GROUP BLUE MATHS NOTES, EXERCISES AND ASSIGNMENTS

TOPIC: LONGITUDES AND LATITUDES

Instructions

- Read the notes keenly
- Study the examples given carefully
- Sketching the question is very important
- In some worked examples, the working is displayed but the final answer **NOT** given. In such cases provide the answer.
- Attempt all the questions given after each subtopic.

LONGITUDES AND LATITUDES

- > Longitudes and latitudes are imaginary lines drawn on the earth's surface.
- > They are used to locate positions of places on the earth's surface.

LATITUDES

- These are imaginary lines drawn on the earth's surface.
- ➤ They run from West to East
- The **main** latitude is the Equator and is assigned 0° and is used as the reference latitude.
- ➤ All other latitudes are measured North or South of Equator.
- \triangleright Latitudes run from 0° to 90° North and from 0° to 90° South of equator. e.g. the latitude 31° south of equator is written as 31° S and the latitude 45° north of equator is written as 45° N.

LONGITUDES (Meridians)

- > These are imaginary lines drawn on the earth's surface.
- > They run from North to South
- > The **main** longitude is the Prime meridian or Greenwich Meridian and is assigned 0⁰ and is used as the reference longitude.
- > All other longitudes are measured East or West of Prime meridian.

 \triangleright Longitudes run from 0° to 180° East and from 0° to 180° West of Prime meridian. e.g. the longitude 71° East of Prime meridian is written as 71° E and the longitude 105° West of Prime meridian is written as 105° W

POSITION OF A PLACE ON THE EARTH'S SURFACE

- Any position on the earth's surface is defined by the intersection of its latitude and longitude.
- ➤ It is given by the ordered pair of coordinates (latitude, longitude) e.g. a town P is on latitude 37°S and longitude 139°East, its position is written as P(37°S, 139°E)

WORKED EXAMPLES AND EXERCISE

- 1. Use the figure below to give the position of the following points.
 - a) A b)B c) C d)D e)E f) F g) G h) H

 $A(20^{0}N, 15^{0}W)$

B(5⁰S, 10⁰E)

 $C(0^{\circ}, 100^{\circ}W)$

'Do the rest'

2. Using the sketch below of the earth's surface, locate the given points whose positions are given. A(45° N, 20° W), B(36° S, 82° E), C(0° , 20° W), D(45° N, 82° E), E(36° S, 20° W), F(45° N, 0°)

LATITUDE DIFFERENCE FOR POINTS ON THE SAME LONGITUDE

CASE 2

- ➤ The points P and Q lie on the same longitude (72°E)
- > They lie on the opposite side of equator
- ightharpoonup Their latitude difference is $(40^0 + 52^0) = 92^0$
- ➤ **NB**. If the points lie on the opposite sides of equator , latitude difference is the sum of the angles of the latitudes .

WORKED EXAMPLES AND EXERCISE

Complete the table below. Points A and B lie on the same longitude.

	Latitude of A	Latitude of B	Latitude difference
a)	43 ⁰ N	83 ⁰ N	$83 - 43 = 40^{0}$
b)	62 ⁰ S	14 ⁰ S	62- 14 = 48 ⁰
c)	40 ⁰ N	36 ⁰ S	$40 + 36 = 76^{\circ}$
d)	13 ⁰ S	88 ⁰ S	
e)	60 ⁰ N	15 ⁰ N	
f)	53 ⁰ S	32 ⁰ N	
g)	25 ⁰ N	38 ⁰ S	

LONGITUDE DIFFERENCE FOR POINTS ON THE SAME LATITUDE

➤ Longitude difference is calculated the same way as latitude difference i.e. same as the two cases above

Complete the table below. P and Q lie on the same latitude.

	Longitude of P	Longitude of Q	Longitude difference
a)	42 ⁰	150 ⁰	$150 - 42 = 108^{0}$
b)	100 ⁰	172 ⁰	$172 - 100 = 72^0$
c)	30 ⁰	80 ⁰	$80 + 30 = 110^{0}$
d)	136 ⁰	20 ⁰	
e)	10 ⁰	38 ⁰	
f)	90°	12 ⁰	
g)	14 ⁰	83 ⁰	

GREAT AND SMALL CIRCLES

➤ Longitudes and latitudes can be grouped as great and small circles.

GREAT CIRCLE

- A great circle is a circle that has the same radius as that of the earth.
- All longitudes have the same radius as that of the earth.
- > Equator has the same radius as that of the earth.
- ➤ Therefore all longitudes and equator are great circles.
- N.B. The only latitude which is a great circle is the equator

SMALL CIRCLES (CIRCLES OF LATITUDES)

- A small circle or a circle of latitude is a circle whose radius is smaller than that of the earth.
- ➤ All latitudes except equator are small circles.

NAUTICAL MILE (nm)

- A nautical mile(nm) is the SI unit for measuring distances covered by ships and aeroplanes.
- Consider the figure below.

- The arc AB subtends an angle of one minute(1') at the centre of a great circle.
- The arc length AB is equivalent to 1 nautical mile.
- ➤ Hence a nautical mile is the length of an arc of a great circle that subtends an angle of one minute (1') at the centre of the earth.

 \triangleright N.B 1° = 60′ (60 minutes), hence 1° is subtended by an arc length of 60 nm

DISTANCE ALONG A GREAT CIRCLE IN NAUTICAL MILES (nm)

- ➤ To find the distance in nautical miles along a great circle, we use the formula I = 60a where a is;
 - (i) Latitude difference if the points lie on the same longitude
 - (ii) Longitude difference if the points lie on Equator

WORKED EXAMPLES AND EXERCISE

- 1. Calculate the distance in nautical miles between the following points
 - a) $A(20^{\circ}S, 40^{\circ}E)$ and $B(85^{\circ}S, 40^{\circ}E)$

Soln;

Both points A and B lie on the same longitude (40°E) which is a great circle

L = 60a

a = difference in latitudes

$$= 85 - 20$$

$$=65^{\circ}$$

$$L = 60 \times 65$$

b) $P(0^{\circ}, 36^{\circ}E)$ and $B(0^{\circ}, 113^{\circ}E)$

Soln;

Both points P and Q lie on the same latitude (0°) equator which is a great circle

I = 60a

a = difference in longitudes

$$= 113 - 36$$

$$= 77^{0}$$

$$L = 60 \times 77$$

c) $X(30^{\circ}N, 15^{\circ}W)$ and $Y(72^{\circ}S, 15^{\circ}W)$

Soln;

Both points X and Y lie on the same longitude (15°W) which is a great circle

X and Y lie on the opposite sides of equator and hence latitude difference is the sum of latitudes

a = sum of angles of latitudes

$$= 102^{0}$$

d) $K(0^{\circ}, 16^{\circ}E)$ and $L(0^{\circ}, 54^{\circ}W)$

Soln;

Both points K and L lie on Equator and on the opposite sides of Prime meridian. Hence longitude difference is the sum of longitudes

L = 60a

a = sum of angles of longitudes

- = 54 + 16
- $= 70^{0}$
- $L = 60 \times 70$
- = ----- nm
- 2. A plane flew northwards from a base V(20°N, 50°W) to a base W covering 1500 nm. Find the
 - a) Latitude difference
 - b) Position of W

Soln;

When a body moves northwards or southwards, it follows a great circle; hence the formula to apply is

$$L = 60a$$

a)
$$1500 = 60a$$

a = ${}^{1500}/_{60}$

$$a = 25^{0}$$

b) Moving from 20^oN northwards, the angle of latitude increases by 25^o

$$=45^{0}N$$

Position of W (45⁰N, 50⁰W)

- 3. A plane flew southwards from a base $H(10^{0}N, 30^{0}W)$ to a base J covering 3900 nm. Find the
 - a) Latitude difference
 - b) Position of J

Soln;

When a body moves northwards or southwards, it follows a great circle; hence the formula to apply is I = 60a

a)
$$L = 60a$$

 $3900 = 60a$
 $a = {}^{3900}/_{60}$
 $a = 65^{\circ}$

b)Since 65° is greater than 10° (latitude) then J is in South of equator

$$=55^{\circ}S$$

Position of J (55°S, 30°W)

EXERCISE

1. Calculate the distance in nautical miles between the following points.

	Α	В
a)	(30 ⁰ N, 18 ⁰ W)	(70 ⁰ N, 18 ⁰ W)
b)	(14 ⁰ S, 10 ⁰ E)	(2°S, 10°E)
c)	(25 ⁰ N, 32 ⁰ W)	(16 ^o S, 32 ^o W)
d)	(0°, 142°W)	$(0^0, 78^0 W)$
e)	$(0^{\circ}, 58^{\circ}E)$	$(0^0, 96^0 W)$
f)	(25.6°N, 140°E)	(82 ⁰ N, 140 ⁰ E)

- 2. A plane flew northwards from a base situated at (70°S, 10°E) for a distance of 2160 nm to another base. Find its new
 - a) Latitude
 - b) Position
- 3. A ship sailed from a harbor H(15⁰N, 36⁰E) to another harbor J situated to the south of H. If it covered 2700 nm, find the position of J.
- 4. A jet flew northwards from a base P(30°S, 100°E) for 1800 nm to a base Q. From Q it flew westwards to another base R for a further distance of 9000 nm. Find the position of Q and R.

DISTANCE ALONG A GREAT CIRCLE IN KILOMETRES

Consider the circle below of radius R.

- Arc AB subtends an angle of a⁰ at the centre O.
- > The length of the arc AB is given by the formula

$$L = {a \over 360} \times circumference$$

$$L = {a \over 360} \times 2\Pi R$$

> Similarly, if points A and B lie on a great circle and R is the radius of the earth, the distance along a great circle in kilometers is given by the formula

- $L = {}^{a}/_{360} \times 2\Pi R$ where (i) R is the radius of the earth, R = 6370 km
 - (ii) a is the latitude difference or longitude difference (for points on the equator)

WORKED EXAMPLES

Take $\pi = 22/7$ and R = 6370 km

- 1. Find the distance in km between the given point
 - a) $K(30^{0}N, 0^{0}), L(60^{0}N, 0^{0})$

Soln;

K and L lie on the same longitude 0°, hence on a great circle

$$L = {a \over 360} \times 2\Pi R$$

- a =latitude difference
- = 60 30
- $=30^{\circ}$

$$L = {}^{30}/_{360} \times 2 \times {}^{22}/_{7} \times 6370$$

b) F(20°S,112°W), G(25°N, 112°W)

Soln;

F and G lie on the same longitude 112°W, hence on a great circle and on opposite sides of equator

$$L = {a \over 360} \times 2\Pi R$$

- a =latitude difference (sum)
 - = 20 +25
- $=45^{\circ}$

$$L = {}^{45}/_{360} \times 2 \times {}^{22}/_{7} \times 6370$$

c) $A(0^{\circ}, 50^{\circ}E)$, $B(0^{\circ}, 100^{\circ}W)$

Soln;

A and B lie on the Equator (great circle) and on opposite sides of Prime meridian

$$L = {a \over 360} \times 2\Pi R$$

- a =longitude difference (sum)
 - = 50 +100
 - $=150^{0}$

$$L = \frac{150}{360} \times 2 \times \frac{22}{7} \times 6370$$

- 2. A ship sailed southwards from a port T(80^oN, 20^oE) to another port S 10010 km away. Find
 - a) Its new latitude
 - b) Position of S

Soln

The ship followed a great circle

$$L = {a \over 360} \times 2\Pi R$$

a = 360l

 $2\pi R$

a = 360 x 10010

2 x 22/7 x 6370

a =

New latitude =

b) Position of S =.....

EXERCISE

In this exercise take $\pi = 22/7$ and radius of the earth R = 6370 km

1. Find the distance in km between the following points

	А	В
a)	(40°N, 10°E)	(86°N, 10°E)
b)	(0°, 50°W)	(0°, 10°W)
c)	(36°S, 90°E)	(54 ⁰ N, 90 ⁰ E)
d)	(0°, 15°W)	$(0^0, 60^0 E)$
e)	(40°S, 20°W)	(78°S, 20°W)

- 2. A jet flew eastwards from a base $P(0^0, 54^0W)$ to another base Q covering 20020 km. Find the a)longitude difference between P and Q.
 - b) position of Q.
- 3. Two points X and Y lie on longitude 800W and they are 1280 km apart. If the position of $X(6^{\circ}S, 80^{\circ}W)$, find
- a) to 1 decimal place, the latitude difference
- b) the latitude of Y and hence its position

DISTANCE ALONG A SMALL CIRCLE IN NAUTICAL MILES (nm)

The distance along a small circle (circle of latitude)is given by the formula

 $L = 60acos\Theta$ where a = longitude difference and $\Theta = angle$ of latitude

WORKED EXAMPLES

- 1. Find the distance in nautical miles between the following points
 - a) $P(40^{\circ}N, 20^{\circ}E)$ $Q(40^{\circ}N, 120^{\circ}E)$

```
Soln;
```

P and Q lie on the same latitude 40⁰N (small circle)

L = 60acos⊖

a = longitude difference

$$= 120 - 20$$

 $= 100^{0}$

 $L = 60x 100 x cos 40^{\circ}$

L = nm

b)

 $U(60^{\circ}S, 10^{\circ}E) V(60^{\circ}S, 30^{\circ}W)$

Soln;

Uand QVlie on the same latitude 60°S (small circle) and on the opposite sides of [Prime meridian

L = 60acos⊖

a = longitude difference

$$= 10 + 30$$

$$=40^{0}$$

 $L = 60x 40 x \cos 60^{\circ}$

L = nm

2. Two points lying on the same latitude have a longitude difference of 80° and are 2400 nm apart. Find their latitude.

Soln

$$L = 60a\cos\theta$$
 $a = 80^{\circ}$

$$cos\Theta = 1 \div (60a)$$

$$\cos\Theta = 2400 \div (60 \times 80)$$

$$\cos\Theta = 0.5$$

$$\Theta = \cos^{-1}0.5$$

$$\Theta = 60^{\circ}$$

Latitude is 60° N or 60° S

3. P and Q lie on the same latitude to the south of equator. P is on longitude 20°E and Q is on 70°E. If they are 2700 nm apart, find their latitude to the nearest tenth of a degree

Soln;

L =
$$60acos\Theta$$
 $a = 70 - 20 = 50^{\circ}$
 $cos\Theta = I \div (60a)$
 $cos\Theta = 2700 \div (60 \times 50)$
 $cos\Theta = 0.9$
 $\Theta = cos^{-1}0.9$
 $\Theta = 25.84^{\circ}$

EXERCISE

1. Calculate the distance in nautical miles between the following points.

	Р	Q
a)	(20°S, 40°E)	(20°S, 100°E)
b)	(60°N, 20°W)	(60°N, 70°E)
c)	(10°S, 100°W)	(10 ^o S, 15 ^o W)
d)	(64 ⁰ N, 12 ⁰ W)	(64 ⁰ N, 88 ⁰ E)

2. Two points lying on the same latitude south of equator are 1500 nm apart. Their longitude difference is 800. Find their latitude to the nearest degree.

DISTANCE ALONG A SMALL CIRCLE IN KILOMETRES (KM)

> Distance along a small circle (circle of latitude) is given by the formula

L =
$$a/360$$
 x 2ΠR cos Θ
Where a = longitude difference
R = radius of the earth
 Θ = angle of latitude

Latitude is 25.8°S

WORKED EXAMPLES

Take $\pi = 22/7$, R = 6370 km

1. Calculate the distance in km between the following points.

J and L lie on the same latitude 20⁰N (small circle)

$$L = {}^{a}/_{360} \times 2\Pi R \cos \Theta$$

a = longitude difference

$$= 115 - 18$$

$$= 97^{0}$$

$$R = 6370 \text{ km}$$

$$\Theta = 20^{\circ}$$

2. X and Y are two points on the same latitude north of equator. They are 3336.67 km apart and their longitude difference is 60°. Find their latitude.

Soln;

$$L = {}^{a}/_{360} \times 2\Pi R \cos \Theta$$

$$Cos \Theta = 360I \div (2a\Pi R)$$

$$= 360 3336.67 \div (2 \times 60 \times 22/7 \times 6370)$$

$$= 0.5$$

$$\Theta = \cos^{-1}0.5$$

$$\Theta = 60^{0}N$$

EXERCISE

Find the distance in km between the following points. Take π = 22/7, R = 6370 km

	X	Υ
a)	$(40^{\circ}\text{S}, 40^{\circ}\text{E})$	(40°S, 160°E)
b)	(27 ⁰ N, 20 ⁰ W)	(27 ⁰ N, 70 ⁰ E)
c)	(80°S, 130°W)	(80°S, 15°W)
d)	(64 ⁰ N, 12 ⁰ W)	(64 ⁰ N, 98 ⁰ E)
e)	(16°S, 56°E)	(16°S, 27°W)

- If the sum of longitudes of two points is 180° , the two points lie on the same great circle, e.g. P(60° N, 125° E), Q(34° N, 55° W)
- \rightarrow The sum of longitudes of A and B is $125^{\circ} + 55^{\circ} = 180^{\circ}$
- > Therefore the two points lie on the same great circle
- > The shortest distance between such points is along the great circle

WORKED EXAMPLES

1. The positions of T and U are $T(40^{\circ}N, 84^{\circ}E)$ and $U(40^{\circ}N, 96^{\circ}W)$. Calculate the shortest distance between them in nautical miles.

Soln;

Sum of longitudes = $84 + 96 = 180^{\circ}$, hence the two points lie on the same great circle.

$$a = 180 - (40 + 40)$$

$$= 100^{0}$$

$$L = 60a$$

$$= 60 \times 100$$

2. Find the shortest distance between the following points A(35° S, 60° W) and B (50° S, 120° E) Soln.

Sum of longitudes =
$$60 + 120$$

= 180
a = $180 - (35 + 50)$
= 95°
L = $60a$
= 60×95
=nm

- 3. The positions of G and H are G(50°N, 102°E) and H(50°N, 78°W). Calculate the shortest distance between them in nautical miles,
 - a) Along the parallel of latitude
 - b) Along the great circle. Soln

a)
$$L = 60acos\Theta$$

 $a = 102 + 78 = 180$

$$\Theta = 50^{\circ}$$
L = 60 x 180 x cos50°
L =Nm

b)

$$a = 180 - (50 + 50)$$

= 80°
 $I = 60a$
= 60×80
=Nm

EXERCISE

- 1. Find the shortest distance in nautical miles between the following points
- a) $A(63^{\circ}N, 100^{\circ}E)$ and $B(63^{\circ}N, 80^{\circ}W)$.
- b) $C(25^{\circ}S, 115^{\circ}W)$ and $D(50^{\circ}S, 65^{\circ}E)$.
- c) $E(10^{0}N, 45^{0}W)$ and $F(10^{0}N, 135^{0}ES)$.
- d) $G(75^{\circ}S, 86^{\circ}E)$ and $H(20^{\circ}S, 94^{\circ}W)$.
- 2. Two points P and Q lie on the latitude 25^oN. The sum of their longitudes is 180^o. Find in nautical miles the distance between them
 - a) Along the parallel of latitude
 - b) Along the great circle.

SPEED IN KNOTS

- > A knot is a unit of speed used by airmen and sailors.
- > A speed of one nautical mile per hour is called a knot
- > Speed (knots) = <u>distance in nautical miles</u>

Time taken in hours

N.B. Distance in nautical miles = Speed in knots x Time in hours

WORKED EXAMPLES

1. A plane covered 1800 nm in 9 hours. Find its speed in knots.

Soln;

$$S = \frac{D}{T}$$

= \frac{1800 \text{ nm}}{9 \text{ hr}}
= 200 \text{ knots}

2. A ship covered a certain distance in 4 hours at a speed of 35.8 knots. Find the distance covered. Soln;

EXERCISE

1. Find the speed in knots in each of the following cases.

	Distance (nm)	Time (hrs)	Speed (knots)
a)	100	2	
b)	50	0.5	
c)	9840	7	
d)	0.5	0.25	

2. Find the distance covered in nautical miles.

	Speed (knots)	Time(hours)	Distance
a)	20	6	
b)	150	8	
c)	40.6	10	
d)	85	11	

LONGITUDE AND TIME

- > The earth rotates through 3600 in every 24 hours.
- ➤ This means in 360° change in longitude, there is a change of 1440 minutes.
- In short for 1⁰ change in longitude, there is a change in time of 4 minutes.
- \triangleright This means if two longitudes differ by 1^0 , there is a time difference of 4 minutes.
- ➤ This is equivalent to a time difference of 1 hour between two longitudes 15⁰ apart.
- All places on the same longitude have the same local time.
- The local time on Greenwich meridian is known as Greenwich Mean Time(GMT)
- > All longitudes to the west of Greenwich meridian lag behind in time
- Likewise, all meridians to the east of Greenwich meridian are ahead in time.

WORKED EXAMPLES

- 1. The local time of a town $A(63^{\circ}N, 40^{\circ}E)$ is 11.30 am. What is the local time of the following towns.
 - a) Town $B(34^{0}N, 82^{0}E)$.
 - b) town C(55⁰S, 10⁰W)

Soln;

a) longitude difference =
$$82 - 40$$

= 42^0
Time difference = 42×4
= 168 minutes
= $2 \text{hrs } 48 \text{ minutes}$

Town B is to the east of town A, hence ahead of local time of town A. Therefore add

Local time of town B =
$$\begin{array}{r} 11.30 \\ + 2.48 \\ \hline 13.78 \\ \hline 1 - 60 \\ \hline 1418 \\ \end{array}$$

Local time of town B is 1418h or 2.18 pm

b) longitude difference =
$$40 + 10$$

= 50^{0}
Time difference = 50×4
= 200 minutes
= $3 \text{hrs } 20 \text{ minutes}$

Town C is to the West of town A, hence lag behind local time of town A. Therefore subtract Local time of town C = 11.30

Local time of town C is 8.10 am.

EXERCISE

- 1. Given that the local time of a city P $A(0^0, 30^0W)$ is 12.00 pm. What is the local time of the following cities.
 - a) $Q(10^{\circ}S, 60^{\circ}W)$
 - b) $R(24^{\circ}N, 10^{\circ}W)$
 - c) $S(33^{\circ}S, 20^{\circ}E)$
 - d) T(81⁰N, 81⁰W)
- 2. Three towns X, Y and Z have positions X(42°S, 15°E), Y(8°N, 15°E) and Z(10°S, 60°E). A jet left town X at 10.00 am for town Y moving at a speed of 600 knots. What was the local time of town Z when the jet landed at town Y.

SUMMARY OF FORMULAE

- 1. L = 60a (distance along a great circle in nautical miles)
- 2. $L = 60aCos\Theta$ (distance along a small circle in nautical miles)
- 3. $L = {}^{a}/_{360} \times 2\Pi R$ (distance along a great circle in kilometres)
- 4. L = $^{a}/_{360}$ x 2ΠR cosθ (distance along a small circle in kilometres)
- 5. $r = R \cos\theta$ (radius of a circle of latitude, R is the radius of the earth and θ is the angle of latitude)

REVISION QUESTIONS

- 1. A passenger plane takes off from airport A(60°N,5°E) and flies directly to another airport B(60°N,17°E) and then flies due North for 600 nautical miles (nm) another airport C
 - (a) Find the position of airport C

(3mks)

(b) Find the distance between airport A and B in nautical miles

(3mks)

(c) If the plane at an average speed of 300knots, find total flight time

(2mks)

- (d) Given that the plane left air port A at 9.20am. Find the local time of arrival at airport C(2mks)
- 2. A plane take of from airport P at (0°, 40°W) and flies 1800 nautical miles due East to Q then

1800 nautical miles due South to R and finally 1800 nautical miles due West before landing at S.

- (a) Find to the nearest degree the latitudes and longitudes of Q, R and S. (4mks)
- (b) If the total flight time is 16 hours, find the average speed in knots for the whole journey.

(3mks)

(c) Find the time taken to fly from R to S, given that this was two hours shorter than the time

- 3. Calculate the shortest distance in nautical miles between M(45°N, 38°E) and N(45°N, I42°W).(3mks)
- 4. A plane leaves an airport P (10^oS, 62^oE) and flies due north at 800km/h.
 - (a) Find its position after 2 hours

(3 Marks)

- (b) The plane turns and flies at the same speed due west. It reaches longitude Q, 12°W.
 - (i) Find the distance it has traveled in nautical miles.

(3 Marks)

- (ii) Find the time it has taken (Take $\pi = \frac{22}{7}$, the radius of the earth to be 6370km and 1 nautical mile to be 1.853km) (2 Marks)
- (c) If the local time at P was 1300 hours when it reached Q, find the local time at Q when it landed at Q (2 Marks)
 - 5. An aircraft leaves A (60^oN, 13^oW) at 1300 hours and arrives at B (60^oN, 47^oE) at 1700 hrs

 (a) Calculate the average speed of the aircraft in knots

 (3 Marks)
 - (b)Town C (60⁰N, 133⁰N) has a helipad. Two helicopters S and T leaves B at the same time. S moves due West to C while T moves due North to C. If the two helicopters are moving at 600ots.Find
 - (i) The time taken by S to reach C

(2 Marks)

(ii) The time taken by T to reach C

(2 Marks)

(c) The local time at a town D (23⁰N, 5⁰W) is 1000 hours. What is the local time at B.(3 Marks)