Overview of General Topology

Notes by Albert Zhang

June 15, 2020

Contents

1	The Framework	2
	Continuous Maps 2.1 Two Important Construction Theorems	3
3	Compact Spaces	7
	3.1 Locally Compact Hausdorff Spaces	8
	3.2 Product Spaces	9
	3.3 Arzelà-Ascoli Theorems	11

1 The Framework

Let X be a nonempty set. Then we define a topology on X to be a family \mathcal{T} of subsets of X which satisfies:

- Contains \emptyset and X.
- Closed under arbitrary unions.
- Closed under finite intersections.

Members of \mathcal{T} will be called open sets, and their complements will be called closed sets. Note the similarity in definition to a σ -field. Indeed, both can be thought of as sets of "useful" information. In the σ -field case, useful would be measureability, whereas in topology, useful carries a notion of openness.

If \mathcal{T}_1 and \mathcal{T}_2 are two topologies on X such that $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say that \mathcal{T}_1 is weaker (or coarser) than \mathcal{T}_2 , and likewise \mathcal{T}_2 is stronger (or finer) than \mathcal{T}_1 . Note that the trivial topology containing only \emptyset and X is the weakest, and the discrete topology where every set is open is the strongest. For any collection $\mathcal{E} \subset 2^X$, there is a unique weakest topology $\mathcal{T}(\mathcal{E})$ on X which contains \mathcal{E} . Similar to the notation $\sigma(\cdot)$, we call this the topology generated by \mathcal{E} . It turns out that $\mathcal{T}(\mathcal{E})$ is just the collection containing \emptyset , X, and all unions of finite intersections of members of \mathcal{E} .

There is also the concept of a base for a topology. A base for \mathcal{T} at $x \in X$ is a family $\mathcal{N} \subset \mathcal{T}$ such that

- $x \in V$ for all $V \in \mathcal{N}$.
- if $U \in \mathcal{T}$ and $x \in U$, then there exists $V \in \mathcal{N}$ such that $x \in V$ and $V \subset U$.

A base for \mathcal{T} is a family $\mathcal{B} \subset \mathcal{T}$ containing a neighborhood base for \mathcal{T} at every point $x \in X$. Essentially, a base is just a collection of open sets which we decide to call neighborhoods. For example, if X is a metric space, the collection of all open balls forms a base.

The notion of convergence of a sequence $\{x_n\}$ in a topological space X is as follows. We say $\{x_n\}$ converges to $x \in X$ if for every neighborhood U of x, there exists $N \in \mathbb{N}$ such that $x_n \in U$ for all n > N.

Finally, we have the separation axioms. Without assuming any of these, there is only so much we can do with general topology.

- T_0 : If $x \neq y$, there is an open set containing x but not y or an open set containing y but not x.
- T_1 : If $x \neq y$, there is an open set containing y but not x.
- T_2 : If $x \neq y$, there are disjoint open sets U, V with $x \in U$ and $y \in V$.
- T_3 : X is a T_1 space, and for any closed set $A \subset X$ and any $x \in A^c$, there are disjoint open sets U, V with $x \in U$ and $A \subset V$.
- T_4 : X is a T_1 space, and for any disjoint closed sets A, B in X there are disjoint open sets U, V with $A \subset U$ and $B \subset V$.

We also call T_2 spaces Hausdorff, T_3 spaces regular, and T_4 spaces normal. Note that $T_0 \subset T_1 \subset T_2 \subset T_3 \subset T_4$. It turns out that most nice spaces are at least Hausdorff, or become Haussdorf after simple modifications. In fact, all metric spaces are normal, and therefore Haussdorf.

2 Continuous Maps

A map $f: X \to Y$ is *continuous* if $f^{-1}(V)$ is open in X for every open $V \subset Y$. This turns out to be equivalent to the $\epsilon - \delta$ definition of continuity for metric spaces.

Let X be any set and $\{f_{\alpha}: X \to Y_{\alpha}\}$ be a family of maps from X to some topological spaces Y_{α} . Then there is a unique weakest topology \mathcal{T} on X which makes all the f_{α} continuous. Namely, it is the weak topology generated by sets of the form $f_{\alpha}^{-1}(U_{\alpha})$, where U_{α} is open in Y_{α} .

An important example of this is the *product topology* on $X = \prod_{\alpha \in A} X_{\alpha}$, the topology generated by the projection maps

$$\pi_{\alpha}: X \to X_{\alpha}.$$

A closure property of the product topology is that if each X_{α} is Hausdorff, then so is X. Indeed, if x and y are distinct points of X, then $\pi_{\alpha}(x) \neq \pi_{\alpha}(y)$ for some α . Letting U and V be disjoint neighborhoods of $\pi_{\alpha}(x)$ and $\pi_{\alpha}(y)$ in X_{α} , we note that $\pi_{\alpha}^{-1}(U)$ and $\pi_{\alpha}^{-1}(V)$ are disjoint neighborhoods of x and y in X, which implies that X is Hausdorff.

Proposition 2.1

If X_{α} and Y are topological spaces and $X = \prod_{\alpha \in A} X_{\alpha}$, then $f : Y \to X$ is continuous if and only if $\pi_{\alpha} \circ f$ is continuous for each α .

Proof. If $\pi_{\alpha} \circ f$ is continuous for each α , then $f^{-1}(\pi_{\alpha}^{-1}(U_{\alpha}))$ is open in Y for every open U_{α} in X_{α} . Since X is generated by π_{α} , it follows that f is continuous.

Conversely, if f is continuous, then the composition $\pi_{\alpha} \circ f$ is continuous since π_{α} is continuous as well.

We will be concerned with certain classes of real/complex-valued functions on topological spaces. Let $B(X, \mathbb{F})$ be the space of bounded, \mathbb{F} -valued mappings on X. Similarly, we use $C(X, \mathbb{F})$ and $BC(X, \mathbb{F})$ to denote continuous and bounded continuous functions, respectively. Usually we will omit the \mathbb{F} since the difference between \mathbb{R} and \mathbb{C} isn't important.

Note that B(X), C(X), and BC(X) are all vector spaces. Furthermore, we can equip them with the uniform (sometimes called sup, or infinity) norm:

$$||f||_{\infty} = \sup\{|f(x)| : x \in X\}.$$

This gives us a metric function $\rho(f,g) = \|f-g\|_{\infty}$, the metric of uniform convergence. It turns out that B(X) and BC(X) are also Banach spaces, i.e. complete normed vector spaces, and C(X) is Banach if X is compact.

Theorem 2.2

If X is a topological space, B(X) and BC(X) are Banach spaces. Furthermore C(X) is Banach if X is compact.

Proof. If (f_n) is uniformly Cauchy, then $(f_n(x))$ is Cauchy for each x and so converges. So set $f(x) = \lim_n f_n(x)$ for each x, and note that

$$||f_n - f_m||_{\infty} \to 0,$$

for fixed n, m sufficiently large. Note that for all x,

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty}.$$

Therefore,

$$||f_n - f||_{\infty} \le ||f_n - f_m||_{\infty} \to 0$$

as $n \to \infty$.

Now, to verify that BC(X) is also complete, we just need to show that it is a closed subspace of B(X). Suppose (f_n) is a sequence in BC(X) and $||f_n - f||_{\infty} \to 0$. Clearly f is bounded. Furthermore f is continuous since the f_n are a sequence of continuous functions converging uniformly (use the $\epsilon/3$ argument).

For the final claim, note that continuous on a compact set is bounded, so C(X) where X is compact reduces to BC(X).

2.1 Two Important Construction Theorems

Theorem 2.3 (Urysohn's Lemma)

Let X be a normal space. If A and B are disjoint closed sets in X, there exists $f \in C(X, [0, 1])$ such that f = 0 on A and f = 1 on B.

Proof. The idea is to construct a map that adheres to "topographic level curves". Let $\Delta = \{k2^{-n} : n \geq 1 \text{ and } 0 < k < 2^n\}$ be the set of dyadic rational numbers in (0,1). We wish to construct a family $\{U_r\}_{r \in \Delta}$ of open sets in X such that

$$A \subset U_r \subset B^c$$
 and $\overline{U}_r \subset U_s$ for $r < s$.

Since X is normal, there are disjoint open sets V, W such that $A \subset V$ and $B \subset W$. Let $U_{1/2} = V$. Then we have

$$A\subset U_{1/2}\subset \overline{U}_{1/2}\subset W^c\subset B^c.$$

We construct the rest of the U_r 's by induction. Namely, we apply the same argument as above to any pair of consecutive sets in the chain, obtaining a halfway set in between. In this way we may obtain all U_r for $r \in \Delta$. Let $U_1 = X$.

We now construct the desired function f. Define

$$f(x) = \inf\{r : x \in U_r\}.$$

For $x \in A$, clearly f(x) = 0, and for $x \in B$, we have f(x) = 1. To check continuity, it suffices to check preimages of all open half-lines, for they generate the topology on \mathbb{R} . Note that f(x) < t if and only if

$$x \in \cup_{r < t} U_r$$

which is open. Furthermore, f(x) > t if and only if

$$x \in \cap_{r>t} (\overline{U}_r)^c$$

which is open. Thus f is continuous.

Theorem 2.4 (Tietze Extension Theorem)

Let X be a normal space. If A is a closed subset of X and $f \in C(A)$, there exists an extension $F \in C(X)$ such that $F|_A = f$.

Proof. First, we assume $f \in C(A, [a, b])$, and construct an extension $F \in C(X, [a, b])$. Further note that w.l.o.g. we may assume [a, b] = [0, 1].

Our strategy will be to construct a series of continuous functions $\sum g_n$ which converge uniformly to our desired extension F, whilst also converging to f on A. In particular, we want (g_n) to satisfy

- $0 \le g_n \le 2^{n-1}/3^n$ on X.
- $0 \le f \sum_{i=1}^{n} g_i \le (2/3)^n$ on A.

We construct them recursively. Starting with g_1 , let $B_1 = f^{-1}([0, 1/3])$ and $C_1 = f^{-1}([2/3, 1])$. These are disjoint closed subsets of A, and since A is closed, they are closed in X. Then we may use Urysohn's lemma to obtain a continuous function $g_1: X \to [0, 1/3]$ with $g_1 = 0$ on B_1 and $g_1 = 1/3$ on C. Clearly this satisfies the two conditions above.

For the recursive step, suppose we've found $g_{1:n-1}$. By the same reasoning, we may construct a $g_n: X \to [0, 2^{n-1}/3^n]$ such that $g_n = 0$ on the set where

$$f - \sum_{j=1}^{n-1} g_j \le 2^{n-1}/3^n,$$

and $g_n = 2^{n-1}/3^n$ on the set where

$$f - \sum_{j=1}^{n-1} g_j \ge (2/3)^n$$
.

Finally, let $F = \sum_{j=1}^{\infty} g_j$. By the M-test, $\sum g_n$ converges uniformly to F, and since each g_n is continuous, we know that F is continuous on X. Furthermore, on A we have $0 \le f - F \le (2/3)^n$, so that f = G on A.

Now, to show the statement where [a,b] is replaced with \mathbb{R} , we use the transformation:

$$g = \frac{f}{1 + |f|}.$$

Note that $g \in C(A, (-1, 1))$, so there exists $G \in C(X, [-1, 1])$ with $G|_A = g$. Let $B = G^{-1}(\{-1, 1\})$, which is disjoint from A. Then by Urysohn's lemma there is an

 $h \in C(X,[0,1])$ with h=0 on B and h=1 on A, so that hG=G on A and |hG|<1 everywhere else, so

$$F = \frac{hG}{1 - |hG|}$$

is the desired extension of f.

3 Compact Spaces

We say a topological space X is *compact* if every open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ has a finite subcover $\{U_{\alpha}\}_{{\alpha}\in B}$, where B is a finite subset of A. A subset Y of X is compact if it is compact in the relative topology. We say Y is *precompact* is its closure is compact.

We now list some facts about compact spaces, whose proofs are primarily just set theoretic exercises.

- (i) A closed subset of a compact space is compact.
- (ii) A compact subset of a Hausdorff space is closed.
- (iii) Every compact Hausdorff space is normal.
- (iv) If X is compact and $f: X \to Y$ is continuous, then f(X) is compact.
- (v) If X is compact and Y is Hausdorff, then any continuous bijection is a homeomorphism.
- (vi) If X is compact then every sequence in X has a convergent subsequence.

Turning now to metric spaces, we have the following characterization of compactness:

Theorem 3.1

If E is a subset of a metric space. Then the following are equivalent:

- (i) E is compact.
- (ii) E is sequentially compact. That is, every sequence in E has a subsequence converging to a point in E.
- (iii) E is totally bounded, i.e. given any $\epsilon > 0$, it can be covered by finite ϵ -balls, and E is complete.
- *Proof.* (i) \implies (ii): Suppose there is a sequence (x_n) with no convergent subsequence in E. Then at each $x \in E$, there is a ball B_x which contains at most finitely many of the x_n . But then the open covering $(B_x)_{x \in E}$ cannot have a finite subcovering, for otherwise the sequence (x_n) would be finite.
- (ii) \Longrightarrow (iii): Suppose E is not totally bounded. Then let $\epsilon > 0$ be such that E cannot be covered by finitely many ϵ -balls. Construct a sequence $(x_n) \subset E$ recursively by first picking $x_1 \in E$ arbitrarily, then picking $x_n \in E \setminus \bigcup_{j=1}^{n-1} B(\epsilon, x_j)$. Then for all i, j we have $d(x_i, x_j) > \epsilon$, so there can be no convergent subsequence. On the other hand, suppose E is not complete. Then there is a Cauchy sequence (x_n) which cannot have a limit in E. But then it cannot have a convergent subsequence, since limits of Cauchy sequences are unique. Thus by contradiction E must be totally bounded and complete.
- (iii) \Longrightarrow (ii): Let (x_n) be a sequence in E. We may cover E with finitely many balls of radius 2^{-1} , so that there must exist a ball B_1 containing infinitely many of the x_n . Say, $x_n \in B_1$ for $n \in N_1$. Next, repeat the argument for $E \cap B_{k-1}$, to obtain a ball B_k of radius 2^{-k} containing infinitely many of the x_n , for $n \in N_k \subset N_{k-1}$. Then by taking a $x_{n_k} \in B_k$ for each k, we've obtained a Cauchy sequence (x_{n_k}) which converges to a point in E due to completeness. Thus we've found a convergent subsequence of (x_n) .

(ii), (iii) \Longrightarrow (i): Since E can be covered in finitely many ϵ -balls, it suffices to show that if $\{V_{\alpha}\}_{{\alpha}\in A}$ is an open cover of E, then there exists an $\epsilon>0$ such that every ϵ -ball intersecting with E is contained in one of the V_{α} . Suppose otherwise, that for each $n\in\mathbb{N}$ there is a ball B_n of radius 2^{-n} intersecting E such that B_n is contained in none of the V_{α} . Pick $x_n\in B_n\cap E$. Then assuming (ii), we may pass to a subsequence (x_{n_k}) and obtain a limit in E, and in particular contained in one of the V_{α} . But for large enough k, we'd get that $B_{n_k}\subset V_{\alpha}$ since V_{α} is open, a contradiction. Thus E must be compact.

Note that in the special case of \mathbb{R}^n , totally bounded is equivalent to bounded, and complete is equivalent to closed, so from the above result we obtain Heine-Borel:

Corollary 3.2 (Heine-Borel)

Let $E \subset \mathbb{R}^n$. Then E is compact if and only if E is closed and bounded.

3.1 Locally Compact Hausdorff Spaces

We say a topological space X is *locally compact* if every point has a compact neighborhood. Here we define a neighborhood of $x \in X$ to be a set $A \subset X$ such that x is contained in the interior of A, which is the largest open set contained in A, given by $A^o = A \setminus \overline{A}$. We will be concerned with locally compact Hausdorff (LCH) spaces.

Lemma 3.3

If X is an LCH space and $K \subset U \subset X$ where K is compact and U is open, there exists a precompact open V such that

$$K \subset V \subset \overline{V} \subset U$$
.

Proof. We first show that for a point $x \in U$, there is a compact neighborhood N of x such that $N \subset U$. Note that w.l.o.g. we may assume \overline{U} is compact, for otherwise replace U by $U \cap F^o$, where F is a compact neighborhood of x. Now, since ∂U is compact, and X is Hausdorff, we may construct a collection of open sets which cover both x and ∂U , and then retrieve from this a finite open subcover. In particular, we may obtain open sets $V, W \subset \overline{U}$ with $x \in V$ and $\partial U \subset W$. Furthermore, \overline{V} is a compact subset of $U \setminus W$, and so we may take $N = \overline{V}$.

Now, for each $x \in K$, choose a compact neighborhood N_x of x with $N_x \subset U$ as above. Then $\{N_x^o\}_{x \in K}$ is an open cover of K, so there is a finite open subcover $\{N_{x_j}^o\}_{j=1}^n$. We see that

$$V = \cup_{j=1}^{n} N_{x_j}^o$$

does the trick. \Box

Theorem 3.4 (Urysohn's Lemma, LCH Version)

Let X be an LCH space and $K \subset U \subset X$ where K is compact and U is open. There exists $f \in C(X, [0, 1])$ such that f = 1 on K and f = 0 outside a compact subset of U.

Proof. Let V be as in Lemma 3.3. Then \overline{V} is normal, so applying Urysohn's Lemma 2.3 we get a function $f \in C(\overline{V}, [0, 1])$ with f = 1 on K and f = 0 on ∂V . We then extend f to X by setting f = 0 on \overline{V}^c . It's easy to see f remains continuous by checking preimages of closed subsets of [0, 1].

Theorem 3.5 (Tietze Extension Theorem, LCH Version)

Let X be an LCH space and $K \subset X$ where K is compact. If $f \in C(K)$, there exists an extension $F \in C(X)$ such that $F|_K = f$. Morever, F may be constructed to vanish outside a compact set.

Proof. For each point $x \in K$, there is a compact neighborhood $N_x \subset X$ of x. Since K is compact, we may obtain a finite open covering $C = \bigcup_{j=1}^n N_{x_j}^o$. Then $\overline{C} = \bigcup_{j=1}^n N_{x_j}$ is compact, since we may take the union of subcoverings for each N_{x_j} . Set f = 0 on ∂C . As \overline{C} is a compact Hausdorff space, it is normal. Furthermore, $K \cup \partial C$ is a closed subset of \overline{C} , so by the Tietze Extension Theorem 2.4 we obtain an continuous extension of f to \overline{C} . We can then set F = 0 on $X \setminus \overline{C}$ as in the previous proof, and we're done. \square

We breifly talk about the one-point compactification of any noncompact LCH space. Let (X, \mathcal{T}) be a noncompact LCH space. We can add a "point at infinity", denoted " ∞ ", so that the space $X^* = X \cup \{\infty\}$ is compact when equipped with the topology \mathcal{T}^* which contains all subsets U of X^* such that either

- (i) U is an open subset of X, or
- (ii) $\infty \in U$ and U^c is a compact subset of X.

It's easy to verify that the modified space (X^*, \mathcal{T}^*) is a compact Hausdorff space.

3.2 Product Spaces

Theorem 3.6 (Tychonoff's Theorem)

If each X_{α} is compact for $\alpha \in A$, then the product topology $\prod_{\alpha \in A} X_{\alpha}$ is compact.

The proof requires Zorn's Lemma or Axiom of Choice. As such the proof isn't that instructive and is omitted. Instead, we first prove the finite case. Then we prove a version for sequential compactness, which uses a nice diagonalization argument that will appear later in the proof of one of the Arzela-Ascoli theorems.

First, recall the concept of a base for a topology. It's easy to see that an equivalent definition for a base is any collection \mathcal{B} of open sets such that every open set can be expressed as unions of sets in \mathcal{B} . We call sets in \mathcal{B} basic.

Theorem 3.7 (Tychonoff's Theorem, Finite Case)

If A is a finite set, and X_{α} is compact for each $\alpha \in A$, then the product topology $\prod_{\alpha \in A} X_{\alpha}$ is compact.

Proof. It suffices to prove the case where |A| = 2, as the rest follows by induction. First, note that in order to verify compactness by checking each open cover, it is sufficient to simply check each basic open cover has a finite subcover.

Since the boxes $\{U \times V : U \in \mathcal{T}_1, V \in \mathcal{T}_2\}$ form a base for the product topology, suppose we have a basic covering of $X_1 \times X_2$ by boxes $(U_i \times V_i)_{i \in I}$. For any $x \in X_1$, this open cover covers $\{x\} \times X_2$, which is compact since X_2 is compact. Therefore, we can cover $\{x\} \times X_2$ by a finite number of open boxes $U_i \times V_i$. Taking the intersection of the U_i , we obtain an open neighborhood U_x of x such that $U_x \times X_2$ is finitely covered. Finally, since X_1 is compact, it only takes finitely many U_x to cover X_1 , so we have a finite covering of $X \times Y$.

Theorem 3.8 (Tychonoff's Theorem, Sequential Version)

If each X_{α} is sequentially compact for $\alpha \in A$, where A is at most countably infinite, then the product topology $\prod_{\alpha \in A} X_{\alpha}$ is sequentially compact.

Proof. With the finite case already handled, let's assume A is countably infinite. So, we have

$$X = \prod_{n=1}^{\infty} X_n.$$

Let $(x^{(m)})$ be a sequence in X, so that each $x^{(m)}$ is itself a sequence:

$$x^{(m)} = (x_n^{(m)})_{n=1}^{\infty}.$$

Consider the first coordinate $x_1^{(m)}$. Since X_1 is compact, there is a subsequence

$$(x^{(m_{1,j})})_{j=1}^{\infty}$$

which converges in X_1 . Now, suppose we have constructed a nested subsequence that converges on the first i spaces X_1, \ldots, X_i . Then we can extract a further subsequence

$$(x^{(m_{i+1,j})})_{j=1}^{\infty}$$

which also converges on X_{i+1} since X_{i+1} is compact.

Here is the trick: consider the diagonal subsequence

$$(x^{(m_{j,j})})_{j=1}^{\infty}.$$

It's easy to see that this converges in X_n for each n. It follows that this diagonal sequence converges in X, and hence X is compact.

3.3 Arzelà-Ascoli Theorems

A family $\mathcal{F} \subset C(X)$ is called *equicontinuous* at $x \in X$ if for every $\epsilon > 0$ there is a neighborhood U_x of x such that $|f(y) - f(x)| < \epsilon$ for all $y \in U_x$ and all $f \in \mathcal{F}$. The family \mathcal{F} is called *equicontinuous* if it is equicontinuous at each $x \in X$. If X is a metric space, then we call \mathcal{F} uniformly equicontinuous if the neighborhood U does not depend on x, i.e. there is a uniform $\delta > 0$ such that $|f(y) - f(x)| < \epsilon$ for all $|x - y| < \delta$, for every $f \in \mathcal{F}$ and $x \in X$.

Also, \mathcal{F} is said to be *pointwise bounded* if $\{f(x): f \in \mathcal{F}\}$ is bounded for each $x \in X$.

Theorem 3.9 (Arzelà-Ascoli I)

Let X be a compact Hausdorff space. If \mathcal{F} is an equicontinuous, pointwise bounded family in C(X), then \mathcal{F} is totally bounded, and thus the closure of \mathcal{F} in C(X) is compact.

Proof. Since \mathcal{F} is equicontinuous, for each $x \in X$ there is a neighborhood U_x of x such that

$$|f(x) - f(y)| < \frac{\epsilon}{4}$$

for all $f \in \mathcal{F}$ and $y \in U_x$. Since X is compact, there is a finite subcovering $\bigcup_{j=1}^n U_{x_j}$ of X. By pointwise boundedness,

$$\{f(x_j): f \in \mathcal{F}, 1 \le j \le n\}$$

is a bounded subset of \mathbb{C} , so there is a finite set $\{z_1, \ldots, z_m\} \subset \mathbb{C}$ that is $\frac{\epsilon}{4}$ -dense in it. Denote $A = \{x_1, \ldots, x_n\}$ and $B = \{z_1, \ldots, z_m\}$. Then B^A , the set of functions from A to B, is finite. For each $\phi \in B^A$, define

$$\mathcal{F}_{\phi} = \{ f \in \mathcal{F} : |f(x_j) - \phi(x_j)| < \frac{\epsilon}{4}, 1 \le j \le n \}.$$

Then $\bigcup_{\phi \in B^A} \mathcal{F}_{\phi} = \mathcal{F}$. Furthermore, note that for any $f, g \in \mathcal{F}_{\phi}$, and $x \in X$, we can pick j so that $x \in U_{x_i}$, to get

$$|f(x) - g(x)| \le |f(x) - f(x_j)| + |f(x_j) - g(x_j)| + |g(x_j) - g(x)|$$

$$\le \frac{\epsilon}{4} + |f(x_j) - \phi(x_j)| + |g(x_j) - \phi(x_j)| + \frac{\epsilon}{4}$$

$$< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon.$$

Therefore, each \mathcal{F}_{ϕ} has diameter at most ϵ , which implies that \mathcal{F} is totally bounded. Since X is compact, C(X) = BC(X), which is complete. Then the closure of a totally bounded set is totally bounded and complete. Thus \mathcal{F} is precompact in C(X).

Corollary 3.10 (Special Case)

If $f_n: X \to \mathbb{R}^n$ is a sequence of functions from a compact metric space X to \mathbb{R}^n which are equicontinuous and pointwise bounded, then there is a subsequence f_{n_k} which converges uniformly to a limit $f \in BC(X)$.

Another variant is for σ -compact LCH spaces. We say a space X is σ -compact if it is the countable union of compact sets.

Theorem 3.11 (Arzelà-Ascoli II)

Let X be a σ -compact LCH space. If (f_n) is an equicontinuous, pointwise bounded sequence in C(X), then there is a subsequence (f_{n_k}) converging to some $f \in C(X)$ uniformly on compact sets.

Proof. Use a diagonalization argument as in the proof of the sequential Tychonoff theorem. \Box