On the CUDA implementation of Reduce and Scan

Cosmin Oancea and Troels Henriksen

September 2020

Course Contents

Implementation of Reduce

Implementation of Scan

Summing an Integer Array

$$\sum X[i]$$

Binary Tree Reduction

The idea: each thread reads two neighbouring elements, adds them together, and writes one element. This halves the array in size. Continue until only a single element is left.

- ► Each level becomes a kernel invocation, with number of threads equal to half the number of array elements.
- ▶ O(n) work and $O(\log(n))$ span (optimal).
- ► Why is this not efficient?

Improving the Tree Reduction

The idea: instead of shrinking the array by a factor of two for each level, shrink it by the CUDA-block size.

- Same asymptotic performance.
- Avoids kernels with very few threads. E.g with block size 256: $10000000 \rightarrow 39063 \rightarrow 153 \rightarrow 1$.

Improving the Tree Reduction

The idea: instead of shrinking the array by a factor of two for each level, shrink it by the CUDA-block size.

- Same asymptotic performance.
- Avoids kernels with very few threads. E.g with block size 256: $10000000 \rightarrow 39063 \rightarrow 153 \rightarrow 1$.

Implementation	n = 1000	n = 1000000
Tree reduction	77 μ s	$363 \mu s$
Block reduction	17 μ s	179 μ s

Applying Brent's Lemma

The idea: instead of letting the thread count depend on the input size, always launch the same number of threads, and have each thread perform an efficient sequential summation of a *chunk* of the input.

- ► GPUs have a maximum (hardware/problem-dependent) capacity for exploiting parallelism. Beyond that limit, parallelism is at best worthless, and usually comes with overhead (e.g. excessive synchronisation).
- A straightforward implementation of this idea only works if the operator is commutative, and also allows fusing a map producer!

Applying Brent's Lemma

The idea: instead of letting the thread count depend on the input size, always launch the same number of threads, and have each thread perform an efficient sequential summation of a *chunk* of the input.

- GPUs have a maximum (hardware/problem-dependent) capacity for exploiting parallelism. Beyond that limit, parallelism is at best worthless, and usually comes with overhead (e.g. excessive synchronisation).
- A straightforward implementation of this idea only works if the operator is commutative, and also allows fusing a map producer!

Implementation	n = 1000	n = 1000000
Tree reduction	77μ s	$363 \mu s$
Block reduction	17 μ s	179 μ s
Chunked reduction	70 μ s	103 μ s

Using Atomics

The idea: GPUs have special hardware support for performing certain memory updates atomically. In CUDA, this is exposed through *atomic operations*.

```
int atomicAdd( volatile __global int *p
, int val)
```

- Concise parallel reduction: each thread reads an element and uses atomicAdd() to update the same location in memory.
- ► Why is this slow for large inputs?

Using Atomics

The idea: GPUs have special hardware support for performing certain memory updates atomically. In CUDA, this is exposed through *atomic operations*.

```
int atomicAdd( volatile __global int *p
, int val)
```

- Concise parallel reduction: each thread reads an element and uses atomicAdd() to update the same location in memory.
- ► Why is this slow for large inputs?

Implementation	n = 1000	n = 1000000
Tree reduction	77 μ s	$363 \mu s$
Block reduction	17 μ s	179 μ s
Chunked reduction	70 μ s	103 μ s
Atomics	8μ s	1278 μ s

Coalesced Access to Global Memory

- ► On NVIDIA GPUs, the hardware threads are split into WARPS, where a WARP consists of 32 threads.
- ► The threads in a WARP execute in lockstep—in SIMD fashion—meaning at each given cycle they all execute the same instruction.
- Coalesced access to global memory is obtained when the threads in a WARP access in their common load/store instruction consecutive words in global memory.
- ► A coalesced load/store instruction is serviced by one (possibly two) memory transactions, hence fast.
- ► Uncoalesced access may requires as many as 32 memory transactions, which are sequentially issued by the memory controller, hence may generate significant slowdown.
- ► Multi-threading somehow alleviates the "uncoalesced" overhead but only to some extent.

For Non-Commutative Operators (MSSP)

We denote the CUDA block size with B.

- ► We can also fuse the mapped function in the reduction itself.
- ► Have each thread reduces sequentially some CHUNK consecutive elements:
 - then the B per-thread results are reduced cooperatively by the threads in a block.
 - sequential (virtualization) loop on top so that the number of blocks is kept to under 1024, i.e., two-stage reduce.
- ► However, if done naively, this will lead to uncoalesced access. For coalesced, use shared memory as a staging buffer:
 - the threads in a block read consecutive elements from global memory and write them in shared memory;
 - then each thread processes sequentially its CHUNK consecutive elements from shared memory, which is not subject to the "coalescing" overhead.

Course Contents

Implementation of Reduce

Implementation of Scan

Parallel Exclusive Scan with Associative Operator \oplus

Two Steps:

- ► Up-Sweep: similar with reduction
- Root is replaced with neutral element.
- ► Down-Sweep:
 - the left child sends its value to parent and updates its value to that of parent.

 - note that the right child is in fact the parent, i.e., in-place algorithm.

Scan's Work and Depth: $D(n) = \Theta(\lg n), W(n) = \Theta(n)$

Warp-Level Inclusive Scan for GPUs

Offers better performance because it operates in one sweep rather than two!

Warp-Level Inclusive Scan Implementation

- "scanIncWarp" (follow the instructions)
- ► Your n = WARP and k = lgWARP; Ignore the init. loop;
- ► Unroll the for d loop (#pragma unroll);
- ▶ loop forall i = h to n-1 is implicit,
- ▶ it should be replaced by a condition if (i>=h) { . . . },
- except that i in the code above is not exactly the thread id.
- ► Remember, you want to scan each wave, independently!

OpenCL Scan Implementation

BLACKBOARD!

- ► Generic CPU skeleton in hostSkel.cu.h.
 - reduce each block and publish the per-block results in a buffer buff (number of blocks

 1024)
 - 2. scan in place the buffer buff using one CUDA block.
 - 3. now you can implement the core scan kernel:
 - 3.1 each thread reads and scans CHUNK consecutive elements by using shared-memory as a staging buffer.
 - 3.2 the scanned results hold in register memory (chunk array); the last element (reduction) is published in shared memory.
 - 3.3 then the threads in the block cooperatively scans the per thread reductions.
 - 3.4 then each thread tid updates the elements of the chunk array with the element at position tid-1 from step 3.3, and with the previous-block element of buff from step 2.
 - 3.5 the CHUNK per-thread results are copied from register to shared to global memory (to ensure coalesced writes)
 - 3.6 steps 3.1-3.5 are performed in a virtualization loop.
- ► If N is the length of the input, this requires 2N coalesced reads and N coalesced writes from/to global memory.