Problem Statement

Let X_i be iid exponentially distributed random variables with $E[Xi] = \frac{1}{\lambda} = 1$. Define the random variable $Sn = \sum_{i=1}^{n} Xi$.

We need to do following simulations for X_i and S_n :

- A. Generate samples of X_i and use them to generate the series of samples for S_n . Compute the sample mean and sample variance for n = 1 and n = 5 and compare to analytical value. Also plot the histogram of pdf of Sn for n = 1 and n = 5.
- B. Generate samples of Sn by using $Sn = \frac{-\ln(\prod_{i=1}^n Ui)}{\lambda}$, where U_i is uniform (0, 1). Compute the sample mean and sample variance for n=5 and compare to analytical value. Also plot the histogram of pdf of Sn for n=5.

Theoretical Computations

The random variable S_n is sum of iid exponential random variables, so its mean is given by

$$E[Sn] = E\left[\sum_{i=1}^{n} Xi\right]$$

$$\therefore E[Sn] = E[X1 + X2 + \dots + Xn]$$

$$\therefore E[Sn] = nE[X1] = \frac{n}{\lambda}$$

And variance is given by

$$Var(Sn) = var(\sum_{i=1}^{n} Xi)$$

$$\therefore Var(Sn) = nVar(X1) = \frac{n}{\lambda^2}$$

In our case $\lambda = 1$ so E[Sn] = n and var(Sn) = n.

For n = 1, distribution of Sn converges to exponential distribution and for n = 5, distribution of Sn converges to normal distribution.

Simulation

Part A

In this part, we generate X_i a sequence of iid exponential random variables with mean 1 from uniform random variable distributed between 0 and 1. From X_i we compute S_n . Then we compute sample mean and sample variance of S_n . We plot histogram of pdf of S_n .

Code:

```
% Value of n (1 or 5)
n=1;
% Value of lamda parameter of Xi
lamda=1;
% Number of samples
```

Output:

For n = 1, $\lambda = 1$, N = 50000:

	Theoretical	Simulation
Mean	1	1.0001
Variance	1	0.9892

Figure 1 Histogram for probability density function of S1

For n = 5, $\lambda = 1$, N = 50000:

	Theoretical	Simulation
Mean	5	4.9872
Variance	5	4.9483

Figure 2 Histogram for probability density function of S5

For n=1, the probability distribution function for S_n is exponentially distributed and for n=5 it is normally distributed.

Part B

In this part, we generate samples of S_n by using the function of uniform random variable and then compute sample mean and sample variance for S_n .

Code:

```
% Value of n
% Value of lamda parameter of Xi
lamda=1;
% Number of samples
N=50000;
S=zeros(1,N);
temp=rand(n,N); % Generate marix of uniform RVs between 0 and 1
X=temp(1,:);
if n \sim = 1
    for i=2:n
         X=X.*temp(i,:); % Multiply samples of uniform RVs
    end
end
S=-log(X)/lamda; % Generate samples of Sn from uniform RV
\ensuremath{\$} Plot probability distribution function of \ensuremath{\mathsf{Sn}}
histogram(S,'Normalization','Probability')
% Mean of Sn
meanS=mean(S)
% Variance of Sn
varianceSn=var(S)
```

Output:

For n=5, the time taken for part A = 0.829 seconds and the time taken for part B = 0.458 seconds.

For n = 5, $\lambda = 1$, N = 50000:

	Theoretical	Simulation
Mean	5	4.9990
Variance	5	4.9957

Figure 3 Histogram for probability density function of S5