MATEMÁTICA III

Semestre 2018-I

Información General

Nombre del curso: Matemática III

Código del curso: 130233 Número de créditos: 5

Departamento académico: Economía Año y semestre: 2018-I

Requisitos: Matemática II

Sección: D

Asistente de docencia 1: Nildo Sinche: sinche_n@up.edu.pe

Asistente de docencia 2: Jorge Durán: j.duranagama@alum.up.edu.pe
Profesor: Francisco Rosales: lf.rosalesm@up.edu.pe

Horas de oficina: consultar por correo, CIUP I-502

Materiales: https://github/franciscorosales-marticorena/MathIII

1 Introduction

Matemática III es un curso obligatorio de Economía y Finanzas. El único requisito académico para inscribirse es Matemática II, y es un requisito para Matemática IV y Econometría I. El curso cubre nociones básicas en matemáticas que son ubicuas en economía moderna y finanzas. En particular: calculo multivariado, álgebra lineal, ecuaciones diferenciales ordinarias y ecuaciones en diferencias.

2 Resultados del Aprendizaje

Al final del curso los estudiantes podrán: i) aplicar álgebra lineal básica y operaciones básicas de cálculo al problema de regresión lineal y sus variantes; ii) manipular formas cuadráticas y factorizaciones matriciales para resolver problemas de opimización; iii) describir modelos estáticos y dinámicos basados en sus características cuantitativas y cualitativas.

3 Competencias

Generales: i) Responsabilidad: el alumno deberá aprovechar las herramientas para el aprendizaje provistas para él; ii) Visión integradora: el estudiante deberá vincular las herramientas matemáticas vistas en clase con los tópicos de su carrera. Específicas (DEF): i) Herramientas cuantitativas: el curso provee herramientas básicas en economía y finanzas; ii) Capacidad investigadora: curiosidad intelectual.

4 Unidades Académicas

- 1. Espacios Vectoriales: Vectores en \mathbb{R}^n . Espacios y subespacios. Bases y dimensión.
- 2. Álgebra Lineal: Diagonalización. Producto Kronecker. Formas cuadráticas.
- 3. Cálculo: Números complejos. Polinomios y series de Taylor. Estática comparativa.
- 4. Ecuaciones Diferenciales: 1er orden. Diagramas de fase. Linealización. Sistsemas.
- 5. Ecuaciones en Diferencias: 1er orden. Diagramas de fase. Linealización. Siststemas.

5 Estrategia de Docencia

- El profesor presenta la teoría y algunos ejemplos relevantes durante la clase.
- El asistente de docencia resuelve ejercicios en preparación para las evaluaciones.
- Los estudiantes deben estudiar por su cuenta. Los grupos de estudio no son recomendados.

6 Evaluación

La nota del curso es la combinación de 4 prácticas calificadas, un examen parcial (30%) y un examen final (30%). La nota de prácticas es el promedio de las prácticas rendidas. Se calcula de la siguiente manera:

Promedio de Prácticas =
$$\frac{\sum_{i=1}^{4} A_i - 0.5 A_m}{3.5},$$

donde A_i es la nota de la *i*-ésima práctica y A_m es la nota de la práctica con la menor nota. Al final del curso habrá una evaluación sustitutoria que abarcará todos los temas desarrollados en clase. Sólo los estudiantes que hayan faltado a alguna evaluación y cuenten con una justificación médica válida, podrán rendirlo. La evaluación sustitutoria sólo reemplaza una nota. Si el estudiantes pierde más de una evaluación, las otras notas son reemplazadas por A_m . Si el estudiante no asiste al examen final, y presenta una justificación médica válida, éste podrá tomar un examen final sustitutorio luego de la semana de examenes finales.

7 Calendario

Día	Tema	Referencias
Mar 19, 21	Vectores en \mathbb{R}^n	[GR, Ch.3]
Mar 24	Práctica dirigida 1	
Mar 26, 28	Espacios y subespacios	[GR, Ch.4]
Mar 31*	_	
Abr 2, 4	Bases y dimensión	[GR, Ch.4]
Abr 7	Práctica dirigida 2	
Abr 9, 11	Diagonalización	[GR, Ch.6]
Abr 12	Práctica calificada 1	
Abr 14^*	Práctica dirigida 3	
Abr 16, 18	Producto Kronecker	[MI]
Abr 21	Práctica dirigida 4	
Abr 23, 25	Formas cuadráticas	[GR, Ch.6]
Abr 28	Assessment 2	
Apr 30, May 2	Números complejos	[BD, Ch.13]
May 5	Práctica dirigida 5	
May 8	Examen parcial	
May 14, 16	Polinomios y series de Taylor	[BW, Ch.1-3]
May 19	Práctica dirigida 6	
May 21, 23	Estática comparativa	[CH, Ch.3]
May 26	Práctica dirigida 7	
May 28, 30	EDOs de primer orden	[BW, Ch.4]
Jun 2	Práctica calificada 3	
Jun 4, 6	Diagramas de fase y diagonalización	[BW, Ch.4,5]
Jun 9	Práctica dirigida 8	
Jun 11,13	EDOs de orden superior y sistemas	[BW, Ch.5]
Jun 16	Práctica dirigida 9	
Jun 18, 20	EDs de primer orden y diagramas de fase	[BW, Ch.6]
Jun 23	Práctica calificada 4	
Jun 25, 27	EDs de orden superior y operador de rezago	[BW, Ch.6]
TBA	Evaluación sustitutoria	
Jun 30	Práctica dirigida 10	
Jul 3	Examen final	

8 Referencias

- [BD] Binmore, K. and J. Davies (2002). Calculus: Concepts and Methods. Cambridge Uni. Press.
- [BW] Bonifaz, J. L. y D. Winkelried (2003). Matemáticas para la Economía Dinámica. UP.
- [CH] Chiang, A. (2006). Métodos Fundamentales de Economía Matemática. McGraw-Hill.
- [GR] Grossman, S. I. (2001). Álgebra Lineal. McGraw-Hill.
- $\left[\mathrm{MI}\right]$ Minka, P. (2000). Old and New Matrix Algebra Useful for Statistics.