3 Lecture examples: Chapter 3

Examples 3A

1 Show that $W = \{ \boldsymbol{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_2 = 0 \}$ is a subspace of \mathbb{R}^3 .

Let $\lambda, \mu \in \mathbb{R}$ and $\mathbf{x} = (0, 0, x_3), \mathbf{y} = (0, 0, y_3) \in W$. Then

$$z = \lambda x + \mu y = (0, 0, \lambda x_3 + \mu y_3)$$

so $\mathbf{z} = (0, 0, z_3) \in W$, and as this holds $\forall \lambda, \mu \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in W$, W is a subspace of \mathbb{R}^3 .

2 Show that $U = \{ \boldsymbol{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0 \}$ is a subspace of \mathbb{R}^3 .

Let $\lambda, \mu \in \mathbb{R}$ and $\mathbf{x} = (x_1, x_2, -(x_1 + x_2)), \mathbf{y} = (y_1, y_2, -(y_1 + y_2)) \in U$. Then

$$\mathbf{z} = \lambda \mathbf{x} + \mu \mathbf{y} = (\lambda x_1 + \mu y_1, \lambda x_2 + \mu y_2, -\lambda (x_1 + x_2) - \lambda (y_1 + y_2))$$

$$= (\lambda x_1 + \mu y_1, \lambda x_2 + \mu y_2, -(\lambda x_1 + \mu y_1) - (\lambda x_2 + \mu y_2))$$

so $z_1 + z_2 + z_3 = 0$ and $\mathbf{z} \in U$. As this holds $\forall \lambda, \mu \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in U$, U is a subspace of \mathbb{R}^3 .

3 State why $V = \{ \boldsymbol{x} = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 1 \}$ is not a subspace of \mathbb{R}^4 .

 $\mathbf{0} \notin V$ so V is not a subspace of \mathbb{R}^4 .

4 State why $W = \{ \boldsymbol{x} = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 + x_3^2 + x_4^2 \le 1 \}$ is not a subspace of \mathbb{R}^4 .

W is not closed under addition: for example, if $\mathbf{x} = (1,0,0,0)$ and $\mathbf{y} = (0,0,1,0) \in W$ then $\mathbf{x} + \mathbf{y} = (1,0,1,0) \notin W$.

5 Let A be a real $m \times n$ matrix. Show that $U = \{x \in \mathbb{R}^n : Ax = 0\}$ is a subspace of \mathbb{R}^n .

Let $\lambda, \mu \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in U$ with $\mathbf{z} = \lambda \boldsymbol{x} + \mu \boldsymbol{y}$. Then

$$A\mathbf{z} = A(\lambda \mathbf{x} + \mu \mathbf{y}) = A(\lambda \mathbf{x}) + A(\mu \mathbf{y}) = \lambda \mathbf{0} + \mu \mathbf{0} = \mathbf{0}.$$

This holds $\forall \lambda, \mu \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ such that $A\boldsymbol{x} = \boldsymbol{0}, A\boldsymbol{y} = \boldsymbol{0}$. Hence U is a subspace of \mathbb{R}^n . (This subspace is called the **nullspace** of A).

Examples 3B

1 State the span of the vectors (1,0,1) and (2,1,0).

$$sp((1,0,1),(2,1,0))$$
= $\{ \boldsymbol{x} \in \mathbb{R}^3 : \boldsymbol{x} = \alpha_1(1,0,1) + \alpha_2(2,1,0) \}$
= $\{ \boldsymbol{x} \in \mathbb{R}^3 : \boldsymbol{x} = (\alpha_1 + 2\alpha_2, \alpha_2, \alpha_1), \alpha_1, \alpha_2 \in \mathbb{R} \}$

2 Verify that $\mathbb{R}^n = sp(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n)$ where \boldsymbol{e}_i is the *i*th column of $I_n, i = 1, 2, \dots, n$.

$$\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \Leftrightarrow \mathbf{x} = x_1 \, \mathbf{e}_1 + x_2 \, \mathbf{e}_2 + \dots + x_n \, \mathbf{e}_n \text{ so } \mathbb{R}^n = sp(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n).$$

 $\Leftrightarrow \mathbf{x} \in sp(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$

3 Verify that $U = \{ \boldsymbol{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0 \} = sp((1, 1, 0), (0, 1, 1)).$

$$x \in U \Leftrightarrow x = (x_1, x_1 + x_3, x_3)$$

 $\Leftrightarrow x = x_1(1, 1, 0) + x_3(0, 1, 1)$
 $\Leftrightarrow x \in sp((1, 1, 0), (0, 1, 1)).$

Hence U = sp((1, 1, 0), (0, 1, 1)).

4 Determine whether or not the vectors $\mathbf{x}_1 = (1, -1)$ and $\mathbf{x}_2 = (1, 1)$ span \mathbb{R}^2 .

We must determine if an arbitrary vector $\mathbf{a} = (a_1, a_2)$ in \mathbb{R}^2 can be expressed as a linear combination $\mathbf{a} = \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2$ of the vectors \mathbf{x}_1 and \mathbf{x}_2 . In component form, we have $(a_1, a_2) = \lambda_1(1, -1) + \lambda_2(1, 1)$, which holds if and only if $\lambda_1 + \lambda_2 = a_1$, $-\lambda_1 + \lambda_2 = a_2$. This system is consistent for all values of a_1 and a_2 , with solution $\lambda_1 = \frac{1}{2}(a_1 - a_2)$ and $\lambda_2 = \frac{1}{2}(a_1 + a_2)$, so any $\mathbf{a} \in \mathbb{R}^2$ can be expressed as a linear combination of \mathbf{x}_1 and \mathbf{x}_2 as

$$\mathbf{a} = \frac{1}{2}(a_1 - a_2)\mathbf{x}_1 + \frac{1}{2}(a_1 + a_2)\mathbf{x}_2.$$

Hence x_1 and x_2 span \mathbb{R}^2 .

(Check: e.g. $\mathbf{a} = (2,3)$:

$$\frac{1}{2}(a_1 - a_2) = -\frac{1}{2}, \quad \frac{1}{2}(a_1 + a_2) = \frac{5}{2} \Rightarrow \begin{pmatrix} 2\\3 \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 1\\-1 \end{pmatrix} + \frac{5}{2}\begin{pmatrix} 1\\1 \end{pmatrix}$$

which is correct.)

5 Suppose \mathbf{x}_1 and \mathbf{x}_2 are vectors in \mathbb{R}^3 chosen such that the corresponding position vectors are not collinear. What is the geometrical interpretation of $sp(\mathbf{x}_1, \mathbf{x}_2)$?

The space $sp(\boldsymbol{x}_1, \boldsymbol{x}_2)$ consists of all vectors of the form $\lambda \boldsymbol{x}_1 + \mu \boldsymbol{x}_2$, with $\lambda, \mu \in \mathbb{R}$. This is the plane in \mathbb{R}^3 determined by the position vectors corresponding to \boldsymbol{x}_1 and \boldsymbol{x}_2 . Any vector of the form $\lambda \boldsymbol{x}_1 + \mu \boldsymbol{x}_2$ is in this plane.

(Note: if x_1 is a nonzero vector in \mathbb{R}^2 then $sp(x_1)$ is the straight line through the origin determined by x_1 .)

Examples 3C

1 Find a smaller spanning set for $U = sp(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$ where $\mathbf{x}_1 = (1, 0, 1), \mathbf{x}_2 = (0, 0, 0), \mathbf{x}_3 = (0, 1, 1), \mathbf{x}_4 = (1, 1, 2) \in \mathbb{R}^3$.

Elimination check:

$$egin{aligned} oldsymbol{x}_1
eq oldsymbol{0} &\Rightarrow ext{ retain } oldsymbol{x}_1 \ oldsymbol{x}_2 = oldsymbol{0} &\Rightarrow ext{ eliminate } oldsymbol{x}_2 \end{aligned}$$

$$\boldsymbol{x}_3 = \lambda \boldsymbol{x}_1 \iff (0,1,1) = (\lambda,0,\lambda), \text{ which is not possible } \Rightarrow \text{ retain } \boldsymbol{x}_3$$

$$\mathbf{x}_4 = \lambda \mathbf{x}_1 + \mu \mathbf{x}_3 \Leftrightarrow (1, 1, 2) = (\lambda, 0, \lambda) + (0, \mu, \mu)$$

 $\Leftrightarrow \lambda = \mu = 1 \Rightarrow \text{ eliminate } \mathbf{x}_4.$

Hence a smaller spanning set is $\{x_1, x_3\}$.

2 Show that e_1, e_2, \ldots, e_n are linearly independent vectors in \mathbb{R}^n .

$$\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \ldots + \alpha_n \mathbf{e}_n = \mathbf{0} \Leftrightarrow (\alpha_1, \alpha_2, \ldots, \alpha_n) = (0, 0, \ldots, 0)$$

 $\Leftrightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$

Hence e_1, e_2, \ldots, e_n are linearly independent vectors in \mathbb{R}^n .

3 Show that $\{(1,1,0),(0,1,1)\}$ is a linearly independent set in \mathbb{R}^3 .

$$\alpha_1(1,1,0) + \alpha_2(0,1,1) = \mathbf{0} \Leftrightarrow (\alpha_1, \alpha_1 + \alpha_2, \alpha_2) = (0,0,0) \Leftrightarrow \alpha_1 = \alpha_2 = 0.$$

Hence $\{(1,1,0),(0,1,1)\}$ is a linearly independent set in \mathbb{R}^3 .

4 Show that $\{(1,1,0),(0,1,1),(1,2,1)\}$ is a linearly dependent set in \mathbb{R}^3 .

$$\alpha_{1}(1,1,0) + \alpha_{2}(0,1,1) + \alpha_{3}(1,2,1) = \mathbf{0} \Leftrightarrow (\alpha_{1} + \alpha_{3}, \alpha_{1} + \alpha_{2} + 2\alpha_{3}, \alpha_{2} + \alpha_{3}) = (0,0,0)$$

$$\alpha_{1} + \alpha_{3} = 0 \qquad \alpha_{1} + \alpha_{3} = 0 \qquad \alpha_{1} = -\lambda$$

$$\Leftrightarrow \alpha_{1} + \alpha_{2} + 2\alpha_{3} = 0 \Leftrightarrow \alpha_{2} + \alpha_{3} = 0 \Leftrightarrow \alpha_{2} = -\lambda$$

$$\alpha_{2} + \alpha_{3} = 0 \qquad \alpha_{2} + \alpha_{3} = 0 \qquad \alpha_{3} = \lambda$$

for any $\lambda \in \mathbb{R}$. Hence $\{(1,1,0),(0,1,1),(1,2,1)\}$ is a linearly dependent set. (Note that (1,2,1)=(1,1,0)+(0,1,1).)

5 Determine whether the vectors $\mathbf{v}_1 = (1, -1, 2)$, $\mathbf{v}_2 = (3, 2, -1)$ and $\mathbf{v}_3 = (5, 0, 3)$ form a linearly independent or dependent set in \mathbb{R}^3 .

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0} \Leftrightarrow (\alpha_1 + 3\alpha_2 + 5\alpha_3, -\alpha_1 + 2\alpha_2, 2\alpha_1 - \alpha_2 + 3\alpha_3) = \mathbf{0}$$

$$\alpha_1 + 3\alpha_2 + 5\alpha_3 = 0$$

$$\Leftrightarrow -\alpha_1 + 2\alpha_2 = 0 \Leftrightarrow A\mathbf{a} = \mathbf{b}.$$

$$2\alpha_1 - \alpha_2 + 3\alpha_3 = 0$$

Solve via EROs:

$$\begin{pmatrix} 1 & 3 & 5 \\ -1 & 2 & 0 \\ 2 & -1 & 3 \end{pmatrix} \begin{array}{c} r'_2 = r_2 + r_1 \\ r'_3 = r_3 - 2r_1 \end{array} \rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 0 & 5 & 5 \\ 0 & -7 & -7 \end{pmatrix} \begin{array}{c} r'_2 = \frac{1}{5}r_2 \\ r'_3 = r_3 + \frac{7}{5}r_2 \end{array} \rightarrow \begin{pmatrix} 1 & 3 & 5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Set $\alpha_3 = \lambda$, so $\alpha_2 = -\lambda$ and $\alpha_1 = -2\lambda$. As this is a non-trivial solution, the vectors are linearly dependent.

(Example: set $\lambda = 1$ to obtain $\alpha_3 = 1$, $\alpha_2 = -1$ and $\alpha_1 = -2$ so

$$-2v_1 - v_2 + v_3 = 0 \Rightarrow v_1 = -\frac{1}{2}v_2 + \frac{1}{2}v_3$$
 or $v_2 = -2v_1 + v_3$ or $v_3 = 2v_1 + v_2$.)

Examples 3D

1 Show that $\{e_1, e_2, \dots, e_n\}$ is a basis for \mathbb{R}^n .

This is a linearly independent set that spans \mathbb{R}^n (see Examples 3C.2 and 3D.2), so forms a basis. (Note: this is the standard basis for \mathbb{R}^n).

2 Show that $\{(1,1,0),(0,1,1)\}$ is a basis for $U = \{x = (x_1,x_2,x_3) \in \mathbb{R}^3 : x_1 - x_2 + x_3 = 0\}.$

We have seen that this is a linearly independent set that spans U (see Examples 3C.3, 3D.3).

3 Show that $B = \{(-3,7), (5,5)\}$ is a basis for \mathbb{R}^2 .

Note that the two vectors are not parallel so they are linearly independent. To determine whether B spans \mathbb{R}^2 we must find out whether any arbitrary vector $\mathbf{a} = (a_1, a_2)$ in \mathbb{R}^2 can be expressed as a linear combination $\mathbf{a} = \alpha_1(-3,7) + \alpha_2(5,5)$. Using components, we see that this holds if and only if $-3\alpha_1 + 5\alpha_2 = a_1$, $7\alpha_1 + 5\alpha_2 = a_2$. This system is consistent for all values of a_1 and a_2 with solution $\alpha_1 = (a_2 - a_1)/10$, $\alpha_2 = (7a_1 + 3a_2)/50$. Hence B spans \mathbb{R}^2 , so it is a basis for \mathbb{R}^2 .

Examples 3E

1 Show that $S = \{(1,0,0,-1), (0,1,0,-1), (0,0,1,-1)\}$ is a basis for $U = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$ and state the dimension of U.

Note first that $S \subset U$. Now

$$\mathbf{x} \in U \Leftrightarrow \mathbf{x} = (x_1, x_2, x_3, -x_1 - x_2 - x_3)$$

$$\Leftrightarrow \mathbf{x} = x_1(1, 0, 0, -1) + x_2(0, 1, 0, -1) + x_3(0, 0, 1, -1)$$

$$\Leftrightarrow \mathbf{x} \in sp(S)$$

$$\Leftrightarrow U \text{ is spanned by the set } S.$$

We now have to show that S is a linearly independent set in U:

$$\alpha_1(1,0,0,-1) + \alpha_2(0,1,0,-1) + \alpha_3(0,0,1,-1) = \mathbf{0}$$

$$\Leftrightarrow (\alpha_1, \alpha_2, \alpha_3, -\alpha_1 - \alpha_2 - \alpha_3) = (0, 0, 0, 0)$$
$$\Leftrightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$$

 $\Leftrightarrow S$ is a linearly independent set in U

Hence S is a basis for U. Also, dim U = 3 (from Defn 3.9).

Examples 3F

1 Show that $v_1 = (1, 1, 0), v_2 = (0, 1, 0)$ and $v_3 = (0, 1, 1)$ form a basis for \mathbb{R}^3 .

Since there are 3 vectors in this set and dim $\mathbb{R}^3 = 3$, we need only show that $\{v_1, v_2, v_3\}$ is a linearly independent set.

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \mathbf{0}$$

$$\Leftrightarrow (\alpha_1, \alpha_1 + \alpha_2 + \alpha_3, \alpha_3) = (0, 0, 0)$$

$$\Leftrightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$$

 $\Leftrightarrow \{v_1, v_2, v_3\}$ is a linearly independent set of vectors in \mathbb{R}^3 .

Hence this set from a basis for \mathbb{R}^3 .

Examples 3G

1 Let $\mathbf{b}_1 = (0, 1, 0)$, $\mathbf{b}_2 = \left(-\frac{4}{5}, 0, \frac{3}{5}\right)$, and $\mathbf{b}_3 = \left(\frac{3}{5}, 0, \frac{4}{5}\right)$. Show that the set $S = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ is an orthonormal basis for \mathbb{R}^3 . Express the vector $\mathbf{u} = (1, 1, 1)$ as a linear combination of the vectors in S, and find the coordinates of \mathbf{u} relative to S.

We have $b_i \cdot b_j = \delta_{ij}$, i, j = 1, 2, 3 so the vectors form an orthonormal set. As the dimension of \mathbb{R}^3 is 3, then the fact that these vectors are linearly independent means that they form a basis for \mathbb{R}^3 . So, for any $\boldsymbol{x} \in \mathbb{R}^3$ we have

$$\mathbf{x} = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3 = (\mathbf{x} \cdot \mathbf{b}_1) \mathbf{b}_1 + (\mathbf{x} \cdot \mathbf{b}_2) \mathbf{b}_2 + (\mathbf{x} \cdot \mathbf{b}_3) \mathbf{b}_3$$
(as $\|\mathbf{b}_i\|^2 = 1$ for $i = 1, 2, 3$). Here $\mathbf{u} \cdot \mathbf{b}_1 = 1$, $\mathbf{u} \cdot \mathbf{b}_2 = -\frac{1}{5}$ and $\mathbf{u} \cdot \mathbf{b}_3 = \frac{7}{5}$, so
$$\mathbf{u} = \mathbf{b}_1 - \frac{1}{5} \mathbf{b}_2 + \frac{7}{5} \mathbf{b}_3.$$
Check: $(1, 1, 1) = (0, 1, 0) - \frac{1}{5} \left(-\frac{4}{5}, 0, \frac{3}{5} \right) + \frac{7}{5} \left(\frac{3}{5}, 0, \frac{4}{5} \right).$

That is, the coordinates of \boldsymbol{u} relative to S are $\left(1, -\frac{1}{5}, \frac{7}{5}\right)$.

Examples 3H

1 The vectors $\mathbf{b}_1 = (1, 1, 1)$, $\mathbf{b}_2 = (0, 1, 1)$, $\mathbf{b}_3 = (0, 0, 1)$ form a basis for \mathbb{R}^3 . Use Gram-Schmidt orthogonalisation to transform this into an orthogonal basis $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ for \mathbb{R}^3 .

Step 1: $y_1 = b_1 = (1, 1, 1)$.

Step 2: $y_2 = b_2 + \alpha_1 y_1$. Find α_1 :

$$\boldsymbol{y}_2 \cdot \boldsymbol{y}_1 = 0 \Rightarrow (\mathbf{b}_2 + \alpha_1 \boldsymbol{y}_1) \cdot \boldsymbol{y}_1 = 0 \Rightarrow \mathbf{b}_2 \cdot \boldsymbol{y}_1 + \alpha_1 \|\boldsymbol{y}_1\|^2 = 0 \Rightarrow \alpha_1 = -\frac{\mathbf{b}_2 \cdot \boldsymbol{y}_1}{\|\boldsymbol{y}_1\|^2}$$

SO

$$\mathbf{b}_2 \cdot \mathbf{y}_1 = 2, \quad \|\mathbf{y}_1\|^2 = 3 \Rightarrow \alpha_1 = -\frac{2}{3}$$

and

$$\boldsymbol{y}_2 = (0,1,1) - \frac{2}{3}(1,1,1) = \left(-\frac{2}{3},\frac{1}{3},\frac{1}{3}\right).$$

Step 3: $\boldsymbol{y}_3 = \mathbf{b}_3 + \alpha_1 \boldsymbol{y}_1 + \alpha_2 \boldsymbol{y}_2$. Find α_1 and α_2 :

$$\boldsymbol{y}_3 \cdot \boldsymbol{y}_1 = 0 \Rightarrow (\mathbf{b}_3 + \alpha_1 \boldsymbol{y}_1 + \alpha_2 \boldsymbol{y}_2) \cdot \boldsymbol{y}_1 = 0 \Rightarrow \mathbf{b}_3 \cdot \boldsymbol{y}_1 + \alpha_1 \|\boldsymbol{y}_1\|^2 = 0 \Rightarrow \alpha_1 = -\frac{\mathbf{b}_3 \cdot \boldsymbol{y}_1}{\|\boldsymbol{y}_1\|^2} = -\frac{1}{3}.$$

$$\mathbf{y}_3 \cdot \mathbf{y}_2 = 0 \Rightarrow (\mathbf{b}_3 + \alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2) \cdot \mathbf{y}_2 = 0 \Rightarrow \mathbf{b}_3 \cdot \mathbf{y}_2 + \alpha_2 ||\mathbf{y}_2||^2 = 0 \Rightarrow \alpha_2 = -\frac{\mathbf{b}_3 \cdot \mathbf{y}_2}{||\mathbf{y}_2||^2} = -\frac{1}{2}.$$

So

$$\boldsymbol{y}_3 = (0,0,1) - \frac{1}{3}(1,1,1) - \frac{1}{2}\left(-\frac{2}{3},\frac{1}{3},\frac{1}{3}\right) = \left(0,-\frac{1}{2},\frac{1}{2}\right).$$

So $\{(1,1,1), (-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}), (0, -\frac{1}{2}, \frac{1}{2})\}$ is an orthogonal basis for \mathbb{R}^3 .

NOTE: $y_i \cdot y_j = 0$ is not changed by multiplying either vector by a constant. We can sometimes use this to make the arithmetic easier.

2 The set $S = \{(1,0,0,1), (0,1,0,1), (0,0,1,1)\}$ is a basis for $W = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_4 = x_1 + x_2 + x_3\}$. Apply Gram-Schmidt orthogonalisation to produce an orthonormal basis for W. Find coordinates of $\mathbf{x} = (1,-1,0,0) \in W$ with respect to this orthonormal basis.

Step 1: $y_1 = (1, 0, 0, 1)$.

Step 2: $y_2 = (0, 1, 0, 1) + \alpha_1(1, 0, 0, 1) = (\alpha_1, 1, 0, 1 + \alpha_1)$. Now

$$\boldsymbol{y}_2 \cdot \boldsymbol{y}_1 = 1 + 2\alpha_1 = 0 \Leftrightarrow \alpha_1 = -\frac{1}{2}$$

SO

$$\boldsymbol{y}_2 = (0, 1, 0, 1) - \frac{1}{2}(1, 0, 0, 1) = \left(-\frac{1}{2}, 1, 0, \frac{1}{2}\right).$$

For easier arithmetic, we will multiply by 2 and use $\mathbf{y}_2 = (-1, 2, 0, 1)$ (this is still orthogonal to \mathbf{y}_1).

Step3:

$$\begin{aligned}
 y_3 &= (0,0,1,1) + \alpha_1(1,0,0,1) + \alpha_2(-1,2,0,1) = (\alpha_1 - \alpha_2, 2\alpha_2, 1, 1 + \alpha_1 + \alpha_2) \\
 y_3 \cdot y_1 &= 1 + 2\alpha_1 = 0 \Leftrightarrow \alpha_1 = -\frac{1}{2} \\
 y_3 \cdot y_2 &= 1 + 6\alpha_2 = 0 \Leftrightarrow \alpha_2 = -\frac{1}{6}
\end{aligned}$$

SO

$$y_3 = \left(-\frac{1}{3}, -\frac{1}{3}, 1, \frac{1}{3}\right).$$

Choose $y_3 = (-1, -1, 3, 1)$, so orthogonal basis is

$$\{(1,0,0,1),(-1,2,0,1),(-1,-1,3,1)\}.$$

Orthonormal basis $\{z_1, z_2, z_3\}$ is

$$\left\{ \frac{1}{\sqrt{2}}(1,0,0,1), \frac{1}{\sqrt{6}}(-1,2,0,1), \frac{1}{\sqrt{12}}(-1,-1,3,1) \right\}.$$

Coordinates of $\mathbf{x} = (1, -1, 0, 0) \in W$ with respect to this orthonormal basis are

$$\boldsymbol{x} \cdot \boldsymbol{z}_1 = \frac{1}{\sqrt{2}}; \qquad \boldsymbol{x} \cdot \boldsymbol{z}_2 = -\frac{3}{\sqrt{6}}; \qquad \boldsymbol{x} \cdot \boldsymbol{z}_3 = 0,$$

that is,

$$x = (1, -1, 0, 0) = \frac{1}{\sqrt{2}}z_1 - \frac{3}{\sqrt{6}}z_2 + 0z_3.$$