

Dr. rer. nat. Johannes Riesterer

Angewandte Mathematik Übung

Aufgabe 1

Sei f(x,y) :=. Berechnen Sie das Differential df(1,1) so wie die Richtungsableitung $\partial_h f(1,1)$ für h=.

Angewandte Mathematik Übung

Aufgabe 2

Sei $c \in \mathbb{R}$ eine Konstante. Berechnen Sie für die konstante Funktion f(x) = c für alle $x \in \mathbb{R}^n$ die Richtungsableitung $\partial_h f(a)$.

Angewandte Mathematik

Aufgabe 3

Für das Differential einer differenzierbaren Funktion $f:U\to\mathbb{R}$ gilt für alle $a\in U$:

- $df(a)(h) := df(a) \cdot h$ ist eine lineare Abbildung von \mathbb{R}^n nach \mathbb{R} .
- $df(a) \cdot h = \partial_h f(a)$.
- $d(f \cdot g) = g(a)d(f) + f(a)dg$
- d(f+g) = df + dg

Angewandte Mathematik

Aufgabe 4

Sei
$$\gamma(t) := \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$
 für $t \in [0, 2\pi]$.