Report No.: 6A071907FR
FCC ID: UJC9010101 Page 1 of 70

FCC Part 15 TEST REPORT

of

E.U.T.: Hookup

Trade Name: N/A

Model Number: LTK101

Prepared for

LENNTEK CORPORATION

4F 125, Guangming 3rd Road, Jhu Bei, Hsin Chu 30251,

Taiwan

TEL: +886 3 551 7771

FAX: +886 3 558 7227

Prepared by

Interocean EMC Technology Corp.

244 No.5-2, Lin 1, Tin-Fu Tsun, Lin-Kou Hsiang, Taipei County, Taiwan, R.O.C. TEL.: +886 2 2600 6861

FAX.: +886 2 2600 6859

Remark:

The test report consists of <u>70</u> pages in total. It shall not be reproduced except in full, without the written approval of IETC. This document may be altered or revised by IETC only, and shall be noted in the revision section of the document. The test results in the report only to the tested sample.

TEST REPORT CERTIFICATION

Applicant:

LENNTEK CORPORATION

Manufacturer:

LENNTEK CORPORATION

EUT Description:

Hookup

Model No.:

LTK101

Serial No.:

N/A

Tested Power Supply: 120Vac, 60Hz

Date of Final Test:

Nov. 07, 2006

Configuration of Measurements and Standards Used:

FCC Rules and Regulations Part 15 Subpart B & C

I HEREBY CERTIFY THAT: The data shown in this report were made in accordance with the procedures given in ANSI C63.4, and the energy emitted by the device was founded to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Note: 1. The result of the testing report relate only to the item tested.

2. The testing report shall not be reproduced expect in full, without the written approval of IETC

Report Issued:

2006/11/10

Test Engineer:

Checked:

Jam Cheng

Approved:

Mike Huan

Table of Contents

1	General Information		Ь
1.1	Description of Equipment Under Test	6	
1.2	Table for Carrier Frequencies	7	
1.3	Tested Supporting System Detail	8	
1.4	Test Facility	9	
1.5	Test Methodology	10	
1.6	Bluetooth Approvals	10	
1.7	Test Facility	10	
2	PROVISIONS APPLICABLE.		11
2.1	Definition	11	
2.2	Requirement for Compliance	12	
2.3	Summary of Measurement	14	
2.4	Restricted Bands of Operation	15	
2.5	Labeling Requirement	16	
2.6	User Information	16	
3	SYSTEM TEST CONFIGURATION		17
3.1	Justification	17	
4	Power Line Conducted Emission Measurement		18
5	Radiated Emission Measurement		19
5.1	Instrument	19	
5.2	Instrument (For frequencies measured below 18 GHz)	19	
5.3	Standard Applicable and limit	20	
5.4	Block Diagram of Test Configuration	21	
5.5	Measurement Instrument setting	22	
5.6	Configuration of Measurement	22	
5.7	Test Result	22	
5.8	Field Strength Calculation	29	
6	ANTENNA REQUIREMENT		30
6.1	Standard Applicable	30	
6.2	Antenna Construction and Directional Gain	30	

Page	4	Ωf	70
raue	4	UI.	70

7	•	HOPPING CHANNEL BANDWIDTH MEASUREMENT		31	
	7.1	Instrument	31		
	7.2	Standard Applicable and limit	31		
	7.3	Block Diagram of Test Configuration	31		
	7.4	Measuring Instrument Setting	31		
	7.5	Configuration of Measurement	32		
	7.6	Measurement waveform	34		
8		MAXIMUM OUTPUT POWER MEASUREMENT		36	
U		Measurement Equipment	36	30	
		Standard Applicable and limit	36		
			36		
		Block Diagram of Test Configuration	36		
		Measurement Instrument setting Configuration of Measurement	37		
	8.5	Configuration of Measurement			
	8.6	Measurement waveform	39		
9		100 kHz BANDWIDTH OF BAND EDGES MEASUREMENT		41	
	9.1	Instrument	41		
	9.2	Standard Applicable	41		
	9.3	Block Diagram of Test Configuration	41		
	9.4	Measuring Instrument Setting	42		
	9.5	Configuration of Measurement	42		
1	0	HOPPING CHANNEL SEPARATION		45	
•	_	Instrument	45	.0	
	_	2 Standard Applicable	45		
		Block Diagram of Test Configuration	45		
		Measuring Instrument Setting	45		
		5 Configuration of Measurement	46		
		6 Measurement waveform	48		
	10.0	nicasarement wavelonn	70		
1	1	NUMBER OF HOPPING FREQUENCY USED		50	
	11.1	Instrument	50		
	11.2	2 Standard Applicable and limit	50		
	11.3 Block Diagram of Test Configuration 50				
	11.4	Measuring Instrument Setting	50		
	11.5	Configuration of Measurement	51		
	11 6	S Measurement waveform	53		

Page	5	of	70

12	DWELL TIME ON EACH CHANNEL	Ę	54
12	.1 Instrument	54	
12	.2 Standard Applicable and limit	54	
12	.3 Block Diagram of Test Configuration	54	
12	.4 Measuring Instrument Setting	54	
12	.5 Configuration of Measurement	55	
12	.6 Measurement waveform	57	
13	HOPPING SEQUENCE TEST	6	63
14	Photographs of Test	6	64
14	.1 Radiated Emission Measurement	64	
15	Photographs of EUT	e	67

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 6 of 70

1 General Information

1.1 Description of Equipment Under Test

Equipment Under Test: Hookup **Model Number**: LTK101

Serial Number : N/A

Type of Sample Tested: ⊠Proto-type □Pre-Production □Mass Production

Applicant : LENNTEK CORPORATION

4F 125, Guangming 3rd Road, Jhu Bei, Hsin Chu 30251, Taiwan

Manufacturer : LENNTEK CORPORATION

4F 125, Guangming 3rd Road, Jhu Bei, Hsin Chu 30251, Taiwan

Power Adapter : <u>iPod USB Power Adapter:</u>

Manufacturer: Apple computer

Model NO.: A1102

Input: 100~240Vac, 50 / 60Hz, 1.5A

Output: 5Vdc, 1A

Power Cable:

Shielded

Detachable, 1.5 m

w/o core

Date of Receipt Sample: September 11, 2006

Date of Test : September 18 ~ November 07, 2006

Description of E.U.T. : Bluetooth is a short-range radio link intended to be a cable replacement

between portable and/or fixed electronic devices. Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 81MHz width is available. In this band, 79 RF channels spaced 1MHz apart a defined.

The channel is represented by a pseudo-random hopping sequence through the 79 channels. The channel is devided into time slots, with a nominal slot

length of 625µs, where each slot corresponds to different RF hop frequencies. The nominal hop rate is1600 hops/s. All frequencies are equally used. The average time of occupancy is 0.3797 s within a 30 second

period. The symbol rate on the channel is 1 Ms/s.

Product information : Interface/ Port:

1. USB Port *1

2. Earphone Port *1

3. Power Port*1

Data Cable:

USB Cable*1: ⊠Shielded ⊠Detachable, 1m ⊠w/o core

Earphone:

Manufacturer: Hp invent

iPod:

Manufacturer: Hp invent Model NO.: MP102

Report No.: 6A071907FR FCC ID: UJC9010101 Page 7 of 70

1.2 Table for Carrier Frequencies

Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	31	2432 MHz	61	2462MHz
2	2403 MHz	32	2433 MHz	62	2463MHz
3	2404 MHz	33	2434MHz	63	2464MHz
4	2405 MHz	34	2435 MHz	64	2465MHz
5	2406 MHz	35	2436 MHz	65	2466MHz
6	2407 MHz	36	2437 MHz	66	2467MHz
7	2408 MHz	37	2438 MHz	67	2468MHz
8	2409 MHz	38	2439 MHz	68	2469 MHz
9	2410 MHz	39	2440 MHz	69	2470MHz
10	2411 MHz	40	2441 MHz	70	2471 MHz
11	2412 MHz	41	2442 MHz	71	2472 MHz
12	2413 MHz	42	2443 MHz	72	2473 MHz
13	2414 MHz	43	2444MHz	73	2474 MHz
14	2415 MHz	44	2445MHz	74	2475 MHz
15	2416 MHz	45	2446MHz	75	2476 MHz
16	2417 MHz	46	2447MHz	76	2477MHz
17	2418 MHz	47	2448MHz	77	2478 MHz
18	2419MHz	48	2449MHz	78	2479 MHz
19	2420 MHz	49	2450MHz	79	2480MHz
20	2421 MHz	50	2451MHz		
21	2422 MHz	51	2452MHz		
22	2423 MHz	52	2453MHz		
23	2424 MHz	53	2454MHz		
24	2425 MHz	54	2455MHz		
25	2426 MHz	55	2456MHz		
26	2427 MHz	56	2457MHz		
27	2428 MHz	57	2458MHz		
28	2429 MHz	58	2459MHz		
29	2430 MHz	59	2460MHz		
30	2431MHz	60	2461MHz		

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 8 of 70

1.3 Tested Supporting System Detail

1.3.1 Personal Computer

Hard Disk Driver

PC20

Model Number : IBM ThinkCentre 8434-IVV

Serial Number : 99MNC43

CPU Speed : Pentium 4 Celeron D 2.2 Ghz

EMC Approved : CE, FCC, C-Tick, UL, BSMI: R33026

40GB

Manufacturer : IBM

RAM : 256M*1

1.3.2 Data Cable

USB Cable : Shielded; 1Detachable, 1m w/o core

1.3.3 Earphone

Model Number : Hp invent

Serial Number : N/A

1.3.4 iPod

Model Number : Hp invent Serial Number : MP102 Report No.: 6A071907FR
FCC ID: UJC9010101 Page 9 of 70

1.4 Test Facility

Site Description : ⊠OATS 1 □OATS 2 □OATS 3 □OATS 4

Name of Firm : Interocean EMC Technology Corp.

Site 1, 2 Location: No.5-2, Lin 1, Tin-Fu Tsun, Lin-Kou Hsiang,

Taipei County, Taiwan, R.O.C.

Site 3, 4 Location : No. 12, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang,

Taipei County, Taiwan, R.O.C.

Site Filing : Federal Communication Commissions – USA

Registration No.: 96399 (Site 1 & 2) Registration No.: 518958 (Site 3 & 4)

Voluntary Control Council for Interference by Information

Technology Equipment (VCCI) – Japan Registration No. (Conducted Room): C-1094 Registration No. (Conduction Area 3): C-1943 Registration No. (Conducted Room): T-271

Registration No. (OATS 1): R-1040
 Registration No. (OATS 2): R-1041
 Registration No. (OATS 3): R-1812
 Registration No. (OATS 4): R-1813

Industry Canada
 Submission: 113543

Site Accreditation

Bureau of Standards and Metrology and Inspection

(BSMI) - Taiwan, R.O.C.

Accreditation No.:

SL2-IN-E-0026 for CNS13438 / CISPR22 SL2-R1-E-0026 for CNS13439 / CISPR13 SL2-R2-E-0026 for CNS13439 / CISPR13 SL2-A1-E-0026 for CNS13783-1 / CISPR14-1

National Voluntary Laboratory Accreditation Program

(NVLAP) - USA Lab Code: 200458-0

Nemko AS

Authorization No.: ELA 181A Authorization No.: ELA 181B

TüV Rheinland

Certificate No: 10006453-2006

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 10 of 70

1.5 Test Methodology

For Hookup, both conducted and radiated emissions were performed according to the procedures illustrated in ANSI C63.4 (2003) and other required measurements were illustrated in separate sections of this test report for details.

1.6 Bluetooth Approvals

For Hookup meeting the Bluetooth Specifications in the 2.4GHz band as of February 2001 operating in the USA.

1.7 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the roof top of Building at No.5-2, Lin 1, Tin-Fu Tsun, Lin-Kou Hsiang, Taipei County, Taiwan, R.O.C.

This site has been fully described in a report submitted to your office, and accepted in a letter dated Oct 28,2002.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 11 of 70

2 PROVISIONS APPLICABLE.

2.1 Definition

Unintentional radiator:

A device that intentionally generates and radio frequency energy for use within the device, or that sends radio frequency signals by conduction to associated equipment via connecting wiring, but which is not intended to emit RF energy by radiation or induction.

Class A Digital Device:

A digital device which is marketed for use in commercial or business environment; exclusive of a device which is market for use by the general public, or which is intended to be used in the home.

Class B Digital Device:

A digital device which is marketed for use in a residential environment notwithstanding use in a commercial, business of industrial environment. Example of such devices that are marketed for the general public.

Note: A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

Intentional radiator:

A device that intentionally generates and emits radio frequency energy by radiation or induction

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 12 of 70

2.2 Requirement for Compliance

(1) Conducted Emission Requirement

For intentional device, according to §15.207(a) Line Conducted Emission Limits is same as below table.

For unintentional device, according to CISPR Line Conducted Emission Limits class B is as following:

Frequency (MHz)	Quasi Peak (dB μ V)	Average (dB μ V)
0.15 - 0.5	66-56	56-46
0.5 - 5.0	56	46
5.0 - 30.0	60	50

(2) Radiated Emission Requirement

For unintentional device, according to §15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance Meters (m)	Radiated (dB μ V/m)	Radiated (μV/m)
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
Above 960	3	54.0	500

For intentional device, according to §15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

For unintentional device, according to CISPR Line Radiated Emission Limits class B is as following:

Frequency (MHz)	Distance Meters (m)	Radiated (dB μ V/m)
30 to 230	10	30
230 to 1000	10	37

Frequency (MHz)	Average dB (μ V/m)
Above 1000	54.0

(3) Hopping Channel Separation and 20 dB Bandwidth

According to 15.247(a)(1), frequency hopping system shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 13 of 70

(4) Maximum Output Power Requirement

According to 15.247(b)(1) For frequency hopping systems operating in the 2400-2483.5MHz band employing at least 75 hopping channels and all frequency hopping systems in the 5725MHz-5850MHz band: 1 Watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts (20.97dBM). The limitation has to be reduced by the amount in dB that the gains of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

(5) 100 kHz Bandwidth of Frequency Band Edges Requirement

According to 15.247(c), in any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in § 15.209(a), whichever results in the lesser attenuation.

(6) Number of Hopping Frequency used

According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2400-2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any frequency shall not be greater than 0.4 second within a period of 0.4 seconds multiplied by the number of hopping channels employed

(7) Dwell Time on each channel

According to 15.247(a)(1)(iii), for frequency hopping system operating in the 2400-2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any frequency shall not be greater than 0.4 second within a period of 0.4 seconds multiplied by the number of hopping channels employed

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 14 of 70

2.3 Summary of Measurement

Report Clause	Test Parameter	Remarks	Reference Document CFR47 Part15	Test result
4	Conducted Emission Requirement	Applicable	§15.207(a)	PASSED
5	Radiated Emission Requirement	Applicable	§15.209(a)	PASSED
7	20 dB Bandwidth	Applicable	§15.247(a) (1)	PASSED
8	Maximum Output Power Requirement	Applicable	§15.247(b) (1)	PASSED
9	100 kHz Bandwidth of Frequency Band Edges Requirement	Applicable	§15.247(d)	PASSED
10	Hopping Channel Separation	Applicable	§15.247(a) (1)	PASSED
11	Number of Hopping Frequency used	Applicable	§15.247(b) (1) (iii)	PASSED
12	Dwell Time on each channel	Applicable	§15.247(a)(1)(iii)	PASSED
6	Antenna Requirement	N/A	§15.203	Compliance

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 15 of 70

2.4 Restricted Bands of Operation

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.25
0.495 - 0.505 **	16.69475 - 16.69525	608-614	5.35-5.46
2.1735 - 2.1905	16.80425 - 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475 - 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3360-4400	Above 38.6
13.36-13.41			

^{**:} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 16 of 70

2.5 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2.6 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Reorient or relocate the receiving antenna.
- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 17 of 70

3 SYSTEM TEST CONFIGURATION

3.1 Justification

For both radiated and conducted emissions below 1 GHz, the system was configured for testing in a typical fashion, as a customer would normally use it. The peripherals other than EUT were connected in normally standing by situation. Measurement was performed under the condition that a computer program was exercised to simulate data communication of EUT, and the transmission rate was set to maximum allowed by EUT. Three highest emissions were verified with varying placement of the transmitting antenna connected to EUT to maximize the emission from EUT.

For conducted emissions, only measured on TX / RX and charge mode operation, for the digital circuits portion also function normally whenever TX or RX is operated. For radiated emissions, whichever RF channel is operated, the digital circuits function identically. As the reason, measurement of radiated emissions from digital circuits is only performed by transmitting mode. During the preliminary test, the worse cases are TX / RX and charge mode, and data presented in this test report just shows the worse case.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 18 of 70

4 Power Line Conducted Emission Measurement

The EUT is power by battery; therefore it does not need to perform this test.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 19 of 70

5 Radiated Emission Measurement

5.1 Instrument

Instrument	Manufacturer	Model	Serial No.	Last Calibration
EMI Test Receiver	Rohde & Schwarz	ESI7	830154/002	2006/08/09
Spectrum Analyzer	Agilent	8564EC	4046A00331	2006/03/27
Spectrum Analyzer	R&S	FSP30	100002	2005/11/07
Test Receiver	R&S	ESVS10	826148/011	2006/06/15
Bilog Antenna	Schaffner	CBL6112B	2811	2005/11/07
Preamplifier	Agilent	8449B	3008A01434	2006/04/10
Preamplifier	Agilent	8447D	2944A09703	2006/04/20
Loop Antenna	Schaffner	HLA6120	1171	2006/08/01

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

Instrument	Instrument Manufacturer		Serial No.	Last Calibration	
Horn Antenna	COM-POWER	AH-118	10081	2006/05/16	
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170213	2006/06/13	

Note: All instrument upon which need to be calibrated are within calibration period of 2 year.

5.2 Instrument (For frequencies measured below 18 GHz)

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Spectrum Analyzer	Agilent	8564EC	4046a00331	2006/03/27
Cable	IETC	CBL07	CBL07	2006/05/09

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170213	2006/06/13
Preamplifier	Agilent	83050A	3950A00225	2006/08/03

Note: All instrument upon which need to be calibrated are within calibration period of 2 year.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 20 of 70

5.3 Standard Applicable and limit

For intentional radiator, the radiated emission shall comply with §15.209(a).

For intentional radiators, according to §15.247 (a), operation under this provision is limited to frequency hopping and direct sequence spread spectrum, and the out band emission shall be comply with §15.247 (c)

	☐ Class A	
Frequency (MHz)	Quasi-Peak	Quasi-Peak
	dB(uV/m)	dB(uV/m)
30 ~ 230	40.0	30.0
230 ~ 1000	47.0	37.0

Frequency (MHz)	Average dB(uV/m)
Above 1000	54.0

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 21 of 70

5.4 Block Diagram of Test Configuration

Frequencies measured below 1 GHz configuration

Frequencies measured from 1GHz to 18 GHz configuration

Frequencies measured above 18 GHz configuration

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 22 of 70

5.5 Measurement Instrument setting

- 5.5.1 Set the EMI test receiver frequency range from 30 MHz to 1000 MHz.
- 5.5.2 Set the EMI test receiver bandwidth at 120 kHz.
- 5.5.3 Set the EMI test receiver detector as Quasi-Peak (Q.P.).

5.6 Configuration of Measurement

- 5.6.1 Setup the configuration per 5.2 for frequencies measured below and above 1 GHz respectively.
- 5.6.2 For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 5.6.3 For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 5.5.2.
- 5.6.4 The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0 or to 360 or with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.
- 5.6.5 Note: A band pass filter was used to avoid pre-amplifier saturated when measure TX operation mode in frequency band above 1 GHz.
- 5.6.6 Repeat step 5.5.4 until all frequencies need to be measured were complete.
- 5.6.7 Repeat step 5.5.5 with search antenna in vertical polarized orientations.
- 5.6.8 Check the three frequencies of highest emission with varying the placement of cables associated with EUT to obtain the worse case and record the result.

5.7 Test Result

PASS.

Results for the radiated measurements below 30MHz according §15.33

Frequency	Measured Values	Remarks
10KHz-30MHz	No emission found, caused by the EUT	This is valid for all the test channels

The final tested data are shown on following pages.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 23 of 70

Radiated Emission Measurement Data

EUT: Hookup POLARITY: Horizontal

CLIENT: LENNTEK CORPORATION DISTANCE: 3 m

MODEL: LTK101 Serial No.:

RATING: From iPOD FILE/DATA#: LENNTEK CORPORATION.emi/13

Temperature: 23.8 $^{\circ}$ OPERATOR: SUNNY Humidity: 71 $^{\circ}$ TEST SITE: OATS1

Frequency	Factor	Meter Reading	Emission Level	Limits	Margin
(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
48.186 **	-20.69	40.26	19.57	40.00	-20.43
114.478 **	-18.51	41.02	22.51	43.52	-21.01
120.018 **	-18.46	40.26	21.80	43.52	-21.72
164.074 **	-19.42	41.83	22.41	43.52	-21.11
180.018 **	-20.80	42.98	22.18	43.52	-21.34
240.006 **	-17.84	42.98	25.14	46.02	-20.88
372.270 **	-13.08	34.40	21.32	46.02	-24.70
419.993 **	-11.70	34.61	22.91	46.02	-23.11
439.090 **	-11.21	36.96	25.75	46.02	-20.27
463.175 **	-10.55	38.51	27.96	46.02	-18.06

- 1. " * " Mark means readings are Peak Values.
- 2. " ** " Mark means readings are Quasi-Peak values.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 24 of 70

Radiated Emission Measurement Data

EUT: Hookup POLARITY: Horizontal

CLIENT: LENNTEK CORPORATION DISTANCE: 3 m

MODEL: LTK101 Serial No.:

RATING: From iPOD FILE/DATA#: LENNTEK CORPORATION.emi/4

Temperature: 28.1 °C OPERATOR: SUNNY Humidity: 63 % TEST SITE: OATS1

Frequency	Factor	Meter Reading	Emission Level	Limits	Margin
(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
2410.821 **	-3.25	36.52	39.77	54.00	-14.23
4912.820 **	-10.84	24.00	34.84	54.00	-19.16

- 1. " * " Mark means readings are Peak Values.
- 2. " ** " Mark means readings are Quasi-Peak values.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 25 of 70

Radiated Emission Measurement Data

EUT: Hookup POLARITY: Horizontal

CLIENT: LENNTEK CORPORATION DISTANCE: 1m

MODEL: LTK101 Serial No.:

RATING: From iPOD FILE/DATA#: LENNTEK CORPORATION.emi/4

Temperature: 28.1 ℃ OPERATOR: SUNNY Humidity: 63 % TEST SITE: OATS1

Frequency	Factor	Meter Reading	Emission Level	Limits	Margin
(GHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
19.84*	-12.6	40.86	53.46	63.5	-10.04
22.3*	-13	40.5	53.5	63.5	-10
24.8*	-13.7	44.61	58.31	63.5	-5.19

- 1. " * " Mark means readings are Peak Values.
- 2. " ** " Mark means readings are Quasi-Peak values.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 26 of 70

Radiated Emission Measurement Data

EUT: Hookup POLARITY: Vertical CLIENT: LENNTEK CORPORATION DISTANCE: 3 m

MODEL: LTK101 Serial No.:

RATING: From iPOD FILE/DATA#: LENNTEK CORPORATION.emi/12

Temperature: 23.8 ℃ OPERATOR: SUNNY Humidity: 71 % TEST SITE: OATS1

Frequency	Factor	Meter Reading	Emission Level	Limits	Margin
(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
68.736 **	-23.51	44.65	21.14	30.00	-8.86
113.715 **	-17.69	41.65	23.96	30.00	-6.04
120.042 **	-18.21	40.32	22.11	30.00	-7.89
134.180 **	-17.12	36.89	19.77	30.00	-10.23
171.791 **	-19.55	40.20	20.65	30.00	-9.35
180.090 **	-20.30	40.74	20.44	30.00	-9.56
240.190 **	-17.67	40.69	23.02	37.00	-13.98
439.244 **	-11.05	37.74	26.69	37.00	-10.31
463.172 **	-10.27	37.57	27.30	37.00	-9.70
489.970 **	-9.72	34.42	24.70	37.00	-12.30

- 1. " * " Mark means readings are Peak Values.
- 2. " ** " Mark means readings are Quasi-Peak values.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 27 of 70

Radiated Emission Measurement Data

EUT: Hookup POLARITY: Vertical

CLIENT: LENNTEK CORPORATION DISTANCE: 3 m

MODEL: LTK101 Serial No.:

RATING: From iPOD FILE/DATA#: LENNTEK CORPORATION.emi/5

Temperature: 28.1 $^{\circ}$ C OPERATOR: SUNNY Humidity: 63 $^{\circ}$ C TEST SITE: OATS1

<u></u>					
Frequency	Factor	Meter Reading	Emission Level	Limits	Margin
(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
2414.829 **	-3.28	36.82	40.10	54.00	-13.90
4911.823 **	-10.83	23.54	34.37	54.00	-19.63

- 1. " * " Mark means readings are Peak Values.
- 2. " ** " Mark means readings are Quasi-Peak values.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 28 of 70

Radiated Emission Measurement Data

EUT: Hookup POLARITY: Vertical

CLIENT: LENNTEK CORPORATION DISTANCE: 1m

MODEL: LTK101 Serial No.:

RATING: From iPOD FILE/DATA#: LENNTEK CORPORATION.emi/4

Temperature: 28.1 ℃ OPERATOR: SUNNY Humidity: 63 % TEST SITE: OATS1

Frequency	Factor	Meter Reading	Emission Level	Limits	Margin
(GHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)
19.84*	-12.6	40.86	53.46	63.5	-10.04
22.3*	-13	40.5	53.5	63.5	-10
24.8*	-13.7	44.61	58.31	63.5	-5.19

- 1. " * " Mark means readings are Peak Values.
- 2. " ** " Mark means readings are Quasi-Peak values.
- 3. Factor = Antenna Factor + Cable Loss Pre-amplifier.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 29 of 70

5.8 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss(if used) and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where Corrected Factor = Antenna FACTOR + Cable Loss + High Pass Filter Loss - Amplifier Gain

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 30 of 70

6 ANTENNA REQUIREMENT

6.1 Standard Applicable

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to §15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.2 Antenna Construction and Directional Gain

This device uses PCB antenna. Please see photo of EUT (Page 65).

The max antenna gain is **0.56 dBi** for Headset.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 31 of 70

7 HOPPING CHANNEL BANDWIDTH MEASUREMENT

7.1 Instrument

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Spectrum Analyzer	Rohde & Schwarz	FSP30	100002	2005/11/07

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

7.2 Standard Applicable and limit

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

7.3 Block Diagram of Test Configuration

7.4 Measuring Instrument Setting

Spectrum Parameter	Setting	
Attenuation	20dB	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	100 kHz (20dB Bandwidth) / 1MHz (Channel Separation)	
VB	1MHz (20dB Bandwidth) / 1MHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	125ms	

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 32 of 70

7.5 Configuration of Measurement

7.5.1 Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 7.5.2 Position the EUT as shown in section 7.3 without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 7.5.3 Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 7.5.4 Repeat above procedures until all frequencies measured were complete.

Test result

PASS.

The final test data and waveform are shown on as following pages

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 33 of 70

HOPPING CHANNEL BANDWIDTH MEASUREMENT DATA

Ambient temperature : 26°C Relative humidity : 59%

Test Mode : Headset

Channel	Frequency (MHz)	20dB Emission Bandwidth (KHz)	Max. Limit (dB)
CH1	2402	372	> 20dB or 2/3 of 20dB
CH40	2441	356	> 20dB or 2/3 of 20dB
CH79	2480	360	> 20dB or 2/3 of 20dB

Note: 1. The expanded uncertainty of the emission bandwidth tests is 1500Hz

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 34 of 70

7.6 Measurement waveform

Date: 4.NOV.2006 16:14:19

CH1

Date: 4.NOV.2006 16:12:10

Date: 4.NOV.2006 17:33:55

CH79

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 36 of 70

8 MAXIMUM OUTPUT POWER MEASUREMENT

8.1 Measurement Equipment

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Spectrum Analyzer	Agilent	8564EC	4046A00331	2006/03/27
Spectrum Analyzer	R&S	FSP30	100002	2005/11/07

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

8.2 Standard Applicable and limit

According to §15.247(b)(1) For frequency hopping systems operating in the 2400-2483.5MHz band employing at least 75 hopping channels and all frequency hopping systems in the 5725MHz-5850MHz band: 1 Watt (30dBm). For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts (20.97dBm). The limitation has to be reduced by the amount in dB that the gains of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

8.3 Block Diagram of Test Configuration

8.4 Measurement Instrument setting

Power Meter Parameter	Setting
Filter No.	Auto
Measurement time	0.135 s ~ 26 s
Used Peak Sensor	NRV-Z32 (model 04)

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 37 of 70

8.5 Configuration of Measurement

8.5.1 Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 8.5.2 Position the EUT as shown in section 8.3 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 8.5.3 Set RBW of spectrum analyzer to 100 KHz and VBW to 1 MHz.
- 8.5.4 Measure the highest amplitude appearing on spectral display and record the level to calculate result data.
- 8.5.5 Repeat above procedures until all frequencies measured were complete.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 38 of 70

MAXIMUM OUTPUT POWER MEASUREMENT

Ambient temperature : 26°C Relative humidity : 59%

(Test Mode: HEADSET)

Channel	Frequency (MHz)	Output Peak Power (dBm)	Max. Limit (dBm)
CH1	2402	4.49	30
CH40	2441	4.18	30
CH79	2480	4.06	30

Note: 1. The expanded uncertainty of the output power tests is 2dB.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 39 of 70

8.6 Measurement waveform

Date: 7.NOV.2006 16:09:07

CH1

Date: 7.NOV.2006 16:12:03

Date: 7.NOV.2006 16:14:55

CH79

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 41 of 70

9 100 kHz BANDWIDTH OF BAND EDGES MEASUREMENT

9.1 Instrument

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Spectrum Analyzer	Rohde & Schwarz	FSP30	100002	2005/11/07

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

9.2 Standard Applicable

According to §15.247(d), if any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in § 15.209(a), whichever results in the lesser attenuation.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

9.3 Block Diagram of Test Configuration

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 42 of 70

9.4 Measuring Instrument Setting

Spectrum Parameter	Setting
Attenuation	20dB
Span Frequency	5 MHz
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100 KHz /100 KHz for Peak

9.5 Configuration of Measurement

- 9.5.1 Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 9.5.2 Position the EUT as shown in section 9.3 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 9.5.3 Set both RBW and VBW of spectrum analyzer to 30 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 9.5.4 Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 9.5.5 Repeat above procedures until all measured frequencies were complete.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 43 of 70

100 kHz BANDWIDTH OF BAND EDGES MEASUREMENT

Ambient temperature : 26°C Relative humidity : 59%

	FREQUENCY	Reading	Cable Loss	Adjusted	Limit	Dogult
	(MHz)	(mV)	(mV)	(mV)	(mV)	Result
CH1	2402.000	331.962	20.41	352.372	N/A	N/A
F BE	2401.840	2.382	17.50	19.882	24.465	PASS

FL 2.480650GHz < 2483.5GHz

Date: 9.NOV.2006 14:40:16

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 44 of 70

	FREQUENCY	Reading	Cable Loss	Adjusted	Limit	Dogult
	(MHz)	(mV)	(dBuV)	(dBuV)	(mV)	Result
CH79	2480.000	322.438	19.249	341.687	N/A	N/A
F BE	2480.250	4.443	18.891	23.334	27.261	PASS

FL 2.480650GHz < 2483.5GHz

Date: 9.NOV.2006 14:42:29

CH79

Note: 1. The expanded uncertainty of the 100 kHz bandwidth of band edges tests is 2dB

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 45 of 70

10 HOPPING CHANNEL SEPARATION

10.1 Instrument

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Spectrum Analyzer	Rohde & Schwarz	FSP30	100002	2005/11/07

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

10.2 Standard Applicable

According to §15.247(a)(1), frequency hopping system shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

10.3 Block Diagram of Test Configuration

10.4 Measuring Instrument Setting

Spectrum Parameter	Setting
Attenuation	20dB
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 1MHz (Channel Separation)
VB	30 KHz (20dB Bandwidth) / 1MHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	15ms

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 46 of 70

10.5 Configuration of Measurement

10.5.1 Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 10.5.2 Position the EUT as shown in section 10.3 without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 10.5.3 By using the MaxHold function record the separation of two adjacent channels.
- 10.5.4 Measure the frequency difference of these two adjacent channels by SA MARK function.
- 10.5.5 And then plot the result on SA screen.
- 10.5.6 Repeat above procedures until all frequencies measured were complete.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 47 of 70

HOPPING CHANNEL SEPARATION

Ambient temperature : 26°C Relative humidity : 59%

Channel	Frequency (MHz)	Adjacent Hopping Channel Separation (kHz)	Max. Limit (kHz)
CH1-CH2	2402-2402.992	1002	>25
CH39-40	2440-2441	1002	>25
CH79-80	2479-2480	996	>25

Note: 1. The expanded uncertainty of the hopping channel separation tests is 2dB

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 48 of 70

10.6 Measurement waveform

Date: 4.NOV.2006 16:33:07

CH1-CH2

Date: 4.NOV.2006 16:35:15

Report No.: 6A071907FR FCC ID: UJC9010101

Date: 4.NOV.2006 16:41:23

CH78-CH79

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 50 of 70

11 NUMBER OF HOPPING FREQUENCY USED

11.1 Instrument

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Spectrum Analyzer	Rohde & Schwarz	FSP30	100002	2005/11/07

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

11.2 Standard Applicable and limit

According to §15.247(b)(1) (iii), for frequency hopping system operating in the 2400-2483.5 MHz bands shall use at least 75 non-overlapping hopping channels.

11.3 Block Diagram of Test Configuration

11.4 Measuring Instrument Setting

Spectrum Parameters	Setting
Attenuation	20dB
Span Frequency	> Operating Frequency Range
RB	100 KHz
VB	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	15ms

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 51 of 70

11.5 Configuration of Measurement

11.5.1 Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.

- 11.5.2 Position the EUT as shown in section 11.3 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 11.5.3 Set the SA on Max Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 11.5.4 Set the SA on View mode and then plot the result on SA screen.
- 11.5.5 Repeat above procedures until all frequencies measured were complete.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 52 of 70

MEASUREMENT DATA

Ambient temperature : 26°C Relative humidity : 59%

Modulation Type:

Channel	Frequency (MHz)	Hopping Channel (Channels)
CH1-CH79	2.402-2.480	79

Note: 1. The expanded uncertainty of umber of hopping frequency used tests is 2dB.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 53 of 70

11.6 Measurement waveform

Date: 9.NOV.2006 11:22:59

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 54 of 70

12 DWELL TIME ON EACH CHANNEL

12.1 Instrument

Instrument	Manufacturer	Model	Serial No.	Last Calibration
Spectrum Analyzer	Rohde & Schwarz	FSP30	100002	2005/11/07

Note: All instrument upon which need to be calibrated are within calibration period of 1 year.

12.2 Standard Applicable and limit

According to §15.247(a)(1)(iii), for frequency hopping system operating in the 2400-2483.5 MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any frequency shall not be greater than 0.4 second within a period of 0.4 seconds multiplied by the number of hopping channels employed

12.3 Block Diagram of Test Configuration

12.4 Measuring Instrument Setting

Spectrum Parameter	Setting		
Attenuation	40dB		
Span Frequency	0 MHz		
RB	1000 kHz		
VB	1000 kHz		
Detector	Peak		
Trace	View		

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 55 of 70

12.5 Configuration of Measurement

12.5.1 Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 12.5.2 Position the EUT as shown in figure 4 without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 12.5.3 Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 12.5.4 Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 12.5.5 Repeat above procedures until all frequencies measured were complete.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 56 of 70

DWELL TIME ON EACH CHANNEL MEASUREMENT DATA

Ambient temperature : 26°C Relative humidity : 59%

The period is 0.4(Sec) * 79(channels) = 31.6 sec

Dwell Time =Time slot length * Hop rate / 79channel * 31.6

DATA PACKET	Frequency (MHz)	Time slot length (ms)	Hop rate	Dwell time (s)	Limit (s)	Test Result
DH1	2402	0.50	667	0.13	<0.4	Complies
DH3	2402	0.54	285	0.06	<0.4	Complies
DH5	2402	3.21	160	0.20	<0.4	Complies
DH1	2441	0.52	667	0.13	<0.4	Complies
DH3	2441	0.55	285	0.06	<0.4	Complies
DH5	2441	3.09	160	0.23	<0.4	Complies
DH1	2480	0.53	667	0.14	<0.4	Complies
DH3	2480	0.49	285	0.05	<0.4	Complies
DH5	2480	3.04	160	0.19	<0.4	Complies

Note: 1. The expanded uncertainty of dwell time on each channel tests is 2dB.

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 57 of 70

12.6 Measurement waveform

Date: 4.NOV.2006 17:03:01

CH1 DH1

Date: 4.NOV.2006 17:04:40

CH1 DH3

Date: 4.NOV.2006 17:10:07

CH1 DH5

Date: 4.NOV.2006 17:15:09

CH40 DH1

Date: 4.NOV.2006 17:13:38

CH40 DH3

Date: 4.NOV.2006 17:11:57

CH40 DH5

Date: 4.NOV.2006 17:18:50

CH79 DH1

Date: 4.NOV.2006 17:24:06

CH79 DH3

Report No.: 6A071907FR FCC ID: UJC9010101

Date: 4.NOV.2006 17:25:40

CH79 DH5

Report No.: 6A071907FR
FCC ID: UJC9010101 Page 63 of 70

13 HOPPING SEQUENCE TEST

79 hopping sequence in data mode:

CH= (2402+N)-2402; N=0-78