Devoir facultatif n° 10

Pour chaque réel x, on considère la fonction

$$f_x : \mathbb{R} \to \mathbb{R}, \ t \longmapsto \begin{cases} \frac{t e^{tx}}{e^t - 1} & \text{si} \quad t \neq 0, \\ 1 & \text{si} \quad t = 0. \end{cases}$$

Dans ce problème, on identifiera systématiquement un polynôme à la fonction polynomiale qui lui est associée.

Chaque partie utilise des résultats des parties précédentes, que l'on pourra librement admettre.

I - Questions préliminaires.

On se donne un réel x.

- 1) Montrer que f_x est de classe \mathscr{C}^1 sur \mathbb{R}^* , déterminer $f'_x(t)$ pour tout $t \in \mathbb{R}^*$.
- 2) Montrer que f_x est de classe \mathscr{C}^1 sur \mathbb{R} et préciser $f_x'(0)$.

II - Définitions des polynômes et nombres de Bernoulli.

On se donne un réel x.

- 3) Soit $n \in \mathbb{N}$, déterminer un développement limité à l'ordre n et au voisinage de 0 de $t \mapsto \frac{e^t 1}{t}$.
- 4) En déduire (sans le calculer) que f_x admet un développement limité à tout ordre, au voisinage de 0.

Ainsi, on écrit, pour chaque $n \in \mathbb{N}$,

$$f_x(t) = \sum_{k=0}^{n} \frac{B_k(x)}{k!} t^k + o(t^n)$$

et l'on définit le n^{e} nombre de Bernoulli : $b_{n} = B_{n}(0)$. Notamment,

$$f_0(t) = \frac{t}{e^t - 1} \underset{t \to 0}{=} \sum_{k=0}^n \frac{b_k}{k!} t^k + o(t^n).$$

- 5) Déterminer b_0 , b_1 , b_2 et b_3 .

 Indication: on pourra établir une relation fonctionnelle faisant intervenir f_0 .
- **6)** Déterminer $B_0(x)$, $B_1(x)$ et $B_2(x)$.
- 7) À partir du développement de f_0 écrit ci-dessus ainsi que de celui de $t \mapsto e^{xt}$, montrer que pour tout $n \in \mathbb{N}$,

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} b_{n-k} x^k.$$

Ainsi, pour tout $n \in \mathbb{N}$, B_n est un polynôme de degré n : c'est le n^e polynôme de Bernoulli.

III - Quelques propriétés.

On se donne un réel x.

- 8) Soit $n \in \mathbb{N}$ impair et supérieur ou égal à 2. Montrer que $b_n = 0$. Indication: on pourra considérer la fonction $t \mapsto f_0(t) + \frac{t}{2}$.
- 9) Montrer que pour tout $n \in \mathbb{N}$, $B_n(1-x) = (-1)^n B_n(x)$.
- **10)** Montrer que pour tout $n \in \mathbb{N}^*$, $B_n(x+1) B_n(x) = nx^{n-1}$.
- 11) En déduire une expression permettant calculer les b_n par récurrence.
- **12)** Montrer que pour tout $n \in \mathbb{N}^*$, $B'_n = nB_{n-1}$.
- **13)** Montrer que pour tout $n \in \mathbb{N}^*$, $\int_0^1 B_n = 0$.
- 14) Montrer que, pour tout $n \in \mathbb{N}$, B_n est l'unique polynôme vérifiant :

$$\forall y \in \mathbb{R}, \ \int_{y}^{y+1} B_n = y^n.$$

IV - Formule de Faulhaber.

Pour $n, m \in \mathbb{N}$, notons S_n^m la somme des puissances n^{es} des m premiers entiers naturels non nuls, i.e.

$$S_n^m = \sum_{k=0}^m k^n.$$

15) Montrer la formule de Faulhaber : pour tout $n \in \mathbb{N}$, $m \in \mathbb{N}^*$,

$$S_n^{m-1} = \frac{1}{n+1} \sum_{k=0}^n \binom{n+1}{k} b_k m^{n+1-k}.$$

V - Relation de distribution.

On dit qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ vérifie la relation de distribution d'ordre $n \in \mathbb{N}$ si

$$\forall m \in \mathbb{N}^*, \ \forall t \in \mathbb{R}, \ \sum_{k=0}^{m-1} f\left(\frac{t+k}{m}\right) = \frac{1}{m^{n-1}} f(t).$$

16) Montrer que, pour tout $n \in \mathbb{N}$, B_n vérifie la relation de distribution d'ordre n.

VI - Formule d'Euler-Maclaurin.

On définit les polynômes réduits de Bernoulli par : pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, $\overline{B_n}(x) = B_n(x - \lfloor x \rfloor)$

On souhaite montrer la formule d'Euler-Maclaurin : pour tout $a, b \in \mathbb{Z}$ tel que a < b, pour tout $r \in \mathbb{N}$, si f est de classe \mathscr{C}^{r+1} sur [a, b], alors

$$\sum_{k=a+1}^{b} f(k) - \int_{a}^{b} f = \sum_{k=0}^{r} (-1)^{k+1} \frac{b_{k+1}}{(k+1)!} \left(f^{k}(b) - f^{(k)}(a) \right) + \frac{(-1)^{r}}{(r+1)!} \int_{a}^{b} \overline{B_{r+1}} f^{r+1}.$$

- 17) Démontrer la formule d'Euler-Maclaurin dans le cas r = 0.
- 18) Conclure par récurrence.

— FIN —