

Ministero dell' Istruzione, dell' Università e della Ricerca M758 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAS - MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI

Tema di: TECNOLOGIE TECNICHE INSTALLAZIONE E MANUTENZIONE APPARATI, IMPIANTI INDUSTRIALI

ATTENZIONE

La presente prova è costituita dalle seguenti tracce relative a:

- IPAS MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI
- IPAE MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI CURVATURA ELETTRICO ELETTRONICO
- IPAI MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI CURVATURA INFORMATICA
- IPAM MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI CURVATURA MECCANICA
- IPAN MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI CURVATURA SISTEMI ENERGETICI

Si invita il Presidente della commissione a verificare che i candidati di ciascuna classe ricevano e svolgano la prova d'esame coerente al percorso di studio seguito.

Ministero dell' Istruzione, dell' Università e della Ricerca M758 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAS - MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI

Tema di: TECNOLOGIE TECNICHE INSTALLAZIONE E MANUTENZIONE APPARATI, IMPIANTI INDUSTRIALI

Il candidato svolga la prima parte della prova e risponda a due tra i quesiti proposti nella seconda parte.

PRIMA PARTE

In una piccola azienda meccanica sono presenti le seguenti macchine utensili:

- n. 4 torni manuali paralleli;
- n. 2 fresatrici universali;
- n. 2 trapani a colonna;
- n. 1 seghetto a nastro;
- n. 2 molatrici a banco.

Il candidato, dopo aver assunto con motivato criterio i dati ritenuti necessari:

- predisponga il piano di manutenzione ordinaria annuale per mantenere in perfetta efficienza le macchine;
- predisponga la scheda di manutenzione di una delle macchine presenti nell'officina;
- analizzi la tipologia dei rischi possibili durante le operazioni di manutenzione, valutando la probabilità e il danno per ognuno dei pericoli individuati e indicando, inoltre, le misure di prevenzione e protezione e la tipologia del DPI da adottare;

L'impianto elettrico a servizio dell'azienda prevede, tra l'altro, all'interno del proprio magazzino, un quadro elettrico BT con in uscita 3 linee monofase e 3 linee trifase, una delle quali serve per alimentare un montacarichi. Il candidato, fatte eventuali ipotesi aggiuntive:

- descriva, anche tramite uno schema, questa parte di impianto presente nel magazzino e illustri le caratteristiche funzionali sia degli elementi principali costituenti il motoriduttore che comanda il montacarichi sia di quelli presenti nel quadro;
- descriva un possibile sistema di comando del montacarichi e indichi le tecniche di verifica di funzionamento del sistema stesso;
- illustri le tipologie di controllo che il servizio di manutenzione deve effettuare periodicamente sul quadro BT e sugli elementi presenti al suo interno per mantenere la loro efficienza;

Ministero dell'Istruzione, dell'Università e della Ricerca

<u>M758 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE</u>

Indirizzo: IPAS - MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI

Tema di: TECNOLOGIE TECNICHE INSTALLAZIONE E MANUTENZIONE APPARATI, IMPIANTI INDUSTRIALI

SECONDA PARTE

- 1. Dopo aver illustrato l'importanza che riveste l'impianto di messa a terra dal punto di vista della sicurezza, il candidato indichi i controlli da effettuare per accertare l'efficienza dell'impianto stesso.
- 2. Si calcoli il costo di fermo macchina dovuto a un intervento di manutenzione straordinaria su una fresatrice utilizzando i seguenti dati:
 - $C_{ma} = 0.7$ €/min;
 - $C_i = 0.6$ €/min;
 - $T_p = 2.5 \text{ min/pezzo};$
 - MC = 10.0€/pezzo;
 - $C_{mp} = 1,0$ €/pezzo;
 - Costi consumi = 0,5 €/min.
- 3. Il multivibratore astabile di figura è utilizzato per ottenere un clock a frequenza variabile con i livelli 1 e 0 corrispondenti rispettivamente a 0V e 5V.

Il candidato illustri la funzione del diodo zener, dica quali sono i parametri da considerare nella scelta del componente elettronico e come individuare la resistenza R ($V_{sat} = \pm 15V$). Inoltre individui i motivi per i quali la forma d'onda può modificarsi e diventare triangolare.

Ministero dell' Istruzione, dell' Università e della Ricerca M758 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAS - MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI

Tema di: TECNOLOGIE TECNICHE INSTALLAZIONE E MANUTENZIONE APPARATI, IMPIANTI INDUSTRIALI

4. Un condominio ha un impianto centralizzato alimentato da una caldaia a gas metano da 375 kW.

Il candidato elenchi i principali obblighi a cui deve adempiere l'impresa incaricata della gestione dell'impianto, per il rispetto delle relative leggi e norme di riferimento.

Ministero dell' Istruzione, dell' Università e della Ricerca M759 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAE - MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI CURVATURA ELETTRICO ELETTRONICO

Tema di: TECNOLOGIE TECNICHE INSTALLAZIONE E MANUTENZIONE APPARATI, IMPIANTI INDUSTRIALI

Il candidato svolga la prima parte della prova e risponda a due tra i quesiti proposti nella seconda parte.

PRIMA PARTE

L'impianto elettrico di un supermercato prevede, tra l'altro, all'interno del proprio magazzino, un quadro elettrico BT con in uscita 3 linee monofase e 3 linee trifase, una delle quali serve per alimentare un montacarichi. Il candidato, fatte eventuali ipotesi aggiuntive:

- 1. descriva, anche tramite uno schema, questa parte di impianto presente nel magazzino e illustri le caratteristiche funzionali sia degli elementi principali costituenti il motoriduttore che comanda il montacarichi sia di quelli presenti nel quadro;
- 2. indichi i controlli che il servizio di manutenzione deve effettuare sul motoriduttore per mantenere la sua efficienza;
- 3. indichi i criteri per la scelta dei cavi in uscita dal quadro e, in particolare, verifichi che la sezione $S = 35 \text{mm}^2$ per una delle 3 linee trifase lunga 80 m è adeguata sapendo che la corrente d'impiego vale $I_B = 60 \text{A}$ e $\cos \varphi = 0.9$;
- 4. illustri le tipologie di controllo che il servizio di manutenzione deve effettuare periodicamente sul quadro BT e su gli elementi presenti al suo interno per mantenere la loro efficienza;
- 5. indichi come redigere un documento per la registrazione degli interventi di manutenzione effettuati.

SECONDA PARTE

- 1. Dopo aver illustrato l'importanza che riveste l'impianto di messa a terra dal punto di vista della sicurezza, il candidato indichi i controlli da effettuare per accertare l'efficienza dell'impianto stesso.
- 2. Si desidera misurare la potenza e la corrente assorbite da un motore asincrono trifase aventi le seguenti caratteristiche: tensione V = 400V; potenza P = 5kW; rendimento η = 0,84; cosφ = 0,92. Il candidato calcoli la corrente assorbita dal motore per avere indicazioni sulla portata degli strumenti di misura da utilizzare e rappresenti lo schema elettrico di montaggio degli strumenti stessi, specificando le cause che possono provocare un sovraccarico di corrente.

Ministero dell'Istruzione, dell'Università e della Ricerca

<u>M759 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE</u>

Indirizzo: IPAE - MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI CURVATURA ELETTRICO ELETTRONICO

Tema di: TECNOLOGIE TECNICHE INSTALLAZIONE E MANUTENZIONE APPARATI, IMPIANTI INDUSTRIALI

3. Un test di affidabilità su 50 lampadine ha fornito i seguenti risultati:

Il candidato determini l'andamento dell'affidabilità in funzione dell'invecchiamento e, in particolare, quando cambiare la lampadina se si desidera un'affidabilità del 90% o dell'80%.

4. Il multivibratore astabile di figura è utilizzato per ottenere un clock a frequenza variabile con i livelli 1 e 0 corrispondenti rispettivamente a 0V e 5V.

Il candidato illustri la funzione del diodo zener, dica quali sono i parametri da considerare nella scelta del componente elettronico e come individuare la resistenza R ($V_{sat}=\pm~15V$). Inoltre individui i motivi per i quali la forma d'onda può modificarsi e diventare triangolare.

Durata massima della prova: 6 ore.

È consentito l'uso di manuali tecnici e di calcolatrice non programmabile.

Ministero dell'Istruzione, dell'Università e della Ricerca

<u>M761 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE</u>

Indirizzo: IPAI – MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI
CURVATURA INFORMATICA

Tema di: TECNOLOGIE E TECNICHE DI INSTALLAZIONE E DI MANUTENZIONE DI APPARATI E IMPIANTI CIVILI E INDUSTRIALI

Il candidato svolga la prima parte della prova e risponda a due dei quesiti proposti nella seconda parte.

PRIMA PARTE

Il candidato presenti un apparato o dispositivo di sua conoscenza, con particolare riferimento alle sue componenti informatiche, e ne descriva i guasti più tipici che si possono verificare.

Prenda quindi in esame uno dei guasti trattati descrivendo:

- le attività necessarie a garantire la sicurezza di operatori ed utenti in riferimento alla normativa esistente;
- una procedura per la ricerca e l'individuazione del guasto utilizzando metodi e strumenti di diagnostica tipici;
- la soluzione che ritiene opportuno adottare per la risoluzione del guasto.

Alla luce della soluzione proposta, il candidato predisponga un preventivo in cui siano riportate le attività, i materiali ed i corrispondenti costi stimati per l'intervento di riparazione.

Descriva infine le procedure che si rendono necessarie per il processo di certificazione di qualità.

SECONDA PARTE

Il candidato (che potrà eventualmente avvalersi delle conoscenze e competenze maturate attraverso esperienze di alternanza scuola-lavoro, stage o formazione in azienda) risponda a due quesiti a scelta tra quelli sotto riportati.

- 1. In riferimento al tema proposto nella prima parte, proponga un capitolato di manutenzione per assicurare assistenza continua nel tempo.
- 2. In riferimento al tema proposto nella prima parte, compili il documento di collaudo relativo all'intervento effettuato.
- 3. Esponga le differenze tra i metodi di manutenzione tradizionali e quelli innovativi.
- 4. Esponga alcune tecniche e strumenti della telemanutenzione e della teleassistenza.

Durata massima della prova: 6 ore.

Ministero dell' Istruzione, dell' Università e della Ricerca M762 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAM – MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI
CURVATURA MECCANICA

Tema di: TECNOLOGIE TECNICHE, INSTALLAZIONE, MANUTENZIONE, APPARATI, IMPIANTI INDUSTRIALI

Il candidato svolga la prima parte della prova e risponda a due tra i quesiti proposti nella seconda parte.

PRIMA PARTE

In una piccola azienda meccanica sono presenti le seguenti macchine utensili:

- n. 4 torni manuali paralleli;
- n. 2 fresatrici universali;
- n. 2 trapani a colonna;
- n. 1 seghetto a nastro;
- n. 2 molatrici a banco.

Si chiede al candidato, dopo aver assunto con motivato criterio i dati ritenuti necessari:

- di predisporre il piano di manutenzione ordinaria annuale per mantenere in perfetta efficienza le macchine;
- di predisporre le schede di manutenzione per ciascuna macchina;
- di analizzare la tipologia dei rischi possibili durante le operazioni di manutenzione, valutando la probabilità e il danno per ognuno dei pericoli individuati e indicando, inoltre, le misure di prevenzione e protezione e la tipologia del DPI da adottare;
- di stimare un preventivo di spesa per la manutenzione ordinaria annuale da proporre al committente.

Ministero dell' Istruzione, dell' Università e della Ricerca M762 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAM – MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI
CURVATURA MECCANICA

Tema di: TECNOLOGIE TECNICHE, INSTALLAZIONE, MANUTENZIONE, APPARATI, IMPIANTI INDUSTRIALI

SECONDA PARTE

- 1. Si calcoli il costo di fermo macchina dovuto a un intervento di manutenzione straordinaria su una fresatrice utilizzando i seguenti dati:
 - $C_{ma} = 0.7$ €/min;
 - $C_i = 0.6$ €/min;
 - $T_p = 2.5 \text{ min/pezzo};$
 - MC = 10,0 €/pezzo;
 - $C_{mp} = 1,0$ €/pezzo;
 - Costi consumi = 0,5 €/min.
- 2. Un condominio ha un impianto centralizzato alimentato da una caldaia a gas metano da 375 kW.
 - Il candidato elenchi i principali obblighi a cui deve adempiere l'impresa incaricata della gestione dell'impianto, per il rispetto delle relative leggi e norme di riferimento.
- 3. Il candidato illustri, sulla base dell'esperienza da lui fatta direttamente o svolta nell'ambito di stage aziendali o di alternanza scuola-lavoro, le mansioni e/o le attività lavorative normalmente svolte, evidenziando le competenze acquisite e gli obiettivi raggiunti.
- 4. Il candidato rappresenti, ipotizzando un livello prestazionale richiesto dal committente, la pianta di un appartamento tipo indicando a sua scelta: l'impiantistica elettrica (quadro elettrico, punti prese e luce, linee elettriche in cavidotti, ecc.), quella termica (caldaia, elementi, tubazioni, ecc.), quella idrico-sanitaria (autoclave, utenze varie, tubazioni, ecc.).
 - Il candidato inoltre, assumendo con motivato criterio ogni altro dato necessario, proceda ad un dimensionamento di massima dell'impiantistica prescelta.

Durata massima della prova: 6 ore.

È consentito l'uso di manuali tecnici e di calcolatrici non programmabili.

È consentito l'uso del dizionario della lingua italiana.

È consentito l'uso del dizionario bilingue (italiano-lingua del paese di provenienza) per i candidati di madrelingua non italiana. Non è consentito lasciare l'Istituto prima che siano trascorse 3 ore dalla dettatura del tema.

Ministero dell' Istruzione, dell' Università e della Ricerca M983 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAN – MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI
CURVATURA SISTEMI ENERGETICI

Tema di: TECNOLOGIE TECNICHE, INSTALLAZIONE, MANUTENZIONE, APPARATI, IMPIANTI INDUSTRIALI

Il candidato svolga la prima parte della prova e risponda a due tra i quesiti proposti nella seconda parte.

PRIMA PARTE

In un appartamento di 96 mq si vuole installare un impianto a pannelli radianti del tipo bugnato, alimentato da una caldaia a condensazione a gas metano della potenzialità di 24 kW. L'impianto è così costituito:

- camera da letto da 22 mq con impianto a pannelli radianti;
- camera da letto da 14 mq con impianto a pannelli radianti;
- sala/soggiorno da 35 mq con impianto a pannelli radianti;
- cucina da 12 mq con impianto a pannelli radianti;
- servizio principale da 9 mq con scaldasalviette alimentati a 50 °C;
- servizio secondario da 4 mq con scaldasalviette alimentati a 50 °C.

Tutti i locali hanno una altezza di 2,80 mt.

Nel rispetto al D.M 311/06, in particolare ai coefficienti di trasmissione globale del calore U per una zona climatica E, ne deriva un carico termico per unità di volume pari a 23 W/mc.

Il candidato, dopo aver effettuato le opportune scelte impiantistiche, utilizzando le tabelle allegate, tratte da cataloghi tecnici, dimensioni l'impianto a pannelli radianti a pavimento indicando il numero di circuiti e la quantità di tubazione necessaria. Effettui inoltre la scelta degli scaldasalviette indicandone le misure.

Disegni uno schema di funzionamento evidenziando i diametri delle tubazioni.

Ministero dell' Istruzione, dell' Università e della Ricerca M983 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAN – MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI
CURVATURA SISTEMI ENERGETICI

Tema di: TECNOLOGIE TECNICHE, INSTALLAZIONE, MANUTENZIONE, APPARATI, IMPIANTI INDUSTRIALI

TABELLA 1 - RESA SCALDASALVIETTE

Modello	Codice	Prof. mm	Altezza mm	Largh. mm	Interass . mm	Peso mm	Cal. It	kcal/h dt=50°C	Watt dt=50°C	Watt dt=40°C	Watt dt=30°C	Watt dt=20°C	Esp.n.	funz. misto Watt
818 - 15 tubi - 2 int.	E X S043 01	30	818	430	400	5.95	3.24	279.0	324	248	175	107	1.207	300
818 - 15 tubi - 2 int.	E X S048 01	30	818	480	450	6.45	3.49	304.0	354	270	191	117	1.207	300
818 - 15 tubi - 2 int.	E X S053 01	30	818	530	500	6.95	3.73	330.0	384	293	207	127	1.206	400
818 - 15 tubi - 2 int.	E X S058 01	30	818	580	550	7.46	3.98	356.0	414	316	223	137	1.206	400
818 - 15 tubi - 2 int.	E X S073 01	30	818	730	700	8.96	4.72	433.0	503	384	272	167	1.206	400
1118 - 22 tubi - 2 int.	E X M043 01	30	1118	430	400	8.45	4.60	394.0	459	346	241	145	1.258	400
1118 - 22 tubi - 2 int.	E X M048 01	30	1118	480	450	9.18	4.96	437.0	508	382	266	159	1.268	400
1118 - 22 tubi - 2 int.	E X M053 01	30	1118	530	500	9.92	5.33	476.0	553	418	291	174	1.259	400
1118 - 22 tubi - 2 int.	E X M058 01	30	1118	580	550	10.66	5.69	515.0	598	453	316	190	1.250	400
1118 - 22 tubi - 2 int.	E X M073 01	30	1118	730	700	12.87	6.78	632.0	735	559	394	240	1.222	700
1462 - 28 tubi - 3 int.	E X L043 01	30	1462	430	400	10.83	5.93	510.0	594	451	317	193	1.227	400
1462 - 28 tubi - 3 int.	EXL048 01	30	1462	480	450	11.77	6.39	561.0	652	496	349	212	1.226	700
1462 - 28 tubi - 3 int.	E X L053 01	30	1462	530	500	12.71	6.85	611.0	711	541	380	231	1.225	700
1462 - 28 tubi - 3 int.	E X L058 01	30	1462	580	550	13.65	7.31	662.0	769	585	412	251	1.224	700
1462 - 28 tubi - 3 int.	EXL073 01	30	1462	730	700	16.46	8.70	813.0	945	720	506	309	1.222	1000
1720 - 34 tubi - 3 int.	E X G043 01	30	1720	430	400	12.97	7.10	617.0	717	546	385	235	1.218	700
1720 - 34 tubi - 3 int.	E X G048 01	30	1720	480	450	14.11	7.66	679.0	790	603	426	260	1.211	700
1720 - 34 tubi - 3 int.	E X G053 01	30	1720	530	500	15.25	8.22	739.0	860	656	463	283	1.211	700
1720 - 34 tubi - 3 int.	E X G058 01	30	1720	580	550	16.39	8.78	799.0	929	709	501	307	1.210	700
1720 - 34 tubi - 3 int.	E X G073 01	30	1720	730	700	19.81	10.46	979.0	1138	869	614	376	1.209	1000

X=1 per attacchi alle estremità del radiatore; B per attacchi 50 mm; 01= codice colore Bianco Standard. Per dt diversi da 50°C utilizzare la formula: Q=Qn (dt / 50)n

TABELLA 2 - RESA PANNELLI RADIANTI

Fabbisogno termico specifico	30 W/m ²	40 W/m ²	50 W/m²	60 W/m²	70 W/m²	80 W/m²
temp. °C	20°C Temperatura a 5 K Salto termico 45 mm Spessore so 16 mm Diametro to	ppra bugna massetto tra	dizionale			

Ministero dell'Istruzione, dell'Università e della Ricerca M983 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAN – MANUTENZIONE E ASSISTENZA TECNICA OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI CURVATURA SISTEMI ENERGETICI

Tema di: TECNOLOGIE TECNICHE, INSTALLAZIONE, MANUTENZIONE, APPARATI, IMPIANTI INDUSTRIALI

Temperatura di mandata in base a UNI EN 1264-3:2009; curve di resa ricavate dalle rese determinate numericamente dal DFT di Padova secondo UNI EN 15377

passo cm >		10	15	20	10	15	20	10	15	20	10	15	20	10	15	20	10	15	20
es. ceramica	m ² K/W 0,010	28	29	31	30	32	33	32	34	36	34	36	39	36	38	41	38	41	44
	m ² K/W 0,035	29	30	31	31	33	34	33	35	37	36	38	40	38	40	43	40	43	46
es. parquet	m ² K/W 0,060	30	31	32	32	34	35	35	37	39	37	39	42	40	42	45	42	45	48
	m ² K/W 0,085	31	32	33	33	35	37	36	38	40	39	41	44	42	44	47	44	47	51
	m ² K/W 0,125	32	33	34	35	37	38	38	40	42	42	44	46	45	47	50	48	51	54
es. legno	m ² K/W 0,150	33	34	35	36	38	40	40	42	44	43	45	48	47	49	52	50	53	57
a norma	m ² K/W 0,100	31	32	34	34	36	37	37	39	41	40	42	45	43	45	48	46	49	52
		Ī																	

t. pav.

 $10,\!8~\text{W/m}^2\text{K}~$ Alfa pavimento caldo secondo UNI EN 1264-2:2009 e UNI EN 1264-5:2009

Temperatura media superficiale al pavimento

passo cm >		10	15	20	10	15	20	10	15	20	10	15	20	10	15	20	10	15	20
es. ceramica	m ² K/W 0,010	22,8	22,8	22,8	23,7	23,7	23,7	24,6	24,6	24,6	25,6	25,6	25,6	26,5	26,5	26,5	27,4	27,4	27,4
	m ² K/W 0,035	22,8	22,8	22,8	23,7	23,7	23,7	24,6	24,6	24,6	25,6	25,6	25,6	26,5	26,5	26,5	27,4	27,4	27,4
es. parquet	m ² K/W 0,060	22,8	22,8	22,8	23,7	23,7	23,7	24,6	24,6	24,6	25,6	25,6	25,6	26,5	26,5	26,5	27,4	27,4	27,4
	m ² K/W 0,085	22,8	22,8	22,8	23,7	23,7	23,7	24,6	24,6	24,6	25,6	25,6	25,6	26,5	26,5	26,5	27,4	27,4	27,4
	m ² K/W 0,125	22,8	22,8	22,8	23,7	23,7	23,7	24,6	24,6	24,6	25,6	25,6	25,6	26,5	26,5	26,5	27,4	27,4	27,4
es. legno	m ² K/W 0,150	22,8	22,8	22,8	23,7	23,7	23,7	24,6	24,6	24,6	25,6	25,6	25,6	26,5	26,5	26,5	27,4	27,4	27,4
a norma	m ² K/W 0,100	22,8	22,8	22,8	23,7	23,7	23,7	24,6	24,6	24,6	25,6	25,6	25,6	26,5	26,5	26,5	27,4	27,4	27,4

Ministero dell' Istruzione, dell' Università e della Ricerca M983 – ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: IPAN – MANUTENZIONE E ASSISTENZA TECNICA
OPZIONE APPARATI, IMPIANTI E SERVIZI TECNICI INDUSTRIALI E CIVILI
CURVATURA SISTEMI ENERGETICI

Tema di: TECNOLOGIE TECNICHE, INSTALLAZIONE, MANUTENZIONE, APPARATI, IMPIANTI INDUSTRIALI

SECONDA PARTE

- 1. Il candidato esegua un'analisi di un impianto a pannelli radianti a pavimento, indicando i vantaggi e gli eventuali svantaggi rispetto ad un impianto tradizionale a radiatori.
- 2. Il candidato dopo aver effettuato un'analisi dei possibili guasti, compili un piano di manutenzione programmata inglobando anche la manutenzione obbligatoria della caldaia a condensazione.
- 3. Il candidato compili una lista dei materiali in termini di apparecchiature principali, valvolame e minuterie per realizzare l'impianto.
- 4. Il candidato illustri, sulla base dell'esperienza da lui fatta direttamente o svolta nell'ambito di stage aziendali o di alternanza scuola-lavoro o in attività di laboratorio durante l'anno scolastico, le mansioni e/o le attività lavorative normalmente svolte, evidenziando le competenze acquisite e gli obiettivi raggiunti preferibilmente in relazione alla messa in opera delle tubazioni per la realizzazione dei circuiti radianti a pavimento.

Durata massima della prova: 6 ore.

È consentito l'uso di manuali tecnici e di calcolatrici non programmabili.

È consentito l'uso del dizionario della lingua italiana.