學號:

____ Quiz 8

考試日期: 2024/11/13

不可使用手機、計算器,禁止作弊!

1. Given a linear transformation such that T([-1,2]) = [1,0,0] and T([3,1]) = [0,1,2]. Please find the standard matrix representation of T and T([1,10]).

Answer: the s.m.r of T is $\begin{bmatrix} -1 & 3 \\ 2 & 1 \\ 4 & 2 \end{bmatrix}$ and $T([1, 10]) = \underbrace{\frac{1}{7}[29, 12, 24]}_{7}$.

Solution:

$$\begin{bmatrix} -1 & 3 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1/7 & 3/7 \\ 0 & 1 & 2/7 & 1/7 \end{bmatrix}$$

Thus

$$T([1,0]) = \frac{-1}{7}T([-1,2]) + \frac{2}{7}T([3,1]) = \frac{-1}{7}[1,0,0] + \frac{2}{7}[0,1,2] = \frac{1}{7}[-1,2,4]$$

$$T([0,1]) = \frac{3}{7}T([-1,2]) + \frac{1}{7}T([3,1]) = \frac{3}{7}[1,0,0] + \frac{1}{7}[0,1,2] = \frac{1}{7}[3,1,2]$$

$$A = \begin{bmatrix} | & | \\ T(\vec{e}_1) & T(\vec{e}_2) \\ | & | \end{bmatrix} = \frac{1}{7} \begin{bmatrix} -1 & 3 \\ 2 & 1 \\ 4 & 2 \end{bmatrix}$$

$$T([1,10]) = T([1,0]) + 10T([0,1]) = \frac{1}{7}[-1,2,4] + \frac{10}{7}[3,1,2] = \frac{1}{7}[29,12,24]$$

- 2. Prove or disprove (反證) the following statement.
 - (a) If T and \tilde{T} are <u>different</u> linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\vec{e_i}) = \tilde{T}(\vec{e_j})$ for some standard basis vector $\vec{e_i}$ of \mathbb{R}^n .

Solution:

It is true! 2-3, problem 29h.

(b) If $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \cdots \vec{b}_n\}$ is a basis for \mathbb{R}^n and T and \tilde{T} are linear transformations mapping \mathbb{R}^n into \mathbb{R}^m , then $T(\vec{x}) = \tilde{T}(\vec{x})$ for all $\vec{x} \in \mathbb{R}^n$ if and only if $T(\vec{b}_i) = \tilde{T}(\vec{b}_i)$ for $i = 1, 2, \dots, n$.

Solution:

It is true! 2-3, problem 29j.