

Scientific Machine Learning

Lecture 4: Linear Regression

Dr. Daigo Maruyama

Prof. Dr. Ali Elham

Current Position

Lecture content

- Gaussian Distribution
- Sampling Methods (Design of Experiments)
- Linear Regression

continued from Lecture 3

The lecture of this time basically follows the 2nd and 3rd chapters of the book: Christopher M. Bishop "Pattern Recognition And Machine Learning" Springer-Verlag (2006) The name of this book is shown as "PRML" when it is referred in the slides.

Carl Friedrich Gauss (1777-1855)

Born in Braunschweig

Collegium Carolinum at TUBS

Some important topics related to Gaussian distributions

- Least square method
- Central limit theorem
- Gaussian Process

Used in Regression

Gaussian distribution

$$\mathcal{N}(x|\boldsymbol{\mu}, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\boldsymbol{\mu})^2}{2\sigma^2}\right\}$$

Multivariate Gaussian distribution

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\left(\sqrt{2\pi}\right)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}$$

Some useful properties

also Gaussian distributions

marginal distribution

Multivariate Gaussian distribution

$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{\left(\sqrt{2\pi}\right)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}$$

Contour map of a multivariate Gaussian distribution when
$$D = 2$$

$$\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}}$$
$$\mathbf{\mu} = (\mu_1, \dots, \mu_D)^{\mathrm{T}}$$

x: random variable (vector)

μ: mean (vector)

Σ: covariance (matrix)

D parameters

$$\Sigma = \begin{pmatrix} var[1] & \cdots & cov[1,D] \\ \vdots & \ddots & \vdots \\ cov[D,1] & \cdots & var[D] \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \cdots & \sigma_{1,D} \\ \vdots & \ddots & \vdots \\ \sigma_{D,1} & \cdots & \sigma_D^2 \end{pmatrix} \xrightarrow{\frac{D(D+1)}{2} \text{ parameters}} \text{MLE?}$$

$$\frac{D(D+1)}{2}$$
 parameters

$$cov[i, j] = cov[j, i]$$

Important properties of the covariance matrix Σ :

- Symmetric
- Positive (semi)definite

Please imagine a mountain from the top view and a side view (but the view has to be scaled to satisfy the area=1)

Important property: Both of them become Gaussian distributions.

We have now a multivariate Gaussian distribution:

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$$

When we partition x into two disjoint subsets x_a and x_b :

$$x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$
 $\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}$ $\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$

We have now a multivariate Gaussian distribution:

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$$

When we partition x into two disjoint subsets x_a and x_b :

$$x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$
 $\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}$ $\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$

What if:

- Marginal distribution $p(x_a)$
- Conditional distribution $p(x_a|x_b)$
- (Joint distribution $p(x) = p(x_a, x_b) = p(x_a|x_b)p(x_b)$)

In general, there is no guarantee that $p(x_a)$ and $p(x_a|x_b)$ can be represented by the same distributions p(x).

We have now a multivariate Gaussian distribution:

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$$

When we partition x into two disjoint subsets x_a and x_b :

$$x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$
 $\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}$ $\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$

Marginal distribution $p(x_a)$

$$p(\mathbf{x}_a) = \mathcal{N}(\mathbf{x}_a(\mathbf{\mu}_a)\Sigma_{aa})$$

simple and intuitive

pretending that we did not see any information from the subset x_b .

The basic concept of marginal distributions

We have now a multivariate Gaussian distribution:

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma})$$

When we partition x into two disjoint subsets x_a and x_b :

$$x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$
 $\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}$ $\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$

Conditional distribution $p(x_a|x_b)$

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mathbf{x}_a|\mathbf{x}_b, \boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$$

$$\mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1} (\mathbf{x}_b - \mu_b)$$

$$\Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}$$

No need to remember but the concept is important in <u>Gaussian Processes</u> (Lectures 6-8)

Other Probability Distributions

Laplace distribution

$$p(x|\mu, b) = \frac{1}{2b} \exp\left\{-\frac{|x - \mu|}{b}\right\}$$

wikipedia

Cauchy distribution (a special case of Student's t-distribution)

$$p(x|\mathbf{x_0}, \gamma) = \frac{1}{\pi} \frac{\gamma}{(x - \mathbf{x_0})^2 + \gamma^2}$$
 used to treat outlier

Most of the introduced probability distributions are categorized in Exponential Family.

$$p(\boldsymbol{x}|\boldsymbol{\eta}) = h(\boldsymbol{x})g(\boldsymbol{\eta})\exp\{\boldsymbol{\eta}^{\mathrm{T}}\boldsymbol{u}(\boldsymbol{x})\}\$$

PRML, p. 104

red: Gaussian Green: student's-t

Lecture content

3. Sampling Methods (Design of Experiments)

Curse of Dimensionality

In high-dimensional space

The volume ratio between the cube and the sphere is counterintuitive.

almost skin (tiny volume)

$$V_D = \frac{\pi^{D/2}}{(D/2)!} = \frac{\pi^{D/2}}{\Gamma(D/2+1)}$$

$$\frac{volume\ of\ hypersphere}{volume\ of\ hypercube} = \frac{V_D}{2^D} = \frac{\pi^{D/2}}{2^D(D/2)!}$$

Curse of Dimensionality

a low-dimensional space - manifold

only two input actually:

- Rotation
- Translation

Lecture 11

<u>Dimensionality Reduction</u> (data is lying on a low-dimensional space - manifold)

- Big data: plentiful data in hand
- Traditional engineering design: data is produced prod

The parameters (design variables) are selected from engineering viewpoints.

Uniform distributions (**Design of Experiments**)

- Monte Carlo (MC) sampling method
- Latin Hypercube sampling (LHS) method
- Quasi Monte Carlo (QMC) sampling method
 - Halton sequence
 - Sobol sequence

Arbitrary distributions (**Lecture 12**)

Markov-Chain Monte Carlo (MCMC)

Latin hypercube sampling

Properties in practical use:

- The partition has to be defined first (the sample size defined).
- New sample points cannot be added.

wikipedia:

Latin hypercube sampling


```
0.5
[ 0.5
[ 0.75
          0.25
[ 0.25
          0.75
[ 0.375
          0.375
[ 0.875
          0.875
[ 0.625
          0.125
[ 0.125
          0.625
[ 0.1875
          0.3125
[ 0.6875
          0.8125
[ 0.9375
          0.0625
[ 0.4375
          0.5625
[ 0.3125
          0.1875
[ 0.8125
          0.6875
[ 0.5625
          0.4375
[ 0.0625
          0.9375
[ 0.09375
           0.46875
[ 0.59375
           0.96875
[ 0.84375
           0.21875
[ 0.34375
           0.71875
[ 0.46875
           0.09375
[ 0.96875
           0.59375
[ 0.71875
           0.34375
[ 0.21875
           0.84375
[ 0.15625
           0.15625
[ 0.65625
           0.65625
[ 0.90625
           0.40625
[ 0.40625
           0.90625
[ 0.28125
           0.28125
[ 0.78125
           0.78125
[ 0.53125
           0.03125
[0.03125 0.53125 ]
```

[0.74023438 0.91992188] [0.99023438 0.16992188] [0.99023488h066992188]] [0.99023488h066992188]] [0.99023488h066992188]] [0.99023488h066992188]] [0.99023488h066992188]

Sobol sequence (Quasi Monte Carlo sampling)

- Low-discrepancy sequence (uniformity)
- Reproducibility
- The uniformity is kept in high dimensions (especially Sobol).

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 4 | Slide 19


```
[ 0.75
         0.25
[ 0.25
         0.75
[ 0.375
          0.375
[ 0.875
          0.875
[ 0.625
          0.125
[ 0.125
          0.625
[ 0.1875
          0.3125
[ 0.6875
          0.8125
[ 0.9375
          0.0625
[ 0.4375
          0.5625
[ 0.3125
          0.1875
          0.6875
[ 0.8125
[ 0.5625
          0.4375
[ 0.0625
          0.9375
[ 0.09375
           0.46875
[ 0.59375
           0.96875
[ 0.84375
           0.21875
[ 0.34375
           0.71875
[ 0.46875
           0.09375
[ 0.96875
           0.59375
[ 0.71875
           0.34375
[ 0.21875
           0.84375
           0.15625
[ 0.15625
[ 0.65625
           0.65625
[ 0.90625
           0.40625
[ 0.40625
           0.90625
[ 0.28125
           0.28125
[ 0.78125
           0.78125
[ 0.53125
          0.03125
[0.03125 0.53125]
```



```
[ 0.75
         0.25
[ 0.25
         0.75
[ 0.375
          0.375
[ 0.875
          0.875
[ 0.625
          0.125
[ 0.125
          0.625
[ 0.1875
          0.3125
[ 0.6875
          0.8125
[ 0.9375
          0.0625
[ 0.4375
          0.5625
[ 0.3125
          0.1875
[ 0.8125
          0.6875
[ 0.5625
          0.4375
[ 0.0625
          0.9375
[ 0.09375
          0.46875
[ 0.59375
           0.96875
[ 0.84375
           0.21875
[ 0.34375
           0.71875
[ 0.46875
           0.09375
[ 0.96875
           0.59375
[ 0.71875
           0.34375
[ 0.21875
           0.84375
[ 0.15625
           0.15625
[ 0.65625
           0.65625
[ 0.90625
           0.40625
[ 0.40625
           0.90625
[ 0.28125
           0.28125
[ 0.78125
           0.78125
[ 0.53125
          0.03125
[0.03125 0.53125]
```



```
[ 0.75
         0.25
[ 0.25
         0.75
[ 0.375
          0.375
[ 0.875
          0.875
[ 0.625
          0.125
[ 0.125
          0.625
[ 0.1875
          0.3125
[ 0.6875
          0.8125
[ 0.9375
          0.0625
[ 0.4375
          0.5625
[ 0.3125
          0.1875
[ 0.8125
          0.6875
[ 0.5625
          0.4375
[ 0.0625
          0.9375
[ 0.09375
           0.46875
[ 0.59375
           0.96875
[ 0.84375
           0.21875
[ 0.34375
           0.71875
[ 0.46875
           0.09375
[ 0.96875
           0.59375
[ 0.71875
           0.34375
[ 0.21875
           0.84375
[ 0.15625
           0.15625
0.65625
           0.65625
[ 0.90625
           0.40625
[ 0.40625
           0.90625
0.28125
           0.28125
[ 0.78125
           0.78125
0.53125
           0.03125
```



```
[ 0.75
         0.25
[ 0.25
         0.75
[ 0.375
         0.375
[ 0.875
         0.875
[ 0.625
         0.125
[ 0.125
         0.625
[ 0.1875
          0.3125
[ 0.6875
          0.8125
[ 0.9375
          0.0625
[ 0.4375
          0.5625
[ 0.3125
          0.1875
[ 0.8125
          0.6875
[ 0.5625
          0.4375
[ 0.0625
          0.9375
[ 0.09375
         0.46875
[ 0.59375
          0.96875
[ 0.84375
          0.21875
[ 0.34375
          0.71875
[ 0.46875
          0.09375
[ 0.96875
          0.59375
[ 0.71875
          0.34375
[ 0.21875
          0.84375
[ 0.15625
          0.15625
[ 0.65625
          0.65625
[ 0.90625
          0.40625
[ 0.40625
          0.90625
[ 0.28125
          0.28125
[ 0.78125
          0.78125
[0.53125 0.03125]
[0.03125 0.53125]
```


> Universität S Braunschweig

Lecture content

3. Linear Regression

Regression Model

In the curve fitting problem, we defined a probabilistic model.

Probabilistic model p(t|x)

$$p(t|x, \mu, \sigma) = \mathcal{N}(t|\mu, \sigma^2)$$

e.g. $p(t|x)$ is a Gaussian distribution.

Regression model E[t|x]

$$\mu = y(x, \mathbf{w})$$

e.g. $y(x, \mathbf{w})$ is a polynomial function.

The regression model is a part of the probabilistic model*.

x: deterministic variable

t: random variable

Regression model ∈ **Probabilistic model**

*There are a few exceptions (e.g. support vector machine).

Regression Model

The simplest linear regression

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w})$$

$$E(\mathbf{w}) = \sum_{i=1}^{N} \{y_i - y(x_i, \mathbf{w})\}^2$$

$$\begin{cases} \frac{\partial E(\mathbf{W})}{\partial \mathbf{w_0}} = 0\\ \frac{\partial E(\mathbf{w})}{\partial \mathbf{w_0}} = 0 \end{cases}$$

 $\widehat{\mathbf{w}}$ is analytically solved.

Please confirm this by yourself.

The components of *x*

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1D} \\ 1 & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \cdots & x_{ND} \end{pmatrix} \qquad \frac{\text{sample}}{x_1, \cdots x_N}$$

$$\widehat{\mathbf{w}} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$$

Dr. Daigo Maruyama | Scientific Machine Learning: Lec analytically solved

Regression Model

The simplest linear regression

$$y = w_0 + w_1 x$$

$$y$$

$$\downarrow$$

$$x$$

D = 2 in this case

(D+1) parameters

Parameters: dependent on the number of the input

Nonlinear model (still linear regression)

 χ

$$y(x, \mathbf{w}) = \mathbf{w}_0 + \mathbf{w}_1 x + \mathbf{w}_2 x^2 + \mathbf{w}_3 x^3 = \sum_{i=0}^{3} \mathbf{w}_i x^i$$

Parameters: dependent on your model

analytically solved?

- D-dimensional input
- M-degrees

The parameters w increase exponentially.

Shifting to the simplest linear regression by mapping $\phi: x \to s$ $s = \phi(x)$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 = \sum_{i=0}^{3} w_i x^i$$

In this example:

$$\phi(x) = (\phi_0(x), \phi_1(x), \phi_2(x), \phi_3(x))^{\mathrm{T}}$$

= $(x^0, x^1, x^2, x^3)^{\mathrm{T}}$

$$y(\mathbf{s}, \mathbf{a}) = a_0 s_0 + a s_1 + a_2 s_2 + a_3 s_3 = \sum_{i=0}^{3} a_i s_i$$

Examples of $\phi(x)$:

$$\phi_i(x) = \exp\left\{-\frac{(x - \mu_i)^2}{2\sigma^2}\right\}$$

Gaussian function

 $\mu = (\mu_1, \mu_2, \cdots, \mu_i, \cdots, \mu_8)$ and σ are user-defined.

We can use any nonlinear functions for $\phi(x)$.

5 examples from randomly generated *w w* is composed of 8 elements.

8 Gaussian functions $\phi(x)$

a linear function of the parameters w

Linear regression (in general)

$$y(x, \mathbf{w}) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + \dots + w_M \phi_M(x) = \sum_{i=0}^{M} w_i \phi_i(x) = \mathbf{w}^T \boldsymbol{\phi}(x)$$

M can be freely defined.

- (M+1) parameters $\mathbf{w} = (w_0, w_1, w_2, \dots, w_M)^T$
- no matter how many dimensionality the original input x has

Likelihood function

$$L(\mathbf{w}, \sigma) \equiv -\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma^2) = \frac{1}{2\sigma^2} \sum_{i=1}^{N} \{y_i - y(x_i, \mathbf{w})\}^2 + \frac{N}{2} \ln(2\pi\sigma^2)$$
negative log of the likelihood function

the least square term

In Linear Regression: $y(x, \mathbf{w}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(x)$

Maximum Likelihood Estimation (MLE)

$$\hat{\mathbf{w}}, \hat{\sigma} = \underset{\mathbf{w}, \sigma}{arg \min} L(\mathbf{w}, \sigma)$$
 Need optimization algorithm?

 $\it M$: number of the parameter $\it w$

N: sample size

$$\frac{\partial L(\mathbf{w}, \sigma)}{\partial \mathbf{w}} = 0 \text{ or } \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = 0$$

analytically solved

$$\widehat{\mathbf{w}} = \underline{\left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}}$$

 $M \times M$ square matrix

$$\mathbf{\Phi}^{*-1} \equiv \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}$$

$$\Phi^* \widehat{\mathbf{w}} = \mathbf{t}$$
 a linear system

The components of $\phi(x)$

$$\boldsymbol{\Phi} = \begin{pmatrix} \overline{\phi_1(x_1)} & \cdots & \overline{\phi_M(x_1)} \\ \vdots & \ddots & \vdots \\ \overline{\phi_1(x_N)} & \cdots & \overline{\phi_M(x_N)} \end{pmatrix} \qquad \frac{\text{sample}}{x_1, \cdots x_N}$$

 $N \times M$ matrix

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 4 | Slide 32

Important properties of Linear Regression

- The regression model is a linear function of the parameters $\mathbf{w} = (w_0, w_1, w_2, \cdots, w_M)^T$
- The function $\phi(x) = (\phi_0(x), \phi_1(x), \phi_2(x), \cdots, \phi_M(x))^T$ can be nonlinear of the input x.

- The number of the parameters w is M.
- Therefore, $\widehat{\boldsymbol{w}}$ can be obtained analytically.

acumption that

(Under the assumption that the probabilistic model is an isotropic Gaussian distribution)

Regularization

Penalty on the parameter w to avoid overfitting

$$w^{\mathrm{T}}\phi(x)$$

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w})$$

$$E(\mathbf{w}) = \sum_{i=1}^{N} \{y_i - y(x_i, \mathbf{w})\}^2$$

s.t. $\|\mathbf{w}\|^2 \leq \eta$

Review:

The error function $E(\mathbf{w})$

= the simplest expression of the negative log likelihood.

$$\widehat{\mathbf{w}} = \operatorname{argmin} E_{reg}(\mathbf{w}) = (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

still analytically solved

where, $E_{reg}(\mathbf{w}) = E(\mathbf{w}) + \lambda ||\mathbf{w}||^2$

regularization term

Other regularization techniques

regularization term

$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} E_{reg}(\mathbf{w})$$

where,
$$E_{reg}(\mathbf{w}) = E(\mathbf{w}) + \lambda ||\mathbf{w}||^{Q}$$

Dr. Daigo Maruyama | Scientific Machine Learning: Lecture 4 | Slide 35

Summary until Linear Regression (1/2)

A larger framework than the least square method was introduced based on perspectives of the probability theory (Some examples will be introduced in other lectures).

The concept (a procedure):

- 1. Define a probabilistic model (using probability distributions)
- 2. Maximize the likelihood function determined by dataset
- 3. (if prior distributions are set, maximize the posterior distribution)

Compute the log of the likelihood/posterior to avoid numerical errors

error function the least square is one of the error functions.

• The concept is further extended to be generalized until the lectures of "Bayes".

Summary until Linear Regression (2/2)

A regression model can be defined in the process of the definition of the probabilistic model.

- Linear regression model is one of the regression models.
 - The model is a linear function of the parameters w

The 2nd process: MLE becomes easy (analytically obtained).

This concept will be important.

Current Position to Next

The theory is extended by introducing Bayesian perspective by from the next lecture using two slots of lectures

The required tools will be all equipped.

