1 pkt

• Znajdź (z poprzednich zajęć) plik **fun.m** definiujący funkcję zmiennej x

$$f(x) = (x_1 - x_2)^4 + (x_2 - 2x_3)^2 + (x_3 - x_1)^2$$

Dla $x_0 = [-2; -3; -3]$ (lub wylosowanego punktu x_0), wykorzystując funkcję **fminunc**, proszę znaleźć \mathbf{f}_{min} oraz punkt optymalny.

Ustaw wykorzystanie gradientu w opcjach (optimoptions) oraz wyświetl kolejne iteracje.

Znaleźć \mathbf{f}_{min} funkcji oraz punkt optymalny, wykorzystując funkcję $\mathbf{fminsearch}$. Wyświetl kolejne iteracje.

2 pkt

napisać funkcję wykorzystującą <u>algorytm BFGS</u>

[x,fval,it]=BFGS(fun,x0,e)

x RO zadania (ale wypisz też uzyskiwane przybliżenia)

fval optymalna wartość funkcji

it liczba iteracji

Do min. kierunkowej wykorzystaj własną funkcję alfa_max oraz algorytm złotego podziału zp (z ostatnich zajęć)

W alg. zp przyjmij dokładność obliczeń e=1e-4

W algorytmie **BFGS**, przyjmij dokładność badania stacjonarności **e=1e-6** (być może jeszcze inne dodatkowe warunki stopu?). Wykonaj obliczenia dla podanej funkcji.

✓ zastosuj wariant dla algorytmu mPoint (zamiast zp)

2 pkt

✓ napisać funkcję wykorzystującą algorytm Powell

[x,fval,it]= Powell(fun,x0,e)

x RO zadania (ale wypisz też uzyskiwane przybliżenia)

fval optymalna wartość funkcji

it liczba iteracji

Do min. kierunkowej wykorzystaj własną funkcję alfa_max oraz algorytm zp (z ostatnich zajęć)

W alg. zp przyjmij dokładność obliczeń e=1e-4

W algorytmie **BFGS**, przyjmij dokładność badania stacjonarności **e=1e-6** (być może jeszcze inne dodatkowe warunki stopu?). Wykonaj obliczenia dla podanej funkcji.

✓ zastosuj wariant dla algorytmu mPoint (zamiast zp)