APPENDIX

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1

Table A-1	Molar mass, gas constant, and critical-point properties 898
Table A-2	Ideal-gas specific heats of various common gases 899
Table A-3	Properties of common liquids, solids, and foods 902
Table A-4	Saturated water—Temperature table 904
Table A-5	Saturated water—Pressure table 906
Table A-6	Superheated water 908
Table A-7	Compressed liquid water 912
Table A-8	Saturated ice–water vapor 913
Figure A-9	T-s diagram for water 914
Figure A-10	Mollier diagram for water 915
Table A-11	Saturated refrigerant-134a—Temperature table 916
Table A-12	Saturated refrigerant-134a—Pressure table 917
Table A-13	Superheated refrigerant-134a 918
Figure A-14	<i>P-h</i> diagram for refrigerant-134a 920
Figure A-15	Nelson–Obert generalized compressibility chart 921
Table A-16	Properties of the atmosphere at high altitude 922
Table A-17	Ideal-gas properties of air 923
Table A-18	Ideal-gas properties of nitrogen, N ₂ 925
Table A-19	Ideal-gas properties of oxygen, O ₂ 927
Table A-20	Ideal-gas properties of carbon dioxide, CO ₂ 929
Table A-21	Ideal-gas properties of carbon monoxide, CO 931
Table A-22	Ideal-gas properties of hydrogen, H ₂ 933
Table A-23	Ideal-gas properties of water vapor, H ₂ O 934
Table A-24	Ideal-gas properties of monatomic oxygen, O 936
Table A-25	Ideal-gas properties of hydroxyl, OH 936
Table A-26	Enthalpy of formation, Gibbs function of formation, and
	absolute entropy at 25°C, 1 atm 937
Table A-27	Properties of some common fuels and hydrocarbons 938
Table A-28	Natural logarithms of the equilibrium constant K_p 939
Figure A-29	Generalized enthalpy departure chart 940
Figure A-30	Generalized entropy departure chart 941
Figure A–31	Psychrometric chart at 1 atm total pressure 942
Table A-32	One-dimensional isentropic compressible-flow functions for an
	ideal gas with $k = 1.4$ 943
Table A-33	One-dimensional normal-shock functions for an ideal gas
	with $k = 1.4$ 944
Table A-34	Rayleigh flow functions for an ideal gas with $k = 1.4$ 945

TABLE A-1

Molar mass, gas constant, and critical-point properties

			Gas	Critical-p	oint propertie	S
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg·K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO ₂	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI ₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCI₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane $(R-12)$	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHCI ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C ₂ H ₆	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> –Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H_2	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH ₄	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH ₃ CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	N_2^- 0	44.013	0.1889	309.7	7.27	0.0961
Oxygen	02	31.999	0.2598	154.8	5.08	0.0780
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO ₂	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane $(R-11)$	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg·K is equivalent to kPa·m³/kg·K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol·K and M is the molar mass.

Source of Data: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air—Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A-2

Ideal-gas specific heats of various common gases

- 7	, ,	\ A I	\sim	\sim	1/
- (2) At	- ≺ ()	11	ĸ
٠,	a.	$/ \cap L$	\sim	v	- 1 \

Gas	Formula	Gas constant, <i>R</i> kJ/kg·K	$c_{\scriptscriptstyle ho}$ k $_{ m J/kg\cdot K}$	<i>c</i> _v kJ/kg⋅K	k
	Torritala				
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	$\overline{CH_4}$	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C_8H_{18}	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	C ₃ H ₈	0.1885	1.6794	1.4909	1.126
Steam	H ₂ 0	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg·K is equivalent to kJ/kg·°C.

Source of Data: B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2000).

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)

	<i>,</i> , ,				
ľ	h) At	Various	temperature	C

Temperature,	<i>c_p</i> kJ/kg⋅K	<i>c</i> _v kJ/kg∙K	k	<i>c_p</i> kJ/kg⋅K	<i>c</i> _v kJ/kg∙K	k	<i>c_p</i> kJ/kg∙K	<i>c</i> √ kJ/kg∙K	k
K		Air		Car	bon dioxide,	CO ₂	Carbo	on monoxide	, CO
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
		Hydrogen, H ₂			Nitrogen, N ₂	?		Oxygen, O ₂	
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-2

Ideal-gas specific heats of various common gases (Concluded)

(c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(T in K, c_p in kJ/kmol·K)

						Temperature	% е.	rror
Substance	Formula	а	b	С	d	range, K	Max.	Avg.
Nitrogen	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273-1800	0.59	0.34
Oxygen	02	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273-1800	1.19	0.28
Air	_	28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
Hydrogen Carbon	H ₂	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273–1800	1.01	0.26
monoxide Carbon	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273–1800	0.89	0.37
dioxide	CO ₂	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
Water vapor	$H_2\bar{O}$	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273-1800	0.53	0.24
Nitric oxide	NŌ	29.34	-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273-1500	0.97	0.36
Nitrous oxide Nitrogen	N ₂ O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273–1500	0.59	0.26
dioxide	NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273-1500	0.46	0.18
Ammonia	NH_3	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
Sulfur Sulfur	S ₂	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273–1800	0.99	0.38
dioxide Sulfur	SO ₂	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273–1800	0.45	0.24
trioxide	SO ₃	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273-1300	0.29	0.13
Acetylene	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59
Benzene		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
Methanol	CH₄O	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08
Ethanol Hydrogen	C_2H_6O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273–1500	0.40	0.22
chloride	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
Methane	CH ₄	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273-1500	1.33	0.57
Ethane	C ₂ H ₆	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
Propane	C_3H_8	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273-1500	0.40	0.12
<i>n</i> -Butane	$C_{4}H_{10}$	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
<i>i</i> −Butane	C ₄ H ₁₀	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
<i>n</i> -Pentane	C ₅ H ₁₂	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273-1500	0.56	0.21
<i>n</i> -Hexane	C ₆ H ₁₄	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Ethylene	C_2H_4	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273-1500	0.54	0.13
Propylene	C_3H_6	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273–1500	0.73	0.17

Source of Data: B. G. Kyle, Chemical and Process Thermodynamics (Englewood Cliffs, NJ: Prentice-Hall, 1984).

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	zing data		Liquid p	properties
Substance	Normal boiling point, °C	Latent heat of vaporization $h_{\rm fg}$, kJ/kg	Freezing point, °C	Latent heat of fusion h_{if} , kJ/kg	Temperature, °C	Density $ ho$, kg/m ³	Specific heat $c_{ ho}$, kJ/kg·K
Ammonia	-33.3	1357	-77.7	322.4	-33.3 -20 0 25	682 665 639 602	4.43 4.52 4.60 4.80
Argon Benzene Brine (20% sodium	-185.9 80.2	161.6 394	-189.3 5.5	28 126	-185.6 20	1394 879	1.14 1.72
chloride by mass) n—Butane Carbon dioxide	103.9 -0.5 -78.4*	— 385.2 230.5 (at 0°C)	-17.4 -138.5 -56.6	— 80.3	20 -0.5 0	1150 601 298	3.11 2.31 0.59
Ethanol Ethyl alcohol Ethylene glycol	78.2 78.6 198.1	838.3 855 800.1	-114.2 -156 -10.8	109 108 181.1	25 20 20	783 789 1109	2.46 2.84 2.84
Glycerine Helium Hydrogen	179.9 -268.9 -252.8	974 22.8 445.7	18.9 — — —259.2	200.6 — 59.5	20 -268.9 -252.8	1261 146.2 70.7	2.32 22.8 10.0
Isobutane Kerosene Mercury	-11.7 204-293 356.7	367.1 251 294.7	-160 -24.9 -38.9	105.7 — 11.4	-11.7 20 25	593.8 820 13,560	2.28 2.00 0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5 -100	423 301	3.49 5.79
Methanol Nitrogen	64.5 -195.8	1100 198.6	-97.7 -210	99.2 25.3	25 -195.8 -160	787 809 596	2.55 2.06 2.97
Octane Oil (light) Oxygen	124.8 -183	306.3	-57.5 -218.8	180.7 13.7	20 25 -183	703 910 1141	2.10 1.80 1.71
Petroleum Propane	 -42.1	230–384 427.8	-187.7	80.0	20 -42.1 0	640 581 529	2.0 2.25 2.53
Refrigerant – 134a	-26.1	217.0	-96.6	_	50 -50 -26.1 0	449 1443 1374 1295	3.13 1.23 1.27 1.34
Water	100	2257	0.0	333.7	25 0 25 50 75 100	1207 1000 997 988 975 958	1.43 4.22 4.18 4.18 4.19 4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

TABLE A-3

Properties of common liquids, solids, and foods (Concluded)

(b) Solid	s (values	are	for	room	temperature	unless	indicated	otherwise)
-----------	-----------	-----	-----	------	-------------	--------	-----------	------------

Substance	Density, $ ho$ kg/m 3	Specific heat, $c_{ ho}$ kJ/kg·K	Substance	Density, $ ho$ kg/m ³	Specific heat, $c_{\scriptscriptstyle p}$ kJ/kg·K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water		No/NS IX		Latent heat of		Water		Specifi kJ/kg	Latent heat of	
Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311

Source of Data: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing—point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air—Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A-4

Saturated water—Temperature table

			c <i>volume,</i> ³ /kg	Into	ernal ene kJ/kg	rgy,		<i>Enthalpy,</i> kJ/kg		Entropy, kJ/kg·K		
Temp.,	Sat. press., P _{sat} kPa	Sat. liquid,	Sat. vapor, V_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f		Sat. vapor, s_g
0.01 5 10 15 20		0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	9.1556 8.9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE A-4
Saturated water—Temperature table (Concluded)

			o <i>volume,</i> ³ /kg	Inte	<i>ernal ene</i> kJ/kg	rgy,		<i>Enthalpy,</i> kJ/kg			Entropy kJ/kg·K	
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, V_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	4.0154 3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source of Data: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of $\rm H_2O$ from 173.15 K to 473.15 K," $\rm ASHRAE\ Trans.$, Part 2A, Paper 2793, 1983.

TABLE A-5

Saturated water—Pressure table

Saturated water—Pressure table Specific volume,												
			ovolume, ³ /kg	Int	<i>ernal ene</i> kJ/kg	rgy,		<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621 8.3302 8.2222	8.8270 8.7227 8.6421
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	7.9176 7.6738 7.4996	
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2608.9 2617.5 2624.6 2636.1 2645.2	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.7675
75 100 101.325 125 150	91.76 99.61 5 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2675.0 2675.6 2684.9	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.3545 7.2841
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1716 7.1270 7.0877 7.0525 7.0207
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	561.11 572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9917 6.9650 6.9402 6.9171 6.8955
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	622.65 639.54 655.16 669.72 683.37	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.8561 6.8207 6.7886 6.7593 6.7322
700 750	164.95 167.75	0.001108 0.001111	0.27278 0.25552	696.23 708.40	1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4	2762.8 2765.7	1.9918 2.0195	4.7153 4.6642	6.7071 6.6837

TABLE A-5
Saturated water—Pressure table (*Concluded*)

		Specific m³/l		Inte	ernal ener kJ/kg	gy,		<i>Enthalpy,</i> kJ/kg			<i>Entropy,</i> kJ/kg∙K	
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
800 850 900 950 1000 1100 1200 1300 1400	170.41 172.94 175.35 177.66 179.88 184.06 187.96 191.60 195.04	0.001115 0.001118 0.001121 0.001124 0.001127 0.001133 0.001138 0.001144 0.001149	0.24035 0.22690 0.21489 0.20411 0.19436 0.17745 0.16326 0.15119 0.14078	731.00 741.55 751.67 761.39 779.78 796.96 813.10 828.35	1856.1 1846.9 1838.1 1829.6 1821.4 1805.7 1790.9 1776.8 1763.4	2576.0 2577.9 2579.6 2581.3 2582.8 2585.5 2587.8 2589.9 2591.8	720.87 731.95 742.56 752.74 762.51 781.03 798.33 814.59 829.96	2047.5 2038.8 2030.5 2022.4 2014.6 1999.6 1985.4 1971.9 1958.9	2768.3 2770.8 2773.0 2775.2 2777.1 2780.7 2783.8 2786.5 2788.9	2.1381 2.1785 2.2159 2.2508 2.2835	4.6160 4.5705 4.5273 4.4862 4.4470 4.3735 4.3058 4.2428 4.1840	6.6616 6.6409 6.6213 6.6027 6.5850 6.5520 6.5217 6.4936 6.4675
1500 1750 2000 2250 2500 3000	198.29 205.72 212.38 218.41 223.95 233.85	0.001154 0.001166 0.001177 0.001187 0.001197 0.001217	0.13171 0.11344 0.099587 0.088717 0.079952 0.066667	876.12 906.12 933.54 958.87 1004.6	1750.6 1720.6 1693.0 1667.3 1643.2 1598.5	2593.4 2596.7 2599.1 2600.9 2602.1 2603.2		1946.4 1917.1 1889.8 1864.3 1840.1 1794.9	2795.2 2798.3 2800.5 2801.9 2803.2	2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.4430 6.3877 6.3390 6.2954 6.2558 6.1856
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378		1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.2731 3.0530 2.8627	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1350.9 1393.3 1433.9	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1		3.2077 3.2866 3.3603 3.4299 3.4964	2.3925 2.2556	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1548.4 1585.5 1622.6	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2637.9 2610.8 2581.0	3.7461	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1740.3 1785.8 1841.6 1951.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2466.0 2412.1 2338.4 2172.6		0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

TABLI	E A-6											
Superh	neated wate	r										
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
	P =	0.01 MP	a (45.81°	C)*	P =	0.05 MP	a (81.32°	C)	<i>P</i> :	= 0.10 M	Pa (99.6	l°C)
Sat. [†]	14.670		2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50 100	14.867 17.196	2443.3 2515.5	2592.0 2687.5	8.1741 8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300 400	26.446 31.063	2812.3 2969.3	3076.7 3280.0	9.2827 9.6094	5.2841 6.2094	2811.6 2968.9	3075.8 3279.3	8.5387 8.8659	2.6389 3.1027	2810.7 2968.3	3074.5 3278.6	8.2172 8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911		3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	
900 1000	54.143 58.758	3856.9	4398.3 4642.8	10.8429 11.0429	10.8280 11.7513	3856.8 4055.2		10.1000 10.3000	5.4137 5.8755	3856.7 4055.0	4398.0 4642.6	9.7800 9.9800
1100	63.373			11.0429	12.6745	4259.9		10.3000		4259.8		10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8		10.6704	6.7988	4470.7		10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	P =	0.20 MF	Pa (120.2	1°C)	P =	0.30 MP	a (133.52	2°C)	<i>P</i> =	0.40 MF	Pa (143.6	1°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986		2769.1	7.2810	0.63402		2761.2	7.0792		3 2564.4	2752.8	6.9306
200	1.08049	2654.6	2870.7	7.5081	0.71643		2865.9	7.3132		2647.2	2860.9	7.1723
250 300	1.19890 1.31623	2731.4 2808.8	2971.2 3072.1	7.7100 7.8941	0.79645 0.87535	2807.0	2967.9 3069.6	7.5180 7.7037		2726.4	2964.5 3067.1	7.3804 7.5677
400	1.54934		3277.0	8.2236	1.03155		3275.5	8.0347		2964.9	3273.9	7.9003
500	1.78142		3487.7	8.5153	1.18672		3486.6	8.3271		3129.8	3485.5	8.1933
600		3302.2		8.7793		3301.6	3704.0	8.5915		3301.0	3703.3	8.4580
700 800	2.24434 2.47550	3479.9 3664.7	3928.8 4159.8	9.0221 9.2479	1.49580 1.65004	3479.5	3928.2 4159.3	8.8345 9.0605		3479.0	3927.6 4158.9	8.7012 8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417		4397.3	9.0005		3855.7	4396.9	9.1394
1000				9.6599			4642.0	9.4726		4054.3	4641.7	9.3396
1100			4893.3	9.8497	2.11226		4893.1	9.6624		4259.2	4892.9	9.5295
1200		4470.5	5150.4	10.0304	2.26624		5150.2	9.8431		4470.2	5150.0	9.7102
1300			5413.1	10.2029	2.42019			10.0157		4686.7	5412.8	9.8828
Cat		= 0.50 MF				0.60 MP				0.80 MF		
Sat. 200		2560.7 2643.3		6.8207 7.0610	0.31560 0.35212		2756.2 2850.6	6.7593 6.9683		5 2576.0 3 2631.1	2839.8	6.6616 6.8177
250		2723.8		7.2725	0.39390		2957.6	7.1833		2715.9	2950.4	
300		2803.3		7.4614	0.43442		3062.0	7.3740		2797.5	3056.9	7.2345
350		2883.0		7.6346	0.47428		3166.1	7.5481		2 2878.6	3162.2	
400		2963.7		7.7956	0.51374		3270.8	7.7097		2960.2	3267.7	7.5735
500 600	0.71095	3129.0		8.0893 8.3544	0.59200 0.66976		3483.4 3701.7	8.0041 8.2695		3126.6	3481.3 3700.1	7.8692 8.1354
700	0.89696			8.5978	0.00370		3926.4	8.5132		3477.2	3925.3	
800		3663.6		8.8240	0.82457		4157.9	8.7395		3662.5	4157.0	
900		3855.4		9.0362	0.90179		4396.2	8.9518		3854.5	4395.5	8.8185
1000				9.2364	0.97893		4641.1	9.1521		4053.3	4640.5	9.0189
1100 1200		4259.0 4470.0		9.4263 9.6071	1.05603 1.13309		4892.4 5149.6	9.3420 9.5229		4258.3	4891.9 5149.3	9.2090 9.3898
1300		4686.6		9.7797	1.13309		5412.5			4686.1	5412.2	
									2.20.01			2.2.5

^{*}The temperature in parentheses is the saturation temperature at the specified pressure. † Properties of saturated vapor at the specified pressure.

T	ABLI	E A-6											
S	Superh	neated wat	er (<i>Concl</i>	luded)									
	T	V	U	h	S	V	U	h	S	V	u	h	S
	°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
		P =	1.00 MP	a (179.88				a (187.96		P =	1.40 MPa	(195.04	°C)
	Sat.	0.19437	2582.8	2777.1	6.5850	0.16326				0.14078	2591.8		6.4675
	200 250	0.20602 0.23275	2622.3	2828.3	6.6956 6.9265	0.16934 0.19241			6.5909	0.14303	2602.7 2698.9		6.4975 6.7488
	300	0.25275	2710.4 2793.7	2943.1 3051.6	7.1246	0.19241			7.0335	0.16356 0.18233	2098.9		6.7488
	350	0.28250	2875.7	3158.2	7.3029	0.23455				0.20029	2869.7		7.1379
	400	0.30661	2957.9	3264.5	7.4670	0.25482			7.3793	0.21782	2953.1		7.3046
	500	0.35411	3125.0	3479.1	7.7642	0.29464			7.6779	0.25216	3121.8		7.6047
	600	0.40111	3297.5	3698.6	8.0311	0.33395			7.9456	0.28597	3295.1		7.8730
	700	0.44783	3476.3	3924.1	8.2755	0.37297				0.31951	3474.4		8.1183
	800 900	0.49438 0.54083	3661.7 3853.9	4156.1 4394.8	8.5024	0.41184 0.45059				0.35288	3660.3 3852.7		8.3458 8.5587
	.000	0.54063	4052.7	4640.0	8.7150 8.9155	0.43039				0.38614 0.41933	4051.7		8.7595
	100	0.63354	4257.9	4891.4	9.1057	0.52792			9.0212	0.45247	4257.0		8.9497
	200	0.67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3		9.1308
1	.300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3	9.3036
		P =	1.60 MPa	a (201.37	°C)	<i>P</i> =	1.80 MF	a (207.1)	1°C)	<i>P</i> =	2.00 MPa	(212.38	°C)
S	Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795.9	6.3775	0.09959	2599.1	2798.3	6.3390
	225	0.13293		2857.8	6.5537			2847.2		0.10381	2628.5		6.4160
	250		2692.9	2919.9	6.6753	0.12502	2686.7	2911.7	6.6088	0.11150	2680.3	2903.3	6.5475
	300	0.15866		3035.4	6.8864	0.14025				0.12551	2773.2		6.7684
	350	0.17459		3146.0	7.0713	0.15460				0.13860	2860.5		6.9583
	400	0.19007		3254.9	7.2394	0.16849			7.1814	0.15122	2945.9		7.1292
	500		3120.1	3472.6	7.5410	0.19551				0.17568	3116.9		7.4337
	600 700	0.24999 0.27941	3473.5	3693.9 3920.5	7.8101 8.0558	0.22200 0.24822				0.19962 0.22326	3291.5 3471.7	3918.2	7.7043
	800	0.30865		4153.4	8.2834	0.27426				0.24674	3658.0		8.1791
	900		3852.1	4392.6	8.4965			4391.9		0.27012	3850.9	4391.1	
	.000	0.36687		4638.2	8.6974	0.32606				0.29342		4637.1	
	100	0.39589	4256.6	4890.0	8.8878	0.35188				0.31667	4255.7		8.7842
	.200	0.42488		5147.7	9.0689			5147.3		0.33989	4467.2		8.9654
1	.300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410.6	9.1872	0.36308	4684.2	5410.3	9.1384
		P =	2.50 MP	a (223.95	°C)	P =	3.00 MP	a (233.85	5°C)	P =	3.50 MPa	(242.56	°C)
	Sat. 225	0.07995 0.08026			6.2558 6.2629	0.06667	2603.2	2803.2	6.1856	0.05706	2603.0	2802.7	6.1244
	250	0.08705			6.4107	0.07063	2644.7	2856.5	6.2893	0.05876	2624.0	2829.7	6.1764
	300	0.09894			6.6459	0.08118				0.06845		2978.4	
	350	0.10979			6.8424	0.09056				0.07680		3104.9	
	400	0.12012			7.0170	0.09938				0.08456		3223.2	
	450	0.13015			7.1768	0.10789		3344.9		0.09198		3338.1	
	500	0.13999			7.3254			3457.2		0.09919		3451.7	
	600	0.15931			7.5979	0.13245				0.11325		3678.9	
	700 800	0.17835 0.19722			7.8455 8.0744	0.14841 0.16420		3912.2		0.12702 0.14061		3909.3 4144.6	
	900	0.19722		4389.3		0.10420				0.14001		4385.7	
	.000	0.23466		4635.6		0.17500				0.16751		4632.7	
	100	0.25330			8.6804	0.21105				0.18087		4885.6	
1	200	0.27190	4466.3		8.8618	0.22658				0.19420		5144.1	
1	.300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.8	8.9502	0.20750	4681.8	5408.0	8.8786

TABL	E A-6										
Superl	heated water (Cont	inued)									
Т	v u	h s		V	И	h	S	V	и	h	S
°C	m ³ /kg kJ/kg		kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 4.0 MF	a (250.35°C)		<i>P</i> =	= 4.5 MPa	a (257.44°	C)	P =	5.0 MPa	(263.94	°C)
Sat.	0.04978 2601.7		0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0		5.9737
275 300	0.05461 2668.9 0.05887 2726.2		2312 3639	0.04733 0.05138	2651.4 2713.0	2864.4	6.1429 6.2854	0.04144 0.04535	2632.3 2699.0		6.0571 6.2111
350	0.05667 2726.2		843	0.05138	2818.6	2944.2 3081.5	6.5153	0.04333	2809.5		6.4516
400	0.07343 2920.8		7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483
450	0.08004 3011.0		386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6		6.8210
500	0.08644 3100.3		922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781
600 700	0.09886 3279.4 0.11098 3462.4		3706 3214	0.08766 0.09850	3276.4 3460.0	3670.9 3903.3	7.3127 7.5647	0.07870 0.08852	3273.3 3457.7		7.2605 7.5136
800	0.12292 3650.6		3523	0.10916	3648.8	4140.0	7.7962	0.08832	3646.9		7.7458
900	0.13476 3844.8		675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.9619
1000	0.14653 4045.1		2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.1648
1100	0.15824 4251.4		1612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566
1200 1300	0.16992 4463.5 0.18157 4680.9		3430 3164	0.15103 0.16140	4462.6 4680.1	5142.2 5406.5	8.5880 8.7616	0.13592 0.14527	4461.6 4679.3		8.5388 8.7124
1000		a (275.59°C)	,101			(285.83°)			8.0 MPa		
Sat.	0.03245 2589.9		3902	0.027378		2772.6	5.8148	0.023525			5.7450
300	0.03243 2363.3		703	0.027378		2839.9	5.9337	0.023323			5.7937
350	0.04225 2790.4		357	0.035262		3016.9	6.2305	0.029975	2748.3	2988.1	6.1321
400	0.04742 2893.7		432	0.039958		3159.2	6.4502	0.034344			6.3658
450 500	0.05217 2989.9 0.05667 3083.1		7219 3826	0.044187 0.048157		3288.3 3411.4	6.6353 6.8000	0.038194 0.041767			6.5579 6.7266
550	0.06102 3175.2		308	0.048137		3531.6	6.9507	0.041707			6.8800
600	0.06527 3267.2		.693	0.055665		3650.6	7.0910	0.048463			7.0221
700	0.07355 3453.0		1247	0.062850		3888.3	7.3487	0.054829			7.2822
800	0.08165 3643.2		5582	0.069856		4128.5	7.5836	0.061011			7.5185
900 1000	0.08964 3838.8 0.09756 4040.1		3751 3786	0.076750 0.083571		4373.0 4622.5	7.8014 8.0055	0.067082 0.073079			7.7372 7.9419
1100	0.10543 4247.1		2709	0.090341		4877.4	8.1982	0.079025			8.1350
1200	0.11326 4459.8		1534	0.097075		5137.4	8.3810	0.084934			8.3181
1300	0.12107 4677.7	5404.1 8.6	5273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925
		a (303.35°C)				a (311.00°			12.5 MPa		
Sat.	0.020489 2558.5		5791	0.018028		2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284 2647.6		3738	0.019877		2810.3 2924.0	5.7596	0.016120	2624.0	2026 6	5 7120
350 400	0.025816 2725.0 0.029960 2849.2)380 2876	0.022440 0.026436		3097.5	5.9460 6.2141	0.016138 0.020030			5.7130 6.0433
450	0.033524 2956.3		1872	0.029782		3242.4	6.4219	0.023019			6.2749
500	0.036793 3056.3	3387.4 6.6	603	0.032811		3375.1	6.5995	0.025630	3023.2		6.4651
550			3164	0.035655		3502.0	6.7585	0.028033			6.6317
600 650	0.042861 3248.4 0.045755 3343.4		9605 954	0.038378 0.041018		3625.8 3748.1	6.9045 7.0408	0.030306 0.032491			6.7828 6.9227
700	0.048589 3438.8		2229	0.041018		3870.0	7.0408	0.032491			7.0540
800	0.054132 3632.0		1606	0.048629		4114.5	7.4085	0.038724			7.2967
900	0.059562 3829.6		802	0.053547		4362.0	7.6290	0.042720			7.5195
1000	0.064919 4032.4		8855	0.058391		4613.8	7.8349	0.046641			7.7269
1100 1200	0.070224 4240.7 0.075492 4454.2)791 2625	0.063183 0.067938		4870.3 5131.7	8.0289 8.2126	0.050510 0.054342			7.9220 8.1065
1300	0.080733 4672.9		1371			5398.0	8.3874	0.054342			8.2819

TABL	E A-6											
Super	heated wate	r (<i>Conclu</i>	ıded)									
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
			a (342.16°			17.5 MPa					a (365.75)	
Sat.	0.010341		2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350 400	0.011481 0.015671	2520.9 2740.6	2693.1 2975.7	5.4438 5.8819	0.012463	2684.3	2902.4	5.7211	0.009950	2617.9	2816.9	5.5526
450	0.018477		3157.9	6.1434	0.015204	2845.4	3111.4	6.0212	0.012721			
500	0.020828		3310.8	6.3480	0.017385				0.014793			
550 600		3106.2 3209.3	3450.4	6.5230 6.6796	0.019305 0.021073				0.016571 0.018185			6.3390 6.5075
650	0.026804			6.8233	0.022742				0.019695			6.6593
700		3409.8	3839.1	6.9573	0.024342				0.021134			6.7991
800 900		3609.3		7.2037 7.4288	0.027405 0.030348				0.023870 0.026484			7.0531 7.2829
1000	0.035503 0.038808	3811.2 4017.1		7.4288	0.030348				0.020484			
1100	0.042062			7.8339	0.036029	4222.3	4852.8	7.7588	0.031504	4216.9	4847.0	7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806				0.033952			
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
		P = 25	.0 MPa			P = 30.0) MPa			P = 35.	0 MPa	
375	0.001978		1849.4	4.0345	0.001792				0.001701			
400 425	0.006005 0.007886	2428.5 2607.8	2578.7 2805.0	5.1400 5.4708	0.002798 0.005299				0.002105 0.003434			4.2144 4.7751
450		2721.2		5.6759	0.003233				0.003434			5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691	2824.0	3084.8	5.7956	0.006933	2755.3	2997.9	5.6331
550	0.012736		3339.2	6.1816	0.010175				0.008348			5.9093
600 650		3140.0 3251.9	3493.5 3637.7	6.3637 6.5243	0.011445 0.012590				0.009523 0.010565			6.1229 6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654	3334.3	3743.9	6.5599	0.011523	3308.3	3711.6	6.4623
800	0.018922			6.9322	0.015628				0.013278			6.7409
900		3780.2 3991.5	4307.1 4570.2	7.1668 7.3821	0.017473 0.019240				0.014904 0.016450			6.9853 7.2069
1100	0.025172			7.5825	0.020954				0.017942			
1200	0.027157	4424.6	5103.5	7.7710	0.022630				0.019398			7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40.	0 MPa			P = 50.0) МРа			P = 60.	0 МРа	
	0.001641				0.001560							
400 425	0.001911 0.002538		1931.4 2199.0	4.1145 4.5044	0.001731 0.002009				0.001633 0.001816			
450	0.002538			4.9449	0.002003				0.001010			
500	0.005623	2681.6	2906.5	5.4744	0.003890	2528.1	2722.6	5.1762	0.002952	2393.2	2570.3	4.9356
550	0.006985			5.7857	0.005118				0.003955			
600 650	0.008089 0.009053	3026.8	3350.4 3521.6	6.0170 6.2078	0.006108 0.006957				0.004833			5.6527 5.8867
700		3282.0	3679.2	6.3740	0.007717	3228.7	3614.6	6.2179	0.006265			
800	0.011521	3511.8	3972.6	6.6613	0.009073				0.007456			
900	0.012980 0.014360	3733.3 3952.9	4252.5 4527.3	6.9107 7.1355	0.010296 0.011441				0.008519 0.009504			
1100		4173.7		7.3425	0.012534				0.010439			
1200		4396.9	5075.9	7.5357	0.013590				0.011339			
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	7.5111

TABL	.E A-7											
Comp	ressed liqui	d water										
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K
	P =	5 MPa	(263.94°C)	P =	10 MPa	(311.00°C)	P =	15 MPa	(342.16°	C)
Sat.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3.6848
0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	
100	0.0010410		422.85	1.3034	0.0010385	416.23		1.2996	0.0010361	414.85	430.39	
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243
160	0.0010988		678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259
180	0.0011240		765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	
200	0.0011531		853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	
220	0.0011868		944.32	2.5127	0.0011809	934.01	945.82		0.0011752	929.81	947.43	2.4951
240	0.0012268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586
280					0.0013226		1235.0	3.0565	0.0013096		1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783		1338.3	3.2279
320									0.0014733		1454.0	3.4263 3.6555
340									0.0016311		1592.4	3.0000
			(365.75°C			P = 30	MPa			P = 50	MPa	
Sat.	0.0020378			4.0146		0.00	00.00			2.00	40.10	0.0010
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29		-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	
40	0.0009992 0.0010084	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607 0.8156	0.0009872	161.90	211.25	
60	0.0010084		267.92 350.90	0.8208 1.0627	0.0010042 0.0010155	246.14	276.26	1.0564	0.0009962 0.0010072	243.08	292.88 374.78	
80 100	0.0010199	330.50 413.50	434.17	1.2920	0.0010155	328.40 410.87	358.86 441.74	1.0364	0.0010072	324.42 405.94	456.94	
120	0.0010337		517.84	1.5105	0.0010230	493.66	525.00	1.5020	0.0010201	487.69	539.43	
140	0.0010430	580.71	602.07	1.7194	0.0010443	576.90	608.76	1.7098	0.0010349	569.77	622.36	
160	0.0010079	665.28	687.05	1.9203	0.0010023	660.74	693.21	1.9094	0.0010317	652.33	705.85	
180	0.0011122		773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010704	735.49	790.06	
200	0.0011122		860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0010314	819.45	875.19	
220	0.0011697		949.16	2.4867	0.0011504	918.15	952.93	2.4707	0.0011143	904.39	961.45	
240	0.0011057		1040.2	2.6676	0.0011933		1042.7	2.6491	0.0011712		1049.1	2.6156
260	0.0012472		1134.0	2.8469	0.0012314		1134.7	2.8250	0.0011700		1138.4	2.7864
280	0.0012978		1231.5	3.0265	0.0012770		1229.8	3.0001	0.0012430		1229.9	2.9547
300	0.0013611			3.2091	0.0013322		1328.9	3.1761	0.0012879		1324.0	3.1218
320	0.0014450			3.3996	0.0014014		1433.7	3.3558	0.0013409		1421.4	3.2888
340	0.0015693			3.6086	0.0014932		1547.1	3.5438	0.0014049		1523.1	3.4575
360	0.0018248		1740.1	3.8787	0.0016276		1675.6	3.7499	0.0014848		1630.7	3.6301
380					0.0018729		1838.2	4.0026	0.0015884		1746.5	3.8102

TABLE A-8

Saturated ice-water vapor

			<i>c volume,</i> ³ /kg	In	<i>ternal er</i> kJ/kg			<i>Enthalpy</i> kJ/kg	,		<i>ntropy,</i> ⟨J/kg⋅K	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,	press.,	ice,	vapor,	ice,	Subl.,	vapor,	ice,	Subl.,	vapor,	ice,	Subl.,	vapor,
T °C	$P_{\rm sat}$ kPa	V_{i}	V_g	U_i	U _{ig}	U_g	h _i	h _{ig}	h_g	S_i	S _{ig}	S_g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557
-40	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644

Source of Data: From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Routledge/Taylor & Francis Books, Inc., 1984.

T-s diagram for water.

FIGURE A-10 Mollier diagram for water.

Source of Data: From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Routledge/Taylor & Francis Books, Inc., 1984.

TABLE A-11

Saturated refrigerant-134a—Temperature table

			Specific m ³ /l		Inte	rnal enerį kJ/kg	gy,	ı	Enthalpy, kJ/kg			Entropy, kJ/kg·K	
Ter	Sat np., pre		Sat. liquid,	Sat. vapor,	Sat.	Evap.,	Sat.	Sat.	Evap.,	Sat. vapor,	Sat.	Evap.,	Sat. vapor,
T °(_t kPa	V_f	V_g	U_f	U_{fg}	U_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
-4	0 ;	51.25	0.0007053	0.36064	-0.036	207.42	207.38	0.00	225.86	225.86	0.00000	0.96869	0.96869
-3	8 !	56.86	0.0007082	0.32718	2.472	206.06	208.53	2.512	224.62	227.13	0.01071	0.95516	0.96588
-3	6	62.95	0.0007111	0.29740	4.987	204.69	209.68	5.032	223.37	228.40	0.02137	0.94182	0.96319
-3	4 (69.56	0.0007141	0.27082	7.509	203.32	210.83	7.559	222.10	229.66	0.03196	0.92867	0.96063
-3	2	76.71	0.0007171	0.24706	10.04	201.94	211.97	10.09	220.83	230.93		0.91569	
-3	0 0	34.43	0.0007201	0.22577	12.58	200.55	213.12	12.64	219.55	232.19	0.05297	0.90289	0.95586
-2	8 9	92.76	0.0007232	0.20666	15.12	199.15	214.27	15.19	218.25	233.44	0.06339	0.89024	0.95364
-2	6 10	01.73	0.0007264	0.18947	17.67	197.75	215.42	17.75	216.95	234.70	0.07376	0.87776	0.95152
-2	4 1	11.37	0.0007296	0.17398	20.23	196.34	216.57	20.31	215.63	235.94	0.08408	0.86542	0.94950
-2	2 12	21.72	0.0007328	0.15999	22.80	194.92	217.71	22.89	214.30	237.19	0.09435	0.85323	0.94758
-2	0 13	32.82	0.0007361	0.14735	25.37	193.49	218.86	25.47	212.96	238.43	0.10456	0.84119	0.94575
-1	8 14	44.69	0.0007394	0.13589	27.96	192.05	220.00	28.07	211.60	239.67	0.11473	0.82927	0.94401
-1	6 1	57.38	0.0007428	0.12550	30.55	190.60	221.15	30.67	210.23	240.90	0.12486	0.81749	0.94234
-1	4 17	70.93	0.0007463	0.11605	33.15	189.14	222.29	33.28	208.84	242.12	0.13493	0.80583	0.94076
-1	2 18	35.37	0.0007498	0.10744	35.76	187.66	223.42	35.90	207.44	243.34	0.14497	0.79429	0.93925
-1	0 20	00.74	0.0007533	0.099600	38.38	186.18	224.56	38.53	206.02	244.55	0.15496	0.78286	0.93782
_	8 2	17.08	0.0007570	0.092438	41.01	184.69	225.69	41.17	204.59	245.76	0.16491	0.77154	0.93645
_	6 23	34.44	0.0007607	0.085888	43.64	183.18	226.82	43.82	203.14	246.95		0.76033	0.93514
_		52.85	0.0007644	0.079889	46.29	181.66	227.94	46.48	201.66	248.14		0.74921	
_	2 27	72.36	0.0007683	0.074388	48.94	180.12	229.07	49.15	200.17	249.33		0.73819	
		93.01	0.0007722	0.069335	51.61	178.58	230.18	51.83	198.67	250.50		0.72726	0.93158
		14.84	0.0007761	0.064690	54.28	177.01	231.30	54.53	197.14	251.66		0.71641	
		37.90	0.0007802	0.060412	56.97	175.44	232.40	57.23	195.58		0.22381	0.70565	0.92946
		52.23	0.0007843	0.056469	59.66	173.84	233.51	59.95	194.01	253.96	0.23351	0.69496	
		37.88	0.0007886	0.052829	62.37	172.23	234.60	62.68	192.42	255.09		0.68435	
1		14.89	0.0007929	0.049466	65.09	170.61	235.69	65.42	190.80	256.22	0.25282		
1		43.31	0.0007973	0.046354	67.82	168.96	236.78	68.17	189.16	257.33		0.66331	
1		73.19	0.0008018	0.043471	70.56	167.30	237.86	70.94	187.49	258.43		0.65289	
1		04.58	0.0008064	0.040798	73.31	165.62	238.93	73.72	185.80	259.51		0.64252	
1		37.52	0.0008112	0.038317	76.07	163.92	239.99	76.51	184.08	260.59		0.63219	
2		72.07	0.0008160	0.036012	78.85	162.19	241.04	79.32	182.33		0.30062		
2		08.27	0.0008209	0.033867	81.64	160.45	242.09	82.14	180.55	262.69		0.61168	
2		46.18	0.0008260	0.031869	84.44	158.68	243.13	84.98	178.74	263.72		0.60148	
2		85.84	0.0008312	0.030008	87.26	156.89	244.15	87.83	176.90	264.73		0.59131	
2		27.31	0.0008366	0.028271	90.09	155.08	245.17	90.70	175.03	265.73		0.58117	
3		70.64	0.0008421	0.026648	92.93	153.24	246.17	93.58	173.13	266.71		0.57105	
3			0.0008477	0.025131		151.37			171.19		0.35734		
3		53.11	0.0008535	0.023712	98.67	149.48			169.21		0.36675		
3		12.35	0.0008595	0.022383		147.55		102.34	167.19		0.37615		
3		63.68	0.0008657	0.021137				105.30	165.13		0.38554		
4		17.1	0.0008720	0.019968		143.61		108.28	163.03		0.39493		
4		72.8	0.0008786	0.018870		141.59		111.28	160.89		0.40432		
4	4 113	30.7	0.0008854	0.017837	113.30	139.53	252.83	114.30	158.70	273.00	0.41371	0.50036	0.91407

TABLE A-11Saturated refrigerant-134a—Temperature table (*Concluded*)

		Specific m ³ /l		Inte	ernal ener _i kJ/kg	gy,		<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
_	Sat.	Sat.	Sat.	Sat.	_	Sat.	Sat.	_	Sat.	Sat.	_	Sat.
Temp.,	press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
<i>T</i> °C	P _{sat} kPa	V_f	Vg	U_f	U_{fg}	Ug	h_f	h _{fg}	h _g	S_f	S _{fg}	S_g
46	1191.0	0.0008924	0.016866	116.28	137.43	253.71	117.34	156.46	273.80	0.42311	0.49020	0.91331
48	1253.6	0.0008997	0.015951	119.28	135.30	254.58	120.41	154.17	274.57	0.43251	0.48001	0.91252
52	1386.2	0.0009151	0.014276	125.35	130.89	256.24	126.62	149.41	276.03	0.45136	0.45948	0.91084
56	1529.1	0.0009317	0.012782	131.52	126.29	257.81	132.94	144.41	277.35	0.47028	0.43870	0.90898
60	1682.8	0.0009498	0.011434	137.79	121.45	259.23	139.38	139.09	278.47	0.48930	0.41746	0.90676
65	1891.0	0.0009751	0.009959	145.80	115.06	260.86	147.64	132.05	279.69	0.51330	0.39048	0.90379
70	2118.2	0.0010037	0.008650	154.03	108.17	262.20	156.15	124.37	280.52	0.53763	0.36239	0.90002
75	2365.8	0.0010373	0.007486	162.55	100.62	263.17	165.01	115.87	280.88	0.56252	0.33279	0.89531
80	2635.3	0.0010774	0.006439	171.43	92.22	263.66	174.27	106.35	280.63	0.58812	0.30113	0.88925
85	2928.2	0.0011273	0.005484	180.81	82.64	263.45	184.11	95.39	279.51	0.61487	0.26632	0.88120
90	3246.9	0.0011938	0.004591	190.94	71.19	262.13	194.82	82.22	277.04	0.64354	0.22638	0.86991
95	3594.1	0.0012945	0.003713	202.49	56.25	258.73	207.14	64.94	272.08	0.67605	0.17638	0.85243
100	3975.1	0.0015269	0.002657	218.73	29.72	248.46	224.80	34.22	259.02	0.72224	0.09169	0.81393

Source of Data: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner–Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40° C (and -40° F).

918
PROPERTY TABLES AND CHARTS

TABLE A-12

Saturated refrigerant-134a—Pressure table

		Specific m³/		Inte	<i>rnal enei</i> kJ/kg	gy,		<i>Enthalpy,</i> kJ/kg	,		Entropy, kJ/kg·K	
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
60 70 80 90 100 120 140 160 180 200 240 280 320 360 400 450 500 650 700 750 800	-36.95 -33.87 -31.13 -28.65 -26.37 -22.32 -18.77 -15.60 -12.73 -10.09 -5.38 -1.25 2.46 5.82 8.91 12.46 15.71 18.73 21.55 24.20 26.69 29.06 31.31	0.0007097 0.0007143 0.0007184 0.0007222 0.0007323 0.0007323 0.0007435 0.0007485 0.0007618 0.0007618 0.0007697 0.0007771 0.0007840 0.0007905 0.0007983 0.0008058 0.0008129 0.0008129 0.0008331 0.0008395 0.0008395	0.31108 0.26921 0.23749 0.21261 0.19255 0.16216 0.14020 0.12355 0.11049 0.099951 0.083983 0.072434 0.063681 0.056809 0.051266 0.045677 0.041168 0.037452 0.034335 0.031680 0.029392 0.027398 0.025645		205.34 203.23 201.33 199.60 198.01 195.15 192.60 190.31 188.20 186.25 182.71 179.54 176.65 173.99 171.49 168.58 165.86 163.29 160.84 158.51 156.27 154.11	209.13 210.90 212.48 213.90 215.21 217.53 219.56 221.37 223.01 224.51 227.17 229.49 231.55 233.41 235.10 237.03 238.77 240.38 241.86 243.23 244.51 245.70 246.82	3.837	n _{fg} 223.96 222.02 220.27 218.67 217.19 214.52 212.13 209.96 207.95 206.09 202.68 199.61 196.78 194.15 191.68 188.78 186.04 183.44 180.95 178.56 176.26 174.03 171.86	n _g 227.80 229.74 231.47 233.04 234.46 236.99 239.19 241.14 242.90 244.50 247.32 249.77 251.93 253.86 255.61 257.58 259.36 260.98 262.46 263.82 265.08 266.25 267.34	0.01633 0.03264 0.04707 0.06003 0.07182 0.09269 0.11080 0.12686 0.14131 0.15449 0.17786 0.19822 0.21631 0.23265 0.24757 0.26462 0.28021 0.29460 0.30799 0.32052 0.33232 0.34348 0.35408	0.94812 0.92783 0.91009 0.89431 0.88008 0.85520 0.83387 0.81517 0.79848 0.75689 0.75689 0.73406 0.71395 0.69591 0.67954 0.66093 0.64399 0.62842 0.61398 0.60048 0.58780 0.57582 0.56445	0.96445 0.96047 0.95716 0.95716 0.95434 0.95191 0.94789 0.94467 0.94202 0.93979 0.93788 0.93475 0.93228 0.93026 0.92856 0.92711 0.92555 0.92420 0.92302 0.92302 0.92196 0.92100 0.92012 0.91930 0.91853
850 900 950 1000 1200 1400 1600 1800 2000 2500 3000	33.45 35.51 37.48 39.37 46.29 52.40 57.88 62.87 67.45 77.54 86.16	0.0008437 0.0008519 0.0008580 0.0008640 0.0008700 0.0009167 0.0009400 0.0009639 0.0009887 0.0010567 0.0011410	0.023043 0.024091 0.022703 0.021456 0.020329 0.016728 0.014119 0.012134 0.010568 0.009297 0.006941 0.005272	97.88 100.84 103.70 106.47 116.72 125.96 134.45 142.36 149.81 167.02	150.00 148.03 146.11 144.24 137.12 130.44 124.05 117.85 111.75 96.47 80.17	247.88 248.88 249.82 250.71 253.84 256.40 258.50 260.21 261.56 263.49 263.26	98.61 101.62 104.52 107.34 117.79 127.25 135.96 144.09 151.78 169.66	169.75 167.69 165.68 163.70 156.12 148.92 141.96 135.14 128.36 111.18 92.57	268.36 269.31 270.20 271.04 273.92 276.17 277.92 279.23 280.15 280.84 279.08	0.36417 0.37383 0.38307 0.39196 0.42449 0.45325 0.47921 0.50304 0.52519 0.57542 0.62133	0.55362 0.54326 0.53333 0.52378 0.48870 0.45742 0.42881 0.40213 0.37684 0.31701 0.25759	0.91779 0.91709 0.91641 0.91574 0.91320 0.91067 0.90802 0.90517 0.90204 0.89243 0.87893

TABI	LE A-13											
Supe	rheated ref	rigerant-1	134a									
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 0.0	 06 MPa (<i>T</i>	$rac{1}{1} = -36.$.95°C)	P=0.	 10 MPa (7	$rac{1}{1}$ = -26	.37°C)	P=0.	 14 MPa (7	$t_{\text{sat}} = -18.$	77°C)
Sat.	0.31108		227.80		0.19255	215.21		0.9519	0.14020		239.19	0.9447
-20	0.33608	220.62			0.19841	219.68	239.52	0.9721	0.14020	213.00	203.13	0.5447
-10	0.35048	227.57		1.0478	0.20743	226.77	247.51	1.0031	0.14605	225.93	246.37	0.9724
0	0.36476	234.67	256.56	1.0775	0.21630	233.97	255.60	1.0333	0.15263	233.25	254.61	1.0032
10	0.37893	241.94		1.1067	0.22506	241.32	263.82	1.0628	0.15908	240.68	262.95	1.0331
20	0.39302	249.37	272.95	1.1354	0.23373	248.81	272.18	1.0919	0.16544	248.24	271.40	1.0625
30	0.40705	256.97	281.39		0.24233	256.46	280.69	1.1204	0.17172	255.95	279.99	1.0913
40	0.42102 0.43495	264.73		1.1916	0.25088	264.27	289.36	1.1485 1.1762	0.17794	263.80	288.72 297.59	1.1196 1.1475
50 60	0.43493	272.66 280.75	298.75 307.68	1.2192	0.25937 0.26783	272.24 280.36	298.17 307.15	1.2036	0.18412 0.19025	271.81 279.97	306.61	1.1475
70	0.44883	289.01	316.77		0.20763	288.65	316.28	1.2306	0.19635	288.29	315.78	1.2021
80	0.47651	297.43	326.02	1.2998	0.28465	297.10	325.57	1.2573	0.20242	296.77	325.11	1.2289
90	0.49032	306.02	335.43		0.29303	305.71	335.01	1.2836	0.20847	305.40	334.59	1.2554
100	0.50410	314.76	345.01		0.30138	314.48		1.3097	0.21449		344.22	1.2815
	P=0.	18 MPa ($T_{\rm sat} = -12$.73°C)	P = 0.	20 MPa ($T_{\rm sat} = -10$).09°C)	P = 0	.24 MPa ($T_{\rm sat} = -5.$	38°C)
Sat.	0.11049		242.90	0.9398	0.09995	224.51		0.9379	0.08398		247.32	
-10	0.11189		245.18	0.9485	0.09991	224.57		0.9381	0.00050	227.117	217.02	0.50 10
0	0.11722		253.59	0.9799	0.10481	232.11	253.07	0.9699	0.08617	231.30	251.98	0.9520
10	0.12240		262.05	1.0103	0.10955	239.69	261.60	1.0005	0.09026	239.00	260.66	0.9832
20	0.12748		270.60	1.0400	0.11418	247.36	270.20	1.0304	0.09423	246.76	269.38	1.0134
30	0.13248		279.27	1.0691	0.11874	255.16	278.91	1.0596	0.09812	254.63	278.17	1.0429
40	0.13741		288.07	1.0976	0.12322	263.09	287.74	1.0882	0.10193	262.61	287.07	1.0718
50 60	0.14230 0.14715		297.00 306.07	1.1257 1.1533	0.12766 0.13206	271.16 279.38	296.70 305.79	1.1164 1.1441	0.10570 0.10942	270.73 278.98	296.09 305.24	1.1002 1.1281
70	0.14713		315.28	1.1333	0.13200	287.75	315.03	1.1714	0.10342	287.38	314.53	1.1555
80	0.15673		324.65	1.2075	0.14074	296.27	324.41	1.1984	0.11675	295.93	323.95	1.1826
90	0.16149	305.09	334.16	1.2340	0.14504	304.93	333.94	1.2250	0.12038	304.62	333.51	1.2093
100	0.16622	313.90	343.82	1.2603	0.14933	313.75	343.62	1.2513	0.12398	313.46	343.22	1.2356
	P = 0).28 MPa ($T_{\text{sat}} = -1$.25°C)	P =	0.32 MPa	$(T_{\rm sat} = 2.4)$	46°C)	P = (0.40 MPa	$(T_{\rm sat} = 8.9)$	1°C)
Sat.	0.07243	229.49	249.77	0.9323	0.06368		251.93		0.051266			0.9271
0	0.07282			0.9362	0.0000	007.50	050 70	0.0545	0 051506	005.00	05050	
10	0.07646		259.70	0.9681	0.06609			0.9545	0.051506		256.59	0.9306
20 30	0.07997		277.42	0.9987	0.06925 0.07231			0.9856	0.054213 0.056796			0.9628
40			286.40		0.07530			1.0150	0.059292			1.0237
50	0.09000		295.48	1.0862	0.07823			1.0739	0.061724		293.61	1.0529
60	0.09324		304.69		0.08111			1.1022	0.064104		302.98	1.0814
70	0.09644	287.01	314.01	1.1419	0.08395	286.64	313.50	1.1299	0.066443	285.88	312.45	1.1095
80	0.09961	295.59		1.1690	0.08675			1.1572	0.068747		322.04	1.1370
90	0.10275	304.30		1.1958	0.08953	303.99	332.64	1.1841	0.071023		331.75	1.1641
100	0.10587			1.2223	0.09229		342.41	1.2106	0.073274		341.59	1.1908
110	0.10897			1.2484	0.09503		352.31	1.2368	0.075504		351.55	1.2172
120 130			362.72 372.88		0.09775 0.10045		362.36 372.55	1.2627 1.2883	0.077717 0.079913		361.65 371.89	1.2432 1.2689
140			383.20		0.10045				0.079913			1.2943
1-10	0.11010	555.11	555.25	1.0201	0.10014	3 13.00	002.03	1.0100	0.002030	5 15.12	552.20	1.2510

TAB	LE A-13											
Supe	rheated refr	igerant-1	34a (<i>Cor</i>	ncluded)								
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 0.5	50 MPa (<i>7</i>	$rac{1}{1} = 15.7$	′1°C)	P = 0.	60 MPa ($T_{\rm sat} = 21.9$	55°C)	P = 0.7	70 MPa (7	$T_{\rm sat} = 26.6$	59°C)
Sat.	0.041168		259.36		0.034335				0.029392	244.51	265.08	0.9201
20	0.042115	242.42	263.48	0.9384								
30	0.044338		273.03		0.035984				0.029966			
40	0.046456		282.50		0.037865				0.031696			
50 60	0.048499 0.050485	267.73	291.98	1.0309	0.039659 0.041389		300.00	1.0122	0.033322 0.034875			1.0257
70	0.052427	284.91	311.12		0.041369		309.75		0.034873			
80	0.054331	293.65	320.82		0.044710			1.0988	0.037829			1.0835
90	0.056205		330.63		0.046318				0.039250			
100	0.058053		340.55	1.1706	0.047900	310.75	339.49	1.1536	0.040642			
110	0.059880		350.59		0.049458				0.042010			
120	0.061687		360.75		0.050997				0.043358			
130	0.063479	339.31			0.052519				0.044688			
140 150	0.065256 0.067021	348.85 358.52	381.47 392.04		0.054027 0.055522		380.68		0.046004 0.047306			
160	0.067021	368.34			0.053322				0.047500			1.2952
		30 MPa (7				.90 MPa ($T_{\rm sat} = 39.3$	
Sat.	0.025645				0.022686				0.020319			
40	0.027035				0.023375				0.020406			
50	0.028547		286.71		0.024809				0.021796		282.76	
60	0.029973		296.82		0.026146				0.023068			
70	0.031340				0.027413				0.024261			
80	0.032659		316.99		0.028630			1.0574	0.025398			1.0459
90	0.033941 0.035193		327.12 337.32		0.029806 0.030951			1.0861	0.026492 0.027552			1.0749
100 110		318.47			0.030931				0.027552			
120	0.037625		357.99		0.033164				0.029592			
130	0.038813	337.42		1.2062	0.034241				0.030581		366.70	
140	0.039985	347.08	379.07		0.035302		378.25	1.2211	0.031554		377.42	
150	0.041143	356.86	389.78		0.036349			1.2468	0.032512		388.24	
160	0.042290		400.61		0.037384		399.89		0.033457		399.17	
170	0.043427		411.57		0.038408		410.89		0.034392			
180	0.044554	387.01	422.65	1.3328	0.039423	380.54	422.02	1.3221	0.035317	380.00	421.38	1.3125
	P = 1.2	20 MPa (7	$r_{sat} = 46.2$	29°C)	P = 1	.40 MPa	$T_{\rm sat} = 52$.40°C)	P = 1.6	50 MPa (7	$T_{\rm sat} = 57.8$	88°C)
Sat.	0.016728				0.014119	256.40	276.17	0.9107	0.012134	258.50	277.92	0.9080
50	0.017201		278.28		0.01555	061	005 :-	0.000	0.010==	060 51	000 = 1	0.01.51
60	0.018404		289.66		0.015005				0.012372			
70 80	0.019502 0.020529		300.63 311.40		0.016060 0.017023				0.013430 0.014362		305.09	
90	0.020329		322.09		0.017023				0.014302			
100	0.022442		332.74		0.018778				0.016014			
110	0.023348		343.41		0.019597				0.016773			
120	0.024228	325.05	354.12	1.1395	0.020388				0.017500	322.03	350.03	1.1081
130	0.025086		364.90		0.021155				0.018201			
140	0.025927		375.74		0.021904				0.018882			
150	0.026753		386.68		0.022636				0.019545			
160 170	0.027566 0.028367		397.71 408.84		0.023355 0.024061				0.020194 0.020830		394.71	
180	0.028367				0.024061				0.020830			
	3.023100	555.10	120.00	1.2300	0.024707	307.12	110.70	1.2500	0.021400	500.10	117.10	1.2577

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Source of Data: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A-15 Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A-16

Properties of the atmosphere at high altitude

Altitude,	Temperature,	Pressure, kPa	Gravity g, m/s ²	Speed of Sound, m/s	Density, kg/m ³	Viscosity μ, kg/m⋅s	Thermal Conductivity, W/m·K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5} 1.764×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134		0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987		0.0242
2400	-0.59	75.63	9.799	331.0	0.967		0.0241
2600	-1.89	73.76	9.799	330.2	0.947		0.0240
2800	-3.19	71.92	9.798	329.4	0.928		0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5} 1.687×10^{-5} 1.681×10^{-5} 1.674×10^{-5} 1.668×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891		0.0237
3400	-7.09	66.63	9.796	327.0	0.872		0.0236
3600	-8.39	64.94	9.796	326.2	0.854		0.0235
3800	-9.69	63.28	9.795	325.4	0.837		0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5} 1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802		0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5} 1.622×10^{-5} 1.615×10^{-5} 1.608×10^{-5} 1.602×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721		0.0227
5400	-20.1	51.23	9.790	318.9	0.705		0.0226
5600	-21.4	49.86	9.789	318.1	0.690		0.0224
5800	-22.7	48.52	9.785	317.3	0.675		0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5} 1.588×10^{-5} 1.582×10^{-5} 1.575×10^{-5} 1.568×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646		0.0221
6400	-26.6	44.69	9.787	314.8	0.631		0.0220
6600	-27.9	43.47	9.786	314.0	0.617		0.0219
6800	-29.2	42.27	9.785	313.1	0.604		0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5} 1.527×10^{-5} 1.493×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526		0.0212
9000	-43.4	30.80	9.779	303.8	0.467		0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312		0.0195
14,000	-56.5	14.17	9.764	295.1	0.228		0.0195
16,000	-56.5	10.53	9.758	295.1	0.166		0.0195
18,000	-56.5	7.57	9.751	295.1	0.122		0.0195

Source of Data: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, T=15°C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

PR	OPERTY TA	ABLES AND (CHARTS								
TABI	LE A-17										
Ideal-	gas prope	erties of air									
<i>T</i> K	<i>h</i> kJ/kg	P_r	и kJ/kg	V_r	<i>s</i> ° kJ/kg⋅K	<i>T</i> K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V _r	<i>s</i> ° kJ/kg⋅K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260	260.09	0.8405	185.45	887.8	1.55848	640	649.22	20.64	465.50	88.99	2.47716
270	270.11	0.9590	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.49364
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
450 460 470 480	441.61 451.80 462.02 472.24 482.49	5.332 5.775 6.245 6.742 7.268	315.30 322.62 329.97 337.32 344.70	223.6 211.4 200.1 189.5	2.08870 2.11161 2.13407 2.15604 2.17760	1000 1020 1040 1060 1080	1046.04 1068.89 1091.85 1114.86 1137.89	114.0 123.4 133.3 143.9 155.2	758.94 776.10 793.36 810.62 827.88	25.17 23.72 23.29 21.14 19.98	2.96770 2.99034 3.01260 3.03449 3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540 550 560 570	544.35 555.74 565.17 575.59	11.10 11.86 12.66 13.50	389.34 396.86 404.42 411.97	139.7 133.1 127.0 121.2	2.29906 2.31809 2.33685 2.35531	1200 1220 1240	1277.79 1301.31 1324.93	238.0 254.7 272.3	933.33 951.09 968.95	14.470 13.747 13.069	

TABLE A-17 Ideal-gas properties of air (Concluded) Τ s° S° h И h И kJ/kg kJ/kg K P_r kJ/kg kJ/kg·K K kJ/kg Р, kJ/kg·K V_r 290.8 791.2 1298.30 5.804 1260 1348.55 986.90 12.435 3.23638 1600 1757.57 3.52364 1280 1372.24 310.4 1004.76 11.835 3.25510 1620 1782.00 834.1 1316.96 5.574 3.53879 1300 1395.97 330.9 11.275 3.27345 1640 1806.46 5.355 1022.82 878.9 1335.72 3.55381 352.5 925.6 1354.48 5.147 1320 1419.76 1040.88 10.747 3.29160 1660 1830.96 3.56867 1340 1443.60 375.3 1058.94 10.247 3.30959 1680 1855.50 974.2 1373.24 4.949 3.58335 1360 1467.49 399.1 1077.10 9.780 3.32724 1700 1880.1 1025 1392.7 4.761 3.5979 1380 1491.44 424.2 1095.26 9.337 3.34474 1750 1941.6 1161 1439.8 4.328 3.6336 1400 1515.42 450.5 1113.52 8.919 3.36200 1800 2003.3 1310 1487.2 3.994 3.6684 1420 1539.44 478.0 1131.77 8.526 3.37901 1850 2065.3 1475 3.601 1534.9 3.7023 1440 1563.51 506.9 1150.13 8.153 3.39586 1900 2127.4 1655 1582.6 3.295 3.7354 1460 1587.63 537.1 1168.49 7.801 3.41247 1950 2189.7 1852 1630.6 3.022 3.7677 1480 1611.79 568.8 1186.95 7.468 3.42892 2000 2252.1 2068 2.776 1678.7 3.7994 1500 1635.97 601.9 1205.41 7.152 3.44516 2050 2314.6 2303 1726.8 2.555 3.8303 3.46120 2.356 1520 1660.23 636.5 1223.87 2377.7 2559 1775.3 6.854 2100 3.8605 1540 1684.51 672.8 1242.43 6.569 3.47712 2150 2440.3 2837 1823.8 2.175 3.8901 1560 6.301 3.49276 2200 2503.2 1872.4 2.012 1708.82 710.5 1260.99 3138 3.9191 1580 1733.17 750.0 1279.65 6.046 3.50829 2250 2566.4 3464 1921.3 1.864 3.9474

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

TABLE	A-18						
Ideal-gas	properties of nit	trogen, N ₂					
T	Ī	\overline{u}	$\overline{\mathcal{S}}^{\circ}$	Т	\overline{h}	\overline{u}	$\overline{\mathcal{S}}^{\circ}$
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0 220	0 6,391	0 4,562	0 182.639	600 610	17,563 17,864	12,574 12,792	212.066 212.564
230 240	6,683 6,975	4,770 4,979	183.938 185.180	620 630	18,166 18,468	13,011 13,230	213.055 213.541
250	7,266	5,188	186.370	640	18,772	13,450	214.018
260 270	7,558 7,849	5,396 5,604	187.514 188.614	650 660	19,075 19,380	13,671 13,892	214.489 214.954
280 290	8,141 8,432	5,813 6,021	189.673 190.695	670 680	19,685 19,991	14,114 14,337	215.413 215.866
298	8,669	6,190	191.502	690	20,297	14,560	216.314
300	8,723	6,229	191.682	700	20,604	14,784	216.756
310 320	9,014 9,306	6,437 6,645	192.638 193.562	710 720	20,912 21,220	15,008 15,234	217.192 217.624
330	9,597	6,853	194.459	730	21,529	15,460	218.059
340	9,888	7,061	195.328	740	21,839	15,686	218.472
350	10,180	7,270	196.173	750	22,149	15,913	218.889
360	10,471	7,478	196.995	760 770	22,460	16,141	219.301
370 380	10,763 11,055	7,687 7,895	197.794 198.572	770 780	22,772 23,085	16,370 16,599	219.709 220.113
390	11,347	8,104	199.331	790	23,398	16,830	220.512
400	11,640	8,314	200.071	800	23,714	17,061	220.907
410	11,932	8,523	200.794	810	24,027	17,292	221.298
420	12,225	8,733	201.499	820	24,342	17,524	221.684
430 440	12,518 12,811	8,943 9,153	202.189 202.863	830 840	24,658 24,974	17,757 17,990	222.067 222.447
450	13,105	9,363	203.523	850	25,292	18,224	222.822
460	13,399	9,574	204.170	860	25,610	18,459	223.194
470	13,693	9,786	204.803	870	25,928	18,695	223.562
480	13,988	9,997	205.424	880	26,248	18,931	223.927
490	14,285	10,210	206.033	890	26,568	19,168	224.288
500 510	14,581	10,423	206.630	900 910	26,890	19,407	224.647 225.002
520	14,876 15,172	10,635 10,848	207.216 207.792	920	27,210 27,532	19,644 19,883	225.353
530	15,469	11,062	208.358	930	27,854	20,122	225.701
540	15,766	11,277	208.914	940	28,178	20,362	226.047
550	16,064	11,492	209.461	950	28,501	20,603	226.389
560	16,363	11,707	209.999	960	28,826	20,844	226.728
570	16,662	11,923	210.528	970	29,151	21,086	227.064 227.398
580 590	16,962 17,262	12,139 12,356	211.049 211.562	980 990	29,476 29,803	21,328 21,571	227.398 227.728
	,	,,,,,			, - ,	,	

TABLE	A-18						
Ideal-gas	properties of n	itrogen, N ₂ (<i>Cond</i>	cluded)				
Т	h	\overline{u}	₹°	Т	ħ	\overline{u}	<u></u> s°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128
1160	35,430	25,786	232.973	1920	61,936	45,973	250.502
1180	36,104	26,291	233.549	1940	62,654	46,524	250.874
1200	36,777	26,799	234.115	1960	63,381	47,075	251.242
1220	37,452	27,308	234.673	1980	64,090	47,627	251.607
1240	38,129	27,819	235.223	2000	64,810	48,181	251.969
1260	38,807	28,331	235.766	2050	66,612	49,567	252.858
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170
1640	51,980	38,344	244.896	3000	101,407	76,464	266.793
1660	52,686	38,884	245.324	3050	103,260	77,902	267.404
1680	53,393	39,424	245.747	3100	105,115	79,341	268.007
1700	54,099	39,965	246.166	3150	106,972	80,782	268.601
1700 1720 1740	54,807 55,516	40,507 41,049	246.580 246.990	3200 3250	108,830 110,690	82,224 83,668	269.186 269.763

Source of Data: Tables A-18 through A-25 are adapted from Kenneth Wark, *Thermodynamics*, 4th ed. (New York: McGraw-Hill, 1983), pp. 787–98. Originally published in JANAF, *Thermochemical Tables*, NSRDS-NBS-37, 1971.

	LE	19

Ideal-gas properties of oxygen, O₂

Ideal-gas	s properties of ox	ygen, U ₂					
T	\overline{h}	\overline{u}	$\overline{\mathcal{S}}^{\circ}$	Τ	\overline{h}	\overline{u}	<i>s</i> [◦]
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	17,929	12,940	226.346
220	6,404	4,575	196.171	610	18,250	13,178	226.877
230	6,694	4,782	197.461	620	18,572	13,417	227.400
240	6,984	4,989	198.696	630	18,895	13,657	227.918
250	7,275	5,197	199.885	640	19,219	13,898	228.429
260	7,566	5,405	201.027	650	19,544	14,140	228.932
270	7,858	5,613	202.128	660	19,870	14,383	229.430
280	8,150	5,822	203.191	670	20,197	14,626	229.920
290	8,443	6,032	204.218	680	20,524	14,871	230.405
298	8,682	6,203	205.033	690	20,854	15,116	230.885
300	8,736	6,242	205.213	700	21,184	15,364	231.358
310	9,030	6,453	206.177	710	21,514	15,611	231.827
320	9,325	6,664	207.112	720	21,845	15,859	232.291
330	9,620	6,877	208.020	730	22,177	16,107	232.748
340	9,916	7,090	208.904	740	22,510	16,357	233.201
350	10,213	7,303	209.765	750	22,844	16,607	233.649
360	10,511	7,518	210.604	760	23,178	16,859	234.091
370	10,809	7,733	211.423	770	23,513	17,111	234.528
380	11,109	7,949	212.222	780	23,850	17,364	234.960
390	11,409	8,166	213.002	790	24,186	17,618	235.387
400	11,711	8,384	213.765	800	24,523	17,872	235.810
410	12,012	8,603	214.510	810	24,861	18,126	236.230
420	12,314	8,822	215.241	820	25,199	18,382	236.644
430	12,618	9,043	215.955	830	25,537	18,637	237.055
440	12,923	9,264	216.656	840	25,877	18,893	237.462
450	13,228	9,487	217.342	850	26,218	19,150	237.864
460	13,525	9,710	218.016	860	26,559	19,408	238.264
470	13,842	9,935	218.676	870	26,899	19,666	238.660
480	14,151	10,160	219.326	880	27,242	19,925	239.051
490	14,460	10,386	219.963	890	27,584	20,185	239.439
500	14,770	10,614	220.589	900	27,928	20,445	239.823
510	15,082	10,842	221.206	910	28,272	20,706	240.203
520	15,395	11,071	221.812	920	28,616	20,967	240.580
530	15,708	11,301	222.409	930	28,960	21,228	240.953
540	16,022	11,533	222.997	940	29,306	21,491	241.323
550	16,338	11,765	223.576	950	29,652	21,754	241.689
560	16,654	11,998	224.146	960	29,999	22,017	242.052
570	16,971	12,232	224.708	970	30,345	22,280	242.411
580	17,290	12,467	225.262	980	30,692	22,544	242.768
590	17,609	12,703	225.808	990	31,041	22,809	242.120

TABLE /	4-19						
Ideal-gas	properties of ox	xygen, O ₂ (<i>Concli</i>	uded)				
T	ħ	\overline{u}	$\overline{\mathcal{S}}^{\circ}$	Τ	ħ	\overline{u}	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655
1260	40,594	30,118	251.653	2050	69,772	52,727	269.588
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504
1300	42,033	31,224	252.776	2150	73,573	55,697	271.399
1320	42,753	31,778	253.325	2200	75,484	57,192	272.278
1340	43,475	32,334	253.868	2250	77,397	58,690	273.136
1360	44,198	32,891	254.404	2300	79,316	60,193	273.891
1380	44,923	33,449	254.932	2350	81,243	61,704	274.809
1400	45,648	34,008	255.454	2400	83,174	63,219	275.625
1420	46,374	34,567	255.968	2450	85,112	64,742	276.424
1440	47,102	35,129	256.475	2500	87,057	66,271	277.207
1460	47,831	35,692	256.978	2550	89,004	67,802	277.979
1480	48,561	36,256	257.474	2600	90,956	69,339	278.738
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355
1720	57,394	43,093	263.005	3200	114,809	88,203	286.989
1740	58,136	43,669	263.435	3250	116,827	89,804	287.614

19,029

19,485

19,945

20,407

20,870

21,337

21,807

14,622

14,996

15,372

15,751

16,131

16,515

16,902

237.439

238.292

239.135

239.962

240.789

241.602

242.405

930

940

950

960

970

980

990

39,000

39,535

40,070

40,607

41,145

41,685

42,226

530

540

550

560

570

580

590

PROPER	930 RTY TABLES AND	CHARTS					
TABLE A	-20						
Ideal-gas ¡	properties of ca	rbon dioxide, CO) ₂				
T	h	ū	₹°	Т	\overline{h}	ū	¯s°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	22,280	17,291	243.199
220	6,601	4,772	202.966	610	22,754	17,683	243.983
230	6,938	5,026	204.464	620	23,231	18,076	244.758
240	7,280	5,285	205.920	630	23,709	18,471	245.524
250	7,627	5,548	207.337	640	24,190	18,869	246.282
260	7,979	5,817	208.717	650	24,674	19,270	247.032
270	8,335	6,091	210.062	660	25,160	19,672	247.773
280	8,697	6,369	211.376	670	25,648	20,078	248.507
290	9,063	6,651	212.660	680	26,138	20,484	249.233
298	9,364	6,885	213.685	690	26,631	20,894	249.952
300	9,431	6,939	213.915	700	27,125	21,305	250.663
310	9,807	7,230	215.146	710	27,622	21,719	251.368
320	10,186	7,526	216.351	720	28,121	22,134	252.065
330	10,570	7,826	217.534	730	28,622	22,522	252.755
340	10,959	8,131	218.694	740	29,124	22,972	253.439
350	11,351	8,439	219.831	750	29,629	23,393	254.117
360	11,748	8,752	220.948	760	30,135	23,817	254.787
370	12,148	9,068	222.044	770	30,644	24,242	255.452
380	12,552	9,392	223.122	780	31,154	24,669	256.110
390	12,960	9,718	224.182	790	31,665	25,097	256.762
400	13,372	10,046	225.225	800	32,179	25,527	257.408
410	13,787	10,378	226.250	810	32,694	25,959	258.048
420	14,206	10,714	227.258	820	33,212	26,394	258.682
430	14,628	11,053	228.252	830	33,730	26,829	259.311
440	15,054	11,393	229.230	840	34,251	27,267	259.934
450	15,483	11,742	230.194	850	34,773	27,706	260.551
460	15,916	12,091	231.144	860	35,296	28,125	261.164
470	16,351	12,444	232.080	870	35,821	28,588	261.770
480	16,791	12,800	233.004	880	36,347	29,031	262.371
490	17,232	13,158	233.916	890	36,876	29,476	262.968
500	17,678	13,521	234.814	900	37,405	29,922	263.559
510	18,126	13,885	235.700	910	37,935	30,369	264.146
520	18,576	14,253	236.575	920	38,467	30,818	264.728

31,268

31,719

32,171

32,625

33,081

33,537

33,995

265.304

265.877

266.444

267.007

267.566

268.119

268.670

TABLE A	1 –20						
Ideal-gas	properties of ca	arbon dioxide, CO	O ₂ (Concluded)				
<i>T</i>	<i>h</i>	и	ਤੌ°	<i>T</i>	<i>h</i>	и	ड [°]
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069

TABLE A-2'

Ideal-gas properties of carbon monoxide, CO							
T	h	\overline{u}	$\overline{\mathcal{S}}^{\circ}$	Т	\overline{h}	\overline{u}	$\overline{\mathcal{S}}^{\circ}$
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,266	5,188	192.411	640	18,833	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,736	220.656
270	7,849	5,604	194.654	660	19,449	13,962	221.127
280	8,140	5,812	195.713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

TABLE /	TABLE A-21									
Ideal-gas	properties of ca	arbon monoxide,	CO (Concluded)							
<i>T</i>	<i>h</i>	<i>ū</i>	ड∙	<i>T</i>	<i>h</i>	и	ड∙			
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K			
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991			
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398			
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797			
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194			
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587			
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976			
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361			
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743			
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122			
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497			
1200	37,095	27,118	240.663	1960	63,961	47,665	257.868			
1220	37,780	27,637	241.128	1980	64,684	48,221	258.236			
1240	38,466	28,426	241.686	2000	65,408	48,780	258.600			
1260	39,154	28,678	242.236	2050	67,224	50,179	259.494			
1280	39,844	29,201	242.780	2100	69,044	51,584	260.370			
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226			
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065			
1340	41,919	30,778	244.366	2250	74,516	55,809	262.887			
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692			
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480			
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253			
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012			
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755			
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485			
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202			
1500	47,517	35,046	248.312	2650	89,230	67,197	268.905			
1520	48,222	35,584	248.778	2700	91,077	68,628	269.596			
1540	48,928	36,124	249.240	2750	92,930	70,066	270.285			
1560	49,635	36,665	249.695	2800	94,784	71,504	270.943			
1580	50,344	37,207	250.147	2850	96,639	72,945	271.602			
1600	51,053	37,750	250.592	2900	98,495	74,383	272.249			
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884			
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508			
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123			
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730			
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326			
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914			
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494			

934 PROPERTY TABLES AND CHARTS

TABLE	A-22	
	100	6.1

Ideal-gas	Ideal-gas properties of hydrogen, H ₂									
T	h	\overline{u}	₹°	Τ	h	\overline{u}	$\overline{\mathcal{S}}^{\circ}$			
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol·K			
0	0	0	0	1440	42,808	30,835	177.410			
260	7,370	5,209	126.636	1480	44,091	31,786	178.291			
270	7,657	5,412	127.719	1520	45,384	32,746	179.153			
280	7,945	5,617	128.765	1560	46,683	33,713	179.995			
290	8,233	5,822	129.775	1600	47,990	34,687	180.820			
298	8,468	5,989	130.574	1640	49,303	35,668	181.632			
300	8,522	6,027	130.754	1680	50,622	36,654	182.428			
320	9,100	6,440	132.621	1720	51,947	37,646	183.208			
340	9,680	6,853	134.378	1760	53,279	38,645	183.973			
360	10,262	7,268	136.039	1800	54,618	39,652	184.724			
380	10,843	7,684	137.612	1840	55,962	40,663	185.463			
400	11,426	8,100	139.106	1880	57,311	41,680	186.190			
420	12,010	8,518	140.529	1920	58,668	42,705	186.904			
440	12,594	8,936	141.888	1960	60,031	43,735	187.607			
460	13,179	9,355	143.187	2000	61,400	44,771	188.297			
480	13,764	9,773	144.432	2050	63,119	46,074	189.148			
500	14,350	10,193	145.628	2100	64,847	47,386	189.979			
520	14,935	10,611	146.775	2150	66,584	48,708	190.796			
560	16,107	11,451	148.945	2200	68,328	50,037	191.598			
600	17,280	12,291	150.968	2250	70,080	51,373	192.385			
640	18,453	13,133	152.863	2300	71,839	52,716	193.159			
680	19,630	13,976	154.645	2350	73,608	54,069	193.921			
720	20,807	14,821	156.328	2400	75,383	55,429	194.669			
760	21,988	15,669	157.923	2450	77,168	56,798	195.403			
800	23,171	16,520	159.440	2500	78,960	58,175	196.125			
840	24,359	17,375	160.891	2550	80,755	59,554	196.837			
880	25,551	18,235	162.277	2600	82,558	60,941	197.539			
920	26,747	19,098	163.607	2650	84,368	62,335	198.229			
960	27,948	19,966	164.884	2700	86,186	63,737	198.907			
1000	29,154	20,839	166.114	2750	88,008	65,144	199.575			
1040	30,364	21,717	167.300	2800	89,838	66,558	200.234			
1080	31,580	22,601	168.449	2850	91,671	67,976	200.885			
1120	32,802	23,490	169.560	2900	93,512	69,401	201.527			
1160	34,028	24,384	170.636	2950	95,358	70,831	202.157			
1200	35,262	25,284	171.682	3000	97,211	72,268	202.778			
1240	36,502	26,192	172.698	3050	99,065	73,707	203.391			
1280	37,749	27,106	173.687	3100	100,926	75,152	203.995			
1320	39,002	28,027	174.652	3150	102,793	76,604	204.592			
1360	40,263	28,955	175.593	3200	104,667	78,061	205.181			
1400	41,530	29,889	176.510	3250	106,545	79,523	205.765			

						APPEND	IX 1
TABLE	A-23						
Ideal-gas	s properties of w	ater vapor, H ₂ O					
Т	<u></u>	ū	<u></u> s°	Т	h	ū	₹°
K	kJ/kmol	kJ/kmol	kJ/kmol∙K	K	kJ/kmol	kJ/kmol	kJ/kmol∙K
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330	10,976	8,232	192.136	730	25,218	19,148	220.189
340	11,314	8,487	193.144	740	25,597	19,444	220.707
350	11,652	8,742	194.125	750	25,977	19,741	221.215
360	11,992	8,998	195.081	760	26,358	20,039	221.720
370	12,331	9,255	196.012	770	26,741	20,339	222.221
380	12,672	9,513	196.920	780	27,125	20,639	222.717
390	13,014	9,771	197.807	790	27,510	20,941	223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070

550

560

570

580

590

18,601

18,959

19,318

19,678

20,039

14,028

14,303

14,579

14,856

15,134

209.795

210.440

211.075

211.702

212.320

950

960

970

980

990

33,841

34,247

34,653

35,061

35,472

25,943

26,265

26,588

26,913

27,240

230.499

230.924

231.347

231.767

232.184

1700

1720

1740

67,589

68,567

69,550

53,455

54,267

55,083

256.450

257.022

257.589

PROPE	RTY TABLES AND	CHARTS					
TABLE A	1–23						
Ideal-gas	properties of w	ater vapor, H ₂ O ((Continued)				
T	h	\overline{u}	₹°	Т	ħ	ū	¯s°
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
1000	35,882	27,568	232.597	1760	70,535	55,902	258.151
1020	36,709	28,228	233.415	1780	71,523	56,723	258.708
1040	37,542	28,895	234.223	1800	72,513	57,547	259.262
1060	38,380	29,567	235.020	1820	73,507	58,375	259.811
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357
1100	40,071	30,925	236.584	1860	75,506	60,042	260.898
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969
1160	42,642	32,997	238.859	1920	78,527	62,564	262.497
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571
1260	47,022	36,546	242.482	2050	85,156	68,111	265.838
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286
1460	56,128	43,989	249.185	2550	111,565	90,364	277.354
1480	57,062	44,756	249.820	2600	114,273	92,656	278.407
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441
1520	58,942	46,304	251.074	2700	119,717	97,269	280.462
1540	59,888	47,084	251.693	2750	122,453	99,588	281.464
1560	60,838	47,868	252.305	2800	125,198	101,917	282.453
1580	61,792	48,655	252.912	2850	127,952	104,256	283.429
1600	62,748	49,445	253.513	2900	130,717	106,605	284.390
1620	63,709	50,240	254.111	2950	133,486	108,959	285.338
1640	64,675	51,039	254.703	3000	136,264	111,321	286.273
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102

144,648

147,457

150,272

3150

3200

3250

118,458

120,851

123,250

288.999

289.884

290.756

TABLE	TABLE A-24									
Ideal-gas	Ideal-gas properties of monatomic oxygen, O									
T	\overline{h}	\overline{u}	₹°	Т	h	\overline{u}	<u></u> s°			
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K			
0	0	0	0	2400	50,894	30,940	204.932			
298	6,852	4,373	160.944	2450	51,936	31,566	205.362			
300	6,892	4,398	161.079	2500	52,979	32,193	205.783			
500	11,197	7,040	172.088	2550	54,021	32,820	206.196			
1000	21,713	13,398	186.678	2600	55,064	33,447	206.601			
1500	32,150	19,679	195.143	2650	56,108	34,075	206.999			
1600	34,234	20,931	196.488	2700	57,152	34,703	207.389			
1700	36,317	22,183	197.751	2750	58,196	35,332	207.772			
1800	38,400	23,434	198.941	2800	59,241	35,961	208.148			
1900	40,482	24,685	200.067	2850	60,286	36,590	208.518			
2000	42,564	25,935	201.135	2900	61,332	37,220	208.882			
2050	43,605	26,560	201.649	2950	62,378	37,851	209.240			
2100	44,646	27,186	202.151	3000	63,425	38,482	209.592			
2150	45,687	27,811	202.641	3100	65,520	39,746	210.279			
2200	46,728	28,436	203.119	3200	67,619	41,013	210.945			
2250	47,769	29,062	203.588	3300	69,720	42,283	211.592			
2300	48,811	29,688	204.045	3400	71,824	43,556	212.220			
2350	49,852	30,314	204.493	3500	73,932	44,832	212.831			

TABLE	A-25						
Ideal-gas	properties of hy	ydroxyl, OH					
Т	\overline{h}	\overline{u}	₹°	T	\overline{h}	\overline{u}	$\overline{\mathcal{S}}^{\circ}$
K	kJ/kmol	kJ/kmol	kJ/kmol·K	K	kJ/kmol	kJ/kmol	kJ/kmol·K
0	0	0	0	2400	77,015	57,061	248.628
298	9,188	6,709	183.594	2450	78,801	58,431	249.364
300	9,244	6,749	183.779	2500	80,592	59,806	250.088
500	15,181	11,024	198.955	2550	82,388	61,186	250.799
1000	30,123	21,809	219.624	2600	84,189	62,572	251.499
1500	46,046	33,575	232.506	2650	85,995	63,962	252.187
1600	49,358	36,055	234.642	2700	87,806	65,358	252.864
1700	52,706	38,571	236.672	2750	89,622	66,757	253.530
1800	56,089	41,123	238.606	2800	91,442	68,162	254.186
1900	59,505	43,708	240.453	2850	93,266	69,570	254.832
2000	62,952	46,323	242.221	2900	95,095	70,983	255.468
2050	64,687	47,642	243.077	2950	96,927	72,400	256.094
2100	66,428	48,968	243.917	3000	98,763	73,820	256.712
2150	68,177	50,301	244.740	3100	102,447	76,673	257.919
2200	69,932	51,641	245.547	3200	106,145	79,539	259.093
2250	71,694	52,987	246.338	3300	109,855	82,418	260.235
2300	73,462	54,339	247.116	3400	113,578	85,309	261.347
2350	75,236	55,697	247.879	3500	117,312	88,212	262.429

938 PROPERTY TABLES AND CHARTS

TABLE A-26

Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm

		$\overline{h}_{\!\scriptscriptstyle f}^{\circ}$	$ar{g}_{\scriptscriptstyle f}^{\circ}$	<u></u> s°
Substance	Formula	kJ/kmol	kJ/kmol	kJ/kmol·K
Carbon	C(s)	0	0	5.74
Hydrogen	$H_2(g)$	0	0	130.68
Nitrogen	$N_2(g)$	0	0	191.61
Oxygen	$O_{2}(g)$	0	0	205.04
Carbon monoxide	CO(g)	-110,530	-137,150	197.65
Carbon dioxide	$CO_2(g)$	-393,520	-394,360	213.80
Water vapor	$H_2O(g)$	-241,820	-228,590	188.83
Water	$H_2O(\ell)$	-285,830	-237,180	69.92
Hydrogen peroxide	$H_2O_2(g)$	-136,310	-105,600	232.63
Ammonia	$NH_3(g)$	-46,190	-16,590	192.33
Methane	$CH_4(g)$	-74,850	-50,790	186.16
Acetylene	$C_2H_2(g)$	+226,730	+209,170	200.85
Ethylene	$C_2H_4(g)$	+52,280	+68,120	219.83
Ethane	$C_2H_6(g)$	-84,680	-32,890	229.49
Propylene	$C_3H_6(g)$	+20,410	+62,720	266.94
Propane	$C_3H_8(g)$	-103,850	-23,490	269.91
<i>n</i> -Butane	$C_4H_{10}(g)$	-126,150	-15,710	310.12
<i>n</i> -Octane	$C_8H_{18}(g)$	-208,450	+16,530	466.73
<i>n</i> -Octane	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Benzene	$C_6H_6(g)$	+82,930	+129,660	269.20
Methyl alcohol	CH ₃ OH(<i>g</i>)	-200,670	-162,000	239.70
Methyl alcohol	CH ₃ OH(ℓ)	-238,660	-166,360	126.80
Ethyl alcohol	$C_2H_5OH(g)$	-235,310	-168,570	282.59
Ethyl alcohol	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Oxygen	0(g)	+249,190	+231,770	161.06
Hydrogen	H(g)	+218,000	+203,290	114.72
Nitrogen Hydroxyl	N(<i>g</i>) OH(<i>g</i>)	+472,650 +39,460	+455,510 +34,280	153.30 183.70
Пуштохут	Off(g)	+33,400	+34,∠80	103.70

Source of Data: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971); Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

TABLE A-27

Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, kg/kmol	Density, ¹ kg/L	Enthalpy of vaporization, ² kJ/kg	Specific heat, ¹ c _p kJ/kg·K	Higher heating value, ³ kJ/kg	Lower heating value, ³ kJ/kg
Carbon (s)	С	12.011	2	_	0.708	32,800	32,800
Hydrogen (g)	H_2	2.016	_	_	14.4	141,800	120,000
Carbon monoxide (g)	CÔ	28.013	_	_	1.05	10,100	10,100
Methane (g)	CH₄	16.043	_	509	2.20	55,530	50,050
Methanol (ℓ)	CH ₄ O	32.042	0.790	1168	2.53	22,660	19,920
Acetylene (g)	C_2H_2	26.038	_	_	1.69	49,970	48,280
Ethane (g)	C_2H_6	30.070	_	172	1.75	51,900	47,520
Ethanol (ℓ)	$C_{2}H_{6}O$	46.069	0.790	919	2.44	29,670	26,810
Propane (ℓ)	C ₃ H ₈	44.097	0.500	335	2.77	50,330	46,340
Butane (ℓ)	C_4H_{10}	58.123	0.579	362	2.42	49,150	45,370
1-Pentene (ℓ)	C_5H_{10}	70.134	0.641	363	2.20	47,760	44,630
Isopentane (ℓ)	C_5H_{12}	72.150	0.626	_	2.32	48,570	44,910
Benzene (ℓ)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Hexene (ℓ)	C_6H_{12}	84.161	0.673	392	1.84	47,500	44,400
Hexane (ℓ)	C_6H_{14}	86.177	0.660	366	2.27	48,310	44,740
Toluene (ℓ)	C ₇ H ₈	92.141	0.867	412	1.71	42,400	40,500
Heptane (ℓ)	C_7H_{16}	100.204	0.684	365	2.24	48,100	44,600
Octane (ℓ)	C ₈ H ₁₈	114.231	0.703	363	2.23	47,890	44,430
Decane (ℓ)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Gasoline (ℓ)	$C_n H_{1.87n}$	100–110	0.72–0.78	350	2.4	47,300	44,000
Light diesel (ℓ)	$C_nH_{1.8n}$	170	0.78–0.84	270	2.2	46,100	43,200
Heavy diesel (ℓ)	$C_nH_{1.7n}$	200	0.82-0.88	230	1.9	45,500	42,800
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	2	50,000	45,000

 $^{^1\}mathrm{At}$ 1 atm and 20°C. $^2\mathrm{At}$ 25°C for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels. $^3\mathrm{At}$ 25°C. Multiply by molar mass to obtain heating values in kJ/kmol.

940 PROPERTY TABLES AND CHARTS

TABLE A-28

Natural logarithms of the equilibrium constant K_p

The equilibrium constant K_p for the reaction $\nu_A A + \nu_B B \Longrightarrow \nu_C C + \nu_D D$ is defined as $K_p \equiv \frac{P_C^{\nu_C} P_D^{\nu_D}}{P_A^{\nu_A} P_B^{\nu_B}}$

Temp.	,						
K	$H_2 \rightleftharpoons 2H$	$O_2 \rightleftharpoons 20$	$N_2 \rightleftharpoons 2N$	$H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$	$H_2O \rightleftharpoons {}^1/_2H_2 + OH$	$CO_2 \rightleftharpoons CO + \frac{1}{2}O_2$	$^{1}/_{2}N_{2} + ^{1}/_{2}O_{2} \rightleftharpoons NO$
298	-164.005	-186.975	-367.480	-92.208	-106.208	-103.762	-35.052
500	-92.827	-105.630	-213.372	-52.691	-60.281	-57.616	-20.295
1000	-39.803	-45.150	-99.127	-23.163	-26.034	-23.529	-9.388
1200	-30.874	-35.005	-80.011	-18.182	-20.283	-17.871	-7.569
1400	-24.463	-27.742	-66.329	-14.609	-16.099	-13.842	-6.270
1600	-19.637	-22.285	-56.055	-11.921	-13.066	-10.830	-5.294
1800	-15.866	-18.030	-48.051	-9.826	-10.657	-8.497	-4.536
2000	-12.840	-14.622	-41.645	-8.145	-8.728	-6.635	-3.931
2200	-10.353	-11.827	-36.391	-6.768	-7.148	-5.120	-3.433
2400	-8.276	-9.497	-32.011	-5.619	-5.832	-3.860	-3.019
2600	-6.517	-7.521	-28.304	-4.648	-4.719	-2.801	-2.671
2800	-5.002	-5.826	-25.117	-3.812	-3.763	-1.894	-2.372
3000	-3.685	-4.357	-22.359	-3.086	-2.937	-1.111	-2.114
3200	-2.534	-3.072	-19.937	-2.451	-2.212	-0.429	-1.888
3400	-1.516	-1.935	-17.800	-1.891	-1.576	0.169	-1.690
3600	-0.609	-0.926	-15.898	-1.392	-1.088	0.701	-1.513
3800	0.202	-0.019	-14.199	-0.945	-0.501	1.176	-1.356
4000	0.934	0.796	-12.660	-0.542	-0.044	1.599	-1.216
4500	2.486	2.513	-9.414	0.312	0.920	2.490	-0.921
5000	3.725	3.895	-6.807	0.996	1.689	3.197	-0.686
5500	4.743	5.023	-4.666	1.560	2.318	3.771	-0.497
6000	5.590	5.963	-2.865	2.032	2.843	4.245	-0.341

Source of Data: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 723, table A.14. Based on thermodynamic data given in JANAF, Thermochemical Tables (Midland, MI: Thermal Research Laboratory, The Dow Chemical Company, 1971).

941 APPENDIX 1

FIGURE A-29

Generalized enthalpy departure chart.

Source of Data: Redrawn from Gordon van Wylen and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976.

FIGURE A-30

Generalized entropy departure chart.

Source of Data: Redrawn from Gordon van Wylen and Richard Sontag, Fundamentals of Classical Thermodynamics, (SI version), 2d ed., Wiley, New York, 1976.

TR AD IN THE STREET OF STREET OF STREET ©1992 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Psychrometric Chart No. 1 Normal Temperature Barometric Pressure: 101.325 kPa $\frac{\text{Enthalpy}}{\text{Humidity ratio}} = \frac{\text{D}h}{\text{D}\omega}$ Sea Level 5.0

 $\frac{\mathrm{D}H^{\mathrm{L}}}{\mathrm{D}H^{\mathrm{R}}}$

/ 110

/ 120

Sensible heat Total heat

0.0

/ 100

0.75

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

Dry bulb temperature °C

FIGURE A-3

Psychrometric chart at 1 atm total pressure.

Reprinted by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA: used with permission.

TABLE A-32

One-dimensional isentropic compressible-flow functions for an ideal gas with k = 1.4

Ма	Ma*	A/A*	P/P_0	$ ho/ ho_0$	<i>T/T</i> ₀
0	0	∞	1.0000	1.0000	1.0000
0.1	0.1094	5.8218	0.9930	0.9950	0.9980
0.2	0.2182	2.9635	0.9725	0.9803	0.9921
0.3	0.3257	2.0351	0.9395	0.9564	0.9823
0.4	0.4313	1.5901	0.8956	0.9243	0.9690
0.5	0.5345	1.3398	0.8430	0.8852	0.9524
0.6	0.6348	1.1882	0.7840	0.8405	0.9328
0.7	0.7318	1.0944	0.7209	0.7916	0.9107
0.8	0.8251	1.0382	0.6560	0.7400	0.8865
0.9	0.9146	1.0089	0.5913	0.6870	0.8606
1.0	1.0000	1.0000	0.5283	0.6339	0.8333
1.2	1.1583	1.0304	0.4124	0.5311	0.7764
1.4	1.2999	1.1149	0.3142	0.4374	0.7184
1.6	1.4254	1.2502	0.2353	0.3557	0.6614
1.8	1.5360	1.4390	0.1740	0.2868	0.6068
2.0	1.6330	1.6875	0.1278	0.2300	0.5556
2.2	1.7179	2.0050	0.0935	0.1841	0.5081
2.4	1.7922	2.4031	0.0684	0.1472	0.4647
2.6	1.8571	2.8960	0.0501	0.1179	0.4252
2.8	1.9140	3.5001	0.0368	0.0946	0.3894
3.0	1.9640	4.2346	0.0272	0.0760	0.3571
5.0	2.2361	25.000	0.0019	0.0113	0.1667
∞	2.2495	∞	0	0	0

$$\begin{split} \mathbf{Ma*} &= \mathbf{Ma} \sqrt{\frac{k+1}{2+(k-1)\mathbf{Ma}^2}} \\ \frac{A}{A^*} &= \frac{1}{\mathbf{Ma}} \left(\frac{2}{k+1}\right) \left(1 + \frac{k-1}{2} \mathbf{Ma}^2\right) \right]^{0.5(k+1)/(k-1)} \\ \frac{P}{P_0} &= \left(1 + \frac{k-1}{2} \mathbf{Ma}^2\right)^{-k/(k-1)} \\ \frac{\rho}{\rho_0} &= \left(1 + \frac{k-1}{2} \mathbf{Ma}^2\right)^{-1/(k-1)} \\ \frac{T}{T_0} &= \left(1 + \frac{k-1}{2} \mathbf{Ma}^2\right)^{-1} \end{split}$$

$$\begin{split} T_{01} &= T_{02} \\ \mathrm{Ma}_2 &= \sqrt{\frac{(k-1)\mathrm{Ma}_1^2 + 2}{2k\mathrm{Ma}_1^2 - k + 1}} \\ \frac{P_2}{P_1} &= \frac{1 + k\mathrm{Ma}_1^2}{1 + k\mathrm{Ma}_2^2} = \frac{2k\mathrm{Ma}_1^2 - k + 1}{k + 1} \\ \frac{\rho_2}{\rho_1} &= \frac{P_2/P_1}{T_2/T_1} = \frac{(k+1)\mathrm{Ma}_1^2}{2 + (k-1)\mathrm{Ma}_1^2} = \frac{V_1}{V_2} \\ \frac{T_2}{T_1} &= \frac{2 + \mathrm{Ma}_1^2(k-1)}{2 + \mathrm{Ma}_2^2(k-1)} \\ \frac{P_{02}}{P_{01}} &= \frac{\mathrm{Ma}_1}{\mathrm{Ma}_2} \bigg[\frac{1 + \mathrm{Ma}_2^2(k-1)/2}{1 + \mathrm{Ma}_1^2(k-1)/2} \bigg]^{(k+1)/[2(k-1)]} \\ \frac{P_{02}}{P_1} &= \frac{(1 + k\mathrm{Ma}_1^2)[1 + \mathrm{Ma}_2^2(k-1)/2]^{k/(k-1)}}{1 + k\mathrm{Ma}_2^2} \end{split}$$

TABLE A-33

One-dimensional	normal chock	functions for	or an ideal	asc with k	_ 1 /
One-unitensional	HUHHAI-SHUCK	TUITCLIONS IC	n all lucal	gas willi n	- 1.4

Ma ₁	Ma ₂	P_{2}/P_{1}	$ ho_2/ ho_1$	T_2/T_1	P_{02}/P_{01}	P_{02}/P_1
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
∞	0.3780	∞	6.0000	∞	0	∞

TABLE A-34

rtayrong	in now ranction.	3 131 an 1434. B	GO 1111E11 / 21	•	
Ма	T_0/T_0^*	P_0/P_0^*	<i>T/T*</i>	PIP*	<i>V/V*</i>
0.0	0.0000	1.2679	0.0000	2.4000	0.0000
0.1	0.0468	1.2591	0.0560	2.3669	0.0237
0.2	0.1736	1.2346	0.2066	2.2727	0.0909
0.3	0.3469	1.1985	0.4089	2.1314	0.1918
0.4	0.5290	1.1566	0.6151	1.9608	0.3137
0.5	0.6914	1.1141	0.7901	1.7778	0.4444
0.6	0.8189	1.0753	0.9167	1.5957	0.5745
0.7	0.9085	1.0431	0.9929	1.4235	0.6975
0.8	0.9639	1.0193	1.0255	1.2658	0.8101
0.9	0.9921	1.0049	1.0245	1.1246	0.9110
1.0	1.0000	1.0000	1.0000	1.0000	1.0000
1.2	0.9787	1.0194	0.9118	0.7958	1.1459
1.4	0.9343	1.0777	0.8054	0.6410	1.2564
1.6	0.8842	1.1756	0.7017	0.5236	1.3403
1.8	0.8363	1.3159	0.6089	0.4335	1.4046
2.0	0.7934	1.5031	0.5289	0.3636	1.4545
2.2	0.7561	1.7434	0.4611	0.3086	1.4938
2.4	0.7242	2.0451	0.4038	0.2648	1.5252
2.6	0.6970	2.4177	0.3556	0.2294	1.5505
2.8	0.6738	2.8731	0.3149	0.2004	1.5711
3.0	0.6540	3.4245	0.2803	0.1765	1.5882

$$\frac{T_0}{T_0^*} = \frac{(k+1)\text{Ma}^2[2 + (k-1)\text{Ma}^2]}{(1+k\text{Ma}^2)^2}$$

$$\frac{P_0}{P_0^*} = \frac{k+1}{1+k\text{Ma}^2} \left(\frac{2+(k-1)\text{Ma}^2}{k+1}\right)^{k/(k-1)}$$

$$\frac{T}{T^*} = \left(\frac{\text{Ma}(1+k)}{1+k\text{Ma}^2}\right)^2$$

$$\frac{P}{P^*} = \frac{1+k}{1+k\text{Ma}^2}$$

$$\frac{V}{V^*} = \frac{\rho^*}{\rho} = \frac{(1+k)\text{Ma}^2}{1+k\text{Ma}^2}$$

