Aufgabe 17

c)

<u>Beh.</u>: Ein Aufruf von myAlgo(x, array, a, b), mit x vom Typ T, array vom Typ T[] und $a,b \in \mathbb{N}$ mit $0 \le a < b < array.length, prüft, ob das Element x in <math>\{array[i] | a \le i < b\}$ enthalten ist.

<u>Bew.</u>: Wenn man myAlgo(x, array, a, b) aufruft, mit x vom Typ T, array vom Typ T[] und $a,b \in \mathbb{N}_0$ mit $0 \le a < b < array.length, so gilt:$

• An Position (1)

```
(l < r+1) \land x \notin \{ array[i] \mid a \le i < l \} \land (x \notin \{ array[i] \mid m \le i < b \} \lor x \in \{ array[i] \mid m \le i < b \} )
```

• An Position (2)

```
(l < r+1) \land x \notin \{ array[i] \mid a \le i < m \} \land (x \notin \{ array[i] \mid l \le i < b \} \lor x \in \{ array[i] \mid l \le i < b \} )
```

• An Position (3)

```
(l = r-1) \land x \notin \{ array[i] \mid a \le i < l \} \land (x = array[l] \lor x \ne array[l] \}
```

Dies folgt auch aus dem Short-Curcuit-Operator im else-Zweig, da zuerst rekursiv $x \in \{ array[i] \mid a \le i < m \}$ überprüft wird, und nach einer erfolglosen Suche der Rest nach dem gleichen Prinzip untersucht wird.

Außerdem terminiert dieser Algorithmus, denn:

Entweder gelangt man in den if-Zweig, wenn r-l = 1, der sofortige Terminierung bedeutet. Oder man gelangt in den else-Zweig, wo die Methode sich selbst aufruft, allerdings gilt: $l_1 > l_0$ oder

$r_1 < r_0$, aber trotzdem gilt weiterhin: $l_1 < r_1$. (l_1 und r_1 sind die Parameter des neuen Aufrufs, r_0 und l_0 die aktuellen Parameter). Dies führt zwangsläufig auch zur Terminierung.
Aus obigen Feststellungen folgt die Behauptung. \qed
a)Nach c) überprüft ein Aufruf von myAlgo(x, array, 0, array.length), ob das Element x imArray array enthalten ist.
b)
Die Operationen für das teilen und zusammenfügen sind konstant, d.h. $f(n) = c$. Es gilt nun: $T(n) = 2 \ T(n/2) + c$. Es folgt nun mit Mastertheorem: $f(n) \in O(n^{1-\epsilon})$ für $1 > \epsilon > 0$.
Also gilt: $T(n) \in \Theta(n)$.