Ejercicios del primer set de slides

- 1. Número de runs
- 2. Carga máxima variable en separate chaining
- 3. Quadratic probing
- 4. Uniform Hashing
- 5. Linear probing

Problema: número de runs

```
def runs(arr): # arr = permutacion
res = []
i, n = 0, len(arr)
while i < n:
    i = i + 1
    if j < n and arr[i] <= arr[j]:</pre>
        # creciente
        while j < n and arr[j - 1] <= arr[j]:
            i += 1
    elif j < n and arr[i] > arr[j]:
        # decreciente
        while j < n and arr[j - 1] > arr[j]:
            i += 1
    else:
        # elemento aislado
        i = i + 1
    res.append(j - i)
    i = i
return res
```

Problema: número de runs

Problema

La cantidad esperada de runs es $\mathbb{E}[r] \sim cn$ para una cierta c > 0.

Veamos la permutación como una secuencia X_1, X_2, \ldots de números iid de [0,1].

- (a) Probar $runs(X_1, \ldots, X_{i+j}) \le runs(X_1, \ldots, X_i) + runs(X_{i+1}, \ldots, X_{i+j})$.
- (b) Probar que $e_k \coloneqq \mathbb{E}[runs(X_1,\ldots,X_k)]$ satisface $e_{i+j} \le e_i + e_j$ para todo $i,j \ge 0$. Concluirque $e_k/k \to c$ para cierta $c \ge 0$.
- (c) Mostrarque la constante es positiva c > 0.

Carga máxima variable en separate chaining

Consideremos una tabla de hash con K celdas y *separate chaining* (con listas encadenadas):

Problema

Observar que la longitud media de las listas es $\leq g(K)$.

Notar que la capacidad de la tabla de hash es $n \leq Kg(K)$.

Carga máxima variable en separate chaining

Consideremos una tabla de hash con K celdas y *separate chaining* (con listas encadenadas):

Problema

¿Y si la carga máxima γ fuera una función $\gamma = g(K)$?

Observar que la longitud media de las listas es $\leq g(K)$.

Notar que la capacidad de la tabla de hash es $n \leq Kg(K)$.

Recordamos que
$$P_m \coloneqq \Pr(\exists j : |C_j(n)| \ge m)$$
, satisface

$$P_m \le \exp(\log K + m \log g(K) + m - m \log m).$$

- 1. Considerar $g(K) = \sqrt{\log K}$. Probar que que $P_m \to 0$ para $m = 2 \frac{\log K}{\log \log K}$.
- 2. Considerar $g(K) = \log K$. Probar $P_m \to 0$ para $m = (\log K)^2$. ¿Para $m = (\log K)$ podemos tener $P_m \to 0$?

Quadratic probing

Consideramos la secuencia de quadratic probing $i_1 = i_0 + 1, i_2 = i_1 + 2, \dots, i_k = i_{k-1} + k, \dots$ módulo K, el tamaño.

Ejercicio

Probar que si $K = 2^m$ entonces i_0, i_1, \dots, i_{K-1} son distintos módulo K.

Uniform Hashing

Teorema (Búsqueda en Uniform hashing)

El costo medio de una búsqueda con uniform hashing es

$$U_n = \frac{K+1}{K-n+1} \sim \frac{1}{1-\alpha}, \qquad S_n \sim \frac{1}{\alpha} \log \left(\frac{1}{1-\alpha}\right).$$

Ejercicio

- 1. Probar que, para una búsqueda no exitosa $U_n = \frac{K+1}{K-n+1}$.
- 2. Probar la fórmula para la búsqueda exitosa S_n .

^aPista: Inducción.

Linear Probing

Para Linear Probing el costo de una búsqueda no-exitosa satisface

$$U_n \le \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$$

Ejercicio

Deducir que el costo medio de una búsqueda exitosa satisface

$$S_n \le \frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right) .$$