

The last two gates

XOR - XNOR

... Two more gates

- ✓ XOR
- ✓ XNOR

... two more gates

- ✓ XOR
- ✓ XNOR

... are introduced to facilitate the design of binary ADDERS

OR gate

A	В	OR gate
0	0	0
0	1	1
1	0	1
1	1	1

XOR (eXclusiveOR) gate

Α	В	OR gate	XOR gate
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

XOR (eXclusiveOR) gate

Α	В	OR gate	XOR gate
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

$$A XOR B = A \oplus B$$
$$= \overline{A} B + A \overline{B}$$

It produces a high output whenever the two inputs are at opposite levels

XOR (eXclusiveOR) gate

Α	В	OR gate	XOR gate
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

$$A XOR B = A \oplus B$$
$$= \overline{A} B + A \overline{B}$$

It produces a high output whenever the two inputs are at opposite levels

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} A \oplus B \end{array}$$

Another gate ... XNOR

$$A \oplus B = ?$$

XNOR (eXclusiveNOR) gate

Α	В	XOR gate	XNOR gate
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

XNOR (eXclusiveNOR) gate

Α	В	XOR gate	XNOR gate
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

$$A XNOR B = \overline{A \oplus B}$$
$$= \overline{A} \overline{B} + A B$$

Parity generator module ... Data

The parity generators are used in data communications as error detectors

Parity generator module ... Data

The parity generators are used in data communications as error detectors

Α	В	Р
0	0	
0	1	
1	0	
1	1	

Design a 2-bit Even Parity generator module

The parity generators are used in data communications as error detectors

Α	В	Р
0	0	0
0	1	1
1	0	1
1	1	0

Design a 2-bit Even Parity generator module

The parity generators are used in data communications as error detectors

Α	В	Р
0	0	0
0	1	1
1	0	1
1	1	0

Data Communication with error detection

The parity generators are used in data communications as error detectors

Α	В	P
0	0	0
0	1	1
1	0	1
1	1	0

Data Communication with error detection

The parity generators are used in data communications as error detectors

Total we have 2⁴ = 16 gates ...

AB	0	AND		Α		В	XOR	OR	NOR	XNOR	NOTB		NOTA		NAND	1
00	0	0	0	О	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	o	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	o	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
																_
									T							

Only 7 gates are useful

AND, OR, NOT, NAND, NOR, XOR, XNOR

XOR & XNOR: Gate delay

Gate Delay (nsec)

- 4.2 (XOR) with 2 inputs
- 3.2 (XNOR) with 2 inputs

Binary Adders

The binary Adder is part of the Arithmetic logic Unit (ALU)

Problem: 1-bit binary adder

Design a binary logic circuit to Add 2 binary digits: (a, b) (1-bit Adder).

1-bit adder: Truth table

a	Ь	С	S
0	0		
0	1		
1	0		
1	1		

1-bit adder: Truth table

a	Ь	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

1-bit Adder: Carry logic equation

a	Ь	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Therefore,

$$C = ab$$

1-bit Adder: Sum logic equation

a	Ь	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Therefore,

$$C = ab$$

$$S = \overline{a}b + a\overline{b}$$

$$= a \oplus b$$

1-bit Adder: Logic circuit

$$C = ab$$

$$S = \overline{a}b + a\overline{b}$$

$$= a \oplus b$$

1-bit Adder: Graphical symbol

$$C = ab$$

$$S = \overline{a}b + a\overline{b}$$

$$= a \oplus b$$

$$a \xrightarrow{HA} c$$

Example-1

$$a = 1 \longrightarrow S$$

$$b = 0 \longrightarrow C$$

Example-1: Addition

$$0$$
 is the carry and 1 is the sum

$$a = 1 \longrightarrow S = 1$$

$$b = 0 \longrightarrow C = 0$$

Example-2

Example-2: Addition

```
1
11
+ 01
100
```

What about the logic circuit?

Example-2: Logic circuit

Example-2: Logic circuit

Therefore we need logic adders with three inputs = ???

Full-adder?

Therefore we need logic adders with three inputs = Full Adders

Result

Therefore we need logic adders with three inputs = Full Adders

Design a Full-adder

Full-adder: Truth table

Ci	X i	y i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Full-adder: Truth table

Ci	X i	y i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full-adder: Logic equations

Ci	X i	y i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Si =
$$\overline{C}_i \times_i y_i + \overline{C}_i \times_i y_i + C_i \times_i y_i + C_i \times_i y_i$$

Full-adder: Simplification ... C_{i+1}

Full-adder: Simplification ... C_{i+1}

$$C_{i+1} = C_i \times_i y_i + C_i \times_i y_i + C_i \times_i y_i + C_i \times_i y_i$$

= $C_i(\overline{x_i} y_i + x_i \overline{y_i}) + x_i y_i (\overline{C_i} + C_i)$

Full-adder: Simplification ... C_{i+1}

$$C_{i+1} = \overline{C_i} \times_i y_i + C_i \times_i y_i + C_i \times_i y_i + C_i \times_i y_i$$

= $C_i(\overline{x_i} y_i + x_i \overline{y_i}) + x_i y_i (\overline{C_i} + C_i)$

$$C_{i+1} = C_i(x_i \oplus y_i) + x_i y_i$$

Full-adder: Simplification ... Si

Full-adder: Simplification ... Si

Proof

Si =
$$\overline{C}i \overline{x}i yi + \overline{C}i xi \overline{y}i + Ci \overline{x}i \overline{y}i + Ci xi yi = Ci \oplus xi \oplus yi$$

Proof

Si =
$$\overline{C}i \overline{x}i yi + \overline{C}i xi \overline{y}i + Ci \overline{x}i \overline{y}i + Ci xi yi = Ci \oplus xi \oplus yi$$

Si = $\overline{C}i(xi \oplus yi) + Ci(xi yi + \overline{x}i yi)$

Proof

$$Si = \overline{Ci} \overline{x}i yi + \overline{Ci} xi \overline{y}i + Ci \overline{x}i \overline{y}i + Ci xi yi = Ci \oplus xi \oplus yi$$

$$Si = \overline{Ci}(xi \oplus yi) + Ci(xi yi + \overline{x}i \overline{y}i)$$

$$Si = \overline{Ci}(xi \oplus yi) + Ci(\overline{x}i \oplus yi)$$

Done

$$Si = \overline{Ci} \overline{xi} yi + \overline{Ci} xi \overline{yi} + Ci \overline{xi} \overline{yi} + Ci xi yi = Ci \oplus xi \oplus yi$$

$$Si = \overline{Ci} (xi \oplus yi) + Ci (xi yi + xi yi)$$

$$Si = \overline{Ci} (xi \oplus yi) + Ci (\overline{xi} \oplus yi) = \overline{Ci} (xi \oplus yi) = \overline{A} \oplus B$$

Full-adder ... VHDL

1-bit Full-adder

4-bit adder

4-bit Carry Ripple Adder (CRA)

The carry "ripples" through the full adders

4-bit CRA: Compact form

4-bit CRA ... using VHDL

4-bit CRA ... using VHDL

Overflow ... result is 5 bits

Overflow ...

- When the addition result has an extra bit (5-bits) than the inputs (4-bits), this is called overflow
- Overflow occurs in case where the carry-out is one (unsigned numbers addition)
- Overflow is a hardware related "problem"...