VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents

Ryota Tanaka^{1,2} Taichi Iki¹ Taku Hasegawa¹ Kyosuke Nishida¹ Kuniko Saito¹ Jun Suzuki²

¹NTT Human Informatics Laboratories, NTT Corporation

https://vdocrag.github.io

- Problem / objective
 - Retrieval-Augmented Generation (RAG)
- Contribution / Key idea
 - VdocRAG: A new RAG framework, which directly understand diverse real-world documents purely from visual features
 - Self-supervised pre-training tasks, designed for document retrieval-oriented adaptation of LVLMs, by compressing visual document representations
 - OpenDocVQA: the first unified open-domain Document VQA dataset with diverse documents

• OpenDocVQA Task and Dataset - Task

- □ OpenDocVQA
 - a. N document images, question Q가 주어졌을때, question과 관련 있는 k개의 images 를 찾아 답변하기.
 - b. Visual document retrieval + DocumentVQA

	Input	Output			
Visual document retrieval	N document images $\mathcal{I} = \{I_1,,I_N\}$ A question Q	Relevant k images $\hat{\mathcal{I}} \in \mathcal{I}$, where $k \ll N$			
DocumentVQA	Relevant k images $\hat{\mathcal{I}} \in \mathcal{I}$, where $k \ll N$ A question Q	Answer A			

Figure 1. Our framework of VDocRAG and examples from Open-DocVQA. VDocRAG consists of VDocRetirver and VDocGenerator, which can retrieve relevant documents and generate answers by understanding the original appearance of documents.

• OpenDocVQA Task and Dataset - Dataset

- ☐ Filtering of DocumentVQA datasets
- ☐ Reformulation of TableQA dataset
- ☐ Creation of new multi-hop questions
- ☐ Negative candidates mining

Figure 2. Process of creating multi-hop DocumentVQA questions.

	ViDoRe [17]	Dureadervis [46]	OpenDocVQA
Retrieval	/	1	/
QA	×	1	/
Context-Independent	X	1	/
Visual Semantic Search	1	×	/
Multi-Hop	×	×	1
Document Contents	T, L, F, C, D	T, L	T, L, F, C, D
Answer Types	13—33	Ext	Ext, Abs
#Document Types	6	1	Open
#QAs	3,810	15,000	43,474
#Images (Pages)	8,310	158,000	206,267

Table 1. Comparison of related datasets. Document contents include (T)able, (L)ist, (F)igure, (C)hart, and (D)iagram. Answer types are Extractive (Ext) and Abstractive (Abs).

• Overview

Figure 3. Overview of our VDocRAG model. VDocRetriever retrieves document images related to the question from a corpus of document images, and VDocGenerator uses these retrieved images to generate the answer.

Architecture Overview

- Dynamic high-resolution image encoding
 - Input: Document image, Output: Visual document features Zd
 - 과정: 이미지 크롭(336x336)해서 encoding하고 2-layer MLP 통해 projection
- **VDocRetriever**
 - LVLM-based dual-encoder architecture: queries와 document images를 독립적으로 인코딩
 - Question + $\langle EOS \rangle$ token --LLM- \rangle question embeddings \mathbf{h}_{q}
 - Visual document features + <EOS> token --LLM-> visual document embeddings h_d
 - Maximum inner product search를 통해 유사도 높은 top-k documents 검색 $^{rac{1}{2}}$ SIM $(\mathbf{h}_{\mathrm{q}},\mathbf{h}_{\mathrm{d}})=rac{\mathbf{h}_{\mathrm{q}}^{ op}\mathbf{h}_{\mathrm{d}}}{\|\mathbf{h}_{\mathrm{d}}\|\|\mathbf{h}_{\mathrm{d}}\|}$
- **VDocGenerator**
 - LLM input: Retrieved k documents 인코딩 결과 + question

Figure 3. Overview of our VDocRAG model. VDocRetriever retrieves document images related to the question from a corpus of document images, and VDocGenerator uses these retrieved images to generate the answer.

Self-Supervised Pre-training Tasks

- 목표: To transfer the powerful abilities of LVLMs to facilitate their usage in visual document retrieval
- □ 그래서, entire image representation을 <EOS> token에 compress하기 위한 2가지 self-supervised pretraining tasks를 제안.
 - a. Document image에서 추출한 OCR text을 psuedo target으로 사용.
 - b. Full pre-training objectives: $\mathcal{L} = \mathcal{L}_{RCR} + \mathcal{L}_{RCG}$
 - c. Representation Compression via Retrieval (RCR)
 - i. Contrastive learning, for document-OCR text pairs (InfoNCE Loss)

$$\mathcal{L}_{RCR} = -log \frac{exp(SIM(\mathbf{h}_{o}, \mathbf{h}_{d^{+}})/\tau)}{\sum_{i \in \mathcal{B}} exp(SIM(\mathbf{h}_{o}, \mathbf{h}_{d_{i}})/\tau)}, \qquad (1$$

- d. Representation Compression via Generation (RCG)
 - i. Representation learning

$$\mathcal{L}_{RCG} = -\frac{1}{L} \sum_{i=1}^{L} \log p(y_i | y_{< i}, < EOS>), \qquad (2)$$

- (a) Representation Compression via Retrieval (RCR)
- (b) Representation Compression via Generation (RCG)

Figure 4. Our pre-training tasks using unlabeled documents and fine-tuning in VDocRetriever.

• Supervised Fine-tuning

- □ VDocRetriever
 - a. Contrastive learning, for document-query pairs (InfoNCE Loss)
- □ VDocGenerator
 - a. Next-token prediction objective

Supervised Fine-tuning

Experiments

Model Init	Dans	0 . 1	#DT	#EXE	ChartQA		SlideVQA		InfoVQA		DUDE		
	Init	Docs	Scale	#PT	#FT	Single	All	Single	All	Single	All	Single	All
					0	ff-the-shel	f						
BM25 [52]	_	Text	0	0	0	54.8	15.6	40.7	38.7	50.2	31.3	57.2	47.5
Contriever [22]	BERT [12]	Text	110M	1B	500K	66.9	59.3	50.8	46.5	42.5	21.0	40.6	29.7
E5 [59]	BERT [12]	Text	110M	270M	1 M	74.9	66.3	53.6	49.6	49.2	26.9	45.0	38.9
GTE [34]	BERT [12]	Text	110M	788M	3M	72.8	64.7	55.4	49.1	51.3	32.5	42.4	36.0
E5-Mistral [60]	Mistral [23]	Text	7.1B	0	1.85M	72.3	70.0	63.8	57.6	60.3	33.9	52.2	45.2
NV-Embed-v2 [30]	Mistral [23]	Text	7.9B	0	2.46M	75.3	70.7	61.7	58.1	56.5	34.2	43.0	38.6
CLIP [47]	Scratch	Image	428M	400M	0	54.6	38.6	38.1	29.7	45.3	20.6	23.2	17.6
DSE [37]	Phi3V [1]	Image	4.2B	0	5.61M	72.7	68.5	73.0	67.2	67.4	49.6	55.5	47.7
VisRAG-Ret [66]	MiniCPM-V [63]	Image	3.4B	0	240K	87.2*	75.5*	74.3*	68.4*	71.9*	51.7*	56.4	44.5
					Trained	on OpenD	ocVQA						
Phi3 [1]	Phi3V [1]	Text	4B	0	41K	72.5	65.3	53.3	48.4	53.2*	33.0*	40.5*	32.0*
VDocRetriever†	Phi3V [1]	Image	4.2B	0	41K	84.2+11.7	$74.8_{+9.5}$	$71.0_{+17.7}$	$65.1_{+16.7}$	66.8*+13.6	52.8*+19.8	48.4*+7.9	41.0*+9.0
VDocRetriever	Phi3V [1]	Image	4.2B	500K	41K	$86.0_{+1.8}$	$76.4_{+1.6}$	$77.3_{+6.3}$	$73.3_{+8.2}$	72.9*+6.1	55.5*+2.7	57.7*+9.3	50.9*+9.9

Table 3. Retrieval results under the single- (Single) and all-pool (All) settings. * indicates performance on test data for which corresponding training samples are available. All other results represent zero-shot performance. Init, FT, and PT denote the initialization model, fine-tuning, and pre-training, respectively. Performance gains in green and blue are compared to the base LLM and VDocRetirver†, respectively.

• Experiments

Generator Retriever	Dataianan	Dans	ChartQA		SlideVQA		InfoVQA		DUD	E
	Retriever	Docs	Single	All	Single	All	Single	All	Single	All
				Cla	osed-book					
Phi3	-		20.0	20.0	20.3	20.3	34.9*	34.9*	23.1*	23.1*
				Text-	based RAG					
Phi3	Phi3	Text	28.0	28.0	28.6	28.0	40.5*	39.1*	40.1*	35.7*
Phi3	Gold	Text	36.6	36.6	27.8	27.8	45.6*	45.6*	55.9*	55.9*
				VDoc	RAG (Ours)				
VDocGenerator	VDocRetriever	Image	$52.0_{+24.0}$	$48.0_{+20.0}$	44.2+15.6	$42.0_{+14.0}$	56.2*+15.7	49.2*+10.1	48.5*+8.4	44.0*+8.3
VDocGenerator	Gold	Image	74.0	74.0	56.4	56.4	64.6*	64.6*	66.4*	66.4*

Table 4. DocumentVQA results. All models are fine-tuned on OpenDocVQA. The results marked with * denote performance on unseen test samples, and the other results represent zero-shot performance. The performance gain in green is compared to the text-based RAG that has the same base LLM. Gold knows the ground-truth documents. Models answer the question based on the top three retrieval results.

• Experiments

Figure 6. Qualitative results of VDocRAG compared to text-based RAG.