Cryptography, Network & Software Security

Jaspreet Singh

Project Engineer E-Security CDAC, Hyderabad

Introduction

Classical Encryption

 Classical encryption involves methods of encoding messages so that only authorized parties can understand the information.

Plain text

Encryption

(used to protect sensitive information)

Overview

- → Cryptography, Cryptanalysis & Brute Force Attacks.
- → Substitution & Transposition Techniques.
- Cryptographically strong random numbers/APIs. Steganography.

→ Symmetric and Asymmetric Key Cryptography with OpenSSL

CRYPTOGRAPHY

Cryptography

Cryptography is the art of writing or solving codes and encompasses techniques for secure communication in the presence of adversaries.

Types:

 Symmetric Cryptography: Uses the same key for encryption and decryption.

 Asymmetric Cryptography: Uses a pair of keys (public and private) for encryption and decryption.

Cryptography

Basic Terms:

Plaintext: The original readable message.

Ciphertext: The encrypted message.

 Key: The secret used to transform plaintext into ciphertext and vice vers

Cryptanalysis

Cryptanalysis is the study of methods for obtaining the meaning of encrypted information without access to the secret key.

Cryptanalysis

Purpose: To discover weaknesses in cryptographic algorithms and protocols.

Types:

- Frequency Analysis: Analyzing the frequency of letters or groups of letters.
- Pattern Analysis: Looking for patterns or repetitions in the ciphertext.

Brute Force Attacks

A brute force attack attempts to find a password or key by systematically checking all possible combinations until the correct one is found.

Characteristics: Time-consuming and computationally intensive.

Protection:

- Use of strong, complex passwords.
- Increasing key length.
- Implementing account lockout mechanisms after a number of failed attempts

Substitution Techniques

Substitution techniques encode a message by replacing elements of the plaintext with corresponding elements of the ciphertext.

Substitution Techniques

• Examples:

- Caesar Cipher: Shifts each letter in the plaintext by a fixed number of places.
- Monoalphabetic Cipher: Uses a fixed substitution over the entire message.

Strengths & Weaknesses:

- Strengths: Simple and easy to implement.
- Weaknesses: Vulnerable to frequency analysis and other cryptanalysis methods.

Caesar Cipher

Explanation: Each letter in the plaintext is shifted a certain number of places down or up the alphabet.

Example:

Plaintext: "HELLO"

Shift: 3

Ciphertext: "KHOOR"

Cryptanalysis: The Caesar Cipher is easy to break using frequency analysis since there are only 25 possible shifts.

Caesar Cipher

- Plain: this is crypto algo class
- · Cipher: wklv lv fubswr dojr fodvv
- Plain: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
 Cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
- c=cipher, p=plain text, k=key, d=decrypted text, E = encrytion, D = decryption c = E(k, p) = (p + k) mod 26

$$p = D(k, c) = (c k) \mod 26$$

A	В	C	D	E	F	G	н	1	J	К	L	М	N	0	P	Q	R	s	Т	U	v	w	х	Y	z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Monoalphabetic Cipher

Each letter of the plaintext is mapped to a corresponding letter of ciphertext using a single substitution alphabet.

Example:

Plaintext: "hello"

Ciphertext: "JFSSH"

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Cryptanalysis: More complex than the Caesar Cipher but still vulnerable to frequency analysis due to the fixed nature of the substitution.

Transposition Techniques

Transposition techniques encode a message by rearranging the characters of the plaintext according to a specific system.

Transposition Techniques

Examples:

 Rail Fence Cipher: Writes the message in a zigzag pattern and then reads off each line.

 Columnar Transposition: Writes the plaintext in a grid and reads the columns in a specified order.

Strengths & Weaknesses:

 Strengths: Transposition doesn't change the frequency of individual elements.

 Weaknesses: Still vulnerable to pattern recognition and known-plaintext attacks

Rail Fence Cipher

The plaintext is written in a zigzag pattern down and up across multiple "rails" (lines), and then read line by line.

Example:

- Plaintext: "HELLO WORLD"
- Zigzag pattern on 3 rails
- Ciphertext: "HOR ELWLD LO"

Cryptanalysis: Often easily broken by visually inspecting the ciphertext and testing different numbers of rails.

Columnar Transposition

The plaintext is written into a rectangle grid of fixed width and read off column by column in a specified order.

Example:

- Plaintext: "HELLO WORLD"
- Grid (width 4)
- Reading columns: "HOR E_L LWD LO_"

Cryptanalysis: Requires trying different column permutations and widths to decipher.

Generating Strong Random Numbers

Methods:

- Hardware random number generators.
- Cryptographic libraries and functions.

Python:

```
import secrets
random_number = secrets.token_hex(16)
```

Java:

```
SecureRandom random = new SecureRandom();
byte[] values = new byte[16];
random.nextBytes(values);
```

Best Practices:

- Use high-entropy sources.
- Regularly reseed the random number generator.
- Avoid predictable patterns.

Steganography

The practice of concealing messages or information within other non-secret text or data.

History: Examples from ancient Greece, where messages were hidden in wax tablets or within the physical structure of objects.

Modern Use: Digital steganography involves embedding data in

multimedia files:

images, audio, and video

Techniques of Steganography

Image Steganography: Uses the Least Significant Bit (LSB) method to embed information within the pixel values.

Audio Steganography: Modifies sound waves to hide data within audio files.

Video Steganography: Embeds data within the frames of a video file, often using the LSB method or other encoding techniques.

Example of Steganography

Image Steganography

```
-(vixen®Vixen)-[~/Downloads]
$ exiftool myNFT.jpeg
ExifTool Version Number
                              : 12.44
File Name
                              : myNFT.jpeg
Directory
File Size
                              : 7.1 kB
File Modification Date/Time : 2024:06:12 16:55:30+05:30
File Access Date/Time
                              : 2024:06:12 16:55:30+05:30
File Inode Change Date/Time
                              : 2024:06:12 16:55:30+05:30
File Permissions
                              : -rw-r--r--
File Type
                              : JPEG
File Type Extension
                              : jpg
MIME Type
                              : image/jpeg
JFIF Version
                              : 1.01
Exif Byte Order
                              : Big-endian (Motorola, MM)
X Resolution
Y Resolution
Resolution Unit
Artist
                              : secret is easy to find
Y Cb Cr Positioning
                              : Centered
Copyright
                              : Flag-InfectedWasHere
Image Width
                              : 224
Image Height
Encoding Process
                              : Baseline DCT, Huffman coding
Bits Per Sample
Color Components
Y Cb Cr Sub Sampling
                              : YCbCr4:2:0 (2 2)
Image Size
                              : 224×224
Megapixels
                              : 0.050
```

Detecting Steganography

Techniques:

- Statistical analysis to detect anomalies in the file structure.
- Visual or auditory inspection for irregularities.
- Using specialized steganalysis software.

Tools: Examples of tools used for detecting steganography:

- **StegExpose**: A tool for detecting LSB steganography in images.
- Xiao Steganography: Software for detecting hidden data in various file formats.

Challenges: Advanced steganography methods can be very difficult to detect, requiring sophisticated analysis and tools.

Detecting Steganography

Techniques:

- Statistical analysis to detect anomalies in the file structure.
- Visual or auditory inspection for irregularities.
- Using specialized steganalysis software.

Tools: Examples of tools used for detecting steganography:

- **StegExpose**: A tool for detecting LSB steganography in images.
- Xiao Steganography: Software for detecting hidden data in various file formats.

Challenges: Advanced steganography methods can be very difficult to detect, requiring sophisticated analysis and tools.

Conclusion

Summary: Recap of key points:

- Classical encryption techniques and their historical context.
- The roles of cryptography and cryptanalysis.
- Brute force attacks and how to protect against them.
- Substitution and transposition techniques.
- Importance of cryptographically strong random numbers.
- Steganography methods and detection techniques.

Reference

- > Fortinet
 - https://www.fortinet.com/resources/cyberglossary/what-is-cryptography
- Cybersecurity & Infrastructure Security Agency (CISA)
 - https://www.cisa.gov/
- Techtarget
 - https://www.techtarget.com/searchsecurity/
- Exiftool for steganography
 - https://www.geeksforgeeks.org/installing-and-using-exiftool-on-linux/

Thank you

