

#### Variance

- Random variables, by definition, result in different outcomes
- The variation in random variables is captured by their distribution
- Expectation gives mean/average/expected value of the random variable given the distribution
- Variance gives the <u>variation from the expected value</u>
- Variance also measures amount of fluctuation of the variable Examples:
  - Variance in returns on a certain investment in the market (Risk measure)
  - Variance in rainfall during the coming monsoon

### Univariate variance

The variance and its square root, standard deviation of some function f(x) with respect to a probability distribution P(x) measure how much the value of f(x) varies for various samples when x is drawn from P

Denoted by  $\mathbb{V}_{x \sim P}[f(x)]$ 

- □ If P is clear from the context  $\mathbb{V}_x[f(x)]$
- $\Box$  If x is also clear from the context  $\mathbb{V}[f(x)]$
- □ **Usually**, simply denoted as V[f] or Var[f]
- Mathematically,

$$\mathbb{V}[f(x)] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^{2}]$$
$$= \mathbb{E}[(f(x) - \overline{f(x)})^{2}]$$

The standard deviation is given as  $\sigma[x] = \sqrt{\mathbb{V}[x]}$ 

### Covariance (univariate)

- Note that  $\mathbb{V}[x] = \mathbb{E}[(x \overline{x})^2] = \mathbb{E}[(x \overline{x})(x \overline{x})]$
- This notion can be generalized to a pair of variables x and y to find the covariance

$$Cov[x, y] = \mathbb{E}[(x - \overline{x})(y - \overline{y})] = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$

- Similarly,  $Cov[f(x), g(y)] = \mathbb{E}[(f(x) \mathbb{E}[f(x)])(g(y) \mathbb{E}[g(y)])]$
- A related quantity is the correlation, defined as

$$corr[x, y] = \frac{Cov[x, y]}{\sqrt{\mathbb{V}[x]\mathbb{V}[y]}}$$

- Measures how linearly correlated the two random variables are
- Note Cov[x, x] = Var[x] and corr[x, x] = 1

#### Interpreting Covariance and correlation







- Positive covariance means when x increases, y is expected to increase too.
- Negative covariance means when x increases, y is expected to decrease
- Correlation close to 1 means strongly, positively correlated
- Correlation close to -1 means strongly, negatively correlated
- Correlation close to 0 means no (linear) correlation

# Covariance simplification

$$Cov[x,y] = \mathbb{E}[(x-\overline{x})(y-\overline{y})] = \mathbb{E}[(x-\mathbb{E}[x])(y-\mathbb{E}[y])]$$

- This can be simplified as  $Cov[x,y] = \overline{xy} \overline{x} \, \overline{y} = \mathbb{E}[xy] \mathbb{E}[x]\mathbb{E}[y]$
- Proof: We use the fact that  $\overline{\overline{x}} = \overline{x}$  i.e.  $\mathbb{E}[\mathbb{E}[x]] = \mathbb{E}[x]$

For 
$$x = y$$
, this relation gives  $Var[x] = \mathbb{E}[x^2] - (\mathbb{E}[x])^2$ 

## Independence and covariance

When x, y are two independent random variables, Cov[x, y] = 0





- However, the converse is not true
  - That is, Cov[x, y] = 0 need not mean x, y are independent
- Example Let x be a random variable with  $\mathbb{E}[x] = 0$  and  $\mathbb{E}[x^3] = 0$
- Let  $y = x^2$  be another random variable
- Then,  $Cov[x, y] = \mathbb{E}[xy] \mathbb{E}[x]\mathbb{E}[y] = \mathbb{E}[x^3] \mathbb{E}[x]\mathbb{E}[x^2] = 0$ 
  - □ That is, covariance is zero even though the variables are not independent
  - It turns out zero covariance only means that there is no linear relationship

#### Covariance matrix

- If  $x \in \mathbb{R}^n$  is a vector, then it is often useful to know pairwise covariances between all pairs of components
  - Think of the x being the components of an input vector such as pixels of an image
- That is, define  $Cov[x,x]_{i,j} = Cov[x_i,x_j]$

$$\operatorname{Cov}[x,x] = \begin{bmatrix} \operatorname{Cov}[x_1,x_1] & \operatorname{Cov}[x_1,x_2] & \cdots & \operatorname{Cov}[x_1,x_n] \\ \operatorname{Cov}[x_2,x_1] & \operatorname{Cov}[x_2,x_2] & \cdots & \operatorname{Cov}[x_2,x_n] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[x_n,x_1] & \operatorname{Cov}[x_n,x_2] & \cdots & \operatorname{Cov}[x_n,x_n] \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Note that the diagonal elements are simply the variances of individual components, that is,  $Cov[x_i, x_i] = Var[x_i]$