Computer Graphics 7: Viewing in 3-D

Contents

In today's lecture we are going to have a look at:

- Revisiting Transformations in 3-D
 - How do transformations in 3-D work?
 - 3-D homogeneous coordinates and matrix based transformations
- 3-D Viewing
- Basics of Projection
 - Geometrical Constructions
 - Types of Projection
- 3-D Object Modelling

3-D Coordinate Spaces

Remember what we mean by a 3-D coordinate space

Translations In 3-D

To translate a point in three dimensions by dx, dy and dz simply calculate the new points as follows:

$$x'=x+dx$$
 $y'=y+dy$ $z'=z+dz$

Scaling In 3-D

To sale a point in three dimensions by sx, sy and sz simply calculate the new points as follows:

$$x' = sx *x$$
 $y' = sy *y$ $z' = sz *z$

Rotations In 3-D

When we performed rotations in two dimensions we only had the choice of rotating about the *z* axis

In the case of three dimensions we have

more options

- Rotate about x pitch
- Rotate about y yaw
- Rotate about z roll

Rotations In 3-D (cont...)

The equations for the three kinds of rotations in 3-D are as follows:

$$x' = x \cdot \cos\theta - y \cdot \sin\theta$$
$$y' = x \cdot \sin\theta + y \cdot \cos\theta$$
$$z' = z$$

$$x' = x$$

$$y' = y \cdot \cos\theta - z \cdot \sin\theta$$

$$z' = y \cdot \sin\theta + z \cdot \cos\theta$$

$$x' = z \cdot \sin\theta + x \cdot \cos\theta$$
$$y' = y$$
$$z' = z \cdot \cos\theta - x \cdot \sin\theta$$

Homogeneous Coordinates In 3-D

Similar to the 2-D situation we can use homogeneous coordinates for 3-D transformations - 4 coordinate column vector

All transformations can then be represented as matrices

$$P(x, y, z) = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Transformation Matrices

Translation by
$$\begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $\begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ Scaling by $\begin{bmatrix} s_x & s_y & s_z & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$egin{bmatrix} s_x & 0 & 0 & 0 \ 0 & s_y & 0 & 0 \ 0 & 0 & s_z & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$
 Scaling by

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotate About X-Axis

Rotate About Y-Axis

Rotate About Z-Axis

3-D Viewing Basics

3-D Viewing Process

Viewing Coordinate System

Identify viewer position relative to scene

Viewer "looks through" a window

Must specify position and view direction

View Plane

View plane defined by normal vector (N)

View Reference Points

- P_r: a point in the scene we are looking at
- P₀: a distant point from which we're looking
- Note P_r , P_0 , and N are expressed in $x_m y_m z_m$

Look-Up Vector

View-plane normal vector and reference point are not enough

We also need to specify orientation of view(er)

View-up vector (V) must be normal to N

Viewing Coordinates

Changing Views (1)

Changing Views (2)

Maintain N, change P_r and P_n

What Are Projections?

Our 3-D scenes are all specified in 3-D world coordinates

To display these we need to generate a 2-D image - *project* objects onto a *picture plane*

So how do we figure out these projections?

Converting From 3-D To 2-D

Projection is just one part of the process of converting from 3-D world coordinates to a 2-D image

Types Of Projections

There are two broad classes of projection:

- Parallel: Typically used for architectural and engineering drawings
- Perspective: Realistic looking and used in computer graphics

Parallel Projection

Perspective Projection

Types Of Projections (cont...)

For anyone who did engineering or technical drawing

Planar geometric

Parallel Projections

Some examples of parallel projections

Orthographic Projection

Isometric Projection

Isometric Projections

Isometric projections have been used in computer games from the very early days of the industry up to today

Oblique Projections

Type of an oblique projection

1. Cavalier

can be any angles but for convenient a 45° is chosen

2. Cabinet

Perspective Projections

Perspective projections are much more realistic than parallel projections

Perspective Projections

There are a number of different kinds of perspective views

The most common are one-point and two point perspectives

Elements Of A Perspective Projection

3-D Object Modeling

There are basically two ways to model objects in 3-D

Space-partitioning (Solid modeling)

- Describe interior as union of solids
- Parametric modeling
 - what parameters would we use?

Boundary representations (B-reps)

- Describe the set of surfaces
 - That define the exterior surface of an object
 - That separate object interior from exterior
 - What kinds of surfaces?

Most common is Boundary Representation

Advantage: surface equations are linear

Representing objects:

- Polyhedrons no problem
- General shapes approximation
 - Tessellate (subdivide) to polygon mesh

Polygon Meshes can be used to describe a general surface

Replaces it with an approximation

Common sets of polygons

- Triangles
 - Advantage: 3 vertices determine plane
- Quadrilaterals

Polygon Meshes

Polygon Description

Geometric data

Description of position and shape

Attribute data

- Description of surface
 - Color
 - Transparency
 - Surface reflectivity
 - Texture

Polygon Description

How do you represent a polygon surface approximation?

List of vertices (in 3-D) could work

- Sufficient description
- But, polygons are joined
 - Shared vertices and edges

We need a more general description that

- Reduces redundancy
- Represents component polygons

Polygon Tables

Vertex table

For all polygons in composite object

Edge table

- Each edge listed once
 - Even if part of more than one polygon

Polygon-surface table

Pointers or other links between tables for easy access

Polygon Table Example


```
S<sub>1</sub>: E<sub>1</sub>, E<sub>2</sub>, E<sub>3</sub>
S<sub>2</sub>: E<sub>2</sub>, E<sub>7</sub>, E<sub>8</sub>
S<sub>3</sub>: E<sub>1</sub>, E<sub>4</sub>, E<sub>5</sub>
S<sub>4</sub>: E<sub>4</sub>, E<sub>6</sub>, E<sub>8</sub>
S<sub>5</sub>: E<sub>3</sub>, E<sub>5</sub>, E<sub>6</sub>, E<sub>7</sub>
```

Polygon surfaces can be represented by Plane Equations

Often need information on

- Spatial orientation of surfaces
 - Visible surface identification
 - Surface rendering (e.g. shading)

Processing a 3-D object involves

- Equations of polygon planes
- Coordinate transformations (3-D)

The Plane Equation

$$Ax + By + Cz + D = 0$$

Must be satisfied for any point (x,y,z) in the plane.

We want to solve for coefficients (A, B, C, D).

How many points define a plane?

How many unknowns are there?

Vector Formulation

Solving for D in the plane equation:

$$Ax + By + Cz + D = 0$$

$$Ax + By + Cz = -D$$

$$\begin{bmatrix} A \\ B \\ C \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = -D$$

$$\mathbf{N} \cdot \mathbf{P} = -D$$

Testing Points

If point is "inside" the plane, then:

$$Ax + By + Cz + D < 0$$

If point is "outside" the plane, then:

$$Ax + By + Cz + D > 0$$

This can be used to determine what surfaces are hidden

Summary

In today's lecture we looked at:

- Transformations in 3-D
 - Very similar to those in 2-D
- Projections
 - 3-D scenes must be projected onto a 2-D image plane
 - Lots of ways to do this
 - Parallel projections
 - Perspective projections
 - The virtual camera