ZMUM - Projekt 2 – Raport

1. Cel projektu.

Celem projektu było zbadanie metod selekcji zmiennych. Należało zaproponować metody selekcji zmiennych oraz klasyfikacji, które umożliwiają zbudowanie modelu o dużej mocy predykcyjnej przy użyciu możliwie małej liczby zmiennych.

2. Opis przetwarzania danych.

Dane treningowe znajdowały się w pliku artificial_train.data, etykiety danych treningowych w pliku artificial_train.labels, a dane walidacyjne w pliku artificial_valid.data. W danych treningowych było równo po 1000 obserwacji z klasy 1 oraz z klasy -1. Pierwszym krokiem jaki zrobiłam było połączenie danych z plików artificial_train.dataiartificial_train.labels w jedną ramkę danych, aby ułatwić sobie pracę z modelami. Następnie wykonywałam takie kroki:

- 1) Dzielenie za pomocą kroswalidacji (metoda createDataPartition() z pakietu caret) danych treningowych na dwa zbiory:
 - train do selekcji zmiennych i trenowania modeli; tu 90% obserwacji,
 - test do testowania; tu pozostałe 10% obserwacji.
- 2) Selekcja zmiennych na zbiorze train.
- 3) Budowanie modeli random forest na wybranych w poprzednim kroku zmiennych, począwszy od najbardziej istotnej zmiennej, następnie dodając kolejne, coraz mniej istotne zmienne.
- 4) Predykcja na zbiorze test.
- 5) Obliczanie balanced accuracy (BA).

Powyższe kroki wykonywałam iteracyjnie, by móc uśrednić otrzymane wyniki miary BA. Następnie dla najlepszych zestawów zmiennych, tj. dających największe BA, dla każdej z metod zrobiłam 50, 100, i 2000 iteracji, w których dzieliłam na train i test oraz budowałam modele i dokonywałam predykcji, by móc jak najlepiej uśrednić miarę BA, a oprócz niej także dokładność i precyzję.

Kolejnym krokiem było wybranie spośród analizowanych metod selekcji najlepszej i dokonanie za jej pomocą predykcji dla danych ze zbioru artificial_valid.data, przypisując każdej obserwacji oszacowane prawdopodobieństwo aposteriori dla klasy 1. Wyniki predykcji zostały zapisane w pliku AGAPAL_artificial_prediction.txt, natomiast w pliku AGAPAL artificial features.txt zostały zapisane indeksy wybranych zmiennych.

3. Podsumowanie eksperymentów.

Testowałam następujące metody selekcji zmiennych:

- 1) variable importance metoda varImp() z pakietu caret,
- 2) Boruta metoda Boruta () z pakietu Boruta.

Jeśli chodzi o metody klasyfikacji, za każdym razem używałam randomForest() z pakietu randomForest z parametrem ntree = 100.

Każdą z metod najpierw przetestowałam jednorazowo, w większości przypadków z domyślnymi parametrami, w celu zorientowania się, jakie mniej więcej wyniki dają poszczególne metody, oraz ile czasu zajmuje ich wykonanie. Dzięki temu mogłam zdecydować, na jak dużo iteracji mogę sobie pozwolić.

3.1 Variable importance.

Chcąc użyć tej metody, najpierw musiałam użyć metody train (), również z pakietu caret, w celu wytrenowania modelu. W metodzie train () modyfikowałam parametr method. Funkcja varImp () zwracała mi dla method równego rpart zawsze 8 – 9 zmiennych, natomiast dla wartości lvq oraz rf 500 zmiennych – do dalszych testów brałam ok. 20 zmiennych o największej istotności. Poniżej są przedstawione wykresy BA od liczby zmiennych w modelu kolejno dla method = rpart, lvq oraz rf (na wykresach BA uśrednione po zestawach zmiennych w modelach, następnie max po liczbie zmiennych w modelu).

3.2 Boruta.

Metoda Boruta natomiast zawsze zwracała 19 – 21 zmiennych. Tu również na wykresie BA uśrednione po zestawach zmiennych w modelach, następnie max po liczbie zmiennych w modelu.

Rysunek 4 Boruta

3.3 Podsumowanie.

Poniższa tabela przedstawia najlepsze uśrednione wyniki.

Metoda	ВА	Precyzja	Liczba zmiennych	Zmienne w modelu
varImp, method = rpart	80.17 %	79.53%	8	V106 + V129 + V242 + V337 + V339 + V379
				+ V476 + V49
varImp, method = lvq	86.91 %	86.67%	15	V106 + V129 + V137 + V242 + V337 + V339
				+ V379 + V443 + V454 + V473 + V476 + V49
				+ V494 + V5 + V65
varImp, method = rf	87.86 %	87.73%	15	V106 + V154 + V242 + V282 + V29 + V319 +
				V339 + V379 + V434 + V443 + V454 + V473
				+ V476 + V49 + V494
Boruta	88.29 %	88.48%	16	V106 + V129 + V154 + V242 + V282 + V29 +
				V319 + V337 + V339 + V379 + V434 + V443
				+ V452 + V473 + V476 + V49
Boruta	88.94 %	88.97%	20	V106 + V129 + V154 + V242 + V282 + V29 +
				V319 + V337 + V339 + V379 + V434 + V443
				+ V452 + V454 + V456 + V473 + V476 + V49
				+ V494 + V65

4. Uzasadnienie wyboru końcowej metody.

Jak widać w powyższej tabelce, metoda Boruta okazała się najlepsza. Niewiele różniły się wyniki dla 16 oraz 20 zmiennych, więc ostatecznie wybrałam model z mniejszą liczbą zmiennych, tj. **metodę Boruta dla 16 zmiennych**.