Contents

Part I The Basics

Part	t I	The Basics			
1	Om	· Adversarv:	The Circuit	3	2
_	1.1	•	Functions	3	
	1.2			12	4
	1.3		ng Programs	17	5
	1.4		All Functions are Complex	21	6
		1.4.1	Circuits	22	7
		1.4.2	Approximation Complexity	26	8
		1.4.3	The Circuit Hierarchy Theorem	29	9
		1.4.4	Switching Networks and Formulas	30	10
		1.4.5	Invariant Classes	33	11
	1.5	So Wher	re are the Complex Functions?	36	12
		1.5.1	On Explicitness	36	13
		1.5.2	Explicit Lower Bounds	37	14
	1.6	A 3n Lo	wer Bound for Circuits	38	15
	1.7	Graph C	omplexity	40	16
		1.7.1	Clique Complexity of Graphs	41	17
		1.7.2	Star Complexity of Graphs	42	18
	1.8	A Consta	ant Factor Away From $P \neq NP$?	45	19
	Exe	rcises		48	20
2	Ans	v Alvsis of Bool	lean Functions	55	21
	2.1	-	Functions as Polynomials	55	
	2.2		gree of Boolean Functions	56	
	2.3		rier Transform	59	24
	2.4		0/1 Versus Fourier ±1 Representation	62	25
	2.5		mating the Values 0 and 1	63	
	2.6		mation by Low-Degree Polynomials	64	
	2.7		proximation	67	
	2.8		ty and Influences	68	
	Exe		•	76	30

x Contents

Part II	Communication	Comp	lexity
---------	---------------	------	--------

3	Gan	nes on Relations	81	31
	3.1	Communication Protocols and Rectangles	81	32
	3.2	Protocols and Tiling	84	33
	3.3	Games and Circuit Depth	88	34
		3.3.1 Monotone Depth	90	35
	Exer	cises	91	36
4	Can	nes on 0-1 Matrices	93	37
7	4.1	Deterministic Communication	93	
	4.2	Nondeterministic Communication	96	
	4.2	4.2.1 Greedy Bounds	98	
		4.2.2 Fooling-Set Bounds	99	
	4.3	$P = NP \cap \text{co-NP for Fixed-Partition Games}$	101	
	4.4	Clique vs. Independent Set Game	104	
	4.5	Communication and Rank	104	
	4.6	The Log-Rank Conjecture	107	
	4.0	4.6.1 Known Gaps	107	
		4.6.2 Small Rank Implies Large Discrepancy	110	
		4.6.3 Rank and Chromatic Number	112	
	4.7	Communication with Restricted Advice	114	
	4.8	$P \neq NP \cap \text{co-NP for Best-Partition Games}$	116	
	4.9	Randomized Communication	119	
	т.)	4.9.1 Distributional Complexity	119	
	4.10	· · · · · ·	121	
	4.11	Unbounded Error Communication and Sign-Rank	124	
	4.12		128	
		rcises	130	
_				
5		ti-Party Games	135	
	5.1	The "Number-in-Hand" Model	136	
	5.2	The Approximate Set Packing Problem	137	
	5.3	Application: Streaming Algorithms	139	
	5.4	The "Number-on-Forehead" Model	140	
	5.5	The Discrepancy Bound	143	
	5.6	Generalized Inner Product	146	
	5.7	Matrix Multiplication	148	
	5.8	Best-Partition k-Party Communication	150	
	Exer	cises	153	66
Par	rt III	Circuit Complexity		
_			1.50	
6		nulas		
	6.1	Size Versus Depth		
	6.2	A Quadratic Lower Bound for Universal Functions	164	69

Contents xi

	6.3	The Effect of Random Restrictions	167	70
	6.4	A Cubic Lower Bound	170	71
	6.5	Nechiporuk's Theorem	172	72
	6.6	Lower Bounds for Symmetric Functions	174	73
	6.7	Formulas and Rectangles	176	74
	6.8	Khrapchenko's Theorem	179	75
	6.9	Complexity is not Convex	182	76
	6.10	Complexity is not Submodular	187	77
	6.11	The Drag-Along Principle	189	78
	6.12	Bounds Based on Graph Measures	190	79
	6.13	Lower Bounds via Graph Entropy	193	80
	6.14	Formula Size, Rank and Affine Dimension	196	81
		6.14.1 Affine Dimension and Formulas	197	82
		6.14.2 Projective Dimension and Branching Programs	199	83
	Exercis	ses	200	84
7	Monot	one Formulas	205	85
,	7.1	The Rank Argument	205	
	7.2	Lower Bounds for Quadratic Functions	206	
	7.3	A Super-Polynomial Size Lower Bound	209	
	1.5	7.3.1 Rank of Disjointness Matrices	210	
		7.3.2 A Lower Bound for Paley Functions	211	
	7.4	A $\log^2 n$ Depth Lower Bound for Connectivity	213	
	7	7.4.1 Reduction to the Fork Game	214	
		7.4.2 Lower Bound for the Fork Game	216	
	7.5	116	219	
	7.6	An $n^{1/2}$ Depth Lower Bound for Matching	224	
		ses	227	
_				
8	_	Programs	229	
	8.1	The Model	229	
	8.2	The Power of Span Programs	231	
	8.3	Power of Monotone Span Programs	232	
	8.4	Threshold Functions	233	
	8.5	The Weakness of Monotone Span Programs	235	
	8.6		236	
	8.7	Characterization of Span Program Size		
	8.8	Monotone Span Programs and Secret Sharing		
	Exercis	es	241	106
9	Monot	one Circuits	245	107
	9.1	Large Cliques are Hard to Detect	245	108
		9.1.1 Construction of the Approximated Circuit	247	109
		9.1.2 Bounding Errors of Approximation	248	110
	9.2	Very Large Cliques are Easy to Detect	251	111
		9.2.1 Properties of τ -Critical Graphs	252	112
		9.2.2 Proof of Theorem 9.7	254	113

xii Contents

	9.3	The Monotone Switching Lemma	257	114
	9.4	The Lower-Bounds Criterion	259	115
	9.5	Explicit Lower Bounds	261	116
		9.5.1 Detecting Triangles	261	117
		9.5.2 Graphs of Polynomials	262	118
	9.6	Circuits with Real-Valued Gates	263	119
	9.7	Criterion for Graph Properties	267	120
	9.8	Clique-Like Problems	269	121
	9.9	What About Circuits with NOT Gates?	273	122
	9.10	Razborov's Method of Approximations	274	123
		9.10.1 Construction of Legitimate Lattices	275	124
	9.11	A Lower Bound for Perfect Matching	276	125
		9.11.1 Error-Probability on Accepted Inputs	278	126
		9.11.2 Error-Probability on Rejected Inputs	279	
	Exercis	ses	282	128
10	The M	lystery of Negations	285	120
10	10.1	When are NOT Gates Useless?	285	
	10.1	10.1.1 Slice Functions	286	
		10.1.2 Negated Inputs as New Variables	288	
	10.2	Markov's Theorem	289	
	10.2	Formulas Require Exponentially More NOT Gates	293	
	10.4	Fischer's Theorem	295	
	10.5	How Many Negations are Enough to Prove $P \neq NP$?	297	
		ses	299	
	Literen		2,,	101
Par	t IV B	Sounded Depth Circuits		
11	Depth-	-3 Circuits	303	138
	11.1	Why is Depth 3 Interesting?	303	139
	11.2	An Easy Lower Bound for Parity	306	140
	11.3	The Method of Finite Limits	306	141
	11.4	A Lower Bound for Majority	309	142
	11.5	$NP \neq \text{co-NP for Depth-3 Circuits}$	310	143
	11.6	Graph Theoretic Lower Bounds	313	144
	11.7	Depth-2 Circuits and Ramsey Graphs	315	145
	11.8	Depth-3 Circuits and Signum Rank	317	146
	11.9	Depth-3 Circuits with Parity Gates	321	147
	11.10	Threshold Circuits	326	148
		11.10.1 General Threshold Circuits	327	149
		11.10.2 Threshold Circuits of Depth Two	329	150
		11.10.3 Threshold Circuits of Depth Three	333	151
	Exercis	ses	336	152
12	Large-	Depth Circuits	339	150
14	12.1	Håstad's Switching Lemma	339	
	12.1	Razborov's Proof of the Switching Lemma	341	

Contents xiii

	12.3	Parity and Majority Are Not in AC ⁰	343	156
			348	157
		12.3.2 Parity is Even Hard to Approximate	349	158
	12.4	Constant-Depth Circuits and Average Sensitivity	350	159
	12.5	Circuits with Parity Gates	354	160
	12.6	Circuits with Modular Gates	357	161
		12.6.1 ACC ⁰ and Symmetric Depth-2 Circuits	360	162
		12.6.2 ACC ⁰ and Low-Degree Polynomials	360	163
		12.6.3 ACC ⁰ and Graph Complexity	361	164
		12.6.4 ACC ⁰ and Communication Complexity	362	165
	12.7	Circuits with Symmetric Gates	363	166
	12.8	Rigid Matrices Require Large Circuits	365	167
	Exercis	ses	369	168
13	Cironi	ts with Arbitrary Gates	371	400
13	13.1	Entropy and the Number of Wires	372	
	13.1	Entropy and Depth-Two Circuits	374	
	13.3	Matrix Product Is Hard in Depth Two	376	
	13.3	13.3.1 Restricted Matrix Product Is Easy in Depth Three	377	
	13.4	Larger-Depth Circuits	378	
	13.5	Linear Circuits for Linear Operators	382	
	13.6	Circuits with OR Gates: Rectifier Networks	386	
	13.0	13.6.1 Circuits with OR and AND Gates.	388	
		13.6.2 Asymptotic Bounds	390	
	13.7	Non-linear Circuits for Linear Operators		
	13.8	Relation to Circuits of Logarithmic Depth		
		ies	399	
	Excicis		377	101
Par	t V Br	anching Programs		
14	Decisio	on Trees	405	182
	14.1	Adversary Arguments	405	183
	14.2	$P \triangleq NP \cap \text{co-NP}$ for Decision Tree Depth	407	184
	14.3	Certificates, Sensitivity and Block Sensitivity	409	185
		14.3.1 Block Sensitivity Versus Certificate Complexity	412	186
		14.3.2 Block Sensitivity Versus Depth	412	187
•		14.3.3 Sensitivity and Degree of Polynomials	414	188
	14.4	Sensitivity and Subgraphs of the <i>n</i> -Cube	416	189
	14.5	Evasive Boolean Functions	418	190
	14.6	Decision Trees for Search Problems	421	191
	14.7	Linear Decision Trees	424	192
	14.8	Element Distinctness and Turán's Theorem	425	193
	14.9	$P \neq NP \cap \text{co-NP}$ for Decision Tree Size	427	194
		14.9.1 Spectral Lower Bound	430	195
		14.9.2 Explicit Lower Bounds	432	196
	Exercis	es	435	197

xiv Contents

15	Gener	al Branching Programs	439	198
	15.1	Nechiporuk's Lower Bounds	439	199
		15.1.1 Lower Bounds for Symmetric Functions	441	200
	15.2	Branching Programs Over Large Domains	442	201
	15.3	Counting Versus Nondeterminism	445	202
	15.4	A Surprise: Barrington's Theorem	447	203
	15.5	Oblivious Branching Programs	451	204
	Exerci	ses	454	205
16	Bound	led Replication	457	206
	16.1	Read-Once Programs: No Replications		
	16.2	$P \neq NP \cap \text{co-NP}$ for Read-Once Programs		
	16.3	Branching Programs Without Null-Paths		
	16.4	Parity Branching Programs		
	16.5	Linear Codes Require Large Replication	467	
	16.6	Expanders Require Almost Maximal Replication	470	
		16.6.1 Quadratic Functions of Expanders are Hard	474	
	Exerci	ses	477	214
17	Round	led Time	479	215
17	17.1	The Rectangle Lemma	480	
	17.1	A Lower Bound for Code Functions	481	
	17.3	Proof of the Rectangle Lemma	483	
		ses	489	
	BACTET		107	210
Par	t VI F	Fragments of Proof Complexity		
18	Resolu	ıtion	493	220
	18.1	Resolution Refutation Proofs	494	221
	18.2	Resolution and Branching Programs	495	222
	18.3	Lower Bounds for Tree-Like Resolution	498	223
	18.4	Tree-Like Versus Regular Resolution	503	224
	18.5	Lower Bounds for General Resolution	505	225
	18.6	Size Versus Width	508	226
	18.7	Tseitin Formulas	511	227
. 1	18.8	Expanders Force Large Width	514	228
	18.9	Matching Principles for Graphs	516	229
	Exerci	ses	517	230
19	Cuttin	g Plane Proofs	521	231
		ig I lane I louis		
	19.1		521	232
	19.1 19.2	Cutting Planes as Proofs	521 523	
		Cutting Planes as Proofs		233
	19.2	Cutting Planes as Proofs Cutting Planes and Resolution	523	233 234
	19.2	Cutting Planes as Proofs	523 526	233 234 235

Contents xv

	19.5	Chvátal Rank	536	238
	19.6	Rank Versus Depth of CP Proofs	539	239
	19.7	Lower Bounds on Chvátal Rank	540	240
		19.7.1 The Maximum Independent Set Problem	541	241
		19.7.2 The Set-Covering Problem	545	242
		19.7.3 The Knapsack Problem	547	243
		19.7.4 An Upper Bounds on the Proof Size	548	244
	19.8	General CP Proofs Cannot be Balanced	549	245
		19.8.1 Size Versus Depth of CP Proofs	550	
	19.9	Integrality Gaps	551	
	Exercis	ses	553	248
20	Enilog	ue	557	249
20	20.1	Pseudo-Random Generators	557	
	20.2	Natural Proofs	561	
	20.3	The Fusion Method	564	
	20.4	Indirect Proofs	568	
		20.4.1 Williams' Lower Bound	569	254
		20.4.2 Kannan's Lower Bound	569	255
A	Mathe	matical Background	575	
A	A.1	Basics and Notation	575575	
A	A.1 A.2	Basics and Notation	575 575	257
A	A.1 A.2 A.3	Basics and Notation	575 575 577	257 258 259
A	A.1 A.2	Basics and Notation	575 575	257 258 259
	A.1 A.2 A.3 A.4	Basics and Notation. Graphs. Linear Algebra Probability Theory.	575 575 577	257 258 259 260
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation. Graphs. Linear Algebra Probability Theory.	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261
Ref	A.1 A.2 A.3 A.4	Basics and Notation Graphs Linear Algebra Probability Theory	575 575 577 585 591	257 258 259 260 261