

目 录

1	功能说明		. 4
2	主要特性	<u> </u>	. 4
3	应用领域	`	. 4
4	典型应用]电路	. 4
5	极限参数	t	. 5
6		<u>.</u>	
7	芯片管脚	『描述	. 7
	7.1	管脚分配图	. 7
	7.2	引脚功能描述	
8	NS4268 J	典型参考特性	. 8
9	NS4268 J	立用说明	12
	9.1	芯片基本结构描述	12
	9.2	NS4268 工作模式	12
	9.3	音量控制功能	13
	9.4	上电,掉电噪声抑制	15
	9.5	EMI增强技术	15
	9.6	效率	15
	9.7	保护电路	15
10	NS4268	应用注意事项	16
11	□ 對深 L √	<u>.</u>	17

图目录

图 1 NS4268 典型应用电路	4
图 2 管脚分配图(TOP VIEW)	7
图 3 NS4268 原理框图	12
图 4 立体耳机工作电路示意图	
图 5 NS4268 音量控制	14
图 6 EMI测试频谱图	
图 7 NS4268 加磁珠应用电路	16
图 8 SOP16 封装尺寸图	17
* H =	
表 目 录	
表 1 芯片最大物理极限值	
表 2 NS4268 电气特性	5
表 3 NS4268 管脚描述	7
表 4 NS4268 工作模式设置	
表 5 辛量均割表(VDD=5 0V)	14

1 功能说明

NS4268 是一款带 DC 音量控制,超低 EMI、无需滤波器、3W 双声道 D类音频功放。另外,当耳机插头接入插孔时,音频功率放大器便以单端工作模式驱动立体声耳机。NS4268 带 DC 音量控制功能,NS4268 音量衰减范围可从 24dB 的(DC_Vol = 0V 时)到-80dB(DC_Vol = 3.54V),共有 32 级调节。NS4268 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。为简化音频系统的设计,NS4268 的桥式联接扬声器放大模式及单端立体耳机放大模式都在同一芯片上实现。NS4268 无需滤波器的 PWM 调制结构及反馈电阻内置方式减少了外部元件、PCB 面积和系统成本。NS4268 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。并且利用扩频技术充分优化全新电路设计,高达 90%的效率更加适合于便携式音频产品。

NS4268 提供 SOP16 封装, 额定的工作温度范围为-40℃至 85℃。

2 主要特性

- 3W 输出功率(10% THD、5V 电源、3Ω 负载)
- 0.1%THD+N(0.5W输出功率、5V电源)
- 32级 DC 音量调节
- 优异的全带宽 EMI 抑制能力
- 优异的"上电,掉电"噪声抑制
- 90%的效率
- 高 PSRR: -80dB (217Hz)
- 工作电压范围: 2.5V~5.25V
- 过流保护、过热保护、欠压保护
- 立体声耳机放大模式
- SOP16 封装

3 应用领域

- 手提电脑
- DVD

4 典型应用电路

图1 NS4268 典型应用电路

Nsiway______4

5 极限参数

表1 芯片最大物理极限值

参数	最小值	最大值	单位	说明
电源电压	1.8	6	V	
储存温度	-65	150	°C	
输入电压	-0.3	V_{DD}	V	
耐 ESD 电压	8000		V	
结温	150		°C	
推荐工作温度	-40	85	°C	
推荐工作电压	2.2	5.25		
热阻				
θ _{JC} (SOP16)		20	°C/W	
$\theta_{JA}(SOP16)$		80	°C/W	
焊接温度		220	°C	15 秒内

注: 在极限值之外或任何其他条件下,芯片的工作性能不予保证。

6 电气特性

限定条件: (TA=25℃)

表2 NS4268 电气特性

符号	参数	测试条件	最小值	标准值	最大值	单位
V_{DD}	电源电压		2.5		5.25	V
I _{DD}	电源静态电流	$V_{DD} = 3.6V$, $V_{IN} = 0V$, No load		8		mA
1DD	电砂带芯电机	$V_{DD} = 5.0V$, $V_{IN} = 0V$, No load		12		mA
I _{MUTE}	 待机电流	$V_{DD} = 3.6V$, $V_{IN} = 0V$ $V_{/MUTE} = 0V$, No load		4		mA
IMUTE	1寸7/1. 巴7/11	$V_{DD} = 5.0V$, $V_{IN} = 0V$ $V_{/MUTE} = 0V$, No load		6		mA
I_{SD}	关断漏电流	$V_{/SD} = 0V$		1		μΑ
V_{OS}	输出失调电压			10	40	mV
Ro	输出电阻			3		ΚΩ
PSRR	电源抑制比	217Hz			-80	dB
TOKK		20KHz			-72	dB
CMRR	共模抑制比			-70		dB
f_{SW}	调制频率	$V_{\rm DD} = 2.5 \text{V}$ to 5.25V		450		kHz
η	\(\frac{1}{2}\)			90		%
V IH	逻辑控制端 高电平		1.4			V
V IL	逻辑控制端 低电平				0.4	V

NS4268

DC音量控制、超低EMI、无需滤波器、3W双声道D类音频功放+立体声耳机功能

耳机输出模式 (V _{DD} =5.0V)						
	输出功率	THD+N=0.1%, f=1KHz, R_L =32 Ω		85		mW
P_{O}		THD+N=1%, f=1KHz, R_L =8 Ω		340		mW
		THD+N=10%, f=1KHz,R _L =8 Ω		440		mW
THD+N	总失真度+噪声	A_V =12, 20Hz \leq f \leq 20KHz R_L =32 Ω , P_0 =75mW		0.1		%
XTALK	立体声分离度	$RL=8\Omega$, $Po=340mW$		-85		dB
SNR	信噪比	$RL=8\Omega$, $Po=340mW$		90		dB
外置喇叭车	输出模式(V _{DD} =5.0	(V)		Ī	T	
	输出功率	THD+N=1%, f=1KHz, R_L =3 Ω		2.6		W
		THD+N=1%, f=1KHz, R_L =4 Ω		2.2		W
Po		THD+N=1%, f=1KHz, R_L =8 Ω		1.3		W
r ₀		THD+N=10%, f=1KHz, R_L =3 Ω		3.0		W
		THD+N=10%, f=1KHz, R_L =4 Ω		2.6		W
		THD+N=10%, f=1KHz, R_L =8 Ω		1.6		W
THD+N	总失真度+噪声	A_{VD} =2, 20Hz \leq f \leq 20KHz R_L =8 Ω , P_0 =0.5W		0.1		%
Stereo Isolation	立体声分离度	$RL=8\Omega$, $Po=0.5W$		-80		dB
SNR	信噪比	RL=8 Ω , Po=0.5W		90		dB

Nsiway______6

7 芯片管脚描述

7.1 管脚分配图

图2 管脚分配图(top view)

7.2 引脚功能描述

表3 NS4268 管脚描述

符号	管脚号	描述
MUTE	1	静音控制脚
/SD	2	关断控制,低电平有效(关断)
INRN	3	右声道输入端
Bypass	4	旁路电容
GND	5	地
INLN	6	左声道输入端
VOLUME	7	音量调节输入
GND	8	地
VoLN	9	左声道输出负端
VDD	10	电源输入
VoLP	11	左声道输出正端
GND	12	地
HP-IN	13	耳机模式控制端
VoRP	14	右声道输出正端
VDD	15	电源输入
VoRN	16	右声道输出负端

8 NS4268 典型参考特性

THD+N vs FREQUENCY

THD+N vs FREQUENCY

THD+N vs OUTPUT POWER

THD+N vs OUTPUT POWER

OUTPUT POWER vs SUPPLY VOLTAGE

OUTPUT POWER vs SUPPLY VOLTAGE

Nsiway_______10

THD+N vs Output Power

THD+N vs Output Power

Output Power vs Supply Voltage

Output Power vs Supply Voltage

Nsiway______11

9 NS4268 应用说明

9.1 芯片基本结构描述

NS4268 是带 DC 音量控制的双声道 D 类音频功率放大器+立体声耳机功能。通过 VOLUME 管脚可实现音量调节。NS4268 可以配置成桥式输出模式和单端输出模式,其原理框图如下:

图3 NS4268 原理框图

9.2 NS4268 工作模式

NS4268工作模式通过管脚/SD, MUTE和HP-IN设置,如下表

表4 NS4268 工作模式设置

10 The Hose — 11 But 1965						
/SD	MUTE	HP-IN	工作模式			
高	低	低	桥式输出			
高	低	高	单端输出			
高	高	低/高	待机状态			
低	低/高	低/高	低功耗关断			

在实际应用中,可以通过输出耳机插座自动切换输出的工作模式。典型应用见图 1,耳机控制部分如下图:

图4 立体耳机工作电路示意图

当没有耳机插头接入插孔时,R1-R3 分压电阻使提供到 HP-IN 管脚(13 脚)的电压近似为 50mV(低电平),使 NS4268 工作于桥式输出模式。当耳机插头插入耳机插孔使得耳机插孔与 R3 分离,HP-IN 管脚上拉到高电平。NS4268 工作于单端输出模式(耳机应用)。

输入电容 Ci 选择

输入电容和内置输入电阻构成高通滤波器,截止频率为 $f_{-3dB} = \frac{1}{2\pi R_{IN}C_I}$ 。过大的输入电容,增加

成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz 以下低频语音,因此采用大的电容并不能够改善系统的性能。除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。NS4268 内置 20k 输入电阻,取 f = 100Hz,计算 Ci=80nF,可取 Ci=0.1uF。

旁路电容 Cb 选择

Cb 决定 NS4268 静态工作点的稳定性,所以当开启有爆裂的输入信号时它的值非常关键。Cb 越大,芯片的输出倾斜到静态直流电压(即 VDD/2)越慢,则开启的爆裂声越小。Cb 取 1uF 可得到一个"滴答声"和"爆裂声"都较小的关断功能。

电源滤波电容选择

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压抑制性能。设计中要求滤波电容尽量靠近芯片电源脚。典型的电容为100uF的电解电容并上0.1uF的陶瓷电容。

低功耗关断功能

当/SD 管脚电平为低时,芯片处于关断低功耗状态。实际应用中建议/SD 管脚接下拉电阻。这样保证与/SD 管脚相连悬空或者高阻时芯片处于关断状态。

待机状态控制功能

当/SD 管脚电平为高,MUTE 管脚电平为高时。芯片进入待机状态。实际应用中建议/MUTE 管脚接上拉电阻。这样保证与/MUTE 管脚相连悬空或者高阻时芯片处于待机状态。

9.3 音量控制功能

Nsiway_______13

NS4268 内部建有立体声音量控制功能,通过 VOLUME 管脚输入直流电平控制,共有 32 级控制。控制范围根据 DC 电平可从 24dB 到-80dB 调节。每一级所对应的输入电压范围,如表所示。为了最大程度减小噪声影响音量控制引所选择的增益水平,加入了迟滞和时钟延时。该滞后数额相当于一级的一半宽度,如音量控制图所示

图5 NS4268 音量控制

音量控制表

表5 音量控制表(VDD=5.0V)

Gain(dB)	High(V)	Low(V)	Hysteresis(mV)	Recommended Voltage(V)
24	0.12	0.00		0
22	0.23	0.17	52	0.20
20	0.34	0.28	51	0.31
18	0.46	0.39	50	0.43
16	0.57	0.51	49	0.54
14	0.69	0.62	47	0.65
12	0.80	0.73	46	0.77
10	0.91	0.84	45	0.88
8	1.03	0.96	44	0.99
6	1.14	1.07	43	1.10
4	1.25	1.18	41	1.22
2	1.37	1.29	40	1.33
0	1.48	1.41	39	1.44
-2	1.59	1.52	38	1.56
-4	1.71	1.63	37	1.67
-6	1.82	1.74	35	1.78
-8	1.93	1.85	34	1.89
-10	2.05	1.97	33	2.01
-12	2.16	2.08	32	2.12

-14	2.28	2.19	30	2.23
-16	2.39	2.30	29	2.35
-18	2.50	2.42	28	2.46
-20	2.62	2.53	27	2.57
-22	2.73	2.64	26	2.69
-24	2.84	2.75	24	2.80
-26	2.96	2.87	23	2.91
-28	3.07	2.98	22	3.02
-30	3.18	3.09	21	3.14
-32	3.30	3.20	20	3.25
-34	3.41	3.32	18	3.36
-36	3.52	3.43	17	3.48
-80	5.00	3.54	16	5.00

9.4 上电,掉电噪声抑制

NS4268 内置上电,掉电噪声抑制电路,有效地消除了系统在上电、下电、唤醒和关断操作时可能出现的瞬态噪声。

9.5 EMI增强技术

NS4268 内置 EMI 增强技术。 采用先进的技术,在全带宽范围内极大地降低了 EMI 干扰,最大限度地减少对其他部件的影响。如图 6 所示。

图6 EMI测试频谱图

9.6 效率

NS4268 利用扩展频谱技术充分优化全新 D 类放大器的电路设计,以提高效率。90%的效率更加适合于便携式音频产品。

9.7 保护电路

当芯片发生输出引脚与电源或地短路,或者输出之间的短路故障时,过流保护电路会关断芯片以防止芯片被损坏。短路故障消除后,NS4268自动恢复工作。当芯片温度过高时,芯片也会被关断。温度下降后,NS4268继续正常工作。当电源电压过低时,芯片同样会被关断,电源电压恢复后,芯片会再次启动。

10 NS4268 应用注意事项

D 类音频功放 EMI 干扰来源

D 类音频功放的 EMI 干扰主要来源于两个地方。一个是电源线上电流的跳动;另外一个是输出端脉冲信号的边沿。EMI 主要通过 PCB 的走线、通孔和扬声器的连线向外辐射,干扰其他的部件。

NS4268 超低 EMI

便携音频设备电池的寿命和音频功放的效率直接相关。D类音频功放的效率对于延长电池的使用时间是无容置疑。但是对有收音模块的设备来讲,传统 D类音频功放的 EMI 干扰直接限制了 D类功放的使用,令许多设计工程师头痛。NS4268 采用先进的 EMI 增强技术,非常有效降低了 EMI 干扰。

NS4268 应用设计参考

要充分发挥 D 类功放的性能。应用时从以下几个方面可以最大限度降低 D 类音频功放的 EMI 干扰:

- 1. 功放输出到喇叭的走线,连线尽量短,尽量宽,而且输出布线,连线尽可能远离敏感信号线和电路。
- 2. 功放电源脚的去耦电容尽可能靠近芯片引脚。电源线,地线最好采用星形接法。
- 3. 由于空间限制等原因 EMI 干扰较严重时在输出端加磁珠和电容可以有效抑制 EMI 干扰。使用时磁珠和电容尽可能靠近芯片引脚。以下是 NS4268 加了磁珠之后的应用设计参考电路:

图7 NS4268 加磁珠应用电路

Nsiway_______16

11 封装尺寸

Symbol	Dimensions	Millimeters
	Min	Max
Α	1.350	1.750
A1	0.100	0.250
A2	1.350	1.550
В	0.330	0.510
С	0.190	0.250
D	9.800	10.000
E	3.800	4.000
E1	5.800	6.300
е	1.270	(TYP)
L	0.400	1.270
θ	0°	8°

图8 SOP16 封装尺寸图

声明:深圳市纳芯威科技有限公司保留在任何时间,并且没有通知的情况下修改产品资料和产品规格的权利,本手册的解释权归深圳市纳芯威科技有限公司所有,并负责最终解释。

Nsiway________17