# Алгоритмы и структуры данных

Коченюк Анатолий

22 сентября 2020 г.

# 0.1 Введение

курс будет идти 4 семестра.

1 лекций + 1 практика в неделю

баллы: практика – выходишь к доске и делаешь задание.

практика – до 30 баллов

0-25 — по 5 баллов 25-40 — по 3 балла 40+ — по 1 баллу

лабораторные: 50 баллов

экзамен: в каком-то виде будет. до 20 баллов.

# Глава 1

# І курс

## 1.1 Алгоритмы

Алгоритм: входные данные  $\to$   $\to$  выходные данные входной массив  $a[0\dots n-1]$ , выходная сумма  $\sum a_i$   $S = 0 \qquad \qquad \backslash \qquad 1$  for  $i = 0 \dots n-1 \backslash \backslash \qquad 1+2n$   $S+=a[i] \qquad \backslash \backslash \qquad 3n$  print(S)  $\backslash \backslash \qquad 1$ 

Модель вычислений.

RAM - модель. симулирует ПК. За единицу времени можно достать/положить в любое место памяти.

Время работы (число операций) В примере выше T(n) = 3 + 5n

мотивация: 3 становится мальньким, а 5 – не свойство алгоритма

$$T(n) = O(n)$$

$$f(n) = O(g(n)) \iff \exists n_0, c \quad \forall n \geqslant n_0 \quad f(n) \leqslant c \cdot g(n)$$

$$n_0 = 4, c = 6$$
  $3 + 5n \leqslant 6n, n \geqslant 4$   $3 \leqslant n$ 

$$f(n) = \Omega(g(n)) \iff --||--f(n) \geqslant cg(n)$$

$$3 + 5n = \Omega(n)$$
  $n_0 = 1, c = 1$ 

```
3 + 5n \geqslant n, n \geqslant 1
T(n) = O(n), T(n) = \Omega(n) \iff T(n) = \Theta(n)
          for i = 0 \dots n-1
                for j = 0 \dots n-1
-O(n^2)
          for i = 0 \dots n-1
                for j = 0 ... i-1
\sum_{i=0}^{n-1} i = \sum_{i=0}^{n \cdot (n-1)} = \Theta(n^2)
          i=1
          while i\cdot i<n
                i++
          i=1
          while i < n
                i=i\cdot \cdot 2
O(\sqrt{n}), O(\ln n)
          f(n):
                if n=0
                else
                     f(n-1)
n рекурсивных вызовов O(n)
          f(n):
                if n=0
                else
                     f(n/2)
                     f(n/2)
2^{\ln n} = n
если добавить третий вызов: 2^{\log_2 n} = n^{\log_2 3}
```

4

ГЛАВА 1. І КУРС

#### 1.2 Сортировки

#### 1.2.1 Сортировка вставками

Берём массив, идём слева направо: берём очередной элемент и двигаем в влево, пока он не упрётся

```
for i = 0 .. n-1

j=i

while j>0 and a[j]<a[j-1]

swap(a[j-1], a[j])

j--
```

Докажем, что алгоритм работает. по индукции. Если часть отсортирована и мы рассматриваем новый элемент, то он будет двигаться, пока не вставиться на своё место и массив снова будет отсортированным.

```
Если массив отсортирован (1,2,\ldots,n) – O(n)
```

```
Если нет(n, n-1, ..., 1), то O(n^2)
```

Рассматривать мы дальше будем худшие случаи.

#### 1.2.2 Сортировка слияниями

Слияние: из двух отсортированных массивов делает один отсортированный.

как найти перви элемент. Он наименьший, значит либо самый левые в массиве a, либо в массиве b. Мы забыли нужный первый элемент и свели к такой же задаче поменьше.

```
merge(a,b):
    n = a.size()
    m = b.size()
    i=0, j=0
    while i<n or j<m:
        if j==m or (i<n and a[i]<b[j]):
            c[k++] = a[i++]
        else
            c[k++] = b[j++]
    return c</pre>
```

```
O(n+m)
```

Сортировка: берём массив, делим его пополам, рекурсивно сортируем левую и правую часть, а потом сольём их в один отсортированный массив.

```
sort(a):
    n = a.size()
```

```
if n<=1:
    return a
al = [0, .. n/2-1]
ar = [n/2 .. n-1]
al = sort(al)
ar = sort(ar)
return merge(al, ar)</pre>
```

порядка n рекурсивных массивов.

$$T(n) = 2 \cdot T(\frac{n}{2}) + n$$

красиво и понятно:

математически и хардкорно: по индукции  $T(n) \leqslant \ln n$ 

База: n=1 – не взять из-за логарифма, но можоно на маленькие n не обращать внимания

Переход:

$$T(n) = 2T(\frac{n}{2}) + n \leqslant 2 \cdot \frac{n}{2} \ln \frac{n}{2} + n = n(\ln n - 1) + n = n \ln n + n(1 - 1) \leqslant \ln n$$

**Теорема 1** (Мастер-теорема). 
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 Если без  $f(n) = O(n^{\log_b a - \varepsilon})$ , то  $a^{\log_b^n} = n^{\log_b a}$  Если без  $f(n) = O(n^{\log_b a + \varepsilon})$ , тогда  $T(n) = O(f(n))$  Если без  $f(n) = O(n^{\log_b a})$ , то  $T(n) = n^{\ln_b a} \cdot \ln n$ 

## 1.3 Структуры данных

Структура, которая хранит данные

Операции: структура данных определляется операциями, которые она умеет исполнять

Массив:

- get(i) (return a[i])
- put(i,v) (a[i] = v)

Время работы на каждую операцию

ГЛАВА 1. І КУРС

#### 1.3.1 Двоичная куча

Куча:

- храним множество (x < y)
- insert(x)  $A = A \cup \{x\}$
- remove min()

Варианты:

- 1. Массив
  - insert(x) a[n + +] = x (O(1))
  - remove min() (O(n))

```
j=0
for i=1 .. n-1
    if a[i] < a[j]: j=i
swap(a[j], a[n-1])
return a[--n]</pre>
```

- 2. Отсортированный массив (по убыванию)
  - remove min()

• insert(x)

3. Куча. Двоичное дерево, каждого элемента – 2 ребёнка. У каждого есть один родитель (кроме корня). В каждый узел положим по элементу. Заполняется по слоям. Правило: у дети больше родителя. Минимум в корне – удобно находить.

Занумеруем все элементы слева направо. Из узла і идёт путь в 2i+1 и 2i+2

```
insert(x)
    a[n++] = x
    i=n-1
    while i>0 and a[i] < a[(i-1)/2]
        swap(a[i], a[(i-1)/2])</pre>
```

### i = (i-1)/2

 $O(\log n)$ 

Идея убирания минимума: поставить вверх вместо минимума последний элемент и сделать просеивание вниз.

### 1.3.2 Сортировка Кучей (Heap Sort)

```
sort(a):
    for i = 1 .. n-1: insert(a[i])
    for i = 1 .. n-1: remove_min()

heap\_sort(a)
    for i = 0 .. n-1
        shift_up(i)
    for i = n-1 .. 0
        swap(a[0], a[i])
        shift_down(0, i) // i -- размер кучи
```