1734. Decode XORed Permutation

Description

There is an integer array perm that is a permutation of the first n positive integers, where n is always odd.

It was encoded into another integer array $\begin{bmatrix} encoded \end{bmatrix}$ of $\begin{bmatrix} encoded \end{bmatrix}$ of $\begin{bmatrix} encoded \end{bmatrix}$, such that $\begin{bmatrix} encoded \end{bmatrix}$ is $\begin{bmatrix} encoded \end{bmatrix}$ and $\begin{bmatrix} encoded \end{bmatrix}$ is $\begin{bmatrix} encoded \end{bmatrix}$. For example, if $\begin{bmatrix} encoded \end{bmatrix}$ is $\begin{bmatrix} encoded \end{bmatrix}$ and $\begin{bmatrix} encoded \end{bmatrix}$ is $\begin{bmatrix} encoded \end{bmatrix}$.

Given the encoded array, return the original array perm. It is guaranteed that the answer exists and is unique.

Example 1:

```
Input: encoded = [3,1]
Output: [1,2,3]
Explanation: If perm = [1,2,3], then encoded = [1 XOR 2,2 XOR 3] = [3,1]
```

Example 2:

```
Input: encoded = [6,5,4,6]
Output: [2,4,1,5,3]
```

Constraints:

- $3 <= n < 10^5$
- n is odd.
- encoded.length == n 1