

Felipe P. Vista IV

Class Admin Matters

Grading

> Attendance

5%

Name (Original Name)	User Email	Join Time	Leave Time	Duration (Minutes)
		4/12/2021 9:12	4/12/2021 10:14	62
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:12	4/12/2021 9:14	3
		4/12/2021 9:13	4/12/2021 9:13	1
		4/12/2021 9:13	4/12/2021 9:14	2
		4/12/2021 9:14	4/12/2021 9:14	1
		4/12/2021 9:14	4/12/2021 9:14	1
		4/12/2021 9:14	4/12/2021 10:14	60

Bad ZOOM User Name (Absent)

- ➤ Iphone → Not your name
- ➤ SiAko 202100001 → Wrong order
- ➤ SiAko → Name only
- \triangleright 202100001 \rightarrow ID Num only

ZOOM User Name (Present)

- ➤ University ID Num_Name
- ➤ 202100001 SiAko → GOOD (Present)

Class Admin Matters

Student Responsibilities

- Download/Install ZOOM app for online lecture
 - > Zoom profile must be your OASIS ID+name similar to OASIS
 - > Ex.: 202061234 YourName
 - If you are asked, but no reply, then you'll be out of zoom & mark absent
- > Regularly login, check OLD IEILMS for updates, notifications
 - https://ieilmsold.jbnu.ac.kr
 - ➤ Presentations & lecture videos will be uploaded after class
- Regularly check Kakao Group Chat for class
 - > Everybody must have a Kakao talk account
 - Search & add account "botjok", introduce yourself and name of class ("Robotics"), then you will be added to the group chat

Intro To Robotics

LOCALIZATION

Localization

Intro

- Navigation by odometry
 - Prone to errors; Only estimate real pose of robot
 - Especially heading: farther robot moves → larger error in estimation
- Odometry
 - Like human walking w/ closed eyes (Counting steps until goal reached)
 - Farther walked → more uncertain about location
 - Open eyes once in a while to reduce uncertainties
- For a robot
 - Count steps?? Open eyes once in a while??
 - Short distance → Odometry enough
 - Longer distance → Determine position relative to external reference called landmark → This process is localization

Localization

- > Landmarks
- ➤ Determining Position from Objects whose Position is Known
- Global Positioning System
- > Probabilistic Localization
- Uncertainty in Motion

Landmarks

Landmarks

Robotics

- Like lines on the ground, doors in a corridor
- Can be identified by the robot & used for localization
- Determining Position from an Angle & a Distance

Geometry of a robot relative to an object

- (x_0, y_0) known coordinates of object at origin of coordinate system
- *θ azimuth*, *angle bet* North & forward *direction of the robot* (*compass*)
- ϕ angle bet forward dir of robot & object
- *s distance* to the object (laser scanner)
- $(\Delta x, \Delta y)$ relative coordinates

The relative coordinates can be derived by:

?????

Robotics

Localization

Landmarks

- Landmarks
 - Like lines on the ground, doors in a corridor
 - Can be identified by the robot & used for localization
- Determining Position from an Angle & a Distance

Geometry of a robot relative to an object

- (x_0, y_0) known coordinates of object at origin of coordinate system
- *θ azimuth*, *angle bet* North & forward *direction of the robot (compass)*
- ϕ angle bet forward dir of robot & object
- *s distance* to the object (laser scanner)
- $(\Delta x, \Delta y)$ relative coordinates

The relative coordinates can be derived by:

$$\Delta x = s \sin(\theta - \phi), \quad \Delta y = s \cos(\theta - \phi)$$

Det Position by Triangulation

- Triangulation
 - Determine coordinates when <u>difficult/impossible</u> to measure distances
 - Used before lasers, since impossible to accurately measure long distances
- Principle of triangulation
 - Given: Two angles, length included side → Derive: length of the other sides
 - Hence: Relative position of distance object can be calculated

- α , β angles to object
- c distance separating two positions
- *a*, *b* lengths

In surveying:

Det Position by Triangulation

- Triangulation
 - Determine coordinates when difficult/impossible to measure distances
 - Used before lasers, since impossible to accurately measure long distances
- Principle of triangulation
 - Given: Two angles, length included side \rightarrow Derive: length of the other sides
 - Hence: Relative position of distance object can be calculated

- α , β angles to object
- *c* distance separating two positions
- *a*, *b* lengths

In surveying:

- If two coordinates known \rightarrow distance between can be computed \rightarrow determine coordinates of object.

Robotics

Localization

Det Position by Triangulation

Lengths a, b computed using law of sines:

$$\frac{a}{\sin \alpha'} = \frac{b}{\sin \beta'} = \frac{c}{\sin \gamma}$$

where $\alpha' = 90^{\circ} - \alpha$, $\beta' = 90^{\circ} - \beta$ are interior angles.

To use the law, we need c (measured), and γ is:

$$\gamma = 180^{\circ} - \alpha' - \beta' = 180^{\circ} - (90^{\circ} - \alpha) - (90^{\circ} - \beta)$$

= $\alpha + \beta$

Using law of sines:

$$b = \frac{c \sin \beta'}{\sin \gamma} = \frac{c \sin (90^{\circ} - \beta)}{\sin (\alpha + \beta)} = \frac{c \cos \beta}{\sin (\alpha + \beta)}$$

Similar computation will be used for *a*.

Localization

- > Landmarks
- Determining Position from Objects whose Position is Known
- Global Positioning System
- > Probabilistic Localization
- Uncertainty in Motion

Robotics

Localization

Global Positioning System

- Global Positioning System (GPS)
 - Determination of location easier and more accurate
 - Each satellite know its
 - * Precise position: Ground stations w/ complex calculations
 - * Local time : Highly accurate atomic clock
- GPS receiver
 - Able to receive data from four satellites
 - * 24 32 satellites
 - * so that always line-of-sight bet any location & at least four satellites
 - (Time signal travelled from satellite) * (Speed of light) →
 Distance from satellites
 - Computation using distance & satellite location →
 3D position of receiver (latitude, longitude, elevation)

Robotics

Localization

Global Positioning System

- Advantage
 - Accurate & available anywhere
 - No additional equipment needed
 - Small & cheap electrical component only → found in every smartphones
- Main problems with GPS navigation
 - Position error roughly 10m:
 - Good for navigating car to choose correct road at intersection
 - Not sufficient enough for higher accuracy tasks (i.e. parking)
 - Not strong enough for <u>indoor navigation</u>
 - Subject to interference in dense urban environments
- Global Navigation Satellite Systems (GNSS)
 - GPS (USA), BeiDou (China), GLONASS (Russia), Galileo (EU)

CIVILIAN = 1-13

Localization

Global Positioning System

GPS utilizes both of Einstein's Special & General Relativity: General Relativity

- Deals with space-time continuum
- Clocks on satellite run faster (by 45.9 µsecs/day) since force of Earth's gravity is smaller at distant satellite that in is for us on the surface

Special Relativity

- Deals only with inertial frames
- Clocks on satellites run **slower** (by 7.2 µsec/day) since satellites move fast relative to Earth.

** Their effects don't cancel out, correction factor used when broadcasting the time signals.

[1] Ashby, N., "Relativity in the Global Positioning System", Living Reviews in Relativity, 6(1), 2003.

Localization

- > Landmarks
- Determining Position from Objects whose Position is Known
- Global Positioning System
- > Probabilistic Localization
- Uncertainty in Motion

Localization

Probalistic Localization

- Ex.: Robot enter a specific door (Pos 4)
 - Navigating w/in a known environment for w/c it has a map
 - Floor map show wall with doors (dark gray) & areas w/o a door (light gray)
 - Robot measure intensity using ground sensors
- How can robot know where it is? By odometry...
 - Determine current pos given known starting position
 - If at left end of wall \rightarrow ?????

- If at Pos $3 \rightarrow ?????$

Probalistic Localization

- Ex.: Robot enter a specific door (Pos 4)
 - Navigating w/in a known environment for w/c it has a map
 - Floor map show wall with doors (dark gray) & areas w/o a door (light gray)
 - Robot measure intensity using ground sensors
- How can robot know where it is? By odometry...
 - Determine current pos given known starting position

- If at left end of wall \rightarrow knows it must move (5 x width) of door

- If at Pos 3 → target door is next one to the right of Pos 3

- Due to errors in Odometry
 - Quite possible robot will be lost
 - Hence, utilize a one-dimensional version of Markov localization algo
- Markov localization algorithm
 - Take into account uncertainty in sensors and in the robot's motion
 - Return most probable locations of the robot
- Recall the robot
 - In known environment of walls and doors
 - Has no information as to its location

Localization

- Robot assigns probability to positions where it might be located
- 1. Initially, no idea where it is

- **Dots** position of doors
- Small robo icon actual position of the robot (facing right)

- Robot assigns probability to positions where it might be located
- 1. Initially, no idea where it is
 - Hence, each pos probability $b[i]=1.0/8=0.125\approx 0.13$, where **b** is **belief array**.

- **Dots** position of doors
- Small robo icon actual position of the robot (facing right)

Sensing Increases Certainty

- 2. Suppose now, robot detect a gray area \rightarrow uncertainty is reduced
 - Since it knows it must be in front of one of the five doors
 - ?????

Introduction to

Robotics

- **Dots** position of doors
- Small robo icon actual position of the robot (facing right)

- 2. Suppose now, robot detect a gray area → uncertainty is reduced
 - Since it knows it must be in front of one of the five doors
 - Hence, belief array shows 0.2 (each of the doors) & 0.0 (for the walls)

- **Dots** position of doors
- Small robo icon actual position of the robot (facing right)

Localization

- 3. Robot move forward → again senses dark gray area.
 - Now only ????? ?????
 - Not the following since?????
 - ?????
 - **-** ?????

Robotics

Localization

- 3. Robot move forward → again senses dark gray area.
 - Now only three possibilities (Prev \rightarrow Curr): Pos $0 \rightarrow$ Pos 1, Pos $4 \rightarrow$ Pos 5, Pos $5 \rightarrow$ Pos 6
 - Not the following since its new current is not dark gray area, (Pos 2, Pos 7):
 Pos 1 → Pos 2, Pos 6 → Pos 7
 - Hence, probability is now **0.33** for each of the three positions (1, 5, 6). (3 = 0.3)

- **4. Robot move forward again →** again senses dark gray area (door).
 - ????? ?????

 - Hence, probability?????

Robotics

Localization

- **4. Robot move forward again** → again senses dark gray area (door).
 - Now only one possibility (Prev \rightarrow Curr):

 Pos $5 \rightarrow Pos 6$
 - Not the following since its new current is not dark gray area: (Pos 2, Pos 7)
 Pos 1 → Pos 2, Pos 6 → Pos 7
 - Hence, probability is now 1.0 for Pos 6.

Sensing Increases Certainty

4. Robot move forward → If dark gray area (door) <u>not</u> detected.

Robotics

- Hence, probability?????

- **4. Robot move forward** → If dark gray area (door) not detected.
 - Now only one possibility (Prev \rightarrow Curr): Pos 1 \rightarrow Pos 2, Pos 6 \rightarrow 7
 - Not the following since its new current is dark gray area, (Pos 6):
 Pos 6 → Pos 7
 - Hence, probability is now **0.5** for Pos 2 & Pos 7.

Sensing Increases Certainty

• The robot

Robotics

- Maintains a belief array
- Integrates new data when it detects presence of a door (dark gray area)
- As time goes on → uncertainty decreases
- Knows with greater certainty where it is actually located
- From given example
 - Robot eventually knows its position

- In front of Door 6 (Pos 6)
- Or, it has reduced its uncertainty to one of the two positions
 - Pos 2 or Pos 7 [23, 52]

Localization

Uncertainty in Sensing

- Sensor values
 - Light intensity reflected by gray colors of the doors & walls
- Difference between door(dark gray) & wall(light gray) not great?
 - May sometimes detect "dark gray door as light gray wall" -
 - May sometimes detect "light gray wall as dark gray door" -
- This wrong identification due to
 - Changes in ambient lighting
 - Error in sensors themselves
- Hence, the robot
 - Cannot distinguish between two with complete certainty

Localization

Uncertainty in Sensing

- Model uncertainties by assigning probabilities to the detection
- Probabilities of detection
 - Senses $\underset{00}{\overset{100}{\text{log}}} \xrightarrow{100} \underset{00}{\overset{100}{\text{log}}} \xrightarrow{100} (\text{correctly as door, 0.9}) & (\text{mistakenly as wall, 0.1})$
 - Senses $\underset{light \ gray}{\overset{loo}{\nearrow}}$ (correctly as wall, 0.9) & (mistakenly as door, 0.1)

Position door?	0	1	2	3	4	5	6	7
Sensor -	0.11	0.11	0.01	0.01	0.11	0.11	0.11	0.01
Norm ~	0.19	0.19	0.02	0.02	0.19	0.19	0.19	0.02
Right _	0.02	0.19	0.19	0.02	0.02	0.19	0.19	0.19
Sensor -	0.02	0.17	0.02	0.00	0.02	0.17	0.17	0.02
Norm -	0.03	0.29	0.03	0.00	0.03	0.29	0.29	0.03
Right	0.03	0.03	0.29	0.03	0.00	0.03	0.29	0.29
Sensor	0.03	0.03	0.03	0.00	0.00	0.03	0.26	0.03
Norm	0.07	0.07	0.07	0.01	0.01	0.07	0.63	0.07

- Sensor multiplied by sensor uncertainty
- Norm normalized
- Right moved right one position

Localization w/ uncertainty in sensing

Localization

Uncertainty in Sensing

Initially,
$$b[i] = 1.0/8 = 0.125 \approx 0.13$$

 $0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 = 1.0$

Localization

Uncertainty in Sensing

Initially, $b[i] = 1.0/8 = 0.125 \approx 0.13$

0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 = 1.0

Sensor: dark gray (door) at a door : $0.125 * 0.9 = 0.1125 \approx 0.11$

: light gray (wall) at a door : $0.125*0.1 = 0.0125 \approx 0.01$

0.11 + 0.11 + 0.01 + 0.01 + 0.11 + 0.11 + 0.11 + 0.01 = 0.60

Uncertainty in Sensing

Initially,
$$b[i] = 1.0/8 = 0.125 \approx 0.13$$

$$0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 = 1.0$$

Sensor: dark gray (door) at a door :
$$0.125 * 0.9 = 0.1125 \approx 0.11$$

: light gray (wall) at a door :
$$0.125 * 0.1 = 0.0125 \approx 0.01$$

$$0.11 + 0.11 + 0.01 + 0.01 + 0.11 + 0.11 + 0.11 + 0.01 = 0.60$$

Norm: To normalize probabilities:

$$0.1125/0.6 \approx 0.19$$
 and $0.0125/0.6 \approx 0.02$

$$0.19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 + 0.02 \approx 1.0$$

Localization

Uncertainty in Sensing

Initially,
$$b[i] = 1.0/8 = 0.125 \approx 0.13$$

$$0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 + 0.13 = 1.0$$

Sensor: dark gray (door) at a door : $0.125 * 0.9 = 0.1125 \approx 0.11$

: light gray (wall) at a door : $0.125 * 0.1 = 0.0125 \approx 0.01$

$$0.11 + 0.11 + 0.01 + 0.01 + 0.11 + 0.11 + 0.11 + 0.01 = 0.60$$

Norm: To normalize probabilities:

 $0.1125/0.6 \approx 0.19$ and $0.0125/0.6 \approx 0.02$

$$0.19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 + 0.02 \approx 1.0$$

Uncertainty in Sensing

Right: Robot moves one position to the right \rightarrow

belief array also move one position to the right

$$0.19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 + 0.02 \approx 1.0$$

Localization

Uncertainty in Sensing

Right: Robot moves one position to the right →

belief array also move one position to the right

$$0.19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 + 0.02 \approx 1.0$$

Localization

Uncertainty in Sensing

$$0.19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 + 0.02 \approx 1.0$$

$$0.02 + .19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 \approx 1.0$$

Uncertainty in Sensing

Right : Robot moves one position to the right \rightarrow

belief array also move one position to the right

$$0.19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 + 0.02 \approx 1.0$$

$$0.02 + .19 + 0.19 + 0.02 + 0.02 + 0.19 + 0.19 + 0.19 \approx 1.0$$

Uncertainty in Sensing

Robot senses gray again \rightarrow Probability of being at Pos(1, 5, or 6) should increase.

Sensor: dg at door: $0.19 * 0.9 = 0.171 \approx 0.17$, lg at wall: $0.02 * 0.9 = 0.018 \approx 0.02$

: lg at door : $0.19 * 0.1 = 0.019 \approx 0.02$, dg at wall: $0.02 * 0.1 = 0.002 \approx 0.00$

0.02 + 0.17 + 0.02 + 0.00 + 0.02 + 0.17 + 0.17 + 0.02 = 0.58

Localization

Uncertainty in Sensing

Robot senses gray again \rightarrow Probability of being at Pos(1, 5, or 6) should increase.

Sensor: dg at door : $0.19*0.9 = 0.171 \approx 0.17$, lg at wall : $0.02*0.9 = 0.018 \approx 0.02$

: lg at door: $0.19 * 0.1 = 0.019 \approx 0.02$, dg at wall: $0.02 * 0.1 = 0.002 \approx 0.00$

$$0.02 + 0.17 + 0.02 + 0.00 + 0.02 + 0.17 + 0.17 + 0.02 = 0.58$$

Normal: To normalize probabilities:

 $0.1688/0.583 \approx 0.29$, $0.0188/0.583 \approx 0.03$ and $0.002/0.583 \approx 0.00$

$$0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 + 0.03 \approx 1.0$$

Uncertainty in Sensing

Robot senses gray again \rightarrow Probability of being at Pos(1, 5, or 6) should increase.

Sensor: dg at door : $0.19 * 0.9 = 0.171 \approx 0.17$, lg at wall : $0.02 * 0.9 = 0.018 \approx 0.02$

: lg at door: $0.19 * 0.1 = 0.019 \approx 0.02$, dg at wall: $0.02 * 0.1 = 0.002 \approx 0.00$

0.02 + 0.17 + 0.02 + 0.00 + 0.02 + 0.17 + 0.17 + 0.02 = 0.58

Normal: To normalize probabilities:

 $0.1688/0.583 \approx 0.29$, $0.0188/0.583 \approx 0.03$ and $0.002/0.583 \approx 0.00$

 $0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 + 0.03 \approx 1.0$

Localization

Uncertainty in Sensing

$$0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 + 0.03 \approx 1.0$$

Localization

Uncertainty in Sensing

$$0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 + 0.03 \approx 1.0$$

Localization

Uncertainty in Sensing

$$0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 + 0.03 \approx 1.0$$

$$0.03 + 0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 \approx 1.0$$

Localization

Uncertainty in Sensing

$$0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 + 0.03 \approx 1.0$$

$$0.03 + 0.03 + 0.29 + 0.03 + 0.00 + 0.03 + 0.29 + 0.29 \approx 1.0$$

Uncertainty in Sensing

Robot senses gray again \rightarrow Robot is almost certainly at Pos(6)

Sensor: dg at door : $0.29 * 0.9 = 0.261 \approx 0.26$, lg at wall : $0.03 * 0.9 = 0.029 \approx 0.03$

: lg at door : $0.29 * 0.1 = 0.029 \approx 0.03$, dg at wall: $0.03 * 0.1 = 0.003 \approx 0.00$

0.03 + 0.03 + 0.03 + 0.00 + 0.00 + 0.03 + 0.26 + 0.03 = 0.41

Uncertainty in Sensing

Robot senses gray again \rightarrow Robot is almost certainly at Pos(6)

Sensor: dg at door : $0.29 * 0.9 = 0.261 \approx 0.26$, lg at wall : $0.03 * 0.9 = 0.029 \approx 0.03$

: lg at door : $0.29 * 0.1 = 0.029 \approx 0.03$, dg at wall: $0.03 * 0.1 = 0.003 \approx 0.00$

$$0.03 + 0.03 + 0.03 + 0.00 + 0.00 + 0.03 + 0.26 + 0.03 = 0.41$$

Normal: To normalize probabilities:

 $0.261/0.41 \approx 0.63$, $0.029/0.41 \approx 0.07$ and $0.003/0.41 \approx 0.01$

$$0.07 + 0.07 + 0.07 + 0.00 + 0.00 + 0.07 + 0.63 + 0.07 \approx 1.0$$

Uncertainty in Sensing

Robot senses gray again \rightarrow Robot is almost certainly at Pos(6)

Sensor: dg at door : $0.29 * 0.9 = 0.261 \approx 0.26$, lg at wall : $0.03 * 0.9 = 0.029 \approx 0.03$

: lg at door : $0.29 * 0.1 = 0.029 \approx 0.03$, dg at wall: $0.03 * 0.1 = 0.003 \approx 0.00$

0.03 + 0.03 + 0.03 + 0.00 + 0.00 + 0.03 + 0.26 + 0.03 = 0.41

Normal: To normalize probabilities:

 $0.261/0.41 \approx 0.63$, $0.029/0.41 \approx 0.07$ and $0.003/0.41 \approx 0.01$

 $0.07 + 0.07 + 0.07 + 0.00 + 0.00 + 0.07 + 0.63 + 0.07 \approx 1.0$

Localization

- > Landmarks
- Determining Position from Objects whose Position is Known
- Global Positioning System
- > Probabilistic Localization
- ➤ Uncertainty in Motion

- Robots also subject to uncertainty in motion
 - Tell robot move one position to the right
 - Might move two pos to right, or
 - Move very little & stay current pos
- Modified algorithm
 - b': belief array
 - b'_i : new value of b',
 - $-p_i$: probability of detecting door

$$b'_{i} = p_{i}b_{i}$$
 $p'_{i} = 0.9$ for $i = 0,1,4,5,6$
 $p_{i} = 0.1$ for $i = 2,3,7$

Uncertainty in Motion

- If motion is certain: move one position to right
- If motion is uncertain:
 - Following computation take into account probabilities \mathbf{q}_j that robot actually moves $\mathbf{j} = 0, 1, 2$ positions:

$$b_{i}' = p_{i} \left(b_{i-2} q_{2} + b_{i-1} q_{1} + b_{i} q_{0} \right)$$

as shown in the given diagram:

- Highly likely: robot moves correctly
 - Reasonable values: $q_1 = 0.8$ and $q_0 = q_2 = 0.1$

- With values for uncertainty of motion & previous values of p_i
 - Belief array after three moves is given in the table

Position	0	1	2	3	4	5	6	7
door?	•	•			•	•	•	
Initial	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Sensor	0.11	0.11	0.01	0.01	0.11	0.11	0.11	0.01
Norm	0.19	0.19	0.02	0.02	0.19	0.19	0.19	0.02
Right	0.05	0.19_	0.17_	0.04_	0.04	0.17	0.19	- 0.17
Sensor	0.05	0.17	0.02	0.00	0.03	0.15	0.17	0.02
Norm	0.08	0.27	0.03	0.01	0.06	0.25	0.28	0.03
Right	0.06	0.12	0.23	0.05	0.01	0.07	0.23	0.25
Sensor	0.05	0.10	0.02	0.01	0.01	0.06	0.21	0.02
Norm	0.11	0.21	0.05	0.01	0.02	0.13	0.43	0.05

- **Sensor** *multiplied by* sensor uncertainty
- Norm normalized
- **Right** *moved right one* position

$$p_i = 0.9 \text{ for } i = 0,1,4,5,6$$
 $b'_i = p_i (b_{i-2}q_2 + b_{i-1}q_1 + b_iq_0)$
 $p_i = 0.1 \text{ for } i = 2,3,7$ $q_1 = 0.8, q_0 = q_2 = 0.1$

Localization

- Robot likely at ?????
 - **?????**
 - ?????

Localization

- Robot likely at Pos(6)
 - But less certain since probability only 0.43, instead of 0.63
 - There is non-negligible probability of 0.21 that robot is at Pos(1)

Right	0.06	0.12	0.23	0.05	0.01	0.07	0.23	0.25
Sensor	0.05	0.10	0.02	0.01	0.01	0.06	0.21	0.02
Norm	0.11	0.21	0.05	0.01	0.02	0.13	0.43	0.05

Introduction to Robotics

Summary

- **➤** Odometry
 - ❖ Provide estimation of robot position
- > Use surveying techniques
 - * Computing position relative to an object with known position
- > GPS
 - ❖ Give excellent location data but not accurate enough & limited indoors
- > Probabilistic localization
 - ***** *Estimate position with high probability*
 - ❖ If multiple known objects can be sensed + map of environment
- > Probability reduced
 - ❖ If lots of uncertainty in sensors or motion of robot

Thank you.