Departamento de Electrónica Electrónica Digital

Dispositivos de memoria

Memorias de semiconductores

- Almacenamiento de SW (instrucciones y datos)
 - Firmware (FW)

Aplicaciones

- Memorias de arranque (boot, BIOS)
- Tablas de datos (conversión de códigos, generación de señales, operaciones, etc.)
- Generación de funciones combinacionales

E/S de una memoria

- Bus de direcciones: especifica la posición de memoria –dirección- a ser leída o escrita.
- Bus de datos: aplica el dato a escribir o recibe el dato leído
- Bus de control: controla la memoria
 - Habilita el dispositivo y la salida:
 - CS' (Chip Select) o CE' (Chip Enable)
 - OE' (Output Enable)
 - Establece el tipo de operación:
 - R / W' (Read/Write)

Memorias en sistemas microprocesados

Las memorias siempre tienen E/S tri-estado

Características y especificaciones

 Capacidad: cantidad de información que puede almacenar expresada en número de bits

cantidad de palabras x cantidad de bits de la palabra

Ejemplos: $4K \times 20 = 4096 \times 20 = 81920$ bits

 $1M \times 8 = 1.048.576 \times 8 = 8.388.608$ bits

- Volatilidad
- Timing
 - Tiempo de acceso/lectura
 - Tiempo de escritura
- Etapa de salida: tri-estado
- Características eléctricas
 - Tecnología: CMOS, TTL, PMOS, NMOS, BiCMOS
 - Voltajes de entrada y salida
 - Consumo (en operaciones de R y W, en stand-by)

Estructura interna: arquitectura 1D

n palabras $\rightarrow n$ señales de selección

1 Mpalabras → 1 millón de líneas de selección

Implementación práctica 1D: memoria de 8 x 8

Reducción de las líneas de selección

El decodificador reduce # de entradas de selección: $k = log_2 n$ 1 Mpalabra \rightarrow 20 líneas

Implementación práctica 1D con decoder: memoria de 8 x 8

Limitaciones de la arquitectura 1D

Memoria de 4 palabras → Decoder de 2 a 4

4 compuertas AND de 2 entradas

- Memoria de 128 palabras → Decoder de 7 a 128
 128 compuertas AND de 7 entradas
- Memoria de 1M palabra → Decoder de 20 a 1M
 - 1.048.756 compuertas AND de 20 entradas 🖰

Estructura interna: arquitectura 2D

Implementación práctica 2D:

memoria de 16 x 8

Clasificación de las memorias

	WM ite Memory	ROM Read Only Memory	NVRWM Non Volatile RWM
Random Access	Non-Random Access	MROM	EPROM
Memory (RAM)	Memory	Mask ROM	Erasable PROM
SRAM	FIFO/LIFO First Input First Output Last Input First Output	PROM	E ² PROM
Static RAM		Programmable	Electrically Erasable
DRAM		ROM	PROM
Dynamic RAM	Shift Register		FLASH NVRAM

Y más...

- FeRAM: Ferroelectric RAM
- MRAM: Magnetoresistive RAM
- PRAM: Phase-change memory (PCM, PRAM, PCRAM, Ovonic Unified Memory and Chalcogenide RAM o C-RAM)
- **SONOS**: Semiconductor-Oxide-Nitride-Oxide-Semiconductor
- RRAM: Resistive Random Access Memory
- NRAM: nano-RAM

•

Memorias ROM (Read Only Memory)

- MROM (Mask ROM) ROM de plantilla
- PROM (Programmable ROM)

Ejemplo de ROM 8 x 4 (arquitectura 1D con diodos)

PROM Bipolar

Columna
Fila
Fila
Fila
O lógico

1 lógico

Figura 5.14 Celdas ROM bipolares.

1 lógico Fila 0 PROM MOS 1 lógico Enlaces de fusible Líneas de datos (columnas) Vodd "1" — Datos almacenados — "0" Bus de datos

Aplicación:

Multiplicador binario

	0	1	2	3	4	5	6	7	8	9	A	В	С	D
00:	00	00	00	00	00	00	00	00	00	00	00	00	00	00
10:	00	01	02	03	04	05	06	07	80	09	OΑ	ΟB	0C	0D
20:	00	02	04	06	8 0	0A	0C	ΟE	10	12	14	16	18	1A
30:	00	03	06	09	0 C	ΟF	12	15	18	1B	1E	21	24	27
40:	00	04	80	0C	10	14	18	1C	20	24	28	2C	30	34
50:	00	05	ΟA	OF	14	19	1E	23	28	2D	32	37	3C	41
60:	00	06	0C	12	18	1E	24	2A	30	36	3 C	42	48	4E
70:	00	07	ΟE	15	1C	23	2A	31	38	3 F	46	4D	54	5B
80:	00	80	10	18	20	28	30	38	40	48	50	58	60	68
90:	00	09	12	1B	24	2D	36	3 F	48	51	5A	63	6C	75
A0:	00	0A	14	1E	28	32	3 C	46	50	5A	64	6E	78	82
B0:														
C):	00													
DO:	00	0D	1A	27	34	41	4E	5B	68	75	82	8F	9C	Α9
EO:	00	ΟE	1C	2A	38	46	54	62	70	7E	8C	9A	A 8	В6
F0:	00	OF	1E	2D	3 C	4B	5A	69	78	87	96	A 5	B4	C3

Ejemplo:

 $12 \times 10 = 120$

 $C \times A = 78H$

Dirección:1100 1010

Nota: la tabla no está completa!

Aplicación:

Cálculo de la frecuencia cardiaca

Almacenar una tabla y acceder según el valor del período (en mseg)

Período (mseg)	Frecuencia (ppm)
• • • •	
967	58
983	59
1000	60
1017	61
1033	62
1050	63
•••	••••

Definiciones

- t_{AA}: tiempo de acceso de dirección: desde una dirección válida aplicada hasta que se dispone un dato válido en el bus, con las líneas de control asertivas.
- t_{ACS}: tiempo de acceso de chip: desde /CS asertivo hasta dato válido disponible, con la dirección ya establecida.
- t_{OE}: tiempo de habilitación de salida: desde habilitación de salida /OE y /CS asertivas hasta dato válido disponible, con la dirección ya establecida.
- t_{oz}: tiempo de deshabilitación de salida: tiempo desde /CS o /OE no asertivas hasta que la salida pasa a alta impedancia, con la dirección establecida.
- t_{OH}: tiempo de retención de salida: tiempo de dato válido desde cambio de dirección con líneas de control asertivas.

Grabación de PROM

- Voltajes y corrientes elevados (ejemplo: V_{PP} =10-30 V e I_{PP} = 700 mA)
- Programación bit a bit, para evitar sobrecalentamiento.

Se repite por cada bit de la palabra hasta completarla.

Luego se pasa a la siguiente dirección.

Aplicación:

Circuito para lectura y visualización del contenido de una memoria

• TMS47256 (bipolar)

32K x 8 200 ns 82.5 mW en espera

• TMS47C256 (CMOS)

32K x 8 100 ns 2.8 mW en espera

• TMS27PC256 (CMOS)

32K x 8 100 a 250 ns 14 mW (en espera)

• DM74S573

(1024 x 4) 4096 bit TTL PROM 25 a 45 ns

DM54/74S573 (1024 x 4) 4096-Bit TTL PROM

General Description

This Schottky memory is organized in the popular 1024 words by 4 bits configuration. Memory enable inputs are provided to control the output states. When the device is enabled, the outputs represent the contents of the selected word. When disabled, the 4 outputs go to the "OFF" or high impedance state.

PROMs are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following the programming instructions.

Features

- Advanced titanium-tungsten (Ti-W) fuses
- Schottky-clamped for high speed
 Address access—down to 35 ns max
 Enable access—25 ns max
 Enable recovery—25 ns max
- PNP inputs for reduced input loading
- All DC and AC parameters guaranteed over temperature
- Low voltage TRI-SAFE™ programming
- TRI-STATE® Outputs

Block Diagram

Pin Names

A0-A9	Addresses
<u>G1</u> – <u>G2</u>	Output Enables
GND	Ground
Q0-Q3	Outputs
Vcc	Power Supply

DC Electrical Characteristics (Note 1)

Symbol	Parameter	Conditions	ı	DM54S5	73	ı	Units		
			Min	Тур	Max	Min	Тур	Max	Onits
- I _{IL}	Input Load Current	V _{CC} = Max, V _{IN} = 0.45V		-80	-250		-80	-250	μА
Iн	Input Leakage Current	$V_{CC} = Max, V_{IN} = 2.7V$			25			25	μА
		$V_{CC} = Max, V_{IN} = 5.5V$			1.0			1.0	mA
VOL	Low Level Output Voltage	V _{CC} = Min, I _{OL} = 16 mA		0.35	0.50		0.35	0.45	٧
VIL	Low Level Input Voltage				0.80			0.80	٧
VIH	High Level Input Voltage		2.0			2.0			٧
V _C	Input Clamp Voltage	$V_{CC} = Min, I_{IN} = -18 \text{ mA}$		-0.8	-1.2		-0.8	-1.2	V
Cı	Input Capacitance	$V_{CC} = 5.0V, V_{IN} = 2.0V$ $T_A = 25^{\circ}C, 1 \text{ MHz}$		4.0			4.0	,a	pF
Co	Output Capacitance	$V_{CC} = 5.0V$, $V_{O} = 2.0V$ $T_{A} = 25^{\circ}C$, 1 MHz, Outputs Off		6.0			6.0		pF
lcc	Power Supply Current	V _{CC} = Max, Input Grounded All Outputs Open		100	140	(100	140	mA
los	Short Circuit Output Current	V _O = 0V, V _{CC} = Max (Note 2)	-20		-70	-20		-70	mA
loz	Output Leakage	$V_{CC} = Max, V_{O} = 0.45V \text{ to } 2.4V$			+50			+ 50	μΑ
	(TRI-STATE)	Chip Disabled			-50			50	μА
V _{OH}	Output Voltage High	I _{OH} = −2.0 mA	2.4	3.2					٧
		I _{OH} = 6.5 mA				2.4	3.2		٧

Clasificación

	WM te Memories	ROM Read Only Memories	NVRWM Non Volatile RWM			
Random Access Memories (RAM)	Non-Random Access Memories	MROM Mask ROM	EPROM Erasable PROM			
SRAM Static RAM DRAM Dynamic RAM	FIFO/LIFO First Input First Output Last Input First Output Shift Register	PROM Programmable ROM	E ² PROM Electrically Erasable PROM FLASH			

Memorias EPROM (Erasable PROM)

control pueden compartir funciones

Intel 1702

27C256: 32KB (256Kbit) EPROM

- Escritura: Transistores MOS de *compuerta flotante* → almacena temporalmente un "0" al aplicar un voltaje alto a la compuerta (*gate*).
 - Almacenamiento: garantizado por al menos 10 años
- Borrado: el material aislante de la gate flotante se vuelve conductivo al aplicar UV

Formas comerciales

• 27C16: 16,384-Bit (2048 x 8) UV Erasable CMOS PROM - 450 ns

• 27C64: 8K x 8 - 100 ns

EPROMs on-chip

OTPROM: One Time Programmable: no tienen ventana de cuarzo

8749 Microcontroller (Intel)

Ciclo de lectura (27C16)

Ciclo de escritura (27C16)

27C1001: 1 Mbit (128Kb x8) UV EPROM and OTP EPROM

Memorias EEPROM (Electrically Erasable PROM)

Ventajas

- Borrado eléctrico
- Programación por byte
- No requieren extracción del circuito

Desventajas

- Menor densidad
- Precio

28C64A

64K (8K x 8) CMOS EEPROM

FEATURES

- · Automatic Write Operation
 - Internal Control Timer
 - Auto-Clear Before Write Operation
 - On-Chip Address and Data Latches
- Data Polling
- · Ready/Busy
- · Chip Clear Operation
- Enhanced Data Protection
 - Vcc Detector
 - Pulse Filter
 - Write Inhibit
- · Electronic Signature for Device Identification
- 5-Volt-Only Operation
- Organized 8Kx8 JEDEC Standard Pinout
 - 28-pin Dual-In-Line Package
 - 32-pin PLCC Package
- 28-pin Thin Small Outline Package (TSOP) 8x20mm
- 28-pin Very Small Outline Package (VSOP) 8x13.4mm
- Available for Extended Temperature Ranges:
 - Commercial: 0°C to +70°C

DESCRIPTION

PACKAGE TYPE

Ciclo de lectura (28C64)

Ciclo de programación o escritura (28C64)

Memorias EEPROM Flash

- Menor costo por bit que EEPROM
- Borrado eléctrico masivo (total o por sector; no por byte)
 - 512 x 8 típico
- Operación rápida por comandos
- Disponible on-chip en μP y μC

Forma comercial:

28F256A: CMOS – 32K x 8

EEPROM serie

- Operación de lectura y escritura serial
- Tecnología CMOS
- Operación mediante instrucciones (comandos)
- Pocos pines (DIP8 típico)

• Típicos: CS/

CLK

SDI: Entrada dato serie

SDO: Salida dato serie

Aplicación: almacenamiento de datos de usuario, calibración, etc.

Forma comercial: NM93C06 256-Bit Serial CMOS EEPROM (Fairchild)

Pili Names	
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
V _{cc}	Power Supply

- 16 registros de 16 bits
- 7 instrucciones: Read, Write Enable, Erase, Erase All, Write, Write All, and Write Disable.

Din Names

- Corriente standby típica (memoria deshabilitada): 10mA, 1mA (L) y 0.1 mA (LZ)
- No requiere borrado antes de escritura
- Operación entre 2.7V y 5.5V
- 40 años de retención de datos.
- Resistencia: 1,000,000 de cambios de datos

