Encyclopedia of Machine Learning and Data Mining - 2nd

https://www.coursera.org/learn/machine-learning

High bias

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples -> fixe high variance
- Try smaller sets of features Fixe high voice
- Try getting additional features five high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc}) \rightarrow \text{five high bias}$.
- Try decreasing \(\rightarrow \) fixes high him
- Try increasing \ -> fixes high vorionie

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network
(more parameters; more prone
to overfitting)

Computationally more expensive.

Use regularization (λ) to address overfitting.

- our data is skewed
- there is a lot of noise
- there are many outliers
- our features are not informative enough
- we don't have enough training samples

https://www.dataquest.io/blog/learning-curves-machine-learning/

Underfit (1)

Underfit (2)

Overfit (1)

Unrepresentative Train Dataset

Unrepresentative Validation Dataset (1)

Unrepresentative Validation Dataset (2)

the validation dataset may be easier for the model to predict than the training dataset

