FCC PART 95 MEASUREMENT AND TEST REPORT FOR

XINLEI (H.K) ELECTRONICS CO.

Yijian Industry Zone, Linyuan East Rd, Shangmeilin, Shenzhen, P.R.China

FCC ID: UV4F-700

Report Concerns:	Equipment Type:	
Original Report	Watch Walkie Talkie	
Model:	<u>F-700</u>	
Report No.:	STR06128052I	
Test/Witness Engineer:	Innaz Lee	
Test Date:	2006-12-29	
Prepared By:		
Shenzhen SEM.Te	est Compliance Service Co., Ltd	
Room 609-610, Ba	otong Building, Baomin 1 st Road, Baoan	
District, Shenzhen,	Guangdong, P.R.C. (518133)	
Approved & Authorized By:	Jundyso	
	Jandy So / PSQ Manager	

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by SEM.Test Compliance Service Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 TEST STANDARDS	3
1.3 RELATED SUBMITTAL(S)/GRANT(S)	
1.4 TEST METHODOLOGY	
1.6 EUT Exercise Software	
1.7 ACCESSORIES EQUIPMENT LIST AND DETAILS	
1.8 EUT CABLE LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	5
3. §2.1046, §95.135 AND §95.639(D) - RF OUTPUT POWER	6
3.1 STANDARD APPLICABLE	6
3.2 TEST EQUIPMENT LIST AND DETAIL	
3.3 TEST PROCEDURE	
3.4 TEST RESULT/PLOTS	
4. §2.1047, AND §95.637(A)-MODULATION CHARACTERISTICS	9
4.1 Standard Applicable	
4.2 Test Equipment List and Details	
4.3 Test Procedure	
4.5 TEST RESULTS/PLOTS	
5. §2.1049 AND § 95.633(A)(C) - OCCUPIED BANDWIDTH OF EMISSION	
5.1 STANDARD APPLICABLE	
5.2 TEST EQUIPMENT LIST AND DETAILS.	
5.3 TEST PROCEDURE	
5.4 Test Results/Masks	13
6. 2.1053 AND §95.635- RADIATED SPURIOUS EMISSION	15
6.1 Measurement Uncertainty	
6.2 STANDARD APPLICABLE	
6.3 TEST EQUIPMENT LIST AND DETAILS	
6.4 TEST PROCEDURE	
6.6 SUMMARY OF TEST RESULTS/PLOTS	
7. §2.1055, §95.621 AND §95.627(B)- FREQUENCY STABILITY	
7.1 STANDARD APPLICABLE	
7.2 TEST EQUIPMENT LIST AND DETAILS	
7.3 Test Procedure	
7.4 Test Results/Plots	18
8. §1.1307(B) (1) RF EXPOSURE EVALUATION	20
8.1 Standard Applicable	
8.2 Measurement Result:	20
EXHIBIT 1- PRODUCT LABELING	21
PROPOSED FCC ID LABEL FORMAT	
PROPOSED LABEL LOCATION ON EUT	21
EXHIBIT 2 - EUT EXTERNAL PHOTOGRAPHS	22
EXHIBIT 3 - EUT INTERNAL PHOTOGRAPHS	24
EXHIBIT 4 - TEST SETUP PHOTOGRAPHS	26

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: XINLEI (H.K) ELECTRONICS CO.

Address of applicant: Yijian Industry Zone, Linyuan East Rd, Shangmeilin,

Shenzhen, P.R.China

Manufacturer: XINLEI (H.K) ELECTRONICS CO.

Address of manufacturer: Yijian Industry Zone, Linyuan East Rd, Shangmeilin,

Shenzhen, P.R.China

General Description of E.U.T

Items	Description
EUT Description:	Watch Walkie Talkie
Trade Name:	FREETALKER
Model No.:	F-700
Rated Voltage:	DC 3.6V Battery
Output Power:	< 0.5W
Frequency Range:	462.5500-462.7250 MHz
	462.5625-467.7125 MHz
Mode:	FRS/GMRS
Channel Spacing:	25kHz
Size:	7.0X5.0X2.0 cm
Antenna Length: 4.5 cm	
For more information refer to the circuit diagram form	n and the user's manual.

The test data gathered are from a production sample, provided by the manufacturer.

1.2 Test Standards

The following report of is prepared on behalf of XINLEI (H.K) ELECTRONICS CO. in accordance with Part 2, Subpart J, and Part 95 of the Federal Communication Commissions rules.

The objective is to determine compliance with the Part 2, Subpart J, and Part 95 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Related Submittal(s)/Grant(s)

No Related Submittal(s).

1.4 Test Methodology

Measurements contained in this report were also conducted with Part 95 Subpart B and Subpart E of the Federal Communication Commissions rules and ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted with FRS and GMRS mode. For more detail refere to the Operating Instructions.

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

United States of American Federal Communications Commission (FCC), and the registration number is 274801.

Industry Canada (IC), and the registration number is IC4174.

All measurement required was performed at laboratory of Shenzhen Academy of Metrology and Quality Inspection, Bldg. of Metrology & Quality Inspection, Longzhu Road, Nanshan District, Shenzhen, Guangdong, China.

1.6 EUT Exercise Software

The EUT exercise program used during the testing was designed to exercise the system components.

1.7 Accessories Equipment List and Details

Manufacturer	Description	Model	Serial Number	
MEILI	Audio Generator	MFG-3005	200612187	

1.8 EUT Cable List and Details

Cable Description	Length (M)	Shielded/Unshielded	With Cord/Without Cord
DC Power Cable	1.5	Unshielded	Without Cord
Earphone Cable	1.2	Unshielded	Without Cord

2. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT	
§2.1046			
§95.135	RF Output Power	Compliant	
§95.639(d)			
§2.1047	Modulation Characteristic	Compliant	
§95.637(a)	Modulation Characteristic	Compliant	
§2.1049	Occupied Dendwidth	Compliant	
§95.633(a)(c)	Occupied Bandwidth	Compliant	
§2.1053	Spurious Radiated Emissions	Compliant	
§95.635(b) (7)	Spurious Radiated Emissions	Compliant	
§2.1055			
§95.627(b)	Frequency stability	Compliant	
§95.621			
§1.1307(b) (1)	RF Exposure Evaluation	Compliant	

3. §2.1046, §95.135 and §95.639(d) - RF OUTPUT POWER

3.1 Standard Applicable

According to FCC §2.1046, and §95.639(d), No FRS Unit, under any condition of modulation, shall exceed a 0.500 w effective radiated power (ERP).

According to FCC §95.135, A small base station must transmit with no more than 5 watts effective radiated power (ERP).

3.2 Test Equipment List and Detail

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date	
Rohde & Schwarz	EMI Test	ESI26	830245/009	2006-1-26	2007-1-25	
	Receiver					
ETS	Multi_Device	2090	57230	2006-1-26	2007-1-25	
EIS	Controller	2090	37230	2000-1-20		
Antenna	Schwarzbeck	VUBA9117	115	2006-1-24	2009-1-25	
2 1 1	Albatross	OVCVC		2006 1 24	2000 1 25	
3m chamber	Projects	9X6X6		2006-1-24	2008-1-25	
Rohde & Schwarz	Horn Antenna	HF906	100014	2006-1-26	2007-1-25	
G: 1.C	Rohde &	CMD20	100047	2006 1 24	2007 1 25	
Signal Generator	Schwarz	SMR20	100047	2006-1-24	2007-1-25	
Dipole Antenna	Schwarzbeck	H00009170	9136	2006-1-24	2007-1-25	

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

3.3 Test Procedure

- 1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the ERP were measured by the substitution.
- 4. Absolute level = substituted level + Antenna gain Cable Loss

3.4 Test Result/Plots

Frequency	SG Reading	Height	Table	Polar	Cable loss	Antenna Gain	Corrected Ampl.	FCC Part 95
MHz	dBm	Meter	Degree	H/V	dB	dB	dBm	mW
			Low Ch	nannel (F	RS CH01)		
462.5625	18.42	1.2	112	Ι	2.3	0	16.12	40.92
462.5625	21.59	1.5	115	>	2.3	0	19.29	84.92
			Middle C	Channel	(FRS CH1	4)		
467.7125	17.90	1.3	145	Η	2.3	0	15.60	36.31
467.7125	21.28	1.2	146	>	2.3	0	18.98	40.74
	High Channel (GMRS CH19)							
462.6500	18.40	1.0	145	Н	2.3	0	16.10	40.74
462.6500	23.05	1.2	145	V	2.3	0	19.75	94.41

Conducted Output Power hereby is for reference

Low Channel (FRS CH01):

Middle Channel (FRS CH14):

High Channel (GMRS CH19):

4. §2.1047, and §95.637(a)-MODULATION CHARACTERISTICS

4.1 Standard Applicable

According to FCC §2.1047 & §95.637

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.
- (c) A FRS Unit that transmits emission type F3E must not exceed peak frequency deviation of plus or minus 2.5 kHz.
- (d) A GMRS transmitter that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 5 kHz.

4.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Modulation Analyzer	Rohde & Schwarz	FAM 54	334.2015.54	2006-06-30	2007-06-29
Attenuator	Atten	DC-4GHz	ATS100-4-20	2006-06-30	2007-06-29
Audio Generator	MEILI	MFG-3005	200612187	2006-06-30	2007-06-29

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

4.3 Test Procedure

Test is carried out under the procedure of TIA/EIA-603-C

4.4 Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1005mbar

4.5 Test Results/Plots

For FRS Mode

Audi o	100Hz	300Hz	1kHz	3kHz	5kHz
Input(mV)	Deviation(kHz)	Deviation(kHz)	Deviation(kHz)	Deviation(kHz)	Deviation(kHz)
0	0. 21	0.37	0. 51	0.63	0.76
1	0.55	0.85	1.06	1. 17	1. 33
2	0.86	1.09	1. 23	1. 38	1.51
3	1.10	1.31	1. 45	1.6	1.68
4	1. 17	1.43	1.58	1. 75	1. 78
6	1. 26	1.47	1. 61	1.78	1.85
8	1.40	1.55	1. 71	1.88	1. 99
10	1.45	1.62	1.77	1. 91	2.02
12	1.44	1.68	1.84	1. 98	2.03
14	1.47	1. 68	1.88	2.00	2.09
16	1.53	1. 71	1.88	2.03	2. 10
18	1.57	1.74	1.88	2.03	2. 13
20	1.67	1. 79	1. 92	2.03	2. 13
22	1.67	1.85	1. 99	2.05	2. 15
24	1.69	1.85	2.00	2. 10	2. 19
26	1. 75	1. 92	2.02	2. 10	2. 20
28	1.77	1.94	2.02	2.09	2. 20
30	1.78	1.94	2.02	2.09	2. 20
32	1.78	1. 95	2.05	2.09	2. 22
34	1.82	1. 98	2.03	2. 10	2. 23
36	1.84	1. 95	2.03	2. 13	2. 22

For GMRS Mode

Audi o	100Hz	300Hz	1kHz	3kHz	5kHz
				Deviation(kHz)	Deviation(kHz)
0	0.20	0.38	0.53	0.66	0.89
1	0.79	0.95	1. 24	1.58	1. 95
2	1. 27	1.41	1.69	1.89	2. 29
3	1.50	1.63	1. 92	2. 20	2. 51
4	1.55	1. 676	1. 98	2. 26	2.63
6	1.69	1.81	2.06	2. 34	2.77
8	1.72	1.86	2.09	2. 37	2.77
10	1.78	1.88	2. 18	2.43	2.74
12	1.72	1.88	2. 23	2.53	2.8
14	1. 78	1.89	2.30	2.49	2.82
16	1.78	1. 95	2. 32	2.60	2.82
18	1.86	2.00	2. 29	2.56	2.82
20	1.84	2.00	2. 29	2.60	2.85
22	1.84	2.06	2. 32	2.63	2.94
24	1.89	2.06	2.40	2.74	2.97
26	1.89	2.12	2.40	2.77	3.02
28	1.92	2.12	2. 43	2.82	3.08
30	1. 98	2.18	2.49	2.85	3. 11
32	2.06	2.32	2.60	2. 91	3. 11
34	2.09	2.43	2.66	2.88	3. 11
36	2. 23	2.60	2.77	2. 91	3. 16

5. §2.1049 and § 95.633(a)(c) - OCCUPIED BANDWIDTH OF EMISSION

5.1 Standard Applicable

According to FCC §2.1049 and FCC §95.633(a) (c), the authorized bandwidth for emission type F3E or F2D transmitted by an FRS Unit is 12.5 kHz and the authorized bandwidth for emission type F1D, G1D, F3E or G3E transmitted by an GMRS Unit is 20 kHz.

5.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2006-06-30	2007-06-29
Atten	Attenuator	DC-4GHz	ATS100-4-20	2006-06-30	2007-06-29
Audio Generator	MEILI	MFG-3005	200612187	2006-06-30	2007-06-29

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

5.3 Test Procedure

- 1. The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.
- 2. The signal is modulated with 2.5kHz audio signal as necessary levels.
- 3. The resolution bandwidth of the spectrum analyzer was set at 300 Hz and video bandwidth was set to 1kHz. Then the mask plots was reported.

5.4 Test Results/Masks

The occupied Bandwidth Emission of all fall in the Mask, full fit the requirements of the standards.

Low Channel (FRS CH01):

Middle Channel (FRS CH14):

High Channel (GMRS CH19):

6. 2.1053 and §95.635- RADIATED SPURIOUS EMISSION

6.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is ± 0.5 dB.

6.2 Standard Applicable

According to FCC §2.1053, measurements shall be made to detect spurious emission that may be radiated directly from the cabinet, control circuits, power leads, or intermediated circuit elements under normal condition of installation and operation. Information submitted shall include the relative radiated power of spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from a halfwave dipole antenna.

According to FCC §95.635, the necessary attenuation requirements need to meet as the following:

Spurious attenuation limit in $dB = 43+10 \text{ Log}_{10}$ (power out in Watts)

6.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Rohde & Schwarz	EMI Test	ESI26	830245/009	2006-1-26	2007-1-25
Ronde & Schwarz	Receiver	ES120	830243/009		
ETS	Multi_Device	2090	57230	2006-1-26	2007-1-25
EIS	Controller	2090			
Antenna	Schwarzbeck	VUBA9117	115	2006-1-24	2009-1-25
3m chamber	Albatross	9X6X6		2006-1-24	2008-1-25
Sili chambei	Projects				
Rohde & Schwarz	Horn Antenna	HF906	100014	2006-1-26	2007-1-25
Signal Canapator	Rohde &	SMR20	100047	2006-1-24	2007 1 25
Signal Generator	Schwarz	SWIK20	100047	2000-1-24	2007-1-25
Dipole Antenna	Schwarzbeck	H00009170	9136	2006-1-24	2007-1-25

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

6.4 Test Procedure

The setup of EUT is according with per TIA/EIA Standard 603 and ANSI C63.4-2003 measurement procedure.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

6.5 Environmental Conditions

Temperature:	20° C
Relative Humidity:	53%
ATM Pressure:	1019 mbar

6.6 Summary of Test Results/Plots

According to the data below, the FCC Part 95 standards, and had the worst margin of:

-24.10 dB at 925.28 MHz in the Vertical of Low channel (FRS) polarization, 30 MHz to 5 GHz, 3Meters.

Frequency	SG Reading	Height	Polar	Cable loss	Antenna Gain	Corrected Ampl.	FCC Part 95	FCC Part 95 Margin
MHz	dBm	Meter	H/V	dB	dB	dBm	dBm	dB
	Low Channel (FRS CH01)							
925.13	-33.9	1.6	V	3.2	0	-37.1	-13	-24.1
925.13	-34.2	1.6	Н	3.2	0	-37.4	-13	-24.4
1387.69	-43.4	1.6	V	3.6	7.6	-39.4	-13	-26.4
1387.69	-45.4	1.6	Н	3.6	7.6	-41.4	-13	-28.4
1850.25	-46.7	1.4	V	3.6	8.8	-41.5	-13	-28.5
1850.25	-47.4	1.4	Н	3.6	8.8	-42.2	-13	-29.2
Middle Channel (FRS CH14)								
935.43	-36.3	1.4	V	3.2	0	-39.5	-13	-26.5
1403.14	-44.3	1.6	V	3.6	7.6	-40.3	-13	-27.3
1870.85	-46.8	1.5	V	3.6	8.8	-41.6	-13	-28.6
1403.14	-45.7	1.4	Н	3.6	7.6	-41.7	-13	-28.7
1870.85	-47.5	1.5	Н	3.6	8.8	-42.3	-13	-29.3
935.43	-41.5	1.6	Н	3.2	0	-44.7	-13	-31.7
High Channel (GMRS CH19)								
925.30	-35.4	1.5	V	3.2	0	-38.6	-13	-25.6
1387.95	-46.1	1.5	V	3.6	7.6	-42.1	-13	-29.1
1850.60	-48.0	1.4	V	3.6	8.8	-42.8	-13	-29.8
925.30	-39.6	1.6	Н	3.2	0	-42.8	-13	-29.8
1387.95	-48.0	1.6	Н	3.6	7.6	-44.0	-13	-31.0
1850.60	-49.3	1.4	Н	3.6	8.8	-44.1	-13	-31.1

Note: Testing is carried out with frequency rang 30MHz to the tenth harmonics. Emissions undetected below the base noise are not reported.

7. §2.1055, §95.621 and §95.627(b)- FREQUENCY STABILITY

7.1 Standard Applicable

According to FCC §2.1055(a)(1), the frequency stability shall be measure with variation of ambient temperature from –30°C to +50°C, and according to FCC 2.1055(d)(2), the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point which is specified by the manufacturer.

According to FCC §95.627(b), Each FRS Unit must be maintained within a frequency tolerance of 0.00025%.

According to FCC §95.621, Each GMRS transmitter for mobile station, small base station and control station operation must be maintained within a frequency tolerance of 0.0005%.

7.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	Due. Date
Agilent	Spectrum Analyzer	E4402B	US41192821	2006-06-30	2007-06-29
Atten	Attenuator	DC-4GHz	ATS100-4-20	2006-06-30	2007-06-29
GONGWEN	Moisture Test Chamber	GDS-150	SEMT-0013	2006-06-30	2007-06-29

Statement of Traceability: All calibrations have been performed per the NVLAP requirements traceable to the NIST.

7.3 Test Procedure

- 1. Setup the configuration of the ambient temperature form -30°C to 50°C with sufficient time. And measure the different power of the EUT with an artificial power from highest to end point voltage.
- 2. Active the Analyzer frequency counter option, center frequency to the right frequency needs to be measured.

7.4 Test Results/Plots

For FRS and GMRS Mode

Test Conditions		PPM Error				
		Low CH01 FRS	Middle CH14 FRS	High CH19 GMRS		
		(462.5625MHz)	(467.7125MHz)	(462.6500MHz)		
T _{nom} (22°C)	V _{nom} (3.60V)	1.31	1.32	1.42		
T (2000)	V _{min} (3.06V)	1.33	1.33	1.44		
T _{min} (-30°C)	V _{max} (4.14V)	1.42	1.39	1.52		
T _{max} (+50°)	V _{min} (3.06V)	1.44	1.42	1.53		
	V _{max} (4.14V)	1.45	1.44	1.56		
Max. frequency error (ppm)		1.45	1.44	1.56		
Limit		2.5ppm 5.0ppm				
End Point		DC 2.96V				

8. §1.1307(b) (1) RF EXPOSURE EVALUATION

8.1 Standard Applicable

According to § 1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline. Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation.

According to FCC Exclusion list, In the following table, fGHz is mid-band frequency in GHz, and d is the distance to a person'sbody, excluding hands, wrists, feet, and ankles.

Exposure category	low threshold	high threshold
general population	$(60/f_{GHz}) \text{ mW}, d \le 2.5 \text{ cm}$ $(120/f_{GHz}) \text{ mW}, d \ge 2.5 \text{ cm}$	$(900/f_{GHz})$ mW, $d < 20$ cm
occupational	$(375/f_{GHz})$ mW, $d < 2.5$ cm $(900/f_{GHz})$ mW, $d \ge 2.5$ cm	$(2250/f_{GHz})$ mW, $d < 20$ cm

8.2 Measurement Result:

This is a portable device and the Max output power is 94.41mW<259.39mW=(60/0.46265GHz)mW*2

The SAR measurement is not necessary.

EXHIBIT 1- PRODUCT LABELING

Proposed FCC ID Label Format

FCC ID: UV4F-700

Specifications: Labels are printed in indelible ink on permanent adhesive silk-screened onto the EUT or shall be affixed at a conspicuous location on the EUT.

Proposed Label Location on EUT

FCC ID Label Location

EXHIBIT 2 - EUT EXTERNAL PHOTOGRAPHS

EUT View 1

EUT View 2

EUT View 3

EXHIBIT 3 - EUT INTERNAL PHOTOGRAPHS

EUT Housing and Board View 1

EUT Housing and Board View 2

Solder Board-Component View 1

Solder Board-Component View 2

EXHIBIT 4 - TEST SETUP PHOTOGRAPHS

Radiated Spurious Emission Setup (Below 1GHz)

Radiated Spurious Emission Setup (Above 1GHz)

Frequency Stability Test Setup

