

Statistical Error

A.E. AKSENTEV^{1,2}, Y.V. SENICHEV¹

¹ IKP, Forschungszentrum Jülich, Germany

² National Research Nuclear University «MEPhI», Russia

3/5/2017

Methodology

When put into an electromagnetic field, the particle spin begins to precess according to the T-BMT equation:

By measuring the beam's polarization, we can determine the frequency

$$ec{\Omega}^{\pm} = ec{\Omega}_{MDM} \pm ec{\Omega}_{EDM}$$

Comparing the CW vs CCW frequencies, determine $\,\Omega_{\it EDM}\,$

Problem statement

$$N(t) = N_0 \cdot \left(1 + P \cdot e^{-t/\tau_d} \cdot \sin(\omega \cdot t + \phi)\right) + \varepsilon_t$$

Two aspects

Goals

- Under what conditions sampling modulation is beneficial
- How much modulation is appropriate
- At what point measurement is no longer informative

Spread

$$\sum f(t_i) = n_{\varepsilon/zc} \cdot x_{01} \cdot \frac{\exp\left(-\frac{\pi}{\omega \tau_d} n_{zc}\right) - 1}{\exp\left(-\frac{\pi}{\omega \tau_d}\right) - 1}$$

$$t(z) = \tau_d \cdot \ln\left(\frac{1}{1-z}\right)$$

FI limit (%)	Reached (×T _d)	SNR@3% error
95	3.0	1.7
90	2.3	3.3
70	1.2	10.0
50	0.7	16.5

Simulation

Modulation: Beam lifetime doesn't matter

Modulation: Beam lifetime does matter

Decoherence

$$S(t) = \sum_{i} \sin(\omega_i \cdot t + \phi_i)$$

