Exercícios propostos de QFII A para MIEQB, Parte de Espectroscopia Molecular

1) Escreva o determinante de Hückel do sistema de ligações π deslocalizadas da molécula que segue. Sabendo que as soluções do determinante secular são +1.48, +1.00, -0.31 e -2.17 (valores de $[(\alpha-E)/\beta]$), represente o diagrama de energias das orbitais da molécula e calcule a energia de deslocalização respectiva.

$$\frac{H}{H}\dot{c} = \dot{c} \begin{pmatrix} \dot{c} \\ \dot{c} \\ \dot{c} \\ \dot{c} \end{pmatrix}_{H}$$

R: Δ E deslocal = 0,96 β

2) Seja a formação da molécula de metano, CH₄, não planar. Que pode prever da hibridação dos orbitais do carbono?

R: sp3

3) Considere a molécula XeF₄, planar. Preveja o número de bandas observadas num espectro traçado num espectrómetro de Raman vibracional e num espectrómetro de infra-vermelho por transformada de Fourier. Haverá alguma banda observada a uma frequência coincidente nos dois métodos?

R: IV: A2u+2Eu - 3 bandas

Raman: A1g+B1g+B2g – 3 bandas

Não há coincidentes, centro de simetria - Princípio Exclusão Mútua

4) O acetaldeído apresenta duas bandas principais no espectro electrónico na gama do UV próximo. Em hexano as bandas observadas situam-se a 180 nm e 290 nm, enquanto que em etanol as bandas encontram-se respectivamente a 185 nm e a 285 nm. Identifique as duas bandas quanto às transições envolvidas e explique a sua deslocação em energia.

R: dpv para 180nm, π - π *, dpa para 290, n- π *

5) O composto octaédrico $[trans-Cr(C_2O_4)_2(H_2O)_2]^{-1}$ no seu sal de potássio (dioxalatodiaquocromato (III) de potássio) é sintetizado nas aulas de Química Inorgânica da FCT/UNL. Calcule o espaçamento entre riscas do espectro rotacional deste composto. (considere a molécula de água como uma esfera que está coordenada ao átomo de crómio)

$$\begin{aligned} &d_{Cr\text{-O(oxalato)}} = 1.327 \text{ Å} \\ &d_{Cr\text{-O(água)}} = 1.298 \text{ Å} \end{aligned}$$

R: 2B=2x0,078 cm -1

6) Considere a molécula BCl₃, planar. Preveja o número de bandas observadas num espectro traçado num espectrómetro de Raman vibracional e num espectrómetro de infra-vermelho por transformada de Fourier.

R: 3 bandas Raman, 3 bandas IV

7) Seja o hipotético hidrocarboneto cíclico aromático, ciclopropeno.

- a) Com base na sua simetria, preveja que orbitais atómicas usará esta molécula para formar orbitais híbridas nas ligações σ entre os seus átomos.
- **b)** Qual será a hibridação usada para formar ligações π entre os carbonos, dentro do plano da molécula e fora do plano da molécula?
- **c)** Aplique o método de Huckel ao sistema π deslocalizado desta molécula e compare o resultado com a alínea anterior.

R: sp2, pz fora do plano, x=-2, x=1, x=1

8) Sabendo que para uma molécula diatómica heteronuclear a energia dos níveis vibracional e rotacional é dada por, respectivamente

$$E_v = (v+1/2) \text{ hv}_0$$
 e $E_J = B_0 \text{hJ}(J+1)$, com $B_0 = \frac{h}{8\pi^2} \frac{1}{\mu r_0^2}$

preveja o espaçamento das bandas de um espectro vibracional-rotacional para a molécula de HCI.

$$d_{H-CI} = 1.274 \text{ Å}$$

 $v_0 = 2991 \text{ cm}^{-1}$

R: 2B=21,1 cm-1

9) Considere a molécula de clorofórmio, CHCl₃. Preveja o número de bandas observadas num espectro traçado num espectrómetro de Raman vibracional e num espectrómetro de infra-vermelho por transformada de Fourier.

R: IV: 6 bandas e Raman: 6 bandas. As mesmas nas 2 técnicas

10) Seja a formação da molécula de água, H₂O, não planar. Que pode prever da hibridação dos orbitais do oxigénio?

R: sp3

11) Considere a molécula planar de *trans*-1,2 dicloroetileno. Preveja o número de bandas observadas num espectro traçado num espectrómetro de Raman vibracional e num espectrómetro de infra-vermelho por transformada de Fourier.

R: IV: 6 bandas Raman: 6 bandas

Não há coincidentes, centro de simetria - Princípio Exclusão Mútua

12) Explique o efeito de Franck-Condon na obtenção da estrutura vibracional dos espectros electrónicos.

R: Saltos verticais

13) Com base na simetria molecular, preveja a hibridação dos orbitais do átomo de azoto na molécula de amoníaco, NH₃, não planar.

R: sp3

- **14) a)** Escreva o determinante de Hückel do sistema de ligações π deslocalizadas da molécula que segue (não o resolva).
- **b)** Sabendo que as soluções do determinante secular são +1.62, +1.62, -0.62, -0.62 e -2 (valores de $(\alpha-E)/\beta$), represente o diagrama de energias das orbitais da molécula e calcule a energia de deslocalização respectiva.

R: E desloc = $1,86\beta$

Os dois isómeros *cis* e *trans* do complexo ML₄L'₂ podem ser distinguidos por espectroscopia vibracional. Mostre como isso pode ser possível, prevendo o número de bandas visíveis em Raman e em IV para cada um dos isómeros, sabendo que para o isómero *trans* Γ=2A_{1g}+A_{2g}+B_{1g}+B_{2g}+2E_g+3A_{2u}+B_{2u}+4E_u, correspondendo aos 21 graus de liberdade da molécula.

R: trans com 5 bandas em IV e 5 bandas em Raman Cis com 13 bandas em IV (1 delas não é ativa) e 15 bandas em Raman

16) O monóxido de carbono (CO) é um gás inodoro e venenoso, sendo produzido pela queima incompleta de compostos de carbono. Adiciona-se ao átomo de ferro da hemoglobina impedindo o transporte do oxigénio, levando à morte por asfixia. Há todo o

interesse de se detectar este gás a concentrações baixas por razões preventivas. Esta detecção pode ser feita através de espectroscopia rotacional, vibracional ou de Raman.

a) Na figura seguinte está representado um espectro rotacional puro do CO, de isótopos ¹²C e¹⁶O. Calcule a distância internuclear.

- **b)** Sabendo que a risca observada experimentalmente a 115.271 GHz corresponde à transição dos níveis rotacionais $0\rightarrow 1$ e que a de 230.538 GHz à de $1\rightarrow 2$, estime qual o valor de J para o nível de energia rotacional mais populado.
- c) Estime igualmente a distância internuclear da molécula de CO, através do espectro vibracional-rotacional junto.

d) Explique o seguinte espectro de Raman vibracional-rotacional da molécula de CO. Estime a distância internuclear do CO.

R: 112,9 pm; J=7; 116,0 pm

17) a) Imagine que arranjou um emprego na NASA ou na Agência Espacial Europeia. Uma sonda espacial foi desenhada por si para procurar vestígios de CO₂ e de CO na atmosfera de Saturno. Foi decidido usar técnicas de micro-ondas a partir de um satélite em órbita do planeta. Definindo-se o comprimento da ligação C-O como 112.82 pm na molécula de CO e de 116.2 pm na molécula de CO₂, onde aparecerão as primeiras 4 riscas do espectro rotacional de ¹²C¹⁶O? E o que acontece no caso do CO₂?

b) Que resolução o aparelho terá de ter para poder distinguir ¹²C¹⁶O de ¹³C¹⁶O, de modo a examinar-se as abundância relativas dos dois isótopos de carbono?

c) Na presença de água, o dióxido de carbono produz carbonato/bicarbonato/ácido carbónico (CO₃²⁻/HCO₃-/H₂CO₃), consoante o pH. Dois espectrómetros vibracionais foram instalados na sonda espacial: um de Raman e um de infra-vermelho. Que espectros vibracionais prevê para o carbonato?

R: 3,862 cm -1; 7,724 cm -1; 11,586 cm -1; 15,448 cm -1; resolução mínima 0,1 cm -1; carbonato tem 3 bandas IV e 3 bandas Raman

18) O que entende por *transições vibrónicas*? Explique a sua origem e tente dar um exemplo.

R: transição eletrónica proibida, mas permitida pela parte vibracional

19) Com base na simetria molecular, preveja a hibridação adoptada pelas orbitais do átomo de manganês no ião de permanganato, MnO₄⁻.

R: sp3 ou sd3

- **20)** Eis o espectro vibracional-rotacional do HCI. Cada linha do espectro é dupla devido à presença dos isótopos ³⁵CI e ³⁷CI
- a) Qual das linhas é a do H³⁵Cl? Justifique.
- **b)** Calcular o momento de inércia e a distância interatómica H-35Cl.
- c) Se a massa de deutério for 2.014 u.m.a., qual prevê que seja a frequência fundamental de DCI?

R: Cl 35 é a da direita; 130 pm; 2071 cm-1

21) Sabendo que a distância N-H é de 101,2 pm e que o ângulo HNH é de $106,7^{\circ}$, preveja o espaçamento entre bandas no espectro de micro-ondas do NH₃.

R: 19,95 cm-1

22) A equação de Boltzmann indica a razão entre o número de moléculas presentes num nível excitado, por exemplo um nível rotacional **J**, e o estado fundamental.

$$\frac{n_J}{n_0} = (2J+1) \exp[-\frac{B_0 h}{k_B T} J(J+1)]$$

Com base no resultado da alínea anterior, calcule qual o nível rotacional mais populado à temperatura ambiente. (se não resolveu a alínea anterior, considere B_0 como 10 cm⁻¹)

R: J=3

23) Preveja as bandas visíveis em espectroscopia vibracional de Raman e em espectroscopia de infra-vermelho para a molécula de NH₃.

R: 4 bandas em IV e em Raman

24) Se o grupo NH₃ estiver presente num complexo do tipo Co(NH₃)₆³⁺, o azoto está ligado ao átomo de cobalto por uma ligação covalente dativa, além dos 3 átomos de hidrogénio. Prevê alguma diferença no número de bandas visíveis em infra-vermelho para o grupo NH₃, quando comparado com o grupo NH₃ livre? Explique as suas razões.

R: 6 bandas visíveis em Raman e IV		v . gr. v .
		182 200 250 300 400
		continued from Fortsetzung des previous sheet vorhergehenden Blattes
		0008 0008 0008 0008 0008 0008
		1 868
		26 8
25) Este é o espectro electrónico do benzeno em esta vapor. A banda centrada em 254 nm é a conhecida <i>bar dos 5 dedos do benzeno</i> . Explique a sua estrutura fin qual o princípio em que se baseia.	nda	1
		1000 M 10
R: vibrónicas	-	
26)		50,000 45,000 40,000 35,000 30,000 25,000
Um dos CFC's mais importante para o efeito de estufa era o Freon 11 (CFCl₃). Preveja de que modo o CFCl₃ contribui para o efeito de estufa, ou seja, de quantas maneiras diferentes se faz a absorção na gama dos infravermelhos nesta molécula.		
R: IV: 6 bandas e Raman: 6 bandas.		
27) Observe com atenção:		
A cadeira de Química Física II é a cadeira mais gira e		
estimulante de todo o Mestrado Integrado de Engenharia Química e Bioquímica.	Sim	Não
Observe ainda com mais atenção:		
a) A molécula da direita é o ciclobutadieno, havemos de falar dele um dia. A molécula da esquerda é o C_4 , detectado pelo Hubel no espaço sideral. Escreva o determinante de Hückel para esta molécula e resolva-o sabendo que a menor solução é -3 (valor de x) e que a outra solução é triplamente degenerada. b) Calcule a energia E_{π} do sistema e a estabilidade obtida pela molécula com a deslocalização das ligações π . c) Mostre que a função de onda molecular para a orbital de energia mais baixa pode ser escrita como $\Psi = 0.5 \ \phi_1 + 0.5 \ \phi_2 + 0.5 \ \phi_3 + 0.5 \ \phi_4$.		
R: E deslocal = 0; c=0,5		
28) Comente a frase:		

A Espectroscopia de Absorção mostra a <u>estrutura vibracional do estado excitado</u>
e a

Espectroscopia de Emissão mostra a <u>estrutura vibracional do estado</u> <u>fundamental</u>".

R: Abs mostra estrutura vib S1 e Emissão mostra estrutura vib de S0

- **29 a)** Comecemos pela contribuição do O₃. Preveja de que modo o ozono contribui para o efeito de estufa, ou seja, de quantas maneiras diferentes se faz a absorção na gama dos infravermelhos nesta molécula.
- **b)** Os dados estruturais do ozono foram obtidos por espectroscopia rotacional. No entanto, como a molécula de O_3 é de cume assimétrico, os cálculos para esta molécula tornam-se um pouco mais complicados. Seja então outra molécula responsável pelo efeito de estufa, o CO_2 .

Sabendo que a molécula é linear e que os momentos de inércia são $I_a=I_b=71.70x10^{-47}$ kgm², preveja o espaçamento entre as bandas no espectro de microondas e calcule igualmente a distância internuclear entre o carbono e o oxigénio.

R: IV: 3 bandas e Raman: 3 bandas.; espaçamento=0,78 cm-1

- **30) a)** Escreva o determinante de Hückel do sistema de ligações π deslocalizadas da molécula de ciclo-octatetraeno.
- **b)** Sabendo que as soluções do determinante secular são $x = (\alpha E)/\beta = 2$, 1.41, 1.41, 0, 0, -1.41, -1.41, -2, represente o diagrama de energias das orbitais da molécula e calcule a energia de deslocalização respectiva.
- **c)** As soluções do determinante secular para o caso de ligações π localizadas são 1.02, 1+0.02i, 1-0.02i, 0.99, -0.98, -1+0.02i, -1-0.02i, -1.02. Explique por que razão a molécula não existe na configuração planar.

R: E deslocal = $1,64\beta$

- 31) Seja agora a molécula seguinte, o metilenociclopropeno:
- a) Escreva o determinante de Hückel para esta molécula e resolva-o sabendo que duas das soluções do determinante são +1 e -2.17 (valores de x). (Lembre-se que todo o polinómio pode ser escrito como um produto de termos (x-a_i), onde as a_i's são as raízes do polinómio)

- **b)** Calcule a energia E_{π} do sistema e fale da estabilidade obtida pela molécula com a deslocalização das ligações π .
- c) Mostre que a função de onda molecular para a orbital de energia mais baixa (para valor de x=-2.17) pode ser escrita como $\Psi = 0.282 \phi_1 + 0.612 \phi_2 + 0.523 \phi_3 + 0.523 \phi_4$.

R: E deslocal = 0.962β

- **32)** A água pesada (D₂O) apresenta o mesmo número de bandas activas em infravermelho que a água (H₂O), mas a frequências menores. Explique porquê.
- R: Maior massa reduzida, menor frequência
- 33) Os modos normais de vibração para o CO₂ estão representados nesta figura:

Dos 4 modos normais de vibração, somente a representação Σ_{g^+} é inactiva em Espectroscopia de Infravermelho. Por outro lado, é a única que é activa em Raman. Explique a razão para isto acontecer.

R: Centro de simetria, princípio de exclusão mútua

34) As distâncias interatómicas na molécula OCS são R(OC)=1.160 Å e R(CS)=1.560 Å. Descubra as três frequências mais baixas de absorção de micro-ondas para a molécula ¹⁶O¹²C³²S.

R: 0,406 cm-1, 0,812 cm-1, 1,218 cm-1

35) Sabendo que $B_0=10.593$ cm⁻¹ para o $^1H^{35}CI$, calcule as populações relativas a 300 K para o nível rotacional J=6 do nível vibracional v=0.