矩阵分析与计算

习题解答与提示

教材----

朱元国, 饶玲, 严涛, 张军, 李宝成编, 矩阵分析与计算, 北京: 国防工业出版社, 2010年8月

第1章 习题解答与提示

- 1. (1)取 $e = (1, 1, \dots, 1)^T$,则有Ae = 1e,所以1为A的特征值。
 - (2) 由 $Ae = 1e \Rightarrow A^{-1}e = 1 \cdot e$, 故 A^{-1} 的行和也是1.
 - (3) 由性质1.5知f(A)e = f(1)e,因此f(A)的行和相等,且为f(1).
- 2. (两个可对角化矩阵 $A,B \in C^{n \times n}$ 称为同时可对角化的,如果存在同一个相似变换矩阵 $S \in C^{n \times n}$,使得 $S^{-1}AS$ 和 $S^{-1}BS$ 同为对角矩阵。)

充分性 若A和B同时可对角化,则存在可逆矩阵P,使得

$$A = PDP^{-1}, B = P\Lambda P^{-1},$$

其中 D 和 Λ 是对角矩阵。于是有

$$AB = (PDP^{-1})(P\Lambda P^{-1}) = PD\Lambda P^{-1} = P\Lambda DP^{-1}$$
$$= (P\Lambda P^{-1})(PDP^{-1}) = BA,$$

即A与B可交换。

必要性 BA = BA. 设 λ 为A的特征值, ξ 为对应的特征向量,即 $A\xi = \lambda \xi$.则当 $B\xi \neq 0$ 时,由 $A(B\xi) = AB\xi = BA\xi = \lambda (B\xi)$,知 ξ , $B\xi$ 都是对应 λ 的特征向量,而 λ 是A的单特征值,所以 ξ , $B\xi$ 线性相关。因此,存在常数 μ , 使 $B\xi = \mu \xi$, 即 ξ 是B的对应特征值 μ 的特征向量。

当 $B\xi = 0$ 时, ξ 是对应B的0特征值的特征向量。故A的特征向量都是B的特征向量,并且使A对角化的这些特征向量所组成的同一个矩阵也使B对角化。

3. (1)
$$\begin{pmatrix} \lambda^3 - \lambda & 2\lambda^2 \\ \lambda^2 + 5\lambda & 3\lambda \end{pmatrix} \rightarrow \begin{pmatrix} 3\lambda & \lambda^2 + 5\lambda \\ 2\lambda^2 & \lambda^3 - \lambda \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 3\lambda & \lambda^2 + 5\lambda \\ 0 & \lambda^3 - 10\lambda^2 - 3\lambda \end{pmatrix}$$

- 4. 因 $A(\lambda)$, $B(\lambda)$ 有相同的不变因子1, $\lambda-1$, $(\lambda-1)^2$,所以它们等价。
- 5. (1) 因A与B有相同的初等因子 $(\lambda 2)$, $(\lambda 2)^2$, 所以A与B相似。
 - (2) A与B也有相同的初等因子 $(\lambda 3), (\lambda 3)^2$,故 $A \sim B$.
- 6. (1)A与B的初等因子相同,均为 $(\lambda a)^n$,所以A与B相似。
 - (2) A 的初等因子为 $(\lambda a)^n$, 而对

$$(\lambda I - B) = \begin{pmatrix} \lambda - a & -1 & & \\ & \lambda - a & \ddots & \\ & & \ddots & -1 \\ -\varepsilon & & & \lambda - a \end{pmatrix},$$

有

$$D_n(\lambda) = \det(\lambda I - B) \stackrel{\text{ightagen}}{=} (\lambda - a)^n - \varepsilon,$$

又 $(\lambda I - B)$ 有一个 n-1 阶子式

$$H_{n-1}(\lambda) = \begin{vmatrix} -1 \\ \lambda - a & -1 \\ & \ddots & \ddots \\ & & \lambda - a & -1 \end{vmatrix} = (-1)^{n-1},$$

由 $D_{n-1}(\lambda) | D_n(\lambda)$ 和 $D_{n-1}(\lambda) | H_{n-1}(\lambda)$,知必有 $D_{n-1}(\lambda) = 1$,进而得 $D_1(\lambda) = \cdots = D_{n-1}(\lambda) = 1$. 于是 B的不变因子为 $d_1(\lambda) = \cdots = d_{n-1}(\lambda) = 1$, $d_n(\lambda) = (\lambda - a)^n - \varepsilon$. 所以 B 的初等因子与 A 的初等因子不相同。故 A 与 B 不相似。

7. (1)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
; (2) $\begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$; (3) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$;

$$\begin{pmatrix}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}; (5) \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$

8. (1)
$$J = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
. $\forall \lambda_1 = \lambda_2 = -1$, $\forall \beta \in (\lambda_1 I - A) = 0$

0, 得
$$p_1 = \begin{pmatrix} 0 \\ -3 \\ 2 \end{pmatrix}$$
, 再求解 $(\lambda_1 I - A)x = -p_1$, 得 $p_2 =$

$$\begin{pmatrix} 0 & -5 & 0 \\ -3 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \quad \mathbb{E}P^{-1}AP = J.$$

(2) 因 $D_4(\lambda) = \det(\lambda I - A) = (\lambda - 1)^4$,又余子式 $D_{41} = -4\lambda(\lambda + 1)$, 所以 $D_3(\lambda) = 1$,从而 $D_2(\lambda) = D_1(\lambda) = 1$,A的不变因子为 $d_1(\lambda) = d_2(\lambda) = d_3(\lambda) = 1$, $d_4(\lambda) = (\lambda - 1)^4$,A的初等因子为 $(\lambda - 1)^4$,

故
$$J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} . \lambda_1 = 1 (4重) , 下求 P.$$

先求解 $(\lambda_1 I - A) x = 0$, 得 $p_1 = (8, 0, 0, 0)^T$, 再解

因此得

$$P = \left(\begin{array}{cccc} 8 & 4 & 0 & 0 \\ 0 & 4 & -1 & 1 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 1 \end{array}\right),$$

 $\coprod P^{-1}AP = J.$

9. 在 A 的Jordan标准形中,特征值不为 λ_0 的子块列在一起记为 B,特征值为 λ_0 的子块列在一起记为 B_0 ,即有

$$J = \begin{pmatrix} B \\ B_0 \end{pmatrix}, A = P \begin{pmatrix} B \\ B_0 \end{pmatrix} P^{-1}.$$

因 λ_0 为 A 的 r 重特征值, 因此 B_0 是 r 阶的, B 为 n-r 阶的,

而
$$B_0$$
 的主对角线上子块都形如 $J_i=\left(egin{array}{cccc} \lambda_0 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_0 \end{array}\right)$,每个子

块阶数不超过r,所以

$$(\lambda_0 I - A)^r = (\lambda_0 P P^{-1} - P J P^{-1})^r = P(\lambda_0 I - J)^r P^{-1}$$

$$= P \begin{pmatrix} \lambda_0 I_1 - B \\ \lambda_0 I_2 - B_0 \end{pmatrix}^r P^{-1}$$

$$= P \begin{pmatrix} (\lambda_0 I_1 - B)^r \\ (\lambda_0 I_2 - B_0)^r \end{pmatrix} P^{-1}$$

因子块 $\lambda_0 I_1 - B$ 的主对角线上元素都不为零,它是n-r阶非奇异的,

而
$$\lambda_0 I_2 - B_0$$
的主对角线上子块都形如 $J_i' = \begin{pmatrix} 0 & -1 \\ & \ddots & \ddots \\ & & \ddots & -1 \\ & & 0 \end{pmatrix}$,每个子块的阶数不超过 r ,所以有 $(J_i')^r = 0$,从而 $(\lambda_0 I_2 - B_0)^r = 0$ 。
因此, $(\lambda_0 I - A)^r = P\begin{pmatrix} (\lambda_0 I_1 - B)^r \\ & 0 \end{pmatrix} P^{-1}$,但 $\lambda_0 I_1 - B \not = n - r$
阶非奇异的,故 $rank(\lambda_0 I - A)^r = rank(\lambda_0 I_1 - B)^r = rank(\lambda_0 I_1 - B) = n - r$ 。

10. *A* 的特征多项式为 $f(\lambda) = (\lambda - 1)^2 (\lambda + 1)$.

(1) 令
$$g(\lambda) = \lambda^6 - \lambda^5 - \lambda^2 + 8\lambda + 1$$
,则 $g(A)$ 即为所求。用 $f(\lambda)$ 去除 $g(\lambda)$,得 $g(\lambda) = (\lambda^3 + \lambda) f(\lambda) + 7\lambda + 1$,所以 $g(A) = 7A + I = \begin{pmatrix} 8 & 0 & 0 \\ 7 & 1 & 7 \\ 0 & 7 & 1 \end{pmatrix}$.

(2) 令 $g(\lambda) = \lambda^{100}$,设 $g(\lambda) = f(\lambda)\varphi(\lambda) + r(\lambda)$,其中 $r(\lambda) = a\lambda^2 + b\lambda + c$.

由

$$\begin{cases} g(1) = r(1), \\ g'(1) = r'(1), \\ g(-1) = r(-1), \end{cases} \Rightarrow \begin{cases} a+b+c = 1 \\ 2a+b = 100 \\ a-b+c = 1 \end{cases}$$

得 a = 50, b = 0, c = -49. 所以

$$A^{100} = g(A) = f(A) \varphi(A) + r(A) = r(A) = 50A^{2} - 49I$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1 \end{pmatrix}.$$

11. $f(\lambda) = \det(\lambda I - A) = \lambda^2 - 6\lambda + 7$. 令 $g(\lambda) = 2\lambda^4 - 12\lambda^3 + 19\lambda^2 - 29\lambda + 37$, 且 $g(\lambda) = f(\lambda)(2\lambda^2 + 5) + \lambda + 2$, 所以 $B = g(A) = A + 2I = \begin{pmatrix} 3 & -1 \\ 2 & 7 \end{pmatrix}$, $\det B = 23 \neq 0$, 故B可逆。

又det
$$(\lambda I - B) = \lambda^2 - 10\lambda + 23$$
,于是

$$B^2 - 10B + 23I = 0 \Rightarrow B(B - 10I) = -23I.$$

因此
$$B^{-1} = -\frac{1}{23}(B - 10I) = -\frac{1}{23}(A + 2I - 10I) = -\frac{1}{23}(A - 8I)$$
.

- 12. (1) $m_A(\lambda) = (\lambda 3)^2$; (2) $m_B(\lambda) = (\lambda 2)^2 (\lambda 3)$; (3) $m_C(\lambda) = (\lambda + 1)(\lambda 2)$.
- 13. 记 $\varphi(\lambda) = \lambda^3 2\lambda^2 5\lambda + 6 = (\lambda 1)(\lambda 3)(\lambda + 2)$,则 $\varphi(A) = 0$,即 $\varphi(A)$ 为A的化零多项式,故 $m_A(\lambda)|\varphi(\lambda)$.而 $\varphi(\lambda)$ 无重根,从而 $m_A(\lambda)$ 无重根,故A可对角化。
- 14. (1) 因 $A^H = A$, A 为Hermite矩阵, 所以为正规矩阵。 A 的特征值

为 $\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = -2$,对应的特征向量分别为

$$\xi_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} 1 \\ -2i \\ 1 \end{pmatrix}, \quad \xi_3 = \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}.$$

将它们单位化得

$$\varepsilon_{1} = \frac{\xi_{1}}{\|\xi_{1}\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \quad \varepsilon_{2} = \frac{\xi_{2}}{\|\xi_{2}\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2i\\1 \end{pmatrix},$$

$$\varepsilon_{3} = \frac{\xi_{3}}{\|\xi_{3}\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\i\\1 \end{pmatrix}.$$

$$1$$

可得酉矩阵 $U = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$,且 $U^{-1}AU = diag(-1, 1, -2)$.

(2) A 也为Hermite矩阵,所以也是正规矩阵。

A的特征值为 $\lambda_1=0, \lambda_2=\sqrt{2}, \lambda_3=-\sqrt{2}$. 对应的特征向量分别为

$$\xi_1 = \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}, \quad \xi_2 = \begin{pmatrix} \sqrt{2} \\ -i \\ 1 \end{pmatrix}, \quad \xi_3 = \begin{pmatrix} -\sqrt{2} \\ -i \\ 1 \end{pmatrix}.$$

单位化得
$$\varepsilon_1 = \frac{\xi_1}{\|\xi_1\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}, \quad \varepsilon_2 = \frac{\xi_2}{\|\xi_2\|} = \frac{1}{2} \begin{pmatrix} \sqrt{2} \\ -i \\ 1 \end{pmatrix}, \quad \varepsilon_3 = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\frac{\xi_3}{\|\xi_3\|} = \frac{1}{2} \begin{pmatrix} -\sqrt{2} \\ -i \\ 1 \end{pmatrix}$$
. 故酉矩阵

$$U = (\varepsilon_1, \varepsilon_2, \varepsilon_3) = \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{i}{\sqrt{2}} & -\frac{i}{2} & -\frac{i}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \ U^{-1}AU = \begin{pmatrix} 0 & & \\ & \sqrt{2} & \\ & & -\sqrt{2} \end{pmatrix}.$$

15. 必要性 如果A是Hermite矩阵,则对任意 $x \in C^n$,因 $x^H A x$ 是数,所以

$$\overline{(x^H A x)} = (x^H A x)^H = x^H A^H x = x^H A x.$$

故 $x^H Ax$ 是实数。

充分性 因对任意 $x \in C^n$, $x^H A x$ 为实数,所以 $x^H A x = (x^H A x)^H = x^H A^H x$,即 $x^H (A - A^H) x = 0.$ 令 $B = A - A^H = (b_{kj})$,则对任意 $x \in C^n$, $x^H B x = 0.$ 特别地,

- (1) $\Re x = (0, \dots, 0, 1, 0, \dots, 0)^T$, $\Re x^H B x = b_{tt} = 0, \ t = 1, 2, \dots, n$.
- (2) 取 $x = (0, \dots, 0, \underbrace{1}_{k}, 0, \dots, 0, \underbrace{1}_{j}, 0, \dots, 0)^{T}$,有 $x^{H}Bx = b_{kk} + b_{kj} + b_{jk} + b_{jj} = 0$,由(1)知 $b_{kj} + b_{jk} = 0$.。
- (3) 取 $x = (0, \dots, 0, \underset{k}{1}, 0, \dots, 0, \underset{j}{i}, 0, \dots, 0)^{T} (i = \sqrt{-1})$,有 $x^{H}Bx = b_{kk} + ib_{kj} ib_{jk} + b_{jj} = 0$,因此 $b_{kj} b_{jk} = 0$,由(2)得 $b_{kj} = b_{jk} = 0$,即B=0,所以 $A = A^{H}$,即A是Hermite矩阵。
- 16. 必要性显然。

充分性 因A正规,所以存在酉矩阵U,使

$$U^{H}AU = diag(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}) = \Lambda$$

其中 $\lambda_1, \dots, \lambda_n$ 为实数。 于是 $A = U\Lambda U^H$,且 $A^H = U^H\bar{\Lambda}U = U^H\Lambda U = A$.

17. 必要性 若A是Hermite正定矩阵,则A的特征值 $\lambda_i > 0, i = 1, 2, \cdots, n$,且存在酉矩阵U,使得 $U^HAU = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$ 。于是

$$A = U \operatorname{diag}\left(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}\right) U^H U \operatorname{diag}\left(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}\right) U^H$$

 $= S^2,$ 其中 $S = U \operatorname{diag}\left(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}\right) U^H$ 也是Hermite正定矩阵。

充分性 若 $A = S^2$, S 为Hermite正定阵,则 $A = SS = S^H S$,即得 A 正定。

18. 因 $(AB)^H = B^H A^H = BA = AB$,所以AB是Hermite矩阵。又A、B 正定,存在 n 阶可逆矩阵 P、Q,使 $A = P^H P$, $B = Q^H Q$. 于是

$$Q(AB)Q^{-1} = QP^{H}PQ^{H}QQ^{-1} = (PQ^{H})^{H}(PQ^{H}) = C,$$

其中 PQ^H 可逆。因此C为Hermite正定矩阵,从而得AB的特征值均大于零,即得AB为正定矩阵。

19. (1) 记 $A = \begin{pmatrix} A_{n-1} & \alpha \\ \alpha^H & a_{nn} \end{pmatrix}$,其中 $\alpha = (a_{1n}, a_{2n}, \cdots, a_{n-1,n})^T$. 因 A_{n-1} 正定,所以 A_{n-1} 可逆,且 A_{n-1}^{-1} 也是正定矩阵。由分块矩阵的初等变换可得等式:

$$\begin{pmatrix} I_{n-1} & 0 \\ -\alpha^H A_{n-1}^{-1} & 1 \end{pmatrix} \begin{pmatrix} A_{n-1} & \alpha \\ \alpha^H & a_{nn} \end{pmatrix} = \begin{pmatrix} A_{n-1} & \alpha \\ 0 & a_{nn} - \alpha^H A_{n-1}^{-1} \alpha \end{pmatrix}$$

两边取行列式可得 $\det A = \left(a_{nn} - \alpha^H A_{n-1}^{-1} \alpha\right) \det A_{n-1}$,而 $\alpha^H A_{n-1}^{-1} \alpha \ge 0$,且等号成立的充要条件是 $\alpha = 0$. 所以

$$\det A < a_{nn} \det A_{n-1}$$

且等号成立当且仅当

$$a_{1n} = a_{2n} = \dots = a_{n-1,n} = 0.$$

(2) 由(1) 递推下去,有 det $A \le a_{nn}$ det $A_{n-1} \le a_{nn}a_{n-1,n-1}$ det $A_{n-2} \le \cdots \le \prod_{i=1}^{n} a_{ii}$.

第2章 习题解答与提示

1. 设 $\mathbf{x} = (\xi_1, \xi_2, \dots, \xi_n)^T, \mathbf{y} = (\eta_1, \eta_2, \dots, \eta_n)^T$. 则

$$|oldsymbol{x}^Holdsymbol{y}| = \left|\sum_{i=1}^n ar{\xi}_i \eta_i
ight| \leq \sum_{i=1}^n |\xi_i| |\eta_i| \leq \sum_{i=1}^n |\xi_i| \max_{1 \leq i \leq n} |\eta_i| = \|oldsymbol{x}\|_1 \|oldsymbol{y}\|_\infty$$

从而 $\max_{\|\boldsymbol{y}\|_{\infty}=1} |\boldsymbol{x}^H \boldsymbol{y}| \leq \|\boldsymbol{x}\|_1$. 如果 $\boldsymbol{x} = 0$,等式显然成立。设 $\boldsymbol{x} \neq 0$,令

$$\eta_i^* = \begin{cases} \frac{\xi_i}{|\xi_i|}, & \text{ if } \xi_i \neq 0 \\ 0, & \text{ if } \xi_i = 0 \end{cases}$$

记 $\mathbf{y}^* = (\eta_1^*, \eta_2^*, \cdots, \eta_n^*)^T$. 则

$$|oldsymbol{x}^Holdsymbol{y}^*| = \left|\sum_{i=1}^n ar{\xi}_i \eta_i
ight| = \sum_{i=1}^n |\xi_i| = \|oldsymbol{x}\|_1$$

故 $\|\boldsymbol{x}\|_1 = |\boldsymbol{x}^H \boldsymbol{y}^*| \le \max_{\|\boldsymbol{y}\|_{\infty} = 1} |\boldsymbol{x}^H \boldsymbol{y}|$. 所以 $\|\boldsymbol{x}\|_1 = \max_{\|\boldsymbol{y}\|_{\infty} = 1} |\boldsymbol{x}^H \boldsymbol{y}|$. 另一个等式可类似证明.

2. 设 $A^H A$ 的特征值为 λ_i , 则 $\lambda_i \geq 0$, $i = 1, 2, \dots, n$.

$$||A||_2^2 = \rho(A^H A) \le \sum_{i=1}^n \lambda_i = tr(A^H A) = ||A||_F^2.$$

另外

$$||A||_F^2 = tr(A^H A) = \sum_{i=1}^n \lambda_i \le n \max_i \lambda_i = n\rho(A^H A) = n||A||_2^2.$$

3.
$$A^k = \begin{pmatrix} \frac{1}{2^k} & \frac{k}{2^{k-1}} \\ 0 & \frac{1}{2^k} \end{pmatrix}, \, \rho(A^k) = \frac{1}{2^k}, \, \|A^k\|_1 = \frac{2k+1}{2^k}.$$
 因为

$$A^{k}(A^{k})^{T} = \begin{pmatrix} \frac{1}{2^{k}} & \frac{k}{2^{k-1}} \\ 0 & \frac{1}{2^{k}} \end{pmatrix} \begin{pmatrix} \frac{1}{2^{k}} & 0 \\ \frac{k}{2^{k-1}} & \frac{1}{2^{k}} \end{pmatrix} = \begin{pmatrix} \frac{4k^{2}+1}{4^{k}} & \frac{k}{2^{2k-1}} \\ \frac{k}{2^{2k-1}} & \frac{1}{4^{k}} \end{pmatrix}$$

所以 $A^k(A^k)^T$ 的特征值为 $\lambda_{1,2}=\frac{1}{4^k}(\sqrt{k^2+1}\pm k)^2$. 从而

$$||A^k||_2 = \sqrt{\rho(A^k(A^k)^T)} = \frac{1}{2^k}(\sqrt{k^2 + 1} + k).$$

- 4. (1) 对 $c \ge 1$,因为
 - (i) $c||A|| \ge 0$, $\exists ||c||A|| = 0 \iff ||A|| = 0 \iff A = 0$;
 - (ii) $c||\lambda A|| = c|\lambda|||A|| = \lambda c||A||$;
 - (iii) $c||A + B|| \le c||A|| + c||B||$;
 - (iv) $c||AB|| \le c||A|| ||B|| \le c||A|| \cdot c||B||$,

所以, $c||\cdot||$ 是矩阵范数。

- (2) 对 c < 1,
 - 若 c = 0, 因为当 $A \neq 0$ 时, $c \|A\|_1 = 0$,所以 $c \|\cdot\|$ 不是矩阵范数。
 - 若 c < 0, 那么 $c||A + B||_1 \le c||A||_1 + c||B||_1$ 不一定成立,如设

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix}$$

则 $A+B=\begin{pmatrix}2&1\\0&1\end{pmatrix}$,且有 $\|A+B\|_1=2$, $\|A\|_1=5$, $\|B\|_1=3$,而 $c\|A+B\|_1=2c>8c=c\|A\|_1+c\|B\|_1$.所以 $c\|\cdot\|$ 不是矩阵范数。

• 若 0 < c < 1, 那么 $c||AB||_1 \le c||A||_1 \cdot c||B||_1$ 不一定成立, 如设

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

则 $AB = \begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$,且有 $||AB||_1 = 6$, $||A||_1 = 2$, $||B||_1 = 3$,而 $c||AB||_1 = 6c > 6c^2 = c||A||_1 \cdot c||B||_1$. 所以 $c||\cdot||$ 不是矩阵范数。

5. 证法(一): 若有矩阵范数 $\|\cdot\|$ 使得 $\|I-A\|<1$, 由推论 2.5, I-(I-A)=A 可逆,与题设矛盾。

证法 (二): 因 A 不可逆,所以存在 $x \neq 0$,使得 Ax = 0,或 x = (I - A)x,记 $\|\cdot\|_a$ 为与矩阵范数 $\|\cdot\|$ 相容的向量范数,则有 $\|x\|_a = \|(I - A)x\|_a \leq \|I - A\|\|x\|_a$,得 $\|I - A\| \geq 1$.

6. 因为

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{x \neq 0} \left\| A\left(\frac{x}{\|x\|}\right) \right\| \le \max_{\|x\| = 1} \|Ax\| = \|A\|_m$$

且

$$\max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \ge \max_{\|x\|=1} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \|Ax\| = \|A\|_m$$

所以 $||A||_m = \max_{x \neq 0} \frac{||Ax||}{||x||}$. 又

$$||A||_m = \max_{||x||=1} ||Ax|| \le \max_{||x||\le 1} ||Ax||$$

$$||A||_m = \max_{x \neq 0} \frac{||Ax||}{||x||} \ge \max_{0 < ||x|| \le 1} \frac{||Ax||}{||x||} \ge \max_{||x|| \le 1} ||Ax||$$

所以 $||A||_m = \max_{\|x\| \le 1} ||Ax||$. 又

$$||A||_m = \max_{x \neq 0} \frac{||Ax||}{||x||} \ge \max_{||x||_a = 1} \frac{||Ax||}{||x||}$$

$$||A||_{m} = \max_{x \neq 0} \frac{||Ax||}{||x||} = \max_{x \neq 0} \frac{\frac{||Ax||}{||x||_{a}}}{\frac{||x||}{||x||_{a}}} = \max_{x \neq 0} \frac{\left||A\left(\frac{x}{||x||_{a}}\right)\right||}{\left|\left|\frac{x}{||x||_{a}}\right|\right|} \le \max_{||x||_{a}=1} \frac{||Ax||}{||x||}$$

所以 $||A||_m = \max_{\|x\|_a=1} \frac{||Ax||}{\|x\|}.$

7. 因为

$$\hat{A}^H \hat{A} = \begin{pmatrix} 0 & A \\ A^H & 0 \end{pmatrix} \begin{pmatrix} 0 & A \\ A^H & 0 \end{pmatrix} = \begin{pmatrix} AA^H & 0 \\ 0 & A^H A \end{pmatrix}$$

又 AA^H 与 A^HA 的特征值相同,所以 $\hat{A}^H\hat{A}$ 与 A^HA 的特征值相同. 故

$$\|\hat{A}\|_{2} = \sqrt{\rho(\hat{A}^{H}\hat{A})} = \sqrt{\rho(A^{H}A)} = \|A\|_{2}.$$

8. 因为 A + B 也是 Hermite 矩阵, 所以

$$\rho(A+B) = ||A+B||_2 \le ||A||_2 + ||B||_2 = \rho(A) + \rho(B).$$

- 9. 因为 *A* 的特征值为 -a, -a, 2a, 所以 $\rho(A) = 2|a|$, 故 *A* 为收敛矩阵的充要条件是 $|a| < \frac{1}{2}$.
- 10. $\operatorname{cond}(A) = ||A|| ||A^{-1}|| = ||(A^{-1})^{-1}|| ||A^{-1}|| = \operatorname{cond}(A^{-1}).$
- 11. 因为

$$A^{-1} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} & -\frac{1}{8} \\ -4 & \frac{1}{2} & 1 \\ \frac{3}{2} & -\frac{1}{4} & -\frac{1}{4} \end{pmatrix}$$

所以 $\operatorname{cond}(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = 18 \times 5.5 = 99.$

12. $\operatorname{cond}(AB) = ||AB|| ||(AB)^{-1}|| = ||AB|| ||B^{-1}A^{-1}|| \le ||A|| ||B|| ||B^{-1}|| ||A^{-1}|| = ||A|| ||A^{-1}|| ||B|| ||B^{-1}|| = \operatorname{cond}(A)\operatorname{cond}(B)$.

 $\operatorname{cond}(\cdot)$ 不是矩阵范数,因为对 $|\lambda| \neq 0, 1, \operatorname{cond}(\lambda A) = \|\lambda A\| \|(\lambda A)^{-1}\| = \|\lambda\| \|A\| \|\frac{1}{\lambda} A^{-1}\| = |\lambda| \|A\| \frac{1}{|\lambda|} \|A^{-1}\| = \operatorname{cond}(A) \neq |\lambda| \operatorname{cond}(A)$ 。

13. 设

$$A = \begin{pmatrix} 1 & -1 \\ 1 & -1 + \varepsilon \end{pmatrix}, \quad \varepsilon > 0.$$

证明对任意范数,当 $\varepsilon \to 0$ 时有 $\operatorname{cond}(A) = O(\varepsilon^{-1})$;考虑具有精确解 $\boldsymbol{x} = (1,0)^T$ 的线性方程组 $A\boldsymbol{x} = (1,1)^T$ 及其近似解 $\hat{\boldsymbol{x}} = (1+\varepsilon^{-1/2},\varepsilon^{-1/2})^T$,则剩余向量的相对误差为 $\|\boldsymbol{r}\|/\|\boldsymbol{b}\| = O(\varepsilon^{1/2}) \to 0$;解的相对误差为 $\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|/\|\boldsymbol{x}\| = O(\varepsilon^{-1/2}) \to \infty$ 。 这样,有大误差的近似解却产生小的剩余向量,与估计式 (2.9) 矛盾吗?

证明:因为

$$A^{-1} = \begin{pmatrix} 1 - \varepsilon^{-1} & \varepsilon^{-1} \\ -\varepsilon^{-1} & \varepsilon^{-1} \end{pmatrix}$$

又所有矩阵范数是等价的, 所以

$$\operatorname{cond}(A) = ||A|| ||A^{-1}|| = O(||A||_1 ||A^{-1}||_1) = O(2 \cdot 2\varepsilon^{-1}) = O(\varepsilon^{-1}).$$

而

$$\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|} = \frac{\|A\boldsymbol{x} - \boldsymbol{b}\|}{\|\boldsymbol{b}\|} = \frac{\|(0, \varepsilon^{1/2})^T\|}{\|\boldsymbol{b}\|} = O\left(\frac{\|(0, \varepsilon^{1/2})^T\|_{\infty}}{\|\boldsymbol{b}\|_{\infty}}\right) = O(\varepsilon^{1/2}) \to 0$$
$$\frac{\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} = O\left(\frac{\|\boldsymbol{x} - \hat{\boldsymbol{x}}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}}\right) = O(\varepsilon^{-1/2}) \to \infty.$$

此时(2.9)是成立的。

14. 因为

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 10)$$

所以 A 的特征值为 $\lambda_{1,2}=1,\lambda_3=10$. 又 A 是对称矩阵,所以 $\operatorname{cond}(A)=|\lambda_3|/|\lambda_1|=10$, 从而

$$\frac{\|\boldsymbol{x} - \boldsymbol{x}_1\|_2}{\|\boldsymbol{x}\|_2} \le \operatorname{cond}(A) \frac{\|\boldsymbol{b} - \boldsymbol{b}_1\|_2}{\|\boldsymbol{b}\|_2} \le 10 \times 10^{-4} = 10^{-3}.$$

第3章 习题解答与提示

1.
$$A = LU = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & -3 \\ 0 & 4 & -1 \\ 0 & 0 & 13 \end{pmatrix}$$
.

2.
$$A = LL^{T} = \begin{pmatrix} 1.5 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -4 & 3 \end{pmatrix} \begin{pmatrix} 1.5 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -4 & 3 \end{pmatrix}^{T}$$
.

3.
$$P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{3} & 1 & 0 \\ \frac{2}{3} & 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & 1 & 1 \\ 0 & \frac{5}{3} & -\frac{4}{3} \\ 0 & 0 & -\frac{1}{3} \end{pmatrix}.$$

4. (1)
$$G(1,2,\theta) = \begin{pmatrix} 0.6 & -0.8 & 0 \\ 0.8 & 0.6 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $G(1,2,\theta)A = \begin{pmatrix} 5 & -3.6 & 3.8 \\ 0 & 5.2 & 3.4 \\ 3 & 1 & 2 \end{pmatrix}$

$$G(1,3,\theta) = \begin{pmatrix} \frac{5}{\sqrt{34}} & 0 & \frac{3}{\sqrt{34}} \\ 0 & 1 & 0 \\ -\frac{3}{\sqrt{34}} & 0 & \frac{5}{\sqrt{34}} \end{pmatrix},$$

$$G(1,3,\theta)G(1,2,\theta)A = \begin{pmatrix} \sqrt{34} & -\frac{15}{\sqrt{34}} & \frac{25}{\sqrt{34}} \\ 0 & 5.2 & 3.4 \\ 0 & \frac{79}{5\sqrt{34}} & -\frac{7}{5\sqrt{34}} \end{pmatrix},$$

$$G(2,3,\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{26\sqrt{34}}{5\sqrt{1169}} & \frac{79}{5\sqrt{1169}} \\ 0 & -\frac{79}{5\sqrt{1169}} & \frac{26\sqrt{34}}{5\sqrt{1169}} \end{pmatrix}$$

$$R = G(2,3,\theta)G(1,3,\theta)G(1,2,\theta)A = \begin{pmatrix} \sqrt{34} & -\frac{15}{\sqrt{34}} & \frac{25}{\sqrt{34}} \\ 0 & \frac{\sqrt{1169}}{\sqrt{34}} & \frac{579}{\sqrt{1169}\sqrt{34}} \\ 0 & 0 & -\frac{61}{\sqrt{169}} \end{pmatrix}$$

$$Q = [G(2,3,\theta)G(1,3,\theta)G(1,2,\theta)]^T = \begin{pmatrix} \frac{3}{\sqrt{34}} & \frac{113}{\sqrt{1169}\sqrt{34}} & -\frac{22}{\sqrt{1169}} \\ -\frac{4}{\sqrt{34}} & \frac{144}{\sqrt{1169}\sqrt{34}} & \frac{3}{\sqrt{1169}} \\ \frac{3}{\sqrt{34}} & \frac{79}{\sqrt{1169}\sqrt{34}} & \frac{26}{\sqrt{1169}} \end{pmatrix}$$

$$(2) \quad G(1,2,\theta) = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0\\ 0 & 0 & 1 \end{pmatrix}, G(1,2,\theta)A = \begin{pmatrix} \sqrt{5} & 0 & 2\sqrt{5}\\ 0 & 0 & 0\\ 1 & 1 & 0 \end{pmatrix}$$

$$G(1,3,\theta) = \begin{pmatrix} \frac{\sqrt{5}}{\sqrt{6}} & 0 & \frac{1}{\sqrt{6}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{6}} & 0 & \frac{\sqrt{5}}{\sqrt{6}} \end{pmatrix},$$

$$G(1,3,\theta)G(1,2,\theta)A = \begin{pmatrix} \sqrt{6} & \frac{1}{\sqrt{6}} & \frac{10}{\sqrt{6}} \\ 0 & 0 & 0 \\ 0 & \frac{\sqrt{5}}{\sqrt{6}} & -\frac{2\sqrt{5}}{\sqrt{6}} \end{pmatrix},$$

$$G(2,3,\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$R = G(2,3,\theta)G(1,3,\theta)G(1,2,\theta)A = \begin{pmatrix} \sqrt{6} & \frac{1}{\sqrt{6}} & \frac{10}{\sqrt{6}} \\ 0 & \frac{\sqrt{5}}{\sqrt{6}} & -2\frac{\sqrt{5}}{\sqrt{6}} \\ 0 & 0 & 0 \end{pmatrix}$$

$$Q = [G(2,3,\theta)G(1,3,\theta)G(1,2,\theta)]^T = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{6}} & -\frac{2}{\sqrt{30}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{6}} & \frac{5}{\sqrt{30}} & 0 \end{pmatrix}$$

5. (1) Householder变换:
$$H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -0.6 & -0.8 \\ 0 & -0.8 & 0.6 \end{pmatrix}$$
,

$$HAH = \begin{pmatrix} 1 & -\frac{43}{5} & \frac{1}{5} \\ -5 & \frac{124}{25} & -\frac{18}{25} \\ 0 & \frac{57}{25} & -\frac{99}{25} \end{pmatrix}$$

Givens变换:
$$G(2,3,\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.6 & -0.8 \\ 0 & 0.8 & 0.6 \end{pmatrix}$$
,

$$G(2,3,\theta)AG(2,3,\theta)^{T} = \begin{pmatrix} 1 & \frac{43}{5} & \frac{1}{5} \\ 5 & \frac{124}{25} & \frac{18}{25} \\ 0 & -\frac{57}{25} & -\frac{99}{25} \end{pmatrix}$$

(2) Householder变换:
$$H_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$H_1 A H_1 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 3 & 4 \\ 0 & 3 & 1 & -2 \\ 0 & 4 & -2 & -1 \end{pmatrix}$$

$$H_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0.6 & 0.8 \\ 0 & 0 & 0.8 & -0.6 \end{pmatrix} H_2 H_1 A H_1 H_2 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 5 & 0 \\ 0 & 5 & -\frac{11}{5} & \frac{2}{5} \\ 0 & 0 & \frac{2}{5} & \frac{11}{5} \end{pmatrix}$$

Givens变换:
$$G(2,4,\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

$$G(2,4,\theta)AG(2,4,\theta)^{T} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 3 & -4 \\ 0 & 3 & 1 & 2 \\ 0 & -4 & -2 & -1 \end{pmatrix}$$

$$G(3,4,\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0.6 & -0.8 \\ 0 & 0 & 0.8 & 0.6 \end{pmatrix}$$

$$G(3,4,\theta)G(2,4,\theta)AG(2,4,\theta)^{T}G(3,4,\theta)^{T} = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 5 & 0 \\ 0 & 5 & -\frac{11}{5} & \frac{2}{5} \\ 0 & 0 & \frac{2}{5} & \frac{11}{5} \end{pmatrix}$$

$$(1) \ \ H = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \ S = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & -\frac{2}{3} & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

$$A = FG = \begin{pmatrix} 2 & 1 \\ 1 & -1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$(2) H = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} S = \begin{pmatrix} -1 & 1 & 0 & 0 \\ \frac{2}{3} & -\frac{1}{3} & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{pmatrix}$$

$$A = FG = \begin{pmatrix} 1 & 3 \\ 2 & 3 \\ 1 & 3 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

6. (1) 因为
$$A^T A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 其特征值为 $\lambda_1 = 3$, $\lambda_2 = 1$, $\lambda_3 = 0$,

对应的特征向量为

$$p_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad p_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \quad p_3 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

标准化得

$$V = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}$$

使得 $V^H A^H A V = \begin{pmatrix} 3 & 1 & 1 \\ & 1 & 0 \end{pmatrix}$. 计算

$$U_1 = AV_1 \Sigma^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 \end{pmatrix}$$

取 $U_2 = (0,0,1)^T$,则 $U = (U_1,U_2)$ 是酉矩阵。 故 A 的奇异值分解为

$$A = U \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} V^H = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

(2) 因为
$$AA^T = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 其特征值为 $\lambda_1 = 3$, $\lambda_2 = 1$, $\lambda_3 = 0$,

对应的特征向量为

$$p_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \quad p_2 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \quad p_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

标准化得

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}$$

使得 $U^HAA^TU=\begin{pmatrix} 3 & 1 & \\ & 1 & \\ & & 0 \end{pmatrix}$. 但是易计算得 $A\neq U\begin{pmatrix} \sqrt{3} & \\ & 1 & \\ & & 0 \end{pmatrix}V^T$.

- 7. $A^T=LL^T=A$,所以A为对称矩阵。设 $x\neq 0$,因为L为非奇异阵,所以 $y=L^Tx\neq 0$,则 $x^TLL^Tx=y^Ty=\|y\|>0$,即A为对称正定阵。
- 8. 因为A为对称阵,所以 $B^T = (F_j A F_j^T)^T = B$.设 $x \neq 0$,因为 F_j 为非奇异阵,所以 $y = F_j^T x \neq 0$,又A为正定阵,则 $x^T B x = y^T A y > 0$,即B为对称正定阵。

第4章 习题解答与提示

1.

$$D = \begin{pmatrix} 1 & & \\ & \frac{1}{2} & \\ & & 1 \end{pmatrix}, \quad D^{-1}AD = \begin{pmatrix} 0 & 0.4 & -1 \\ 0.2 & 2 & -0.2 \\ 0.2 & 0.35 & 3 \end{pmatrix}$$

盖尔圆

$$G_1: |z| \le 1.4$$
 $G_2: |z-2| \le 0.4$ $G_3: |z-3| \le 0.55$

它们相互分离。若实矩阵A的特征值 λ 为复数,则 $\overline{\lambda}$ 也为特征值,但 G_1,G_2,G_3 关于实轴对称,则A特征值必皆为实数,故在区间[-1.4,1.4],[1.6,2.4],[2.45,3.55]中各有A的一个特征值。

2. $\det A \neq 0$ 的充要条件是 A 的特征值都不等于零。 如 0 是 A 的特征值,则存在盖尔圆 G_{i_0} 使 $0 \in G_{i_0}$, 即

$$|a_{i_0i_0}| = |0 - a_{i_0i_0}| \le R_{i_0}$$

矛盾。

3. (1) 以 $(1,1,1)^T$ 为初始点。

\overline{k}		v_k^T		m_k
1	1	0.75	0	8
2	1	0.6486	-0.2973	9.25
3	1	0.6176	-0.3711	9.5405
4	1	0.6088	-0.3888	9.5949
5	1	0.6064	-0.3931	9.6041

5步迭代结束后得按模最大特征值为9.6041。

(2) 以 $(1,1,1)^T$ 为初始点。

\overline{k}	v_k^T			m_k
1	0.36	0.44	1	0.5435
2	0.2768	0.2806	1	0.4617
3	0.2943	0.1855	1	0.4492
4	0.3359	0.1013	1	0.4491
5	0.3843	0.0179	1	0.4518

5步迭代结束后按模最小特征值为 $\frac{1}{0.4518} = 2.2134$.

4. (1) 以(1,1,1)^T为初始点。

\overline{k}	v_k^T		m_k	
1	1	1	0.5	4
2	1	0.875	0.375	4
3	1	0.8065	0.3226	3.875
4	1	0.7712	0.2966	3.8065
5	1	0.7528	0.2831	3.7712
6	1	0.7431	0.2760	3.7528
7	1	0.7380	0.2723	3.7431
8	1	0.7352	0.2703	3.7380
9	1	0.7337	0.2692	3.7352
10	1	0.733	0.2686	3.7337
11	1	0.7325	0.2683	3.7330
12	1	0.7323	0.2681	3.7325
13	1	0.7322	0.2681	3.7323
14	1	0.7321	0.2680	3.7322

迭代结束后按模最大得特征值为 3.7322, 对应特征向量为

 $(1, 0.7321, 0.2680)^T$

(2) 以 $(1,1,1)^T$ 为初始点。

\overline{k}	v_k^T		m_k	
1	1	1	0.3022	2.8660
2	1	0.7565	0.3348	2.8660
3	1	0.7588	0.2714	2.6225
4	1	0.7347	0.2752	2.6248
5	1	0.7350	0.2683	2.6007
6	1	0.7323	0.2688	2.6010
7	1	0.7324	0.2680	2.5983
8	1	0.7321	0.2680	2.5984
9	1	0.7321	0.2680	2.5981

迭代结束后按模最大得特征值为 2.5981 + 1.134 = 3.7321.

5.
$$P(A-2.05I_3) = LU$$
,其中

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \ L = \begin{pmatrix} 1 & 0 & 0 \\ -0.4917 & 1 & 0 \\ -1 & 0.6704 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} -6 & 4.95 & 11\\ 0 & -1.5662 & -1.5917\\ 0 & 0 & 0.0170 \end{pmatrix}$$

以 $(1,1,1)^T$ 为初始点。

\overline{k}		v_k^T		m_k
1	-0.9480	1	-0.9686	-60.5933
2	-0.9972	1	-0.9985	-19.8270
3	-0.9999	1	-0.9999	-19.9783
4	-1	1	-1	-19.9987
5	-1	1	-1	-19.9999

迭代结束后得特征值为 $2.05 + \frac{-1}{19.9999} = 2$, 对应特征向量为 $(-1, 1, -1)^T$.

6. 用Householder变换得三对角阵

$$H = \begin{pmatrix} 10 & 12.7279 & 0 & 0 \\ 12.7279 & 21.8827 & 3.4281 & 0 \\ 0 & 3.4281 & 2.3825 & 0.4621 \\ 0 & 0 & 0.4621 & 0.7348 \end{pmatrix}$$

步一: 取 $\mu_1 = 0.7348$ 得,

步二: 取 $\mu_2 = 0.8393$ 得,

$$H_3 = \begin{pmatrix} 30.2845 & 0.3336 & 0 & 0 \\ 0.3336 & 3.8487 & 0.2284 & 0 \\ 0 & 0.2284 & 0.0237 & 0.0003 \\ 0 & 0 & 0.0003 & 0.8431 \end{pmatrix}$$

步三: 取 $\mu_3 = 0.8431$,得

$$H_4 = \begin{pmatrix} 30.2886 & 0.0341 & 0 & 0\\ 0.0341 & 3.8571 & -0.0633 & 0\\ 0 & -0.0633 & 0.0112 & 0\\ 0 & 0 & 0 & 0.8431 \end{pmatrix}$$

可得一个特征值 $\lambda_1=0.8431$ 。对 H_4 进行压缩,划去第四行第四 列,得

$$H_5 = \begin{pmatrix} 30.2886 & 0.0341 & 0\\ 0.0341 & 3.8571 & -0.0633\\ 0 & -0.0633 & 0.0112 \end{pmatrix}$$

步四: 取
$$\mu_4 = 0.0112$$
,得 $H_6 = \begin{pmatrix} 30.2887 & 0.0043 & 0 \\ 0.0043 & 3.8581 & 0 \\ 0 & 0 & 0.0102 \end{pmatrix}$ 可得 第二个特征值0.0102。对 H_6 进行压缩,划去第三行第三列,得 $H_7 = \begin{pmatrix} 30.2887 & 0.0043 \\ 0.0043 & 3.8581 \end{pmatrix}$

步五: 取 $\mu_5=3.8581$,得 $H_8=\begin{pmatrix}30.2887&0\\0&3.8581\end{pmatrix}$,得剩余两个特征值 30.2887 和 3.8581。

第5章 习题解答与提示

1. (a) 如果 AB = 0, 则 $(AB)^H = B^H A^H = 0$. 在该式左右分别乘以 $(AA^H)^+$ 和 $(B^H B)^+$,得到

$$(B^H B)^+ (B^H A^H) (AA^H)^+ = [(B^H B)^+ B^H] [A^H (AA^H)^+] = B^+ A^+.$$

反之,如果 $B^{+}A^{+}=0$,则

$$0 = (B^{H}B)(B^{+}A^{+})(AA^{H}) = B^{H}(BB^{+})^{H}(A^{+}A)A^{H}A^{H}$$
$$= (BB^{+}B)^{H}(AA^{+}A)^{H} = (AB)^{H}$$

从而有 AB=0.

- (b) 若 $AB^H = 0$, 则 $(AB^H)(BB^H)^+ = A[B^H(BB^H)^+] = AB^+ = 0$; 反之, $AB^+BB^H = A(B^+B)^HB^H = A(BB^+B)^H = AB^H = 0$.
- (c) 若 $A^H B = 0$, 则 $(A^H A)^+ A^H B = [(A^H A)^+ A^H] B = A B^H = 0$; 反之, $A^+ B = 0$, 则 $(A^H A) A^+ B = A^H (A A^+)^H B = [A A^+ A]^H B = A^H B = 0$.
- 2. (1) 直接验证 $X = (A^+)^H$ 满足 (A^H) 的四个Penrose方程即可;
 - (2) 按定义直接验证四个Penrose方程即可。
- 3. 由于 $A \in C^{n \times n}$ 为正规矩阵,因此存在酉矩阵 U,使得

$$A = Udiag(\lambda_1, \cdots, \lambda_n)U^H$$

其中 $\lambda_1, \dots, \lambda_n$ 为 A 的 n 个特征值。则有

$$A^{+} = U^{H} diag(\lambda_{1}^{+}, \cdots, \lambda_{n}^{+})U$$

将上式直接代入验证,可得 $AA^+ = A^+A$, $(A^k)^+ = (A^+)^k$.

4. 容易验证

$$[A(A^{H}A)^{(1)}A^{H}A - A]^{H}[A(A^{H}A)^{(1)}A^{H}A - A] = 0$$

从而有 $A(A^HA)^{(1)}A^HA = A$. 同理可得 $A^HA(A^HA)^{(1)}A^H = A^H$.

记
$$X = A^H (AA^H)^{(1)} A (A^H A)^{(1)} A^H$$
,则有

$$AXA = AA^{H}(AA^{H})^{(1)}A(A^{H}A)^{(1)}A^{H}A$$
$$= AA^{H}(AA^{H})^{(1)}[A(A^{H}A)^{(1)}A^{H}A]$$
$$= AA^{H}(AA^{H})^{(1)}A = (A^{H}) = A$$

同理容易验证X满足其它三个 Penrose 方程。

5.

$$A^{+} = (A^{H}A)^{+}A^{H} = \left[\left(\sum_{i=1}^{k} A_{i}^{H}\right)\left(\sum_{j=1}^{k} A_{j}\right)\right]^{+}\left(\sum_{j=1}^{k} A_{j}\right)$$

$$= \left[\sum_{j=1}^{k} A_{j}^{H}A_{j}\right]^{+}\left(\sum_{j=1}^{k} A_{j}\right) = \left[\sum_{i=1}^{k} \left(A_{i}^{H}A_{i}\right)\right]^{+}\left(\sum_{j=1}^{k} A_{j}\right)$$

$$= \left[\sum_{i=1}^{k} \left(A_{i}^{H}A_{i}\right)^{+}A_{i}\right]\left[\sum_{i=1}^{k} \sum_{j=1}^{k} \left(A_{i}^{H}A_{i}\right)^{+}A_{j}\right]$$

$$= \left(\sum_{i=1}^{k} A_{i}^{+}\right)\left[\sum_{i=1}^{k} \sum_{j=1}^{k} \left(A_{i}^{H}A_{i}A_{i}^{H}A_{i}\right)^{+}A_{i}^{H}A_{i}A_{j}\right] = \sum_{i=1}^{k} A_{i}^{+}$$

- 6. 利用分块矩阵乘法,直接验证四个Penrose方程。
- 7. (1)通过行初等变换可得:

$$(A|I_3) = \begin{pmatrix} 10 & 0 & 5 & 0 & 1 & 0 & 0 \\ 4 & -2 & 2 & 1 & 0 & 1 & 0 \\ 2 & 4 & 1 & -2 & 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 & \frac{1}{10} & 0 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{5} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 1 \end{pmatrix}$$

从而

$$A^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha \\ 0 & 0 & \beta \end{pmatrix} \begin{pmatrix} \frac{1}{10} & 0 & 0 \\ \frac{1}{5} & -\frac{1}{2} & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{10} & 0 & 0 \\ \frac{1}{5} & -\frac{1}{2} & 0 \\ -\alpha & 2\alpha & \alpha \\ -\beta & 2\beta & \beta \end{pmatrix}$$

其中 α , β 任意。特别地取 $\alpha = 0$, $\beta = 0$, 有

$$A^{(1)} == \begin{pmatrix} \frac{1}{10} & 0 & 0\\ \frac{1}{5} & -\frac{1}{2} & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

由于 $AA^{(1)}b = (1,2,-3)^T \neq b$,因此方程组无解。

(2) 由行初等变换得到:

$$(A|I_3) \to \begin{pmatrix} 1 & 0 & 0 & 1 & \frac{1}{3} & 3 & \frac{2}{3} \\ 0 & 1 & 0 & 1 & -\frac{1}{3} & 2 & \frac{1}{3} \\ 0 & 0 & 1 & 0 & \frac{1}{3} & -1 & -\frac{1}{3} \end{pmatrix}$$

从而

$$A^{(1)} = \frac{1}{3} \begin{pmatrix} 1 & 9 & 2 \\ -1 & 6 & 1 \\ 1 & -3 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

由于 $AA^{(1)}b = (4, \frac{1}{2}, 2)^T = b$,因此方程组有解,其通解为 $x = \frac{1}{6}(25, 2, 1, 0)^T + (-y_4, -y_4, 0, y_4)^T, y_4 \in C$

8. (1) 由于 $A^H A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, 特征值 $\lambda_1 = 3, \lambda_2 = 1$, 对应特征向量 为 $v_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})^T, v_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})^T$. 从而有

$$\sum = \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{pmatrix}, V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

因此有

$$U_1 = AV \sum_{1}^{-1} = \begin{pmatrix} \frac{\sqrt{6}}{3} & 0\\ \frac{\sqrt{6}}{6} & \frac{1}{\sqrt{2}}\\ \frac{\sqrt{6}}{6} & -\frac{1}{\sqrt{2}} \end{pmatrix}, \ U = U_1$$

使得
$$A = U \begin{pmatrix} \sum & 0 \\ 0 & 0 \end{pmatrix} V^H$$
,从而

$$A^{+} = V \sum_{i=1}^{-1} U^{H} = \frac{1}{3} \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

(2)由于
$$A^H A = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$
, 特征值 $\lambda_1 = 6, \lambda_2 = \lambda_3 = 0$, 对应特征向量为 $v_1 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^T, v_2 = (\frac{1}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}})^T, v_3 = (\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})^T$. 从而有

$$\sum = (\sqrt{6}), V = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

因此有

$$U_1 = AV \sum_{1}^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad U = (U_1, U_2) = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

使得
$$A = U \begin{pmatrix} \sum & 0 \\ 0 & 0 \end{pmatrix} V^H$$
,从而

$$A^{+} = V \begin{pmatrix} \sum^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^{H} = \frac{1}{6} \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$

(3)由于
$$A^HA=\begin{pmatrix}3&3&3\\3&3&3\\3&3&3\end{pmatrix}$$
, 特征值 $\lambda_1=9,\lambda_2=\lambda_3=0,$ 对应特征向量为 $v_1=(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})^T,v_2=(\frac{1}{\sqrt{3}},-\frac{2}{\sqrt{3}},\frac{1}{\sqrt{3}})^T,v_3=(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})^T.$ 从而有

$$\sum = (3), \ V = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

因此有

$$U_1 = AV_1 \sum_{1}^{-1} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^T,$$

$$U = (U_1, U_2) = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

使得
$$A = U \begin{pmatrix} \sum & 0 \\ 0 & 0 \end{pmatrix} V^H$$
, 从而

$$A^{+} = V \begin{pmatrix} \sum^{-1} & 0 \\ 0 & 0 \end{pmatrix} U^{H} = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

9. (1)A 为列满秩矩阵,因此 $A = AI_3 = FG$,从而

$$A^{+} = (A^{H}A)^{-1}A^{H} = \begin{pmatrix} 6 & 5 & 11 \\ 5 & 11 & 1 \\ 11 & 1 & 31 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 3 \\ 2 & 5 & -1 & -1 \end{pmatrix}$$
$$= \frac{1}{22} \begin{pmatrix} 54 & -22 & 14 & 12 \\ -23 & 11 & 8 & 1 \\ -17 & 11 & 4 & -5 \end{pmatrix}$$

(2)A 为列行秩矩阵,因此 $A = I_4A = FG$,从而

$$A^{+} = A^{H} (AA^{H})^{-1} = A^{H} \begin{pmatrix} 30 & -4 & 32 \\ -4 & 39 & 85 \\ 32 & 85 & 279 \end{pmatrix}^{-1}$$
$$= \frac{1}{1360} \begin{pmatrix} 118 & -147 & 41 \\ -160 & -60 & 100 \\ -16 & 164 & -92 \\ -340 & -510 & 170 \end{pmatrix}$$

$$(3) 曲 于 A = FG = \begin{pmatrix} 1 & 3 \\ 2 & 9 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & \frac{1}{3} \end{pmatrix},$$
 因此

$$A^{+} = G^{H}(F^{H}AG^{H})^{-1}F^{H} = G^{H}\begin{pmatrix} 72 & 22\\ 231 & 116 \end{pmatrix}^{-1}F^{H}$$

$$= \frac{1}{3270} \begin{pmatrix} 50 & 34 & -182 \\ 150 & 102 & -546 \\ -15 & 186 & 447 \\ 45 & 96 & -33 \end{pmatrix}$$

10. (1) 当 $c_k = 0$ 时,有 $a_k = A_{k-1}d_k$ 。

(i)

$$A_k X_k A_K = (A_{k-1}, a_k) \begin{pmatrix} A_{k-1}^+ - d_k b_k^H \\ b_k^H \end{pmatrix} (A_{k-1}, a_k)$$

$$= (A_{k-1} A_{k-1}^+ - A_{k-1} d_k b_k^H + a_k b_k^H) (A_{k-1}, a_k)$$

$$= A_{k-1} A_{k-1}^+ (A_{k-1}, a_k) = (A_{k-1}, A_{k-1} d_k) = (A_{k-1}, a_k) = A_k$$

(ii)
$$X_{k}A_{k}X_{k} = \begin{pmatrix} A_{k-1}^{+} - d_{k}b_{k}^{H} \\ b_{k}^{H} \end{pmatrix} A_{k-1}A_{k-1}^{+}$$

$$= \begin{pmatrix} A_{k-1}^{+}A_{k-1}A_{k-1}^{+} - d_{k}b_{k}^{H}A_{k-1}A_{k-1}^{+} \\ b_{k}^{H}A_{k-1}A_{k-1}^{+} \end{pmatrix}$$

$$= \begin{pmatrix} A_{k-1}^{+} - d_{k}\frac{d_{k}^{H}A_{k-1}^{+}}{1+d_{k}^{H}d_{k}}A_{k-1}A_{k-1}^{+} \\ \frac{d_{k}^{H}A_{k-1}^{+}}{1+d_{k}^{H}d_{k}}A_{k-1}A_{k-1}^{+} \end{pmatrix}$$

$$= \begin{pmatrix} A_{k-1}^{+} - d_{k}b_{k}^{H} \\ b_{k}^{H} \end{pmatrix} = X_{k}$$
(iii) $A_{k}X_{k} = A_{k-1}A_{k-1}^{+} = (A_{k-1}A_{k-1}^{+})^{H} = (A_{k}X_{k})^{H}$

$$X_k A_k = \begin{pmatrix} A_{k-1}^+ - d_k b_k^H \\ b_k^H \end{pmatrix} (A_{k-1}, a_k)$$

$$= \begin{pmatrix} A_{k-1}^+ A_{k-1} - d_k b_k^H A_{k-1} & A_{k-1}^+ a_k - d_k b_k^H a_k \\ b_k^H A_{k-1} & b_k^H a_k \end{pmatrix}$$

由于

$$A_{k-1}^{+}A_{k-1} - d_k b_k^H A_{k-1} = A_{k-1}^{+} A_{k-1} - \frac{1}{1 + d_k^H d_k} (d_k d_k^H A_{k-1}^{+} A_{k-1})$$

$$= A_{k-1}^{+} A_{k-1} - \frac{1}{1 + d_k^H d_k} [d_k (A_{k-1}^{+} A_{k-1} d_k)^H]$$

$$= A_{k-1}^{+} A_{k-1} - \frac{1}{1 + d_k^H d_k} [d_k (A_{k-1}^{+} a_k)^H]$$

$$= A_{k-1}^{+} A_{k-1} - \frac{d_k d_k^H}{1 + d_k^H d_k}$$

因此有 $(A_{k-1}^+ A_{k-1} - d_k b_k^H A_{k-1})^H = (A_{k-1}^+ A_{k-1} - \frac{d_k d_k^H}{1 + d_k^H d_k})^H = A_{k-1}^+ A_{k-1} - d_k b_k^H A_{k-1}.$

又因为

$$A_{k-1}^{+}a_{k} - d_{k}b_{k}^{H}a_{k} = d_{k} - d_{k}\frac{d_{k}^{H}A_{k-1}^{+}a_{k}}{1 + d_{k}^{H}d_{k}} = d_{k} - \frac{d_{k}^{H}d_{k}}{1 + d_{k}^{H}d_{k}}d_{k} = \frac{1}{1 + d_{k}^{H}d_{k}}d_{k}$$

且

$$(b_k^H A_{k-1})^H = \left(\frac{d_k^H A_{k-1}^+ A_{k-1}}{1 + d_k^H d_k}\right)^H = \frac{(A_{k-1}^+ A_{k-1} d_k)^H}{1 + d_k^H d_k}$$
$$= \frac{(A_{k-1}^+ a_k)^H}{1 + d_k^H d_k} = \frac{1}{1 + d_k^H d_k} d_k^H$$

因此有 $A_{k-1}^+ a_k - d_k b_k^H a_k = (b_k^H A_{k-1})^H$.

又因为 $b_k^H a_k = \frac{d_k^H A_{k-1}^+ A_{k-1} d^k}{1 + d_k^H d_k} = (\frac{d_k^H A_{k-1}^+ A_{k-1} d^k}{1 + d_k^H d_k})^H = (b_k^H a_k)^H$,从而 $(X_k A_k)^H = X_k A_k$ 成立. 综上可知,当 $c_k = 0$ 时, X_k 满足 A_k 的四个Penrose方程,因此 X_k 为 A_k 的Moore-Penrose 逆。

(2) 当 $c_k \neq 0$ 时, $b_k^H = c_k^+$. 在定理5.9中已经证明了 $A_{k-1}^+ c_k = 0$, $c_k^+ A_{k-1} = 0$, $c_k^+ a_k^+ = c_k^+ c_k = 1$.

$$A_k X_k A_k = (A_{k-1}, a_k) \begin{pmatrix} A_{k-1}^+ - d_k c_k^+ \\ c_k^+ \end{pmatrix} (A_{k-1}, a_k)$$

$$= (A_{k-1}, a_k) \begin{pmatrix} A_{k-1}^+ A_{k-1} - d_k c_k^+ A_{k-1} & A_{k-1}^+ a_k - d_k c_k^+ a_k \\ c_k^+ A_{k-1} & c_k^+ a_k \end{pmatrix}$$

$$= (A_{k-1}, a_k) \begin{pmatrix} A_{k-1}^+ A_{k-1} & 0 \\ 0 & 1 \end{pmatrix}$$

$$= (A_{k-1} A_{k-1}^+ A_{k-1}, a_k) = (A_{k-1}, a_k) = A_k$$

(ii)

$$X_{k}A_{k}X_{k} = \begin{pmatrix} A_{k-1}^{+}A_{k-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_{k-1}^{+} - d_{k}c_{k}^{+} \\ c_{k}^{+} \end{pmatrix}$$

$$= \begin{pmatrix} A_{k-1}^{+}A_{k-1}A_{k-1}^{+} - A_{k-1}^{+}A_{k-1}d_{k}c_{k}^{+} \\ c_{k}^{+} \end{pmatrix}$$

$$= \begin{pmatrix} A_{k-1}^{+} - A_{k-1}^{+}a_{k}c_{k}^{+} \\ c_{k}^{+} \end{pmatrix} = \begin{pmatrix} A_{k-1}^{+} - d_{k}c_{k}^{+} \\ c_{k}^{+} \end{pmatrix} = X_{k}$$

(iii)

$$A_k X_k = (A_{k-1}, a_k) \begin{pmatrix} A_{k-1}^+ - d_k c_k^+ \\ c_k^+ \end{pmatrix}$$

$$= A_{k-1} A_{k-1}^+ - A_{k-1} d_k c_k^+ + a_k c_k^+$$

$$= A_{k-1} A_{k-1}^+ - (a_k - c_k) c_k^+ + a_k c_k^+$$

$$= A_{k-1} A_{k-1}^+ + c_k c_k^+ = (A_k X_k)^H$$

(iv) $X_k A_k = \begin{pmatrix} A_{k-1}^+ A_{k-1} & 0 \\ 0 & 1 \end{pmatrix} = (X_k A_k)^H$,综上可知,当 $c_k \neq 0$

时, X_k 也满足 A_k 的四个Penrose方程,因此 X_k 也是 A_k 的Moore-Penrose 逆。

11. (略)计算机编程进行比较。

第6章 习题解答与提示

1. (1) 设 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则 e^A 的特征值为 $e^{\lambda_1}, e^{\lambda_2}, \dots, e^{\lambda_n}$,从而

$$\det(e^A) = e^{\lambda_1} e^{\lambda_2} \cdots e^{\lambda_n} = e^{\lambda_1 + \dots + \lambda_n} = e^{trA}.$$

(2)
$$(e^A)^H = (\sum_{k=0}^{+\infty} \frac{1}{k!} A^k)^H = \sum_{k=0}^{+\infty} \frac{1}{k!} (A^H)^k = e^{A^H}.$$

2. $f(x) = x^T A x - b^T x = \sum_{i=1}^n \sum_{j=1}^n a_{i,j} x_i x_j - \sum_{i=1}^N b_i x_i$, 由于 A 为对称矩阵,因此有

$$\frac{\partial f}{\partial x_i} = 2\sum_{j=1}^{N} a_{i,j} x_j - b_i$$

从而

$$\frac{\partial f}{\partial x} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_n}\right)^T = 2Ax - b.$$

3.

$$\frac{d}{dt}A(t) = \begin{pmatrix} 2\cos 2t & e^t \cos t - e^t \sin t \\ 2t & -\sin t \end{pmatrix},$$

$$\int_0^{\pi} A(t)dt = \begin{pmatrix} 0 & -\frac{1}{2}(1 + e^{\pi}) \\ \frac{1}{3}\pi^3 + 3\pi & 0 \end{pmatrix}$$

4. (1)由于 $det(\lambda I - A) = (\lambda - 4)^3$. 假设 $r(\lambda) = a_2\lambda^2 + a_1\lambda + a_0$, (i)由

$$\begin{cases}
16a_2 + 4a_1 + a_0 = e^{4t} \\
8a_2 + a_1 = te^{4t} \\
2a_2 = t^2 e^{4t}
\end{cases} \Rightarrow \begin{cases}
a_2 = \frac{1}{2}t^2 e^{4t} \\
a_1 = te^{4t} - 4t^2 e^{4t} \\
a_0 = e^{4t} - 4te^{4t} + 8t^2 e^{4t}
\end{cases}$$

可得

$$e^{At} = a_2 A^2 + a_1 A + a_0 I = e^{4t} \begin{pmatrix} 1 - 2t & 2t & t \\ -t & 1 + 2t & t \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{cases} 16a_2 + 4a_1 + a_0 = \sin 4 \\ 8a_2 + a_1 = \cos 4 \\ 2a_2 = -\sin 4 \end{cases} \Rightarrow \begin{cases} a_2 = -\frac{1}{2}\sin 4 \\ a_1 = \cos 4 + 4\sin 4 \\ a_0 = -4\cos 4 - 7\sin 4 \end{cases}$$

可得

$$\sin A = a_2 A^2 + a_1 A + a_0 I = \begin{pmatrix} \sin 4 - 2\cos 4 & 2\cos 4 & \cos 4 \\ -2\cos 4 & \sin 4 + 2\cos 4 & \cos 4 \\ 0 & 0 & \sin 4 \end{pmatrix}$$

(iii)由

$$\begin{cases} 16a_2 + 4a_1 + a_0 = \cos 4 \\ 8a_2 + a_1 = -\sin 4 \end{cases} \Rightarrow \begin{cases} a_2 = -\frac{1}{2}\cos 4 \\ a_1 = -\sin 4 + 4\cos 4 \\ a_0 = 4\sin 4 - 7\cos 4 \end{cases}$$

可得

$$\cos A = a_2 A^2 + a_1 A + a_0 I = \begin{pmatrix} \cos 4 + 2\sin 4 & -2\sin 4 & -\sin 4 \\ 2\sin 4 & \cos 4 - 2\sin 4 & -\sin 4 \\ 0 & 0 & \cos 4 \end{pmatrix}$$

$$(2)$$
由于 $\det(\lambda I - A) = (\lambda + 1)^2(\lambda - 2)$. 假设 $r(\lambda) = a_2\lambda^2 + a_1\lambda + a_0$,

(i)由

$$\begin{cases} 4a_2 + 2a_1 + a_0 = e^{2t} \\ a_2 - a_1 + a_0 = e^{-t} \\ -2a_2 + a_1 = te^{-t} \end{cases} \Rightarrow \begin{cases} a_2 = \frac{1}{9}(e^{2t} - e^{-t}) - \frac{1}{3}te^{-t} \\ a_1 = \frac{2}{9}(e^{2t} - e^{-t}) + \frac{1}{3}te^{-t} \\ a_0 = \frac{1}{9}(e^{2t} - e^{-t}) + \frac{2}{3}te^{-t} + e^{-t} \end{cases}$$

可得

$$e^{At} = a_2 A^2 + a_1 A + a_0 I$$

$$= \begin{pmatrix} -2e^{2t} + 3e^{-t} & -4(e^{2t} - e^{-t}) & -2(e^{2t} - e^{-t}) \\ e^{2t} - e^{-t} & 2e^{2t} - e^{-t} & e^{2t} - e^{-t} \\ e^{2t} - e^{-t} & 2(e^{2t} - e^{-t}) & e^{2t} \end{pmatrix}$$

(ii)由

$$\begin{cases} 4a_2 + 2a_1 + a_0 = \sin 2 \\ a_2 - a_1 + a_0 = -\sin 1 \end{cases} \Rightarrow \begin{cases} a_2 = \frac{1}{9}(\sin 2 + \sin 1) + \frac{1}{3}\cos 1 \\ a_1 = \frac{2}{9}(\sin 2 + \sin 1) - \frac{1}{3}\cos 1 \\ a_0 = \frac{1}{9}(\sin 2 + \sin 1) - \frac{2}{3}\cos 1 - \sin 1 \end{cases}$$

可得

$$\sin A = a_2 A^2 + a_1 A + a_0 I$$

$$= \begin{pmatrix} -2\sin 2 - 3\sin 1 & -4(\sin 2 + \sin 1) & -2(\sin 2 + \sin 1) \\ (\sin 2 + \sin 1) & 2\sin 2 + \sin 1 & (\sin 2 + \sin 1) \\ (\sin 2 + \sin 1) & 2(\sin 2 + \sin 1) & \sin 2 \end{pmatrix}$$

(iii)由

$$\begin{cases} 4a_2 + 2a_1 + a_0 = \cos 2 \\ a_2 - a_1 + a_0 = \cos 1 \\ -2a_2 + a_1 = -\sin 1 \end{cases} \Rightarrow \begin{cases} a_2 = \frac{1}{9}(\cos 2 - \cos 1) + \frac{1}{3}\sin 1 \\ a_1 = \frac{2}{9}(\cos 2 - \cos 1) - \frac{1}{3}\sin 1 \\ a_0 = \frac{1}{9}(\cos 2 - \cos 1) - \frac{2}{3}\sin 1 + \cos 1 \end{cases}$$

可得

$$\cos A = a_2 A^2 + a_1 A + a_0 I$$

$$= \begin{pmatrix} -2\cos 2 + 3\cos 1 & -4(\cos 2 - \cos 1) & -2(\cos 2 - \cos 1) \\ (\cos 2 - \cos 1) & 2\cos 2 - \cos 1 & (\cos 2 - \cos 1) \\ (\cos 2 - \cos 1) & 2(\cos 2 - \cos 1) & \cos 2 \end{pmatrix}$$

(3) 由于 $\det(\lambda I - A) = (\lambda - 1)^4$,设 $r(\lambda) = a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0$,则有

$$f(A) = a_3 A^3 + a_2 A^2 + a_1 A + a_0 I$$

$$= \begin{pmatrix} a_3 + a_2 + a_1 + a_0 & 0 & 0 & 0 \\ 3a_3 + 2a_2 + a_1 & a_3 + a_2 + a_1 + a_0 & 0 & 0 \\ 3a_3 + a_2 & 3a_3 + 2a_2 + a_1 & a_3 + a_2 + a_1 + a_0 & 0 \\ a_3 & 3a_3 + a_2 & 3a_3 + 2a_2 + a_1 & a_3 + a_2 + a_1 + a_0 \end{pmatrix}$$

(i) 对于 $f(At) = e^{At}$, 有

$$\begin{cases} a_3 + a_2 + a_1 + a_0 = e^t \\ 3a_3 + 2a_2 + a_1 = te^t \\ 6a_3 + 2a_2 = t^2 e^t \end{cases} \Rightarrow e^{At} = \begin{pmatrix} e^t & 0 & 0 & 0 \\ te^t & e^t & 0 & 0 \\ \frac{1}{2}t^2 e^t & te^t & e^t & 0 \\ \frac{1}{6}t^3 e^t & \frac{1}{2}t^2 e^t & te^t & e^t \end{pmatrix}$$

(ii) 对于 $f(A) = \sin A$,由

$$\begin{cases} a_3 + a_2 + a_1 + a_0 = \sin 1 \\ 3a_3 + 2a_2 + a_1 = \cos 1 \\ 6a_3 + 2a_2 = -\sin 1 \\ 6a_3 = -\cos 1 \end{cases}$$

得

$$\sin A = \begin{pmatrix} \sin 1 & 0 & 0 & 0\\ \cos 1 & \sin 1 & 0 & 0\\ -\frac{1}{2}\sin 1 & \cos 1 & \sin 1 & 0\\ -\frac{1}{6}\cos 1 & -\frac{1}{2}\sin 1 & \cos 1 & \sin 1 \end{pmatrix}$$

(iii) 对于 $f(A) = \cos A$,由

$$\begin{cases} a_3 + a_2 + a_1 + a_0 = \cos 1 \\ 3a_3 + 2a_2 + a_1 = -\sin 1 \\ 6a_3 + 2a_2 = -\cos 1 \\ 6a_3 = \sin 1 \end{cases}$$

得

$$\cos A = \begin{pmatrix} \cos 1 & 0 & 0 & 0 \\ -\sin 1 & \cos 1 & 0 & 0 \\ -\frac{1}{2}\cos 1 & -\sin 1 & \cos 1 & 0 \\ \frac{1}{6}\sin 1 & -\frac{1}{2}\cos 1 & -\sin 1 & \cos 1 \end{pmatrix}$$

$$r_1(\lambda) = a_1 \lambda + a_0, \ r_2(\lambda) = b_1 \lambda + b_0$$

则有

$$f(A) = \begin{pmatrix} 2a_1 + a_0 & a_1 & & & \\ & 2a_1 + a & & & \\ & & b_1 + b_0 & b_1 & \\ & & & b_1 + b_0 \end{pmatrix}$$

(i) 对于 $f(At) = e^{At}$, 有

$$\begin{cases} 2a_1 + a_0 = e^{2t} \\ a_1 = te^{2t} \\ b_1 + b_0 = e^t \end{cases} \Rightarrow e^{At} = \begin{pmatrix} e^{2t} & te^{2t} & 0 & 0 \\ 0 & e^{2t} & 0 & 0 \\ 0 & 0 & e^t & te^t \\ 0 & 0 & 0 & e^t \end{cases}$$

(ii) 对于 $f(A) = \sin A$,有

$$\begin{cases} 2a_1 + a_0 = \sin 2 \\ a_1 = \cos 2 \\ b_1 + b_0 = \sin 1 \\ b_1 = \cos 1 \end{cases} \Rightarrow e^{At} = \begin{pmatrix} \sin 2 & \cos 2 & 0 & 0 \\ 0 & \sin 2 & 0 & 0 \\ 0 & 0 & \sin 1 & \cos 1 \\ 0 & 0 & 0 & \sin 1 \end{cases}$$

(iii) 对于 $f(A) = \cos A$,有

$$\begin{cases} 2a_1 + a_0 = \cos 2 \\ a_1 = -\sin 2 \\ b_1 + b_0 = \cos 1 \\ b_1 = -\sin 1 \end{cases} \Rightarrow e^{At} = \begin{pmatrix} \cos 2 & -\sin 2 & 0 & 0 \\ 0 & \cos 2 & 0 & 0 \\ 0 & 0 & \cos 1 & -\sin 1 \\ 0 & 0 & 0 & \cos 1 \end{cases}$$

5. 由于

$$\frac{d}{dt}e^{At} = Ae^{At} = \begin{pmatrix} 4e^{2t} - e^t & 2e^{2t} - e^t & e^t - 2e^{2t} \\ 2e^{2t} - e^t & 4e^{2t} - e^t & e^t - 2e^{2t} \\ 6e^{2t} - 3e^t & 6e^{2t} - 3e^t & 3e^t - 4e^{2t} \end{pmatrix}$$

$$A = \left(\begin{array}{rrr} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{array}\right)$$

6. 由于

$$\frac{d}{dt}(A^{-1}e^{At}) = A^{-1}\frac{d}{dt}e^{At} = A^{-1}Ae^{At} = e^{At}$$

从而

$$\int_0^t e^{A\tau} d\tau = \int_0^t d(A^{-1}e^{A\tau}) = A^{-1}e^{At} - A^{-1}e^{A\tau}$$

7.(1)

$$tr(BX) = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{i,j} x_{j,i} \Rightarrow \frac{d}{dx_{i,j}} (tr(BX)) = b_{j,i} \Rightarrow \frac{d}{dX} (tr(BX)) = B^{T},$$

$$tr(XB) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i,j} b_{j,i} \Rightarrow \frac{d}{dx_{i,j}} (tr(XB)) = b_{j,i} \Rightarrow \frac{d}{dX} (tr(BX)) = B^{T}.$$

(2) 由于
$$tr(X^T A X) = \sum_{k=1}^m \sum_{i=1}^n \sum_{j=1}^n x_{i,k} a_{i,j} x_{k,j}$$
, 因此

$$\frac{d}{dx_{i,j}}tr(X^TAX) = \sum_{k=1}^n a_{i,k}x_{k,j} + \sum_{k=1}^n a_{k,i}x_{k,j}$$
$$= (a_{i,1}, \dots, a_{i,k})(x_{1,j}, \dots, x_{n,j})^T$$
$$+ (a_{1,i}, \dots, a_{k,i})(x_{1,j}, \dots, x_{n,j})^T$$

从而

$$\frac{d}{dX}tr(X^TAX) = (A + A^T)X$$

8. 由于

$$y^{T} A^{T} A y = \left(\sum_{j=1}^{n} a_{1,j} y_{j}\right)^{2} + \left(\sum_{j=1}^{n} a_{2,j} y_{j}\right)^{2} + \dots + \left(\sum_{j=1}^{n} a_{n,j} y_{j}\right)^{2}$$

因此

$$\frac{d}{da_{i,j}}(y^{T}A^{T}Ay) = 2(\sum_{i=1}^{n} a_{i,j}y_{j})y_{i}$$

从而

$$\frac{d}{dA}(y^T A^T A y) = 2A y y^T$$

9. 由于

$$(Ay - x)^{T} (Ay - x) = \left(\sum_{j=1}^{n} a_{1,j} y_{j} - x_{1}\right)^{2} + \left(\sum_{j=1}^{n} a_{2,j} y_{j} - x_{2}\right)^{2} + \cdots + \left(\sum_{j=1}^{n} a_{n,j} y_{j} - x_{n1}\right)^{2}$$

因此

$$\frac{d}{da_{i,j}}((Ay - x)^T(Ay - x)) = 2(\sum_{j=1}^n a_{i,j}y_j - x_i)y_i$$

从而

$$\frac{d}{dA} = 2(Ay - x)y^T$$

10. 记

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{pmatrix}, \ x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}, f(t) = \begin{pmatrix} e^{2t} \\ 0 \\ te^{2t} \end{pmatrix}$$

则方程组可写为

$$\begin{cases} \frac{dx}{dt} = Ax + f \\ x(0) = (1, 1, 1)^T \end{cases}$$

其通解为:

$$x(t) = e^{At}x(0) + e^{At} \int_0^t e^{-As}f(s)ds$$

由于 $det(\lambda I - A) = (\lambda - 2)^2(\lambda - 4)$,设 $r(\lambda) = a_2\lambda^2 + a_1\lambda + a_0$, 则 由

$$\begin{cases} 4a_2 + 2a_1 + a_0 = e^{2t} \\ 4a_2 + a_1 = te^{2t} \\ 16a_2 + 4a_1 + a_0 = e^{4t} \end{cases}$$

得

$$e^{At} = \begin{pmatrix} \frac{1}{2}(e^{4t} - 2te^{2t} + e^{2t}) & -te^{2t} & \frac{1}{2}(e^{4t} - e^{2t}) \\ -\frac{1}{2}(e^{4t} - 2te^{2t} - e^{2t}) & te^{2t} + e^{2t} & -\frac{1}{2}(e^{4t} - e^{2t}) \\ \frac{1}{2}(e^{4t} + 2te^{2t} - e^{2t}) & te^{2t} & \frac{1}{2}(e^{4t} + e^{2t}) \end{pmatrix}$$

从而

$$x(t) = e^{At}x(0) + e^{At} \int_0^t e^{-As}f(s)ds$$

$$= \begin{pmatrix} \frac{11}{8}e^{4t} - \frac{3}{4}t^2e^{2t} - \frac{7}{4}te^{2t} - \frac{3}{8}e^{2t} \\ -\frac{11}{8}e^{4t} + \frac{3}{4}t^2e^{2t} + \frac{11}{4}te^{2t} + \frac{19}{8}e^{2t} \\ \frac{11}{8}e^{4t} + \frac{3}{4}t^2e^{2t} + \frac{5}{4}te^{2t} - \frac{3}{8}e^{2t} \end{pmatrix}$$

11. 设 $\mathbf{x}_1 = y, x_2 = y', x_3 = y''$, 记

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

则微分方程可表示为

$$\begin{cases} \frac{dx}{dt} = Ax(t) + e^t b \\ x(0) = (1, 1, 1)^T \end{cases}$$

由于 $det(\lambda I - A) = (\lambda - 1)^2(\lambda + 1)$,设 $r(\lambda) = a_2\lambda^2 + a_1\lambda + a_0$, 则

$$\begin{cases} a_2 + a_1 + a_0 = e^t \\ 2a_2 + a_1 = te^t \\ a_2 - a_1 + a_0 = e^{-t} \end{cases} \Rightarrow \begin{cases} a_0 = -\frac{1}{2}te^t + \frac{3}{4}e^t + \frac{1}{4}e^{-t} \\ a_1 = \frac{1}{2}e^t - \frac{1}{2}e^{-t} \\ a_2 = \frac{1}{2}te^t - \frac{1}{4}e^t + \frac{1}{4}e^{-t} \end{cases}$$

从而

$$e^{At} = \begin{pmatrix} -\frac{1}{2}te^{t} + \frac{3}{4}e^{t} + \frac{1}{4}e^{-t} & \frac{1}{2}e^{t} - \frac{1}{2}e^{-t} & \frac{1}{2}te^{t} - \frac{1}{4}e^{t} + \frac{1}{4}e^{-t} \\ -\frac{1}{2}te^{t} + \frac{1}{4}e^{t} - \frac{1}{4}e^{-t} & \frac{1}{2}e^{t} + \frac{1}{2}e^{-t} & \frac{1}{2}te^{t} + \frac{1}{4}e^{t} - \frac{1}{4}e^{-t} \\ -\frac{1}{2}te^{t} - \frac{1}{4}e^{t} + \frac{1}{4}e^{-t} & \frac{1}{2}e^{t} - \frac{1}{2}e^{-t} & \frac{1}{2}te^{t} + \frac{3}{4}e^{t} + \frac{1}{4}e^{-t} \end{pmatrix}$$

因此

$$\begin{split} x(t\!\!f) &= e^{At}x(0) + e^{At} \int_0^t e^{-As}e^t b ds \\ &= \begin{pmatrix} e^t \\ e^t \\ e^t \end{pmatrix} + e^{At} \int_0^t \begin{pmatrix} -\frac{1}{2}s - \frac{1}{4} + \frac{1}{4}e^{2s} \\ -\frac{1}{2}s + \frac{1}{4} - \frac{1}{4}e^{2s} \\ -\frac{1}{2}s + \frac{3}{4} + \frac{1}{4}e^{2s} \end{pmatrix} ds \\ &= \begin{pmatrix} \frac{1}{4}t^2e^t - \frac{1}{4}te^t + \frac{9}{8}e^t - \frac{1}{8}e^{-t} \\ \frac{1}{4}t^2e^t + \frac{1}{4}te^t + \frac{7}{8}e^t + \frac{1}{8}e^{-t} \\ \frac{1}{4}t^2e^t + \frac{5}{4}te^t + \frac{9}{8}e^t + \frac{1}{8}e^{-t} \end{pmatrix} \end{split}$$

从而

$$y = x_1 = \frac{1}{4}t^2e^t - \frac{1}{4}te^t + \frac{9}{8}e^t - \frac{1}{8}e^{-t}.$$

第7章 习题解答与提示

1.
$$\boldsymbol{x} = (0.7906, -0.3613, 0.8639, -1.1152)^T$$
.

2.
$$\boldsymbol{x} = (1.8671, -0.5838, 0.7857)^T$$
.

3.
$$\boldsymbol{x} = (-1.2743, 2.5417, 1.1528)^T$$
.

4. 设 $A = (a_{i,j})$, 因为 A 是对称正定的三对角矩阵,所以

$$a_{i,i-1} = u_i = a_{i-1,i} = c_{i-1}, (i = 2, 3, \dots, n),$$

且

$$A = \begin{pmatrix} d_{11} & & & \\ s_{21} & d_{22} & & \\ \vdots & \vdots & \ddots & \\ s_{n1} & s_{n2} & \cdots & d_{nn} \end{pmatrix} \begin{pmatrix} 1 & l_{21} & \cdots & l_{n1} \\ & 1 & \cdots & l_{n2} \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}$$

式中 $s_{ij} = l_{ij}d_{jj}$ 。 当 i - j > 1 时, $s_{ij} = 0$, 即只有 $s_{i,i-1}$ ($i = 2, 3, \dots, n$) 可能不为零。

利用 Cholesky 分解公式得

$$\begin{cases} d_{11} = a_{11} = a_1 \\ s_{i,i-1} = a_{i,i-1} - \sum_{i=1}^{i-2} s_{i,k} l_{i-1,k} = a_{i,i-1} = u_i \\ l_{i,i-1} = s_{i,i-1} / d_{i-1,i-1} = u_i / d_{i-1,i-1} = c_{i-1} / d_{i-1,i-1} \\ d_{ii} = a_{ii} - \sum_{k=1}^{i-1} s_{ik} l_{ik} = a_i - s_{i,i-1} l_{i,i-1} = a_i - u_i l_{i,i-1} \end{cases}$$

解方程组按如下步骤进行

$$\begin{cases} y_i = b_i - \sum_{k=1}^{i-1} l_{ik} y_k = b_i - l_{i,i-1} y_i & (i = 1, 2, \dots, n) \\ x_i = y_i / d_{ii} - \sum_{k=i+1}^{n} l_{ki} x_k = y_i / d_{ii} - l_{i+1,i} x_{i+1} = y_i / d_{ii} - l_{i+1,i} x_{i+1} \\ = (y_i - c_i x_{i+1}) / d_{ii} & (i = n, n-1, \dots, 1). \end{cases}$$

5. $\boldsymbol{x} = (0.2988, 0.1951, 0.1829, 0.3415)^T$.

第8章 习题解答与提示

1. 系数矩阵 A 的满秩分解:

$$A = FG = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
$$A^{+} = \frac{1}{36} \begin{pmatrix} 10 & 4 & -2 \\ 2 & 2 & 2 \\ -8 & -2 & 4 \\ 12 & 6 & 0 \end{pmatrix}$$
$$\boldsymbol{x}_{ls} = \frac{1}{18} (20, 7, -13, 27)^{T},$$

全部最小二乘解为

$$\boldsymbol{x} = \boldsymbol{x}_{ls} + \frac{1}{3} \begin{pmatrix} 2 & 0 & 1 & -1 \\ 0 & 2 & -1 & -1 \\ 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}, \quad (y_1, y_2, y_3, y_4 \in C \text{ 任意})$$

2. 系数矩阵 A 的QR 分解:

$$A = QR = \begin{pmatrix} 0.0 & 0.55 & 0.6 \\ 0.0 & -0.74 & -0.68 \\ -0.71 & 0.28 & -0.3 \\ -0.71 & -0.28 & 0.3 \end{pmatrix} \begin{pmatrix} -1.4 & -3.54 & -3.54 \\ 0.0 & -5.43 & 0.644 \\ 0.0 & 0.0 & 2.255 \end{pmatrix}.$$

解 $Rx = Q^T b$ 得最小二乘解 $\mathbf{x} = (0, 0.066667, 0.133333)^T$.

3. $x_{ls} = \frac{1}{9}(2,1,1)^T$,全部最小二乘解为

$$x = \frac{1}{9} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad (y_1, y_2, y_3 \in C \text{ } \text{£}\text{$\stackrel{\circ}{\equiv}$}).$$

4. 设 A^TA 的特征值为

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r > \lambda_{r+1} = \dots = \lambda_n = 0.$$
则 $\|A\|_2 = \sqrt{\lambda_1}$, $\|A^T A\|_2 = \lambda_1$, $\|(A^T A)^{-1}\|_2 = \frac{1}{\lambda_r}$.
利用A的奇异值分解知, $(A^+)^T A^+$ 与 $\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$ 酉相似(其中 $B = \mathrm{diag}(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_r})$),所以 $\|A^+\|_2 = \frac{1}{\sqrt{\lambda_r}}$.

第9章 习题解答与提示

1. 迭代矩阵 B_J 的特征方程为 $\det[\lambda D + (L+U)] = 0$, 即

$$\lambda \left(\lambda^2 - 2\alpha + \beta^2 \right) = 0,$$

所以 $\rho(B_J) = |2\alpha - \beta^2|^{1/2}$, 当 $|2\alpha - \beta^2| < 1$ 时,J 法收敛。

2. 取近似解的精度为 10⁻⁴, 用J法求解, 迭代次数为 42, 近似解为

$$x_{42} = (1.199857, 1.399813, 1.599769, 0.799885)^T$$
.

用G-S 法 求解, 迭代次数为 22, 近似解为

$$x_{22} = (1.199876, 1.399838, 1.599869, 0.799934)^T.$$

用SOR法求解, 迭代次数为 14, 近似解为

$$x_{14} = (1.199983, 1.399977, 1.600001, 0.800008)^T.$$

- 3. (1) 因为 $\rho(B_J) = 0$, $\rho(B_G) = 2$ 所以J 法收敛,而 G-S 法发散。
 - (2) 因为 $\rho(B_G) = \frac{1}{2}$ 所以G-S 法收敛。

 B_J 的特征方程为 $\lambda^3+\frac{3}{2}\lambda-\frac{1}{4}=0$,由中值定理, B_J 有一实特征值 λ_1 属于(0,0.2). 设 B_J 的另外两个特征值为 λ_2,λ_3 ,因 $\lambda_1\lambda_2,\lambda_3=\frac{1}{4}$,则

$$|\lambda_2|\,|\lambda_3| = \frac{1}{4\,|\lambda_1|} > 1$$

所以 $\rho(B_J) > 1$, J法发散。

- 4. 因为 $\rho(B_J) = \frac{2}{|\alpha|}$, 所以当 $|\alpha| > 2$ 时J 法收敛。
- 5. 迭代矩阵 $B = I \alpha A$,若 A 的特征值为 λ ,则 B 的特征值为 $1 \alpha \lambda$ 。

- (1) A 的特征值为 1, 4, 则 B 的特征值为 $1-\alpha$, $1-4\alpha$, 则 $|1-\alpha|<1$, $|1-4\alpha|<1$, 即 $0<\alpha<\frac{1}{2}$ 时迭代收敛,要迭代收敛最快,还需 $|1-\alpha|=|1-4\alpha|$,即 $\alpha=0.4$.
- (2) 因为 A 对称正定,所以 A 的特征值 λ 大于 0. 若 $\alpha < 0$,则 迭代矩阵 B 的特征值 $1-\alpha\lambda$ 大于 1, $\rho(B) > 1$,迭代发散。所以迭代 收敛的充要条件为 $\alpha > 0$ 及 A 的任意特征值 λ 满足 $|1-\alpha\lambda| < 1$,即 $0 < \alpha < 2\lambda^{-1}$,所以迭代收敛的充要条件为 $0 < \alpha < 2\lambda_1^{-1}$. 要迭代收敛最快,还需 $|1-\alpha\lambda_1| = |1-\alpha\lambda_n|$,即 $\alpha = \frac{2}{\lambda_1 + \lambda_2}$.
- 6. $B^{j} = \begin{pmatrix} \alpha^{j} & 4j\alpha^{j+1} \\ 0 & \alpha^{j} \end{pmatrix}$,则 $\|B^{j}\|_{\infty} = \alpha^{j} + 4j\alpha^{j-1}$. 用 $e^{(j)}$ 表示第 j 次迭代的误差,则

$$\begin{split} & \|e^{(j)}\|_{\infty} = \|B^{j}e^{(0)}\|_{\infty} \leq \|e^{(0)}\|_{\infty} \|B^{j}\|_{\infty} = \|e^{(0)}\|_{\infty} \left(\alpha^{j} + 4j\alpha^{j-1}\right) = \varepsilon^{(j)}. \\ & \stackrel{\text{if }}{=} j > \frac{\alpha^{2} + 3\alpha}{4(1 - \alpha)} \text{ if }, \ \varepsilon^{(j)} \ \text{ 单调减少}. \end{split}$$

- 7. 因为存在约当标准型 J 及可逆矩阵 P,使得 $B = P^{-1}JP$,所以 $B^n = P^{-1}J^nP$. 因为 $\rho(B) = 0$,所以 B 的特征值均为 0,那么 J 的对角线上的元素均为 0,则 $J^n = 0$ 。 用 $e^{(n)}$ 表示第 n 次迭代的误差,则 $e^{(n)} = B^n e^{(0)} = 0$.
- 8. 取初始近似值 $x_0 = (0,0,0)^T$, 则可得

$$x_1 = (0.0000, -0.38460.7692)^T,$$
 $x_2 = (0.0472, -0.37010.7874)^T,$ $x_3 = (0.06897, -0.3966, 0.7759)^T,$ $||Ax_3 - b||_{\infty} < 10^{-8}.$

第10章 习题解答与提示

- 1. (1)构成数域F上的线性空间。
 - (2) 不构成F上的线性空间。因数量乘法不封闭,设 $(a_1, a_2, \dots, a_n)^T$ 满足 $\sum_{i=1}^n a_i = 1$,那么 $k (a_1, a_2, \dots, a_n)^T = (ka_1, ka_2, \dots, ka_n)^T$, $\forall k \in F, k \neq 1$, 这时 $\sum_{i=1}^n ka_i = k$.
 - (3), (4), (5)均构成 F上的线性空间。
 - (6) 不构成 F 上的线性空间。因加法不满足交换律。

$$A \oplus B = AB - BA$$
, $B \oplus A = BA - AB = -(AB - BA)$, $A \oplus B \neq B \oplus A$.

2. 因 V_1, V_2 为非平凡子空间,故存在 $\alpha \notin V_1$, 如果 $\alpha \notin V_2$,则命题已证。

今设 $\alpha \in V_2$,另外存在 $\beta \notin V_2$,如果 $\beta \notin V_1$,则也得证。今设 $\beta \in V_1$,此即 $\alpha \notin V_1$, $\alpha \in V_2$ 及 $\beta \in V_1$, $\beta \notin V_2$,于是可证 $\alpha + \beta \notin V_1,V_2$.

事实上,若 $\alpha + \beta \in V_1$,又 $\beta \in V_1$,那么必定 $\alpha \in V_1$,这与题设矛盾。 $\alpha + \beta \notin V_1$.同理可证 $\alpha + \beta \notin V_2$.即 $\alpha + \beta \notin V_1 \cup V_2$.

$$\begin{pmatrix} k_1 + k_2 + k_3 + k_4 & k_1 + k_2 + k_3 \\ k_1 + k_3 + k_4 & k_1 + k_2 + k_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

解得 $k_1 = k_2 = k_3 = k_4 = 0$.于是 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关。

4. 令 $G_{ij} = E_{ij} - E_{ji}, 1 \le i < j \le n$. 则 $G_{12}, \dots, G_{1n}, G_{23}, \dots, G_{2n}, \dots, G_{n-1,n}$ 为 V_1 的一组基, $\dim V_1 = \frac{n(n-1)}{2}$. V_2 的一组基为

$$E_{11}, \cdots, E_{1n}, E_{22}, \cdots, E_{2n}, \cdots, E_{n-1,n-1}, E_{n-1,n}, E_{nn}$$

即

$$\{E_{ij} | 1 \le i \le j \le n\}$$
. dim $V_2 = \frac{n(n+1)}{2}$.

5. (1) 设 $f = a_1 1 + a_2 (x - 1) + a_3 (x - 1)^2 + a_4 (x - 1)^3$, 比较等式两边系数,解得 $a_1 = 11, a_2 = 22, a_3 = 18, a_4 = 5$. 所以 f 在基 $1, x - 1, (x - 1)^2, (x - 1)^3$ 下的坐标为 $(11, 22, 18, 5)^T$.

(2) 因

$$(1,(x-1),(x-1)^2,(x-1)^3) = (1,x,x^2,x^3) \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$(1, x+1, (x+1)^2, (x+1)^3) = (1, x, x^2, x^3) \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

于是

$$(1, x, x^{2}, x^{3}) = (1, (x - 1), (x - 1)^{2}, (x - 1)^{3})$$

$$= \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1},$$

$$(1, x + 1, (x + 1)^2, (x + 1)^3) = (1, x - 1, (x - 1)^2, (x - 1)^3) A,$$

其中

$$A = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 8 \\ 0 & 1 & 4 & 12 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

即为所求的过渡矩阵。

(3) f在基 $1, x+1, (x+1)^2, (x+1)^3$ 下的坐标为 $A^{-1}(11, 22, 18, 5)^T = (-1, 10, -12, 5)^T$.

6. (1) 取 $R^{2\times 2}$ 的一组基 $E_{11}, E_{12}, E_{21}, E_{22}, 则$

$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (E_{11}, E_{12}, E_{21}, E_{22}) A,$$

$$(\beta_1, \beta_2, \beta_3, \beta_4) = (E_{11}, E_{12}, E_{21}, E_{22}) B,$$

于是 $(\beta_1, \beta_2, \beta_3, \beta_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) A^{-1}B$, 即得过渡矩阵为 P =

$$A^{-1}B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{pmatrix}.$$

(2) 设 $\alpha \in R^{2\times 2}$ 在基(I)与(II)下的坐标均为 $x = (x_1, x_2, x_3, x_4)^T$ 则由坐标变换公式得 x = Px,即 (I - P)x = 0,得通解为 $x = (0, 0, 0, k)^T$, $k \in R$. 故在两组基下有相同坐标的所有向量为

$$\alpha = 0\alpha_1 + 0\alpha_2 + 0\alpha_3 + k\alpha_4 = \begin{pmatrix} k & -k \\ -k & k \end{pmatrix}, \quad k \in \mathbb{R}.$$

- 7. (1) 因 $I \in C(A) \neq \phi$. 若 $B_1, B_2 \in C(A)$,则 $A(B_1 + B_2) = AB_1 + AB_2 = B_1A + B_2A = (B_1 + B_2)A$,故 $B_1 + B_2 \in C(A)$.又 $(kB_1)A = k(B_1A) = k(AB_1) = A(kB_1)$,即 $kB_1 \in C(A)$.所以 C(A) 是 $F^{n \times n}$ 的一个子空间。
 - (2) 因 A = I, 任何方阵都同 I 可交换, 故 $C(A) = F^{n \times n}$.
 - (3) 设 $B = (b_{ij})$, 满足 AB = BA

$$BA = \begin{pmatrix} b_{11} & 2b_{12} & \cdots & nb_{1n} \\ b_{21} & 2b_{22} & \cdots & nb_{2n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & 2b_{n2} & \cdots & nb_{nn} \end{pmatrix}, \quad AB = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 2b_{21} & 2b_{22} & \cdots & 2b_{2n} \\ \vdots & \vdots & & \vdots \\ nb_{n1} & nb_{n2} & \cdots & nb_{nn} \end{pmatrix},$$

比较两个乘积,得 $b_{ij} = 0, i \neq j, i, j = 1, 2, \dots, n$. 于是 B 为对角矩阵,即 $B = diag(b_{11}, b_{22}, \dots, b_{nn})$.反之,若 B为任一对角矩阵,显然 AB = BA.故C(A) 就是所有对角矩阵构成的线性空间,其一组基为 $\{E_{ii} | i = 1, 2, \dots, n\}$, $\dim C(A) = n$.

8. 显然 $0 \in W \neq \phi$. 对任意 $f(x), g(x) \in W, k \in F$, 有

$$f(x) = a_3x^3 + a_2x^2 + a_1x + a_0, \quad g(x) = b_3x^3 + b_2x^2 + b_1x + b_0,$$

其中
$$a_0 - a_1 + a_2 = 0$$
, $b_0 - b_1 + b_2 = 0$. 于是

$$f(x) + g(x) = (a_3 + b_3) x^3 + (a_2 + b_2) x^2 + (a_1 + b_1) x + (a_0 + b_0),$$

$$kf(x) = ka_3x^3 + ka_2x^2 + ka_1x + ka_0,$$

且 $(a_0 + b_0) - (a_1 + b_1) + (a_2 + b_2) = (a_0 - a_1 + a_2) + (b_0 - b_1 + b_2) = 0, ka_0 - ka_1 + ka_2 = 0$,因此 $f(x) + g(x) \in W, kf(x) \in W$,即 $W \in F[x]_4$ 的子空间。 又对 $f(x) \in W$,有

$$f(x) = a_3x^3 + a_2x^2 + (a_0 + a_2)x + a_0 = a_3x^3 + a_2(x^2 + x) + a_0(x + 1),$$

令 $f_1(x) = x + 1$, $f_2(x) = x^2 + x$, $f_3(x) = x^3$, 则 $f(x) = a_0 f_1(x) + a_2 f_2(x) + a_3 f_3(x)$, 且 由定义易证 f_1, f_2, f_3 线性无关,从而是 W 的一组基,故 $\dim W = 3$.

9. (1) $V_1 + V_2 = span(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2)$, \overrightarrow{m}

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2) \rightarrow \begin{pmatrix} 1 & 2 & 0 & 1 & 4 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

所以 $\dim (V_1 + V_2) = 3, \alpha_1, \alpha_2, \beta_1$ 为 $V_1 + V_2$ 的一组基。

(2) $\forall \alpha \in V_1 \cap V_2$,可设 $\alpha = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = x_4\beta_1 + x_5\beta_2$,即 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 - x_4\beta_1 - x_5\beta_2 = 0$,解得 $x_1 = 2k_1 + k_2$, $x_2 = -k_1 + k_2$

 $2k_2, x_3 = k_1, x_4 = k_2, x_5 = k_2$,于是 $\alpha = k_1\beta_1 + k_2\beta_2 = k_2(5, -1, 5, 2)^T$. 故 dim $(V_1 \cap V_2) = 1, (5, -1, 5, 2)^T$ 是一个基。

10. 设 rankB = r, rank (AB) = s, 则方程组 $B\alpha = 0$ 的解空间 V_1 的维数为 p = n - r. 方程组 $AB\alpha = 0$ 的解空间 V_2 的维数为 q = n - s, 显然 $V_1 \subset V_2$.

设 $\alpha_1, \dots, \alpha_p$ 为 V_1 的一组基,并将其扩充为 V_2 的一组基 $\alpha_1, \dots, \alpha_p$, $\alpha_{p+1}, \dots, \alpha_q$ 。可证 $B\alpha_{p+1}, \dots, B\alpha_q$ (均为 F^p 中向量)线性无关。事实上,由

$$k_{p+1} (B\alpha_{p+1}) + \dots + k_q (B\alpha_q) = 0,$$

知 $B(k_{p+1}\alpha_{p+1}+\cdots+k_q\alpha_q)=0$. 于是 $k_{p+1}\alpha_{p+1}+\cdots+k_q\alpha_q\in V_1$, 故有

$$k_{p+1}\alpha_{p+1} + \dots + k_q\alpha_q = k_1\alpha_1 + \dots + k_p\alpha_p,$$

但 $\alpha_1, \dots, \alpha_p, \alpha_{p+1}, \dots, \alpha_q$. 线性无关,所以 $k_1 = \dots = k_p = k_{p+1} = \dots = k_q = 0$,即 $B\alpha_{p+1}, \dots, B\alpha_q$ 线性无关。

W 由向量组 $B\alpha_1, \dots, B\alpha_p, B\alpha_{p+1}, \dots, B\alpha_q$ 生成,但 $B\alpha_1 = \dots = B\alpha_p = 0$,故

$$W = \operatorname{span}(B\alpha_{p+1}, \cdots, B\alpha_q).$$

因此 $\dim W = q - p = (n - s) - (n - r) = r - s = rankB - rank(AB)$.

11. 将 A, B 按列分块为: $A = (\alpha_1, \alpha_2, \dots, \alpha_n), B = (\beta_1, \beta_2, \dots, \beta_n)$. 则

$$A + B = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_n + \beta_n).$$

于是

$$\operatorname{rank} A = \dim \operatorname{span} (\alpha_1, \alpha_2, \cdots, \alpha_n),$$

$$\operatorname{rank} B = \dim \operatorname{span} (\beta_1, \beta_2, \cdots, \beta_n), \operatorname{rank} (A + B)$$

$$= \dim \operatorname{span} (\alpha_1 + \beta_1, \cdots, \alpha_n + \beta_n).$$

而

$$span(\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n) \subseteq span(\alpha_1, \dots, \alpha_n) + span(\beta_1, \dots, \beta_n),$$

故

$$\dim span (\alpha_{1} + \beta_{1}, \dots, \alpha_{n} + \beta_{n})$$

$$\leq \dim [span (\alpha_{1}, \dots, \alpha_{n}) + span (\beta_{1}, \dots, \beta_{n})]$$

$$= \dim span (\alpha_{1}, \dots, \alpha_{n}) + \dim span (\beta_{1}, \dots, \beta_{n})$$

$$- \dim [span (\alpha_{1}, \dots, \alpha_{n}) \cap span (\beta_{1}, \dots, \beta_{n})]$$

 $< \dim span(\alpha_1, \dots, \alpha_n) + \dim span(\beta_1, \dots, \beta_n).$

所以 rank(A+B) < rankA + rankB.

12. 对任意 $\alpha = (a_1, a_2, \dots, a_n)^T \in \mathbb{R}^n$, 有

$$\alpha = (a_1, \dots, a_r, 0, \dots, 0)^T + (0, \dots, 0, a_{r+1}, \dots, a_n)^T,$$

而 $(a_1, \dots, a_r, 0, \dots, 0)^T \in R(A), (0, \dots, 0, a_{r+1}, \dots, a_n)^T \in R(B),$ 即有 $\alpha \in R(A) + R(B),$ 从而 $R^n \subseteq R(A) + R(B),$ 又显然有 $R^n \supseteq R(A) + R(B),$ 所以 $R^n = R(A) + R(B)$. 且 dim R(A) + dim $R(B) = rankA + rankB = r + (n - r) = n = \dim R^n,$ 故 $R^n = R(A) \oplus R(B)$.

13. 取 $R^{2\times 2}$ 的一组基 E_{11} , E_{12} , E_{21} , E_{22} . 可求得 $x_1 - x_2 + x_3 - x_4 = 0$ 的基 础解系为 $\xi_1 = (1, 1, 0, 0)^T$, $\xi_2 = (-1, 0, 1, 0)^T$, $\xi_3 = (1, 0, 0, 1)^T$. ξ_1, ξ_2, ξ_3 可分别看成矩阵

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

在基 E_{11} , E_{12} , E_{21} , E_{22} 下的坐标,利用线性空间同构的性质,得 A_1 , A_2 , A_3 线性无关,且 $V_1 = span(A_1, A_2, A_3)$. 从而有 $V_1 + V_2 = span(A_1, A_2, A_3, B_1, B_2)$. 又 B_1 , B_2 在基 E_{11} , E_{12} , E_{21} , E_{22} 下的坐标为 $\beta_1 = (1, 0, 2, 3)^T$, $\beta_2 = (1, -1, 0, 1)^T$. 易求得 ξ_1 , ξ_2 , ξ_3 , β_1 , β_2 的一个极大无关组为 ξ_1 , ξ_2 , ξ_3 , β_1 . 这样由同构性质知 A_1 , A_2 , A_3 , B_1 为

 A_1, A_2, A_3, B_1, B_2 的一个极大无关组,从而是 $V_1 + V_2$ 的一组基,且 $\dim (V_1 + V_2) = 4$.

14. $\beta_1, \beta_2, \beta_3$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标分别为 $x_{\beta_1} = (1, -2, 3)^T, x_{\beta_2} = (2, 3, 2)^T, x_{\beta_3} = (4, 3, 0)^T$, 则由

$$(x_{\beta_1}, x_{\beta_2}, x_{\beta_3}) = \begin{pmatrix} 1 & 2 & 4 \\ -2 & 3 & 13 \\ 3 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

知 rank $\{x_{\beta_1}, x_{\beta_2}, x_{\beta_3}\} = 2, x_{\beta_1}, x_{\beta_2}$ 为一个极大无关组。于是

$$\dim \operatorname{span}(\beta_1, \beta_2, \beta_3) = 2, \beta_1, \beta_2$$

为一组基

15.
$$\Leftrightarrow$$
 $\begin{pmatrix} a & a+b \\ c & c \end{pmatrix} \leftrightarrow (a,b,c)^T \in \mathbb{R}^3$ 即可。

- 16. (1)、(2)、(4)是线性变换。
 - (3) 不是线性变换。

$$\sigma(k(x_1, x_2, x_3)) = \sigma(kx_1, kx_2, kx_3) = (k^2 x_1^2, 2kx_2, kx_3).$$

$$k\sigma(x_1, x_2, x_3) = (kx_1^2, 2kx_2, kx_3).$$

$$\sigma(k(x_1, x_2, x_3)) \neq k\sigma(x_1, x_2, x_3), 0 \neq k \in F.$$

17. 令
$$x = (x_1, x_2), y = (y_1, y_2) \in R^2, \ \mathbb{M} \ x + y = (x_1 + y_1, x_2 + y_2),$$

$$\sigma_1(x + y) = (x_2 + y_2, -x_1 - y_1) = (x_2 - x_1) + (y_2, -y_1) = \sigma_1(x) + \sigma_1(y),$$
对 $k \in R$, $\sigma_1(kx) = (kx_2, -kx_1) = k(x_2, -x_1) = k\sigma_1(x).$
所以 $\sigma_1 \not\in R^2$ 的线性变换,同理 σ_2 也是。

$$(\sigma_1 + \sigma_2)(x) = \sigma_1(x) + \sigma_2(x) = (x_1 + x_2, -x_1 - x_2),$$

$$(\sigma_1 \sigma_2)(x) = \sigma_1(\sigma_2(x)) = \sigma_1(x_1, -x_2) = (-x_2, -x_1),$$

 $(\sigma_2 \sigma_1)(x) = \sigma_2(\sigma_1(x)) = \sigma_2(x_2, -x_1) = (x_2, x_1).$

- 18. 对 $f(x) \in F[x]$,有 $(D\sigma \sigma D)(f(x)) = D(\sigma(f(x))) \sigma(D(f(x)))$ = $D(xf(x)) - \sigma(f'(x)) = f(x) + xf'(x) - xf'(x) = f(x) = I(f(x))$, 所以 $D\sigma - \sigma D = I$.
- 19. 对 $x = (x_1, x_2, x_3) \in R^3$,有 $\sigma^2(x) = \sigma(\sigma(x)) = \sigma(0, x_1, x_2) = (0, 0, x_1)$,所以

$$R(\sigma^2) = \{(0, 0, k) | k \in R\}, \dim R(\sigma^2) = 1,$$

且 $\varepsilon_3 = (0,0,1)$ 是它的一组基。

$$N(\sigma^2) = \{x \in R^3 | \sigma^2 x = 0\} = \{(0, x_2, x_3) \in R^3 | x_2, x_3 \in R\},\$$

且 dim $N(\sigma^2) = 2$, 它的一组基为

$$\varepsilon_2 = (0, 1, 0), \varepsilon_3 = (0, 0, 1).$$

20. (1) $(\sigma + \tau)^2 = \sigma + \tau$, 即 $\sigma^2 + \sigma\tau + \tau\sigma + \tau^2 = \sigma + \tau = \sigma^2 + \tau^2$, 故 $\sigma\tau + \tau\sigma = O, \sigma\tau = -\tau\sigma$. 以 σ 左乘两边,得 $\sigma^2\tau = -\sigma\tau\sigma \Rightarrow \sigma\tau = (-\sigma\tau)\sigma = (\tau\sigma)\sigma = \tau\sigma^2 = \tau\sigma$, 于是

$$O = \sigma \tau + \tau \sigma = \sigma \tau + \sigma \tau = 2\sigma \tau, \quad \sigma \tau = O.$$

- (2) $(\sigma + \tau \sigma \tau)^2 = (\sigma + \tau \sigma \tau) (\sigma + \tau \sigma \tau)$ 按分配律展开整理即得结果。
- (3) 对 $\alpha \in V, \tau(\alpha) \in R(\tau) = R(\sigma)$. 故存在 $\beta \in V$, 使 $\tau(\alpha) = \sigma(\beta)$, 可得 $\sigma(\tau(\alpha)) = \sigma^2(\beta) = \sigma(\beta) = \tau(\alpha)$, 即 $\tau(\alpha) = \sigma\tau(\alpha)$, 由 α 的任意性得 $\tau = \sigma\tau$. 同理可证 $\sigma = \tau\sigma$.

反之,对 $\alpha \in V$, $\sigma \tau (\alpha) = \tau (\alpha)$. 这表明 $R(\tau) \subseteq R(\sigma)$. 又 $\tau \sigma (\alpha) = \sigma (\alpha)$,这又表明 $R(\sigma) \subseteq R(\tau)$. 所以 $R(\sigma) = R(\tau)$.

(4) 对 $\alpha \in V, \sigma^2(\alpha) = \sigma(\alpha) \Rightarrow \sigma(\alpha - \sigma(\alpha)) = 0$, 得 $\alpha - \sigma(\alpha) \in N(\sigma) = N(\tau)$. 所以 $\tau(\alpha - \sigma(\alpha)) = 0$, 即 $\tau(\alpha) = \tau\sigma(\alpha)$, 由 α 的任意性即得 $\tau = \tau\sigma$. 同理可证 $\sigma = \sigma\tau$.

反之,对 $\alpha \in N(\sigma)$, $\tau(\alpha) = \tau\sigma(\alpha) = \tau(0) = 0$. 故 $\alpha \in N(\tau)$, $N(\sigma) \subseteq N(\tau)$, 同理 $N(\tau) \subseteq N(\sigma)$. 所以 $N(\sigma) = N(\tau)$.

21.
$$A = \frac{1}{9} \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & -2 \\ 2 & -2 & 8 \end{pmatrix}$$
.

22. (1) $\boxplus (\sigma(\alpha_1), \sigma(\alpha_2), \sigma(\alpha_3)) = (\alpha_1, \alpha_2, \alpha_3) A, \ \mathbb{P}$

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} A,$$

得

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

(2) 因 $\det A = 2 \neq 0, A$ 可逆,所以 σ 可逆,且 σ^{-1} 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$A^{-1} = \frac{1}{2} \left(\begin{array}{ccc} 2 & 1 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{array} \right).$$

23. (1)
$$A = \begin{pmatrix} 0 & 0 & 2 & 0 \\ -2 & -2 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & -2 & 0 \end{pmatrix}$$
.

(2) 显然 $\dim R(\sigma) = rankA = 2$, $\dim N(\sigma) = 4 - \dim R(\sigma) = 2$. 因 A 的第1列与第3列线性无关,利用同构性质知 $\sigma(E_{11})$, $\sigma(E_{21})$ 是 $\sigma(E_{11})$, $\sigma(E_{12})$, $\sigma(E_{21})$, $\sigma(E_{22})$ 的一个极大无关组,从而是 $R(\sigma)$ 的一组基。

对
$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \in N(\sigma)$$
,则由

$$\sigma(X) = \begin{pmatrix} 2x_3 & -2x_1 - 2x_2 + 2x_4 \\ 2x_3 & -2x_3 \end{pmatrix} = 0,$$

得 $x_1 = -x_2 + x_4, x_3 = 0$, 于是

$$X = \begin{pmatrix} -x_2 + x_3 & x_2 \\ 0 & x_4 \end{pmatrix} = x_2 \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, x_2, x_4 \in F.$$

易知
$$\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 线性无关,从而是 $N(\sigma)$ 的一组基。

- 24. 因 det $(\lambda I A) = \lambda^2 (\lambda + 2) (\lambda 2)$,得 σ 的特征值为 $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = -2$, $\lambda_4 = 2$. 可求得 σ 对应 $\lambda_1 = \lambda_2 = 0$ 的两个线性无关的特征向量为 $\xi_1 = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. σ 对应 $\lambda_3 = -2$, $\lambda_4 = 2$ 的线性无关的特征向量分别为 $\xi_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\xi_4 = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}$.
- 25. (1) 设 $k_1\alpha + k_2\sigma(\alpha) + \dots + k_n\sigma^{n-1}(\alpha) = 0$. 两端用 σ^{n-1} 作用,并 利用 $\sigma^n(\alpha) = 0$,得 $k_1\sigma^{n-1}(\alpha) = 0$,因 $\sigma^{n-1}(\alpha) \neq 0$,所以 $k_1 = 0$. 同理可得 $k_2 = \dots = k_n = 0$,故 $\alpha, \sigma(\alpha), \dots, \sigma^{n-1}(\alpha)$ 线性无关。
 - (2) 由 (1) 知 $\alpha, \sigma(\alpha), \dots, \sigma^{n-1}(\alpha)$ 是 V 的一组基,且 σ 在这组

基下的矩阵为

$$A = \left(\begin{array}{ccccc} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{array}\right).$$

- (3) σ 的特征多项式为 $f_{\sigma}(\lambda) = |\lambda I A| = \lambda^n$. 故 σ 的特征值只能是0.
- 26. (1) 设 λ 是 σ 的特征值, α 为对应的特征向量,即 $\sigma(\alpha) = \lambda \alpha$. 于是由 $\sigma^2(\alpha) = \sigma(\alpha)$,得 $\lambda^2 \alpha = \lambda \alpha \Rightarrow \lambda (\lambda 1) \alpha = 0, \alpha \neq 0 \Rightarrow \lambda (\lambda 1) = 0$,即 $\lambda = 0$ 或 $\lambda = 1$.
 - (2) 对 $\alpha \in V$, 因 $\sigma^2(\alpha) = \sigma(\alpha)$, 所以 $\sigma^2(\alpha) \sigma(\alpha) = 0$, 即 $\sigma(\alpha \sigma(\alpha)) = 0$, 知 $\alpha \sigma(\alpha) \in N(\sigma)$. 显然 $\sigma(\alpha) \in R(\sigma)$, $\alpha = \sigma(\alpha) + (\alpha \sigma(\alpha))$. 故 $V = R(\sigma) + N(\sigma)$.

又若 $\alpha \in R(\sigma) \cap N(\sigma)$, 则 $\sigma(\alpha) = 0$, 且存在 $\beta \in V$, 使 $\alpha = \sigma(\beta)$. 于是

$$\alpha = \sigma(\beta) = \sigma^2(\beta) = \sigma(\sigma(\beta)) = \sigma(\alpha) = 0,$$

即

$$R(\sigma) \cap N(\sigma) = \{0\}.$$

所以

$$V = R(\sigma) \oplus N(\sigma)$$
.

27. 取 $F[x]_4$ 的一组基 $1, x, x^2, x^3$,则 $\sigma(1) = 1 - 3x, \sigma(x) = -2 + 2x, \sigma(x^2) = 2x^2 - 4x^3, \sigma(x^3) = -3x^2 + 3x^3$,所以 σ 在基 $1, x, x^2, x^3$,下

的矩阵为

$$A = \left(\begin{array}{cccc} 1 & -2 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & -4 & 3 \end{array}\right).$$

可求得 A 的特征值 $\lambda_1 = 4, \lambda_2 = 6, \lambda_3 = \lambda_4 = -1$,特征向量 $\xi_1 = \left(-\frac{2}{3}, 1, 0, 0\right)^T, \xi_2 = \left(0, 0, -\frac{3}{4}, 1\right)^T, \quad \xi_3 = \left(1, 1, 0, 0\right)^T, \quad \xi_4 = \left(0, 0, 1, 1\right)^T.$ 令

$$P = \begin{pmatrix} -\frac{2}{3} & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -\frac{3}{4} & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}, \quad \text{III} \quad P^{-1}AP = \begin{pmatrix} 4 & & & \\ & 6 & & & \\ & & -1 & \\ & & & -1 \end{pmatrix} = \Lambda.$$

再令 $(f_1(x), f_2(x), f_3(x), f_4(x)) = (1, x, x^2, x^3) P$, 则 $f_1(x) = -\frac{2}{3} + x$, $f_2(x) = -\frac{3}{4}x^2 + x^3$, $f_3(x) = 1 + x$, $f_4(x) = x^2 + x^3$ 构成 $F[x]_4$ 的一组基,此时 σ 在此基下的矩阵为 Λ .

28. 必要性,若 σ 可对角化,取 V_{λ_i} 的一组基 $\xi_{i1}, \dots, \xi_{il_i}$ $(i=1,\dots,r)$,则 $\xi_{i1}, \dots, \xi_{il_i}$ 是 λ_i 对应的线性无关的特征向量,从而

$$\xi_{11},\cdots,\xi_{1l_1},\cdots,\xi_{r1},\cdots,\xi_{rl_r}$$

是 σ 的线性无关特征向量组。又由定理10.37知 $l_1 + \cdots + l_r = n$. 于 是

$$\xi_{11},\cdots,\xi_{1l_1},\cdots,\xi_{r1},\cdots,\xi_{rl_r}$$

是 V的一组基,且

$$V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_r}.$$

充分性 取 V_{λ_i} 的一组基 $\xi_{i1}, \dots, \xi_{il_i} (i = 1, 2, \dots, r), 则$

$$\xi_{11},\cdots,\xi_{1l_1},\cdots,\xi_{r1},\cdots,\xi_{rl_r}$$

是 $V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_r}$ 的亦是 V 的一组基,而 $\dim V = n$. 于是 σ 在 V 中有 n 个线性无关的特征向量。故 σ 可对角化。

29. 对任意 $\beta \in W$, 则 $\beta = k_1\alpha_1 + k_2\sigma(\alpha) + \cdots + k_m\sigma^{m-1}(\alpha)$. 于是

$$\sigma(\beta) = k_1 \sigma(\alpha) + k_2 \sigma^2(\alpha) + \dots + k_{m-1} \sigma^{m-1}(\alpha) + k_m \sigma^m(\alpha)$$
$$= k_1 \sigma(\alpha) + \dots + k_{m-1} \sigma^{m-1}(\alpha) \in W.$$

故 $W \in \sigma$ 的不变子空间。

30. (1) 设 λ 是 σ 的任一特征值, V_{λ} 为相应的特征子空间。对 $\alpha \in V_{\lambda}$,

$$\sigma\left(\tau\left(\alpha\right)\right) = \sigma\tau\left(\alpha\right) = \tau\sigma\left(\alpha\right) = \tau\left(\sigma\left(\alpha\right)\right) = \tau\left(\lambda\alpha\right) = \lambda\tau\left(\alpha\right).$$

这表明 $\tau(\alpha)$ 是 σ 的属于特征值 λ 的一个特征向量,即 $\tau(\alpha) \in V_{\lambda}$, 所以 V_{λ} 是 τ 的不变子空间。

- (2) 设 V_{λ} 是 σ 的一个特征子空间,由(1)知 V_{λ} 也是 τ 的不变子空间。 τ 在 V_{λ} 上的限制 τ $|V_{\lambda}$ 是 V_{λ} 上 的一个线性变换。 τ $|V_{\lambda}$ 的特征多项式在复数域中至少有一个根 μ ,同时有 $\beta \in V_{\lambda}$, $\beta \neq 0$ 为 相应的特征向量,即 $(\tau | V_{\lambda})(\beta) = \mu\beta$. 于是 β 为 σ 和 τ 的公共特征向量。
- 31. 对 $\alpha \in V_1 + V_2$, 则 $\alpha = \alpha_1 + \alpha_2$, 其中 $\alpha_1 \in V_1, \alpha_2 \in V_2$. 于是 $\sigma(\alpha) = \sigma(\alpha_1) + \sigma(\alpha_2)$. 因 $\sigma(\alpha_i) \in V_i \ (i = 1, 2)$, 所以 $\sigma(\alpha) \in V_1 + V_2$. 即 $V_1 + V_2$ 是 σ 的不变子空间。

 $\forall \alpha \in V_1 \cap V_2$, 则 $\alpha \in V_1, \alpha \in V_2$. 因 $\sigma(\alpha) \in V_1, \sigma(\alpha) \in V_2$, 所以 $\sigma(\alpha) \in V_1 \cap V_2$. 故 $V_1 \cap V_2$ 也是 σ 的不变子空间。

32. 由Schmidt正交化公式得 $R^{2\times 2}$ 的一组正交基为

$$\beta_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1 & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix},$$

$$\beta_3 = \begin{pmatrix} \frac{3}{5} & \frac{3}{5} \\ -\frac{4}{5} & \frac{1}{5} \end{pmatrix}, \beta_4 = \begin{pmatrix} \frac{3}{7} & \frac{3}{7} \\ \frac{3}{7} & -\frac{6}{7} \end{pmatrix}.$$

33. $\alpha_1, \alpha_2, \alpha_3$ 在给定基下的坐标依次为

$$\xi_1 = (1, 0, 0, 0, 1)^T, \xi_2 = (1, -1, 0, 1, 0)^T, \xi_3 = (2, 1, 1, 0, 0)^T.$$

显然 ξ_1, ξ_2, ξ_3 线 性无关,所以 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,从而是 W 的一组基,对其正交化,得

$$\beta_1 = \alpha_1 = \varepsilon_1 + \varepsilon_5, \quad \beta_2 = \alpha_2 - \frac{1}{2}\beta_1 = \frac{1}{2}\varepsilon_1 - \varepsilon_2 + \varepsilon_4 - \frac{1}{2}\varepsilon_5,$$
$$\beta_3 = \alpha_3 - \beta_1 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 - \varepsilon_5.$$

单位化得 W 的一组标准正交基为

$$\eta_1 = \frac{1}{\sqrt{2}} \left(\varepsilon_1 + \varepsilon_2 \right), \quad \eta_2 = \frac{1}{\sqrt{10}} \left(\varepsilon_1 - 2\varepsilon_2 + 2\varepsilon_4 - \varepsilon_5 \right),$$
$$\eta_3 = \frac{1}{2} \left(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 - \varepsilon_5 \right).$$

34. 由

$$A = \begin{pmatrix} (\alpha_1, \alpha_1) & (\alpha_2, \alpha_1) & (\alpha_3, \alpha_1) \\ (\alpha_1, \alpha_2) & (\alpha_2, \alpha_2) & (\alpha_3, \alpha_2) \\ (\alpha_1, \alpha_3) & (\alpha_2, \alpha_3) & (\alpha_3, \alpha_3) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 10 & -2 \\ 1 & -2 & 2 \end{pmatrix},$$

及Schimdt正交化公式,将 $\alpha_1, \alpha_2, \alpha_3$ 正交化,得 $\beta_1 = \alpha_1, \beta_2 = \alpha_2, \beta_3 = \alpha_3 - \alpha_1 + \frac{1}{5}\alpha_2$. 再单位化得V的一组标准正交基为

$$\varepsilon_1 = \alpha_1, \quad \varepsilon_2 = \frac{1}{\sqrt{10}}\alpha_2, \quad \varepsilon_3 = \frac{\sqrt{15}}{3}\alpha_3 - \frac{\sqrt{15}}{3}\alpha_1 + \frac{\sqrt{15}}{15}\alpha_2.$$

35. 易见 $M \subseteq (M^{\perp})^{\perp}$. 另一方面,对 $\alpha \in (M^{\perp})^{\perp}$,令 $\alpha = \alpha_1 + \beta_1, \alpha_1 \in M$, $\beta_1 \in M^{\perp}$,则

$$(\alpha, \beta_1) = (\alpha_1, \beta_1) + (\beta_1, \beta_1).$$

而 $(\alpha, \beta_1) = (\alpha_1, \beta_1) = 0$,故 $(\beta_1, \beta_1) = 0$,从而 $\beta_1 = 0$.即 $\alpha = \alpha_1 \in M$,因此 $(M^{\perp})^{\perp} \subseteq M$.所以 $M = (M^{\perp})^{\perp}$.

36. 显然 $E_{11}, E_{22}, \dots, E_{nn}$ 是 W 的一组基。且有 $(E_{ii}, E_{jj}) = \begin{cases} 1, i = j, \\ 0, i \neq j. \end{cases}$ 所以 E_{11}, \dots, E_{nn} 是 W 的一组标准正交基。于是 $\dim W^{\perp} = \dim R^{n \times n} - \dim W = n^2 - n$,且 $A \in W^{\perp} \Leftrightarrow (A, E_{ii}) = a_{ii} = 0, i = 1, 2, \dots, n$.由此可得

$$W^{\perp} = \{ A = (a_{ij}) \in R^{n \times n} | a_{11} = \dots = a_{nn} = 0 \}.$$

另外,有 $E_{ij} \in W^{\perp}, i \neq j, \quad i, j = 1, 2, \cdots, n.$ 已知

$$\{E_{ij}, i \neq j, i, j = 1, 2, \cdots, n\}$$

线性无关,且对 $A = (a_{ij}) \in W^{\perp}$,有

$$A = \sum_{\substack{i,j=1\\i\neq j}}^{n} a_{ij} E_{ij}$$

所以 $\{E_{ij}, i \neq j, i, j = 1, 2, \cdots, n\}$ 是 W^{\perp} 的一组基,又显然有

$$(E_{ij}, E_{kl}) = \begin{cases} 1, & i = k, j = l, i \neq j \\ 0, & 否则. \end{cases}$$

从而知 E_{ij} , $i \neq j$, $i, j = 1, 2, \dots, n$ 为 W^{\perp} 的一组标准正交基。

- 37. 设 λ 为 A 的特征值, x 为对应的特征向量, 则 $Ax = \lambda x$. 取共轭转置得 $x^H A^T = (Ax)^H = \bar{\lambda} x^H$. 于是 $x^H A^T A x = \bar{\lambda} x^H \lambda x$, 由 $A^T A = I$, 得 $x^H x = \bar{\lambda} \lambda x^H x$, 即 $||x||^2 = |\lambda|^2 ||x||^2$. 因 $||x|| \neq 0$, 所以 $|\lambda| = 1$.
- 38. 设 σ 为正交变换, λ 是它的特征值, α 为对应的特征向量,则 $\sigma(\alpha) = \lambda \alpha, \mathbb{L}(\alpha, \alpha) = (\sigma(\alpha), \sigma(\alpha)) = (\lambda \alpha, \lambda \alpha) = \lambda^2(\alpha, \alpha)$,因 $(\alpha, \alpha) \neq 0$,所以 $\lambda^2 = 1$,即 $\lambda = \pm 1$.
- 39. 设 σ 在 V 的某组标准正交基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的矩阵为 A, 则 A 为

对称矩阵,且 $A^2 = I$.于是存在正交矩阵 T,使

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

两边平方,得

$$\begin{pmatrix} \lambda_1^2 & & & \\ & \lambda_2^2 & & \\ & & \ddots & \\ & & & \lambda_n^2 \end{pmatrix} = T^{-1}A^2T = T^{-1}T = I.$$

故 $\lambda_i = \pm 1, i = 1, 2, \dots, n$.

令 $(\alpha_1,\alpha_2,\cdots,\alpha_n)=(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)T$,则 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 也是 V 的一组标准正交基, σ 在这组基下的矩阵为 $T^{-1}AT$,且主对角元 $\lambda_i=\pm 1$. 适当调整基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的顺序可使得 σ 在这组标准正 交基下的矩阵为

$$\left(\begin{array}{cc} I_r & 0 \\ 0 & -I_{n-r} \end{array}\right).$$