Машинное обучение

Лекция 5 Линейная классификация

Андрей Нарцев andrei.nartsev@gmail.com anartsev@hse.ru

НИУ ВШЭ, 2025

План лекции

- Простейшая модель линейной классификации
- Переобучение и регуляризация в линейных моделях
- Интерпретация линейных моделей
- Логистическая регрессия (введение)

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- a(x) должен возвращать одно из двух чисел

Линейный классификатор

• Будем считать, что есть единичный признак

$$a(x) = \operatorname{sign} \sum_{j=1}^{a} w_j x_j = \operatorname{sign} \langle w, x \rangle$$

Отступ

- $M_i = y_i \langle w, x_i \rangle$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

Порог

$$a(x) = \operatorname{sign}(\langle w, x \rangle - t)$$

• t — порог классификатора

• Можно подбирать для оптимизации функции потерь, отличной от использованной при обучении

Линейный классификатор

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

Обучение линейных классификаторов

Функция потерь в классификации

• Частый выбор — бинарная функция потерь

$$L(y,a) = [a \neq y]$$

• Функционал ошибки — доля ошибок (error rate)

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

• Нередко измеряют долю верных ответов (accuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Доля ошибок для линейного классификатора

• Функционал ошибки:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\text{sign}(\langle w, x_i \rangle) \neq y_i]$$

• Индикатор — недифференцируемая функция

Отступы для линейного классификатора

• Функционал ошибки:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\text{sign}(\langle w, x_i \rangle) \neq y_i]$$

• Альтернативная запись:

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0]$$

$$M_i$$

Отступы для линейного классификатора

$$L(M) = [M < 0]$$

• Нельзя продифференцировать

Верхняя оценка

$$L(M) = [M < 0] \le \tilde{L}(M)$$

• Оценим сверху дифференцируемой функцией

Верхняя оценка

$$0 \le \frac{1}{\ell} \sum_{i=1}^{\ell} [y_i \langle w, x_i \rangle < 0] \le \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(y_i \langle w, x_i \rangle) \to \min_{w}$$

- Минимизируем верхнюю оценку
- Надеемся, что она прижмёт долю ошибок к нулю

Примеры верхних оценок

- 1. $\tilde{L}(M) = \log(1 + e^{-M})$ логистическая
- $2. \ \tilde{L}(M) = \max(0, 1-M)$ кусочно-линейная
- $3. \ ilde{L}(M) = e^{-M}$ экспоненциальная
- $4.~ ilde{L}(M) = rac{2}{1+e^M} -$ сигмоидная

Пример обучения

• Выбираем логистическую функцию потерь:

$$\tilde{Q}(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Вычисляем градиент:

$$\nabla_{w} \tilde{Q}(w, X) = -\frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_{i} x_{i}}{1 + \exp(y_{i} \langle w, x_{i} \rangle)}$$

Пример обучения

• Делаем градиентный спуск:

$$w^{(t)} = w^{(t-1)} + \eta \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{y_i x_i}{1 + \exp(y_i \langle w, x_i \rangle)}$$

Переобучение и регуляризация линейных моделей

Нелинейная задача

$$a(x) = w_0 + w_1 x$$

Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

Симптом переобучения

$$a(x) = 0.5 + 13458922x - 43983740x^2 + \cdots$$

- Большие коэффициенты симптом переобучения
- Эмпирическое наблюдение

Симптом переобучения

- Большие коэффициенты в линейной модели это плохо
- Пример: предсказание роста по весу

$$a(x) = 698x - 41714$$

- Изменение веса на 0.01 кг приведет к изменению роста на 7 см
- Не похоже не правильную зависимость

Регуляризация

- Будем штрафовать за большие веса!
- Пример функционала:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2$$

• Регуляризатор:

$$||w||^2 = \sum_{j=1}^d w_j^2$$

Регуляризация

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

• λ — коэффициент регуляризации

Регуляризация

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

• Аналитическое решение:

$$w = (X^T X + \lambda I)^{-1} X^T y$$

• Гребневая регрессия (Ridge regression)

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 0.01 \|w\|^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 1 \|w\|^2 \to \min_{w}$$

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 100 \|w\|^2 \to \min_{w}$$

Лассо

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda \sum_{j=1}^{d} |w_j| \to \min_{w}$$

- LASSO (Least Absolute Shrinkage and Selection Operator)
- Некоторые веса зануляются
- Приводит к отбору признаков

Регуляризаторы

•
$$||z||_2 = \sqrt{\sum_{j=1}^d z_j^2} - L_2$$
-норма

•
$$||z||_1 = \sum_{j=1}^d |z_j| - L_1$$
-норма

Пример регуляризации

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) + \lambda ||w||^2 \to \min_{w}$$

- Полностью аналогично линейной регрессии
- Важно не накладывать регуляризацию на свободный коэффициент
- Можно использовать L_1 -регуляризацию

Интерпретация линейных моделей

Предсказание стоимости квартиры

```
a(x) = 100.000 * (площадь)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

Предсказание стоимости квартиры

```
a(x) = 100.000 * (площадь) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

• Чем больше вес, тем важнее признак?

```
a(x) = 100.000 * (площадь в кв. м.) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

• Чем больше вес, тем важнее признак?

```
a(x) = 10 * (площадь в кв. см.) + 500.000 * (число магазинов рядом) + 100 * (средний доход жильцов дома)
```

• Чем больше вес, тем важнее признак?

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

• Чем больше вес, тем важнее признак?

```
a(x) = 100.000 * (площадь в кв. м.)
+ 500.000 * (число магазинов рядом)
+ 100 * (средний доход жильцов дома)
```

- Чем больше вес, тем важнее признак?
- Только если признаки масштабированы!

Масштабирование признаков

- Отмасштабируем *j*-й признак
- Вычисляем среднее и стандартное отклонение признака на обучающей выборке:

$$\mu_j = \frac{1}{\ell} \sum_{i=1}^{\ell} x_i^j$$

$$\sigma_j = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (x_i^j - \mu_j)^2}$$

Масштабирование признаков

 Вычтем из каждого значения признака среднее и поделим на стандартное отклонение:

$$x_i^j \coloneqq \frac{x_i^J - \mu_j}{\sigma_j}$$

Регуляризация

- Если модель переобучается, то веса используются для запоминания обучающей выборки
- Правильнее масштабировать признаки и регуляризовать модель перед изучением весов

Логистическая регрессия: простое объяснение

Логистическая регрессия

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с b(x) > 0.9
- 10% невозвращённых кредитов нормально

- Баннерная реклама
- b(x) вероятность, что пользователь кликнет по рекламе
- c(x) прибыль в случае клика
- c(x)b(x)— хотим оптимизировать

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x) = p доля положительных равна p.

Линейный классификатор

$$a(x) = sign \langle w, x \rangle$$

• Обучим как-нибудь — например, на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Может, $\langle w, x \rangle$ сойдёт за оценку?

Линейный классификатор

- Переведём выход модели на отрезок [0, 1]
- Например, с помощью сигмоиды:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Сигмоида

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$
- То есть задача сделать отступы на всех объектах максимальными

$$y_i\langle w, x_i\rangle \to \max_w$$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} \rightarrow \min_{w}$$

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен 1
- Если $y_i=+1$, то заменить $\sigma(\langle w,x_i\rangle)=1$ на $\sigma(\langle w,x_i\rangle)=0.5$ так же плохо, как заменить $\sigma(\langle w,x_i\rangle)=0.5$ на $\sigma(\langle w,x_i\rangle)=0$
- Надо строже!

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен $-\log 0 = +\infty$
- Достаточно строго
- Функция потерь называется **log-loss**

$$L(y,z) = -[y = 1] \log z - [y = -1] \log(1 - z)$$

Логистическая регрессия

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(1 - \frac{1}{1 + \exp(-\langle w, x \rangle)} \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(\frac{1}{1 + \exp(\langle w, x \rangle)} \right) \right\} =$$

$$\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log (1 + \exp(-\langle w, x \rangle)) + [y_i = -1] \log (1 + \exp(\langle w, x \rangle)) \right\} =$$

$$\sum_{i=1}^{\ell} \log (1 + \exp(-y_i \langle w, x_i \rangle))$$