Solutions to the First Inner Olympiad 2019-2020

- Consider as an example $f(x) = x^2 \sin x$.
- Making a substitution y = x 1004 we get $\int_{1004}^{1004} (y + 1004)(y + 1000) \dots (y + 4)y(y + 4) \dots (y 4)y(y + 4)y($ 2.

 $1000)(y - 1004) dy = \int_{-1004}^{1004} (y^2 - 1004^2)(y^2 - 1000^2) \dots (y^2 - 4^2)y dy.$ The function inside the integral is odd and, thus, its integral is 0.

- Using the simple inequality $(f'(x))^2 \ge 2f'(x) 1$ we get $\int_0^1 (f'(x))^2 dx \ge \int_0^1 (2f'(x) 1) dx = 1$.
- Let $z(x) = \int_{-\pi}^{x} \frac{dt}{y(t)}$. Then, $z'(x) = \frac{1}{y(t)}$, $z(\pi) = 0$, $z'(\pi) = 1$. $z''(x) = -\frac{y'(x)}{y(x)^2}$. Thus, the original equality from the statement equivalent to z'' + z = -1 with $z(\pi) = 0$ and $z'(\pi) = 1$. The general solution is $c_1 \cos x + c_2 \sin x$ and the particular solution is z(x) = -1. By applying boundary constraints we get $z(x) = -1 - \cos x - \sin x$. Thus, $y(x) = \frac{1}{z'(x)} = \frac{1}{\sin x - \cos x}$.
- At first, factorize $2^{13} 2 = 2 \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$. For all these primes p 1|12, thus by Little Fermat's Theorem $p|x^{12}-1$. Hence, gcd is $2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$.
- 6. $\left(\frac{a_1}{a_1+b_1}\cdots\frac{a_n}{a_n+b_n}\right)^{\frac{1}{n}} + \left(\frac{b_1}{a_1+b_1}\cdots\frac{b_n}{a_n+b_n}\right)^{\frac{1}{n}} \le \frac{\frac{a_1}{a_1+b_1}+\dots+\frac{a_n}{a_n+b_n}}{n} + \frac{\frac{b_1}{a_1+b_1}+\dots+\frac{b_n}{a_n+b_n}}{n} = 1.$ 7. $\det(A^2 I_n) = \det(A I_n)(A + I_n) = \det(A A^T A)(A + A^T A) = \det^2 A \det(I_n A)^T (I_n + A)^T = \det^2 A \det(I_n A^2) = \det^2 A(-1)^n \det(A^2 I_n).$
- 8. Let $b_{i,j} = a_{i,j} + 1$. Then $b_{i,j+1} = b_{i,j}^2$ and $b_{i,n} = (b_{i,0})^{2^n}$. $\lim_{n \to \infty} a_{n,n} = \lim_{n \to \infty} b_{n,n} 1 = \lim_{n \to \infty} \left(\frac{x}{2^n} + 1\right)^{2^n} 1$
- $\mathbf{9}$. Since the roots of the polynomial are reals then the roots of all the derivatives are reals. Consider the derivative n-2: $P^{(n-2)}(x) = \frac{n!}{2}x^2 + (n-2)!a_{n-2}$. For this polynomial to have real roots we need $a_{n-2} \le 0$.
- **10.** $f \equiv 1$ is the solution with $f(f([0,1])) = \{1\}.$

All the functions that satisfy $f \equiv 0$ on $[0, \max_{y \in [0,1]} f(y)]$ are also solutions with $f(f([0,1])) = \{0\}$.

Now, we will show that $\{0\}$ and $\{1\}$ are the only answers.

Suppose there exists $c \in (0,1]$ such that f(c) = c. By setting x to c we get: $\int_{0}^{c} f(y) dy = \int_{0}^{f(c)} f(y) dy = \int_{0}^{$ f(f(c)) = c. Thus, $f \equiv 1$ on [0, c]. Since, f(c) = c we get that c = 1 and $f \equiv 1$.

Consider the opposite case. f(0) = 0, otherwise, f intersects y = x $(f(1) \le 1)$ and c exists. Since f is continuous, we get f([0,1]) = [0,d]. If d=0 then $f \equiv 0$ and we are done. By the statement we get that for all $z \in [0, d]$ $f(z) = \int_{0}^{\infty} f(y) dy$, because for each z there exists f(x) = z. By differentiating both sides we get f'(z) = f(z) on [0, d]. Solving we get $f(z) = Ae^z$ on [0, d]. However, f(0) = 0 and, thus, A = 0and $f \equiv 0$ on [0, d]. This means that $f(f([0, 1])) = f([0, d]) = \{0\}$.