NB-iot

- NB-IoT (Narrow Band Internet of Things) is a low-cost, lowpower, wide-area cellular connectivity for the Internet of Things
- NB-IoT is developed by 3GPP (3rd Generation Partnership Project) to enable a wide range of cellular devices and services
- The 3GPP Rel-13, published in June 2016, introduces NB-IoT. This system, based on Long Term Evolution (LTE) technology, supports most LTE functionalities, although with essential simplifications to reduce device complexity.
- The design objectives of NB-IoT include low complexity devices, high coverage, long device battery life, and massive capacity.
- Latency is relaxed although a delay budget of 10 seconds is the target for exception reports.

LTE / LTE-A

- LTE (Long-Term Evolution) is a standard wireless communication for high-speed data transfer between mobile phones based on GSM/UMTS network technologies
- It can cover fast travelling devices and provide multicasting and broadcasting services. LTE-A (LTE Advanced) is an improved version of LTE, including bandwidth extension, which supports
 - up to 100 MHz,
 - downlink and uplink spatial multiplexing,
 - extended coverage,
 - higher throughput
 - lower latencies.
- LTE-A encompasses a set of cellular communication protocols that fit well for Machine-Type Communications (MTC) and IoT infrastructures, especially for smart cities where long term durability of infrastructure is expected.
- At the physical layer, LTE-A uses orthogonal frequency division multiple access (OFDMA) by which the channel bandwidth is partitioned into smaller bands called physical resource blocks (PR B).

LoRa/LoRaWAN

- LoRa (Long Range) is a long-range wireless communications system, promoted by the LoRa Alliance.
- This system aims at being used in long-lived battery-powered devices, where the energy consumption is of paramount importance [32].
- LoRa refers to two distinct layers:
 - A physical layer using the Chirp Spread Spectrum (CSS) [33] radio modulation technique
 - A MAC layer protocol LoRaWAN (Long Range Wide-Area Network) [34].
- The LoRa physical layer, developed by Semtech, allows for long-range, low-power and low-throughput communications
- it operates at 433mhz
- the payload of each transition can range from 2 225 octates
- data rate up to 50kbps when channel aggregation is applied
- the LoRa modulation is proprietary technology by semtech

	NFC	BLE
Standard	ISO/IEC 14443, 18092	IEEE 802.15.1
Frequency band	13.56 MHz	2.4 GHz
Data rate	106 Kb/s or 212 Kb/s or 424 Kb/s	1 Mb/s
Range	0-10 cm	100 m (outdoors)
Transmission power	23 dBm	0-10 dBm
Transmission Technique	ASK	GFSK FHSS Star
Topology	Peer-to-Peer	Star – Bus Network
Packet length	Variable	8 to 47 bytes
Security	Encryption Cryptographic, Secure Channel, Key Agreements	AES-128
License	Free	Free

Common Applications	Tracking, Identification, Human Implantation	Payment, Healthcare, Smart Environment, Mobile Ticketing and loyalty	Multimedia data exchange between nearby nodes	Home and industry monitoring and controlling	Automation in residential and light commercial	M2M, V2V applications and smart grids
------------------------	---	--	--	--	--	--

Fig 5: Comparison of the short range protocols