

消息在发送的过程中可能被窃听

$\begin{array}{c} 2 \\ 5201314 \xrightarrow{2} 7423536 \xrightarrow{2} 5201314 \\ \hline$ 加密

加密后窃听者只能窃听到密文

凯撒密码

将字母平移一定数量达到加密效果

凯撒密码的破译

• 暴力破解

简单替换密码

将一个字符替换为另一个字符

简单替换密码的破译

频率分析

MEYLGVIWAMEYOPINYZGWYEGMZRUUYPZAIXILGVSIZZMPGKKDWOMEPGROEIWGPCEIPAMDKKEYCIUYMGIF
RWCEGLOPINYZHRZMPDNYWDWOGWITDWYSEDCEEIAFYYWMPIDWYAGTYPIKGLMXFPIWCEHRZMMEYMEDWOMG
QRYWCEUXMEDPZMQRGMEEYAPISDWOFICJILYSNICYZEYMGGJIPRWIWAIHRUNIWAHRZMUDZZYAMEYFRWCE
MRPWDWOPGRWAIOIDWSDMEIGWYMSGMEPYYEYHRUNYARNFRMSDMEWGOPYIMYPZRCCYZZIOIDWIWAIOIDWE
YMPDYAILMYPMEYMYUNMDWOUGPZYKFRMIMKIZMEIAMGODTYDMRNIWASIKJYAISIXSDMEEDZWGZYDWMEYI
DPZIXDWODIUZRPYMEYXIPYZGRPDMDZYIZXMGAYZNDZYSEIMXGRCIWWGMOYM

字母	个数	字母	个数	字母	个数	字母	个数	字母	个数
I	47 个	G	27 个	С	12 个	F	7个	V	2 个
Y	47 个	Z	27 个	S	11 个	L	6个	В	0个
М	45 个	P	26 个	N	10 个	Н	5个		
W	35 个	R	22 个	U	10 个	J	3 个		
E	33 个	A	17 个	K	8个	т	3 个		
D	30 个	- 0	16个。	х	8个	Q	2个		

异或运算

```
0 \oplus 0 = 0
0 \oplus 1 = 1
0 \oplus 0 = 1
0 \oplus 1 = 0
```

```
0 1 0 0 1 1 0 0 ... A

1 1 1 1 0 0 1 1 0 ... B

1 1 1 1 0 0 1 1 0 ... A ⊕ B
```

```
1 1 1 0 0 1 1 0 ... A \oplus B

0 1 0 1 1 0 0 ... B
```


一次性密码本

	01101101	01101001	01100100	01101110	01101001	01100111	01101000	01110100	明文"midnight"
\oplus	01101011	11111010	01001000	11011000	01100101	11010101	10101111	00011100	密钥
	00000110	10010011	00101100	10110110	00001100	10110010	11000111	01101000	密文

	00000110	10010011	00101100	10110110	00001100	10110010	11000111	01101000	密文
\oplus	01101011	11111010	01001000	11011000	01100101	11010101	10101111	00011100	密钥
	01101101	01101001	01100100	01101110	01101001	01100111	01101000	01110100	解密后得到明文
									midnight

一次性密码本

- 缺点
 - 1. 密钥如何发送
 - 2. 密钥长度问题
 - 3. 密钥无法复用

对称密码

- DES
- AES

DES 算法的安全性

- 1997 DES-challenge I 96天破译
- 1998 DES-challenge II-1 41天破译
- 1998 DES-challenge II-2 56小时破译
- 1998 DES-challenge III 22小时破译

三重DES

• 加密-解密-加密

客户端

加密解密使用 相同的密钥

服务器

攻击者

只要拿到密钥, 任何人都能破解 密码

对称密码的问题

- 密钥如何配送
 - 1. 事先共享
 - 2. 密钥分配中心
 - 3. Diffie-Hellman: 共享一部分信息生成密码
 - 4. 非对称密码(公钥密码)

非对称密码

- 1. Bob 生成包含 公钥/私钥 的密钥对
- 2. 公钥发给 Alice, 私钥由 Bob 保存
- 3. Alice 用 Bob 的公钥进行加密,发送给 Bob
- 4. Bob 用私钥解密

进行加密

RSA

- 准备两个很大的质数, p 和 q
- 求 N, N = p * q
- 求 L, L = p 1, q 1 的最小公倍数
- 求 E, 1 < E < L, E 和 L 互质
- 求 D, 1 < D < L, E * D Mod L = 1

• 密文 = 明文^E mod N

• 明文 = 密文^D mod N

• 非对称密码的缺点:效率低,解决方案:混合密码

中间人攻击

• 密码解决的问题: 机密性

• 密码不能解决的问题: 完整性, 认证, 不可否认性

散列函数

- 根据任意长度的内容计算出固定长度的散列值
- 能够快速计算出散列值
- 内容不同散列值不同
- 单向性

- MD4 (抗碰撞性已被攻破)
- MD5 (抗碰撞性已被攻破)
- SHA-1 (抗碰撞性已被攻破)
- SHA-2: SHA-256、SHA-384、SHA-512
- SHA-3
- RIPEMD-160

消息认证码

重放攻击

- 解决方式
 - 1. 序号
 - 2. 时间戳
 - 3. 随机数

• 消息认证码解决的问题: 完整性

• 无法解决的问题: 不可否认性

数字签名

证书

(3) 认证机构Trent用自己的私钥对Bob的 (4) Alice得到带有认证机构Trent的 公钥施加数字签名并生成证书 数字签名的Bob的公钥(证书) 证书 (2) Bob在认证机构Trent注册 认证机构Trent 自己的公钥 Bob的公钥 Bob的 Trent的 公钥 数字签名 (1) Bob生成密钥对 消息接收者Bob 消息发送者Alice 密文 (5) Alice使用认证机构Trent的公钥验证数 (7) Bob用自己的私钥解密 密文得到Alice的消息 字签名,确认Bob的公钥的合法性 (6) Alice用Bob的公钥加密 消息并发送给Bob

HTTPS

Handshake: ClientHello

服务器

Handshake: ServerHello

Handshake: Certificate

Handshake: ServerHelloDone

Handshake: ClientKeyExchange

ChangeCipherSpec

Handshake: Finished

ChangeCipherSpec

Handshake: Finished

Application Data(HTTP)

Application Data(HTTP)

Alert: warning, close notify

加密在比特币中的应用

- 对交易账单计算散列值
- 对散列值用私钥签名
- 矿工使用公钥验证,追加到区块中