Metagenome Assembly Workflow (v1.0.1)

Overview

This workflow takes in paired-end Illumina data, runs error correction, assembly, and assembly validation.

Running the Workflow

Currently, this workflow can be run in <u>NMDC EDGE</u> or from the command line (CLI instructions and requirements are found <u>here</u>).

Tutorial videos on how to run each workflow in NMDC EDGE are found here.

Input

Metagenome Assembly requires paired-end Illumina data as an interleaved file or as separate pairs in FASTQ files. The recommended input is the output from the ReadsQC NMDC workflow.

• Acceptable file formats: .fastq, .fq, .fastq.gz, .fq.gz

Details

This workflow takes in paired-end Illumina reads and performs error correction using bbcms (BBTools). Then the corrected reads are assembled using metaSPAdes. After assembly, the reads are mapped back to the contigs by bbmap (BBTools) for coverage information.

Software Versions

- bbcms (BBTools:38.94)
- metaSpades (v3.15.0)
- bbmap (BBTools:38.94)

Output

The main output is the assembled contigs file (assembly contigs.fna).

Assembly Contigs

Assembly Scaffolds

Final assembly contigs (assembly.contigs.fna)

Final assembly scaffolds (assembly_scaffolds.fna)

Assembly AGP	An AGP format file which describes the assembly
Assembly Coverage BAM	Sorted bam file of reads mapping back to the final assembly
Assembly Coverage Stats	Assembled contigs coverage information

Running the Metagenome Assembly Workflow in NMDC EDGE

Select a workflow

- 1. From the Metagenomics category in the left menu bar, select 'Run a Single Workflow'.
- 2. Enter a *unique* project name with no spaces (underscores are fine).
- 3. A description is optional, but helpful.
- 4. Select 'Metagenome Assembly' from the dropdown menu under Workflow.

Input

This workflow accepts Illumina data in FASTQ format as the input; the file can be interleaved and can be compressed. This input can be the output from the ReadsQC workflow, and this is recommended. **Acceptable file formats:** .fastq, .fq, .fastq.gz, .fq.gz

- 5. The default setting is for the raw data to be in an interleaved format (paired reads interleaved into one file). If the raw data is paired reads in separate files (forward and reverse), click 'No'.
- 6. Additional data files (of the same type–interleaved or separate) can be added with the button below.
- 7. Click the button to the right of the input blank for data to select the data file for the analysis. (If there are separate files, there will be two input blanks.) A box called 'Select a File' will open to allow the user to find the desired file(s) from previously run projects, the public data folder, or files uploaded by the user.
- 8. Then click 'Submit'.

Output

The General section of the output shows which workflow and which tools were run and the run time information.

The Metagenome Assembly Result section has all the statistics from the assembly.

Name	Status	
scaffolds	25,324	
contigs	25,726	
scaf_bp	52,206,897	
contig_bp	52,201,077	
gap_pct	0.011	
scaf_N50	691	
scaf_L50	4,103	
ctg_N50	724	
ctg_L50	3,971	
scaf_N90	14,186	
scaf_L90	726	
ctg_N90	14,473	
ctg_L90	716	
scaf_logsum	645,093	
scaf_powsum	120,098	
ctg_logsum	638,015	
ctg_powsum	116,432	
asm_score	33.765	
scaf_max	1,491,105	
ctg_max	859,644	
scaf_n_gt50K	96	
scaf_l_gt50K	20,678,937	
scaf_pct_gt50K	39.61	
gc_avg	0.473	
gc_std	0.062	

The Browser/Download Output section provides output files available to download. The primary result is the assembly_contigs.fna file which can also be the input for the Metagenome Annotation workflow. The pairedMapped_sorted.bam file along with the assembled contigs file can be the input for the MAGs Generation workflow.

Browser/Download Outputs		
File	Size	Last Modifie
MetagenomeAssembly		
assembly.agp	1.72 MB	21 days ag
assembly_contigs.fna	51.30 MB	21 days aç
assembly_scaffolds.fna	51.22 MB	21 days ag
covstats.txt	1.92 MB	21 days ag
pairedMapped.sam.gz	2338.54 MB	21 days ag
pairedMapped_sorted.bam	2130.75 MB	21 days ag
stats.json	619 B	21 days ag