Cell's dorsal surface is Ω ; the boundary of this surface is $\partial\Omega$ (see figure). This flat surface is in the x-y-plane; x-axis is the direction of the tactic directional cue, and the cell is polarized in that direction.

The ventral surface, z=h(x,y), is given by the equation: $\Delta h(x,y)=-T/P$, where T [pN/um] is the cortex tension and is a given parameter, and P [pN/um^2] is variable in time (see below). The boundary condition for eq. $\Delta h(x,y)=-T/P$ is h(x,y)=0 on $\partial\Omega$. In addition, the volume of the cell is conserved: $\int_{\Omega}hdxdy=v$ where v is the constant model parameter – cell volume.

The boundary of the dorsal surface (we'll call it cell edge) is deforming in a locally normal direction (see fig) with local velocity, which is a function of 1) angle θ between the x-axis and polar angular coordinate of the point at the edge, and 2) of the contact angle $\varphi(\theta) = \arctan \Big[\nabla h \big(x(\theta), y(\theta)\big)\Big]$ where $x(\theta), y(\theta)$ are Cartesian coordinates of the point at the cell edge with polar coordinate θ . To measure θ , we need to define the cell center (cross in the fig). One convenient way to define it is find the dashed line parallel to the x-axis which divides the dorsal surface in two equal halves (so that areas to the left and right from this line are the same: $A_1 = A_2$), and then take the center of the dashed line (see fig).

Let us try the following velocity of the boundary, which can be derived from a force balance combined

$$V\left(\theta\right) = \kappa_{1} \underbrace{\left(A - \Omega\right)}_{\mbox{this term stabilizes}} + \underbrace{\kappa \cos \left(\theta\right)}_{\mbox{this is graded}} - \underbrace{\kappa_{3} T \cos \left(\phi \left(\theta\right)\right)}_{\mbox{this is influence}} + \underbrace{\kappa_{4} T \cos \left(\phi \left(\theta\right)\right)}_{\mbox{this influence}} + \underbrace{\kappa_{4} T \cos \left(\phi \left(\phi\right)\right)}_{\mbox{this influence}} + \underbrace{\kappa_{4} T \cos \left(\phi \left(\phi\right)\right$$

with Young-Dupre eq.:

Here $K_{1,2,3,4}$ are model parameters.

First, scale and non-dimensionalize the model. I would take volume^1/3 as length scale, T*(length scale) as force scale; (length scale)/kappa_2 as time scale.

Then, think about the numerics. The algorithm probably should be similar to that in Hunter's paper: At any time step,

- 1) On a given Ω , solve $\Delta h(x,y) = -T/P$ with h(x,y) = 0 on $\partial \Omega$. Find P from the condition: $\int_{\Omega} h dx dy = v$. (In Hunter's paper it seems they have some neat trick for doing that)
- 2) Find the cell center, compute $V(\theta)$, deform the cell edge.

