Tutorial Notes 6 of MATH3424

1 Summary of course material

1. Qualitative variables:

To represent a set of categories of K, we need K-1 indicator variables.

- 2. Interaction variables (multiplicative / interaction effects)
- 3. Analysis of separate regression equations for two groups of the data:
 - (a) Each group has a separate regression model.
 - (b) The models have the same intercept but different slopes.
 - (c) The models have the same slope but different intercepts.
- 4. ANOVA by multiple Linear Regression
- 5. Seasonality

Questions $\mathbf{2}$

Assignment 2 Problem 4

Test the hypothesis $H_0: \beta_1 = \beta_3 = 0.5$ in the following model: $Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$.

1) Define
$$X' = X_1 + X_3$$
, Ho becomes:

$$\forall Ho': \beta' = 0.5$$

where
$$T = \beta_0 + \beta' X' + \epsilon$$

where
$$T = \beta_0 + \beta' X' + \epsilon$$
, $\hat{\beta}'$, s.e. $(\hat{\beta}')$, $t = \frac{\hat{\beta}' - 0.5}{\text{s.e.}(\hat{\beta}')}$

Full
$$Y = (\beta_0) + \beta_1 X_1 + \beta_3 X_3 + \xi$$

$$\gamma' = \gamma - o s(x_1 + x_1)$$

$$\beta_0 = \frac{1}{n} \sum_{i=1}^{n} \gamma_{i}'$$

$$SSE(RM) = \sum_{i=1}^{n} (\gamma_i - (\beta_i + 0.5(x_1 + x_3))^2$$

$$F = \frac{2}{SSE(FM)/(n-p-1)(n-3)}$$

Three catalysts are used in a chemical process. The following are yield data from the process:

	Catalyst		
	1	2	3
	79.5	81.5	78.1
	82.0	82.3	80.2
	80.6	81.4	81.5
	84.9	79.5	83.0
	81.0	83.0	82.1
Mean	81.6000	81.5400	80.9800
Variance	4.2050	1.7230	3.6270

Given that the overall sample variance is 2.8135.

- (a) Write down a one-way classification model (a model in terms of population means of catalysts) for the analysis of the above data set. Define the variables clearly.
- (b) Write down a regression model (a model in terms of indicator variables) for the analysis of the above data set. Define the variables clearly.
- (c) Estimate the unknown parameters in part (b).
- (d) Hence or otherwise, estimate the unknown parameters in part (a).
- (e) Test all population means of catalysts are equal at $\alpha = 0.05$. Write down the test statistic, the critical value and your conclusion clearly.

(a)
$$Y_{ij} = M_j + \mathcal{E}_{ij}$$
, $i=1,\dots,5$, $j=1,2,3$

My is the population mean of cotalyst j .

(b) $Y = \begin{pmatrix} Y_i \\ \vdots \\ Y_5 \\ Y_6 \\ \vdots \\ Y_{10} \end{pmatrix}$ group 1

$$\begin{cases} Y_i \\ \vdots \\ Y_5 \\ Y_6 \\ \vdots \\ Y_{10} \end{cases}$$
 group 2

$$\begin{cases} Y_i \\ \vdots \\ Y_5 \\ \vdots \\ \vdots \\ Y_{10} \end{cases}$$
 group 3

(a)
$$T_{ij} = \mu_{ij} + \epsilon_{ij}$$

(b) $T_{i} = \beta_{0} + \beta_{1} \times \epsilon_{-1} + \beta_{2} \times \epsilon_{i} + \epsilon_{i}$

Cotedyrt 1 2 3

population mean

$$\begin{bmatrix}
\beta_{0} + \beta_{1} & \beta_{0} + \beta_{2} & \beta_{0}
\end{bmatrix}$$
(d) $\hat{M}_{i} = \hat{\beta}_{0} + \hat{\beta}_{i} = \frac{\sum_{i=1}^{3} T_{i}}{\sum_{i=1}^{3} T_{i}} = T_{i}$

$$\hat{M}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} = \frac{\sum_{i=1}^{3} T_{i}}{\sum_{i=1}^{3} T_{i}} = T_{i}$$

$$\hat{M}_{i} = \hat{\beta}_{0} = T_{3}$$
(e) Tese:

Ho: $M_{i} = \mu_{2} = \mu_{3}$

Vs. H_{i} : at least one of them not equal to others

$$H_{i} : T_{i} = \beta_{0} + \beta_{1} \times \epsilon_{i} + \beta_{2} \times \epsilon_{i+1} + \epsilon_{i}$$

$$H_{i} : T_{i} = \beta_{0} + \beta_{1} \times \epsilon_{i} + \beta_{2} \times \epsilon_{i+1} + \epsilon_{i}$$

$$F = \frac{8SR}{2}$$

$$= 0.1835 < F(2,12;0.05)$$

$$SST = \sum_{i=1}^{15} (7i-F)^2 = 39.3893$$

$$SSE = \sum_{i=1}^{5} (\gamma_{i} - \gamma_{i})^{2} + \sum_{i=6}^{10} (\gamma_{i} - \gamma_{i})^{2} + \sum_{i=11}^{15} (\gamma_{i} - \gamma_{3})^{2}$$

$$= 38.22$$

ANOVA: