目录

一、实验要求	2
二、参考内容	3
1. 数据选择器及应用	3
2. 译码器及应用	6
三、实验开发板 DEO 的基本使用	9

一、实验要求

要求 1: 参照参考内容,调用 MAXPLUSII 库中的组合逻辑器件 74153 双四数据选择器和 7400 与非门,用原理图输入方法实现一位全加器。(QuartusII 实现波形仿真和下载开发板验证)

要求 2: 参照参考内容,调用 MAXPLUSII 库中的组合逻辑器件 74138 三线八线译码器和 7420 与非门,用原理图输入方法实现一位全减器。(QuartusII 实现波形仿真和下载开发板验证)

要求 3: 在要求 1 和要求 2 的基础上,自选门电路或组合逻辑电路,用一个开关作为控制端,当控制开关为 0 时实现一位全加器;当控制开关为 1 时实现一位全减器。(Quartus II 实现波形仿真和下载开发板验证)

二、参考内容

1. 数据选择器及应用

一、实验目的

- 1. 通过实验的方法学习数据选择器的电路结构和特点。
- 2. 掌握数据选择器的逻辑功能及其基本应用。

二、实验内容

- 1. 某导弹发射场有正、副指挥员各一名,操作员两名。当正副指挥员同时发出命令时,两名操纵员中有一人按下发射按钮,即可产生一个点火信号发射导弹,设计组合逻辑电路,用 74LS153 和门电路完成点火信号的控制,写出函数式,列出真值表,画出实验电路。
- 2. 用 **74LS153 和门电路**设计一个一位全加器。

三、实验步骤与结果

1.点火信号控制电路设计

组合逻辑电路采用正逻辑。A、B、C、D 为四个输入变量(A、B 为指挥员, C、D 为操作员), F表示输出变量(1表示发射, 0表示不发射)。真值表为:

А	В	С	D	F
1	1	1	0	1
1	1	0	1	1
1	1	1	1	1

画出卡诺图:

АВ	00	01	11	10
CD				
00	0	0	0	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

降维卡诺图:

AB	00	01	11	10
c				
0	0	0	D	0
1	0	0	1	0

根据降维卡诺图得到如下表达式:

$$F = AB\overline{C}D + ABC$$

$$= AB(C+D)$$

组合逻辑电路为:

2. 一位全加器设计

组合逻辑电路中 A、B、C 为输入端, S1、C0 为输出端, 其中 A 为被加数, B 为加数, C 为前级加法器的进位, S1 为和的个位, C0 表示是否进位。真值表为:

А	В	С	S1	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

根据真值表, 画出卡诺图:

АВ	00	01	11	10
CI				
0	0	1	0	1
1	1	0	1	0

S卡诺图

AB	00	01	11	10
CI				
0	0	0	1	0
1	0	1	1	1

co 卡诺图

降维后:

AB	00	01	11	10
S1 端	CI	\overline{CI}	CI	\overline{CI}
CO 端	0	CI	1	CI

组合逻辑电路为:

2. 译码器及应用

一、实验目的

- 1. 通过实验的方法学习 74LS138 的电路结构和特点。
- 2. 掌握 74LS138 的逻辑功能及其基本应用。

二、实验内容

- 1. 将两个 3/8 线译码器组成 4/16 线译码器。
- 2. 利用 74LS138 设计实现脉冲分配器。
- 3. 利用 74LS138 设计实现全加器。

三、实验步骤与结果

1. 利用使能端将两片 74LS138(3/8 译码器)组合成一片四线十六线译码器。

74LS138 扩展图

2. 设计实现脉冲分配器。

二进制译码器实际上也是脉冲分配器。利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器(又称多路分配器),如图所示。若在 G1 输入端输入数据信息, $\overline{G_{2A}} = \overline{G_{2B}} = 0$,地址码所对应的输出是 G1 数据信息的反码;若从 $\overline{G_{2A}}$ 端输入数据信息,令 G1=1、 $\overline{G_{2B}} = 0$,地址码所对应的输出就是 $\overline{G_{2B}}$ 端数据信息的原码。若数据信息是时钟脉冲,则数据分配器便成为时钟脉冲分配器。

74LS138 实现脉冲分配器

3. 利用 74LS138 设计实现全加器。

3位二进制译码器给出3变量的全部最小项;

$$Y_{0} = \overline{\overline{C}B\overline{A}} = \overline{m_{0}} \quad Y_{1} = \overline{\overline{C}BA} = \overline{m_{1}} \quad Y_{2} = \overline{\overline{C}B\overline{A}} = \overline{m_{2}} \quad Y_{3} = \overline{\overline{C}BA} = \overline{m_{3}}$$

$$Y_{4} = \overline{\overline{C}B\overline{A}} = \overline{m_{4}} \quad Y_{5} = \overline{\overline{C}BA} = \overline{m_{5}} \quad Y_{6} = \overline{\overline{C}B\overline{A}} = \overline{m_{6}} \quad Y_{7} = \overline{\overline{C}BA} = \overline{m_{7}}$$

利用这些最小项实现各种组合逻辑电路。

Α	В	C _{i-1}	S	CO
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

①写出全加器函数的标准与或表达式,并变换为与非-与非形式。

$$\begin{cases} S(A_i, B_i, C_{i-1}) = \sum m(1, 2, 4, 7) = \overline{m_1} \overline{m_2} \overline{m_4} \overline{m_7} \\ C_o(A_i, B_i, C_{i-1}) = \sum m(3, 5, 6, 7) = \overline{m_3} \overline{m_5} \overline{m_6} \overline{m_7} \end{cases}$$

②画出用二进制译码器和与非门实现这些函数的接线图。

用 74LS138 实现全加器

三、实验开发板 DEO 的基本使用

(1) 开关

开发板DE0提供了10个拨动开关,分别以SW0到SW9标注。它们如图4所示分别直接连接到Cyclone III FPGA芯片上。开关拨至上方对应的FPGA输入为高电平(3.3V);当开关拨至下方对应的FPGA输入为低电平(0V)。拨动开关的引脚分配如表1所示。

图4 拨动开关与Cyclone III FPGA之间的连接

信号名称	FPGA引脚号
SW[0]	PIN_J6
SW[1]	PIN_H5
SW[2]	PIN_H6
SW[3]	PIN_G4
SW[4]	PIN_G5
SW[5]	PIN_J7
SW[6]	PIN_H7
SW[7]	PIN_E3
SW[8]	PIN_E4
SW[9]	PIN_D2

表1 拨动开关的引脚分配表

(2) LED灯

板上提供了10个用户可控的发光二极管,分别以LDE0到LED9标注。它们如图5所示方式连接到Cyclone III FPGA芯片上。当FPGA对应输出端口为高电平时,点亮相应的发光二极管。发光二极管的引脚分配如表2所示。

图5 发光二极管与Cyclone III FPGA之间的连接

表2 发光二极管的引脚分配表

信号名称	FPGA引脚号
LEDG[0]	PIN_J1
LEDG[1]	PIN_J2
LEDG[2]	PIN_J3
LEDG[3]	PIN_H1
LEDG[4]	PIN_F2
LEDG[5]	PIN_E1
LEDG[6]	PIN_C1
LEDG[7]	PIN_C2
LEDG[8]	PIN_B2
LEDG[9]	PIN_B1

(3) 7段数码管

板上提供了4个7段共阳极数码管,分别以HEX0到HEX3标注。它们如图6所示方式连接到FPGA芯片上。当FPGA对应输出端口为低电平时,点亮数码管相应的段;当FPGA对应输出端口为高电平时,熄灭数码管相应的段。数码管的各段位置索引如图7所示。4个7段共阳极数码管的各段引脚与FPGA引脚引脚分配如表3所示。

表34个7段共阳极数码管的各段引脚与FPGA引脚分配表

信号名称	FPGA	信号名称	FPGA	信号名称	FPGA	信号名称	FPGA
THE STEERING	引脚号		引脚号		引脚号		引脚号
HEX0-0	PIN_E11	HEX1-0	PIN_A13	HEX2-0	PIN_D15	HEX3-0	PIN_B18
HEX0-1	PIN_F11	HEX1-1	PIN_B13	HEX2-1	PIN_A16	HEX3-1	PIN_F15
HEX0-2	PIN_H12	HEX1-2	PIN_C13	HEX2-2	PIN_B16	HEX3-2	PIN_A19
HEX0-3	PIN_H13	HEX1-3	PIN_A14	HEX2-3	PIN_E15	HEX3-3	PIN_B19
HEX0-4	PIN_G12	HEX1-4	PIN_B14	HEX2-4	PIN_A17	HEX3-4	PIN_C19
HEX0-5	PIN_F12	HEX1-5	PIN_E14	HEX2-5	PIN_B17	HEX3-5	PIN_D19
HEX0-6	PIN_F13	HEX1-6	PIN_A15	HEX2-6	PIN_F14	HEX3-6	PIN_G15
HEX0-DP	PIN_D13	HEX1-DP	PIN_B15	HEX2-DP	PIN_A18	HEX3-DP	PIN_G16

(4) 时钟电路

板上提供一个50MHz时钟信号,该时钟信号连接到FPGA中作为用户逻辑时钟使用。 实验板时钟分配框图如图8所示。时钟输入到FPGA的I/O引脚的相关引脚分配如表4所示。

注:实验中使用用PIN_G21管脚。

图8 时钟分配框图

表4 FPGA时钟输入的引脚分配表

信号名称	FPGA引脚号
CLOCK_50	PIN_G21
CLOCK_50_2	PIN_B12