Foundations of Computer Science Comp109

University of Liverpool

Boris Konev konev@liverpool.ac.uk

Olga Anosova

O.Anosova@liverpool.ac.uk

Last lecture recap: Induction.

$Strong\ induction:$

- then it holds for n = m + 1.

DIY Example from last lecture: Number of multiplications

For any integer $n \ge 1$, if $x_1, x_2, ..., x_n$ are n numbers, then no matter how the parentheses are inserted into their product, the number of multiplications used to compute the product is n-1.

Proof continued

Part 2. (Naive) Set Theory

Comp109 Foundations of Computer Science

Reading

- S. Epp. Discrete Mathematics with Applications Chapter 6
- K. H. Rosen. Discrete Mathematics and Its Applications Chapter 2

Contents of the Set theory topic

- Notation for sets.
- Important sets.
- What is a *subset* of a set?
- When are two sets *equal*?
- Operations on sets.
- *Algebra* of sets.
- Bit strings.
- Cardinality of sets.
- Russell's paradox.

Notation

A set is a collection of objects, called the *elements* of the set. For example:

- **1** {7, 5, 3};
- {Liverpool, Manchester, Leeds}.

We have written down the elements of each set and contained them between the braces $\{\ \}$.

We write $a \in A$ to denote that the object a is an element of the set A:

$$7 \in \{7,5,3\}, \ 4 \notin \{7,5,3\}.$$

Order and repetitions in a set

- The order of elements does not matter
- Repetitions do not count

Predicate notation

For a large set, especially an infinite set, we cannot write down all the elements. We use a predicate P instead.

$$A = \{x \in S \mid P(x)\}$$

denotes the set of objects x from S for which the predicate P(x) is true.

Examples: Let $A = \{1, 3, 5, 7, ...\}$. Then

$$A =$$

Very informal notation:

$$A = \{2n - 1 \mid n \text{ is a positive integer }\} =$$

Examples

Find descriptions of the following sets by listing their elements:

■
$$A = \{x \mid x \text{ is a day of the week not containing "}u"\}$$

■
$$B = \{n^2 \mid n \text{ is an integer }\} = \{k \in \mathbb{Z} \mid \exists n \in \mathbb{Z} \text{ such that } n^2 = k\}$$

Important sets (notation)

The empty set has no elements. It is written as \emptyset , \emptyset or as $\{\}$.

We have seen some other examples of sets in Part 1.

- \blacksquare $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ (the natural numbers)
- \blacksquare $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ (the integers)
- \blacksquare $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ (the positive integers)
- $\blacksquare \ \mathbb{Q} = \{x/y \mid x \in \mathbb{Z}, y \in \mathbb{Z}, y \neq 0\} \text{ (the rationals)}$
- lacktriangleright \mathbb{R} : (real numbers, used to measure continuous quantities)
 - $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ the set of real numbers between a and b (inclusive)

Computing: Sets in programming languages

Sets are the 'most elementary' data structures: they don't always map well into the underlying hardware, but can speed up some procedures (can you guess which ones?).

Some modern programming languages feature sets.

■ For example, in Python one writes

```
empty = set()
m = { 'a', 'b', 'c'}
n = {1, 2}
print('a' in m)
```

Ordered sequences

Only finite sets can be represented.

■ Another common data type: List

Java&Python do differently

■ If all elements of A are drawn from some ordered sequence $S = \langle s_1, \ldots, s_n \rangle$: the characteristic vector (indicator vector, dummy variable, one-hot-encoding) of A is the sequence $[b_1, \ldots, b_n]$ where

$$b_i = \begin{cases} 1 & \text{if} \quad s_i \in A \\ 0 & \text{if} \quad s_i \notin A \end{cases}$$

Indicator function from here

Sequences of zeros and ones of length n are called bit strings of length n (bit vectors, bit arrays).

Example

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

- The characteristic vector of A is $\chi_A =$
- The characteristic vector of B is $\chi_B =$
- The set characterised by [1, 1, 1, 0, 1] is
- The set characterised by [1, 1, 1, 1, 1] is
- The set characterised by [0,0,0,0,0] is

Subsets

Definition A set B is called a subset of a set A if every element of B is an element of A. This is denoted by $B \subseteq A$.

Examples:

$$\{3,4,5\}\subseteq\{1,5,4,2,1,3\},\ \{3,3,5\}\subseteq\{3,5\},\ \{5,3\}\subseteq\{3,5\}.$$

Figure 1: Venn diagram of $B \subseteq A$.

Empty set

Does an empty set \emptyset belong to the set $A=\{1,2,3\}$?

Subsets in Python

```
def isSubset(A, B):
    for x in A:
        if x not in B:
            return False
    return True
```

```
Testing the method:

m = { 'a', 'b', 'c'}

n = {1, 2}

print(isSubset(n,m))
```

```
But then there is a built-in operation:
```

```
print(n < m)
```

Subsets and bit vectors

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

■ Is *A* ⊆ *B*?

■ Is the set C, represented by [1,0,0,0,1], a subset of the set D, represented by [1,1,0,0,1]?

Equality

Definition A set A is called equal to a set B if $A \subseteq B$ and $B \subseteq A$. This is denoted by A = B.

Examples:

$$\{1\} = \{1, 1, 1\},$$

$$\{1, 2\} = \{2, 1\},$$

$$\{5, 4, 4, 3, 5\} = \{3, 4, 5\}.$$

Equality and bit vectors

Let $S = \langle 1, 2, 3, 4, 5 \rangle$, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

■ Is the set C, represented by [1,0,0,0,1], equal to the set D, represented by [1,1,0,0,1]?

Summary

- A set is
- When dealing with some ordered sequence, a characteristic vector (indicator vector, dummy variable, one-hot-encoding)
- \blacksquare Sets A and B are equal iff
- $\blacksquare \emptyset \subseteq A \text{ for }$