REFERENCE

STEPS:

1. The program will determine the length and clear length of the inputted data in the slab border.

SLAB BOR	DER
TOP	LENGTH CLEAR LENGTH
воттом	LENGTH CLEAR LENGTH
LEFT	LENGTH CLEAR LENGTH
RIGHT	LENGTH CLEAR LENGTH

$$L_{H} = \frac{L_{Top} + L_{Bottom}}{2} \text{ and } L_{V} = \frac{L_{Left} + L_{Right}}{2}$$

$$L_{CH} = \frac{L_{Clear(Top)} + L_{Clear(Bottom)}}{2} \text{ and } L_{CV} = \frac{L_{Clear(Left)} + L_{Clear(Right)}}{2}$$

Example:

S-1(C)

SLAB BOR	DER	
TOP	LENGTH 4500	CLEAR LENGTH 4100
воттом	LENGTH 4500	CLEAR LENGTH 4100
LEFT	LENGTH 3675	CLEAR LENGTH 3350
RIGHT	LENGTH 3675	CLEAR LENGTH 3350

$$\begin{split} L_{H} &= \frac{L_{Top} + L_{Bottom}}{2} = \frac{4500 + 4500}{2} = 4500 \\ L_{V} &= \frac{L_{Left} + L_{Right}}{2} = \frac{3675 + 3675}{2} = 3675 \\ L_{CH} &= \frac{L_{Clear(Top)} + L_{Clear(Bottom)}}{2} = \frac{4100 + 4100}{2} = 4100 \\ L_{CV} &= \frac{L_{Clear(Left)} + L_{Clear(Right)}}{2} = \frac{3350 + 3350}{2} = 3350 \end{split}$$

• S-2(B)

SLAB BOR	DER	
TOP	LENGTH 4500	CLEAR LENGTH 4100
воттом	LENGTH 4500	CLEAR LENGTH 4100
LEFT	LENGTH 2300	CLEAR LENGTH 1900
RIGHT	LENGTH 2300	CLEAR LENGTH 1900

$$\begin{split} L_{H} &= \frac{L_{Top} + L_{Bottom}}{2} = \frac{4500 + 4500}{2} = 4500 \\ L_{V} &= \frac{L_{Left} + L_{Right}}{2} = \frac{2300 + 2300}{2} = 2300 \\ L_{CH} &= \frac{L_{Clear(Top)} + L_{Clear(Bottom)}}{2} = \frac{4100 + 4100}{2} = 4100 \\ L_{CV} &= \frac{L_{Clear(Left)} + L_{Clear(Right)}}{2} = \frac{1900 + 1900}{2} = 1900 \end{split}$$

• S-3

SLAB BOR	DER			
TOP	LENGTH	1575	CLEAR LENGTH	1250
воттом	LENGTH [1575	CLEAR LENGTH	1250
LEFT	LENGTH [3800	CLEAR LENGTH	3475
RIGHT	LENGTH [3800	CLEAR LENGTH	3475

$$L_{H} = \frac{L_{Top} + L_{Bottom}}{2} = \frac{1575 + 1575}{2} = 1575$$

$$L_{V} = \frac{L_{Left} + L_{Right}}{2} = \frac{3800 + 3800}{2} = 3800$$

$$L_{CH} = \frac{L_{Clear(Top)} + L_{Clear(Bottom)}}{2} = \frac{1250 + 1250}{2} = 1250$$

$$L_{CV} = \frac{L_{Clear(Left)} + L_{Clear(Right)}}{2} = \frac{3475 + 3475}{2} = 3475$$

2. The program will determine the quantity of the continuous steel reinforcements

SLAB	SCHEDU	JLE														+-
CLAD				ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
SLAB	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
IVIANK		(Dia.)														
																2-WAY •
																₹

Case 1:

$$x = 1: 2 - WAY$$

$$x = 0: 1 - WAY$$

If $L_V \geq L_H$

• If $v \leq 0$

$$Qty_{V(Cont.)A} = \frac{L_{CH}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{MidSpan(Top)}} + 1$$

$$Qty_{H(Cont.)A} = \frac{L_{CV}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1$$

• If v > 0

$$Qty_{V(Cont.)A} = (1 - xv) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{Midspan(Top)}} + 1$$

$$Qty_{H(Cont.)A} = (1 - v) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{Midspan(Top)}} + 1$$

If $L_V < L_H$

• If $v \leq 0$

$$Qty_{V(Cont.)A} = \frac{L_{CH}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{MidSpan(Top)}} + 1$$

$$Qty_{H(Cont.)A} = \frac{L_{CV}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1$$

• If v > 0

$$Qty_{V(Cont.)A} = (1 - v) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{Midspan(Top)}} + 1$$

$$Qty_{H(Cont.)A} = (1 - xv) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$
$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1$$

Case 2:

SLAB DETAIL

If $L_V \ge L_H$

$$Qty_{V(Cont.)A} = \frac{L_{CH}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{MidSpan(Top)}} + 1$$

$$Qty_{H(Cont.)A} = \frac{L_{CV}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1$$

If $L_V < L_H$

$$Qty_{V(Cont.)A} = \frac{L_{CH}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{MidSpan(Top)}} + 1$$

$$Qty_{H(Cont.)A} = \frac{L_{CV}}{Qty_{Int.Supp(Bott.)}} + 1$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1$$

Example:

S-1(C):
$$L_V = 3675 < L_H = 4500$$

$$v = 2/3$$

SLAB	SCHEDU	JLE														+		
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	T DIRE	CTION	REB	AR SP	ACING	ALONG	LONG	DIREC	CTION			1
MARK	THICKNESS	SIZE	EXT.	SUPP.	MIDS	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REM/	RK	
IVIANN		(Dia.)	TOP	ROTT	TOP	BOTT	TOP	BOTT	Miss V	TOP	POTT	TOP	ROTT	TOP	BOTT.			
S-1		12				250			12				190			2-WAY	/ + ≜	
S-2		12				200			12				150			2-WA	7	
S-3		10				250			12				250			1-WAY	7 7	
																	_	1

$$x = 1: 2 - WAY$$

$$Qty_{V(Cont.)A} = (1 - v) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 - \frac{2}{3} \right) \left[\frac{4100}{190} + 1 \right] = 7.53 \rightarrow \mathbf{8}$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{MidSpan(Top)}} + 1 = \frac{4100}{0} + 1 = Error = \mathbf{0}$$

$$Qty_{H(Cont.)A} = (1 - xv) \frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 = \left(1 - 1 \cdot \frac{2}{3}\right) \left[\frac{3350}{250} + 1\right] = 4.8 \rightarrow 5$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1 = \frac{3350}{0} + 1 = Error = \mathbf{0}$$

S-2(B):
$$L_V = 2300 < L_H = 4500$$

$$v = 2/3$$

SLAB	SCHEDU	JLE														+-	
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	T DIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION		1
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK	١
WINK		(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.		
S-1		12				250			12				190			2-WAY	
S-2		12				200			12				150			2-WAY	t
S-3		10				250			12				250			I-WAY 7	Ť
																	4

$$x = 1: 2 - WAY$$

$$Qty_{V(Cont.)A} = (1 - v) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 - \frac{2}{3} \right) \left[\frac{4100}{150} + 1 \right] = 9.44 \rightarrow \mathbf{10}$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{MidSpan(Top)}} + 1 = \frac{4100}{0} + 1 = Error = \mathbf{0}$$

$$Qty_{H(Cont.)A} = (1 - xv) \frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 = \left(1 - 1 \cdot \frac{2}{3}\right) \left[\frac{1900}{200} + 1\right] = 3.5 \to \mathbf{4}$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1 = \frac{1900}{0} + 1 = Error = \mathbf{0}$$

S-3:
$$L_V = 3800 > L_H = 1575$$

$$v = 2/3$$

SLAB		REB/	AR SP/	ACING A	ALONG	SHOR	T DIRE	CTION	REB	AR SP	ACING	ALONG	LONG	DIRE	CTION				
MARK	THICKNESS	SIZE	EXT.	KT. SUPP. MIDSPAN INT. SUPP. SIZE EXT. SUPP. MIDSPAN INT. SI													REMARK		
IVIANN		(Dia.)	TOP	BOTT.	TOP	вотт.	TOP		(Dia.)		BOTT.		вотт.	TOP	вотт.				
S-1		12				250			12				190			2-WAY	H		
S-2		12				200			12				150			2-WAY	Ħ		
S-3		10				250			12				250			1-WAY	1-1		

$$x = 0: 1 - WAY$$

$$Qty_{V(Cont.)A} = (1 - xv) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 - 0 \cdot \frac{2}{3} \right) \left[\frac{1250}{250} + 1 \right] = \mathbf{6}$$

$$Qty_{V(Cont.)B} = \frac{L_{CH}}{Qty_{MidSpan(Top)}} + 1 = \frac{1250}{0} + 1 = Error = \mathbf{0}$$

$$Qty_{H(Cont.)A} = (1 - v) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 - \frac{2}{3} \right) \left[\frac{3475}{250} + 1 \right] = 4.97 \to 5$$

$$Qty_{H(Cont.)B} = \frac{L_{CV}}{Qty_{MidSpan(Top)}} + 1 = \frac{3475}{0} + 1 = Error = \mathbf{0}$$

3. The program will determine the extra bottom reinforcements

SLAB	SCHEDU	JLE														#=	
CLAD		REB	BAR SPACING ALONG SHORT DIRECTION REBAR SPACING ALONG LONG DIRECTION														
SLAB	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK	
IVIARK		(Dia.)	TOP	вотт.	TOP	вотт.	TOP	вотт.		TOP	вотт.	TOP	вотт.	TOP	BOTT.		
																2-WAY •	
																₹	

Case 1:

If $L_V \ge L_H$

• If $v \leq 0$

$$Qty_{V(Extra)} = \frac{L_{CH}}{Qty_{Midspan(Bott.)}} - Qty_{V(Cont.)A} + 1$$

$$Qty_{H(Extra)} = \frac{L_{CV}}{Qty_{Midspan(Bott.)}} - Qty_{H(Cont.)A} + 1$$

• If v > 0

$$Qty_{V(Extra)} = (xv) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Extra)} = (v) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

If $L_V < L_H$

• If $v \leq 0$

$$\begin{split} Qty_{V(Extra)} &= \frac{L_{CH}}{Qty_{Midspan(Bott.)}} - Qty_{V(Cont.)A} + 1 \\ Qty_{H(Extra)} &= \frac{L_{CV}}{Qty_{Midspan(Bott.)}} - Qty_{V(Cont.)A} + 1 \end{split}$$

• If v > 0

$$Qty_{V(Extra)} = (v) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Extra)} = (xv) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

Case 2:

If $L_V \ge L_C$

$$Qty_{V(Extra)} = \frac{L_{CH}}{Qty_{Midspan(Bott.)}} - Qty_{V(Cont.)A} + 1$$

$$Qty_{H(Extra)} = \frac{L_{CV}}{Qty_{Midspan(Bott.)}} - Qty_{H(Cont.)A} + 1$$

If $L_V < L_H$

$$\begin{split} Qty_{V(Extra)} &= \frac{L_{CH}}{Qty_{Midspan(Bott.)}} - Qty_{V(Cont.)A} + 1 \\ Qty_{H(Extra)} &= \frac{L_{CV}}{Qty_{Midspan(Bott.)}} - Qty_{H(Cont.)A} + 1 \end{split}$$

Example:

S-1(C):
$$L_V = 3675 < L_H = 4500$$

La		L _b	
L _a [1/4		Continuous 2/3

$$v = 2/3$$

SLAB	SCHEDU	JLE														+	
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	T DIRE	CTION	REB	AR SP	ACING	ALONG	LONG	DIRE	CTION		
MARK	THICKNESS	SIZE	EXT.	SUPP.	MIDS	SPAN	INT.	SUPP.	SIZE		SUPP.		SPAN		SUPP.	REMAR	₹K
IVIDARIA		(Dia.)	TOP	ROTT	TOP	BOTT	TOP	BOTT	Mean	TOP	BOTT	TOP	ROTT	TOP	BOTT.		
S-1		12				250			12				190			2-WAY	ı≜
S-2		12				200			12				130			2-WAY	7
S-3		10				250			12				250			1-WAY	7
																	\dashv

$$x = 1: 2 - WAY$$

$$Qty_{V(Extra)} = (v) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(\frac{2}{3} \right) \left[\frac{4100}{190} + 1 \right] = 15.05 \rightarrow 16$$

$$Qty_{H(Extra)} = (xv) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 \cdot \frac{2}{3} \right) \left[\frac{3350}{250} + 1 \right] = 9.6 \rightarrow \textbf{10}$$

S-2(B):
$$L_V = 2300 < L_H = 4500$$

$$v = 2/3$$

SLA	AB SCHEDU	JLE														+	
SLA		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING	ALONG	LONG	DIRE	CTION		
MAF	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMAR	K
IVIO	N.	(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	BOTT.		
S-1		12				250			12				190			2-WAY	- ▲
S-2		12				200			12				150			2-WAY	7
S-3		10				250			12				250			I-WAY	7
	•																7

$$x = 1: 2 - WAY$$

$$Qty_{V(Extra)} = (v) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(\frac{2}{3} \right) \left[\frac{4100}{150} + 1 \right] = 18.89 \rightarrow \mathbf{19}$$

$$Qty_{H(Extra)} = (xv) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 \cdot \frac{2}{3} \right) \left[\frac{1900}{200} + 1 \right] = 7$$

S-3
$$L_V = 3800 > L_H = 1575$$

$$v = 2/3$$

CLAD		REB.	AR SP/	ACING A	ALONG	SHOR	T DIRE	CTION	REB	AR SP	ACING	ALONG	LONG	DIRE	CTION	
SLAB MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMAR
IVIANN		(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1		12				250			12				190			2-WAY
S-2		12				200			12				150			2-WAY
S-3		10				250			12				250			1-WAY

$$x = 0: 1 - WAY$$

$$Qty_{V(Extra)} = (xv) \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(0 \cdot \frac{2}{3} \right) \left[\frac{1250}{250} + 1 \right] = \mathbf{0}$$

$$Qty_{H(Extra)} = (v) \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(\frac{2}{3} \right) \left[\frac{3475}{250} + 1 \right] = 9.93 \rightarrow \mathbf{10}$$

4. The program will determine the cut bars.

SLAB	SCHEDU	JLE														+-
CLAD		REB/	AR SPA	ACING A	ALONG	SHOR	T DIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
SLAB MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
IVIANN			TOP	BOTT.		вотт.	TOP	вотт.		TOP	BOTT.		вотт.	TOP	BOTT.	
																2-WAY •
																T T

SLAB POSITION	
SLAB POSITION	•

Case 1: SLAB POSITION UPPER/BOTTOM EDGE ▼

• Case A:

$$x = 0: 1 - WAY$$

If
$$L_V < L_H$$
a) $v \le 0$

$$Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{V(Cont.)B} + 1$$

$$Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{V(Cont.)B} + 1$$

$$Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{H(Cont.)B} + 1$$

$$Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{H(Cont.)B} + 1$$

If
$$L_V \ge L_H$$

a) $v \le 0$

$$Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{V(Cont.)B} + 1$$

$$Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{V(Cont.)B} + 1$$

$$Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{H(Cont.)B} + 1$$

$$Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{H(Cont.)B} + 1$$

If
$$L_V < L_H$$

b) $v > 0$
 $Qty_{V(Cut)A} = 0$
 $Qty_{V(Cut)B} = v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$
 $Qty_{H(Cut)A} = xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$
 $Qty_{H(Cut)B} = xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$

If
$$L_V \ge L_H$$

b) $v > 0$
 $Qty_{V(Cut)A} = 0$
 $Qty_{V(Cut)B} = xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$
 $Qty_{H(Cut)A} = v \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$
 $Qty_{H(Cut)B} = v \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$

Case B:

$$\begin{split} \text{If } L_V < L_H \\ Qty_{V(Cut)A} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{V(Cont.)B} + 1 \\ Qty_{V(Cut)B} &= \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{V(Cont.)B} + 1 \\ Qty_{H(Cut)A} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{H(Cont.)B} + 1 \\ Qty_{H(Cut)B} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{H(Cont.)B} + 1 \end{split}$$

• Case A:

$$x = 0: 1 - WAY$$

$$\begin{split} &\text{If } L_{CV} < L_{H} \\ &\text{a)} \quad v \leq 0 \\ &\quad Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ &\quad Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ &\quad Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ &\quad Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \end{split}$$

If
$$L_{CV} \ge L_H$$
a) $v \le 0$

$$Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

$$Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

$$Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

$$Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

If
$$L_V < L_H$$
 b) $v > 0$
$$Qty_{V(Cut)A} = v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{V(Cut)B} = v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Cut)A} = 0$$

$$Qty_{H(Cut)B} = xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

If
$$L_V \ge L_H$$

b) $v > 0$

$$Qty_{V(Cut)A} = xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{V(Cut)B} = xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Cut)A} = 0$$

$$Qty_{H(Cut)B} = v \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

• Case B:

$$\begin{aligned} &\text{If } L_{V} < L_{H} \\ &Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ &Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ &Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ &Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \end{aligned}$$

$$\begin{split} \text{If } L_V &\geq L_H \\ Qty_{V(Cut)A} &= \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{V(Cut)B} &= \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{H(Cut)A} &= \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{H(Cut)B} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \end{split}$$

Case 3: SLAB POSITION CORNER ▼

• Case A:

If
$$L_V < L_H$$
a) $v \le 0$

$$Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

$$Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

$$Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

$$Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

If
$$L_V \ge L_H$$
a) $v \le 0$

$$Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

$$Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

$$Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

$$Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

$$\begin{array}{l} \text{If } L_{V} < L_{H} \\ \text{b)} \quad v > 0 \\ \quad Qty_{V(Cut)A} = 0 \\ \quad Qty_{V(Cut)B} = v \left[\frac{L_{CH}}{Qty_{\textit{Midspan}(Bott.)}} + 1 \right] \\ \quad Qty_{H(Cut)A} = 0 \\ \quad Qty_{H(Cut)B} = xv \left[\frac{L_{CV}}{Qty_{\textit{Midspan}(Bott.)}} + 1 \right] \end{array}$$

If
$$L_V \ge L_H$$

b) $v > 0$
 $Qty_{V(Cut)A} = 0$
 $Qty_{V(Cut)B} = xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$
 $Qty_{H(Cut)A} = 0$
 $Qty_{H(Cut)B} = v \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$

• Case B:

$$\begin{split} \text{If } L_V < L_H \\ Qty_{V(Cut)A} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{V(Cut)B} &= \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{H(Cut)A} &= \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{H(Cut)B} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \end{split}$$

Case 4: SLAB POSITION INTERIOR ▼

• Case A:

$$\begin{split} \text{If } L_V &< L_H \\ \text{a)} \quad v \leq 0 \\ Qty_{V(Cut)A} &= \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{V(Cut)B} &= \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{H(Cut)A} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{H(Cut)B} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \end{split}$$

If
$$L_V \ge L_H$$
a) $v \le 0$

$$Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

$$Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1$$

$$Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

$$Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1$$

If
$$L_{V} < L_{H}$$
b) $v > 0$

$$Qty_{V(Cut)A} = v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{V(Cut)B} = v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Cut)A} = xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Cut)B} = xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

If
$$L_V \ge L_H$$
b) $v > 0$

$$Qty_{V(Cut)A} = xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{V(Cut)B} = xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Cut)A} = v \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

$$Qty_{H(Cut)B} = v \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right]$$

• Case B:

$$\begin{split} &\text{If } L_{V} < L_{H} \\ &Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ &Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ &Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ &Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \end{split}$$

Case 5: SLAB POSITION ISOLATED

• Case A:

$$\begin{split} \text{If } L_V < L_H \\ \text{c)} \quad v &\leq 0 \\ Qty_{V(Cut)A} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{V(Cut)B} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{H(Cut)A} &= \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{H(Cut)B} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \end{split}$$

$$\begin{split} &\text{If } L_V \geq L_H \\ &\text{c)} \quad v \leq 0 \\ &\quad Qty_{V(Cut)A} = \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ &\quad Qty_{V(Cut)B} = \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ &\quad Qty_{H(Cut)A} = \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ &\quad Qty_{H(Cut)B} = \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \end{split}$$

If
$$L_V < L_H$$

d) $v > 0$
 $Qty_{V(Cut)A} = 0$
 $Qty_{V(Cut)B} = 0$
 $Qty_{H(Cut)A} = 0$
 $Qty_{H(Cut)B} = 0$

If
$$L_V \ge L_H$$

d) $v > 0$
 $Qty_{V(Cut)A} = 0$
 $Qty_{V(Cut)B} = 0$
 $Qty_{H(Cut)A} = 0$
 $Qty_{H(Cut)B} = 0$

SLAB DETAIL

$$\begin{split} \text{If } L_V < L_H \\ Qty_{V(Cut)A} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{V(Cut)B} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{H(Cut)A} &= \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{H(Cut)B} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \end{split}$$

$$\begin{split} \text{If } L_V & \geq L_H \\ Qty_{V(Cut)A} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{V(Cut)B} &= \frac{L_{CH}}{Qty_{Exterior(Bott.)}} - Qty_{Short(Cont.)B} + 1 \\ Qty_{H(Cut)A} &= \frac{L_{CV}}{Qty_{Exterior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \\ Qty_{H(Cut)B} &= \frac{L_{CV}}{Qty_{Interior(Bott.)}} - Qty_{Long(Cont.)B} + 1 \end{split}$$

Example

S-1(C):
$$L_V = 3675 < L_H = 4500$$

$$v = 2/3$$

SLAB	SCHEDU	JLE														+-	
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING	ALON	LONG	DIRE	CTION		П
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE		SUPP.		SPAN		SUPP.	REMARK	
IVIONA		(Dia.)	TOP	ROTT	TOP	BOTT	TOP	BOTT	Miss V	TOP	BOTT	TOP	ROTT	TOP	BOTT.		
S-1		12				250			12				190			2-WAY	▲
S-2		12				200			12				130			2-WAY	
S-3		10				250			12				250			1-WAY	
																	Н

$$x = 1: 2 - WAY$$

$$\begin{split} Qty_{V(Cut)A} &= v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \frac{2}{3} \left[\frac{4100}{190} + 1 \right] = 15.05 \rightarrow \mathbf{16} \\ Qty_{V(Cut)B} &= v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \frac{2}{3} \left[\frac{4100}{190} + 1 \right] = 15.05 \rightarrow \mathbf{16} \\ Qty_{H(Cut)A} &= xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 \cdot \frac{2}{3} \right) \left[\frac{3350}{250} + 1 \right] = 9.6 \rightarrow \mathbf{10} \\ Qty_{H(Cut)B} &= xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 \cdot \frac{2}{3} \right) \left[\frac{3350}{250} + 1 \right] = 9.6 \rightarrow \mathbf{10} \end{split}$$

S-2(B):
$$L_V = 2300 < L_H = 4500$$

v = 2/3

SLAB	SCHEDU	JLE														+	
SLAB		REB/	AR SPA	ACING A	LONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIREC	CTION		П
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMAR	K
IVIANK		(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.		
S-1		12				250			12				190			2-WAY	▲
S-2		12				200			12				150			2-WAY	·
S-3		10				250			12				250			1-WAY	,
																	Н

$$\begin{split} Qty_{V(Cut)A} &= 0 = \mathbf{0} \\ Qty_{V(Cut)B} &= v \left[\frac{L_{CH}}{Qty_{Midspan(Bott.)}} + 1 \right] = \frac{2}{3} \left[\frac{4100}{150} + 1 \right] = 18.89 \rightarrow \mathbf{19} \\ Qty_{H(Cut)A} &= xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 \cdot \frac{2}{3} \right) \left[\frac{1900}{200} + 1 \right] = \mathbf{7} \\ Qty_{H(Cut)B} &= xv \left[\frac{L_{CV}}{Qty_{Midspan(Bott.)}} + 1 \right] = \left(1 \cdot \frac{2}{3} \right) \left[\frac{1900}{200} + 1 \right] = \mathbf{7} \end{split}$$

S-3
$$L_V = 3800 > L_H = 1575$$

SLAB		REB/	AR SP/	ACING A	LONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MIDS	SPAN	INT.	SUPP.	REMARK
IVIANN		(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1		12				250			12				190			2-WAY
S-2		12				200			12				150			2-WAY
S-3		10				250			12				250			1-WAY

$$x = 0: 1 - WAY$$

$$\begin{split} Qty_{V(Cut)A} &= xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott)}} + 1 \right] = \left(0 \cdot \frac{2}{3} \right) \left[\frac{1250}{250} + 1 \right] = \mathbf{0} \\ Qty_{V(Cut)B} &= xv \left[\frac{L_{CH}}{Qty_{Midspan(Bott)}} + 1 \right] = \left(0 \cdot \frac{2}{3} \right) \left[\frac{1250}{250} + 1 \right] = \mathbf{0} \\ Qty_{H(Cut)A} &= 0 = \mathbf{0} \\ Qty_{H(Cut)B} &= v \left[\frac{L_{CV}}{Qty_{Midspan(Bott)}} + 1 \right] = \frac{2}{3} \left[\frac{3475}{250} + 1 \right] = 9.93 \rightarrow \mathbf{10} \end{split}$$

5. The program will determine the Splice Length of continuous bars

If
$$L_V \geq L_H$$

If $L_V < L_H$

$$S_{LV(Bottom)} = S_{Long(Bottom)}$$
 $S_{LV(Top)} = S_{Long(Top)}$
 $S_{LH(Bottom)} = S_{Trans(Bottom)}$
 $S_{LH(Top)} = S_{Trans(Top)}$
 $S_{LV(Bottom)} = S_{Trans(Bottom)}$
 $S_{LV(Top)} = S_{Trans(Top)}$
 $S_{LH(Bottom)} = S_{Long(Bottom)}$
 $S_{LH(Top)} = S_{Long(Top)}$

Where:

 $S_X = Splice \ Length \ based \ on \ the \ corresponding \ "Bar \ Size".$

Example

Check the Concrete Strength (f'c)

Concrete Grade: CLASS $AA : f'c = 4000 \ psi = 27.6$

S-1(C): $L_V = 3675 < L_H = 4500$

SLAE	SCHEDU	JLE														H =
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
WICH		(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	BOTT.	(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	BOTT.	
S-1	100	12				250			12				190			2-WAY
S-2	100	12				200			12				150			2-WAY
S-3	100	10				250			12				250			1-WAY •
																$\overline{}$
																₩

$$S_{LV(Bottom)} = S_{Trans(Bottom)} = \mathbf{300}$$

 $S_{LV(Top)} = S_{Trans(Top)} = \mathbf{0}$
 $S_{LH(Bottom)} = S_{Long(Bottom)} = \mathbf{300}$
 $S_{LH(Top)} = S_{Long(Top)} = \mathbf{0}$

S-2(B): $L_V = 2300 < L_H = 4500$

	LONGITUDINAL	TRANSVERSE
TOP	MECHANICAL ▼	MECHANICAL ▼
воттом	LAPPED SPLICE ▼	LAPPED SPLICE ▼

SLAB	SCHEDU	JLE														#=	3]
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	T DIRE	CTION	REB	AR SP	ACING.	ALONG	3 LONG	DIRE	CTION		٦
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK	
IVIANK		(Dia.)	TOP	вотт.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.		
S-1	100	12				250			12				190			2-WAY	₽
S-2	100	12				200			12				150			2-WAY	Ì
S-3	100	10				250			12				250			1-WAY	T
																	4
																	•

$$\begin{split} S_{LV(Bottom)} &= S_{Trans(Bottom)} = \textbf{300} \\ S_{LV(Top)} &= S_{Trans(Top)} = \textbf{0} \\ S_{LH(Bottom)} &= S_{Long(Bottom)} = \textbf{300} \\ S_{LH(Top)} &= S_{Long(Top)} = \textbf{0} \end{split}$$

S-3 $L_V = 3800 > L_H = 1575$

SLAB	SCHEDU	JLE														+-
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	3 LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
IVIANK		(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1	100	12				250			12				190			2-WAY •
S-2	100	12				200			12				150			2-WAY •
S-3	100	10				250			12				250			1-WAY

$$S_{LV(Bottom)} = S_{Long(Bottom)} = \mathbf{300}$$

 $S_{LV(Top)} = S_{Long(Top)} = \mathbf{0}$
 $S_{LH(Bottom)} = S_{Trans(Bottom)} = \mathbf{300}$
 $S_{LH(Top)} = S_{Trans(Top)} = \mathbf{0}$

6. The program will determine the length of continuous rebars

Case 1: SLAB POSITION UPPER/BOTTOM EDGE ▼

$$\begin{split} L_{V(Cont)A} &= H_{LV} + 2L_V + 0.5S_{LV(Bottom)} - L_{CV} - CC_{BeamW} \\ L_{V(Cont)B} &= H_{LV} + 2L_V + 0.5S_{LV(Top)} - L_{CV} - CC_{BeamW} \\ L_{H(Cont)A} &= 2L_H + S_{LH(Bottom)} - L_{CH} \\ L_{H(Cont)B} &= 2L_H + S_{LH(Top)} - L_{CH} \end{split}$$

Case 2: SLAB POSITION LEFT/RIGHT EDGE ▼

$$\begin{split} L_{V(Cont)A} &= 2L_V + S_{LV(Bottom)} - L_{CV} \\ L_{V(Cont)B} &= 2L_V + S_{LV(Top)} - L_{CV} \\ L_{H(Cont)A} &= H_{LH} + 2L_H + 0.5S_{LH(Bottom)} - L_{CH} - CC_{BeamW} \\ L_{H(Cont)B} &= H_{LH} + 2L_H + 0.5S_{LH(Top)} - L_{CH} - CC_{BeamW} \end{split}$$

Case 3: SLAB POSITION CORNER

$$\begin{split} L_{V(Cont)A} &= H_{LV} + 2L_V + 0.5S_{LV(Bottom)} - L_{CV} - CC_{BeamW} \\ L_{V(Cont)B} &= H_{LV} + 2L_V + 0.5S_{LV(Top)} - L_{CV} - CC_{BeamW} \\ L_{H(Cont)A} &= H_{LH} + 2L_H + 0.5S_{LH(Bottom)} - L_{CH} - CC_{BeamW} \\ L_{H(Cont)B} &= H_{LH} + 2L_H + 0.5S_{LH(Top)} - L_{CH} - CC_{BeamW} \end{split}$$

Case 4: SLAB POSITION

$$\begin{split} L_{V(Cont)A} &= 2L_V + S_{LV(Bottom)} - L_{CH} \\ L_{V(Cont)B} &= 2L_H + S_{LV(Top)} - L_{CH} \\ L_{H(Cont)A} &= 2L_H + S_{LH(Bottom)} - L_{CH} \\ L_{H(Cont)B} &= 2L_H + S_{LH(Top)} - L_{CH} \end{split}$$

Case 5: SLAB POSITION ISOLATED

$$\begin{split} L_{V(Cont)A} &= 2H_{LV} + 2L_{V} - L_{CV} - 2CC_{BeamW} \\ L_{V(Cont)B} &= 2H_{LV} + 2L_{V} - L_{CV} - 2CC_{BeamW} \\ L_{H(Cont)A} &= 2H_{LH} + 2L_{H} - L_{CH} - 2CC_{BeamW} \\ L_{H(Cont)B} &= 2H_{LH} + 2L_{H} - L_{CH} - 2CC_{BeamW} \end{split}$$

Example:

INTERIOR

Г	— CONCRETE COVER ————		1
	FOOTINGS	75	
⇍	SUSPENDED SLAB	20	
	SLAB ON GRADE	40	
	BEAMS EXPOSED ON EARTH	40	
⇍	BEAMS EXPOSED ON WEATHER	40	\triangleright
	COLUMNS EXPOSED ON EARTH	75	
	COLUMNS EXPOSED ON WEATHER	40	

$$L_{V(Cont)A} = 2L_V + S_{LV(Bottom)} - L_{CH} = 2(3675) + 300 - 3350 = 4300 \ mm \rightarrow 4.3 \ m$$

$$L_{V(Cont)B} = 2L_H + S_{LV(Top)} - L_{CH} = 2(3675) + 0 - 3350 = 4000 \ mm \rightarrow 4.0 \ m$$

$$L_{H(Cont)A} = 2L_H + S_{LH(Bottom)} - L_{CH} = 2(4500) + 300 - 4100 = 5200 \ mm \rightarrow 5.2 \ m$$

$$L_{H(Cont)B} = 2L_H + S_{LH(Top)} - L_{CH} = 2(4500) + 0 - 4100 = 4900 \ mm \rightarrow \textbf{4.9 m}$$

S-2(B): SLAB POSITION UPPER/BOTTOMED ▼

$$L_V = 2300 < L_H = 4500$$

SLAB		REB/	AR SPA	ACING A	LONG	SHOR	T DIRE	CTION	REB	AR SP	ACING /	ALONG	LONG	DIREC	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMAR
VIANK		(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	BOTT.	(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	BOTT.	
S-1	100	12				250			12				190			2-WAY
S-2	100	12				200			12				150			2-WAY
S-3	100	10				250			12				250			1-WAY

$$H_{LV} = 200$$

$$L_{V(Cont)A} = H_{LV} + 2L_V + 0.5S_{LV(Bottom)} - L_{CV} - CC_{BeamW} = 200 + 2(2300) + 0.5(300) - 1900 - 4000 + 10000 + 1000 + 1000 + 10000 + 10000 + 1000 + 10000 + 10000 + 10000 +$$

$$L_{V(Cont)A} = 3010 \ mm \rightarrow 3.01 \ m$$

$$L_{V(Cont)B} = H_{LV} + 2L_V + 0.5S_{LV(Top)} - L_{CV} - CC_{BeamW} = 200 + 2(2300) + 0.5(0) - 1900 - 40 = 2860 \ mm \rightarrow \textbf{2.86 m}$$

$$L_{H(Cont)A} = 2L_H + S_{LH(Bottom)} - L_{CH} = 2(4500) + 300 - 4100 = 5200 \ mm \rightarrow 5.2 \ m$$

$$L_{H(Cont)B} = 2L_H + S_{LH(Top)} - L_{CH} = 2(4500) + 0 - 4100 = 4900 \ mm \rightarrow 4.9 \ m$$

S-3: SLAB POSITION LEFT/RIGHT ED ▼

$$L_V = 3800 > L_H = 1575$$

SLAB	SCHEDU	JLE														+ =
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
WANK		(Dia.)	TOP	вотт.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1	100	12				250			12				190			2-WAY •
S-2	100	12				200			12				150			2-WAY +
S-3	100	10				250			12				250			1-WAY •
																₩

$$H_{LH}=200$$

$$L_{V(Cont)A} = 2L_V + S_{LV(Bottom)} - L_{CV} = 2(3800) + 300 - 3475 = 4425 \ mm \rightarrow 4.425 \ m$$

$$L_{V(Cont)B} = 2L_V + S_{LV(Top)} - L_{CV} = 2(3800) + 0 - 3475 = 4125 \text{ } mm \rightarrow 4.125 \text{ } m$$

$$L_{H(Cont)A} = H_{LH} + 2L_{H} + 0.5S_{LH(Bottom)} - L_{CH} - CC_{BeamW} = 200 + 2(1575) + 0.5(300) - 1250 - 40$$

 $L_{H(Cont)A} = 2210 \ mm \rightarrow \mathbf{2.21} \ \mathbf{m}$

$$L_{H(Cont)B} = H_{LH} + 2L_H + 0.5S_{LH(Top)} - L_{CH} - CC_{BeamW} = 200 + 2(1575) + 0.5(0) - 1250 - 40$$

 $L_{H(Cont)B} = 2060 \ mm \rightarrow 2.06 \ m$

7. The program will determine the length of extra rebars

Case 1: SLAB POSITION UPPER/BOTTOM EDGE ▼

$$L_{V(Extra)} = H_{LV} + 1.5L_V + (2T - 4CC_{Slab})(\sqrt{2} - 1) - 0.5L_{CV} - CC_{BeamW}$$
$$L_{H(Extra)} = L_H + (2T - 4CC_{Slab})(\sqrt{2} - 1)$$

Case 2: SLAB POSITION LEFT/RIGHT EDGE ▼

$$\begin{split} L_{V(Extra)} &= L_V + (2T - 4CC_{Slab}) \left(\sqrt{2} - 1 \right) \\ L_{H(Extra)} &= H_{LH} + 1.5L_H + (2T - 4CC_{Slab}) \left(\sqrt{2} - 1 \right) - 0.5L_{CH} - CC_{BeamW} \end{split}$$

$$L_{V(Extra)} = H_{LV} + 1.5L_V + (2T - 4CC_{Slab})(\sqrt{2} - 1) - 0.5L_{CV} - CC_{BeamW}$$

$$L_{H(Extra)} = H_{LH} + 1.5L_H + (2T - 4CC_{Slab})(\sqrt{2} - 1) - 0.5L_{CH} - CC_{BeamW}$$

Case 4: SLAB POSITION INTERIOR

$$L_{V(Extra)} = L_V + (2T - 4CC_{Slab})(\sqrt{2} - 1)$$

$$L_{H(Extra)} = L_H + (2T - 4CC_{Slab}) \left(\sqrt{2} - 1\right)$$

Case 5: SLAB POSITION ISOLATED ▼

$$L_{V(Extra)} = 2H_{LV} + 2L_V + (2T - 4CC_{Slab})(\sqrt{2} - 1) - L_{CV} - 2CC_{BeamW}$$

$$L_{H(Extra)} = 2H_{LH} + 2L_H + (2T - 4CC_{Slab})(\sqrt{2} - 1) - L_{CH} - 2CC_{BeamW}$$

SLAB DETAIL

$$L_{V(Extra)} = L_{CV}(1 - L_a - L_b)$$

$$L_{H(Extra)} = L_{CH}(1 - L_a - L_b)$$

Example:

	— CONCRETE COVER —		ı
	FOOTINGS	75	
<	SUSPENDED SLAB	20	•
	SLAB ON GRADE	40	
	BEAMS EXPOSED ON EARTH	40	
<	BEAMS EXPOSED ON WEATHER	40	\triangleright
	COLUMNS EXPOSED ON EARTH	75	
	COLUMNS EXPOSED ON WEATHER	40	

$$CC_{Slab} = 20$$

$$CC_{BeamW} = 40$$

S-1(C): SLAB POSITION INTERIOR
$$\blacksquare$$
 & $L_V = 3675 < L_H = 4500$

SLAB	SCHEDU	JLE														+-
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
IVIAIN		(Dia.)	TOP	вотт.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1 (100	12				250			12				190			2-WAY ►
S-2	100	12				200			12				150			2-WAY
S-3	100	10				250			12				250			1-WAY
																▼

SLAB	SCHEDU	JLE														+-
SLAB		REB	AR SPA	ACING A	LONG	SHOR	T DIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
WANK		(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	вотт.	
S-1	100	12				250			12				190			2-WAY
S-2	100	12				200			12				150			2-WAY
S-3	100	10				250			12				250			1-WAY
																$\overline{}$
																ļ,

$$H_{LV}=200$$

$$L_{V(Extra)} = H_{LV} + 1.5L_V + (2T - 4CC_{Slab})(\sqrt{2} - 1) - 0.5L_{CV} - CC_{BeamW}$$

$$= 200 + 1.5(2300) + [2(100) - 4(20)](\sqrt{2} - 1) - 0.5(1900) - 40$$

 $L_{V(Extra)} = 2709.706 \ mm \rightarrow 2.71 \ m$

$$L_{H(Extra)} = L_H + (2T - 4CC_{Slab})(\sqrt{2} - 1)$$
$$= 4500 + [2(100) - 4(20)](\sqrt{2} - 1)$$

 $L_{H(Extra)} = 4549.706~mm \rightarrow \textbf{4.55}~\textbf{m}$

S-3: SLAB POSITION LEFT/RIGHT ED
$$\blacktriangledown$$
 & $L_V=3800>L_H=1575$

SLAB	SCHEDU	JLE														#=
SLAB		REB	AR SPA	CING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS SIZE EXT. SUPP. MIDSPAN INT. SUPP. SIZE EXT. SUPP. MIDSPAN INT. SUPP	SUPP.	REMARK													
IVIANK		(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	BOTT.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1	100	12				250			12				190			2-WAY ■
S-2	100	12				200			12				150			2-WAY
S-3	100	0				250			12				250			1-WAY
																₹

$$H_{LH}=200$$

$$L_{V(Extra)} = L_V + (2T - 4CC_{Slab})(\sqrt{2} - 1)$$

$$L_{V(Extra)} = 3800 + [2(100) - 4(20)](\sqrt{2} - 1) =$$

 $L_{V(Extra)} = 3849.706 \ mm \rightarrow 3.85 \ m$

$$L_{H(Extra)} = H_{LH} + 1.5L_H + (2T - 4CC_{Slab})(\sqrt{2} - 1) - 0.5L_{CH} - CC_{BeamW}$$

$$L_{H(Extra)} = 200 + 1.5(1575) + [2(100) - 4(20)](\sqrt{2} - 1) - 0.5(1250) - 40$$

 $L_{H(Extra)} = 1947.206 \ mm \rightarrow 1.9472 \ m$

8. The program will determine the length of cut bars

$$Z_1 = L_a$$

$$Z_2 = L_b$$

SLAB DETAIL

$$Z_1 = L_c$$

$$Z_2 = L_d$$

Case 1: SLAB POSITION UPPER/BOTTOM EDGE ▼

$$L_{V(Cut)A} = H_{LV} + L_{CV}(Z_1 - 1) + L_V - CC_{BeamW}$$

$$L_{V(Cut)B} = L_{CV}(Z_2 - 0.5) + 0.5L_V$$

$$L_{H(Cut)A} = L_{CH}(Z_1 - 0.5) + 0.5L_H$$

$$L_{H(Cut)A} = L_{CH}(Z_1 - 0.5) + 0.5L_H$$

$$L_{H(Cut)B} = L_{CH}(Z_2 - 0.5) + 0.5L_H$$

Case 2: SLAB POSITION LEFT/RIGHT EDGE ▼

$$L_{V(Cut)A} = L_{CV}(Z_1 - 0.5) + 0.5L_V$$

$$L_{V(Cut)B} = L_{CV}(Z_2 - 0.5) + 0.5L_V$$

$$L_{H(Cut)A} = H_{LH} + L_{CH}(Z_1 - 1) + L_H - CC_{BeamW}$$

$$L_{H(Cut)B} = L_{CH}(Z_2 - 0.5) + 0.5L_H$$

Case 3: SLAB POSITION CORNER

$$L_{V(Cut)A} = H_{LV} + L_{CV}(Z_1 - 1) + L_V - CC_{BeamW}$$

$$L_{V(Cut)B} = L_{CV}(Z_2 - 0.5) + 0.5L_V$$

$$L_{H(Cut)A} = H_{LH} + L_{CH}(Z_1 - 1) + L_H - CC_{BeamW}$$

$$L_{H(Cut)B} = L_{CH}(Z_2 - 0.5) + 0.5L_H$$

Case 4: SLAB POSITION INTERIOR

$$L_{V(Cut)A} = L_{CV}(Z_1 - 0.5) + 0.5L_V$$

$$L_{V(Cut)B} = L_{CV}(Z_2 - 0.5) + 0.5L_V$$

$$L_{H(Cut)A} = L_{CH}(Z_1 - 0.5) + 0.5L_H$$

$$L_{H(Cut)B} = L_{CH}(Z_2 - 0.5) + 0.5L_H$$

Case 5: SLAB POSITION ISOLATED ▼

$$\begin{split} L_{V(Cut)A} &= H_{LV} + L_{CV}(Z_1 - 1) + L_V - CC_{BeamW} \\ L_{V(Cut)B} &= H_{LV} + L_{CV}(Z_2 - 1) + L_V - CC_{BeamW} \\ L_{H(Cut)A} &= H_{LH} + L_{CH}(Z_1 - 1) + L_H - CC_{BeamW} \\ L_{H(Cut)B} &= H_{LH} + L_{CH}(Z_2 - 1) + L_H - CC_{BeamW} \end{split}$$

Example:

$$CC_{BeamW} = 40$$

S-1(C): SLAB POSITION INTERIOR \blacksquare & $L_V = 3675 < L_H = 4500$

$$Z_1 = L_a = 1/4$$

$$Z_2 = L_b = 1/4$$

$$L_{V(Cut)A} = L_{CV}(Z_1 - 0.5) + 0.5L_V = 3350 \left(\frac{1}{4} - 0.5\right) + 0.5(3675) = 1000 \, mm \to \mathbf{1.00} \, m$$

$$L_{V(Cut)B} = L_{CV}(Z_2 - 0.5) + 0.5L_V = 3350 \left(\frac{1}{4} - 0.5\right) + 0.5(3675) = 1000 \, mm \to \mathbf{1.00} \, m$$

$$L_{H(Cut)A} = L_{CH}(Z_1 - 0.5) + 0.5L_H = 4100\left(\frac{1}{4} - 0.5\right) + 0.5(4500) = 1225 \text{ mm} \rightarrow 1.225 \text{ m}$$

$$L_{H(Cut)B} = L_{CH}(Z_2 - 0.5) + 0.5L_H = 4100\left(\frac{1}{4} - 0.5\right) + 0.5(4500) = 1225 \ mm \rightarrow \textbf{1}.\textbf{225} \ \textbf{m}$$

$$Z_1 = L_a = 1/3$$

$$Z_2 = L_b = 1/3$$

$$L_{V(Cut)A} = H_{LV} + L_{CV}(Z_1 - 1) + L_V - CC_{BeamW} = 200 + 1900 \left(\frac{1}{4} - 1\right) + 2300 - 40 = 1035 \ mm \rightarrow \mathbf{1.035} \ m$$

$$L_{V(Cut)B} = L_{CV}(Z_2 - 0.5) + 0.5L_V = 1900 \left(\frac{1}{4} - 0.5\right) + 0.5(2300) = 675 \ mm \rightarrow \mathbf{0.675} \ m$$

$$L_{H(Cut)A} = L_{CH}(Z_1 - 0.5) + 0.5L_H = 4100 \left(\frac{1}{4} - 0.5\right) + 0.5(4500) = 1225 \ mm \rightarrow \mathbf{1.225} \ m$$

$$L_{H(Cut)B} = L_{CH}(Z_2 - 0.5) + 0.5L_H = 4100 \left(\frac{1}{4} - 0.5\right) + 0.5(4500) = 1225 \ mm \rightarrow \mathbf{1.225} \ m$$

S-3: SLAB POSITION LEFT/RIGHT ED
$$\blacksquare$$
 & $L_V = 3800 > L_H = 1575$

$$Z_1 = L_a = 1/4$$

$$Z_2 = L_b = 1/4$$

$$L_{V(Cut)A} = L_{CV}(Z_1 - 0.5) + 0.5L_V = 3475\left(\frac{1}{4} - 0.5\right) + 0.5(3800) = 1031.25 \ mm \rightarrow \mathbf{1.03125} \ m$$

$$L_{V(Cut)B} = L_{CV}(Z_2 - 0.5) + 0.5L_V = 3475\left(\frac{1}{4} - 0.5\right) + 0.5(3800) = 1031.25 \ mm \rightarrow \mathbf{1.03125} \ m$$

$$L_{H(Cut)A} = H_{LH} + L_{CH}(Z_1 - 1) + L_H - CC_{BeamW} = 200 + 1250\left(\frac{1}{4} - 1\right) + 1575 - 40 = 797.5 \ mm \rightarrow \mathbf{0.7975} \ m$$

$$L_{H(Cut)B} = L_{CH}(Z_2 - 0.5) + 0.5L_H = 1250\left(\frac{1}{4} - 0.5\right) + 0.5(1575) = 475 \ mm \rightarrow \mathbf{0.475} \ m$$

9. The program will determine the appropriate manufactured length and its respected quantity on each computed reinforcement.

Note

$$X = V \text{ or } H$$

- For Continuous Rebars
 - a) If $L_{X(Cont)A} = L_{X(Cont)B}$

$$Qty_{Pn} = \frac{L_M}{L_{X(Cont)A}}$$

 $L_W = [Qty_P - Qty_P (round down into whole number)] \times L_{X(Cont)A}$

$$Qty_{Mn} = m \cdot \frac{Qty_{X(Cont.)A} + Qty_{X(Cont.)B}}{Qty_{Pn}} \cdot Qty_{Slab}$$

 $L_E(m) = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \times L_M$

And

 $Total\ Wastage\ = L_E + L_W[Qty_{Mn}\ (round\ down\ to\ whole\ number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

b) Else,

$$Qty_{Pn} = \frac{L_M}{L_{X(Cont)}}$$

 $L_W = [Qty_P - Qty_P \ (round\ down\ into\ whole\ number)] \times L_{X(Cont)}$

$$Qty_{Mn} = \frac{Qty_{X(Cont.)}}{Qty_{Pn}} \cdot Qty_{Slab}$$

 $L_E(m) = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \times L_M$

And

 $Total\ Wastage = L_E + L_W[Qty_{Mn}\ (round\ down\ to\ whole\ number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

For Extra Rebars

$$Qty_{Pn} = \frac{L_M}{L_{X(Extra)}}$$

 $L_W = [Qty_P - Qty_P \ (round\ down\ into\ whole\ number)] \times L_{X(Cont)}$

$$Qty_{Mn} = \frac{Qty_{X(Extra)}}{Qty_{Pn}} \cdot Qty_{Slab}$$

 $L_E(m) = [Qty_M(round up to whole number) - Qty_M] \times L_M$

And

Total Wastage = $L_E + L_W[Qty_{Mn} (round down to whole number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

- For Cut Rebars
 - a) If $L_{X(Cut)A} = L_{X(Cut)B}$

$$Qty_{Pn} = \frac{L_M}{L_{X(Cut)A}}$$

 $L_W = [Qty_P - Qty_P \ (round\ down\ into\ whole\ number)] \times L_{X(Cont)A}$

$$Qty_{Mn} = m \cdot \frac{Qty_{X(Cut)A} + Qty_{X(Cut)B}}{Qty_{Pn}} \cdot Qty_{Slab}$$

$$L_E(m) = [Qty_M(round\ up\ to\ whole\ number) - Qty_M] \times L_M$$

And

Total Wastage = $L_E + L_W[Qty_{Mn} (round down to whole number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

b) Else,

$$Qty_{Pn} = \frac{L_M}{L_{X(Cut)}}$$

 $L_W = [Qty_P - Qty_P (round down into whole number)] \times L_{X(Cut)}$

$$Qty_{Mn} = \frac{Qty_{X(Cut)}}{Qty_{Pn}} \cdot Qty_{Slab}$$

$$L_E(m) = [Qty_M(round up to whole number) - Qty_M] \times L_M$$

And

 $Total\ Wastage\ = L_E + L_W[Qty_{Mn}\ (round\ down\ to\ whole\ number)]$

Then the program will choose the manufactured bar length with the lowest Total wastage

Example:

COLUMN FOOTING	6.0	7.5	9.0	10.5	12.0	13.5	15.0				
WALL FOOTING	6.0	7.5	9.0	10.5	12.0	13.5	15.0				
COLUMN	6.0	7.5	9.0	10.5	12.0	13.5	15.0				
BEAM/GIRDER 6.0 7.5 9.0 10.5 12.0 13.5 15.0											
WALL	6.0	7.5	9.0	10.5	12.0	13.5	15.0				
SLAB ON GRADE	6.0	7.5	9.0	10.5	12.0	13.5	15.0				
SUSPENDED SLAB	6.0	7.5	9.0	10.5	12.0	13.5	15.0				
STAIRS 6.0 7.5 9.0 10.5 12.0 13.5 15.0											
AVAILABLE NOT-AVAILABLE											

S-1(C)

- $(L_{V(Cont)A} = 4.3 m) \neq (L_{V(Cont)B} = 4.0 m)$
 - i. $L_{V(Cont)A} = 4.3 \text{ m \& } Qty_{V(Cont)A} = 8$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.40	1	80	80	1.70	0	136.000
7.5				1.74	1	80	80	3.20	0	256.000
9	8	4.3	10	2.09	2	40	40	0.40	0.00	16.000
10.5			, 	2.44	2	40	40	1.90	0.00	76.000
12				2.79	2	40	40	3.40	0.00	136.000

$$L_{M(V1)} = 9 \ m \ \& \ Qty_{M(V1)} = 40$$

ii.
$$L_{V(Cont)B} = 4 m \& Qty_{V(Cont)B} = 0$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.50	1	0.00	0	2.00	0	0.000
7.5				1.88	1	0.00	0	3.50	0	0.000
9	0	4	10	2.25	2	0.00	0	1.00	0.00	0.000
10.5				2.63	2	0.00	0	2.50	0.00	0.000
12				3.00	3	0.00	0	0.00	0.00	0.000

$$L_{M(V2)} = 6 m \& Qty_{M(V2)} = 0$$

• $(L_{H(Cont)A} = 5.2 m) \neq (L_{H(Cont)B} = 4.9 m)$

i. $L_{H(Cont)A} = 5.2 m \& Qty_{H(Cont)A} = 5$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.15	1	50.00	50	0.80	0	40.000
7.5			-	1.44	1	50.00	50	2.30	0	115.000
9	5	5.2	10	1.73	1	50.00	50	3.80	0.00	190.000
10.5	5			2.02	2	25.00	25	0.10	0.00	2.500
12			,	2.31	2	25.00	25	1.60	0.00	40.000

$$L_{M(H1)} = 10.5 m \& Qty_{M(H1)} = 25$$

ii. $L_{H(Cont)B} = 4.9 \text{ m \& } Qty_{H(Cont)B} = 0$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.22	1	0.00	0	1.10	0	0.000
7.5				1.53	1	0.00	0	2.60	0	0.000
9	0	4.9	10	1.84	1	0.00	0	4.10	0.00	0.000
10.5				2.14	2	0.00	0	0.70	0.00	0.000
12				2.45	2	0.00	0	2.20	0.00	0.000

$$L_{M(H2)} = 6 m \& Qty_{M(H2)} = 0$$

• $L_{V(Extra)} = 3.725 \, m \, \& \, Qty_{V(Extra)} = 16$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.61	1	160	160	2.28	0	364.000
7.5				2.01	2	80	80	0.05	0	4.000
9	16	3.725	10	2.42	2	80	80	1.55	0.00	124.000
10.5				2.82	2	80	80	3.05	0.00	244.000
12				3.22	3	53.33	54	0.82	8.00	51.725

$$L_{M(V3)} = 7.5 \, m \, \& \, Qty_{M(V3)} = 80$$

 $\bullet \quad L_{H(Extra)} = 4.55 m$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.32	1	100	100	1.45	0	145.000
7.5				1.65	1	100	100	2.95	0	295.000
9	10	4.55	10	1.98	1	100	100	4.45	0.00	445.000
10.5				2.31	2	50	50	1.40	0.00	70.000
12				2.64	2	50	50	2.90	0.00	145.000

$$L_{M(H3)} = 10.5 m \& Qty_{M(H2)} = 50$$

• $(L_{V(Cut)A} = 1.00 m) = (L_{V(Cut)B} = 1.00 m)$

$$Qty = Qty_{V(Cut)A} + Qty_{V(Cut)B} = 16 + 16 = 32$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				6.00	6	53.33	54	0.00	4	4.000
7.5				7.50	7	45.71	46	0.50	2.14	24.643
9	32	1	10	9.00	9	35.56	36	0.00	4.00	4.000
10.5				10.50	10	32.00	32	0.50	0.00	16.000
12				12.00	12	26.67	27	0.00	4.00	4.000

$$L_{M(V4)} = 6 m \& Qty_{M(V4)} = 54$$

• $(L_{H(Cut)A} = 1.225 m) = (L_{H(Cut)B} = 1.225 m)$

$$Qty = Qty_{H(Cut)A} + Qty_{H(Cut)B} = 10 + 10 = 20$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				4.90	4	50.00	50	1.10	0	55.000
7.5				6.12	6	33.33	34	0.15	5	9.950
9	20	1.225	10	7.35	7	28.57	29	0.42	3.86	15.757
10.5				8.57	8	25.00	25	0.70	0.00	17.500
12				9.80	9	22.22	23	0.98	9.33	30.783

$$L_{M(H4)} = 7.5 \ m \ \& \ Qty_{M(V4)} = 34$$

S-2(B)

- $(L_{V(Cont)A} = 3.01 m) \neq (L_{V(Cont)B} = 2.86 m)$
 - i. $L_{V(Cont)A} = 3.01 \, m \, \& \, Qty_{V(Cont)A} = 10$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.99	1	100	100	2.99	0	299.000
7.5				2.49	2	50	50	1.48	0	74.000
9	10	3.01	10	2.99	2	50	50	2.98	0.00	149.000
10.5				3.49	3	33.33	34	1.47	7.00	55.510
12				3.99	3	33.33	34	2.97	8.00	106.010

$$L_{M(V1)} = 10.5 m \& Qty_{M(V1)} = 34$$

ii. $L_{V(Cont)B} = 2.86 m \& Qty_{V(Cont)B} = 0$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				2.10	2	0.00	0	0.28	0	0.000
7.5				2.62	2	0.00	0	1.78	0	0.000
9	0	2.86	10	3.15	3	0.00	0	0.42	0.00	0.000
10.5				3.67	3	0.00	0	1.92	0.00	0.000
12				4.20	4	0.00	0	0.56	0.00	0.000

$$L_{M(V2)} = 6 m \& Qty_{M(V2)} = 0$$

• $(L_{H(Cont)A} = 5.2 m) \neq (L_{H(Cont)B} = 4.9 m)$

i.
$$L_{H(Cont)A} = 5.2 \text{ m \& } Qty_{H(Cont)A} = 4$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.15	1	40.00	40	0.80	0	32.000
7.5				1.44	1	40.00	40	2.30	0	92.000
9	4	5.2	10	1.73	1	40.00	40	3.80	0.00	152.000
10.5				2.02	2	20.00	20	0.10	0.00	2.000
12				2.31	2	20.00	20	1.60	0.00	32.000

$$L_{M(H1)}=10.5\,m\,\&\,Qty_{M(H1)}=20$$

ii.
$$L_{H(Cont)B} = 4.9 m \& Qty_{H(Cont)B} = 0$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.22	1	0.00	0	1.10	0	0.000
7.5				1.53	1	0.00	0	2.60	0	0.000
9	0	4.9	10	1.84	1	0.00	0	4.10	0.00	0.000
10.5				2.14	2	0.00	0	0.70	0.00	0.000
12				2.45	2	0.00	0	2.20	0.00	0.000

$$L_{M(H2)}=6\,m\,\&\,Qty_{M(H2)}=0$$

• $L_{V(Extra)} = 2.73 m \& Qty_{V(Extra)} = 19$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				2.20	2	95.00	95	0.54	0	51.300
7.5				2.75	2	95.00	95	2.04	0	193.800
9	19	2.73	10	3.30	3	63.33	64	0.81	6.00	57.030
10.5				3.85	3	63.33	64	2.31	7.00	152.530
12				4.40	4	47.50	48	1.08	6.00	56.760

$$L_{M(V3)} = 6 m \& Qty_{M(V3)} = 95$$

• $L_{H(Extra)} = 4.55 m \& Qty_{H(Extra)} = 7$

L [M]	Qty	L [B]	Qty (Slab)	Qty [P]		Qty [M]	L [W]	L [E]	Total Waste
6				1.32	1	70.00	70	1.45	0	101.500
7.5				1.65	1	70.00	70	2.95	0	206.500
9	7	4.55	10	1.98	1	70.00	70	4.45	0.00	311.500
10.5				2.31	2	35.00	35	1.40	0.00	49.000
12				2.64	2	35.00	35	2.90	0.00	101.500

$$L_{M(H3)}=10.5\;m\;\&\;Qty_{M(H3)}=35$$

• $(L_{V(Cut)A} = 1.035 m) \neq (L_{V(Cut)B} = 0.675 m)$

i.
$$L_{V(Cut)A} = 1.035 m \& Qty_{V(Cut)A} = 0$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				5.80	5	0.00	0	0.83	0	0.000
7.5				7.25	7	0.00	0	0.26	0	0.000
9	0	1.035	10	8.70	8	0.00	0	0.72	0.00	0.000
10.5				10.14	10	0.00	0	0.15	0.00	0.000
12				11.59	11	0.00	0	0.62	0.00	0.000

$$L_{M(V4)} = 6 \, m \, \& \, Qty_{M(V4)} = 0$$

ii. $L_{V(Cut)B} = 0.675 \, m \, \& \, Qty_{V(Cut)B} = 19$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				8.89	8	23.75	24	0.60	1.5	15.300
7.5				11.11	11	17.27	18	0.07	5.45	6.730
9	19	0.675	10	13.33	13	14.62	15	0.23	3.46	6.612
10.5			,	15.56	15	12.67	13	0.38	3.50	8.000
12				17.78	17	11.18	12	0.52	9.88	15.657

$$L_{M(V5)} = 9 m \& Qty_{M(V5)} = 15$$

• $(L_{H(Cut)A} = 1.225 m) = (L_{H(Cut)B} = 1.225 m)$

$$Qty = Qty_{H(Cut)A} + Qty_{H(Cut)B} = 7 + 7 = 14$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				4.90	4	35.00	35	1.10	0	38.500
7.5				6.12	6	23.33	24	0.15	5	8.450
9	14	1.225	10	7.35	7	20.00	20	0.42	0.00	8.500
10.5				8.57	8	17.50	18	0.70	5.25	17.150
12				9.80	9	15.56	16	0.98	5.33	19.958

$$L_{M(H4)} = 7.5 m \& Qty_{M(H4)} = 24$$

SLAB MARK	S-3			I
QUANTITY	2	\Rightarrow	Clear Length —	
SLAB POSITION	ON LEFT/RIGHT ED ▼			

- $(L_{V(Cont)A} = 4.425 m) \neq (L_{V(Cont)B} = 4.125 m)$
 - i. $L_{V(Cont)A} = 4.425 m \& Qty_{V(Cont)A} = 6$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.36	1	12.00	12	1.58	0	18.900
7.5				1.69	1	12.00	12	3.08	0	36.900
9	6	4.425	2	2.03	2	6.00	6	0.15	0.00	0.900
10.5			·	2.37	2	6.00	6	1.65	0.00	9.900
12				2.71	2	6.00	6	3.15	0.00	18.900

$$L_{M(V1)} = 9 \; m \; \& \; Qty_{M(V1)} = 6$$

ii. $L_{H(Cont)B} = 4.125 m \& Qty_{H(Cont)B} = 0$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.45	1	0.00	0	1.88	0	0.000
7.5				1.82	1	0.00	0	3.38	0	0.000
9	0	4.125	2	2.18	2	0.00	0	0.75	0.00	0.000
10.5				2.55	2	0.00	0	2.25	0.00	0.000
12				2.91	2	0.00	0	3.75	0.00	0.000

$$L_{M(V2)} = 6 m \& Qty_{M(V2)} = 0$$

- $(L_{H(Cont)A} = 2.21 m) \neq (L_{H(Cont)B} = 2.06 m)$
 - i. $L_{H(Cont)A} = 2.21 \text{ m \& } Qty_{H(Cont)A} = 5$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				2.71	2	5.00	5	1.58	0	7.900
7.5				3.39	3	3.33	4	0.87	5	7.610
9	5	2.21	2	4.07	4	2.50	3	0.16	4.50	4.820
10.5				4.75	4	2.50	3	1.66	5.25	8.570
12				5.43	5	2.00	2	0.95	0.00	1.900

$$L_{M(H1)}=12\,m\,\&\,Qty_{M(H1)}=2$$

ii. $L_{H(Cont)B} = 2.06 m \& Qty_{H(Cont)B} = 0$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				2.91	2	0.00	0	1.88	0	0.000
7.5				3.64	3	0.00	0	1.32	0	0.000
9	0	2.06	2	4.37	4	0.00	0	0.76	0.00	0.000
10.5				5.10	5	0.00	0	0.20	0.00	0.000
12				5.83	5	0.00	0	1.70	0.00	0.000

$$L_{M(H2)} = 6 m \& Qty_{M(H2)} = 0$$

• $L_{V(Extra)} = 3.85 m \& Qty_{V(Extra)} = 0$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				1.56	1	0.00	0	2.15	0	0.000
7.5				1.95	1	0.00	0	3.65	0	0.000
9	0	3.85	2	2.34	2	0.00	0	1.30	0.00	0.000
10.5				2.73	2	0.00	0	2.80	0.00	0.000
12				3.12	3	0.00	0	0.45	0.00	0.000

$$L_{M(V3)} = 6 m \& Qty_{M(V3)} = 0$$

 $L_{H(Extra)} = 1.9472 \ m \ \& \ Qty_{H(Extra)} = 10$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				3.08	3	6.67	7	0.16	2	2.950
7.5				3.85	3	6.67	7	1.66	2.5	12.450
9	10	1.9472	2	4.62	4	5.00	5	1.21	0.00	6.056
10.5				5.39	5	4.00	4	0.76	0.00	3.056
12				6.16	6	3.33	4	0.32	8.00	8.950

$$L_{M(H3)} = 6 m \& Qty_{M(H3)} = 7$$

• $(L_{V(Cut)A} = 1.03125 m) = (L_{V(Cut)B} = 1.03125 m)$

$$Qty = Qty_{V(Cut)A} + Qty_{V(Cut)B} = 0 + 0 = 0$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				5.82	5	0.00	0	0.84	0	0.000
7.5				7.27	7	0.00	0	0.28	0	0.000
9	0	1.03125	2	8.73	8	0.00	0	0.75	0.00	0.000
10.5				10.18	10	0.00	0	0.19	0.00	0.000
12				11.64	11	0.00	0	0.66	0.00	0.000

$$L_{M(V4)} = 6 m \& Qty_{M(V4)} = 0$$

• $(L_{H(Cut)A} = 1.225 m) = (L_{H(Cut)B} = 1.225 m)$

i.
$$L_{H(Cut)A} = 0.7975 m \& Qty_{H(Cut)A} = 0$$

L [M]	Qty	L [B]	Qty (Slab)	Qty [P]	Qty [M]		L [W]	L [E]	Total Waste
6				7.52	7	0.00	0	0.42	0	0.000
7.5				9.40	9	0.00	0	0.32	0	0.000
9	0	0.7975	2	11.29	11	0.00	0	0.23	0.00	0.000
10.5				13.17	13	0.00	0	0.13	0.00	0.000
12				15.05	15	0.00	0	0.04	0.00	0.000

$$L_{M(H4)} = 6 m \& Qty_{M(H4)} = 0$$

ii.
$$L_{H(Cut)B} = 0.475 m \& Qty_{H(Cut)B} = 10$$

L [M]	Qty	L [B]	Qty (Slab)	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6				12.63	12	1.67	2	0.30	2	2.300
7.5				15.79	15	1.33	2	0.38	5	5.375
9	10	0.475	2	18.95	18	1.11	2	0.45	8.00	8.450
10.5				22.11	22	0.91	1	0.05	0.95	0.955
12			'	25.26	25	0.80	1	0.13	2.40	2.400

$$L_{M(H5)} = 10.5 m \& Qty_{M(H5)} = 1$$

10. The program will determine the price of the reinforcement

	-REINFORCEMEN	Γ GRADE
	Columns	
	Columns	-
	(Lateral Ties):	
	Beams	▼
	Beams	
	(Stirrups):	<u> </u>
	Footings:	▼
<	Slabs	
	Stairs	▼
	Walls	

$$Price_{Slab} = \sum Qty_{M(V)} Price_{M(V)} + \sum Qty_{M(H)} Price_{M(H)}$$

Where:

= Sorted through Reinforcement Grade, diameter, and Manufactured Length

Example:

S-1(C): $L_V = 3675 < L_H = 4500$

SLAB	SCHEDU	JLE														+-
SLAB		REB/	AR SPA	ACING A	LONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
IVIANK		(Oia)	TOP	BOTT.	TOP	вотт.	TOP	вотт,	(Dia)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1	100	12)			250		(12)			190			2-WAY ■
S-2	100	12				200			12				150			2-WAY
S-3	100	10				250			12				250			1-WAY
																_
																₹

• $\sum Qty_{M(V)}Price_{M(V)}$: $d_V = 12$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43

Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04

Rebar GRADE 40 (Ø12mm) [9m]- P 351.65

Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26

Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $L_{M(V1)} = 9 m$: $Qty_{M(V1)}Price_{M(V1)} = 40(351.65) =$ P 14066.00

 $L_{M(V2)} = 6 m$: $Qty_{M(V2)}Price_{M(V2)} = 0(234.43) = \mathbb{P} 0.00$

 $L_{M(V3)} = 7.5 m$: $Qty_{M(V3)}Price_{M(V3)} = 80(293.04) =$? 23443.20

 $L_{M(V4)} = 6 m$: $Qty_{M(V4)}Price_{M(V4)} = 54(234.43) =$ P 12659.22

 $\sum_{i}Qty_{M(V)}Price_{M(V)} = 14066.00 + 0.00 + 23443.20 + 12659.22 = 950168.42$

• $\sum Qty_{M(H)}Price_{M(H)}$: $d_H = 12$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43 Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04 Rebar GRADE 40 (Ø12mm) [9m]- P 351.65 Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26 Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $L_{M(H1)} = 10.5 m$: $Qty_{M(H1)}Price_{M(H1)} = 25(410.26) =$ P 10256.50

 $L_{M(H2)} = 6 m$: $Qty_{M(H2)}Price_{M(H2)} = 0(234.43) = P 0.00$

 $L_{M(H3)} = 10.5 m$: $Qty_{M(H3)}Price_{M(H3)} = 50(410.26) =$ P 20513.00

 $L_{M(H4)} = 7.5 \text{ m}$: $Qty_{M(H4)}Price_{M(H4)} = 34(293.04) = \mathbb{P}9963.36$

 $\sum Qty_{M(H)}Price_{M(H)} = 10256.50 + 0.00 + 20513.00 + 9963.36 = 40732.86$

Total

$$Price_{Slab} = 50168.42 + 40732.86 =$$
790901.28

S-2(B):
$$L_V = 2300 < L_H = 4500$$

SLAB	SCHEDU	JLE														+ =
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING.	ALONG	LONG	DIRE	CTION	
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	REMARK
IVIANK		(Dia.)	TOP	вотт.	TOP	BOTT.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	BOTT.	TOP	вотт.	
S-1	100	12				250			12				190			2-WAY ■
S-2	100	12)			200			12)			150			2-WAY
S-3	100	10				250			12				250			1-WAY
																-
																₹

• $\sum Qty_{M(V)}Price_{M(V)}$: $d_V = 12$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43

Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04

Rebar GRADE 40 (Ø12mm) [9m]- P 351.65

Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26

Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $L_{M(V1)} = 10.5 \text{ m}$: $Qty_{M(V1)}Price_{M(V1)} = 34(410.26) =$ 13948.84

 $L_{M(V2)} = 6 m$: $Qty_{M(V2)}Price_{M(V2)} = 0(234.43) = P 0.00$

 $L_{M(V3)} = 6 m$: $Qty_{M(V3)}Price_{M(V3)} = 95(234.43) =$ P 22270.85

 $L_{M(V4)} = 6 m$: $Qty_{M(V4)}Price_{M(V4)} = 0(234.43) = P 0.00$

 $L_{M(V5)} = 9 \text{ m}$: $Qty_{M(V5)}Price_{M(V5)} = 15(351.65) = 75274.75$

 $\sum Qty_{M(V)}Price_{M(V)} = 13948.84 + 0.00 + 22270.85 + 0.00 + 5274.75 =$ $\upsigma 1494.44$

• $\sum Qty_{M(H)}Price_{M(H)}$: $d_H = 12$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43

Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04

Rebar GRADE 40 (Ø12mm) [9m]- P 351.65

Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26

Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $L_{M(H1)} = 10.5 m$: $Qty_{M(H1)} Price_{M(H1)} = 20(410.26) =$ 8205.20

 $L_{M(H2)} = 6 m$: $Qty_{M(H2)}Price_{M(H2)} = 0(234.43) = \mathbb{P} 0.00$

 $L_{M(H3)} = 10.5 \text{ m}$: $Qty_{M(H3)}Price_{M(H3)} = 35(410.26) =$ \$\mathbf{P}\$ 14359.10

 $L_{M(H4)} = 7.5 \text{ m}$: $Qty_{M(H4)}Price_{M(H4)} = 24(293.04) =$ \$\mathbf{7} 7032.96

$$\sum Qty_{M(H)} Price_{M(H)} = 8205.20 + 0.00 + 14359.10 + 7032.96 = \text{?}\ 29597.26$$

Total

$$Price_{Slab} = 41494.44 + 29597.26 =$$
71091.7

S-3: $L_V = 3800 > L_H = 1575$

SLAB	SLAB SCHEDULE															#=	
CLAD		REB	REBAR SPACING ALONG SHORT DIRECTION REBAR SPACING ALONG LONG DIRECTION											CTION			
SLAB	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT. SUPP.		MIDSPAN		INT.	SUPP.	REMARK	
IVIANK		(Dia.)	(Dia.)	TOP	вотт.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1	100	12				250			12				190			2-WAY	
S-2	100	12				200			12				150			2-WAY	
S-3	100	10)			250		(12)			250			1-WAY	
																l _a	

• $\sum Qty_{M(V)}Price_{M(V)}$: $d_V = 10$

Rebar GRADE 40 (Ø10mm) [6m]- P 162.62 Rebar GRADE 40 (Ø10mm) [7.5m]- P 203.28 Rebar GRADE 40 (Ø10mm) [9m]- P 243.94 Rebar GRADE 40 (Ø10mm) [10.5m]- P 284.59 Rebar GRADE 40 (Ø10mm) [12m]- P 325.25

 $L_{M(V1)} = 9 m$: $Qty_{M(V1)}Price_{M(V1)} = 6(243.94) =$ P 1463.64

 $L_{M(V2)} = 6 m$: $Qty_{M(V2)}Price_{M(V2)} = 0(162.62) = \mathbf{P} 0.00$

 $L_{M(V3)} = 6 m$: $Qty_{M(V3)}Price_{M(V3)} = 0(162.62) = P0.00$

 $L_{M(V4)} = 6 m$: $Qty_{M(V4)}Price_{M(V4)} = 0(162.62) = P 0.00$

$$\sum_{V} Qty_{M(V)} Price_{M(V)} = 1463.64 + 0.00 + 0.00 + 0.00 =$$
 1463.64

• $\sum Qty_{M(H)}Price_{M(H)}$: $d_H = 12$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43

Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04

Rebar GRADE 40 (Ø12mm) [9m]- P 351.65

Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26

Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $L_{M(H1)} = 12 \text{ m}$: $Qty_{M(H1)}Price_{M(H1)} = 2(468.86) =$? 937.72

 $L_{M(H2)} = 6 \text{ m}$: $Qty_{M(H2)}Price_{M(H2)} = 0(234.43) = \mathbf{P} 0.00$

 $L_{M(H3)} = 6 m$: $Qty_{M(H3)}Price_{M(H3)} = 7(234.43) = 7 (234.43) = 7 (234.43)$

 $L_{M(H4)} = 6 m$: $Qty_{M(H4)}Price_{M(H4)} = 0(234.43) = P 0.00$

 $L_{M(H5)} = 10.5 \text{ m}$: $Qty_{M(H5)}Price_{M(H5)} = 1(410.26) =$ \$\frac{1}{2}\$ 410.26

$$\sum Qty_{M(V)} Price_{M(V)} = 937.72 + 0.00 + 1641.01 + 0.00 + 410.26 = 72988.99$$

Total

$$Price_{Slab} = 1463.64 + 2988.99 =$$
4452.63

11. The program will determine the weight of the reinforcement

$$W_{Slab} = W_{D(V)} \sum L_{M(V)} Qty_{M(V)} + W_{D(H)} \sum L_{M(H)} Qty_{M(H)}$$

Where:

 $W_D = Weight \ based \ of \ the \ cdiameter \ of \ the \ main \ reinforcement.$

Example

kg/m
0.222
0.395
0.616
0.888
1.597
2.466
3.854
4.833
6.313
7.991
9.864
11.926
15.413
19.318

Example:

S-1(C)
$$L_V = 3675 < L_H = 4500$$

SLAB	SCHEDU	JLE														+	
SLAB		REBAR SPACING ALONG SHORT DIRECTION REBAR SPACING ALONG LONG DIRECTION															
MARK	THICKNESS	SIZE	EXT.	SUPP.	. MIDSPAN		INT. SUPP.		SIZE	EXT. SUPP.		MIDSPAN		INT. SUPP.		REMARK	
IVIANK		(Oin)	TOP	BOTT.	TOP	вотт.	TOP	вотт,	(1964.) T	TOP	BOTT.	TOP	вотт.	TOP	BOTT.		
S-1	100	12)			250		(12)			190			2-WAY	
S-2	100	12				200			12				150			2-WAY	1
S-3	100	10				250			12				250			1-WAY	·
																	Н
																	H

• $d_V = 12$

$$W_{D(V)} \sum L_{M(V)} Qty_{M(V)} = 0.888 \cdot [9(40) + 6(0) + 7.5(80) + 6(54)] = 1140.192 \, kg$$

• $d_H = 12$

$$W_{D(H)} \sum L_{M(H)} Qty_{M(H)} = 0.888[10.5(25) + 6(0) + 10.5(50) + 7.5(34)] = 925.74 \ kg$$

Total

$$W_{Slab} = 1140.192 + 925.74 = 2065.932 \, kg$$

S-2(B)
$$L_V = 2300 < L_H = 4500$$

SLAB	SCHEDU	JLE														+	
SLAB		REB	REBAR SPACING ALONG SHORT DIRECTION REBAR SPACING ALONG LONG DIRECTION										CTION				
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	SPAN	INT.	SUPP.	SIZE	EXT.	SUPP.	MIDSPAN		INT.	SUPP.	REMAR	(
IVIANK		(Dia.)	TOP	вотт.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.		
S-1	100	12				250			12				190			2-WAY	◪
S-2	100	12)			200			12)			150			2-WAY	1
S-3	100	10				250			12				250			1-WAY	Ш
																	Н
																	₹

• $d_V = 12$

$$W_{D(V)} \sum L_{M(V)} Qty_{M(V)} = 0.888[10.5(34) + 6(0) + 6(95) + 6(0) + 9(15)] = 943.056 \, kg$$

• $d_H = 12$

$$W_{D(H)} \sum L_{M(H)} Qty_{M(H)} = 0.888[10.5(20) + 6(0) + 10.5(35) + 7.5(24)] = 672.66 \; kg$$

Total

$$W_{Slab} = 943.056 + 672.66 = 1615.716 \, kg$$

S-3 $L_V = 3800 > L_H = 1575$

SLAB	SCHEDU	JLE														H =
SLAB		REB	AR SPA	ACING A	ALONG	SHOR	TDIRE	CTION	REB	AR SP	ACING	ALONG	LONG	DIRE	CTION	1
MARK	THICKNESS	SIZE	EXT.	SUPP.	MID	MIDSPAN INT.		INT. SUPP.		EXT. SUPP.		MIDSPAN		INT. SUPP.		REMARK
WANK		(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	вотт.	(Dia.)	TOP	BOTT.	TOP	вотт.	TOP	BOTT.	
S-1	100	12				250			12				190			2-WAY •
S-2	100	12				200			12				150			2-WAY
S-3	100	10)			250		(12)			250			1-WAY
																$\neg \neg$
																∀

• $d_V = 10$

$$W_{D(V)} \sum L_{M(V)} Qty_{M(V)} = 0.616[9(6) + 6(0) + 6(0) + 6(0)] = 33.264 \, kg$$

• $d_H = 12$

$$W_{D(H)} \sum L_{M(H)} Qty_{M(H)} = 0.888[12(2) + 6(0) + 6(7) + 6(0) + 10.5(1)] = 67.932 \ kg$$

Total

$$W_{Slab} = 33.264 + 67.932 = 101.196 \, kg$$

12. The program will determine the labor price of the reinforcement

$$Price_{Labor} = W_{Slab} \cdot L_R$$

Where:

 $L_R = Labor\ Rate\ in\ Footing\ based\ in\ the\ Pricing$

CATEGORY: LABOR RATE (REBAR PER KG) - 9 items

FOOTING [KG]- P 17

WALL FOOTING [KG]- P 17

COLUMN [KG]- P 15

STAIRS [KG]- P 15

BEAM [KG]- P 16

FOOTING TIE BEAM [KG] - P 16

SLAB ON GRADE [KG]- P 17

SUSPENDED SLAB [KG]- P 18

WALLS [KG]- P 16

Example:

S-1(C)

$$Price_{Labor} = 2065.932 \cdot 16 = \mathbb{P} 33054.912$$

S-2(B)

$$Price_{Labor} = 1615.716 \cdot 16 =$$
 25851. **456**

S-3

$$Price_{Labor} = 101.196 \cdot 16 =$$
P 1619. **136**