Best Sum

You are given two arrays A and B of length \mathbf{N} . Let S be the set of integers from 1 to \mathbf{N} . Can you find the maximum possible value of $(A_{i1}+A_{i2}+...+A_{ik})^2+(B_{i1}+B_{i2}+...+B_{ik})^2$ where $\{i1,i2...ik\}$ is a non-empty subset of S?

Input Format

The first line contains a single integer **T**, denoting the number of test cases.

T testcases follow, each test case given in following format.

```
N
A1 A2 ... AN
B1 B2 ... BN
```

Output Format

For each test case, output the maximum possible value in one line.

Constraints

```
\begin{array}{l} 1 <= T <= 10 \\ 1 <= N <= 1000 \\ -10^6 <= A_i, \ B_i <= 10^6 \end{array}
```

Sample Input

```
1
2
-1 5
4 -5
```

Sample Output

50

Explanation

All possible non-empty subsets for N=2 of $S=\{1,2\}$ are $\{1\}$, $\{2\}$ and $\{1,2\}$. The maximum possible values of the above equation now are

•
$$(-1)^2 + (4)^2 = 17$$

•
$$(5)^2 + (-5)^2 = 50$$

•
$$(-1 + 5)^2 + (4 - 5)^2 = 17$$

hence 50.

Timelimits

Timelimits for this challenge can be seen here