Tuesday lectures: measurements and time-evolution

Alessandro Roggero

Trento Institute for Fundamental Physics

and Applications

DNP/TALENT School

ECT* - 17 June, 2025

What is a Quantum Computer?

A Quantum Computer is a controllable quantum many-body system that allows to enact unitary transformations on an initial state ρ_0

$$\rho_0 \to U \rho_0 U^{\dagger}$$

n degrees of freedom so $\rho \in \mathcal{H}^{\otimes n}$

What is a Quantum Computer?

A Quantum Computer is a controllable quantum many-body system that allows to enact unitary transformations on an initial state ρ_0

$$\rho_0 \to U \rho_0 U^{\dagger}$$

n degrees of freedom so $\rho \in \mathcal{H}^{\otimes n}$

In a Quantum Simulation we want to use this freedom to describe the time-evolution of a closed system

$$\rho(t) \to U(t) \rho_0 U(t)^{\dagger}$$

described by some Hamiltonian

$$U(t) = \exp(itH)$$
.

Box contains n qubits (2-level sys.) together with a set of buttons

- ullet initial state preparation ho
- ullet projective measurement ${\cal M}$
- ullet quantum operations G_k

Alessandro Roggero ECT* - 17 Jun 2025 2 / 17

Box contains n qubits (2-level sys.) together with a set of buttons

- ullet initial state preparation ho
- ullet projective measurement ${\cal M}$
- ullet quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Alessandro Roggero ECT* - 17 Jun 2025 2 / 17

Box contains n qubits (2-level sys.) together with a set of buttons

- ullet initial state preparation ho
- ullet projective measurement ${\cal M}$
- ullet quantum operations G_k

Solovay-Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

Alessandro Roggero ECT* - 17 Jun 2025 2 / 17

Box contains n qubits (2-level sys.) together with a set of buttons

- ullet initial state preparation ho
- ullet projective measurement ${\cal M}$
- ullet quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

discretize the physical problem

$$|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt}|\Psi(0)\rangle$$

2/17

Box contains n qubits (2-level sys.) together with a set of buttons

- ullet initial state preparation ho
- ullet projective measurement ${\cal M}$
- ullet quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

- discretize the physical problem
- map physical states to bb states

$$|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt}|\Psi(0)\rangle$$

2/17

Box contains n qubits (2-level sys.) together with a set of buttons

- ullet initial state preparation ho
- ullet projective measurement ${\cal M}$
- ullet quantum operations G_k

Solovay–Kitaev Theorem

We can build a **universal** black box with only a **finite number** of buttons

Lloyd (1996) We can simulate time evolution of local Hamiltonians

- 1 discretize the physical problem
- 2 map physical states to bb states
- push correct button sequence

$$|\Psi(0)\rangle \rightarrow |\Psi(t)\rangle = e^{-iHt}|\Psi(0)\rangle$$

2 / 17

Steps in a quantum simulation

The quantum simulation of a nuclear reaction requires three main steps

State preparation

Alessandro Roggero ECT* - 17 Jun 2025

Steps in a quantum simulation

The quantum simulation of a nuclear reaction requires three main steps

State Time preparation evolution

Alessandro Roggero ECT* - 17 Jun 2025

Steps in a quantum simulation

The quantum simulation of a nuclear reaction requires three main steps

State Time Measurement evolution preparation

Today we will focus on the last twp steps: time-evolution and measurement

Alessandro Roggero ECT* - 17 Jun 2025 3 / 17

Quick recap of quantum gates

single-qubit gates

$$- R_{\hat{n}}(\theta) - \exp\left(i\theta \frac{\hat{n} \cdot \vec{\sigma}}{2}\right)$$

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -X - X$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = - \boxed{Y} -$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = - \boxed{Z}$$

$$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} = - \boxed{S} - \boxed{S}$$

two-qubit entangling gate

$$\mathsf{CNOT} = \underbrace{\hspace{1cm}}_{==} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$|\Phi_0\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$

$$\left|\Phi_{1}\right\rangle = a\left|00\right\rangle + b\left|01\right\rangle + c\left|11\right\rangle + d\left|10\right\rangle$$

EXERCISE: show that $\forall U_A, U_B$ the output of the circuit above is $|0000\rangle$

Alessandro Roggero

Quick recap of quantum gates II

Hadamard Gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

ullet rotates between Z and X basis

$$\begin{array}{l} H|0\rangle = \mid +\rangle \\ H|1\rangle = \mid -\rangle \end{array} \hspace{0.5cm} X|\pm\rangle = \pm \mid \pm\rangle$$

generates uniform superposition

$$|0\rangle - H - |0\rangle - |0\rangle$$

$$H^{\otimes 3}\left|0\right\rangle = \frac{1}{\sqrt{2^3}} \sum_{k=0}^{2^3-1} \left|k\right\rangle$$

Generic controlled unitary

Barenco et al. (1995)

Controlled CNOT: Toffoli

see eg. Nielsen & Chuang

Measuring an observable: single qubit case

Computational basis is eigenbasis of Z so that, if $|\Psi\rangle=U_{\Psi}\,|0\rangle$, we have

$$\langle \Psi | Z | \Psi \rangle = |\langle 0 | \Psi \rangle|^2 - |\langle 1 | \Psi \rangle|^2 \equiv |0\rangle - \boxed{U_\Psi} - \boxed{U_\Psi}$$

Measuring an observable: single qubit case

Computational basis is eigenbasis of Z so that, if $|\Psi\rangle=U_{\Psi}\,|0\rangle$, we have

$$\langle \Psi | Z | \Psi \rangle = |\langle 0 | \Psi \rangle|^2 - |\langle 1 | \Psi \rangle|^2 \equiv \ |0\rangle \ - \boxed{U_\Psi} - \boxed{}$$

We now need to repeat calculation ${\cal M}$ times to estimate the probabilities

$$P(0) = |\langle 0|\Psi\rangle|^2 \sim \frac{\sum_k \delta_{s_k,0}}{M} \qquad Var\left[P(0)\right] \sim \frac{v_0}{M} \longrightarrow 0.$$

Measuring an observable: single qubit case

Computational basis is eigenbasis of Z so that, if $|\Psi\rangle=U_{\Psi}\,|0\rangle$, we have

$$\langle \Psi | Z | \Psi \rangle = |\langle 0 | \Psi \rangle|^2 - |\langle 1 | \Psi \rangle|^2 \equiv \ |0 \rangle \ - \boxed{U_\Psi} - \boxed{}$$

We now need to repeat calculation ${\cal M}$ times to estimate the probabilities

$$P(0) = |\langle 0 | \Psi \rangle|^2 \sim \frac{\sum_k \delta_{s_k,0}}{M} \qquad Var\left[P(0)\right] \sim \frac{v_0}{M} \longrightarrow 0 \; .$$

Other expectation values accessible by basis transformation

ullet for X we can use $X=V_XZV_X^\dagger$ where V_X is the Hadamard

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

• for Y we can use $Y = SXS^{\dagger}$ so that $V_Y = SV_X = SH$

Given a state $|\Psi\rangle$ defined over n qubits and an encoded operator

$$O = \sum_{k=1}^{N_K} c_k P_k \quad P_k \in \{ (1, X, Y, Z)^{\otimes n} \}$$

we want to measure the expectation value $\langle \Psi|O|\Psi\rangle$ [McClean et al. (2014)].

Given a state $|\Psi\rangle$ defined over n qubits and an encoded operator

$$O = \sum_{k=1}^{N_K} c_k P_k \quad P_k \in \{ (1, X, Y, Z)^{\otimes n} \}$$

we want to measure the expectation value $\langle \Psi|O|\Psi \rangle$ [McClean et al. (2014)].

Given a state $|\Psi\rangle$ defined over n qubits and an encoded operator

$$O = \sum_{k=1}^{N_K} c_k P_k \quad P_k \in \{ (1, X, Y, Z)^{\otimes n} \}$$

we want to measure the expectation value $\langle \Psi|O|\Psi \rangle$ [McClean et al. (2014)].

ullet $\forall k$ perform M experiments to get $\langle P_k \rangle$ with

$$Var[P_k] \sim \frac{\langle P_k^2 \rangle - \langle P_k \rangle^2}{M} = \frac{1 - \langle P_k \rangle^2}{M}$$

ullet we can now evaluate $\langle O \rangle$ with variance

$$Var[O] = \sum_{k=1}^{N_K} |c_k|^2 Var[P_k]$$

 \Rightarrow total error $\propto \sqrt{N_K/M}$.

Given a state $|\Psi\rangle$ defined over n qubits and an encoded operator

$$O = \sum_{k=1}^{N_K} c_k P_k \quad P_k \in \{(1, X, Y, Z)^{\otimes n}\}$$

we want to measure the expectation value $\langle \Psi|O|\Psi \rangle$ [McClean et al. (2014)].

- ullet naive estimator has total error $\propto \sqrt{N_K/M}$
- we can measure multiple terms together!

$$X_{0}Y_{1}Z_{2}Z_{3}Y_{4} \begin{cases} X_{0}Y_{1}\mathbb{1}_{2}Z_{3}Y_{4} \\ X_{0}Y_{1}\mathbb{1}_{2}\mathbb{1}_{3}Y_{4} \\ \cdots \\ \mathbb{1}_{0}Y_{1}\mathbb{1}_{2}\mathbb{1}_{3}\mathbb{1}_{4} \\ X_{0}X_{1}Z_{2}Z_{3}X_{4} \\ \cdots \end{cases} \Rightarrow \epsilon_{tot} \propto \sqrt{\frac{N_{G}}{M}}$$

Given a state $|\Psi\rangle$ defined over n qubits and an encoded operator

$$O = \sum_{k=1}^{N_K} c_k P_k \quad P_k \in \{(\mathbb{1}, X, Y, Z)^{\otimes n}\}$$

we want to measure the expectation value $\langle \Psi|O|\Psi \rangle$ [McClean et al. (2014)].

- ullet naive estimator has total error $\propto \sqrt{N_K/M}$
- we can measure multiple terms together!

$$X_{0}Y_{1}Z_{2}Z_{3}Y_{4} \begin{cases} X_{0}Y_{1}\mathbb{1}_{2}Z_{3}Y_{4} \\ X_{0}Y_{1}\mathbb{1}_{2}\mathbb{1}_{3}Y_{4} \\ \cdots \\ \mathbb{1}_{0}Y_{1}\mathbb{1}_{2}\mathbb{1}_{3}\mathbb{1}_{4} \\ X_{0}X_{1}Z_{2}Z_{3}X_{4} \\ \cdots \end{cases} \Rightarrow \epsilon_{tot} \propto \sqrt{\frac{N_{G}}{M}}$$

 \bullet can do much better $M \approx \frac{\sqrt{N_K}}{\epsilon}$ [see 2111.09283]

Measuring an observable: Hadamard test

Alessandro Roggero ECT* - 17 Jun 2025

Measuring an observable: Hadamard test

When $\theta = 0$ we have:

$$\bullet |\Phi_0\rangle = |0\rangle \otimes |\Psi\rangle$$

$$|\Phi_1\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |\Psi\rangle$$

$$\bullet |\Phi_2\rangle = \frac{|0\rangle\otimes|\Psi\rangle}{\sqrt{2}} + \frac{|1\rangle\otimes U|\Psi\rangle}{\sqrt{2}}$$

Measuring an observable: Hadamard test

When $\theta = 0$ we have:

$$\bullet |\Phi_0\rangle = |0\rangle \otimes |\Psi\rangle$$

$$|\Phi_1\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |\Psi\rangle$$

Result of ancilla measurement

$$\langle Z \rangle_a = \frac{\langle \Psi | \left(U + U^\dagger \right) | \Psi \rangle}{2} = \mathcal{R} \langle \Psi | U | \Psi \rangle$$

EXERCISE: find the proper angle θ needed to measure the imaginary part

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U\,|\phi\rangle=e^{i2\pi\phi}\,|\phi\rangle$

• for $\theta = 0$: $\langle Z \rangle_a = cos(2\pi\phi)$

Alessandro Roggero

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U\,|\phi\rangle=e^{i2\pi\phi}\,|\phi\rangle$

- for $\theta = 0$: $\langle Z \rangle_a = cos(2\pi\phi)$
- error δ with $M \propto 1/\delta^2$ samples:

$$Var[Z_a] \sim \frac{1}{M}$$

10 / 17

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U\,|\phi\rangle=e^{i2\pi\phi}\,|\phi\rangle$

- for $\theta = 0$: $\langle Z \rangle_a = cos(2\pi\phi)$
- \bullet error δ with $M \propto 1/\delta^2$ samples:

$$Var[Z_a] \sim \frac{1}{M}$$

10 / 17

• not enough to separate $(\phi, 1-\phi)$

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U|\phi\rangle = e^{i2\pi\phi}|\phi\rangle$

- for $\theta = 0$: $\langle Z \rangle_a = cos(2\pi\phi)$
- error δ with $M \propto 1/\delta^2$ samples:

$$Var[Z_a] \sim \frac{1}{M}$$

- not enough to separate $(\phi, 1-\phi)$
- for $\theta = \theta_{ex}$: $\langle Z \rangle_a = \sin(2\pi\phi)$

Alessandro Roggero

Take a unitary U and an eigenvector $|\phi\rangle$ so that: $U|\phi\rangle = e^{i2\pi\phi}|\phi\rangle$

- for $\theta = 0$: $\langle Z \rangle_a = cos(2\pi\phi)$
- error δ with $M \propto 1/\delta^2$ samples:

$$Var[Z_a] \sim \frac{1}{M}$$

- not enough to separate $(\phi, 1-\phi)$
- for $\theta = \theta_{ex}$: $\langle Z \rangle_a = \sin(2\pi\phi)$

EXAMPLE 2: the SWAP test

- ullet State Tomography: reconstruction of state $|\Psi\rangle$ costs O(N) samples
- ullet State Overlap: we can compute $|\langle\Psi|\Phi
 angle|^2$ using only $O(\log(N))$ gates

Alessandro Roggero ECT* - 17 Jun 2025

EXAMPLE 2: the SWAP test

- ullet State Tomography: reconstruction of state $|\Psi
 angle$ costs O(N) samples
- ullet State Overlap: we can compute $|\langle\Psi|\Phi
 angle|^2$ using only $O(\log(N))$ gates

EXAMPLE 2: the SWAP test

- ullet State Tomography: reconstruction of state $|\Psi\rangle$ costs O(N) samples
- ullet State Overlap: we can compute $|\langle\Psi|\Phi
 angle|^2$ using only $O(\log(N))$ gates

Why should we care?

Efficient transition matrix element!

What is a Quantum Computer?

A Quantum Computer is a controllable quantum many-body system that allows to enact unitary transformations on an initial state ρ_0

$$\rho_0 \to U \rho_0 U^{\dagger}$$

n degrees of freedom so $\rho \in \mathcal{H}^{\otimes n}$

In a Quantum Simulation we want to use this freedom to describe the time-evolution of a closed system

$$\rho(t) \to U(t) \rho_0 U(t)^{\dagger}$$

described by some Hamiltonian

$$U(t) = \exp(itH)$$
.

Alessandro Roggero

Any unitary operation can be thought as the time evolution operator for some (Hermitian) Hamiltonian

$$U \leftrightarrow e^{ih}$$

A simple counting argument shows that for a fixed choice of universal buttons (quantum gates) there are unitary operations on n qubits which will require $O(2^n)$ operations

We can find Hamiltonians whose time evolution cannot be simulated efficiently

Efficient Hamiltonian Simulation

Hamiltonians encountered in physics have usually structure, like locality

$$H_{Ising}^{1D} = J \sum_{i=1}^{N} Z_i Z_{i+1} + h \sum_{i=1}^{N} X_i$$

$$H_{Heis}^{1D} = J \sum_{i=1}^{N} \vec{\sigma}_i \cdot \vec{\sigma}_{i+1}$$

$$\begin{split} H_{Ising}^{2D} &= J \sum_{\langle i,j \rangle} Z_i Z_j + h \sum_i X_i \\ H_{Heis}^{2D} &= J \sum_{\langle i,j \rangle} \vec{\sigma}_i \cdot \vec{\sigma}_j \end{split}$$

14 / 17

All these situations are examples of 2-local spin Hamiltonians

Quantum Simulation of k-local Hamiltonians

- locality constraints number of terms appearing in the Hamiltonian
- one can approximate full evolution with products of evolutions

$$e^{it(A+B)} = e^{itA}e^{itB} + \mathcal{O}\left(t^2 ||[A, B]||\right)$$

• locality constrains how expensive any individual term can be

Alessandro Roggero ECT* - 17 Jun 2025 15 / 17

Quantum Simulation of k-local Hamiltonians

- locality constraints number of terms appearing in the Hamiltonian
- one can approximate full evolution with products of evolutions

$$e^{it(A+B)} = e^{itA}e^{itB} + \mathcal{O}\left(t^2 ||[A, B]||\right)$$

- locality constrains how expensive any individual term can be
- S. LLOYD (1996): k-local hamiltonians can be simulated efficiently

Consider a system of n qubits and a k-local Hamiltonian $H = \sum_{j}^{N_j} h_j$ where each term h_j acts on at most $k = \mathcal{O}(1)$ qubits at a time for $N_j = \mathcal{O}(\mathsf{poly}(n))$, then using the Trotter-Suzuki decomposition

$$\left\| U(\tau) - \prod_{j=1}^{N_j} \exp\left(i\tau h_j\right) \right\| \le C\tau^2$$

we can implement $U(\tau)$ with error ϵ using $\mathcal{O}\left(\mathsf{poly}(\tau, 1/\epsilon, n)4^k\right)$ gates.

Explicit example: Ising chain

Let's consider for instance a simple 1D Ising chain with Hamiltonian

$$H = J \sum_{i=1}^{N-1} Z_i Z_{i+1} + h \sum_{i=1}^{N} X_i$$

Since $[Z_i, X_i] \neq 0$ the following decomposition is only an approximation

$$e^{-itH} \approx e^{-iJtZ_1Z_2}e^{-iJtZ_2Z_3}\cdots e^{-iJtZ_{N-1}Z_N}e^{-ithX_1}e^{-ithX_2}\cdots e^{-ithX_N}$$

How good is the approximation above? If we collect all the two-qubit Zs in H_Z and the transverse fields in H_X we have

$$\|e^{-itH} - e^{-itH_Z}e^{-itH_X}\| \le \frac{t^2}{2}\|[H_Z, H_X]\|$$

• for more check out: Childs et al. 1912.08854

Alessandro Roggero ECT* - 17 Jun 2025 16 / 17

EXAMPLE 3: Can we apply a non-unitary operation?

YES, but only with some probability

• this can be useful for example if the transition matrix element we considered before is genereated by a non unitary operator

• we will measure $|0\rangle$ with $P_0 = \frac{1}{2} \left(1 + \mathcal{R} \langle \phi | U | \phi \rangle \right) \ \Rightarrow |\phi_0\rangle = \frac{\mathbb{1} + U}{2\sqrt{P_0}} \, |\phi\rangle$

Alessandro Roggero ECT* - 17 Jun 2025

EXAMPLE 3: Can we apply a non-unitary operation?

YES, but only with some probability

• this can be useful for example if the transition matrix element we considered before is genereated by a non unitary operator

• we will measure $|0\rangle$ with $P_0 = \frac{1}{2} \left(1 + \mathcal{R} \langle \phi | U | \phi \rangle \right) \Rightarrow |\phi_0\rangle = \frac{\mathbb{1} + U}{2\sqrt{P_0}} |\phi\rangle$

Concrete example: projection operators

If we take U to be the reflection around $|\psi\rangle,$ like $U=(2|\psi\rangle\langle\psi|-\mathbb{1}),$ we find

$$P_0 = |\langle \phi | \psi \rangle|^2 \quad \Rightarrow \quad |\phi_0\rangle = \frac{|\psi\rangle\langle\psi|}{\sqrt{P_0}} |\phi\rangle = |\psi\rangle$$

Alessandro Roggero