WAILABLE COPY

USSN 09/848,697 QA211NP

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

Claim 1. (Currently Amended) A compound of the formula

$$\begin{array}{c|c}
Z & R^a & R^b \\
\downarrow & X & R^1 & R^2 & R^3 & R^4
\end{array}$$

wherein X_1 is O, $S(O)_n$, -N, CO-N, or -CH₂-, with the proviso that when X_1 is -CH₂-, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

 R^a and R^b when taken together form an oxo (=0) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR⁹, NHSO₂R⁹ or F;

X is H, CF₃, OCF₃, halogen, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_RR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

 ${
m R}^1$ and ${
m R}^2$ are each independently H, halogen, OR9, C1-C7 alkyl, C2-C7 alkynyl,

USSN 09/848,697 QA211NP

C2-C7 alkenyl or C3-C7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_RR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or heterocryl, said aryl and heterocryl being optionally substituted with one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R³, R⁴ and Y are each independently H, halogen, OR¹⁰, S(O)_nR¹⁰, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heteroeyelie, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or heteroaryl, said aryl and heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic, with the proviso that not all of R³, R⁴ and Y may be the same halogen;

R⁵, R⁶ and R⁷ are each independently H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, or aryl or heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, and PO₃R⁸ and heterocyclic:

R8 is H, C1-C7 saturated straight chain alkyl or cycloalkyl;

R⁹ is C₁-C₇ saturated straight chain alkyl or cycloalkyl;

 R^{10} is C_1 - C_7 alkyl, C_2 - C_7 alkenyl, C_2 - C_7 alkynyl, aryl or C_3 - C_7 cycloalkyl, said alkyl, alkenyl, aryl or cycloalkyl group being optionally substituted by

USSN 09/848,697 QA211NP

COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

Z is OR¹¹, S(O)_nR¹¹, NR¹¹R¹² or CHR¹¹R¹²;

 R^{11} is C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkynyl or cycloalkyl group being substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

 R^{12} is hydrogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

R¹³ is SiR¹⁵R¹⁶R¹⁷, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being substituted by one to three groups independently selected from COOR⁸, OR⁸, SiR¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN;

R¹⁴ is H, SiR¹⁵R¹⁶R¹⁷, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN; and or

USSN 09/848,697 QA211NP

R¹³-and R¹⁴ when taken together with the nitrogen atom to which they are attached may form a 5 7 membered heterocyclic ring with one or more heteroatems selected from O, N and S; said ring being optionally substituted by OR³, COOR³, or C(O)NR⁵R⁶; and

 R^{15} , R^{16} , R^{17} are each independently is C_1 - C_7 alkyl, aryl, benzyl, benzyl, biaryl, heteroaryl, or $(C_1$ - $C_6)$ alkyl-aryl or $(C_1$ - $C_6)$ alkyl-heteroaryl, said aryl, benzyl, benzyl, benzhydryl, and biaryl being optionally substituted by halogen, CF_3 , OR^8 , $COOR^8$, NO_2 , CN, or C_1 - C_7 alkyl.

Claim 2. (Currently Amended) A compound of the formula

or a pharmaceutically acceptable salt thereof wherein

 R^5 R^6 X_1 is O, $S(O)_n$, -N—, CO-N— or $-CH_2$ -, with the proviso that when X_1 is $-CH_2$ -, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

R^a and R^b when taken together form an oxo (=0) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR⁹, NHSO₂R⁹ or F;

X is H, CF₃, OCF₃, halogen, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH,

USSN 09/848,697 QA211NP

S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R¹ and R² are each independently H, halogen, OR⁹, C₁–C₇ alkyl, C₂–C₇ alkynyl, C₂–C₇ alkenyl or C₃–C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, aryl or heterocryl, said aryl and heterocryl being optionally substituted with one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R³, R⁴ and Y are each independently H, OR¹⁰, S(O)_nR¹⁰, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or heteroaryl, said aryl and heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

R⁵, R⁶ and R⁷ are each independently H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR⁸, CN, OR⁸, NR⁸R⁹, SO₃R⁸, PO₃R⁸, halogen, or aryl or heteroaryl, said aryl and heteroaryl being optionally substituted by one or two groups independently selected from COOR⁸, SO₃R⁸, and PO₃R⁸ and heterocyclic;

USSN 09/848,697 QA211NP

R⁸ is H, C₁-C₇ saturated straight chain alkyl or cycloalkyl, CF₃ or CH₂CF₃;

R⁹ is C₁-C₇ saturated straight chain alkyl or cycloalkyl;

R¹⁰ is C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁸, PO₃R⁸, and C(O)NR⁶R⁷ and heterocyclic;

Z is OR¹¹, S(O)_nR¹¹, NR¹¹R¹² or CHR¹¹R¹²;

 R^{11} is C_1 - C_7 alkyl, C_2 - C_7 alkenyl, C_2 - C_7 alkynyl or C_3 - C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

 R^{12} is hydrogen, C_1 – C_7 alkyl, C_2 – C_7 alkenyl, C_2 – C_7 alkynyl or C_3 – C_7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$ or OR^{13} ;

R¹³ is SiR¹⁵R¹⁶R¹⁷, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN;

 R^{14} is H, SiR $^{15}R^{16}R^{17}$; C1-C7 alkyl, C2-C7 alkenyl, C2-C7 alkynyl, aryl or C3-

USSN 09/848,697 OA211NP

C7 cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by one to three groups independently selected from COOR⁸, OR⁸, Si R¹⁵R¹⁶R¹⁷, OR¹⁵, aryl, and biaryl and heteroaryl, said aryl[[,]] and biaryl and heteroaryl being optionally substituted with one to three groups independently selected from halogen, CF₃, OR⁸, COOR⁸, NO₂, and CN; and or

R¹³ and R¹⁴ when taken together with the nitrogen atom to which they are attached may form a 5 7 membered heterocyclic ring with one or more heteroatoms selected from O, N and S; said ring being optionally substituted by OR⁸, COOR⁸, or C(O)NR⁵R⁶; and

 R^{15} , R^{16} , R^{17} are each independently is C_1 - C_7 alkyl, aryl, benzyl, benzyl, biaryl, heteroaryl, or $(C_1$ - $C_6)$ alkyl-aryl or $(C_1$ - $C_6)$ alkyl-heteroaryl, said aryl, benzyl, benzyl, benzyl, and biaryl being optionally substituted by halogen, CF_3 , $COOR^8$, NO_2 , CN, or C_1 - C_7 alkyl.

Claim 3. (Currently Amended) A compound of claim 2 wherein X₁ is O or S(O)_n and Y is OR¹⁰ in which R¹⁰ is C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by COOR⁸, CN, C(O)NR⁶R⁷, PO₃R⁸, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)_nR⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heterocyclic aid aryl or heterocyclic optionally substituted by one or two groups independently selected from NR⁶R⁷, OR⁸, COOR⁸, SO₃R⁸, OCOR⁹, PO₃R⁸, and C(O)NR⁶R⁷ or heterocyclic, said R⁶, R⁷, R⁸ and R⁹ substituents being defined as in claim 2.

Claim 4. (Original) A compound of claim 3 in which R^a and R^b taken together represent an oxo (=O) group, or R^a and R^b are each independently hydrogen or OH.

USSN 09/848,697 QA211NP

Claims 5-6. (Canceled).

Claim 7. (Currently Amended) A compound of claim 3 in which

Z is

in which m and p each independently represent an integer of one to six, \mathbb{R}^{15} , \mathbb{R}^{16} , \mathbb{R}^{17} -are each independently \mathbb{C}_1 - \mathbb{C}_7 alkyl or phonyl, \mathbb{R}^{18} is \mathbb{C}_1 - \mathbb{C}_7 alkyl and aryl

Claim 8. (Canceled).

Claim 9. (Original) A pharmaceutical composition for the inhibition of cytosolic phospholipase A₂ comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.

Claim 10. (Withdrawn) A method of inhibiting cytosolic phospholipase A₂ in a mammal in need thereof, comprising administering to said mammal a therapeutically effective amount of a compound of claim 1.

Claim 11. (Currently Amended) A compound selected from

USSN 09/848,697 QA211NP

USSN 09/848,697 QA211NP

- 12 -

USSN 09/848,697 QA211NP

$$CH_3$$

or a pharmaceutically acceptable salt thereof.

Claim 12. (Currently Amended) A compound of the formula

or a pharmaceutically acceptable salt thereof wherein

 R_1^5 X₁ is O, S(O)_n, co-N-, or -CH₂-, with the proviso that when X₁ is -CH₂-, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

R^a and R^b when taken together form an oxo (=0) group, or R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOCOR⁹, or F;

X is H;

USSN 09/848,697 OA211NP

R¹ and R² are each independently H, halogen, OR⁹, or C₁-C₇ alkyl;

R³, R⁴ and Y are each independently H, halogen, OR¹⁰, or C₁-C₇ alkyl, said alkyl being optionally substituted by aryl, said aryl being optionally substituted by one or two COOR⁸ groups, with the proviso that not all of R³, R⁴ and Y may be the same halogen;

 R^5 , R^6 , and R^7 are each independently hydrogen or C_1 - C_7 alkyl, said alkyl being optionally substituted by OR^8 ;

R8 is H or C1-C7 saturated straight chain alkyl;

R⁹ is C₁-C₇ saturated straight chain alkyl;

 R^{10} is C_1 - C_7 alkyl or aryl, said alkyl or aryl group being optionally substituted by $COOR^8$, $C(O)NR^6R^7$, heterocyclic, or OR^8 ;

Z is OR^{11} or $CHR^{11}R^{12}$;

 R^{11} is C_1 - C_7 alkyl substituted by $NR^{13}R^{14}$, $S(O)_nR^{13}$, or OR^{13} ;

R¹² is hydrogen;

R¹³ is SiR¹⁵R¹⁶R¹⁷-or C₁-C₇ alkyl, said alkyl substituted by one to three groups independently selected from OR¹⁵ and aryl, said aryl substituted with one halogen;

 \mathbb{R}^{14} is C_1 - C_7 alkyl; and

 R^{15} , R^{16} , and R^{17} are each independently is C_1 - C_7 alkyl, aryl, or benzhydryl, said aryl and benzhydryl being optionally substituted by halogen.

Claim 13. (Currently Amended) A compound of the formula

USSN 09/848,697 QA211NP

$$Z \xrightarrow{R^a \qquad R^b} X_1 \xrightarrow{R^a \qquad R^b} X_1 \xrightarrow{R^a \qquad R^b} X_2 \xrightarrow{R^a \qquad R^b} X_3 \xrightarrow{R^a \qquad R^b} X_4 \xrightarrow{R^a \qquad R^b} X_5 \xrightarrow{$$

or a pharmaceutically acceptable salt thereof wherein

 X_1 is O, S(O)_n, or -CH₂-, with the proviso that when X_1 is -CH₂-, R^1 and R^2 are only halogen;

n is 0, 1 or 2;

R^a and R^b are each independently hydrogen, OH, OCOR⁹, NH₂, N₃, NHCOOR⁹, NHCOCOR9, or F:

X is H, CF3, OCF3, halogen, C1-C7 alkyl, C2-C7 alkenyl, C2-C7 alkynyl or C3-C7 cycloalkyl, said alkyl, alkenyl, alkynyl or cycloalkyl group being optionally substituted by COOR8, CN, C(O)NR6R7, PO3R8, SO3R8, hoterocyclic, OR8, SH, S(O), R9, NR6R7, NH(CO)NR6R7, NH(CO)OR9, or anyl or heteroaryl, said anyl or heteroaryl being optionally substituted by one or two groups independently selected from NR6R7, OR8, COOR8, SO3R8, OCOR9, PO3R8, and C(O)NR6R7 and heterocyclic;

R¹ and R² are each independently H, halogen, OR⁹, C₁-C₇ alkyl, C₂-C₇ alkynyl, C2-C7 alkenyl or C3-C7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR8, CN, C(O)NR6R7, PO3R8, SO3R8, heterocyclic, OR8, SH, S(O), NR6R7, NH(CO)NR6R7, NH(CO)OR9. OC(O)OR⁹, or aryl or heteroaryl, said aryl and heteroaryl being optionally substituted with one or two groups independently selected from NR6R7, OR8, COOR8, SO3R8, OCOR9, PO3R8, and C(O)NR6R7 and heterocyclic:

OCT, 7.2004

USSN 09/848,697 **QA211NP**

R³ and R⁴ are each independently H, halogen, OR¹⁰, S(O)_nR¹⁰, C₁-C₇ alkyl, C₂-C7 alkenyl, C2-C7 alkynyl or C3-C7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR8, CN, C(O)NR6R7, PO1R8, SO₃R⁸, heterocyclic, OR⁸, SH, S(O)₁R⁹, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, OC(O)OR⁹, or aryl or hoteroaryl, said aryl and heteroaryl being optionally substituted by one or two groups independently selected from NR6R7, OR8, COOR8, SO₃R8, OCOR8, PO₃R8, and C(O)NR6R7 and heterocyclic, with the proviso that not all of R³, R⁴ and Y may be the same halogen;

Y is OR^{10} or $S(O)_{a}R^{10}$:

R⁵, R⁶ and R⁷ are each independently H, C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl or C3-C7 cycloalkyl, said alkyl, alkenyl, alkynyl and cycloalkyl group being optionally substituted by COOR8, CN, OR8, NR8R9, SO3R8, PO3R8, halogen, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from COOR8, SO3R8, and PO3R8 and heterocyclic;

R8 is H, C1-C7 saturated straight chain alkyl or cycloalkyl;

R⁹ is C₁-C₇ saturated straight chain alkyl or cycloalkyl;

R¹⁰ is C₁-C₇ alkyl, C₂-C₇ alkenyl, C₂-C₇ alkynyl, aryl or C₃-C₇ cycloalkyl, said alkyl, alkenyl, alkynyl, aryl or cycloalkyl group being optionally substituted by COOR8, CN, C(O)NR6R7, PO3R8, SO3R8, hotorocyclic, OR8, SH, S(O)nR9, NR⁶R⁷, NH(CO)NR⁶R⁷, NH(CO)OR⁹, or aryl or heteroaryl, said aryl or heteroaryl being optionally substituted by one or two groups independently selected from NR6R7, OR8, COOR8, SO3R8, OCOR8, PO3R8, and C(O)NR6R7 or heterocyclic; and

USSN 09/848,697 QA211NP

Z is

in which m and p each independently represent an integer of one to six, R^{15} , R^{16} , R^{17} are each independently C_1 — C_7 alkyl or phonyl, R^{18} is C_1 — C_7 alkyl and aryl

represents in which X^{1} is halogen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
	BLACK BORDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
C	REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
_	T omare

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.