

Digital PLLs: A Tutorial in Slides

Gisselquist Technology, LLC

Daniel E. Gisselquist, Ph.D.

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

- Basic Theory
- Type One DPLLs (Phase tracking)
- DPLL Analysis
- Type Two DPLLs (Phase and Frequency tracking)

Topics

➢ Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z–Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

Basic Theory

PLL Theory

Topics

Basic Theory

▶ PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

Purpose: Why this section?

- Loop Structure
- Small Sine approximation
- Loop Transforms
- Error Signals
- Lock Indication

Block Diagram

Topics

Basic Theory

PLL Theory

➢ Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

This is the basic block diagram of any PLL.

- o There's a phase detector, igotimes
- \Box A Loop filter, $F\left(z\right)=H_{LP}\left(z\right)H_{PI}\left(z\right)$, and
- A Numerically Controlled Oscillator (NCO).

Signal Structure

 $\approx \frac{A}{2} (\theta_i - \theta_o)$

Topics

Basic Theory

PLL Theory

Block Diagram

□ Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

- A PLL is fundamentally a non-linear system
- Its performance is determined by the
 - Loop filter, $F\left(z\right)=H_{LP}\left(z\right)H_{PI}\left(z\right)$, and
 - The state of the NCO
- \Box If $\frac{A}{2}\left(\theta_{i}-\theta_{o}\right)\approx0$, then this system is approximately linear

 H_{PI}

Linearization

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

- We'll make the small angle assumption throughout
- The entire loop may then be approximated as a linear system.

z-Transform

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

 \triangleright z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

Open Loop Transfer Function,

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

 \triangleright G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

Open Loop Transfer Function

$$G(z) = \frac{\Theta_o(z)}{\Theta_e(z)} = \frac{\Theta_o(z)}{\Theta_i(z) - \Theta_o(z)} = \frac{z^{-1}}{1 - z^{-1}} z^{-D} F(z)$$

Closed Loop Transfer Function

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

 \triangleright H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

$$\Theta_{o}(z) = G(z) \Theta_{e}(z) = G(z) (\Theta_{i}(z) - \Theta_{o}(z))$$

$$\Theta_{o}(z) (1 + G) = G(z) \Theta_{i}(z)$$

$$H(z) \triangleq \frac{\Theta_{o}(z)}{\Theta_{i}(z)} = \frac{G(z)}{1 + G(z)}$$

Error Function

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

 \triangleright E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

$$E(z) \triangleq \frac{\Theta_{e}(z)}{\Theta_{i}(z)} = \frac{\Theta_{i}(z) - \Theta_{o}(z)}{\Theta_{i}(z)} = \frac{1}{1 + G(z)}$$

Type One DPLL

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

If you ignore the filter, $H_{LP}(z)$, this becomes:

```
always @(posedge i_clk)
    phase <= phase + (err * k);</pre>
```


Type Two DPLL

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

Keeping track of frequency requires a second integrator,

```
always @(posedge i_clk)
    step <= step + (err * k1);

always @(posedge i_clk)
    phase <= phase + (err * k2) + step;</pre>
```


Definitions

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

▶ Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

Characteristic Equation

The equation, $1+G\left(z\right)=0$ is known as the *characteristic* equation.

Characteristic Polynomial

 $G\left(z\right)$ can usually be expressed as a rational polynomial,

$$\frac{P\left(z\right)}{Q\left(z\right)}$$
. $H\left(z\right)$ is then $\frac{P\left(z\right)}{Q\left(z\right)+P\left(z\right)}$. The polynomial in the

denominator, Q(z) + P(z), is called the *characteristic* polynomial.

DPLL Order

The order of the polynomial in the denominator of H(z), Q(z) + P(z), is the *order* of the DPLL.

Error Signals

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

Impulse Response

$$h[n] = \mathcal{Z}^{-1} \{H(z)\}$$

Unit Step Response

$$\theta_s[n] = \mathcal{Z}^{-1} \left\{ H(z) \frac{1}{1 - z^{-1}} \right\}$$

Frequency Step Response

$$\theta_f[n] = \mathcal{Z}^{-1} \left\{ H(z) \frac{1}{(1-z^{-1})^2} \right\}$$

We'll see more of these later . . .

How long does the filter ring following a single error?

How long does the filter take to track a change in *phase?*

How well does this loop track a change in *frequency?*

Noise Bandwidth

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise

➢ Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

- $_{\square}$ In white noise, the PSD is constant, $S_{n}\left(e^{j2\pi f}
 ight)=S_{n}$
- \Box Following the filter, the PSD becomes, $S_n \left| H\left(e^{j2\pi f}\right) \right|^2$
- \Box Total output noise power is $S_n \int_0^1 \left| H\left(e^{j2\pi f}\right) \right|^2 df$

$$NBW = \int_0^1 \left| H\left(e^{j2\pi f}\right) \right|^2 df$$

We'll use the Noise Bandwidth (NBW) to compare PLL's later

Lock Indication

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

If
$$\cos(\theta_i - \theta_o) \approx 1$$
, the PLL is locked

Gain Invariance

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Gain Invariance

Type One DPLLs

Type Two DPLLs

The easy way: Use a limiter

This works quite well, *if* the only input is the sinewave being tracked

Gain Invariance

Topics

Basic Theory

PLL Theory

Block Diagram

Signal Structure

Linearization

z-Transform

G(z)

H(z)

E(z)

Type One DPLL

Type Two DPLL

Definitions

Error Signals

Noise Bandwidth

Lock Indication

Gain Invariance

Type One DPLLs

Type Two DPLLs

Harder: Use a CORDIC to calculate atan2

- Beware, CORDICs can take many clock cycles
- What happens when no signal is present?

Topics

Basic Theory

Type One

→ DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

Damping

Type Two DPLLs

Type One DPLLs

Overview

Topics

Basic Theory

Type One DPLLs

> Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

Damping

Type Two DPLLs

: Type One DPLL: Tracks changing phase, but not changing frequency

- No lowpass filter
- Filter design
 - FIR Filter
 - IIR Filtering
- Achieving critical damping

Filter Design

Topics

Basic Theory

Type One DPLLs

Overview

> Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

Damping

Type Two DPLLs

Let's unwrap our loop and discuss the open loop function alone

- $_{\square}$ $F\left(z
 ight)$ is supposed to be a lowpass filter
- What filter shall we use?

Filter Design

Topics

Basic Theory

Type One DPLLs

Overview

> Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

Damping

Type Two DPLLs

7

A good filter should be . . .

- Simple and easy to implement
- Robust across circumstances
- Variable/user selectable bandwidth
- With only one knob to tweak!

Scaled Error

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

....

Damping

Type Two DPLLs

If we pick γ to be a power of two, then this becomes

Easiest to implement, easiest to analyze

Scaled Error

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

Damping

Type Two DPLLs

$$G(z) = \gamma \frac{z^{-1}}{1 - z^{-1}}, \ H(z) = \frac{G(z)}{1 + G(z)} = \frac{\gamma z^{-1}}{1 - (1 - \gamma)z^{-1}}$$

$$10\log_{10}\left|H\left(e^{j2\pi f}\right)\right|^2$$

But what about that low-pass filter? We said we needed one to get rid of the high frequency sine product.

Filter Choices

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

> Filter Choices

Linear Phase FIR

IIR Filter

Damping

Type Two DPLLs

What lowpass filter shall we choose?

- FIR Linear phase
- □ FIR − Non-linear phase
- □ IIR My favorite!

Linear Phase FIR

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices
Linear Phase

FIR

IIR Filter

Damping

Type Two DPLLs

What if we used a blackman window of length $N \approx \frac{1}{\gamma}$?

$$10\log_{10}\left|H\left(e^{j2\pi f}\right)\right|^2$$

Seems to perform well. It's just an expensive filter. It's also very difficult to implement—especially for small bandwidths.

IIR Filter

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

➢ IIR Filter

Damping

Type Two DPLLs

Above, we use a simple, single pole IIR filter—also known as a recursive averager.

IIR Filter

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

➢ IIR Filter

Damping

Type Two DPLLs

$$H(z) = \frac{\alpha \gamma z^{-2}}{1 - (1 - \alpha) z^{-1} + (1 - \alpha + \gamma \alpha) z^{-2}}$$

Problem: This filter leaves us with two knobs to tweak. I'd like a simpler filter that has only one knob to tweak. Can we collapse these two into one?

Damping

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

▶ Damping

Type Two DPLLs

Critically damped systems

- No overshoot
- No ringing
- Converge faster than all others options

IIR Filter

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

▶ Damping

Type Two DPLLs

Solution: If $\alpha = 4\gamma$, the system will be critically damped

$$H(z) = \frac{4\gamma^2 z^{-2}}{\left[1 - (1 - 2\gamma)z^{-1}\right]^2}$$

Bonus: We can still get away with shifts and adds alone

IIR Filter

Topics

Basic Theory

Type One DPLLs

Overview

Filter Design

Scaled Error

Filter Choices

Linear Phase FIR

IIR Filter

▶ Damping

Type Two DPLLs

$$H(z) = \frac{4\gamma^2 z^{-2}}{\left[1 - (1 - 2\gamma)z^{-1}\right]^2}$$

Topics

Basic Theory

Type One DPLLs

Type Two

→ DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

Type Two DPLLs

Overview

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

➢ Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

Type Two DPLL: Tracks frequency as well as phase, just not the frequency sweep rate

- Basic setup
- Filter design
- Loop performance

Loop Structure

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

- Differs from the type one DPLL by a frequency accumulator path, shown here in red.
- Unlike the type one DPLL, there are now two filters to specify
 - One to feed the phase tracking circuit, $H_{ heta}\left(z
 ight)$
 - And now a second one to feed the frequency tracking circuit, $H_f\left(z\right)$

Loop Structure

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

 When implemented, the frequency accumulator is just another integrator

Scaled Error

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

The easiest loop "filters" we might apply are just scale factors.

$$G(z) = \frac{z^{-1}}{1 - z^{-1}} \left[\gamma + \beta \frac{z^{-1}}{1 - z^{-1}} \right]$$

$$H(z) = \frac{\gamma z^{-1} + (\beta - \gamma) z^{-2}}{1 - (2 - \gamma) z^{-1} + (\beta - \gamma + 1) z^{-2}}$$

Now, given γ , what value shall we choose for β ?

Picking β

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

 \triangleright Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

Let's do what we did the last time, and pick β so that H(z) has two identical poles. These poles will be at,

$$z^{-1} = \frac{2-\gamma}{2} \pm \frac{1}{2} \sqrt{(2-\gamma)^2 - 4(\beta - \gamma + 1)}$$

In order for these poles to be identical, the determinant must be zero,

$$0 = (2 - \gamma)^2 - 4(\beta - \gamma + 1)$$
$$= 4 - 4\gamma + \gamma^2 - 4\beta + 4\gamma - 4$$
$$\beta = \frac{\gamma^2}{4}$$

This will place two identical poles at $\left(1-\frac{\gamma}{2}\right)$

Powers of two

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

The neat thing about $\beta=\frac{\gamma^2}{2}$ is that both multiplications, by β and γ , can be implemented as pure shift

Performance

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

▶ Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

As before, we have left out the lowpass filter. Let's see what happens if/when we add one.

Structure Review

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure

➢ Review

Loop Structure

Three poles

Solution

Filtered

Filtered

Remember: we made a linearity approximation

- This was valid when the input to our system contained a single component only
- Getting there required a lowpass filter (LPF) to remove the part of the signal found at twice our frequency of interest
- This LPF may also remove or limit other junk in the input

Loop Structure

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Three poles

Solution

Filtered

Filtered

How about using another single-pole lowpass filter?

$$G(z) = \frac{z^{-1}}{1 - z^{-1}} \left[\gamma + \beta \frac{z^{-1}}{1 - z^{-1}} \right] \frac{\alpha z^{-1}}{1 - (1 - \alpha) z^{-1}}$$

Unlike before, we now need to find values for α and β in terms of γ . . .

Three poles

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

Filtered

If we force H(z) to have three identical poles in its denominator,

- We'll get a solution with only one knob to adjust
- It will converge faster than any other solution with the same gain
- It will have awesome out of band performance
- $_{ extsf{ iny II}}$ It will relate lpha and eta to γ

Only, the algebra no longer fits on a slide very well

It's still quite doable

Solution

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

➢ Solution

Filtered

Filtered

Here's our solution:

$$\alpha = 3\gamma$$

$$\beta = \frac{1}{3}\gamma^2$$

No bonus: these scale constants can no longer be applied with shifts and adds alone

- I don't know of an easy way to implement this in logic
- Dividing by three can be approximated by a multiply and shift
- Multiplication by three can be replaced by a shift and add

GI

Filtered

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

➢ Filtered

Filtered

Filtered

Topics

Basic Theory

Type One DPLLs

Type Two DPLLs

Overview

Loop Structure

Scaled Error

Picking β

Powers of two

Performance

Structure Review

Loop Structure

Three poles

Solution

Filtered

➢ Filtered

$$H(z) = 3\gamma^{2}z^{-2}\frac{1 - \left(1 - \frac{\gamma}{3}\right)z^{-1}}{\left(1 - \gamma z^{-1}\right)^{3}}$$

- Awesome stop-band fall-off
- Harder to implement in logic (Not hard in S/W)
- In-band gain is no longer flat