

ChemVA: Interactive Visual Analysis of Chemical Compound Similarity in Virtual Screening

María Virginia Sabando

M. Selzer, I. Ponzoni, A. J. Soto, M. L. Ganuza Universidad Nacional del Sur, Argentina

Pavol Ulbrich

J. Byška, J. Mičan, B. Kozlíková Masaryk University, Czech Republic

ChemVA: Interactive Visual Analysis of Chemical Compound Similarity in Virtual Screening

María Virginia Sabando

M. Selzer, I. Ponzoni, A. J. Soto, M. L. Ganuza Universidad Nacional del Sur, Argentina

Pavol Ulbrich

J. Byška, J. Mičan, B. Kozlíková Masaryk University, Czech Republic

Motivation

- Virtual screening → accelerate drug discovery
- Large sets of potential drug candidates

Visualization tools:

Image source: https://cdn.rcsb.org/rcsb-pdb/general_information/news_publications/newsletters/2014q2/corner.html

- Explore compounds and their features
- Select the best candidates for testing in-vitro

Motivation

- Virtual screening → accelerate drug discovery
- Large sets of potential drug candidates

Image source:

https://cdn.rcsb.org/rcsb-pdb/general_information/news_publications/newsletters/2014q2/corner.html

- Visualization tools:
 - Explore compounds and their features
 - Select the best candidates for testing in-vitro

Challenge 1: Multidimensional Nature of Molecules

Similarity of compounds depends on many factors

! Structural similarity does not guarantee similar bioactivity!

Image source: https://courses.lumenlearning.com/suny-mcc-organicchemistry/chapter/introduction-to-cycloalkanes/

- Multiple high-dimensional vector-based abstractions of a compound
- Visual support for the exploration of similarity

Dimensionality reduction to visualize the molecular space

Dimensionality reduction to visualize the molecular space

Image source: Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI, Journal of Cheminformatics, 2012

Dimensionality reduction to visualize the molecular space

Image source: Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI, Journal of Cheminformatics, 2012

Rv2579	2o2i WID TYPE	01*		3,3	3,6	3,7	164,9	1	-3,55
Rv2579	2o2i fixphe/UM3 0009	-4,053	18	3,46	2,91	2,37	170,78	1	-3,4
Rv2579	2o2i fixphe/UM4 0001	-1,439	18	3,39	2,62	2,63	157,52	1	-3,5
Rv2579	2o2i fixphe/UM4 0008	-0,906	14	3,39	2,58	2,64	154,6	1	-3,5
Rv2579	202i/UM4 0001	2.674	2	3.43	2.53	2.97	145.33	1	-4
Rv2579	202I/UM4 0008	1,19	18	3,29	2,58	2,9	152,72	1	-3,3
Rv2579	2qvb WILD TYPE	0.1*		3,3	3,4	3,6	168,1	1	-3,52
Rv2579	2qvb_fixphe/UM1_0001	-1,956	17	3,37	2,59	2,61	148,91	1	-2,8
Rv2579	2qvb_fixphe/UM10_0001	2,132	2	3,39	2,57	2,83	152,77	1	-3,7
Rv2579	2gvb fixphe/UM2 0002	-3,395	4	3.31	2.71	2,73	163,55	1	-3.9
Rv2579	2gvb ftxphe/UM3 0003	-0.405	2	3,38	2,64	2,88	150,58	1	-3,9
Rv2579	2gvb fixphe/UM5 0001	-1,435	1	3,29	2,72	2,96	164,5	1	-3,9
Rv2579	2qvb/UM2 0009	1,713	10	3,3	2,85	2,64	164,72	1	-3,5
Rv2579	2qvb/UM3 0001	0.417	14	3,32	2,8	2,59	160,65	1	-3,5
Rv2579	2qvb/UM5 0005	2,737	12	3,3	2,82	2,59	161,01	1	-3,6
DmmA	3u1t A WILD TYPE	0.2*		3	3,2	3,4	3,5 17	1,2	1
DmmA	3u1t A fixphe/UM1 0007	2,177	5	3,49	2,64	2,53	147,14	1	-3,1
DmmA	3u1t B WILD TYPE	0.3*		3,2	3,7	3,6	161,5	1	-3,11
DmmA	3u1t B/UM3 0010	-1,268	5	3,39	2,98	2,73	145,27	1	-3,7
DmmA	3u1t B/UM4 0010	-0,487	7	3,49	3,8	3,78	152,26	1	-3,5
DmmA	3u1t B/UM5 0002	0.179	9	3,29	3,15	2,85	163,51	1	-3,5
DmmA	3u1t B/UM9 0007	-0.19	13	3,39	3,1	2,77	152,17	1	-3,6
DhaA	4hzg WILD TYPE	0.1*		3,1	3,5	3,5	170,7	1	-3,39
DhaA	4hzg_fixphe/UM1_0002	2,377	11	3,33	2,64	2,56	146,14	1	-3,6
DhaA	4hzg_fixphe/UM2_0002	-4,935	5	3,42	2,58	2,45	145,2	1	-3,9
DhaA	4hzg_fixphe/UM6_0006	2,27	1	3,27	2,66	2,48	145,1	1	-3,8
DhaA	4hzg_flxphe/UM6_0010	1,915	1	3,25	2,67	2,47	149,34	1	-3,8
DhaA	4hzg/UM10_0006	-3,785	5	3,31	2,69	2,42	157,7	1	-3,5
DhaA	4hzg/UM2 0002	-3,991	8	3,35	2,62	2,47	159,54	1	-3,9
DhaA	4k2a_A WILD TYPE	0.1*		3,1	3,4	3,6	165,5	1	-3,56
DbeA	4k2a A fixphe/UM1 0004	-1,694	14	3,31	2,61	2,92	156,86	1	-3,5
DbeA	4k2a A fixphe/UM4 0008	-7.503	1	3.26	2.54	3.43	149.38	1	-2.9

Image source: courtesy of Jan Mičan, researcher at Loschmidt Laboratories and Faculty of Medicine, Masaryk University, Czech Republic

Dimensionality reduction to visualize the molecular space

Image source: Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI, Journal of Cheminformatics, 2012

Image source: courtesy of Jan Mičan, researcher at Loschmidt Laboratories and Faculty of Medicine, Masaryk University, Czech Republic

Image source:

https://docs.chemaxon.com/Chemical_Hashed_Fingerprint.html

Bit collision is allowed

Dimensionality reduction to visualize the molecular space

Image source: Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI, Journal of Cheminformatics, 2012

Image source: courtesy of Jan Mičan, researcher at Loschmidt Laboratories and Faculty of Medicine, Masaryk University, Czech Republic

Patterns in the molecule (Note - all substructures!):

Image source:

https://docs.chemaxon.com/Chemical_Hashed_Fingerprint.html

Image source:

https://www.epfl.ch/labs/cosmo/research/page-148964-en-html/

...but how to tell if a DR projection is trustworthy?

...but how to tell if a DR projection is trustworthy?

Image source: DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data, Genome Biology, 2019

Comparative visualization for assessing trustworthiness

...but how to tell if a DR projection is trustworthy?

Image source: DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data, Genome Biology, 2019

Comparative visualization for assessing trustworthiness

 Are similar molecules projected near each other in the latent space?

Challenge 3: Efficient Exploration of Large Molecular Ensembles

Molecular ensembles → hundreds to thousands of compounds

Image source: courtesy of Jan Mičan, researcher at Loschmidt Laboratories and Faculty of Medicine, Masaryk University, Czech Republic

 Views and interactions for efficiently exploring molecular features

Image source: Ertl and Rohde, The Molecule Cloud - compact visualization of large collections of molecules, Journal of Cheminformatics, 2012

Hexagonal View & Detail View

- Data from multiple input sources viewed from different perspectives
 - Variable color and opacity encoding

Hexagonal View & Detail View

Difference View for Evaluation of Projections

Trustworthiness of DR projections

Difference View for Evaluation of Projections

Correlation Encoding

Table View & 3D View

Provides additional insight into the data

0.00

0.00

0.00

Spatial alignment with opacity modulation

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

390.25

326.83

0.53

0.80

Sorting, filtering, advanced selection

116

__ 113 ▼[71

50

52 66

19

43

64

69

▼ 34

▼ 94

3.70

3.72

12.32

12.26

0.00

8.31

7.35

1

Table View & 3D View

Application Scenario: Adding New Compounds

Highlighted with yellow color in the dataset

Case Study:

Activity towards Serotonin and Dopamine receptors

Results from Evaluation

- ChemVA was evaluated by three domain experts and one DR visualization expert
 - Five new compounds designed using ChemVA
 - Intuitive and easy to use
 - Saves time and effort in drug design tasks
 - Difference view is effective for comparing DR projections in terms of their trustworthiness

Results from Evaluation

- ChemVA was evaluated by three domain experts and one DR visualization expert
 - Five new compounds designed using ChemVA
 - Intuitive and easy to use
 - Saves time and effort in drug design tasks
 - Difference view is effective for comparing DR projections in terms of their trustworthiness

Conclusions and Future Work

- Techniques behind ChemVA would apply to other domains and types of data
- Future extensions of the tool:
 - Load and customize your own datasets
 - Provide options for advanced search: substructures, molecular descriptors.

Thank you!

arXiv.org

Please refer to our paper: ChemVA: Interactive Visual **Analysis of Chemical Compound** Similarity in Virtual Screening (preprint available on arXiv)

All resources are publicly available on GitHub. Check out our repository!

María Virginia Sabando virginia.sabando@cs.uns.edu.ar Pavol Ulbrich paloulbrich@gmail.com

Thank you!

arXiv.org

Please refer to our paper: ChemVA: Interactive Visual Analysis of Chemical Compound Similarity in Virtual Screening (preprint available on arXiv)

All resources are publicly available on GitHub.
Check out our repository!

María Virginia Sabando
virginia.sabando@cs.uns.edu.ar
Pavol Ulbrich
paloulbrich@gmail.com

Agenda

- Challenges
 - Multiple sources of molecular data
 - Efficient exploration of large molecular ensembles
 - DR trustworthiness
- ChemVA overview
 - 2D views
 - 3D view and Table view
 - Adding new compounds
- Case study
- Results from evaluation
- Conclusions and future work

Motivation

- Virtual screening → accelerate drug discovery
- Large sets of potential drug candidates

- Visualization tools:
 - Explore compounds and their features
 - Select the best candidates for testing in-vitro

