CHANGES IN GUT MICROBIOTA ABUNDANCE WITH DIETARY INTERVENTION

By Daniel Broderick

Content

- What is the microbiome and why is it important?
- The study
- The data
- Hypotheses
- Analysis
- Discussion

The microbiome

- Human microbiome project started in 2008
- Our guts have ~20,000 orthologous groups of bacteria, less than 5,000 of which are known, even fewer have their functions characterized in the literature [1]
- Responsible for digesting fiber and indigestible short-chain carbohydrates [2]
 - FODMAPs low-fermentable oligo-, di-, and monosaccharide and polyol
 - Implicated in in food intolerance and IBS
 - Breakdown by gut bacteria can produce gas, bloating, etc.
- Gluten produces an inflammatory response in the gut [3]
- Microbiome composition is shaped by diet, but also by mode of delivery (vaginal or caesarean), lifestyle factors, and antibiotic use (especially during infancy) [4]
- May also be implicated in autoimmunity, mental illness, Alzheimer's, Crohn's, etc.

The study

- n = 78
 - Obese individuals
 - Lasts 12 weeks
- 3 dietary interventions
 - Study A (n = 28) and B (n=24) eats gluten-containing foods; whole grains or low-fiber, refined wheat bread; from Finland
 - Study C (n = 13) consumes 8g inulin and 8g oligofructose daily; from Belgian
 - Study D (n=13) has a one-week run-in diet followed by three weeks each of a resistant-starch-enriched, non-starch-polysaccharide-enriched, and low carb/fat, high pro; from Britain
- Collect fecal samples pre- and post-intervention

The data

- Continuous data representing microarray signal intensities
- Log-transformed and min/max normalized
- Used the 16S rRNA gene to categorize microbiota [4]
- 1037 species or phylotypes
- 130 genus-like group

Hypotheses

H1: Increased gluten intake will affect the relative number of glutenase-producing microbiota

- Microbes may mediate gluten sensitivity
 - Lactobacilli
 - Aspergillus niger
 - Flavobacterium meningosepticum
 - Myxococcus xanthus
 - Sphingomonas capsulata

H2: Oligofructose consumption will affect gut microbiota composition differently than wheat or rye bread consumption.

- Oligofructose and inulin are both fructans, a group of specific carbohydrates found in wheat and rye.
 - can cause digestive issues for some

Non-metric Multi-dimensional Scaling

- Iterative algorithm
- Rank-based
 - Non-parametric
- uses a distance matrix (Bray-Curtis) as input
- BC considers species presence/absence, as well as abundance
- The closer two points are, the more similar their microbiota composition

ANOSIM Test

- Ho: there is no difference between the microbial communities of the groups
- Used 9999 permutations
- And Bray–Curtis dissimilarity
 - used to quantify the compositional dissimilarity between two different sites
- R(0-1): compares mean ranked dissimilarity between groups to mean ranked dissimilarity within groups.
 - 1.0 = most dissimilar
 - 0 = even distribution of high and low ranks within and between groups

	ANOSIM statistic R	P - value
Pre/post	0.0023	0.3027
Pre - AB/C/D	0.6714	<.0001
Post - AB/C/D	0.6351	<.0001
Pre - AB/C	0.7996	<.0001
Post - AB/C	0.7566	<.0001

Indicator Species Analysis

 Identifies microbial species that are found more often in one group compared to another

- Eubacterium's are associated with opportunistic infections [6]
 - minor clinical importance

Genera Pre- intervention	Stat value	P-value
Roseburia intestinalis	0.222	0.0068
Aeromonas	0.217	0.0057
Micrococcaceae	0.198	0.0149
Novosphingobium	0.177	0.0314
Mitsuokella multiacida	0.177	0.0275
Clostridium leptum	0.163	0.0422
Akkermansia	0.160	0.0474
Haemophilus	0.157	0.0491
Genera Post- intervention		
Eubacterium cylindroides	0.161	0.0436

Discussion

- Pre-intervention groups do not cluster together
- General decrease in diversity
- Proof of concept
 - Diet can alter the microbiome
- Criticisms
 - Did not distinguish the individuals in study A from those in study B
 - Inconsistent data recording; pre/post measurements were not clearly indicated for study D
 - Did not distinguish male vs female subjects
 - No supplementary materials, only explanation for the dataset was a short description on data dryad
 - Non-obese and obese controls were used in their analysis but not included in the dataset
 - Study D only had 1 pre and 1 post measurement
 - Cholesterol, insulin resistance, and inflammation markers were measured but not included
 - Samples were processed differently

References

- 1. Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology 13, R79 (2012).
- 2. Hill, P., Muir, J. G. & Gibson, P. R. Controversies and Recent Developments of the Low-FODMAP Diet. Gastroenterol Hepatol (N Y) 13, 36–45 (2017).
- 3. Drago, S. et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scandinavian Journal of Gastroenterology 41, 408–419 (2006).
- 4. Jandhyala, S. M. et al. Role of the normal gut microbiota. World J Gastroenterol 21, 8787–8803 (2015).
- 5. Rajilić-Stojanović, M. et al. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11, 1736–1751 (2009).
- 6. Eubacterium an overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/medicine-and-dentistry/eubacterium.

Image 2: Microarrays - an overview | ScienceDirect Topics.

Study: Korpela, K. et al. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals. PLOS ONE 9, e90702 (2014).

Dataset: https://datadryad.org/stash/dataset/doi:10.5061/dryad.bv4k7

Questions?

