Superdispersão em Dados Categorizados Multinomiais: uma Aplicação em Ciências Agrárias

Aluna: Maria Letícia Salvador

Orientador: Prof. Dr. Idemauro Antonio Rodrigues de Lara

Universidade de São Paulo Escola Superior de Agricultura "Luiz de Queiroz" Pós-Graduação em Est. e Exp. Agronômica

21 de novembro de 2018

Sumário

- Motivação
- 2 Revisão de Literatura
- Materiais
 - Florescimento da Laranjeira x11
- A Resultados Parciais
 - Resultados Parciais: Florescimento da Laranjeira x11
- 6 Conclusão
- 6 Referências

Motivação

Motivação

- Dados categorizados s\u00e3o frequentes na pr\u00e1tica em diversas \u00e1reas, em especial nas Ci\u00e9ncias Agr\u00e1rias.
- Na análise que envolve dados categorizados, espera-se que a variância observada esteja próxima da variância pressuposta pelo modelo assumido.
- Existem casos em que os dados s\u00e3o mais heterog\u00e9neos do que a vari\u00e1ncia especificada pelo modelo proposto.

Objetivo:

- Caracterizar o problema da superdispersão;
- Apresentar modelos para solucionar o problema;

Dados Categorizados

Dados categorizados decorrem de observações de características dos indivíduos que dizem respeito a uma qualidade ou atributo, expresso em categorias mutuamente exclusivas.

Segundo Maccullagh e Nelder(1989), estas variáveis podem ser classificadas de acordo com as quantidades de categorias.

Modelo Logito de Categoria de Referência

Considere uma variável resposta Y politômica nominal com J categorias,

sendo
$$\pi_j(\mathbf{x}) = P(\mathbf{Y} = j | \mathbf{x})$$
, com $\sum_{j=1}^J \pi_j(\mathbf{x}) = 1$.

O modelo é definido por [Agresti(1996)]:

$$logito(\pi_j) = ln\left(\frac{\pi_j(\mathbf{x})}{\pi_J(\mathbf{x})}\right) = \alpha_j + \beta_j \mathbf{x}$$

em que $i = 1, \dots, J-1$.

Superdispersão

- De acordo com Mcculagh e Nelder(1989), a superdispersão ocorre quando a variância da variável resposta excede a variação nominal;
- Segundo Olsson (2002) a superdispersão se da pelo fato do ajuste do modelo ser insatisfatório;
- Deve-se tomar cuidado o fenômeno da superdispersão com o ajuste insatisfatório do modelo;

Superdispersão

- O fenômeno da superdispersão pode ser identificado por meio:
 - Do valor da deviance residual e do número de graus de liberdade do resíduo;
 - Verificando se a variância observada excede a variação obtida por meio do ajuste do modelo;

Dirichlet-multinomial

- A distribuição Dirichlet-multinomial foi introduzida por Mosimann (1962).
- Esta distribuição tem sido utilizada para modelar dados categorizados que apresentam superdispersão.
- Uma alternativa para modelar a superdispersão é assumir o modelo de dois estágios. Ou seja, a variável resposta segue uma distribuição composta.

Dirichlet-multinomial

- Considere que $\mathbf{Y}|\pi \sim \text{Multinomial}(\mathsf{n}, \pi)$;
- Considere também que π segue a distribuição Dirichlet sob o espaço amostral Ω , em que $\Omega=\{\pi;\pi_j\in(0,1),j=1,\cdots,J;\sum_{j=1}^J\pi_j=1\}.$
- A distribuição Dirichlet-multinomial, é definida por:

$$f(n|\alpha) = \frac{n!}{y_1!y_2!\cdots y_J!} \prod_{j=1}^J (\pi_j)^{y_j} \frac{\Gamma(\sum_{j=1}^J \alpha_j)}{\Gamma(n+\sum_{j=1}^J \alpha_j)} \prod_{j=1}^J \frac{\Gamma(y_j+\alpha_j)}{\Gamma(y_j+\alpha_j)}$$

em que, os parâmetros $\boldsymbol{\alpha}=(\alpha_1,\cdots,\alpha_j)$ são estritamente positivos, $\boldsymbol{Y}=(Y_1,\cdots,Y_J)$ e $\boldsymbol{\pi}=(\pi_1,\cdots,\pi_J)$.

Teste de Hipótese

Segundo Paul et al. (1989), uma maneira de reparametrizar o modelo é considerando que $\theta_i = \frac{1}{\sum_{i=1}^{J} \alpha_i}$.

$$\left\{ \begin{array}{l} H_0: \theta_i = 0 (\text{multinomial}) \\ H_a: \theta_i > 0 (\text{Dirichlet-Multinomial}) \end{array} \right.$$

Dirichlet-multinomial

Multinomial

- $E(X_i) = n\pi_i$
- $Var(X_i) = n\pi_i(1-\pi_i)$.

Dirichlet-multinomial

- $\mathsf{E}(\mathbf{Y}) = n \cdot \frac{\alpha_j}{\sum_{i=1}^J \alpha_i} = n\mu_j$
- $Var(\mathbf{Y}) = n\mu_i(1 \mu_i)[1 + (n-1)\rho_i]$

Florescimento da Laranjeira x11

- O experimento foi desenvolvido por Voigt (2013), realizado durante o ano de 2011;
- Os dados são referentes a Estação Inverno;
- O objeto de estudo é a laranjeira da variedade "x11";
- 9 plantas foram enxertadas sobre o limão "Cravo":
- 7 plantas foram enxertadas sobre o citrumelo "Swingle";
- A variável resposta deste experimento é o tipo de ramo;

Florescimento da Laranjeira x11

Classificação dos ramos:

- Número de ramos com flor terminal;
- Número de ramos com flor lateral:
- Número de ramos sem flor
- Número de ramos com flor abortada;

Objetivo do Experimento

Avaliar o florescimento de plantas adultas da variedade "x11".

Figura: Gráfico de pontos das variedades de porta-enxertos limão "Cravo" e citrumelo "Swingle" em relação a classificação dos ramos no Inverno.

Considere uma variável resposta Y_{ijk} que segue a distribuição Multinomial.

- **Modelo 1:** $\eta_j = \ln\left(\frac{\pi_j}{\pi_J}\right) = \beta_{0j}$ em que, j = 1, 2, 3.
- Modelo 2: $\eta_{jk} = \ln\left(\frac{\pi_{jk}}{\pi_{JK}}\right) = \beta_{0j} + \beta_{j}$ porta-enxerto_k em que, j=1,2,3.

Tabela: Seleção de modelos levando em consideração o valor do AIC.

Modelos	η	AIC	Deviances	G.L.
1	$\eta_j = eta_{0j}$	375,34	2170,548	45
2	$\eta_j = eta_{0j} + eta_j$ porta-enxerto $_k$	315,28	2104,486	42

Tabela: Resumo descritivo dos dados em relação a cada classificação de ramos e dos porta-enxertos limão "Cravo" e citrumelo "Swingle" na estação inverno.

	Limão "Cravo"		
Classificação	Var. Obs.	Var. Ajust.	
Terminal	71,5	0.933	
Lateral	939,25	1,162	
Sem Flor	6,61	0,2408	
Com Flor Abortada	0,44	0,066	
	Citrumelo Swingle"		
	Citi dillelo Swiligie		
Classificação	Var. Obs.	Var. Ajust.	
Classificação Terminal		Var. Ajust.	
	Var. Obs.		
Terminal	Var. Obs. 430,57	1,380	
Terminal Lateral	Var. Obs. 430,57 496,95	1,380 1,506	

Figura: Half-normal plot Modelo 2 do experimento florescimento da laranjeira x11.

Teste de Hipótese

$$\begin{cases} H_0: \theta_i = 0 \text{(multinomial)} \\ H_a: \theta_i > 0 \text{(Dirichlet-Multinomial)} \end{cases}$$

Modelos	Nº de Par.	AIC	BIC	P-valor
Multinomial	6	315,28	319,9	-
Dirichlet-Multinomial	8	257,5	263,68	< 0,01

Conclusão

- Tanto a distribuição multinomial quando a Dirichlet-multinomial modelam dados politômicos, porém eles apresentam estruturas de média e variância muito diferentes;
- O modelo Multinomial tem uma estrutura de média e variância mais restrita;
- O Dirichlet-multinomial tem uma estrutura de média e variância mais flexível.

Referências

- AGRESTI, A., 1996 An introduction to categorical data analysis, volume 135. Wiley New York.
- AGRESTI, A., 2002 Categorical data analysis, volume 482. John Wiley & Sons.
- McULLAGH, P. and NELDER, 1989a Binary data. In Generalized linear models, pp., Springer.
- MOSIMANN, J.E. On the compound multinomial distribution, the multivariate β -distribution, and correlations among proportions. Biometrika, 49, p.65, 1962.

Referências bibliográficas

- NELDER, J.A.; WEDDERBURN, R. W. M. Generalized linear models. **Journal of the Royal Statistical Society A**, Hoboken, v. 135, n. 3, p. 370-384, 1972.
- OLSSON, U., 2002. Generalized linear models. An applied approach. Studentlitteratur. Lund 18.
- 🐚 VOIGT, V., 2013 Caracterização fenotípica e avaliação da expressão de genes envolvidos na introdução e no florescimento da laranjeita *x11* ´.Ph.D. thesis. Universidade de São Paulo.

Referências