Exercício 1

Sejam a e b números reais. Simplifique a seguinte expressão: (a-b)(a+b)+b(b+2)-2b.

$$a^2 - b^2 + b^2 + 2b - 2b = a^2$$

Exercício 2

Exercício 5

Considere a reta r definida por $r: 2x - y + 3 = \theta$ e o ponto P(1,1).

a)

Escreva a equação reduzida da reta q que é perpendicular a r e que passa no ponto P.

b)

Determine a distância do ponto P à reta r.

Exercício 6

Determine uma expressão geral das soluções reais da equação $-2\sin x - \sqrt{2} = 0$

$$-2\sin x - \sqrt{2} = 0$$

$$\Leftrightarrow \sin x = -\frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \sin x = \sin(-\frac{\pi}{4})$$

$$\Leftrightarrow x = -\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \lor x = \pi - \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = -\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \lor x = \frac{5\pi}{4} + 2k\pi, k \in \mathbb{Z}$$

Exercício 7

Mostre, no domínio em que a expressão é válida, que:

$$\frac{\sin x \cdot \cos x}{\tan x} = \cos^2 x$$

$$\frac{\sin x \cdot \cos x}{\tan x} = \frac{\sin x \cdot \cos x}{\frac{\sin x}{\cos x}} = \frac{\sin x \cdot \cos^2 x}{\sin x} = \cos^2 x$$

Como queríamos demonstrar.

Exercício 8

Resolva, em \mathbb{R} , a seguinte inequação fracionária: $\frac{-x+1}{x^2+1} \geq 0$. C.A.

$$-x + 1 = 0 \Leftrightarrow x = 1$$

$$\underbrace{x^2 + 1 = 0}_{Impossivel}$$

x	$-\infty$	1	$+\infty$
-x+1	+	0	_
$x^2 + 1$	+	+	+
$\frac{-x+1}{x^2+1}$	+	0	_

Crescente

$$C.S =]-\infty, 1]$$

Exercício 9

Seja $(u_n)_n$ uma sucessão definida por: $u_n = 1 + \frac{n+1}{n}$

a)

Verifique se $\frac{11}{5}$ é um dos termos de $(u_n)_n$

$$1 + \frac{n+1}{n} = \frac{11}{5}$$

$$n=5\in\mathbb{N}$$

b)

Estude $(u_n)_n$ quanto à monotonia

$$(u_{n+1}) - (u_n) < 0$$
 é monótona decrescente

$$(u_{n+1}) - (u_n) > 0$$
 é monótona crescente

$$\left[\frac{n}{n}\right]\left[\frac{2n+3}{n+1}\right] - \left[\frac{2n+1}{n}\right]\left[\frac{n+1}{n+1}\right]$$

$$\frac{2n^{2}+3n}{(n+1)(n)}-\frac{2n^{2}+2n+n+1}{(n+1)(n)}$$

$$\frac{2n^2 + 3n - 2n^2 - 2n - n - 1}{(n+1)(n)}$$

$$\frac{-1}{\left(n+1\right)\left(n\right)}<0,\forall n\in\mathbb{N}$$

 u_n é monótona decrescente

c)

Diga, justificando, se $(u_n)_n$ é uma sucessão convergente e se é uma sucessão limitada.

$$\lim_{n} 1 + \frac{n+1}{n} = \lim_{n} 1 + \lim_{n} \frac{\varkappa(1+\frac{1}{n})}{\varkappa(1)} = 1 + \frac{1+\frac{1}{n}}{1} = 2$$

 $(u_n)_n$ é convergente pois tende para um número real. Toda a sucessão convergente é limitada. Como $(u_n)_n$ é decrescente sabemos que:

Exercício 10

Determine, caso existam, os seguintes limites:

a)
$$\lim_{n} \frac{2n-5}{\sqrt{4n^{2}+1}} \stackrel{\infty}{=}$$

$$\lim_{n} \frac{\varkappa\left(2+\frac{5}{n}\right)}{\varkappa\sqrt{4+\frac{1}{n^{2}}}}$$

$$= \frac{2}{\sqrt{4+0}} = 1$$

b)
$$\lim_{n} \left(\frac{n+1}{n-2}\right)^{3n} \stackrel{1^{\infty}}{=}$$

$$= \lim_{n} \left(\frac{1+\frac{1}{n}}{1-\frac{2}{n}}\right)^{3n}$$

$$= \left[\frac{\lim_{n} \left(1+\frac{1}{n}\right)^{n}}{\lim_{n} \left(1-\frac{2}{n}\right)^{n}}\right]^{3}$$

$$= \left[\frac{e^{1}}{e^{-2}}\right]^{3}$$

Exercício 11

Na figura está representada parte de um gráfico de uma função f de domínio $\mathbb{R}\setminus\{0\}$.

Indique:

a)

$$\lim_{x \to 0^-} f(x)$$

$$\lim_{x \to 0^-} f(x) = -2$$

b)

$$\lim_{x \to -2^-} f(x)$$

$$\lim_{x \to -2^{-}} f(x) = -6$$

c)

$$\lim_{x \to +\infty} f(x)$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

Exercício 12

Considere a função real, de variável real, definida por $f(x) = 10 - 2^{x-1}$.

a)

Determine o domínio e o contradomínio da função f.

$$D_f = \mathbb{R}$$

$$D_f' = 10 - 2^{x-1} < 10 =]-\infty, 10[$$

b)

Caracterize a função inversa da função \boldsymbol{f} .

$$f^{-1} = \log_2(10 - x) + 1$$
$$f^{-1}:]-\infty, 10[\to \mathbb{R}$$
$$x \mapsto \log_2(10 - x) + 1$$

c)

Resolva em \mathbb{R} a seguinte equação: f(x) = -6.

$$10 - 2^{x-1} = -6$$

$$\Leftrightarrow 2^{x-1} = 2^4$$

$$\Leftrightarrow x = 5$$

Exercício 13

Considere a função f definida por $f(x)=-\frac{x^4}{4}+2x^2$. Determine, na forma reduzida,a equação da reta tangente ao gráfico de f no ponto de abcissa 1.

$$f'(1) = 4x - x^3 = 3$$

$$f(1) = -\frac{1^4}{4} + 2 \cdot 1^2 = \frac{7}{4}$$

$$y - f(1) = f'(1) \cdot (x - 1)$$

$$\Leftrightarrow y - \frac{7}{4} = 3x - 3$$

$$\Leftrightarrow y = 3x - \frac{5}{4}$$