

An Integrated Optical Parallel Adder as a First Step towards Light Speed Data Processing

Tohru ISHIHARA[†], Akihiko SHINYA[‡], Koji INOUE [§], Kengo NOZAKI[‡] and Masaya NOTOMI[‡]

†Kyoto University, ‡NTT Nanophotonics center, § Kyushu University

History of Optical Computing

■Opt. computers

Intensively studied in 1980's, but CMOS computers are much more superior to the optical computers

Based on optical filters

Hard to miniaturize

Based on optical transistors

Lower performance than CMOS

■Opt. interconnect

In 2000's, optical interconnects got into computers Intel, IBM, PETRA lead investigation (Si photonics)

Electronics → computation Optics → communication

Only for interconnect?

CPU Optical interconnect

Beyond Optical Communication

Our focus in this talk

Basics of Optical Switches

■ Opt. gates

Speed of light in vacuum = 3.00×10^8 m/s If reflective index=3, speed = 1.00×10^8 m/s \rightarrow time for traveling 1 mm = 10 ps

E.g. Si MZI 2x2 crossbar switch

L = 10 mm, propagation delay = 100 ps

■ CMOS gates

E.g. Fan-out 4 inverter

Propagation delay = 10 to 20 ps

Optical Pass Gate

Principle Optical Pass Gate

"1"

 $\Delta\theta = \pi/2$

 $\Delta\theta = \pi/2$

 $\Delta\theta = \pi/2 \longrightarrow 3\pi/2$

"O"

 $\Delta\theta = 3\pi/2$

Why Optical PG for Data Path?

- Good at data path operation
 - ✓ Light speed operation

Good at serial connection (light speed)

NOT good at cascade connection (OE & switching delay involved)

✓ Good at pass/cross propagations (XOR and MUX)

Optical Data Processing

 Computation can be done by just passing the optical signal through a "pass gate"

Arithmetic Operation with OPG

- XOR/MUX-dominant data-path operation
 - ✓ Parallel Adder, Multiplier, and Barrel Shifter etc.

- ✓ Parallel adder as a first step
 - Can be constructed with serial connections only

Optical Full Adder

Library Cells in
OptiSPICE simulator
(Optoelectronic
circuit simulator)

Design and Evaluation: 8-bit Adder

8-bit CMOS Adder as Comparison

16 nm High Performance CMOS Technology PTM

12

Results of OptiSPICE Simulation

- ➤ Optoelectronic Circuit Simulator (HSPICE engine)
- Light-speed parallel adder operation confirmed
 - Per stage delay: ~1ps, Initial OE and switching delay: ~10ps
 - 8-bit CMOS adder with 16nm HP PTM: 174 ps

Power Loss in Adder Operation

Related Work

Parallel adder based on shared BDD

T. Asai, Y. Amemiya, and M. Kosiba, "A Photonic-Crystal Logic Circuit Based on the Binary Decision Diagram," in *Proc. of IWPECS*, T4-14, March 2000.

Summary

- 8-bit parallel adder is designed with OPG
- Light-speed operation is confirmed
 - Per digit delay: OPG ~1 ps, CMOS 22 ps
 - 8-bit total delay: OPG ~17 ps, CMOS 174 ps
- Power loss is big issue to be resolved
 - Per digit power loss ~30%
- Future work
 - Extend it to more complicated functions