

Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

Computer Vision: What and Why?

- Computer Vision: What and Why?
- Brief history of Computer Vision

- Computer Vision: What and Why?
- Brief history of Computer Vision
- This Course: structure, organization

- Computer Vision: What and Why?
- Brief history of Computer Vision
- This Course: structure, organization
- Logistics and Resources

- Field of AI that enables machines to
 - Extract meaningful information from the visual world via digital images and videos

- Field of AI that enables machines to
 - Extract meaningful information from the visual world via digital images and videos
 - And, recommend appropriate actions based on that

- Field of AI that enables machines to
 - Extract meaningful information from the visual world via digital images and videos
 - And, recommend appropriate actions based on that
- Simply, enabling machines to see as humans do!

• How many sticky notes are there?

- How many sticky notes are there?
- What is the object that is new in the scene?

- How many sticky notes are there?
- What is the object that is new in the scene?
- Is there something to eat/drink here?

Images from the 'Objects out of the context' dataset

Images from the 'Objects out of the context' dataset

• What is wrong with each of these images?

- How many sticky notes are there?
- What is the object that is new in the scene?
- What is wrong with each of these images?

Computer Vision

Can we make machines answer these questions?

More formally

Building artificial systems that can process, perceive, and reason about the visual world (Taken from Justin Johnson, U.Mich.)

More formally

Building artificial systems that can process, perceive, and reason about the visual world (Taken from Justin Johnson, U.Mich.)

Other definitions

- "construction of explicit, meaningful descriptions of physical objects form images" (Ballard & Brown, 1982)
- "computing properties of the 3D world from one or more images" (Trucco & Verri, 1998)
- "to make useful decisions about real physical objects and scenes based on sensed images" (Sockman & Shapiro, 2001)

Why CV? Application Areas

Autonomy (Credits: Getty Images)

Healthcare (Credits:Nvidia,Developer)

Surveillance (Credits:Flickr)

Manufacturing (Credits: Moonvision)

HCI (Credits:X-tech.am)

Sports (Credits:Medium and Sasank Gurajapu)

10

• Partly because it is an inverse problem

10

- Partly because it is an inverse problem
- i.e., seek to find something from insufficient information about the solution

- Partly because it is an inverse problem
- i.e., seek to find something from insufficient information about the solution
- Forward models are generally developed in physics and computer graphics

11

- Partly because it is an inverse problem
- i.e., seek to find something from insufficient information about the solution
- Forward models are generally developed in physics and computer graphics

Al-Complete

- One of the most difficult problems in AI
- Would not be possible to solve with a simple specific algorithm

Semantic gap

Source: Wikipedia

Computer Vision: Themes

Physicsbased Vision Computational Photography, Photometry, Reflection, Refraction, Diffraction, etc.

Geometrybased Vision Feature-based Alignment, Structure from motion, 3D Reconstruction, etc.

Learningbased Vision Recognition, Detection, Semantic Segmentation, CBIR, Object tracking, VQA, etc.

Taken from Prof. Vineet N Subramanian, IITH

Computer Vision: this course

Learningbased Vision Recognition, Detection, Semantic Segmentation, CBIR, Object tracking, VQA, etc.

 Receptive fields of single neurons in the cat's striate cortex [Link to the experiment]

Source

- Receptive fields of single neurons in the cat's striate cortex [Link to the experiment]
- Established that simple and complex neurons exist in visual cortex

Source

- Receptive fields of single neurons in the cat's striate cortex [Link to the experiment]
- Established that simple and complex neurons exist in visual cortex
- Visual processing starts with simple structures such as oriented edges (Remember this!)

Source

- Receptive fields of single neurons in the cat's striate cortex [Link to the experiment]
- Established that simple and complex neurons exist in visual cortex
- Visual processing starts with simple structures such as oriented edges (Remember this!)
- Went on to win a Nobel in 1981!

Source

Brief History: Russel kirsch (1959)

• First digital image

Source

Brief History: Russel kirsch (1959)

- First digital image
- 176×176 , 5cm in size

Source

Brief History: Russel kirsch (1959)

- First digital image
- 176×176 , 5cm in size
- Preserved in the Portland Art Museum

Source

Brief History: Lawrence Roberts (1963)

 Machine perception of three-dimensional solids

Brief History: Lawrence Roberts (1963)

17

- Machine perception of three-dimensional solids
- Thesis described the process of deriving 3D info about solid objects from their 2D images of line drawings

Brief History: Lawrence Roberts (1963)

17

- Machine perception of three-dimensional solids
- Thesis described the process of deriving 3D info about solid objects from their 2D images of line drawings
- Camera transformations, perspective effects, depth perception, etc.

Brief History: Summer vision project (1966)

 Seymour Papert and Gerald Sussman (Aim document)

Goals - General

The primary goal of the project is to construct a system of programs which will divide a vidisector picture into regions such as

likely objects

likely background areas

chaos

Dr. Konda Reddy Mopuri dl4cv-0/Introduction 18

Brief History: Summer vision project (1966)

- Seymour Papert and Gerald Sussman (Aim document)
- Intended to develop a system for FG/BG segmentation, extracting non-overlapping objects from the real-world images

Goals - General

The primary goal of the project is to construct a system of programs which will divide a vidisector picture into regions such as

likely objects

likely background areas

chaos

Brief History: Summer vision project (1966)

- Seymour Papert and Gerald Sussman (Aim document)
- Intended to develop a system for FG/BG segmentation, extracting non-overlapping objects from the real-world images
- 60 years later, the world is still working on it!

Goals - General

The primary goal of the project is to construct a system of programs which will divide a vidisector picture into regions such as

18

- likely objects
- likely background areas

Brief History: 1970s (Al winter)

MIT's Al lab offered first Machine Vision course

Brief History: 1970s (Al winter)

- MIT's Al lab offered first Machine Vision course
- First CV product for OCR (by Raymond Kurzweil)

Brief History: 1970s (Al winter)

- MIT's Al lab offered first Machine Vision course
- First CV product for OCR (by Raymond Kurzweil)
- Object recognition through shape analysis (Generalized Cylinders, Skeletons, etc.)

Brief History: David Marr (1982)

 "Vision: A computational investigation into the human representation and processing of visual information"

Dr. Konda Reddy Mopuri dl4cv-0/Introduction 20

Brief History: David Marr (1982)

- "Vision: A computational investigation into the human representation and processing of visual information"
- Established the "Hierarchy" of the vision: high-level understanding of visual data is built on top of the low-level tools for detecting edges, curves, corners, etc.

David Marr's Representational framework (1982)

• Primal sketch of the image (edges, boundaries, etc.) are represented

David Marr's Representational framework (1982)

- Primal sketch of the image (edges, boundaries, etc.) are represented
- 2.5D representation: depth and discontinuities are represented

David Marr's Representational framework (1982)

- Primal sketch of the image (edges, boundaries, etc.) are represented
- ullet 2.5D representation: depth and discontinuities are represented
- ullet 3D model hierarchically organized in terms of surface and volumetric primitives

Brief History: Neocognitron (1979-82)

 Fukushima implements the Hubel and Wiesel's principles

Brief History: Neocognitron (1979-82)

- Fukushima implements the Hubel and Wiesel's principles
- Used for hand-written digit recognition

Brief History: Neocognitron (1979-82)

- Fukushima implements the Hubel and Wiesel's principles
- Used for hand-written digit recognition
- Viewed as precursor for the modern CNNs (had conv filters and layers, spatial invariance)

Brief History: Optical Flow (1981)

 Determining Optical Flow by Horn and Schunck

Source

Brief History: Optical Flow (1981)

- Determining Optical Flow by Horn and Schunck
- Estimates the direction and speed of moving objects across pair of images

Source

Brief History: Canny Edge detection (1986)

 Multi-stage approach for detecting the edge content in an image

Source:OpenCV

Brief History: Canny Edge detection (1986)

- Multi-stage approach for detecting the edge content in an image
- Signal variations are dealt with calculus (simple but popular method)

Source:OpenCV

Brief History: Canny Edge detection (1986)

- Multi-stage approach for detecting the edge content in an image
- Signal variations are dealt with calculus (simple but popular method)
- Developed as a masters student, published in Trans. on PAMI, 1986 (Link)

Source:OpenCV

Brief History: Recognition by components (1987)

 Bottom-up process for object recognition proposed by Irving Biederman

Source: Prof. Kenneth M. Steele

Brief History: Recognition by components (1987)

A THE PARTY OF THE PROPERTY OF

- Bottom-up process for object recognition proposed by Irving Biederman
- ullet Simple 3D shapes (geons) such as cones and cylinders compose objects

Source: Prof. Kenneth M. Steele

Brief History: snakes and Contours (1988)

 Active contour models (Snakes) aim to outline the objects of interest from the images

Source

Brief History: snakes and Contours (1988)

- Active contour models (Snakes) aim to outline the objects of interest from the images
- Widely applied in edge detection, segmentation, shape recognition, object tracking, etc.

Source

 Prof. Yan Lecun applied a backprop style learning algorithm to Fukushima's convolutional neural network

Source

- Prof. Yan Lecun applied a backprop style learning algorithm to Fukushima's convolutional neural network
- Developed a commercial product for digit recognition and released MNIST dataset

Source

- Prof. Yan Lecun applied a backprop style learning algorithm to Fukushima's convolutional neural network
- Developed a commercial product for digit recognition and released MNIST dataset
- Very similar to modern CNN architectures

Source

- Prof. Yan Lecun applied a backprop style learning algorithm to Fukushima's convolutional neural network
- Developed a commercial product for digit recognition and released MNIST dataset
- Very similar to modern CNN architectures
- Backpropagation is attributed 'Majorly' to Paul Werbos 1974 (although it was independently discovered by multiple from 1960s)

Source

Image Pyramids and scale-space processing

- Image Pyramids and scale-space processing
- Wavelets

28

- Image Pyramids and scale-space processing
- Wavelets
- Markov Random Fields

- Image Pyramids and scale-space processing
- Wavelets
- Markov Random Fields
- Variational Optimization Methods

29

• Face recognition by Eigen faces (Turk and Pentland, 1991)

29

- Face recognition by Eigen faces (Turk and Pentland, 1991)
- Normalized cuts (J Shi and J Malik, 1997)

- Face recognition by Eigen faces (Turk and Pentland, 1991)
- Normalized cuts (J Shi and J Malik, 1997)
- Particle filters and Mean-shift for tracking (Liu and Chen, 1998)
 (Cheng, 1998)

29

- Face recognition by Eigen faces (Turk and Pentland, 1991)
- Normalized cuts (J Shi and J Malik, 1997)
- Particle filters and Mean-shift for tracking (Liu and Chen, 1998)
 (Cheng, 1998)
- Scale-Invariant Feature Transform (D Lowe, 2004)

29

- Face recognition by Eigen faces (Turk and Pentland, 1991)
- Normalized cuts (J Shi and J Malik, 1997)
- Particle filters and Mean-shift for tracking (Liu and Chen, 1998)
 (Cheng, 1998)
- Scale-Invariant Feature Transform (D Lowe, 2004)

....

30

• Face detection by Viola Jones (2001)

30

- Face detection by Viola Jones (2001)
- Conditional Random Fields (Lafferty et al, 2001)

- Face detection by Viola Jones (2001)
- Conditional Random Fields (Lafferty et al, 2001)
- ullet PASCAL VOC Dataset o boost Recognition applications

30

- Face detection by Viola Jones (2001)
- Conditional Random Fields (Lafferty et al, 2001)
- PASCAL VOC Dataset → boost Recognition applications
- Constellation methods (R Fergus, Perona and A Zisserman, 2007)

- Face detection by Viola Jones (2001)
- Conditional Random Fields (Lafferty et al, 2001)
- ullet PASCAL VOC Dataset o boost Recognition applications
- Constellation methods (R Fergus, Perona and A Zisserman, 2007)
- Deformable parts model (Felzenszwalb et al, 2009)

Fully connected networks (FCN) → semantic segmentation (2015)

- Fully connected networks (FCN) \rightarrow semantic segmentation (2015)
- COCO and VQA datasets came up (2015)

- Fully connected networks (FCN) → semantic segmentation (2015)
- COCO and VQA datasets came up (2015)
- SSD and YOYO for object detection; Visual Genome dataset (2016)

- Fully connected networks (FCN) \rightarrow semantic segmentation (2015)
- COCO and VQA datasets came up (2015)
- SSD and YOYO for object detection; Visual Genome dataset (2016)
- Scene-graphs; (2017)

- Fully connected networks (FCN) \rightarrow semantic segmentation (2015)
- COCO and VQA datasets came up (2015)
- SSD and YOYO for object detection; Visual Genome dataset (2016)
- Scene-graphs; (2017)
- Higher-levels of abstraction: VCR dataset, panoptic segmentation, etc. (2018-19)

31 dl4cv-0/Introduction

Fully connected networks (FCN) → semantic segmentation (2015)

- Fully connected networks (FCN) \rightarrow semantic segmentation (2015)
- COCO and VQA datasets came up (2015)

- Fully connected networks (FCN) → semantic segmentation (2015)
- COCO and VQA datasets came up (2015)
- SSD and YOYO for object detection; Visual Genome dataset (2016)

- Fully connected networks (FCN) \rightarrow semantic segmentation (2015)
- COCO and VQA datasets came up (2015)
- SSD and YOYO for object detection; Visual Genome dataset (2016)
- Scene-graphs; (2017)

- Fully connected networks (FCN) → semantic segmentation (2015)
- COCO and VQA datasets came up (2015)
- SSD and YOYO for object detection; Visual Genome dataset (2016)
- Scene-graphs; (2017)
- Higher-levels of abstraction: VCR dataset, panoptic segmentation, etc. (2018-19)

Turing Award winners for 2018

More history: to be written!

WE HAVE A LONG
WAY TO GO AND A
LOT OF WORK TO
DO.

QUOTEHD.COM

Zach Hall

Course Contents

- Part-1: Foundations of Deep learning (Implementing and training different types of neural networks)
 - (MP, perceptron), MLP, CNNs, and RNNs (LSTM and GRU)
 - Gradient Descent technique using the Backpropagation
 - Implement them in PyTorch framework (this is not a lab course, so it is majorly your responsibility!)

Course Contents

- Part-1: Foundations of Deep learning (Implementing and training different types of neural networks)
 - (MP, perceptron), MLP, CNNs, and RNNs (LSTM and GRU)
 - Gradient Descent technique using the Backpropagation
 - Implement them in PyTorch framework (this is not a lab course, so it is majorly your responsibility!)
- Part-2: Applications in Computer Vision (with a slight research flavour)
 - Object recognition, detection, semantic segmentation Vision and Language
 - Generative models: GANs and VAEs
 - Recent trends

Prerequisites

Theory

- Knowledge on basics of probability, linear algebra, and calculus
- Basic course on ML
- Exposure to Deep learning (a course greatly helps)

Practicals

- Programming in Python
- Knowledge of a deep learning framework (we work with PyTorch)

Time slot

- D1 slot
 - Monday 4 4:55 PM
 - Tuesday 4 4:54 PM
 - Friday 3 3:55 PM

Time slot

37

Open elective (Final year B.Tech, M.Tech, and Ph.D.)

Time slot

- Open elective (Final year B.Tech, M.Tech, and Ph.D.)
- Class Room 4104 (CORE-4, First Floor)

Logistics

- Course website: https://krmopuri.github.io/dl4cv/
 - Course updates
 - Lecture slides and other material
 - Assignments
 - etc.

Evaluation (Tentative)

- Assignments 30%
- Mid-semester 20%
- \bullet End-semester 30% Mini-project 20%

Textbooks and References

Computer Vision

- O Computer Vision: A Modern Approach, Forsyth and Ponce
- Computer Vision: Algorithms and Applications, Richard Szeliski

Deep Learning

- Deep Learning textbook by Ian Goodfellow et al.
- NPTEL course by Prof. Mitesh Khapra, IITM.
- Michael Nielsen's text book on NN & DL
- DL course by François Fleuret, EPFL and Uni. of Geneva
- PyTorch https://pytorch.org/
- Many more that I could not list and am not aware of...

DL for CV

- NPTEL Course by Prof. Vineet Balasubramanian, IITH.
- Course by Dr. Justin Johnson, University of Michigan