

CA-IS374x High-Speed Quad-Channel Digital Isolators

1 Key Features

- Signal Rate: DC to 150Mbps
- Wide Operating Supply Voltage: 2.5V to 5.5V
- Wide Operating Temperature Range: -40°C to 125°C
- No Start-Up Initialization Required
- Default Output High and Low Options
- High Electromagnetic Immunity
- High CMTI: ±100kV/μs (Typical)
- Low Power Consumption (Typical):
 - 1.5mA per Channel at 1Mbps with 3.3V Supply
 - 5.5mA per Channel at 100Mbps with 3.3V Supply
- Precise Timing (Typical)
 - 8ns Propagation Delay
 - 1ns Pulse Width Distortion
 - 2ns Propagation Delay Skew
 - 5ns Minimum Pulse Width
- Isolation Rating up to 5kVrms
- Isolation Barrier Life: >40 Years
- Tri-state Outputs with ENABLE
- Schmitt Trigger Inputs
- RoHS-Compliant Packages
 - SOIC-16 Narrow Body
 - SOIC-16 Wide Body

2 Applications

- Industrial Automation Systems
- Motor Control
- Medical Electronics
- Isolated Switch Mode Supplies
- Solar Inverters
- Isolated ADC, DAC

3 Description

The CA-IS374x devices are high-performance quad-channel digital isolators with precise timing characteristics and low power consumption. The CA-IS374x devices provide high electromagnetic immunity and low emissions, while isolating CMOS digital I/Os. All device versions have Schmitt trigger input for high noise immunity. Each isolation channel consists of a transmitter and a receiver separated by silicon dioxide (SiO₂) insulation barrier. The CA-IS3740 device has all four channels in the same direction with output enable

on the output side (B side), the CA-IS3741 device has three forward and one reverse-direction channels with output enable on both sides, the CA-IS3742 device has two forward and two reverse-direction channels with output enable on both sides, and the CA-IS3745 device has the same channel configuration as CA-IS3740 without output enable. All devices have fail-safe mode option. If the input power or signal is lost, default output is low for devices with suffix L and high for devices with suffix H.

CA-IS374x devices has high insulation capability to handle noise and surge on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. High CMTI ability promises the correct transmission of digital signal. The CA-IS374x devices are available in 16-pin narrow body SOIC and 16-pin wide body SOIC packages. All products have > 2.5kVrms isolation rating, and products in wide-body packages support insulation withstanding up to 5kVrms.

Device Information

PART NUMBER	PACKAGE	BODY SIZE(NOM)
CA-IS3740,	SOIC16-NB (N)	9.90 mm × 3.90 mm
CA-IS3741,		
CA-IS3742,	SOIC16-WB(W)	10.30 mm × 7.50 mm
CA-IS3745		

Simplified Channel Structure

Channel A side and B side are separated by isolation capacitors. GNDA and GNDB are the isolated ground for signals and supplies of A side and B side respectively.

4 Ordering Guide

Table 4-1 Ordering Guide for Valid Ordering Part Number

Ordering Part Number	Number of Inputs A Side	Number of Inputs B Side	Default Output	Isolation Rating (kV)	Output Enable	Package
CA-IS3740LN	4	0	Low	2.5	Yes	NB SOIC-16
CA-IS3740LW	4	0	Low	5	Yes	WB SOIC-16
CA-IS3740HN	4	0	High	2.5	Yes	NB SOIC-16
CA-IS3740HW	4	0	High	5	Yes	WB SOIC-16
CA-IS3741LN	3	1	Low	2.5	Yes	NB SOIC-16
CA-IS3741LW	3	1	Low	5	Yes	WB SOIC-16
CA-IS3741HN	3	1	High	2.5	Yes	NB SOIC-16
CA-IS3741HW	3	1	High	5	Yes	WB SOIC-16
CA-IS3742LN	2	2	Low	2.5	Yes	NB SOIC-16
CA-IS3742LW	2	2	Low	5	Yes	WB SOIC-16
CA-IS3742HN	2	2	High	2.5	Yes	NB SOIC-16
CA-IS3742HW	2	2	High	5	Yes	WB SOIC-16
CA-IS3745LN	4	0	Low	2.5	No	NB SOIC-16
CA-IS3745LW	4	0	Low	5	No	WB SOIC-16
CA-IS3745HN	4	0	High	2.5	No	NB SOIC-16
CA-IS3745HW	4	0	High	5	No	WB SOIC-16

Table of Contents

1 2 3 4 5 6 7	Applic Descr Order Revisi PIN D Specif 7.1 7.2 7.3 7.4	eatures 1 cations 1 iption 1 ring Guide 2 son History 3 escriptions and Functions 4 fications 5 Absolute Maximum Ratings¹ 5 ESD Ratings 5 Recommended Operating Conditions 5 Thermal Information 6	8 9	77.8 77.8 7 7 Para Deta 9.1 9.2 9.3	.8.1 .8.2 .8.3 mete iled E The Fur Dev	V _{DDA} = V _{DDB} = 5 V ± 10%, T _A = -40 to 125°C. V _{DDA} = V _{DDB} = 3.3 V ± 10%, T _A = -40 to 125°C. V _{DDA} = V _{DDB} = 2.5 V ± 5%, T _A = -40 to 125°C. Ning Characteristics	C91011 C111213151515
	7.4	·		9.3	Dev	vice Operation Modes	16
	7.5	Power Rating6	10	Appl	icatio	n and Implementation	17
	7.6 7.6 7.6 7.7	$V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%, T_A = -40 \text{ to } 125^{\circ}\text{C}7$	11	11.1	16- nmen	nformationPin Wide Body SOIC Package Outline and ded Land PatternPin Narrow Body SOIC Package Outline.	d 18

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This is a preview version, initialized on July 23rd 2018.

PIN Descriptions and Functions

Figure 6-1 CA-IS374x Top View

Table 6-1 CA-IS374x Pin Description and Functions

Name	SOIC-16 Pin#	Туре	Description
VDDA	1	Supply	Side A Power Supply
GNDA	2	Ground	Side A Ground
A1	3	Digital Input	Side A Digital Input
A2	4	Digital Input	Side A Digital Input
A3	5	Digital I/O	Side A Digital Input for CA-IS3740/41/45 or Output for CA-IS3742
A4	6	Digital I/O	Side A Digital Input for CA-IS3740/45 or Output for CA-IS3741/42
NC¹/ENA	7	Digital Input	Side A Active High Enable. NC for CA-IS3740/45
GNDA	8	Ground	Side A Ground
GNDB	9	Ground	Side B Ground
NC¹/ENB	10	Digital Input	Side B Active High Enable. NC for CA-IS3745
B4	11	Digital I/O	Side B Digital Input for CA-IS3741/42 or Output for CA-IS3740/45
В3	12	Digital I/O	Side B Digital Input for CA-IS3742 or Output for CA-IS3740/41/45
B2	13	Digital Output	Side B Digital Output
B1	14	Digital Output	Side B Digital Output
GNDB	15	Ground	Side B Ground
VDDB	16	Supply	Side B Power Supply

No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND

7 Specifications

7.1 Absolute Maximum Ratings¹

		MIN	MAX	UNIT
V_{DDA} , V_{DDB}	Supply Voltage ²	-0.5	6.0	V
V _{in}	Voltage at Ax, Bx, ENx	-0.5	$V_{DDA}+0.5^3$	V
I ₀	Output Current	15	15	mA
Tj	Junction Temperature		150	°C
T _{STG}	Storage Temperature	-65	150	°C

NOTE:

- 1. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GNDA or GNDB) and are peak voltage values.
- 3. Maximum voltage must not exceed 6 V.

7.2 ESD Ratings

		VALUE	UNIT
V _{ESD} Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ¹	2000	
	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	200	V

NOTE:

- 1. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- 2. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

			MIN	TYP	MAX	UNIT
V _{DDA} , V _{DDB}	Supply Voltage		2.375	3.3	5.5	V
V _{DD} (UVLO+)	VDD Undervoltage Threshold When Supply Voltage is Rising		1.95	2.24	2.375	V
V _{DD} (UVLO-)	VDD Undervoltage Threshold When Suppl	y Voltage is Falling	1.88	2.16	2.325	V
V _{HYS} (UVLO)	VDD Undervoltage Threshold Hysteresis		50	70	95	mV
		$V_{DDO}^1 = 5V$	-4			
I _{OH}	High-level Output Current	V _{DDO} = 3.3V	-2			mA
		V _{DDO} = 2.5V	-1			
		V _{DDO} = 5V			4	
I _{OL}	Low-level Output Current	V _{DDO} = 3.3V			2	mA
		V _{DDO} = 2.5V			2	
V _{IH}	High-level Input Voltage		2.0			V
V _{IL}	Low-level Input Voltage				0.8	V
DR	Data Rate		0		150	Mbps
T _A	Ambient Temperature		-40	27	125	°C
NOTE:						•

V_{DDO} = Output-side V_{DD}

Preview Version www.chipanalog.com

7.4 Thermal Information

		CA-l		
	THERMAL METRIC	N (SOIC)	W (SOIC)	UNIT
		16 Pins	16 Pins	
$R_{\theta JA}$	Junction-to-ambient thermal resistance			°C/W
R _{0JC(top)}	Junction-to-case(top) thermal resistance			°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance			°C/W
ψπ	Junction-to-top characterization parameter			°C/W
Ψιв	Junction-to-board characterization parameter			°C/W
R _{0JC(bottom)}	Junction-to-case(bottom) thermal resistance			°C/W

7.5 Power Rating

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CA-IS3	740/45					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			200	mW
P_{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			40	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave			160	mW
CA-IS3	741					
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_L = 15 \text{ pF,}$			200	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			50	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave			150	mW
CA-IS3	742	•			•	
P _D	Maximum Power Dissipation	$V_{DDA} = V_{DDB} = 5.5 \text{ V, } C_{L} = 15 \text{ pF,}$			200	mW
P _{DA}	Maximum Power Dissipation on Side-A	T _J = 150°C, Input a 75-MHz 50% duty			100	mW
P _{DB}	Maximum Power Dissipation on Side-B	cycle square wave			100	mW

7.6 Electrical Characteristics

7.6.1 $V_{DDA} = V_{DDB} = 5 V \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 8-2	V _{DDO} ¹ -0.4	4.8		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 8-2		0.2	0.4	V
V _{IT+(IN)}	Positive-going Input Threshold		1.4	1.67	1.9	V
V _{IT-(IN)}	Negative-going Input Threshold		1.0	1.23	1.4	V
V _{I(HYS)}	Input Threshold Hysteresis		0.38	0.44	0.5	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at Ax or Bx or ENx			10	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at Ax or Bx	-10			μΑ
Z _O	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DD1}^1$ or 0 V, $V_{CM} = 1200$ V; See Figure 8-4	85	100		kV/μS
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft)$, $f = 1 \text{ MHz}$,		2		n.E
		V _{DD} = 5 V				pF

NOTE:

- 1. V_{DDI} = Input-side V_{DD_i} V_{DDO} = Output-side V_{DD}
- 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%.
- 3. Measured from pin to Ground.

7.6.2 $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 8-2	V _{DDO} ¹ -0.4	3.1		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; See Figure 8-2		0.2	0.4	V
V _{IT+(IN)}	Positive-going Input Threshold		1.4	1.67	1.9	V
V _{IT-(IN)}	Negative-going Input Threshold		1.0	1.23	1.4	V
V _{I(HYS)}	Input Threshold Hysteresis		0.38	0.44	0.5	V
I _{IH}	High-Level Input Leakage Current	V _{IH} = V _{DDA} at Ax or Bx or ENx			10	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at Ax or Bx	-10			μΑ
Z _O	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_I = V_{DDI}^{\ 1}$ or 0 V, $V_{CM} = 1200 \text{ V}$; See Figure 8-4	85	100		kV/μs
Cı	Input Capacitance ³	$V_1 = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz},$ $V_{DD} = 3.3 \text{ V}$		2		pF

NOTE:

- 1. V_{DDI} = Input-side $V_{DD,}V_{DDO}$ = Output-side V_{DD}
- 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%.
- 3. Measured from pin to Ground.

7.6.3 $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level Output Voltage	I _{OH} = -4mA; See Figure 8-2	V _{DDO} ¹ -0.4	2.3		V
V _{OL}	Low-level Output Voltage	I _{OL} = 4mA; <i>See Figure 8-2</i>		0.2	0.4	V
V _{IT+(IN)}	Positive-going Input Threshold		1.4	1.67	1.9	V
V _{IT-(IN)}	Negative-going Input Threshold		1.0	1.23	1.4	V
V _{I(HYS)}	Input Threshold Hysteresis		0.38	0.44	0.5	V
I _{IH}	High-Level Input Leakage Current	$V_{IH} = V_{DDA}$ at Ax or Bx or ENx			10	μΑ
I _{IL}	Low-Level Input Leakage Current	V _{IL} = 0 V at Ax or Bx	-10			μΑ
Z _O	Output Impedance ²			50		Ω
CMTI	Common-mode Transient Immunity	$V_1 = V_{DDI}^{1}$ or 0 V, $V_{CM} = 1200$ V; See Figure 8-4	85	100		kV/μS
Cı	Input Capacitance ³	$V_I = V_{DD}/2 + 0.4 \times \sin(2\pi ft), f = 1 \text{ MHz},$		2		n.E
		V _{DD} = 2.5 V				pF

- 1. V_{DDI} = Input-side $V_{DD,}$ V_{DDO} = Output-side V_{DD}
- 2. The nominal output impedance of an isolator driver channel is approximately 50 Ω ± 40%.
- 3. Measured from pin to Ground.

CHIPANALOG

7.7 Supply Current Characteristics

7.7.1 $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

CA-IS3740/45 ENB ² = 0 V; V _{IN} = 0V (CA-IS3740L); I _{DDA} 1.0	'	
	1.6	
$V_{IN} = V_{DDA} (CA-IS3740H)$ I_{DDB} 2.4	3.8	
Supply Current – Disable ¹ $ENB = 0 \text{ V; V}_{IN} = V_{DDA} \text{ (CA-IS3740L);} I_{DDA} 6.1$	9.2	
$V_{IN} = OV(CA-IS3740H) \qquad I_{DDB} \qquad 2.5$	4.0	
ENB = V_{DDB} ; $V_{IN} = 0V$ (CA-IS3740/45L); I_{DDA} 1.0	1.6	
Supply Current – DC Signal $V_{IN} = V_{DDA}$ (CA-IS3740/45H) I_{DDB} 2.4	3.8	
ENB = V_{DDB} ; $V_{IN} = V_{DDA}$ (CA-IS3740/45L); I_{DDA} 6.1	9.2	mA
$V_{IN} = 0V(CA-IS3740/45H)$ I_{DDB} 2.5	4.0	1117 (
1Mbps I _{DDA} 3.6	5.0	
ENB = V_{DDB} ; All Channels Switching (500kHz) I_{DDB} 2.9	4.0	
Supply Current – AC Signal with 50% Duty Cycle Square Wave 10Mbps I _{DDA} 3.6	5.0	
Clock Input with 5V Amplitude; $C_L = 15$ (5MHz) I_{DDB} 4.0	5.6	
pF for Each Channel 100Mbps I _{DDA} 3.6	5.0	
(50MHz) I _{DDB} 17.5	22.8	
CA-IS3741		
ENA = ENB = 0 V; V _{IN} = 0V (CA-IS3741L); I _{DDA} 1.4	2.2	
Supply Current – Disable $V_{IN} = V_{DDI}^{1}$ (CA-IS3741H) I_{DDB} 2.3	3.7	
ENA = ENB = 0 V; $V_{IN} = V_{DDI}$ (CA-IS3741L); I_{DDA} 5.2	7.8	
$V_{IN} = OV(CA-IS3741H) \qquad I_{DDB} \qquad 3.6$	5.4	
ENA = ENB = V_{DDI} ; V_{IN} = 0V (CA-IS3741L); I_{DDA} 1.4	2.2	
$V_{IN} = V_{DDI} (CA-IS3741H)$ I_{DDB} 2.3	3.7	- mA
Supply Current – DC Signal $ENA = ENB = V_{DDI}$; $V_{IN} = V_{DDI}$ (CA-IS3741L); I_{DDA} 5.2	7.8	
$V_{IN} = OV(CA-IS3741H) \qquad I_{DDB} \qquad 3.6$	5.4	
1Mbps I _{DDA} 3.4	4.8	
ENA = ENB = V_{DDI} ; All Channels (500kHz) I_{DDB} 3.3	4.6	Í
Supply Current AC Signal Switching with 50% Duty Cycle Square 10Mbps I _{DDA} 3.7	5.2	
Supply Current – AC Signal Wave Clock Input with 5V Amplitude; (5MHz) IDDB 4.1	5.8	
$C_L = 15 \text{ pF for Each Channel}$ 100Mbps I_{DDA} 7.3	9.8	
(50MHz) I _{DDB} 14.3	18.5	
CA-IS3742		
ENA = ENB = 0 V; V _{IN} = 0V (CA-IS3742L); I _{DDA} 1.8	2.9	
$V_{IN} = V_{DDI}^3 \text{ (CA-IS3742H)}$ I_{DDB} 1.8	2.9	
Supply Current – Disable $ENA = ENB = 0 \text{ V; } V_{IN} = V_{DDI} \text{ (CA-IS3742L);}$ I_{DDA} 4.4	6.6	
$V_{IN} = OV(CA-IS3742H) \qquad I_{DDB} \qquad 4.4$	6.6	
ENA = ENB = V_{DDI} ; V_{IN} = 0V (CA-IS3742L); I_{DDA} 1.8	2.9	
$V_{IN} = V_{DDI}$ (CA-IS3742H) I_{DDB} 1.8	2.9	
Supply Current – DC Signal $V_{NN} = V_{DDI}$ (CA-IS3742L); $I_{DDA} = V_{DDA}$ 4.4	6.6	1
$V_{IN} = OV(CA-IS3742H) \qquad I_{DDB} \qquad 4.4$	6.6	mA
1Mbps I _{DDA} 3.3	4.6	
ENA = ENB = V_{DDI} ; All Channels (500kHz) I_{DDB} 3.3	4.6	
Switching with 50% Duty Cycle Square 10Mbps lopa 3.9	5.4	
Supply Current – AC Signal Wave Clock Input with 5V Amplitude; (5MHz) IDDB 3.9	5.4	
C _L = 15 pF for Each Channel 100Mbps I _{DDA} 11	14.3	
(50MHz) I _{DDB} 11	14.3	

Note:

- .. CA-IS3745 device has no disable state.
- 2. CA-IS3745 device doesn't have ENB pin but NC pin instead.
- 3. $V_{DDI} = Input-side V_{DD}$

7.7.2 $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

7.7.2 V _{DDA} - V _{DDB} - 3.3 V ± 10%, 1 _A 40 t0 123 C							
PARAMETER	TEST CONDITION	SUPPLY CURRENT	MIN	TYP	MAX	UNIT	
CA-IS3740/45							
	$ENB^2 = 0 \text{ V; V}_{IN} = 0V \text{ (CA-IS3740L);}$		I _{DDA}		1.0	1.6	
Supply Current – Disable ¹	$V_{IN} = V_{DDA}$ (CA-IS3740H)		I_{DDB}		2.4	3.8	
Supply current – Disable	ENB = 0 V; $V_{IN} = V_{DDA}$ (CA-IS3740L);		I _{DDA}		6.1	9.2	
	V _{IN} = 0V(CA-IS3740H)	$V_{IN} = 0V(CA-IS3740H)$			2.5	4.0	j
	ENB = V_{DDB} ; $V_{IN} = 0V$ (CA-IS3740/45L);		I _{DDA}		1.0	1.6	
Supply Current – DC Signal	$V_{IN} = V_{DDA} (CA-IS3740/45H)$		I _{DDB}		2.4	3.8	
Supply current De Signal	ENB = V_{DDB} ; $V_{IN} = V_{DDA}$ (CA-IS3740/45L);		I _{DDA}		6.1	9.2	mA
	V _{IN} = 0V(CA-IS3740/45H)		I _{DDB}		2.5	4.0	IIIA
		1Mbps	I _{DDA}		3.6	5.0	
	ENB = V _{DDB} ; All Channels Switching	(500kHz)	I _{DDB}		2.9	4.0	
Supply Current – AC Signal	with 50% Duty Cycle Square Wave	10Mbps	I_{DDA}		3.6	5.0	j
Supply Current – AC Signal	Clock Input with 5V Amplitude; C _L = 15	(5MHz)	I_{DDB}		3.4	4.7	
	pF for Each Channel	100Mbps	I_{DDA}		3.6	5.0	j
		(50MHz)	I _{DDB}		12.3	15.9	İ
CA-IS3741							
	ENA = ENB = 0 V; V _{IN} = 0V (CA-IS3741L);		I _{DDA}		1.4	2.2	
Supply Current Disable	$V_{IN} = V_{DDI}^1$ (CA-IS3741H)	I _{DDB}		2.3	3.7	İ	
Supply Current – Disable	ENA = ENB = 0 V; V _{IN} = V _{DDI} (CA-IS3741L)	I _{DDA}		5.2	7.8	İ	
	$V_{IN} = OV(CA-IS3741H)$		I _{DDB}		3.6	5.4	
	ENA = ENB = V_{DDI} ; V_{IN} = 0V (CA-IS3741L); V_{IN} = V_{DDI} (CA-IS3741H)		I _{DDA}		1.4	2.2	İ
County Comment DC Cinnel			I _{DDB}		2.3	3.7	İ
Supply Current – DC Signal	ENA = ENB = V _{DDI} ; V _{IN} = V _{DDI} (CA-IS3741L	I _{DDA}		5.2	7.8	mA	
	V _{IN} = 0V(CA-IS3741H)	I _{DDB}		3.6	5.4		
	,	1Mbps	I _{DDA}		3.4	4.8	İ
	$ENA = ENB = V_{DDI}$; All Channels	(500kHz)	I _{DDB}		3.3	4.6	İ
	Switching with 50% Duty Cycle Square	10Mbps	I _{DDA}		3.5	4.9	İ
Supply Current – AC Signal	Wave Clock Input with 5V Amplitude;	(5MHz)	I _{DDB}		3.6	5.1	İ
	$C_L = 15 pF$ for Each Channel	100Mbps	I _{DDA}		5.9	7.9	İ
		(50MHz)	I _{DDB}		10.3	13.4	İ
CA-IS3742			•				
	ENA = ENB = 0 V; V _{IN} = 0V (CA-IS3742L);		I _{DDA}		1.8	2.9	
	$V_{IN} = V_{DDI}^{3}$ (CA-IS3742H)		I _{DDB}		1.8	2.9	İ
Supply Current – Disable	ENA = ENB = 0 V; $V_{IN} = V_{DDI}$ (CA-IS3742L); $V_{IN} = 0V$ (CA-IS3742H)		I _{DDA}		4.4	6.6	İ
			I _{DDB}		4.4	6.6	İ
	$ENA = ENB = V_{DDI}$; $V_{IN} = 0V$ (CA-IS3742L);	,	I _{DDA}		1.8	2.9	İ
Supply Current – DC Signal	$V_{IN} = V_{DDI} (CA-IS3742H)$		I _{DDB}		1.8	2.9	İ
	ENA = ENB = V_{DDI} ; $V_{IN} = V_{DDI}$ (CA-IS3742L);		I _{DDA}		4.4	6.6	_
	V _{IN} = 0V(CA-IS3742H)	••	I _{DDB}		4.4	6.6	mA
		1Mbps	I _{DDA}		3.3	4.6	
	wave Clock Input with 5V Amplitude;		I _{DDB}		3.3	4.6	
			I _{DDA}		3.6	5.0	
Supply Current – AC Signal			I _{DDB}		3.6	5.0	
			I _{DDA}		8.2	10.7	
	,	100Mbps (50MHz)	I _{DDB}		8.2	10.7	
(30141112)			אטטי	1	J.2	10.7	<u> </u>

Note

- 1. CA-IS3745 device has no disable state.
- 2. CA-IS3745 device doesn't have ENB pin but NC pin instead.
- 3. $V_{DDI} = Input\text{-side } V_{DD}$

Preview Version

Note:

- CA-IS3745 device has no disable state.
- CA-IS3745 device doesn't have ENB pin but NC pin instead.
- V_{DDI} = Input-side V_{DD}

7.8 Timing Characteristics

7.8.1 $V_{DDA} = V_{DDB} = 5 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	
Data Rate		0	150	Mbps	
Minimum Pulse Width				5.0	ns
Propagation Delay Time		See Figure 8-1	5.0 8.0	13.0	ns
Pulse Width Distortion t _{PLH} - t _{PHL}			0.2	4.5	ns
Channel-to-channel Output Skew Time ¹		Same-direction channels	0.4	2.5	ns
Part-to-part Skew Time ²			2.0	4.5	ns
Output Signal Rise Time		See Figure 8-1	2.5	4.0	ns
Output Signal Fall Time		See Figure 8-1	2.5	4.0	ns
Peak Eye Diagram Jitter		350		ps	
Disable Propagation Delay, High to High Impedance Output			8	12	ns
Disable Propagation Delay, Low to High Impedance Output		Con Figure 9, 2	8	12	ns
Enable Propagation Delay, High Impedance to High Output			6	11	ns
Enable Propagation Delay, High Impedance to High Output	CA-IS374xH	See rigule 6-2			ns
Enable Propagation Dolay High Impedance to Law Output	CA-IS374xL				ns
CA			6	11	ns
Default Output Delay Time from Input Power Loss		See Figure 8-3	8	12	ns
Time interval error		2 ¹⁶ – 1 PRBS 100Mbps	0.7		ns
		data			
Start-up Time			15	40	μs
	Data Rate Minimum Pulse Width Propagation Delay Time Pulse Width Distortion t _{PLH} - t _{PHL} Channel-to-channel Output Skew Time ¹ Part-to-part Skew Time ² Output Signal Rise Time Output Signal Fall Time Peak Eye Diagram Jitter Disable Propagation Delay, High to High Impedance Output Disable Propagation Delay, Low to High Impedance Output Enable Propagation Delay, High Impedance to High Output Enable Propagation Delay, High Impedance to Low Output Default Output Delay Time from Input Power Loss Time interval error	Data Rate Minimum Pulse Width Propagation Delay Time Pulse Width Distortion t _{PLH} - t _{PHL} Channel-to-channel Output Skew Time¹ Part-to-part Skew Time² Output Signal Rise Time Output Signal Fall Time Peak Eye Diagram Jitter Disable Propagation Delay, High to High Impedance Output Disable Propagation Delay, Low to High Impedance Output Enable Propagation Delay, High Impedance to High Output Enable Propagation Delay, High Impedance to Low Output CA-IS374xL CA-IS374xL CA-IS374xL Time interval error	Data Rate Minimum Pulse Width Propagation Delay Time Pulse Width Distortion tph - tph Channel-to-channel Output Skew Time¹ Output Signal Rise Time Output Signal Fall Time Peak Eye Diagram Jitter Disable Propagation Delay, High to High Impedance Output Disable Propagation Delay, Low to High Impedance Output Enable Propagation Delay, High Impedance to High Output Enable Propagation Delay, High Impedance to Low Output Default Output Delay Time from Input Power Loss Time interval error Minimum Pulse Width See Figure 8-1 See Figure 8-1 See Figure 8-1 CA-IS374xL CA-IS374xL CA-IS374xL CA-IS374xH See Figure 8-2 See Figure 8-3 Time interval error 2 ¹⁶ – 1 PRBS 100Mbps data	Data Rate 0 Minimum Pulse Width Propagation Delay Time 5.0 8.0 Pulse Width Distortion t _{PLH} - t _{PHL} 5.0 8.0 Channel-to-channel Output Skew Time¹ Same-direction channels 0.4 Part-to-part Skew Time² 2.0 Output Signal Rise Time See Figure 8-1 2.5 Output Signal Fall Time See Figure 8-1 2.5 Peak Eye Diagram Jitter 350 Disable Propagation Delay, High to High Impedance Output 8 CA-IS374xL CA-IS374xH Enable Propagation Delay, High Impedance to High Output CA-IS374xL CA-IS374xL CA-IS374xH See Figure 8-2 Enable Propagation Delay, High Impedance to Low Output CA-IS374xL CA-IS374xH CA-IS374xH CA-IS374xH CA-IS374xH CA-IS374xH CA-IS374xH CA-IS374xH CA-IS374xH CA-IS374xH	Data Rate 0 150 Minimum Pulse Width 5.0 5.0 Propagation Delay Time See Figure 8-1 5.0 8.0 13.0 Pulse Width Distortion t _{PLH} - t _{PHL} 5.0 8.0 13.0 Channel-to-channel Output Skew Time¹ 5ame-direction channels 0.4 2.5 Part-to-part Skew Time² 2.0 4.5 Output Signal Rise Time See Figure 8-1 2.5 4.0 Output Signal Fall Time See Figure 8-1 2.5 4.0 Peak Eye Diagram Jitter See Figure 8-1 2.5 4.0 Disable Propagation Delay, High to High Impedance Output 8 12 Enable Propagation Delay, High Impedance to High Output CA-IS374xL CA-IS374xL CA-IS374xH See Figure 8-2 6 11 Default Output Delay Time from Input Power Loss See Figure 8-3 8 12 Time interval error 216 - 1 PRBS 100Mbps data 0.7 -

NOTE:

- 1. $t_{sk(o)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- 2. $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

7.8.2 $V_{DDA} = V_{DDB} = 3.3 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	PARAMETER		TEST CONDITIONS	MIN TYP	MAX	UNIT
DR	Data Rate		0	150	Mbps	
PW_{min}	Minimum Pulse Width				5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time		Coo Figuro 9 1	5.0 8.0	13.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}		See Figure 8-1	0.2	4.5	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹		Same-direction channels	0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²			2.0	4.5	ns
t _r	Output Signal Rise Time		See Figure 8-1	2.5	4.0	ns
t _f	Output Signal Fall Time		See Figure 8-1	2.5	4.0	ns
t _{JIT(PK)}	Peak Eye Diagram Jitter		350		ps	
t _{PHZ}	Disable Propagation Delay, High to High Impedance Output		-	8	12	ns
t _{PLZ}	Disable Propagation Delay, Low to High Impedance Output			8	12	ns
	Enable Propagation Delay High Impedance to High Output	CA-IS374xL	Coo Figure 9 2	6	11	ns
t _{PZH}	Enable Propagation Delay, High Impedance to High Output	CA-IS374xH	See Figure 8-2			ns
	CA-IS374	CA-IS374xL				ns
t _{PZL}	Enable Propagation Delay, High Impedance to Low Output			6	11	ns
t _{DO}	Default Output Delay Time from Input Power Loss	•	See Figure 8-3	8	12	ns
t _{ie}	Time interval error		2 ¹⁶ – 1 PRBS 100Mbps	0.7		ns
			data			
t _{SU}	Start-up Time			15	40	μs

- 1. $t_{sk(o)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- 2. $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

7.8.3 $V_{DDA} = V_{DDB} = 2.5 \text{ V} \pm 5\%$, $T_A = -40 \text{ to } 125^{\circ}\text{C}$

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DR	Data Rate		0		150	Mbps	
PW_{min}	Minimum Pulse Width					5.0	ns
t _{PLH} , t _{PHL}	Propagation Delay Time		See Figure 8-1	5.0	8.0	13.0	ns
PWD	Pulse Width Distortion t _{PLH} - t _{PHL}				0.2	5.0	ns
t _{sk(o)}	Channel-to-channel Output Skew Time ¹		Same-direction channels		0.4	2.5	ns
t _{sk(pp)}	Part-to-part Skew Time ²				2.0	5.0	ns
t _r	Output Signal Rise Time		See Figure 8-1		2.5	4.0	ns
t _f	Output Signal Fall Time	See Figure 8-1		2.5	4.0	ns	
t _{JIT(PK)}	Peak Eye Diagram Jitter			350		ps	
t _{PHZ}	Disable Propagation Delay, High to High Impedance Output				8	12	ns
t _{PLZ}	Disable Propagation Delay, Low to High Impedance Output				8	12	ns
+	Enable Propagation Polov High Impedance to High Output	CA-IS374xL	San Figure 9 3		6	11	ns
t _{PZH}	Enable Propagation Delay, High Impedance to High Output	CA-IS374xH	See Figure 8-2				ns
+	Enable Propagation Polar High Impedance to Low Output	CA-IS374xL					ns
t _{PZL}	Enable Propagation Delay, High Impedance to Low Output CA-IS37				6	11	ns
t _{DO}	Default Output Delay Time from Input Power Loss	See Figure 8-3		8	12	ns	
t _{ie}	Time interval error		2 ¹⁶ – 1 PRBS 100Mbps		0.7		ns
			data				
t _{SU}	Start-up Time				15	40	μs

NOTE:

Preview Version

- t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.
- t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

8 Parameter Measurement Information

NOTE:

- 1. A square wave generator generate the V_{IN} input signal with the following constraints: waveform frequency ≤ 100 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns. Since the waveform generator has an output impedance of $Z_{out} = 50\Omega$, the 50Ω resistor in the figure is used for matching. There is no need in the actual application.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 8-1 Timing Characteristics Test Circuit and Voltage Waveforms

- 1. A square wave generator generate the V_{EN} input signal with the following constraints: waveform frequency \leq 100kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns. Since the waveform generator has an output impedance of $Z_{out} = 50\Omega$, the 50Ω resistor in the figure is used for matching. There is no need in the actual application.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 8-2 Enable/Disable Propagation Delay Time Test Circuit and Waveform

NOTE:

- 1. Power Supply Ramp Rate = 10 mV/ns. V_{DDI} should ramp over 2.15V but no higher than 5.5V.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance. Since the load capacitance influence the output rising time, it's a key factor in the timing characteristic measurement.

Figure 8-3 Default Output Delay Time Test Circuit and Voltage Waveforms

- 1. The High Voltage Surge Generator generates repetitive high voltage surges with > 1kV amplitude and <10ns rise time and fall time to reach common-mode transient noise with > 100kV/μs slew rate.
- 2. C_L is the load capacitance about 15pF together with the instrumentation capacitance.
- 3. Pass-fail criteria: The output must remain stable whenever the high voltage surges come.
- 4. C_{BP} is the 0.1 ~ 1uF bypass capacitance.

Figure 8-4 Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Theory of Operation

The CA-IS374x family of devices use a simple ON-OFF keying (OOK) modulation scheme to transmit signal across the SiO₂ isolation capacitors that provide a robust insulation between two different voltage domain and act as a high frequency signal path between the input and the output. The transmitter (TX) modulates the input signal onto the carrier frequency, that is, TX delivers high frequency signal across the isolation barrier in one input state and delivers no signal across the barrier in the other input state. Then the receiver rebuilds the input signal according to the detected in-band energy. If the ENx pin is low then the output goes to high impedance state and will be pulled up to V_{DDO} (CA-IS374xH) or pull down to the corresponding GND (CA-IS374xL). This simple architecture offers a robust isolated data path and requires no special considerations or initialization at start-up. The capacitor-based signal path is fully differential to maximize noise immunity, which is also known as common-mode transient immunity. Advanced circuitry techniques are applied for better EMI introduced by the carrier signal and IO switching. The capacitively-coupled architecture provides much higher electromagnetic immunity compared to the inductively-coupled one. And OOK modulation scheme eliminates the missing-pulse error that occurs in the pulse modulation method. A simplified functional block diagram and conceptual operation waveforms of a single channel is shown in Figure 9-1 and Figure 9-2.

9.2 Functional Block Diagram

Figure 9-1 Functional Block Diagram of a Single Channel

Figure 9-2 Conceptual Operation Waveforms of a Single Channel

CHIPANALOG

9.3 Device Operation Modes

Table 9-1 provides the operation modes for the CA-IS374x devices.

Table 9-1 Operation Mode Table¹

V _{DDI}	V_{DDO}	INPUT(Ax/Bx) ²	OUTPUT ENABLE(ENx) ^{3,4}	OUTPUT (Ax/Bx)	OPERATION
		Н	H or Open	Н	Normal operation mode:
		L	H or Open	L	A channel's output follows the input state
PU	PU				Default output fail-safe mode:
		Open	H or Open	Default	If a channel's input is left open, its output goes to the
					default value (Low for CA-IS374xL and High for CA-IS374xH).
Х	PU	Х	1	7	High impedance mode:
^	PU	^	L	2	If Enable pin is tied to low, the output will be in high-Z mode
					Default output fail-safe mode:
PD	PU	x	H or Open	Default	If the input side VDD is unpowered, the outputs go in to the
10	PU	^	н ог Ореп	Delault	default output fail-safe mode (Low for CA-IS374xL and High
					for CA-IS374xH)
Х	PD	Х	Х	Undetermined	If the output side VDD is unpowered, the outputs' states are
_ ^	PD	^	Χ	ondetermined	undetermined. ⁵

NOTE:

- 1. V_{DDI} = Input-side V_{DD}; V_{DDO} = Output-side V_{DD}; PU = Powered up (VCC ≥ 2.375 V); PD = Powered down (VCC ≤ 2.25 V); X = Irrelevant; H = High level; L = Low level; Z = High Impedance.
- 2. A strongly driven input signal can weakly power the floating V_{DD} through an internal protection diode and cause undetermined output.
- 3. It is recommended that the enable inputs be connected to an external logic high or low level when the CA-IS374x is operating in noisy environments.
- 4. No Connect (NC) replaces ENA on CA-IS3740/45. No Connect replaces EN2 on the CA-IS3745. No Connects are not internally connected and can be left floating, tied to VDD, or tied to GND.
- 5. The outputs are in undetermined state when $2.25V < V_{DDI}$, $V_{DDO} < 2.375 V$.

Table 9-2 provides the Enable input truth table for the CA-IS374x devices.

Table 9-2 Enable Input Truth Table

PART NUMBER	ENA ^{1,2}	ENB ^{1,2}	OPERATION
CA-IS3740	_	Н	Outputs B1, B2, B3, B4 are enabled and follow the input state.
CA-153740	_	L	Outputs B1, B2, B3, B4 are disabled and in high impedance state.
	Н	Х	Output A4 enabled and follows the input state.
CA-IS3741	L	Х	Output A4 disabled and in high impedance state.
CA-135741	Х	Н	Outputs B1, B2, B3 are enabled and follow the input state.
	Х	L	Outputs B1, B2, B3 are disabled and in high impedance state.
	Н	Х	Outputs A3 and A4 are enabled and follow the input state.
CA-IS3742	L	Х	Outputs A3 and A4 are disabled and in high impedance state.
CA-135742	Х	Н	Outputs B1 and B2 are enabled and follow the input state.
	Х	Ĺ	Outputs B1 and B2 are disabled and in high impedance state.
CA-IS3745	-IS3745 — Outputs B1, B2, B3, B4 are enabled and follow the input state.		

- 1. Enable inputs ENA and ENB can be used for multiplexing, for clock sync, or other output control. ENA, ENB logic operation is summarized for each isolator product in Table 9-2. These inputs are internally pulled-up to local VDD allowing them to be connected to an external logic level (high or low) or left floating. To minimize noise coupling, do not connect circuit traces to ENA or ENB if they are left floating. If ENA, ENB are unused, it is recommended they be connected to an external logic level, especially if the CA-IS374x is operating in a noisy environment.
- 2. X = Irrelevant; H = High level; L = Low level.

10 Application and Implementation

Unlike optocouplers, which need external components to improve performance, provide bias, or limit current, the CA-IS374x family device CMOS digital isolator needs only two external VDD bypass capacitors ($0.1\mu\text{F}$ to $1~\mu\text{F}$) to operate. Its TTL level compatible input terminals draw only micro amps of leakage current, allowing them to be driven without external buffering circuits. The output terminals have a characteristic impedance of 50 Ω (rail-to-rail swing) and are available in both forward and reverse channel configurations. Figure 10-1 shows the typical application of CA-IS3742 device. And the circuit of Figure 10-2 is typical for most applications of CA-IS37xx series products and is as easy to use as a standard logic gate.

Figure 10-1 Typical Application Circuit of CA-IS3742

Figure 10-2 CA-IS37xx Series Digital Isolator Application Schematic

CHIPANALOG

11 Package Information

11.1 16-Pin Wide Body SOIC Package Outline and Recommended Land Pattern

The figure below illustrates the package details and the recommended land pattern details for the CA-IS374x digital isolator in a 16-pin wide-body SOIC package. The values for the dimensions are shown in millimeters.

0.30 0.10

FRONT VIEW

1.27BSC

LEFT-SIDE VIEW

1.40REF

11.2 16-Pin Narrow Body SOIC Package Outline

The figure below illustrates the package details and the recommended land pattern details for the CA-IS374x digital isolator in a 16-pin narrow-body SOIC package. The values for the dimensions are shown in millimeters.

TOP VIEW

RECOMMENDED LAND PATTERN

LEFT-SIDE VIEW