Automated Role Classification System

Replacing Manual Title Classification for Databricks

One-Page Project Summary

Problem Statement

Current Workflow:

- <u>Audience Personas</u>: Regex-based SQL CASE statements classify titles into roles (Data Engineer, Data Scientist, Data Analyst, Data Architect, Business Execs, CIO, CDO and Unprioritized)
- <u>Chief-Level Classification</u>: Titles flagged as "false" by default; manual review updates to "true" for CXO roles (CIO, CDAO, CTO, CAO, CDO) and categorises to the respective role otherwise classification remains null

Challenges:

- Manual classification is error-prone and time-consuming
- Regex patterns struggle with title variations and abbreviations

Business Objective

Automating title classification to:

- Replace regex-based persona classification
- Automate Chief-level role detection
- Use ML based automation instead of manual/SQL approach in the two classifications

Data Sources

- Primary: CSV file with <u>2M+</u> classified titles into two different classification categories respectively for Model I & Model II
- Labels: 8 categories (Audience Persona: 7 roles + "Unprioritized") for Model I
 6 categories (Chief-level: 5 roles + "null") for Model II

Proposed Approach

Model Architecture:

- **LSTM**: Efficient architecture with SMOTE oversampling
- **BERT**: Pre-trained transformer for contextual understanding
- Gen AI: LLM-based classification for ambiguous titles
- SQL AI: Integration with Databricks SQL AI functions

Evaluation Strategy

- Validation: Confusion matrix, misclassification analysis
- Testing: Held-out test set with SMOTE sampling
- *Improvement*: Error case inspection for model refinement

Key Metrics

- Primary: Recall (prevent false negatives for classification roles),
 Switch to accuracy if recall calculation not feasible
- Secondary: F1-score, Accuracy, Confusion Matrix Analysis

Timeline

Approach/Model	Timeline	Est. Runtime	Status
Approach 1: LSTM Training Full Notebook: Link	7th March	Model II: 40 min. Model II: 80 min.	Model I [Acc.~97%, Rec.~93%] Model II: [Acc.~93%, Rec.~80%]
Approach 2: BERT Training	_	_	Planned
Approach 3: Gen Al Testing	-	-	Planned
Approach 4: SQL AI	6th March	Not Known	Planned

Potential Risks & Mitigation

• Risk 1: Class imbalance

Mitigation: SVM-SMOTE sampling, Undersampling

• Risk 2: Overfitting

Mitigation: Early stopping, dropout layers

Expected Outcomes

• Accuracy: >90% for both the classification systems

• **Recall**: >80% for both the classification systems (if feasible)