

Network Layer

Note: The slides are adapted from the materials from Prof. Richard Han at CU Boulder and Profs. Jennifer Rexford and Mike Freedman at Princeton University, and the networking book (Computer Networking: A Top Down Approach) from Kurose and Ross.

IP Protocol Stack: Key Abstractions

Application	Applications		
Transport	Reliable streams	Messages	
Network	Best-effort <i>global</i> packet delivery		
Link	Best-effort <i>local</i> packet delivery		

Best-Effort Global Packet Delivery

Circuit Switching (e.g., Phone Network)

- Source establishes connection
 - Reserve resources along hops in the path
- Source sends data
 - Transmit data over the established connection
- Source tears down connection
 - Free the resources for future connections

Circuit Switching: Static Allocation

Q: Frequency-Division vs. Time-Division

Circuit Switching: Static Allocation

- Time-division
 - Each circuit allocated certain time slots

time

- Frequency-division
 - Each circuit allocated certain frequencies

Packet Switching (e.g., Internet)

1. Data traffic divided into packets

Each packet contains header (with src and dst addr)

2. Packets travel separately through network

- Packet forwarding based on the header
- Network nodes may store packets temporarily
- Best effort: Packets may be loss, corrupted, reordered

3. Destination reconstructs the message

Packet Switching: Statistical (Time Division) Multiplexing

- Intuition: Traffic by computer end-points is bursty!
 - Versus: Telephone traffic not bursty (e.g., constant 56 kbps)
 - One can use network while others idle
- Packet queuing in network: tradeoff space for time
 - Handle short periods when outgoing link demand > link speed

Best Effort: Celebrating Simplicity

- Packets may be lost, corrupted, reordered
- Never having to say you're sorry...
 - Don't reserve bandwidth and memory
 - Don't do error detection and correction
 - Don't remember from one packet to next
- Easier to survive failures
 - Transient disruptions are okay during failover
- Easier to support on many kinds of links
 - Important for interconnecting different networks

Is Best Effort Good Enough?

- Packet loss and delay
 - Sender can resend
- Packet corruption
 - Receiver can detect,
 and sender can
 resend
- Out-of-order delivery
 - Receiver can put the data back in order

- Packets follow different paths
 - Doesn't matter
- Network failure
 - Drop the packet
- Network congestion
 - Drop the packet

Packet vs. Circuit Switching?

 Predictable performance 	Circuit
 Network never blocks senders 	Packet
 Reliable, in-order delivery 	Circuit
 Low delay to send data 	Packet
 Simple forwarding 	Circuit
 No overhead for packet headers 	Circuit
 High utilization under most workloads 	Packet
 No per-connection network state 	Packet

Network Addresses

IP Address (IPv4)

- A unique 32-bit number
- Identifies an interface (on a host, on a router, ...)
- Represented in dotted-quad notation

Grouping Related Hosts

- The Internet is an "inter-network"
 - Used to connect networks together, not hosts
 - Need to address a network (i.e., group of hosts)

LAN = Local Area Network

WAN = Wide Area Network

Scalability Challenge

- Suppose hosts had arbitrary addresses
 - Then every router would need a lot of information
 - ...to know how to direct packets toward every host

Hierarchical Addressing in U.S. Mail

Addressing in the U.S. mail

- Zip code: 80309
- Building: 1045 Regent Drive
- Room in building: ECCR 1B14
- Name of occupant: Sangtae Ha

- Deliver to the post office in the zip code
- Assign to mailman covering the building
- Drop letter into mailbox for building/room
- Give letter to the appropriate person

Hierarchical Addressing: IP Prefixes

- Network and host portions (left and right)
- 12.34.158.0/24 is a 24-bit prefix with 2⁸ addresses

IP Address and 24-bit Subnet Mask

Network Address and Broadcast Address

- IP address: 10.10.1.97/23
- Network address IP & Netmask

```
IP: 00001010.00001010.00000001.01100001
```

& Netmask: 111111111.11111111.11111110.000000000

Network Addr: 00001010.00001010.00000000.00000000

Network address: 10.10.0.0

Broadcast address – IP | ~Netmask

Broadcast address: 10.10.1.255

Scalability Improved

- Number related hosts from a common subnet
 - 1.2.3.0/24 on the left LAN
 - 5.6.7.0/24 on the right LAN

Easy to Add New Hosts

- No need to update the routers
 - E.g., adding a new host 5.6.7.213 on the right
 - Doesn't require adding a new forwarding-table entry

History of IP Address Allocation

Classful Addressing

- In the olden days, only fixed allocation sizes
 - Class A: 0*
 - Very large /8 blocks
 - Class B: 10*
 - Large /16 blocks
 - Class C: 110*
 - Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)
 - Class D: 1110* for multicast groups
 - Class E: 11110* reserved for future use
- This is why folks use dotted-quad notation!

Classless Inter-Domain Routing (CIDR)

Use two 32-bit numbers to represent network:

Network number = IP address + Mask

IP Address: 12.4.0.0 IP Mask: 255.254.0.0

Written as 12.4.0.0/15

Hierarchical Address Allocation

- Hierarchy is key to scalability
 - Address allocated in contiguous chunks (prefixes)
 - Today, the Internet has about 400,000 prefixes

Subnetworks (subnets)

 Smaller networks are easier to manage.

Overall traffic is reduced.

 You can more easily apply network security policies.

Possible Subnets for a Class C Network

Number of Bits Borrowed (s)	Number of Subnets Possible ^(2^s)	Number of Bits Remaining in Host ID (8 - s = h)	Number of Hosts Possible Per Subnet (2 ^h - 2)
1	2	7	126
2	4	6	62
3	8	5	30
4	16	4	14
5	32	3	6
6	64	2	2
7	128	1	2

End System Subnet Mask Operation

How Routers Use Subnet Masks

Obtaining a Block of Addresses

- Internet Corporation for Assigned Names and Numbers (ICANN)
 - Allocates large blocks to Regional Internet Registries
- Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates to ISPs and large institutions
- Internet Service Providers (ISPs)
 - Allocate address blocks to their customers
 - Who may, in turn, allocate to their customers...

Pre-CIDR (1988-1994): Steep Growth

Growth faster than improvements in equipment capability

CIDR (1994-1996): Much Flatter

CIDR Growth (1996-1998): Roughly Linear

Good use of aggregation, and peer pressure!

DotCom Boom (1998-2001): Steep Growth

Internet boom and increased multi-homing

Long Term Growth (1989-2005)

Today we are up to ~400,000 prefixes