This is an exercise that will help you practise both analytical and numerical skills. We are going to attempt solving the inclined particle-in-a-box (PIB) problem by using the familiar PIB eigensolutions as a basis. We know that the PIB Hamiltonian is

$$H_{PIB} = \frac{p^2}{2m} + V(x) \tag{1}$$

$$p^2 = \frac{d^2}{dx^2} \tag{2}$$

$$V(x) = 0 \text{ if } 0 \le x \le L \tag{3}$$

$$=\infty$$
 otherwise, (4)

where $\hbar = 1$ is assumed for this exercise. The inclined PIB will have $V(x) = \alpha x$ instead of being 0, where α is a parameter to be specified later while actually solving the problem. We call the inclined PIB Hamiltonian as H_{in} .

- (1) Our first step is to write down the H_{in} in the basis of PIB solutions. Write down the eigen-solutions $\{\phi\}$ of H_{PIB} in terms of the parameters defined above.
- (2) To think about the new solutions clearly that we have to find (namely that of H_{in}) let's stick to using the two lowest PIB eigensolutions. Write down the 2×2 matrix representation of the H_{in} using the $\phi_1(x)$ and $\phi_2(x)$ basis functions. You should evaluate all the elements in the matrix

$$\mathbf{H}_{in} = \begin{bmatrix} \langle \phi_1 | H_{in} | \phi_1 \rangle & \langle \phi_1 | H_{in} | \phi_2 \rangle \\ \langle \phi_2 | H_{in} | \phi_1 \rangle & \langle \phi_2 | H_{in} | \phi_2 \rangle . \end{bmatrix}$$
 (5)

Write down explicit expressions for these.

- (3) Generalize your results to H_{ij} notation where it can be a diagonal element i = j or off-diagonal element $i \neq j$.
- (4) Approach 1 (numerical): Use MATLAB to write a code that finds the eigenenergies and eigensolutions of H_{in} using the eig intrinsic function. Attach your code and the eigenenergies assuming $\alpha = -0.1, m = 1, L = 10$ and for different number of PIB functionsnamely choose 2, 3, 6, 7, 10, 12 and 20. Attach your code.
- (5) Approach 2 (analytical): You have expressions for H_{in}^{11} , H_{in}^{22} , H_{in}^{12} and H_{in}^{21} . We represent an eigenfunction of the H_{in} as a linear combination of the PIB solutions

$$\Phi(x) = \sum_{n} c_n \phi_n(x). \tag{6}$$

- (i) Write down the expression for the expectation value of the energy $\langle E \rangle$ using the above $\Phi(x)$. Make sure you define your symbols clearly.
- (ii) A necessary but not sufficient condition for the minimization of any multivariate function is that all the partial derivatives are zero

$$\frac{\partial \langle E \rangle}{\partial c_k} = 0$$
, for all k . (7)

Differentiate the expression you derived for $\langle E \rangle$ with respect to c_1 and c_2 and set them to zero to get 2 linear equations involving the unknowns c_1 , c_2 and $\langle E \rangle$. The third equation that will give a unique solution for the 3 variables is the normalization condition $c_1^2 + c_2^2 = 1$. Using all this information, get an expression for $\langle E \rangle$ analytically, plug in the parameters used in the MATLAB code and compare your answer with the lowest energy eigenvalue from diagonalizing (i.e., using the eig function) the \mathbf{H}_{in} matrix. What is the value you obtain by this method?