HEARING

Anatomy of the Ear

- The human ear can be divided into two parts:
 - The peripheral ear (includes the outer, middle, and the inner ear)
 - The neural system (sensory nerves and the temporal lobe)
- Both of them work in conjunction to transform acoustic vibrations to neural signals for the cortex.
- During this process of transformation, the ear acts as a filter, permitting certain acoustic features to fully pass through, while distorting and blocking away other features.

Anatomy of the Ear

- The human ear can be divided into two parts:
 - The peripheral ear (includes the outer, middle, and the inner ear)
 - The neural system (sensory nerves and the temporal lobe)
- Both of them work in conjunction to transform acoustic vibrations to neural signals for the cortex.
- During this process of transformation, the ear acts as a filter, permitting certain acoustic features to fully pass through, while distorting and blocking away other features.

OUTER EAR (A+B)

- (A) depicts the auricle, which consists of a cup shaped pinna, and, a lobe. The pinna collects sounds and amplifies them to an extent of 3 dB.
- This section allows for sound localisation
- (B) is the external auditory meatus, a canal which connects the outer ear to the ear-drum (C).
- The canal amplifies and dampens signals selectively

Middle Ear (H) - Overview

- The middle ear (H) is separated from the outer ear by the ear drum (C).
- Semi-isolated air chamber
- Connected via the eustachian tube (I) to the nose.
- Since the eustachian tube is closed, the middle drum is sensitive to variations in pressure traveling through the external auditory meatus

OSSICLES (D,E,F) – Middle Ear

- D,E,F are attached to the eardrum
- Vibrations passing through the ear drum are passed mechanically, via the ossicular chain, to the oval window.
- D is called maleus, E, incus and F, stapes.
- These bones are meant to match the impedance of the air at the eardrum with the fluid behind the oval window; it even provides some amplification

OSSICLES (D,E,F) – II

- The entire peripheral hearing mechanism also serves to transform the high-amplitude, low-force sound energy transduced through air into a high-force, low-amplitude form that can be introduced into the heavy, viscous fluid of the cochlea.
- The third bone, i.e stapes, is characterised by a rocking motion that that permits the sound vibrations to be introduced into the dense fluid of the inner ear. This allows for the transmission a fairly accurate presentation of the acoustic energy from eardrum to cochlea (M)

INNER EAR

- The inner ear contains the cochlea, a spiral-shaped structure filled with fluid that transforms vibrations into neural signals through hair cells.
- The cochlea consists of three parallel tubes: scala vestibuli, scala tympani, and the cochlear duct, separated by Reissner's membrane and Bassilar's membrane.
- Hair cells in the organ of Corti are distributed throughout the cochlea, with cells at the base responding to high frequencies and cells at the apex responding to low frequencies.

Anatomy of the Ear

- The human ear can be divided into two parts:
 - The peripheral ear (includes the outer, middle, and the inner ear)
 - The neural system (sensory nerves and the temporal lobe)
- Both of them work in conjunction to transform acoustic vibrations to neural signals for the cortex.
- During this process of transformation, the ear acts as a filter, permitting certain acoustic features to fully pass through, while distorting and blocking away other features.

INNER EAR

- Signal intensity is likely determined by the number of hair cells firing, and these neural impulses travel through the eighth cranial nerve to the brain's temporal lobe.
- The cochlea connects to the semicircular canal system (which controls balance), and its efficiency is enhanced by pressure compensation from the round window.

Hearing Acuity

- Frequency Range: Normal hearing spans roughly 16-16,000 Hz, with young healthy people hearing up to 20,000 Hz or slightly higher
- Low Frequency Perception: Below 16-20 Hz, sounds lose tonal character and become individually perceptible pulses
- Age-Related Changes: High-frequency sensitivity decreases progressively with age; older adults typically lose higher frequencies first
- Intensity Limitations: Upper intensity limit is around 120-140 dB SPL (threshold of pain)
- 120 dB SPL creates a sensation of touch
- A few decibels higher reaches threshold of tickle

Hearing Acuity

- 140-150 dB SPL reaches threshold of pain (relatively uniform across frequencies)
- Frequency Sensitivity Curve: Middle frequencies (1-3 kHz) are detected more easily than high (>4000 Hz) or low (<500 Hz) frequencies
- More energy is required to detect sounds at the extremes of our hearing range
- Reference pressure levels are typically to 0.0002 dynes/cm²