质量与密度的测量

实验数据处理

PB22051031 李毅 PHYS1008B.02 教室:一教 1413 座位号: 4

1. 卡尺法

2023年4月12日

(1) 原始数据

表1: 卡尺法原始数据

m/g	15.14	
D/cm	1.502	
H/cm	0.974	

(2) 数据处理

$$\rho = \frac{m}{V} = \frac{m}{\frac{D^2 H}{4}} = \frac{15.14}{\frac{1.502^2 \times 0.974}{4}} = 8.77g \cdot cm^{-3} = 8.77 \times 10^3 kg \cdot m^{-3}$$

2. 流体静力称衡法

(1) 原始数据

表 2: 流体静力称衡法原始数据

物体质量 m/g	163.35
空水质量 m_1/g	510.35
总质量 m_2/g	529.83
排水质量 m_0/g	19.48
实验开始温度 $T_1/^{\circ}$ C	24.1
实验结束温度 T₂/°C	24.3
平均温度 <i>T/</i> °C	24.2

(2) 数据处理

查表得, $\rho_{\text{tk}} = 0.997 \times 10^3 kg \cdot m^{-3}$

$$\rho = \frac{m}{m_0} \rho_{\text{K}} = \frac{163.35}{19.48} \times 0.997 = 8.36g \cdot cm^{-3} = 8.36 \times 10^3 kg \cdot m^{-3}$$

3. 转动定律法

(1) 原始数据

表 3: 使用铜块时, r,T 实验数据表

r/cm	T_1/s	T/s
15.00	66.08	2.203
20.10	59.75	1.992
25.25	56.30	1.877
30.08	54.60	1.820
35.65	53.58	1.786

表 4: 使用金属棒时数据

	- PJ XX 1/1
金属棒长 L/cm	6.15
转动半径 r/cm	32.10
总时间 T_1/s	46.87
周期 T/s	1.562

(2) 数据处理

斜率

$$k = 0.2548 \,\mathrm{s}^2 \cdot \mathrm{m}^{-1}$$

截距

$$b = -0.1629\,\mathrm{m\cdot s^2}$$

线性拟合的相关系数

$$r = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\sqrt{\left(\overline{x^2} - \overline{x}^2\right)\left(\overline{y^2} - \overline{y}^2\right)}} = 0.99997591$$

图 $1.r^2 - rT^2$ 处理

由公式

$$r^2 = \frac{gr}{4\pi^2}T^2 - \frac{I_c}{2m}$$

得转动惯量 $I_c = 4.887 \times 10^{-3} kg \cdot m^2$

物体的质量

$$M = \frac{I_c}{\frac{gr}{4\pi^2}T^2 - \frac{L^2}{12} - r^2} = \frac{0.004887}{\frac{9.7947 \times 0.321}{4 \times \pi^2} \times 1.562^2 - \frac{0.0615^2}{12} - 0.321^2} \times 10^3 \,\mathrm{g} = 53.69 \,\mathrm{g}$$

第2页,共3页

4. 模拟太空失重环境用动力学方法测量物体的质量

(1) 方案设计

由公式
$$\omega = \frac{2\pi}{T} = \sqrt{\frac{k}{m}}$$
 得:
$$T^2 \propto m$$

因此可以通过测量挂载托盘(即质量 m_0)时,挂载托盘 + 砝码时(即质量为 m_0 + 99.8g 时),挂载托盘 + 待测铁片时(即质量为 m_0 + m_k)周期 T_1 , T_2 , T_3 ,即可通过正比例关系算出 m_k ,本实验测量 30 个周期。

(2) 原始数据

表 5: m,T 实验数据表

质量 加	总时长 T ₁ /s	周期 T/s
m_0	36.50	1.217
$m_0 + 99.8g$	52.28	1.743
$m_0 + m_k$	45.56	1.519

(3) 数据处理

$$\frac{m_k}{{T_3}^2 - {T_1}^2} = \frac{99.8g}{{T_2}^2 - {T_1}^2}$$

即

$$m_k = \frac{{T_3}^2 - {T_1}^2}{{T_2}^2 - {T_1}^2} \times 99.8g = \frac{1.519^2 - 1.217^2}{1.743^2 - 1.519^2} \times 99.8g = 45.1g$$