Laminar Boundary Layer

1 Problem Description

Files and video.

- The flow Reynolds number is around 3.5×10^4 at the end of the plate, thus the entire boundary layer is laminar. The Top Laminar Model is hence used. · Boundary conditions for the model: - Inlet: velocity inlet u = 1 m/s- Top: velocity inlet u = 1 m/sSymmetry: symmetry Outlet: pressure outlet p = 0 Pa (relative to atmospheric pressure) Inlet Outlet - Flat Plate: no-slip wall A steady solution is obtained using the pressure-based Coupled Pseudo Transient solver in Ansys Fluent. Symmetry Flat Plate

Figure 1: Problem Description.

2 Import Mesh

2.1 Get Mesh File

Open Fluent Launcher, then click **Solution**. Click **Mesh** on the right hand side, then choose **flat-plate-05m.msh**, click **Start With Selected Options**, shown in Fig. 2.

2.2 Check Mesh

Click Check, Perform Mesh Check

2.3 Evaluate Mesh

Click Quality, Evaluate Mesh Quality

Figure 2: Fluent Launcher.

2.4 Display Mesh

Click Display, Edges, Colors, Display, Close, as shown in Fig. 3

Figure 3: Display Mesh.

3 Physics Setup

3.1 General Setting

Click Physics, General, keep all the default values.

3.2 Viscous Model

Click Viscous, Laminar, OK, as shown in Fig. 4

Figure 4: Viscous Model.

3.3 Flow Properties

Click Create/Edit Materials, keep all the default values, as shown in Fig. 5.

3.4 Cell Zone

Click Cell Zones, make sure every zone's type is fluid, as shown in Fig. 6.

3.5 Boundary Conditions

- 1. Click Boundaries, Group by Zone Type
- 2. Click **inlet**, choose the type as **velocity-inlet**, then click **Edit**. Change the **Velocity Specification Method** to **Components**, then set **X-Velocity** as 1, as shown in Fig. 7
- 3. Click **Outlet**, choose the type as **pressure-outlet**, keep all the default values.
- 4. Click top-f, choose the type as velocity-outlet, change the Velocity Specification Method to Components, then set X-Velocity as 1.
- 5. Click top-r, same set up as top-f.

Figure 5: Flow Properties.

3.6 Reference Values

Click Reference Values, keep all the default values, as shown in Fig. 8

4 Numerical Solution

4.1 Choose CFD Method

Click **Solution, Solution Methods**, keep all the default values, as shown in Fig. 9

4.2 Choose Control Factors

Click Controls, keep all the default values, as shown in Fig. 10

4.3 Set Residuals

Click **Residuals**, set all the residuals as 1e-6, as shown in Fig. 11

4.4 Definition Report

Click Definitions, New, Flux Report, Mass Flow Rate, select inlet, top-f, top-r, outlet, symmetry, click Report Plot, Print to Console, as shown in Fig. 12.

Figure 6: Cell Zone.

Figure 7: Inlet Boundary Conditions.

Figure 8: Reference Values.

Figure 9: Solution Method.

4.5 Initialize Solution

Click Initialize. Change No. of Iterations to 500. Then click Check Case.

4.6 Save Data

Click File, Write, Case/Data, save this into a .cas.h5 file, label as initial.

Figure 10: Solution Control.

Figure 11: Solution Residual.

4.7 Calculate

Click Calculate

5 Results

5.1 Check Residuals

Click Scales Residuals plot, as shown in Fig. 13

Figure 12: Definition Report.

Figure 13: Check Residual.

5.2 Velocity Vector Plot

Click **Results**, **Vectors**, **New**, change style to **filled-arrow** and scale to 0.03 as shown in Fig. 14. The plot is shown in Fig. 15

Figure 14: Vector Plot Settings.

Figure 15: Vector Plot.

5.3 Velocity Contour Plot

Click Contours, Velocity, Display. The plot is shown in Fig. 16

5.4 Create Line Data

Click Create, Line/Rake Surface, change x0 = 0.1, y0 = 0, x1 = 0.1, y1 = 0.1, then save the line, as shown in Fig. 17. Repeat this for x0 = 0.2, 0.3, 0.4, 0.5.

5.5 Create XY Plot

Click XY Plot, New. Set Plot Direction X = 0, Y = 1. Set Y Axis Function as Velocity, X Velocity, select the lines saved before then display, as shown in Fig. 18. Then click Write to File to save the data into .xy file.

Figure 16: Contour Plot.

Figure 17: Create Lines.

5.6 Skin Coefficient Plot

Set Plot Direction X = 1, Y = 0. Set Y Axis Function as Wall Fluxes, Skin Friction Coefficient, then save and display, as shown in Fig. 19

Figure 18: XY Plot.

Figure 19: Skin Friction Plot.