*** مرجع : فصل ۲ و ۳ نسخه ۵ کتاب Network Security Essentials

فصل دوم:

1. (مساله ۲.۶ بخش problems از کتاب)

۲. (مساله ۲.۱۲ بخش problems از کتاب)

 $m{7}$. برای رمزنگاری ۱۴ بیت از الگوریتم $m{3DES}$ استفاده کردیم به گونهای که هر مرحله رمزنگاری و $m{7}$. برای رمزنگاری و Feistel بدون جایگشت با $m{7}$ دور بالمراحم بالمراحم بالمراحم بالمراحم بالمراحم بالمراحم

۴. اگر عبارت اصلی به صورت p=1100100111010101 باشد و هر بلوک داده را 4 بیت در نظر بگیریم ،
۲. اگر عبارت اصلی به صورت DEC، ECB با اطلاعات زیر را در مدهای کاری CBC، ECB و CBC و CTR محاسبه کنید .

key = 1011 , $F(x,Key)=(x imes Key)\ mod\ 15$,IV=0010,initial_counter=0 فصل سوم :

۵. (مساله ۳.۲ بخش problems از کتاب) فرض کنید که H(m) یک تابع درهم سازی و مقاوم در برابر تصادم باشد که پیام ورودی با طول دلخواهی از بیت ها را به یک مقدار n بیتی نگاشت میکند . آیا درست است که بگوییم اگر دو پیام دلخواه و متمایز را به عنوان ورودی به تابع بدهیم نتیجه درهم سازی آنها هم متمایز خواهد بود ؟ برای پاسخ خود دلیل بیاورید .

مساله ۳.۱۰ از بخش problems کتاب) ۶. (مساله ۳.۱۰ ا

q=13 و p=11 و RSA را یک بار جهت رمزنگاری و بار دیگر جهت رمزگشایی برای مقادیر e=11 و e=11 و e=11

٨. كاربرد الگوريتم DSS چيست و چگونه امكان احراز را هويت را فراهم ميكند ؟

۹. روش موجود برای احراز هویت توسط رمزنگاری عمومی (با کلید متقارن) را با روش موجود برای احراز هویت
با استفاده از داده مخفی وتابع درهم سازی مقایسه کنید .(به تفاوت پیام های ارسالی در هر روش و شیوه
تصدیق هویت در مقصد توجه کنید.)

- پاسخ تمرینات حدالامکان به صورت تایپ شده و فایل PDF تحویل داده شود. در صورت عدم امکان تایپ پاسخ تمرین ، عکسی واضح از برگه پاسخ تهیه و به فرمت PDF در آورید. (برای اینکار میتوانید از camScanner و امثال آن استفاده کنید.)
 - فرمت نامگذاری پاسخ به صورت HW2_StdNO_StdName باشد.
- تاخیر در بارگذاری تا ۳ روز موجب کسر حداقل ۲۵ درصد از نمره تمرین خواهد شد. تمریناتی که بعد از ۳ روز از موعد تحویل ارسال شوند ، تصحیح نخواهد شد.
 - در صورت مشاهده تقلب برای طرفین نمره صفر در نظر گرفته می شود.
- در صورت وجود هر گونه سوال یا اشکال در رابطه با تمرین از آدرس ایمیل f.dehghan@aut.ac.ir استفاده کنید.