

Sı	uk	oj€	∋ C	t

Name

Jeff Sweterlitsch

Date:

6/2011

Page:

Amine Swingbed Payload

June 8, 2011

Jeff Sweterlitsch / JSC EC3 jeffrey.j.sweterlitsch@nasa.gov JSC / Crew and Thermal Systems Division

Aae	en	ıd	ć

Name

Jeff Sweterlitsch

Date:

6/2011

- Background
- Payload Objectives
- Hardware Overview
- System Overview
- ISS Interfaces
- Operations Concept

Background

V	a	n	16	•

Jeff Sweterlitsch

Date:

6/2011

- What is the Amine Swingbed?
 - Hardware originally baselined as the Carbon Dioxide (CO₂) removal system for Orion
- What is the Amine Swingbed Payload?
 - System designed to incorporate the Amine Swingbed hardware into an EXPRESS rack and provide air- and water-saving functionality
 - Two-phase hardware manifest approach in order to accommodate ISS Program request due to upmass limitations
 - > Phase A includes the Amine Swingbed (launched on HTV-2 January 22, 2011)
 - Phase B includes the remaining hardware assemblies (launch vehicle STS-135/ULF7)
- Why?
 - To demonstrate technology in order to benefit future exploration missions
 - To drive out technical risk through long term testing in a realistic flight environment
- Who?
 - Engineering team includes JSC EC, EV, ESCG, Hamilton Sundstrand, TDA Research, and Wyle
 - Payload Integration Manager Scott Whitehead
 - Sponsor ISS National Laboratory Office (OZ)

Payload Objectives

Name

Jeff Sweterlitsch

Date:

6/2011

- The payload will demonstrate CO₂ removal from the ISS for a crew of 1 to 3 (depending on the operational mode) while minimizing water and air losses
- Basic CO₂ removal is performed by flowing cabin air through a bed of amine beads to collect CO₂ while exposing a second bed to vacuum to desorb previously-collected CO₂

Swingbed (~ 16"x17"x12")

System Hardware

Name
Date:

Jeff Sweterlitsch

ż

6/2011

Page: 5

- The Amine Swingbed Payload will be housed in a Double Locker and ISIS drawer in Express Rack 8 in the U.S. Lab (Lab1_P4 location)
- Double Locker will contain the following:
 - Amine Swingbed (from Phase A hardware set)
 - Air Save Hardware
 - Compressor, air tank, air tank valve
 - Water Save Hardware
 - Desiccant wheel and motor
 - Fluid handling (air, water, vacuum)
 - > Heat exchangers, heater, blower, MTL coolant lines, air ducting, vacuum isolation valve
 - Mounting Hardware, cabling, cooling fan
- ISIS Drawer will be modified to house the following electronic hardware:
 - Control & Monitor hardware
 - Power handler
 - CO2 sensor electronics
 - Vacuum isolation valve electronics
 - Cabling, cooling fan

Note: Some hardware required for Payload operation will be borrowed from on orbit ISS inventory (see Backup for list)

System Schematic

Name

Jeff Sweterlitsch

Date:

6/2011

System Hardware
Double Locker
(On Orbit Configuration)

Name

Jeff Sweterlitsch

Date:

6/2011

Page:

Not shown: Double locker enclosure, Outlet air duct, cable routing

System Hardware ISIS Drawer

Name

Jeff Sweterlitsch

Date:

6/2011

ISS Interfaces

Name

Jeff Sweterlitsch

Date:

6/2011

Page:

EXPRESS Rack

- Power
 - > Two 28 Vdc from ISIS drawer to rack
 - > 730 Watts Total
- Moderate Temperature Loop (MTL) used for active cooling
- Structural Mounting
 - Double locker (Locker 3 & 4 location)
 - > ISIS drawer (below Locker 4)
 - > Vacuum hose enclosure attached to front panel & secured to seat track
- Ethernet interface
 - Connection to ISIS drawer
 - Experiment command and data transfer through RIC only (no crew commanding)
- Z-Panel
 - Direct vacuum interface at VES location
- ISS Cabin
 - Cabin air
 - Fire port added to access Process Air loop

ISS Interfaces

Name

Jeff Sweterlitsch

Date:

6/2011

Page: 10

VACUUM HOSE COVER

VES LAB 1_P4

Not shown: Outlet air duct

Concept of Operations (cont'd)

Subject:

Name

Jeff Sweterlitsch

Date:

6/2011

Page:

Installation & Assembly

- Crew will install the Double Locker into Express Rack 8 (ER8) and remove the chassis in order to install the Swingbed
 - Launch supports will be removed and Swingbed from Phase A hardware manifest will be installed
 - Vacuum line, inlet and outlet air hose, power and data connections to the Swingbed will be made
- Crew will return the chassis to the Double Locker and will install the Plenum/Filter Adapter to the face of the Double Locker and will complete the Vacuum jumper hose, air ducting, MTL lines, and power/data cable connections to ER8
- Appropriate connections between the Double Locker, the ISIS drawer and ER8 will be confirmed
- Ground support team will coordinate final installation leak check with MOD/ISS ECLSS

Concept of Operations (cont'd)

Name

Jeff Sweterlitsch

Date:

6/2011

Page:

Big Picture Experiment Operations

- Two experiment modes will accommodate a low blower speed test and a high blower speed test
 - Mode A Low blower speed test:
 - Projected conditions: 10 cfm, 20 minute half cycles (shorter if running less than 24 hours/day)
 - Chosen in order to allow operation for longer time periods while remaining under the noise, air loss and water loss constraints (~976 hrs total test time)
 - Mode B High blower speed test:
 - Projected conditions: 26 cfm (or max), 6.5 minute half cycles
 - Must be performed in shorter time increments in order to remain under the noise, air loss and water loss constraints (~24 hrs total test time)

Experiment Nominal Test Sequence				
Test	Duration (hrs)	Mode	Cumulative Experiment Time (hrs)	
1	100	А	100	
2	8	В	108	
3	392	Α	500	
4	8	В	508	
5	484	Α	992	
6	8	В	1000	

Subject: Concept of Operations (cont'd)

Name

Jeff Sweterlitsch

Date: 6/2011

Page:

13

Experiment Operations (cont'd)

- Payload will be controlled and operated from the ground at JSC in the Payload Operations Control Center (POCC) in Building 30
 - Swingbed cycle time, blower speed, heater temperature, compressor speed and test duration will be set to the appropriate test operational parameters by the payload console operator
 - Operations will be commanded to start (requires coordination with the Payload Operations Integration Center (POIC) at MSFC)
 - Data will be reviewed and parameters will be adjusted as necessary in order to optimize the payload experiment results while remaining within resource limits
 - At completion of the experiment, either an operator command or software timer will stop the experiment
- Following initial installation and checkout tasks, crew interaction is minimal
 - Two placeholders planned to clean inlet air filter on front of double locker

Disassembly

 Once experiment is complete, Payload may be removed from rack and stowed on ISS or trashed depending upon ISSP direction