Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E

-600.000
-800.000
-1000.000
-1400.000
-1800.000
-1800.000
Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 1.90e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

STJERNE B) stjernas overflatetemperatur er 2500K og energien transporteres fra kjernen kun via konveksjon

STJERNE C) stjerna fusjonerer hydrogen til helium i et skall rundt kjer-

nen

STJERNE D) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE E) stjerna fusjonerer helium i kjernen

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 2.985e+06 kg/m3̂ og temperatur 17 millioner K.

Kjernen i stjerne B har massetet
thet 6.204e+06 kg/m3 og temperatur 33 millioner K.

Kjernen i stjerne C har massetet
thet 9.704e+06 kg/m3 og temperatur 37 millioner K.

Kjernen i stjerne D har massetet
thet 7.480e+06 kg/m3̂ og temperatur 19 millioner K.

Kjernen i stjerne E har massetet
thet 5.965e+06 kg/m3̂ og temperatur 30 millioner K.

Filen 1K/1K.txt

Påstand 1: den absolutte størrelseklassen (magnitude) med UV filter er betydelig større enn den absolutte størrelseklassen i blått filter

Påstand 2: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig mindre enn den tilsynelatende størrelseklassen i rødt filter

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 2.988e+05 kg/m3̂ og temperatur 21.07 millioner K.

Kjernen i stjerne B har massetet
thet $3.168\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 31.07 millioner K.

Kjernen i stjerne C har massetet
thet $1.362\mathrm{e}+05~\mathrm{kg/m}$ 3 og temperatur 35.02

millioner K.

Kjernen i stjerne D har massetet
thet 3.860e+05 kg/m3̂ og temperatur 23.22 millioner K.

Kjernen i stjerne E har massetet
thet 3.968e+05 kg/m3̂ og temperatur 33.79 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_Figur_4$..png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

4.84

9.67

43.53 38.70 y-posisjon (10⁻⁶ buesekunder) 33.86 29.02 24.19 19.35 14.51 9.67 4.84 0.00 + 0.00

14.51 19.35 24.19 29.02 33.86

x-posisjon (10⁻⁶ buesekunder)

38.70 43.53

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.63 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Lillehammer som ligger i en avstand av 350 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 99.00330 km/t.

Filen 3E.txt

Tog1 veier 46900.00000 kg og tog2 veier 26900.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 486 km/s.

Filen 4E.txt

Massen til gassklumpene er 3600000.00 kg.

Hastigheten til G1 i x-retning er 25200.00 km/s.

Hastigheten til G2 i x-retning er 33180.00 km/s.

Filen 4G.txt

Massen til stjerna er 17.75 solmasser og radien er 4.70 solradier.