Dynamic Programming

15-451

Ananda Gunawardena ("guna")

September 29, 2010

In this lecture...

- Algorithmic Techniques
- Dynamic Programming
- Applications
 - >Fibonacci series
 - ▶ Coin Change Problem
 - Least Common Subsequence problem
 - ➤Knapsack problem

Algorithmic Techniques

Many Algorithmic Techniques

- Recursive algorithms
- Iterative Algorithms
- Brute Force Algorithms
- Divide and Conquer Algorithms
- Backtracking Algorithms
- Randomized Algorithms
- Greedy Algorithms
- Approximation Algorithms
- Dynamic Programming

Types of Algorithms

- Recursive
 - Tower of Hanoi
- Iterative
- Iterate over all possible pairs
- Brute Force Algorithm
- Consider all possibilities and find a one that works Randomized or probabilistic Algorithms
- Randomized the data set to improve performance
 Divide and Conquer Algorithms
 - Divide: Smaller sub-problems solved recursively, Conquer solution to the original using solution to sub-problems.
 Eg: MergeSort, quicksort
- Backtracking Algorithms
 - Use a stack to backtrack
- Greedy Algorithms
 - > Take the current "best" solution. In other words the greedy choice.
- DYNAMIC PROGRAMMING

Dynamic Programming(DP)

- Not much to do with "dynamic" or "programming"
 - > idea from control theory
- Programming really refers to the use of a table
- Dynamic refers to something that changes (eg: table gets updated)
- DP Algorithmic Technique can be used to reduce exponential time algorithms to polynomial time algorithms

Motivation with Fibonacci

- The Fibonacci sequence
 - >f(0) = 1
 - >f(1) = 1
 - F(n) = f(n-1) + f(n-2) if $n \ge 2$

Fibonacci – the recursive program

```
public static long fib(int n) {
   if (n ≤ 1) return n;
   else
     return (fib(n-1)+fib(n-2))
}
```

• What is the complexity of this algorithm?

Exponential number of calls

What if we can avoid all the calls

- We note many overlapping sub problems
- What if we avoid re-computing the sub-problems
- Perhaps reduce complexity from exponential to linear ...

Reduce the calculations

Dynamic programming is about reducing **exponential time** algorithms to **polynomial time** algorithms

Memoizing

- There are overlapping sub problems
- Number of sub problems is small
 - ► Eg: Some polynomial of n
- Store solutions to sub problems already solved
 - Increase space complexity
 - > But decrease time complexity
- This idea is called "Memoizing"

public static long fib(int n) { if (memo[n]!= -1) return memo[n]; if (n<=1) return n; long u = fib(n-1); long v = fib(n-2); memo[n] = u + v; return u + v;</pre>

Memoization Concept

- Idea is to Remember previous results and reuse them
 - When computing the value of a function, return the saved result rather than calculating it again
- The "function" must be a function!
 - > No side effects
 - > Returns the same value each time
- Saving the values
 - Array
 - > Hashtable
- Trade-offs
 - > Time to retrieve vs. time to compute
 - Storage space vs. time to compute

Memoization

 Name coined by Donald Michie, Univ of Edinburgh (1960s)

This is called top-down DP

- Fibonacci is the Perfect Example
- Useful for
 - >game searches
 - >evaluation functions
 - >web caching

Fibonacci - Bottom-Up Memoizing

```
public static long fib(int n) {
  if (nx=1) return n;
  long last = 1;
  long prev = 0;
  long t = -1;
  for (int i = 2; ix=n; i++) {
      t = last + prev;
      prev = last;
      last = t;
   }
  return t;
}
What is the complexity of this program?
```

For dynamic programming

- Key ingredients:
 - >Simple sub problems.
 - Problem can be broken into sub problems, typically with solutions that are easy to store in a table/array.
 - >Sub problem optimization.
 - Optimal solution is composed of optimal sub problem solutions.
 - >Sub problem overlap.
 - Optimal solutions to separate sub problems can have sub problems in common.

Recall

- Dynamic programming in some sense involves making a table
- The table must be easy to build
- A problem that could take O(n!) could perhaps be reduced to O(polynomial)

Application of DP *Coin Change Problem*

Coin Change Problem

- Problem: What is the minimum number of coins required to change 63 cents?
 - Assume US coin denominations of 25-cent, 10-cent, 5-cent and 1-cent
- Solution: (Grocery Clark technique)
 - > Two quarters
 - ▶ One Dime
 - > Three pennies
- This is a "Greedy-Algorithm"

Coin Change Problem

- Does a "greedy algorithm" always works?
- NO!
- Suppose we have a 21-cent coin
 - ▶ Grocery Clark algorithm does not work
- How do we find a solution?
 - >Answer: Dynamic Programming

Coin Change Problem

- Suppose we have n denominations of coins, 1=d[1] < d[2]<...< d[n]
- Suppose C[i][j] denote the minimum number of coins required to make change for amount j, if only the coins 1,2...i are allowed
- If we are looking for minimum number of coins for amount A using all coins, then we are looking to find

>C[n][A]

Coin Change Problem

Example: d[1]=1, d[2]=6, d[3]=10

You want change for 12 cents.
What is the greedy solution here?

		0	1	2	3	4	5	6	7	8	9	10	11	12
	1	0	1	2	3	4	5	6	7	8	9	10	11	12
	2	0	1	2	3	4	5	1	2	3	4	5	6	2
1	3	0	1	2	3	4	5	1	2	3	4	1	2	2

C[i][j] = minimum # of coins to change amount j using coins 1..i

Coin Change Problem

- Question: How can we obtain row i from previously computed values?
- Recursive Solution
 - \triangleright C[i][j] = C[i-1][j] if j < d[i]
 - $= min(1+C[i][j-d[i]], C[i-1][j]) \text{ if } d[i] \leq j$

						J							
	0	1	2	3	4	5	6	7	8	9	10	11	12
1													
2													
3													

d[1]=1, d[2]=6, d[3]=10

Application of DP *Knapsack Problem*

Knapsack Problem

Imagine a homework problem with seven different parts, A thru G

	A	В	C	D	E	F	G
value:	7	10	5	12	14	6	12
time:	3	4	2	6	7	3	5

- You have 15 hours
- Which parts should you complete in order to get "maximum" credit?
 - Greedy algorithm (E,G,A) = 33 pts
 - But is there a better total?
- How about a Brute-Force Algorithm?

Knapsack Problems

- There are two kinds of knapsack problems
 - ➤ Binary Knapsack problem (BKP)
 - Must take the "whole" item
 - > Fractional Knapsack Problem (FKP)
 - Can take "fractions" of items

Fractional knapsack problem (FKP)

- You rob a store: find n kinds of items
 - ▶ Gold dust. Wheat. Root Beer.
- The total inventory for the i th kind of item:
 - ≻Weight: **w**_i pounds
 - ≻Value: **v**_i dollars
- Knapsack can hold a maximum of **W** pounds.
- Q: how much of each kind of item should you take?

(Can take fractional weight)

A Greedy Algorithm?

- Try taking the most expensive (per unit cost) item first.
- And the next expensive item, and the next expensive item etc..
- Greedy solution:
 - Fill knapsack with "most valuable" item until all is taken.
 - Most valuable = $max(v_i/w_i, i=1...n)$
 - > Then next "most valuable" item, etc.
 - Until knapsack is full.

Optimal Solution must include Greedy Choice

For item *i* let

Assume total optimal value:

w_i be the total inventory,
v_i be the total value,
k_i be the weight in knapsack.

$$V = \sum_{i=1}^{n} k_i \left(\frac{v_i}{w_i} \right)$$

Let item \boldsymbol{h} be the item with highest \$/lb. If $\boldsymbol{k_h} < \boldsymbol{w_h}$, and $\boldsymbol{k_i} > 0$ for some $\boldsymbol{j} \neq \boldsymbol{h}$, then replace \boldsymbol{j} with an equal weight of \boldsymbol{h} . Let new total value = $\boldsymbol{V'}$.

Difference in total value:

but, by definition of **h**,

$$V' - V = k_j \left(\frac{v_h}{w_h}\right) - k_j \left(\frac{v_j}{w_j}\right) \ge 0$$

Therefore all of item h should be taken.

Binary Knapsack Problem

- Must take the whole item
- How can we solve this problem?
 - ➤ Would a "greedy" algorithm work? (T=15 hrs) A B C D E F G
 value: 7 10 5 12 14 6 12
 time: 3 4 2 6 7 3 5
 - > Operations Research Approach
 - Prioritize tasks to maximize the outcome
 - > Use DP to find the "task priority"

Knapsack Problem

Imagine a homework problem with seven different parts, A thru G

	Α	В	С	D	Е	F	G
value:	7	10	5	12	14	6	12
time:	3	4	2	6	7	3	5

- You have 15 hours
- Which parts should you complete in order to get "maximum" credit?

Solving Knapsack

- Consider a general problem with N parts, 1, 2,, N and let time[i] and value[i] denote the time and value of Part i.
- Let T be the total time
- DP Idea
 - Create a table A where A[i][t] denotes max value we get if we use items from 1,2...i and allow t time.

Knapsack problem ctd..

A has size (N+1) by (T+1).

The big question?

 How to figure out the next row from the previous ones?

A[i-1][t - time[i]] + value[i]) //use item i.

Memoizing – Bottom-Up

Homework

 $\begin{array}{ll} \hbox{ Complete the table} & {}^{A[i][t] = MAX(A[i-1][t], \ / / \ don't use \ item \ i} \\ \hbox{ for } i=7, T=15. \end{array}$

What is the run time of this algorithm?
 A
 B
 C
 D
 E
 F
 G

 value:
 7
 10
 5
 12
 14
 6
 12

 time:
 3
 4
 2
 6
 7
 3
 5

Recursive Code

```
\label{eq:computeValue(N,T) //T = time left, N = # items still to choose from } \{ \\ & \text{if } (T <= 0 \mid \mid N = 0) \text{ return 0;} \\ & \text{if } (\text{time[N]} > T) \text{ return ComputeValue(N-1,T);} \\ & \text{ // can't use Nth item} \\ & \text{return max(value[N] + ComputeValue(N-1, T - Time[N]),} \\ & \text{ ComputeValue(N-1, T));} \\ & \} \\ \end{aligned}
```

• What is the runtime of this code?

Memoizing Top-Down

As we calculate values, make a memo of those
 ComputeValue(N,T) // T = time left, N = # items still to choose from

What is the runtime of this code?

One Last Example

Longest common Sub sequence

S = ABAZDC

 $T={
m BACBAD}$

What is the longest common Subsequence for S and T?

How do we think about this?

- Lets develop some terminology
 - L[i,j] = length of the longest common sub sequence if we use the prefixes of S and T
 - That is, we use: S[1..i] and T[1...j]
 - So if S is length n and T is length m, then we are looking for L[n,m]
 - So if we calculate all of L[i,j], we are making a table in O(mn) time.
 - ≻But....

We must be able to use the previously computed values

Find a relation between then

- Two cases
 - >S[i] ≠ T[j]
 - L[i,j] = max(L[i-1,j], L[i,j-1]))
 - >S[i] = T[j]
 - L[i,j] = 1 + L[i-1,j-1]

So if we fill the table

 $S = \mathtt{ABAZDC}$

T = BACBAD

AD	В	Α	С	В	A	D	
A	0	1 1 2 2 2 2	1	1	1	1	-
В	1	1	1	2	2	2	
Α	1	2	2	2	3	3	
Z	1	2	2	2	3	3	
D	1	2	2	2	3	4	
C	1	2	3	3	3	4	

Class work

- Find the longest common subsequence
 - >XMJYAUZ" and "MZJAWXU

