

Eksempeloppgave

2014

REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning

Ny eksamensordning

Del 1:

3 timer (uten hjelpemidler)

Del 2:

2 timer (med hjelpemidler)

Minstekrav til digitale verktøy på datamaskin:

- Graftegner
- CAS

Bokmål

Eksamensinformasjon					
Eksamenstid:	5 timer: Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.				
Hjelpemidler på Del 1:	Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.				
Hjelpemidler på Del 2:	Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.				
Framgangsmåte:	Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Dersom oppgaven krever en bestemt løsningsmetode, kan en alternativ metode gi lav/noe uttelling.				
	Del 1 skal føres på papir. Du kan ikke bruke datamaskin. Bruk blå eller svart penn når du skriver for hånd.				
	Del 2 kan føres på papir. Dersom du velger å skrive besvarelsen av Del 2 for hånd, skal utskrifter fra CAS og graftegner følge med, merkes som vedlegg og refereres til i besvarelsen.				
	Du kan også velge å bruke datamaskin på hele Del 2, samle alle løsninger i ett dokument og levere som utskrift.				
	For skoler som ønsker det, kan Del 2 gjennomføres som IKT- basert eksamen. Alle løsninger skal da samles i én fil og leveres digitalt.				
Veiledning om vurderingen:	Poeng i Del 1 og Del 2 er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at sensor vurderer i hvilken grad du				
	 viser regneferdigheter og matematisk forståelse 				
	 gjennomfører logiske resonnementer 				
	 ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner 				
	 kan bruke hensiktsmessige hjelpemidler 				
	 forklarer framgangsmåter og begrunner svar 				
	 skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger 				
	 vurderer om svar er rimelige 				
Andre opplysninger:	Kilder for bilder, tegninger osv.				
	 Drake, thezariworks.wordpress.com (24.02.2012) Fly, www.goto.no, www.dreamstime.com (19.09.2014) 				

DEL 1: 3 timer, 36 poeng

Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt

Oppgave 1 (3 poeng)

Deriver funksjonene

- a) $f(t) = 0.02t^3 + 0.6t^2 + 4.1$
- b) $g(x) = x^2 \cdot e^{2x}$
- c) $h(x) = \ln(x^3 + 1)$

Oppgave 2 (3 poeng)

En polynomfunksjon f er gitt ved

$$f(x) = x^3 + ax^2 - 13x + 15$$

- a) Bestem a slik at f(x) blir delelig med (x-1)
- b) Løs ulikheten $f(x) \le 0$ for denne a-verdien.

Oppgave 3 (2 poeng)

Fra en gruppe på 7 jenter og 5 gutter skal det trekkes ut 3 representanter.

Bestem sannsynligheten for at 2 jenter og 1 gutt representerer gruppa hvis uttrekket er tilfeldig.

Oppgave 4 (2 poeng)

Skriv så enkelt som mulig

$$\frac{x+2}{x^2-16} + \frac{x}{x+4} - \frac{2}{x-4}$$

Oppgave 5 (3 poeng)

Skriv så enkelt som mulig

a)
$$\frac{a^2(b^2)^2}{a^{-3}b^0}$$

b)
$$\lg(a^2 \cdot b) + \lg(a \cdot b^2) + \lg\left(\frac{a}{b^3}\right)$$

Oppgave 6 (1 poeng)

Bestem tallet *n* når

$$2^3 + 2^3 + 2^3 + 2^3 = 2^n$$

Oppgave 7 (1 poeng)

Skriv av og sett ⇒ eller ⇐ eller ⇔ mellom utsagnene nedenfor, og begrunn valget ditt.

$$x^2 + 5x + 6 = 0$$
 $x = -2$

Oppgave 8 (4 poeng)

Punktene A(1,0), B(3,4) og C(2,t) er gitt.

- a) Bestem \overrightarrow{AB} og \overrightarrow{AC} .
- b) Bestem t slik at $\overrightarrow{AB} \perp \overrightarrow{AC}$
- c) Bestem t slik at $\overrightarrow{AB} \parallel \overrightarrow{AC}$

Oppgave 9 (6 poeng)

Funksjonen f er gitt ved

$$f(x) = x^3 - 3x^2$$
, $x \in \langle -1, 4 \rangle$

- a) Bestem eventuelle null-, topp- og bunnpunkter på grafen til f.
- b) Tegn en skisse av grafen til f.
- c) Bestem likningen for tangenten i det punktet på grafen der x = 1. Forklar hvorfor denne tangenten kalles en «vendetangent».

Oppgave 10 (4 poeng)

Den tidligere amerikanske presidenten James A. Garfield (1831–1881) er kjent for sitt bevis av Pytagoras-setningen.

På skissen har vi gitt et trapes ABCD. AB = EC = b, BE = DC = a, og AE = ED = c.

- a) Forklar hvorfor $\angle AED = 90^{\circ}$
- b) Bestem uttrykket for arealet av trapeset og arealet av $\triangle ABE$, $\triangle DCE$ og $\triangle AED$ gitt ved a, b og c.
- c) Bruk b) til å bevise Pytagoras-setningen.

Oppgave 11 (2 poeng)

En sirkel er gitt ved likningen

$$x^2 + y^2 - 4x + 6y - 12 = 0$$

Bestem sentrum og radius i sirkelen.

Oppgave 12 (5 poeng)

I en rettvinklet $\triangle ABC$ er det innskrevet en sirkel med radius r. Trekantens sider tangerer sirkelen i D, E og F. Vi setter $BE = \alpha$ og $EC = \beta$.

a) Forklar at $CF=\beta$ og $BD=\alpha$, og at arealet av trekanten ABC er gitt ved $A_{\triangle ABC}=(\alpha+\beta)\cdot r+r^2$

Pytagoras-setningen brukt på $\triangle ABC$ gir at $(\alpha + r)^2 + (\beta + r)^2 = (\alpha + \beta)^2$

b) Vis at denne likningen kan omformes til

$$r^2 + (\alpha + \beta) \cdot r = \alpha \cdot \beta$$

og videre at

$$A_{\land ABC} = \alpha \cdot \beta$$

c) Vi setter $\alpha=3$ og $\beta=2$. Bestem $A_{\Delta ABC}$ og r

DEL 2: 2 timer, 24 poeng

Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon

Oppgave 1 (3 poeng)

Bruk CAS til skrive funksjonsuttrykket enklere, og tegn grafen til f med alle asymptoter

$$f(x) = \frac{2x+10}{x^2-25} + \frac{x}{x+5} - \frac{2}{x-5}$$

Bestem hvor funksjonen er deriverbar og kontinuerlig.

Oppgave 2 (3 poeng)

Figuren ovenfor er fra en leirtavle fra Mesopotamia (ca. 1700 f.Kr.).

Babylonerne regnet ut radius r i sirkelen ovenfor ved å bruke Pytagoras-setningen. Dette er trolig verdens eldste bruk av Pytagoras-setningen, ca. 1 200 år før Pytagoras selv levde!

Bestem radius r i sirkelen ved hjelp av Pytagoras-setningen.

Oppgave 3 (4 poeng)

På en skole går det 60 % gutter og 40 % jenter. Alle guttene går med bukser. Halvparten av jentene går med bukser, mens den andre halvparten går med skjørt.

Vi definerer to hendelser:

- J: Eleven er en jente.
- B: Eleven går med bukse.
- a) Bestem sannsynlighetene P(B|J) og P(B).
- b) Bestem sannsynligheten P(J|B).

Oppgave 4 (4 poeng)

En drake har målene 5,0 dm og 12,0 dm. Se figuren nedenfor.

a) Vis at arealet av draken kan beskrives ved funksjonen A gitt ved

$$A(x) = x(\sqrt{25-x^2} + \sqrt{144-x^2})$$

b) Bruk graftegner til å bestemme det største arealet draken kan ha.

Oppgave 5 (6 poeng)

Posisjonen til et fly A og posisjonen til et fly B beskrives av vektorfunksjonene $\vec{a}(t)$ og $\vec{b}(t)$ gitt ved

$$\vec{a}(t) = \begin{bmatrix} 70t + 2, 140t^2 \end{bmatrix} , t \in \begin{bmatrix} 0, t_1 \end{bmatrix}$$

$$\vec{b}(t) = \begin{bmatrix} -204t + 17, 432t^2 - 72t + 3 \end{bmatrix}$$
, $t \in [0, t_1]$

Fly A skal lette, mens fly B skal lande (ved tidspunkt t_1). Tiden måles i timer, og alle avstander måles i kilometer. Nedenfor ser du hvordan kursen er for de to flyene. x-aksen ligger langs landingsbanen, mens høyden over landingsbanen måles langs y-aksen.

- a) Bestem tidspunktet t_1 for når fly B lander.
- b) Bestem farten til fly B når t = 0.08

Vi ser at flyenes kurs krysser hverandre i punkt P.

c) Avgjør om flyene vil kollidere.

Oppgave 6 (4 poeng)

En funksjon f er gitt ved

$$f(x) = ax^3 + bx^2 + cx + d$$
 , $D_f = \mathbb{R}$

Grafen til f har toppunkt T når x = p og bunnpunkt B når x = q.

Bruk CAS til å vise at x-koordinaten til vendepunktet V (infleksjonspunktet) ligger midt mellom x-koordinaten til toppunktet og x-koordinaten til bunnpunktet.

Blank side.		

