Commodity Futures Markets Options

Rodney Beard

April 9, 2017

Commodity Futures Markets Options

Rodney Beard

The Greeks continued

Volatility Smiles

Readings

Commodity Futures Markets Options

Rodney Beard

The Greeks continued

Volatility Smiles

 H. Geman, Ch.4. Agricultural Commodity Spot Markets, in: Agricultural Finance, John Wiley & Sons, 2015.

Rodney Beard

The Greeks continued

Volatility Smiles

$$S(t) + P(t) = C(t) + ke^{-r(T-t)}$$

Differentiating with respect to S(t):

$$1 + \frac{\partial P}{\partial S(t)} = \frac{\partial C}{\partial S}$$

This is just

$$1 + \Delta_{Put} = \Delta_{call}$$

Rearranging $\delta_{Put} = -(1 - \Delta_{call}) = -(1 - N(d_1))$ Term in parentheses on the right lies between 0 and 1 so Price of the put is a decreasing function of S

Volatility Smiles

$$\Gamma_{Put} = \frac{\partial \Delta_{Put}}{\partial S} = \frac{\partial \Delta_{call}}{\partial S} = \Gamma_{call}$$

So a Put option is also convex even though Δ is negative.

$$heta_{call} = rac{\partial \mathit{C}}{\partial t} = -rac{\mathit{S}\sigma \mathit{N}'(\mathit{d}_1)}{2\sqrt{\mathit{T}-1}} - \mathit{rke}^{-\mathit{r}(t-t)}\mathit{N}(\mathit{d}_2)$$

You should be able to verify this yourself!! How?

Volatility Smiles

$$C(t) = S(t)N(d_1) - ke^{r(T-t)}N(d_2)$$

C(t) = intrinsic value + Time value

Rodney Beard

The Greeks continued

Volatility Smiles

$$Vega_{call} = \frac{\partial C}{\partial \sigma} = S\sqrt{T - t}N'(d_1)$$

Use put-call parity to show

$$Vega_{put} = \frac{\partial P}{\partial \sigma} = S\sqrt{T - t}N'(d_1)$$

Rodney Beard

The Greeks continued

Volatility Smiles

Consider a long call and Taylor expand profit and loss:

$$C(t+\delta t, S_t+\delta S_t)-C(t, S_t) = \frac{\partial C}{\partial t}\delta t + \frac{\partial C}{\partial S_t}\delta S_t + \frac{1}{2}\frac{\partial^2 C}{\partial S_t^2}(\delta S_t)^2$$

Now delta hedge this by adding $-\frac{\partial C}{\partial S} = -\Delta$ to this:

$$C^{cov}(t+\delta t, S_t+\delta S_t) - C^{cov}(t, S_t) = \frac{\partial C^{cov}}{\partial t} \delta t + \frac{1}{2} \frac{\partial^2 C^{cov}}{\partial S_t^2} (\delta S_t)^2$$

$$C^{cov}(t+\delta t, S_t+\delta S_t) - C^{cov}(t, S_t) = \frac{\partial C^{cov}}{\partial t} \delta t + \frac{1}{2} \Gamma_{option}(\delta S_t)^2$$

The call value is now covered by the Delta hedge so we denote it with C^{cov} rather than C. $\Gamma_{option} > 0$.

These form a large class of models often estimated using using aRCH/GARCH econometric models and similar methods (discrete-time)

$$C^{cov}(t + \delta t, S_t + \delta S_t) - C^{cov}(t, S_t) = \frac{\partial C^{cov}}{\partial t} \delta t + \frac{1}{2} \Gamma_{option} (\delta S_t)^2 + vega_{call} \delta \sigma_t$$

Ownership pf physical assets can lead to profit changes due to stochastic volatility.

Commodity price behavior is equivalent to that of a stock paying a continuous dividend equivalent to the convenience yield *y* (benefit from holding inventory).

Underlying rice dynamics is geometric Brownian motion:

$$\frac{dS}{S} = (\mu - y)dt + \sigma dW$$

Black-Scholes formula in this case is

$$C(t) = S(t)e^{-y(T-t)}N(d_1) - ke^{-r(T-t)}N(d_2)$$

$$\begin{cases} d_1 = & \frac{ln\left(rac{S(t)e^{-y(T-t)}}{ke^{-r(T-t)}}
ight) + rac{1}{2}\sigma^2(T-t)}{\sigma\sqrt{T-t}} \\ d_2 = & d_1 - \sigma\sqrt{T} \end{cases}$$

- Call options written on commoditties have a unique price and replicating portfolio (put-call parity)
- dynamic hedging holds (delta hedging is possible) as long as storage is possible and portfolio is rebalanced daily (continuously). Persihable items cannot be hedged in this way.
- Extension to other price processes possible (see next slide)
- Convenience yield is assumed constant. What if it isn't constant? How should we change the model to account for that?
- If interest rates aren't constant replace discount factor by a Bond price B(t, T) with unit payoff.
- ► For options with maturities far in the future constant convenience yield cannot be assumed.

Mean-reverting:

$$dS = (\mu - S)dt + \sigma dW$$

Ornstein-Uhlenbeck:

$$dS = a(\mu - S)dt + \sigma dW$$

Fischer Black (1976) The pricing of commodity contracts, Journal of Financial Economics.

- Futures can be written on stocks or commodities.
- Maturity of future T_f must be greater than maturity T
 of the option (should be obvious)

$$C(t) = e^{-r(T-t)} \left[F^{T_f}(t) N(d_1) - k N(d_2) \right]$$

$$\begin{cases} d_1 = & \frac{ln\left(\frac{F^{T_f}(t)}{k}\right) + \frac{1}{2}\sigma^2(T-t)}{\sigma\sqrt{T-t}} \\ d_2 = & d_1 - \sigma\sqrt{T} \end{cases}$$

If $T = T_f$ then At maturity S(T) = F(T, T) so

$$F(T,T) = S(t)e^{(r-y)(T-t)}$$

subsittuting this into the call pricing formula:

$$C(t) = e^{-r(T-t)} \left[S(t)e^{(r-y)(T-t)}N(d_1) - kN(d_2) \right]$$

which simplifies to

$$C(t) = \left[S(t)e^{-y(T-t)}N(d_1) - e^{-r(T-t)}kN(d_2)\right]$$

which is the Merton formula for value of a call option written on a spot price.

Volatility Smiles

By Put call parity:

$$C9t) + ke^{-r(T-t)} = F(t, T_f)e^{-r(t-t)} + P(t)$$

Say you have data for options with different strikes. then

- Set the option price equal to the oberved market price of the option for each strike price.
- ▶ Invert the formula to obtain the volatility σ
- ▶ Plot σ against the different strike prices
- We will do this in a lab exercise.

The End

Commodity Futures Markets Options

Rodney Beard

The Greeks continued

Volatility Smiles

Thanks for listening!

