

Fundamentals of Optimization

Homework 1

Instructions

- 1. You should attempt all questions.
- 2. The total marks for this assignment are 10.
- 3. The assignment consists of STACK questions (5/10 marks) and open-ended questions (5/10 marks).
- 4. All STACK questions are duly marked and are available in the STACK quiz. You must solve those by completing the STACK quiz.
- 5. For the open-ended questions, please write down your solutions in a concise and reproducible way and remember to justify every step using appropriate references when necessary. Failing to do so may result in deductions.
- 6. The strict deadline for completing the quiz and handing-in your solutions for the open-ended questions is **noon (12:00) on Friday, 14 October 2022**.
- 7. For the open-ended questions, please upload a **single PDF**. For some useful suggestions, please see Course Information → Tips for Creating a PDF File for Submission on the Learn page.

STACK Problems

1 Basic Concepts (3 marks)

STACK question

Decide, for each of the following three optimization problems, whether

- (i) the feasible region is empty; or nonempty and bounded; or nonempty and unbounded;
- (ii) the feasible region is a convex set; or a nonconvex set;
- (iii) the objective function is a convex function; a concave function; both convex and concave; or neither convex nor concave;
- (iv) the optimization problem is a convex optimization problem; or a nonconvex optimization problem;
- (v) the optimization problem is infeasible, is unbounded, or has a finite optimal value;
- (vi) write down the optimal value using the convention in the lectures (use +inf for $+\infty$ and -inf for $-\infty$);
- (vii) the set of optimal solutions is *empty*; or *nonempty*;
- (viii) the set of optimal solutions is a convex set; or a nonconvex set.

- $(1.1) \min\{x^3 2x^2 + x 2 : x^2 2x 8 > 0, x \in \mathbb{R}\}.$
- $(1.2) \min\{2x^2 12x 6 : x^2 6x \ge -5, \quad x \in \mathbb{R}\}.$

[3 marks]

2 Level Sets, Sublevel Sets, Superlevel Sets, and Epigraphs (2 marks)

 $STACK\ question$

Decide, for each of the two functions,

- (i) whether epi(f) is a convex set or nonconvex set;
- (ii) whether the sublevel set $\mathcal{L}_{\alpha}^{-}(f)$, where $\alpha = 0$, is a convex set or nonconvex set;
- (iii) whether the level set $\mathcal{L}_{\alpha}(f)$, where $\alpha = 1$, is a convex set or nonconvex set;
- (iv) whether the superlevel set $\mathcal{L}^+_{\alpha}(f)$, where $\alpha = 1$, is a convex set or nonconvex set.
- $(2.1) f: \mathbb{R}^2 \to \mathbb{R}, f(x) = \min\{|x_1|, |x_2|\}.$
- (2.2) $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = x_1^2 + x_2^2$.

[2 marks]

Open Ended Problems

3 Level Sets and Sublevel Sets (2.5 marks)

Consider the following optimization problem:

(P)
$$\min_{x} \{ f(x) : x \in \mathcal{S} \},$$

where $f: \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{R}^n$, and $S \subseteq \mathbb{R}^n$. Suppose that the optimal value of (P) is denoted by $z^* \in \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$.

- (3.1) Prove the following proposition:
 - (P) is an unbounded optimization problem if and only if

$$S \cap \mathcal{L}_{\alpha}^{-}(f) \neq \emptyset$$
, for all $\alpha \in \mathbb{R}$,

where $\mathcal{L}_{\alpha}^{-}(f)$ denotes the sublevel set of f at level $\alpha \in \mathbb{R}$,

[1.5 marks]

(3.2) Suppose that $z^* \in \mathbb{R}$ (i.e., the optimal value is finite). Let $\mathcal{S}^* \subseteq \mathbb{R}^n$ denote the set of optimal solutions of (P). Prove the following identity:

$$\mathcal{S}^* = \mathcal{L}_{z^*}(f) \cap \mathcal{S},$$

where $\mathcal{L}_{z^*}(f)$ denotes the level set of f for $\alpha = z^*$. (Hint: One way of showing that the two sets are equal is to show that each set is a subset of the other one as done in Problem 4.1 in Exercise Set 0.) [1 marks]

4 Vertices of Convex Sets (2.5 marks)

Let $C_1 \subseteq \mathbb{R}^n$ and $C_2 \subseteq \mathbb{R}^n$ be two nonempty convex sets and let $C = C_1 \cap C_2$. Suppose that $C \neq \emptyset$.

(4.1) Prove the following result:

If $\hat{x} \in \mathcal{C}$ and \hat{x} is a vertex of at least one of \mathcal{C}_1 and \mathcal{C}_2 , then \hat{x} is a vertex of \mathcal{C} .

[1.5 marks]

(4.2) Consider the following proposition, which is the converse of the proposition in (4.1):

If $\hat{x} \in \mathcal{C}$ is a vertex of \mathcal{C} , then \hat{x} is a vertex of at least one of \mathcal{C}_1 and \mathcal{C}_2 .

Either prove this proposition or find a counterexample.

[1 mark]