bound

Main steps (repeat a few times):

- loop on all dofs $i \in \mathcal{V}$:
 - 1. compute $\{u_i^{\max}, u_i^{\min}\}$
 - 2. apply local limiter on each dof $i \in \mathcal{V}$

```
\begin{array}{l} \star \;\; \boldsymbol{u_i} > u_i^{\max} \Rightarrow \text{decrease } \boldsymbol{u_i}, \text{ increase } \{u_j\}_{j \in \mathcal{I}(i)} \\ \star \;\; \boldsymbol{u_i} < u_i^{\min} \Rightarrow \text{increase } \boldsymbol{u_i}, \text{ decrease } \{u_j\}_{j \in \mathcal{I}(i)} \end{array}
```


- · Locally mass conservative
- · Converging in a few number of iterations on all dofs

Global limiter

Main steps:

- set lower/upper bound to u^{min}, u^{max};
- cut-off $\Rightarrow \{\bar{u}_i\}_{i \in \mathcal{V}}$;
- small modification on dofs based on $\sum_{i \in \mathcal{V}} m_i u_i \Rightarrow \{u_i^+\}_{i \in \mathcal{V}}$.

Lemma (properties of global limiter)

$$u^{\min} \le u_i^+ \le u^{\max}, \qquad \sum_{i \in \mathcal{V}} m_i u_i^+ = \sum_{i \in \mathcal{V}} m_i u_i$$

Numerical test: linear transport

- $\Omega=1$, D=(0,1), u(0)=0, q=O(1) highly-contrasted σ between 1 and 10^3
- Simulation with $h \approx 2 \times 10^{-2}$, \mathbb{P}_2

(b) Galerkin
$$+ CIP + limiting$$

Numerical test: linear transport

• $\Omega=(1,0),\ D=(0,1)^2,\ q=O(1)$ highly-contrasted σ between 1 and 10^3

\mathbb{P}_1			\mathbb{P}_2			\mathbb{P}_3			
	I	L^1 -Err	rate	\overline{I}	L^1 -Err	rate	\overline{I}	L^1 -Err	rate
	961	5.08E-02	_	1681	2.32E-02	_	961	4.12E-02	_
	3721	2.34E-02	1.15	6561	1.04E-02	1.18	3721	1.96E-02	1.10
	14641	9.62E-03	1.30	25921	$3.74 \hbox{E-}03$	1.49	14641	7.08E-03	1.49
	58081	3.18E-03	1.61	103041	1.09E-03	1.79	58081	1.71E-03	2.06
	231361	$8.28\hbox{E-}04$	1.95	410881	$4.64 \hbox{E-}04$	1.23	231361	$4.18\hbox{E-}04$	2.04

$$\Omega \cdot \nabla_{\boldsymbol{x}} \Psi + \sigma^t \Psi = \frac{\sigma^s}{4\pi} \int_{S^2} \Psi + q$$

Main steps:

1. Discretization:

- > angular: discrete ordinate/ S_N : quadrature $\{\Omega_k, \mu_k\}_{k \in K}$ on unit sphere
- > space: Galerkin + CIP (numerically AP)
- > numerical solution: $\{\Psi_{k,h}\}_{k\in K}$, dofs $\{\Psi_{k,i}\}_{k\in K,i\in\mathcal{V}}$

2. Source iteration (on n):

- $> \Omega_k \cdot \nabla_{\boldsymbol{x}} \Psi_{k,h}^{n+1} + \sigma^t \Psi_{k,h}^{n+1} = \frac{\sigma^s}{4\pi} \sum_{l} \mu_l \Psi_{l,h}^n + q := q^n$
- > local bounds estimator $\Rightarrow \{(\Psi_{k,i}^{\max}, \Psi_{k,i}^{\min})\}_{k,i}$ using q^n local limiting $\Rightarrow \{\tilde{\Psi}_{k,i}^{n+1}\}_{k,i}$
- > global limiting with $(\Psi^{\min}, \Psi^{\max}) = (0, +\infty) \Rightarrow \{\Psi^{n+1,+}_{k,i}\}_{k,i}$

Neutron transport, AP

- $\sigma^t = \sigma^s = \varepsilon^{-1}$, $q = 2\varepsilon\pi^2\sin(\pi x)\sin(\pi y)/3$, zero BC, $\psi^0 = \lim_{\varepsilon \to 0} \Psi = \sin(\pi x)\sin(\pi y)$
- ullet \mathbb{P}_1 , $h\ggarepsilon$, $ar{\Psi}_h$ as average of $\Psi_{k,h}$ over k
- \bullet convergence $\|\bar{\Psi}_h \psi^0\|$ in $L^2\text{-}$ and $H^1\text{-}\text{norms}$

ε	h	L^2 -error	rate	H^1 -error	rate
	1e-1	1.23e-2	-	1.95e-2	-
	5e-2	3.14e-3	2.12	5.75e-3	1.90
1e-6	2.5e-2	7.84e-4	2.08	1.98e-3	1.60
	1.25e-2	1.92e-4	2.06	7.06e-4	1.51
	6.25e-3	4.59e-5	2.08	2.35e-4	1.60

Neutron transport, reflection

$$\Psi(\boldsymbol{x},\Omega) = \begin{cases} 1 & \text{if } \boldsymbol{n}(\boldsymbol{x}) \cdot \Omega < 0 \text{ and } \Omega = \Omega_1 \\ 0 & \text{otherwise} \end{cases}$$

• $h \approx 2.6 \times 10^{-3}$, $\max_{x \in D} \sigma^s \approx 10^2$, S_6 (few angulars)

(a) geometry & parameters

(b) \mathbb{P}_1 , $\bar{\Psi}_h$

Conclusion & perspectives

 A fast, mass conservative and bound-preserving post-processing is proposed and numerically tested.

Possible improvement: recall source iteration

$$\Omega_k \cdot \nabla_{\mathbf{x}} \Phi_{h,k}^{n+1} + \sigma^t \Phi_{h,k}^{n+1} = \frac{\sigma^s}{4\pi} \sum_{l} \mu_l \Psi_{l,h}^n + q$$

- > small oscillation near discontinuity
- > RHS/inflow dof are not always positive
- > local bound is not always positive/accurate
- > need more reliable local bound

03

Allen-Cahn equation

[Dong, Ern, Wang, accepted, Comput. Math. Appl.]

PDE model

$$\partial_t u - \Delta u + \frac{1}{\varepsilon^2} f(u) = 0$$
 in $D \times (0, T)$

with $u_0 \in H^1(D)$, $\partial_{\boldsymbol{n}} u|_{\partial D} = 0$, $\varepsilon > 0$.

- $F(v) := \frac{1}{4}(v^2 1)^2$, $f(v) := F'(v) = v(v^2 1)$ with stable states ± 1
- Energy decay: $\mathcal{J}_{\varepsilon}(v) := \frac{1}{2} \|\nabla v\|^2 + \frac{1}{\varepsilon^2} \int_D F(v) \sup_{t \in J} \mathcal{J}_{\varepsilon}(u(t)) + \int_0^T \|\partial_t u(t)\|^2 dt \leq \mathcal{J}_{\varepsilon}(u_0)$

Interface of solution

• A narrow transition region of $O(\varepsilon)$ thickness exists where u crosses zero.

Figure: [Fig 6.4, Bartels, 15]

Expected numerical properties

• Bound-preserving: $u_h(\boldsymbol{x},t) \in [-1,1]$

• Energy decay: $\sup_{t \in J} \mathcal{J}_{\varepsilon}(u_h(t)) \leq \mathcal{J}_{\varepsilon}(u_h^0)$

• Polynomial ε -dependence in error estimates

Bound-preserving:
 [Li, Yang, Zhou, 20], [Du, Ju, Li, Qiao, 21],
 [Shen, Zhang, 22], [Liu, Riviere, Shen, Zhang, 24].

• Polynomial ε -dependence: [Feng, Prohl, 03], [Bartels, 15], [Chrysafinos, 19], [Akrivis, Li, 22].

Our contribution

Combine the two properties.

Let V_h be the FEM space, $V_h^+ \subset V_h$ the subset of v_h^+ s.t.:

$$\forall v_h := \sum_{i \in \mathcal{V}} V_i \varphi_i \in V_h, \ v_h^+ := \sum_{i \in \mathcal{V}} \min(1, \max(-1, V_i)) \varphi_i, \ v_h^- := v_h - v_h^+.$$

Let $\alpha = \mathcal{O}(1)$. Then for all $n \in \mathcal{N}$,

$$\left(\frac{u_{h}^{n,+} - u_{h}^{n-1,+}}{\tau} + \frac{f(u_{h}^{n,+})}{\varepsilon^{2}}, v_{h}\right) + \left(\nabla u_{h}^{n,+}, \nabla v_{h}\right) + s_{h}(u_{h}^{n,-}, v_{h}) = 0,$$

$$s_{h}(u_{h}^{n,-}, v_{h}) := \alpha \sum_{i \in \mathcal{V}} \left(\frac{h_{i}^{d}}{\tau} + h_{i}^{d-2} + \frac{h_{i}^{d}}{\varepsilon^{2}}\right) U_{i}^{n,-} V_{i}, \quad \forall v_{h} \in V_{h}.$$

- Nonlinear space discretization for elliptic PDEs in [Barrenechea, Georgoulis, Pryer, Veeser, 24]
- Nonlinear system solved by a few number of Newton + Richardson-like iterations

Lemma (Well-posedness)

Assume that $\alpha = O(1)$ is sufficiently large, $\tau < \frac{\varepsilon^2}{4}$. There exists a unique $u_h^n \in V_h$ for all $n \in \mathcal{N}$.

Proof.

Apply theory of finite-dimensional monotone operators.

Stability of our scheme

Recall
$$\mathcal{J}_{arepsilon}(v) = \frac{1}{2} \| \nabla v \|^2 + \frac{1}{arepsilon^2} \int_D F(v)$$

Lemma (Local in time)

$$u_h^{n,+} = \underset{v_h \in V_h^+}{\operatorname{argmin}} \left(\mathcal{J}_{\varepsilon}(v_h) + \frac{\tau}{2} \| \frac{v_h - u_h^{n-1,+}}{\tau} \|^2 \right)$$

Lemma (Global in time)

$$\max_{n \in \mathcal{N}} \mathcal{J}_{\varepsilon}(u_h^{n,+}) + C \sum_{n \in \mathcal{N}} \tau \left\| \frac{u_h^{n,+} - u_h^{n-1,+}}{\tau} \right\|^2 \le \mathcal{J}_{\varepsilon}(u_h^0)$$

We introduce the principal eigenvalue of the linearized eigenvalue problem from [Chen, 94]:

$$\lambda(t) := \max \Big\{ 0, -\inf_{v \in H^1(\Omega) \backslash \{0\}} \frac{(\varepsilon^{-2} f'(u(t)), v^2) + \|\nabla v\|^2}{\|v\|^2} \Big\}$$

which satisfies

$$\int_0^T \lambda(t) dt \le C + \log(\varepsilon^{-\kappa})$$

where κ represents the number of topological changes [Bartels and Müller, 11], [Bartels, Müller, Ortner, 11], [Bartels, 15]

Split error into consistent, stability parts

 Control consistent part by a bound-preserving Ritz-projection [this thesis]

 Control stability part by linearized eigenvalue problem & generalized Grönwall inequality [Bartels, 15]

Theorem (Error estimate)

Suppose that $u \in H^1(J; H^2(\Omega)) \cap H^2(J; L^2(\Omega))$. Let α be sufficiently large, $\tau, h \leq C\varepsilon^{\beta}$, with some $\beta > 0$.

$$\max_{n \in \mathcal{N}} \|u^n - u_h^{n,+}\| \le C \frac{1}{\varepsilon^{4\kappa + 2}} (\tau + h)$$

$$\left\{ \sum_{n \in \mathcal{N}} \tau \|\nabla (u^n - u_h^{n,+})\|^2 \right\}^{\frac{1}{2}} \le C \frac{1}{\varepsilon^{4\kappa + 3}} (\tau + h)$$

Numerical test with topological changes

- Test from [Feng, Wu, 2005]
- $\varepsilon^2 = 2.5e 4$, $\tau = 3e 3$, $t_1 \approx 1.7e 2$, $t_2 \approx 2.5e 2$

(a) operator-splitting, t_1 (b) operator-splitting, t_2

(c) our scheme, t_1 (d) our scheme, t_2

Conclusion & perspectives

Bound-preserving scheme

• Error bounds with polynomial ε -dependence

- Future research directions:
 - > high-order schemes
 - > mesh adaptivity
 - > application on semi-implicit schemes

04

Linear acoustic wave equation

[Dong, Mascotto, Wang, submitted, Numer. Math.] [Dong, Georgoulis, Mascotto, Wang, submitted, Numer. Math.]

Wave equation: hp-error analysis

$$\begin{aligned} \partial_{tt} u - \Delta u &= f & \text{in } D \times (0, T] \\ u(\cdot, 0) &\in H_0^1(D) & \partial_t u(\cdot, 0) \in L^2(D) \end{aligned}$$

- hp-a priori and a posteriori analysis for second-order formulation are scarce
- final goal water wave
- Our contribution
 - > hp-a priori analysis for fully discretized scheme
 - $>\ hp$ -a posteriori analysis for time semi-discretized scheme
 - > hp-space-time a posteriori analysis for fully discretized scheme (submitted recently)

That's all

Thank you for your attention