Welcome to Biomedical Research!

Michael Schatz

August 29, 2017 – Lecture I EN.601.452 Computational Biomedical Research AS.020.415 Advanced Biomedical Research

Welcome!

The goal of this course is to prepare undergraduates to understand and perform state-of-the-art biomedical research. This will be accomplished through three main components:

- Lectures on cross cutting techniques for biomedical research focusing on data visualization, statistical inference, and scientific computing
- 2. Research presentations from distinguished faculty on their active research projects
- A major research project with in-class research labs;
 Satisfies the CS TEAM requirement

Course Webpage:

https://github.com/schatzlab/biomedicalresearch2019

Course Discussions: http://piazza.com

Class Hours: Mon + Wed @ 3p - 3:50p Hodson 311

Office Hours: Monday @ 4-5p and by appointment

Please try Piazza first!

Prerequisites and Resources

Prerequisites

- No formal course requirements
- Access to an Apple or Linux Machine, or Install VirtualBox
- Familiarity with a major programming language will be needed
 - C/C++, Java, R, Perl, Python, JavaScript, others?

Primary Texts

None! We will be studying primary research papers

Other Resources:

- Google, SEQanswers, Biostars, StackOverflow
- Applied Computational Genomics Course
 - https://github.com/schatzlab/appliedgenomics2019
- Ben Langmead's teaching materials:
 - http://www.langmead-lab.org/teaching-materials/

Grading Policies

Assessments:

•	~4 HW Exercises:	10%	Due at 11:59pm a week later
•	Research Proposal:	10%	~I page write up + oral presentation
•	Interim Report:	10%	~3 page progress report
•	Project Presentation:	30%	Presented last week of class
•	Final Report:	30%	Due last week of semester
•	In-class Participation:	10%	Please ask questions!

Policies:

- Scores assigned relative to the highest points awarded
- Late Days:
 - 120 late hours without any penalty, then 25% deduction per day

Course Webpage

Piazza

GradeScope

Schatzlab Overview

Human Genetics

Role of mutations in disease

Nattestad et al. (2018) Feigin et al. (2017)

Agricultural Genomics

Genomes & Transcriptomes

Soyk et al. (2019) Zheng et al. (2018)

Algorithmics & Systems Research

Ultra-large scale biocomputing

Chen et al. (2019) Parsana et al. (2019)

Single Cell & Single Molecule

CNVs, SVs, & Cell Phylogenetics

Luo et al. (2019) Sedlazeck et al. (2018)

Any Thoughts?

Discovery of the Double Helix

no. size April 25, 1953

NATURE

equipment, and to Dr. G. E. R. Dencom and the is a smidse on each chain every 3.4 A. in the 2-directoristic and officers of R.R.S. Directory II for their part in making the observations. We have assumed an angle of 30° between part in realizing the observations, as that the

- Trong, F. S., Cornell, S., and Jersen, W., Phil. May. 48, 140 * Longrant Higgins, M. S., Non, Not. Aug. Astro. Soc., Googlan. Jupp., E. 200 (1980).
- * Sue Liu, E. S. Woods Bule Paper in Phys. Science, Mixtur, 11 the crateride, cuttions have easy access to therm.

*Eleman, Y., W., 4464, Spit., 44944, Fpith. (Resiliation, \$101) (1800).

MOLECULAR STRUCTURE OF NUCLEIC ACIDS

A Structure for Deoxyribose Nucleic Acid

VV of decayy/flow nucleic acid (D.N.A.). This structure has revel features which are of considerable

A structure for rescioic acid has already been proposed by Fauling and Corey. They kindly made their manuscript available to us in advance of publication. Their model consists of these interrwined chains, with the phosphates nese the fibre axis, and the bases on the outside. In our opinion, this structure is unsatisfactory for two reasons: (1) We believe that the material which gives the X-ray diagrams is the salt, not the free acid. Without the acidic hydrogen atoms it is not clear what forces would hold the structure together, especially as the negatively charged phosphatos near the axis will appel each other. (2) Some of the van der Waals distances appear to be too small.

Another three-chain structure has also been sug-

gented by Peacer in the press). In his model the phosphates are on the outside said the bases on the motio, linked together by hydrogen bonds. This structure as described in rather ill-defined, and for

this reason we shall not comment.

We wish to put forward a radically different structure for the salt of decoyribose nucleic This structure has two belied chains each coded round the enter axis (see diagram). We have made the usual chemical sorumptions, namely, that each chain consists of phosphate diester groups joining 5-to-decay-ribofuraness residues with 2',5' linkages. The two chains (but not their base) are related by a dyad perpendicular to the fibre axis. Both chains follow righthanded beliese, but owing to the dyad the sequences of the stome in the two chains run. the helix and the phosphatos on the cutside. The configuration of the segar and the atoms close to Furberg's 'standard configuration', the stager being roughly perpondi-rular to the attached base. There

tion. We have assumed an angle of 36' between adjacent residues in the same chain, so that the structure repeats after 10 residues on each chain, that is, after 34 A. The distance of a phosphorus atom from the fibre axis is 20 A. As the phosphaces are on

The structure is an open one, and its water content is suther high. At lower water contents we would expect the bases to tilt so that the structure could become more compact.

The novel feature of the structure is the manner

in which the two chains are held together by the purine and pyrimidine bases. The planes of the bases are perpendicular to the files axis. They are joined togother in pairs, a single base from one chain being hydrogen-bonded to a single base from the other classes, so that the two lie and by side with identical z-co-ordinates. One of the pair must be a purine and the other a pyrimidize for bonding to occur. The hydrogen bonds are made as follows: purine position I to pyrimidiae position I; purine position 6 to pyrimidine position 6.

If it is assumed that the bases only occur in the structure in the most plausible tautometic forms (that is, with the koto rather than the end configurations it is found that only specific pairs of bases can bond together. These pairs are : admin-(purine) with thymine (pyrimidise), and gusnine

(purine) with cytosins (pyrinxidize).

In other words, if an admine forms one member of In other worm, if on assume forms one member of a pair, on either chain, then on these assumptions the other member must be thymine; similarly for guanine and cytosine. The sequence of bases on a single claim does not appear to be restricted in any way. However, if only specific pairs of bases on beformed, it follows that if the suspense of bases on one chain is given, then the sequence on the other hands of the companies on the other hands of the companies on the other hands. chain is automatically determined.

It has been found experimentally** that the ratio of the amounts of adequate to thyrains, and the ratio of guantee to cytosine, are always very close to unity for deoxyribose zuriole and.

It is probably impossible to build this structure with a ribose sugar in place of the decayribose, as the extra oxygen atom would make too close a van

The previously published X-ray data^{1,4} on decay-ribose nucleic acid are insufficient for a rigorous test of our structure. So far as we can tell, it is roughly compatible with the experimental data, but it must be regarded as unproved until it has been checked against more exact results. Some of these are given in the following consequations. We were not aware of the details of the results presented there when we devised our structure, which rusts mainly though not entirely on published experimental data and sterroshemind arguments.

It has not escaped our notice that the specific

pairing we have postulated immediately suggests a in opposite directions. Each possible opping mechanism for the genetic material, chain loosely merchlaim. Full details of the structum, including the conditions assumed in building it, together with a set the bases are on the inside of a conditates for the atoms, will be published.

We are much indebted to Dr. Jorry Donoless for constant advice and criticism, especially on interstoraic distances. We have also been stimulated by a knowledge of the general nature of the uspublished experimental results and ideas of Dr. M. H. F. Wilkins, Dr. R. E. Franklin and their co-workers at

OHOHHOM MIS MHOHOM

It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material. Full details of the structure, including the con-

Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid Watson JD, Crick FH (1953). Nature 171: 737-738. Nobel Prize in Physiology or Medicine in 1962

Central Dogma of Molecular Biology

"Once 'information' has passed into protein it cannot get out again. In more detail, the transfer of information *from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible*, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information means here the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein"

On Protein Synthesis

Crick, F.H.C. (1958). Symposia of the Society for Experimental Biology pp. 138–163.

One Genome, Many Cell Types

Each cell of your body contains an exact copy of your 3 billion base pair genome.

Your body has a few hundred (thousands?) major cell types, largely defined by the gene expression patterns

The Origins of DNA Sequencing

Radioactive Chain Termination 5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg http://www.answers.com/topic/automated-sequencer

Nucleotide sequence of bacteriophage $\varphi XI74$ DNA

Sanger, F. et al. (1977) Nature. 265: 687 - 695

Milestones in DNA Sequencing

(TIGR/Celera, 1995-2001)

The most wondrous map...

Cost per Genome

Next Generation Sequencing

Illumina NovaSeq 6000 Sequencing by Synthesis

>3Tbp / day

1. Attach

2. Amplify

3. Image

Metzker (2010) Nature Reviews Genetics 11:31-46 https://www.youtube.com/watch?v=fCd6B5HRaZ8

Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers http://omicsmaps.com

How much is a zettabyte?

Unit	Size
Byte	
Kilobyte	1,000
Megabyte	1,000,000
Gigabyte	1,000,000,000
Terabyte	1,000,000,000
Petabyte	1,000,000,000,000
Exabyte	1,000,000,000,000,000
Zettabyte	1,000,000,000,000,000,000

How much is a zettabyte?

100 GB / Genome 4.7GB / DVD ~20 DVDs / Genome

X

10,000,000,000 Genomes

=

You Tube

150,000 miles of DVDs ~ ½ distance to moon

Both currently ~100Pb And growing exponentially Unsolved Questions in Biology

What is your genome sequence?

The instruments provide the data, but none of the answers to any of these questions.

What software and systems will?

And who will create them?

Plus thousands and thousands more

Who is a Data Scientist?

http://en.wikipedia.org/wiki/Data_science

Biomedical Research Technologies

Results
Domain
Knowledge

Machine Learning classification, modeling, visualization & data Integration

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

Biomedical Research Technologies

Results

Domain

Knowledge

Machine Learning classification, modeling, visualization & data Integration

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

Genomics Arsenal in the year 2019

Soon et al., Molecular Systems Biology, 2013

Biomedical Research Technologies

Results
Domain
Knowledge

Machine Learning classification, modeling, visualization & data Integration

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

Course Topics

- Genome assembly, whole genome alignment
- Full text indexing: Suffix Trees, Suffix Arrays, FM-index
- Dynamic Programming: Edit Distance, sequence similarity
- Read mapping & Variant identification
- Gene Finding: HMMs, Plane-sweep algorithms
- RNA-seq: mapping, assembly, quantification
- ChIP-seq: Peak finding, motif finding
- Methylation-seq: Mapping, CpG island detection
- HiC: Domain identification, scaffolding
- Chromatin state analysis: ChromHMM
- Scalable genomics: Cloud computing, scalable data structures
- Population & single cell analysis: clustering, pseudotime
- Disease analysis, cancer genomics, Metagenomics
- Deep learning in genomics

Biomedical Research Technologies

Results
Domain
Knowledge

Machine Learning classification, modeling, visualization & data Integration

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

Genetic Basis of Autism Spectrum Disorders

Complex disorders of brain development

- Characterized by difficulties in social interaction, verbal and nonverbal communication and repetitive behaviors.
- Have their roots in very early brain development, and the most obvious signs of autism and symptoms of autism tend to emerge between 2 and 3 years of age.

U.S. CDC identify around 1 in 68 American children as on the autism spectrum

- Ten-fold increase in prevalence in 40 years, only partly explained by improved diagnosis and awareness.
- Studies also show that autism is four to five times more common among boys than girls.
- Specific causes remain elusive

What is Autism?

http://www.autismspeaks.org/what-autism

Searching for the genetic risk factors

Search Strategy

- Thousands of families identified from a dozen hospitals around the United States
- Large scale genome sequencing of "simplex" families: mother, father, affected child, unaffected sibling
- Unaffected siblings provide a natural control for environmental factors

Are there any genetic variants present in affected children, that are not in their parents or unaffected siblings?

De novo mutation discovery and validation

De novo mutations:

Sequences not inherited from your parents.


```
Reference:
            ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Father(1):
            ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Father(2):
            ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Mother(1):
            ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Mother(2):
            ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Sibling(1): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Sibling(2): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Proband(1): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Proband(2): ...TCAAATCCTTTTAAT***AAGAGCTGACA...
```

4bp heterozygous deletion at chr15:93524061 CHD2

De novo Genetics of Autism

- In 593 family quads so far, we see significant enrichment in de novo likely gene killers in the autistic kids
 - Overall rate basically 1:1
 - 2:1 enrichment in nonsense mutations
 - 2:1 enrichment in frameshift indels
 - 4:1 enrichment in splice-site mutations
 - Most de novo originate in the paternal line in an age-dependent manner (56:18 of the mutations that we could determine)
- Observe strong overlap with the 842 genes known to be associated with fragile X protein FMPR
 - Related to neuron development and synaptic plasticity
 - Also strong overlap with chromatin remodelers

Biomedical Research Technologies

Results
Domain
Knowledge

Machine Learning classification, modeling, visualization & data Integration

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

Next Steps

- I. Reflect on the magic and power of DNA ©
- 2. Check out the course webpage
- 3. Register on Piazza & say hello!
- 4. Set up Dropbox for yourself!