| CLASSE : MPSI 3                                                                                                                                                                                                                                                          | PRENOM:                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exercice 1 a) Quelle instruction permet d'obtenir le résultat de 14 <sup>21</sup> ?                                                                                                                                                                                      | Code de la fonction :                                                                                                                                                                                                                 |
| Quel est le chiffre des centaine dans le résultat obtenu?                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |
| Quelle est la valeur obtenue?                                                                                                                                                                                                                                            | <b>b)</b> Quel est la valeur du terme $u_{10}$ de rang 10 de la suite arithmetico-géométrique définie par $: u_0 = 2$ , et $\forall n \in \mathbb{N}, u_{n+1} = 2.u_n - 1$ ?                                                          |
| $2^{31}-1$ est-il multiple de 7?                                                                                                                                                                                                                                         | Exercice 4 Déterminer le plus petit entier naturel $N$ tel que $\sum_{k=1}^{N} \frac{1}{k} \ge 6$ :                                                                                                                                   |
| Exercice 2 a) Quelle est le PGCD des nombre 7112 et 195 902?  Ecrire le code utilisé:                                                                                                                                                                                    | Donner le code utilisé :                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |
| b) Quelle est l'écriture en binaire du nombre 108?  Ecrire le code utilisé:                                                                                                                                                                                              | Exercice 5 Ecrire une <u>fonction</u> syracuse() qui prend en paramètre un entier $n$ et qui <u>retourne la liste</u> des $n+1$ premiers termes $u_0, u_1, \ldots, u_n$ de la suite $(u_n)_n$ définie par la relation de récurrence : |
|                                                                                                                                                                                                                                                                          | $u_0 = 7 \qquad \forall n \in \mathbb{N}, \ u_{n+1} = \begin{cases} \frac{u_n}{2} & \text{si } u_n \text{ est pair} \\ 3u_n + 1 & \text{si } u_n \text{ est impair} \end{cases}$ a) Donner le code de la fonction :                   |
| Exercice 3 Ecrire une fonction arithmetico-geom(a,q,r,N) prenant en paramètre 4 nombres a,q,r et un entier N et qui retourne le terme de rang $N$ $u_N$ de la suite arithmético-géométrique définie par : $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = q.u_n + r$ . |                                                                                                                                                                                                                                       |

| • |   |   |   | • |  | • |   |   |  |   |  |      |  |   |  |   |   |   |   |   |   |   |   | • |   | • |   |   |   |   |   |   |  | <br> |      |   |  |   |   |   | <br> |  |  |  |   | • |  |  |   |  |   |   |   |
|---|---|---|---|---|--|---|---|---|--|---|--|------|--|---|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|------|------|---|--|---|---|---|------|--|--|--|---|---|--|--|---|--|---|---|---|
|   | • | • | • | • |  | • | • | • |  | • |  | <br> |  | • |  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |  | <br> |      | • |  | • | • | • | <br> |  |  |  | • | • |  |  | • |  | • | • | • |
| • |   |   |   | • |  | • |   | • |  | • |  |      |  |   |  |   |   |   | • |   |   | • |   | • |   | • |   |   |   | • |   |   |  |      |      |   |  |   | • |   | <br> |  |  |  |   | • |  |  |   |  |   |   | • |
|   | • |   |   |   |  |   |   |   |  |   |  | <br> |  |   |  |   |   |   |   |   |   |   |   | • |   |   |   |   |   |   |   |   |  | <br> |      |   |  |   |   |   | <br> |  |  |  |   |   |  |  |   |  |   |   | • |
|   |   |   |   |   |  |   |   |   |  |   |  | <br> |  |   |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  | <br> | <br> |   |  |   |   |   | <br> |  |  |  |   |   |  |  |   |  |   |   |   |

**b)** Quelle est la valeur de  $u_{100}$ ? ......

## Exercice 6

On cherche les solutions de l'équation diophantienne :

$$(x, y, z) \in N^3, \ 0 < x, y, z \le 57, \ x^2 + y^2 = z^2 \quad (*)$$

a) A l'aide d'une compréhension de liste créer la liste L constituée de toutes les listes [x,y,z] pour lesquelles (x,y,z) est solution de l'équation (\*).

| Code | e u | ıti | lis | é | : | <br> |    |    | ٠. | ٠. |  |    | <br> |   |  | <br> | <br> |   | <br>   | <br> | <br>٠. |   | <br>٠. |       | <br>   |  |    |  | <br> |    |  |  |
|------|-----|-----|-----|---|---|------|----|----|----|----|--|----|------|---|--|------|------|---|--------|------|--------|---|--------|-------|--------|--|----|--|------|----|--|--|
|      |     |     |     |   |   | <br> | ٠. | ٠. | ٠. | ٠. |  |    | ٠.   | • |  | <br> | <br> | • | <br>٠. | <br> | <br>   | • | <br>٠. |       | <br>٠. |  | ٠. |  |      | ٠. |  |  |
|      |     |     |     |   |   | <br> |    |    | ٠. | ٠. |  |    |      |   |  | <br> | <br> |   | <br>   | <br> | <br>٠. | • | <br>   |       | <br>   |  |    |  | <br> |    |  |  |
|      |     |     | • • |   |   | <br> |    |    |    | ٠. |  |    | <br> | • |  | <br> | <br> | • | <br>   | <br> | <br>٠. | • | <br>   | <br>• | <br>   |  |    |  | <br> |    |  |  |
|      |     |     | •   | • |   | <br> |    | ٠. | ٠. | ٠. |  | ٠. | ٠.   | • |  | <br> | <br> | • | <br>٠. | <br> | <br>٠. | • | <br>   | •     | <br>٠. |  | ٠. |  |      | ٠. |  |  |
|      |     |     |     |   |   | <br> |    |    |    |    |  |    | <br> |   |  | <br> | <br> |   | <br>   | <br> | <br>   |   | <br>   |       | <br>   |  |    |  | <br> |    |  |  |

## Exercice 7

Pour un entier naturel  $n \in \mathbb{N}^*$  le n-ième nombre de Catalan  $C_n$  est le nombre de façon de décomposer un polygône régulier ayant n+2 côtés en triangles en le découpant le long de diagonales. On peut aussi définir la suite  $(C_n)_{n \in \mathbb{N}}$  par la relation de récurrence :

$$C_0 = 1, \quad \forall n \in \mathbb{N}, \quad C_{n+1} = \sum_{k=0}^{n} C_k \cdot C_{n-k}$$

Exemple:  $C_3 = 5$  (voir la figure suivante).



a) Ecrire une fonction catalan() prenat en paramètre un entier n et qui retourne la liste des nombres de Catalan de  $C_0$  à  $C_N$ .

Code de la fonction :

| • • | <br>• • | <br>    | <br> |     |     |     | <br> | • • | <br>    | <br>• |     | ٠.  | • |     | <br>• |     | <br>• |     |     |     | <br>  |     | <br>    |     |     |     | ٠.  | • |     |     |     |     | ٠.  |     | ٠.  |  |
|-----|---------|---------|------|-----|-----|-----|------|-----|---------|-------|-----|-----|---|-----|-------|-----|-------|-----|-----|-----|-------|-----|---------|-----|-----|-----|-----|---|-----|-----|-----|-----|-----|-----|-----|--|
|     | <br>• • | <br>    | <br> |     |     |     | <br> |     | <br>    |       |     |     |   |     |       |     |       |     |     |     | <br>  |     | <br>    |     |     |     |     |   |     |     |     |     |     |     |     |  |
|     | <br>    | <br>    | <br> |     |     |     | <br> |     | <br>    |       |     |     |   |     |       |     |       |     |     |     | <br>  |     | <br>    |     |     |     |     |   |     |     |     |     |     |     |     |  |
|     | <br>    | <br>    | <br> |     |     |     | <br> |     | <br>    |       |     |     |   |     |       |     |       |     |     |     | <br>  |     | <br>    |     |     |     |     |   |     |     |     |     |     |     |     |  |
|     | <br>    | <br>    | <br> |     |     |     | <br> |     | <br>    |       |     |     |   |     |       |     |       |     |     |     | <br>  |     | <br>    |     |     |     |     |   |     |     |     |     |     |     |     |  |
|     | <br>    | <br>    | <br> |     |     |     |      |     | <br>    | <br>  |     |     |   |     | <br>  |     |       |     |     |     |       |     | <br>    |     |     |     |     |   |     |     |     |     |     |     |     |  |
|     |         |         |      |     |     |     |      |     |         |       |     |     |   |     |       |     |       |     |     |     |       |     |         |     |     |     |     |   |     | . • | . • | •   | . • | . • | •   |  |
| • • | <br>• • | <br>• • | <br> | • • | • • | • • | <br> | •   | <br>• • | <br>• | • • | • • | • | • • | <br>• | • • | <br>• | • • | • • | • • | <br>• | • • | <br>• • | • • | • • | • • | • • | • | • • | • • |     | • • |     |     | • • |  |

b) Quel est le résultat de l'appel de catalan(12)?