- A ist diagonalisierbar, wenn A n l. u. EV besitzt
 - ONB aus EV bilden
 - $-S = (v_1, ..., v_n)$
 - * EV als Spalten eintragen
 - $-S^{-1} = S^T$
 - * $S^{-1}S = S^TS = (< v_i, v_j >) = \delta_{ij}$ [[Kronecker-Delta]]
 - $AS = (Av_1, ..., Av_n) = (\lambda_1 v_1, ..., \lambda_n v_n)$
 - * $S^{-1}AS = Matrix mit EV$ in Hauptdiagonale sonst nur 0

- * diese Matrix ist ähnlich zu A
- $A^{n \times n}$ ist diagonalisierbar, wenn $D = S^{-1}AS$
 - D Diagonalmatrix
 - EW von D sind Hauptdiagonalelemente
- \bullet wird S aus EV von gebildet, dann gilt auch $D=S^{-1}AS$
 - jedoch ist Inverse berechnen mühsamer

Spektralsatz der lin. Alg.

- $A \in \mathbb{R}^{n \times n}$ symmetrisch $(A = A^T) = =>$
 - alle [[Eigenwerte]] sind reell
 - EV zu verschiedenen EW sind orthogonal
 - A besitzt n orthonormierte EV
 - A ist diagonalisierbar mittels ONB von EV (Orthonogale Diagonalisierung)
- das übliche innere Produkt wird verwendet
- $-< v, ww>:=\sum_{j=i}^n v_j \bar{w}_j$ Q heißt Orthogonalmatrix, wenn $Q^{-1}=Q^T$
- $A \in \mathbb{R}^{n \times n}$ ist orthogonal, wenn Spalten eine ONB bilden

Bestimmung der diagonalisierenden Matrix Q

- 1. EW bestimmen
- 2. Basis der Eigenräume von A bestimmen
- 3. [[Orthonormieren nach GRAM-SCHMIDT]] wenn nötig
- 4. Spalten von Q sind ONB Eigenvektoren von 3.