機械学習 第1回 機械学習の概要

兵庫県立大学 社会情報科学部 川嶋宏彰 kawashima@sis.u-hyogo.ac.jp

本日の講義内容

1. 機械学習の概要

- ・ 機械学習の歴史
- どのような分野・講義が関係するのか?
- Google Teachable Machine を使ってみよう
- 2. 機械学習の簡単なモデルといくつかの重要な概念
 - k近傍法 (k-NN) を例に
- 3. この講義の進め方
 - 授業計画
 - 成績評価
 - 演習方法

分野間の関係

人工知能 ⊃ 機械学習 ⊃ 深層学習

人工知能とニューラルネット

- ・人工知能は記号処理(探索・推論,知識)が主流であった
 - アプローチの対立:記号主義 vs コネクショニズム (ニューラルネット)
 - 現在は融合の流れ(知識 + ニューラルネット)
- ・人工知能ブーム
 - ・ 第一次(1950~60年代):ダートマス会議 (1956),推論・探索
 - ・ 第二次(1980年代):知識工学・エキスパートシステム
 - 第三次(2010年代~):機械学習
- ・ニューラルネットブーム
 - 第一次(1960年代): パーセプトロン
 - ・ 第二次(1980後~90前): バックプロパゲーション
 - 第三次(2010年代~):深層学習(ディープラーニン

コネクショニズム

機械学習の歴史

- ・コンピュータの黎明期と機械学習の黎明期は重なる
- ・1700~1900年代
 - ・ 最小二乗法の発見,統計学の発展
- 1940年代
 - ・ コンピュータの発展 (1936: チューリングマシンの提案)
 - ・ Hebb則: 脳のシナプス可塑性の計算モデル
- ・ 1950年代: 機械学習の黎明期
 - Alan M. Turing (1950) Computing Machinery and Intelligence, Mind 49:433-460. (学習する機械についても考察)
 - Marvin L. Minsky (1951) 40ニューロン程度の学習機械製作
 - Frank Rosenblatt (1958) パーセプトロン提案,実機作成

A. Turing (Wikipediaより)

機械学習の歴史

- 1986年 バックプロパゲーションの発表 → 多層化が可能に
 - 理論上,一定の条件で任意の連続な非線形関数を近似可能
 - ・ しかし層が深いと学習困難 → 1990年代半ば頃からは冬の時代

- 1990~2000年代
 - カーネル法のブーム: Support Vector Machine による分類など
 - アンサンブル学習の発展: ブースティング, ランダムフォレストなど
 - 層の多いニューラルネットの学習方法の研究が進展
- ・2010年代
 - 深層学習 (deep learning)

Google Teachable Machine

■ Teachable Machine

https://teachablemachine.withgoogle.com/

新しいプロジェクト

▲ ドライブから既存のプロジェクトを開きます。

□ ファイルから既存のプロジェクトを開きます。

ファイルやウェブカメラからの画 像に基づいて学習させます。

画像プロジェクト

ファイルやウェブカメラからの画像に基づいて学習させます。

ファイルまたマイクからの1秒間の音声に基づいて学習させます。

Google Teachable Machines

機械学習の流れ

学習・訓練時 (learning / training)

機械学習を学ぶためのオープンデータ

- ・比較的小規模なデータでテストしはじめるのがよい
 - UCI Machine Learning Repository
- 今日はこのデータを使います

- Kaggle Datasets
- ・ Scikit-learn や seaborn などの同梱データセット

Palmerpenguins データセット

- ・3種のペンギン
 - アデリー (Adelie), ヒゲペンギン (Chinstrap), ジェンツー (Gentoo)

Artwork by @allison_host

- ・ 生息している南極の島の名前 (island)
- くちばしの長さ (bill_length_mm)
- くちばしの高さ (bill_depth_mm)
- フリッパー(翼)の長さ(flipper_length_mm)
- 体重 (body_mass_g),性別 (sex) など

まず散布図を見る

- 散布図行列 (pairplot)
 - くちばしの長さ (bill_length_mm)
 - くちばしの高さ (bill_depth_mm)
 - フリッパー(翼) (flipper_length_mm)
 - 体重 (body_mass_g)

ひとまず2種で考える

- ・ クラス: AdelieとGentoo
- ・特徴量: くちばしの高さ (bill_depth_mm),体重 (body_mass_g)
- ・分類タスク: この2特徴量だけでクラスを分類したい

k近傍法 (k-nearest neighbors または k-NN)₁₄

- ・判定したいデータ点: $x = (x_1, x_2)$ x_1 : bill_depth_mm x_2 : body_mass_g
- 学習データ: $(x_1^{(i)}, x_2^{(i)})$ (i = 1, ..., N)
 - N:学習データのサイズ (例: N = 273)
- ・判定したいデータ点との距離

$$\sqrt{\left(x_1^{(i)} - x_1\right)^2 + \left(x_2^{(i)} - x_2\right)^2} \quad (i = 1, ..., N)$$

- ・判定方法
 - ・判定対象xと近いデータ点を <u>k個見つけ</u>,各点がどのクラスに属するかを見て,一番多いクラスを判定結果とする (距離で重みづける場合もあり)

k近傍法

- ・単純に実装したコードの例
 - Brute force

```
X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} \\ \vdots & \vdots \\ x_1^{(N)} & x_2^{(N)} \end{bmatrix} \qquad x_{\text{test}} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}
```

```
(引き算: numpy の broadcast)
import numpy as np
import scipy
                                                             \begin{bmatrix} \left(x_{1}^{(1)} - x_{1}\right)^{2} & \left(x_{2}^{(1)} - x_{2}\right)^{2} \\ \vdots & & \vdots \\ \left(x_{1}^{(N)} - x_{1}\right)^{2} & \left(x_{2}^{(N)} - x_{2}\right)^{2} \end{bmatrix}
X = df2[features].values # 274個の2次元特徴量
y = df2['species'].values # 274個のクラスラベル
x_test = np.array([16, 4000]) # 判定したいデータ
k = 5 # 近い順に何個のデータまで見るか
dist2 = ((X - x_test) ** 2).sum(axis=1) # x_testとXの各点(各行)との距離の二乗
k_labels = y[np.argsort(dist2)][:k] # 距離の小さい。個の点のラベル
result = scipy.stats.mode(k_labels)[0][0] # 最頻ラベル
print(result)
                                                      この実装には大きな問題が2つ…
```

k近傍法の計算量

- N 個のデータ点全てとの距離を,判定のたびに計算する!
 - ・ 大規模な問題(Nが大きいとき)には実用的ではない
- ここで「データ構造とアルゴリズム」が重要になる
 - 最近傍 (nearest neighbor) 探索の手法では「木構造」を使う
 - 例:k-d tree https://ja.wikipedia.org/wiki/Kd木
- Scikit-learnなどのライブラリでは木で実装

結論:実用に際しては機械学習ライブラリを使いましょう ただし,学ぶときには自分で実装してみるのもあり

```
from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier(n_neighbors=k)
clf.fit(X, y) # 学習
y_pred = clf.predict([[16, 4000], [16, 5000]]) # 一度に複数判定
print(y_pred)
```

決定境界 (decision boundary)

- 特徴空間内の各点がどのクラスと判定されるか?
 - 決定境界 (decision boundary):各クラスに決定される領域の境界

どのような決定境界 ならば,うまく分類 できるだろうか? (考えてみよう)

何もせずk近傍法を使ったときの決定境界

- ・先ほどの実装における決定境界
 - なぜこのような決定境界になるのか?

k近傍法は距離を使う

スケーリングの前処理でデータの範囲をそろえる

• 各特徴量の平均0を分散1にする標準化 (standardization) が一般的

$$z_j^{(i)} = \frac{x_j^{(i)} - \bar{x}_j}{s_j}$$

(データiの特徴量jを標準化)

 \bar{x}_i :特徴量 j の平均

 s_i :特徴量jの標準偏差


```
from sklearn.preprocessing import StandardScaler

Scaler = StandardScaler()
Xs = scaler.fit_transform(X)

# StandardScaler を用いず以下のようにしてもよい

# Xs = (X - X.mean(axis=0))/X.std(axis=0)

clf_scaled = KNeighborsClassifier(n_neighbors=k)
clf_scaled.fit(Xs, y)
```

他にも(最大値 – 最小値)やIQRで割る方法など

k を変えてみる

- 過学習(過適合, overfitting):学習データに適合しすぎること
- 汎化 (generalization): 未知のデータに適用しやすくなること
 - ・ 機械学習の文脈での意味(「汎化」は本来もっと広い意味)

今日のまとめ

- ・k近傍法の復習
 - ・スケーリング(標準化)の重要性
 - kを変えたときの振る舞い: 汎化とオーバーフィッティング(過学習)

- ・過学習しないように、汎化能力を高めるように学習したい!
 - ・ 今後何度も出てきます
 - ・ 対策方法:正則化,交差検証,データ拡張…

- 次回
 - ・ 確率モデル:ガウス分布(密度関数)を仮定する機械学習

授業計画 https://hkawash.github.io/r07ml/

0	日付	トピック		
1	2025/04/07	機械学習の概要		
2	2025/04/14	確率モデルと機械学習	つ左	F後期「データマイニング」
3	2025/04/21	教師あり学習(回帰モデル)		復習
4	2025/04/28	教師あり学習(分類モデル)		
5	2025/05/12	アンサンブル学習	深	層学習が流行る前の標準的手法
6	2025/05/19	演習1	• • •	今でもよく使われている)
7	2025/05/26	ニューラルネットの基礎	•	
8	2025/06/02	ディープラーニング(深層学習)	其	本的なニューラルネット
9	2025/06/09	演習2	-	その演習
10	2025/06/16	畳み込みニューラルネット		この演目
11	2025/06/23	演習3		
12	2025/06/30	生成モデル		
13	2025/07/07	系列データを扱うモデル		ろいろなモデルや手法の
14	2025/07/14	強化学習(オンデマンド予定)	紹	1 1
15	2025/07/21	まとめと発展的話題(海の日が授業日!)	
16	2025/0?/??	評価(到達度の確認)		

成績評価の方法

- 成績評価の割合
 - レポート・小テスト: 40%(定期試験の勉強にもなるかも)
 - 定期試験: 60%

- ・レポートの提出方法
 - ユニパで提出
 - ・ 演習回も一部レポート(Python の ipynb ファイルを配布)

勉強方法

- ・教科書はありませんが以下を組み合わせてください
 - ・スライド
 - 録画ビデオ(あれば)
 - ・コード
 - Colaboratory で公開するので各自実行できます
 - テキスト「機械学習ことはじめ」
 - ・ 授業の前半7回の一部を技術者用にまとめたもの
 - Python で機械学習を行うための基礎が身につく
 - ・計6回分をウェブで配布予定
 - 参考書
 - ・次ページ以降

復習必須!

参考書(シラバス記載+α)

参考書

- ・ 荒木雅弘: フリーソフトではじめる機械学習入門 第2版, 森北出版 (2018)
 - ・ アンサンブル学習や深層学習,系列学習まで網羅
 - ・数学的な説明+実装
- 八谷大岳: ゼロから作るPython機械学習プログラミング 入門, 講談社 (2020)
- ・ 平井有三: はじめてのパターン認識, 森北出版 (2012)
- ・深層学習をはじめる
 - 斎藤康毅: ゼロから作るDeep Learning, オライリー, (2016)

じっくり型参考書

- ・ scikit-learn で広く学ぶ
 - A. Géron: scikit-learn, Keras, TensorFlowによる 実践機械学習 第2版 (2020)
- 深く学ぶ
 - C. M. Bishop: パターン認識と機械学習(上,下), シュプリンガー(2012)
 - ・ 特にベイズ推定、統計モデルをじっくり学べる
 - ・ いろいろな研究室で輪講されていた
 - T. Hastie他: The element of statistical learning (2nd ed.), Springer (2009)
 - ・ カラフルな図表. 英語版なら以下よりダウンロード可
 - https://web.stanford.edu/~hastie/Papers/ESLII.pdf

O'REILLY'

画像はamazon.co.jpより 訳者は省略

用語

- ・用語(訳語)が教科書によって異なることがある
- classification: 分類,識別
 - ・ クラスの決定(予測)まで含める
- discrimination: 識別,判別
 - ・ クラス決定の手前までを指すことが多い

- 特に、classificationは「分類」と「識別」のどちらもよく 使われる(指定のテキストは「識別」)
- この授業では classification は「分類」とする

宿題

提出不要だが定期テストやレポート対策になることがある

今日のコード:

https://colab.research.google.com/drive/1m_1tDb1HqLklwDWui72UV0r_xgF_NGzd#scrollTo=iebEQnXBPhzR

- 1. 3種のペンギンの散布図行列で気づいたことを述べよ
- 2. k近傍法に関するコードを各自実行せよ
- 3. kを変えたときの影響について k = 1, 3, 5, 9, 15 でプロット して考察せよ

予習(次回使います)

- ・行列の計算
 - ・掛け算など
 - ・2変数の二次形式

$$(x \quad y)\begin{pmatrix} a & b \\ b & c \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} =$$

列ベクトル×行ベクトル(行列になります)

$$\binom{x}{y}(x \quad y) =$$

- ・ガウス分布(正規分布)
 - ・ 1次元ガウス分布(1変量正規分布のこと)
- ・分散と共分散
 - ・2変量の共分散