

Report No: CCISE180108102

FCC/IC REPORT

Applicant: Lightwave Technology

Address of Applicant: 400 Rue Wright, Saint-Laurent, Quebec, Canada, H4N 1M6

Equipment Under Test (EUT)

Product Name: Connected

Model No.: XTX3000

FCC ID: 2ABSL3000

Canada IC: 11732A-LWXTX3000

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-Gen Issue 4, November 2014 RSS-247 Issue 2, February 2017

Date of sample receipt: 19 Jan., 2018

Date of Test: 22 Jan., 27 to Feb., 2018

Date of report issued: 27 Feb., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Feb., 2018	Original

Tested by: 27 Feb., 2018

Test Engi™er

Reviewed by: Date: 27 Feb., 2018

Project Engineer

3 Contents

			Page
1	COVE	R PAGE	1
2	VERS	ION	2
3	CONT	ENTS	3
4		SUMMARY	
5	GENE	RAL INFORMATION	5
	5.1 (CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	FEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5 N	MEASUREMENT UNCERTAINTY	6
	5.6 l	ABORATORY FACILITY	6
		ABORATORY LOCATION	
	5.8	FEST INSTRUMENTS LIST	7
6	TEST	RESULTS AND MEASUREMENT DATA	8
	6.1 A	ANTENNA REQUIREMENT:	8
		CONDUCTED EMISSION	
		CONDUCTED OUTPUT POWER	
		OCCUPY BANDWIDTH	
		Power Spectral Density	
		BAND EDGE	
	6.6.1	Conducted Emission Method	
	6.6.2	Radiated Emission Method	
		Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2	Radiated Emission Method	
7	TEST	SETUP PHOTO	32
8	EUT (CONSTRUCTIONAL DETAILS	33

4 Test Summary

Took Home	s	Danult	
Test Items	FCC	IC	Result
Antenna Requirement	15.203/15.247 (c)	RSS-GEN Section 8.8	Pass
AC Power Line Conducted Emission	15.207	RSS-GEN Section 8.8	Pass
Conducted Peak Output Power	15.247 (b)(3)	RSS-247 Section 5.4 (d)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	RSS-247 Section 5.2 (a)	Pass
Power Spectral Density	15.247 (e)	RSS-247 Section 5.2 (b)	Pass
Band Edge	15.247(d)	RSS-GEN ISSUE 4 8.9 8.10 RSS-247 Section 5.5	Pass
Conducted and Radiated Spurious Emission	15.205/15.209	RSS-GEN ISSUE 4 8.9 8.10 RSS-247 Section 5.5	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Lightwave Technology	
Address: 400 Rue Wright, Saint-Laurent, Quebec, Canada, H4N 1M6		
Manufacturer/Factory:	DONGGUAN PORTMAN ELECTRONIC SCIENCE AND TECHNOLOGY CO., LTD	
Address:	NO.10, LUYI 2 ROAD, TANGXIA TOWN, DONGGUAN CITY, GUANGDONG PROVINCE CHINA	

5.2 General Description of E.U.T.

Product Name:	Connected
Model No.:	XTX3000
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.5 dBi
Power supply:	DC 12V

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE180108102

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2020
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018
		oon water		00.0000	02-20-2018	02-19-2019
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018
3	Hom Antenna	SURWARZDEUR	DDHA9120D	CC130006	02-20-2018	02-19-2019
_	Pre-amplifier	LID	0447D	CCICOOO	02-25-2017	02-24-2018
4	(10kHz-1.3GHz)	HP	8447D	CCIS0003	02-20-2018	02-19-2019
_	Pre-amplifier	Compliance Direction	DAD 4040	00100044	02-25-2017	02-24-2018
5	(1GHz-18GHz)	Systems Inc.	PAP-1G18	CCIS0011	02-20-2018	02-19-2019
	Pre-amplifier		AFS33-18002	070010	02-25-2017	02-24-2018
6	(18-26GHz)	Rohde & Schwarz	650-30-8P-44	GTS218	02-20-2018	02-19-2019
_			2400	070047	02-25-2017	02-24-2018
7	Horn Antenna	lorn Antenna ETS-LINDGREN 3	3160	60 GTS217	02-20-2018	02-19-2019
8	Spectrum analyzer	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018
°	9k-30GHz	Ronde & Schwarz		CC150023	02-20-2018	02-19-2019
	FMI Task Dasa'	Dahda 9 Oakoo	E0007	00100467	02-25-2017	02-24-2018
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-20-2018	02-19-2019
40	I and antone	Landa a dinata an	RF300	EM00704	02-25-2017	02-24-2018
10	Loop antenna	Laplace instrument		EMC0701	02-20-2018	02-19-2019
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2017	07-21-2020
0	EMI Took Dooding	Dalada 0 Calaurana	F00!	00100000	02-25-2017	02-24-2018
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-20-2018	02-19-2019
			02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-20-2018	02-19-2019
4	LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
_	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018
5					02-20-2018	02-19-2019
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Power Sensor	D.A.R.E	RPR3006W	17100015SNO27	11-10-2017	11-09-2018
8	Power Sensor	D.A.R.E	RPR3006W	17100015SNO28	11-10-2017	11-09-2018

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207 RSS-GEN Section 8.8		
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)		(dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logar		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 		
Test setup:	Refere	nce Plane	
	AUX Equipment Test table/Insulation pla Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m	EMI Receiver	— AC power
Test Instruments:	Refer to section 5.8 for det	ails	
Test mode:	Refer to section 5.3 for det	ails	

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Nethod	FCC Part 15 C Section 15.247 (b)(3) RSS-247 section 5.4(d) ANSI C63.10:2013 and KDB558074	
Test Method:		
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test CH	Peak Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	4.34		
Middle	4.12	30.00	Pass
Highest	4.11		

6.4 Occupy Bandwidth

Test Requirement: Test Method:	FCC Part 15 C Section 15.247 (a)(2) RSS-247 section 5.2(a) ANSI C63.10:2013 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

	nododi omoni Bata.								
Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result						
Lowest	0.738								
Middle	0.744	>500	Pass						
Highest	0.738								
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result						
Lowest	1.086								
Middle	Middle 1.086		N/A						
Highest	1.086								

6.5 Power Spectral Density

Test Requirement: Test Method:	FCC Part 15 C Section 15.247 (e) RSS-247 section 5.2(b) ANSI C63.10:2013 and KDB558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result	
Lowest	3.07			
Middle	2.62	8.00	Pass	
Highest	2.44			

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Conducted Linission					
Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5				
Test Method:	ANSI C63.10:2013 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

6.6.2 Radiated Emission Method

6.6.2	Radiated Emission N	/letnoa							
	Test Requirement:		FCC Part 15 C Section 15.209 and 15.205 RSS-GEN section 8.9 8.10						
	Test Method:	ANSI C63.10:	2013 and	KDE	3558074				
	Test Frequency Range:	2.3GHz to 2.5GHz							
	Test Distance:	3m							
	Receiver setup:	Frequency	Detecto	or	RBW	V	/BW	Remark	
	·	Above 1GHz	Peak		1MHz	3MHz		Peak Value	
			RMS		1MHz		MHz	Average Value	
	Limit:	Frequen	•	LIII	nit (dBuV/m @3 54.00	SIII)	Δν	Remark verage Value	
		Above 10	SHz		74.00			Peak Value	
	Test setup:	the ground to determing to determing to determing to determing the second secon	d at a 3 m ine the po was set 3 which was an height d to determent and measurer suspected then the and the rotal maximum eceiver sy Bandwidtlesion level pecified, the margin	eter of sition meters mound is various vertical table of the her to e repowould be sition and table of the terpowould would be repowould be sition and table of the to e repowould be sition and table of the terpowould be sition and table of the to e repowould be sition and table of the total and table of t	camber. The tall of the highest of the highest ers away from the inted on the top ried from one of the maximum value polarization was tuned to was turned from the was turned from the was set to Pear Maximum Holling. We was to Pear Maximum Holling EUT in peak esting could be orted. Otherwis	ble wradiane into of a neter value s of the was a being born 0 modern stoppie the bone by	as rotation. erference variable to four of the fi he anter arrange ghts from degrees etect Fun de was 1 ped and emission y one us	meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-	
	Test setup:	AE (Tu	rntable) Test Re	Ground F	Horn Antenna Reference Plane Pre- Amplifier Control	Antenna T	lower		
	Test Instruments:	Refer to sectio	n 5.8 for c	details	6				
	Test mode:	Refer to sectio	n 5.3 for c	details	3				
	Test results:	Passed							

6.7 Spurious Emission

6.7.1 Conducted Emission Method

O.T.1 OOHAGCCG EHIISSIO	
Test Requirement:	FCC Part 15 C Section 15.247 (d) RSS-247 section 5.5
Test Method:	ANSI C63.10:2013 and KDB558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205 RSS-Gen section 8.9 8.10							
Test Method:	ANSI C63.10:20)13						
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VB	W	Remark		
·	30MHz-1GHz	Quasi-pea	k 120KHz	300k	KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value		
		RMS	1MHz	3M	Hz	Average Value		
Limit:	Frequency		Limit (dBuV/m @	23m)		Remark		
	30MHz-88M		40.0			uasi-peak Value		
	88MHz-216N		43.5			uasi-peak Value		
	216MHz-960	+	46.0			uasi-peak Value		
	960MHz-1G	Hz	54.0		Quasi-peak Value			
	Above 1GF	lz —		54.0		Average Value		
Test Procedure:	1 The FUT	oo plood d		ototina	tabla (
	1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data							

Above 1GHz

Test channel:		Lowest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	49.52	30.85	6.80	41.81	45.36	74.00	-28.64	Vertical
4804.00	48.12	30.85	6.80	41.81	43.96	74.00	-30.04	Horizontal
Т	est channel		Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	39.62	30.85	6.80	41.81	35.46	54.00	-18.54	Vertical
4804.00	38.55	30.85	6.80	41.81	34.39	54.00	-19.61	Horizontal

Test channel:		Middle		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	49.50	31.20	6.86	41.84	45.72	74.00	-28.28	Vertical
4884.00	48.71	31.20	6.86	41.84	44.93	74.00	-29.07	Horizontal
Т	est channel	:	Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	39.62	31.20	6.86	41.84	35.84	54.00	-18.16	Vertical
4884.00	40.12	31.20	6.86	41.84	36.34	54.00	-17.66	Horizontal

Test channel:		Highest		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	49.62	31.63	6.91	41.87	46.29	74.00	-27.71	Vertical
4960.00	48.55	31.63	6.91	41.87	45.22	74.00	-28.78	Horizontal
Т	est channel		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.62	31.63	6.91	41.87	36.29	54.00	-17.71	Vertical
4960.00	37.19	31.63	6.91	41.87	33.86	54.00	-20.14	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.