Suites géométriques

Terminale STMG2

1 Définition

Définition 1. Soit $a \in \mathbb{R}_+$ et $q \in \mathbb{R}_+^*$. On appelle **suite géométrique à termes positifs** de premier terme a et de raison q une suite $(u_n)_{n \in \mathbb{N}}$ définie par la relation de récurrence suivante :

$$\begin{cases} u_0 = a \\ u_{n+1} = u_n \times q \end{cases}$$

Remarque.

- De la même manière qu'une suite arithmétique consiste à ajouter la même quantité à chaque étape, une suite géométrique consiste à multiplier par une même quantité à chaque étape.
- *Ici, on impose que la raison soit strictement positive* $(\in \mathbb{R}_+^*)$.

Exemple. Compléter les schémas suivants décrivant des suites géométriques :

a) a = 5 et q = 2

b) a = 64 et q = 0.5

c) a = 1234 et q = 0.1

Définition 2 (Formule explicite). Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0=a$ et de raison $q\in\mathbb{R}_+^*$. Alors, pour tout $n\in\mathbb{N}$, on a

$$u_n = a \times q^n$$

Exemple. Pour chacun des exemples précédents, donner directement u_{10} .

Suites géométriques Terminale STMG2

2 Étude d'une suite géométrique

2 Diane a une suite geometrique
Proposition 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes positifs de raison $q>0$. • Si $q<1$, alors $(u_n)_{n\in\mathbb{N}}$ est décroissante. • Si $q>1$, alors $(u_n)_{n\in\mathbb{N}}$ est croissante. • Si $q=1$, alors $(u_n)_{n\in\mathbb{N}}$ est constante.
Exemple. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0=4$ et de raison q . Donner une valeur q_1 à q pour que $(u_n)_{n\in\mathbb{N}}$ soit croissante, puis une valeur q_2 à q pour que $(u_n)_{n\in\mathbb{N}}$ soit décroissante. Tester vos choix en observant le premiers termes de la suite.
3 Moyenne géométrique
Définition 3. Soit x et y deux nombres positifs. Alors la moyenne géométrique de x et y est donnée par
\sqrt{xy}
Proposition 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes positifs. Alors, pour tout $n>1$, on a
$u_n = \sqrt{u_{n-1}u_{n+1}}$
Exemple. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes positifs, telle que $u_9=5$ et $u_{11}=320$. Calculer u_{10} , puis et déduire la raison de cette suite.