

Veterinary Bioscience: Cells to Systems

Prof. Simon Bailey bais@unimelb.edu.au

VETS30015 / VETS90121

Intended learning objectives

- Describe the main signal transduction pathways involved in cell signalling
 - 1. Ligand-gated ion channels
 - 2. G-protein coupled receptors,
 - 3. Receptor enzymes (i.e., tyrosine kinase),
 - 4. Nuclear receptors (class I and class II)
 - Be able to give an example of each.
- 2. Explain through the use of examples how a G protein signal transduction pathway is regulated
- 3. Describe how bacterial toxins such as cholera toxin are able to interfere with heterotrimeric G protein signalling.

Signal transduction - conversion of signals into cellular responses

Hormone receptors exhibit:

- Specificity, Affinity, Saturability, Reversibility (deactivation)
- Cell surface or intracellular
- Activate cellular responses (ion channel permeability, enzymes or changes in gene expression)

Cellular Signalling Cascade

(Then appropriate controls and feedback pathways terminate the response) Slide 4

Main types of signal transduction pathways

Signal transduction pathways & second messengers

Ligand gated ion channels

- Many ion channels open or close in response to binding a ligand.
 - Some ion channels are gated by extracellular ligands; some by intracellular ligands.
- External ligands
 E.g. Acetylcholine (ACh).
 - Ionotropic receptor
 - · Nicotinic Ach receptor
 - Opens Na+ ion channel
 - Depolarization

G-protein coupled receptors

G proteins (guanine nucleotide-binding proteins)

- Largest family of cell surface receptors
 - (>1000 genes encode for GPCRs)
- 7 transmembrane domains
- Coupled to intracellular effector systems via G- proteins
- Includes receptors for many hormones and transmitters
 - o Examples:

muscarinic AChR; adrenergic receptor

G proteins & GPCRs

Basic components of a GPCR-mediated signalling system

GPCRs: Function of the G protein

Binding induces conformational change in G_{α} ; bound GDP dissociates and is replaced by GTP; G_{α} dissociates from $G_{\beta\gamma}$

Binding of hormone induces a conformational change in receptor

Activated receptor binds to G_a subunit

Hormone dissociates from receptor; G_{α} binds to effector, activating it

Hydrolysis of GTP to GDP causes G_{α} to dissociate from effector and reassociate with $G_{\beta \nu}$

Response depends on the effector protein

 $G\beta\gamma$ subunits can also activate downstream effectors

G protein activation

Adrenaline/adrenergic receptor

- G protein α subunit with GTP activates adenylyl cyclase
- Adenylyl cyclase hydrolyses ATP to cAMP
- cAMP binds to PKA regulatory subunit and releases the PKA catalytic unit
- Catalytic unit is phosphorylated
- Activated PKA phosphorylates glycogen phosphorylase enzyme
- 6. Glycogen broken down to glucose

Activation Protein kinase A by cAMP

Figure 3-6 Activation of protein kinase \boldsymbol{A} by cAMP.

Signal amplification through G proteins

Copyright © 2009 Pearson Education, Inc.

Important regulatory control points

1. Ligand- Receptor interaction

- Activation via the G protein system occurs only while hormone-receptor conjugates persist
- Depends on hormone concentration & lifespan in blood
- Many receptor hormone conjugates are internalized and 'new' receptors expressed
 - Ligand-induced receptor internalisation through clathrincoated pits
- Proteins called β -arrestins bind to GPCR and downregulate a response to prolonged hormone exposure (desensitization)
 - Inactivate GPCR
 - Promote removal by endocytosis

Important regulatory control points G proteins molecular switch

2. "Ground state" $G\alpha\beta\gamma$ protein reforms resulting in the deactivation of adenylate cyclase.

Important regulatory control points

- 3. Degradation of cAMP is catalysed by specific a phosphodiesterase
 - cAMP → AMP
- 4. Intracellular protein phosphatases
 - Remove the phosphate groups from the key enzymes affected by their addition in the first place.
 - Eg, deactivation of protein kinase A etc
 - The balance between kinases (adding phosphates) and phosphatases (removing) activity plays a major role in the control of signalling events.

Phosphodiesterase enzyme breaks down cAMP (regulatory control)

What do kinases do??

Reversible phosphorylation

change in location

Cholera toxin and G proteins

Cholera toxin inhibits
G protein hydrolysis
-Switched on longer

Effect of Cholera toxin on salt and water balance

- 1. Cholera toxin enters intestinal crypt cells across the apical membrane
- 2. The toxin α subunit detaches and catalyses ADP ribosylation (addition of a ribosome unit) of the G α s protein coupled to adenylyl cyclase
 - Inhibits GTPase activity and GTP cannot be hydrolysed back to GDP
- 3. GTP remains permanently bound to $G\alpha$ s subunit
 - Adenylyl cyclase remains activated
- 4. cAMP levels 100x higher than normal
- 5. Cytosolic PKA is over-activated
- 6. PKA phosphorylates cystic fibrosis transmembrane conductance regulator (CFTR) Cl⁻ channel proteins ATP-mediated secretion of Cl⁻ ions
- 7. Leads to secretion of other ions and
- 8. Water loss of up to 2L/h

Consequence: severe dehydration and diarrhoea

Cholera toxin

- ► Cholera toxin

 ADPribosylates the
 Ga subunit of
 the G protein
 that activates
 adenylyl
 cyclase
- Ga can no longer hydrolyze GTP

Pertussis toxin – increases cAMP by blocking Gi

Summary

Key events in signal transduction:

1. Recognition (Receptor specificity)

2/3. Transduction / transmission

- Ligand binding causes a conformational change in the receptor
- Triggers catalytic activities to the receptor or causes the receptor to interact with cytoplasmic or membrane enzymes.
- Second messengers
- Activate catalytic cascade & effectors

4. Modulation of an effector.

protein kinases, phosphatases - altering enzyme activity.

5. Appropriate response of cell to initial stimulus.

Summation and integration of multiple signalling pathways.

6. Termination of response.

Inbuilt controls and feedback pathways.