5T-OTA Design

Bilal Ramadan

Supervisor: Dr. Hesham Omran

Table of Contents

Pail I.	OTA Design	2
1.	Desired Specs.	3
2.	OTA schematic	4
3.	OTA Devices Sizing	4
Part 2:	• •	
1.	OP simulation	
2.	Diff small signal ccs	7
3.	CM small signal ccs	8
4.	CMRR	9
5.	Diff large signal ccs	9
Part 3:	•	
1.	OP simulation	
.2	STB analysis	2
Tab	le of Figures	
Figure	9: schematic	4
Figure	20: Final design schematic	5
Figure	21: Open-loop testbench	5
Figure	22: DC OP parameters	6
Figure	23: final DC OP parameters values	6
Figure	24: diff gain bode plot (magnitude)	7
Figure	25: diff small signal results	7
Figure	26: Vout vs VID	9
Figure	27: derivative(Vout) vs VID10	0
Figure	28: GBW vs VICM	0

Figure 29: gm and ID mismatch
Figure 30: loop gain bode plot (magnitude)
Figure 31: loop gain bode plot (phase)
Figure 32: STB analysis results
Figure 33: open loop vs closed loop simulation
Figure 34: OP parameters
Figure 35: closed loop hand analysis
Tables
Table 1: Desired Specs
Table 2: OTA Devices Sizing
Table 3: simulation vs hand analysis
Table 3: simulation vs hand analysis

Part 1: OTA Design

1. Desired Specs

Technology	180 nm CMOS
Supply Voltage	1.8 <i>V</i>
Load	5 <i>pF</i>
Open Loop DC Voltage Gain	≥ 34 <i>dB</i>
CMRR @DC	$\geq 74 \ dB$
Phase Margin	≥ 70°
CM input range - low	≤ 1 V
CM input range - high	≥ 1.5 <i>V</i>
GBW	≥ 10 <i>MHz</i>

Table 1: Desired Specs

At first, we need to identify the topology.

Since the CMIR is near to VDD, therefore the topology we will use is the NMOS input pair 5T-OTA.

2. OTA schematic

Figure 1: schematic

3. OTA Devices Sizing

Device	M_2 (tail CM)	M _{3,4} (input pair)	$M_{5,6}$ (load CM)
W	11.69 μm	25.64 μm	12.12 μm
L	730 nm	450 nm	350 nm
g_m	350 μS	315 μS	192.5 μS
I_D	35 μΑ	17.5 μΑ	17.5 μΑ
g_m/I_D	10	18	11
V_{DSsat}	173.1 mV	85.7 <i>mV</i>	149.4 <i>mV</i>
V_{ov}	144.8 mV	-3.25 mV	132.4 <i>mV</i>
V^*	200 mV	111 mV	181.8 mV

Table 2: OTA Devices Sizing

Part 2: Open-loop OTA simulation

1. OP simulation

1) Schematic of the OTA showing sizing of the transistors

Figure 2: Final design schematic

Figure 3: Open-loop testbench

BSIM4v5: Berke	ley Short Channel IGFE	T Model-4	
device	m.×1.m.×m1.m0	m.×1.m.×m2.m0	m.×1.m.×m6.m0
model	x1:nmos_3p3.9	x1:nmos_3p3.13	x1:pmos_3p3.12
id	1e-05	3.48193e-05	1.74097e-05
vgs	0.839402	0.839402	0.89634
vťh	0,695315	0,698117	0.768305
vds	0.839398	0,424029	0.896338
vdsat	0,172191	0.171438	0.158334
gm	9.94844e-05	0.000348897	0.000194625
gďs	4.36439e-07	2.4772e-06	2.22279e-06
gmbs	3,71677e-05	0.000130336	7,55257e-05
BSIM4v5: Berke	ley Short Channel IGFE	T Model-4	
device	m.×1.m.×m5.m0	m.×1.m.×m4.m0	m.×1.m.×m3.m0
model	x1:pmos_3p3.12	x1:nmos_3p3.12	x1:nmos_3p3.12
id	1.74097e-05	1.74097e-05	1.74097e-05
vgs	0.89634	0.825963	0.825963
vťh	0,768305	0.832767	0.832767
vds	0,896338	0,47962	0.47962
vdsat	0,158334	0.0860522	0.0860522
gm	0.000194625	0.000310268	0.000310268
gďs	2,22279e-06	3.00789e-06	3.00789e-06
gmbs	7.55257e-05	8.41838e-05	8.41838e-05
O			

Figure 4: DC OP parameters

The current in M2 is less than desired and that affects gm so the GBW is affected too so, we will increase the mirror ratio into 3.65 (change M1 size to 3.2 μm width instead of 3.34 μm and keep M2 as it is). So the current consumption is 36.4 μA now.

DOTAL F. D. I. I. CL. I. CL. I. TOL	CCT W 1 1	
BSIM4v5: Berkeley Short Channel IG		
device m.x1.m.xm1.m0	m.×1.m.×m2.m0	m.×1.m.×m6.m0
model x1:nmos_3p3.9	x1:nmos_3p3.13	x1:pmos_3p3.12
id 1e-05	3.63829e-05	1.81914e-05
vgs 0.84384	0.84384	0.900259
vth 0.695132	0.698117	0.768285
vds 0.843836	0.422066	0.900257
	0.174656	0.161303
0 70717 45		•
9m 9.76347e-05	0.000357886	0.000199861
gds 4.3265e-07	2,61195e-06	2,29916e-06
gmbs 3.64741e-05	0.000133689	7.75722e-05
BSIM4v5: Berkeley Short Channel IG	FET Model-4	
device m.x1.m.xm5.m0	m.×1.m.×m4.m0	m.x1.m.xm3.m0
model x1:pmos_3p3.12	x1:nmos_3p3.12	x1:nmos_3p3.12
id 1.81914e-05	1.81914e-05	1.81914e-05
vgs 0,900259	0.827925	0.827925
vth 0.768285	0,832248	0.832248
vds 0.900257	0.477664	0.477664
vdsat 0,161303	0.0871732	0.0871732
9m 0.000199861	0.000321304	0,000321304
9ds 2,29916e-06	3,12547e-06	3,12547e-06
gmbs 7.75722e-05	8,7256e-05	8.7256e-05

Figure 5: final DC OP parameters values

- The current and gm in the input pair exactly equal because no mismatch nor diff input.
- $V_{outdc} = V_{DD} V_{DS6} = V_{DD} V_{GS5} = 899.74 \text{ mV}$ as it follows the mirror node because the current in both branches are equal as a result of the above point.

2. Diff small signal ccs

Figure 6: diff gain bode plot (magnitude)

peak = 5.889266e+01 f2 = 1.705541e+05 gbw = 1.004438e+07

Figure 7: diff small signal results

$$DC\ diff\ gain = g_{m3,4}(r_{o4} \parallel r_{o6}), BW = \frac{1}{2\pi(r_{o4} \parallel r_{o6})C_L}, GBW = \frac{g_{m3,4}}{2\pi C_L}$$

Spec	Simulation	Hand analysis
DC diff gain	35.4 <i>dB</i>	35.45 <i>dB</i>
BW	170.6 <i>KHz</i>	172.7 KHz
GBW	10 MHz	10.2 <i>MHz</i>

Table 3: simulation vs hand analysis

3. CM small signal ccs

Figure 25: CM gain bode plot (magnitude)

peak = 5.025538e-03

Figure 26: CM gain

$$DC\ CM\ gain \approx rac{-g_{m1,2}}{2ig(g_{m1,2}+g_{mb1,2}ig)g_{m5,6}r_{o2}}$$

Spec	Simulation	Hand analysis
DC CM gain	-46 <i>dB</i>	-45.8 <i>dB</i>

Table 4: simulation vs hand analysis

4. CMRR

Figure 27: CMRR bode plot (magnitude)

Spec	Simulation	Hand analysis
CMRR	81.1 <i>dB</i>	$A_{vd} - A_{vCM} = 81.25 \ dB$

Table 5: simulation vs hand analysis

5. Diff large signal ccs

Figure 8: Vout vs VID

 $V_{outdc} = 899.7 \ mV$ as it follows the mirror node $V_M = V_{DD} - V_{GS5} = 899.74 \ mV$ because the current in both branches are equal as there is no mismatch nor diff input.

Figure 9: derivative(Vout) vs VID

 $A_{vd} = 58.9$ from simulation and the peak = 58.8 as they are two faces for the same coin.

6) CM large signal ccs (GBW vs VICM)

Figure 10: GBW vs VICM

$$\begin{split} CMIR_{high} &= V_{DD} - V_{GS5,6} - V_{DSsat3,4} + V_{GS3,4} \\ CMIR_{low} &= V_{GS3,4} + V_{DSsat2} \end{split}$$

Spec	simulation	analytic
GBW	10.27 MHz	10.2 <i>MHz</i>
$CMIR_{low}$	870 mV	1 V
$CMIR_{high}$	1.71 V	1.64 V

Table 5: CMIR

The noticeable variance in the *CMIR* is due to:

• The 90 % change in DC differential gain is not an accurate value to detect the edge of saturation for the Diff Amp devices. The conclusion from the simulation results is that the DC differential gain is higher than 90 % so taking 90 % as our threshold makes the range wider in the simulation results.

Part 3: Closed-Loop OTA Simulation

1. OP simulation

device	m.×1.m.×m1.m0	m.x1.m.xm6.m0	m.x1.m.xm5.m0
model	x1:nmos_3p3.8	x1:pmos_3p3.12	x1:pmos_3p3.12
gm	0.000117183	0.000294736	0.000297304
gmbs	3,71209e-05	0.000120467	0.000121469
gds	1,41041e-06	2.34134e-06	2,26431e-06
vds	0,788241	0,751349	0.836933
vdsat	0,141941	0,108171	0,10834
vgs	0,788245	0.836934	0.836934
vth	0,692487	0,778292	0,778018
id	1e-05	1.94457e-05	1,96427e-05
BSIM4v5: Berke	eley Short Channel IGFE	ET Model-4	
device	m.×1.m.×m2.m0	m.×1.m.×m4.m0	m.x1.m.xm3.m0
model	x1:nmos_3p3.12	x1:nmos_3p3.12	x1:nmos_3p3.12
gm	0.000460454	0.000310609	0.000312906
gmbs	0.000145956	9,16614e-05	9,2348e-05
gds	1.47446e-05	2,56842e-06	2,67032e-06
vds	0.246287	0.802351	0.716767
vdsat	0.138686	0.0984722	0.0990691
vgs	0.788246	0.802353	0.803703
vth	0,697966	0.782482	0.782696
id	3,90884e-05	1,94457e-05	1,96427e-05

gm_mismatch = 4.887051e-06 id_mismatch = 3.463498e-07

Figure 11: gm and ID mismatch

The change in g_m and I_D (about 1.5 to 1.9 %) is due to the difference between V_{outDC} and the mirror node level which leads to mismatch in V_{DS3} , V_{DS4} and V_{DS5} , V_{DS6} .

2. STB analysis

Figure 12: loop gain bode plot (magnitude)

Figure 13: loop gain bode plot (phase)

```
peak = 5.800454e+01 at= 2.238721e+00

Error: measure f1 when(WHEN): out of interval meas ac f1 when vmag(mb)=4.101540e+01 rise=1 failed!

bw = 1.690970e+05 pm_deg = -8.964793e+01 dominant_pole_f = 9.806458e+06 loop_gain = 3.526924e+01 gbw = 9.808394e+06
```

Figure 14: STB analysis results

Spec	open loop simulation	closed loop simulation
DC gain	35.4 <i>dB</i>	35.27 dB
BW	170.6 KHz	169 <i>KHz</i>
GBW	10 MHz	9.8 <i>MHz</i>

Figure 15: open loop vs closed loop simulation

The specs variance between open and closed loop simulations is because V_{outDC} - which controls the values of $V_{DS4,6}$ - is 1.25 V not 960 mV as the mirror node so the OP parameters are changed.

 $PM = 89.6^{\circ}$

	device	m.×1.m.×m1.m0	m.×1.m.×m2.m0	m.×1.m.×m6.m0
	model	x1:nmos_3p3.9	x1:nmos_3p3.13	x1:pmos_3p3.12
	gm	9.76347e-05	0.000357856	0,00019467
	gmbs	3.64741e-05	0.000133678	7.57603e-05
	gds	4.3265e-07	2.62054e-06	2.7977e-06
	vds	0.843836	0.420997	0.555788
	vdsat	0.175467	0.174656	0.161603
	vgs	0.84384	0.84384	0.902408
	vth	0.695132	0.698117	0.77004
	id	1e-05	3.63801e-05	1.7751e-05
	BSIM4v5: Berkele	y Short Channel IGFE	T Model-4	
	device	m.×1.m.×m5.m0	$m_{+} \times 1_{+} m_{+} \times m + m0$	m.×1.m.×m3.m0
	model	x1:pmos_3p3.12	x1:nmos_3p3,12	x1:nmos_3p3.12
	gm	0.000202731	0.00031534	0.000327416
	gmbs	7.86943e-05	8,56532e-05	8,89592e-05
	gds	2.34151e-06	2,59929e-06	3,19107e-06
	vds	0.902406	0.823201	0.476583
	vdsat	0.162938	0.0855844	0.0877921
	vgs	0.902408	0.823202	0.828994
	vťh	0.768274	0.831039	0.831965
1	id	1,86291e-05	1,7751e-05	1,86291e-05
- 1				

Figure 16: OP parameters

Spec	closed loop simulation	hand analysis
DC gain	35.4 <i>dB</i>	35.33 <i>dB</i>
BW	169 <i>KHz</i>	171.8 <i>KHz</i>
GBW	9.8 <i>MHz</i>	10 MHz

Figure 17: closed loop hand analysis

$$DC \ diff \ gain = g_{m4}(r_{o4} \parallel r_{o6}), BW = \frac{1}{2\pi(r_{o4} \parallel r_{o6})C_L}, GBW = \frac{g_{m4}}{2\pi C_L}$$

Spec	Required	Achieved
Supply Voltage	1.8 V	1.8 V
Load	5 <i>pF</i>	5 <i>pF</i>
Open Loop DC Voltage Gain	$\geq 34 dB$	35.27 <i>dB</i>
CMRR @DC	\geq 74 dB	81.1 <i>dB</i>
Phase Margin	≥ 70°	89.6°
CM input range — low	≤ 1 V	1 V
CM input range — high	≥ 1.5 <i>V</i>	1.64 V
GBW	≥ 10 <i>MHz</i>	10 MHz
Area	_	$42.43 \ \mu m^2$.
Curren consumption	-	36.4 μΑ

Table 6: Design specs