

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

REPLACEMENT SHEET

Figure 1

REPLACEMENT SHEET

Find the fluid loading p_{+rad} , p_{-rad} , p_{-ref} as well as the modal impedance Z_{jl} for a unit vibration velocity which are given below, by Eqs. (13), (14), (16) and (17).

$$p_{+rad} = \frac{L}{2} \sum_{n=0}^{\infty} c_n \psi_n(y) \int_0^1 \psi_n(y') V(x') \\ \times [H(x - x') e^{-ik_n(x-x')} + H(x' - x) e^{+ik_n(x-x')}] d\xi'.$$

$$p_{-rad} = \frac{L_c}{2} \sum_{n=0}^{\infty} c_{nc} \psi_n(y_c) \int_0^1 \psi_n(y_c') [-V(x_c')] \\ \times [H(x_c - x_c') e^{-ik_{nc}(x_c-x_c')} + H(x_c' - x_c) e^{+ik_{nc}(x_c-x_c')}] d\xi'.$$

$$p_{-ref} = \frac{L_c}{2} \sum_{n=0}^{\infty} c_{nc} \psi_n(y_c) \int_0^1 \psi_n(y_c') [-V(x_c')] \frac{2}{e^{ik_{nc}(2L_v)} - 1} \\ \times [\cos k_{nc}(x_c - x_c') + e^{ik_{nc}L_v} \cos k_{nc}(x_c + x_c')] d\xi'.$$

$$Z_{jl} = \int_0^1 2 \sin(l\pi\xi) (p_{+rad} - p_{-rad} - p_{-ref})_j^1 d\xi,$$

where unit amplitude $V(x') = \sin(j\pi\xi')$.

A

Figure 2a

REPLACEMENT SHEET

A

Solve the dynamics Eq.(22) as part of the Galerkin procedure

$$\begin{bmatrix} Z_{11} + L_1 & Z_{12} & \cdots & Z_{1N} \\ Z_{21} & Z_{22} + L_2 & \cdots & Z_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{N1} & Z_{N2} & \cdots & Z_{NN} + L_N \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{bmatrix} = - \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{bmatrix}$$

where $L_j = mi\omega + \frac{T}{i\omega} \left(\frac{j\pi}{L} \right)^2$,

$I_j = \int_0^L p_i \sin(j\pi\xi) d\xi$ and $p_i = e^{-ik_0 x}$, to obtain $V_j, j = 1, 2, 3, \dots$

Find the reflection wave from V_j according to

Eqs. (27) and (28), shown below,

$$p_r = \frac{p_{+rad}|_{n=0, x \rightarrow -\infty}}{e^{ik_0 x}} = \frac{1}{2} \int_{-L/2}^{+L/2} V(x') e^{-ik_0 x'} dx'$$

$$= \frac{1}{2} \sum_{j=1}^{\infty} V_j \int_{-L/2}^{L/2} \sin(j\pi\xi') e^{-ik_0 x'} dx'.$$

and the transmitted wave from Eq. (24),

$$p_t = p_{+rad}|_{n=0, x \rightarrow +\infty} + p_i = \frac{1}{2} \int_{-L/2}^{+L/2} V(x') e^{ik_0 x'} dx' + 1$$

$$= \frac{1}{2} \sum_{j=1}^{\infty} V_j \int_{-L/2}^{L/2} \sin(j\pi\xi') e^{ik_0 x'} dx' + 1.$$

Hence the transmission loss from Eq. (25) is calculated as

$$TL = -20 \log_{10} |p_t|.$$

A₂

Figure 2b

REPLACEMENT SHEET

Figure 2c

REPLACEMENT SHEET

Figure 3

REPLACEMENT SHEET

Figure 4

REPLACEMENT SHEET

Figure 5

REPLACEMENT SHEET

Figure 6

REPLACEMENT SHEET }

Figure 7

REPLACEMENT SHEET }

Figure 8

REPLACEMENT SHEET

Figure 9