PT100

Carlos Arturo Cruz Useche

septiembre 8, 2022

1. Compañeros

■ Diego Alejandro Campos Mendez

2. Objetivo

Determinar la precisión, exactitud y tiempo de respuesta del sensor térmico PT100, mediante la medición de temperatura del agua con este mismo y con una termocupla.

3. Montaje experimental

Con el montaje ubicado en la carpeta /circuitoz el código en la carpeta /codigos", se calibro el sensor PT100 usando los datos de temperatura de una termocupla como valor de referencia. Para calcular la temperatura primero se calculo se calculo el voltaje y resistencia:

$$V(bit) = \frac{5}{1023}bit \tag{1}$$

$$R(V) = \frac{R_b * V}{V_b - V} \tag{2}$$

Siendo R_b la resistencia base del circuito y V_b el voltaje con el que se alimenta el circuito, en este caso, $R_b = 96$ y $V_b = 4,65$. Con la resistencia sabemos que:

$$T(R) \approx \alpha (R - R_0) + T_0 \tag{3}$$

Con estos datos de temperatura se graficaron en función de la temperatura de la termocupla, y se determino su linealidad. Finalmente se midieron los datos de temperatura de PT100 en función del tiempo cuando este pasaba de agua fría $T_f = (1.0 \pm 0.5)^{\circ}C$ a agua hirviendo $T_h = (90.0 \pm 0.5)^{\circ}C$ y viceversa.

4. Datos y análisis

Los datos obtenidos de la calibración y caracterización, junto con el circuito y código usando en el experimento se encuentran en la carpeta ""

Figura 1: Temperatura vs tiempo.

La temperatura inicial es $(5,0\pm0,5)^{\circ}C$, y después de introducir el sensor PT100 en el agua hirviendo, la temperatura aumento a $(92,0\pm0,5)^{\circ}C$.

Cuando el PT100 es retirado del agua hirviendo y se introduce en agua fría, su temperatura disminuyo hasta $(1,0\pm0,5)$ °C.

De la grafica 1, ubicada en la carpeta "", se identificaron los siguientes tiempos de reacción:

$$T_s = (45.5 \pm 0.2)s \tag{4}$$

$$T_b = (59.0 \pm 0.2)s \tag{5}$$

El tiempo de bajada es 23 % mayor al de subida.

Para la calibración se tomaron a la par datos con la termocupla y se graficaron junto a los datos de temperatura del PT100, y se observo que estos se ajustaban linealmente a la ecuación:

$$T = 0.98T' + 0.02 \tag{6}$$

Comprobando asi que el PT100 tiene un comportamiento lineal para el rango de temperatura de $(5,0\pm0,5)^{\circ}C$ a $(92,0\pm0,5)^{\circ}C$

5. Conclusiones

- Se comprobó el comportamiento lineal del sensor PT100 para el rango de temperatura de $(1,0\pm0,5)^{\circ}C$ a $(92,0\pm0,5)^{\circ}C$.
- Se calcularon los tiempos de reacción de subida y bajada, y respectivamente se encontró que $t_s = (45,4\pm0,2)s$ y $t_b = (59,0\pm0,2)s$.
- \blacksquare Cabe recalcar que no se determino la precisión del PT100 ni el α