EN1060 Signals and Systems: Discrete-Time Fourier Series

Ranga Rodrigo ranga@uom.lk

The University of Moratuwa, Sri Lanka

January 13, 2020

Section 1

Discrete-Time Fourier Series

• Now, we have studied Fourier series and Fourier transform for CT signals.

- Now, we have studied Fourier series and Fourier transform for CT signals.
- In this lesson we will develop a similar tool for discrete time.

- Now, we have studied Fourier series and Fourier transform for CT signals.
- In this lesson we will develop a similar tool for discrete time.
- Specifically, we consider the representation of discrete-time signals through a decomposition as a linear combination of complex exponentials.

- Now, we have studied Fourier series and Fourier transform for CT signals.
- In this lesson we will develop a similar tool for discrete time.
- Specifically, we consider the representation of discrete-time signals through a decomposition as a linear combination of complex exponentials.
 - ▶ DT periodic signals → DT Fourier series

- Now, we have studied Fourier series and Fourier transform for CT signals.
- In this lesson we will develop a similar tool for discrete time.
- Specifically, we consider the representation of discrete-time signals through a decomposition as a linear combination of complex exponentials.
 - DT periodic signals → DT Fourier series
 - ▶ DT aperiodic signals → DT Fourier transform

Philosophy

Decompose the input as

$$x = a_1\phi_1 + a_2\phi_2 + \cdots$$
 linear combination of basic inputs

Then

$$y = a_1\psi_1 + a_2\psi_2 + \cdots$$
 linear combination of corresponding outputs

Choose $\phi_k(t)$ or $\phi_k[n]$ such that

- Broad class of signals can be constructed, and
- Response to ϕ_k s easy to compute.

Eigenfunction Property

Continuous-Time:

$$\phi_k(t) = e^{j\omega_k t}$$
:

$$e^{j\omega_k t} \longrightarrow H(\omega_k)e^{j\omega_k t}$$
 (a scaled-version of the input)

"Discrete-Time":

Eigenfunction Property

Continuous-Time:

$$\phi_k(t)=e^{j\omega_kt}$$

$$e^{j\omega_kt}\longrightarrow H(\omega_k)e^{j\omega_kt} \quad \text{(a scaled-version of the input)}$$

"Discrete-Time": $\phi_k[n] = e^{j\omega_k n}$

$$e^{j\omega_k n} \longrightarrow e^{j\omega_k n} \underbrace{\sum_{r=-\infty}^{\infty} h[r] e^{-j\omega_k r}}$$

eigenfunction eigenvalue

Consider x[n] to be periodic, Period N, Fundamental frequency $\omega_0 = \frac{2\pi}{N}$ $e^{jk\omega_0 n}$ are harmonically related, and periodic with the period N, although the fundamental period is different. $e^{jk\omega_0 n} = e^{j(k+N)\omega_0 n}$

Consider x[n] to be periodic, Period N, Fundamental frequency $\omega_0 = \frac{2\pi}{N}$ $e^{jk\omega_0n}$ are harmonically related, and periodic with the period N, although the fundamental period is different. $e^{jk\omega_0n} = e^{j(k+N)\omega_0n}$ Consider the complex exponential

$$e^{jk\omega_0 n} = e^{j(k+N)\omega_0 n}$$

 \Rightarrow Only *N* distinct complex exponentials.

$$x[n] = \sum_{k} a_k e^{jk\omega_0 n}, \quad k = 0, 1, 2, ..., N - 1.$$

$$x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n}.$$

N equations in N unknowns.

$$a_k = \frac{1}{N} \sum_{\langle N \rangle} x[n] e^{-jk\omega_0 n}.$$

 $k = \langle N \rangle$: k ranges over one period (as a_k periodically repeats).

Continuous-Time

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Discrete-Time Fourier Series

Synthesis

$$x[n] = \sum a_k e^{jk\omega_0 n} = \sum a_k e^{jk(2\pi/N)n}.$$

Analysis

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}.$$

Continuous-Time

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Discrete-Time Fourier Series

Synthesis

$$x[n] = \sum a_k e^{jk\omega_0 n} = \sum a_k e^{jk(2\pi/N)n}.$$

Analysis

$$a_k = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jk(2\pi/N)n}.$$

Note the duality.

Periodicity

x[n] periodic in n, true for CT $e^{jk\omega_0n}$ periodic in n, true for CT $e^{jk\omega_0n}$ periodic in k, not true for CT a_k periodic in k, not true for CT

Convergence

Continuous-time:

- x(t) square-integrable OR
- Dirichlet condition

Discrete-time

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n}.$$

$$\hat{x}[n] = \sum_{p \text{ terms}} a_k e^{jk\omega_0 n}.$$

$$p = N$$

$$\hat{x}[n] \equiv x[n].$$

There is no issue of convergence in DT.

Consider the signal $x[n] = \sin \omega_0 n$.

- 1. When is this signal periodic?
- 2. If it is periodic, what are discrete-time Fourier series coefficients?

Consider the signal $x[n] = \sin \omega_0 n$.

- 1. When is this signal periodic?
- 2. If it is periodic, what are discrete-time Fourier series coefficients?

This is the DT counterpart of $x(t) = \sin \omega_0 t$. x[n] is periodic only if $2\pi/\omega_0$ is an integer or a ratio of integers. For the case when $2\pi/\omega_0$ is an integer N, i.e., when

$$\omega_0 = \frac{2\pi}{N},$$

x[n] is periodic with fundamental period N.

Consider the signal $x[n] = \sin \omega_0 n$.

- 1. When is this signal periodic?
- 2. If it is periodic, what are discrete-time Fourier series coefficients?

This is the DT counterpart of $x(t) = \sin \omega_0 t$. x[n] is periodic only if $2\pi/\omega_0$ is an integer or a ratio of integers. For the case when $2\pi/\omega_0$ is an integer N, i.e., when

$$\omega_0 = \frac{2\pi}{N},$$

x[n] is periodic with fundamental period N. Expanding the signal as a sum of two complex exponentials,

$$x[n] = \frac{1}{2j}e^{j(2\pi/N)n} - \frac{1}{2j}e^{-j(2\pi/N)n}.$$
 (1)

Consider the signal $x[n] = \sin \omega_0 n$.

- 1. When is this signal periodic?
- 2. If it is periodic, what are discrete-time Fourier series coefficients?

This is the DT counterpart of $x(t) = \sin \omega_0 t$. x[n] is periodic only if $2\pi/\omega_0$ is an integer or a ratio of integers. For the case when $2\pi/\omega_0$ is an integer N, i.e., when

$$\omega_0 = \frac{2\pi}{N},$$

x[n] is periodic with fundamental period N.

Expanding the signal as a sum of two complex exponentials,

$$x[n] = \frac{1}{2j}e^{j(2\pi/N)n} - \frac{1}{2j}e^{-j(2\pi/N)n}.$$
 (1)

$$a_1 = \frac{1}{2j}, \quad a_{-1} = -\frac{1}{2j}.$$

Fourier Coefficients for $x[n] = \sin(2\pi/N)n$ for N = 5

Figure: Fourier coefficients for $x[n] = \sin(2\pi/5)n$.

Determine and sketch the DTFS of

$$x[n] = 1 + \sin \omega_0 n + 3\cos \omega_0 n + \cos \left(2\omega_0 n + \frac{\pi}{2}\right).$$

Determine and sketch the DTFS of

$$x[n] = 1 + \sin \omega_0 n + 3\cos \omega_0 n + \cos \left(2\omega_0 n + \frac{\pi}{2}\right).$$

Determine and sketch the DTFS of x[n] of which is shown in the figure.

Determine and sketch the DTFS of x[n] of which is shown in the figure.

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk(2\pi/N)n}$$
 Letting $m=n+N_1$

 $= \frac{1}{N} \sum_{j=1}^{2N_1} e^{-jk(2\pi/N)/(m-N_1)}$

 $=\frac{1}{N}\frac{\sin\left[\frac{k(2\pi/N)(2N_1+1)}{2}\right]}{\sin\left[\frac{k(2\pi/N)}{2}\right]}$

 $= \frac{1}{N} e^{jk(2\pi/N)N_1} \left[\frac{1 - e^{-jk(2\pi/N)(2N_1+1)}}{1 - e^{-jk(2\pi/N)}} \right]$

 $=\frac{1}{N}e^{jk(2\pi/N)N_1}\cdot\frac{e^{-j\frac{k(2\pi/N)(2N_1+1)}{2}}}{e^{-j\frac{k(2\pi/N)}{2}}}\left[\frac{e^{j\frac{k(2\pi/N)(2N_1+1)}{2}}-e^{-j\frac{k(2\pi/N)(2N_1+1)}{2}}}{e^{j\frac{k(2\pi/N)}{2}}-e^{-j\frac{k(2\pi/N)}{2}}}\right]$

 $2N_1 + 1$ terms in a geometric series

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=-N_1} \epsilon_n$$
 Letting $m = n + N_1$

Letting
$$m = n + N_1$$

$$N \underset{n=-N_1}{\overset{\smile}{\sum}}$$

 $= \frac{1}{N} \frac{\sin\left[\frac{k(2\pi/N)(2N_1+1)}{2}\right]}{\sin\left[\frac{k(2\pi/N)}{2}\right]}$

 $=\frac{1}{N}e^{jk(2\pi/N)N_1}\cdot\frac{e^{-j\frac{k(2\pi/N)(2N_1+1)}{2}}}{e^{-j\frac{k(2\pi/N)}{2}}}\left[\frac{e^{j\frac{k(2\pi/N)(2N_1+1)}{2}}-e^{-j\frac{k(2\pi/N)(2N_1+1)}{2}}}{e^{j\frac{k(2\pi/N)}{2}}-e^{-j\frac{k(2\pi/N)}{2}}}\right]$

$$\frac{1}{N} \sum_{n=-N_1} e^{-jk(n)}$$

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk(2\pi/N)n}$$
 Letting $m=n+N_1$

$$\left[\frac{k(2\pi/N)(2N_1+1)}{2}\right]$$

$$\cdot \left[k(2\pi/N)\right]$$

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk(2\pi/N)n}$$

$$u_k = \frac{1}{N} \sum_{n=-N_1} e^{-t}$$
 Letting $m = n + N_1$

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk(2\pi/N)n}$$

Letting $m = n + N_1$

$$= \frac{1}{N} \sum_{n=0}^{2N_1} e^{-jk(2\pi/N)/(m-N_1)}$$

 $2N_1 + 1$ terms in a geometric series

$$\begin{split} &= \frac{1}{N} e^{jk(2\pi/N)N_1} \left[\frac{1 - e^{-jk(2\pi/N)(2N_1 + 1)}}{1 - e^{-jk(2\pi/N)}} \right] \\ &= \frac{1}{N} e^{jk(2\pi/N)N_1} \cdot \frac{e^{-j\frac{k(2\pi/N)(2N_1 + 1)}{2}}}{e^{-j\frac{k(2\pi/N)}{2}}} \left[\frac{e^{j\frac{k(2\pi/N)(2N_1 + 1)}{2}} - e^{-j\frac{k(2\pi/N)(2N_1 + 1)}{2}}}{e^{j\frac{k(2\pi/N)}{2}} - e^{-j\frac{k(2\pi/N)}{2}}} \right] \\ &= \frac{1}{N} \frac{\sin\left[\frac{k(2\pi/N)(2N_1 + 1)}{2}\right]}{\sin\left[\frac{k(2\pi/N)}{2}\right]} \end{split}$$

$$a_k = \frac{1}{N} \frac{\sin \left[2\pi k(N_1 + 1/2)/N \right]}{\sin(\pi k/N)} \quad k \neq 0, \pm N, \pm 2N, \dots$$
$$a_k = \frac{2N_1 + 1}{N} \quad k = 0, \pm N, \pm 2N, \dots$$

Outline

Discrete-Time Fourier Series
Properties of Discrete-Time Fourier Series

Find the Fourier series coefficients a_k of x[n].

Denoting the Fourier series coefficients of $x_1[n]$ by b_k and those of $x_2[n]$ by c_k . We use the linearity property of to conclude that

$$a_k = b_k + c_k.$$

From the previous work, (with $N_1 = 1$ and N = 5), the Fourier series coefficients b_k corresponding to $x_1[n]$ can be expressed as

$$b_k = \begin{cases} \frac{1}{5} \frac{\sin(3\pi k/5)}{\sin(\pi k/5)}, & \text{for } k \neq 0, \pm 5, \pm 10, \dots \\ \frac{3}{5}, & \text{for } k = 0, \pm 5, \pm 10, \dots \end{cases}$$

Suppose that we are given the following facts about a sequence x[n]:

- 1. x[n] is periodic with period n = 6.
- $2. \sum_{n=0}^{5} x[n] = 2.$
- 3. $\sum_{n=2}^{7} (-1)^n x[n] = 1.$
- 4. x[n] has the minimum power per period among the set of signals satisfying the proceeding three conditions.

Determine the sequence x[n].

Noting that $(-1)^n = e^{-j\pi n} = e^{-j(2\pi/6)3n}$, we see from Fact 3 that $a_3 = 1/6$.

Noting that $(-1)^n = e^{-j\pi n} = e^{-j(2\pi/6)3n}$, we see from Fact 3 that $a_3 = 1/6$.

From Parseval's relation, the average power in x[n] is

$$P = \sum_{k=0}^{5} |a_k|^2.$$

Since each nonzero coefficient contributes a positive amount to P, and since the values of a_0 and a_0 are pre-specified, the value of P is minimized by choosing $a_1 = a_2 = a_4 = a_5 = 0$. It then follows that

$$x[n] = a_0 + a_3 e^{j\pi n} = (1/3) + (1/6)(-1)^n.$$

Noting that $(-1)^n = e^{-j\pi n} = e^{-j(2\pi/6)3n}$, we see from Fact 3 that $a_3 = 1/6$.

From Parseval's relation, the average power in x[n] is

$$P = \sum_{k=0}^{5} |a_k|^2.$$

Since each nonzero coefficient contributes a positive amount to P, and since the values of a_0 and a_0 are pre-specified, the value of P is minimized by choosing $a_1 = a_2 = a_4 = a_5 = 0$. It then follows that

$$x[n] = a_0 + a_3 e^{j\pi n} = (1/3) + (1/6)(-1)^n.$$

