

Response Time of Control Systems

Response Time of Control Systems

Scheduling View: Worst-Case Execution Times

Operating-System Overheads

Operating-System Overheads

X High level of pessimism due to missing context information

Operating-System Overheads

X High level of pessimism due to missing context information

Whole-System Response-Time Analysis

Worst-Case Response Time (WCRT): 103 cycles

Worst-Case Response Time (WCRT): 103 + 200 + t(RTOS) cycles?

Worst-Case Response Time (WCRT): **331** cycles

Worst-Case Response Time (WCRT): 331 cycles

- Compositional approach on WCRT is overly pessimistic
- ightarrow Whole-system approach incorporating operating system semantics?

- Single-core system
- Fixed-priority scheduling
- OSEK-compatible
- \rightarrow Feasible system states

- Single-core system
- Fixed-priority scheduling
- OSEK-compatible
- \rightarrow Feasible system states

- Single-core system
- Fixed-priority scheduling
- OSEK-compatible
- ightarrow Feasible system states

- Single-core system
- Fixed-priority scheduling
- OSEK-compatible
- \rightarrow Feasible system states

Static Execution-Time Analysis of System Calls

Tailoring of System Calls

The SysWCET Approach – Overview

▶ Dietrich, Wägemann, Ulbrich, Lohmann.

SysWCET: Whole-System Response-Time Analysis for Fixed-Priority Real-Time Systems. 23rd Real-Time and Embedded Technology and Applications Symposium (RTAS'17)

- **X High level of pessimism** due to missing context information
- Control-flow reconstruction difficult in some cases

- **X High level of pessimism** due to missing context information
- Control-flow reconstruction difficult in some cases
- Indeterminable upper bound due to application-dependent data structures

Deriving System Facts From the State Graph

Deriving System Facts From the State Graph

Static Execution-Time Analysis of System Calls

SWAN: System-Wide WCET Analyzer

SWAN: System-Wide WCET Analyzer

SWAN: System-Wide WCET Analyzer

The SWAN Toolchain

► Schuster, Wägemann, Ulbrich, Schröder-Preikschat.

Proving Real-Time Capability of Generic Operating Systems
by System-Aware Timing Analysis.

25th Real-Time and Embedded Technology and
Applications Symposium (RTAS'19)

The SWAN Toolchain

Evaluation Results

Evaluation Results

Runtime Adaptivity and Application-Centric Abstractions

Motivating Example: Human Drivers

Goal: Safe driving

- Keep lane adequately
- Omit obstacles
- → Even in the worst case

Situational awareness

- Reduced attention in normal traffic
- Focused in emergency situations
- → Efficient use of resources

Sampling period T (less resource usage $\rightarrow)$

Quality of control (QoC)

- Characterized by control error
- Degraded by environmental disturbance
- Implies resource demand
- → Application-level constraints

Quality of service (QoS)

- Resource allocation (periodicity)
- Deadline obedience
- ightarrow OS-level timing constraints

Linking Qualities of Control and Service

Job-level runtime adaptivity

- lack Application constraints
 eq controller stability
- QoC is state-dependent
- ightarrow QoC prediction non-trivial

QRONOS: Quality-Aware Real-Time Control Systems

- QoC model (stochastic or deterministic)
- QoS mapping (deadlines)
- ightarrow Efficient yet reliable

► Gaukler, Michalka, Ulbrich, Klaus.

A New Perspective on Quality Evaluation for Control Systems with Stochastic Timing. 21st ACM International Conference on Hybrid Systems: Computation and Control (HSCC '18)

Experimental Results (Work in Progress)

Good QoC obedience

- ≈100 % observed experimentally
- 71.0 % drop rate (NN)79.2 % drop rate (MPC)

Low overheads

- x86: MPC 93 msvs. NN 1 ms (worst-case)
- Cortex-M4: NN 50 µs
- ightarrow Feasible for scheduling

Whole-System Response-Time Analysis

- Based on semantic analysis of operating system states
- ightarrow SysWCET: Code tailoring of system calls

Whole-System Response-Time Analysis

- Based on semantic analysis of operating system states
- → SysWCET: Code tailoring of system calls

Tackling Universal Operating Systems

- Code annotation and context-aware analysis
- ightarrow SWAN: Tailoring the analysis

Whole-System Response-Time Analysis

- Based on semantic analysis of operating system states
- → SysWCET: Code tailoring of system calls

Tackling Universal Operating Systems

- Code annotation and context-aware analysis
- ightarrow SWAN: Tailoring the analysis

Future Real-Time Design

- Are we hitting the pessimism wall?
- Deadlines are (often) inept!
- → QRONOS: Application-level constraints as 1st class citizen

