

网络层

网络层的功能

- 定义了基于IP协议的逻辑地址
- 连接不同的媒介类型
- 选择数据通过网络的最佳路径

路由概述

- 将数据包从一个网络发送到另一个网络
 - 需要依靠路由器来完成
 - 路由器只关心网络的状态,决定最佳路径

路由器怎么工作

- 主要完成下列事情
 - 识别数据包的目标IP地址
 - 识别数据包的源IP地址(主要用于策略路由)
 - 在路由表中发现可能的路径
 - 选择路由表中到达目标最好的路径
 - 维护和检查路由信息

路由器怎么工作(续1)

- 根据路由表选择最佳路径
 - 每个路由器都维护着一张路由表,这是路由器转发数据包的关键
 - 每条路由表记录指明了:到达某个子网或主机应从路由器的哪个物理端口发送,通过此端口可到达该路径的下一个路由器的地址(或直接相连网络中的目标主机地址)

如何获得路由表

- 静态、缺省路由
 - 由管理员在路由器上手工指定
 - 适合分支机构、家居办公等小型网络
- 动态路由
 - 根据网络拓扑或流量变化,由路由器通过路由协议自动设置
 - 适合ISP服务商、广域网、园区网等大型网络

静态路由

- 主要特点
 - 由管理员手工配置,为单向条目
 - 通信双方的边缘路由器都需要指定,否则会导致数据包有去无回

配置静态路由

- 使用 ip route 命令
 - 指定到达IP目的网络
 - 基本格式:

Router(config)#ip route 目标网络ID 子网掩码 下一跳

案例:配置静态路由

按拓扑配置接口IP地址并通过静态路由实现全网互通。

案例:配置多路由环境网络

按拓扑配置接口IP地址并通过静态路由实现全网互通。

缺省路由

- 什么是缺省路由?
 - 缺省路由是一种特殊的静态路由,对于末梢网络的主机来说,也被称为"默认网关"
 - 缺省路由的目标网络为 0.0.0.0 0.0.0.0, 可匹配任何目标地址
 - __ 只有当从路由表中找不到任何明确匹配的路由条目时 , 才会使用缺省路由

案例:配置默认路由

按拓扑配置接口IP地址并通过静态路由、默认路由的配置实现全网互通。

三层交换概述

三层交换技术

- 使用三层交换技术实现VLAN间通信
- 三层交换=二层交换+三层转发

三层交换技术(续1)

- 使用三层交换技术实现VLAN间通信
- 三层交换=二层交换+三层转发

虚接口概述

- 在三层交换机上配置的VLAN接口为虚接口
- 使用SVI(交换虚拟端口)实现VLAN间路由

- 虚接口的引入使得应用更加灵活

Switch(config)# interface vlan vlan-id

虚接口概述(续1)

• 三层交换机VLAN间通信的转发过程

三层交换的配置

三层交换机的配置

- 确定哪些VLAN需要配置网关
- 如果三层交换机上没有该VLAN则创建它
- 为每个VLAN创建相关的SVI
- 给每个SVI配置IP地址
- 启用SVI端口
- 启用三层交换机的IP路由功能
- 如果需要,配置三层交换机的动态或静态路由

三层交换机的配置(续1)

- 在三层交换机启用路由功能
- Switch(config)# ip routing
- 配置虚接口的IP
- Switch(config)# interface vlan vlan-id
- Switch(config-if)# ip address ip_address netmask
- Switch(config-if)# no shutdown

案例:三层交换vlan间通信

按如下网络拓扑及IP地址规划通过三层交换实现VLAN 间通信

三层交换机的配置(续2)

- 配置路由接口
- Switch(config-if)# no switchport
- 在三层交换机上配置Trunk并指定接口封装为802.1q
- Switch(config)#interface fastEthernet 0/24
- Switch(config-if)#switchport trunk encapsulation dot1q
- Switch(config-if)#switchport mode trunk

三层交换机的配置(续3)

- 三层交换机上的路由端口
 - 三层交换机的物理端口默认是二层端口
 - 可以转换为三层端口
 - 转换为三层端口后,该端口不属于任何VLAN
 - 可以像路由器端口一样使用

三层交换机实现VLAN互通

- 需求描述
 - 按照图中规划配置实现VLAN间互通

Vlan 2 192.168.2.1/24

三层交换机实现VLAN互通

- 需求描述
 - 按照图中规划配置实现全网互通

认识动态路由

动态路由概述

- 动态路由
 - 基于某种路由协议实现
- 动态路由特点
 - 减少了管理任务
 - 占用了网络带宽

动态路由概述(续1)

Routing Table		
	NET	Metric
С	20.0.0.0	0
С	30.0.0.0	0

动态路由概述(续2)

动态路由概述(续3)

20.0.0.0和30.0.0.0

10.0.0.0 R1

 f0/0 R2 1 20.0.0.0 30.0.0.0

Routing Table		
	NET	Metric
С	20.0.0.0	0
С	30.0.0.0	0
?	10.0.0.0	?
?	40.0.0.0	?

我的路由表是: 30.0.0.0.0和40.0.0.0

40.0.0.0

R3

知

识

讲

解

动态路由概述(续4)

OSPF

OSPF

• Open Shortest Path First (开放式最短路径优先)

OSPF(续1)

- 邻居列表
- 链路状态数据库
- 路由表

- OSPF区域
 - 为了适应大型的网络, OSPF在网络内部划分多个区域
 - 每个OSPF路由器只维护所在区域的完整链路状态信息
- 区域ID
 - 区域ID可以表示成一个十进制的数字
 - 也可以表示成一个IP
- 骨干区域Area 0
 - 负责区域间路由信息传播

配置

- 启动OSPF路由进程
 - Router(config)# router ospf process-id
- ⁴ 指定OSPF协议运行的接口和所在的区域

Router(config-router)# network address inverse-mask area area-id

动态路由配置

通过配置动态路由协议ospf使全网互通

