Department of Biochemical Engineering & Biotechnology IIT Delhi

BEL850 (Bioprocess Engineering Laboratory)

Experiment 2

OBJECTIVE

To estimate the power required to overcome the friction in the mechanical seal of a 3 L ungassed bioreactor.

INTRODUCTION

The total electrical power supplied to the agitator motor denoted P_T is consumed in two ways, i.e.,

$$P_T = P_0 + P_S \tag{1}$$

where P_0 denotes the power for stirring the liquid in an ungassed bioreactor, and P_s denotes the power for overcoming the frictional forces in the mechanical seal.

Now P_0 can be estimated from the impeller Reynold's number

$$Re_i = \frac{\rho N_i D_i^2}{\mu} \tag{2}$$

where ρ denotes the density of the liquid (1000 kg m⁻³ for water), μ denotes the viscosity of the liquid (10⁻³ kg m⁻¹ s⁻¹ for water), N_i denotes the rotational speed of the impeller (in revolutions per second), and D_i denotes the diameter of the impeller (in m). In particular, if the flow is turbulent, i.e. $Re_i \ge 5 \times 10^3$, the power number

$$N_P = \frac{P_0}{\rho N_i^3 D_i^5} \tag{3}$$

approaches a constant value N_P which depends on the type of the impeller and the geometry of the reactor. It follows that under turbulent conditions, P_0 can be estimated from the formula

$$P_0 \approx N_P' \cdot \rho N_i^3 D_i^5 \tag{4}$$

where $N_P = 5$ if the reactor contains a Rushton impeller and the reactor geometry is such that $H_L/D_T = 1$ and $D_i/D_T = 1/3$, where H_L and D_T denote the liquid height and tank diameter, respectively.

We can also calculate the total electrical power consume P_T from the voltage V and the current I measured with a multimeter. Indeed, P_T is given by the expression

$$P_T = VI \cdot \eta \, Cos(\Phi) \tag{5}$$

where $\eta = 0.8$ denotes the electrical motor efficiency and $Cos(\Phi) = 0.9$ denotes the power factor.

MATERIALS:

- Fermentor 14L
- Voltmeter and ammeter

METHOD

- 1. Measure D_i and D_T and check that $D_i/D_T=3$. Now fill the reactor with water such that $H_L/D_T=1$.
- 2. Compute minimum impeller rotation speed which will ensure turbulent flow of the water in the bioreactor.
- 3. Choose the impeller agitation speed at any value above the minimum value obtained in step 2, and measure the voltage and current using the multimeter.
- 4. Repeat step 3 for six different agitation speeds.

CALCULATION

For each N_i , calculate the corresponding P_0 and P_T using (4) and (5), respectively, and then use (1) to calculate P_s .

RESULTS

Plot P_0 , P_s , and P_s/P_T against N_i .

DISCUSSION

Discuss your observations.
