

Unei mulțimi de clauze S îi asociem o formulă φ_S în FNC astfel:

$$C = \{L_1, \ldots, L_n\}, n \ge 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$$

Fie $S = \{C_1, \dots, C_m\}$ o mulțime nevidă de clauze. Formula asociată lui S este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{C_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_\emptyset := v_0 \vee \neg v_0$. Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Propoziția 1.88

Pentru orice evaluare $e:V \to \{0,1\}, \ e \vDash \mathcal{S}$ ddacă $e \vDash \varphi_{\mathcal{S}}$.

Dem.: Exercițiu.

Definiția 1.89

Fie C_1 , C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1 , C_2 dacă există un literal L a.î. $L \in C_1$, $L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

Regula Rezoluției

Rez
$$\frac{C_1, C_2}{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})}, L \in C_1, L^c \in C_2$$

Notăm cu $Res(C_1, C_2)$ mulțimea rezolvenților clauzelor C_1, C_2 .

- ► Rezoluția a fost introdusă de Blake (1937) și dezvoltată de Davis, Putnam (1960) și Robinson (1965).
- ► Multe demonstratoare automate de teoreme folosesc rezoluția. Limbajul PROLOG este bazat pe rezoluție.

.

Exemplu

 $C_1 = \{v_1, v_2, \neg v_5\}, C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$

- ▶ Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- ▶ Dacă luăm $L' := v_2$, atunci $L' \in C_1$ și $L'^c = \neg v_2 \in C_2$. Prin urmare, $R' = \{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu

 $C_1 = \{v_7\}$, $C_2 = \{\neg v_7\}$. Atunci clauza vidă \square este rezolvent al clauzelor C_1, C_2 .

Fie ${\mathcal S}$ o mulțime de clauze.

Definiția 1.90

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S;
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_j, C_k .

Definiția 1.91

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție C_1, C_2, \ldots, C_n a.î. $C_n = C$.

ı

Exemplu

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

O derivare prin rezoluție a clauzei vide \square din $\mathcal S$ este următoarea:

$$\begin{array}{llll} C_1 &=& \{ \neg v_4 \} & C_1 \in \mathcal{S} \\ C_2 &=& \{ \neg v_2, \neg v_3, v_4 \} & C_2 \in \mathcal{S} \\ C_3 &=& \{ \neg v_2, \neg v_3 \} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 &=& \{ v_3 \} & C_4 \in \mathcal{S} \\ C_5 &=& \{ \neg v_2 \} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \\ C_6 &=& \{ \neg v_1, v_2 \} & C_6 \in \mathcal{S} \\ C_7 &=& \{ \neg v_1 \} & C_7 \text{ rezolvent al clauzelor } C_5, C_6 \\ C_8 &=& \{ v_1 \} & C_8 \in \mathcal{S} \\ C_9 &=& \square & C_9 \text{ rezolvent al clauzelor } C_7, C_8. \end{array}$$

Pentru orice mulțime de clauze \mathcal{S} , notăm cu

$$Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2).$$

Propoziția 1.92

Pentru orice mulțime de clauze S și orice evaluare $e: V \to \{0,1\}$,

$$e \models S \Rightarrow e \models Res(S)$$
.

Dem.: Dacă $Res(S) = \emptyset$, atunci este validă, deci $e \models Res(S)$. Presupunem că Res(S) este nevidă și fie $R \in Res(S)$. Atunci există clauze $C_1, C_2 \in S$ și un literal L a.î. $L \in C_1, L^c \in C_2$ și $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$. Avem două cazuri:

- ▶ $e \models L$. Atunci $e \not\models L^c$. Deoarece $e \models C_2$, există $U \in C_2$, $U \not= L^c$ a.î. $e \models U$. Deoarece $U \in R$, obţinem că $e \models R$.
- ▶ $e \vDash L^c$. Atunci $e \not\vDash L$. Deoarece $e \vDash C_1$, există $U \in C_1$, $U \ne L$ a.î. $e \vDash U$. Deoarece $U \in R$, obținem că $e \vDash R$.

Corectitudinea rezoluției

Teorema de corectitudine a rezoluției 1.93

Fie $\mathcal S$ o mulțime de clauze. Dacă \square se derivează prin rezoluție din $\mathcal S$, atunci $\mathcal S$ este nesatisfiabilă.

Dem.: Fie $C_1, C_2, \ldots, C_n = \square$ o S-derivare prin rezoluție a lui \square . Presupunem că S este satisfiabilă și fie $e \models S$.

Demonstrăm prin inducție după i că:

pentru orice
$$1 \le i \le n$$
, $e \models C_i$.

Pentru i=n, obținem că $e \models \square$, ceea ce este o contradicție.

Cazul i=1 este evident, deoarece $C_1 \in \mathcal{S}$.

Presupunem că $e \models C_j$ pentru orice j < i. Avem două cazuri:

- ▶ $C_i \in S$. Atunci $e \models C_i$.
- ▶ există j, k < i a.î. $C_i \in Res(C_j, C_k)$. Deoarece, conform ipotezei de inducție, $e \vDash \{C_j, C_k\}$ aplicăm Propoziția 1.92 pentru a conclude că $e \vDash C_i$.

Algoritmul Davis-Putnam (DP)

Intrare: S mulțime nevidă de clauze netriviale.

$$i:=1, \mathcal{S}_1:=\mathcal{S}.$$

Pi.1 Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{C \in \mathcal{S}_i \mid x_i \in C\}, \quad \mathcal{T}_i^0 := \{C \in \mathcal{S}_i \mid \neg x_i \in C\}.$$

Pi.2 if $(\mathcal{T}_i^1 \neq \emptyset \text{ și } \mathcal{T}_i^0 \neq \emptyset)$ then

$$\mathcal{U}_i := \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

else $\mathcal{U}_i := \emptyset$.

Pi.3 Definim

$$\begin{array}{ll} \mathcal{S}'_{i+1} & := & \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1)\right) \cup \mathcal{U}_i; \\ \mathcal{S}_{i+1} & := & \mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \check{a}\}. \end{array}$$

Pi.4 if
$$S_{i+1} = \emptyset$$
 then S este satisfiabilă.

else if
$$\square \in \mathcal{S}_{i+1}$$
 then \mathcal{S} este nesatisfiabilă.

else
$$\{i := i + 1; \text{ go to Pi.1}\}.$$

$$\mathcal{S} = \{\{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}. \ i := 1, \ \mathcal{S}_1 := \mathcal{S}.$$

$$P1.1 \quad x_1 := v_3; \ \mathcal{T}_1^1 := \{\{v_2, \neg v_1, v_3\}\}; \ \mathcal{T}_1^0 := \{\{v_1, \neg v_3\}\}.$$

$$P1.2 \quad \mathcal{U}_1 := \{\{v_2, \neg v_1, v_1\}\}.$$

$$P1.3 \quad \mathcal{S}_2' := \{\{v_2, v_1\}, \{v_2, \neg v_1, v_1\}\}; \ \mathcal{S}_2 := \{\{v_2, v_1\}\}.$$

$$P1.4 \quad i := 2 \text{ and go to P2.1.}$$

$$P2.1 \quad x_2 := v_2; \ \mathcal{T}_2^1 := \{\{v_2, v_1\}\}; \ \mathcal{T}_2^0 := \emptyset.$$

$$P2.2 \quad \mathcal{U}_2 := \emptyset.$$

$$P2.3 \quad \mathcal{S}_3 := \emptyset.$$

$$P2.4 \quad \mathcal{S} \text{ este satisfiabilă.}$$

Algoritmul Davis-Putnam (DP)

$$S = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

$$i := 1, S_1 := S.$$

P1.1
$$x_1 := v_1; \ \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \ \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$$

P1.2
$$U_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$$

P1.3 $S_2 := \{\{\neg v_2, \neg v_2\}, \{v_2\}, \{v_4\}, \{v_2, \neg v_4\}\}, \{v_3, \neg v_4\}, \{v_4, \neg v_4\}, \{v_5, \neg v_4\}, \{v_6, \neg v_4\}, \{v_6,$

P1.3
$$S_2 := \{\{\neg v_3, \neg v_2\}, \{v_3\}, \{v_4\}, \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$$

P1.4
$$i := 2$$
 and go to P2.1.

P2.1.
$$x_2 := v_2$$
; $\mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}$; $\mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}$.
P2.2 $\mathcal{U}_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}$.

P2.3
$$S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$$

P2.4
$$i := 3$$
 and go to P3.1.

P3.1
$$x_3 := v_3; \mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.$$

P3.2.
$$U_3 := \{ \{ \neg v_4 \} \}.$$
 P3.3 $S_4 := \{ \{ v_4 \}, \{ \neg v_4 \} \}.$

P3.4
$$i := 4$$
 and go to P4.1.

P4.1
$$x_4 := v_4; \ \mathcal{T}_4^1 := \{\{v_4\}\}; \ \mathcal{T}_4^0 := \{\{\neg v_4\}\}.$$

$$\mathsf{P4.2} \quad \mathcal{U}_4 := \{\square\}. \qquad \qquad \mathsf{P4.3} \quad \mathcal{S}_5 := \{\square\}.$$

P4.4
$$\mathcal{S}$$
 nu este satisfiabilă.

Notăm:

$$Var(C) := \{x \in V \mid x \in C \text{ sau } \neg x \in C\}, \quad Var(S) := \bigcup_{C \in S} Var(C).$$

Aşadar, $Var(C) = \emptyset$ ddacă $C = \square$ și $Var(S) = \emptyset$ ddacă $S = \emptyset$ sau $S = \{\square\}$.

Propoziția 1.94

Fie n := |Var(S)|. Atunci algoritmul DP se termină după cel mult n pași.

Dem.: Se observă imediat că pentru orice *i*,

$$Var(S_{i+1}) \subseteq Var(S_i) \setminus \{x_i\} \subsetneq Var(S_i).$$

Prin urmare,
$$n = |Var(\mathcal{S}_1)| > |Var(\mathcal{S}_2)| > |Var(\mathcal{S}_3)| > \ldots \geq 0$$
.

Fie $N \leq n$ numărul de pași după care se termină DP. Atunci $\mathcal{S}_{N+1} = \emptyset$ sau $\square \in \mathcal{S}_{N+1}$.

Algoritmul DP - corectitudine și completitudine

Propoziția 1.95

Pentru orice $i \leq N$,

 \mathcal{S}_{i+1} este satisfiabilă $\iff \mathcal{S}_i$ este satisfiabilă.

Dem.:

" \Leftarrow " Presupunem că \mathcal{S}_i este satisfiabilă și fie $e \models \mathcal{S}_i$. Se observă imediat că $\mathcal{S}_{i+1} \subseteq \mathcal{S}_i \cup Res(\mathcal{S}_i)$. Prin urmare, folosind corectitudinea rezoluției, obținem că $e \models \mathcal{S}_{i+1}$.

" \Rightarrow " Presupunem că S_{i+1} este satisfiabilă și fie $e \models S_{i+1}$.

Deoarece orice clauză trivială este validă, rezultă că $e \vDash \mathcal{S}'_{i+1}.$

Avem următoarele cazuri:

▶ $\mathcal{T}_i^1 = \emptyset$. Atunci $\mathcal{U}_i = \emptyset$ și $\mathcal{S}'_{i+1} = \mathcal{S}_i \setminus \mathcal{T}_i^0$, deci $\mathcal{S}_i = \mathcal{S}'_{i+1} \cup \mathcal{T}_i^0$. Fie $e' := e_{x_i \leftarrow 0}$. Atunci $e'(x_i) = 0$, deci $e' \models \neg x_i$. Rezultă că e' este model pentru orice clauză din \mathcal{T}_i^0 , adică $e' \models \mathcal{T}_i^0$. De asemenea, e(v) = e'(v) pentru orice $v \in Var(\mathcal{S}'_{i+1})$, deci $e' \models \mathcal{S}'_{i+1}$. Am obținut că $e' \models \mathcal{S}_i$.

Algoritmul DP - corectitudine și completitudine

- ▶ $\mathcal{T}_i^0 = \emptyset$. Se demonstrează similar, folosind evaluarea $e'' := e_{\mathsf{x}:\leftarrow 1}$.
- ▶ $\mathcal{T}_i^1 \neq \emptyset$ și $\mathcal{T}_i^0 \neq \emptyset$. Se observă că $\mathcal{S}_i \subseteq \mathcal{S}_{i+1}' \cup (\mathcal{T}_i^1 \cup \mathcal{T}_i^0)$. Cazul 1: $e(x_i) = 1$. Definim $e^* := e_{x_i \leftarrow 0}$. Atunci $e, e^* \models \mathcal{S}_{i+1}', e \models \mathcal{T}_i^1, e^* \models \mathcal{T}_i^0$. Presupunem că $e, e^* \not\models \mathcal{T}_i^1 \cup \mathcal{T}_i^0$. Atunci există $\mathcal{C}_1 \in \mathcal{T}_i^1$ a.î.

Presupunem ca $e, e \not\vdash f_i^- \cup f_i^-$. Atunci exista $C_1 \in f_i^-$ a.i. $e^* \not\vdash C_1$ și $C_0 \in \mathcal{T}_i^0$ a.î. $e \not\vdash C_0$. Obținem că $e \not\vdash C_0 \setminus \{\neg x_i\}$. Dacă am avea că $e \vdash C_1 \setminus \{x_i\}$, atunci ar exista un literal L care nu conține variabila x_i a.î. $e \vdash L$, de unde am obține că

care nu conține variabila x_i a.i. $e \models L$, de unde am $e^* \models L$, contradicție cu faptul că $e^* \not\models C_1$.

Rezultă că $e \not\vdash (C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \in \mathcal{U}_i \subseteq S'_{i+1}$, o contradicție cu ipoteza.

Aşadar, una din evaluările e, e^* satisface $\mathcal{T}_i^1 \cup \mathcal{T}_i^0$, deci este model pentru \mathcal{S}_i .

Cazul 2: $e(x_i) = 0$. Demonstrația e similară.

Algoritmul DP - corectitudine și completitudine

Teorema 1.96

Algoritmul DP este corect și complet, adică,

 \mathcal{S} este nesatisfiabilă ddacă $\square \in \mathcal{S}_{N+1}$.

Dem.: Aplicăm Propoziția 1.95. Obținem că $S = S_1$ este nesatisfiabilă ddacă S_{N+1} este nesatisfiabilă ddacă S_{N+1}