UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT4410 — Advanced linear analysis

Day of examination: Wednesday, December 11, 2019

Examination hours: 14:30 – 18:30

This problem set consists of 2 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All subproblems (1a, 1b,...) carry the same weight.

Problem 1

1a

Formulate the Uniform Boundedness Principle.

1b

Let X be a locally compact space. Assume we are given functions f_n $(n \in \mathbb{N})$ and f in $C_0(X)$ such that

$$\int_{X} f_n \, d\mu \xrightarrow{n} \int_{X} f \, d\mu \tag{1}$$

for all regular complex Borel measures μ on X. Show that $\sup_n ||f_n|| < \infty$ (where $||f_n||$ denotes the supremum-norm of f_n) and $f_n \to f$ pointwise.

1c

Show that conversely, if $f_n, f \in C_0(X)$ are such that $\sup_n ||f_n|| < \infty$ and $f_n \to f$ pointwise, then we have (1) for all complex Borel measures μ on X.

Problem 2

2a

Formulate the Fubini-Tonelli theorem.

2b

Consider the interval [0,1] and the σ -algebra \mathcal{B} of Borel subsets of [0,1]. Let λ and μ be the Lebesgue and counting measures, respectively, on $([0,1],\mathcal{B})$.

(Continued on page 2.)

(Thus $\mu(A)$ equals the number of elements of A.) Denote by D the diagonal $\{(x,x)|x\in[0,1]\}$ in $[0,1]\times[0,1]$ and consider the characteristic function χ_D of D.

Compute the integrals

$$\int_{[0,1]} \left(\int_{[0,1]} \chi_D(x,y) d\lambda(x) \right) d\mu(y) \quad \text{and} \quad \int_{[0,1]} \left(\int_{[0,1]} \chi_D(x,y) d\mu(y) \right) d\lambda(x).$$

Why the Fubini-Tonelli theorem does not apply in this case?

Problem 3

3a

Formulate the Radon-Nikodym theorem.

3b

Consider the measures λ and μ from Problem 2b. Show that $\lambda \ll \mu$, but there is no Radon–Nikodym derivative $\frac{d\lambda}{d\mu}$. What goes wrong with the Radon–Nikodym theorem here?

3c

Show that there is no Lebesgue decomposition of μ with respect to λ , that is, we cannot write $\mu = \mu_a + \mu_s$, with $\mu_a \ll \lambda$ and $\mu_s \perp \lambda$.

Problem 4

Assume $f \colon \mathbb{R}^n \to \mathbb{C}$ is an integrable function and consider its Fourier transform

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i \xi x} dx,$$

where ξx denotes the scalar product $\xi_1 x_1 + \cdots + \xi_n x_n$. For $k \in \mathbb{N}$, consider also the function ϕ_k on \mathbb{R}^n defined by

$$\phi_k(x) = k^n e^{-\pi k^2 x^2}.$$

4a

Show that the functions $\phi_k * f$ are continuous and for every point of continuity x of f we have

$$(\phi_k * f)(x) \xrightarrow{k} f(x).$$

4b

Show that if f is continuous at 0 and $\hat{f} \geq 0$, then \hat{f} is integrable and

$$\int_{\mathbb{R}^n} \hat{f}(\xi) d\xi = f(0).$$