Архитектура и стандартизация сетей

- Понятие архитектуры сети
- Многоуровневый подход
- Эталонная модель OSI
- Эталонная модель TCP/IP
- Стек протоколов OSI
- Стек протоколов ТСР/ІР

Понятие архитектуры сети

- Для упрощения структуры, большинство сетей организуется в наборы **уровней** или слоев, каждый последующий из которых возводится над предыдущим.
- Во всех сетях целью каждого уровня является предоставление служб для верхних уровней.
- Уровень п одной машины поддерживает связь с уровнем п другой машины. Правила и соглашения, используемые в данном общении, называются **протоколом** уровня n.
- Протокол является договоренностью общающихся сторон о том, как должно происходить общение.

Понятие архитектуры сети

- Данные не пересылаются с уровня п одной машины на уровень п другой машины. Вместо этого каждый уровень передает данные и управление уровню, лежащему ниже, пока не достигается самый нижний уровень. Ниже первого уровня располагается физический носитель, по которому и производится обмен информацией.
- Набор уровней и протоколов называется архитектурой сети.
- Список (совокупность, набор) протоколов, достаточный для организации взаимодействия узлов в сети называется стеком протоколов. Между каждой парой смежных уровней находится интерфейс, определяющий набор примитивных операций, предоставляемых нижним уровнем верхнему.

Архитектура сети (взаимодействие двух узлов)

Архитектура сети (взаимодействие двух узлов)

Многоуровневый подход

Интерфейс определяет правила взаимодействия модулей соседних уровней в одном узле

Протоколы определяют правила взаимодействия модулей одного уровня в разных узлах

Стек протоколов определяет набор протоколов для взаимодействия двух узлов

Эталонная модель OSI (состав)

- Модель OSI определяет
 - уровни взаимодействия систем в сетях с коммутацией пакетов,
 - стандартные названия уровней,
 - функции, которые должен выполнять каждый уровень.

Замечание: В OSI для обозначения единиц обмена данными конкретных уровней используются названия: сообщение, кадр, пакет, дейтаграмма, сегмент.

Семь уровней модели OSI

7	Прикладной уровень	—— Сетевые процессы с прикладными программами
6	Уровень представления	——→ Представление данных
5	Сеансовый уровень	——→ Связь между хостами
4	Транспортный уровень	— → Связь между конечными устройствами
3	Сетевой уровень	— → Адреса и маршрутизация
2	Канальный уровень	— Доступ к среде передачи данных
1	Физический уровень	——→ Двоичная передача

Архитектура сети (взаимодействие двух узлов в эталонной модели OSI)

- Пусть узел 1 взаимодействует с узлом 2. Для этого узел 1 обращается с запросом к прикладному уровню (формируется сообщение).
- Далее прикладной уровень направляет сообщение вниз по стеку уровню представления.
- Протокол уровня представления выполняет требуемые действия и добавляет к сообщению собственную служебную информацию заголовок уровня представления, в котором содержатся указания для протокола уровня представления.
- Полученное в результате сообщение передается вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т. д.
- Сообщение достигает физического уровня, который и передает его по линиям связи машине-адресату. Сообщение «обрастает» заголовками всех уровней.

Архитектура сети (взаимодействие двух узлов в эталонной модели OSI)

- Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1 (узла 1), и оно начинает свое «путешествие» по сети (до этого момента сообщение передавалось от одного уровня другому в пределах компьютера 1).
- Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, а затем удаляет этот заголовок и передает сообщение вышележащему уровню.

Физический уровень модели OSI

- Физический уровень (physical layer) связан с передачей потока битов по физическим каналам связи, таким как коаксиальный кабель, витая пара, оптоволоконный кабель (см. лекция №1: коаксиальный кабель, витая пара, оптоволоконный кабель, лекция №2: дейтаграмма, логическое соединение, виртуальный канал).
- Функции физического уровня выполняются сетевым адаптером или последовательным портом.
- Примером протокола физического уровня может служить спецификация 10Base-Т технологии Ethernet, которая определяет в качестве используемого кабеля витую пару.
- Физический уровень не вникает в смысл информации, которую он передает. Для него эта информация представляет однородный поток битов, которые нужно доставить без искажений.

Канальный уровень модели OSI

- Канальный уровень (data link layer) работает в режиме коммутации пакетов (происходит разбиение входных данных на кадры (frames).
- Обеспечивает доставку данных (кадров) только между соседними узлами сети.
- Задачей канального уровня является проверка доступности разделяемой среды.
- Задачей канального уровня является обнаружение и коррекция ошибок.
 - Канальный уровень добавляет к кадру контрольную сумму (контрольную последовательность кадра (FCS).
 - По ее значению узел определяет были или нет искажены данные кадра в процессе передачи по сети.
 - Исправление ошибок происходит за счет повторной передачи поврежденных кадров.

Замечание: Адреса канального уровня есть МАС-адреса.

Сетевой уровень модели OSI

- Сетевой уровень (network layer) служит для образования единой транспортной системы, объединяющей несколько сетей (составная сеть).
- Технология, позволяющая соединить в единую сеть множество сетей, называется **технологией межсетевого взаимодействия** (internetworking).
- Задачей сетевого уровня является определение оптимального маршрута данных на основе сетевого адреса.
- Данные на сетевом уровне образуют **пакет** и содержат информацию об адресе назначения этого пакета.
- Адреса сетевого уровня есть NET-адреса (сетевой адрес).
- Функции сетевого уровня реализуются:
 - группой протоколов:
 - маршрутизируемые (продвижение пакетов через сеть),
 - маршрутизирующие (выбор маршрута продвижения пакетов),
 - специальными устройствами маршрутизаторами.

Транспортный уровень модели OSI

- **Транспортный уровень (transport layer)** обеспечивает передачу данных с определенной степенью надежности.
- Сервисы (предоставляемые услуги) транспортного уровня: срочность, возможностью восстановления прерванной связи, способность к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Ceaнсовый уровень модели OSI

• Сеансовый уровень (session layer) обеспечивает управление взаимодействием сторон (связь между хостами): фиксирует, какая из сторон является активной в настоящий момент, и предоставляет средства синхронизации сеанса связи.

Уровень представления модели OSI

- Уровень представления (presentation layer), обеспечивает кодирование передаваемых данных определенным стандартным образом.
 - Большинство программ обменивается не двоичными блоками данных, а именами людей, датами, денежными суммами и счетами на товары.
 - Подобная информация состоит из текстовых строк, чисел в различных форматах и других структур данных.
 - На различных компьютерах могут использоваться различные формы представления строковых данных (например, ASCII и Unicode), целых чисел и т.д.
- Чтобы общение компьютеров с различным представлением данных было возможным, необходимо преобразовывать различные форматы представления данных друг в друга, передавая их по сети в стандартизованном виде.
- Эти преобразования и осуществляет уровень представления.

Прикладной уровень модели OSI

- Прикладной уровень (application layer) определяет набор разнообразных протоколов, с помощью которых пользователи сети:
 - получают доступ к разделяемым ресурсам (файлам, принтерам, гипертекстовым веб-страницам),
 - организуют свою совместную работу.
- Единица данных, которой оперирует прикладной уровень, называется **сообщением.**

Эталонная модель ТСР/ІР

• Главной целью новой архитектуры являлась возможность объединения различных сетей в единое целое с помощью имеющихся протоколов. Она получила название по своим двум основным протоколам ТСР и IP.

Прикладной уровень модели ТСР/ІР

- Прикладной уровень стека TCP/IP соответствует трем верхним уровням модели OSI: прикладному, представления и сеансовому.
- За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. К ним относятся:
 - протокол передачи файлов (**FTP**),
 - протокол эмуляции терминала (telnet),
 - протокол передачи электронной почты (SMTP),
 - протокол передачи гипертекста (HTTP) и многие другие.

Транспортный уровень модели ТСР/ІР

- **Транспортный уровень** стека TCP/IP может предоставлять вышележащему уровню два типа сервиса:
 - протокол управления передачей (ТСР);
 - протокол пользовательских дейтаграмм (UDP).

Транспортный уровень модели TCP/IP (протокол TCP)

- Чтобы обеспечить надежную доставку данных протокол TCP предусматривает установление логического соединения, что позволяет ему
 - нумеровать пакеты,
 - подтверждать их прием квитанциями,
 - в случае потери организовывать повторные передачи,
 - распознавать и уничтожать дубликаты,
 - доставлять прикладному уровню пакеты в том порядке, в котором они были отправлены.
- TCP дает возможность без ошибок доставить сформированный на одном из компьютеров поток байтов в любой другой компьютер, входящий в составную сеть.
- ТСР делит поток байтов на фрагменты и передает их нижележащему уровню.
- Этот протокол позволяет объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме.

Транспортный уровень модели TCP/IP (протокол UDP)

- UDP является простейшим дейтаграммным протоколом.
- В функции протоколов транспортного уровня TCP и UDP входит исполнение роли связующего звена между прилегающими к ним прикладным уровнем и уровнем межсетевого взаимодействия.
 - От прикладного протокола транспортный уровень принимает задание на передачу данных с тем или иным качеством, а после выполнения рапортует ему об этом.
 - Программные модули, реализующие протоколы TCP и UDP, подобно модулям протоколов прикладного уровня, устанавливаются на хостах.

Сетевой уровень модели ТСР/ІР

- **Сетевой уровень,** называемый также **уровнем интернета,** является стержнем всей архитектуры TCP/IP.
- Он обеспечивает перемещение пакетов в пределах составной сети, образованной объединением множества сетей.
- Протоколы сетевого уровня поддерживают интерфейс с вышележащим транспортным уровнем, получая от него запросы на передачу данных по составной сети, а также с нижележащим уровнем сетевых интерфейсов.

Сетевой уровень модели TCP/IP и его протоколы

- Основным протоколом сетевого уровня является межсетевой протокол (IP), который отвечает за продвижение пакета между сетями.
 - Протокол IP развертывается не только на хостах, но и на всех шлюзах.
 - Протокол IP это дейтаграммный протокол, работающий без установления соединений.
- Вспомогательные протоколы для IP:
 - Протоколы маршрутизации RIP и OSPF, на основании которых протокол IP перемещает пакеты в нужном направлении.
 - Протокол межсетевых управляющих сообщений (ICMP), предназначенный для передачи информации об ошибках, возникших при передаче пакета.
 - Протокол групповой адресации (IGMP), использующийся для направления пакета сразу по нескольким адресам.

Уровень сетевых интерфейсов модели TCP/IP

- **Уровень сетевых интерфейсов** отвечает за организацию взаимодействия с технологиями сетей, входящих в составную сеть.
- Задачу обеспечения интерфейса между технологией ТСР/ІР и любой другой технологией промежуточной сети можно свести:
 - к определению способа упаковки (инкапсуляции) ІР-пакета в единицу передаваемых данных промежуточной сети;
 - к определению способа преобразования сетевых адресов в адреса технологии данной промежуточной сети.

Уровень сетевых интерфейсов модели TCP/IP и его протоколы

- Поддерживает все популярные технологии:
 - для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet,
 - для глобальных сетей протоколы двухточечных соединений SLIP и PPP, технологии X.25, Frame Relay, ATM.
- Обычно при появлении новой технологии локальных или глобальных сетей, она быстро включается в стек TCP/IP путем разработки соответствующего документа RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры.

Стек протоколов OSI

- Важно различать *модель* OSI и *стек протоколов* OSI.
- Модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор конкретных протоколов.

Стек протоколов OSI

7	Прикладной уровень
6	Уровень представления
5	Сеансовый уровень
4	Транспортный уровень
3	Сетевой уровень
2	Канальный уровень
1	Физический уровень

X.400 (электронная почта)	Х.500 (служба каталогов)	VTP (протокол виртуального терминала)	FTAM (протокол передачи и управления файлами)	JTM (протокол пересылки и управления работами)						
Протокол уровня представления OSI										
Сеансовый протокол OSI										
Транспортные протоколы OSI										
ES-IS, IS-IS (протоколы маршрутизации), CONP, CLNP (протоколы, ориентированные на соединение и нет)										
Ethernet	Token Ring	g FDDI	X.25	ISDN						

Стек протоколов ТСР/ІР

Прикладной уровень	FTP протокол передачи файлов HTTP протокол передачи гипертекста		про пер элек	МТР этокол эедачи тронной эчты	Telnet протокол, где администратор удаленно конфигурирует маршрутизатор	
Транспортный уровень	ТСР протокол управления передачей			UDP протокол пользовательских дейтаграмм		
Сетевой уровень	ІР протокол, который отвечает за продвижение пакета между сетями		ІСМР протокол межсетевых управляющих сообщений		RIP и OSPF протоколы маршрутизации	IGMР протокол групповой адресации
Уровень сетевых	Ethernet, Fast E,	Token Ring	FDDI	ATM	X.25	Frame Relay

для локальных сетей

для глобальных сетей

Вспомогательные протоколы стека TCP/IP

- Протокол DNS служит для преобразования адресов (преобразует символьные имена узлов в IP-адреса).
- Протокол DHCP позволяет назначать IP-адреса узлам динамически, а не статистически (облегчение администрирования сети).
- Протокол SNMP есть протокол прикладного уровня для управления сетью, который позволяет автоматически собирать информацию об ошибках и отказах устройств.

Терминология стека ТСР/ІР

- Потоком данных называют данные, поступающие от приложений на вход протоколов транспортного уровня TCP и UDP. Протокол TCP «нарезает» из потока данных сегменты.
- Единицу данных протокола UDP называют **дейтаграммой** (датаграммой).
- Единицу данных протокола IP называют **дейтаграммой**. Часто используется и другой термин **пакет.**
- В стеке TCP/IP принято называть **кадрами (фреймами)** единицы данных любых технологий, в которые упаковываются IP-пакеты для последующей переноски их через сети составной сети.
- Для TCP/IP фреймом является и кадр Ethernet, и ячейка ATM, и пакет X.25, так как все они выступают в качестве контейнера, в котором IP-пакет переносится через составную сеть.

Терминология стека ТСР/ІР

Стек протоколов TCP/IP (преимущества)

- Способность фрагментировать пакеты. Большая сеть состоит из сетей, построенных на разных принципах. В каждой из этих сетей может быть собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.
- Гибкая система адресации.
- В стеке TCP/IP очень экономно используются широковещательные рассылки. Это свойство совершенно необходимо при работе на медленных каналах связи.

Недостатки стека ТСР/ІР

- Нет разграничения концепций служб, интерфейса и протоколов.
- Модель не является общей и плохо описывает любой стек протоколов, кроме TCP/IP.
- Нет различия между физическим уровнем и уровнем передачи данных.
- Ряд широко используемых протоколов являются устаревшими.
- Высокие требования к ресурсам и сложность администрирования IP-сетей.