

51.505 – Foundations of Cybersecurity

Week 3 - Information Flow

Created by **Martin Ochoa** (2017) Modified by **Jianying Zhou** (2018)

Last updated: 28 Sept 2018

Recap

Questions on last week's exercises?

Confidentiality & Integrity: Non-interference

- Non-interference: an alternative formulation of security policy models.
 - ✓ A strict separation of subjects requires that all channels, not merely those designed to transmit information, must be closed.
- A precise definition attempt by Goguen/Meseguer (1982):
 - ✓ Elegantly capture both <u>confidentiality</u> and <u>integrity</u> notions.
- Thoroughly studied in the literature from different perspectives, playing a role in recent attacks (side-channels).
 - J. Goguen and J. Meseguer. "Security Policies and Security Models". IEEE S&P 1982.

Information Flow

- For instance, a Map app wants your coordinates for providing a service.
- Therefore the app needs access to the current location.
- Are the coordinates transmitted to untrusted third parties afterward?

Practical Interpretation of Unwanted Flows

• Exploiting a vulnerability that alters data is an integrity violation.

An attack that leaks information violates <u>confidentiality</u>.

Interference

- Single system with 2 users:
 - ✓ Each has own virtual machine.
 - ✓ Holly at system high, Lara at system low so they cannot communicate directly.
- CPU shared between VMs based on load:
 - ✓ Form a <u>covert channel</u> through which Holly, Lara can communicate.

Interference

- Think of it as something used in "indirect" communication.
 - ✓ Covert channel: Holly interferes with the CPU utilization, and Lara detects it.
 - ✓ Example: at a fixed interval, if Holly runs his program, "transmitting" a 1-bit to Lara; If not, "transmitting" a 0-bit to Lara.
 - ✓ Violating *-property.

Model

System as <u>state machine</u>:

```
✓ Subjects S = \{ s_i \}
```

✓ States
$$\Sigma = \{ \sigma_i \}$$

✓ Outputs
$$O = \{ o_i \}$$

✓ Commands
$$Z = \{z_i\}$$

✓ State transition commands $C = S \times Z$

• Inputs:

✓ Encode either as selection of commands or in state transition commands.

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - ✓ Describe effect of executing command c in state σ .
- Output function $P: C \times \Sigma \rightarrow O$
 - \checkmark Output of machine when executing command c in state s.
- Initial state is σ_{0} .

Example Semantics

- Finite state machine (also called Mealy machine)
 - ✓ Step (T) takes an input event and changes the state.
 - ✓ Output (P) takes an input event and shows the output event associated.

- T(a, S1) = S1, T(g, S1) = ?
- P(a, S1) = b, P(a, S2) = ?

States & Outputs

States: T is inductive in first argument, as

$$T(c_0, \sigma_0) = \sigma_1; T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$$

- Let C* be set of possible sequences of commands in C
- $T^*: C^* \times \Sigma \to \Sigma$ and $c_s = c_0, \ldots, c_n \Rightarrow T^*(c_s, \sigma_0) = T(c_n, \ldots, T(c_0, \sigma_0))$
- Similar definition for <u>outputs</u> P and P*

Example: 2-bit Machine

- 2 bits of state info: H (high), L (low)
 - ✓ System state is (H, L) where H, L are 0, 1
- 2 users: Heidi (high), Lucy (low)
 - ✓ Heidi can read both high and low bit info.
 - ✓ Lucy can only read low bit info.
- 2 commands: xor0, xor1
 - ✓ Do *xor* on both bits with 0, 1.
 - ✓ Operations affect both state bits regardless of whether Heidi or Lucy issues it.

Example: 2-bit Machine

```
• S = { Heidi, Lucy }
```

•
$$\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$$

•
$$C = \{ xor0, xor1 \}$$

State transition function:

	Input States (H, L)			
	(0,0)	(0,1)	(1,0)	(1,1)
xor0	(0,0)	(0,1)	(1,0)	(1,1)
xor1	(1,1)	(1,0)	(0,1)	(0,0)

Example: 2-bit Machine

- Let $\sigma_0 = (0,1)$
- 3 commands applied:
 - ✓ Heidi applies xor0
 - ✓ Lucy applies *xor1*
 - ✓ Heidi applies xor1
- $c_s = ((\text{Heidi}, xor0), (\text{Lucy}, xor1), (\text{Heidi}, xor1))$
- Output $P^* = 011001$
 - ✓ Shorthand for sequence (0,1) (1,0) (0,1)

Projection

- $T^*(c_s, \sigma_i)$: sequence of state transitions for a system
- $P^*(c_s, \sigma_i)$: corresponding outputs
- $proj(s, c_s, \sigma_i)$: set of outputs in $P^*(c_s, \sigma_i)$ that subject s is authorized to see
 - ✓ In same order as they occur in $P^*(c_s, \sigma_i)$
 - ✓ Projection of outputs for s
- Intuition: Removing outputs that s cannot see.

Example

- $\sigma_0 = (0,1), c_s = ((Heidi,xor0), (Lucy,xor1), (Heidi,xor1)) = 011001$
- $proj(Heidi, c_s, \sigma_0) = 011001$
 - ✓ Heidi can see both high and low bit outputs.
- $proj(Lucy, c_s, \sigma_0) = 101$
 - ✓ Lucy cannot see high bit outputs.

Purge

- $G \subseteq S$, G is a group of subjects
- $A \subseteq Z$, A is a set of commands
- $\pi_G(c_s)$: subsequence of c_s with all elements (s,z), $s \in G$ being deleted
- $\pi_A(c_s)$: subsequence of c_s with all elements (s,z), $z \in A$ being deleted
- $\pi_{G,A}(c_s)$: subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ being deleted

Example

- $\sigma_0 = (0,1), c_s = ((Heidi,xor0), (Lucy,xor1), (Heidi,xor1)) = 011001$
- $\pi_{Lucv}(c_s) = (Heidi, xor0), (Heidi, xor1)$
- $\pi_{Lucy,xor1}(c_s) = (Heidi,xor0), (Heidi,xor1)$
- $\pi_{Lucv.xor0}(c_s) = (Heidi,xor0), (Lucy,xor1), (Heidi,xor1)$
- $\pi_{Heidi}(c_s) = (Lucy, xor1)$
- $\pi_{\text{Heidi},xor1}(c_s) = (\text{Heidi}, xor0), (\text{Lucy}, xor1)$
- $\pi_{\text{Heidi},xor0}(c_s) = \pi_{xor0}(c_s) = (\text{Lucy},xor1), (\text{Heidi},xor1)$
- $\pi_{xor1}(c_s) = (Heidi, xor0)$

Non-interference

- Intuition: Set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference.
- Formally: $G, G' \subseteq S, G \neq G'; A \subseteq Z$; Users in G executing commands in A are non-interfering with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$,

$$proj(s, c_s, \sigma_i) = proj(s, \pi_{G,A}(c_s), \sigma_i)$$

written A,G:I G'

Example

- $\sigma_0 = (0,1), c_s = ((Heidi,xor0), (Lucy,xor1), (Heidi,xor1)) = 011001$
- $G = \{ Heidi \}, G' = \{ Lucy \}, and A = \emptyset.$
- $\pi_{Heidi, A}(C_s) = (Lucy, xor1)$
- proj(Lucy, $\pi_{Heidi, A}(c_s)$, σ_0) = proj(Lucy, xor1, σ_0) = 0
- proj(Lucy, c_s , σ_0) = 101 \neq proj(Lucy, $\pi_{Heidi, A}$ (c_s), σ_0) = 0
- The statement { Heidi } :I { Lucy } is false.
- Intuition: commands issued to change the H bit also affect the L bit.

Information Flow

- Access controls can constrain the rights of a user, but they cannot constrain the flow of information about a system.
- When a system has a security policy regulating <u>information flow</u>, the system must ensure that the information flows do not violate the constraints of the policy.

Language-based Security

- Consider the following property on a program *P* (which implies non-interference).
- Let h and / two variables in P.

• Example of *P*:

$$1 = h$$

• Is it non-interferent?

Language-based Security

- Consider the following property on a program P (which implies non-interference).
- Let h and / two variables in P.

Example of P:

$$h = 1$$

What about now?

Language-based Security

- Consider the following property on a program P (which implies non-interference).
- Let h and I two variables in P.
- Example of P:

$$l = 0$$
if $(h == 1)$
 $l = 1$
else
 $l = 0$

Now?

Implicit Flows

- Why are these kind of properties interesting?
 - ✓ Implicit flows!
- It is in general not enough to track assignments to guarantee confidentiality. For instance:

Basics

- Bell-LaPadula Model embodies information flow policy.
 - ✓ Given compartments A, B, information can flow from an object in A to a subject in B iff B dom A.
- Variables x, y are assigned compartments x, y as well as values.
 - If $\underline{x} = A$ and $\underline{y} = B$, and $A \ dom \ B$, then y := x is allowed but not x := y.

Entropy

- Uncertainty of a value, as measured in bits.
- Example: X is the value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty.
 - ✓ Therefore entropy of X is H(X) = 1
- Formal definition: random variable X, values $x_1, ..., x_n$; so $\Sigma_i p(X = x_i) = 1$

$$H(X) = -\Sigma_i p(X = x_i) \log p(X = x_i)$$

Conditional Entropy

X takes values from { x₁, ..., x_n }

$$\checkmark \quad \Sigma_i \, p(X=x_i) = 1$$

Y takes values from { y₁, ..., y_m }

$$\checkmark \quad \Sigma_i \, p(Y=y_i) = 1$$

• Conditional entropy of X given $Y=y_j$ is:

$$\checkmark H(X \mid Y=y_j) = -\Sigma_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$$

Conditional entropy of X given Y is:

$$\checkmark H(X \mid Y) = -\Sigma_j p(Y=y_j) \Sigma_i p(X=x_i \mid Y=y_j) \lg p(X=x_i \mid Y=y_j)$$

Entropy & Information Flow

- c is a sequence of commands taking a system from state s to state t.
- x and y are objects in the system; x_s and y_s are values at state
 s.
- The command sequence c causes a flow of information from x to y if

$$\checkmark H(x_s \mid y_t) < H(x_s \mid y_s)$$

• If y_s does not exist in s, then $H(x_s \mid y_s) = H(x_s)$.

Example 1

- Command is x := y + z; where:
 - \checkmark 0 ≤ y ≤ 7, equal probability
 - $\sqrt{z} = 1$ with prob. 1/2, z = 2 or 3 with prob. 1/4 each
- *s* is state before command executed; *t*, after; so

✓
$$H(y_s) = H(y_t) = -8(1/8) \text{ Ig } (1/8) = 3$$

✓
$$H(z_s) = H(z_t) = -(1/2) \lg (1/2) -2(1/4) \lg (1/4) = 1.5$$

• If you know x_t , y_s can have at most 3 values (about z), so

✓
$$H(y_s \mid x_t) = -3(1/3) \lg (1/3) = \lg 3$$

• $H(y_s \mid x_t) = \lg 3 < H(y_s) = 3 \rightarrow \text{information flows from } y \text{ to } x.$

Example 2

Command is

$$if x = 1 then y := 0 else y := 1;$$

where:

x, y equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability.
- $H(x_s \mid y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa. • Thus, $H(x_s \mid y_t) = 0 < H(x_s) = 1$
- So information flows from *x* to *y*.

Implicit Flow of Information

- Information flows from x to y without an explicit assignment of the form y := f(x).
 - \checkmark f(x) is an arithmetic expression with variable x.
- Example from previous slide:

✓ if
$$x = 1$$
 then $y := 0$ else $y := 1$;

So must look for implicit flows of information to analyze program.

Notation

- x means class of x.
 - ✓ In Bell-LaPadula based system, same as "label of security compartment to which *x* belongs".
- $\underline{x} \le \underline{y}$ means "information can flow from an element in class of x to an element in class of y.
 - ✓ Or, "information with a label placing it in class x can flow into class y".

Compiler-based Mechanisms

- Detect unauthorized information flows in a program during compilation.
- Analysis not precise, but secure.
 - ✓ Not precise: A secure path of information flow may be marked as unauthorized (false positive).
 - ✓ <u>Secure</u>: No unauthorized path along which information could flow remains undetected.
- A set of statements is <u>certified</u> with respect to information flow policy if flows in that set of statements do not violate that policy.

Example

```
if x = 1 then y := a else y := b;
```

- Information flows from x and a to y, or from x and b to y.
- Certified only if $\underline{x} \le \underline{y}$ and $\underline{a} \le \underline{y}$ and $\underline{b} \le \underline{y}$
 - ✓ Note flows for *both* branches must be true unless compiler can determine that one branch will *never* be taken.

Array Elements

• Information <u>flowing out</u>:

$$...$$
 := $a[i]$

✓ Values of i, a[i] both affect result, so class is $max\{a[i], i\}$.

• Information <u>flowing in</u>:

$$a[i] := ...$$

✓ Only value of a[i] affected, so class is $\underline{a[i]}$.

Assignment Statements

$$x := y + z;$$

✓ Information flows from y, z to x, so this requires $max\{ \underline{y}, \underline{z} \} \leq \underline{x}$.

More generally:

$$y := f(x_1, ..., x_n)$$

✓ The relation $max\{\underline{x}_1, ..., \underline{x}_n\} \leq \underline{y}$ must hold.

Compound Statements

$$x := y + z; a := b * c - x;$$

- ✓ First statement: $max\{y, z\} \le x$
- ✓ Second statement: $max\{\underline{b}, \underline{c}, \underline{x}\} \leq \underline{a}$
- ✓ So, both must hold (i.e., be secure).

More generally:

$$S_1$$
; ... S_n ;

 \checkmark Each individual S_i must be secure.

Conditional Statements

```
if x + y < z then a := b
else d := b * c - x;
```

- \checkmark $b \le a, \{b, c, x\} \le d$
- ✓ The statement executed reveals information about x, y, z (condition), so $max\{ \underline{x}, \underline{y}, \underline{z} \} \le min\{ \underline{a}, \underline{d} \}$.

More generally:

if
$$f(x_1, ..., x_n)$$
 then S_1 else S_2 ;

- $\checkmark S_1$, S_2 must be secure.
- \checkmark max{ \underline{x}_1 , ..., \underline{x}_n } ≤ min{ \underline{y} | \underline{y} target of assignment in S_1 , S_2 }.

Iterative Statements

```
while i < n do
            begin a[i] := b[i];
                  i := i + 1;
             end;
```

✓ Same ideas as for "if", but must terminate.

```
More generally:
```

```
while f(x_1, ..., x_n) do S;
```

- Loop must terminate. Why?

 S must be secure.
- \checkmark max{ $x_1, ..., x_n$ } ≤ min{ $y \mid y$ target of assignment in S }.

Infinite Loops

```
y := 0;
while x = 0 do
          (* nothing *);
y := 1;
```

- If x = 0 initially, infinite loop.
- If x = 1 initially, terminates with y set to 1.
- No explicit flows, but implicit flow from x to y.
- However, hard to detect whether the loop will terminate at compile time.

Execution-based Mechanisms

- Detect and stop flows of information that violate policy.
 - ✓ Done at *run time*, not compile time.
 - ✓ Before $y = f(x_1, ..., x_n)$ is executed, verify that $max\{ \underline{x}_1, ..., \underline{x}_n \} \le y$
- Obvious approach: check <u>explicit</u> flows.

Execution-based Mechanisms

- Problem: <u>Implicit</u> flows complicate checking.
- Assume for security, $\underline{x} \leq \underline{y}$

if
$$x = 1$$
 then $y := a$;

- Explicit flow: cause a flow from x to y. Okay.
- Implicit flow: when $x \neq 1$, $\underline{x} = \text{High}$, $\underline{y} = \text{Low}$, $\underline{a} = \text{Low}$
 - ✓ The implicit flow will not be checked.
 - ✓ The statement may be incorrectly certified.

Key Points

• Non-interference:

- ✓ Alternative formulation of security policy models.
- ✓ Assert a strict separation of subjects -- all channels, not merely those designed to transmit information, must be closed.

• Information Flow:

- ✓ The amount of information flowing (entropy), and the way it flows.
- ✓ Explicit vs implicit flows (side-channels)
- ✓ Compiler-based mechanism assesses the flow of information in a program with respect to a given information flow policy.
- ✓ Execution-based mechanism checks flows at run time. Either allow the flow to occur or block it.

Exercises & Reading

- Classwork (Exercise Sheet 3): due on Fri Sept 28, 10:00 PM
- Homework (Exercise Sheet 3): due on Fri Oct 5, 6:59 PM
- Reading: MB [Ch8 (without 8.2.2 8.2.4, 8.3 8.5), Ch16 (without 16.2, 16.3.2.5, 16.3.4,16.4.1,16.4.2)]

End of Slides for Week 3