Applied Data Science Capstone

Falcon 9 first stage successful landing prediction

Martina Oravcova

Executive Summary

- In this capstone, I predict if SpaceX Falcon 9 first stage will land successfully
- I train a machine learning model and use public information to predict if SpaceX will reuse the first stage

Table of contents

- Applied Data Science Capstone...1
- Executive Summary...2
- Table of contents...3
- Introduction...4
- Methodology 1...5
- Methodology 2...6
- Methodology 3...7
- Methodology 4...8
- EDA with visualization results 1...9
- EDA with visualization results 2...10
- EDA with SQL results 1...11
- EDA with SQL results 2...12
- EDA with SQL results 3...13
- EDA with SQL results 4...14
- EDA with SQL results 5...15
- EDA with SQL results 6...16
- EDA with SQL results 7...17

- Interactive map with Folium results 1...18
- Interactive map with Folium results 2...19
- Plotly Dash dashboard results 1 Total success launches all sites...20
- Plotly Dash dashboard results 2 CCAFS LC-40...21
- Plotly Dash dashboard results 3 VAFB SLC-4E...22
- Plotly Dash dashboard results 4 KSC LC-39A...23
- Plotly Dash dashboard results 5 CCAFS SLC-40...24
- Predictive analysis (classification) results 1...25
- Predictive analysis (classification) results 2...26
- Predictive analysis (classification) results 3...27
- Predictive analysis (classification) results 4...28
- Conclusion...29
- Resources...30

Introduction

- SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars
- other providers cost upwards of 165 million dollars each
- much of the savings is because
 SpaceX can reuse the first stage
- therefore, if I can determine if the first stage will land, we can determine the cost of a launch

- First stage is quite large and expensive
- Unlike other rocket providers, SpaceX's Falcon 9 can recover the first stage
- Sometimes the first stage does not land
- Sometimes it will crash
- Other times, Space X will sacrifice the first stage due to the mission parameters like payload, orbit, and customer

Main question for analysis:

Will SpaceX Falcon 9 first stage land successfully?

Methodology 1

- General methods
- Write Python code to manipulate data in a Pandas data frame
- Convert a JSON file into a Pandas data frame
- Create a Jupyter notebook and make it sharable using GitHub
- Use data science methodologies like web scraping to define and formulate a real-world business problem
- Use data analysis tools to load a dataset, clean it, and find out interesting insights from it

Methodology 2

Data sources and methods in details:

- Data collection by Web scraping Falcon 9 and Falcon Heavy Launches Records from Wikipedia page titled List of Falcon 9 and Falcon Heavy launches
- Data collection by Request and parse the SpaceX launch data using the GET request to the SpaceX API
- Wrangle data by creating a Python Pandas data frame from JSON file gained from API
- Wrangle data by replacing missing values of PayloadMass with mean

Methodology 3 EDA and visualization methods in details:

- Exploratory data analysis done with Python and SQL
- Visualizations were created with Seaborn, Folium, Dash

SpaceX Launch Records Dashboard

Methodology 4

Prediction methods in details:

Prediction with sklearn library using following models:

- logistic regression
- support vector machine
- decision tree classifier
- k nearest neighbors

Model performance was compared with f1_score, jaccard_score Confusion

Matrix

EDA with visualization results 1

EDA with visualization results 2

Task 1

Display the names of the unique launch sites in the space mission

* ibm_db_sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb Done.

Out[5]: launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Task 2

Display 5 records where launch sites begin with the string 'CCA'

In [6]: ▶ | %sql SELECT * FROM TABLE WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5

* ibm_db_sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb Done.

t[6]:	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
	2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

Task 4

2534

Display average payload mass carried by booster version F9 v1.1

Task 5

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

Task 6

2015-12-22

Out[10]:

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

In [11]: 🕨	%sql SELECT * FROM TABLE WHERE landing_outcome = 'Success (drone ship)' AND payload_masskg_ > 4000 AND payload_masskg_ <									
Out[11]:	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg	orbit	customer	mission_outcome	landing_outcome
	2016-05-06	05:21:00	F9 FT B1022	CCAFS LC-40	JCSAT-14	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
	2016-08-14	05:26:00	F9 FT B1026	CCAFS LC-40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
	2017-03-30	22:27:00	F9 FT B1021.2	KSC LC-39A	SES-10	5300	GTO	SES	Success	Success (drone ship)
	2017-10-11	22:53:00	F9 FT B1031.2	KSC LC-39A	SES-11 / EchoStar 105	5200	о GTO	SES EchoStar	Success	Success (drone ship)

Task 7

Done.

Out[15]:

List the total number of successful and failure mission outcomes

```
▶ | %sql SELECT DISTINCT mission outcome FROM TABLE
In [12]:
              * ibm db sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:31498/bludb
             Done.
   Out[12]:
                        mission_outcome
                          Failure (in flight)
                                Success
              Success (payload status unclear)

M sql SELECT COUNT(*) FROM TABLE WHERE mission outcome = 'Success'

In [13]:
              * ibm db sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb
             Done.
   Out[13]:
              99
          ▶ | %sql SELECT COUNT(*) FROM TABLE WHERE mission outcome LIKE 'Failure%'
In [14]:
              * ibm_db_sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:31498/bludb
             Done.
   Out[14]:
[15]:

★ Sql SELECT COUNT(*) FROM TABLE

           * ibm db sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb
```

Task 8

n [16]:

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

```
* ibm db sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb
          Done.
Out[16]:
           booster_version
             F9 B5 B1048.4
             F9 B5 B1049.4
             F9 B5 B1051.3
             F9 B5 B1056.4
             F9 B5 B1048.5
             F9 B5 B1051.4
             F9 B5 B1049.5
             F9 B5 B1060.2
             F9 B5 B1058.3
             F9 B5 B1051.6
             F9 B5 B1060.3
             F9 B5 B1049.7
```

Msql SELECT booster version FROM TABLE WHERE payload mass kg = (SELECT MAX(TABLE.payload mass kg)FROM TABLE);

Task 9

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

7]: 🔰 %sql SELECT landing outcome, booster version, launch site FROM TABLE WHERE Date LIKE '2015%'

* ibm_db_sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:31498/bludb Done.

ut[17]:

landing_outcome	booster_version	launch_site
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
Controlled (ocean)	F9 v1.1 B1013	CCAFS LC-40
No attempt	F9 v1.1 B1014	CCAFS LC-40
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40
No attempt	F9 v1.1 B1016	CCAFS LC-40
Precluded (drone ship)	F9 v1.1 B1018	CCAFS LC-40
Success (ground pad)	F9 FT B1019	CCAFS LC-40

Task 10

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

8]: N sql SELECT * FROM TABLE WHERE landing_outcome = 'Failure (drone ship)' OR landing_outcome = 'Success (ground pad)' AND (DA

* ibm_db_sa://mdx72742:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90108kqb1od8lcg.databases.appdomain.cloud:31498/bludb Done.

ut[18]:

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landingoutcome
2017-02-19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2016-07-18	04:45:00	F9 FT B1025.1	CCAFS LC-40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2016-06-15	14:29:00	F9 FT B1024	CCAFS LC-40	ABS-2A Eutelsat 117 West B	3600	GTO	ABS Eutelsat	Success	Failure (drone ship)
2016-03-04	23:35:00	F9 FT B1020	CCAFS LC-40	SES-9	5271	GTO	SES	Success	Failure (drone ship)
2016-01-17	18:42:00	F9 v1.1 B1017	VAFB SLC-4E	Jason-3	553	LEO	NASA (LSP) NOAA CNES	Success	Failure (drone ship)
2015-12-22	01:29:00	F9 FT B1019	CCAFS LC-40	OG2 Mission 2 11 Orbcomm-OG2 satellites	2034	LEO	Orbcomm	Success	Success (ground pad)
2015-04-14	20:10:00	F9 v1.1 B1015	CCAFS LC-40	SpaceX CRS-6	1898	LEO (ISS)	NASA (CRS)	Success	Failure (drone ship)
2015-01-10	09:47:00	F9 v1.1 B1012	CCAFS LC-40	SpaceX CRS-5	2395	LEO (ISS)	NASA (CRS)	Success	Failure (drone ship)

Interactive map with Folium results 1

Interactive map with Folium results 2

- Launch sites are close to railways, highways providing easy access for people and suppliers.
- Launch sites are close to coastline for safety reasons easy access to water in case of a fire.
- Launch sites keep the distance away from cities to protect the citizens, for example the cosest city to VAFB launchsite is city Lompoc that is 14.11 KM away from the lauch site.

Plotly Dash dashboard results 1 Total success launches all sites

Success count on Payload mass for all sites

Plotly Dash dashboard results 2 CCAFS LC-40

Payload Mass (kg)

5000

1000

Plotly Dash dashboard results 3 VAFB SLC-4E

Plotly Dash dashboard results 4 KSC LC-39A

Plotly Dash dashboard results 5 CCAFS SLC-40

- Logistic regression
- jaccard score: 0.8
- f1_score: 0.8148148148149

- support vector machine
- jaccard_score: 0.8
- f1_score: 0.8148148148149

- decision tree classifier
- jaccard_score: 0.75
- f1_score: 0.738095238095238

- k nearest neighbors
- jaccard_score: 0.75
- f1_score: 0.738095238095238

Conclusion

- Launch site with the highest count of successful launches is KSC LC-39A with booster version FT
- Best method for prediction are either logistic regression or SVM, because their Jaccard index and F1 score are the highest
- The closer is the site to sea, roads and railways and the further from cities it is, the better.

Resources

- https://www.coursera.org/learn/applied-data-science-capstone
- https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches
- https://api.spacexdata.com/v4/launches/past