

Intro to Probability

QL 1.1

Learning Outcomes

By the end of this class, you will be able to...

- 1. Write down functions to compute probability and conditional probability
- 2. Use Bayes formula to compute conditional probability

Probability Basic Concepts

- Probability as a general concept can be defined as the chance of an event occurring.
- Processes such as flipping a coin, rolling a die, or drawing a card from a deck are called probability experiments.
- A probability experiment is a chance process that leads to well-defined results called outcomes.
- An **outcome** is the result of a single trial of a probability experiment.
- **Sample space**: It is the set of all possible outcomes of a probability experiment.

Probability Basic Concepts

Some sample spaces for various probability experiments are shown here.

Experiment	Sample space
Toss one coin	Head, tail
Roll a die	1, 2, 3, 4, 5, 6
Answer a true/false question	True, false
Toss two coins	Head-head, tail-tail, head-tail, tail-head

Find the sample space for rolling two dice.

Rolling Dice

3 min

Activity Solution

Sample Space for Rolling Two Dice

	Die 2						
Die 1	1	2	3	4	5	6	
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	

Example

Find the sample space for drawing one card from an ordinary deck of cards.

Solution

Since there are 4 suits (hearts, clubs, diamonds, and spades) and 13 cards for each suit (ace through king), there are 52 outcomes in the sample space.

Gender of Children

5 mins

Find the sample space for the gender of the children if a family has three children. Use B for boy and G for girl and X for non-binary.

Hint: You can use a python program to print them all.

Tree diagram

A **tree diagram** is a device consisting of line segments emanating from a starting point and also from the outcome point. It is used to determine all possible outcomes of a probability experiment.

Event

- An outcome was defined previously as the result of a single trial of a
 probability experiment. In many problems, one must find the probability of
 two or more outcomes. For this reason, it is necessary to distinguish
 between an outcome and an event.
- An event consists of a set of outcomes of a probability experiment.
 - An event can be one outcome or more than one outcome.

Probability Formula

Formula for Classical Probability

The probability of any event *E* is

Number of outcomes in E

Total number of outcomes in the sample space

This probability is denoted by

$$P(E) = \frac{n(E)}{n(S)}$$

This probability is called *classical probability*, and it uses the sample space *S*.

Drawing Cards

10 min

 Find the probability of getting a red ace when a card is drawn at random from an ordinary deck of cards.

Info: there are 52 cards in an ordinary deck of cards and two red aces.

If a family has three children, find the probability that two of the three children are girls.

Info: Assume there are 3 genders: Boy, Girl and X.

Break 10 mins

Probability Rules

Probability Rule 1:

 \circ The probability of any event E is a number (either a fraction or decimal) between and including 0 and 1. This is denoted by 0 <= P(E) <= 1.

Probability Rule 2:

 If an event E cannot occur (i.e., the event contains no members in the sample space), its probability is 0.

Probability Rule 3:

If an event E is certain, then the probability of E is 1.

Probability Rules - Examples

Rolling a Die

When a single die is rolled,

- A. find the probability of getting a 9.
- B. what is the probability of getting a number less than 7?

Probability Rules

- Probability Rule 4:
 - The sum of the probabilities of all the outcomes in the sample space is 1.

Example:

in the roll of a fair die, each outcome in the sample space has a probability of 1/6. Hence, the sum of the probabilities of the outcomes is

Outcome	1		2		3		4		5		6	
Probability	$\frac{1}{6}$		$\frac{1}{6}$									
Sum	$\frac{1}{6}$	+	$\frac{1}{6} = \frac{6}{6}$	$\frac{1}{5} = 1$								

Complementary Events

- The **complement of an event E** is the set of outcomes in the sample space that are not included in the outcomes of event E.
- The complement of E is denoted by E (read "E bar").

Finding Complements

2 mins

Find the complement of each event.

- a. Rolling a die and getting a 4
- b. Selecting a letter of the alphabet and getting a vowel
- c. Selecting a day of the weekand getting a weekday

Rule for Complementary Events

$$P(\bar{E}) = 1 - P(E) \text{ or }$$

 $P(E) = 1 - P(\bar{E}) \text{ or }$
 $P(E) + P(\bar{E}) = 1$

- If the probability of an event or the probability of its complement is known, then the other can be found by subtracting the probability from 1
- Example; If the probability that a person lives in an industrialized country of the world is 1/5, find the probability that a person does not live in an industrialized country.

Venn Diagram

(a) Simple probability

(b)
$$P(\bar{E}) = 1 - P(E)$$

Empirical Probability

- Classical vs empirical probability
- A researcher for the AAA asked 50 people who plan to travel over the Thanksgiving holiday how they will get to their destination:

Method	Frequency
Drive	41
Fly	6
Train or bus	_3
	50

What's the probability of selecting a person who is driving (the person was randomly selected from a pool of people who plan to travel over the thanksgiving holiday)?

Empirical Probability

Formula for Empirical Probability

Given a frequency distribution, the probability of an event being in a given class is

$$P(E) = \frac{\text{frequency for the class}}{\text{total frequencies in the distribution}} = \frac{f}{n}$$

This probability is called *empirical probability* and is based on observation.

<u>Distribution of Blood Types Activity</u>

Distribution of Blood Types

5 mins

The Addition Rules for Probability

- 1. At a large political gathering, you might wish to know, for a person selected at random, the probability that the person is a female or is a Republican. Possibilities to consider:
 - a. The person is a female.
 - b. The person is a Republican.
 - c. The person is both a female and a Republican.
- 2. At the same gathering there are Republicans, Democrats, and Independents. If a person is selected at random, what is the probability that the person is a Democrat or an Independent?
 - a. The person is a Democrat.
 - b. The person is an Independent.

Mutually Exclusive Events

Two events are *mutually exclusive* events if they cannot occur at the same time

Determine which events are mutually exclusive and which are not, when a single die is rolled:

- 1. Getting an odd number and getting an even number
- 2. Getting a 3 and getting an odd number
- 3. Getting an odd number and getting a number less than 4
- 4. Getting a number greater than 4 and getting a number less than 4

Addition Rules - Mutually Exclusive

Addition Rule 1

When two events A and B are mutually exclusive, the probability that A or B will occur is

$$P(A \text{ or } B) = P(A) + P(B)$$

A day of the week is selected at random. Find the probability that it is a weekend day.

Addition Rule - Not Mutually Exclusive

Addition Rule 2

If A and B are *not* mutually exclusive, then

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

In a hospital unit there are 8 nurses and 5 physicians; 7 nurses and 3 physicians are females. If a staff person is selected, find the probability that the subject is a nurse or a male.

Addition Rules - Venn Diagram

(a) Mutually exclusive events P(A or B) = P(A) + P(B)

(b) Nonmutually exclusive events P(A or B) = P(A) + P(B) - P(A and B)

Independent events

Two events A and B are *independent* events if the fact that A occurs does not affect the probability of B occurring.

Independent Events

3 mins

Give some examples for independent and dependent events.

Independent Events

Examples for **independent** events:

- Tossing a coin and then roll a die
- Rolling a die and getting a 6, and then rolling a second die and getting a
 3.
- Drawing a card from a deck and getting a queen, replacing it, and drawing a second card and getting a queen.

Examples for dependent events:

 Taking out a blue ball from a bag of mixed red/blue balls, then taking out another blue ball (the possibility of getting a blue ball for the second time will change)

Multiplication Rule

Multiplication Rule 1

When two events are independent, the probability of both occurring is

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

A coin is flipped and a die is rolled. Find the probability of getting a head on the coin and a 4 on the die.

Multiplication Rule Extended

Multiplication rule 1 can be extended to three or more independent events by using the formula

$$P(A \text{ and } B \text{ and } C \text{ and } \dots \text{ and } K) = P(A) \cdot P(B) \cdot P(C) \cdot \dots \cdot P(K)$$

A Harris poll found that 46% of Americans say they suffer great stress at least once a week. If three people are selected at random, find the probability that all three will say that they suffer great stress at least once a week. (Source: 100% American.)

Dependent Events

When the outcome or occurrence of the first event affects the outcome or occurrence of the second event in such a way that the probability is changed, the events are said to be *dependent* events.

Here are some examples of dependent events:

- Drawing a card from a deck, not replacing it, and then drawing a second card.
 Selecting a ball from an urn, not replacing it, and then selecting a second ball.
 Being a lifeguard and getting a suntan.
- Having high grades and getting a scholarship.
- Parking in a no-parking zone and getting a parking ticket.

Conditional Probability

Formula for Conditional Probability

The probability that the second event *B* occurs given that the first event *A* has occurred can be found by dividing the probability that both events occurred by the probability that the first event has occurred. The formula is

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

P(B|A) = The probability that event B occurs given that event A has already occurred.

References

1. McGraw-Hill. ISBN 0070428646.