BID AGAINST SPACEX

Executive Summary

Summary of methodologies:

- Data collection and wrangling
- SQL
- Visualization
- Predictive Analysis

Summary of Results:

 Whether the first stage will land can be predicted with a relatively high accuracy

CONTENTS

- 1. Introduction
- 2. Methodology Data Collection and Wrangling
- 3. Methodology EDA and Interactive Visual Analytics
- 4. Methodology Predictive Analysis
- 5. Results EDA with Visualization
- 6. Results EDA with SQL
- 7. Results Interactive map with Folium
- 8. Results Predictive Analysis
- 9. Conclusion

Introduction

Falcon 9 first stage will land successfully and costs less than other providers.

Questions:

- 1. What is the price of each launch?
- 2. If SpaceX will reuse the first stage?

Methodology – Data Collection and Wrangling

- 1. Request Data from API -> Turn data from .json to dataframe -> Clean data -> save to csv files
- 2. Get Data by web scraping -> Turn data from html to dataframe -> Clean data -> save to csv files

Methodology – EDA and Interactive Visual Analytics

- 1. Explore the sites and orbits of launches, giving a label of success
- 2. Visualize the relationship between flight number, payload and launch site
- 3. Visualize the relationship between flight number, payload and orbit type
- 4. Visualize the launch success yearly trend
- 5. Use Folium to mark launch sites and calculate the distances

Methodology – Predictive Analysis

- 1. Handle data for preparation
- 2. Build modes: logistic regression, SVM, decision tree, K-nearest neighbor
- 3. Use score to compare the better model

Results – EDA with Visualization

Results – EDA with SQL

```
* ibm_db_sa://gvy02842:**
Done.

Launch_Sites

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E
```

```
%sql SELECT DATE, BOOSTER_VERSION, I

* ibm_db_sa://gvy02842:***@55fbc997-
Done.

DATE booster_version launch_site

2015-01-10 F9 v1.1 B1012 CCAFS LC-40

2015-04-14 F9 v1.1 B1015 CCAFS LC-40
```

%sql SELECT LANDI	NG_OUTCOME, COUN
* ibm_db_sa://gvy02842:***@55fbc99 Done.	
landingoutcome	landing_count
No attempt	10
Failure (drone ship)	5
Success (drone ship)	5
Controlled (ocean)	3
Success (ground pad)	3
Failure (parachute)	2
Uncontrolled (ocean)	2
Precluded (drone ship)	1

Results – Interactive map with Folium

Results – Predictive Analysis

```
print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
print("accuracy :",logreg_cv.best_score_)

tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'}
accuracy : 0.8464285714285713
```

```
print("tuned hpyerparameters :(best parameters) ",svm_cv.best_params_)
print("accuracy :",svm_cv.best_score_)

tuned hpyerparameters :(best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel': 'sigmoid'}
accuracy : 0.8482142857142856
```

```
print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
print("accuracy :",tree_cv.best_score_)

tuned hpyerparameters :(best parameters) {'criterion': 'entropy', 'max_depth': 14
mples_split': 10, 'splitter': 'random'}
accuracy : 0.8892857142857145
```

```
print("tuned hpyerparameters :(best parameters) ",knn_cv.best_params_)
print("accuracy :",knn_cv.best_score_)

tuned hpyerparameters :(best parameters) {'algorithm': 'auto', 'n_neighbors': 10, 'p': 1}
accuracy : 0.8482142857142858
```

Conclusion

All models used have a high accuracy to predict the landing outcome, among with Decision Tree performs the best.

