

Auxiliary Sections > Integral Transforms > Tables of Laplace Transforms > Laplace Transforms: Expressions with Trigonometric Functions

Laplace Transforms: Expressions with Trigonometric Functions

No	Original function, $f(x)$	Laplace transform , $\widetilde{f}(p) = \int_0^\infty e^{-px} f(x) dx$
1	$\sin(ax)$	$\frac{a}{p^2 + a^2}$
2	$ \sin(ax) , \qquad a > 0$	$\frac{a}{p^2 + a^2} \coth\left(\frac{\pi p}{2a}\right)$
3	$\sin^{2n}(ax), \qquad n = 1, 2, \dots$	$\frac{a^{2n}(2n)!}{p[p^2 + (2a)^2][p^2 + (4a)^2] \dots [p^2 + (2na)^2]}$
4	$\sin^{2n+1}(ax), \qquad n = 1, 2, \dots$	$\frac{a^{2n+1}(2n+1)!}{\left[p^2+a^2\right]\left[p^2+3^2a^2\right]\dots\left[p^2+(2n+1)^2a^2\right]}$
5	$x^n \sin(ax), \qquad n = 1, 2, \dots$	$\frac{n! p^{n+1}}{\left(p^2 + a^2\right)^{n+1}} \sum_{0 \le 2k \le n} (-1)^k C_{n+1}^{2k+1} \left(\frac{a}{p}\right)^{2k+1}$
6	$\frac{1}{x}\sin(ax)$	$\arctan\left(\frac{a}{p}\right)$
7	$\frac{1}{x}\sin^2(ax)$	$\frac{1}{4}\ln(1+4a^2p^{-2})$
8	$\frac{1}{x^2}\sin^2(ax)$	$a \arctan(2a/p) - \frac{1}{4}p\ln(1 + 4a^2p^{-2})$
9	$\sin(2\sqrt{ax})$	$\frac{\sqrt{\pi a}}{p\sqrt{p}}e^{-a/p}$
10	$\frac{1}{x}\sin(2\sqrt{ax})$	$\pi \operatorname{erf} \left(\sqrt{a/p} \right)$
11	$\cos(ax)$	$\frac{p}{p^2 + a^2}$
12	$\cos^2(ax)$	$\frac{p^2 + 2a^2}{p(p^2 + 4a^2)}$
13	$x^n \cos(ax), \qquad n = 1, 2, \dots$	$\frac{n! p^{n+1}}{\left(p^2 + a^2\right)^{n+1}} \sum_{0 \le 2k \le n+1} (-1)^k C_{n+1}^{2k} \left(\frac{a}{p}\right)^{2k}$
14	$\frac{1}{x} \left[1 - \cos(ax) \right]$	$\frac{1}{2}\ln\left(1+a^2p^{-2}\right)$
15	$\frac{1}{x} \left[\cos(ax) - \cos(bx) \right]$	$\frac{1}{2} \ln \frac{p^2 + b^2}{p^2 + a^2}$

No	Original function, $f(x)$	Laplace transform , $\widetilde{f}(p) = \int_0^\infty e^{-px} f(x) dx$
16	$\sqrt{x}\cos(2\sqrt{ax})$	$\frac{1}{2}\pi^{1/2}p^{-5/2}(p-2a)e^{-a/p}$
17	$\frac{1}{\sqrt{x}}\cos(2\sqrt{ax})$	$\sqrt{\pi/p} e^{-a/p}$
18	$\sin(ax)\sin(bx)$	$\frac{2abp}{[p^2 + (a+b)^2][p^2 + (a-b)^2]}$
19	$\cos(ax)\sin(bx)$	$\frac{b(p^2 - a^2 + b^2)}{[p^2 + (a+b)^2][p^2 + (a-b)^2]}$
20	$\cos(ax)\cos(bx)$	$\frac{p(p^2 + a^2 + b^2)}{[p^2 + (a+b)^2][p^2 + (a-b)^2]}$
21	$e^{bx}\sin(ax)$	$\frac{a}{(p-b)^2 + a^2}$
22	$e^{bx}\cos(ax)$	$\frac{p-b}{(p-b)^2+a^2}$

Notation: $\operatorname{erfc} z$ is the complementary error function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Laplace Transforms: Expressions with Trigonometric Functions

Copyright © 2005 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/auxiliary/inttrans/laplace6.pdf