Package 'MultRegCMP'

June 20, 2024

Description Fits a Bayesian Regression Model for multivariate count data. This model assumes that the data is distributed according to the Conway-Maxwell-Poisson distribu-

Title Bayesian Multivariate Conway-Maxwell-Poisson Regression Model

Type Package

Version 0.1.0

for Correlated Count Data

tion, and for each response variable it is associate different covariates. This model allows to account for correlations between the counts by using latent effects based on the Chib and Winkelmann (2001) http://www.jstor.org/stable/1392277 > proposal.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports purrr, mvnfast, stats, progress, bayesplot, ggplot2, cowplot
Depends R (>= 2.10)
RoxygenNote 7.3.1
Config/Needs/website rmarkdown
NeedsCompilation no
Author Mauro Florez [aut, cre]
Maintainer Mauro Florez <mf53@rice.edu></mf53@rice.edu>
Repository CRAN
Date/Publication 2024-06-20 16:30:06 UTC
Contents
com_sampler 2 DIC_cmp 2 epl_20_21 3 fitting_plots 4 llk_cmp 4 log_cmp 5 mcmc_cmp 6 prod_list 8

DIC_cmp

Index 9

com_	COM	_1	or
COIII_	_Sallil	דע	.eı

Rejection Sampler - COM-Poisson

Description

Sampler for the Conway-Maxwell-Poisson as described in Algorithm 2 - Benson & Friel (2021)

Usage

```
com_sampler(mu, nu, n = 1, ndraws = FALSE)
```

Arguments

mu	Location parameter
nu	Shape parameter

n Number of draws (default = 1)

ndraws Optional: Return the number of draws required to generate the n samples.

Value

A list or numeric in case ndraws = FALSE:

sample	Values sampled from the distribution
drawsa	Number of draws required in the rejection sampler
log Bf	Log of the boundary of the rejection sampler

Examples

```
com_sampler(2, 0.2, n = 10, ndraws = TRUE)
com_sampler(1, 2)
```

DIC_cmp

DIC of the regression model

Description

This function used an approach similar to the presented by Benson & Friel (2021) to calculate the BIC. We select S a sample size of the posterior samples to speed up computation

Usage

```
DIC_{cmp}(fit, S = 100)
```

epl_20_21 3

Arguments

fit An object from the mcmc_cmp_mh

S Number of iterations used to calculate the DIC

Value

Vector of approximated DIC

epl_20_21

Scores English Premier League Season 2020-2021

Description

A data set with the scores of the games played during season 2020-2021 in the English Premier League (EPL)

Usage

epl_20_21

Format

A data frame with 380 rows and 4 variables:

HG Goals scored by home team.

AG Goals scored by away team.

HomeTeam Home team.

AwayTeam Away team.

Source

https://www.football-data.co.uk

4 llk_cmp

fitting_plots

Rootograms plots - Multivariate CMP

Description

Rootograms plots - Multivariate CMP

Usage

```
fitting_plots(fit, type = "rootogram", S = 100)
```

Arguments

fit An element from 'mcmc_cmp'

type Wheter to do a bar plot or a rootogram

S Optional. Indicates the number of posterior samples used (Default 100)

Value

No return value, called for plotting only

Examples

```
\label{eq:cov_beta} \begin{split} n &= 50; \ J = 2 \\ X &= list(matrix(rnorm(3*n), \ ncol = 3), \ matrix(rnorm(3*n), \ ncol = 3)) \\ beta &<- list(c(1,0.1, 1), \ c(0, 0.5, -0.5)) \\ mu &<- \exp(prod_list(X, \ beta)) \\ y &= matrix(rpois(n = length(mu), \ lambda = mu), \ nrow = n) \\ fit &<- \ mcmc_cmp(y, \ X, \ S = 1000, \ nburn = 1000, \ scale_cov_b = 0.8, \\ scale_cov_beta &= 0.04, \ scale_cov_gamma = 0.06) \\ fitting_plots(fit) \end{split}
```

11k_cmp

Log likelihood of the Conway-Maxwell-Poisson Distribution

Description

This function calculates the log likelihood of the distribution as described by Benson and Friel (2021)

Usage

```
11k_{cmp}(y, mu, nu, r = 1000)
```

log_cmp 5

Arguments

У	Count value
mu	Location parameter
nu	Shape parameter

r Number of acceptances

Value

Estimation of the log likelihood of the distribution

Examples

```
llk_cmp(10, 5, 2)
```

log_cmp Log density of the normalized component of the Conway-Max Poisson	well-
--	-------

Description

Log density of the normalized component of the Conway-Maxwell-Poisson

Usage

```
log_cmp(y, mu, nu)
```

Arguments

У	Value

mu Location parameter
nu Shape parameter

Value

Numeric corresponding to the log of the unnormalized component of the distribution

6 mcmc_cmp

mcmc_cmp

MCMC Algorithm for Conway-Maxwell-Poisson Regression Model for Multivariate Correlated Count Data

Description

MCMC Algorithm to estimate the parameters in the regression model for multivariate correlated count data

Usage

```
mcmc_cmp(
 у,
 Χ,
  S = 10000,
  nburn = 5000,
  initial_beta,
  initial_gamma,
  initial_b,
  prior_mean_beta,
  prior_var_beta,
 prior_mean_gamma,
  prior_var_gamma,
  v_0,
 R_0,
  intercept = FALSE,
  scale_b,
  scale_beta,
  scale_gamma,
  scale_cov_b,
  scale_cov_beta,
  scale_cov_gamma,
  inc_burn = FALSE,
  re_chain = TRUE,
 way = 2,
  random_seed,
)
```

Arguments

У	Matrix of observations
X	Covariates list, each element is the design matrix for each column of y
S	Number of MCMC samples to be drawn
nburn	Number of MCMC samples to burn-in
initial_beta	List with initial value of beta for each response

mcmc_cmp 7

initial_gamma List with initial value of gamma for each response

initial_b Initial value of b.

prior_mean_beta

Prior mean for beta. (Default zero vector)

prior_var_beta Prior covariance matrix for beta (Default I)

prior_mean_gamma

Prior mean for beta. (Default zero vector)

prior_var_gamma

Prior covariance matrix for gamma (Default I)

v_0Prior degrees of freedom of random effectsR_0Prior covariance matrix of random effects

intercept Logical value indicating whether include the intercept

scale_b Covariance matrix for RW proposals of the random effects (Default I)

scale_beta List with initial values for the scale matrices of beta (Default I) scale_gamma List with initial values for the scale matrices of gamma (Default I) scale_cov_b Scale parameter for the RW of random effects. (Default 2.4/sqrt(2))

scale_cov_beta Scale parameter for the covariance of the proposals.

scale_cov_gamma

Scale parameter for the covariance of the proposals.

inc_burn logical: include burned samples in the return

re_chain logical: If the posterior samples for the r.e are include. False return just the mean

way How to calculate the MCMC updates, based on Chib (2001)

random_seed Random seed

... Additional parameters of the MCMC algorithm

Value

A list:

posterior_b List with posterior values of the random effects

estimation_beta

Estimation of beta parameters

posterior_beta List with posterior values of beta

estimation_gamma

Estimation of gamma parameters

posterior_gamma

List with posterior values of gamma

posterior_D Values of covariance matrix D

fitted_mu Posterior of location parameters for each response fitted_nu Posterior of shape parameters for ecah response

 8 prod_list

Examples

```
n = 50; J = 2
X = list(matrix(rnorm(3*n), ncol = 3), matrix(rnorm(3*n), ncol = 3))
beta <- list(c(1,0.1, 1), c(0, 0.5, -0.5))
mu <- exp(prod_list(X, beta))
y = matrix(rpois(n = length(mu), lambda = mu), nrow = n)
fit <- mcmc_cmp(y, X, S = 10000, nburn = 1000, scale_cov_b = 0.8,
scale_cov_beta = 0.04, scale_cov_gamma = 0.06)</pre>
```

prod_list

Product of lists between matrices

Description

Product of lists between matrices

Usage

```
prod_list(X, beta)
```

Arguments

X Data beta Parameters

Value

A list with the products element-wise

Index