Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Свободные колебаний в электрическом контуре [3.2.4]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Ані	нотация	1				
	1.1	Цель работы	1				
	1.2	В работе используются:	1				
	1.3	Теоретическое вступление и модель	1				
2	Экс	спериментальная установка	3				
3	Ход работы						
	3.1	Подготовка	5				
	3.2	Измерение периодов свободных колебаний	5				
	3.3	Измерение критического сопротивления и декремента за-					
		тухания	6				
	3.4	Свободные колебания на фазовой плоскости	7				
	3.5	Добротность свободных колебаний в контуре	7				
4	Вы	вод	8				
5	5 Литература						

1 Аннотация

1.1 Цель работы

1. Исследование свободных колебаний в электрическом контуре.

1.2 В работе используются:

- Генератор импульсов
- электронное реле
- магазин сопротивлений
- магазин емкостей
- катушка индуктивности
- электронный осциллограф
- универсальный измерительный мост

1.3 Теоретическое вступление и модель

В работе планируется:

1. Исследовать зависимость периода свободных колебаний контура от емкости. Согласно теории, зависимость должна иметь вид (Формула Томпсона):

$$T = 2\pi\sqrt{LC} \tag{1}$$

где T - период колебаний, L и C - индуктивность и емкость контура соответственно.

Период планируется измерять с помощью осциллографа.

2. Исследовать зависимость логарифмического декремента затухания от сопротивления.

Расчет логарифмического декремента затухания будет производиться по следующей формуле:

$$\lambda = \frac{1}{n} \ln \frac{W_k}{W_{k+n}} \tag{2}$$

где W_i - энергия контура после i-того колебания.

Энергию контура планируется высчитывать используя напряжение на конденсаторе, которое в свою очередь, измеряется с помощью осциллографа.

Согласно теории, логарифмический декремент затухания пропорционалени сопротивлению

$$\lambda \propto R$$
 (3)

3. Определить критическое сопротивление. Критическое сопротивление вычисляется по формуле:

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} \tag{4}$$

4. Определить добротность контура. Добротность планируется вычислить двумя способами, с последующим сравнением результатов.

Первый способ - Через формулу для логарифмического декремента затухания.

Второй способ - используя параметры контура R, L, C.

Формула для вычисления добротности через логарифмический декремент затухания:

$$Q = \frac{\pi}{\lambda} \tag{5}$$

Формула для вычисления добротности с использованием параметров контура

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{6}$$

2 Экспериментальная установка

Схема установки представлена на рисунке 1.

Рис. 1. Схема установки

3 Ход работы

После совершения всей предварительной настройки оборудования: сборки схемы, настройки осциллографа и т.п., мы можем наблюдать картину затухающих колебаний

Прежде всего измерим индуктивность L и сопротивление катушки R_L в зависимости от частоты

ν, Гц	L , м Γ н	R_L , Om
50	200,4	11,1
1000	200,1	18,8
5000	200,4	41,2

Таблица 1: Некоторые параметры катушки индуктивности

В итоге мы получаем, что $L = 200 \pm 0, 2 \ {\rm M}\Gamma {\rm H}.$

3.1 Подготовка

Проделав всю подготовительную работу: полная настройка осциллографа, разобраться с его работой, сборка схемы, настройка емкостного магазина вместе с магазином сопротивлений, мы можем приступать к основной части работы.

3.2 Измерение периодов свободных колебаний

Установим на магазине сопротивлений R=0 Ом и C=0,02 мкФ. Подобрав частоту развертки получим изображение наших колебаний на осциллографе:

Рис. 1: Колебания в контуре

Подбираем частоту развёртски 90 так, чтобы расстояние x_0 между импульсами, поступающими с генератора, занимаело почти весь экран, получено значение $x_0 = 10$ см.

Теперь, изменяя ёмкость в диапазоне от 0,02 до 0,09 мк Φ проведем измерения периодов свободных колебаний и сравним их с теоретическими данными по формуле

$$T = 2\pi\sqrt{LC}$$

Как видно из таблицы, теоритические данные сходятся с экспериментальными:

С, нФ	<i>N</i> периодов	T_{reop} , MC	$T_{$ эксп $,$ мс	σ_T , MC
20	29	0,33	0,31	0,03
40	2	0,50	0,49	0,03
80	3	0,67	0,66	0,03
120	6	0,83	0,81	0,03
200	4	1,05	1,04	0,03
300	3	1,33	1,31	0,04
400	2	1,50	1,50	0,04
500	2	1,75	1,72	0,04

Таблица 2: Таблица данных измерения периода свободных колебаний и сравнение с теорией

3.3 Измерение критического сопротивления и декремента затухания

Для начала рассчитаем емкость, при которой частота собственных колебаний контура будет равна $\nu_0=5$ к Γ ц.

$$C = \frac{1}{4\pi^2 \nu_0^2 L} \approx 5 \mathrm{H}\Phi$$

И для значений L и C рассчитаем R_{crit}

$$R_{crit} = 2\pi \sqrt{\frac{L}{C}} \approx 12,6$$
кОм

Для этих значений L и C рассчитаем декремент затухания для каждого сопротивления из интервала $(0,1-0,3)R_{crit}$. Из этих данных по формуле

$$R_{crit} = R_{\Sigma} \sqrt{\left[\frac{2\pi}{\theta}\right]^2 + 1}$$

находим R_{crit} запишем все в таблицу.

В итоге мы получаем, что $R_{crit} = (12, 1 \pm 1, 8)$ кОм.

Так же мы можем получить R_{crit} просто подбором, добиваясь подобной картины

Подбирая мы получаем, что $R_{crit} \approx 12$ кОм.

R, Ом	U_1 , дел	σ_{U_1} , дел	U_2 , дел	σ_{U_2} , дел	θ	σ_{θ}	R_{crit} , Om	$\sigma_{R_{crit}}$, Om
1200	4	0,2	2,1	0,2	0,64	0,07	11800	1000
1500	4	0,2	1,8	0,2	0,80	0,10	11900	1300
1800	4	0,2	1,6	0,2	0,92	0,12	12500	1600
2100	4	0,2	1,3	0,2	1,1	0,2	11900	1400
2400	4	0,2	1,1	0,2	1,3	0,2	11900	1300
2700	4	0,2	1	0,2	1,4	0,3	12500	1000
3000	4	0,2	0,8	0,2	1,6	0,4	12000	1300
3300	4	0,2	0,7	0,2	1,7	0,5	12300	1600

Таблица 3: Таблица измерения R_{crit}

3.4 Свободные колебания на фазовой плоскости

Рассмотрим свободные колебания на фазовой плоскости, для этого подключим место соединения катушки индуктивности и магазина сопротивлений к выходу X и включим на осциллографе канал X-Y. В итоге мы получаем картинку на экране как на рисунке ниже.

Для фазовой диаграммы для двух значений посчитаем так же декремент затухания

R, Om	U_1 , дел	U_2 , дел	θ	$\sigma_{ heta}$
1800	4,1	1,6	0,94	0,15
3000	3	0,5	1,8	0,2

Таблица 4: Декремент затухания для фазовой диаграммы

Видим, что мы получили такой же декремент затухания как и при его подсчете из графика колебаний.

3.5 Добротность свободных колебаний в контуре

Добротность можно найти по формуле

$$Q = \frac{\pi}{\theta}$$

Найдем ее для $R_{max} = 3$ кОм и для $R_{min} = 1, 8$ кОм из графика и фазовой диаграммы. Итоговые результаты запишем в таблицу.

Рис. 2: Затухание колебаний

Так же добротность можно найти и из теоретических соображений по формуле

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Результаты так же занесем в таблицу, и в итоге мы получаем эту таблицу со всеми данными из данного эксперимента, по которой мы можем сравнить все полученные значения

4 Вывод

Как видно из таблицы 5, наилучший способ измерения добротности — с помощью графика, потому что получаются наиболее близкие значения с меньшими погрешностями. Так же из графика видно, что R_{crit} лучше измеряется при более высоком сопротивлении в контуре.

5 Литература

1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна - М.: МФТИ, 2007. - 280 с.

Рис. 3: Фазовая диаграмма для свободных колебаний

2. Дополнительное описание лабораторной работы 3.2.4: Свободные колебания в электрическом контуре; Под ред. МФТИ, 2018 г. - $4~\rm c.$