

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Lineare Algebra II

Sommersemester 2021

Musterlösung zu Übungsblatt 6

25.05.21

Aufgabe 1 (Eigenschaften linearer Isometrien)

(10 Punkte)

Es sei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$ und V ein n-dimensionaler und W ein m-dimensionaler Vektorrraum über dem Körper \mathbb{K} , jeweils mit einem Skalarprodukt.

Außerdem sei B eine geordnete Orthonormalbasis von V und C eine geordnete Orthonormalbasis von W. Die Darstellungsmatrix der linearen Abbildung $\varphi \colon V \to W$ nennen wir $A \coloneqq M_{\text{CB}}(\varphi)$.

- a) Beweisen Sie, dass die beiden folgenden Aussagen äquivalent sind:
 - (i) Die Abbildung $\varphi \colon V \to W$ ist eine lineare Isometrie (aber nicht notwendigerweise bijektiv).
 - (ii) Die Spalten von A bilden ein Orthonormalsystem bzgl. des Standardskalarprodukts in \mathbb{K}^m .
 - (iii) Es gilt $A^*A = \mathbb{1}_n$
- b) Beweisen Sie (ohne Bemerkung 2.1.2 zu verwenden): Falls $\varphi \colon V \to W$ eine lineare Isometrie ist, ist φ injektiv und es gilt $m \geq n$.
- c) Beweisen Sie: Falls $\varphi \colon V \to W$ eine lineare Isometrie ist, gibt es geordnete Orthonormalbasen

$$\mathrm{B'} \ \mathrm{von} \ V \ \mathrm{und} \ \mathrm{C'} \ \mathrm{von} \ W, \ \mathrm{sodass} \ M_{\mathrm{C'B'}}(\varphi) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & \dots & 0 \\ \vdots & & & \vdots \\ 0 & \dots & \dots & 0 \end{pmatrix} \ \mathrm{gilt}.$$

Hinweis: In der Literatur werden Isometrien manchmal schon als bijektiv (und/oder linear) definiert. Das, was wir als "Isometrie" bezeichnen, wird dann "isometrische Einbettung" genannt.

Lösung zu Aufgabe 1

a) Es seien a_{ij} die Einträge der Matrix A, und $B = (b_1, \ldots, b_n)$, $C = (c_1, \ldots, c_m)$. Die Skalarprodukte von V und W bezeichnen wir mit $\langle \cdot, \cdot \rangle_V$ und $\langle \cdot, \cdot \rangle_W$ und das Standardskalarprodukt in \mathbb{K}^m mit $\langle \cdot, \cdot \rangle_{\mathbb{K}^m}$.

Aufgrund der Definition von A gilt $\varphi(b_i) = \sum_{k=1}^m a_{ki} c_k$ für alle $i \in \{1, \dots, n\}$, und somit

$$\langle \varphi(b_i), \varphi(b_j) \rangle_W = \left\langle \sum_{k=1}^m a_{ki} c_k, \sum_{\ell=1}^m a_{\ell j} c_\ell \right\rangle$$

$$= \sum_{k=1}^m \sum_{\ell=1}^m a_{ki} \overline{a_{\ell j}} \left\langle c_k, c_\ell \right\rangle$$

$$= \sum_{k=1}^m a_{ki} \overline{a_{kj}}$$

$$= \left\langle \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix}, \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \right\rangle_{\mathbb{K}^m}$$

wobei wir $\langle c_k, c_\ell \rangle = \delta_{k\ell}$ benutzt haben und $(A^*A)_{ji}$ den (j, i)-ten Eintrag der Matrix A^*A bezeichnet.

Falls φ eine Isometrie ist, gilt $\langle \varphi(b_i), \varphi(b_j) \rangle_W = \langle \varphi(b_i), \varphi(b_j) \rangle_W = \langle b_i, b_j \rangle_V = \delta_{ij}$. Aus der obigen Gleichheit folgt dann direkt Aussage (ii) und (iii).

Falls umgekehrt (ii) oder (iii) gilt, folgt daraus $\langle \varphi(b_i), \varphi(b_j) \rangle_W = \delta_{ij}$. Man kann alle Vektoren $x, y \in V$ schreiben als $x = \sum_{i=1}^n \alpha_i b_i$ und $y = \sum_{j=1}^n \beta_j b_j$. Damit gilt

$$\langle x, y \rangle_{V} = \left\langle \sum_{i=1}^{n} \alpha_{i} b_{i}, \sum_{j=1}^{n} \beta_{j} b_{j} \right\rangle_{V}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \overline{\beta_{j}} \left\langle b_{i}, b_{j} \right\rangle_{V}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \overline{\beta_{j}} \delta_{ij}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \overline{\beta_{j}} \left\langle \varphi(b_{i}), \varphi(b_{j}) \right\rangle_{W}$$

$$= \left\langle \varphi\left(\sum_{i=1}^{n} \alpha_{i} b_{i}\right), \varphi\left(\sum_{j=1}^{n} \overline{\beta_{j}} b_{j}\right) \right\rangle_{W}$$

$$= \left\langle \varphi(x), \varphi(y) \right\rangle_{W}$$

und φ ist eine Isometrie.

Somit haben wir die Äquivalenzen (i) \iff (ii) und (i) \iff (iii) gezeigt.

- b) Es sei φ eine lineare Isometrie. Es gibt viele Varianten, zu beweisen, dass φ injektiv ist. Daraus folgt dann direkt $m \ge n$:
 - Falls $\varphi(x) = 0$ gilt, gilt $0 = \|\varphi(x)\|_W = \|x\|_V$, also x = 0. Damit hat φ trivialen Kern und ist injektiv.
 - Aus (ii) folgt, dass die n Spalten der Darstellungsmatrix linear unabhängig sind und sie damit Rang n hat. Daraus folgt mit der Dimensionsformel dim $(\ker(\varphi)) = \dim(V) \operatorname{rg}(\varphi) = n n = 0$. Damit hat φ trivialen Kern und ist injektiv.

- Wie oben gezeigt bilden die Bilder $\varphi(b_1), \ldots, \varphi(b_n)$ ein Orthonormalsystem und sind damit linear unabhängig. Daraus folgt, dass φ injektiv ist.
- Wir definieren die "zu φ adjungierte Abbildung" $\varphi^* : W \to V$ mit Abbildungsmatrix $M_{\text{BC}}(\varphi^*) = A^*$. Damit gilt $\varphi^* \circ \varphi = \text{id}_V$. Die Abbildung φ hat also eine linksinverse Abbildung und ist somit injektiv.
- c) Wir können eine beliebige Orthonormalbasis $B'=(b_1,\ldots,b_n)$ von V wählen. Da φ eine lineare Isometrie ist, bilden die Bilder $c_1\coloneqq\varphi(b_1),\ldots c_n\coloneqq\varphi(b_n)$ ein Orthonormalsystem in W, das wir zu einer Orthonormalbasis $C'=(c_1,\ldots c_m)$ ergänzen können. Wegen $\varphi(b_i)=c_i$ für $i\in\{1,\ldots n\}$ sieht man, dass $M_{C'B'}$ dann die gewünschte Form hat.

Aufgabe 2 (Orthogonale und unitäre Diagonalisierbarkeit) (10 Punkte)

a) Ist die Matrix

$$A_1 := \begin{pmatrix} 2 & 2 & -\sqrt{2} \\ 2 & 2 & -\sqrt{2} \\ -\sqrt{2} & -\sqrt{2} & 1 \end{pmatrix}$$

reell orthogonal diagonalisierbar? Bestimmen Sie ggf. eine Orthonormalbasis von \mathbb{R}^3 , bezüglich der die Matrix Diagonalform hat.

Hinweis: Die Eigenwerte dieser Matrix sind 0 und 5.

b) Welche der Matrizen

$$A_2 := \begin{pmatrix} 2+i & 1 & 0 \\ -4 & -2+i & 0 \\ i & -1 & -2 \end{pmatrix} \qquad A_3 := \begin{pmatrix} 1 & 1+i & -2 \\ 1-i & -3 & 1 \\ -2 & 1 & 2 \end{pmatrix}$$

ist komplex unitär trigonalisierbar? Welche sind komplex unitär diagonalisierbar? Begründen Sie Ihre Antwort.

Hinweis: Versuchen Sie nicht, das charakteristische Polynom von A_3 zu berechnen.

Lösung zu Aufgabe 2

Die folgende Lösung skizziert nur die Rechenwege und würde als Abgabe eines Übungsblattes nicht ausreichen.

a) Man berechnet wie gewohnt die Eigenräume

$$E_0(M) = \ker(M) = \operatorname{LH}\left(\begin{pmatrix} 1\\0\\\sqrt{2} \end{pmatrix}, \begin{pmatrix} 0\\1\\\sqrt{2} \end{pmatrix}\right)$$
$$E_5(M) = \ker(5\mathbb{1}_3 - M) = \operatorname{LH}\left(\begin{pmatrix} \sqrt{2}\\\sqrt{2}\\-1 \end{pmatrix}\right)$$

Offenbar sind die Eigenräume orthogonal zueinander. Wir müssen also noch eine Orthonormalbasis jedes Eigenraumes finden. Durch Anwendung des Gram-Schmidt-Verfahrens auf die obigen Erzeugendensysteme finden wir die ONB b_1, b_2 von $E_0(M)$ und b_3 von $E_5(M)$:

$$b_1 \coloneqq \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\0\\\sqrt{2} \end{pmatrix}, \qquad b_2 \coloneqq \sqrt{\frac{3}{5}} \begin{pmatrix} -\frac{2}{3}\\1\\\frac{\sqrt{2}}{3} \end{pmatrix}, \qquad b_3 \coloneqq \frac{1}{\sqrt{5}} \begin{pmatrix} \sqrt{2}\\\sqrt{2}\\-1 \end{pmatrix}$$

Dies ist also eine Orthonormalbasis aus Eigenvektoren.

b) Jede komplexe Matrix ist komplex unitär trigonalisierbar, so auch A_2 und A_3 . Außerdem gilt $A_3^* = A_3$ also ist A_3 selbstadjungiert und somit komplex unitär diagonalisierbar. Wir prüfen, ob A_2 diagonalisierbar ist: Das charakteristische Polynom ist

$$p_{A_2} = (X+2)(X-i)^2.$$

Der Eigenraum zum Eigenwert i ist aber $E_i(A_2) = \operatorname{LH}\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, also nur eindimensional. Damit ist die geometrische Vielfachheit kleiner als die algebraische Vielfachheit des Eigenwerts i und A_2 ist nicht komplex diagonalisierbar (und erst recht nicht unitär diagonalisierbar).

Zusatzaufgabe (Diagonalisierbarkeit symmetrischer Matrizen) (+3 Punkte)

Bestimmen Sie jeweils ein Beispiel (mit einem $n \in \mathbb{N}$ ihrer Wahl) für eine symmetrische Matrix

- a) aus $\mathbb{C}^{n\times n}$, die nicht über \mathbb{C} diagonalisierbar ist.
- b) aus $\mathbb{Q}^{n\times n}$, die nicht über \mathbb{Q} diagonalisierbar ist.
- c) aus $\mathbb{F}_2^{n \times n}$, die nicht über \mathbb{F}_2 diagonalisierbar ist.

Lösung zu Zusatzaufgabe

Wir versuchen es zunächst generell mit n=2, also $A=\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ für a,b,d aus dem entsprechenden Körper. Damit gilt $p_A=(X-a)(X-d)-b^2=X^2-(a+d)X+ad-b^2.$

- a) In $\mathbb C$ zerfällt p_A in Linearfaktoren. Wenn die beiden Linearfaktoren verschieden sind, sind die geometrischen und algebraischen Vielfachheiten jeweils 1 und A ist diagonalisierbar. Wir versuchen also eine Matrix mit nur einem Eigenwert, z.B. $p_A(X) = X^2$ zu erreichen. Das ist z.B. für $A := \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ gegeben. Diese Matrix hat Rang 1, also ist $\dim(E_0(A)) = \dim(\ker(A)) = 1$. Daher unterscheidet sich die geometrische Vielfachheit des Eigenwerts 0, nämlich 1, von der algebraischen Vielfachheit, nämlich 2.
- b) Jede rationale symmetrische Matrix ist auch eine reelle symmetrische Matrix und ist damit reell diagonalisierbar. Es kann aber passieren, dass die (reellen) Eigenwerte nicht rational sind. Zum Beispiel hat $A \coloneqq \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ die reellen Eigenwerte $\sqrt{2}$ und $-\sqrt{2}$, aber keine rationalen Eigenwerte. Damit ist A nicht rational diagonalisierbar.
- c) Da A nicht schon eine Diagonalmatrix sein sollte, muss b=1 gelten. Damit bleiben nur noch 4 Matrizen in $\mathbb{F}_2^{2\times 2}$ übrig, die in Frage kommen. Beispielsweise hat $A:=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ das charakteristische Polynom X^2 , also nur den Eigenwert 0, aber hat Rang 1. Also ist $\dim(E_0(A))=\dim(\ker(A))=1$ und mit derselben Begründung wie in a) ist A nicht über F_2 diagonalisierbar.