- 1. Write each of the functions below (n is the positive integer variable) in the Big-Oh notation.
 - (a) $O(n^2)$
 - (b) O(log(n))
 - (c) O(1/n)
 - (d) O(1)
 - (e) O(log n)
- 2. (10 points) Let A[1...n] be an array of integers. Describe an algorithm that runs in time $O(n \log n)$ and returns an array B whose entries are all the distinct elements of A (i.e., with no duplicates).
- 3. (10 points) Suppose I tell you that there is an algorithm that can square any n digit number in time $O(n \log n)$, for all $n \ge 1$. Then, prove that there is an algorithm that can find the product of any two n digit numbers in time $O(n \log n)$. [Hint: think of using the squaring algorithm as a subroutine to find the product.]
- 4. Write the answers to the following as functions of k:
 - (a) (4 points) Suppose we toss a fair coin k times. What is the probability that we see heads precisely once?
 - (b) (6 points) Suppose we have k different boxes, and suppose that every box is colored uniformly at random with one of k colors (independently of the other boxes). What is the probability that all the boxes get distinct colors?
- 5. (10 points) Given an array A[1...n] of integers (not necessarily distinct), find if there exist indices i, j, k such that A[i] = A[j] + A[k]. Can you find an algorithm with running time $o(n^3)$? [NOTE: this is the little-oh notation, i.e., the algorithm should run in time $< cn^3$, for any constant c, as $n \to \infty$.] [Hint: aim for an algorithm with running time $O(n^2 \log n)$.]