MAT 421: Introduction to Real Analysis I Pranvere 2012, Provim Final

Stefan Kohl

Data: 30.06.2012, Ora: 10:00 - 12:00

Emri, Mbiemri:

Pergjigjuni 6 pyetje e meposhtme. Nuk i lejohet te perdore asgje pervec leter e bardhe dhe nje stilolaps. Maksimumi i pikeve te mundshme eshte 40.

1. A konvergjojne seritet e meposhtme? – Nese seritet konvergjojne, gjeni vleren e tyre. (Shembull: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.)

- 1. $\sum_{n=1}^{\infty} \frac{1}{2^{20}n}$ 3. $\sum_{n=0}^{\infty} \frac{3^n}{n!}$ 5. $\sum_{n=1}^{\infty} \frac{1}{n^2+n}$
- 2. $\sum_{n=0}^{\infty} \frac{1}{3^n}$ 4. $\sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{m=0}^{\infty} \frac{4^m}{m!} \right)^n$ 6. $\sum_{n=0}^{\infty} n! \cdot \sin(n\pi)$

(12 pike)

2. Gjeni funksione $f, g : \mathbb{R} \to \mathbb{R}$ te vazhdueshme te tille qe

- 1. f(1) > 1 dhe $\forall x \in \mathbb{R}$ $f(2x) = f(x)^2$.
- 2. $q^{-1}(0) = \{n\pi \mid n \in \mathbb{Z}\}.$

(4 pike)

- 3. Tregoni qe bashkesia e funksioneve $f: \mathbb{R} \to \mathbb{R}$ te cilet jane e diferencueshem ne cdo $x \in \mathbb{R}$ eshte e panumerueshem. (4 pike)
- 4. Per cdo $n \in \mathbb{N}$, le te jete $f_n : \mathbb{R}_0^+ \to \mathbb{R}_0^+, \ x \mapsto x^{\frac{1}{n}}$. A konvergjon vargu e funksioneve (f_n) ? Nese po, gjeni funksionin $f := \lim_{n \to \infty} f_n$. A eshte konvergjenca uniforme, apo vetem pikesore? (4 pike)
- 5. Gjeni variacionet total $V_0^{\pi}(x \mapsto \sin x), V_{-1}^1(x \mapsto x^2), V_0^{\ln(2)}(x \mapsto e^x)$ dhe $V_0^{e^4}(x \mapsto e^x)$. (4 pike)
- 6. Vertetoni apo gjeni kundershembuj:
 - 1. Cdo funksion i cili eshte i diferencueshem ne cdo $x \in \mathbb{R}$ eshte i kufizuar.
 - 2. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i cili eshte bijektiv eshte i vazhdueshem ne cdo
 - 3. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i cili eshte i vazhdueshem ne cdo $x \in \mathbb{R}$ eshte injektiv.
 - 4. Cdo funksion $f: \mathbb{R} \to \mathbb{R}$ i vazhdueshem i cili eshte bijektiv eshte i diferencueshem ne cdo $x \in \mathbb{R}$
 - 5. Le te jete $f: \mathbb{R} \to \mathbb{R}$ nje funksion i cili eshte i vazhdueshem ne cdo $x \in \mathbb{R}$. Nese ne kemi $\forall x \in \mathbb{R}$ $f(x) \in \mathbb{Q}$, funksioni f eshte gjithmon konstant.
 - 6. Nese nje varg (a_n) ka nje pike e akumulimit, edhe bashkesia $\{a_n \mid n \in \mathbb{N}\}$ ka te pakten nje pike e akumulimit.

(12 pike)