Algoritmos Metaheurísticos Aplicados ao Problema de Minimização de Pilhas Abertas

Júnior Rhis Lima

Universidade Federal de Ouro Preto juniorrhis1@gmail.com

1 de agosto de 2016

Problemas de Corte

 Consistem no corte de unidades maiores de matéria-prima para produzir unidades menores (ou peças);

- Relevantes nas indústrias que realizam processamento de
 - metal;
 - madeira;
 - vidro;
 - papel.

Características do Problema

- A disposição de peças dentro de unidades maiores para realização do corte define um padrão de corte;
- Todas as peças de um mesmo padrão de corte devem ser cortadas antes que um padrão de corte diferente seja processado;
- A cada estágio um determinado padrão de corte diferente é processado;
- Durante a produção de uma peça, todas as suas cópias são armazenadas temporariamente em uma pilha mantida ao redor da máquina que as produziu;
- Quando a primeira peça de um dado tipo for produzida ela abre uma pilha que permanece aberta até que a última peça do mesmo tipo seja produzida.

Descrição do Problema

O Problema de Minimização de Pilhas Abertas (ou MOSP, de *Minimization of Open Stacks Problem*), remonta à um ambiente de produção em que peças com demandas específicas são produzidas por uma única máquina de corte e tem como objetivo atingir a melhor utilização do espaço físico disponível agilizando a linha de produção.

Motivação

- Cada vez mais as indústrias confiam questões operacionais a métodos computacionais;
- O MOSP é um problema NP-Difícil.

Objetivo

Elaborar métodos metaheurísticos consistentes e robustos que possam ser utilizadas no contexto do problema abordado e permitam a obtenção rápida de soluções próximas da solução ótima.

Instância

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5	<i>p</i> ₆
1	1	0	0	1	1	0
2	1	1	1	0	0	0
3	0	0	1	1	0	0
4	1	1	1	0	1	0
5	0	1	0	0	1	1
6	p1 1 1 0 1 0 0 0	1	0	0	0	1

- Matriz binária;
- Padrões representados nas colunas;
- Peças representados nas linhas;
- $I_{ij} = 1$ se o padrão i contém a peça j.

Objetivo

Encontrar uma permutação de padrões de modo a minimizar a quantidade de pilhas abertas ao redor da máquina de corte.

Dois possíveis sequenciamentos

	<i>p</i> ₂	p_1	<i>p</i> ₃	<i>p</i> ₆	<i>p</i> ₄	<i>p</i> ₅
1	0	1	1	1	1	1
2	1	1	1	0	0	0
3	0	0	1	1	1	0
4	1	1	1	1	1	1
5	1	1	1	1	1	1
6	1	1	1	1	0	0

Algumas propriedades

- Estágios de produção Ordem de processamento dos padrões;
- 1s consecutivos Descontinuidade na produção;
- Gargalo Estágio (coluna) com maior quantidade de pilhas abertas;
- Quantidade de pilhas abertas é definida pelo gargalo.

Definição Matemática

Seja a matriz Q^{π} representando os estágios de produção obtidos a partir da permutação π dos padrões, seus elementos q_{ii}^{π} são definidos como:

$$q_{ij}^{\pi} = \begin{cases} 1, & \text{se } \exists x, \exists y \mid \pi[x] \le j \le \pi[y] \text{ e } m_{ix} = m_{iy} = 1\\ 0, & \text{caso contrário} \end{cases}$$
 (1)

ou seja, $q_{ii}^{\pi}=1$ entre o primeiro e o último 1s da linha.

A quantidade máxima de pilhas abertas simultaneamente será:

$$Z_{MOSP}^{\pi}(Q^{\pi}) = \max_{j \in P} \sum_{i=1}^{|C|} q_{ij}^{\pi}$$
 (2)

ou seja, será dada pelo tamanho do gargalo.

Função Objetivo

$$\min_{\pi \in \Pi} \ Z_{MOSP}^{\pi}(M) \tag{3}$$

Encontrar a permutação com a menor quantidade de pilhas abertas simultaneamente, ou seja, encontrar a permutação que possuir o menor gargalo.

Etapas para Obtenção da Solução

O processo para geração de uma solução para o problema consiste nas seguintes etapas:

- Pré-processamento por dominância entre padrões;
- Representação computacional;
- Geração da lista ϕ de peças (utilizando uma heurística de busca em grafos);
- Geração da lista π de padrões (Solução Inicial);
- Aplicação dos métodos propostos neste trabalho para refinamento (melhoria) da solução.

Pré-Processamento por Dominância Entre Padrões

Consiste na eliminação de redundâncias em uma instância MOSP.

Exemplo

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆			p_1	p_2, p_6	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
1	1	0	0	1	1	0	_	1	1	0	0	1	1
2	1	1	1	0	0	0		2	1	1	1	0	0
3	0	0	1	1	0	0		3	0	0	1	1	0
4	1	1	1	0	1	0		4	1	1	1	0	1
5	0	1	0	0	1	1		5	0	1	0	0	1
6	0	1	0	0	0	1		6	0	1	0	0	0

O problema é resolvido considerando apenas o padrão p_2 . O padrão p_6 é sequenciado imediatamente após o padrão p_2 na solução final sem perda de otimalidade.

Representação Computacional

- Modela o MOSP por meio de grafos, denominados grafos MOSP;
- Os vértices representam as peças;
- Existe uma aresta entre dois vértices se e somente se as peças correspondentes a estes vértices forem cortadas juntas em pelo menos um mesmo padrão de corte;
- A ligação entre as peças presentes em um mesmo padrão de corte forma uma clique.

Grafo MOSP

Formação de um grafo MOSP a partir da união de cliques

p ₁	p ₂	p ₃	p ₄	p ₅
1	1	0	1	0
0	1	0	1	1
0	0	1	1	1
1	0	0	0	0
1	1	0	0	1
0	0	1	0	0
	1 0 0 1 1 0	p1 p2 1 1 0 1 0 0 1 0 1 1 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geração da lista de peças

Execução de uma busca em largura no grafo MOSP a partir do vértice de menor grau.

 $\phi = [6]$

Geração da lista de peças

$$\phi = [6, 3]$$

Vértice 3 adicionado

Geração da lista de peças

$$\phi = [6, 3, 2, 1, 5]$$

Vértices 2, 1 e 5 adicionados

Geração da lista de peças

$$\phi = [6, 3, \frac{2}{2}, 1, 5]$$

Nenhum vértice adicionado

Geração da lista de peças

$$\phi = [6, 3, 2, 1, 5, 4]$$

Vértice 4 adicionado

Geração da lista de peças

$$\phi = [{\bf 6},{\bf 3},{\bf 2},{\bf 1},{\color{red}{\bf 5}},{\bf 4}]$$

Nenhum vértice adicionado

Geração da lista de peças

$$\phi = [{\bf 6}, {\bf 3}, {\bf 2}, {\bf 1}, {\bf 5}, {\color{red} {\bf 4}}]$$

Nenhum vértice adicionado

Geração da lista de peças

 $\phi = [6, 3, 2, 1, 5, 4]$

Geração da lista de padrões

Simula a abertura das pilhas e sequencia os padrões cuja composição de peças forem um subconjunto das pilhas abertas até o momento.

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
1	1	1	0	1	0
2	0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	 <i>p</i>₁ 0 0 1 1 0 	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

$$\pi = \emptyset$$

	p_1	p_2	p_3	p_4	p_5
1	1	1	0	1	0
2	1 0 0 1 1 0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	0	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4] \\
\pi = \emptyset$$

	p_1	p_2	<i>p</i> ₃	p_4	p_5
1	1	1	0	1	0
2	0	1	0	1	1
3	1 0 0 1	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	1 0	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

 $\pi = [p_3]$

	p_1	p_2	<i>p</i> ₃	p_4	p_5
1	1	1	0	1	0
2	1 0 0 1 1 0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	0	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

 $\pi = [p_3]$

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	p_5
1	1	1	0	1	0
2	1 0 0 1 1 0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	0	0	1	0	0

$$\phi = [6, 3, 2, \frac{1}{1}, 5, 4]$$

$$\pi = [p_3, p_4]$$

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
1	1	1	0	1	0
2	1 0 0 1 1 0	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	0	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, 4]$$

 $\pi = [p_3, p_4, p_2, p_5]$

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅
1	1	1	0	1	0
2	1 0 0 1	1	0	1	1
3	0	0	1	1	1
4	1	0	0	0	0
5	1	1	0	0	1
6	1 0	0	1	0	0

$$\phi = [6, 3, 2, 1, 5, \frac{4}{3}]$$

$$\pi = [p_3, p_4, p_2, p_5, p_1]$$

Aplicação dos Métodos Propostos

- Um Novo Método de Busca Local;
- Descida em Vizinhança Variável;
- Descida Mais Rápida.

Consiste na análise da similaridade da composição dos padrões com o gargalo da solução.

Composto de 3 passos:

- Listar os padrões com alguma similaridade com o primeiro gargalo encontrado;
- Ordenar os padrões em ordem decrescente de similaridade com o gargalo;
- 3 Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

Exemplo

Passo 1 - Listar os padrões com alguma similaridade com o primeiro gargalo encontrado.

	<i>p</i> ₂	p_1	p ₃	<i>p</i> ₅	<i>p</i> ₄
1	1	1	1	1	1
2	1	1	1	1	1
3	0	1	1	0	0
4	1	0	0	0	0
5	1 1 0 1 0	0	1	1	0

$$L = [p_2, p_1, p_5, p_4]$$

Exemplo

Passo 2 - Ordenar os padrões em ordem decrescente de similaridade com o primeiro gargalo encontrado.

	<i>p</i> ₂	p_1	<i>p</i> ₃	<i>p</i> ₅	<i>p</i> ₄
1	1	1	1	1	1
2	1	1	1	1	1
3	1 1 0 1	1	1	0	0
4	1	0	0	0	0
5	0	0	1	1	0
	2	2	-	2	2

$$L = [p_2, p_1, p_5, p_4]$$

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₅	<i>p</i> ₄
1	0	1	1	1	1
2	1	1	1	1	1
3	1	1	1	0	0
4	0	1	0	0	0
5	0 1 1 0 0	0	1	1	0

$$L = [p_2, p_5, p_4, p_1]$$

Abre 2 pilhas.

Referentes as peças 1 e 4

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	<i>p</i> ₂	p_5	<i>p</i> ₄
1	0	0	1	1	1
2	1	1	1	1	1
3	1	1	0	0	0
4	0	0	1	0	0
5	0 1 1 0 0	1	1	1	0

$$L=[\textcolor{red}{p_2},\textcolor{blue}{p_5},\textcolor{blue}{p_4},\textcolor{blue}{p_1}]$$

Abre 2 pilhas.

Referentes as peças 1 e 4

Um Novo Método de Busca Local

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	p_5	p_2	p_4
	0				
	1				
	1				
4	0	0	0	1	0
5	0	1	1	0	0

Melhor posição até o momento.

Um Novo Método de Busca Local

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	<i>p</i> ₅	<i>p</i> ₄	<i>p</i> ₂	
1	0	0	1	1	1	$L=[p_2,p_5,p_4,p$
2	1	1	1	1	1	
3	1	1	0	0	0	Abre 1 pilha.
4	0 1 1 0 0	0	0	0	1	
5	0	1	1	0	0	Referente a peça

Um Novo Método de Busca Local

Exemplo

Passo 3 - Remover o padrão da solução e reinseri-lo na primeira melhor posição possível.

	p_1	<i>p</i> ₃	<i>p</i> ₅	p_2	<i>p</i> ₄
1	0	0	1	1	1
2	1	1	1	1	1
3	1	1	0	0	0
4	0	0	0	1	0
5	<i>p</i> ₁ 0 1 1 0 0 0	1	1	0	0

$$L = [p_2, p_5, p_4, p_1]$$

 p_2 inserido no 4° estágio.

Redução de 4 para 3 pilhas abertas.

O algoritmo continua para os próximos padrões da lista. Caso haja alguma melhoria o processo de repete para nova solução encontrada.

Descida em Vizinhança Variável

Definição

O método de **Descida em Vizinhança Variável** (ou *Variable Neighborhood Descent* – VND) utiliza o conceito de busca local para solucionar problemas de otimização combinatória.

Características

- Definição de N_k vizinhanças a serem exploradas, onde cada vizinhança é composta por soluções que diferem em exatamente k elementos da solução inicial;
- A cada iteração uma vizinhança é explorada;
- Atualiza a solução corrente caso encontre um melhor vizinho;
- Permanece na vizinhança enquanto houver melhoria.

Descida em Vizinhança Variável

Características do método proposto

- Agrupamento de padrões Grupos distintos com n padrões cada. Ex.: Seja $\pi = [1, 3, 5, 4, 2, 6]$ e n=2, os grupos seriam [1, 3], [5, 4] e [2, 6];
- k-opt Método que gera soluções que diferem em exatamente k elementos da configuração inicial;
- Trocas de grupos k-opt aplicado a grupos para geração dos vizinhos de cada vizinhança;
- A cada iteração uma vizinhança é explorada;
- Exploração dos vizinhos de uma vizinhança de forma aleatória;
- Aplicação da busca local proposta para cada vizinho;
- Atualiza a solução corrente caso a solução da busca local seja melhor;
- Permanece na vizinhança enquanto houver melhoria.
- Repete todo o processo caso haja melhoria.

Descida Mais Rápida

Definição

O método de **Descida Mais Rápida** (ou *Steepest Descent* – SD) é um método de busca local baseado no conceito de melhoria iterativa de uma solução inicial.

Características

- Aplicado sobre uma única vizinhança;
- Atualiza a solução corrente caso encontre um melhor vizinho;
- Repete todo o processo caso haja melhoria.

Descida Mais Rápida

Características do método proposto

- Janela deslizante Janelas de tamanho n padrões cada. Ex.: Seja $\pi = [1, 3, 5, 4, 2]$ e n=2, as janelas seriam [1, 3], [3, 5], [5, 4] e [4, 2];
- 2-opt soluções que diferem em 2 elementos da solução atual;
- Trocas de janelas 2-opt aplicado a janelas para geração dos vizinhos;
- Exploração dos vizinhos da vizinhança de forma aleatória;
- Aplicação da busca local proposta para cada vizinho;
- Atualiza a solução corrente caso a solução da busca local seja melhor;
- Repete todo o processo caso haja melhoria.

Ambiente Computacional

- Processador Intel Core i7 3.6 GHz;
- 16 GB RAM;
- Ubuntu 14.04 LTS;
- Código escrito em C++, compilado com g++ 4.4.1 e a opção de otimização -O3.

Métodos:

- Descida em Vizinhança Variável (VND);
- Descida Mais Rápida (SD).

Instâncias

- § SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 1. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 2. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 3. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 3. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 4. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 4. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 5. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 6. SCOOP Consortium 24 instâncias MOSP reais de duas empresas moveleiras europeias.

 § 6. SCOOP Consortium 24 instâncias moveleiras europeias.

 § 6. SCOOP Consortium 24 instâncias moveleiras europeias.

 § 7. SCOOP Consortium 24 instâncias moveleiras europeias.

 § 7. SCOOP Consortium 24 instância moveleiras europeias.

 § 7. SCOOP Consortium 24 instância moveleiras europeias.

 § 7. SCOOP Consortium 24 instância moveleiras europeias.

 § 8. SCOOP Consortium 24 instância moveleiras europeias eur
- VLSI 25 instâncias reais;
- Faggioli & Bentivoglio (F & B) 300 instâncias artificiais;
- Challenge 46 instâncias artificiais;
- Instâncias MOSP 200 instâncias MOSP de maiores dimensões geradas aleatoriamente por (Chu e Stuckey, 2009).

20 testes foram executados para cada conjunto de instâncias.

Resultados Médios

- OPT Média das soluções ótimas;
- T Tempo médio em segundos;
- S* Média das melhores soluções encontradas;
- σ Desvio padrão das soluções obtidas (Componente aleatório).

Conjunto	OPT		VND		SD		
Conjunto	OFT	T	<i>S</i> *	σ	T	<i>S</i> *	σ
SCOOP	7,75	0,16	7,96	0,26	0,05	7,88	0,24
VLSI	7,12	163,74	7,16	0,13	1,53	7,24	0,18
F & B	93,00	0,15	94,83	0,26	0,05	94,17	0,27
Challenge	21,76	427,35	21,96	0,18	7,40	21,91	0,19
MOSP	1028,88	255,68	1041,25	0,30	15,61	1045,00	0,58

gap

$$gap = 100 \times \frac{S^* - OPT}{OPT} \tag{4}$$

Distância das soluções obtidas em relação as soluções ótimas.

Conjunto	VND	SD		
Conjunto	gap	gap		
<i>SCOOP</i>	2,69%	1,61%		
VLSI	0,56%	1,69%		
F & B	1,97%	1,25%		
Challenge	0,90%	0,70%		
MOSP	1,20%	1,57%		

Conclusão

Este trabalho propõe dois métodos para solução do MOSP. O primeiro consiste na metaheurística Descida em Vizinhança Variável (VND) e o segundo consiste em um método de Descida Mais Rápida (SD). Primeira vez em que esses métodos são aplicados a resolução do MOSP.

Os experimentos computacionais demonstraram a eficiência dos métodos propostos, principalmente em relação a qualidade da solução obtida. O método de Descida Mais Rápida (SD) apresentou menores tempos mantendo a qualidade da solução, superando inclusive o VND em alguns conjuntos de instâncias. Os *gaps* e desvio padrão baixos demonstram a robustez dos métodos ao obterem soluções próximas aos valores ótimos.

Fim