Alphalens Tear Sheets for

Factor - Historical Returns

for Period: 1/1/2018 to 4/20/2020 (last 28 Months)

```
In [1]: # Import all required libraries
# Quantopian Libraries
from quantopian.pipeline import Pipeline
from quantopian.research import run pipeline
from quantopian.pipeline.filters import QTradableStocksUS
from quantopian.pipeline.data import factset, USEquityPricing
from quantopian.pipeline.classifiers.fundamentals import Sector
from quantopian.pipeline.factors import Returns, SimpleMovingAverage, CustomFa
ctor, RSI
# Alpha Lens libraries
from alphalens.performance import mean information coefficient
from alphalens.utils import get_clean_factor_and_forward_returns
from alphalens.tears import create information tear sheet, create returns tear
sheet
```

Define Your Alpha Factor Here

Spend your time in this cell, creating good factors. Then simply run the rest of the notebook to analyze

```
In [2]: # Define the factor (Historic Returns) for the Pipeline function
# The Date Range used is Jan-1,2018 to Apr-30,2020 (ie 28 months)
def make_pipeline():
    return Pipeline(
        columns={
         'hist_returns' : Returns(window_length=2) ,
        screen=QTradableStocksUS()
    )
# Set the Start and End Dates for Factor Data
start date='2018-01-01'
end date='2020-04-30'
# Now run the Pipe
factor_data = run_pipeline(make_pipeline(), start_date, end_date)
```

Pipeline Execution Time: 5.54 Seconds

In [3]: # Display factor data and notice the columns: Date, Equity and Historical Retu print(type(factor_data)) print(len(factor data)) factor_data.head()

<class 'pandas.core.frame.DataFrame'> 1279633

Out[3]:

		hist_returns
	Equity(2 [HWM])	-0.012855
2018-01-02 00:00:00+00:00	Equity(24 [AAPL])	-0.010347
	Equity(31 [ABAX])	-0.005823
	Equity(41 [ARCB])	-0.016506
	Equity(52 [ABM])	-0.004752

- In [4]: # Set the Start and End Dates and Get Pricing Data for the equities in the Fac tor Data start_date='2018-01-01' end_date='2020-05-31' # End Date for Pricing Data should be > End Date for Fa ctor Data for Forward Returns pricing_data = get_pricing(factor_data.index.levels[1], start_date, end_date, fields='open_price')
- In [5]: # Display Pricing data and notice the columns: Date, Equity and Price print(type(pricing data)) print(len(pricing data)) pricing_data.head()

<class 'pandas.core.frame.DataFrame'> 606

Out[5]:

	Equity(2 [HWM])	Equity(24 [AAPL])	Equity(31 [ABAX])	Equity(41 [ARCB])	Equity(52 [ABM])	Equity(53 [ABMD])	Equity(62 [ABT])	Equity [GOL
2018-01-02 00:00:00+00:00	26.835	164.326	49.347	34.650	35.880	188.13	55.748	14.2
2018-01-03 00:00:00+00:00	27.130	166.615	49.845	36.161	35.809	193.29	56.504	14.7
2018-01-04 00:00:00+00:00	27.709	166.624	49.477	35.820	35.990	198.00	56.993	14.5
2018-01-05 00:00:00+00:00	28.741	167.493	50.791	35.820	36.656	200.78	56.552	14.5
2018-01-08 00:00:00+00:00	29.164	168.372	54.872	35.187	37.151	208.24	56.370	14.4

5 rows × 2748 columns

```
In [6]: # Merge the Factor Data and Pricing Data using the Function from Alphalens
merged_data = get_clean_factor_and_forward_returns(
    factor = factor_data['hist_returns'],
    prices = pricing data,
    quantiles=5,
    periods=(1,),
    max_loss=100,
```

Dropped 0.0% entries from factor data: 0.0% in forward returns computation an d 0.0% in binning phase (set max_loss=0 to see potentially suppressed Excepti ons).

1D

factor factor_quantile

max_loss is 10000.0%, not exceeded: OK!

```
In [7]: # Display Merged data and notice the columns
print(type(merged_data))
print(len(merged_data))
merged data.head()
```

<class 'pandas.core.frame.DataFrame'> 1279096

Out[7]:

date	asset			
	Equity(2 [HWM])	0.010993	-0.012855	2
	Equity(24 [AAPL])	0.013930	-0.010347	2
2018-01-02 00:00:00+00:00	Equity(31 [ABAX])	0.010092	-0.005823	3
	Equity(41 [ARCB])	0.043608	-0.016506	1
	Fauity(52 [ABM])	-0 001979	-0 004752	3

Information Analysis

	1D
IC Mean	0.000
IC Std.	0.126
Risk-Adjusted IC	0.002
t-stat(IC)	0.045
p-value(IC)	0.964
IC Skew	-0.099
IC Kurtosis	0.653

/venvs/py35/lib/python3.5/site-packages/statsmodels/nonparametric/kdetools.p y:20: VisibleDeprecationWarning: using a non-integer number instead of an int eger will result in an error in the future

 $y = X[:m/2+1] + np.r_[0,X[m/2+1:],0]*1j$

<matplotlib.figure.Figure at 0x7f24e2dc4a20>

Returns Analysis

	1D
Ann. alpha	0.057
beta	-0.137
Mean Period Wise Return Top Quantile (bps)	2.518
Mean Period Wise Return Bottom Quantile (bps)	-1.964
Mean Period Wise Spread (bps)	4.482
<pre><matplotlib.figure.figure 0x7f24dd<="" at="" pre=""></matplotlib.figure.figure></pre>	e33ac8>

In []: