

Discovery of listening experiences

Phase two (June 2018)

Enrico Daga enrico.daga@open.ac.uk @enridaga

Outline

- Discovering listening experiences
- Benchmark development
- Learning listening experiences
- Experiments results
- Next steps

Problem / Objective

How to identify accounts of listening experiences from texts?

An automatic bookmarks generator for texts identifying candidates Listening Experiences

Approach

We hypothesised that LEs are a subset of the texts talking about music.

Phase 1:

To develop a dictionary of terms whose occurrence in a text could signify a discourse about music.

To show that this dictionary represents well Listening Experiences (LE) in the database.

Phase 2 (in progress):

To develop a approach using the dictionary in combination with *features* of LE and evaluate it on a gold standard of LE and associated sources.

Phase 3:

To develop a system that generate annotations of texts and evaluate it with a user study.

Discovery Listening Experiences in texts

- Objective: point the reader to the areas in the text where there is a high chance of finding a LE
- What should go in the magic box?
- How do we know that (whatever we do) is working well?

Discovery Listening Experiences in texts

- We need a benchmark!
- A collection of texts for which we already know where LEs are!

Benchmark development

- We can collects sources from the Listening Experiences Database
 - With a full text available
- However, we still don't know where the excerpts are located in the text!
- Re-finding them manually and write down the begin/end offsets is not an option ...
- We could search for the excerpt in the text!

This very handsome woman [Grassini]_was in every thing the direct contrary of her rival_[Mrs. Billington]. With a beautiful form, and a grace peculiarly her own, she was an excellent actress, and her style of singing was exclusively the cantabile, which became heavy

a la longue, and bordered a little on the monotonous: for her voice, which it was said had been a high soprano, was by some accident reduced to a low and confined contralto. She had entirely lost all its upper tones, and possessed little more than one octave of good natural notes; if she attempted to go higher, she produced only a shriek, quite unnatural, and almost painful to the ear. Her first appearance was in La Vergine del Sole, an opera of Mayer's, well suited to her peculiar talents; but her success was not very decisive as a singer [...]

This very handsome woman was in every_thing the direct contrary of her rival. With_a beautiful form, and a grace peculiarly her_

_

92 GRASSINI._

own, she was an excellent actress, and her_ style of singing was exclusively the cantabile,_ which became heavy d la tongue, and bordered_ a little on the monotonous_: for her voice,_ which it was said had been a high soprano,_ was by some accident reduced to a low and_ confined contralto. She had entirely lost all_ its upper tones, and possessed little more than_ one octave of good natural notes_; if she_ attempted to go higher, she produced only a_ shriek, quite unnatural, and almost painful to_ the ear. Her first appearance was in La_ Vergine del Sole, an opera of Mayer's, well_ suited to her peculiar talents; but her success_ was not very decisive as a singer, though her

Musical Reminiscences: Containing an Account of Italian Opera in England, From 1773. The Fourth Edition, Continued to the Present Time, and Including The Festival in Westminster Abbey.


```
Excerpts[] = get led(Source)
Text = text(Source)
best[t,b,e,s] ; // text, begin, end, score
Foreach excerpt in Excerpts[]:
  words[] = tokenize(excerpt)
  words[] = sortByLengthDesc(words[]) // Longest on top
  Foreach word in words[]:
    occurrences[][b,e] = find(word, Text)
    position[b,e] = find(word, excerpt)
    Foreach occurrence[b,e] in occurrences[][b,e]:
       begin = occurrence.b - position.b
       end = occurrence.e + len(excerpt) - position.e
       possible = substring(Source, begin, end)
       score = levenshtein(excerpt, possible)
       if(score < best[s])</pre>
         best[t,b,e,s] = [possible, begin, end, score]
       fi
    End
  End
End
return best
```


Benchmark development

- Collected sources from the Listening Experiences Database
 - With a full text available
- Reached approximately 10% of the total set
- 17 books, 1098 experiences
- We generated a collection of bookmarks with the algorithm described to be used to test possible approaches

Benchmark development

- Assumptions:
 - The LED database contains all the Listening Experiences in these books (is that true?)
 - It is enough to identify a text area that overlaps with any bookmark in the benchmark

Approaches

Musical Heat Annotator:

- based on the hypothesis that LEs are a subset of the texts talking about music.
- the more the text overlaps with Gutenberg-M the more it could be a LE

Random Forest Annotator:

- based on the assumption that we can train a classifier abstracting features from LE texts
- A Random Forest Classifier is a Machine Learning approach used successfully for binary texts classification: "it creates a set of decision trees from randomly selected subset of training set. It then aggregates the votes from different decision trees to decide the final class of the test object."

Gutenberg-M: Development of a music dictionary

- Gutenberg corpus (english subset)
- We use NLP to get a vector of terms for each documents (StanfordNLP)
- We calculated TF/IDF of each doc/term pair in Gutenberg
- We collecting the terms in documents classified in the <u>Music shelf</u>
- We sorted them by relevance towards the sub-corpus
- We validated the dictionary against the LED set and the Reuters-21578 corpus (as negative)

Gutenberg-M: Text to vector (NLP)

- Removing stopwords, keeping Full POS information
- Example: "So the Rontgens have played you the new Brahms symphony! another of my few musical joys taken from me! It always happens that when I have been specially counting on something of the sort as regards you, Fate [...]" LED-1438250799133

```
rontgen[NNS]
  play[VBN]
  Brahms [NNP]
  symphony[NN]
  another[DT]
  musical[JJ]
  take[VBN]
  always[RB]
  happen [VBZ]
  specially[RB]
10 count [VBG]
11 something[NN]
12 sort[NN]
13 regard[VBZ]
14 Fate [NNP]
```

Gutenberg-M: Text to vector (NLP)

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP\$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non3rd person singular present

VBZ Verb, 3rd person singular present

WDT Whdeterminer

WP Whpronoun

WP\$ Possessive whpronoun

WRB Whadverb

Gutenberg-M: TFIDF

"In information retrieval, tf-idf or TFIDF, short for term frequency—inverse document frequency, is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus." [1]

```
term freq = term usages / doc size
idf = LOG(48790 / num docs with term)
tf idf = term freq*idf
```

Highest TF-IDF: 1.5901121823585802 Lowest TF-IDF: 4.032538525747152e-08

Highest TF-IDF in the Music Shelf: 0.0922981613222286 Lowest TF-IDF in the Music Shelf: 7.517321708209822e-07

```
Document: Gutenberg-15141
```

_	
Beethoven[NNP]	0.07272755403226193
Symphony [NNP]	0.015139485794100219
Schindler[NNP]	0.007967133189523013
<pre>Vienna[NNP]</pre>	0.007256378255299395
Haydn [NNP]	0.0071413210885995495
Wagner[NNP]	0.007088376068171141
<pre>Breuning[NNP]</pre>	0.006717815731235641
Ries[NNP]	0.006111818988630585
Mozart[NNP]	0.0059785964542184945
Lichnowsky[NNI	0.005846276132915727
quartet[NNS]	0.0054224336619273
Czerny[NNP]	0.005217816538462906
Mass[NNP]	0.005135716029154898
opus[NN]	0.004832913297756952
composer[NN]	0.004442636696952911
Karl[NNP]	0.004326928936343346
Holz[NNP]	0.004142928952284239
Bach[NNP]	0.0037425004179032417
sonata[NNS]	0.0035618383556334826
Bonn[NNP]	0.00355707250098514
symphony[NNS]	0.003447084601144992
music[NN]	0.0032652203770744768

Gutenberg-M: Statistics

- Gutenberg (english): 48790 documents, 79 in the Music shelf
- Number of doc/terms occurrences: 1.460.211.421
- Number of distinct terms: 7.183.327
- Number of terms occurring only in 1 doc: 4.405.918
- Number of doc/terms in the Music Shelf: 1.934.581
- Number of distinct terms in the Music Shelf: 89.883
 - 1.25% of the total of distinct terms in the corpus

Gutenberg-M: Dictionary

- 89.883 terms ordered by relevance
- Relevance = AVG(TFIDF) of docs in Music Shelf

Beethoven[NNP]	0.004708996602	1
vocal[JJ]	0.003577405412	2
music[NN]	0.003279422105	3
Liszt[NNP]	0.003201453413	4
Chopin[NNP]	0.003163986853	5
composer[NN]	0.003115849809	6
Mozart[NNP]	0.002860199248	7
musical[JJ]	0.002722584954	8
Haydn[NNP]	0.002579207714	9
piano[NN]	0.002500942374	10
aria[NN]	0.0006770586871	98
fugue[NN]	0.0006655704232	99
theme[NN]	0.0006590153165	100
accent[NN]	0.000222760115	497
master[NNS]	0.0002227463667	498
Dickens[NNP]	0.0002227403007	499
resonance-chamber[NNS]	0.0002227380321	500
leading-tone[NN]	0.0002220331307	501
	0.0002224620318	997
florid[JJ]	0.0001438729148	998
sound[VBZ]		
score[NNS]	0.0001437556948	999
rondo[NN]	0.0001435829476	1000
sweet[JJ]	0.0001435409753	1001
sense[NN]	0.0001434473773	1002
gesture[NNS]	9.09E-05	1997
hammer[NNS]	9.08E-05	1998
flow[NN]	9.08E-05	1999
sorrow[NN]	9.08E-05	2000
monophonic[JJ]	9.08E-05	2001
saint[NNS]	4.79E-05	4997
move[VBZ]	4.79E-05	4998
moderately[RB]	4.79E-05	4999
Cecilia[NNP]	4.79E-05	5000
Nibelung[NNP]	4.79E-05	5001
mean[VBD]	2.80E-05	9997
aloft[RB]	2.80E-05	9998
o'er[RB]	2.80E-05	9999
unaffected[JJ]	2.80E-05	10000
Stockhausen[NNP]	2.80E-05	10001
indulgent[JJ]	1.42E-05	19997
emulation[NN]	1.42E-05	19998
emerge[VB]	1.42E-05	19999
two-step[NNS]	1.42E-05	20000
Lauriett[NNP]	1.42E-05	20001
unfitness[NN]	5.86E-06	39997
Aryan[NNP]	5.86E-06	39998
Sirens[NNPS]	5.86E-06	39999
MACREADY[NNP]	5.86E-06	40000
fence[VBN]	5.85E-06	40001
offrir[FW]	3.18E-06	59997
postes[FW]	3.18E-06	59998
Dorf[NNP]	3.18E-06	59999
Dewing[NNP]	3.18E-06	60000
legitimise[VBN]	3.18E-06	60001
J	552 66	00001

Gutenberg-M: Validation

We compared Listening Experiences and the Reuters-21578 corpus [1] (used to benchmark news classification systems, does not include music as category).

- We matched the vector of each corpus with the music dictionary, and clustered the number of occurrences per score range (log scale in the pictures)
- We calculated a distribution score (sum(scores) / corpus vector length)
 - LE (vector length: 949301) is **0.000**11480226659861874
 - Reuters-21578 (vector length: 1372059) is 4.6368513916777576e-05 (0.00004636851)

The dictionary fits better LEs then Reuters

Musical Heat Annotator

Fate[NNP]

0.000004142928952284239

Random Forest Annotator

well[R],1305,1591

know[V],1178,1489

Random Forest Annotator

Random Forest: Training Set

Components:

- Listening Experiences (LE) 9059 (without the ones in the Benchmark)
- Reuters21578 (Reu) usually shorter 19043
- Reading Experiences Database (Red) 11727

Combinations:

- LE + Reu: 9059 positives + 9059 negatives of the same average length
- LE + Red: 9059 positives + 6161 negatives of the same average length
- LE + Reu + Red (Same size) 9059 positives + 9059 negatives of the same size
- LE + Neg (Reu + Red original form all) 9059 positives and 30771 negatives

Features (Learnt Vocabulary)

- all Terms from all the training set
- le Led vocabulary all
- le10k Led frequency top 10k
- le5k
 Led frequency top 5k
- le1k Led frequency top 1k

How do we measure the performance

Our objective:

- Reduce the number of areas to supervise
- Reduce the number of areas that are not proposed but contain a LE (< F->T)

As a Machine Learning problem:

Accuracy: maximise the correct classification (T->T, F->F)

As a Information Retrieval problem:

• F1: maximise the positives returned (T->T)

As an Information Retrieval problem

How many selected items are relevant?

How many relevant items are selected?

Our objective:

- Maximise recall
 - (maximise the true positives)
- Maximise precision
 - (minimise the false positives)

$$F_1 = rac{2}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} \, .$$

experiment	population	relevant	retrieved	positives	precision	recall	fmeasure	accuracy	error
rfle-negle5k	4028	910	1374	626	0.45560407	50.68791208	0.548161120	0.7437934	0.256206554
rfle-negle1k	4028	910	2032	799	0.39320866	10.87802197	0.543167913	3 0.6663356	0.333664349
rfle-negle10k	4028	910	1093	538	3 0.49222323	{0.59120879	0.537194208	3 0.7698609	0.230139026
heat-gutenberg-00003-20	4028	910	2588	851	0.32882534	70.93516483	0.486563750	0.5541211	0.445878848
heat-gutenberg-00003	16087								0.448809597
rfle-reu-redle10k	4028								0.742303872
rfle-reu-redle	4028	910	3866	899	0.23254009	30.98791208	0.37646566	0.2606752	0.739324726
rfle-reule	4028	910	3836	892	0.23253388	90.98021978	0.375895490	0.2646474	0.735352532
rfle-redle	4028	910	3952	907	0.22950404	80.99670329	0.373097490	0.2432969	0.756703078
rfle-reuall	4028	910	3923	900	0.22941626	30.98901098	0.372439478	0.2470208	0.752979146
rfle-negall	4028	910	354	162	0.45762711	8 0.17802197	0.256329113	0.7666335	0.233366435

precision, recall

F1 and Accuracy

Discussion

- The Heat hypothesis seems confirmed but it is not enough
 - good recall but low precision and accuracy
- A training set with examples unbalanced on the negatives works better
 - LEs too much similar to non-LEs?
 - LEs features are hard to capture ...
- A training set limited to the most frequent features works better
 - LEs features are very specific? But which are they?

How to improve

- Analyse false negatives and derive hints about how to improve
- Combine the Heat recall with the Random Forest precision
 - Use Gutenberg-M as feature set for RF?
 - Regenerate Gutenberg-M using a stronger POS abstraction
- Try other ML approaches like Support Vector Machines (SVM)
- Try different segmentation strategies (smaller texts, moving window)
- Explore with unsupervised learning and try to capture LEs features by explaining clusters

Summary

Progress:

- Built a benchmark using the LEs and their original sources
- We experimented on learning LEs from the LED database and reached a baseline performance

Perspectives:

- Elaborate on the approach to reach a good performance (<u>almost all</u> <u>LEs + the fewest negatives</u>)
- Develop a system that generate annotations of texts and evaluate it with a user study.