NO₂ vertical profiles over South Korea and their relation to oxidant chemistry: Implications for geostationary satellite retrievals

Laura Hyesung Yang¹, Daniel J. Jacob^{1,2}, Nadia K. Colombi², Shixian Zhai¹, Kelvin H. Bates^{1,3}, Viral Shah⁴, Ellie Beaudry¹, Robert M. Yantosca¹, Haipeng Lin¹, Jared F. Brewer⁵, Heesung Chong⁶, Katherine R. Travis⁷, James H. Crawford⁷, Lok Lamsal⁴, Ja-Ho Koo⁸, Jhoon Kim⁸

¹ Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 01238, USA ² Harvard University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Department of Sciences, Cambridge, MA 01238, USA ³ University of California Davis, Davi Environmental Toxicology, Davis CA 95616, USA 4 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, and Science Systems and Applications, Inc., Lanham, MD 20706, USA 5 University of Minnesota, Department of Soil, Water and Climate, St. Paul, Minnesota, USA ⁸ Harvard-Smithsonian Center, Hampton, VA 23666, USA ⁸ Yonsei University, Department of Atmospheric Sciences, Seoul, South Korea

INTRODUCTION / BACKGROUND

- The recent launch of the GEMS geostationary instrument over East Asia enables first-time direct measurements of diurnal variation of NO₂ from space
- A chemical transport model like GEOS-Chem needs to provide the NO2 vertical profiles required for NO₂ solar backscatter retrieval

Solar backscatter retrieval requires 3 steps

- Convert radiance to slant column (SC)
- 2 Remove stratospheric portion from SC
- Convert tropospheric SC to vertical column (VC)

AMF depends on 3 different variables

OBJECTIVES

- Test the capability of the GEOS-Chem model in providing AMF in support of the GEMS retrieval
- 2. Quantify what drives the diurnal variation in AMF and its magnitude

METHODS

RESULTS

GEOS-Chem is successful in simulating key species that drive NO₂ formation & oxidant chemistry as compared to aircraft observation

Solar zenith effect (24%) offsets the scattering correction factor (18%)

Time of day	AMF _G	$\int_{0}^{z_{T}} w(z)S(z)dz$	AMF
8-9 AM	3.09	0.38 (0.39)	1.19 (1.20)
12-1 PM	2.42	0.46 (0.47)	1.11 (1.14)
3-4 PM	2.77	0.46 (0.46)	1.26 (1.27)

Diurnal variation in scattering correction factor driven by mixed layer growth Column's diurnal variation (22%) is much smaller than that of the surface (87%) Diurnal variation in AMF (14%) is comparable to that of column (~22%)

GEOS-Chem can capture the variability of observed AMF

Ocean vs. land, and the time-of-day drive observed variability

Timing of the mixed layer growth in the morning is the largest contributor to the model error

Acknowledgment

This work was funded by the Samsung Advanced Institute of Technology. LHY was funded by a US National Science Foundation Graduate Research Fellowship Program (NSF GRFP).

Contact Information & Link

Contact LHY at laurayang@g.harvard.edu

Read the paper at EGUsphere: https://doi.org/10.5194/egusphere-2022-1309