Processo de Bernoulli

oday

Contents

1	Processo de Bernoulli					
	1.1	Exemplos	2			

1 Processo de Bernoulli

Um processo de tempo discreto $\{X_t\}_{t\geq 1}$ é chamado de **processo de Bernoulli** com parâmetro de sucesso $(p \in [0,1])$ se:

- As variáveis (X_1, X_2, \ldots) são independentes;
- Para todo $t \ge 1$, temos:

$$\mathbb{P}(X_t = 1) = p, \quad \mathbb{P}(X_t = 0) = 1 - p = q$$

As trajetórias de um processo de Bernoulli são sequências de sucessos (1) e fracassos (0), resultantes de ensaios de Bernoulli consecutivos e independentes.

Propriedades fundamentais (prove):

- $\mathbb{E}[X_t] = p$
- $Var[X_t] = p \cdot (1 p) = p \cdot q$ $M_X(t) = \mathbb{E}[e^{tX}] = (1 p) + pe^t$

1.1 Exemplos

1. Controle de qualidade

Considere uma linha de produção na qual cada produto é inspecionado. Se o produto estiver sem defeito, registramos $x_t = 1$; caso contrário, $x_t = 0$.

1	1	1	0	0	1	0	1
•	•	•	•	•	•	•	•

2. Processo acumulado de Bernoulli

Seja $\{X_t\}_{t\geq 1}$ um processo de Bernoulli com p=0.95. Definimos:

$$X_t = \begin{cases} 1, & \text{com probabilidade } 0.95\\ 0, & \text{com probabilidade } 0.05 \end{cases}$$

E o processo acumulado S_t como:

$$S_t = \begin{cases} 0, & \text{se } t = 0\\ X_1 + X_2 + \dots + X_t, & \text{se } t \ge 1 \end{cases}$$

- S_t representa o número de sucessos nos t primeiros ensaios;
- Logo, $S_t \sim \mathcal{B}(t, p)$ (distribuição binomial).

Propriedades da trajetória de S_t :

$$0 = S_0 \le S_1 \le S_2 \le \cdots$$

e para qualquer $k \geq 1$:

$$S_k - S_{k-1} < 1$$

Probabilidade de transição:

$$\mathbb{P}(S_{t+1} = K \mid S_t = J) = \begin{cases} p, & \text{se } K = J+1 \\ q, & \text{se } K = J \\ 0, & \text{caso contrário} \end{cases}$$

1.1.3 Teorema:

Como $S_{t+n} - S_t$ representa o número de sucessos nos n ensaios independentes seguintes, temos:

$$S_{t+n} - S_t \sim \mathcal{B}(n, p) \Rightarrow \mathbb{P}(S_{t+n} - S_t = k) = \binom{n}{k} p^k q^{n-k}$$

Assim, o processo $\{S_t\}_{t\geq 0}$ possui:

- Incrementos independentes;
- Incrementos estacionários.

Isto é garantido pelas igualdades:

$$\mathbb{P}(S_{t+n} - S_t = k \mid S_0, \dots, S_t) = \mathbb{P}(S_{t+n} - S_t = k) \ \forall 0 < S_0 < S_1 < \dots < S_t$$

1.1.4 Distribuição Binomial no Processo de Bernoulli

A distribuição binomial modela o número de sucessos em n ensaios de Bernoulli independentes, cada um com probabilidade de sucesso p. Denotamos:

$$X \sim \mathcal{B}(n, p)$$

A função de probabilidade da distribuição binomial é dada por:

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad \text{para } k=0,1,...,n$$

onde:

- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ é o **coeficiente binomial** (número de maneiras de escolher k sucessos entre n tentativas),
- p^k é a probabilidade de obter exatamente k sucessos,
- $(1-p)^{n-k} = q^{n-k}$ é a probabilidade de obter n-k fracassos.