1	AD-A113 391 UNCLASSIFIED	VERIFICATI	ON STUDY -	LONG BEAC DELAMAR	H CA Valley,	NEVADA	. VOLUM F0	E II. (EOTECH	6	1)
	1 0+ 3										
_											

OF

ADA 113391

	PHOTOGRAPH TH	IS SHEET					
D-A 113391 DTIC ACCESSION NUMBER	LEVEL EN TR-2 DOCUMENT IDENT	INVENTORY 7-DM-I TIFICATION					
40-	This document has been for public release and distribution to unlimited	on STATEMENT					
ACCESSION FOR		DN STATEMENT					
NTIS GRA&I DTIC TAB UNANNOUNCED JUSTIFICATION BY DISTRIBUTION / AVAILABILITY CODES	OR SPECIAL DIE	APR 0 9 1982 E DATE ACCESSIONED					
DISTRIBUTION	INSPECTED						
	& \$ \(\(\) \	04					
DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2							

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

MX SITING INVESTIGATION GEOTECHNICAL EVALUATION

AD A113391

VERIFICATION STUDY DELAMAR VALLEY, NEVADA VOLUME II - GEOTECHNICAL DATA

PREPARED FOR BALLISTIC MISSILE OFFICE (BMO) NORTON AIR FORCE BASE, CALIFORNIA

SECURITY CLASSIFICATION OF THIS PACE (When Dain Entered) FEAD INSTRUCTIONS REPORT DOCUMENTATION PAGE SEFORE COMPLETING FORM 2. GOVY ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER 1. REPORT NUMBER DW-II FNTRZT 4. TITLE (and Subtitle) / criffication of way 3 TYPE OF REPORT & PERIOD COVERED Delamar Valley, Newadas Vilumett Final 6 PERFORMING DRG REPORT NUMBER Geotechnical Data FM-TE-27-DM-II F04704-80-C-0006 P. PERFORMING ORGANIZATION NAME AND ADJANCES TO THE PROPERTY AND PROPERTY PROPERTY PROPERTY POST OF THE POST OF TH PROGRAM ELEMENT, PROJECT TASK 64312 F Long Beach Ca 90807

11. CONTROLLING OFFICE NAME AND ADDRESS
U.S. Department & The Force
Space and Missile Systems (region is the 12. REPORT DATE 24 Mar 81 16 CHOLAFIS (392009 (SAMSO) 15. SECURITY CLASS, (of this report) 16. DISTRIBUTION STATEMENT (of this Report) Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Blocking If different from Report) and the reserve the sections of the section of the 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by birck number) this report contai

MX SITING INVESTIGATION GEOTECHNICAL EVALUATION

VERIFICATION STUDY - DELAMAR VALLEY NEVADA

VOLUME II - GEOTECHNICAL DATA

Prepared for:

U.S. Department of the Air Force Ballistic Missile Office (BMD) Norton Air Force Base, California 92409

Prepared by:

Fugro National, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

24 March 1981

FOREWORD

This volume of geotechnical data was compiled for the Department of the Air Force, Ballistic Missile Office (BMO), in compliance with Contract No. F04704-80-C-0006, CDRL Item 004A6. It contains the field data and laboratory test results from the Verification investigation of Delamar Valley. A synthesis of these data are available in Volume I (FN-TR-27-DM-I).

The data in each section of this volume are preceded by an explanation of the format and terms used in the compilation.

VOLUME II

	TABLE OF CONTENTS	_
		Page
1.0	EXPLANATION OF ACTIVITY MAP AND GEOLOGIC	
	STATION DATA	1
2.0	EXPLANATION OF GROUND-WATER DATA	15
3.0	EXPLANATION OF SEISMIC REFRACTION DATA	17
4.0	EXPLANATION OF ELECTRICAL RESISTIVITY DATA	32
5.0	EXPLANATION OF BORING LOGS	45
6.0	EXPLANATION OF TRENCH AND TEST PIT LOGS	57
7.0	EXPLANATION OF SURFICIAL SOIL SAMPLE LOGS	75
8.0	EXPLANATION OF LABORATORY TEST RESULTS	77
9.0	EXPLANATION OF CONE PENETROMETER TEST RESULTS	98
Figu:		
-	1.0 EXPLANATION OF ACTIVITY MAP AND GEOLOGIC	
	STATION DATA	
II-1	-1 Field Data Sheet Delamar Valley, Nevada	13,14
	3.0 EXPLANATION OF SEISMIC REFRACTION DATA	
11-3	-1 Seismic Refraction Line DM-S-1, Time Distance Data and Velocity Profile,	
	Delamar Valley, Nevada	19
11-3	-2 Seismic Refraction Line DM-S-2, Time Distance Data and Velocity Profile,	
	Delamar Valley, Nevada	20
11-3	-3 Seismic Refraction Line DM-S-3, Time Distance Data and Velocity Profile,	
	Delamar Valley, Nevada	21
11-3	-4 Seismic Refraction Line DM-S-4, Time Distance Data and Velocity Profile,	
	Delamar Valley, Nevada	22
11-3	-5 Seismic Refraction Line DM-S-5, Time Distance Data and Velocity Profile,	
	Delamar Valley, Nevada	23

LIST OF FIGURES

Figure Number		Page
II - 3−6	Seismic Refraction Line DM-S-6, Time Distance Data and Velocity Profile, Delamar Valley, Nevada	24
11-3-7	Seismic Refraction Line DM-S-7, Time Distance Data and Velocity Profile, Delamar Valley, Nevada	25
11-3-8	Seismic Refraction Line DM-S-8, Time Distance Data and Velocity Profile, Delamar Valley, Nevada	26
11-3-9	Seismic Refraction Line DM-S-9, Time Distance Data and Velocity Profile,	
11-3-10	Delamar Valley, Nevada	27
11-3-11	Delamar Valley, Nevada	28
11-3-12	Delamar Valley, Nevada	29
11-3-13	Delamar Valley, Nevada	30
	Distance Data and Velocity Profile, Delamar Valley, Nevada	31
4.	0 EXPLANATION OF ELECTRICAL RESISTIVITY DATA	
II-4-1	Resistivity Sounding DM-R-1, Sounding Curve and Interpretation, Delamar Valley, Nevada	33
II-4-2	Resistivity Sounding DM-R-2, Sounding Curve and Interpretation, Delamar	
11-4-3	Valley, Nevada	34
II-4-4	Valley, Nevada	35
11-4-5	Valley, Nevada	36
11-4-6	Valley, Nevada	37
	Curve and Interpretation, Delamar	38

LIST OF FIGURES

Figure Number		Page
II -4- 7	Resistivity Sounding DM-R-7, Sounding Curve and Interpretation, Delamar	39
11-4-8	Valley, Nevada	
II-4-9	Valley, Nevada	40
II-4-10	Valley, Nevada	41
II-4-11	Valley, Nevada	42
II-4-12	Curve and Interpretation, Delamar Valley, Nevada	43
	Curve and Interpretation, Delamar Valley, Nevada	44
	5.0 EXPLANATION OF BORING LOGS	
II-5-1	Log of Boring DM-B-1, Delamar Valley, Nevada	52
11-5-2	Log of Boring DM-B-2, Delamar Valley, Nevada	53
11-5-3	Log of Boring DM-B-3, Delamar Valley, Nevada	54
II-5-4 II-5-5	Log of Boring DM-B-4, Delamar Valley, Nevada Log of Boring DM-B-5, Delamar Valley, Nevada	55 56
11-5-5	Log of Boring DM-B-3, Delamar Valley, Nevada	50
	6.0 EXPLANATION OF TRENCH AND TEST PIT LOGS	
II-6-1	Log of Trench DM-T-1, Delamar Valley, Nevada	58
II-6-2	Log of Trench DM-T-2, Delamar Valley, Nevada	59
II-6-3	Log of Trench DM-T-3, Delamar Valley, Nevada	60
11-6-4	Log of Trench DM-T-4, Delamar Valley, Nevada	61
II-6-5	Log of Trench DM-T-5, Delamar Valley, Nevada Log of Trench DM-T-6, Delamar Valley, Nevada	62 63
II-6-6 II-6-7	Log of Trench DM-T-7, Delamar Valley, Nevada	64
11-6-8	Log of Trench DM-T-8, Delamar Valley, Nevada	65
11-6-9	Log of Trench DM-T-9, Delamar Valley, Nevada	66
11-6-10	Log of Trench DM-T-10, Delamar Valley, Nevada	67
II-6-11	Logs of Test Pits DM-P-1 and DM-P-2,	
	Delamar Valley, Nevada	68
11-6-12	Logs of Test Pits DM-P-3 and DM-P-4, Delamar Valley, Nevada	69
11-6-13	Logs of Test Pits DM-P-5 and DM-P-6, Delamar Valley, Nevada	70

LIST OF FIGURES

Figure		
Number		Page
II-6-14	Logs of Test Pits DM-P-7 and DM-P-8,	•
II-6-15	Delamar Valley, Nevada	71
	Delamar Valley, Nevada	72
II-6-16	Logs of Test Pits DM-P-11 and DM-P-12, Delamar Valley, Nevada	73
11-6-17	Logs of Test Pits DM-P-13 and DM-P-14,	. •
	Delamar Valley, Nevada	74
	7.0 EXPLANATION OF SURFICIAL SAMPLE LOGS	
II-7-1	Logs of Surficial Soil Samples, Delamar	
	Valley, Nevada	76
	8.0 EXPLANATION OF LABORATORY TEST RESULTS	
11-8-1	Consolidation Test Results, Delamar Valley,	
II-8-2	Nevada	83
	Valley, Nevada	84,85
II-8-3	California Bearing Ratio (CBR) Curves, Delamar Valley, Nevada	86
II-8-4	California Bearing Ratio (CBR) Curves,	
	Delamar Valley, Nevada	87
	LIST OF TABLES	
	1.0 EXPLANATION OF ACTIVITY MAP AND GEOLOGIC	
	STATION DATA	
II-1-1	Geodetic and UTM Coordinates, of Activity	
II-1-2	Locations, Delamar Valley, Nevada	6-11
	Nevada	12
	2.0 EXPLANATION OF GROUND-WATER DATA	
II-2-1	Ground-Water Data, Delamar Valley, Nevada	16
	5.0 EXPLANATION OF BORING LOGS	
II-5-1	Unified Soil Classification System, Delamar	
	Valley Nevada	5.1

LIST OF TABLES

Number		Page
	8.0 EXPLANATION OF LABORATORY TEST RESULTS	
II-8 - 1	Summary of Laboratory Test Results, Delamar Valley, Nevada	88-91
II-8-2	Summary of Triaxial Compression Test Results, Delamar Valley, Nevada	92
II-8-3 .	Summary of Unconfined Compression Test Results, Delamar Valley, Nevada	93
II-8-4	Direct Shear Test Results Delamar Valley, Nevada	94
11-8-5	Summary of Chemical Test Results, Delamar Valley, Nevada	95
11-8-6	California Bearing Ratio (CBR) Test Results, Delamar Valley, Nevada	96,97
	LIST OF DRAWINGS	
Drawing <u>Number</u>		
	1.0 EXPLANATION OF ACTIVITY AND GEOLOGIC AND STATION DATA	
II-1-1	at	Pocket end of ction
	9.0 EXPLANATION OF CONE PENETROMETER TEST RESULTS	
II-9-1	at	Pocket end of

1.0 EXPLANATION OF ACTIVITY MAP AND GEOLOGIC STATION DATA

Locations of all field activities are shown in Drawing II-1-1, Activity Location Map (in pocket). The geodetic and Universal Transverse Mercator (UTM) coordinates of all activities are listed in Table II-1-1.

Geologic stations were established at selected locations throughout the valley at which detailed descriptions of surficial basin-fill deposits or rock were recorded. All data taken on surficial basin-fill units at the geologic stations are listed in Table II-1-2, and an explanation of the column headings in the table is given below. An example of the field data sheet is shown on Figure II-1-1. At stations where rock descriptions were made, only geologic unit designations are listed. A general explanation of all geologic unit symbols used in Verification studies is included at the end of this section.

Table II-1-2	Explanation
Station Number	Geologic stations are numbered sequentially. (e.g., NDMG001; N= Nevada-Utah Study Area; DM= Valley abbreviation [Delamar]; G= Geology Station).
Geol. Unit	Generalized mapped geomorphic unit (see explanation below). The grain-size designations (s, g, and f) indicate sand, gravel, and fines, respectively.
MPS (mm)	Average Maximum Particle Size in millimeters.
Grain Size (%B, %C, %G, %S, %F)	Estimated particle size distribution using the Unified Soil Classification System. Percentages of boulders (%B) and cobbles (%C) are based on the entire deposit, whereas percentages of gravel (%G), sand (%S), and fines (%F)

are taken only on the fraction composed of particles less than 3 inches (76 mm) in diameter. Note: The symbol Ø (occasional) indicates between 1 and 5 percent; zero indicates 0 to 1 percent.

* Laboratory analyses of selected soil samples using the Unified Soil Classification System.

USCS Soil class according to the Unified Soil Class-ification System.

Munsell Color Soil color based on standard Munsell Soil Color Charts.

Source Rock Rock types of coarse clasts (gravel) listed in Types order of abundance.

Physical Data listed in columns 6 through 15 address specific soil properties. These are listed below in parentheses following the column heading number and are also listed at the bottom of Table II-1-1. Data are coded with each numerical entry referring to a specific soil condition as listed below.

- 6 (Grain Shape) 1) Angular, 2) Subangular, 3) Subrounded, 4) Rounded, 5) Well rounded
- 7 (Moisture 1) Dry, 2) Slightly Moist, 3) Moist, 4) Very Content) Moist, 5) Wet
- 8 (Plasticity 1) None, 2) Low, 3) Medium, 4) High
 of Fines)
- 9 (Consistency) Coarse grained: 1) Very Loose, 2) Loose, 3) Medium Dense, 4) Dense, 5) Very Dense Fine grained: 1)Soft, 2) Firm, 3) Stiff, 4) Hard
- 10 (Structure)
 1) Non-stratified, 2) Stratified, tabular,
 3) Stratified, other (lensed, cross bedded, discontinuous beds)
- 11 (Cementation-1) None, 2) Weak, 3) Moderate, 4) Strong Induration)
- 12 (Depth to Depth to layer (in centimeters) exhibiting Cemented cementation-induration described in Column 11 Layer) (above)

- 13 (Weathering 1) Fresh, 2) Slight, 3) Moderate, 4) Very of clasts)
- 14 (Soil 1) None (A-C profile), 2) Poor (incipient Profile B-horizon), 3) Well (prominant B-horizon) Development)
- 15 (Caliche 1) None, 2) Stage I, 3) Stage II, 4) Stage Development) III, 5) Stage IV

Terrain information at the data location is broken into the following categories:

Drainage Depth Average depth of drainages (in feet) (ft)

Drainage Width Average width of drainages (in feet) (ft)

Slope (%) Average slope of ground surface (in percent grade)

Sample Number of samples taken

GENERALIZED GEOLOGIC UNITS

Explanation

Surficial Basin-fill Units

- Al Younger Fluvial Deposits Major recent stream channel and floodplain deposits.
- A2 Older Fluvial Deposits Older incised stream channel and floodplain deposits in elevated terraces bordering major recent drainages. Note: Not mapped in Delamar Valley.
- A3 Eolian Deposits Windblown deposits of sand occurring as either thin sheets (A3s) or dunes (A3d).
- A4 Playa and Lacustrine Deposits Deposits occurring in modern, active playas (A4) or in either inactive playas or older lake beds and abandoned shorelines associated with extinct lakes (A40).
- Alluvial Fan Deposits Alluvial deposits consisting of debris flow and water-laid alluvium near mountain fronts, grading into predominantly water-laid alluvium deposited in shifting distributary channels near the basin center. Younger (A5y), intermediate (A5i), and older (A5o) alluvial fans are differentiated by surface soil development, terrain conditions, and present depositional/erosional environment.

Grain sizes of these deposits (except A3 deposits, which are exclusively sandy) are indicated by a single letter (f, s, or g) following the geologic unit symbol. These letters indicate the predominant grain size and range of soil types according to the Unified Soil Classification System.

- f fine-grained clays and silts (ML, CL, MH, CH)
- s sands (SP, SW, SM, SC)
- g gravels (GP, GW, GM, GC)

ROCK UNITS

- I Igneous (undifferentiated). Rocks formed by solidification of a molten or partially molten mass.
 - Il Intrusive Plutonic rocks formed by solidification of molten material beneath the surface (e.g., granite, granodiorite, diorite, gabbro).
 - I2 Extrusive (intermediate and acidic) Volcanic rocks of intermediate and acidic compositon formed by solidification of molten material at or near the surface, (e.g., rhyolite, latite, dacite, andesite).
 - I3 Extrusive (basic) Volcanic rocks of basic composition, generally formed by solidification of molten materials at or near the surface (e.g., basalt).
 - I4 Extrusive (pyroclastic) ~ Rocks formed by accumulation of volcanic ejecta (e.g., ash, tuff, welded tuff, agglomerate).
- S Sedimentary (undifferentiated) Rocks formed by accumulation of clastic solids, organic solids, and/or chemically precipitated minerals.
 - Sl Arenaceous and/or Siliceous Rocks Composed of sandsize particles (e.g., sandstone, orthoquartzite) or of cryptocrystalline silica (e.g., opal, chert).
 - S2 Carbonate Rocks Composed predominantly of calcium carbonate detritus or chemical precipitates (e.g., limestone, dolomite, chalk).

- S3 Argillaceous Rocks Composed of clay and silt-sized particles (e.g., siltstone, shale, claystone).
- S4 Evaporite Rocks Precipitated from solution as a result of evaporation (e.g., halite, gypsum, anhydrite, sylvite).
- S5 Coarse Clastic Rocks Composed of gravel sized or larger clasts (e.g., conglomerate, breccia).
- M Metamorphic (undifferentiated) Rocks formed through recrystallization in the solid state of preexisting rocks by heat and pressure (e.g., gneiss, schist, hornfels, metaquartzite).

ACT

ID.

DELAMAR VALLEY ACTIVITY LOCATIONS

LONG.

UTM COORD. ZONE 11

GEODETIC COORD.

LAT.

DEG MIN DEG MIN N(KM) E(KM) BORING SITES DM- BO1 37 30.03 114 54.03 4152.26 685. 59 DM- BO2 37 32.19 114 49.42 4156.41 692.30 DM- B03 37 20.02 114 55.58 4133.70 683.71 DM- BO4 37 23.67 114 50.16 4140.63 691.56 DM- B05 37 27.03 114 53.95 4146, 72 485. 83 DM-WRT1 37 26, 63 114 52, 08 4146, 05 688. 61 CPT SITES DM- CO1 37 20.36 114 50.67 4134, 49 690.96 DM- CO2 37 20, 91 114 49, 82 4135.54 692.18 DM- CO3 37 21.12 114 48.59 4135.97 **693. 99** DM- CO4 37 23.67 114 50.16 691.56 4140.63 DM- CO5 37 23. 21 114 49. 23 4139.81 692. 96 DM- CO6 37 22.50 114 48.55 4138. 52 **693. 99** DM- CO7 37 22, 24 114 47, 63 695.36 4138.07 DM- CO8 37 35.40 114 53.34 4162. 21 **686.38** DM- CO9 37 34.57 114 52.55 4160.70 687. 58 DM- C10 37 33.84 114 51.90 4159.37 **688. 57** DM- C11 37 33.15 114 51.04 4158. 13 **689.86** DM- C12 37 32.66 114 50.26 4157.25 691.03 DM- C13 37 32, 19 114 49, 42 4156.41 692, 30 DM- C14 37 31.54 114 48.44 4155. 25 693.77 DM- C15 37 31.00 114 48.04 **694.38** 4154. 25 DM- C16 37 29. 22 114 47. 58 4150.98 695.12 DM- C17 37 29.15 114 48.35 4150.83 **693. 99** DM- C18 37 29.60 114 50.00 4151.59 691.54 DM- C19 37 29.66 114 51.23 4151.66 689.73 DM- C20 37 29.83 114 52.40 4151.95 **688.00** DM- C21 37 30.03 114 54.03 4152, 26 685. 59 DM- C22 37 30. 18 114 55. 10 4152. 51 684.00 DM- C23 37 26.66 114 52.16 4146.09 688.49 DM- C24 37 26.83 114 52.95 4146. 39 **687.32** DM- C25 37 27.03 114 53.95 4146.72 685.83 DM- C26 37 27. 32 114 55. 46 4147. 21 683.59 DM- C27 37 23.83 114 57.19 4140, 70 681.19 DM- C28 37 24. 21 114 55. 67 4141.45 683. 41 DM- C29 37 24.00 114 54.48 4141.09 685.17 DM- C30 37 23.96 114 53.50 4141.05 **686. 63** DM- C31 37 21.02 114 57.75 4135.49 680.47

GEODETIC AND UTM COORDINATES
OF ACTIVITY LOCATIONS
DELAMAR VALLEY, NEVADA.

MX SITING INVESTIGATION

TABLE

DEPARTMENT OF THE AIR FORCE - SMO

II-1-1 1 OF 6

<u>voro national, inc</u>

ACT ID.	GE(DDETIC	COC	ORD. ONG.	UTM COORD. ZONE 11 N(KM) E(KM)		
	DEG	MIN	DEG	MIN	N(KM)	E(KM)	
DM- C34	3 37 2 3 37 3	20. 02 19. 84	114 114	55. 58 54. 54		683. 71 685. 26	
DM- C3							
DM- C36					4133. 04 4133. 08		
GEDLOO!				51. 21	4133.08	670. 16	
DM-GSO	37 3	21.66	114	54 . 57	4136. 77	685 . 14	
DM-QSO	2 37	17. 78	114	49. 47	4129.77	692. 84	
DM-0503					4132.14		
DM-GSO4							
DM-GSO					4136. 10 4137. 96		
DM-QSO7	7 37 2	22. 90	115	3. 13	4138.80		
DM-GSOE					4134.67	673. 16	
DM-GSO9	7 37 2	28. 36	114	54 . 30	4149. 17	685. 26	
					4142. 25	681. 74	
DM-GS1	37	24. 34	114	53. 21	4141. 76		
DM-0812						689. 13	
DM-0814	3 3/ 4 1 37 9	26.73 24.41	114	48.6/	4146. 71 4145. 76		
					4139.04	691.45	
					4136. 69		
DM-CS17					4137.06		
DM-0518	3 37 3	31. 67	114	48. 98	4155. 47		
DM-0819	7 37 2	29. 82	114	48. 21	4152.06	694. 17	
DM-0820	37 2	27. 58	114	47. 69	4147. 94	695. 03	
DM-GS2					4152. 97 4156. 19		
					4158.76		
					4162. 47		
DM-082	37	34. 55	114	52. 61	4160.66	687. 49	
DM-0826	5 37 3	33. 64	114	46. 97	4159. 18	695 . 83	
DM-GS27					4165. 49	695. 39	
DM-0529		35. 59	114		4162. 75	694. 60	
DM-0829		36. 57	114		4164. 55	694. 08	
DM-683(DM-683)		36. 10 31. 75		47. 70 47. 94	4163. 70 4155. 65	694. 66 694. 49	
DM-083		31. <i>73</i> 31. 49		47. 94	4155. 65 41 55 . 17	674. 47 694. 50	
DM-083				47. 24	4151.36	695. 62	

GEODETIC AND UTM COORDINATES
OF ACTIVITY LOCATIONS
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE — BMO

TABLE 11-1-1 2 OF 6

<u>ugro mational, inc</u>

ACT	GEODETIC COORD.				UTM COORD.			
ID.	ł	⊾AT.	LC	ONG.	ZONE	11		
!	DEC	MIN	DEG	MIN	N(KM)	E(KM)		
DM-0534	37	28. 57	114	47. 48	4149. 79	695. 30		
DM-0535	37	26. 85	114	48. 17	4146. 58	694. 3 6		
DM-GS36	37	23. 03	114	47. 49	4139. 53	695. 53		
DM~6537	37	22. 02	114	47. 26	4137.67	695. 91		
DM~0838	37	36. 15	114	47, 49	4163. 80	694. 96		
DM-6539	37	33. 14	114	47. 67	4158. 22	694. 83		
DM-0540	37	30. 89	114	48. 99	4154.02	692. 98		
DM-0841	37	30. 38	114	49. 05	4153.08	692. 91		
DM~GS42	37	28. 99	114	49. 88	4150.47	691.75		
DM-6843	37	28. 29	114	49.06	4149. 21	692. 98		
DM-0844	37	31.77	114	49. 61	4155.63	692. 02		
DM-GS45	37	32. 29	114	50. 59	4156. 56	690. 5 6		
DM-GS46	37	36. 52	114	50. 55	4164. 39	690. 43		
DM-GS47	37	34. 82	114	49. 96	4161. 25	691. 38		
DM-CS48	37	34. 09	114	49. 16	4159. 93	692. 59		
DM-0549	37	31. 18	114	51.81	4154.46	688. 82		
DM-CS50	37	27. 69	114	49. 59	4148.08	692. 23		
DM-GS51	37	26. 66	114	48. 24	4146. 22	694. 27		
DM-GS52	37	24. 59	114	48. 69	4142. 39	693. 69		
DM-GS53	37	21.01	114	48. 98	4135.75	693. 42		
DM-GS54		23. 98	114	50.11	4141. 20	691.62		
DM-GS55	37	27. 05	114	54. 18	4146.74	<i>6</i> 85. 48		
DM-CS56	37	24. 09	114	52. 23	4141.33	688. 48		
DM-GS57		22. 55	114	54. 07	4138. 44	68 5 . 83		
DM-GS58	37	20. 25	114	52. 03	4134. 24	688. 95		
DM0559	37	22. 19	114	51. 59	4137. 85	<i>6</i> 89. 52		
DM-GS60	37	19. 12	114	53. 73	4132. 10	686. 48		
DM-GS61	37	35. 64	114	53. 60	4162.65	685. 99		
DM-6962	37	33. 79	114	53. 02	4159. 25	686. 92		
DM-0863	37	30.09	114	55. 45	4152.33	683. 49		
DM-QS64	37	27. 47	114	56. 23	4147.46	682. 46		
DM-GS65	37	27. 25	114	55. 16	4147.09	684. 04		
DM-0366	37	26. 25	114	56. 13	4145. 21	682. 64		
DM-0867	37	25. 18	114	57. 48	4143. 19	680.70		
DM-0868		24. 12	114	56. 41	4141. 26	682. 32		
DM-0569	37	23. 42	114	55. 22	4140.00	684. 10		
DM-GS70	37	20. 13	114	56. 49	4133.88	682 . 36		
DM-0871	37	20. 31	114	55. 54	4134. 24	683 . 77		
DM-0872	37	19. 86		57. 12	4133. 36	681.44		
DM-0573	37	18. 03		57. 81	4129. 94	680. 50		
DM-0874	37	16. 45	114	5 7. 0 1	4127. 04	681.74		
DM-0875	37	18. 64	114	55. 43	4131. 16	683 . 99		

GEODETIC AND UTM COORDINATES
OF ACTIVITY LOCATIONS
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION

TABLE

DEPARTMENT OF THE AIR FORCE - SMQ

Ⅱ-1-1 3 OF 6

UBRO NATIONAL, INC.

ACT	GEODET	ic cod	RD.	UTM COO ZONE N(KM)	ORD.
ID.	LAT.	LO	INC.	ZONE	11
1	DEG MIN	DEG	MIN	N(KM)	E(KM)
5× 657/	07.40.5				
DM-0976	37 19. 5	4 114	77. 71	4132. 82 4143. 76	683. 83
DM-0877	37 25. 4	6 114	55. 75	4143. 76	683. 24
DM-0878	37 29.9	4 114	52 . 81	4152. 14	687. 39
DM-GS79	37 32. 4	4 114	53. 57	4156. 73	686. 17
REFRACT	ION LINE	s -			
DM- 501	37 22. 2	4 114	47. 63	4138. 07	695. 36
DM- S02	37 29.8	3 114	52. 40		688 . 00
				4152. 51	
				4150. 98	
DM- S05	37 31 0	0 114	48 04	4154. 25	694 38
DM- 506	37 24 2	1 114	55 47	A1A1 A5	493 41
DM- 907	27 22 1	S 114	51 04	4141. 45 4158. 13	490 04
DM- 508	37 24 0	3 114	37.17 67 72	4140.70	400 47
DM 507	3/ Z1. U	2 114	37.73	4135. 49 4134. 37	660.47
DH- 510	37 20.4	114	JO. 73	4134.3/	981.98
DM- 511	3/ 2/.3	2 114	JJ. 46	4147. 21 4162. 21	683. 39
DM- 512	3/ 35.4	0 114	53. 34	4162. 21	686. 3B
DM- 513	37 21. 1	2 114	48. 59	4135, 97	693. 99
RESISTI	VITY LIN	ES			
DM- RO1	37 22. 2	4 114	47, 63	4138.07	695.36
				4151. 95	
				4152. 51	
DM- R04	37 29 2	2 114	47. 58	4150. 98 4154. 25	695. 12
DM- ROS	37 31 0	0 114	48 04	4154 25	494 3B
DM- ROA	37 24 2	1 114	55 A7	4141.45	497 41
DM- PAZ	27 22 1	5 114	51 04	4158. 13	400 94
DM_ DAG	27 22 2	2 114	67 10	4140.70	401 10
DM- ROS	37 23.6	0 117	J/. 17	4135.40	400 47
DH- RU7	37 21.0	4 4 4 4	37.73	4135. 49 4134. 37	401 40
DM- KIO	37 20. 4	1114	70. 77	4134.3/	081.08
DM- K12	3/ 35.4	0 114	73. 34	41 <i>6</i> 2. 21 4135. 97	686. 38
DM- K13	3/ 21.1	2 114	48. 39	4135. 97	693. 99
SURFICI	AL SOIL	SAMPLE	S		
DM_CQ/1	37 20 3		50 47	4124 40	400 04
	27 22 2	1 114	40.00	4134. 49 4139. 81	400 04
DH-0804	3/34.3	7 114	32. 33	4160.70	08/. 38
DM-CSII	37 33. 1	J 114	J1. 04	4158. 13	687.86

GEODETIC AND UTM COORDINATES
OF ACTIVITY LOCATIONS
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION

DEPARTMENT OF THE AIR PORCE - SMO

TABLE 11-1-1 4 OF 6

<u>voro national, inc</u>

ACT ID.	GEODET	ric coc	RD.	UTM CO	DRD.
DI	EG MIN) DEG	MIN	ZONE N(KM)	E(KM)

DM-CS14	27 24 6	5A 11A	AQ AA	4155, 25	693. 77
DM-CS14				4151. 59	691. 54
	37 29 . 6			4151.95	688.00
DM-CS24		33 114		4146.39	687. 32
DM-CS27		33 114		4140.70	681.19
DM-CS29		0 114		4141.09	685. 17
DM-CS32		1 114		4134. 37	681.68
DM-C534					685. 26
DM-CS36	37 19.6	51 114	52. 60	4133. 04	688 . 13
TEST PIT	S				
	- 67 16 7			44.00.00	
DM- P01 :	37 19.7	50 114	53. 52	4133. 20 4133. 08	686. 76
	37 20. 9		51. 21 49. 82	4133. 08 4135. 54	690. 18 692. 18
		50 114		4138. 52	693. 99
DM- PO5				4162. 21	686. 38
DM- P06				4157. 25	691.03
DM- P07		9 114		4156. 41	692.30
DM- PO8		22 114		4150. 98	695. 12
DM- P09		66 114		4151.66	689. 73
DM- P10		8 114		4152. 51	684.00
		32 114		4147. 21	683. 59
DM- P12		66 114		4146.09	
DM- P13		76 114		4141.05	
DM- P14	37 21.0	2 114	57 . 75	4135. 49	680. 47
TRENCH S	ITES				
DM- T01	 37 33. E	114	51 90	4159. 37	688. 57
		00 114		4154. 25	694. 38
DM- T03				4150.83	693. 99
		3 114	54. 03	4152. 26	685. 59
		03 114		4146. 72	685. 83
DM- T06		21 114		4141.45	683. 41
		2 114	55. 58	4133.70	683.71
		12 114			693. 99
DM- T09		24 114			
DM- T10	37 23. 6	57 114	50. 16	4140. 63	691. 56

GEODETIC AND UTM COORDINATES OF ACTIVITY LOCATIONS DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE — SMO

TABLE II-1-1 5 OF 6

UGRO NATIONAL, INC

PN-TR-27-DM-II

DELAMAR VALLEY ACTIVITY LOCATIONS

ACT GEODETIC COORD. UTM COORD.

ID. LAT. LONG. ZONE 11

DEG MIN DEG MIN N(KM) E(KM)

WATER WELL SITES

DM- W01 37 34.67 114 52.71 4160.89 687.35 DM- W02 37 34.79 114 52.07 4161.14 688.28 DM- W03 37 21.02 114 45.69 4135.88 698.27 DM- W04 37 19.39 114 51.55 4132.66 689.69

> GEODETIC AND UTM COORDINATES OF ACTIVITY LOCATIONS DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE -- SMO

ТАВLЕ П-1-1 6 ОР 6

TURRO NATIONAL, ING.

24 MAA 81

																										I N	
MBER			1111	XB			SIZE XS		USCS	COLOR			URCE TYPES	6			ICAL 9 1					14		DRAINAG DEPTH			
MG001	A1 (7		0	0		0	100	HL.	7.5YR4/4					1	2	8	1	1			1	1	2 0.0	0.0	0	1 0
HB002			185	0	0		62	8	SP-SA	5.0YR3/4				3	3	1		1	1		2	1	1		3.3	4	: 0
MG003 :			50 25	0	0		60 68	35 30	SC SM	7.5YR5/8 7.5YR5/6				3	3	2	2	1	2	47	2	3	3		13.1	2	1 0
MG005			30	ŏ	ō		85	10	SP-SM					2	3	ī	2	ī	ī		4	2	ī		0.0	4	. 0
MB006					_																			.			. 0
MG007 :		•	15	0	0	0	85	15	SM	10.0YR4/6				3	3	1	3	1	1		2	1	1	1.6	16.4	2	1 0
MG009			15	٥	0	1	87	12	SP-SM	7.5YR4/4	12			2	3	1	3	1	2	39	2	2	3	0.7	16.4	2	: ;
MG010			75	0	0	15	45	20	SM	10.0YR6/6				2	3	1	2	1	3	27	2	2	4	34.1	6.6	2	1
MB011 :			17	0	0		40 63	60 12	ML CO-CH	7.5YR3/4 10.0YR4/6				3	3	1	7	3	1 2	42	2	2	1	1 0.0 1 0.7		0	: 0
MG013			90	ö	ä		29	12	GP-GH	10.01K478	12	S2	M	3	3	1	3	3		31	3	í	2		6.6 65.6	4	; 0
MB014	A51	, ,	110	ō	ō		84	12	SP -SM	10.0YR6/4	13		12	3	3	ī	3	ī	Ž	32	3	ž	4		23.0	3	1 0
MG015			140	0	0		40	30	SC	7.5YR3/4		٠.		3	3	2	2	1	2	35	3	2	3		9.8	4	: 0
MG016 :			110 35	ö	ŏ		58 25	12	GM GM	10.0YR6/8	12	I 1	32	ź	3	1	3	1	2	45 35	3	2	3		9.8 13.1	3 8	: 0
MG018	ASY	,	90	Ó	0	40	50	10	SP-SM	10.0YR4/4	12			2	3	i	3	i	ī	~	2	2	ž		9.8	6	: 0
MG019				0	0		50	30	GM		[2			2	3	2	3	3	2	37	3	2	2		9.8	5	: 0
MG020 :			155	0	20		20 85	30 5	GC SP~SM	7.5YR3/4	H 12	12		2	3	3	3	1	1		2 .	3	2	9.8	13.1	9	1 0
MG022			52	ŏ	ŏ	3	89	8		10.0YR5/4				2	3	i	2	i	i		ź	i	i		23.0	2	: 1
MG023	ASY	; ;	30	0		1	91	8	SP-SM	7.5YR3/4	12			3	3	1	3	1	ī		2	1	1	0.3	3.3	2	1 1
MB024 : MB025 :			60 35	0	0		93 95	5 5	SP-SM SP-SM	10.0YR4/4 7.5YR4/4				2	3	1	2	1			3 2	1	3	0.0	0.0	2	: 0
HG059			90	ö	ŏ		92 93	5	SP-SM					3 2	3	1	3	1	2	41	ź	3		3.3	13.1	6	: 1
MG027	A5I	3 1	75	ō	ō	15	70	15	SM	10.0YR4/4	52			2	š	ž	ž	3	2	47	2	2	2	3.3	13.1	6	1 0
MB028 :			.60	0			93 80	- 5	SP-SM		12	52		3	3	1	2	1	3	29	2	2	2	3.3	9.8	2	: 1
MG030			150 25	Ç	0		70		# SM # SM	7.5YR4/4 10.0YR4/4		17		2	3	3	2	1	3	24 23	2	1		1 1.6	65.6 32.8		1 1
MG031	ASY		130	ŏ	5		55	5		10.0YR3/3		14		ī	i	ĭ	ž	ż	ĭ		2	ī		1.6	3.3	ė	1 0
	82																							1			1 1
MG033	9 S1	: :	115	٥	10	25	55	20	# SM	10.0YR4/4	51	12	S2 14	- 2	1	2	2	1		27	2	1	4	: : • A	32.8	4	1 1
MG035	1 A50		130	ŏ		40	57	-3	SP	10.0YR4/4	12	51	J. 17	2	i	ž		i	2		2	i		12.0			: 6
MB036		3 8	140	0	10	25	65	10	SP-SM	10.0YR4/4	14	S 2		2	1	3	3	1	3	10	2	1	4	4 6.6	32.8	6	. 0
MG037 MG038		: :	105	٥	_	20	76		# SP	10.0YR3/3	TA	52												:			1 1
MG039	ASI		70	ŏ		10	BO	10	I SP-SM	10.0YR4/3				2	3	1	4	1	2	21	3	2	4	3.3	23.0	4	: 6
MG040	: A5I	3 1	140	0		15	65		# SM	10.0YR4/4				2	1	2		1		22	2	2		3.3	32.8	4	1 1
MG041			130	0	50	30	63 85	7 10		10.0YR4/3 10.0YR3/4			13	2	1	1	3	1	3	42	2	1	2		32.9 13.1	5	1 0
MB043				ŏ			80		* 54	10.0YR4/3			14 52	2	i	i	4	1	3	17	3	i	3		23.0	5	: 1
MG044	: A5I		70	ō	ō		88	4	SP	10.0YR4/3				2	ĩ	ž	3	1	3	42	3	ī	3		16.4	4	. 0
MG045		. !	15	۰	٥	2	73	25	* SM	10.0YR4/4				2		2	-		-	.50	3		2	0.3	3.3	-	1 1
	ASI		105	ŏ	ŏ		92	5		10.0YR4/4				ź	1	ž	2	1	3	38	3	1		1.6	3.3	2	; 6
MG048	: A51	:	150	ō		10	80		* SP-SM	10.0YR4/4	14			2	ī	2	3	1	3	28	3	1	4	1.6	3.3	2	1 1
MG049 :			.70	0	0	30 15	65 65		* SP-SM * SM	10.0YR3/6				2	1	1	3	3	1	42	2	1	2		3.3	2	2 1
MG051			140 150	ö			40	-20	∓ SP	10.01K4/4		13		2	1	2	2	3	3	42	2	1	ī		16.4	4	1 0
MB052			100	ŏ	20		40	15	GM		S2	S1	13	2	ī	2	3	3		32	3	ī	3		16.4	5	1 0
MB053	: ASI	3 1	85	Ó	0	10	78	12		10.0YR4/6		12	52	2	1	1	3	1	2	30	2	ı	4		9.8	8	. 0
HB054 HB055			20 25	0	0		74 95	25 7	# SH SP-SH	10.0YR4/4 10.0YR3/4		13		2	1	1	4	3	3 2	7 45	3	1	1 2		6.6 9.8	1 2	1 1
MG056	ASY	; :	75	ŏ	Õ	40	48	12	* SP-5M	10.0YR4/4	14			ž	î	i	_	3		17	ž	i	2	0.3	3.3	ī	ii
MG057 :	8 A1 I		-6	0	0		25		* HL	10.0YR3/4				_	1	1	?	1	1			1	1		6.6	1	: 1
MG058 1 MG059 1			70 75	0	8	10	90 79	15 12	SM SP-SM	10.0YR5/6 10.0YR4/4	14	13		2	1	2	3	1 3	3	46	3	1	4 2		9.8	2	1 0
MG060	ASY		30	ŏ	ŏ		70	20		10.0YR4/4				2	î	2	3	3	ż	27	3	i	4		3.3	3	1 1
MG061		. :		_	_		٠.		- CD	10 040011				_			_									-	1
MG062 1		;	6	0	0	0	96	4	* SP	10.0YR4/4				2	1	1	2	1	1			1	1	1.6	9.8	5	1 1
MG064	14	i																						i			1
MB065			•	0	0		60		* SM	10.0YR4/4				2	1	2	2	1	1		2	1	2		3.3	1	1 1
MB066 MB067			140	0	0		55 75	30 15	SM	10.0YR4/4 10.0YR4/4		12		2	1	2	3	1	1	30	2	2	2		3.3	3	: 0
1306B		•		,	,	••	, ,		J.,	-5.011.474	• •	*-		-	•	•	,	٠	•	5	-	-	٠,	. J.J	G. 0	3	iĭ
10069		,		0	0	0	60	40	# SM	10.0YR5/4				2	1	1	3	1	1		2	1	1	1.6	3.3	2	1 1
1507 0 150 71			20	٥	٥	0	60	40	* SH	10.0YR4/4				2		1	3				2		2		3.3		: 1
MG072			20	ŏ	Ö			100		10.0YR4/4				2	1	3		1	1		4	1	1		3.3	1	1 1
16073	ASY:	, ,	20	ō	ō	٥	60	40	SM	10.0YR4/4				2	i	2	3	1	1		2	1	2	1.6	3.3	ì	i i
MG074 1		:	260	ò	5	20	45		* SH	10.0YR4/4	14	• •		2	1	2	4	1		37	2	2	3		6.6	3	3 1
MG075 1 MG076 1			60	0	0		75 65	15 35	SM #SM	10.0YR4/4 10.0YR3/4	12	47		2	1	2		1	1		2	1	2		3.3	1	1 0 1 1
MGQ77 :	# A5Y		5	ŏ	ŏ	•	68	25	* SM	10.0YR4/3				2	î	1		i	i		2	î	ż		3.3	2	: 1
MG078	14 A51	•		_	_	_								_							_		_				1 1
			30	0	- 0	۰	80	20	SM	10.0YR4/4				2	1	1	3	1	4	.333	2	1	4	6.6	26.2	1	: 0

EXPLANATION/PHYSICAL PROPERTIES

610RAIN SHAPE : 91CONSISTENCY 1121DEPTH TO CEMENTED LAYER(CM):1151CALICHE DEVELOPMENT
77ND15TURE CONTENT 11015TRUCTURE 1131UEATHERING OF CLASIS :N011: 0=00CASIONAL(1-5X)
81PLASTICITY OF FINES 1112CEMENTATION-INDURATION 1141SDIL PROFILE DEVELOPMENT :NNIFE: 0=LAB DATA

GEOLOGIC STATION DATA DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION

TABLE

DEPARTMENT OF THE AIR FORCE - BMO

∐-1-2

UGRO NATIONAL, INC.

24 MAR 81

FIELD DATA SHEET DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION

FIGURE

DEPARTMENT OF THE AIR FORCE - BMO

Ⅱ-1-1 1 OF :

TERRAIN 16. Average Drainage Depth (ft) 17. Average Drainage width (ft) 18. Slope (percent) - field and/or top	o map measurement	
SURFACE FEATURES 19. Pit Depth (cm) 20. Thickness of Vesicular Silt (cm) 21. Desert Pavement Development	-	
COMMENTS		
ROCK DESCRIPTIONS 23. Rock Type/Formation 24. Color, Grain size, Hardness, Textu		
25. Degree of Weathering 26. Structure		
Bedding Characteristics		
Fracture, Joint		

FIELD DATA SHEET **DELAMAR VALLEY, NEVADA**

MX SITING INVESTIGATION

FIGURE ∏-1-1 2 OF 2

DEPARTMENT OF THE AIR FORCE - BMO

24 MAR 9"

GS 27

GS_{...}29

GS - 30 0 0.GS - 38

●GS - 28

GS_o 26

GS₆39

KILOMETERS

EXPLANATION

GS-1

R-1

	W1 WR	GROUND WATER LEVEL MEASUREMENT
•	B-1	BORING
0	C-1	CONE PENETROMETER TEST (CPT)
Δ	CS-1	SURFACE SAMPLE AT CPT LOCATION
_	T-1	TRENCH
A	P-1	TEST PIT
	S-1	SEISMIC REFRACTION LINE

ACTIVITY LINE

GEOLOGIC STATION

NOTE: Due to the exaggeration of the map symbols, the exact location of any combination of activities is where either the boring (1st) or the CPT (2nd) is situated. Single activities are most accurately located nearest the center of the symbol.

ELECTRICAL RESISITIVITY LINE

ACTIVITY LOCATION MAP DELAMAR, NEVADA

MX SITING INVESTIGATION

DEPARTMENT OF THE AIR FORCE -- BMO

DRAWING

II-1-1

FUGRO NATIONAL, INC.

2.0 EXPLANATION OF GROUND-WATER DATA

Existing ground-water data in Delamar Valley were collected from all available sources. These data were updated where possible from measurements taken during Fugro field operations, and all data are shown in Table II-2-1. Locations of water wells and boreholes in which water-level measurements were available are shown in Drawing II-1-1. Well numbers listed in the left hand column of Table II-2-1 refer to well locations shown on Drawing II-1-1. Actual well numbers giving location, according to the Bureau of Land Management Land Survey System, are shown in the second column.

Water levels generally refer to the static ground-water table in the unconfined basin-fill aquifer. Perched conditions or levels in artesian aquifers are noted where known.

		ELEVATION OF GROUND SURFACE- FEET (METERS) ABOVE M.S.L	WATER LEVEL				
WELL WELL LOCATION NUMBER*	DEPTH BELOW GROUND SURFACE- PEET (METERS)		DATE MEASURED	ELEVATION- PEET (METERIS) ABOVE M, S. L.	REFERENCES"/ REMARKS		
184	46/63E - 2344	4040 (1475)	61 (19)	DRY	1986	4779 (1467)	1
₩2	46/63E · 244c	4875 (1486)	380 (110)	DRY	1967	4516 (1376)	1
W-3	75/84E - 21dd	5820 (1775)	90 (27)	63 (19)	1984	5767 (1766)	1
W4 .	78/84E - 18	4770 (1464)	265 (81)	220 (67)	1986	4660 (1387)	1
WR-T1	06/83E - 13ado	4715 (1437)	1195 (384)	860 (262)	3 - 80	3866 (1176)	2
			,				

*MT. DIABLO BASELINE AND MERIDIAN . **REPERENCES:

- 1. NEVADA STATE ENGINEERS OFFICE, 1988: 1987
- 2. PUGRO NATIONAL, INC. 1988 b

GROUND - WATER DATA DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE — BMO

TABLE II-2-1

UBRO NATIONAL, INC.

3.0 EXPLANATION OF SEISMIC REFRACTION DATA

Each figure shows seismic wave travel times plotted versus surface distance between the energy source (shot) and the detector (geophone) for a single seismic line. Distances are measured along the line from geophone number 1 which is designated as zero distance. Distances to the right (on the paper) of geophone 1 are positive. The direction arrow gives the approximate direction of the geophone array from geophone 1 to geophone 24.

Travel Time Versus Distance Graph (Upper Half of Figure)

On this graph, the abscissa represents distance; the ordinate, time. The six vertical lines represent the locations of shots (designated as F, G, H, I, J, and K). The symbol "X" denotes travel times at geophones that were located to the right of a shot. The symbol, Θ , denotes travel times that were located to the left of shots.

Velocity Cross Section (Lower Half of Figure)

This is an interpreted velocity cross section beneath the seismic line. The top line represents the ground-surface profile. The short vertical lines crossing the top line mark the geophone positions. The depth scale is plotted relative to a point on the line which was arbitrarily chosen as "zero elevation" at the time the line was surveyed. The additional lines across the cross section represent the interpreted boundaries between layers of material with different compressional wave velocities. These boundaries are commonly called "refractors."

The velocity interpreted to be representative of each layer is shown.

4.0 EXPLANATION OF ELECTRICAL RESISTIVITY DATA

Each figure in this section presents the data obtained from a resistivity sounding and a tabulated model of resistivity layers that would produce a curve similar to the observed curve.

The upper portion of the figures is a graph in which measured apparent resistivity values in ohm-meters are plotted versus one-half the distance between the current electrodes.

The interpreted model tabulated at the bottom of the page shows a combination of true resistivity layers and thicknesses obtained by matching theoretical curves to the field curve.

Note: There was no resistivity sounding at location DM-SR-11 because of electrical interference from a grounded fence.

	INTERPRETED MODEL			
LAYE	DEPTH	RESISTIVITY VALUES		
FEET	METERS	OHM-METER		
0	0	470		
5	2	100		

RESISTIVITY SOUNDING DM-R-1
SOUNDING CURVE AND INTERPRETATION
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 800

Floure II-4-1

TUBRO NATIONAL INC.

USAF-15

	INTERPRETED MODEL			
LAYE	DEPTH	RESISTIVITY VALUES		
FEET	NETERS	OHIS-METER		
0	0	120		
5	2	30		
18	5	260		

RESISTIVITY SOUNDING DM-R-2 SOUNDING CURVE AND INTERPRETATION DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 800

F16086 II-4-2

VORO NATIONAL INC

24 MAR 81

VMF-15

	INTERPRETED MODEL LAYER DEPTH RESISTIVITY VALUES				
LAYE					
FEET	METERS	OHM-METER			
0	0	100			
5	2	90			
146	45	280			
		I			

RESISTIVITY SOUNDING DM-R-3
SOUNDING CURVE AND INTERPRETATION
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMB

FIGURE II-4-3

UGRO NATIONAL IN

101-11

	INTERPRETED MODEL LAYER DEPTH RESISTIVITY VALUES			
LAYE				
FEET	METERS	CHM-METER		
0	0	170		
8	2	120		
31	9	260		
141	43	160		
	· ·			
		l		

RESISTIVITY SOUNDING DM-R-4 SOUNDING CURVE AND INTERPRETATION DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 800

TI-4-4

UGRO NATIONAL

884 F-18

	INTERPRETED MODEL				
LAYE	LAYER DEPTH RESISTIVITY VALUES				
FEET	METERS	ONIN-METER			
Ö	0	190			
56	17	230			

RESISTIVITY SOUNDING DM-R-6 SOUNDING CURVE AND INTERPRETATION DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 800

г 100 a с П-4-5

24 MAR 81

USAF-1

(FEET)

	INTERPRETED MODEL				
LAYEI	LAYER DEPTH RESISTIVITY VALUE				
FEET	METERS	ONE-METER			
0	0	200			
5	2	110			
26	8	380			
	1	1			

RESISTIVITY SOUNDING DM-R-6.
SOUNDING CURVE AND INTERPRETATION
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - DNG

71809E П-4-6

UGRO NATIONAL INC.

VMF-15

FN-TR-27-0M-II ELECTROSE SPACING - AB/2 (METERS) 10 40 1000 100 100 APPARENT RESISTIVITY (GUN-METER) 200 . 11 40 20 10 20 200 400 ELECTRODE SPACING - AB/2 (FEET)

	INTERPRETED MODEL				
LAYER DEPTH RESISTIVITY VALUE					
FEET	METERS	OHM-METER			
0	0	: 120			
11	3	96			
322	10	700			
180	55	390			

RESISTIVITY SOUNDING DM-R-7
SOUNDING CURVE AND INTERPRETATION
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 800

FIGURE II-4-7

VORO NATIONAL INC.

24 MAR 81

V84F-15

	INTERPRETED MODEL				
LAYE	DEPTH	RESISTIVITY VALUES			
FEET	METERS	OHM-METER			
Φ.	0 -	770			
6	2	110			
24	7	. 620			
28	9	200			
	1				

RESISTIVITY SOUNDING DM-R-8
SOUNDING CURVE AND INTERPRETATION
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - SMS

Г169AE П-4-9

TUBRO NATIONAL INC

VEAF-13

FN-TR-27-DM-II ELECTRODE SPACING - AB/2 (METERS) 10 1000 100 400 APPARENT RESISTIVITY (OUR-METER) 200 100 . 20 200 ELECTRONE SPACING - AB/2 (FEET) INTERPRETED MODEL RESISTIVITY SOUNDING DM-R90 SOUNDING CURVE AND INTERPRETATION

LAYER	DEPTH	RESISTIVITY VALUES
FEET	METERS	OHN-METER
Ö	0	190
5	2	120
22	7	640
37	11	300
	<u> </u>	1

DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - SUO

FIGURE II-4-10

VERO NATIONAL INC.

VSA F-15

	INTERPRETED MODEL				
LAYEI	LAYER DEPTH RESISTIVITY VALUE				
FEET	METERS	OHM-METER			
0	0	130			
27	8	490			

RESISTIVITY SOUNDING DM-R-12
SOUNDING CURVE AND INTERPRETATION
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 800

гі вияв П-4-11

UBRO NATIONAL INC.

USAF-18

FN-TR-27-DM-17 ELECTRODE SPACING - AB/2 (METERS) 10 40 1000 100 100 400 APPARENT RESISTIVITY (MIN-METER) 200 100 ** 40 20 80 80 200 ELECTRODE SPACING - AB/2 (FEET) INTERPRETED MODEL LAYER DEPTH RESISTIVITY VALUES FEET ONU-WETER WETERS 0 0 2 160 **RESISTIVITY SOUNDING DM-R-13 SOUNDING CURVE AND INTERPRETATION** 310 26 8 **DELAMAR VALLEY, NEVADA** 42 13 110 FIRMRE 122 37 80 MX SITING INVESTIGATION **II**+12 DEPARTMENT OF THE AIR FORCE - BMG

UGRO NATIONAL INC.

VMF-15

5.0 EXPLANATION OF BORING, TRENCH, AND TEST PIT LOGS

All data from borings and trenches are presented on standard Fugro National logs in Sections 5.0 and 6.0. Explanations of the column headings on the logs are as follows:

A. Designations - Borings and trenches are identified as follows:

DM-B-1

DM - abbreviation for the site (e.g., DM-Delamar)

B - abbreviation for activity (e.g., B-boring, T-trench, P-test pit)

l - number of activity

- B. Sample Type Different sampling techniques were used and the symbols are explained at the bottom of the boring logs. For details of sampling techniques, see Section A5.0 of Appendix in Volume I (FN-TR-27-DM-I). Horizontal lines, to scale, indicate the depth where sampling was attempted.
- C. Percent Recovery The numbers shown represent the ratio (in percent) of the soil sample recovered in the sampler to the full penetration of the sampler.
- D. N Value Corresponds to standard penetration resistance, which is number of blows required to drive a standard split-spoon sampler for the second and third of three 6-inch (15-cm) increments with a 140-pound (63.5 kg) hammer falling 30 inches (76 cm) (ASTM D 1586-67).
- E. Depth Corresponds to depth below ground surface in meters and feet.

- F. Lithology Graphic representation of the soil and rock types.
- G. USCS Unified Soil Classification System symbols (see Table II-5-1 for complete details).
- H. Soil Description Except in cases where samples were classified based on laboratory test data, the descriptions are based on visual classification. The procedures outlined in ASTM D 2487-69, Classification of Soils for Engineering Purposes, and D 2488-69, Description of Soils (Visual-Manual Procedure), were followed. Solid lines across the column indicate known change in strata at the depth shown.

Definitions of some of the terms and criteria to describe soils and conditions encountered during the exploration follow.

Gradation: A coarse-grained soil is well graded if it has a wide range in grain size and substantial amounts of most intermediate particle sizes.

Poorly graded indicates that the soil consists predominantly of one size (uniformly graded) or has a wide range of sizes with some intermediate sizes obviously missing (gap-graded).

Moisture: Dry - no feel of moisture

Slightly Moist - much less than normal moisture

Moist - normal moisture for soil Very Moist - much greater than normal

moisture

Wet - for soils below the water

table

Consistency: Consistency descriptions of coarse-grained soils (GW, GP, GM, GC, SW, SP, SM, SC) follow.

	N Value		
Consistency	(ASTM D 1586-67)		
Very Loose	0 - 4		
Loose	4 - 10		
Medium Dense	10 - 30		
Dense	30 - 50		
Very Dense	>50		

Consistency descriptions of fine-grained soils (ML, CL, MH, CH) are as follows:

		Shear Strength		
	Consistency	(ksf)	(kn/m ²) Field Guide
	Very Soft	0.25	12	Sample with height equal to twice the diameter, sags under own weight
	Soft	0.25- 0.50	12 - 24	Can be squeezed between thumb and forefinger
	Firm	0.50- 1.00	24- 48	Can be molded easily with fingers
	Stiff	1.00-2.00	48- 96	Can be imprinted with slight pres- sure from fingers
	Very Stiff		96- 192	Can be imprinted with considerable pressure from fingers
	Hard	_	over 192	Cannot be im- printed by fingers
Grain Shape:	Angular -		ely pl	sharp edges and ane sides with aces.
	Subangular ~			imilar to angular ewhat rounded
	Subrounded -		out has	bit nearly plane we well-rounded es.

Rounded - particles have smoothly curved sides and no edges.

Calcareous: Containing calcium carbonate; presence of calcium carbonate is commonly identified on the basis of reaction with dilute hydrochloric acid.

Caliche : Soils cemented by calcium carbonate and/or other soluble minerals by upward-moving solutions.

Degree of

Cementation: (Stages of development of caliche profile)

Stage	Gravelly Soils	Nongravelly Soils
I	Thin, discontinu- ous pebble coatings	Few filaments or faint coatings
II	Continuous pebble coatings, some interpebble fill-ings	Few to abundant nodules, flakes, filaments
III	Many interpebble fillings	Many nodules and internodular fillings
IV	Laminar horizon overlying plugged horizon	Increasing carbon- ate impregnation

Secondary Material

: Example - Sand with trace to some silt

Trace - 5-12% (by dry weight)
Little - 13-20% (by dry weight)
Some - >20% (by dry weight)

Plasticity: Plasticity index is the range of water content, expressed as a percentage of the weight of the oven-dried soil, through which the soil is plastic. It is defined as the liquid limit minus the plastic limit. Descriptive ranges used on the logs include:

Nonplastic (PI, 0 - 4) Slightly Plastic (PI, 4 - 15) Medium Plastic (PI, 15 - 30) Highly Plastic (PI, >30) Cobbles and Boulders

: A cobble is a rock fragment, usually rounded by weathering or abrasion, with an average diameter ranging between 3 and 12 inches (8 and 30 cm).

A boulder is a rock fragment, usually rounded by weathering or abrasion, with an average diameter of 12 inches (30 cm) or more.

- I. Remarks This column was provided on boring and trench logs for comments regarding drilling difficulty, number and size of cobbles or boulders encountered, loss of drilling fluid in the boring, trench wall stability, and other conditions encountered during drilling and excavations.
- J. Dry Density and Moisture Content The boring logs include a graphical display of laboratory test results for dry density (ASTM D 2937-71) in pounds per cubic foot and kilograms per cubic meter and moisture content (ASTM D 2216-71) in percent from representative samples taken during drilling. The symbols are explained at the bottom of the boring logs.
- K. Sieve Analysis The numbers represent the percentage by dry weight (ASTM D 422-63) of each of the following soil components:
 - GR Gravel, rock particles that will pass a 3-inch (76-mm) sieve and are retained on No. 4 (4.75 mm) sieve.
 - SA Sand, soil particles passing No. 4 sieve and retained on No. 200 (0.075 mm) sieve.
 - FI Fines, silt or clay soil particles passing No. 200 sieve.
- L. Atterberg Limits (LL and PI) -
 - LL Liquid Limit, the water content corresponding to the arbitrary limit between the liquid and plastic states of consistency of a soil (ASTM D 423-66).

- PL Plastic Limit, the water content corresponding to an arbitrary limit between the plastic and the semisolid state of consistency of a soil (ASTM D 424-59).
- PI Plasticity Index, numerical difference between the liquid limit (LL) and the plastic limit (PL) indicating the range of moisture content within which a soilwater mixture is plastic.

NP - Nonplastic.

M. Miscellaneous Information -

Elevations - indicated elevations on the logs are estimated from topographic maps of the study area, within an accuracy of half the contour interval.

Surficial

Geologic Unit - indicates the surficial geologic unit in which the activity is located.

Date Drilled - indicates the period from beginning to completion of the activity.

Drilling

Hole Diameter - nominal size of boring drilled.

Water Level - indicates depth from ground surface to water table whose encountered.

Trench Length - length at ground surface of final trench excavation.

Trench

Orientation - bearing of longitudinal trench centerline.

From Wigner; 1957.
| From Wigner; 1957.
| Promise of the Companies of the groups are designated by combinations of group symbols. For example GW-GC, well graded gravel-sand minime with clay binder is All seasons are U.S. nandard.

Aded, samply remove by hand the coerse particles that interfers with the tests.

Toughout Conditions man plants it intent):

After removing particles lorger than the Yo. 40 sieve als. a specimen of soil about one-half and particles lorger than the Yo. 40 sieve als. a specimen of soil about one-half and the tout in a lam haper and allowed to been consument burity. If too dit, water must be added and if sittly, the specimen should be spread only in the mat the and soil of the spread on a smooth addition. Then the specimen is rolled and by hand on a smooth surface or between the polines into a thread about one-catella tich in the menter constent is greatedly. During the manaphation of the moneter constent is greatedly reduced and the specimen suffers, daship loses its plants/ly, and crumbles when the plants into a specimen and a sight heading string considered and the surface till family crumbles, the more processed and the langer than the soil when the thread may the plants into a defined the langer in the coloral ray promiser. The transport of the thread is the more processed in the coloral ray processed of the thread in the plants into inside its facilies in the colorant colleged to the plants into a series in the plants in the series in the colleger in the colorant of the plants of the plants in the plant in the plants in the plant in the plants in the plants.

Health grants at the plant in the plant in the plants in the pl

UNIFIED SOIL CLASSIFICATION SYSTEM **DELAMAR VALLEY, NEVADA**

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO TABLE II-5:1

1	PI			Ž								_ .	
Ì	11				<u></u>								
1 S		34	က ဝ	7			m	-			^		
SIEVE		48	85	-8			6				8		
SE		18	10	12		(0				25		
9	35							,			I		
	2												
~ 2	ي ا												
A(pcf) 100 110 120 130 140	20 2 • (\$)								1		<u> </u>		
4 -	15 2		4		<u> </u>					ļ	<u> </u>		
8	.0	•	•	_	<u> </u>		•				<u> </u>	<u> </u>	
	- No	•			ļ					<u> </u>	<u> </u>		
									L	<u></u> ,	Щ		ļ
REMARKS			cementation	-	·						▼	S	
SOIL DESCRIPTION		SILTY SAND, brown, fire to coarse, poorly graded, dense, angular, calcar sous; some nonplastic silt; little fine gravel.			SAND, gray, fine to coarse, poorly graded, medium dense to dense, angular to subrounded.					GRAVELLY SAND, brown to gray, fine to coarse, poorly to well graded, medium dense to very dense angular trace to some fine gravel:	trace nonplastic silt.		
nzcz		NS.	SW-				8				****		8.8
THOLOGY													
E T	.334	0	<u>-</u>		20	99	,	•			20		
283	T3M	0	<u>_</u>		و ــــــــــــــــــــــــــــــــــــ			77		<u></u> 7	: 	<u>=</u>	
AVFOE SECONERY		<u>6</u> 6	o a		ğ	_	- -		<u>8</u>		8		<u> </u>
		00 T	<u>8</u> <u>8</u>	001	~	001	8		_		_	,	×

1

<u> </u>
LOG OF BORING DM-B-1 DELAMAR VALLEY, NEVADA

12-

50-

8

8

60-

\$

LITHOLOGY

ANTAN N

* RECOVERY

SAMPLE TYPE

DEPTH

FEET

METERS

ė

8

8 8

8

20.

8

8

8

8

& RECOVERY

SAMPLE TYPE

8 8

8

47

8

5

5

8

8

8

	ſ							-									· · · <u> </u>	
			8		Ş													
г			23															
	SIS		42			ري ص	- 52			20	424			<u>•</u>				4
	S.1EVE ANALYSIS	SA	26	_	7	<u></u>	9/			92	76			8		-		8
<u> </u>	- Z	6 8	2	_	<u>ი</u>	8	- 7			4	- 1	·	<u></u>	9	,	7		0
	2	32		\downarrow		↓_			<u> </u>					ļ	ļ	ļ	 	<u> </u>
1	8-	2		4		↓_				┷				↓	 	<u> </u>	-	<u> </u>
<u> </u>	<u> </u>	. 22		4		\perp				_				↓	 	 	 	<u> </u>
ļ.	A (pcf)	20 25 • (\$)		_		<u> </u>				\bot			ļ	ļ	ļ		<u> </u>	<u> </u>
ľ	A(pcf) 100 110 120 130 140	15 2		1		炮	•			1	_\$		<u> </u>	<u> </u>	↓	!	 	<u> </u>
Ì	- 8	.0.		\downarrow							1				<u> </u>	<u> </u>	 	
ì	2		•	\downarrow	•	•	•						ļ	•	ļ		ļ	<u> </u>
				<u>•</u>					<u></u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	SOIL DESCRIPTION		CLAYEY SAND, brown, fine to coarse, poorly graded, loose, angular to subangular, calcareous;	tic clay.	SILTY SAND, brown, fine to coarse, poorly graded, medium dense, angular, calcareous;	little nonplastic silt; trace fine gravel.	GRAVELLY SAND, dark brown, fine to coarse, poorly graded, medium dense, angular to subangular; some fine to coarse gravel; trace	SILTY SAND, light brown to brown, fine to	coarse, poorly graded, medium dense to dense, angular, calcareous; little to some nonplastic	vei.				SAND, brown, fine to coarse, well graded, dense, angular; trace fine gravel; trace non-plastic silt.				SILTY SAND, brown to dark brown, fine to coarse, poorly graded, dense to very dense,
				_		\angle		SILTY SAND, light	coarse, poorly gra angular, calcareou	sit; trace fine gravei.				SAND, brown, fin dense, angular; tra plastic silt.	_			SILTY SAND, bro
<u> </u>	nzcz		3		<u>ક્ર</u>	8	\$	11 Hz		85	1 22 1 2			10000000	\$8	0.00000000		
19	THOLO	11,									•							
		1334	0		<u></u>	=				<u> </u>	30-	<u> </u>	(<u> </u>	<u> </u>	(2
DEPTH						_		•	•				'	•	(47	•	0
=	SRS	313M	0		•	m		Œ	•		.		5	<u>.</u>	6 2	2	6 0	
	NYA	_		_		٠							T					
31						_	-		0	-6				<u> </u>		6		0
	ECOA		100	92	9	100	9		<u>6</u>	100	100			8		100		<u>8</u>

				EXPLANATION The fugen drive sample and the sample	NR – NO RECOVERY
140-	150-	991	-51 170	LOG OF BORING DM-B-5 DELAMAR VALLEY, NEVAL	
	3			DEPARTMENT OF THE AIR FORCE THE	II-5-5

6.0 EXPLANATION OF TRENCH AND TEST PIT LOGS

See Section 5.0, "Boring Logs," for explanation.

			<u>;</u>									
BULK SAMPLE	METERS A	PTH	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	IEV ALYS	212		
E				L	Š			GR	SA	FI	LL	PI
	0	ô 2 –		SįM	dense	SILTY SAND, brown, fine to coarse, poorly graded, dry, subangular, calcareous; some nonplastic silt; trace fine gravel; stage III - IV caliche (2.0' - 4.0').	vertical walls	5	67	28		NP
	1	4-			very dense							
		6 .				TOTAL DEPTH 4.0' (1.2m)	cementation at 4.0' exceeded capacity of Case 580C backhoe					
	- 2	8 —										
	-3	10-										
) }	12-				•						
	4	14-										
	- 5	16-										
		18-										
	5	20-										

SURFACE ELEVATION : 4930' (1503m)

DATE EXCAVATED : 16 NOVEMBER 1979

SURFICIAL GEOLOGIC UNIT: A5y

TRENCH LENGTH : 10.0' (3.0m)

TRENCH ORIENTATION : NW-SE

LOG OF TRENCH DM-T-1 DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

F1 €9 €€ 11-6-1

UGRO NATIONAL INC.

BULK SAMPLE NETERS M	FEET 1334	THOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	ALYS	212		
2 3				CO			GR	SA	FI	LL	P
	0 2 -			medium dense	SANDY GRAVEL, brown, fine to coarse, well graded, dry, angular to subangular, calcareous; some fine to coarse sand; trace non-plastic silt; occasional cobbles and boulders to 14" size.		44	44	12		
-1	4 -		GW- GM	dense		vertical walls					
- 2	6 :		GM								
-3	10-			very dense		•					
	12-				TOTAL DEPTH 10.0' (3.0m)	excavation capacity of Case 580 C backhoe exceeded at 10.0'					
-4	14-										
- 5	16-										
	18-										
-8	20-										

SURFACE ELEVATION

5540' (1689m)

DATE EXCAVATED

: 17 NOVEMBER 1979

SURFICIAL GEOLOGIC UNIT: A5i

TRENCH LENGTH

TRENCH ORIENTATION

: 15.0' (4.6m) : NW-SE LOG OF TRENCH DM-T-2
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 8MO

F149€€ ∏-6-2

UGRO NATIONAL, INC.

24 MAR 81

USAF-37

BULK SAMPLE	EPTH	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV ALYS	E SIS	
		5		8 8			GR	SA	FI	LL
- 1	2 -		SM	dense	SILTY SAND, brown, fine to coarse, poorly graded, slightly moist, angular to subangular, calcareous; some nonplastic silt; trace fine gravel; state II-III caliche (3.0'-4.0')		5	66	29	
- 2	6:		SP	loose	GRAVELLY SAND, brown, fine to coarse, poorly graded, dry, angular to subangular, calcareous; little fine gravel (8.0'-14.0'); occasional cobbles and boulders to 16" size throughout.	vertical walls unstable	15	82	3	
- 3	10- 12-		SP- SM	loose						
-4	14-				TOTAL DEPTH 14.0' (4.3m)					
ĺ										
- 5	16- i									
	18-									
8	20-									

SURFACE ELEVATION : 5280' (1609m)
DATE EXCAVATED : 17 NOVEMBER 1979

SURFICIAL SECLOSIC UNIT: A5i

TRENCH LENGTH : 16.0' (4.9m)

TRENCH ORIENTATION : E-W

LOG OF TRENCH DM-T-3
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

UGRO NATIONAL, INC.

BULK SAMPLE	WETERS FI	FET #4	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV ALY:			
108			= =		CO		\	GR	SA	FI	LL	P
	0	Ö			medium dense	GRAVELLY SAND, brown and white, fine to coarse, poorly graded, slightly moist, angular to subangular, calcareous; some fine gravel; little nonplastic silt; stage III-IX	A	22	62	16		
		2 -		SM	dense	caliche (1,5'-6,0')	vertical walls					
	- 1			SIVI								Ì
		4-			very dense							
		6 -] ,				ĺ
	- 2	8-				TOTAL DEPTH 6.0' (1.8m)	cementation at 6.0° exceeded capacity of Case 580C backhoe					
		0										
	- 3	10-										
		12-										
	- 4						ļ					
		14-										
	- 5	16-										
		18-										
										İ		
	- 8	20-			•							
												ĺ

SURFACE ELEVATION : 4840' (1475m)
DATE EXCAVATED : 18 NOVEMBER 1979

: E-W

SURFICIAL GEOLOGIC UNIT: A5i

TRENCH LENGTH : 10.0' (3.0m)

TRENCH ORIENTATION

LOG OF TRENCH DM-T-4
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

11-6-4

BIODO MATIONA

FN-TR-27-DM-II

BULK SAMPLE	METERS S		LITHOLOGY	uscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS		IEV A LYS			
BULK	<u> </u>	FEET	111		CONS			GR	SA	FΙ	LL	Р
	0	0		SM		SILTY SAND, brown, fine to coarse, poorly graded, slightly moist, subangular, calcareous; some slightly plastic silt; trace fine gravel.		5	54	41		
	- 1	2				GRAVELLY SAND, brown, fine to coarse, poorly graded, dry, subangular, calcareous; some fine to coarse gravel.		25	72	3		
	2	6		SP	medium dense		vertical walls stable					
	- 3	10-										
	-4	12-				TOTAL DEPTH 14.0' (4.3m)						
	- 5	16-										
		18-										
	- 6	20-										

TRENCH DETAILS

SURFACE ELEVATION

: 4660' (1420m)

DATE EXCAVATED

: 18 NOVEMBER 1979

SURFICIAL GEOLOGIC UNIT: A1

TRENCH LENGTH

: 16.0' (4.9m)

TRENCH DRIENTATION

: E-W

LOG OF TRENCH DM-T-5 **DELAMAR VALLEY, NEVADA**

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO FIGURE **Ⅱ-6-5**

UGRO NATIONAL, INC.

USAF-37

24 MAR 81

BULK SAMPLE	METERS GO	FEET =	LITHOLOGY	USCS	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	IEV	SIS		
둞			רו		60			GR	SA	FI	LL	PI
	0	ô 2 –			medium dense	SILTY SAND, brown, fine to coarse, poorly graded, dry, subangular, calcareous; some nonplastic silt; little fine angular to subangular gravel; interbedded lenses of fine to coarse angular to subangular gravel (GP) at (3.5' - 4.5').	vertical walls stable	20	54	26		7
	- 1	4 -		SM	loose		sloughing					
	_	6 :			very		vertical walls	1				
Ī	- 2				dense		stable	Ţ				ĺ
		8				TOTAL DEPTH 7.0′ (2.1m)	excavation capacity of Case 580C backhoe exceeded at 7.0'					
	- 3	10-										
		12-			1							
	- 4	14-										
<u> </u>	- 5	16-										
		18-	:									
	- 6	20-										
. 1												i

SURFACE ELEVATION : 4640' (1414m) : 4640 (1417.... : 18 NOVEMBER 1979 DATE EXCAVATED

SURFICIAL GEOLOGIC UNIT: A5y

TRENCH LENGTH

: 12.0' (3.7m)

TRENCH ORIENTATION

: N-S

, LOG OF TRENCH DM-T-6 **DELAMAR VALLEY, NEVADA**

MX SITING INVESTIGATION

FIGURE

DEPARTMENT OF THE AIR FORCE - BMO

∏.6.6

UGRO NATIONAL, INC.

24 MAR 81

USAF-37

	13 3 91 SSIFIED	VERIF	ICATIO	ON STUD	Y - DE	G BEACH LAMAR V	CA ALLEY,	NEVADA	VOLUM FO	E II. G 4704-80	EGTECH-	13/2 -ETC(U	
Al	2 or 3												
					\								

BULK SAMPLE	METERS S	PTH LEEL	LITHOLOGY	uscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	AN	ALYS	S 1 S		1.
ne	0	0 2 -		ML	BG stiff	SILT, brown, slightly moist, slightly plastic, calcareous; interbedded lenses of fine to medium subangular sand throughout.	vertical walls stable	O	3		35	
	- 2	6 - 8 -	////	sw	very dense	GRAVELLY SAND, brown, fine to coarse, well graded, slightly moist, angular to subangular, calcareous; some fine to coarse gravel; stage III-IV caliche (6.0'-7.0') TOTAL DEPTH 7.0' (2.1m)	cementation at 7.0' exceeded capacity of Case 580C backhoe	27	70	3		
	-4	12-										
	- 5	18-										
	- 6	20-										

SURFACE ELEVATION

: 4540' (1384m)

DATE EXCAVATED

: 18 NOVEMBER 1979

SURFICIAL GEOLOGIC UNIT: A1

TRENCH LENGTH

: 12.0' (3.7m)

TRENCH ORIENTATION

: E-W

LOG OF TRENCH DM-T-7
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

FIGURE II-6-7

UBRO NATIONAL, INC.

BULK SAMPLE	EPTH	LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	SIEVE ANA LYSIS					
				NO CO			GR	SA	FI	LL	P	
	2 -		SM	medium dense	GRAVELLY SAND, light brown, fine to coarse, poorly graded, slightly moist, angular to subangular, calcareous; some fine to coarse gravel; some non plastic silt.		32	46	22			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 4~ 6~				SAND, brown, fine to coarse, poorly graded, slightly moist, angular, calcareous; trace fine gravel.							
- 2	8 -		SP	medium dense	·	vertical walls stable						
_ 3	10-											
-4	14-				TOTAL DEPTH 14.0' (4.3m)					1		
- 5	16 ⁻											
	18-				,							
- 8	20-											

SURFACE ELEVATION : 5230' (1594m)
DATE EXCAVATED : 19 NOVEMBER 1979

SURFICIAL GEOLOGIC UNIT: A5i

TRENCH LENGTH : 16.0' (4.9m)
TRENCH ORIENTATION : NE-SW

LOG OF TRENCH DM-T-8
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMD

F160RE П-6-8

UGRO NATIONAL, INC

<u> </u>	WETERS 30		LITHOLOGY	nscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS	SIEVE ANA LYSIS				
BUL	9				SNOC		- 	GR	SA	FI	u	P
		2 -		SP. SM	dense very dense	GRAVELLY SAND, brown, fine to coarse, poorly graded, slightly moist, angular to subangular, calcareous; some fine angular gravel; trace nonplastic silt; occasional cobbles to 8" size; stage IV caliche (1.5' - 2.0').	vertical walls	31	57	12		
- 1	- 1	4-				TOTAL DEPTH 2.0' (0.6m)	cementation at 2.0' exceeded capacity of Case 580C backhoe					
	- 2	8 -										
		8 –										
	-3	10-										
		12-			1							
	- 4	14-			!							
	- 5	16-										
		18-										
	- 6	20~	i 1									
į					l							

SURFACE ELEVATION : 5260' (1603m)

DATE EXCAVATED : 19 NOVEMBER 1979

SURFICIAL GEOLOGIC UNIT: A51
TRENCH LENGTH : 6.0' (1.8m)
TRENCH ORIENTATION : E-W

LOG OF TRENCH DM-T-9
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMD

F160ЯЕ П-6-9

UGRO NATIONAL, INC.

<u> </u>	DEPTH SELECT	LITHOLOGY	uscs	CONSISTENCY	SOIL DESCRIPTION	REMARKS		SIEVE ANA LYSIS				
90.	FEET							GR	SA	FI	LL	P
	2 -		SM	loose	GRAVELLY SAND, brown, fine to coarse, poorly graded, dry, subangular, calcareous; some fine to coarse gravel; little nonplastic silt.			32	55	13		
	1 4-			loose	SILTY SAND, brown, fine to coarse, poorly graded, dry, subangular, calcareous; some nonplastic silt: little fine gravel; occasional cobbles (9.5'-10.0'); stage IV caliche (9.5'-10.0')	vertica unst		16	54	30		2
	_		SM	10026								
	2			very dense		vertica stal	walls	┨				l
	3 10-			gense	TOTAL DEPTH 10.0' (3.0m)	, 	ation at ceeded ity of					
	12-					back						
	14-											
- !	16- 5											
	18-											
-	8 20-											

SURFACE ELEVATION : 4790' (1460m)
DATE EXCAVATED : 19 NOVEMBER 1979

SURFICIAL GEOLOGIC UNIT: A5y
TRENCH LENGTH : 15.0'(4.6m)
TRENCH ORIENTATION : N-S

LOG OF TRENCH DM-T-10 DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMO

F160EE II-6-10

UGRO NATIONAL, INC.

7.0 EXPLANATION OF SURFICIAL SOIL SAMPLE LOGS

Finalized logs of the surficial samples are presented in this section. Explanations of the column headings on the logs follow:

A. Designations - Surficial samples are identified as follows:

DM-CS-1

- DM abbreviation for the valley (e.g., DM-Delamar)
- CS abbreviation for surficial sample
 - 1 number of activity
- B. Ground Surface Elevation Indicated elevations on the logs are estimated from topographic maps of the study area within an accuracy of half the contour interval.
- C. Surficial Geologic Unit Indicates the surficial geologic unit in which the activity is located.
- D. Depth Indicates depth interval for which soil description is given.
- E. USCS Unified Soil Classification Symbol; see Table II-5-1 of Section 5.0, "Borings Logs," for details of USCS.
- F. Soil Description Soil is described based on field visual descriptions and/or laboratory test results. See Section 5.0, "Boring Logs," for procedures of soil description.
- G. Sieve Analysis, LL and PI These are from results of laboratory tests. See Section 5.0, "Boring Logs," for explanation.

ACTIVITY	GROUND SURFACE ELEVATION.	SURFICIAL GEOLOGIC	DE PTH,	uscs	SOIL DESCRIPTION	- 1	IEV ALY:	_		
NUMBER	FEET (METERS)	UNIT	FEET (METERS)			GR	SA	Fi	LL	PI
DM-CS-1	4810 (1466)	Abı	0.0 · 2.0 (0.0 · 0.6)	SM	SILTY SAND, red - brown, fine to coarse, poorly graded, subangular, calcareous; little nonplastic silt; little fine to coarse gravel.					
DM-CS-5	4920 (1500)	A 5i	0.0 · 2.0 (0.0 · 0.6)	SM	SILTY SAND, brown, fine to coarse, poorly graded, angular to subangular, calcareous; little nonplastic silt; trace fine to coarse gravel.					
DM-CS-9	4850 (1478)	A5y	0.0 · 2.0 (0.0 · 0.6)	SM	SILTY SAND, brown, fine to coarse, poorly graded, subangular, calcareous; some non to slightly plastic silt; trace fine gravel.					
DM-CS-11	5020 (1530)	A5y/A5i	0.0 - 2.0 (0.0 - 0,6)	SM	SILTY SAND, brown, fine to coarse, poorly graded, subangular, catcareous; little nonpiastic silt.	4	77	19		
DM-CS-14	5390 <u>.</u> (1643)	A5i	0.0 · 2.0 (0.0 · 0.6)	GP-GM	SANDY GRAVEL, brown, fine to coarse, poorly graded, subangular, calcareous; some fine to coarse sand; trace nonplastic silt.					
DM-CS-18	4920 (1500)	A5y	0.0 - 2.0 (0.0 - 0.6)	SM	SILTY SAND, brown, fine to coarse, pocrly graded, subangular, calcareous; little nonplastic silt; trace fine gravel.					
DM-CS-20	4785 (1458)	Α5γ	0.0 - 2.0 (0.0 - 0.6)	SM	SILTY SAND, brown, fine to medium, poorly graded, subangular, calcareous; little nonplastic silt.					
DM-CS-24	4660 (1420)	A1	0.0 - 2.0 (0.0 - 0.6)	CL·ML	SILTY CLAY - CLAYEY SILT, brown, slightly plastic, caicareous; trace fine subangular sand.	٥	12	88	27	ľ
DM-CS-27	4740 (1445)	Α5γ	0.0 - 2.0 (0.0 - 0.6)	SM	GRAVELLY SAND, brown, fine to coarse, poorly graded, angular to subangular, calcareous; little gravel; little nonplastic silt.					
DM-CS-29	4505 (1373)	A1	0.0 - 2.0 (0.0 - 0.6)	ML	SANDY SILT, brown, slightly plastic, calcareous; some fine subangular sand.					
DM-CS-32	4555 (1388)	A5y	0.0 - 2.0 (0.0 - 0.6)	SM	GRAVELLY SAND, brown, fine to coarse, poorly graded, angular to subangular, calcareous; some fine angular gravel; little nonplastic silt.					
DM-CS-34	4560 (1390)	A5y	0.0 - 2.0 (0.0 - 6.0)	ML	SANDY SILT, brown, nonplastic, calcareous; some fine to medium subangular sand.	2	46	52		~
DM-CS-36	4695 (1431)	A5i	0.0 - 2.0 (0.0 - 6.0)	SM	SILTY SAND, brown, fine to coarse, poorly graded, angular to subangular, calcareous; fittle nonplastic silt; trace fine gravel.		 			
	,									
	}									

LOGS OF SURFICIAL SOIL SAMPLES DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

FIGURE 11-7-1

UGRO NATIONAL INC.

8.0 EXPLANATION OF LABORATORY TEST RESULTS

Laboratory test results are presented in this section. Table II-8-1 contains a summary of laboratory test results. This table shows results of sieve analysis; plasticity data; in-situ dry unit weight, moisture content, degree of saturation, and void ratio for drive and Pitcher samples; results of compaction tests; and specific gravity of solids. Other tests such as triaxial compression, unconfined compression, direct shear, consolidation, chemical, and California Bearing Ratio (CBR) are indicated on the table. Tables II-8-2 through II-8-6 and Figures II-8-1 through II-8-4 present results of triaxial compression, unconfined compression, direct shear, chemical, and CBR tests.

All tests were performed in general accordance with the American Society for Testing and Materials (ASTM) procedures. The following list presents the ASTM designations for the tests performed during the investigation.

Type of Test	ASTM	Designations
Particle Size Analysis	D	422-63
Liquid Limit	D	423-66
Plastic Limit	D	424-59
Unit Weight	D	2937-71
Moisture Content	D	2216-71
Compaction	D	1557-70
Specific Gravity of Solids	D	854-58
Triaxial	D	2850-70
Unconfined Compression	D	2166-66
Direct Shear	D	3080-72
Consolidation	D	2435-70
Test for Alkalinity (pH)	D	1067-70
Water Soluble Sodium	D	1428-64
Water Soluble Chloride	D	512-67
Water Soluble Sulphate	D	516-68
Water Soluble Calcium	D	511-72
Calcium Carbonate	D	1126-67
California Bearing Ratio (CBR)	D	1883-73

Explanation for the tables and figures presented in this section are as follows.

- A. Activity Number Boring, trench, test pit, or surface sample designation.
- B. Sample Number Prefix indicates the type of sample; explanation is at the bottom of the table.
- C. Sample Interval This is the depth range measured from ground surface over which the sample was obtained.
- D. Percent Finer by Weight Presents the results of laboratory particle size analysis (ASTM D 422-63) performed on representative soil samples at the depth indicated. The numbers represent the percent (by dry weight) of the total sample weight passing through each sieve size indicated.
- E. Atterberg Limits (ASTM D 423-66 and D 424-59)
 - LL Liquid Limit, the water content (as percent of soil dry weight) corresponding to the arbitrary limit between the liquid and plastic states of consistency of a soil (ASTM D 423-66).
 - PL Plastic Limit, the water content corresponding to an arbitrary limit between the plastic and the semisolid state of consistency of a soil (ASTM D 424-59).
 - PI Plasticity Index, numerical difference between the liquid limit (LL) and the plastic limit (PL) indicating the range of moisture content within which a soil-water mixture is plastic.
 - NP Nonplastic.
- F. USCS Unified Soil Classification Symbols are given here; see Table II-5-1 in Section 5.0, "Boring Logs," for complete details of USCS system.

- G. In Situ Presents results of tests on drive and Pitcher samples.
 - Dry Unit Weight Indicates dry unit weight of soil determined as per ASTM D 2937-71.
 - Moisture Content Weight of water reported in percent of dry weight of soil sample (ASTM D 2216-71).
 - Saturation The degree of saturation in a soil sample is defined as the ratio (in percent) of the volume of water to the volume of all voids in the soil.
 - Void Ratio The numerical ratio of the volume of voids to the volume of solids in a soil specimen.
- H. Compacted Indicates results of laboratory maximum dry density and optimum moisture content test as per ASTM D 1557-70.
- I. Specific Gravity of Solids (ASTM D 854-58) Indicates the ratio of 1) the weight in air of a given volume of soil solids at a stated temperature, to 2) the weight in air of an equal volume of distilled water at a stated temperature.
- J. Triaxial The triaxial compression tests were performed in accordance with the procedures of ASTM D 2850-70. The following explanations and definitions apply.

Triaxial Compression Test - A cylindrical specimen of soil is surrounded
by a fluid in a pressure chamber and subjected to an isotropic pressure. An additional compressive load is then applied,
directed along the axis of the specimen
called the axial load.

Consolidated-Drained (CD) Test

- A triaxial compression test in which the soil was first consolidated under an allaround confining stress (test chamber pressure) and was then compressed (and hence sheared) by increasing the vertical stress. "Drained" indicates that excess pore water pressure generated by strains are permitted to dissipate by the free movement of pore water during consolidation and compression.

Consolidated-Undrained (CU)

Test

A triaxial compression test in which essentially complete consolidation under the confining (chamber) pressure is followed by a shear test at constant water content.

Confining Pressure

 (σ_3)

The isotropic chamber pressure applied to the soil specimen during consolidation and compression.

Maximum Deviator

Stress

 $(\sigma_1 - \sigma_3)$

- The difference between the major and minor principal stresses in the specimen at failure. The major principal stress on the specimen is equal to the unit axial load plus the chamber pressure and the minor principal stress on the specimen is equal to the chamber pressure.
- Strain Rate Axial strain, ϵ , at a given stress level is defined as the ratio of the change in length (ΔL) of the specimen to the original length of the specimen (L_0). The rate of strain was controlled during the test so that this ratio increased at equal increments for each minute of testing.
- Back Pressure Pressure in excess of atmospheric applied to the pore water of a soil sample. Back pressure is usually applied to (1) increase saturation of the sample, or (2) simulate the actual in-situ pressure regime.
- K. Unconfined Compression Test procedures were as described in ASTM D 2166-66. Unconfined compressive strength is defined as the load per unit area at which an unconfined prismatic or cylindrical specimen of soil will fail in a

simple compression test. In these methods, unconfined compressive strength is taken as the maximum load attained per unit area or the load per unit area at 20 percent axial strain, whichever occurred first during the performance of a test.

- L. Direct Star The procedures of ASTM D 3080-72 were followed for direct shear testing. In this test, soil under an applied normal load is stressed to failure by moving one section of the soil container (shear box) relative to the other section. Normal stress is the value of load per unit area acting perpendicular to the plane of shearing. Maximum shear strength is defined as the maximum resistance (ksf) of a soil to shearing (tangential) stresses.
- M. Consolidation (ASTM D 2435-70) A consolidation test is a test in which a cylindrical soil specimen is laterally confined in a ring and compressed between porous plates. The term "consolidation," as used here, indicates the gradual reduction in volume of the soil mass resulting from an increase in compressive stress (axial load per unit area).
- N. Chemical The chemical tests performed on soil samples included: pH; water soluble sodium, chloride, sulphate, calcium; and calcium carbonate content. pH is an index of the acidity or alkalinity of a soil in terms of the logarithm of the reciprocal of the hydrogen ion concentration.
 ASTM test procedure designations for these chemical tests

are included in the list on the first page of these Explanations.

O. CBR - California Bearing Ratio (CBR) is the ratio (in percent) of the resistance to penetration developed by a subgrade soil to that developed by a standard crushed-rock base material. The procedures for conducting a CBR test were as outlined in ASTM D 1883-73. The materials tested for CBR were also analyzed for particle-size distribution (ASTM D 422-63) and compaction characteristics (ASTM D 1557-70). The term "percentage of maximum density" indicates the ratio (as a percentage) of the compacted sample dry unit weight to maximum dry density obtained in the laboratory from ASTM D 1557-70, "Moisture-Density Relations of Soils Using 10-pound (4.5-kg) Hammer and 18-inch (457-mm) Drop."

SYMBOL	BORING NO.	SAMPLE NO.	SAMPLE	INTERVAL	SOIL TYPE	INI Dry D	TIAL ENSITY	INITIAL MOISTURE CONTENT		INITIAL DEGREE OF SATURATION
		l [FEET	METERS		pe f	kg/m ³	(%)	KALIU	(%)
0	DM-8-3	P-10	51.8-62,5	15.73-16.00	CL	98.9	1584	15.5	0.62	64.3
,										

- O AT FIELD MOISTURE
- AFTER ADDITION OF WATER

- COMPRESSION

--- REBOUND

CONSOLIDATION TEST RESULTS
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - SMG

FIGURE II-8-1

UGRO NATIONAL INC.

USAF-09

24 MAR 81

SYMBOL	COMPOSITE SAMPLE	ACTIVITY	SAMPLE	INTERVAL	SOIL
310001	NUMBER	NUMBER [FEET	METERS	TYPE
	A	DM-T-1	0.5 - 2.0	0,15 - 0,61	SM
	8	DM-T-2	0.5 - 2.0	0,15 - 0,61	GW-GM
	С	DM-T-4	0,5 - 1,5	0.15 - 0.46	SM
	D	DM-T-6	0.5 - 2.0	0.15 - 0.61	SM

GRAIN-SIZE CURVES, CBR TESTS
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 800

FIGURE 1-8-2

UBRO NATIONAL INC.

SYMBOL	COMPOSITE SAMPLE	ACTIVITY	SAMPLE	SOIL	
31200	NUMBER	NUMBER	FEET	METERS	TYPE
	E.	DM-T-7	0,5-2,0	0.150.61	ML
	F	DM-T-8	0.5-2.0	0.15-0.61	SM
		F			-
					1

GRAIN-SIZE CURVES, CBR TESTS
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - SMG

FIGURE

II-8-2

UBRO NATIONAL INC.

USAF-18

24 MAR 81

FN-TR-27-DM-II

SAMBOF	COMPOSITE SAMPLE NUMBER	SOIL TYPE
0	A	SM
	8	GW-GM
Δ	С	SM
▽	D	SM

CALIFORNIA BEARING RATIO (CBR) CURVES
DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - SMO

гте**ин**с П-8-3

UGRO NATIONAL INC.

USA F-07

24 MAR 81

II-8-4

USA F-67

DEPARTMENT OF THE AIR FORCE - DWG

FN-TR-27-DM-IL-PERCENTAGE OF MAXIMUM DRY DEMSITY **85**-21 88 46 88 CSR (\$) COMPOSITE SAMPLE WOMBER SOIL TYPE ML 0 E 0 CALIFORNIA BEARING RATIO (CBR) CURVES DELAMAR VALLEY, NEVADA FIGURE MX SITING INVESTIGATION

24 HAR H

				PERCENT FINER BY WEIGHT											
⊨	(9)	SAMPLE I	MTFDVAL	-	2.	TANDARD	SIEV	E OPEN			U S		DARD S	IEVE N	10.
ACT I V I TY Number	SAMPLE NUMBER	ORMICE !	HI ERVAL	BLDRS	COBE	LES		GRA	VEL			SA			
2 S	중물	FEET	METERS	24"	12"	6"	3"	15"	3/4"	3/8"	4	10	40	100	20
DM-B-1	P-1	0.81.2	0.24-0.37						100	89	82	72	55	41	34
	D-2	3.5-4.0	1.07-1.22					1							
	D-3	6.0-6.5	1.83-1.98					1		100	90	63	15	7	5
	D-4	9.0-9.5	2.74-2.90					<u> </u>	100	90	76	54	27	15	9
	D-5	15.2-15.7	4.63-4.79						100	98	88	63	20	9	7
	D-6	20.3-20.8	6.19-6.34												
	D-7	25.3-25.8	7.71-7.86												
	P~8	30.831.6	9.39-9.63								100	94	23	6	3
	D-9	40.3-40.8	12.28-12.44												
	D-10	50.3-50-P	15.33-15.48					I	100	90	75	61	28	10	7
	D-1/	60.3-60.8	18.38-18.53					1	100	97	88	64	29	11	8
	P-12	70.8-71.8	21.58-21.88												
	P-13	80.0-80.8	24.38-24.63											_	
	P-14	82.8-83.6	25.24-25.48						100	94	77	51	21	9	6
	P-15	90.8-91.6	27.68-27.92												
	D~16	99.2-99.7	30.24-30.39						100	98	86	60	20	10	8
DM-B-2	P-1	0.0-0.8	0.00-0.24							100	95	86	55	35	21
	D-2	3.2-3.9	0.98-1.19											_	
	D-3	6.1-6.8	1.86-2.07												\Box
	D-4	8.2-8.9	2.50-2.71	1				100	92	78	65	45	17	9	7
	D-5	10.7-11.4	3.26-3.47												
	D-6	15.2-15.9	4.63-4.85						100	94	87	69	18	7	5
	D-8	25.8-26.0	7.86-7.92					1	100	91	81	61	15	6	4
	D-9	30.2-30.7	9.20-9.36	1	•		-								
	D~10	40.2-40.7	12.25-12.41	1					100	81	70	56	27	16	11
	D-11	50.1-50.5	15.27-15.39					100	87	62	49	37	17	9	7
	D-12	60.2-60.7	18.35-18.50					100	88	57	42	32	19	12	
	D-13	70.3-70.8	21.43-21.58	\Box				100	83	65	56	49	31	17	1
	D-15	86.3-86.7	26.30-26.43	1				100	71	67	60	51	29	17	1
	D- 16	99.2-99.7	30.24-30.39	\vdash				100	80	70	55	41	21	12	
DM-B-3	P-1	0.8-1.8	0.24-0.55						Γ	1		1	100	99	
	P-1	0.8-1.8	0.24-0.55						I						
	P2	3.8-4.6	1.16-1.40						<u> </u>	<u> </u>	Ī	1	Γ		
	P3	7.3–7.9	2.232.41						Γ	100	98	92	61	34	1
	P-4	9.0-9.9	2.74-3.02						1			100	95	85	H
	P-4	9.09.9	2.74-3.02							<u> </u>		1			H
	P-5	14.1-14.6	4.29-4.45								l				П
	P-5	14.7-15.4	4.48-4.69						1			1	Γ –		П
	P-5	14.8-15.3	4.51-4.66					$\overline{}$	 	 		 	-	 	М
	P-5	15.5-16.0	4.72-4.88	1				\vdash		<u> </u>	t	t		-	М
	P-6	20.2-20.7	6.16-6.31	1 -					t	†		 			П

NOTES:

(a) Sample types

(c) USCS - Unified Soil Classification System

SS - Standard split spoon

P - Pitcher

(d) * Indicates that test has been performed

D - Fugro Drive

B, b - Buik

and results are included in this report

(b) NP - Not Plastic

	TERBE		USCS (c)	DRY U		MOISTURE Content (\$)	SATURATION (\$)	VOID RATIO	MAX! Dry de	NSITY	OPTIMUM Moisture (\$)	SPECIFIC GRAVITY OF SOLID!
LL	PL	PI		(pcf)	(kg/m³)	3 3	SA	22	(pcf)	(kg/m ³)	S =	222
			SM	90.5	1450	7.3	23.0	0.86				L.,
			SW-SM	100.3	1607	7.3	28.9	0.68				
			SW SM	106.3	1703	14.2	65.6	0.58			1	
			SW-SM	100.0	1602	12.0	47.5	0.68				
		NP	SW-SM	103,7	1661	11.4	49.2	0.63				
			SP	108.4	1737	12.3	60.2	0.55				
			SP	107.5	1722	13.3	63.2	0.57.				
			SP	96.7	1549	16.5	64.5	0.66				2.58
			SP	110.4	1769	9.8	50.2	0.53				
			SP-SM	114.6	1836	7.1	40.8	0.47		<u> </u>	1	
	L		SP-SM	102.4	1640	13.8	57.6	0.65		<u> </u>		
	L		SP-SM_	103.7	1661	15.9	68.9	0.63		<u> </u>	 	
			SP-SM	108.5	1738	18.0	87.9	0.55			↓	
	L	NP	SW-SM	112.6	1804	10.6	58.0	0.50		<u> </u>	↓	
	L		SW-SM	104.9	1680	17.8	79.2	0.61		Ļ	↓	
	 -		SW-SM	106.3	1703	16.0	73.8	0.59		├	 	
	 	NP	SM									
			SM	109.2	1749	6.8	34.0	0.54				
			SW-SM	111.3	1783	11.1	58.2	0.51				
			SW-SM	117.1	1876	7.7_	47.4	0.44				_
			SW-SM	117.1	1876	6.2	38.4	0.44				
			SW-SM	108.4	1737	12.5	61.1	0.55				
			SW	111.6	1788	12.4	65.5	0.51			<u> </u>	
	1		SW-SM	115.3	1847	6.8	40.1	0.46				
		NP	SW-SM	114.4	1833	10.2	58.5	0.47				
			GW-GM	118.8	1903	9.1	58.4	0.42				
		NP	GW-GM	121.0	1938	7.3	51.3	0.38			<u> </u>	2.67
	i	!	GW-GM	120.8	1935	8.3	56.9	0.40		L		
			SP-SM	111.5	1786	12.3	67.7	0.48				2.64
			SW-SM	126.7	2030	8.0	65.4	0.33			-	
33	24	9	ML	80.6	1291	12.1	30.0	1.09			1	
	<u> </u>	Ť	ML	89.1	1427	4.7	14.2	0.89				
	 	t^{-}	ML	77.3	1238	6.2	14,1	1.18				
		NP	SM	123.6	1980	5.0	37.6	0.36				
32	20	12	CL	101.6	1628	14.2	58.1	0.66				
	 	\vdash	CL	105.6	1692	13.0	59.3	0.59				

r	OMPACTE	<u> </u>		<u> </u>	=		=		
		100	. 2	 			110		
MAXI Dry De	MUM MSITY	TIMUM ISTUR (\$)	SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (d)	UNCONFINED COMPRESSION	DIRECT Shear	CONSOLIDATION	CHEMICAL	ar.
pef)	(kg/m ³)		9 2 2	=	53	3	5	5	CBR
						*			
			2.50		<u> </u>				
		-	2.58						
		├			├				
_		-							-
_									
					<u> </u>				
									
		\vdash			\vdash	- i			\vdash
									\vdash
								, *	
			2.67						
]			
			2.64						$oxed{oxed}$
\vdash									$\vdash \dashv$
\vdash					*				
									$\vdash \vdash \vdash$
									\vdash
					*				
				*					
			2.68						
				*					
]	*					
\vdash				*	لبييا				
ľ									

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - BMO

TABLE 1-8-1 1 OF 4

JORO NATIONAL INC.

AFY-01

13)

	a)			Ī					PERCE	IT FINI	R BY Y	ELGHT		
1 a	\sim	SAMPLE I	NTERVAL		2.	TANDARD	SIEV	E OPEN	ING		U S	STAN	DARD :	SIEVE N
ACT I V I TY Number	SAMPLE Number			BLDRS	COBE	LES		GRA	VEL			SA	ND	
AC AC	S =	FEET	METERS	24"	12"	6"	3"	15"	3/4"	3/8"	4	10	40	100
DM-B-3	P6	20.8-21.6	6.34-6.58											
	P-6	20.9-21.4	6.37-6.52								,			
	P6	21.8-22.3	6.64-6.80											
	P-7	25.8-27.4	7.86-8.35											
	P-7	25.8-26.6	7.86-8.11											
	P-8	30.8-31.6	9.39-9.63											
	P-9	40.8-41.6	12.44-12.68										100	99
	P-10	50.8-51.6	15.48-1573											
	P-10	51.6-52.5	15.73-16.00											
	P-10	51.6-52.5	15.7316.00											
	P-11	60.0-61.6	18.29-18.78										L	
	P-12	70.8-71.6	21.58-21.82	↓										
	P-13	80.8-81.6	24.63-24.87	!				<u> </u>						
	P-14	90.8-91.6	27.68-27.92	.	L									<u> </u>
	P-15	98.3-99.1	29.96-30.21						<u> </u>					
				 								l 	L	
DM-B-4	P-1	0.0-0.7	0.00-0.21	ļ	L			L	100	97	93	90	75	46
 	D-3	5.5-6.0	1.68-1.83	 				100	89	71	55	41	23	15
	D-4	8.0-8.5	2.44-2.59	├ ──┤						100	98	92	72	47
—	D-5	11.0-11.5	3.35-3.51	 				100	82	75	68	63	53	36
——	D-7	20.5-21.0	6.25-6.40					100	96	89	76	62	37	16
	D-8	25.3-25.8	7.71-7.86	_ i	ļ			<u> </u>	100	<u>-</u> -			<u> </u>	
L	D-9	30.3-30.8	9.24-9.39					<u> </u>	100	97	88	70	30	12
	D~10	40.2-40.7	12.25-12.41		<u> </u>			 -		ļ			 	├
	D-11	50.2-50.7	15.30-15.45	1		<u> </u>		<u> </u>	100				 -	
 	D-12	60.3-60.8	18.38-18.53	ļ				L	100	98	85	70	32	15
	D-13	70.2-70.7	21.40-21.55	 					100					1 00
	D-14 D-15	84.3-84.8 99.3-99.8	25.69-25.85	├ ──-		 		<u> </u>	100	93	86	79	62	36
 	U-15	99.3-99.6	30.27-30.42	├ ──			<u> </u>	ļ	100	95	83	63	27	14
DM-B-5	P-1	0.8-1.6	0.24-0.49	 					 	100	98	02	65	48
DIVI-0-3	P-2	3.8-4.6	1.16-1.40	\vdash				<u> </u>	├	100	30	92	-05	 ~~
	D-3	7.5–8.0	2.29-2.44	1		-			100	98	91	83	48	26
	D-4	10.5-11.0	3.20-3.35	1			\vdash	100	92	78	66	47	17	7
	D-5	14.0-14.5	4.27-4.42	1			\vdash	 -	\ <u> ~~</u>	100	98	89	59	35
	D-6	20.2-20.9	6.16-6.37	†				 -		t	 	 	<u> </u>	 ~~
	D-7	25.1–25.8	7.65-7.86	1					 	100	96	80	31	22
 	D-8	30.2-30.5	9.20-9.30	 					100	98	90	65	25	16
	D-8	30.5-30.9	9.30-9.42	\vdash		<u> </u>	\vdash	 -	100	99	98	95	79	56
	D-9	40.2-40.9	12.25-12.47	1				<u> </u>	100	98	94	65	16	8
	D-10	50.5-51.2	15.39-15.61	1	<u> </u>			<u> </u>	100	1	- ~~	 "	- '° -	 ~ ~
	D-11	60.2 60.9	18.35-18.56	1			\vdash		 		100	98	47	17
	D-12	70.2-70.9	21.40-21.61						-		· · · · ·	<u> </u>	- ' ' 	 ''

NOTES:

(a) Sample types

(c) USCS - Unified Soil Classification System

SS - Standard split spoon

P - Pitcher

(d) * Indicates that test has been performed and results are included in this report

D - Fugro Drive

B, b - Bulk

(b) NP - Not Plastic

								(1) (1) (1)					_							
FINE	R BY V	ELGHT							 .				- 11	I-SITU				OMPACTE]
	US	STAN	DARD S	IEVE N	10.	PART			TERBE			DRY (UNIT	E L	NO		MAX	IMUM	OPTIMUM Moisture (%)	2
		SA	MD		611	.T OR C		LII	HITS ((b)	USCS	WEIG		MOISTURE Content (2)	SATURATION (%)	_≘	DRY DE		OPTIMUM Moistur (\$)	SPECIFIC
A0 12				100	-					1 n:	(c)					VOID RATIO				핉
/8"	•	10	40	100	200	.005	100.	LL	PL	Pi		(pcf)	(kg/m³)	_		> ≪	(pcf)	(kg/m³)		12
								46	26	20	CL	97.1	1556	22.6	83.2	0.74		ļ		\vdash
			ļ		<u> </u>			<u> </u>	ļ		CL_	95.9	1536	22.3	79.7	0.76		ļ		—
							<u> </u>		-	10	CL	93.3	1495	21.2	71.1	0.81				—
								41	23	18	CL CL	90.3 93.4	1447	15.3 14.0	47.7 47.1	0.87 0.80		-		<u> </u>
					 	-	 	41	26	15	ML	79.3	1496 1270	21.0	50.5	1.12				—
			100	99	98	75	37	46	24	22	Cr	102.6	1644	21.5	91.5	0.63		 		2
			100	- 55	- 55	,,,	 	34	19	15	CL	99.1	1588	18.4	76.3	0.62		 		2
								<u> </u>	· · ·	 ``	CI.	101.4	1624	15.8	70.0	0.58				一
										\vdash	CL	98.9	1584	15.5	64.3	0.62				_
								46	22	24	CL	100.2	1605	23.8	94.6	0.68				
											CL	96.6	1548	24.1	87.3	0.75				
										L	CL	91.1	1459	28.8	91.6	0.85				
								<u> </u>		<u> </u>	CL	98.1	1572	24.9	93.9	0.72				<u> </u>
								48	24	24	CL	98.9	1584	23.7	90.9	0.70	ļ			
				ļ. <u></u>			ļ	L	<u> </u>				1 1 2 2							<u> </u>
97	93	90	75	46	30					NP	SM	91.2	1461	2.7	8.5	0.85				<u> </u>
71 100	55 98	41	23 72	15 47	12 35			ļ	 		G\V-GM	115.4 97.1	1849 1556	4.0 8.3	23.7 30.6	0.46 0.73				<u> </u>
75	68	92 63	53	36	25			 -			SM	111.6	1788	5.6	29.7	0.73				—
89	76	62	37	16	11	<u> </u>		}	_	├	SP-SM	115.1	1844	10.1	58.8	0.46				-
-			<u> </u>	10						 	SP-SM	119.6	1916	9.6	63.2	0.41				_
97	88	70	30	12	8					<u> </u>	SV-SM	111.6	1788	9.5	50.5	0.51		-		
					.					\vdash	SW-SM	114.4	1833	6.5	37.3	0.47				_
										<u> </u>	SVV-SM	119.2	1910	9.3	60.6	0.41				
9 8	85	70	32	15	10						SV/-SM	119.6	1916	7.9	52.5	0.41				
											SW-SM	114.9	1841	9.8	56.5	0.47				
9 3	86	79	62	36	24			!		NP	SM	116.8	1871	9.3	57.0	0.44				
9 5	83	63	27	14	11						SW-SM	112.8	1807	7.6	41.8	0.49				L
								<u> </u>	<u> </u>	L										<u> </u>
00	98	92	65	48	42	-	<u> </u>	23	15	8	SC	92.9	1488 1725	6.2	20.7	0.81				
20	91	83	48	26	20	<u> </u>		-	-	NP	SM SM	107.7 110.2	1765	2.7 8.0	12.9 40.7	0.56 0.53				—
98 78	66	47	17	7	5	-	ļ		 	INF	SP-SM	104.8	1679	6.3	28.2	0.53				-
0 0	98	89	59	35	22		 	 	 -	-	SM	104.5	1738	7.1		0.55				
	30	- 55	- 55	33				· · · · ·	-	\vdash	SM	104.7	1677	12.8	56.7	0.61				
00	96	80	31	22	20			<u> </u>	<u> </u>		SM .	106.6	1708	9.7		0.58			-	_
98	90	65	25	16	14	<u> </u>		 -	<u> </u>	 	SM .	105.0	1682	12.7		0.61				
99	98	95	79	56	42						SM	100.1	1604	18.2		0.68				
99 98	94	65	16	8	6						SW-SM	106.9	1713	7.6		0.58				
											SW-SM	106.8	1711	7.3	34.1					
- '		-	- '	-	- '	-	-	-	-	- '		.	-						_	

the state of the s

COMPACTED			-	_ =		<u>z</u>			
MAXI	MUM	# ##	SPECIFIC GRAVITY OF SOLIOS	TRIAXIAL (d)	UNCONFINED COMPRESSION		CONSOLIDATION	At.	
	NSITY	STU	CIF VIT SOL	AXI	ONF	DIRECT Shear	01.10	CHEMICAL	
if)	(kg/m ³)		SPE GRA	TR.	COM	SHE	CONS	CHE	CBR
				*					
	<u> </u>			*					
					*				
			0.00						
	-		2.68 2.57						
					*				
							*		
	<u> </u>	 					-		
					<u></u>				
		 							
		-							
						*			
		Ĺ							
		\vdash	 						
		<u> </u>							
				<u> </u>	-				
						*			
\vdash	<u> </u>	 							
					\vdash				
						*			
\vdash		 			┞──┤				

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - BMG

TABLE ∏-8-1 2 OF 4

UGRO NATIONAL INC.

AFY-01

	-			-
0.5-2.0	0.15-0.61	1		
4.0-5.0	1.22-1.52		i I	
				Ī
0.5-1.5	0.15-0.46			
0.5-2.0	0.15-0.61			
2.0-3.0	0.61-0.91			100
0.5-2.0	0.15-0.61			1
0.5-2.0	0.15-0.61			
6.0-7.0	1.83-2.13	1		100
0.5-2.0	0.15-0.61			100
0.5-1.5	0.15-0.46			
<u>"-</u>		1		
0.5-2.0	0.15-0.61			100
3.0-4.0	0.91-1.22	1	1	
0.5-2.0	0.15-0.61	1		1
3.0-4.0	0.91-1.22			100
		1		-
0.5-1.5	0.15-0.46	1		
3.0-4.0	0.91-1.22	1		
		1		
		-		-

	i '	SM	l I	1
	 -	SP		
	NP	SM		
25	10	ML		
		SW		
	L	SM		
	L			 ł
		SP-SM		
		SM		
	NP	SM		
16	5	CL-ML		
		SW-SM		
14	6	SM-Se		

,	3	OMPACTE)		Ð	9.5		8		
	MAXI	MUM	OPTIMUM Moisture (\$)	SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (d)	UNCONFINED COMPRESSION	اء 15 ما	CONSOLIDATION	CAL	
VOID RATIO	DRY DE	NSITY	PT 18 10 (\$)	PEC! RAVI	RIAX	MCON MPR	DIRECT	NSOL	CHEMICAL	CBR
	(pcf)	(kg/m ³)	0 =	8 9 0	1	– 5	a s	2	ו	5
0.62										
0.58					-		<u> </u>			
	118.6	1900	12.5	L			-			*
	130.0	2083	8.1				ļ			*
										<u> </u>
	121.0	1938	10.5							*
	-									\Box
					<u> </u>	 				-
		-								-
	120.5	1930	10.5	2.60						*
		1000	20.5							
\vdash	101.5	1626	22.5	2.66		-				*
\vdash										
	125.1	2004	10.0							*
\vdash						<u> </u>			_	
\vdash					<u> </u>					\vdash
		<u> </u>								$\vdash \vdash \vdash$
\vdash				-						$\vdash \vdash \vdash$
									*	
						<u> </u>				$\vdash \vdash \vdash$
			\vdash		_					├{
\vdash										├─┤
									*	
				ļ		-				igsqcut
\vdash										$\vdash \vdash \vdash$
\vdash									*	

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - 8MO

TABLE ∏-8-1 3 OF 4

UGRO NATIONAL IN

AFY-01

			<u> </u>								 -
								-			
									<u> </u>		 -
											
							-				
				$\overline{}$							
				\vdash		<u> </u>					<u> </u>
									-		
									-		
						<u> </u>			 		
——			<u> </u>	<u> </u>				<u> </u>	 		
<u> </u>								<u> </u>	 -		
 				<u> </u>		<u> </u>	-	<u> </u>	-		
<u> </u>									 -	<u> </u>	├──
<u> </u>						 -		ļ	ļ		
									 -		
!	<u> </u>								ļ		
						<u> </u>			.		<u> </u>
<u> </u>						ļ			 		<u> </u>
				-		<u> </u>					<u> </u>
ļ									ļ		
						<u> </u>	ļ				├──
									Ļ <u> </u>		
						<u> </u>			<u> </u>	_	<u> </u>
						<u> </u>		ļ	 		<u> </u>
				-	— —			<u> </u>	-		⊢–
								ļ	 		├
						<u> </u>	-		ļ		├──
	<u> </u>					 					
	 				<u> </u>	<u> </u>	L	ļ	L		<u> </u>
	L			L	ļ	ļ					<u> </u>
	L			ļ	L						<u> </u>
			L						<u> </u>		
I	L										

1 1				, ,		r 1			
. 1									
		\dashv					 	 	
		\dashv					 	 	
$\overline{}$									
		1							
				1				 	
							 	 	—
		1							
					 -1		 		
							 	 	├ ──┥
		\longrightarrow					 		
]
1 1	J		I						

		OMPACTE			9	- 5	•	5		1
	MAX			SPECIFIC GRAVITY OF SOLIDS	TRIAXIAL (d)	UNCONFINED COMPRESSION	_	CONSOLIDATION	CAL	
	DRY DE	MSITY	OPTIMUM Moistur (\$)	SPECIFIC GRAVITY OF SOLIDS	NIAX		DIRECT	1001	CHEMICAL	œ
	(pef)	(kg/m^3)	5 5	S 19	11	5	22	5	3	CBR
_										
\dashv									*	
\dashv									-	
\dashv										
\dashv									<u>. </u>	
ㅓ										
\Box										
\Box										
\dashv										
\dashv		<u> </u>	\vdash		<u> </u>	-				
\Box										
\dashv						<u> </u>				
\dashv										
\exists						 -				
\Box										
4			<u> </u>							
\dashv	-		-			 				
\dashv			—			_				
\Box										
\dashv				-						
-		 -								
\neg			<u> </u>							
\Box										
4						<u> </u>				
\dashv						\vdash				\vdash
\dashv										┌╌┤
J										
-						<u> </u>				
\dashv	_		├─┤			\vdash				
\dashv										
J										

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - DMO

TABLE TIO 1

∏-8-1 4 OF 4

UGRO NATIONAL IN

AFY-01

~/

PRESSURE	LN/e ²	0	0	0	0	0	0								
PRES	181	0	0	0	0	0	0								
STRAIN		0.02	0.02	0.02	0.02	0.03	0.02								
6-0	1M/82	503	289	718	916	787	778								
	ksf	10.5	13.2	15.0	19.1	15.8	10.3								
E S	LH/62	2	72	8	8	144	102								
CONFINING PRESSURE (C2)	1181	1.0	1.6	2.0	2.0	3.0	4.0				·				
MOISTURE CONTENT	(\$)	19.7	19.9	20.4	21.2	22.8	22.3								
	ke/a3	1607	1583	1673	1496	1512	1636								
DAY D	pcl	100.3	2.88	98.2	93.3	4.4	96.9								
34.6	TEST	පි	90	8	8	8	aэ								
1188	WE	כר	าว	כר	כר	כר	כר								
ANPLE INTERVAL	METERS	4.51 - 4.66	4.51 - 4.06	4.72 - 4.88	089 - 979	6.16 - 6.31	6.37 - 6.52								
SAMPLE	FEET	14.8 - 15.3	14.1 - 14.6	16.6 - 16.0	21.8 - 22.3	20.2 - 20.7	20.9 - 21.4								
SAUPLE		9-d	P-6	P-6	2	9-d	7								
BORING SAUPLE	2	E-8-WQ			DM-8-3										

SUMMARY OF TRIAXIAL COMPRESSION TEST RESULTS DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - SMO

TABLE 11-8-2

TUBRO NATIONAL INC.

USAF-04

		_	_			_	_		_	 	_	 	,—.	 	 _	_	_	 _	_	_	 _	 _	
WEIGHT/	DIAMETER	2.09	2.09	2.09	2.09																		
BEGREE OF	(3)	14.2	69.3	47.1	70.0																		
MOISTURE	(8)	4.7	13.0	14.0	16.8																		
DAY DENSITY.	11/13	1427	1692	1496	1624																		
914	=	1.08	105.6	93.4	101.4																		
FIREMETH	KM /m2	34	199	282	474																		
UNCONFINED COUP. STRENGTH	101	0.7	13.6	6.9	8.8																		
108	TYPE	ML		ว	CL																		
NTERVAL	METERS	0.24 - 0.55	2.74 - 3.02	7.86 - 8.11	16.73 - 16.00																		
SAMPLE INTERVAL	FEET	0.8 - 1.8	9.0 - 9.9	25.8 - 26.6	51.6 - 52.5			CF															
<u> </u>	2	P-1	I	P.7	P-10																		
40	E	DM-8-3																					

SUMMARY OF UNCONFINED COMPRESSION TEST RESULTS DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - one

TABLE II-8-3

UBRO NATIONAL INC

USAF-00

BORING	SAMPLE	SAMPLE I	NTERVAL	SOIL	NORMAL	STRESS		MUM STRENGTH
NC.	NO.	FEET	METERS	TYPE	kef	kN/m²	kef	kN/m-2
DM-B-1	D-6	15.2 - 15.7	4.63 - 4.79	SW-SM	1.5	72	2.58	124
		·			2.3	110	3.56	170
					3.0	144	4.20	201
DM-8-4	D-7	20.5 - 21.0	6.25 - 6.40	SP-SM	2.0	96	2.85	136
	<u> </u>		l		3.0	144	3.48	167
					4.0	192	4.71	226
DM-8-6	D-5	14.0 - 14.5	4.27 - 4.42	SM	1.5	72	1.97	94
					2.3	110	2.63	126
					3.0	144	3.47	166
DM-8-5	D-9	40.2 - 40.9	12.25 - 12.47	SW-SM	4.0	192	3.95	189
					6.0	287	6.42	307
					8.0	383	8.22	394
L								
				l				

DIRECT SHEAR TEST RESULTS DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - SUB TABLE П-8-4

USAF-03

3	ATE	.	_			0	•								
CALCI	CARBONATE	ng/kg	211	39 0	2	1960	2800								
	CALCIUM	11/kg	23	00	98	833	988								
NATER SOLUBLE	SULPHATE	nc/kg	99	æ	10	01									
	CHLORIDE	ng/kg	8	20	22	322	334								
	30 i 00 s	nt/kg	16	8	9.	288	284								
	7		1.2	8.6	97	7.7	1.7								
			MS-WS	78-58	3	IN I	כרייור								
	MTERVAL	METEÀS	9.20 - 9.36	0.01 - 1.22	0.15 - 0.61	0.16 - 0.61	0.16 - 0.61								
	SABPLE INTERVAL	FEET	30.2 - 30.7	3.0 - 4.0	0.5 - 2.0	0.5 - 2.0	0.5 - 2.0								
	SAMPLE		8-0	24	1.4	٦									
	ACTIVITY		2.8.MQ	2-4-MQ	2-4-MQ	DM-P-13	DM-CS-24								

SUMMARY OF CHEMICAL TEST RESULTS DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE - THE

148LE II-8-5

UBRO NATIONAL INC

USAF-08

24 MAR 81

		_	_			_	_		_	 	_		_				
5	(3)	89	0*	91		E3	Ţ	=		69	\$	10		6/	43	1	
PERCENT OF MAXIMUM	DRY DENSITY	96.8	83.2	1.08		97.1	96.2	91.4		6.89	0.78	91.6		0.66	0.7.0	9.06.	
COMPACTED	(3)	12.7	12.6	12.6		0.0	1.1	6.7		911	12.6	10,0		10.2	10.2	10.5	
COMPACTED ORY DENSITY	11/13	1837	2771	1693		2023	2003	1903		9/81	1831	1111		1811	£/81	1748	
	101	114.7	110.6	106.7		126.3	126.0	118.8		117.2	113.7	110.9		118.2	116.9	1001	
OPT INVE	(5)			12.6				3				10,5				10.6	
BATIBUE ORY DENSITY	18/83			<u>6</u>				2083				1938				1930	
	100			118.6				130.0				121.0				120.5	
SPECIFIC	BEAVIIT															2.60	
ATTERBERG LIBITS	14			2								·				\$	
ATTE	11																
PERCENT PASS 186	#200			R				22				:				8	
108	11.2			3				GW-GM				75				3	
COMPOSITE SAMPLE	HUMBER			<				•				ပ				۵	

CALIFORNIA BEARING RATIO (CBR) TEST RESULTS DELAMAR VALLEY, NEVADA

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - THE

148LE 11-8-6 1 OF 2

UGRO NATIONAL INC

USAF -08

883	(\$)	9	•	3		77	42	2						
PERCENT OF MAXIMUM	DAY DENSITY	0.148	1.96	2.08		P'20	84.9	1.08						
COMPACTED	(3)	172.1	22.3	22.7		6.7	10.1	10.3						
COMPACTED At Density	16/83	1530	1564	1456		1963	1903	1791						
_	į	96.4	87.0	0.10		121.9	118.8	111.8						
OPT I MARE MOISTURE	(8)			22.5				10.0						
=				1626				7000						1
1	100			2.101				128.1		-				
SPECIFIC	WEAVITY .			2.88										
ATTERBERG LIBITS	2			2										
ATTE	11			ĸ										
PERCENT PASS 186	#200			67				22						
3	ITE			ML				ā						
COMPOSITE SAMPLE	HUMBER			w					i					

CALIFORNIA BEARING RATIO (CBR)
TEST RESULTS
DELAMAR VALLEY, NEVADA

WX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE - 900

TABLE II-8-6 2 OF 2

<u>vero national in</u>

USAF -08

9.0 EXPLANATION OF CONE PENETROMETER TEST RESULTS

The results of all cone penetrometer tests are presented in this section. Explanations of the test results are as follows:

- A. Depth Corresponds to depth below ground surface.
- B. Friction Resistance The resistance to penetration developed by the friction sleeve, equal to the vertical force applied to the sleeve divided by its surface area. This resistance is the sum of friction and adhesion.
- C. Cone Resistance ~ The resistance to penetration developed by the cone, equal to the vertical force applied to the cone divided by its horizontally projected area.
- D. Friction Ratio The ratio of friction resistance to cone resistance.
- E. Designation Each cone penetrometer test is identified by a number: for example C-1.
 - C abbreviation for the CPT
 - 1 number of the test
- F. Surface Elevation Indicated elevations on the drawings are estimated from topographic maps of the study area and are accurate within one-half the contour interval.
- G. Surficial Geologic Unit Indicates the surficial geologic unit in which the test was located.

H. Soil Column - A graphical presentation of the soil type versus depth at each cone penetrometer test location. The Unified Soil Classification Symbol for each different soil type is listed immediately to the left of the soil column. Immediately below the soil column, the activity number for the corresponding boring, trench, test pit, or surficial soil sample at each CPT location is given.

EXPLANATION

O GS-1 GEOLOGIC STATION

W1 GROUND WATER LEVEL MEASUREMENT

B-1 BORING

O C-1 CONE PENETROMETER TEST (CPT)

Δ CS-1 SURFACE SAMPLE AT CPT LOCATION

T-1 TRENCH

A P-1 TEST PIT

S-1 SEISMIC REFRACTION LINE

R-1 ELECTRICAL RESISITIVITY LINE

O GROUND WATER LEVEL MEASUREMENT

HELECTRICAL RESISITIVITY LINE

NOTE: Due to the exaggatation of the map symbols, the exect location of any contribution of any contribution of collections is where editor the besting (jet) or the OPT (incl is discussed, Single contribution are most accompany located parent in a trade of the control

ACTIVITY LOCATION MAP DELAMAR, NEVADA

MX SITING INVESTIGATION

DEPARTMENT OF THE AIR FORCE — BMO

DRAWING

I-1-1

GRO NATIONAL INC.

CONE RESISTANCE 900 (kg/cm^2) 300 400 500 600 700 800 100 200 100 300 400 200 SOIL Column 900 (tsf) 500 600 700 800 SP SN1 P 8 C 16 SURFACE ELEVATION 5520' (1082m) SURFICIAL GEOLOGIC UNIT: A51 SM SP SP SM Т 3 C-17 SURFACE ELEVATION: 5280' 1609mi SUFFICIAL GEOLOGIC UNIT Abi C-18 SURFACE ELEVATION 4920' (1500m) SΜ SURFICIAL GEOLOGIC UNIT A5_Y CS 18

_		
	Down Chry Land Man Man Land	Hypridy Mary bourness the
B 4	P-4	Т9
SM	SW SM	SP SM
	A5 ₁	
	OGIC UNIT	
	FACE ELEVE	FICIAL GEO
	SUR C6 SUR	
M		
	The state of the s	
	W	

15

30° (1481m) A5 ₃	SM P9	
5' (1458m) 1: A5.	SM CS-20	
14 75m) 5 1	SM SM SM	
	5.1	

C.8. SORFACE ELEVATION 4869 148300-SUBJECTAL GEOLOGIC ONET. ASI. C.9. SURFACE ELEVATION 4850 (14780) SURFICIAL GEOLOGIC UNIT. AS., C.9. SURFACE ELEVATION 4850 (14780) SURFICIAL GEOLOGIC UNIT. AS.,	
C.8 SURFACE ELEVATION 4865 1483/m- SURFICIAL DE DEOGLO UNIT Abi C.9 SURFACE ELEVATION 4850 (1478m) SURFICIAL GEOLOGIC UNIT Aby G.9 SURFACE ELEVATION 4850 (1478m) SURFICIAL GEOLOGIC UNIT Aby	H
C 9 SURFACE ELEVATION 4850 (1478m) ST SURFICIAL GEOLOGIC UNIT Aby	H
C 9 SURFACE ELEVATION 4850 (1478m) 57 . SURFICIAL GEOLOGIC UNIT A5y CO 9 :	H
SURFICIAL GEOLOGIC UNIT Aby CO 9 :	H
SURFICIAL GEOLOGIC UNIT Aby CO 9 :	H (
SURFICIAL GEOLOGIC UNIT Aby CO 9 :	ਜੋ : ੱ ——
C-10 SURFACE ELEVATION: 4930' (1503m) SURFICIAL GEOLOGIC UNIT: A5v 5A'	=
1 1	
St: 3	-
Str	
CONE RESISTANCE (636 TSF)	
C-11 SURFACE ELEVATION: 5020' (1530m)	
SURFICIAL GEOLOGIC UNIT. A5v. A5i	
	-
SW SM	
C-12 SURFACE ELEVATION: 5145' (1568m) SURFICIAL GEOLOGIC UNIT: A5i	_

FRICTON HATIO 9 - >	A
## PRICTIPS RATIO 9 + 1	A
3 -10 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	*
3 -10 4 -15 FRICTION RATIO 9 + 1 0 -0 1	Δ
FRICTION RATIO (9) 4 (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	2
ERICTION RATIO (9.4.) 6 -0 1-	
	4
3 - 10	7
4-	
5 - 15	=
6 - 20	
	2
5 - 25	
	\dashv
0-0	
1	\triangleleft
2—5 3—10	+
3-10	ı

ATION 4920 (1500m) LOGIC CNIT: A5:	P 10	
EVATION 4710' (1436m) ECLOGIC UNIT. A5.	P 12	
LEVATION: 4663' (1429m) GEOLOGIC UNIT: A1	CL ML CS 24	

CONE RESISTANCE 900 (kg/cm 2) 900 (tsf) € 34 SURFACE ELEVATION: 4560 (1390m) . L SURFICIAL GEOLOGIC UNIT As. CL JL C 35 SURFACE FLE ATION 4645 (1414m) SURFICIAL GEOLOGIC UNIT

FRICTION RATIO 900 (kg/cm²) 900 (tsf) 800 SOIL Column 8 (%) **(T**10% 4∋60 (1390m) OGIC UNIT AS. UL HL 710N 4641 (1414m) OGRESSIAN AS. SW SW P 1

		, ,		-					And the second of the second o		A
	_		ļ	رحح							
_		10									
			7	V	-				; İ		
F 2	.				>]
-	-			->							1
	-										
E	•			5	>						
=		-			3						
											-
									:		
	ļ										
											1
		:					1			i I	
								<u> </u>			
											
:											
											1
	ł	İ		:							
			ı	!					ATION: 4698		ļ
		!			·		508	FICIAL GEC	LOGIC UNIT	A5;	İ
											4
	-	ı									
								1	ATION 4785		}
							SUR	FICIAL GEC	LOGIC UNIT	A5:	Ì
					<u></u>						ł
									ļ :		
								ļ			
						<u> </u>					
							ļ	:			1
						-		ļ			
		l									
											i
									 -		
	j										[
					!]
									-		

		frymay brown may		
SM	CS 36	No.		
SM - SC SP - SM	1- P.	W		

C:30 SURFACE ELEVATION 4505' (1373m) SURFICIAL GEOLOGIC UNIT: A1	13 ML	
	P 13	
		₹ <u></u>
		X
		4
C-31 SURFACE ELEVATION: 4650' (1417m) SURFICIAL GEOLOGIC UNIT: A5y	SM .	
		3
		}
	C-21 SURFACE ELEVATION: 4650' (1417m) SURFICIAL GEOLOGIC UNIT: A5y	C.21 SURFACE ELEVATION: 4650: (1417m) SURFICIAL GEOLOGIC UNIT: A5y P 14

		a company of the state of the s		-					
		1 (1					
F	 	4				<u> </u>		 -	}
		İ	l .			ļ			
	[ĺ	1				['	
	1	ł	ł	ł	ł		}]	l i
]	ł						1
		1							
	1	1	l	1	l	}	ļ	,	
					1				
	Ì	1							
	ļ	1	1						
		1	1	1		}			
	}	İ	l	i	ł	ľ		i	1
				ļ.	,				
	1		l	l	ŀ		}	ļ	
		1	ì	l	-				
	{		ł	1		ł			ľ
]				1			
		1		1		1			
		1	ļ	1	Į.	1	1		
S			1		ł				
•			1	l		i			
		1	ł	1	 	 	 -		
	ł	ł	ł	l		ł			1
			1	l					
					•	1			
					-	<u> </u>			
į			ļ						
	1	ľ	İ	Ĭ		1	<u>'</u>		
i i			l						
			l	1		ļ	ļ		
	ł	1	Į			J .			
	1]	l	ļ		!			
		1	•						
		1							
				1		(
	ļ		ļ			Į į	•		
į									
		1	l						
	1					1			
	}		l						
		1		[
		1							
		Ī							
		İ	ļ	,					J
		ł							
		Į	l						
			ĺ				- 		
		ł)]					
	1	l			!				
					,				
								İ	
									,

AD-A113 391

FUGRO NATIONAL INC. LONG BEACH CA
VERTFICATION STUDY - DELAMAR VALLEY, NEVADA. VOLUME II. GEOTECH--ETC(U)
MAR 81

UNCLASSIFIED

NL

TOTAL OF THE PROPERTY OF THE

