

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS

(9665/FM03) Unit FP2 - Pure Maths

Friday 21 June 2019

07:00 GMT

Time allowed: 2 hours 30 minutes

Materials

- For this paper you must have the Oxford International AQA booklet of formulae and statistical tables (enclosed).
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 120.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
TOTAL		

Λ	-11		•	41		and the second
Answer	all (guestions	ın	tne s	spaces	provided.

1 (a)	Show	that
-------	------	------

$$\frac{1}{2r+1} - \frac{1}{2r+3} = \frac{k}{(2r+1)(2r+3)}$$

where k is a constant.	[2 marks

Do not write
outside the
hav

1 (b) Hence use the method of differences to show that

$$\sum_{r=1}^{n} \frac{1}{(2r+1)(2r+3)} = \frac{n}{p(2n+3)}$$

where p is an integer.	[4 marks

Turn over for the next question

2 (a)	Use the definition of $\cosh x$ in terms of e^x and e^{-x} to show that		
	$2\cosh^2 x - 1 = \cosh 2x$	[3 marks]	

	$y = 3\sinh 2x - 5\sinh x + 4x$		
Using the result in part (a), pro	ove that this curve has no st	ationary points.	[6 mark

3	The roots of the cubic equation
	$3z^3 + 9z + r = 0$
	where r is real, are α , β and γ .
3 (a) (i)	Write down the value of $\alpha\beta+\beta\gamma+\gamma\alpha.$ [1 mark]
	$\alpha\beta + \beta\gamma + \gamma\alpha = $
3 (a) (ii)	Hence show that $\alpha^2 + \beta^2 + \gamma^2 = -6$ [3 marks]

b) (i) Given that $\alpha = 1 + \sqrt{6} i$, find the value of $\alpha\beta\gamma$.	[3 marks]
$lphaeta\gamma=$	[1 mark]

4 Three planes have equations

$$x + 3y + cz = c + 4$$

$$x + 2y + 3z = 6$$

$$x + y + z = d$$

where c and d are constants.

The three planes do not intersect at a unique single point.

4 (a) Show that c = 5

[2 marks]

(b)	In the case where the three planes also share a common line of intersection the value of d .	on, determine
	the value of a .	[5 marks]
	d =	 _г
	Turn over for the next question	

5 (a)	Given that
-------	------------

$$f(k) = 2^{k+2} + 3^{2k+1}$$

show that

$$f(k+1) - 2 f(k) = a \times 3^{2k+1}$$

	1(n 1)	$\mathbf{Z}_{1}(\mathbf{n})$	u ^ 3	
where a is an integer.				
5				[3 marks]

5 (b)	Hence prove by induction that $2^{n+2} + 3^{2n+1}$ is a multiple of 7 for all integers $n \ge 1$ [4 marks]

7

Do not write
outside the
hox

6 It is given that y satisfies the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 20e^{2x} + 18$$

6	(a)	Find the values of the constants p and q for which $p+q$ this differential equation.	xe^{2x} is a particular integral of [5 marks]
			L 0 333333

6 (b)	Hence solve the differential equation, expressing y in terms of x , given that y =	5 when
	$x = 0$ and that $\frac{dy}{dx} \to 0$ as $x \to -\infty$	
	dx	[7 marks]
	Answer	

Turn over ▶

12

		1	-1	2	
7	The matrix $M =$	0	5	7	, where \boldsymbol{k} is a positive integer.
		$\lfloor k$	1	1_	

An eigenvector of ${\bf M}$ is $\begin{bmatrix} -1\\7\\1 \end{bmatrix}$ and its corresponding eigenvalue is λ_1

7 (a)	Find the value of λ_1 and the value of	k.

•	
λ. =	k =
- 1	κ $-$

7 (b) Show that -2 is the least eigenvalue of M.

[4 marks]

[4 marks]

Find an eigenvector corresponding to the eigenvalue -2	
Tilld all eigenvector corresponding to the eigenvalue 2	[3 marks]
Answer	
The transformation T has matrix M .	
Write down the Cartesian equations for any one of the invariant lines of T.	
	[1 mark]
Answer	

dy 1 2 2 2	
$\frac{dy}{dx} + \frac{1}{x(x+1)}y = 2x+3, x>0$	
	[4 n
	•

Answer	

9

9	Plane Π_1 has vector equation $\mathbf{r} \cdot \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} = 3$
	Plane Π_2 has vector equation $\mathbf{r} \cdot \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = 4$
9 (a)	Calculate the acute angle between the planes $\Pi_{\rm 1}$ and $\Pi_{\rm 2}$ giving your answer to the nearest 0.1 $^{\circ}$
	Answer

Find a vector equation for the line of intersection	ion of $\Pi_{\scriptscriptstyle 1}$ and $\Pi_{\scriptscriptstyle 2}$ [5 marks]
Answer	

Do	not	wr	ite
out	side	e th	ıe
	ho	~	

[4 marks]

10	A curve C is given parametrically by the equations
	$x = t - \sin t , \qquad y = 2\sin^2\left(\frac{t}{2}\right)$

10 (a) Show that
$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = 4\sin^2\left(\frac{t}{2}\right)$$
.

10 (b)	The arc of <i>C</i> between the points where $t = \frac{\pi}{3}$ and $t = \frac{\pi}{2}$ is rotated through 2π radians about the <i>x</i> -axis.	Do not write outside the box
	Find the area of the surface generated, giving your answer in the form $\frac{2\pi}{3}(p\sqrt{3}+q\sqrt{2})$,	
	where p and q are integers. [6 marks]	

Answer _

11		Given that $z = \cos \theta + i \sin \theta$:	
11	(a) (i)	use de Moivre's theorem to show that $z^n + \frac{1}{z^n} = 2 \cos n\theta$.	
			narks]
44	(a) (ii)	write down an expression for $z - \frac{1}{z}$ in terms of $\sin \theta$.	
11	(a) (II)	\mathcal{L}	mark]
		Answer	
		, a.ee.	

11 (b)	Hence express $64\sin^6\theta$ in the form	
	$20 + a\cos 2\theta + b\cos 4\theta + c\cos 6\theta$	
	where a , b and c are integers.	[5 marks]
	Answer	
	Question 11 continues on the next page	

11 (c) A leaf lies flat on a thin circular disc.

The diagram shows a curve ${\it C}_{\rm 1}$ which models the leaf and a circle ${\it C}_{\rm 2}$ which models the disc.

The pole O and the initial line are also shown.

The polar equation of the curve C_1 is $r = 2\sin^3\theta$, $0 \le \theta \le \pi$.

The polar equation of the circle \mathbf{C}_2 is $\ r = 2\sin\theta$, $\ 0 \le \theta \le \pi$.

Using your answer to part **(b)**, find what percentage of the area of the circular disc is **not** covered by the leaf.

[5 marks]

	Do not write outside the box
Answer	

14

12 (a)			
		the term in x^5	[1 mark]
		Answer	
12 (b)) (i)	Given that	
		$ ln y = tan^{-1} x $	
		prove that	
		$(2x-1)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + y\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0$	
			[5 marks]

12	(b) (ii)	Hence, given that the first five terms in the Maclaurin series expansion in ascending powers of x of $e^{\tan^{-1}x}$ are
		$1 + x + \frac{x^2}{2} + px^3 + qx^4$
		show that $p = -\frac{1}{6}$ and find the value of q .
		[6 marks]

		Do not write outside the box
		_
		_
	q =	
		_
12 (c)	Hence show that $\lim_{x\to 0} \left[\frac{e^{\tan^{-1}x} - e^x}{2x - \sin 2x} \right]$ exists and find its value.	
	[3 mark	:s]
		_
		_
		_
		_
		_
		_
		_
	Answer	

END OF QUESTIONS

15

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.oxfordaqaexams.org.uk after the live examination series.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.
	Copyright © 2019 Oxford International AQA Examinations and its licensors. All rights reserved.

