Week 9 Quiz

Clarissa Tai - rt2822

Due Tues. Nov 8th, 11:59pm

In this guiz we'll practice scaling data and using PCA for dimensionality reduction.

Instructions

Replace the Name and UNI in cell above and the notebook filename

Replace all '__' below using the instructions provided.

When completed,

- 1. make sure you've replaced Name and UNI in the first cell and filename
- 2. Kernel -> Restart & Run All to run all cells in order
- 3. Print Preview -> Print (Landscape Layout) -> Save to pdf
- 4. post pdf to GradeScope

Load Standard Libraries

```
In [1]: # Import numpy, pandas, matplotlib.pyplot and seaborn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Set matplotlib to display inline
%matplotlib inline
```

Load the Dataset

Week_09_Quiz-rt2822

```
In [2]: # Import load_breast_cancer from sklearn.datasets
    from sklearn.datasets import load_breast_cancer

# Load the breast cancer dataset using the load_breast_cancer() function.
# Store in the variable 'cancer'.
    cancer = load_breast_cancer()

# Create a new dataframe X with values from cancer.data (which is stored as a numpy array)
# and with columns named using cancer.feature_names (also a numpy array)
X = pd.DataFrame(cancer.data,columns=cancer.feature_names)

# For this quiz, only keep the first 10 features/columns
# Store the result back into X
X = X.iloc[:,:10]

# Assert that the shape of the dataframe is (569,10): 569 rows, 10 columns
assert X.shape == (569,10)
```

Calculate Summary Stats

```
In [3]: # The distribution of features in this dataset vary quite a bit, affecting PCA performance.
# To get a sense of the difference, display the mean and standard deviation of each feature.
# Use the .agg() function, which takes a list of strings describing the functions to apply.
# Call .agg() on X
# with the function names 'mean' and 'std'
# transpose the dataframe using .T or .transpose()
# and round to a precision of 2
X.agg(['mean', 'std']).transpose().round(2)
```

Week_09_Quiz-rt2822

Out[3]:		mean	std
	mean radius	14.13	3.52
	mean texture	19.29	4.30
	mean perimeter	91.97	24.30
	mean area	654.89	351.91
	mean smoothness	0.10	0.01
	mean compactness	0.10	0.05
	mean concavity	0.09	0.08
	mean concave points	0.05	0.04
	mean symmetry	0.18	0.03
	mean fractal dimension	0.06	0.01

Standardize the Data

```
In [4]: # Standardize the data to mean 0, standard deviation of 1 using sklearn StandardScaler
        #Import StandardScaler from sklearn
        from sklearn.preprocessing import StandardScaler
        # To standardize X use StandardScaler with default settings
        # do a fit transform() on X
        # store in X zscore
        X zscore = StandardScaler().fit transform(X)
        # Add feature names by creating a new DataFrame
        # containing X zscore
        # with the same column names as the original dataframe X
        # store back into X zscore
        X_zscore = pd.DataFrame(X_zscore)
        # assert that the mean is near 0 and standard deviation is near 1 for all standardized features
        assert X zscore.mean().round(2).eq(0).all() and X zscore.std().round(2).eq(1).all()
        # To visually confirm that all features have been standardized:
        # Call .agg() on X zscore
```

11/3/22, 9:20 PM Week_09_Quiz-rt2822

```
# with the function names 'mean' and 'std'
# transpose the dataframe using .T or .transpose()
# and round to a precision of 2
X_zscore.agg(['mean', 'std']).transpose().round(2)
```

```
      Out [4]:
      mean
      std

      0
      -0.0
      1.0

      1
      -0.0
      1.0

      2
      -0.0
      1.0

      3
      -0.0
      1.0

      4
      0.0
      1.0

      5
      -0.0
      1.0

      6
      -0.0
      1.0

      7
      0.0
      1.0

      8
      -0.0
      1.0

      9
      -0.0
      1.0
```

Show Variance Described by PCA

```
In [5]: # Import PCA from sklearn.
    from sklearn.decomposition import PCA

# Fit a PCA model to X_zscore using PCA() with default parameters
# and store in pca
pca = PCA().fit(X_zscore)

# Create a new DataFrame with 2 columns:
# "component" with values 0 to the number of components in pca
# "cumulative explained variance" with the .cumsum() of the explained_variance_ratio_ in pca
# store in df_var
df_var = pd.DataFrame({"component": range(0, pca.n_components_), "cumulative explained variance": pca.explained_varian
# Use sns.pointplot() to plot the data from df_var with
# "component" on the x-axis
# "cumulative explained variance" on the y-axis
```

```
sns.pointplot(df_var, x = "component", y = "cumulative explained variance")

# Note that over 55% of the variance is explained by the first component

# Over 80% by the first 2 components

# Over 90% by the first 4 components
```

Out[5]: <AxesSubplot: xlabel='component', ylabel='cumulative explained variance'>

Transform Dataset using First 2 Components

```
In [6]: # Fit and transform X_zscore using a new PCA model with n_components=2
# Store the transformed dataset in X_pca
X_pca = PCA(n_components=2).fit_transform(X_zscore)
# Add feature names by creating a new DataFrame
```

11/3/22, 9:20 PM Week_09_Quiz-rt2822

```
# containing X_pca
# with the column names ['component0', 'component1']
# store back into X_pca
X_pca = pd.DataFrame(X_pca, columns = ['component0', 'component1'])

# Assert that the pca representation has the same number of rows (569) but now 2 columns
assert X_pca.shape == (569,2)
```

Plot the Reduced Representation

```
In [7]: # Using seaborn, create a scatterplot of the data in X_pca
    # with component0 on the x-axis
    # and component1 on the y-axis
    # Color the points by their class assignment by setting hue=cancer.target
    # Capture the returned axis in ax
    ax = sns.scatterplot(X_pca, x = 'component0', y = 'component1', hue=cancer.target)

# Set the title to 'First 2 Components Colored by Class' using ax
    ax.set(title='First 2 Components Colored by Class')

# Note that we haven't used the cancer.target information to generate the pca representation.
# We're coloring by cancer.target here to demonstrate that under this transformation
# a linear model will do a decent job of separating the classes
```

Out[7]: [Text(0.5, 1.0, 'First 2 Components Colored by Class')]

11/3/22, 9:20 PM Week_09_Quiz-rt2822

First 2 Components Colored by Class

In []: