1

1 2

1

1

2

CLAIMS

We claim:

1	1. A method for reconstituting IKK in yeast comprising the steps of:
2	a. subcloning IKK subunit genes into yeast expression vectors;
3	b. transforming said yeast expression vectors into yeast;
4	c. growing said yeast in a selective liquid media; and
5	d. controllably inducing the expression of said IKK subunits by means of
6	inducible promoters.
1	2. The method of claim 1, further comprising the steps of:
2	a. lysing said yeast;
3	b. extracting said IKK protein; and

- c. purifying said IKK protein.
- 3. The method of claim 1, wherein said yeast expression vectors contain a selection marker.
- 4. The method of claim 2, wherein said selection marker is leucine, histidine, tryptophan, or uracil.
- 5. The method of claim 1, wherein said yeast expression vectors contain a tag.
- 6. The method of claim 1.a, wherein said tag is myc, HA, or FLAG 6his.
- 7. The method of claim 1, wherein said yeast expression vectors contain an inducible promoter or a constitutive promoter.
- 8. The method of claim 1.a, wherein said inducible promoter is methionine or galactose.
- 9. The method of claim 1.a, wherein said constitutive promoter is alcohol dehydrogenase.
- 1 10. The method of claim 1, wherein said IKK subunit is IKK α .
- 1 11. The method of claim 1, wherein said IKK subunit is IKK β .
- 1 12. The method of claim 1, wherein said IKK subunit is IKKγ.
- 1 13. The method of claim 1, wherein said IKK subunits are a combination of IKKα,
 2 IKKβ, and IKKγ.

1

2

1

2

1

2

1

2

- 14. The method of claim 1.a, 1.a or 1.a wherein said IKKα and IKKβ subunits are
 subcloned into pESC ura or pESC trp vectors wherein a galactose promoter region
 is replaced with a met promoter from a leu(met) vector.
- 15. The method of claim 1.a or 1.a, wherein said IKKγ subunit is subcloned into said
 leu(met) vector.
- 16. The method of claim 1.a or 1.a, wherein said IKKγ subunit is subcloned into the
 pES 86(+) expression vector wherein constitutive expression is induced under the
 alcohol dehydrogenase promoter.
- 1 17. The method of claim 1, wherein said yeast is Saccharomyces cerevisiae.
- 1 18. The method of claim 1, wherein said IKK is mammalian IKK.
- 1 19. The method of claim 1.a, wherein said mammalian IKK is human IKK.
 - 20. The method of claim 1, wherein said vectors are plasmids, small yeast chromosomes or cosmids.
 - 21. The method of claim 1, wherein said selective liquid media is an non-inducing drop-out media.
 - 22. The method of claim 1, wherein said purified IKK protein is substantially homologous to IKK isolated from wild-type cells.
- 1 23. The method of claim 1, wherein said purified IKK protein is mutated.
 - 24. A heterologously expressed IKK complex, wherein said IKK is expressed by yeast.
- 25. The composition of claim 24, wherein said IKK complex is comprised of IKKα,
 IKKβ, and IKKγ subunits.
- 26. The composition of claim 24, wherein said IKK complex is produced by the method of claim 1.
- 27. A heterologously expressed IKK complex, wherein said IKKγ protein subunit
 regulates phosphorylation of serine residues in the activation of T loop kinase
 domain of IKK catalytic subunits.
- 28. The method of claim 27, wherein said IKK complex is activated by the
 dephosphorylation of γBD serines.
- 29. A yeast cell containing an expressible copy of a gene encoding a subunit of IKK.

1	30. The yeast cell of claim 1.a which is transformed with a yeast expression vector			
2	which contains the expressible copy of the gene encoding IKK α , IKK β , or IKK γ .			
1	31. The yeast cell of claim 1.a which is transformed by the method of claim 1.			
1	32. A method for identifying upstream regulators of IKK complex, comprising the			
2	steps of:			
3	a. mutating the genes of one or more said IKK subunits;			
4	b. subcloning genes for IKK subunits into yeast expression vectors;			
5	c. transforming said yeast expression vectors into yeast;			
6	d. growing said yeast in a selective liquid media;			
7	e. controllably inducing the expression of said IKK subunits by means of			
8	inducible promoters;			
9	f. lysing said yeast;			
10	g. extracting said IKK protein;			
11	h. purifying said IKK protein; and			
12	i. comparing kinase activity of said IKK protein with wild type IKK.			
1	33. The method of claim 32, wherein said mutation is on a binding domain.			
1	34. The method of claim 1.a, wherein said mutation mimics the biochemical			
2	characteristics of said binding site when bound.			
1	35. The method of claim 1.a, wherein said mutation prevents binding at said domain			
2	site.			
1	36. The method of claim 32, wherein said mutation changes serines to alanines.			
1	37. The method of claim 32, wherein said mutation changes serines to glutamic acid			
1	38. A method for assaying IKK activity in situ in yeast comprising the steps of:			
2	a. subcloning genes for IKK subunits into first yeast expression vectors;			
3	b. transforming said first yeast expression vectors into yeast;			
4	c. subcloning HeLa cell cDNA into second yeast expression vectors;			
5	d. transforming said second yeast expression vectors into said yeast;			
6	e. replica plating said yeast;			
7	f. growing said yeast on membranes on selective non-inducing medium			
8	g. inducing said yeast to produce IKK protein;			
9	h. fixing said IKK protein;			

	10	i.	probing said IKK protein with IKK β , I κ B α , and Phospho-I κ B α (ser 32);		
	11		and		
	12	j.	isolate on said membranes clones positive for IKK $\!\beta$ and IkB $\!\alpha$ and		
	13		negative for Phospho- $I\kappa B\alpha$ (ser 32).		
	1	39. The method of claim 1.a, further comprising the step of sequencing said positive			
	2	clones.			
	1	40. The method of claim 1.a, further comprising the steps of:			
	2	a.	transforming said positive clone into yeast;		
	3	b.	growing said yeast in a selective liquid media;		
	4	c.	controllably inducing the expression of said clones by means of inducible		
freift theift for	5		promoters.		