SQL Part 1

Perancangan Basis Data Relasional

Outline

- SQL History
- Basic SQL
- Select Statement
- Arithmetic Operators
- Where Clause
- Sorting

SQL History

- The first version of SQL was developed at IBM by Andrew Richardson, Donald C. Messerly and Raymond F. Boyce in the early 1970s.
- This version, initially called **SEQUEL**, was designed to manipulate and retrieve data stored in IBM's original relational database product, System R.
- IBM patented their version of SQL in 1985, while the SQL language was not formally standardized until 1986 by the American National Standards Institute (ANSI) as SQL-86.

SQL Statements

- A SELECT statement retrieves information from the database. Using a SELECT statement, you can do the following:
 - Projection: You can use the projection capability in SQL to choose the columns in a table that you want returned by your query. You can choose as few or as many columns of the table as you require.
 - Selection: You can use the selection capability in SQL to choose the rows in a table that you want returned by a query. You can use various criteria to restrict the rows that you see.
 - Joining: You can use the join capability in SQL to bring together data that is stored in different tables by creating a link between them. You learn more about joins in a later lesson.

Aljabar Relational Review

Basic SELECT Statement

```
SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;
```

- SELECT identifies what columns
- FROM identifies which table

Selecting All Columns

SELECT *
FROM departments;

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	IT	103	1400
80	Sales	149	2500
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting		1700

Selecting Specific Columns

```
SELECT department_id, location_id
FROM departments;
```

DEPARTMENT_ID	LOCATION_ID
10	1700
20	1800
50	1500
60	1400
80	2500
90	1700
110	1700
190	1700

Arithmetic Expressions

Create expressions with number and date data by using arithmetic operators.

Operator	Description
+	Add
-	Subtract
*	Multiply
1	Divide

Using Arithmetic Operators

```
SELECT last_name, salary, salary + 300 FROM employees;
```

LAST_NAME	SALARY	SALARY+300
King	24000	24300
Kochhar	17000	17300
De Haan	17000	17300
Hunold	9000	9300
Ernst	6000	6300

. . .

Hartstein	13000	13300
Fay	6000	6300
Higgins	12000	12300
Gietz	8300	8600

Operator Precedence

- Multiplication and division take priority over addition and subtraction.
- Operators of the same priority are evaluated from left to right.
- Parentheses are used to force prioritized evaluation and to clarify statements.

Operator Precedence

```
SELECT last_name, salary, 12*salary+100
FROM employees;
```

LAST_NAME	SALARY	12*SALARY+100
King	24000	288100
Kochhar	17000	204100
De Haan	17000	204100
Hunold	9000	108100
Ernst	6000	72100

. . .

Hartstein	13000	156100
Fay	6000	72100
Higgins	12000	144100
Gietz	8300	99700

Using Parentheses

SELECT last_name, salary, 12*(salary+100)
FROM employees;

LAST_NAME	SALARY	12*(SALARY+100)
King	24000	289200
Kochhar	17000	205200
De Haan	17000	205200
Hunold	9000	109200
Ernst	6000	73200

_ _ _

Hartstein	13000	157200
Fay	6000	73200
Higgins	12000	145200
Gietz	8300	100800

Defining a Column Alias

A column alias:

- Renames a column heading
- Is useful with calculations
- Immediately follows the column name there can also be the optional AS keyword between the column name and alias
- Requires double quotation marks if it contains spaces or special characters or is case sensitive

Using Column Aliases

. . .

Concatenation Operator

A concatenation operator:

- Concatenates columns or character strings to other columns
- Is represented by two vertical bars
 (||)
- Creates a resultant column that is a character expression

Using the Concatenation Operator

Employees Employees
KingAD_PRES
KochharAD_VP
De HaanAD_VP
HunoldIT_PROG
ErnstIT_PROG
LorentzIT_PROG
MourgosST_MAN
RajsST_CLERK

. . .

Literal Character Strings

- A literal is a character, a number, or a date included in the SELECT list.
- Date and character literal values must be enclosed within single quotation marks.
- Each character string is output once for each row returned.

Using Literal Character Strings

```
SELECT last_name || is a || job_id
AS "Employee Details"
FROM employees;
```

Employee Details		
King is a AD_PRES		
Kochhar is a AD_VP		
De Haan is a AD_VP		
Hunold is a IT_PROG		
Ernst is a IT_PROG		
_orentz is a IT_PROG		
Mourgos is a ST_MAN		
Rajs is a ST_CLERK		

. . .

Duplicate Rows

The default display of queries is all rows, including duplicate rows.

```
SELECT department_id
FROM employees;
```

DEPARTMENT_ID	
	90
	90
	90
	60
	60
	60
	50
	50
	50

Eliminating Duplicate Rows

Eliminate duplicate rows by using the DISTINCT keyword in the SELECT clause.

```
SELECT DISTINCT department_id FROM employees;
```

DEPARTMENT_ID	
	10
	20
	50
	60
	80
	90
	110

Limiting Rows Using a Selection

EMPLOYEES

EMPLOYEE_ID	LAST_NAME	JOB_ID	DEPARTMENT_ID
100	King	AD_PRES	90
101	Kochhar	AD_VP	90
102	De Haan	AD_VP	90
103	Hunold	IT_PROG	60
104	Ernst	IT_PROG	60
107	Lorentz	IT_PROG	60
124	Mourgos	ST_MAN	50

20 rows selected.

"retrieve all employees in department 90"

EMPLOYEE_ID	LAST_NAME	JOB_ID	DEPARTMENT_ID
100	King	AD_PRES	90
101	Kochhar	AD_VP	90
102	De Haan	AD_VP	90

Limiting the Rows Selected

 Restrict the rows returned by using the WHERE clause.

```
SELECT *|{[DISTINCT] column/expression [alias],...}
FROM table
[WHERE condition(s)];
```

The WHERE clause follows the FROM clause.

Using the WHERE Clause

```
SELECT employee_id, last_name, job_id, department_id
FROM employees
WHERE department_id = 90;
```

EMPLOYEE_ID	LAST_NAME	JOB_ID	DEPARTMENT_ID
100	King	AD_PRES	90
101	Kochhar	AD_VP	90
102	De Haan	AD_VP	90

Comparison Conditions

Operator	Meaning
=	Equal to
>	Greater than
>=	Greater than or equal to
<	Less than
<=	Less than or equal to
<>	Not equal to

Using Comparison Conditions

```
SELECT last_name, salary
FROM employees
WHERE salary <= 3000;</pre>
```

LAST_NAME	SALARY
Matos	2600
Vargas	2500

Other Comparison Conditions

Operator	Meaning
BETWEENAND	Between two values (inclusive),
IN(set)	Match any of a list of values
LIKE	Match a character pattern
IS NULL	Is a null value

Using the BETWEEN Condition

Use the BETWEEN condition to display rows based on a range of values.

LAST_NAME	SALARY	
Rajs	3500	
Davies	3100	
Matos	2600	
Vargas	2500	

Using the IN Condition

Use the IN membership condition to test for values in a list.

```
SELECT employee_id, last_name, salary, manager_id FROM employees
WHERE manager_id IN (100, 101, 201);
```

EMPLOYEE_ID	LAST_NAME	SALARY	MANAGER_ID
202	Fay	6000	201
200	Whalen	4400	101
205	Higgins	12000	101
101	Kochhar	17000	100
102	De Haan	17000	100
124	Mourgos	5800	100
149	Zlotkey	10500	100
201	Hartstein	13000	100

Using the LIKE Condition

- Use the LIKE condition to perform wildcard searches of valid search string values.
- Search conditions can contain either literal characters or numbers:
 - % denotes zero or many characters.
 - denotes one character.

```
SELECT first_name
FROM employees
WHERE first_name LIKE 'S%';
```

Using the LIKE Condition

You can combine pattern-matching

Lorentz Mourgos

Logical Conditions

Operator	Meaning
AND	Returns TRUE if both component conditions are true
OR	Returns TRUE if either component condition is true
NOT	Returns TRUE if the following condition is false

Using the AND Operator

AND requires both conditions to be true.

```
SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >=10000
AND job_id LIKE '%MAN%';
```

EMPLOYEE_ID	LAST_NAME	JOB_ID	SALARY
149	Zlotkey	SA_MAN	10500
201	Hartstein	MK_MAN	13000

Using the OR Operator

```
SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
OR job_id LIKE '%MAN%';
```

EMPLOYEE_ID	LAST_NAME	JOB_ID	SALARY
100	King	AD_PRES	24000
101	Kochhar	AD_VP	17000
102	De Haan	AD_VP	17000
124	Mourgos	ST_MAN	5800
149	Zlotkey	SA_MAN	10500
174	Abel	SA_REP	11000
201	Hartstein	MK_MAN	13000
205	Higgins	AC_MGR	12000

Using the NOT Operator

```
SELECT last_name, job_id
FROM employees
WHERE job_id
NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP');
```

LAST_NAME	JOB_ID	
King	AD_PRES	
Kochhar	AD_VP	
De Haan	AD_VP	
Mourgos	ST_MAN	
Zlotkey	SA_MAN	
Whalen	AD_ASST	
Hartstein	MK_MAN	
Fay	MK_REP	
Higgins	AC_MGR	
Gietz	AC_ACCOUNT	

¹⁰ rows selected.

Rules of Precedence

Order Evaluated	Operator	
1	Arithmetic operators	
2	Concatenation operator	
3	Comparison conditions	
4	IS [NOT] NULL, LIKE, [NOT] IN	
5	[NOT] BETWEEN	
6	NOT logical condition	
7	AND logical condition	
8	OR logical condition	

Override rules of precedence by using parentheses.

Rules of Precedence

```
SELECT last_name, job_id, salary

FROM employees

WHERE job_id = 'SA_REP'

OR job_id = 'AD_PRES'

AND salary > 15000;
```

LAST_NAME	JOB_ID	SALARY
King	AD_PRES	24000
Abel	SA_REP	11000
Taylor	SA_REP	8600
Grant	SA_REP	7000

ORDER BY Clause

- Sort rows with the ORDER BY clause
 - ASC: ascending order, default
 - DESC: descending order
- The ORDER BY clause comes last in the SELECT statement.

```
SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date;
```

LAST_NAME	JOB_ID	DEPARTMENT_ID	HIRE_DATE
King	AD_PRES	90	17-JUN-87
Whalen	AD_ASST	10	17-SEP-87
Kochhar	AD_VP	90	21-SEP-89
Hunold	IT_PROG	60	03-JAN-90
Ernst	IT_PROG	60	21-MAY-91

• • •

Review

- SQL History
- Basic SQL
- Select Statement
- Arithmetic Operators
- Where Clause
- Sorting