This Mathcad sheet will calculate the longitudinal (surge) force, lateral (sway) force and turning moment (yaw), based on Wang's paper. Below please input the ship particulars as required:

Length of Moored vessel (LBP), in feet:	$L \equiv 950$
Midship cross-sectional area of moored ship, in ft ² :	$A1 \equiv 3192$
Length of passing vessel (LBP), in feet:	$L_2 \equiv .5 \cdot L$
Midship cross-sectional area of passing ship, in ft ² :	$A2 \equiv 6413$
Water density, in slug/ft ³ :	$\rho \equiv 1.9905$
Passing ship velocity (incl. current), in feet/second:	$U \equiv 11.2$
Separation distance (from centerline to centerline), in feet:	$SEP_DIST \equiv .2 \cdot L$
Stagger distance (negative when passing ship behing	$STA_DIST \equiv 0 \cdot L$
moored ship), in feet:	
Water depth, in feet	$D \equiv .1 \cdot L$

Results:

SurgeForce =
$$1.016 \times 10^{-11}$$
 in lbf
SwayForce = 7.644×10^4 in lbf
YawMoment = 7.851×10^{-9} in ft-lbf

Sectional area curves as functions of length, for both moored and passing ship (from Wang's paper):

$$S_{1}(x1) = \left(1 - \frac{4 \cdot x1^{2}}{L^{2}}\right) \cdot A1 \qquad dS_{1}(x1) = \frac{d}{dx1}S_{1}(x1) \qquad S_{2}(x2) = \left(1 - \frac{4 \cdot x2^{2}}{L_{2}^{2}}\right) \cdot A2 \ dS_{2}(x2) = \frac{d}{dx2}S_{2}(x2)$$

$$F(x1,\xi,\eta) = \int_{-\frac{L_2}{2}}^{\frac{L_2}{2}} \frac{dS_2(x2) \cdot (x2 - x1 + \xi)}{\left[(x2 - x1 + \xi)^2 + \eta^2 \right]^2} dx2$$

$$G(x1, \xi, \eta) = \int_{-\frac{L_2}{2}}^{\frac{L_2}{2}} \frac{dS_2(x2)}{\left[(x2 - x1 + \xi)^2 + \eta^2 \right]^2} dx2$$

$$Wang_Surge(\xi,\eta) \equiv \frac{\rho \cdot U^2}{2 \cdot \pi} \cdot \int_{-\frac{L}{2}}^{\frac{L}{2}} dS_1(x1) \cdot F(x1,\xi,\eta) \, dx1 \qquad \text{surge force formulation for infinite depth}$$

$$Wang_Sway(\xi,\eta) \equiv \frac{\rho \cdot U^2 \cdot \eta}{\pi} \cdot \int_{-\frac{L}{2}}^{\frac{L}{2}} dS_1(x1) \cdot G(x1,\xi,\eta) \, dx1 \qquad \text{sway force formulation for infinite depth}$$

$$Wang_Yaw(\xi,\eta) \equiv \frac{\rho \cdot U^2 \cdot \eta}{\pi} \cdot \int_{-\frac{L}{2}}^{\frac{L}{2}} \left[\left(dS_1(x1) \cdot x1 + S_1(x1) \right) \cdot G(x1,\xi,\eta) \right] dx1 \qquad \text{yaw moment formulation for infinite depth}$$

$$eta(\eta, h, n) \equiv \sqrt{\eta^2 + 4 \cdot n^2 \cdot h^2}$$
 separation distance parameter as a function of finite depth

Wang_Surge_Depth(
$$\xi, \eta, h$$
) =
$$\sum_{n = -10}^{10} \text{Wang_Surge}(\xi, \text{eta}(\eta, h, n))$$

surge force as a function of finite depth

$$Wang_Sway_Depth(\xi, \eta, h) \equiv \eta \cdot \sum_{n = -10}^{10} \frac{Wang_Sway(\xi, eta(\eta, h, n))}{eta(\eta, h, n)}$$

sway force as a function of finite depth

$$Wang_Yaw_Depth(\xi,\eta,h) \equiv \eta \cdot \sum_{n=-10}^{10} \frac{Wang_Yaw(\xi,eta(\eta,h,n))}{eta(\eta,h,n)}$$

yaw moment as a function of finite depth

Plots of Surge, Sway and Yaw forces and moments for separation distance of 0.25xL for infinite water depth:

$$x := -2 \cdot L, -1.9 \cdot L ... 2 \cdot L$$

$$\frac{\text{Wang_Sway}(0,0.25 \cdot L)}{\rho \cdot \text{U}^2 \cdot \text{L}^{-2} \cdot \text{A1} \cdot \text{A2}} = 4.534$$

SurgeForce = Wang Surge Depth(STA DIST,SEP DIST,D)

SwayForce = Wang_Sway_Depth(STA_DIST,SEP_DIST,D)

YawMoment = Wang_Yaw_Depth(STA_DIST,SEP_DIST,D)

