TP1 Supervision - Blanchon	Pt		A B C D	Note	
I Création du process virtuel					
1 Ajouter un bloc SIM sur votre programme, il simulera le fonctionnement d'un procédé réel. Donner lui un nom.	2,5	Α		2,5	
2 Procéder à son paramètrage en respectant les valeurs suivantes	2,5	Α		2,5	
II. Etude du procédé					
1 Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures.	2	Α		2	
2 En déduire le gain statique du procédé autour du point de fonctionnement. On prendra une consigne de 70%.	1	Α		1	
3 En déduire le sens d'action à régler sur le régulateur.	1	В		0,75	C'est la commande qui fait augmenter la mes
4 Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В		2,25	Le graphique n'est pas très beau !!!
III. Etude du régulateur					
1 Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	1,5	D		0,075	
2 En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	1,5	D		0,075	
IV. Performances et optimisation					
1 Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	D		0,05	
Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de	1,5	D		0,075	
réponse à 10%, la valeur du premier dépassement et la précision relative.	1,5	D		0,075	
Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4 Mesurer à nouveau les perfomances de votre régulation, comparer les avec celles obtenues à la question précédente.	1,5	D		0,075	
		Not	e sur : 20	11,4	

TP1 Supervision

I. Création du process virtuel

1-

2-

Tagllame Type	SIM		LIN Name	SIM <local></local>
	SIM		DBase	
			Rate	0
Mode	AUTO		Alarms	
Fallback	AUTO		HoiseMax	0.0
PV 0.0	%	Lag1	10.00	
			Lag2	12.00
Bias	0.0	%	TimeBase	Secs
Track	0.0	%		
			Intgr	FALSE
HR_PV	100.0	%	Invert	FALSE
LR_PV	_			
			Init	TRUE
OP	0.0	Eng2		
			SelTrack	FALSE
HR_OP	100.0	Eng2		
LR_OP	0.0	Eng2		
HL_OP	100.0	Eng2		
LL_OP	0.0	Eng2		

II. Étude du procédé

1-

- 2- On calcule le gain statique soit $K=\Delta S/\Delta E=70/70=1$
- 3- Le procéde est direct car quand on augment x (PV) y (OP) augmente. Vu que le procede est direct le regulateur est inverse.

T0= 16,05min 28% de X T1=16,15min 40%de X T2=16,20min K=1 T=2,8(15-5)-1,8(20-5)=1s TO=5,5(20-15)=27,5s H(p)=(1*e^-1p)/(1+27,5p)

III. Étude du régulateur

- 1- Le régulateur est mixte
- 2- Je ne sais pas

IV. Performances et optimisation

1-

- 2- Je ne sais pas
- 3- Je ne sais pas
- 4-Je ne sais pas
- 5-Je ne sais pas