

性能测试过程实践

曹承臻 搜狗

目录:

• 为什么要做性能测试

• 性能测试分类

• 性能测试具体流程

• 性能调优介绍

为什么要做性能测试?

- 能力验证
- 规划能力
- 性能调优

• 缺陷发现

性能测试分类

性能测试具体流程

需求评估

• 目的: 评估是否需要做性能测试

需求评估

- 目的: 评估是否需要做性能测试
 - 需要做性能测试
 - 新产品, 预估单台机器QPS峰值超过100;
 - 已经上线的产品,之前未做过性能测试,接入新业务后, 预估单台机器QPS超过100
 - 不需要做性能测试
 - 预估单台机器QPS峰值低于50。
 - 有相同实现逻辑的产品,且已经做过性能测试。
 - 已上线的产品,之前做过性能测试,接入新业务后,且 预估本次QPS峰值低于之前打压结果。

需求评估

• QPS评估方法

-产品已经做过灰度或者已经上过线

逻辑了解

• 产品、测试、开发沟通会

沟通 参数、可 隔入 海型 大阪 QPS 及推断方法 和参数间比例关系。

目标QPS

其他

2017/3/20 /周三) 22:06

(桌面事业部_测 RE:【压力测试】ABC-8067_网吧版

收件人

Ma

Hi 曹哥,

这个是之前沟通的网吧版导航压力测试详细信息, Jira地址: http://jira.sogourinc.com/browse//

一、测试目的

为网吧版网址导航123. sogou. com/vb/ 评估QPS

二、接口信息

1. 接口地 ::

http:// 42 vb

http://wb/getMod.api?tab=haha/
 http://dwb/getMod.api?tab=baike

5. http: | 8/wb/getMod.api?tab=youxi

http://s/wb/getMod.api?tab=zhubi
 http://s/wb/getVideos.api?tab=dac

8. 参数说明 (每个参数的含义及取值范围)

/vb/ 对应的首页请求 getMod.api?tab: 对应网吧版导航四个tab getVideos.api?tab: 对应影视大全数据数据

 返回的结果(写明服务端返回正常的标示字段 因数据较多,可以单独点击URL查看接口数据。)

{
 "tab":{
 "id":"650",
 "title":"健康养生",
 "link":"http://toutiao.sogou.com/jlankang/?fr=sgbk
 "image":"",
 "color":"",
 "subtitle":null,
 "code":"bt jiankang"

↑四 七口 一ノ ムカ

```
"title":"嘴里出现这种味,可能是某种疾病征兆",
      "link": "http://www.ttys5.com/xinwen/xinwenhangye/2017-03-20/136221.html?hmsr=sougoudaohang&hmpl=wenzilian419&hmcu
      "image":"",
      "color":"".
      "subtitle":"嘴里出现这种味,可能是某种疾病征兆",
      "code":""
      "id":"669",
      "title":"到底什么鬼! 这些东西竟让你越来越笨",
      "link": "http://www.ttys5.com/xinwen/xinwenhangye/2017-03-20/136223.html?hmsr=sougoudaohang&hmpl=wenzilian420&hmcu
      "image":"",
      "color":"",
      "subtitle":"到底什么鬼! 这些东西竟让你越来越笨",
      "code":""
       测试数据
   无入参数据
       测试机器信息
四、
   Host :10
              3.238
   用户名: root
   密码:单独发送
   服务端log位置: /search/nginx/log/access.log
   硬件信息:
   4真核, 4g内存与线上保持一致
   软件信息: php7环境 nginx:1.9 redis:redis-stable DB:mysql
                                                     .64.173)
```

五、 线上搜索接口信息

QPS估值:

- 1. 取123.sogou.com(UV为:1800w)线上高峰时期19:00-21:00 PV为660w 平均QPS为:611
- 2. 预估网吧版导航UV为200w为线上的1/9,预估导航压测QPS为 611/9≈70

测试计划

测试目的

找到热词单台服务器可以持续承受的QPS峰值。

二、测试任务

(1)测试阶段分布:

测试准备时间:

服务器提測时间:2016年8月30日 测试开始时间: 2016年8月30日

测试完成时间: 2016年9月1日

(2)测试任务:

产品需求		測试需求	测试范围	开2
		打压机部署	已有可用打压机	张明:
AT SOME ABOUT		服务器逻辑了解	接口參数、服务器逻辑	张明:
热词数据服 务器性能测	BCZ doc. ISS	打压脚本编写	用户场景模拟	张明
武	100.20 新年	测试场景部署	用户场景模拟	张明
		结果分析调优	瓶颈定位、调优,结果产出	张明

(3)测试条件:

- 1. 测试服务器与线上服务器隔离,不能直接或间接打压线上环境。
- 2. 测试服务器可以正常提供服务并保持性能稳定。

三、详细计划安排:

	曹承臻
8月30日	服务器逻辑了解&脚本编写
8月31日	场景打压&结果分析&调优
9月1日	结果分析&结果产出

四、 测试环境说明

● 硬件/系统配置

CPU: Core 32核 (2.4GHz)

内存: 128G 操作系统: Linux

● 程序配置

无

五、 测试分组

a) 测试分组一

测试目的:

并发较多热词服务器请求时,查看热词服务器各项性能。

持续时间:

1h

测试数据

K值随机生成

日期选择8月1号到8月30号随机选择

测试方法:

2. 別式服务命可以止常提供服务开保持性能稳定。 1. 樟拟用户操作过程,组成打压请求脚本. 3. 別试数据要尽量模拟真实的用户操作。 1. 様以用户操作では 1. 様以用户操作では 1. 様以用户操作では 1. 様以用户操作では 1. 様以用・には 1. 様は 1. 様は

环境搭建

。打压机环境搭建 开发机 svn 测试机 线上

数据准备

▶数据有效性

- ▶测试机的查看权限
 - ➤Log位置
 - ➤Log信息
- ▶打压比例

脚本绯

```
📂 vuser_init
                res()
🥩 res
🥩 video
                    web_reg_find("Text=encoding", "Search=He
🧀 map
                   🥩 baike i
🥩 pic
🥟 ans
                        "Method=POST".
                        "Resource=0".
🥔 web
                        "RecContentType=application/octet-
🥩 trans
                        "Referer=",
🥟 news
                        "Snapshot=t2.inf"
🥩 vuser end
                        "Mode=HTML",
🥏 globals.h
                        "EncType="
                        "BodyBinary={res_body}",
                        LAST);
                    lr_end_transaction("res", LR_AUTO);
                    return 0
```

▶注: 1、尽量模拟用

Parameter I	roperties -	[res_	long]					?
Parameter type Fi	le		▼					
<u>F</u> ile C \Use	rs/Administrator	·\Desktop	\out_small\	1. dat			▼ <u>E</u> rov	se
<u>A</u> dd Column	Add Rcw	<u>D</u> elete Col	umn D <u>e</u> el	ie Row				
	long xC 106,311440 29 xC 113,183735 28							
3 \x07\x00\ 4 \x08\x0C\	xC;120.074463 33 x0_113.657166 34	3.259651 J.798695	cdma_14183 gsr_460_00					
6 \w08\w0C\	k0 116.138374 33 k0 116.070356 28 k0 123.408592 41	3.208973	gsr_460_01 cdma_14133 gsr_460_00					
8 /x0D/x00/	x011E.347694 39	9.978100	400.00					v
Edit with Notepad. Select column.	. Data <u>W</u> izan	C			_File f		e Palama	le
C By number	1			- X	C <u>o</u> lunn		Сэппа	ਾ
By name:	Long			T	First	iata	1	Ť
Select rext row: Update value on:	Same line as res Each iteration	_body						▼
When out of value	Continue with la	st value						v
	liues in the Controlle allocate block size	er						
C Allocate	values for	each Vuse	Г					
							<u> </u>	ose

打压过程

- ▶服务器性能指标监控 ▶Vmstat、top、iostat、nload、free等。
- ▶客户端性能监控 ▶HPS、TPS、响应时间
- ▶打压机性能监控
- ▶注:每天的进度汇报

性能调优介绍

- ▶ 影响Linux性能的因素
- > 系统性能评估标准
- > 系统性能分析工具
- > 性能评估与优化过程

一影响Linux服务器性能的因素

- 操作系统级
 - > CPU
 - > 内存
 - > 磁盘I/O
 - ➤ 网络I/O带宽

这些子系统之间关系是相互彼此依赖的,任何一个高负载都会导致其他子系统出现问题.比如:

- 大量的页调入请求导致内存队列的拥塞
- 网卡的大吞吐量可能导致更多的 CPU 开销
- 大量的 CPU 开销又会尝试更多的内存使用请求
- 大量来自内存的磁盘写请求可能导致更多的 CPU 以及 IO 问题

所以要对一个系统进行优化,查找瓶颈来自哪个方面是关键,虽然看似是某一个子系统出现问题,其实有可能是别的子系统导致的.

服务器性能排查过程:

全面排查→缩小范围→猜测原因→数据支持→定位问题

二系统性能评估标准

影响性能因素		评判标准				
	好	坏	糟糕			
CPU	user% + sys%< 70%	user% + sys%= 85%	user% + sys% >=90%			
内存	Swap In (si) =0 Swap Out (so) =0	Swap In (si) =10左右 Swap Out (so) =10左右	More Swap In & Swap Out			
磁盘	iowait % < 20%	iowait % =35%	iowait % >= 50%			

其中:

%user:表示CPU处在用户模式下的时间百分比。%sys:表示CPU处在系统模式下的时间百分比。

%iowait:表示CPU等待输入输出完成时间的百分比。

swap in: 即si,表示虚拟内存的页导入,即从SWAP DISK交换到RAM swap out: 即so,表示虚拟内存的页导出,即从RAM交换到SWAP DISK。

三 系统性能分析工具

常用系统命令

Vmstat、sar、iostat、netstat、free、ps、top等

第三方工具

nmon_x86_64_rhel54.rhel54

四 Linux性能评估与优化

1: 确定应用类型

基于需要理解该从什么地方来入手优化瓶颈,首先重要的一点,就是理解并分析当前系统的特点,多数系统所跑的应用类型,主要为2种:

- IO Bound (IO 范畴): 在这个范畴中的应用, 一般都是高负荷的内存使用以及较高的磁盘读写, 例如频繁查询数据库操作的应用.
- ●CPU Bound (CPU 范畴): 在这个范畴中的应用,一般都是高负荷的 CPU 占用. CPU 范畴的应用,就是一个批量处理 CPU 请求以及数学计算的过程.例如计算当天的抢票数据后,不断向其他服务器发请求并处理返回值。

结论:一般来说,IO Bound的应用,系统IO容易成为主要瓶颈,CPU Bound的应用,CPU容易成为主要瓶颈。

2: cpu性能评估

(1) 利用vmstat命令监控系统CPU

r	b	swpd	free	buff	cache	si	so	bi	bo	in	cs	us	sy	wa	id
1	0	138592	17932	126272	214244	0	0	1	18	109	19	2	1	1	96
0	0	138592	17932	126272	214244	0	0	0	0	105	46	0	1	0	99
0	0	138592	17932	126272	214244	0	0	0	0	198	62	40	14	0	45
0	0	138592	17932	126272	214244	0	0	0	0	117	49	0	0	0	100
0	0	138592	17924	126272	214244	0	0	0	176	220	938	3	4	13	80
0	0	138592	17924	126272	214244	0	0	0	0	358	1522	8	17	0	75
1	0	138592	17924	126272	214244	0	0	0	0	368	1447	4	24	0	72
0	0	138592	17924	126272	214244	0	0	0	0	352	1277	9	12	0	79

●每列的含义如下

- procs
- r //等待CPU运行时间的进程数,如果较多,说明CPU很忙
- b //处于不可中断的进程数,通常意味着这些进程在等待I/0(磁盘,网络,用户输入等),此值长期不为0的话需要分析一下原因。

memory

- swpd //总共被使用的虚拟内存,如果此值较高或者再不断增加,说明内存不够
- free //空闲的物理内存
- buff 用作缓冲的内存大小,用来存储,目录里面有什么内容,权限等的缓存
- cache 用作缓存的内存大小,直接用来记忆我们打开的文件,给文件做缓冲

swap

- ▶ si //每秒从交换区写到内存的大小,由磁盘调入内存。
- so //每秒写入交换区的内存大小,由内存调入磁盘
- ▶ bi //每秒从block设备收到的块数量(读取)
- bo //每秒发送给block设备的块数量(写入)

system

- in //每秒的中断数,包括时钟
 - cs //每秒的上下文切换数,多发生在操作系统结束一个进程,然后启动另一个进程的时候

cpu

- us: 用于运行非核心(用户代码)花费的百分比
- sy: 用于运行kernel代码花费的百分比
- id: 空闲的cpu百分比
- wa: 用于等待I0的百分比

UTID2017

(3) 案例分析:

r	b	swpd	free	buff	cache	si	SO	bi	bo	in	CS	us	sy	wa	id
2	1	207740	98476	81344	180972	0	0	2496	0	900	2883	4	12	57	84
0	1	207740	96448	83304	180984	0	0	1968	328	810	2559	8	9	90	83
0	1	207740	94404	85348	180984	0	0	2044	0	829	2879	9	6	88	85
0	1	207740	92576	87176	180984	0	0	1828	0	689	2088	3	9	78	88
2	0	207740	91300	88452	180984	0	0	1276	0	565	2182	7	6	83	87
3	1	207740	90124	89628	180984	0	0	1176	0	551	2219	2	7	91	91
4	2	207740	89240	90512	180984	0	0	880	520	443	907	22	10	77	67
5	3	207740	88056	91680	180984	0	0	1168	0	628	1248	12	11	87	77
4	2	207740	86852	92880	180984	0	0	1200	0	654	1505	6	7	77	87
6	1	207740	85736	93996	180984	0	0	1116	0	526	1512	5	10	75	85
0	1	207740	84844	94888	180984	0	0	892	0	438	1556	6	4	80	90

根据观察值,我们可以得到以下结论:

- 1,上下文切换数目高于中断数目,说明 kernel 中相当数量的时间都开销在上下文切换线程.
- 2,大量的上下文切换将导致 CPU 利用率分类不均衡.很明显实际上等待 io 请求的百分比 (wa)非常高,以及user time 百分比非常低(us).
- 3,因为 CPU 都阻塞在 IO 请求上,所以运行队列里也有相当数目的可运行状态线程在等待执行.

问题?

你是否遇到过系统CPU整体利用率不高,而应用缓慢的现象?

在一个多CPU的系统中,如果程序使用了单线程,会出现这么一个现象,CPU的整体使用率不高,但是系统应用却响应缓慢,这可能是由于程序使用单线程的原因,单线程只使用一个CPU,导致这个CPU占用率为100%,无法处理其它请求,而其它的CPU却闲置,这就导致了整体CPU使用率不高,而应用缓慢现象的发生。

3: 下内存性能评估

(1) 利用vmstat命令监控内存

```
[root@node1 ~]# vmstat 2 3
procs -----memory------ ---swap-- ----io---- --system-- ----cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 162240 8304 67032 0 0 13 21 1007 23 0 1 98 0 0
0 0 0 162240 8304 67032 0 0 1 0 1010 20 0 1 100 0 0
0 0 0 162240 8304 67032 0 0 1 1 1009 18 0 1 99 0 0
```

memory

swpd列表示切换到内存交换区的内存数量(以k为单位)。如果swpd的值不为0,或者比较大,只要si、so的值长期为0,这种情况下一般不用担心,不会影响系统性能。

free列表示当前空闲的物理内存数量(以k为单位)

buff列表示buffers cache的内存数量,一般对块设备的读写才需要缓冲。

cache列表示page cached的内存数量,一般作为文件系统cached,频繁访问的文件都会被cached,如果cache值较大,说明cached的文件数较多,如果此时IO中bi比较小,说明文件系统效率比较好。

●swap

si列表示由磁盘调入内存,也就是内存进入内存交换区的数量。

so列表示由内存调入磁盘,也就是内存交换区进入内存的数量。

一般情况下, si、so的值都为0,如果si、so的值长期不为0,则表示系统内存不足。需要增加系统内存。

3: 下内存性能评估

(1) 利用 free命令监控内存占用

```
[@gd_57_162 python]# free -m
total used free shared buffers cached
Mem: 5850 2315 3535 0 214 1719
-/+ buffers/cache: 381 5468
Swap: 0 0 0
```

Cache大不是内存泄露:

To free pagecache: echo 1 > /proc/sys/vm/drop_caches

To free dentries and inodes: echo 2 > /proc/sys/vm/drop_caches

To free pagecache, dentries and inodes: echo 3 > /proc/sys/vm/drop_caches

2			php内存占用			
10						
0						
				W.		
-			*			
-						
0022202	7 8 9 7 4 9 7 4 1 7 7	07.4.188055888558	0000220000000;	11088820087201	8 8 8 5 1 9 5 8 5 9 9 8	9245924595459
0521. 058.00 103.4 103.4 115.3 115.3 121.0 125.5 132.4 132.4 132.4 130.0	155.7 20130 20130 22130 224.4 230.2 230.2 230.2 247.4 2533	259.20 310.50 310.50 316.40 3.22.20 3.20 3	0.0256 0.0843 0.0217 0.0217 0.03504 0.0373 0.43.25 0.49.12 0.55.00 1.00.47 1.106.35	1.18.11 1.24.00 1.25.40 1.47.2 1.47.1 1.53.01 1.58.4 2.20.2 2.20.2 2.20.2	22333 22333 2232 2251 2251 2251 2251 231 3141 3153	331.2 343.1 348.5 354.5 354.5 400.3 412.1 412.1 412.3 423.4

UTID2017

(2) 案例分析:内存不足

r	b	swpd	free	buff	cache	si	so	bi	bo	in	cs	us	sv	id	wa
		JW pu	1100	Dan	caciic	31	30	51				u 3		10	va
17	0	1250	3248	45820	1488472	30	132	992	0	2437	7657	23	77	0	23
11	0	1376	3256	45820	1488888	57	245	416	0	2391	7173	10	90	0	0
12	0	1582	1688	45828	1490228	63	131	1348	76	2432	7315	10	90	0	10
12	2	3981	1848	45468	1489824	185	56	2300	68	2478	9149	15	25	60	73
14	2	10385	2400	44484	1489732	0	87	1112	20	2515	11620	0	15	85	88
14	2	12671	2280	43644	1488816	76	51	1812	204	2546	11407	20	45	35	35

根据观察值,我们可以得到以下结论:

- 1. 大量的读请求回内存(bi),导致了空闲内存在不断的减少(free).这就使得系统写入 swap device 的块数目(so)和 swap 空间(swap)在不断增加.
- 2. si、so的值长期不为0,则表示系统内存不足,同时看到 CPU Wati I/O time(wa)百分比很大.这表明 I/O 请求已经导致 CPU 开始效率低下.

(3) 内存不足定位

#valgrind --tool=memcheck --leak-check=yes --show-reachable=yes ./test

```
=12957 == Memcheck, a memory error detector
                                        ==12957 == Copyright (C) 2002-2010, and GNU GPL d, by Julian Seward et al.
                                         =12957== Using Valgrind-3.6.0 and LibvEX; rerun with -h for copyright info
测试代码
                                         =12957== Command: ./test
                                         =12957==
                                         =12957== Invalid write of size 4
=12957== at 0x80483DF; func (test.c;5)
        [CDD]
                                                      by 0x80483FC: main (test.c:10)
                                         =12957== Address 0x41d3050 is 0 bytes after a block of size 40 alloc'd
=12957== at 0x402682F; malloc (vg_replace_malloc.c:236)
  01.
        #include <stdlib.h>
  02.
        int* func(void)
                                                      by 0x80483D5; func (test,c:4)
                                         =12957==
  03.
                                                      by 0x80483FC: main (test.c:10)
                                        -12957-
           int* x = malloc(10 * sizeof(i=12957=
  04.
                                        ==12957==
           x[10] = 0; //问题1: 数组下标越
  05.
                                         =12957== HEAP SUMMARY:
  06.
                                                       in use at exit: 40 bytes in 1 blocks
                                         =12957==
                                                     total heap usage: 1 allocs, 0 frees, 40 bytes allocated
  07.
         int main(void)
                                         =12957===
                                         =12957==
  08.
                                         =12957== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
  09.
           int* x=NULL;
                                                      at 0x402682F: malloc (vg_replace_malloc.c:236)
                                         =12957==
                                                      by 0x8048305: func (test.c:4)
                                         =12957==
          x=func();
  10.
                                                      by 0x80483FC: main (test.c:10)
                                         =12957==
  11.
           //free(x);
                                         =12957==
                                        =12957= LEAK SUMMARY:
  12.
           x=NULL;
                                                      definitely lost: 40 bytes in 1 blocks
                                        =12957=
                      //问题2: 内存没有释
  13.
           return 0;
                                                      indirectly lost: O bytes in O blocks
                                         =12957==
  14.
                                                      possibly lost: 0 bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
                                         =12957==
                                         =12957==
                                                            suppressed: 0 bytes in 0 blocks
                                         =12957==
                                         =12957==
                                         =12957== For counts of detected and suppressed errors, rerun with: -v
                                         =12957= ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 13 from 8)
```

Memwatch监测工具

4: 磁盘I/O性能评估

(1) 磁盘转速和每秒读写次数的关系

结论: 10K RPM 磁盘有能力 提供 120~150 次读写。

个固定时间里,

₹的 I/O 请求数

(2) 利用iostat评估磁盘性能

Device:	rrqm/s	wrqm/s	r/s	w/s	rsec/s	wsec/s	avgrq-sz	avgqu-sz	await	svctm	%util
vda	0	29	0	5	0	272	54.4	0.02	3.8	1.4	0.7
vda1	0	0	0	0	0	0	0	0	0	0	0
vda2	0	29	0	5	0	272	54.4	0.02	3.8	1.4	0.7
vdb	0	0	0	0	0	0	0	0	0	0	0
dm-0	0	0	0	0	0	0	0	0	0	0	0
dm-1	0	0	0	34	0	272	8	0.09	2.59	0.21	0.7
dm-2	0	0	0	0	0	0	0	0	0	0	0
dm-3	0	0	0	0	0	0	0	0	0	0	0
dm-4	0	0	0	0	0	0	0	0	0	0	0

参数说明:

r/s+w/s:读写次数

Await: I/O请求平均执行时间.包括发送请求和执行的时间.单位是毫秒.

Svctm: 发送到设备的I/O请求的平均执行时间.单位是毫秒.

%util: 在I/O请求发送到设备期间,占用CPU时间的百分比.用于显示设备的带宽利

用率 当这个值接近100%时 表示设备带宽已经占满

(3) 案例分析: 磁盘I/0负载过高

Device:	rrqm/s	wrqm/ s	r/s	w/s	rsec/s	wsec/s	rkB/s	wkB/s	avgrq- sz	avgqu- sz	await	svctm	%util
/dev/sda	0	1766.6 7	4866. 67	1700	38933.33	31200	19466. 67	15600	10.68	6526.6 7	100.56	5.08	3333.3 3
/dev/sda1	0	933.33	0	0	0	7733.33	0	3866.6 7	0	20	2145.0 7	7.37	200
/dev/sda2	0	0	4833. 33	0	38666.67	533.33	19333. 33	266.67	8.11	373.33	8.07	6.9	87
/dev/sda3	0	833.33	33.33	1700	266.67	22933.3 3	133.33	11466. 67	13.38	6133.3 3	358.46	11.35	1966.6 7

结论:

1、r/s+w/s的值远远超过磁盘可以承受的最大读写次数。

2、%util: 这个值大于100%时,表示设备带宽已经占满。

综上所述:磁盘I/O成为系统瓶颈。

UTID2017

5: 网络性能评估

使用工具nmon

```
Network I/O
I/F Name Recv=KB/s Trans=KB/s packin packout insize outsize Peak->Recv Trans
                              0.0
                                        0.0
                                        0.5
                     0.1
                              23.0
                                               60.0
                                                     234.0
            36.4
                     0.0
                             120.8
                                              308.3
                                        0.0
                                                    0.0
    sit0
             0.0
                     0.0
                               0.0
                                        0.0
                                                0.0
                                                       0.0
```

参数说明:

1、recv: 每秒接收千字节大小。

2、trans:每秒发出的千字节大小。

3、packin: 当前正在接收的包个数。

4、packout: 当前正在发出的包个数

UTID2017

TCP三次握手&四次挥手介绍

Time-Wait

- 1、服务端time-wait个数如何产生的?
- 2、time-wait的类型
- 3、查看time-wait个数的命令 netstat -n | awk '/^tcp/ {++S[\$NF]} END {for(a in S) print a, S[a]}'

```
[@bjzw_111_238 nginx_logs]# netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print TIME_WAIT 43 CLOSE_WAIT 5 ESTABLISHED 377
```

查看系统可用端口号个数 cat /proc/sys/net/ipv4/ip_local_port_range

[@bjzw_111_238 nginx_logs]# cat /proc/sys/net/ipv4/ip_local_port_range 32768 61000

UTiD2017

如何设置

- vi /etc/sysctl.conf
- net.ipv4.tcp_tw_reuse = 1
- //表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP 连接,默认为0,表示关闭;
- net.ipv4.tcp_tw_recycle = 1
- //表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为 0,表示关闭
- net.ipv4.tcp_fin_timeout = 30
- //修改系統默认的 TIMEOUT 时间
- /sbin/sysctl –p

r	b	swpd	free	buff	cache	si	so	bi	bo	in	CS	us	sy	id	wa
	1	0 249844	19144	18532	1221212	C	0	7	3	22	17			17	18
	0	1 249844	17828	18528	1222696	C	0	40448	8	1384	1138	13	7	65	14
	0	1 249844	18004	18528	1222756	C	0	13568	4	623	534	3	4	56	37
	2	0 249844	17840	18528	1223200	C	0	35200	0	1285	1017	17	7	56	20
	1	0 249844	22488	18528	1218608	C	0	38656	0	1294	1034	17	7	58	18
	0	1 249844	21228	18544	1219908	C	0	13696	484	609	559	5	3	54	38
	0	1 249844	17752	18544	1223376	C	0	36224	4	1469	1035	10	6	67	17
	1	1 249844	17856	18544	1208520	C	0	28724	0	950	941	33	12	49	7
	1	0 249844	17748	18544	1222468	C	0	40968	8	1266	1164	17	9	59	16
	1	0 249844	17912	18544	1222572	C	0	41344	12	1237	1080	13	8	65	13


```
iostat -x 1
                    %nice %sys
                                    %idle
            %user
avg-cpu:
                9.33
30.00
      0.00
                        60.67
Device: rrgm/s wrgm/s r/s w/s rsec/s wsec/s rkB/s
                                                         wkB/s avgrq-sz
                                                                                          await
                                                                                                  svctm
                                                                                                          %util
                                                                              avgqu-sz
                            1180.91 14.23
/dev/sda
            7929.01 30.34
                                             7929.01 357.84 3964.50 178.92
                                                                             6.93
                                                                                      0.39
                                                                                              0.03
                                                                                                      0.06
                                                                                                               6.69
/dev/sda1
            2.67
                    5.46
                            0.40
                                    1.76
                                             24.62
                                                     57.77
                                                             12.31
                                                                     28.88
                                                                              38.11
                                                                                              2.78
                                                                                                      1.77
                                                                                                               0.38
                                                                                      0.06
/dev/sda2
            0.00
                    0.30
                            0.07
                                    0.02
                                             0.57
                                                     2.57
                                                             0.29
                                                                     1.28
                                                                              32.86
                                                                                      0.00
                                                                                              3.81
                                                                                                      2.64
                                                                                                               0.03
                            1180.44 12.45
                                             7929.01 297.50 3964.50 148.75
/dev/sda3
            7929.01 24.58
                                                                             6.90
                                                                                      0.32
                                                                                              0.03
                                                                                                      0.06
                                                                                                               6.6
avg-cpu:
            %user
                    %nice
                            %sys
                                    %idle
                10.68
                        79.82
9.50
        0.00
                                                                                                  svctm %util
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s
                                                                                          await
                                                                 avgrq-sz
                                                                              avgqu-sz
/dev/sda
            0.00
                    0.00
                            1195.24 0.00
                                             0.00
                                                     0.00
                                                             0.00
                                                                              0.00
                                                                                      43.69
                                                                                              3.60
                                                                                                      0.99
                                                                                                               117.86
                                                                     0.00
/dev/sda1
                    0.00
                                             0.00
                                                                                                               0.00
            0.00
                            0.00
                                     0.00
                                                     0.00
                                                             0.00
                                                                     0.00
                                                                              0.00
                                                                                      0.00
                                                                                              0.00
                                                                                                      0.00
/dev/sda2
            0.00
                    0.00
                            0.00
                                     0.00
                                                                                      0.00
                                                                                                               0.00
                                             0.00
                                                     0.00
                                                             0.00
                                                                     0.00
                                                                              0.00
                                                                                              0.00
                                                                                                      0.00
/dev/sda3
            0.00
                    0.00
                            1195.24 0.00
                                             0.00
                                                     0.00
                                                             0.00
                                                                              0.00
                                                                                      43.69
                                                                                              3.60
                                                                                                              117.86
                                                                     0.00
                                                                                                      0.99
                    %nice
avg-cpu:
            %user
                            %svs
                                    %idle
9.23
        0.00
                10.55
                        79.22
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s
                                                                                          await
                                                                                                          %util
                                                                 avgrq-sz
                                                                                                  svctm
                                                                              avgqu-sz
/dev/sda
                    0.00
                            1200.37 0.00
                                             0.00
                                                             0.00
                                                                              0.00
                                                                                              2.12
                                                                                                      0.99
                                                                                                               112.51
            0.00
                                                     0.00
                                                                     0.00
                                                                                      41.65
/dev/sda1
            0.00
                    0.00
                            0.00
                                     0.00
                                             0.00
                                                     0.00
                                                             0.00
                                                                     0.00
                                                                              0.00
                                                                                      0.00
                                                                                              0.00
                                                                                                      0.00
                                                                                                               0.00
                                                                                      0.00
/dev/sda2
            0.00
                    0.00
                            0.00
                                     0.00
                                             0.00
                                                     0.00
                                                             0.00
                                                                     0.00
                                                                              0.00
                                                                                              0.00
                                                                                                      0.00
                                                                                                               0.00
/dev/sda3
                                                                                      41.65
                                                                                                               112.51
            0.00
                    0.00
                            1200.37 0.00
                                             0.00
                                                     0.00
                                                             0.00
                                                                     0.00
                                                                              0.00
                                                                                              2.12
                                                                                                      0.99
```



```
#top -d 1
11:46:11
                          19:13, 1 user,
                                                load
                3
                    days,
                                                        average:
                                                                     1.72,
                                                                             1.87,
                                                                                     1.80
            up
176 processes:
                174 sleeping,
                                    running,
                                                    zombie, 0
                                2
                                                0
                                                                 stopped
CPU states: cpu user
                                        irq softirq iowait idle
                        nice
                                system
        12.8%
                0.0%
                        4.6%
                                0.2%
                                        0.2%
                                                18.7%
total
                                                         63.2%
                                        0.0%
cpu00
        23.3%
                0.0%
                        7.7%
                                0.0%
                                                36.8%
                                                         32.0%
cpu01
        28.4%
                0.0%
                                0.0%
                                        0.0%
                       10.7%
                                                38.2%
                                                         22.5%
cpu02
        0.0%
                0.0%
                        0.0%
                                0.9%
                                                0.0%
                                                         98.0%
                                        0.9%
        0.0%
                0.0%
                        0.0%
                                0.0%
                                                0.0%
cpu03
                                        0.0%
                                                         100.0%
                    av, 2032692k
Mem:
        2055244k
                                    used,
                                            22552k free,
                                                             0k shrd,
                                                                         18256k buff
1216212k
            actv,
                    513216k in_d,
                                    25520k in_c
                    av, 249844k us<u>ed,</u>
Swap:
        4192956k
                                        3943112k
                                                     free
                                                             1218304k
                                                                         cached
PID USER
                                        %CPU
            PR
               NΙ
                    VIRT
                            RES SHR S
                                                %MEM
                                                         TIME+
                                                                 COMMAND
14939
                                        1117
                                                     38.2
                                                             25.7%
                                                                     15:17.78
                                                                                 mysqld
        mysql
                25
                        379M
                                224M
                    0
                                972 784 R
4023
        root
                15
                    0
                        2120
                                            2.0 0.3 0:00.06 top
1
   root
            15
                0
                    2008
                            688 592 S
                                        0.0 0.2 0:01.30 init
2
            34
                19
                    0
                        0
                                S
                                    0.0 0.0 0:22.59 ksoftirgd/0
   root
                            0
3
                                    0.0 0.0 0:00.00 watchdog/0
                0
                    0
                            0
                                S
            \mathsf{RT}
                        0
   root
4
                                S
            10
                -5
                        0
                                    0.0 0.0 0:00.05 events/0
   root
```



```
#top -d 1
11:46:11
                          19:13, 1 user,
                                                load
                3
                    days,
                                                        average:
                                                                     1.72,
                                                                             1.87,
                                                                                     1.80
            up
176 processes:
                174 sleeping,
                                    running,
                                                    zombie, 0
                                2
                                                0
                                                                 stopped
CPU states: cpu user
                                        irq softirq iowait idle
                        nice
                                system
        12.8%
                0.0%
                        4.6%
                                0.2%
                                        0.2%
                                                18.7%
total
                                                         63.2%
                                        0.0%
cpu00
        23.3%
                0.0%
                        7.7%
                                0.0%
                                                36.8%
                                                         32.0%
cpu01
        28.4%
                0.0%
                                0.0%
                                        0.0%
                       10.7%
                                                38.2%
                                                         22.5%
cpu02
        0.0%
                0.0%
                        0.0%
                                0.9%
                                                0.0%
                                                         98.0%
                                        0.9%
        0.0%
                0.0%
                        0.0%
                                0.0%
                                                0.0%
cpu03
                                        0.0%
                                                         100.0%
                    av, 2032692k
Mem:
        2055244k
                                    used,
                                            22552k free,
                                                             0k shrd,
                                                                         18256k buff
1216212k
            actv,
                    513216k in_d,
                                    25520k in_c
                    av, 249844k us<u>ed,</u>
Swap:
        4192956k
                                        3943112k
                                                     free
                                                             1218304k
                                                                         cached
PID USER
                                        %CPU
            PR
               NΙ
                    VIRT
                            RES SHR S
                                                %MEM
                                                         TIME+
                                                                 COMMAND
14939
                                        1117
                                                     38.2
                                                             25.7%
                                                                     15:17.78
                                                                                 mysqld
        mysql
                25
                        379M
                                224M
                    0
                                972 784 R
4023
        root
                15
                    0
                        2120
                                            2.0 0.3 0:00.06 top
1
   root
            15
                0
                    2008
                            688 592 S
                                        0.0 0.2 0:01.30 init
2
            34
                19
                    0
                        0
                                S
                                    0.0 0.0 0:22.59 ksoftirgd/0
   root
                            0
3
                                    0.0 0.0 0:00.00 watchdog/0
                0
                    0
                            0
                                S
            \mathsf{RT}
                        0
   root
4
                                S
            10
                -5
                        0
                                    0.0 0.0 0:00.05 events/0
   root
```



```
# strace -p 14939
Process 14939 attached - interrupt to quit
read(29, "\3\1\237\1\366\337\1\222\%\4\2\0\0\0\0\0\2P/d", 20) = 20
read(29, "ata1/strongmail/log/strongmail-d"..., 399) = 399
_llseek(29, 2877621036, [2877621036], SEEK_SET) = 0
read(29, "\1\1\241\366\337\1\223\%\4\2\0\0\0\0\0\2P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 400) = 400
_llseek(29, 2877621456, [2877621456], SEEK_SET) = 0
read(29, "\1\1\235\366\337\1\224\%\4\2\0\0\0\0\0\2P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 396) = 396
_llseek(29, 2877621872, [2877621872], SEEK_SET) = 0
read(29, "\1\1\245\366\337\1\225\%\4\2\0\0\0\0\0012P/da", 20) = 20
read(29, "ta1/strongmail/log/strongmail-de"..., 404) = 404
llseek(29, 2877622296, [2877622296], SEEK_SET) = 0
read(29, "\3\1\236\2\366\337\1\226\%\4\2\0\0\0\0\0\2P/d", 20) = 20
```


• 结论: 从以上总结出,MySQL 里这些 update 查询问题,都是在尝试对所有 table 进行索引.这些产生的读请求正 是导致系统性能下降的原因.

问题:发现A请求压力80tps后,cpu占用就非常高了(24核的机器,每个cpu占用率全面飙到80%以上),且设置的检查点没有任何报错

```
Eluqi
```


Device:	rrqm/s	wrgm/s	r/s	w/s	rsec/s	wsec/s	avgrq-sz	avgqu-sz	await	svctm	%util
sda	0.00	1.00	0.00	3.00	0.00	24.00	8.00	0.00	0.33	0.33	0.10
dm-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dm-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dm-2	0.00	0.00	0.00	3.00	0.00	24.00	8.00	0.00	0.33	0.33	0.10
dm-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dm-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dm-3 dm-4 sdb	0.00	88.00	202.00	60	fin cs	us sy 645 61	43.36	1.50	1.98	1.00	75.70


```
#! /usr/bin/env stap
                                                                          CONTEXT SWITER
                                                                                             COUNT
                                                       discover_agent_(12250)->swapper(0)
                                                                                             70395
global csw count
                                                       swapper (0) -> discover_agent_(12250)
                                                                                             70370
global idle count
                                                       discover_agent_(12250)->swapper(0)
                                                                                             64330
                                                       swapper(0)->discover_agent_(12250)
probe scheduler.cpu_off {
                                                                                             64303
                                                       discover_agent_(12250)->swapper(0)
swapper(0)->discover_agent_(12250)
                                                                                             61493
csw_count[task_prev, task_next]++
                                                                                             61466
                                                       discover_agent_(12250)->swapper(0)
                                                                                             33717
idle count+=idle
                                                       swapper(0)->discover_agent_(12250)
                                                                                              33706
                                                       discover_agent_(12250)->swapper(0)
                                                                                             32897
                                                       swapper(0)->discover_agent_(12250)
function fmt_task(task_prev, task_next)
                                                                                             32881
                                                       discover_agent_(12250)->swapper(0)
                                                                                             19274
                                                       swapper(0)->discover_agent_(12250)
                                                                                             19265
                                                       discover_agent_(12250)->swapper(0)
return sprintf("%s(%d)->%s(%d)",
                                                                                             17311
                                                       swapper (0) -> discover_agent_(12250)
                                                                                             17306
task execname(task prev),
                                                       discover_agent_(12250)->swapper(0)
                                                                                             13720
                                                       swapper(0)->discover_agent_(12250)
                                                                                             13714
task pid(task prev),
                                                       discover_agent_(12250)=>swapper(0)
                                                                                              6985
task execname(task next),
                                                       swapper (0) -> discover_agent_(12250)
                                                                                              6984
                                                       discover_agent_(12250)->swapper(0)
                                                                                              51.84
task pid(task next))
                                                       swapper(0)->discover_agent_(12250)
                                                                                              5179
                                                                                            356852
function print cswtop () {
printf ("%45s %10s\n", "Context switch", "COUNT")
foreach ([task prev, task next] in csw count- limit 20) {
printf("%45s %10d\n", fmt_task(task_prev, task_next), csw_count[task_prev, task_next]);
printf("%45s %10d\n", "idle", idle_count)
delete csw count
delete idle count
probe timer.s($1) {
print_cswtop ()
                             _____
printf("--
```


Context Switching(内文切換)

1. Def :

當CPU從一個process切到另一個process執行之前 Context switching

而 Context switching 是一条統負擔,其時間長短

- 2. 如何降低context switch之負擔
 - 。 法一:多加利用registers
 - Def:如果registers數量夠多,則每一 所以在context switching時,OS只要f
 - 優點:負擔最小(速度最快)
 (:遊免Memory store/Load之時間)
 - · 缺點:不適用於register數量少之情?
 - 法二:利用Thread(light-weighted process)习得以降低context switching負擔
 - : 同一個process內的Threads彼此共享code
 : 私有資訊不多,context switching時不需
 - 法三: System process擁有自己的register se 當user process與system process之間的conte

ss的執行狀態(eg. pc, CPU register store in PCB) vare因素 己的registers set risters set即可完成 file. OS resources tore/Load量少 Register Set指標即可

问题定位&优化

▶知己知彼

▶服务端逻辑、使用的技术、其他外围知识掌握。

报告产出

- ▶ 时机: 性能测试达到预期结果之后。
- > 发送人: 同测试方案
- ➤ 工具: Lranalysis, nmon。
- ▶ 包含信息:
 - > 整体结论
 - > 具体性能图标及对应子结论
 - > 测试过程中发现的问题及解决方案
 - > 风险备忘
 - > 实际打压分组
 - ▶ 上线域名信息

Q&A