# CS/MATH 111, Discrete Structures - Fall 2018. Discussion 5 - Linear Recurrence Relations

Andres, Sara, Elena

University of California, Riverside

October 25, 2018

### Outline

Fibonacci grows exponentially

Fibonnacci numbers

Homogeneous Recurrence Equations

- ► Fibonnacci numbers / Fibonnacci sequence
- ► First two and subsequent numbers:
  - $F_0 = 1$
  - $F_1 = 1$
  - ►  $F_n = F_{n-1} + F_{n-2}$ , when  $n \ge 2$ .
- $\triangleright$  Fibonacci grows exponentially with n.
- ▶ Prove that:

$$0.5 \cdot 1.5^n \le F_n \le 2^n$$

Proof by induction using  $F_0 = 1, F_1 = 1, ...$ :

$$0.5 \cdot 1.5^n \le F_n \le 2^n \tag{1}$$

- 1. Base case:
  - $n = 0, F_0 = 1: 0.5 \cdot 1.5^0 \le 1 \le 2^0 = 0.50 \le 1 \le 1.$
  - $n = 1, F_1 = 1 : 0.5 \cdot 1.5^1 \le 1 \le 2^1 = 0.75 \le 1 \le 2.$
  - $n = 2, F_2 = 2: 0.5 \cdot 1.5^2 \le 1 \le 2^2 = 1.125 \le 2 \le 4.$

:

- 2. Assumption step:
  - ▶ Assume (1) holds for all  $n \le k 1$ .
- 3. Induction step:
  - ▶ Prove that (1) holds for all  $n \le k$ .



Proof by induction using  $F_0 = 1, F_1 = 1, ...$ :

$$0.5 \cdot 1.5^n \le F_n \le 2^n$$

- 3 Induction step:
  - ▶ Prove that (1) holds for all  $n \le k$ .

1) 
$$F_k \leq 2^k$$
  
 $F_k = F_{k-1} + F_{k-2}$   
 $F_k \leq 2^{k-1} + 2^{k-2}$  (by assumption.)  
 $F_k = 2^{k-2} \cdot (2+1)$   
 $F_k = 2^{k-2} \cdot 3$   
 $F_k \leq 2^{k-2} \cdot 4$   
 $F_k = 2^{k-2} \cdot 2^2$   
 $F_k = 2^k$   
 $F_n = \mathcal{O}(2^n)$ 

Proof by induction using  $F_0 = 1, F_1 = 1, ...$ :

$$0.5 \cdot 1.5^n \le F_n \le 2^n$$

- 3 Induction step:
  - ▶ Prove that (1) holds for all  $n \le k$ .

2) 
$$F_k \ge \frac{1}{2} \cdot 1.5^k$$
  
 $F_k = F_{k-1} + F_{k-2}$   
 $F_k \ge 1.5^{k-1} + 1.5^{k-2}$  (by assumption.)  
 $F_k = 1.5^{k-2} \cdot (1.5 + 1)$   
 $F_k = 1.5^{k-2} \cdot 2.5$   
 $F_k \ge 1.5^{k-2} \cdot 2.25$   
 $F_k = 1.5^{k-2} \cdot 1.5^2$   
 $F_k = 1.5^k$   
 $F_n = \Omega(1.5^n)$ 

$$0.5 \cdot 1.5^n \le F_n \le 2^n$$

$$F_n = \mathcal{O}(2^n)$$

$$F_n = \Omega(1.5^n)$$

$$is F_n = \Theta()?$$

#### Outline

Fibonacci grows exponentially

Fibonnacci numbers

Homogeneous Recurrence Equations

Let's rewrite our recurrence following our previous notation:

$$F_n = F_{n-1} + F_{n-2}. (2)$$

for  $n \geq 2$ .

- $F_0 = 1$
- $F_1 = 1$
- $\triangleright$  Since  $F_n$  grows exponentially, we will assume:

$$F_n = x^n \tag{3}$$

ightharpoonup Plugging (3) into (2):

$$x^n = x^{n-1} + x^{n-2}$$

after dividing by  $x^{n-2}$ :

$$x^2 - x - 1 = 0$$



$$x^2 - x - 1 = 0$$

- ▶ This equation has two roots:  $x_1 = \frac{1}{2}(1 + \sqrt{5})$  and  $x_2 = \frac{1}{2}(1 \sqrt{5})$ .
- ▶  $x_1$  is the golden ratio  $\phi \approx 1.618$  and  $x_2 = 1 \phi \approx -0.618$ .
- ▶ Do they satisfy (2)? It works for n = 0 but not for n = 1.
- ▶ Works for the main recurrence but not for the initial conditions...





#### Theorem 1

Let  $c_1$  and  $c_2$  be real numbers. Suppose that  $r^2 - c_1r - c_2 = 0$  has two distinct roots  $r_1$  and  $r_2$ . Then the sequence  $a_n$  is a solution of the recurrence relation  $a_n = c_1a_{n1} + c_2a_{n2}$  if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

for n = 0, 1, 2, ..., where  $\alpha_1$  and  $\alpha_2$  are constants<sup>2</sup>.



<sup>&</sup>lt;sup>2</sup>Proof available at [Rosen, 2015. pg 515].

$$x^2 - x - 1 = 0$$

- ▶ This equation has two roots:  $x_1 = \frac{1}{2}(1+\sqrt{5})$  and  $x_2 = \frac{1}{2}(1-\sqrt{5})$ .
- ➤ Therefore by Theorem 1 it follows that the Fibonacci numbers are given by:

$$F_n = \alpha_1 x_1^n + \alpha_2 x_2^n$$

▶ This form is called the *general form of the solution*.



$$F_n = \alpha_1 x_1^n + \alpha_2 x_2^n$$

▶ Plugging the initial conditions into this equation we will get a system of two equation and two parameters:

$$\alpha_1 x_1^0 + \alpha_2 x_2^0 = 1$$

$$\alpha_1 x_1^1 + \alpha_2 x_2^1 = 1$$

After substituting:

$$\alpha_1 + \alpha_2 = 1$$

$$\alpha_1 \cdot \frac{1}{2}(1+\sqrt{5}) + \alpha_2 \cdot \frac{1}{2}(1-\sqrt{5}) = 1$$



$$\alpha_1 + \alpha_2 = 1$$

$$\alpha_1 \cdot \frac{1}{2} (1 + \sqrt{5}) + \alpha_2 \cdot \frac{1}{2} (1 - \sqrt{5}) = 1$$

► Solving the system, we get:

$$\alpha_1 = \frac{\sqrt{5} + 1}{2\sqrt{5}}$$

$$\alpha_2 = \frac{\sqrt{5} - 1}{2\sqrt{5}}$$



▶ This give us a solution for  $F_n$ :

$$F_n = \frac{\sqrt{5} + 1}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n + \frac{\sqrt{5} - 1}{2\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^n$$

Simplified as:

$$F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^{n+1} - \left( \frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

$$F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^{n+1} - \left( \frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

Note that when  $n \to \infty$ :

$$F_n \approx \frac{1}{\sqrt{5}} \left( \frac{1 + \sqrt{5}}{2} \right)^{n+1}$$





Let's have the following recurrence relation:

$$a_n = 4a_{n-1} - 4a_{n-2}$$

with initial condition  $a_0 = 1$  and  $a_1 = 3$ .

▶ Let's find the characteristic equation and its roots:

$$x^2 - 4x + 4 = 0.$$

$$(x-2)^2 = 0.$$

So, 
$$x_{1,2} = 2$$
.

["double root" or a root with multiplicity of 2.]



Let's have the following recurrence relation:

$$a_n = 4a_{n-1} - 4a_{n-2}$$

with initial condition  $a_0 = 1$  and  $a_1 = 3$ .

- $\triangleright$  All functions  $\alpha_1 2^n$  are good candidates, but...
- ▶ ... we need our solution to be parametrized by **two** parameters.
- We can try the function  $n2^n$ :

$$n2^{n} = 4(n-1)2^{n-1} - 4(n-2)2^{n-2}$$

by simple algebra we see that is is indeed true.



Let's have the following recurrence relation:

$$a_n = 4a_{n-1} - 4a_{n-2}$$

with initial condition  $a_0 = 1$  and  $a_1 = 3$ .

- ▶ Since  $n2^n$  is a solution, so is any function  $\alpha_2 n2^n$ .
- ▶ We can combine the two types of solutions in a general form:

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n$$

then we can continue...



Let's have the following recurrence relation:

$$a_n = 4a_{n-1} - 4a_{n-2}$$

with initial condition  $a_0 = 1$  and  $a_1 = 3$ .

► Initial condition equations and their solutions:

$$\alpha_1 \cdot 2^0 + \alpha_2 \cdot 0 \cdot 2^0 = 1$$

$$\alpha_1 \cdot 2^1 + \alpha_2 \cdot 1 \cdot 2^1 = 3$$

which reduce to:

$$\alpha_1 = 1$$

$$2\alpha_1 + 2\alpha_2 = 3$$



Let's have the following recurrence relation:

$$a_n = 4a_{n-1} - 4a_{n-2}$$

with initial condition  $a_0 = 1$  and  $a_1 = 3$ .

▶ Initial condition equations and their solutions:

$$\alpha_1 = 1$$

$$2\alpha_1 + 2\alpha_2 = 3$$

We get  $\alpha_1 = 1$  and  $\alpha_2 = \frac{1}{2}$ .

Let's have the following recurrence relation:

$$a_n = 4a_{n-1} - 4a_{n-2}$$

with initial condition  $a_0 = 1$  and  $a_1 = 3$ .

► Final answer:

$$a_n = 2^n + \frac{1}{2}n2^n$$

#### Outline

Fibonacci grows exponentially

Fibonnacci numbers

Homogeneous Recurrence Equations

Solve the recurrence relation  $a_n = a_{n-1} + 2a_{n-2}$  with initial conditions  $a_0 = 2$  and  $a_1 = 7$ .

1. Characteristic equation and its roots:

$$x^{2} - x - 2 = 0$$
  
 $(x+1)(x-2) = 0$   
So,  $x_{1} = 2$  and  $x_{2} = -1$ .

Solve the recurrence relation  $a_n = a_{n-1} + 2a_{n-2}$  with initial conditions  $a_0 = 2$  and  $a_1 = 7$ .

1. Characteristic equation and its roots:

$$x^{2} - x - 2 = 0$$
  
 $(x+1)(x-2) = 0$   
So,  $x_{1} = 2$  and  $x_{2} = -1$ .

2. General form of the solution:

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

Solve the recurrence relation  $a_n = a_{n-1} + 2a_{n-2}$  with initial conditions  $a_0 = 2$  and  $a_1 = 7$ .

1. Characteristic equation and its roots:

$$x^{2} - x - 2 = 0$$
  
 $(x+1)(x-2) = 0$   
So,  $x_{1} = 2$  and  $x_{2} = -1$ .

2. General form of the solution:

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 = 2$$
  
 $a_1 = \alpha_1 2 + \alpha_2 (-1) = 7$   
So,  $\alpha_1 = 3$  and  $\alpha_2 = -1$ .

Solve the recurrence relation  $a_n = a_{n-1} + 2a_{n-2}$  with initial conditions  $a_0 = 2$  and  $a_1 = 7$ .

1. Characteristic equation and its roots:

$$x^{2} - x - 2 = 0$$
  
 $(x+1)(x-2) = 0$   
So,  $x_{1} = 2$  and  $x_{2} = -1$ .

2. General form of the solution:

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 = 2$$
  
 $a_1 = \alpha_1 2 + \alpha_2 (-1) = 7$   
So,  $\alpha_1 = 3$  and  $\alpha_2 = -1$ .

- 4. Final answer:
  - $a_n = 3 \cdot 2^n (-1)^n$  is a solution.

What is the solution of the recurrence relation  $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$  with initial conditions  $a_0 = 8$ ,  $a_1 = 6$  and  $a_2 = 26$ .

1. Characteristic equation and its roots:

$$x^3 + x^2 - 4x - 4 = 0$$
  
 $(x+1)(x+2)(x-2) = 0$   
So,  $x_1 = -1$ ,  $x_2 = -2$  and  $x_3 = 2$ .

What is the solution of the recurrence relation  $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$  with initial conditions  $a_0 = 8$ ,  $a_1 = 6$  and  $a_2 = 26$ .

1. Characteristic equation and its roots:

$$x^{3} + x^{2} - 4x - 4 = 0$$
  
 $(x+1)(x+2)(x-2) = 0$   
So,  $x_{1} = -1$ ,  $x_{2} = -2$  and  $x_{3} = 2$ .

2. General form of the solution:

$$a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n$$
.

What is the solution of the recurrence relation

$$a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$$
 with initial conditions  $a_0 = 8$ ,  $a_1 = 6$  and  $a_2 = 26$ .

1. Characteristic equation and its roots:

$$x^3 + x^2 - 4x - 4 = 0$$
  
 $(x+1)(x+2)(x-2) = 0$   
So,  $x_1 = -1$ ,  $x_2 = -2$  and  $x_3 = 2$ .

2. General form of the solution:

$$a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n.$$

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 + \alpha_3 = 8$$
  
 $a_1 = -\alpha_1 - 2\alpha_2 + 2\alpha_3 = 6$   
 $a_2 = \alpha_1 + 4\alpha_2 + 4\alpha_3 = 26$   
So,  $\alpha_1 = 2$ ,  $\alpha_2 = 1$  and  $\alpha_3 = 5$ .

What is the solution of the recurrence relation  $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$  with initial conditions  $a_0 = 8$ .

$$a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$$
 with initial conditions  $a_0 = 8$ ,  $a_1 = 6$  and  $a_2 = 26$ .

1. Characteristic equation and its roots:

$$x^3 + x^2 - 4x - 4 = 0$$
  
 $(x+1)(x+2)(x-2) = 0$   
So,  $x_1 = -1$ ,  $x_2 = -2$  and  $x_3 = 2$ .

2. General form of the solution:

$$a_n = \alpha_1(-1)^n + \alpha_2(-2)^n + \alpha_3 2^n.$$

3. Initial condition equations and their solutions:

$$a_0 = \alpha_1 + \alpha_2 + \alpha_3 = 8$$
  
 $a_1 = -\alpha_1 - 2\alpha_2 + 2\alpha_3 = 6$   
 $a_2 = \alpha_1 + 4\alpha_2 + 4\alpha_3 = 26$   
So,  $\alpha_1 = 2$ ,  $\alpha_2 = 1$  and  $\alpha_3 = 5$ .

4. Final answer:

$$a_n = 2 \cdot (-1)^n + (-2)^n + 5 \cdot 2^n$$
 is a solution.



#### Outline

Fibonacci grows exponentially

Fibonnacci numbers

Homogeneous Recurrence Equations

- 1. Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.
- 2. What are the initial conditions?
- 3. In how many ways can this person climb a flight of eight stairs?

- 1. Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.
- 2. What are the initial conditions?
- 3. In how many ways can this person climb a flight of eight stairs?

- 1. Find a recurrence relation for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time.
- 2. What are the initial conditions?
- 3. In how many ways can this person climb a flight of eight stairs?

Let  $S_n$  denote the number of ways of climbing the stairs.

1. Let  $n \ge 3$ . The last step either was a single step, for which there are  $S_{n-1}$  possibilities, or a double step, for which there are  $S_{n-2}$  possibilities. The recurrence is:  $S_n = S_{n-1} + S_{n-2}$  for  $n \ge 3$ .

Let  $S_n$  denote the number of ways of climbing the stairs.

- 1. Let  $n \geq 3$ . The last step either was a single step, for which there are  $S_{n-1}$  possibilities, or a double step, for which there are  $S_{n-2}$  possibilities. The recurrence is:  $S_n = S_{n-1} + S_{n-2}$  for  $n \geq 3$ .
- 2. Whe have  $S_1 = 1$  and  $S_2 = 2$ . You can take two stairs either directly or by taking a stair at a time.

Let  $S_n$  denote the number of ways of climbing the stairs.

- 1. Let  $n \geq 3$ . The last step either was a single step, for which there are  $S_{n-1}$  possibilities, or a double step, for which there are  $S_{n-2}$  possibilities. The recurrence is:  $S_n = S_{n-1} + S_{n-2}$  for  $n \geq 3$ .
- 2. Whe have  $S_1 = 1$  and  $S_2 = 2$ . You can take two stairs either directly or by taking a stair at a time.
- 3. The recurrence gives the Fibonacci sequence:

$$1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

Hence there are  $S_8 = 34$  ways to climb a flight of eight stairs.

## Bibliography

- ▶ Discrete Mathematics and Its Applications. Rosen, K.H. 2012. McGraw-Hill.
  - Chapter 8: Advanced Counting Techniques.
  - Section 8.2: Solving Linear Recurrence Relations.