Welcome to

CS 3516: Computer Networks

Prof. Yanhua Li

Time: 9:00am -9:50am M, T, R, and F Location: AK219 Fall 2018 A-term

Extra office hour on next **Monday** 10:30AM-11:30AM in AK 130

Regular office hours on Next **Monday** 10-10:30AM AK 130 1-3PM TA office

Chapter 6: Link layer

our goals:

- understand principles behind link layer services:
- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP (address resolution protocol)
 - Ethernet

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- Each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:

- trip from Worcester to Minneapolis
 - limo: Worcester to BOS
 - plane: BOS to MSP
 - train: MSP to Minneapolis
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

Adaptors communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, etc.

- receiving side
 - looks for errors, rdt, etc
 - extracts datagram, passes to upper layer at receiving side

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

Error detection

EDC= Error Detection and Correction bits

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Internet checksum (review)

goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (I's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

Parity checking

single bit parity:

detect single bit errors

Odd parity:

Even parity:

two-dimensional bit parity:

detect and correct single bit errors

Even parity:

Cyclic redundancy check

- more powerful error-detection coding
- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi)

CRC example

Dividing D.2^r by G yields R

$$R = remainder[\frac{D \cdot 2^r}{G}]$$

Questions?