3.5 범주형 독립변수

범주형 값은 여러개의 다른 상태를 나타내는 값이다. 범주형 값을 'A', 'B', 'C'라는 문자로 표현하는 경우도 있고 '1', '2', '3'과 같이 숫자로 표현하는 경우도 있지만 이 경우는 'A'라는 글자대신 '1'이라는 글자를 이용한 것 뿐이지 숫자로서의 의미는 없다. 즉, '2'라는 값이 '1'이라는 값보다 2배 더 크다는 뜻이 아니다.

회귀분석을 할 때는 숫자가 아닌 독립변수 값은 쓸 수 없기 때문에 어떤 방식으로든 범주형 독립변수의 값을 사용할 수 있는 방법을 찾아야 한다. 범주형 독립변수를 처리하는 가장 일반적인 방법은 더미변수(dummy variable)로 변환하는 것이다.

더미변수

더미변수(dummy variable)는 0 또는 1만으로 표현되는 값으로 어떤 특징이 존재하는가 존재하지 않는가를 표시하는 독립변수다. 다음과 같은 명칭으로도 불린다.

- · Boolean indicator
- · binary variable
- · indicator variable
- · design variable
- treatment

patsy 패키지의 dmatrix 명령과 OLS 클래스의 from_formula 메서드는 포뮬러 문자열을 이용하여 범주형 변수의 값을 더미변수로 인코딩하는 기능을 제공한다.

In [1]:

from patsy import *

범주형 변수가 하나인 경우

 x_1, x_2, \dots, x_D 라는 D개의 독립변수를 가지는 선형회귀모형을 생각하자.

$$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_D x_D$$

여기에서 x_1 이라는 독립변수만 범주형 변수이고 'A'과 'B'라는 두 가지의 범주값을 가질 수 있다고 하자.

가장 간단한 방법은 전체 데이터를 $x_1 = A$ 인 데이터와 $x_2 = B$ 인 데이터 두 그룹으로 나누어 각각의 데이터에 대한 선형회귀모형을 만드는 것이다. 즉 다음과 같은 2개의 선형회귀모형을 만든다.

model A:
$$\hat{y} = w_{A,0} + w_{A,2}x_2 + \dots + w_{A,D}x_D$$
 (if $x_1 = A$)

model B:
$$\hat{y} = w_{B,0} + w_{B,2}x_2 + \dots + w_{B,D}x_D$$
 (if $x_1 = B$)

그런데 올바른 선형회귀모형에서는 x_1 이 아닌 다른 변수 예를 들어 x_2 의 값이 변할 때 y값이 변화하는 정도, 즉 가중치 w_2 는 x_1 의 값이 A이든 B든 같아야 한다. 하지만 위와 같은 두 개의 선형회귀모형을 만들면 w_2 의 값이 $w_{A,2}$ 와 $w_{B,2}$ 라는 두 가지의 다른 값이 나오므로 위 모형은 적당하지 않다.

더미변수 방법은 범주형 변수 x_1 을 d_{1A} , d_{1B} 라는 두 개의 더미변수로 바꾸는 것이다. 더미변수로 변환하면 상수 항은 없어진다. 그 이유는 나중에 설명한다.

$$\hat{y} = w_0$$
 + $w_1 x_1$ + $w_2 x_2 + \dots + w_D x_D$
 $\hat{y} = w_{1A} d_{1A} + w_{1B} d_{1B}$ + $w_2 x_2 + \dots + w_D x_D$

더미변수가 2개인 이유는 더미변수가 가질 수 있는 범주값이 2개이기 때문이다. 범주값이 K개이면 범주형 변수 x_1 을 d_{11},\ldots,d_{1K} 라는 K개의 더미변수로 바꾸어야 한다.

더미변수의 값은 항상 0또는 1이어야하는데 더미변수의 값을 지정하는 방법에는 축소랭크(reduced-rank) 방식과 풀랭크(full-rank) 방식 두가지가 있다.

풀랭크 방식

풀랭크(full-rank) 방식에서는 더미변수의 값을 원핫인코딩(one-hot-encoding) 방식으로 지정한다. 즉 범주값이 2가지인 경우에는

$$x_1 = A \rightarrow d_{1A} = 1, d_{1B} = 0$$

 $x_1 = B \rightarrow d_{1A} = 0, d_{1B} = 1$

이 된다. 이 값을 대입하면 더미변수의 가중치는 상수항이 된다.

$$x_1 = A \rightarrow \hat{y} = w_{1A} + w_2 x_2 + \dots + w_D x_D$$

 $x_1 = B \rightarrow \hat{y} = w_{1B} + w_2 x_2 + \dots + w_D x_D$

다시 말해 범주값이 달라지면 상수항만 달라지고 다른 독립변수의 가중치(영향)는 같은 모형이 되는 것이다.

그림 3.5.1: 풀랭크 방식 더미변수 가중치의 의미

선형회귀모형에 범주형 독립변수가 있으면 더미변수의 가중치 이외에 별도의 상수항이 있으면 안된다. 만약 위의 모형에서 별도의 상수항 w_0 이 존재한다면 모형은 다음처럼 될 것이다.

$$x_1 = A \rightarrow \hat{y} = (w_0 + w_{1A}) + w_2 x_2 + \dots + w_D x_D$$

 $x_1 = B \rightarrow \hat{y} = (w_0 + w_{1B}) + w_2 x_2 + \dots + w_D x_D$

이 경우에는 $w_0 + w_{1A}$ 나 $w_0 + w_{1B}$ 의 값은 구할 수 있어도 w_0 값과 w_{1A} 값을 분리할 수는 없다. **범주형 독립** 변수가 있으면 상수항은 포함시키지 않는다.

patsy 패키지는 변수의 값이 문자이면 자동으로 범주형 독립변수로 인식한다. 풀랭크 모형을 사용하려면 포뮬러 문자열에 +0 또는 -1을 붙여야 한다. 더미변수의 이름은 자동으로 원래변수의 이름 + [범주값] 으로 정해진다.

In [2]:

```
df1 = pd.DataFrame(["A", "A", "B", "B"], columns=["x1"])
df1
```

Out[2]:

```
x1
0 A
```

- 1 A
- **2** B
- **3** B

In [3]:

```
dmatrix("x1 + 0", df1)
```

Out[3]:

```
DesignMatrix with shape (4, 2) x1[A] x1[B] 1 0 1 0 0 1 0 1 Terms: 'x1' (columns 0:2)
```

데이터가 범주형 값이지만 정수로 표시된 경우에는 C() 연산자를 이용하여 범주형 값임을 명시적으로 지정할수 있다.

In [4]:

```
df2 = pd.DataFrame([1, 2, 3, 4], columns=["x1"])
df2
```

Out[4]:

	x 1
^	1

- 1 2
- **2** 3
- 3 4

In [5]:

dmatrix("C(x1) - 1", df2)

Out [5]:

DesignMatrix with shape (4, 4) C(x1)[1] C(x1)[2] C(x1)[3] C(x1)[4]0 1 () 0 1 0 0 0 1 0 Terms:

C(x1) (columns 0:4)

축소랭크 방식

축소랭크(reducec-rank) 방식에서는 특정한 하나의 범주값을 기준값(reference, baseline)으로 하고 기준값에 대응하는 더미변수의 가중치는 항상 1으로 놓는다. 다른 범주형 값을 가지는 경우는 기준값에 추가적인 특성이 있는 것으로 간주한다. 예를 들어 다음 축소랭크 방식은 $x_1 = A$ 를 기준값으로 하는 경우이다.

$$x_1 = A \rightarrow d_{1A} = 1, d_{1B} = 0$$

 $x_1 = B \rightarrow d_{1A} = 1, d_{1B} = 1$

반대로 $x_1 = B$ 를 기준값으로 하면 다음과 같아진다.

$$x_1 = A \rightarrow d_{1A} = 1, d_{1B} = 1$$

 $x_1 = B \rightarrow d_{1A} = 0, d_{1B} = 1$

이 값을 대입하면 기준값인 더미변수의 가중치는 상수항이 되고 나머지 더미변수의 가중치는 그 상수항에 추가 적으로 더해지는 상수항이 된다. $x_1 = A$ 를 기준값으로 하는 경우에는 다음과 같다.

$$x_1 = A \rightarrow \hat{y} = w_{1A} + w_2 x_2 + \dots + w_D x_D$$

 $x_1 = B \rightarrow \hat{y} = w_{1A} + w_{1B} + w_2 x_2 + \dots + w_D x_D$

그림 3.5.2: 축소랭크 방식 더미변수 가중치의 의미

patsy에서 포뮬러 문자열에 +0 또는 -1 이 없으면 축소랭크 방식으로 간주한다. 별도로 지정하지 않으면 알파벳 순서로 가장 빠른 범주값이 기준값이 된다. 축소랭크 방식에서는 범주값 이름 앞에 Treatment를 뜻하는 T. 기호가 붙는다.

In [6]:

```
df3 = pd.DataFrame(["A", "B", "C"], columns=["x1"])
df3
```

Out[6]:

x1

Λ Δ

1 B

2 C

In [7]:

```
dmatrix("x1", df3)
```

Out [7]:

```
DesignMatrix with shape (3, 3)
Intercept x1[T.B] x1[T.C]

1 0 0
1 1 0 1

Terms:

'Intercept' (column 0)
```

'x1' (columns 1:3)

만약 기준값을 다른 값으로 바꾸고 싶으면 Treatment 연산자를 사용한다. 다음 코드에서는 B를 기준값으로 사

In [8]:

용하였다.

```
dmatrix("C(x1, Treatment('B'))", df3)
```

Out[8]:

하나의 범주형 독립변수가 있는 회귀분석

예제

월(month)을 독립변수로 하여 해당 월의 기온을 예측하는 회귀분석을 해보자. 데이터는 다음과 같다.

In [9]:

```
df_nottem = sm.datasets.get_rdataset("nottem").data
```

일단 다음 코드를 사용하여 연단위(year fraction) 데이터에서 월을 추출해낸다.

In [10]:

```
import datetime
from calendar import isleap

def convert_partial_year(number):
    year = int(number)
    d = datetime.timedelta(days=(number - year) * (365 + isleap(year)))
    day_one = datetime.datetime(year, 1, 1)
    date = d + day_one
    return date

df_nottem["date0"] = df_nottem[["time"]].applymap(convert_partial_year)
df_nottem["date"] = pd.DatetimeIndex(df_nottem["date0"]).round('60min') + datetime.timedelta(seconds)
df_nottem["month"] = df_nottem["date"].dt.strftime("%m").astype('category')
del df_nottem["date0"], df_nottem["date"]
df_nottem.tail()
```

Out[10]:

	time	value	month
235	1939.583333	61.8	08
236	1939.666667	58.2	09
237	1939.750000	46.7	10
238	1939.833333	46.6	11
239	1939.916667	37.8	12

이 데이터를 박스플롯으로 시각화한다.

In [11]:

```
df_nottem.boxplot("value", "month")
plt.show()
```


풀랭크 방식으로 더미변수를 만들어 회귀분석을 하면 각 월의 평균 기온을 구할 수 있다. 월 데이터가 숫자이므로 연속값으로 인식하지 않도록 C() 연산자를 사용하였다.

In [12]:

```
model = sm.OLS.from_formula("value ~ C(month) + 0", df_nottem)
result = model.fit()
print(result.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Mon, ns∶	value OLS east Squares 17 Jun 2019 12:38:49 240 228 11 nonrobust	R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	squared: stic: -statistic):	2.	0.930 0.927 277.3 96e-125 -535.82 1096. 1137.
	coef	std err	t	P> t	[0.025	0.975]
C(month)[01] C(month)[02] C(month)[03] C(month)[04] C(month)[05] C(month)[06] C(month)[07] C(month)[08]	39.6950 39.1900 42.1950 46.2900 52.5600 58.0400 61.9000 60.5200	0.518 0.518 0.518 0.518 0.518 0.518 0.518	76.691 75.716 81.521 89.433 101.547 112.134 119.592 116.926	0.000 0.000 0.000 0.000 0.000 0.000 0.000	38.675 38.170 41.175 45.270 51.540 57.020 60.880 59.500	40.715 40.210 43.215 47.310 53.580 59.060 62.920 61.540
C(month)[09] C(month)[10] C(month)[11]	56.4800 49.4950 42.5800	0.518 0.518 0.518	109.120 95.625 82.265	0.000 0.000 0.000	55.460 48.475 41.560	57.500 50.515 43.600

Omnibus:	5.430	Durbin-Watson:	1.529
Prob(Omnibus):	0.066	Jarque-Bera (JB):	5.299
Skew:	-0.281	Prob(JB):	0.0707
Kurtosis:	3.463	Cond. No.	1.00

76.373

0.518

Warnings:

C(month)[12]

39.5300

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

포뮬러 문자열에서 +0 을 제외하면 축소랭크 방식을 사용한다. 이 때는 1월의 평균 기온을 기준으로 각 월의 평 균 기온이 얼마나 더 높은지를 나타내는 값이 회귀모형의 계수가 된다.

0.000

40.550

38.510

In [13]:

```
model = sm.OLS.from_formula("value ~ C(month)", df_nottem)
result = model.fit()
print(result.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Mon,	value 0LS ast Squares 17 Jun 2019 12:38:49 240 228 11 nonrobust	R-squared: Adj. R-squ F-statisti Prob (F-st Log-Likeli AIC: BIC:	uared: c: atistic):		0.930 0.927 277.3 96e-125 -535.82 1096. 1137.
	coef	std err	t	P> t	[0.025	0.975]
Intercept C(month)[T.02] C(month)[T.03] C(month)[T.04] C(month)[T.05] C(month)[T.06] C(month)[T.07] C(month)[T.08] C(month)[T.09] C(month)[T.10] C(month)[T.10] C(month)[T.11] C(month)[T.11]	39.6950 -0.5050 2.5000 6.5950 12.8650 18.3450 22.2050 20.8250 16.7850 9.8000 2.8850 -0.1650	0.518 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732 0.732	76.691 -0.690 3.415 9.010 17.575 25.062 30.335 28.450 22.931 13.388 3.941 -0.225	0.000 0.491 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	38.675 -1.947 1.058 5.153 11.423 16.903 20.763 19.383 15.343 8.358 1.443 -1.607	40.715 0.937 3.942 8.037 14.307 19.787 23.647 22.267 18.227 11.242 4.327 1.277
Omnibus: Prob(Omnibus): Skew: Kurtosis:		5.430 0.066 -0.281 3.463	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.			1.529 5.299 0.0707 12.9

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

보스턴 집값 데이터의 범주형 변수

보스턴 집값 데이터는 CHAS 라는 범주형 변수를 가지고 있다. 이 변수는 0과 1 두 개의 값(클래스)를 가지므로 이미 full rank 더미변수로 변환되어 있는 것과 비슷하다. 즉 다음과 같은 두 개의 모형을 각각 회귀분석하는 경우라고 볼 수 있다.

$$y = (w_0 + w_{\text{CHAS}}) + w_{\text{CRIM}} \text{CRIM} + w_{\text{ZN}} \text{ZN} + \cdots$$

• CHAS = 0 인 경우,

$$y = w_0 + w_{\text{CRIM}} \text{CRIM} + w_{\text{ZN}} \text{ZN} + \cdots$$

In [14]:

```
from sklearn.datasets import load_boston

boston = load_boston()
dfXO_boston = pd.DataFrame(boston.data, columns=boston.feature_names)
dfX_boston = sm.add_constant(dfXO_boston)
dfy_boston = pd.DataFrame(boston.target, columns=["MEDV"])
df_boston = pd.concat([dfX_boston, dfy_boston], axis=1)

model = sm.OLS(dfy_boston, dfX_boston)
result = model.fit()
print(result.summary())
```

OLS Regression Results

Dep. Varial Model: Method: Date: Time: No. Observa Df Residua Df Model: Covariance	Mo ations: Is:	Least Squa on, 17 Jun 2 12:38	OLS Adj. res F-sta 019 Prob :49 Log-l 506 AIC: 492 BIC:	uared: R-squared: atistic: (F-statistic Likelihood:	s):	0.741 0.734 108.1 6.72e-135 -1498.8 3026. 3085.
	coef	std err	t	P> t	[0.025	0.975]
const CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT	36.4595 -0.1080 0.0464 0.0206 2.6867 -17.7666 3.8099 0.0007 -1.4756 0.3060 -0.0123 -0.9527 0.0093 -0.5248	5.103 0.033 0.014 0.061 0.862 3.820 0.418 0.013 0.199 0.066 0.004 0.131 0.003 0.051	7.144 -3.287 3.382 0.334 3.118 -4.651 9.116 0.052 -7.398 4.613 -3.280 -7.283 3.467 -10.347	0.000 0.001 0.001 0.738 0.002 0.000 0.000 0.958 0.000 0.000 0.001 0.000	26.432 -0.173 0.019 -0.100 0.994 -25.272 2.989 -0.025 -1.867 0.176 -0.020 -1.210 0.004 -0.624	46.487 -0.043 0.073 0.141 4.380 -10.262 4.631 0.027 -1.084 0.436 -0.005 -0.696 0.015 -0.425
Omnibus: Prob(Omnibus) Skew: Kurtosis:	 us):	1.			:	1.078 783.126 8.84e-171 1.51e+04

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

위 분석에서 두 데이터 그룹은 찰스강에 인접하지 않은 집의 가격 모형은 상수항이 36.4911이지만 찰스강에 인접한 집의 가격 모형은 상수항이 36.4911 + 2.6886 = 39.1797이라는 것을 알 수 있다.

연습 문제 2.4.1

- 1. from_formula 메서드를 사용하여 보스턴 집값 예측 문제를 다시 풀어라. C() 를 사용하여 범주형값임을 명시적으로 지정하는 것을 잊으면 안된다.
- 2. 모형 문자열에서 상수항을 없애지 말고 다시 푼다. 이때 CHAS 변수의 가중치는 무엇을 뜻하는가.

ContrastMatrix

사용자가 원하는 특정한 더미변수 값을 지정하고 싶다면 ContrastMatrix 클래스를 사용한다. ContrastMatrix 행렬은 각 클래스가 인코딩될 벡터값 목록을 미리 정의한 행렬이다.

In [15]:

```
df4 = pd.DataFrame(["A", "B", "C", "A", "B"], columns=["x1"])
df4
```

Out [15]:

x1 0 A 1 B 2 C 3 A

4 B

예를 들어 위 데이터에서 B와 C 카테고리를 하나의 카테고리로 묶어서 인코딩하고 싶다면 다음처럼 코딩한다.

In [16]:

```
encoding_vectors = [[1, 0], [0, 1], [0, 1]]
label_postfix = [":A", ":BC"]
contrast = ContrastMatrix(encoding_vectors, label_postfix)
dmatrix("C(x1, contrast) + 0", df4)
```

Out[16]:

두 개 이상의 범주형 변수가 있는 경우

두 개 이상의 범주형 변수가 있는 경우에는 축소형 방식을 사용한다. 이 때 주의할 점은 모든 범주형 범수의 가중 치는 기준값 상수항에 더해지는 상수항으로 취급된다. 예들 들어 x_1 은 A, B 의 두가지 값을 가지고 x_2 은 X, Y의 두가지 값을 가지고 값을 가지는 경우 상수항과 각 더미변수의 가중치의 의미는 다음과 같아진다.

```
 \hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_D x_D   \downarrow \qquad \qquad \downarrow   \hat{y} = w_{AX} + w_{1B} d_{1B} + w_{2Y} d_{2Y} + \dots + w_D x_D
```

- w_{AX} : 기준값 $x_1 = A, x_2 = X$ 인 경우의 상수항
- $w_{1,B}$: 기준값 $x_1 = B, x_2 = X$ 인 경우에 추가되는 상수항
- $w_{1,Y}$: 기준값 $x_1 = A, x_2 = Y$ 인 경우에 추가되는 상수항
- $w_{1,B} + w_{1,Y}$: 기준값 $x_1 = B, x_2 = Y$ 인 경우에 추가되는 상수항

In [17]:

```
df5 = pd.DataFrame([["A", "X"], ["B", "X"], ["A", "Y"], ["B", "Y"]], columns=["x1", "x2"]) df5
```

Out[17]:

	х1	x2
0	Α	Х

- **1** B X
- 2 A Y
- **3** B Y

In [18]:

dmatrix("x1 + x2", df5)

Out[18]:

DesignMatrix with shape (4, 3)
Intercept x1[T.B] x2[T.Y]

1 0 0
1 1 0 1
1 0 1

Terms:

- 'Intercept' (column 0)
- 'x1' (column 1)
- 'x2' (column 2)

그림 2.5.3: 두 개의 범주형 독립변수가 있는 경우

범주형 독립변수와 실수 독립변수의 상호작용

만약 범주형 변수의 값이 달라질 때 상수항만 달라지는 것이 아니라 다른 독립변수들이 미치는 영향도 달라지는 모형을 원한다면 상호작용(interaction)을 쓰면 된다. 예를 들어 범주형 독립변수 x_1 과 실수 독립변수 x_2 를 가지는 회귀모형에서 연속값 독립변수 x_2 가 미치는 영향 즉 가중치가 범주형 독립변수 x_1 의 값에 따라 달라진다면 범주형 독립변수를 더미변수 d_1 으로 인코딩하고 연속값 독립변수 x_2 는 d_1 과의 상호작용 항 d_1 : x_2 를 추가하여 사용한다.

이 때 모형은 다음과 같아진다.

$$\hat{y} = w_0 + w_1 x_1 \cdot w_2 x_2$$

$$= w_0 + (w_{1A} d_A + w_{1B} d_B) \cdot (w_2 x_2)$$

$$= w_0 + w_{2A} d_A x_2 + w_{2B} d_B x_2$$

 $x_1 = A$ 일 때는 $d_A = 1, d_B = 0$ 에서

$$\hat{y} = w_0 + w_{2A} x_2$$

 $x_1 = B$ 일 때는 $d_A = 0, d_B = 1$ 에서

$$\hat{y} = w_0 + w_{2B}x_2$$

이므로 x_1 범주값에 따라 x_2 의 기울기가 달라지는 모형이 된다.

In [19]:

```
df6 = pd.DataFrame([["A", 1], ["B", 2], ["A", 4], ["B", 5]], columns=["x1", "x2"]) df6
```

Out[19]:

	x1	x2
0	Α	1
1	В	2
2	Α	4
3	В	5

In [20]:

```
dmatrix("C(x1):x2", df6)
```

Out[20]:

그림 2.5.4: 범주형 독립변수와 실수 독립변수의 상호작용이 있는 경우

만약 범주형 독립변수도 종속변수에 영향을 미치고 범주형 독립변수와 실수 독립변수의 상호작용도 종속변수에 영향을 미친다면 모형은 다음과 같아진다.

$$\hat{y} = w_1 x_1 + w_{12} x_1 \cdot w_2 x_2$$

$$= (w_{1A} d_A + w_{1B} d_B) + (w_{1A} d_A + w_{1B} d_B) \cdot (w_2 x_2)$$

$$= (w_{1A} d_A + w_{1B} d_B) + (w_{2A} d_A + w_{2B} d_B) x_2$$

$$= (w_{1A} + w_{2A} x_2) d_A + (w_{2B} + w_{2B} x_2) d_B$$

 $x_1 = A$ 일 때는 $d_A = 1, d_B = 0$ 에서

$$\hat{y} = w_{1A} + w_{2A} x_2$$

 $x_1 = B$ 일 때는 $d_A = 0, d_B = 1$ 에서

$$\hat{y} = w_{1B} + w_{2B}x_2$$

이므로 x_1 범주값에 따라 상수항과 x_2 의 기울기가 모두 달라지는 모형이 된다.

In [21]:

dmatrix("C(x1) + C(x1):x2", df6)

Out[21]:

DesignMatrix with shape (4, 4)

Terms:

- 'Intercept' (column 0)
- C(x1) (column 1)
- C(x1):x2' (columns 2:4)

<img src="https://datascienceschool.net/upfiles/f093b73d4e964688aab5d86cd54e932f.png"
width="100%"/>

그림 3.5.5: 범주형 독립변수, 범주형 독립변수와 실수 독립변수의 상호작용 모두 있는 경우

또는

In [22]:

```
dmatrix("C(x1)*x2", df6)
```

Out[22]:

```
DesignMatrix with shape (4, 4)
  Intercept C(x1)[T.B] x2 C(x1)[T.B]:x2
                     0
                         1
                                         0
          1
                                         2
                         2
          1
                      1
                                         0
          1
                      0
                         4
                                         5
                      1
  Terms:
```

- 'Intercept' (column 0)
- C(x1) (column 1)
- 'x2' (column 2)
- C(x1):x2 (column 3)

범주형 독립변수의 상호작용

두 개의 범주형 독립변수가 있고 서로 상호작용이 존재한다면 다음과 같은 모형이 된다.

$$\hat{y} = w_1 x_1 \cdot w_2 x_2$$

$$= (w_{1A} d_A + w_{1B} d_B) \cdot (w_{2X} d_X + w_{2Y} d_Y)$$

$$= w_{AX} d_A d_Y + w_{BX} d_B d_X + w_{AY} d_A d_Y + w_{BY} d_B d_Y$$

즉 범주형 독립변수는 하나가 되고 대신 범주형 값이 두 독립변수의 범주형 값들의 조합인 AX, BX, AY, BY의 네가지가 된다.

In [23]:

```
dmatrix("x1:x2 + 0", df5)
```

Out[23]:

DesignMatrix with shape (4, 4) x1[A]:x2[X] x1[B]:x2[X] x1[A]:x2[Y] x1[B]:x2[Y]1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 Terms: 'x1:x2' (columns 0:4)

위 모형은 풀랭크 모형이고 축소랭크의 경우는 다음과 같다.

In [24]:

```
dmatrix("x1:x2", df5)
```

Out [24]:

DesignMatrix with shape (4, 4)

Terms:

^{&#}x27;Intercept' (column 0)
'x1:x2' (columns 1:4)