$Na^+,\ K^+-ATP$ 酶在生命活动中有重要作用,每消耗 $1\ mol\ ATP$,逆化学梯度泵出 $3\ mol\ Na^+$ (需要消耗 $5.56\ kcal$ 自由能),泵入 $2\ mol\ K^+$ (需消耗 $3.77\ kcal$ 自由能).请计算正常体温 ($37\ ^\circ C$) 下红细胞膜上 $Na^+,\ K^+-ATP$ 酶水解 $1\ mol\ ATP$ 产生的自由能.并判断上述转运过程能否自发进行.

已知稳态时红细胞内 ATP 浓度为 1.5 mM, ADP 和 Pi 的浓度都是 0.3 mM

$$ATP$$
 水解的 $\Delta G_0 = -7.3~kcal/mol$
$$\Delta G = \Delta G_0 + RT \ln \left(\frac{[ADP] \times [Pi]}{[ATP]} \right)$$
 $R = 1.987~cal/mol \cdot K$

$$\Delta G = 5.56 + 3.77 \ kcal/mol$$

= $9.33 \ kcal/mol$