

PRODUCT SPECIFICATION

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: V500HK1 SUFFIX: LE1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your conficomments.	irmation with your signature and

Approved By	Checked By	Prepared By
Chao-Chun Chung	Carlos Lee	YuYin Tsai

Version 2.1 Date 29 Jun. 2012

CONTENTS

REVISION HISTORY		4
1. GENERAL DESCRIPTION		5
1.1 OVERVIEW		5
1.2 FEATURES		5
1.3 APPLICATION		5
1.4 GENERAL SPECIFICATIONS		5
1.5 MECHANICAL SPECIFICATIONS		6
1.6 DISPLAY ORIENTATION		
2. ABSOLUTE MAXIMUM RATINGS		
2.1 ABSOLUTE RATINGS OF ENVIRONMEN		
2.2 PACKAGE STORAGE		
2.3 ELECTRICAL ABSOLUTE RATINGS		
2.3.1 TFT LCD MODULE		
2.3.2 BACKLIGHT CONVERTER UNIT		
3. ELECTRICAL CHARACTERISTICS		
3.1 TFT LCD MODULE		
3.2 BACKLIGHT UNIT		12
3.2.1 LED LIGHT BARCHARACTERISTICS (Ta = 25 ± 2 °C)	12
3.2.2 CONVERTER CHARACTERISTICS (Ta	ı = 25 ± 2 °C)	12
3.2.3 CONVERTER INTERFACE CHARACTI	ERISTICS	13
4. BLOCK DIAGRAM OF INTERFACE		15
4.1 TFT LCD MODULE		15
5 .INPUT TERMINAL PIN ASSIGNMENT		16
5.1 TFT LCD MODULE		16
5.2 BACKLIGHT UNIT		22
5.3 DRIVING BOARD UNIT		22
5.4 LVDS INTERFACE		23
5.5 COLOR DATA INPUT ASSIGNMENT		24
6. INTERFACE TIMING		26
6.1 INPUT SIGNAL TIMING SPECIFICATION	IS (Ta = 25 ± 2 °C)	26
6.1.1 Timing spec for Frame Rate = 100Hz		26
6.1.2 Timing spec for Frame Rate = 120Hz		26
6.2 POWER ON/OFF SEQUENCE		29
6.2.1 POWER ON/OFF SEQUENCE		29
Version 2.1	2	Date 29 Jun. 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

7. OPTICAL CHARACTERISTICS	30
7.1 TEST CONDITIONS	30
7.2 OPTICAL SPECIFICATIONS	31
8. DEFINITION OF LABELS	35
8.1 CMI MODULE LABEL	35
9. Packaging	36
9.1 PACKING SPECIFICATIONS	36
9.2 PACKING METHOD	36
10. PRECAUTIONS	38
10.1 ASSEMBLY AND HANDLING PRECAUTIONS	
10.2 SAFETY PRECAUTIONS	
10.3 SAFETY STANDARDS	38
44 MECHANICAL CHARACTERISTIC	•

REVISION HISTORY

				REVISION HISTORY
Version	Date	Page (New)	Section	Description
2.0	Jun.27,12	All	All	Approval Specification Ver 2.0 was first issued.
2.1	Oct. 08,12	36 .37	9.2	Modify PACKING METHOD

Version 2.1 Date 29 Jun. 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

1. GENERAL DESCRIPTION

Global LCD Panel Exchange Center

1.1 OVERVIEW

V500HK1-LE1 is a 50" TFT Liquid Crystal Display module with LED Backlight unit and 4ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 1.067G colors (8-bit+FRC /color). The driving board module for backlight is built-in.

1.2 FEATURES

- High brightness 350 nits
- High contrast ratio 5000:1
- Fast response time Gray to Gray typical 8ms
- High color saturation 72% NTSC
- Full HDTV (1920 x 1080 pixels) resolution, true HDTV format
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Optimized response time for 120 Hz frame rate
- Ultra wide viewing angle: Super MVA technology
- RoHs compliance

T-con input frame rate: 100Hz/120Hz, output frame rate: 100Hz/120Hz

1.3 APPLICATION

- Standard Living Room TVs.
- Public Display Application.
- Home Theater Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	1095.84(H) x (V) 616.41 (50" diagonal)	mm	(1)
Bezel Opening Area	1102.84(H) x 623.41(V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.1903(H) x 0.5708(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.067G	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 1%),Hardness 3H	-	(2)
Rotation Function	unachievable		
Display Orientation	Signal input with "CMI"		

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

Version 2.1 5 Date 29 Jun. 2012

PRODUCT SPECIFICATION

1.5 MECHANICAL SPECIFICATIONS

It	em	Min.	Typ. Max. Unit Note		Note	
	Horizontal (H)	1121.14	1122.64	1124.14	mm	Module Size
	Vertical (V)	643.81	645.31	646.81	mm	
Module Size	Depth (D)	14.1	15.1	16.1	mm	To Rear
Weight		26.6	27.6	28.6	mm	To converter cover
	Weight		12300		G	Weight

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

1.6 DISPLAY ORIENTATION

Display input signal with "CMI"

Rear Side	Front Side
T-Con Board	СМІ

Version 2.1 6 Date 29 Jun. 2012

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	alue	Unit	Note	
item	Syllibol	Min.	Max.	Offic		
Storage Temperature	T_{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T_OP	0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	35	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.
- Note (4) $10 \sim 200$ Hz, 10 min, 1 time each X, Y, Z.
- Note (5)At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 2.1 7 Date 29 Jun. 2012

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 °C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
	Cymbe.	Min.	Max.	0		
Power Supply Voltage	V _{cc}	-0.3	13.5	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)	

2.3.2 BACKLIGHT CONVERTER UNIT

Item	Symbol	Test Condition	Min.	Type	Max.	Unit	Note
Light Bar Voltage	V_W	Ta = 25 °C	-	-	46.9	V_{RMS}	
Converter Input Voltage	V_{BL}	-	0		30	V	(1)
Control Signal Level	-	-	-0.3	-	7	V	(1), (3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control and External PWM Control.

Version 2.1 8 Date 29 Jun. 2012

PRODUCT SPECIFICATION

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

•	•								
	Parameter		C) mala al		Value	Lloit	NI-4-		
	Paramo	eler	Symbol	Min.	Тур.	Max.	Unit	Note	
Power Supply Voltage		V _{CC}	10.8	12	13.2	V	(1)		
Rush Curr	ent		I _{RUSH}	_	_	3.2	Α	(2)	
		White Pattern	_	_	6.6	7.92	W		
Power Co	nsumption	Horizontal Stripe	_	_	15.6	21.12	W		
		Black Pattern	_	_	6.36	7.656	W	(0)	
_		White Pattern	_	_	0.55	0.6	Α	(3)	
		Horizontal Stripe	_	_	1.3	1.6	Α		
		Black Pattern	_	-	0.53	0.58	Α		
	Differential Ir Threshold Vo		V_{LVTH}	+100		+300	mV		
	Differential In	Differential Input Low Threshold Voltage		-300	_	-100	mV		
LVDS interface		Common Input Voltage		1.0	1.2	1.4	V	(4)	
menace	Differential in (single-end)	Differential input voltage (single-end)		200	_	600	mV		
		Terminating Resistor		_	100	_	ohm		
CMIS	Input High Th	nreshold Voltage	V _{IH}	2.7	_	3.3	V		
interface	Input Low Th	reshold Voltage	V _{IL}	0	_	0.7	V		

Note (1) The module should be always operated within the above ranges.

The ripple voltage should be controlled under 10% of Vcc (Typ.)

Note (2) Measurement condition:

Version 2.1 Date 29 Jun. 2012

PRODUCT SPECIFICATION

Vcc rising time is 470us

Note (3) The specified power consumption and power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, f_v = 120 Hz, whereas a power dissipation check pattern below is displayed.

Version 2.1 10 Date 29 Jun. 2012

PRODUCT SPECIFICATION

Note (4) The LVDS input characteristics are as follows:

Version 2.1 11 Date 29 Jun. 2012

PRODUCT SPECIFICATION

3.2 BACKLIGHT UNIT

3.2.1 LED LIGHT BARCHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note		
Farameter	Symbol	Min.	Тур.	Max.	Oill	Note	
Total Current (8 String)	If	-	1240	1320	mA		
One String Current	Ι _L	-	155	165	mA		
LED Forward Voltage	V_{f}	5.7	6.3	6.7	V_{DC}	$I_L = 155 \text{mA}$	
One String Voltage	V _W	39.9	-	46.9	V_{DC}	I _L =155mA	
One String Voltage Variation	$\triangle V_W$	-	-	1	V		
Life time	-	30,000	-	-	Hrs	(1)	

Note (1) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at Ta = 25±2°C, I_L =155mA.

3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note		
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note	
Power Consumption	P _{BL}	- (60.72	69.84	W	(1), (2) IL = 155mA	
Converter Input Voltage	VBL	22.8	24.0	25.2	VDC		
Converter Input Current	I _{BL}		2.53	2.91	A	Non Dimming	
Input Inrush Current	I _R	<u> </u>	-	3.94	Apeak	V _{BL} =22.8V,(IL=typ.) (3)	
Dimming Frequency	FB	150	160	170	Hz		
Minimum Duty Ratio	DMIN	5	-	-	%	(4)	

Note (1) The power supply capacity should be higher than the total converter power consumption PBL. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.

Note (2) The measurement condition of Max. value is based on 50" backlight unit under input voltage 24V, average LED current 165mA and lighting 1 hour later.

Note (3) For input inrush current measure, the VBL rising time from 10% to 90% is about 30ms.

Note (4) 5% minimum duty ratio is only valid for electrical operation.

Version 2.1 12 Date 29 Jun. 2012

Date 29 Jun. 2012

PRODUCT SPECIFICATION

3.2.3 CONVERTER INTERFACE CHARACTERISTICS

Davamata		C) made al	Test		Value		1 lm:4	Note		
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
On/Off Control Voltage	ON	VBLON	_	2.0	_	5.0	V			
On/On Control voltage	OFF	VBLOIN	_	0	_	0.8	V			
External PWM Control	НІ		_	2.0	_	5.0	V	Duty on (5)		
Voltage	LO	VEPWM	_	0	_	0.8	V	Duty off (5)		
External PWM Frequency		F _{EPWM}	-	150	160	170	Hz	Normal mode		
Error Signal		ERR	Н					Abnormal: Open collector Normal: GND (4)		
VBL Rising Time		Tr1	-	30)-	_	ms	10%-90%V _{BL}		
Control Signal Rising Tir	me	Tr	-0		_	100	ms			
Control Signal Falling Ti	me	Tf) -	_	100	ms			
PWM Signal Rising Time	е	TPWMR	_	_	_	50	us			
PWM Signal Falling Tim	е	TPWMF	-			50	us			
Input Impedance		Rin	_	1	_	_	МΩ	EPWM, BLON		
PWM Delay Time		TPWM	_	100	_		ms			
BLON Delay Time		T _{on}	_	300			ms			
DEON Delay Time		T _{on1}	_	300	_	_	ms			
BLON Off Time		Toff	_	300	_	_	ms			

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the Fig.1. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: $VBL \rightarrow PWM \text{ signal} \rightarrow BLON$

Version 2.1

Turn OFF sequence: BLOFF \rightarrow PWM signal \rightarrow VBL

Note (4) When converter protective function is triggered, ERR will output open collector status. (Fig.2)

PRODUCT SPECIFICATION

Note (5) The EPWM interface that inserts a pull up resistor to 5V in Max Duty (100%), please refers to Fig.3.

Fig. 1

Version 2.1 14 Date 29 Jun. 2012

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Version 2.1 15 Date 29 Jun. 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

5 .INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CNF1 Connector Pin Assignment: (CNF1:WF23-400-513C-FCN)

Pin	Name	Description	Note
1	N.C.	No Connection	(1)
2	SCL	I2C Serial Clock	(1)
3	SDA	I2C Serial Data	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	(1)
6	N.C.	No Connection	(1)
7	SELLVDS	Input signal for LVDS Data Format Selection	(2) (4)
8	N.C.	No Connection	
9	N.C.	No Connection	(1)
10	N.C.	No Connection	
11	GND	Ground	
12	CH1[0]-	First pixel Negative LVDS differential data input. Pair 0	
13	CH1[0]+	First pixel Positive LVDS differential data input. Pair 0	
14	CH1[1]-	First pixel Negative LVDS differential data input. Pair 1	(2)
15	CH1[1]+	First pixel Positive LVDS differential data input. Pair 1	(3)
16	CH1[2]-	First pixel Negative LVDS differential data input. Pair 2	
17	CH1[2]+	First pixel Positive LVDS differential data input. Pair 2	
18	GND	Ground	
19	CH1CLK-	First pixel Negative LVDS differential clock input.	(2)
20	CH1CLK+	First pixel Positive LVDS differential clock input.	(3)
21	GND	Ground	
22	CH1[3]-	First pixel Negative LVDS differential data input. Pair 3	(3)
23	CH1[3]+	First pixel Positive LVDS differential data input. Pair 3	
24	CH1[4]-	First pixel Negative LVDS differential data input. Pair 4	
25	CH1[4]+	First pixel Positive LVDS differential data input. Pair 4	
26	N.C.	No Connection	(1)
27	N.C.	No Connection	(1)
28	CH2[0]-	Second pixel Negative LVDS differential data input. Pair 0	(3)

Version 2.1 16 Date 29 Jun. 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

29	CH2[0]+	Second pixel Positive LVDS differential data input. Pair 0	
30	CH2[1]-	Second pixel Negative LVDS differential data input. Pair 1	
31	CH2[1]+	Second pixel Positive LVDS differential data input. Pair 1	
32	CH2[2]-	Second pixel Negative LVDS differential data input. Pair 2	
33	CH2[2]+	Second pixel Positive LVDS differential data input. Pair 2	
34	GND	Ground	
35	CH2CLK-	Second pixel Negative LVDS differential clock input.	(2)
36	CH2CLK+	Second pixel Positive LVDS differential clock input.	(3)
37	GND	Ground	
38	CH2[3]-	Second pixel Negative LVDS differential data input. Pair 3	
39	CH2[3]+	Second pixel Positive LVDS differential data input. Pair 3	(2)
40	CH2[4]-	Second pixel Negative LVDS differential data input. Pair 4	(3)
41	CH2[4]+	Second pixel Positive LVDS differential data input. Pair 4	
42	N.C.	No Connection	
43	N.C.	No Connection	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	
48	VCC	+12V power supply	
49	VCC	+12V power supply	
50	VCC	+12V power supply	
51	vcc	+12V power supply	

Version 2.1 17 Date 29 Jun. 2012

CNF2 Connector Pin Assignment (CNF2: WF23-400-413C,FCN)

Pin	Name	Description	Note
1	N.C.	No Connection	
2	N.C.	No Connection	
3	N.C.	No Connection	(1)
4	N.C.	No Connection	(1)
5	N.C.	No Connection	
6	N.C.	No Connection	
7	N.C.	No Connection	(1)
8	N.C.	No Connection	(1)
9	GND	Ground	
10	CH3[0]-	Third pixel Negative LVDS differential data input. Pair 0	
11	CH3[0]+	Third pixel Positive LVDS differential data input. Pair 0	
12	CH3[1]-	Third pixel Negative LVDS differential data input. Pair 1	(2)
13	CH3[1]+	Third pixel Positive LVDS differential data input. Pair 1	(3)
14	CH3[2]-	Third pixel Negative LVDS differential data input. Pair 2	
15	CH3[2]+	Third pixel Positive LVDS differential data input. Pair 2	
16	GND	Ground	
17	CH3CLK-	Third pixel Negative LVDS differential clock input.	(2)
18	CH3CLK+	Third pixel Positive LVDS differential clock input.	(3)
19	GND	Ground	
20	CH3[3]-	Third pixel Negative LVDS differential data input. Pair 3	
21	CH3[3]+	Third pixel Positive LVDS differential data input. Pair 3	(2)
22	CH3[4]-	Third pixel Negative LVDS differential data input. Pair 4	(3)
23	CH3[4]+	Third pixel Positive LVDS differential data input. Pair 4	
24	GND	Ground	
25	GND	Ground	
26	CH4[0]-	Fourth pixel Negative LVDS differential data input. Pair 0	(3)
27	CH4[0]+	Fourth pixel Positive LVDS differential data input. Pair 0	
28	CH4[1]-	Fourth pixel Negative LVDS differential data input. Pair 1	
29	CH4[1]+	Fourth pixel Positive LVDS differential data input. Pair 1	
30	CH4[2]-	Fourth pixel Negative LVDS differential data input. Pair 2	

Version 2.1 18 Date 29 Jun. 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

31	CH4[2]+	Fourth pixel Positive LVDS differential data input. Pair 2	
32	GND	Ground	
33	CH4CLK-	Fourth pixel Negative LVDS differential clock input.	(2)
34	CH4CLK+	Fourth pixel Positive LVDS differential clock input.	(3)
35	GND	Ground	
36	CH4[3]-	Fourth pixel Negative LVDS differential data input. Pair 3	(2)
37	CH4[3]+	Fourth pixel Positive LVDS differential data input. Pair 3	(3)
38	CH4[4]-	Fourth pixel Negative LVDS differential data input. Pair 4	(2)
39	CH4[4]+	Fourth pixel Positive LVDS differential data input. Pair 4	(3)
40	GND	Ground	
41	GND	Ground	

Note (1) Reserved for internal use. Please leave it open.

Note (2) LVDS format selection.

L= Connect to GND, H=Connect to +3.3V or Open

SELLVDS	Note
L	JEIDA Format
H or Open	VESA Format

Note (3) LVDS 4-port Data Mapping

Port	Channel of LVDS	Data Stream
1st Port	First Pixel	1, 5, 9,1913, 1917
2nd Port	Second Pixel	2, 6, 10,1914, 1918
3rd Port	Third Pixel	3, 7, 11,1915, 1919
4th Port	Fourth Pixel	4, 8, 12,1916, 1920

Version 2.1 19 Date 29 Jun. 2012

PRODUCT SPECIFICATION

Note (4) Interface optional pin has internal scheme as following diagram.

Customer should keep the interface voltage level requirement which including Panel board loading as below.

Note (5) LVDS connector mating dimension range request is 0.93mm~1.0mm as follow

Note (6) LVDS connector pin order defined as follows

Version 2.1 Date 29 Jun. 2012

PRODUCT SPECIFICATION

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2,3: 196388-12041-3 (P-TWO) B-F

Pin №	Symbol	Feature						
1	VLED							
2	VLED	Positive of LED String						
3	VLED	Positive of LED String						
4	VLED							
5	NC							
6	NC	NC						
7	NC	INC						
8	NC							
9	N4							
10	N3	Negative of LED String						
11	N2	Negative of LED String						
12	N1							

5.3 DRIVING BOARD UNIT

CN1(Header): CI0114M1HR0-LA (CvilLux)

Pin No.	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5	A	
6		
7		
8	GND	GND
9		
10		
11	ERR	Normal (GND) Abnormal (Open
12	BLON	BL ON/OFF
13	NC	NC
14	E_PWM	External PWM Control

Notice

1. If Pin14 is open, E_PWM is 100% duty.

PRODUCT SPECIFICATION

5.4 LVDS INTERFACE

JEIDA Format : SELLVDS = L

VESA Format : SELLVDS = H or Open

Version 2.1 23 Date 29 Jun. 2012

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

	data input.											Da	ata	Sigr	nal										
	Color				Re	ed								reer							Bli	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	В3	B2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	÷			•	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	: (:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:		: 1	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0

Version 2.1 24 Date 29 Jun. 2012

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.1 25 Date 29 Jun. 2012

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS (Ta = 25 ± 2 °C)

The input signal timing specifications are shown as the following table and timing diagram.

1 1 3	3 - 1		_				
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	-	-	350	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mod	F _{clkin} -2%	-	F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(4)
LVDS Receiver Data	Receiver Skew Margin	$T_{ m RSKM}$	-400	-	400	ps	(5)

6.1.1 Timing spec for Frame Rate = 100Hz

1.1 Tilling Spec for Frame Nate - 100112								
Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note
Frame rate	2D mode		F _{r5}	94	100	106	Hz	
Vertical Active	2D Mode	Total	Tv	1090	1350	1395	Th	Tv=Tvd+Tv b
Display		Display	Tvd	1080	1080	1080	Th	_
Term		Blank	Tvb	10	270	315	Th	1
Horizontal Active	2D Mode	Total	Th	520	550	670	Тс	Th=Thd+T hb
Display		Display	Thd	480	480	480	Тс	_
Term		Blank	Thb	40	70	190	Тс	_

6.1.2 Timing spec for Frame Rate = 120Hz

Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note
Frame rate	2D mode		F _{r6}	114	120	126	Hz	
Vertical		Total	Tv	1090	1125	1395	Th	Tv=Tvd+Tvb
Active Display	2D Mode	Display	Tvd	1080	1080	1080	Th	_
Term		Blank	Tvb	10	45	315	Th	_

Version 2.1 26 Date 29 Jun. 2012

PRODUCT SPECIFICATION

Н	orizontal	2D Mode	Total	Th	520	550	670	Тс	Th=Thd+Thb
	Active Display		Display	Thd	480	480	480	Тс	_
	Term		Blank	Thb	40	70	190	Тс	_

Note (1) Please make sure the range of pixel clock has follow the below equation:

$$\mathsf{Fclkin}(\mathsf{max}) \ge \mathsf{Fre} \times \mathsf{Tv} \times \mathsf{Th}$$

$$\mathsf{Fr}_{\mathsf{5}} \mathop{\diagup} \mathsf{Tv} \mathop{\diagup} \mathsf{Th} \geqq \mathsf{Fclkin}(\mathsf{min}$$

INPUT SIGNAL TIMING DIAGRAM

Note (2) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (4) LVDS receiver skew margin is defined and shown as below.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Version 2.1 28 Date 29 Jun. 2012

6.2 POWER ON/OFF SEQUENCE

Global LCD Panel Exchange Center

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

6.2.1 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{CC}	12V	V
Input Signal	According to typical value	alue in "3. ELECTRICAL (CHARACTERISTICS"
LED Current	IL	155	mA

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

Version 2.1 30 Date 29 Jun. 2012

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

It	Item		Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		3500	5000	-	-	Note (2)
Response Tim	Response Time				6.5		ms	Note (3)
CenterLumina	nce of White	L _C		280	350	-	cd/m ²	Note (4)
White Variation	n	δW				1.3	-	Note (6)
Cross Talk		СТ		-	-	4	%	Note (5)
	Dad	Rx		Тур 0.03	0.646		-	
	Red	Ry	θ_x =0°, θ_Y =0°		0.328		-	
	Croon	Gx	Viewing angle at		0.297		-	
	Green	Gy	normal direction		0.597		-	
Color	Blue	Bx			0.150	Typ.+	-	
Chromaticity		Ву			0.055	0.03	-	
	\A/I=:4-	Wx			0.280		-	
	White	Wy			0.290		-	
	Correlated cold	or temperature			10000		K	
	Color Gamut	C.G.		-	72	-	%	NTSC
	Howingstal	θ_x +		80	88	-		
Viewing	Horizontal	θ _x -	CD> 20	80	88	-	Dog	(4)
Angle	\/awtiaal	θ _Y +	CR≥20	80	88	-	Deg.	(1)
	Vertical	Ο		80	88			

Version 2.1 31 Date 29 Jun. 2012

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80.

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023.

Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.

Version 2.1 32 Date 29 Jun. 2012

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023 at center point.

 $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

YA = Luminance of measured location without gray level 255 pattern (cd/m2)

YB = Luminance of measured location with gray level 255 pattern (cd/m2)

Note (6) Definition of White Variation (δW):

Version 2.1

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

33

Date 29 Jun. 2012

Version 2.1 34 Date 29 Jun. 2012

8. DEFINITION OF LABELS

Global LCD Panel Exchange Center

8.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V500HK1-LE1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No.: Manufacturing sequence of product Product Line : $1 \rightarrow \text{Line} 1$, $2 \rightarrow \text{Line} 2$, ...etc.

Version 2.1 35 Date 29 Jun. 2012

9. Packaging

9.1 PACKING SPECIFICATIONS

- (1) 4 LCD TV modules / 1 Box
- (2) Box dimensions: 1235(L) X 258 (W) X 751 (H)
- (3) Weight: approximately 56.5 Kg (4 modules per box)

9.2 PACKING METHOD

Figures 9-1 and 9-2 are the packing method

Figure.9-1 packing method

Global LCD Panel Exchange Center

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft/20ft Container)

Air Transportation

Figure. 9-2 Packing method

Version 2.1 37 Date 29 Jun. 2012

PRODUCT SPECIFICATION

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

10.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
	UL	UL60950-1:2006 or Ed.2:2007
Information Technology equipment	cUL	CAN/CSA C22.2 No.60950-1-03 or 60950-1-07
N	СВ	IEC60950-1:2005 / EN60950-1:2006
	UL	UL60065 Ed.7:2007
Audio/Video Apparatus	cUL	CAN/CSA C22.2 No.60065-03:2006 + A1:2006
	СВ	IEC60065:2001+ A1:2005 / EN60065:2002 + A1:2006

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

Version 2.1 38 Date 29 Jun. 2012

11. MECHANICAL CHARACTERISTIC

Version 2.1 39 Date 29 Jun. 2012

Version 2.1 40 Date 29 Jun. 2012