

Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation

INVESTIGATIONS REPRESENTING THE DEPARTMENTS

ASTRONOMY AND ASTROPHYSICS

THE DECENNIAL PUBLICATIONS FIRST SERIES VOLUME VIII

CHICAGO
THE UNIVERSITY OF CHICAGO PRESS
1903

Copyright 1904 BY THE UNIVERSITY OF CHICAGO

CONTENTS

I.	Measures of Double Stars with the Forty-Inch Refractor of the Yerkes Observatory in 1900 and 1901	1
	By Sherburne Wesley Burnham, Professor of Practical Astronomy	
II.	MICROMETRICAL OBSERVATIONS OF EROS MADE WITH THE FORTY-INCH REFRACTOR OF THE YERKES OBSERVATORY DURING THE OPPOSITION OF 1900-1901	77
	By Edward Emerson Barnard, Professor of Practical Astronomy	
III.	On Certain Rigorous Methods of Treating Problems in Celestial Mechanics -	117
	By Forest Ray Moulton, Instructor in Astronomy	
IV.	RADIAL VELOCITIES OF TWENTY STARS HAVING SPECTRA OF THE ORION TYPE	143
	By Edwin Brant Frost, Professor of Astrophysics, and Walter Sydney Adams, Assistant at the Yerkes Observatory	
v.	THE SPECTRA OF STARS OF SECCHI'S FOURTH TYPE	251
	By George Ellery Hale, Professor of Astrophysics and Director of the Yerkes Observatory, Ferdinand Ellerman, Instructor in Astrophysics, and John Adelbert Parkhurst, Assistant in Astrophysics	
VI.	ASTRONOMICAL PHOTOGRAPHY WITH THE FORTY-INCH REFRACTOR AND THE TWO-FOOT	20-
	Reflector of the Yerkes Observatory By George Willis Ritchey, Instructor in Practical Astronomy and Superintendent	387
	of Instrument Construction at the Observatory	
VII.	THE ORBIT OF THE MINOR PLANET (334)	399
	By Kurt Laves, Assistant Professor of Astronomy	

PREFATORY NOTE

The articles which constitute this volume of the Decennial Publications will appear also as the second volume of the *Publications of the Yerkes Observatory*. The requirements of the tabular matter, and the desire to preserve as far as possible the format of the regular publications of the Observatory, are responsible for the modification of the type-page adopted for the other volumes of the series.

THE EDITORIAL COMMITTEE.

MEASURES OF DOUBLE STARS WITH THE 40-INCH REFRACTOR OF THE YERKES OBSERVATORY IN 1900 AND 1901

S. W. BURNHAM

The double-star measures recorded here were made principally in the years 1900 and 1901. The observations preceding this period were almost entirely of the β stars; and the mean results have been incorporated in the "General Catalogue of 1290 Double Stars" discovered by the writer from 1871 to 1899, and issued in 1900 as Vol. I of the *Publications of the Yerkes Observatory*. The detailed measures have not been printed, but, as the results have been given in connection with all the measures of these stars, arranged in chronological order, I have not thought it worth while to give the separate observations.

In making the working-list of objects for measurement, the purpose was to include no star likely to be observed elsewhere, and to confine it wholly to long-neglected and little-known pairs, and those which for the lack of sufficient measures, or the uncertainty of the early results, could not be classified as to motion or otherwise. These stars, so far as the early astronomers are concerned, come largely from the several catalogues of the two Herschels and South, with some of the rejected Struve pairs also catalogued and roughly measured by Herschel II. Many of these, and particularly those from Herschel I. and South, are wide pairs, and too widely separated to be considered by modern observers as double stars in the proper sense of the term; and, whenever change has been found in this class of objects, it is very probable that it is due to the proper motion of one or the other of the components. In the other class, where the distances are less, the changes, if confirmed by later observations, may point to physical systems, though, of course, the orbital movement would of necessity be slow. It seemed very desirable that these stars, among the oldest known so far as the literature of the subject is concerned, and observed by the most eminent astronomers who have ever lived, should receive sufficient attention from modern observers to show whether or not in this long interval there has been any relative motion. In many instances the measures now made do not satisfactorily determine this, since the apparent change may be accounted for by errors in the single observations made when the pair was first catalogued, and another series of measures at some later time may be necessary.

It will be seen that in many of these stars there are great apparent changes, and it is practically certain, after making all due allowance for the early observations, that many of these changes are real. The measures of Herschel II. consist usually of a single reading for the position-angle and an estimate of the distance. The angles are generally very accurate, so far as one can judge from the better-known class of stars catalogued by him; but the distances, and particularly those which are under 10", would seem to be very frequently underrated, so that many of the apparent changes in this respect will probably not prove to be real. The observations were all made seventy or eighty years ago, and, with few exceptions, these pairs have been entirely neglected since that time. A slow movement of any kind would make a decided change in the relation of the components after such an interval of time. Another set of measures twenty or thirty years hence will dispose of the question of motion and eliminate many of these objects with respect to any further attention.

The neglected pairs of Herschel I. and South belong largely to the wider classes, and therefore were not incorporated by Struve in *Mensurae Micrometricae*. Some of the pairs of the first observer have not been observed at all since that time, the interval being about a century and a quarter. The measures of South were made about 1825, and the objects taken from his catalogue have either not been measured since at all, or the later measures indicate some change.

Another class of stars selected for measurement has been taken from various star catalogues where

the star was noted as double by the meridian observer. These catalogues include Weisse, Argelander, Harvard Zones, some of the A. G. catalogues, and others. These pairs have not been previously measured. Some of them are likely to prove to be physical pairs.

Some of the neglected $O\Sigma$ stars were put on the list, but on the appearance of Hussey's complete re-observation of all the Poulkowa stars (Publications of the Lick Observatory, Vol. V) further measures were unnecessary, and this part of the work was discontinued. The wide pairs noted by $O\Sigma$, which correspond to similar pairs given in Appendices I and II to the Mensurae Micrometricae, of which there are no measures since the observations of Dembowski, some twenty-five years ago, have been measured to ascertain whether or not there has been any change since that time.

A further class of pairs has been taken from more modern works, which include some of the pairs recorded by the several observers at the Cincinnati and Harvard College Observatories, and others still more recently catalogued. Many of these were given only approximate places and a single measure for the relative position. In all cases the error of place has been corrected, and the object identified in the D. M. or some other star catalogue. In a few instances the pair could not be found at all after a careful search in the vicinity of the assigned place.

The observing-list of stars selected in this way would obviously be a long one, and the work laid out is far from being finished. The observations which follow, amounting to about fifteen hundred measures, include only the pairs which have been measured on at least two nights. Those which have been measured once only must be given in a later series. A large number of pairs are still to be measured for the first time.

The method of making the measures has been too often described to need repeating here, since it is practically the same with all observers who use the micrometer. Double distances have, of course, been taken, and a sufficient number of readings made, usually three to five, to give as good a mean as the observer can attain. From a large number of transits, and measures of difference of declination of well-determined stars, by Professor Barnard and myself, the value of 9.666 for one revolution of the micrometer has been adopted.

In the course of these observations a few new pairs have been picked up, which are given at the end of the other measures. These are numbered in continuation of my prior lists from 1291 to 1308 inclusive. The reason why this number of new pairs is not larger will be readily understood when it is explained that, in the first place, the finding of new pairs was no part of the work planned, and no time was spent in the examination of adjacent stars; and, in the second place, for all stars smaller than 7.5 magnitude, diagrams were carefully platted to scale from the D. M. catalogues, showing the place of the pair sought and all the other stars in the vicinity, down to the Argelander limit, within a radius of about one degree. This preparation was essential in the interest of saving time in finding the object, and for the purpose of properly identifying it. Hence, except in cases where the given place was erroneous, the proper star could be placed in the field at once without loss of time, and no attention given to the other stars in the neighborhood. With any other plan, doubtless, a large number of new pairs, of more or less apparent interest, would have been found, but necessarily it would have seriously interfered with the carrying out of the arranged program, which would require at least several years thoroughly to complete; and it seemed much more important at this time to correct the descriptions and places of the stars recorded by some of the first observers, and get data for learning something of the movement of these long-neglected pairs. The old and well-known double-star systems are in no danger of being overlooked, and there has always been an unnecessary duplication of the measures of these pairs.

The star-places given are for 1880.

I. MEASURES OF KNOWN DOUBLE STARS

$$\begin{array}{ccc} \mathbf{\Sigma} \, \mathbf{3065} \, rej. & \mathrm{S.D.} (15^{\circ}) \mathbf{3.} & 8.6 \dots 8.7 \\ & \mathrm{R.A.} &= 0^{\,\mathrm{h}} \, 1^{\,\mathrm{m}} \, 51^{\,\mathrm{s}} \, \\ & \mathrm{Decl.} &= -14^{\circ} \, 54^{\prime} \, \end{array}$$

$$\begin{array}{ccc} 1901.796 & 289^{\circ} 2 & 9^{\circ} 44 \\ \underline{.854} & 289.1 & 9.55 \\ \hline 1901.82 & 289.1 & 9.49 \end{array}$$

No other measures of this pair.

The only other measures are by H, $351^{\circ}1:20^{\circ}\pm$ (1830).

$$\begin{array}{ccc} \beta \ Cassiopeiae. & 2 \dots 15 \\ \text{R.A.} & = 0^{\text{b}} \ 2^{\text{m}} \ 43^{\text{s}} \ \big) \\ \text{Decl.} & = + 58^{\circ} \ 29^{\prime} \ \big) \\ 1900.684 & 204^{\circ} 5 & 22^{\prime} 88 \\ \underline{.725} & 204.0 & 22.44 \\ \hline 1900.70 & 204.2 & 22.66 \end{array}$$

The only other measures of the Clark companion are my own in 1889. The principal star has a proper motion of 0:550 in 110:2. This movement, with the measures of 1889, gives the position of the small star for the date of the above measures, 204°8: 22:28. It is therefore certain that the companion is fixed in space.

"Duplex" in O.Arg. No other measures. These stars are D.M. $(58^{\circ})4$ and 5. The A.G. positions give 143.6: 2.592 (1873.7).

H 1001. D.M.
$$(43^{\circ})^{7}$$
. 8.5 . . . 9.1
R.A. = 0^h 2^m 57^s \text{ Decl.} = +44° 3′ \text{ 3'} \text{ 15'80} \\
\frac{.758}{1901.74} \frac{77.7}{77.6} \frac{15.72}{15.76}

The R.A. in H is 1^m too large. He gives $84^{\circ}5$: $13^{\circ}\pm$. No other measures.

H 1939.
$$8...9.3$$

R.A. = $0^{\text{h}} 3^{\text{m}} 41^{\text{s}}$
Decl. = $+10^{\circ} 45^{\prime}$

1901.605 $161^{\circ}2$ 34.75
 $\frac{.742}{1901.67}$ $\frac{161.3}{161.2}$ $\frac{35.09}{34.92}$

The Decl. in H is 5' too small. By a single measure in 1877 I found $159^{\circ}1:36^{\circ}08$.

Σ 3. Andromedae 51 R.A. = 0^h 3^m 49^s)

H notes another small star, $133^{\circ}0:4^{\circ}57$, and says: "Possibly the small star is a mere illusion." I could not see anything of it here, or attached to any star in the vicinity. No change in the Σ components.

$$\begin{array}{ccc} \mathbf{\Sigma} \ \mathbf{6} \ rej. & \text{D.M.} (4^{\circ})9. & 8.9 \dots 10.5 \\ & \text{R.A.} & = 0^{\text{h}} \ 4^{\text{m}} \ 6^{\text{s}} \\ & \text{Decl.} & = + \ 4^{\circ} \ 13^{\circ} \end{array} \right\} \\ 1901.605 & 192^{\circ}8 & 21^{\circ}20 \\ & \underline{.742} & 192.7 & 21.02 \\ \hline 1901.67 & 192.7 & 21.11 \end{array}$$

The only other measures are by the Harvard observers, $193^{\circ}2:22'56$ (1869, 92) 1n.

H gives $55^{\circ} \pm :6^{\circ} \pm :9 \dots 14$, and says "a third 18m at $4^{\circ}:320^{\circ}$ suspected." I could not see any other companion.

60.6

13.36

1901.06

H 618. D.M.
$$(-0^{\circ})$$
17. 9.6 . . . 9.6
R.A. = 0° 7 m 22 ;
Decl. = $-$ 0° 47'
1901.742 249°6 5'33

1901.742	$249^{\circ}6$	5/33
.854	71.4	5.16
1901.80	$\frac{-}{250.5}$	5.24

No other measures; $250^{\circ} \pm : 2'' \pm (1820)$ H.

$\begin{array}{ccc} \textbf{H 1947.} & 7.3 \dots 10.5 \\ \text{R.A.} &= 0^{\text{h}} 10^{\text{m}} 3^{\text{s}} \\ \text{Decl.} &= +42^{\circ} 58^{\circ} \end{array}$ $\begin{array}{cccc} 1901.818 & 75^{\circ}6 & 9^{\circ}14 \\ \underline{.835} & 75.1 & 9.06 \\ \underline{1901.82} & 75.3 & 9.10 \end{array}$

The principal star (Radeliffe 44) has a small proper motion (Mon. Not., L1, 398).

1879.40
$$74^{\circ}6$$
 9'36 $2n$ 02

"Duplex 4" distance" in Weisse. The only measure is:

1879.61
$$106^{\circ}4$$
 5'35 $1n$ Cin

The only complete measure preceding this is: $1877.95 \quad 216^{\circ}6 \quad 24^{\circ}09 \quad 1n \quad \beta$

The other measures are:

1880.31 **1**5°5 **6**1'96 **2**
$$n$$
 β

The principal star has a very small proper motion, 0.057 in 236.0.

Hd 17 R.A. = 0^h 18^m 32^s { Decl. = -0^o 37' {

Described in the Harvard observations, $sp:10^{\circ}:8...12$. This star is not double, and no such pair found in the vicinity (1901.74).

$$\begin{array}{ccc}
\mathbf{0Σ} \ \mathbf{10} \ rej. & \mathbf{L} \ 581. & 6.3 \dots 8.9 \\
& \mathbf{R.A.} = 0^{h} 21^{m} \ 16^{s} \\
& \mathbf{Decl.} = + 15^{\circ} \ 22^{\circ} \\
\end{array}$$

$$\begin{array}{cccc}
\mathbf{1901.742} & 237.96 & 100.55 \\
.854 & 238.0 & 100.96 \\
.873 & 237.8 & 100.97 \\
\hline
& 1901.82 & 237.8 & 100.83
\end{array}$$

The first measure of this distant star is:

The A.G. proper motion of the principal star is 0.092 in 286.2. The above measures give 0.133, so that the first is too small, or the other star has a movement of its own.

H 322. 12 Ceti.
$$6.5 \dots 11.7$$

R.A. = $0^{h} 23^{m} 55^{s}$ Decl. = $-4^{h} 37^{r}$

1901.760 189°4 9'.70
.815 188.4 9.52
.818 188.8 9.40
.835 189.6 9.53
1901.81 189.0 9.54

The only measures are:

1866.76	$185^{\circ}2$	8.766	3n	1
1880.23	187.0	8.63	3n	β

The proper motion of A is practically zero.

	β 107	
R.A. Decl	$ \begin{array}{l} = 0^{\text{h}} 24^{\text{m}} 31^{\text{s}} \\ = + 62^{\text{o}} 41^{\text{s}} \end{array} $	 -
	A and B	
1900.706	$354^{\circ}9$	5:71
.725	353.2	5.69
$\overline{1900.71}$	351.0	$\overline{5.70}$
	A and C	
1900.706	336°7	46:91
.725	336.7	46.62
$\overline{1900.71}$	336.7	46.78

	A and D	
1900.706	$146^{\circ}5$	50:28
.725	146.6	50.36
$\overline{1900.71}$	$\overline{146.6}$	$\overline{50.32}$
	A and E	
1900.706	170°9	113'59
.725	170.8	113.51
$\overline{1900.71}$	$\overline{170.9}$	$\frac{-}{113.55}$
	A and F	
1900.706	114°1	150/50
.725	113.7	150.48
1900.71	$\overline{113.9}$	$\overline{150.49}$
	${f E}$ and e	
1900.725	139°1 8'6	16m

(See Popular Astronomy for December, 1900.)

The only measures are:

The distance would seem to be increasing. The proper motion is very small, 0.012 in 109.3.

The only position is by H, $97^{\circ}0$: $1\frac{1}{2}$ " (1828); "in contact with 160; just separated with 240." I looked this up in 1876 with the 6-inch, and estimated the distance as fully 2". Not in D.M.

H 1040.
$$10.9 \dots 11.2$$

R.A. = $0^{h} 31^{m} 37^{s}$
Decl. = $+65^{\circ} 7^{\circ}$

1901.722 $355^{\circ} 4$ $4^{\circ} 88$
 1901.76 353.3 5.18
 1901.76 354.3 5.03

H gives $356^{\circ}4:2''\pm(1830)$.

H 3380.
R.A. =
$$0^{h} 33^{m} 35^{s}$$
 {
Decl. = $-17^{\circ} 23^{\circ}$ }

H gives $96^{\circ}2:30^{\circ}\pm:7\frac{1}{2}\dots13$ (1836.78). There is no bright star in this place, and I could not find any such pair in the vicinity. It may be identical with H 2067, which is $1^{\rm h}$ more R.A. The descriptions agree.

$$\begin{array}{c} \text{D.M.} (-0^{\circ})75, \quad 7.6 \dots 11.5 \\ \text{R.A.} = 0^{\circ} 31^{\circ} 56^{\circ} \\ \text{Decl.} = -1^{\circ} 10^{\circ} \end{array}$$

$$\begin{array}{c} 1901.703 \quad 307^{\circ} 1 \quad 30^{\circ} 46 \\ .873 \quad 306.5 \quad 30.50 \\ \hline 1901.79 \quad 306.8 \quad 30.48 \end{array}$$

This was measured for $\Sigma 53$ rej. No other observations. The principal star is 6.8m in D.M., and has a proper motion of 0.087 in 253.4.

$$\begin{array}{c|ccccc} \mathbf{\Sigma} \ \mathbf{53} \ rej. & 8.0 \dots 8.7 \\ \text{R.A.} & = 0^{\ln} 37^{\ln} 18^{s} \\ \text{Decl.} & = -1 & 32^{r} \\ \hline 1901.735 & 338.9 & 27.79 \\ .854 & 338.3 & 27.61 \\ \hline 1901.76 & 338.6 & 27.70 \\ \end{array}$$

The earliest measures are:

1891.81 334°6 26′47 3*n* Engelhardt

This star has a considerable proper motion; 0.415 in 216.6 (Porter); 0.301 in 228.4 (Nico. A.G.). The smaller star is probably not moving with the other.

The distance seems to be greatly overestimated by H, as in nearly every instance of this kind. He gives $275^{\circ}0:1\frac{1}{2}^{\circ}:10...14$ (1828). It is near D.M. (23°)98.

H 626. D.M.(30°)110. 8.5 . . . 11 . . . 12.5
R.A. = 0 h 39 m 7 s
Decl. =
$$+31 \circ 1$$

A and B
1901.703 315°9 32.16
.758 346.4 32.46
1901.73 316.1 32.31

	B and C	
1901.703	10578	10.51
.758	107.1	10.16
$\frac{1901.73}{1901.73}$	$\frac{106.4}{1000000000000000000000000000000000000$	${10.35}$

H gives $330 \pm :20^{\circ} \pm :9 \dots 14$; "large star, very ed." The third star was not seen by him. A is only vellowish at most.

H 1054. D.M.
$$(59^{\circ})125$$
. $8.2...10.5$
R.A. = $0^{\text{h}} 42^{\text{m}} 31^{\text{s}}$ / Decl. = $+60^{\circ} -6^{\circ}$ / 1901.796 $182^{\circ}5$ 8.75 $.799$ 181.6 8.58 1901.80 182.0 8.66

H gives $176^{\circ}0:5''\pm:9...13$ (1828).

From the Harvard list. The only measure is: $1867.89 37^{\circ}4 7.04 1n Hd$

Hd 36

$$B.A. \equiv 0^{h} 43^{m} 10^{s} ($$

 $Deel. = -21^{\circ} 48' ($

This is in the Harvard list as O.Arg.S.439, with the correct place as given above. The description is $16^{\circ}6:21^{\circ}:7...(1868.82)$. This star is not a double of any kind, nor is there any pair as described in the vicinity. The nearest pair is $\beta 301$, but this does not correspond in any respect to measures or magnitude.

$$\begin{array}{ccc} \textbf{0} \mathbf{\Sigma} \text{ (App) } \mathbf{9}, & 8 \dots 8.2 \\ & \text{R.A. } = 0^{\text{h}} 43^{\text{m}} 21^{\text{s}} \\ & \text{Decl. } = + 29^{\circ} 48^{\circ} \end{array} \Big\} \\ 1901.703 & 236^{\circ} 8 & 96^{\circ} 72 \\ .799 & 236.5 & 96.10 \\ \hline .799 & 236.6 & 96.41 \\ \end{array}$$

The principal star has a proper motion of 0'263 in 100.3 from meridian positions. The measures of β in 1875 compared with the foregoing give 0'217 in

92°1. There is a 12m star nearly midway, from A 252°7 and from B 42°5.

H gives $65^{\circ} \pm : 35^{\circ} \pm : 7 \dots 16$; "large star red." The principal star is not red—yellowish at most.

Weisse R.A. =
$$0^{h} 45^{m} 56^{s}$$
 (Decl. = $+25^{m} 8^{s}$ (

"Duplex" in Weisse. Not double except as a wide pair in the finder. There are three observations in Weisse differing slightly in place.

O.Arg.N.901. 8.5 . . . 8.9
R.A. =
$$0^{h} 50^{m} 3^{s} / 10^{h} 60^{h} 60^{h}$$

"Duplex" in O.Arg. The only measures are $203^{\circ}2$: $21^{\circ}24$ (1892.77) Espin. The components are D.M. $(59^{\circ})150$ and 149.

$$\begin{array}{ccccc} \mu \ Andromedae. & 4 \dots 13.5 \dots 13.2 \\ & R.A. & = 0^h 50^m & 6^s \) \\ & Decl. & = + 37^\circ & 51' \) \\ & A \ and \ C \ (= 11 \ 1057) \\ \hline 1901.799 & 122^\circ 2 & 36^\circ 87 \\ & .818 & 122.3 & 36.87 \\ \hline 1901.80 & 122.2 & 36.87 \\ & A \ and \ B \\ \hline 1901.818 & 310^\circ 8 & 39^\circ 82 \\ & .835 & 311.4 & 39.56 \\ \hline 1901.82 & 311.1 & 39.69 \\ \hline \end{array}$$

The large star has a proper motion of 0.173 in $73^{\circ}2$.

1878.67	11009	38#3 7	3n	β
1878.67	314.4	37.27	3n	β

Winnecke, D.M. $(8^{\circ})137$. 9 . . . 9.2

R.A. =
$$0^{h}51^{m}46^{s}$$
 (Decl. = $+8^{\circ}38^{\circ}$ (1901.703 128°3 5.40 .760 130.1 5.41

The only other measures are:

1901.73

1863.86	130°2	5/32	2n	Wr

129.2

5.40

H 2026. D.M.(4°)204. 8.6 . . . 11

R.A. = 1 h 5 m 42 s
$$\ell$$
Decl. = ℓ 4 15' ℓ

1900.706 306 6 10.11

.742 306.0 10.34

.782 305.6 10.33

1900.74 306.1 10.26

H gives $303^{\circ}3:10^{\circ}\pm:10\ldots15$ (1830). The principal star has a considerable proper motion, 0.214 in 215°1 (Porter) and 0.28 in 230°8 (Boss). This would seem to be common to both stars.

No recent measures, but probably unchanged. Some uncertainty in place heretofore.

H 5453. D.M.(
$$-1^{\circ}$$
)167. 8.3 . . . 9.9
R.A. = $1^{h}12^{m}29^{s}$ Poecl. = $-1^{\circ}29'$ 1901.703 208°3 27.56
 $\frac{.796}{1901.75}$ 208.5 27.35
 $\frac{.208.5}{208.4}$ 27.45

The positions are estimated by H, 210° : 30° . Engelhardt gives $209^{\circ}5$: $27^{\circ}95$ (1891.81) 2n. The principal star has a proper motion of 0.499 in $121^{\circ}4$, and the small star seems to be moving with it.

Barnard. D.M.(3) 184.
$$8.5 \dots 11$$

R.A. = $1^{h} 12^{m} 40^{s} t$
Decl. = $+4^{\circ} 1'$ (1900.742 1200 1445

Discovered by Barnard. No change since his measures of 1894.

H 1079. 44 Ceti. 6 . . . 10.5
R.A. =
$$1^{h}18^{m} \cdot 0^{s}$$
 $\left. \begin{array}{c} \text{R.A.} = 1^{h}18^{m} \cdot 0^{s} \\ \text{Decl.} = -8^{\circ} \cdot 38^{\circ} \end{array} \right.$

$$1900.725 \qquad 298^{\circ}9 \qquad 80^{\circ}37$$

$$\begin{array}{c} .744 \qquad 298.5 \qquad 80.37 \\ \hline 1900.73 \qquad 298.7 \qquad 80.37 \end{array}$$

The only observations are:

$$300^{\circ}5$$
 $60^{\circ} \pm$ 1828 $1n$ H 299.6 76.40 1877.86 $1n$ β

The principal star has a proper motion of 0.134 in 115.4, which accounts for the change in distance.

H 638.
$$11.2...11.5$$
R.A. = $1^{\ln 19^{m}} \cdot 5^{\circ} \cdot \frac{1}{4^{\circ}} \cdot \frac{1}{4^{\circ}} \cdot \frac{1}{5^{\circ}}$
1901.760 271°8 9:52
$$\frac{.876}{1901.82} \frac{271.3}{271.5} \frac{9.30}{9.41}$$

In the field nf S.D.(4–)203. The only observation is by H, $273^{\circ}0:2'-3''$ (1820).

H 640. S.D.(4) 230. 9.5 ... 9.5
R.A. =
$$1^{h} 27^{m} 27^{s}$$
 | Decl. = $-4 - 8^{s}$ | 5/33
1901.760 290°1 5/33
.876 291.3 5.29
1901.81 290.7 5.31

No other measures.

The only other observations are $328^{\circ}4$: $52^{\circ}35$ (1880.68) 2n β . The proper motion of this star is small, 0.019 in $37^{\circ}4$.

H 2067. L 3056. 7.2 . . . 11.1.

R.A. =
$$1^{\text{h}}.33^{\text{m}}.33^{\text{s}}$$
 /

Decl. = $-18^{\text{c}}.24^{\text{c}}$ \(
1901.760 \quad \text{91.9} \quad \text{33.66} \\

\frac{.876}{1901.81} \quad \text{91.9} \quad \text{33.86} \\

\frac{33.86}{33.86}

Probably without change. The distance in H of 5° may be a misprint for 25°. In my measure of 1878 the distance is printed 23590 instead of 33590. The measures of Wilson (Cin¹⁰) belong to H 3455, which is 4 m f this pair.

H gives $16455:15^{\circ} \pm (1828)$.

$$\begin{array}{ccc} \textbf{H 3455.} & 9.1 \dots 9.2 \\ \text{R.A.} & = 1^{\text{h}} \, 37^{\text{m}} \, 31^{\text{s}} \, \big(\\ \text{Deel.} & = -18^{\circ} \, 13^{\circ} \, \big(\\ \\ 1901.760 & 74^{\circ} 5 & 23^{\circ} 56 \\ \underline{.876} & 73.6 & 23.73 \\ \hline 1901.81 & 74.0 & 23.64 \end{array}$$

The components are S.D.(18)291 and 292. The only measures are:

No measures since \exists in 1867. No evidence of change. H could not see it, and I failed with the 6-inch 1874.

The only other measures are by the Harvard observers on one night in 1867. They give for AC, 213-1:14/26 (1867.96),

$$\Sigma 188 \ rej. 8.8 ... 9.1$$

$$R.A. = 1^{h} 50^{m} 47^{s} \begin{cases} \\ Decl. = +62 - 20 \end{cases}$$

$$1901.722 \qquad 238^{\circ} 4 \qquad 32.754$$

$$1901.76 \qquad 238.4 \qquad 32.62$$

$$1901.76 \qquad 238.4 \qquad 32.58$$

H describes the components "very red; fine green." The colors are less prominent.

H 1100. B.A.C. 588.
$$6.3 \dots 10.6$$

R.A. = $1^{h} 50^{m} 47^{s} \chi$
Decl. = $+64 - 3^{s} \chi$
1901.722 $310^{s} 4 - 38^{s} 81$
 $1901.76 - 310.1 - 38.83$
 $1901.76 - 310.2 - 38.83$

H gives $310^{\circ}1:30\pm$. His declination is 20° in error.

H gives $183.7:60^{\circ}\pm$. His declination is 1 s of the real place. The principal star is 5.8m in S.D.

H 647. D.M.(6) 319.
$$8.8...93$$

R.A. = $1^{h}56^{m}16^{s}$ (
Decl. = $+7^{\circ}-6^{\circ}$ (

1900, 706 35°6 26.71
.742 34.3 26.43
.782 35.1 26.60

 $1900, 74$ 35.0 26.58

Positions estimated by H; "large star deep blood red—a very intense and remarkable color; small star green." The colors are very marked.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{207}, & \mathrm{D.M.} (16) 233, & 9 \dots 10 \\ & \mathrm{R.A.} &= 1^{\ln 56^{\ln} 45 \cdot \frac{1}{2}} \\ & \mathrm{Decl.} &= +17 \cdot -4 \cdot \frac{1}{2} \\ 1901.873 & 186.7 & 11.788 \\ & .876 & 185.0 & 11.96 \\ \hline & 1901.87 & 185.8 & 11.92 \end{array}$$

No recent measures, but without change.

Both R.A. and Decl. erroneous in H. He gives $166^{\circ}4:25''\pm$. Identified as above.

$$\begin{array}{ccc} & \text{ \ensuremath{\mbox{\mbox{ψ}}}\mbox{ } \textbf{V. } \textbf{102.} & 61 \ \mbox{$Ceti$.} & 6 \ \dots 9 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

H in 1873 made two measures of the distance, 34′50 and 37′88. The only other measures are my own, 193°3:42′71 (1877.86). Bossert gives the proper motion 0′144 in 123°7.

$$\Sigma$$
 211 rej.
R.A. = 1 \(^{\text{h}} 58^{\text{m}} \\ \perp \)
Decl. = - 6 \(^{\text{o}} \)

H could not find any pair in or near this place. Σ gave this as Class IV, $8 \dots 11$. There is no star in the assumed place. There is a $7\frac{1}{2}$ m star about 15's with a distant $9\frac{1}{2}$ m star in the field, which may be the one in question.

No recent measures; no sensible change. The third star has not been seen before.

No recent measures; apparently fixed.

No measures since \exists ; little if any change. The Berlin A.G. gives the proper motion of A, 0.187 in 126.0, and the small star is therefore moving with it.

H 1115. 10 Trianguli. 6 . . . 12

R.A. =
$$2^{h} 11^{m} 59^{s}$$
 Decl. = $+28^{\circ} 5^{\circ}$ \\
1900.742 \quad \frac{206^{\circ}2}{204.5} \quad \frac{57.14}{57.04} \\
\frac{1900.74}{205.3} \quad \frac{57.04}{57.09}

H gives $206^{\circ}8:50\pm^{\circ}$, and calls the small star 18m. No other measures.

$$\begin{array}{ccc} \Sigma \ 247 \ rej. & \text{D.M.}(3^{\circ})320. & 9.0 \dots 9.0 \\ & \text{R.A.} & = 2^{\text{h}} 12^{\text{m}} & 7^{\text{s}}) \\ & \text{Decl.} & = + & 3 & 37' \end{array}$$

$$\begin{array}{cccc} 1901.703 & & 211^{\circ}3 & & 7'61 \\ & & & .876 & & 212.1 & & 7.48 \\ \hline & & & & & 211.7 & & 7.54 \end{array}$$

The only measure is:

1879.66 32°2 7739 1*n* Cin

H 2134

R.A. =
$$2^{h} 16^{m} 0^{s}$$
 }
Deel. = $-11^{\circ} 10'$ }

Described by H, $265^{\circ}2:9^{\circ}\pm:9\ldots10.11$. There is no pair of this description in or near this place. It is certainly identical with H 2140, which is about 5mf.

H 649.
$$12.5...13$$
R.A. $= 2^{h}17^{m} 4^{*} \chi$
Decl. $= + 9^{+}4^{+} \chi$
 $= 1901.799$
 $= 127^{\circ}5$
 $= 9^{\circ}10$
H has $120^{-} \pm : 13^{''} \pm : 15 \dots 16$.

In H, "R.A. conjectural." Identified as above. Identical with 11–2131, for which 11–gives $265^{\circ}2:9+:9\ldots10\cdot11$. The R.A. of that star is also in error.

The only other measures are by 4, 31/2; 73/96 (1875.42).

Hd Zones

$$R.A. = 2^{h} 29^{m} 0^{s}$$

$$Deel. = + 0 37'$$

In the Harvard Zones an 8m star noted as "double," The place is that of the 9m star D.M.(0) 131, but this is not a double of any kind. Σ 274 is $4^{\rm m}$ p, and possibly the note has reference to that pair.

O.Arg.N. 2946
R.A. =
$$2^{h}29^{m}29^{s}$$

Deel, = $+49^{-}44^{-}$

"Duplex" in O.Arg. Not double; there is a 10m star about 53 distant. I failed to find it in 1875.

1900.712	15/2	13729
1901.760	45.5	13.87
1901 95	15.3	13.58

	A and C	
1900.742	24278	14726
1901.760	243.4	14.12
1901.25	213.1	$\overline{14.19}$

H gives $19\%6:10'' \pm \text{ and } 299 \pm :12'' \pm .$

$$\begin{array}{ccc} \text{O.Arg.N. } 3145, & 8.4 \dots 8.4 \\ \text{R.A.} & = 2^{\text{h}} 38^{\text{m}} 46^{\text{s}} \\ \text{Dech.} & = +49 - 37^{\text{s}} \end{array}$$

$$\begin{array}{cccc} 1901.589 & 14310 & 3508 \\ \hline .758 & 146.5 & 3.08 \\ \hline 1901.67 & 144.7 & 3.08 \end{array}$$

"Duplex" in O.Arg.N. It is Hussey 204. He gives 143.4:3.17 (1900.87) 3n. No other measures. There is a closer pair a little following which 1 noted many years ago, and in this connection measured if; 155.5:1.42 (1901.67) 2n. This is Hussey 205. It is 57^s f the other pair, and 3.5s.

	$\boldsymbol{\tau}$ Persei	
R.A. Decl.	$= \frac{2^{h} 45^{m} 45^{s}}{= + 52^{\circ} 16'}$	·
	A and B	
1900.684	106°3	50*50
.687	106.7	51.30
. 725	107.2	-51.09
.742	106.3	50.52
1900.71	$\overline{106.6}$	50.85
	B and C	
1900.742	8127	4:58

The faint star B 12m was first noted by Edgecomb, and in measuring that with the $18\frac{1}{2}$ -inch the 13m star C was added. My measures of AB are $106^{\circ}4:50^{\circ}67$ (1878.46) 2n. There is a 14m star from A $337^{\circ}3:42^{\circ}46$ (1900.74) 1n.

H gives $191^94:12 \pm \text{for AB}$, and $312^94:8 \pm \text{for AC}$. I could see only the star measured, which is B of H. This was rejected by Σ as a close pair.

No measures ; described in H, "Triple ; Cl. I and II."

	Σ 334	
R.A. Decl.	$= \frac{2^{\rm h} 53^{\rm m}}{= + \ 6^{\circ} \ 10'} \left. \right\}$	
1900.666	$316^{\circ}2$	1/45
.668	317.6	1.36
1900.67	$\overline{316.9}$	$\frac{-}{1.40}$

H 2170.

$$\gamma$$
 Persei.
 --....11.2

 R.A.
 = $2^h 56^m$ 6° \ Decl. = $+53^\circ$ 2° \
 57.56

 1900.684
 324°7
 57.56

 .725
 325.0
 57.43

 .782
 324.9
 57.32

 1900.73
 324.9
 57.44

H gave the angle 224°9, probably an error of 100°. The only measures are 323°7 : 57°72 (1879.55) $2n \beta$.

O.Arg.N. 3418.
$$9.0...9.0$$

R.A. $= 2^{h} 57^{m} 34^{s}$
Decl. $= + 52^{s} 35^{s}$
 1901.835
 $90^{\circ} 1$
 854
 90.0
 4.19
 1901.84
 90.1
 4.14

"Duplex" in O.Arg. The only measures are: $1900.06 - 90^{\circ}2 - 4'50 - 2n$ Espin

$$\Sigma 353 \ rej. \quad D.M.(17^{\circ})494. \quad 9.6 \dots 11.0$$

$$R.A. = 3^{\circ} 0^{\circ} 47^{\circ} \langle \\ Decl. = +17^{\circ} 25^{\circ} \langle \\ 1901.720 \qquad 59^{\circ} 2 \qquad 10^{\circ}70 \\ \hline .799 \qquad 58.0 \qquad 10.63 \\ \hline 1901.76 \qquad 58.6 \qquad 10.66$$

No other observations except angle of 56°4 by H.

The only other measures are by H; $317^{\circ}5:31'80$ (1783.65) 1*n*. The principal star is D.M.(21')418. There is a nearer companion, 13m, $267^{\circ}0:14'69$ (1900.72) 1*n*.

H 3557. L 6037. 8 . . . 10.9
R.A. =
$$3^{\text{h}} 9^{\text{m}} 12^{\text{s}}$$
 $\left\{ \begin{array}{c} \text{B.c.} \\ \text{Decl.} = -14^{\circ} 53^{\circ} \end{array} \right\}$
1900.706 2?4 27.13
 $\begin{array}{c} .742 \\ 2.2 \\ \hline 1900.72 \\ \hline \end{array}$ $\begin{array}{c} 26.77 \\ 26.95 \end{array}$

There is an error of 1 in the Decl. of H. The only observations are:

1835.90	9°9	$20" \pm$	1n	Η
1880.27	5.3	27.13	3n	β

 Σ 371

$\begin{array}{ll} { m R.A.} &= 3^{ m h}10^{ m m}23^{ m s} \ { m Decl.} &= +46^{\circ}35^{\prime} \end{array} angle$			
1900.687	8127	3/56	
.782	82.8	3.14	
1901.589	81.1	3.51	
1900.76	$\overline{81.9}$	$\frac{-}{3.40}$	

From the measures of $\mbox{\em J}$ the angle appeared to be increasing.

1831.20	74°7	3/35	3n	Σ
1867.45	81.7	3.32	3n	J.

It would now appear that Σ 's angle was too small, and that the stars are really fixed.

н з	570. 7 12	
R.A. Deel.	$\begin{array}{l} = 3^{\rm h}16^{\rm m}18^{\rm s}\\ = -20^{\circ}45^{\circ}\end{array}$	
1900.706	25621	33/89
.742	256.0	34.21
$\frac{-}{1900.72}$	$\overline{256.0}$	$\frac{-}{31.05}$

No measures in H; described as "triple or quadruple." No nearer companion than that measured, but other small stars in the field more distant.

H 2187. S.D.(11)652. S...10.7
R.A. =
$$3^{h} 17^{m} 32^{s}$$
 Dect. = $-11 \cdot 47^{r}$ 56404
1901.703 210°7 56404
.742 240.2 56.00
1901.72 210.4 56.02

In one observation 11 gives for the angle 23955 (1830), and later 32553 (1835.9). There is probably an error of 90° in the last. This pair appears to be Σ 387 rej. Hussey 20 is about 1^m 40° p, which was measured once, 235°4 : 0424 (1901.74).

Two of the small stars in the field were measured, and then the work discontinued, as it appeared that Aitkin had carefully measured them all.

1901.167	6324	158/14
. 529	63.0	158.41
1901.35	63.2	158.42
1901.167	11607	102/38
. 529	116.4	101.95
1901.35	116.5	102.16

$$egin{array}{lll} \mu \ IV, 89, & L \ 6436, & 8.1 \dots 9.5 \\ & R.A. & = 3^{h} \, 23^{m} \, 35^{s} \\ & Deel. & = +19 - 41^{r} \end{array} \Big\} \\ 1901.712 & 147^{\circ}1 & 20735 \\ & .796 & 146.9 & 20.27 \\ \hline & .796 & .796 & .796 \\ \hline & .796 & .796$$

Porter gives the proper motion of A, 0:203 in 108:0. The components seem to be moving together.

$$\Sigma$$
 417 rej. S.D.(3) 572. 8.5 . . . 9.6
R.A. $3^{h} 27^{m} 27^{s}$ 0
Decl. $= -2^{-57^{s}}$ 0
1901.703 179.5 25.78
.742 179.8 25.78
1901.72 179.6 25.78

The only other position is $178^{\circ}3:25 + (1830)$ 11.

$$\Sigma$$
 416 rej. D.M.(19)556. 8.8 . . . 9.7
R.A. = 3^h 28^m 2^s }
Dect. = + 19 · 24 · (
1901.720 56°.6 26°.54
.742 56.5 26.30
1901.73 56.5 26.42

The principal star is catalogued as red. There is a 11.5m star, 292:9:22:61, previously noted by Espin.

This was observed for the distant star which has not been measured before. Σ mentions it as 347° ; 32'. There is no change in the close pair.

H 666.
 L 7069.

$$6.5...12.7$$

 R.A. = $3^{1i}43^{10}15^{s}$ \ bect. = $+9-3^{s}$ \}

 1900.684
 $19^{\circ}2$
 30.72
 $.687$
 18.3
 30.85
 1900.68
 18.7
 30.78

No other measures. H gives $25^{\circ} \pm : 25'' \pm 6 \dots$ 17–18.

H gives $90 \pm : 4^{\circ} \cdot 5^{\circ}$ AB, and $300 \pm : 15^{\circ}$ AC, with magnitudes 9, 12, and 18. 1 did not see the third star. Not in S.D.

H 668.
 D.M.(-0')608.
 8.5 . . . 10.5

 R.A. =
$$3^h 44^m 44^s$$
 \ Decl. = $-0^s 32'$ \
 21'67

 1901.703
 299'0
 21'67

 .758
 298.1
 21.23

 1901.73
 298.5
 21.50

Only H, $315^{\circ} \pm : 18^{*} \pm : 8 \dots 12$.

H 3601. Cord.D.M.(23°)1600, 7.2 . . . 9.5
R.A. =
$$3^{\ln}46^{\ln}31^{\circ}$$
 \ Decl. = $-23^{\circ}18^{\circ}$ \\
1901.760 \quad 300°4 \quad 10.62 \\
\frac{.796}{1901.78} \quad \frac{299.6}{300.0} \quad \frac{10.54}{10.58}

H found $303^{\circ}5:15''\pm:8\frac{1}{2}\dots10$. No. 33 of the Lowell Catalogue could not be found by Cogshall. It is evidently identical with H 3601, See having an error of 1° in his Decl. His measures were $299^{\circ}2:10.73:7\dots10.8$ (1897.72).

$$\begin{array}{ccc} \Sigma \ 462. & 5.6 \dots 10 \\ \text{R.A.} & = 3^{\text{h}} 46^{\text{m}} 42^{\text{s}} & \text{becl.} \\ \text{Decl.} & = +52^{\circ} & 1' & \text{becl.} \\ 1901.720 & 317^{\circ}7 & 8720 \\ \hline .742 & 320.7 & 8.03 \\ \hline 1901.73 & 319.2 & 8.11 \\ \end{array}$$

No recent measures, but unchanged. Not in D.M., but near D.M. $(51^{\circ})804$.

The principal star has a proper motion of 0°155 in 147°6, which also belongs to the 9.5 companion.

There is a 12.5m star nearer than this in 279.

$$\begin{array}{ccc} \textbf{O}\pmb{\Sigma} \ (App) \ \textbf{41.} & 7 \dots 8.5 \\ \textbf{R.A.} & = 3^{\text{h}} 48^{\text{m}} & 6^{\circ} \\ \textbf{Decl.} & = + & 4^{\circ} & 49^{\circ} \end{array} \right\} \\ \textbf{1900.684} & 357^{\circ}0 & 58772 \\ \textbf{.687} & 357.3 & 59.37 \end{array}$$

The only measures are by 1 in 1875. There is no change.

H 3608.
$$\gamma$$
 Eridani. $3\frac{1}{2}$... 13.2
R.A. = $3^{h} 52^{m} 24^{s}$ \\
Decl. = $-13^{c} 51^{c}$ \\
1900.706 \quad 241.7 \quad 52.80
\[\frac{.742}{1900.72} \quad \frac{241.5}{241.6} \quad \frac{52.80}{52.74}

The only other complete measures are my own, $238^{\circ}4:51'93$ (1877.88) 2n. The change in angle is due to the proper motion of A, 0'114 in $158^{\circ}3$.

₩ N. 93

$$\begin{array}{ll} \text{R.A.} & = 3^{\text{h}} \, 57^{\text{m}} \pm \\ \text{Decl.} & = +23^{\circ} \quad 6' \pm \end{array} \right\}$$

No measures in \mathbb{N} ; given as Class II; "place extremely precarious." The place agrees with D.M. $(22^{\circ})626$, but that is not double, and has no faint star near it. The pair in question is probably identical with Σ 479.

H 2220. D.M.
$$(56^{\circ})885$$
. 8 . . . 11.5
R.A. = $3^{\circ}59^{\circ}49^{\circ}$ \ Decl. = $+56^{\circ}-7^{\circ}$ \ \ 1900.744 \quad 296\cdot 6 \quad 25\cdot 63 \quad \quad 296\cdot 5 \quad 25\cdot 97 \quad \quad \quad 1900.75 \quad \quad 296\cdot 5 \quad \quad 25\cdot 80

H gives $296^{\circ}4:14''\pm:9...14$ (1830).

In Σ Classes I and VI. No other measures.

Hd 66. S.D.(16°)783. 9.6 . . . 9.6
R.A. =
$$4^{\text{h}} \cdot 1^{\text{m}} \cdot 32^{\text{s}}$$
 $\left. \begin{array}{c} \text{R.A.} = 4^{\text{h}} \cdot 1^{\text{m}} \cdot 32^{\text{s}} \\ \text{Decl.} = -16^{\circ} \cdot 10^{\circ} \end{array} \right.$
1901.760 83°8 17.73
 $\begin{array}{c} .796 \\ .796 \\ \hline 1901.78 \\ \hline \end{array}$ 83.1 17.75
 $\begin{array}{c} 17.75 \\ .74 \\ \hline \end{array}$

Given in the Harvard Annals with rough place, and 261°7: 18552: 9.3 . . . 9.5 (1868.48) 3n. There is a 15m star nearer A, 263°4: 5568 (1901.79) 1n.

$$\begin{array}{c|cccc} O\Sigma \ 73. & \mu \ Persei \\ R.A. & = 4^{h} & 6^{m} & 5^{s} \\ Deel. & = +48^{s} & 6' \end{array}$$

$$\begin{array}{c|ccccc} A \ and \ B \\ \hline 1901.720 & 349^{2}8 & 14^{5}2 \\ .722 & 348.5 & 14.24 \\ \hline 1901.72 & 349.1 & 14.38 \\ A \ and \ C \ (= H \ VI \ 20 = Sh \ 364) \\ \hline 1901.720 & 231^{2}9 & 84^{5}02 \\ .722 & 231.6 & 84.30 \\ \hline .720 & 231.7 & 84.16 \\ \hline \end{array}$$

No change in B. For AC Sh found 231%7:91%56 (1822.85) 2n. There is a 12.8m star nearer than C, 121%2:50%36 (1901.72) 1n.

H gives $210^{\circ} \pm : 187 \pm : 7 \dots 10$. I found many years ago that there was an error in H's magnitude of A. This is given as 9.2 in D.M.

Given as Class IV in \mathbb{Z} . The only other measures are by Espin, 31658; 18550 (1892.96) 2n.

$$\begin{array}{c|cccc} \mathbf{O\Sigma} \ (App) \ \mathbf{49}, & 7.5 \dots 7.5 \\ & \text{R.A.} & = 4^{\text{h}} 12^{\text{m}} 41^{\text{s}} \\ & \text{Decl.} & = + & 1 & 29^{\text{s}} \end{array} \right\} \\ 1901.742 & 1.44^{\circ} 6 & 102.780 \\ & .758 & 144.8 & 102.79 \\ & & & & & \\ \hline 1901.75 & 144.7 & 102.79 \end{array}$$

Fixed; J gives 144°9: 102′94 (1875.33) 3n. No other measures. These stars are Lalande 8090 and 8093.

$$\begin{array}{ccc} \Sigma \ 537, & 8.5 \dots 9.7 \\ \text{R.A.} & = 4^{\ln} 16^{m} \ 21^{s} \\ \text{Decl.} & = -10^{\circ} \ 14^{s} \end{array} \right\} \\ 1900.706 & 341^{\circ} 5 & 16^{\circ} 36 \\ \underline{.742} & 341.6 & 16.49 \\ \underline{.7900.72} & 341.5 & 16.42 \end{array}$$

Distance and angle slowly increasing.

1832.39	$334^{\circ}0$	14799	4n	Σ
1867.10	336.9	15.28	3n	L
1891.86	340.4	15.98	1n	β

	β 402	
R.A. Đeel.	$= \frac{4^{\text{h}} 17^{\text{m}} 3^{\text{s}}}{= -1 33} $	
1901.760	75°3	7753
.796	73.7	7.52
1901.78	74.5	7.52

This was put on the list in order to observe a third faint star noted by Cogshall at 110:778, referred to in my General Catalogue. I found a 14m star 111°1:29°0. Since then I have learned from him that there was an error in transcribing the distance, which was really 29°, as I found it.

Σ 530), D.M.(53°)769)
R.A. Decl.	$= 4^{h} 17^{m} 5^{s} = +53 13' $	
	A and B	
1901,720	200%5	14/12
.722	200.7	14.19
.742	199.2	11.06
$\frac{-}{1901.73}$	200.1	11.12
	A and C	
1901.742	279%6	36781
.758	280.3	36.83
1901.75	279.9	36.82

C and D	(new). 11.8	. 12.0
1901.742	$43^{\circ}2$	1439
.758	41.4	1.55
$\frac{1901.75}{}$	$\overline{43.8}$	$\frac{-}{1.47}$

No other measures of C, but it was noted by H in his Fifth Catalogue. This star I found to be a rather difficult pair. The only measures of AB since Σ are by Ma and \square . There is no change.

H gave $238^{\circ}2:19^{\circ}53$ (1783.13) 1*n*. No other measures since, except my own in 1877, which show no change as compared with the above.

This is the faint pair between κ^1 and κ^2 Tauri. The only other measures are by \beth , $327^{\circ}2:4.94$ (1874.11) 4n.

$$\begin{array}{ccc} \Sigma \ 547, & 8.5 \dots 10.4 \\ \text{R.A.} & = 4^{\text{h}} 19^{\text{m}} 48^{\text{s}} \\ \text{Decl.} & = -1^{\text{o}} 40^{\text{o}} \end{array} \right) \\ 1901.758 & 43^{\circ} 9 & 2.04 \\ \hline \frac{.796}{1901.78} & \frac{44.5}{44.2} & \frac{1.98}{2.01} \end{array}$$

The change in angle is about 60° since 1831. A comparison of these measures with Σ 's gives 0.052 in the direction of 316.1 for the proper motion of A.

The change is due to proper motion, probably of the smaller star. This is given in the A.G. as 0.076 in 157.7.

$$1821.91$$
 $198^{\circ}9$ $110^{\circ}19$ $1n$ Sh
 1875.11 198.9 113.68 $2n$ J

This change in distance corresponds to the movement as given of B.

H 3653. O.Arg.S. 3129 and 3130.
$$\begin{bmatrix} 8.3 \dots 8.5 \\ \text{R.A.} &= 4^{h} 25^{m} & 7^{s} \\ \text{Decl.} &= -16^{\circ} & 43^{\circ} \end{bmatrix}$$

$$\begin{array}{cccc} 1900.742 & 156^{\circ} 3 & 42^{\circ} 58 \\ 1901.758 & 157.4 & 42.42 \\ \hline 1901.75 & 156.8 & 42.50 \\ \end{array}$$

The only other measures are $148^{\circ}5$; $40^{\circ} \pm (1835.9)$ H. The O.Arg. places give $155^{\circ}9:48'87~(1850\pm)$.

Hd Zones.
$$10.7 \dots 12$$

R.A. = $4^{\ln 26^{\ln 11^{\circ}}}$

Decl. = $+ 1^{\circ} 2^{\circ}$
 1900.742 235°8 1'93

 1901.796 239.2 2.42

 1901.77 237.5 2.17

Marked "elongated" in the Harvard Zones. No other observations.

Probably unchanged.

1875.13	$197^{\circ}4$	59.27	2n	1
1875.3	198.4	59.44		A.G.

The only observations are by H, $95^{\circ} \pm : 10^{\circ} \pm :$

	Σ 565	
R.A. Decl.	$= \frac{4^{h} 29^{m} 42^{s}}{= +41^{\circ} 53'} $	
1900.780	17413	1.63
.782	173.3	1.48
1900.78	173.8	1.55

-

Probably fixed. Measured in looking for the Weisse pair given below.

B 1043. 3 Camelopardali R.A. = $4^{h}30^{m}28^{s}$ Dect. = $\pm 52^{\circ} 50^{\circ}$ 1900.687 $299^{\circ}1$ 3:66 295.83.73 .780.782292.63.74 1901.796 291.3 3.55 297.2.8153.88 3.83.818295.21901.28295.73.73

Weisse IV. 647.
$$9...9.1$$
R.A. $= 4^{h} 31^{m} 42^{s}$
Decl. $= +42^{\circ} - 6^{r}$

1901.720 $= 110^{\circ} 3$ $= 2.44$
 $= -7.22$ $= 113.8$ $= 2.44$
 $= -7.22$ $= -7.20$ $= -7.20$ $= -7.20$

Weisse IV 643 is noted "duplex 3" in that catalogue. That star is not double, and the note doubtless belongs to the one given here, which is about 5's. No other measures.

H 346 B.A.C 1444, 6.1...11.0
R.A. =
$$4^{h}.33^{m}.49^{s}$$
 Decl. = $+28^{\circ}.23^{\circ}$ \text{ } 43.537
1901.742 54.5 43.27
1901.75 54.6 43.32

No other measures; only estimates by 11.

$$\Sigma 579, 8.6...9.7$$

$$R.A. = 4^{h} 34^{m} 32^{s}$$

$$Decl. = +22^{s} 30^{s}$$

$$1901.758 \qquad 34.7 \qquad 16.43$$

$$\frac{.799}{1901.78} \qquad \frac{34.7}{34.6} \qquad \frac{16.37}{16.37}$$

No recent measures. No material change.

Without change. I gives $212^{\circ}4:62'85$ (1875.35) 2n. Large star supposed to be a close pair from an occultation observed by Hough (A.J. 474). Conditions too unfavorable at the time of my measures to detect a very close pair.

No recent measures, but unchanged. Place here-tofore approximate; identified as above. The magnitude of A in D.M. is 9.2; Σ gives 8.3.

Hall, D.M.(1°)809, 9.1...9.1
R.A. =
$$4^{h}37^{m}53^{s}$$
 Decl. = $+151'$ $+15$

Identified as above. The only other measures are by Hall, 157%4:2%29 (1888.10) 3u.

$$\begin{array}{c} \text{D.M.}(21.)694, \quad 9.1 \dots 10.5 \\ \text{R.A.} = 4^{\text{h.}}38^{\text{m.}}51^{\text{s.}} \\ \text{Decl.} = +24^{\text{m.}}3^{\text{m.}} \end{array}$$

$$\begin{array}{c} 1901.758 & 114.77 & 5.444 \\ .799 & 113.8 & 5.37 \\ \hline 1901.78 & 114.2 & 5.40 \end{array}$$

This was measured in trying to find Σ 593 rej., which should be about $1^{m}f$ and $10^{\circ}n$. Σ gave Class IV and magnitudes 8.9...8.9. There is no such star in this place. The 8m star some distance sf has a very distant 11m star in 103°, but neither that nor the one measured is likely to be the Σ star.

H describes it as "extremely delicate and beautiful," and gives $310^{\circ} \pm : 2^{\circ} \pm .$ It is in the field with D.M.(34°)914.

The only other measure is by \mathbf{k} , 1°7:80'97 (1783.79) 1n.

$$\begin{array}{ccc} \mathbf{S} \ \mathbf{457.} & 8.3 \dots 8.3 \\ \text{R.A.} & = 4^{\text{h}} 46^{\text{m}} 59^{\text{s}} \\ \text{Decl.} & = -1^{\circ} 28^{\circ} \end{array}$$

$$\begin{array}{cccc} 1900.763 & 354^{\circ}5 & 41.03 \\ .780 & 354.5 & 41.01 \\ 1901.758 & 354.6 & 40.96 \\ \hline 1901.10 & 354.5 & 41.00 \end{array}$$

No other measures except S, $353^{\circ}7:41^{\circ}49(1824.42)$ 3n. These stars are D.M.(-1')744 and 743.

The only other measures are:

1835.9 139°3
$$16'' \pm 1n$$
 H
1880.4 141.0 22°29 $3n$ β

The only other measures are $275^{\circ}6$; $20^{\circ}67$ (1880.63) $2n \beta$.

"Duplex" in Weisse. The only other measures are in Leipsic A.G., p. 207, 82°2; 4.59 (1893.79) 1n.

No other measures. H gives 55%6 for AB. The closer star is new.

OΣ 94 rej. O.Arg.N. 5495. 7.5 . . . 11 . . . 11.3
R.A. =
$$4^{h}58^{m}$$
 7^s }
Decl. = $+50^{\circ}$ 8' }
A and B
1900.744 304°3 17′90
.763 301.0 18.17
1900.75 304.1 18.03

	A and C	
1900.744	63%7	25/14
. 763	62.6	24.95
$\frac{1900.75}{1900.75}$	63.1	$\frac{-}{25.04}$

There is a 14m star from A, 340°9: 26'1.

C not in Σ ; first noted by H; not measured before. No recent measures of AB, but without change.

\$ 466 (=H VI. 105). 105 Tauri

R.A. =
$$5^{\text{h}} \cdot 0^{\text{m}} \cdot 45^{\text{s}}$$
 \\
\text{Decl.} = $+21 \cdot 33^{\circ}$ \\

1900.725 \quad \frac{250.8}{250.3} \quad \frac{111.45}{111.29} \\
\frac{.763}{1900.74} \quad \frac{250.5}{250.5} \quad \frac{111.37}{111.37}

Both stars have meridian positions. No measures except S.

1825.01	25170	109#99	2n S
$1825 \pm$	251.2	116.33	Weisse
$1875\pm$	250.7	110.44	A.G. Berlin

The proper motion of A is very small, 0.025 in 276.8.

Edgeomb. 103
$$Tauri$$
. 6 . . . 13
R.A. = 5^{h} 0 m 48^{s} $\left(\begin{array}{c} \text{R.A.} = 5^{\text{h}}$ 0 m 48^{s} $\left(\begin{array}{c} \text{Decl.} = +24 - 6^{\text{s}} \end{array}\right)$
 Λ and B
1900.725 117°0 13.702
.763 152.3 13.57
1900.74 119.6 13.30
 Λ and C (= H V. 144)
1900.725 198°0 35°52
.763 197.4 35.50
1900.74 197.7 35.51

The faint star B was detected by Edgcomb in 1878. The only measures are $147^{\circ}9:12^{\circ}94$ (1878.98) $1n \beta$; and for the other, $197^{\circ}6:30^{\circ}05$ (1783.80) 1n by **H**.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{642} \ rej. & 66 \ Eridani. & 6 \dots 9.7 \\ & \text{R.A.} & = 5^{\text{h}} \ 0^{\text{m}} \ 48^{\text{s}} \) \\ & \text{Decl.} & = -4^{\text{h}} \ 49^{\text{h}} \ (& & \\ & 1900.763 & 9^{\text{h}} 3 & 52^{\text{s}} 85 \\ & .780 & 10.0 & 52.77 \\ \hline & 1900.77 & 9.6 & 52.81 \end{array}$$

The only other measures are my own, $9^{\circ}4:52'50$ (1879.95) 2n.

No measures since South, 162%6:27%18 (1825.00) 2n. The A.G. positions give 164%4:26%8.

051 F1#

	ΟΣ 517	
R.A Dec	$egin{array}{lll} . &= 5^{ ext{h}} & 7^{ ext{m}} & 18^{ ext{s}} \ 1. &= + & 1^{\circ} & 49^{\circ} \end{array} brace$	
	A and B	
1900.780	30819	0:19
AB	and C (C = 12.2)	
1900.780	137°3	6:88
1901.815	139.2	6.72
1901.30	138.2	${6.80}$

The faint star discovered by Hall. Unchanged.

OS 102
R.A. =
$$5^{\text{h}} 7^{\text{m}} 18^{\text{s}}$$
 (Decl. = $+ 0^{\circ} 25'$)

Certainly round, with all powers, with good conditions 1900.78. It has not been seen ofherwise in the last thirty years. It is probably not a double

W² **V. 199** = D.M.(31)913
R.A. =
$$5^{\text{h}} \cdot 9^{\text{m}} \cdot 31^{\text{s}} \cdot \ell$$

Deel. = $+31^{\circ} \cdot 8^{\circ} \cdot \ell$

Noted as "duplex" in Weisse. It is not a double star of any kind (1901.79). There is a 4-pair of 12m stars in the field.

The nearest star has not been seen before. C was added by me with the $18\frac{1}{2}$ -in. The measures now show that this star is not moving with A; the only measures are $197^{\circ}6:40'.47$ (1879.28) $2n^{\circ}\beta$. The change is due to the proper motion of A, as is that in the old companion D. The large star has a proper motion of 0'.838 in $141^{\circ}9$. A comparison of my measures with those of Σ in 1836 gives 0'.856 in $140^{\circ}6$.

$$\begin{array}{cccc} \mbox{\rlap/μ V. 88.} & \mbox{D.M.}(39^{\circ})1250. & 9 \dots 10 \\ & \mbox{R.A.} & = 5^{\, h} \, 10^{\, m} \, 46^{\, s} \, \\ & \mbox{Decl.} & = +40^{\, m} \, 0^{\, s} \, \\ \mbox{1900.782} & 217^{\, \circ} 8 & 32^{\, \circ} 43 \\ \mbox{1901.586} & 217.3 & 32.46 \\ \mbox{1901.18} & 217.5 & 32.44 \end{array}$$

Near λ Aurigae. No measures since \mathbb{H} , 215°9: 35'25 (1783.49) 1n. There are two faint stars between.

Noted in Weisse "duplex 3"." No other measures.

The only measures are mine of 1879, which show no change.

Aitken 53. S.D.(3°)1061. 8.3...11.2

R.A. =
$$5^{h}13^{m} 6^{s}$$
Decl. = $-3^{s}12^{s}$

1900.742 48°3 5.13

.763 47.2 5.13

1901.873 46.9 4.96

1901.12 47.5 5.07

This star has a large proper motion, 0:690 in 77:5, and the companion is moving with it.

There is no error in reducing the last distance, but it seems unlikely that the faint star should have any such motion. The proper motion of A is very small, 0.017 in 339°4.

Madler.
 S.D.(7)1050.

$$9.2...9.2$$

 R.A.
 = 5^{+} 15^{m} 32^{s} 0.5^{+}

 Decl.
 = $7 - 0.7$

 1901.760
 159.3
 3509

 .796
 159.5
 3.13

 1901.78
 159.4
 3.11

The only other measures since Ma in 1843 are mine of 1877. There appears to be no change.

$$\begin{array}{ccc} \text{ \# V. 68.} & \text{L } 10165. & 7.7 \dots 8.5 \\ \text{R.A.} & = 5^{\text{h}} 19^{\text{m}} & 0^{\text{s}} \\ \text{Decl.} & = - & 2^{\text{s}} & 57^{\text{s}} \\ 1901.854 & 281^{\text{s}} 8 & 135^{\text{c}} 61 \\ .873 & 281.8 & 136.31 \\ \hline 1901.86 & 281.8 & 135.96 \\ \end{array}$$

Except an angle in Cin^6 , the only measures are: $1783.76 277^\circ9 120^\circ18 1n H$

South made the distance 87.6 in 1825. The only other measures since are Engelhardt in 1891. The change seems to correspond to the proper motion of A, 0.171 in 1800.

No measures since 1, but without change. It was observed more particularly, to identify the star, and get the correct place.

17000

58:95

2n

35.26

No measures since South:

1825.12

1901.79

H 701. D.M.(31°)992. 7.2 . . 10.9
R.A. =
$$5^{h}22^{m}50^{s}$$
 /
Decl. = $+31^{\circ}25^{\circ}$ /
1901.796 137°3 35'40
.799 136.8 35.13

H has no estimates of angle and distance; "large star very red," and magnitudes 9...15. It is 7.1m in D.M. Other distant companious; only reddish. This is in his place.

137.0

Webb. S.D.(4°)1146 and 1145

R.A. =
$$5^{h} 23^{m} 5^{s}$$
Decl. = $-4^{\circ} 47^{\circ}$

1901.796 228°2 46°94

.815 229.0 46.81

1901.80 228.6 46.87

A is variable, discovered by Webb in 1874. The only other measures are $227^{\circ}4:46^{\circ}70$ (1879.14) 2n β .

The only measures are by \mathbf{H} in 1783, $105^{\circ} \pm :44!25$.

Hd 69. S.D.(22) 1125. 9 . . . 12.2
R.A. =
$$5^{h} 23^{m} 57^{s} \frac{t}{2}$$

Decl. = $-22^{\circ} 43^{\circ} \frac{t}{2}$
1901. S15 41°6 12.756
 $\frac{2.145}{1901.98}$ $\frac{42.9}{43.7}$ $\frac{12.90}{12.73}$

No measures at Harvard. Identified, and corrected place given here. Hd 71, which is given as $2^{m}f$ and 2's, is the same pair measured above.

Sh 61. D.M.(2°)986. 8.1 . . . 8.5
R.A. =
$$5^{h} 25^{m} 25^{s}$$
 (Decl. = $+ 2^{s} 44^{s}$)
1901.815 352°.5 66°.90
.838 353.1 67.27
1901.82 352.8 67.08

The only other measures since 1822 are mine in 1879. There is no change. The A.G. positions give 352°4:68′09 (1881).

Engelmann. S.D.(6°)1212 and 1211. 8.6 . . . 8.9 R.A. = 5^h 26^m 28^s / Decl. = - 6° 29' / 1901.838 251°3 44′87

The only measures are by Engelmann, $251^{\circ}4$: 44'58 (1863.10) 5n.

The change is due to proper motion.

1831.15 355°2 30590 2n Σ

These measures give for the proper motion of A, assuming the companion to be fixed, 0:151 in the direction of 162°4.

H V. 118. D.M. (-1°) 949. 7.1...10.7

$$\begin{array}{ccc} \text{R.A.} &= 5^{\text{h}} \, 27^{\text{m}} \, 58^{\text{s}} \, \\ \text{Decl.} &= -1^{\circ} \, 7^{\circ} \, \end{array}$$

$$\begin{array}{ccc} 1901.796 & 263^{\circ} 6 & 27^{\circ} 58 \\ .815 & 263.5 & 27.50 \\ \hline 1901.80 & 263.5 & 27.54 \end{array}$$

has only the angle 256°9 in 1783, and there are no other measures since.

\$ 490.
$$8.2...8.7$$

R.A. = $5^{h} 29^{m} 38^{s}$ \text{Decl.} = $-5^{\circ} 30'$ \text{1900.763} 214.6 78.05

\[\frac{780}{1900.77} \frac{214.5}{214.5} \frac{78.12}{78.12}

The only measures are by South:

$$1825.21 214^{\circ}5 77'68 2n$$

Marked "duplex" in Weisse. It is given by Schjellerup in his list of doubles, and estimated 140° : 15° : $8.5\dots9.5$. These two stars are S.D.(13°)1192 and 1193, the latter being 1° . 5° and 0° 2n of the other. There would seem to be no question of considerable change. The meridian positions of A do not indicate any certain proper motion. The movement is probably in the small star.

H 3277. D.M.(17) 972. 8.8...13

R.A. =
$$5^{\text{h}} 32^{\text{m}} 23^{\text{s}}$$
 \ Decl. = $+17^{\circ} 41^{\circ}$ \
1900.744 69°1 23°20

\[\frac{.763}{1900.75} \frac{70.5}{69.8} \frac{22.95}{23.07} \]

I could not see the companion with the 6-in, in 1876. H gave $73^{\circ}5:20\pm(1831)$. It is near Σ 759.

$\mathbf{W}^2 \mathbf{V}$. 1005. 9	. 9
R.A. Decl.	$= 5^{h} 34^{m} 3^{s} i$ = $+40^{\circ} 49^{\circ} i$	
1901.758	18°4	20.199
.799	17.5	20.97
1901.78	$\overline{17.9}$	$\frac{-}{20.98}$

"Duplex" in Weisse. No other measures. The components are D.M. $(40^{\circ})1383$ and 1384.

$$\begin{array}{cccc} \Sigma \ 771, & D.M.(19)\ 1026, & 9.0 \dots 9.2 \\ & R.A. & = 5^{+}31^{m}\ 42^{s}\ \ell \\ & Dect. & = +\ 19^{\circ}\ 29^{\circ}\ \ell \\ \end{array}$$

$$\begin{array}{ccccc} 1901.838 & 55^{\circ}2 & 24^{\circ}29 \\ .876 & 55.3 & 21.00 \\ \hline & & & & \\ 1901.85 & & & & \\ \hline \end{array}$$

The motion is rectilinear. It was put on the list more particularly for identification. In looking for this, a similar pair 7/n and 4/f was measured:

1901.85 312°5 29°25 8.9 . . . 10.4
$$2n$$

This is D.M.(19°)1027.

 \mathbf{H} found $137.6: 22^{2}43 (1783.50) 1n$. The proper motion is small, $0^{\circ}027$ in 244.0.

Measured in looking for H 5465, which should be about $1^m f$.

Measured in looking for H 5465.

No other measures except $8,88^{\circ}9;59^{\circ}46 (1825.06)3n$.

H 5465

R.A. =
$$5^{\text{h}} 42^{\text{m}} \cdot 5^{\text{s}} i$$

Deel. = $+ 41^{\circ} \cdot 57^{\circ} i$

The description in H is $45^{\circ} \pm : 12^{\circ} \pm : 7 \dots (1823) :$ "An excessively minute companion suspected." I looked for it with the 6-in., 1873–74, and with the 18½-in., 1878, without success; and there is no companion visible in the 40-in. on two nights, 1900–1. The place in H is that of the 7.5m star, D.M.(11–)945.

No measures since $\mathfrak I,$ who suspected a 10 companion. There is nothing nearer than the $\mathfrak D$ star. Unchanged.

Taken by mistake for 59 Orionis. There are no other measures.

Anderson. L 11231.
$$7.8...10.4$$
R.A. = $5^{\text{h}}49^{\text{m}}18^{\text{s}}\frac{t}{t}$
Decl. = $-19^{\text{h}}44^{\text{h}}\frac{t}{t}$

1900.780 20%5 9%26
1901.873 20.0 9.02
1901.32 20.2 9.11

Given in Hall's observations as discovered by Geo, Anderson with the 26-inch. The place is in error by about 2^m R.A. and 16 Decl. The only measures are:

H 5466. D.M.(
$$-1$$
)1075.
R.A. = $5^{\text{h}} 51^{\text{m}} 38^{\text{s}} \frac{1}{1}$
Decl. = $-1 - 50^{\circ} \frac{1}{1}$

Given in H as 8m, with the note; "seen double, but not verified by magnifying." The place is that of the 9.2m star given here. The 40-in, shows a 14m companion, 110°7, 16°1 (1901.79).

The proper motion is very small, 0:015 in 136°3. The only measures are:

$$1783.02 205^{\circ} \pm 37'25 1n 4 1878.18 205.8 36.57 1n \beta$$

 \exists could not see the smaller star. Ξ found 217°7: 4°56 (1832.69) 2n and 238°4: 16°50 for AB, which indicate some change.

$\begin{array}{c} \Sigma \ 861 \\ \text{R.A.} = 6^{\text{h}} \ 3^{\text{m}} \ 36^{\text{s}} \\ \text{Decl.} = + \ 30^{\circ} \ 42^{\circ} \end{array}$

A and B

1900.780	17°3	64'92
1901.720	17.1	65.79
.722	16.7	65.60
1901.41	$\overline{17.0}$	$\overline{65.47}$
	B and C	
1900.780	138°4	1.65
1901.720	138.1	1.58
1901-25	138 9	1 61

No change in BC, but the distance of A is slowly decreasing. Scabroke thought the principal star was a 0.5 pair. It appears now perfectly round.

No measures in the last century.

The small star appears to be D.M.(19°)1252. The proper motion of A is small, 0°020 in 95°8.

H 2302, 71 Orionis

$$\begin{array}{ccc} \text{R.A.} &= 6^{\text{h}} & 7^{\text{m}} & 46^{\text{s}} \\ \text{Decl.} &= +19 & 12^{\text{s}} \end{array} \\ \\ 1900.744 & 203^{\circ} & 1 & 29^{\circ} 20 \\ \underline{.780} & 202.4 & 29.38 \\ \hline \underline{.7900.76} & 202.7 & 29.29 \end{array}$$

H estimated the positions. The only measures are by Engelhardt, 202°4:31°98(1886.21)2n. The change is due to the proper motion of A, 0°203 in 213°3.

H 2315. 11.7 . . . 11.7

Given by H, $3^{\circ}0:1\pm:13=13$ (1830), but the distance may be underestimated. It is S.D.(7)1384 given as 10m. In looking for this, a very close pair was found about $1^{m}p$ and $2^{\circ}n$. This is the 8m star, L 12112.

Decl. = +12 - 17' \(\int \)

	·	
	A and B	
1901.815 .838	15378 15476	$73/85 \\ 74.11$
1901.82	151.2	$\overline{73.98}$
	A and C	
1901.815 .838	$\frac{169\%1}{169.2}$	$167/99 \\ 168.32$
1901_82	169. F	$\frac{-}{168.15}$

No measures since South in 1825.12; 162°9: 91′99 and 170°7: 187′91. This change is explained by the proper motion of A of 0′289 in 194°7. B is a red star.

OΣ 154. L 12831. 6.4 . . . 8.5
R.A. =
$$6^{\text{h} \cdot 35^{\text{m}} \cdot 52^{\text{s}} \cdot \ell}$$

Decl. = $+40^{\circ} \cdot 45^{\circ} \cdot \ell$
1900.782 123°6 26.15
1901.720 123.3 26.15
1901.25 123.4 26.11

Rectilinear motion.

$$\epsilon$$
 Geminorum. $\mbox{\ \ \#\ V1, 73 = S 533.} \quad B = 9.5$
 $R.A. = 6^{h}.36^{m}.33^{s}.)$
 $Decl. = +25^{o}.15^{o}...$
 $1900.782 \qquad 94^{o}.1 \qquad 110^{o}.41$
 $1901.818 \qquad 93.9 \qquad 110.49$
 $1901.30 \qquad 94.0 \qquad 110.45$

No measures since South, 93.7:111758 (1825.01) 2u. The proper motion is very small, 0.025 in 258.4, which should give an increasing distance.

The only measures are from the introduction to Mens. Mic., 191°5; 11°5 (1832.2) Σ .

In Messier 50. H gave the angles $170^{\circ}4$ and $0^{\circ}5$ (1820).

At this time there were no published measures in the last fifty years. Madler's distance in 1843 is 9509. Hussey's measures in 1899 agree with mine.

	Σ 1033	
R.A. Decl	$ = 7^{h} \cdot 5^{m} \cdot 19^{s} $ $ = +52^{\circ} \cdot 45^{\circ} $	}
	A and B	
1901,799 .835	$\frac{281?8}{274.4}$	$\frac{1164}{1.82}$
$\overline{1901.82}$	278.1	$\overline{1.73}$
	A and C	
1901.799	271°9	80702
.835	271.1	79.29
$\overline{1901.82}$	$\frac{1}{271.6}$	79,65
is not in Σ. No	change in A	В.
1783.06 266	F3 67777	1n H
1880.53 - 271		
R.A.	$.68 \ rej. 1.13$ $= 7^{h} 5^{m} 39^{s}$ $= +21^{+} 33^{-}$	}
	A and B	
1900.782	66°3	21:20
1901.167	67.2	23.78
$\overline{1900.97}$	66.7	23,99

 \mathbf{C}

	A and C	
1900.782	114°3	51:97
1901.167	114.3	51.70
1900.97	114.3	51.83

At this time no published measures since 1868. From his measures, compared with those of \beth , Hussey finds for the proper motion of A, 0.017 in 126°6.

In Weisse "duplex 2"." No other measures. The magnitude in D.M. is 7.5.

H 2372. D.M.
$$(20^{\circ})1768$$
. $8.1 \dots 12.5$
R.A. = $7^{\circ}12^{\circ}43^{\circ}$ \ Decl. = $+20^{\circ}41^{\circ}$ \ 1901.818 2°3 22.745
.876 3.3 22.34
1901.84 2.8 22.39

No other measures.

The only other measures are:

These stars are D.M.(31⁺)1540, 1541, and 1543. There are faint stars between AB and AC.

$$\begin{array}{c|ccccc} \text{D.M.}(20^\circ)1775, & 6 \dots 13 \\ & \text{R.A.} &= 7^{\ln} 14^{\ln} 52^{s} \\ & \text{Decl.} &= + 20^{\circ} 40^{\circ} \end{array} \\ & & \text{A and B} \\ 1900.782 & 205^{\circ} 1 & 17.62 \\ & 1901.818 & 205.1 & 17.89 \\ & & & 1901.08 & 205.1 & 17.75 \\ & & & \text{B and C} \\ 1900.782 & 245^{\circ} 2 & 7.73 \end{array}$$

Taken at first for H 1775. The principal star has a proper motion of 0.075 in 263.9.

No material change in the bright stars. The only prior measure of B is by Espin in 1892. C is distinctly greenish.

V. 63 = Sh 368. 63 Geminorum

$egin{array}{ll} { m R.A.} &= 7^{ m h}20^{ m m}37^{ m s} \ { m Decl.} &= +21^{\circ}42^{\circ} \end{array} angle$				
1900.782	$323^{\circ}2$	42:77		
1901.203	323.0	42.91		
1900.99	$\frac{-}{323.1}$	$\frac{-}{42.84}$		

The large star has a proper motion of 0.122 in 214°1 (Berlin A.G.). $\mbox{\colorebox{\$

 $324^{\circ}3$

1863.2

γ Canis	Minoris	13.0
R.A.	= 7 ^h 21 ^m 38 ^s)	
Decl.	$= 7^{h} 21^{m} 38^{s} \ ($ $= + 9 10^{\circ} \)$	
01.203	$240^{\circ}2$	31/28

44.61

Radcliffe

 1901.203
 240°2
 31′28

 .873
 241.5
 31.47

 .878
 243.6
 31.22

 1901.65
 241.8
 31.32

The only measures are:

1836.19	$247^{\circ}3$	34/62	1n	Lamont
1878.06	243.2	32,60	1n	β

The large star has a proper motion of 0'093 in 286°9, and the change shown by the measures corresponds to this movement.

$$\begin{array}{c} \textbf{S 550.} \quad 6.8 \dots 7.1 \\ \text{R.A.} \quad = 7^{\text{h}} \, 22^{\text{m}} \, 15^{\text{s}} \, \left\{ \\ \text{Decl.} \quad = -18^{\circ} \, 15^{\circ} \, \right\} \\ \\ 1901.167 \quad \quad 115^{\circ} 8 \quad \quad 39^{\circ} 54 \\ \underline{,206} \quad \quad 116.1 \quad \quad 39^{\circ} .55 \\ \hline 1901.18 \quad \quad 115.9 \quad \quad 39^{\circ} .54 \\ \end{array}$$

The only other measures are by S, $116^{\circ}2:40^{\circ}04$ (1825.03) 2n. These stars are L 15459 and 15460, the positions giving 112.9:38765 (1800).

The only measures since Σ are by Ma and J. No motion.

Σ 1104. L 14619 R.A. = $7^{\text{h}} 23^{\text{m}} 55^{\text{s}}$ Decl. = $-14^{\circ} 44'$ A and B 1900.78033013 2.40 1901.873333.5 2.301901.132 2.35331.9A and C. C=11.7 1900.780187% 20713 1901.203186.020.631900.99 186.820.53A and D. D. 11.6 1900,780 518 37.588 1901,2035.7 38.291900.995.7 38,08

The distant stars not in Σ . A has a proper motion of 0.312 in 216.1. The change in C and D from the measures of Engelmann in 1882 is due to this motion of Λ .

H gives $36^{\circ}3:8'\pm(1837.10)$, and calls the companion "remarkable brick red." It is decidedly reddish. This pair is catalogued as new by See (= λ 81).

Without change. The companion is S.D.(12) 2017. (See next pair.)

In the field with Σ H15; the wide stars noted by Dembowski. The large telescope shows a nearer component. The only measures of AC are:

S 555. L 14888.
$$7.5...7.7$$

R.A. = $7^{8}31^{m}10^{8}$ (
Decl. = $-14^{-}10^{7}$ (
1901.206 | 22823 | 95.774
1902.219 | 228.4 | 95.77
1901.71 | 228.3 | 95.75

Nothing else since South:

 $1825.00 \quad 227^{\circ}7 \quad 91'37 \quad 2n \quad S$

H 765. L 14890. 8.6 . . . 11 . . . 11

R.A. =
$$7^{h} 32^{m} 30^{s} \langle \text{Decl.} = + 27^{s} 0^{s} \rangle$$

A and B

1901.720 212°8 23.55

.818 212.3 23.59

1901.77 212.5 23.55

A and C

1901.720 296°7 40.584
.818 296.3 40.55

.818 296.5 40.69

No other measures. Distances estimated 15" and 18" by H. A has a proper motion of 0.163 in 181.9.

H 2405. 24 Lyneis R.A. = 7^h 32^m 51^s } Decl. = +58^s 59^s } 1901.799 319^s 2 54*50 .854 319.8 51.86 1901.82 319.5 51.68

No other measures, H, $319^{\circ}4:60^{\circ}\pm$. The proper motion is small, 0.077 in $217^{\circ}7$.

$$Procyon$$
R.A. = $7^{\text{h}}33^{\text{m}} - 1^{\text{s}}$ /
Decl. = $+ -5^{\text{m}} - 33^{\text{m}}$ /
A and C
 $1897.884 = -341^{\circ}2 = -5740$

S 560.
$$6.5 \dots 8.6$$

 R.A. = $7^h 41^m 0^s$ \ Decl. = $+29^+ 4^r$ \

 1901.720
 $358^\circ 7$
 8950

 .818
 358.9
 89.68

 1901.77
 358.8
 89.59

Without change. The only measures since S are: $1873.21 - 358^{\circ}7 - 89^{\circ}90 - 4\mu - o\Sigma$

says, "near 9 Argus; place very doubtful," and gives the place of 9 Argus. His estimate of the distance is 8" (1781). This star has a proper motion of 0.101 in 133.8.

OΣ 183 rej. 7.5 . . . 12
R.A. =
$$7^{h}47^{m}8^{s}$$
 / Decl. = $+16^{\circ}21^{\circ}$ / 1901.815 20.4 15.787
 $\frac{.818}{1901.81}$ $\frac{20.1}{20.2}$ $\frac{15.71}{15.79}$

Probably unchanged ; 19°8 ; 16°19 (1878.12) $3n~\beta$

Measured in looking for # 111.28.

$$\begin{array}{ccc} \text{D.M.}(50\text{ })1495, & 8.9 \dots 8.9 \\ & \text{R.A.} & = 7^{5} 49^{00} 22^{5} \left(\\ \text{Decl.} & = +50^{\circ} 35^{\circ} \right) \end{array}$$

$$\begin{array}{ccc} 1901.742 & 103^{\circ}6 & 3^{\circ}24 \\ .799 & 104.8 & 3.17 \\ \hline 1901.77 & 104.2 & 3.20 \end{array}$$

"Duplex" in Harvard A.G. The only measures are by Espin, $285^{\circ}2:3'11$ (1900.12) 2n.

$$\begin{array}{ccc} \text{D.M.}(-1.)1949, & 9.5 \dots 9.5 \\ \text{R.A.} & = 7^{\text{h}} 59^{\text{m}} 47^{\text{s}} ? \\ \text{Decl.} & = -1.25^{\text{c}} ? \end{cases}$$

$$\begin{array}{ccc} 1902.145 & 178^{\circ} 6 & 6^{\circ} 62 \\ \underline{.222} & 178.9 & 6.89 \\ \hline 1902.18 & 178.7 & 6.75 \end{array}$$

Described as "duplex or nebulous" in Nico. A.G. No nebulous appearance with the 40-inch.

W 2 VII. 1609

R.A. =
$$8^{1} + 0^{m} - 7^{s}$$

Decl. = $+31 - 54^{\circ}$ \(\)

Noted "duplex?" in Weisse. It is not double. There are two distant companions, but too remote to be of any interest (1901.72).

H 3308. D.M.(35)1767.
$$7...10.8$$
R.A. = $8^{h} \cdot 2^{m} \cdot 21^{s} / 10^{e}$
Decl. = $+35 \cdot 49^{e} / 10^{e}$
1901.722 263.3 45.81
.742 263.2 45.65
.758 263.4 45.75
1901.74 263.3 45.74

Only H, 23176; $40^{\circ}\pm (1831)$. The principal star has a proper motion of 0.328 in 138-1. In my first measure A was thought to be a close pair, but not verified.

H 2430. D.M.(53) 122. 8.9... 12... 12.5

R A. =
$$8^{h}$$
 3^{m} 49^{s} (
Decl. = $+53$ -43^{s} (

A and B

1901.712 311°2 20.44

.799 309.4 20.37

1901.77 310.3 20.40

B and C

1901.742 181°0 8.20

.799 180.2 8.55

1901.77 182.1 8.37

H gives $311^{\circ}5$; $15^{\circ}m$ and $177 \pm 3 \pm 3$ and mags. 8, 13, and 44. No other measures. The magnitude in D.M. is 9.2.

$O\Sigma$ 190 rej.

	A and C	
1901.742	$280^{\circ}4$	77:60
.854	280.5	77.70
1901.80	$\frac{-}{280.4}$	$\frac{-}{77.65}$

1783.14 325°0 35440 1*n* 1880.61 343.0 31.86 2*n*

The large star does not appear to have any sensible proper motion. Probably without change.

β

A.G.C. 3. ρ Hydrae. 5...12.5 R.A. = $8^{h} 42^{m} 5^{s} / 5^{s} / 5^{e}$ Decl. = $+6 17^{\circ} / 5^{\circ}$ 1901.873 116°5 12°05 1902.145 145.5 12.01 1902.01 146.0 12.04

Discovered by Alvan G. Clark with the McCormick 26-inch. Apparently without change.

 $1878.07 144^{\circ}9 12'40 3n \beta$

11 gives $99^{\circ}2:35\pm:6\ldots11$ (1836). His R.A. is 1^{m} in error.

$$\begin{array}{ccc} \textbf{S 585.} & 6 \dots 6.3 \\ \text{R.A.} &= 8^{\ln 49^{\ln} - 4^{\circ}} \left(\\ \text{Decl.} &= -17 - 45^{\circ} \right) \end{array}$$

$$\begin{array}{cccc} \textbf{1901.167} & \textbf{146.9} & \textbf{66.82} \\ \textbf{.203} & \textbf{146.9} & \textbf{66.81} \\ \hline \textbf{1901.18} & \textbf{146.9} & \textbf{66.83} \end{array}$$

S gives $323^{\circ}2:69'36$ (1825, 22) 3n. These stars are 4 17636 and 17638.

Schjellerup 11. 9.1 . . . 9.2

R.A. =
$$9^{h} 1^{m} 36^{s}$$
 \\
Decl. = $+ 0^{\circ} 16^{r}$ \\
1901.203 \quad 259\cdot 2 \quad 6'46 \\
1902.222 \quad 261.3 \quad 6.53

1901.72

First noted by Sehjellerup, and given with estimated position. The principal star is $D.M.(0^{\circ})2462$. There is no evidence of motion. The only other measures are:

260.2

6,50

 $1874.26 260^{\circ}9 6'21 2n 4$

H VI. 47. 3 Leonis. 6...10.5 R.A. = $9^{h}22^{m}$ 6° 1 Decl. = + 8° 43′ 5

1901.167	80°2	24'90
. 299	79.3	24.84
1901.23	79.7	24.87

No measures by **H**. The later positions do not show any material change. The only other measures are:

1852.19
 81°6
 25'71

$$2n$$
 Lassell

 1879.48
 79.2
 25.14
 $3n$
 β

$$\begin{array}{ccc} \text{R.A.} & = 9^{\text{h}} 23^{\text{m}} & 3^{\text{s}} \\ \text{Deel.} & = & -2^{\text{o}} & 15^{\text{f}} \end{array} \right\}$$

$$1901.206 & 3^{\circ} 7 & 65^{\circ} 29 \\ .299 & 3.3 & 65.31 \\ \hline 1901.25 & 3.5 & 65.30 \end{array}$$

The A.G. proper motion of A is 0.118 in 91°9, and B (L 18661) 0.180 in 90°. As they are moving at nearly the same rate, there is little change.

This pair was subsequently observed and eatalogued by Sir John Herschel as $\mbox{\tt H}$ 1167, but given with an error of 1° in the declination. There is no doubt of its identity with τ Hydrae.

1800	$1^{\circ}4$	66'12		${f Lalande}$
1821.23	3.2	66.68	1n	\mathbf{Sh}
1887.3	3.0	65.32		A.G.

S 604. L 18884, 7.1 . . . 8.7

$$\begin{array}{ccc} \text{R.A.} &=9^{\text{h}}\,29^{\text{m}}\,59^{\text{s}} \\ \text{Decl.} &=-19^{\text{o}} & 2^{\text{f}} \end{array}$$

$$\begin{array}{ccc} 1901.206 & 90^{\circ}5 & 51.44 \\ 1902.222 & 90.5 & 51.20 \\ \hline 1901.71 & 90.5 & 51.32 \end{array}$$

The only other measures are:

1825.17 90°5 51'84 2n S

$$\begin{array}{ccc} \text{R.A.} &= 10^{\text{h}} \, 35^{\text{m}} \, 53^{\text{s}} \\ \text{Decl.} &= -14^{\circ} \quad 5' \end{array} \right\}$$

$$\begin{array}{cccc} 1902.145 & 193^{\circ}9 & 59'60 \\ .219 & 193.3 & 59.55 \\ \hline 1902.18 & 193.6 & 59.57 \end{array}$$

The only other measure is:

$$\begin{array}{cccc} \text{R.A.} &= 10^{\,\text{h}}\,44^{\,\text{m}}\,17^{\,\text{s}} \\ \text{Decl.} &= -8^{\,\text{o}}\,16^{\,\prime} \end{array} \right\} \\ 1901.299 & 303^{\,\text{o}}\,9 & 27^{\,\prime}\,04 \\ \underline{.337} & 302.2 & 27.06 \\ \underline{1901.32} & 303.0 & 27.05 \end{array}$$

The only other measures are $303^{\circ}8:26'.95(1878.18)$ 1n β . H called the small star 17–18m.

The proper motion in the A.G. is 0'130 in 230'1 for each star. The components are L 20956 and 20957.

1800	179°7	34!11		Lalande
1824.22	177.8	35.22	2n	\mathbf{S}
1880.66	178.6	35.09	3n	Sehiap

H 4410, O.Arg.S.11162, 7.5...13

$$\begin{array}{c} \text{R.A.} &= 11^{\text{h}} \cdot 2^{\text{m}} \cdot 19^{\text{s}} \\ \text{Decl.} &= -15^{\circ} \cdot 19^{\circ} \end{array}$$

$$\begin{array}{c} 1901.206 & 222^{\circ}6 & 19.33 \\ .299 & 221.8 & 19.71 \\ \hline 1901.25 & 222.2 & 19.82 \end{array}$$

Only H, 205°3:15" (1836.4). He ealls it "difficult," so the apparent change in angle may not be real.

H 177. S.D.
$$(2^{\circ})3297$$
. 9.6 . . . 10.1
R.A. = 11^h 3^m 21^s)

$$\begin{array}{cccc} \text{Decl.} = & -2^{\circ} \ 46^{\circ} \ \end{array}$$

$$\begin{array}{cccc} 1901.206 & 128^{\circ} 1 & 4'.93 \\ .299 & 131.1 & 4.87 \\ \hline 1901.25 & 129.6 & 4.90 \end{array}$$

H gives $110^{\circ} \pm : 2^{\circ}$, and says, "hardly divided with the sweeping power."

No other measures. Described as Class I in Σ .

W2 XI, 621.

R.A. =
$$11^{h} 33^{m} 17^{s}$$
 Deel. = $+21^{\circ} 59^{\circ}$

This star (= D.M.(22)2387) is noted "duplex 3"" in Weisse. Examined on two nights in 1901, but not seen double or with any near companion. It is a curious fact that in the Berlin A.G. this star has the note, "Comp. 9.5 1 -2.7" It is about 1^m p 93 Leonis. I examined the star in question in May, 1874, with the 6-in. without seeing it double.

H 2955

R.A. =
$$11^{h} 59^{m} 16^{s}$$

Decl. = $+39^{\circ} 20'$

The description in H is $315^{\circ} \pm : 15^{\circ} \pm : 8 \dots 18$ (1830); "extremely faint." Examined on two nights, and no companion visible.

Σ 1601

$$\begin{array}{cccc} \text{R.A.} &=& 12^{\text{h}} & 0^{\text{m}} & 2^{\text{s}} \\ \text{Decl.} &=& +39^{\circ} & 30^{\circ} \end{array} \right\}$$

$$\begin{array}{ccccc} 1901.203 & 311^{\circ}6 & 2.45 \\ .318 & 311.7 & 2.31 \\ \hline 1901.26 & 311.6 & 2.38 \end{array}$$

Measured in looking for the preceding pair, H 2955.

H 203.
 W¹ XH. 91.
 6.8.... 12.7

 R.A. =
$$12^{h}$$
 8^m 6^s (Deel. = $\frac{12}{12}$ 5
 3° (

 1901.203
 351*9
 26*62

 .206
 351.3
 25.77

 .318
 350.7
 26.18

 1901.21
 351.3
 26.19

The only other measures are:

$$1878.24 \quad 351^{\circ}6 \quad 30''20 \quad 1n \quad \beta$$

The principal star has a proper motion of 0.184 in 319.5, which evidently does not belong to the small star.

The large star has a proper motion of 0.145 in 308°3. Comparing these positions with those of Hough in 1892, it is very probable that the small star has the same movement.

Albany A.G. D.M.(2) 2550, 8.5 . . . 8.8
R.A. =
$$12^{h} 25^{m} 5^{s} t$$

Decl. = $+ 2 46^{\circ} t$
1901.356 286°9 1.40
 $\frac{.375}{1901.36}$ $\frac{287.5}{287.2}$ $\frac{1.24}{1.32}$

Noted "duplex?" in the Albany Catalogue. This is a new pair; no other measures.

Pritchett.

R.A. =
$$12^{h}31^{m}$$
 0 s
Decl. = -7 0

A double star is given in this place in the Morrison Observations, $76^{\circ}8:5'89$ (1880.36) 1n; magnitudes not given. I carefully examined the place and vicinity without finding any pair of this description. It should be a short distance p the 5m star, 26 Virginis.

The only other measures are $10^{\circ}0$: $43^{\circ}17$ (1878.15) 1n β . H gave the magnitudes 6 and 18. His R.A. is about 2_{2}^{1m} too small. The proper motion is $0^{\circ}115$ in $287^{\circ}7$.

The principal star has a proper motion of 0.499 in 263.1. The only other measures are:

1879.30 $142^{\circ}3$ $152^{\circ}03$ 2n β

The computed place of the companion for 1901, from the first measures and the proper motion, is 139°9: 158.00.

H 2645. 53 Virginis. B=11.8 R.A. = $13^{h} \cdot 5^{m} \cdot 40^{s}$ \ Decl. = $-15^{\circ} \cdot 33^{\circ}$ \ \frac{1}{2} \text{1901.299} \tag{7°.3} \tag{77.59} \\ .318 \tag{6.9} \tag{76.52} \\ .356 \tag{7..8} \tag{77.16} \\ \frac{1901.32} \tag{77.09}

No other measures. If estimates $30^{\circ}\pm:50^{\circ}\pm(1830)$. The large star has a proper motion of 0°289 in 164°8.

ΟΣ 261

R.A. =
$$13^{h}$$
 6^{m} 24^{s} {
Decl. = $+32^{s}$ 31^{r} }

The principal star has a proper motion of 0'388 in 219°4. The components are respectively L 24582 and 24584.

1823.34 61°7 44′85 1
$$n$$
 Sh
1881.37 52.5 64.60 3 n β

**$$\sharp$$
 IV. 119.** S.D.(12°)3802. 7.5 . . . 10

The companion is S.D.(12)3801. This pair has been entirely neglected by observers since **H**, and the only measures are:

1783.18306°9 21.482 H 1n Σ 1739 rej. D.M.(31)2478. 9.2 . . . 10 $R.A. = 13^{h} 16^{m} 57^{s} I$ Decl. = +31 9 $\sqrt{}$ 1902.145 $132^{\circ}7$ 12.593 .219131.712.631902.18 132.212.78

No other measures.

The faint star not previously seen. The only complete measures of AC are:

1879.31	110°1	78/29	-2n	B

Σ 1757

$$\begin{array}{cccc} \text{R.A.} &= 13^{\text{h}} \, 28^{\text{m}} & 9^{\text{s}} \, \langle \\ \text{Decl.} &= & + & 0^{\text{e}} \, 18^{\text{c}} \, \rangle \end{array}$$

$$1901.203 & 76^{\circ} 7 & 2.41$$

$$.263 & 78.8 & 2.59$$

$$.280 & 78.9 & 2.35$$

$$1901.25 & 78.1 & 2.45$$

Although two orbits have been computed of this pair, the motion seems to be purely rectilinear, the change being due to the difference of the two proper motions. That of the principal star is 0:270 in 277°9. (See *Popular Astronomy*, IV, 172.)

H 2659

R.A. =
$$13^{h} 28^{m} 11^{s}$$

Decl. = $+40^{\circ} 33^{\circ}$

The description in H is $315 \pm :10'': 8-9...18;$ "requires verifying." I could not see this companion

with the $18\frac{1}{2}$ -in. in 1878, nor with the 40-in., 1901.20. The nearest star is 13m, $202^{\circ}3:38^{\circ}7$. It is probable that H was mistaken. His place is that of D.M. (40°) 2666, given as 7.4m.

β 611

R.A. Decl.	$= 13^{h} 31^{m} 15^{s}$ $= -14^{s} 7^{s}$	}
1901.299	260°5	4:56
.356	260.1	4.79
1901.33	$\frac{-}{260.3}$	$\overline{4.67}$

Measured in looking for the Egbert pair.

H 2666. S.D.(14)3763

H gives $176^{\circ}7:8''\pm:9...15$ (1830).

Egbert

R.A. =
$$13^{h}34^{m}$$
:
Dect. = $-14^{-}26'$:

Measured once at Cincinnati, $349^{\circ}3:11''70:9...$ 10 (1879.30). There is no such pair in or near this place. About $2^{m}f$ there is a small pair, $0^{\circ}5:15''43:8.5...13.5$ (1901.35) 1n. This star is S.D.(14°)3783. The descriptions do not correspond. β 611 is in the same vicinity.

Σ 1774 rej. 7 . . . 10.5

The principal star is given in Harvard A.G. a proper motion of 0°172 in 305°1. The only prior measures are:

1879.26 131°2 17793 t
$$n = \beta$$

The distance now should be 357 more, if the proper motion is correct and the small star is lixed.

Recently measured by Espin. Nothing else since H.

Σ 1782.

R.A. =
$$13^{h} 39^{m} 22^{s}$$
 | Decl. = $+18^{\circ} 58^{\circ}$ | 1902.145 | 185°6 | 29.772 | .219 | 185.0 | 29.67 | 1902.18 | 185.3 | 29.69

No recent measures, but unchanged.

No recent measures. Probably unchanged. Identified as above.

Σ 1801

$$\begin{array}{c}
R.A. = 13^{h} 59^{m} 27^{s} \\
Decl. = + 6^{\circ} 32^{i}
\end{array}$$

$$\begin{array}{ccc}
1901.203 & 67^{\circ}5 & 19^{\circ}51 \\
.263 & 68.4 & 19.72 \\
\hline
1901.23 & 67.9 & 19.61
\end{array}$$

1901.24

7.6

13.38

The original place is only approximate. The R.A. is about 2^m in error. The only other measures are in 1879. Apparently fixed.

The companion is preceding the other. The only measures are:

The proper motion of the principal star is very small, 0.06 in 323°.

	Σ 1807	
R.A. Decl	$= 14^{h} 5^{m} 6^{s} 1. = -2^{s} 46'$	}
1 901.203	28°8	6:88
.299	26.0	6.88
${1901.25}$	$\overline{27.4}$	$\phantom{00000000000000000000000000000000000$

H gives $340^{\circ} \pm : 2^{\circ} \pm : 16...16.17$ (1828), and says, "The most minute double star I have hitherto seen." It is a little s of the 9.4m star, D.M.(8°)2834. As in nearly all eases of this kind, H greatly underestimated the distance.

Howe (Cin.⁵) measured a pair in this place, $193^{\circ}7$: $5^{\circ}42:8.5...10.5$ (1879.35) 1n. Unless there is a large error in the measure or the place, there would seem to be eonsiderable relative motion. There is no other pair in the vicinity.

Discovered by Espin. No other measures of AB. The A.G. positions give for AC 190°1: 41:75 (1875.7).

The angle seems to be increasing ; 266°4(1830)H ; 276°1(1879) β ; 277°0(1891)Ho. The principal star is L 26283.

The R.A. in H is 4^m too small, and the Deel. about 1° too small. He called the components red and blue. No other measures.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{1852} \ rej. & \text{B.A.C.} \ 4799. & 7.2 \dots 9.5 \\ & \text{R.A.} & = 14^{\text{h}} \ 23^{\text{m}} \ 45^{\text{s}} \ \\ & \text{Decl.} & = - \ 3^{\text{s}} \ 43^{\text{s}} \ \end{array}$$

$$\begin{array}{cccc} \mathbf{1901.225} & 267^{\text{o}} 9 & 24^{\text{c}} 74 \\ & .263 & 268.1 & 24.63 \\ \hline 1901.24 & 268.0 & 24.68 \end{array}$$

No early measures. $\beta 268^{\circ}1 : 25/16 (1879.30) 3n$.

Meridian positions give for the proper motion 0.151 in 316.9. The earliest complete measures are: $1879.87 - 331.0 - 53.25 - 2n - \beta$

In Harvard Zones "appeared clongated." 1 could see no sign of duplicity (1901.20). If double, it must be very close.

Sh 186. a Librae

R.A. =
$$11^{5}44^{m}12^{s}$$
Decl. = $-15^{-}32^{s}$

1901.280 314.2 231.08

.299 314.2 230.97

No recent measures. The smaller star is $8 \, Librac$. Anwers gives 0.168 in 237.6 for the p.m. of A, and 0.153 in 241.9 for the other.

1755	$314^{\circ}9$	231/18	Bradley
1823	311.5	230.85	Sh
1880	314.4	230.70	Gr. 10-year

H 564. D.M.(29) 2618. 8...11.4

R.A. =
$$14^{h} 59^{m} 11^{s}$$
 Decl. = $+29^{\circ} 33^{\circ}$ 1901.206 32°9 41.718
225 32.6 41.31

H gives $20 \pm : 15^{\circ} \pm : 6 \dots 20$ (1820). There is no bright star in his place. The one measured has the same R.A., but is about 20 s, and is probably the star in question.

No recent measures, and only Ma and I since Σ . Put on the list to identify and get correct place. Error in *Mens. Microm*. Without change.

OΣ (App.) 140. 8...8

R.A. =
$$15^{h} 26^{m} 38^{s}$$
 Decl. = $+8^{s} 59^{s}$ 1111.96

.512 179.8 112.32

1901.49 179.7 112.14

The only other measures are by \pm , 179°9 : 111'85 (1874.97) 2n. The components are L 28309 and 28310.

$$\begin{array}{ccc} \gamma \ Librae. & 4.5 \dots 11.7 \\ R.A. & = 15^{h} 28^{m} 48^{s} \\ Decl. & = -14^{s} 23^{s} \end{array}$$

$$\begin{array}{cccc} 1901.471 & 152^{s} 5 & 42.04 \\ 1902.219 & 152.9 & 41.81 \\ \hline 1901.84 & 152.7 & 41.92 \end{array}$$

Companion first noted by Goldschmidt (Comp. Rend. LVI, 845). The only previous measure is: $1878.32 - 151^{\circ}8 - 41^{\circ}31 - 1n - \beta$

OΣ 297. 8...11.5
R.A. =
$$15^{h} 29^{m} 40^{s}$$
 Poecl. = $+25^{\circ} 25^{\circ}$ Poecl. = $+25^{\circ} 25$

The change is due to proper motion. I do not find this is given from meridian positions. From all the measures Hussey gets 0.149 in 156°5 for the movement of A.

$$\mathbf{W}^{2}$$
 XV. 752 = D.M.(23-)2838
R.A. = $15^{h} 33^{m} 10^{s} \frac{1}{4}$
Decl. = $+23 - 4^{\circ} \frac{1}{4}$

Noted in Weisse "duplex?" A 7.4m star, and certainly not double (1901.28).

Noted as double, 160": 2", in the Albany A.G. Not in any double-star catalogue, and no other measures.

Discovered by Pritchett, who found $45^{\circ}1:3'91$ (1881.52) 1n. No other measures,

Skinner. S.D.(16) 4169.
$$8.5 \dots 8.7$$

R.A. = $15^{\text{h}} 45^{\text{m}} 32^{\text{s}}$

Decl. = $-16^{\circ} 52^{\circ}$

1901.455 275°2 2.00

 $\frac{.471}{1901.46}$ 273.0 2.00

 $\frac{.200}{.274.1}$

Noted as double by Professor Skinner at the Naval Observatory. No other measures.

H estimated 215 : 18'' : $6 - 7 \dots 20$. The only other measures are 229°8 : 35''12 (1890.36) $1n \beta$.

In Weisse "duplex 12"." No other measures.

	Σ 2017	
R.A. : Decl. :	$= 16^{h} 6^{m} 37^{s} = + 14^{\circ} 52^{s} $	
1900.455	252°9	26'64
.458	252.8	26.55
$\overline{1900.45}$	${252.8}$	${26.60}$

Perhaps a small change in distance. Σ found 25'03 (1831.42), and \bot 25'.95 (1867.65).

No other measures. Identified as above,

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{2019} \ rej. & \text{S.D.} (10^{\circ}) 4276, & 8 \dots 9.2 \\ & \text{R.A.} &= 16^{\text{h}} \ 7^{\text{m}} \ 42^{\text{s}} \ \ell \\ & \text{Decl.} &= -10 - 7^{\circ} \ \ell \\ \hline 1900.455 & 152^{\circ} 7 & 22^{\prime} 48 \\ & \underline{458} & \underline{153.0} & \underline{22.25} \\ \hline 1900.45 & 152.8 & \underline{22.36} \end{array}$$

The only other measures are in the Washington Observations of 1862, 109°2:19°11 (1862.7). This may be another star.

No other measures; Class IV in Σ . The principal star is L 29649, and has a proper motion of 0.105 in 270°.

~ Corongo

•	Coronac	
R.A. Decl.	$= 16^{h} 10^{m} 12^{s} = +34^{\circ} 10'$	}
A ar	ad B (= Σ 2032)	
1901.263	213°6	4:34
. 320	212.8	4.30
1901.29	213.2	4.32
B an	$d C (= 0\Sigma 538)$	
1901,263	$202^{\circ}7$	5:58

The distance of the 13.5m star is diminishing from the proper motion of AB.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{3103} \ rej. & \mathrm{S.D.}(3^{\circ})3921. & 8.8 \dots 9.7 \\ & \mathrm{R.A.} & = 16^{\mathrm{h}} \ 14^{\mathrm{m}} \ 24^{\mathrm{s}} \ / \\ & \mathrm{Decl.} = & - 3^{\circ} \ 40^{\circ} \ / \\ & 1901.395 & 305^{\circ}3 & 24^{\circ}18 \\ & .414 & 304.9 & 24.56 \\ & \hline & 1901.40 & 305.1 & 24.37 \end{array}$$

No other measures.

	ß 624	
R.A. = Decl	$= \frac{16 \text{ h } 15 \text{ m } 42 \text{ s}}{= 22 \text{ b } 50^{\circ}} $	
1901,359	320°4 323.5	1719 1.21
1901.40	$\frac{321.9}{321.9}$	1.20

Observed in trying to find H 4851.

Measured in connection with Σ 3103 rej. The meridian positions in Lamont give 22°7: 92°44 (1855.5).

H 4851

R.A. =
$$16^{h} 17^{m} 7^{s}$$

Decl. = $-22^{\circ} 45^{\circ}$

The description in H is $96^{\circ}9:15^{\circ}\pm:8...11$ (1837.2). I looked in vain for this object in 1891, and again in 1901. There is no such sfar in or near this place. I see now that there is an error of I^h R.A. in this place, and that the sfar is identical with H 4948, which is $17^{\rm h}\ 17^{\rm m}\ 10^{\rm s}; -22$ 42. The descriptions correspond perfectly. Measures of that will be found here in the proper place.

$$\Sigma 2038 \ rej. \quad D.M.(2^{\circ})3091. \quad 8.6 \dots 10.4$$

$$R.A. = \frac{16^{\circ} 17^{\circ} 29^{\circ}}{\text{Decl.}} \left\{ \begin{array}{ccc} \text{R.A.} & = \frac{16^{\circ} 17^{\circ} 29^{\circ}}{2 30^{\circ}} \left\{ \\ & & & & & & & & \\ 1901.455 & & & & & & & \\ & & & & & & & & \\ 1901.465 & & & & & & & \\ \hline 1901.46 & & & & & & & \\ \hline \end{array} \right. \quad \frac{213.7}{214.2} \quad \frac{16.41}{16.45}$$

No other measures.

No other measures.

$$β$$
 815. D.M.(43)2605. 8.3 . . . 10.5

R.A. = $16^{h} 23^{m} 16^{s}$ {
Decl. = $+43^{s} 11^{s}$ }

A and B

1901.375 340.8 9.19
 .395 340.9 9.09
 .397 310.2 9.22
 .414 340.2 9.13
 .446 340.7 9.28

A and C (C = 11.5)

1901.375 160.4 67.71
 .395 160.4 67.79
 .397 160.6 67.95
 .414 161.5 67.55
 .416 160.6 67.80

1901.40 160.7 67.76

B and C

1901.375 160.3 76.95
 .395 160.3 77.40
 .397 160.7 77.15
 .414 160.9 77.09
 .416 160.5 77.23

1901.40 160.5 77.23

It will be remembered that B has a large proper motion for so small a star. I have measured the faint star C, which is exactly in line with AB, for the purpose of determining whether any of the change in AB is due to the movement of A. 1 have also compared the latter star with D.M.(43)2608, and find for the difference of Declination 22:52 (1901.41). This difference in the A.G. is 22:2, so that it is practically certain that A has no appreciable proper motion. My measures of AB in 1881, and those given here, give for the proper motion of B, 0:147 in 323:3.

DII 200	
$= 16^{h} 25^{m} 43^{s}$ $= + 8^{\circ} 33'$	}
71:3 71: I	58:90 58:80
71.2	58.85
	$= 16^{h} 25^{m} 43^{s}$ $= + 8^{s} 33^{s}$ $= 71.3$ $= 71.1$

Sh 233

Relatively fixed. 71°8: 58′86 (1858.18) 2n 0Σ. In 1874 I thought that one of these stars was a close double, but both were round in the last measure with fine seeing.

Hd Zones. L 30078. 9 . . . 9.1

R.A. =
$$16^{h} 26^{m} 10^{s}$$
 {
Decl. = $+0^{\circ} 28^{\circ}$ }

1901.375 305°.7 6'.94

.414 303.3 6..94

.455 305.7 6..92

.1901.41 304.9 6..93

Noted as double in the Harvard Zones, and also in the Göttingen Catalogue. No other measures. In the field about 3's is a 10m star with a double companion.

Simply described in H as "triple Classes I and II." There is a 10m star, 234°3: 73′2.

$$\begin{array}{ccc} \Sigma \ 2062. & 8.4 \dots 10.5 \\ \text{R.A.} &= 16^{\text{h}} 28^{\text{m}} 42^{\text{s}} \\ \text{Decl.} &= + 8^{\circ} 56^{\circ} \end{array}$$

$$\begin{array}{ccc} 1900.458 & 111^{\circ}5 & 2.55 \\ \underline{.551} & 113.6 & 2.50 \\ \hline 1900.50 & 112.5 & 2.52 \end{array}$$

The only measures since 1857 are my own in 1880. There is no change.

Discovered by Professor Young, $219^{\circ}5:1^{\circ}59$ (1883.76) 1u.

No other measures.

A more distant companion of about same magnitude, 178°2: 42°3. No other measures.

Principal star round. The only measures of the small star are 261°1 : 113°39 (1879.27) $1n~\beta$.

Discovered by Professor Skinner at the Naval Observatory with the meridian instrument. No other measures.

No other measures. H gives $135 \pm :18^{\circ} \pm :7$... 17; "large star red." To me it appeared yellow only.

No other measures.

Howe. S.D.
$$(10^{\circ})4619$$
. 8.7 . . . 12.7
R.A. = $16^{\circ}56^{\circ}41^{\circ}$ / Decl. = $-20^{\circ}13^{\circ}$ / 1900.455 180°9 6715
1902.430 174.0 6.21
1901.44 177.4 6.18

The only prior measure is a single observation of the position-angle 182-6 (1879.55), with only approximate place. If 4911, which is about $2\frac{1}{2}^{10}p$ of this, was suspected by H to have a small companion. I have looked for it several times. It is certainly single. His place is that of O.Arg.S. 16213.

H 2804. 9.5 . . . 9.6
R.A. =
$$17^{h}$$
 0 m 31 s $)$
Dect. = $+39$ 9° $)$
1902.219 277.7 15.14
. 133 277.8 15.19
1902.32 277.7 15.16

Not in D.M. Previous measures discordant.

4830 +	283?8	$20^{\circ} \pm$	1n	11
1880.48	280.4	17.25	2n	Bigourdan
1900.53	278.3	15.44	2n	Espin

The only other measure is a single observation by Mitchell, $4^{\circ}0:25^{\circ}73$ (1848.60). The angle should be reversed.

	Σ 2149.	
R.A. Deel.	$= \frac{17^{h}13^{m}32^{s}}{-6^{\circ}18^{\prime}}$	{
1901.203	24°1	7/34
1902.430	24.8	7.42
1901.81	24.4	$\frac{1}{7.38}$

The previous measures of this pair are very discordant in distance, but there is probably no change since Σ , who found $23^{\circ}2:7^{\circ}47$ (1830.15).

The change in B is due to the proper motion of A, 1:037 in 174°1. No other complete measures of C.

H 4851 has an error of $1^{\rm h}$ in the R.A. and is identical with the pair measured.

OΣ 329 rej. (= S 688). L 31771
R.A. =
$$17^{\ln}20^{\ln}17^{\circ}$$
 }
Decl. = $+37 - 3^{\circ}$ }
 1900.458 $12^{\circ}7$ 32.74
 1901.320 12.2 32.62
 1900.89 12.4 32.68

Without change.

H 1299. L 31783. 7 . . . 12 . . . 12.5
R.A. =
$$17^{\ln}21^{\ln}12^{s}$$
 / Decl. = $+26^{\circ}59$ / A and B
1901.375 21°0 50:53
.395 19.9 50.78
1901.38 20.4 50.65

	A and C	•
1901.375	57°5	52:69
.395	57.6	52.55
$\overline{1901.38}$	$\frac{-}{57.5}$	52.62

H gives for the angles 20°7 and 60°5 (1828).

A and C are D.M. $(48^{\circ})2532$ and 2533. The only measures of AB are $98^{\circ}5:20^{\circ}58$ (1900.53) 2n Espin.

Hd Zones

R.A. =
$$17^{h} 32^{m} 14^{s}$$

Decl. = $+ 0^{\circ} 56'$

Noted as "double" in Harvard Zones. The place is that of the 9.2m star, D.M. $(0^{\circ})3739$. It is not double.

Skinner. S.D.(15°)4651. 8.5 . . . 9.0

R.A. =
$$17^{\text{h}} 35^{\text{m}} 20^{\text{s}}$$
 /

Decl. = $-15^{\text{c}} 40^{\text{c}}$ \(
\begin{align*}
\text{1901.512} & 275^{\circ} 8 & 4.33 \\
\text{.586} & 276.0 & 4.29 \\
\text{1901.55} & \text{275.9} & \text{4.31}

Discovered by Skinner with the meridian circle of the Naval Observatory. It is also Hussey 184.

No other measures. In the field 2' or 3' $p \Sigma 2196$.

H 4986. O.Arg.S.17253 8.2 . . . 11.2

 R.A. =
$$17^{h}42^{m}50^{s}$$
 Decl. = $-26^{\circ}18^{s}$

 1901.375
 $226^{\circ}2$
 $10!26$

 .433
 226.7
 11.04

 .452
 226.5
 10.56
 1901.42
 226.5
 10.62

No measures. H gives $330^\circ\pm:12^\prime\pm(1834.3);$ probably error of 100 . There is a 13m star $5^\circ4:22^\prime9,$ and 12.5m at $61^\circ4:27^\prime2.$

	Σ 2230	
R.A. Dec	$h. = 17^{h} 44^{m} 54^{s}$ h. = +7 57'	}
	A and B	
1900.458	108°8	37/52
.515	109.1	37.72
1900.48	108.9	$\frac{-}{37.62}$
	A and C	
1900.458	83°2	45/45
.515	84.3	45.50
$\overline{1900.48}$	83.7	$\frac{-}{45.47}$
	B and C	
1900.458	$208^{\circ}5$	19#26
.515	211.0	19.05
1900.48	209.7	$\overline{19.15}$

The principal star has a small proper motion of about 0.017, which increases the distances of both companions.

H has $140^{\circ} \pm : 18'' \pm ;$ "a third, closer, suspected." Neither this telescope nor the 18°_{2} -in. in 1878 showed any other companion.

⊿ did not find this, and there are no other measures. The components are D.M.(10)3315 and 3314. The A.G. positions give 191°6: 100′87.

Holden, L 32716. 6.7 . . . 12
R.A. =
$$17^{h} 48^{m} 13^{s}$$
 }
Decl. = $-11^{-37'}$ }
 1900.551 $154^{\circ}3$ $3'51$
 $.553$ 150.0 3.56
 1900.55 152.1 3.53

Discovered by Professor Holden at the Washburn Observatory. Unchanged.

The wide pair AC "duplex" in O.Arg. The faint star between discovered by F. Bird in 1869. The only other measures are mine in 1879.

Σ 2253

Distance slowly decreasing.

$O\Sigma (App)$ 161

R.A. =
$$17^{\text{h}} 54^{\text{m}} 29^{\text{s}}$$

Decl. = $+ 8^{\text{s}} 52^{\text{s}}$ \tag{1901.375} \quad 76.7 \quad 62.36 \quad .436 \quad 77.2 \quad 62.20 \quad .471 \quad 76.8 \quad 62.27 \quad \tag{1901.43} \quad 76.9 \quad 62.28

The only other measures are by $4,77^{\circ}9:62'70$ (1874.98) 3u.

W1 XVII, 1120

R.A. =
$$17^{h} 55^{m} 22^{s}$$

Decl. = $-14^{\circ} 30^{\circ}$

"Duplex" in Weisse. This is S.D.(14°)4860, 8.7m Not double, and no near companion.

$$\begin{array}{ccc} \textbf{S 698.} & L 33058. & 7 \dots 8 \\ & & \text{R.A.} &= 17^{\text{h}} 56^{\text{m}} 57^{\text{s}} \\ & & \text{Decl.} &= -22^{\circ} 30^{\circ} \end{array} \\ 1900.551 & & 316^{\circ} 1 & 29^{\circ} 70 \\ 1901.263 & & & 317.0 & 29.52 \\ & & & & & & & \\ \hline 1900.90 & & & & & & \\ \hline \end{array}$$

No other measures since South, $317^{\circ}4:30^{\circ}92$ (1825.51) 2n. There are many stars in the field, and several nearer than B.

H 5013. S.D.(15) 4801. 9.7 . . . 11.7
R.A. =
$$17^{h} 57^{m} 38^{s} t$$

Decl. = $-15^{-} 5^{r} t$
1901.455 338°.4 13.731
.529 338.6 13.53
1901.49 338.5 13.42

The only observations by H, 339 $\pm :4'' \pm :9 \dots 13$.

A.C. 15. 99 Herculis R.A. = 18^h 2^m 28^s) Decl. = +30 23 1898,269 317°5 1.04 .271 322.4 1.21 .463 320.8 1.19

320.2

1.15

Perry.
$$10.2 \dots 11.0$$

R.A. $= 18^{h} 3^{m} \pm \begin{cases} \\ 1900.551 \\ 1902.433 \\ 1901.49 \\ 313.1 \\ 3.32 \\ 3.32 \\ 3.32 \\ 3.33 \\ 3.33 \\ 3.33 \\ 3.33 \\ 3.33 \\ 3.33 \\ 3.34 \\ 3.33 \\ 3.34 \\ 3.35 \\ 3.3$

1898.33

Not in D.M. It is about $1^m f$ D.M.(9°)3565. The only other observation is 30500:200(1881.38) Perry.

Alvan G. Clark. 102 Herculis. 51 . . . 12.9

R.A. Decl.	$= 18^{h} \cdot 3^{m} \cdot 38^{s}$ = $+ 20^{+} \cdot 48^{s}$. {
1900.458	135°9	23766
.473	135.6	23.72
1901,455	136.5	23.28
$\frac{-}{1900.76}$	135.7	23.55

The only prior measures are mine, $136^{\circ}7:23^{\circ}42$ (1878.45) 1n. This angle is erroneously printed $46^{\circ}7$. The proper motion of A is small, 0.015 in $212^{\circ}9$.

Σ 2285

R.A. = Decl. =	$=\frac{18^{h}}{+}\frac{3^{m}}{3^{\circ}}\frac{45^{s}}{28'}$	
1900.458	333°6	3:50
1901.203	333.2	3.45
1900.83	333.4	${3.47}$

Without change. No late measures.

H 593. S.D.(17°)5052. 8.2 . . . 11.5 . . . 9.5

R.A. =
$$18^{h} 3^{m} 48^{s}$$
 Decl. = $-17 10^{\circ}$ A and C

1901.455 303°.4 18.15

.512 301.1 18.08

1901.48 302.2 18.11

A and B (= Hussey 195)

1901.512 75°.8 1.14

Close pair discovered by Hussey in 1900. No other measures of H 593 except Glasenapp, $300^{\circ}9:17.26~(1890.54)~2n$.

H 5030. L 33330. 6 . . . 10.8
R.A. =
$$18^{h} 4^{m} 24^{s}$$
 Decl. = $-23 44'$ Decl. = $-23 44'$ 1
1901.263 287.3 41.65
 $\frac{.586}{1901.42}$ $\frac{.287.3}{287.3}$ $\frac{42.24}{41.94}$

The only other measure is:

$$1834.3 281^{\circ}0 30'' \pm 1u H$$

H 2820.
$$9.5...10.7...10.8$$

 R.A. = 18^h 4^m 45^s }
 10cl. = -18 26^s }

 Decl. = -18 26^s }
 10cl. = -18 26^s }

 A and B
 1901.455 $279^{\circ}3$ 5.58 5.72 -1287

The principal star is S.D.(18°)4826. The only other observations by H, $281^{\circ}9:3^{\circ}\pm;~90^{\circ}0:8^{\circ}\pm(1830)$.

Σ 2291

No recent measures. Distance increasing? $1830.73 \quad 339^{\circ}2 \quad 25^{\circ}12 \quad 2n \quad \Sigma \\ 1868.02 \quad 339.2 \quad 25.90 \quad 4n \quad 4$

H 1821. S.D.(16)
$$4755$$
. $9.2...9.6$
R.A. = $18^{h} \cdot 5^{m} \cdot 54^{s}$ \\
Decl. = $-16^{\circ} \cdot 20^{\circ}$ \\

1901.529 \quad 278.0 \quad \frac{7.62}{1902.433} \quad \frac{278.0}{278.0} \quad \frac{7.62}{7.81}

H has $273^{\circ}6: 4^{\circ} \pm (1828)$.

A and S.D.(16°)4756

1901.529 13°6 53'07 1902.433 13.4 53.25 1901.98 13.5 53.16

H. V. 93, D.M.(28°)2955 and 2956

$$\begin{array}{c} \text{R.A.} &= 18^{\text{h}} 8^{\text{m}} 17^{\text{s}} \\ \text{Decl.} &= +28^{\circ} 13^{\circ} \end{array}$$

$$\begin{array}{c} 1901.203 & 136^{\circ}4 & 54.97 \\ .225 & 136.4 & 54.43 \\ \hline 1901.21 & 136.4 & 54.70 \end{array}$$

The only measures are:

The Weisse meridian positions give 132°9:54′10 (1825). Bigourdan has measured another pair, or the distance is erroneous.

H 857. W¹ XVIII. 192. 8 . . . 11 R.A. = $18^{h} 10^{m} 53^{s}$ Decl. = $-7 20^{o}$

1901.452	20°3	21:49
.509	19.6	20.92
1901.48	20.0	21.20

No other measures. H estimated 20°: 15° (1820).

H 5494, B.A.C. 6213, 6 . . . ILS

R.A. =
$$18^{h} 13^{m} 20^{s}$$
 (
Decl. = $+ 7 12^{s}$)

1901. H6 69.5 39.707
.509 70.0 39.79
.512 70.0 39.60

1901. 48 69.8 39.49

Only the estimates of H, 65° ; 45° ; $5 \dots 15$ (1827.6).

O. Stone

R.A. =
$$18^{h}16^{m}$$
: {
Decl. = $-18^{h}55^{m}$ }

Given in Cin⁶ with this place, 81°6:6'72:8.5... 9.0 (1879.30). No such pair in or near this place. A plenty of faint pairs of one kind and another, but nothing answering this description (1901.452). The place is certainly erroneous.

Σ 2311

$$\begin{array}{ccc} \text{R.A.} &= 18^{\text{h}} \, 16^{\text{m}} \, 38^{\text{s}} \, \\ \text{Decl.} &= +11 & 23 \, \end{array} \\ 1900.512 & 158^{\circ} 8 & 5.65 \\ .515 & 159.1 & 5.72 \\ \hline 1900.51 & 159.0 & 5.68 \end{array}$$

The motion appears to be rectilinear.

These positions give for the proper motion of Λ 07047 in 191°2.

Н 5496. L 34031

R.A. =
$$18^{h} 20^{m} 40^{s}$$

Decl. = $-8 - 7$

Given in 11 as 6m star, "suspected double with 180." I could not see any companion with the 6-in, in 1876, nor with the 40-in., 1901.455.

No measures by **H**; given as Class 1. The following are all the measures; distances discordant:

No other measures. Not in D.M., but near D.M. (61)1267, the place of which is given here.

Schjellerup. D.M.(7) 3741.
$$8.9...9.0$$
R.A. = $18^{h} 27^{m} 49^{\circ} / 1000$
Dect. = $+7^{\circ} 21^{\circ} / 1001.509$
 -512
 -197.6
 -197.6
 -197.6
 -197.6
 -197.6
 -197.6
 -197.6

From list of new pairs in A.N. 1485, the distance given 34". No other measures. Both stars in D.M. There is a 13.5m star from A, 119; 1445.

Σ 2340

R.A. = $18^{h} 28^{m} 30^{s}$ (Decl. = $+31^{\circ} 30^{\circ}$)			
1901.433	103°9	23:'02	
.436	103.3	23.20	
.452	103.7	23.06	
1901.44	$\overline{103.6}$	$\frac{23.09}{2}$	

The change appears to be due to a small proper motion of one of the stars.

1830.43 104°6 21′51 3n Σ

Distance slowly decreasing from proper motion. Other recent measures by Hussey.

Σ 2345

R.A. =
$$18^{h}30^{m}23^{s}$$
 \(\)
Decl. = $+20^{-}59^{-}$ \(\)
1901.436 \quad 203.8 \quad 8.53 \\
.452 \quad 201.0 \quad 8.53 \\
1901.41 \quad 203.9 \quad 8.55

Rectilinear motion. Σ found $185^{\circ}1:7^{\circ}38(1832.25)4n$.

Σ 2346

$$\begin{array}{c} \text{R.A.} = 18^{\text{h}} 31^{\text{m}} 27^{\text{s}} \\ \text{Decl.} = + 7 26^{\text{s}} \end{array}$$

$$\begin{array}{c} 1901.471 & 291^{\circ} 8 & 21^{\circ} 17 \\ .586 & 291.2 & 21.19 \\ \hline 1901.53 & 291.5 & 21.18 \end{array}$$

The motion is rectilinear, distance and angle increasing.

1829.64 282°9 15'41
$$4n \Sigma$$

These measures give for the proper motion of A 0:091 in 132°5.

The only measures of this are found in the introduction to *Mens. Microm.*, 258°7: 13°2 (1832.8). D.M.(58°)1824, which is 4°4s, is a similar pair with a little less distance.

Noted "duplex" in O.Arg.S. and "triple" in Washington Transit Zones. The first measures from Washington Observations, 1862, do not agree with the present positions:

IV.
$$59 = \Sigma 2354 \ rej. \ 8.5 \dots 9.0$$

R.A. = $18^{h} 32^{m} 45^{s}$ \ Decl. = $+38 \ 38^{s}$ \\

 $1900.473 \ 302^{\circ}1 \ 29.52$
 $1901.225 \ 302.4 \ 29.46$

Near $Vega$. The only other measures are:

 $1783.81 \ 303^{\circ}9 \ 22.33 \ 1n \ 4$
 $1880.42 \ 303.6 \ 29.80 \ 2n \ \beta$
 $\Sigma 2350 \ rej. \ L 34569. \ 6.7 \dots 11$

R.A. = $18^{h} 33^{m} 30^{s}$ \ Decl. = -7.54^{s} \\

 $1901.395 \ 196^{\circ}4 \ 22.16$
 $.452 \ 196.1 \ 22.18$
 $.452 \ 196.2 \ 22.17$

The only measures are:

 $1848.64 \ 194^{\circ}8 \ 24.54 \ 1n \ Mitchell$
 $1880.02 \ 196.8 \ 23.27 \ 2n \ \beta$
 $\Sigma 2365 \ rej. \ 8.3 \dots 10.0$

R.A. = $18^{h} 34^{m} 21^{s}$ \ Decl. = $+63^{\circ} 36^{s}$ \\

 $1901.433 \ 26^{\circ}1 \ 19.58$
 $.436 \ 24.5 \ 19.84$
 $.1901.43 \ 25.3 \ 19.70$

No other measures. The principal star has a proper motion of 0°282 in 193°2 (Porter). The movement in A.G. is 0°306 in 189°3. This is D.M. (63°)1439 (= Groombridge 2630).

H 1336. 8.2 . . . 11.5 . . . 11

R.A. =
$$18^{h} 35^{m} 52^{s} ?$$
Decl. = $+30^{\circ} 11^{\circ} ?$

A and B

1901.263 87.4 17.59
.302 86.7 17.62

1901.28 87.0 17.60

A and C

1901.302 176°7 32.25

The only other observation is by H, $89^{\circ}0:8''\pm;$ $300'\pm:15''\pm(1828)$. There is another 11m star, $295^{\circ}9:32^{\circ}6$. ≥ 2367 is $47^{\circ}f$.

	Ho 437	
R D	$A. = 18^{h} 35^{m} 58^{s}$ $ecl. = +31^{s} 32^{s}$	
	AB and C	
1901,436	272°1	39761
.452	273.2	40.02
$\frac{-}{1901.44}$	$\overline{272.6}$	$\frac{-}{39.81}$

	C and D	
1901,436	335 8	3″08
,452	336.5	3,48
1901 . 44	336.1	3.28

Seeing too poor for AB.

B is not in 11, and was first noted by Espin (A.N. 3717), who found $135^{\circ}9:2^{\circ}73$ (1900.62) 2n.

The small star B was first noted with the 6-in. The only measures are: $\$

A and C are S.D.(6) 4922 and 4923.

The only measures are:

Howe (Cin^5) has a close pair in this place, $209^\circ1$: 0.94 (1879.31) 1n. There is no close double here, and it is undoubtedly an error in reading or printing the distance.

Lewis

$$R.A. = 18^{h} 50^{m}$$

$$Deel. = +34 - 30^{\circ}$$

This pair has the above place for 1900 (Mon. Not., LX, 510) with the following measure:

$$1899.44 \quad 81^{\circ}6 \quad 5''13 \quad 8.0 \dots 10.0 \quad 1n$$

The place is substantially identical with that of the 7.9m star, D.M.(31)3316. This star was examined on two nights, and the stars in the vicinity as well, but no pair found to answer the description.

$eta \, 647$ R.A. = $18^{\,\mathrm{h}}\,50^{\,\mathrm{m}}\,29^{\,\mathrm{s}}$ /

Deel. =
$$+13 \cdot 27^{\circ}$$
 \\
A and B

1900.512 \quad 16\cdot 1 \quad 1'07 \\
.515 \quad \quad \quad \quad 14.6 \quad \quad 0.87 \\
1900.51 \quad \quad \quad 15.3 \quad \quad 0.97 \\
A and C

1900.512 \quad \quad 217\cdot 3 \quad \quad 19.01 \\
.515 \quad \quad \quad 217.6 \quad \quad \quad 19.02 \\
\quad \quad \quad \quad \quad \quad \quad 19.02 \quad \q

Change in the distance of C is confirmed by these measures.

$\begin{array}{c} \beta \ 648 \\ {\rm R.A.} \ = 18^{h} 52^{m} \, 30^{s} \, \xi \\ {\rm Decl.} \ = \ + 32 - 45' \, \xi \end{array}$

Dec	L = +32 - 45'	Ĭ.
1900, 173	21573	1/21
. 553	225.6	1.40
.703	229.9	1.37
1901.203	218.3	1.07
1900.73	222.3	1.27

Н 1357. D.X	1.(45°)2799. 8	3.0 10.5
R.A. Decl	$= 18^{\circ} 53^{\circ} 34^{\circ}$ $= +45^{\circ} 42^{\circ}$	1
1901.433	213°2	26:75
.452	211.9	26.92
1901.44	212.5	26.83

The only prior measures are:

	1828 +	$210^{\circ}8$	$16" \pm$	1n	Η
--	--------	----------------	-----------	----	---

Σ 2427

No change in BC, but the distance of AB is increasing. A comparison of these measures with Σ 's gives for the proper motion of A 0.064 in the direction of 41°.

No other measures. H estimated $305^{\circ}:15^{\circ}$. The principal star is W¹ XVIII. 1351.

H called the components $red:blue-green:134^{\circ}5:18''\pm:10...12$ (1830).

Σ 2442

$$\begin{array}{ccc} \text{R.A.} &= 18^{\text{h}} 58^{\text{m}} 20^{\text{s}} \\ \text{Decl.} &= +16^{\circ} 48^{\circ} \end{array}$$

$$\begin{array}{cccc} 1901.299 & 207^{\circ}5 & 18^{\circ}37 \\ .703 & 205.4 & 18.20 \\ \hline 1901.50 & 206.4 & 18.28 \end{array}$$

The distance is decreasing, with no sensible change in the angle. These measures with those of Σ indicate an annual movement of A of 0.06 in the direction of the smaller star. In the course of some three hundred years these stars will make a close pair.

The proper motion of A is very small, 0.014 in 300°3. The distance of \mathbf{H} in 1781 of 33.88 is certainly too small.

H only estimated the angle 50 (1823.6). There is a 14m star about the same distance in 94.8.

H 1364. D.M.(44°)3051.
$$9.4 \dots 9.4$$
R.A. = $18^{h} 59^{m} 36^{s}$ \ Decl. = $+44^{\circ} 17'$ \\

1901.452 \quad 201°7 \quad 3'13 \\
\frac{1902.433}{1901.94} \quad \quad \frac{207.7}{206.2} \quad \quad \frac{3}{3.05}

Described by 41, "a most elegant double star; chief of a small cluster." The only observations are:

$$1828 + 204.5$$
 $1' \pm 1n$ H
 1881.45 206.9 3.26 $3u$ β

H has $327^{\circ}5:45^{\circ}\pm$ (1828), and calls the colors raidy: green.

The only measures are:

$$1783.63$$
 $60^{\circ}6$
 $45'53$
 $1n$
 \mathbf{H}
 1840.83
 55.6
 54.58
 $1n$
 0Σ
 1866.68
 55.5
 55.08
 $1n$
 0Σ

Σ 2463. D.M.(45)2831 R.A. = $19^{h} \cdot 2^{m} \cdot 30^{s}$ Dect. = $+45^{\circ} 38^{\circ}$ A and B 1901.529 501 9.44 5.7 9.49 .6051901.575.4 9.46 A and C 283°0 1901.52923752 282.423.96.6051904.57 282.723.74

C not in Σ ; first noted by H, who gave the angle 279°9 and 286°4 (1828). No other measures of this.

30/40

1n

Mitchell

1848.65

45°3

H 1374. L 36113. 8.0 . . . 11.7 . . . 13.5
R.A. =
$$19^{h}$$
 6 m 34 s $\left\{\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & \\ & & &$

The description in 11 is $110^{\circ}3:8"\pm;350^{\circ}\pm:15"\pm.$

Schjellerup.
$$8.5 \dots 8.8$$

R.A. = $19^{\text{h}} 6^{\text{m}} 40^{\text{s}} \left\langle 0 \right\rangle$

Decl. = $-3^{\text{s}} 45^{\text{c}} \left\langle 0 \right\rangle$

1901.452 230.4 61.16

 -455 230.2 61.02

 -230.4 61.02

From list of double stars in A.N. 1485. The estimated distance is given 48°. The components are S.D.(3°)4543 and 4511.

Madler 7 = Ho 446

R.A	$1. = 19^{h} 7^{m} 43^{s}$ $1. = +24^{\circ} 23$	1
Dec	1. = +21.53	•
A	and B (new)	
1901.433	292° 1	2:79
.478	288.6	2.56
.512	291.0	2.82
1901.47	290.7	2.72
	A and C	
1901,416	5000	5:01
.433	50,6	5.01
. 473	45.2	5.21
.542	48.8	5.17
 1901 . 46	48.6	$\frac{-}{5.10}$

B is new, but previously seen by Aitken. The measures of AC are:

1843.63	5853	8''69	1n	Ma
1893.67	45.4	5,69	3n	Ho

The principal star is W² XIX, 193.

H 2858.
$$9.2 \dots 12.2$$
R.A. = $19^{\text{h}} \cdot 8^{\text{m}} \cdot 46^{\text{s}} \cdot \frac{1}{2}$
Decl. = $+22 \cdot 38^{\text{c}} \cdot \frac{1}{2}$
 $1901.436 \quad 257^{\circ}4 \quad 18799$
 $1902.219 \quad 257.9 \quad 19.06$
 $1901.82 \quad 257.6 \quad 19.02$
H gives $257.6 : 6^{\circ} \pm (4830)$.

H gives $19^{\circ}0:4" \pm (1830)$. The relation of H 2858 and 2859 is $10^{\circ}2:132'.70$ (1901.43).

The only other observation is by H, $357^{\circ}0:30^{\circ}\pm7...16$ (1828).

$$\begin{array}{cccc} \textbf{H 5101}, & 8.5 \dots 9 \\ & \text{R.A.} &= 19^{\text{h}} & 9^{\text{m}} & 2^{\text{s}} \\ & \text{Decl.} &= & -25^{\text{s}} & 33 \end{array} \\ 1901.586 & & 306^{\circ}3 & & 21^{\circ}32 \\ & & & & & & \\ \hline 1901.65 & & & & & & \\ \hline 20.97 & & & & & & \\ \hline 1901.65 & & & & & & \\ \hline \end{array}$$

Both components in Cord.D.M. as Nos. 13881 and 13879. H found $311^{\circ}5:20^{\circ}\pm$ (1837.2).

H 1376. 8.0 . . . 11.2
R.A. =
$$19^{h}$$
 9^{m} 4^{s} \langle
Decl. = $+15^{\circ}$ 10° \rangle
1901.416 121°6 10.14
 $\frac{.471}{1901.44}$ $\frac{123.6}{122.6}$ $\frac{10.14}{10.15}$

H gives $120^{\circ}4:6^{\circ}\pm(1828)$.

OΣ 366 rej. 7.5 . . . 9.2
R.A. =
$$19^{h} 9^{m} 48^{s}$$
)
Decl. = $+34^{-} 0^{\circ}$ (
$$1901.471 230^{\circ} 2 22^{\circ} 14$$

$$.589 229.6 21.74$$

$$1901.53 229.9 21.94$$

Without change. The principal star is L 36242. Two faint stars s and sf.

$$\begin{array}{c|ccccc} \mathbf{O\Sigma} \ (App) \ \mathbf{178}, & 6 \dots 7.5 \\ & \text{R.A.} & = 19^{\text{h}} \ 9^{\text{m}} \ 52^{\text{s}} \\ & \text{Decl.} & = +14^{\circ} \ 53^{\circ} \end{array} \\ 1900.684 & 267^{\circ}8 & 89.91 \\ & .687 & 267.4 & 89.83 \\ & & & & & \\ \hline 1900.68 & & & & & \\ \hline \end{array}$$

The following are all the other measures:

$$1856.60 86^{\circ}7 80'84 1n Se$$

 $1875.61 267.8 89.65 4n 4$

The change is not confirmed. The distance of Secchi is an error or misprint. The A.G. positions give 268°0: 89°68. The components are L 36207 and 36203.

The only other measure is by H:

$$1830+ 10^{\circ}6 \quad 25'' \pm : 5-6 \dots 17$$

There is a 13m star, 158°2: 43'5.

H gives $14^{\circ}6:15^{\circ}\pm6...15$ (1830); "a third np very strongly suspected." I could not see any third star with the 6-in. in 1874, and the 40-in. shows nothing now. The principal star has a proper motion of 0.293 in 204.7.

This is not in the D.M., but is closely f D.M. (-1°) 3706. H has $265^{\circ} \pm :5^{\circ} \pm (1820)$; "a suspected stel.

lar nebula in the field." The 40-in, shows this as a double nebula, with the appearance of belonging to the planetary class. It was rediscovered by Marth, and is No. 6778 of Dreyer.

There is an error of 180° in the angle of the only other measure:

1848.65 256°2 26″59 1n Mitchell

$$\Sigma$$
 2500 rej. D.M.(19°)3976. 8.0 . . . 10.5
R.A. = 19 h 14 m 11 s
Deet. = + 19 30° {
1901.416 24°β 19°74
.586 23.2 20.06
1901.50 23.7 19.90

No other measures except angle by H, $23^{\circ}0$ (1830), The A.G. proper motion of A, is 0.062 in $280^{\circ}2$.

The 6.8m star, distant about 10 sp, D.M.(19)3975, is said to be an Algol variable, the magnitude deseending to 9m, with a period of about 17 days (A.N. 3748).

The only measures are:

 $1874.98 - 266^{\circ}3 - 80'22 - 3u - 4$

No other measures. The principal star is D.M. (9)4075.

Σ 2501

Without change. There is a 13.5m star from A. $108^{\circ}3:9^{\circ}6$.

$$\begin{array}{c|ccccc} \mathbf{\Sigma} \ \mathbf{2506} \ rej. & 8.7 \dots 9.1 \\ & \text{R.A.} & = 19^{\,\text{h}} \, 16^{\,\text{m}} \, 14^{\,\text{s}} \, \left\{ \\ & \text{Dect.} & = \, + \, 14^{\,\text{o}} \, \, \, 8^{\,\text{s}} \, \right\} \\ 1901.589 & 350^{\,\text{c}} \, 5 & 16^{\,\text{c}} \, 63 \\ & .720 & 351.2 & 16.60 \\ \hline & 1901.65 & 350.8 & 16.61 \end{array}$$

Rejected by Σ as not subsequently found. Evidently fixed. A is D.M.(14)3888. The only measures are:

1843.60	$170^{\circ}9$	16/33	1n	Ma
1875.01	351.3	16.43	2n	٦

$$\begin{array}{ccc} \text{R.A.} &= 19^{\text{h}} 18^{\text{m}} & 2^{\text{s}} \\ \text{Decl.} &= & -14 & 52^{\prime} \end{array} \}$$

$$\begin{array}{cccc} 1901.605 & 68^{\circ} 1 & 24^{\prime} 33 \\ 1902.449 & 66.7 & 24.28 \\ \hline 1902.03 & 67.4 & 24.30 \end{array}$$

The only other measures are:

1890.54 69°2 23°99 2n Glasenapp

Schjelle	rup. 8.2	9.2
R.A. Decl. :	$= \frac{19^{h} 19^{m} 33^{s}}{+ 4 36^{s}}$	}
1901.589	214°0	41724
.720	214.2	-41.18
1901.65	$\frac{1}{214.1}$	$\frac{1}{41.21}$

From list of new pairs in A.N. 1485. No other measures. A is D.M.(4–)4096.

$$\Sigma 2517 \ rej. \quad \text{D.M.} (22^{\circ})3687. \quad 8.7 \dots 9.7$$

$$\begin{array}{ccc} \text{R.A.} &= 19^{\circ} 19^{\circ} 40^{\circ} \\ \text{Decl.} &= + 22^{\circ} 32^{\circ} \end{array} \Big\}$$

$$\begin{array}{cccc} 1901.589 & 138^{\circ} 6 & 15^{\circ} 85 \\ \hline 1901.67 & 138.5 & 15.88 \\ \hline 1901.67 & 138.5 & 15.86 \\ \end{array}$$

No other measures.

O. Stone

R.A. =
$$19^{h} 20^{m}$$
:
Decl. = $-16^{\circ} 11'$

Given in Cin^5 , $195^{\circ}4:4.84:6.8...7.3$ (1880.62) 1n. I could not find any such pair in or near this place. There is no bright star here in the S.D.

H 2871. 4 Vulpeculae. 6 . . . 11.0
R.A. =
$$19^{h} 20^{m} 12^{s}$$
 Poecl. = $+19^{\circ} 34^{\circ}$ 1901.473 106°.5 24.89
 $\frac{.512}{1901.49}$ $\frac{106.3}{106.4}$ $\frac{24.89}{24.89}$

H gives $110^\circ 4:30^\circ \pm (1830)$; "two more near; one extraordinarily faint." There is a star of about the same magnitude in 197°9 at about double the distance, and a 13.5m star, more distant, in 231°4.

$\begin{array}{c} \pmb{\nu} \; Aqutlae \\ \text{R.A.} \; = \; 19^{\,\mathrm{h}} \; 20^{\,\mathrm{m}} \; 23^{\,\mathrm{s}} \; \rangle \\ \text{Decl.} \; = \; + \; 0^{\,\mathrm{s}} \; \; 6^{\,\mathrm{s}} \; \rangle \\ 1901.416 \qquad 287^{\,\mathrm{s}} \; 9 \qquad 200^{\,\mathrm{s}} 50 \\ \underline{.433} \qquad 288.2 \qquad 200.74 \\ \underline{.7901.42} \qquad 288.0 \qquad 200.62 \end{array}$

Measured in looking for **H** IV. 34, which is about 3^mf. B is D.M.(0) 4204. The proper motion of A is 0:024 in 359.7 The A.G. positions give 288°6: 201'4. Many small stars nearer A than this.

3 Cygni.
$$6.5...10.4$$

R.A. = $19^{h} 20^{m} 28^{s}$ Deel. = $+24^{\circ} 32^{\circ}$ 1900.515 $78^{\circ}3$ 30.94
 $.553$ 76.9 30.47
 1901.473 76.2 30.21
 1900.85 77.1 30.54

The principal star has a large proper motion, 0'658 in 198°1 (Berlin A.G.). The only other measures are by 0Σ , the first of which is:

$$1866.72 122^{\circ}8 27.91 1n 0\Sigma$$

$$\begin{array}{ccc} \text{H. N. } 119. & 6 \dots 8.2 \\ \text{R.A.} &= 19^{\ln 22^{m}} \, 27^{s} \\ \text{Decl.} &= -27^{\circ} \, 14^{\circ} \end{array}$$

$$\begin{array}{cccc} 1901.455 & 141^{\circ}9 & 7.65 \\ \underline{.509} & 141.3 & 7.87 \\ \hline 1901.48 & 141.6 & 7.76 \end{array}$$

No measures in **\mathbf{H}**. There is an error of about 23' in his Decl. The measures of this show no change. It was measured by me in looking for No. 153 of the Harvard list, which has an error of about 3^m R.A. and 10' in Decl. It is identical with the **\mathbf{H}** pair.

H 887. L 36791. 7.0 . . 13.2
R.A. =
$$19^{h} 22^{m} 54^{s}$$
 0
Decl. = $-7^{\circ} 17^{\circ}$ 0
1900.473 348.7 35.51
 0.476 348.7 35.08
 0.476 348.7 35.31.

No other measures. He alled the small star 20m. The principal star appears to be the variable U Aquilae.

He describes this as "the first of 2 stars $p \nu Aquilae$; distance of the two nearest 21:98, inaccurate." After a very eareful examination, I am certain that the star which he calls $\nu Aquilae$ is really the 6.9m star, D.M.(-0')3760, which follows the other 2^m 47°. The description then applies perfectly. This faint pair is not in the D.M. The place given above is that of the bright star.

$\mathbf{O}\mathbf{\Sigma}\left(App_{I}^{T}\right)$	o) 182 . 6.9	. 7.4
R.A. Decl	$= 19^{h} 23^{m} 37^{s}$. $= +49^{\circ} 54^{\circ}$. }
1901.471	305%6	72103
. 509	305.4	71.67
.529	305.8	71.69
	$\frac{-}{305.6}$	$\frac{-}{71.80}$

The only other measures are:

	1874.62	307°3	71.79	3n	Δ
--	---------	-------	-------	----	---

There is a 14m star from A 113°9: 12°17 (1901.53) 4n. There is also a small nebula in the field; from A in the direction of 217°3, and from B in 221°0. The principal star is given a proper motion of 0°085 in 54°3.

J 20.	7 10.1	9.7
R.A. Decl.	195 25 m - 1 s = 2 - 22 f	}
	A and B	
1901,589	6572	1548
. 760	68.9	1.22
1901.67	67.0	1.35
A an	ad C $(-\Sigma 2535)$	
1901,589	29807	25798
601	297.9	25.91
. 760	298.7	25.90
1901,65	298.4	25.91

No material change.

H 5128.	8.1 10.1	10.3
RA. Deel.	19 h 26 m 36 s = 18 52 f	}
	A and B	,
1901,589	111:0	20″88
601	111 1	21.08
1901.59	111.2	20,98
	B and C	
1901,589	125, 5	4 *29
. 601	127.1	4.17
1901=59	126.3	1.23

No other measures of BC except an angle by H of 125/9 (1836,5). The single measure of AB of 1879 in Cin' shows no change. A and B are S.D.(18) 5413 and 5444.

Discovered by Howe, but the place in Cin⁵ is in error in both R.A. and Deel. The only measures are those by him in 1879, which show no motion. The principal star in D.M.(3-)4079.

	H V. 10	14. 7.3 9.8	
	R.A. Deel.	19 ^h 30 ^m 55 ^s { + 15 37′ }	
1901.	133	12676	39:08
	136	126.3	38.56
	171	125.4	38.82
1901.	15	126.1	38.82

The place is a little uncertain in **H**. The principal star is D.M.(15)3877. The magnitude in D.M. is 6.7. The only other measures, except position angle of 106°3 (1783.65), are:

1893.55 121°9 39′27 1*n* Bigourdan

€ Sagillac

R.A. Decl.	$+\frac{19\%31\%51\%}{+16\%12\%}$	
1901, 133	81/9	89:78
. 171	81.3	89.71
. 173	80.9	89,96
1901.46	81.4	89.82

As a wide pair this is \mathbf{H} V1, 26 \mathbf{H} V1, 63 = \mathbf{H} N, 83 \mathbf{S} 721 $\mathbf{O}\Sigma$ (App) 185. In \mathbf{H} V1, 63 the angle is reversed. \mathbf{H} N, 83 is given 3^mp and 11 s, but it is identical with this star. The A.G. proper motion of A is very small, 0′013 in 297°5.

1782.30	81.5	91.787	1n	Ħ
1800	79.9	87.86		Lalande
1870.2	8171	91.57		A.G.
1875.61	81.3	90.68	4n	J

H 1423. 9 Cygni. 6.5 . . . 11.2

R.A. Deel.		
1900, 173 . 687	127°8 129, 1	20185 21,15
1900,58	128.6	21,00

Only 11, 136–3; 12 - (1828). The proper motion is insensible, 0.021 in 1585 (Auwers).

	$O\Sigma~379$	rej. 8.0 8	,f.
	R.A. Decl.	,	
1900) 703	86° I	21197
1901	260	86-7	21,89
1900	98	86,5	21/93

Without change.

H	П. 32 - Џ	N. 84.	G.b.,	8.6
		16 19 31 1	1	
1588)	173 553	300 9 301 8		28116 28-67
1900	L. j	301/3		28 51
The only	шеазигея <u>а</u>	10.1		

1796 59 301°8 27°20 1*n* **y** 1810,22 302,2 28,61 2*n* 02

No observations except 11, 351 5:30 : 7...19 (1830). His description ac: "A large star m a constellation of at least a dozen small ones within 2 distance; that taken forms with the large star a good representation of the Georgium Sidns and one of its safellites. It is a lair comparison in point of light."

O. Stone

The measures in Cm² are 224-1:5°06:9.5...11.0 (1879.61) 4n. 3 could not find anything in this vicinity to correspond with the description, though there are many laint pairs. One near this place is 64%7:7°51.

$\Sigma 2$	85 60 vej.	L 3710G. 7.2.	9,5
	RA. Dort	19° 35 ° 31 / + 23 - 26° (
1901	GOD	295, 0	15*12
	760	295 1	15 18
4904	68	295 0	15/30

No other messures.

No measures by H. He saw only the three brighter stars. A and Care D.M.(0)1283 and 1281

ΟΣ 381	rej7.211.7	,
	186 37 m 23 /	
1900-176	b 7	15'01
.616	6.4	15-16
1.1.1	b 7	15/20
1500 51	6.0	16-13
Unchanged,		

W 1 X I X . 944

Noted "duplex" in Wesse. It is not double, although there are several stars in the field. The 7½m star of has a 25 companion p. In the D.M. the Wesse star is Cl.)1205, and a 9.3m star, No. 1208, is 264f and 2'2n. The difference in R.A. is now much less.

OΣ	(App) 19	$0=7.2\dots 12$	8.1
		180° 380° 50 - 7 + 16 - 57 - 5	
	/	A and B	
1901	171	299-1	11782
	609	298 8	11 66
1901	49	295-1	117.4

	A and C	
1901.471	$316^{\circ}2$	67.51
. 509	316.3	67.56
1901.49	$\overline{316.2}$	$\frac{-}{67.53}$

The faint star was added with the 18½-in. No change.

1878.40	$300^{\circ}2$	11.64	1n	β
1875.66	316.5	67.66	3n	Δ

H N. 113

R.A. =
$$19^{h} 40^{m}$$

Decl. = $+37^{\circ} 15^{\circ}$

 μ has no measures; it is given as Class II, with the above place. There is no double star here, and there is little doubt of his observation belonging to Σ 2578, which is in the same vicinity uf. In the course of this search I ran on to 0Σ 384, and measured it once; $192^{\circ}7:0.598$ (1901.47).

H 898

R.A. =
$$19^{h}41^{m}55^{s}$$

Decl. = $+31^{\circ}24^{\circ}$

Described by H as a faint triple, all 11m, $225^{\circ} \pm : 2^{\circ} \pm AB; 225^{\circ} \pm : 6^{\circ} \pm AC$. Very carefully looked for twice, but nothing of this kind found. There are many faint pairs in the vicinity, but not of the description given.

Ho 114

R.A. =
$$19^{h} 41^{m} 59^{s}$$
 Decl. = $+32^{\circ} 36^{\circ}$ A and B. $7.2...13.5^{\circ}$ 1901.529 233°7 3(15)

A and C (new). C = 14

1901.529 215°4 9.72

A and D. D = 8.2

1901.171 200°2 31.36

.509 200.1 31.49
.529 200.7 31.47

1901.50 200.4 31.44

AD is μ N, $110 = 8.726 = 0\Sigma$ (App) 192. The faint star C has not been seen before. There is no material change in the other stars.

The principal star is P XIX, 1058. The observation in Mitchell belongs to some other pair. The only measure is:

$$1879.54$$
 $281^{\circ}3$ $37'88$ $3n$ Cin

$$\begin{array}{c|c} \textbf{Jacob.} & 9.0 \dots 9.1 \\ R.A. & = 19^h 43^m 59^s \\ Deel. & = -11^\circ -5^\circ \end{array} \\ \\ \begin{array}{c|c} 1901.455 & 320^\circ 0 & 28^\circ 66 \\ .473 & 319.0 & 28.60 \\ .531 & 319.0 & 29.00 \\ \hline 1901.49 & 319.3 & 28.75 \end{array}$$

The components are S.D.(11°)5146 and 5147. The only other measures are :

Hussey in 1899 found A to be a close and unequal pair (= Hu 77). The seeing was too poor to measure AB. This triple is $12^{\circ}p$ 51 Aquitae.

The increase in the distance since the measures of Hough agrees with the proper motion of A, 0.08 in 315.5.

	B and C	
1901.605	12°0	21/60
1902.433	13.7	21.99
	$\frac{-}{12.8}$	$\frac{-}{21.79}$

Positions estimated by H; he calls C 18m. The large star has a proper motion of 0.112 in $3^{\circ}6$.

$$1887.81$$
 $102^{\circ}1$ $53^{\circ}92$ $2n$ Engelhardt

No measures in H. Unchanged since my measures in 1880.

No other measures, except Leipsic A.G., $237^{\circ}0$: 12'12 (1893.54). A is D.M. $(11^{\circ})4030$.

Wilson. Cord.D.M.
$$(24^{\circ})15677$$
. 9...10.4

R.A. = $19^{h} 47^{m} 46^{s}$
Pecl. = $-24^{\circ} 10^{\circ}$

1901.605 116.1 17.17

1902.433 116.5 17.32

1902.02 116.3 17.24

Identified as above. The only measure is: $1885.71 \quad 117^{\circ}6 \quad 17^{\circ}34 \quad 1n \quad \text{H. C. Wilson}$

III.
$$105 = \Sigma 2595 \ rej. 9.4 \dots 9.7$$

R.A. = $19^{h} 47^{m} 55^{s} \left\{\begin{array}{ccc} \text{R.A.} & = 19^{h} 47^{m} 55^{s} \\ \text{Decl.} & = +19 & 59^{s} \end{array}\right\}$

1901.436 215.5 16.38

 $\begin{array}{cccc} .589 & 214.2 & 16.34 \\ \hline 1901.51 & 214.8 & 16.36 \end{array}$

There is a 10m star 37%0:24%0. The other measures are:

$$1783.45$$
 $219^{\circ}6$ $14^{\circ}48$ $1n$ $\frac{1}{8}$ 1881.39 214.9 16.31 $3n$ β

Evidently fixed. A is D.M.(19)4192.

Without change.

The components are D.M. $(10^{\circ})4132$ and 4133. The only complete measure is:

1875.11 133°7 16704
$$2n$$
 4

H. I. 93. L. 38205. 8.0 . . . 8.6

$$\begin{array}{cccc} \text{R.A.} &=& 19^{\,\text{h}} \, 55^{\,\text{m}} \, 30^{\,\text{s}} \\ \text{Decl.} &=& -0^{\,\text{m}} \, 32^{\,\text{s}} \end{array} \right\}$$

$$1900.458 & 293^{\,\text{s}} \, 0 & 2.14$$

$$1901.433 & 298.9 & 2.07$$

$$.436 & 299.7 & 2.14$$

$$.452 & 294.2 & 1.97$$

$$1901.19 & 296.4 & 2.08$$

The change, if any, is a small increase in the angle. There is a 11.5m star, 2°2: 26′6.

Σ 2612

R.A. Deel.	$= 19^{h} 55^{m} 31^{s}$ $= + 6^{\circ} 36'$	}
1901.452	53°3	38:97
.471	53.7	38.69
. 529	53.6	39.05
1901.48	$\overline{53.5}$	${38.90}$

The distance is slowly increasing from proper motion, the angle remaining constant. Σ found 36559(1827.67). These stars point to a 3" or 4" pair of 12.5m stars about 30" from B.

No other measures. The description in H.Z. is $sf: 4" \pm : 8 \text{-} 9 \dots 15$.

Σ 2619

No change in AB. C and D are not in Σ . C was first noted by H, and D added by 0Σ in 1854. The only measures of CD are:

$$1879.49 183^{\circ}8 5^{\circ}45 1n \beta$$

This is H 605, the Deel, of which is uncertain in H. The companion is D.M. $(37^{\circ})2743$. The colors, red and green, are well marked. There is probably a misprint in the distance by Secchi, $335^{\circ}2:23'83$ (1856.63) 1n.

26 Cygni	. 68.3	. 12.2	
R.A. Deel.	$= 19^{h} 57^{m} 58^{s}$ $= +49^{+} 46^{s}$	}	
	A and B		
1898.463	14794	41:98	
.518	147.1	41.87	
.520	146.8	42.03	
1898.50	$\overline{147.1}$	$\overline{41.96}$	
	B and C		
1898.463	74°7	8:74	
.520	75.0	9.30	
1898.49	$\overline{74.8}$	$\overline{9.02}$	
B and D (new). $D = 13.7$			
1898.463	$257^{\circ}2$	10/26	
. 520	257.9	9.94	
$\overline{1898.49}$	$\overline{257.5}$	10.10	

The bright stars make $\mbox{\tt H}$ V. $47 = \mbox{\tt H}$ VI. $60 = 0\mbox{\tt \Sigma}$ (App) 197. C was added with the $18\frac{1}{2}$ -in. in 1878. So far no sensible change in AB.

H 2927.	$7.5 \dots 12 \dots$. 13.2
R.A. Decl	$= 19^{h} 59^{m} 13^{s}$ $= + 0^{s} 7^{s}$	}
	A and B	
1901.433	$125^{\circ}3$	24/14
.471	126.2	24.44
.512	123.5	24.43
$\overline{1901.47}$	$\frac{-}{125.0}$	24.31
В	and C (new)	
1901.433	$185^{\circ}7$	4.82
.471	186.2	4.91
.512	181.0	4.77
$\overline{1901.47}$	$\overline{185.3}$	4.84

No complete measures. 11 gives 135°0 (1830).

OΣ 397 rej.=
$$\Psi$$
 V. 105. 7.3 . . . 8.5
R.A. = 19 h 59 m 16 s
Decl. = +15 s 33 s
1900.647 173.1 37 f 70
.687 173.4 37 . 86
1900.66 737.86

Slow change from proper motion.

$O\Sigma (App)$ 198 R.A. $= 20^{\text{h}} \cdot 0^{\text{m}} \cdot 17^{\text{s}}$ Decl. = + 7° 13' A and B 1901.531 174°0 37:17 173.9 .74237.411901.63 173.9 37.29A and C 1901.531 $186^{\circ}2$ 64:91 .703186.065.27.742186.0 65.111901.66186.165.10

No other measures of B, which was first noted with the 18½-in. No change in AC since the measures of 2.

$$\begin{array}{c} \textbf{H 1477.} \quad \textbf{L 38450.} \quad 8.0 \dots 10.6 \\ \text{R.A.} \quad = 20^{\,\text{h}} \quad 0^{\,\text{m}} \quad 55^{\,\text{s}} \\ \text{Decl.} \quad = \quad + 12^{\,\text{s}} \quad 20^{\,\text{s}} \end{array} \right\} \\ 1901.531 \qquad \qquad 271^{\,\text{s}} \quad 4 \qquad \qquad 20^{\,\text{s}} \quad 16 \\ \frac{.720}{1901.62} \qquad \qquad \frac{270.6}{271.0} \qquad \qquad \frac{19.93}{20.04} \\ \text{Only H, } 265^{\,\text{s}}0: 12^{\,\text{s}} \pm (1828). \end{array}$$

The correct place is given above. A is D.M. (-1°) 3896. No other measures. \mathbf{H} estimated distance 30°.

Herschel's place is that of θ Aquilae: but in the original Catalogue (Phil. Trans. 1782) it is described "a star north of θ ; distance about 1"," and it is not probable that the star measured above is the right one. Most likely it is the 8m star, L 38760, which is 2^m 43^sf θ and 4^s 1s. I have measured the components of this (7.1...85) as follows:

1901.512	80°5	64:09
.586	80.3	64.05
1901.55	${80.4}$	$\frac{-}{64.07}$

This star has a proper motion of 0'262 in 203°6.

The components are S.D.(12)5663 and 5662. The only measures are :

$$1783.18$$
 $267^{\circ}9$
 $62/27$
 $1n$
 $\mathbf{\mathring{H}}$
 1879.63
 265.8
 51.35
 $1n$
 Cin

An examination of Cin⁵ shows that there is an error of 10 revolutions in reading one head, and that the observed distance was 85.53 instead of 51.35.

\$ 735 = \(\mathbb{H} \) V. 136. 7.5 \(. . . 7.7 \)

R.A. =
$$20^{\text{h}} 5^{\text{m}} 9^{\text{s}} \)

Decl. = -029^{s}

1901.605 206:3 55:25

\[.703 \quad \frac{206.1}{206.2} \]

\[\frac{55.48}{55.36} \]$$

Only one measure since 1825, but apparently without change.

$$\begin{array}{cccc} \mathbf{S} \ \mathbf{740} = \mathbf{O} \mathbf{\Sigma} \ (App) \ \mathbf{202}. & 7.3 \dots 7.4 \\ & \text{R.A.} \ = \ 20^{\text{h}} \ 8^{\text{m}} \ 18^{\text{s}} \ \\ & \text{Decl.} \ = \ + \ 6^{\text{s}} \ 14^{\text{s}} \ \\ & 1901.529 & 192^{\circ} 8 & 42.96 \\ & .703 & 193.0 & 43.36 \\ & .720 & 192.6 & 43.22 \\ \hline & 1901.65 & 192.8 & 43.18 \end{array}$$

A comparison with the measures of S and 4 shows that these stars are relatively fixed. They have a common proper motion of 0°197 in 236°1 (Bossert). The components are D.M.(6°)4480 and 4479.

Noted as double in the Harvard Zones. The only other measures are:

AB	1879.46	259°2	1 :2 \pm	1n	Cin
AC	1879.46	276.8	31.17	1n	Cin

$$\begin{array}{ccc} \sigma \ Capricorni. & \mathrm{Sh}\ 380 = \ \ \ \mathrm{V}\ .\ 87 \\ & \mathrm{R.A.} \ = \ 20^{\,\mathrm{h}}\ 12^{\,\mathrm{m}}\ 28^{\,\mathrm{s}}\ \ \ell \\ & \mathrm{Decl.} \ = \ -19^{\,\mathrm{s}}\ 30^{\,\mathrm{s}}\ \ \ell \\ \hline 1901.605 & 178^{\,\mathrm{s}}\ 0 & 55^{\,\mathrm{s}}\ 90 \\ & .742 & 177.5 & 55.90 \\ \hline 1901.67 & 177.7 & 55.90 \\ \hline \end{array}$$

No change since my measures in 1881.

The only measures are:

1836	28?0	56/33	1n	Lamont
1877.77	210.1	55.38	1 11	В

Only observed by H, 260°4 : $18^{\circ} \pm : 9 \dots 16$ (1830); 'delicate and difficult."

H. N. 138. S.D.(17°)5954. 8.0 . . . 8.6
R.A. =
$$20^{h} 15^{m} 23^{s}$$
 Decl. = $-17^{h} 9'$ 1901.455 331°2 3'.07
. 742 331.5 3.09

No measures by **\mathbb{H}**. Unchanged since my measures of 1878. The first mention of this pair after **\mathbb{H}** is by Peters, who found it in observing an asteroid (A.N. 1635).

331.3

3.08

1901.60

H. C. Wilson. 9.5 . . . 9.5
R.A. =
$$20^{\rm h} 17^{\rm m} 33^{\rm s}$$
 } Decl. = $\frac{12^{\rm h}}{5}$ 12' }
1901.531 359°8 2.14
 $\frac{.720}{1901.62}$ $\frac{360.2}{360.0}$ $\frac{2.05}{2.09}$

Discovered by Wilson. The correct place is given above. It is D.M.(5°)4496. The only measures are:

	1893.39	359 % 7	1:80	3n	Wilson
--	---------	---------	------	----	--------

S 749

$\begin{array}{ll} { m R.A.} &= 20^{{ m h}}21^{{ m m}}14^{{ m s}} \ { m Decl.} &= -2^{{ m m}}30^{{ m s}} \end{array}$					
1901.608	189°8	60:00			
. 720	189.6	59.57			
.742	189.6	59.85			
1901.69	$\frac{189.7}{1}$	$\frac{-}{59.81}$			

No change since my measures in 1880, and the measures of S agree with the last. Bossert gives the proper motion of A 0.161 in 248.2, and B 0.183 in 244.1. The measures show no relative motion.

β 363 $R.A. = 20^{h} 24^{m} 28^{s}$ Decl. = $+20^{\circ} 12^{\circ}$ A and B 1900.43861:1 18:70 65.218.74 .70364-519.14.7061900.6164.618.86

	A and C	
1900.438	198°4	44/22
.703	199.0	44.58
1900.62	$\overline{198.7}$	$\frac{-}{44.40}$

These measures indicate that the change in AB is due to the movement of the 11.5m star B, and not the 7m star A.

Given by # Class I-II; "very close triple; vertex f." This is the only object I could find answering the description. The places are practically the same. There is a 13m star 150°0: 15′3 from A.

Σ 2696 R.A. = $20^{h} 27^{m} 34^{s}$ $Decl. = +5 \cdot 2 \cdot \sqrt{}$ A and B 1901.742 305°7 0.484 .760307.3 0.701901.75 306.5 0.77AB and C 1901.742 $348^{\circ}5$ 13:73 .760 349.0 13.83 1901.75348.7 13.78

The 14m star, C, was noted by me with the 18½-in. some twenty years ago. No other measures of it. No material change in AB.

$$\Sigma 2697 \ rej. \quad 7.5 \dots 9.5$$

$$R.A. = 20^{h} 28^{m} 13^{s}$$

$$Decl. = -0^{\circ} 53^{\circ}$$

$$1901.720 \qquad 1^{\circ} 8 \qquad 30.25$$

$$\frac{.760}{1901.74} \qquad \frac{1.8}{1.8} \qquad \frac{30.59}{30.42}$$

The only other measure is:

1848.67 1°7 32′10 1n Mitchell

R.A. =
$$20^{\text{h}} 34^{\text{m}} 7^{\text{s}}$$
 Decl. = $+38^{\circ} 13'$ A and C

1901.318 330°0 27.73
320 329.9 27.59

1901.32 330.0 27.66

 $\Sigma 2708$

A and B 1901.320 20°3

15:39

The 13.5m star B was added by Hall with the 26-in. The principal star has a proper motion of 0.242 in 138°7, and it is well known that the change in C since Σ corresponds to this movement. The other companion was measured to see whether that showed the same displacement. From a comparison of my position with that of Hall in 1878 it appears that B is fixed in space like the other.

The only observation is:

1783.22 49°4 19′53 1n **H**

There is no star in this place. In the notation then in use this angle corresponds to $40^{\circ}6uf$. If it is read sf, the angle would be $130^{\circ}6$. The principal star is D.M. $(61^{\circ})2039$.

W² XX. 1168

R.A. =
$$20^{h} 35^{m} 1^{s}$$

Decl. = $+37^{*} 58'$

In Weisse, "duplex; comes ad boream." This star has no companion. The description applies to Σ 2708, which is near by.

H 2988. D.M.
$$(2^{\circ})4227$$
. 8.5 . . . 9.6
R.A. = $20^{\circ}35^{\circ}52^{\circ}$ \text{Decl.} = $+2 32^{\circ}$ \text{1901.512} 138°.9 24.65
 $-.529$ 138.3 24.65
 $-.529$ 138.6 24.65

H says, "large star very red." It did not appear so on this occasion, nor when examined by me in 1876. $139^{\circ}7:20^{\circ}\pm:(1830)$.

	R.A. = 3	673 20 ^h 36 ^m 29 ^s + 20° 17′	{
		and B	,
$\frac{1900.438}{1901.799}$		297°8 296,6	$\frac{3751}{3.83}$
1901.11		${297.2}$	$\overline{3.67}$
	Λ :	and C	
1900.438 1901.799		$\frac{10578}{105.62}$	Single dist
1901.11	165.1	$\overline{105.71}$	
(Σ 411.	7.8 10	0.9
	R.A. = : Deel. =	$\frac{20^{\circ}38^{\circ}17^{\circ}}{+45^{\circ}24^{\prime}}$	}
1901,531		314°2	17:03
.608		311.6	16.19
1901.57		312.9	16.61

Rectilinear motion.

H 2994. 17 Capricorni.
R.A. =
$$20^{h} 30^{m} 12^{s}$$
 \(\text{Decl.} = $-21^{s} 57'$ \)

Herschel gives $338\%7:20^{\circ}\pm:6\ldots18$ (1830); "requires verilication." I examined this star several times with the 18½-in, in 1877 under favorable conditions without finding any companion; and on two nights was unsuccessful with the 40-in. It is safe to say the suspected companion has no existence.

Skinner, 8.8 . . . 8.8
R.A. =
$$20^{\text{h}} 39^{\text{m}} 46^{\text{s}}$$
 \(\begin{align*}
\text{Decl.} = -17 & 8' \end{align*}
\)
1900.515 & 29978 & 3.43
1901.471 & 297.9 & 3.66
\(\begin{align*}
.531 & 299.1 & 3.60
\\\
\end{align*}
\]
\[
\frac{1}{1901.17} & 298.9 & 3.56
\]

From a list of doubles furnished me several years ago by Professor Skinner, of the Naval Observatory, noted by him in his meridian work. It has since been catalogued by Innes.

OΣ 412 rej. 7.3 . . . 10.9 . . . 10.9
R.A. =
$$20^{\text{h}} 41^{\text{m}} - 1^{\text{s}} \left\{ \begin{array}{c} \text{Decl.} = +50^{\text{h}} 11^{\text{m}} \\ \text{Decl.} = +50^{\text{h}} 11^{\text{m}} \end{array} \right\}$$
A and B

1901.260 280.3 25721
.318 281.5 25.32
.320 281.1 25.27

1901.30 281.0 25.27

	B and C	
1901.260	6°0	4:98
. 318	9.3	4.83
. 320	7.0	4.83
1901.30	${7.4}$	$\frac{-}{4.88}$

At this time there were no measures of these stars published.

The only previous measures are:

$$1879.35 \quad 3338 \quad 100354 \quad 2n \quad \beta$$

The large star has a proper motion of 0.816 in 6.7, and the computed place of the companion from this movement and the measures of 1879 is 39.1: 85.61. The small star is therefore not moving with the other.

Without change.

This is in the field p the 8m star, D.M.(61°)2057. The only observations are 193:5: $1\frac{1}{2}$: 13 = 13 (1830).

O.Arg.N. 21247. 8.7 . . . 8.8
R.A. =
$$20^{h}48^{m} - 2^{s} \left(\frac{2^{s}}{1001.531} + \frac{181^{o}3}{183.5} + \frac{9'64}{1901.57} \right)$$

1901.57 183.9 9.58

"Duplex" in O.Arg. No other measures. The components are reddish: greenish. Other companions more distant.

H 5514

R.A. =
$$20^{h} 49^{m} 31^{s}$$

Decl. = $-5^{\circ} 31^{s}$

Described by H, $200^{\circ} \pm : 7^{\circ} \pm AB$; $70^{\circ} \pm : 12^{\circ} \pm AC$, all small stars. There is a faint triple of 11m stars near this place, but the angles do not correspond. Glasenapp was unable to find it.

OS 421 rej. 8.0 . . . 9.3
R.A. =
$$20^{h}50^{m}47^{s}$$
 Decl. = $+31^{\circ}43'$ 1901.531 192°6 36'73

Hussey measures a 12.5 star, 77°5: 30′57 (1898.58).

Howe. L 40496. 6.8 . . . 11

R.A. =
$$20^{h} 51^{m} 2^{s}$$
 \
Decl. = 0 0 \

1901.529 71°7 26°30

\[\frac{.531}{.531} \quad \frac{72.0}{71.8} \quad \frac{26.25}{26.27} \]

The other measures are:

$$1879.50$$
 $71^{\circ}8$ $26^{\circ}19$ $2n$ Cin^{5}

The principal star has a considerable proper motion, but the authorities differ as to the amount; 0°109 in 204°2 (Bossert); 0°075 in 180° A.G. The stars seem to be moving together.

D.M.(0°)4621. 8.8 . . . 12.7 . . . 9.0
R.A. =
$$20^{h} 51^{m} 21^{s}$$
 }
Decl. = $+ 0^{\circ} 8'$ }
A and B
1901.529 335°.7 11'.44
.531 334.1 11.36
1901.53 334.9 11.40
A and C
1901.529 138°.6 41'.25
.531 138.7 41.38
1901.53 138.6 41.31

In the Harvard Zones, "double, comp. f." The only measure is:

The prior observations are:

1830	$300^{\circ} \pm$	0.5	1 n	\mathbf{H}
1878.17	291.0	1.81	2n	β

L 40682. 6 ... 8.8R.A. = $20^{h} 54^{m} 58^{s}$ Deel. = $+18^{-} 52^{r}$ 1901.531 333°3 45'92 .720 333.5 45.49 .739 333.4 45.63 1901.66 333.4 45.68

Both stars in D.M. The only measure is: $1880.63 \quad 332^{\circ}7 \quad 44^{\circ}66 \quad 2n \quad 680.63$

D.M.(0)4644
R.A. =
$$20^{h}56^{m}24^{s}$$
 Decl. = $+0^{n}10^{n}$ (

Described in the Harvard Zones, $sp: 3" \pm : 9 \dots 12$. There is no companion of any kind, and nothing as described near this place.

H 1606. D.M.
$$(53^{\circ})2533$$
. 8.8 . . . 9.7
R.A. = $20^{\circ}57^{\circ}5^{\circ}$
Decl. = $+54^{\circ}4^{\circ}$
1901.531 186°4 18'33
.608 185.6 18.51
.739 185.9 18.34
1901.62 186.0 18.39

H gives $185^{\circ}1:12^{\circ}\pm$ (1828). There is a fine nebula in the field.

The measures at Cin in 1879 show no change. Many stars in the field.

Not in D.M., but closely f D.M.(11°)4483. H found $93^{\circ} \pm : 5'' \pm : 9 \dots 10$ (1820).

The proper motion is small, 0:053 in 186:0. There is a 15m star 110°9: 39°2 from A. H gives 68°5: $70 \pm ; 90 \pm : 10 \pm (1830).$

ΟΣ 527 R.A. $= 21^{h} 2^{m} 1^{s}$ Decl. = $+4^{\circ}40^{\circ}$ 0.46 1900.551 $272^{\circ}3$ 266.70.41.5531900.55269.50.43

H 3011. D.M.(5°)4707. 8.2 . . . 14.5
R.A. =
$$21^{\text{h}} 2^{\text{m}} 1^{\text{s}}$$
 $\left. \begin{array}{c} \text{R.A.} = 21^{\text{h}} 2^{\text{m}} 1^{\text{s}} \\ \text{Decl.} = +5 \ 10^{\text{s}} \end{array} \right\}$
1900.703 232°6 17″08
 $\frac{.706}{.706}$ 232.8 17.39
 $\frac{.39}{.700.70}$ 232.7 17.23

The principal star has a proper motion of 0.170 in 206°0 (Porter). The only measure is: 255°4 : 20″ \pm (1830). There is a 6"3 pair of 11m stars from A, $269^{\circ}:148^{*}.$

Without change.

Harvard Zones.
$$8.9 \dots 9.2$$

$$R.A. = 21^{h} 4^{m} 0^{s}$$

$$Decl. = + 0^{h} 49^{t}$$

$$1901.531 \qquad 318^{h} 7 \qquad 0.794$$

$$.586 \qquad 315.1 \qquad 0.79$$

$$1901.56 \qquad 316.9 \qquad 0.86$$

Noted as double in the Harvard Zones. This is D.M.(0)4674. Only measured as follows:

> 1877.06 318°3 0.72 3n

\$ 779. L 41086. 7.5 ... 8.5
R.A. =
$$21^{h} 4^{m} 26^{s}$$
 $\left. \begin{array}{c} \text{R.A.} = 21^{h} 4^{m} 26^{s} \\ \text{Decl.} = +38^{\circ} 14^{\circ} \end{array} \right.$

$$\frac{1900.725}{1901.260} \qquad \frac{10^{\circ}3}{10.5} \qquad \frac{112.77}{112.37}$$

$$\frac{1900.99}{10.4} \qquad \frac{112.57}{112.57}$$

There are two or three faint stars between, and many in the field. The only other measures are:

1824.81 1028 114:78 2nSouth

 Σ 's distance in 1828 of 21'19 seems to be too large. 1865.33 $269^{\circ}9$ 20121 5n

H 5516 R.A. = $21^{h} 10^{m} \pm i$ Decl. = $+ 2^{\circ} 29^{\circ}$

Described by H, "quadruple; all in a line," the principal star 9m and the others 18m and 20m. This place was carefully swept over, but nothing found which seemed to answer the description.

A.G.	C. 13 . τ Cygn	ı i
R.A. Deel	$ = 21^{h} 10^{m} 0^{s} $ $ = +37^{\circ} 32^{\circ} $	ţ
1897.689	324°6	0.794
1898.345	322.2	0.78
.482	322.1	0.86
1898.17	323.0	0.86

	β 163	
	$= 21^{h} 12^{m} 47^{s}$ $= + 11^{m} 47^{s}$	
1900.782	9?1	82/41
1901.471	9.5	82.55
.512	9.3	82.35
1901.25	9.3	82.44

I have measured this 10.9m distant star for the purpose of having hereafter an independent value of the proper motion of AB.

$$\begin{array}{ccc} \textbf{H 5265.} & 9.6 \dots 10.1 \\ \text{R.A.} & = 21^{\ln 15^{m}} 10^{s} \\ \text{Decl.} & = -22^{s} 53^{s} \end{array}$$

$$\begin{array}{cccc} 1901.589 & 191^{\circ}9 & 31.68 \\ & & & & \\ 1901.67 & & & & \\ \hline 192.8 & & & & \\ \hline 31.62 \end{array}$$

The principal star is Cord.D.M.(22[°])15347. This pair was put on the list to see if the apparent change in distance was real.

1879.65	19°1	22.85	1n	$\mathrm{Cin^5}$
1890.57	191.1	32.19	2n	Glasenapp

Evidently without change.

H 281. D.M.(
$$16^{\circ}$$
)4505. 8.7 . . . 9.2
R.A. = $21^{\circ}15^{\circ}32^{\circ}$ | Decl. = $+16^{\circ}14'$ | 1901.589 333°.9 13'.97
 $\frac{.729}{1901.66}$ 335.3 $\frac{14.09}{14.03}$

No change since measures of Leavenworth in 1896 and Cin in 1879. H made the distance 1752 (1829.57).

н 30	23. β Equul	ei
R.A.	$=21^{\mathrm{h}}16^{\mathrm{m}}56^{\mathrm{s}}$	}
Decl	$= 21 ^{h} 16 ^{m} 56 ^{s}$. $= + 6 ^{\circ} 18 ^{\prime}$	5
	A and B	
1901.509	$258^{\circ}3$	33.186
.589	258.9	33.88
1901.55	$\overline{258.6}$	${33.87}$
	C and D	
1901.509	188°1	6/13
.589	187.6	5.48
1901.55	$\overline{187.8}$	$\frac{-}{5.80}$
	A and C	
1901.589	306°0	68/49
	A and E	
1901.589	$275^{\circ}3$	93.49
S 7	88. 7.2 7.3	3
R.A.	$= 21^{h} 17^{m} 31^{s}$ $= -7^{\circ} 6^{s}$)
Dool	- 7º 6'	}

$$\begin{array}{ccc} \text{R.A.} &= 21^{\text{h}} 17^{\text{m}} 31^{\text{s}} \\ \text{Decl.} &= & -7^{\circ} & 6' \end{array} \}$$

$$\begin{array}{ccc} 1900.473 & 88^{\circ}1 & 44'.15 \\ \underline{.476} & 88.0 & 44.43 \\ \hline 1900.47 & 88.0 & 44.29 \end{array}$$

No other measures since 1824.

1824.78 83°5 36′78 2n South

The components are L 41562 and L 41563. The change in distance is supported by the meridian positions, which give, Lalande 37:25 (1800) and Lamont 39:35 (1850).

R.A. =
$$21^{h} 17^{m} 37^{s}$$

Decl. = $-13^{\circ} 23^{\circ}$

H has "a most minute point strongly suspected," and gives 270°: 13° (1823). I have looked for this many times in the last twenty years with various apertures, without finding anything of this kind. The 40-in. shows nothing nearer than the distant star measured in 1877.

Hd 165

R.A. =
$$21^{h}19^{m}48^{s}$$
: \(\lambda\)
Decl. = $-28^{\circ}50'$: \(\lambda\)

The description in the Harvard Observations is $137^{\circ}: 10^{\circ} \pm : 8\frac{1}{2} \dots 11 (1868.82)$. There certainly is no such pair in or anywhere near this place. I looked for it in 1876, and again with the 40-in. It may be identical with a Cin pair, having about the same R.A., but 8° north of the Hd place. The description agrees: $142^{\circ}9:8^{\circ}22:8\dots 10 (1879.54)$.

Herschel gives:

1834.6 $40^{\circ}7$ $1.5\pm$ 1n H

$$\begin{array}{c|ccccc} \textbf{H 1668} & 8.4 \dots 9.5 \\ & & & & \\ \text{R.A.} & = 21^{\ln} 31^{m} 56^{s} \\ & & & \\ \text{Decl.} & = & + 23^{\circ} & 8^{\circ} \end{array} \right\} \\ 1901.414 & & 34^{\circ} 8 & 8^{\circ} 16 \\ & .416 & 37.0 & 8.31 \\ & .473 & 36.2 & 8.23 \\ \hline & & & \\ \hline 1901.43 & & 36.0 & 8.23 \end{array}$$

H gives $34^{\circ}2:7''\pm:10...12$ (1828). Noted as double in A.G.

H called the small star 17m. The large star has a proper motion of 0.103 in $84^{\circ}5$ (Boss.). The only measures are :

1878.71 344°9 25'95
$$1n - \beta$$

S 798 = H VI. 103. $\epsilon Pegasi$ R.A. $= 21 \, ^{\rm h} \, 38 \, ^{\rm m} \, 17 \, ^{\rm s}$ Decl. = $+ 9^{\circ} 20'$ A and B 1901.760 325°0 82/16 .818324.882.001901.7982.08324.9A and C 1901.760 320°9 140788 .818 321.8141.34.835321.1141.111901.80 321.3111.11

The proper motion of A is very small, 0.016 in 132.9. The following are all the measures:

AB	1782.97	322° 7	90793	1n	Ä
	1879.54	325.2	81.36	2n	β
AC	1825.18	323.0	138.51	2n	South
	1874.77	321.6	140.41	3n	L

$\begin{array}{c} \mu \ Cygni \\ \text{R.A.} = 21^{\text{h}} 38^{\text{m}} 46^{\text{s}} \\ \text{Decl.} = +28 \mid 12^{\text{s}} \end{array} \right\}$ $\begin{array}{c} \text{A and C} \\ 1900.647 & 271^{\circ}5 & 40.99 \\ .684 & 271.2 & 41.06 \\ \hline 1900.66 & 271.3 & 41.02 \end{array}$

This 12.2m star was added by me with the $18\frac{1}{2}$ -in. The only measures are :

1878.91 263°2 35″34
$$3n = \beta$$

With this place and the proper motion of A (0°353 in 135°4) the computed position of C at the above data is 272°4:41°32. It is therefore evident that C does not belong to the binary system.

H 285.
$$11.5...11.6$$

R.A. = $21^{h} 39^{m} 4^{s} \langle 0 \text{ Decl.} = +10^{s} 7^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s} \langle 0 \text{ Pecl.} = +10^{s} \rangle \langle 0 \text{ Pecl.} = +10^{s}$

H estimated distance 2^n to 3^n . It is near D.M. $(10^\circ)4617$.

N. 74 = H 947. 7...10.7..., 11.7

R.A =
$$21^{h}$$
 15^{m} 57^{s} }
Decl. = $+19^{\circ}$ 16° }

A and B

1901.799 94°3 19.78

.818 94.1 20.15

1901.81 94.2 19.96

A and C

1901.799 322°4 24°32
.818 321.7 24.34

1901.81 322.0 24.33

Not measured by either Herschel. The only other measures are my own in 1879, which show no change,

The other measures indicate some change in distance.

The components are D.M.(5) 1915 and 4913.

H. C. Wilson

$$R.A. = 21^{h} 54^{m}:$$

Decl. = + 1° 20':

The description in Cin^{10} is $212^{\circ}\text{H}: 1'20:8...9$ (1882.76) 1n. There is no such pair in or near this place. All the stars are much smaller than 8m. The description is not unlike Σ 2856, which is $5^{\text{m}}f$ and $3^{\circ}n$.

No other measures of AC. AB unchanged.

The prior measures are:

The proper motion of A is 0.068 in 136.9, which corresponds to the change in distance shown by the measures.

OΣ (App) 228. 8.1 . . . 8.7
R.A. = 21^h55^m 51^s }
Decl. = + 4° 12° }
1901.512 27°2 75′67

$$\frac{.604}{1901.56}$$
 27.4 $\frac{.604}{75.60}$ $\frac{.604}{75.63}$

The smaller star not in D.M. The other is D.M. $(4^{\circ})4788$. A has a proper motion of 0.145 in 163°2, which explains the change.

There is a 12m star from A, 157°9; 25.66 (1901.60) 1n.

$$\begin{array}{c} \pi^{1} \ Pegasi \\ \text{R.A.} = 22^{\text{h}} \ 3^{\text{m}} \ 54^{\text{s}} \ \\ \text{Decl.} = + 32^{\text{h}} \ 35^{\text{s}} \ \\ \text{A and B.} \quad \text{B} = 13.5 \\ 1900.684 \quad 317^{\circ}6 \quad 27^{\circ}42 \\ \underline{.687} \quad 316.9 \quad 27.04 \\ \underline{.687} \quad 317.2 \quad 27^{\circ}.23 \end{array}$$

The only prior measures are mine in 1879. There is an error in the printed angle of AB; it should be 314.4.

No recent measures, but unchanged.

No other measures. The Deel, in H is 1° too large. A and B are D.M.(44°)4059 and 4060.

$$\begin{array}{cccc} \textbf{H 3094.} & 10.7 \dots 10.7 \\ & \text{R.A.} &= 22^{\text{h}} & 5^{\text{m}} & 9^{\text{s}} \\ & \text{Decl.} &= + & 2^{\text{m}} & 21^{\text{s}} \end{array} \right\} \\ 1900.780 & 301^{\circ}6 & 4^{\circ}80 \\ 1901.531 & 301.7 & 5.15 \\ \hline 1901.15 & 301.6 & 4.97 \end{array}$$

H gives $315^{\circ}5:3''\pm:10\ldots10$ (1830). A little p this, and about 2's is a similar pair, components equal, and same as the other pair; $114^{\circ}6:3'.72$ (1901.15) 2n. H 957, $310^{\circ}\pm:2''\pm:11\ldots11+(1820)$ should be 20'n of H 3094, but I could find only the pairs measured, and the last named probably identical with one of the others.

H 1741. B.A.C. 7746. 6.2 . . . 9.7

R.A. =
$$22^{h}$$
 6^m 29^s {
Decl. = $+50^{\circ}$ 14' }

1900.681 308°.5 25'.21

.687 309.8 25.49

1900.68 309.1 25.35

The principal star has a proper motion of 0.151 in 62°5, which accounts for the change.

1828	$328^{\circ}5$	20 " \pm	1n	H
1876.29	316.8	23.22	1n	٦
1900.68	309.6	25.04	2n	Espin

$$\Sigma \ 2875 \ rej. \quad \text{S.D.}(8^{\circ})5835. \quad 8.8 \dots 11.6$$

$$\text{R.A.} = 22^{\text{h}} \ 7^{\text{m}} \ 23^{\text{s}} \left\langle \right.$$

$$\text{Dect.} = - \ 8 \ 24^{\circ} \left\langle \right.$$

$$1901.605 \qquad 44^{\circ}1 \qquad 15'00$$

$$\frac{.758}{1901.68} \qquad \frac{45.6}{44.8} \qquad \frac{14.62}{14.81}$$

No other measures.

R.A. =
$$22^{h} 8^{m} 3^{s}$$

Decl. = $+60^{\circ} 10^{\circ}$

Given by \(\mathbb{H} \) as Class I with angle 4°2 (1783.06). The place is that of a 6.7m star. I looked for this carefully in 1876, and now with the 40-in., and there is certainly nothing there. There must be a large error in place.

H 293 =
$$\Sigma$$
 2888 rej.
 8.7 . . . 11.0

 R.A. = $\frac{22^{h}}{11^{m}}$ 2s \ Dect. = $\frac{25^{h}}{12^{h}}$ 18.41

 1900.742
 276.8
 18.41

 1901.509
 276.8
 18.80

 .512
 275.4
 18.44

 1901.25
 276.3
 18.55

This is D.M.(12)4794. The only prior measures are by H, $276^{\circ}4:10^{\circ}\pm:9\ldots13$ (1820).

Only II, $83^{\circ}9 : 8^{\circ} \pm (1830)$.

In Mens. Microm., p. xxxiv, Σ gives:

1831.32	50°0	9.70
1831.32	266.0	35.0

Howe

R.A. =
$$22^{h} 14^{m}$$
:
Decl. = $+5^{\circ} 3'$:

The measure by Howe in Cin⁵ is $121^{\circ}6:1^{\circ}03:8.5...9.0\,(1879.61)\,1n$. This pair should be 8' south of the triple 30 *Pegasi*. There is no such pair either in or anywhere near the given place. All the neighboring stars were examined. It is undoubtedly identical with β 842, which is about $10^{\circ}p$ and $3^{\circ}n$ of the place given above. The description corresponds exactly.

$$\begin{array}{cccc} \text{D.M.}(10)4731. & 8 \dots 11 \\ \text{R.A.} &= 22^{\text{h}} 14^{\text{m}} 25^{\text{s}} \left\{ & \\ \text{Dect.} &= + 40 & 26^{\text{s}} \right\} \end{array}$$

$$\begin{array}{cccc} 1901.589 & 305^{\circ}1 & 39.78 \\ .609 & 305.4 & 40.12 \\ \hline 1901.60 & 305.2 & 39.95 \end{array}$$

H observed this star for Σ 2998, which is $2^{m}f$: $310^{\circ}7$; $35'' \pm (1830)$. He called the components orange: blue. A appears yellowish, but no noticeable color in B.

The only measures of this 12.2m star are:

1838.76 125°9 49′46 1n Lamont 1878.72 129.6 43.87 In β

The principal star has a proper motion of 04103 in 80°5.

H gives for AB $283^{\circ}5:15^{\circ}\pm:9...12$ (1828). The magnitude of A in D.M. is 6.5.

The other measures are: 1875.98 190°4 65′72

4n

1

In Weisse "duplex 6"." No other measures.

H 3116. D.M.
$$(6^{\circ})5023$$
. $9.5 \dots 12.5$
R.A. = $22^{\ln}21^{\ln}15^{\circ}$ beel. = $+6^{\circ}56^{\circ}$ l 1901.720 257.8 25.95 1902.471 257.8 25.73

No measures in H; "estimated from diagram."

Harvard Zones. $9.5 \dots 9.6$ $R.A. = \frac{22^{h} 22^{m} 53^{s}}{50^{e}} \left\{ \begin{array}{ccc} R.A. & = \frac{22^{h} 22^{m} 53^{s}}{50^{e}} \\ 1901.720 & 181^{o}5 & 3^{o}4 \\ 1760 & 182.5 & 3.22 \\ \hline 1701.74 & 182.0 & 3.13 \end{array} \right.$

Noted in Hd Zones, $nf: 3'' \pm .$ No other measures. It is D.M.(0) 4879.

Krueger	6	0
---------	---	---

	$1 = 22^{h} 23^{m} 43^{s}$ $1 = +57^{\circ} 3'$	
	A and B	
1901.318	133°3	3.125
.320	130.5	3.37
.375	131.4	3.38
.473	130.4	3.42
1901.37	$\overline{131.4}$	3.35
	A and C	
1901.318	58°8	36759
.320	58.5	36.26
.375	58.4	36.69
.473	58.8	36.66
1901.37	$\overline{58.6}$	${36.55}$
	A and D	
1901.318	98°7	66:73
.328	98.4	66.95
.375	98.5	67.57
1901.34	$\overline{98.5}$	$\overline{67.08}$
A ar	nd D.M.(56°)278	4
1901.318	$144^{\circ}62$	199#31
.320	144.72	199.50
.375	144.63	199.15
.474	144.52	199.65
1901.37	$\overline{144.62}$	199.40

It was apparent soon after the first remeasurement of A by Doolittle that these stars belonged to the type of 61 Cygni, where the change in the relation of the components is due to their different proper motions. These are small stars, and their movement in space had not been noticed by meridian observers and those interested in stellar motions.

To determine whether or not the third star, measured by me in 1890, has any proper motion of its own, I have connected A with the nearest bright star, D.M.(56°)2784. The positions of A and this star are in the A. G. catalogue, and these give for the relation of the two 151°9: 195′35 (1873.2). Comparing this with my direct measures, assuming that the distant star is fixed, we have for the proper motion of A

0.5903 in 247°2. The present measures of AC and those of 1890 make this value 0.5927 in 244°9. The close agreement of these results makes it practically certain that the change is solely due to the movement of A. Taking the mean, 0.5915 in 246°0, as the best value for this motion, and my measures of AB in 1890 and 1901, we have for the proper motion of B 0.5702 in the direction of 239°0.

H 5528

R.A. =
$$22^{h}31^{m}22^{s}$$

Decl. = $+8^{\bullet}11^{\circ}$

H gives $90 \pm :1\frac{1}{2}$ ": $11 \dots 12$ (1823); "elongated; not fairly divided." The place is exactly that of the 9.1m star, D.M.(8°)4902 = W⁺ XXII. 631. I looked at this star with the 6-in. in 1876, and with the 18 $\frac{1}{2}$ -in. in 1877 without seeing any indication of duplicity. I could find no pair in or near this place with the 40-in.

H 5529.
$$\kappa$$
 Aquarii
R.A. = $22^{h} 31^{m} 32^{s}$
Decl. = $-4^{\circ} 51'$

H describes this $290^{\circ}\pm:4\frac{1}{2}^{\circ}\pm$ (1827); "an exceedingly minute point strongly suspected." I have looked in vain for this many times in past years. The 40-in under fine conditions failed to show any companion. The principal star has a proper motion of 0.142 in 219°2.

$$\begin{array}{ccc} \textbf{\zeta} \; Pegasi. & \dots 12.0 \\ \text{R.A.} &= 22^{\text{h}} \; 35^{\text{m}} \; 38^{\text{s}} \\ \text{Dect.} &= + \; 10^{\circ} \; 12^{\circ} \end{array}$$

$$\begin{array}{cccc} 1900.515 & 139^{\circ} 1 & 63^{\circ} 45 \\ \dots & & & 63^{\circ} 45 \\ \dots & & & 63^{\circ} 72 \\ \dots & & & & 63^{\circ} 53 \end{array}$$

$$\begin{array}{ccccc} 1900.53 & 139.0 & 63.58 \end{array}$$

The only measures are:

The proper motion is 0.067 in 105°5, and this appears to account for the change in distance.

No measures in **H**, but called Class II. The place is given by 11 as above. There is nothing of Class 11 in or near this place.

Σ 2933 rej. D.M.(10)4801. 9.2 . . . 10.4
R.A. =
$$22^{h}36^{m}49^{s}$$
 }
Dect. = $+10^{-}22^{s}$ }
1901.586 218°4 4.410
 $-.589$ 215.3 4.42
 $-.589$ 216.8 4.26

No other measures.

Described by H, $142:2\pm:11=11$ (1830). The pair measured is in the correct place substantially, but description does not agree. In the field is a triangle of 11m stars, the side of which is about 23". The f star of this triangle is $98^{\circ}3:33^{\circ}1$ from A of the double.

Н 301. §	Pegasi. 5.	12.2
R.A. Decl.	$= 22^{h} 40^{m} 42^{s}$ $= +11^{\circ} 33^{s}$	}
1897.714	110°5	12:22
1898.492	108.0	12.61
.502	110.3	12.08
1900.515	110.6	12.36
.551	109.1	12.22
.553	109.3	12.43
1899.39	$\overline{109.6}$	$\overline{12.32}$

H called the small star 18m, and gave the angle 122°8 (1820). There are no other early measures. The large star has a considerable proper motion, 0.541 in 158°9, and the companion is moving with it.

1866,79
 117°7
 12°17

$$2n$$
 \exists

 1879,38
 112.6
 11.93
 $4n$
 β

OS 480 = H 1809
R.A. =
$$22^{h} 41^{m} 19^{s}$$
 |
Decl. = $+57^{\circ} 27^{\circ}$ |
1900.742 117°3 30776

Without change. In 1873 I thought the principal star was clongated, but it was round with all powers at the time of the above measure.

No measures in the last seventy-five years.

1783.60	$288^{\circ}5$	123''61	1n	Ä
1825.30	292.4	133.44	2n	\mathbf{S}

The proper motion is very small, 0.059 in 227.5.

H 1825. D.M.(
$$12^{\circ}$$
)4904. 9.0 . . . 9.3
R.A. = $22^{\circ} 47^{\circ} 50^{\circ}$ becl. = $+12^{\circ} 58^{\circ}$ 1900.553 223°.2 1.77
 $\frac{.666}{1900.61}$ $\frac{222.2}{222.7}$ $\frac{1.77}{1.77}$

H gave $230^{\circ} \pm : 1'' \pm : 10 \dots 11$ (1828); "very delicate; could not verify it, having mislaid the high power." No other measures. In 1876 I looked up and estimated distance 1'2.

H 3152. L 44810

R.A. =
$$22^{h} 48^{m} 40^{s}$$

Decl. = $-10^{\circ} 1'$

Given by H 135°4: $3" \pm : 9 \dots 15$ (1830). "Large star very red. A very difficult object. Measured with 320, which still left a suspicion of illusion, though I have hardly a doubt." I have looked for this several times previously with apertures up to $18\frac{1}{2}$ -in., but have never seen any trace of a companion. It was examined on two nights with the 40-in.

H 974, D.M.(4°)4921. 8.7 ... 9.7
R.A. =
$$22^{h} 49^{m} 20^{s}$$
 /
Decl. = $+ 4^{\circ} 11^{\circ}$ /
1901.529 88°5 44.33
 $\frac{.531}{1901.53}$ 88.3 $\frac{41.27}{44.30}$

H has $91^{\circ}5:40^{\circ}\pm:9...12$. A has a proper motion of 0.11 in 213.7 (Boss.).

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{2972} \ rej. & \mathrm{D.M.}(-0^{\circ})4451. & 9.3 \dots 11.7 \\ & \mathrm{R.A.} &= 22^{\circ} 56^{\circ} 34^{\circ} \\ & \mathrm{Decl.} &= -0^{\circ} 23^{\circ} \end{array} \right\} \\ & \frac{1901.589}{1901.605} & \frac{147^{\circ}4}{148.5} & \frac{15^{\circ}42}{15.56} \\ & \frac{1901.60}{1901.60} & \frac{148.5}{147.9} & \frac{15.49}{15.49} \end{array}$$

Only H, who has $198^{\circ}0: 12^{\circ} \pm : 9-10...14$ (1830). The angles do not agree. Two other similar pairs were measured in the immediate vicinity. The first is D.M.(-0°)4445, 159°1: 24°40: 8.5...12.7 (1901.60) In; and the other D.M.(-0°)4453, 172°7: 19°14: 10.8...10.9 (1901.60) 1n. The latter star is 9.5m in D.M.

$$\begin{array}{c} \textbf{H 3164.} \quad \textbf{L 45137.} \quad \textbf{6.9...12} \\ \textbf{R.A.} \quad = 22^{\,\text{h}} \, 58^{\,\text{m}} \, 52^{\,\text{s}} \, \\ \textbf{Decl.} \quad = \quad -17^{\,\text{s}} \, \, 44^{\,\prime} \, \, \\ \textbf{1901.586} \qquad 129^{\,\text{c}} \, 5 \qquad 55^{\,\text{c}} \, 05 \\ \hline \textbf{.758} \qquad 130.0 \qquad \qquad 55^{\,\text{c}} \, .11 \\ \hline \textbf{1901.67} \qquad 129.7 \qquad 55^{\,\text{c}} \, .08 \\ \textbf{Only H, 136°5} : 30^{\,\prime\prime} \pm \, (1830). \end{array}$$

No change since my measures in 1891.

H gives $296^{\circ}7:1_{\frac{1}{2}}^{\circ}:11=11$ (1828). Not in D.M., but the place is correct.

No relative change, but they have a common proper motion of 0.519 in 93.4. There is a distant star not moving with the others.

1900.515	$114^{\circ}5$	126	708
. 666	114.5	126	3.17
.741	114.5	125	5.85
$\overline{1900.61}$	$\overline{114.5}$	120	6.07
1824.82 109°2	158/17	2n	South

	β 182	
R.A. Deel.	$= 23^{h} 10^{m} 52^{s}$ $= -14^{\circ} 28^{s}$	}
	A and B	
1900.742	41°4	0.60
1901.586	43.3	0.56
1901.16	$\overline{42.3}$	$\overline{0.58}$
	AB and C	
1900.666	77°5	69:49
.742	77.7	69.56
.744	77.2	69.61
1900.72	77.5	$\overline{69.55}$
1901.586	77°0	70:03
.608	77.4	70.20
1901.59	${77.2}$	$\frac{-}{70.11}$

I measured the distant star first in 1898 in order to get an independent value for the large proper motion given the close pair from meridian observations (14302 in 2012).

$$1898.66 \quad 79^{\circ}9 \quad 68'04 \quad 2n \quad \beta$$

The measures indicate that this unusually large proper motion for a faint star is substantially correct.

A is S.D.(2)5921. 11 gives for BC 12°3 ; 2" \pm (1830).

₩ VI. 61

R.A. =
$$23^{h} 14^{m} 14^{s}$$

Decl. = $+4^{\circ} 44^{\circ}$

Herschel's place is that of 7 *Piscium*. His description is, "they form a triangle, each side of which is about 1'," and speaks of it as near the bright star. I could not find anything here which could be satisfactorily identified.

Described by H, $160^{\circ} \pm : 14 \dots 14$ (1830); "a double with some nebulous appendage." A of the above measures is a faint nebula (Dreyer 7634). No star was seen in the nebula.

$$\begin{array}{c|ccccc} \textbf{H 1889.} & 7.7 \dots 12 \dots 11.7 \\ & \text{R.A.} &= 23^{\text{h}} 26^{\text{m}} & 4^{\text{s}} \\ & \text{Decl.} &= & + 37^{\circ} & 39^{\prime} \end{array} \} \\ & & \text{A and B} \\ 1900.706 & 241^{\circ}4 & 44^{\prime}05 \\ & .744 & 241.1 & 43.80 \\ \hline & 1900.72 & 241.2 & 43.92 \\ & & \text{A and C} \\ 1900.706 & 57^{\circ}8 & 55^{\prime}79 \\ & .744 & 57.1 & 55.84 \\ \hline & 1900.72 & 57.4 & 55.81 \\ \hline \end{array}$$

H gives AB 238°2 : $20"\pm$; AC, 58°2 : $25"\pm$ (1828). There is a 13.5m star from A 211°8 : 29°6.

The only measures are:

1863.85 168°5 154 2n Wn

There is a 13.5m star 133°2: 23'4, and a 3° pair of 10.5m stars in the field sp. The principal star has a proper motion of 0'148 in 61°4 (Kustner). Evidently the components are moving together.

The only prior measures:

1877.83 92°7 33'22 1n β

H 1898. к Andromedae. 4 . . . 11.1 . . . 11.1

The proper motion of A is 0:078 in 107°8, which explains the change in the distance of C.

1879.24	188°7	46'64	3n	β
1879.24	294 6	103 17	1n	В

W1 XXIII. 696

R.A. =
$$23^{h}35^{m}7^{s}$$

Decl. = $-5^{\circ}5^{\circ}$

"Duplex" in Weisse, but this is an error, as this star is not a double of any class. The wide pair measured for this in Cin^5 is $1^{\text{m}} 28^{\text{s}}p$ and 5/5n. No change in that.

1901.796 67°5 42'02 9.0...9.5 1n

$$\begin{array}{cccc} \text{Decl.} = & +14^{\circ} & 7^{\circ} \\ 1901.720 & & 338^{\circ}9 & & 19^{\circ}23 \\ & & .758 & & 339.0 & & 19.23 \\ \hline & & & & & \\ \hline 1901.74 & & & & & \\ \hline \end{array}$$

The only observations by H, $339^{\circ}5:15'\pm(1828)$.

Harvard Zones. 9.7...13.0

$$\begin{array}{c} \text{R.A.} = 23^{\text{h}} 35^{\text{m}} 50^{\text{s}} \\ \text{Decl.} = + 0^{\circ} 41^{\prime} \end{array} \right\}$$

$$1901.605 \qquad 146^{\circ} 0 \qquad 75.64$$

$$\frac{.608}{1901.60} \qquad \frac{146.3}{146.1} \qquad \frac{75.64}{75.64}$$

In Hd Zones $sf: 30^{\circ} \pm : 9 \dots 14$. A is D.M.(0) 5035.

Egbert. D.M.(16)4980. 8.7...8.8

Given with approximate place in Cin:

1879.66 89°0 1737 2n Cin

Also noted as double in A.G.

1 28. D.M.(62°)2296. 8.6 . . . 10.8 . . . 10.1 R.A. = 23^h 41^m 32°)

Discovered by Dembowski in 1876. Only his measures:

1877.29 358°6 1'61 3n 4 1877.29 143.6 10.33 3n 4

S 835. 20 Piscium. 6...8.6

$$\begin{array}{c} \text{R.A.} &= 23^{\text{h}} 41^{\text{m}} 46^{\text{s}} \\ \text{Decl.} &= -3^{\circ} 26^{\circ} \end{array}$$

$$\begin{array}{c} 1900.553 & 285^{\circ} 0 & 172'65 \\ \underline{.666} & 285.3 & 172.81 \\ \underline{-1900.61} & 285.1 & 172.73 \end{array}$$

The only prior measures are:

1824.83 287°2 170′92 2n South

W² XXIII. 896

R.A. =
$$23^{h} 43^{m} 15^{s}$$

Decl. = $+24^{\circ} 41^{\circ}$

"Duplex" in Weisse, but certainly not double.

W1 XXIII, 865

R.A. =
$$23^{h} 43^{m} 40^{s}$$

Decl. = $+16^{\circ} 12^{\circ}$

"Duplex" in Weisse. Examined twice, and not a double of any kind.

No other measures.

"Duplex" in Weisse. No other measures.

No other measures.

Measured the first time by mistake for the preceding pair, 11–321. No other observations.

Camb. A.G. 14394

R.A. =
$$23^{h} 51^{m} 16^{s}$$

Decl. = $+26^{h} 15^{t}$

Noted in Camb. A.G. as a "close double." I have looked at this 6.5m star three times in 1901. On the last occasion 85 *Pegasi*, which is close by, was easily measured. At no time was there any indication of this star being a double of any kind.

Duner.
 D.M.(6°)5233.
 9.0 . . . 9.5

 R.A.
 =
$$23^{h}55^{m}11^{s}$$
 }
 11°

 Decl.
 = $+7^{\circ}$ 2°
 2°

 1900.666
 264°8
 15°04

 .668
 263.8
 15.11

 1900.666
 264.3
 15.07

The only measures are:

1869.31	$265^{\circ}3$	15/26	3n	Duner

β 73	3. 85 <i>Pegasi</i>	
R.A. Decl.	$= 23^{h} 55^{m} 54^{s} = +26^{\circ} 27^{\circ} $	
	A and B	
1900.854	253°0	0.97
	A and C	
1900.854	342?6	36:65
.873	342.1	36.55
1900.86	$\frac{-}{342.3}$	$\frac{-}{36.60}$

W1 XXIII. 1147

R.A. =
$$23^{h} 56^{m} 49^{s}$$

Decl. = $+ 2^{\circ} 43^{\circ}$

"Duplex" in Weisse. There is no companion star near enough to be mentioned.

II. NEW DOUBLE STARS

β 1291 . D	.M.(37-)94. 8.4	12.8
R.A Dec	$0^{h} 28^{m} 56^{s}$ $1. = +37^{\circ} 2'$	}
1900.725	168° 7	2:94
.712	169.0	2.75
.780	169.6	2.85
1900.75	$\overline{169.1}$	2.78

β 1292. D.:	M.(3-)161. 8	.5 9.0
R.A. Decl.	$= 1^{h} 1^{m} 35^{s}$ = $+ 3 46^{\circ}$	1
1900.780	24°5	0:31
1901.586	21.8	0.36
. 796	26.4	0.23
1901.39	$\frac{1}{21.2}$	0.30

Found in measuring Σ 324 rej,, which is 2^m 31° f and 0.98.

$$β$$
 1294. D.M.(46°)734. 8.8 . . . 8.9
R.A. = 3^h 12^m 24^s }
Decl. = + 46° 15′ }
1901.589 228°9 6′33
.742 226.8 6.26
.758 227.7 6.14
1901.69 227.8 6.24

The components are red and green. The D.M. magnitude of A is 9.2.

The principal star of the Σ pair is a close and somewhat unequal double, and is certainly a binary system, and probably in rapid motion. The Σ companion was measured by me in 1888 with the 36-in., and the close pair would have been detected with the present distance. The large star has a proper motion of 0.100 in 153°2 (Porter), which is also the movement of the old companion. That star is in

slow retrograde motion about the close pair, as will be seen from the following measures:

1829.79	$311^{\circ}4$	1.58	4n	Σ
1846.44	304.6	1.61	3n	o_{Σ}
1870.02	299.0	1.63	3n	ı
1888.92	291.9	1.58	3n	β
1901.05	288.7	1.54	3n	β

The small star D was added by me with the 36-in. The only other measures are:

1888.92 209°8 23'66
$$3n - \beta$$

With this position and the proper motion of AB the place of C at the date of my last measures should be 212°3: 23′16 (1901.05). As this is practically identical with the measures, it is certain that the small star does not belong to the triple system.

$$β$$
 1296. L 12112. 8.0 . . . 8.5
R.A. = 6^h 14^m 6^s {
Decl. = -7^s 12^s }

1900.780 201°0 0:21

A close and difficult pair found in measuring H 2315, which is 58°f and 3′2s.

$$β$$
 1297. S.D.(22)4158. 8.7 . . . 9.5
R.A. = 16^{h} 15^{m} 10^{s} $\frac{1}{2}$
Decl. = -22^{s} 21^{r} $\frac{1}{2}$
1901.359 140^{s} 6 1.91
.395 137.0 1.92
.433 137.7 1.90
 1901.39 138.4 1.91

Found in looking for H 4851.

$$β$$
 1298. 7.6 . . . 8.9

R.A. = $16^h 53^m 49^s$ }
Decl. = $+9 52'$ }

A and B

1901.531 91°7 0.26
.586 88.0
.589 84.8 0.33

1901.57 88.2 0.29

AB and C (= $0Σ$ App 150)

1901.359 165°4 76.44
.375 164.9 76.62
.586 164.8 76.57

1901.44 165.0 76.54

\mathbf{C} and \mathbf{D} (=	$= \Sigma \ 2111 \ rej.$).	$8.5 \dots 12$
1901.359	164°0	23.'91
.375	164.5	24.19
$\frac{-}{1901.37}$	$\frac{164.2}{}$	$\overline{24.05}$

The principal star of this wide pair is a close and difficult double. The only other measure of C is:

 $1871.84 165^{\circ}2 77'02 3n .$

Probably no sensible proper motion, as the meridian positions by Lamont give 164°5:76°74(1844.5). The close pair has been measured at Mt. Hamilton:

1901.69 92°3 0′26 3n Aitken

No other measures of CD.

The close pair was suspected with the 6-in, in 1872, and subsequently overlooked until the present time.

The large star has a small proper motion, 0.075 in 260%0.

$$β$$
 1301. L 37588. 8.5 . . . 9.5 . . . 9.5
R.A. = $19^{h} 40^{m} 25^{s}$ {
Decl. = $+4^{s}$ 0° }

A and BC

1900.551 66°3 56.76
.553 66.7 56.89
.617 67.0 56.74

1900.58 66.7 56.80

	B and C	
1900.551	336°6	0:66
.553	337.1	
. 742	341.1	0.68
. 780	334.1	0.62
1900.66	${337.2}$	${0.65}$

This is $27^s f$ and 3^n of β 468.

$$β 1302. D.M.(22)4170. 8.2...12.3...8.4$$
 $R.A. = 20 h 39 m 32 s$
 $Decl. = + 22 h 45 h$

A and B.

 1901.414
 $140 h 2$
 215
 416
 134.7
 2.03
 433
 142.3
 2.21
 1901.42
 139.4
 2.13

A and C

 1901.414
 $209 h 0$
 $52 h 31$
 416
 208.5
 52.21
 433
 209.2
 52.06
 1901.42
 208.9
 52.19

C is D.M. $(22^{\circ})4169$. The A.G. positions give $208^{\circ}0:51.87$.

$$β$$
 1303. L 41147. 7 . . . 13.2
R.A. = 21^{h} 6 m 56 s s t
Decl. = $+$ 2 s 19 t t t 1900.551 235 s 0 3.91
.553 237.5 4.00
.725 236.9 4.14
1900.61 236.5 4.02

Found in looking for $\Sigma 2778$.

β 1305. D.M.(12) 4622. 8.8...9.9...10.5

R.A. =
$$21^{\ln 39^{m}} 9^{\circ}$$
 \ Decl. = $+10^{-14}$ \ B and C

1901.531 50°8 0.97

.760 45.7 0.98

1901.64 48.2 0.97

ding star t it is eviof A is cor-90°, since Comparing e of Dem-

n of A, we

movement ments will

e between

that of 61

iirs where

the same

. . 13.3

	A and BC	
1901.531	90°9	88746
. 605	91.5	88.87
$\frac{-}{1901.57}$	$\frac{-}{91.2}$	

β 1306, D.M.(22°)4484

R.A. $= 21^{h} 43^{m} 58^{s}$ Decl. = $+23^{\circ} - 1^{\circ}$

A and B. 8 . . , 12.3

995°7 1901 414

C and D	(new). 12.9	. 13.9
1900.742	95°7	2:12
.780	101.4	1.75
1901.758	102.4	1.59
.854	106.2	1.85
1901.28	$\overline{101.4}$	$\frac{-}{1.83}$

In measuring the faint star C as a check hereafter on the proper motion of AB as given from meridian positions, it was found to be a rather difficult pair. C has not been measured before. Porter gives the movement:

- CORRECT10	7.	5
-------------	----	---

21795

- ige 5. O.Arg.N.21. For 2*592 read 22*59.
 - Σ 353 rej. In the angle by H for 56°4 read 65.4.
 - 18. D.M.(21)694. In the note for 10 n read 10 n.
 - S 550. For L 15459 and 15460 read 14559 and 14560.
 - Howe. The pair measured is new. The Howe pair was afterwards found and `35. identified as D.M.(24 $)\ 2709.$
 - Σ 2031 rej. For D.M.(-1)3761 read D.M.(-1°)3161.
 - θ Aquilae. In the proper motion for 203.6 read 336.7. 57.
 - O Σ 412 rej. In the R.A. for 41 m read 42 m. 60.
 - **B 1305.** For D.M. (12) 4622 read D.M.(10°)4622.

					20 78
. 180	309.2	6.92	1901.81	63.5	$\frac{32}{1.10}$
	${309.4}$	6.98	A an	d B (=H 1776)	
1000.10	B and C	0.00	1900.744 .782	$274\%7 \ 273.7$	9:06
1900.742	339°5	46*49	1901.720	$\begin{array}{c} 213.1 \\ 273.8 \end{array}$	$9.44 \\ 9.52$
.780 1901.758	$\begin{array}{c} 338.6 \\ 339.1 \end{array}$	46.62	1901.08		$\frac{-}{9.34}$
1901.09	$\frac{339.1}{339.1}$	$\frac{46.86}{46.66}$	The close pair is AB 277°5: 5″± (1828	a difficult object.	

MICROMETRICAL OBSERVATIONS OF EROS MADE WITH THE FORTY-INCH REFRACTOR OF THE YERKES OBSERVATORY DURING THE OPPOSITION OF 1900-1901

E. E. BARNARD

In accordance with the scheme for a systematic series of observations of *Eros*, carried on in this country and in Europe, for a redetermination of the solar parallax, the following observations of the planet have been made with the filar micrometer of the forty-inch telescope.

A few explanations only are necessary for a proper understanding of the measures. The times of observation are referred to the 90° meridian and are 6^{h} 0^{m} 0^{s} slow of Greenwich mean time. The last two columns contain the parallax factors in time and arc.

In the first column for Δa the uncorrected value is given; following this is the correction for refraction. The next column contains the value of the Δa corrected for refraction. The $\Delta \delta$ is treated in a similar manner. In the column immediately following the times is given the number of the comparison star. The magnitudes of these stars are sometimes indicated in this column; but an extra list gives the magnitudes of all the comparison stars. In the next column are the number of independent settings which go to make up the observation — they are generally five in number.

The corrected Δa are yet to be multiplied by $\frac{1}{15}$ sec δ . From the uncertainty of the positions of the comparison stars at present, it has not been thought desirable to reduce these Δa to time.

No correction has been applied to the micrometer screw for temperature, because both screw and tube are of steel, and hence have the same temperature coefficients which, acting in different directions, mutually cancel each other. A shortening or lengthening of the screw by cold or heat is compensated by a corresponding shortening or lengthening of the tube. Observations of Atlas and Pleione of the Pleiades, carried through some five years, have shown that the change of the focal length of the great glass alone is to be taken into account, and only a small portion of this—the difference between the change in the tube and the change in the focus. From summer to winter the focus shortens from the action of the cold upon the lens. The shortening of the focus is greater than that of the tube, the extreme difference being about 0.3 inch, though the entire shortening of the focus is upward of three-fourths of an inch. This difference is the only temperature change that will affect the measures, and is easily taken into account by the following small table, which shows the effect of this difference between change of focus and tube for a measured distance of 300":

CORRECTIONS FOR FOCUS SCALE READINGS

Change in Scale (inch)		Correction
0.01	=	0.003
0.05	=	0.016
0.10	=	0.033
0.15	=	0.049
0.20	=	0.066
0.25	=	0.082
0.30	=	0.098
0.35	=	0.114

If the scale reading for focus has not been read, this table can be used in conjunction with the following table, which depends on the temperature, and which has been deduced from the measures of *Atlas* and *Pleione* referred to:

Temperature	Scale Reading	Temperature	Scale Reading
+ 80" (F.)	2.305 inches	$+25~({ m F}_{.})$	2.132 inches
+ 75	2.290	+ 20	2.116
+70	2.274	+ 15	2.101
+65	2.259	+ 10	2.085
+ 60	2.244	+ 5	2.069
+ 55	2.227	0	2.054
+ 50	2.212	- 5	2.039
+45	2.195	-10	2.022
+40	2.180	-15	2.006
+ 35	2.163	- 20	1.991
+ 30	2.148	-25	1.975

It is not recommended that this table be used for these observations of Eros, for reasons that will be given in a paper on the focal changes of the great telescope, to be published later.

The extreme change from the setting, 2.20 inches, to which the value of the micrometer screw has been adjusted, and which occurs at a temperature of 50° F., would scarcely exceed 0.10 inch throughout the observations of Eros, and would introduce an error of only something like 0.03 in the largest distance measured.

The value of one revolution of the micrometer screw used in these observations was determined from many measures of the difference of declination of Allas and Pleione, Electra and Celaeno, θ' and θ^2 Tauri, etc. This value is 9.665 and was, as stated, determined for a temperature of 50° F. and a scale reading of 2.20 inches. Should it be thought desirable to correct any of these measures for focal change, it can easily be done from the material here given. So far no correction of this kind has been applied.

The micrometer, made by Warner and Swasey, is illuminated by a small electric lamp, the light from which (Burnham's method) is under instant control, so that the wires can be quickly made faint or bright at will. The current is turned off from this, except when the actual measures are made, so that no heating of the screw will occur. The measures were mainly made with a magnifying power of 460 diameters, but a power of 700 was frequently used when the distances were not too great and the atmosphere steady enough. In all the measures, to avoid parallax, the objects have been bisected in the center of the field by a quick adjustment of the eyepiece over the object.

The parallel to the equator was carefully determined at the point of observation. With this setting, the $\Delta\delta$ was measured; the wires were then revolved 90° in position angle and a set of $\Delta\delta$ obtained by direct measures. The micrometer was then revolved back through 90° and another set of $\Delta\delta$ secured. In the absence of a chronometer a good Howard watch was used for recording the observations. Its error was determined by comparison with the standard Howard clock of the Observatory. The time of each setting was recorded to the nearest second by the observer himself, who worked without any recorder.

The distances measured were limited to about 5' by the construction of the micrometer. Knowing the desirability of securing measures with as many comparison stars as possible, the planet was connected with every star directly available and not too faint. In making the measures it was thought best to finish, say, the settings for Δa for each of the stars in turn before revolving the wires for the $\Delta \delta$. This was done as quickly as possible with due reference to accuracy. The $\Delta \delta$ was then measured for all the stars, and the micrometer turned back again for the Δa . Though, by this method, the observations were not strictly symmetrical in some cases, it is thought that the additional advantage of so many comparison stars observed at the same time will more than balance this. The parallel was carefully determined several times each night, both at the point of observation and at the equator near the meridian.

The coincidence of the micrometer threads remained constant with scarcely any perceptible

change throughout the observations. The wires of the micrometer were frequently examined, to see that they were parallel to each other, and in the measures they were frequently interchanged, thus to a certain extent producing the effect of double distances.

It was necessary frequently to use very small comparison stars, because no others were within reach of the micrometer. After Eros passed from the Milky Way, the presence of considerable stars in the field became quite rare. Early notification of this fact was sent to Paris, and it is assumed that the photographic plates will contain the comparison stars down to at least the $12\frac{1}{2}$ magnitude. In some cases it was necessary to use 13m stars.

The corrections for refraction have been computed by Mr. H. A. Fischer, Jr. (who has also checked the reductions of the observations) from the formulæ

$$\Delta (a' - a) = s\chi \left[\tan^2 \zeta \cos (p - q) \sin q + \sec u \sin (p - u) \right], \tag{1}$$

$$\Delta \left(\delta' - \delta\right) = s\chi \left[\tan^2 \zeta \cos\left(p - q\right) \cos q + \sec u \cos\left(p - u\right)\right],\tag{2}$$

which are from Chauvenet's Spherical and Practical Astronomy. The original form of the first formula is multiplied by sec δ . This was omitted in the reductions to make the refraction correction in right ascension harmonious with the direct measures of Δa .

The refraction corrections were computed for a mean condition of the barometer without regard to the altitude of the Observatory (about 1,100 feet). The computations were then gone over, and where the error would amount to as much as 0.01 a special refraction was computed.

Besides the computation of the refractions, Mr. Fischer has done much of the work of compilation, and has otherwise given the most efficient aid in all the work. His skill has aided in the detection and elimination of many errors in the reductions.

A list of barometer and thermometer readings is given farther on. The barometer is located on the wall of the hall at the east end of the main building, some three hundred feet from the large telescope. During the winter this part of the building is heated by steam to a temperature of 70° or 75°, which will account for the relatively high readings of the attached thermometer.

The barometer and thermometer are read by one of the night employees of the Observatory at 9 p. m., 1 a. m., and 4 a. m. No record of the barometer reading is kept by the observer, because of the above three readings each night. The observer, however, always keeps a record at frequent intervals during the night of the thermometers inside and outside the dome.

In nearly all the observations the seeing was poor, and at times very bad. It is not believed, however, that this will materially affect the results, as every precaution was taken to eliminate its effects. In general it meant that a longer time must be devoted to an observation. The major portion of the measures fall in the worst possible season here for observation.

The work was much interfered with by clouds. Every available chance was taken advantage of by the observer to secure frequent measures of the planet during the night, on account of the request that as many observations as possible should be obtained each night to eliminate the effects of clouds at other points. When this was known, the observer began at once to devote as much time as possible throughout the night to observations of the planet.

Altogether there are 1,506 sets of measures, each depending on an average of five settings of the wires; making in all about 7,500 individual settings of the micrometer wires. Each night a diagram of the field of view was made to insure identification of the comparison stars. Copies of all these have been sent to Paris. All of the observations have also been sent to Paris in manuscript.

During the winter of 1901–2 the position of the great telescope was carefully determined from numerous stars, with the following results:

North end of polar axis too low, 0' 39' North end of polar axis too far west, 0' 45'

In the winter of 1897 the position was found to be:

North end of polar axis too low, 0' 10" North end of polar axis too far west, 1' 0"

showing that the instrument has not materially changed its position in the past four or five years. The horizontal flexure of the tube has not yet been fully determined, though a number of observations have been made for this purpose. The results so far show it must be small. From this it will be seen that the position of the instrument itself can in no way seriously enter into the results as a sensible factor in the differential measures.

The following discordant observations have been noted:

1900, October 14: The observation at 17^h 10^m may be of a fixed star.

1900, October 17: The $\Delta \alpha$ at 11^h 49^m 11^s does not seem to be reconcilable with the comparison star. Possibly another star was used in this measure.

1900, October 26: 17^h 36^m 14^s. Observation uncertain, on account of clouds.

1900, November 1: This measure is not understood. Question if right comparison star; also question if $\Delta \alpha$ or $\Delta \delta$.

1900, November 3: This is not Eros.

1900. November 4: The observation at $18^{\rm h}$ 6^m 51° may be of *2 and an 11m star, instead of with Eros—there was such a star 1′ ± np. Same date, $17^{\rm h}$ 57^m 37°. This observation may be uncertain. It does not reconcile closely with the others.

1900, November 26: 15^h 21^m 43^s and 16^h 10^m 16^s. One of these measures seems to be wrong. The last one is perhaps correct.

1900, December 2: $5^{\rm h}$ $42^{\rm m}$ $29^{\rm s}$. The $\Delta\delta$ alone was observed for this star.

1900, December 20: These measures made by glimpses through clouds and are an hour apart. It is questioned if they both refer to same star. A break in the clouds each time gave only a few moments' observation.

On January 16 the observation times are subject to some uncertainty. A half-hour after the last observation of *Eros*, while measuring the satellite of Neptune, the watch ran down from want of winding. No comparison had yet been made with the standard clock on that night. The watch had been keeping excellent time previous to this, and also after this date. It is believed the given times can be relied on to within 5° or less for this date. The night afterward the watch was intentionally allowed to go without winding, and when almost run down its rate did not materially change, so that it is believed the observation times are closely correct; but, of course, there must be some uncertainty attached to them.

The following errors of the watch will, it is thought, give confidence in the close exactness of the observation times:

ERRORS OF THE WATCH, 1901, JANUARY

					fast $0^{\rm m}43^{\rm s}$							
12 - 7 - 21	-	-	-	-	" 0 46	$16 \ 10 \ 39$	-	-	-	-	1	21
14 - 2 = 0	-		-	-	" 0 44	$16 \ 18 \ 23$	-	-	-	-	 1	21
14 - 9 - 3	-	-	-	-	" 0 44½							
14 11 11	-	-	-	-	" $0.43\frac{1}{2}$	17 - 6 - 4	-	-	-	-	1	19
$14 \ 17 \ 23$	-	~		-	" 0 42	17 - 7 - 32	-	-	-	-	1	19
16 - 7 - 40	-	-	-	wate	h ran down	17 - 8 - 59	-	-	-	-	1	$18\frac{1}{5}$
					fast 1 ^m 20½ -							

MICROMETRICAL OBSERVATIONS OF EROS

Date—1900 90° Time	Comp. Star	No. Obs.	Measured	Ref.	$ \begin{array}{c} \text{Corrected} \\ \Delta a \end{array} $	Measured $\Delta \delta$	Ref.	Corrected $\Delta \delta$	Parallax Δa	Factors
Oct. 2 8h 12m 5 8 16 19 8 21 11 8 25 35 8 33 33 8 38 25 50 8 8 50 8 8 56 51 9 3 22 11 32 21 11 35 20 11 45 9 11 52 33 16 46 8 16 56 4 17 4 18	1 2 1 2 1 2 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 12 12 12	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-0' 51'05 +0 5.70 -0 9.49 -0 11.12 -0 11.43 +1 13.19 +1 12.55	-0.03 +0.01 -0.03 -0.00 -0.00 +0.03 -0.02	-0' 51'08 +0 5.71 -0 9.46 	-0' 16:73 +1 15:53 	+0.03 +0.03 +0.03 +0.04 -0.05 -0.05 0.00 0.00 +0.02	-0' 16:70 +1 15:56 	-06:13 -0.612 -0.594 -0.311 -0.311 +0.425 +0.458	+3:79 +3:71 +3:36 +3:26 +3:03 +0:37 +0:34 +0:21 +0:93
Oet. 3 12 50 19 12 55 13 13 1 7 13 5 43 13 11 0 13 18 7	1 2 1 2 1 2	4 4 4 4 4 5	+0 2.62 +0 15.63	0.00 0.00	+0 2.62 +0 15.63	$\begin{array}{cccc} +0 & 23.66 \\ -0 & 35.76 \\ \hline & & \\ -0 & 53.91 \\ -0 & 14.46 \\ \end{array}$	+0.01 -0.01 +0.01 0.00	$\begin{array}{c ccccc} +0 & 23.67 \\ -0 & 35.77 \\ \hline & & \\ -0 & 53.92 \\ -0 & 14.46 \\ \end{array}$	-0.130 -0.119	$ \begin{array}{c c} -0.37 \\ -0.39 \\ \dots \\ -0.46 \\ -0.49 \end{array} $
Oct. 4 11 59 3 12 6 50 12 13 6	10.3 10.3 10.3	5 5 5	+0 23.61	+0.01	+0 23.62	$ \begin{array}{c cccc} -0 & 28.05 \\ $	-0.01 0.00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.255	-0.07 -0.19
Oct. 8 7 27 23 7 32 50 7 41 23 7 47 33 7 54 13 8 5 37 8 11 34 8 32 56 12 42 57 13 4 28 13 10 38 16 41 36 16 50 40 16 54 29 17 1 48 17 15 4 17 20 49 17 26 49 17 36 51	1 2 1 2 1 2 2 B.D. B.D. B.D. B.D. B.D. 1 2 1 2 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	556665566614544444555555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.06 +0.03 -0.05 +0.02 -0.05 -0.05 -0.05 -0.03 +0.02 -0.04 +0.02 -0.00 -0.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.06 -0.04 -0.02 -0.04 0.00 -0.01 -0.02 +0.01 -0.05 -0.05	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.639 -0.638 -0.632 -0.630 -0.125 -0.047 -0.504 +0.516 +0.522 +0.529 +0.525 +0.562	+4.02 +3.91
Oet. 9 7 15 30 7 22 49 7 30 29 7 35 33 7 42 33 7 47 57 7 53 35 8 0 7 8 32 20 8 36 39 8 42 24 8 47 39 14 11 12 14 15 53 14 20 42 14 26 53	1 2 1 2 1 2 1 2 1 3 3 1 9 9 9	6 5 6 6 6 6 6 7 5 5 5 6 4 5 5	+0 45.03 -0 44.34 +0 41.01 -0 48.70 +0 2.79 +0 31.82 -1 20.76	+0.04 -0.04 -0.04 -0.04 -0.01 +0.03 -0.02	+0 45.07 -0 44.38 +0 41.05 -0 48.74 +0 2.78 +0 31.85 -1 20.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.04 +0.02 -0.02 +0.03 +0.01 -0.02 0.00 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.646 -0.646 -0.639 -0.639 -0.605 -0.605	$ \begin{array}{r} +4.15 \\ +4.00 \\ \\ +3.58 \\ +3.48 \\ \\ +2.55 \\ +2.47 \\ \\ -0.76 \\ -0.74 \\ -0.68 \end{array} $

			L M		-	l				
Date — 1900 90° Time	Comp. Star	No. Obs.	Measured Δα	Ref.	Corrected	Measured Δδ	Ref.	Corrected	Parallax	Factors
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 1 1 1 2 2 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-1' 23:04 -0 33:90 -0 36:61 +0 25:45 	-0.03 -0.02 -0.02 +0.03 -0.04 +0.03 -0.04	-1' 23:07 -0 33.92 -0 36.63 +0 25.48 +0 19.42 -0 46.86 +0 17.40 -0 48.53	+0 31 33 +0 41.58 -1 44.16 +1 16.98 -1 30.45 	0.00 0.00 -0.03 +0.01 -0.02 -0.02	+0 31:33 +0 41:58 -1 44:19 +1 16:99 -1 30:47 -1 12:06	+0:192 +0:465 +0:488 +0:516 -0:561 +0:567 +0:574 +0:578	+0.51 +0.68 -1.20 +1.39 +1.48
Oct.10 12 49 59 12 55 42 13 2 29	12.7 12.7 12.7	7 7 7	+2 19.73	+0.04	+2 19.77	+0 45.58 +0 56.01	+0.01 +0.01	+0 45.59 +0 56.02	-0.062	$ \begin{array}{c c} -0.87 \\ -0.90 \end{array} $
Oet.11 6 14 16 6 49 24 7 1 10 7 5 44 7 9 36 7 25 48 7 30 8 7 34 56 7 38 41 7 50 11 7 54 50 8 0 57 8 4 51 13 45 7 18 16 32 10 16 35 31 16 46 5 51 6 51 48 16 55 51 17 7 9 1 17 13 53 17 17 32 17 26 36 17 31 37	11 22 21 1 22 1 1 21 21 21 21 21 21 21 2	55 4 4 4 5 5 5 5 6 6 5 5 5 4 4 4 4 4 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.17 -0.11 +0.13 -0.10 +0.12 -0.10 +0.01 -0.03 +0.03 -0.02 +0.03 -0.03 +0.03 -0.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0 6.23 0 50.49 -0 46.89 0 24.62 +0 54.55 +1 14.38 +0 2.46 -0 25.31 +1 10.24 1 55.56 +1 53.16 1 39.65 +2 9.73 1 21.69 +2 27.23 1 7.41	-0.17	+0 6.06	-0.649 -0.652 -0.653 -0.652 -0.646 -0.645 +0.125 +0.150 -0.552 +0.558 +0.558	+4.58
Oct.44 7 17 43 7 21 40 7 26 27 7 29 27 7 32 6 7 31 51 16 57 54 17 3 12 17 9 38 17 14 33 17 23 27 17 28 32 17 34 47 17 40 1 17 45 44	1 2 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2	44444000004440	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.05 -0.02 -0.02 -0.04 	-1 2.17 +0 12.84 +0 12.12 -1 4.86 	+0 27.61 -2 53.37 -1 38.08 +1 22.26 -1 18.50 +1 41.67 +1 54.35	+0.05 -0.08 -0.04 +0.05 -0.04 +0.06 	+0 27.66 -2 53.45 -1 38.12 +1 22.31 -1 18.54 +1 41.73 +1 51.41	-0.665 -0.664 -0.663 -0.662 +0.593 +0.599 -0.629	+3.49 +3.40 +1.32 +1.41 +1.83 +1.92 +2.26
Oct.45 6 41 51 6 45 35 6 50 28 6 55 16 7 0 52	1 2 2 1 2 2	5 5 5	-0 7.39 -1 11.35	0.00 -0.05	0 7.39 1 11.40	+0 56,30 +1 31.33 +1 35.23	+0.01 +0.11 +0.11	+0 56.34 +1 31.44 +1 35.31	-0.672 -0.672	+4.14 +4.05 +3.95

Date—1900 90° Time	Comp. Star	No. Obs.	Measured Δa	Ref.	Corrected Aa	${\rm Measured}_{\Delta\delta}$	Ref.	Corrected $\Delta \delta$	Parallax Δa	Factors $\Delta \delta$
Oct.15 7h 8m 4s 7 12 30 7 18 23 7 22 15	1 2 2 1	4 4 5 5	-1, 17,22 -0, 16,33	-0'04 +0.01	-1' 17'26 -0 16.32	+1' 18'02 +1 54.35	+0:04 +0:10	+1 18:06 +1 54.45	-0:669 -0.668	+3.58 +3.47
Oct.16 6 38 8 6 42 42 6 47 51 6 51 58 6 56 34 7 5 6 7 10 45 7 15 55 7 20 25 7 29 37 7 33 45 12 30 30 12 36 28 12 50 24 16 40 38 16 45 38 16 50 4 16 50 4 17 7 25 17 13 4 17 17 54 17 27 15 17 35 54 17 40 58 17 50 27	1 2 1 2 1 3 3 1 2 2 3 3 1 7,5 5 5 7 1 1 2 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1	555555555555555555555555555555555	+1 32.42 -0 54.12 -0 55.87 +1 28.14 +1 2.98 -1 6.07 +0 53.66 +1 15.91 -0 27.06 +0 21.16 -1 17.52 +0 33.21 -1 28.58 +0 22.02 -1 39.37 -1 42.96	+0.09 -0.06 +0.05 -0.06 +0.05 -0.06 +0.04 +0.07 -0.01 +0.01 -0.06 0.00 -0.00 -0.03 -0.03 -0.09 -0.10	+1 32.51 -0 54.18 -0 55.93 +1 28.22 +1 3.03 -1 6.13 -0 53.70 +1 15.98 -0 27.07 +0 21.17 -1 17.58 +0 33.21 -1 28.65 +0 21.99 -1 39.46 -1 43.06	+0 37.77 -1 23.80 	+0.06 0.00 	+0 37.83 -1 23.80 	-0.675 -0.675 -0.675 -0.675 -0.675 -0.675 -0.669 -0.667 -0.664 -0.006 +0.578 +0.584 +0.584 +0.620 -0.642 +0.639 +0.642 +0.651	$\begin{array}{c} +4.12 \\ +4.01 \\ \dots \\ \dots \\ \dots \\ \dots \\ +3.40 \\ +3.30 \\ +3.21 \\ \dots \\ \dots \\ \dots \\ -1.17 \\ \dots \\ \dots \\ \dots \\ -1.19 \\ +1.10 \\ \dots \\ \dots \\ \dots \\ +1.39 \\ +1.61 \\ \dots \\ $
Oct.17 7 9 23 7 11 3 7 18 6 7 18 6 7 24 56 7 30 36 11 41 39 11 53 29 11 57 26 16 56 33 17 2 46 17 9 40 17 17 44 17 25 6 17 31 31 17 36 39 17 41 33 17 46 22	10.5 10.5 10.5 10.5 10.5 10.5 10 10 10 10 12 1 2 1 2 1	2 est. 35 4 5 4 3 3 6 6 5 6 8 5 6 3 5	+3 11.53 +3 8.58 -0 37.36 -0 9.19 +2 2.12 -3 3.43 +1 55.04 -3 9.28 +1 46.03	+0.14 +0.14 +0.14 -0.01 +0.07 -0.11 +0.08 -0.13	$\begin{array}{c} +3 & 11.67 \\ +3 & 8.72 \\ \hline \\ -0 & 9.20 \\ \hline \\ -2 & 2.19 \\ -3 & 3.54 \\ +1 & 55.12 \\ -3 & 9.41 \\ \hline \\ +1 & 46.11 \\ \end{array}$	$ \begin{vmatrix} -0 & 1.48 \\ 0 & 0.00 \\ +0 & 2.25 \\ \vdots \\ +0 & 15.58 \\ -3 & 13.29 \\ \vdots \\ -3 & 3.89 \\ \vdots \\ -0 & 58.76 \\ +0 & 41.61 \\ \vdots \\ -0 & 30.12 \\ +1 & 8.52 \\ \vdots \\ -0 & 30.12 \\ +1 & 8.52 \\ \end{vmatrix} $	$\begin{array}{c} -0.14 \\ -0.14 \\ -0.13 \\ \cdots \\ -0.06 \\ \cdots \\ -0.05 \\ \cdots \\ +0.03 \\ -0.06 \\ \cdots \\ \cdots \\ +0.05 \\ -0.08 \\ \cdots \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.675 \\ -0.675 \\ -0.671 \\ -0.167 \\ -0.145 \\ -0.632 \\ +0.633 \\ +0.639 \\ +0.645 \\ +0.658 \\ \end{array}$	+3.28 $+3.24$ $+3.18$
Oet.18 16 3 5 16 10 29 16 17 14	$9.2 \\ 9.2 \\ 9.2$	5 5 5	+2 14.59	+0.01	+2 14.60	+3 42.21 +3 51.53	+0.10 +0.10	+3 42.31 $+3$ 51.63	+0.544	+0.56 +0.80
Oct.25 6 18 50 6 24 7 6 29 17 6 34 4 6 40 30 6 46 4 6 52 28 6 57 19 7 45 53 7 52 32 11 31 51 11 39 9	1 1 1 2 2 2 2 1 1 1 1	4 4 4 5 5 4 4 5 5 5 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.08 +0.08 -0.19 -0.19 -0.19 -0.05 	+1 16.70 +1 13.45 -4 2.96 -4 6.85 +0 22.55 +1 18.14	+1 31.31 +1 40.39 -1 34.56 	-0.02 -0.01 +0.07 -0.07 +0.07 +0.04 -0.04	+1 31.29 +1 40.38 -1 34.49 -1 24.43 +2 23.93 -2 24.83	-0.710 -0.709 -0.701 -0.699 -0.637 -0.078	+3.30 $+2.94$ $+2.80$ $+2.43$ $+1.41$ -1.52

Date—1900 90 Time	Comp. Star	No.	$_{\Delta a}^{\rm Measured}$	Ref.	$ \begin{array}{c} \text{Corrected} \\ \Delta a \end{array} $	${\rm Measured}_{\Delta\delta}$	Ref.	Corrected $\Delta\delta$	Parallax Δα	Factors
Oet.25 11 ^h 45 ^m 21 ^s 16 31 53 16 38 51 16 46 1 16 54 6 17 10 38 17 17 5 17 29 55 17 38 38 17 44 43 17 51 4	1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2	4 5 5 5 5 5 5 5 5 6 6 4	$\begin{array}{c} +2 & 34.81 \\ -2 & 6.34 \\ \hline -2 & 6.34 \\ \hline -2 & 28.35 \\ \hline +1 & 54.60 \\ \end{array}$	+0.10 -0.08 -0.11 -0.11	$\begin{array}{c} +2 & 34591 \\ -2 & 6.42 \\ \hline -2 & 28.46 \\ \hline +1 & 54.69 \\ \end{array}$	-2' 17'52 +0 11.91 -0 49.01 +0 31.33 -0 30.35 +0 44.89 -0 16.73	-0.704 0.00 +0.05 -0.08 +0.07 -0.11 +0.08	-2: 17:56 +0: 11:91 -0: 48:99 	$+06^{\circ}74$ $+0.682$ $+0.704$ $+0.706$ $+0.712$	$ \begin{array}{c} -1.55 \\ +1.58 \\ +1.72 \\ \dots \\ +2.45 \\ +2.56 \\ \dots \\ +3.03 \\ +3.16 \end{array} $
Oct.26 5 55 45 6 1 18 6 7 47 6 14 10 6 21 8 6 27 9 7 38 2 7 44 30 7 48 40 7 53 22 9 3 49 11 56 26 12 1 135 16 25 7 16 30 15 16 35 3 16 41 41 16 46 3 16 50 49 17 2 2 35 17 7 59 17 36 14		5555555555554444444444444	+1 28.04 +1 15.93 -4 12.30 +0 23.10 +0 20.49 -0 28.81 -2 29.04 -2 32.70 -0 8.76 -0 37.71 -2 10.24	+0.03 -0.01 -0.01 -0.01 -0.01 -0.01 -0.04 -0.04 -0.04 -0.03 -0.07	+1 28.07 +1 15.94 -4 12.47 +0 23.09 +0 20.48 -0 28.82 -2 29.08 -2 32.74 -0 37.74 -0 37.74 -2 10.31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.12 -0.11 +0.18 -0.03 -0.00 -0.02 -0.00 -0.06 -0.03 -0.03 -0.07 +0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.716 -0.713 -0.711 -0.644 -0.639 -0.497 +0.006 +0.025 -0.681 +0.685	+3.69 +3.42 +3.26 +1.43 +1.13 -0.101.591.58 +1.54 +1.64 +1.75 +2.33 +2.44 +3.08
Oct.27 9 7 29 9 14 13 9 25 38 9 30 0 9 31 11 9 37 57 9 43 8 9 47 29	1 1 1 1 2 2 2 2	5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$ \begin{array}{cccc} -0 & 14.56 \\ -0 & 25.16 \\ +0 & 45.26 \\ +0 & 39.32 \end{array} $	-0.03 -0.03 $+0.03$ $+0.02$	-0 14.59 -0 25.19 +0 45.29 +0 39.34	$ \begin{array}{c cccc} -1 & 56.21 \\ -1 & 46.80 \\ \hline +1 & 9.09 \\ +1 & 13.58 \end{array} $	-0.03 -0.03 +0.01 +0.02	$ \begin{array}{c cccc} -1 & 56.24 \\ -1 & 46.83 \\ \hline +1 & 9.10 \\ +1 & 13.60 \end{array} $	-0.451 -0.413 -0.400 -0.379	$ \begin{array}{c c} -0.39 \\ -0.64 \\ -0.79 \\ -0.91 \end{array} $
Oct.30 15 52 1 15 59 18 16 12 23	11 11 11	5 5 4	+1 10.47	+0.02	+1 10.49	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.05 +0.05	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.667	+1.25 +1.71
Nov.1 5 55 12 5 58 46 6 2 21 6 6 28 6 10 14 6 13 46 6 17 37 6 21 32 6 30 37 6 36 46 6 42 40 6 51 11 6 56 31 8 10 40 8 15 32 8 20 22 8 26 7 8 31 8 8 35 51	1 1 2 3 3 2 2 3 1 4 4 4 4 4 1 3 2 1 1 3 2 1 2 1 3 2 1 2 1 3 2 1 2 1	440000000000000000000000000000000000000	-0 42.59 +0 26.48 +0 10.69 +0 7.85 +0 18.34 -0 5.49 -0 11.96 -2 32.02 -1 24.59 -1 41.02	-0.04 +0.01 +0.03 +0.03 +0.04 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0 25.82 +1 30.22 -1 54.22 -0 12.89 +3 44.51 +3 51.84 +0 23.45 +2 13.17 -1 10.91	+0.02 +0.02 +0.02 +0.07 +0.08 +0.04 +0.06 +0.01	-0 25.80 +1 30.21 -0 12.87 +3 44.58 +3 51.92 +0 23.49 +2 13.23 +1 10.90	-0.725 -0.724 -0.721 -0.719 -0.717 -0.692 -0.683 -0.683 -0.519 -0.507 -0.495	+2.84

Date-1900 90° Time	Comp. Star	No. Obs.	Measured	Ref.	Corrected \(\Delta a\)	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected $\Delta \delta$	Parallax	Factors Δδ
Nov.1 8h 43m 44s 8 47 49 8 50 55 8 54 29 8 57 17 9 0 21 16 46 42 16 51 45 16 58 49 17 5 10 17 12 38 17 17 48 17 30 17 17 35 34 17 49 53 17 56 9 18 1 29	132132121213333	4 4 4 4 4 5 5 5 5 5 5 6 6 6	-2' 45'47 -1 37.28 -1 52.15 -2 50.09 -1 42.32 -3 12.61 -2 8.14 +1 45.06 +1 36.93	-0.05 0.00 -0.05 -0.10 -0.12 -0.14 -0.15 +0.10 +0.09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0 38.53 +2 28.09 -0 57.25 -1 25.00 +2 39.92 -1 18.52 +2 46.31 -0 18.12	+0.10 -0.13 +0.01 -0.17 -0.02 -0.10 -0.17 -0.01	+0 38.58 +2 28.15 -0 57.25 -1 25.13 +2 39.93 -1 18.69 +2 46.32 -0 18.02	$\begin{array}{c} -0,476 \\ -0.466 \\ -0.463 \\ \cdots \\ +0.728 \\ +0.730 \\ \cdots \\ +0.732 \\ +0.728 \\ +0.723 \\ \end{array}$	-0.265 -0.69 -0.73 +2.65 +2.76
Nov. 2 5 42 43 55 47 35 55 10 5 55 10 5 55 10 5 55 55 10 6 2 51 6 12 55 6 16 12 55 6 16 12 55 6 16 12 55 6 6 30 2 2 2 8 9 22 2 8 13 44 33 12 17 50 8 31 15 12 35 53 12 33 46 12 24 33 12 15 55 49 16 56 7 17 4 42 17 10 52 17 15 23 17 15 23 17 15 23 17 28 17 31 31 31 17 33 38 38 17 42 23 55 18 18 18 17 55 18 18 18 18 17 55 18 18 18 18 18 18 18 18 18 18 18 18 18	1112121111133331313133144121221122312231	664554466555555555445555555555555555555	+0 43.86 +0 40.94 -0 39.14 0 39.14 	+0.03 +0.03 +0.03 -0.03 -0.02 +0.02 +0.07 +0.07 +0.04 +0.04 +0.05 -0.05 +0.05 -0.05 +0.06 -0.06 -0.09 -0.09	+0 43.89 +0 40.93 -0 39.17 	-0 1.56	-0.03	-0 1.59	-0.731 -0.729 -0.727 -0.720 -0.717 -0.696 -0.693 -0.523 -0.514 -0.502 -0.460 +0.187 +0.006 -0.402 -0.460 +0.187 +0.736 +0.736 +0.736 +0.736 +0.736 +0.735 -0.736 +0.736 +0.736 +0.736 +0.736 +0.736 +0.736 +0.736	+2.95 $+2.59$ $+2.54$ $+2.14$ $+1.97$ $+1.86$ -0.05 -0.13 -0.54 -1.51 -1.47 -1.44 -1.41 $+2.98$ $+3.09$ $+3.17$ $+3.86$ $+4.05$ $+4.24$ $+4.32$ $+4.47$
Nov.3 5 39 59 5 44 31 5 49 9 5 52 5 5 57 37	1 1 1 1 2	6 6 5 5 6	-0 2.97 -0 6.17	+0.01 +0.01	-0 2.96 -0 6.16	$\begin{array}{c}\\ +0 & 38.91\\ +0 & 39.91\\ -2 & 4.04 \end{array}$	+0.02 +0.02 +0.07	$\begin{array}{c cccc} & \cdots & $	-0.733 -0.731	$\begin{array}{c} \dots \\ +2.68 \\ +2.61 \\ +2.46 \end{array}$

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date1900 90° Time	Comp. Star	No. Obs.	$_{\Delta a}^{Measured}$	Ref.	Corrected Δa	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected $\Delta\delta$	Parallax Δa	Factors
Nov. 3 6 2 2 2 2 7 14 6 11 37 6 16 46 6 20 21 6 24 48 6 28 7 7 38 20 7 38 20 7 43 5 5 5 5 5 5 6 7 5 5 5 5 6 7 5 5 2 10 7 5 5 2 10 7 5 5 2 10 7 5 3 2 8 28 36 8 32 35 10 52 46 10 5 11 18 34 11 10 56 11 18 34 11 10 56 16 23 14 16 18 23 14 16 16 23 14 16 16 23 14 16 16 38 21 16 45 45 16 36 21 16 45 45 16 36 21 17 21 30 35 17 39 28 17 45 13 17 47 37 17 56 44 17 59 49 18 3 5 17 56 44 17 59 49 18 6 36 36 36	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 7 4 10 13 16 16 16 16 16 16 16 16 16 16 16 16 16	-0' 14'45 -0' 17.52 -0' 30.38 -0' 32.77 -1' 43.67 -1' 37.35 -1' 44.35 -2' 12.32 -2' 6.30 -1' 17.72 -4' 18.67 -0' 5.19 +2' 39.22 -0' 42.36 +1' 59.70 +1' 55.16 -0' 54.48 +0' 53.74 -0' 53.74 -0' 53.74 -0' 53.74 -0' 53.74 -0' 53.74 -0' 53.74 -0' 53.74	-0.08 -0.08 -0.08 -0.00 -0.01	-0 1453 -0 17,60 -0 30,38 -0 32,78 -0 32,78 -1 43,69 -1 37,41 -1 44,41 -1 44,41 -1 17,71 -4 18,75 -2 46,38 +2 46,89 -0 5,17 +2 39,35 -1 5,13 +1 59,82 +1 55,27 -0 54,52 +0 53,77 -1 41,81 -1 8,37	-2 2757 +0 49.40 +0 50.52 +1 9.55 -1 35.27 +1 11.85 -1 32.56 +1 50.39 +1 22.09 -1 22.74 -1 59.16 -1 57.64 +0 35.38 -1 34.16 -1 8.82 -1 23.89 -0 58.71 +1 53.69 -0 58.71	+0.06	-2 2.51 +0 49.43 +0 50.55 +1 9.59 -1 35.25 -1 32.56 +1 50.43 +1 22.14 -1 22.741 57.67 +0 35.39 -1 34.18 -1 8.741 27.71 -1 2.15 +1 48.03 -1 23.96 -0 58.62 +1 53.81 -1 18.32 -0 53.01	-0.717 -0.714 -0.709 -0.706 -0.706 -0.564 -0.561 -0.542 -0.486 -0.476 -0.476 -0.022 -0.006 +0.019 -0.728 +0.730 +0.733 +0.734 +0.732 +0.732 +0.732 +0.728 +0.728 +0.727	+2/37
Nov. 4 6 2 45 6 6 40 6 11 7 6 14 55 6 20 4 6 23 22 6 28 34 6 32 6 7 9 47 7 14 53 7 21 2 7 25 30 7 35 56 7 47 58 7 51 40 7 59 55 8 6 66 8 10 39 8 16 26 8 20 25 8 21 47	1 2 1 2 1 2 2 3 4 3 4 1 2 1 2 2 3 4 3 4 1 1 1 3 4 1 1 1 1 1 1 1 1 1 1 1		-2 9.21 -2 31.02 -2 16.07 -2 37.66 -3 14.58 -3 37.95 -3 -3 52.86	+0.05 +0.09 -0.10 -0.11 -0.09 -0.11 -0.05 -0.09 -0.10	+3 42.60 +3 14.67 -3 14.67 -3 38.05 +3 2.27 +4 4.95 -3 52.95	-0 30,09 -1 4.12 -0 23.83 -0 58.03 +1 24.18 -1 55.47 -0 38.09 -0 36.94 -0 1.25 -1 37.73 -1 42.47	+0.06 +0.06 +0.06 +0.06 -0.05 -0.09 +0.05 +0.05 +0.05 -0.06 -0.06	-0 30,03 -1 4,06 	-0.711 -0.708 -0.703 -0.700 -0.609 -0.592 -0.580 -0.494 -0.494 -0.482	+2.21 +2.12 +1.65 +1.59 +0.80 +0.70 -0.06 -0.12 -0.22 -0.30

M1CROMETRICAL OBSERVATIONS OF EROS-Continued

Date—1900 90° Time	Comp. Star	No. Obs.	Measured 2a	Ref.	Corrected Δa	$\mathop{\rm Measured}_{\Delta\delta}$	Ref.	$\begin{array}{c} \text{Corrected} \\ \textbf{2} \delta \end{array}$	Paralla x Δα	Factors
Nov. 4 Sh 30m 16° 10 26 35 10 30 43 10 35 44 10 40 12 16 21 47 16 27 51 16 32 39 16 37 24 16 43 21 16 49 20 15 55 14 17 8 46 17 15 26 17 22 5 17 27 26 17 42 34 17 47 45 17 53 21 17 57 37 18 2 23 18 6 51 18 11 32	2 4 3 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1	555555555555665656565 72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.06 	-4' 17'82	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0.02 + 0.04 - 0.05 + 0.12 + 0.12 - 0.06 - 0.08 + 0.12 + 0.13 - 0.11 + 0.14 + 0.14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0:470 -0.100 -0.087 -0.735 +0.735 +0.739 +0.739 +0.727 -0.717 +0.713 +0.713 +0.709	-1:71 -1:73 -1:73 -1:74 -1:73 -1:74 -1:73 -1:74 -1:73 -1:74
Nov. 5 5 37 14 5 41 22 5 45 56 5 49 6 5 53 34 5 57 24 6 2 38 6 6 32 47 7 11 55 7 17 0 7 22 7 7 22 7 7 22 7 7 38 42 7 45 47 7 51 47 7 51 47 7 32 57 7 38 42 7 45 47 7 53 41 0 40 40 10 45 36 10 50 58	1 1 2 3 4 4 3 5 5 3 6 3 6 7 7 7 7 6 6 6 6	565555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.09 +0.10 +0.06 +0.17 +0.04 +0.11 +0.12 +0.16 +0.14 +0.02 +0.02	-0 29.89 +0 59.60 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.07 + 0.02 + 0.06 - 0.10 - 0.07 - 0.00 - 0.04 - 0.00 - 0.00 + 0.03	$\begin{array}{c} +2 & 23.55 \\ +2 & 47.65 \\ +2 & 26.30 \\ +1 & 38.22 \\ \\ -1 & 2.88 \\ +2 & 42.68 \\ +1 & 23.19 \\ \\ \\ +3 & 28.83 \\ +3 & 30.33 \\ \\ +1 & 59.13 \\ \\ \\ \\ +2 & 1.59 \\ \end{array}$	-0.732 -0.730 -0.715 -0.712 -0.690 -0.599 -0.588 -0.548 -0.067 -0.051	$\begin{array}{c} +2.48 \\ +2.41 \\ +2.29 \\ +2.23 \\ & \\ +1.44 \\ +0.65 \\ +0.54 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
Nov.6 10 23 8 10 28 2	12 12	5 5	+1 11.76	+0.02	+i ii.78	+1 24.06	+ 0.02	+1 24.08 	-0.087	-1.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 1 2	5 5 5 5	$\begin{array}{c} \dots \dots \\ +1 & 48.09 \\ +1 & 49.54 \end{array}$	+0.04 +0.07	+1 48.13 +1 49.61	$\begin{array}{ccc} -0 & 15.62 \\ -2 & 16.72 \\ \dots & \dots \end{array}$	$+0.01 \\ -0.02 \\ \cdots$	$ \begin{array}{cccc} -0 & 15.61 \\ -2 & 16.74 \\ & & & \\ \end{array} $	$+0.442 \\ +0.449$	-0.87 -0.83
Nov.8 5 50 47 5 53 47 5 57 2 6 0 29 6 3 39 6 6 28 6 10 39 6 13 53 6 16 43 6 21 28 6 24 45 6 27 46 7 1 24 7 5 8	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1	5 5 5 5 5 5 5 5 5 5 5 5 5	+0 46.69 -0 35.46 +0 48.14 	+0.01 -0.01 +0.05 0.00 -0.02 +0.03 	+0 46.70 -0 35.47 +0 48.19 +0 31.40 -0 51.17 +0 33.16 	-0 47.38 +0 28.75 +0 54.14 -0 45.62 +0 30.50 +0 55.80 +0 58.74 -0 41.74	$\begin{array}{c} \cdots \cdots \\ -0.02 \\ +0.03 \\ 0.00 \\ \cdots \\ -0.02 \\ +0.03 \\ 0.00 \\ 0.00 \\ +0.01 \\ -0.01 \end{array}$	-0 47.40 +0 28.78 +0 54.14 -0 45.64 +0 30.53 +0 55.80 +0 58.75 -0 41.75	-0.712 -0.709 -0.705 	+1.74 +1.68 +1.62 +1.28 +1.29 +1.29 +0.49 +0.37

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date—1900 90 Time	Comp. Star		Measured 2a	Ref.	Corrected Δa	Measured	Ref.	Corrected $\Delta \delta$	Parallax	Factors
Nov.8 7h 9m 155 7 13 38 7 17 10 7 21 1 7 26 51 7 30 26 7 34 36 7 44 16 7 47 53 7 52 21 8 9 28 8 12 4 8 15 42 8 8 14 11 25 48 11 16 27 11 21 21 11 25 48 11 38 9 16 16 26 22 16 35 12 16 57 56 17 2 42 17 10 59	21 3 21 23 1 3 1 3 1 3 1 1 1 1 1 1 2 1 2	55555555544445555555555555555555	-0' 18/45 +0 15.11 -1 44.41 	-0.02 +0.02 -0.03 -0.00 -0.04 -0.03 -0.01 -0.06 -0.07 -0.02 -0.03	-0° 18/17 +0 15.13 -1 44.44 -0 39.59 -2 9.09 -1 3.02 -0 58.83 -3 38.06 -0 3.17 -0 13.51 -0 58.51 -0 54.95	+0 34723 -0 40.31 +0 35.80 +1 1.13 -0 36.67 +1 4.18 -0 29.57 +1 11.55 -0 29.18 +1 11.99 +1 13.05 +1 12.18 +1 12.19 -1 23.66 +1 10.69	+0.04	+0' 34'27 -0 40.31 +0 35.84 +1 1.16 -0 36.67 +1 4.21 -0 29.59 +1 11.56 -1 12.00 +1 12.00 +1 12.21 -1 23.65 +1 10.68	-0·591 -0·583 -0·575 -0·525 -0·515 -0·506 -0·464 -0·457 +0·123 +0·138 +0·739 +0·742 +0·737 +0·726	+0.34 -0.04 -0.11 -0.76 -0.79 -1.78 -1.77 -1.67 +2.83 +3.05 +3.17 +3.82 +3.91
Nov.10 5 44 11 5 51 31 5 56 36 6 3 48 7 16 28 14 56 13 15 56 13 15 5 50 14 56 13 15 2 56 15 15 50 15 37 52 16 41 45 16 45 41 16 49 30 16 54 1 16 57 57 17 3 9	1 1 1 1 1 1 1 1 1 2 2 1 1 3 2 1 3 3 3 4 3 3 4 3 3 4 4 3 4 4 3 4 4 4 4	3 53543555555	-1 10.65 -1 19.79 -1 29.20 	0.08 -0.15 -0.15 -0.00 0.00 0.00 -0.00 -0.01 -0.05	-1 10.73 -4 19.94 -4 29.35 -0 16.40 -0 27.38 -0 13.71 -1 1.87 -1 35.27 -0 40.81	-0 0.00 -0 0.21 -0 0.25 -0 32.77 -0 32.96 	+0.13 +0.12 +0.08 -0.01 -0.01 -0.08 -0.11 0.00	+0 0.07 -0 0.12 -0 0.18 -0 32.78 -0 32.97 -0 18.89 -0 19.74 +1 8.12	+0.687 -0.706 -0.693 -0.688 +0.703 +0.723 +0.742 +0.740 +0.739	+1.67 +1.39 -0.01 +1.22 +1.32 +1.32 +4.00 +4.09 +4.21
Nov.11 6 28 13 6 33 3 6 37 10 6 41 33 6 45 59 6 49 17 7 19 5 7 18 59 7 23 34 7 46 23 7 59 37 8 5 13	9,6 9,6 9,6 9,6 9,6 9,8 9,8 9,8 9,8 9,8 9,8	5555555555555555	-1 37,61 -1 41,79 -1 47,96 -2 13,56 -2 17,26 -2 43,66 -2 49,50	-0.04 -0.04 -0.04 -0.05 -0.05 -0.05 -0.05	$\begin{array}{cccc} -1 & 37.68 \\ -1 & 14.83 \\ -1 & 48.00 \\ & & & \\ -2 & 13.61 \\ -2 & 17.31 \\ & & & \\ -2 & 49.55 \end{array}$	+0 35.15 +0 34.22 +0 31.19 +0 33.30 +0 32.42 +0 31.91 +0 30.04	+0.05 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +0.01	+0 35.20 +0 31.26 +0 31.23 +0 33.31 +0 32.46 +0 31.98 +0 30.08	-0.640 -0.624 -0.617 -0.551 -0.540 -0.489 -0.469	+0.68 +0.43 +0.37 +0.01 -0.22 -0.43 -0.86
Nov.13 5 48 40 5 53 26 6 0 33 6 3 57 6 10 11 6 14 4 6 19 3 6 22 20		665555555	-2 40.96 -3 15.45 	- 0.11 -0.07 -0.11 -0.07	-2 41.07 -3 15.52 -2 57 80 -3 30.90	-1 21.43 +1 39.71 -1 23.51 +1 37.41	+0.01 +0.01 +0.01 +0.10	2 21.39 +1 30.72 -1 23.47 +1 37.51	-0,678 -0,671 -0,647 -0,643	$\begin{array}{c} +1.12 \\ +1.06 \\ -0.76 \\ +0.68 \end{array}$

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date-1900 90° Time	Comp. Star.	No. Obs.	Measured 2a	Ref.	Corrected \(\Delta a\)	Measured $\Delta\delta$	Ref.	Corrected Δδ	Parallax	Factors
Nov.13 6h 52m 45 6 56 26 7 4 5 7 50 51 7 55 59 59 8 3 21 8 49 19 8 55 8 9 1 21 58 9 17 50 9 23 16 12 26 11 29 51 11 35 56 11 40 25 11 45 22 11 50 13 11 55 27 15 56 23 16 2 4 16 8 31 16 14 16 8 31 16 14 16 8 31 16 14 16 35 50 16 32 7 16 35 50 16 54 56 17 5 49 17 9 57 17 15 549 17 32 8 17 36 36 17 40 36 17 40 36 17 53 2 17 58 15 18 4 11 18 8 12 18 13 5	12112121212121212121212121212133223332233322333223	66.000.000.000.000.000.000.000.000.000.	-3' 37'96 -4 13.66 -4 48.51 -2 1.82 +4 10.53 -4 10.53 -4 50.23 +2 16.80 -1 14.12 +1 19.05 -1 30.65 +1 3.68 -1 51.34 +0 39.74 -1 18.57 -1 18.57 -1 18.57 -1 18.57	-0.711 -0.11 -0.08	-3 38 507 -4 13.777 -4 48.59 	-1' 28'49 +1' 32.87 	+0.03 +0.09 	-1 28/46 +1 32.96 -1 37.91 +1 23.31 -2 35.83 -0 9.75 -2 40.61 -0 13.72 -1 41.53 +0 41.53 +1 16.85 -1 51.03 +1 10.25 -1 44.53 +1 16.85 -1 55.75 +0 55.75 +0 52.85 -1 47.08 -1 41.73	$\begin{array}{c} -0.549 \\ -0.434 \\ -0.424 \\ \hline \\ -0.216 \\ -0.160 \\ -0.144 \\ +0.225 \\ +0.241 \\ \hline \\ +0.740 \\ +0.737 \\ +0.736 \\ \hline \\ +0.720 \\ +0.717 \\ \hline \\ +0.666 \\ +0.666 \\ \\ +0.654 \\ \hline \end{array}$	+0.12 +0.05 -0.91 -0.97 -1.44 -1.49 -1.61 -1.64 -1.42 -1.29 -1.25 +3.09 +3.21 -1.25 +3.78 -4.35 +4.52 -4.90 +4.90 +5.27 -5.69 -5.69 -6.01 +6.10
18 16 36 Nov.15 6 13 25 6 17 6 6 21 36 6 25 19 6 49 14 6 53 1 6 56 56 7 0 18 7 4 42 7 8 16 7 40 54 7 44 27 7 48 32 7 51 53 7 55 45	3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	5 5555555555555555	-0 5.73 +0 36.60 +1 19.30 +0 4.03 +0 47.27 +0 11.10 -0 36.87	-0.07 0.00 +0.06	-0 5.80 +0 36.60 +1 19.36 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.03 0.00 -0.02 0.00 -0.02 +0.01 -0.02 +0.01 -0.01	-1 11.77 +1 6.97 -1 18.12 +1 0.95 -1 21.58 +0 57.66 -1 29.88 +0 48.64 	+0.631 +0.619 -0.612 	+0.49 +0.41 -0.02 -0.07 -0.26 -0.33 -0.73 -0.85
Nov.21 5 33 26 5 36 52 5 40 34 5 47 5 5 51 5 5 54 44 6 0 16	$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$	4 5 5 5 5 5 5 5 5	+0 57.24 -1 39.41 -1 25.62	+0.02 -0.05 -0.02	+0 57.26 -1 39.46 -1 25.64	$\begin{array}{cccc} -0 & 10.62 \\ +0 & 1.04 \\ +0 & 56.71 \\ & & \\ -0 & 22.70 \\ \end{array}$	$ \begin{array}{r} -0.02 \\ +0.03 \\ +0.04 \\ \dots \\ -0.02 \end{array} $	$ \begin{array}{ccccc} -0 & 10.64 \\ +0 & 1.07 \\ +0 & 56.75 \\ & & & \\ -0 & 22.72 \end{array} $	-0.592 -0.585 -0.578	$+0.89$ $+0.82$ $+0.74$ \cdots $+0.39$

${\tt MICROMETRICAL\ OBSERVATIONS\ OF\ } EROS-Continued$

Date 1900 90° Time	Comp. Star		Measured	Ref.	Corrected Δa	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected	Parallax	Factors
Nov.21 6h 4m 25 6 8 4 6 12 56 6 12 56 6 24 0 6 29 44 7 11 56 7 17 30 7 27 7 7 31 54 7 36 25 7 47 56 7 52 25 8 14 13 8 25 27 16 46 13 16 54 40 17 6 42 17 15 42 17 26 21 17 33 30	23 4 4 4 4 1 2 3 1 2 3 1 2 3 1 1 1 1 1 1 1 1 1 1	666444466666666666666666666666666666666	-4' 30789 -4' 31.41 -0' 3.97 -2' 40.92 -2' 27.47 +2' 8.48 +1' 56.03 +1' 47.91	-0'10 -0.10 -0.01 -0.07 -0.05 	-4 30 199 -4 31.51 -0 3.98 -2 40.99 -2 27.52 +2 8.62 +1 56.15 +1 48.01	-0° 11/86 +0° 41.09 +0° 39/93 	+0.03 +0.04 +0.08 +0.07 -0.02 +0.01 +0.03 -0.02 -0.01 0.00 +0.02 -0.01 0.00 +0.02 +0.12 +0.09 +0.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.532 -0.519 -0.365 -0.354 -0.340 -0.666 +0.639 +0.616	$\begin{array}{c} +0.32\\ +0.25\\ +0.16\\ \cdots\\ -0.12\\ -0.72\\ -0.78\\ -0.83\\ \cdots\\ -1.07\\ -1.12\\ -1.16\\ -1.34\\ -1.39\\ -1.42\\ +5.32\\ \cdots\\ +5.72\\ +6.14\\ \cdots\\ \end{array}$
Nov.22 7 25 16 7 30 30 7 37 13 7 42 39 7 49 39 7 49 39 7 49 39 8 27 40 8 34 11 8 38 55 8 46 5 8 51 50 15 52 45 15 54 30 16 5 25 16 6 9 56 16 16 58 16 23 21 16 29 9 16 37 55 16 14 40 16 49 19 16 59 6 17 6 49 17 14 22 17 19 35 17 26 17			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.04 -0.03 -0.04 -0.03 -0.04 -0.03 -0.05 -0.05 -0.04 +0.10 +0.11 -0.02 -0.02	-1 27.78 -0 30.42 -2 1.81 -1 3.64 -1 364.17 -0 45.79 +1 13.72 +1 11.43 -1 3.41 +0 48.15	-1 24.15 -2 28.56 -1 36.88 -2 41.21 -1 54.38 -2 58.30 -2 6.98 -3 11.29 +4 22.36 +3 39.93 -1 4 24.62 -1 50.33 -1 50.33 -1 8.58 -1 3 1.66 -1 49.90	-0.01 -0.02 -0.02 -0.04 -0.03 -0.05 -0.05 +0.21 +0.10 -0.02 +0.12 -0.03 +0.12 -0.03	-1 24.16 -2 28.60 -2 41.25 -1 54.41 -2 58.35 -2 7.01 -3 11.34 +4 22.60 +3 40.03 -44 7.81 +3 24.73 -58.70 -79.65 -	$\begin{array}{c} -0.320 \\ -0.303 \\ -0.303 \\ \\ -0.152 \\ -0.140 \\ \\ +0.701 \\ \\ +0.683 \\ +0.654 \\ +0.646 \\ \\ +0.618 \\ \end{array}$	$\begin{array}{c} -0.92 \\ -0.99 \\ \dots \\ -1.17 \\ -1.22 \\ -1.41 \\ -1.44 \\ \dots \\ -1.52 \\ +4.27 \\ \dots \\ +4.27 \\ \dots \\ +4.79 \\ +4.92 \\ \dots \\ +5.39 \\ +5.48 \\ \dots \\ +5.99 \\ +6.11 \\ \dots \end{array}$
Nov.23 9 15 17 9 52 12 9 57 3 10 2 31		5 5 5 5	+0 9.29 +0 6.63	+0.01 +0.01	+0 9.30 +0 6.61	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.01 -0.01	=2 6.90 =2 17.29	+0.108 +0.121	-1.51 -1.46
Nov.25 6 33 28 6 37 21 6 42 59 6 47 10 6 53 34 6 57 1 7 1 36 7 5 9 7 45 57 7 50 15 7 56 55 8 1 21	1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 2 2 2 2	5055445555555	-4 18 69 +4 21.93 -4 24.18 +1 17.39 -1 45.26 +3 46.15	-0.10 +0.10 -0.09 +0.09 -0.09 +0.07	-1 18,79 +4 22,03 -1 21,27 +4 17,18 -4 45,35 +3 46,22	-0 18 01 +0 19.62 	+0 04 -0 03 +0 03 -0 03 +0.01 -0.02	-0 18,00 +0 49,59 	-0.413 -0.403 -0.388 -0.378 -0.211 -0.199	-0.35 -0.41 -0.71 -0.76 -1.15 -1.18

Date—1900 90° Time	Comp. Star	No. Obs.	$_{\Delta \alpha}^{\rm Measured}$	Ref.	Corrected \(\Delta a\)	$egin{array}{c} \mathbf{M} \mathbf{casured} \\ \mathbf{\Delta} \mathbf{\delta} \end{array}$	Ref.	Corrected 28	Paralla x	Factors 28
Nov.25 8h 7m 5 8 11 47 8 42 22 8 47 1 8 54 18 8 59 39 9 6 42 9 12 35 15 18 53 15 25 27 15 39 22 15 49 14 15 54 47 16 16 16 57 16 26 6 16 31 23 16 38 32 16 43 30 17 38 50 17 32 2 17 26 36 17 33 35 17 39 37 17 51 46 17 58 32	191191191191999999999999999999999999	555555566655555555555555555555555555555	$\begin{array}{c} -5, 22, 89 \\ +3, 18.80 \\ \\ -0, 21.58 \\ +2, 19.25 \\ \\ +2, 19.25 \\ \\ +1, 34.02 \\ \\ \\ +1, 25.36 \\ \\ +1, 25.36 \\ \\ \\ +1, 21. \\ \\ \\ +1, 29.78 \\ \end{array}$	-0.09 +0.06 -0.02 +0.10 -0.19 +0.18 -0.24 +0.24 -0.32 -0.32	$\begin{array}{c} -5'\ 22'98 \\ +3\ 18.86 \\ \\ -0\ 21.60 \\ +2\ 19.35 \\ \\ +1\ 31.20 \\ \\ +1\ 25.60 \\ \\ +1\ 42.67 \\ +1\ 14.53 \\ \\ \\ +1\ 30.16 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.500 -0.02 -0.02 -0.01 	-1' 16:08 -0 9:09 -1 38:48 -0 31:73 -1 53:98 -0 48:35 -5 4:73 +4 25:81 -5 42:64 -5 42:64 +3 48:33 -4 24:84 -1 6:83 -1 4:66 -1 6:83 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75 -1 4:75	+0.629 +0.624 +0.654 +0.581 +0.574 +0.512	$ \begin{vmatrix} -1.29 \\ -1.3 \\ -1.44 \\ -1.45 \end{vmatrix} $ $ -1.47 \\ -1.46 \\ +3.96 \\ +4.09 \\ \\ -4.75 \\ +5.07 \\ +5.22 \\ \\ -5.64 \\ +5.77 \\ \\ -6.16 \\ +6.28 \\ \\ -6.83 \\ +7.03 \\ \\ +7.03 \\ \end{aligned} $
Nov.26 5 35 54 52 22 5 48 21 5 52 28 5 56 49 6 2 52 28 6 7 5 6 11 9 6 19 51 6 24 30 6 24 30 6 28 50 7 13 46 7 19 3 7 25 19 7 307 25 7 42 47 8 9 17 8 15 45 12 14 41 12 22 16 12 31 8 31 9 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 33 39 15 34 26 31 31 31 31 31 31 31 31 31 31 31 31 31	414313411441112221112225625625622	055555555555555555555555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.15 -0.13 +0.01 -0.13 -0.13 -0.13 -0.13 -0.13 -0.00 -0.01 -0.03 -0.05 -0.12 -0.15 -0.22 +0.01 -0.33 -0.38	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.04 \\ +0.11 \\ \cdots \\ -0.05 \\ -0.04 \\ +0.11 \\ \cdots \\ +0.09 \\ -0.05 \\ \cdots \\ -0.06 \\ +0.08 \\ +0.07 \\ \cdots \\ 0.00 \\ -0.09 \\ \cdots \\ -0.10 \\ +0.02 \\ \cdots \\ -0.26 \\ +0.21 \\ +0.04 \\ -0.29 \\ \cdots \\ +0.25 \\ 0.00 \\ -0.44 \\ \cdots \end{array}$	-3 58.40 +5 3.16 -5 3.16 -5 11.33 -4 18.06 +4 44.81 -1 35.81 -1 35.81 -2 48.59 +2 36.53 +0 18.45 -1 36.53 +0 18.45 -1 4.07 -0 1.53 -1 4.07 -0 1.53 -1 31.60 +0 25.91 -0 30.32	-0.526 -0.518 -0.510 -0.457 -0.448 -0.438 -0.276 -0.276 -0.142 +0.536 +0.699 +0.699 +0.695 +0.669 +0.664 +0.660 -0.625	+0.50 +0.40

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date — 1900 90 Time	Comp. Star	No. Obs.	$_{\Delta a}^{\text{Measured}}$	Ref_{r}	$\begin{array}{c} \text{Corrected} \\ \Delta \alpha \end{array}$	Measured	Ref.	Corrected 28	Parallax 2a	Factors
Nov.26 16 ^h 58 ^m 13 ^s	2	5				-0:41/30	0″60	-0: 44*90		+6:20
Nov.27 5 21 40 5 25 4 5 30 14 5 31 31 31 5 82 9 5 54 32 5 5 83 22 6 4 11 6 8 22 6 12 45 6 40 28 6 44 54 6 6 53 31 6 57 42 7 1 41 7 6 12 7 9 51 7 44 51 7 49 56 7 53 54 7 59 45 8 4 10 8 7 48 8 13 21	7.7 1.7.7 1.7.7 1.7.7 1.7.7 1.2 2.7.7 1.2 7.7 1.2 7.7 1.2 7.7	51	+3 37 30 +0 20.79 +3 28.04 +0 11.06 -2 8.83 -2 12.08 -0 12.00 -2 31.58 +2 37.21 -0 39.21 -2 85.59	+0.05 0.00 +0.03 -0.03 +0.02 -0.02 -0.04 +0.03 -0.03 	+3 37 35 +0 20.79 +3 28.07 +0 11.05 -2 8.86 -2 12.11 -0 12.02 -2 31.62 +2 37 24 -0 39.23 -2 58.64	-2 52.55 -0 18.12 -3 3 92 -0 30.04 -1 41.96 -3 44.71 -1 11.17 +1 17.75 -4 1.92 -1 28.19 +1 0.42 -4 28.52 -1 55.71 +0 33.29 -4 48.33	-0.11 -0.01 -0.11 -0.01 -0.09 -0.02 +0.04 -0.09 -0.02 +0.03 -0.09 -0.03 +0.02 -0.09 -0.03	-2 52.66 -0 18.13 	-0:548 -0:540 -0:494 -0:489 -0:479 -0:361 -0:350 -0:340 -0:177 -0:162 -0:153	+0.72 +0.65
Nov.29 5 31 41 5 35 1 5 38 29 5 43 22 5 43 22 6 5 55 55 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 1 1		-1 16.01 -2 17 44 +2 29.69 -1 25.18 -2 26.43 +2 21.49 -1 50.91 -2 53.15 +1 53.29 +0 11.70 +0 5.03	-0.04 -0.04 +0.05 -0.04 +0.03 -0.05 -0.05 +0.02 -0.00 -0.00 -0.01	-1 16.05 -2 17.48 +2 29.74 -1 25.22 -2 26.47 +2 21.52 -1 50.96 -2 53 20 +1 53.31 -1 53.31 -1 40 11.70 -1 4.99	-0 39.40 +1 21.53 -0 55.50 -0 55.50 -1 15.33 -1 15.33 -1 15.33 -1 33.14 -1 53.82 -0 4.17 -2 13.99 -1 23.47 -2 43.00 -2 46.09 -2 51.73 -0 37.96 -0 48.54 -1 4.50 -1 18.14 -1 29.69	+0.01 +0.06 -0.05 	-0 39.39 +1 21.59 -0 55.55 -0 55.55 -0 57.81 +1 2.38 -1 15.38 -1 15.38 -1 33.19 -1 53.81 -0 4.16 -2 14.01 -2 22.49 -0 23.47 -2 43.05 -2 46.11 -2 51.78 -0 37.97 -0 48.54 -1 18.25 -1 18.25 -1 29.83	-0.496 -0.486 -0.478 -0.435 -0.426 -0.416 -0.199 -0.182 -0.663 +0.6607	+0.43 +0.37 +0.32 -0.04 -0.10 -0.43 -0.90 -0.95 -0.99 -1.17 -1.23 -1.29 -1.30 +1.95 +5.20 +5.62 +6.20
Dec. 1 15 30 3 15 35 5 15 41 42 15 18 5 16 1 36 16 19 14	1 2 2 2	555692	+0 56.85 -1 43 81	+0.05 -0.14	+0 56,90 -1 43,95	$ \begin{array}{cccc} -1 & 38 & 85 \\ +0 & 17.10 \\ & & & \\ -0 & 8 & 90 \\ -2 & 22.77 \end{array} $	$ \begin{array}{c c} +0.01 \\ -0.11 \\ \hline & $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.619 +0.641	+4.91 $+5.02$ $+5.64$ $+5.91$

Date—1900 90° Time	Comp.	No. Obs.	Measured	Ref.	Corrected $\Delta \alpha$	$\operatorname{Measured}_{\Delta\delta}$	Ref.	Corrected $\Delta \delta$	$\operatorname{Parallax}_{\Delta a}$	Factors
Dec. 1 16h 26m 24s	2	5	-1: 48:85	-0.19	-1' 49:04				+0:600	
Dec. 2 5 42 29 5 47 4 5 51 21 5 56 24 6 2 27 6 11 43 6 16 11	1 2 3 2 3 2 3 3	555555	+0 22.91 -0 28.13	+0.03 -0.03	+0 22.94 -0 28.16	$\begin{array}{c} +0 & 13.76 \\ +1 & 48.70 \\ -2 & 6.34 \\ \dots & \dots \\ +1 & 28.80 \\ -2 & 26.03 \end{array}$	0.00 +0.03 -0.04 +0.02 -0.03	$ \begin{vmatrix} +0' & 13.76 \\ +1 & 48.73 \\ -2 & 6.38 \\ \dots & \dots \\ +1 & 28.82 \\ -2 & 26.06 \end{vmatrix} $	-0.432 -0.418	$ \begin{array}{c} +0.17 \\ +0.12 \\ +0.05 \\ \\ -0.23 \\ -0.29 \end{array} $
Dec. 5 6 49 20 6 53 23 6 57 51 7 2 8 8 7 6 31 7 10 25 7 28 43 7 35 50 7 42 3 7 45 43 7 45 55 11 7 59 2 8 3 35 5 8 13 49 8 18 28 8 24 33 8 29 41 8 34 51 8 38 51 9 17 23 9 17 23 9 17 23 9 17 23 13 55 14 14 12 14 14 12 14 14 15 14 14 15 14 14 15 14 15 14 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1 2 1 2 1 3 2 1 3 2 1 3 1 3 1 3 1 1 1 1	6.	+0 13.57 -2 20.86 +0 10.60 +0 13.36 -2 24.00 +0 7.83 +0 10.47 +0 7.55 +0 3.87 -1 0.78 -1 0.33 +1 29.57 -0 58.24	0.00 0.00	+0 13.58 -2 20.91 +0 10.61 +0 13.36 -2 24.04 +0 7.83 +0 10.47 +0 7.56 +0 3.87 -1 0.82 -1 0.37 +1 29.67 -0 58.31	+1 44.58 -0 19.00 	+0.03 +0.01 +0.02 -0.00 +0.02 -0.01 +0.01 -0.03 -0.02 +0.01 -0.03 -0.02 -0.04 -0.05 -0.01 -0.07 -0.08 -0.09 -0.09 -0.09 -0.09 -0.09 -0.01	+1 44.61 -0 18.99 	-0.239 -0.228 -0.118 -0.106 -0.095 -0.020 -0.146 +0.020 -0.157 +0.1660 -0.660 -0.657 +0.657	-0.60 -0.65 -0.75 -0.78 -0.88 -0.90 -0.92 -0.99 -1.01 -1.01 -1.01 -1.00 -0.94 -0.92 -0.85 -0.85 +3.67 +3.50 +3.67 +4.10 +4.20 -1.489
Dec. 8 6 23 13 6 27 32 6 31 37 6 52 16 6 52 16 6 55 2 16 6 55 2 16 7 12 15 7 28 59 7 28 59 7 28 59 7 33 29 7 44 7 7 53 10 8 13 42 8 18 11 8 22 12 12 53 18 12 58 5 13 4 19 13 11 4	9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	+1 5.79 +1 8.17 +1 8.78 +1 10.15 +1 11.84 +1 13.99 -1 39.55 -1 37.81	+0.02 +0.02 +0.02 +0.02 +0.02 +0.02 -0.06 -0.06	+1 5.82 +1 8.19 +1 8.80 +1 10.17 +1 11.86 +1 14.01 -1 39.61 -1 37.87	+1 10.17 +1 2.46 +0 43.25 +0 34.02 +0 24.76 +0 13.71 +0 4.81 -0 5.11 -0 13.58 -0 33.15 -0 41.24 -0 13.34 -0 24.94	+0.01 +0.01 +0.01 -0.00 0.00 0.00 0.00 -0.01 -0.01 -0.05 -0.06	+1 10.18 +1 2.47 +0 43.26 +0 34.02 +0 24.76 +0 13.71 +0 4.81 -0 5.11 -0 33.16 -0 41.25 -0 13.39 -0 13.39 -0 25.00	-0.283 -0.005 -0.178 -0.120 -0.064 $+0.017$ $+0.614$ $+0.625$	$\begin{array}{c} -0.33 \\ -0.41 \\ -0.57 \\ -0.64 \\ -0.70 \\ -0.76 \\ -0.82 \\ -0.86 \\ +2.35 \\ +2.57 \\ -0.83 \\ -0.86 \\$

Date - 1900 90 Time	Comp. Star	No. Obs.	$\begin{array}{c} \text{Measured} \\ \Delta \alpha \end{array}$	Ref.	Corrected $\Delta \alpha$	Measured Δδ	Ref.	$\begin{array}{c c} \text{Corrected} \\ \Delta \delta \end{array}$	Paraīla x Δa	Factors
Dec. 8 13° 17° 11° 13 23 35 13 29 55 13 46 18 13 50 32 13 57 6 14 1 52 14 8 23 14 12 52 14 21 40 14 28 4 14 34 8 14 47 36 14 47 36 14 52 51 14 58 33	11 11 11 11	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-1 35.94 -1 30.62 +0 51.13 -1 25.49 -1 21.01	-0.06 -0.07 +0.03 -0.08 -0.11	-1' 36'00 -1 30.69 +0 51.16 -1 25.57 -1 21.12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0'07 -0.07 -0.09 +0.10 -0.12 +0.11 -0.14 -0.16 -0.18 -0.21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.615 +0.615 +0.646 +0.645 +0.636	+2:84 +3:10 +3:43 +3:54 +3:90 +4:00 +4:19 +4:44 +4:74 +4:97
Dec. 9 5 19 26 5 24 26 5 28 35 5 32 25 5 36 5 5 39 27 5 49 14 5 5 33 27 48 6 26 49 13 6 49 13 7 27 37 37 27 42 27 7 56 50 8 8 12 47 14 58 35 15 31 30 15 36 54 15 51 28	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 3 2 1 3 2 1 3 2 1 1 1 1	***************************************	+0 52.44 +0 56.30 +2 2.24 +0 56.30 +2 2.24 +1 2.77 +1 58.96 +1 2.77 +1 10.95 +2 7.24 +1 14.52 +1 7.21 +1 7.21 +1 7.21	+0.01 +0.02 +0.02 +0.12 +0.19	+0 52.45 +0 56.35 +2 2.28 +0 56.35 +2 2.28 +1 2.80 +1 58.99 +1 10.97 +2 7.27 +1 14.54 +1 7.10 +1 7.10 +1 13.14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.03 +0.04 -0.03 -0.03 -0.01 -0.05 +0.02 -0.01 -0.05 +0.02 -0.01 -0.05 +0.01 +0.02 +0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.405 -0.397 -0.388 -0.278 -0.268 -0.268 -0.258 -0.086 -0.075 -0.003 -0.0634 -0.599 +0.578	+0.47 +0.40 +0.33 +0.12 +0.07 +0.02 -0.17 -0.25 -0.43 -0.47 -0.50 -0.67 -0.67 -0.71 -0.78 +5.06 +5.30 +5.62 +5.81 +5.99
Dec.10 5 21 52 5 48 5 30 18 5 31 20 5 39 22 5 43 44 5 57 5 6 1 23 6 6 46 6 11 1 1 6 15 43 6 19 6 49 51 6 54 28 6 58 52 7 1 35	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1	000000000000000000000000000000000000000	-0 32.92 -0 36.86 -0 16.56 -0 20.42 -0 8.92	0,00 -0,03 0,00 -0,03 0,00	-0 32.92 -0 36.89 -0 16.56 -0 20.45 -0 8.92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.03 -0.03 -0.02 -0.03 +0.02 -0.01 -0.04 -0.00 -0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.398 -0.389 -0.316 -0.304	$\begin{array}{c} +0.42 \\ +0.37 \\ \hline \\ +0.20 \\ +0.14 \\ 0.00 \\ -0.05 \\ \hline \\ -0.23 \\ -0.48 \\ \hline \\ -0.57 \\ \end{array}$

M1CROMETRICAL OBSERVATIONS OF EROS-Continued

Date-1900 90° Time	Comp. Star	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	Corrected \(\Delta a\)	Measured Δδ	Ref.	$\begin{array}{c} \text{Corrected} \\ \Delta \delta \end{array}$	Parallax Fa	ctors 28
Dec.10 7h 8m 11s 7 12 19 7 42 25 7 47 57 7 52 32	1 1 1 1 1	5 5 5 5 5	-0' 6:46 	0.00	-0' 6'46 	-0' 18*06 -0' 47.34 -0' 57.23	0.00 -0.01 -0.02	-0' 18'06 -0' 47.35 -0' 57.25	-0.047 .	-0.761 -0.71 -0.72
Dec.11 5 2 0 5 6 14 5 11 34 5 15 49 5 29 5 5 33 20 5 36 34 5 41 28 6 0 35 6 0 11 6 10 10 6 14 40 6 38 54 6 48 23 6 54 16 7 15 8 7 21 26 7 26 58 13 51 8 13 55 58 13 55 8 13 55 8 13 51 8 13 55 58 14 12 39 14 16 51 14 31 14 45 39 14 51 35 14 45 39 14 51 55 15 37 48	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	655655555555555555555555555555555555555	+0 13.45 +0 14.70 	0.00 0.00	+0 13.45 +0 14.70 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.01 \\ \cdots \\ -0.01 \\ -0.01 \\ \cdots \\ -0.02 \\ -0.02 \\ -0.03 \\ -0.03 \\ \cdots \\ -0.04 \\ -0.04 \\ -0.14 \\ +0.05 \\ \cdots \\ -0.24 \\ +0.07 \\ \cdots \\ -0.28 \\ +0.08 \\ +0.11 \\ \cdots \\ +0.12 \\ \end{array}$	$\begin{array}{c} -0 & 11.08 \\ \hline -0 & 24.03 \\ -0 & 36.79 \\ \hline -0 & 48.40 \\ -1 & 6.62 \\ \hline -1 & 20.01 \\ -1 & 43.14 \\ \hline -1 & 57.97 \\ -2 & 18.26 \\ \hline -2 & 29.84 \\ -2 & 2.75 \\ +3 & 47.37 \\ \hline -2 & 45.42 \\ +3 & 5.59 \\ \hline -3 & 6.49 \\ +2 & 44.79 \\ +2 & 13.68 \\ \hline +2 & 0.41 \\ \hline \end{array}$	-0.441	-0.72 -0.54 -0.36 -0.21 -0.02 -0.15 -0.35 -0.57 -0.61 -3.83 -3.89 -4.37 -4.62 -4.70 -5.16 -5.16 -5.75
Dec.12 4 58 29 5 3 44 5 8 56 5 13 23 5 17 44 5 22 45 5 26 44 5 31 12 5 35 41 5 39 31 5 42 51 5 54 57 5 59 56 6 5 48 6 9 52 6 13 16 6 44 55 6 48 58 6 57 48 7 1 36 7 7 0 7 10 59 7 14 48 7 30 18 7 34 57 7 39 16 7 44 55	1 1 1 2 1 2 1 2 3 2 3	555555555555555555555555555555555555555	-1 35.77 -1 36.55 -1 29.41 -0 6.07 -1 22.68 -1 27.85 +0 0.81 -1 11.17 +0 17.63 +0 53.71	-0.03 -0.04 -0.03 -0.00 -0.03 -0.03 -0.02 -0.00 -0.00	-1 35.82 -1 36.58 -1 29.46 -0 6.07 -1 22.72 -1 27.88 +0 0.81 -1 6.66 -1 11.19 +0 17.63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.01 -0.01 +0.04 -0.01 -0.03 +0.03 +0.01 -0.05 -0.05 -0.00 -0.01 -0.02 -0.06 -0.02 -0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.436	-0.78 -0.63 -0.51 -0.29 -0.24 -0.20 -0.03 -0.03 -0.36 -0.39 -0.36 -0.51 -0.51 -0.551 -0.551

Date—1900 90 Time	Comp.	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	Corrected Δa	Measured Δδ	Ref.	Corrected $\Delta \delta$	Parallax _{\Delta\alpha}	Factors
Dec.12 7h 49m 33> 7 53 26 8 0 16 8 5 26 8 9 25	2 3 1 2 3	55555	+0′ 58′00 -0 30.53	+0°02 -0.01	+0′ 58′02 -0′ 30.51	-4' 18'54 -1 33.30 -1 58.88	-0.08 -0.03 -0.03	-4 18762 -1 33.33 -1 58.91	-0:027 -0:017	-0.60 -0.60
Dec.17 8 57 8 9 1 4 9 7 3 9 9 48	1 2 1 2	5 5 5 1	$\begin{array}{ c c c c c }\hline & \cdots & \cdots & \\ +0 & 6.16 \\ -1 & 49.98 \\ \hline \end{array}$	+0.01 -0.02	$\begin{vmatrix} \\ +0 & 6.17 \\ -1 & 50.00 \end{vmatrix}$	$\begin{bmatrix} -1 & 37.72 \\ -1 & 58.97 \\ \vdots & \vdots \\ \vdots & \vdots \\ \end{bmatrix}$	$ \begin{array}{c} -0.03 \\ -0.04 \\ \cdots \end{array} $	$\begin{bmatrix} -1 & 37.75 \\ -1 & 59.01 \\ \vdots & \vdots \\ \vdots & \vdots \\ \end{bmatrix}$	+0.214 $+0.224$	$\begin{bmatrix} -0.07 \\ -0.05 \\ \cdots \\ \cdots \end{bmatrix}$
Dec.18 4 55 15 15 4 58 57 3 4 6 58 57 5 11 52 48 33 55 248 28 55 36 54 5 5 44 38 55 44 38 55 44 38 55 44 38 55 44 38 55 44 226 42 31 7 21 13 7 26 49 27 37 41 26 49 27 37 41 26 49 27 37 41 22 57 48 12 57 48 12 57 48 12 57 48 12 57 48 14 45 3	121231231121212121212211299999922229999	0.5.05.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	-0 29.16 +2 56.91 -0 23.41 +3 13.67 -0 3.79 -0 27.57 +3 55.09 +4 13.11 +0 51.95 -0 57.28 -0 57.28 -4 42.91	-0 01 +0.06 -0.01 +0.06 -0.01 -0.06 -0.06 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01	-0 29.17 +2 56.97 +0 23.42 +3 13.73 -0 3.80 +0 27.57 +3 55.15 +4 13.18 +0 51.96 +4 12.11 -0 57.41 +4 43.23	-0 30.88 +0 8.28 -0 47.78 -0 8.78 +0 42.63 -1 0.69 -0 21.69 -1 20.83 -1 36.15 -1 36.15 -1 36.15 -2 37.14 -1 58.85 -2 55.60 -2 17.69 -1 32.15 -1 44.81 -2 53.55 -1 54.84 -1 54.84	0 00 -0.03	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.384 \\ -0.373 \\ -0.373 \\ -0.320 \\ -0.311 \\ -0.284 \\ -0.127 \\ -0.026 \\ +0.586 \\ +0.586 \\ +0.587 \\ +0.587 \\ \end{array}$	+0.91 +0.87
Dec.19 5 6 24 5 11 0 5 14 58 5 21 0 5 27 0 5 32 26 5 36 3 5 40 14 5 43 54 6 0 0 6 1 2 6 7 58 6 31 8 6 36 6 6 41 47 6 49 55 6 53 56 7 13 15 7 18 12	1 1 2 1 2 1 1 1 1 1 3 1 3 3 1	555565555555555555555	+0 16.18 +2 42.30 +0 31.34 +0 48.02 +1 9 92 +0 45.37	+0.01 +0.05 +0.01 +0.01 +0.02 +0.02	+0 16.19 +2 42.35 +0 31.35 +0 48.03 +1 9.94 +0 45.39	+0 18.45 +0 9.88 -0 26.91 -0 2 24 -0 19.49 -0 36.05 -1 8.20 +2 42.73 -1 27.73 +2 24.10 +2 4.01 -1 57.48	0.00 -0.03 0.00 -0.03 -0.01 -0.01 -0.02 -0.02 +0.04 -0.03 +0.04 +0.03 -0.01	+0 18.15 +0 9.88 -0 26.94 -0 2.24	-0.360 -0.313 -0.307 -0.242 -0.149 -0.139	+0.81 +0.70 +0.61 +0.57 +0.41 +0.41 +0.04 +0.02 -0.05 -0.07 -0.28 -0.29

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Doto 1000	Comp.	No.	Measured		Corrected	Measured		1	Parallar	Factors
Date 1900 90° Time	Star	Obs.	Yeashied 7a	Ref.	Δa	78	Ref.	Corrected Δδ	Parallax \(\Delta a\)	δ Δδ
Dec.19 7h 23m 39s 7 27 54 7 33 19 7 37 28 12 47 48 12 52 36 12 57 38 13 1 44 13 7 21 13 12 35 13 16 38 13 20 46 13 26 43 13 31 25 13 36 1 13 39 55 13 48 7 13 53 48 7 13 53 46 14 1 52 14 8 19 14 12 25 14 17 58 14 21 35 14 25 28 14 29 13	31311234121341321412134343434	555555555555555555555555555555555555555	+1' 8'15 +1' 37.29 	+0.02 +0.03 +0.10 +0.04 -0.01 -0.05 +0.15 +0.08 +0.02 -0.03 +0.03 -0.02	+1 8.17 +1 37.32 +2 0.64 +0 44.43 -0 7.69 -0 55.99 +2 28.39 +1 11.99 +0 20.38 -0 27.63 +0 34.59 -0 13.42	+1' 42:73 -2 17:38 +0 36:40 +1 0.58 +0 43:74 +1 16:32 -0 7:61 +0 5:83 +0 11:77 +0 33:44 -0 3:01 -0 54:62 -0 21:31	+0.03 -0.04 +0.07 +0.04 +0.01 -0.01 +0.01 +0.06 -0.02 	+1' 42'76 -2 17.42 +0 36.47 +1 0.62 +0 43.75 +1 16.31 -0 7.50 +0 5.84 +0 11.83 +0 33.42 -0 3.04 -0 54.62 -0 21.37	-0.5042 -0.031 +0.590 +0.592 +0.593 +0.593 +0.594 +0.593 +0.593 +0.593 +0.593 +0.593	-0.731 -0.31 +3.31 +3.41 +3.53 +3.59
Dec.20 6 4 37 7 35 52		, 4 1	$\begin{bmatrix} \dots & \dots & \dots \\ -2 & 12.69 \end{bmatrix}$	-0.04	-2 12.73	+1 39.41	0.00	+1 39.11	-0.003	+0.26
Dec.21 13 47 33 13 53 53 14 0 10 14 4 53 14 11 49 14 16 40	1 2 1 2 1 2	5 5 6 5 5	+3 8.37 +3 26.01	+0.21 +0.25	+3 8.58 +3 26.26	$\begin{array}{ccc} -0 & 14.22 \\ +0 & 21.31 \\ & & \\ -0 & 42.32 \\ -0 & 5.38 \end{array}$	$ \begin{array}{c} +0.16 \\ +0.21 \\ \dots \\ +0.20 \\ +0.30 \end{array} $	$\begin{array}{ccc} -0 & 14.06 \\ +0 & 21.52 \\ & & \\ -0 & 42.12 \\ -0 & 5.08 \end{array}$	+0.583 +0.582	$ \begin{array}{r} +4.64 \\ +4.75 \\ \cdots \\ +5.09 \\ +5.19 \end{array} $
Dec.24 13 27 37 13 31 46 13 37 50 13 42 41 13 47 51 13 52 16 13 57 45 14 5 31	1 2 1 2 1 2 2 1 2 2	5 5 5 5 5 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.20 +0.15 +0.23 +0.18	+2 34.68 +1 27.27 +2 43.44 +1 35.89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+0.22 \\ +0.21 \\ \cdots \\ +0.32 \\ +0.34$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.573 +0.572 +0.571 +0.570	$ \begin{array}{r} +4.47 \\ +4.55 \\ \dots \\ +5.03 \\ +5.17 \end{array} $
Dec.26 5 57 36 6 3 24 6 10 42 6 31 35 6 39 29 6 46 34	13 13 13 13 13 13	5 5 5 5 5 5	-0 37.46 -0 5.20	-0.02 -0.04	-0 37.48 -0 5.21	$\begin{array}{ccc} -3 & 33.17 \\ -3 & 46.84 \\ -4 & 9.51 \\ -4 & 25.08 \end{array}$	-0.06 -0.06 -0.07 -0.08	$ \begin{array}{cccc} -3 & 33.23 \\ -3 & 46.90 \\ -4 & 9.58 \\ -4 & 25.16 \end{array} $	-0.197 -0.111	+0.59 -0.51 $+0.40$ -0.35
Dec.28 5 20 32 5 25 20 5 32 46 5 36 53 5 47 50 6 18 12 6 23 13 6 29 31 6 34 19 6 41 17 6 45 22 7 2 19 7 7 7 58 7 12 56 11 14 51 11 28 30	121212121212121212888	5555555555555555555	-1 1.09 +1 16.36 -0 4.95 +2 13.70 +0 33.59 +3 36.20	0.00 +0.02 +0.01 +0.04 +0.01 	-1 1.09 +1 16.38 -0 4.94 +2 13.74 -0 33.60 -3 36.30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.09 -0.01 +0.08 -0.01 +0.06 -0.02 +0.06 -0.03 +0.05 +0.11 +0.12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.255 -0.246 -0.148 -0.114 -0.032	$\begin{array}{c} +1.00 \\ +0.94 \\ \cdots \\ +0.81 \\ +0.78 \\ +0.60 \\ +0.57 \\ \cdots \\ +0.49 \\ +0.45 \\ \cdots \\ +0.44 \\ +2.43 \\ \cdots \\ +2.63 \end{array}$

Date - 1900 90 Time	Comp. Star	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	Corrected Δa	Measured 28	Ref.	$\begin{array}{c} \text{Corrected} \\ \Delta \delta \end{array}$	Parallax	Factors
Dec.28 11 ^h 45 ^m 17 ⁵ 11 50 52 11 55 11 12 7 43 12 12 13 12 18 2 12 23 17 12 28 42 12 33 9	13 13 13 8 13 8 13 8 13 13	5 5 5 5 5 5 5 5 5	-0' 10'09 	-0.01 -0.19 +0.19 +0.02	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0' 5:98 -0 17.16 +1 18.71 -0 35.95 +0 55.78 -1 0.64	-0.01 -0.01 +0.16 -0.01 -0.18 -0.01	-0' 5'99 -0 17.17 +1 18.87 -0 35.96 -1 0.65	+0.541 +0.544	+2.91 +3.07 +3.29 +3.36 +3.66 +3.73
Dec.29 5 26 24 5 31 51 5 38 40 5 56 40 6 1 11 6 6 21 6 17 11 6 21 6 6 39 51 6 46 23 6 53 6 7 6 44 7 12 43 7 19 11	9.5 9.5 9.5 1 2 1 2 1 2 9.5 9.5 9.5 9.5 9.5 9.5 9.5	5 5 5 5 6 5 5 5 5 5 5 5 5 5	+2 32.12 +0 6.46 -1 25.81 +3 48.94 +4 16.28	+0.06 -0.02 -0.02 -0.07 -0.07	+2 32.18 +0 6.46 -1 25.83 +3 49.01 +4 16.35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.07 +0.07 +0.03 0.00 +0.01 -0.01 +0.05 +0.05 +0.05 +0.05 +0.01	+4 37.20 +4 24.26 +1 26.63 -0 22.88 	-0.250 -0.174 -0.162 -0.080 -0.014	$\begin{array}{c} +1.01 \\ +0.90 \\ +0.77 \\ +0.75 \\ \cdots \\ +0.65 \\ +0.65 \\ +0.58 \\ \cdots \\ +0.54 \\ +0.52 \\ -0.52 \end{array}$
Dec.30 5 29 15 5 34 24 5 39 43 5 41 1 5 50 20 5 54 25 6 43 8	1 2 1 2 1 2 1	5555553	+0 44.26 +4 4.26	0.00 +0.07	+0 44.26 +4 4.33	-3 10.91 -0 54.51 -3 33.28 -1 15.83 -1 29.76	-0.06 -0.04 -0.07 -0.04 -0.08	-3 11.00 -0 55.55 -3 33.35 -1 15.87 -4 29.81	_0.229 _0.218	+1.05 +1.00 +0.88 +0.86 +0.63
Dec.31 5 45 18 5 53 21 6 0 9 6 38 29 6 45 1 6 51 25 7 2 59 7 8 57 7 15 4 8 57 31 9 3 43 9 10 22 9 30 7 9 38 19 9 45 0 10 43 9 10 49 30 12 43 59 12 51 4 12 57 10	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	333333333333333333333333333333333333333	+0 52.13 +0 6.34 +0 31 43 +2 41.56 +3 20 53 +4 35.33 +0 12.07	+0.01 +0.01 +0.05 +0.07 +0.03	-0 52.13 +0 6.35 +0 31.44 +2 41.61 +3 20.60 +4 35.46 +0 12.10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.08 +0.07 +0.06 +0.05 +0.05 +0.03 +0.03 +0.03 +0.03 +0.04 +0.05 +0.10 +0.10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.196 -0.074 -0.017 $+0.248$ $+0.322$ $+0.435$ $+0.549$	+0.94 $+0.84$ $+0.68$ $+0.65$ $+0.12$ $+1.01$ $+1.11$ $+1.30$ $+1.45$ $+2.25$ $+4.10$ $+4.33$
1901 Jan. 1 5 42 41 5 48 8 5 54 11 5 59 53 6 5 30 6 11 50 6 55 15 7 0 44 7 7 20 10 58 49 11 3 40 11 11 29 11 15 37 11 21 36 11 21 55	1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.05 -0.08 -0.02 -0.13 +0.10	-2 39.86 +1 5.82 -1 15.58 +4 14.20 +2 33.41	$ \begin{array}{c cccc} -1 & 38.51 \\ \hline -1 & 50.63 \\ -4 & 22.32 \\ \hline -1 & 31.99 \\ -2 & 55.91 \\ \hline -3 & 8.27 \\ +0 & 55.77 \\ +0 & 58.46 \\ \hline \\ +0 & 30.22 \\ +0 & 31.38 \\ \hline \end{array} $	-0.02 -0.02 -0.08 -0.05 -0.05 +0.09 +0.06 +0.06 +0.07	$\begin{array}{cccc} -1 & 38.53 \\ -1 & 50.65 \\ -4 & 22.40 \\ -1 & 35.07 \\ -2 & 55.96 \\ -3 & 8.32 \\ +0 & 55.86 \\ +0 & 58.52 \\ & & & \\ +0 & 30.32 \\ +0 & 31.45 \\ \end{array}$	-0.201 -0.163 -0.034 +0.472 +0.477	$\begin{array}{c} +1.01 \\ +0.93 \\ +0.91 \\ +0.85 \\ +0.71 \\ +0.70 \\ +2.46 \\ +2.54 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

MICROMETRICAL OBSERVATIONS OF EROS-Continued

Date—1900 90° Time	Comp. Star	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	Corrected Δa	Measured Δδ	Ref.	Corrected 28	Parallax Factors $\Delta \alpha \qquad \Delta \delta$
Jan. 1 12h 43m 46s 12 49 46 12 56 11 13 4 55 13 10 8 13 15 51 13 24 53 13 30 19 13 35 11 13 45 12 13 50 36 13 57 19	10 10 10 10 10 10 10 10 10 10 10 10 10	5 6 5 5 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	-0' 39'48 -0 11 94 +0 12.95 +0 34.15	-0.01 -0.01 -0.05 -0.09	-0 39349 -0 11.93 +0 13.00 +0 34.24	+1 56'59 +1 42.16 +1 32.68 +1 19.56 +1 9.96 +0 57.98 +0 47.25 +0 33.39	+0.05 +0.05 +0.05 +0.05 	+1 56.764 +1 42.21 +1 32.73 +1 19.62 +1 10.03 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Jan. 2 5 17 14 5 23 23 23 5 27 16 5 32 52 6 0 39 6 6 6 38 6 10 15 6 15 46 7 5 31 7 14 24 7 21 1 12 42 24 12 48 32 12 57 39 13 10 8 13 17 12 13 22 55 13 28 58 13 35 4 13 40 38 13 45 28	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	555555555555555555555555555555555555555	$\begin{array}{cccc} -0 & 13.97 \\ -0 & 9.25 \\ +0 & 37.98 \\ +0 & 42.51 \\ & & \\ -1 & 58.81 \\ \hline -0 & 58.91 \\ -0 & 52.05 \\ \hline & & \\ -0 & 14.33 \\ \hline & & \\ +0 & 7.96 \\ \hline \end{array}$	-0.02 -0.02 -0.00 0.00 	$\begin{array}{cccc} -0 & 13.99 \\ -0 & 9.27 \\ +0 & 37.98 \\ +0 & 42.51 \\ +1 & 58.84 \\ \hline -0 & 58.96 \\ -0 & 52.10 \\ \hline -0 & 20.94 \\ -0 & 14.35 \\ \hline +0 & 7.96 \\ \end{array}$	-3 13.20 -3 29.53 -3 58.81 -4 15.01 -5 8.07 -5 24.68 +0 44.55 +0 27.20 +0 13.12 -0 8.28 -0 14.99 -0 26.36	-0.05 -0.06 -0.09 -0.09 -0.09 -0.03 -0.02 -0.02 -0.01	-3 13.25 -3 29.59 -3 58.90 -4 15.10 -5 8.16 -5 21.77 +0 44.52 +0 27.18 +0 13.10 -0 8.30 -0 15.60 -0 26.37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Jan. 3 5 29 14 5 33 46 5 39 37 5 43 33 5 48 12 5 51 57 6 21 25 6 23 5 6 24 41 6 39 32 6 43 54 10 36 0 10 40 19 10 48 2 10 55 44 11 0 31 11 4 44 11 19 36 11 23 42 11 27 30 11 38 38 11 42 59 11 47 36 11 52 13 11 59 39 11 59 35 12 6 0 12 9 41 12 13 52 12 19 52 12 21 0 12 28 28	121212111111234123412341234123412341233	5.5.6.4.5.6.8.5.7.16.5.5.5.5.5.5.5.5.5.5.5.5.5.5.6.6.6.6.	+0 25.08 +0 17.43 +1 38.88 +1 38.88 -2 7.51 -0 39.33 -1 11.28 -1 57.59 -0 44.37 +0 44.85 +0 12.86 -0 33.31	0.01 0.00 	+0 25.09 +0 17.43 	+0 57.55 -2 52.00 	+0.01 -0.05 	+0 57.56 -2 52.05 	$\begin{array}{c} +1 \ 21 \\ -0.203 \\ -0.203 \\ -0.203 \\ -0.203 \\ -0.203 \\ -0.203 \\ -1.08 \\ +1.08 \\ +0.92 \\ +0.92 \\ +0.91 \\ -0.076 \\ -1.086 \\ +2.30 \\ +2.41 \\ +2.46 \\ +0.457 \\ +0.468 \\ +0.457 \\ +0.468 \\ -1.08 \\ +0.468 \\ -1.08 \\ $

MICROMETRICAL OBSERVATIONS OF EROS - Continued

Date-1900 902 Time	Comp. Star	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	$ \begin{array}{c} \text{Corrected} \\ \Delta a \end{array} $	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected Δδ	Parallax Factors Δα Δδ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 3 4 3	5 5 5 5 4	+1 37:17 +0 50.85	+0°10 +0.01	+1 37:27 +0 50.89	$\begin{array}{cccc} -0 & 26 & 20 \\ -1 & 8.51 \\ -1 & 6.95 \\ & & & \\ -1 & 40.67 \end{array}$	-0.02 +0.03 -0.01 +0.05	-0' 26722 -1 8.48 -1 6.96 	+4:08 +4:53 +0:512 +0:541 +5:00
Jan. 8 5 55 39 6 2 7 6 8 39 6 14 5 6 19 10 6 24 28 6 28 38 6 33 48 6 37 55 4 5 6 59 36 7 7 29 7 11 0 7 16 22 7 19 40 7 59 41 8 4 10 8 9 41 8 14 9 8 18 46 8 22 42	111233232323232323232323232323232323232	5655555555555556	+1 45.28 -2 12.77 -3 5.65 -1 12.19 -2 6 05 -0 36.69	+0.03 -0.03 -0.05 -0.02 -0.04 -0.00 -0.01	+1 45.31 -2 12.80 -3 5.70 -1 12.21 -2 6.09 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.01 -0.01 +0.01 +0.01 -0.03 -0.00 +0.03 -0.02 -0.02 +0.01 -0.03 -0.03 -0.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Jan.12 6 5 29 6 10 47 6 15 51	11 11 11	5 6 5	-0 27.74	-0.01	-0 27.75	$\begin{array}{c c} -2 & 3.08 \\ -2 & 14.44 \end{array}$	-0.01 -0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} \dots & +1.52 \\ -0.114 & +1.48 \end{vmatrix}$
Jan.14 5 58 52 6 3 49 6 9 56 6 11 39 6 20 12 6 44 44 66 49 51 6 57 49 7 2 34 8 49 10 8 51 21 9 16 59 9 28 52 8 9 47 23 9 52 57 9 58 28 10 25 32 10 30 53 10 58 52 11 3 51 11 55 4 12 0 6 18 12 24 24 12 30 10 12 36 29	1 21 21 22 22 11.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	555555555555555555555555555555555555555	+4 22.32 -1 24 63 -0 16.09 +0 9.69 +1 52.50 -1 21.03 -0 35 22 +1 7.82 +1 56.42	+0.08 -0.02 0.00 +0.02 +0.05 +0.05 +0.05 +0.05	+4 22.40 -1 24.65 -0 16.00 +0 9.69 +1 52.55 +1 52.55 -1 21.06 -0 35.22 +1 7.87 +1 56.50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.01 \\ -0.05 \\ \cdots \\ -0.01 \\ -0.06 \\ -0.07 \\ \cdots \\ -0.02 \\ +0.02 \\ +0.02 \\ \cdots \\ +0.02 \\ -0.05 \\ -0.$	+0 3.20 -2 55.90 -0 19.30 -3 17.95 -3 44.46 -3 58.07 +1 2.26 +0 50.80 +0 26.03 +0 13.39 -0 7.29 -0 19.13 -1 21.31 -4 33.25 -1 51.89 -2 3.35 -3 0 07 -3 12.69 -3 32.66 -3 46.08	$\begin{array}{c}$
Jan.16 5 43 5 5 48 48 5 53 38 5 59 4 6 1 6 6 22 30 6 26 57	12 12 12 12 12 12 12 12	5555155	-1 17.96 -1 9.71 -0 11.11	-0.02 -0.02 -0.02 	-1 17 98 -4 9.73 	+0 19.42 +0 2.72 -0 2 47 -0 21.69	+0.0I 0.00 0.00 -0.01	+0 19.43 +0 2.72 -0 2.47 -0 21.70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

MICROMETRICAL OBSERVATIONS OF EROS - Continued

Date—1900 90^ Time	Comp. Star	No. Obs.	Measured 2a	Ref.	Corrected Δa	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected 28	Parallax Δa	$_{\Delta\delta}^{\rm Factors}$
Jan.16 6h 31m 35° 6 49 40 6 54 43 6 59 33 7 8 24 7 12 39 7 16 57	12 12 12 12 12 12 12 12 12	5 5 5 5 5 5 5	+0' 31'49 +1 1.28	+0.01	+0 3150	-0 31713 -0 50.50 -1 0.64 -1 10.33 -1 19.05	-0.01 -0.01 -0.02 -0.02 -0.02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0:011 +0.029	+1.68 + 1.66 + 1.65 + 1.66 + 1.67
Jan.18 10 57 5 11 2 59 11 8 56 11 13 54 11 18 15 11 23 38 11 29 18 11 33 23 11 41 16 11 45 19	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	5 6 5 5 5 5 5 5 5 5	$ \begin{array}{cccc} -0 & 15.18 \\ +0 & 4.96 \\ +0 & 21.87 \\ +0 & 41.39 \\ +1 & 2.46 \end{array} $	-0.01 0.00 +0.01 +0.03 +0.04		-0 3.24 -0 14.66 -0 25.36 -0 36.26 -0 49.22	0.00 0.00 0.00 +0.01 +0.01	-0 3.24 -0 14.66 -0 25.36 -0 36.25 -0 49.21	+0.436 +0.448 +0.457 +0.466 +0.476	+3.54 +3.68 +3.80 +3.94 +4.10
Jan.19 5 32 41 5 37 51 5 43 5 5 47 26 5 52 6 5 56 12 6 1 27 6 7 33 6 12 2 6 37 0 6 45 49 6 50 23 6 55 44 7 0 11 7 4 44 8 29 29 8 36 33 8 42 6 8 48 20 8 52 54 8 59 3 9 8 50 9 12 37 9 15 58	1 1 1 2 1 2 1 2 1 2 2 2 3 3 3 1 2 1 2 1	5555555556655555557555555555	+2 49.72 -0 42.16 +3 30.86 +0 43.97 +1 40.57 -1 6.30 -0 38.21 -0 3.63	+0.01 -0.01 +0.02 +0.03 -0.02 -0.01 0.00	+2 49.76 -0 42.17 +3 30.92 +0 43.99 +1 40.60 -1 6.32 -0 38.22 -0 3.63	$\begin{array}{ccccc} -1 & 42.82 \\ -1 & 53.51 \\ -1 & 44.55 \\ -2 & 3.65 \\ & & & \\ -2 & 5.47 \\ -2 & 23.62 \\ -2 & 36.21 \\ & & \\ -2 & 50.07 \\ -0 & 8.13 \\ & & \\ -0 & 17.46 \\ -0 & 43.67 \\ & & \\ -0 & 56.51 \\ -1 & 3.59 \\ & & \\ -1 & 25.50 \\ & & \\ -1 & 25.50 \\ & & \\ -1 & 33.54 \\ \end{array}$	-0.04 -0.03 -0.05 -0.05 -0.05 -0.00 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03	$\begin{array}{ccccc} -1 & 42.86 \\ -1 & 53.55 \\ -1 & 44.58 \\ -2 & 3.10 \\ & & & \\ -2 & 5.51 \\ -2 & 23.67 \\ -2 & 36.26 \\ & & \\ -2 & 50.12 \\ -0 & 8.13 \\ & & \\ -0 & 43.69 \\ & & \\ -0 & 56.53 \\ -1 & 3.61 \\ & & \\ -1 & 14.88 \\ -1 & 25.53 \\ & & \\ -1 & 33.57 \\ \end{array}$	-0.171 -0.131 -0.121 -0.026 -0.007 +0.209 +0.240 +0.279	$\begin{array}{c} +2.08 \\ +2.03 \\ +2.01 \\ +1.99 \\ \cdots \\ +1.86 \\ +1.86 \\ +1.86 \\ +2.12 \\ +2.20 \\ +2.24 \\ +2.31 \\ +2.39 \\ +2.44 \end{array}$
Jan.20 5 46 15 5 52 21 5 58 15 6 15 7 6 20 35 62 6 49 5 6 55 56 7 2 36 10 37 59 10 42 2 10 46 56 10 51 14 10 55 17 11 0 51 11 6 7 11 28 42 11 23 44 11 28 32 11 33 11 11 37 30 11 42 14 11 47 10 11 53 18 11 58 17	10 10 10 10 10 10 10 10 10 10 11 2 1 2 1	55555555555555555555555555	+1 37.73 +2 26.69 +3 29.36 -0 6.33 -1 29.69 +0 9.03 -1 11.95 -1 17.81 -0 5.78 +1 33.58 +0 11.61	+0.03 +0.04 +0.06 0.00 -0.05 +0.01 -0.04 +0.07 +0.03 +0.07 +0.02	+1 37.76 +2 26.73 +3 29.42 -0 6.33 -1 29.74 +0 9.04 -1 11.99 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.06 -0.06 -0.06 -0.07 -0.07 +0.02 +0.02 +0.03 +0.03 -0.03 +0.03 -0.04	-2 40.91 -2 53.44 -3 11.31 -3 22.37 -3 46.88 -4 1.23 +0 59.85 +2 9.04	-0.137 -0.078 -0.002 +0.421 +0.430 +0.437 +0.467 +0.467 +0.474 +0.477	+2.07 +2.02 +1.97 +1.93 +1.93 +3.32 +3.38 +3.66 +3.70 +3.88 +3.95 +4.28 +4.34
Jan.21 10 27 58	9	5	-0 - 7.37	0.00	-0 7.37				+0.396	

M1CROMETRICAL OBSERVATIONS OF EROS—Continued

Date—1900 90 Time	Comp. Star	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	Corrected \(\Delta a\)	Measured Δδ	Ref.	Corrected $\Delta\delta$	Parallax 2a	Factors Δδ
Jan.21 10 ^h 33 ^m 1 ^s 10 38 29 10 47 54 10 53 43 10 59 17	9 9 9 9 9	55555	$ \begin{array}{ccccc} +0' & 12'19 \\ +0 & 29.61 \\ +0 & 50.25 \end{array} $	0°00 +0.01 +0.02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3' 6'02 -3 28.46	-0:07 -0.07	-3' 6:09 -3 28.53	+0:410 +0.420 +0.434	+3:31 +3.56
Jan.22 11 56 46 12 3 22 12 12 19 12 18 9 12 23 38 12 28 3	1 1 2 2 2	6 5 5 5 5 5	+1 13.60 -1 3.70	+0.03 -0.03	+1 13.63 -1 3.73	$ \begin{array}{c cccc} -2 & 6.73 \\ -2 & 23.89 \\ +1 & 41.21 \\ +1 & 30.64 \end{array} $	-0.03 -0.03 $+0.01$ $+0.01$	$ \begin{vmatrix} -2 & 6.76 \\ -2 & 23.92 \\ +1 & 41.22 \\ +1 & 30.65 \end{vmatrix} $	+0.481	$\begin{array}{c c} +4.42 \\ +4.61 \\ +4.69 \\ +4.81 \end{array}$
Jan.24 6 2 50 6 10 0 6 17 15 9 20 54 9 26 50 9 32 37 9 39 56 9 44 39 9 49 24	1 1 2 2 2 2 2 2 2 2	555555555	+4 26.48 +4 53.70 +2 11.20 +2 45.92	+0.08 +0.08 +0.05 +0.06	+4 26.56 +4 53.78 +2 11.25 +2 45.98	+3 10.27 +1 52.51 +1 40.98 +1 33.73 +1 24.74	+0.05 +0.05 +0.05 +0.05 +0.06	+3 10.32 +1 52.56 +1 41.03 +1 33.78 +1 24.80	-0.110 -0.081 $+0.304$ $+0.333$	+2.12 $+2.77$ $+2.87$ $+2.93$ $+3.01$
Jan.25 5 43 32 5 47 32 5 51 56 55 40 5 55 40 5 59 35 6 3 51 6 7 15 6 12 45 6 15 46 6 28 29 6 32 31 6 36 35 6 40 55 6 47 54 6 51 28 6 57 8 7 0 40 7 4 41 7 9 18 7 12 2 7 15 43 7 41 5 55 7 53 50 7 58 36	1 1 1 2 3 2 2 3 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	546566666666666666666666666666666666666	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.05 -0.06 +0.06 +0.06 -0.02 -0.02 -0.02 -0.00 +0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00	-2 31.68 +3 18.05 +3 23.78 Eros. An -1 7.23 -0 59.46 +0 49.52 -0 14.34 -0 6.65 +1 16.47 +1 25.35	-0 19.00 -0 27.67 -1 7.13 -2 4.89 -1 24.90 -2 21.72 -1 0.86 11 ^m star -1 17.92 +0 23.79 -1 28.96 -1 54.11 -2 21.20 -2 38.63	0.00 -0.03 -0.05 -0.01 -0.02 +0.01 +0.02 -0.03 -0.05 -0.01 -0.02 -0.01 -0.02 -0.03 -0.04 -0.03	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.143 -0.110 -0.106 -0.049 -0.041 -0.010 +0.019 -0.112 +0.112 +0.123	+2.38 +2.35 +2.34 +2.32 +2.29 +2.28 +2.26 +2.24 +2.23 +2.24 +2.24 +2.29 +2.24 +2.29
Jan.27 6 45 53 6 52 30 6 57 36	13 13 13	5 5 5	$+3 6.27 \\ +3 29.28$	+0.05 +0.06	+3 6.32 $+3$ 29.34	+0 40.92	÷0.01	+0 40.93	-0.017 +0.008	+2.35
Jan.28 6 57 18 7 2 16 7 6 56	13 13 13	5 5 5	$\begin{array}{cccc} +1 & 11.52 \\ \div 1 & 30.39 \end{array}$	+0.02 +0.02	+1 11.54 +1 30.41	+1 55.18	+0.04	+1 55.22	+0.006 +0.027	+2.42
Feb. 1 5 52 19 5 58 36 6 5 0 6 24 11 6 29 32 6 31 6 50 39 6 55 39 6 59 38 7 5 15 4 11 49 7 16 6	10 10 10 10 10 10 10 10 10 10 10 10	5 5 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{ccccc} -2 & 43.14 \\ -2 & 18.24 \\ -1 & 39.76 \\ \hline & & \\ -1 & 18.61 \\ -0 & 46.60 \\ \hline & & \\ -0 & 28.82 \\ -0 & 17.31 \\ +0 & 4.34 \\ \end{array}$	-0.05 -0.04 -0.03 -0.02 -0.01 -0.01 -0.01 -0.00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+1 39.76 +1 8.93 +0 42.48 +0 26.03	+0.02 +0.02 -0.01 -0.01 -0.01	+1 39.80 +1 8.95 +0 42.49 +0 26.04	-0.239 -0.215 -0.179 -0.128 -0.128 +0.138 +0.150 +0.171	+2.65 +2.66 +2.66

M1CROMETRICAL OBSERVATIONS OF EROS—Continued

Date-1900 90° Time		No. Obs.	Measured 2a	Ref.	Corrected Δa	Measured 28	Ref.	Corrected 28	Parallax _{\Delta a}	Factors Δδ
Feb. 4 9h 33m 57 9 39 8 9 45 30 10 21 36 10 26 3 10 30 36 10 40 44 10 44 57 10 46 53 10 48 19 10 52 46	10.5 10.5 10.5 10.5 10.5 10.5 10.5	5 5 6 5 5 5 4 est.	-2' 20'.64 -0 43.43 0 3.62 0 0.00 +0 2.63	-0.06 -0.02 -0.00 0.00 0.00	-2' 20'70 -0 43.45 -0 3.62 0 0.00 +0 2.63	+1' 24'70 +1 11.44 +0 34.43 +0 25.37 +0 15.00 	0.00 0.00 0.00 0.00 0.00 0.00	+1' 24'70 +1' 11.44 +0 34.43 +0 25.37 +0 15.00 	+0:316 +0.380 +0.402 +0.404 +0.405	+3.46 +3.55 +3.85 +3.94 +4.03 +4.17
Feb.5 6 5 27 6 9 47 6 16 25 6 19 52 6 23 27 6 29 7 6 33 28 6 45 18 6 51 57 6 56 47 7 15 10 7 17 16 10 7 29 10 13 38 10 20 6 10 29 51 10 34 41 10 39 56 10 47 43 10 52 46 10 56 0 10 58 39	1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	555235566555525555555514	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.02 -0.04 -0.03 -0.03 -0.02 -0.01 -0.01 -0.05 -0.04 -0.03 -0.02 -0.02 -0.02 -0.01 -0.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0 20.19 +0 1.50 -0 2.46 	-0.01 -0.03 -0.03	+0 20.19 +0 1.50 -0 2.46 	$\begin{array}{c} -0.096 \\ -0.088 \\ \cdots \\ -0.088 \\ \cdots \\ -0.039 \\ -0.015 \\ \vdots \\ +0.008 \\ +0.027 \\ \cdots \\ +0.051 \\ +0.355 \\ \cdots \\ +0.372 \\ +0.383 \\ \cdots \\ +0.403 \\ \cdots \\ +0.412 \\ +0.414 \\ \end{array}$	+2.93 +2.92 +2.91 +2.89 +2.89 +3.82 +4.01 +4.17

COMPARISON STARS

The following table contains the comparison stars used in these measures. The accurate positions of these stars are now being photographically measured in Europe and are not yet available.

Date	Star	Mag.	Time	Remarks
Oct. 2	1	10.5	8h 12m to 8h 38m	
	2	$^{11.0}_{8.6}$	8 12 to 8 38	
	8.6	8.6	8 50 to 9 03 and 11 32 to 11 52	Same star both times
	Eros	10.5		
	$\begin{bmatrix} 12 \end{bmatrix}$	12	16 46 to 17 4	
Oct. 3	1 1	10	12 50 to 13 18	
	$\begin{bmatrix} 2 \end{bmatrix}$	10.8	12 50 to 13 18	
Oct. 4	10.3	10.3	11 59 to 12 13	
	Eros	10		
Oct. 8	1	12	7 27 to 8 11	
	2	12	7 27 to 8 11	1077 0 05 10-17 0: 1 171 05 10
		9.5	8 32 and 12 36 to 13 10	1855.0 a 2^{h} 40^{m} 15.0 = $+47$ 25.0
	1	13	16 42 to 17 5	
	2	$\substack{12.5\\9.8}$	16 42 to 17 5	
	9.8	9.8	17 9 to 17 36	
Oct. 9	1	12.2	7 15 to 8 47 7 15 to 8 47	
	$\frac{2}{3}$	12	7 15 to 8 47	
		12.5	7 15 to 8 47	
	Eros	10	111111111111111111111111111111111111111	
		9	14 11 to 14 32	
	1	9.8	16 19 to 17 41	
	2	10 _	16 19 to 17 41	
Oct. 10		12.7	12 50 to 13 2	
Oct. 11	1 1	12.5	6 44 to 8 4	

COMPARISON STARS -Continued

Date	Star	Magnitude	Time	Remarks				
Oct. 11	2 1 2 1	12.5 12 12.5 12.5 12.5	6 ^h -14 ^m to -8 ^h -4 ^m 13 -47 to 14 -7 13 -47 to 14 -7 16 -32 to 17 -31					
Oct. 11	2 1 2 1	12 12.5 10	16 32 to 17 31 7 17 to 7 34 7 17 to 7 34 7 17 to 7 31 16 57 to 17 45					
et. 15	$\frac{2}{1}$	10	16 57 to 17 45 6 41 to 7 22					
ct. 16	2 1 2 3	$\frac{10.5}{12}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	$\frac{2}{3}$	12.5 12	6 38 to 7 33 6 38 to 7 33					
	$\frac{7.8}{1}$	7.8 7.8	12 30 to 12 56 16 40 to 17 50	{ Same star				
et. 17	2	10 10.5	16 40 to 17 50 7 9 to 7 30	,				
	i	10 A little fainter than <i>Eros</i>	11 11 to 11 57 16 56 to 17 46					
et. 18	2	9.2	16 56 to 17 46 16 3 to 16 17					
Oct. 25	$\frac{1}{2}$	$\frac{12}{10.5}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	1	$\frac{10.5}{10.5}$	11 31 to 11 43 16 31 to 17 51	{ Same star				
et. 26	$\frac{2}{1}$	$\begin{array}{c} 10.5 \\ 12 \end{array}$	16 31 to 17 51 5 55 to 9 3	Same as * 1 at 11 ^h 56 ^m to 12 ^h 11 ^m				
	2	$\frac{12.5}{12}$	6 14 to 6 27 11 56 to 12 11	Same as * 1 at 5 ^h 55 ^m to 9 ^h 3 ^m				
	1	11 11	16 25 to 17 36					
et. 27	$\frac{2}{3}$	11 12	16 25 to 17 36 16 25 to 17 36 9 7 to 9 30					
et. 20	2	13 11	9 34 to 9 47 15 52 to 16 12					
ίου, 1	1 2	10 11	5 55 to 6 56 5 55 to 6 56					
	$\frac{\tilde{3}}{4}$	$\frac{10.5}{9.2}$	5 55 to 6 56 5 55 to 6 56					
}	1		8 10 to 9 0 8 10 to 9 0					
	2 3 1	9.8	8 10 to 9 0 16 46 to 18 1					
	$\frac{2}{3}$	10 10	16 46 to 18 1 16 46 to 18 1					
lov. 2	1	$\frac{10.5}{12.5}$	5 42 to 6 39 5 42 to 6 39	Same as * 1 Sh 9m to Sh 44m				
	2 3 1	10 10.5	5 42 to 6 39 8 9 to 8 44	Same as * 3 8 9 to 8 44 Same as * 1 5 42 to 6 39				
	3	10	8 9 to 8 41 8 9 to 8 44	Same as * 3 5 42 to 6 39				
	1 2	10.2 9.9	12 17 to 12 58 12 17 to 12 58	Same as * 1 16 56 to 18 8 Same as * 2 16 56 to 18 8				
	1 2	$\begin{array}{c} 10.2 \\ 9.9 \end{array}$	16 56 to 18 8 16 56 to 18 8	Same as * 1 12 17 to 12 58 Same as * 2 12 17 to 12 58				
čov. 3	$\frac{2}{3}$	11 11	16 56 to 18 8 5 39 to 8 32	paine as 2 12 1. to 12 00				
	$\begin{bmatrix} \frac{5}{2} \\ 10 \end{bmatrix}$	9.5	5 39 to 8 32 10 52 to 11 10					
	$\begin{bmatrix} 9.5 \\ 1 \end{bmatrix}$	9.5	11 18 to 11 31					
	3	$ \begin{array}{c} 10.5 \\ 10.5 \\ 19 \end{array} $	16 18 to 18 6 16 18 to 18 6					
čov. 4	1	12 11.5	16 18 to 18 6 6 2 to 8 30 6 2 to 9 20					
	2 3	11 10	6 2 to 8 30 6 2 to 8 30 6 2 to 8 30 6 2 to 8 30 6 2 to 8 30	Same as * 3 10 26 to 10 40				
	1	11 11	10 26 to 10 35	Same as * 4 10 26 to 10 40				
	3	10 10	10 30 to 10 40 16 21 to 18 11					

COMPARISON STARS - Continued

Date	Star	Magnitude	Time	Remarks
Nov. 4 Nov. 5	2 1 2 3 4 5 6 7	10 13 13.5 12 14 12 10	16 ^h 21 ^m to 18 ^h 11 ^m 5 37 to 7 51	Same as * 6 10 33 to 10 50
Sov. 6	6	12 12	10 33 to 10 50 10 23 to 10 28	Same as * 6 5 37 to 7 51
ov. 7	$\frac{1}{2}$	11.5 11	13 8 to 13 16 13 8 to 13 16	
ov. 8	2 1 2 3 1 2	11.5 11.5 11.5 11 11.5	5 50 to 8 18 5 50 to 8 18 5 50 to 8 18 16 16 to 17 52 16 16 to 17 52	
Tov. 10	1 1 2 1 2 3	Same as <i>Eros</i> 12 12 12 12	5 44 to 7 16 14 51 to 15 37 14 51 to 15 37 16 41 to 17 3 16 41 to 17 3 16 41 to 17 3	
ov. 11		$\frac{1^{2}}{9.7}$ m less than $Eros$ 9.7 $\frac{1^{3}}{10}$ m less than $Eros$	6 28 to 6 49 7 9 to 8 5	
Iov. 13	$\begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}$	11 11 11 11	5 48 to 8 3 5 48 to 8 3 8 49 to 9 28 8 49 to 9 28 11 24 to 11 59	A new set of stars Same as * 2 11 24 to 11 59
	2 1 2 2 3	ii 11	11 24 to 11 59 16 56 to 18 16	Same as * 2 8 49 to 9 28
ov. 15	$\begin{bmatrix} \tilde{3} \\ 1 \end{bmatrix}$	10 11.5	16 56 to 18 16 6 13 to 7 55	
ov. 21	$\frac{2}{1}$	11 11	6 13 to 7 55 5 33 to 6 29	Same as * 1 below
	2 3 4 1 2 3	11 11 10 11 11 10 9.5	5 33 to 6 29 5 33 to 6 29 5 33 to 6 29 7 11 to 8 25 7 11 to 8 25 7 11 to 8 25 16 46 to 17 33	Same as * 2 below Same as * 3 below Same as * 1 5 33 to 6 29 Same as * 2 5 33 to 6 29 Same as * 3 5 33 to 6 29
ov. 22	1 1 2 1 2	9.0 9.5 10 11	7 25 to 8 51 7 25 to 8 51 15 52 to 17 26 15 52 to 17 26	
Tov. 23 Tov, 25	1 2 2 3	.5m fainter than Eros 9.7 9.0 9.0 n. p. of two 10m stars	9 45 to 10 2 6 33 to 9 12 6 33 to 9 12 15 18 to 17 58 15 18 to 17 58	⟨Same star
Nov. 26	4 1 3 4 1 2 2 5 6	10 s. f. of the two 10 10 10 10 11	15 18 to 17 58 5 35 to 8 15 5 35 to 8 15 5 35 to 8 15 12 14 to 12 59 12 14 to 12 59 15 15 to 16 58 15 15 to 16 58	Same as * 1 12 14 to 12 59 Same as * 3 Nov. 25 Same as * 4 Nov. 25 Same as * 1 5 35 to 8 15 (Same star
ov. 27	$\begin{bmatrix} 6\\7.7\\1 \end{bmatrix}$	$\frac{11}{7.7}$	15 15 to 16 58 5 21 to 8 13 5 21 to 8 13	
Vov. 29	$\begin{bmatrix} 2\\1\\2\\3 \end{bmatrix}$	11 9.5 9.8 11	5 21 to 8 13 5 31 to 8 31 5 31 to 8 31 5 31 to 8 31	
Dec. 1	1 2 1	11 11 10	15 42 to 16 44 15 30 to 16 26 15 30 to 16 26	
Dec. 2	ī	12	5 42 to 6 16	

COMPARISON STARS—Continued

Date	Star	Magnitude	Time	Remarks
Dec. 2	2	11	5h 42m to 6h 16m	
		11	5 42 to 6 16	
)ec. 5	$\frac{1}{2}$	9.7	6 49 to 9 29 6 49 to 9 29	
	2	10m (11m star close n. p.)	6 49 to 9 29	
	$\frac{1}{11}$.5m fainter than <i>Eros</i> 11m (s, of two 11m stars)	13 53 to 15 7 13 53 to 15 7	
Dec. 8		9.8	6 23 to 8 22	
		Nearly 1m fainter than Eros	12 53 to 14 58	
Dec. 9	11 1	11	13 50 to 14 12 5 19 to 8 12	
	2	11	5 19 to 8 12	
	3	11.5 11.5	5 19 to 8 12 14 58 to 15 51	•
)ee, 10	1	10.3	14 58 to 15 51 5 21 to 7 52	
	2	10	5 21 to 7 52	
ec. 11	1	10.5 11	5 2 to 7 26 13 51 to 15 37	
	2	9(?)	13 51 to 15 37	
Dec. 12	1	8.5	4 58 to 8 9	
	23	10m (1m fainter than Eros) 12	4 58 to 8 9 4 58 to 8 9	
Dec. 17	1	9	8 57 to 9 9	
Dec. 18	1 2 3	9.2 11	8 57 to 9 9 4 55 to 7 41	
, , , , , , , , , , , , , , , , , , ,	$\frac{1}{2}$	8.8	4 55 to 7 41	
		12	4 55 to 7 41	
	$\frac{9}{12}$	$\frac{9}{12}$	12 46 to 15 2 14 20 to 14 33	
Dec. 19	1	11	5 6 to 7 37	
	$\frac{2}{3}$	11 11	5 6 to 7 37 5 6 to 7 37	
	1	11	12 47 to 14 29	
	3	11	12 47 to 14 29	
	3	11 11	12 47 to 14 29 12 47 to 14 29	
Dec. 20			6 4 to 7 35	
Эсс. 21	1	12.5	13 47 to 14 16	
Dec. 2t	2 1	12.5 11	13 47 to 14 16 13 27 to 14 5	
	2	10.5	13 27 to 14 5	
Dec. 26 Dec. 28	13 1	$\frac{13}{11.5}$	5 57 to 6 46 5 20 to 7 12	
200. 201	28	12.5	5 20 to 7 12	
		8	11 14 to 12 33	
Dec. 29	$\frac{13}{9.5}$	13 9.5	11 14 to 12 33 5 26 to 7 19	
	1	13	5 56 to 6 21	
Dec. 30	$\frac{2}{1}$	$\frac{13}{10.5\pm}$	5 56 to 6 21 5 29 to 6 43	
1	2	12+	5 29 to 6 43	
Dec. 31	9.5	9 5 12.5 12.5 11.5 9.5	5 45 to 10 49	
an. 1	$\frac{12.5}{1}$	12.5	12 43 to 12 57 5 42 to 7 7 5 42 to 7 7	
	1	11.5	5 42 to 7 7	
	$\frac{1}{2}$	9.5	10 58 to 11 24 10 58 to 11 24	
	10	10	12 43 to 13 57	
an. 2	10.5	10.5	5 17 to 7 2	
an. 3	10 1	10	12 42 to 13 15 5 39 to 6 43	
.,		13	5 39 to 6 43	
	$\frac{2}{1}$ $\frac{2}{3}$	10 11	10 36 to 13 26 10 36 to 13 26	
	3	10	10 36 to 13 26	
lan	·t	10	10 36 to 13 26	
an. 8	1 2	11	5 55 to 8 22 5 55 to 8 22	
	2 3	11	5 55 to 8 22	
an. 12	11	11 10	6 5 to 6 15	
fan. 11	1	117	5 58 to 7 2	

 ${\bf COMPARISON\ STARS-} Continued$

Date	Star	Magnitude	Time	Remarks
Jan. 14	$\frac{2}{11.5}$	12 11.5	5 ^h 58 ^m to 7 ^h 2 ^m 8 43 to 9 58	
Jan. 16 Jan. 18	$^{9}_{12} \\ 12.5$	9 12 12.5	10 25 to 12 36 5 43 to 7 16 10 57 to 11 45	
Jan. 19	$\frac{1}{2}$	10 13 13	5 32 to 7 4 5 32 to 7 4 5 32 to 7 4	
Jan. 20	$\frac{12}{10}$	12 10 9.8	8 29 to 9 15 5 46 to 7 2 10 37 to 11 58 10 37 to 11 58	
Jan. 21 Jan. 22	$\begin{array}{c}2\\9\\1\\2\end{array}$	10 9 11 12	10 27 to 10 59 11 56 to 12 28 11 56 to 12 28	
Jan. 24	$rac{1}{2}$	1m br. than <i>Eros</i> , A 12m star fol, it 1.5 .5m fainter than <i>Eros</i>	6 2 to 6 17 9 20 to 9 49	
Jan. 25	$\frac{1}{2}$	$ \begin{array}{c c} 9.8 \\ 11 \\ 10.5 \end{array} $	5 43 to 7 58 5 43 to 7 58 5 43 to 7 58	
Jan. 27	4	12 13	5 43 to 7 58 6 45 to 6 57	
Jan. 28 Feb. 1 Feb. 4		13 10 10.5	6 57 to 7 6 5 52 to 7 16 9 33 to 10 52	
Feb. 5	$\frac{1}{2}$	9.5 8 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

BAROMETER AND THERMOMETERS

A copy of the barometer and temperature records follows. These are from the regular records of the observatory.

Date		BAROMETER		Аттасы	ED THERMOME	TER (F.)	EXTERNAL THERMOMETER (F.)			
1900	9 г. м.	1 A. M.	4 A. M.	9 P. M.	1 л. м.	4 A, M,	9 P. M.	1 л. м.	4 A. M	
t. 2	29301	29°20	$29^{\circ}15$	71	73	73	63	65	67	
t. 3	29.02	29.03		17	77		73	68		
t. 4	28.90	29.00	29.02	75	76	77	66	68	67	
t. 8	29.25	29.28	29.27	72	72	73	47	45	43	
t. 9	29.30	29.30	29.28	72	71	71	52	48	46	
t. 10	29.19	29.10	29.08	71	71	71	53	51	49	
t. 11	29,00	28.95	29.08	$7\bar{3}$	73	72	53	52	52	
t. 14	29.10	29.10	29.05	73	73	73	61	57	56	
t. 15	28.93	29.10		74	74		63	59		
t. 16	29.42	29.35	29.35	71	72	71	39	39	38	
t. 17	29.10	29.15	29.15	70	71	$7\hat{2}$	47	41	42	
t. 18	29.10	29.18	29.17	70	75	72 75	49	47	$\frac{1}{47}$	
t. 25	$\frac{29.10}{29.05}$	29.12	29.20	78	78	76	64	61	$\hat{58}$	
t. 26	$\frac{20.00}{29.22}$	29.20	$\frac{29.20}{29.20}$	78	78	79	57	$1 \tilde{53}$	52	
t. 27	29.10	29.05		75	78		57	58		
t. 30	$\frac{28.10}{28.92}$	28.90	28.80	76	78 73	$\dot{73}$	59	58	59	
ov. 1	$\frac{29.02}{29.15}$	$\frac{29.15}{29.15}$	$\frac{29.20}{29.20}$	79	78	-79	41	39	39	
ov. 2.	29.30	$\frac{29.16}{29.35}$	29.22	78	76	78	50	45	43	
ov. 3	29.00	$\frac{29.30}{28.97}$	$\frac{5}{28}, \frac{5}{95}$	79	81	\ddot{s}_3	49	49	47	
ov. 4	28.98	29.00	29.05	80	78	77	52	39	34	
ov. 5	$\frac{29.33}{29.10}$	$\frac{29.00}{29.10}$	$\frac{29.03}{29.15}$	78	78	76	42	36	35	
ov. 6	$\frac{23.10}{28.90}$	28.90	20.10	69	76		30	$\frac{30}{28}$		
ov. 7	28.88	28.90		68	71	• • •	29	25		
ov. 8	28.80	28.80	28.80	76	76	$\frac{76}{}$	27	24	22	
ov. 10	$\frac{29.80}{29.18}$	29.00	29.10	75	65	75	30	31	28	
ov. 11	$\frac{29.13}{29.10}$	29.00	l .	73	73		27	29		
ov. 13	$\frac{25.10}{28.90}$	28.95	29.00	76	77	77	19	141.	12	
ov. 15	$\frac{25.30}{29.40}$	29.50	29.50 29.50	78	78	78	14	12	14	
ov. 10	$\frac{23.40}{28.95}$	28.80		75	78		28	30		
ov. 21 ov. 22	$\frac{25,95}{29,00}$	29.15	29,20	78	80	ŝö	$\frac{26}{29}$	25	25	

BAROMETER AND THERMOMETERS - Continued

Date		Barometer		Аттлен	ED THERMOME	ETER (F.)	EXTERN	L THERMOME	ETER (F.)
1906	9 г. м.	1 л. м.	i A. M.	9 г. м.	1 л. м.	4 А. м.	9 P. M.	1 А. м.	4 A. M
ov. 23	29-25	29-20	29720	SO	80	80	29	30	31
ov. 25	29.08	29.05	29.00	72	75	75	$\overline{28}$	25	24
ov. 26	29,00	28.90	28.88	78	78	78	28	$\overline{28}$	28
ov. 27	28.90	29 00	2.7.00	80	80	• • • • • • • • • • • • • • • • • • • •	31	$\frac{28}{28}$	
ov. 20.	29.05	29 (X)	29.00	70	72	72	27	28	$\frac{\cdot \cdot}{29}$
ec. 1	29.10	29,00	29.00	65	64	68	30	$\frac{20}{32}$	29
ree, 2	29,05	29 00		68	62		32	33	
ec. 5	29.18	$\frac{29.00}{29.15}$		78	78		28	25	
bec. 8	28,90	29.00		75	78		32		
ee. 9		29,35	20. 20	70	73			23	7
	29, 40		29.30			75	9	6	1 1
ec. 10	29, 20	29 10		74	74		16	17	1 45
ec. 11	29.18	29.10	29.00	77	78	78	12	11	12
ec. <u>12</u>	28.78	28.70		80	80	4.5	31	27	
ec. 17	29,00	28 95	28.80	68	69	70	31	35	38
ec. 18	29.05	29.10	29.18	75	75	78	31	32	30
ec. 19	29/10	29/10	29.10	80	SO	81	32	28	26
ec. 20	28,90	28.80	28.90	82	80	75	33	32	31
ec 21	28.45	28.45	28.15	72	72	72	38	40	40
ee 24	28.90	28.90	28.90	66	65	62	14	12	16
ec. 26	29,00	29.00		70	73		19	18	
ec. 28	29.15	29 05	29,00	7.5	75	75	13	11	13
ee. 29	28.78	28.70		75	78		2:2	21	
ec. 30	28,75	28.68	28.65	75	69	60	28	20	18
ec. 31.	29,20	29.30	29,32	75	75	76	-5	10	-11
in. 1, 1901.	29, 40	29,40		68	70		9	4	
in. 2	20,50	29,50	29, 18	76	75	75	0	2	i s
n. 3	29,20	29.20		73	75		29	19	1
in. 8	29.05	29.10		73	66		22	14	
n. 12	29. (n)	28.90		72	78		55	$\frac{13}{28}$	
in. 11	28.88	28.65	28.65	75	75	75	30	30	29
n. 16	28.72			73			17		
in. 18	59 6s			75			12	* *	
in. 19	29,20	29,00		72	70		22	$\frac{1}{29}$	
in. 20	28,80	28.78	28.70	70	72	75	42	39	39
				75	78	1.1	28		09
in. 21	29.20	20.22	NO. CHA	78	78	$\frac{78}{18}$	27	25	90
n. 22	29.10	28.95	28.90			61		27	28
in. 24	28.98	29,00	NO (N)	75	75		10	12	
in. 25	29.05	29,00	29,00	77	79	80	18	20	28
ın. 27	28.60			65			16		
m. 28	28.75			72			8		
eb. 1	28.90			71			1		
eb. 4	29,35	22112		70	<u>.</u> .		7		
-h. 5	29,35	29.25		72	70		()	-:5	

EARLIER MICROMETRICAL OBSERVATIONS OF EROS, 1898-99

Previous to the preceding observations of Eros, the planet was measured with the large telescope on twenty-seven nights in 1898 and on thirteen nights in 1900. These observations have not been printed and are here published for the first time.

Date—1898-99 90 Time	Comp.	Planet Δα	-Star 	Apparent a	$\Lambda_{\substack{ ext{pparent} \ \delta}}$	Parallax a	Factors	Red. to A	pparent _δ
Sept.10 12h 1m22 12 7 19 Sept.11 8 18 40 8 22 47 8 26 11 Sept.12 7 49 4 7 53 39 Sept.19 9 22 51 9 31 46 9 43 59 9 49 20 Sept.20 8 18 23	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0° 10°25 +0 15.62 -0 4 30 -0 4.71 -0 39.75 -0 10.22	-0.1875 $-2.10.4$ $-2.10.3$ $+2.43.9$ $-2.25.1$ $-2.26.0$ $-2.19.9$	20° 44° 26° 16 29 43 38.55 20 42 45.89 20 42 45.18 20 37 53.52 20 37 53.05	-6° 20° 26°9 -6° 20° 38°0 -6° 20° 37°9 -6° 20° 50°2 -6° 21° 23°9 -6° 21° 24°5 -6° 21° 18°3	+0.294 -0.094 -0.158 -0.140 $+0.105$ $+0.137$	+6.43 $+6.58$ $+6.59$ $+6.56$ $+6.51$ $+6.57$ $+6.60$	+4.33 +4.31 +4.31 +4.20 +4.20	+18.7 +18.7 +18.7 +18.7 +17.7 +17.8

EARLIER MICROMETRICAL OBSERVATIONS OF EROS, 1898-99—Continued

Date—1898-99 (\$\frac{\bar{\text{\text{\text{\text{\text{Date}}}}}{2}}{2} \frac{\bar{\text{\te}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\teti}\text{\text{\texi}\text{\text{\text{\texi}\text{\texit{\	$\begin{array}{c} \operatorname{Planet-Star} \\ \Delta \alpha \end{array} \Delta \delta$	Apparent	$\operatorname*{Apparent}_{\pmb{\delta}}$	Parallax Factors α	$\operatorname{Red.\ to\ Apparent}_{\alpha}$
Date 1898-99 Sept.20 8h 28m 43	-1m 6° 43 -1 6.86 		Apparent - 6° 21′ 9′2 - 6° 20′ 39.1 - 6° 20′ 18.0 - 6° 20′ 18.0 - 6° 19′ 52.6 - 6° 19′ 52.6 - 6° 19′ 23.3 - 6° 19′ 23.3 - 6° 19′ 22.7 - 6° 18′ 49.9 - 6° 3° 31.3 - 6° 3° 31.8 - 6° 1° 31.3 - 6° 3 31.8 - 6° 1° 52.6 - 6° 19′ 23.7 - 6° 18′ 49.9 - 6° 3 31.3 - 6° 3 31.8 - 6° 3 31.8 - 7° 1 51.8 - 1 23′ 43.2 -	-0\\\006\\ +0.036\\ +0.046\\ -0.094\\ -0.057\\ -0.057\\ -0.063\\ -0.029\\ -0.029\\ -0.029\\ +6.58\\ +0.021\\ +0.013\\ +0.155\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.172\\ +0.174\\ +0.192\\ +0.175\\ +0.192\\ +0.172\\ +0.174\\ +0.192\\ +0.175\\ +0.192\\ +0.172\\ +0.172\\ +0.174\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0.175\\ +0.192\\ +0	
Feb. 7 6 52 42 19 4 Feb. 12 6 52 42 19 4 Feb. 12 6 58 27 19 5 Feb. 13 6 43 23 17 4 Feb. 7 6 54 24 18 4 Feb. 7 6 55 42 19 4 Feb. 7 6 58 27 19 5 Feb. 7 4 11 19 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 13 0.77 0 44 37.42 0 44 38.85	+10 50 17.3 +10 50 21.9 +13 29 55.5	+0.358 +0.343 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

DIRECT MEASURES OF $\Delta\alpha$

As many of the differences of right ascension were measured direct with the micrometer and afterwards reduced to time, it is thought best to tabulate the original measures themselves, and they are given below.

MEASURED DIFFERENCES OF RIGHT ASCENSION

Date	90th Meridian	Δα in Arc	Date	90th Meridian	Δα in Arc	Date	90th Meridian	Δα in Arc
1898	Time	Planet-Star	1898	Time	Planet-Star	1898-90	Time	Planet-Star
Sept. 10	8 22 47 7 43 41 7 53 39 9 31 46 9 49 20 8 28 43 8 50 24 9 1 40 7 29 3 7 39 39 7 43 37	+152:78 +225.7 -64.1 -70.2 -592.6 -599.4 -990.4 -997.1 +857.2 +276.1 +273.7 +41.3 -141.0	Sept. 26. Sept. 26. Sept. 27. Oct. 10. Oct. 10. Oct. 11. Oct. 11. Nov. 26. Nov. 26. Nov. 27. Dec. 3. Dec. 6. Dec. 10.	7 50 31 7 8 9 9 34 46 9 48 13 7 17 2 7 30 52 6 30 40 6 40 31 8 13 56 6 7 32	$\begin{array}{c} -281 \cdot 1 \\ -283 \cdot 2 \\ -374 \cdot 1 \\ -12 \cdot 9 \\ -9 \cdot 1 \\ +186 \cdot 6 \\ +190 \cdot 9 \\ -33 \cdot 1 \\ -21 \cdot 9 \\ +118 \cdot 9 \\ -112 \cdot 8 \\ -236 \cdot 1 \\ -214 \cdot 3 \\ \end{array}$	Dec. 10. Dec. 13. Dec. 17. Jan. 18. Jan. 24. Jan. 21. Jan. 31. Jan. 31. Feb. 1. Feb. 7. Feb. 12. Feb. 12.	7 13 18 6 10 49 7 29 24 6 52 31 7 5 9 6 43 7 6 57 23 6 43 23 7 14 20 6 52 42	$\begin{array}{c} -19877 \\ +93.2 \\ +79.7 \\ +82.8 \\ +148.7 \\ +169.1 \\ -222.1 \\ -198.3 \\ +7.5 \\ -536.5 \\ -74.2 \\ -53.4 \end{array}$

MEAN PLACES OF COMPARISON STARS FOR 1898-99

Star	R. Λ.	Declination	Authority
1	20h 44m 11§88	- 6° 20′ 26′6	R. H. Tucker, Lick Observatory M.C.
2	20 43 18,61	-6 18 45.7	R. H. Tucker, Lick Observatory M.C.
3	20 42 45.88	-6 23 52.2	R. H. Tucker, Lick Observatory M.C.
4	20 38 49.07	-6 19 16.2	R. H. Tueker, Lick Observatory M.C.
5	20 - 35 - 59.56	-6 21 38.7	R. H. Tueker, Lick Observatory M.C.
6	20 - 38 - 34.89	= 6 - 3 - 27.7	Sehj. 8242
7	21 - 37 - 45.57	-22025.5	1/2 (München I 29286 + München II 11916)
8	21 - 39 - 36.7	-2 14.5	Compared with S.D. $-2^{\circ}5623$
9	21 - 50 - 58.28	-1 28 26.8	1/2 (Copeland and Börgen, Göttingen Cat. 6038+6039)
10	21 - 56 - 31.58	-0.5329.2	10m, Compared with 13 (Copeland and Borgen, Göttingen Cat. 6076+6077+6078
11	22 - 5 - 1.1	-0.22.0	B.D0°4316
12			9.75m star
13	22 - 19 - 25.37	+ 0 53 21.3	12m. Compared with π Aquarii
14	23 - 35 - 24.60	+7 28 10.2	Leipzig A.G.C. 11727
15	23 - 51 - 2.12	+8 58 28.8	9.6m. Compared with Leipzig A.G.C. 11836
16	0 - 10 - 46.0	$\pm 10 - 35.1$	B.D. $+10^{\circ}20$
17	0 - 12 - 59.69	+10 48 9.0	Compared with Leipzig A.G.C., No. 69
18	$0\ \ 27\ \ 48\pm$	$+12 7.4 \pm$	Approximate from ephemeris
19	0 - 44 - 41.87	$+13 \ 31 \ 8.9$	9.7m. Compared with W.B. 04754

M1CROMETRICAL OBSERVATIONS OF EROS IN 1900

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			+3	61 110/7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1h 38m 3858 1 43 20.62 1 14 53.85	$\begin{array}{cccc} +22 & 16.6 \\ +22 & 16.1 \\ +22 & 58.5 \\ +22 & 58.8 \\ +24 & 0.1 \\ \hline +24 & 0.4 \\ +24 & 19 & 32.5 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Aug. 6 15 13 51 5 3 15 18 9 5 4 +e 15 23 9 5 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 4: 17° Q	+24 19 44.3 	$ \begin{array}{c cccc} & +3 \\ & +2 \\ & -0.163 \\ & & +2 \\ & & +2 \\ & & +2 \\ & +1 \\ & & -0.012 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 6 47.8	+29 30.8 +34 30 27.9 +34 30 36.1	-0.012 +0.010 +1 +1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

MICROMETRICAL OBSERVATIONS OF EROS IN 1900-Continued

Date — 1900 90° Time	Star No. Comp.	Planet-Star Δa	Apparent	$\operatorname*{Apparent}_{\delta}$	Parallax a	Factors 8	Red. to A	pparent 8
Sept. 3 13 17 2 8 8 13 22 37 8 15 20 47 6 15 24 49 9 9 15 24 15 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 16 35 0 15 16 35 0 15	.5 4 .5 4 .9 4 .9 3 .0 4 .0 5 .0 5 .1 4 .1 6 .1 4 .2 5 .2 4 .3 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+34° 30′47′4 +34° 54′39.9 +34° 54′47.8 +37° 6° 57′1 +37° 7° 13.2 	-0:280 -0:280 -0.266 -0.250 -0.260 +0.198 +0.205	+1.15 +1.15 +1.32 +1.19 +1.10 +0.80 +0.78	+4:61 +4.65 +4.86 +4.94 +5.02 +5.02	+11.7 +11.6 +11.6 +11.4 +11.4 +11.5
Sept. 19 12 2 18 11 12 15 35 18 12 12 26 6 25 14 Sept. 27 13 6 25 14 13 16 53 16	$\begin{bmatrix} 7 & 4 \\ 7 & 5 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+38 18 34.5 +40 30 42.1 +40 31 5.3 +43 35.8	+0.220 -0.330 -0.133 -0.082	+1.00 +1.21 0.12 0.15	+5.02 +5.30 +5.64 +5.64	+11.5 +11.7 +11.7 +11.9 +11.9 +11.9

MEASURED DIFFERENCES OF RIGHT ASCENSION

Date - 1900	90th Meridian Time	Δα in Arc Planet-Star	Date — 1900	90th Meridian Time	Δα in Arc Planet-Star	Date 1900	90th Meridian Time	Δα in Arc Planet-Star
July 30 Aug. 1 Aug. 4 Aug. 6 Aug. 20	$\begin{array}{c cccc} 13 & 31 & 42 \\ 14 & 25 & 9 \\ 15 & 18 & 9 \end{array}$	$\begin{array}{r} +109.2 \\ -413.0 \\ -293.2 \\ +235.3 \\ +8.4 \end{array}$	Aug. 27 Sept. 4 Sept. 10 Sept. 11 Sept. 13	15 20 47 13 15 54		Sept. 13 Sept. 13 Sept. 19 Sept. 27	$\begin{array}{c cccc} 16 & 41 & 48 \\ 12 & 15 & 35 \end{array}$	-218.9

MEAN PLACES OF COMPARISON STARS, 1900.0 $\,$

Stars	R. A.	Declination	Authority
1 2 3 4 5 6 7 8 8 8 1 9 10 11 12 13 14 15 16 17	1h 36m 4954 1 39 5.2 1 43 38.4 1 44 50.44 2 6 43.1 2 11 48.8 2 25 3.88 2 24 26.21 2 25 36.65 2 32 2.91 2 32 9.91 2 34 56.66 2 34 51.69 2 34 32.08 2 39 28.74 2 43 14.2	+22° 17.6 +22 53.3 +23 59.3 +24 16 28.7 	B.D. $+22^{\circ}261$ B.D. $+22^{\circ}265$ B.D. $+23^{\circ}242$ 12m. Compared with Berlin A.G.C. 542 12.3m star 12m. Compared with B.D. 29°373 B.D. $+31^{\circ}408$ Leiden A.G.C. 933 10.5m. Compared with Leiden A.G.C. 933 11m. Compared with Leiden A.G.C. 935 Lund A.G.C. 1291 Lund A.G.C. 1295 10.2m. Compared with $14 = d$ 10.2m. Compared with $14 = e$ 10.0m. Compared with Lund A.G.C. 1273 = a Bonn A.G.C. 2351. B.D. $+43.585$.

 $^{^{1}\,\}mathrm{One}$ of these is $1^{\mathrm{r}}\,(9^{\circ}67)$ in error—probably the last one.

MICROMETRICAL MEASURES OF COMPARISON STARS

Compared with S.D. 2°5623

13m star precedes 0′ 25:43 (7) = 1:69
13m star north 5′ 24:47 (4)

Comparison Star for 1898, Dec. 6

Compared with \(^1\) (Copeland & Börgen, Göttingen

Cat. \(6076 + 6077 + 6078\)

10m star precedes \(0^m - 9^*49 \)(5)

10m star south \(41. 36^*6 \)(4)

Comparison Star for 1898, Dec. 17
Compared with π Aquarii
12m star precedes 9° 40:71 (4) = 38:72 (using an intermediate star)
12m star north = 1′ 46:19 (4)
Direct Δa by transit gave Δa = 38:37 (18)

Compared with Leipzig A.G.C. 69

12m star preceding 2' 17:07 (4) = 9:30

12m star north 9' 22:8 (4) (using several intermediate stars)

Comparison Star for 1899, Feb. 1

Comparison Star for 1899, Feb. 12 Compared with W.B. 0!754 9.7m star precedes 1^m 13*72 (10) 9.7m star south 1' 0'56 (3)

Comparison Star for 1899, Jan. 24

Compared with Leipzig A.G.C. No. 11836

9.6m star precedes 2^m 36*90 (8)

9.6m star south 0′ 50*19 (3)

Comparison Star for 1899, Jan. 31 Compared with B.D.M. + 10°23 9.5m star precedes 1^m 24°25 (8) 9.5m star south 3′ 54′06 (3) Comparison Star for 1900, Aug. 5
Compared with Berlin A.G.C. 542
12m follows 0^m 36*68 (18)
12m north 0 52*08 (3)

Сомракізом Star for 1900, Aug. 20 Compared with B.D.+29°373 12m star precedes 0^m 24°33 (16) 12m star south 2 45′80 (4)

Comparison Star for 1900, Sept. 3 Compared with Leiden A.G.C. 933 10m star precedes 0 9 37 67 (16) 10m star north 2' 9 65 (4)

Comparison Star for 1900, Sept. 4 12m star follows 0^m 29:98 (14) 12m star south 1' 27:56 (4)

Comparison Stars for 1900, Sept. 13 Compared with Lund A.G.C. 1273 Star α

 a follows 1273
 3m 49:83 (6)

 a north
 1' 41:22 (2)

Now compare b, c, d with a:

b follows a 0 11 76
b north of a 1 2788
c follows a 0 19 161
c north 0 10 17
d follows a 0 24 58
d south 0 30 97

These Δa and $\Delta \delta$ with respect to a are from the following position angles and distances:

a and b = 65°56 (4) distance 151°94 (4 single dist.) b and c = 119.53 (4) = 106.94 (4) c and d = 131.53 (4) = 78.13 (4)

The star b of the 10.3m was not used in the observations of Eros.

In the observations of 1900, September 10, the planet was referred to the Lund star through a 10.5m star.

 $\begin{array}{lll} 10.5 \text{m star precedes A.G.C. } 1291 \text{ by } 208'00 \ (6 \text{ obs.}) = 0^{\text{m}} \ 17!38 \\ 10.5 \text{m north} & \text{A.G.C. } 1291 \text{ by } 0^{\circ} \ 54'10 \ (5 \text{ obs.}) \\ \text{Place of } 10.5 \text{m star; } 1900.0 \ 2^{\text{h}} \ 31^{\text{m}} \ 45!54 + 37^{\circ} \ 5^{\circ} \ 26'2 \end{array}$

In the first two measures of 1900, July 30, the planet was referred to an unknown nebula.

I wish to express my thanks to Professor R. H. Tucker, of the Lick Observatory, for special observations of some of the comparison stars. I am also very greatly obliged to Professor William II. Hussey, of the Lick Observatory, for supplying me with star places from the various star catalogues in the library of the Lick Observatory not available here, and also for a manuscript copy of his accurate ephemeris of Eros for the identification of comparison stars.

I am also indebted to Professor S. J. Brown, of the U. S. Naval Observatory, for catalogue places of some of the stars.

ESTIMATIONS OF THE BRIGHTNESS OF EROS

The remarkable variations in the light of Eros which are shown to have occurred during the apparition of 1900–1901 have added a much greater interest to the planet. The cause of these light changes is yet a mystery, though several more or less plausible explanations have been brought forward. During the observations made here this peculiarity was not known, having developed later on. No special observations were therefore made of its brightness. I find, however, in going over the measures with the 40-inch, that Eros was carefully compared in brightness with various stars near it, not only in the measures of 1900, but also in 1898 within a short time of the discovery of the planet. These stars can readily be identified in the sky and their magnitudes determined, from which an accurate value can be had of the light of Eros on some eight or nine nights in 1898 and on over thirty nights in 1900. Since, in the great majority of cases, the brightness of Eros differed only a fraction of a magnitude from that of the star, the comparisons will be very accurate and should be very important in connection with the singular variation of the light of the planet.

That these observations may be made available, I have collected them here with all the data required for the identification of the comparison stars when used with an accurate ephemeris of *Eros*.

The stars referred to are those used at the time of observation for the position of the planet, if not otherwise stated.

The times herein contained are 90th meridian time, which is $6^{\rm h}~0^{\rm m}~0^{\rm s}$ slow of Greenwich mean time.

1898

September 11: At $8^h 11^m 45^s Eros$ was 1'14 north of a small star. A few seconds before this it had passed within about 0'6 of the star—the two appearing for a few moments as a beautiful double star. Eros was 0.2m less than the star.

On September 12 the position of this star was measured with reference to the comparison star of September 11. Δα 4′ 1′15 (6) Δδ 2′ 11′55 (3) south following the comparison star of September 11.

September 20, 9^h 0^m: Eros estimated at 11.8m. There are two stars, one south following $Eros \ 2\frac{1}{2}$, the other north following 3'. These are of about equal magnitude. Eros is 0.1m less than either star.

September 21: At $9^h 1^m 40^s$ Eros followed an 11m star by 17:05 (4) and was $\frac{1}{3}$ ' \pm north of the star. The planet was 0.5m less than this star. A similar star was about $\frac{1}{3}$ ' north preceding Eros. Eros was also 0.5m less than this star.

September 24: At 7^h 40^m Eros is 0.2m less than a small star that is close south following the 7.7m comparison star. The estimated magnitude of Eros was 11.5m.

September 26, 8h 11m: Eros is 7" or 8" south of a small double star [P.A. 271°5 (4) distance 3.75 (4)]. 1' south of these is a small star exactly the same magnitude as Eros. There are two somewhat brighter stars 2' or more south of this star.

October 11: At $7^{\rm h}$ $25^{\rm m}$ Eros is 12.78 south of a small star and follows it $1\frac{1}{2}$ ' \pm . Eros is 0.1m brighter than this star.

December 10, 6^h 17^m: $2\frac{1}{2}$ preceding *Eros* is a small star. The planet is exactly the same magnitude as this star.

1899

January 31, 7h 0m: Estimated magnitude = 11. It is bright and easy. There are two stars 3' or 4' preceding. It is brighter than either of these stars.

February 12, $7^h 10^m$: $2\frac{1}{2}$ following the comparison star are two small stars. Eros is exactly the same brightness as these.

1900

August 4, 14h 35m: Eros about 12.2m.

August 6, 15h 18m: Eros 0.1m brighter than the comparison star. The planet is estimated to be 12m.

August 7, 13^h 50^m: Estimated at 12.2m. There is a star of the same brightness as the planet preceding 4' and 1½' north.

August 20, $15^{\rm h}$ $55^{\rm m}$: There are two stars marked 12.1m 1' and 2' south preceding the planet. Eros is 0.1m brighter than these.

August 27, 16h 10m: There is an 11.5m star $1\frac{1}{2}$ following the comparison star which is exactly the same brightness as E_{I} os.

September 3, $13^{\rm h}$ $25^{\rm m}$: Estimated magnitude, 11.5m. Eros is 0.5m or 0.7m less than the 10.5m comparison star.

September 10, 13h 20m; Estimated magnitude, 11m. Small comparison star estimated at 10.5m

September 13, 16^h 25^m: Estimated at 10.7m. The estimations for the stars near were a = 10m, b = 10.2m, c = 10m, d = 10m.

September 19, 12^h 30^m: There is an 11m star 2' preceding and $\frac{1}{2}' \pm$ north, exactly the same magnitude as Eros.

September 27, $13^{\rm h}$ $50^{\rm m}$: Eros and the 10.5m comparison star are of the same brightness—possibly Eros is very slightly the brighter.

October 2, Sh 40^m: Eros 0.5m brighter than star 1.

October 4, 12h 25m: Estimated at 10m. It is 0.3m brighter than the comparison star.

October 9, 8^h 5^m : Estimated at 10m. Star 1 is 12.2m; star 2 is 12m; star 3 is 12.5m. Same date, 16^h 20^m : Eros 0.7m less than star 1. Same date, 16^h 40^m : A little less than star 1, perhaps 0.5m.

October 25, 18^h 2^m: Eros still easily visible on the bright sky. The comparison stars have all faded out. November 1, 17^h 50^m: Estimated at 9.8m. It is exactly the same brightness as star 1 and 0.2m brighter than star 2.

November 2, 12^h 50^m: It is from 0.1m to 0.2m brighter than star 2 and 0.3m brighter than star 1.

November 11, 6^h 50^m: It is 0.2m brighter than the comparison star. Same date, 8^h 20^m: It is 0.3m brighter than the comparison star. The comparison star estimated at 9.7m.

November 13, 18h 10m: It is 0.2m brighter than star 2.

November 22, 8h 50m: It is 0.25m brighter than star 2 and about 0.7m brighter than star 1. It is much easier than star 2.

November 23, $10^{\rm h}$ 0m: It is 05.m \pm brighter than the comparison star.

November 25, 18h 0m: It is 0.5m brighter than either star 3 or star 4, which are equal.

December 5, 9^h 30^m : It is 0.5m or 0.7m brighter than star 1. Same date, 14^h 0^m : It is 0.5m brighter than the comparison star.

December 8, 7h 10m: It is nearly 1m brighter than the comparison star. Same date, 14h 20m; It is from 0.5m to 0.7m brighter than the comparison star.

December 12, $6^{\rm h}$ $0^{\rm m}$: It is 1m brighter than star 2. It is 0.7m or 0.8m less than star 1.

December 18, 12h 52m; It is 0.3m brighter than the comparison star. The star estimated at 8.8m.

December 29, 5h 40m: It is the same magnitude as the comparison star.

December 31, 6h 50m; It is the same brightness as the comparison star—possibly very slightly brighter.

1901

January 14, 10^h 25^m; It is from 0.5m to 0.7m brighter than the comparison star.

January 19, 6h 10m: It is 0.7m brighter than star 1.

January 21, 10^h 30^m: It is less than the comparison star. Same date, 11^h 0^m: It is from 0.1m to 0.2m less than the comparison star, and is slightly yellowish.

January 24, 6h 10m: It is 1m less than the comparison star. Same date, 9h 50m: It is 0.5m brighter than the comparison star.

January 25, 7h 10m: It is 0.1m brighter than star 1.

February 5, 10h 50m: It is 0.2m brighter than the comparison star, which is about 10m.

ON CERTAIN RIGOROUS METHODS OF TREATING PROBLEMS IN CELESTIAL MECHANICS

F. R. MOULTON

§ 1. INTRODUCTION

MATHEMATICAL science was not sufficiently developed to enable the founders of celestial mechanics to prove in many cases the validity of the methods which they found it necessary to employ. Doubtless, too, mathematicians of a century and more ago did not realize so keenly as they do at present the necessity of relying only upon those processes which have been proved to be legitimate. In both pure mathematics and astronomy many conclusions were drawn which have since been shown to be erroneous or which still lack proof. Celestial mechanics has been filled with series, comparatively few of which have been proved to be convergent. It may be said by way of excuse, however, that the problems which astronomers have been called upon to solve have been almost invariably of great difficulty, and their powers have been sufficiently taxed to obtain formal solutions which would agree with observations.

The critical attitude respecting the convergence of series may safely be said to date from the researches of Abel on the hypergeometric series in 1826, and to have received its greatest early impulse from the researches of Cauchy in the theory of functions of complex variables. The latter half of the nineteenth century witnessed a complete re-examination of the foundations of analysis, the correction of numerous errors, and the introduction of an entirely new spirit of rigor.

It is worthy of remark that many mathematical processes, especially those used in integrating total differential equations, have had their origin in attempts to solve astronomical problems. After having been started they have been developed in the realm of pure mathematics far beyond their astronomical applications; and, with the exception of the epoch-making researches of Poincaré (1892–98), the improvements in the methods of celestial mechanics and the standard of rigor maintained have in no way kept pace with these developments. The question is pertinent whether those interested in celestial mechanics should not henceforth adhere more nearly, if not entirely, to methods which are known to be rigorous.

In this paper it is proposed to show how some of the important problems of celestial mechanics may be treated by processes which are proved to be valid at least within prescribed limits. These problems will depend upon the integration of total differential equations in series, and the central question will relate to the convergency of the series. It will be shown how certain of the standard methods are valid for not too great values of the time, and how other problems can be solved. It will be shown that, if the initial conditions are known, it is possible to construct series which will represent the co-ordinates of the moon with any desired degree of accuracy for any desired length of time, provided it does not go outside of an arbitrary anchor ring inclosing its present orbit, and that the number of terms which will be sufficient can be determined in advance; it will be shown that the usual method of computing absolute perturbations has a certain realm of validity, and that the terms of different orders have simple physical interpretations; it will be shown how the secular terms of the first order can be avoided in the mutual perturbations of the planets, giving results in some respects similar to those obtained by the methods of Lagrange, but in others essentially different; and it will be shown that the higher terms in Hill's celebrated lunar theory can be defined in such a manner that the theory as a whole has a positive realm of validity.

§ 2. POWER SERIES IN THE TIME 1

The first and simplest method of integrating differential equations of the type occurring in considering the motions of the planets and satellites is to develop the solutions as power series in the independent variable. The usefulness of this method in astronomical problems is quite limited because of the small value of the time for which the series converge. As this is the best-known method of integrating differential equations, a mere outline of the steps and the proof of their validity will be sufficient.

The differential equations of motion of k mutually attracting spheres may be written in the form

$$\frac{dx_i}{dt} = X_i(x_1, \dots, x_n t) \qquad (i=1, \dots, n), \quad (n=6k), \qquad (1)$$

where the X_i are all analytic functions of x_1, \dots, x_n and t. If the bodies are not spheres, but of some known form, as oblate spheroids, the number of differential equations is doubled for a given number of bodies. If the bodies are spheres, and if the x_i are the rectangular co-ordinates and the components of velocity, the right members of (1) will not involve the time explicitly. There is no loss in generality in supposing that at the origin of time $t=0, x_i=0$ $(i=1,\dots,n)$; for, if it were not so, a convenient transformation of variables would secure these conditions. In all astronomical problems the X_i are all regular for $x_i=0$ $(i=1,\dots,n)$, t=0.

To find the solutions, suppose the X_i are developed as power series in $x_i,\, \cdots,\, x_n,\, t$ as

$$\frac{dx_i}{dt} = \sum_{j_1, \dots, j_n, k=0}^{\infty} a_{(j_1, \dots, j_n, k)}^{(i_1)} x_1^{j_1} x_2^{j_2} \dots x_n^{j_n} t^k \qquad (i=1, \dots, n) ,$$
 (2)

expansions which, under the conditions stated, converge for sufficiently small x_i, \dots, x_n and t. The solutions are to have the form

$$x_i = \sum_{j=1}^{\infty} c_j^{(i)} t^j \qquad (i=1,\dots,n) .$$
 (3)

If equations (3) are substituted in (2) and the coefficients of corresponding powers of t equated in the two members, it will be found that all of the $c_j^{(i)}$ can be determined uniquely in the order of increasing values of i.

It only remains to prove that the series (3) have positive radii of convergency. This is done by using a comparison system of differential equations

$$\frac{dy_i}{dt} = Y_i(y_1, \dots, y_n, t) \qquad (i=1, \dots, n) , \qquad (1')$$

where the Y_i fulfil all the conditions imposed upon the X_i , and the additional ones that every coefficient of their expansions shall be real and positive and greater than the modulus of the corresponding coefficient in the expansions of the X_i . Suppose further that the solutions of (1') are

$$y_i = \sum_{j=1}^{\infty} b_j^{(i)} t^j$$
 $(i=1,\dots,n)$, (3')

where the coefficients $b_j^{(i)}$ are determined as the $c_j^{(i)}$ were. It is easily shown, then, that every $b_j^{(i)}$ is real and positive and greater than the modulus of the corresponding $c_j^{(i)}$. Consequently, (3) converge for at least as large values of t as (3') do.

All of the conditions imposed upon (1') can be fulfilled by equations of the form²

$$\frac{dy_i}{dt} = \frac{C}{[1 - a(y_1 + \dots + y_n)][1 - \beta t]}, \qquad (1'')$$

¹The first proof of the convergence of the series obtained by this method was given by CAUCHY in the Comptes rendus, July, 1842; Collected Works, 1st series, Vol. VII.

where C, α , β are real positive constants. Integrating these equations, determining the constants of integration by the condition that $y_i = 0$ for t = 0 and solving for y_i , it is found that

$$y_i = 1 - \sqrt{1 + \frac{2 n \alpha C}{\beta} \log (1 - \beta t)}$$
 (3")

It follows from this equation that the y_i can be expanded in converging power series in t if

$$|t| < \frac{1}{\beta},$$

$$|t| < \frac{1}{\beta} \left(1 - e^{-\frac{\beta}{2\pi aC}} \right),$$
(4)

inequalities which can always be fulfilled by finite values of t for finite values of α , β , and C. Consequently the series (3) converge for sufficiently small values of the time.

A defect of the method just outlined is that it does not give the true radius of convergence of the series. Pieard has shown,³ indeed, that the limit imposed on t by the inequalities (4) is always smaller than the true radius of convergence.

§3. APPLICATION OF MITTAG-LEFFLER'S GENERALIZED POWER SERIES

As has been remarked, the series (3) in most practical problems converge for only a short interval of time. Since the singularities of the right members of (1) are isolated, the singularities of (3) are also isolated; hence equations (3) define the values of the x_i for all values of t by the Weierstrassian continuation of power series. But to continue power series by the method of Weierstrass, it is necessary to know the location of the singularities, the very thing that is unknown when the series is defined by non-linear differential equations. In addition to this, the work of actually continuing power series is so great as seriously to impair the value of the method even when the positions of the singular points are known.

Part of these difficulties have been overcome by Mittag-Leffler in his researches on methods of representing analytic functions in extended regions of the complex plane by generalizations of power series.

For simplicity let any of equations (3) be written in the form

$$x = \sum_{i=1}^{\infty} a_i t^i , \qquad (5)$$

where now t is a complex variable. Suppose this series converges so long as $|t| < t_0$. Mittag-Leffler has shown in *loc. cit.* how to construct a series of series out of t and the coefficients a_i associated with the point t = 0 which shall be uniformly convergent in a widely extended region which he called a star.

There is a star A_n associated with the coefficients a_i for every positive integer n, which is defined as follows⁵: With t=0 as the origin draw any vector. The positive quantity r may be chosen so small that if the length of the vector is taken as (n-1)r, then every circle whose radius is r and whose center is on the vector will contain none but regular points in its interior or on its boundary. Let ρ be the upper limit of the values of r for which these conditions are fulfilled. If the length $n\rho$ is taken on the vector, and if the vector makes a complete revolution, the value of ρ for each position being taken, the star A_n will be generated. Evidently the star A_1 is the true circle of convergence of the series (5), and every star A_n includes the star A_{n-1} . From the series of series a series of polynomials depending upon the a_i and n may be constructed in an infinity of ways which will represent the function uniformly in A_n with an error less than an arbitrary ϵ given in advance.

⁵ Ibid., Vol. XXIII, p. 47.

⁴ Acta Mathematica, Vol. XXIII, p. 43, and Vol. XXIV, pp. 183, 205.

⁶ Ibid., p. 62.

The difficulty in applying this theorem is that there is no way of determining whether a given point belongs to any star A_n or not. When the series (5) is defined by differential equations, this part of the question becomes considerably simplified. Suppose (5) has been defined by the differential equations which the motion of the moon must fulfil. Then it will be known to converge if $|t| < t_0$, the value of t_0 depending on the initial values of the co-ordinates. Suppose that during the whole interval of time $0 \ge t \le T$ the moon is contained within an anchor ring with the earth as center. For every point in this anchor ring as an initial point there is a corresponding t_0 . Let the least value of these numbers t_0 be ρ . Now, if the initial conditions are known, it is possible to construct a Mittag-Leffler series of polynomials having a number of terms which can be determined in advance, which will give the value of x with an error less than an arbitrary ϵ for the whole interval of time $0 \ge t \le T$.

In order to apply Mittag-Lefflers's process the point t = T must belong to the star A_n , where the number n is to be determined. From the definition of the star it is seen that it suffices to take n so that $n\rho \geq T$. Then the series of polynomials may be set up, the polynomials depending on both n and the required accuracy ϵ . With this series of polynomials an ephemeris may be computed, and if the moon does not pass out of the anchor ring which was used in defining ρ , and through it n, the final results will be in error less than ϵ . If the moon should pass out of the anchor ring as given by the ephemeris, the results will be in error less than ϵ up to the time it crosses the ring. At this point a new ring could be taken. In this manner it is possible to construct a theoretically perfect lunar theory.

§ 4. THE METHOD OF THE VARIATION OF PARAMETERS

The method of variation of parameters, which was partially developed by Euler in his memoirs on the lunar theory, and which was finished by Lagrange in his work on the mutual perturbations of the planets, has been one of very great usefulness in astronomy. Owing to the immense details connected with its applications and to the fact that because of the small masses of the planets only one step of any possible number of steps is required, much confusion has arisen regarding the mathematical features of the process. For example, it is frequently supposed that each step is only a process of approximation.

Consider equations (1) and suppose their right members are series of any sort, except that, if they are infinite, they converge at least in the vicinity of the initial values of the x_i and t. Then (1) may be written

$$\frac{dx_i}{dt} = X_i^{(1)} + X_i^{(2)} + X_i^{(3)} + \cdots \qquad (i=1,\dots,n) . \tag{6}$$

Now consider the differential equations

$$\frac{dx_i}{dt} = X_i^{(1)} \qquad (i=1,\dots,n) , \qquad (7)$$

where the $X_i^{\scriptscriptstyle (1)}$ are any terms of the right members of (6). In practice the $X_i^{\scriptscriptstyle (1)}$ are generally the largest terms, but this is not in the least essential to the method. Suppose the solutions of (7) can be exactly found, at least for sufficiently small values of t, and that they are

$$x_i = f_i^{(1)}(y_1, \dots, y_n, t)$$
 (i=1, ..., n), (8)

where y_1, \dots, y_n are the constants of integration. Suppose these equations are valid if $0 \equiv t < T$, where T may be infinite.

Since equations (8) are the solutions of (7) if they are substituted in (7), these expressions reduce to identities in y_1, \dots, y_n and t for all values of t less than T.

⁷ Compare the note by Painlevé in Comptes rendus, June 19, 1899; see also note by Picard, ibid., June 5, 1899.

Now regard equations (8) as equations of transformation expressing the n old variables x_i in terms of n new variables y_i . The transformation is made by substituting (8) directly in (6), whence

$$\frac{\partial f_i^{(1)}}{\partial t} + \sum_{j=1}^n \frac{\partial f_i^{(1)}}{\partial y_j} \frac{dy_j}{dt} = X_i^{(1)}(y_1, \dots, y_n, t) + X_i^{(2)}(y_1, \dots, y_n, t) + \dots$$
 (i=1, ..., n) (9)

Since equations (8) are the solutions of (7), it follows from the definition of solutions that

$$rac{\partial f_i^{(1)}}{\partial t} \equiv X_i^{(1)}\left(y_1,\, \cdots,\, y_n,t
ight) \quad \mbox{($i=1,\dots,n$)} \quad \mbox{in } y_1,\, \cdots,\, y_n \mbox{ and } t$$
 ,

and equations (9) become

$$\sum_{i=1}^{n} \frac{\partial f_i^{(1)}}{\partial y_j} \frac{dy_j}{dt} = X_i^{(2)}(y_1, \dots, y_n, t) + \dots \qquad (i=1, \dots, n) . \tag{10}$$

This vanishing of the first terms in the right members, which in practice are much larger than the succeeding ones, constitutes the essential mathematical difference between the method of the variation of parameters and an ordinary transformation of variables.

Equations (10) are linear in the derivatives $\frac{dy_j}{dt}$ and may be solved for them, giving

$$\frac{dy_i}{dt} = Y_i^{(1)} + Y_i^{(2)} + \cdots \qquad (i=1,\dots,n) , \qquad (11)$$

where the right members are written as series constructed according to any desired plan. Equations (11) are valid for all values of t less than T if the determinant of the left members of (10), which is the Jacobian of (8), does not vanish in this interval. The Jacobian does not vanish identically, for equations (8) are independent, being the solutions of equations (7), which are by hypothesis independent. It may become zero, however, for special values of y_1, \dots, y_n and t. But if equations (6) are in the canonical form, as they can always be written, in considering the motions of the planets as well as in much more general problems, and if the canonical constants are used, the determinant is unity and never vanishes.

In considering the perturbations of the planets the canonical elements are not generally used. When they are not, the determinant will vanish if the x_i take such values that the solutions of equations (8) for the y_i give ambiguous or infinite results. When the ordinary elements $a, e, i, \Omega, \tilde{\omega}$, and ϵ are used, $\tilde{\omega}$ becomes indeterminate for e = 0, Ω for i = 0, and a becomes infinite for e = 1; for these values of e and i the determinant of (10) vanishes. This is one of the reasons why Lagrange transformed from e and $\tilde{\omega}$ to h and l, and from i and Ω to p and q in treating the secular terms.

After equations (11) have been found, the problem of integrating them arises, and is in general no less difficult than was the integration of (6). Equations (11) have the same form as (6) and may be treated in the same way, giving, after completing the reductions,

$$\frac{dz_i}{dt} = Z_i^{(1)} + Z_i^{(2)} + \cdots \qquad (i=1,\dots,n) .$$
 (12)

This process may be continued indefinitely if the first terms in the right members are selected so that when the others are neglected the rigorous integration can be performed. Under these conditions it is perfectly valid for any finite number of repetitions, the question whether it converges when repeated indefinitely remaining unanswered. To treat this question it would be necessary to define in some way the law of procedure.

The method of variation of parameters finds its complete exemplification only in Delaunay's lunar theory where it is consistently followed out. In the theories of the perturbations of the planets it is the first step, after which the method is changed.

§5. POWER SERIES IN PARAMETERS

The power series in the time given in § 2 are not convenient in most problems because of their small realm of convergence. Nevertheless, it is possible to construct from them, as shown in § 3, series of polynomials which have a wider realm of convergence. If, instead of using polynomials, more general functions are employed, the practical usefulness of the series can be greatly increased. The most satisfactory method which has been so far devised is to expand the solutions as power series in the parameters which occur in the differential equations. If no natural parameters occur, it is sometimes possible to introduce them artificially so as to attain much the same results.

Suppose the differential equations to be integrated are

$$\frac{dx_t}{dt} = X_i(x_1, \dots, x_n, \alpha, \beta, t) \qquad (i=1, \dots, n) , \qquad (13)$$

where a and β are parameters. Suppose the initial values of x_1, \dots, x_n are a_1, \dots, a_n respectively. Suppose the X_i are all expansible in converging power series in a in the vicinity of $x_j = a_j$ for all values of t such that $0 \equiv t < t_0$. Suppose the coefficients of the various powers of a are all expansible as converging power series in x_1, \dots, x_n in the vicinity of $x_j = a_j$ for all $0 \equiv t < t_0$.

It is proposed to find solutions having the form

$$x_i = \sum_{j=0}^{\infty} x_i^{(j)} \alpha^j \qquad (i=1,\dots,n) , \qquad (14)$$

where the $x_i^{(j)}$ are functions of the time to be determined. In determining the $x_i^{(j)}$ there are two cases, depending on whether the X_i all vanish with a = 0 or not.

1. Case in which the X_i have a factor a.—In order to keep this fact prominent, let (13) be written in the form

$$\frac{dx_i}{dt} = a X_i(x_1, \dots, x_n, a, \beta, t) . \tag{13'}$$

Substituting (14) in (13'), it is found that

$$\sum_{j=0}^{\infty} \frac{dx_{i}^{(j)}}{dt} a^{j} = X_{i} a + \frac{\partial X_{j}}{\partial a} a^{2} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}} x_{j}^{(1)} a^{2} + \frac{1}{2} \frac{\partial^{2} X_{i}}{\partial a^{2}} a^{3} + \sum_{j=1}^{n} \frac{\partial^{2} X_{i}}{\partial a \partial x_{j}} x_{j}^{(1)} a^{3} + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} X_{i}}{\partial x_{j} \partial x_{k}} x_{j}^{(1)} x_{k}^{(1)} a^{3} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}} x_{j}^{(2)} a^{3} + \cdots,$$

$$(15)$$

where in all the partial derivatives x_i is replaced by $x_i^{\scriptscriptstyle{(0)}}$ and a is put equal to zero. Admitting for the moment the convergency of (15), the coefficients of the corresponding powers of a in the right and left members are equal, giving

$$\frac{dx_{i}^{(0)}}{dt} = 0 (i=1, \dots, n) ,
\frac{dx_{i}^{(1)}}{dt} = X_{i} (x_{1}^{(0)}, \dots, x_{n}^{(0)}, 0, \beta, t) ,
\frac{dx_{i}^{(2)}}{dt} = \frac{\partial X_{i}}{\partial a} + \sum_{j=1}^{n} \frac{\partial X_{j}}{\partial x_{j}} x_{j}^{(1)} ,
\text{etc.}$$
(16)

These equations can be integrated in order, being in each case quadratures, and give the coefficients of (14) uniquely.

quantities" was used and has been largely retained up to the present time, rather than an explicit development. CAUCHY in 1842 examined the validity of the method (Collected Works, 1st series, Vol. VII).

⁸This method was first used in a somewhat loose way by early workers in celestial mechanics in constructing the theories of the mutual perturbations of the planets. The indefinite "order of small

2. Case in which the X_i do not have the factor a.—Substituting (14) in (13), it is found that

$$\sum_{i=0}^{\infty} \frac{d \, x_i^{(j)}}{d \, t} \, \alpha^j = X_i \, (x_1^{(0)}, \, \dots, \, x_n^{(0)}, \, 0, \, \beta, \, t) + \frac{\partial \, X_i}{\partial \, a} \, \alpha + \sum_{j=1}^n \frac{\partial \, X_i}{\partial \, x_j} x_j^{(1)} \, \alpha + \frac{1}{2} \frac{\partial^2 \, X_i}{\partial \, a^2} \alpha^2 + \sum_{j=1}^n \frac{\partial^2 \, X_i}{\partial \, \alpha \, \partial \, x_j} x_j^{(1)} \, \alpha^2 + \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \frac{\partial^2 \, X_i}{\partial \, x_j \, \partial \, x_k} x_j^{(1)} \, x_k^{(1)} \, \alpha^2 + \sum_{i=1}^n \frac{\partial \, X_i}{\partial \, x_j} x_j^{(2)} \, \alpha^2 + \cdots$$

$$(17)$$

Equating coefficients of corresponding powers of a, it is found that

$$\frac{dx_{i}^{(0)}}{dt} = X_{i}(x_{1}^{(0)}, \dots, x_{n}^{(0)}, 0, \beta, t) \qquad (i=1,\dots,n) ,$$

$$\frac{dx_{i}^{(1)}}{dt} = \frac{\partial X_{i}}{\partial a} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}} x_{j}^{(1)} ,$$

$$\frac{dx_{i}^{(2)}}{dt} = \frac{1}{2} \frac{\partial^{2} X_{i}}{\partial a^{2}} + \sum_{j=1}^{n} \frac{\partial^{2} X_{i}}{\partial a \partial x_{j}} x_{j}^{(1)} + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} X_{i}}{\partial x_{j} \partial x_{k}} x_{j}^{(1)} x_{k}^{(1)} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}} x_{j}^{(2)} ;$$
(18)

and in general

$$\frac{dx_i^{(\nu)}}{dt} = X_i^{(\nu)} + \sum_{j=1}^n \frac{\partial X_j}{\partial x_j} x_j^{(+)} , \qquad (19)$$

where $X_i^{(\nu)}$ is a polynomial in $x_j^{(0)}, \dots, x_j^{(\nu-1)}$. After the $x_i^{(0)}$ have been determined, the remaining $x_i^{(\nu)}$ depend upon the solution of systems of linear non-homogeneous differential equations.

This case may always be avoided by eliminating the parts of the X_i which are independent of a by the method of the variation of parameters, but it is not always advisable to do so.

3. Determination of constants of integration.— Every time a set of equations of (16) is integrated n constants are introduced, and they must be determined in terms of the initial values of the variables. Let the constants introduced with $x_i^{(r)}$ be $a_i^{(r)}$; then, letting $x_i^{(r)}$ be written $f_i^{(r)}(t) - a_i^{(r)}$, equations (14) become

$$x_i = a_i^{(0)} + \sum_{j=1}^{\infty} [f_i^{(j)}(t) - a_i^{(j)}] a^j$$
 (i=1,...,n)

At the initial time t = 0 these equations become

$$a_i = a_i^{(0)} + \sum_{j=1}^{\infty} \left[f^{(j)}(0) - a_i^{(j)} \right] \alpha^j \qquad (i=1,\dots,n) . \tag{20}$$

If these equations have any realm of convergency in a for $0 \equiv t < t_0$, they become identities in a, because the initial values of the variables are independent of the parameters, and it follows that

$$a_i^{(0)} = a_i \qquad (i=1,\dots,n) , a_i^{(j)} = f_i^{(j)}(0) \qquad (i=1,\dots,j=1,\dots,\infty) .$$
 (21)

It follows from these relations that, when the X_i vanish with a, the $x_i^{(\nu)}$ are the definite integrals of the equations by which they are defined taken between the limits t=0 and t=t.

When the X_i do not vanish with a, the constants are not additive. The way they enter in the expressions for $x_i^{(0)}$ depends upon the forms of the right members of the first set of equations (18). In the solutions of the linear equations which occur after the first set they enter in the form

$$x_{i}^{(\nu)} = \sum_{j=1}^{n} c_{ij}^{(\nu)} f_{j}^{(\nu)}(t) + \phi_{i}^{(\nu)}(t) \qquad (i=1,\dots,n \quad \nu=1,\dots,\infty) , \qquad (22)$$

where the $c_{ij}^{(\nu)}$ are related to the $c_{ij}^{(\nu)}$ ($i=2,\dots,n$) by the coefficients which are involved in the differential equations. At t=0 the solutions (14) become

$$a_{i} = x_{i}^{(0)} + \sum_{\nu=1}^{\infty} \left\{ \sum_{j=1}^{n} c_{ij}^{(\nu)} f_{j}^{(\nu)}(0) + \phi_{i}^{(\nu)}(0) \right\} \alpha^{\nu} \qquad (i=1,\dots,n) . \tag{23}$$

If these equations have any realm of convergency, they are identities in a. Hence $(x_i^{(0)})_{t=0} = a_i$, and the independent constants $c_{ij}^{(0)}$ which enter linearly are determined by the equations

$$\sum_{j=1}^{n} c_{ij}^{(\nu)} f_{j}^{(\nu)}(0) + \phi_{i}^{(\nu)}(0) = 0 \qquad (i=1,\ldots,n) , \qquad (24)$$

and a similar system for all values of ν from 1 to ∞ . It follows from this that the $x_i^{\omega_i}$ are the definite integrals

$$x_i^{(r)} = \int_0^t \frac{dx_i^{(r)}}{dt} dt$$
 (i=1, ..., n, r=1, ... \pi) .*

The question of the convergency of these series was first examined by Cauchy in a series of papers published in *Comptes rendus* in the summer of 1842.⁹ The method is to use a comparison set of differential equations,

$$\frac{dy_i}{dt} = Y_i(y_1, \dots, y_n, \alpha, \beta, t) \qquad (i=1,\dots,n) , \qquad (25)$$

where the Y_i fulfil all the conditions imposed upon the X_i , and the additional ones, that the coefficients of the expansions of the coefficients of the various powers of a shall be real, positive, and greater than the moduli of the corresponding coefficients in the expansions of the X_i for all $0 \equiv t < t_0$. Then it is shown that, if the solutions of (25) are written in the form

$$y_i = \sum_{i=0}^{\infty} y_i^{(j)} \alpha^j , \qquad (26)$$

the $y_i^{\scriptscriptstyle (j)}$ are all real, positive, and greater than the moduli of the corresponding coefficients of the series (14) for all $0 \equiv t < t_{\scriptscriptstyle 0}$. Consequently series (14) converge if (26) converge.

There are always equations fulfilling the conditions imposed upon (25) of the form

$$\frac{dy_i}{dt} = \frac{aC}{(1-\rho\alpha)\left[1-r\left(y_1+\cdots+y_n\right)\right]}, \text{ or}$$

$$\frac{dy_i}{dt} = \frac{C}{(1-\rho\alpha)\left[1-r\left(y_1+\cdots+y_n\right)\right]},$$
(27)

according as the right members vanish with a or not, and where C, ρ , and r are constants conveniently chosen. Equations (27) can be integrated and the y_i expressed as series in a which, from the form of the functions which are expanded, are known to converge if t and a are sufficiently small. Hence it follows that the series (14) converges if t and a are sufficiently small. The limits within which the series are certainly convergent determined in this way are undoubtedly in general much too small.

Poincaré has proved that for any finite value t_0 the a may be chosen so small that the series converges for all $0 \equiv t < t_0$, provided that the solutions of (14) with a = 0 have no singularities for this range of time. It follows equally that for any values of a for which the right members of (13) converge the t_0 may be taken so small that (14) converges for all $0 \equiv t < t_0$; and, therefore, any solutions of a problem which are constructed in this manner have at least a positive finite realm of validity in t.

The parameter β enters in the differential equations (13), and so far it has not been defined,

except that it has been tacitly assumed that it does not take values which would introduce singularities in their right members. In particular, there is in general no reason why it may not be numerically equal to a, although the expansions are made with respect to a alone. The following is the use which will be made of the β : Suppose that in the differential equations a certain parameter μ occurs in two distinct ways; one, such that the right members may be expanded as power series in it in a simple manner; the other, such that the expansions are more difficult, or even impossible. When μ occurs in the first way it may be replaced by a, and when it appears in the second way by β . The solutions may be expanded as power series in a, and at the end a and β given their numerical values, which are equal. This artifice, which appears not to have been heretofore employed, is essential in the proof of the validity of many of the processes which have been employed in celestial mechanics with success without it having been demonstrated that they were valid; and, in constructing new series for solutions of differential equations, it opens up such a number of possibilities within the realm of validity that the chances of securing proved rigor and at the same time practicability are greatly increased. These remarks are illustrated in the applications which follow.

Instead of there being one parameter a, there may be any number, when the solutions will be multiple series. Corresponding theorems respecting the convergence hold.

§6. APPLICATION TO THE COMPUTATION OF THE ABSOLUTE PERTURBATIONS OF THE ELEMENTS

Suppose there are the sun, whose mass will be taken as unity, and two planets whose masses are m_1 and m_2 . If the origin is taken at the center of the sun, the differential equations of motion in rectangular co-ordinates are:

$$\frac{dx_{1}}{dt} - x_{1}' = 0 , \quad \frac{dx_{1}'}{dt} + k^{2}(1 + m_{1})\frac{x_{1}}{r_{1}^{3}} = m_{2}\frac{\partial R_{1}}{\partial x_{1}} ,
\frac{dy_{1}}{dt} - y_{1}' = 0 , \quad \frac{dy_{1}'}{dt} + k^{2}(1 + m_{1})\frac{y_{1}}{r_{1}^{3}} = m_{2}\frac{\partial R_{1}}{\partial y_{1}} ,
\frac{dz_{1}}{dt} - z_{1}' = 0 , \quad \frac{dz_{1}'}{dt} + k^{2}(1 + m_{1})\frac{z_{1}}{r_{1}^{3}} = m_{2}\frac{\partial R_{1}}{\partial z_{1}} ,
\frac{dx_{2}}{dt} - x_{2}' = 0 , \quad \frac{dx_{2}'}{dt} + k^{2}(1 + m_{2})\frac{x_{2}}{r_{2}^{3}} = m_{1}\frac{\partial R_{2}}{\partial x_{2}} ,
\frac{dy_{2}}{dt} - y_{2}' = 0 , \quad \frac{dy_{2}'}{dt} + k^{2}(1 + m_{2})\frac{y_{2}}{r_{2}^{3}} = m_{1}\frac{\partial R_{2}}{\partial y_{2}} ,
\frac{dz_{2}}{dt} - z_{2}' = 0 , \quad \frac{dz_{2}'}{dt} + k^{2}(1 + m_{2})\frac{z_{2}}{r_{2}^{3}} = m_{1}\frac{\partial R_{2}}{\partial z_{2}} ;
R_{1} = k^{2} \left[\frac{1}{r_{1,2}} - \frac{x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}}{r_{2}^{3}} \right] ,
R_{2} = k^{2} \left[\frac{1}{r_{1,2}} - \frac{x_{2}x_{1} + y_{2}y_{1} + z_{2}z_{1}}{r_{1}^{3}} \right] ,$$
(28)

where r_1 and r_2 are the distances from m_1 and m_2 to the sun and $r_{1,2}$ is the distance between m_1 and m_2 . When the right members are put equal to zero, the equations reduce to those for the problem of two bodies, and can be solved. Consequently the method of the variation of parameters can be employed as explained in § 4. Suppose the elements of the orbit of m_1 are a_1, a_2, \dots, a_6 , and of $m_2, b_1, b_2, \dots, b_6$. Then, after the method of the variation of parameters has been applied once, the differential equations will have the form

$$\frac{d a_i}{d t} = m_2 \phi_i(a_1, \dots, a_6, b_1, \dots, b_6, t), \qquad (i=1, \dots, 6),
\frac{d b_i}{d t} = m_1 \psi_i(a_1, \dots, a_6, b_1, \dots, b_6, t).$$
(29)

The distribution of the parameters into a's and β 's must be made before equations (29) are integrated. The parameters are m_1 and m_2 , which appear in the right members as factors. The functions ϕ_i and ψ_i originally depended upon the co-ordinates $x_1, y_1, z_1, x_2, y_2, z_2$. These were eliminated by means of the solutions of (28) after the right members were put equal to zero; but, since the left members of (28) involve m_1 and m_2 , the functions ϕ_i and ψ_i involve m_1 and m_2 implicitly. In order to simplify matters and to establish the validity of the ordinary expressions which are used in the theory of absolute perturbations, the m_1 and m_2 which occur as factors of ϕ_i and ψ_i respectively will be regarded as being a's and those which enter implicitly in ϕ_i and ψ_i as being β 's. If this were not done, the ϕ_i and ψ_i would have to be expanded as power series in m_1 and m_2 , thus adding enormously to the labor of practically carrying out the work, while the expressions obtained would not be those used by astronomers.

The problem now is to integrate equations (29), which are as general as (28) and valid so long as the Jacobian of the equations of transformation does not vanish. In the mutual perturbations of the planets it never vanishes when the elements are conveniently defined. It is no more possible to obtain integrals of (29) in finite numbers of terms than it was in the case of (28), but it is possible to integrate them as power series in m_1 and m_2 , which will, as was seen in § 5, absolutely converge so long as t is not too far from its initial value.

It will now be shown how the coefficients of the series can be computed, and that the various terms have obvious physical interpretations. The solutions are to have the forms 12

$$a_{i} = \sum_{j,k=0}^{\infty} a_{i}^{(j,k)} m_{1}^{j} m_{2}^{k} \qquad (i=1,\dots,6) ,$$

$$b_{i} = \sum_{j,k=0}^{\infty} b_{i}^{(j,k)} m_{1}^{j} m_{2}^{k} \qquad (30)$$

where the $a_i^{(j,k)}$ and the $b_i^{(j,k)}$ are functions of the time to be determined. It will be supposed that the terms are arranged so that the sum j + k proceeds in the order of the natural numbers.

Substituting (30) in (29), it is found that

$$\frac{da_{i}^{(0,0)}}{dt} + \frac{da_{i}^{(0,1)}}{dt} m_{2} + \frac{da_{i}^{(1,0)}}{dt} m_{1} + \frac{da_{i}^{(1,1)}}{dt} m_{1} m_{2} + \frac{da_{i}^{(0,2)}}{dt} m_{2}^{2} + \frac{da_{i}^{(0,2)}}{dt} m_{1}^{2} + \cdots
= m_{2} \phi_{i} (a_{i}^{(0,0)}, \dots, a_{i}^{(0,0)}, b_{1}^{(0,0)}, \dots, b_{i}^{(0,0)}, \dots, b_{i}^{(0,0)}, t) + m_{2} \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial a_{j}} (a_{j}^{(0,1)} m_{2} + a_{j}^{(1,0)} m_{1})
+ m_{2} \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial b_{j}} (b_{j}^{(0,1)} m_{2} + b_{j}^{(1,0)} m_{1}) + \text{higher powers in } m_{1} \text{ and } m_{2},$$

$$\frac{db_{i}^{(0,0)}}{dt} + \frac{db_{i}^{(0,1)}}{dt} m_{2} + \frac{db_{i}^{(1,0)}}{dt} m_{1} + \frac{db_{i}^{(1,1)}}{dt} m_{1} m_{2} + \frac{db_{i}^{(0,2)}}{dt} m_{2}^{2} + \frac{db_{i}^{(2,0)}}{dt} m_{1}^{2} + \dots$$

$$= m_{1} \psi_{i} (a_{1}^{(0,0)}, \dots, a_{i}^{(0,0)}, b_{1}^{(0,0)}, b_{1}^{(0,0)}, \dots, b_{i}^{(0,0)}, t) + m_{1} \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial a_{j}} (a_{j}^{(0,1)} m_{2} + a_{j}^{(1,0)} m_{1})$$

$$+ m_{1} \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial b_{j}} (b_{j}^{(0,1)} m_{2} + b_{j}^{(1,0)} m_{1}) + \text{higher powers in } m_{1} \text{ and } m_{2}.$$
(31)

Equating coefficients of corresponding powers of m_1 and m_2 in the right and left members of these equations, it is found that

¹¹ Compare Poincaré, Méthodes nouvelles, Vol. I, p. 270, where this expansion is used.

¹² Compare the "order of small quantity" method given by Tisexand, Mécanique céleste, Vol. 1, p. 194.

$$\frac{d a_i^{(0,0)}}{d t} = 0 , \qquad (i=1,\dots,6) ,
\frac{d b_i^{(0,0)}}{d t} = 0 , \qquad (32)$$

$$\frac{da_{i}^{(0,1)}}{dt} = \phi_{i}(a_{1}^{(0,0)}, \dots, a_{6}^{(0,0)}, b_{i}^{(0,0)}, \dots, b_{6}^{(0,0)}, t) \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(1,0)}}{dt} = 0 ,$$

$$\frac{db_{i}^{(0,1)}}{dt} = 0 ,$$

$$\frac{db_{i}^{(0,1)}}{dt} = \psi_{i}(a_{1}^{(0,0)}, \dots, a_{6}^{(0,0)}, b_{1}^{(0,0)}, \dots, b_{6}^{(0,0)}, t) ,$$
(33)

$$\frac{da_{i}^{(1,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial a_{j}} a_{j}^{(1,0)} + \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial b_{j}} b_{j}^{(1,0)} \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(0,2)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial a_{j}} a_{j}^{(0,1)} + \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial b_{j}} b_{j}^{(0,1)} ,$$

$$\frac{da_{i}^{(2,0)}}{dt} = 0 ,$$

$$\frac{db_{i}^{(1,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial a_{j}} a_{j}^{(0,1)} + \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial b_{j}} b_{j}^{(0,1)} ,$$

$$\frac{db_{i}^{(2,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial a_{j}} a_{j}^{(1,0)} + \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial b_{j}} b_{j}^{(1,0)} ,$$

$$\frac{db_{i}^{(0,2)}}{dt} = 0 ,$$

$$\frac{db_{i}^{(0,2)}}{dt} = 0 ,$$
(34)

Integrating (32) and substituting the values of $a_i^{\phi,0}$ and $b_i^{\phi,0}$ thus obtained in (33), the latter are reduced to quadratures and can be integrated; integrating (33) and substituting the expressions for $a_i^{\phi,0}$, $a_i^{\phi,0}$, $b_i^{\phi,1}$, and $b_i^{\phi,0}$ in (34), the latter are reduced to quadratures and can be integrated; and this process may be repeated indefinitely, giving any desired number of coefficients of the series (30). When valid processes in performing the quadratures are employed, the elements are rigorously determined within certain time limits.¹³

An additive constant of integration is introduced with each integration which can be determined, as was shown in § 5, from the initial conditions. Suppose $a_i^{(j,k)} = f_i^{(j,k)}(t) - a_i^{(j,k)}$, $b_i^{(j,k)} = g_i^{(j,k)}(t) - \beta_i^{(j,k)}$, where the $a_i^{(j,k)}$ and $\beta_i^{(j,k)}$ are the constants of integration to be determined. Let the initial values of a_i and b_i be $a_i^{(0)}$ and $b_i^{(0)}$ respectively. Then equations (30) become at t = 0

$$a_i^{(0)} = \sum_{j,k=0}^{\infty} \left[f_i^{(j,k)}(0) - a_i^{(j,k)} \right] m_1^j m_2^k \qquad (i=1,\dots,6) ,$$

$$b_i^{(0)} = \sum_{j,k=0}^{\infty} \left[g_i^{(j,k)}(0) - \beta_i^{(j,k)} \right] m_1^j m_2^k . \tag{35}$$

etc.

Since the osculating elements are independent of the disturbing masses, these series are identities in m_1 and m_2 , whence

$$a_{i}^{(0,0)} = a_{i}^{(0)} ,$$

$$b_{i}^{(0,0)} = b_{i}^{(0)} ,$$

$$a_{i}^{(j,0)} = 0 \qquad (j=1,\ldots,\infty) ,$$

$$b_{i}^{(0,k)} = 0 \qquad (k=1,\ldots,\infty) ,$$

$$f_{i}^{(j,k)}(0) - a_{i}^{(j,k)} = 0 \qquad (j=1,\ldots,\infty, k=1,\ldots,\infty) ,$$

$$g_{i}^{(j,k)}(0) - \beta_{i}^{(j,k)} = 0 \qquad (j=1,\ldots,\infty, k=1,\ldots,\infty) ,$$

$$(36)$$

The $a_i^{(0,0)}$ and $b_i^{(0,0)}$ are the osculating elements at the time t=0, and the perturbations of the first order with respect to the masses are given by (33), which, because of (36), reduce to

$$\frac{d a_i^{(0,1)}}{dt} = \phi_i (a_1^{(0)}, \dots, a_6^{(0)}, b_1^{(0)}, \dots, b_6^{(0)}, t) ,$$

$$\frac{d b_i^{(1,0)}}{dt} = \psi_i (a_1^{(0)}, \dots, a_6^{(0)}, b_1^{(0)}, \dots, b_6^{(0)}, t) .$$
(37)

The right members of these equations are proportional to the rates at which the various elements of the orbits of the two planets would vary at the time t if the planets were moving at that instant in the original ellipses; the integrals are the summations of the changes which would be produced if the forces and their instantaneous effects were always exactly equal to those in the undisturbed orbits. Of course, the perturbations modify the expressions for the true rates at which the elements vary, but they are taken care of in terms of higher order.

Since the differential equations (29) involve the parameters m_1 and m_2 to the first degree only, they are valid for all finite values. Consequently this method of computing the absolute perturbations does not depend for its validity upon the fact that the masses of the planets are small compared to that of the sun. However, the smaller the masses of the planets are, the longer the time for which the series converge.

If there were a third planet, the elements a_i and b_i would have terms of the first order of the general type of the right members of (37) coming from its attraction, but the effects of each planet in the terms of the first order would be computed separately.

As a consequence of (36) and (37) the terms of the second order, given by (34), reduce to

$$\frac{da_{i}^{(1,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial b_{j}^{(0)}} b_{j}^{(1,0)} \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(0,2)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1)} ,$$

$$\frac{db_{i}^{(0,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1)} ,$$

$$\frac{db_{i}^{(2,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial b_{j}^{(0)}} a_{j}^{(0,1)} .$$
(38)

The perturbations of the second order arise from the fact that both m_1 and m_2 depart from their original ellipses by terms of the first order. The perturbations of the second order of the elements of m_1 , due to the fact that m_2 departs from its original orbit by terms of the first order, are given by equations of the type of the first of (38); for, if $b_j^{(0,0)}$, the first-order perturbations of m_2 , were zero, $a_i^{(0,1)}$ would be zero also. Similarly, the perturbations of the second order of m_1 , due to the fact that m_1 departs from its original ellipse by terms of the first order, are given by equations of the

type of the second of (38). The terms $b_i^{a,b}$ and $b_i^{c,o}$ in the elements of the orbit of m_2 arise from similar causes. Thus the terms of the second order correct the errors which would be committed by stopping with terms of the first order, and those of the third order correct those of the second, and so on indefinitely.

If there are three planets, the perturbations of the second order are considerably more complicated, the terms arising from the attractions of the various planets not appearing separately, as they do in case of the terms of the first order. Suppose the third planet is m_3 and that the elements of its orbit are c_1, \dots, c_n . Then the differential equations which define the terms of the second order are

$$\frac{da_{i}^{(1,1,0)}}{dl} = \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, l)}{\partial b_{j}^{(0)}} b_{j}^{(1,0,0)} \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(1,0,1)}}{dl} = \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{6}^{(0)}, c_{1}^{(0)}, \dots, c_{6}^{(0)}, t)}{\partial c_{j}^{(0)}} c_{j}^{(1,0,0)} ,$$

$$\frac{da_{i}^{(0,2,0)}}{dl} = \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{n}^{(0)}, l)}{\partial a_{j}^{(0)}} a_{j}^{(0,1,0)} ,$$

$$\frac{da_{i}^{(0,2,0)}}{dl} = \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{6}^{(0)}, c_{1}^{(0)}, \dots, b_{n}^{(0)}, l)}{\partial a_{j}^{(0)}} a_{j}^{(0,1,0)} ,$$

$$\frac{da_{i}^{(n,1,1)}}{dl} = \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{n}^{(0)}, l)}{\partial a_{j}^{(0)}} a_{j}^{(n,1,0)} ,$$

$$+ \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{n}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(n,1,0)} ,$$

$$+ \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{n}^{(0)}, b_{1}^{(0)}, \dots, b_{n}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(n,1,0)} ,$$

$$+ \sum_{j=1}^{6} \frac{\partial \phi_{i} (a_{1}^{(0)}, \dots, a_{n}^{(0)}, c_{1}^{(0)}, \dots, c_{n}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(n,1,0)} ,$$

and the corresponding equations for $\frac{db_i}{dl}$ and $\frac{dc_i}{dl}$.

Equations of the type of the first give the perturbations arising from the attraction of m_2 due to the fact that m_2 has been drawn from its original ellipse by m_1 ; the second, the perturbations arising from the attraction of m_3 due to the fact that m_3 has been drawn from its original ellipse by m_1 ; the third, the perturbations arising from the attraction of m_2 due to the fact that m_1 has been drawn from its original ellipse by m_2 ; the fourth, the perturbations arising from the attraction of m_3 due to the fact that m_1 has been drawn from its original ellipse by m_3 ; the second term of m_2 due to the fact that m_1 has been drawn from its original ellipse by m_3 ; the second term of the fifth, the perturbations arising from the attraction of m_2 due to the fact that m_2 has been drawn from its original ellipse by m_3 ; the third term of the fifth, the perturbations arising from the attraction of m_3 due to the fact that m_1 has been drawn from its original ellipse by m_2 ; and the fourth term of the fifth, the perturbations arising from the attraction of m_3 due to the fact that m_3 has been drawn from its original ellipse by m_2 . Thus precisely those terms appear which would be expected from physical considerations.

Consider the general case in which there are n planets m_1, \dots, m_n . The planet m_1 , for example, suffers first-order perturbations due to the attraction of m_2 . This deviation of m_1 from its elliptical orbit gives terms of the second order arising from the attraction of each of the remaining planets,

thus giving n-1 terms of the second order. Similar results arise from the first-order perturbations of m_1 by m_3 , and so on down to the planet m_n . Since there are n-1 planets besides m_1 , there are in all $(n-1)^2$ terms of the second order in the perturbations of every element of the orbit of m_1 due to the fact that it has deviated from its original orbit by terms of the first order. The elements of the orbit of m_n have n-1 terms of the first order arising from the attraction of the remaining n-1planets for it, and each of these gives rise to a term of the second order in the perturbations of the elements of the orbit of m_1 , or n-1 new terms of the second order. This is true for each of the remaining planets, so that there are in all $(n-1)^2$ terms of the second order in the perturbations of every element of the orbit of m_1 due to the fact that m_2, \dots, m_n depart from their original ellipses by terms of the first order. Therefore each element of the orbit of m_i has $2(n-1)^2$ different perturbations of the second order, and for the whole n planets there are $2n(n-1)^2$ terms of the second order. When there are two planets, there are four terms of the second order, given by equations (38). When there are three planets, there are twenty-four terms, the first eight of which are given in (39). When there are eight planets, as in the solar system, there are 784 terms of the second order for each of the six elements. Fortunately nearly all of them are so small as to be insensible.14

In order that the conclusions may be sound, the quadratures must be made by valid processes. In the case of the mutual perturbations of the great planets it can be shown that the series which are ordinarily employed in preparation for the quadratures are convergent.

§7. A VALID METHOD OF AVOIDING SECULAR TERMS OF THE FIRST ORDER

In the right members of the differential equations which define the perturbations of the first order with respect to the masses there are, in the expansions which are usually employed, terms of two types: (a) those in which the time is involved in the cosine or sine functions, and (b) those which are independent of the time. Upon integration the first type gives sine and cosine terms, which are consequently periodic and always finite; but the second type gives terms which change indefinitely with the time.¹⁵ In the perturbations of the second order with respect to the masses there are, except in the case of the major axes, periodic terms, terms which contain the time and periodic terms as products, which will be called Poisson terms, terms containing the time to the first degree, and terms containing the time to the second degree. In perturbations of the third order with respect to the masses there are terms of the third degree in the time; etc.

Although terms appear which change indefinitely with the time, it does not in the least follow that the elements change indefinitely with the time. It may be that these so-called secular terms are the expansions of periodic terms, and, if so, it is desirable, at least for practical purposes, that the expanded forms be avoided. The question arises if this may not be done by modifying the method of integrating the differential equations. Whether it can be done or not, it proves nothing regarding the stability of the system, unless the series can be proved to be uniformly convergent; but this problem has not even been approached yet, much less solved. Lagrange has succeeded in showing by formal processes that the secular terms of the first order of the masses and of the first order in the eccentricities and mutual inclinations may be avoided entirely. Leverrier has shown that when terms of the fourth order in the eccentricities and inclinations in the perturbative function are included, the solutions still retain the periodic form. Finally, Poincaré has shown that the secular terms of all orders may formally be integrated in series which are periodic. He says, in

¹¹ The coefficients of the various powers of the masses are here spoken of as being "terms;" when carried out in practice, each is in reality a multiply infinite system of simple terms.

¹⁵ There is the well-known exception in the case of the major axes.

¹⁶ See Ball, Story of the Heavens, p. 351, where the generally accepted erroneous view regarding this matter is advanced.

¹⁷ Collected Works, Vols. V and VI.

¹⁸ Annales de l'observatoire de Paris, Vol. II, Addition III.

 $^{^{19}\,} Les$ méthodes nouvelles de la mécanique céleste, Vol. II, chap i.

conclusion,²⁰ that Lagrange and Laplace would have regarded this as completely establishing the stability of the solar system, but that it is not sufficient now because of the lack of proof of convergence of the series.

The question arises how far the method of Lagrange leads to significant results, for the assumptions and approximations may be such that the conclusions may be erroneous, especially when long intervals of time are involved.²¹ In a general way this is the subject of the present inquiry, and it will be shown that results which are, from a practical point of view, sensibly the same, though not quite, may be obtained by processes which have been proved to be valid for not too long a time.

Let the elements of the orbit of the planet m_j be a_j , e_j , $\tilde{\omega}_j$, ϵ_j , Ω_j , and i_j , where the letters have the usual significations. Then let the variables h_j , l_j , p_j , and q_j be defined by the equations

$$h_j = e_j \sin \tilde{\omega}_j$$
 $(j=1,\dots,n)$,
 $l_j = e_j \cos \tilde{\omega}_j$,
 $p_j = \tan i_j \sin \Omega_j$,
 $q_j = \tan i_j \cos \Omega_j$. (40)

Then the differential equations become

$$\frac{d a_{j}}{d l} = f_{j} (a_{k}, \epsilon_{k}, h_{k}, l_{k}, p_{k}, q_{k}, t) \qquad (j=1, \dots, n), (k=1, \dots, n),
\frac{d \epsilon_{j}}{d l} = g_{j} (a_{k}, \epsilon_{k}, h_{k}, l_{k}, p_{k}, q_{k}, t),
\frac{d h_{j}}{d l} = \theta_{j} (a_{k}, \epsilon_{k}, h_{k}, l_{k}, p_{k}, q_{k}, t),
\frac{d l_{j}}{d l} = \phi_{j} (a_{k}, \epsilon_{k}, h_{k}, l_{k}, p_{k}, q_{k}, t),
\frac{d p_{j}}{d l} = \psi_{j} (a_{k}, \epsilon_{k}, h_{k}, l_{k}, p_{k}, q_{k}, t),
\frac{d q_{j}}{d l} = \chi_{j} (a_{k}, \epsilon_{k}, h_{k}, l_{k}, p_{k}, q_{k}, t).$$
(41)

The perturbative functions for the various pairs of planets, upon which the right members of equations (41) depend, have the form ²²

$$R_{j,k} = \sum M e_j^H e_k^H \left(\tan \frac{i_j}{2} \right)^G \left(\tan \frac{i_k}{2} \right)^G \cos \left(\alpha l_j + \alpha' l_k + \beta \tilde{\omega}_j + \beta' \tilde{\omega}_k + \gamma \Omega_j + \gamma' \Omega_k \right) , \tag{42}$$

where $l_j = n_j t - \epsilon_j$, n_j being the mean motion of m_j . The summation extends over all integral values of a, a', β , β' , γ , γ' , and H, H', G, and G' are respectively equal to the numerical values of β , β' , γ , γ' increased by zero or positive integers, and M are functions of a_j and a_k . Now, $\tan \frac{i}{2}$ is related to $\tan i$ by the equation

 $\tan i = \frac{2 \tan \frac{i}{2}}{1 - \tan^2 \frac{i}{2}} ,$

from which it easily follows that $\tan \frac{i}{2}$ is expressible as an infinite series of odd powers of $\tan i$. Therefore $\left(\tan \frac{i_j}{2}\right)^a$ is expressible as an infinite series in $\tan i$, with even or odd exponents according

²⁰ *Loc cit.*, p. 46.

²² See Tisserand, Mécanique céleste, Vol. 1, p. 317.

²¹ See Dziobek, *Planeten-Bewegungen*, p. 275; Tisseránd *Mécanique céleste*, Vol. I, p. 429.

as G is even or odd, and (42) may be written

$$R_{j,k} = \sum M e_j^H e_k^H (\tan i_j)^K (\tan i_k)^K \cos (\alpha l_j + \alpha' l_k + \beta \tilde{\omega}_j + \beta' \tilde{\omega}_k + \gamma \Omega_j + \gamma' \Omega_k) , \qquad (43)$$

where K and K' equal the numerical values of γ and γ' plus zero or positive integers.

It is known that $\cos \nu x$ and $\sin \nu x$ are expressible as sums of powers of $\cos x$ and $\sin x$ respectively, where the highest power is ν and the various powers are all even or odd according as ν is even or odd. Consequently it follows from the relations of the exponents H, H', K, and K' to the coefficients β , β' , γ , and γ' , and from the equations $e_j^2 = b_j^2 + l_j^2$ and $\tan^2 i_j = p_j^2 + q_j^2$, that $R_{j,k}$ is expressible as a power series in h_j , h_k , l_j , l_k , p_j , p_k , q_j , q_k ; and these series converge for the values of the arguments that occur in the ease of the mutual perturbations of the major planets. Therefore the right members of equations (41) are linear in the mass factors m_k ($k=1,\ldots,j-1,j+1,\ldots,n$), and, since the coefficients of the partial derivatives of the perturbative function are expansible as series in h_j , h_k , \cdots , q_j , q_k , they are power series in h_j , h_k , \cdots , q_j , q_k with the q_k entering in the M's and the ϵ_k entering only under the trigonometric functions.

The secular terms are those in which every a, a' occurring in the perturbative functions (43) is zero. It should be remarked here that others would occur if the mean motions of any two of the planets were commensurable, but as there are in every case within the limits of accuracy of the observations an infinite number of incommensurable as well as commensurable ratios, it is always assumed that the mean motions are incommensurable. There are no secular terms in the case of the element a_i for a = a' = 0, but this element would have secular terms if the mean motions were commensurable.

Lagrange treated the equations (41) by taking out the secular terms in the case of the last four variables, neglecting all except their first powers, and, assuming the a_j to be constant, he integrated the resulting linear homogeneous system whose coefficients were by assumption constants. He found the solutions and showed that they are all periodic functions of the time. The periodic parts of (41) which remained were integrated by quadratures by considering the elements as constants in the right members. It is perfectly clear that this method, which leads to the only existing theoretical conclusions regarding the stability of the solar system—to the so-called Magna Charta of the permanence of the solar system in its present form—contains a number of assumptions of a very radical type, and that it leads to no such general conclusions as have been drawn from it. Nevertheless, it undoubtedly represents quite approximately the actual changes which the system will undergo for a very long time. The method which is about to be explained gives much the same terms and is proved to be perfectly valid for a positive finite time.

Suppose the secular and periodic parts of the right members of (41) are written separately. Then let the mass factors m_k which occur as coefficients of the secular terms be replaced by $\frac{m'_k}{\mu}$, but remain unchanged in the case of the periodic terms. In the final results m'_k is to be given the numerical value of m_k and μ is to be put equal to unity. Let h_k , l_l , p_k , and q_k everywhere in the secular terms be replaced by μh_k , μl_k , μp_k , μq_k . Then the right members of (41) will be composed of two parts. One part will not involve the time explicitly and will be power series in μ , beginning with a term which is independent of this parameter. The other part will involve the time under the cosine and sine functions, and will be linear and homogeneous in the parameters m_1, \dots, m_n . The first part gives rise to the so-called secular terms and the second part to the periodic and long-period terms. The secular terms do not appear in the case of the elements a_j , but are present in the right members of all the other elements.

The differential equations will now be integrated as power series in μ and m_1, \dots, m_n . In order to simplify the details, suppose there are but two planets, m_1 and m_2 , and to abbreviate the notation let

$$\begin{array}{llll}
h_1 := x_1, & l_1 = x_2, & h_2 = x_3, & l_2 = x_4, \\
p_1 = y_1, & q_1 = y_2, & p_2 = y_3, & q_2 = y_4.
\end{array}$$
(44)

Then the differential equations become

$$\frac{da_{1}}{dt} = m_{2}f_{1}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) \qquad (i=1,2,3,4) ,$$

$$\frac{d\epsilon_{1}}{dt} = \sum_{j=0}^{\infty} g_{1j}(a_{1}, a_{2}, x_{i}, y_{i})\mu^{j} + m_{2}g_{01}(a_{1}, a_{2}) + m_{2}g_{1}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) ,$$

$$\frac{dx_{k}}{dt} = \sum_{j=0}^{\infty} \phi_{1kj}(a_{1}, a_{2}, x_{i}, y_{i})\mu^{j} + m_{2}\phi_{1k}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) \qquad (k=1,2,3,4) ,$$

$$\frac{da_{2}}{dt} = m_{1}f_{2}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) ,$$

$$\frac{d\epsilon_{2}}{dt} = \sum_{j=0}^{\infty} g_{2j}(a_{1}, a_{2}, x_{i}, y_{i})\mu^{j} + m_{1}g_{02}(a_{1}, a_{2}) + m_{1}g_{2}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) ,$$

$$\frac{dy_{k}}{dt} = \sum_{i=0}^{\infty} \phi_{2kj}(a_{1}, a_{2}, x_{i}, y_{i})\mu^{j} + m_{1}\phi_{2k}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) .$$

The functions ϕ_{1kj} and ϕ_{2kj} are homogeneous in x_i and y_i of degree j+1.

The solutions are to have the form

$$a_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} a_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2) ,$$

$$\epsilon_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} \epsilon_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2) ,$$

$$x_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} x_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2,3,4) ,$$

$$y_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} y_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2,3,4) ,$$

where the $a_i^{(j,J_1,J_2)}$, $\epsilon_i^{(j,J_1,J_2)}$, $x_i^{(j,J_1,J_2)}$, and $y_i^{(j,J_1,J_2)}$ are functions of the time to be determined. Substituting these expressions in (45), developing the right members, and equating corresponding powers of $\mu m_1 m_2$, it is found that

$$\frac{d \, a_{1}^{(0,\,0,\,0)}}{d \, t} = 0 ,
\frac{d \, \epsilon_{1}^{(0,\,0,\,0)}}{d \, t} = g_{10} \left(a_{1}^{(0,\,0,\,0)}, \, a_{2}^{(0,\,0,\,0)}, \, x_{i}^{(0,\,0,\,0)}, \, y_{i}^{(0,\,0,\,0)} \right) \qquad (i=1,2,3,4) ,
\frac{d \, x_{k}^{(0,\,0,\,0)}}{d \, t} = \phi_{1\,k\,0} \left(a_{1}^{(0,\,0,\,0)}, \, a_{2}^{(0,\,0,\,0)}, \, x_{i}^{(0,\,0,\,0)}, \, y_{i}^{(0,\,0,\,0)} \right) \qquad (k=1,2,3,4) ,
\frac{d \, a_{2}^{(0,\,0,\,0)}}{d \, t} = 0 ,
\frac{d \, e_{2}^{(0,\,0,\,0)}}{d \, t} = g_{20} \left(a_{1}^{(0,\,0,\,0)}, \, a_{2}^{(0,\,0,\,0)}, \, x_{i}^{(0,\,0,\,0)}, \, y_{i}^{(0,\,0,\,0)} \right) ,
\frac{d \, y_{k}^{(0,\,0,\,0)}}{d \, t} = \phi_{2\,k\,0} \left(a_{1}^{(0,\,0,\,0)}, \, a_{2}^{(0,\,0,\,0)}, \, x_{i}^{(0,\,0,\,0)}, \, y_{i}^{(0,\,0,\,0)}, \, y_{i}^{(0,\,0,\,0)} \right) ;^{\gamma}$$

$$\begin{split} &\frac{da_{i}^{(n,n)}}{dt} = 0 \ , \\ &\frac{de_{i}^{(n,n)}}{dt} = \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \sum_{i=1}^{4} \left[\frac{\partial y_{in}}{\partial x_{i}^{i}} x_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial y_{i}} y_{i}^{(n,n)} \right] + y_{ii} \left(a_{i}^{(n,n)}, a_{i}^{(n,n)}, x_{i}^{(n,n)}, y_{i}^{(n,n)} \right) \ , \\ &\frac{de_{i}^{(n,n)}}{dt} = \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \sum_{i=1}^{4} \left[\frac{\partial y_{in}}{\partial x_{i}^{i}} x_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial y_{i}} y_{i}^{(n,n)} \right] \\ &+ \psi_{i,k} \left(a_{i}^{(n,n)}, a_{i}^{(n,n)}, x_{i}^{(n,n)}, y_{i}^{(n,n)}, y_{i}^{(n,n)} \right) \ , \\ &\frac{da_{i}^{(n,n)}}{dt} = 0 \ , \\ &\frac{da_{i}^{(n,n)}}{dt} = \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \sum_{i=1}^{4} \left[\frac{\partial y_{in}}{\partial x_{i}} x_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial y_{i}} y_{i}^{(n,n)} \right] + y_{ii} \left(a_{i}^{(n,n)}, a_{i}^{(n,n)}, x_{i}^{(n,n)}, y_{i}^{(n,n)}, y_{i}^{(n,n)} \right) \ , \\ &\frac{da_{i}^{(n,n)}}{dt} = \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \sum_{i=1}^{4} \left[\frac{\partial y_{in}}{\partial x_{i}} x_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial y_{i}} y_{i}^{(n,n)} \right] + \psi_{ii} \left(a_{i}^{(n,n)}, a_{i}^{(n,n)}, x_{i}^{(n,n)}, y_{i}^{(n,n)}, y_{i}^{(n,n)} \right) \ , \\ &\frac{da_{i}^{(n,n)}}{dt} = 0 \ , \\ &\frac{da_{i}^{(n,n)}}{dt} = \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \sum_{i=1}^{4} \left[\frac{\partial y_{in}}{\partial x_{i}} x_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial y_{i}} y_{i}^{(n,n)} \right] \ , \\ &\frac{da_{i}^{(n,n)}}{dt} = \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \sum_{i=1}^{4} \left[\frac{\partial y_{in}}{\partial x_{i}} x_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial y_{i}} y_{i}^{(n,n)} \right] \ , \\ &\frac{da_{i}^{(n,n)}}{dt} = \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial u_{i}} a_{i}^{(n,n)} + \sum_{i=1}^{4} \left[\frac{\partial y_{in}}{\partial x_{i}} x_{i}^{(n,n)} + \frac{\partial y_{in}}{\partial y_{i}} y_{i}^{(n,n)} \right] \ , \\ &+ u_{i} \left(a_{i}^{(n,n)}, a_{$$

The proof that the expansions lead to the precise terms written depends upon the form of the perturbative function when expressed in these variables, and it will be assumed here that it is known.

Consider the integration of equations (47), (48), (49), and (50). From the first and fourth equations of (47) it follows that $a_1^{(0,0,0)}$ and $a_2^{(0,0,0)}$ are constants, and from the principles of § 5 that they are the values of these variables at t=0. It follows from the form of the secular part of the perturbative function that ϵ_1 and ϵ_2 are not involved explicitly in the right members of equations (47). Next consider the integration of the third and sixth systems of (47). They are linear with constant coefficients, and their integration presents no difficulties. The detailed discussion ²³ shows that all of the roots of the characteristic equation are pure imaginaries with very small moduli. Consequently the $x_i^{(0,0,0)}$ and the $y_i^{(0,0,0)}$ are purely periodic with very long periods. These terms are precisely the ones found by Lagrange in his discussion of the secular variations.

Suppose the expressions for the $x_i^{(0,0,0)}$ and the $y_i^{(0,0,0)}$ are substituted in the right members of the second and fifth equations. They are reduced to quadratures and can be at once integrated, giving both secular and periodic terms for $\epsilon_1^{(0,0,0)}$ and $\epsilon_2^{(0,0,0)}$. But ϵ_1 and ϵ_2 occur only in the combinations $n_1t + \epsilon_1$ and $n_2t + \epsilon$, where n_1 and n_2 are the mean motions of the planets m_1 and m_2 ; therefore the secular terms in this element will produce no secular terms in the higher terms of the other elements.

Consider equations (48). It follows first that $a_1^{(1,0,0)}$ and $a_2^{(1,0,0)}$ are constants, and from the principles of § 5 that they are zero. The $x_k^{(1,0,0)}$ and $y_k^{(1,0,0)}$ are defined by linear non-homogeneous differential equations. The periods of the complementary functions, which are defined by the coefficients of the homogeneous parts, are the same as those of $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$. The functions ϕ_{1k1} and ϕ_{2k1} are homogeneous of the second degree in $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$. Therefore $x_i^{(1,0,0)}$ and $y_i^{(1,0,0)}$ will be purely periodic. The expressions for $\epsilon_1^{(1,0,0)}$ and $\epsilon_2^{(1,0,0)}$ are reduced to quadratures and contain purely periodic and secular terms.

Consider the integration of equations (49). In the first place, $a_1^{(0,1,0)}$ is a constant which must be zero according to the principles developed in § 5.

The right member of the fourth equation, which defines $a_2^{(0,1,0)}$, is periodic, the time being involved in the form

$$\sin\left[i_1\left(n_1t+\epsilon_1\right)+i_2\left(n_2t+\epsilon_2\right)\right]\,,\tag{51}$$

where i_1 and i_2 are integers and n_1 and n_2 the undisturbed mean motions of the two planets. The time is also involved through $\epsilon_1^{(0,0,0)}$ and $\epsilon_2^{(0,0,0)}$, each of which contains a secular term and series of periodic terms, as has just been seen, and through the $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$ which enter in the coefficients of the sine functions. As has been shown, these variables are periodic with very long periods. Suppose the $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$ are replaced by their trigonometric expressions, and let the powers of the cosines and sines be reduced to cosines and sines of multiples of the angles. These trigonometric functions will be multiplied by those of the type (51). Suppose the products are reduced to cosines and sines of the sums and differences. The final result will be purely periodic, unless the coefficients of t in some term derived from the $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$ has the same numerical value as the coefficient of t in some term of the type (51). But the coefficients are very unequal in all the terms which have coefficients of sensible magnitude, and it would require particular values of the masses and the osculating a_i 's that this condition should be fulfilled for any term whatever. If it were fulfilled, a slightly different epoch could be taken, so that it would not be exactly fulfilled. Since the osculating elements cannot be exactly determined, it may always be supposed that the coefficients will in no case be numerically equal. This is somewhat similar to the assumption that there are no secular terms in the case of the element a in the ordinary method of treatment. It follows from this that $a_2^{0,1,0}$ involves the time only under the cosine or sine function.

The equations which define the $x_k^{\scriptscriptstyle(0,1,0)}$ and $y_k^{\scriptscriptstyle(0,1,0)}$ are linear and non-homogeneous. The first

²³ See Tisseband, Mécanique céleste, Vol. I, chap. xxiv.

terms of the right members are purely periodic, the same as in the case of the right member of the fourth equation. The complementary functions are the same, except for the constants of integration, as in the expressions for $x_i^{\omega,\eta,0}$ and $y_i^{\omega,\eta,0}$. The particular integrals will be composed of terms of the same periods as those which appear in the first two terms in the right members. The complete integrals are the sums of the complementary functions and the particular integrals. The constants of integration are determined by the conditions that the $x_i^{\omega,1,0}$ and $y_i^{\omega,1,0}$ shall all vanish at t=0.

Substituting the expressions for $a_1^{(0,1,0)}$, $x_i^{(0,1,0)}$, $a_2^{(0,1,0)}$, and $y_i^{(0,1,0)}$ in the right members of the second and fifth equations, they are reduced to quadratures and can be at once integrated, giving both periodic and secular terms for $\epsilon_1^{(0,1,0)}$ and $\epsilon_2^{(0,1,0)}$.

Equations (50) can be treated in a precisely similar manner, since they differ from (49) only by a permutation of the indices 1 and 2. If there are more than two planets, the right members of equations (49) and (50) contain more functions of the same type, one coming from each planet, and there is a set of equations similar to (49) and (50) for each planet.

The terms of the second order are the coefficients of μ^2 , μm_1 , μm_2 , m_1^2 , $m_1 m_2$, and m_2^2 . It is possible to determine the character of these terms without writing out explicitly the differential equations by which they are defined. It will be convenient to have the results already attained stated together for reference.

```
a_1^{(0,0,0)} and a_2^{(0,0,0)} are constants, the values of the major semi-axes at t=0.
```

 $x_i^{\scriptscriptstyle(0,1,0)}$ and $y_i^{\scriptscriptstyle(0,1,0)}$ contain only periodic terms of two types, short-period terms and very long-period terms.

 $\epsilon_1^{\scriptscriptstyle(0,1,0)}$ and $\epsilon_2^{\scriptscriptstyle(0,1,0)}$ contain both purely periodic and secular terms.

 $a_1^{\scriptscriptstyle(0,0,1)}$ contains only purely periodic terms.

 $x_i^{(0,0,1)}$ and $y_i^{(0,0,1)}$ contain only periodic terms of two types, short-period terms and very long-period terms.

 $\epsilon_1^{\scriptscriptstyle(0,\,0,\,1)}$ and $\epsilon_2^{\scriptscriptstyle(0,\,0,\,1)}$ contain both purely periodic and secular terms.

Consider the coefficients of μ^2 . It follows from (45), and the fact that all these coefficients must vanish at t=0, that $a_1^{(2,0,0)}=a_2^{(2,0,0)}=0$. The $x_i^{(2,0,0)}$ and $y_i^{(2,0,0)}$ are defined by linear non-homogeneous differential equations. The non-homogeneous parts contain periodic terms, some of whose periods are the same as in the complementary functions. Consequently the $x_i^{(2,0,0)}$ and $y_i^{(2,0,0)}$ contain purely periodic and Poisson terms, and $\epsilon_1^{(2,0,0)}$ and $\epsilon_2^{(2,0,0)}$ contain periodic, Poisson, and secular terms. The character of the coefficients of the other terms of the second order can be determined in the same manner. It would be of no value to write them out here.

The results which have been obtained are as follows: The major axes have no secular or Poisson terms of the first order, and the periodic terms are all of short period, except the usual long-period terms. The x_i and y_i of order zero and one contain only purely periodic terms. The terms of order zero are precisely the very long-period terms found by Lagrange. The periodic terms of the first order are of two classes, the very long-period terms and the short-period terms. The latter are not precisely those found in Lagrange's theory, for their periods have been modified a very little by the very long-period terms. If the Lagrangian method is valid at all, its realm of validity is almost certainly much more restricted than that of this method. The short-period terms in the Lagrangian

 $x_i^{\scriptscriptstyle(0,0,0)}$ and $y_i^{\scriptscriptstyle(0,0,0)}$ are purely periodic, with very long periods.

 $[\]epsilon_1^{(0,0,0)}$ and $\epsilon_2^{(0,0,0)}$ contain both periodic and secular terms.

 $a_1^{(1,0,0)}$ and $a_2^{(1,0,0)}$ are zero.

 $x_i^{\scriptscriptstyle (1,0,0)}$ and $y_i^{\scriptscriptstyle (1,0,0)}$ contain only periodic terms.

 $[\]epsilon_1^{\scriptscriptstyle (1,\,0,\,0)}$ and $\epsilon_2^{\scriptscriptstyle (1,\,0,\,0)}$ contain periodic and secular terms.

 $[\]alpha_1^{\scriptscriptstyle(0,1-0)}$ is zero.

 $a_2^{\scriptscriptstyle(0,1,0)}$ contains only purely periodic terms.

 $a_2^{(0,\,0,\,1)}$ is zero.

method are computed with the osculating elements in the right members. Suppose now the lines of nodes and lines of apsides actually rotate as the terms of order zero indicate. The result will be that when half revolutions have been performed the Lagrangian short-period terms will be precisely opposite to what they should be, and it is very doubtful whether the whole process converges for such a time. On the other hand, the slight corrections to the periods introduced by the methods given here exactly take into account the effects of these rotations, so that the short-period terms are nearly correct for very long intervals of time. For short intervals of time the two methods give sensibly the same results up to the terms of the second order. That it is not necessary to take into account the relations of the nodes and apsides for practical purposes follows only from the fact that the motions are so slow that they do not affect the perturbations sensibly for a long time. However, in the case of the moon, where the corresponding motions are very rapid, they have been included by nearly every lunar theorist.24 The case is not fundamentally different from this, although the artifices employed to accomplish the results are entirely distinct. Thus this method leads to terms of the same form as found by Lagrange, it is proved to be valid for a positive finite interval of time, and the period for which it is valid is probably much longer than that of the method of Lagrange, if, indeed, it is possible to make the latter the first step in a general process which converges for any value of the time.

It is seen that the Poisson and secular terms appear in the terms of higher order, so that even the form of the solutions does not apparently indicate stability. The conclusion is certain that there are at present no mathematical proofs of the permanent stability of the solar system, although the results given here prove that the present general configurations will be changed very slowly, if at all. The problem awaits further perfection of mathematics, and the fact that the initial conditions cannot be exactly determined may perhaps render the problem of stability forever incapable of solution, just as it is impossible to decide whether the major axes have secular terms of the first order, because it cannot be determined whether the mean motions are exactly commensurable or not.

§ 8. THE METHOD OF SMALL VARIATIONS

Suppose the solutions of a system of differential equations can be found for particular initial conditions. Then, if the actual initial conditions differ only a little from the particular ones, the actual co-ordinates will differ only a little from those given by the first solution, at least for a time. The method of finding the deviations from solutions defined by particular initial conditions will be termed, for convenience, the method of small deviations. It remains to be shown that under certain conditions these small deviations can be represented by convergent power series within certain time limits.

Suppose the differential equations to be solved are

$$\frac{dx_i}{dt} = X_i(x_1, \dots, x_n, t) \qquad (i=1, \dots, n) .$$
 (52)

Suppose it is known in some way that for $x_i = x_i^{\scriptscriptstyle (0)}$ as initial conditions the solutions of (52) are

$$x_i = f_i(t) \qquad (i=1, \dots, n) , \qquad (53)$$

which will be supposed to be valid for all t equal to or greater than zero and less than T. Suppose the actual initial values of the co-ordinates are $x_i^{(0)} + \epsilon a_i$, where the a_i are small and ϵ is a parameter which is to be put equal to unity in the final results. Let the values of the co-ordinates under these conditions be

$$x_i = f_i(t) + \epsilon \xi_i \tag{54}$$

where the ξ_i are the corrections to be determined. Substitute (54) in (52) and expand in powers of ξ_i , and it will be found that

$$\epsilon \frac{d\xi_i}{dt} = \sum_{j=1}^n \frac{\partial X_i}{\partial x_j} \epsilon \xi_j + \text{higher powers in } \epsilon \xi_j$$
 (55)

whose coefficients depend on the partial derivatives of X_i with respect to x_j . Suppose that for $\xi_j = a_j$ the right members of (55) converge for $0 \equiv t < T$.

Consider the integration of equations (55) as power series in the parameter ϵ . These equations fulfil all the conditions imposed upon those treated in § 5; consequently the solutions may be represented by series of the form

$$\xi_i = \sum_{j=0}^{\infty} \xi_i^{(j)} \epsilon^j , \qquad (56)$$

where $\xi_i^{(j)}$ are functions of t, and where the series (56) converge for all $0 \le t < t_0$, where t_0 is a positive number. In general, the smaller the differences between the particular initial conditions giving the solutions (53) and the actual initial conditions, the larger is the value of t_0 .

Suppose the solutions (53) are periodic and valid for all finite values of the time. Then the equations determining the deviations of the first order from the periodic solution are

$$\frac{d\xi_i^{(0)}}{dt} = \sum_{i=1}^n \frac{\partial X_i}{\partial x_i} \xi_i^{(0)} \qquad (i=1,\dots,n) , \qquad (57)$$

where the coefficients of this linear homogeneous system are periodic functions. The solutions of this system will be periodic with the period depending on the coefficients and period of $\frac{\partial X_i}{\partial x_j}$. If these partial derivatives contain a constant term, as they do in most practical problems, and if the coefficients of the periodic terms involve powers of a small parameter m, then the period of the solutions of (57) will differ from that which would be obtained by neglecting the periodic terms by powers of m.

The deviations of the second order are determined by the equations

$$\frac{d\xi_{i}^{(1)}}{dt} = \sum_{i=1}^{n} \frac{\partial X_{i}}{\partial x_{i}} \xi_{j}^{(1)} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} X_{i}}{\partial x_{j} \partial x_{k}} \xi_{j}^{(0)} \xi_{k}^{(0)} . \tag{58}$$

which are linear, but not homogeneous. If any second term in the right member contains an expression of the same period as the $\xi_j^{(1)}$ would have without the non-linear part, then the solutions for $\xi_i^{(1)}$ will contain Poisson terms; otherwise the $\xi_i^{(1)}$ will be periodic. If Poisson terms enter in the $\xi_i^{(1)}$, then the $\xi_i^{(2)}$ will, in general, contain secular terms and terms of the type $c_1 t^2 \frac{\sin}{\cos} (c_2 t + c_3)$. The higher terms will, in general, contain secular terms of higher degree and Poisson terms containing higher powers of t in their coefficients. Although this method gives rise to such terms, it neither shows that it is not valid nor that the motion under consideration is unstable; all that can be said is that it is valid if the time interval is not taken too great.

Instead of determining the deviations from particular solutions of the general differential equations, which in general can be found only with great difficulty, certain terms in the right members may be omitted until the variations from the approximate motion are computed. Suppose the differential equations of motion are

$$\frac{dx_i}{dt} = X_i^{(0)} + \sum_{j=1}^{\infty} X_i^{(j)} \mu^j \qquad (i=1,\dots,n) , \qquad (59)$$

where μ is a parameter. Suppose that the right members are convergent power series when the x_i have their initial values for $0 \equiv t < T$.

Suppose the differential equations

$$\frac{dx_i}{dt} = X_i^{(0)} \qquad (i=1,\dots,n)$$
(60)

are integrated, giving for the particular initial conditions $x_i = x_i^{\scriptscriptstyle (0)}$ the periodic solutions

$$x_i = f_i(t) , \qquad (61)$$

valid for all finite values of the time.

Suppose the actual initial values of the variables $x_i = x_i^{\scriptscriptstyle (0)} + \epsilon a_i$, where the a_i are small and ϵ is a parameter which is to be put equal to unity in the final result. The actual co-ordinates at any time are

$$x_i = f_i(t) + \epsilon \xi_i , \qquad (62)$$

where the ξ_i are unknown functions of the time to be determined. For this purpose substitute equations (62) in (59) and develop the right members as power series in ϵ and μ . These series will converge for sufficiently small values of ξ_i and μ , if the $X_i^{(j)}$ are analytic functions of the x_i and regular for $x_i = x_i^{(0)}$, while t varies from 0 to T. These conditions will always be fulfilled in the problems in which practical applications of this method would be desirable. After these transformations the differential equations become

$$\frac{d\,\xi_i}{d\,t} = \sum_{i,k=0}^{\infty} X_i^{(j,k)}\,\xi^k \mu^j \epsilon^k \qquad (i=1,\dots,n) . \tag{63}$$

In accordance with the principles of § 5, these equations can be integrated as power series in μ and ϵ which converge for $0 < t < t_0$, the value of t_0 depending on the coefficients of the differential equations, the a_i and μ and ϵ . As in the preceding case, Poisson and secular terms will, in general, appear in the higher terms when the integration is carried out in this manner.

Hill's method of treating the lunar theory is in its essential features in agreement with the processes which have just been explained. He neglected in the right members of the differential equations all terms containing the latitude of the moon, the eccentricity of the sun's orbit, and the ratio of the distance of the moon from the earth to that of the sun—quantities which play the rôle of parameters, and then found periodic solutions of the resulting differential equations by properly determining the initial conditions. These solutions which give the variational orbit correspond to equations (61). They were found with rare ingenuity and great precision by Hill.²⁵ The part of the motion of the perigee depending on the ratio of the mean motions of the sun and moon and on the first power of the eccentricity of the moon's orbit was also found by Hill.²⁶ with great accuracy. This motion introduces changes in the variational co-ordinates. The corresponding terms in this method are obtained by letting in the solutions of (63), which are of the form

$$\xi_i = \sum_{i,k=0}^{\infty} \xi_i^{(j,k)} \, \mu^j \, \epsilon^k \quad , \tag{64}$$

j=0 and k=0. The differential equations which define these terms are

$$\frac{d\xi_i^{(0,0)}}{dt} = X_i^{(0,0)} \xi^{(0,0)} , \qquad (65)$$

where the $X_i^{(0,0)}$ are periodic functions of the time. The solutions of this linear system are periodic with a period whose difference from that of the $X_i^{(0,0)}$ gives this part of the motion of the perigee.

²⁵ American Journal of Mathematics, Vol. I.

The higher approximations have to a considerable extent been carried out by Brown, but the method of solution is somewhat different from that outlined here. The form of the solutions is assumed, or rather inferred from the investigations of earlier lunar theorists, the final results being expressed as purely periodic series. There is little doubt that, from a practical point of view, this is more satisfactory that any scheme admitting Poisson and secular terms with coefficients of low order in the parameters, but the assumption involved is unjustified, and the series attained are very probably divergent in the mathematical sense.

There seems to be some hope in the plan of finding a more exact periodic solution than the variational orbit, depending, of course, upon particular initial conditions, one which includes more of the right members of the differential equations, and then computing the deviations from this orbit. In this manner satisfactory expressions might be obtained which are rigorous for a long interval of time.²⁷

²⁷ See Poincaré, Méthodes nouvelles, Vol. I, p. 82.

	×10.
c.	

RADIAL VELOCITIES OF TWENTY STARS HAVING SPECTRA OF THE ORION TYPE

EDWIN B. FROST AND WALTER S. ADAMS

INTRODUCTION

The determination of the velocity of a star in the line of sight according to Doppler's principle was first attempted by Huggins in 1868. His observations were followed by those of Vogel three years later, and the validity of the method may be considered to have been established by these investigations, together with others dealing with the motions of planets and the rotation of the Sun. Visual observations of the displacements of the lines in stellar spectra from the positions of corresponding lines in the spectrum of a vacuum tube are, however, of extreme difficulty, and measurements which can be regarded as at all accordant are only possible with the most powerful telescopes and the brightest stars. It was not until the photographic method was applied to this class of observations by Vogel in 1887 that results of an accurate character were obtained. The determinations of the radial velocities of fifty-one stars by Vogel and Scheiner, described in detail in the seventh volume of the Publicationen des Astrophysikalischen Observatoriums zu Potsdam, constitute the foundation of the modern methods of observing stellar motions in the line of sight.

The next great advance was made by Campbell in his design of and work with the Mills spectrograph of the Lick Observatory, described in the Astrophysical Journal, Vol. VIII (1898), pp. 123–56. The use of iron as a comparison spectrum (previously tried by Vogel and by Deslandres, but not regularly employed by them), together with the closest attention to the optical and mechanical construction of the instrument and great refinement in the measurement of the plates, enabled Campbell to increase greatly the accuracy of the determinations, so that the natural unit became the kilometer per second, instead of the sevenfold greater German geographical mile employed by Vogel.

The necessity for the greatest attainable rigidity of the spectrograph, to prevent flexure, and for the maintenance of the prisms at a constant temperature, became apparent from the experience of all observers engaging in spectrographic work, and has led to further improvements in the current type of spectrograph, and tended to increase still further the precision of measurements of radial velocities. The observations given in the present paper constitute a part of the first year's work with the Bruce spectrograph of the Yerkes Observatory, which was completed in the autumn of 1901, and has since then been systematically used in determining stellar motions in the line of sight.

The spectra of the *Orion* type are of an especial interest to the astrophysicist, as they seem unquestionably to occupy a position very early in the scale of stellar evolution. Their chemical constitution is simple, the chief elements showing lines being hydrogen, helium, oxygen, silicon, nitrogen, and magnesium. The presence of helium is the principal characteristic of the type, whence they are frequently called helium stars. The broad and diffuse nature of most of the lines in these spectra renders them less adapted to precise measurement for radial velocity; moreover, the dispersion of the Bruce spectrograph is rather high for such lines, so that it is quite out of the question to expect any such accuracy in the determined velocities as may be obtained for stars of the solar type. A judgment as to the accuracy reached with this instrument, and with the methods employed in measuring and reducing the plates, should be based upon the results given in the section on the control plates of the Moon, planets, and certain standard stars of the solar class (pp. 18–32). The optical features of the Bruce spectrograph were especially planned, however, to cover a region of spectrum not naturally included by most of the large spectrographs engaged in line of sight work, and this region (centering near the strong helium line at λ 4471 and the characteristic magnesium line at λ 4481) was chosen as

particularly well suited for work on stars of the *Orion* type. These stars, furthermore, have hitherto been little observed for radial velocity, so that the field is a comparatively open one. The twenty stars included in this paper were not chosen by any definite principle of selection, but merely represent those stars of which three or more spectrograms have been obtained during the past year, from an observing list of something over one hundred stars shown to be of the *Orion* type by the investigations of Vogel and Wilsing.¹ But stars of this type previously known to be spectroscopic binaries, and those which have been found to be such during the progress of this work, have been excluded from the list. These last named are six in number, and will be discussed in due time elsewhere.

INSTRUMENTS

The Bruce spectrograph was designed and largely constructed at the Observatory, with funds provided by the late Miss Catherine W. Bruce, of New York city, amounting to twenty-three hundred dollars, supplemented by a grant of five hundred dollars from the Rumford fund of the American Academy of Arts and Sciences. As a detailed description of the spectrograph has already been published, it will be necessary to recall here only some of the essential features of the instrument and its use in connection with the great Yerkes refractor. A correcting lens of 57mm, aperture is placed in the cone of rays from the forty-inch objective, at a distance of about 100 cm, from the slit, and unites the rays so that the spectrum of a star is of uniform width for about 100 tenth-meters on either side of λ 4500.

The triple collimating lens, of 51 mm, aperture and 958 mm, focus, was replaced during the year by a quadruple "isokumatic" lens, designed by Professor Hastings, which was originally ordered but could not then be supplied. The new collimator is of the same aperture and focus, and slightly increases the field of good definition, which was already quite satisfactory.

The three prisms are of specially annealed Jena glass, figured by Brashear, and have angles of $64^{\circ}34'$, with an index for $\lambda = 4500$ of n = 1.6724. Their size is such as to transmit the full beam from the collimator of 51 mm. diameter, with allowance for the increased size of the beam after dispersion in the first and second prisms.

Two cameras are provided with the instrument; A, a Zeiss anastigmat of 71 mm. aperture and 449 mm. focus; and B, a Hastings triple of 76 mm. aperture and 607 mm. focus. The two series of plates taken with the spectrograph are designated as A and B according to the camera lens employed. The range of fair focus is somewhat greater in (tenth-meters) for the shorter camera, but the superior scale of camera B gives it the advantage in the range covered. The photographic "speed" of the two cameras is practically identical: the same exposure-time is required for the same object under equal atmospheric conditions. We account for this unexpected circumstance by the losses of light on passing through the five component lenses of the anastigmat.

Camera B has given us serious trouble by becoming astigmatic at intervals, without any known cause external to the lens. We have attributed this to strain produced by the cement (balsam), and the notes under the "journal of observations" show that the lens has been several times recemented by the maker. When a trial plate shows any defective performance of camera B (commonly fringes on the sides of the comparison lines), camera A is always used. It should be mentioned here that we find it much more accurate and satisfactory to test a lens by photographing the emission lines from metallic electrodes rather than the absorption lines of the solar spectrum. Of the plates referred to in this paper fifty-four have been taken with A and eighty-two with B.

The principal changes which have been made in the instrument since the descriptive article was written (in December, 1901) for the Astrophysical Journal (loc. cil.) are the following:

² EDWIN B. FROST, "The Bruce Spectrograph of the Yerkes Observatory," Astrophysical Journal, Vol. XV (1902), pp. 1-27.

^{1&}quot;Untersuchungen über die Spectra von 528 Sternen," Publicationen des Astrophysikalischen Observatoriums zu Potsdam, Bd, XII, Theil I.

The bar containing the windows, which determine the length of slit used at a given exposure (a single window for the star-light, a double window for spark-light), has been placed slightly in front of the slit instead of behind it, as formerly. This made the tips of the spark lines much sharper than they had been previously.

To insure the full and uniform illumination of the collimator lens by the light from the source of comparison spectrum, two changes and two additions have been made. The use of the concave mirror to project the image of the spark or tube upon the slit has been abandoned, as the electrodes themselves cut out an appreciable amount of the cone from the mirror, and admitted the possibility of non-uniform illumination of the collimator. The simple biconvex lens originally provided as an alternative has been regularly used for all of the later plates described in the journal of observations.

The plane silvered mirror at first used to reflect the comparison light 90° downward into the slit has been replaced by a diagonal prism.

A small ground glass diffusing screen has been mounted 20 mm. in front of the slit, and is turned into position when the comparison spectrum is being photographed. This should insure a uniform source filling a much larger angle than that subtended at the distance of the slit by the collimating lens, and it has proved entirely satisfactory. The idea was taken from the Potsdam spectrograph, where a ground glass screen diffuses the light from the arc lamp which there serves as the source of the comparison spectrum.

For testing the illumination of the collimator Campbell's practice has been followed of placing a photographic plate in a small holder directly over the aperture of the lens. The exposure is then made to the light of the spark. The negative gives a much more satisfactory test of the illumination than is possible by the usual visual method.

The method of guiding during the exposure on the star, by the light reflected from the symmetrically inclined slit-jaws, has proved very satisfactory. When desired, the observer can, by simply turning a pinion, throw into the guiding telescope the light of the star or spark reflected at the first surface of the first prism. The method thus combines the advantages of the methods of Huggins and of Vogel.

The temperature case which envelopes the whole spectrograph has also given entire satisfaction in its operation. Although the electric heating is not automatic, it has not been found too much of an inconvenience for the observer to read the thermometers from time to time during an exposure, and to turn on the current as necessary. A change of 1°C in the temperature within the outer case usually causes a change of about 0°1 within the inner case (prism-box).

THE PLATES OF SPECTRA

The dispersion and scale of the plates for cameras A and B are as follows:

WAVE-	Angular Dis- persion for	TENTH-MET	ERS PER MM.
LENGTH	ONE-TENTH METER	Camera A	Camera B
4300	45.7	10.0	7.4
4500	33.8	13.5	10.1
4700	26.0	17.6	13.1

A test of the practical separation of close lines in the solar spectrum, photographed on fine-grained plates, gave almost identical results with those described for the Mills spectrograph and the largest Potsdam spectrograph. On the fastest plates, which are used for stellar spectra, the least separable distance is of course less, and is about 0.2 tenth-meters at the center of the plate (λ 4480).

The range of spectrum in sufficiently sharp focus for determining displacements for velocities is

on properly exposed plates—for Camera A, from about $\lambda 4300$ to $\lambda 4700$; for Camera B, from about $\lambda 4340$ to $\lambda 4700$. For merely qualitative work, the range usable would be considerably greater.

The plates used were Seed's "Gilt Edge" 27, and Cramer's "Crown." At the close of the period covered here Seed's double-coated, non-halation plates were tried, with very satisfactory results. The size of the negatives is $1\frac{2}{3}$ in.×4 in. (42×102 mm.). The developer employed was rodinal or hydrochinon, commonly the former.

Comparison spectrum.—The rotating drum of the spark apparatus provides for the use of three metallic electrodes and a vacuum tube. On the plates discussed in this paper we have always employed titanium, and sometimes, in addition, iron or chromium electrodes, or the helium tube (which contains hydrogen as an impurity and gives also the hydrogen lines). We have used titanium in preference to iron for the standard comparison spectrum for the past three years, and obtain with it sharper and more numerous lines in the region of spectrum covered than with iron. In order to suppress the air lines when iron is used, a small self-induction coil was constructed in 1899 by Leeds & Co., of Philadelphia, according to specifications of Frost. It has an outer diameter of about 40 mm. and a length of about 42 cm. and is separated into sections with binding posts, so that 50, 100, 200, or 500 turns, or any combination of them, may be used. There is no core. The coils are insulated in the same manner as for the secondary of an induction coil. The air lines with the iron spark are greatly cut down when fifty turns are used, and can be entirely suppressed with a greater number of turns. The lines of the other metallic spectra are also rendered sharper by the use of the self-induction.

The current for the primary of the induction coil furnishing the current for the spark is taken from the 110-volt mains, and is reduced by properly arranged resistance coils so that from four to fourteen volts can be tapped off. The induction coil is stationary, and the secondary current is carried in an excellent cable, reaching the spectrograph in any position of the telescope with comparatively little loss of potential.

MEASURING MACHINES

All our measurements of spectra were formerly made with the familiar Zeiss comparators, having two microscopes, one for the negative and the other for the graduated scale. While these instruments are excellent, and have the advantage of depending upon an invariable scale instead of a screw, they are nevertheless rather slow in action, and the eye is strained in alternating between the microscopes with their different degrees of illumination of field. In 1901 two screw machines were therefore ordered from William Gaertner & Co., of Chicago, according to specifications by Professors Hale and Frost, and they have been almost exclusively used in the measurements covered by this paper. An idea of the instrument may be gained from the accompanying plate. The box easting is 23 cm. long, 8.5 cm. wide, and 5 cm. deep. To this the microscope is attached at an angle convenient for observing. The stage or plate-carriage moves in accurately figured ways on a second carriage which moves with the nut of the micrometer screw. The stage may be unclamped from the lower carriage and may be rapidly moved in a direction accurately parallel to the axis of the screw, through a distance of 40 mm. This allows the plate to be quickly aligned under the microscope, and to be rapidly examined before it is measured. A fine screw at the observer's left permits a slight adjustment of the position of the stage after it is clamped to the lower carriage. Thus the stage may be set so that any desired reading of the micrometer screw will correspond to a given position on the plate. The screw is of 10 mm. diameter and 10 cm. length, with a pitch of one-half millimeter. Great care was given by Mr. Gaertner to its construction. The nut is 28 mm. long. A weight attached to it by a light wire over a pulley not shown in the figure removes the small amount of lost motion otherwise present. The screw head is 80 mm, in diameter and is graduated with 500 divisions, so that 1 division = 0.001 mm. or 1 micron (μ). Every tenth division is doubly numbered, e. g., as 39 and 89, so that the readings can be taken off the head directly for a whole millimeter instead of a half (one revolution).

Whole millimeters are read from a scale along the ways of the carriage. The microscopes are from Zeiss, and have the valuable feature of a variable magnification (ranging from about six to thirty diameters) as the objective is moved along a graduated scale. The reticle was ruled on glass at the observatory, and consists of a single fine line and a close pair. There is also provided an eye-piece micrometer which is not used. The whole eye end, including the reticle, can be slightly rotated so that the lines can be made perpendicular to the motion of the screw.

METHOD OF MEASUREMENT

After the negative has been aligned so that the edge of the spectrum moves along some mark or dust particle in the field, the upper carriage or stage is moved so that any desired value is given to the initial setting, and is then clamped, after which it is moved only by the screw. We commonly first place the plate on the stage so that the violet end of the spectrum will appear toward the left in the microscope, when the micrometer settings will increase with the wave-lengths. Four settings are then made on each star line, alternating each time in the direction from which the line is brought under the "thread" of the reticle. Four settings are also made on each comparison line, two each on the portions of the comparison line above and below the star spectrum, with the same alternation in the direction of approaching the thread. Care is taken that there shall be no change in the illumination of the plate during the measurement, and the mirror is rarely touched between plates. A change in the angle of the mirror during measurement would be likely to produce a noticeable shift in the apparent position of the lines.

The point in the comparison line (dark on the negative) at which the line is bisected by the thread may be different according to the practice of different observers. Thus it is the habit of Frost to make the setting at a point one-third of the length of the comparison line away from its inner end; while Adams makes his settings on the inner tips of the comparison lines. On star lines, of course, the setting is always made at the center. The correction for curvature will therefore be regularly different for the two observers. In case of very strong comparison lines, the accuracy of the settings may be somewhat increased by the use of the double thread of the reticle, but this has been very seldom done in these measures. The single thread is invariably the more suitable for the star lines (white on the negative).

After the plate has been measured in one position it is reversed on the stage so that the violet end will appear toward the right in the microscope, and the micrometer readings will decrease with increasing wave-lengths. The new position is so adjusted that the readings will add up some convenient number of whole millimeters when combined with the corresponding readings for the previous position of the plate. If this whole number is 80, then the averages of the four settings in the second position of the negative will be successively subtracted from 80,0000, and the remainder will be very closely equal to the previous average, with which it is now combined to form the Mean of the Settings. If the measurements in the two directions are not made consecutively, the observer is careful to see that the second measure is made when the comparator is at the same temperature as at the first measure.

It should be understood that the measurement of a plate in each position is a single, homogeneous process, yielding results which may be considered absolute, within the limits of error involved. That is, the settings are not first made on a star line and then on a comparison line as a pair, giving a differential value of the distance between the two; but the settings are progressively made along the plate until the whole measurement is complete for that position on the stage. The question of the choice of lines to be measured is taken up in the next section.

1. Length of lines (width of spectrum).—Two sets of windows have been used during the year, each set yielding a different length of lines (both star and spark) for the two cameras. With the narrower windows the length of the lines of both star and comparison spectrum is 0.17 mm. for camera B, and 0.13 mm. for camera A; with the larger windows, which have been used almost exclusively since

October 31, 1901, the length is 0.40 mm, for camera B, and 0.29 mm, for camera A. With average conditions of atmospheric steadiness, it is necessary during the exposure to move the star image back and forth through a small amplitude on the slit by the electric slow-motions, in order that the width of the star spectrum may correspond to the full width of the window. On faint stars the star spectrum is usually kept somewhat narrower than the full width, thus diminishing the necessary exposure time.

2. Curvature of the lines.—Correction is made for the curvature of the comparison lines by means of tables computed by Ditscheiner's formula, which has been shown by Adams to be accurate for long slits.³ The amount of the correction (x) is indicated for the two cameras by the following extracts from the tables. The distance from the center of the star lines to the point for which the correction applies is denoted by z:

~	Camera A	Camera B ,r
0.10 mm.	0.00008 mm.	O, OOKOG mm.
. 20	_00032	.00024
.30	.00072	.00054
.40	00128	, 00096
.50	00208	00149

This table is calculated for an index of refraction in the prism of n = 1.6724 for $\lambda 4500$. The difference is insensible in practice for other wave-lengths in the range of good focus of our plates.

METHOD OF REDUCTION

The fundamental principle of the method adopted here for the measurement and reduction of line of sight plates is that each negative shall be treated solely by itself and wholly independently of any other plate. This assumes that there is on each plate a sufficient number of well-defined comparison lines whose wave-lengths are accurately known, so that the wave-length of any point in that stellar spectrum can be determined with all necessary precision. Hence no corrections have to be applied on account of the temperature of the instrument at the time the plate was made, or to reduce the plate to the scale of some standard solar or metallic spectrum plate. It may be objected that with so stable an instrument as the Bruce spectrograph, the dispersion formula should be the same for all plates taken at the same temperature; hence always for the whole series of plates taken on a given night. This is readily admitted, but in practice the time spent in computing the Hartmann dispersion formula for each plate, with the use of the "Brunsviga" calculating machine, is no greater than that spent in adapting to a given formula the micrometer settings for each plate.

The three lines of the comparison spectrum taken for the standards in determining the constants, s_o , c, and λ_o , of the simple Hartmann formula

$$\lambda = \lambda_o + \frac{c}{s - s_o}$$

are selected on the basis of their sharpness on the negative and their proper spacing near the two extremities and center of the measured portion of the plate. The correction for curvature is first applied to the mean of the eight settings on each of the lines of the comparison spectrum. (In some cases the correction for curvature has been applied in kilometers to the final mean of the radial velocities determined from the different star lines.) Then the wave-lengths of all the lines measured in both star and comparison spectrum are computed by the formula. In making the measurements the best (most sharply defined, and for solar stars simplest) star lines were selected, without reference to their occur-

The Curvature of the Spectral Lines in the Spectroheliograph," Astrophysical Journal, Vol. XI (1900), pp. 309-11.

rence in the comparison spectrum, provided only that their wave-lengths in the laboratory or in the solar spectrum are known. In every case where possible the nearest good comparison line to the selected star line is also measured. The second column of the detailed measurements, pp. 18 ff. and 33 ff., contains the computed wave-lengths. The differences between these computed values and the known wave-lengths of the comparison lines (as given in Rowland's tables for the solar spectrum) are now given in the third column as "Correction to Comp. Lines." Aside from the accidental errors of the settings, these indicate the departure of the formula from an exact representation of the wave-lengths. The corresponding corrections for the intervening star lines are interpolated between the appropriate values for the adjacent comparison lines, and are given in the fourth column.

The fifth column is entitled "Wave-length in Sun" in the case of plates of the Moon and solar stars, and is taken directly from Rowland's table. Where it is evident that two (or more) solar lines, too close to be separated by the spectrograph, have blended together in forming the line seen on the plate, the wave-length given is the result of the combination of Rowland's values of the constituent lines, with weights proportional to the estimates of their intensities in Rowland's table. A list is given below of the blends thus formed which occur in these measures.

In case of the stars of the *Orion* type the fifth column is entitled "Normal Wave-Length," and gives the best values we have been able to find for the laboratory or other determinations of the wavelengths of the lines in question. Details as to these lines and the authorities for the wave-lengths are also given below.

The next column contains the displacement, or difference between the normal wave-length and the measured wave-length, after the latter has been corrected by the amount given in the fourth column. From the displacement the corresponding radial velocity for each star line is readily determined from our tables, computed with a value of the velocity of light of 299,860 km. per second.

In the case of stars of the *Orion* type, where the stellar lines vary greatly in their degree of diffuseness and consequent difficulty of accurate bisection, the observer assigns an arbitrary weight to the lines, which is given in the last column of the tables of measures. This weight is not assigned after an examination of the accordance of the settings, but commonly immediately upon making the first setting, and it represents the relative certainty that the observer felt as to his estimate (*Auffassung*) of the center of the line. When the observer gave a different estimate of weight in the two positions of the plate (violet toward left and violet toward right), the lower weight was taken. Inasmuch as the *Auffassung* is for such ill-defined and diffuse lines wholly a matter of individual psychology and physiology, the weights assigned to the same line on the same plate by the two observers may differ very considerably. To the same line on different plates of the same star quite different weights may be given by the same observer, since the conditions of exposure and development, and consequent intensity of the negative, never repeat themselves precisely.

The weighted mean of the determinations of velocity for all the lines is used as the radial velocity from that plate by that observer, but the unweighted mean is also given, for comparison, at the foot of column 7. These means were taken on the original reduction sheets where the computations were carried to 0.01 km., and hence may differ slightly from the means of the values when rounded to tenths as printed. Where several star lines could be measured, the difference between the weighted and simple mean is slight.

Attention may here be called to the entirely independent character of the measurements of the two observers on the same plate. The star lines measured and the comparison lines chosen as standards depend wholly upon the observer's judgment while the plate is under the microscope. The generally satisfactory accordance of the results for the same plate is evidence that the large discrepancies arising from the excessively diffuse and difficult character of some of the individual star lines are fairly well balanced in the effect on the result.

SOURCES OF ERROR

The sources of error in this work that most naturally suggest themselves may be classified as follows: (1) those due to the spectrograph; (2) those due to the measuring instrument; (3) those due to the observer or the mode of reduction; (4) those depending upon assumed physical conditions in the stellar and terrestrial sources of light. We proceed to enumerate under these heads the points which the experience of ourselves and others, with this and other instruments, has shown to be most open to error.

- 1. (a) Flexure of the spectrograph and inadequate support of the prisms.—This serious source of error, which was in evidence with the spectrograph first used with the forty-inch refractor, was fundamentally in mind in the design and construction of the Bruce spectrograph. It was accordingly made more rigid than any previous instrument of the kind, principally with steel construction, and we have detected no evidences whatever of error in this respect during a year's use of the spectrograph.
- (b) Imperfection of prisms.—The experience with the first set of prisms supplied for the Bruce spectrograph, which has been recounted in the article by Frots already cited, gave us special reason for caution in respect to the homogeneity of the glass of the prisms. The surfaces, by the Brashear Company, easily fulfil all the requirements, as was also true of the first set. The numerous tests in the summer of 1901 did show that there was a slight difference in the performance of the thick and thin halves of the prisms, and that the definition was slightly improved by reducing the aperture to one-half. The gain in sharpness of the lines was not sufficient, however, to justify the loss of light, and the full aperture of 51 mm. of the collimated beam has been regularly used. The effect must be a slight broadening of the lines of the stellar spectrum and of the comparison spectrum, and hence the result upon the determination of the radial velocities should be very small, increasing the accidental errors but not producing systematic ones. It is not possible to use lines as close together in stellar spectra of the solar type as could be done with perfect prisms, but the effect on such "blends" would be accidental and not systematic.
- (c) Variations in the temperature of the prisms during exposure.—This source of error is fully suppressed by the temperature case and electric heating. Although the control is not automatic the observer has little difficulty in maintaining the temperature of the air about the prisms within a range of 0°2 C. during a winter night. In one respect our arrangements are not perfected in regard to temperature. When the dome is opened for solar observations during a considerable part of the day, the temperature in the spectrograph necessarily rises much higher than the normal value for the night, and consequently the temperature inside the glass of the prisms will be falling during the latter part of the afternoon and early evening. It would be desirable to have means for keeping the temperature of the spectrograph as low during the day as it is likely to be at night. However, as the exposures for the comparison spectrum are symmetrical with respect to the star exposure (except in the case of a few of the earlier plates), the effect of a lack of perfect uniformity in the temperature within the prisms will be to broaden the lines of the two spectra alike and to produce no systematic errors in radial velocities.
- (d) Behavior of lens of Camera B.—The irregularly recurring astigmatism of this lens, mentioned on page 4, opens a possibility of systematic error. The effect generally is to produce a slight shading or fringe on the more refrangible side of the lines, which is more evident for the emission lines of the spark spectrum than for the absorption lines of the stellar spectrum. Hence there would be a tendency to make the settings too far toward the violet on the spark lines, which would yield too large a positive radial velocity for a stellar spectrum made when the lens was in the disturbed condition. We have always intended to use Camera A when B was thus affected, and to measure no B plates showing unsymmetrical comparison lines. If it has occurred that this condition was not noticeable though present, there may be a slight systematic effect on some of the B plates, but it does not appear on comparing the values obtained with the two cameras.

- (e) Adjustment of spark apparatus.—The proper adjustment of the source of the comparison spectrum so that the collimator lens shall be fully and uniformly illuminated by it, is one of the most essential conditions in the use of the spectrograph. The angular apertures of the mirror first used for projecting the image of the spark upon the slit, and of the lens later substituted, were both more than twice as great as that of the collimator lens as seen from the slit. Within this latitude for maladjustment the position of the spark image (purposely somewhat out of focus) could be checked by direct observation of the polished jaws of the slit, or by the symmetry of the illumination of the double window as seen from behind the slit—both of which modes of observation are made possible by the arrangement of the guiding apparatus. On unscrewing the guiding telescope the collimator lens can be viewed directly by the light reflected from the first surface of the first prism, and the equality of its illumination tested while the spark is in action. The method of placing a photographic plate immediately over the lens has proved thoroughly satisfactory and more trustworthy than the visual method. It is not impossible that some of the early plates taken when the mirror was used may be open to danger of partial maladjustment of the spark; but if so, this should show in the control plates of Moon and stars (pp. 18 to 32), and there is no evidence of discrepancies which are not wholly within the range of the errors of observation (measurement).
- 2. Errors due to the measuring instrument.—The only source of error here of consequence lies in the screw. Optical distortions are not to be feared in the microscope, as only the center of the field is used and the recticle is fixed. It has a slight adjustment in position angle, so that the threads can be made parallel to the lines of the spectrum, even if the latter are not absolutely perpendicular to the length of the spectrum. A preliminary examination of the periodic errors of the screw showed that they were not large enough to require correction in the case of the Orion type stars, upon whose broad lines the errors of setting are necessarily large. They are, however, of a magnitude sufficient to affect the velocities derived from the sharp lines of solar stars. It has not been permissible, however, to delay this publication long enough to include them in our reductions, although a large part of the necessary observations have recently been made for both measuring machines.

It therefore remains to examine the probable effect of these errors upon the control plates. Measurements with machine G 2 (used by Adams) of a fixed distance on a glass scale, distributed over the part of the screw actually used, indicated a maximum departure from the mean of $\pm 2\mu$. If a star line were actually affected by this amount, the error in the velocity from that line would be about 2.6km, for B plates or 3.2km, for A plates. But the average departure would not exceed one-half of this, and in the best part of the screw it would not be over one-fourth. In the case of plates of the Moon a considerable number of the lines measured are also present in the comparison spectrum, so that the settings are made at practically the same part of the screw, and the periodic errors would be without effect. Since the plate is measured in both directions, starting at different readings of the head, the resulting error will be reduced by one-half on the average, but cannot be increased. Probably the effect on the velocity for the average line will not exceed three- or four-tenths of a kilometer, and as the mean velocity depends upon more than ten lines, it seems safe to believe that the radial velocity of the Moon or solar star from that plate will not be in error by over 0.1 km. on account of periodic errors of the screw. The progressive errors are quite negligible.

For machine G 1 (used by Frost), with which comparatively few of the control plates were measured, the maximum screw errors are somewhat less, not exceeding $\pm 1.5\mu$. The effect on the radial velocities measured will doubtless not exceed 0.1km.

In these machines some changes have been made, tending to remove the slight amount of lost motion noticed earlier. The weights taking up the lost motion were somewhat increased. As all settings have uniformly been made in alternate directions there does not seem to be reason for fear of uncertainty in the measures on this account.

- 3. (a) Errors due to the observer.—Measurements of negatives under the microscope are doubtless liable to a variety of subjective errors, which should be more constant than in case of visual measurements of a similar class at the telescope. The one most familiar is that of the different habit of setting upon the dark and light lines on the negative. The process is clearly quite different in placing a dark line of the reticle, or "thread," on the center of a white line in the stellar spectrum from that in bisecting the dark comparison line with the dark "thread." The former is the easier and surer process, although the experienced observer doubtless has his habit of setting too far toward the right or toward the left, though perhaps very slightly. In the more difficult process of centering black upon black the error is greater, and probably for most observers is a function of the intensity or size of the dark line. But this personality error is largely eliminated by the regular practice of reversing the plate under the microscope and remeasuring. Measurements by Frost in 1899 upon a positive of a plate of Polaris yielded the same difference for violet to left—violet to right as did the measures upon the negative, but with the sign reversed. The numerical value of this difference has been quite constant and large for Frost, for B plates about 4km., in the sense that a plate measured with violet to left would require a correction of $-2 \,\mathrm{km}$. For Adams the whole amount is about 1.7km, and the sign opposite, so that a plate measured with violet to left would require a correction of about +1km.
- (b) Errors due to the mode of reduction.—It might be thought that an improvement would have been made in the reduction process by using the exponential form of Hartmann's formula. While the wavelengths would thus have been a little more closely obtained, the gain would not have offset the increased expenditure of time. As a matter of fact, with the method used of correcting the formula at every point where a comparison line was measured (which occurred as near as possible to the position of each star line), the accuracy of the formula is of small consequence, and almost any formula could have been employed, provided only that the differences for short stretches of spectrum could be regarded as linear.

Probably it would also be regarded by some as advantageous to smooth out the accidental errors of settings on the comparison lines by a curve. We have feared the arbitrariness of curve drawing, and have ordinarily thrown the accidental errors upon the star line, although where two comparison lines have fallen close together, with no star line intervening, the mean correction has commonly been taken, valid for the mean wave-length. In a few cases of extrapolation beyond the limits of the formula there has been a slight uncertainty as to the proper correction to the "wave-length by formula" of the stellar lines, but the effect would be small.

To conform with Rowland's tables the reductions have been carried out so as to be accurate to the thousandth of the tenth-meter. This gives a specious precision to the displacement for the lines whose wave-lengths have been measured only to the hundredth. In general we should not wish to place any reliance on anything less than the whole kilometer for the best measurable of the *Orion* type stars; and in view of all the sources of error now discussed, many of them not correctable in our present state of knowledge, almost the same can be said for the stars of the solar type.

It has not been possible for us to give the time necessary for the duplicate calculation of the numerical quantities involved in our detailed reductions, so that errors doubtless occur. In general these must be small, however, as those involving an amount as large as 0.02 or 0.03 tenth-meters would be noticeable as breaking the smoothness of the run of the "corrections to comparison lines;" and all such cases have been checked. It does not seem to us likely that these errors in computation can affect the mean value of the radial velocity from any one plate by more than a very small fraction of a kilometer.

In the computation of some of the plates measured by Frost assistance was received from Miss Anne S. Young, research assistant at the observatory during the summer quarter of 1902.

- 4. Errors due to assumptions as to physical conditions.
- (a) In adopting the wave-lengths given in Rowland's table for the solar spectrum for our spark lines, we obviously assume that the conditions in the sun's reversing layer and in the spark are

sufficiently alike as to pressure and otherwise to justify the procedure. Determinations of the wavelengths of the lines in the spark spectrum of titanium, of an order of accuracy equal to that of Rowland's table, are not available, and there would perhaps be quite as much assumption in using are wavelengths as solar wavelengths. It is a fact that the relative intensities of the Ti spark lines on our plates follow much more closely the estimates in Rowland's table than they do Hasselberg's estimates for the arc spectrum of Ti. This indicates that the principal dark lines in the solar spectrum due to titanium are enhanced lines, and it suggests that the conditions may have some degree of similarity in sun and spark.

Jewell has found a slight systematic difference between arc and solar wave-lengths,⁴ the metallic lines being relatively displaced toward the violet by something like 0.01 to 0.02 tenthmeters. Correction was made for this in the determination of Rowland's standards,⁵ as its origin was then supposed to be instrumental. Jewell interprets it as an effect of the density and pressure at the level in the solar atmosphere at which the particular line is produced. The direction of the displacement would indicate a greater pressure in the solar atmosphere than in the arc. If the spark lines are also shifted toward the red relatively to the arc, the effect upon our measured radial velocities might be diminished. The large shifts of this sort described by Haschek⁶ were not confirmed in amount by preliminary experiments made at the Yerkes Observatory by Dr. N. A. Kent, who found shifts of only about the order of those measured by Jewell. In the present state of our knowledge we therefore cannot say with any certainty how much our results are affected by the use of solar wave-lengths for our Ti lines; but presumably by an amount corresponding to less than 0.02 tenth-meters, or about 1.4 km., and perhaps very much less. The sign, moreover, cannot be given.

(b) The assumption that stellar wave-lengths are the same as those for the corresponding elements in the laboratory, if incorrect, also renders our measurements of velocity liable to some uncertainty, at present indeterminate. There are some instances where a distinct difference in wave-length is indicated. The most conspicuous case is that of the line always attributed to magnesium, at $\lambda 4481$. Laboratory determinations of this diffuse line in the spark spectrum (obtainable also in the rotating arc) give a value of about $\lambda 4481.32$, while the value obtained by Adams⁸ from a number of plates of Sirius, and of γ Geminorum and θ Leonis, is 4481.40. The latter value also satisfies the measurements for most of the stars included in this paper, and it has uniformly been used, as we are not prepared to adopt the radical procedure of employing a still different value for the three or four stars for which an intermediate value of this wave-length would perhaps give velocities more accordant with those from other lines. The wave-length found for this line by Scheiner⁹ in the spectra of eighteen stars of the first type is 4481.44 (Rowland's scale).

Finally, in respect to wave-lengths, it should perhaps be mentioned that a relative error of ± 0.01 tenth-meter in Rowland's value for a line would produce an error in our velocity for that line of ± 0.7 km. Probably errors in Rowland's table as large as that are very rare, and Rowland may underestimate the accuracy of his standards in his statement "From the tests I have made on my standards, I am led to believe that down to wave-length 7000, a correction not exceeding ± 0.01 division of Ångström (1 part in 500,000), properly distributed, would reduce every part to perfect relative accuracy."

Of course the precision of the absolute wave-lengths of Rowland's table does not affect our results.

⁴ Astrophysical Journal, Vol. III (1896), pp. 89-113.

⁵ H. A. ROWLAND, "On a Table of Standard Wave-Lengths of the Spectral Lines," Memoirs of the American Academy of Arts and Sciences, Vol. XII (1896), No. 2.

⁶ Astrophysical Journal, Vol. XIV (1901), p. 184.

⁷ HENRY CREW, ibid., Vol. XVI (1902), p. 247.

⁸ Ibid., Vol. XV (1902), p. 216.

³ Publicationen des Astrophysikalischen Observatoriums zu Potsdam, Bd. VII (1895), Theil II, p. 315.

¹⁰ Memoirs of the American Academy of Arts and Sciences, Vol. XII, No. 2, p. 110.

WAVE-LENGTHS OF THE PRINCIPAL STAR LINES USED

The tables which follow contain all of the more important star lines which we have employed, with the exception of such lines as occur in stars of the solar type of spectrum and are not blends. As the wave-lengths of the latter are taken directly from Rowland's table of solar spectrum wave-lengths, it has not seemed necessary to repeat them here. For the sake of completeness the value of a displacement of one tenth-meter in kilometers per second for the various wave-lengths given is included in the tables.

(a) Blends.—While we have endeavored, as far as possible, in our measures of plates of the Moon, planets, and stars of the solar type of spectrum, to use only single lines, it has been found impossible to avoid blended lines entirely, as some of the best lines in the spectra are of this nature. In such cases we have assigned weights to the component lines according to the intensities given in Rowland's table. This procedure is evidently rigorous for the Moon and planets, and proves satisfactory in the case of most of the stellar lines used in the solar stars we have investigated. Occasionally, however, a line of slight intensity in the Sun rises to considerable intensity in a star and materially changes the wave-length of a blended line. In such a case the change shows itself by the systematic deviation of this line from the other lines of a plate, and the line is rejected after a sufficient number of plates have shown the deviation to be unquestionably systematic.

The decision as to what intensity a line should have in order to exert an influence upon a closely adjacent line is naturally somewhat arbitrary, and depends upon the quality of the plate considered. In general, however, our experience shows that upon a plate of quality suitable for good measurement a line of intensity "0" on Rowland's scale has an appreciable influence, while fainter lines may be neglected. But this does not hold if the adjacent line is overpoweringly strong, as in such a case the strong line may stand out clearly against the fainter without being influenced by it. A case of this sort is the iron line λ 4528.798 of intensity 8 in the solar spectrum, measures of which do not indicate any disturbing effect from the several faint lines near it.

The following table contains the wave-lengths of the blended lines most frequently used. For the sake of brevity, those which have been used but rarely are not included, but the wave-lengths employed in such cases, are given in column five of the detailed statement of the measurements on pp. 18 ff, and 33 f.:

Elements	Wave-Length	No. of km. per tenth-meter	Elements	Wave-Lengths	No. of km.
Ti; Fe	1427.420	67.73	Cr, Mn; Ti	4501.422	66.61
Fe: Ti	4434.021	67.63	-, -	4515,475	66.40
Ca: Fe	4435.181	67.61	$Fe^{jz}:=:Ti$	4522,853	66.30
Zr Fe: Ti?	4450.597	67.37	-: Fe	4525.285	66.26
Mn: Ca	4456,030	67.29	-: Cr: Fe	4526.644	66.24
Ti, Y, Zr: Mn	4457.656	67.27	Ti: -	4527,518	66.23
V:Mn:-	4460.460	67.23	Ti Co: -	4534,168	66.13
Ni: Fe	4466.701	67.13	$Fe: Ti \cdot Co$	4519,767	65.91
Fe: Mn: Ni?	4472.958	67.04	Cr: Co-Fe	4505,750	65,68
Fe:Aa	4476,214	67.00	$Ca:\ Co,\ Fe$	4581,634	65.44
-, Fe : Fe	4482,376	. 66,90	Cr: Fe	4611.455	65.02
Cr: Zr	4497.016	66.68	$Fe:\ Cr.\ La$	4613.465	64.99

(b) Oxygen and nitrogen lines.—The wave-lengths of the following oxygen and nitrogen lines occurring in the spark spectrum of air have been determined by us on plates taken with the concave grating, with various elements serving as the spark electrodes. The values have been published in the Astrophysical Journal, Vol. XVI (1902), pp. 118-20. The identifications are those of Neovius.¹¹

¹¹ Bihang till K. Svenska Vet.-Akad, Handlingar, Vol. XVII, 1891.

Element	Ware-Length	No. of km. per tenth-meter	Element	Wave-Length	No. of km. per tenth-mete
0	4317.272	69.46	N	4601,632	65.17
Õ	4319.762	69.41	N	4607.305	65.08
ŏ	4345.677	69.00	N	4614.033	64.98
NO	4348.134	68.96	N	4621.548	64.88
Ö	4349.541	68.94	N	4630,703	64.75
ŏ	4351.495	68.91	O	4638.937	64.64
Ŏ	4367.012	68.66	O	4641.886	64.60
ŏ	4415.076	67.92	N	4643,244	64.58
ŏ	4417.121	67.88	O	4649.250	64.49
NO	4447.163	67.42	NO	4650.925	64.47
O o	4591.066	65.31	O	4661.728	64.32
ŏ	4596.291	65.24			

(c) Silicon lines.—The following wave-lengths of the three silicon lines used by us are those given by Exner and Haschek, who used the spark passing between electrodes of metallic silicon as the source of spectrum. The occurrence of these lines in the spectra of stars resembling β Crucis was observed by McClean and by Gill, and their origin was traced by Lunt in a careful series of experiments at the Cape Observatory. It is unfortunate that the wave-lengths, particularly that of the third line, cannot be more accurately assigned. This is doubtless due to their diffuse character in the spark spectrum, which was remarked by Exner and Haschek.

Wave-Length	No. of km. per tenth-meter
4552.75	65.87
4567.95	65.64
4574.9	65.51

(d) Magnesium lines.—The magnesium line at $\lambda 4352$ occurs in the Sun, and accordingly its wave-length is given by Rowland. The wave-length of the line at $\lambda 4481$ has been determined by Adams from measures of the spectra of stars of Vogel's type Ia,¹³ and is discussed more fully on p. 13.

Wave-Length	No. of km. per tenth-meter
4352.083	68,90
4481.400	66.91

(e) Helium lines.—The wave-lengths of the helium lines which we have used are those given by Runge and Paschen.¹⁴ The double lines at λ 4471 and λ 4713 have been blended, the weights assigned to the components being 6 and 1 for λ 4471, and 3 and 1 for λ 4713. (The intensities given by Runge and Paschen are respectively 6 and <1 and 3 and <1.)

Wave-Length	No. of km. per tenth-meter
4388.100	68.33
4437.718	67.57
4471.676	67.06
4713.308	63.62

¹² "Note on the Spectrum of Silicon," Astrophysical Journal, Vol. XII (1900), pp. 48, 49.

H"On the Spectrum of Clèveite Gas," *ibid.*, Vol. III (1896), pp. 1-28.

¹³ "Some Results with the Bruce Spectrograph," ibid., Vol. XV (1902), pp. 214-17.

JOURNAL OF OBSERVATIONS

The extract given below from the regular observing journal of the Bruce spectrograph furnishes the observational data for all of the plates discussed in the present article. The principal omissions are the numerical values of the focal settings of the collimator and camera, and of the focal scale of the telescope, upon which the position of the slit in the plane of the forty-inch objective depends. The last varies with the temperature, and its value is furnished by a table constructed from Barnard's results for the variation of the focal length of the telescope with the temperature. The collimator setting has been changed but once, and then on the occasion of the substitution of the "isokumatic" lens, to which reference has already been made, for the lens previously in use. The focal setting of Camera A has been kept practically unchanged, repeated tests during the severe weather of the winter showing no appreciable variation in focus. The recementing of the objective of Camera B has, however, necessitated changes of its focal setting on several occasions, as appears in the Remarks.

Most of the columns in the journal are self-explanatory. The length of exposure in seconds for the comparison spectrum is indicated by the number following the symbol of the element employed: thus "Ti 6" denotes an exposure of the titanium spark for six seconds. The time in reference to the star exposure at which the comparison spectrum is photographed is given in the two columns headed "Beginning" and "End," while an intermediate entry refers to the middle of the star exposure unless the time is expressly stated. The number of turns of self-induction in the secondary circuit of the spark coil is also given. The first (i) of the temperature entries always refers to the temperature inside the prism box, the second (a) to the temperature inside the large aluminium case which covers the spectrograph. The middle of the star exposure is given in Central Standard time.

In the case of nearly all of the exposures entered in the list below, the labor of guiding has been shared equally by the observer and Mr. F. R. Sullivan, engineer in charge of the telescope, to whom we are much indebted for this efficient assistance.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Object	Series and Number	Date	Middle of Ex- posnre	Dura- tion	Hour Angle at End	Slit	Comparison Beginning End	Self- Induc- tion	Tempera Beginning	ature Enc	Seeing	Ob-	Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	a Tauri β Orionis γ Pegasi γ Pegasi γ Persei γ Persei γ Persei γ Persei γ Persei β Orionis β Orionis β Orionis κ Orionis κ Orionis κ Orionis κ Orionis γ Pegasi Μοου γ Orionis γ Pegasi κ Orionis β Orionis γ Pegasi κ Orionis γ Pegasi ρ Pegasi ρ Orionis γ Pegas	B191 1297 1298 1215 1298 1215 1217 1218 1221 1237 1237 1237 1237 1237 1237 1237	1901 Sept. 4 Sept. 5 Sept. 6 Sept. 11 Sept. 12 Sept. 20 Sept. 20 Oct. 2 Oct. 3 Oct. 18 Oct. 23 Oct. 23 Oct. 23	h. m 14 01 15 15 15 15 15 15 15	1	Angle at End h. m. E3 155 E2 25 E2 10 W2 45 E6 2 12 E3 10 E3 35 E3 00 E2 15 E3 15 E8 10 E	mm 0 (2)8 (2)8 (2)8 (2)8 (2)8 (2)8 (2)8 (2)8	## Beginning End	turns 350 350; 850 35	Beginning 26.2 26.2 26.3 26.4 26.4 26.4 27.2 27.4 16.7 16.5 16.4 16.2 12.0 12.1 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.1 13.0 14.1 14.1 15.1 16.4 22.4 22.4 22.3 22.4 22.5	26.4 26. 25. 27. 2	Poor Fair Fair Fair to good Poor Poor Poor Poor Poor Poor Poor P	AAAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	New diagonal prism in spark apparatus 40-inch objective found to be covered with light dew Light clouds and thick haze Spark intermittent Thick haze Camera lens recemented by Brashcar New windows in occulting bar; mirror used for spark

Object	Series and Number	Date	Middle of Ex- posure	Dura- tion	Hour Angle at End	Slit Width	Comparis Beginning	on End	Self- Induc- tion	$\begin{bmatrix} \text{Tempe} \\ \text{Beginning} \\ i & o \end{bmatrix}$	rature i	End_{o}	Seeing	Ob- server	Remarks
β Orionis β Can.Moj. ζ Persei β Orionis γ Orionis ξ Orionis ζ Persei β Orionis ζ Persei β Orionis ζ Persei β Orionis γ Pegasi ζ Cassiop β Orionis β Orionis β Orionis β Orionis γ Potionis γ Potionis γ Potionis γ Orionis γ Orionis γ Orionis γ Orionis γ Orionis γ Orionis	B218 B220 B221 B224 B228 B231 B232 B233 B237 B246 B248 B252	1901 Noy. 7 Noy. 8 Noy. 13 Noy. 14 Noy. 27 Dec. 19 Dec. 19 Dec. 31	10 33 14 06 14 39 h. m. 5 34 13 50 13 19 14 04 8 36 12 52 6 11 10 48 15 22 7 36 12 12 12 12 11 34	9 35 80 9 25 m. 17 28 9 62 28 9 83 112 14 27 8 13 8	h, m. E 1 45 W 0 10 E 1 15 W 0 15 W 0 45 W 0 45 E 0 15 E 0 15 E 0 248 E 1 25 E 0 45 W 3 45 W 2 49 E 1 25 E	mm. 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.025 0.025 0.025 0.025 0.025 0.025 0.025	Ti 7	Ti 0 7 $Ti 0 1 2$ $Ti 0 1 2$ $Ti 7 2$ $Ti 7 2$ $Ti 14$ $Ti 12$ $Ti 7$ $Ti 11$ $Ti 11$ $Ti 61$ $Ti 10$ $Ti 15$	turns 50	3.3 3.0 3.2 3.4 4.9 5.2 5.1+ 4.8 5.5 8.5 7.6 6.6 9.0 9.0 9.0 9.0 9.2 -1.1 -1.1 -0.2 0.0 0.8 1.0 0.9 0.9 0.9 0.9 0.9	3.3 3.2 5.1 5.1 5.5 7.7 9.0 -1.1 -0.4 0.9 0.9 -15.6+	$ \begin{array}{r} 8 & 8 \\ -1.2 \\ -0.7 \\ 0 & 4 \\ 0.3 \\ 0.5 \\ -15.8 \end{array} $	Excellent Excellent Good; hazy Fair Good Fair Poor Good Fair Good Good Good Good Good 4; 3 4; 2 1-3; 2 4; 4 4; 4	FA A A A F F A A F F A A A A A A A A A	Temperature rising Occulting bar readjusted Stopped by clouds Clouds at end Hereafter transpar'ney and seeing will be given in the order
B Orionis. Venus Venus A Tevinis B Orionis B Orionis B Orionis C Draconis B Orionis C Draconis B Orionis C Draconis C Draconis B Orionis C Draconis C Orionis	A300 A303 A304 A305 A304 A305 A305 A305 A305 A305 A305 A305 A305	July 16 July 22 July 23 July 31 Aug. 11 Aug. 22 Aug. 27 Sept. 3 Sept. 6 Sept. 7 Sept. 13	11	$\begin{array}{c} 10\\ 17\\ 8\\ 8\\ 25\\ 8\\ 10\\ 60\\ 67\\ 742\\ 55\\ 14\\ 16\\ 10\\ 20\\ 18\\ 10\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$	W1 40 W2 2 30 WE 1 155 E 0 20 WE 1 55 E 1 55 E 2 20 W 1 55 W 1 55 W 1 15 E 2 20 W 2 3 25 W 3 3 25 W 3 3 25 W 3 3 25 W 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.040 0.050 0.050 0.050 0.040 0.050 0.040 0.025 0.038	$Ti\ 4+Ti\ 3+\frac{1}{4}$ $Ti\ 3+\frac{1}{4}$ $Ti\ 3+\frac{1}{4}$ $Ti\ 3+\frac{1}{4}$ $Ti\ 3-\frac{1}{4}$ $Ti\ 3-\frac{1}{4}$ $Ti\ 2-\frac{1}{4}$ $Ti\ 2-\frac{1}{4}$ $Ti\ 3-\frac{1}{4}$ $Ti\ 3-$	$\begin{array}{c} Ti9\\ Ti12\\ Ti11\\ Ti22\\ Ti11\\ Ti22\\ Ti13\\ Ti22\\ Ti13\\ Ti12\\ Ti13\\ Ti$	350	0-6.6 -6.4 +3.3 -3.7.6 +3.3 -3.2.1 -3.3 -3.2.1 -3.3 -3.2.1 -3.3 -3.2.1 -3.3 -3.2.1 -3.3 -3.2.1 -3.3 -3.3.1 -3.3 -3.3 -3.3.1 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3 -3.3	-3.4 -3.4 -13.7	$\begin{array}{c} -3.6 \\ -3$	2121144443 44:1:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:		named on a scale of 0 to 5,5 denoting perfect conditions New isokumatic collim lens used from this pointon Sky very thick Seeing very bad Lens used in spark apparatus from this point of spark apparatus from this point of spark apparatus from this point Sky very thick Cirrus clouds Cirrus clouds Clouded over suddenly Stopped by clouds at end Temperature rising fround glass screen used in front of slit for spark exposure after this date Freq't clouds Freq't clouds Freq't clouds Strong wind
· Can. Maj.	B461	Nov. 19	20 59	37	W 0 02	0.045	Ti 25	Ti 25	i.	9.8 9.4	9.7	10.1	3; 1	A	Dew on object glass

DETAILED MEASURES AND REDUCTIONS

CONTROL PLATES OF THE MOON, VENUS, AND SOLAR STARS

The following section contains the results of measures upon plates of the Moon, Venus, and certain stars with known velocities taken for the purpose of guarding against instrumental errors. The series covers practically the entire interval within which the measures given in the present paper occur, and no evidence is shown of the existence of errors of this nature. The measured velocity in the case of the Moon and Venus is compared with the computed velocity, and in the case of stars with the results of other observers for the same stars. Professor Campbell's convenient formulæ were used in the derivation of the theoretical velocity of the Moon and Venus.

The detailed measurements on the different plates follow. The plates of the Moon and Venus are grouped together and arranged in chronological order, while the separate stars are given in order of right ascension. The Greenwich mean time and hour angle given for each plate refer to the middle of the exposure. Following this is the name of the person who measured the plate, the magnifying power employed, and a brief statement as to the quality of the plate. Unless otherwise specified the comparator used by Frost was G 1, by Adams G 2.

The first column of the tables contains the means of the settings upon the individual lines. S denotes a line in the spectrum of the star, Moon, or planet, while a comparison line is indicated by the symbol of the element to which it is due.

In all cases where the curvature correction is given as a fraction of a millimeter at the foot of the tables, the readings upon the comparison lines given in the first column include this correction. In a few cases the correction for curvature is applied in kilometers to the end result.

The symbols V_a and V_d are employed in the reduction of a star's velocity to the Sun, V_a denoting the correction due to the velocity of the Earth in its orbit, and V_d the correction due to the Earth's diurnal rotation. The total reduction to the Sun is, therefore, $V_a + V_d$. The corrections for the orbital velocity of the Earth have been made with the use of Schlesinger's tables of star constants (Astrophysical Journal, Vol. X (1899), pp. 1–13), and the diurnal corrections are taken from a table constructed for the latitude of the Yerkes Observatory.

1901, September 26, G. M. T. 14^h 48^m Hour angle E 1^h 56^m

MOON—A 246 Poor plate

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t.m.	km.
Ti 32.0910	Standard	± 0.000		4427.266		
S 32,1013	4427.392		±0.000	4427.420	-0.028	-1.9
$Ti\ 32.6522$	4434,150	+0.018		4434.168		
S = 32.7836	4435.772		+0.029	4435.851	-0.059	-4.0
Ti/33.1646	4440.495	+0.020		4440.515		
S = 33.3212	4442.447		+0.015	4442.510	-0.048	-3.2
S 33.4414	4443.949		+0.011	4443.976	-0.016	-1.1
S = 33.7554	4447.883		+0.002	4447.892	-0.007	-0.5
Ti/33.8689	4449.315	-0.002		4449.313		
Ti.34.3556	4455.476	+0.009		4455.485	1 002	
S = 34.4012	4456.056		+0.010	4456.030	+0.036	+2.4
Ti = 34.5215	4457.588	+0.012		4457.600	0.000	0.4
S = 34.5254	4457.638		+0.012	4457.656	-0.006	-0.4
S = 35.9614	4476.193	1	-0.023	4476.214	-0.014	-3.0
Ti/35.9625	4476.208	-0.023		4476.185		
$Ti\ 36.3605$	Standard	± 0.000		4481.438	0.000	0.1
S 36.4315	4482.375		-0.001	4482.376	-0.002	-0.1
S = 37.3578	4491.715	*****	-0.013	4494,738	-0.036	-2.4
Fe = 37.3606	4494.751	-0.013		4494.738		
$Ti_{0}37.4770$	4496.318	± 0.000		4496.318		
Ti~38.6951	4512.915	-0.009		4512.906		

MOON A-246 -- Continued

Mean of Velocity	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti 39.4200	4522,968	+0.006		4522.974		
S 39.5836	4525.257		± 0.014	4525.285	-0.014	-0.9
Fe 39.8337	4528.771	± 0.027		4528.798		
S 39.8362	4528,806		± 0.027	4528.798	+0.035	+2.3
S 41.6063	4554.157		± 0.000	4554.211	-0.054	-3.6
Ti 41.7092	Standard	± 0.000		4555.662		

Curvature Cor. +0.0002 mm.

 $\begin{array}{c} {\rm Mean-1.2~km.} \\ {\rm Computed~Velocity-0.5} \end{array}$

MOON—A 253

1901, September 27, G. M. T. $16^{\rm h}$ $22^{\rm m}$ Hour angle E $1^{\rm h}$ $15^{\rm m}$

Moon fair; comparison fair.

Measured by A. Power 28

m: 00 0000	1					
Ti 26.2727	Standard	± 0.000		4399.935		
S 26.9485	4407.871		-0.002	4407.851	+0.018	+1.2
S 27,0037	4408.524		-0.002	4408.549	-0.027	-1.8
Fe 27.5735	4415.297	-0.004		4415.293	0,02,	1.0
S 28.4306	4425.615		-0.004	4425.608	+0.003	+0.2
$Ti_{28.5669}$	4427,270	-0.004		4427.266	0.000	0.2
S 28.5774	4427.398	0.001	-0.004	4427.420	-0.026	-1.8
S 29.2661	4435.827		-0.002	4435.851	-0.026	-1.8
$\tilde{S} = 29.8072$	4442.524		± 0.000	4442.510	+0.014	+0.9
Ti 29.9238	4443.976	±0.000		4443.976	10.011	10.0
S 30.2354	4447.871	10.000	± 0.000	4447.892	-0.021	-1.4
Ti 30.3503	Standard	± 0.000		4449.313	0.021	1
Ti 30.8405	4455,498	-0.013		4455.485		1
S 30.8828	4456.038	0.010	-0.013	4456.030	-0.005	-0.5
Ti 31.6612	4465.980	-0.005	0.018	4465.975	0.000	0.6
S 32,4522	4476.234	0.000	-0.004	4476.214	+0.016	+1.1
Ti 32.8494	4481.441	-0.003	-0.001	4481.438	70.010	71.1
S 32.9185	4482.351		-0.003	$\frac{4481.430}{4482.376}$	-0.018	-1.5
S 33.8508	4494.741		+0.000	4494.738	+0.003	+0.:
Ti 33.9683	Standard	±0.000		4496.318	70.00	7-0.2
S 34.0221	4497.041		-0.001	4497.046	-0.006	-0.4
S 34.3461	4501,413		-0.006	4501.422	-0.000 -0.015	1
Ti 34.3489	4501,413	-0.006	-0.006	4501.445	-0.010	-1.0

Curvature Cor. +0.0001 mm.

 $\begin{array}{c} {\rm Mean} - 0.5 \ {\rm km}. \\ {\rm Computed \ Velocity} - 0.6 \end{array}$

VENUS-B 224

1901, Novem		М. Т.	11 ^h 34 ^m
Hour angle	W 2" 50"		

Planet strong; comparison good.

Measured by A. Power 21

S = 22.8566	4443.810		+0.018	4443.976	-0.148	-10.
Ti~22.8725	4443,958	+0.018		4443.976		
S = 23.2737	4447.696		± 0.005	4447.892	-0.191	12.
Ti 23.4465	Standard	± 0.000		4449.313		
S 24,3103	4457.450		± 0.000	4457.656	-0.206	13.
Ti = 24.3261	4457.600	± 0.000		4457.600		
S = 25.2597	4466,505		-0.005	4466.701	-0.201	13.
S=25.4657	4468,486		-0.006	4468,663	-0.183	12.
Ti~25.4848	4468,669	-0.006		4468.663		
S = 25.9135	4472.810		-0.006	4472.958	-0.154	10.
S = 26.2453	4476.031		-0.006	4476.214	-0.189	12.
$Ti_{-}26.7995$	4481.444	-0.006		4481,438		
S = 26.8762	4482.196		-0.005	4482.376	-0.185	12.
S = 28.1202	4494,513		+0.008	4494.738	-0.217	14.

VENUS B-224-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Planet Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. nı.	t. m.	t. m.	t. m.	km.
S 28.7897	4501.230		+0.015	4501.422	-0.177	-11.8
Ti 28.8095	4501.430	+0.015		4501.445		
$Ti_{-}29.9391$	4512,911	-0.005		4512.906		
S = 30.1705	1515 . 285		-0.007	4515.475	-0.197	13.1
Ti/30.4542	4518.207	-0.009		4518.198		
S = 30.8831	4522.647		+0.008	4522.853	-0.198	13.1
Ti/30.9138	4522.966	+0.008		4522.974		
Ti.31.3480	Standard	± 0.000		4527.490		
S = 31.4518	4528,607		± 0.000	4528.798	-0.191	12.6
S = 32.9699	4544.641		+0.009	4544.845	-0.195	12.9
Ti.32.9899	4544,855	+0.009		4544.864		
Ti.33.7111	4552,616	± 0.016		4552.632		
S 33,8378	4553.984		+0.009	4554.211	-0.218	14.5
Ti.33,9925	4555.662	± 0.000		4555.662		
S = 34.7268	4563,678		+0.040	4563.939	-0.221	14.5
Ti/31.7469	4563,899	± 0.040		4563.939		
Ti.35.4926	4572.130	± 0.026		4572.156		
S=36.3248	4581.424		± 0.017	4581.634	-0.193	12.6
S = 37.0751	4589,901		± 0.009	4590.126	-0.216	14.3
Ti.37.0941	4590,117	+0.009		4590.126		
S = 38,9256	4611.221		+0.002	4611.455	-0.232	15.3
Ti.39.4569	Standard	± 0.000		4617.452		

Curvature Cor. +0.0009 mm.

 $\begin{array}{c} {\rm Mean} - 13.0 \; {\rm km}. \\ {\rm Computed} \; {\rm Velocity} - 12.8 \end{array}$

MOON-B 254

1901, December 18, G. M. T. 13^h 36^m Hour angle W 1^h 32^m

Moon good; comparison rather strong.

Measured by A. Power 21

			_			
S 23,4084	1412.519		+0.028	4442,510	+0.037	+:
Ti 23.5599	4443.948	± 0.028		4443.976	1 0 1 1 1 1	
S 23.5648	4413.994		± 0.028	4443.976	± 0.046	+:
S 23.9801	4447.929		+0.007	4147.892	+0.044	
Ti 24.1260	Standard	± 0.000		4449.313	1 0 1 0 2 2	'
S 25,9346	4466.735		± 0.008	4466.701	+0.042	+
$Ti_{-}26.1311$	4468.651	± 0.009		4468.663		'
S 26.1331	4468.676		+0.009	4468.663	+0.022	-
S 26,8995	4476.209		-0.010	4476.214	-0.015	<u>'</u>
$Ti_{-}27.4289$	4481.461	-0.023		4481.438		
S 27.5242	1482.410		-0.023	4482.376	+0.011	1 +
S 28,7507	4491.745		-0.029	4494.738	-0.022	-
Ti 28.9085	4496.348	-0.030		4496.318		
S 29,4085	4501.450		-0.022	4501.422	± 0.006	+
S 30.0898	4508.459		-0.012	4508.455	-0.008	-
Ti.30.5192	4512.911	-0.005		4512.906		ĺ
S 31,6950	4525.245		-0.001	4525.285	-0.011	-:
Ti.31.9069	Standard	± 0.00		4527.490		
S = 32.0338	4528.838		± 0.002	4528,798	+0.042	+:
Ti/31.2333	4552,595	± 0.037		4552.632		l '
S 31.3791	4554.197		+0.032	4551.211	+0.018	+
Ti/35, 2587	4563,935	± 0.004		4563.939	'	'
S 35,2583	4563.934		+0.004	4563,939	-0.004	_(
S 35.9126	4571.256		+0.012	4571.275	-0.007	
S = 36.8271	4581.615		± 0.026	4581.634	+0.007	+
S = 37.0370	4584.013		+0.027	4584.018	+0.022	+
Ti/37.5662	4590.092	± 0.031		4590.126		
S = 39.3891	1611.405		± 0.008	4611.455	-0.042	-:
S=39.5611	4613.447		+0.005	4613.465	-0.013	
Ti.39.8972	Standard	± 0.000		4617.452		

Curvature Cor. ± 0.0007 mm.

 $\begin{array}{c} {\rm Mean} + 0.5 \ {\rm km}. \\ {\rm Computed\ Velocity} + 0.9 \end{array}$

VENUS-A 303

1902, January 8, G. M. T. $11^{\rm h}\,28^{\rm m}$ Hour angle W $2^{\rm h}\,35^{\rm m}$

Planet strong; comparison good.

Measured by A. Power 28

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Planet Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S = 19.3514	4282.435		± 0.000	4282.565	-0.130	-9.1
Ti = 19.3948	Standard	± 0.000		4282.860		
S 19.4101	4283.010		± 0.000	4283.169	-0.159	11.
Ti 19.7313	4286.165	+0.003		4286.168		
Ti 19.8736	4287.569	-0.003		4287,566		
S = 20.0575	4289.387		-0.003	4289.525	-0.141	9.5
S 20.4322 S 20.5327	4293.110		-0.001	4293.241	-0.135	9.
S = 20.5327	4294.113		-0.001	4294.278	-0.169	11.
S = 21.3067	4301,892		-0.006	4302.039	-0.153	10.
Ti-21.3264	4302.091	-0.006		4302.085		
Ti = 21.7183	4306.071	+0.007		4306.078		
S = 21.7862	4306,763		± 0.006	4306.912	-0.143	10.
Ti-22.3978	Standard	± 0.000		4313.034		
S = 22,5919	4315.038		-0.001	4315.209	-0.172	12.
S = 22.9415	4318.664		-0.001	4318.817	-0.154	10.
Ti = 23.1771	4321,121	-0.002		4321.119		10,
S = 24.6832	4337.064		+0.001	4337.216	-0.151	10.
Ti = 24.7781	4338.083	+0.001		4338.084		
S = 24.9997	4340,468		+0.002	4340,634	-0.164	11.
Ti-25.3675	4944.448	+0.003		4944.451	.,,,,,	111
S = 26.0460	4351.858		+0.002	4352.007	-0.147	10.
S 26.0460 S 27.1522	4364.132		± 0.000	4364,274	-0.142	9.
Ti = 27.4820	Standard	± 0.000		4367.839		0,

Curvature Cor. +0.0005 mm.

 $\begin{array}{c} {\rm Mean} -10.5 \ {\rm km}. \\ {\rm Computed \ Velocity} -11.3 \end{array}$

MOON-A 320

1902,	February	19, G.	M. T.	$13^{\rm h}20^{\rm m}$
Hour	angle E S	h 22m		

Moon strong; comparison good.

Measured by A. Power 21

S 31.3732	4399.921		± 0.000	4399,903	+0.018	+1.
Ti = 31.3744	Standard	± 0.000		4399.935	,	
S = 32.0370	4407.849		± 0.003	4407.851	+0.001	+0.
Ti = 33.6288	4427.257	+0.009		4427.266	· ·	
S = 34.1240	4433.410		± 0.012	4433.390	+0.032	+2.
Ti = 34.1836	4434,155	+0.013		4434.168	,	
S = 34.3183	4435.840		+0.011	4435.851	± 0.000	± 0 .
S 31.8483	4442.514		± 0.005	4442.510	+0.009	+0.
Ti = 34.9634	4443.972	+0.004		4443.976		,
S 34.9637	4443.975		± 0.004	4443.976	+0.003	+0.
S = 35.2711	4447.884		+0.001	4447.892	-0.007	$-\tilde{0}$.
Ti = 35.3830	Standard	± 0.000		4449.313		
Ti = 36.0271	4457.594	-0.006		4457.600		
S 36.2492	4460.473		+0.007	4460.460	+0.020	+1.
Ti = 36.8753	4468.654	+0.009		4468.663	101020	1
S 36.8769	4468.675		+0.009	4468.663	+0.021	+1.
S 36.9399	4469.504		+0.009	4469.511	+0.002	+0.
S 37.4477	4476.219		+0.015	4476.214	+0.020	+1.
Ti = 37.8376	4481.420	+0.018		4481.438	10.020	1 .
S 37,9107	4482.399	10.010	+0 016	4482.376	+0.039	+2.
S 38.8237	4494.747		+0.002	4494.738	+0.011	<u>-i-ō.</u>
Ti = 38.9387	Standard	± 0.000		4496.318	0.011	10.
S 38,9949	4497.087		± 0.000	4497,046	+0.041	+2.
S 39.3121	4501.443		+0.007	4501.422	+0.028	$+\tilde{1}$.
Ti 39.3118	4501.438	+0.007	1	4501,445	10,020	Τ1.

Curvature Cor. +0.0005 mm.

 $\begin{array}{c} {\rm Mean} + 1.1 \ {\rm km}. \\ {\rm Computed} \ {\rm Velocity} + 0.7 \end{array}$

MOON—A 337

1902, March 26, G. M. T. $20^{\rm h}\,49^{\rm \,m}$ Hour angle W $0^{\rm h}\,28^{\rm m}$

Moon fair; comparison rather strong.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S = 29.3921	1425.611		+ (), (X)()	1425.608	± 0.003	+0.2
Ti=29.5265	Standard	± 0.000		4427.266		,
S 29,5386	4427.415		± 0.000	4427.420	-0.005	-0.3
S 30.1614	1435.174		-0.002	4435.181	-0.012	-0.8
S 30.7503	4442.519		-0.005	4442.510	-0.004	+0.3
Ti = 30.8661	4113.981	-0.005		4443 976		,
S = 30.8668	4143.989		-0.005	4413.976	± 0.008	± 0.5
S 31 1765	4447.913		-0.014	4417.892	± 0.007	+0.5
Ti = 31.2881	4449.331	-0.018		4449.313		, , , ,
S 32,6364	4466.708		-0.017	4466.701	-0.010	-0.7
S 32,7860	4468.663		-0.017	4468.663	-0.017	-1.1
Ti = 32.7873	4468.680	-0.017		4468.663		
8 33,3607	4476.225		-0.012	4476.214	-0.001	-0.1
S 33.8257	1482,403		-0.008	1482.376	± 0.019	+1.3
8 31.7138	4494.760		-0.001	4491.738	± 0.021	+1.4
Ti=34.8584	Standard	± 0.000		4496.318		
S 35,2334	4501, 439		=0.001	4501.422	-0.016	+1.1
Ti = 35.2339	4501.446	-0.001		4501.445		,
Ti 36.0651	4512.928	-0.022		4512.906		
S 36.2473	4515.470		-0.012	4515.475	-0.017	-1.1
S 36,7711	4522.826		+0.018	4522.853	-0.009	-0.6
Ti-36.7803	4522,956	± 0.018		4522.974		
Ti = 37.0998	4527.481	± 0.009		4527.490		
$\hat{S} = 37.4925$	4528,799		+0.00.)	4528,798	± 0.010	+0.7
Ti = 38.8393	4552.617	± 0.015		4552.632		
Ti 39,6038	Standard	± O , OOO		4563,939		
S 39, 0018	4563,954		± 0.000	4563, 939	± 0.015	+1.0

Curvature Cor. +0.0005 mm.

 $\frac{\rm Mean + 0.1~km.}{\rm Computed~Velocity + 0.1}$

MOON-B 328

1902,	April	19, U	т. М.	\mathbf{I} . I	T., 40.,
Hour	angle	$\mathbf{E} 1^{\mathrm{I}}$	15 ^m		

Moon good; comparison good.

Measured by A. Power 17

S 28.5408	4415,250		± 0.000	1115.214	+0.006	+0.4
Ti 28.8334	4417.881	±0.000		4417.884		,
Ti 29,8664	Standard	± 0.000		4427.266		
S 29.8839	4427.426		± O_OOO	4427.420	± 0.006	+0.4
S 30,8023	4435,879		+O OD7	4435.851	± 0.035	+2.4
S 31.5146	4442,508		± 0.013	4142.540	± 0.011	+0.7
Ti 31.6699	4443.962	± 0.014		4443.976		,
S 31.6721	4443,983		+0.011	4443,976	± 0.021	+1.4
S = 32.0910	4447.920		400.00	4447.892	+0.024	+1.6
Ti=32.2397	4449.323	-0.010		4449,313	·	
S 32.9485	$4456 \cdot 049$		-0.002	4456,030	+0.017	+1.1
Ti=33.4409	Standard	± 0.000		4457.600		,
S 33.1168	4457,656		± O+000	4457.656	\pm OOO, DOO	± 0.0
S 34,2596	4468,667		0.006	4468.663	-0.002	-0.1
Ti=34.2598	4468,669	O. OOG		4468,663	1	
S 35.0342	4476.230		±0.000	4476.314	+0.016	+1.1
Ti=35.5624	4481.431	+0.001		4481,438		
S 35,6585	4482,385		<u>+0.004</u>	4482.376	± 0.013	+0.9
S 36,8951	1494.737		±0.000	4491,738	-0.001	-0.1
Ti 37 0518	Standard	上()(XX)		4496.318		1
Ti = 37.5576	4501 - 444	± 0.001		4501.445		
S 37.5578	4501.446		± 0.001	4501,422	+0.025	+1.7

Curvature Cor. ± 0.0008 mm.

 $\begin{array}{c} {\rm Mean} + 0.9 \ {\rm km}. \\ {\rm Computed \ Velocity} + 0.9 \end{array}$

MOON—B 363

1902, June 20, G. M. T. $18^{\rm h}\,55^{\rm m}$ Hour angle W $0^{\rm h}\,50^{\rm m}$

Moon fair; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m,	t. m.	t. m.	t. m.	km.
S = 19.1323	4425.622		± 0.000	4425.608	+0.014	+1.0
Ti = 19.3130	Standard	± 0.000		4427.266	·	
S 19.3330	4427,448		± 0.000	4427.420	+0.028	+1.9
S = 20.2503	4435,860		+0.017	4435.851	+0.026	+1.8
S = 20.9677	4442.513		± 0.029	4442.510	+0.032	+2.2
S 21,1205	4443.939		+0.032	4443.976	-0.005	-0.3
Ti = 21.1210	4443.944	+0.032		4443.976		
S = 21.5405	4447.873		+0.027	4447.892	+0.008	+0.3
Ti = 21.6909	4449.288	+0.025		4449.313	'	
Ti = 22.3462	Standard	± 0.000		4455.485		
S = 22.4025	4456.020		+0.001	4456.030	-0.009	-0.6
S 23.7181	4468.645		+0.034	4468.663	+0.016	+1.1
Ti=23.7164	4468.629	+0.034		4468.663	, ,	1
S 24.4939	4476.201		+0.020	4476.214	+0.007	+0.3
Ti = 25.0256	4481.427	+0.011		4481.438		,
S = 25.1198	4482.358		+0.011	4482.376	-0.007	-0.3
S 26.3633	4494 . 754		± 0.015	4494.738	+0.031	+2.
Ti = 26.5171	4496.302	+0.016		4496.318	1	
S 26.5898	4497.036		+0.016	4497.052	± 0.006	+0
S 27.0243	4501.434		± 0.000	4501.422	+0.012	+0.8
Ti = 27.0254	Standard	± 0.000		4501.445		1

Curvature Cor. +0.0008 mm.

 $\begin{array}{c} {\rm Mean} + 0.8 \; {\rm km}. \\ {\rm Computed} \; \; {\rm Velocity} + 0.2 \end{array}$

MOON — B 363

Measured by F. Power 23

Ti 30.6616	Standard	±0.000		4427.266		
S 30.6809	4427.442		±0.000	4427.420	+0.022	+1.5
Ti = 31.4173	4434.189	-0.021		4434.168	1 0,022	1
S = 31.5268	4435.199		-0.021	4435.184	-0.006	-0.4
$\hat{S} = 32.3159$	4442.536		-0.004	4442.510	+0.022	+1.5
Ti = 32.4724	4443.977	-0.001		4443.976		
S 32.4726	4443.978		-0.001	1443.976	+0.001	+0.1
S = 32.8904	4447.893		-0.009	4447.892	-0.008	-0.5
Ti = 33.0428	1449.327	-0.014		4449.313		
S = 33,3024	4451.776		-0.016	4451.752	+0.008	+0.5
Ti-33.6958	4455.503	-0.018		4455.485		' ' ' ' '
S = 33.7513	4456.031		-0.018	4456.030	-0.017	-1.1
Ti-34.7906	4465.985	-0.010		4465.975		
S = 35.0678	4468.664		-0.014	4468.663	-0.013	-0.9
Ti = 35.3524	4471.426	-0.018		4471.408		
S 35.8438	4476.220		-0.009	4476.214	-0.003	-0.2
Ti = 36.3748	Standard	± 0.000		4481.438		
S 36.4713	4482.390		± 0.000	4482.375	+0.015	+1.0
S 37.7111	4494.742		-0.003	4494.738	+0.001	<u>∔</u> 0.1
Ti = 37.8680	4496.321	-0.003		4496.318	i '	'
S = 37.9397	4497.044		-0.003	4497.046	-0.005	-0.3
S 38.3715	4501.412		+0.010	4501.448	-0.026	-1.7
Ti = 38.3741	4501.438	± 0.010		4501.448		
S = 39.0627	4508.459		-0.002	4508.455	+0.002	+0.1
Ti = 39.4964	4512.917	-0.011		4512,906	'	,
S = 40.2157	4520.372		-0.002	4520.397	-0.027	-1.8
Ti 40.4650	Standard	± 0.000		4522.974		
S 40.4530	4522.849		± 0.000	4522.871	-0.022	-1.5
Ti = 40.8955	4527.489	+0.001		4527.490		
S = 41.0209	4528.810		+0.001	4528.798	+0.013	+0.9

Curvature Cor. +0.0013 mm.

 $\begin{array}{cc} {\rm Mean} & -0.2 \ {\rm km}, \\ {\rm Computed \ Velocity} & +0.2 \end{array}$

MOON-A 350

1902, July 16, G. M. T. $14^{\rm h}~28^{\rm m}$ Hour angle E $0^{\rm h}\,42^{\rm m}$

Moon fair; comparison fair.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocit	
mm,	t. m.	t. m. t. m		t. m.	t. m.	km.	
Ti-30.3399	Standard	± 0.000		4427.266			
S = 30.3552	4427.454		± 0.000	4427.420	+0.031	+2.3	
S = 30.9807	4435.178		± 0.006	4435.184	± 0.000	±0.0	
S = 31.5670	4442.498		± 0.012	4442.510	± 0.000	± 0.0	
Ti-31.6836	4443.963	+0.013		4443.976			
S = 31.9918	4447.891		-0.004	4447.892	-0.005	-0.3	
Ti-32.1081	4449.323	-0.010		4449.313			
$Ti_{-}32.5937$	4455.506	-0.021		4455.485			
S = 32.6366	4456.055		-0.021	4456.030	+0.004	+0.3	
Ti=33.6143	4468.682	-0.019		4468,663	'	·	
S = 31.1884	4476.201		-0.008	4476.214	-0.018	-1.3	
Ti 34.5843	Standard	± 0.000		4481.438			
S = 31.6546	4482.372		-0.001	4482.376	-0.005	-0.	
S = 35.5784	4494.753		-0.010	4494.738	± 0.005	+0.	
Ti=35.6948	4496.329	-0.011		4496.318		,	
8 - 35.7484	4497.055		-0.011	4497.046	-0.002	-0.	
S = 36.0693	4501.421		-0.013	4501.422	-0.014	-0.	
Ti 36.0720	4501.458	-0.013		4501.445			
S = 37.0281	4514.625		-0.00G	4514.617	+0.002	+0.	
Ti 37.9457	Standard	± 0.000		4527.490	·		
S = 38,0405	4528 - 832		-0.001	4528.798	± 0.033	+2.	
S = 38.4194	4534.221		-0.010	4534.168	± 0.043	+2.	
Ti 38,4714	4534.964	-0.011		4534.953			

Curvature Cor. ± 0.0005 mm.

 $\begin{array}{c} {\rm Mean} \ +0.4 \ {\rm km}. \\ {\rm Computed \ Velocity} \ +0.4 \end{array}$

MOON-B 401

1902, August 27, G. M. T. 21^h47^m Hour angle E $3^{h}44^{m}$

Moon slightly weak; comparison fair.

Measured by A. Power 28

\$ 29,0862	4125.591		± 0.000	4425.608	-0.017	-1.
Ti = 29, 2702	Standard	± 0.000		4427.266		!
3 - 29,2843	4427.395	, , , , , , ,	± 0.000	4427.420	-0.025	-1.
S 30.9248	4442.512		± 0.003	4442.510	± 0.005	+0
5 31.0788	4443.948		±0 003	4443.976	-0.025	-1
$Ti_{-}31.0814$	4443.973	+0.003		4443.976		_
S = 31.4988	4447.881		± 0.001	4447.892	-0.010	-0
Ti-31.6510	4449.312	± 0.001		4449.313	(1
Ti=32.3053	4455.495	-0.010		4455,485		
S = 32.3612	4456.026		-0.010	4456.030	-0.014	-0
S = 33.6784	4468.651		-0.018	4468.663	-0.030	-2
Ti 33.6815	1468,681	-0.018		4468.663		
S = 31.4556	4476.208		-0.008	4476.214	-0.014	-0
Ti-34.9886	Standard	±0,000		4481.438		
8 - 35.0827	4482,365		± () (OOO	4482.376	0.011	-0
5 36,3213	4494.714		-0.003	4491.738	-0.027	-1
S = 36,9885	4501.408		~0.005	4501.422	-0.019	-1
Ti 36, 9927	4501.450	0,005		4501.445		_
5 - 39.0727	4522.824		± 0.003	4522.853	-0.026	-1
Ti=39.0868	4522.971	± 0.003		4522.974		_
S 39,3065	4525.266		± 0.001	4525.285	-0.018	-1
Ti=39.5187	Standard	+ O , OOO	1	4527.490		_
S 39,6431	4528.797		± 0.000	4528.798	-0.001	-0

Curvature Cor. +0.0008 mm.

 $\begin{array}{c} {\rm Mean} - 1.1 \; {\rm km}. \\ {\rm Computed} \; {\rm Velocity} \; - 1.5 \end{array}$

MOON — B 408

1902, September 13, G. M. T. $16^{\rm h}\,13^{\rm m}$ Hour angle W $1^{\rm h}\,14^{\rm m}$

Moon good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 31.7436	Standard	± 0.000		4427.266		
S 31.7599	4427.415		± 0.000	4427.420	-0.005	-0.3
S 32.4112	4433,390		± 0.005	4433.390	+0.005	+0.3
S 33.3929	4442,495		+0.011	4442.510	-0.004	$-\tilde{0}$.
S = 33,5520	4443.982		+0.012	4443.976	+0.018	+1.:
Ti = 33.5501	4443.964	+0.012		4443.976	,	,
S = 33.9700	4447.904		± 0.005	4447.892	+0.017	+1.9
Ti = 34.1194	4449,311	± 0.002		4449.313	,	1
Ti = 34.7714	4455.486	-0.001		4455.485		
S 34.8303	4456.046		-0.001	4456,030	+0.015	+1.0
Ti = 34.9933	Standard	± 0.000		4457.600		,
S 34.9984	4457.648		± 0.000	4457.656	-0.008	-0.3
Ti = 36.1445	4468.671	-0.008		4468,663		•
S = 36.1456	4468.682		-0.008	4468.663	+0.011	+0.
S 36.9185	4476,214		-0.006	4476.214	-0.006	-0.
Ti = 37,4503	4481.443	-0.005		4481.438		
S = 37.5453	4482.381		-0.005	4482.376	± 0.000	± 0.0
S 38.7829	4494.718		± 0.000	4494.738	-0.020	-1.3
Ti 38.9418	Standard	± 0.000		4496.318		
S = 39.0126	4497.032		± 0.000	4497.046	-0.14	-0.9

Curvature Cor. $+0.0009 \,\mathrm{m}$.

 $\begin{array}{c} {\rm Mean} \ + 0.1 \, {\rm km}. \\ {\rm Computed \ Velocity} \ + 0.2 \end{array}$

MOON — B 423

1902, October 15, G. M. T. 15^h 44^m Hour angle E 1^h1^m

Moon good; comparison good.

Measured by A. Power 21

Ti = 33.6163	Standard	± 0.000		4427,266		
S 33.6324	4427.413		± 0.000	4427.420	-0.007	-0.
S 35,2019	4441.876		± 0.006	4441.881	+0.001	+0.
S 35.2673	4442.485		± 0.006	4442.510	-0.019	-1.
S 35.4234	4443.942		+0.007	4443.976	-0.025	-1.
Ti = 35.4262	4443.969	+0 007		4443.976		
S 35.8448	4447.891		+0.005	4447.892	+0.004	+ 0.
Ti = 35.9956	4449.309	+0.004		4449.313		' '
Ti = 36.6475	4455.475	+0.010		4455.485		
S 36.7044	4456.016		+0.007	4456.030	-0.007	-0.
Ti = 36.8708	Standard	± 0.000		4457.600		
S = 36.8771	4457.660		± 0.000	4457.656	+0.004	+0.
S 38.0184	4468.625		+0.006	4468.663	-0.032	-2.
Ti = 38.0218	4468.657	+0.006		4468.663		
S 38.7970	4476.206		+0.011	4476,214	+0.003	+0.
Ti = 39.3279	4481.423	+0.015		4481.438		'
S = 39.4226	4482.357		+0.015	4482.376	-0.004	-0.
S = 40.6621	4494.707		+0.017	4494.738	-0.014	-0.
Ti 40.8205	4496.301	+0.017		4496.318		
S = 40.8926	4497.028		+0.015	4497.046	-0.003	-0.
S = 41.3250	4501.401		± 0.000	4501.422	-0.021	-1.
Ti-41.3293	Standard	± 0.000		4501.445		

Curvature Cor. +0.0008 mm.

 $\begin{array}{c} {\rm Mean} \; -0.6 \; {\rm km}. \\ {\rm Computed \; Velocity} \; -0.4 \end{array}$

1902, November 6, G. M. T. $13^{\rm h}\,38^{\rm m}$ Hour angle W $2^{\rm h}\,54^{\rm m}$

MOON -- B 444

Moon good; comparison good.

Measured by A. Power 21

1.6

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
hm.	't. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 31.0166	Standard	± 0.000		4427.266		
S 34.0332	4427.418		± 0.000	4427.420	-0.002	-0.1
S = 34.6862	4433.410		-0.014	4433.390	+0.006	+0.4
Ti = 34.7701	4434.184	-0.016		4434.168		,
S 34.9510	4435.856		-0.010	4435.851	-0.005	-0.3
$\hat{S} = 35.6659$	4442.504		+0.012	4442.510	+0.006	+0.4
Ti=35.8214	4443.959	+0.017		4443.976		,
S = 35.8245	4443.988		+0 017	4443.976	+0.029	+2.0
S = 36.2407	4447.897		+0.005	4447.892	+0.010	+0.6
Ti = 36.3907	4449.312	+0.001		4449.313		
Ti = 37.0401	4455.471	+0.014		4455.485		
S 37.1005	4456.047		+0.010	4456.030	+0.027	+1.8
Ti = 37.2632	Standard	± 0.000		4457.600		
S = 37.2718	4457.682		± 0.000	4457.656	+0.026	+1.7
S 38,4118	4468.668		-0.009	4468.663	-0.004	-0.3
Ti=38.4123	4468.672	-0.009		4468.663		
S = 39.1858	4476.228		+0.008	4476.214	+0.022	+1.5
Ti = 39.7123	4481.419	+0.019		4481.438		1
S 39.8069	4482.356		+0.018	4482.376	-0.002	-0.1
S 41.0457	4494.743		± 0.002	4494.738	+0.007	+0.5
Ti = 41.2016	Standard	±0.000		4496.318		1
S = 41.2754	4497.061		± 0.000	4497.046	+0.015	+1.0
S 41.7048	4501.425		+0.001	4501.422	+0.004	+0.3
Ti = 41.7067	4501.444	+0.001		4501.445	1	10.0

Curvature Cor. +0.0009 mm.

 $\begin{array}{c} {\rm Mean} \ +0.7 \ {\rm km}. \\ {\rm Computed \ Velocity} \ +0.6 \end{array}$

a ARIETIS

The plate of a Arietis given below was previously published in Frost's paper on the Bruce spectrograph 15 as an example of the method of reduction.

l. November 15, ir angle E 1 ^h 40 ^r	G. M. T. 14 ^h 36 ^m		ETIS—B 233	Measured by A Power 21		
S 28.0279	4442,418		+0.015	4442.510	-0.077	-5.2
S 28.1850	4443.880		+0.015	4443.976	-0.081	5.5
Ti=28.1937	4443.961	± 0.015		4443.976		
S = 28.6055	4447.808		+0.004	4447.892	-0.080	5.4
Ti=28.7659	Standard	± 0.000		4449.313		
S = 29.0187	4451.691		-0.001	4451.752	-0.062	4.2
Ti=29.6436	4457.604	-0.004		4457,600		
S = 30.7934	4468.614		-0.004	4468.663	-0.053	3.6
Ti=30.7987	4468.667	-0.004		4468.663		
S = 31.5695	4476.148		+0.003	4476.214	-0.063	4.2
Ti-32.4089	4481.431	± 0.007		4481.438		
S 32.4972	4482.300		± 0.006	4482.376	-0.070	4.7
Ti=32.8241	4488,497	-0.004		4488.493		
S 33.4467	4494.705		-0.016	4494.738	-0.049	3.3
Ti=33.6095	4496.337	-0.049		4496.318		
S 31.1050	4501.329		-0.003	4501.422	-0.096	6.4
Ti = 34.1468	4501.448	-0.003		4501.445		
S 35.2379	4512.873		-0.014	4512,906	-0.047	3.1
Ti=35.2425	4512.920	-0.014		4512,906		
S = 35.4846	4515.414		-0.042	4515,475	-0.076	5.1
Ti = 36.6468	Standard	± 0.000		4527.490		
S 36,7676	4528.757		-0.006	4528,798	-0.047	3.1
S 37.3481	4534.877		-0.033	4534.953	-0.409	7.2
Ti = 37.3585	4534.986	-0.033		4534.953		
Ti=38.2862	4544.874	-0.010		4544.864		
S = 38,3976	4546.071		-0.009	4546.129	-0.067	4.4

¹⁵ Astrophysical Journal, Vol. XV (1902), pp. 1-27.

a ARIETIS-B 233-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 39.0060	4552,639	-0.007		4552.632		
S = 39.1432	4554.128		-0.013	4554.211	-0.096	6.3
Ti = 39.2861	4555.682	-0.020		4555,662		
S = 40.0346	4563.876		-0.006	4563.939	-0.069	4.5
Ti 40.0409	4563.945	-0.006		4563.939		
S = 40.6947	4571.177		-0.002	4571.275	-0.100	6.6
S = 40.7752	4572.072		-0.002	4572.156	-0.086	5.6
Ti = 40.7829	4572.158	-0.002		4572.156		
S = 41.2421	4577.286		-0.007	4577.356	-0.077	5.0
S = 42.3755	4590.093		-0.020	4590.126	-0.053	3.5
Ti = 42.3801	4590.146	-0.020		4590.126.		
S 44.6303	4616.228		-0.001	4616.305	-0.078	5.1
S = 44.7282	4617.383		± 0.000	4617.452	-0.069	4.5
Ti 44.7340	Standard	± 0.000		4617.452		

Curvature Cor. +0.0008 mm.

$$\begin{array}{c|c} \text{Mean} & -4.8 \\ V_a & -8.91 \\ V_d & +0.13 \\ \hline \text{Reduction to Sun} & -8.78 \\ \hline \text{Radial Velocity} & -13.6 \text{ km}. \end{array}$$

The results of other observers for this star are as follows:

Vogel	-		-		-		-		-		-		-	-14.5
Scheiner		-		~		-		-		-		-		-14.9
\mathbf{Lord}	-		-		-		-		-		-		-	-14.0
Campbell		~		-		~		-		-		-		-14.1

a TAURI

Two plates of this star have been measured, both by A. Of these B 191 is slightly inferior for measurement on account of the narrowness of its star spectrum, the photograph having been taken previous to the change of windows in the occulting bar.

1901, September 4, G. M. T. $20^{\rm h}$ $0^{\rm m}$ Hour angle E $3^{\rm h}$ $27^{\rm m}$

a TAURI—B 191
Star good; comparison fair.

Measured by A. with Zeiss Comparator Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm	t. m.	t. m.	t. m.	t. m.	t. m.	km
Ti-46.0655	Standard	± 0.000		4457.600		
S = 46.0170	4458.060		± 0.000	4457,656	+0.404	+27.2
Ti = 44.9084	4468,656	± 0.007		4468,663	1	1
S 44.0847	4476,633		-0.025	4476.214	+0.394	26.4
Ti 43.5887	4481.480	-0.042		4481.438	1 0.00-	
Ti = 41.5760	4501.488	-0.043		4501.445		
S = 41.5383	4501.868		-0.043	4501.422	+0.403	26.8
S = 40.4909	4512,508		-0.074	4512.063	+0.371	24.7
Ti = 40.4446	4512.982	-0.076		4512.906	10.0.2	
S 40.4064	4513.373		-0.076	4512.906	+0.391	26.0
Ti = 39.9322	4518.248	-0.050		4518.198	101002	
S 39.8965	4518.616		-0.050	4518.198	+0.368	24.4
Ti = 39.4690	4523.041	-0.067		4522.974	0.000	
S 39.0793	4527,097		-0.069	4526.644	± 0.384	25.4
Ti = 39.0350	4527.559	-0.069		4527.490	,	
S 38.9948	4527.979		-0.069	4527.518	± 0.392	26.0
S 38.8704	4529.280		-0.064	4528.798	± 0.418	$\frac{57.7}{27.7}$
S = 38.4366	4533.831		-0.051	4533.419	± 0.367	$\frac{1}{24.3}$
Ti = 38.3261	4535.000	-0.047		4534.953	1	
Ti = 37.3919	4544.921	-0.057		4544.864		
S = 37.3562	4545.303		-0.057	4544.864	+0.382	25.2
S = 37.2345	4546.606		-0.065	4546.129	+0.412	27.2
Ti-37.0099	4549.016	-0.078		4548.938	,	_
S = 36.9726	4549.417		-0.078	4548.938	+0.401	26.4

a TAURI-B 191-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S = 36.8960	4550.241		-0.069	4549.767	± 0.405	26.7
S = 36.4873	4551,654		-0.055	4554.211	-0.388	25.6
Ti 36.3896	4555.713	-0.051		4555.662	'	
S = 36.3502	4556,140		-0.051	4555.662	+0.427	28.1
Ti=35.6352	Standard	± 0.000		4563.939		
S 35,4341	4566,147		± 0.002	4565.750	± 0.399	26.2
S = 34.9308	4571.700		∔0.006	4571.275	+0.431	28.3
Ti 31.8903	4572.150	+0.006		4572.156	'	
S 31.8516	4572.579		± 0.006	4572.156	± 0.429	28.1
S = 32.1946	4602.620		-0.007	4602.183	± 0.430	28.0
S = 30.9806	4616.743		-0.014	4616.305	+0.424	27.5
$Ti = 30 \cdot 9191$	4617.466	-0.014		4617.452	'	
S 30.8819	4617.903		-0.014	4617.452	± 0.437	28.4
Ti-30.4227	4623 321	-0.012		4623.279		
S 29.5666	4633.520		-0.035	4633.078	+0.407	26.3
S = 28.0527	4651.883		-0.021	4651.461	+0 401	25.8
S 27.9800	4652.777		-0.020	4652.343	+0.414	26.7
Ti 27.6645	1656.662	-0.018		4656.644	,	
S 27.6303	4657.083		-0.018	1656.644	+0.421	27.1
S 27.0799	4663,910		-0.005	4663.481	-0.424	27.3
Ti 26,7709	Standard	± 0.000		4667.768		

Curvature Cor. +0.0002 mm.

 $\begin{array}{ccc} \text{Mean} & +26.6 \\ V_a & +29.29 \\ V_d & +0.26 \\ \text{Reduction to Sun} & +29.55 \\ \text{Radial Velocity} & +56.1 \text{ km.} \end{array}$

1902, January 16, G. M. T. $16^{\rm h}\,15^{\rm m}$ Hour angle E $0^{\rm h}\,33^{\rm m}$

a TAURI—B 275

Star good; comparison good.

Measured by A. Power 20

Hour angle E 0 35		, mar good,	go			100012
Ti 29.0002	Standard	±0.000		4417.884		1
S 29.3656	4421.203		+0.015	4420.100	+1.118	+75.9
Ti = 30.0248	4427.231	+0.035		4427.266	1	/
S 31.0761	4436.956		+0.020	4435.851	+1.125	76.1
S 31.7232	4443.012		± 0.009	4441.881	+1.140	77.0
S 31.7933	4443.671		± 0.008	4142.510	+1.169	78.9
Ti = 31.8249	4443.968	+0.008		4443.976		
Ti = 31.9487	4445.134		+0.008	4143.976	± 1.166	78.7
S 32.3640	4449.061		+0.009	4447.892	+1.178	79.4
Ti = 32.3897	4449.304	+0.009		4449.313		
Ti = 33.2583	4457.591	± 0.009		4457.600		
S 33.6781	4461.632		-0.015	4460,460	+1.157	77.8
S 33.8214	4463.017		-0.024	4461.818	+1.175	79.0
$Ti_{-33.9900}$	4464.650	-0.033		4464.617	,	
S 31,3228	4467.883		-0.009	4466.701	+1.173	78.7
Ti=34.4032	4468.667	-0.004		4468.663		
S 35.2905	4477.372		-0.001	4476.214	+1.157	77.5
Ti 35.7012	Standard	± 0.000		4481.438	'	
S 35.9172	4483.586		-0.007	4482.376	+1.203	80.5
Ti = 36.4875	4489.288	-0.026		4489.262		
S 36.6679	4491.101		-0.030	4489.911	+1.160	77.5
Ti = 37.6928	4501.490	-0.045		4501.445		
S 37.8038	4502.624		-0.045	4501.422	+1.157	77.1
S 38.1535	4506.209		-0.030	4505.003	+1.176	78.3
Ti = 38.8029	4512.914	-0.008		4512.906		
S 38.9166	4514.094		-0.008	4512.906	+1.180	78.4
Ti 40.1942	Standard	± 0.000		4527.490		
S = 40.2266	4527.833		±0.000	4526.644	+1.189	78.8
S 40.4312	4530.002	. ,	±0.000	4528.798	+1.204	79.7

Curvature Cor. ± 0.0008 mm.

 $\begin{array}{ccc} & \text{Mean} & +78.1 \\ V_a & -22.16 \\ V_d & \pm 0.04 \\ \text{Reduction to Sun} & -22.12 \\ \text{Radial Velocity} & +56.0 \text{ km}. \end{array}$

SUMMARY OF MEASURES OF a TAURI

Plate	Date	Adams	No. of Lines
B 191	1901, Sept. 4	$^{+56.1}_{+56.0}$	27
B 275	1902, Jan. 16		16

Mean +56.1 km.

The results of other observers for this star are as follows:

Vogel		-		-		-		-		-	+47.6
Scheiner -	-		-		-		-		-		+49.4
Keeler (visual)		-		-		-		-		-	+55.2
Campbell -	-		_		-		-		-		+54.8

a BOÖTIS

Eight plates of this star have been measured, six by A. and four by F., giving results in good agreement. The plates are nearly all of excellent quality, with those of Series B somewhat superior for purposes of measurement.

1902, March 12, G. M. T. $18^{\rm h}\,13^{\rm m}$ Hour angle E $2^{\rm h}\,28^{\rm m}$

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 29.4878	Standard	±0.000		4427.266		
S 29.6177	4428,456	10.000	+0.001	4428,711	-0.254	-17.3
	4435.554		+0.008	4435.851	-0.289	$\hat{1}9.$
\$ 30.3878 \$ 31.0376 \$ 31.1051	4441.602		+0.015	4441.881	-0.264	17.
S 31.1051	4442.234		+0.015	4442,510	-0.261	17.
S 31.2619	4443.702		+0.017	4443.976	-0.257	17.
Ti = 31.2893	4443.959	+0.017	'	4443.976	0.201	11.
S 31.6819	4447.652		-0.001	4447.892	-0.241	16.
Ti 31.8588	4447.052	-0.010		4449.313	-0.21	10.
		1	0.000	4451.752	0.263	17.
	4451.495	10.000	-0.006		0.203	11.
Ti = 32.7282	4457.592	+0.008	1.0.000	4457.600	-0.240	16.
S 32.9457	4459.676		+0.006	4459.922		18.
S 33.6462	4466.432		+0.001	4466.701	-0.268	
S 33.8510	4468.420		± 0.000	4468.663	-0.243	16.
Ti = 33.8760	Standard	± 0.000		4468.663		
S 34.6232	4475.966		-0.004	4476.214	-0.252	16.
Ti = 35.1786	4481.444	-0.006		4481.438		
S = 35.2997	4482.644		-0.005	4482.904	-0.265	17.
S 36.4837	4494.487		± 0.000	4494.738	-0.251	16.
S = 36.7112	4496.786		+0.001	4497,046	-0.259	17.
S = 37.1419	4501.158		± 0.003	4501.422	-0.261	17.
Ti = 37.1698	4501.442	+0.003		4501.445		
S = 38.2623	4512.657		-0.020	4512.906	-0.269	17.
Ti = 38.2883	4512,926	-0.020		4512.906		
S = 38,7248	4517.458		-0.011	4517.702	-0.255	16.
S 38.7700	4517.930		-0.009	4518.198	-0.277	18.
Ti = 38.7966	4518.207	-0.009		4518,198		
Ti = 39.2524	4522.975	-0.001		4522.974		
7 i 39.6814	Standard	+0.000		4527.490		
S 39.7821	4528.556	10.000	-0.005	4528.798	-0.247	16.
S 40.2876	4533.923		-0.029	4534.168	-0.274	18.
Ti = 40.3106	4534.168	-0.029	0.026	4531.139		
S 40,3596	4534.691	-0.020	-0.025	4534.953	-0.287	19.
Ti = 40.3865	4534.978	-0.025	-0.020	4534.953		
20.0000	1001.010	0.020		10.71.00.7		

Curvature Cor. $+0.0008 \,\mathrm{mm}$.

$$\begin{array}{c} {\rm Mean} & -17.4 \\ V_a & +13.63 \\ V_d & +0.19 \\ {\rm Reduction\ to\ Sun} & +13.82 \\ {\rm Radial\ Velocity} & -3.6 \ {\rm km}. \end{array}$$

а *ВОÖTIS*—В 300

1902, March 13, G. M. T. $17^{\rm h}\,29^{\rm m}$ Hour angle E $3^{\rm h}\,12^{\rm m}$

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti=30.4335	Standard	± 0.000		4427.266		
S 31.0758	4433.163	10.000	-0.001	4433.390	-0.228	-15.4
S 31.9839	1111.589		-0.002	4441.881	-0.294	19.
S 32.0515	4412.221		-0.002	4442.510	-0.291	19.0
S 32.2103	4443.706		-0.002	4443,976	-0.272	18.
Ti = 32.2393	4443.978	-0.002		4443.976		10.
S 32.6271	4447.621	0.002	-0.008	4147.892	-0.279	18.8
Ti 32.8077	4449.324	-0.011	0.000	4449.313		10.
Ti = 33.6773	4457.584	+0.016		4457.600	· ·	
S 33.8967	4459,681	70.010	+0.013	4459.922	-0.225	15.
S 31.0911	4461.552		+0.010	4461.818	-0.256	17.
S 31.6004	4466.461		± 0.003	4466.701	-0.237	15.
S 34.8012	4468.408		± 0.000	4468,663	-0.255	17.
Ti = 31.8275	Standard	+0.000	10.000	4468.663	0.200	
S 35.5739	4175.948	10.000	-0.009	4476.214	-0.275	18.
Ti 36.1330	4481.454	-0.016	0.000	4481.438	0.2.0	10.
S 36,2010	4482.127		-0.016	4482.376	-0.265	17.
S 37.4367	4494.464		-0.020	4494.738	-0.294	19.
Ti = 37.6226	4496.339	-0.021		4496.318	0,202	10.
S 37,6675	4496, 793		-0.021	4497.016	-0.274	18.
S 38.0972	4501.148		-0.005	4501.422	-0.279	18.
Ti = 38.1269	4501.450	-0.005		4501.445	\	10.
S 39.2206	4512.661	0.000	+0.004	4512.906	-0.241	16.
Ti = 39.2440	4512.902	± 0.004		4512.906		10.
S 39.7279	4517.921	, 0.001	-0.009	4518.198	-0.288	19.
Ti = 39.7554	4518.207	-0.009	0.000	4518.198	0.200	10,
S 40.5344	4526.362		-0.001	4526.644	-0.283	18.
Ti = 40.6414	Standard	+0.000	0.001	4527.490	3.203	10.
S 40.7409	4528.540	10.000	+0.000	4528.798	-0.258	17.

Curvature Cor. +0.0008 mm.

$$\begin{array}{c} \text{Mean} & -17.8 \\ V_a + 13.26 \\ V_d + 0.24 \\ \text{Reduction to Sun} & \underline{+13.50} \\ \text{Radial Velocity} & -4.3 \text{ km}. \end{array}$$

a BOÖTIS-B 300

Measured by F. Power 23

Ti-30.1742	Standard	± 0.000		4427.266		
S = 30.1583	$4427.12\bar{0}$		± 0.000	4427.420	-0.300	-20.
S = 30.8809	4433,757		+0.015	4434.021	-0.249	16.
Ti=30.9236	4434.152	+0.016		4434.168		
S = 31.7920	4442.218		-0.002	4442.510	-0.291	19.
Ti 31,9804	4443.981	-0.005		4443.976		l
S 32,3657	4417.600		-0.022	4447.892	-0.314	21.
Ti-32.5506	4449.343	-0.030		4449.313		
Ti=33.1993	4155,495	-0.010		4455,485		
S 33,2254	4455,729		-0.015	4456.030	-0.301	20.
Ti=33,4195	4457.596	+0.001		4457,600		
Ti-34.2930	4165.991	-0.016		4465.975		
S 34.5436	4468,418		-0.011	4468 663	-0.256	17.
Ti=34.5699	4468.671	-0.011		4468.663		
Ti=34.8509	4471,406	± 0.002		4471.408		
S 34.8675	4471.568		-0.001	4471.846	-0.282	18.
S = 35.3133	4175.927		-0.002	4176.214	-0.289	19.
Ti=35.8731	Standard	±O.OOO		4481.438		
S = 35,9402	4482.101		± 0.000	4482.376	-0.275	18.
S = 37.1760	4494.433		± 0.004	4494.738	0.301	20.
Ti = 37.3625	4496.313	± 0.005	.'	4496.318		
S 37.7462	4500, 196		+0.007	4500.451	-0.218	16.

а	$RO\ddot{O}'$	$TIS_{}$	R 200-	_Con	tinned
u	1)(/(/	1 113-	- 1) .)(/(/-	$ \cup$ m	

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t, m.	t. m.	t. m.	t. m.	t. m.	km.
S = 39.4258	4517.444		± 0.016	4517.702	-0.242	16.1
Ti = 39.4968	4518.182	+0.016		4518,198		
S = 40.2750	4526.323		+0.014	4526.644	-0.307	20.3
S 40.3614	4527.232		+0.014	4527.518	-0.272	18.0
Ti 40 3845	4527.476	+0.014		4527.490		
S 40.4819	4527.503		+0.014	4528,798	-0.281	18.6
Ti-42.0156	4544.866	-0.002		4544.864		
S = 42.1032	4545.811		-0.003	4546.129	-0.314	20.7
S = 42.2773	4547.695		-0.006	4548.024	-0.335	22.1
S = 42.3632	4548.625		-0.008	4548.938	-0.321	21.2
Ti-42.3928	4548.946	-0.008		4548.938		
Ti-42.7317	Standard	± 0.000		4552,632		
S = 42.8497	4553.919		+0.005	4554.211	-0.287	18.9
Ti = 43.0081	4555.649	+0.013	.'	4555.662		

Curvature Cor. +0.0013 mm.

Hour angle E $0^{\rm h}\,32^{\rm m}$

Mean -19.2 $V_a + 13.26$ $V_d + 0.21$ Reduction to Sun +13.50-5.7 km. Radial Velocity

1902, March 26, G. M. T. 18h 58m

a BOÖTIS-A 336 Star good; comparison strong.

Measured by A. Power 20

Ti 29.3151	Standard	± 0,000		4427.266		
S 29.4149	4428.497	±0.000	-0.003	4428.711	-0.217	-14.7
Ti = 29.8737	4434.185	-0.017	-0.005	4434.168	0.21	-12.1
S 30.4712	4441.664	-0.01	-0.011	4441.881	-0.228	15.4
S 30.5237	4442.325		-0.011	4442,510	-0.196	13.2
S 30.6378	4443.764		-0.009	4443.976	-0.221	14.9
Ti = 30.6553	4443,985	-0.009		4443.976	-0.441	14.0
S 30.9494	4447.709		-0.018	4447.892	-0.201	13.6
Ti = 31.0772	4449.334	-0.021		4449,313	-0.201	10.0
S 31.2509	4451.548		-0.017	4451.752	-0.221	14.9
Ti = 31.7235	4457.609	-0.009			-0.221	14.0
S 31.9310	4460.287		-0.016	4457.600	-0.189	10.7
Ti = 32.3716	4466.008	() ()20		4460,460	-0.189	12.7
S 32.4110		-0.033	0.000	4465.975	0.010	. 14.0
S 32.4110 S 32.5634	4166.522		-0.033	4466.701	-0.212	14.2
	4468.514	0.004	-0.031	4468.663	-0.183	12.3
	4468,697	-0.034		4468.663	0.400	40.0
S 33.1346	4476.028		-0.013	4476,214	-0.199	13.3
Ti = 33.5420	Standard	± 0.000		4481.438		
S 33,6001	4482.217		-0.001	4482.376	-0.160	10.7
Ti = 34.6475	4496.330	-0.012		4496.318		
\cdot S 34.6870	4496.868		-0.011	4497.046	-0.189	12.6
S = 35.0058	4501.224		-0.004	4501.422	-0.202	13.5
Ti = 35.0222	4501.449	-0.004		4501.445		
S = 36.2164	4518.013		-0.013	4518.198	-0.198	13.1
Ti = 36.2305	4518.211	-0.013		4518.198		
Ti = 36.8874	Standard	± 0.000		4527.490		1
S = 36.9675	4528.629		-0.006	4528.798	-0.175	11.6
S = 37.3447	4534.021		-0.036	4531.168	-0.183	12.1
Ti = 37.3555	4534.175	-0.036		4534.139		
S = 37.3954	4534.748		-0.023	4534.953	-0.228	15.1
Ti = 37.4113	4534.976	-0.023		4534.953		

Curvature Cor. +0.0005 mm.

 $\begin{array}{c} \text{Mean} & -13.4 \\ V_a & +7.97 \\ V_d & +0.04 \end{array}$ Reduction to Sun +8.01Radial Velocity -5.4 km. 1902, April 2, G. M. T. $15^{\rm h}\,51^{\rm m}$ Hour angle E $3^{\rm h}\,31^{\rm m}$

a BOÖTIS-B 304

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. ni.	t. m.	t. m.	km.
$Ti_{-}30.8922$	Standard	± 0.000		4427.266		
S = 31.0321	4428.551		± 0.000	4428.711	-0.160	-10.8
S 31.8070	4435.695		-0.002	4435.851	-0.158	10.7
S = 32.4550	4441.729		-0.003	4441.881	-0.155	10.5
S = 32.5236	4442.371		-0.003	4442.510	-0.142	9.6
S 32.6807	4443.844		-0.004	4443.976	-0.136	9.2
Ti = 32.6952	4443.980	-0.004		4443.976		
S = 33,0958	4447.749		-0.007	4447,892	-0.150	10.1
S = 33.2499	4449.205		-0.009	4449,313	-0.117	7.9
Ti 33.2623	4449.322	-0.009		4449.313		
Ti = 34.1327	4457.603	-0.003		4457,600	•	
S = 31.3622	4459.803		-0.002	4459,922	-0.121	8.1
S 34,5565	4461.671		-0.002	4461.818	-0.149	10.0
S = 35.2666	4468.541		± 0.000	4468.663	-0.122	8.2
Ti-35.2791	Standard	± 0.000		4468,663		
S = 36.0388	4476,090		+0.004	4476.214	-0.120	8.0
Ti 36.5803	4481.432	± 0.006		4481.438		
S = 36,6622	4182.243		+0.005	4482.376	-0.128	8.6
S 37.4167	4489.763		-0.003	4489.911	-0.151	10.1
S = 37.8973	4494.595		-0.009	4494.738	-0.152	10.1
$Ti_{-}38.0890$	4496.329	-0.011		4496,318		
S = 38.1273	4496.919		-0.009	4497.046	-0.136	9.1
S = 38.5563	4501.274		+0.001	4501.422	-0.147	9.8
$Ti_{-}38.5730$	4501.444	± 0.001		4501.445		
S = 39.6769	4512,776		+0.004	4512.906	-0.126	8.4
Ti-39.6890	4512,902	+0.004		4512,906		
S = 40.1840	4518.043		± 0.000	4518.198	-0.155	10.3
Ti 40.1989	Standard	± 0.000		4518.198		

Curvature Cor. $+0.0008 \,\mathrm{mm}$.

 $egin{array}{c} {
m Mean} & -9.4 \\ V_a & +5.04 \\ V_d & +0.26 \\ {
m Reduction\ to\ Sun} & +5.30 \\ {
m Radial\ Velocity} & \overline{4.1\ {
m km}}. \end{array}$

 σ ROOTIS = R 304

Measured by F. Power 17

		α η(η.	B 304			Power 17
S 29,1931	4399,778		±0.000	4399,903	-0.125	-8.5
Ti=29.2110	Standard	± 0.000		4399,935		
S 29,9727	4406.666		-0.010	4406.810	-0.154	10.5
S 30.4776	4411.165		-0.019	4411.240	-0.091	6.4
Ti 30 4881	4411.259	-0.019		4411.240		
Ti=32.2585	4427.278	-0.012		4427.266		
S 32,2616	4427.307		-0.012	4427.420	-0.125	8.5
S 33.8921	4442.402		-0.016	4442.510	-0.124	8.4 ·
Ti 34.0619	4443,993	-0.017		4443.976		
S 31.4644	4447.780		-0.027	4447.892	-0.139	9.4
Ti 34.6301	4419.345	-0.032		4449.313		
S 34,7533	4450.511		-0.029	4450.597	-0.115	7.8
Ti 35,2782	4455,500	-0.015		4455.485		
S 35,4912	4457.535		-0.015	4457.656	-0.136	9.2
Ti=35.4995	4457,615	-0.015		4457.600		
Ti 37.9474	Standard	±0.000		4481.438	1	
S 38,0304	4482.280		± 0.000	4482.376	-0.116	7.8
S 39,2647	4494.599		-0.001	4494.738	-0.140	9.3
Ti 39,4351	4496,319	-0.001		4496.318		
S 39,9256	4501.294		-0.014	4501.422	-0.142	9.5
Ti 39,9418	4501.459	-0.014		4501,445		
S 41.0466	4512.795		-0.002	4542,906	-0.113	7.5
Ti = 41.0575	4512.908	-0.002		4512.906		
Ti=42.4516	4527.473	+0.017		4527.490		
S 42.5673	4528.695		± 0.015	4528.798	-0.088	5.8

a BOÖTIS-B 304-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 44.0811	4544.873	-0.009		4544.864		
S 44.1872	4546.020		-0.008	4546.129	-0.117	7.7
S 44.4471	4548.838		-0.005	4548.938	-0.105	6.9
S 44.9271	4554.071		-0.001	4554.211	-0.141	9.3
Ti-45.0724	Standard	± 0.000		4555.662		

 $\begin{array}{ccc} \text{Mean} & -8.3 \\ \text{Curvature Cor.} & -0.87 \\ \hline V_a + 5.04 \\ V_d + 0.26 \\ \text{Reduction to Sun} & +5.30 \\ \text{Radial Velocity} & -3.8 \text{ km.} \end{array}$

1902, April 3, G. M. T. $15^{\rm h}$ $56^{\rm m}$ Hour angle E $3^{\rm h}$ $15^{\rm m}$

a BOÖTIS—B 311

Star excellent; comparison excellent.

Measured by F. Power 17

Ti 29.2136	Standard	±0,000		4399.935		
S 29.1950	4399.772		±0.000	4399.903	-0.131	-8.9
S 29.9756	4406.664		-0.002	4406.810	-0.131 -0.148	10.1
S 30.4744	4411.106		-0.002 -0.004	4400.810 4411.240	-0.138	9.4
Ti 30.4898	4411.244	-0.004		$\frac{4411.240}{4411.240}$	-0.135	9.4
Ti 32.2622	4427.279	-0.013	• • • • • • •	$\frac{4411.240}{4427.266}$		
			-0.013		0.147	10.0
	4427.286		0.10=3	4427.420	-0.147	10.0
	4442.393	0.000	±0.000	4442.510	-0.117	7.9
Ti = 34.0658	4413.976	±0.000	0.017	4443.976	0.115	
S 34.4718	4447.794	0.001	-0.017	4447.892	-0.115	7.8
Ti 34.6350	4449.334	-0.021	0.010	4449.313	0.400	
S 34.7568	4450.486		-0.018	4450.597	-0.129	8.7
Ti = 35.2843	4455.496	-0.011	*******	4455.485		
S 35.4991	4457.547		-0.008	4457.656	-0.117	7.9
Ti 35.5055	4457.608	-0.008		4457,600		
Ti = 37.9557	Standard	± 0.000		4481.438		
S 38.0400	4482.273		-0.001	4482.376	-0.104	7.0
S 39.2742	4494.602		-0.015	4494.738	-0.151	10.1
Ti = 39.4459	4496.335	-0.017		4496.318		
S 39.9335	4501.277		-0.016	4501.422	-0.161	10.7
Ti 39.9516	4501,461	-0.016		4501.445		
S 41.0574	4512.800		+0.007	4512,906	-0.099	6.6
Ti 41.0670	4512.899	± 0.007		4512.906		
Ti = 44.0912	4544.848	+0.016		4544.864		
S 44.1983	4546.005		+0.014	4546,129	-0.110	7.3
S 44.4581	4548.820		+0.010	4548.938	-0.108	7.1
S 44.9415	4554.086		+0.002	4554.211	-0.123	8.1
Ti 45.0855	Standard	±0.000	10.002	4555.662	0.120	0.1

Curvature Cor. +0.0012 mm.

Mean $V_a + 4.60$ $V_d + 0.24$ $V_d + 0.24$ $V_d + 0.24$

Reduction to Sun +4.84Radial Velocity -3.6 km.

1902 May 7, G. M. T. 17^h 17^m Hour angle W 0^h 17^m а *ВОÖTIS*— В 342

Star good; comparison good.

Measured by F. Power 17

			1			
Ti 30.001	Standard	±0.000		4427.266		
S = 30.029	4427,530		0.000	4427.420	+0.110	+7.4
S = 30,751	4431.147		-0.025	4434.021	+0.101	$+7.4 \\ 6.8$
Ti = 30.756	4434,193	-0.025		4434.168	'	1
S = 32.238	4447.981		-0.005	4447.892	+0.084	5.7
Ti = 32.380	4449.317	-0.004		4449.313		
		1				

a BOÖTIS-B 342-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S = 32.989	4455.075		-0.016	4454,993	+0.066	4.4
Ti = 33.034	4455.503	-0.018		4455.485	'	
Ti-33.254	4457.596	+0.004		4457.600		
S = 33.269	4457.740		+0.004	4457.656	+0.088	5.9
7i - 34.127	4465.967	+0.008		4465.975		
S = 34.418	4468.780		+0.008	4468.663	+0.125	8.4
S = 35.189	4476.288		+0.010	4476.214	+0.084	5.6
Ti = 35.712	4481.427	+0.011		4481.438		
S = 35.818	4482.473		+0.011	4482.376	+0 108	7.3
S = 37.056	4494.809		+0.001	4494.738	+0.072	4.8
Ti-37.206	Standard	± 0.000		4496.318	ì	
S = 37.716	4501.479		+0.002	4501.422	± 0.059	3.9
S = 38.844	4513.012		+0.006	4512.906	+0.112	7.4
Ti-40.233	4527.478	+0.012		4527.490	i i	
S = 40.246	4527.615		+0.012	4527.518	+0.109	7.2
S = 40.369	4528.910		+0.012	4528.798	+0.124	8.2
Ti-41.865	4544.852	+0.012		4544.864		
S = 41.992	4546.222		+0.010	4546.129	+0.103	6.8
S = 42.736	4554.297		+0.001	4554.211	+0.087	5.7
Ti-42.861	Standard	± 0.000		4555.662		

Curvature Cor. +0.001 mm.

$$\begin{array}{c} \text{Mean} & +6.4 \\ V_a & -9.90 \\ V_d & -0.03 \\ \text{Reduction to Sun} & -9.93 \\ \text{Radial Velocity} & -3.6 \text{ km}. \end{array}$$

1902, June 26, G. M. T. $15^{\rm h}$ $30^{\rm m}$ Hour angle W $1^{\rm h}$ $34^{\rm m}$

 $\label{eq:BOOTIS} $$a$ BOOTIS$—$B$ 371$ Star slightly weak; comparison good.

Measured by A. Power 17

Ti 32.6666	Standard	±0.000		4427.266		
S 32.8568	4429.004	<u></u> 0.000	± 0.000	4428.711	± 0.293	+19.8
S 31.3503	4442.805		±0.000	4442.510	+0.295	
Ti = 34.4758	$\frac{4442.805}{4443.976}$	± 0.000		4443.976	+0.233	19.9
S 31.5112	4444.307		± 0 000		1.0 221	22.3
				4443.976	+0.331	
S 34.9280	4448.217	0.00	-0.006	4447.892	+0.319	21.5
$Ti_{-}35.0452$	4449.320	-0.007		4449.313		
Ti = 35.9202	4457.613	-0.013		4457.600		
S = 36.2514	4460.779	4 4 4 7 7 4 4	-0.009	4460.460	+0.310	20.8
$Ti_{-}37.0699$	Standard	± 0.000		4468,663		
S = 37.1045	4468.998		± 0.000	4468.663	+0 335	22.5
S 37.8768	4476.523		-0.013	4476.214	± 0.396	19.8
Ti = 38.3790	4481.460	-0.022		4481.438		
S 38,5036	4482.690		-0.023	4482.376	+0.291	19.5
Ti=39.8726	4496.348	-0.030		4496.318		20.0
S 39.9741	4497.371		+0.024	4497.046	+0.301	20.1
Ti = 40.3770	4501.447	-0.002	10.021	4501.445	10.001	2011
S 40.4046	4501.727	0.002	-0.002	4501.422	+0.303	20.2
Ti 41.4987	4512.917	-0.011		4512.906	70.000	20.2
S 41.7730	4515.750		-0.009	4515.475	± 0.266	17.7
Ti 42.8987	4527.492	() (00)			+0.200	11.1
		-0.002	0.004	4527.490	10.004	01.5
S 43,0539	4529.126		-0.001	4528.798	+0.321	21.5
Ti 44 9110	4548.964	-0.026	******	4548.938		
S 44.9386	4549,263		-0.026	4548.938	+0.299	19.7
S = 45.4204	4554,499		-0.004	4554.211	+0.284	18.7
Ti-45.5269	Standard	± 0.000		4555.662		
	T .					

Curvature Cor. +0.0008 mm.

$$\begin{array}{c} {\rm Mean} & +20.3 \\ V_d & -23.85 \\ V_d & -0.13 \\ \hline {\rm Reduction \ to \ Sun} \\ {\rm Radial \ Velocity} & -23.98 \\ \hline \end{array}$$

a BOÖTIS—A 373

1902, September 6, G. M. T. $13^h 43^m$ Hour angle W $4^h 38^m$

Star good; comparison good.

Measured by A. Power 28

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti 29.1810	Standard	± 0.000		4427.266		
S = 20.2066	4427.580		± 0.000	4427.420	+0.160	+10.8
S 29.3129	4428.886		+0.001	4428.711	+0.176	11.9
S 29.8890	4436.008		+0.008	4435.851	+0.165	11.2
S 30.4227	4442.673		+0.014	4442.510	± 0.177	11.9
Ti 30.5252	4443.961	± 0.015		4443.976	1	
S 30.5392	4444.137		+0.015	4443.976	+0.176	11.9
S 30.8512	4448,072		-0.003	4447.892	+0.177	11.9
Ti~30.9499	4449.322	-0.009		4449.313	'	
Ti 31.4348	4455.494	-0.009		4455.485		
S 31.4904	4456.205		-0.008	4456.030	+0.167	11.2
Ti. 32.2483	Standard	±0.000		4465.975		
S 32.3175	4466.874		+0.000	4466.701	± 0.173	11.6
S 32.9524	4475.176		± 0.005	4475.026	+0.155	10.4
S 33.0439	4476.381		± 0.006	4476.214	+0.173	11.6
Ti 33.4257	4481.430	+0.008		4481.438	101210	11.0
S 33,5085	4482.530		± 0.009	4482.376	+0.163	10.9
S 34.4310	4494.900		+0.015	4494.738	+0.177	11.8
Ti 34.5345	4496.302	+0.016		4496.318	1 01211	11.0
S 34.5999	4497.189		+0.013	4497.046	+0.156	10.4
Ti 34.9126	4501.446	-0.001	,	4501.445	10.200	10.1
S 34.9224	4501.579		-0.001	4501.422	± 0.156	10.4
$Ti \ 35.7445$	4512.895	+0.011	0.001	4512.906	10.100	10.1
S 35.7562	4513.057	10.011	+0.011	4512.906	± 0.162	10.8
S 35.9421	4515.642		-10.009	4515.475	+0.176	11.7
Ti 36.7859	Standard	+0.000	10.000	4527.490	10.110	11.1
S 36.8902	4528.968	10.000	±0.000	4528.798	+0.170	11.3

Curvature Cor. +0.0005 mm.

$$\begin{array}{c} \text{Mean} & \cdot & +11.3 \\ V_a & -15.79 \\ V_d & -0.30 \\ \text{Reduction to Sun} & -16.09 \\ \text{Radial Velocity} & -4.8 \text{ km}. \end{array}$$

SUMMARY OF MEASURES OF a BOÖTIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 293	1902, March 12	-3.6	21		
B 300	March 13	-4.3	18	-5.7	19
A 336	March 26	-5.4	17		
B 304	April 2	-4.1	18	-3.8	16
B 311	April 3		1	-3.6	15
B 342	May 7			-3.6	15
B 371	June 26	-3.7	14		
A 373	Sept. 6	-4.8	17		

The results of other observers for this star are as follows:

Vogel and Scheiner	-	-	-	-	-	-7.7
Belopolsky		-	-	-	-	-5.7
Keeler (visual) -	-	-	-	-	-	-6.8
Newall		-	-	-	-	-5.9

PLATES OF STARS OF THE ORION TYPE

The detailed measurements on the different plates on the *Orion* stars follow. The stars are arranged in order of right ascension, and the separate plates of the same star in chronological order. The magnitudes of the stars are from the Harvard Photometry, and the spectral classes are according to Miss Maury's classification (*Annals of Harvard College Observatory*, Vol. XXVIII, 1898). The form of tabulation is the same as for the control plates, and all necessary explanations are found in the introductory note to those plates, and in the general discussion of the method of measurement (p. 7).

1. γ PEGASI

(R. A. = $0^h 8^m$; Dec. = $+14^\circ 38'$; Mag. 3.3; Class IVa)

Eight plates of this star have been measured, seven by A., and five by F., with four common to the two observers. As compared with the more recent plates both the stellar and comparison spectra of the earlier plates are distinctly inferior. The spectrum of this star is much better adapted to accurate measurement than that of the average star of the *Orion* type. All of the lines are comparatively narrow, and numerous oxygen and nitrogen lines are present.

γ PEGASI -- A 215

1901, September 5, G. M. T. $21^{\rm h}~28^{\rm m}$ Hour augle W $2^{\rm h}~22^{\rm m}$

Star strong; comparison fair.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t, m.	t. m.	km.	
$Ti_{25,3921}$	Standard	± 0.000		4338.084			
S 26.4567	4349.438		-0.007	4349.541	-0.110	-7.6	1
Ti.30.5625	4395.237	-0.036		4395.201			
S 34.1140	4437.639		-0.005	4437.718	-0.084	5.7	1
$Ti_{-}34.6256$	Standard	± 0.000		4443.976			
Ti.35.0540	4449.327	-0.014		4449.313			
Ti 36.5711	4468.630	± 0.033		4468,663			
S 36,7924	4471.493		+0.036	4471.676	-0.147	9.9	1
S 37.5336	4481.163		± 0.046	4481.400	-0.191	12.8	1
Ti.37.5510	4481.392	± 0.046		4481.438			
Ti = 42.7055	4552.627	+0.005		4552.632			
S 42.7083	4552.668		+0.005	4552.750	-0.077	5.1	1
Ti 43.4780	Standard	+0.000		4563.939			
S 43.7430	4567.860		+0.000	4567.950	-0.090	5.9	1

Curvature Cor. +0.0001 mm.

Weighted mean
$$V_a + 11.66$$
 $V_d - 0.19$ Reduction to Sun $+11.47$ Radial Velocity $+3.7$ km.

Mean - 7.8

γ PEGASI—A 218

1901, September 6, G. M. T. $17^{\rm h}7^{\rm m}$ Hour angle E $2^{\rm h}20^{\rm m}$

Star strong; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 23.8216	Standard	± 0.000		4338.084			
S = 24.0582	4340,589		-0.002	4340.634	-0.047	-3.2	1
S 28.3715	4388.086		-0.034	4388.100	-0.048	3.3	1
$Ti_{28.9937}$	4395.240	-0.039		4395.201			
S = 30.6752	4414.978		-0.037	4415.076	-0.135	9.2	- 1
Ti 31.7013	4427.301	-0.035		4427.266			
S 32.5469	4437.641		-0.017	4437.718	-0.094	6.4	2
Ti 33.0591	4443.982	-0.006		4443.976			
Ti 33.4860	Standard	± 0.000		4449.313			
S 35.2302	4471.539		+0.014	4471.676	-0.123	8.2	2
S 35.9751	4481.254		+0.021	4481.400	-0.125	8.4	3
Ti 35.9875	4481.417	+0.021		4481.438			
Ti 41.9166	Standard	± 0.000		4563.939			
S 42.1850	4567.907		+0.000	4567.950	-0.049	3.2	2

Curvature Cor. +0.0001 mm.

Weighted mean
$$V_a + 11.29$$
 $V_d + 0.17$ Reduction to Sun $V_a + 11.46$ Radial velocity $V_a + 11.46$ $V_a + 11.46$

y PEGASI-A 233

1901, September 18, G. M. T. $14^{\rm h}\,50^{\rm m}$ Hour angle E $3^{\rm h}\,22^{\rm m}$

Star good; comparison fair.

Measured by A. Power 21

Mean -3.8

			1				
Ti~18,6731	Standard	± 0.000		4338.084			1
S 18.9045	4340.549		-0.002	4340.634	-0.087	-6.0	1
S 23.1969	4388.083		-0.032	4388.100	-0.049	3.4	1
Ti 23.8163	4395.239	-0.038		4395,201			
S 25.5017	4415.111		-0.050	4415.076	-0.015	1.0	2
$\frac{25.6718}{5}$	4417.151		-0.051	4417.121	-0.021	1.4	2
$Ti \ 25.7371$	4417.935	-0.051		4417.884			
S 27.3544	4437.660		-0.010	4437.718	-0.068	4.6	2
Ti 27.8622	4443.974	+0.002		4443.976			
Ti 29.8037	Standard	± 0.000		4468.663			
S 30.0261	4471.548		+0.004	4471.676	-0.124	8.3	1 1
S 30.7733	4481.330		+0.016	4481,400	-0.054	3.6	
Ti 30.7803	4481.422	+0.016		4481.438			
Ti 35.9145	4552.542	+0.090		4552.632			
S 35.9204	4552.627	10.000	+0.090	4552.750	-0.033	2.2	9
Ti 36.6889	4563.899	+0.010	10.000	4563.939	0.0.5.5		1 -
S 36.9529	4567.810		+0.040	4567.950	-0.100	6.6	1
	4572.115	+0.041		4572.156	0.100	0.0	1 *
Ti 37.2418		+0.000	*****	4617.452			
Ti 40.1867	Standard			4630.703	-0.016	-1.0	1 :
S 41.0140	4630.687		± 0.000	-4090, 109	-0.016	-1.0	1

Curvature Cor. +0.0001 mm.

Weighted mean
$$V_a + 5.71$$
 $V_{tt} + 0.25$ Reduction to Sun $V_a + 5.96$ Radial Velocity $V_a + 2.7$ km.

γ PEGASI—A 233

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 29.999	Standard	± 0.000		4338.084			
S = 30.236	4340.613		-0.001	4340.634	-0.022	-1.5	1
Ti-35.551	4399,987	-0.052		4399.935			
S = 36.829	4415,102		-0.054	4415.076	-0.028	-1.9	$\frac{2}{2}$
S = 36.709	4417.175		-0.054	4417.121	0.000	0.0	2
Ti = 37.065	4417.938	-0.054		4417.884			
Ti = 37.839	4427.303	-0.037		4427,266			
S 38.684	4437.684		-0.029	4437.718	-0.063	-4.3	2
Ti = 39.192	4444.001	-0.025		4443.976			
Ti-41.133	4468.680	-0.017		4468,663			
S = 41.359	4471.609		-0.014	4471.676	-0.081	-5.4	3
Ti-42.110	Standard	± 0.000		4481.438			
S = 42,102	4481,335		± 0.000	4481.400	-0.065	-4.4	3
Ti-47.215	4552,592	+0.040		4552.632			
S = 47.252	4552,690		+0.040	4552.750	-0.020	-1.3	2
Ti 48.018	4553,930	+0.009		4563,939			
S = 48.284	4567.872	.,,,,,	+0.006	4567.950	-0.072	-4.7	2
Ti = 48.571	Standard	± 0.000		4572.156			

--- 3.3 Weighted mean Curvature Cor. -0.24 $V_{d} + 5.71 \\ V_{d} + 0.25$

Reduction to Sun +5.96 $\overline{+2.5}$ km. Radial Velocity

Mean-2.9

1902, September 26, G. M. T. 14
h $5^{\rm m}$ Hour angle E $3^{\rm h}$ $38^{\rm m}$

 γ PEGASI \rightarrow A 245

Measured by A Power 21

Star fair; comparison strong.

Ti=32.3644	4386,958	+0.049		4387.007			
S = 32.4662	4388.125		十0.042	4388.100	+0.067	+4.6	
Ti 33,4861	Standard	±0.000		4399.935			
S 31.7662	4415,061		-0.016	4415.076	-0.031	-2.1	
S 34,9382	4417.119		-0.018	4417.121	-0.020	-1.4	
$Ti_{-}35.0036$	4417,903	-0.019		4417.884			
He 39.3113	4471.661	+0.015		4471.676			
S 39,3137	4471.692		+0.015	4471.676	+0.031	$^{+2.1}_{+2.1}$	-
S 10,0624	4481.476		-0.040	4481.400	± 0.036	+2.1	
Ti=40.0625	4481.478	-0.040		4481.438			
Ti=43.4488	Standard	±0.000		4527.490			
Ti=45.2404	4552.632	± 0.000		4552.632			
S = 45,2491	4552,759		± 0.000	4552,750	± 0.009	± 0.6	Ì
Ti-45.9822	4563,923	+0.016		4563.939			
S = 46.2587	4568,040		± 0.003	4567.950	± 0.063	44.1	
Ti 46.5383	4572.165	-0.009		4572,156	,		
S = 46.7283	4575,002		-0.008	4574,900	+0.091	± 6.2	
Ti=49.4881	Standard	± 0.000		-4617.452			

Curvature Cor. +0.0001 mm.

Weighted mean $V_d + 1.80$ $V_d + 0.27$

Mean + 2.1

+2.07Reduction to Sun Radial Velocity $+4.2 \,\mathrm{km}$ 1901, October 16, G. M. T. $12^{\rm h}~46^{\rm m}$ Hour angle W $2^{\rm h}~20^{\rm m}$

γ PEGASI--B 194

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 21.834	Standard	± 0.000	!	4338.084			
S 22.178	4340.812		-0.002	4340.634	+0.176	+12.2	1
S 27.956	4388.406		-0.063	4388.100	± 0.243	16.6	3
Ti 28.756	4395.274	-0.073		4395.201	'		
Ti 29.305	4400.038	-0.100		4399.935			
S 31.052	4415.399		-0.084	4415.076	+0.239	16.2	$\frac{2}{2}$
S 31.285	4417.480		-0.082	4417.121	± 0.277	18.8	2
Ti = 31.340	4417.966	-0.082		4417.884	1 '		
Ti = 32.384	4427.361	-0.095		4427.266			
S 33,550	4438.004		-0.075	4437.718	+0.211	14.3	3
Ti = 34.203	4444.037	-0.061		4443.976			
Ti = 36.816	4468.721	-0.058		4468.663			Ì
$He \ 37.118$	4471,636	+0.040		4471.676			1
S 37.158	4472.018		-0.052	4471.676	+0.290	19.4	4
Ti 38.130	4481.472	-0.034		4481.438			
S 38.142	4481.595		-0.034	4481.400	+0.161	10.8	5
Ti = 41.270	Standard	± 0.000		4512,906			
Ti 42,680	4527.471	+0.019		4527.490			
Ti = 45.045	4552.591	+0.041		4552.632			
S 45.077	4552.936		+0.041	4552.750	+0.227	15.0	4
Ti = 46.085	4563.911	± 0.028		4563.939			
S 46,471	4568.156		+0.034	4567.950	+0.240	15.8	3
Ti = 46.829	4572.116	+0.040		4572.156			
S 47.091	4575,026		+0.039	4574.900	+0.200	13.1	2
Ti = 48,431	4590.091	± 0.035		4590,126			
S 48.532	4591.233		+0.036	4591.066	± 0.203	13.3	
S 49.002	4596.602		+0.040	4596.291	+0.351	22.9	3
$Ti_{50.793}$	4617.392	± 0.060		4617.452	1 1 1 1		
S 51.926	4630.844		+0.051	4630.703	+0.192	12.1	1
S 53.466	4649,493		+0.038	4649.250	+0.281	18.1	$\frac{1}{3}$
Ti = 54.044	4656,610	+0.034		4656.644	1		
S 54.478	4661.990	1010.02	+0.032	4661.728	± 0.294	18.9	4
Ti = 54.938	4667.739	+0.029	1	4667.768			
Ti = 56.071	Standard	± 0.000		4682,088			
He 58.478	4713.414	-0.162		4713.308			
S 58.496	4713.659	0.102	-0.162	4713.308	+0.245	15.6	5
5 65.165	1115.050	Wajahtala		L 16 20		m ± 15.8	

Weighted mean Curvature Cor.

+16.300.27 Mean + 15.8

Mean + 30.9

 $V_a = 8.21 \ V_d = 0.19$ -0.19

Reduction to Sun Radial Velocity

-8.40+ 7.6 km.

1901, November 27, G. M. T. 12h 11m Hour angle E 1^h 27^m

γ PEGASI—B 246

Star good; comparison good.

Measured by A. Power 21

		L I			1		T
Ti = 24.2438	Standard	±0.000		4387.007			
S 24.4247	4388,571		± 0.000	4388.100	+0.471	+32.2	'
Ti = 26.9971	4411.222	+0.018		4411.240			
S 27,4696	4415.466		+0.016	4415.076	+0.406	27.6	! ;
Ti = 33.1500	4468.669	-0.006		4468.663			
S 33.5051	4472.134		-0.004	4471.676	+0.451	30.4	:
Ti = 34.4500	Standard	± 0.000		4481.438			
S 34,4929	4481.863		± 0.000	4481.400	+0.463	31.0	:
Ti = 41.2867	4552.593	+0.039		4552.632			
S 41.3428	4553.206		+0.039	4552.750	+0.495	32.6	:
Ti=42.3138	4563.903	± 0.036		4563.939			
S 42.7187	4568.410		+0.019	4567.950	+0.479	31.4	
Ti 43.0535	Standard	± 0.000		4572.156			

Curvature Cor. +0.0008 mm.

Weighted mean

 $\begin{array}{ccc} & & & +30.7 \\ V_a & -24.93 & & \\ V_d & +0.12 & & \\ \text{in} & & & \end{array}$ -24.81Reduction to Sun + 5.9 km. Radial Velocity

γ PEGASI-B 246

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t. m.	t, m,	t. m.	kın.	
S 29 961	4367.455		± 0.057	4367.012	+0.500	+34.3	1
$Ti_{-}30.000$	4367.782	+0.057		4367.839		·	
Ti = 32.259	Standard	+0.001		4387.007			
S = 32.440	4388.571		-0.001	4388.100	+0.470	32.1	$\frac{2}{3}$
S 35,489	4415.497		-0.042	4415.076	+0.379	25.7	3
Ti = 35.759	4117.934	-0.050		4417.884	,		
Ti 37.534	4434.182	-0.014		4434.168			
S 37.972	4438.251		-0.029	4437.718	+0.504	34.1	2
$Ti_{-}38.219$	4440.551	-0.036		4440.515	'		
Ti-40.892	4465.998	-0.023		4465.975			
Ti = 41.451	4471.439	-0.031		4471.408			
S 41.532	4472.231		-0.019	4471.676	+0.536	35.9	$\frac{1}{2}$
Ti = 42.467	Standard	+0.001		4481.438			
S 42.514	4481.902		+0.001	4481.400	+0.503	33.7	3
Ti 49.306	4552.612	+0.020		4552.632			
S 49.362	4553.241		+0.017	4552.750	+0.491	32.3	2
Ti 49.584	4555.656	+0.005		4555.662			
Ti = 52.654	Standard	+0.001		4590.126			
S = 52.789	4591.682		± 0.000	4591.066	+0.616	40.2	1

+32.6Weighted mean -0.90Curvature Cor. $V_d = -24.93 \ V_d + 0.12$

Reduction to Sun -24.81Radial Velocity +6.9 km.

 γ PEGASI—B 395

1902, August 22, G. M. T. 20h 40m

Measured by A.

Mean + 33.5

er 17	Pow		good.		r angle W 0 ^h 40 ^m			
1	-10.7	-0.157	4388,100	±0.000		4387.943	S 25.3176	
			4395.201		± 0.000	Standard	Ti=26.1587	
2	14.2	-0.207	4415.076	-0.024		4414.893	S 28.3946	
1	9.9	-0.146	4417.121	-0.027		4417.002	S 28 6302	
			4417.884		-0.028	4417.912	Ti-28.7316	
			4427.266		-0.035	4427.301	Ti 29.7690	
1	7.2	-0.107	4437.718	-0.002		4437.613	3 30.8940	
			4443.976		± 0.012	4143.961	Ti 31.5778	
			4468.663		± 0.000	Standard	Ti = 34.1776	
2	13.8	-0.205	4471.676	± 0.003		4471.468	8 31.4670	
3	12.9	-0.193	4481.400	± 0.015		4481.192	8 35.4614	
			4481.438		+0.015	4481.423	Ti 35,4849	
3	11.3	-0.171	4552.750	+0.013		4552.566	8 42.3591	
			4552,632		+0.013	4552.619	Ti=42.3640	
			4563.939		-0.003	4563.942	Ti 43.3973	
2	7.0	-0.106	4567.950	-0.002		4567.816	S 43.7499	
			4572.156		± 0.000	Standard	Ti = 44.1371	
2	14.3	-0.218	4574.900	± 0.000		4574.682	S 41.3630	

Curvature Cor. +0.0009 mm.

Weighted mean

 $\frac{\overline{V}_a}{V_d} + 17.60$ $\frac{-0.06}{V_d} = 0.06$

Reduction to Sun Radial Velocity

+17.54 $+5.9\,\mathrm{km}$ Mean = 11.2

γ PEGASI—B 395

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	-
Ti = 30.0036	4338,093	-0.009		4338.084			
S 30.2982	4340.438		-0.006	4340.634	-0.202	-14.0	2
Cr 30.8273	Standard	± 0.000		4344.670			
Cr = 34.0985	4371.478	-0.036		4371.442			
S 36.0509	4388.025		-0.038	4388.100	-0.113	7.7	3
Ti = 36.8869	4395,240	-0.039		4395.201			
S 39.1255	4414.957		-0.059	4415.076	-0.178	12.1	2
Ti = 39.4590	4417.945	-0 061		4417.884			
Ti = 40.4960	4427.321	-0.055		4427.266			
S 41.6236	4437.667		-0.049	4437.718	-0.100	6.8	3
Ti = 42.3077	4444.021	-0.045		4443.976			
Ti 44.9038	4468.682	-0.019		4468.663			
S 45,1978	4471.531		-0.015	4471.676	-0.160	10.7	3
S 46.1916	4481.246		± 0.000	4481.400	-0.154	10.3	4
Ti-46.2109	Standard	± 0.000		4481.438			
S = 53.0861	4552,573		+0.007	4552.750	-0.170	11.2	3
Ti 53.0909	4552.625	+0.007		4552.632			
Ti = 53.3687	4555.651			4555,662			
Ti = 54.1247	4563.949	-0.010		4563.939			-
S 54.4745	4567.820		± 0.000	4567.950	-0.130	8.5	3
Ti = 54.8641	Standard	± 0.000		4572.156			
S 55,0962	4574.750		± 0.000	4574.900	-0.150	9.8	2

Weighted mean

-9.9-0.82 Mean —10.1

Curvature Cor.

 $V_a + 17.60$ $V_d = 0.06$

Reduction to Sun Radial Velocity

+17.54+6.8 km.

1902, October 9, G. M.T. 17^h 53^m Hour angle W. 1h 5m

 γ PEGASI—B 419 Star good; comparison good.

Measured by A. Power 21

Ti 22.0428	Standard	±0.000		4338.084			
S 22.3850	4340.812		-0.001	4340.634	+0.177	± 12.2	1
S 28.1141	4388.306		-0.014	4388.100	+0.192	13.1	1
Ti = 28.9134	4395.217	-0.016		4395.201			
Ti 29.4541	4399.935	± 0.000		4399.935			İ
S 31.1782	4415.206		-0.006	4415.076	± 0.124	8.4	2
S 31.4124	4417.308		-0.007	4417.121	+0.180	12.2	1
Ti 31.4773	4417.891	-0.007		4417.884	1		_
Ti 32.5113	4427.258	+0.008		4427.266			
S 33.6671	4437.885	10.000	+0.003	4437,718	+0.170	11.5	2
Ti 34.3214	Standard	±0.000	0.000	4443.976	10.110	11.0	_
Ti 36.9141	4468.657	+0.006		4468.663			
		1 1	+0.012	4471.676	+0.131	8.8	3
	4471.795	1.0.029		4481.438	70.191	0.0	
Ti 38.2175	4481,406	+0.032	1 () ()20		10.159	10.0	5
S 38.2291	4481.521	1.0.00	+0.032	4481.400	+0.153	10.2	i o
Ti 45.0835	4552.625	+0.007		4552.632	10.103	40.0	
S 45.1120	4552.935		+0.007	4552.750	+0.192	12.6	2
Ti = 46.1136	Standard	±0.000		4563.939			
S 46.4929	4568.149		-0.008	4567.950	+0.191	12.5	4
Ti 46.8533	4572.172	-0.016		4572.156			

Curvature Cor. +0.0008 mm.

 $\begin{array}{ccc}
 & +11.0 \\
 V_a & -4.63 \\
 V_d & -0.09 \\
 & & & \end{array}$ Weighted mean

Mean+11.3

Reduction to Sun Radial Velocity

4.72 +6.3 km.

γ PEGASI—B 419

Measured by F. Power 17

Mean + 12.4

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km:	
Ti-29.9510	4387.035	-0.028		4387.007			
S = 30.0991	4388,309		-0.025	4388.100	+0.184	+12.6	1
Ti-30.8962	4395,207	-0.006		4395.201	1 ' ' '		
Ti = 31.4378	Standard	± 0.000		4399,935			
S = 33.1676	4415.266		-0.003	4415.076	+0.187	12.7	2
Ti = 33.4584	4417.878	+0.006		4417.884			
Ti = 34.4958	4427.279	-0.013		4427.266			
S 35.6534	4437.925		-0.004	4437.718	+0.203	13.7	11/2
Ti=36.3037	4443.980	-0.004		4443.976			
Ti=38.8970	4468.667	-0.004		4468.663			
Ti = 39.1795	4471.410	-0.002		4471.408			
S 39, 2222	4471.825		-0.002	4471.676	+0.147	9.9	21/2
Ti-40.2030	Standard	± 0.000		4481.438	'		-/2
S 40.2149	4481.556		± 0.000	4481.400	+0.156	10.4	3
Ti = 47.0704	4552.625	± 0.007		4552.632	1,1,2,3		
S 47.0981	4552.926		+0.007	4552.750	+0.183	12.0	2
Ti 48.1009	4563,931	± 0.008		4563.939			-
S 48,4826	4568.163		± 0.001	4567.950	± 0.217	14.2	2
Ti 48.8408	Standard	± 0.000	1	4572.156	1	- 1. 2	-
S 49.1044	4575.108	10.000	+0.001	4574.900	+0.209	13.7	1
Ti = 50.4284	4590.113	+0.013		4590.126	3.200	,,,	

Curvature Cor. +0.0013 mm.

Weighted mean
$$V_a = -4.63$$
 $V_d = -0.09$ Reduction to Sun Radial Velocity $\frac{-4.72}{+7.3}$ km.

SUMMARY OF MEASURES OF γ PEGASI

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 215	1901, Sept. 5	+3.7	6		
A 218 A 233	Sept. 6 Sept. 18	$^{+5.1}_{+2.7}$	7	+2.5	8
A 245 B 194	Sept. 26 Oct. 16	+4.2	8	+7.6	16
B 246	Nov. 27	+5.9	6	± 6.9	8
B 395 B 419	1902, Aug. 22 Oet. 9	$^{+5.9}_{+6.3}$	9	$^{+6.8}_{+7.3}$	8

Mean +4.8 +6.2

Mean of 8 plates +5.3 km. Mean of all measures +5.4 km.

2. $\zeta CASSIOPEIAE$

(R. A. = 0^h 31^m; Dec. = $+53^\circ$ 21'; Mag. 3.7; Class IVa)

Four plates of this star have been measured, with two common to the two observers. The spectrum has much the same lines as in the case of γ Pegasi, but the lines are considerably broader, and accurate measurement is consequently more difficult.

1901, October 31, G. M. T. $13^{\rm h}~50^{\rm m}$ Hour angle E $0^{\rm h}~20^{\rm m}$

₹ CASSIOPEIAE -- A 281

Star fair; comparison fair.

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	_
Ti-29.4825	4338.046	+0.038		4338.084			
S 29.7341	4340.725		+0.038	4340.634	+0.129	+8.9	1
Ti = 30.0789	4344.414	+0.037		4344.451			
S 32.1530	4367.070		+0.001	4367.012	+0.059	+4.0	1/2
Ti = 32.2221	Standard	± 0.000		4367.839			
Ti = 33.9222	4387.046	-0.039		4387.007			
He 34.0167	4388.131	-0.031		4388.100			
S 34.0234	4388.208		-0.036	4388.100	+0.072	+4.9	2
Ti = 35.4240	4404.496	-0.063		4404.433			
S 36.3179	4415.105		-0.072	4415.076	-0.043	-2.9	2
Ti = 36.5559	4417.958	-0.074		4417.884			1
Ti = 37.8895	4434.174	-0.006		4434.168	1		
S 38.1825	4437.790		+0.001	4437.718	+0.073	+4.9	11/2
Ti = 38.4019	4440.510	+0.005		4440.515			
Ti 40.4150	4465.983	-0.008		4465.975	0.010		
S 40.8538	4471.663		-0.005	4471.676	-0.018	-1.2	3
Ti 41.6007	Standard	± 0.000		4481.438			
S 41.6002	4481.431		± 0.000	4481.400	+0.031	+2.1	4
Ti-46.7395	4552.599	+0.033		4552.632	1 0 000		
S 46.7538	4552.807		+0.033	4552.750	+0.090	+5.9	2
Ti 46.9467	4555.620	+0.042		4555.662			
Ti = 47.5099	4563.894	+0.045		4563.939	10.104	101	,
S 47.7895	4568.036		+0.038	4567.950	+0.124	+8.1	1
Ti-49.2547	Standard	± 0.000		4590.126			
Ti = 51.7687	Standard	± 0.000		4629.521	10004		
S 51.8431	4630.717		± 0.000	4630.703	+0.014	+0.9	2
Ti-54.0936	Standard	± 0.000		4667.768			1
Ti = 56.5594	Standard	± 0.000		4710.368			
He 56.7282	4713.365	-0.057		4713.308	10.055	. 0 =	
S 56.7296	4713.391		-0.028	4713.308	+0.055	+3.5	3

Curvature Cor.+0.0009 mm.

Weighted mean +2.7 $V_a = -1.90$ $V_d = \pm 0.02$

Reduction to Sun Radial Velocity $\frac{-1.88}{+0.8 \text{ km}}$

ζ CASSIOPEIAE—B 211

1901, November 7, G. M. T. 14^h 43^m Hour angle E 0^h 43^m Star good; comparison on but one side of star spectrum. Measured by A. Power 21

Mean +3.6

Mean + 7.8

Ti 19.3141	Standard	±0.000		4338.084			
Ti = 25.2765	4387.103	-0.096		4387.007			
S 25.4128	4388.268		-0.094	4388.100	+0.074	+5.1	2
S 30.9939	4437.819		-0.010	4437.718	+0.091	6.2	1
Ti 31.6579	Standard	± 0.000		4443.976			
Ti 34.2661	4468.670	-0.007		4468.663			
S 34.5904	4471.803	- 1	+0.000	4471.676	+0.127	8.5	3
	4481.413	+0.025		4481.438	0.12.	0.0	"
Ti 35.5771		i '	1.0.005	4481.400	+0.122	8.2	2
S 35.5847	4481.497		+0.025		+0.122	0.2	4
Ti 42.4790	4552.614	+0.018		4552,632		*0.4	
S 42.5045	4552.890		+0.018	4552.750	+0.158	10.4	2
Ti 43.5160	Standard	± 0.000		4563.939			
S 43.8931	4568.101		± 0.000	4567.750	+0.151	9.9	1
Ti 44.2586	4572.157	-0.001		4572.156			
S 44.5133	4574.996		-0.001	4574.900	+0.095	6.2	1
13 44,0100	1011.000		0.001	20.2.000	1 - 1 - 1		

Curvature Cor. +0.0002 mm.

Weighted mean +9.7

4.48

 $V_a = 4.48 \\
V_d = +0.04$

Reduction to Sun -4.44Radial Velocity +3.5 km.

ζ CASSIOPEIAE-B 248

1901, November 27, G. M. T. 16^h 48^m Hour angle W 2h 49m

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t- m.	t. m.	t. m.	t. m.	km,	
Ti-25.8586	Standard	± 0.000		4387.007			
S = 25.0051	4388.274		+0.002	4388.100	+0.176	+12.0	3
Ti 28.6093	1411.207	+0.033		4411.240	,		
S = 29.2890	4417.324		+0.021	4417.121	+0.224	15.2	1
Ti = 31.1310	4434.181	-0.013		4431.168			
S 31.5420	4438.000		± 0.000	4437.718	+0.282	19.1	3
Ti = 32.1785	4443.956	± 0.020		4443.976			
Ti = 34.7653	-4468.700	-0.037		4468.663			ĺ
S = 35.0971	4471.938		-0.028	4471.676	+0.234	15.7	2
Ti-36.0618	Standard	± 0.000		4481.438	•		
S = 36.0736	4481.555		± 0.000	4481.400	+0.155	10.4	3
Ti=42.8983	4552.605	± 0.027		4552,632			
S = 42.9342	4552,998		+0.027	4552.750	+0.275	18.1	2
Ti-43.9288	4563.956	-0.017		4563.939			
S = 44.3155	4568.259		-0.013	4567.950	+0.296	19.4	1
S = 44.9318	4575.170		-0.010	4574.900	+0.260	17.0	1
Ti-46.2466	Standard	± 0.000		4590.126			
S = 46.8046	4596.563		± 0.000	4596,291	+0.272	17.8	2

Curvature Cor. ± 0.0009 mm.

Weighted mean
$$+15.5$$
 $V_{d} = -11.41$
 $V_{d} = 0.14$
Reduction to Sum $=-11.5$

 $Mean \pm 16.1$

Reduction to Sun -11.55+ 4.0 km. Radial Velocity

ζ CASSIOPEIAE—B 248

Measured by F. Power 12

Ti 31.9000	4340.689		± 0.108	4340.634	+0.163	+11.3	
\$ 34.9975	4341.425	± 0.105		4341.530		,	
Ti = 40.4650	Standard	± 0.000		4387.007			
S = 40.6127	4388.281	,	± 0.005	4388.100	± 0.189	12.9	1
Ti 42.4605	4404.465	+0.032		4404.433			
S 43.6605	4415.187		± 0.027	4415.076	+0.138	9.4	
Ti 45.7405	4434.184	± 0.016		4434.168			
S 46,1508	4437.994		0.010	4437.718	+0.286	19.3	
Ti 49.0985	4466.007	-0.032		4465.975			
S 49.7048	4471.911		-0.022	4471.676	+0.213	14.3	
Ti=50.6725	Standard	± 0.000		4481.438			
S 50.6848	4481.560		± 0.000	4481.400	± 0.160	10.7	1
Ti = 57.5090	4552.602	± 0.030		4552,632	1		
S 57.5480	4553.028		+0.030	4552,750	± 0.308	20.3	
S 58.9235	4568.228		± 0.017	4567.950	± 0.195	12.8	
Ti 60.8570	Standard	± 0.000		4590.126			

Curvature Cor. ± 0.0015 mm.

 $Mean \pm 13.9$

Weighted mean $\begin{array}{c} V_a = 11.41 \\ V_d = 0.14 \end{array}$

--11.55 Reduction to Sun +2.4 km. Radial Velocity

1902, July 22, G. M. T. $19^{\rm h}~10^{\rm m}$ Hour angle E $3^{\rm h}~10^{\rm m}$

₹CASSIOPEIAE — A 355

Star good; comparison imperfect.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 24.1893	Standard	± 0.000		4338.084			
S 24.4017	4340.360		-0.001	4340.634	-0.275	-19.5	3
S 28.6706	4387.926		-0.023	4388.100	-0.197	13.5	2
Ti = 29.7021	4399.963	-0.028	j	4399.935			i
Ti = 31.9750	4427.286	-0.020		4427.266			
Ti = 33.3186	Standard	± 0.000		4443.976			
Ti = 35.2474	4468.672	-0.009		4468.663			
$\hat{S} = 35.4537$	4471.366		-0.003	4471.676	-0.316	21.2	1
S = 36.1905	4481.075		+0.019	4481.400	-0.306	20.5	2
Ti = 36.2164	4481.419	+0.019		4481.438			
S 41.3134	4552.521		+0.012	4552.750	-0.217	14.3	2
Ti = 41.3201	4552.620	+0.012		4552.632			
Ti = 42.0857	4563.929	+0.010		4563.939			
S 42.3338	4567.631		+0.005	4567.950	-0.314	20.6	2
Ti = 42.6353	Standard	± 0.000		4572.156			
S = 42.7960	4574.579		± 0.000	4574.900	-0.311	20.4	1

Curvature Cor. +0.0005 mm.

Weighted mean

-18.1

Mean - 18.5

 $V_d + 20.77 \ V_d + 0.15$

Reduction to Sun Radial Velocity +20.92 + 2.8 km.

ζCASSIOPEIAE — A 355

Measured by F. Power 12

Ti 28.9627	Standard	±0.000		4338.084			
S = 29.1747	4340.355		0.000	4340.634	-0.279	-19.3	2
Ti = 33.3655	4387.004	+0.003		4387.007			
S 33.4441	4387.912		-0 005	4388.100	-0.193	13, 2	2
Ti = 31.0764	4395.263	-0.062		4395.201			
Ti = 36.7481	4427.258	+0.008		$\boldsymbol{4427.266}$			
S = 37.5660	4437.367		+0.007	4437.718	-0.341	23.2	2
Ti = 38.0936	4443.970	+0.006		4443.976			i
Ti = 40.0224	Standard	±0.000		4468.663		40.3	1 -
S = 40.2310	4471.387		+0.018	4471.676	-0.271	18.2	2
S = 40.9630	4481.032		+0.083	4481.400	-0.285	19.1	1
Ti = 40.9873	4481.355	+0.083		4481.438	1	40.0	
S = 46.0922	$\{4552.570$		+0.024	4552.750	-0.156	10.3	11
Ti-46.0968	4552,638	+0.021		4552.662			
Ti = 46.8620	4563.943	-0.004		4563.939	0.40	12.0	
S = 47.1174	4567.755		-0.002	4567.950	-0.197	12.9	r
Ti = 47.4106	Standard	± 0.000		4572.156	0.010	14.0	1.
S = 47.5781	4574.682		+0.002	4574.900	-0.216	14.2	1

Curvature Cor. + 0.0010 mm.

Weighted mean —

Mean - 16.3

 $V_a + 20.77 \ V_d + 0.15$

Reduction to Sun

+20.19

Radial Velocity

 $+ \frac{120.10}{4.0}$ km.

SUMMARY OF MEASURES OF \$CASSIOPEIAE

Plate	Date	Adams	No. of lines	Frost	No. of lines
A 281 B 211 B 248 A 355	1901, Oct. 31 Nov. 7 Nov. 27 1902, July 22	$+3.5 \\ +4.0 \\ +2.8$	7 9 7	+0.8 $+2.4$ $+4.0$	11 8 7

Mean

+3.3

+2.4

 $\begin{array}{c} \text{Mean of 4 plates} \ +2.7 \ \text{km}. \\ \text{Mean of all measures} \ +2.9 \ \text{km}. \end{array}$

3. ϵ CASSIOPEIAE

(R, A.= 1^h 47^m; Dec.= $+63^{\circ}$ 11'; Mag. 3.6; Class IV ab)

Four plates of this star have been measured, all of which are common to the two observers. The spectrum contains but few lines, and these are very broad and difficult of measurement.

 ϵ CASSIOPEIAE — A 261

1901, October 3, G. M. T. 17^h 15^m Hour angle E 1^h 35^m

Star fair; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
t. m.	t. m.	t. m.	t. m.	t. m.	t. m.	km	
Ti-19.1034	Standard	± 0.000		4338.084			
S = 19.3091	4340.273		-0.001	4340.634	-0.362	-25.0	1
S = 23.6055	4387.820		-0.014	4388,100	-0.294	20.1	ì
Ti-24.2459	4395,218	-0.017		4395,201			
Ti-26.9383	Standard	± 0.000		4427.266			
S=27.7639	4437,410		+0.009	4437.718	-0.299	20.2	1
Ti=28.2905	4443,962	+0.014		4443.976			1 -
Ti = 30.2297	4468.645	± 0.018		4468.663			
S = 30.4385	4171.357		± 0.016	4471.676	-0.303	20.3	1
S = 31.1840	+4481.125		+0.011	4481.400	-0.264	17.7	ī
Ti = 32.7017	Standard	± 0.000		4501.145			

Curvature Cor. +0.0001mm.

$$\begin{array}{c} \text{Weighted mean} & -20.7 \\ V_a & +13.49 \\ V_d & +0.06 \\ \text{Reduction to Sun} & +13.55 \\ \text{Radial Velocity} & -7.1 \text{ km}. \end{array}$$

Mean - 20.7

€ CASSIOPEIAE—A 261

Measured by F. Power 12

Ti = 30.7668	Standard	± 0.000		4338.084			
S 30.9890	4340,452		-0.002	4310,634	-0.184	-12.7	2
S 35.2729	4387.897		-0.070	4388.100	-0.273	18.7	1
Ti = 35.9119	4395.281	-0.080		4395.201			
Ti = 36.3172	4400,008	-0.073		4399.935			
Ti 41.8970	4468.711	-0.048		4468,663			
S = 42.1101	4471.481		-0.036	4471.676	-0.231	15.5	2
Ti-42.8707	Standard	± 0.000		4481.438	1		
S = 42.8461	4481.114		± 0.000	4481.400	-0.286	19.1	2
Ti-48.7767	4563,920	± 0.019		4563.939			
Ti 49.3307	Standard	± 0.000		4572.156			

Curvature Cor. + 0.0003 mm.

$$\begin{array}{ccc} \text{Weighted mean} & -16.2 & \text{Mean} - 16.5 \\ V_a & +13.49 & \\ V_d & +0.06 & \\ \hline \text{Reduction to Sun} & +13.55 & \\ \hline \text{Radial Velocity} & -2.6\,\text{km}. & \end{array}$$

€ CASSIOPEIAE—A 275

1901, October 23, G. M. T. $20^h 35^m$ Hour angle W $3^h 5^m$

Star rather weak; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 24.5055	Standard	± 0.000		4338.084			
S 29.0245	4387.844		±0.000	4388.100	-0.256	-17.5	2
Ti = 30.0703	Standard	± 0.000		4399.935			
Ti = 32.3639	4427.263	± 0.003		4427.266			
S 33.2000	4437.514		+0.025	4437.718	-0.179	12.1	2
Ti = 34.1426	4449.261	+0.052		4449.313			
Ti = 35.6617	4468.633	± 0.030		4468.663			
S 35,8816	4471.484		+0.023	4471.676	-0.169	11.3	4
S 36.6239	4481.194		± 0.000	4481.400	-0.206	13.9	3
Ti 36.6424	Standard	+0.000		4481.438	/	20.0	

Curvature Cor. +0.0002 mm.

Weighted mean —13.3

Mean —13.7

 $\frac{V_a}{V_d} = \frac{+7.65}{-0.11}$

Reduction to Sun Radical Velocity $\frac{+7.54}{-5.8}$ km.

€ CASSIOPEIAE—A 275

Measured by F. Power 12

Ti 30.7013 S 30.9194 S 35.2210 Ti 35.8565	Standard 4340.398 4387.871 4395.195	±0.000 	± 0.000 +0.008	4338.084 4340.634 4388.100 4395.201	$ \begin{array}{c c} -0.236 \\ -0.221 \end{array} $	$^{-16.3}_{15.1}$	2 2
Ti 36.2644 Ti 41.8583 S 42.0745 S 42.8145 Ti 42.8385	Standard 4468.647 4471.448 4481.122 Standard	±0.000 +0.016 ±0.000	+0.012 ±0.000	4399.935 4468.663 4471.676 4481.400 4481.438	$-0.216 \\ -0.278$	$14.5 \\ 18.6$	$\frac{2}{2}$

Curvature Cor. +0.0003 mm.

Weighted mean - 16.0

Mean —16.1

 $\begin{array}{cc} V_a & +7.65 \\ V_d & -0.11 \end{array}$

Reduction to Sun Radial Velocity $\frac{+7.54}{-8.5 \text{ km}}$

€ CASSIOPEIAE—A 278

1901, October 25, G. M. T. $14^{\rm h}\,8^{\rm m}$ Hour angle E $3^{\rm h}\,$ $35^{\rm m}$

Star good; comparison good.

Measured by A. Power 25

S 23.7063	4387.867		-0.017	4388.100	-0.250	-17.1	1
Ti 24.3426	4395.218	-0.017		4395.201			
Ti = 24.7471	Standard	± 0.000		4399.935	,		
Ti 26.2616	4417.899	-0.015		4417.884			
S 27.8617	4437.417		-0.003	4437.718	-0.304	20.5	1
Ti 28.3891	Standard	± 0.000		4443.976			
Ti 30.3307	4468.678	-0.015		4468.663			
S 30.5491	4471.513		-0.012	4471.676	-0.175	11.7	3
S 31,2868	4481.174		± 0.000	4481.400	-0.226	15.1	4
Ti = 31.3068	Standard	±0.000		4481.438			

Curvature Cor. +0.0002 mm

Weighted mean —14.8

Mean —16.1

 $V_a +7.09 \ V_d +0.12$

Reduction to Sun +7.21Radial Velocity -7.6 km.

€ CASSIOPEIAE—A 278

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nını.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	-
Ti-29.3007	Standard	± 0.000		4338.084			
S = 29.5350	4340.574		± 0.000	4340.634	-0.060	-4.1	1
Ti-33.7369	4387.004	+0.003		4387.007			
S = 33.8060	4387,797		+0.003	4388.100	-0.300	20.5	2
Ti-34.8535	Standard	± 0.000		4399.935			
Ti-40.4379	4468.675	-0.012		4468.663			
S = 40,6615	. 4471,579		-0,009	4471.676	-0.106	7.1	2
S = 41.3959	4481.204		± 0.000	4481,400	-0.196	13.1	2
Ti 41.4136	Standard	± 0.000		4481.438			

Curvature Cor. +0.0003 mm.

-12.2Weighted Mean $V_a +7.09 \ V_d +0.12$

· Mean —11.2

Reduction to Sun Radial Velocity

+7.215.0 km.

€ CASSIOPEIAE—B 399

1902, August 27, G. M. T. 18h 49m Hour angle E 2^h 21^m

Star good; comparison good.

Measured by A. Power 15

Ti-20.8602	Standard	± 0.000		4338.084			
S 21.1412	4340.314		+0.002	4340.634	-0.318	-22.0	1
S 26.8763	4387.657		+0.041	4388,100	-0.399	27.3	1
Ti=27.7456	4395.150	± 0.051		4395.201			
Ti 28.2955	Standard	± 0.000		4399.935]		1
Ti 33.7409	4449.296	± 0.017		4449.313			
Ti = 35.7701	4468.661	± 0.002		4468.663			
S 36.0427	4471.304		40.002	4471.676	-0.370	24.8	2
S 37.0402	4481.066		± 0.000	4481,400	-0.331	22.4	2
Ti = 37.0779	Standard	±0.000	2.0.000	4481,438	0.071		-

Cuvature Cor. ± 0.0008 mm.

Weighted mean

Mean -24.1

 $\begin{array}{cc} V_a & +19.50 \\ V_d & +0.09 \end{array}$

 ± 19.59

Reduction to Sun Radial Velocity $-4.3\,\mathrm{km}$.

ϵ CASSIOPEIAE—B 399

Measured by F. Power 12

Ti 32.8406 S 33.1104 S 34.1070 Ti 34.1485 Ti 34.8623	Standard 4471,282 4481,030 Standard Standard	±0.000 ±0.000 ±0.000	± 0.000 ± 0.000	4468,663 4471,676 4481,400 4481,438 4488,493	$ \begin{array}{c c} -0.394 \\ -0.370 \end{array} $	$-26.4 \\ 24.8$	2 2
--	--	----------------------------	--------------------	--	---	-----------------	--------

Curvature Cor. +0.0012 mm.

Weighted mean -25.6 Mean -25.6

 $V_a = +19.50$ $V_d + 0.09$

Reduction to Sun +19.59Radial Velocity $-6.0 \, \text{km}$.

SHMMARY	OF N	FASURES OF 6	CASSIOPEIAE
DUMMARI	OF AL	LEWOURED OF &	OTODIOI TITUE

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 261 A 275 A 278 B 399	1901, Oct. 3 Oct. 23 Oct. 25 1902, Aug. 27	$ \begin{array}{r} -7.1 \\ -5.8 \\ -7.6 \\ -4.3 \end{array} $	5 4 4 4	$\begin{array}{c} -2.6 \\ -8.5 \\ -5.0 \\ -6.0 \end{array}$	$\begin{array}{c c} 4\\ 4\\ 4\\ 2\end{array}$

-5.5

 $\begin{array}{cc} \text{Mean} & -6.2 \\ \text{Mean of 4 plates} & -5.9 \text{ km}. \\ \text{Mean of all measures} & -5.9 \text{ km}. \end{array}$

4. ζ PERSEI

(R. A. = $3^h 48^m$; Dec. = $+31^{\circ}35'$; Mag. 3.1; Class IIIa)

Five plates of this star have been measured, five by A., and two by F. The lines in this spectrum, though numerous, are extremely broad and ill defined, making accurate measurement difficult.

1901, September 12, G. M. T $\,18^{\rm h}\,4^{\rm m}$ Hour angle E $4^{\rm h}\,6^{\rm m}$

ζ PERSEI — A 226 Star rather weak; comparison fair.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t.m.	km.	_
S = 24.8256	4387.976		+0.033	4388.100	-0.091	-6.2	1
He 24.8336	4388.067	+0.033		4388.100			
Ti = 25.4507	Standard	± 0.000		4395.201			
S = 32.4118	4481.336		-0.001	4481.400	-0.065	4.4	1
Ti = 32.4196	4481.439	-0.001		4481.438			
Ti = 37.3098	Standard	± 0.000		4548.938			i
Ti 38.3352	4563.915	+0.024		4563.939		- 0	
S = 38.6014	4567.852		+0.018	4567.950	-0.080	5.2	3
Ti 38.8901	4572.146	+0.010		4572.156	2 222		
S = 39.0692	4574.822		+0.010	4574.900	-0.068	4.5	1
Ti 41.8387	4617.445	+0.007		4617.452	0.005	0.0	
S = 43.9076	4650.888		+0.002	4650.925	-0.035	2.3	1
S = 44.5498	4661.564		+0.001	4661.728	-0.163	10.5	1
Ti 44.9191	Standard	± 0.000		4667.768	0.004	4.1	
S = 47.5475	4713.357		-0.113	4713.308	-0.064	4.1	2
$He\ 47.5511$	4713.421	-0.113		4713.308			

Curvature Cor. +0.0001 mm.

Weighted mean - 5.2

Mean - 5.3

 $V_a + 27.45 \ V_d + 0.26$

Reduction to Sun Radial Velocity $-\frac{+27.72}{+22.5\,\mathrm{km}}$

1901, September 18, G. M. T. $18^{\rm h}\,26^{\rm m}$ Hour angle E $3^{\rm h}\,28^{\rm m}$

ζ PERSEI --- A 235

Measured by A Power 21

S 31,2357	4388.036		±0.000	4388.100	-0.064	-4.4	1
$Ti 31.8557 \\ S 33.5371$	Standard 4415.034	±0.000	-0.023	4395.201 4415.076	-0.065	-4.4	3
$S = 33.7142 \ Ti = 33.7768$	$4417.157 \\ 4417.910$	-0.026	-0.025	$rac{4417.121}{4417.884}$	+0.011	+0.8	2
$Ti = 37.8433 \ S = 38.0673$	Standard 4471.571	±0.000	±0.000	$\frac{4468.663}{4471.676}$	-0.105	-7.0	2
$\begin{array}{ccc} Ti & 45.2786 \ S & 45.4611 \end{array}$	Standard 4574.890	±0.000	±0.000	$\begin{array}{c} 4572,156 \\ 4574,900 \end{array}$	-0.010	-0.6	1

Star good; comparison good.

Curvature Cor. +0.0002 mm.

Weighted mean

-3.4

Mean - 3.1

 $V_a + 26.38 \ V_d + 0.23$

Reduction to Sun Radial Velocity $\frac{+26.61}{+23.2 \text{ km}}$.

191

1901, November 8, G. M. T. $16^{\rm h}\,33^{\rm m}$ Hour angle E $1^{\rm h}\,55^{\rm m}$

ζ PERSEI — B 218

Star fair; comparison fair.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Leugth	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti-20.3486	Standard	± 0.000		4338.084			
S = 20.7005	4340.868		+0.002	4340.634	+0.236	+16.3	1
S = 21.8100	4349.726		± 0.007	4349.541	+0.192	$^{'}13.2$	2
S=23.9597	4367.254		+0.018	4367.012	± 0.260	17.8	1
Ti-24.0282	4367.821	+0.018		4367.839	1 '		
Ti 26.3119	4387.004	+0.003		4387.007			
$S\!=\!26.4615$	4388.281		± 0.003	4388.100	+0.184	12.6	1
S=29.7918	4417.376		± 0.000	4417.121	+0.255	17.3	1
Ti-29.8487	Standard	± 0.000		4417.884			
$Ti_{-}35.3198$	4468.676	-0.013		4468.663			
S = 35.6552	4471.917		-0.013	4471.676	+0.228	15.3	3
Ti-36.6225	4481.450	-0.012		4481.438			
Ti 43,5244	4552.612	+0.020		4552.632			
S = 43.5584	4552.981		+0.020	4552.750	+0.251	16.5	2
Ti 44.5597	Standard	± 0.000		4563.939			
S = 44.9421	4568.167		± 0.000	4567.950	+0.217	14.2	1

Curvature Cor. +0.0007 mm.

Weighted mean
$$+$$
 15.3

Mean + 15.4

$$V_a +7.57 \ V_d +0.14$$

Reduction to Sun Radial Velocity $\frac{+7.71}{+23.0\,\mathrm{km}}$

ζ PERSEI — B 218

Measured by F. Power 12

			4338.084		+0.069	4338.015	Ti 29.5641
1	+ 5.2	+0.075	4310.631	+0.075		4340.634	S = 29.8943
	·		4344.451		+0.081	4344.370	Ti 30.3631
1	+25.5	+0.372	4367.012	+0.001		4367.383	S = 33.1907
			4367,839		± 0.000	Standard	Ti = 33,2455
			4387.007		-0.061	4387.068	$Ti_{-}35.5309$
1/2	+ 3.3	+0.048	4388,100	-0.060		4388.208	S = 35.6642
			4399.935		-0.047	4399.982	$Ti_{-}37.0283$
12	-1.2	-0.017	4415.076	-0.055		4415.114	S 38.7463
			4417.884		-0.056	4417.940	$Ti_{-}39.0629$
			4465.975		-0.037	4466.012	Ti = 44.2508
			4471.408		-0.021	4471.429	Ti = 44.8131
2	+15.4	+0.229	4471.676	-0.020		4471.925	S 44.8643
			4481.438		±0.000	Standard	Ti = 45.8403
			4552.632		+0.044	4552.588	Ti=52.7435
2	+7.0	+0.107	4552.750	+0.043		4552.814	S 52.7644
			4555,662		+0.036	4555.626	Ti=53.0235
			4563.939		+0.042	4563.897	$Ti_{-}53.7800$
2	+21.2	+0.323	4567.950	+0.026	32.2.2.2.2	4568.247	S = 54.1745
			4572.156		+0.013	4572.143	Ti = 54.5259
1	+22.5	+0.343	4574.900	+0.011		4575, 231	S = 51.8032
			4590.126		± 0.000	Standard	$Ti_{-}56.1242$

Curvature Cor. ± 0.0013 mm.

Weighted Mean $V_a = +7.57$

Mean + 12.4

 V_d^u Reduction to Sun

 $\frac{+7.71}{+21.9 \text{ km}}$

 ± 0.14

Radial Velocity

₹PERSEI--B 232

1901, November 14, G. M. T. $20^{\,\mathrm{h}}~9^{\,\mathrm{m}}$ Hour angle W $2^{\,\mathrm{h}}~12^{\,\mathrm{m}}$

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
$Ti_{-}20.4179$	4387,005	+0.002		4387.007			
S 20.5786	4388,380		+0.002	4388.100	+0.282	+19.3	1
Ti 21.9154	Standard	± 0.000		4399.935	,		
Ti = 23.1992	4411.225	+0.015		4411.240			
S 23.6635	4415.355		+0.014	4415.076	+0.293	19.9	1
S 23.8884	4417,365		+0.014	4417.121	+0.258	17.5	1
Ti 29.4079	Standard	± 0.000		4468.663			
S 29.7458	4471.931		± 0.000	4471.676	+0.255	17.1	1
Ti 37.6141	4552.633	-0.001		4552.632	,		
S 37.6446	4552.964		-0.001	4552.750	+0.213	14.0	1
Ti 38.6481	Standard	± 0.000		4563.939	i i		
S 39.0408	4568.278		-0.022	4567.950	± 0.306	20.1	1
Ti 39.3937	4572.199	-0.043		4572.156			
S 39.6564	4575.131		-0.043	4574.900	+0.188	12.3	1

Curvature Cor. +0.0008 mm.

 $\begin{array}{c} \text{an} & +17.2 \\ V_a & +4.50 \\ V_d & -0.16 \\ \text{an} & \end{array}$ Weighted mean

Mean + 17.2

Reduction to Sun Radial Velocity

+4.34+21.5 km.

₹PERSEI—B 232

Measured by F. Power 12

			4338.084		±0.000	Standard	Ti 29,6003
1	+ 8.1	+0.117	4340.634	-0.002		4340.753	S 29.9374
			4351.530		-0.003	4341.533	Ti 30.0357
			4367.839		+0.026	4367.813	Ti 33.2745
			4387,007		+0.010	4386.997	Ti 35,5550
2	12.4	+0.182	4388.100	+0.010		4388.272	35,7042
-			4404.433		+0.013	4404.420	Ti 37.5680
112	6.2	+0.091	4415.076	+0.003		4415.164	38.7827
1			4417.884		± 0.000	Standard	7i 39.0870
			4465.975		+0.023	4465.952	i 44.2955
			4471.408		+0.015	4471.393	Fi 44.8288
2	14.8	+0.222	4471.676	+0.014		4471.874	44.8784
			4481.438		± 0.000	Standard	7 45.8569
			4552.632		± 0.000	Standard	i 52.7516
1	24.2	+0.367	4552.750	± 0.000		4553.117	52.7963
			4563.939		+0.006	4563.933	i 53.7863
112	20.2	+0.307	4567.950	-0.006	·	4568.246	54.1777
			4572.156		-0.015	4572.171	i 54.5307
1	6.9	+0.100	4574.900	-0.013	1	4575.019	54.7863
		,	4590.126		-0.025	4590.151	Ti 56.1281
			$^{\circ}$ 4629.521		± 0.000	Standard	Ti 59.4987
1	23.6	+0.364	4630.703	± 0.000		4631.067	5 59.6276
1	23.3	+0.360	4641.886	± 0.000		4642.246	8 60.5525
		,	4645.368		-0.001	4645.369	Ti 60.8086
			4656.644		-0.007	4656.651	Ti 61.7253
1	22.5	+0.350	4661.728	-0.018		4662.096	62.1632
			4667.768		-0.028	4667.796	Ti 62.6184
			4710.471		± 0.000	Standard	Ti 65.9195
1	21.6	+0.340	4713.308	± 0.002		4713.646	8 66.1666

Curvature Cor.+ 0.0013 mm.

Weighted mean $V_a + 4.50$ $V_d = 0.16$ +16.0

Mean + 16.6

Reduction to Sun

+4.34

Radial Velocity

+20.3 km.

 $\zeta PERSEI$ —B 424

1902, October 15, G. M. T. 16 $^{\rm h}$ $43^{\rm m}$ Hour angle E $3^{\rm h}$ $25^{\rm m}$

Star good; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. ni.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 22.2046	Standard	± 0.000		4338.084			
S = 22.5242	4340,628	,,,,,,	-0.002	4340.634	-0.008	-0.6	1
S = 23.1684	1345.787		-0.006	4345.677	+0.104	+7.2	$\begin{array}{c c} 2 \\ 1 \end{array}$
S = 25.7668	4367.033		-0.023	4367.012	-0.002	-0.1	1
Ti=29.0872	4395,246	-0.045		4395.201			
$Ti_{-}29.6321$	4399,994	-0.059		4399,935			
S = 31.3521	4415.211		-0.057	4415.076	+0.078	+5.3	$\frac{2}{1}$
S 31.5819	4417.271		-0.057	4417.121	+0.093	+6.3	1
Ti/31.6566	4117.941	-0.057		4417.884	' '	'	
$Ti_{-}37.0948$	Standard	± 0.000		4468.663			
S = 37.4102	4471.723		-0.001	4471.676	+0.046	+ 3.1	1
Ti.38.4027	4481,441	-0.003		4481.438	1 '	,	
S 38,4103	4481.516		-0.003	4481.400	+0.113	+7.6	1
Ti.45.2667	4552.561	+0.071		4552.632	,	'	
S = 45.2827	4552.735		+0.071	4552,750	+0.056	+ 3.7	3
Ti.46,2989	4563.886	+0.053		4563,939	'	,	
S 46.6572	4567.858		40.056	4567.950	-0.036	-2.4	2
Ti 47.0375	4572.097	+0.059		4572.156			
S 47, 2942	4574.972		± 0.055	4574.900	+0.127	+ 8.3	1
Ti.50.9749	Standard	± 0.000		4617.452	'		

Curvature Cor. + 0.0009 mm.

Weighted mean
$$V_a + 18.40$$
 $V_d + 0.23$ Reduction to Sun Radial Velocity $+ 18.63$ $+ 22.4$ km.

Mean + 3.8

Summary of Measures of $\zeta PERSEI$.

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 226 A 235 B 218 B 232 B 424	1901, Sept. 12 Sept. 18 Nov. 8 Nov. 14 1902, Oct. 15	$+22.5 \\ +23.2 \\ +23.0 \\ +21.5 \\ +22.4$	7 5 8 7 10	$+21.9 \\ +20.3$	8 11

 $\begin{array}{ccc} \text{Mean} & +22.5 & +21.1 \\ & \text{Mean of 5 plates} + 22.3 \text{ km.} \\ \text{Mean of atl measures} + 22.1 \text{ km.} \end{array}$

6. β ORIONIS.

(R. A.= $5^h 10^m$; Dec.= $-8^{\circ} 19^{\circ}$; Mag. 0.3; Class VIc)

Especial attention has been given to the investigation of this well-known star because of the Potsdam observations of 1890, which seemed to indicate a variation in its radial velocity. A total of nineteen plates extending over an interval of six months have been measured, five by F., and nineteen by A. The results do not indicate any variation of velocity. The spectrum of this star is characterized by the strength of its *Orion* lines and the existence of several faint metallic lines. The breadth of these lines is the chief difficulty in the way of accurate measurement.

1901,	September 4, G. M. T. 21 ^h 43	m
	angle E 2 ^h 29 ^m	

R	ΩD	ION	TTQ	_ ^	207
.,	UZZD.	$I \cup I \cup I$	11.7	$-\alpha$	401

Measured by A. with Zeiss Comparator Power 18

Star strong; comparison good.

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 62.4073	Standard	± 0.000		4338.084			
S 62.1758	4340.544		± 0.000	4340,634	-0.090	-6.2	1
S 57.8843	4387.998		-0.005	4388.100	-0.107	7.3	1
Ti~57.2599	4395.207	-0.006		4395.201			1
Ti~56.8542	Standard	± 0.000		4399.935			1
Ti 52.1340	4457.600	± 0.000		4457.600			
$Ti \ 51.2739$	4468.665	-0.002		4468.663			
S 51.0433	4471.662		-0.002	4471.676	-0.016	1.1	1
S 50.3072	4481.319		± 0.000	4481.400	-0.081	5.4	1
Ti~50.2982	$\operatorname{Standard}$	± 0.000		4481.438			

Curvature Cor. -0.0002 mm.

Weighted mean

 $V_a = +25.24$

 $V_d^a + 0.20$

Reduction to Sun Radial Velocity

+25.44

+20.4 km.

1901,	Oetober	3,	G.	Μ.	T.	$19^{h} 2$	6^{m}
Hour	angle E	$2^{\rm h}$	49	m			

β ORIONIS—A 262

Star good; comparison good.

Measured by A. Power 21

Ti 19.2059	Standard	±0.000		4338.084					
S 23.7369	4388.179		-0.046	4388.100	+0.033	+2.2	1		
Ti 24.7553	4399.992	-0.057		4399.935	,	'			
S 27.8874	4437.700		-0.005	4437.718	-0.023	-1.6	1		
Ti 28.3915	4443.972	+0.001		4443.976					
Ti 28.8172	Standard	± 0.000		4449.313					
Ti 30.3324	4468.668	-0.005		4468.663					
S 30.5638	4471.672		-0.001	4471.676	-0.005	-0.3	1		
S 31.3043	4481.374		+0.014	4481.400	-0.012	-0.8	1		
Ti 31.3081	4481.424	± 0.014		4481.438					
Ti 37.2144	Standard	± 0.000		4563.939					
S 37.4833	4567.928		± 0.000	4567.950	-0.022	-1.4	1		

Curvature Cor. +0.0001 mm.

Weighted mean

-0.4

Mean -- 0.4

Mean +3.3

Mean - 5.0

 $V_a + 22.92$ $V_d + 0.23$

Reduction to Sun Radial Velocity

+23.15+22.8 km.

1901, October 18, G. M. T. 20h 7m Hour angle E 1^h 12^m

β ORIONIS-B 207

Star good; comparison good.

Measured by A. Power 24

Ti 22.9731	Standard	+0.000	1	4338.084			
S = 23.3055	4340.709		-0.001	4340.634	+0.074	+5.1	2
S 29.0872	4388.203		-0.019	4388.100	± 0.084	5.7	1
Ti~29.9062	4395.223	-0.022		4395.201	'		
S 34.6936	4437.824		-0.003	4437.718	+0.103	7.0	1
Ti 35.3601	Standard	± 0.000		4443.976	'		
$Ti \ 37.9741$	4468.654	4-0.009		4468.663			
S 38.2864	4471.663		+0.017	4471.676	+0.004	0.3	3
S 39,2846	4481.367		± 0.045	4481.400	± 0.012	0.8	4
Ti~39.2873	4481.393	+0.045		4481.438	,		
Ti 45.8676	Standard	± 0.000		4548.938			
Ti~46.2087	4552,618	± 0.014		4552.632			
S = 46.2208	4552.749		± 0.014	4552.750	+0.013	0.9	1
			,		1 '		1

Curvature Cor. +0.0002 mm.

+ 2.3Weighted mean

 $V_a + 19.38 \ V_d + 0.10$

Reduction to Sun

+19.48

Radial Velocity

+21.8 km.

B ORIONIS -B 207

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti. 19.675	Standard	± 0.000		4338.084			
S = 19.994	4340,604		-0.003	4340.634	-0.033	-2.3	1
$Ti_{-}25.656$	4387.079	-0.072		4387,007			
S = 25.777	4388.105		-0.070	4388.100	-0.065	-4.4	1
$Ti_{-}30.239$	4427.276	-0.010		4427.266			
Ti = 34.680	Standard	± 0.000		4468.663			
S 34.996	4471.705		± 0.008	4471.676	± 0.037	$^{+2.5}_{-4.2}$	2
S 35,984	4481.303		± 0.035	4481.400	-0.062	-4.2	3
Ti.35.994	4481.403	+0.035		4481.438			
Ti 43.959	4563.906	+0.033		4563.939			
S 44.327	4567.954		+0.029	4567.950	+0.033	+2.2	2
Ti.46.308	Standard	± 0.000		4590.126		•	

Weighted mean Curvature Cor.

-0.17

Mean = 1.2

 $V_a = +19.38$ $V_{d} + 0.10$

Reduction to Sun

+19.48

Radial Velocity

+18.2 km.

R	ORIONIS—A	284
μ	Onionio-A	401

1901, October 31, G. M. T. 19h 58m Hour angle E 0^h 29^m

Star good; comparison good.

Measured by A. Power 21

S 23.5148	4340.641		± 0.000	4340,634	+0.007	+0.5	- -
Ti 23.5983	Standard	± 0.000		4341.530	,	·	
Ti 27.7147	4387,009	-0.002		4387.007			
S=27.8156	4388.166		-0.002	4388.100	+0.064	4.7	
Ti 29, 2155	Standard	± 0.000		4401,433	'		
Ti.34.2076	4465.956	+0_019		4465.975]	1
S 34.6563	4471.772		+0.012	4476.676	± 0.108	7.2	
S 35,3907	4481.400		± 0.000	4481.400	± 0.000	0.0	
Ti 35.3936	Standard	± 0.000		4481.438			

Curvature Cor. ± 0.0005 nm.

Weighted mean

Mean +3.0

 $V_a = +15.23$

 $V_d + 0.04$

Reduction to Sun Radial Velocity

+15.27+18.5 km.

1901, November 7, G. M. T., $18^{h} 6^{m}$ Hour angle E 1^h 50^m

 β ORIONIS — B 213

Star good; comparison fair.

Measured by A. Power 21

S = 33.3753	4388.314		± 0.000	4388.100	0.214	+14.6	
Ti=34.7200	Standard	± 0.000		4399,935			
Ti=42.2191	4468.689	-0.026		4468.663			
S = 42.5474	4471.862		-0.020	4471.676	+0.166	11.1	
Ti 43.5294	Standard	±0.000		4481.438			
S = 43.5355	4481.498		± 0.000	4481.400	+0.098	6.6	
Ti = 53.8091	Standard	± 0.000		4590.126			

Curvature Cor. +0.0008 mm.

+9.7Weighted mean

Mean + 10.8

 $\frac{V_a}{V_d} + 12.67 \\ V_d + 0.16$

+12.83Reduction to Sun Radial Velocity $+22.5 \, \mathrm{km}$. 1901, November 8, G. M. T. 20h 6-n Hour angle W 0h 10m

B ORIONIS—B 220

Star good; comparison slightly weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m	t. m.	km.	
Ti = 20.1587	Standard	± 0.000		4338.084			
S 20.4953	4340.749		-0.001	4340.634	+0.114	+7.9	2
S 21.9256	4352.202		-0.005	4352.083	+0.114	7.9	2
S 26.2738	4388.332		-0.018	4388.100	+0.214	14.6	1
Ti = 27.0757	4395.221	-0.020		4395.201	,		
Ti = 32.5195	Standard	± 0.000		4443.976	l i		
Ti 35.1300	4468.661	+0.002		4468.663			
S 35,4584	4471.830		+0.004	4471.676	+0.158	10.6	2
Ti = 36.4438	4481.427	+0.011		4481.438			
S 36.4585	4481.587		+0.011	4481.400	+0.198	13.2	3
Ti = 45.1340	Standard	± 0.000		4572.156			
S 46.2063	4584.173		± 0.000	4584.018	+0.155	10.1	1

Curvature Cor. +0.0009 mm.

Weighted mean

+10.7

Mean + 10.7

Mean + 13.5

Mean + 11.6

$$V_a + 12.25$$
 $V_d = 0.01$

Reduction to Sun Radial Velocity

+12.24 $+22.9\,\mathrm{km}$.

1901, November 14, G. M. T. 19h 19m Hour angle E 0h 15m

в ORIONIS—В 231 Star good; comparison good.

Measured by A. Power 21

Ti. 18,6998	Standard	+0.000		4338.084			
S 19.0460	4340.831		-0.003	4340.634	+0.194	+13.4	1
Ti 24.6539	4387.055	-0.048		4387.007		•	
S 24.7978	4388.286		-0.047	4388.100	+0.139	9.5	1
Ti 33.6420	4468.662	+0.001		4468.663	1		
S 33.9775	4471.906		+0.001	4471.676	+0.231	15.5	1
Ti 34.9543	Standard	± 0.000		4481.438			
S 34.9709	4481.601		± 0.000	4481.400	+0.201	13.4	3
S 44.7033	4584.259		± 0.000	4584.018	+0.241	15.8	1
Ti = 45.2195	Standard	± 0.000		4590.126			

Curvature Cor. $+0.0008 \,\mathrm{mm}$.

+13.5Weighted mean

 $V_a + 9.85$

Reduction to Sun Radial Velocity

- 9.87 +23.4 km.

1901, November 15, G. M. T. 18^h 52^m Hour angle E 0h 35m

β ORIONIS -- B 237

Star good; comparison good.

Measured by A. Power 21

Ti 20.7414	Standard	±0.000		4338.084			
S 21.0810	4340.777		-0.002	4340.634	+0.141	+9.7	1
Ti = 26.6980	4387.049	-0.042		4387.007		,	
S 26,8506	4388.354		-0.041	4388,100	+0.213	14.5	2
Ti = 34.3108	Standard	± 0.000		4455.485			
Ti 35.6896	4468.656	+0.007		4468.663			
S 36.0229	4471.878		+0.012	4471.676	+0.214	14.4	3
Ti = 37.0002	4481.412	+0.026		4481.438			
S 37.0130	4481.538		+0.026	4481.400	+0.164	11.0	4
S 46.7429	4584.143		+0.001	4584.018	+0.126	8.2	1
Ti-47.2694	Standard	± 0.000		4590.126			
S 46.7429	4584.143		+0.001	4584.018			1

Curvature Cor. +0.0008 mm.

Weighted mean

+12.2

 $V_a + 9.44$ $V_d + 0.05$

+ 9.49Reduction to Sun Radial Velocity $+21.7 \, \text{km}$.

197

1901, November 27, G. M. T. 21^h 22^m Hour angle W 2h 43m

β ORIONIS - B 252

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	-
Ti-18.1164	Standard	± 0.000		4338.084			
S 18,4616	4340.849		-0.001	4340.634	± 0.211	± 14.6	1
Ti=24.0166	1387.076	-0.069		4387.007	· '	,	
S = 24.1593	4388.308		-0.068	4388.100	+0.140	9.6	1
Ti-32.9216	Standard	± 0.000		4468.663			
S = 33.2595	4471.959		± 0.003	4471.676	± 0.286	19.2	2
Ti-34.2210	4481.424	+0.014		4481.438	i i		
S = 31.2413	4481.625		+0.014	4481.400	+0.239	16.0	3
Ti-41.4023	Standard	± 0.000		4590.126			

Curvature Cor. +0.0009 mm.

Weighted mean ± 15.8

 $V_a = +4.23$

Reduction to Sun Radial Velocity

+4.01 $\pm 19.8 \,\mathrm{km}$.

1901, December 18, G. M. T. 18^h 12^m Hour angle W 0^h 56^m

β ORIONIS—B 257

Star good; comparison good.

Measured by A. Power 21

Mean + 14.8

 $\mathrm{Mean} + 25.6$

Mean +25.4

$Ti_{-}17.0931$	Standard	± 0.000		4338.084			
8 - 17.4562	4341.007		-0.002	4340.634	+0.371	± 25.6	
$Ti\ 22.9621$	4387.039	-0.032		4387.007	'	•	
S = 23.1360	4388.547		-0.032	4388.100	+0.415	28.4	
Ti/31.4164	Standard	± 0.000		4464.617	'		
S = 32.1790	4472.068		+0.032	4471.676	+0.424	28.4	
Ti.33.1190	4481.363	+0.075		4481.438	1 ' 1		
S = 33.1516	4481.687		+0.075	4481.400	+0.362	24.2	1
S = 42.7593	4584.341		± 0.000	4584.018	+0.323	21.1	1
$Ti\ 43.2620$	Standard	± 0.000		4590.126	'		

Curvature Cor. +0.0007 mm.

Weighted mean +26.3

 $\begin{array}{ccc} V_a & -5.14 \\ V_d & -0.08 \end{array}$

-5.22

+21.1 km.

Reduction to Sun Radial Velocity

1901, December 19, G. M. T. 17^h 34^m Hour angle W 0^h 23^m

β ORIONIS -- A 297

Star good; comparison good.

Measured by A. Power 21

$Ti_{-}21.0390$	Standard	± 0_000		4338.084			
S = 21.3084	4341.000		-0.002	4340.634	+0.364	± 25.2	
Ti/25.4010	4387.040	-0.033		4387 007			
S = 25.5270	4388.511		-0.029	4388.100	± 0.382	26.1	
$Ti_{-}26.4958$	Standard	±0.009		4399.935	' '		
Ti/31.9849	4468.652	+0.011		4468.663			1
S 32.2453	4472.091		± 0.008	4471.676	± 0.423	28.4	
Ti/32.9465	Standard	±0.000		4481.438			
S = 32,9680	4481,726		± 0.000	4481.400	± 0.326	21.8	

Curvature Cor. +0.0006 mm.

Weighted mean +25.4

 $\begin{array}{ccc} V_d & -5.58 \\ V_d & -0.03 \end{array}$

Reduction to Sun -5.61Radial Velocity $\pm 19.8 \text{ km}$. 1901. December 31, G. M. T. 15^h 12^m Hour angle E 1^h 12^m

β ORIONIS—B 261

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t.m.	t. m.	km,	_
S 23.8840	4341.118		± 0.000	4340.634	+0.481	+33.4	2
Ti~23.9354	Standard	± 0.000		4341.530		,	
Ti~29.4018	4387.014	-0.007		4387.007			
S 29.5832	4388.581		-0.006	4388.100	+0.475	32.5	1
$Ti \ 31.3940$	Standard	± 0.000		4404.433			
Ti 37.8867	4464.638	-0.021		4464.617			
S 38.6513	4472.097		-0.012	4471.676	+0.409	27.4	3
$Ti \ 39.5972$	Standard	± 0.000		4481.438			
S 39.6438	4481.901		± 0.000	4481.400	+0.501	33.5	4

Curvature Cor. +0.0008 mm.

+31.6Weighted mean

 $V_d = -10.69 \ V_d = 0.10$

Reduction to Sun

-10.59+21.0 km.

Radial Velocity

Measured by F. Power 12

Mean + 31.7

β ORIONIS — B 261

S 29.9627	4341.268		+0.001	4340.634	+0.635	+43.9	
Ti 30.3581	Standard	± 0.000		4344.451			
Ti~35.4653	4387.066	-0.059		4387.007			
S 35.6385	4388.562		-0.059	4388.100	+0.403	27.5	'
Ti 39.9853	Standard	± 0.000		4427 , 266			1
Ti~44.0880	4465.969	+0.006		4465.975			
S 44.7186	4472.117		+0.003	4471.676	+0.444	29.8	
$Ti\ 45.6641$	Standard	± 0.000		4481.438			
S 45.7128	4481.921		± 0.000	4481.400	+0.521	34.9	

Weighted mean Curvature Cor.

+33.2-0.82 Mean +34.0

 $V_d = V_d$ -10.69+ 0.10

Reduction to Sun Radial Velocity

-10.59+21.8 km.

1902, January 4, G. M. T. 17h 44m Hour angle W 1^h 35^m

β ORIONIS—A 300 Star strong; comparison good.

Measured by A. Power 21

Mean +35.8

Ti 22.4561 S 22.7409 Ti 26.8268 4338.084Standard ± 0.000 4341.162 4387.053-0.0034340.634 ± 0.525 +36.31 -0.0464387.0074388.10037.2-0.043+0.5452 S 26.9671 4388.688 Ti 28.8668 Ti 33.4260 ± 0.000 4411.240Standard $4468.678 \\ 4472.269$ 4468.663 -0.0152 -0.0114471.676+0.58239.0 S 33.6985 Ti 34.38804481.438 Standard ± 0.000 30.8 3 S 34.4196 ± 0.000 4481.400 +0.4614481.861

Curvature Cor. +0.0005 mm.

+35.2Weighted mean

 $\begin{array}{ccc}
V_a & -12.35 \\
V_d & -0.14
\end{array}$

Reduction to Sun -12.49 $+22.7\,\mathrm{km}$. Radial Velocity

199

1902, January 8, G. M. T. $18^{\rm h}~15^{\rm m}$ Hour angle W $2^{\rm h}~24^{\rm m}$

 β ORIONIS A 306

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. pr.	t. m.	km.	
Ti/26.0198	Standard	± 0.000		4338.084			
S 26.3109	4311.220		±0.000	4340.634	+0.586	+40.5	1
S 30.5367	4388.582		± 0.000	4388.100	+0.482	32.9	1
Ti/31.5042	Standard	± 0.000		4399,935			
Ti.37.0198	4468.652	± 0.011		4468.663			
S 37,2933	4472.248		± 0.008	4471.676	± 0.580	38.9	2
Ti 37.9859	Standard	± 0.000		4481.438			
S = 38.0223	4481.924		± 0.000	4481,400	± 0.524	35.1	1

Curvature Cor. +0.0005 mm.

Weighted mean

+37.2

, Mean +36.8

 $\begin{array}{ccc} V_{d} & -13.92 \\ V_{d} & -0.20 \end{array}$

Reduction to Sun

-14.12

Radial Velocity

 $+\frac{23.1}{23.1}$ km.

1902, January 9, G. M. T. 14^h 41^m Hour angle É 1^h 14^m β ORIONIS—B 270

Star good; comparison good.

Measured by A. Power 21

Ti 18.3004	Standard	±0.000		4338.084			
S 24.3850	4388.587	20.000	+0.000	4388.100	+0.487	+33.3	1
Ti 25.6876	Standard	± 0.000		4399.935	0.120.	1 00.00	
Ti 33.1168	4468.654	± 0.009		4468.663			
S 33.4863	4472.261		± 0.007	4471.676	+0.592	39.7	1
Ti 34.4178	Standard	± 0.000		4481.438			
S 34 4691	4481.947		± 0.000	4481.400	+0.547	36.5	2
Ti 44.6069	Standard	± 0.000		4590.126			
Ti = 50.1609	Standard	± 0.000		4656.644			
Ti-54.3252	Standard	± 0.000		4710.368			
S = 54.5924	4713.937		± 0.000	4713,308	+0.629	40.0	1

Curvature Cor.+0.0008 mm.

Weighted mean

+37.2

Mean + 37.4

 $\frac{V_a}{V_d} = \frac{14.24}{\pm 0.11}$

Reduction to Sun

-14.13

Radial Velocity

+23.1 km.

β ORIONIS—B 270

Measured by F. Power 13

S = 29.9906	4341.124		-0.001	4340.634	+0.489	+33.8	
Ti-30.0412	Standard	± 0.000		4341,530	,		
Ti = 35.5109	4387.073	-0.067		4387,007			1
S 35.7116	4388,806		-0.069	4388.100	+0.637	43.5	
Ti 44.1458	4465.986	-0.011		4465.975	'		
Ti 44 7062	4471.435	-0.027		4471.408			
S 44.7878	4472.231		-0.013	4471.676	+0.542	36.3	
Ti-45.7239	Standard	± 0.000		4481.438			
S 45.7722	4481.917		± 0.000	4481.400	+0.517	34.6	
Ti 63.4749	Standard	±0 000		4682.088	1		
Ti 65.6312	4710.406	-0.038		4710.368	!		
S 65.8922	4713.901		-0.038	4713.308	± 0.555	35.3	

Weighted mean Curvature Cor.

+36.5 - 0.82

Mean + 36.7

 $V_a = -14$

 $V_a = -14.24 \ V_d + 0.11$

Reduction to Sun Radial Velocity $\frac{-14.13}{+21.6 \,\mathrm{km}}$.

200

1902, January 16, G. M. T. 17^h 3^m Hour angle W 1^h 46^m

β ORIONIS-B 277 Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t.m.	t. m.	t. m.	t. m.	km.	
Ti = 17.2623	Standard	± 0.000		4338.084			
S = 17.6427	4341.132		-0.002	4340.634	+0.496	+34.3	1
Ti = 23.1558	4387,042	-0.035		4387.007			1
Ti = 24.6347	Standard	± 0.000		4399.935			
S = 28.8554	4438.179		+0.046	4437.718	+0.507	34.3	1
Ti 29.4687	4443,923	+0.053		4443.976			
Ti = 32.0516	4468.657	+0.006		4468.663			
S = 32.4205	4472.263		+0.004	4471.676	+0.591	39.6	3
Ti = 33.3503	Standard	± 0.000		4481.438			
S 33.39 2 4	4481.856		± 0.000	4481.400	+0.456	30.5	2
S = 43.0322	4584.478		± 0.000	4584.018	+0.460	30.1	1
Ti 43.5254	Standard	± 0.000		4590.126			
Ti = 49.0727	Standard	± 0.000		4656.644			
Ti = 53.2285	Standard	± 0.000		4710.368			
S 53.4933	4713.913		±0.000	4713.308	+0.605	38.5	2

Curvature Cor. +0.0008 mm.

Weighted mean

+35.6

Mean + 34.5

 $V_d = 0.15$ Reduction to Sun

-16.96+18.6 km.

Radial Velocity

Measured by F. with Zeiss Comparator

β ORIONIS—B 277

 $V_a = -16.81$

Power 17 $\mathbf{2}$ 24.41554341.181 ± 0.000 4340.634 ± 0.547 +37.8Ti 24.4587 Ti 29.8992 +0.0004341.530Standard 4387.0554387.007 -0.048-0.048S 30.0715 4388.5504388.100 ± 0.402 27.53 Ti ± 0.000 38,4880 Standard 4465.975. 39.0440 4471.412 -0.0044471.408 $\frac{\hat{\mathbf{S}}}{Ti}$ 35.7 2 4472.213-0.004+0.53339.12554471.676 40.0540 4481.398 +0.0404481.438 40.09524481.808 +0.0404481.400 +0.44830.0 Ti = 44.10424522.918 +0.0584522.974+0.058 $+0.493 \\ +0.479$ 4522.802 32.744.13454523.237. 49.7010 4584.492+0.0054584.018 31.3 12 Ti = 50.1905 ± 0.000 4590.126Standard

Curvature Cor. +0.0011 mm.

Weighted mean

+31.82

Mean + 32.5

 $V_a = -16.81$ $V_d = 0.15$

Reduction to Sun Radial Velocity

-16.96+14.9 km.

1902, January 24, G. M. T. 12^h 50^m Hour angle E 2h 00m

β ORIONIS—B 282

Measured by F. with Zeiss Comparator Power 13

Hour angle È 2 ^h 00 ^m		Star good;	comparison	good.		Po	wer 13
Ti 32.207	Standard	±0.000		4338.084			
S 32.586	4341.132		± 0.001	4340.634	+0.497	+34.3	1
Ti 38.076	4387.024	-0.017		4387.007	i i	,	1
S 38.257	4388.594		-0.017	4388.100	+0.477	32.6	1
Ti = 39.551	Standard	± 0.000		4399.935	, '		
Ti 46.937	4468.665	-0.002		4468.663			
S 47.309	4472.318		-0.002	4471.676	+0.640	42.9	1
Ti 48.229	Standard	± 0.000	[4481.438			1
Ŝ 48.288	4482.026		± 0.000	4481.400	+0.626	41.9	2

Curvature Cor. +0.0011 mm.

+38.7Weighted mean

Mean + 37.9

 $V_a = -19.32$

 $V_d^{"} + 0.17$ Reduction to Sun

-19.15 $+19.6\,\mathrm{km}$.

Radial Velocity

β ORIONIS—B 282

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t, m.	t. m.	t. m.	t. m.	km.	
Ti-23.2788	Standard	± 0.000		4338.084			
S = 23.6556	4341.106		± 0.000	4340.634	± 0.472	± 32.6	2
S = 29.3646	4388.745		± 0.000	4388.100	+0.645	44.1	$\overline{2}$
Ti=30.1065	Standard	± 0.000		4395,201	' '		
Ti = 31.9213	4411.266	-0.026		4411.240			
S = 32,6320	4417.665		-0.023	4417.121	+0.521	35.4	1
Ti 38.0620	Standard	± 0.000		4468.663			_
S = 38.4323	4472.283		±0.000	4471.676	+0.607	40.7	3
Ti = 39.3653	4481.488	-0.050		4481.438	'		
S = 39.4324	4482.028		-0.050	4481.400	+0.578	38.7	1
Ti = 55.0843	Standard	± 0.000		4656.644	'		
Ti = 57.0867	Standard	± 0.000		4682.088			
Ti=58.3815	Standard	± 0.000		4698.946			
S = 59.5088	4713.891		± 0.000	4713.308	+0.583	37.1	3

Curvature Cor. $\pm 0.0008 \,\mathrm{mm}$.

+38.4Weighted mean

Mean + 38.1

 $V_a = -19.32$ $V_d^a \pm 0.17$

Reduction to Sun Radial Velocity

-19.15+19.2 km.

1902, February 10, G. M. T. 14^h 54^m Hour angle, W 1^h 10^m

β ORIONIS—A 312 Star good; comparison good.

Measured by A. Power 21

Ti 25.3630 S 25.6543 Ti 29.7287 Standard ± 0.000 4338.0844341.234 4387.019-0.0014340.634 ± 0.599 $\mathbf{2}$ +41.4-0.0124387.007 S 29,8806 -0.0114388,791 4388.100+0.68046.41 Ti 31.7702 S 33.9747 4411.240 4437.718Standard ± 0.000 4438,429+0.007 ± 0.718 48.5 1 +0.009 Ti = 34.41294443,967 4443.976 ± 0.006 Ti = 36.32384468.6574468.663 36,6081 4472.407+0.0014471.676+0.7353 49.3Ti = 37.2864 ± 0.000 Standard 4481.438

Curvature Cor.+0.0005 mm.

S 37,3279

Weighted mean +44.5 Mean+45.1

39.7

+0.594

 $V_{tt} = -23.47$ $V_{d} = 0.10$

 ± 0.000

Reduction to Sun Radial Velocity

.

4481.994

-23.57 $+20.9 \, \text{km}$.

4481.400

1902, March 3, G. M. T. 13^h 44^m

βORIONIS—A330

Measured by A.

3

ur angle W 1 ^h 23 ⁿ		Star good; comparison good.			Pov	ver 21	
Ti 22.3238	Standard	±0.000		4338.084			
S=22.6222	4341.307		± 0.000	4340.634	± 0.673	± 46.5	2
Ti 26.6919	4386.978	± 0.029		4387.007	'		
S 26,8362	4388,658		± 0.027	4388.100	± 0.585	40.0	2
Ti=27.7949	Standard	± 0.000		4399,935			
Ti=33.2998	4468.672	-0.009		4468,663			
S 33,5810	4472.377		-0.006	4471.676	± 0.695	46.6	4
Ti = 31.2624	Standard	± 0.000		4481.438			
S 34.3070	4482.035		± 0.000	4481.400	+0.635	42.5	3

Curvature Cor.+0.0005 mm.

Weighted mean

+44.3

Mean +43.9

 $V_{a} = -25.63$ $V_d = 0.12$

-25.75Reduction to Sun Radial Velocity

 $\pm 18.5 \,\mathrm{km}$.

202

SUMMARY OF MEASURES OF BORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. o Lines
A207	1901, Sept. 4	+20.4	4		
A262	Oct. 3	+22.8	5		1
B207	Oct. 18	+21.8	6	+18.2	5
A284	Oct. 31	+18.5	4		
B213	Nov. 7	+22.5	3		
B220	Nov. 8	+22.9	6		
B231	Nov. 14	+23.4	5		
B237	Nov. 15	+21.7	5		
B252	Nov. 27	+19.8	1 4 [٠.
B257	Dec. 18	+21.1	5		
A297	Dec. 19	+19.8	4		1
B261	Dec. 31	+21.0	4	+21.8	4
A300	1902, Jan. 4	+22.7	4		
A306	Jan. 8	+23.1	4	1.01.0	·_
B270	Jan. 9	+23.1	4	+21.6	5
B277	Jan. 16	+18.6	6	+14.9	5
B282	Jan. 24	+19.2	6	± 19.6	4
A312	Feb. 10	+20.9	5		
A330	Mar. 3	+18.5	4		

Mean

+21.1

+19.2

Mean of 19 plates Mean of all measures +20.9 km.+20.7 km.

7. \(\gamma \) ORIONIS

(R. A.=5^h 20^m; Dec.=+6° 15'; Mag. 1.9; Class 1Va)

Seven plates of this star have been measured, six by A., and four by F., with three common to the two observers. An interesting systematic difference seems to exist in the two sets of measures, which is probably due to the different personality effects which enter into the settings upon the broad lines of the star spectrum. The general features of this spectrum are very similar to those of ζ Persei.

1901, September 11, G. M. T. 21^h 32^m Hour angle E 2^h 17^m

γ ORIONIS — A224

Star fair; comparison rather weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S = 26.0285	4340.459		± 0.000	4340,634	-0.175	-12.1	4
H=26.0449	Standard	±0.000		4340.634			
S = 30.3242	4387.938		-0.056	4388.100	-0.218	14.9	2
$Ti_{-}30.9596$	4395,266	0.065		4395,201			
Ti = 36.9536	Standard	± 0.000		4468.663			
S = 37.1664	4471.419		+0.028	4471.676	-0.229	15.4	2
$He \ 37.1849$	4471.648	+0.028		4471.676			
S = 37.9127	4481.174		+0.027	4481.400	-0.199	13.3	4
Ti-42.8823	4549.788	+0.020		4549 808			
S = 43.0712	4552.529		+0.018	4552.750	-0.203	13.4	1
Ti 43.8492	4563.926	+0.013		4563.939			
S 44.1047	4567.708		+0.007	4567.950	-0.235	15.4	1
Ti 44.4036	Standard	± 0.000		4572.156			2
S = 44.5777	4574.759		± 0.000	4574.900	-0.141	9.2	

Curvature Cor. +0.0001 mm.

Weighted mean -13.1

Mean - 13.4

 $V_a + 28.31$ $V_d + 0.19$

Reduction to Sun
Radial Velocity

 $\frac{+28.50}{+15.4}$ km.

γ ORIONIS—A 258

1901, October 2, G. M. T. $21^{\rm h} \, 34^{\rm m}$ Hour angle E $0^{\rm h} \, 47^{\rm m}$

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m	t. m.	km.	
Ti = 18.1261	Standard	± 0.000		4338.084			
S 18.3507	4340.474		-0.001	4340.634	-0.161	-11.1	1
Ti=22.5613	4387.039	-0.032		4387.007			
S 22.6451	4388.001		-0.032	4388.100	-0.131	9.0	2
Ti = 23.6768	4399.961	-0.026		4399.935			
S 24.9370	4414.871		-0.016	4415.076	-0.221	15.0	1
Ti 25.9640	4427.274	-0.008		4427.266			
S 26.7986	4437.526		-0.004	4437.718	-0.196	13.2	1
Ti = 27.7427	Standard	± 0.000	[4449.313			
Ti=29.2569	4468.653	± 0.010		4468.663			
S 29.4801	4471.551		+0.013	4471.676	-0.112	7.5	2
S 30,2139	4481.163		+0.026	4481.400	-0.211	14.1	1
Ti = 30.2328	4481.412	± 0.026		4481.438			
Ti = 36.1383	Standard	± 0.000		4563 939			
S 36.3967	4567.774	,,,,,,	±0.000	4567.950	-0.176	11.6	1

Curvature Cor. +0.0001 mm.

Weighted mean
$$\Gamma_a + 26.61$$

 $V_d + 0.07$
Reduction to Sun $+26.68$

Radial Velocity

+15.8km.

1901, November S, G, M, T, 20^h 38^m Hour angle W 0^h 32^m γ ORIONIS - B 221 Star fair; comparison good.

Measured by A. Power 14

Mean - 11.6

Ti/20.0778	Standard	± O , OCO		4338.084			
8 20.4093	4340.706		0.001	4340 634	+0.071	+4.9	i
Ti 26.0447	4387.035	-0.028		4387.007		•	
S 26.1716	4388.118		-0.026	4388,100	-0.008	-0.6	
Ti/27.5425	Standard	\pm (), (XX)		4399,935			}
Ti.35.0484	4468,668	-0.005		4468.663			
S 35.3560	4471.642		-0.004	4471.676	-0.038	-2.5	
Ti.36.3606	Standard	± O , OOO		4481,438			
S 36.3629	4481.461		± 0.000	4481.400	+0.061	+4.1	
S 43.2799	4552.791		± 0.000	4552.750	+0.041	+2.7	
Ti 43.5444	Standard	\pm O.OO.		4555,662		·	
Ti 44.3037	4563.962	-0.023		4563,939			
S 44.6755	4568,060		-0.018	4567,950	+0.092	+6.0	
Ti 46.6437	4590.128	-0.002		4590.126		·	
Ti 49.0040	Standard	± O: OOO		4617.452			
Ti 52.2489	4656,637	+0.007		4656,644			
Ti 54.2731	Standard	±0 000		4682.088			
Ti 56.4512	4710.389	-0.024		4710.368			
S 56.6702	4713.289		-0.021	$4713 \ 308$	-0.040	-2.5	

Curvature Cor. $\pm 0.0009 \,\mathrm{mm}$.

Weighted mean
$$+$$
 1.6 $\frac{V_a}{V_d} + 15.47 \frac{+15.47}{-0.05}$ Reduction to Sun $+$ 15.4:

Mean +1.7

Reduction to Sun +15.42 Radial Velocity +17.0 km.

γ ORIONIS—B 221

Measured by F. Power 15

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 30.0031	Standard	± 0.000		4387.007			
S 30.1385	4388.164		-0.001	4388.100	+0.063	+4.3	3
S 33.2198	4415.067		-0.035	4415.076	-0.044	-3.0	1
Ti 33.2198	4417.922	-0.038		4417.884			
Ti 38.7276	4465.997	-0.022		4465.975			
S 39.3271	4471.773		-0.014	4471.676	± 0.083	+ 5.6	3
Ti 40.3191	Standard	± 0.000		4481.438		·	
S 40.3295	4481.540		± 0.000	4481.400	± 0.140	+9.4	1,2
Ti 47.2247	4552.601	± 0.031		4552.632	1	· ·	1
S 47.2543	4552.924	· · · · · · · ·	+0.031	4552.750	+0.202	+13.3	11.2
Ti.47.5037	4555.627	± 0.035		4555.662			
S 48.6214	4567.875		± 0.016	4567.950	-0.059	-3.9	1
Ti~50.6058	Standard	± 0.000		4590.126			

Curvature Cor. $+0.0013 \,\mathrm{mm}$.

 $V_a + 15.47$ $V_d = 0.05$ $V_d = 0.05$ Weighted mean

Mean +4.3

Reduction to Sun Radial Velocity

+15.42+20.2 km.

γ ORIONIS--B 253

1901, November 27, G. M. T. 21^h 55^m Hour angle W 3h 8m

Star strong; not quite centrally between comparison spectra.

Measured by F. Power 14

S 29,9085	4340.732		+0.067	4340,634	+0.165	+11.4	2
Ti~29.9995	4341.463	+0.067		4341.530			
Ti 35.4665	Standard	± 0.000		4387.007			
S 35,6305	4388.424		± 0.000	4388.100	+0.324	22.1	-2
Ti 39.9935	4427,264	+0.002		4427.266			
S 41.1325	4437.783		-0.001	4437,718	+0.064	4.3	1/2
Ti 42.3615	4449.318	-0.005		4449.313			
Ti 44.1005	Standard	± 0.000		4465.975			
S 44.7040	4471.850		± 0.004	4471.676	+0.178	11.9	3
Ti.45.6765	4481.423	± 0.013		4481.438		•	
S 45.7025	4481.680		± 0.013	4481.400	+0.293	19.6	1/2
Ti 52.5135	4552.592	± 0.010		4552.632			1
S 52.5510	4553.002		+0.035	4552.750	+0.287	18.9	1
Ti 52.7915	4555.638	± 0.024		4555.662			
S 53.9210	4568.144		± 0.020	4567.950	± 0.214	14.0	2
Ti. 55.8615	Standard	± 0.000		4590.126			

Curvature Cor. +0.0015 mm.

 $\begin{array}{ccc} & & & -14.7 \\ V_a & +6.75 \\ V_d & -0.25 \end{array}$ Weighted mean

Mean + 14.6

+6.50Reduction to Sun +21.2 km. Radial Velocity

γ ORIONIS—B 262

1902, December 31, G. M. T. 15^h 38^m Hour angle E 0h 58m

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m,	t. m.	t. m.	t. m.	t. m.	km.	
Ti~30.1486	4471.434	-0.026		4471.408			
S 30 2116	4472.051		-0.026	4471.676	+0.349	+23.4	2
Ti/31.1632	Standard	± 0.000		4481.438	1	,	
Ti~37.9928	4552,617	± 0.015		4552,632			
S 38.0449	4553.187		4-0.015	4552,750	+0.452	29.8	1
$Ti\ 41.3381$	Standard	± 0.000		4590,126			
S 41.4567	4591.490		±0.000	4591.066	+0.424	27.7	1
S 44.0480	4621,909		+0.023	4621.549	± 0.383	24.8	1
Ti.44.1603	4623, 255	± 0.023		4623.279	'		
S 46,3328	4649.742		± 0.012	4649.250	± 0.504	32.5	2
Ti~46.8864	4656.635	± 0.009		4656.644	'		
Ti~50.1830	4698,940	-∔0.006		4698.946			
S = 50, 2450	4699.757	,,,,,,,	+0.006	4699.340	± 0.423	27.0	2
Ti.51.0447	Standard	± 0.000		4710.368			
S 51.2930	4713.690		± 0.000	4713.308	± 0.382	24.3	2

Curvature Cor. +0.0008 mm.

+27.0Weighted mean

Mean +27.1

 $\frac{V_a}{V_d} = \frac{-10.03}{+0.09}$

-9.94

Reduction to Sun Radial Velocity

+17.1 km.

γ ORIONIS—B 262

Measured by F.

wer 12	Pov						
			4341.530		+0.117	4341.413	Ti 35,003
1	+21.7	± 0.358	4340.634	+0.119		4340.873	S 34,936
	,		4387.007		± 0.000	Standard	Ti 40.467
2	23.4	+0.313	4388.100	± 0.000		4388.443	S 40.633
		·	4427.266		-0.001	4427,267	Ti 44.988
1/2	23.8	+0.353	4437.718	-0.017		4438.088	S 46.158
/ ~			4440.515		-0.020	4140.535	$Ti\ 46.420$
		1	4465,975		-0.020	4465.995	Ti/49.092
2	31.5	+0.515	4471.676	-0.013		4472.204	S 49.729
			4481.438		±0,000	Standard	Ti 50,666
1	18.5	± 0.276	4481.400	± 0.000		4481.676	S 50,690
			4552,632		+0.017	4552.615	Ti~57.498
11/2	31.7	+0.481	4552.750	± 0.019		4553,212	S 57,553
		·	4455.662		+0.027	4555.635	Ti 57.774
1	37.9	+0.577	4567.950	± 0.018		4568,509	S 58,936
1/2	33.6	+0.513	4574.900	± 0.011		4575.402	S 59.550
			4590.126		± 0.(XX)	Standard	Ti~60.843
1/2	28.7	+0.440	4591,066	-0.001		4591.507	S 60.963
	1		4607.708		-0.100	4667.868	$Ti\ 67.276$
			4698.946		-0.155	4699.101	Ti 69.689
			4710.368		-0.190	4710.558	Ti 70.551
1	30.7	+0.483	4713.308	-0.201		4713.992	S 70.807

Curvature Cor. +0.001 mm.

Weighted mean +28.9 Mean +28.8

 $V_a = 10.03$ $V_d = 0.09$

Reduction to Sun

-9.94+19.0 km.

Radial Velocity

1902,	March	13,	G.	M.	T.	$15^{\rm h}$	$53^{\rm m}$
Hour	angle '	$V: \mathcal{U}$	$3^{\rm h}58$	3^{m}			

γ ORIONIS - B 299

Star fair; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 18.2322	Standard	± 0.000		4338.084			
S 21.8613	4367.681		-0.021	4367.012	+0.648	+44.5	2
Ti~21.8827	4367.860	-0.021		4367.839		·	
S 27.6440	4417.817		-0.062	4417.121	+0.634	43.0	1
Ti~27.6583	4417.946	-0.062		4417.884			
$Ti_{-}32.8061$	Standard	± 0.000		4465.975			
S 33,4598	4472.321		+0.008	4471.676	+0.653	43.8	2
Ti.34.3868	4481.420	+0.018		4481.438	,		
S 34,4508	4482.052		+0.018	4481.400	± 0.670	44.8	1
Ti 42.2737	4563.904	± 0.035		4563.939			
S 42.6999	4568.637		± 0.022	4567.950	± 0.709	46.5	2
Ti 43.0140	4572.145	± 0.011		4572.156			
Ti 44.6012	Standard	+0.000		4590.126			

Curvature Cor. +0.0008 mm.

Weighted mean +41.7

 $V_{et} = 28.63$

 $V_d^{''} - 0.29$

Reduction to Sun Radial Velocity

 $\frac{-28.92}{+15.8}$ km.

1902, April 9, G. M. T. $15^{\rm h}$ $4^{\rm m}$ Hour angle W $4^{\rm h}$ $56^{\rm m}$

γ ORIONIS—B 317

Star too weak; comparison strong.

Measured by A. Power 17

Ti 22.9221	Standard	±0.000		4387.007			
S 23.1170	4388.687		± 0.000	4388.100	+0.587	+40.1	-2
$Ti \ 31.5791$	4465,985	-0.010		4465.975		,	
S 32.2371	4472.376		-0.006	4471.676	+0.694	46.5	3
Ti 33.1599	Standard	± 0.000		4481.438	1		
S 33.2137	4481.970		± 0.000	4481.400	+0.570	38.1	1
Ti 40.0166	4552.609	+0.023		4552.632			
S 40.0909	4553.420		± 0.022	4552.750	± 0.692	45.6	1
Ti 43.3733	Standard	±0.000	*	4590.126			
S 43.5163	4591.766		± 0.000	4591.066	+0.692	45.7	1
					<u> </u>		1

Curvature Cor. +0.0008 mm.

Weighted mean

+43.6

Mean + 43.2

Mean + 45.7

Mean + 44.5

 $egin{array}{cccc} V_d & -24.92 \ V_d & -0.33 \ \end{array}$

Reduction to Sun Radial Velocity $-25.25 \\ +18.4 \text{ km}.$

γ ORIONIS—B 317

Measured by F. Power 12

Ti 35.001	Standard	+0.000		4387.007			
S 35.188	4388.618	±0.000	+0.000	4388.109	+0.518	+35.4	2
Ti 37.764	4411.224	+0.016		4411.240			
S 38.287	4415,903		+0.010	4415.076			1
Ti 40.294	4434.187	-0.019		4434.168	+0.837	+56.8	1
S 40.739	4438.303		-0.019	4437.718	+0.566	38.2	1
Ti 43.662	4465.993	-0.018		4465.975			
S 44.318	4472.368		-0.007	4671.676	+0.685	45.9	2
Ti 44.590	${f Standard}$	± 0.000		4475.026			
Ti 52.100	4552.616	+0.016		4552.632			
Ti 52.782	4560,076	+0.026		4560,102			
S 53.363	4568.730		+0.018	4567.950	+0.798	52.4	1
Ti 55.457	Standard	± 0.000		4590,126			

Curvature Cor. +0.001 mm.

Weighted mean +41.3

 $V_a = -24.92$

 $V_d = 0.33$

Reduction to Sun
Radial Velocity

 $\frac{-25.25}{+19.0 \text{ km}}$

207

SUMMARY OF MEASURES OF Y ORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 224	1901, Sept. 11	+15.4	7		
A 258	Oet. 2	± 15.8	7		
B 221	Nov. 8	± 17.0	7	± 20.2	6
B 253	Nov. 27		1	± 21.2	7
B 262	Dec. 31	+17.1	7	+19.0	10
B 299	1902, Mar. 13	+15.8	5		
B 317	Apr. 9	+18.4	5	± 19.0	1

Mean +16.6 +20.1

Mean of 7 plates +17.6 km. Mean of all measures +18.0 km.

7. ∈ ORIONIS

(R. A. = 5^h 31^m; Dec. = -1^- 16'; Mag. 1.8; Class IIa)

Four plates of this star have been measured, three by F., and four by Λ . All of the lines in its spectrum are extremely broad and ill-defined, and the accuracy of measurement is probably less than for any other star in the list.

1901, September 4, G. M. T. 22^h 10^m Hour angle E $2^{\rm h}\,23^{\rm m}$

€ ORIONIS—A 208

Star rather strong; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t, m,	t. m.	1. m.	km.	
Ti 23.5347	Standard	± 0.000		4338.084			
Ti~34.7160	Standard	± 0.000		4468.663			
S 34.9557	4471.762		± 0.000	4471.676	± 0.086	+5.8	2
S 35.6890	4481.331		+0.017	4481.400	-0.052	-3.5	2
Ti.35.6959	4581.421	+0.017		4481.438			
$Ti\ 40.8525$	4552.648	-0.016		4552.632			
S 40.8598	4552.738		-0.016	4552,750	-0.012	-0.8	1
Ti 41.6242	Standard	±0.000		4563.939			

Curvature Cor. $+0.0002 \, \mathrm{mm}$.

Weighted mean + 0.8

 $V_a + 26.52$

 $V_d + 0.20$

Reduction to Sun

+26.72

Radial Velocity

+27.5 km.

€ ORIONIS—B 228

1901, November 13, G. M. T. 19^h 50^m Hour angle E 0^h 29^m

Star good: comparison strong

Measured by A. Power 17

Mean ± 0.5

Tom angle 12 0 2.5		Estat good, Comparison sitong.						
S 14,5020	4340.974		±0.000	4310.634	+0.340	+23.5	2	
Ti 14 9362	Standard	± 0.000		4344 - 451	, ,	,		
$Ti_{-}20.1023$	4387,071	-0.064		4387.007				
S 20.2495	4388.328		-0.061	4388.100	± 0.164	11.2	113	
S 29.4612	4472.034		-0.006	4471.676	+0.352	23.6	_ ~	
Ti/30.4276	Standard	±0.000		4481.438	,			
Ti.37.3358	4552.527	± 0.105		4552.632				
S 37.3726	4552,925		± 0.105	4552.750	+0.280	18.4	1 2	
Ti 38,3732	4563.827	+0.112		4563,939				
S 38.7533	4568.011		+0.111	4567.950	+0.172	11.3	1	
$Ti_{-}50.5289$	Standard	± 0.000		4710.368				
S 50.7662	4713.516		± () (XX)	4713.308	+0.208	$13 \ 2$	4	
l l								

Curvature Cor. +0.0008mm.

Weighted mean ± 15.0 Mean ± 16.9

 $\stackrel{V_a}{V_d} + 13.73 \\ \stackrel{+}{V_d} + 0.01$

Reduction to Sun

+13.77

Radial Velocity

+28.8 km.

€ ORIONIS—B 228

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 30.777	4340.670		±0.000	4340.634	+0.036	± 2.5	1
Ti 30.855	Standard	± 0.000	,	4341.530	,		
Ti 36.390	4386.945	± 0.062		4387.007			
S 36,511	4387.982		± 0.062	4388.100	-0.058	-4.0	1
Ti 45.122	4465.995	-0.020		4465.975			
S 45.734	4471.891		-0.016	4471.676	+0.199	± 13.3	2
Ti 48.216	Standard	± 0.000		4496.318			
Ti~53.626	4552.612	+0.020		4552.632			
S 53.618	4552 850		十0.020	4552.750	+0.120	+7.9	1 2
Ti~66.817	Standard	±0 (KH)		4710.368			-
S 67.057	4713.548		± 0.000	4713.308	± 0.240	+15.3	3

Curvature Cor. +0.001 mm.

Weighted mean

+10.0

Mean + 7.0

 $V_a + 13.73$ $V_d + 0.04$

Reduction to Sun Radial Velocity

+13.77+23.8 km.

 ϵ ORIONIS — B 298

1902, March 13, G. M. T. 15h 11m Hour angle W 3b Sm

Star rather weak; comparison good.

Measured by A. Power 14

Ti 17.9470	Standard	± 0.000		4338.084			
S 18.3666	4341.438		-0.004	4340.634	+0.800	+55.3	2
Ti 23.8632	4387.075	-0.068		4387.007			
S 24 0978	4389.096		-0.068	4388.100	+0.938	63.4	2
Ti 25.3515	4400.001	-0.066		4399.935			
Ti.32.7994	4468.687	-0.024		4468,663			
S 33.1818	4472,435		-0.017	4471.676	+0.742	49.8	1
Ti 34.1023	Standard	± 0.000		4481.438			
Ti~41.9902	4563.879	+0.060		4563.939			
S 42.4164	4568,609		+0.057	4567.950	+0.716	47.0	1
S 48.5112	4639.666		+0.011	4638 937	+0.740	47.S	•)
Ti 49.8867	Standard	± 0.000		4656.644	·		

Curvature Cor. +0.0008 mm.

Weighted mean

+53.7

Mean +52.6

Mean + 56.8

 $V_a = -27.23 \ V_d = -0.25$

Reduction to Sun Radial Velocity

-27.48 $+26.2 \, \mathrm{km}$.

 ϵ ORIONIS--B 298

Measured by F. Power 12

Ti = 35.000	Standard	± 0.000		4387.007			
S 35.236	4389.041		± 0.000	4388.100	+0.941	+64.3	
Ti = 44.222	4471.442	-0.034		4471.408			
S 44.308	4472.280		-0.031	4471.676	+0.573	38.4	
Ti = 45.241	Standard	±0.000		4481.438			
Ti = 52.100	4552.603	± 0.029		4552.632			
S 52.199	4553.683		+0.029	4552.750	+0.962	63.4	
Ti = 53.129	4563.901	+0.038		4563.939			
S 53.574	4568.840		+0.039	4567.950	+0.929	61.0	
Ti = 55.455	4590.082	+0.014		4590.126			
Ti 61.024	Standard	± 0.000		4656.644			

Curvature Cor. +0.001 mm.

+53.5Weighted Mean

 $V_a = 27.23$

 $V_d = 0.25$

-27.48Reduction to Sun Radial Velocity +26.1 km.

209

1902, April 9, G. M. T. 14^h 21^m Hour angle W 4^h 8^m

€ ORIONIS—B 316

Star fair; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nım.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 24.3317	Standard	± 0.000		4338.084			
S = 24.7620	4341.517		± 0.000	4340.634	+0.883	+61.1	1 1
Ti = 30.2485	4387.016	-0.009		4387.007		·	
S 30.4698	4388,921		-0.009	4388.100	+0.812	55.5	1
Ti-31.7366	Standard	± 0.000		4399.935			
Ti 39 1836	4468.671	-0.008		4468,663			
S 39.5633	4472.370		-0.006	4471.676	± 0.688	46.1	3
Ti 40.4855	Standard	± 0.000		4481.438			

Curvature Cor. +0.0008 mm.

Mean + 54.2

 $V_{a} = -24.24 \ V_{d} = 0.30$

Reduction to Sun -24.54Radial Velocity +26.5 km.

€ ORIONIS—B 316

Measured by F. Power I2

Ti = 35.001	Standard	± 0.000		4387.007			
S = 35.213	4388.835		± 0.000	4388.100	+0.735	+50.2	1
Ti = 43.659	4466.001	-0.026		4465.975			
S 44.327	4472,489	1	-0.018	4471.676	± 0.795	53.3	2
Ti-45.239	4481.444	-0.006		4481.438	'		
Ti 48.354	Standard	± 0.000		4512,906			
Ti = 53.127	4563.915	± 0.024		4563.939			
S 53.562	4568,742		± 0.015	4567.950	± 0.807	53.0	15
Ti=55.456	4590.129	-0.003		4590.126	'		~
Ti 61.022	Standard	± 0.000		4656.644			

Curvature Cor. +0.001 mm.

Mean +52.2

 $V_a = 24.21 \ V_d = 0.30$

Reduction to Sun -24.54Radial Velocity +27.8 km.

SUMMARY OF MEASURES OF & ORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 208	1901, Sept. 4	+27.5	3		
B 228	Nov. 13	+28.8	6	+23.8	5
B 298	1902, March 13	+26.2	5	+26.1	4
B 316	April 9	+26.5	3	+27.8	3

Mean +27.2

+25.9

Mean of 4 plates ± 26.8 km. Mean of all measures ± 26.7 km.

8. \$ ORIONIS

(R. $A = 5^h 36^m$; Dec. = -2 0'; Mag. 1.9; Class Hb)

Five plates of this star have been measured, five by A., and two by F. The spectrum is extremely difficult of measurement, the lines being few in number, and extremely broad and ill defined. The degree of accuracy attained is probably about the same as in the case of ϵ Orionis.

₹ ORIONIS — A 263

1901, October 3, G. M. T. 20h 42m Hour angle E 1^h 56^m

Star strong; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
min.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 21.3208	Standard	± 0.000		4338.084			j
S = 21.5491	4340.513		± 0.000	4340.634	-0.121	-8.4	2
Ti = 24.0571	4367.836	+0.003		4367.839			
Ti = 25.7550	4387.026	-0.019		4387,007			1
S = 25.8352	4387.947		-0.017	4388,100	-0.170	11.6	3
Ti = 26.8690	Standard	± 0.000		4399.935			
Ti 29.1549	4427.249	+0.017		4427.266	1		
S 29.9907	4437.524		+0.013	4437,718	-0.181	12.2	2
Ti 32.4466	4468.655	+0.008		4468.663			
S 32.6629	4471.467		± 0.006	4471.676	-0.203	13.6	2
Ti = 33.4230	Standard	± 0.000		4481,438			

Curvature Cor. +0.0002 mm.

Weighted mean -11.5

Mean = 11.2

Mean = 5.1

 $\frac{V_a}{V_d} + \frac{25.58}{+ 0.17}$

Reduction to Sun Radial Velocity

+25.75+14.3 km.

ና ORIONIS -- A 263

Measured by F. Power 12

Ti 31.0582 S 31.2891 Ti 36.6062	Standard 4340.543 4399.977	±0.000	-0.002	4338,084 4340,634 4399,935	-0.093	-6.4	1
Ti 42.1840 S 42.4116 Ti 43.1606 Ti 49.0647	4355,511 4468.668 4471.623 Standard Standard	$ \begin{array}{c c} -0.042 \\ -0.005 \\ \vdots \\ \pm 0.000 \\ \pm 0.000 \end{array} $	-0.004	4468.663 4471.676 4481.438 4563.939	-0.057	3.8	1

Curvature Cor. +0.0003 mm.

-5.1Weighted mean

 $V_a + 25.58$ $V_d + 0.17$

Reduction to Sun

Radial Velocity

+25.75+20.8 km.

¿ORIONIS-B 429

1902, October 23, G. M. T. 23h 45m Hour angle W 2^h 25^m

Star good; comparison weak.

Measured by A. Power 21

		1					
Ti 21.1865	Standard	+0.000		4338.084			
S 21.5038	4340,609		± 0.000	4340,634	-0.025	-1.7	1 1
S 27.2283	4387.981		± 0.000	4388.100	-0.119	8.1	$\bar{1}$
Ti 28.0643	Standard	± 0.000		4395.201			
S 30.3115	4415.012		+0.006	4415.076	-0.058	3.9	1
Ti 31.6671	4427.256	+0.010		4427.266			1
Ti = 36.0733	Standard	± 0.000		4468.663			
S 36.3683	4471.527		± 0.000	4471.676	-0.149	10.0	1
							1

Curvature Cor. +0.0008 mm.

Weighted mean -5.9 Mean -5.9

 $V_a + 21.40 \ V_d = 0.20$

Reduction to Sun +21.20Radial Velocity +15.3 km.

211

1902, October 29, G. M. T. 19h 4m Hour angle E 1^h 52^m

₹ORIONIS-B 433

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t, m.	t. m.	km,	_ '
Ti 21.3584	Standard	± 0.000		4338.084			
S 21,6687	4310.560		\pm O , OOO	4340.631	-0.074	-5.1	2
S 21 9074	4366 995		± 0.001	4367.012	-0.013	-0.9	2
S = 27.4009	4388.120		+0.007	4388.100	± 0.027	± 1.8	1
Ti 28,2178	4395.193	± 0.008	1	4395.201	,	'	1
Ti=28.7605	Standard	± 0.000		4399.935			
S = 32.8392	4437.701		± 0.015	4437.718	-0.002	-0.1	2
Ti 33_6183	4143.959	+0.017		4443.976			
Ti 36 2094	4468.670	-0.007		4468,663			
S = 36.5151	4471.647		-0.005	4471.676	-0.034	-2.3	2
Ti=37.5123	Standard	± 0.000		4481.438	1		1

Curvature Cor. +0.0008 mm.

Weighted mean -1.6

Mean -0.7

 $V_a = +19.67$ $V_d + 0.16$

Reduction to Sun Radial Velocity

 ± 19.83

 $\overline{+18.2}$ km.

₹ORIONIS-- B 434

1902, October 29, G. M. T. 19h 45m Hour angle E 1^b 12^m

Star good; comparison good.

Measured by A. Power 21

-							
Ti 20.1420	Standard	±0.000		4338.084			
S = 20.4650	4340.662		\pm O, OOO	4340.634	± 0.028	+ 1.9	1
S = 26.1626	4387.943		-0.003	4388.100	-0.160	-10.9	1
Ti=27.0014	4395 205	-0.004		4395.201			
Ti 27.5428	Standard	· O,000		4399,935			
Ti 34.9950	4468.682	0.019		4468,663			
S 35.3017	4471.665		-0.045	4471.676	-0.026	-1.7	3
T7/36,2973	Standard	. ± O. (XX)		4481,438			

Curvature Cor. + 0.0008 mm.

Weighted mean

-2.9

Mean -3.6

 $rac{V_a}{V_d} + rac{19.66}{+0.11}$

Reduction to Sun

 ± 19.77

Radial Velocity +16.9 km.

1902, October 30, G. M. T. 21^h 19^m

ξ ORIONIS - B 441

Measured by A. Power 21

Hour angle W 0h 27m

Star strong; comparison good.

Ti=20.3207 ± 0.000 4338.084 Standard +0.000 +0.058 20.64804340 - 6344340.692+4.02.2 26,3658 4388,067+0.0014388 - 100-0.032Ti 27, 1909 +0.001 4395 200 4395,201. Ti = 27.7336+0.000 4399.935Standard Ti 35 1942 4468,676-0.0134468.66335 4940 4471.589-0.0104471.676-0.097-6.51 Ti=36.4981Standard 4481,438 +O.GO

Curvature Cor. +0.0008 mm.

-1.6Weighted mean

Mean = 1.6

 Γ_a +19.31 -0.01

 V_{d} Reduction to Sun

 ± 19.27 ± 17.7 km.

Radial Velocity

3 ORIONIS - B 441

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 30.1739	Standard	± 0.000		4338.084			
S 30.5197	4340.840		± 0.000	4340.634	+0.206	+14.2	1
Ti = 33.8288	4367.844	-0.005		4367.839	,	1	
S 36.2503	4388.347		-0.022	4388.100	+0.225	15.4	1
Ti = 37.5895	4399.968	-0.033		4399.935	, , , , , ,	20.2	_
S 39.5276	4417.155		-0.026	4417.121	+0.008	0.5	2
Ti 39.6117	4417.910	-0.026		4417.884			_
Ti = 45.0495	Standard	± 0.000		4468.663			
S 45.3616	4471.692		± 0.000	4471.676	+0.016	1.1	2
Ti 54.9951	Standard	± 0.000		4572.156	1		_

Curvature Cor. +0.0013 mm.

Weighted mean

Mean ± 7.8

 $egin{array}{ccc} V_a & +19.31 \ V_d & -0.04 \end{array}$

Reduction to Sun Radial Velocity $\frac{+19.27}{+24.7 \text{ km}}$

+5.5

SUMMARY OF MEASURES OF JORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 263	1901, Oct. 3	+14.3	4	+20.6	2
B 429	1902, Oct. 23	+15.3	4		
B 433 B 434	Oct. 29 Oct. 29	$^{+18.2}_{+16.9}$	3		
B 441	Oet. 30	+17.7	3	+24.7	4

Mean

 ± 16.5

+22.7

Mean of 5 plates +17.8 km. Mean of all measures +18.3 km.

9. k ORIONIS

(R. A.= $5^h 43^m$; Dec.- $9^{\circ} 42$; Mag. 2.2; Class IIa)

Seven plates of the spectrum of this star have been measured, seven by A., and three by F. The spectrum is one of the most difficult of measurement of any we have encountered, all the lines being very broad and diffuse. Traces of a few oxygen lines appear.

1901, September 20, G. M. T. 22^h 13^m Hour angle E 1^h 23^m « ORIONIS—A 244

Star good; comparison good,

Measured by A. Power 21

Ti = 18.0699	Standard	± 0.000		4338.084			
S 18.3024	4340.560		-0.001	4340.634	-0.075	-5.2	1
S 19.2999	4351.296		-0.009	4351.495	-0.208	14.3	1
S = 22.5847	4387,979		0.031	4388.100	-0.152	10.4	1
Ti = 23.2128	4395.237	-0.036		4395.201			
Ti-27.2579	Standard	± 0.000		4443.976			
Ti=29.1978	4468.656	+0.007		4468.663			
S 29,4133	4471.452		± 0.008	4471.676	-0.216	14.5	1
Ti = 35.3084	4552.591	+0.041		4552.632			
S 35.3104	4552.620		+0.041	4552,750	-0.089	5.9	2
Ti = 36.0815	Standard	± 0.000		4563.939			

Curvature Cor. + 0.0001 mm.

Weighted mean - 9.3

Mean - 10.0

 $V_a + 24.79 \ V_d + 0.12$

Reduction to Sun +24.91Radial Velocity +15.6 km.

κ ORIONIS -- B 244

Measured by F. Power 12

Mean of Settings	Waye-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t, m,	t. m.	t. m.	km.	
Ti 28,9995	Standard	±0.000		4338.084			
S 29,2217	4340.480		-0.002	4340.634	-0.156	-10.8	1
S 33 5033	4387.817		-0.040	4388.100	-0.323	-22.1	2
Ti 31.1468	4395.247	-0.046		4395,201	1		
Ti-40.1331	Standard	± 0.000		4468,663			
S 40.3438	4474.397		± 0.006	4471.676	-0.273	-18.3	21/2
Ti-41.1082	4481.409	+0.029		4481.438			
Ti = 46.2450	4552.632	± 0.000		4552,632			
S 46.2533	4552.753		± 0.003	4552.750	+0.003	+ 0.2	1
Ti = 47.0149	Standard	± 0.000		4563.939			
S 47.2816	4567.896		-0.011	4567.950	-0.065	-4.3	1
Ti 47.5686	4572.179	-0.023		4572,156			
Curvature Cor. +0.0	9003 mm.	Weighted mea	n –	11.0	Mear	-11.1	
		I	$t_a = +24.79$				
		1	$_{d} + 0.12$				
	Re	eduction to Su	+	24.91			

Reduction to Sun Radial Velocity

+24.91+10.9 km.

1901, September 26, G. M. T. 21^h 26^m Hour angle E 1^h 50^m

 κ ORIONIS — A 250 Star fair; comparison rather strong.

Measured by A. Power 21

						_
Ti 37.3388	Standard	± 0.000	. 4387.007			
Ti=38.4583	4399.949	-0.011	. 4399,935			+
S 39.7340	4415.011	-0.01	7 = 4415.076	-0.082	-5.6	
Ti = 40.7524	4427.285	-0.019	4427,266			
S 41.5911	4437.596	-0.02	2 - 4437.718	-0.144	9.7	
Ti = 42.5370	4449.339	-0.026	4449.313			
S 44.2858	4471.661	-0.00		-0.023	1.5	
8 45.0288	4481.366	± 0.00	0 4481.400	-0.034	2.3	
Ti 45.0343	Standard	± 0.000	4481.438			
Ti 50.9555	4563.889	± 0.050	1509 020			
S 51.2177	4567.764	+0.04		-0.143	9.4	
Ti 52.7046	Standard	+0.000	4590, 126			

Curvature Cor. \pm 0.0001 mm.

Weighted mean -5.7

 $rac{V_a}{V_d} \; rac{+24.55}{+\; 0.16}$

Reduction to Sun Radial Velocity

Mean -5.7

Mean -4.0

+24.71 $\pm 19.0 \text{ km}.$

1901, October 17, G. M. T. $19^{\rm h}~24^{\rm m}$ Hour angle E 2h 32m

к ORIONIS—В 196 Star good; comparison strong.

Measured by A. Power 24

Ti 16.8322	Standard	± 0.000		4338.084			
S 17.1483	4340 587		-0 001	4310,634	-0.048	-3.3	
S 22,9038	4387.966		-0.013	4388.100	-0.147	-10.0	
Ti=23.7479	4395.216	-0.015		4395.201			
Ti=29.7642	Standard	± 0.000		4449.313			
$Ti_{-}31.8021$	4468.661	± 0.002		4468.663			
S 32.1094	-4471.626		± 0.002	4471.676	-0.018	-32	
S 33.1156	4481 , 424		±0.000	4481.400	± 0.024	± 1.6	
Ti = 36.2562	4512.913	- 0.007		4481.438		· ·	
Ti=40.0241	4552.615	+0.017		4552,632			
S 40 0294	4552,669	,,,,,,	± 0.017	4552.750	-0.064	- 4 2	
Ti = 41.0622	Standard	< 0,000		4563,939			

Curvature Cor. + 0.0002 mm.

Weighted mean $\frac{V_a}{V_a} + \frac{21.65}{0.21}$ -3.2

 $V_d + 0.21$

Reduction to Sun ± 21.86

Radial Velocity + t8.7 km.

214

1901, October 23, G. M. T. $19^{\rm h}\,26^{\rm m}$ Hour angle E $2^{\rm h}\,1^{\rm m}$

κ ORIONIS—A 274

Star slightly weak; comparison good.

Measured by A. Power 25

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 25,3793	4388.096		± 0.000	4388.100	-0.004	-0.3	1
$Ti_{25.9954}$	Standard	± 0.000		4395.201			
S 27.6771	4414.992		-0.042	4415.076	-0.126	8.6	1
Ti = 27.9227	4417.933	-0.049		4417.881			
Ti-31.9962	Standard	± 0.000		4468.663		2.0	
S = 32.2265	4471.646		± 0.000	4471.676	-0.030	$^{2.0}$	2
Ti = 38.8937	Standard	± 0.000		4563.939			1

Curvature Cor. +0.0002 mm.

Weighted mean

-3.2

Mean - 3.6

 $V_a + 20.27 \ V_d + 0.17$

Reduction to Sun Radial Velocity $\frac{+20.44}{+17.2}$ km.

1901, October 31, G. M. T. 20^h 24^m

κ ORIONIS—A 285

Measured by A.

Power 21 Star good; eomparison good. Hour angle E 0^h 31^m -0.008-0.61 4340.634 4340.626 ± 0.000 22.9041Ti = 23.2617Standard ± 0.000 4344.451S 25.3370 Ti 25.4059 Ti 27.1045 4367.114 4367.881-0.0424367.012+0.060+4.11 4367.839 -0.0424387.0074387.067 -0.060-0.11 -0.0014388,159 -0.0604388,100 S 27.1997 Ti 31.0726 27.1997-0.0274434.168 4434.195 $\frac{4437.718}{4449.313}$ +3.4S 31.3647 *Ti* 32.2905 *Ti* 33.5961 -0.030+0.0514437.799 4449.349-0.036Standard ±0 000 4465.975 $\overline{2}$ -0.0094471.676 ± 0.052 +3.534.0413 4471.737 Ti 34.7844 Ti 39.9215 -0.0244481.438 4481.4624552.599+0.0334552.6322 -2.64552.677 ± 0.033 4552.750-0.04039.92694563.939 Ti = 40.69324563.914 ± 0.025 -0.0252 ± 0.019 -1.640.96274567.906 4567.950 ± 0.000 4590.126Standard Ti 42.4365 ± 0.000 4591.066 -0.021-1.42 42.49654591.045

Curvature Cor. +0.0005 mm.

Weighted mean

+ 0.5

Mean + 0.6

 $V_a +18.06$ $V_d + 0.04$

Reduction to Sun Radial Velocity

 $\frac{+18.10}{+18.6}$ km.

κ ORIONIS—A 285

Measured by F. Power 12

				T		1
4338.076	+0.008		4338 084			
4340.739		+0.005	4340.634	+0.110	+7.6	1
Standard	± 0.000		4344.451			
4387.069	-0.062		4387.007			
4388.083		-0.061	4388.100	-0.078	-5.3	-2
4465.978	-0.003		4465.975			
4471.774		± 0.002	4471.676	+0.106	+7.1	2
Standard	±0,000		4481.438			
4552.572	+0.060		4552.632			
4552.579		± 0.060	4552,750	-0.111	-7.3	3
4623.251	+0.028		4623.279			
Standard	±0.000		4629.521			
4630.792		± 0.000	4630.703	+0.089	+5.8	1
	4340.739 Standard 4387.069 4388.083 4465.978 4471.774 Standard 4552.572 4552.579 4623.251 Standard	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Curvature Cor. $+0.0010 \,\mathrm{mm}$.

Weighted mean -0.6

215

Mean + 1.6

 $V_a + 18.06$ $V_d + 0.04$

Reduction to Sun Radial Velocity $\frac{+18.10}{+17.5}$ km.

ciocity

1902, Mareh 13, G. M. T. 14 $^{\rm h}$ 29 $^{\rm m}$ Hour angle W $2^{\rm h}$ 14 $^{\rm m}$

κ ORIONIS -- B 297

Star good; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S = 21.8680	4367,614		± 0.000	4367.012	+0.602	+41.3	1
Ti=21.8949	Standard	± 0.000		4367.839		•	
Ti=24.1605	4387.044	-0.037		4387.007			
S 24.3606	4388.767		-0.037	4388.100	+0.630	43.1	1
Ti=33.0949	Standard	± 0.000		4468.663	'		
S 33.4630	4472.243		± 0.000	4471.676	± 0.567	38.0	2
$Ti_{-}34.3997$	4481.437	+0.001		4481.438	'		
S 34.4740	4482.172		+0.001	4481.400	± 0.773	51 7	1
Ti = 41.2577	4552,608	+0.024		4552,632			
S 41 3312	4553.410		+0.024	4552,750	+0.684	45.0	2
Ti=43.0268	4572,147	+0.009		4572.156			
S 43.3334	4575.586		+0.009	4574.900	± 0.693	45.4	1
Ti-44.6144	Standard	± 0.000		4590.126			1
S = 45.2168	4597.061		± 0.000	4596.291	+0.770	50.2	1

Curvature Cor. +0.0008 mm.

Weighted mean $V_a = 25.04$ $V_d = 0.19$

Mean + 45.0

Reduction to Sun Radial Velocity

-25.23 $+19.0\,\mathrm{km}$

1902, April 9, G. M. T. 13^h 47^m Hour angle W 3^h 21^m

к ORIONIS — В 315

Measured by A.

Hour angle W 3 ^h 21 ^m		Star good; comparison good.				Power 17	
Ti 19.6236	Standard	± 0.000		4338.084			
S 20.0091	4341,163	,	-0.002	4340.634	+0.527	+36.4	1
S = 21.1303	4350.203		-0.007	4349.541	+0.655	45.2	1
Ti 26.4865	4395.234	-0.033		4395.201			
S 29.0385	4417.825		-0.051	4417.121	+0.653	44.3	1
Ti 29.0507	4417.935	-0.051		4417.884	· ·		
Ti = 34.4790	Standard	.50,000		4168.663			
S 34.8421	4172.193		± 0.007	4471.676	+0.521	35.1	4
$Ti_{-}35.7819$	4481.414	± 0.021		4481.438			
S 35.8385	4181.973		+0.024	1481.400	+0.597	10.0	1
Ti = 42.6415	4552.582	+0.050		4552,632	· ·		
S 42.7170	4553.406		± 0.050	4552.750	+0.706	46.5	2
Ti-43.6705	4563.881	+0.055		4563.939			
S 46.1285	4591.592		+0.037	4591,066	+0.563	36.8	1
Ti-48.3430	Standard	± 0.000		4617.452			

Curvature Cor. ± 0.0008 mm.

Weighted mean +39.6

 $\frac{\Gamma_a}{V_d} = 22.86$ $\frac{1}{V_d} = 0.26$

Reduction to Sun Radial Velocity

-23.12+16.5 km.

к ORIONIS—В 315

Measured by F. Power 12

Mean +40.6

Ti 30.0110	Standard	± 0.000		4338.084			
S 30.4000	4341.189		±0,000	4340.631	± 0.555	+38.3	1
Ti 36,8711	4395.214	-0.013		4395,201			
Ti. 44.8695	Standard	\pm O, OOO		4468.663			
8 45,2435	4172.300		± 0.006	4471.676	+0.630	42.2	3
Ti 46.1721	4481 - 413	+0.025		4481.438	1		
8 - 46.2375	4482.083		+0.024	4481,400	+0.683	45.7	1
Ti=53.0331	4552,627	+0,005		4552 - 632			
S 53,0968	4553.322		\pm 0.005	4552.750	+0.577	38.0	1
Ti = 51.0610	4563.923	+0.016		4563,939			
S 51.4791	4568,568		+0.007	4567.950	+0.625	41.0	2
Ti = 54.8003	Standard	+0.000		4572.156			

Curvature Cor. + 0.0013 mm.

Weighted mean

+41.4

Mean +41.0

 $V_d = -22.86$ $V_d = 0.26$

Reduction to Sun Radial Velocity

-23.12+18.2 km.

SHWMARY	OF MEASURES.	OF KO	RIONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 244	1901, Sept. 20	+15.6	5	+10.9	5
A 250	Sept. 26	+19.0	5		
B 196	Oet. 17	+18.7	5		
A 274	Oct. 23	+17.2	3		
A 285	Oct. 31	+18.6	8	+17.5	5
B 297	1902, March 13	± 19.0	7		
B 315	April 9	± 16.5	7	+18.2	5

Mean +17.8

+15.5

Mean of 7 plates +17.5 km. Mean of all measures +17.1 km.

10. B CANIS MAJORIS

(R. A.= 6^h 18^m; Dec.= $-17^{\circ}54^{\circ}$; Mag. 2.0; Class IIIa)

Three plates of this star have been measured, two by A., and three by F. Numerous lines of oxygen and nitrogen are present in the spectrum in addition to the regular *Orion* lines, and all are narrow and well defined in character.

β CANIS MAJORIS — A 287

1901, October 31, G. M. T. $21^{\rm h}\,35^{\rm m}$ Hour angle W $0^{\rm h}\,9^{\rm m}$

Star fair; comparison good.

Measured by A. Power 25

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 20.5223	Standard	± 0.000		4344.451			
S 20.6539	4345.866		-0.002	4345.677	+0.187	+12.9	1
S 21.0230 S 21.1914	4349.850		-0.008	4349.541	± 0.301	20.7	1 1 1
S 21.1914	4351.676		-0.011	4351.495	+0.170	11 7	1
S 22.6035	4367.197		-0.036	4367.012	+0.149	10.2	1
Ti=22.6645	4367.876	-0.037		4367.839			
Ti=26.4383	4411.311	-0.071		4411.240			
S 26,7735	4415.310		-0.083	4415.076	+0.151	10.3	\perp 2
S 26,9511	4417.438		-0.090	4417.121	+0.227	15.4	
Ti 26.9959	4417.976	-0.092		4417.884			
Ti = 30.8583	4466.035	-0.060		4465.975			1
S 31,3058	4471.956		-0.037	4471.676	+0.243	16.3	2
Ti = 32.0405	Standard	± 0.000		4481.438	1		
Ti = 37.1801	4552.558	± 0.074		4552.632			1
S 37,2029	4552.890		+0.074	4552.750	+0.214	14.1	2
Ti = 37.9534	4563.885	+0.054		4563.939			
S 38.2383	4568.101		+0.053	4567.950	+0.204	13.4	1
Ti = 38.5072	4572.103	+0.053		4572.156			
S 38,7063	4575 080		± 0.056	4574.900	+0.236	15.5	2
Ti = 39.6951	4590.041	+0.085		4590.126			•
Ti - 41.4542	4617.406	+0.046		4617.452			
S 42.2972	4630,872		+0.036	4630.703	+0.205	13.3	
S 42.8130	4639.228		+0.029	4638.937	+0.320	20.7	1
S = 42.9915	4642.140		+0.027	4641.886	+0.281	18.2	
S 43,5376	4651.119		+0.020	4650.925	+0.214	13.8	
Ti 43.8696	4656.628	+0.016		4656.644			
Ti 44.5340	Standard	± 0.000		4667.768			
S = 45.0520	4676,563		± 0.000	4676.290	+0.273	17.5	

Curvature Cor. +0.0005 mm.

Weighted mean +14.7

Mean+14.9

 $V_a + 18.84$ $V_d - 0.01$

Reduction to Sun $V_d = 0.01$

Radial Velocity

 $\frac{+18.83}{+33.5}$ km.

β CANIS MAJORIS - A 287

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 30.9422	4367.190		± 0.000	4367.072	+0.118	+ 8.1	1
Ti = 31.0005	Standard	± 0.000		4367.839	'	•	
Ti = 32.7005	4387.060	-0.053		4387.007			
S 32,8075	1388.289		-0.052	4388.100	+0.137	9.4	2
S = 35.1105	4415.306		-0.060	4415.076	+0.170	11.5	2
S 35.2828	4417.372		-0.061	4417.121	+0.190	12.9	1
Ti-35.3308	4417.945	-0.061		4417.884			
Ti 39.1925	4466.018	-0.043		4465.975			
S 39.6468	4471.900		-0.028	4471.676	+0.196	13.1	2
Ti 40.3755	Standard	± 0.000		4481.438			
S 40.3815	4481.517		± 0.000	4481.400	+0.117	7.8	1
Ti = 45.5175	4552.620	+0.012		4552.632	1		
S = 45.5428	4552.988		+0.012	4552.750	+0.250	16 5	3
Ti 46.2862	4563.883	± 0.056		4563.939			
S 46.5748	4568.156		+0.027	4567.950	+0.233	15.3	2
Ti 46.8430	4572.149	+0.007		4572.156			
S 47.0142	4575,159		± 0.006	4574.900	+0.265	17.4	1
Ti 48.0330	Standard	± 0.000		4590.126			
S 48.4478	4596.491		± 0.001	4596.291	+0.204	13.3	1
Ti = 49.7885	4617.445	+0.007		4617.452			

Weighted mean

+12.9-0.71

Mean + 12.5

Mean + 16.2

Curvature Cor.

 $V_a = +18.84$ $V_d = 0.03$

Reduction to Sun

+18.81

Radial Velocity

+31.0 km.

β CANIS MAJORIS-A 293

1901, November 1, G. M. T. $21^{h} 26^{m}$ Hour angle W 0h 3m

Star fair; comparison good.

Measured by F. Power 17

Ti 27.1717	Standard	±0.000		4338.084			
S=27.4256	4340.791		-0.005	4340.634	+0.152	10.5	
S 31.7221	4388,419		-0.062	4388.100	± 0.257	17.6	
Ti.32.3148	4395.270	-0.069		4395.201			
$Ti\ 32.7200$	4399.998	-0.063		4399.935			
S 34.0175	4415.363		-0.064	4415.076	+0.223	15.2	
S 34.1961	4417.503		-0.063	4417.121	± 0.319	21.6	-
Ti~34.2324	4417.939	-0.055		4417.884			
Ti.35.0081	4427.332	-0.066		4427.266			
Ti.38.3000	4468.695	-0.032		4468.663			-
S 38.5496	4471.936		-0.009	4471.676	+0.251	16.8	-
Ti~39.2752	Standard	± 0.000		4481.438			
$Ti\ 44.4088$	4552.552	± 0.080		4552,632			
S 44.4375	4552.974		+0.062	4552.750	± 0.286	18.8	1
Ti 45.1813	4563.881	+0.058		4563.939			
S 45,4705	4568.169		+0.067	4567.950	+0.286	18.8	
$Ti\ 45.7311$	4572.099	+0.057		4572.156	,		
S 46,9983	4591.222		± 0.064	4591.066	+0.220	11.4	1
Ti.48.6788	4617.416	+0.036		4617.452	,		
S = 50.0322	4639.181		± 0.025	4639,206	± 0.260	16.8	
S 50,6555	4649.413		± 0.011	4649,424	+0.184	11.9	
Ti 51.0913	Standard	± 0.000		4656.644			-

Weighted mean

+17.1-0.86

Curvature Cor.

 $\frac{\Gamma_a}{\Gamma_d} = \frac{+18.63}{0.00}$

Reduction to Sun

+18.63

Radial Velocity

+31.8 km.

β CANIS MAJORIS—B 215

1901, November 7, G. M. T. 21^h 00^m Hour angle, E $0^{\rm h}\,8^{\rm m}$

Star weak; comparison slightly weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti~15.9494	Standard	± 0.000		4313.034			
S 16.5293	4317.457		-0.005	4317.272	± 0.180	+12.5	-2
S 16.8567	4319.969		-0.007	4319.762	+0.200	13.9	2 1/2
$Ti\ 19.1827$	4338.108	-0.024		4338.084	, , , , , ,		"
S = 19.5305	4340.866		-0.036	4340.634	+0.196	13.5	1/2
S 20.6401	4349.745		-0.050	4349.541	+0.154	10.6	1
S 20.8818	4351.696		-0.052	4351.495	+0.145	10.3	16
S 22.7898	4367.308		-0.083	4367.012	+0.213	14.6	1/2
Ti~22.8641	4367.923	-0.084		4367.839			1
$Ti\ 27.9241$	4411.280	-0.040		4411.240			
S 28.3726	4415.264		-0.034	4415.076	+0.154	10.5	2
S 28.6063	4417.349		-0.031	4417.121	+0.197	13.4	1
S 30.8757	4437.941		+0.001	4437.718	+0.224	15.1	1
Ti~31.5267	4443.966	± 0.010	i	4443.976			
Ti~34.1367	Standard	± 0.000		4468.663			
S 34.4710	4471.890		+0 003	4471.676	+0.217	14.6	1
Ti~35.4497	4481.428	+0.010		4481.438	,		
S 42.3849	4552.929		+0.105	4552.750	+0.284	18.7	2
Ti~42.6262	4555.548	+0.114		4555.662	,		
$Ti\ 43.3830$	4563.823	± 0.116		4563.939			
S 43.7684	4568.072		+0.114	4567.950	+0.236	15.5	3
Ti 44.1265	4572.043	+0.113		4572.156	, , , , , , ,		
$Ti\ 45.7245$	4590.020	+0.106		4590.126			
S 45.8308	4591.232		+0.104	4591.066	± 0.270	17.6	1
S 46.2829	4596.405		± 0.099	4596.291	± 0.213	13.9	1/2
$Ti\ 48.0837$	4617.366	± 0.086		4617.452	,		/ -
$Ti\ 48.5765$	4623.203	+0.076		4623.279			
S 49.2176	4630 863		+0.063	4630.703	+0.223	14.4	1,
S 50.1463	4642.096		+0.044	4641.886	+0.254	16.4	17
S 50.7505	4649.491		+0.029	4649.250	+0.270	17.4	1/2 1/2 2
$Ti\ 51.3287$	4656,631	± 0.010		4656.644	1		
S = 51.7620	4662.029		+0,006	4661.728	± 0.307	19.7	1/2
$Ti\ 52.2197$	Standard	± 0.000		4667.768	1		1 /3

Curvature Cor.+0.0007 mm.

Weighted mean $V_a + 17.24$ $V_d + 0.01$ +14.7

Mean ± 14.6

Reduction to Sun Radial Velocity

+17.25 $+32.0\,\mathrm{km}$

 β CANIS MAJORIS—B 215

Measured by F. Power 12

S 29.9290	4367.244		± 0.000	4367.072	+0.172	+11.8	
Ti~30.0008	Standard	±0.000		4367.839		,	
Ti~32.2802	4387.024	-0.017		4387.007			
S 32.4325	4388.327		-0.015	4388.100	+0.212	14.5	
S 35.5175	4415.274		-0.026	4415.076	+0.172	11.7	
S 35.7475	4417.327		-0.032	4417.121	+0.174	11.8	
Ti 35.8135	4417.918	-0.034		4417.884	,		
$Ti\ 41.2755$	4468.650	+0.013		4468.663			
S 41,6092	4471.874		± 0.010	4471.676	+0.208	13.9	i
$Ti\ 42.5900$	Standard	± 0.000		4481.438	1		
S 42.5958	4481.498		± 0.000	4481.400	+0.098	6.6	
$Ti\ 43.3002$	4488.445	+0.048		4488.493	,		
$Ti\ 49.4875$	$4552\ 585$	± 0.017		4552,632			
S 49.5212	4552.951		+0.047	4552.750	+0.248	16.3	
Ti 50 5230	4563.891	+0.045		4563.939	· '		
S 50 9108	4568.173		± 0.035	4567.950	+0.258	16.9	
Ti~51.2672	4572.128	± 0.028		4572.156			

β CANIS MAJORIS - B 215 -- Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 51.5355	4575 120		+0.023	4574.900	± 0.243	± 15.9	112
Ti~52.8655	Standard	±(),(XX)		4590,156			~
S 52.9748	4591.372		-0.002	4591.066	± 0.301	19.8	11/2
S 53 4240	4596.518		-0.011	4596 - 291	± 0.216	14.1	1
Ti.55,2248	4617.499	-0.017		4617.452			

Curvature Cor.+0.0010 mm.

Weighted mean $V_a + 17.24$ $V_d + 0.01$ Reduction to Sun +17.25

SUMMARY OF MEASURES OF BCANIS MAJORIS

 $\overline{+31.4}\,\mathrm{km}$.

Radial Velocity

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 287	1901, Oct. 31	+33.5	15	+31.0	10
$A_{-}293_{-}$	Nov. 1			± 34.8	10
B 215	Nov. 7	+32.0	18	± 31.4	11

Mean of 3 plates +32.9 km. Mean of all measures +32.6 km.

11. ϵ CANIS MAJORIS

(R. $A.=6^{h} 55^{m}$; Dec.= $-28^{\circ} 50$; Mag. 1.5; Class IIIa)

Three plates of this star have been measured, two by each observer. The spectrum is very similar to that of β Canis Majoris, but the oxygen and nitrogen lines are slightly more diffuse in character.

1901, November 7, G. M. T. $21^{\rm h}\,51^{\rm m}$ Hour angle W $0^{\rm h}\,8^{\rm m}$

 ϵ CANIS MAJORIS B 216 Star good; comparison fair.

Measured by A. with Zeiss Comparator Power 20

Mean + 13.2

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines		Normal Waves Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 61.9697	Standard	± 0.000		4338.081			
S 61,0046	4345.798		-0.008	4345.677	± 0.113	+7.8	2
S = 63.5142	4349.754		-0.012	4319.541	± 0.201	13.9	2
S = 61.3858	4367.214		-0.030	4367.012	± 0.162	11.1	1
Ti 61.3070	4367.869	-0.030		4367.839			
S 58,8970	4388.247		-0.048	4388.100	± 0.099	6.8	1
Ti=57.5415	4399,994	=0.059		4399.935			
S = 55.8182	4415.236		-0.062	4415,076	± 0.098	6.7	2
S 55,5866	4417.311		-0.062	4417.121	± 0.128	8.7	2
Ti-55.5158	4417.946	-0.062		4417.884			
S = 53.3280	4437.891		-0.014	4437.718	+0.159	10.7	2
Ti-52.6732	Standard	±0 (XX)		4443.976	,		
Ti-50.0722	4468,693	= 0.030		4468.663			
S = 49.7430	4471.886		-0.020	4471.676	± 0.190	12.7	3
Ti-48.7676	4381.431	± 0.007		4181.438	,		
S = 48,7579	4481.527		± 0.007	4481.400	± 0.131	9.0	. 1
Ti-41.8927	4552,600	+0.032		4552,632	'		
S = 41.8694	4552.854		± 0.032	4552.750	± 0.136	9.0	1

e CANIS MAJORIS - B 216 - Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 40.8595	4563,924	+0.015		4563,939			
S 40.4787	4568.142		+0.006	4567.950	+0.198	13.0	3
Ti = 40.1182	4572.157	-0.001		4572.156	,		
S 39.8528	4575,126		-0.001	4574.900	+0.225	15.0	2
Ti = 38.5281	Standard	± 0.000		4590.126	,		
S 38,4293	4591.277		± 0.000	4591.066	+0.211	13.8	1

Curvature Cor. -0.0009 mm.

 $\begin{array}{ccc} \text{van} & +11.0 \\ V_a & +16.75 \\ V_d & -0.01 \end{array}$ Weighted mean

Mean + 10.6

Reduction to Sun

+16.74

Radial Velocity

+27.7 km.

1902, November 6, G. M. T. 21h 47m Hour angle 0h 0m

€ CANIS MAJORIS-B 451

Star good; comparison good.

Measured by A. Power 21

Ti 20.2279	Standard	+0.000		4338.084			
S 20.5550	4340,695		-0.002	4340.634	± 0.059	+4.1	2
S 21.1916	4345.819		-0.006	4345.677	+0.136	9.4	$\frac{2}{1}$
Ti = 23.8748	4367.863	-0.024		4367.839	1		
S 26.2804	4388.287		-0.016	4388.100	+0.171	11.7	2
Ti = 27.0796	4395.215	-0.014		4395.201	'		_
Ti = 27.6206	4399.947	-0.012		4399.935			
S 29.3356	4415.173		-0.021	4415.076	+0.076	5.2	2
S 29.5728	4417.306		-0.022	4417.121	+0.163	11.1	2
Ti 29.6393	4417.906	-0.022		4417.884	1		
Ti = 30.6720	4427.282	-0.016		4427.266			
S 31.8242	4437.899		-0.008	4437.718	± 0.173	11.7	2
S 32.8231	4447,239		-0.002	4447.163	+0.074	5.0	ĩ
Ti = 33.0430	Standard	±0,000		4449.313			
Ti = 35.0637	4468.662	+0.001		4468.663			
S 35.3911	4471.849		-0.001	4471.676	+0.172	11.5	2
Ti 36.3682	4481.446	-0.008		4481.438			
S 36.3732	4481.495		-0.008	4481.400	+0.087	5.8	2
Ti = 43.2183	4552.610	+0.022		4552.632	'		
S 43.2380	4552.825		+0.022	4552.750	+0.096 →	6.3	2
Ti = 44.2484	Standard	± 0.000		4563,939	'		
S 44.6250	4568.124		+0.003	4567.950	+0.177	11.6	2
Ti 44.9852	4572.149	+0.007		4572.156			
S 45.2420	4575.032		+0.007	4574.900	+0.139	9.1	2

Curvature Cor. +0.0008 mm.

+8.4Weighted Mean

 $\overline{\overset{V}{V}_{a}}_{V_{d}}^{+16.93}_{0.00}$

Reduction to Sun

+16.93+25.3 km.

Radial Velocity

€ CANIS MAJORIS—B 451

Measured by F. Power 12

Mean + 8.2

Ti 30.0044	4338.045	+0.039		4338.084			
S 30.3391	4340.722		+0.036	4340.634	+0.124	+ 8.6	1
S 33.5736	4367.188		± 0.000	4367.012	+0.176	$^{'}12.1$	1 11
Ti = 33.6515	Standard	± 0.000		4367.839	'		
Ti = 35.9161	4387.060	-0.053		4387.007			
S 36.0565	4388.263		-0.050	4388.100	+0.113	7.7	1

€ CANIS MAJORIS—B 451 - Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement .	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 37.3995	4399.950	-0.015		4399.935			
8 39.1153	4415.186		0.024	4415.076	± 0.086	\pm 5.8	112
S 39.3501	4417.298		-0.025	4417.121	± 0.152	10.3	1
Ti = 39.4179	4417.909	-0.025		4417.884	i '		
Ti=44.8421	4468.667	-0.004		4468.663			
S 45.1720	1171 874		-0.003	4471.676	± 0.195	13.1	2
Ti 46 1459	Standard	± 0.000		4481.438	, 0.200		
Ti = 52.9973	4552.589	± 0.043		4552.632			
S 53.0178	4552.812	10.040	+0.043	4552,750	+0.105	6.9	2
Ti = 54.0282	4563.919	+0.020	10.010	4563.939	, 0.100	9.0	-
S 54.4053	4568.108	0.020	± 0.000	4567.950	+0.158	10.4	2
Ti 51.7696	4572.176	-0.020		4572.156	0.100	10.1	
S 55.0261	4575.054		-0.017	4574.900	+0.137	9.0	1
Ti 56.3537	Standard	+0,000		4590.126	T0.151	0.0	1
S 56,4464	4591.190	_	-0.001	4591.066	± 0.123	8.0	1/
						5.8	1 1
	4596.386	0.091	-0.006	4596, 291	+0.089	0.8	75
Ti-58.6974	4617.483	-0.031		4617.452			

Curvature Cor. ± 0.0013 mm.

Weighted mean $V_a = V_d$

Mean + 8.9

+16.93

Reduction to Sun Radial Velocity

+16.93+26.2 km.

€ CANIS MAJORIS-B 461

1902, November 19, G. M. T. $21^h 0^m$ Hour angle W 0^h 2^m

Star fair: comparison fair.

Measured by F. Power 15

i mgle ii o z		1.4ttl 1ttl1;				10	
Ti 29.8020	Standard	±0.000		4338.084			
S 33,3811	4367.283		-0.048	4367.012	+0.223	+15.3	1
Ti=33.4534	4367.887	-0.048		4367.839	1	,	
Ti = 36,6624	4395,260	=0.059		4395.201			
Ti = 37.2016	4400 000	-0.065		4399.935			
38.9310	4415.320		-0.066	4415.076	+0.178	12.1	1
39,1565	4417 347		-0.066	4417.121	+0.160	10.9	1
Ti 39,2231	4417.950	-0.066		4417.884			
Ti = 44.6513	4468.706	-0.043		4468.663			
3 - 44.9806	4171.909		-0.033	4471.676	± 0.200	13.4	3
"i 45.9516	Standard	± 0.000		4481.438			
45,9703	4481.623		±0.000	4481.400	+0.223	14.9	2
i=52.8063	4552,586	+0.016		4552.632			
52,8402	4552.955		+0 046	4552,750	+0.251	16.5	3
7-53.8358	4563/896	+0 043		4563.939			
5-54.2231	4568.196		+0.027	4567,950	+0.273	17.9	3
Ti = 54 , 5769 \sim	4572 145	+0.011		4572.156			
3 - 51.8412	4575.109		+0.015	4574.900	+0.221	14.7	1
Ti=56 , 1625	4590.105	+0.021		4590,126			
S = 56.7174	4596, 492		+0.016	4596.291	+0.217	11.2	1
Ti 58,5062	Standard	± 0.000		4617,452			

Curvature Cor. ± 0.0013 mm.

+11.8Weighted mean

Mean + 14.4

 $\frac{V_a}{V_d} \stackrel{+11.74}{=0.00}$

+14.74Reduction to Sun

Radial Velocity

+29.6 km.

SUMMARY OF MEASURES OF & CANIS MAJORIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 216 B 451 B 461	1901, Nov. 7 1902, Nov. 6 Nov. 19	$^{+27.7}_{+25.3}$	13 11 	$^{+26.2}_{+29.6}$	11 9

Mean +26.5

+27.9

Mean of 3 plates +27.7 km. Mean of all measures +27.2 km.

12. η LEONIS

(R. A. = $10^{h} 2^{m}$; Dec. = $+17^{\circ} 15'$; Mag. 3.6; Class VIIc)

Three plates of this star have been measured, three by F., and two by A. The spectrum is well advanced toward the Ia2 type, the metallic lines being numerous and well defined. The helium line $\lambda 4471$ is present but weak.

1902, April 19, G. M. T. $15^{\rm h}~43^{\rm m}$ Hour angle W $1^{\rm h}~38^{\rm m}$

 $\eta \ LEONIS$ — B 329

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 35.6462	4468.637	+0.026		4468.663			
S 35.6874	4469.037		± 0.026	4468,663	+0.400	+26.8	1
Ti 36.9530	Standard	0.000		4481.438	,		
S 36.9934	4481.837		± 0.000	4481.400	+0.437	29.2	1
Ti = 37.6612	4488.474	± 0.019		4488.493			
S 37.7913	4489.774		± 0.015	4489.351	+0.438	29.3	1
S 38.0125	4491.990		± 0.007	4491.570	+0.427	28.5	1
Ti~38.4433	4496.325	-0.007		4496.318	,		
S 39,6756	4508.874		+0.004	4508.455	+0.423	28.1	1
Ti 40.0663	4512.899	± 0.007		4512.906	'		
S 40.3610	4515.949		+0.005	4515.508	+0.446	29.6	1
S 40.8270	4520.800		+0.002	4520.397	± 0.405	26.9	1
Ti 41.0349	Standard	± 0.000		4522.974	'		
Ti~44.0855	4555,644	+0.018		4555.662			
S 44.4158	4559.269		+0.012	4558.827	+0.454	29.9	1
$Ti\ 45.5779$	4572.166	-0.010		4572.156	' '		
S 46.0019	4576.928		-0.007	4576.512	± 0.409	26.8	1
S 46.6666	4584.453	1	-0.003	4584.018	+0.432	28.3	1
S = 47.0507	4588.835		-0.001	4588.381	+0.453	29.6	. 1
Ti = 47.1634	Standard	± 0.000		4590.126			

Curvature Cor.+0.0008 mm.

Weighted mean

+28.4

Mean + 28.4

 $V_a = -25.98 \ V_d = -0.14$

Reduction to Sun Radial Velocity $\frac{-26.12}{+2.3 \,\mathrm{km}}$.

	η LEONIS—B 329						by F. wer 18
Ti 29.0100 S 29.9874 Ti 31.8642	4344.347 4352.275 4367.778	+0.104 +0.061	+0.088	4344.451 4351.930 4367.839	+0.433	+29.8	3
\$\ 34.0068 Ti 34.1306 Ti 35.0730	4385.940 4387.005 4395.168	+0.002 $+0.033$	+0.005	4385.548 4387.007 4395.201	+0.397	27.1	3

η LEONIS -B 329 -- Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mu.	t, m,	t. m.	t. m.	t. m.	t. m.	km.	-
S 35,4219	4395.594		± 0.008	4395.201	+0.401	+27.4	2
Ti/35.6180	Standard	±0.000		4399.935			
S 37.5869	4417.445		-0.038	4416.985	+0.422	28.6	4
Ti.37.6400	4417.923	-0.039		4417.884			_
Ti 40, 4754	1443.981	-0.005		4443.976			
S 40.5205	4441 404		-0.005	4443.976	+0.423	28.5	1
Ti.42.7869	4465,979	-0.001		4465.975	'		
Ti.43.0643	4468,666	-0.003		4468.663			
S 43.1058	4469,069		-0.004	4468.663	+0.402	27.0	1
Ti 43.3467	4471.413	-0.005		4471.408			
$Ti_{-11.3683}$	Standard	± 0.000		4481.438			
S 41.4087	4481,837		±0.000	4481,400	+0.437	29.2	4
Ti.45.0789	4488, 497	-0.004		4488,493	10,20		-
S = 45,2008	4489.804		-0.003	4489.351	+0.450	30.0	11/2
S 45.4307	4492.016		-0.001	4491.570	+0.445	29.7	2
Ti 45 8580	4496.316	± 0.002		4496.318	10,111		
$Ti_{-46.3649}$	4501.450	-0.002		4501.448			
S 46.4006	4501.813		-0.002	4501.448	+0.363	24.2	2
S 47.0943	4508,903		+0.004	4508.455	+0.452	30.1	4
Ti 47.4823	4512.899	± 0.007	, , , , , ,	4512.906	10.102	,,,,,	_
S 47.7765	4515,943	[+0.006	4515.508	+0.441	29.3	3
$Ti^{-47.9931}$	4518, 193	± 0.005	10.000	4518.198	,		
S 48,2430	4520.798		+0.008	4520.397	+0.409	27.1	3
Ti 48.4501	4522,903	+0.011		4522.974	10.1	2	
S 48.4762	4523, 236	[17,171]	+0.011	4522 802	+0.445	29.5	3
$Ti^{-48.8799}$	4527.478	+0.012	10.011	4527.490	10.110	ao	
$Ti_{0}^{-50,5092}$	4544.849	40.015		4544.864			
S 50.9913	4550.069	70.010	+0.018	4549.642	+0.445	29.3	3
$Ti_{-}51.2246$	4552,608	± 0.024	10.010	4552.632	0.11	20.0	.,
Ti 51.5027	4555,646	+0.016		4555.662			
S 51.5804	4556,497	0 1110	+0 020	4556,063	+0.454	29.9	917
S 51.8332	4559,272	1	10.020	4558.827	+0.465	$\frac{50.6}{30.6}$	$\frac{2^{1} \acute{s}}{2}$
Ti 52,2543	4563,949	+0.020	1 '	4563.939	TO. 100	00.0	_
S 52,2914	4564,330	,	+0.020	4563,939	+0.411	27.0	1/2
$Ti_{0}^{-52,2014}$	4572.166	-0.010	' '	4572.156	70.111	21.0	72
S 53.0317	$\frac{4572.166}{4572.573}$		-0.010	4572.156	+0.407	27.7	1
S 54.0862	4581,474		-0.010 -0.004	4584,018	+0.452	$\frac{29.6}{29.6}$	3
S 51.4682	4588.831		-0.001	4588.381	+0.449	$\frac{29.0}{29.3}$	i
Ti 54.5813	Standard	4 0 000		4590.126	To. 44.	20,1)	1
11 91.9819	Standard	± 0.000		4000.120			

Curvature Cor. ± 0.0011 mm.

Weighted mean

-25.98

 $rac{V_a}{V_d}$ -0.14-26.12Reduction to Sun +2.7 km. Radial Velocity

Mean + 28.6

η LEONIS—B 333

1902, April 23, G. M. T. $15^{\rm h}\,30^{\rm m}$ Hour angle W $1^{\rm h}\,40^{\rm m}$

Star excellent; comparison excellent.

Measured by F. Power 17

Ti/27.5052	4367.774	± 0.065		4367.839			
S 29.6488	4385,944		-0 004	4385.518	± 0.392	+26.8	2
Ti/29.7730	4387.012	-0.005		4387.007			
S 30.7751	4395 695		-0.001	4395.201	± 0.493	33.6	1
Ti/31/2597	Standard	± 0 000		4399,935			
S 33,2344	4417,495		-0.037	4416,985	+0.473	32.1	2
$Ti \ 33 \ 2817$	4417.921	-0.037		4417.884			
Ti/38.4304	4465,984	-0.009		4465,975			
S 38,7612	4469.489		-0.018	4468.663	+0.508	31.1	1
Ti/38,9917	4471.431	-0.023		4471 408			
S 39 0668	4472.163		-0.022	4471 - 676	+0.465	31.2	2
Ti/40.0117	Standard	± 0.000		4481 438			
S = 40/0542	4481.858		\pm O. OOO	4481,400	± 0.458	30.6	4

η LEONIS-B 333 -Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 40.7243	4488.514	-0.021		4488.493			
S 40.8501	4489.770		-0.021	4489.351	± 0.398	26.6	1
S 41.0762	4492.034		-0.021	4491 - 570	+0.143	29.6	2
Ti 41.5042	4496.339	-0.021		4496.318	· ·		
S 42.7410	4508.927		-0.019	4508.455	+0.453	30.1	3
Ti 43 1292	4512.924	-0.018		4512.906			
S = 43.4252	4515.987		-0.013	4515.508	+0.466	31.0	2
$Ti\ 43.6390$	4518.207	-0.009		4518.198	1 '		
S = 43.8952	4520.876		-0.010	4520.397	± 0.469	31.1	2
Ti~44.0970	4522.985	-0.011		4522.974			
S 44.1278	4523.308		-0.011	4522.802	± 0.495	32/8	2
S 45.9000	4542.106		-0.009	4541,690	+0.407	26.9	1
Ti 46.1565	4544.867	-0.003		4544.864			
S 46,6430	4550.132		± 0.002	4549.612	+0.492	32.4	4
Ti~46.8719	4552.623	+0,009		4552,632	'		
Ti 47.1502	4555 662	\pm 0.000		4555.662			
S 47.2269	4556.501		+0.004	4556.063	± 0.442	29.1	2
S 47.4772	4559.248		± 0.003	4558.827	+0.421	27.9	3
S 49.7345	4584.485		± 0.001	4584.018	± 0.468	30.6	4
S 50.1154	4588.828		± 0.000	4588.381	± 0.447	29.2	1
Ti~50.2288	Standard	± 0.000		4590.126	,		

Curvature Cor. +0.0012 mm.

+30.4Weighted mean $\begin{array}{ccc}
V_{a} & -26.84 \\
V_{d} & -0.13
\end{array}$

Mean +30.3

Mean +32.3

Reduction to Sun

Radial Velocity

+3.4 km.

1902, April 30, G. M. T. $15^{\rm h}$ $51^{\rm m}$ Hour angle W $2^{\rm h}$ $28^{\rm m}$

η LEONIS—B 337

Measured by A. Power 18

Hour angle W 2 ^h 28 ^r		Star weak;	comparison	good.		Po	wer 18
S 24.9032	4386.014	1	±0.000	4385.548	+0.466	+31.9	1
Ti 25.0188	Standard	± 0.000		4387.007	,	· ·	
S 28.4827	4417.468		-0.031	4416.985	± 0.452	30.7	1
Ti~28.5325	4417.916	-0.032		4417.884			}
Ti 31.3730	4443.980	-0.004		4443.976			ĺ
S 31.4218	4444.437		-0.004	4443.976	± 0.457	30.8	1
Ti 35.2720	Standard	±0.000		4481.438			
S 35,3186	4481.898		± 0.000	4481.400	+0.498	33.3	1
Ti 36.0611	4489 268	-0.006		4489.262			
S 36.1196	4489.852		-0.006	4489.351	+0.495	33.1	1
S 38.0041	4508.922		-0.008	4508.455	+0.459	30.5	1
Ti 38.3923	$4512\ 914$	-0.008		4512.906			
S 38.6883	4515.973		-0.006	4515.508	+0.459	30.5	1
S 39.1644	4520.920		-0.002	4520.397	+0.521	34.6	1
Ti/39.3612	4522.975	-0.001		4522.974			
S 41.1705	4542.141		+0.005	4541.690	+0.456	30.1	1
Ti 41.4232	4544.858	± 0.006		4544.864			
Ti~42.4196	4555.669	-0.007		4555.662			
S 42.4204	4555.678		-0.007	4555.162	+0.509	33.5	1
S 42.5113	4556.672		-0.007	4556.202	+0.463	30.5	1
S 44.3449	4577.015		-0.003	4576.512	+0.500	32.8	1
S 44.9205	4583.515		-0.001	4583.011	+0.503	32.9	, 1
S 45.0117	4584.550		-0.001	4584.018	+0.531	34.7	1
S 45.3939	4588.904		± 0.000	4588.381	+0.523	34.2	1
Ti 45.5008	Standard	±0.000		4590.126			
					1		<u> </u>

Curvature Cor. +0.0008 mm.

Weighted mean

 $V_a = -28.06$ $V_d = -0.20$ Reduction to Sun -28.26

Radial Velocity

+4.0 km.

η LEONIS - B 337

Measured by F. Power 18

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
n(m.	t. m.	t. m.	t. m.	t. m.	t. m.	k. m.	-
Ti = 35.1895	Standard	± 0.000		4481.438			
S 35 2347	4481.884		± 0.000	4481.400	+0.484	+32.4	
Ti 35.9777	4489.256	± 0.006		4489,262		1	
S 36.0391	4489.868		+0,006	4489.351	+0.523	34.9	1
S 36,2548	4492 025		+0.002	4491.570	+0.457	30.5	114
Ti 36,6810	4496.336	-0.018		4496.318	'		~
Ti = 37.4337	4503.928	-0.002		4503.926			
S 37.9226	4508.924		±0.000	4508.455	+0.468	31.1	2
Ti 38,3093	4512.899	± 0.007		4512.906	'		
S 38,6083	4515.989		+0_015	4515.508	± 0.500	33.2	112
Ti 38.8188	4518.171	± 0.027		4518.198			-
S 39,0818	4520,908		± 0.016	4520.397	+0.527	35.0	2
Ti 39,2789	4522.966	+0.008		4522.974			
S 39,3112	4523,303		± 0.008	4522.802	± 0.509	33.8	3
Ti 39.7103	Standard	± 0.000		4527.490			
S 41 0903	4542.155		+0.019 j	4541.690	+0.484	32.0	1
Ti 41.3402	4544,841	+0.023		4541.864	'		
S 41.8295	4550.152		+0.021	4549.642	+0.510	33.6	1
Ti=42.0578	4552.613	+0.019		4552,632			
Ti=42.3373	4555,662	± 0.000		4555.662			
S 42,4250	4556,621		+0.001	4556,063	+0.559	36.8	2
S 42 6712	4559.321		+0.001	4558,827	± 0.498	32.8	1
Ti 42.7418	4560.097	± 0.005		4560.102			
S 41 9301	4584.562		± 0.001	4584.018	+0.545	35,6	21/2
S 45,3072	4588.855		± 0.000	4588.381	+0.474	31.0	1 1 1
Ti = 45,4183	Standard	± 0.000		4590.126			

Curvature Cor.+0.0009 mm.

$$\begin{array}{c} \text{Weighted mean} & +33.5 \\ V_d & -28.06 \\ V_d & -0.20 \\ \text{Reduction to Sun} & -28.26 \\ \text{Radial Velocity} & +5.2 \text{ km.} \end{array}$$

+3.7

Mean + 33.3

SUMMARY OF MEASURES OF 7 LEONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 329	1902, April 19	+2.3	11	+2.7	21
B 333 B 337	April 23 April 30	+4.1	i i i	$^{+3.4}_{+5.2}$	18

Mean of 3 plates +3.5 km. Mean of all measures +3.5 km.

+3.2

13. γ CORVI

 $(R. A.=12^{h} 11^{m}; Dec.=-16 59^{\circ}; Mag. 2.8; Class VIa)$

Three plates of this star have been measured by each observer. The spectrum shows numerous very faint and broad metallic lines which are not adapted to accurate measurement. The Mg line $\lambda 4481$ is decidedly the best line in the spectrum.

γ CORVI—B 305

1902, April 2, G. M. T. $16^{\rm h}\,32^{\rm m}$ Hour angle E $0^{\rm h}\,46^{\rm m}$

Star fair; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	_
Ti 18.6801	Standard	± 0.000		4338.084			
$\hat{S} = 18.9779$	4340.465		± 0.000	4340.634	-0.169	-11.7	1
S 30.9092	4443.870		± 0.000	4443.976	-0.106	7.2	1
Ti = 30.9205	Standard	± 0.000		4443,976			
S 33 4950	4468.551		-0.002	4468.663	-0.114	7.6	1
Ti = 33.5067	4468.665	-0.002		4468.663			i
S 33.8066	4471.586		-0.002	4471.676	-0.092	6.2	2
S 34.7998	4481.346		-0.002	4481,400	-0.056	3.8	2
Ti = 34.8093	4481.440	-0.002		4481,438			
S 36.7853	4501.275		± 0.012	4501.445	-0.158	10.5	1
Ti 36,8008	4501.433	± 0.012		4501.445			
S = 42.6707	4563,813		± 0.000	4563.939	-0.126	8.3	2
Ti = 42.6820	Standard	± 0.000		4563,939			
S 43,4095	4572.054		-0.038	4572.156	-0.140	9.2	$\frac{2}{2}$
Ti = 43.4220	4572.194	-0.038		4572.156			

Curvature Cor. +0.0008 mm.

Weighted mean

-7.7

Mean-8.0

Mean -3.2

 $\frac{W}{V_d} = 1.09$ $V_d + 0.06$ Reduction to Sun

-1.03

Radial Velocity

8.7 km.

γ CORVI -- B 305

Measured by F. Power 12

							
S 29.7935	4367.724		±0.000	4367.775	-0.051	-3.5	1
$Ti_{-}29.8072$	Standard	±0.000		4367.839			
Ti = 40.9955	4468.675	-0.012		4468.663			
S 40,9987	4468.705		-0.012	4468,663	+0.030	+ 2.0	.]
S 41.0797	4469.494		-0.014	4469.545	-0.065	- 4.4	:
Ti 41.2785	4471 - 430	-0.022		4471.408			
S 41.3001	4471.644		-0.022	4471.676	-0.054	-36	1
S 42.2890	4481.356		± 0.000	4481.400	-0.044	= 2.9	
Ti = 42.2973	Standard	± 0.000		4481.438			
Ti 44, 2900	4501.432	+0.013		4501.445			
S 44.2935	4501.468		+0.013	4501.445	+0.036	$+\ 2.4$	
Ti 45.9164	4518,177	+0.021		4518.198	i '		
S 45.9395	4518.418		+0.021	4518.506	-0.067	-4.4	1 :
Ti 48.8054	4548.909	± 0.029		4548.938			
S 48.8760	4549.677		+0.029	4549.767	-0.061	-4.0	
S 50 1583	4563.758		+0.020	4563.939	-0.161	-10.6	
Ti 50.1730	4563.919	+0.020		4563.939			
Ti = 52.4960	Standard	±0.000		4590.126			

Weighted mean Curvature Cor.

-4.3-0.81

 $V_d = -1.09 \\ V_d = +0.06$

Reduction to Sun

-1.03

-6.2 km.Radial Velocity

1902, April 3, G. M. T. $16^{\rm h}\,32^{\rm m}$ Hour angle E $0^{\rm h}\,47^{\rm m}$

γ CORVI—B 312

Star rather weak; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Leugth	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 21.3728	Standard	± 0.000		4338.081			
S = 21.6969	4340,594		± 0.000	4340,634	-0.040	-2.8	1
Ti-33.6225	4443.967	+0,006		4443.976			
S = 36.2051	4468.600		± 0.000	4468.663	-0.063	4.2	1
Ti=36.2116	Standard	± 0.000		4468,663			
S = 37.5026	4481.313		± 0.018	4481.400	-0.069	4.6	4
Ti = 37.5134	4481.420	± 0.018		4481.438			1
S = 42.6364	4533.978		± 0.027	4534.139	-0.134	8.9	2
Ti 42.6490	4534 . 112	+0.027		4534.139			
S 45 3798	4563,772		+0.031	4563.939	-0.136	8.9	1
Ti-45.3921	4563,908	+0.031		4563,939			
S = 46.1206	4572.027		+0.017	4572.156	-0.112	7.3	2
Ti 46.1306	4572.139	+0.017		4572.156			
Ti-47.7164	Standard	± 0.000		4590.126			

Curvature Cor. ± 0.0008 mm.

Weighted mean
$$V_a = 1.59$$
 $V_d + 0.07$ eduction to Sun -1.52

$$Mean - 6.1$$

Mean = 4.2

$$\frac{V_a}{V_a} = \frac{1.59}{+0.07}$$

$$\frac{-1.52}{-7.6 \text{ km}}$$
.

Measured by F. Power 12

$\gamma CORVI$ — B 312

							wer 12
S 29.4604	4395,183		± 0.012	4395,286	-0.091	- 6.2	1
Ti 29,4610	4395.189	± 0.012		4395.201			
Ti 30 0034	Standard	± 0.000		4399,935			
$Ti_{-}33.0540$	4427.274	-0.008		4427.266			
S 33,0690	4427.411		-0.008	4427.420	-0.017	-1.2	1
Ti = 34.8571	4443.967	+0.009		4443.976			
S 31.8623	4441.016		+0.009	4443,976	+0.049	+ 3.3	1
$Ti_{-}37.4455$	4468.661	+0.002		4468.663		·	
S 37.4480	4468.685		± 0.002	4468.663	+0.024	+1.6	1
S 38.7417	4481.364		± 0.000	4481,400	-0.036	-2.4	3
Ti 38.7492	Standard	± 0.000		4481.438			
Ti 40.7438	4501,444	+0.001		4501.445			
8 40.7570	4501.577		± 0.001	4501.445	+0.133	+ 8.9	2
Ti 45.2619	4548,923	+0.015		4548,938			
S 45.3278	4549.639		-+0.019	4549.767	-0.109	-7.2	2
8 45.5914	4552.509		+0.029	4552.663	-0.125	-8.2	1
Ti 45.6000	4552,603	+0.029		4552.632			
S 46.6158	4563.770		+0.023	4563.939	-0.146	-9.6	1
Ti/46.6290	4563.916	+0.023		4563.939			
S 47.3605	4572,064		+0.016	4572.156	=0.076	-5.0	1
Ti = 47.3673	4572.140	+0.016		4572.156			
S 48.4139	-1583.955	+0.006		4584.018	-0.057	-3.7	1
Ti 48.9541	Standard	± 0.000		4590,126			

Weighted mean -3.9Curvature Cor. $\begin{array}{cc} V_d & -1.59 \\ V_d & +0.07 \end{array}$

-1.52

Reduction to Sun $\overline{-6.3}$ km. Radial Velocity

1902, April 19, G. M. T. 17^h 3^m Hour angle W 0 ^h 45 ^m

γ CORVI --- B 330

Star good; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. ni.	t. m.	t. m.	km.	
S 36.4469	4468.620		± 0.000	4468.663	-0.043	-2.9	1
Ti 36.4513	Standard	± 0.000		4468,663			
S 37.7570	4481.457		+0.003	4481.400	± 0.060	+4.9	2
Ti = 37.7547	4481.435	+0.003		4481.438		*	
S 39.7493	4501.436		± 0.000	4501.445	-0.009	-0.6	1
Ti = 39.7504	Standard	± 0.000		4501.445			
S 42.8979	4534.185		-0.011	4534.139	± 0.035	+ 2.3	1
Ti 42.9711	4534.964	-0.011		4534.953	· ·	'	
S 45.6353	4563.896		-0.002	4563.939	-0.045	-3.0	1
Ti 45.6394	4563,941	-0.002		4563.939			
S 46.3747	4572.128		± 0.000	4572.156	-0.028	-1.8	1
Ti-46.3772	Standard	± 0 000		4572.156			

Curvature Cor. +0.0008 mm.

Weighted mean

Mean = 0.3

 $V_a = 9.29$ $V_d = 0.06$ Reduction to Sun Radial Velocity

-9.35 $\overline{-9.1}$ km.

γ CORVI -- B 330

Measured by F. Power 12

Ti 30.0032	Standard	±0.000		4427.266			
S 30.0313	4427.523		± 0.000	4427.420	+0.103	+7.0	1
Ti = 34.4000	4468.667	-0.004		4468.663			
S 34,4075	4468.739		-0.004	4468,663	± 0.072	4.8	1,
S 34.7232	4471.810		-0.003	4471.676	+0.131	8.8	1 ₂ 1 ₂
Ti = 35.7043	4481.439	-0.001		4481.438			
S 35.7095	4481.490		-0.001	4481.400	+0.089	6.0	3
Ti = 37.7005	Standard	± 0.000		4501.445			
S 37.7117	4501.558		± 0.000	4501.445	+0.113	7.5	1
Ti = 38.8196	4512.911	± 0.001		4512.912			
Ti 42.2250	4548.961	-0.023		4548.938			
S = 42.3124	4549.910		-0.015	4549.767	+0.128	8.4	1
Ti 42.5618	4552.625	+0.007		4552.632			
Ti = 43.5924	4563.950	-0.011		4563.939			
S = 43.5995	4564.028		-0.011	4563.939	± 0.078	5.1	1
Ti = 44.3295	Standard	± 0.000		4572.156			
S 44.3304	4572.166		± 0.000	4572.156	+0.010	0.7	1

Weighted mean Curvature Cor.

+5.9

-0.86

Mean +6.0

 $V_a = 9.29$

 $V_d = 0.06$

Reduction to Sun

-9.35

Radial Velocity

 $\frac{-3.5}{-4.3}$ km.

SUMMARY OF MEASURES OF \(\gamma \) CORVI

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 305 B 312	1902, April 2 April 3	$-8.7 \\ -7.6$	8 6	$^{+6.2}_{-6.3}$	9 10
B 330	April 19	-9.1	6	-4.3	8

Mean

-8.4

-5.5

 $\begin{array}{ccc} \text{Mean of 3 plates} & -7.0 \text{ km.} \\ \text{Mean of all measures} & -7.0 \text{ km.} \end{array}$

14. THERCULIS

(R. A.= $16^h 17^m$; Dec.= $+46^\circ 33'$; Mag. 3.9; Class Va)

Four plates of this star have been measured, four by A., and two by F. The spectrum is very similar to that of β Orionis, the lines being rather broad but fairly well defined.

1902, February 19, G. M. T. 21^h 93^m Hour angle E 2h 33m

τ HERCULIS---A 325

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 21.1914	Standard	± 0.000		4338.084			
S = 21.3945	4340.276		± 0.000	4340.634	-0.358	-24.7	2
S 25.6210	4387.718		± 0.000	4388.100	-0.382	26.1	2
Ti=26.2596	Standard	± 0.000		4395.201			
Ti = 32.1604	4468.667	-0.004		4468.663		*	
S = 32.3572	4471.260		-0.003	4471.676	-0.419	28.1	4
8 33.0975	4481.103		± 0.000	4481.400	-0.297	19.9	2
Ti 33.1225	Standard	± 0.000		4481.438			

Curvature Cor. +0.0005 mm.

Weighted mean

-25.4

Mean = 24.7

 $V_a + 11.77 \\ V_d + 0.15$ Reduction to Sun

 ± 11.92

Radial Velocity

-13.5 km.

1902, March 12, G. M. T. 22h 9m Hour angle E 0h 45m

τ HERCULIS—B 295

Star good; comparison good.

Measured by A. Power 21

Ti 21.2628	Standard	± 0.000		4338.084			
S 21.5507	4340,383		± 0.000	4340.634	-0.253	-17.5	
Ti = 27.1712	4387.026	-0.019		4387.007			
S 27,2620	4387.808		-0.018	4388.100	-0.310	21.2	
Ti=28.6561	Standard	± 0.000		4399.935			
Ti=36.0928	4468.650	+0.013		4468,663			ı
S 36.3713	4471.363	*	± 0.010	4171.676	-0.303	20.3	
S 37.3580	4481.064		± 0.000	4481.400	-0.336	22.5	.
Ti = 37.3958	Standard	\pm O , OOO		4481.438			

Curvature Cor. +0.0009 mm.

Weighted mean

-21.1

Mean -20.4

 $\underline{V}_a + 9.65$ $V_d + 0.05$ Reduction to Sun

+9.70

Radial Velocity

-11.4 km.

1902, March 13, G. M. T. 19^h 36^m Hour angle E 3h 12m

τ HERCULIS--B 301 Star slighfly weak; comparison good.

Measured by A. Power 20

	1				1		1
Ti 29 1733	Standard	± 0.000		4399.935			
S 33 3328	4437.460		上0,000	4437.748	-0.258	-17.4	1
Ti = 34.0320	Standard	± 0.000		4443.976			
Ti 36.6224	4468.668	-0.005		4468.663			
S 36.9031	4471.397		-0.001	4471.676	-0.283	19/0	3
8 - 37.8874	4481.051		\pm 0,000	4481.400	-0.349	23/4	3
Ti-37.9266	Standard	± 0.000		4481.438			

Curvature Cor. ± 0.0008 mm.

Weighted mean -20.6 Mean = 19.9

 $V_a = +9.53$ ± 0.17

Reduction to Sun

Radial Velocity

+9.70-10.9 km.

230

 τ HERCULIS—B 301

Measured by F. Power 14

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 36.1373	Standard	± 0.000	l .	4465.975			
S 36.6877	4471.332		± 0.003	4471.676	-0.341	-22.9	1
Ti 36.6951	4471.405	+0.003		4471.408			
S 37.6728	4481.014		±0.000	4481.400	-0.386	-25.8	1
Ti = 37.7157	Standard	± 0.000		4481.438			
Ti = 38.4255	Standard	± 0.000		4488.493			}

Curvature Cor. $+0.0013 \,\mathrm{mm}$.

Weighted mean

-24.4

Mean = 24.4

 $\begin{array}{ccc}
V_a & +9.53 \\
V_d & +0.17
\end{array}$

Reduction to Sun

+9.70

Radial Velocity

-14.7 km.

τ HERCULIS--- B 313

1902, April 3, G. M. T. 17h 29n Hour angle E 3h 58m

Star weak; comparison fair.

Measured by A. Power 17

Standard	±0.000		4338.084			
4340.354		-0.001	4340.634	-0.281	-19.4	1
4387.939	1 1	-0.026	4388.100	-0.187	12.8	1
4395.231	-0.030		4395.201			
4437.439		-0.004	4437.718	-0.283	19.1	2
Standard	± 0.000		4443.976			_
4468.668	-0.005		4468.663			i
4471.415		-0.002	4471.676	-0.263	17.6	3
4481.091		± 0.012	4481.400	-0.297		4
4481.426		,	4481.438			_
Standard						
	1 -7.000					
	4340,354 4387,939 4395,231 4437,439 Standard 4468,668 4471,415 4481,091	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Curvature Cor. +0.0008 mm.

Weighted mean -18.5

 $V_a + 6.17$

 $V_d + 0.20$

Reduction to Sun

Radial Velocity

+6.37-12.1 km.

τ HERCULIS — B 313

Measured by F. Power 12

Ti 39.1607	Standard	± 0.000		4468.663			
S 39.4455	4471.439	10.000	± 0.000	4471.676	-0.237	-15.9	
S 40.4213	4481.032		± 0.000	4481.400	-0.368	-24.6	
Ti = 40.4623	Standard	± 0.000		4481.438			İ
Ti 48.3471	4563.949	-0.010		4563.939			
Ti 49.0852	Standard	± 0.000		4572,156			

Curvature Cor. + 0.0013 mm.

Weighted mean

-20.3

Mean - 20.3

Mean-17.8

 $\begin{array}{c}
V_a +6.17 \\
V_d +0.20
\end{array}$

Reduction to Sun Radial Velocity

+6.37-13.9 km.

SUMMARY OF MEASURES OF THERCULIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 325 B 295 B 301 B 313	1902, Feb. 19 Mar. 12 Mar. 13 April 3	-13.5 -11.4 -10.9 -12.1	4 4 3 5	 -14.7 -13.9	· · · · · · · · · · · · · · · · · · ·

Mean -12.0

-14.3

Mean of 4 plates -12.7 km. Mean of all measures -12.7 km.

15. ζ DRACONIS

(R. A. = $17^h 7^m$; Dec. = $+65^{\circ} 50'$; Mag. 3.3; Class Va)

Four plates of this star have been measured, by each observer. The spectrum contains few lines, but these, though rather broad, are better defined than in most of the stars containing them.

1902, February 3, G. M. T. 22^h 24^m Hour angle E 3^h 42^m

₹ DRACONIS — B 290

Star good; comparison rather weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nım.	t. ni.	t. m.	t. m.	t. m.	t. m.	km.	
$Ti_{-}20.6686$	Standard	± 0.000		4338.084			
S 20.9577	4340.406		± 0.000	4340.634	-0.228	-15.8	1
S 22.3687	4351.863		± 0.000	4352.083	-0.220	15.2	1
$Ti_{-}28.0210$	Standard	± 0.000		4399.935			
S = 29.9143	4416.863		-0.003	4417,121	-0.261	17.7	1
Ti~30.0273	4417.887	-0.003		4417.884			
Ti/35.4213	4468.674	-0.011		4468.663			
S 35.7115	4471.517		-0.008	4471.676	-0.167	11.2	1
S 36.6858	4481.146		± 0.000	4481.400	-0.254	17.0	3
Ti~36.7152	Standard	± 0.000		4481.438			

Curvature Cor. +0.0008 mm.

Weighted mean $V_a + 2.03$ -15.8

Meau - 15.4

 $\frac{V_d}{\text{Reduction to Sun}} \frac{+ 0.12}{\text{Radial Velocity}}$

 $\frac{+2.15}{-13.7 \text{ km}}$.

₹ DRACONIS — B 290

Measured by F. Power 12

Ti.35.0010	Standard	± 0.000		4338.084			
S 35.3010	4340.496		-0.001	4340.634	-0.139	-9.6	
$Ti\ 42.3535$	Standard	± 0.000		4399.935			
Ti~49.7540	4468.659	± 0.004		4468.663			
S 50.0357	4471.417		+0.003	4471.676	-0.256	17.2	
S 51.0140	4481.080		± 0.000	4481.400	-0.323	21.4	
$Ti_{-}51.0500$	Standard	+0.000		4481.438			

Curvature Cor. +0.0010 mm.

Weighted mean -16.5

Meau - 16.1

 $V_a + 2.03$ $V_d + 0.12$

Reduction to Sun + 2.15Radial Velocity -14.4 1902, February 10, G. M. T. 22h 12m Hour angle E 3^h 24^m

\$ DRACONIS - A 314

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t.m.	km.	
Ti~21.4626	Standard	± 0.000		4338.084	0.950	17.0	3
S 21.6748 Ti 25.8323	4340.375 4387.016	-0.009	±0.000	4340.634 4387.007	-0.259	-17.9	
S 25.9032	4387.842	-0.003	-0.009	4388.100	-0.267	18.2	2
Ti 26.9314	Standard	± 0.000		4399.935			
$Ti \ 32.4327$	$4468.671 \\ 4471.388$	-0.008	-0.006	$\frac{4468,663}{4471,676}$	-0.294	19.7	3
S 32.6389 S 33.3751	4481.177		±0.000	4481.400	-0.223	14.9	3
Ti 33.3946	Standard	± 0.000		4481.438			

Curvature Cor. +0.0005 mm.

Weighted mean -17.7

 $V_a + 1.79$ $V_d + 0.11$

Reduction to Sun

Radial Velocity

Mean - 17.7

+ 1.90 $\overline{-15.8}$ km.

₹DRACONIS-A 314

Measured by F. Power 12

Ci 34.9934	Standard	± 0.000		4338.084			
35,2065	4340.365		± 0.000	4340.644	-0.269	-18.6	2
Ti 39.3611	4387.004	+0.003		4387.007			
39.4230	4387.717		+0.003	4388.100	-0.380	26.0	1/2
Ti 40.4611	Standard	± 0.000		4399.935			
7i.45.7584	4466.003	± 0.028		4465.975			
3 46.1762	4471.499		± 0.018	4471.676	-0.159	10.7	2
46.9095	4481.252		± 0.000	4481.400	-0.148	9.9	2
ri 46.9234	Standard	± 0.000		4481.438			

Curvature Cor. ± 0.0009 mm.

Weighted mean

-14.0

Mean - 16.3

Mean - 14.0

Reduction to Sun

Radial Velocity

+1.90 $\overline{-12.2}$ km.

₹ DRACONIS — A 324

1901, February 19, G. M. T. 20^h 33^m Hour angle E 4^h 33^m

Star good; comparison good.

Measured by A. Power 21

							Ī
Ti 22.5708	Standard	± 0.000		4338.084			ł
S 22.7874	4340.422		-0.001	4340.634	-0.213	-14.7	1 :
Ti 26.9425	4387.027	-0.020		4387.007			
_ ,	1001104	-0.020	-0.020	4388.100	-0.204	13.9	
S 27.0189	4387.916		-0.020		-0.204	10.0	-
Ti 28.0410	Standard	± 0.000		4399.935			
Ti 33.5441	4468.669	-0.006		4468.663			
S 33.7545	4471.441		-0.005	4471.676	-0.240	16.1	
S 34.4909	4481.229		+0.000	4481.400	-0.171	11.4	
		0.000	10.000	11011100	0.111	11.1	
Ti 34.5065	Standard	± 0.000		4481.438			

Curvature Cor. ± 0.0005 mm.

-14.9Weighted Mean

 $V_a + 1.44$ $V_d + 0.13$

Reduction to Sun

+1.57 $\overline{-13.3}$ km.

Radial Velocity

₹ DRACONIS — A 324

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m	t. m.	t. m.	t. m.	km.	
Ti 34.9981	Standard	±0.000		4338.084		40.0	
S 35.2102	4340.370		±0.000	4340,634	-0.264	-18.2	2
$Ti \ 40.4686$ $Ti \ 45.9704$	Standard 4168.670	$^{\pm 0.000}_{-0.007}$		4399.935 4468.663			
S 46.1808	4471.442	-0.00,	-0,006	4471.676	-0.240	16.1	11/2
S 46.9135	4481.185		± 0.000	4481.400	-0.215	14.4	2
Ti.46.9324	Standard	± 0.000		4481.438			

Curvature Cor. +0.0009 mm.

Weighted mean $V_a + 1.44$ $V_d + 0.13$ $V_{cl} = -16.2$

Reduction to Sun +1.60Radial Velocity -14.6 km.

₹ DRACONIS — B 357

1902, May 30, G. M. T. $16^{\rm h}\,4^{\rm m}$ Hour angle E $2^{\rm h}\,27^{\rm m}$

Star fair; comparison good.

Measured by A Power 21

Mean = 16.2

Ti 21.2291	Standard	± 0.000		4338.084			
S 21.5206	4340.400		± 0.000	4340.634	-0.234	-16.2	
S = 22.9485	4351.878		-0.002	4352.083	-0.207	14.3	
Ti 24.8920	4367.843	-0.004		4367.839			
Ti~28.6561	Standard	± 0.000		4399.935			
S 30.5791	4416.957		-0.025	4417.121	-0.189	12.8	
Ti~30.6853	4417.910	-0.026		4417.884			
Ti 36.1318	4468.674	-0.011		4468.663			
S 36.4205	4471.476		-0.008	4471.676	-0.208	14.0	
S 37.4134	4481.186		± 0.000	4481.400	-0.214	14.3	
Ti 37.4390	Standard	± 0.000		4481.438			

Curvature Cor. +0.0008 mm.

Weighted mean -14.0

 $\begin{array}{ccc} \bar{V}_a & -2.46 \\ V_d & +0.09 \end{array}$

2.37

 $\overline{-16.4}$ km.

Reduction to Sun Radial Velocity

ζ DRACONIS — B 357

Measured by F. Power 12

Mean = 14.3

Mean = 10.6

Ti 35.0914	Standard	± 0.000		4438.084			
S 35,3767	4340.352		± 0.001	4340.631	-0.280	-19.3	
Ti 35.8884	4344.439	± 0.012		4344.451			
Ti 41.0274	4387.020	-0.013		4387.007			
S 41.1552	4388.117		-0.012	4388.100	+0,005	+3.4	
Ti.42.5201	Standard	+0.000		4499.935			
Ti.49.7164	4465.982	± 0.007		4465,975			
S 50.2872	4471.507		± 0.004	4471.676	-0.167	-11.2	
S = 51.2750	4481.473		± 0.000	4481,400	-0.227	-45.2	
Ti 51.3019	Standard	+0.000		4481.438			

Curvature Cor. +0.0009 mm.

Weighted mean -12.7

 $V_a +2.46 \ V_d +0.09$

Reduction to Sun Radial Velocity $\frac{-2.37}{-15.1 \,\mathrm{km}}$

SUMMARY	OF	MEASURES	OF	ε D	R = 1	CONIS	ì

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 290	1902, Feb. 3	-13.7	5	-14.4	3
A 314	Feb. 10	-15.8	4	-12.2	4
A 324 B 357	Feb. 19 May 30	$ \begin{array}{r} -13.3 \\ -16.4 \end{array} $	4	$^{-14.6}_{-15.1}$	3

Mean

-14.8

-14.1

 $\begin{array}{c} \text{Mean of 4 plates} -14.4\,\text{km}. \\ \text{Mean of all measures} -14.4\,\text{km}. \end{array}$

16. i HERCULIS

(R. A. = $17^{h} 37^{m}$; Dec. = $\pm 46^{\circ} 4'$; Mag. 3.9; Class IV b)

Four plates of this star have been measured, two by F., and four by A. The spectrum contains few lines, but these are well defined, and suitable for fairly accurate measurement.

1901, September 27, G. M. T. $14^{\rm h}\,35^{\rm m}$ Hour angle W $3^{\rm h}\,30^{\rm m}$

ι HERCULIS — A 251

Star good; comparison strong.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 26.5330	4386.994	+0.013		4387.007			
S 26.6174	4387.961		+0.012	4388.100	-0.127	-8.7	1
Ti 27.6518	Standard	± 0.000		4399.935			
S 30.7860	4437.582		+0.012	4437.718	-0.124	8.4	1
Ti 31.3001	4443.962	+0.014		4443.976			
Ti 33.0377	4465.975	± 0.000		4465.975			
S 33,4709	4471.573		± 0.000	4471.676	-0.103	6.9	3
S 34.2137	4481.277		± 0.000	4481.400	-0.123	8.2	4
Ti~34.2259	Standard	± 0.000		4481.438			
S 39.3722	4552.574		+0.044	4552.750	-0.132	8.7	1
Ti.39.3732	4552.588	± 0.044		4552.632			
Ti~40.1497	4563.950	-0.011		4563.939			
S 40,4149	4567.871		-0.010	4567.950	-0.089	5.8	2
Ti 41.8944	Standard	± 0.000		4590.126			

Curvature Cor. +0.0001 mm.

Weighted mean - 7.6

Mean - 7.8

 $\begin{array}{cc} V_a & -10.06 \\ V_d & -0.19 \end{array}$

Reduction to Sun Radial Velocity

 $\frac{-10.25}{-17.8}$ km.

1901, October 3, G. M. T. $15^{\rm h}~30^{\rm m}$ Hour angle W $4^{\rm h}~45^{\rm m}$

ι HERCULIS—A 260

Star good; comparison fair.

Measured by A. Power 21

Ti 17.2714	4387.020	-0.013		4387.007			
S 17.3544	4387.974		-0.012	4388.100	-0.138	-9.4	1
Ti 18.3849	Standard	± 0.000		4399.935			
Ti~20.6754	4427.319	-0.053		4427.266			
S 21.5156	4437.651		-0.043	4437.718	-0.110	7.4	1
S 24.1877	4471.587		-0.009	4471.676	-0.098	6.6	2
S 24.9277	4481.286		± 0.000	4481.400	-0.114	7.6	2
Ti 24.9392	Standard	± 0.000		4481.438			
Ti 30.0724	4552.642	-0.010		4552.632			
S 30.0713	4552.616		-0.010	4552.750	-0.134	8.8	1
Ti 30.2792	Standard	± 0.000		4555.662			

Curvature Cor. +0.0001 mm.

Weighted mean -7.8

Mean - 8.0

 $egin{array}{ll} V_a & = 9.71 \\ V_d & = 0.22 \end{array}$

Reduction to Sun - 9.93

Radial Velocity

-17.7 km.

235

ι HERCULIS—A 260

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km,	
Ti~30.0003	Standard	± 0.000		4338.081			
S 30.2409	4340.645		-0.001	4340.634	+0.010	+0.7	1
Ti.34.4350	4387.038	-0.031		4387.007		,	
S 34.5245	4388.065		-0.030	4388.100	-0.065	-4.4	3
Ti.35.5491	4399 945	-0.010		4399.935			ļ
Ti 37.8363	Standard	± 0.000		4427.266			
S 38.6818	4437.656		+0.009	4437.718	-0.053	-3.6	2
Ti 39.1885	4443.961	+0.015		4443.976			
Ti 40.9215	4465.976	-0.001		4465.975			
S 41.3537	4471.579		+0.006	4471.676	-0.091	-6.1	4
S 42.0920	4481.255		+0.019	4481.400	-0.126	-8.4	4
Ti = 42.1044	4481.419	+0.019		4481.438			
Ti 47,4434	Standard	± 0.000		4555,662			

Weighted mean Curvature Cor.

-5.6-0.27 Mean = 4.4

 $\begin{array}{cc} V_d & -9.71 \\ V_d & -0.22 \end{array}$

Reduction to Sun Radial Velocity

- 9.93

-15.8 km.

1901, October 18, G. M. T. $15^{\rm h}~27^{\rm m}$ Hour angle W $5^{\rm h}~42^{\rm m}$

□ HERCULIS—B 203 Star weak; comparison strong.

Measured by A. Power 24

						1
Ti 40.3344	Standard	±0.000	4468 663			
S 40.6336	4471.547	+0.001	4471.676	-0.128	-8.6	1
S 41.6345	4481.279	+0.005	4481,400	-0.116	7.8	2
Ti = 41.6502	4481.433	± 0.005	4481.438			
Ti.44.7949	4512,903	+0.003	4512.906			
Ti.48.5741	4552,617	± 0.015	4552,632			
8 - 48.5752	4552.629	+0.015	4552,750	-0.106	7.0	2
Ti = 51.9644	Standard	±0.000	4590.126			
$Ti_{-}61.7980$	Standard	± 0.000	4740.368			
S 62.0145	4713 227	+0.000	4713.308	-0.081	5.2	3

Curvature Cor. $+0.0002 \,\mathrm{mm}$.

Weighted mean

-6.7

Mean = 7.1

 $\frac{V_a}{V_d} = 8.39 \\ = 0.24$ -8.39

Reduction to Sun Radial Velocity

-- 8.63 $-15.3 \, \text{km}$.

 $\iota\: HERCULIS - B~203$

Measured by F. Power 12

Ti 34.9975	4386 971	± 0.036		4387.007			
S 35,1125	4387.952		± 0.033	4388.100	-0.145	-7.9	2
Ti 36.5035	Standard	± 0.000		4399.935			
Ti 37.7940	4411.248	-0.008		4411.240			
S 38,2090	4414.927		-0.009	4415.076	-0.158	10.7	
Ti 43 7450	4465.999	-0.024		4465.975			
S 44.3230	4471.555		-0.015	4471.676	-0.136	9.1	3
S 45.3240	4481.282		±0.000	4481.400	-0.118	7.9	4
Ti/45.3400	Standard	± 0.000		4481.438			

← HERCULIS - B 203—Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti~52.2650	4552.612	+0.020		4552.632			
S 52.2660	4552.622		+0.020	4552.750	-0.108	-7.1	2
Ti 55.6550	Standard	± 0.000		4590.126			
Ti~61.2750	4656.666	-0.022		4656.644	i		
Ti~65.4895	4710.502	-0.134		4710.368			
S 65.7060	4713.366		-0.146	4713.308	-0.088	5.6	3

 $\begin{array}{ccc} \text{Weighted mean} & -7.6 \\ \text{Curvature Cor.} & -0.18 \\ \hline V_a & -8.39 \\ V_d & -0.24 \\ \hline \text{Reduction to Sun} & -8.63 \\ \hline \text{Radial Velocity} & -16.4 \text{ km.} \end{array}$

ι HERCULIS—В 403

1902, September 3, G. M. T. $17^{\rm h}$ $20^{\rm m}$ Hour angle W $4^{\rm h}$ $38^{\rm m}$

Star good; comparison good.

Measured by A. Power 17

Mean - 8.0

Ti~20.9299	Standard	±0.000		4338.084			
S 21.2447	4340.589		-0.002	4340.634	-0.047	-3.3	
Ti~26.8642	4387.044	-0.037		4387.007			
S 26.9867	4388.095		-0.035	4388.100	-0.040	2.7	
Ti 28.3553	4399.953	-0.018		4399.935			
Ti 31.4156	4427.263	+0.003		4427.266			
S 32.5444	4437.625		± 0.002	4437.718	-0.091	6.2	
Ti 33.7972	Standard	± 0.000		4449.313			
Ti 35.8235	4468.651	+0.012		4468.663			
S 36.1231	4471.557		± 0.019	4471.676	-0.100	6.7	
S 37.1156	4481.271		± 0.043	4481.400	-0.086	5.8	
$Ti \ 37.1282$	4481.395	+0.043		4481.438			
Ti 44.0047	Standard	± 0.000		4552.632			
S 44.0054	4552.640	'	± 0.000	4552,750	-0.110	7.2	

Curvature Cor. +0.0008 mm.

Mean - 5.3

SUMMARY OF MEASURES OF 4 HERCULIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 251 A 260 B 203 B 403	1901, Sept. 27 Oct. 3 Oct. 18 1902, Sept. 3	$ \begin{array}{c} -17.8 \\ -17.7 \\ -15.3 \\ -16.1 \end{array} $	$\begin{matrix} 6\\5\\4\\6\end{matrix}$	-15.8 -16.4	 5 6

Mean -16.7

-16.1

 $\begin{array}{ccc} \text{Mean of 4 plates} & -16.6 \text{ km.} \\ \text{Mean of all measures} & -16.4 \text{ km.} \end{array}$

17. 67 OPHIUCHI

(R. A. = 17^{h} 56^m; Dec. = $+2^{\circ}$ 56'; Mag. 4.0; Class Vc)

Three plates of this star have been measured, three by A., and one by F. The lines present in the spectrum are few in number and rather diffuse in character.

67 OPHIUCIII—B 347

1902, May 14, G. M. T. 19h 14m Hour angle E 1^h 7^m

Star weak; comparison strong.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t.m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 26.5243	Standard	± 0.000		4387.007			
S 26,6119	4387.761		± 0.000	4388.100	-0.339	-23.2	2
Ti~35.1864	4465.985	-0.010		4465.975			1
S 35.7506	4471.458		-0.007	4471.676	-0.225	15.1	1 2
S 36,7347	4481.107		±0.000	4481.400	-0.293	19.6	1
Ti~36.7682	Standard	± 0.000		4481.438			
S 43.6078	4552.378		+0.017	4552.750	-0.355	23.4	2
Ti~43.6295	4552.615	+0.017		4552.632			
S 46,4328	4583.798		± 0.000	4584.018	-0.220	14.4	1
Ti~46.9877	Standard	± 0.000		4590.126			

Curvature Cor. ± 0.0008 mm.

Weighted mean
$$-19.6$$

$$Mean - 19.1$$

$$V_a + 15.51 \ V_d + 0.10$$

Reduction to Sun Radial Velocity

$$\frac{+15.61}{-4.0 \text{ km}}$$

1902, June 25, G. M. T. $19^{h}41^{m}$ Hour angle W 2h 11m

67 OPHIUCHI-B 369

Star weak; comparison fair.

Measured by A. Power 15

Ti 33.5901	Standard	±0,000		4465.975			
S 34.1816	4471,703		± 0.000	4471,676	+0.027	+1.8	1
S 35.1712	4481.391		± 0.002	4481.400	-0.007	-0.5	3
Ti 35,1757	4481.436	± 0.002		4481.438			1
Fi 39.2693	Standard	± 0.000		4522.974			
Ti 42.0514	4552.621	+0.011		4552.632			
42.0588	4552.702		± 0.011	4552.750	-0.037	-2.4	2
$\Gamma i = 45.4160$	Standard	± 0.000		4590.126			

Curvature Cor. $+0.0008 \,\mathrm{mm}$.

Weighted mean
$$-0.7$$

$$Mean = 0.4$$

$$egin{array}{ccc} V_d & -2.19 \ V_d & -0.18 \ \end{array}$$

-2.37Reduction to Sun Radial Velocity

1902, July 7, G. M. T. 17h 32m Hour angle W 1h45m

67 OPHIUCHI -- A 346

Star good; comparison good.

Measured by A. Power 15

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	_
S 27.0710	4388.094		± 0.000	4388,100	-0.006	-0.4	2
Ti 28.0857	Standard	±0.000		4399.935			
Ti 33,6391	4468.668	-0.005		4468.663			
S 33.8791	4471.798		-0.005	4471.676	+0.117	+7.8	3
Ti 34.6120	4481.441	-0.003		4481.438	'		
S 34.6180	4481.521		-0.003	4481.400	+0.113	+7.9	4
$Ti \ 37.9791$	Standard	± 0.000		4527.490		,	
S 41.2400	4575.018		±0.000	4574.900	± 0.118	+7.7	1
Ti 47.8867	Standard	± 0.000		4682.088	'	'	
$Ti\ 49.5012$	4710.417	-0.049		4710.368			
S 49.6696	4713,429		-0.049	4713.308	± 0.072	± 1 G	4

Curvature Cor. +0.0005 mm.

Mean +5.5

$$\frac{V_a}{V_d} = -7.38$$

 $\frac{V_d}{V_d} = -0.15$

Reduction to Sun

-7.53

 $\overline{-1.8}$ km. Radial Velocity

$67~OPHIUCHI - A\,346$

Measured by F. with Zeiss Comparator Power 13

Ti 32,491	4337.977	+0.107		4338.084			
S 36.978	4388.069	10.101	+0 020	4388.100	-0.011	-0.8	2
Ti 37.992	Standard	±0,000		4399.935			-
$Ti\ 43.320$	4466.002	-0.027		4465.975			1
S 43.760	4471.765		-0.017	4471.676	+0.072	+4.8	3
Ti 44.493	Standard	±0.000		4481.438			
S 44.494	4481.451		± 0 000	4481.400	+0.051	+3.4	4
Ti 45.600	4496.329	-0.011		4496.318			
Ti = 49.587	$\operatorname{Standard}$	±0.000		4552.632			
S 49.594	4552.735		± 0.000	4552.750	-0.015	-1.0	

Weighted mean Curvature Cor.

+2.5+1.41 Mean +1.6

 $V_d=0.15$

Reduction to Sun Radial Velocity

-7.53-3.6 km.

SUMMARY OF MEASURES OF 67 OPHIUCHI

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 347 B 369 A 346	1902, May 14 June 25 July 7	$ \begin{array}{r} -4.0 \\ -3.1 \\ -1.8 \end{array} $	5 3 5	 -3,6	· · · · · · · · · · · · · · · · · · ·

Mean

-3.0

-3.6

Mean of 3 plates -3.3 km. Mean of all measures -3.1 km.

18. 102 HERCULIS

(R. A. = $18^{\rm h}4^{\rm m}$; Dec. = $\pm 20^{\circ}48^{\circ}$; Mag. 4.5; Class IVb)

Four plates of this star have been measured, four by A., and one by F. The lines in the spectrum are diffuse, and not well adapted to accurate measurement.

1902, July 23, G. M. T. $17^{\rm h}~53^{\rm m}$ Hour angle W $2^{\rm h}~0^{\rm h}$

102 HERCULIS-A 358

Star good; comparison fair.

Measured by A. Power 13

y Wei	Velocity	Displacement	Normal Wave- Length	Correction to Star Lines	Correction to Comp. Lines	Wave-Length by Formula	Mean of Settings
	km,	t. m.	t. m.	t. m.	t. m.	t. m.	mm.
			4338 084		± 0.000	Standard	Ti/21.0816
2 :	-4.2	-0.062	4388.100	-0.015		4388.053	S 25.5751
			4395, 201		-0.017	4395.218	Ti/26.1944
			4427.266		-0.016	4427, 282	Ti/28.8695
0	+2.0	± 0.030	4437.718	O, OOG		4437.754	S 29.7168
			4443.976		± 0.000	Standard	Ti~30~2141
			4168,663		+0.050	4468.613	Ti/32.1395
0 :	-3.0	-0.045	4471 - 676	± 0.049		4471.582	S 32,3669
			4552.632		± 0.031	4552.601	Ti : 38 : 2196
4	+1.4	± 0.022	4552.750	± 0.031		4552,741	S 38,2291
			4563 939		$\pm \Omega_{\star}(000)$	Standard	Ti.38.9877
0 .	+4.0	+0.061	4567.950	\pm O.COO		4568.011	S 39.2607

Curvature Cor. ± 0.0005 mm.

Weighted mean $V_a = -10.13$

-1.0

Mean 0.0

 $V_d = 0.16$

-10.29

Reduction to Sun Radial Velocity

 $\frac{10.120}{-11.3}$ km.

1902, August	11, G.	М. Т.	$16^{\mathrm{h}}\ 12^{\mathrm{m}}$
Hour angle V	$X/\Gamma^{\rm b}$ 35) ^m	

102~HERCULIS—B 385

Star good; comparison good.

Measured by A. Power 15

		bin Binit combines a Second					
Ti 21 1940	Standard	±0.000		4338.084			
Ti/27.1297	4387.052	-0.045		4387.007			
S 27 2596	4388 167		-0.044	4388.100	± 0.023	± 1.6	1
T7 28 6223	4399.971	-0.036		4399,935	i i		
S 30 5760	4417.270		-0.029	4417.121	± 0.120	8.2	1
T7 30 6477	4417.913	-0.029		4417.884	,		
Ti 31 6828	4427.272	-0.006		4427.266			
S 32 8329	4437.825		O.003	4437.718	± 0.104	7.0	1
Ti 34 0647	Standard	\pm O. OOO		4449.313			
T7 36 0938	4468,665	-0.002		4468,663			
S 36 1078	4471.708		-0.002	4471.676	± 0.030	2.0	2
S 37.4010	4481.421		-0.001	4481,400	± 0.023	1.5	1
T7/37,1025	4481.439	-0.001		4481,438			
T v 14. 2795	4552.612	<u>+0_020</u>		4552,632			
S 44 2039	4552.770		+0.020	4552.750	+0.040	2.6	2
Ti 45.3132	Standard	± O, OOO		4563,939			
					1		

Curvature Cor. ± 0.0009 mm.

Weighted mean

+3.5

Mean + 3.8

 $rac{V_{ct}}{V_{ct}} = -15.36$

Reduction to Sun -15.49 Radial Velocity -12.0 km,

102 HERCULIS-B 385

Measured by F. Power 13

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	-
Ti~30.0027	4337.991	+0_093		4338.081			
S 30.3396	4340.675		+0.088	4340.634	+0.129	+8.9	1
Ti~35.9388	Standard	± 0.000		4387.007	'	·	
S 36.0675	4388.112		± 0.000	4388.100	1 + 0.012	+0.8	2
Ti 37.4313	4399.933	+0.002		4399.935	1	·	
Ti.40.4935	4427.266	± 0.000		4327.266			
S 41.6344	4437.739		+0.002	4437.718	+0.023	+1.6	1
Ti~42.8747	4449.309	+0.004		4449.313	'	•	
$Ti\ 45.1844$	4471.387	± 0.021		4471.408			
S 45.2204	4471.736		+0.021	4471.676	+0.081	+5.4	2
Ti.46.2120	Standard	± 0.000		4481.438	'	•	
S 46.2134	4481.452		± 0.000	4481.400	± 0.052	± 3.5	2
Ti.53.0896	4552.611	+0.021		4552.632	'	•	
S 53.1003	4552.727		+0.021	4552,750	-0.002	-0.1	3
Ti~56.4554	Standard	± 0.000		4590.126			1

Curvature Cor. + 0.0013 mm.

 $\begin{array}{ccc} \text{Weighted mean} & +2.7 \\ V_a & -15.36 \\ V_d & -0.13 \\ \text{Reduction to Sun} & -15.49 \\ \text{Radial Velocity} & -12.8 \, \text{km}. \end{array}$

1902, August 27, G. M. T. $15^{\rm h}\,0^{\rm m}$ Hour angle W $1^{\rm h}\,28^{\rm m}$

102 HERCULIS - B 397

Star too weak; comparison strong.

Measured by A. Power 15

Mean +3.3

Ti~23.4654	4387.005	+0.002		4387.007			
S 23,6159	4388.297		± 0.002	4388.100	+0.199	+13.6	2
Ti~24.9590	Standard	± 0.000		4399.935			
Ti 28.0223	4427.263	+0.003		4427.266			
Ti~32.4369	4468.681	-0.018		4468.663			
S 32.7593	4471.805		-0.014	4471.676	+0.115	7.7	3
Ti 33.7445	Standard	± 0.000		4481.438			
S 33.7507	4481.499		±0.000	4481.400	+0.099	6.6	2
Ti 40.6291	4552,634	-0.002		4552.632			
S 40,6590	4552.937		-0.002	4552.750	+0.185	12.2	2
$Ti\ 41.6619$	Standard	± 0.000		4563.939			
S 42.0462	4568.189		-0.020	4567.950	+0.219	14.4	1
Ti~42.4064	4572.195	-0.039		4572.156			

Curvature Cor. +0.0009 mm.

Weighted mean +10.3

 $\begin{array}{ccc}
V_a & -18.64 \\
V_d & -0.12
\end{array}$

-18.76

 $\overline{-8.5}$ km.

Reduction to Sun Radial Velocity Mean ± 10.9

1902, September 3, G. M. T. $15^{\rm h}$ $10^{\rm m}$ Hour angle W $2^{\rm h}$ $0^{\rm m}$

102 HERCULIS—B 402

Star rather weak; comparison strong.

Measured by A. Power 17

Ti~21.1240	Standard	± 0.000		4338.084			
Ti~27.0559	4387.056	-0.049		4387.007			
S 27.1998	4388.291		-0.049	4388.100	+0.142	+ 9.7	
Ti 28.5484	4399.982	-0.047		4399.935			
Ti~29.8296	4411.283	-0.043		4411.240			+
S 30,2799	4415.300		-0.043	4415.076	+0.181	12.3	
Ti~30.5728	4417.927	-0.043		4417.884			
Ti 31,6073	4427.286	-0.020		4427.266			
S 32.7566	4437.839		-0.007	4437.718	+0.114	7.7	i

102 HERCULIS-B 402-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mnı.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 33 4167	4443.975	+0.001		4443.976			
Ti.36.0140	Standard	±0.000		4468.663			
S 36.3401	4471.829		-0.001	4471.676	+0.152	10.2	3
Ti.37.3224	4481.441	-0.003		4481.438			
S 37.3290	4481.506		-0.003	4481.400	± 0.103	6.9	2
Ti 41 1950	4552 - 603	+0.029		4552,632			
S 41,2215	4552.891		+0.029	4552.750	+0.170	11.2	2
Ti/45.2260	4563.905	+0.034		4563.939	· ·		
S 45 6087	4568,151		+0.014	4567,950	+0.215	14.1	3
Ti/45/9693	4572.161	Q. QO5		$4572 \cdot 156$			
S 46.2301	4575.079		-0.001	4574.900	+0.175	11.5	2
Ti.47.5587	Standard	\pm O.OO)		4590.126			

Curvature Cor. +0.0008 mm.

$$\begin{array}{c} \text{Weighted mean} & +10.6 \\ V_a & -19.65 \\ V_d & -0.16 \\ \text{Reduction to Sun} & -19.81 \\ \text{Radial Velocity} & -9.2\,\mathrm{km}. \end{array}$$

SUMMARY OF MEASURES OF 102 HERCULIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 358	1902, July 23	-11.3	5		
B 385	Aug. 11	-12.0	6	-12.8	6
B 397	Aug. 27	-8.5	5		
$_{ m B.402}$	Sept. 3	-9.2	8		

-12.8

 $\begin{array}{cc} \text{Mean} & -10.3 \\ \text{Mean of 4 plates} & -10.4 \text{ km.} \\ \text{Mean of all measures} & -10.8 \text{ km.} \end{array}$

19. η LYRAE

 $(R, A.= 19^h 10^m; Dec.= +38^-58^s; Mag. 4.5; Class IVb)$

Four plates of this star have been measured, four by A., and two by F. The spectrum contains but few lines, and these are not very sharply defined, so that accurate measurement is difficult.

$2,4\mathrm{uly}31,\mathrm{G},\mathrm{M}.'$ ar angle W $4^\mathrm{h}21^\mathrm{n}$		$\eta LYRAE$ —A 365 Star fair; comparison good.					Measured by A Power 21	
S 27.4920	4388 029		±0.000	4388.100	-0.071	-4.9	1	
Ti~28.5143	Standard	± 0.000		4399,935				
Ti/30.7921	4427.273	-0.007		4427.266				
S 34.6288	4437.606		-0.004	4437.718	-0.116	7.8	2	
Ti/32.5642	Standard	± 0.000		4449.313				
Ti.34.0695	4468.691	-0.028		4468.663				
S 34.2915	4471.590		-0.022	4471.676	-0.108	7.2	2	
S 35,0255	4481,264		\pm 0.000 \pm	4481.400	-0.136	9.1	3	
Ti.35.0386	Standard	+ 0.000		4481.438				

Curvature Cor. +0.0005 mm.

 $\begin{array}{ccc} \text{Weighted mean} & -7.8 \\ V_a & -2.45 \\ V_d & -0.21 \\ \text{Reduction 4o Sun} & -2.69 \\ \text{Radial Velocity} & -10.5 \text{ km.} \end{array}$

Mean + 10.4

1902, September 13, G. M. T. $17^{\rm h}$ $57^{\rm m}$ Hour angle W $4^{\rm h}$ $20^{\rm m}$

η LYRAE -- B 409

Star weak; comparison good.

Measured by A. Power 15

ettings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
	t, m.	t. m.	t. m.	t. m.	t. m.	km.	
1473	4387.014	-0.007		4387.007			
5690	4388.060		-0.006	4388 100	-0.046	-3.1	2
0362	Standard	± 0.000		4399.935			
87(3	4417.103		+0.001	4417.121	-0.017	-1.2	1
9569	4417.883	+0.001		4417.884			
9923	4427.268	-0.002		4427.266			
1365	4437.793		-0.004	4437.718	+0.071	+4.8	3
8010	4443.981	-0.005		4443.976	'		
1153	Standard	± 0.000		4465.975			
7046	4471.688		± 0.003	4471.676	+0.015	$+1 \ 0$	3
3982	4481.429	+0.0.9		4481.438	'		
3941	4481.388		+0.009	4481.400	-0.003	-0.2	3
5651	Standard	± 0.000		4552.632			
5829	4552.826		± 0.000	4552.750	+0.076	+5.0	1

Curvature Cor. +0.0008 mm.

Weighted mean +1.1

 $V_d = -11.51 \ V_d = 0.24$

Reduction to Sun Radial Velocity $\frac{-11.75}{-10.6 \text{ km}}$

1902, October 15, G. M. T. 14^h 12^m Hour angle W 2^h 45^m

 η LYRAE — B 422

Star fair; comparison good.

Measured by A. Power 21

Mean + 1.1

Ti 29.6491	Standard	±0.000	4338.084			
S = 29.9775	4340.698	± 0.000	4340.634	+0.064	+4.4	1
S 35.7220	4388.258	±0.000	4388.100	+0.158	10.8	2
Ti-36.5256	Standard	± 0.000	4395.201			
Ti = 40.1270	4427.253	+0.013	4427,266			
S 41.2721	4437.777	+0,009	4437.718	+0.068	4.6	1
Ti 41.9376	4443.969	+0.007	4443.976			
Ti = 44.5326	4468.669	-0.006	4468.663			
S 44.8526	4471.778	-0.004	4471.676	+0.098	6.6	1
Ti-45.8379	Standard	±0.000	4481.438			
S 45.8425	4481.483	±0.000	4481.400	+0.083	5.6	3

Curvature Cor. +0.0009 mm.

Weighted mean + 6.7

 $V_{d} = -14.54 \ V_{d} = 0.17$

Reduction to Sun Radial Velocity $\frac{-14.71}{-8.0 \text{ km}}$.

 $\eta LYRAE - B$ 422

Measured by F. Power 13

Ti 30,0739	Standard	±0.000		4338,084			
S 30.4100	4340.762		-0.002	4340.634	+0.126	+8.7	1,
S 36.1563	4388.376		-0.036	4388.100	± 0.240	16.4	2
Ti 36.9505	4395.241	-0.040		4395.201	i i		
Ti 44.9578	4468.686	-0.023		4468.663			
S 45.2926	4471.936		-0.017	4471.676	+0.243	16.3	3
Ti 46 2628	Standard	± 0.000		4481.438			
S 46.2719	4481.528		± 0.000	4481.400	± 0.128	8.6	3
Ti 54.1648	Standard	± 0.000		4563.939			
S 54.5322	4568,011		-0.010	4567.950	+0.051	3.4	1
Ti 54.9059	4572.176	-0.020		4572.156	,		

Curvature Cor. +0.0013 mm.

Weighted mean +12.1

 $V_{a} = -14.54$

 $V_{s}^{2} = 0.17$

Reduction to Sun -14.71Radial Velocity -2.6 km.

243

Mean + 10.7

Mean +6.4

 $\eta LYRAE = B 427$

1902, October 16, G. M. T. $15^{\rm h}\,32^{\rm m}$ Honr angle W $4^{\rm h}\,23^{\rm m}$

Star weak; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. ni.	km.	
Ti=25.6843	4386.989	+0.018	,	4387.007			
S = 25.8232	4388.183		± 0.016	4388.100	± 0.099	+6.8	2
Ti 27, 1756	Standard	± 0.000		4399.935			
$Ti_{-}30_{-}2336$	4427 297	-0.031		4427.266			1
S = 31.3788	4437.837		-0.020	4437.718	± 0.099	6.7	2
Ti 32_0390	4443.989	-0.013		4443.976			
Ti/34.6291	4468.668	-0.005		4468,663			
S = 35.9322	4481.424		\pm 0.000	4481.400	+0.024	1.6	3
Ti 35.9336	Standard	± 0.000		4481.438			
Ti=42.7896	4552.595	+0.037		4552,632			
S = 42.8125	4552,845		+0.037	4552.750	+0.132	8.7	1
Ti=43.8220	Standard	± 0.000		4563.939	,		
S = 44.1927	4568.055		± 0.000	4567.950	± 0.105	6.9	2

Curvature Cor. \pm 0.0008 mm.

Weighted mean
$$V_a = -14.57$$
 $V_d = -0.21$ Reduction to Sun Radial Velocity -14.81 -9.4 km.

 $\eta = LYRAE = B.427$

Measured by F. Power 13

Mean + 6.1

 $Mean \pm 5.5$

Ti 30.0406	Standard	± 0,000		4387.007			
S 30.1635	4388,062		± 0.000	4388.100	-0.038	-2.6	
Ti 34,5896	Standard	± O , OOO		4427.266			
S 35.7360	4437.817		-0.003	4437.718	+0.096	+ 6.5	
Ti 36,9653	4449.320	-0.007		4449.313			
Ti 39.2676	4471.412	=0 (X)4		4471.408			
S 39.3137	4471.861		-0.004	4471.676	± 0.181	+12.1	
Ti-40.2880	Standard	\pm O , OOO		4481.438			
S 40.2929	4481.187		± 0.000	4481.400	+0.087	+ 5.8	

Curvature Cor. \pm 0.0013 mm.

$$\begin{array}{c} \text{Weighted mean} & + 7.2 \\ V_a & -14.57 \\ V_d & -0.24 \\ \text{Reduction to Sun} & -14.81 \\ \text{Radial Velocity} & -7.6 \text{ km.} \end{array}$$

SUMMARY OF MEASURES OF 7 LYRAE

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 365	1902, July 31	-10.5	4		
B 409	Sept. 13	-10.6	6		
B 422	Oet, 15	-8.0	5	-2.6	5
B 427	Oct. 16	-94	5	-7.6	4

Mean of 4 plates -8.7 km. Mean of all measures -9.1 km.

20. ϵ DELPHINI

(R. A.=
$$20^{\rm h} 28^{\rm m}$$
; Dec.= $+10^{\circ} 58'$; Mag. 4.1; Class Va)

Four plates of this star have been measured, all of them by A. The spectrum contains very few lines, among them traces of one or two oxygen lines, and all of these are poorly defined.

€ DELPHINI—A 349

1902, July 11, G. M. T. 17h 55m Hour angle E 1h 11m

Star weak; comparison good.

Measured by A. Power 14

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti=20.1815	Standard	± 0.000		4338.084			
S = 20.3642	4340.037		± 0.000	4340.634	-0.597	-41.3	1
Ti 26.0799	Standard	± 0.000		4404.433			
S 26,9275	4414.558		-0.001	4415.076	-0.519	35.3	1
Ti = 31.2436	4468.666	-0.003		4468.663			
S 31.4346	4471.164		-0.002	4471.676	-0.514	34.5	2
S = 32,1652	4480.804		± 0.000	4481.400	-0.596	39.9	4
Ti = 32.2129	Standard	±0.000		4481.438			

Curvature Cor. +0.0005 mm.

Weighted mean

-38.2

Mean = 37.7

 $\begin{array}{ccc} V_a & +10.25 \\ V_d & +0.10 \end{array}$

Reduction to Sun Radial Velocity

+10.35 $\overline{-27.8}$ km.

 ϵ DELPHINI—A 353

1902, July 16, G. M. T. 18h 48m Hour angle W 0h 5m

Star good; comparison good.

Measured by A. Power 17

Ti 23.8727 S 24.0696 Ti 28.9894 Ti 29.3926	Standard 4340.189 4395.209 Standard	±0.000 -0.008 +0.000	±0.000	4338.084 4340.634 4395.201 4399.935	-0.445	-30.8	1
Ti 29.3920 Ti 34.9402 S 35.1308 S 35.8739 Ti 35.9112	4468.655 4471.146 4480.942 Standard	±0.000	+0.006 ±0.000	4468.663 4471.676 4481.400 4481.438	$ \begin{array}{c c} -0.524 \\ -0.458 \end{array} $	$\frac{35.1}{30.6}$	2

Curvature Cor. +0.0005 mm.

Weighted mean -32.9 Mean - 32.2

Mean = 31.6

 $V_a + 8.22 \\ V_d = 0.01$

Reduction to Sun Radial Velocity

+8.21-24.7 km.

€ DELPHINI—A 359

1902, July 23, G. M. T. 19h 59m

Hour angle W 1^h 39^m

Star fair; comparison fair.

Measured by A. Power 13

					1		
Ti 25.0852	Standard	±0.000		4338.084			
S 25.2773	4340,139		-0.001	4340.634	-0.496	-34.3	2
S 29.5420	4387.590		-0.008	4388.100	-0.518	35.4	1
Ti 30.1979	4395.210	-0.009		4395.201			
Ti 32.8751	Standard	± 0.000		4427.266			
Ti 34,2187	4443.956	+0.020		4443.976			
Ti 36,1468	4468.649	+0.014		4468.663			
S 36.3447	4471.233		+0.013	4471.676	-0.430	28.8	1
S 37.0832	4480.970		+0.010	4481,400	-0.420	28.1	2
Ti 37.1176	4481.428	+0.010		4481.438			
Ti 38.6030	Standard	± 0.000		4501.445			

Curvature Cor. +0.0005 mm.

Weighted mean -31.5

 $\begin{array}{ccc} V_a & +5.28 \\ V_d & -0.14 \end{array}$

Reduction to Sun

+5.14

Radial Velocity

-26.4 km.

€ DELPHINI—A 363

1902, July 31, G. M. T. 16^h 45^m Hour angle E 1^h 5^m

Star slightly weak; comparison good.

Measured by A. Power 13

Mean = 28.3

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
ııım.	t.m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti~22.5790	4386,956	+0.051		4387.007			
S 22.6325	4387.574		+0.049	4388.100	-0.477	-32.6	1
Ti 23.6921	Standard	± 0.000		4399.935			
S 25.1003	4416.725		-0.018	4417.121	-0.414	28.1	1
Ti~25.1978	4417.903	-0.019		4417.884			
$Ti_{-}25.9676$	4427.277	-0.011		4427.266			
S=26.7834	4437.355		-0.027	4437.718	-0.390	26.4	1
Ti 27.7398	4449.360	-0.047		4449.313			
Ti 29 2448	4468.683	-0.020		4468,663			
S 29.4421	4471.257		-0.016	4471.676	-0.435	29.2	2
S 30.1842	4481.020		± 0.000	4481.400	-0.380	25.4	2
Ti 30.2157	Standard	± 0.000		4481.438			
Ti 37.8308	Standard	± 0.000		4590.126			

Curvature Cor. ± 0.0005 mm.

Weighted mean $V_a + 1.91$ $V_d + 0.09$ Reduction to Sun + 2.00

 $-26.0 \, \mathrm{km}$.

SUMMARY OF MEASURES OF & DELPHINI

Radiał Velocity

A 349	1902, July 11	-27.8	4
A 353	July 16	-24.7	3
A 359 A 363	July 23 July 31	$^{-26.4}_{-26.0}$	4

SUMMARY OF RADIAL VELOCITIES

The table which follows gives a summary of the results for the stars which we have considered in this paper. As the final velocity of each star the mean of all the measures has been adopted, so that a plate measured by both observers will have twice as much weight as a plate measured by only one. This procedure has seemed preferable to that of assigning unit weight to each plate without regard to the number of measures made of it, but the difference between the values found in the two ways is in general very slight, as a brief inspection of the summaries given at the end of the detailed measurements of each star at once shows. Column six of the table below accordingly gives the total number of measures for the individual stars, while the following column indicates the epoch to which the final velocity belongs. For comparison a list of the proper motions of the stars is appended, the values of which have been very kindly communicated to us by Professor Lewis Boss, in advance of their publication in his "Catalogue of 627 Principal Standard Stars" in the Astronomical Journal (Nos. 531, 532, February, 1903). For the three stars not included in his "Catalogue" (67 Ophiuchi, 102 Herculis, and η Lyrac) Professor Boss was good enough to furnish us with values in systematic conformity therewith. The proper motions correspond to Professor Newcomb's value of the precession.

SUMMARY

	G.	P 1		RADIAL	No. of		Pro	PER MOTION	
Mag.	Star	R. A.	Dec.	VELOCITY	Meas- ures	Epoch	R. A.	Dec.	Great Circle
3.0	γ Pegasi	Oh OSm	+14° 38′	+ 5.4	12	1902.06	0.50000	-0.013	0.7013
3.7	ζ Cassiopeiae	0 31	$+53 \ 21$	+ 2.9	6	1902.10	+0.0024	-0.007	0.023
3.6	€ Cassiopeiae	1 47	$+63 \ 11$	- 5.9	8	1902.08	+0.0058	-0.017	0.043
3.1	ζ Persei	3 48	+31 35	+22.1	7	1901.95	+0.0009	-0.017	0.020
0.3	β Orionis	5 10	-8 19	+20.7	24	1901.95	+0.0001	-0.001	0.002
1.9	γ Orionis	5 20	+6.15	+18.0	10	1901.98	-0.0004	-0.019	0.020
1.8	€ Orionis	5 31	-1 16	+26.7	7	1902.05	0.0000	-0.002	0.002
1.9	ζ Orionis	5 36	-2 00	+18.3	7	1902.52	± 0.0005	-0.007	0.010
2.2	κ Orionis	5 43	-942	+17.1	10	1901.88	± 0.0001	-0.005	0.005
2.0	eta Canis Majoris	6 18	-17 54	+32.6	5	1901.84	-0.0004	0.000	0.006
1.5	€ Canis Majoris	6 55	$[-28 \ 50]$	+27.2	4	1902.61	+0.0004	-0.001	0.005
3.6	η Leonis	10 02	+17 15	+ 3.5	5	1902.31	-0.0001	-0.012	0.012
2.8	$\gamma \ Corvi$	12 11	-16 - 59	-7.0	6	1902.27	-0.0113	+0.011	0.162
3.9	au Herculis	16 17	+46 33	-12.7	6	1902.21	-0.0012	+0.031	0.033
3.3	ζ Draconis	17 08	+65 50	-14.4	8	1902.19	-0.0021	+0.020	0.024
3.9	ι Herculis	17 37	+46 04	16.4	-6	1901.92	-0.0010	-0.006	0.012
4.0	67 Ophiuchi	17 - 56	+256	— 3.1	4	1902.47	+0.0003	-0.016	0.017
4.5	$102\ Herculis$	18 04	$+20 \ 48$	-10.8	5	1902.62	+0.0003	-0.011	0.012
4.5	η Lyrae	19 10	+38 - 58	- 9.1	6	1902.74	-0.0002	-0.004	0.005
4.1	ϵ Delphini	20 28	$+10^{\circ}58$	-26.2	4	1902.55	+0.0006	-0.026	0.027

The distribution of positive and negative velocities in the table shows clearly the direction of the motion of the Sun in space, although the number of stars is, of course, much too small to warrant the determination of the apex or velocity. Conversely, the position of the apex is not accurately enough known to make it seem desirable to tabulate the radial velocities corrected for the solar motion. It is evident on inspection, however, that the absolute velocities of these stars are very small, and a computation, based upon Newcomb's adopted apex (R. A. = 277°.5; Dec. = $\pm 35^{\circ}$) and Campbell's solar velocity (19.9 km.), gives 7.0 km. as the mean of the twenty radial velocities after correction for the solar motion; if the sign be regarded, the mean becomes ± 4.6 km. The exceedingly small proper motions, for stars as bright as these, are striking (in the mean 0.023; or, omitting γ Corri, which is exceptional, 0.015), being much smaller than for solar stars of corresponding brightness, and indicate that the stars of the Orion type are as a class very remote. The bright stars of the constellation Orion evidently group themselves both as to the direction and magnitude of their motions.

The radial velocities of but four of the stars in the list have been previously published, by Vogel and Scheiner in Vol. VII of the Potsdam Publications. They are as follows:

$$eta \ Orionis - - - + 16.3 \ km.$$
 $\epsilon \ Orionis - - - + 26.7$ $\gamma \ Orionis - - - + 8.9$ $\xi \ Orionis - - - + 14.8$

Except in the case of γ Orionis the agreement with the values which we have found above is quite satisfactory in view of the character of the spectra, which are most difficult of measurement.

In the course of our observations the following seven stars with spectra of the *Orion* type have been found to have variable radial velocities, and are reserved for discussion elsewhere:¹⁵

δ Ceti; ν Eridani; η Orionis; β Cephei; ο Persei; π⁵Orionis; ζ Tauri.

V-See Astrophysical Journal, Vol. XV (1902), pp. 211, 340; ibid., Vol. XVII (1903), pp. 150-52.

REMARKS ON THE CLASSIFICATION OF THE SPECTRA

Although all of the stars which we have investigated in this paper belong to type Ib of Vogel's classification, their spectra vary greatly both as regards the number and the character of the lines present, and a few subdivisions are certainly desirable. Miss Maury's classification is excellent in this respect, and has the great advantage of being based upon photographs which show a very wide range of spectrum, including the valuable H and K region. From this point of view any attempt at classification based upon the limited range of spectrum given by a high-dispersion spectrograph must be distinctly inferior. A further disadvantage in discussing the characteristics of the spectra which we have obtained lies in the fact that the quality of plates best adapted to determinations of radial velocity is generally quite different from that which would be most suitable for qualitative examination; and the greater density demanded may effectually conceal some of the fainter lines present in the spectra. On the other hand, the higher dispersion and consequent broadening of the spectral lines undoubtedly enable one to judge much better of the behavior and character of the individual lines than would be possible with low dispersion and a small scale. At most, however, the classification of such a limited number of stars as we deal with here must of necessity be mainly empirical, and any order of arrangement will represent rather the succession of the various spectra as regards complexity and character of the lines than the sequence of development of the stars themselves.

The lines which occur in the spectra of the stars which we have investigated, and upon which any classification must be based, are due to the following elements: hydrogen, helium, magnesium, silicon, oxygen, and nitrogen. In some stars faint metallic lines also appear, and there are a few lines as yet unidentified. The extent of spectrum included in this examination of our plates is from $\lambda 4300$ to $\lambda 4720$.

In what are probably the earliest stars of this type in order of development no lines are present with the exception of the hydrogen and stronger helium lines, and these are faint, and extremely broad and diffuse. Most of them contain the line $H\gamma'$ at λ 4542, which belongs to the series of hydrogen lines first found by Pickering in the spectrum of $\zeta Puppis$, and some of them show the line at \$\lambda 4686, which Rydberg calls the first line of the hydrogen spectrum. Both of these lines are represented by bright bands in the spectra of stars of the Wolf-Rayet type. In the stars which appear most naturally to come next in order these lines disappear, and the hydrogen and helium lines increase in strength, at the same time becoming narrower and more sharply defined. The earliest of this group of stars show traces of the magnesium line at λ 4481, and the silicon lines at λ 4553, λ 4568 and $\lambda 4575$. While the magnesium line, however, rapidly increases in strength, becoming in the later stars of the group one of the most prominent lines in the spectrum, the silicon lines remain comparatively unimportant. The spectra of the furthest developed stars of this sort, such as i Herculis and β Orionis, are characterized by strong and fairly well defined lines of hydrogen and helium, a strong and narrow line at \$\lambda 4481\$, and traces of the silicon lines. Faint metallic lines also appear at this point, the most prominent being at $\lambda 4550$ and $\lambda 4584$, and indicate the connection of these stars with those distinguished by metallic lines. These last are represented among the stars investigated by \(\xi Tauri, \gamma \conis, \) and \(\eta Lconis, \) and show a great decline in intensity for the helium lines accompanying the rise of the metallic lines. The magnesium line \$\lambda 4481\$, however, is very weak in the case of ζ Tauri, though strong in the other two stars, and this fact, together with the remarkable character of its hydrogen lines, which are of a sharpness and brilliancy not approached in any of the other stars, makes the spectrum of this star one of the most interesting that we have encountered.

Up to this point the order of succession of the spectra seems to be fairly clear, but those containing oxygen and nitrogen lines are much harder to classify. This difficulty arises from the fact that in other respects they seem to be almost identical with those which we have just considered. There is the same rise in intensity and increase in sharpness on the part of the hydrogen and helium lines, and the magnesium line appears and develops in almost exactly the same way, reaching nearly,

though never quite, the intensity which it has in such stars as β Orionis. On the other hand, we find in the earliest stars of this group the beginnings of a whole series of oxygen and nitrogen lines which develop simultaneously with the hydrogen, helium, and magnesium lines, and attain in the later stars of the group, such as $\beta Canis Majoris$ and $\gamma Pegasi$, a high degree of prominence. The fact that the three silicon lines, which in the stars considered before never became at all marked features of the spectrum, now follow the behavior of the oxygen and nitrogen lines and gain in intensity with them, is of interest as showing that the stellar conditions seem to be favorable to the simultaneous development of the spectra of the three elements. An examination of these characteristics of the spectrum appears to make the relationship of this group of stars to that which we have considered before one of parallelism rather than succession. For while the order of succession of the individual stars within the two groups is so well defined as to preclude the insertion of either within the other, an attempt to make one follow or precede the other would be equally difficult, without the assumption of the absence of more connecting links than would be justified. Accordingly, it has seemed best to assume a point of division immediately after the earliest stars of the list, and to arrange the stars exhibiting no oxygen or nitrogen lines in their spectra along one branch, while the stars which are characterized by such lines proceed along the other.

In the following table the twenty stars discussed in this paper, together with some others of this type of which we have one or more plates, are collected and arranged. Those whose spectra are very closely allied are connected with brackets, and within the brackets the individual stars are placed in the order of increasing intensities of the lines mentioned.

DESCRIPTION OF THE PLATES

Plate I shows the spectrograph attached to the forty-inch telescope. The cells containing each of the three prisms may be readily seen, rigidly attached to the main casting, in their invariable position. The twenty-fourinch camera tube for camera lens B is seen in place. The chair is set in the proper position for an observer to conveniently look (down) into the guiding telescope. The tube extending from the guiding telescope below to the "goose-neck" above conveys the rays which have been reflected from the polished slit-jaws, and then caught and deflected downward by diagonal prisms within the "goose-neck." To the left of this may be seen the apparatus for producing the comparison spectrum, and the slit, although the scale of the illustration does not permit the details to be clearly apparent. The long rod which would be at the left hand of an observer sitting in the chair is used to assist in guiding, and the whole telescope may be slightly sprung to follow the star. The switches controlling the electric slow-motions in right ascension and declination, which are always within easy reach of the observer, could not be shown when the temperature case was removed, as here. The light inner aluminium case, or prism-box, is seen on the floor at the left below the prisms. The double-walled outer temperature case, which incloses the whole spectrograph, except the slit, is at the extreme right. Behind it is the carriage upon which the spectrograph rests when not attached to the telescope. The induction coil is seen at the left. The box beneath it contains the condenser (at left), the self-induction coil (at right), and the drum upon which is wound the cable conveying the secondary current to the spectrograph.

Plate II shows the comparator made by Gaertner & Co., which is sufficiently described on p. 6.

Several examples of spectra described in this paper are given in Plate III. The negatives used were α Boötis, B 300; β Orionis, B 282; β Canis Majoris, B 215; ϵ Canis Majoris, B 461; and η Leonis, B 329.

A recent important modification of the pendulum apparatus for vertical enlargement of spectra has permitted the comparison spectrum to receive the same treatment as the stellar spectrum. The positives from which the half-tone blocks were made were prepared by Mr. Ellerman. As shown here the enlargement over the original negatives is vertically almost forty-fold, and horizontally only four-fold (3.8). Any process of vertical enlargement necessarily introduces false lines in the stellar spectra, which may be confusing in spectra having few lines, although inconspicuous in the spectra of the solar type. We have accordingly indicated the chemical origin of all of the more important lines on the three spectra having the fewest lines.

The plates have not been retouched by photographer or engraver, but the intensity of the continuous spectrum was rendered as uniform as possible by shading the brightest parts during the process of enlargement.

LINCENNIAL TERLICARIONS, VIII

Measuring Machine for Stellar Spectra

 α BOÖTIS

 β ORIONIS

β CANIS MAJORIS

€ CANIS MAJORIS

 η LEONIS

EXAMPLES OF STELLAR SPECTRA With Comparison Spectrum of Titanium

	,	

THE SPECTRA OF STARS OF SECCHI'S FOURTH TYPE

GEORGE E. HALE, FERDINAND ELLERMAN, AND J. A. PARKHURST

The possibility of basing a systematic scheme of stellar evolution on spectroscopic observations is foreshadowed in the work of Fraunhofer, who in 1823 observed for the first time the spectra of a few of the brightest stars. Though wholly ignorant of the origin of the dark lines in these spectra, Fraunhofer recognized that their number, appearance, and grouping differed greatly from star to star, and that in certain cases the solar spectrum seemed to be exactly duplicated. But it required such a general survey as that of Secchi, who examined the spectra of more than four thousand stars, to afford any basis for a scheme of classification. The purely empirical classification which he adopted includes a very large percentage of the stars among its five principal types, and subsequent systems have done little more than to add subgroups to provide for the comparatively few peculiar spectra which do not fall within Secchi's divisions.

Seechi's classification, as we have said, was a purely empirical one, intended to serve only as a convenient means of grouping similar spectra. But the researches of Huggins and Vogel soon introduced the idea of development, and the changes of spectra from type to type came to be regarded as synonymous with progressive changes in the stars themselves. Spectroscopists have agreed in regarding the white stars, with spectra characterized by the predominance of the series of hydrogen lines (Secchi's first type), as representing an early stage of development, corresponding to a condition of low density. Through the continued action of gravity, accompanied by loss of heat, the absorbing metallic vapors increase in density, producing a marked increase in the number and strength of the metallic lines, while the hydrogen lines become narrower and less conspicuous (Secchi's second type). The reduction of light caused by the greater absorption is most marked at the violet end of the spectrum, causing the color of the star to change from white to yellow. After passing this, the solar, stage, further operation of the same causes results in the production of red stars, whose spectra might be expected to indicate comparatively low temperature and high density of the absorbing vapors.

It is not clear, however, why there should be two distinct classes of red stars, characterized by widely different banded spectra. One of these classes (Secchi's third type), which includes such bright stars as a Orionis, a Scorpii, and a Herculis, is comparatively well known. In the pioneer days of stellar spectroscopy Huggins and Vogel measured some seventy lines in the spectrum of a Orionis, and the more refrangible region of the spectra of some of these stars has more recently been studied photographically by these and other observers. But much remains to be done by photographic means, particularly in the less refrangible region, where Keeler was working with marked success when interrupted by his untimely death. In the present paper our photographs of the spectra of some of these stars are reproduced for comparison with the spectra of stars of Secchi's fourth type, but the measurement of these photographs has not yet been undertaken.

As the other great class of red stars (Secchi's fourth type) includes no objects brighter than magnitude 5.3, it is obvious that the detailed investigation of their spectra is beyond the reach of telescopes of small aperture. It will be seen from the references given below that the general characteristics of these spectra were clearly recognized in the visual observations of Secchi, Dunér, Vogel, and others, but it was impossible with the instruments employed by them to observe more than the carbon bands and two or three prominent lines. Even the objective prism, as applied in conjunction with photography, has failed to show the less conspicuous details, though it has been invaluable in discovering new objects and in showing the relative intensities of the various bands in different stars. As the great light-gathering power of the forty-inch Yerkes refractor seemed to render it especially suitable for an investigation of these faint stars, the work described in this paper was undertaken in

January, 1898. In conjunction with this investigation photographs have been made of the spectra of a number of stars of other types, researches on the condition of carbon in the solar chromosphere and on the widened lines in Sun-spots have been set on foot, and considerable work on the spectrum of carbon and other substances has been done in the laboratory.

REVIEW OF PREVIOUS OBSERVATIONS

In his first classification of stellar spectra Secchi made no distinction between the two types of red stars. Indeed, a star later recognized by him as of the fourth type (Lalande 12,561) was classed in the memoir Sugli spettri prismatici delle stelle fisse (Memoria Prima, 1867) with a Herculis in the following words (Catalogo, p. 14): "In conclusione è tipo di a Ercole, ma con zone nere mancanti, onde le sue sono large tanto, che alcune ne abbracciano due di quelle di a Ercole." After giving measurements to show the agreement in the position of the bands with those of a Herculis, Seechi adds, however: "Le zone sono notabili per avere il verso della luce in senso opposto dell' ordinario."

In the second memoir (*Memoria Seconda*, 1868) it appears that the distinctive characteristics of fourth-type spectra were recognized in the course of a survey of some twenty red stars from Schjellerup's catalogue. In describing the spectrum of 152 *Schjellerup* as characteristic of the class, Secchi remarks (p. 9):

Questo tipo è dunque composto di tre sole zone principali; una viva nel verde, una debole nel bleu e una assai viva nel rosso. Quest' ultima è spesso subdivisa in altre zone minori.

Questo tipo differisce essenzialmente dal 3° non solo per la divisione della zone, le quali hanno una larghezza doppia, ma anche perchè le zone hanno la maggiore intensità luminosa in verso opposto. Cioè esse nel 4° tipo vanno crescendo di luce dal rosso verso il violetto, mentre quelle del terzo sono disposte al contrario. Talchè rappresentando il 3° tipo come un sistema di colonne, il quarto sarebbe rappresentato da cavità, supponendo la luce illuminante diretta nello stesso verso.

Few objects having spectra of the fourth type were known to Seechi, but many were discovered in the subsequent observations of Vogel, D'Arrest, Dunér, Pickering, and Espin. Pickering's first discoveries were made visually, but a very large percentage of the fourth-type stars discovered at the Harvard Observatory have been found on photographs taken with an objective prism. Qualitative observations of various fourth-type spectra, made with a small direct-vision spectroscope, are given by Friedrich Krueger in his "Catalog der farbigen Sterne." McClean photographed the spectrum of 152 Schjellerup with an objective prism in 1896. He describes his results as follows:

Two different photographs are given of the star I52 Schjellerup of the $5\frac{1}{2}$ magnitude. Two hours' exposure was required, which accounts for the exaggerated distortion due to the changing amount of refraction during exposure. The value of the faint details is enhanced by the correspondence of the two photographs. The presence of a line-absorption spectrum is distinctly shown, and it appears to agree to a marked extent with the usual line spectrum of Types II and III. There appears to be no trace of Dunér's Band No. 5 of Type III. The inference seems to be that spectra of Type IV arise from a natural course of change in these stars, passing directly from Type II. They are stars of Type II become less luminous, but not different in kind.

McClean also reproduces objective-prism photographs of the spectra of 19 Piseium and 152 Schjellerup in an article in the Philosophical Transactions, Vol. CXCI, A, p. 131, Plate XIV. His photograph of 19 Piseium shows only the bands, but in the two spectra of 152 Schjellerup some of the more conspicuous dark lines are visible. These photographs were the first to show any of the lines; unfortunately they do not seem to have been measured. A large number of fourth-type spectra have been photographed with the objective prism at the Harvard Observatory, but while the bands are well shown, the lines do not appear in these photographs. A complete list of all fourth-type stars known at that time was published in 1898 by Espin, who has himself discovered many objects of this character. The classic memoir published by Dunér in 1884, "Sur les étoiles à spectres de la troisième classe,"

¹ Publicationen der Sternwarte in Kiel, Band VIII, Kiel, 1893.

² Monthly Notices, Vol. LVII, p. 8.

³ Ibid., Vol. LVIII, p. 443.

^{*}Svenska Vetenskaps-Akademiens Handlingar, Vol. XXI, No. 2.

Vogel's observations with the twenty-seven-inch refractor of the Vienna Observatory,⁵ and McClean's photographs of 152 Schjellerup have afforded the best available data for the study of the spectra.

Dunér's important observations, which are frequently to be referred to in this paper, were made with several direct-vision spectroscopes of different dispersive powers attached to the ten-inch refractor of the Lund Observatory. In spite of the insufficiency of his instrumental equipment, which prevented him from seeing the dark and bright lines in the spectra of fourth-type stars, Dunér's results are of the highest value, and his conclusions are confirmed in almost every particular by our photographs. In a recent paper Dunér has described his observations of bright lines in fourth-type spectra, made at the Upsala Observatory with a telescope of 36 cm. aperture. Further reference to these observations will be made below. Dunér's drawings of fourth-type spectra are reproduced from his first memoir in Plate V. His general description of fourth-type (IIIb) spectra is as follows:

Les spectres des étoiles de la classe IIIb consistent, s'ils sont parfaitement développés, en quatre zones brillantes, séparées par des bandes obscures, dégradées vers le violet, et d'une largeur extraordinaire, au moins le double de celles de la classe IIIa. La zone rouge-jaune est subdivisée par des bandes plus faibles et moins larges, dégradées soit vers le rouge, soit vers les deux côtés. La sous-zone jaune (longueur d'oude 563-589) est ordinairement la partie la plus brillante du spectre entier, et elle, ainsi que la sous-zone rouge voisine (longueur d'onde 589-621), est divisée en deux par une bande bien marquée, mais si étroite qu'elle ressemble, dans des spectroscopes d'une faible dispersion, à une raie ordinaire. En outre il y a, dans la zone verte, deux raies, ou peut-être deux bandes très étroites.

Ces caractères sont, j'en suis sûr, non moins constants, dans les spectres de cette classe, que le sont pour la classe IIIa ceux donnés ci dessus, et on les reconnaîtra indubitablement chez toutes les étoiles qui y appartiennent, à mesure qu'on pourra les examiner avec des lunettes suffisamment fortes, et à mesure que les étoiles se trouveront dans une phase de dévéloppement suffisamment avancée. Dans une lunette de 245 millimètres d'objectif comme la nôtre, il y a cependant des détails dans les spectres de la plupart de ces étoiles, qu'on ne peut apercevoir. D'abord les bandes secondaires, et les raies dans la zone verte sont plus ou moins invisibles dans les spectres des étoiles faibles, et même dans les étoiles les plus brillantes (5^m. 5 seulement!) leur intensité peut être très différente. Puis l'intensité de la lumière des zones brillantes peut varier considérablement chez des étoiles de la même grandeur. Dans les étoiles d'un rouge foncé, la zone ultra-bleue est extrêmement faible en comparaison avec la même zone dans les étoiles rouge-jaune; et chez les étoiles faibles, cette zone est tout-à-fait invisible, et même la zone bleue est très difficile à voir si elles sont très rouges.

Mais aussi la bande principale à la longueur d'onde 563 est d'une opacité très variée. Chez certaines étoiles, elle est presque aussi foucée que les deux autres bandes principales; mais dans certains spectres elle est assez faible, et semble, probablement à cause de cela, être beaucoup moins large que les bandes aux longueurs d'onde 516 et 473. Celles-ci, et surtout la première d'entre elles, sont toujours très fortes et très larges, et forment le caractère le plus prononcé de ces spectres. Toutes les étoiles de cette classe sont très fortement colorées, au meins d'un rouge-jaune fort mais quelques-unes d'entre elles sont presque rouges.⁷

Dunér's measures of fourth-type (IIIb) spectra, as tabulated on p. 122 of his memoir, are given below, reduced to Rowland's scale:

Овјест	19 Piscium	132 Schj.	152 Schj.	132 Schj.	152 Schj.	WAVE-LENGTH
Band 2	621					621
Band 3	6049					6049
Band 4 (maximum)	5896	5885		5896	5911	5899
Band 5	5761	5758	5748	5763	5762	5761
Band 6 (beginning)		5641	5625	5634	5635	5634
Band 7	551					551
Band 6 (end)					545	545
Band 8	5286				5281	5284
Band 9 (beginning)		5168	5160	5161	5165	5164
Band 9 (end)					496	496
Band 10 (beginning)		4715	4721	4730	4740	4728
Band 10 (end)	463		,			463
End of spectrum			437			437

WAVE-LENGTHS DETERMINED BY DUNÉR

In his observations at Bothkamp, and in his later work with the twenty-seven-inch Vienna refractor. Vogel measured the spectra of the stars Nos. 51, 78, 152, and 273 of Schjellerup's catalogue, and also that of $DM.+34^{\circ}$ 4500. Vogel's drawings of the spectra of 152 Schjellerup and $DM.+34^{\circ}$ 4500 are reproduced in Plate V. His measures (reduced to Rowland's scale) are given in the following table, which is taken from Vol. IV of the Potsdam Publications:

WAVE-LENGTHS DETERMINED BY VOGEL

Овјест	152 Schj. (Vienna)	(Vienna)	(Bothkamp)	$\frac{DM_{\star} \pm 34 - 4500}{({ m Vienna})}$		78 <i>Schj.</i> (Bothkamp)	51 Schj. (Bothkamp)	MEAN
Beginning of spectrum			660					660
Dark band					656			656
Dark band			622		622	623		622
Dark band					6066			6066
line in a band	5892		5893	5890	589	590	· ::::	5894
and of band	5849							5849
ine	5742		5759	5751	578	5756	!	5758
ine beginning a band	5622	5626	5629	5621	564	564	i šėji l	5632
ine			552		552			552
			544					
ine				200	5510			544
Troup of lines			528	527	529			528
Line beginning a band	5160	5164	5157	5162	516	515	5166	-5160
Line	5433						l	5133
Beginning of band	4717		4736	4745	472	473		4730
Band			437					437
End of spectrum			430					430

The combined results of the two observers, compared with Kayser and Runge's wave-lengths of the "hydrocarbon" bands, are contained in the following table:

COMPARISON OF WAVE-LENGTHS

OBJECT	VUGEL	Dunér	MEAN	SWAN SPECTRUM				
Spectrum begins	660		660					
Dark band	656		656					
Dark band	622	621	6215					
Oark band	6066	6049	6058	6060 Middle of red band				
line in a band	5894	5899	5897					
and of a band	5849		5849					
ine	5758	5761	5760					
inc beginning a band	5632	5631	5633	5635.43 Beginning of yellow band				
ine	552	551	5515	Total State of Jenon Band				
ine	544	545	5445					
System of lines	528	5284	5282					
Line beginning a band	5160	5164	5162	5165,30 Beginning of green band				
ane wanting a manting	11100	496	496	oromoo regimning or green build				
line	5133		5133					
Beginning of a band	4730	4728	4729	4737.18 Beginning of blue band				
A gitting of a ballotter.		463	463	1331.10 Deginning of Dide band				
Band	437	437	437	4381.93 Beginning of fifth band				
End of spectrum	430	301	430	mana beginning of fitti band				

In discussing these results Scheiner, basing his conclusion on the supposition that the hydrocarbons are all reduced to acetylene (C_2H_2) at high temperatures and are characterized by a common spectrum which perhaps belongs to this substance, remarks: "We may, therefore, go a step farther and consider that in the stars of Class IIIb carbon and hydrogen are united in the form of acetylene, which is the first combination of these two elements which would ensue as the temperature fell." It will be shown later in this paper that this conclusion must in all probability be modified on account of recent advances in our knowledge of the spectra of carbon compounds.

Of the 242 stars of the fourth type catalogued by Espin there are but three in the northern hemisphere and four in the southern that are brighter than the sixth magnitude. Of the stars which

⁸ Frost-Scheiner, Astronomical Spectroscopy, p. 311.

have been observed photometrically Espin finds twenty-three between magnitude 6.1 and 7; thirtynine between 7.1 and 8; seventy-six between 8.1 and 9; and eighty below 9. The red color of the stars is largely due to the extreme faintness of the blue and violet rays, and this fact greatly increases the difficulty of photographing the more refrangible region of their spectra.

INSTRUMENTS USED IN THIS RESEARCH

Most of the photographs used in the present investigation were taken with a three-prism spectrograph attached to the forty-inch refractor of the Yerkes Observatory. The form of the colorcurve of the forty-inch objective has an important bearing on the relative brightness of different regions of the photographed spectra. In work on the yellow and green regions of the spectrum the slit of the spectrograph has ordinarily been set at the focus corresponding to λ 5000. The spectra of fourth-type stars generally increase in brightness from the head of the yellow carbon band toward a maximum in the green. On account of the loss of light due to the rise in the color curve and the fall in the curve of sensitiveness of ordinary isochromatic plates in the neighborhood of the b group, the intensity of the photographs of spectra is more nearly uniform in the green than it should be. For a similar reason the less refrangible half of the bright zone in the yellow is too faint on our photographs. These facts should be borne in mind when examining the plates which accompany this paper; it must also be remembered that the relative intensities of different regions are affected by the shading of the photographs during enlargement, which is necessary in order to bring out the lines properly. In the blue part of the spectrum, on account of the steepness of the color curve, a correcting lens near the The lens not only increases the extent of spectrum photographed on a single focal plane is required. plate, but also facilitates guiding, and thus materially reduces the exposure time.

As the spectrograph has been fully described elsewhere, a very few details will suffice here. It consists essentially of a Huggins reflecting slit, with guiding eyepiece, a collimator of 31 mm, aperture and focal length of 507 mm, three 60° prisms of heavy flint glass (n=1.6960), and several cameras of different focal lengths. The camera objective ordinarily employed is a photographic doublet of 37 mm, aperture and 271 mm, focal length. This gives the best results when used with a collimator objective corrected for the visual rays. For the faintest stars a camera with photographic doublet of 40 mm, aperture and about 150 mm, focal length was employed. In the earlier work one prism was frequently used with a camera of 508 mm, focal length, but it was soon found that much more satisfactory results could be obtained with three prisms and a short camera. The prisms are of a distinctly yellowish color, and undoubtedly exercise considerable absorption in the blue and violet. A spark between iron or titanium poles was used for the comparison spectrum. Unfortunately the spectrograph was not provided with a constant temperature case (Plate IV).

For the brighter stars, when it is not desired to photograph a considerable range of spectrum, slit-widths ranging from 0.01 mm. to 0.04 mm. may be used to advantage, even with an instrument having the great focal length of the forty-inch telescope. In the investigations of Messrs. Frost and Adams on stellar motions in the line of sight such widths are actually employed. But in our work on the faint red stars it was found necessary to use slit-widths as great as 0.1 mm. As the camera lens commonly preferred has a focal length whose ratio to the focal length of the collimator objective is 1:1.9, it is evident that the breadth of the spectrum and also the width of the lines are reduced in this ratio. With a slit-width of 0.15 mm. and a dispersion of three 60° prisms, the yellow and green regions of the spectrum of 280 Schjellerup (mag. 7.8) required an exposure of nine hours.¹⁰

As recent work with the forty-inch telescope has shown that the original spectrograph is inferior in many respects to the new Bruce spectrograph, it is important that the weak points of the older

⁹ GEORGE E. HALE AND FERDINAND ELLERMAN, "On the Spectra of Stars of Secchi's Fourth Type," Astrophysical Journal, Vol. X (1899), p. 93.

Bulletin No. 7. With the same optical combination, and with a slitwidth of $0.075 \,\mathrm{mm}$, the green bands in the spectrum of a Orionis were photographed in twenty seconds.

¹⁰ This photograph has been reproduced in Yerkes Observatory

instrument should be pointed out, on account of their bearing on the results obtained in the present investigation. The old spectrograph was constructed by Brashear in 1893. In all respects it was almost an exact duplicate of the spectrograph designed two years previously by Keeler for the Allegheny Observatory. In most particulars it was a distinct advance upon previous instruments, especially in its embodiment of Keeler's train of three prisms, giving a deviation of about 180°, which has been adopted in almost every spectrograph constructed since that time for the determination of stellar velocities in the line of sight. It inherited from earlier instruments, however, certain defects of construction which might give no trouble in visual observations, but have made themselves felt in the long exposures required in the present investigation. The three prisms of the train, instead of being firmly clamped in a fixed position, in accordance with the practice familiar in recent instruments, were mounted on an automatic minimum deviation device. When set for any particular part of the spectrum the prisms and camera were elamped in place. It might be supposed that such elamping would eliminate all difficulties arising from the instability of the prism supports, but experience has not shown this to be the case. As at first constructed the brass plate upon which the prisms rested was very light. This was replaced by a strong ribbed plate of much heavier brass, made after Professor Wadsworth's design in our instrument shop, which undoubtedly improved the spectrograph. The prism supports were also changed for the better, and various other modifications effected in the spectrograph at this time certainly tended to increase its efficiency. It was subsequently found, however, as has been fully explained elsewhere by Professor Frost," that, even when all customary precautions had been taken in his use of the instrument, the velocities of stars in the line of sight determined with its aid were sometimes subject to marked uncertainty, though some of the results were excellent. There can be no doubt, therefore, that results much more satisfactory than those here presented could have been obtained if an instrument as stable as the Bruce spectrograph had been available for the present work.

It will be seen that the circumstances were not at all favorable for the accurate measurement of radial velocities, and when the work was undertaken it was not proposed to attempt such determinations. Nevertheless, precautions were taken to avoid systematic errors, and the approximate velocities of a few of the fourth-type stars have been measured. The measurement of the plates made with the old instrument has been greatly facilitated by the use of three excellent negatives obtained with the Bruce spectrograph. Had the old spectrograph been built in such a way as to eliminate all possible effects of flexure, and provided with a constant-temperature case, good determinations of velocity could undoubtedly have been obtained for stars as faint as the eighth magnitude. The experience gained in the use of this instrument has been embodied in the Bruce spectrograph, which seems to possess none of the faults of its predecessor. At present the old spectrograph is employed with the two-foot reflector. On account of the absence of chromatic aberration in the reflector, it was found possible to obtain a photograph of the spectrum of 19 *Piscium*, extending beyond the H and K lines, with an exposure (on three nights) of twenty-four and one-half hours (Plate X).

While the precision attained in the present research is greatly inferior to that of recent investigations of stellar motions in the line of sight, it is nevertheless sufficient for many purposes. As will be shown below, photographs of the spectra of a large number of fourth-type stars with moderate dispersion, and of a few selected stars with the highest feasible dispersion, are still greatly to be desired.

JOURNAL OF OBSERVATIONS

Most of the photographs were taken in the yellow-green (Y.G.) or in the blue region of the spectrum, but a few in the yellow-red (Y.R.) were secured with the aid of Erythro plates. In the earlier work, and for special purposes later, a single dense tlint (D.F.) prism was employed, but the train of three dense tlint prisms was generally preferred. A few photographs—including those made

^{11 &}quot;The Bruce Spectrograph of the Yerkes Observatory," Astro-physical Journal, Vol. XV (1902), p. 12.

with the two-foot reflector — were taken with a single light flint (L. F.) prism, and in one case a 30° prism, silvered on the back surface, was used with the solar spectrograph. The focal lengths of the various cameras are as follows: No. 0 = 151 mm., No. 1 = 271 mm., No. 2 = 508 mm., A (Bruce spectrograph) = 449 mm.

The photographic plates which proved most satisfactory were Erythro for the yellow-red, Cramer Instantaneous Isochromatic (C. I. I.) for the yellow-green, and Cramer Crown for the blue.

										1	Co	MP.	Spectrum	Tı	EMP.	l to	
Star	No.	Date	Disp.	Camera	Plate	Region	H. A. Mid.	Slit	Hour Beg.	Exp.	Beg.	End	Kind	Beg.	End	Seeing	Remarks
132 Schi, 152 " 74 " 74 " 75 " 78 " 78 " 78 " 78 " 78 " 79 Schi, 155 b " 72 " 155 b " 72 " 155 b " 155 b " 155 b " 152 " 153 " 154 Prisc. D. M. 57° 702 280 Schi, 19 Prisc. D. M. 57° 702	147 148 151 156 156 160 161 164 165 177 178 181 177 178 181 184 186 193 194 195 190 201 201 202 203 203 200 201 211 213 214 220 234 242 241	1898 Jan. 28 31 Feb. 2 31	3 D. F. 3 D. F. 3 D. F. 1 D. F. 3 D. F. 1 D. F. 4 D. F. 4 D. F. 5 D. F. 6 D. F. 7 D. F. 8 D. F. 1 D. F. 9 D. F. 1 D. F. 1 D. F.	00000000000000000000000000000000000000	C.I.I. Crown C.I.I. Crown C.I.I. Crown C.I.I. Crown C.I.I. C.I.I.	Y. G		4 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 4 0 0 3 0 0 0 3 0 0 0 4 0 0 0 0	16 45 56 403 24 56 57 7 15 55 56 56 56 56 56 56 56 56 56 56 56 56	m 120 105 120 105 120 105 120 105 120 105 114 165 120	\$ 3 3 3 4 4 22 2 100 100 100 133 29 155 155 200 900 4 4 5 120 5 5 3	* 33 97 8 75 222223 10 10 115 7 2 155 4 4 1225 4 4 4 98 99 99 5 5 5 5 5 5 5 5 5	Fc Spark Moon Fc Spark Fc Spark Fc Spark Fc Spark Fc Spark Fc Spark Fc Spark	80.0 72.0 74.0 71.0 69.0 71.0	11.5 0 1.5 0	fair poor fair poor fair poor fair poor fair poor fair poor fair poor fair poor fair good fair poor fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good	Solar Spectrograph.
280 Schj. 280 " 132 " 318 Birm. 19 Pisc. 19 " 19 " 19 Schj. 119 Pisc. 78 Schj. 152 " 18 Pisc. 74 Schj. 51 " 280 " 318 Birm. 115 Schj. 115 " 318 Birm. 115 Schj. 115 " 318 Birm. 152 Schj. 124 " 132 " 119 Pisc. 78 Schj. 229 "	245 246 250 253 257 262 264 264 267 270 274 275 276 277 278 283 284 285 289 289 289 289 289 289 289 289 289 289	Oct. 31 and Nov. 1 Dec. 22	1 D. F.	13	S. G. E. C. I. I.	Blue V.G. Blue G. G. G. G. G. G. G. G. G. G		3.2 4.2 9.3 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	5 56 00 14 47 13 44 5 17 6 5 12 2 05 5 5 20 6 13 3 55 5 7 7 50 6 13 5 15 7 7 30 9 4 8 12 40 5 17 7 4 12 12 40 5 17 7 30 9 4 14 11 40 11 11 40 11 13 50 11 13	390 190 240 256 50 252 240 180 245 245 245 245 165 (187 540 119 360 160	14 10 7 10 3 3 3 3 4 7 7 4 4 7 10 10 10 10 10 10 10 10 10 10 10 10 10	180 60 5 15 10 7 7 4 3 3 3 3 4 4 4 4 8 8 6 6 6 7 15 8 7 7 4 8 11 6 8 8 12	γ Cass. γ Cass. Fe Spark	$egin{array}{c} -1 & 1^* \\ -2.5 \\ -3.5 \\ -4.3 \\ -11.2 \\ -11.3 \\ -16.0 \\ -7.0 \\ -11.5 \\ -11.5 \\ -10.4 \\ -13.0 \\ -5.6 \\ +1.0 \\ -7.3 \\ -1.0 \\ -$	43.0.2 -3.0** -2.0.2 -1.2 -16.0.6 -17.0 -13.0 -13.0 -13.0 -13.0 -13.0 -14.0 -12.7 -13.0 good fair good fair u	Temperature in prism box hereafter in degrees Cent.	

			1	gC	1		1 :	1		Ī	Cov	n 5	SPECTRUM	Tu	MP.	-	
Star	No.	Date	Disp.	Camera	Plate	Region	H. A. Mid	Slit	Hour Beg.	Exp.		End	Kind	Beg.	End End	S. ein	Remarks
78 Schj. 220 °° 132 °° 78 °° 132 °° 152 °° 152 °° 152 °° 152 °° 152 °° 152 °° 152 °° 152 °° 152 °° 152 °° 152 °°	297 298 299 300 301 302 307 309 316 319 322 323 324	1899 Feb. 15 23 March 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 D. F.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. I. I. "" S. G. E. C. I. I. S. G. E.	Y. G. "" Blue Y. G. Blue Y. G.		5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	h m 9 50 13 55 10 32 7 30 11 49 16 03 11 45 10 00 12 15 7 18 9 47 10 31 11 20	m 242 245 165 250 160 110 335 300 300 1 0 30 300 4 1 0 2 4	5 11 10 7 7 8 8 8 8 10 7	s 16 15 8 8 8 8 10 9 11	Fe Spark	$\begin{array}{c} \text{C},\\ + 0.3\\ -10.2\\ - 6.7\\ -13.1\\ -14.2\\ -16.4\\ - 5.3\\ -6.4\\ -5.5\\ +18.0\\ 15.0\\ \end{array}$	- 3.0 - 3.0 - 3.8 - 10.0 - 14.2 - 15.2 - 16.2 - 8.2 - 7.0 16.2	fair poor fair "" good fair good	
152 " 155b " 219a " 219a " 19 Pisc. 19 " 18 Schj. 280 " 19 Pisc. 19 Pisc. 19 Pisc. 115 " 15 Schj. 115 " 15 " 15 " 15 " 15 " 15 " 15 " 15	327 328 329 332 334 336 337 348 345 356 357 359 360 361 362 363 364 363 364 365 366 367 368 368	" 10 June 7 July 5 " 20 Aug. 21 Sept. 13 Oct. 4 " 12 " 18 Dec. 7 " 19 " 19 " 21 " 21 " 21 " 25 " 27 " 28 " 29 " 29 " 39 " 1900 Jan. 2 " 4	1 L. F. 3 D. F. 3 D. F.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1	S. G. E. C. I. I. S. G. E. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown	Blue " " " " " " " " " " " " " " " " " "	1 15 E. 2 30 E. 3 00 W. 1 30 W. 1 10 W. 1 10 W. 1 45 W. 3 30 W. 1 45 W. 0 30 W. 1 45 W. 0 30 E. 1 45 W. 0 30 E. 1 45 W. 0 30 W. 2 30 W. 2 30 W. 3 30 W. 4 00 W. 5 00 W. 2 30 W. 2 30 W. 3 30 W. 5 00 W. 5 00 W. 5 00 W. 6 30 W. 6 30 W. 6 30 W. 7 00 W. 8 00 W. 9 00 W	5.00 4.00 5.00 4.50 5.00 5.00 5.00 5.00	10 23 8 20 9 20 9 30 13 10 12 98 9 08 7 05 12 17 10 12 10 08 4 55 15 56 15 56 13 29 7 18 18 25 7 18 18 25 5 39 5 10 13 42 5 55 5 7	8 (16 / 335) 432 / 350 165 / 1200 285 / 310 200 285 / 315 / 325 195 / 653 305 / 653 315 / 480 315 / 485	24 3 4 2 2 1 1 1 2 1 1 1 1	32 10 8 11 15 15 11 15	Fc Spark Ti Spark To Spark To Spark	14.5.5 20.00 20.00 20.00 20.00 20.00 14.20 14.80 8.00 8.00 8.00 12.00 14	10.0 15.7 17.8 22.5 12.0 10.0	poor fair good poor fair good fair u	
51	3711 372 373 374 375 377 379 380 381 385 385 387 388 381 390 391 392 393 393 394 490 A319 328 R 27 313 328 R 27 313 354	March 6 4 21 21 31 April 4 Aug. 8 26 31 1900 April 4 Aug. 8 Oct. 24 11802 Feb. 10 12 25 Oct. 19 0 12 3 Nov. 48 to 23	11. F.	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. "" Erythro Crown C. I. I. "" Crown 17 G. E. "" C. I. I. 17 N. H. ""	Blue Y. G. " "" "" "" "" "" "" "" "" "" "" "" "" "	1 10 E. 2 20 E. 2 20 W. 2 20 E. 2 00 W. 1 10 E. 1 10 E. 1 10 E. 1 10 E. 2 10 W. 1 10 E. 1 10 W. 1 10 W. 1 10 W. 1 10 W. 2 15 W. 2 15 W. 2 15 W. 2 15 W. 2 15 W. 2 15 W. 2 10 W. 3 10 W. 3 10 W. 3 10 W. 4 10 W. 5 10 W. 5 10 W. 6 W. 6 W. 7 10 W. 7 10 W. 8 10 W. 8 10 W. 9 10	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.02 4.11 4.00 4.00 4.00 4.00	6 20 43 43 5 60 6 7 6 20 8 20 5 6 6 40 22 7 5 5 20 7 11 2 5 20 7 12 7 20 7 20 7 20 7 20 7 20 7 20 7	300 300 310 300 310 300 310 310 310 310	10 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7777 1113 113 113 113 113 113 113 113 11	H Tube Ti Spark Ti Spark Ti Moon Sky	+ 0.9 + 0.1	- 0.5 + 1.6 + 2.2 + 1.0 + 4.3 - 10.8 - 14.3 - 22.0 - 14.0 - 11.8 - 18.5 - 18.5 - 16.8 - 9.2 - 4.1 - 0.1 - 24.8 24.9 18.7 23.4 3.0	goodd goodd	Bruce Spectrograph

Seed's Gilt Edge (S. G. E.) plates were also used in some cases. The slit-width is expressed in divisions of the head; one division = 0.025 mm. A spark between iron poles was usually employed for the comparison spectrum, part of the exposure being given before, part after, the exposure for the star. A titanium spark was used in the later work. The temperature in the prism box was recorded at the beginning and at the end of the exposure. Most of the exposures were made by Mr. Ellerman.

APPEARANCE OF THE SPECTRA ON THE PHOTOGRAPHS

The spectra were photographed in four sections, as follows:

- 1. λ 3930 to λ 4380. These photographs were taken on Seed 27 non-halation plates with a single light flint prism and a camera of 151 mm. focal length, used in conjunction with the two-foot reflector. They were made for the special purpose of showing the very faint region in the extreme violet part of the spectrum, and some of them are therefore overexposed in the blue.
- 2. λ 4380 to λ 4980. Most of these photographs were taken with three dense flint prisms and a camera of 271 mm, focal length. Cramer Crown plates were usually employed. With the aid of the correcting lens, the color curve of the forty-inch objective, which is very steep in this region, was flattened out sufficiently to give fairly uniform illumination through the middle part of the spectrum. At both ends, however, the brightness falls off somewhat on account of the change in focus. In the less refrangible region these spectra are further weakened by the fact that the plates are relatively insensitive for light of these wave-lengths. It will be seen from these and other facts that the region of the spectrum lying between λ 4900 and λ 5160 is not well represented on most of our photographs.
- 3. λ 5160 to λ 5800. The greater part of these photographs were taken with three dense flint prisms and a camera of 271 mm, focal length on Cramer isochromatic plates. As already remarked on p. 7, the form of the color curve of the forty-inch objective and the fall in sensitiveness of the plates in this region cause these photographs to be relatively underexposed at the more refrangible end, though the focus was set for λ 5000. Little is shown beyond λ 5800, as the isochromatic plates decrease rapidly in sensitiveness in this region.
- 4. λ 5630 to λ 6600. Photographs of the spectra of 152 *Schjellerup* and 19 *Piscium* were obtained in this region with a single dense flint prism and a camera of 508 mm. focal length on Erythro plates.

In studying the photographs, it is necessary to bear in mind the fact that the various adjustments required in photographing the spectra in sections necessarily introduce differences of relative intensity, and render it almost impossible to determine accurately the distribution of brightness throughout the spectra. In the following description of the photographs it is to be understood, therefore, that the appearances described relate to the plates themselves, and not to the spectra as seen visually in a telescope.

General characteristics.—The most striking features of spectra of the fourth type are the dark bands attributed to the compounds of earbon. The principal bands have their less refrangible edges at λ 4737.8, λ 5167.9, and λ 5636.9. Bright zones, consisting of bright lines and strong continuous spectrum, appear on our plates on the less refrangible side of the first and last of these heads; ¹³ and bright and dark lines are found in connection with the continuous spectrum throughout the region photographed. The fluted character of the carbon bands is strikingly evident in the region λ 5500– λ 5637, especially in such stars as 132 Schjellerup; it also appears in the other carbon bands when the exposures are suitable, and in the eyanogen band at λ 4502– λ 4606 (see Plate VII).

Details.—The violet region of the spectra of fourth-type stars is so faint that it can be photographed only with the greatest difficulty. On account of the form of the color curve and the absorption in the violet of the forty-inch objective, no attempt was made to include the extreme violet on plates taken with the large refractor. It was nevertheless deemed of great importance to determine whether the H and K lines and the $H\gamma$ and $H\delta$ lines were present, and also to render possible the comparison of fourth-type with third-type spectra in the violet region. For this reason a few photographs of the spectra of 19 Piscium were made, as described above, with the two-foot reflector. The most prominent features of these photographs are the very strong calcium line at λ 4227 and the H

 $^{^{13}}$ The brightness of the region on the less refrangible side of the earbon head at λ 5167.9 is reduced on our photographs for the reasons given above.

and K bands, which are very conspicuous. Less prominent, but nevertheless unmistakable, are the dark hydrogen lines $H\gamma$ and $H\delta$, as well as the G group and two conspicuous lines at λ 4058 and λ 4384 (Figs. 1 and 2, Plate X).

The presence of dark $H\gamma$ and $H\delta$ lines renders the existence of a bright $H\beta$ line in the photographs taken with three prisms a matter of great interest. The comparatively large scale of these spectra and their sharpness of definition leave no doubt as to the presence and identification of lines in this region. In two or three stars $H\beta$ appears as a bright line, and in this character it is the most striking feature of the spectrum of 280 Schjellerup. In several of the stars, however, $H\beta$ is altogether absent, and in no case do we find it present as a dark line. The bearing of these results on the physical condition of hydrogen in the fourth-type stars is discussed elsewhere (p. 126).

The cyanogen flutings, with heads at $\lambda\lambda$ 4608.9, 4578.4, 4553.3, 4515, and 4503.2, are characteristic features of all the fourth-type spectra we have examined, including 280 Schjellerup. In each fluting the continuous spectrum grows stronger toward the blue, but the bright lines in this region are scattered with less regularity than in the yellow flutings. From the more refrangible edge of the bright blue zone at λ 4738.6 the continuous spectrum, here of maximum brightness, gradually decreases in intensity toward λ 5000. Between this zone and the head of the dark carbon band at λ 4737.8 there are two unidentified flutings in the spectrum of 152 Schjellerup, but in most of the other stars only one of these flutings appears. The most prominent dark lines are those at $\lambda\lambda$ 4408, 4497, 4506, 4523, and 4535. Between λ 5000 and λ 5169 the carbon absorption is nearly complete, and for various other reasons already given few details are shown in our photographs of this region. Nevertheless, the earbon heads at λ 5099 and λ 5129 can be recognized in 229 Schjellerup (Fig. 1, Plate VII).

In the green and yellow the continuous spectrum decreases in intensity from the maximum near the b group and attains its minimum brightness in the absorption of the yellow carbon bands. flutings have heads at $\lambda\lambda$ 5638.8, 5587.7, and 5505.5, and form the most characteristic feature of the spectrum. Each is made up of bright and dark lines, the bright lines being strongest at the more refrangible part of each fluting, while the dark lines are broadest and strongest at the less refrangible edge. For various reasons, discussed elsewhere, this effect, in some cases, at least, appears to be due to the presence of genuine bright lines, and not merely to contrast. Other bright lines, the character of which cannot be doubted, occur in the green region, where they are very conspicuous on the original negatives. The bright yellow zone also contains a large number of bright lines, lying on a less brilliant background of continuous spectrum. In 280 Schjellerup the bright lines are inconspicuous. The broad dark line λ 5620-5638 is double, and the component λ 5620-5626 contains three vanadium In 280 Schjellerup this double line is the only well-marked trace of the yellow carbon band. In 19 Piscium the entire set of flutings is easily recognized, and they increase in intensity as we pass to 318 Birmingham, 74, 78, and 132 Schjellerup, while in 152 Schjellerup they are less noticeable, apparently from increased carbon absorption, which cuts down the contrast. The most conspicuous dark lines in this part of the spectrum have the wave-lengths $\lambda\lambda$ 5226, 5329, 5350, 5371, 5397, 5410, and 5447. The last pair of lines has a curious appearance, resembling that of a symmetrical reversal. The b lines are conspicuous in all of the stars. In the more fully developed stars the group λ 5204– 5211 becomes the most prominent feature in this part of the spectrum. The b group also becomes stronger, but b_3 and b_4 are nearly lost in the carbon absorption band whose head is at λ 5169.1.

The more refrangible part of the spectrum is shown in a few photographs obtained with Erythro plates. The D line appears strong and dark, but it is not divided, as the plates were taken with one prism. The continuous spectrum is fairly strong from the sodium line to a dark line at $\lambda 5732$, which separates this part from the bright yellow zone, $\lambda 5637-5726$. In the region $\lambda 6086-6340$ the bright lines and strong continuous spectrum form a bright zone. There are two unmistakable bright lines at $\lambda 6176$ and $\lambda 6201$, and also two which are less certainly bright at $\lambda 6108$ and $\lambda 6131$. There

is a strong bright line at λ 6270, and two or three probably bright lines in the interval λ 6275–6340. There is also a dark line at λ 6358. At λ 6445 there is possibly a bright line. From this point the continuous spectrum greatly decreases in intensity until its limit is reached at λ 6600 (Fig. 1, Plate VI).

Certain peculiarities in the spectrum of 152 Schjellerup are referred to on p. 131.

THE PRESENCE OF BRIGHT LINES

In his memoir Sugli Spettri Prismatici delle Stelle Fisse, and in his treatise Le Soleil, Secchi refers in several places to the existence of bright lines in the spectra of fourth-type stars:

Non mancano in queste stelle (152 Schjellerup) delle righe brillanti come le metalliche, ed è singolare che esse si mostrano nella estremità più viva delle zone colorate. Gli spettri di queste stelle hanno più che gli altri analogia coi gas, e specialmente con quello del carbonio, ma rovesciato.¹⁴

Avvertimmo già che in alcune vi sono delle righe vive assai simili alle metalliche, le quali spiccano assai; alcune nel giallo paiono fili d'oro.¹⁵

Such references would seem to leave no doubt that Secchi saw some of the bright lines whose existence is shown by our photographs. His intensity curve of the spectrum of 78 Schjellerup (Fig. 1)¹⁶

places two of the bright lines in the yellow not far from their true positions, though the less refrangible of these two lines should be given much greater intensity than the more refrangible one. But the illustration of the spectrum of the same star published later by

Seechi in the second edition of Le Soleil (Plate M) contains no bright lines, while the drawing of the spectrum of 152 Schjellerup in the same plate shows two narrow bright lines in each of the three bright zones, but omits the strong bright lines in the yellow carbon band. Moreover, in describing the spectrum of 132 Schjellerup, Secchi remarks:

Tipo 4° ben deciso con due forti righe lucide nel giallo assai vive e che sono da misurare se fosse il sodio.

Other intensity curves given by Secchi show, as Dunér has pointed out in his memoir,¹⁷ that in some cases the supposed bright lines probably refer to the broad yellow sub-zone, the width of which is not less than ninety tenth-meters. Thus in describing

the spectrum of 136 Schjellerup, whose intensity curve is reproduced in Fig. 2 from the Memoria Seconda, p. 44, Secchi remarks:

Lo spettro è analogo alla 132, ma in parte diverso: ha una forte riga doppia viva nel giallo, poi segue una zona scura.

As Dunér states:

Secchi s'est plus tard persuadé, par des mesures, que les deux raies jaunes n'ont pas la même position que celles du sodium, mais il est néanmoins difficile de comprendre comment il a pu croire que cette zone, quarante fois plus large que la distance entre D_1 et D_2 , fût les raies du sodium.

On the whole, it is hardly probable that Secchi actually distinguished the true bright lines, though he was so much impressed by the appearance of the bright zones that he remarked: 18

Le spectre dans son ensemble se présente comme un spectre direct appartenant à un corps gazeux, plutôt que comme un spectre d'absorption.

In this connection it is an interesting fact that Pickering in his early visual surveys of stellar spectra states that a normal fourth-type spectrum "consists of a well-defined yellow band, a broad green band well defined on the more refrangible side and generally less sharply bounded on the other, and a blue band in some cases well defined toward the violet." ¹⁹

¹⁴ Memoria Seconda, p. 9.

¹⁵ Ibid., p. 12.

¹⁷ Loc. cit., p. 10.

¹⁶Reproduced from his *Memoria Seconda*, p. 40; the red end of the spectrum is at the left.

¹⁸Le Soleil (2d ed.), Vol. II, p. 458.¹⁹A. N. 2376.

Dunér quotes Secchi's statements regarding bright lines in his memoir, but states that he has never seen the least thing which could explain Secchi's belief in bright lines, and remarks that Vogel was not more fortunate. At that time he also considered that the spectrum was incontestably an absorption spectrum, and Vogel entertained the same view:

Es stellt sich unzweifelhaft heraus, dass die Discontinuität des Spectrums nur eine scheinbare ist, hervorgebracht durch breite Absorptionsbanden. 20

More recently, Dunér has observed the spectra of these stars with a telescope having a Steinheil visual objective of 36 cm. aperture, and remarks: "Of first importance is the fact that I was able to detect without difficulty bright lines in various spectra which at Lund were either invisible or at least could not be discovered." The detailed observations given in this paper show that a bright line (probably the one at λ 5592) was seen by Dunér in the spectra of all of the brighter stars.

Our earliest photographs of the spectra of fourth-type stars, made before the publication of Dunér's second paper, seemed to show without question the presence of bright lines. But as Dunér had expressed so decided an opinion against their existence, and as his conclusions had been supported by the results of Vogel's observations, it seemed desirable to undertake a series of tests for the purpose of meeting any doubts that might arise.

As shown on the photographs, the numerous bright lines in these spectra appear decidedly stronger than the continuous spectrum in their neighborhood, and prove their superior brightness by extending out on either side of the general spectrum, thus showing their power of impressing the plate at points where the continuous spectrum was too faint to do so. The evidence thus afforded as to the genuineness of the bright lines is not preserved in the widened photographs of the plates, but is fairly well shown in a direct enlargement of the spectrum of 132 Schjellerup reproduced in Plate V.

The following tests were employed to determine the genuineness of the bright lines:

- 1. It was found that an exposure of four minutes was sufficient to photograph the bright line at λ 5592 in the spectrum of 152 Schjellerup with a dispersion of three prisms, while equal density of the contiguous spectrum could not be obtained under the same conditions with an exposure of less than from twelve to fifteen minutes. If the line is supposed to be due to the continuous spectrum, it must be assumed that the heavy carbon absorption band is interrupted at this point. It is true that the line falls close against the second head of the fluting, and therefore at a point where the absorption band would be weakest. But the bright line appears to be sharply bounded on both sides, whereas it should fade away gradually toward the red if it were due to decreased absorption.
- 2. By increasing the dispersion an apparent bright line, if really due to continuous spectrum bounded by portions of the carbon absorption band, should be rendered less conspicuous. In our experiments it was found, however, that the contrast between the bright lines and the contiguous spectrum increased rather than diminished with the dispersion, and that the lines were best observed both visually and photographically with our most powerful combination of three heavy flint prisms.
- 3. Similarly, an increase in slit-width should tend to reduce the contrast if the effect were due to continuous spectrum bounded by dark lines or bands. In practice, however, the bright lines were admirably shown with the widest slits, and increase of slit-width did not seem to reduce the contrast.

Although there can be no doubt as to the presence of iron and other metals in these stars, it will be seen from inspection of the detailed comparisons on pp. 117-22 that many of the strong lines of these substances are absent. A large part of these can be accounted for, however, if it is assumed that they are hidden by overlying bright lines.

Photographic observations alone were not allowed to settle the matter, and on many occasions the spectra of 132 Schjellerup and 152 Schjellerup were examined visually with the three-prism spectroscope attached to the forty-inch telescope. With an observing telescope having a focal length of 253 mm, and an eyepiece magnifying thirteen diameters, the bright line at λ 5592 was easily seen,

as well as a number of other bright lines in the red, yellow, green, and blue. Under the same circumstances some of the more conspicuous dark lines were seen without much difficulty, but the less conspicuous ones were not visible.

As a further precaution, we requested Professors Keeler and Campbell to observe the spectrum of 152 Schjellerup with the thirty-six-inch refractor of the Lick Observatory. They did so, using a dispersion of three prisms, and Professor Keeler reported his observations as follows:

I compared the spectrum with Vogel's drawing in $Potsdam\ Publications$, Vol. IV. The drawing seemed to be merely a rough indication of what the spectrum actually is. What we saw was much more like your photograph. It is curious that Vogel did not see the bright line λ 550 \pm , as it is a conspicuous feature of the spectrum with the thirty-six-inch. The bright block λ 553 $-\lambda$ 584 seems to be a complex of bright and dark lines or bands, and the dark band as shown in the drawing (λ 573) is relatively too conspicuous. Vogel's dark band at λ 525 is made up of lines, of which there are many in the neighborhood. There is a strong line at or near D. We tried to identify it with the Na line in a spirit lamp, but the telescope was jumping in a high wind, and the comparison did not amount to much. There were many dark lines in the red.

To my mind, there is little doubt that the spectrum of this star contains bright lines.

These results are in striking contrast with those obtained by Sir Norman Lockyer, and reported by him in his article, "The Piscian Stars": ²²

The Kensington observations were made chiefly during 1894 and 1895, with special reference to the lines involved. The stars selected for observation were 132 Schjellerup, 152 Schjellerup, 115 Schjellerup, and 19 Piscium. The 3-foot reflector was used. In addition to the carbon bands, numerous lines were seen without much difficulty, but only the more prominent ones could be satisfactorily measured. Among the lines recorded in 132 Schjellerup were $H\beta$, the E line of iron at 5269, and a group of lines near λ 5380. In 115 Schjellerup additional lines were measured near 5005, 5762, and 5429, and the presence of $H\beta$ was again determined by comparison with a hydrogen vacuum tube. In 19 Piscium numerous lines were observed, among them being D and F. No suspicion of bright lines was entertained during these observations. Attempts to photograph the spectra were not sufficiently successful to help matters.

A three-foot reflector should be admirably adapted for the investigation of these stars, whether visually or photographically. And yet the bright lines, which should have been easily visible, were not seen, while $H\beta$ was recorded as a dark line in 132 Schjellerup, 115 Schjellerup, and 19 Piscium. As a matter of fact our photographs show no dark $H\beta$ line in any of these stars.

In discussing the probability of the existence of bright lines on our photographs, Lockyer was at a disadvantage, as he had not seen the original negatives, and the few published reproductions did not adequately represent the facts. As Fig. 3, Plate V, shows, the bright lines are distributed all through the spectrum, and are by no means confined to the edges of flutings, where Lockyer thinks contrast effects would sufficiently account for the appearance of the photographs.²³

In the table of mean wave-lengths (p. 92), which contains 213 bright lines, we have included only those lines which were regarded as unquestionably bright by at least two independent observers. In some cases, where the brightness of the line is but very little greater than that of the continuous spectrum, there might easily be some room for doubt, and many lines of this character have accordingly been excluded from the table. In many other cases, on the contrary, the bright lines are so much stronger than the continuous spectrum that the most critical observer of the original negatives would not hesitate for a moment to distinguish them from mere spaces between dark lines. We may add that the judgment of a large number of spectroscopists who have examined the negatives coincides entirely with our own.

MEASUREMENT OF THE PHOTOGRAPHS

As it seemed more important, in the existing state of the subject, to examine thoroughly a small number of photographs than to study a large number of spectra less completely, the following plates were selected for detailed measurement:

22 Proc. Roy Soc., Vol. LXVI, p. 137.

LIST OF PLATES MEASURED

									Сомр	SPEC.
Star	Plate		Date		G. M. T.	Exp.	Hour-angle	Qual.	Kind	Qual.
19 Piscium	G 259 G 264 G 269 G 293 G 343 G 357 R 34 R 37	y 1898 1898 1899 1899 1899 1902 1902	12 12 12 1 1 10 12 10 10	29 31 6 27 4 19 19 30 (18 19 22 23	h 11.6 12.5 12.3 13.0 15.5 12.8 15.6 15.8	m 50 180 115 125 285 195 330 465	W 0.6 W 1.6 W 1.9 W 3.9 E 1.3 W 1.2 E 0.3 W 0.7	C C-B A A B B	Fe Fe Fe Fe Ti Ti Moon Sky	B C C B A A
280 Schjellerup	G 346 G 366 G 367 G 370	1899 1899 1899 1900	10 12 12 12	18 28 29 2	16.1 11.6 11.2 11.1	200 565 480 660	W 1.5 W 5 ± W 4 ± W 5.5	C B C C C	Ti Ti Ti Ti	B B B
318 Birmingham	G 253 G 276 G 284 G 379 G 393	1898 1899 1899 1900 1900	12 1 1 1 3	26 15 20 25 31	$\begin{array}{c c} 21.7 \\ 16.4 \\ 17.8 \\ 20.7 \\ 18 \end{array}$	240 360 255 280 220	E 0.5 E 4.4 E 2.7 W 0.4 W 2.2	B B B C-B	$\begin{array}{c} Fe \\ Fe \\ Fe \\ Ti \\ Ti \end{array}$	B-C B-C B-B
74 Schjellerup	G 373 G 383 G 386 G 391	1900 1900 1900 1900	1 2 2 3	$\begin{array}{c c} 7 \\ 1 \\ 16 \\ 7 \end{array}$	15.0 17.3 14.8 15.5	300 370 255 380	E 2 1 W 1.8 W 0 3 W 2.3	A-B C C-D B	Ti Ti Ti Ti	B C B B
78 Schjellerup	G 300 G 344 G 384 G 392	1899 1899 1900 1900	$\begin{bmatrix} 3 \\ 10 \\ 2 \\ 3 \end{bmatrix}$	6 4 9 21	14.8 20 18.4 18	250 310 260 315	W 2.0 E 2.8 W 2.9 E 2.9	B B A	$F^{ u}$ Ti Ti Ti	B A B B
132 Schjellerup	G 299 G 301 G 309 G 368 A 328	1899 1899 1899 1899 1902	3 3 3 12 2	5 6 23 29 21	$\begin{array}{c} 17.8 \\ 19.0 \\ 17.8 \\ 22.1 \\ 18.3 \end{array}$	165 160 225 315 330	W 0.3 W 1.5 W 1.4 W 0.2 E 0.7	B A B C C-B A	Fe Fe Fe Ti Ti	B-C A B-C C-B A-B
115 Schjellerup	G 363 G 365 G 374 G 382	1899 1899 1900 1900	12 12 1 1	26 27 7 31	$\begin{array}{c} 21.0 \\ 21.8 \\ 20.5 \\ 19.3 \end{array}$	330 305 340 380	$\begin{array}{c} W \ 1.0 \\ W \ 1.8 \\ W \ 2.3 \\ W \ 1.7 \end{array}$	C-D B B B-C	Ti Ti Ti Ti	C C B B-C
152 Schjellerup	G 275 G 291 G 302 G 316 G 394 A 313 A 319 G 211	1899 1899 1899 1899 1900 1902 1902 1898	1 1 3 4 2 2 7	14 26 6 31 4 10 18 1	22.2 20.8 22.8 20.7 17.3 18.3 17.7 17.4	119 135 140 300 300 360 390 350	E 0.8 E 1.3 W 3.3 W 2.7 E 2.7 E 2.8 E 3.0 W 5.5	A B A B A B	Fe Fe Fe Ti Ti Ti Fe	A-B B B B A-B

The other photographs, which include many excellent spectra, were used for general study and comparison.

The scale of the spectra is given in the following table:

SCALE OF THE PLATES

I. PLATES TAKEN WITH THREE PRISMS
(Camera 1)

	n Region	YELLOW-GREE	BITE REGION	
	ds dA	Wave-Length	d S	Wave-Length
End of spectrum	mm. 0.025	t.m. 5200	mm. 0.054	t. m. 4400
Middle of spectrum	0.019	5500	0.036	4700
End of spectrum	0.015	5800	0.026	5000

SCALE OF THE PLATES—Continued
II. PLATES TAKEN WITH ONE PRISM

	BLUE REGION (Camera 0)		egion ra 2)	
Wave-Length	$\frac{\mathrm{d}\; s}{\mathrm{d}\; \lambda}$	Wave-Length	ds d \lambda	
4000 4200	0.010 0.008	5800 6200	0.011	End of spectrum Middle of spectrum
4400	0.006	6600	0.007	End of spectrum

The three prisms of the old spectrograph have a visual resolving power of about 33,000 for λ 4860, but with the slit-widths employed in the present investigation only a small fraction of this is realized. In the region near λ 4400 it is possible to separate on the photograph lines 0.8 tenthmeter apart, while at λ 5600 lines 1.3 tenth-meters apart are resolved.

With the Bruce spectrograph (camera A), which was used in a few cases, the scale is:

Wave-Length	$\frac{\mathrm{d}\mathrm{s}}{\mathrm{d}\lambda}$
4400	0.084
4700	0.036
5000	0.026

Method of measurement.—Four different machines were used in the measurements: the Zeiss comparator, described in our earlier paper; two similar machines, Nos. 122 and 873; and the Gaertner measuring machine, described by Messrs. Frost and Adams. Careful investigations have shown that the scale errors of the Zeiss comparators and the errors of the screw of the measuring machine are of the same order, not exceeding 2μ or 3μ . With narrow slits and spectra better defined than those here available such errors would enter appreciably. We have found it sufficient, however, to eliminate the errors as far as possible by measuring the plates at four different parts of the screw or scale and adopting the mean as the true position of the line. No difference in treatment is required for the measurements of the different machines, as the same methods were used in all cases to eliminate errors. All of the measures given in this paper (excepting those of G 211, by Mr. Ellerman) were made by Mr. Parkhurst.

The plates were adjusted on the sliding stage of the machine so that the length of the spectrum was parallel to the scale (or screw), and the cross-hair in the microscope eyepiece was made parallel to the spectral lines. Four settings were made on standard lines of the comparison spectrum, two on the lines above the star spectrum, followed by two on the lines below. For the first few plates four settings were made on the star lines, but this number was afterward reduced to three. The average number of standard lines measured on each plate was thirteen. In order to test the stability of the plate on the machine these standards were generally measured both before and after the settings were made on the star lines. A single cross-hair, running entirely across the field of the microscope, was used throughout the measures. Each plate was measured in two positions on the machine, red end toward the right and left, respectively, and the mean of the results was used.

REDUCTION OF THE MEASURES

We have described in a previous article ²⁶ the various methods of reduction tried b_fore we finally adopted the plan described in the present paper. These involved graphical methods, in which an interpolating machine devised for the purpose was employed, and a least-squares method based upon the use of the valuable Cornu-Hartmann interpolation formula. The results obtained by the least-squares method were entirely satisfactory, but considerable time was required to compute the

²⁴ George E. Hale and Ferdinand Ellerman, "On the Spectra of Stars of Secchi's Fourth Type. I," *Astrophysical Journal*, Vol. X (1899), p. 102.

Twenty Stars having Spectra of the Orion Type," Publications of the Yerkes Observatory, Vol. II, p. 148.

²⁶ GEORGE E. HALE AND FERDINAND ELLERMAN, loc. cit., p. 103.

²⁵ EDWIN B. FROST AND WALTER S. ADAMS, "Radial Velocities of

constants of the formula in this way. For this reason the least-squares solution was replaced by a residual-curve method, which furnished an equally satisfactory means of correcting the approximate constants and required far less time. This method is described in the present paper.

The combination of red-right and red-left measures was effected by subtracting the mean of the red-left measures from a constant so chosen as to make the difference about equal to the mean of the red-right measures. The final mean of this difference and the mean of the red-right measures was taken as the quantity s in the Cornu-Hartmann formula

$$\lambda = \lambda_0 + \frac{c}{s - s_0}$$
 ,

in which s is the mean scale reading, λ_0 , c, and s constants derived by substituting the scale readings of three standard lines for s and solving the three resulting equations, and λ is the desired wave-length. The derivation of the constants and the solution of the equation for the wave-length of each star line was greatly facilitated by the use of the Brunsviga calculating machine.

Reduction to the Sun.—The correction for the Earth's orbital velocity was made by the use of formulæ given by Dr. Schlesinger,²⁷ where we may put:

Tan
$$\lambda = [9.96255]$$
 tan $\alpha + [9.59987]$ see α tan δ
b = [1.47371] see λ cos α cos δ
c = [8.224] b sin (281° 20′ – λ).

For 1900 we obtain the following constants for reduction to the Sun:

Star	R. A.	Dec.	Long.	${\rm Log}\;b$	c
74 Schjellerup. 78 Schjellerup. 115 Schjellerup. 132 Schjellerup. 318 Birmingham. 152 Schjellerup. 19 Piscium. 280 Schjellerup.	6 29 40 8 49 45 10 32 36 10 38 08 12 40 26 23 41 17	$\begin{array}{c} +14^{\circ}46/6\\ +3831.6\\ +1736.7\\ -1251.9\\ +6756.2\\ +4559.2\\ +256.0\\ +5947.9\\ \end{array}$	94° 50° 96	1,4689 1,4539 1,4734 1,4456 1,2538 1,3227 1,4733 1,2555	$\begin{array}{c} -0.06 \\ -0.04 \\ +0.24 \\ +0.42 \\ +0.01 \\ +0.32 \\ -0.50 \\ -0.28 \end{array}$

The correction to the wave-length of the star lines was then

$$\Delta \lambda = V_a \left(\frac{\lambda}{299860} \right)$$
.

Instead of applying this correction separately to each wave-length derived from the formula, it was combined in the following manner with the correction curve which is required when the formula is used in its approximate form, without the exponent of the denominator $(s-s_o)$:

Correction curve.—An average of thirteen standard lines were measured in the comparison spectrum on each plate. With the exception of the three lines used in deriving the constants of the formula, each line gave a correction required to reduce its wave-length given by the formula to the standard wave-length. These corrections were platted on squared paper, as shown in Fig. 3, in which the abscissae are wave-lengths given by the formula (scale, one square equals 10 t.m.) and the ordinates are the corrections (scale, one square equals 0.01 t.m.). A smooth curve, shown by the dotted line, was drawn through these points, from which corrections could be read off for each star line. The correction required for reduction to the Sun was then laid off on the same scale as the correction curve. This is a straight line located by the values for two arbitrarily chosen wave-lengths, λ 1400 and 5000. The final correction curve, shown by the full line, was then drawn, making its ordinates the algebraic sum of the ordinates of the first curve and the reduction to the Sun. From this curve corrections were taken out and applied to the wave-length given by the formula for each star line. The correction for diurnal motion of the observer amounted to 0.005 t.m. only in the case of one plate, G 293 for 19

 $^{^{27}\,}Astrophysical\,Journal,\, {\rm Vol.}\, {\rm X}$ (1899), p. 2.

Piscium, and as only two decimals were considered in the reductions, the diurnal correction was neglected for the other plates.

Combination of results.—The negatives taken on ordinary plates covered the region $\lambda 4370$ –4980; those taken on isochromatic plates, $\lambda 5170$ –5850. For convenience these will be called the blue and yellow-green regions, respectively. At least two plates of a region were measured for each star,

and more than two if the quality of the plates required. In the case of lines measured on both plates, the mean of the results was taken as the wave-length of the line in that star, but for lines measured on only one plate the wave-length was reduced to the system of the two plates by adding to it the mean difference between the wave-lengths of the lines common to both. In the case of stars for which three or more plates were measured, the uncorrected means of the measures were taken. We thus have the following table of corrections to wave-lengths of lines found on only one plate:

CORRECTIONS TO WAVE-LENGTHS OF LINES FOUND ON ONLY ONE PLATE

Star	Region	Corrections	Basis
9 <i>Piscium</i>	blue	Mean = 264 - 0.06 = 343 + 0.06	76 lines
80 Schjellerup	(blue) yellow-green	Mean = 346 + 0.09 = 367 - 0.08 Mean = 366 + 0.23 = 370 - 0.23	24 lines 39 lines
18 Birmingham	`bl u e	Mean = 276 + 0.03 = 393 - 0.03	57 lines
4 Schjellerup	{ blue } yellow-green	Used only one plate, G 391 Mean = 373 - 0.20 = 386 + 0.20	44 lines
8Schjellerup	{ blue } yellow-green		74 lines 63 lines
$32Schjellerup\ldots$	yellow (blue		62 lines 16 lines
15 Schjellerup	yellow-green	Mean = 365 + 0.02 = 374 - 0.01	64 lines
$52Schjellerup\ldots$	yellow-green	Mean = 302 + 0.06 = 275 - 0.06	90 lines

Exceptions to the adopted methods.—The reductions for the six plates of 19 Piscium were carried out separately for the measures "red right" and "red left," and the means taken of the resulting wave-lengths, after which the correction for radial velocity was applied. To apply the correction curve to fit the formula to the wave-lengths of the standard lines, somewhat different methods were used for the first eight plates measured, six of 19 Piscium, and plate G 275 of the yellow-green region of 152 Schjellerup. On account of the poor quality of the standard lines and the effect of a neighboring air-line on the wave-length of the iron standard at $\lambda 5710.75$, the true form of the correction curve for the spectrograph was masked. The frequent appearance of an air-line close to the line mentioned shifted the center from one to two tenth-meters capriciously. After this was recognized this line was no longer used in deducing the constants of the formula. To avoid re-reduction, after the true form of the correction curve was found, a second curve was drawn, and from it were taken the quantities needed to apply to the results from the first curve.

The methods used for the first seven plates can be briefly described as follows:

19 Piscium

- G 269. Red right and left reduced separately; Cornu-Hartmann correction curve assumed as zero; reduction to Sun applied.
- G 293. Red right and left reduced separately; Cornu-Hartmann curve taken as a straight line (first constants). Applied to the observed scale reading of the three standard lines, the correction from the residual curve with sign reversed, and expressed in scale divisions. Second constants, which will include the corrections from the curve, computed with these corrected scale readings. Reduction to Sun then applied.
- G 259. Red left. Same as G 293.
 - Red right. Measured February 26 and March 1, 1901; shift found and two sets of measures reduced separately.
 - Reductions same as before, except that the reduction to Sun was combined with the correction from the Cornu-Hartmann (straight-line) curve.
- G 357. Same as last. Same correction curve for measures right and left.
- G 264. Same as last.
- G 343. Shift found between measures of March 11 and 12, 1901, two parts reduced separately; otherwise same as last.

152 Schjellerup

G 275. Red right and left combined before reduction, otherwise same as last.

CONSTANTS OF THE PLATES

The following tables contain the constants of the plates, including the wave-lengths and mean scale readings of the standard lines, the residuals corresponding to the approximate and corrected formula, the approximate and corrected values of the constants of the formula, and the reduction to the Sun. Kayser and Runge's wave-lengths were used for the standard iron lines, and those of Hasselberg for the standard titanium lines.

On account of the special methods of reduction employed, 19 *Piscium* is given first. The stars follow in the order described on p. 19. The order in the tables of constants and in the tables of detailed measures is therefore as follows:

19 Piscium.

280 Schjellerup.

318 Birmingham.

74 Schjellerup.

78 Schjellerup.

132 Schjellerup.

115 Schjellerup.

152 Schjellerup.

PLATE G 264. 19 PISCIUM Blue Region

WAVE-LENGTH	RED	Rісят		RED	LEFT.	
Fe	Mean Scale Reading	۵1	75	Mean Scale Reading	Δ1	Δ_2
t.m. 4404.93 4447.89 4494.74 4508.38 4528.79 4549.64 4584.02 4661.67 4705.54 4788.37 4871.90 4924.12 4957.65	mm. 48.0031 45.9732 43.8423 43.2639 42.3876 41.5323 40.1697 37.3202 35.8217 33.2006 30.7980 29.4009 28.5432	$\begin{array}{c} -01 \\ +66 \\ +19 \\ +43 \\ +07 \\ +06 \\ -01 \\ +23 \\ +19 \\ +19 \\ +22 \\ +10 \\ -01 \end{array}$	$\begin{array}{c} 00 \\ +72 \\ +28 \\ +52 \\ +14 \\ +12 \\ +01 \\ +18 \\ +11 \\ +13 \\ +25 \\ +19 \\ +10 \\ \end{array}$	mm. 37.6904 39.7267 41.8478 42.4344 43.3057 44.1603 45.5275 48.3760 49.8773 52.4998 54.8975 56.2962 57.1527	00 +56 +18 +40 +16 +18 00 +28 +16 +11 +28 +08	$\begin{array}{c} +01 \\ +62 \\ +27 \\ +49 \\ +23 \\ +24 \\ +02 \\ +23 \\ +08 \\ +05 \\ +31 \\ +17 \\ +11 \end{array}$
$\frac{1\text{st}}{\text{Constants}} \left(\frac{S_0}{c} \right)$	9	-19.4311 1886.800 -3042.33 -19.4291		-9	105.0359 1580.450 3045.07	
$rac{2 ext{d}}{ ext{Constants}}\left(rac{oldsymbol{arphi}_0}{oldsymbol{arphi}_0} ight)$	9	$1875.058 \\ 3042.13$			1568.385 3044.89	
				t.m.		

 $\begin{array}{ccc} \text{Reduction to Sun:} & \lambda 4400 & -0.43 \\ \lambda 5000 & -0.49 \end{array}$

PLATE G 343. 19 PISCIUM Blue Region

			RED I	Пент					RED	LEFT		
WAVE- LENGTH	For A43	95 to 463	9	For λ 4640 to 4940			For A 4395 to 4744			For λ 4746 to 4979		
Ti	Mean Scale Reading	Δ 1	2 ک	Mean Scale Reading	1 ك	Δ 2	Mean Scale Reading	Δ 1	Δ 2	Mean Scale Reading	۱ د	Δ 2
t.m. 4387.01 4427.27 4468.66 4481.44 4512.91 4555.66 4590.12 4639.77 4682.09 4742.98 4805.44 4856.20 4900.09 4981.91	mm. 50.4255 48.3368 46.2929 45.6950 41.2482 42.3886 40.9548 39.0119 37.4430 35.3230 33.3008 31.7540 30.4842 28.2675	+32 +36 +36 +03 +13 -01 +03 -14 +01 +01 +08 +22 +18 +15 +04	+09 +18 -07 +06 -02 +06 -09 +04 -03 +04 -02 -03 00	mm. 50.4198 48.3302 46.2903 45.6905 44.2457 42.3837 40.9510 39.0094 37.4420 35.3191 33.2981 31.7519 30.4804 28.2652	$\begin{array}{c} +21 \\ +23 \\ -03 \\ -03 \\ -06 \\ -01 \\ -03 \\ +14 \\ +11 \\ +02 \\ -05 \end{array}$	+09 +18 -07 +06 -02 +06 -09 +04 00 -03 +04 -02 -03	mm. 37.9330 40.0252 42.0599 42.6623 44.1087 45.9699 47.4009 49.3436 50.9117 53.0382 55.0519 56.6023 57.8747 60.0881	$\begin{array}{c} +14\\ +12\\ 00\\ +01\\ -12\\ -10\\ -20\\ -04\\ -01\\ -12\\ +28\\ +12\\ 00\\ -01\\ \end{array}$	$\begin{array}{c} -04 \\ +01 \\ 00 \\ +04 \\ -03 \\ +02 \\ -09 \\ +02 \\ 00 \\ -20 \\ -06 \\ +06 \\ \end{array}$	mm. 37.9418 40.0317 42.0681 42.6711 44.1165 45.9768 47.4084 49.3540 50.9199 53.0426 55.0590 56.6093 57.8807 60.0944	$\begin{array}{c} -02\\00\\-18\\-18\\-28\\-27\\-41\\-32\\-24\\-25\\+05\\-12\\-22\\-25\end{array}$	$\begin{array}{c} -04 \\ -05 \\ -02 \\ 00 \\ -05 \\ -06 \\ 00 \\ -14 \\ -01 \\ -12 \\ -04 \\ -08 \\ -01 \\ \end{array}$
$rac{ ext{Ist}}{ ext{Con-}} \left\{ egin{matrix} S_0 \ c \ \lambda_0 \end{matrix} ight.$	9961	 		9961	 		-9944	0.8605 8.140 023.21		-994	0.8605 48.140 6023.21	
$rac{2 ext{d}}{ ext{Con-}} \left\{ egin{matrix} S_0 \ c \ \lambda_0 \end{matrix} ight.$	9961	2.5504 1.386 21.70		9968	3.5731 32.675 21.00		-9947	0.8586 3.010 022.63		-994	0.8520 40.955 022.78	

 $\begin{array}{ccc} \text{Reduction to Sun:} & \lambda\,4400 & -0.12 \\ \lambda\,5000 & -0.13 \end{array}$

PLATE G 259. 19 *PISCIUM* Yellow-Green Region

			RED I	Кібит			Pen	LEFT		
WAVE- LENGTH	λ 5329	to 5730		A 5170	to 5327					
Fe	Mean Scale Reading	۵,	Δ2	Mean Scale Reading	٠, د.	Δ ₂	Mean Scale Reading		73	
t.m. 5169, 19 5227, 30 5233, 12 5269, 72 5328, 24 5371, 70 5147, 13 5495, 88 5586, 99 5615, 80 5710, 75	41.0882 40.9560 40.1457 38.9050 58.0262 36.5805 35.6819 34.1037 33.6317 32.1467	00 -01 -07 -09 -00 +36 -06 -39 -27 00	00 -10 00 -01 00 00 -06 -06 +06 +27	71.0816 40.9496 40.1409 38.8967 38.0198 36.5731 35.6761 31.0973 33.6260 32.1404	$\begin{vmatrix} 00 \\ -03 \\ +01 \\ -17 \\ 00 \\ +32 \\ -03 \\ -39 \\ -23 \\ 00 \end{vmatrix}$	$\begin{array}{c} \cdots \\ 00 \\ -10 \\ 00 \\ -01 \\ 00 \\ 00 \\ -06 \\ -06 \\ +06 \\ +27 \end{array}$	47.2448 48.6097 48.7458 49.5553 50.7950 51.6730 53.1236 54.0168 55.5918 56.0654 57.5588	$\begin{array}{c} +60 \\ 00 \\ -21 \\ -20 \\ -15 \\ 00 \\ +15 \\ +07 \\ +05 \\ +12 \\ 00 \end{array}$	$\begin{array}{c} 00 \\ -10 \\ 00 \\ -01 \\ 00 \\ -06 \\ -06 \\ -06 \\ +06 \\ +27 \end{array}$	
$\frac{1 ext{st}}{ ext{Constants}} \frac{S_n}{c}$	106470	.9827 0.150 57.58		10651	7,9983 7,970 057.00		-10725	7.8653 61.499 949.85		
2d Constants	10646	,9806 2.010 57.01		10654	3,0029 3,200 056 08		-10732	7.8716 26.399 948.48		
			etion t	ο Sun: λ52 λ58	100 -	-0.51 -0.57		148.48		

PLATE G 269. 19 PISCIUM

PLATE G 293, 19 *PISCIUM* Yellow-Green Region

PLATE G 357. 19 PISCIUM

WAVE-	Red F	Пент	Rед 1	LEFT	RED I	Rібит	Rep	LEFT	,	WAVE-	RED E	Івит		RED	LEF	Т
LENGTH Fe	Mean Scale Reading	$\Delta_1 \mid \Delta_2$	Mean Scale Reading	\[\(\(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Mean Scale Reading	Δ, Δ ₂	Mean Scale Reading	۵,	Δ2	LENGTH Ti	Mean Scale Reading	۵, .	7 2	Mean Scale Reading	۵,	73
t.m. 5227.30 5233.12 5281.72 5328.24 5371.70 5447.13 5495.88 5586.99 5615.80 5710.75	num, 45,9940 43,8554 42,9853 41,6500 40,7429 39,1652 38,2040 36,5215 36,0086 34,4233	00 -10 +09 +08 -00 +10 -28 07 -00 +04 +37 00 -03 -17 -03 +06 -38 - 07 00 +35	mm, 41 7002 41 8357 42 7044 44 0376 44 9744 46 5290 47 4850 49 1694 49 6773 51 2707	$\begin{array}{c} 60 \\ +20 \\ +08 \\ +07 \\ +10 \\ -23 \\ 00 \\ +04 \\ -07 \\ -09 \\ -15 \\ -16 \\ -07 \\ 00 \\ +35 \end{array}$	42.8547 41.9897 40.6623 39.7178 38.1677 37.2116 35.5195 35.0155 33.4254	00 +01 -01 -11 +07 +04 +09 +05 00 00 +22 - 01 +22 - 01 -40 -13 -22 +06 00 +35	48 4047 49 9612 50 9120 52 6015 53 1090 54 7043	$\begin{array}{c} 00 \\ -27 \\ -18 \\ -23 \\ 00 \\ -10 \\ +05 \\ -23 \\ -21 \\ 00 \\ \end{array}$	$ \begin{array}{r} -11 \\ -01 \\ -05 \\ 00 \\ -01 \\ +05 \\ -13 \\ -06 \\ +35 \end{array} $	t.m. 5173-92 5270,55 5283-63 5336-97 5381,20 5418-98 5491-65 555,50 5644-86 5739,69	mm. 36 4756 55.5591 33 9151 32.7521 31.8350 31.0741 29.8637 28.3422 27.0004 25.4805	+23 +04 +21 +14 +14 +21 -01 +21 -01 +21 -20	-04 -00 -04 -02 -03 -03 -02 -10	mm. 48.0762 48.9622 50.6387 51.7984 52.7175 53.4797 54.6963 56.2132 57.5528 59.0691		00 00 -04 00 +02 -02 -03 +02 +09
Constants $\begin{array}{c} S_0 \\ C_0 \\ \lambda_0 \end{array}$	11207	1361 0 841 57 47	-11567	.5758 7.489 89.76	11375	9 484 1 68,306 059 63	-11528	9301 1 115 13 98	,	$\frac{1\text{st}}{\text{Constants}} \frac{S_0}{c}$	11146	8800 4-870 44-93		-11079	. 2951 9 . 850 52 . 09)
$\begin{array}{ccc} 2\mathrm{d} & S_0 \\ \mathrm{Constants} & c \\ \lambda_0 \end{array}$					11376	14820 6 597 59 34	11533	.9375 1-071 13.15		$\begin{array}{c c} 2d & S_0 \\ \text{Constants} \begin{array}{c} c \\ \lambda_0 \end{array}$	11151	.8947 0-045 11.21		-11084	.3095 2.820 51.34)
Reduc	tion to Su	a: λ 5200 λ 5800			,	λ 5200 λ 5800	t.m. - 0 40 - 0 45			Reduc	rtion to St		520 580			

$280 \,\, SCHJELLERUP$

Blue Region

	PLATE G 346				PLATE G 367		
Mean Scale Reading	Wave-Length Ti	Δ1	A 2	Mean Scale Reading	$_{Ti}^{\text{Wave-Length}}$	۵1	Δ2
mm.	t.m.			mm.	t.nı.		
49.3729	4443.7	+60	+60	63.2423	4399.92	- 00	00
49.8135	4457.59	00	-02	62.3717	4427.28	-03	+0
51.4204	4512.88	-02	+05	61.4266	4457.59	-53	-3
51.5627	4518.18	+18	+25	60.7309	4481.41	-32	-10
52.5929	4555.64	-33	-20	59.8395	4512.88	-25	1 0
53.4724	4590.11	+20	+34	59.6911	4518.18	-31	-0
54.1599	4617.41	-28	-16	59.5639	4522.97	-14	+1
55.0952	4656.60	-06	-01	58.6853	4555.64	-20	1 +0
55.6826	4682.08	00	+05	57.7949	4590.11	-36	-10
57.3454	4758.30	+36	-05	57.1238	4617.41	-22	0
58.2813	4805.56	+52	+25	56.1976	4656.60	-08	-03
58.9789	4841.00	-15	-41	55.6183	4682.08	00	- 00
61.4564	4981.91	00	+03	54.2993	4742.94	-01	-1
				53.5457	4780.18	+43	+2
				52.0805	4856.18	+19	+0
*****				49.9083	4981.91	00	O
$\frac{S_0}{c}$	94.03 -64792.3				18.0710 62770.074		
λ,,	2991	58			3010.32		
			m.		t.m.		
Keductio	n to Sun: λ4:				-0.24		
	λ 50)00 +0	t0,		-0.28		

$280\ SCHJELLERUP$

Yellow-Green Region

	PLATE G 366				PLATE G 370		
Mean Scale Reading	$Wave-Length T_\ell$	Δ 1	Δ 2	Mean Scale Reading	Wave-Length	۵ 1	Δ 2
mm. 40.9966 41.8908 43.8858 44.7375 45.6630 45.9835 46.2404 46.4255 47.7924 49.1699 50.5148	t.m. 5173.92 5210.49 5297.21 5336.96 5381.20 5396.71 5409.81 5418.98 5490.36 5565.70 5644.36	$\begin{array}{c} 00 \\ -25 \\ -46 \\ +02 \\ 00 \\ -21 \\ +12 \\ +02 \\ +03 \\ +05 \\ 00 \\ \end{array}$	$\begin{array}{c} +06 \\ -07 \\ -29 \\ +07 \\ -07 \\ -30 \\ 00 \\ -11 \\ +25 \\ -06 \\ +02 \\ \end{array}$	mm. 48.8976 49.371 49.7986 50.1572 52.6575 53.5845 54.3470 57.1059 58.4564	t.m. 5173.92 5193.14 5210.49 5226.70 5336.97 5381.20 5418.98 5565.70 5644.36	$\begin{array}{c} 00 \\ +02 \\ -34 \\ +82 \\ 00 \\ +09 \\ +27 \\ +11 \\ 00 \\ \cdots \\ \end{array}$	$\begin{array}{c} 00 \\ +18 \\ -11 \\ +109 \\ +02 \\ -04 \\ +06 \\ -02 \\ 00 \\ \cdots \\ \end{array}$
$egin{array}{c} S_0 \ c \ \lambda_0 \end{array}$	93.56 - 111874.3045	379			$ \begin{array}{r} 101.4441 \\ -111170.513 \\ 3058.26 \end{array} $		
Reductio	on to Sun: λ55	200 0	.m. .28 .32		t.m. -0.29 -0.33		

$318\ BIRMINGHAM$

Blue Region

	PLATE G 276		PLATE G 393					
Mean Scale Reading	$_{Fe}^{\text{Wave-Length}}$	۵ 1	Δ 2	Mean Scale Reading	Wave-Length $T\iota$	$ \begin{vmatrix} \Delta_1 \\ 00 \\ -19 \\ -26 \\ -24 \\ -31 \\ -29 \\ -07 \\ 00 \\ -01 \\ +20 \\ +36 \\ +66 \\ +60 \\ +34 \\ +27 \end{vmatrix} $	+03 -02 -01 +06 +02 -02 +07 +03 -05 -00 +02 +23 -00	
mm. 64.4229 63.2501 62.6931 59.5733 58.6767 57.0916 56.1596 54.6749 51.5566 49.9257 47.0665 44.4345 43.8522 41.9707	t.m. 4383,72 4404,93 4415,29 4476,19 4491,74 4528,80 4549,64 4584,02 4661,67 4705,13 4788,14 4871,87 4891,37 4957,67	$\begin{array}{c} +08 \\ 00 \\ +01 \\ -13 \\ -15 \\ -12 \\ -06 \\ 00 \\ +19 \\ -07 \\ +28 \\ +26 \\ +13 \\ 00 \end{array}$	+02 00 +03 00 00 00 00 -02 -27 +05 +10 00 -03	mm. 53,2009 54,9209 56,6851 58,1195 59,6501 62,5149 64,1621 65,6139 66,7210 69,1905 71,8860 73,4022 74,5215 75,8467	t.m. 4338.05 4367.81 4309.92 4427.27 4457.59 4518.20 4555.66 4590.12 4617.41 4682.09 4758.87 4805.44 4841.00 4885.25			
S_0 C λ_0	10.14 99367.4 3051.	83	78.5343 4981.91 00 00 129.8943 -100110.616 3032.72					
Reduction	to Sun: λ4	400 + 000 +	t.m. -0 24 -0.27					

$318\ BIRMINGHAM$

Yellow-Green Region

PLATE G 253			PLATE G 284				PLATE G 379				
Mean Scale Reading	Wave-Length Fe	ر د	7.	Mean Scale Reading	Wave-Length Fe	۵ ۱	Δ 2	Mean Scale Reading	$\begin{array}{c} \text{Wave-Length} \\ T\iota \end{array}$	A 1	Δ 2
nm. 57, 2442 58, 6969 59, 6921 61, 0101 61, 9368 63, 4698 66, 0718 66, 5719 68, 1374	t.m. 5169.16 5227.30 5269.72 5328.24 5371.70 5447.13 5586.99 5615.80 5710.75	+76 00 00 -17 00 +01 -05 00 +26	+67 00 -08 -05 -08 -01 -09 -01 -33	mm. 55.0796 56.5509 57.5747 58.9138 59.8623 61.4332 64.0932 61.6062 66.2106	t.m. 5169.16 5227.30 5269.72 5328.24 5371.70 5447.13 5586.99 5615.80 5710.75	$ \begin{array}{r} +32 \\ 00 \\ -22 \\ -27 \\ 00 \\ +18 \\ +06 \\ 00 \\ +11 \end{array} $	+13 -09 -06 -11 -00 -05 -09 -01 -13	mm. 52,1792 53,1100 53,8872 55,2737 56,6576 57,2398 58,0153	t.m. 5336.97 5381.20 5418.98 5490.36 5565.70 5598. ± 5641.36	$00 \\ +14 \\ -20 \\ 00 \\ -05 \\ \cdots \\ 00 \\ \cdots \\ \cdots$	00 +14 -20 00 -05 00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-8,8018 111732,492 3087.52 t.m. +0.03 +0.03				101.8269 -114566.029 3029.39 t.m. 0.00 0.00			

$74 \ SCHJELLERUP$ Blue Region

	PLATE G 383				PLATE G 391		
Mean Scale Reading	Wave-Length Ti	۵1	Δ2	Mean Scale Reading	Wave-Length	Δ_1	Δ_2
59,7101 58,6411 56,5137 54,9766 53,4843 52,1098 50,4506 49,0041 47,9038 45,4380 42,7401 41,2337 39,6574 36,1047	t.m. #367.81 4387.01 4427.27 4457.59 4488.98 4518.20 4555.66 #590.12 4617.41 4682.09 4758.87 #805.44 4856.20 4981.91	$\begin{matrix} 00 \\ -05 \\ +15 \\ 00 \\ +32 \\ -02 \\ -11 \\ 00 \\ +09 \\ +15 \\ -22 \\ 00 \\ -53 \\ -24 \\ \cdots \\ \cdots \end{matrix}$	$\begin{array}{c} -12 \\ -11 \\ +15 \\ +04 \\ +38 \\ +03 \\ -10 \\ -04 \\ 00 \\ +02 \\ -22 \\ -10 \\ -37 \\ 00 \\ \cdots \\ \cdots \end{array}$	mm. 63.7228 62.0096 60.9454 58.8166 57.2945 55.8020 54.6765 52.7859 51.3311 50.2342 49.3627 47.77831 43.5719 41.9998 58.4550	t.m. 4338.05 4367.81 4387.01 4427.27 4457.59 4488.98 4512.88 4555.66 4590.12 4617.41 4639.81 4682.09 4758.91 4805.44 4856.20 4981.91	$ \begin{vmatrix} 00 \\ -10 \\ -13 \\ -08 \\ -36 \\ -03 \\ +05 \\ 00 \\ +13 \\ +35 \\ +57 \\ +50 \\ +77 \\ +54 \\ 00 \end{vmatrix} $	$\begin{array}{c} +02\\ -03\\ -04\\ -02\\ +02\\ +03\\ +01\\ +04\\ -08\\ +01\\ +19\\ +35\\ +24\\ +51\\ +32\\ -06\\ \end{array}$
S_{θ} c λ_{0}	-14.0 96452. 3059	828			$\begin{array}{c} -12.5623 \\ 99163.762 \\ 3038.14 \end{array}$		
Reduction		400 -0	m.), 27), 30		t.m. -0.41 -0.47		

74 SCHJELLERUP Yellow-Green Region

	PLATE G 373			PLATE G 386				
Mean Scale Reading	Wave-Length Ti	Δ_1	75	Mean Scale Reading	$rac{ ext{Wave-Length}}{Ti}$	71	۵2	
mm. 49.4201 48.9478 48.5252 46.8421 45.6696 44.7454 43.9827 42.7605 41.2329 40.6544 39.8877 38.3625	t.m. 5173.92 5193.15 5210.55 5283.63 5336.96 5381.20 5418.98 5481.64 5565.70 5598.52 5644.36 5739.69	$\begin{array}{c} 00 \\ -04 \\ -17 \\ +15 \\ -16 \\ -06 \\ 60 \\ -38 \\ -56 \\ \cdots \\ 00 \\ +12 \\ \end{array}$	$\begin{array}{c} +05 \\ +03 \\ -09 \\ +25 \\ -06 \\ +02 \\ +05 \\ -36 \\ -55 \\ \\ \\ \end{array}$	mm. 46,2325 45,1015 41,2076 42,5254 41,3588 40,4318 39,6717 38,4555 38,0363 36,9235 35,5795 34,5041	t.m. 5129.32 5173.92 5210.55 5283.63 5336.96 5381.20 5418.98 5481.64 5504.10 5565.70 5644.37 5710.75	$\begin{array}{c} +23\\ 00\\ -18\\ +06\\ -06\\ -14\\ 00\\ -14\\ -10\\ -07\\ 00\\ -10\\ \end{array}$	-23 -07 -06 +20 +05 -06 +05 -12 -08 -05 +04 -03	
$egin{array}{c} S_0 \ c \ \lambda_0 \end{array}$	-3.2 112342.3 3042	502			$\begin{array}{r} -7641.6\\ 112652.526\\ 3038.56\end{array}$			
Reduction	to Sun: λ5:	200 -0	m. 0.11 0.13		t.m. -0.41 -0.46			

78 SCHJELLERUP Blue Region

	PLATE G 311				PLATE G 392		
Mean Scale Reading	$\operatorname*{Wave-Length}_{Ti}$	۵1	Δ2	Mean Scale Reading	$\operatorname*{Wave-Length}_{Ti}$	١٤	77
min.	t.m.			mm.	t.m.		
63.1672	4367.81	00	05	54,8138	4367.81	+16	+06
62.1143	4387.00	-16	-05	53.7495	4387.00	00	-02
60,8363	1411.24	-18	-01	52.4548	4411.24	-09	-01
58.5141	4457.59	-22	(X)	50.0992	4457.59	-29	-12
55.9369	4512.88	-22	+02	47.4950	4512.88	-23	+01
54.0798	4555.64	-04	+10	45,6095	4555.64	-19	04
52.6517	4590.11	-03	+02	44.1637	4590.11	-18	+01
51.5655	4617.41	(X)	-04	43.0637	4617.41	-15	00
49.1406	4682.08	+19	03	40.6050	4682.09	00	- 00
47.0254	4742.94	± 36	+02	38.4597	4742.91	+12	00
43.9084	4841.00	+35	01	36.4094	4805.41	+28	+09
42.1881	4900.10	+34	+09	35.3002	4841.00	+18	-04
39.9713	4981.91	00	-03	33.9833	4885.25	+21	+02
	,			31.3066	4981.91	00	00
S_0 ϵ λ	-10.3 97825. 3036	631			$\begin{array}{r} -20.1282 \\ 100724.798 \\ 3023.61 \end{array}$		'
	97825. 3036	.52 .00 -0	. 41				

78 SCHJELLERUPYellow-Green Region

	PLATE G 300			PLATE G 384				
Mean Scale Reading	$_{Fe}^{\text{Wave-Length}}$	۵1	Δ_2	Mean Scale Reading	$rac{ ext{Wave-Length}}{T\iota}$	71	ږد	
mm.	t.m.			nin.	t.m.			
48,6220	5169.16	+80	+80	48.7537	5129.32	-01	-01	
47.1559	5227.30	00	十08	47.6129	5173.92	00	+08	
47.0039	5233.12	-48	-22	46.7019	5210.55	-37	-24	
46.1419	5269.72	-38	00	43.8175	5336.96	-15	-08	
44.8091	5328.24	-46	01	42.8835	5381.20	. 00	+02	
43.8752	5371.70	00	+26	42.1128	5418.98	+10	+07	
42.3283	5147.13	+56	+41	40.4598	5504.10	+12	+04	
39.6709	5586,99	+01	-25	39.3302	5565.70	-05	-15	
39.1611	5615.87	00	-24	37.9753	5644.37	+31	$\frac{+22}{-17}$	
37.5737	5710.75	+91	+78	36.4263 34.2046	5739,69 5890,19	$-\frac{11}{00}$	+04	
	*****			34.2046	5896.16	-16	-09	
$egin{array}{c} S_0 \\ c \\ \lambda_0 \end{array}$	-6.16 117379.1 3025	147	1		$\begin{array}{r} -5.4517 \\ 112441.141 \\ 3055.48 \end{array}$	_		
Reduction	to Sun : - λ52 λ58		.47		t.m. -0.35 -0.39			

$\begin{array}{c} 132 \ SCHJELLERUP \\ \text{Blue Region} \end{array}$

					Bute Region						_
	Λ 328				G 309				G 368		
Mean Scale Reading	Wave-Length Ti	۵,	Δ_2	Mean Scale Reading	Wave-Length Fe	Δ_1	Δ_2	Mean Scale Reading	$\operatorname*{Wave-Length}_{T\iota}$	اد	Δ2
mm.	t.m.			mm.	t.m.			mm,	t.m.		
31.5024	4395.17	-02	-03	62.4163	4404.93	- 00	- 00	56.7597	4387.01	00	+03
31.9008	4399.92	00	+01	60.2114	4447.89	-48	+63	54.6542	4427.27	-14	+03
34.1584	4427.28	-07	+01	59.2437	4466.73	$-\tilde{17}$	+03	53.1443	4457.59	$-\frac{11}{29}$	-03
35.4942	4443.97	-13	-01	57.8957	4494.74	-22	+03	52.0070	4481.44	$-\bar{27}$	+0.
35.9139	4449.32	-12	+01	57.2672	4508.38	-05	+21	50.5589	4512.88	-32	00
36.5603	4457.59	-17	-03	56.3247	4528.79	-30	-03	48.6922	4555.66	$-32 \\ -27$	+02
38.3718	4481.41	-17	+01	55.4063	4549.64	-15	+10	47.2555	4590.11	-37	$\begin{bmatrix} \pm 0.5 \\ -1.4 \end{bmatrix}$
39.8503	4501.43	-10	700	53.9336	4584.02	-18		45.3119	4639.83	-03	
40.6756	4512.88	-17	+02	50.8472	4661.67	00	$+02 \\ 00$	43.7368	4682.09	00	+00
41.7110	4527.48	-15	T03	49.2341	4705.54	+22	+06	41.6096	4742.98	+15	00
42.9227	4544.83	-24	-08	46.3933	4788.37	+21		39.5773		100	-01
43,449	4552.62	-15	00	43.7829	4871.90		-04		4805.44	$^{+28}_{+24}$	
43.6524	4555.64	-13	+01	43.1823	4891.67	+01	-13	38.0231	4856.20	+24	-01
44.2083	4563.94	-08	+05	42.2717	4924.12	+47	+37	36.7454	4900.09	+12	+00
45,9286	4590.11	-03 -01	+05	41.3449		00	-04	34.5165	4981.91	. 00	-03
47.6681	4617.41	-01 -03	-03		4957.65	- 00	+03				
48.0299	4623.24	00	-03 - 02	• • • • • •	• • • • • •						
48.4157	4629.47	00	$-02 \\ -05$								
50.0564	4656.60	+07	-05 -05								
50.7129	4667.76	14	-01					******			
51.5433	4682.08										
52.5096	4698.94	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	十05								
54.9363	4742.94		$-00 \\ -02$								
55.8169	4759.44	$+25 \\ +23$									
59.9223	4841.00	+36	-06 + 07								
62.0044	4885.25	+32							• • • • • •		
66,2345	4981.91	1 700	$+08_{00}$		• • • • • •			*****			
67.5660	5014.40	-16	-04								
01.5000	3014.40	-10	-01						• • • • • •		
S_{0} c λ_{0}	147.407 -158930.81 3023.9	5	-		$\begin{array}{c} -10.8653 \\ 100360.323 \\ 3035.41 \end{array}$				$\begin{array}{c} -16.6050 \\ 100308.460 \\ 3019.75 \end{array}$		
Reduction t	o Sun : λ44 λ50	.00 +0	m. 0.09 0.11		t.m. -0.12 -0.14				t.m. -0.38 -0.43		_

132 SCHJELLERUP Yellow-Green Region

	PLAT	E G 299		PLAT	re G 301	
WAVE-LENGTH Fe	Mean Scale Reading	Δ_1	Δ_2	Mean Scale Reading	Δ_1	Δ_2
t.m. 5169.19	mın.			mm.	1.10	02
5227.30	45.0723	· · · · ·	104	47.1218 45.6560	$^{+12}_{00}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
5233.12	44.9302	-10°	$+04 \\ -04$	45.5089	-26	-16
5269.72	44.0654	-28	-09	44.6418	-23	-03
5328.24	42.7445	-29	00	43.3136	-14	00
5371.70	41.8117	00	+32	42.3719	00	+04
5447.13	40.2555	-23	+07	40.8215	+42	+38
5586.99	37.6158	-28	-16	38.1675	+03	+01
5615.80 5710.75	37.1108	00	+06	37.6577	00	+01
5710.75	35.5259	+94	+70	36.0667	+61	+72
S_0		.9628		_	7.3702	
e		14.394			75.198	
λ ₀	29	078.68		3	040.17	
2 2 5 5000		t.m.			t.m.	
Red. λ 5200		0.00		11	-0.01	
o Sun: λ 5800		0.00			-0.01	

115 SCHJELLERUP

Blue Region

$\begin{array}{ c c c c c c c c }\hline \text{mm.} & t.m. & mm. & t.m. \\ \hline 51.2059 & 4457.59 & 00 & -06 & 55.9916 & 4387.00 & 00 & +49.3290 & 4522.97 & +01 & +05 & 54.8351 & 4421.92 & -26 & -48.4488 & 4555.64 & -05 & +01 & 53.7213 & 4457.59 & -29 & -47.5625 & 4590.11 & +01 & +07 & 52.1040 & 4512.88 & -12 & +46.8846 & 4617.41 & -05 & -01 & 51.8529 & 4518.18 & -19 & +45.3711 & 4682.08 & 00 & -04 & 51.8199 & 4522.97 & -16 & +41.9979 & 4698.94 & +13 & +06 & 50.9310 & 4555.64 & +14 & +44.0499 & 4742.94 & +07 & -07 & 50.0328 & 4590.11 & -09 & -43.2898 & 4779.98 & +10 & -09 & 47.830 & 4682.08 & +41 & +42.7865 & 4805.56 & +30 & +07 & 46.4976 & 4742.94 & +51 & +42.1030 & 4841.00 & +08 & -12 & 46.1608 & 4758.87 & +37 & -44.8180 & 4856.18 & -01 & -20 & 45.2229 & 4805.56 & +67 & +41.2918 & 4885.25 & +15 & 00 & 44.529 & 4841.00 & +16 & -39.6410 & 4981.91 & 00 & 00 & 44.245 & 4856.18 & +20 & 42.0543 & 4981.91 & 00 & +6 & +20.8$		PLATE G 363				PLATE G 382		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean Scale Reading	mm. t.m. 1,2059 4457,59 1,3290 4522,97 1,4488 4555,64 1,5625 4590,11 1,5846 4617,41 1,3711 4682,08 1,9079 4698,94 1,0499 4742,94 1,7169 4759,07 1,2898 4779,98 1,7865 4805,56 1,1030 4841,00 1,8180 4856,18 1,2918 4885,25	71	۵2			Δ_1	Δ_2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mm.	t.m.			mm.	t.m.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.2059	4457.59	-00	-06	55.9916	4387.00	00	+0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.3290	4522.97	+01	+05	54.8351	4421 92	-26	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.4488	4555.64	05	+01	53.7213	4457.59	-29	-0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			+01	+07			-12	+0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4617.41						1-0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4682.08		-01	51.8199	4522.97	-16	1-0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44.9979	4698.94	+13	+06	50.9310	4555,64	+14	$\downarrow +2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4742.94	+07		50.0328	4590.11	-09	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4759.07	+18	+01		4617.41	00	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							+41	+0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								+1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								-0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								+3
$egin{array}{ c c c c c c c c c c c c c c c c c c c$								-0
$egin{array}{c c} S_0 & 7.5171 & 10.3552 \ \hline c & 63628.789 & 61749.228 \ \hline \end{array}$	39.6410	4981.91	- 00	00				O
$e \mid 63628.789 \mid 61749.228$					42.0543	4981.91	00	+0
	S_0							
λ_{a} 3001.18 3033.93			-	1				
	λ_0	3001.18	8			3033.93		
t.m.	D 1 4	4 6 3440	t.					
Reduction to Sun: $\lambda 4400 +0.25 \\ \lambda 5000 +0.29 -0.01$	Reduction							

 $\begin{array}{ccc} {\bf 115} & {\bf SCHJELLERUP} \\ {\bf Yellow-Green \ Region} \end{array}$

	PLATE G 3 65			PLATE G 374					
Mean Scale Reading	$\begin{array}{c} \text{Wave-Length} \\ Ti \end{array}$	71	Δ 2	Mean Scale Reading	Wave-Length T_ℓ	اد	72		
mm.	t.m.			mm.	t.m.				
45.5753	5173.94	-00	+08	46.4304	5173.94	00	+0		
45 0954	5193.15	-44	-32	45.9616	5193.15	+06	+1		
44.6801	5210.55	-34	-20	45,5358	5210.55	-24	-1:		
41.8458	5336.96	+04	+08	42.688	5336,96	-09	+0		
40.9235 40.4691	5381,20 5419.00	1.00	$\begin{vmatrix} -12 \\ +12 \end{vmatrix}$	$\frac{41.7645}{41.0031}$	$5381.20 \\ 5419.00$	00	+0		
38.5433	5504.10	$^{+31}_{+28}$	$\begin{vmatrix} +12 \\ +03 \end{vmatrix}$	39.6318	5409,90	$+10 \\ -05$	$\begin{vmatrix} +0 \\ -2 \end{vmatrix}$		
37 4348	5565.70	+23	1 704	38.2585	5565.70	+21	+0		
36.0934	5644.37	(00	-06	36,9095	5644.37	700	$\begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}$		
32.711	5866,69	-61	-45						
S_0	-6.428	5			-6.3081		,		
c	109710.33	_			112617,276				
λ ₀	3061-2	8			3038-55				
duction to	Sun: λ 5200 λ 5800	+0.			$^{+0.20}_{+0.22}$				

152 SCHJELLERUP — Blue Region

	PLATE G 316				PLATE G 394		
Mean Scale Reading	Wave-Length Fc	۵1	Δ_2	Scale Mean Reading	$\begin{array}{c c} \text{Wave-Length} \\ Ti \end{array}$	٦١	Δ_2
mm.	t.m.			mm.	t.m.		
58.4979	4404.93	00	00	62.2942	4387.01	00	00
53.9627	4494.74	-28	+02	60.1744	4427.27	-04	+05
53.3353	4508.38	-05	+26	58 1132	4468.66	-17	+02
52.3887	4528.79	-34	-05	57.1631	4488.86	+04	+25
51.4690	4549.64	-18	+08	56.0399	4512.88	-25	-02
49.9958	4584.02	-15	+04	54.1548	4555.66	-21	+01
46.9014	4661.67	00	00	52.7090	4590.12	-20	-02
45.2818	4705.54	+12	00	50.7415	4639.77	+02	+09
42.4443	4788.37	+33	+01	49.1495	4682.09	00	-02
39.8347	4871.90	+30	00	47.0010	4742.98	+14	-01
38.3177	4924.12	+18	+01	44,9514	4805.44	+35	+14
37.3848	4957.65	00	-02	43.3770	4856.20	+17	-04
				42.0906	4900.09	+23	+06
• • • • • •		• • • •	• • • •	39.8372	4981.91	00	-02
S_0	-14.7723				-11.8813		
c	100044.671				101624.571		
λ^0	3039.51				3016.95		
		t.	m.		t.m.		
eduction to			0.13		-0.15		
	$\lambda 5000$	-(0.15		-0.17		

152 SCHJELLERUP - Blue Region

	PLATE A 313				PLATE A 319		
Mean Scale Reading	Wave-Length	۵1	Δ_2	Mean Scale Reading	$\operatorname*{Wave-Length}_{Ti}$	Δ_1	75
mm.	t.m.			nım.	t.m.		
37.5957	4417.88	+06	+02	34.1864	4400.74	-82	00
38.3621	4427.27	+01	00	36.4392	4427.28	-74	+02
40.7605	4457.59	-11	-04	37.7721	4443.97	-72	00
41.6063	4468.65	-09	00	38.8382	4457.59	-72	-04
42.5699	4481.41	-13	-02	40.6509	4482.84	-76	-13
44.0444	4501.43	-13	-01	42.1245	4501.43	-58	-03
44.8692	4512.88	-12	- 00	43.3250	4518.20	-45	+03
45.9009	4527.48	-09	+03	43.9798	4527.48	-03	+03
47,1070	4544 83	-13	-02	45.1841	4544.83	-36	+01
47.8423	4555,66	-10	00	45.9218	4555.64	-34	00
48.4016	4563.94	-14	-04	46.4787	4563.94	-30	. 00
48.9422	4572.15	-05	+03	48.2013	4590.11	-23	-03
50,1159	4590.11	-04	-01	49.9321	4617.41	-08	-04
51.8489	4617.41	00	-01	50.2910	4623.24	őő	00
52.2117	4623.24	00	-03	51.3057	4639.75	$+\widetilde{03}$	-05
53.2231	4639.85	+13	+06	52.9721	4667.76	$+2\tilde{1}$	00
54.2324	4656,60	+10	00	53,8034	4682.08	+28	+01
54.8889	4667.76	+15	+03	57.1887	4742.94	+45	+01
55.7234	4682.08	+14	1 00	58.0670	4759.44	+46	-01
59.1079	4742 94	+20	-01	60.4270	4805.44	+53	+01
59.9186	4758.30 du	+33	+11	62.1738	4841.00	-48	-03
59.9866	4759.44	+18	-04	64.2508	4885,25	+48	+04
61.0582	4780.	710	-01	68.4778	4981.91	00	-01
62.3381	4805.25	+18	-05	03.4770	4001.01		-01
64.0888	4841.00	$\stackrel{+10}{+21}$	-01		*****		
64.8097	4856.18	$\pm \frac{21}{27}$	+05		• • • • • • •		
66.1663	4885,25	+18	1 700				
66.8361	4900.08	$^{+13}_{+27}$	+11				
67.4510	4913.76	$\pm \frac{7}{22}$	+08				
		722	7-03		• • • • • • • •		• • • • •
70.3827	4981.91	00	00		•••••		
S_0	151.	4543			148,702	4	
c''	-158811	978			-155701.59	7	
λ_0	302	3.00			3041.0	9	
		t.n	n.		t.m.		
Reduction	to Sun: $\lambda 4400$	-0.			+0.08		
	λ 5000	-0.	15		± 0.10		

152 SCHJELLERUP Yellow-Green Region

WAVE-LENGTH	PLA	TE G 275		PLA	re G 291		PLA	TE G 302	
Fe	Mean Scale Reading	Δ1	Δ2	Mean Scale Reading	Δ1	Δ2	Mean Scale Reading	71	ید
t.m. 5169.19 5227.30 5233.12 5269.72 5328.24 5371.70 5447.13 5586.99 5615.80 5710.75	mm. 46,8204 45,3563 45,2147 44,3428 43,0113 42,0721 40,5139 37,8635 37,3562 35,7619	$ \begin{vmatrix} +63 \\ -01 \\ -04 \\ -19 \\ -25 \\ -01 \\ 00 \\ -36 \\ -28 \\ -01 \end{vmatrix} $	+52 +01 00 00 -03 +10 +01 -11 +01 +36	45.4829 44.4743 43.1478 42.2151 40.6580 38.0212 37.5066 35.9205	-22 -37 -00 -23 -21 -63 -00	+06 -02 -12 +07 -20 +11 -22 -51	mm. 50,7350 49,2711 49,1235 48,2586 46,9297 45,9897 44,4318 41,7862 41,2756 39,6857	+70 00 -30 -20 -19 00 +03 +06 00 +73	+53 00 -27 00 00 +07 -05 00 -01 +84
$rac{1 ext{st}}{ ext{constants}}igl(rac{S_0}{\lambda_0}igr)$	114	+ -7,4490 977 007 3049,92			-7.7545 7551.985 3019.23	1		-3 9509 3954 193 3029 83	
$rac{2 ext{d}}{ ext{onstants}}iggl\{rac{S_0}{lpha_0}iggr]$	114	-7,4458 945,901 3050,55							
led λ5200 o Sun: λ5800	t.m. +0.29 +0.33		-	t.m. +0.22 +0.26			t.m. 0.00 0.00		

DETAILED MEASURES AND REDUCTIONS

The following tables contain the detailed measures and reductions, made by Mr. Parkhurst, of the spectra of eight fourth-type stars. The intensities of the lines were estimated on a scale of 10, but on account of variations in exposure time, etc., these numbers should be taken as only roughly approximate. The character of the line, whether dark (D) or bright (B), wide (w) or nebulons (n), is indicated in the second column. "Max." indicates the point of maximum intensity of a bright space. In the case of 19 *Piscium*, the first star measured, the red-right and red-left measures are given separately; for other stars the combined measures are given. The other details of the tables will be readily understood after reference to pp. 17–20.

19 PISCIUM = 273 SCHJELLERUP. PLATE G 264
1898, December 31, G.M.T. 12^h5. Hour angle, W 1^h6. Star fair; comparison fair.

		RED	Rібит	RED	LEFT	M	EAN WAVI	E-LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
		mm.	t.m.	mm.	t.m.	t.m.		t.m.
1	D	49,4583	4375.83			75.83	+4	4375.87
10	w D	49.0257	4384.26	36,6497	4383.92	84.09	+2	4384.11
2-3	n D	48.7164	4390,35	36.9718	4390,26	90.31	+5	4390.36
5	wn D	48.4777	4395,09	37.2100	4394.98	95.04	+1	4395.05
1	n D	48.1790	4401.07	37.5230	4401.24	01.16	0	4401.16
3	В	48.1096	4402.46	37.5892	4402.56	02.51	- 1	4402.50
10	w D	47.9844	4401.99	37.7133	4405.07	05.03	- 1	4405.02
.2_	$ \qquad \stackrel{D}{\mathbf{D}} $	47.7966	4408.80	37.8839	4408.53	08.67	-1	4408.66
4 5	nn D	47.4732	4415.40	38.2109	4415 20	15.30	$-\frac{2}{3}$	4415.28
1	D B	47.0949	4423.21	38.6028	4423,29	23.25	$\begin{vmatrix} -3 \\ -3 \end{vmatrix}$	4423.22
1	n D	$46.9227 \\ 46.8768$	4426.80 4427.76	38,7784 38,8158	4426.94	$26.87 \\ 27.74$	- · · · · · · · · · · · · · · · · · · ·	$\frac{4426.84}{4427.70}$
$\frac{2}{3}$	n D	46.7556	4430.29	38.9412	$4427.72 \\ 4430.34$	30.32	-4	4430.28
6–7	wn D	46.4910	4435,86	39,1935	4435,65	35.76	$-\frac{1}{5}$	4435.71
1	"" B	46.3786	4438.24	39,3215	4438,36	38.30	$-\frac{3}{5}$	4438.25
1-2	n D	45.9572	4447.24	39.7303	4447.08	47.32	- 6	4447.26
3	n B	45.8900	4448.69	39,8206	4449.03	48,86	-6	4448.80
4-5	n D	45,8238	4450.11	39.8816	4450,30	50.21	-6	4450.15
2	n D	45.5807	4455.38	40.1234	4455.58	55.48	- 7	4455.41
3-4	n D	45,2650	4462.28	40.4334	4462.35	62.32	-8	4462.24
4	wn B	45.1861	4464.01	40.5143	4464.12	64.07	-8	4463.99
1	n D	45.1212	4465.44	40.5767	4465.50	65.47	-8	4465.39
1	n D	44.9537	4469.14	40.7469	4469.26	69.20	-8	4469.12
1-2	n D	44.4648	4480.06	41.2307	4480.06	80.06	$-\frac{9}{9}$	4479.97
$\frac{2}{3}$	D B	44.3735	4482.06	41.3301	4482.30	82,18	$\begin{vmatrix} -9 \\ -9 \end{vmatrix}$	4482.09
ა ი	$\begin{bmatrix} & & \mathbf{B} & \end{bmatrix}$	$44.2939 \ 44.1962$	4483.92	41.3986	$\begin{array}{c} 4483.85 \\ 4486.17 \end{array}$	83.89	$\frac{1}{2} = \frac{3}{9}$	$\frac{4483.80}{4486.06}$
$\frac{2}{1-2}$	$ \qquad \stackrel{\mathbf{D}}{\mathbf{D}} $	44.1344	$\begin{array}{c} 4486.13 \\ 4487.54 \end{array}$	41.5013 41.5647	4487.84	$\begin{bmatrix} 86.15 \\ 87.69 \end{bmatrix}$	-9	4480.00 4487.60
3	$ $ $\frac{\mathbf{B}}{\mathbf{B}}$ $ $	44.0846	4488.67	41.6159	4488.78	88.73	$-\frac{6}{9}$	4488.64
2 –3	$ $ $\tilde{\mathrm{D}}$ $ $	44.0336	4489.83	41.6631	4489.85	89.84	- 9	4489.75
6	$ $ $\tilde{ extbf{D}}$ $ $	43.7130	4497.18	41.9863	4497.26	97.22	-9	4497.13
2-3	$\tilde{\mathbf{D}}$	43.5090	4501.90	42.1834	4501.81	01.86	$-\tilde{9}$	4501.77
6	n D	43.2936	4506.91	42.3992	4506.83	06.87	- 9	4506.78
1	D	43.1708	4509.78	42.5209	4509.68	09.73	9	4509.64
	wn D	43.0210	4513.31	42.6451	4512.60	12.96	- 9	4512.87
2	n B	42.8573	4517.17	42.8380	4517.15	17.16	-8	4517.08
4	D	42.8054	4518.40	42.8875	4518.32	18.36	-8	4518.28
1	Ď	42.7142	4520.57	42.9886	4520.72	20.65	-8	4520.57
3-4	B	42.6637	4521.77	43.0323	4521.76	21.77	$\begin{bmatrix} -8 \\ -7 \end{bmatrix}$	4521.69
$\frac{5}{6}$	D D	42.6061	4523.14	43.0869	4523.00	23.07 27.51	7	4523.00
$^{0}_{2-3}$	w D n D	$egin{array}{c} 42.4210 \ 42.2569 \end{array}$	$4527.58 \\ 4531.53$	$\begin{array}{r} 43.2698 \\ 43.4331 \end{array}$	$4527.44 \\ 4531.37$	$\frac{27.31}{31.45}$	7	4527.44 4531.38
$\frac{2}{3}$ -3	n D	42.2369	4535,99	43.6198	4535.89	35.91	7	$\frac{4531.35}{4535.87}$
3	B	42.0109	4537.49	43.6835	4537.44	37.47	= ;	4537,40
3	\mathbf{B}	41.9467	4539.06	43.7505	4539.07	39.07	-7	4539,00
3	$\bar{\mathbf{D}}$	41.8845	4540.58	43.8122	4540.58	40.58	- 7	4540.51
1	D	41.7920	4542.84			42.84	- 6	4542.78
2	B [41.7382	4544.16	43.9612	4544.22	44.19	-6	4544.13
3	В	41.5867	4547.89	44.1094	4547.87	47.88	- 6	4547.82
5	D	41.5253	4549.41	44.1622	4549.17	49.29	-6	4549.23
10	w D	41.3521	4553.70	44.3387	4553.55	53.63	-6	4553.57
Limits }				44.2780	4552.04	52.04	-6	4551.98
3 '		11 0027	1500 10	44.3920	4554.87	54.87	-6	4554.81
3	n B	$\frac{41.0837}{41.0220}$	4560.40	44.6095 44.6776	4560.31 4562.02	60.36	$\begin{vmatrix} -5 \\ -5 \end{vmatrix}$	4560.31
2-3		40.9601	4561.95 4563.51	44.7490	4563.82	$61.99 \\ 63.67$	- 3	$4561.94 \\ 4563.62$
1	\mathbf{p}	40.8795	4565.55	44.8262	4565.76	65.66	- 4	4565.62
	w D	40.6343	4571.76	45.0599	4571.69	71.73	_ 4	4571.69
1	n B	40.1663	4583.78	45.5262	4583.65	83.72	- 2	4583.70
1	D	40.1297	4584.72	45.5658	4584.68	84.70	$\perp = 2 \perp$	4584.68
1	В	40.1032	4585.41	45.5976	4585.50	85.46	- 2	4585.44
$\frac{2}{1}$	n D	40.0609	4586.51	45.6273	4586.27	86.39	-2	4586.37
1	D	39.8898	4590.96	45.8109	4591.05	91.01	-2	4590.99
2-3	n D	39.7594	4594.37	45.9398	4594.42	94.41	-2	4594.39
$\frac{2}{1}$	B	39.7022	4595.88	45.9924	4595.81	95.85	$-\frac{2}{1}$	4595.83
- 1	D	39.5104	4600.93	46.1851	4600.88	-00.91	-1 i	4600.90

19 PISCIUM = 273 SCHJELLERUP. PLATE G 264 - Continued

		RED	Rіснт	RED	LEFT	MEAN WAVE-LENGTH			
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Snn	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected	
		nım.	t.m.	nım.	t.m.	t.m.		t.m.	
10	w D	39.2826	4606,98	46.4155	4607.00	06.99	0	4606.99	
2-3	n B	39.2156	4608.77	46.4797	4608.71	08.74	0	4608.74	
1-2	В	39.0789	4612.43	46.6124	4612.26	12.35	1 0 1	$4612 \ 35$	
1	n D	39,0230	4613.93	46.6604	4613.55	13.74	0	4613.74	
3	В	38.9832	4615.00	46.7142	4615.00	15.00	+1	4615.01	
9	D	38,9309	4616.41	46.7644	4616,35	16,38	+i	4616.39	
$\frac{2}{6}$	В	38.8783	4617.83	46.8188	4617.82	17.83	+i	4617.84	
4	D	38.8059	4619.79	46.8866	4619.65	19.72	+i	4619.73	
3	$\bar{\mathrm{B}}$	38.7468	4621 39	46.9497	4621,31	$\frac{10.12}{21.35}$	$ \stackrel{1}{+} \stackrel{1}{2} $	4621.37	
ï l	n Đ	38,6947	4622.81	46.9974	4622.66	22.74	$+\frac{1}{2}$	4622.76	
4-5	n D	38, 4561	4629.32	47.2366	4629.19	29 26	$+\frac{7}{2}$	4629.28	
3	n B	38.3865	4631.23	47.3098	4631,20	31.22	$+\tilde{3}$	4631.25	
1	Ď	38,2639	4631.61	47.4331	4634,60	34.61	+3	$\frac{4631.25}{4634.64}$	
2	์ กั	38,1573	4637.56	47.5330	4637.36	37,46	$\begin{bmatrix} +3\\+3 \end{bmatrix}$	4637.49	
$\bar{3}$	$\widetilde{\mathbf{B}}$	38.1179	4638.65	47.5759	4638.55	38.60	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4638.63	
5-6	Ď	38.0556	4640,38	47.6452	4640.47	40.43	T 4	4640.47	
3	B	38,0055	4641.78	47.6880	4641.66	41.72	+4	4641.76	
.,	wn Đ	37.8532	4646,03	47.8299	4645.62	$\frac{41.12}{45.82}$		4645.86	
$\dot{2}\dot{3}$	B	37.6106	4652.85	48.0828	4652.73	52.79	+4	$\frac{4645.86}{4652.83}$	
	Ď		4653.82				+ 1		
1	Ď	37.5761		48 1234	4653.88	53.85	+4	4653 89	
1	w B	37.4837	4656.44	48.2069	4656.24	56.34	+5	4656.39	
1 3	D B	37,3245	$\frac{4660}{4664.18}$	48.3673	4660,80	60.89	+5	4660.94	
1 2		37,2123		48.4810	4664.05	64.12	+5	4664.17	
2	n B	37.1721	4665.33	48,5299	4665.45	65.39	+5	4665.44	
3	wn D	37.0754	4668.11	48,6189	4668.01	68.06	+5	4668.11	
4	$\frac{D}{D}$	36.8324	4675-13	48.8631	4675.07	75.10	+6	4675.16	
1	\mathbf{p}	36.5878	4682.26			82.26	+6	4682.32	
1	n D	36,3793	4688.39	40.41/14	4001 11	88,39	+7	4688.46	
1	n D	36.2891	4691.05	49.4104	4691.11	91.08	+7	4691.15	
1	n D	0.0 1000	1000 77	49.5178	4694.29	91 29	$ + \frac{7}{2} $	4694.36	
3.4	n D	36.1039	4696.55	49.5915	4696.48	96.52	+7	4696.59	
6	w D	35.5052	4714.58	50.1909	4714.53	14.56	+8	4714.64	
1-2	n D	35, 2360	4722.82	50.4498	4722.45	22.64	+8	4722.72	
10	w Đ	34.8071	4736.11	50.8826	4735.86	35 99	+8	4736.07	
Head		34.7613	4737.54	50.9412	4737.69	37.62	+8	4737.70	
7-8	В	34_7296	4738.53	50.9701	4738.60	38.57	+s	4738.65	
4_5	n 1)	34.5568	4743.96	51.1416	4743.99	43 98	+8	4744.06	
7	В	31 4729	4746.61		1810 30	46.61	+8	4746.69	
1	n Đ	34 3734	4749.77	51 3189	4749.60	49,69	+8	4749.77	
1-2	n D	34.0980	4758.55	51.5901	4758.26	58.41	+8	4758.49	
1	D	33.8663	4766 01	51.8205	4765.67	65.84	+7	4765.91	
1	D	33,6630	4772.61	52.0336	4772.58	72.60	+7	4772.67	
1	n D	33 3151	4784.03	52.3886	4784.24	81.14	+6	4784.20	
1	n D	33 1489	4789.53	52,5391	4789.22	89,38	+6	4789.44	
1	n D	32.3595	4816.17	53.3197	4815.55	15.86	+4	4815.90	
1 2	n D	32.1309	4824 19	53,5543	4823 62	23 91	+3	4823.94	
1	n D	32.0206	4827/86	53.6702	4827.64	27.75	+3	4827.78	
1	n D	31.8764	4832/87	53,8143	4832.65	-32.76	+2	4832.78	
1	n D	31.236 2	4855,50	54 4570	4855.37	55.41	0	4855.44	
1	n Đ	30.8755	4868,50	51 8195	4868.44	68.47	-2	4868.45	
1	n D	30.5171	-4881.67	55.1792	4881 60	81.61	- 4	4881.60	
End		27.5010	4999.7			99.7	- 10	4999.6	

19~PISCIUM=273~SCHJELLERUP.~~PLATE~G~343 $1899,~Oetober~4,~G.M.T.~15^h_{15}.~~Hour~angle,~E~1^h_{13}.~~Star~good~;~~comparison~excellent.$

		50,0051	0006.70	02 0944	1904 15	94.37 +	18 4394.55
8	w D	50,0071	4391.56	38.3322	4394.17		
1	[]	49.8543	4397 16	38,4965	4397, 29	97.38 +	18 = 4397.56
3	1)	49.6999	-1400, 40	38,6522	4100.25	-00.33 +1	
4	1)	49.4703	4404.79	38,8807	4404.62	+ 01.71 $+$	
4	(1)	49.2871	4408.31	39,0533	4407.95	08 13 +	4.4
1	D	49.0913	4112.11	39, 2609	4111.96	12.01 +	
2	wn D	48 9511	4111.84	39,4076	4111.82	14.83 +	16 = 4414.99
2.3	wn D	48,6688	1420.38	39,6901	4120.35	20.37 +	14 4420.51
					·		

19 PISCIUM = 273 SCHJELLERUP. PLATE G 343—Continued

		RED I	RIGHT	RED	Left	ME	AN WAVE	-Length
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
		mm.	t.m.	mm,	t.m.	t.m.		t.m.
$^{1-2}_{1-2}$	D	48.5498	4422.70	39.8116	4422.73	22.72	+13	4422.85
1-2	D	48.3316	4427.01	40.0362	4427.17	27.09	+12	4427.21
1-2	n D	48.1800	4430.03	40.1655	4429.74	29.89	+12	4430.01
3	n D	47.9267	4435.09	40.4406	4435.24	35.17	+10	4435.27
1	n D	47.7822	4437.99	40.5721	4437.68	37.84	+10	4437.94
2	В	47.7447	4438.75	40.6101	4438.65	38.70	+10	4438.80
2-3	n D	47.4727	4444.25	40.8899	4444.31	44.28	+ 8	4444.36
$rac{1}{2}$	n D n B	$47.3391 \ 47.2673$	$\begin{array}{c} 4446.97 \\ 4448.44 \end{array}$	41.0111	$\begin{array}{c} 4446.78 \\ 4448.39 \end{array}$	$\frac{46.88}{48.42}$	$\begin{vmatrix} + & 8 \\ + & 7 \end{vmatrix}$	$\frac{4446.96}{4448.49}$
5	n D	47.2070	4449.67	$egin{array}{c} 41.0901 \ 41.1482 \end{array}$	4449.58	49.63	II 71	4449.70
ĭ	" D	47.0381	4453.13	41.3196	4453.09	53.11	± 6	4453.17
3	n D	46,9446	4455.06	41.4083	4454.92	54.99	+ 6	4455.05
$\frac{3}{2}$	n D	46,6047	4462.11	41.7445	4461.89	62.00	4	4462.04
3	w B	46.5158	4463.96	41.8452	4463.99	63.98	-4	4464.02
1	D	46,4568	4465.19	41.8949	4465.01	65.10	+3	4465.13
1-2	D	46.2890	4468.71	42.0685	4468.47	68.59	+ 3	4468.62
1	D	46.0997	4471.70	42,2541	4472.58	72.14	$\begin{vmatrix} + & 2 \\ + & 1 \end{vmatrix}$	4472.16
1-2	n D	45.9673	4475.51	42.3834	4475.32	75.42	+1	4475.43
1-2	n D	45.7601	4479.91	42,6037	4480.01	79.96	0	4479.96
3	n D	45.6485	4482.30	42.7043	4482.16	82.23	()	4482.23
2	n B n D	45.5985	4483.37	42.7624	4483.40	83.39	$\begin{vmatrix} - & 1 \\ - & 1 \end{vmatrix}$	$\frac{4483.38}{4487.47}$
$\begin{array}{c} 1 - 2 \\ 2 - 3 \end{array}$	n D	$\begin{array}{r} 45,4012 \\ 45,3018 \end{array}$	$4487.62 \ 4489.76$	42.9453	$\begin{array}{c} 4487.34 \\ 4489.63 \end{array}$	$87.48 \\ 89.70$	$\begin{bmatrix} - & 1 \\ - & 2 \end{bmatrix}$	4489.68
3	n D	44,9705	$\frac{4489.70}{4496.97}$	43.0516 43.3809	4496.79	96.88	$-\frac{1}{3}$	4496.85
5	n D	44.7524	4501.75	43,6090	4501.79	01.77	5	4501.72
6-7	" D	44.5174	4506.93	43.8266	4506.59	06.76	$\begin{bmatrix} -6 \end{bmatrix}$	4506.70
1	$\tilde{\mathbf{D}}$	44.3840	4509.89	10.0200	1000,00	09.89	- 6	4509.83
	wn D	44,2512	4512.85	44.0902	4512.45	12.65	- 7	4512.58
3	\mathbf{D}	44.0040	4518.39	44.3443	4518.14	18.27	- 7	4518.20
3	D	43.7945	4523.12	44.5553	4522.90	23.01	- 8	4522.93
4	nn D			44.7429	4527.16	27.16	= 9	4527.07
$\frac{2}{9}$	D	43.4324	4531.35			31.35	- 9	4531.26
9	\mathbf{D}	43.2400	4535.80	45.0941	4535.19	35.50	-10	4535,40
3	n B	43.1721	4537.34	45.1821	4537.22	37.28	-10	4537.18
2	$\frac{\mathcal{D}}{\mathbf{B}}$	43.0953	4539.11	45.2577	4538.97	39.04	-10	4538.97
1	D D	43.0385	4540.42	45.3146	4540.29	40.36	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	$4540.26 \\ 4545.14$
$\frac{2}{5}$	wn D	$42.8291 \\ 42.6501$	4545.29 4549.47	45.5259 45.6961	$4545.19 \ 4549.17$	45.24 49.32	$\begin{bmatrix} -10 \\ -11 \end{bmatrix}$	4549.14 4549.21
	wn D	42.4800	4553.50	45.8860	4553.62	53.56	- 11 - 11	4553.45
3	nn D	42.1870	4560.40	46,1819	4560.63	60.52	$ -\frac{11}{12} $	4560.40
2.3	D	42.0670	4563.30	46.2803	4562.98	63.14	-12	4563.02
1-2	n D	41.9547	4565.94	46.4000	4565.84	65,89	-12	4565.77
9	w D	41.7074	4571.88	46,6357	4571.50	71.69	-12	4571.57
3	n D	41.5659	4575.30	46.7910	4575.25	75.28	-12	4575.16
3-4	n D	41.4591	4577.90	46.8740	4577.26	77.60	-12	4577.48
1	D	41.3520	4580.51	47.0021	4580.39	80.45	-12	4580.33
1	D	41.2903	4582.01	47.0640	4581.90	81.96	-12	$4581.84 \\ 4584.39$
$\frac{1-2}{2}$	D D	41.1819	4584.67	47.1639	4584.35	84.51	$\left egin{array}{c} -12 \ -12 \end{array} \right $	4586.28
$\frac{2}{1}$	n D n D	$\begin{array}{c c} & 41.1100 \\ 40.9181 \end{array}$	4586.43	47.2458 47.4355	$4586.36 \\ 4591.03$	$ \begin{array}{r} 86.40 \\ 91.10 \end{array} $	$\begin{bmatrix} -12 \\ -12 \end{bmatrix}$	4590.20 4590.98
$\frac{1}{2}$	n D	40.9151	$4591.16 \\ 4594.30$	47,5709	4594.39	94.35	-12 - 12	4594.23
ĩ	n D	40.6562	4597.66	47.6937	4597.44	97.55	-12 - 12	4597.43
5	n D	40.5229	4600.99	47.8234	4600.68	00.84	-12	4600.72
2 8	$\operatorname{wn} \overset{\mathbf{D}}{\mathbf{D}}$	40.2880	4606.90	48.0610	4606.65	06.78	-12	4606.66
ĭ	n D	40.1482	4610.43	48.1843	4609.77	00.10	-12	4609.98
1-2	nn D	40.0085	4613.98	48,3444	4613.84	13.91	-12	4613.79
3 3	В	39.9655	4615.08	48.3848	4614.87	14.98	-12	4614.86
3	$\bar{\mathbf{D}}$	39.9165	4616.33	48.4351	4616.15	16.24	- 11	4616.13
6	В	39.8578	4617.83	48.4987	4617.77	17.80	- 11	4617.69
5-6	$\bar{\mathbf{D}}$	39.7825	4619.76	48.5691	4619.58	19.67	-11	4619.56
4-5	В	39.7178	4621.42	48.6366	4621.31	21.37	- 11	4621.26
2 5 5 3	n D	39.6553	4623.02	48.6937	4622.78	22,90	-11	4622.79 4629.18
9 5	$_{ m B}^{ m D}$	$39.4078 \\ 39.3374$	4629.42 4621.95	48.9408	4629.16	$29.29 \\ 31.10$	$\begin{vmatrix} -11 \\ -11 \end{vmatrix}$	$\frac{4629.16}{4630.99}$
3	В	39.3374 39.0427	$\begin{array}{c c} 4631.25 \\ 4638.95 \end{array}$	$49.0095 \\ 49.3118$	4630.95 4638.85	$\begin{bmatrix} 31.10 \\ 38.90 \end{bmatrix}$	$\begin{bmatrix} -11 \\ -10 \end{bmatrix}$	4638.80
6	D	38,9875	4640.26	49.3564	$\frac{4638.85}{4640.02}$	40.14	-10 - 10	4640.04
4	\mathbf{B}	33,3013	4040.20	49.4215	4641.76	41.76	-10	4641.66
î	Ď	38,4620	4654.22	10.1210		54.22	- 9	4654.13
				1		1	1 1	

19 PISCIUM = 273 SCHJELLERUP. PLATE G 343 - Continued

		RED I	Rіснт	RED 1	LEFT	MEAN W	AVE-LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected Cor Cur	n Corrected
1 10 Head 8 1 10 6 2-3 1 2 5 1 2 2 3 1 -2 2 1 1 1 1 2 1	D D D D D W D B D B D D D D D D D D D D D D D D D D	mm. 35.5381 35.4988 35.4945 35.2837 35.2043 35.1009 34.9146 34.8816 34.8534 34.5459 34.5459 34.3475 33.9685 33.7998 32.9754 32.6015 32.4702 32.3447 32.2511	t.m. 4736.38 4737.54 4738.53 4739.74 4743.92 4746.29 4749.38 4754.98 4755.98 4756.83 4756.24 4766.18 4772.26 4784.00 4789.28 4815.52 4827.68 4831.99 4836.13 4839.22	49,9950 	t.m. 4656.90	t.m. 56.90 36.38 37.54 38.52 439.75 443.75 46.26 49.38 451.96 456.11 56.82 482.22 484.02 489.30 415.56 427.70 436.15 439.21 43.31 455.11 4	t.m. 9
3-4 2 1	n D nn D nn D	30.9979 30.4566	4881.76 4900.75	57.3555 57.8980 58.4450	$\begin{array}{c} 4881.61 \\ 4900.66 \\ 4920.25 \end{array}$	00.71 +	$ \begin{array}{c cccc} 2 & 4881.71 \\ 1 & 4900.72 \\ 2 & 4920.23 \end{array} $

19 PISCIUM = 273 SCHJELLERUP. PLATE G 259
1898, December 29, G.M.T. 11^h6. Hour angle, W 0^h6. Star fair; comparison good.

		RED	К ібн т	R	ED LEFT		ME	AN WAVE-	LENGTH
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length ReducedtoSun	Uncor- rected	Cor. from Curve	Corrected
		mm.	t.m.	mm.		t.m.	t.m.		t.m.
1-2	nn B	42.3913	5170.28	47.3039	-41	70.50	70.39	+15	5170.54
10	wn D			47.3712	-41	73,33	73.33	+15	5173.48
1	В	41.9086	5190.72	47.7853	-41	90,90	90.81	+13	5190.94
4	D	41.8593	5192.83	47.8180	-41	92.30	92.57	+12	5192.69
2	nn B	41.7703	5196.65	47.9262	-41	96,94	96.80	+12	5196.92
1	В	41.6084	5203.64	48.0819	-41	03,66	03.66	$+10^{\circ}$	5203.76
3-1	n B	41.3675	5214.12	48.3318	-41	14.54	14.33	1 + 7	5214.40
1	n D	41.3137	5216.47	48,3753	-41	16.44	16.46	+7	5216.53
3 4	n B	41.2667	5218.53	48,4328	-41	18,96	18.75	\uparrow 7	5218.82
10	w D	41.0846	5226.55	48.5935	-42	26,03	26.29	$\perp \pm 5 \perp$	5226.34
1	В	41.0258	5229, 16	48,6722	-42	29.52	29.34	+4	5229.38
2 5	D	40.9115	5234.22	48.7755	-42	31.11	34.17	+2	5234.19
5	wn B	40.8582	5236.61	48,8388	-42	36,93	36.72	+1	5236.73
3-4	\mathbf{B}	40.6661	5245,22	49,0252	-42	45,28	45.25	-2	5215.23
5	1)	-10.6226	5247.18	49.0744	-42	47.50	47.34	- 2	5247.32
1.2	n B	40.5786	5249,16	49,1177	-42	49.45	49.31	- 3	5249.28
1 2	D	40.5278	5251.46	49,1635	-42	51.52	51.49	→ 3	5251.46
1	nn D	40.4412	5255.38	49.2633	-42	56.05	55 - 72	- 5	5255.67
6	un D	40.1159	5270,25	49.5781	-42	70.44	70.35	- 8	5270.27
2	nn B	39,9184	5279.38	49.7770	-42	79.63	79.51	- s	5279.43
1 2	nn D	39,8252	5283.71	49.8722	-42	81.05	83.88	- 9	5283.79
4	n D	39,5207	5297.98	50.1716	-42	98.09	98 04	-10	5297.94
3	n D	39.4195	5302.76	50,2715	-42	02.81	02.79	-10	5302,69
4	n B	39.3734	5304 95	50.3224	-42	05, 23	05,09	- 9	5305,00
2	n B	39.2044	5313 00	50,4890	-42	13,16	13.08	- 9	5312.99
1	D	39.1691	5314.69	50.5244	-42	14.86	14.78	-9	5314.69

PISCIUM = 273 SCHJELLERUP. PLATE G 259—Continued

		RED	RIGHT	R	ED LEFT		Mı	EAN WAVE	LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Suu	Wave-Length Red. to Sun	Uncor- rected	Cor. from Curve	Corrected
		mm.	t.m.	mm.		t.m.	t.m.		t.m.
4	nn B	39.0968	5318.16	50.5956	-42	18.26	18.21	- 9	5318.12
1	В	39.0021	5322.72	50.6999	-43	23.28	-23.00	- 8	5322.92
10	w D	38.8775	5329.05	50.8212	-43	29,14	2 9.10	- 7	5329.03
5-6	wn B	38.6757	5338.88	51.0327	-43	39.44	39,16	$ - \frac{5}{2} $	5339.11
1	D D	38.6294	5341.14	51.0697	-43	$ \begin{array}{c c} 41.26 \\ 50.11 \end{array} $	41.20	- 5	5341.15
2	wn D n B	38,4432	5350.30	51.2497 51.3054	-43 -43	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50.21 52.66	$\begin{bmatrix} -&2\\-&2 \end{bmatrix}$	5350.19
$\frac{2}{8}$	wn D	38.3991 38.0117	$5352.46 \\ 5371.82$	51,6930	-43	$\begin{bmatrix} 32.30 \\ 72.21 \end{bmatrix}$	$\frac{52.66}{72.02}$	$\begin{bmatrix} -&2\\+&4 \end{bmatrix}$	5352.64 5372.06
6	B	37.9536	5374.75	51.7509	-43	75.13	74.94	1 4	5374.98
ĭ	n D	37,9101	5376.94	51,7913	-43	77.17	77.06	$\begin{bmatrix} \top & 1 \\ 4 \end{bmatrix}$	5377.10
2-3	n D	37.5143	5397.13	52.1880	-43	97.39	97.26	17	5397.43
2-3	n B	37.3952	5403, 27	52.3111	-43	03.74	03.51	∔ 19	5403.70
0-1	n D	37.3455	5405.84	52.3572	-43	06.13	05.99	± 20	5406.19
2	n B	37.3077	5407.80	52.3975	-43	08.21	08.01	+22	5408.23
2-3 2-3	n D	37.2680	5409.86	52.4355	-43	10.19	10.03	$+\frac{22}{22}$	5410.25
7-8	n B B	37.2237	5412.17	$52.4764 \\ 52.5694$	-43 - 43	$\begin{bmatrix} 12.32 \\ 17.17 \end{bmatrix}$	$\frac{12.25}{17.15}$	$+\frac{22}{22}$	5412.47
2-3	n D	$37.1286 \ 37.0772$	$\begin{bmatrix} 5417.13 \\ 5419.83 \end{bmatrix}$	52.6094 52.6253	-43	20.10	$17.15 \\ 19.97$	$\frac{-23}{-24}$	$5417.38 \\ 5420.21$
4	B	37.0163	5423.03	52.6768	-43	22.80	22.92	$\frac{1}{4}$	5420.21 5423.16
3	n B	36.9261	5427.78	52,7762	-44	28.02	27.90	$+\frac{25}{25}$	5428.15
2	n D	36.8838	5430.01	52.8179	-44	30.23	$30 \ 12$	+25	5430.37
2	\mathbf{B}	36.8507	5431.77	52.8541	-44	32.14	31.96	+25	5432.21
5-6	\mathbf{B}	36.5954	5445.37	53.0982	-44	45.14	45.26	+25	5445.51
4	n D	36.5472	5447.95	53.1541	-44	48.14	48.05	+25	5448.30
4_	n B	36 4986	5450.56	53.2079	-44	51.03	50.80	+ 25	5451.05
4-5 1	n B n D	$36.4389 \\ 36.3832$	5453.73 5456.79	$53.2661 \\ 53.3184$	$-44 \\ -44$	$54.16 \\ 56.99$	53.95 56.89	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5454.19
2-3	n B	36,3477	5458.71	53.3590	- 44 - 44	59.19	58.95	$ + \frac{24}{24} $	$5457.13 \\ 5459.19$
2	B	36,2779	5462.50	53.4243	-44	62.73	62.62	$\pm \frac{7}{22}$	5462.84
$\frac{1}{2}$	$\overline{\mathbf{B}}$	36.2277	5465.23	53,4687	-44	65.14	65.19	$+\frac{55}{2}$	5465.41
3	n B	36.1098	5471.67	53.5926	-44	71.91	71.79	$\perp \pm 20^{\circ}$	5471.99
4–5	\mathbf{B}	35.9516	5480.37	53.7442	-44	80.23	80.30	+20	5480.50
2 2-3 2-3	$\tilde{\mathbf{D}}$	35.9179	5482.23	53.7857	-44	82.52	82.38	+14	5482.52
2-3	B	35.6763	5495.65	54.0230	- 44	95.70	95.68	+ 9 +	5495.77
1 2-3	nn D	35.6359 35.5692	5197.91	$54.0625 \\ 54.1385$	$-44 \\ -44$	$\begin{bmatrix} 97.91 \\ 02.16 \end{bmatrix}$	97.91	+7	5497.98
1	nn D D	35,3692	5501.64 5506.63	54.1353	$-44 \\ -44$	$02.16 \\ 06.79$	$01.90 \\ 06.71$	$\begin{vmatrix} + & 6 \\ + & 5 \end{vmatrix}$	5501.96
$\frac{1}{2}$	n B	35.4377	5509.05	54.2629	-44	09.16	09.11	T 4	5506.76 5509.15
1-2	B	35.4032	5511.00	54,2908	$-\hat{44}$	10.74	10.87	$\begin{bmatrix} \pm & 1 \\ 3 & 3 \end{bmatrix}$	5510.90
1	D	35.0960	5528.50	54.6018	-45	28.43	28.47	_ 2	5528.45
2	n D	34.8999	5539.80	54.8020	-45	39.96	39.88	- 2	5539.86
1	n D	34.7605	5547.90	54.9421	-45	48.09	48.00	- 5	5547.95
1	D	34.5117	5562.48	55.1884	-45	62.52	62.50	- 8	5562.42
3	B D	$34.4790 \\ 34.4454$	5564.40	55.2197 55.2536	$-45 \\ -45$	$64.36 \\ 66.36$	64.38	$\begin{bmatrix} -8 \\ -9 \end{bmatrix}$	5564.30
1	$^{\mathrm{B}}$	34.1990	5566.40 5581.05	55.4956	$-45 \\ -45$	80.75	66.38 80.90	$\begin{bmatrix} - & 9 \\ -10 & \end{bmatrix}$	5566.29 5580.80
8	w D	34.1483	5584.09	55.5469	-45	83.81	83.95	-10 - 11	5583.84
3	" B	34.1001	5586.99	55.5970	-45	86.82	86,91	- 11	5586.80
5	$\overline{\mathbf{B}}$	33.9318	5597.15	55,7733	-45	97.45	97.30	$-\hat{15}$	5597.15
1	D	33.7340	5609.19	55,9694	-45	09.38	09.29	- 16	5609.13
1-2	B	33,6017	5617.31	56.0956	-45	17.12	17.22	-18	5617.04
2	n D	33.4768	5625.03	56.2165	- 46	24.57	$\frac{24.80}{21.40}$	-20	5624.60
8 Head	n D	$33.3240 \\ 33.2937$	5634.53	56.3731	- 46	34.29 35.93	$\frac{34.42}{36.19}$	$-\frac{21}{22}$	5634.21
nead 4	В	32,9891	$5636.42 \\ 5655.59$	56.3994 56.7067	- 46 - 46	55,25	$\frac{36.18}{55.42}$	$-\frac{22}{-24}$	$5635.96 \\ 5655.18$
1	Ď	32.7514	5670.76	56.9552	-46	71.10	70.93	$-\frac{24}{27}$	5670.67
	$\mathbf{\tilde{B}}$	32.7059	5673.68	56,9978	-46	73.83	73.76	$-\frac{57}{27}$	5673.49
2	В	32.5241	5685.43	57.1765	-46	85.35	85.39	-29	5685.10
1	D	32.4993	5687.04	57.2066	-46	87.30	87.17	-29	5686.88
5	В	32.2261	5704.89	57.4762	-46	04.92	04.91	-30	5704.61
$egin{array}{c} 4 \\ 2 \\ 1 \\ 5 \\ 2 \\ 6 \end{array}$	n B	32.1462	5710.18	57.5524	- 46	09.94	10 06	-32	5709.74
8	n B	32.0245	5718.25	57.7693	_ i7	24.33	$\frac{18.25}{24.33}$	- 33 - 33	$5717.92 \\ 5724.00$
J	иъ			6001.10	- 41	24.00	±12.131)	- 55	0124.00

19~PISCIUM = 273~SCHJELLERUP,~~PLATE~G~~269 $1899, January~6, G.M.T.12^h3.~~Hour~angle, W~1^h9.~~Star~excellent~;~ comparison~fair.$

		RED	Rіснт	R	ED LEFT		M	EAN WAVE	-LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red, to Sun	Uncor- rected	Cor, by Curvo	Corrected
$\begin{array}{c} \text{Head} \\ 3\\ 7\\ 7\\ 2\\ 1\\ 3\\ 6\\ 2\\ 2\\ 7\\ 5\\ 4\\ 1\\ 3\\ 2\\ 1\\ 6\\ 3\\ 2\\ 1\\ 1\\ 2\\ 9\\ 8\\ 2\\ 1\\ 3\\ 3\\ 2\\ 1\\ 6\\ 3\\ 7\\ 5\\ 4\\ 6\\ 3\\ 1\\ 4\\ 6\\ 3\\ 3\\ 1\\ 4\\ 6\\ 3\\ 3\\ 1\\ 4\\ 6\\ 3\\ 3\\ 1\\ 4\\ 6\\ 3\\ 3\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 6\\ 3\\ 3\\ 2\\ 1\\ 6\\ 3\\ 3\\ 2\\ 1\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 3\\ 2\\ 1\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 3\\ 4\\ 6\\ 6\\ 3\\ 4\\ 6\\ 6\\ 3\\ 4\\ 6\\ 6\\ 6\\ 3\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\ 6\\$	BONDBBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDBDB	mm. 45,4603 45,3811 45,3160 45,0750 41,9766 44,8689 44,8188 41,2930 44,2419 44,1930 43,9928 43,9293 43,8977 43,7406 43,6673 43,5127 43,4921 43,39673 42,6542 42,3145 42,2188 41,9776 41,9277 41,8758 41,8758 41,6267 41,3948 41,1681 41,1065 40,8959 40,7048 40,7048 40,6295 40,7048 40,6295 40,2892 40,1643 40,0238 39,8504 39,7521 39,6820 39,8862 39,8862 39,8863 39,8863 39,8863 39,58863 39,8863 39,8863 39,8864 39,5389 39,8862 39,8863 39,8863 39,8864 39,5389 39,8862 39,8863 39,8863 39,8864 39,5389 39,8862 39,8864	t.m. 5167.99 5171.09 5173.64 5183.14 5183.14 5187.14 5191.32 5193.32 5214.55 5216.63 5218.63 5218.63 5226.85 5229.47 5231.51 5237.30 5240.38 5240.38 5245.57 5247.69 5251.72 5256.20 5270.35 5270.99 5283.51 5298.37 5302.59 5313.30 5315.53 5317.85 5320.24 5329.06 5331.35 5317.85 5320.24 5329.06 5331.35 5317.85 5320.24 5329.06 5341.35 5317.85 5320.24 5329.06 5341.35 5317.85 5320.24 5329.06 5341.35 5317.85 5320.24 5329.06 5341.35 5317.85 5320.24 5329.06 5341.35 5317.85 5320.24 5329.06 5341.35 5317.87 5372.85 5362.63 5366.81 5368.53 5371.57 5375.11 5391.26 5393.22 5397.25 5406.20 5410.68 5112.42 5117.22 5420.15 5123.26 5425.44 5427.68 5130.31 5431.31 5115.19 5431.31 5115.19 5431.31 5115.19 5431.31 5115.19 5431.31	mm. 40.2512 40.3168 40.3754 40.6286 40.7239 40.8267 40.8267 41.4563 41.5093 41.6988 41.7817 41.8894 41.9542 42.0263 42.1574 42.2991 42.4038 42.7438 42.9646 43.0562 43.3829 43.4734 43.7196 43.7670 43.8262 44.9643 44.9852 44.9852 44.5875 44.9853 45.4863 45.5354 45.6695 45.5351 45.6695 45.8455 45.60615 46.1077 46.1533 46.2889 46.50028 46.5019 46.6615	$\begin{array}{c} -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -49 \\ -50 \\$	t.m. 68, 16 71.03 73.34 83.35 87.15 91.26 92.96 14.81 16.76 13.8 34.66 37.36 40.38 45.88 47.96 56.30 70.84 80.39 84.70 13.66 15.70 15.66 15.70 15.66 15.70 15.66 15.70 15.66 15.70 15.66 15.70 15.66 15.70 15.66 15.70 15.66 15.70 15.66 15.70 15.87 15.66 15.87 1	t.m. 68.23 68.23 68.23 68.25 6	Curvo + 25 + 24 + 21 + 20 + 16 + 15 + 13 + 10 + 9 + 7 + 6 + 5 - 13 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	t.m 5168.48 5171.31 5173.73 5183.46 5191.49 5193.34 5214.85 5214.85 5216.86 5221.96 5234.69 5234.69 5247.42 5240.47 5245.80 5247.42 5240.47 5245.80 5257.42 5240.13 5283.87 5298.41 5302.52 5313.33 5315.51 5318.00 5320.62 5320.62 5320.22 5330.50 5341.50 5352.92 5362.95 5361.50 5351.46 5375.40 5381.18 5397.67 5404.33 5406.81 5410.99 5412.82 5420.53 5420.53 5420.53 5420.53 5420.53 5420.53 5420.53 5420.53 5420.53 5420.53 5420.53
3 2-3 1-2 1 3 1 2 1	B D B B W D B D D D	39.0108 38.9571 38.9101 38.8250 38.7310 38.6466 38.6092 38.5440	5451.00 5456.72 5459.08 5463.40 5168.20 5472.51 5474.43 5477.78	46,6817 46,7369 46,7855 46,8177 46,8675 46,9599 47,0445 47,0871 47,1499	- 52 - 52 - 52 - 52 - 52 - 52 - 52 - 52 - 52	54.31 57.10 59.55 61.19 63.72 68.42 72.71 74.92 78.15	54,16 56,91 59,32 61,19 63,56 68,31 72,63 71,68 77,97	$ \begin{array}{c c} +18 \\ +17 \\ +17 \\ +16 \\ +16 \\ +15 \\ +14 \\ +13 \end{array} $	5454,34 5457,06 5459,49 5461,36 5463,72 5168,47 5472,78 5474,82 5478,10

19 PISCIUM=273 SCHJELLERUP. PLATE G 269—Continued

19 PISCIUM=273 SCHJELLERUP. PLATE G 269 Continued

CRESSITA CHARACTER		RED RIGHT		Red Left			MEAN WAVE-LENGTH		
TENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red, to Sun	Uncor- rected	Cor. from Curve	Corrected
1.2 3.2	B n D	mm. 33.3122 33.2371	t.m. 5780.79 5785.70	mm, 52.3798 52.4564	-55 -55	t.m. 80.40 85.39	t.m. 80,60 85,55	$-42 \\ -42$	t.m. 5780.18 5785.13
$\frac{1}{1}$	1D n D	33,0335	5799,10	53,0274	-55 -55	23.13	99.10 23.13	$-11 \\ -41$	5798.66 5822.69

19 PISCIUM=273 SCHJELLERUP. PLATE G 293

1899, January 27, G. M. T. 1350. Hour angle, W 359. Star good; comparison good.

		nım,	t. m.	mu.		t.m.	t.m.		t.m.
1 2	wn D	44.3276	5173.18	43.8093	-40	73.51	73.35	+13	5173,48
2	n D	44.0579	5183.83	44,0609	-40	83.46	83.65	± 12	5183.77
ī	n D	43.9335	5188.78		-40		88.78	-11	5188.89
1 2	В	43,8898	5190.52	44.2470	-40	90.88	90.70	+11	5190.81
	n Đ	13.8316	5192.73	44,2902	-40	92.61	92.67	+10	5192.77
2 2 2			5182, 10 5105, 88					+10	5197.19
2	n B	43.7226	5197,22	44.3986	-40	96,96	97.09	+10	
2	n B	43.3026	5214.24	44.8348	-40	14.66	14.45	+ 9 1	5214.54
1	n D	43.2445	5216.61	44.8875	-40	16.81	16.71	+7	5216.78
1	13	43.2021	5218.35	44.9238	40	18.30	18.33	+7	5218.40
1	n D	43.0283	5225.50		-40°		25.50	+5	5225,55
1 2	1)	42,8259	5233.88	45,3063	-40	31.11	34,00	+4	5234.04
1	D	12,6896	5289.56	45.4421	-40	39.78	39.67	+ 9 + 7 + 7 + 5 + 4 + 3 + 1	5239.70
1^{-2}	В	42.5729	5244.45	45,5789	-40	45,52	44,99	1 i	5245.00
4	1)	42,5058	5247.28	45,6200	-40	47.25	47.27	' ô	5247.27
1	B	42.4700	5248.78	45,6770	-40	49.66	49.22	ŏ	5249.22
								ŏ	5249.42 5251.11
3	Ð	42.4172	5251.01	45.7135	-40	51.20	$\frac{51.11}{52.02}$		
1	Ď	42.3108	5255.51	45.8297	-40	56.12	55,82	$-\frac{1}{2}$	5255.81
7	пÐ	41.9689	5270.10	46.1627	-41	70.35	70.23	- 3	5270.20
2 3	n B	41.7429	5279,85	46.3930	-41	80.30	80.08	-5	5280.03
1 - 2	D	41.6892	5282,19	46.4431	-41	82.48	82.34	- 5	5282.29
3	D	41.3253	5298.11	46.8156	-41	98,80	98,46	- 5	5298.41
1	n 1)	+41.2195	5302.78	46,9097	-41	02,96	02.87	- 5	5302.82
1-2	В	41.1673	5306.09	46.9693	-41	05.60	05.85	-5	5305.80
· • -	n B	40,9915	5312.92	47.1470	-41	13.52	13.22	- 5	5313.17
$\frac{2}{3}$	n D	40.9380	5315,31	47.1917	-41	15.66	15.49	-5	5315.44
ï	n B	40.8838	5317.74	47,2398	-41	17.68	17.71	$-\ddot{5}$	5317.66
5	n Đ	40.8139	5320.88	47.3166	-41	21,13	21.00	-5	5320.95
ī		19.0100	00,000	47.4102		$\frac{27.35}{25.35}$	25,35	- 4	5325.31
	n D	40. 4241.4	5000 00		-41			-3	
2.3	Ď	40.6414	5328.66	47.4889	-41	28.91	28.79		5328.76
1/2	В	40.4101	5339.18	47.7265	-41	39.73	39.46	- 1	5339.45
1	Ð	40.3725	5340.90	47.7637	-41	41.43	41.17	0	5341.17
3	D	40 1804	5349.73	47.9589	-41	50.41	50.07	+1	5350.08
-2	wn B			48,0083	-41	52.69	52.69	$\begin{array}{c c} + 1 \\ + 5 \end{array}$	5352.70
2	В	39,7770	5368.49	48,3496	-41	68.59	68.54	+5 +	5368.59
9	w D	39.7130	5371,49	48.4172	-41	71.77	71.63	+6	5371.69
5-6	wn B	39.6435	5376,76	48.4854	-41	74.98	75.87	\pm 6 \parallel	5375.93
2	wn D	39.5873	5377,40	48.5423	-42	77.65	77.53	+ 7 + 8 + 9	5377.60
4	wn B	39.5398	5379 65	48.5990	-42	80.35	80,00	+:s	5380.08
î	D	39.3157	5390.31	48,8188	-42	90,80	90,56	4.9	5390.65
1	Ď	39,1702	5397.28	48,9671	-42	97.91	97.60	+10	5397.70
$1\overset{1}{2}$	Ď	38,9884	5106.06	49.1493	-42 - 42	06.71	06,39	± 10	5406.49
$\frac{1}{2}$ $\frac{3}{3}$	D				$-42 \\ -42$			+11	5110.55
		38.8985	5410.42	49.2266		10.46	10.44		
1-2	В	38.8655	5112.02	19.2717	-42	12.65	12.39	+11	5112.50
1	D	38,8309	5413.70	49.3012	-42	14.09	13,90	+11	5114.01
7	В	38.7718	5416.59	49.3638	-42	17.11	16.87	+11	5416.98
2	n D	38.7113	5119.55	49.4215	-42	19.97	19.76	+11	5119.87
1	n B	38.6154	5422.78	49.4905	-42	23.34	23,06	+12	5123.18
1	Ð			49.5231	-42	24.97	24.97	+12	5125.09
2.3	В	38.5594	5427 01	49.5875	-42	28 13	27.57	+12	5127.69
3	D	38,4954	5130,17	49.6291	-42	30.18	30.18	+12	5430,30
2	B	38,4608	5431.89	49,6715	-42	32.28	32,09	+12	5132.21
ī	Ď	38,4253	5433.6I	49.7051	$-\tilde{1}\tilde{2}$	33 96	33 80	+12	5433.92
1	u Ď	38,3272	5438,52	49.8013	$-1\overline{2}$	38.87	38,70		5438.82
i	n B	38,2020	5141.77	49.9298	-12	45.11	44.96	$+12 \\ +11$	5115.07
10	n B D	38,1415	5117,79	49.9861	$-12 \\ -12$	47.96	47.88	+11	5447,99
10	17	ראי, בוווו	0111, 10	411.1901	- 1.2	41.00	21.00	711	σ_{111}
							1		
				4.3.3.3					

 $19\ PISCIUM = 273\ SCHJELLERUP.\ \ PLATE\ G\ 293-Continued$

		RED	Rіснт	F	ED LEFT		Мв	AN WAVE-	Length
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red. to Sun	Uncor- rected	Cor. from Curve	Corrected
2 2-3 3-4 2	B B D B	mm. 38.0855 38.0313 37.9668 37.9252	t.m. 5450.60 5453.34 5456.59 5458.69	mm. 50.0365 50.1014 50.1614 50.2067	$ \begin{array}{r} -42 \\ -42 \\ -42 \\ -42 \\ -42 \\ -42 \end{array} $	t.m. 50.49 53.76 56.78 59.08	t.m. 50.55 53.55 56.69 58.87 60.79	$ \begin{array}{c} +10 \\ +10 \\ +10 \\ +10 \\ +10 \\ +10 \end{array} $	t.m. 5450.65 5453.65 5456.79 5458.97 5460.89
$\begin{array}{c}2\\1-2\\1\\3\end{array}$	D B D wn B	37.8887 37.8473 37.6671	5460.54 5462.64 5471.83	$\begin{array}{c} 50.2453 \\ 50.2819 \\ 50.3803 \\ 50.4713 \end{array}$	$ \begin{array}{r} -42 \\ -42 \\ -42 \end{array} $	$\begin{array}{c} 61.03 \\ 62.89 \\ 67.90 \\ 72.54 \end{array}$	$\begin{array}{c} 62.67 \\ 67.90 \\ 72.19 \end{array}$	$\begin{vmatrix} +10 \\ +9 \\ +8 \end{vmatrix}$	$\begin{array}{c} 5462.77 \\ 5467.99 \\ 5472.27 \end{array}$
$\begin{array}{c} 1-2 \\ 1 \\ 2 \\ 2 \end{array}$	D B D B	37.6181 37.4621 37.2032	5474.34 5482.37 5495.80	50.5081 50.6344 50.6697 50.9215	$ \begin{array}{r} -42 \\ -42 \\ -42 \\ -43 \end{array} $	74.43 80.92 82.75 95.79	$\begin{array}{r} 74.39 \\ 80.92 \\ 82.56 \\ 95.80 \end{array}$	+ 8 + 7 + 7 + 5	5474.47 5480.99 5482.63 5495.85
4-5 1 1 3	D D D	37.1634 37.0861 36.9948	5497.88 5501.93 5506.72	50.9682 51.0444 51.1359	$ \begin{array}{r} -43 \\ -43 \\ -43 \end{array} $	98.27 02.23 07.04 09.94	98.08 02.08 06.89 09.86	$\begin{vmatrix} + 5 \\ + 4 \\ + 3 \\ + 3 \end{vmatrix}$	5498,13 5502,12 5506,92 5509,89
$\begin{array}{c} 1 - 2 \\ 0 - 1 \\ 2 \end{array}$	n D D B	36.9370 36.8839 36.6695 36.5224	5509.77 5512.58 5523.98 5531.86	51.1910 51.2400 51.4623	$ \begin{array}{r} -43 \\ -43 \\ -43 \\ -43 \end{array} $	12.53 24.35	$12.56 \\ 24.17 \\ 31.86$	$\begin{vmatrix} + & 1 \\ - & 1 \\ - & 3 \end{vmatrix}$	5512.57 5524.16 5531.83
$\begin{bmatrix} 1-2 \\ 10 \\ 2-3 \\ 1 \\ 1 \end{bmatrix}$	D B D	36.4876 36.3832 36.3061 36.2272	5533.73 5539.37 5543.54 5547.83	51.7470 51.8141 51.9171	$ \begin{array}{r} -43 \\ -43 \\ -43 \\ -43 \\ -43 \end{array} $	39.64 43.27 48.87 52.71	33.73 39.51 43.41 48.35 52.53	$ \begin{array}{c c} -3 \\ -5 \\ -6 \\ -7 \\ -8 \end{array} $	5533,70 5539,46 5543,35 5548,28 5552,45
2 1 1	D B D	36.1444 36.1144 36.0761 36.0396	5552.35 5553.99 5556.09 5558.09	51.9874 52.0148 52.0584 52.0899	-43 -43 -43	54.20 56.59 58.32	54.10 56.34 58.21 62.43	$\begin{bmatrix} -9 \\ -9 \\ -9 \\ -11 \end{bmatrix}$	5554.01 5556.25 5558.12 5562.32
$egin{array}{c c} 1 & 2 \\ 1-2 & 1 \\ 1 & 1 \end{array}$	D B D D B	35,9639 35,9218 35,8853 35,8228 35,7926	5562.25 5564.57 5566.59 5570.08 5571.72	$\begin{array}{c c} 52.1680 \\ 52.2075 \\ 52.2483 \\ 52.3015 \\ 52.3337 \end{array}$	$ \begin{array}{r} -43 \\ -43 \\ -43 \\ -43 \\ -43 \end{array} $	62.60 64.79 67.04 69.98 71.76	$\begin{array}{c} 64.68 \\ 66.82 \\ 70.03 \\ 71.74 \end{array}$	$\begin{vmatrix} -11 \\ -11 \\ -12 \\ -12 \\ -13 \end{vmatrix}$	5564.57 5566.70 5569.91 5571.61
1 1 1 10	D D B D	35.7671 35.7058 35.6281 35.5743	5573.14 5576.55 5580.89 5583.90	52.3654 52.3654 52.4213 52.4934 52.5574	- 43 - 43 - 43 - 43	73.52 76.63 80.65 84.23	73.33 76.59 80.77 84.07	$\begin{vmatrix} -13 \\ -14 \\ -15 \\ -16 \end{vmatrix}$	5573.20 5576.45 5580.62 5583.91
4-5 1 2 1	B D B	35.5167 35.4781 35.4241 35.3945	5587.13 5589.30 5592.32 5594.01	52.6070 52.6475 52.6989 52.7466	$-\frac{43}{-43}$ $-\frac{43}{-43}$	87.01 89.29 92.18 94.87	87.07 89.30 92.25 94.44	$\begin{bmatrix} -17 \\ -17 \\ -18 \\ -18 \end{bmatrix}$	5586,90 5589,13 5592,07 5594,26
3-4 1 1 0-1	B D D	35.3327 35.2937 35.1307 35.0075	5597.51 5599.72 5609.00 5616.06	52.7963 52.8369 53.0030 53.1101	-43 -43 -43 -44	97.68 99.98 09.44 15.56	97.60 99.85 09.22 15.81	$ \begin{array}{c c} -19 \\ -19 \\ -20 \\ -21 \end{array} $	5597.41 5599.66 5609.02 5615.60
$\begin{array}{c} 0-1 \\ 2-3 \\ 2 \\ 1 \\ 1-2 \end{array}$	n D D B	31.9350 34.8480 34.7991 34.7494	5620.23 5625.26 5628.09	53,1898 53,2680 53,3223	- 41 - 41 - 41 - 41	20.14 24.65 27.79 30.88	$ \begin{array}{r} 20.19 \\ 24.97 \\ 27.94 \\ 30.93 \end{array} $	$ \begin{array}{rrr} - \frac{22}{22} \\ - 23 \\ - 23 \\ - 23 \end{array} $	5619.97 5624.74 5627.71 5630.70
$\begin{array}{c} 10 \\ \vdots \\ 3 \\ 2-3 \\ 1 \end{array}$	B D Head B B D	34.6859 34.6859 34.6529 34.6305 34.5708 34.5285	5630.98 5634.68 5636.60 5637.91 5641.41 5643.89	53.3754 53.4411 53.4736 53.4898 53.5593 53.5987	14 11 11 14 14	34.70 36.59 37.53 41.60 43.91	34.69 36.60 37.72 41.51 43.90 47.36	$ \begin{array}{r} -23 \\ -24 \\ -24 \\ -25 \\ -25 \\ -25 \end{array} $	5634.46 5636.36 5637.48 5641.26 5643.65
1 1 1 1 1-2	n B n D B D	34.4224 34.3840 34.3380 34.2732	5650.13 5652.40 5655.13 5658.97	53,6574 53,7002 53,7427 53,7950 53,8547	14 44 44 44	47.36 49.88 52.38 55.50 59.02	50.01 52.39 55.28 59.00	$ \begin{array}{r} -25 \\ -26 \\ -26 \\ -27 \end{array} $	5647.11 5649.76 5652.13 5655.02 5658.73
3 1 1 1 1	n D B B n D	34.0156 33.9817 33.9293 33.8439 33.7948	$\begin{array}{c} 5674.37 \\ 5676.41 \\ 5679.57 \\ 5684.73 \\ 5687.71 \end{array}$	54.1068 54.1516 54.2020 54.2866 54.3396	$ \begin{array}{r} -44 \\ -14 \\ -44 \\ -44 \\ -44 \end{array} $	74.06 76.76 79.79 84.90 88.11	$74.22 \\ 76.59 \\ 79.68 \\ 84.82 \\ 87.91$	$ \begin{array}{c c} -28 \\ -29 \\ -30 \\ -30 \end{array} $	5673.94 5676.31 5679.39 5684.52 5687.61
$\begin{array}{c} 3-4 \\ 1-2 \\ 3 \\ 2 \\ 2 \end{array}$	B D B n D B	33.6891 33.6425 33.5005 33.4497 33.4126	5694.15 5696.99 5705.71 5708.84 5711.13	54.4430 54.4863 54.6349 54.6791 54.7160	$ \begin{array}{r} -44 \\ -44 \\ -44 \\ -44 \\ -44 \end{array} $	94.40 97.04 06.15 08.87 11.15	94.28 97.02 05.93 08.86 11.14	$ \begin{array}{rrr} -30 \\ -30 \\ -31 \\ -31 \\ -31 \end{array} $	5693.98 5696.72 5705.62 5708.55 5710.83

19 PISCIUM = 273 SCHJELLERUP. PLATE G 293 - Continued

		RED	Кі бн т	I	ED LEFT		ME	AN WAVE-	LENGTH
NTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red. to Sun	Uncor- rected	Cor. from Curve	Corrected
		mm.	f.m.	mın.		t.m.	t.m.		t.m.
1	\mathbf{p}	33.3742	5713.51	54.7594	- 44	13,83	-13.67	-32	5713.35
5	w B	33.3120	5717.37	54.8116	-44	17.07	17.22	-32	5716.90
1	n D	33.2490	5721.27	54.8796	- 41	21.29	21.28	-33	5720.95
2	$^{\mathrm{B}}$	33.1980	5724.47	54.9301	-44	21.44	24.46	-33	5724.13
3	n D	33.0843	5731.58	55.0491	-45	31.87	31.73	-33	5731.40
1	n D	32.8723	5744.96	55.2605	-45	45.19	45.08	-33	5744.75
1	n B	32.8321	5747.51	55.2967	-45	47.48	47.50	-35	5747.15
1	n D	32.7885	5750.28	55.3135	-45	50.45	50.37	-35	5750 02
2-3	wn B	32.6799	5757.22	55.4555	-45	57.59	57.41	-35	5757.06
1	n D	32.5897	5763.00	55.5380	45	62.87	62.94.	-35	5762.59
1-2	wn B	32.5096	5768.16	55.6138	-45	67.75	67.96	-36	5767.60
1	n D	32.4652	5771.03	55.6661	-45	71.14	71.09	-36	5770.73
1	n B	32.3870	5776.09	55.7438	-45	76.79	76.44	- 36	5776.08
1	n D	32.3565	5778.07	55.7760	-45	78.23	78.15	-36	5777.79
1	n B	32.3219	5780.33	55.8012	-45	79.87	80,10	- 37	5779.73
1	n D	32.0366	5799.02	56.0927	-45	98.93	98.98	- 37	5798.61

19 PISCIUM = 273 SCHJELLERUP. PLATE G 357
1899, December 19, G.M.T. 1298. Hour angle, W. 192. Star excellent; comparison excellent.

		RED	Rібнт	RED	LEFT	Mı	IAN WAVI	E-LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor, from Curve	Corrected
		mm.	t.m.	mm.	t.m.	t.m.		t.m.
1	n D	36.5909	5168.82	47.9644	5168.97	68.90	-33	5168.57
2-3	n D	36.4711	5173.68	48.0796	5173.92	73.80	-32	5173.48
1	B	36.1314	5187.46			87.46	-27	5187.19
1-2	n D	36.0903	5189.28	48.4589	5189 16	89.22	-27	5188.95
4	n D	35.9849	5193,64	48.5632	5193.47	93.56	-25	5193.31
i	n B	35,8963	5197.32	48.6570	5197.36	97.34	-24	5197.10
10	n Đ	35,6360	5208.18	48,9230	5208.40	08.29	-20	5208,09
6	wn D	35, 2121	5226.14	49 3305	5225.73	25.94	-14	5225.80
$\ddot{3}$	n Ď	35.0231	5234.24	49.5258	5231.08	34.16	-12	5234.04
$2^{\circ}3$	wn B	31,9651	5236.73	49,5935	5236-99	36.86	-11	5236.75
$\tilde{1}$ - $\tilde{2}$	nn D	31.8983	5239.62	49.6537	5239.67	39,65	-10	5239.55
5	Ď	31.7153	5247.56	49.8388	5247,61	47.59	- 6	5247,53
5-6	Ď	31,6308	5251.25	49,9220	5251.24	51.25	- 5	5251.20
4	Ď I	34, 1920	5270,58	50,3631	5270.67	70 63	- 1	5270.62
1	n B	33.9922	5279.50	50,5651	5279,69	79,60	0	5279.60
2	wn D	33,9076	5283.29	50,6377	5282.93	83.11	+1	5283.12
$\bar{5}$	n D	33,5840	5297.94	50.9641	5297,69	97.82	+ 4	5297.86
$\frac{3}{2}$	n D	33,4820	5302.59	51.0712	5302.58	02.59	5	5302.64
1 2	n B	33,4323	5304.87	51.1280	5305.18	05,03	+ 5	5305,08
2	n B	33, 2535	5313.14	51.3014	5313.15	13.15	+6	5313, 21
$ \bar{3}$	n Ď	33,2049	5315.34	51.3428	5315 07	15.21	\downarrow 6	5315.27
$\ddot{3}$	n B	33, 1548	5317.66	51.3978	5317.61	17.64	$\downarrow s$	5317.72
$\frac{9}{2}$	n Ď	33.0797	5321.14	51 4715	5321,03	21.09	+ 9	5321.18
ĩ	n Ď	32,9979	5324 .95	51.5611	5325, 20	25.08	+10	5325.18
9	n D	32.9185	5328.66	51.6419	5328,98	28 82	∔11	5328.93
$\overline{12}$	n p	32.7434	5336 89	51.8014	5336.66	36,78	+12	5336,90
$\frac{1}{2}$ $\frac{1}{3}$	n B	32.6976	5339,05	51,8536	5338.93	38, 99	+12	5339.11
2	n Ď	32.6539	5341.12	51.8987	5341.06	41.09	+13	5341.22
-Ĩ	n D	32,4716	5349.77	52.0750	5349.43	49.60	13	5349.73
i	n B	32.4235	5352.07	52,1396	5352,51	52.29	+11	5352.43
1 2	n Đ	32.2084	5362,39	52.3518	5362,69	62.54	+15	5362.69
1 ~	" D	32 1267	5366,33	52,4321	5366.57	66.45	$\pm ic$	5366,61
8	$\begin{bmatrix} \ddot{\mathbf{p}} \end{bmatrix}$	32.0281	5371.11	$52.52\overline{15}$	5371 05	71.08	± 17	5371.25
5	B	31,9519	5371 67	52,6028	5374.85	74.76	± 17	5374.93
	$ \qquad \stackrel{ m D}{ m D} $	31,9047	5377.12	52,6501	5377.17	77.15	± 17	5377.32
2 3	n B	31.8543	5379.58	52.7000	5379.60	79.59	$\pm is$	5379.77
.; 1	nn D	31.6310	5390.55	52.9236	5390,58	90.57	+19	5390.76
4	nn D D	31.4985	5397.11	53 0572	5397,20	97,16	119	5397.35
					5405.86	05.85	+20	5406.05
1	D	31.3236	5105.83	53 2310	5405.86	05.85	+20	5106.

19 PISCIUM=273 SCHJELLERUP. PLATE G 357—Continued

		RED	Rіснт	RED	LEFT	M	EAN WAVI	E-LENGTH
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
$\begin{array}{c} 4 \\ 1 \\ 6 \\ -7 \\ 2 \\ -3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2$	DDB BBD BBD BBD BBD BBD BBD BBD BBD BBD	Mean Scale Reading mm. 31.2489 31.1592 31.1020 31.0479 30.9895 30.9845 30.8475 30.4774 30.6796 30.4977 30.4435 30.3307 30.2331 30.2570 30.2112 30.1771 30.1373 30.0390 29.9979 29.9280 29.8442 29.5614 29.4792 29.5828 29.2880 29.0767 29.0086 28.9425 28.3225	t.m. 5409.57 5414.07 5416.96 5419.70 5422.65 5424.43 5429.88 5433.72 5438.48 5447.87 5450.68 5453.30 5456.55 5458.51 5460.40 5462.80 5464.59 5466.69 5471.87 5474.04 5477.75 5482.20 55487.38 55501.82 5557.58 5531.24 5553.31 55533.83 55552.00 5563.85 5556.11 5569.98 55533.83 55555.66 5552.00 5563.85 5566.11 5569.98 55538.83 55558.83 55588.83	Mean Scale Reading mm. 53, 3114 53, 3920 53, 4507 53, 5050 53, 5654 53, 6026 53, 7055 53, 7791 53, 8684 53, 9894 54, 0422 54, 1060 54, 1616 54, 2207 54, 2803 54, 2961 54, 3419 54, 3765 54, 4163 54, 5564 54, 6266 54, 7100 54, 963 55, 0732 55, 1692 55, 2618 55, 4749 55, 5492 55, 6492 55, 6498 55, 7660 55, 9165 55, 9824 56, 0508 56, 1618 56, 1950 56, 2297 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 3553 56, 4049 56, 5777 56, 5891	Wave-Length	Uncor-	Cor. from	t.m. 5409.94 5414.21 5417.14 5419.89 5424.73 5430.08 5433.88 5438.555 5444.63 5417.73 5450.79 5453.14 5456.71 5468.01 5468.01 5468.01 5468.01 5468.21 5474.28 5478.00 5482.44 5507.23 5512.39 5527.92 5531.68 5557.71 5576.77 5571.41 5558.73 5566.27 5570.17 5571.41 5573.17 5576.77 5571.41 5573.17 5576.77 5588.56 5592.18 5593.86 5592.18 5593.86 5592.18 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86 5593.86
1 1 1 2 3 2 3 2–3 1–2	n B n B B B n D B D B D B B B B B B B B B B B B B B B	26, 9853 26, 9614 26, 9033 26, 8662 26, 8165 26, 7738 26, 5594 26, 5594 26, 4767 26, 4304	5644.76 5646.20 5649.74 5652.00 5655.03 5657.64 5670.84 5673.18 5675.97 5678.84	57.5663 57.5912 57.6893 57.7445 57.7881 57.9960 58.0379 58.0800 58.1298	5644.66 5646.17 	44.71 46.19 49.74 52.07 55.27 57.91 70.92 73.39 76.09 79.07	$\begin{array}{c} +4 \\ +3 \\ +3 \\ +2 \\ +1 \\ -4 \\ -5 \end{array}$	5644.75 5649.77 5652.10 5655.29 5657.93 5670.93 5676.05 5679.02

19 PISCIUM=273 SCHJELLERUP. PLATE G 357—Continued

		RED	Rіснт	RED	Left	MF	EAN WAVE	LENGTH
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
		mm.	t.m.	mm.	t,m.	t.m.		t.m.
1	В	26.3504	5683.47	58.2076	5684.15	-83.81	- 6	5683.75
4-5	n B	26.1981	5693.39	58.3626	5693.88	93.64	- 7	5693.57
2	n D	26.1487	5696,50	58.4069	5696.68	96.59	-10	5696.49
3	В	26.0122	5705.14	58,5441	5705.37	-05.26	-13	5705.13
2-3	Ð	25,9681	5707.94	58.5862	5708.05	08.00	-16	5707.84
1-2	B	25.9312	5710.29	58.6267	5710.63	10.46	-16	5710.30
1-2	D	25.8981	5712.40	58,6644	5713.08	12.74	-17	5712.57
3	В	2 5.8323	5716,61	58,7269	5717.09	17.45	-18	5717.27
2	D	25.7591	57 2 1.31	58.7931	5721.29	21.30	-18	5721.12
2	В	25.7211	5723.75	58,8383	5724.20	23.98 •	-18	5723.80
1-2	n D			58.9537	5731.65	-31.65	-21	5731.44
3	n D	25.4132	5743,73	59.1507	5744.48	44.11	-26	5743.85
2-3	n D	25.1178	5763,17	59.4328	5763.07	63.12	-33	5762.79
4	n D	24.9911	5771.59	59.5667	5771.98	71.79	-35	5771.44
1	В	24.9298	5775,69	59.6340	5776.48	-76.09	-35	5775.74
1	D	24.8977	5777.84	59.6633	5778.45	78.15	-37	5777.78
1	В	24.8696	5779.72	59,6891	5780.18	79.95	-40	5779.55
1-2	D	24.5942	5798.32	59,9630	5798,70	98.56	-50	5778.06
1	D	24.2375	5822.81	60.3219	5823,36	23.09	-40	5822.69

19 PISCIUM = 273 SCHJELLERUPMeans of Two Plates

	PLATE G 2	264		PLATE G	343	MEA	N WAVE-LEN	бтн
ntensity	Character	Wave-Length	Intensity	Character	Wave-Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		t.m.			t.m.	t.m.		t.m.
1	D	4375.87	1			75.81	+3	4375.84
10	w D	4384,11			.,,	84.05	+3 +3 +3 +3 +3 +3 +3 +3 +3	4384.08
2-3	n D	4390.36				90.30	+3	4390.33
5	wn D	4395.05	8	wD	4394.55	94.80	+3	4394.83
	* * * *		1 1	\mathbf{D}	4397.56	97.62	+3	4397.65
1	n D	4401.16	3	\mathbf{D}	4400.51	00.84	+3	4400.87
3	\mathbf{B}	4402.50				02.44	+3	4402.47
$\frac{10}{2}$	w D	4405.02	4	D	4401.88	04.95	+3	4404.98
2	D	4408.66	4	\mathbf{D}	4408.30	08.48	$+3 \\ +3$	4408.51
			1	\mathbf{D}	4412.20	12.26	+3	4412.29
4-5	nn D	4415.28		wn D	4414.99	15.14	+3	4415.17
			2-3	wn D	4420.51	20.57	+3	4420.60
1	D	4423.22	1-2	Ð	4422.85	23.04	+3	4423.07
1	В	4426.84				26.78	<u>+</u> 3	4426.81
2	n D	4427.70	1-2	D	4427.21	27.46	+3	4427.49
3	n D	4430.28	1-2	n D	4430.01	30.15	+3	4430.18
6-7	wn D	4435.71	$\parallel 3 \parallel$	n D	4435.27	35.49	+3	4435.52
1	D	4438.25	1 1	n D	4437.94	38.10	+3	4438.13
			2	В	4438.80	38.86	$\perp \pm 3 \perp$	4438.89
			2-3	n D	4444.36	44,42	+3	4444.45
1-2	n D	4447,26	1	n D	4446.96	47.11	13	4447.14
3	n B	4448.80	1 2	n B	4448.49	48.65	+3	4448.68
4-5	n D	4450.15	2 5	n D	4449.70	49.93	± 3	4449,96
			1	Ď	4453.17	53,23	+3	4453, 26
2	n D	4455.41	3	n D	4455,05	55.23	<u> </u>	4455.26
3-4	n D	4462.24	2	n D	4462.04	62.11	+3	4462.17
4	wn B	4463,99	\parallel $\bar{3}$	w B	4464.02	64.01	+3	4464.04
i	n D	4465.39	1 1	Ď	4465.13	65.26	+3	4465.29
ĩ	n D	4469.12	$\parallel 1.2 \parallel$	$\ddot{\mathbf{D}}$	4468,62	68,92	+3	4468.95
			1 1	$ ilde{ ii}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	4472.16	72.22	+3	4472.25
			1-2	n Ď	4475.43	75.49	+3	4475.52

 $19\ PISCIUM = 273\ SCHJELLERUP - Continued$

	PLATE G 2	64		PLATE G	343	MEA	N WAVE-LES	NGTH
Intensity	Character	Wave-Length	Intensity	Character	Wave-Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
Intensity 1-2 2 3 2-3 6 2-3 6 1 2 4 1 3-4 5 6 2-3 3-4 3 3 3 1 2 3 3 1 2 1 1 2-3 2 1 10 1-2 1 3 2 6 4 3	Character n D B B B D D D D N D N D N D W D D W D D W D D W D D W D D W D D W D D D D W D		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Character n D n D n B D n D n D D wn D D nn D wn D wn D nn B B D wn D wn D n D n D wn D n D n D wn D n D n D n D wn D n D n D n D n D n D n D n D n D n D	t.m. 4479.96 4482.23 4483.38 4487.47 4489.68 4496.85 4501.72 4506.70 4509.83 4512.58 4518.20 4522.93 4527.07 4531.26 4535.40 4537.18 4538.94 4540.26 4549.21 4553.45 4560.40 4563.02 4565.77 4571.57 4575.16 4577.48 4578.0 4580.33 4581.84 4584.39 4586.28 4590.98 4594.23 4597.43 4600.72 4606.66 4609.98 4613.79 4614.86 4616.13 44317.69 4619.56 4621.26	Uncorrected for Velocity 4.m. 79.97 82.16 83.59 86.00 87.54 88.58 89.72 96.99 01.75 06.74 12.73 17.02 18.24 20.51 21.63 22.97 27.26 31.32 35.64 37.29 38.97 40.39 42.72 44.07 47.76 49.22 53.51 51.92 54.75 60.36 61.88 63.32 65.70 71.63 75.22 77.54 78.1 80.39 81.90 83.64 84.54 85.38 86.34 99.99 94.31 95.77 97.49 00.81 06.83 10.04 12.29 13.77 14.92 16.26 17.77 19.65 21.32	Cor. v +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3	Corrected for Velocity
$\begin{array}{c} 4\\3\\1\\4-5\\3\\1\\2\\3\\5-6\\3\\\dots\\2-3\end{array}$			5-6 4-5 2 5 5 6 4			21, 33 22, 78 29, 23 31, 12 34, 58 37, 43 38, 72 40, 26 41, 71 45, 80 52, 77	+3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +	

 $19\ PISCIUM = 273\ SCHJELLERUP - Continued$

	PLATE G	264		PLATE G	343	MEA	n Wave-Le	NGTH
Intensity	Character	Wave-Length	Intensity	Character	Wave-Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		t. m.			t. m.	t. m.		t. m.
$\frac{1}{1}$	D D	4653.89		Ď	4654,13	54.01	$+3 \\ +3$	4654.04
_	w B	4656.39	1	Ð	4656.81	56.60	+3	4656.63
$\stackrel{\cdot}{1}$ =2	W B	4660.94				60.88	+3	4660.91
2	n B	$\begin{array}{r} 4664.17 \\ 4665.44 \end{array}$				64.11 65.38	$+3 \\ +3$	4664.14
$\bar{3}$	wn D	4668.11	• • • •			68.05	+3	$\begin{array}{r} 4665.41 \\ 4668.08 \end{array}$
4	wn D	4675.16				75,10	+3	4675.13
1	$\tilde{\mathbf{p}}$	4682.32				82.26	+3	$\frac{4613.13}{4682.29}$
1	n Ď	4688.46				88.40	$+$ $+$ $\frac{7}{3}$	4688.43
i	n D	4691.15				91.09	$\cdot \stackrel{ op}{+3}$	4691.12
3-4	n D	4696.59				96.53	+3	4696.56
		1000.00		\mathbf{Head}	4697.1	97.2	+3	4697.2
6	wn D	4714.64		4	1001.1	14.58	13	4714.61
				Head	4714.7	14.8	1 13	4714.8
1-2	n D	4722.72				22.66	$+3 \\ +3$	4722.69
10	w D	4736.07	10	n D	4736.38	36.23	+3	4736.26
	$_{ m IIead}$	4737.70		Head	4737.51	37.62	+3	4737.65
7-8	В	4738.65	8	В	4738,53	38.59	1 13	4738.62
			1	Ð	4739,76	39.82	+3	4739.85
4–5	n D	4744.06	10	w D	4743.76	43.91	+3	4743.94
7	В	4746.69	6	В	4746.28	46.49	± 3	4746.52
1	n D	4749.77	-2-3	n D	4749.40	49.59	1.3	4749.62
			3	\mathbf{B}	4754.98	55.04	+3	4755.07
			1	Đ	4756.14	56.20		4756.23
1115	****	1222112	2	\mathbf{B}	4756.85	56.91	$\begin{array}{c c} +3 \\ +3 \end{array}$	4756.94
1-2	wn D	4758.49	4.5	n D	4758.27	58.38	+3	4758.41
1	$\mathbf{\tilde{D}}$	4765.91	[1	$\bar{\mathbf{D}}$	4766.24	66.08	+3	4766.11
1	$\tilde{\mathbf{D}}$	4772.67	2	nn D	4772.26	72.37	+3	4772.40
1 1	n D	4784.20	3	nn D	4784.07	81.14	+3	4784.17
1	n D	4789,44	2	n D	4789,36	89.40	+3	4789.43
$\stackrel{\scriptstyle 1}{1-2}$	n D n D	4815.90	2-3	n D	4815.63	15.77	$\begin{array}{c c} & \pm 3 \\ & \pm 3 \end{array}$	4815.81
1	n D	$egin{array}{c} 4823.94 \ 4827.78 \end{array}$	1-2	$\stackrel{\cdots}{ m n}\stackrel{\cdots}{ m D}$	4827.77	$\frac{23.88}{27.78}$	+3	$4823.91 \\ 4827.81$
1	n D	4832.78	$\begin{vmatrix} 1-2\\2 \end{vmatrix}$	n D	4832.17	32.48	+3	4832.51
		40.02.10	l i l	n D	4836.21	36.27	13	4836.30
	• • • •		1	n D	4839.27	39.33	$+3 \\ +3$	4839.36
				" D	4843.40	43.46	$+\frac{73}{3}$	4843.19
··i	n D	4855.44		nn D	4855.17	55.31	+3	4855.34
	11.15	1000,11	ll ī i	n D	4859.37	59.43	± 3	4859.46
i	пĎ	4868.45		11.15	1000.01	68.39	+3	4868.42
î l	n D	4881.60	3-4	n D	4881.71	81.6G	± 3	4981.69
			2	nn D	4900.72	00.78	+3	4900.81
1-2	n D	4921.76	\parallel $\tilde{1}$ \parallel	nn D	4920.23	21.00	+3	4921.03
1	$\overline{\mathrm{n}} \overline{\mathrm{D}}$	4924.94				24.88	+3 +3	4924.91
-		1021.01	II }	• • • •		21.00		1021.01

19 $PISCIUM = 273 \ SCHJELLERUP$

Means of Four Plates

	G 259	,	G 269			G 293			G 357			MEAN	WAVE-I	LENGTH
Intensity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Ve- locity
		t.m.		Head	t.m. 68.48			t.m.			t.m.	t.m. 68.48	+3	t.m. 5168.51
10	wĎ	5173.48	7	D	73.73	1-2	wn D	73.48	2 3	n D	73.48	73.54	± 3	5173.57
			7	Ð	83.70	1-2	n D	83.77				83.74	± 3	5183.77
			2	wn B	87.36				1	B	87.19	87.28	+3	5187.31
						1	n D	88.89	1-2	n D	88.95	88.92	+3	5188.95
1	\mathbf{B}	5190.94	4	В	91.49	1-2	n B	90.81				91.08	± 3	5191.11
4	wn D	5192.69	3	D	93.34	$\parallel 2$	D	92.77	4	n D	93.31	93.03	± 3	5193.06

 $19\ PISCIUM = 273\ SCHJELLERUP - Continued$

	G 259 G 269					G 293			G 357		MEAN	WAVE-	LENGTH	
Inten- sity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
$\begin{array}{c} 2\\ 1\\ \vdots\\ 3\\ 4\\ 10\\ 2\\ \vdots\\ 3\\ 4\\ 10\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 2\\ 1\\ 1\\ 2\\ 2\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 2\\ 2\\ 3\\ 3\\ 2\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 2\\ 3\\ 3\\ 2\\ 2\\ 3\\ 3\\ 2\\ 3\\ 2\\ 3\\ 3\\ 2\\ 3\\ 2\\ 3\\ 3\\ 2\\ 3\\ 3\\ 2\\ 3\\ 3\\ 2\\ 3\\ 3\\ 2\\ 3\\ 3\\ 2\\ 3\\ 3\\ 3\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	n B B B C n B n B n D n B D n B D D n B D D n B D D n D n D n B n D n B n D n B n D n B n B n D n B n B n D n B n B n D n B n B n D n B n B n B n B n B n B n B n B n B n B	t.m. 5196.92 5203.76 5214.40 5216.53 5218.82 5226.34 5229.38 5234.19 5247.32 5249.28 5251.46 5255.67 5270.27 5279.43 5283.79 5297.94 5305.00 5312.99 5314.69 5305.00 5312.99 5314.69 5305.00 5312.99 5314.69 5377.10 5327.43 5403.70 5377.10 5397.43 5403.70 5406.19 5410.25 5412.47 5417.38 5420.21 5423.16 5428.15 5430.37 5432.21 5445.51 5448.30 5451.05 5454.19 5457.13	$\begin{array}{c} \cdots \\ 2 \\ \cdots \\ 6 \\ 1-2 \\ 5 \\ 7 \\ 3-4 \\ 5-6 \\ 1 \\ 6 \\ 3-4 \\ 5-6 \\ 1 \\ 6 \\ 3-4 \\ 2 \\ 3 \\ 2-3 \\ 1 \\ 0-1 \\ 2-3 \\ 9 \\ 9-1 \\ 3 \\ 1 \\ 2-3 \\ 5-6 \\ 1 \\ 5 \\ 6 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1-2 \\ 1 \\ 5 \\ 6 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	B W D B D B D B D B D B D B D B D B D B	t.m. 04.22 08.51 14.85 16.86 18.94 26.93 34.69 47.89 49.83 56.28 70.60 80.13 15.51 18.00 20.62 20.52 20.53 15.51 18.00 20.62 20.62 20.62 20.62 20.62 20.63 20.64 20.65 20.	$\begin{array}{c} 1 - 2 \\ \cdots \\ 1 - 2 \\ 1 \\ 1 \\ 1 \\ 1 - 2 \\ 1 \\ 1 \\ 1 - 2 \\ 3 \\ 4 \\ 1 \\ 2 - 3 \\ 1 \\ 2 - 3 \\ 1 \\ 2 - 3 \\ 1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3$	n B B nD B nD nD nB nD nB nD nD nB nD nD nD nB nD nD nD nB nD nD nD nB nD nD nD nB nD nD nD nB nD nD nD nB nD nD nD nB nD nD nB nD nD nB nD nD nB nD nD nB nB nD nB nD nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nB nB nB nB nB nB nB nB nB nB nB	t.m. 97.19	$\begin{array}{c} 1 \\ \cdots \\ \cdots \\ \vdots \\ 6 \\ \cdots \\ 5 \\ -6 \\ \cdots \\ 5 \\ -6 \\ \cdots \\ 5 \\ -6 \\ \cdots \\ 2 \\ 2 \\ 1 \\ -2 \\ 2 \\ 3 \\ 2 \\ 1 \\ -2 \\ 2 \\ -3 \\ 2 \\ 1 \\ 1 \\ 1 \\ \cdots \\ 1 \\ -2 \\ 2 \\ -3 \\ 2 \\ 1 \\ -2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 1 \\ -2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 1 \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ 1 \\ \cdots \\ 2 \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ \cdots \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ \cdots \\ 2 \\ -3 \\ 2 \\ -3 \\ 2 \\ \cdots \\ 2 \\ -3 \\ 2 \\ -3 \\ -3 \\ \cdots \\ 2 \\ -3 \\ -3 \\ \cdots \\ 2 \\ -3 \\ -3 \\ \cdots \\ 2 \\ -3 \\ -3 \\ \cdots \\ 2 \\ -3 \\ -3 \\ \cdots \\ 2 \\ -3 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2 \\ -3 \\ \cdots \\ 2$	n B wD nD	t.m. 97.60	t.m. 97.07 03.99 08.32 14.60 16.72 18.72 26.16 29.67 34.24 39.91 45.34 47.53 49.44 51.41 55.92 70.42 79.55 28.13 98.15 02.72 05.22 13.18 15.23 17.87 20.95 25.28 28.99 36.90 39.32 41.26 67.57.57 62.95 66.90 68.74 77.54 67.57 67.5	**************************************	t.m. 5197.10 5204.02 5208.35 5214.63 5216.75 5218.75 5226.19 5229.70 5234.27 5245.37 5247.56 5279.46 5279.52 5218.75 5249.47 5251.44 5255.96 5270.46 5279.52 5313.22 5315.27 5317.91 5320.99 5325.32 5315.27 5317.91 5320.99 5325.32 5339.36 5341.30 5350.07 5352.71 5362.99 5366.94 5377.58
2 2 3	B B 	5465.41	$\left\{ egin{array}{c} 4 \\ \vdots \\ 2 \\ 1 \end{array} \right.$	w D B D	$\left \begin{array}{c} 63.72 \\ 68.47 \\ 72.78 \\ 74.82 \end{array}\right $	$ \begin{array}{c c} & 1-2 \\ & \ddots & \\ & 0-1 \\ & 3 \\ & 1-2 \end{array} $	n B n B n D	62.77 67.99 72.27 74.47	$\begin{array}{ c c c }\hline 2 \\ 1-2 \\ 2 \\ 2 \\ 2 \\ 2 \\ \end{array}$	B n D B n D	63.01 64.81 66.90 72.11 74.28	$\begin{bmatrix} 62.87 \\ 63.72 \\ 65.11 \\ 67.79 \\ 72.39 \\ 74.52 \end{bmatrix}$	+4 +4 +4 +4 +4 +4	5462.91 5463.76 5465.15 5467.83 5472.43 5474.56

19 PISCIUM=273 SCHJELLERUP — Continued

	G 259)		G 269			G 293			G 357		MEAN	WAVE-I	LENGTH
Intensity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Inten- sity	Char- acter	Waye- Length	Inten- sity	Char- acter	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
$\begin{array}{c} \dots \\ 2^{2-3} \\ 2^{-3} \\ 1 \\ 1 \\ \dots \\ 1 \\ \dots \\ 1 \\ \dots \\ \dots \\ \dots \\ 1 \\ \dots \\ \dots$	D n B n D n B n D n B n D n B n D	5482, 52 5195, 77 5498, 52 5501, 96 5506, 76 5500, 15 5510, 90 5528, 45 5539, 86 5547, 95 5583, 84 5586, 80 5597, 15 5609, 13 5617, 04 5634, 21 5635, 96 5635, 18 5673, 49 5676, 61 5686, 88	$\begin{array}{c} 1 \\ 5 \\ 2 \\ -25 \\ -21 \\ -25 \\ -21 \\$	D B D D D D D D D D D D D D D D D D D D	$\begin{array}{c} \text{t.m.} \\ 78.10 \\ 80.70 \\ 83.19 \\ 96.54 \\ 98.544 \\ 98.544 \\ 98.545 \\ 98.541 \\ 98.541 \\ 98.545 \\ 98.541 \\ 98.55 \\ 98.545 \\ 98.55 \\ 98.55 \\ 98.55 \\ 98.55 \\ 98.55 \\ 98.55 \\ 98.55 \\ 99.97$	$\begin{array}{c} 1 \\ 2 \\ 4 \\ 5 \\ 1 \\ 1 \\ -2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	B D D D D D D D D D D D D D D D D D D D	50,99 82,63 95,13 95,13 98,13 98,13 98,13 98,13 98,13 98,13 10,15 10,25 10	$\begin{array}{c} 1-2\\ 2-3\\ \dots\\ 2-3\\ \dots\\ 3-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1-2\\ 1\\ 1\\ 1-2\\ 1\\ 1\\ 1-2\\ 1\\ 1\\ 1-2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2-3\\ 3\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 2\\ 3\\ 3\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	n D D D D D D D D D D D D D D D D D D	6.m. 78.00 82.44 17.71 97.01 97.72 12.34 25.99 27.92 27.92 28.41 28.99 27.92 28.41 28.99 27.92 31.68 33.41 39.67 48.20 552.19 56.22 66.27 70.17 73.17 76.07 78.07	**************************************		t.m. 5478.09 5480.89 5482.73 5496.07 5598.27 5502.07 5507.18 5509.51 5510.72 5512.70 5524.44 5528.24 5531.96 5533.87 5539.73 5541.79 5546.32 5562.55 5564.49 5566.60 5570.57 5576.49 5585.80 5585.80 5585.80 5586.77 5594.51 5599.60 5606.40 5609.22 5615.56 5617.38 5620.29 5641.12 5634.21 5636.13 5637.59 5641.12 5644.07 5640.88 5653.44 5655.10 5658.69 5673.76 5640.75

 $19\ PISCIUM = 273\ SCHJELLERUP - Continued$

	G 259)		G 269			G 293			G 357		MEAN	WAVE-I	LENGTH
Intensity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
6 8 1	B nB D	t.m. 5717.92 5724.00 5730.46	2 1 4-5 3 2 1 1 3 2-3 2-3 1-2	B nD nB nD nB nD nB	t.m. 17,74 22,01 24,31 31,76 44,34 46,95 49,08 56,89 62,80 66,90 71,27 75,49	$\begin{array}{c c} & \ddots & \\ & 1 & \\ 2-3 & \\ & 3 & \\ & 1 & \\ & 1 & \\ 2-3 & \\ & 1 & \\ 1-2 & \\ & 1 & \\ 1-2 & \\ \end{array}$	n D B n D n D n B n D n B n D n B	t.m. 20.95 24.13 31.40 44.75 47.15 50.02 57.06 62.59 67.60 70.73 76.08	2 1-2 3 2-3 	D B n D n D n D n D B	t.m. 21.12 23.80 31.41 43.85 62.79 71.44 75.74	t.m. 17.83 21.36 24.08 31.16 44.31 47.05 49.55 56.98 62.70 67.25 71.15 75.77	+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	t.m. 5717.87 5721.40 5724.12 5731.20 5744.35 5747.09 5749.59 5757.02 5762.74 5767.29 5771.19
			1	n D	77.76	1	n D	77.79	1	$\bar{\mathbf{D}}$	77.78	77.78	+1	5777.82
			$egin{array}{c} 1-2 \\ 3 \\ 1-2 \\ 1 \end{array}$	n D D n D	80.18 85.13 98.66 22.69	$egin{bmatrix} 1-2 \\ 1 \\ 1 \\ \dots \end{smallmatrix}$	n B n D n D	79,73 85,92 98,61	$egin{array}{c} 1 \ \cdots \ 1-2 \ 1 \end{array}$	B D D	79.55 98.16 22.69	79.82 85.53 98.64 22.69	$\begin{array}{c} +4 \\ +4 \\ +4 \\ +4 \end{array}$	5779.86 5785.57 5798.68 5822.73

$280\ SCHJELLERUP$

189	PLATE G 346 1899, October 18, G.M.T. 16h1. Hour angle, W 1h5 Star fair; comparison good						PLATE G 367 1899, December 29, G.M.T. 11\(\hat{p}\)2. Hour angle, W 4\(\hat{h}\)± Star fair; comparison good						MEAN WAVE-LENGTH			
nten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity		
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.		
						il	nn D	62.2999	4429.56	-34	4429, 22	29.14	+37	4429.51		
3	nn D	49.1115	4434.67	+9	4434.76							34.85	+37	4435.22		
							nn D	62.0955	4436.12	-35	4435.77	35.69	+37	4436.06		
						BŽ	from	62.0720	4436.88	-35	4436.5	36.4	± 37	4437.0		
						B 3	to	61.9785	4439.92	-36	4439.56	39.48	+37	4439.9		
	nn B	49.9832	4463.24	+5	4463.29	`						63.38	+38	4463.76		
						4	wn D	61.1895	4466.08	-42	4465,66	65.58	+38	4465.96		
						1	n D	61.0215	4471.77	-43	4471.34	71,26	+38	4471.64		
	nn D	50.5099	4481.06	+2	4481.08	1	n D	60.7203	4482.09	-45	4481.64	81.36	+38	4481.74		
1	n D	50.7400	4488.98	+ 1	4488.99	1	n D	60.5093	4489.41	-47	4488.94	88,97	+38	4489.35		
	nn D	50.9450	4496.11	0	4496.11		wn D	60.2908	4497.07	-48	4496.59	96,35	+38	4496.73		
	nn D	51.0778	4500.76	- 1	4500.75							00.84	+38	4501.22		
2	Ď	51.2257	4505.98	- 2	4505.96	2	n D	60.0242	4506.51	-48	4506.03	06.00	+38	4506.38		
• • • •	nn D	51.4054	4512.36	- 3	4512.33	3	nn D	59.8414	4513.06	-49	4512.57	12.45	+38	4512.83		
1-2	nn D	51.5497	4517.53	- 4	4517.49	$\mid 2 \mid$	n D	59.6899	4518.53	-49	4518.04	17.77	+38	4518.15		
1-2	an B	51.6385	4520.73	- 5	4520.68	1::		50.5503	1730 33		4500.50	20.77	+38	4521.15		
1	nn D n B	51.6825	4522.32	- 5	4522.27	1	n D	59.5592	4523.28	-49	4522.79	22.53	+38	4522.91		
1	w D	$51.7274 \\ 51.8039$	4523.94 4526.73	$-5 \\ -5$	$4523.89 \\ 4526.68$	1-2	n D	59.4587	4526.96		4526.47	$24.98 \\ 26.58$	$+38 \\ +38$	4525.36 4526.96		
		91,5009	4020.10			1-2		59.352	4530.88	-49 -49	$\frac{4520.47}{4530.39}$	$\begin{vmatrix} 20.35 \\ 30.31 \end{vmatrix}$	+38	4520.80 4530.7		
	wnD	52.0274	4534.89	- 6	4534.83	$ \mathbf{D} $	from			_		34.92	+38	4535.30		
		92.0214				\mathbb{P}^{γ}	to	59.213	4536.01	-49	4535.52	35.44	± 38	4535.8		
	w B	52.1002	4537.58	7	4537.51			00.210	1550.01		1000.02	37.60	± 38	4537.98		
1	n D	52.1520	4539.49	$1-\dot{7}$	4539.42							39.51	+38	4539.89		
	wD	52.5197	4553.21	-9	4553.12	9	w D	58.7399	4553.76	- 49	4553.27	53.20	+38	4553.58		
-	from	52.569	4555.08	$-\tilde{9}$	4555.0				2333113			55.09	-38	4555.5		
\mathbf{B}	to	52.669	4558.86	-9	4558.8							58.89	+38	4559.3		
							nn D	58.5685	4560.29	-48	4559.81	59.73	-38	4560.11		
1	D	52.7667	4562.56	-10	4562.46							62.55	-38	4562.93		
0-1	D	52.8267	4564.85	-10	4564.75							64.84	+38	4565.22		
B {	from	52.844	4565.52	-10	4565.4							65.48	+38	4565.9		
1	to	52.937	4569.09	-10	4569.0							69.08	+38	4569.5		
	nn D	52.9930	4571.41	-10	4571.31		nn D	58.2920	4571.53	-47	4571.06	71.15	+38	4571.53		
							nn D	58.1352	4577.06	-46	4576.60	76.52	+38	4576.90		

		PLA	те G 346	**				PLS	ATE G 367			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		Scale Reading 53, 3020 53, 3707 53, 6198 53, 7070 53, 6198 53, 7070 53, 8745 54, 1182 54, 1182 54, 1477 54, 1922 54, 4330 54, 4779 54, 6947 55, 2574 55, 2574 55, 2574 55, 6657 56, 3944 56, 9179	Length by	from		tensity		Scale	Length by	from		*** reted for for Velocity *** *** *** *** *** *** *** *** ***	+38 +38 +38 +38 +38 +38 +38 +38 +38 +38	for
9 Limits of above	B D 	59,3136 59,3192 59,3710 59,4042	4860.61 4859-29 4862.08 4863.88	+27 +27 +27 +27 +27 +27	4860.88 4859.56 4862.35 4861.15	B Max B	nn D nn B nn D nn D from to B nn D from to	52,3259 52,0585 51,9090 51,7328 51,7085 51,6390 51,6405 51,4683 51,3685 51,2060	4839.54 4857.18 4865.34 4875.05 4876.40 4880.26 4878.31 4881.85 4889.82 4895.45	- 8 - 9 -10 -11 -11 -11 -11 -12 -13 -14	4839, 46 4857,09 4865,24 4874,94 4876,29 4880,15 4878,20 4881,74 4889,70 4895,32 4899,42	39.38 57.01 60.97 59.65 62.44 61.70 74.86 76.21 80.07 78.42 81.66 89.62 95.21	-40 -41 -41 -41 -41 -41 -41 -41 -41 -41 -41	4839.78 4857.42 4861.38 4860.1 4862.9 4865.11 4875.27 4876.6 4880.5 4878.53 4882.07 4890.03 4895.7 4899.8

		PLA	ATE G 346					PL	ATE G 367			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.	Max	В	mm. 51.3245	t.m. 4897.94	-13	t.m. 4897.81	t.m. 97.73	+41	t.m. 4898.14
						1-2	nn D	51.2795	4900.51	-14	4900.37	00.29	+41	4900.70
			* * * * * * * *				nn D	50.9320	4920.49	-17	4920.32	20.24	+41	4920,65

$280\ SCHJELLERUP$

1899,		ber 28, G.M.	TE G 366 T. 1156. Ho comparison		e, W 55 ±	19	900, Janu	ary 2, G.M.	ATE G 370 T. 1141. Ho comparison		e, W 555	MEAN	WAVE	-Length
Inten- sity	Char- acter	Mean Scalo Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		nım.	t.m.		t.m.			nım.	t.m.		t.m.	t.m.		t.m.
Spectrum	begins	40.9180	5170.70	-43	5170.27			48.7620	5168.48	-29	5168.19	69.23	+42	5169.7
	· · · · <u>·</u>				2222712		nn D	48.9115	5174.48	-33	5174.15	73.92	+43	5174.35
	nn D	41.2347	5183.60	-43	5183.17		<u>.</u>	10 0001	7100 OF		5100 10	83.45	+43	5183.88
3,	nD	41.4822	5193.76	-43	5193.33	2	n D	49.3884	5193.87	-45	5193.42	93.38	+43	5193.81
	from	41.7300	5204.03	-45	5203.58			10 7071	5010 00	 E 1	5000 55	03.81	+43	5204.3
D }	,	44 0000	#010 F0	17	5010 91		w D	49.7854	5210.28	-51	5209.77	09.54	+43	5209.97
(to	41.9395	5212.78	-47	5212,31			50. 1719	5226.60	-55	5226.05	$12.54 \\ 25.76$	+43	5213.0
	wn D	42.2515	5225.95	-49	5225,46	8	w D	- 50.1743 - 50.2250	5228,75	—əə ⊢—56	5228.19	27.96	+43	5226.19
	• • • •					B }	from	50,2230	5246,40	$-50 \\ -57$	5245.16 5245.83	45.60	$+43 \\ +43$	5228.4 5246.0
						'	to n D	50,3650 50,3650	5234.70	-57 -57	5234.13	33.90	[+43]	5234.33
	nn D	42.7508	5247.38	-51	5246.87	2	n D	50.6702	5247,78	-56	5234.13 5247.22	47.05	+43	5247.48
* * * * !	nn D	42.8324	5250.92	$-51 \\ -51$	5250.41	ī	n D	50.7688	5252.04	-56	5251.48	50.95	+43	5251.4
5	n D	43.3324 43.2787	5270.48	$-31 \\ -49$	5269.99	4	n D	51.2009	5270.91	-54	5270.37	70.18	+44	5270.62
2-3	$\begin{bmatrix} \mathbf{n} \mathbf{D} \end{bmatrix}$	43.5644	5283.19	-48	5282.71	-	nn D	51.4825	5283.38	-50	5282.88	82.80	+44	5283.24
2	n D	43.8934	5298.01	-45	5297.56		nn D	51.8159	5298.33	-45	5297.88	97.72	+44	5298.16
ĩ	$\begin{bmatrix} n D \\ n D \end{bmatrix}$	43.9923	5302.50	-45	5302.05				0200,00			02.28	144	5302.72
	$ \min_{\mathbf{n}} \mathbf{\tilde{D}} $	44.1069	5307.73	-43	5307.30							07.53	+44	5307.97
• • •	nn D	44.2664	5315.05	-41	5314.64						,	14.87	-44	5315.31
	nn D	44.3880	5320.68	-40	5320.28							20.51	$+ \hat{4} \hat{4}$	5320,95
	wn D	44.5779	5329.48	-36	5329.12		wD	52.5064	5329,94	-35	5329.59	29.36	-44	5329.80
	nn D	44.7330	5336,73	-35	5336.38							36.61	44	5337.05
						1	n D	52,7540	5341.49	-32	5341.17	41.40	-44	5341.84
4	D	45.0102	5349.81	-30	5349.51	$\parallel \tilde{3} \parallel$	n D	52.9510	5350.76	-29	5350,47	49.99	-44	5350.43
						$\parallel 2$	В	53.0073	5353.43	-28	5353.15	52.92	+45	5353.37
						11	from	53.0430	5355.12	-28	5354.84	54.61	+45	5355.1
						Spec.	to	53.3530	5369.93	-24	5369.69	69.46	-44	5369.9
10	w D	45.4645	5371.56	-25	5371.31	8	D	53,3993	5372.15	-23	5371.92	71.62	+45	5372.07
2	В	45.5302	5374.74	-25	5374.49	3	В	53.4640	5375,27	-22	5375.05	74.77	+45	5375.22
	nn D	45.5707	5376.71	-24	5376.47		n D	53.5124	5377.81	-22	5377.59	77.03	+45	5377.48
(from	45.5880	5377.55	-24	5377.31							77.54	+45	5378.0
B }						Max	В	53.5632	5380 07	-21	5379.86	80.09	+45	5380.54
(to	45.6610	5381.11	-23	5380.88							81.11	+45	5381.6
Con. S	from	45.7350	5384.71	-22	5384.49							84.72	+45	5385.2
Spec. ?	to	45.8425	5389.98	-22	5389.76				F001 F0		-001 00	89.99	+45	5390.4
	nn D	45.8650	5391.09	-21	5390.88		nn D	53.7980	5391.52	-19	5391.33	91.11	+45	5391.56
6	D	45.9830	5396.91	-21	5396.70	4	n D	53.9200	5397.51	-17	5397.34	97.02	+45	5397.47
	···-	13.1017			- 10	5 (from	53.9680	5399.88	-17	5399.71	99.48	+45	5399.9
	D	46,1617	5405.77	-19	5405.58	$\parallel \mathbf{B} \rbrace$	4	51 0010	E 105 01	10	5105 15	$\begin{vmatrix} 05.81 \\ 05.22 \end{vmatrix}$	+45	5406.26
						.[to	54.0840	5405.61	-16	5405.45		+45	5405.7 5408.33
	· · · · D	16 0107	5110 16	10	5100.00	1	B	54.1377	5408.27	-15	5408.12	07.89	+45	
3	from	46.2497	5410.16	-18	5409.98		nn D	54.1800 54.2520	5410.37	-15	$5410.22 \\ 5413.83$	$\begin{vmatrix} 10.10 \\ 13.03 \end{vmatrix}$	$^{+45}_{-45}$	5410.55 5413.5
\mathbf{B}	from	$\frac{46.2950}{46.4160}$	5412.42	-18	5412.24	$\parallel \mathbf{B} \rangle$	from	54.2520 54.3540	5413.97 5419.07	$-14 \\ -13$	5413.83	18.61	$^{+40}_{-45}$	$5413.5 \\ 5419.1$
(to	46.4160	5418.49	-17	5418.31	Max	to	54.3223	5417.48	-13 - 13	$5418.94 \\ 5417.35$	$18.61 \\ 17.58$	+45	5418.03
2-3	_D	46.4445	5419.92	-17	5419.75	Max	nn D	54.3225 54.3795	5420.34	$-15 \\ -12$	5420.22	19.99	+45	5418.05 5420.44
2)	D	10.3110	0410.02	-11	0310.10		ши	01.0100	PG.0226	-12	0x20.22	10.00	L10	EI, OLIG

											11		
	PLA	гЕ G 366					PL.	ATE G 370			MEAN	WAVE	LENGTH
	har- eter Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
1-2 1 1 2 1 1 2 1 1 2 1 1	Scale Reading	Length by Formula t.m. 5422.85 5425.38 5426.87 5429.84 5434.11 5438.53 5440.35 5445.72 5447.65 5449.74 5454.42 5456.04 5458.63 5460.57 5463.42 5466.48 5474.76 5507.99 5512.30 5514.18 5517.60 5527.20 5528.30 5531.11 5533.24 5536.74 5566.74 5566.74 5566.74 5567.74 566.74 5567.74 566.74 5567.74 566.74 5567.74 566.74 5567.74 566.74 5567.74 566.74 5567.74 566.74 5668.89 5688.81	from Curve -17 -16 -16 -16 -15 -15 -14 -14 -14 -14 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	Length	ten-sity	nn D n B nn D n B nn D n B nn D n B nn D n B nn D n B nn D n B n D n D n D n D n D n D n D n D n D n D	Scale Reading mm. 54.5747 51.6125 54.6012 54.7800 54.8940 54.9297 55.0112 55.0857 55.1330 55.2845 55.4374 55.5940 56.0978 56.1430 56.2182 56.2300 57.5315 57.5850 57.6759 57.8240 58.2827 58.3305	Length by Formula t.m. 5430,18 5132,10 5434,56 5440,62 5146,46 5448,28 5452,48 5456,33 5458,78 5463,87 5466,65 5471,66 5482,91 5509,85 5512,30 5516,37 5517,51 5554,43 5567,88 5581,64 5581,80 5582,89 5582,98 5592,98 5592,98 5592,98 5598,24 5606,87 5620,90 5630,31	from Curve	Length t.m. 5430.07 5432.00 5434.46 5440.53 5446.38 5448.20 .5452.41 .5456.26 5458.71 .5463.80 5466.59 5174.60 5482.85 .5509.77 .5512.22 .5516.28 .5517.42 .5554.27 .5554.27 .5554.27 .5567.70 .5581.43 .5584.59 .5598.06 .5606.61 .5620.62 .5633.65 .5636.51	reted velocity t.m. 22.94 25.45 26.94 29.88 32.23 34.21 38.61 40.37 45.98 47.86 49.83 52.18 54.52 66.47 74.62 66.47 74.62 66.73 69.54 11.99 14.28 16.05 17.45 27.29 28.33 36.89 41.98 41.88 89.52 41.98 41.88 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 84.18 89.52 85.74	GV 45454545454545454545454545454545454545	t.m. 5423.39 5425.90 5427.39 5430.33 5432.68 5434.66 5439.06 5446.4 5448.31 5455.0 5455.0 5456.54 5455.0 5456.51 5467.08 5510.00 5512.9 5514.74 5516.51 5517.9 5517.9 5527.8 5531.66 5533.79 5557.27 5567.60 5584.65 5589.99 5593.21 5567.94 5568.6 5584.65 5589.99 5563.66 5584.65 5589.99 5563.20 5636.78 5645.22 5650.18 5657.2 5636.78 5645.22 5658.23
1 ni ni ni ni ni ni ni n	n D 50,5230 n D 50,6050 om 50,6230 50,7215	5644,85 5649,82 5650,93 5656-89	-33 -34 -31 -35	5644,52 5649,48 5650,59 5656,54		m D n D wn B nn B nn B					$\begin{array}{r} 44.75 \\ 49.71 \\ 50.82 \\ 56.77 \end{array}$	$^{+47}_{-47}_{+47}$	5645 22 5650.18 5651.3 5657.2

		PLA	TE G 366					PL	ATE G 370	-		MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
2 	n B nn D	mm. 51.7968 51.9112	t.m. 5724.11 5731.46 5744.10		t.m. 5723.65 5730.99	Max 1-2 B {	n D from to	59,7514 59,8747 59,8747 59,9020 60,0390	t.m, 5721.68 5732.60 5734.40 5743.30	$ \begin{array}{r} -41 \\ -42 \\ -42 \\ -43 \end{array} $	t.m. 5724,27 5732,18 5733,98 5742,87	42.64	+48 +48 +48 +48 +48	t.m. 5724.44 5731.70 5732.43 5734.2 5743.1
2-3 1	nn D nn D wn B wn D	52.1065 52.2212 52.3143 52.4020 52.5380	5751.60 5757.70 5763.48 5772.49	-50 -50 -50 -50 -50	5751.10 5757.20 5762.98 5771.99	1 2 1 2 End	n D w B n B n D n B	60.1725 60.2697 60.4330 60.4740 60.6135 61.9530	5751.89 5758.25 5769.00 5771.71 5780.98 5873.40	$ \begin{array}{r} -44 \\ -45 \\ -46 \\ -46 \\ -46 \\ -50 \end{array} $	5751.45 5757.80 5768.54 5771.25 5780.52 5872.90	43.84 51.22 57.57 63.21 68.31 71.62 80.29 72.67	$ \begin{array}{r} +48 \\ +48 \\ +48 \\ +48 \\ +48 \\ +48 \\ +48 \\ \end{array} $	5744,32 5751,70 5758,05 5763,69 5768,79 5772,10 5780,77 5873,

318 $BIRMINGHAM = DM.68^{\circ}617$

189	99, Janus	arv 15. G.M.	TE G 276 T. 1654. Ho comparison	ur angle fair	, E 454	1		ch 31, G.M.T	ATE G 393 '. 18b±. Ho t; comparis			MEAN	WAVE	-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor.	Corrected for Velocity
2-3 2-3 2-3 2 3 1 1-2 2 2 1-2 1 2 1 1	nn D nn D nn D nn B nn D nn D nn D nn D	mm. 64.0863 63.7893 63.4673 63.3981 63.2537 63.0670	t.m. 4389.68 4395.06 4400.94 4402.21 4404.86 4408.30	$\begin{array}{c} +99\\ +87\\ +66\\ +54\\ + \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	t.m. 4389.77 4395.14 4401.01 4402.27 4404.91 4408.34	B { 1 2 B } Max B { 2 6 1 1 3 8 1	nn D wn D nn B wn D nn D nn D from to B nn D nn D nn D nn D nn D nn D nn D n	mm. 56.1606 56.4269 56.7340 56.8282 56.9736 57.2130 57.4915 58.0494 58.1354 58.2797 58.3200 58.4530 58.4530 58.3650 58.4726 58.5374 58.6850 59.1260 59.1260 59.1260 59.1260 59.1260 59.1260 59.1260 59.1260 59.1260 59.1557 59.2095 59.2829 59.4432 59.5472	t.m. 4390, 45 4395, 37 4401, 10 4402, 86 4405, 59 4410, 10 4414, 60 4415, 41 4426, 15 4428, 66 4431, 40 4434, 00 4432, 29 4434, 40 4435, 67 4438, 58 4439, 54 4447, 30 4447, 30 4447, 94 4449, 01 4450, 49 4453, 71 4455, 81 4462, 56 4461, 34 4465, 89	$\begin{array}{c} -47 \\ -48 \\ -50 \\ -50 \\ -51 \\ \cdots \\ -52 \\ -53 \\ -55 \\ -55 \\ -55 \\ -56 \\ -56 \\ -56 \\ -56 \\ -56 \\ -56 \\ -56 \\ -56 \\ -57 \\ -57 \\ -57 \\ -57 \\ -57 \\ -57 \\ -57 \\ -57 \\ -57 \\ -57 \\ -58 \\ -58 \\ -58 \\ -58 \\ -58 \\ -58 \\ -58 \end{array}$	t.m. 4389.98 4394.89 4400.69 4402.36 4405.08 4409.58 4414.07 4414.88 4425.60 4428.11 4430.08 4433.44 4431.73 4433.84 4435.11 4438.02 4438.98 4446.73 4447.37 4448.44 4440.92 4453.13 4455.23 4461.98 4461.98 4461.76	t.m. 89.88 95.02 00.87 02.32 05.00 08.37 09.55 14.04 14.96 25.71 27.81 30.12 30.81 33.41 31.70 33.81 35.34 38.08 38.95 44.30 44.83 46.70 47.32 48.46 49.89 53.21 555.20 59.97 61.92 63.76 65.28 71.57	+15 +15 +15 +15 +15 +15 +15 +15 +15 +15	t.m. 4390.03 4395.17 4401.02 4402.47 4405.15 4408.52 4409.70 44145.11 4425.86 4427.96 4430.27 4431.85 4433.96 4433.96 4438.23 4438.23 4438.10 4444.45 4448.61 4450.04 446.9 4446.9 4446.9 4455.35 4455.35 4460.12 4462.07 4463.81 4465.43 4465.43 4465.43
 1	nn D	59.5902	4475.98	- 3 - 8	4475.90	B {	from to	60.3810 60.4880	4472.90 4474.90	$ \begin{array}{c} -58 \\ -57 \\ \end{array} $	4472 32 4474.33	72.29 74.30 75.93	$+15 \\ +15 \\ +15 \\ +15$	4472.4 4474.5 4476.08

318 BIRMINGHAM — Continued

		PLA	TE G 276	-				PL	ATE G 393			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		59, 2813 59, 0411 58, 9247 58, 5813 58, 3240 58, 1063 57, 3650 57, 3650 57, 3650 57, 3650 57, 3650 57, 3650 57, 3650 57, 3650 56, 7118 56, 5708 56, 7118 56, 5708 56, 718 56, 6471 56, 5708 56, 3191 56, 2963 56, 7430 55, 9955 55, 9160 55, 9955 55, 9160 55, 9955 55, 9160 55, 4598 55, 4400 55, 2430 55, 2430 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 54, 9870 55, 9880 53, 7840	Length by Formula L.m. 4482.32 4487.28 4489.70 4496.89 4501.73 4502.40 4506.20 4506.20 4506.20 4508.51 4522.94 4528.54 4531.32 4535.78	from Curve	t.m. 4482, 23 4487, 19 4489, 60 4496, 79 4501, 10 4506, 10 4506, 10 4506, 10 4508, 61 4509, 01 4518, 07 4522, 86 4528, 47 4531, 26 4537, 20 4535, 72 4537, 20 4536, 30 4546, 58 4549, 31 4545, 40 4546, 58 4549, 31 4555, 20 4556, 31 4560, 31 4560, 31 4570, 74	1 2 2 2 3 B	nn D nn B nn B nn D nn D nn B nn D nn D	8cale Reading mm. 60, 7596 60, 8585 60, 9177 61, 0422 61, 0989 61, 2096 61, 5444 61, 5749 62, 0837 62, 1421 62, 2669 62, 5267 62, 6753 62, 7391 63, 1029 63, 3017 63, 3420 64, 1530 64, 3290 64, 2470 64, 5982 64, 5934 64, 6160 64, 7900 64, 5579 64, 9976 65, 8664 65, 8664 65, 8665 66, 66, 66, 66, 66, 66, 66, 66, 66,	Length by Formula	from		for	for	for
2	to n D	53.4800 53.4613	4612.80 4613.27	+13 +14	4612.93 4613.41	$\begin{bmatrix} 1\\1\\2 \ 3 \end{bmatrix}$	nn Đ n B n Đ	66,4517 66,5241 66,5834	4610.69 4642.50 4613.97	$\begin{bmatrix} -23 \\ -23 \\ -22 \end{bmatrix}$	4612.27 4613.75	12.24 12.96 13.58	-15 15 -15	4612.39 4613.1

$318\ BIRMINGHAM-Continued$

		PL.	ATE G 276					$_{\mathrm{PL}}$	ATE G 363			MEAN	WAVE	-LENGTH
Inten- sity	Char- acter	Meau Scale Reading	Wave- Length by Formula	Cor. from Cnrve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor.	Corrected for Velocity
5 3-4 8 6 5 2-3 6	n B n D n B n D n B nn D	mm. 53.3983 53.3478 53.2801 53.2061 53.1385 53.0779	t.m. 4614.81 4616.06 4617.73 4619.56 4621.23 4622.74 4638.77 4640.10	+14 +14 +14 +15 +15 +15 +18 +18	t.m. 4614.95 4616.20 4617.87 4619.71 4621.38 4622.89 4638.95 4640.28	6 4 7 6 2 8 2 3-4 6	n B n D n B n D n D n B n B n D from	mm. 66. 6355 66. 6895 66. 7479 66. 8206 66. 9471 67. 2030 67. 2736 67. 5707 67. 6277 67. 6610	t.m. 4615.28 4616.63 4618.09 4619.92 4623.11 4629.60 4631.40 4639.28 4640.49 4641.36	$\begin{array}{c} +22 \\ +22 \\ +21 \\ +21 \\ +21 \\ \vdots \\ +18 \\ +18 \\ +16 \\ +16 \\ +15 \\ \end{array}$	t.m. 4615.06 4616.41 4617.88 4619.71 4622.91 4629.42 4631.22 4630.12 4640.33 4641.21	t.m. 15.00 16.31 17.88 19.71 21.41 22.90 29.39 31.19 39.04 40.31 41.18	+15 +15 +15 +15 +15 +15 +15 +15 +15 +15	
4	wn B	52.3214	4641.77	+18	4641.95	$\mid \mathbf{B} \mid$	to	67,7680	4644.10	+14	4643,96	$\begin{array}{r r} 42.01 \\ 43.93 \end{array}$	$ +15 \\ +15$	$ugspace 4642.16 \ 4644.1$
Comp 10 5-6 1 Head 4	lete a w D n B n D D n B nn D nn B nn D nn D nn D nn D nn D nn D	48.8333 48.7468 48.6991 48.5694 48.5081 48.4736 48.3766 48.3766 47.7955 47.5756	4735.84 4738.31 4739.68 4743.41 4745.18 4746.17 4748.98 4758.04 4766.01 4772.54 4811.58	+27 +27 +27 +27 +27 +27 +27 +27 +27 +27 +27 +27 +27	4736.11 	D } B { 10 t's } Head 4 2-3 2 2	from to from 4 n B to w D from to w B nn D n D	71.0540 71.1830 71.1830 71.2102 71.3100 71.3881 71.3100 71.4440 71.4469 71.4866 71.5777 71.8869 72.3619 73.6842	4734, 12 4737, 80 4737, 80 4738, 64 4741, 50 4743, 83 4741, 50 4745, 40 4745, 55 4746, 72 4749, 39 4758, 54 4772, 79 4810, 30 4813, 73	+ 4 + 4 + 4 + 4 + 5 + 5 + 6 + 6 + 7 + 12	4734 .16 4737 .84 4737 .84 4738 .68 4741 .54 4743 .88 4741 .54 4745 .45 4745 .40 4746 .78 4749 .45 4758 .61 4772 .88 4810 .42 4813 .85	34.13 36.14 37.81 37.81 38.63 39.98 41.51 45.42 45.53 46.61 49.34 58.46 66.31 72.85 10.39 11.87	+16 $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$ $+16$	4731.3 4736.30 4738.0 4738.79 4740.14 4741.7 4745.6 4745.69 4746.77 4749.50 4758.62 4766.47 4773.01 4810.54 4812.03
3 3 3 3 1 2-3 1 1-2	n D n D n D n D n D n D n D n D n D n D	46.1761 45.9228 45.7775 45.7108 45.6461 45.3000 44.9356 44.4424 44.3110 44.1501 43.5808 42.9971 42.8823 42.6213 41.9581 40.8214	4815, 32 4823, 29 4827, 89 4830, 02 4832, 08 4843, 19 4855, 05 4871, 35 4875, 74 4881, 15 4900, 54 4924, 91 4934, 16 4958, 13 5000, 66	$\begin{array}{c} \vdots \\ +26 \\ +26 \\ +25 \\ +25 \\ +25 \\ +24 \\ +23 \\ \vdots \\ +21 \\ +21 \\ +20 \\ \vdots \\ +17 \\ +14 \\ +12 \\ +8 \\ +1 \end{array}$	4815.58 4823.55 4828.14 4830.27 4832.33 4843.43 4855.28 4871.56 4875.95 4881.35 4900.71 4920.99 4925.05 4934.28 4958.21 5000.67	4 33 33 6 2 2	n B n D nn D n B D	73.7416 73.9984 74.1264 74.2666 75.0324 75.4577 75.7421 75.8584 76.3069 76.8594	4815, 13 4815, 23 4823, 74 4827, 85 4832, 37 4857, 49 4871, 75 4881, 41 4885, 39 4900, 89 4920, 35	+11 +11 +10 +10 +6 +3 + 3 - 8 	4815.34 4823.85 4827.95 4832.47 4857.55 4871.78 4881.42 4885.39 4900.86 4920.27	15.82 15.46 23.70 28.05 30.30 32.40 43.46 55.31 57.52 71.67 75.98 81.39 85.36 00.79 20.62	+16 +16 +16 +16 +16 +16 +16 +16 +16 +16	4815,62 4823,86 4828,21 4830,46 4832,56 4843,62 4855,47 4857,68

318~BIRMINGHAM

-	1	lour ang	26, G M de, E 063 aparisor	•			1899, Ja H	PLATE nuary 20 our ang ood; con), G.M. le E 29	7			He	PLATE nuary 25 our angle ir; comp	, G.M., W 00	1		WA	Me.	AN ENGTH
In- ten- sity	Char- acter	Mean Scale Read- ing	Waye- Length by For- mula	Cor. from	Wave- Length	In- ten- sity	Char- actor	Mean Scale Read- ing	Wave- Length by Form.	Cor, from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor. from Curve	Wave- Length	Uncor. for Velocity	Cor. for V	Cor. for Velocity
1011-	begin n B wn D from to n B from to from to from to n D from to n D from to n D from to n D mn B mn B mn D mn B mn B mn D mn B mn B mn B mn B mn B mn B mn B mn B	Scale Reade ing mm. 45 779 15 8612 15 8612 15 8612 15 8612 15 8612 16 86 9365 16 8345 46 4710 46 7000 47 1980	Length by Eorg the by Formula t.m. 5165 9 5165 9 5165 9 5176 61 5176 10 5184 90 5184 90 5201 60 5211 10 5218 28 5216 20 5217 6229 65 5226 67 5229 65 5226 67 5229 65 5226 70 5229 65 5226 70 5229 65 5226 70 5229 65 5226 70 5229 53 5297 68 5307 52 5312 75 5314 74 5226 53 529 529 53 53 52 52 53 53 52 52 53 53 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	$\begin{array}{c} \text{4.10}, \\ +24 \\ +21 \\ +22 \\ +21 \\ +21 \\ +22 \\ +21 \\ +21 \\ +22 \\ +21 \\ +22 \\ +22 \\ +22 \\ +23 \\ +23 \\ +23 \\ +23 \\ +23 \\ +24 \\ +24 \\ +34 \\ +44 \\ $	C.m. 5166 1 5170 16 61 5170 16 61 5170 28 5156 23 5170 16 61 5183 14 5185 12 5194 51 5204 50 5204 50 5211 247 5216 38 5217 18 5226 23 5221 26 5226 23 5221 27 5226 23 5221 27 5226 23 5221 27 5226 23 5227 13 5227 16 5227 13 5227 16 5227 13 5227 16 5227 13 5227 16 5227 17 5327 19	ten-	ns	mm. 11 895 14 7710 14 5124 14 3792 14 2657 14 0207 13 9770 13 9770 13 9770 13 9770 13 9770 13 9770 13 9770 13 9770 13 9770 13 9770 13 9770 13 9770 14 6520 14 7517 14 6520 14 5507 14 5507 14 5707 14 5072 14 3013 14 0061 14 5070 16 7707 16 02527 16 0357 17 0570 17 0570 18 390	+ 88 63 14 15 15 15 16 16 16 16 16	+22 + 11 + 16 + 15 + 11 + 110 + 15 + 11 + 110 + 15 + 11 + 11	### 18	ten-	nn D	Scale Reading mm	71.31		17 128 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Log He He He He He He He H	+17; +17; +17; +17; +17; +17; +17; +17;	t.m. 5168.8 5173.63 5183.12 5188.95 5193.43 5203.15 5204.9 5206.53 5211.1 5216.53 5226.53 5234.22 5226.53 5234.22 5236.63 5237.77 5306.41 5307.07 5308.83 5331.29 5331.29 5331.32 5338.83 5331.49 5371.49 5371.49 5371.49 5371.49 5371.49 5371.49 5371.49 5371.57 5371.77 5371.77 5371.77 5371.77 5371.77 5371.77 5371.77 5371.77 5371.77 5371
D / 8 1 2 2 3	mid to n B n D	52, 4533 52, 4920 52, 5188 52, 5617	5167-66 5469-70 5171-05 5478-27 5479-65	+21 +21 +25 +25	5467-90 5469-94 5474-29 5473-52	6 23 21	n D	38 1628 38 0615 38 0189 37 9567	71 74 73 91	+17 +18	71-91 71-09		nu B	51 9023	71 92	-11	71 81	71 86 71 20 77 38	+18 +18	5467.06 5472.04 5171.38 5177.56

$318\ BIRMINGHAM = DM + 68\ 617 - Continued$

===		PLATE	e G 253				F	LATE G	284					PLATE (7 379			WA	Mea ve-Li	N ENGTH
In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by For- mula		Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave. Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Car. from	Wave- Length	Uncor. for Velocity	Cor, for V	Cor. for Velocity
tensity 1 1 2 2 2 2 2 3 2 4 3 3 4 4 4 4 4 4 4 4 4 4	n D n B n D n D m B m D n D m B m D n D m D m D m D m D m D m D m D m D	Seale Reading mm. 52, 7895 53, 0162 53, 0931 53, 2206 53, 3060 53, 4642 53, 3060 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 53, 4642 54, 4643 54, 4643 54, 4643 54, 4643 54, 4643 54, 4643 54, 4643 54, 4643 54, 4643 54, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 55, 4643 56	Length by For- mula t.m 5181, 94 5485 68 5497 19 5501 15 5511 13 5531, 10 5531, 13 5531, 10 5531	+25 +26 +26 +26 +26 +26 +26 +26 +26 +26 +26		ten-	nn D	mini. 37.8495 37.5652 37.5652 37.5652 37.4788 37.3865 37.4788 36.8800 36.7890 36.7890 36.6330 36.6122 36.4658 36.5012 36.317 36.3119 36.2720 36.387 36.3119 36.2720 35.8810 35.8810 35.8810 35.707 35.35333 35.2140 35.3531 35.2140 35.3531 35.3197 35.35331 35.3197 35.35331 35.3197 35.31930 31.7160 31.7160 31.7160	L.m. 82:58 67:06:58 6	+188 +19 +199 +199 +199 +177 +177 +177 +177	6.m. 82.76 97.45 001.95 06.77 24.06 28.80 33.648 44.39 552.28 66.55 28.86 66.56 66.56 66.56 66.56 67.75 24.06 28.26 28.26 29.2	ten-		Mean Scale Read-ing S	39,60 39,60 39,60 83,37 89,63 92,23 97,50 09,68	Confrom ('urvo')	4) 20 31 17 37 32 33 4 17 37 32 35 36 36 36 36 36 36 36 36 36 36 36 36 36	8. 8.83; 9.84; 188881288 82; 19875888 83; 2. 38 9. 38 9. 38; 38 9.	+18	t.m. 5483 05 5497 74 5502.30 5521.35 5522.00 5533 89 5533.89 5533.81 5554.35 5556.28 5554.77 5556.28 5557.46 5557.39 5558.31 5558.31 5558.31 5558.31 5558.31 5558.31 5558.31 5558.31 5558.31 5568.31 5588.31
3	nn D nn D nn B nn B nn D nn B nn B nn D nn B	56.7415 56.8735 56.9211		+10 + 8	5707 01 5712.04 5720 32 5720 33 5730.41 5747.48	4 2 2 B } 1 4	n D	33, 8859 33, 7810 33, 7610 33, 7630 33, 6130 33, 6133 33, 5717 33, 4608 33, 2500 33, 2642 33, 1718 33, 0560 32, 9707 32, 8330 32, 7225	08.03 10.50 12.64 14.20 19.90 21.66 23.99 31.29 33.51 41.44 43.64 49.49 66.81 62.81 71.15	$\begin{array}{c} +1\\ +1\\ 0\\ 0\\ -1\\ -2\\ -3\\ -5\\ -5\\ -5\\ -8\\ -10\\ \end{array}$	08 04 10.51 12 64 14 20 11 89 21 65 23.97 31 26 33.48 41.39 43.59 49.43 56.78 62 23 71.05 78.18	3-4	nn D		31 61	- 8	08.48	08 26 10.62 12.75 14.31 20.00 21 76 24 08 31.32 33.59 41.50 43.70 49.54 56.89 62.34 71.16 78.29	+19 +19 +19 +19 +19 +19 +19 +19 +19 +19	5708 45 5710 81 5712 94 5714 5 5720 2 5721 95 5724 27 5731 51 5733 8 5741 7 5743 89

318 BIRMINGHAM—Continued

		PLATI	E G 253					PLATE (G 284					PLATE	G 379			WA	MEA VE-Li	N ENGT H
In- en- ity	Char- acter	Scale	Wave- Length by For- mula	r. fr	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave. Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Car, from	Wave. Length	Uncor. for Velocity	Cor. for V	Cor. for Velocity
		nım.	t.m.		t.m.			mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.
2	n D nn D	57 . 8585 58 . 0530	5783.37 5796.96	+ 7 + 6	5783 11 5797.02		wn D	32.6312		-11	84 11							84.22	+19	5784.4
	 Би Ď	58 3350	5815 97	+ 5	5816.02	I		32.4060	98 90		98.77							98.88	+19	
					5821 92	1	nn D	32 1120	18.40	-14	18 26							18.37	+19	
	nn D	58.5381	5829,83	+ 5	5829 88									* * * * * *						
			5834 07 5837 66		5834 11 5837 70															
	122110					1	ъĎ	31 6693	48 31	-15	48-16							48.27	+19	5848.4 5864.

74 SCHJELLERUP

19	00, Febr	uary 1, G.M	TE G 383 T. 17b3, He comparison		e, W 198	1	900, M ai	rch 7, G.M.T	ATE G 391 '. 1555. Hou comparison	r angle, i fair	W 253		ve-Le n G 391	
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by: Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
2-3 Max	wn D nn D nn D nn D nn D wn D wn B B B wn D	mm. 58,2020 57,7867 57,4610 57,1240 56,4610 56,0640 55,3284 54,6426 54,2796 53,6900 53,0780	Formula 1.m. 4395, 10 4402, 86 4409, 00 4415, 40 4428, 10 4435, 90 4450, 50 4461, 39 4471, 86 4479, 40 4484, 20 4497, 20	-21 -22 -24 -25 -28 -28 -30 -31 -32 -32 -33 -33	t.m. 4394.89 4402.64 4408.76 4415.15 4427.82 4435.62 4450.20 4464.08 4471.54 4479.08	Sity	wn D wn D nn D nn D nn D nn D nn D nn D				1.m. 4395,13 4400,79 4401,89 4405,19 4405,19 4408,68 4415,38 4427,88 4430,49 4435,79 4450,43 4455,89 4460,09 4462,56 4461,99 4461,89 4471,30 4475,50 4487,69 4487,69 4487,69 4497,29 4497,29			
в {	from to 	52.8140 52.6540	4502.80 4506.30	-33	4502.47 4505.97	11 15 7 .	from to nn D nn D nn D nn D	55, 1250 54, 9540 54, 9215 54, 7896 54, 6760 54, 4351 54, 4082 54, 2450	4503, 10 4506, 80 4507, 59 4510, 46 4512, 90 4518, 25 4518, 92 4522, 45	-17 -17 -17 -17 -16 -16 -16	4502.63 4506.33 4507.12 4509.99 4512.43 4517.79 4518.46 4521.99	02,63 06,33 07,12 09,99 12,43 17,79 18,46 21,99		4502.5 4506.3 4507.04 4509.91 4512.4 4517.71 4518.38 4521.91

74 SCHJELLERUP-Continued

==		PLAT	TE G 383					PLA	те G 391				ve-Le m G 39	
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
1	nn D	mm. 51.8680	t.m. 4523.57	-32	t.m. 4523.25	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	nn D nn D	mm. 54.1879 54.0010	t.m. 4523.73 4527.90	-45 -45	t.m. 4523.28 4527.45	t.m. 23.28 27.45	- 8 - 8	t.m. 4523.20 4527.4
$\begin{bmatrix} 1 \\ \cdots \\ B \end{bmatrix}$	D from to	51.6014 51.2760 51.1430	4529.52 4536.90 4539.90	-32 -31 -31	4529.20 4536.59 4539.59	і В {	nn D nn D from to	53,8414 53,6220 53,5910 53,4450	4531.48 4536.40 4537.10 4540.40	$\begin{vmatrix} -44 \\ -44 \\ -44 \\ -44 \end{vmatrix}$	4531.04 4535.96 4536.66 4539.96	31.04 35.96 36.66 39.96	- 8 - 8 - 8 - 8	4530.96 4535.9 4536.6 4539.9
Max	B nn D	50.7896 50.5253	4547.94 4554.04	-30 -29	4547.64 4553.75	$\begin{bmatrix} 1-2 \\ B \end{bmatrix}$	nn D from to w D	53.4177 53.1430 53.0720 52.8309	4541.08 4547.30 4549.00 4554.56	$\begin{vmatrix} -43 \\ -43 \\ -42 \\ -41 \end{vmatrix}$	4540.65 4546.87 4548.58 4551.15	40.65 46.87 48.58 54.15	- 8 - 8 - 8 - 8	4540.57 4546.8 4548.5 4554.07
Max 	 В	50.3232	4558.74	-29 -29	4558.45	B {	from to nn D	52.7730 52.5770 52.5555	4555.90 4560.40 4560.97	$ \begin{array}{r} -41 \\ -41 \\ -41 \end{array} $	4555.49 4559.99 4560.56	55.49 59.99 60.56	- 8 - 8 - 8	4555.4 4559.9 4560.48
···· 2	wn D n D	49.7528 49.5500	4572.14 4576.97	$ \begin{array}{c} $	4571.87 4576.71	i 	nn D n D nn D nn D nn D	52.4284 52.3319 52.0960 51.8300 51.2670	4563.95 4566.22 4571.80 4578.10 4591.70	$\begin{vmatrix} -40 \\ -40 \\ -39 \\ -37 \\ -35 \end{vmatrix}$	4563.55 4565.82 4571.41 4577.73 4591.35	63.55 65.82 71.41 77.73 91.35	- 8 - 8 - 8 - 8	4563.47 4565.74 4571.3 4577.7 4591.3
						$egin{array}{c} \cdots \ 4 \ 2 \ 1 \end{array}$	nn D n B n B n D	51.1280 51.0594 50.9218 50.8759	4595.12 4596.78 4600.17 4601.29	$ \begin{array}{r r} -35 \\ -35 \\ -34 \\ -34 \\ 31 \end{array} $	4594.77 4596.43 4599.83 4600.95	94.77 96.23 99.83 00.95 02.24	- 8 - 8 - 8 - 8	4594.69 4596.15 4599.75 4600.86 4602.16
· · · · · · · · · · · · · · · · · · ·	wn D	48.3246	4606.81	-21 20	4606.60	$\begin{bmatrix} 1\\8\\5\\1\\\ldots \end{bmatrix}$	m B wn D wn B n D	50.8237 50.6337 50.5428 50.4861	4602.58 4607.29 4609.30 4610.96	$ \begin{array}{r} -34 \\ -33 \\ -32 \\ -32 \end{array} $	4602.24 4606.96 4608.98 4610.64	06.96 08.98 10.64	- 8 - 8 - 8	4606.88 4608.90 4610.56
 2 8	nn B	47.9930	4615.10	-20 -20 -20	4614.90	$\begin{bmatrix} 2 \\ \\ 6 \\ 3 \\ 10 \end{bmatrix}$	n D n B n D w B	50.3577 50.3072 50.2564 50.1900	4614.17 4615.43 4616.71 4618.38	$\begin{vmatrix} -32 \\ \\ -32 \\ -32 \\ -31 \end{vmatrix}$	4613.85 4615.11 4616.39 4618.07	13.85 15.11 16.39 18.07	- 8 - 8 - 8	4616.31
Max	wn D B n D	47.8031 47.7306 47.6758	4619.86 4621.70 4622.08	$\begin{vmatrix} -19 \\ -19 \\ -19 \\ -19 \\ \cdots \end{vmatrix}$	4619.67 4621.51 4621.89	3 5 1-2	n D n B nn D	50.1222 50.0477 49.9884	4620.09 4621.97 4623.47	$ \begin{array}{c c} -31 \\ -31 \\ \dots \\ -30 \end{array} $	4619.78 4621.66 4623.17	$\begin{array}{c c} 19.78 \\ 21.66 \\ \hline 23.17 \end{array}$	- 8 - 8 - 8	$\begin{array}{c c} 4619.70 \\ 4621.58 \\ \hline 4623.09 \end{array}$
Max Max	B B	47.6200 47.5120	4624.50 4627.30	-18 -18 -18	4624.32 4627.12	$egin{array}{c} \mathbf{B} \ 6 - 8 \end{array}$	from to nn D	49.9680 49.7970 49.7519	4624.00 4628.30 4629.49	$ \begin{array}{c} -30 \\ \hline -30 \\ \hline -29 \end{array} $	4623.70 4628.00 4629.20	23.70 28.00 29.20	- 8 	4627.9
Max 5	nn B	47.3525 47.0662	4631.32	-18 -17	4631.14	9 1 1 7 5	n B nn D nn D B D	49.6712 49.5357 49.4289 49.3664 49.3100	4631.55 4635.00 4637.78 4639.39 4641.12	$ \begin{vmatrix} -29 \\ -29 \\ -29 \\ -28 \\ -28 \end{vmatrix} $	$ \begin{vmatrix} 4631.26 \\ 4634.71 \\ 4637.49 \\ 4639.11 \\ 4640.84 \end{vmatrix} $	$\begin{array}{ c c c c }\hline 31.26\\ 34.71\\ 37.49\\ 39.11\\ 40.84\\ \hline\end{array}$	- 8 - 8 - 8 - 8	$\begin{array}{c c} 4634.63 \\ 4637.41 \\ 4639.03 \end{array}$
 	nn D wn B wn D	47.0072 46.9237 46.7670	4640.22 4642.38 4646.50	$\begin{vmatrix} -17 \\ -17 \\ \cdots \\ -16 \end{vmatrix}$	$\begin{bmatrix} 4640.05 \\ 4642.21 \\ \dots \\ 4646.34 \end{bmatrix}$	10 Limits Limits	В	49.2399 49.2850 49.2030	4642.67 4641.50 4643.60		4612.39 4641.22 4643.32	42.39 41.22 43.32	- 8 - 8 - 8	4642.31 4641.1 4643.2
D {	wn B wn B from	46.3860 46.0320 44.3100	4656.50 4665.90 4713.30	$ \begin{array}{c c} -16 \\ -15 \\ -20 \\ \dots \end{array} $	4656.34 4665.75 4713.10	$egin{array}{c} 1 \\ 1-2 \\ \ldots \end{array}$	nn B n B wn D	48.8300 48.3704 46.5664	4653.40 4665.57 4715.22		4653.13 4665.32 4715.01	53.13 65.32 15.01	- 8 - 8 - 8	4665.24
$\mathbf{B} \left\{ $	to from to	44.1910 44.1910 44.0200	4716.70 4716.70 4721.60 4722.80		4716.50 4716.50 4721.39 4722.59	$\begin{vmatrix} \cdots \\ 1-2 \\ \cdots \\ 1 \end{vmatrix}$		46.3751	4720.67 4723.14	-21 -21 -21	4720.46 4722.93	20.46	- 8 - 8	
• • • •	nn D nn D	43.9790	4730.00	-21 -23	4729.77	1	nn D	46.0890	4728.80	$\begin{bmatrix} -21 \\ -20 \\ \cdots \end{bmatrix}$	4728.60	28.60	- 8	4728.52

PLATE G 383							PLATE G 391							Wave-Length from G 391 only			
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity			
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.			
D.	from	-43 - 5160	4735.30	-24	1735.06	¹ D {	from	45.8880	4734.60	-20	4734.40	34.39	- 8	4734.3			
Di	to	43.4640	4737.70	-24	4737.46	127	to	45.7790	4737.87	-20	4737.67	37.67	- 8	4737.6			
10	wn D	$-43 \cdot 5025$	4736.56	-24	4736.32												
10	nn B	43.4117	4739.21	-25	1738.96	10	В	45.7409	4738,97	-200	4738.77	38.77	- s	4738.69			
						Con. S	from	45,7070	4739.90	-20	4739.70	39.70	- 8	4739.6			
						Spec. /	to	45.6230	4712,40	-20	4742.20	42.20	- 8	4742.1			
	nn D	43.2249	4744.69	-26	4744.43		\mathbf{D}	45,5649	4741.12	20	4743.92	43.92	- 8	4743.84			
						5	from	45.6178	4742.56	-20	4742.36	42.36	- 8	4742.3			
						Lts.	to	45,5043	4745,90	-19	4715.71	45.71	- 8	4745.6			
						B	from	45.5013	4745 90	-19	4745.71	45.71	- 8	4745.6			
						I D	to .	45.4030	4748,90	-19	4748.71	48.71	- 8	4748.6			
							nn D	45.3820	4749.50	-19	4749.31	49.31	- 8	4749.23			
						\mathbf{B}	f.om	45.2410	4753.60	-19	4753.41	53.41	- S	4753.3			
						1	to	45.0980	4757.90	-19	4757.71	57.71	- 8	4757.6			
	nn D	42.7371	4759.18	-29	4758,89	3 4	nn D	-15.0587	4759.10	19	4758.91	58.91	- S	4758.83			
						B {	from	45,0150	4760,40	-19	4760.21	60.21	- S	4760.1			
						D 1	to	41.8240	4766.10	-19	4765.91	65.91	- 8	4765.8			
						,	nn D	44.8089	4766.60	-19	4766.41	66.41	- 8	4766.33			
						· B :	from	41.7800	4767.40	-19	4767.21	67.21	- 8	4767.1			
						D 1	to	-44.6150	4772.40	-19	4772.21	72.21	- 8	4772.1			
	nn D	42.2610	4773.60	-32	4773.28		nn D	44.5834	4773.42	-19	4773.23	73.23	- 8	4773.15			
						B	from	44.5570	4774.20	-19	4774.01	74.01	- S	4773.9			
						- /	to	44.4160	4778.50	-19	4778.31	78.31	- 8	4778.2			
1	nn D	41.8912	4784.90	-31	4781.56	1-2	nn D	44.2150	4784.70	-19	4784,51	84.51	- 8	4784.43			
2	nn Đ	41.7176	4790,28	-36	4789.92	2	n D	44.0579	4789.53	-19	4789.34	89.34	- 8	4789.26			
\mathbf{B}	from	41.6890	4791.20	-36	4790.84	B	from	44.0290	4790.40	-19	4790.21	90.21	- 8	4790.1			
1, 1	to					1	to	43.8300	4796.61	-19	4796.42	96.42	- 8	4796.3			
						8	n B	43.6348	4802.71	-19	4802.52	02.52	- 8	4802.44			
,							n D	43.4940	4807.10	-20	4806,90	00.90	- S	4806.82			
							n D	43.3270	4812.40	-20	4812.20	12.20	- 8	4812.12			

74 SCHJELLERUP

PLATE G 373 1900, January 7, G.M.T. 1550. Hour angle, E 251 Star good; comparison good						PLATE G 386 1900, February 16, G.M.T. 1458. Hour angle, W 053 Star poor; comparison fair							MEAN WAVE-LENGTH			
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity		
		mm.	t.m.		t.m.			mui.	t.m.		t.m.	t.m.		t.m.		
3	n D	49.4320	5173.44	-16	5173.28	3.4	i D	45,1046	5173.79	-48	5173 31	73.30	- 9	5173.21		
(from	49.2160	5182.20	-17	5182.03							81.83	- 9	5181.7		
$-\mathbf{D}_{\frac{1}{2}}$.							D?	41,8110	5181,50	-50	5184 00	81.20	- 9	5184,11		
(to	49.1240	5186,00	-17	5185.83							85,63	- 9	5185.5		
Con. (from	49.1240	5186.00	-17	5185.83							85,63	- 9	5185.5		
- }							D?	-14.7210	5189.50	-50	-5189,00	89,20	- 9	5189.11		
Spec.	to	48.9780	[5191,90]	-17	5191.73							91.53	9	5191.4		
4	D	48.9141	5193.32	18	5193.14		D??	44.6200	5193,60	-51	5193.09	93.12	=9	5193.03		
Max	В	48,8394	5197.65	-18	5197.47							97.27	- 9	5197.18		
()	from	48,6610	5205.10	19	5204.91						,	04.71	= 9	5204.6		
$-\mathbf{D}$							D??	41 2120	5210,60	-52	5210.08	10.28	-9	5210.19		
(to	$\pm 18,5040$	5211.60	-19	5211.41							11.21	= 9	5211.1		
(from	48.4780	5212.70	-19	5212.51							-12.31	- 9	5212.2		
$-\mathbf{B} \cdot \{$							D??	41.0580	52,1700	-53	5216 47	16.67	- 9	5216.58		
- (to	-48,1930	5224.70	-20	5224.50							24.30	- 9	5224.2		
6.8	// D	-48.1469	5226,66	-20	5226.46		wn D	43.8320	5226,60	-51	5226-06	26.26	- 9	5226.17		
\mathbf{B}^{λ}	from	48,0800	5229,30	20	5229,40							28,90	- 9			
17	to	47.9820	5203,78	-20	5233.58							33,38	- 9	5233.3		

Plate G 373								PL	MEAN WAVE-LENGTH					
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
22 : 3 3 2 3 1 3 1 - 2 1 1 8 : 2 3 2 4 2 2 : 1 5 8 2 6 : 3 3 3		Scale	Length by	from		ten-		Scale	Length by	from		rected for	for	for Velocity t.m. 5233.95 5237.06 5240.12 5244.80 5247.32 5251.66 5270.17 5253.91 5207.70 5302.47 5307.17 5315.30 5320.63 5329.00 5336.35 5349.83 5361.89 5366.35 5371.75 5377.38 5379.91 5397.28 5379.91 5397.28 5410.31 5412.32 5417.01 5419.66 5422.97 5427.09 5422.97 5432.14 5434.25 5438.06 5447.94 5456.54 5456.54 5466.2 5467.67 5471.77 5474.33 5477.89 5480.25 5480.25 5480.25 5480.65 5447.94 5456.54 5456.64 5466.2 5467.67 5477.89 5480.25 5480.65 5487.75 5501.81 5506.66 5512.28 5524.19

PLATE G 373								Pı		MEAN WAVE-LENGTH				
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
11	В	mm.	t,m.	10	mm.	1 0	- D	mm,	t.m.	10	t.m.	t.m.	10	t.m.
Max 1	nn D	$\frac{41.6172}{41.4658}$	$\begin{array}{c} 5544.11 \\ 5552.62 \end{array}$	$-12 \\ -12$	5543-99 5552.50	1-2	nn B	37.3140	5543.80	-46	5543.34	43.67 52.30	$\begin{vmatrix} -10 \\ -10 \end{vmatrix}$	5543.57 5552.20
1	n B	$\frac{41.4334}{11.4000}$	5554.39	-12	5554.27	1	В	37.1284	5551.21	-46	5553.75	54.01	-10	5553.91 5555.80
$rac{1}{1-2}$	n D B	$\frac{41.4009}{41.2419}$	5556,22 5565,19	$\begin{vmatrix} -12 \\ -13 \end{vmatrix}$	5556,10 5565,06	1	В	36 9359	5565.07	-46	5564.61	$55.90 \\ 64.83$	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5564.73
1	wn D	41.2081	5567.10	-13	5566.97	2	n D	36,9050	5566.82	-46	5566.36	66.67	-10	5566.57
0-1	nn D	41.1502	5570-39	-13	5570,26	1		36.7830	5573.77	-46	5573.31	$70.06 \\ 73.51$	$\begin{vmatrix} -10 \\ -10 \end{vmatrix}$	5569.96 5573.41
9	\mathbf{D}	40,9025	5581.55	-13	5584.42	9	w D	36,6009	5584_20	-46	5583.74	84.08	-10	5583.98
$rac{4}{1}$	n B n D	$\frac{40.8559}{40.8231}$	5587.24 5589.13	$-13 \\ -13$	$5587.11 \\ 5589.00$	3 1	n B n D	$-36.5467 \\ -36.5076$	5587,32 5589,58	-46 -46	5586.86 5589.14	86.99 89.07	$\begin{vmatrix} -10 \\ -10 \end{vmatrix}$	5586.89 5588.97
1	n D	40.7252	5594.79	-13	5594,66	1	nn D	36 4099	5595.24	-46	5594.78	94.72	10	5594.62
3	n B	40.6685	5598_08 5600,02	-14	5597.94 5599.88	4	wn B	36.3717	5597.45	-46	5596,99	97.47	-10	5597.37 5599.58
$\frac{1}{2}$	nn D nn D	40.6351 40.4658	5609.91	$-14 \\ -14$	5609.77	1	n D	36.1591	5609,88	-47	5609.41	$09.68 \\ 09.59$	$\begin{vmatrix} -10 \\ -10 \end{vmatrix}$	5609.49
						DΪ	from	36,0070	5618.90	-47	5618.43	18.63	-10	5618.5
$\ddot{3}$	n D	$\frac{10.2844}{40.2844}$	5620_60	-15	5620.45	3-4	to nn D	$35.8770 \\ 35.9767$	5626,50 5620,63	$\begin{bmatrix} -48 \\ -48 \end{bmatrix}$	5626.02 5620.15	26.22 20.30	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	$5626.1 \\ 5620.20$
4	wn D	40.2078	5625.13	-15	5624.98	5	nn D	35.8986	5625,26	-48	5624.78	24.88	-10	5624.78
$= B_{i}$	from to	$\frac{40.1750}{40.0810}$	$\begin{bmatrix} 5627.09 \\ 5632.70 \end{bmatrix}$	$-15 \\ -15$	5626,94 5632,55		from to	35.8710 35.7790	5626,90 5632,40	-48 -48	5626.42 5631.92	$\begin{vmatrix} 26.68 \\ 32.24 \end{vmatrix}$	-10 -10	$5626.6 \\ 5632.1$
10	w D	40.0467	5634.73	$-15 \\ -15$	5634 58	Spec. (wn D	35.7436	5634,50	-48	5634.02	34.30	-10	5634.20
Head		40.005 1	5637.22	-16	5637.06	Head	-	35.7024	5636,97	-48	5636.49	36.78	-10	5636.68
						$\frac{2}{1}$	n B n D	35.6791 35.6555	5638.37 5639.79	$\begin{bmatrix} -48 \\ -48 \end{bmatrix}$	5637.89 5639.31	38.09 39.51	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5637.99 5639.41
						2	n B	35.6234	5641.71	-48	5611 23	41.43	-10	5641.33
2 ,	n D from	39.8922 39.8720	5644-00 5645,30	$\begin{vmatrix} -16 \\ -16 \end{vmatrix}$	5643.84 5645.14	2	n D	35.5812	5644.25	-48	5643.77	$\frac{43.81}{44.94}$	$-10 \\ -10$	5643.71 5644.84
$-\mathbf{B}_{\lambda}$				-10		1	nn D	35.4822	5650.24	-49	5649.75	49.95	-10	5649.85
(to D	39.6670	5657.64	-17	5657.47		····	ຄະ ຄວະຄ	-UEO 00		7070 10	57.27	-10	5657.2
1	n D	39,6549	5658.37	-17	5658.20	$\frac{3}{4}$	wn D	35 3353 35 1314	5658,98 5671.66	-49 -50	$+5658.49 \\ +5671.16$	58.35 71.36	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5658.25 5671.26
2	В	39,3863	5674.83	-18	5674,65							74.45	-10	5674.35
$\frac{2}{1}$	wn D B	39.3469 39.3071	5677.29 5679.72	$-18 \\ -18$	5677.11 5679.54	7	n Đ	35.0436	5677.07	-50	5676.57	76.84 79.34	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5676.74 5679.24
1	nn Ď	39.1803	5687,59	-19	5687.40	1	nn D	34.8822	5687.09	-51	5686.58	86,99	-10	5686.89
6	n B	39.0737	5694.25	-19	5694.06	-5	n B	34.7734	5693.88	-51	5693.37	93.72	-10	5693.62 5700.26
$\frac{0-1}{2}$	B B	38.9700 38.8886	5700.75 5705.88	$-19 \\ -20$	5700,56 $5705,68$	3	n B	34.5880	5705.54	-52	5705.02	00.36	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5705.25
살	wn D	38.8399	5708,96	-20	5708.76	2	n D	34.5358	5708.84	-52	5708.32	08.54	-10	5708.44
$\frac{1}{2}$	n B	$38,7990 \\ 38,7682$	5711.55 5713.50	$-20 \\ -20$	5711.35	i	n D	34.4673	5713.18	-52	5712.66	$egin{pmatrix} 11.15 \ 12.98 \end{smallmatrix}$	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5711.05
$\bar{4}$	wn B	38.6995	5717.87	$-{f \tilde{2}}{}_{0}$	5717.67	4	wn B	31,4006	5717.43	$-5\bar{3}$	5716.90	17.29	-10	5717.19
$\frac{1}{3}$	n Đ	38.6360 38.5946	5721.92	-20	5721.72	2	n D	34.3372	5721.47	-53	5720.91	$\begin{vmatrix} 21.33 \\ 24.17 \end{vmatrix}$	$\begin{vmatrix} -10 \\ -10 \end{vmatrix}$	5721.23 5724.07
	n B		5724.57	-20	5724.37		from	34.2510	5727.00	-53	5726.47	26.67	-10	5726.6
2	n D	38.4744	5732.28	-22	5732.06	\mathbf{D}_{j}						31.86	-10	5731.76
Max	В	38.3920	5737,61	-22	5737.39		to	31.1450	5733.80	-54	$\mid 5733.26 \mid$	$\begin{array}{c} \ 33.46 \\ \ 37.19 \end{array}$	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5733,4 5737,09
1	nn D	38,2860	5741.48	-22	5744.26							44.06	-10	5743.96
1	n D	38.0039 37.8645	5762.92 5772.13	-24	5762.68 5771.89		nn D	33 6910 33,5719	5763,40 5771,96	-56 -56	5762.84 5774.40	$\begin{array}{c c} 62.76 \\ 71.69 \end{array}$	$\begin{vmatrix} -10 \\ -10 \end{vmatrix}$	5762.66 5771.59
· · · i	wn D nn D	37.7701	5778,40	$-24 \\ -24$	5778.16		nn D	33.3713	3771.30			77.96	-10	5777.86
\mathbf{B}_{2}^{ζ}	from	37.8770	5774.00	-21	5773.76							73.56	-10	5773.5
- (to from	37.7090 37.7090	5782.50	$-25 \\ -25$	5782.25 5782.25							82.05 82.05	$\begin{bmatrix} -10 \\ -10 \end{bmatrix}$	5782.0 5782.0
\mathbf{D}_{i}^{λ}	to	37.5710	5791.80	-25	5791.55							91.35	-10	5791.3
1 2	nn D n D	37.4625 37.1044	5799.05 5823.47	$-25 \\ -25$	5798.80 5823.22							98,60	$\begin{vmatrix} -10 \\ -10 \end{vmatrix}$	5798.50 5822.92
ت	1119	51.1044	00=0.41		ئد.(دوور،			*****				1.02	-10	0022.02

78 SCHJELLERUP

						1								
189	9, Octob Sta	er 4, G.M.T.	TE G 344 20h±, Hor mparison ex	ur angle, cellent	E 3h ±	19	00, Marc St	h 21, G.M.T.	ATE G 392 . 18h±. Ho t; comparis	nr angle on good	, E 3h ±	MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Leugth by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Cnrve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		mm,	t.m.		t.m.	1	nn D	mm. 53.6860 53.5655	t.m. 4388.20 4390.41	-40	t.m. 4387.80 4390.01	t.m. 87-60 89.81	+ 1	t.m. 4387.6 4389.82
	wn D wn D	61.6970 61.4100	4395.00 4400.40	$^{+29}_{+28}$	4395.29 4400.68	$\begin{bmatrix} 2\\8\\1 \end{bmatrix}$	w D nn D	53.3033 52.9584	4395,30 4401,77	$ \begin{array}{r} -40 \\ -42 \\ -44 \end{array} $	4394.88 4401.33	95.09 01.13	$\begin{array}{c c} + 1 \\ + 1 \\ + 1 \end{array}$	4395.10 4401.14
	n B	61.3173 61.1835	4402.19 4404.75	$\begin{vmatrix} +28 \\ +27 \end{vmatrix}$	$\begin{array}{c} 4402.47 \\ 4405.02 \end{array}$		nn D	52,7441	4405.82	-45	4405.37	$02.67 \\ 05.20$	$+ 1 \\ + 1$	$4402.68 \\ 4405.21$
	wn D	60.6560	4414.90	$\frac{1}{125}$	4415.15	$\frac{3}{3}$	nn D wn D	$52,5560 \\ 52,2179$	4409.40 4415.87	$-46 \\ -49$	4408.94 4415.38	$08.74 \\ 15.17$	+ 1 + 1 + 1	4408.75 4415.18
	nn D wn D	60.3900 60.2660	4420.10 4422.50	$+24 \\ +23 \\ +23$	$4420.34 \\ 4422.73 \\ 4422.01$							$20.54 \\ 22.93 \\ 26.24$	$+1 \\ +1 \\ +1$	$\begin{bmatrix} 4420.55 \\ 4422.94 \\ 4426.25 \end{bmatrix}$
	nn D nn D nn D	60.0996 60.0268 59.8865	4425.81 4427.25 4430.03	$\begin{array}{c c} +23 \\ +22 \\ +22 \end{array}$	$\begin{array}{c} 4426.04 \\ 4427.47 \\ 4430.25 \end{array}$	1 1	nn D nn D	51.5790 51.4412	4428.28 4430.98	$-52 \\ -52$	4427.76 4130.46	27.62 30.36	+1	4427.63 4430.37
6 1	wn D nn D	59.6087 59.4958	4435.56 4437.82	$\begin{array}{c c} +22 \\ +21 \\ \end{array}$	4435.78 4438.03	7	wn D	51.1578	4436.58	$-5\overline{4}$	4436.04	35.91 38.13	$+ 1 \\ + 1 \\ + 1$	4435.92 4438.14
$\frac{2}{1}$	n B nn D	59.4438 59.2985	4438.87 4441.80	$\begin{array}{c c} +21 \\ +21 \end{array}$	4439.08 4442.01	3	nn B	50,9694	4440.32	-55	4439.77	$\frac{39.43}{42.21}$	+ 1 + 1	$4439.44 \\ 4442.22$
$\frac{2}{1}$	n D nn D	59.1816 59.0300	$\begin{array}{c c} 4444.16 \\ 4447.24 \end{array}$	$\begin{array}{c c} +21 \\ +21 \end{array}$	$\frac{4444.37}{4447.45}$							44.57 47.65	$\begin{vmatrix} + 1 \\ + 1 \end{vmatrix}$	4444 58 4447.66
$\frac{2}{\cdots}$	n B nn D	58.9710 58.9028	$\begin{array}{c c} 4448.44 \\ 4449.83 \end{array}$	$\begin{array}{ c c c } +21 \\ +20 \end{array}$	$\begin{array}{c c} 4448.65 \\ 4450.03 \end{array}$	$\begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}$	nn B	50.5042 50.4299	4449.65 4451.15	-57 -58	4449.08 4450.57	48.87 50.30	$\begin{array}{c} + 1 \\ + 2 \\ + 2 \end{array}$	$\begin{array}{r} 4448.88 \\ 4450.32 \\ 4453.23 \end{array}$
1 1	nn D nn D	58.6457 58.5558	4455.10 4456.95	$\begin{array}{c} +20 \\ +20 \\ +20 \end{array}$	4455,30 4457,15	$\begin{bmatrix} 0-1 \\ 2 \\ \dots \end{bmatrix}$	nn D n D	50.2897 50.1773	$\begin{array}{ c c c c c }\hline 4453.99 \\ 4456.28 \\ \hline \end{array}$	$-58 \\ -58 \\ \dots$	4453.41 4455.70	53.21 55.50 57.35	+2	4455.52 4457.37
i	n D wn D	58.4162 58.3197	4459.84 4461.84	$\begin{vmatrix} +20 \\ +19 \end{vmatrix}$	4460.04 4462.03	$\frac{1}{2}$	n D n D	49.9639 49.8485	4460.64 4463.01	-59 -60	$\frac{4460.05}{4462.41}$	$60\ 05 \\ 62.22$	$+\frac{2}{2}$	$\begin{array}{c} 4460.07 \\ 4462.24 \end{array}$
	n B	58.2285	4463.73	+19	4463.92	$\begin{bmatrix} \mathbf{B} \\ 3 \end{bmatrix}$	$ \begin{array}{c} \text{from} \\ \text{B} \end{array} $	$\frac{49.8130}{49.7850}$	$\begin{array}{c c} 4463.70 \\ 4464.32 \end{array}$	-60 -60	$\begin{array}{c} 4463.10 \\ 4463.72 \end{array}$	$62.90 \\ 63.82$	$ +\frac{2}{2}$	4462.9 4463.84
• • •						$\frac{2}{1}$	to n D	49.7337 49.7060	4465.40 4465.90	$\begin{vmatrix} -61 \\ -61 \\ 0 \end{vmatrix}$	4464.79 4465.29	64.59 65.09 65.35	$\begin{array}{c c} + 2 \\ + 2 \\ + 2 \end{array}$	$\begin{array}{r} 4464.61 \\ 4465.1 \\ 4465.37 \end{array}$
· · · · · · · · · · · · · · · · · · ·	nn D	57.8730	4471.17	+19	4471.36	1	n D	49.6959 49.5359	$\begin{array}{c c} 4466.16 \\ 4469.48 \end{array}$	$\begin{bmatrix} -61 \\ -62 \end{bmatrix}$	$\begin{bmatrix} 4465.55 \\ 4468.86 \end{bmatrix}$	68.66 71.56		4468.68 4471.58
	nn D	57.6893	4475.05	+19	4475.24	1 1	n D nn D	49.2210 48.9834	4476.00 4481.03	$-63 \\ -64$	4475.37 4480.39	75.31 80-19	$ + \frac{5}{2} + \frac{1}{2} $	4475.33 4480.21
3	n D nn D	57.3620 57.1250	4482.00 4487.10	$^{+19}_{+20}$	4482.19 4487.30	1	nn D nn D	$\frac{48.8964}{48.6291}$	4482.87 4488.54	$-64 \\ -65$	4482.23 4487.89	82 21 87.60	$^{+2}_{+2}$	$\frac{4482.23}{4487.62}$
$\frac{3}{3}$	n D n D	57.0200 56.6895	4489.35 4496.51	$+20 \\ +21$	$\begin{array}{c} 4489.55 \\ 4496.72 \end{array}$	2 4	nn D n D	48.5244 48.1953	4490.78 4497.84	$\begin{bmatrix} -65 \\ -66 \\ 32 \end{bmatrix}$	4490 13 4497.18	89.84	$\frac{+2}{+2}$	4489.86 4496.97
	nn D from	56.4587 56.4250	$\begin{array}{ c c c c c }\hline 4501.56 \\ 4502.30 \\ \hline \end{array}$	$\begin{array}{c c} +21 \\ +21 \end{array}$	4501.77 4502.51	1	nn D nn D	47.9757	4502.59 4505.31	$\begin{vmatrix} -66 \\ -67 \end{vmatrix}$	4501.93	$01.85 \\ 02.71 \\ 04.44$	$\begin{vmatrix} + & 2 \\ + & 2 \\ + & 2 \end{vmatrix}$	4501.87 4502.7 4504.46
$\frac{3}{3-4}$	to nn D	56.2640 56.2317	4506.80 4506.56	$\begin{array}{c} +21 \\ +22 \end{array}$	4506.01 4506.78		wn D	47.7265	4508.03	-67	4507.36	$06.21 \\ 07.07$	$ + \frac{2}{2} $	$\frac{4506.2}{4507.09}$
\mathbf{B}	from	56.1860	4507.90	$+2\overline{2}$	4508.12	4	wn B	47.6564	4509.56	_6 <u>7</u>	4508.89	08.30	$\begin{vmatrix} + & 2 \\ + & 2 \end{vmatrix}$	4508.71
	to	56.0210	4511.20	$+\frac{22}{22}$	4511.42	1	nn D	47.6052	4510.69	-67 \cdots	4510.02	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c } + & 2 \\ + & 2 \\ + & 2 \end{array}$	4509.84 4511.6 4513.08
$\frac{1}{2}$	nn D n B n D	55.9620 55.7663 55.7193	$\begin{array}{c c} 4512.53 \\ 4516.61 \\ 4517.96 \end{array}$	$\begin{array}{r} +22 \\ +23 \\ +23 \\ +23 \\ +23 \end{array}$	4512.75 4516.84 4518.19	$\begin{vmatrix} \frac{1}{2} \\ 2-3 \end{vmatrix}$	wn D n B n D	$\begin{array}{r} 47.4534 \\ 47.2719 \\ 47.2758 \end{array}$	4514.03 4518.04 4519.50	$\begin{vmatrix} -67 \\ -67 \\ -67 \end{vmatrix}$	4517.37 4518.83	17.11 18.51	+2	4517.13 4518.53
$\frac{5}{4}$	n B n D	55.5632 55.5050	4521.47 4522.79	$\begin{array}{ c c c c } +23 \\ +23 \\ +23 \end{array}$	4521.70 4523.02	$ar{5}$ -6	n B n D	47.0622 47.0011	4522.70 4524.07	$\begin{vmatrix} -67 \\ -67 \end{vmatrix}$	$4522.03 \\ 4523.40$	$ \begin{array}{r} 21.87 \\ 23.21 \end{array} $	$\begin{vmatrix} + & 2 \\ + & 2 \\ + & 2 \end{vmatrix}$	$\begin{array}{c} 4521.89 \\ 4523.23 \end{array}$
3-4	n B	55.4268	4524.56	+23	4524.79	$\ \mathbf{B}$	from	46.9620	4524.90	-67 	4524.23 4526.13	$\begin{vmatrix} 24.03 \\ 24.99 \\ 25.00 \end{vmatrix}$	$ +\frac{2}{2}$	4524.1 4525.01
i	wn D n D	55.3178 55.1501	4527.03 4530.84	$+24 \\ +24$	4527,27 4531.08		wn D nn D	46.8810 46.8047 46.6404	4526.80 4528.48 4532.18	$\begin{bmatrix} -67 \\ -67 \\ -67 \end{bmatrix}$	$\begin{array}{r} 4526.13 \\ 4527.81 \\ 4531.51 \end{array}$	$\begin{vmatrix} 25 & 93 \\ 27.54 \\ 31.30 \end{vmatrix}$	$\begin{vmatrix} + & 2 \\ + & 2 \\ + & 2 \end{vmatrix}$	$\begin{array}{r} 4526.0 \\ 4527.56 \\ 4531.32 \end{array}$
D_{i}	from Max	55.0640 54.9528	4532.60 4535.36	++25	$\begin{array}{r} 4531.03 \\ 4532.85 \\ 4535.61 \end{array}$		nn D	46.4529	4536.42	-67	4535.75	33,05 35,68	$+ \frac{2}{1+2}$	4533,1 4535,70
1 (to B	$54.9150 \\ 54.8867$	$4536.20 \\ 4536.88$	+25 +25 +25	$\begin{array}{c c} 4536.45 \\ 4537.13 \end{array}$	3	n B	46.3675	4538.14		4537.47	$36.65 \\ 37.30$	+ 22 + 22	4536 7
1 1	nn D	54.8070 54.7461	4538.72 4540.13	$\begin{array}{ c c c c } +25 \\ +26 \end{array}$	4538.97 4540.39	3	n B n D	$\begin{array}{c} 46.2957 \\ 46.2280 \end{array}$	4540.00 4541.55	-66 -66	$\begin{bmatrix} 4539.34 \\ 4540.89 \end{bmatrix}$	39.16	++++	4539.18 4540.66
1	В	51.5893	4543.76	+27	4544.03				•••••			44.23	+ 2	4544.25

		PLA	TE G 311					PL	ATE G 392			MEAN	WAVE-	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
3 -7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	n B nn D wn D nn D from to nn D n B B nn D nn B nn D nn B nn D from to nn D nn B nn B nn D from to B nn D from to B nn D from to B nn B nn D nn B nn B nn D nn B nn B nn	Scale Reading mm. 54.4395 54.3776 54.2122 53.9760 53.9010 53.7717 53.6837 53.6837 53.6590 53.4860 53.29259 52.8595 52.6253 52.4377 52.3860 52.2386 51.9938 52.1630 51.9510 51.9159 51.8746 51.7922 51.7267 51.5014	Length by Formula t.m. 4547, 24 4548, 69 4553, 57 4558, 14 4559, 91 4562, 99 4565, 60 4565, 60 4569, 80 4572, 00 4574, 00 4577, 50 4579, 78 4581, 75 4583, 40 4585, 03 4590, 79 4595, 44 4596, 70 4600, 40 4600, 54 4600, 54 4600, 54 4600, 54 4600, 54 4600, 54 4600, 54 4600, 54 4611, 64 4613, 30 4614, 53 4615, 98 4617, 28 4619, 05	from Curve	Length t.m. 4547.51 4548.96 4553.85 4558.43 4560.20 4563.29 4565.36 4565.90 4570.12 4572.33 4574.34 4582.11 4583.76 4585.40 4591.17 4595.84 4597.10 4600.82 4608.98 4608.98 4608.98 4608.94 4608.95 4610.00 4616.00 4616.00 4616.00 4616.05 4617.76 4619.53	ten-sity 2 3	n B wn D wn D from to n B n D n B n D n B n D n B n D n D n D	Scale Reading mm. 45.9217 45.8536 45.6729 45.4110 45.3734 45.3065 45.2464 45.1954 45.1568 45.1310 44.9620 44.6688 44.6390 44.5807 44.5286 44.4855 44.433 44.3945 44.2755 44.133 44.3945 44.2755 44.1433 44.3945 44.2755 44.1433 44.3945 44.2755 44.133 44.3945 44.2755 44.133 44.3945 44.2755 44.133 44.3945 44.2755 44.133 44.3945 43.410 43.7630 43.6968 43.6087 43.4458 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758 43.1758	Length by Formula t.m. 4548.60 4550.46 4550.46 4550.36 4560.50 4560.50 4561.35 4562.93 4564.34 4565.54 4566.46 4567.10 4571.10 4578.80 4581.45 4582.49 4583.50 4584.69 4587.57 4590.65 4596.82 4601.75 4603.93 4607.98 4614.74 4615.97 4617.21 4618.96 4620.70	from Curve	t.m. 4517, 94 4549, 50 4559, 85 4560, 70 4562, 28 4563, 69 4565, 84 4566, 45 4566, 45 4570, 46 4570, 46 4570, 56 4580, 81 4581, 86 4582, 87 4584, 06 4586, 91 4596, 03 4596, 20 4596, 51 4601, 14 4603, 32 4607, 38 4616, 63 4618, 38 4616, 63 4618, 38 4620, 12	rected Velocity t.m. 47.73 49.23 53.77 55.24 58.63 59.65 60.45 62.08 63.49 64.69 65.59 66.25 77.253 77.24 77.24 77.25 80.45 81.66 82.49 83.91 85.60 86.74 89.83 91.37 96.02 97.30 99.31 90.98 03.12 07.18 02.92 49.15 10.20 91.20 9	for v	for Velocity t.m. 4547.75 4549.25 4553.79 4555.3 4558.65 4559.7 4560.47 4563.51 4564.71 4563.51 4564.71 4565.61 4570.3 4572.55 4574.6 4577.26 4578.0 4579.37 4580.47 4581.68 4582.51 4583.93 4585.62 4586.76 4589.85 4591.39 4596.04 4597.32 4601.00 4603.14 4607.20 4608.3 4608.2 4608.3 4608.2 4608.17 4615.21 4613.98 4615.21 4616.56 4618.09 4619.85
27 6 15 3 2 · · · · · · · · · · · · · · · · · ·	n D B D B D n B n B n D n B n B n B n B n B n B n B n B n B n B	51.6215 51.5707 51.5014 51.4338 51.3778 51.3138 51.1820 50.7516 50.6989 50.6430 50.5783 50.4000 49.7716 49.6567	4615.98 4617.28 4619.05 4620.78 4622.22 4623.87 4627.20 4629.10 4638.40 4639.84 4641.33 4643.04 	$\begin{array}{c} +47 \\ +48 \\ +48 \\ +48 \\ +49 \\ +50 \\ +51 \\ +51 \\ +55 \\ +55 \\ +56 \\ \vdots \\ +52 \\ +62 \end{array}$	$\begin{array}{c} 4616, 45 \\ 4617, 76 \\ 4619, 53 \\ 4621, 26 \\ 4622, 71 \\ 4624, 37 \\ 4627, 71 \\ 4629, 61 \\ 4638, 94 \\ 4640, 39 \\ 4641, 88 \\ 4643, 60 \\ \dots \\ 4656, 35 \\ 4665, 22 \\ 4668, 35 \\ \end{array}$	3-4 6 6 5 2 4 5 3 1	D B B D n B n D wn D B D B n D n D n D	43.0775 43.0082 42.9394 42.8766 42.8177 42.5514 42.1359 42.0783 41.9076 41.5463 41.0770	4617, 21 4618, 96 4620, 70 4622, 29 4623, 79 	-58 -58 -58 -57 -57 -56 -51 -54 -53 -53 -51 -49	4616.63 4618.38 4620.12 4621.72 4623.22 4623.22 4630.03 4639.32 4640.77 4642.28 4646.73 4656.27	16.54 18.07 19.83 21.49 22.97 21.57 27.91 29.82 39.13 40.58 42.08 43.80 46.53 56.31 65.42 68.58	+++++++++++++++++++++++++++++++++++++++	4616.56 4618.09 4619.85 4621.51 4622.99 4624.59 4627.9 4629.84 4639.15 4640.60 4642.10 4613.82 4646.55 4656.33 4665.44 4668.60
Spec.) Max	n D from to	48.0038 47.9570 47.7840 47.9320 47.7092 47.3510 47.2110 47.2645	4713,96 4715,30 4720,30 4716,00 4722,48 4732,90 4737,20 4735,49	+72 +73 +74 +73 +74 +76 +77 +77	4714,68 4716,03 4721,04 4716,73 4723,22 4733,66 4737,97 4736,26	10	n D n D timits / timits / w D	39,4022 39,1457 38,7120 38,6130 38,6618	4722.92 4725.40 4738.30 4736.91	-38 -37 -35 -31 -35	4715 22 4722 55 4735 05 4737 96 4736 56	14 95 16 23 21 24 16 93 22 67 31 + 37 97 36 41	+++++++	$\begin{array}{c} 4714.97 \\ 4716.3 \\ 4721.3 \\ 4717.0 \\ 4722.69 \\ 4731. \pm \\ 4738.0 \\ 4736.43 \end{array}$

					15 501	10111	1313111.		in ter ti					
		$\mathbf{P}_{\mathbf{L}}$	ате G 344					PL.	ATE G 392			MEAN	WAVI	E-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
Sity Con.	from to n B wn D Head from B to nn D nn D nn D n D nn D from to B nn D from to B nn D from to B nn D from to B nn D nn D from to B nn D nn D from to B nn D nn D nn D nn D nn D nn D nn D nn	mm. 47.2070 47.0650 47.1801 47.0048 46.9490 46.9490 46.9200 46.5340 46.5663 46.2660 46.0522 45.9850 46.0190 45.6792 45.5138 45.3270 44.9803 44.8111 44.6039 44.6730 44.4450 44.1856 44.1856 44.1856 44.3038 42.9047 42.7844	t.m. 4737, 20 4741, 30 4737, 99 4743, 20 4744, 80 4744, 80 4745, 72 4757, 30 4758, 16 4765, 40 4777, 70 4773, 00 4777, 70 4783, 60 4784, 78 4794, 65 4811, 11 4814, 89 4815, 50 4817, 92 4822, 98 4827, 13 4829, 67 4831, 48 4870, 58 4870, 58 4871, 68 4870, 58	Curve +77777 +777 +778 +778 +778 +778 +778 +	Length t.m. 4737, 97 4742, 07 4748, 76 4743, 97 4745, 58 4745, 58 4745, 58 4746, 50 4758, 10 4758, 96 4766, 21 4772, 85 4774, 91 4773, 81 4778, 52 4784, 42 4789, 60 4795, 47 4811, 93 4815, 71 4816, 32 482, 81 4818, 74 4823, 79 4827, 94 4830, 48 4832, 29 4851, 82 4855, 35 4869, 60 4871, 33 4875, 42 4879, 59	Sity Con.	from to B D Head nD nD nD nB B nnD nB nnD nnB nnB					for Velocity t.m. 37.97 42.22 38.93 43.99 42.17 45.41 45.78 46.70 49.88 66.53 72.68 75.11 74.01 78.72 84.52 89.76 92.25 06.87 71.132 12.26 16.04 16.89 21.68 19.29 24.00 26.27 28.29 30.64 32.59 45.57 50.62 55.71 57.74 59.97 60.43 65.46 69.80 71.55 75.79	++++++++++++++++++++++++++++++++++++++	
3 1 1	n D n B nn D nn D	42.7254 42.6705 42.5963 42.4570 42.1798	4880.89 4882.81 4885.39 4890.20 4900.06	$\begin{array}{c c} +73 \\ +73 \\ +73 \\ +73 \\ +72 \\ \hline +69 \end{array}$	4881.62 4883.54 4886.12 4890.92	3	nn B	34.0713 33.5729 33.4900	4882.02 4899.27 4902.17	-27 -29 -29	4881.75 4898.98 4901.88	$egin{array}{c} 81.69 \\ 83.74 \\ 86.32 \\ 91.12 \\ 98.78 \\ 01.32 \\ \end{array}$	+++++++++	4881.71 4883.76 4886.34 4891.14 4898.80 4901.34
2-3 1 	nn D nn D nn D nn D nn D	41.6290 41.4997 41.2530 40.6280	4900,06 4919,82 4924,52 4933,50 4956,80	$ \begin{array}{r} +65 \\ +66 \\ +65 \\ +63 \\ +58 \end{array} $	4920,48 4925,17 4934,13 4957,38	1	nn D nn D	32.5875	4934.33	-29 -32 -34 	4933.99	20.98 25.37 33.79 57.58	$\begin{array}{c} + 2 \\ + 2 \\ + 2 \\ + 2 \\ + 2 \end{array}$	4901.34 4921.00 4925.39 4933.81 4957.60

78 SCHJELLERUP

Intensity Character Character Scale Reading Wave-Length by Formula Curve Cor. Length Curve Cor. Length Curve Cor. Length Character Scale Reading Curve Cor. Length Cor. Length Curve Cor. Length Cor. Length Curve Curve Cor. Length Cor. Length Curve Cor. Length Cor. Leng	Uncor. rected for Velocity t.m. 64.24 73.28 83.92 89.15	Cor. for V	Corrected for Velocity
	64.24 73.28 83.92 89.15	$ _{+2}$	
	73.28 83.92 89.15	-1-2	t.m.
	83.92 89.15	+2	5164.26 5173.30
1 n D 48.2176 5184.30 -52 5183.78 n D 47.3500 5184.50 -45 5184.05		$+\frac{2}{+2}$	5183.94
1 n D 48.0836 5189.63 -51 5189.09	+93.19	$\frac{+2}{+2}$	5189.17 5193.21
2 n D 47.6671 5206.38 -62 5205.76	05.82	$\begin{array}{ c c } +2 \\ +2 \\ +2 \end{array}$	5105.84
wn D 46.7480 5209.00 -48 5208.52	08.46 14.20	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5208.48 5214.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.66	$\begin{vmatrix} +\frac{2}{2} \\ +2 \end{vmatrix}$	5216.68
9 wn D 47.1690 5226.76 -70 5226.06 wn D 46.3139 5227.08 -49 5226.59	-26.33	2	5226,35
6 n D 46,9888 5231,23 -74 5233,49 1 nn D 46,1290 5231,90 -49 5231,41 6 n D 46,6577 5248,07 -79 5217,28 4 n D 45,8192 5248,03 -49 5247,54	33.95 47.41	+2	5233.97 5247.43
4 wn D 46.5657 5251.95 -80 5251.15 2 nn D 45.7209 5252.24 -49 5251.75	51.45	$+2 \\ +2$	5251.47
1 nn D 46.4702 5255.99 -82 5255.17	55.23	1+2	5255.25
3 n D 46.1146 5271.17 -86 5270.31 3 n D 48.2825 5271.23 -48 5270.75 2 nn B 45.8969 5280.56 -89 5279.67	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5270.55 5279.75
1 nn D 45.8049 5284.56 -89 5283.67 nn D 45.0008 5283.60 -47 5283.13	83.41	1+2	5283.43
1 n D 45,4899 5298,34 -92 5297,42 wn D 44,6710 5298,26 -47 5297,79 2 n D 45,3846 5302,98 -92 5302,06	$\begin{vmatrix} 97.61 \\ 02.12 \end{vmatrix}$	$+2 \\ +2$	$\begin{bmatrix} 5297.63 \\ 5302.14 \end{bmatrix}$
2 n D 45.3846 6502.98 -92 5502.06	04.95	+2	5304.97
1 nn D 45,2647 5308,29 -93 5307,36 .	07.42	+2	5307.44
3 n B 45,1380 5313,93 -93 5313,00 2 n B 44,3315 5313,55 -46 5313,09 3 n D 45,0951 5315,85 -93 5314,92 2 n D 44,2817 5315,68 -46 5315,22	$\begin{array}{c c} & 13.05 \\ & 15.07 \end{array}$	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5313.07
6 n B 45.0411 5318.26 -93 5317.33 2-3 n B 44.2285 5318.24 -45 5317.79	17.56	+2	5317.58
nn D 44 9791 5321.04 -93 5320.11 5 n D 44.7933 5329.42 -92 5328.50 1-2 nn D 43.9740 5329.89 -41 5329.45	$\begin{vmatrix} 20.17 \\ 28.98 \end{vmatrix}$	$\begin{vmatrix} +2\\+2 \end{vmatrix}$	5320.19
5 wn B 41.6603 5335.45 -91 5334.54 2 3 n B 43.8491 5335.65 -44 5335.21	31.88	+2	5334,90
$2 \mid \text{n D} \mid 44.6137 \mid 5337.57 \mid -91 \mid 5336.66 \mid 1 \mid \text{nn D} \mid 43.8101 \mid 5337.45 \mid -41 \mid 5337.01$	36.84	+2	5336,86
5 wn B 44 5633 5339.86 -90 5338.96 2-3 n B 43.7622 5339.67 -43 5339.21 2 D 44.5122 5312.20 -90 5341.30 1-2 nn D 43.7065 5342.26 -43 5311.83		$ ^{+2}_{+2}$	5339.12 5341.59
1 nn B 43.6452 5345.11 -43 5344.68	44.62	+2	5344.64
2 3 n D 44.3313 5350.50 -86 5349.64 wn D 43.5437 5349.88 -42 5349.46 n B 43.4833 5352.69 -42 5352.27	49.55 52.21	$^{+2}_{+2}$	5349,57 5352,23
$-\dots$ nn D 43,9718 5367.18 -79 5366.39 nn D 43,1809 5366.98 -40 5366.58	66.49	$\begin{vmatrix} \pm 2 \\ \pm 2 \end{vmatrix}$	5366.51
3 n B 43,9193 5369,63 -78 5368,85	68.91	+2	5368.93
6 D 43.8618 5372.33 -76 5371.57 5 6 n D 43.0726 5372.14 -39 5371.75 7 B 43.7877 5375.82 -74 5375.08 2 n B 43.0051 5375.36 -39 5374.97		$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5371.68
2 n D 43,7409 5378 02 -73 5377,30 2 n D 42,9539 5377,82 -39 5377,43	77.36	+2	5377.38
9 wn B 43.6727 5381.24 -70 5380.54 2 wn B 42.8934 5380.73 -38 5380.35 wn D 43.5840 5385.44 -65 5384.79	$ \begin{array}{c c} 80.45 \\ 84.85 \end{array} $	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5380.47 5384.87
1 nn D 42.6847 5390.81 -37 5390.44		+2	5390.40
9 wn D 43.3332 5397.40 -59 5396.81 6.8 wn D 42.5508 5397.32 -36 5396.96		$+2 \\ +2$	5396.91
2 nn D 43.0561 5110.76 -52 5110.24 nn D 42.2907 5110.08 -35 5409.73 1 n D 42.9725 5414.82 -50 5414.32 42.2907 5110.08 -35 5409.73	$09.99 \\ 14.38$	$\frac{1}{1}$	5410.01 5414.40
7 8 n B 12.9139 5417.67 -48 5417.19 2-3 n B 42.1373 5417.66 -31 5417.32	17.26	+2	5417.28
3 n D 42.8416 5421.20 -46 5420.74 3 n D 42.0780 5420.61 -31 5420.27 2 n B 42.7938 5423.50 -45 5423.05	$\begin{array}{c c} 20.51 \\ 23.11 \end{array}$	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5420.53 5423.13
3 n D 42.6488 5430 67 -42 5430.25 2/3 n D 41.8787 5430.57 -33 5430.24	30.25	1-1-2	5430.27
2 n D 42.5633 5434.89 -40 5434.49	34 55	+2	5434.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 39.68 \\ & 42.52 \end{array}$	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5439.7 5442.54
(to 42.3340 5446.30 -36 5445.94	46,00	+2	5446.0
9 n D 42,2911 5448 25 -35 5447.90 8 n D 41,5415 5447.62 -32 5447.30 from 41,5070 5149.36 -32 5449.04	$\frac{47.60}{48.98}$	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	$5447.62 \\ 5449.0$
Max B 42.2328 5451.31 -34 5451.00 B }	51.06	+2	5451.08
(to 41,3880 5455,44 -31 5455,13 -12 n D 42,1175 5457,11 -32 5456,82 nn D 41,3565 5457,07 -31 5456,76		$+2 \\ +2$	5455.1 5456.81
1-2 n D 42,1175 5457.11 -32 5456.82 nn D 41,3565 5457.07 -31 5456.76 1 2 n D 42,0339 5461.36 -31 5461.05 1 nn D 41,2772 5461.14 -31 5460.83		+2	5460.96
2 n D 41.8930 5468.50 -30 5168.20 wn D 41.1319 5468.65 -30 5468.35	68.28	1+2	5468.30
2 n B 41.8081 5472.84 -29 5472.55	72.61	$\begin{vmatrix} +2 \\ +2 \end{vmatrix}$	5472.63 5474.46
	78.23	$\frac{1}{+2}$	5478.25
1 n D 41.5984 5483.57 -27 5483.30 1 nn D 40.8503 5483.33 -30 5483.05 from 40.5890 5497.10 -29 5496.81		$+2 \\ +2$	5483,19 5496,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98,20	+2	5198.22
(to 40.4560 5504.20 -29 5503.91	03.85		5503,9

		PLA	TE G 300					\mathbf{PL}	ATE G 384			MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Cnrve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.
3	n B n D	$\begin{vmatrix} 41.0955 \\ 41.0422 \end{vmatrix}$	5509.74 5512.55	$-23 \\ -23$	5509.51 5512.32		nn D	40.2948	5512.81	-29	5512.52	$\begin{vmatrix} 09.57 \\ 12.42 \end{vmatrix}$	$+\frac{2}{4}$	5509.59 5512.44
1-2	nn D nn D	40.7966 40.6240	5525.56 5534.76	$ \begin{array}{r} -22 \\ -22 \end{array} $	5525.34 5534.54		wn D	40.0551	5525.80	-28	5525.52	25.43 34.60	$+\frac{2}{2}$	5525.45 5534.62
1						i	^B	39.8639	5536.17	-28	5535.89	35.83	+ 2	5535.85
8	w D from	$\frac{40.5270}{40.4820}$	5540.00 5542.40	$-22 \\ -22$	5539.78 5542.18	6-8	$_{ m from}^{ m D}$	39.8020 39.7530	5539.56 5542.30	$\begin{bmatrix} -28 \\ -28 \end{bmatrix}$	5539.28 5542.02	39.53 42.10	$+\frac{2}{2}$	5539,55 554 2 , 1
B }	to	40.3890	5547.50	-22	5547.28	P (to	39.6560	5547.60	-28	5547.32	47.30	$+\frac{2}{3}$	5547.3
$\frac{2}{1}$	n D n D	$\frac{40.3678}{40.2939}$	$5548.61 \mid 5552.62 \mid$	$-22 \\ -22$	5548.39 5552.40	$\begin{vmatrix} 1\\0-1 \end{vmatrix}$	n D nn D	39.6299 39.5635	5549.05 5552.73	$-28 \\ -28$	5548.77 5552.45	$\begin{vmatrix} 48.58 \\ 52.43 \end{vmatrix}$	$+\frac{2}{+2}$	5548.60 5552.45
î	n D	40.2238	5556.44	-22	5556.22	0-1	nn D	39.4905	5556.78	-28	5556.50	56.36	+2	5556.38
1-2	n D n D	$\frac{40,1000}{40.0241}$	5563.20 5567.39	$ \begin{array}{r} -22 \\ -22 \end{array} $	5562.98 5567.17	$\begin{vmatrix} 0-1\\1 \end{vmatrix}$	nn D n D	39.3853 39.2985	5562.65 5567.52	$-28 \\ -28$	5562.37 5567.24	$\begin{vmatrix} 62.68 \\ 67.21 \end{vmatrix}$	$\frac{+2}{+2}$	5562.70
1	n D	39.9680	5570.50	$-2\overline{2}$	5570.28							70.34	+2	5570.36
···i	$\begin{bmatrix} \dots \\ n D \end{bmatrix}$	39.8936	5574.59	-22	5574.37	\mathbf{D}	from	39.1860	5573.90	-28	5573.62	73.56 74.43	$+\frac{2}{2}$	5573.6 5574.45
Max	"D	39,7204	5584.21	-22	5583.99	6	D	39.0016	5584.29	-28	5584.01	84.00	$+\frac{1}{2}$	5584.02
Head		39.6840	5586.22	-22	5586.00	Head	to	38.9680 38.9670	5586,20 5586,30	$\begin{vmatrix} -28 \\ -28 \end{vmatrix}$	5585.92 5586.02	$85.84 \\ 86.01$	$+\frac{2}{2}$	5585.9 5586.03
3	В	39.6628	5587.43	-22 - 22	5587.21	3	В	38.9156	5587.48	$-\overline{28}$	5587.20	87.21	+2	5587.23
$\frac{1}{2-3}$	nn D n B	$39.6240 \\ 39.5700$	$5589.61 \\ 5592.63$	$ \begin{array}{r} -22 \\ -23 \end{array} $	5589.39	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	n D	$38.9122 \\ 38.8661$	5589,38 5592,03	$-28 \\ -28$	5589,10 5591,75	89.25 92.08	$+\frac{2}{2}$	5589.27 5592.10
$\frac{2}{2}$	n D	39.5227	5595.29	$-\frac{23}{-23}$	5592.40 = 5595.06	2	n B n D	38.8111	5595.18	$-28 \\ -28$	5594.90	94.96	+ 2	5594.98
4	B	39.4770	5597.87	-23	5597.64	3	B	38.7651	5597.82	-28	5597.54	97.59 00.36	$+\frac{2}{2}$	5597.61 5600.38
1	nn D from	$39.4206 \\ 39.3020$	5601.05 5607.80	$ \begin{array}{r} -24 \\ -24 \end{array} $	5600.81 5607.56	1-2	nn D	38.7239	5600.19	$\begin{vmatrix} -28 \\ \cdots \end{vmatrix}$	5599.91	07.62	$\mp \frac{1}{2}$	5607.6
D }							nn D	38.5591	5609.72	-28	5609.44	09.50	$+\frac{2}{2}$	5609.52
(to from	39.2230 39.1080	5612.30 5618.80	$-24 \\ -25$	$5612.06 \mid 5618.55 \mid$							$12.12 \\ 18.61$	$\mp \frac{2}{2}$	$5612.1 \\ 5618.6$
Max	D	39.0838	5620.23	-25	5619.98	2	n D	38,3739	5620.51	-28	5620.33	20.16	$\frac{1}{2}$	5620.18
Max	to D	38,9900 38,9600	5625.60 + 5627.30	$-25 \\ -26$	5625.35 ± 5627.04		nn D	38.2854	5625.70	-28	5625.42	$25.36 \ 27.10$	$\frac{1}{1}$	5625.38 5627.1
. 8	D	38.8405	5634.26	-26	5634.00	10	D	38.1328	5634.70	-28	5634.42	31.21	1+ 2	5634.23
Head	from	$38.7964 \\ 38.7964$	$5636.81 \\ 5636.81$	$-26 \\ -26$	5636.55 5636.55	Head		38.0896	5637.26	-28	5636.98	$\begin{vmatrix} 36.77 \\ 36.77 \end{vmatrix}$	$+\frac{2}{2}$	5636.79 5636.8
$\mathbf{B} \begin{cases} 8 \\ 6 \end{cases}$	n B	38.7658	5638.60	-27	5638.33		В	38.0571	5639.19	-28	5638.91	38.62	+2	5638.64
B) 6	to B	$38.7102 \\ 38.6950$	$5641.84 \\ 5642.70$	$-27 \\ -27$	$5641.57 \\ 5642.43$		В	38.0102	5641.97	-29	5641.68	$\begin{array}{r} 41.63 \\ 42.49 \end{array}$	$+\frac{2}{2}$	5641.65 5642.5
2	nn D	38.6625	5644.62	-28	5644.34	1	n D	37.9680	5644.49	-29	5644.20	44.27	+2	5644.29
1	nn D nn B	38.5603 38.5130	$5650.61 \\ 5653.40$	$-28 \\ -28$	$5650.33 \\ 5653.12$	1	nn D	37.8694	5650.39	-29	5650.10	$50.22 \\ 53.18$	$+ \frac{2}{2}$	5650.24 5653.2
						2	n B	37.7830	5655.57	-29	5655.28	55.22	+2	5655.24
3	nn D nn D	$38,4306 \\ 38,2098$	$5658.25 \\ 5671.35$	$-29 \\ -31$	$5657.96 \\ 5674.04$	$\frac{1}{2}$	n D n D	37.7503 37.5132	5657.54 5671.89	$\begin{bmatrix} -29 \\ -30 \end{bmatrix}$	$5657.25 \\ 5671.59$	$57.61 \\ 71.32$	$^{+2}_{+2}$	5657.63 5671.34
2	nn B	38.1633	5671.33 5674.13	-31 - 32	5673.81	1-2	n B	37.4736	5674.31	-30 - 30	5674.01	73.91	$\mp \frac{1}{2}$	5673.93
$\frac{1-2}{2}$	nn D	38.1202	5676.70 5670.60	-32	5676.38	2	n D	37.4327	5676.81	-30	5676.51	$76.45 \\ 79.43$	$+\frac{2}{2}$	5676.47 5679.45
$\frac{2}{1-2}$	n B n B	$38.0704 \\ 37.9977$	$5679.69 \\ 5684.06$	$ \begin{array}{c c} -32 \\ -33 \end{array} $	5679.37 5683.73							83.79	+2	5683 81
8	wn B	37.8353	5693.88	-34	5693,54	6	n B	37.1484	5694.30	-31	5693.99	93.77	+2	5693.79 5696.33
$\frac{1}{4}$	nn D n B	$37.7910 \\ 37.6508$	5696.60 5705.12	-35 -36	5696.25 5704.76	5	n B	36.9668	5705.60	-31	5705.29	$96.31 \\ 05.03$	$\frac{+2}{+2}$	5705.05
3-4	n D	37.6018	5708,12	-37	5707.75	2	n D	36.9191	5708,58	-31	5708 27	08.01	+2	5708.03
$\frac{1}{6}$	nn D wn B	$37.5210 \\ 37.4514$	$\begin{bmatrix} 5713.10 \\ 5717.37 \end{bmatrix}$	$-37 \\ -38$	5712.73 5716.99	$\frac{1}{8}$	n D wn B	36.8338 36.7731	5713,93 5717-74	$\begin{vmatrix} -32 \\ -32 \end{vmatrix}$	5713.61 5717.42	$13.17 \ 17.21$	$+\frac{2}{2}$	5713.19 5717.23
1	n D	37.3829	5721.61	-39	5721.22	2	n D	36.7063	5721.97	-32	5721.65	21.44	+2	5721.46
$\frac{6}{3-4}$	wn B n D	37.3330 37.2257	5724.70 5731.38	$-39 \\ -40$	5724/31 5730.98	$\begin{vmatrix} 6\\8 \end{vmatrix}$	wn B wn D	$36.6566 \\ 36.5441$	5725.12 5732.27	$\begin{vmatrix} -32 \\ -33 \end{vmatrix}$	5724.80 5731.94	$ \begin{array}{c c} 24.56 \\ 31.46 \end{array} $	$+\frac{2}{+2}$	5724.58 5731.48
3							from	36.3830	5742.60	-33	5742.27	42.21	+2	5742.2
$\frac{3}{2}$	n D nn D	37.0343 36.9297	5743.37 5750.00	$\begin{vmatrix} -43 \\ -44 \end{vmatrix}$	5742.94 5749.56	$ D _1$	n D	36.2611	5750,44	-34	5750.10	$\frac{43.00}{49.83}$	$+\frac{2}{2}$	5743.02 5749.85
							to	36.2490	5751.20	-34	5750.86	50.80	+2	5750.8
3	nn D nn D	36.7301 36.6045	5762.66 5770.70	$-46 \\ -48$	5762.20 5770.22	$\begin{bmatrix} 1\\3 \end{bmatrix}$	n D n D	36.0743 36.9375	5762.56 5771.51	$\begin{vmatrix} -35 \\ -35 \end{vmatrix}$	5762.21 5771.16	$\begin{vmatrix} 62.21 \\ 70.69 \end{vmatrix}$	$^{+\ 2}_{+\ 2}$	5762.23 5770.71

78 SCHJELLERUP - - Continued

		PLA	TE C 300					Рьл	те († 381			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Length	Uncorrected for Velocity	Cor, for V	Corrected for Velocity
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.
T (from	36,5790	5772.30	-50	5771.80							71.86	+2	5771.9
$B \rangle$	to	36,4460	5780,90	-50	5780,40							80.46	+2	5780.5
\mathbf{D}_{3}^{1}						3	wn D	35.7232	5785.63	-36	5785,27	85.21	+2	5785.23
- ((ii)	36,3620	5786.30	-50	5785,80							-85.86	+2	5785.9
1	nn D	36,3005	5790,36	-51	5789,85							89.91	+2	5789.93
2	n D	36.1827	5798.05	-52	5797.53							97.59	1-2	5797.61
1	nn D	36,0953	5803, 79	-53	5803, 26	1 2	n Đ	35,4446	5801.24	-38	5803.86	03,56	+2	5803.58
1	nn D	35,8080	5822,80	-60	5822.20	1	nn D	35.1549	5823.87	-59	5823.48	22.84	+2	5822.86
1	n D	35.3991	5850.34	-60	5849.74							-49.80	+2	5849.82

$132 \ SCHJELLERUP = U \ HYDRAE$

1902, Febr Hog	PLATE A 328 ruary 21, G.M ir angle, E 0 lent; compai	27			He	PLATE (arch 23, our angle ir; com	G.M.T.	4		1	899, Dec He	PLATE cember 2 our angle ir; com	9, G.M e, W 05	2		WA	Mea ve-Li	N ENGTH
n- Char- S	lean Wave- cale Length lead- by For mula	EE	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor. from	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave- Length	Uneur. for Velocity	Cor. for V	Cor. for Velocity
10 10 10 10 10 10 10 10	.0723	+111 +100 +100 +100 +100 +100 +100 +100	4391, 54 4391, 75 4391, 75 4391, 75 4391, 75 4391, 78 4401, 86 4402, 89 4401, 86 4401, 86 4411, 86 4411, 86 4411, 87 4411, 87 4411, 88 441	Hegi 1	ns n D n D n D n D n D n D n D n D n D n D	mm. 63.9510 63.5061 63.5061 63.2453 62.9775 62.6435 62.5620 62.3460 62.2470 61.8679 61.8856 60.8135 60.6908 60.4585 60.3642 60.2085	t.m. 76.84 84.90 89.60 91.50 62.21 68.10 15.25 27.57 30.25 37.95 41.38 47.47 49.89	- 3 - 7 - 8 - 19 - 11 - 12 - 14 - 14 - 14 - 14 - 15 - 21 - 21 - 21 - 22 - 25 - 26 - 27	t.m. 76.81 81.83 89.52 94.41 00.59 02.09 07.96 15.08 27.37 30.04 35.32 37.71 42.27 44.12 47.21 49.62	Begi 1 1	ns	mm. 57 6156 57 4080 57 1090 56 6559 56 3620 55 8380 55 4675 51 5489 54 3559 54 3559 53 6950 53 6950	t.m. 71 3 55 16 50 6 88 94 91 50 6 6 70 6 70 6 70 6 70 6 70 6 70 6 70	+39 +38 +38 +36 	t.m. 71.77 75.75 75.	t.m. 2 741.5.0 84.8.86 889.36 492.486 889.36 997.486 889.36 997.486 889.36 997.486 997	+40 +41 +41 +41 +41 +41 +41 +41 +41 +41 +41	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

		PLATE	A 328	-]	PLATE (G 309				j	PLATE (7 368			WA	MEA: VE-LE	
In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by For- mula	Cor.from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from Curve	Wave- Length	Uncor. for Velocity	Cor. for V	Cor. for Velocity
30-1 4 C 8 8 1 2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DD DB B From to WD DD DB DB DB DB DB DB DB DB DB DB DB DB	Scale Read-	Length by For-	- 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	t.m 1454, 53 1456, 34 1458, 39 1458, 39 1458, 90 1461, 55 1463, 65 1463, 65 1463, 65 1463, 65 1463, 65 1471, 20 1471, 20 1473, 13 1473, 97 1473, 13 1473, 13 1	ten-	D	Mean Scale Reading mm. 59.8036 59.4390 59.306 59.3520 58.8770 58.8530 58.84879 58.4417 58.2556 57.536 57.536 57.2020 56.8076 56.8076 56.8076 56.8076 56.8076 56.8076 56.8076 56.8076 56.8076 56.8076 56.8076 56.8076	t.m. 55.56 62.10 62.10 62.90 64.70 72.90 74.43 74.90 75.44 80.32 82.50 01.70 02.60 04.00 07.10 09.80 09.80	00r-ftom -29 -29 -30 -31 -	t.m. 55.27 61.89 62.59 63.59 64.39 72.57 74.50 77.57 74.50 79.97 82.15 83.11 87.00 89.38 89.38 96.69 01.32 02.21 05.61 06.71 09.41 18.04 20.30 21.30	ten-		Mean Scale Reading mm. 53,2945 52,8815 52,8815 52,3330 52,1582 51,9957 51,9518 51,8269 51,7712 51,6608 51,3182 51,0890 51,0351 50,3849 50,7875 50,3960	t.m. 54.79 63.62 68.60 74.80 78.50 81.96 82.89 86.76 88.18 89.13 96.54	+13	t.m. 54.92 63.73 68.69 74.89 78.58 82.04 82.97 85.64 88.25 89.20 01.66 02.78 06.52 06.52 06.23	t.m. 54.91 56.34 58.39 60.11 61.68 62.59 63.66 64.39 65.54 66.48 66.48 671.30 772.55 77.73.13 774.04 77.75 77.74 82.08 83.04 85.37 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.261 87.48 88.27 89.96 87.54 89.96 87.57	for	4100 Ann. 4156.76 4458.76 4458.77 4496.79 4475.78 4475
B { 6 8 3 3 1 6-8 2 2-3	D	42.1903 42.2774 42.3397 42.3754	4528,36 4533,10 4534,48 4535,73 4536,63 4537,14	- 9 - : 8 - : 8 - : 8 - : 8	4524.26 4526.81 4528.27 4533.02 4534.40 4535.65 4536.55 4537.06	3	n B	56.6586 56.5892 55.9532	23.23	-40	22.83 36.99	# B 1 	from to n D from n D from	50.1327 50.0990 49.9980 49.7810 49.5723 49.5480	26.90 30.80 35.50 36.10	+ 7 + 7 + 7 + 7 + 7 + 7	22.85 23.67 26.97 30.87 35.58 36.18	21.96 22.75 23.49 24.26 26.89 28.27 30.87 33.02 34.40 35.62 36.18 36.55 37.03	+42 +43 +44 +44 +44 +44 +44 +44 +44 +44 +44	4522.4 4523.17 4523.9 4524.68 4527.3 4528.69 4531.29 4533.44 4536.6 4536.6 4536.97
5-6 Max 2 1 5-6 D B 4		42,4800 42,5743 42,7230 42,8470 42,8885 43,0350 43,0724 43,1490 43,2410 43,2687 43,3860 43,4294 43,5284	4538.65 4540.01 4542.16 4544.60 4544.57 4546.70 4547.25 4548.40 4549.70 4550.12 4551.90	- 8 - 77 - 77 - 77 - 6 - 6 - 6 - 5 - 5 - 5 - 5	4538.57 4539.93 4542.09 4543.93 4541.50 4546.63 4247.19 4548.34 4549.64 4550.07	3 2 1 D{	nn D	55.8823 55.8148 55.5850 55.4221 55.3080	45.72 49.43 52.00	-40 -39 -39 -38 -38	49.05 51.62	4-5 1 	to nn D	49.4000 49.3790 49.1421 49.0685 48.9236 48.7930	\$9.50 40.00 45.42 47.13 50.51	+ 8 + 8 + 9 + 9 + 10 + 10	\$9.58 40.08 45.51 47.22 50.61	38.58 39.58 40.04 42.09 43.93 44.50 45.42 46.63 47.24 48.34 49.65 49.64 49.64 49.65 50.34 51.62 52.42 53.78 54.92	+42 +42 +42 +42 +42 +42 +42 +42 +42 +42	4539, 00 4540, 46 4542, 51 4544, 45 4544, 92 4545, 84 4547, 63 4548, 8 4547, 63 4548, 8 4547, 63 4548, 8 4550, 1 4550, 1 4550, 1 4550, 2 4552, 3 4552, 3 4552, 3 4552, 3 4552, 3 4552, 3 4552, 4

		PLATE	а A 328					PLATE	G 309					PLATE	G 368			With	Mea ve-Le	N NGTH
In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by For- mula		Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor. from	Ware. Length	In- tor- sity	Char- acter	Mean Scale Read- ing	Wave. Length by Form.	Cor. from	Wave- Length	Uncor. for Velocity	Cor.	Cor.
1 2	n 1)? n 1)?	mm, 43 6085 43 6902	t.m. 1555,12 4556,32	- 5 - 5	t.m. 4555,07 4556,27			mm.	t.m.		t.m.			113 111.	t.m.		t.10.	t.m. 55.07 56.27		t.m 4555.5 4556.7
3 1	nn B	43.8375	4558.50	5	1558.45	$\begin{bmatrix} \mathbf{B} \end{bmatrix}$	to	54.9780	59.60	-37	59-23							56.91 58.45 59.23	+43 +43 +43	4557.8 4558.8 4559.7
3	nn D n B	41 0570 41 0570	4561.36 4561.76	- 4 - 4	4561.32 4561.72	1 2	 B n D	51.8612 54.8214	62.28 63.27	-37 -36			nn D n D	48.5 :::0 18.2926			59. 4. 0 63.13	59.80 61.32 61.82 63.02	+43 + 43	4560.2 4561.7 4562.2 4563.4
2	wn D	14.2195 14.2850 41.8557	4564, 18 4565, 20 4566, 22	- 4 - 4 - 3	4561 14 4565,16 4566 19	B	from	54.7910	64.00			1	п Б	is 2775	65 75	+12	65 87	63.64 64.14 65.52 66.19	+43 +43 +43	$\begin{array}{c} 4564.1\\ 4564.5\\ 4565.9\\ 4566.6 \end{array}$
2 3	n D? B	44.3860 44.5149	4569.05	- 3 - 3	4566.64 4569.03		to	51.5230	70 20	- 35	69.85							66.64 69.03 69.85	$+43 \\ +43 \\ +43$	4567.(4569., 4570.;
21	n D B	44.8269 44.9627 45.0835	4573.30 4575.36 4577.19	- 2 - 1 - 1	4573.28 4575.35 4577.18	1	n D	54.2323	77 10	-3i	76.76		w D	47.8480		+14	76.24	73.28 75.35 76.50 77.18	$\begin{vmatrix} +43 \\ +43 \\ +43 \end{vmatrix}$	4573. 4575. 4576.! 4577.
4 4 4	B B D	45.1434 45.2195 45.2700	4578,10 4579,26 4579,98	- 1 - 0 - 0	4578 09 4579 26 4579.98	Space :	from	54.1810	78.30		77,96	1	 n D	47.6864	79.77	+15	79.92	78.09 79.26 79.95	$\begin{array}{r} -43 \\ -43 \\ -43 \end{array}$	4578, 4579, 4580.
4 5 3	B B D	45,3184 45,1965 45,5517	4580,76 4583,48 4584,28	+ 1 + 1 + 1	4580,77 4583 49 4584 29	02						1	n D	47 5916	82.27	+15	82.42	80.77 82.42 83.49 81.29	$^{+43}_{-43}$	4581. 4582. 4583. 4584.
5322	B D B D	45.5989 45.6497 45.6892 45.7242	4585,05 4585,83 4586,44 4586,98	++++	4585 07 4585 85 4586 16 4587 00	В												85.85 86.46 87.00	$\begin{vmatrix} +43 \\ +43 \\ +43 \end{vmatrix}$	4585. 4586. 4586. 4587.
3-1 4 3	n D D	45.9465 45.8625 46.1562	4589,94 4590-65 4593-64	$ + \frac{3}{2} + \frac{3}{3} $	4589,96 4590-67 4593-67	Unresolved												89.96 90.67 93.67	$\begin{vmatrix} +43 \\ +43 \\ +43 \end{vmatrix}$	4590. 4591. 4594.
1 1 4 4	nn B n D n B D	46.2895 46.3422 46.5225 46.5972	$egin{array}{c} 4595,71 \ 4596,53 \ 4599,34 \ 4600,52 \end{array}$	+4 + 4 + 5 + 5	4595, 75 4596, 57 4599, 39 4600, 57	Unr						3	n B nn D B	47.0584 46.9901 16.9269	4597 04	$^{+19}_{+20}$	4597.23	95.65 96.90 99.11 00.57	$^{+43}_{-43}$	4596. 4597. 4599. 4601.
4 2 1	В ъ ъ	46,6617 46,7216 46,9297	4601,52 4602,46 4605,73	$\begin{array}{c} + 6 \\ + 6 \\ + 7 \end{array}$	4601.58 4602.52 4605.80		from	53.1590	46.0290	-29	4602.61							$ \begin{array}{c} 01.58 \\ 02.52 \\ 02.61 \\ 05.80 \\ \end{array}$	$^{+43}_{-43}$	4602. 4602. 4603. 4606.
4	n D	47.0101	4607.00	+ 7	4607.07	D	to	52.9400	46.0830		4608.02		w D	16.6236				$06.40 \\ 07.07 \\ 08.02$	$\begin{vmatrix} +43 \\ +43 \\ +43 \end{vmatrix}$	4606. 4607. 4608.
B}	to D	47.0530 47.1575 47.1800	4607,70 4609 40 4609 67	+ 7 + 7 + 7 + 8	4609 47 4609 74													07.77 09.52 09.47 09.74	$+43 \\ +43$	4608, 4609, 4609, 4610,
2) 21 (2)	n B n B	47.2515 47.2987 47.3585	4610.81 4611.56 4612.51	$^{+8}_{+8}$	4610 89 4611 64 4612.59							Max	B	46.3997	1611.83	+23	4612.06	10.89 11.64 12.06 12.59	$\begin{vmatrix} +43 \\ +43 \\ +43 \\ +43 \end{vmatrix}$	4611. 4612. 4612. 4613.
5-4 9 5	n B It	47,4129 47,4927 47,5679	4613.37 4611.64 4615.81	+ 9 + 9 + 9	4613,46 4614,73 4615,93							4 2	nn D B D	46 3442 46,2889 46,2478	4615.68	$^{+23}_{+24}$	$\substack{ 4613.46 \\ 4614.88 \\ 4615.92 }$	13,46 14,80 15,93	+43 +43 +43	4613. 4615. 4616.
1-2 6 2 5-6	n B n B	47.6172 47.6832 47.7640 47.8879	$\frac{4618.97}{4620.98}$	+11								8 2 2	B D B	46 1728 46 1195 46 0458	4617.58 4618.94 4620.82	$^{+24}_{+24}_{+25}$	1617.82 1619.18 1621.07	21.08	$\begin{vmatrix} +43 \\ +43 \\ +43 \end{vmatrix}$	4617. 4618. 4619. 4621.
1 5 1 2 1 1	B B B n D	48 0539 48,1587 48 2343 48,3307	4625.32 4626.54	+12 +12 +13 +13														23.75 25.41 26.67 28.23	$^{+13}_{-13}$	4624. 4625. 4627. 4628.
22221-	n D	48,4185 48,5152 48,6325	4629 52 4631 09 4633 00	+13 +14 +15								1	B	15 6568		± 28	631.11	29.65	+43 +43 +43	4630, 4631, 4633, 4631,
8	n D B from	48.6664 48.8989 48.9635 48.9900	4637.35 4638.41	$+15 \\ +15 \\ +16 \\ +16$	4637.50 4638.57 1639.06							1 5	n D B	45.3652		+30.		37.27 38.61 39.06	+43 +43 +13	4637. 4639. 4639.
\{\int_{3}^{6}}	to B		4642.73	+ 17 + 17 + 17 + 17	1611.07 4611.17 1642.90									15,3095			1640-16	41.07 11.47 42.90	+43 +43 -43	4610. 4611. 4641. 4613.
1	B? B D	49.2884 49.8122 49.8697		+17 +20 +21	4643.92 4652.64 1653.62								nn D	45.0712		+3i	ieie 13	43 92 46,43 52 64 53,62	+14	4614. 4646. 4653. 4654.
5 1 2	n D? n B	50-0139 50,4154 50,2485	1655, 82 4657, 52 4659, 75	+21 +23 +23	4656 ; 03 1657 75 4659 ; 98													56,03 57,75 59,98	+ 11	4656, 4658, 4660,
2222	D? D	50 2967 50 3763 50 1763 50 5510	4660,57 4661,91 4663-60 4664-58	+23 +23 +24 +21	4660, 80 4662, 14 4663, 81 4664, 82	1	n D		4663 82		1663.70							60,80 62,11 63,77 64,82	+11	4661. 4662. 4664. 4665.

		PLATE	A 328					PLAT	E G 309					PLAT	E G 368			WA	Mea ve-Li	N ENGTH
In- en- sity	Char- acter	Mean Scale Read- ing	Wave- Length by For- mula	Cor.from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave. Length by Form.	Cor.from Curve	Wave- Length	Uncor. for Velocity	Cor.	Cor. for Velocity
3	D?	mm. 50.5832	t.m. 4665-41	+24	t.m. 4665,65	_		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m. 65,65	+44	t.m.
2–3 2	n D n D	50.6873 51.5407 51.8997	1667.19 4681.83 4688.04	$^{+24}_{+28}$ $^{+28}_{+30}$	4667.43 4682.11 4688.34													67,43 82,11 88,34	+11 +11 +11	4667. 4682. 4688.
1 	nn B? l			$^{+30}_{+32}$ $^{+32}$	4689.39 4699.85 4700.79													89.39 99.85 00.79	$+11 \\ +11 \\ +11$	4689.3 4700.3 4701.3
1 -2	nB?	52.6500 52.6903	4701.22 4701.93	+32	4701.54 4702.25 4703.38													$\begin{array}{c} 01.54 \\ 02.25 \\ 03.38 \end{array}$	+44 +44 +44	4701. 4702. 4703.
1 1 1	n B?	52.7540 52.8505 52.8925	4689.09 4699.53 4700.47 4701.22 4701.93 4703.06 4701.77 4705.52 4708.77	+33 +33 +33 +33	4705 09 4705 84						1700 - 8							05.09 05.84	$^{+41}_{+44}$	4705.1 4706.1
	В	53.4100	4708 77 4714.78	+33	4709.10 1715.11	1	В	49.0844	47.0949	+ 3	4509.52	D \	from		4710.50	+49	4710.99	09,31 10,99 15,11	+11 +11 +11	4709. 4711. 4715.
322	в	53.4762	4715 97 4716 66	+34 +31	4716 31 4717 00								to	42.5570	4715 30	+50	4715.80	15.80 16.31 17.00	+11 +11 +11	4716.1 4716. 4717.
$\frac{5}{1}$	D? B	53.5527 53.5919 53.6160	4716 66 4717.35 4718.06 4718.49	$+34 \\ +34 \\ +31$	4717,69 1718,40 4718,83													17 69 18.40 18.83	$^{+11}_{+11}$ $^{+11}_{+11}$	4718. 4718. 4719.
	D? B	53.6527 53.6892	4719.15 (4719.81	$+31 \\ +31$	1.719 49													19 49 20.15 22 23	+11 +11 +11	1719
n. { ec. }	wn D from to	53.8110 53.8460 54.0790	4722.02 4722.66 4726.90	+34 +34 +35	4720 15 1722 36 4723 00 4727 25 4729 84			48 6381	47 2204		47 2 10							23.00 27.25	$+41 \\ +41$	4720 4722. 4723. 4727.
2 1	m B n D	54.0790 54.2185 54.2942 54.3422	4729.45 4730.83 4731.71	+36 +36 +36 +36	4729.84 4731 19 4732.07												4735.94	29.81 31.19 32.07	+11 +11 +11	4730. 4731. 4732.
10 7	_B	54.5738 54.6815	4735.97 4738.02		4736 33 4738 39		wn D from B	48,1631 48,1010 48,0691	4735 61 4737 46 4738 33	+9 + 9 + 9	4735.70 4737.49 4738.42	10	from	41.8619 41.8190 41.7834	4736.70	$+55 \\ +55 \\ +55$	4755.94 4737.25 4738.25	35.99 37.37 38.35	$\begin{array}{r} + 11 \\ + 11 \\ + 11 \end{array}$	4736. 4737 4738.
-5	n D	54 7390 54.8062	4739.03 4740.27	$^{+37}_{+37}_{+37}$	4739.40 4740.64	В		47.9380	4742 10			В	to	41_6560		+56	4742.06	39.40 40.64 42. 1 3	+11 +41 +41	4738. 4739. 4741. 4742.
iö	D Head	54.9734 55.0210	4743.38 4744.26 4745.57	+37 +37 +37	1743.75 4744 63		m D	47 8895	1743.53	+10	4743 63		w D Head	41.6095 41.5589	$\frac{1742.83}{4744.33}$	+57	$\frac{4743.40}{4744.90}$	43.56 44.77	$\begin{array}{c} +44 \\ +44 \\ +44 \end{array}$	4741. 4745. 4746.
7 6	n B n D? n B	55.0210 55.0912 55.1478 55.1952	4746.62 4747.51 4748.58	$^{+37}_{+37}$	4745.94 1746.99 4747.88													45.94 46.88 47.88	$^{+11}_{+11}$	4747. 4748.
-3 1 5	n B	55.3015	4749.61	+38 +38 +38	4748 96 : 4749 99 4754 71													48.96 49.99 54.71	+44 +44 +45	4749 4750 4755
3	n D n B n B	55.5588 55.6065 55.6527 55.8185	4754 33 4755,23 4756 10 4759 21	+38 +38 +38	4755.61 4756.48 4759.62													55.61 56.48 59.62	+45 +45 +45	4756 4756 4760
i 	n D? n B	55.8737 55.9689	4759.24 4760.29 4762.09	$^{+39}_{+39}$	4760.68 4762.48 4763.35													60.68 62.48 63.35	$^{+45}_{+45}_{+45}$	4761 4762 4763
3	n B?	56.0145 56.1545 56.3755	4762.09 4762.96 4765.63 4769.86	$+39 \\ +39 \\ +39$	4766.02 4770.25													66.02 70.25	$^{+45}_{-45}$	4766. 4770
	nn D? nn D n B	$\begin{bmatrix} 56.4759 \\ 56.5880 \end{bmatrix}$	4770.50 4771.79 4773.91	$\begin{array}{r} +39 \\ +39 \\ +39 \end{array}$	4770 89 4772.18 4774.33							1-2	nn D	40.6416	4771 83	+63	1772.46	70.89 72.32 74.33	$^{+46}_{-45}$	4771 4772 4774
-3	nn D D	57.0985	4783 83	$^{+40}_{+40}$	4784.23 4788.86	1	n D n D	46.3532 46.3532	4784.29 4789.39			1	wn D	40.1024 39.5773	4805.16	+69	4789.29 4805-85	81.33 89.22 05.85	+45 +45 +45	4784 4789 4806
-3	n D nn D from	58.6530 59.0539 59.1050		$^{+40}_{-40}$	4815.06 4823.28 4824.22	1-2	n D	45.5132 45.2591	4815.53 4823.58	+ 9		1-2 1 1-2	n D	39.2701 39.0250	4815 08 4822.89	+69	4815.77 4823-58	15.48 23.51 24.22		4815. 4823. 4824
$\left\{ 2\atop 2 \right\}$	1			+40	4826.60				4827.86			2 1	В	38 9626 38 8879	4824.91	+69	4825 60 4828.05	25.60 26.60 27.74	$^{+45}_{+45}$	4826 4827 4828
4 3]. D	59.2190 59.2528 59.3755 59.4695	4829.35 4831.29	+40	4827.24 4829.75 4831.69	1 3	j	45.1254 44.9958	1832.01	+ 8	4832.09	1 2	B	38 8282 38 7728	4829-29 4831.10	$+68 \\ +68$	4829.97 4831.78	29.86 31.85 32.60	$^{+45}_{-45}$	4530.
3 { 1	from to n D	59.4695 59.5120 59.7850 59.8160	4538.43	$+39 \\ +39$	4838.82							0-1		38.5475	4838.50	+68	4839.18	38. 1 9 39.00	$\begin{vmatrix} +45 \\ +45 \end{vmatrix}$	4838 4839
1 5 1	n D n B? n D	60.0194 60.3192 60.3977	1842 66 4848.92 1850.56	$\begin{vmatrix} +39 \\ +39 \\ +38 \end{vmatrix}$	$\frac{4849.31}{4850.94}$								В	38.2271	4849.12		4849.78	43.05 49.55 50.94	$^{+45}_{-46}$	4850 4851
 В {	nn D from	60.5772	4851.35 4855.20	+38 +38	1854.73 1855.58									38 0023			4857.31	54.73 55.58 57.31	$^{+46}_{-46}$	4856 4857
1	to n D	60.7540 60.7717 61.1694	4858.10 4858.45 4866.91	+38 +38 +37	4858.48 4858.83 4867.28													58.48 58.83 67.28	十46 十46	4859 4867
3	wn B	61.2407 61.3192	4868 43 4870.12	+37 + 37	4868,80 4870,49			43.8034	4871.20	+ 1	1871.21	1-2	n D	37.5917 37.4751	4870.57	+63		68.80 70.97 75.06	$^{+46}_{-46}$	14569 4871
2-3 5 5	wn B	61.5232 61.7147 61.7979	$\frac{4878}{4880.44}$	$+35 \\ +35$	1874.99 4880.79	1	n D	43.6862	4881.15	- i	4881.14	2-3	D	37 2970	4880 69	+60	4881.29	78.99 81.07	$\begin{vmatrix} +46 \\ +46 \end{vmatrix}$	1879 4881
$\frac{1}{2}$	n D		4890.46 4899.56 4908.76	+31	4890.49 4899.87 4909.05		;;	43.2250 42.9421	4890.83	$\begin{vmatrix} -3 \\ 1 \\ -5 \end{vmatrix}$	4890.80	Max	13	36.8043			4898 44	90.65 98.41 00.21	+46 +46	$\frac{4898}{4900}$

PLAT	E A 328			PLATE	G 309					PLATI	E G 368			MEA? VE-LE	N NGTH
In- Char- Scale		Wave- Length lin- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor. from	Wave. Length	In- ton- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form,	Curve Curve Wave- Length	Uncor. for Velocity	Cor, for V	Cor. for Velocity
D } to 63 619 1 m D 63 755 2 m D 64 165 5 trom wn D? 66 215 mn D? 66 502 1 n D? 66.906 1 n D? 67.225 mn D? 67.325 mn D? 67.325 nn D? 67.538	0 1918 35 + 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 4981.55 4989.97 1998.38 1 5006.14 5009.49 5013.87	wn D in D	42.3836	4957.74 4979-61 4999.75	-10 -11 -16 -20 -23	t.m. 4920.06 4925.00 4933.84 4957.58 4979.41 4999.52		n D	35.8181 33.5580			t.m. 18 62 20.06 21.07 24.57 33,55 57.58 79.41 81.55 89.97 99.95 06.14 09.49 13.87	+46 +46 +46 +47 +47 +47 +47 +47 +47 +47 +47 +47	t.m. 4919.1 4920.52 4921.5 4925.03 4938.01 4958.05 4979.88 4982.02 4990.44 5000.42 5000.42 5001.43

132 SCHJELLERUP

18	99, Marc	h 5, G.M.T.	TE G 299 1708. Hour comparison	angle, '	W ob3	1	899, Mar Star	ch 6, G.M.T.	ATE G 301 . 1950, Hou comparison	r angle, excelle	W 155 nt	MEAN	WAVE	-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Leugth by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Leugth by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
(lead 2 b) (1 2 1 2 3 2 3 1 1 2 3 3 4 1 2 3 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 1	n D? from n D? from n D n D n D n D n D n D n D n D n D n D n D n D	mm. 46.5140 46.4342 46.2150 46.1120 46.1120 46.0144 45.9239 45.6500 45.4680 45.3140 45.9239 44.8580 44.5993 44.5010 41.0566 13.7500 41.0566 13.7500 42.7342 42.5628 42.4548 41.9991 41.9991 41.9202	t.m. 5167, 70 5172,02 5180,70 5184,70 5184,70 5188,77 5192,41 5203,50 5211,00 5216,05 5226,83 5233,49 5236,30 5247,16 5251,20 5270,38 5283,71 5297,90 5302,20 5315,16 5321,01 5329,00 5336,81 5341,77	$\begin{array}{c} +13\\ +11\\ +11\\ +8\\ +7\\ +7\\ +6\\ +3\\ +11\\ -46\\ -7\\ -10\\ -12\\ -21\\ -22\\ -29\\ -29\\ -29\\ -30\\ -31\\ -31\\ -31\\ -31\\ \end{array}$	t.m. 5167.83 5172.13 5180.78 5184.77 5188.84 5192.47 5203.53 5211.01 5216.01 5226.79 5233.43 5236.23 5247.06 5251.08 5270.19 5283.50 520.73 5314.89 5326.52 5311.47 5362.59 5366.29 5366.29 5366.29	Head 5 B 1 4 B 1 1 5 4 Max 1 5 1 -2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1	n D wn D from nn D to n D from to to nn D D n D B D D D D D D D D D D B B n D n D B B n D n D B B B n D n D n D n D n D n D n D n D n D n D	mm. 47, 1560 47, 0198 46, 7040 46, 7040 46, 5116 46, 5470 46, 5116 46, 250 46, 0110 45, 9298 45, 6663 45, 5659 45, 1816 45, 0872 41, 6147 44, 4300 43, 6564 43, 6564 43, 6559 43, 1490 43, 0378 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895 42, 4895	t.m. 5167, 10 5172, 46 5183, 10 5184, 90 5188, 58 5191, 20 5192, 57 5193, 68 5203, 68 5211, 54 5216, 06 5226, 88 5233, 51 5235, 95 5230, 33 5246, 92 5251, 01 5255, 17 5269, 82 5279, 07 5313, 01 5314, 85 5317, 34 5340, 90 5352, 90 5368, 20 5366, 20	$\begin{array}{c} +17 \\ +13 \\ & \div & 7 \\ & \div & 7 \\ & \div & 7 \\ & \div & 6 \\ & +66 \\ & +55 \\ & +66 \\ & +55 \\ & +66 \\ & +55 \\ & -99 \\ & -11 \\ & -13 \\ & -15 \\ & -17 \\ & -20 \\ & -21 \\ & & \div & -20 \\ & & -188 \\ & -188 \\ & & -188 \\ & & -15 \\ & -133 \\ & -11 \\ & -8 \\ & & & -66 \end{array}$	t.m. 5167,27 5172,59 5183,17 5184,97 5188,64 5191,26 5192,62 5193,73 5208,68 5211,51 5216,01 5226,79 5233,40 5235,83 5239,20 5216,77 5250,80 5246,77 5250,80 5247,47 5312,83 5314,67 5317,46 5328,40 5335,71 5310,79 5351,92	t.m. 67,55 72,36 80,68 83,27 84,67 84,67 84,67 84,67 91,36 92,55 93,83 03,61 11,31 16,03 26,79 33,42 36,96 55,10 60,96 55,10 60,96 14,78 17,26 12,93 14,78 17,26 17,26 17,26 17,26 18,36 18,36 18,36 19,36 11,31 1	+49 +49 +49 +49 +49 +49 +49 +49 +49 +49	t.m. 5168.04 5172.85 5181.2 5183.8 5185.2 5185.4 5189.23 5191.9 5193.04 5194.3 5201.1 5211.8 5216.52 5227.28 5233.91 5236.52 5239.79 5247.41 5279.46 5255.60 5270.41 5279.46 5283.90 5288.11 5302.35 5313.43 5315.28 5317.76 5321.13 5329.06 5336.82 5366.72 5366.72 5366.72 5369.05
$\frac{2}{9}$	B	41 8669 41 8114	5369, 10 5371, 71	$\begin{vmatrix} -31 \\ -31 \end{vmatrix}$	5368,79 5371,40	10	B	12.4432 42.3777	5368,36 5371,42	$-5 \\ -5$	5368,31 5371,37	68,55 71,39	+50 + 50	5371.89

		PLA	ге G 299					$\mathbf{P}_{\mathbf{L}^{S}}$	TE G 301			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		Scale	Length by	from		ten-		Scale	Length by	from		rected for	+50 +50 +50 +50 +50 +50 +50 +50 +50 +50	for Velocity 5375, 15 5375, 15 5387, 37 5384, 55 5387, 97 5406, 90 5412, 39 5414, 09 5417, 06 5420, 43 5423, 05 5423, 05 5423, 05 5423, 05 5423, 05 5424, 30 5426, 25 5434, 35 5447, 73 5450, 91 5466, 75 5472, 40 5474, 20 5474, 20 5474, 20 5474, 20 5578, 04 5578, 04 5578, 04 5508, 88 5512, 46 5513, 86 5528, 09 5533, 86 5533, 86 5544, 7 5546, 89 5546, 89 5554, 61 5546, 89 5556, 30 5556, 30 5566, 30 5566, 30 5566, 80 5566, 84 5566, 84 5566, 84 5566, 84 5566, 84 5566, 84 5566, 84 5566, 84 5566, 84 5566, 84
1 1 2 1-2 1 Con. (nn D nn B nn D nn B nn D nn D from	37,5900 37,5402 37,5002 37,4529 37,3884 37,2338 37,2150	5588.70 5591.51 5593.76 5596.42 5600.07 5608.84 5609.90	$ \begin{vmatrix} -12 \\ -11 \\ -11 \\ -10 \\ -9 \\ -7 \\ -7 \end{vmatrix} $	5588,58 5591,40 5593,65 5596,32 5599,98 5608,77 5609,83	$\begin{bmatrix} 1\\ \vdots\\ 2-3\\ 1\\ 2\\ \vdots \end{bmatrix}$	n D n D n B n D n D	37.9477 37.7891	5588.17 5594.13 5596.41 5599.31 5608.30	$\begin{vmatrix} +1 \\ \cdots \\ 0 \\ 0 \\ -1 \\ \cdots \end{vmatrix}$	5588.18 5594.13 5596.41 5599.31 5608.29	88.38 91.30 93.89 96.37 99.65 08.53 09.73	+52 $+52$ $+52$ $+52$ $+52$ $+52$ $+52$	5594.41 5596.89 5600.17 5609.05 5610.3
Spec. Con. Spec. 10	to D from	37.0760 37.0440 36.9600 36.9290 36.8510	5617.84 5619.68 5624.51 5626.30 5630.80 5633.35	- 5 - 5 - 3 - 3 - 2 - 1	5617.79 5619.63 5624.48 5626.27 5630.78 5633.34	$\begin{vmatrix} 1\\1-2\\ \vdots\\3\\4 \end{vmatrix}$	n D n B n D D from	37.6748 37.6452 37.5958 37.5195 37.4820 37.3930	5614.82 5616.51 5619.35 5623.73 5625.90 5631.10 5633.24	$ \begin{array}{r} -2 \\ -2 \\ -3 \\ -3 \\ -3 \\ -4 \end{array} $	5614,80 5616,49 5619,33 5623,70 5625,87 5631,07 5633,20	$ \begin{vmatrix} 14.90 \\ 16.59 \\ 17.69 \\ 19.48 \\ 24.09 \\ 26.07 \\ 30.93 \\ 33.27 \end{vmatrix} $	$ \begin{array}{r} +52 \\ +51 \\ +52 \\ +52 \\ +52 \\ +52 \\ +52 \\ +52 \\ +52 \\ +52 \\ \end{array} $	5615.42 5617.11 5618.2 5620.00

						11						1		
		l'LA	TE G 299					PL	ATE G 301			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
1 2	Head n B	mm. 36.7553 36.7356	t.m. 5636,36 5637,54	- 1	t.m. 5636,35 5637.54	3 4	Head n B	37.3100 37.2867	t.m. 5635.84 5637.19	- 1 - 1	t.m. 5635.80 5637.15	t.m. 36.08 37.35	$+52 \\ +52$	t.m. 5636.60 5637.87
$rac{1}{1-2}$	n D n B	36,7105 36,6836 36,6307	5638.97 5640.54 5643.63	$ + \frac{0}{1} $	5638.97 5640.55 5643.65	3-4	n B nn D	37.2398 37.1849	5639.93 5643.13	$\begin{bmatrix} -\frac{1}{4} \\ -\frac{5}{5} \end{bmatrix}$	5639,89 5643,08	$\begin{vmatrix} 38.87 \\ 40.22 \\ 43.37 \end{vmatrix}$	$+52 \\ +52 \\ +52$	5639.39 5640.74 5643.89
	wn D		30±3.03	+2		$\frac{1-2}{1}$	n B	37.1431 36.9852	5645.58	- 5 - 6	5645.53 5654.79	45.63 - 54.89	$+52 \\ +53$	5646.15 5655.42
···i	'nĎ	36, 1689	5670,90	+10	5671.00	1	n D nn D	36.9128 36.7302	5657,36 5669,97	$-6 \\ -6$	5657.30° 5669.91	$57.40 \\ 70.46$	$+53 \\ +53$	5657.93 5670.99
1 1 4	n D nn Đ n B	36.0795 35.9256 35.8105	5676.24 5685.49 5692.45	$+42 \\ +45 \\ 17$	5676.36 5685.64 5692.62	1 1 4	nn D nn D B	36.6357 36.4636 36.3503	5675,61 5685,96 5692,82	$ \begin{array}{r} -7 \\ -8 \\ -9 \end{array} $	5675.54 5685.88 5692.73	75.95 85.76 92,68	+53 +53 +53	5676.48 5686.29 5693.21
 2	n B	35,6228	5703.87	+17 + 21	5704.08	1 4	nn D B	36,2948 36,1661	5696,19 5704.04	$\begin{bmatrix} -10 \\ -11 \end{bmatrix}$	5696,09 5703,93	96.19	+53 + 53	5696.72 5704.53
4 2	n D	35.5629	5707.54	+22	5707.76	1	n D B	36,1056 36,0658	5707.75	$ \begin{array}{r r} -11 \\ -11 \\ -12 \end{array} $	5707.64	10.18	+53 + 53	5708.23
$\frac{1}{\mathrm{B}} \frac{1}{2}$	from	35.4974 35.4660	5711.56	+23 +20	5711.79 5713.70	2 5	n D	36.0375 35.9747	5711.94 5745.80	$\begin{vmatrix} -12 \\ -12 \end{vmatrix}$	5711.82	$\begin{array}{c} 11.80 \\ 13.60 \\ 15.78 \end{array}$	+53 +53 +53	5712.33 5714.1 5716.31
1	to n D	35, 3790 35, 3173	5718,90 5720,82	+30 +30	5719.20 5721.12							19.10 21.02	+53 +53	$5719.6 \\ 5721.6$
$\frac{2}{3} \cdot \frac{3}{4}$	n D from	35.3117 35.1870 35.1570	5723.02 5739.80 5732.70	+30 +30 +40	5723.32 5731.10 5733.10	$\frac{1}{2}$	nn B D from	35.8461 35.7394 35.7450	5723,76 5730,41 5732,00	$ \begin{array}{r} -13 \\ -14 \\ -14 \end{array} $	5723,62 5730,27 5731,86	$\begin{bmatrix} 23.47 \\ 30.19 \\ 32.5 \end{bmatrix}$	+53 +53 +53	5724.00 5730.72 5733.0
$\frac{\mathrm{B}}{1}$	to nn D	35.0290 34.9955	5740.60 5742.77	$+40 \\ +40$	5741.00 5743.17	B ;	to	35,5750	5740.80	-15	5740.65	$\begin{vmatrix} 40.83 \\ 43.07 \end{vmatrix}$	+53 +53	5741.4 5743.60
	nn D	34.9234	5749.30	+40	5749.70	$\begin{vmatrix} 2\\2\\1-2 \end{vmatrix}$	n D n D B	35.4554 35.2506 35.4708	5748.25 5761.26	$ \begin{vmatrix} -16 \\ -18 \\ -19 \end{vmatrix} $	5748,09 5761,08	$\begin{array}{c c} 48.90 \\ 61.18 \\ 66.28 \end{array}$	+53 + 54 + 54	5749.43 5761.72
··· <u>···</u>	n D from	34.5817 34.5550	5769.03 5770.70	+40 +40	5769.43 5771.10	1-7	w D	35.1245	5766,37 5769.34	-19 -19	5766, 18 5769, 15	69,25 71,00	+54 $+54$	5766.82 5769.79 5774.5
\mathbf{B}						$\begin{array}{c} 1-2 \\ 1-2 \end{array}$	B B	35.0553 34.9712	5773.79 5779.22	$\begin{bmatrix} -20 \\ -21 \end{bmatrix}$	5773.59 5779.01	73.69 79.11	+54 + 54	5774.23 5779.65
	to , D	31.4090	5780.10	+40 +40	5780.50 5783.10	$\mathbf{D}_{\mathbf{C}}$	from	31,9520	5780.50	_21 	5780.29	$\begin{bmatrix} 80.40 \\ 80.39 \\ 83.00 \end{bmatrix}$	$+54 \\ +54 \\ +54$	5780.9 5780.9 5783.5
		1111111					to nn D	34,8620 34,8260	5786,30 5788,70	$-22 \\ -22$	5786,08 5788,48	86.18 88.58	$+54 \\ +54$	5786.7 5789.1
··i	nn D	34.1639	5796.06	+1.±	5797.	$\begin{array}{c c} 1\\1\\1\\1\end{array}$	nn D n D n D	34.7620 31.6951 34.6066	5792,90 5797,20 5803,00	$ \begin{array}{r} -23 \\ -24 \\ -25 \end{array} $	5792,67 5796,96 5802,75	92.77 97.06 02.85	$+54 \\ +54 \\ +54$	5793.3 5797.60 5803.39
i		34.0431	5803.96	+1.±	5805.	2	n D	34.3239	5821.74		5821.47	05. 21.57	$+54 \\ -54$	5806. 5822.11
	2212					Max	n D B	34.2052	5829,68 5842,00	-29 -30	5829,39 5841,70	29.49 11.80	$+54 \\ +54$	5830.03 5842.34
	End	32.9740	5876.0	+1.±	5876,		End	33.3700	5886,90	-30	5886,60			

115 SCHJELLERUP

1899		ber 26, G.M	TE G 363 .T. 2150. He comparison		, W 150	19	900, Janu	ary 31, G.M	ATE G 382 .T. 1903. He comparison		e, W 157	MEAN	WAVE	-Length
Intensity	Scale trengation from a						Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor, for V	Corrected for Velocity
		mm.	Lm.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.
1							nn D	55,3980	1404.82	-11	4404.71	-04.73	+19	4404.92
						1	n D	-55,3004	4407.84	-45	4407.69	07.71	+19	
						1	n D	-55.0060	1416.87	-45	4416.72	46.74	+19	
						1.5	wn D	51.4137	-4135.46	-20	4435.26	35.28	+19	4435,47

115 SCHJELLERUP — Continued

	-													
		PLA	TE G 363					PL.	ATE G 382			MEAN	WAVE	LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.	2	n B	mm.	t.m.	90	t.m.	t.m.	110	t.m.
				· · · ·		$\begin{vmatrix} 3 \\ 2-3 \end{vmatrix}$	wn D	54.3122 53.9600	4438.70 4450.04	$\begin{vmatrix} -20 \\ -23 \end{vmatrix}$	$\begin{vmatrix} 4438.50 \\ 4449.81 \end{vmatrix}$	38,52 49,83	+19 + 19	$4438.71 \\ 4450.02$
			••••			·¡·	n D D	53.5890 53.3279	$4462.18 \\ 4470.87$	$\begin{vmatrix} -24 \\ -24 \end{vmatrix}$	4461.94 4470.63	61.96	$+20 \\ +20$	$\frac{4462.2}{4470.85}$
		2472442	::=::::			\parallel $\frac{1}{2}$	пБ	53.2443	4473.67	-24	4473.43	73.45	+20	4473.65
1	n В 	50.5985	4478.12	+28	4478.40	2	n B	52,9343	4484.15	-24	4483.91	78,38 83 93	$^{+20}_{+20}$	$4478.58 \ 4484.13$
						$\frac{2}{2}$	n D	52.9075	4485,07	-24	4484.83	84.85	+20	4485.05
···i	n D	50.0670	4496.57	+25	4496.82	1-2	n B n D	52.8835 52.5580	$ \begin{array}{c} 4485.89 \\ 4497.09 \\ \end{array}$	$-24 \\ -23$	$ 4485.65 \\ 4496.86 $	85.67 96.84	$^{+20}_{+20}$	$4485.87 \ 4497.04$
1	nn D	49.9557	4500.49	+24	4500.73	i	 п В	52.3616	4503.92	-23	4503.69	$\begin{vmatrix} 00.71 \\ 03.71 \end{vmatrix}$	+20	4500.91 4503.91
1-2	n D	49.7954	4506.18	+24	4506.42	2	n D	52.2772	4506.89	-23	4506.66	06.54	$^{+20}_{+20}_{+20}$	4506.74
						$\begin{vmatrix} 3 \\ 1-2 \end{vmatrix}$	n B	52.2392 52.1026	4508.22 4513.05	$-23 \\ -22$	4507.99 4512.83	$\begin{vmatrix} 08.01 \\ 12.85 \end{vmatrix}$	$^{+20}_{+20}$	4508, 21 $4513, 05$
				<i></i>		1 2	n D	51.9575	4518.20	-21	4517.99	18.01	+20	4518.21
	nn D	49.3424	4522.48	+22	4522.70	$\begin{vmatrix} 2/3 \\ 3 \end{vmatrix}$	n D n B	$51.8164 \\ 51.7799$	$4523.25 \\ 4524.57$	$\begin{bmatrix} -20 \\ -20 \end{bmatrix}$	4523.05 4524.37	$22.88 \\ 24.39$	$+20 \\ +20$	4523.08 4524.59
	D	48.9980	4535.11	+21	4535,32		n D n D	51.6999 51.4760	4527.45 4535.58	-19	4527.26 4535.40	27.28 35.36	$+20 \\ +20 \\ +20$	4527.48 4535.56
	nn D n B	48.9534	4536.76	$+21 \\ +21$	4536.97		n B	51.4330	4537.16	$\begin{vmatrix} -18 \\ -17 \end{vmatrix}$	4536.99	36.98	$+20 \\ +20 \\ +20$	4537.08
						$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	B	51,3933 51,1457	$\begin{bmatrix} 4538.61 \\ 4547.74 \end{bmatrix}$	$\begin{vmatrix} -17 \\ -15 \end{vmatrix}$	4538.44 4547.59	$\begin{vmatrix} 38.46 \\ 47.61 \end{vmatrix}$	$^{+20}_{+20}$	4538.66 4547.81
	wn D	48 .5380	4552.31	+20	4552.51							52.49	$+20 \\ +20$	4552.69
	nn D	48.3365	4559.97	+20	4560.17	4	n D	50.9777	4554.00	$\begin{vmatrix} -13 \\ \dots \end{vmatrix}$	4553.87	53.89	$+20 \\ +20$	$4554.09 \\ 4560.35$
	from	48.1690	4566.39	+20	4566.59		¦ · · · ·					66.57	$^{+20}_{+20}$	4566.8
0-1	to B	48.1020 47.9985	$\begin{array}{r} 4568.97 \\ 4572.98 \end{array}$	$\begin{vmatrix} +20 \\ +20 \end{vmatrix}$	4569.17 4573.18							69.15 73.16	$+20 \\ +20$	$4569.4 \\ 4573.36$
D {	from to	47.9890 47.9000	$4573.35 \\ 4576.81$	$\begin{vmatrix} +20 \\ +20 \end{vmatrix}$	4573.55 4577.01			· · · · · · ·				73.53 76.99	$^{+20}_{+20}$	$4573.7 \\ 4577.2$
	· · · · <u>-</u>			<i>.</i>			nn D	50.0410	4589.87	+ 4	4589.91	89.93	+20	4590.13
1	n D nn D	$\frac{47.5459}{47.4864}$	$ 4590.75 \ 4593.12 $	$\begin{array}{ c c c c c } +21 & +$	4590.96 4593.33							$90.94 \\ 93.31$	$^{+20}_{+20}$	$4591.14 \\ 4593.51$
0-1	n D	47.4005	4596.55	+21	4596.76		· · · · <u> </u>							
						1	nn D nn D	$\frac{49.8490}{49.7752}$	4597.44 4600.37	+ 8 + 9	$\left[egin{array}{c} 4597.52 \ 4600.46 \end{array} ight]$	$\begin{vmatrix} 97.14 \\ 00.48 \end{vmatrix}$	$^{+20}_{+20}$	$\frac{4597.34}{4600.68}$
··· 2-3	· · · · <u>-</u>		4111111	+22		D (from	49.6580	4605.04	+12	4605.16	$05.18 \\ 06.04$	$^{+20}_{+20}$	$\frac{4605.4}{4606.24}$
	n D	47.1697	4605.84		4606.06	D {	to	49.5790	4608.20	+12	4608.32	08.34	+20	4608.5
1-2	n D	47.0049	4612.53	+22	4612.75	3	_{n B}	49.3524	4617.36	+16	4617.52	$12.71 \\ 17.54$	$^{+20}_{+20}$	$4612.91 \\ 4617.74$
``i	n D	46.8450	4619.08	$\begin{vmatrix} \cdots \\ +22 \end{vmatrix}$	4619.30	2	n D	49.3124	4618.98	+16	4619.14	19.22	+20	4619.42
• • •						$\begin{vmatrix} 2 \\ 1-2 \end{vmatrix}$	n D n B	$\frac{49.2172}{48.8429}$	4622.87 4638.32	$\begin{array}{c c} +17 \\ +24 \end{array}$	$\left[egin{array}{c} 4623.04 \ 4638.56 \end{array} ight]$	$\frac{23.06}{38.58}$	$^{+20}_{+20}$	$4623.26 \\ 4638.78$
						1-2	nn D	48.8047	4639.91	+24 +24	4640.15	40.17	+20	4640.37
	nn D	45.7074	4667.27	$\begin{vmatrix} +28 \\ \cdots \end{vmatrix}$	4667.55	1-2	$\stackrel{\dots}{n}$ D	47,9970	4674.37	+33	4674.70	67.53 74.72	$^{+20}_{+20}$	$\frac{4667.73}{4674.92}$
1	n D	45.0400	4696.91	+34	4697.25	$\begin{vmatrix} \vdots \\ 0-1 \end{vmatrix}$	_D	46.9420	4721.68	+39	4722.07	$97.21 \\ 22.09$	$^{+20}_{-20}$	$4697.41 \\ 4722.29$
					1001.01	1	$\tilde{\mathbf{D}}$	46.7818	4729.10	+39	4729.49	29.51	+20	4729.71
··· <u>·</u>	nn D n B	$\frac{44.2260}{44.1447}$	4734.51 4738.36	$\begin{vmatrix} +40 \\ +41 \end{vmatrix}$	4734.91 4738.77	4	В	46,5858	4738.27	+39	4738.66	$34.89 \\ 38.72$	$^{+20}_{+20}$	4735.09 4738.92
10	n D	44.1187	4739.60	+41	4740.01				4742.87			39,99	+20	4740.19
H_{ead}	D	$\frac{44.0418}{44.0112}$	4743.26 4744.72	$^{+42}_{+42}$	4743.68 4745.14	Head	w D	$\begin{array}{c} 46.4882 \\ 46.4447 \end{array}$	$\frac{4742.87}{4744.93}$	+39 +39	$ullet 4743.26 \ 4745.32$	$\frac{43.47}{45.23}$	$^{+20}_{-20}$	4743.67 4745.43
B }	to	43.9450	4747.88	+42	4748.30	4-5	В	46.4204	4746.09	+39	4746.48	$\frac{46.50}{48.28}$	$^{+20}_{-20}$	4746.70 4748.5
	nn D	43.9240	4748.89	+42	4749.31							49.29	+20	4749.49
	nn D nn B	$\frac{43.8658}{43.8075}$	4751.69 4754.50	$ \begin{array}{c} +42 \\ +42 \end{array} $	4752.01 4754.92							51.99 54.90	$+21 \\ +21$	$4752.20 \\ 4755.11$
• • •							nn B	46.2173	4755.78	+39	4756.17	56.19	$^{+21}_{+21}$	4756 40
	nn D nn D	$\frac{43.7227}{43.5640}$	$ \begin{array}{c} 4758.61 \\ 4766.35 \\ \end{array}$	+43 +44	4759.04 4766.79		wn D	46,1725	4757.94	+39	4758.33	$58.69 \\ 66.77$	$+21 \\ +21$	$4758.90 \\ 4766.98$
		_	_			<u> </u>							· .	

115 SCHJELLERUP — Continued

									-					
		PL.	ATE G 363					PLA	TE G 382			MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
$\begin{array}{c} & & \\$	nn D from to nn D from to wn D n B n B n D from to nn D from to nn D	mm. 43.4590 43.4380 43.2117 43.1119 43.0870 42.9740 42.7862 42.7027 42.6404 42.5982 42.5740 42.4740 42.3615 42.2722 41.9100 41.8320 41.6410	t.m. 4771,50 4772,54 4777,73 4783,77 4788,77 4790,01 4795,71 4805,27 4809,56 4813,28 4814,94 4816,19 4821,38 4827,26 4831,96 4851,24 4854,90 4865,81	+44 +44 +44 +44 +44 +45 +45 +45 +45 +45	t.m. 4771.94 4772.98 4778.17 4784.21 4789.21 4790.45 4796.15 4805.71 4810.01 4813.73 4815.39 4816.61 4821.82 4827.70 4832.40 4851.68 4855.34	2 1 B { 1 1 2 B } 1 2 2 3 1 B }	n D nn D n D from Max to wn D n D from to n B n B n D n B n D n B n C n D n B n C n D n C n D n C n D n C n C n D n D n D n D n D n D n D n D n D n D	mm. 45.8917 45.8163 45.6463 45.5444 45.5250 45.4090 45.2170 45.0905 45.0000 44.8960 44.8744 44.8280 44.7862 44.7425 44.6994 44.1507 44.0830	t.m. 4771.56 4775.25 4783.64 4788.71 4789.66 4794.03 4795.48 4805.19 4811.18 4815.11 4816.27 4821.64 4822.76 4825.18 4829.63 4831.88 484.96 4861.07 4864.73	+37 +36 +35 +34 +34 +34 +32 +34 +32 +34 +32 +28 +28 +28 +25 +25 +25 +25 +25 +25 +25 +25	t.m. 4771.93 4775.62 4784.00 4789.06 4790.01 4795.82 4805.51 4811.49 4815.41 4816.56 4821.92 4823.04 4827.62 4829.89 4835.15 4861.23 4864.88	velocity t.m. 71.94 72.96 75.61 78.15 84.11 89.14 90.23 94.39 95.99 05.61 09.99 11.51 13.71 15.40 16.60 21.87 23.06 25.48 27.67 29.91 32.27 51.66 55.25 61.25	+21 +21 +21 +21 +21 +21 +21 +21 +21 +21	t.m. 4772.15 4773.2 4775.85 4778.4 4784.32 4789.35 4790.4 4794.60 4796.2 4805.82 4810.20 4811.72 4813.92 4815.61 4816.8 4822.1 4823.27 4825.69 4827.88 4830.12 4832.48 4851.87 4855.5
$\begin{array}{c} 1 \\ 0.1 \\ \cdots \\ B \\ 2 \end{array}$	n D nn D from to	41.6222 41.3720 41.1520 41.0190 41.0042	4866.85 4880.63 4892.92 4900.44 4901.28	$\begin{array}{r} +43 \\ +42 \\ -41 \\ +41 \\ +40 \\ \end{array}$	4867.28 4881.15 4893.33 4900.85 4901.68	$egin{array}{c} 1 - 2 \\ 1 \\ 1 & 2 \\ B \end{array} \}$	n D n D n D from to	44.0414 43.7907 43.6319 43.5760 43.4160	4867.01 4880.75 4889.56 4892.67 4901.66	$ \begin{array}{c} +15 \\ +11 \\ +9 \\ +8 \\ +7 \end{array} $	4807.16 4880.86 4889.65 4892.75 4901.73	67.22 80.88 89.67 93.03 01.27 01.66	$ \begin{array}{r} +21 \\ +21 \\ +21 \\ +21 \\ +21 \\ +21 \\ +21 \end{array} $	4867.43 4881.09 4889.88 4893.2 4901.5 4901.87
1-2 1 1 1 	n B nn D nn D n D	40.9810 40.8482 40.6661 40.6026	4902.59 4910.17 4920.66 4924.31	$\begin{array}{c} +40 \\ +40 \\ +40 \\ +38 \\ +38 \\ \cdots \end{array}$	4902.99 4910.57 4921.04 4924.72	2	n D wn D	43.2725	4909.82	+ 6 - 3	4909.88	$\begin{array}{c} 02.97 \\ 10.28 \\ 21.02 \\ 24.70 \\ 81.43 \end{array}$	$ \begin{vmatrix} +21 \\ +21 \\ +21 \\ +21 \\ +22 \end{vmatrix} $	4903.18 4910.49 4921.23 4924.91 4981.65

115 SCHJELLERUP

1899,	Decemb	er 27. G.M.	re G-365 F. 2158. Ho comparison	ur angle fair	, W 1.58	19	00, Janu	ary 7, G.M.	ATE G 374 T. 2065. Hoc comparison	ur angle i good	, W 2b3	MEAN	WAVE	-LENGTH
Intensity	Char- acter	Meau Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
2 B \ \ 4 B \ \ 2 3 B \ \ 1	n D from to n D from to from to n D	45,7520 45,7520 45,7520 45,6140 45,5911 45,5610 45,3395 45,3395 45,3130 45,2240 45,2068	5106,77 5167,78 5172,35 5173,29 5171,50 5182,69 5183,55 5184,61 5188,27 5189,00	$+22 \\ +22 \\ +21 \\ +21 \\ +21 \\ +19 \\ +19 \\ +18 \\ +18$	5166,99 5168,00 5172,56 5173,50 5174,71 5182,88 5183,74 5184,80 5188,45 5189,18		nn B nn D nn D	46,5141 46,4433 46,2114	t.m. 5170.54 5173.42 5182.81	+20 +19 +17	t.m. 5170.74 5173.61 5183.01	t.m. 67 01 68.02 70.73 72.58 73.56 74.73 82.90 83.38 84.82 88.47 89.20	+23 +23 +23 +23 +23 +23 +23 +23 +23 +23	5170.96 5172.8 5173.79 5175.0 5183.2 5183.61 5185.1 5188.8

	_	PLA	те G 365					PL	ATE G 374			MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
2 B { D { 4 B { 8	n B wn D from to to n B nn D from to nn D	mm. 45.1734 45.1025 45.0520 44.8320 44.6390 44.6065 44.5520 44.5520 44.3550 44.3124	t.m. 5190.37 5193.30 5195.36 5204.51 5212.60 5213.99 5216.26 5217.62 5224.61 5226.44	+18 +18 +17 +16 +15 +15 +14 +14 +14 +14	5190.55 5193.48 5195.53 5204.67 5212.75 5214.14 5216.40 5227.76 5224.75 5226.58	3	nn D nn B nn B nn D	mm. 45,9565 45,5330 45,4592 45,4030 45,1650	t.m. 5193.30 5210.91 5214.00 5216.37 5226.44	+14 -10 +10 +10 +10 +10 +8	t.m. 5193,44 5211,01 5214,10 5216,47	t.m. 90.57 93.46 95.55 04.69 11.00 12.77 14.12 16.44 17.78 24.77 26.55	+23 +23 +23 +23 +23 +23 +23 +23 +23 +23	t.m. 5190.80 5193.69 5195.8 5204.9 5211.23 5213.0 5214.35 5216.67 5218.0 5225.0 5226.78
$ \begin{array}{c} $	from to nn D wn B	44.2700 44.1760 44.1515 44.0825	5228.23 5232.25 5233.33 5236.29 	+14 +14 +14 +14 +14 +13	5228.37 5232.39 5233.47 5236.43	2-3	nn B n D n B nn D	45.0709 44.9883 44.9305 44.8554	5230,44 5233,97 5236,45 5239,68	$\begin{vmatrix} +7 \\ +7 \\ +6 \\ +6 \end{vmatrix}$	5230,51 5234,04 5236,51 5239,74	$\begin{array}{ c c c c }\hline 28.39\\ 30.50\\ 32.41\\ 33.76\\ 36.47\\ 39.73\\ \hline \end{array}$	+23 +23 +23 +23 +23 +23 +23	5228.6 5230.73 5232.6 5233.99 5236.70 5239.96
$\begin{array}{c} 3 \\ \cdots \\ 5 \\ \cdots \\ 2-3 \\ \cdots \end{array}$	nn D nn D n D nn B D nn B	43.8389 43.7377 43.3054 43.0890 42.6942 42.5400	5246.81 5251.22 5270.22 5279.87 5297.67 5304.71	+13 $+13$ $+13$ $+14$ $+16$ $+17$	5246.94 5251.35 5270.35 5280.01 5297.83 5304.88	···· ··· ··· 2	nn D nn D nn B nn B nn B	44 5752 44 1457 43 9420 43 5260 43 3840	5251.80 5270.64 5279.69 5298.39 5304.85	+ 5 + 4 + 4 + 5 + 6	5251.85 5270.68 5279.73 5298.44 5304.91	$ \begin{vmatrix} 44.47 \\ 46.96 \\ 51.60 \\ 70.52 \\ 79.87 \\ 98.14 \\ 04.90 \end{vmatrix} $	+23 +23 +23 +23 +23 +23 +23	5244.70 5247.19 5251.83 5270.75 5280.10 5298.37 5305.13
$\begin{array}{c} 4 \\ 2-3 \\ 9 \\ 1 \\ \cdots \\ 5 \\ \cdots \end{array}$	n B nn D n B nn D nn D 7n B n D?	42.3692 42.3214 42.2672 42.2055 41.8519 41.8054 41.7544	5312.55 5314.75 5317.26 5320.10 5336.64 5338.82 5341.23	$ \begin{array}{r} +18 \\ +19 \\ +19 \\ +20 \\ +24 \\ +25 \\ +27 \end{array} $	5312.73 5314.94 5317.45 5320.30 5336.88 5339.07 5341.50	3 3 7 3 4 6 3	n B n D B nn D n D n B n D	43.2060 43.1597 43.1052 43.0415 42.6999 42.6474 42.5935	5313.00 5315.13 5317.64 5320.58 5336.49 5338.95 5341.49	$\begin{vmatrix} +6\\ +6\\ +7\\ +7\\ +7\\ +10\\ +10\\ +11 \end{vmatrix}$	5313.06 5315.19 5317.71 5320.65 5336.59 5339.05 5341.60	12.90 15.07 17.58 20.48 36.74 39.06 41.55	+23 +23 +23 +23 +23 +23 +23 +23	5313,13 5315,30 5317,81 5320,71 5336,97 5339,29 5341,78
 4 i	nn B n B n D	41.6914 41.5324 41.2200	5344.21 5351.77 5366.77	+28 +30 +36	5344.49 5352.07 5367.13	1-2 B { 1-2	nn B n B from to n D	42.5327 42.3685 42.3060 42.1100 42.0863	5344.35 5352.13 5355.11 5364.49 5365.62	$ \begin{array}{c c} +11 \\ +12 \\ +13 \\ +15 \\ +15 \\ & \\ & \\ \end{array} $	5344.46 5352.25 5355.24 5364.64 5365.77	$\begin{array}{c} 44.48 \\ 52.16 \\ 55.22 \\ 64.62 \\ 65.76 \\ 67.15 \end{array}$	+23 +23 +23 +23 +23 +23	5344.71 5352.39 5355.5 5364.9 5365.99 5367.38
$\begin{array}{c} 3 \\ \vdots \\ 7 \\ \vdots \\ 8 \\ 3 \end{array}$	m B wn D n B n D	41.1918 41.1324 41.0659 41.0155 40.9910	5368.14 5371.01 5374.24 5376.70 5377.86	+36 +38 +38 +38 +38	5368.50 5371.39 5374.62 5377.08 5378.25	$\mathbf{D} \left\{ \begin{array}{c} 2 \\ \mathbf{D} \left\{ \begin{array}{c} 5 \\ 3 \end{array} \right. \end{array} \right.$	n B from to B n D	42.0308 42.0000 41.9240 41.8970 41.8535	5368.29 5369.78 5373.37 5374.76 5376.87	$\begin{array}{c} +16 \\ +16 \\ \hline \\ +17 \\ +17 \\ +17 \\ +17 \end{array}$	5368.45 5369.94 5373.54 5374.93 5377.04	68.48 69.93 71.41 73.49 74.78 77.06	+23 +23 +23 +23 +23 +23	5368.71 5370.2 5371.64 5373.7 5375.01 5377.29
B } B }	to from to to wn D	40.9170 40.8060 40.6730 40.6217	5381.48 5386.93 5393.49 5396.05	+39 +40 +41 +43 +44	5381.88 5387.34 5393.92 5396.49	9 4-5	wn B wn B 	41.7834 41.5280 41.4562	5380.28 5392.78 5396.32	+18 +21 +22	5380.46 5392.99 5396.54	80.45 81.90	+23 +23 +23 +23 +23 +23 +23 +23	5378,5 5380,68 5382,1 5387,6 5393,21 5394,2 5396,75
$\begin{array}{c} B \left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right.$	from to nn D n B n D wn B	40.5490 40.3990 40.3628 40.3099 40.2805 40.2187	5399.64 5407.12 5408.95 5411.61 5413.08 5416.20	$ \begin{array}{r} +45 \\ +46 \\ +46 \\ +47 \\ +47 \\ +48 \\ \end{array} $	5400.09 5407.58 5409.41 5412.08 5413.55 5416.68		from to n D n B	41.4290 41.2280 41.1914 41.1447	5397.67 5407.64 5409.47 5411.80	$ \begin{array}{r} +23 \\ +25 \\ +25 \\ +26 \\ \vdots \\ +26 \\ \end{array} $	5397.90 5407.89 5409.72 5412.06	$ \begin{vmatrix} 99.0 \\ 07.74 \\ 09.57 \\ 12.07 \\ 13.57 \\ 16.77 \end{vmatrix} $	+23 +23 +23 +23 +23 +23 +23 +23	$5399. \pm 5408.0$ 5409.80 5412.30 5413.80 5417.00
3 23 B{	n B n B nn D from	40.0904 40.0182 39.9620 39.7600	5422.68 5426.35 5429.19 5439.53	+49 +50 +51 +52	5423.17 5426.85 5429.70 5440.05	3 3 3	nn D n B nn D n B D n B from	40.9813 40.9282 40.8849 40.8452 40.7857 40.7515 40.5920	5420.00 5422.98 5424.86 5426.87 5429.89 5431.63 5439.77	+27 $+28$ $+28$ $+28$ $+29$ $+30$ $+30$	5420.27 5423.26 5425.14 5427.15 5430.18 5431.93 5440.07	20.26 23.22 25.13 26.95 20.94 31.92 40.06	+23 +23 +23 +23 +23 +23 +23	5420.49 5423.45 5425.36 5427.18 5430.17 5432.15 5440.3
6 6	to n D	39.6680 39.6192	5444.27 5446.82	+53 +53	5444.80 5447.35		to n D	40.5040 40.4520	5444.28 5446.96	+31 +31	5444.59 5447.27	44.70 47.31	$ \begin{array}{r r} $	5444.9 5447.54

		PLA	те G 365		-			PL.	ATE G 374			MEAN	WAVE	E-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor, for V	Corrected for Velocity
4-5	wn B	mm. 39.5588	t.m. 5449.95	+53	t.m. 5450,48	$\begin{vmatrix} 4 \\ 2 \end{vmatrix}$	B nn D	mm, 40,3835 40,2790	t.m. 5450,49 5455.90	+32 +33	t.m, 5450.81 5456.23	t.m. 50.65 56.22	$+24 \\ +24$	t.m. 5450.89 5456.46
	n B nn D	39.4024	5458.08 5459.89	$+54 \\ +54$	5458.62 5460.43	i	n D	40.1933	5460.35	+33	5460.68	$58.64 \\ 60.56$	$+24 \\ +24$	5458.88 5460.80
1	nn D nn Đ	39,2209	5473.27	+54 $+55$	5468.36	5 1-2	B n D	39.9759 39.9322	5471.73 5474.03	+35 +35	5472.08 5474.38	68.38 72.07 74.10	+24 +24 +24	5468.62 5472.31 5474.34
	nn D nn B	39.0324 38.9810	5477.56 5480.30	+55 +55	5478,11 5480,85		nn B	39.8169	5180.12	+36	5480.48	78.13 80.67	+24 + 24	5478.37 5480.91
	nn D	38,9315	5482,78	+56 	5483.34		nn D nn D	39.4914 39.4079	5497.31 5501.96	+38 +38	5497.69 5502.34	83-36 97.68 02.33	+24 +24 +21	5483.60 5497.92 5502.57
В {	from to	38,5260 38,4400	5404.73 5509.41	$+56 \\ +55$	5505,29 5509,96	B }	from to	39.3740 39.2600	5503,79 5509,96	$\begin{array}{c} +38 \\ +38 \end{array}$	5501.17 5510.31	$04.73 \\ 10.15$	$\begin{array}{r} +24 \\ +24 \\ +24 \\ +24 \end{array}$	5505.0 5510.4
B ;	nn D from to	38,3990 38,3620 38,2000	5511.64 5513.66 5522.56	+55 +54 +54	$\begin{array}{c} 5512.19 \\ 5514.20 \\ 5523.10 \end{array}$	2	nn D	39.2344	5511.35	+38	5511,73	$11.96 \\ 14.22 \\ 23.12$	1 + 24	5512.20 5514.5 5523.4
1	n D	38.0114	5533 01	 	5533 55	$\begin{vmatrix} 2 \\ \dots \end{vmatrix}$	n D nn D	38,9910 38,8300	5524.63 5533.50	$^{+39}_{+39}$	5525.02 5533.89	$25.01 \\ 33.72$	$+24 \\ +24 \\ +24$	5525.25 5533.96
$\frac{8}{8}$	n D from to	37,9073 37,8695 37,7840	5538-81 5540,92 5545,68	+53 + 53 + 53	5539,34 5541,45 5546, 2 1	8 B {	from to	38.7333 38.6890 38.5970	5538.86 5541.32 5546.45	+39 +39 +39	5539, 25 5541, 71 5546, 84	$\begin{array}{r} 39.30 \\ 41.58 \\ 46.53 \end{array}$	+24 +24 +24	5539.54 5541.8 5546.8
3	n D 	37.7664 _. 37.6408	5547.26 5553.77	+52 $+52$ $+52$	5547.78 5554.29	$egin{array}{c} 2 & 3 \\ 1-2 \\ 1 \end{array}$	n D D n B	38.5649 38.4944 38.4655	5548.23 5552.19 5553.81	+39 +38 +38	5548,62 5552,57 5554,19	$48.21 \\ -52.56 \\ -54.24$	$+24 \\ +24$	5548.45 5552.80 5554.48
2 2	n D	37,6097	5555,53	+51	5556.04	1 1	n D n D	38.4297 38.3238	5555.82 5561.79	+38 +38	5556,20 5562,17	56.12 62.16	$^{+24}_{+24}$ $^{+24}$	5556,36 5562,40
1 - 2	n B from	37.4633 37.4680	5563,84 5566,97	+50 +50	5564.34 5567.47		nn B n D	38.2752 38.2353	5564.54 5566.81	$+38 \\ +38$	5564.92 5567.19	$64.63 \\ 67.18 \\ 67.49$	$+24 \\ +24 \\ +24$	5564.87 5567.42 5567.7
$\mathbf{B} \left\{ \right\}$	to	37.3140	5572.35	+50	5572.85	Max	<u>.</u> B	38,1680	5570.63	+38	5571.01	$+71.00 \\ +72.87$	$+24 \\ +24$	5571.24 5573.1
9	 D	37.1290	5583.03	+49	5583.52	1 9 Limits	n D D	$ \begin{vmatrix} 38.0620 \\ 37.9469 \\ 37.9810 \end{vmatrix} $	5576.68 5583.28 5581.33	$+38 \\ +37 \\ +37$	5577.06 5583.65 5581.70	77.05 83.59 81.69	+24 $+24$ $+24$	5577,29 5583,83 5581,9
Head		37.0860	5585.49	+48	5585,97	Limits		37.9120	5585.30	+37	5585.67	$\begin{bmatrix} 85.66 \\ 85.97 \end{bmatrix}$	$+24 \\ +24$	$5585.9 \\ 5586.21$
5 B	to B	37.0640 36.9802 36.9590	5586,79 5591,66 5592,86	$ \begin{array}{c c} +48 \\ +47 \\ +47 \end{array} $	5587,27 5592,13 5593,33	8	В.	37.8789 37.8008	5587.20 5591.71	+37 +37	5587,57 5592,08	87.42 92.11 93.35	$+24 \\ +24 \\ +24$	5587.66 5592.35 5593.6
· · · · · · · · · · · · · · · · · · ·	nn D B	36.9348 36.8912	5594.31 5596.85	$\begin{array}{c c} +46 \\ +46 \end{array}$	5594.77 5597.31	4	n D n B [37.7512 37.7065	5594.59 ± 5597.18	$+36 \\ +36$	5594.95 ± 5597.54	$94.86 \\ 97.43$	$+24 \\ +24$	$5595.10 \\ 5597.67$
	nn D nn D	36.5070	5599.45 5619.49	$\frac{+46}{+42}$	5599.91 5619.91	1	m D wn D	37,6714 37,499 7	5599,23 5609,26	+36 +34	5599,59 5609,60	$\begin{array}{c} -99,79 \\ -09.59 \\ -19.93 \end{array}$	$+24 \\ +24 \\ +24$	5600.03 5609.83 5620.17
Con. \	nn D from to	36,4155 36,3890 36,3040	5624.97 5626.53 5631.62	$\begin{array}{c c} +41 \\ +41 \\ +40 \end{array}$	5625.38 5626.94 5632.02	Con. {	nn D from	$37.2422 \ 37.1990 \ 37.1180$	5624.46 5627.03 5631.86	+33 +32 +32	5624.79 5627.35 5632.18	25.40 27.15 32.40	$^{+24}_{+24}$ $^{+24}$	5625,64 $5627,4$ $5632,3$
10 Head	D	$36.2670 \\ 36.2194$	5633,88 5636,74	+40 +40	5634.28 5637.14	Spec. (10 Head	to D	37.0807 37.0310	5634.09 5637.06	$+31 \\ +30$	5631.40 5637.36	$\begin{vmatrix} 34.34 \\ 37.25 \end{vmatrix}$	$+24 \\ +24$	5634,58 5637,49
B	to	36,1200	5642.73	+39	5643.12	B	to nn D from	36,9250 36,9014 36,8850	5643,44 5644,68 5645,85	+29 +29 +29	5643,73 5644,97 5646,14	41.96	$+24 \\ +24 \\ +24 \\ +24$	5613.7 5645.20 5646.4
	n B n B	36 0730 35,9300	5645,57 5654.29	+38 +37	5645,95 5654,66	$\begin{bmatrix} \mathbf{B} \\ 2 \end{bmatrix}$	n B	36.7283	5655.34	+27	5655.61	$\begin{bmatrix} 45.97 \\ 55.1 \end{bmatrix}$	+24 +25	5646, 21 $5655, 3$
	nn D	35.8754	5657,66	+37	5658.03	Gon.	nn D from	36,7140 36,6963 36,6730	5656,22 5657,29 5658.71	$\begin{array}{c c} +27 \\ +27 \\ +27 \end{array}$	5656,49 5657,56 5658,98	57.80	+25 +25 +25	5656.7 5658.05 5659.2
1 2	n Đ	35,6579	5671.07		5671. H	Spec. 7	to	36, 1910	5669,86	+25	5670,11	71.43	+25 +25	$5670.4 \\ 5671.68$
2 2	n B n B	35 . 6220 35 . 5207	5673.29 5679.59	+34 +33	5673.63 5679.92	1 2	n B n D n B	36,4179 36,3878 36,3384	5674,35 5676,20 5679,27	$\begin{array}{c c} +23 \\ +23 \\ +22 \end{array}$	5674.58 5676.43 5679.49	$74.06 \\ 76.42 \\ 79.71$	$+25 \\ +25 \\ +25$	5674.31 5676.67 5679.96
1-2	n В	35,4630	5683,20	+31	5683.51	$\begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}$	n B n D	36 2590 36 2249	5684.19 5686.31	$\begin{array}{c c} +21 \\ +21 \end{array}$	5684,40 5686,52	83.96	$+25 \\ +25$	5684.21 5686.76

		PLA	TE G 365					P	LATE G 374			MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
8 1 2 4 2 7 5 1-2 B 3 1-2 1-2	n B n D n B n B n B n B n B n B n B n B n C from to from Max te n B wn D n B n B n D n D n D nn D nn D nn D n	mm. 35.2982 35.2494 35.2134 35.1234 35.1234 35.0267 34.9352 34.8120 34.7040 34.5390 34.3820 34.3133 34.2550 34.1602 34.1017 34.0310 33.9660 33.8890 33.4122 33.3192 33.2180	t.m. 5693.54 5696.61 5698.89 5704.59 5710.76 5716.61 5724.54 5731.52 5733.24 5742.23 5757.10 5767.26 5767.26 57771.6 5767.26 57771.6 57752.53 5757.10 5767.26 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57751.6 57851.40 5824.45 5831.46	+30 +30 +29 +28 +27 +26 +25 +24 +24 +23 +21 +21 +20 +19 +18 +18 +16 +16 +16	t.m. 5693.84 5696.91 5699.18 5704.87 5711.03 5716.87 5724.79 5731.76 5733.48 5742.46 5757.31 5761.12 5767.45 5771.35 5776.07 5780.43 5785.58 5818.16 5824.61 5824.61 5831.62	7	n B n B n B n B n B n B n D from to n D nn B wn D nn B wn D nn B wn D nn B wn D nn D nn B nn D nn D	36.1055 36.0236 35.9313 35.8845 35.7407 35.6236 35.5107 35.4920 35.3500 35.3277 35.2492 35.1160 35.0335 34.9640 34.968 34.8289 34.7605 34.7040 34.1332	5693.77 5698.90 5704.72 5707.67 5716.80 5724.28 5731.53 5743.37 5748.48 5757.19 5762.62 5767.21 5770.817 5780.72 5784.50 5823.26 5849.83 5851.42	+20 +19 +18 +18 +14 +14 +14 +12 +11 +10 + 9 + 9 + 8 + 8 + 7 + 6 + 6	5693.97 5699.09 5701.90 5707.85 5716.96 5724.42 5731.67 5742.05 5743.49 5748.59 5762.71 5762.71 5767.30 5770.93 5770.93 5770.93 5770.93 5780.80 5784.57 5823.32 5849.89 5851.48	t.m., 93.91 96.93 99.14 04.89 07.84 11.05 16.92 24.61 31.72 33.18 42.26 43.48 48.58 52.76 67.38 71.14 76.16 80.62 84.58 18.18 23.31 24.63 31.64 49.88 51.47 51.62	+255+255+2555+255555+25555555555555555	t.m. 5694.16 5697.18 5699.39 5705.14 5708.09 5711.30 5717.17 5724.86 5743.73 5742.6 5743.73 5748.83 5753.0 5767.63 5767.63 5767.63 5776.41 5780.87 5784.83 5818.43 5823.56 5824.88 5831.89 5850.13 5851.72 5854.87
	nn D nn D	$32.3880 \\ 32.3010$	5890.63 5897.01	$\begin{vmatrix} +16 \\ +16 \end{vmatrix}$	5890.79 5897.17							$\frac{90.81}{97.19}$	+25 + 25	5891.06 5897.44

$152\ SCHJELLERUP$

	1899, M ar	ch 31, G.M.T.	E G 316 2057. Hour a omparison goo		7			pril 4, G.M.T.	E G 394 1753. Hour as comparison g		ī
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
Spec. b 2-3	В	mm. 58.9690 58.6310	t.m. 4396.20 4402.40	$-10 \\ -12$	t.m. 4396,10 4402,28	Begins 2	n B	61.7570 61.4442	4397.10 4402.89	-17 -18	4396.93 4402.71
$egin{array}{c} 3 \ D \end{array} \}$	n D from to	58.4912 58.5770 58.2540	$\begin{array}{r} 4405.05 \\ 4403.40 \\ 4409.50 \end{array}$	$-13 \\ -12 \\ -15$	$\begin{array}{r} 4404.92 \\ -4403.28 \\ -4409.35 \end{array}$	D }	from to	61.4100 61.0700	4403.60 4410.10	$-18 \\ -20$	$\frac{4403.42}{4409.90}$
1 1 4	n D n D n D	58.1867 58.0933 57.9313	$\begin{array}{r} 4410.75 \\ 4412.51 \\ 4415.57 \end{array}$	$ \begin{array}{c c} -16 \\ -17 \\ -18 \end{array} $	$\begin{array}{r} 4410.59 \\ 4412.34 \\ 4415.39 \end{array}$	$\frac{1}{3}$	n D nn D	60,9170 60,7711	4412.93 4415.73	$-20 \\ -21$	$4412.73 \\ 4415.52$
1 2 2	B B n D	57 6350 57 4832 57 3827	$\begin{array}{r} 4421.02 \\ 4424.10 \\ 4426.03 \end{array}$	$ \begin{array}{r} -20 \\ -21 \\ -22 \end{array} $	$\begin{array}{c} 4420.82 \\ 4423.89 \\ 4425.81 \end{array}$						
$1\frac{2}{6}$	n D nn D w D	57,2937 57,1416 56,8532	4427,75 4430,69 4436,28	$ \begin{array}{r} -23 \\ -24 \\ -26 \end{array} $	$\begin{array}{c} 4427.52 \\ 4430.45 \\ 4436.02 \end{array}$	3-4	n D n D wn D	60.1277 60.0007 59.7280	4428.24 4130.72 4436.20	$ \begin{array}{r} -25 \\ -25 \\ -27 \end{array} $	$\begin{array}{r} 4427.99 \\ 4430.47 \\ 4435.93 \end{array}$
1 1	n D nn D	56 7420 56 4200	4438,46 4444,80	-28 -30	4438.18 4444.50	1	n D	59.2771	4445.09	$\begin{array}{c} -29 \\ \dots \end{array}$	4444.80
2-3	 n D	56,2754	4447.64	-3i	4447.33	1	 n D	59.1274	4448.11	-29	4447.82
	wn D	56,1260	4450,60	-32 ····	4450.28	1 1	и D n D	58.7524 58.6200	4455.71 4458.41	-31 -31	4455.40 4458.10
$\frac{1}{4.5}$	wn D n D	55,7027 55,6427 55,5430	$\begin{array}{r} 4459.09 \\ 4460.30 \\ 4462.30 \end{array}$	$ \begin{array}{r r} -35 \\ -36 \\ -36 \end{array} $	$\begin{array}{r} 4458.74 \\ 4459.94 \\ 4461.91 \end{array}$		wn D	58.4201	4462.51	-32	4462.19
5 Con. (B from	55.4503 55.4130	4464.19 4464.95	$ \begin{array}{c c} -37 \\ -37 \\ -37 \end{array} $	4463.82 4464.58	8	B	58.3192	4464.58	-32	4464.26
						1	n D n D	58.1140 57.9535	4468.83 4472.16	-33 -33	4468.50 4471.83
Spec. (to	55,0190	4173.00	-38 	4472.62						
 2 2	wn B wn B n D	54,9770 54,7200 54,6613	$\begin{array}{c} 4473.90 \\ 4479.20 \\ 4480.38 \end{array}$	$ \begin{array}{r} -38 \\ -40 \\ -40 \end{array} $	4473 52 4478.80 4479.98						
Unre-	n D from	54.5512 54.5220	$\frac{4482.67}{4183.28}$	$\begin{array}{c} -41 \\ -41 \\ \cdots \end{array}$	4482.26 4482.87	1	n D n D	57.4410	1482.95	$\begin{array}{c} -35 \\ -35 \\ -35 \end{array}$	4482.60
solv'd	to B	54.2850 54.2598	4488.20 4488.76	$ \begin{array}{c} -42 \\ -42 \\ -42 \end{array} $	4487.78 4188 34	1	nn I)	57.2196	4487.62	-35 	4487.27
3-i	D	54.1951	4190 12	-42 -42	4489.70	2	 D	57.1107	4189.94	-36	4489.58
Unre- { solv'd }	to	54,1600 53,5890 53,1888	4490.86 4502.98 1505.13	-42 -44	4490.44 4502.54	$\frac{1}{23}$	n D nn B	56.5255 56.4500	4502.54 4504.18	-37 -37 -37	4502.17 4503.81 4504.99
2 3	n D nn D	53 37 15	4507.58	-14	4504.69	$\frac{1}{23}$	n D nn B nn D	56,3958 56,3451 56,2874	4505,36 4506,46 4507,73	-37 -37 -37	4506.09 4507.36
 i	nn D	52,9640	4516 48	-44	4516,01	1	nn D	56.0377	4513.21	-38	4512.83
$\frac{1}{1}$ 2	wn D nn D	52,9100 52,8577 52,7749	4517.66 4518.80 4520.62	$ \begin{array}{r} -44 \\ -41 \\ -41 \\ \end{array} $	4517.22 4518.36 4520.18						
$\frac{\overset{1}{6}}{\overset{1}{12}}$	n D B nn D	52,6402 52,5804 5205,12	4523,58 4524.89 4536,66	$\begin{vmatrix} -44 \\ -41 \\ -43 \end{vmatrix}$	4523.11 4524.45 4536.23	65	n D B	55 565 <u>2</u> 55 4965	4523,69 4525,16	-38 -38	4523.31 4524.78

$152\ SCHJELLERUP$

190:	2, Febru	ary 10, G.M.	TE A 313 T. 1853. Ho comparison (our angle good	e, E 258	19		uary 18, G.M	ATE A 319 I.T. 1757. II t; comparis			MEAN	WAVI	E-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- aeter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.			nım.	t m.		t.m.	t.m.	,	t.m.
					· · · · · · · · · · · · · · · · · · ·							$\begin{vmatrix} 96.52 \\ 02.71 \end{vmatrix}$	$\begin{bmatrix} - & 1 \\ - & 1 \end{bmatrix}$	$\begin{vmatrix} 4396.5 \\ 4402.70 \end{vmatrix}$
												04.92	- 1	4404.91
												$03.35 \\ 09.63$	$\begin{bmatrix} - & 1 \\ - & 1 \end{bmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
												10.59	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	4410.58
						2	D	35.2114	4413.02	-70	4112.32	12.46	- 1	4412.45
												$oxed{15.46}\ 20.82$	$\begin{bmatrix} - & 1 \\ - & 1 \end{bmatrix}$	$\begin{array}{c c} 4415.45 \\ 4420.81 \end{array}$
												23.89	$-\hat{1}$	4123.88
								20 (200	1 100 10		1107 70	25.81	- 1	4425.80
				· · · · ·			nn D nn D	$\begin{bmatrix} 36.4720 \\ 36.7110 \end{bmatrix}$	$\begin{array}{c} 4428.40 \\ 4431.39 \end{array}$	$-67 \\ -66$	$\begin{bmatrix} 4427.73 \\ 4430.73 \end{bmatrix}$	$\begin{array}{c c} 27.75 \\ 30.55 \end{array}$	$\begin{bmatrix} - & 1 \\ - & 1 \end{bmatrix}$	$\begin{bmatrix} 4427.74 \\ 4430.54 \end{bmatrix}$
												35 98	- 1	4435.97
	nn D	39.7434	4444.63		1444.79	2	n D	37.3194	4438.98	-65	4438.33	38,26	$\begin{bmatrix} - & 1 \\ - & 1 \end{bmatrix}$	4438.25
	nn D		4444,00	+9	4444.72	2	wn D B	$\begin{vmatrix} 37.8153 \\ 37.8728 \end{vmatrix}$	$\begin{array}{c} 4445,23 \\ 4445,96 \end{array}$	$-64 \\ -63$	$\begin{array}{c} 4444.59 \\ 4445.33 \end{array}$	44.65	$-1 \\ -1$	$\begin{vmatrix} 4444.64 \\ 4445.32 \end{vmatrix}$
						2	D	37.9097	4446.43	-63	4445.80	45.80	- 1	4445.79
						1	n B	37.9552	4447.01	-63	4446.38	$\begin{vmatrix} 46.38 \\ 47.58 \end{vmatrix}$	$\begin{bmatrix} - & 1 \\ - & 1 \end{bmatrix}$	$\begin{bmatrix} 4446.37 \\ 4447.57 \end{bmatrix}$
												50.28	$\begin{bmatrix} - & 1 \\ - & 2 \end{bmatrix}$	4450.3
												55.40	-2	4455.38
								· · · · · · ·				$\begin{bmatrix} 58.10 \\ 58.74 \end{bmatrix}$	$-\frac{2}{2}$	$\begin{vmatrix} 4458.08 \\ 4458.72 \end{vmatrix}$
			· · · · · · · ·									59.94	$ \frac{5}{2}$	4459.92
												62.07	$-\frac{2}{3}$	4462.05
$\ddot{2}$	n B	41.2680	4164.30	+ 5	4464.35	$\frac{1}{2}$	n D n B	$39.2880 \ 39.3297$	$4464.14 \\ 4464.68$	-58 -58	4463.56 4464.10	$\begin{array}{c c} 63.56 \\ 64.11 \end{array}$	- 2 - 2	$\frac{1463.54}{4464.09}$
	n D	41.3094	4464.85	$\mp \frac{3}{5}$	4464.90							64.58	$-\frac{5}{2}$	4464.6
												61.90	- 2	4464.88
												$\begin{bmatrix} 68.50 \\ 71.83 \end{bmatrix}$	$-\frac{2}{2}$	$\frac{4468.48}{4471.81}$
												72,62	$ \frac{5}{2}$	4472.6
		· · · · · · · ·				1	n B	39.9765	4473.14	-55	4472.59	72.59	$-\frac{2}{2}$	4472.57
						$\frac{2}{3}$	n B	$\begin{array}{c} 40.0205 \\ 40.0547 \end{array}$	4473.72 4474.18	$-55 \\ -55$	$\begin{bmatrix} 4473.17 \\ 4473.63 \end{bmatrix}$	$\begin{vmatrix} 73.17 \\ 73.58 \end{vmatrix}$	$-\frac{2}{2}$	$\begin{array}{ c c c c c }\hline 4473.15 \\ 4473.56 \\ \hline \end{array}$
												78.80	- 2	4478,78
							····	10. 7900	1102.00	 50	1109.50	79.98	$ - \frac{2}{2} $	4479.96
				· · · · ·		2	n D	40.7209	4483.02	-52	4482.50	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-\frac{2}{2}$	$\begin{bmatrix} 4482.43 \\ 4482.9 \end{bmatrix}$
						1	n D	40.9565	4486.17	-51	4485.66	85.17	- 2	4485.15
							nn D	41.0800	4487.83	-50	4487,33	$\begin{vmatrix} 87.30 \\ 87.78 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$ \begin{array}{c} 4487.28 \\ 4487.8 \end{array} $
						i	n B	41.1350	4488.57	-50	4488.07	88.21	- 2	4488.19
						1-2	D	41.1630	4488.95	-50	4188.45	88.45	$-\frac{2}{2}$	4488.43
				• • • •		1	n B nn D	$\frac{41.1932}{41.2490}$	4489.35 4490.10	$-49 \\ -49$	$4488.86 \\ 4489.61$	88.86 89.63	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4488.84 4489.61
								41,2400	********	-40	1400,01	90.44	-2	4490.4
												02.17	- 2	4502.15
												$03.81 \\ 04.84$	$-\frac{2}{2}$	4503.79 4504.82
						3	n D	42,3950	4505.73	-44	4505.29	05.29	- 2	4505.27
٠						2	n B	$\frac{42,4478}{12,5205}$	4506 45	-44 -41	4506.01	06.05	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4506.03
						3	nn D n D	$\frac{42,5395}{42,7340}$	4507.72 $ 4510.41 $	$-44 \\ -43$	4507.28 4509.98	$07.26 \\ 09.98$	$-\frac{2}{2}$	4507.24 $ 4509.96 $
												12.83	-2	4512.81
												$16 04 \\ 17.22$	$-\frac{2}{2}$	4516.02 4517.20
							n D	43.3162	4518.53	-40	4518.13	18.25		4518.23
												20.18	- 2	4520.16
i	n B	45.7022	4524.74	+1	4524.75	3	В	43.7754	4524.99	_37	1521.62	$\begin{vmatrix} 23.23 \\ 24.65 \\ 36.23 \end{vmatrix}$	$ \begin{array}{r} -2 \\ -2 \\ -2 \end{array} $	$\begin{array}{r} 4523.21 \\ +524.63 \\ 4536.21 \end{array}$

	= ====	PLAT	E G 316					PLAT	re G 394		
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
		miii.	t.m.		t.m.			mm.	t.m.		t.m.
4	n B	51.9974	4537.86	-42	$\frac{1}{4537.44}$		from	54.9510	4537.60	-38	4537. 2 2
4	n B	51.9255	4539.48	-42	4539.06	\mathbf{B}_{+}^{j}					
						1	to _	54.8170	4540,60	-38	4540.22
1	n D	51.8711	4540,70	-42	4540.28	1	n D 	54.7986	4541.02	-38 \cdots	4540,64
	wn D	51.6280	4543.94	-41 	4543,53						
5	n B	51.5481	4548 02	-41	4547.61	3	w D n B	54.5651 54.4856	$\begin{array}{c} 4546.37 \\ 4548.20 \end{array}$	$-38 \\ -38$	$\frac{4545.99}{4547.82}$
5	n D	51 4797	4549.57	-41	4549.16	6	w D	54,4166	4549.80	-38	4549.42
							wn D	54.2770	4553.04	-37	4552.67
2	n D	50.9920	4560.77	-38	4560 39		\cdots	53,9320	4561.08	-37	4560.71
·	n D	50 8720	4563 55	-38	4563.17	3	$\stackrel{\cdots}{\rm n}\stackrel{\cdots}{\rm D}$	53.8097	4563.96	-37	4563.59
$\overline{2}$	n B	50.8120	4564.94	-38	4564.56						
$\frac{1}{2}$	n D n B	50.7657 50.6820	4566.02 4567.98	$ \begin{array}{c c} -37 \\ -37 \end{array} $	$4565.65 \\ 4567.61$	2	n D	53,7012	4566.52	-36 	4566.16
							from	53 4990	4571.32	-36	4570.96
						D }	to	53.1870	4578.77	-35	4578.42
		**************************************	1770 00		4550.00	'				-55	
2	n B	50.1998	4579 32	—34 	4578.98						
$\frac{1}{1-2}$	nn D nn B	$\begin{bmatrix} 50.1380 \\ 50.0925 \end{bmatrix}$	4580.79 4581.87	-34 -31	4580.45 4581.53	2	n D	53,1010	4580.84	-35	4580.49
						1	n D	52 9990	4583.30	-34	4582.96
1	nn D	49.8175	4588.43	-33	4588.10			, , , , , , ,			
							from	52,7520	4589,28	-33	4588.95
						D					
						\mathbf{B}					
							to	52,5790	4593,50	-33	4593.17
$\frac{2}{2}$	n D	49 5700	4594.25	-31 	4593,94	1	n D	52.5471	4594.28	-33 	4593.95
						Max	В	52.4862	4595,77	-33	4595,44
1.51											
2 Max	nn D B	49.4420 49.3580	4597,50 4599,54	$-31 \\ -30$	$rac{4597.19}{4599.24}$						
						1	n D	52.2643	4601.23	-32 ····	4600.91
Max	 B	48.8170	4612.81	-28	4612.53						
$rac{1\cdot 2}{2}$	n B	48,7710 48,7111	$\frac{4613.94}{4615.43}$	$-\frac{27}{-27}$	$\frac{4613.67}{4615.16}$	1	n D	51.7387	4614.32	-29 	4614.03
2	n D	48,6600	4616.70	26	4616,44	4	n D	51.6393	4616.82	-29	4616.53
$\frac{8}{4}$	B Đ	48,5962 48,5380	$\begin{bmatrix} 4618.29 \\ 4619.74 \end{bmatrix}$	-26 - 26	$\frac{4618.03}{4619.48}$	$\begin{bmatrix} 7\\2 \end{bmatrix}$	B D	51,5719 51,5169	$\frac{4618.52}{4619.90}$	$-28 \\ -28$	$\frac{4618.24}{4619.62}$
1 2	n D 	48,4222	4622.63	-25	4622,38	1 1	n D n D	51 4000 51,2770	4622.88 4626.00	$-28 \\ -27$	$\frac{4622.60}{4625.73}$
1	n D	47.8027	4638.30	-21	4638 09						
	11 17	31.0021	טה. פטעצ	21	3000 00						

		D		· · · · · ·				Dr. (- A 210			W	W	T
		PLA	ге A 313					r La	TE A 319			MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.	_ 2	t.m, 4537.2
$egin{array}{c} 1 \ 2 \ 1 \end{array}$	n B n D n B	46.6190 46.6693 46.7195	4537.87 4538.60 4539.32	$\begin{array}{c} +1 \\ +2 \\ +2 \end{array}$	$\begin{array}{c} 4537.88 \\ 4538.62 \\ 4539.34 \end{array}$	$\begin{bmatrix} 2 - 3 \\ 5 \\ 8 \end{bmatrix}$	n B D B	44.6949 44.7372 44.7878	$\begin{array}{c} 4538.11 \\ 4538.72 \\ 4539.45 \end{array}$	-3 2 -32 -31	$\begin{array}{c} 4537.79 \\ 4538.40 \\ 4539.14 \end{array}$	$ \begin{array}{r} 37.70 \\ 38.51 \\ 39.18 \\ 40.22 \end{array} $	$ \begin{array}{c} -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{array} $	$\begin{array}{c} 4537.2 \\ 4537.68 \\ 4538.49 \\ 4539.16 \\ 4540.2 \end{array}$
• • •						2-3	nn D n D	$\frac{44.8790}{45.0277}$	$\begin{array}{c} 4540.77 \\ 4542.92 \end{array}$	$-31 \\ -30$	$\frac{4540,46}{4542,62}$	$\frac{40.46}{43.08}$	$- \frac{2}{2}$	$\frac{4540.44}{4543.06}$
						i 1	n B D	$\frac{45.1307}{45.1970}$	4544.41 4545.38	$ \begin{array}{r} -29 \\ -29 \end{array} $	$\frac{4544.12}{4545.09}$	$\begin{array}{r} 43.53 \\ 44.12 \\ 45.54 \end{array}$	$ \begin{array}{r} -2 \\ -2 \\ -2 \end{array} $	4543.51 4544.10 4545.5
2	n B	47.3029	4547.82	+2	4547.84	6	В	45.3773	4548.00	-28	4547.72	47.75 49.29 52.67	$\begin{array}{c} - & 2 \\ - & 2 \\ - & 2 \end{array}$	4547.73 4549.27 4552.65
i	n B	47.8705	4556.17	+ 3	4556.20	1	n B n B	45.9431 46.1360	4556.30 4559.10	$ \begin{array}{c c} -25 \\ -23 \\ -23 \end{array} $	4556.05 4558.87	$56.05 \\ 58.87$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4556.03 4558.85
						1 1	nn D n B D	$\frac{46.1780}{46.3627}$ $\frac{46.4690}{46.4690}$	4559.80 4562.51 4564.20	$ \begin{array}{r r} -22 \\ -22 \\ -21 \end{array} $	$ \begin{array}{r} 4559.58 \\ 4562.29 \\ 4563.99 \end{array} $	$ \begin{array}{ c c c c c } 60.23 \\ 62.29 \\ 63.58 \end{array} $	$\begin{vmatrix} - & 2 \\ - & 2 \\ - & 2 \end{vmatrix}$	$\begin{array}{r} 4560, 21 \\ 4562, 27 \\ 4563, 56 \end{array}$
2	n B	48.4499	4564.80	+5	4564.85	3-4 5	n B D	46.5230 46.5964	4564.90 4565.99	$\begin{vmatrix} -21 \\ -20 \\ 20 \end{vmatrix}$	4564.69 4565.79	$\begin{array}{c c} 64.70 \\ 65.87 \\ 67.20 \end{array}$	$\begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$	4564.68 4565.85
$\begin{array}{c} 1 \\ 2 \\ 1 \end{array}$	n D n B n B	$\begin{array}{c} 48.6107 \\ 48.6497 \\ 48.8192 \end{array}$	4567.21 4567.80 4570.34	+ 5 + 5 + 5	$\begin{array}{c} 4567.26 \\ 4567.85 \\ 4570.39 \end{array}$	$\begin{vmatrix} 2\\3\\3 \end{vmatrix}$	B B	$\begin{array}{r} 46.6857 \\ 46.7274 \\ 46.8945 \end{array}$	4567.33 4567.95 4570.45	$\begin{vmatrix} -20 \\ -20 \\ -19 \end{vmatrix}$	4567.13 4567.75 4570.26	67.74 70.33	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4567.18 4567.72 4570.31
• • •						2	 D	47.3845	4577.85	-16	4577.69	$\begin{vmatrix} 70.96 \\ 77.69 \\ 78.42 \end{vmatrix}$	- 2 - 2 - 2	$\begin{array}{c} 4570.9 \\ 4577.67 \\ 4578.4 \end{array}$
···· 1	n D	49.4009	4579.16	+ 7	4579.23	1-2	B	47.4429 47.4832	4578.74 4579.35	$\begin{vmatrix} -16 \\ -16 \end{vmatrix}$	4578.58 4579.19	78.78 79.21	$-\frac{2}{2}$	$\begin{array}{c} 4578.76 \\ 4579.19 \end{array}$
 2	n D	49.4940	4580.59	+ 7	4580.66	$\begin{bmatrix} 1-2\\ 4\\ 2 \end{bmatrix}$	B D B	$\begin{array}{r} 47.5162 \\ 47.5667 \\ 47.6152 \end{array}$	4579.85 4580.62 4581.36	$\begin{vmatrix} -16 \\ -15 \\ -15 \end{vmatrix}$	$\begin{array}{r} 4579.69 \\ 4580.47 \\ 4581.21 \end{array}$	$\begin{vmatrix} 79.69 \\ 80.52 \\ 81.37 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \\ - & 2 \end{bmatrix}$	4579.67 4580.50 4581.35
• • •						1	B	47.7889	4584.01	-13 -12	4583.88 4584.74	82.96 83.88 84.74	$\begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$	
• • •						2	D	47.9517	4586.50	-11	4586.39	86.39 88.95	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4586.37 4588.9
• • •	nn D	50.0940	4589.81	+ 8	4589.89	$\begin{bmatrix} 2\\3\\1 \end{bmatrix}$	B D n B	$\begin{bmatrix} 48.1270 \\ 48.1742 \\ 48.2210 \end{bmatrix}$	4589.19 4589.92 4590.65	$\begin{vmatrix} -10 \\ -10 \\ -9 \end{vmatrix}$	4589.09 4589.82 4590.56	89.09 89.86 90.56	$\begin{bmatrix} - & 2 \\ - & 2 \\ - & 2 \end{bmatrix}$	4589.84
2 1-2	nn D n B	50.1904 50.2325	4591.30 4591.95	+ 9 + 9	$4591.39 \\ 4592.04$	$\begin{bmatrix} \frac{1}{2} \\ 3 \end{bmatrix}$	D B	$48.2588 \\ 48.3040$	4591.23 4591.93	- 8 - 8	4591.15 4591.85	91.27 91.95 93.17	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4591.25 4591.93
• • • •						4-5	Tom	48.4403 48.4810	4594.03 4594.70	- 8 - 7	4593.95 4594.63	$93.95 \\ 94.63$	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	4593.93 4594.6
						$\begin{bmatrix} \mathrm{B} \\ 4 \end{bmatrix}$	to n D	48.5650 48.6163	4596.00 4596.77	- 7 - 6	4595.93 4596.71	$ \begin{vmatrix} 95.44 \\ 95.93 \\ 96.71 \end{vmatrix} $	$\begin{bmatrix} - & 2 \\ - & 2 \\ - & 2 \end{bmatrix}$	4595.9
						1	D	48.6999	4597.64	- 6	4597.58	97.39 99.24	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	$4597.37 \\ 4599.22$
• • •						i	n B nn D	48.9722 49.0083	4602.3 2 4602.88	- 3 - 3	4602.29 4602.85	$\begin{bmatrix} 00.91 \\ 02.29 \\ 02.85 \end{bmatrix}$	-2	4602.27
• • • •							wn D n D	49.2316 49.3930	4606.39 4608.93	0	4606.39 4608.94	$06.39 \\ 08.94$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$\begin{array}{c c} 4606.37 \\ 4608.92 \end{array}$
						$\begin{vmatrix} 2\\2\\3 \end{vmatrix}$	B D	49,5517 49,5840 49,7190	$\begin{array}{r} 4611.44 \\ 4611.95 \\ 4614.10 \end{array}$	$\begin{vmatrix} +1\\ +2\\ +2\\ +4 \end{vmatrix}$	$\begin{array}{ c c c c }\hline 4611.46 \\ 4611.97 \\ 4614.14 \\\hline \end{array}$	$\begin{vmatrix} 11.46 \\ 12.25 \\ 13.95 \end{vmatrix}$	- 2 - 2 - 2 - 2	4612.23
4	B	51.8908	4618.08	+16	4618.24	8	w D	49.8564	4616.28	+ 4 + 5	4616.32	15.16 16.44 18.17	- 2 - 2 - 2	$\begin{array}{c c} 4615.14 \\ 4616.42 \end{array}$
3-4	D	51.9645	4619.23	+16	4619.39	5 4-5	n D	49.9700 50.0348	4618.10 4619.13	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4618.15 4619.18	$19.42 \\ 22.49$	- 2 - 2	$\begin{array}{c c} 4619.40 \\ 4622.47 \end{array}$
¨i	n B	52.5785	4629.18	+i8	4629.36							$ \begin{array}{r} 25.73 \\ 29.36 \\ 38.09 \end{array} $	- 2 - 2 - 2	4629.34
						• • •				1		35.00		1000.01

152 SCHJELLERUP — Continued

		PLATI	E († 316					PLAT	E G 394		
Inten- , sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Inten-	Char- acter	Menu Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
		t.m.	t.m.		t.m.			nım.	t.m.		t.m.
5 6	B	47,7669 47,7045	$1639.22 \\ 1640.82$	$-21 \\ -20$	$\frac{4639.01}{4640.62}$	3 4 5	 В D	50.7557 50.6933	4639.39 4641.01	$ \begin{array}{c} -21 \\ -24 \end{array} $	$\frac{4639.15}{4640.77}$
	No detai w D	ls in blue 44.1820	band 4736.50	+ 8	4736.58						
\mathbf{B}^{\int}	from	$\frac{44.1180}{41.0790}$	4738.35 4739.47	$^{+8}_{+8}$	$4738.43 \\ 4739.55$	οi	$\ddot{ m B}$	47.1154	4739.50	2	4739.48
(to	44.0160	4741.30	+ 8	4741.38		from	47.0840	4740.42	_ 2	4740,40
в {	from to w D	43.8840 43.8340 43.7430 43.6758	4745.12 4746.58 4749.24 4751.19	$\begin{vmatrix} +10 \\ +10 \\ +11 \\ +11 \\ +11 \end{vmatrix}$	4745, 22 $4746, 68$ $4749, 35$ $4751, 30$	Max }	to B to w D	46.9020 46.8439 46.7800 46.7093	4745.76 4717.46 4749.34 4751.43	$\begin{bmatrix} -1\\ -1\\ 0\\ 0 \end{bmatrix}$	4745.75 4747.45 4749.34 4751.43
	Head	43.6242	4752,70	+11	4752.81		Head	46.6466	4753.29	ŏ	4753.29
Max	 B	13.3182	4760.84	+13	4760,97		wn D B	46,4490 46,3903	$\begin{array}{c} 4759.18 \\ 4760.93 \end{array}$	+ i + 1	$\frac{4759.19}{4760.94}$
Max	В	12.8738	1775.01	+16	1775.17	3 1	n B n D	45,9100 45,8620	4775.43 4776.89	+ 3 + 3	$\frac{1775.46}{4776.92}$
						1 2	n D n B	$\begin{array}{r} 45.7700 \\ 45.6740 \end{array}$	$\begin{array}{r} 4779.70 \\ 4782.64 \end{array}$	+3 + 3	$\begin{array}{c} 4779.73 \\ 4782.67 \end{array}$
						• • •					
			4791.39			2		45,3800	4791.71		4791.75
Max	В	12,3315		+18	1791.57		n B			+ 4	
Max	В	42,2206	4795,89	+18	4796.07	3	n B	45,2600	4795.44	+ 4	4795.48
212		1112132	1312121		1515711			44 5000	12411.22		1014 00
$\frac{1-2}{1}$	n D B	$\frac{41.5465}{41.3355}$	$4815.91 \\ 4822.59$	$\begin{array}{c c} +20 \\ +20 \end{array}$	$\begin{array}{c} 4816.11 \\ 4822.79 \end{array}$	2	nn 1)	44.5980	4816,28	+ 5	4816.33
1 - 2	nn I)	11.3007	4823.69	+20	4823.89						
1-5	В	41.2325	4825.87	+20	4826.07	4	n B	44.2948	4825,99	+ 5	4826,04
$\frac{2\cdot 3}{5}$	n D B n D	41 .1665 11 .0973 41 .0302	$\begin{array}{c} 4827.97 \\ 4830.19 \\ 4832.34 \end{array}$	$+20 \\ +20 \\ +20 \\ +20$	4828.17 4830.39 4832.51	2 4 5	n D n B D	$\begin{array}{c} 44.2250 \\ 44.1494 \\ 44.0887 \end{array}$	4828,24 4830,68 4832,65	+ 5 + 5 + 5	4828.29 $ 4830.73 $ $ 4832.70$
$rac{1-2}{1}$	nn D B	$\frac{40.6867}{40.6368}$	$\begin{array}{c c} 4843.45 \\ 4845.07 \end{array}$	$+19 \\ +18$	$\begin{array}{r} 4843.64 \\ 4845.25 \end{array}$	1 2	n D	43.7565	4843,49	+ 5	4843.54
1	n D n D	$\frac{40.4305}{10.3055}$	$\begin{array}{c} 4851.82 \\ 4855.93 \end{array}$	+17 +17	4851.99 4856.10						
							· · · · · · · · · · · · · · · · · · ·	19 9100			
						$\begin{bmatrix} 2 & 3 \\ \dots \end{bmatrix}$	B	43,3169	4858.03	+4	4858,07
1	n 1)	40.2020	4859.36	+16	4859,52	I	nn D	43,2659	4859,71	+ 1	4859.78
				<u> </u>		1	l	1	1		

		PLA	те А 313					PL.	ATE A 319			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Length	Uncor- rected for Velocity	Cor.	Corrected for Velocity
1	nB nn D	mm. 53.1800 53.2447	t.m. 4639.01 4640.07	$+20 \\ +20 \\ +20$	t.m. 4639.21 4640.27		n B w D	mm. 51. 2 564 51.3495	t.m. 4638.58 4640,41	$+16 \\ +17$	t,m. 4638.74 4640.61	t.m. 38.98 40.57	- 2 - 2	t.m. 4638,96 4640,55
					.									· · · · · · •
												36.58	- 2	4736.6
					· · · · · · ·							$\begin{vmatrix} 38.43 \\ 39.52 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4738.4 4739.50
												$\begin{vmatrix} 39.32 \\ 41.38 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4741.3
												40.40	- 2	4740.4
												$\begin{vmatrix} 45.49 \\ 47.07 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$4745.4 \\ 4747.05$
												49.35	$\begin{bmatrix} -& ar{2} \end{bmatrix}$	4749.3
10	D	59.5727	4751.44	+35	4751.79		w D	57.6313	4750.76	+55	4751.31	51.61	$-\frac{2}{9}$	4751.59
i	Head n D	$59.6444 \\ 59.8052$	$ \begin{array}{c} 4752.79 \\ 4755.82 \end{array} $	+35 +36	4753.14 4756.18	$\ \cdot \cdot \cdot_{\mathbf{\hat{2}}} \ $	Head n B	57.7213	4752.45 4754.53	$\begin{vmatrix} +56 \\ +56 \end{vmatrix}$	4753.01 4755.09	$\begin{vmatrix} 53.08 \\ 55.09 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4753.06 4755.07
,			1,00.02				n D	57.8842	4755.52	+56	4756.08	56.13	- 2	4756.11
4	B	59.8510	4756.69	+36	4757.05	4	n B	57.9359	4756.50	+56	4757.06	57.06	$ -\ {2\atop -}\ {2\atop 2}$	4757.04 4759.31
3	m D wn B	59.9817 60.0465	4759.17 4760.40	+36 +36	4759.53 4760.76	1 4	wn B	$\begin{bmatrix} 58.0577 \\ 58.1228 \end{bmatrix}$	4758.80 4760.04	+56 +57	$ \begin{array}{c} 4759.36 \\ 4760.61 \end{array} $	$\begin{vmatrix} 59.36 \\ 60.82 \end{vmatrix}$	$-\frac{2}{2}$	4760.80
2	D	60.1305	4762.00	+36	4762.36							62.36	- 2	4762.34
3	n B	60.1845	4763.03	+36	4763.39	3	B	58.2691	4762.82	+57	4763.39	$\begin{bmatrix} 63.39 \\ 64.27 \end{bmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4763.37 4764.45
3	nn D n B	60.2373 60.2969	4764.03 4765.17	+36 +36	4764.39 4765.53	$\begin{bmatrix} 1 \\ \dots \end{bmatrix}$	n D	58.3085	4763.57	+57	4764.14	65.47	$-\frac{5}{2}$	4765.45
2-3	n D	60.3575	4766.33	+36	4766.69	1	n D	58.4280	4765.85	+57	4766.42	66.56	- 2	4766.54
	n D	eo 1e15	1760 29	+36	4768.68	2	n B	58.5080	4767.38	+58	4767.96	$\begin{bmatrix} 67.96 \\ 68.68 \end{bmatrix}$	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	4767.94 4768.66
1	n D	60.4615	4768.32	+30	4705.05	ı i	n B	58.5907	4768.96	+58	4769.54	69.60	$-\frac{1}{2}$	4769.58
3	n B	60.7943	4774.73	+36	4775.09	5	n B	58.8769	4774.47	+59	4775,06	75.20	$-\frac{2}{9}$	4775.18
2	n D	60.8794	4776.38	+37	4776.75	∥···i	n B	59.0264	4777.36	+59	4777.95	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$ \begin{array}{c} 4776.82 \\ 4777.93 \end{array} $
	nn D	61.0210	4779.12	+37	4779.49					7-95		79.61	- 2	4779.59
Max	В	61.1822	4782.26	+37	4782.63	4	n B	59.2639	4781.97	+60	4782.57	82.62	$-\frac{2}{3}$	4782.60
$\frac{1}{1}$	n D n D	$61.2984 \\ 61.3982$	4784.52 4786.48	$\begin{array}{c c} +37 \\ +37 \end{array}$	4784.89 4786.85							$\begin{vmatrix} 84.86 \\ 86.85 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4784.84 4786.83
	nn D	61.5374	4789.21	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4789.58	1-2	n D	59.6324	4789.18	+60	4789.78	89.68	- 2	4789.66
								50 5050	4500.07		4500 07	91.66	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4791.64
							nn D	59.7952	4792.37	+60	4792.97	$\begin{vmatrix} 92.97 \\ 95.78 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4792.95 4795.76
	nn D	62.0592	4799.52	+37	4799.89	:::					,	99.89	- 2	4799.87
1	n D nn D	62.2115	4802.55	$\begin{vmatrix} +37 \\ +37 \end{vmatrix}$	4802.92		n D	60.3925	4804.23	+62	4804.85	$\begin{vmatrix} 02.92 \\ 04.88 \end{vmatrix}$	$ -2 \\ -2$	4802.90 4804.86
	nn D	62.3107 62.4029	$\begin{array}{r} 4804.53 \\ 4806.37 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4804.90 4806.74		n D	60.3323 60.4774	4805.91	$\begin{array}{c} +62 \\ +62 \end{array}$	4806.53	06.64	$-\frac{1}{2}$	4806.62
	nn D	62.8620	4815.62	+37	4815.99	1	n D	60.9689	4815.80	+62	4816.42	16.17	$-\frac{2}{2}$	4816.15
	nn D	63.2535	4823.57	+37	$\frac{1}{4823.94}$	$\parallel \cdot \cdot \cdot \cdot_2$	n D	61.3327	4823.19	+62	4823.81	$\begin{vmatrix} 22.79 \\ 23.88 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$ullet 4822.77 \ 4823.86$
(from	63.2930	4821.38	+37	4824.75		B	61.4160	4824.89	+62	4825.51	24.75	- 2	4824.7
B }												25.87	$-\frac{2}{2}$	4825.85
2	n D	63.3985 63.4327	$4826.54 \\ 4827.24$	$\begin{vmatrix} +37 \\ +37 \end{vmatrix}$	$4826.91 \\ 4827.61$	i	n D	61.5210	4827.04	+62	4827.66	$\begin{vmatrix} 26.91 \\ 27.92 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$4826.9 \\ 4827.90$
$2\bar{-3}$	n B	63.5830	4830.32	+37	4830.69	$\hat{6}$	n B	61.6592	4829.87	+62	4830.49	30.58	- 2	4830.56
5	n D	63.6652	4832.02	+37	4832.39	6	D	61.7464	4831.67	+62	4832.29	$\begin{vmatrix} 32.48 \\ 34.58 \end{vmatrix}$	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	$oxed{4832.46}{4834.6}$
Con.	from	63,7715	4834.21	+37	4834.58		n D	62.0692	4838.34	+61	4838.95	38.95	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	4838.93
- 1	to	64.1420	4841.90	+37	4842.27							42.27	- 2	4842.3
$\cdot \cdot \cdot_2$	nn D n B	$64.2053 \\ 64.2782$	$\begin{array}{ c c c c c }\hline 4843.22\\ 4844.74\\ \hline\end{array}$	+37 +37	4843.59 4845.11	2	n D	62.2755	4842.63	+61	4843.24	$\begin{array}{c c} 43.50 \\ 45.18 \end{array}$	$- \frac{2}{2}$	$4843.48 \\ 4845.16$
Con.	from	64.3135	4845.48	+36	4845.84							45.84	-2	4845.8
Spec.	to	64.5650	4850.75	+36	4851.11							51.11	- 2	4851.1
	nn D	64.5997	4851.48	+36	4851.84							$\begin{bmatrix} 51.93 \\ 56.10 \end{bmatrix}$	$-\frac{2}{2}$	4851.91 4856.08
Con. (from	64.8325	4856,39	+36	4856.75							56.75	- 2	4856.7
Spor }	to	e	1050 50		1050 15							58.07	$\frac{-2}{-9}$	$4858.05 \\ 4859.1$
1	n D					17		1	1	l		59.13	$-\frac{2}{2}$	4859.65
1-2	n B	65.0206	4860.38	+36	4860.74							60.74	-2	4860.72
Spec. (64,9455 64,9647 65,0206	4858.79 4859.20 4860.38	+36 +36 +36	$\begin{array}{c} 4859.15 \\ 4859.56 \\ 4860.74 \end{array}$							59.15 59.67	- 2 - 2	485 485

		PLAT	E G 316					PLAT	E G 394		
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
1 1	n D n D	mm. 40.1160 40.0289	t.m. 4862.22 4865.10	+16 +15	t.m. 4862.38 4865.25	1 1 1	n D n D nn D	mm. 43.1853 43.1010 43.0128	t.m. 4862.43 4865.16 4868.23	+ 4 + 3 + 3	t.m. 4862.47 4865.19 4868.26
4 2	 D D	39.8491 39.7203	4871.11 4875.44	$\begin{array}{c c} & \dots & \\ +14 & \\ +13 & \\ \end{array}$	4871.25 4875.57	4	 D	42.9122	4871.63	+3	4871.66
1 2 5 5	D B D B	39.6320 39.6013 39.5128 39.4800	$\begin{array}{r} 4878.42 \\ 4879.46 \\ 4881.44 \\ 4883.57 \end{array}$	$egin{array}{c} +12 \\ +12 \\ +12 \\ +12 \\ \end{array}$	$\begin{array}{c} 4878.54 \\ 4879.58 \\ 4881.56 \\ 4883.69 \end{array}$	$rac{1}{4}$	о w D В	42.7174 42.6121 42.5533	4878, 25 4881, 84 4883, 86	$\begin{array}{c} +2 \\ +2 \\ +2 \end{array}$	4878.27 4881.86 4883.88
3-4	<u>p</u>	39.4144	4885.80	+11	4885.91	6	w D	42.4864	4886 16	+ i	4886.17
						2	В	42.4250	4888.27	+ i	4888.28
3-4	<u>.</u> B	39.1854	4893.64	+ 9	4893_73	\mathbf{B}	from	42.3120	4892.18	+ 1	4892.19
6-8	w B	39.0383	4898,71	+ 9	4898.80		to	42.0790	4900.28		4900.28
3 . .	<u></u>	38.9761 38.8935	4900.86	+8 	4903.80	$\frac{3}{4}$	$\begin{array}{c c} & D \\ \vdots & \vdots \\ & \mathbf{w} \ \mathbf{B} \end{array}$	42.0420	4901.56	0 - 1	4901.56
4	n D	38.8123	4906.55	+6	4906.61	3	w Đ	41.8992	4906.57	- i	4906.56
2 4-5	n D nn D	38,7063 38,4139	$\begin{array}{c} 4910.25 \\ 4920.54 \end{array}$	$\begin{array}{c c} + 5 \\ + 2 \end{array}$	4910.30 4920.56	4	w D	41,7683	4911.18	- 2 	4911.16
						$\begin{array}{c c} 1-2 \\ 1-2 \end{array}$	n D n B	41.3203 41.2587	$\begin{array}{c} 4927.13 \\ 4929.34 \end{array}$	$-\frac{4}{5}$	4927.09 4929.29
$\begin{array}{c} 2 \\ 1-2 \\ 1-2 \end{array}$	n B nn D B	37.7610 37.7064 37.6511	4943.91 4945.90 4947.90	- 5 - 7 - 7	4943.86 4945.83 4947.83	i	n D	40.8027	4915.89	- 7	4945.82
		37.0311			1017.00						
$\frac{2}{1}$	n D	37.538 2 37.4760 37.3805	4952.03 4954.30 4957.81	- 9 -10 -11	4951.94 4954.20 4957.70	2	n D	40.5741	4954.30	- 9	4954.21
$_{ m End}^{2}$	n D	36.8590	4957.81 4977.2	$-11 \\ -19$	$\begin{bmatrix} 4957.70 \\ 4977.0 \end{bmatrix}$	End		39.9740	4976.8	-13	4976.7

		PLA	TE A 313					PL	ATE A 319			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Leugth	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
3 2 1-2 5-6 2-3 D { 2-3	nn D nn D nn D nn D nn D nn D nn D nn B n D n B nn D from to n B nn D from to n B nn D from to n B nn D from to nn B nn D from to nn B nn D from to nn B nn D nn B nn D nn B nn D nn B nn D nn D nn D nn D nn D	mm. 65.0867 65.2159 65.3530 65.5204 65.7120 65.88364 65.9855 66.0672 66.1160 66.2525 66.2853 66.3480 66.4660 66.6240 66.7787 66.8780 66.9325 67.0510 67.01070 67.2142 67.3092 68.1255 68.1936 68.1835 68.1936 68.1837	t.m. 4861.79 4864.55 4867.48 4871.07 4875.20 4877.35 4881.13 4882.91 4884.20 4886.95 4887.67 4889.00 4891.60 4895.10 4898.53 4900.73 4901.58 4905.83 4900.73 4901.58 4905.83 4908.23 4910.36 4928.85 4930.43 4949.47 4953.50	+36 +35 +35 +35 +33 +33 +33 +33 +33 +33 +32 +32 +32 +32	t.m. 4862.15 4864.90 4867.83 4871.41 4875.54 4878.22 4879.68 4881.46 4883.24 4884.52 4887.27 4887.99 4889.32 4891.92 4895.41 4898.84 4901.04 4902.25 4904.88 4906.13 4908.52 4910.65 4949.69 4945.36 4949.69	3 4 7 5 4 1 4 3 5 3 -4 2 2 2 3 1 End	nn D n B nn D nn D nn B nn D nn D n	63, 4397 63, 4955 63, 5905 63, 7809 63, 9845 64, 0649 64, 1542 64, 2942 64, 3655 64, 5034 64, 9767 65, 0814 64, 9767 65, 0814 66, 2967 66, 3024 66, 9292 67, 0518 67, 1088 67, 2065 67, 2804 68, 2360	t.m. 4867, 23 4868, 42 4870, 46 4874, 57 4878, 97 4880, 72 4882, 66 4885, 28 4887, 27 4890, 30 4900, 75 4903, 08 4907, 89 4909, 84 4926, 39 4928, 47 4930, 67 4945, 16 4948, 02 4949, 32 4951, 63 4953, 37 4976, 10	$\begin{array}{c} \cdots \\ +57 \\ +57 \\ +56 \\ \cdots \\ +56 \\ +55 \\ +55 \\ \cdots \\ +54 \\ +53 \\ \cdots \\ +51 \\ \cdots \\ +49 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +47 \\ \cdots \\ +48 \\ \cdots \\ +38 \\ \cdots \\ +38 \\ \cdots \\ +29 \\ +28 \\ \cdots \\ +16 \\ \end{array}$	t.m. 4867.80 4868.99 4871.03 4875.13 4875.13 4879.53 4881.27 4883.21 4885.82 4887.81 4890.83 4901.25 4903.57 4908.36 4910.31 4926.79 4928.86 4931.05 4945.48 4948.33 4949.62 4951.82 4963.65	t.m. 62.31 65.11 67.96 68.99 71.34 75.35 78.34 79.63 81.54 83.51 84.52 87.27 88.06 90.1 92.06 93.73 95.41 98.72 00.28 01.20 02.25 03.80 04.88 06.43 08.44 10.61 20.56 26.94 29.09 30.87 43.86 45.62 47.83 48.39 49.66 51.88	$\begin{array}{c} -22 \\$	t.m. 4862, 29 4865, 09 4867, 94 4868, 97 4871, 32 4875, 33 4878, 32 4879, 61 4881, 52 4883, 49 4884, 59 4887, 3 4888, 04 4890, 1 4890, 7 4890, 7 4900, 7 4900, 7 4900, 7 4900, 9 4920, 54 4910, 59 4920, 54 4920, 54 4920, 54 4920, 54 4920, 54 4920, 54 4920, 54 4941, 84 4941, 84 4941, 84 4941, 84 4941, 84 4941, 84 4951, 86

152 SCHJELLERUP

s		January Hour an	E G 275 14, G.M.' gle, E 0b compari	8				PLATE nuary : od ; con	26, G.M			8		, March Hour an	E G 302 6, G.M.T gle, W 3 compari	h3		WAV	Mea e-Le	N NGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor.from Curve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor.from	Wave. Length	Intensity	Char- acter	Mean Scale Reading	Wave. Length by Form.	Cor.from Curve	Wave- Length	Uneor, for Velocity	Cor. for	Cor. for Velocity
Head 1 1 2 5	B? D B? n D	mm. 46,8420 46,8254 46,8024 46,7745 46,7061	t.m. 5167.90 5168.55 5169.44 5170.53 5173.21	+20 +23 +22 +22 +22	t.m. 5168.10 5168.78 5169.66 5170.75 5173.43			mm.			t.m.	Head 1 3 8 2	n D B D B?	mm, 50.7600 50.7104 50.6802 50.6197 50.5625	t.m. 5167.50 5169.45 5170.63 5173.00 5175.25	+15 +15 +15 +14	t.m. 5167.66 5169.60 5170.78 5173.15 5175.39	t.m. 67.88 68.72 69.63 70.77 73.29 75.45	22 22 22 22 22 22 22 22 22 22 22 22 22	t.m. 5167.86 5168.70 5169.61 5170.75 5173.27 5175.43
5-6 6 1-2 7 6 1 2-3 2-3 5	n D B D B D B D B D B n D B n D B n D B n D	46, 4331 46, 3520 46, 3078 46, 2593 46, 2008 45, 9762 45, 9375 45, 6743 45, 6144 45, 5598	5183, 96 5187, 18 5188, 93 5190, 87 5193, 20 5202, 21 5203, 77 5205, 78 5214, 44 5216, 88 5219, 11	$ \begin{array}{r} +20 \\ +19 \\ +19 \\ +19 \\ +18 \\ +17 \\ +16 \\ +16 \\ +14 \\ +14 \\ +12 \\ \end{array} $	5184 16 5187, 37 5189, 12 5191, 06 5193, 38 5202, 38 5203, 93 5205, 94 5214, 58 5217, 02 5219, 23							1 3 7 2 7 6 1 1-2 4	B? n D B D B D D D D D D D D D D D D D D D	50, 4771 50, 3440 50, 2581 50, 2160 50, 1702 50, 1114 49, 8804 49, 5894 49, 5894 49, 5300 49, 4726	5178.61 5183.91 5187.28 5188.98 5190.80 5193.15 5202.44 5203.74 5214.24 5216.66 5219.02	+13 +12 +11 +11 +10 + 7 + 7 + 3 + 3	5178.74 5184.03 5187.39 5189.09 5190.91 5193.25 5202.51 5203.81 5214.27 5216.69 5219.04	78.76 84.10 87.38 89.11 90.99 93.32 02.45 03.87 05.88 14.43 16.86 19.14	22222	5178,74 5184.08 5187.36 5189.09 5190.97 5193.30 5202.43 5203.85 5205.86 5214.41 5216.84 5219.12
21 5 4 4 9 : : 21 5 4 8 1 1 4	wn D B D B n B D B D n D nn D nn D	45, 3686 45, 2891 45, 2109 45, 1170 44, 9386 44, 8799 44, 8316 44, 7830 44, 6881 44, 4336 44, 3407	5226,96 5230,12 5233,48 5236,13 5244,83 5247,29 5249,32 5251,36 5255,37 5266,19 5270,16	+1098 + 487 + 487 + 481 + 48	5227,06 5230,21 5233,56 5236,20 5244,85 5247,30 5249,33 5251,36 5255,36 5266,15 5266,15							5 6 5 10 1-2 3 6 5 7 2	DEDEBORDED DEDEBORDED DESCRIPTION	49, 2796 49, 1986 49, 1245 49, 0537 48, 9896 48, 8455 48, 7921 48, 7148 48, 6936 48, 5985 48, 2514	5226.95 5230.31 5233.38 5238.32 5238.32 5247.26 5247.26 5249.25 5251.41 5255.43 5266.51 5270.23	+ 2 - 1 - 2 - 3 - 4 - 5 - 9 - 10 - 11 - 13 - 14 - 18	5226,94 5230,29 5233,35 5236,28 5236,28 5244,93 5247,16 5249,14 5251,29 5268,38	27.00 30.25 33.46 36.24 39.00 44.89 47.23 49.24 51.33 66.24	222222	5226.98 5230.23 5233.44 5236.22 5238.98 5244.87 5247.21 5255.31 5255.31 5266.22
1 1 1 1 4 3	nn D? n D	44.0833 44.0056 43.5692 43.3509 43.3021	5281,25 5281,62 5303,73 5313,41	- 7 - 8 - 10 - 10 - 10	5281, 18 5284, 54 5284, 54 5303, 63 5313, 31 5315, 49							5 2 2 1 1 2 4 3 1-2	n B n B n D? n D? n D? B? B? B n D	48.1945 48.0329 47.9213 47.6986 47.6214 47.4755 47.2656 47.2163 47.1719	5272.67 5279.65 5279.65 5284.49 5294.21 5297.60 5304.04 5313.35 5315.56 5317.54	-20 -21 -22 -23 -24 -24 -23 -23 -22 -22 -22	5270, 03 5272, 46 5279, 43 5284, 26 5293, 97 5207, 36 5303, 81 5313, 13 5315, 34	70.07 72.52 79.49 81.12 84.35 94.03 97.42 03.72 13.22 15.42 17.38	- 2	5270.05 5272.50 5279.47 5281.10 5284.33 5294.01 5297.40 5303.70 5313.20 5315.40 5317.36
2 4 1 6 5 5 6 3 1 1-2 3 8 7 6 3 3 3 3	n D B n B B D B n B n B n B n B n B n B n B B B B B B	43 0076 42 86149 42 8149 42 7732 42 7259 42 7259 42 2955 42 2967 42 1390 42 0067 42 0064 41 9612 41 828 41 839	5328, 81 5335, 54 5337, 54 5337, 54 5339, 41 5344, 39 5352, 50 5362, 54 5366, 63 5366, 63 5369, 14 5377, 06 5378, 92 5381, 46 5382, 90		5328.73 5335.38 5337.48 5339.38 5341.55 5341.55 5352.48 5262.55 5364.51 5366.65 5369.17 5372.14 5375.09 5377.12 5378.98							1 3 3 1-2 7 7 6 3-4 1 1 1-2 3-4 10 9 8 4 2-3 2-3	D B B B B B B B B B B B B B B B B B B B	46,9975 46,9263 46,7763 46,7338 46,6864 46,6864 46,6339 46,5774 46,1480 46,0929 46,0439 46,0439 45,9796 45,9200 45,8745 45,7828	5315.53 5325.53 5325.53 5337.32 5337.32 5339.47 5344.46 5352.19 5362.60 5344.29 5362.60 5372.17 5369.16 5372.17 5377.11 5378.94 5381.44	-20 -19 -18 -17 -16 -16 -15 -13 -12 -11 - 8 - 7 - 6 - 6 - 5 - 5	2010, 10 5317, 32 5325, 17 5328, 39 5335, 20 5335, 20 5337, 15 5334, 31 5334, 71 5332, 96 5344, 31 5334, 71 5336, 78 5366, 78 5366, 78 5366, 78 5371, 90 5371, 90 50 50 50 50 50 50 50 50 50 50 50 50 50	25.23 - 28.56 - 35.27 - 37.32 - 39.35 - 41.63 - 44.33 - 52.27 - 62.52 - 66.72 - 66.72 - 69.13 - 72.12 -	01	5325, 21 5328, 54 5335, 25 5337, 30 5339, 33 5344, 61 5334, 31 5352, 25 5362, 50 5362, 50 5369, 11 5372, 10 5374, 98 5374, 98 5378, 92 5381, 44
	to n D n D n D n D n D n D n D n D n B wn D n D n B n D n B n D n B n D n B	41.5560 41.5236 41.3140 41.1879 41.0663 41.0138 40.9760 40.8617 40.7759	5396.30 5397.85 5497.85 5414.05 5419.98 5422.54 5424.39 5430.01 5434.25 5442.64 5447.22 5450.87	$\begin{array}{c} +8\\ +10\\ +11\\ +13\\ +14\\ +15\\ +15\\ +15\\ +16\\ +17\\ +17\\ +17\\ +17\\ +17\\ +17\\ +11\\ +14\\ +14\\ \end{array}$	5396 40 5397.96 5498.07 5414.19 5420.13 5422.69 5424.54 5430.17 5431.41 5442.81 5442.81 5457.25 5461.33 5461.33							1-2 2 3 1-2 2 3 1 2 2 1 2 2 1 1 2 2 1 1 1 1 1 1 1	nn D n D n D n B n D B n D B w D B m D B m D B m D B B m D B B B B B B B B B B B B B B B B B B B	45, 4383 45, 2160 45, 1047 44, 9777 44, 9336 44, 5934 44, 7707 44, 5330 44, 5930 44, 5930 44, 5230 44, 5230 44, 4410 44, 4140 44, 4155 44, 4155 44, 4155 43, 5940 43, 7528 43, 6428	5408.54 5413.94 5420.13 5424.26 5424.26 5430.29 5432.13 5434.27 5446.69 5450.72 5466.97	+ 3 + 4 + 5 + 6 + 6 + 7 + 7 + 8 + 8 + 9 + 10 + 10	5397.84 5498.56 5413.97 5420.17 5422.34 5424.35 5424.35 5439.35 5438.89 5442.63 5438.89 5442.63 5438.89 5442.63 5446.70 5546.70 5546.70 5546.70 5547.55 5547.55	96.34 - 97.90 -	01	5382.9 5397.88 5408.30 5408.30 5420.13 5422.50 5424.41 55432.23 5434.35 5434.35 5447.06 5447.06 5447.35 5447.35
1-2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	n B nn D wn D n D D	39,3232 39,1571 38,8556 38,7397 38,6052 38,4922	5508,29 5517,05 5533,11 5539,34 5546,61 5552,80	+ 10 + 8 + 4 + 3 + 1 0	5508,39 5517,13 5533,15 5539,37 5546,62 5552,80							5-6 1-2 2-3 1 1 1	B nn D n D wn D n D	43.2402 42.7908 42.6563 42.5199 42.4118 42.3428	5508.14 5531.97 5539.19 5546.55 5552.42 5556.18	+10 +10 +10 + 9 + 9 + 8	5508,24 5532,07 5539,29 5546,54	08.32 - 32.61 - 39.33 - 46.58 - 52.66 - 56.26 -	10121212121	5508, 30 5532, 59 5532, 59 5539, 31 5546, 56 5552, 64 5556, 24 5562, 50

						11														
		PLATI	E G 275					PLATE	G 291					PLAT	E G 302			WAY	Mear E-Le	N ENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor.from Curve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor.from Cnrve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor.from	Wave- Length	Uncor. for Velocity	Cor. for	Cor. for Velocity
4 8 8 1 1 8	n D w D w D B D B		t.m. 5568.13 5575.96 5583.84 5587.70 5589.03 5591.55 5607.97 5616.17 5618.94	- 3 - 4 - 6 - 7 - 7 - 7 - 7 - 7 - 9 - 10 - 10	t.m. 5568.10 5575.92 5583.75 5587.63 5588.96 5591.48 5607.88 5616.07 5618.84	1 2	В	37.9233	t.m. 5589.12 5592.73	-13	5592.60	6 10 1 1 10 	nn D wn D n B nn D n B		t.m. 5576.37 5583.61 5587.49 5588.90 5591.38	+65 +55 +3 +3		t.m. 68.10 76.18 83.71 87.59 88.97 91.46 92.60 06.9 46.07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t.m, 5568.08 5576.16 5583.69 5587.57 5588.95 5591.44 5592.58 5606.9 5616.0
D}	to w B w D Head	37.1840 37.1274 37.0485 37.0060	5626.08 5629.36 5633.93 5636.40	-10 -12 -12 -12 -12	5625.98 5629.24 5633.81 5636.28	10 5 1 4 2	B B B D	37.1215 37.0958 37.0675 37.0106 36.9105	5640.22 5641.87 5645.20 5654.09	$ \begin{array}{r} -20 \\ -24 \\ -21 \\ -20 \\ \end{array} $	5634.24 5638.51 5640.01 5641.66 5645.00 5650.87 5654.14 5857.31	10 -6 -2-3 1	Head B	41.1180 41.0492 40.9713 40.9250 40.8364 40.8335 40.7841 40.7460	5624.83 5628.81 5633.31 5636.00 5637.66 5641.32 5644.21	- 1 - 2 - 2 - 2 - 3 - 4 - 4	5611.17 5616.39	48.84 25.45 29.02 33.78 36.13 38.08 40.01 41.48 44.59 46.39 50.87	00000000000000000000000000000000000000	5618.8 5625.4 5629.00 5633.76 5638.11 5638.06 5639.99 5641.46 5644.57 5616.37 5650.85
1 1 2	D D	36.5624 36.3416 36.4554	5662.47 5675.64 5686.85	-14 -15 -15	5662.33 5675.49 5686.70	1-2 0-1 4 Max 2 2 4 3	D? D? B D B D	36, 8551 36, 8010 36, 7140 36, 5999 36, 4227 36, 4297 36, 3047 36, 1968	5654.36 5657.56 5662.72 5669.52 5675.97 5679.73 5687.28 5693.83	-22 -22 -23 -23 -24	5662,50 5669,30 5675,74 5679,50 5687,05 5693,59	B 1 2	to nn D nn D	40.3430 40.3250 40.2586 40.0777 39.9667	5670.24 5671.31 5675.28 5686.15 5692.87	- 7 - 7 - 7 - 7 - 8 - 9	5670.17 5671.24 5675.21 5686.07 5692.78	54,14 57,34 62,41 69,30 70,17 71,24 75,48 79,51 86,61 93,19	- - - - - - -	5654,12 5657,32 5662,39 5669,28 5670,2 5671,22 5675,46 5679,49 5686,59 5693,17
1-2 2 8 B}	D B nn D B	35.8047 35.7656 35.7232 35.6632	5708.23 5710.63 5713.25 5716.95	-16 -16 -16 -16 -16	5708.07 5710.47 5713.09 5716.79	1 2 4 1 6	n D n B n B n B	35.8881 35.8820 35.7505 35.7057 35.5739	5696 . 62 5708 . 58 5712 . 74 5716 . 83 5721 . 26 5724 . 05 5732 . 28	$ \begin{array}{r} -26 \\ -26 \\ -27 \\ -27 \\ -27 \\ -27 \end{array} $	5696.37 5708.32 5742.48 5746.56 5720.99 5723.78 5732.01	1-2 1 7 1 6 4 B	D B D w B n D B n D from	39,6521 39,5838 39,5185	5695, 35 5705, 09 5707, 45 5712, 08 5716, 29 5720, 32 5723, 82 5730, 97	- 9 -10 -10 -11 -11 -12 -12 -12 -12	5711.97 5716.18 5720.20 5723.70 5730.87 5733.79	95.82 04.99 07.91 10.47 12.51 16.51 20.70 23.82 31.62 33.97		5695,80 5704,97 5707,89 5710,45 5712,49 5716,49 5720,68 5723,80 5731,60 5733,9
1-2 1-2 1 1-2 1 1-2 2 3 4 4 2	to B n D n B? n B? n B? n B? n B n B	35.2600 35.2315 35.1883 35.4414 35.0839 35.0224 34.9860 34.8645 34.8079 34.7599	5742.41 5743.92 5746.65 5749.62 5753.27 5757.18 5759.50 5767.28 5770.92 5774.02	-16 -16 -16 -16 -16 -16 -17 -16 -17	5741.95 5743.76 5746.49 5749.46 5753.11 5757.02 5759.34 5767.11 5770.76 5773.85							219133 11 11	to	39,1910 39,4564 39,1109 39,0655 39,0106 38,9501 	5749,74 5742,92 5745,79 5748,66 5752,13 5755,97 5769,62 5773,00	-43 -13 -13 -14 -14 -14 -15	5740.61 5742.79 5745.66 5748.53 5751.99 5755.83	41,28 43,28 46,08 49,00 52,55 56,43 59,34 67,14 70,12 73,35		5741.3 5743.26 5746.06 5748.98 5752.53 5756.41 5759.32 5767.09 5770.10 5773.33
1 3 	B?	34.5969 34.5916 34.5383 34.5060 34.3474	5780.68 5784.92 5788.39 5790.50 5800.90 5816.11	-17 -17 -17 -17 -17 -17 -16	5780.51 5784.75 5788.22 5790.33 5800.73 5815.95							1-2 2 5 1 2-3 2-3 	n D n D B? D?	38.5768 38.5189 38.4319 38.3064 38.2670 38.2246	5779.90 5783.65 5788.65 5797.50 5800.08 5802.86 5816.82 5822.27	-15 -15 -16 -16 -16 -16 -16	5779.75 5783.50 5788.50 5797.34 5799.92 5802.70 5816.66	80,13 84,13 88,22 89,42 97,34 00,32 02,70 45,95 16,66	-21 -21 -21 -21 -21 -21 -21 -21 -21 -21	5780.11 5784.11 5788.20 5789.40 5797.32 5800.30 5802.68 5815.93 5816.64
	B? B? D? End	33.9529 33.8034 33.1089 33.1250	5827.11 5837.17 5884.89 5883.8	-16 -16 -16 -16 -16	5826.95 5837.01 5884.73 5883.6							1 1 1	D?	37.9316 37.3934 37.1202 36.9760	5858.62 5877.43	-16 -16 -16 -16 -16	5822.11 5858.46 5877.27 5887.2	22.11 26.95 37.01 58.46 77.27 81.73 83.6 87.2		5822.09 5826.93 5836.99 5858.44 5877.25 5884.71 5883.6 5887.2

DETERMINATION OF THE RADIAL VELOCITIES

The determination of the radial velocities was complicated by the presence of bright lines in the spectra, since the apparent center of a neighboring dark line would be shifted by an amount which would vary with the exposure and consequent density of the negative. To avoid this difficulty as far as possible, dark lines away from bright lines were selected for velocity determinations whenever they were available. The following tables give in detail for each star the lines selected, the elements with which they were identified, the differences in wave-length, and the resulting velocity corrections. The great range for the different lines is partly due to the cause just mentioned, but errors also necessarily arise from the use of lines which blend together in the spectra of these stars, though they are well separated in the solar spectrum. Such blends result from the large slit-widths used with comparatively small dispersion, the increased strength of lines in fourth-type spectra, and the changes of relative intensity as compared with the solar spectrum.

RADIAL VELOCITIES FROM THE DARK LINES

The tables are arranged as follows: The third column, headed $\Delta\lambda$, gives the displacement of the lines in hundredths of a tenth-meter; the fourth column gives the velocity corresponding to a displacement of one tenth-meter; the fifth column gives the deduced velocity, being the product of columns three and four.

19 PISCIUM

318 BIRMINGHAM

Star	Element	77	l"ı	1.	Star	Element	77	Γ_1	I
t.m.	t.m.		km.	km.	t.m.	t.m.		km.	l; n
4404.95	Fe04.94	1	68	+ 1	4405.00	Fe~04.94	+6	68	+
4408.48	Fe08.60	-12	68	- 8	4414.96	$Fe\ 15.33$	-37	68	:
4415.14	Fe15.33	-19	68	-13	4496.82	Cr 97.02	-20	67	-
4489.72	Fe89.90	-18	67	-12	4512.49	Ti 12.88	-39	66	-:
4496,99	Cr97.02	- 3	67	_ 2	4518.16	Ti18.18	- 2	66	_
4512.73	Ti12.91	-18	66	$-1\overline{2}$	4522.91	Ti~22.97	- 6	66	-
4518.24	Ti18.18	+6	66	+ 4	4531.18	$Fe\ 31.31$	-13	66	_
4522.97	Ti22.97	' Ö	66	' ō	4920.62	$Fe\ 20.69$	- 7	61	
4594.31	17.94.27	+4	66	+3	4934.31	Ba34.24	+7	61	+
4789.40	Fe 89, 40 du	, õ	63	0	5173.46	Ti73.94	-48	58	<u>-</u> :
5247.53	Fe~47.27	+-26	57	+15	5193, 26	Ti 93, 15	11	58	+
5397.54	Fe 97, 70 tr	-26	56	-14	5251.10	Ti50.83	+27	57	
5406.39	Fe05 , 98	+41	55	+22	5255.42	Ti55.15	+27	57	+
5430,35	Fe 29 , 81	+54	55	+-30	5269.84	$Ti\ 69.72$	+12	57	1
5731.16	$Fe\ 31.98$	-82	52	-43	5297,59	Cr 98.15	-56	57	;
		_			5328.52	Fe 28.38	+14	56	+
		4.3.31	2.		5396.93	$Fe \ 97.32$	-39	56	-
		46 line	es, Mean	$-2 \mathrm{km}$.	5410.19	$Fe\ 10.53$	-34	55	-

280 SCHIELLERUP

19 lines, Mean −8 km.

Star	Element	$\Delta \lambda$	V_1	1*		74 SCHJELL	ERUP		
t.m. 4434,85 4512,45 4512,45 4517,77 4522,53 4605,58 4645,67 4667,76 4681,77 4714,10 4728,22 5297,72 5319,99 5371,62 5397,02 5405,81	t.m. Fe 35, 33 Ti 12, 88 Ti 18, 18 Ti 22, 97 Fe 06, 40 Fe 46, 40 Fe 67, 96 Fe 82, 24 Ni 14, 59 Fe 28, 73 Cr 98, 15 Fe 49, 89 Fe 71, 68 Fe 97, 32 Fe 05, 97	$ \begin{array}{r} -47 \\ -43 \\ -41 \\ -44 \\ -52 \\ -73 \\ -20 \\ -17 \\ -19 \\ -51 \\ -43 \\ +10 \\ -6 \\ -30 \\ -16 \\ \end{array} $	km. 68 66 66 66 65 64 64 64 63 57 56 56	km. -32 -28 -27 -29 -31 -47 -13 -30 -31 -32 -25 +6 -3 -17 -9	t.m. 4395,13 4115,38 4497,29 4512,43 4518,46 4523,23 4527,45 4565,82 4789,34 4832,65 5173,31 5251,76	t.m. Ti 95,19 Fe 15,33 Cr 97,02 Ti 12,88 Ti 18,18 Ti 22,97 Ti 27,48 Fe 65,87 Fe 89,37 Fe 32,90 Mg 72,86 Fe 51,49	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Km. 68 68 67 66 66 66 66 63 62 58	$ \begin{vmatrix} & & & \\ & & & \\ & -4 & \\ & +3 & \\ & +18 & \\ & -30 & \\ & +18 & \\ & +20 & \\ & -2 & \\ & -3 & \\ & -2 & \\ & -3 & \\ & -2 & \\ & -15 & \\ & +26 & \\ & +15 & \end{vmatrix} $

16 lines, Mean -25 km.

13 lines, Mean +4 km,

78 SCHJELLERUP

115 SCHJELLERUP

Star	Element	27	r,	1.
t.m.	t.m.		km.	km
4415.17	Fe 15.33	-16	68	-1
4455.50	Ti 55.48	+2	67	+
4496.95	Cr 97.02	- 7	67	+
4512.92	Ti 12.88	+4	66	+
4518.19	Ti 18.18	+1	66	-
4523.02	Ti 22.97	+ 5	66	1
4527.27	Ca 27.10 Ti 27.49	- 3	66	-
4784.52	V 84.65	-13	63	
5183.92	Mg83.79	+15	58	-+-
5189.15	Ca 89.05	+10	58	
5233.95	V = 33.91	+4	57	+
5349.55	$Ca\ 49.65$	-10	56	<u> </u>
5731.46	V 31.48	- 2	52	_

Star	Element	77	$\Gamma_{\rm t}$	1*
t.m.	t.m.		km.	km
4435.28	Fe 35.33	-5	68	- :
4496.84	Cr = 97.02	-18	67	-11
4512.85	Ti 12.88	- 3	66	- :
4518.01	Ti 18.18	-17	66	-1
4522.88	$Ti_{-}22.97$	- 9	66	
4553.89	Ba54.21	-32	66	-2
5183.38	Mq.83.79	-41	58	-2
5731.72	Fe 31.98	-26	52	-1

8 lines, Mean -12 km.

13 lines, Mean -1 km.

 $132\,SCHJELLERUP$

152 SCHJELLERUP

Star	Element	77	Γ_3	- I	Star	Element	77	V_1	1"
t.m.	t.m.		km.	km.	t.m.	t.m.		km.	km.
4397.83	V 98.35	-35	68	-24	4489.63	Fe 89, 90	-27	67	-18
4404.52	Fe 04.94	-42	68	-29	4512.83	Ti12.88	$-\frac{1}{5}$	66	-3
1408.25	Fe 08.60	-35	68	-24	4518.25	Ti18.18	+7	66	+5
1414.66	Fe 15.33	-67	68	-46	4552.67	Fe52.72	$\begin{array}{c c} & \top & 5 \end{array}$	66	$+\frac{3}{3}$
1454.53	$Ca_{-}54.95$	-42	67	-28	4593.95	V 94.27	-32	65	$-\frac{1}{22}$
1489.46	Fe 89.90	-44	67	-29	4789.68	Fe 89.80	-12	63	- 8
1496 44	Cr = 97.02	-58	67	-39	1100.00	10.00.00	-12	0.5	
4512.35	Ti 12.88	-53	66	-36			1		
£517.67	Ti 18.18	-51	66	-34		6	lines, Mea	an wt 2	_9 k
1522.57	Ti 22.97	-40	66	-26		o o	illies, mee		, on
528.27	Fe 28.84	-57	66	-38					
1552.42	Fe 52.72	-30	66	-20					
		1 60	65	-39					
4593,67	V = 94.27	-60							
4593 67 4656 03	Ti 56.64	-61	64	-39			i I		
4593,67 4656,03 4924,13	$Ti_{Fe} 56.64 \\ Fe_{24.39}$	$ \begin{array}{r} -61 \\ -26 \end{array} $	$\frac{64}{61}$	$ \begin{array}{r} -39 \\ -16 \end{array} $	5173.29	Mg 72.86	+43	58	+25
4593,67 4656,03 4924,13 4933,02	Ti 56.64 Fe 24.39 Fe 33.50		$64 \\ 61 \\ 61$	$ \begin{array}{r} -39 \\ -16 \\ -29 \end{array} $	5173.29 5202.45	Fe = 02.49	+43 - 4	58	- 2
4593,67 4656,03 4924,13 4933,02 5172,36	Ti 56.64 Fe 24.39 Fe 33.50 My 72.86	$ \begin{array}{r} -61 \\ -26 \\ -48 \\ -50 \end{array} $	$\begin{array}{c} 64 \\ 61 \\ 61 \\ 58 \end{array}$	$ \begin{array}{r} -39 \\ -16 \\ -29 \\ -29 \end{array} $	5202.45 5247.23	$Fe 02.49 \ Fe 47.27$	- 4 - 4	58 57	$-\frac{2}{2}$
4593.67 4656.03 4924.13 4933.02 5172.36 5246.92	Ti 56.64 Fe 24.39 Fe 33.50 My 72.86 Fe 47 27	$ \begin{array}{r} -61 \\ -26 \\ -48 \\ -50 \\ -35 \end{array} $	64 61 61 58 57	$\begin{array}{r} -39 \\ -16 \\ -29 \\ -29 \\ -19 \end{array}$	5202.45	$egin{array}{c} Fe & 02.49 \ Fe & 47.27 \ Fe & 69.99 \end{array}$	$\begin{vmatrix} -4 \\ -4 \\ +8 \end{vmatrix}$	58 57 57	- 2 - 2 + 5
4593,67 4656,03 4924,13 4933,02 5172,36 5246,92 5297,61	Ti 56.64 Fe 24.39 Fe 33.50 My 72.86 Fe 47.27 Cr 98.15	$ \begin{array}{r} -61 \\ -26 \\ -48 \\ -50 \\ -35 \\ -54 \end{array} $	64 61 61 58 57 57	$\begin{array}{r} -39 \\ -16 \\ -29 \\ -29 \\ -19 \\ -31 \end{array}$	5202,45 5247,23 5270,07 5328,56	$Fe egin{array}{c} 12.49 \\ Fe egin{array}{c} 47.27 \\ Fe egin{array}{c} 69.99 \\ Fe egin{array}{c} 28.71 \end{array}$	$\begin{vmatrix} -4 \\ -4 \\ +8 \\ -15 \end{vmatrix}$	58 57 57 56	$\begin{array}{c c} -2 \\ -2 \\ +5 \\ -8 \end{array}$
4593.67 4656.03 4924.13 4933.02 5172.36 5246.92	Ti 56.64 Fe 24.39 Fe 33.50 My 72.86 Fe 47 27	$ \begin{array}{r} -61 \\ -26 \\ -48 \\ -50 \\ -35 \end{array} $	64 61 61 58 57	$\begin{array}{r} -39 \\ -16 \\ -29 \\ -29 \\ -19 \end{array}$	5202,45 5247,23 5270,07	$egin{array}{c} Fe & 02.49 \ Fe & 47.27 \ Fe & 69.99 \end{array}$	$\begin{vmatrix} -4 \\ -4 \\ +8 \end{vmatrix}$	58 57 57	- 1 - 2 + 5

21 lines, Mean -28 km.

7 lines, Mean, wt. 1, +6 Weighted mean, -4 km.

RADIAL VELOCITIES FROM THE BRIGHT LINES

Comparison with 132 Schjellerup

As a check on these very unsatisfactory results, the bright lines of the other stars were compared with the bright lines of 132 Schjellerup. The following table gives this comparison, with the velocities resulting from the use of the value -28 km., adopted for 132 Schjellerup.

RADIAL VELOCITIES FROM THE BRIGHT LINES

100 C 2	19 Pi	se.	318 Bi	rm.	74 Sc	hj.	78 Sc	hj.	115 Se	hj.	152 Se	hj.
132 Schj.	λ	Δλ	λ	Δλ	λ	Δλ.	λ	77	λ	Δλ	λ	Δλ
t.m.	t.m.		t.m.		t.m.		t.m.		t.m.		t.m.	
4402.03			02.32	$+29 \\ +16$	02.68	+65						
4437.05			37.21	 16								
4438.45	38.86	+41	38.95	+50								
4448.24			48.46	+24	48.95	+71						
4463.65	64.01	+36								i	64.23	+58
4488.29	88.58	+29									88.92	+63
4521.23			21.52	+29								
4524.26											24.69	+43
4536.55												
4537.06			37.23	+42					36.98	+17		
4538.57	38.97	+40	38.74	+17							39.24	+67
4547.19	47.76	+57					47.73	+52	47.61	+42	47.78	+67 +59 +55
4578.09											78.64	1 455
4579.26				1		1 1					79.75	+49
4580.77		1 1						1		1 1	81.27	+50
4583.49	83.61	+15		• • • •							83.94	+45
4585.07	85.38	$\frac{130}{131}$					• • • • •					
4614.73			15,00	1 07			• • • • •	1				
				+27	10.07	1 ::::	10.07	1 200			18,21	+43
4617.78	21.32	1.00	01 41	1.00	18.07	+29	18.07	+29				1.49
4621.09		+23	21.41	+32	21.66	+57	21.49	+40			90 00	1 21
4638.57	38.72	+15	39.04	+47	39.11	+54	39.13	+56			38.88	+31
4641.47	41.71	+24					42.08	+61				
4664.82	65.38	+56		1.111				1 1:25		1		
4738.39			38.63	+24			38.93	+54	38.72	+33	60.70	1 ::::
4829.86			30.30	+44					.		30.59	+73
5312.93							1 3.05	+12				
5317.26	17.87	+-61	17.39	+13	17.59	+33	17.56	+30	17.58	+32		
5368.55			68.50	-5			68.91	+36			69.13	+58
5374.65	75.31	+69	74.74	+ 9			75.03	± 38	74.78	+13	75.00	+35
5379.96				l l			80.45	+49				
5411.89									12.07	+18		
5416.56		[17.11	+55						
5422.55	23.19	+64	22.60	+5								
5431,75			31.96	+20							32.25	+50
5450.40									50.65	+15	50.92	+52
5564.02	64.45	+43			64.83	+81						
5586,45	86.93	+48	86,77	+32	86.99	+51	87.21	+76				
5692.68											93.19	+51
5710.18			10.62	+14								
Mean Δ, t.m	+.4	26	+.26 +16		+.56 +34		+.45 +27		+.24 $+14$ -28		+.52 +33 -28	
V of 132 Schj		.o	-: -:		-2		-2		-1		+	5
Velocity in km	_	24		.2	+	b	_	T	-1	4	+	U

RADIAL VELOCITY OF 280 SCHJELLERUP

From bright lines compared with 19 Piscium

The character of the spectrum of 280 Schjellerup differs so much from that of 132 Schjellerup that direct comparison of the bright lines was unsatisfactory; therefore they were compared with the lines in 19 Piscium, a star more nearly like 280 Schjellerup in development.

19 Piscium	280 Schjellerup	Δλ	19 Piscium	280 Schjellerup	7 λ
t.m.	t.m.	t.m.	t.m.	t.m.	1.11
4617.77	17.36	41	5531.92	31.20	'
4631.12	30.59	53	5571.81	71.57	:
4638.72	37.65	-1.07	5580.71	81.09	:
4660.88	60.09	79	5724.08	23.96	
5453.81	52.18	-1.63	5756.98	57.57	:
5459.10	58.61	49			

Mean
$$-.46$$
 t.m. $= -25$ km.

MEAN RADIAL VELOCITIES

The final adopted velocities are the means of the direct determinations by dark lines and the comparison of the bright lines with those of 132 Schjellerup. The close agreement in certain stars of the results obtained with the dark and bright lines is of course purely fortuitous, as the values in either case may be many kilometers in error.

STAR	DARE	LINES	Bright pared w	MEAN		
	v	No. Lines	v	No. Lines	V	
132 Schjellerup 280 Schjellerup	$-28 \\ -25$	17	$\begin{bmatrix} & \dots & \\ & -25 \end{bmatrix}$	i6	$-28 \\ -25$	
19 Piscium 318 Birmingham	$-\frac{2}{8}$	$\frac{24}{15}$	$-\frac{2}{-12}$	13 14	$-\frac{2}{10}$	
74 Schjellerup 78 Schjellerup	$+3 \\ -1$	13 14	$^{+6}_{-1}$	9	$+5 \\ -1$	
115 Schjellerup 152 Schjellerup	$-\frac{11}{-4}$	$\frac{9}{13}$	$^{-14}_{+6}$	11 16	$^{-13}_{+1}$	

For a check on these results see the table on p. 118.

TABLE OF CORRECTIONS FOR RADIAL VELOCITY

The corrections to be applied to the measured wave-lengths of the star lines (after reduction to the Sun) to eliminate the displacements due to radial velocity are given in the following table. The displacements are given in hundredths of an Ångström unit.

V in km.	I	2	5	10	13	25	28	V in km.	1	2	5	10	13	25	28
4200 4300 4400 4500 4600 4700 4800 4900 5000	1 1 1 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3	777888888888888888888888888888888888888	14 14 15 15 15 16 16 16 17	18 19 19 20 20 20 21 21 21 22	35 36 37 38 38 39 40 41 42	39 40 41 42 43 44 45 46 47	5100 5200 5300 5400 5500 5600 5700 5800	20222222	3344444444	9 9 9 10 10 10 10	17 17 18 18 18 19 19	22 23 23 23 24 24 24 25 25	43 43 44 45 46 47 48 48	48 49 50 50 51 52 53 54

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY

The following table contains the mean wave-lengths of the lines measured in each star, with the correction for radial velocity, and the final mean of all the wave-lengths of the same line measured in each star. The stars are arranged in the assumed order of development.

	280 Schje	ellerup		19 Pisciun	ı		318 Birming)	ham	74 Schjellerup			
Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	
		t.m.			t.m.			t.m.			t.m.	
										• • • • •		
			10		01.00		• • • • •	• • • • •				
			$\begin{vmatrix} 10 \\ 2-3 \end{vmatrix}$	w D n D	$84.08 \\ 90.33$		nn D	90,03			• • • • •	
			6-7	w D	94.83		wn D	95.17	1	wn D	95.06	
			1 1	$\begin{vmatrix} D \\ D \end{vmatrix}$	97.65		B	01.00	• • • •		00.7	
• • •			$\frac{2}{3}$	D B	$\frac{00.87}{02.47}$	3-4	wn D n B	$01.02 \\ 02.47$	2-3	wn D n B	$00.7 \\ 02.61$	
					02.47	3-4	п Б	02.41	1	пъ	02.01	
			7	w D	04.98	2.3	wn D	05.15		nn D	05.1	
		*****	3	D?	08.51				1	wn D	08.61	
					10.00							
			1	D?	12.29			00.0				
• • •							B? }	$\begin{array}{c} 09.8 \\ 14.2 \end{array}$	• • • •			
			3	n D	15.17	2-3	n D	15.11		nn D	15.3	
			1			1			1			
			2-3	wn D	20.60						• • • • •	
				B?							• • • • •	
		******									• • • • •	
		******		• • • • •		1-2	n D	25.86				
			i i	В	26.81			2 9,00				
			2	$\bar{\mathbf{D}}$	27.49	2-3	n D	27.96	3	nn D	27.8	
	nn D	4429.51	2-3	n D	30.18	1-2	n D	30.27		nn D	30.42	
								99 00				
						1	n D	$\frac{33.96}{21.0}$		• • • •		
		• • • • • •					$ \mathbf{B} $	$31.0 \\ 33.60$		• • • •		
$\frac{\cdot\cdot\cdot}{3}$	nn D	4435.22	5	w D	35.52	5	wn D	35.49		wn D	35.72	
				.,								
			1	D	38.13	1-2	n D	38,23			• • • • •	
			2	B??	38.89	5-6	n B	39,10			• • • • •	
•	B? {]	37.0										
	(39.9	2-3	n D	44.45	1-2	<u>p</u>	$\frac{11115}{44.45}$				
			1	B??	33.30			11.10				
			:::				B {	45.0		::::		
							B {	46.8				
								• • • • •				
		• • • • • •	1 .:.	1200	47.14			17 17				
			1-2	n D??	47.14	2	n D	47.47		n D	48.88	
			2-3 5	n B? n D	$\frac{48.68}{49.96}$	4	wn D	$\frac{48.61}{50.04}$	5	n B nn D	50.35	
			1		40.00							
			2-3	n D	55.23	i	n D	55.35		nn D	55.8	
		• • • • • •	• • •							<u> </u>		
	• • • • •									nn D	60.01	
	1		3			3			1	l'nn D	62.48	
	nn B??	4463.76				6	n B	63.91	1	w B	64.0	
								3 n D 62.17 3 n D	3 n D 62.17 3 n D 62.07	3 n D 62.17 3 n D 62.07		

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY

							115 Schjelle:			152 Schjeller		MEAN
Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTE
		t.m.			t.m.			t.m.			t.m.	t.m.
				head	71.80							4371.8
				head	80,63							4380.6 4384.6
$\overset{\cdot \cdot \cdot \cdot \cdot}{2}$	n D	89.82	$\begin{vmatrix} 1 \\ 1-2 \end{vmatrix}$	n D n D	$85.20 \\ 89.77$							4390.0
		0.7.02	2	n D	91.95							4391.9
8	wn D	95.10		n D	95.1							4395.0
				∫ con.	95.8							439
			1-2	{ spec. n D	$\frac{97.9}{98.24}$							4397.9
8	wn D	01.14	$1-\frac{1}{2}$	wn D	00.89							4401.0
	n B?	02.68	2	n B	02.47				2-3	B??	02.70	4402.6
		07 01	4	D?	03.30			01.00			01.01	4403.3
$\ddot{3}$	nn D nn D	$05.21 \\ 08.75$	$\frac{1\cdot 2}{1}$	wn D wn D	$\frac{05.24}{08.52}$	1	nn D? n D?	$\begin{bmatrix} -04.92 \\ -07.90 \end{bmatrix}$	3	n D?	04.91	$\frac{4405.1}{4408.5}$
, , ,		00.10								D {	03.3	
										_ (09.6	440
				n D??	11.20				1 1	n D	10.58	4410.9
	••••		1-5	nn D?	$\frac{12.23}{12.7}$				1-2	n D	12.45	4412.3
				spec.	$\frac{12.7}{14.7}$							4418.5
3	nn D	15.18	1-3	n D	15.28				3-4	n D	15.45	4415.2
			2	D?	16.71							4416.7
				con.	18.0							441
• • •	nn D	20.5	2	spec. / n D	$\frac{20.3}{20.60}$							4420.6
			$\frac{1}{2}$	n B?	$\frac{20.08}{21.18}$				1	В?	20.81	4421.0
			2-3	D	21.70				1			4421.7
		22.05	3	n B?	23.99				$\frac{1}{3}$	B??	23.88	4423.9
	nn D	26.25	1-6	nn D? B??	$25.86 \\ 16.69$		j	,	2	n D	25.80	$\frac{4425.9}{4426.8}$
···i	nn D	27.63	$\frac{6}{1-6}$	n D	$\frac{10.03}{27.72}$				2	n D	27.74	4427.7
ī	nn D	30.37	1-2	n D	30.28				2-3	n D	-30.54	4430.2
				D {	29.6							442
• • •			· · · · i	n D?	30.9 33.92					* * * *		4433.9
			1	con.	30.9							4431.0
				spec. /	35.0	1						4434.3
6–7	wn D	-35.92	3	wn D	35,60	4-5	wn D	35.47	6	wn D	35.97	4435.6
				\mathbf{D}	35.0							443
i	nn D	38.14	1-7	nD'	$ \begin{array}{r} 36.3 \\ 38.14 \end{array} $				1-2	n D	38.25	4438.2
2-3	n B	39.44	4	n B	38.86	3	n B?	38.71		B??		4439.0
												{ 443
2	<u>.</u>	11 50	1.0		11.51				i	n D	44.64	4444.5
	n D	44.58	1-6	n D B?	$44.51 \\ 45.16$				$\frac{1}{2}$	B	45.32	4445.2
		, , , , , ,										} 411
											15.50	
			$\frac{2}{3}$	D??					$\frac{2}{1}$	n B??	$\frac{45.79}{46.37}$	$\frac{4445.7}{4446.3}$
···i	nn D	47.66	2	n D??	$\begin{vmatrix} 46.14 \\ 47.44 \end{vmatrix}$				$\frac{1}{2}$	n D?	47.57	4447.5
2-3	n B	48.88	§	n B	48.65							4448.7
3	n D	50.32	2-3	n D??		2-3	wn D	50.02		wn D??	50.3	4450.1
$\dot{1}$, , , , ,	55. 50	1 5	B D?	54.23				i	n D	55.38	$\frac{4454.2}{4455.4}$
1-2	n D	55.52	1-3 0-1	D;	56.76				1	11 10		4456.7
						1			i	n D	58.08	4458.1
			4	n B??	58.81				1	В?	58.72	4458.8
• • •				D? {	59.3							{ 445
$\dot{\dot{2}}$	n D	62.24	····	w D	$\begin{vmatrix} 60.1 \\ 62.10 \end{vmatrix}$		n D?	62.2	4-5	n D	62.05	4462.2
3	n B	63.84	2-8	B B	64.08				$\frac{1}{2}.7$		64.09	4464.0

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schje	ellerup		19 Pisciu	m	:	318 Birming	ham		74 Schjeller	rup
No.	Intensity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten-	Character	Wave- Length
			t.m.			t.m.			t.m.			t.m.
52 \	* * *										В	(63.1
53	4	wn D	4465.96	1 ···	<u></u>	65.29	1	$\stackrel{\cdots}{ m n}\stackrel{\cdots}{ m D}$	65.43			7 64.80
51		wh D	1100.00	1								
55				1-2	D	68.95						
56	1	n D	4471 - 64	1	D??	72.25	1	nn D	71.72			
57 }	* * *											
58					<u></u>							
59								В	72.4			
60 \								В	$\begin{cases} 72.4 \\ 71.5 \end{cases}$	• • •		
61				*					74.5			
62				1-2	n D	75.52	···i	n D	76.18	1	nn D	75.4
63					B?	11111		B??	• • • • •	max	В	79.0
64		· · · ·	1407 54	1-2	n D??	80.00	1	nn D	80.42	1	nn D?	80.22
65 - 66	1	nn D	4481.74	2 3 2-3	n B	$82.19 \\ 83.62$	2-3	n D n B	$82.41 \\ 83.64$	1	nn D	82.34
					,							
67 }												
68				2	B?	86.03	1-2	n B?	86.27	1	D	07.01
69 70				$\frac{1-2}{3}$	D B?	$87.57 \\ 88.61$	2	nn D	87.42	1-2	nn D	87.61
71	1	n D	4489.35	2-3	D,	89.75	3	n D	89.80	i	<u></u>	90.05
72 }												
- /			1400.70	4.7		07.00		15	00.07	1		07 01
73		wn D	4496.73	4 5	D	97.02 - 98.0		wn D	96.97	2	n D	97.21
74					B??	01.1						
75		nn D	4501.22	4	D	01.78	2-3	nn D	01.87	1-2	nn D	01.97
76			• • • • • •		I I	04.9		boo.1	60 e		bond.	09.5
76a (head			head	02.3		head	$02.6 \ (02.5$		head	$02.5 \\ (02.5$
77								В	7 06.3		В	06.3
78	2	n D	4506.38	6	D	06.77	2-3	n D	07.08	2-3	n D	07.04
79					B??	00.77	6	n B?	08.61	1	· · · · ·	00.01
$\frac{80}{81}$				1	D? B??	09 77	1 4	n D B??	$\frac{09.56}{10.8}$	1	nn D	09.91
82 \				1								
/						10.40			11111	. , ,		13.0
83 83a	3?	nn D	4512.83		wn D	$\frac{12.76}{11.2}$	2	nn D	12.64		nn D	12.3
84				1	head D?	$\frac{14.3}{16.17}$			•			
85				2	n B	17.05	max	В	17.71			
86	1-2	n D	4518.15	3-4	D	$\frac{18.27}{20.54}$	3	n D	18.31	1 2	n D	18.38
87 88	1-2	nn B	$\frac{1521.15}{4521.15}$	$\frac{1}{3-4}$	D?? B	$\frac{20.54}{21.66}$	3	wn B	21.67	···s	wn B	21.91
			1021.10						21.00			1
89 }												
90 91	1	n D	4522.91	4	D	23.00	4-5	D	23.06	1-2	nn D	23,20
(B??							
92												
93				5	n D	27.16				0	nn D	27.40
94 95				2-3	 D	31.35	1	nn D	$\frac{28.65}{21.42}$	i	nn D	20.00
95a				2-0	head	31.30]	nn D	31,43		nn D	30,96
96												
97		w D	4535.30	6	w D	35.84		nn D	35.84		nn D	35.90
98 }		1)	(4530,7) 4535.8					D	36.6			
99		w 1)	4537,98	3	В	37.32	3	wn B	$\frac{36.6}{37.38}$			
100				2 3	\mathbf{B}	39.00	2	"n B?	38.89	1		
101 -{								В	96.5		В	y36.6
102	i	n D	1530-89			10 19	1		39.7 40.51	1 2		$^{+39.9}_{-40.57}$
103		n D	4539.89	1	D :	$\frac{40.42}{42.75}$	1	n D	40.51	1 2	nn D	16,04
				2	B.,	44 10						
104				_	37							

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	up		132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	rup	Mrs.v
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	MEAN WAVE-LENGTH
1 2 	B n D n D nn D D	t.m. {62,9} {65,1} 65,37 68,68 71,58 {65,0} {72,0	1 2 1 2 2 4-5	B n D?? D n D n D?? B.? B	t.m. { 63.0 } { 64.8 } 65.76 66.90 69.02 71.72 72.32 73.55 { 73.0 }	···· ··· ··· ··· ··· ··· ··· ··· ···	 D	t.m.	 1 1 	B n D?? n D n D?? con. spec. n B?? n B	t.m., {64.6 64.88 71.81 {64.6 72.57 73.56	t.m. 4463.0 4464.9 4465.4 4466.9 4468.8 4471.7 4464.7 4472.0 4472.4 4473.6 4472.7
1 1 2 	n D nn D? n D	75.33 80.21 82.23	$\begin{array}{c} \ddots \\ 1 \\ 1 \\ 3 \\ 2-3 \\ 2-5 \\ 1 \\ \dots \\ \dots \\ \end{array}$	B n D B n D?? D B?? con. spec.	75.0 75.31 75.82 79.08 80.13 82.50 83.46 \$3.0 786.	 1 2	B?	78.58 84.13	2 2	wn B?? n D?? n D	78.78 79.96 82.43 (82.9 87.8	4474.7 4475.3 4475.6 4478.8 4480.2 4482.3 4483.7 {448
2-3 3-4 	nn D n D n D	87.62 89.86 96.97 	5 1-3 1-5 2-3 6-8 1-8	n B?? n D B?? n D con. spec. w D con. spec. w D	$\begin{array}{c} 86.15 \\ 87.33 \\ 88.70 \\ 89.77 \\ 90.4 \\ 96.2 \\ 96.99 \\ (98.0 \\ 01.3 \\ 01.92 \\ \end{array}$	2 1-2 	n B??	97.04	1 1 3 	nn D? B? nn D B?	\$7.28 88.84 89.61 (90.4 02.15	4486.1 4487.5 4488.7 4489.7 4490.4 4496. 4497.0 4498.0 4501.2 4501.7
3-4 4 1	head B wn D wn B nn D B	02.7 (02.7 (02.7 (06.2 07.09 08.71 09.84 (08.30	1-3 2 max 1-3 3	B?? head B wn D B?? n D?? n B??	03.14 02.71 (02.4 (06.0 07.12 08.65 09.89 10.66 (08.3	1 2 3 	n B?	03.91 06.74 08.21	2-3 2 3	nn B?? nn D B?? n D??	03.79	4503.6 4502.8 4502.5 4506.2 4506.9 4508.6 4509.8 4510.7 4508.3
$\begin{array}{c} \dots \\ \dots \\ 1-2 \\ 2-3 \\ \dots \\ 4 \\ \dots \end{array}$	wn D n B n D B	11.60 13.08 17.13 18.53 21.89	$\begin{array}{c} \ddots \\ 2 \\ 1 \\ 4 \\ 1-3 \\ 1 \\ 3 \\ \dots \end{array}$	wn D head n D n B?? n D n D?? B??		1-2 1-2 	nn D n D	13.05 18.21 	1 1 1 1-2 1 	nn D? nn D? B?? wn D? nn D?? E??	12.81 16.02 17.20 18.23 20.16	4512.8 4514.7 4516.2 4517.3 4518.3 4520.5 4521.7 {452
1 2-3	n D n B B wn D n D? n D?	23.23 25.01 (24.1 (26.0 27.56 31.32 35.70 (31.1	1 3 1 3 6-8	w D B?? B n D? D n D head n D wn D?	$\begin{array}{c} 23.17 \\ 24.68 \\ 23.9 \\ 27.3 \\ 27.2 \\ 28.69 \\ 31.29 \\ 32.73 \\ 33.44 \\ 36.04 \end{array}$	2–3	n D n B?? n D? n D	23.08 24.59 27.48 35.56	5 2-5 1-2	n D B? 	23.21 24.63	4523.1 4524.7 4524.0 4527.4 4527.4 4528.7 4531.3 4532.3 4533.4 4535.7 4530.9
2-3 3 1	n B? B n D n D B	36.7 37.32 39.18 40.66 44.25	2-3 3-6 3 2	n B? n B?? B wn D? n D?? max B?? n D	37.45 39.00 \36.6 \40.0 40.46 42.51 44.40 44.92	1	n B? B	37.08 38.66	$\begin{array}{c} \dots \\ 2^{-4} \\ 4^{-5} \\ \dots \\ 1 \\ 2^{-3} \\ 1 \\ \dots \end{array}$	n B B B n D wn D?? n B?	37.68 39.16 37.2 40.2 40.44 43.06 44.10	4536.3 4537.5 4539.0 4536.7 4540.0 4540.4 4542.8 4541.2 4544.9

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schj	ellerup		19 Pisciu	m	3	318 Birmingh	am		74 Schjeller	rup
No.	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length
106			t.m.	3	В	t.m. 47.79	4	n B?	t.m. 47.71	max	В	t.m. 47.56 (46.8
107 }				5	wn D	49.25		wn D	49.37		В	(48.5)
109 {												
110 }									, , , , ,			
$\begin{array}{c} 111 \\ 112 \end{array}$	9	w D	4553.58	10	w D	53.54		wn D	53.58		wn D	54.07
113					D	(51.8		D	{ 52.3 } 55.3			
113a ⁽					head	$[\begin{array}{c} \{54.7 \\ -54.70 \end{array}]$		head	55.3			
114						(55,3			(55.3	max	В	58.40
115		В	$\left(rac{4555}{4559.3} ight)$		В	59.3		В	7 59.4		В	$\begin{array}{c} 35.40 \\ 59.90 \end{array}$
$\begin{array}{c} 116 \\ 117 \end{array}$		nn D?	4560.11	$\frac{3}{3}$	n D n B	$60.39 \\ 61.91$	5	nn D	60.42		nn D	60.48
118	1	D	4562.93	2-3	D??	63.35	3	D	63.54		nn D	63.47
$\frac{119}{120}$	0-1	<u>.</u>	4565.22	1-2	B?? D??	65.73	1-2	<u>.</u>	65.71	i	n D	65.74
$\frac{121}{122}$												
123		В	(4565.90		В	∫66.3		В	$\int 66.2$			
124			{ 4569,50			₹70.0			₹70.5			
125		nn D	4571.57	9	w D??	71.66		wn D	71.79		nn D	71.30
$\frac{126}{127}$				3	n D	75.27		nn D?	75.10			
128				3-4	n D	77.57	1	nn D	77.47 (70.9		n D	77.60
129								D	$\frac{10.5}{76.9}$			
129a 130					head	78.1		head	77.0			.
131												
$\frac{132}{133}$				i		80.42	···i	nn D	80,52			
134												
$\frac{135}{136}$	5-6	wn B	4583.59	$\frac{1}{2}$	n B	$81.93 \\ 83.67$	1	nn D	82.57			
137 138				1-2	D B?	84.57	1	n D	81.82			
139	$\dot{2}$	n D	4586.38	$\frac{1}{2}$	n D	$85.41 \\ 86.37$	i	nn D?	86.10			
140 141												
142												
$\frac{143}{144}$				· · · i	<u></u>	91.01	1-2	$\begin{array}{ccc} & \cdots & \\ & \text{nn D} \end{array}$	91.26			
145												
146	1	n D	4594.19	2-3	n D	91.34	2	nn D	94.30		nn D	94.69
147	2	nn B?	$4596 \cdot 11$	2	n B	95.80	5	n B	96.10	4	n B	96.15
149												
150 151	···i	n B?	4599.58	1	n D??	97.52	2	n D	97.61			
152				1-2	n D	00.84	··· <u>·</u> 3	n D	00.61	1	n D	00.87
$\frac{153}{154}$												
$155 \\ 156$	7-8		****						06.86			06.88
157	1-8		4606.26	9	w Đ	06 87	10	w D		8	w D -	4,
158		head	4607.5		head	07.9	head		$08.3 \\ 05.7$			
159 }								D	08.3			
160		n B	4608,47 (4607,5	2.3	n B	08.71	2	n B?	$09.19 \ (08.3$	5	n B??	08.90
$egin{array}{c} 161 \ 162 \end{array} angle ;$		В	{ 4615.0				, . ,	B nn De	[13.1]			10.56
102				1	n D??	10.07	1	nn D?	10.57	1	n D	10.50

	78 Schjeller	ир		132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	rup	MEAN
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTH
2–3	n B	t.m. 47.75	4-6	В	t.m. 47.63	1	В	t.m. 47.81	4	n B	t.m. 47.73	4547.7
• • •					48.8							454
3	wn D	49.25	i	nn D?	49.47				5–6	n D	49.27	4549.3
				D	(48.8		• • • •	• • • • •				} 454
					(50.1 (50.0							}
			:::	В	{ 52.3							$\begin{cases} 455 \end{cases}$
		52.70	· · ;	nn D? w D	$52.85 \\ 54.21$	4	n D	54.09		wn D	52.65	4552.8
7	wn D	53.79	4		(52.1)							$\begin{array}{c} 4553.8 \\ 4552.0 \end{array}$
	D	{ 55.3		D	{ 55.4							4555.1
• • •			3-4	head nn B??	$54.68 \\ 58.88$				ı ···i	n B??	58.85	$\begin{array}{c} 4554.9 \\ 4558.7 \end{array}$
		(55.3			(55,3							4555.3
	B	{ 59.7		B	₹59.6		D9	40.05			00.01	4559.5
4 3–4	n D n B	$60.47 \\ 62.10$	1-3	nn D?? B??	60.23 62.25		nn D?	60.35	$\frac{2}{1}$	n D n B??	$\frac{60.21}{62.27}$	$4560.3 \\ 4562.1$
3	n D	63.51	2	n D	63.45	2	n D	63.56				4563.5
2	n B??	64.71	2	n B??	64.57			·····	3	n B	64.68	4564.7
1	nn D	65.61	1	wn D??	65.95	5	n D	65.85	2-3	wn B	67.72	4565.8 4567.7
• • •			2-3	B??	69.46				1			4569.5
	$_{ m B}$	§ 66.3		В	§ 64.0		В	§ 66.8				4566.3
• • •		{ 70.3	• • • •		₹70.0			₹ 69.4	2	<u>.</u> B	70.31	$\begin{array}{r} 4569.8 \\ 4570.3 \end{array}$
	n D	72.55										4571.8
			2	B?	73.71							4573.7
	n D?	77.26	1 1	n D? n D?	75.78 77.61				$\frac{\cdot \cdot \cdot}{2}$	<u>.</u>	77.67	$4575.4 \\ 4577.5$
1		(70.3		11 151	11.01			73.8		D	(70.9	4574.2
	D	₹78.1					D	77.2		D	₹78.4	4577.7
• • •	head	78.1	4	head	78.05		head	77.2	1-2	B?	78.56	$4577.6 \\ 4578.5$
•••2	nn B?	79.37	• • • •	В	78.52				2	n B	78.96	4579.2
			4	В	79,69				1-2	B	79.67	4579.7
1-2	nn D n B	$\begin{bmatrix} 80.47 \\ 81.68 \end{bmatrix}$	1-4	n D B	$\begin{vmatrix} 80.38 \\ 81.20 \end{vmatrix}$				$\begin{array}{ c c c } & 1-3 \\ & 1-2 \end{array}$	n D nn B?	$80.50 \\ 81.19$	$4580.5 \\ 4581.4$
$1 \\ 1-2$	nn D	82.51	1	n D??	82.85					n D	82.94	4582.6
2-3	n B	83.93	5	B	83.92				1	B?	83.86	4583.8
···i	<u></u>	85.62	3 5	$\begin{bmatrix} & D \\ B & \end{bmatrix}$	$\begin{vmatrix} 84.72 \\ 85.50 \end{vmatrix}$					n D?	84.72	4584.7 4585.5
1	n D	86.76	3	B	86,28				2	<u>.</u> D	86.37	4586.4
			2	В	86.89							4586.9
• • •	• • • • •	:	2	D? B??	87.43	• • •			2	B	89.07	4587.4 4589.1
max		89.85	3-4	B?	90.39				2	В?	90.54	4590.3
1	n D	91.39	4	n D	91.10	1	n D?	91.14	2	D	91.25	4591.2
	• • • •									В	$\left\{ egin{array}{l} 89.9 \\ 93.2 \end{array} ight.$	459
			3	D	94.10				1-5	n D	93.93	4594.3
4	n B	96.04	4-6	nn B?	96.08				max	В	(95.42) (94.6)	4596.0
										В	95.9	459
1	nn D?	97.32	1	wn D?	97.33	0-1	n D	97.34	1-2	nn D??	`97.37	4597.4
$\frac{1}{2}$	n B?	99.33	3-4	n B?	99.53	···i	nn D	00.68	max 1	B??	$99.22 \\ 00.89$	4599.5 4600.8
$\frac{2}{\cdots}$	n B	01.00	4	$\begin{vmatrix} \mathbf{D} \\ \mathbf{B} \end{vmatrix}$	$01.00 \\ 02.01$	1	nn D		1	n B??	02.27	4602.1
			2	D	02.95					nn D?	02.83	4602,9
		07.20	1	m D w D	$\begin{vmatrix} 06.23 \\ 06.83 \end{vmatrix}$	2-3	n D	06.24		wn D	06.37	$\frac{4606.2}{4606.7}$
3-4	n D	01.20	4	n D	07.50	2-0				wn D		4607.5
	head	08.2		head	08.01		head	08.5				4608.1
• • •	D	$\{ \begin{array}{c} 02.9 \\ 08.3 \end{array} \}$		D	$\begin{cases} 03.0 \\ 08.5 \end{cases}$		n D	05.4 08.5	• • • •			4605.6 4608.4
•••2	n B?	09.17		B??				(00.5		n D?	08.92	4608.9
	В	508.4		В	508.2							4608.1
···i	n D	$\begin{array}{c} 13.3 \\ 10.22 \end{array}$	$\frac{1}{2}$	D	$ \begin{smallmatrix} 709.9 \\ 10.17 \end{smallmatrix} $		••••					4610.3
	1 "10	10.22	"		10.11	• • •			<u> </u>	<u> </u>	l	1 2020.0

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280~Schj	ellerup		19 Piscius	m		318 Birming	ha m		74 Schjelle	r u p
No.	Inten- sity	Character	Wave-Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave Lengt
			t.m.			t.m.			t.m.			t.m.
163			• · · · · · ·		D??							
164				1-2	B??	12.32	1	n B??	12.39			10.55
165				1-2	n D	13.80	2-3	n D	13.73	2	n D	$\begin{bmatrix} 13.77 \\ 15.03 \end{bmatrix}$
166 - 167	i	n D	4616.06	$\begin{vmatrix} 3\\2-3 \end{vmatrix}$	$\frac{\mathrm{B}}{\mathrm{D}}$	$\frac{14.95}{16.29}$	$\frac{5-6}{3-4}$	n B n D	$15.15 \\ 16.46$	$\begin{vmatrix} 6\\3 \end{vmatrix}$	n B n D	$\begin{bmatrix} 15.09 \\ 16.31 \end{bmatrix}$
168			3010,00			10.20		11 17	19.40			10.51
169	4	В	4617.74	6	B	17.80	7-8	n B	18,03	9	w B	17.99
170	1	n D	4619.29	5	D?	19.68	6	D	19.86	3	n D	19.70
171				4	В	21.35	5	n B	-21.56	5	n B	21.58
$\frac{172}{173}$				1-2	n D??	22/81	2-3	nn D	23.05	1-2	nn D	23.09
174								• • • •				
175												
176 {											В	(23.6
- 1											d.	127.9
177					D33							00.16
$178 \\ 179$		• • • •		5	wn D	29.26	S	n D	29.54	6-8	nn D	29.13
180	4	n B	4630.97	4	B	31.15	2	n B?	31.34	9	n B	31.18
181						*****			01.01			,,,,,
182			******	1	D	31.61				1	nn D	34.6
183			11100 00	2	Ď	37.46	_1	nn D	37.41			
184	$\frac{2}{3}$	n B?	4638.03	3	B	38.75	3-4	n B	39.19	6 5	n B D	$\begin{bmatrix} -39.03 \\ 40.76 \end{bmatrix}$
185		n D	4639.86	5 6	D	40.29	6	D	40.46	i		40.70
186												
187	1-2	n B	4642.10	3.4	В	41.72	4	wn B	42.16	8-9	w B	42.31
188					B??							
189 {		$_{ m B}$	$\int 4640.6$					В	$\sqrt{41.3}$		В	$\{\frac{41.1}{40.0}\}$
190	4	D	$\frac{14644.4}{4646.05}$		D	15.70) 44.1	• • •	wn D	$ \begin{array}{c} 143.2 \\ 46.30 \end{array} $
191			60.066	2-3	wn D n B??	$\frac{45.70}{52.80}$				i	nn B??	53.05
192				1	D?	51.04						
93		nn D	4655.25	1	D	56.6					wn D	56.30
194	2-3	n B	4660.48		w B	60.91						
.95 }		В	{ 4657.5								• • • •	
. (- 196	i	D?	$\begin{smallmatrix} 14662.2 \\ 4663.92 \end{smallmatrix}$	1-2	$\stackrel{\cdots}{ m n}\stackrel{\cdots}{ m D}$	64.14						
197	1	n B?	4665.21	2	n B	65.41				1-2	n B	65,24
198	4	n D	4668.15	$-\bar{3}$	wn D	68.08						
L99	2	n D	4674.79	4	D	$75 \ 13$						
200		wn D	4682.16	1	D?	82.29						
201				1	n D??	88.43						
202 203			* * * * * * *	$\frac{1}{3}$	n D? n D	$\frac{91.12}{96.56}$		• • • •				
203a					head	97.2						
201			*****		D??							
205												
206			1411116									15 (V
207	5	n D	4714.49	6	w Đ	14.61					wn D	15.00
208			* * * * * * * *				1	• • • • •				(13.0
209 }											D	7 16.4
209a `					head	14.8					head	16.4
210					B??							
211				•••	B??					1 1 1	n B??	50.25
212	• • •		• • • • • •							1-2		$\frac{20.38}{16.4}$
213 }	• • •						• • • •				В?	$\frac{10.1}{21.3}$
214				1-2	n D	22.69				i	n D	22.85
(
215 }			1730 01									00 E
216		nn D	4728,61							1	nn Đ	28.5
217	• • •	• • • • •								• • •		
218 219				i0	wĎ	36.26	iò	w D	36.3	10	w Đ	36.24
- (1	(4733.5						(31.3			\34.3
220 }		D	₹4737.6					D	37.9		Ð	737.6
221		head	4737.6		head	37.61		head	`37.9		head	-37.6

	78 Schjelleri	p		132 Schjeller	up		115 Schjeller	up		152 Schjeller	-ир	MEAN
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	WAVE-LENGTH
 1 2 6 3	n B? n D B D	t.m. 12.31 13.98 15.21 16.56	$\begin{array}{c} 2\\ 2\\ 3-4\\ 4-9\\ 2-5 \end{array}$	D?? n B?? nn D n B n D	t.m. 11.32 12.49 13.89 15.23 16.36	1-2 3-8	 n D w D	t.m. 13.91	$ \begin{array}{c} 2 \\ 2 \\ 1-3 \\ 2 \\ \dots \end{array} $	D?? B?? n D B	t.m. 11.42 12.23 13.93 15.14	t.m. 4611.4 4612.3 4613.9 4615.1 4616.4
6-7 6 5	В D В	18.09 19.85 21.51	$\begin{array}{ c c c }\hline 1-2 \\ 6-8 \\ 2 \\ 2-6 \\ \end{array}$	B?? B n D n B??	17.16 18.23 19.56 21.51	3 1-2	n B n D	$17.74 \\ 19.42$	4-8 3-4	B?? B D B??	18.15 19.40	$\begin{array}{c} 4617.2 \\ 4618.0 \\ 4619.6 \\ 4621.5 \end{array}$
2-3	n D n B?	$\begin{array}{c} 22.99 \\ \dots \\ 27.9 \end{array}$	$ \begin{vmatrix} 2 \\ 4-5 \\ 1-2 \\ 2 \end{vmatrix} $	n D?? B B B??	23.26 24.18 25.87 27.10				1-2	n D?? B??	22.47	$\begin{array}{r} 4622.9 \\ 4624.2 \\ 4625.9 \\ 4627.1 \end{array}$
	wn D	29.84	$egin{array}{c} \cdots \\ 1 \\ 2 \end{array}$	n D?? n D?	28.66 30.08						****	$\left\{\begin{array}{c} 462 \\ 4628.7 \\ 4629.6 \end{array}\right.$
			$\begin{array}{c c} 1\\1\\2\\1\end{array}$	n B? B?? n B? D	30.98 31.60 31.68 34.14							4631.0 4631.2 4631.7 4634.4
4–5 5	B D	39.15 40.60	5-8 4	n D? B D	$ \begin{array}{r} 37.60 \\ 39.07 \\ 40.59 \\ \hline 39.5 \end{array} $	$\begin{array}{c c} 1-2 \\ 1-2 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{array}$	n B nn D	38.78 40.37	$egin{array}{c} 1 \\ 1-4 \\ 5 \\ \cdots \end{array}$	n D n B wn D	38.07 38.96 40.55	$ \begin{array}{c c} 4637.6 \\ 4638.9 \\ 4640.4 \\ 1 \\ 464 \end{array} $
 3 	n B	42.10	5-6 3	B B	$egin{pmatrix} 41.5 \\ 41.90 \\ 43.33 \\ \cdots \end{pmatrix}$					B?? B??		4642.1 4643.3 4641.0
	n D	46.55	 4 4	nn D? B?? D	46.86 53.08 54.06							4643.9 4646.3 4653.0 4654.0
1	n D 	56.33	5	D n B??	56.47 60.42					B??		4656.4 4660.6 } 465
 i	n B? n D	65.44 68.60	1-3 3-4 2-3	n D? B n D D??	64.21 65.26 67.87	i-2	nn D? n D	67.73 74.92				$\begin{array}{c} 4664.1 \\ 4665.3 \\ 4668.1 \\ 4674.9 \\ 4682.3 \end{array}$
• • • • • • • • • • • • • • • • • • • •		••••	2	n D? nn D?? D?? D??	82.55 88.78	···· ··· i	n D?	97.41	• • • • • • • • • • • • • • • • • • • •			4688.6 4691.1 4697.0 4697.2
· · · · · · · · · · · · · · · · · · ·	nn D	14.97	1 1 1-3	n D?? n D B D??	$01.98 \\ 03.82 \\ 09.75$	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •			4702.0 4703.8 4709.8 4714.7
	head	15.8		wn D??	15.55 16.11							4715.6 471 4716.1
max	B?	17.0	3 2 2-3	B B?? B??	16.75 18.13 20.59							4716.8 4718.1 4720.5 4716.4
	spec. n D	21.3 22.69	2-3	n D con.	$\begin{array}{c} 22.67 \\ 23.40 \\ 27.70 \end{array}$	0-1	 D	22.29				$ \begin{array}{c} 4721.3 \\ 4722.6 \\ 472 \end{array} $
 10	w D	36.43	2 1 10	D? n B n D?? w D	31.63 32.51 36.43	1	D nn D	29.71 35.09		n D	36.6	4729.2 4731.6 4732.5 4736.2
• • • • • • • • • • • • • • • • • • • •	D head	34. 38. 37.7		D head	$\begin{cases} \\ 37.8 \\ 37.61 \end{cases}$				• • • • • • • • • • • • • • • • • • • •	head	38.4	4734.0 4737.7 4737.7

TABLE OF MEAN WAVE-LENGTIIS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schje	ellerup		19 Pisciui	п	:	318 Birming	ham		71 Schjeller	up
No.	Inten- sity	Character	Wave-Length	luten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length
222 223	4	n B	t.m. 4739.10	8	B D??	t.m. 38.62 39.85	5	n B n D	t.m. 38.79 40.14	10	n B	t.m. 38.69
$\frac{224}{225}$		В	$\begin{cases} 1737.6 \\ 4741.2 \end{cases}$					В	(37.9) 41.7		B??	$\begin{cases} 39.6 \\ 42.1 \end{cases}$
226	10	n D	$\begin{array}{c} 4743.40 \\ 4741.2 \end{array}$	7-8	w D	43.94	10	w D	$\frac{43.94}{41.7}$		wn D	43.84
$\frac{227}{228}$		head	$\left\{ egin{array}{c} 4745.2 \ 4745.37 \end{array} ight.$					D head	$\begin{array}{c} 15.6 \\ 45.69 \end{array}$		$rac{ m D}{ m head}$	$\begin{cases} 45.6 \\ 45.63 \end{cases}$
229 230		n B	4746.99	6-7	B	46.52	4	w B	46.77			
231		В	$\begin{cases} 4745.2 \\ 4748.8 \end{cases}$					В	$\begin{array}{c} 1.5.5.\\ 1.45.8\\ 1.48.7 \end{array}$		В	{ 45.6 } 48.6
232				2	n Đ	49.62		nn D	49.50		nn D	49.2
$\frac{233}{234}$					D??							
$\frac{235}{236}$		wn B	$\overset{\cdot}{4755}\overset{\cdot}{.71}$	3	B	55.07					В	55.5
$\frac{237}{238}$				$\begin{array}{ c c } & 1 \\ & 2 \end{array}$	D? B	$\frac{56.23}{56.94}$						
239											В	{ 53.3 } 57.7
$\begin{array}{c}240\\241\end{array}$	4-5	n D	4758.99	3	n D B??	58.41	4	n D	58.62	3-4	nn D	58.83
242					B??							(00 1
243	}										В	$\begin{cases} 60.1 \\ 65.8 \end{cases}$
$\frac{244}{245}$	1	n D?	4766.78	1	D B??	66.11		nn D	66.47		nn D?	66.33
246					B??							(67.1
$-rac{247}{248}$				1-2		79. 10			79.01		B B	$\begin{array}{c} 72.1 \\ 73.15 \end{array}$
249				1-2	n D B?	72.40 \dots	2-3	nn D	73.01		nn D	
250 251											В	§ 73.9
$\frac{251}{252}$		wn D	4783.1	2	n D	84.17				1-2	nn D	$\begin{bmatrix} 78.2 \\ 84.43 \end{bmatrix}$
$\frac{253}{251}$										2	n D	89.26
255											В	{ 90.1 { 96.3
256										8	n B?	02.44
$\frac{257}{258}$							2	n B?	10.54			
$\frac{259}{260}$					_B ?		$\frac{\cdot\cdot\cdot}{2}$	nn D n B?	$12.03 \\ 13.98$	4	n D? n B??	$\begin{array}{c c} 12.1 \\ 13.99 \end{array}$
261	2	n D	4815.44	2	n D	15.80	3-4	n D	15.62	1	wn D B	$16.01 \\ 18.0$
$\frac{262}{263}$	}	$\begin{cases} nn B? \\ nn D? \end{cases}$	$\begin{array}{c} 4818.26 \\ 4822.75 \end{array}$	1-2	 n 119	92.01			99 00			$\frac{22.9}{23.51}$
264	2	n B?	4824.94	1-2	n D? B??	$\begin{array}{c} 23.91 \\ \dots \end{array}$	3	n D	23.86	4-5	wn D wn B??	25.97
265	}											
$\frac{266}{267}$	1	n D	4826.52	1-2	n D	27.81	3 3	n D n B	$\frac{28.21}{30.46}$	6	wn D n B	$\frac{28.23}{30.36}$
$\frac{268}{269}$	2	n D	4832.49	$\frac{1-2}{1}$	n D n D	$32.51 \\ 36.30$	4-5	n D	32,56	5	n D n D	$\frac{32.57}{36.2}$
$\begin{array}{c} 270 \\ 271 \end{array}$		nn D?	4839.78		n D D	39.19	i	 D	43.62	1	wn D nn D?	$\frac{39.50}{42.9}$
272						43.49						•
273	} :::											
$\begin{array}{c} 274 \\ 275 \end{array}$				i	n D	55.31		nn D	55.47	i	n D	55.61
$\frac{276}{277}$		nn B?	4857.42	···i	B??	59.46	1	n B?	57.68	3	n B	57,68
$\overline{278}$	9	В	4861.38									

			132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	rup	MEAN	
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTE
5	В	t.m 38.95	5-7	B n D??	t.m. 38.79 39.84	3-4	B n D	t.m. 38.92 40.19		B??	t.m. 39,50	t.m. 4738.9 4740.0
			4-5	n B	41.08							4741.1
	con.	37.8		В	(37.8					В	(38.4	4737.7
10	spec. w D	$\frac{42.2}{44.01}$	io	w D	$\frac{142.6}{44.00}$	io	w D	43.67			\(\frac{41.1}{}	$4741.8 \\ 4743.8$
•••		(42.2)								D	(41.1	4741.7
	D	{45.4		,	47 01		13	17 19			1 45.5	4745.7
mar	head B	$\frac{45.43}{46.72}$	7	head n.B	$rac{45.21}{46.38}$	4-5	head B	$45.43 \\ 46.70$	max	head B	$\frac{45.5}{47.05}$	4745.5 4746.7
max			Ġ	n B	$\frac{10.30}{48.32}$	1						4748.3
	В	(45.8)								В	§ 45.5	4745.5
	n D	$\frac{(57.9)}{49.90}$	2-3	n D??	49.40		nn D?	49.49			↑ 4 9.3	4748.9 4749.5
1		10.00	4	n B	50.43							4750.4
				D??					10	w D	51.59	4751.6
		• • • • •	··· <u>·</u>	n B?	55.16		nn B?	55.11	$\frac{\cdots}{2}$	head n B	53,06 55,07	$\begin{array}{c} 4753.0 \\ 4755.3 \end{array}$
			3	n D??	56.06			39.11		n D??	56.11	4756.1
			3	n B?	56.93		nn B?	56.40	4	B	57.04	4756.8
	В	$\frac{145.3}{50.3}$					• • • •					4753. 4758.0
2-3	n D	$58.3 \\ 59.00$		 D?			wn D	58.90	3	n D	59.34	4758.9
			3	n B??	60.07				2-4	n B	60.80	4760.4
				n B??	62.93				3	В	63.37	4763.2
• • •												{ 476
i	$\vec{n} \vec{D}$	66.55		nn D??	66.47		nn D	66.98	2	n D	66.54	4766.5
						• • • •	• • • •		2	n B?	67.94	4767.9
• • •			• • • •						1	n B?	69.58	4769.6
												} 476
1-2	nn D	72.70	1-2	nn D??	72.77	2	n D	72.15		D??	55.10	4772.7
	••••			nn B?	74.78				3-4 1-2	n B n D??	$75.18 \\ 76.82$	4775.0 4776.8
		(74.0					В	(73.2)				4773.7
	B	{ 78.7					1	78.4	;	11		4778.3
2	n D	$84.54 \\ 89.78$	1 1-3	n D n D	$\begin{bmatrix} 84.78 \\ 89.67 \end{bmatrix}$	···i	nn D? n D	84.32 89.35	1	n D? n D?	$\begin{bmatrix} 84.84 \\ 89.66 \end{bmatrix}$	$4784.5 \\ 4789.5$
1	n D	00.10	1-9	n D	33.01	max	B B	94.37		B?		4794.4
							В	\$ 90.4				4790.3
		02.27						196.2				$4796.3 \\ 4802.4$
\max_{1-2}	$\begin{array}{c c} & B \\ & n & D \end{array}$	06.89		wn D??	06.30		wn D	05.82	1 ··· i	n D??	05.74	4806.2
1	n B?	11.34				2	n B?	10.20				4810.7
1	nn D	12.28		 B??		$\frac{1}{2}$	n D n B?	$egin{array}{c} 11.72 \\ 13.92 \\ \end{array}$				$\frac{4812.0}{4814.0}$
3	wn D	16.06	1-3	n D??	15.93				1-2	n D??	16.15	4815.9
	В	(16.9)					В	16.8				4817.2
		$egin{pmatrix} 21.7 \ 24.02 \end{bmatrix}$	···i	n D?	23.96	i	n D	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1-2	n D??	23.86	$\frac{4822.3}{4823.8}$
4	nn D n B	$\frac{24.02}{26.29}$	1-2	B??	$\frac{25.86}{26.05}$	$\frac{1}{2}$	n B?	25.69		B?	25.85	4826.0
				В	$\int 24.7$					В	$\{24.7$	482
··· <u>·</u>		28.31	$\frac{\cdot \cdot \cdot}{2}$	n D?	$egin{bmatrix} 27.1 \ 28.19 \end{bmatrix}$	1-2	n D	27.88	1-2	n D	$\begin{bmatrix} \frac{1}{2} & 26.9 \\ 27.90 \end{bmatrix}$	4827.9
3-4	n D B	$\frac{28.31}{30.66}$	2-4	B B	$\begin{array}{r} 28.19 \\ 30.31 \end{array}$	$\frac{1-2}{2-3}$	n B?	$\frac{21.83}{30.12}$	1-5	n B	30.56	4830.4
4-5	$\tilde{\mathbf{D}}$	32.61	2-3	$\tilde{\mathrm{D}}$	32.30	1-2	n D	32.48	4-6	D	32.46	4832.5
···i	nn D	70.97	0-1	n D??	39.45					n D??	38.93	$\frac{4836.3}{4839.5}$
	nn D	40.27	1	n D	43.50				1-2	n D	43,48	4843.4
									1-2	n B	45.16	4845.2
				В	$\begin{array}{c} \{56.1 \\ 59.0 \end{array}$	• • •				con.	$\begin{bmatrix} 56.7 \\ 59.1 \end{bmatrix}$	$4856.4 \\ 4859.1$
···i	nn D	51.97	i	n D?	51.40		nn D?	51.87	i	nn D	51.91	4851.8
1-2	n D	55.73		nn D??	55.19		• • • • •				50.05	4855.5
$\frac{2}{1}$	n B nn D?	57.76 59.99	max 1	B??	$57.77 \\ 59.29$		••••		$\frac{2-3}{1}$	n B	58.05 59.65	$\frac{4857.7}{4859.6}$
- 1	1111111111	00.00	1		99.29	max	B	61.46	1-2	n B??	60.72	4861.3

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schj	llerup		19 Pisciu	m		318 Birming	ham		74 Schjeller	up
No	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length
			t.m.			t.m.			t.m.			t.m.
279		В	$(4860.1 \\ 4862.9$								••••	****
280	3	n D	4865.H							i	nn D	66.1
$\begin{array}{c} 280 \\ 281 \end{array}$	3	nn D	(4865.H1)							i	nn D	(66.11)
282								T>0	71 00			77.00
$\frac{283}{284}$		nn D	4875.27					nn D? nn D	$\begin{bmatrix} 71.83 \\ 76.14 \end{bmatrix}$	1	n D nn D	$\begin{bmatrix} 71.90 \\ 75.8 \end{bmatrix}$
$\frac{284}{285}$			10.0.2.									
286	max	В	(4878.53?)		B?							
287 -		В	$(4876.6 \\ 4880.5$					• • • •				
288		nn D?	4882.07	2-3	n D	81.69	3	n D	81.55	2-3	n D	81.75
$\overline{289}$												
290												
291												
292												
293		nn D?	4890.03							1	w D	90.9
294	max	В	$4898.14 \\ \pm 4595.7$							max	В	98.88
295		В	4899.8									
296	1 2	nn D	4900.70	2	nn D	00.81	2-3	n D	00.95		wn D	-01.37
297											• • • •	
$298 - \}$												
299												
300												
$\frac{301}{302}$		nn D?	4920,65	i	n D	21.03		wn D	20.78		wn D	20.97
303									20.10			
. /						04.63			35.01			
304 305				1	n D?	24.91	1 1	nn D D	$25.24 \\ 34.47$		w D?	34.14
306												
307							1-2	n Đ	58.40			
308 309												
310		head	5169.7		head	68.0		head	68.8			
311 {											****	
312				· · ·	wD	70.57				1	<u>.</u>	73.21
313				5	"B??	73.57	max	<u>.</u>	76.5	3-4		10.21
314												
1			5100 00	. :		00.05		· · · · ·	00 50			
315		nn D	5183,83	4-5	D	83.65		nn D	83 72			(SI.7
316							i :::				D	$\{85.5$
317				1-2	В	87.31			(07.5			(85.5
318 }				• • •				В	$\{85.5 \\ 91.7$		B??	35.5 91.4
319												
320			******** *********		···;	00.00						00.00
$\frac{321}{322}$	2.3	n D	5193.81	$\frac{3}{1-2}$	n B	$93.06 \\ 97.10$	1			max	D B	$93.03 \\ 97.18$
323				1								
324				1-2	n B??	04.02			,			
325 -								В				
326												
00					w D	08.35						
327	1	w D	5209.97 (5204.3)		• • • •	* * * * *	• • •		(04.9		D	$\begin{bmatrix} 10.19 \\ 04.6 \end{bmatrix}$
$\frac{327}{328}$			1 17=172.13					D	11.7		D	11.I
327		D	7.5213.0				1	1		1		,
327 328 329 $\begin{cases} 330 \end{cases}$		D) 5213.0 	3 4	В	14.63		***:				13.50
327 328 329 { 330 331				$\frac{3}{1}$	n D	16.75	2	n D	16.53		D??	16.58
327 328 329 { 330 331 332				$\begin{bmatrix} 3 & 4 \\ 1 \\ 3 \end{bmatrix}$	B n D n B	$16.75 \\ 18.75$	2	n D	16,53		D??	16.58
327 328 329 { 330 331				$\frac{3}{1}$	n D	16.75	2	n D	16.53		D??	16.58

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

The sity Character Wave- t.m. Character Sity Character Wave- t.m. Character Sity Character Character Sity Character Charac	152 Schjelle Character nn D?? nn D?? nn B??	Wave- Length t.m.	MEAN WAVE- LENGTH
t.m. t.m. Ength sity Length sity sity sity Length sity Length sity sity sity sity sity sity sity sity	nn D?? nn D??	t.m.	t.m.
B \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	nn D?? nn D??		l .
	nn D?? nn D??	1	486
	nn D??	65.09	4865.1
1 nD?? 67.74 1-2 nD 67.43	l nB	67.49	4867.7
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		$68.97 \\ 71.32$	$4869.4 \\ 4871.6$
1-2 n D? 75.56 2-3 n D?? 75.52 2	n D nn D??	75.33 78.32	$\frac{4875.6}{4878.3}$
1-2 nB 79.81 5 wn B?? 79.45 2-3	n B	79.61	4879.6
			\{\} 487
3 D 81.71 2-5 D 81.53 1 n D 81.09 4-7	n B	81.52 83.49	4881.6 4883.5
D?? 3-5		85.90 (84.5	4886.0
	D	387.3	{ 488
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n B n D	88.04 90.8	$\frac{4888.0}{4890.3}$
3 nn B? 98.80 max B?? 98.90 3.8	1	98.70	4898.7 4893
	В	{ 00.3	4900.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n D n B?	$\begin{bmatrix} 01.18 \\ 03.78 \end{bmatrix}$	4901.1 4903.8
	В	$\begin{cases} 02.3 \\ 04.9 \end{cases}$	{ 4 90
3-4		06.41	4906.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n D	$08.42 \\ 10.59$	$\frac{4908.4}{4910.2}$
2-3 wn D 21.00 4 wn D?? 20.52 1 nn D? 21.23 4-5	wn D??	20.54	4920.8
$1 \dots 1 \dots 1 D [21.5] \dots] \dots] \dots$			\(\frac{\}{491}\\\4925.1\)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4934.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & n D \\ n D?? \end{array}$	$\frac{45.60}{57.68}$	4945.6 4957.9
wn D 82.02 wn D 81.65			$\frac{4981.8}{5167.2}$
head 68.2	head	67.6	5167.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$5167.9 \\ 5172.8$
6 wn D 73.30 3-4 n D 72.85 4 n D 73.79 8	D B??	73.27 75.43	5873.3 5175.4
B (75.0 B			517
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n D	84.08	5183.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5181.5 5185.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	87.36	5187.3 5185.4
$1 \dots 1 \dots 1 \dots 1 1 1 1 $	 D??	89.09	5191.8 5189.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	90,97	5190.9
3 wn D 93.21 3 n D 93.04 n D 93.69 6	D	93.30	$5193.3 \\ 5197.1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D B??	$02.43 \\ 03.85$	$5202.4 \\ 5203.9$
\square \square \square \square \square \square \square \square \square \square			5194.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n D	05.86	5204.5 5205.8
	• • • •		$5208.4 \\ 5210.1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5204.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B??		5214.4
1-2 n D? 16.68 1 nn D?? 16.52 nn D? 16.67 5	n D B??	$16.84 \\ 19.12$	$5216.7 \\ 5218.9$
B \(\frac{18.0}{95.0} \)			5224.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>p</u>	26.98	5226.5

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schje	cllerup		19 Piscius	n		318 Birming	ham		74 Schjeller	up
No.	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length
			t.m.			t.m.			t.m.			t.m.
335				2	B??	29.70		n B?	(29.81)		* * * *	(28.8
336 }	• • •										В	33.3
337 338		n D	5234,33	3	D	34.27	2-3	D	34.22	$\frac{2}{2}$	n D n B?	$\frac{33.95}{37.06}$
339			• • • • • •	i	<u>D</u>	39.94	2	n D	39,69		nn D?	$\frac{31.00}{40.12}$
$\frac{340}{341}$	$\frac{\cdots}{2}$	n D	5247.48	5	B??	$\frac{17.56}{47.56}$		n D	47.34	2-3	nn B?? n D	$\frac{44.80}{47.32}$
342						*1.00			11,11			21.02
$\frac{313}{344}$	1	n D	5251.3	5	n D?	$51.44 \\ 55.96$	$\frac{2}{2}3$	n Đ nn D	$51.28 \\ 55.60$	2	n D	51.66
345		nn D?	5265.26								<u></u> ?	65.75
$\frac{346}{347}$	4.5	n D	5270.62	$\frac{6}{2}$	n B??	$70.46 \\ 79.59$	5 2	n D n B??	$70.02 \\ 79.68$	3	w D	70.17
348	2-3	n D	5283.24	1-2	n D?	83.17				i	n D	83.91
319 350	$\frac{2}{1}$	n D n D	$5298.16 \\ 5302.72$	$\frac{4-5}{2}$	n D n D	$\frac{98.19}{02.76}$	4-5 1	n D nn D	$97.77 \\ 02.24$	$\frac{3}{1-2}$	nn D n D	$97.70 \\ 02.47$
351				2-3	n B	05.26	2-3	nn B	01.84	1-2		02.41
$\frac{352}{353}$		nn D	5307.97	2	n B	13.22	3	n B	12.98	1	nn D	07.17
354		nn D	5315.31	2	n D	$15.\overline{27}$	2-3	n D	15.12	1-2	n D	15.30
355 356		nn D?	5320,95	$\frac{4}{2}$	n B n D	$\frac{17.91}{20.99}$	$\frac{6}{2}$	wn B n D	(20.61)	8	n B	17.50
357				1	n D??	25.32						
358 359		w D nn D?	5329.80 5337.05	$\begin{array}{c c} 5 \\ 1 & 2 \end{array}$	w D n D	$\frac{29.03}{36.94}$	1	n D	$\frac{28.70}{36.83}$	2-3 2	n D n D	29.00 36.65
360				3	n B	39.36	3	B?	39.05	4	n B??	38.70
$\frac{361}{362}$	1	n D	5341.84	2	D	41.30	4	D	41.25	2	n D	41.35
363	3-4	<u>.</u> D	5350.43	3	wnĎ	50.07				2	n D	49.83
364	2	B	5353.37	2	n B	52.71			∫51.1			
365				• • • •				В	{61.1			
366 367				$\frac{1}{2}$	n D	$\frac{62,99}{66,94}$	$\frac{\cdot \cdot \cdot}{2}$	n D	66.47	1	nn D D	61.89 - 66.35
368				2	В	68.78	3-4	n B	68.68			
369	9	w D	5372.07	8-9	w D	71.70	6	D	71.50	6	w D	71.52
370 }							7					
$\frac{371}{372}$	2-3	nn B	$5375.22 \\ 5377.48$	$\frac{6}{1-2}$	B	75.38 - 77.58	$\frac{7}{2}$	n B n D	$\begin{bmatrix} 74.92 \\ 77.36 \end{bmatrix}$	8 2	n B n D	$\begin{bmatrix} 74.76 \\ 77.38 \end{bmatrix}$
373												
$\frac{374}{375}$	max	B	5380.54	$\frac{2}{\cdots}$	n B	79.82	6-8	n B	$\begin{bmatrix} 79.72 \\ \dots \end{bmatrix}$	6	n B	79.91
376		В?	(5378.0	•								
377			₹ 5381.5 ••••••								nn D?	84.69
378 379		nn D	5391.56	1	n D B?	91.09					D??	93.01
380 {										3	n B?	
381	··· <u>·</u> 5	<u>.</u>	5397,47	3	<u>.</u>	97.58	4	wn D	96.81	3	n D	97.28
382				2	B	01.06	max	B B	03.72			
383		В	(5399.9) 5405.7				• • •				В	$\{ \begin{array}{c} 98.8 \\ 05.3 \end{array} \}$
384		1)?	5406.26	i	n D	06.43				1	n D	06.28
385 386	1	B?	5408.34									
387	3	n D	5410.55	3	D	10.28	i	n D	10.37	3.1	n D	10.31
388 389				$\frac{1}{1}$	B D	$12.64 \\ 14.45$	$\frac{1}{1}$	n B	$12.46 \\ 13.91$	1	n B	12.32
390	max	В	5418.34	7	В	17.29		w B	16.61	6	В	17.01
391 }		В	(5413.5 (5419.1									
392	2-3	n D	5120.44	2.3	n D	-20.17	2-3	n D	20.22	3-1	n D	[-19.66]
393 391	$\frac{1-2}{1}$	B??	5423.39 5125.90	1 1	B D	23.23 25.24	$\begin{array}{c c} 6 \\ 1 \end{array}$	nn D	$22.78 \\ 24.82$	2-3	B	22.97
395	1 2	B?	5427.39	3-4	В	27.99	5	n B?	(26.67)	2	n B	-27.09
396		n D	5430.33	3	D	30,39	4	n D	30,13	3-I	n D	29.87

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		78 Schjeller	up		132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	up	MEAN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Character	Wave- Length		Character	Wave- Length		Character	Wave- Length		Character	Wave- Length	WAVE-LENGTH
Section Sect			t.m.			t.m.			t.m.			t.m.	
3-H nD 33.97								В		6	B??	30.23	5229.2
3.4 n.D					1 I		1	В	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			
	3-4						2_3	n D		5			
					В								
Section Sect		1			n D??	39.79							5239.8
3 n D	٠٠:												
1			41.45	l .			1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		51.47	``.;					51,83				
3	1	nn D?	55.25		n D	55.60							
2 nB 0 02.14 1 1 nD?? 02.35 nn B 05.37 2 nD 97.40 5228.0 2 nB 0 04.97 nB 97.50 532.4 2 nB 04.97 nB 13.07 1 BP 13.43 nn B 05.13 BP 13.43 BP 13.53 S35.1 2-3 nB 13.07 1 BP 13.43 nn B 13.33 BP 13.53 S35.1 2-3 nB 15.69 1-2 nB 15.28 3 nB 13.30 BP 15.50 533.2 4 nB 17.58 2 nB 17.58 BP 17.76 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 15.09 13 wnD?? 24.13 3 nnD 20.71 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 30.88 1 nD 30.82 4 nD 30.97 1-2 BP 37.90 533.9.1 3 nD 30.88 1 nD 30.82 4 nD 30.97 1-2 nD 37.30 533.9.1 3 nD 41.50 2-3 nD 41.63 3 nD 41.78 7 nD 41.61 5341.5 1 nnB? 44.64 BP? 13.44 3 nD 43.97 1-2 nD 37.30 533.9.1 1 nnB? 44.64 6 BP? 13.44 1 B	• • •			1									
2	9												5279.7
2 nB 0 02.14 1 1 nD?? 02.35 nn B 05.37 2 nD 97.40 5228.0 2 nB 0 04.97 nB 97.50 532.4 2 nB 04.97 nB 13.07 1 BP 13.43 nn B 05.13 BP 13.43 BP 13.53 S35.1 2-3 nB 13.07 1 BP 13.43 nn B 13.33 BP 13.53 S35.1 2-3 nB 15.69 1-2 nB 15.28 3 nB 13.30 BP 15.50 533.2 4 nB 17.58 2 nB 17.58 BP 17.76 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 15.09 13 wnD?? 24.13 3 nnD 20.71 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 29.00 BP? 17.36 9 nB 17.81 1-2 BP? 17.36 531.2 3 nD 30.88 1 nD 30.82 4 nD 30.97 1-2 BP 37.90 533.9.1 3 nD 30.88 1 nD 30.82 4 nD 30.97 1-2 nD 37.30 533.9.1 3 nD 41.50 2-3 nD 41.63 3 nD 41.78 7 nD 41.61 5341.5 1 nnB? 44.64 BP? 13.44 3 nD 43.97 1-2 nD 37.30 533.9.1 1 nnB? 44.64 6 BP? 13.44 1 B	ī		83.43	1						1-2			5283.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		97.63		D		2-3	D	98.37	2	n D	97.40	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			1	n D??		1		05.12				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		04.97				1		UJ.15		Di		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-3			1		13.43	4		13.13	4			5313.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-3		15.09	1-2	n D	15.28	3	n D	15.30		D		5315.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1		1	1				25.21	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3						1	1				28.54	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-2			1		36.82	4	n D					5336.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	nn B?		1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2-3	wn D			I		1	1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			52.23		B??	52.52				3-4	B??		5352.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	į.	1	1		1	В		1	1		{ 535
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		i					1		(04.0				5362.6
3 n B 68.93 2 B 69.05 3 n B 68.11 10 B 69.10 5308.9				1-2				n D	65.99		D		5366.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1					1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	D	1 73.7	1	!		537
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			75.05	4-5	В	75.15	8		75.01	8	В	74.98	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	n D		1	n D		3	n D	Į.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.0							wn B		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		1				1		3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	ł .		1	$\int 78.5$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			04.07							1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					T .				!	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								wn B??		1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								В			1		1 } 538
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				i		97.97	3	1		3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	1						1		n D??		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									[\ 99.0	1	1		5399.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			l				1			1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			l							2-3			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	l	1						1			5408.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2			2	n D	10.59	3	n D	09.80	1			5410.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1.9	n D99		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										1)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3												
9 07 10 5197 1		1	i										5425.1
3 nD 30.27 3-4 D 30.33 3 D 30.17 2 D 30.24 5430.2							3	n B	27.18				5427.4
	3	n D	30.27	3-4	D	30.33	3	D	30.17	2	D	30.24	5430.2

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

397 398 390 400	nten- sity	Character	Wave- Length	Inten-							1	
398 399 400 .	2			sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length
101		n B n D D??	t.m. 5432,68 5434,66 5439.06	$\begin{bmatrix} 2\\1-2\\1 \end{bmatrix}$	B D D	t.m. 32,38 34,20 38,86	2 1-2 1	B D nn D?	t.m. 32.13 33.99 38.06	1 2	n B n D	t.m. 32.14 34.25
				4	B	${45.19}$						
402		В	$\int 5440.7$					В	$\begin{cases} 39.2 \\ 45.7 \end{cases}$		В	$\{\begin{array}{c} 38.6 \\ 46.1 \end{array}$
403	4	n D	$\begin{array}{c} 3446.5 \\ 5448.31 \end{array}$	6	<u>.</u>	48.09	7-8	n D	47.72	5	n D	47.94
404 405		w B	5452.64	3 3	$\frac{\mathrm{B}}{\mathrm{B}}$	$51.05 \\ 53.85$	5 3	B n B??	50.60 (53.02)			
406 { -		В	(5450.3) 5455.0						`	:		
407	4	n D	`5456,54	3	Ď	56.96	2	n D	56.43	2-3	n D	56.54
408 409	$\begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix}$	B D	$5459.07 \\ 5461.13$	$\frac{2}{2}$	B	$59.14 \\ 60.99$	$\frac{1}{2}$	$ \begin{array}{c} \mathbf{B} \\ \mathbf{n} \mathbf{D} \end{array} $	$58.92 \\ 60.84$	$\frac{1-2}{2}$	\mathbf{D}	58.63 60.49
	$\stackrel{\cdots}{}_{2-3}$	···.	5464.01	3-4	B B	$62.96 \\ 63.76$	$\frac{2}{2}$	B B	62,60			
440					В	65.15						
410								В	$\begin{cases} 61.3 \\ 65.7 \end{cases}$		В	$ig egin{cases} 61.4 \ 66.2 \end{matrix}$
414	1	n D	5466.93	2	n D	67.83	2	n D	67.06		w D	67.60
415					D??	}		D?	770.3			
$\frac{416}{417}$.	···i	n D	5475.08	2-3 1-2	n B	$72.43 \\ 74.56$	$\frac{6}{2}$	n D	72.10 74.38	$\frac{3}{2}$	n B nn D	$71.77 \\ 74.33$
410				$\frac{1-2}{4}$	n D??	78.09 80.89	$\frac{2}{2-3}$	n D?? n B	(\$0.03)	1 1	n D n B?	77.89 80.25
420	``i	nn D??	5483.08	2	Ď	82.73	1	n D	83.05	1-2	nn D	82.64
4.463					B??							
423 .			• • • • • •	3 4	D	98.13				3 2	$\begin{array}{c c} & n D \\ & n D \end{array}$	$97.75 \\ 01.81$
/	• • •											
400 (head	03.1	• • •					11111
$\begin{array}{c c} 427 \\ 428 \end{array}$.		n D	5507.19	$\frac{1}{2-3}$	D??	$\begin{bmatrix} 07.18 \\ 09.51 \end{bmatrix}$	0.1	nn D	07.06	$\frac{1}{2}$	n D n B?	$\begin{vmatrix} 06.66 \\ 08.64 \end{vmatrix}$
429	4	n B??	5510.00 (5508.6	2	В	10.72						
490) .	• • •	spec.	5512.9			43.45				•••		
6			(5512.4	1-2	n D??	12.70				2	nn D	12.28
492 } .		con.	$\begin{array}{c} 15517.9 \\ 5518.2 \end{array}$						(13.8			
100 1 .		spec.	{ 5527.8					B	123.0			
405				1	n D	24.44	2	n D	24,35	1	wn D	24.19
436 437	$\frac{2}{2}$	n D n B?	5528,85 $5531,66$	$\frac{1}{2}$	D??	$28.28 \ 31.96$	1	nn D??	29.09			
438	1	n D?	5533.79	$\begin{vmatrix} \bar{1} \\ 7 \end{vmatrix}$	D	33.87 39.73	1 8-9	n D n D	33.89 39.22	$\frac{1}{8}$	n D wn D	33.66 39.25
,	• • •		(5537.4		wn D	33.13	0-0					
			₹ 5542.4		head	41.8		head	41.4			
442			• • • • • •	4	В?	43.44			(41.4	1-2	В	43.57
440				• • •	13	1 31.0		В	47.0			
4.45				i	<u>.</u> D	48.34	1.2	n D	48.31			
446		n B	5554.54	$\frac{1}{3}$	D?? B	52.42 54.29	$\frac{1}{2}$	n D n B	52.53 54.35	1	nn D n B?	52.20 53.91
448	max	nn D?	5557.27	1	D	56.32	1-2	n D	56.28	1	n D	55.80
154				$\begin{array}{ c c c }\hline & 1-2 \\ 2-3 \end{array}$	$\begin{array}{c c} & D \\ B \end{array}$	$62.55 \\ 64.49$	$\begin{vmatrix} 1-2\\2 \end{vmatrix}$	n D n B	$62.68 \\ 64.70$	1 2	B	64.73
451		nn D	5567.60	$\frac{2}{1}$	D D	$66.60 \\ 70.29$	1-2	n D n D	$66.86 \\ 70.16$	$\frac{2}{0.1}$	n D nn D	66.57 69.96
47.15	• • •	n B?	5572.04	1	B	71.85						
404 (• • •			• • •		

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	up		132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	rup	
Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	MEAN WAVE-LENGTH
···· 2	n D	t.m. 34.57	3 1-2	B D?? D??	t.m. 32.25 34.35	1	n B?	t.m. 32.15	$\begin{array}{c} 2\\1-2\\2\end{array}$	n D D	t.m. 32.23 34.35 38.93	t.m. 5432.3 5434.3 5438.6
max	В	42.54		B?? B??					3	n B	42.70	$5442.6 \\ 5445.2$
	В	${39.7}\atop{46.0}$					В	$\begin{cases} 40.3 \\ 44.9 \end{cases}$				5439.8 5446.0
9 max	n D B	47.62 51.08	8 max	D B	$\frac{47.73}{50.91}$	7 4-5	n D B	$47.54 \\ 50.89$	4	w D B	$\frac{47.06}{50.90}$	5447.8 5450.9
• • •	В	(49.0										$5453.9 \\ 5449.7$
· 1-2	n D	{ 55.1 56.81	3	n D	$\frac{1}{56.92}$	$\frac{1}{2}$	nn D	56.46	··i	nn D	57.13	5455.0 5456.7
 1-2	n D	60.96	1-2	n D	60,99	1 1	n B? n D	58.88 60.80	···i	nn D	61.18	5458.9 5460.9
				 B?								$5462.8 \\ 5463.9$
												$5465.2 \\ 5461.4$
2	wn D	68.30	i	n D	66.75							5466.0 5467.4
												{ 546
1	n B nn D?	$72.63 \\ 74.46$	3	B? n D?	$72,40 \\ 74,20$	$\frac{5}{1-2}$	B n D	$72.31 \\ 74.34$	_i	<u></u>	74.35	5472.3 5474.5
î 	nn D?	$78.\overline{25}$	1-2	n D?? B??	78.04		nn B?	80,91	···i	<u></u>	81.58	5478.0 5480.9
1	n D	83.19	1	n D	82.99		nn D nn B	83.60 86.18	··i		87.03	5483.0 5486.6
3-4		98.22	$\begin{array}{ c c }\hline 1-2\\ 5\end{array}$	n B?	$95.65 \\ 97.92$							5495.7 5498.0
		(96.8	4	n D	02.31							5502.1
	D head	03.9 03.8					head	05.0				\ \ \ \ 550 \ \ 5504.
	n B	09.59	$\frac{1}{2}$	n D?? wn B?	06.89 08.88				5-6	 B	08 20	5507.0
											08.30	$5509.0 \\ 5510.4$
		10.44	2	 	10 10		B?	{ 05.0 10.4				550 551
	n D	12.44		nn D	12.46	2	nn D	12.20				5512.4
• • • •				con.	(13.9		B?	(14.5				5514.
1110		32112	i	spec. n D	$\begin{bmatrix} \frac{1}{2} & 23 & 2 \\ 24 & 36 \end{bmatrix}$		nn D	$\begin{array}{c} 7.23.4 \\ 23.95 \end{array}$				552 5524.3
1–2 	wn D	25.45	i	nn D??	28.09	2	n D	25.25				$5525.4 \\ 5528.6$
i	nn D?	(34.62)	i	n <u>D</u>	33.86	i	n <u>D</u>	33.96	1-2	wn D	32.6	5531.7 5533.9
7	D	39.55	8	D	39.81	8	D	39.54	2-3	wn D	39.31	5539.5 { 553
	head	42.1					head	41.8				5541.8
	 B	§ 42.1	2-3	n B? B	$\frac{43.61}{544.6}$		В	y 41.8				5543.5 5541.8
		7 47.3			46.7			₹ 46.7	1-2	w Ď	46.56	5546.9 5546.6
$\frac{2}{1}$	n D n D	$ \begin{array}{r} 48.60 \\ 52.45 \end{array} $	1-2	D	48.03	2-3 1-2	n D D	$ \begin{array}{r} 48.45 \\ 52.80 \end{array} $	i	<u>.</u>	52.64	5548.3 5552.5
· · · · · · · · · · · · · · · · · · ·	n D	56.38	i	n D	56.30	$\frac{2}{2}$	n B n D	54.48 56.36	i	n D	56,24	5554.3 5556.4
1	n D	62.76	$\begin{vmatrix} 1 \\ 1-2 \end{vmatrix}$	nn D n B?	$62.20 \\ 64.54$	$egin{array}{c} 1 \ 1-2 \end{array}$	n D? n B	$62.40 \\ 64.87$	1	n D	62.50	5562.5 5564.7
$^{1-2}_1$	n D n D	$67.23 \\ 70.36$	1	n D	66.84		n D?	67.42	4	n D	68.08	$5567.2 \\ 5570.2$
	В	; 55.	$\begin{vmatrix} 2 \\ \dots \end{vmatrix}$	В	71.66	max	B	$67.7 \\ 67.7$				5571.7 } 556.00
	ъ	73.6					В	73.1			• • • • •	550.00

Sity Section Sity Complex Sity Complex Sity Complex Sity Section			280 Schje	EAN WAVE-L		19 Piscius			318 Birming			74 Schjeller	rup
1	No.		Character	Wave-Length		Character			Character			Character	Wave- Length
457					1	D		1	D?		1		t.m. 73.41
1.58													83.98
	(i I				§	1			1	1	
460	(1 1		1						1		
463					4				В				86.89
463		_	1 1		1	1	l				1		88.97
465					1-2						1		
465	464 }				1	ł.	l	1	1)			
467	465	1	[[94.62
468	466				4	В	97.51		В	97.55			97.37
460													$99.58 \\ 09.49$
470	1	l .	1		1			1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1					t]				• • • • •
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I I		$\frac{1}{2}$						1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	472	3	D		2	D	20.07		nn D		3-4	D	20.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	($\begin{array}{c c} 24.78 \\ (18.5 \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,										1	D	$\{ \begin{array}{l} 10.5 \\ 26.1 \end{array} \}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			B?	27.70	1	l .				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5630.26		132	30.69						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	((5627.9				1		(26.1	1		(26.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												_ `	$\frac{(32.2)}{34.20}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1								1	1	*****
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(:									1		90.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					3						1		50.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T I										41.33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	484			*****	(В		J.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	485			5645.22	1	n D			n D		2		43.71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1					49.85
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2_3								40.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		3					55.42			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	490 }	I I	В					1	В			В	57.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	491	1-2	n D				58.60	1 1			3	n D	58.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	492 }				1 1						1		• • • • •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	493		n D				70.83			71.44		wn D	71.26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	494		i		1	B??	73.75	1					74.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-2		5677 33	1.2	<u>.</u>							76.74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	497				1	n B	79.21						79.24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1_9								(88.0)			86.89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													93.62
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						D		1				129	00.26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\cdot \cdot $			3.4								05.25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	501	1-2	n D	5708,92	2	D	08.26	4	n D	08.49	2		08,44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													$\frac{11.05}{12.88}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	507				l	В	15,00						
510 $\left.\right\rangle$ B $\left\{\frac{14.5}{20.2}\right\}$								1 5					17.19
510 $^{\circ}$	()							1 1		(14.5			
511 1 1 1 1 1 1 1 1 1	'									120.2			21.23
512 2 nB 5724.44 1 B 24.12 4 nB 24.27 3 nB 24.											$\frac{2}{3}$		24.07
													31.76

 ${\bf TABLE~OF~MEAN~WAVE\text{-}LENGTHS~CORRECTED~FOR~RADIAL~VELOCITY--} Continued$

	78 Schjeller	up		132 Schjeller	rup		115 Schjeller	rup		152 Schjeller	rup	MEAN
Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTH
1 max	n D	t.m. 74.45	1 1 9	nn D? n D?? D	t.m. 73.4 76.50 83.86	9	 D	t.m.	 8 10	 w D w D	t.m. 76.16 83.69	t.m. 5573.7 5576.3 5584.0
• • •	D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					D	(81.9 (85.9				5581.9 5585.9
3	head B	86.03 87.23	3	 B	86.97	6	head B	86.21 87.66	1 1 1	B? D	87.57	5586.0 5587.2 5589.2
1 ··· 2-3	n D n B	89.27 92.10	1	n D n B	$\begin{array}{c} 88.90 \\ 91.82 \end{array}$	8	В	92.35	10 2	B?	$88.95 \\ 91.44 \\ 92.58$	5591.4 5592.4
				B?			В	{ 86.2 { 93.5				} 558
$\frac{2}{4}$ 1-2	n D B nn D	94.98 97.61 00.38	$egin{array}{c} 1 \\ 2 \\ 1-2 \end{array}$	n D n B nn D	$94.41 \\ 96.89 \\ 00.17$	 4 1	n D n B n D	95.10 97.67 00.03				5594.7 5597.5 5599.9
•••	nn D D	$\frac{09.52}{507.6}$	1-2	nn D	09.05		wn D D	09.83 08.1	• • • • • • • • • • • • • • • • • • • •	 D	\$ 06.9	5609.5 5607.5 5612.2
• • •		↑ 12.1 ·····	1 1-2	n D n B?	$15.42 \\ 17.11$			(12.2	i		16.09 16.09	5615.7 5617.3
	n D nn D	$20.18 \\ 25.38$	3 4	n D n D	$20.00 \\ 24.61$		nn D? nn D	$20.17 \\ 25.64$		••••	(18.8	5620.3 5625.1 5618.6
• • •	D	$\begin{cases} 18.6 \\ 27.1 \\ \dots \end{cases}$		D B??	$egin{pmatrix} 26.6 \\ 26.5 \end{bmatrix}$		••••		• • • •	D	$\begin{array}{c} 15.5 \\ 25.4 \\ \end{array}$	5626.2 5627.7
:	••••			••••			••••			w B??	29.00	5629.0 5630.5
::: 10		34.23	10	$\begin{array}{c} \text{con.} \\ \text{spec.} \\ \text{D} \end{array}$	$\begin{cases} 26.50 \\ 31.40 \\ 33.79 \end{cases}$	10	B D	$\left\{ \begin{array}{l} 27.4 \\ 32.3 \\ 34.58 \end{array} \right.$	i0	w D	33.76	5626.9 5631.8 5634.1
							D	$\left\{ \begin{array}{l} 32.3 \\ 37.6 \end{array} \right.$				5630
 8 6	head n B B	$ \begin{array}{r} 36.79 \\ 38.64 \\ 41.65 \end{array} $	2-3 2-3 2-3	head n B n B	$36.60 \\ 37.87 \\ 40.74$		head 	37.49	6 4	head B B	$ \begin{array}{c c} 36.11 \\ 38.06 \\ 41.46 \end{array} $	5636.9 5638.0 5641.3
	В	$\{ 36.8 \\ 42.5 $					В	$\{ \begin{array}{c} 37.6 \\ 43.6 \end{array} \}$				5637.2 5642.8 5644.3
2 1	n D nn D	44.29 50.24	1-2	wn D n B?	43.89 46.15		nn D n B	$\begin{array}{c c} 45.20 \\ 46.21 \\ \end{array}$	1	n D	44.57	5646.4 5650.2
$\frac{\cdots}{2}$	n B?	$5\overline{5}.\overline{24}$	···i	n B?	55.42	max	В	55.30			• • • • •	5653.0 5655.2 5645.4
···· i	nn D	57.63	···· ··· 1	n D	57.93		nn D	$\begin{array}{c} 46.3 \\ 56.7 \\ 58.05 \end{array}$	0 1	 D	57.32	5656.9 5658.0
 3		51.04					В	\$59.2 \$70.4			51.00	\$ 565 5671.3
2 	n D n B?	71.34 73.93	1	nn D B??	70.99	$egin{bmatrix} 1 - 2 \ 2 \ \dots \end{bmatrix}$	n D n B	71.68	1	nn D	71.22	5674.1 5675.5
$\begin{array}{c}2\\2\\1-2\end{array}$	n D n B? n B?	76.47 79.45 83.81	1	n D B??	76.48	$\begin{array}{c c} 1 \\ 2 \\ 2 \end{array}$	n D n B n B	76.67 79.96 84.21	···· 2	В	79.49	5676.7 5679.5 5684.1
2 8	n D wn B	86.53 93.79	1 4	n D B	$86.29 \\ 93.21$	8	n B	94.16	 4 5	D B	$86.59 \\ 93.17$	5686.6 5693.8
5	nn D n B	96.33 05.05	13	nn D B	96.72 04.53	$\begin{bmatrix} 1\\2\\6 \end{bmatrix}$	n D? n B n B	97.18 99 05.14	$\begin{vmatrix} 1 \\ \vdots \\ 1-2 \end{vmatrix}$	D B?? B	95.80 04.97	5696.7 5699.8 5705.3
3–4	n D	08.03	$\frac{2}{1}$	n D B??	$08.23 \\ 10.71$	1	n D?	08.09	2	D B??	07.89	5708.3 5710.8
	n D wn B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{vmatrix} 1-2 \\ \vdots \\ 5 \end{vmatrix}$	n D nn B?	12.33 16.31	1 8	n D? n B	13.12 17.17	18	n D B	12.49 16.49	5712.8 5715.0 5717.0
• • • •		• • • • •		В	(14.1		••••					5717.9 5714.3
2 6 8	n D wn B n D	21.46 24.28 31.48	1 3 3	n D n B? D	$egin{array}{c} 19.6 \ 21.5 \ 24.00 \ 30.72 \end{array}$	8 2	n B n D	24.86 31.97	$\begin{bmatrix} \cdot \cdot \cdot \\ \frac{4}{6} \\ 6 \end{bmatrix}$	n D B w D	20.68 23.80 31.60	5719.95721.45724.25731.6

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY -- Continued

		280~Schje	ellerup		19 Pisciui	n		318 Birming	ham		74 Schjeller	up
No.	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length
			t.m.			t.m.			t.m.			t.m.
514											D	(26.6
011			******									133.4
515		В	(5734.2					В	(33.8			
- (7 5743.1		· · · ·	44.05			{41.7			10.00
516		nn D	5741.32	2	n D	41 35		nn D	43.89	1	nn D?	-43.96
517				1 1	n B??	47.09		- D	40.70			
518				1	n D	49.59		nn D	49.73			
519 🗄								• • • •				
/		1										
520	1	n D	5751,70		1	55 (11)			57.00			
521	2-3	wn B	5758 05	3	n B	57.02	max	В	57.08	*		
$522 - \frac{1}{2}$					• • • • •							
- (5540.5			00.50		Fx	00.79			20.0
523 `	1 1 1 3	wn D	5763.7	2	n D	62.53		nn D	62.53	1	n D	-63.6
524	2	n B	5768.79	2 2	n B?	$67.29 \\ 71.19$		D	71 OF		D	71.5
5 <u>2</u> 5	1	n D	5772.1	_	n D			nn D	71.35		wn D	
526			5775 01		• • • •			1				
527	1	n B?	5775.81		- T)99	77 00	1	, D	70 10	1	nn D?	77.8
528	1		ETOL TO	$\frac{1}{1-2}$	n D??	77.82	1	n D	78.48	1		i
529	2	n B	5780.77		В	79.86		• • • •				(73.5
530 -}											В	$ \{ rac{13.3}{82.0} \} $
531 <i>'</i>		n Ď	5705 57				5	wn D	84.41			`
166	2	n D	5785.57									• • • •
532 -}												
533 <i>'</i>					****			• • • • •				
										* * *		(82.0
534 =					• • • •						D	$\begin{cases} 32.0 \\ 91.3 \end{cases}$
535 (* * *			1	Ğ	98.68	i	nn D?	99.1	i	nn D	98.50
	* * *			1	n D	22.69	1			2	nn D	22.9
536 537				1			i	n D	48.46			
001							1	1 11 11	30.40			• • • • •

WAVE-LENGTHS OF LINES IN THE VIOLET REGION OF 19 PISCIUM

As already stated, the violet region of 19 Piscium was photographed with a one-prism spectrograph attached to the two-foot reflector (Figs. 1 and 2, Plate XI). With the light flint prism and the very short camera of this spectrograph, the scale of the resulting spectrum was too small to permit of precise determinations of wave-length. The results of the measures of plates R 34, 37, and 38 by Mr. Parkhurst are nevertheless valuable, as they permit some of the important lines to be identified, and in fact furnish the only knowledge we have of the positions of lines in this part of the spectrum of fourth-type stars.

Three plates were measured, the numbers, exposure times, and range of spectrum in which the lines were good enough to measure being:

Plate	Exposure	Lines Measured
R 34	5h 30m	4255 to 4327
37	7 - 45	4079 to 4380
38	24 40	3969 to 4373

The wave-lengths of the star lines on the long-exposure plate R 38 could not be deduced directly from the plate, since there was a shift of the comparison lines due to the exposure being extended over four nights. Therefore a correction was made to the wave-lengths of R 38, deduced by comparison with seven of the best star lines common to R 37 and R 38. This correction, for the seven lines, varied from 2.8 to 6.4 t.m., so that the mean is uncertain by as much as 2 t.m. The uncertainty

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjelleri	qp		132 Schjeller	up		115 Schjelle	rup		152 Schjelle	rup	MEAN
Inten-	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTH
		t.m.			t.m.			t.m.			t.m.	t.m.
										D	\	} 572
										D	{ 33.9	1
	• • • • •	••••	• • • •	В	(33.0		В	(33.5		В	$\begin{array}{c} 33.9 \\ 41.3 \end{array}$	5733.8 5742.0
3	n D	43.02	1	nn D	$\frac{141.4}{43.60}$	i i	n D?	$\{ \begin{array}{c} 42.6 \\ 43.73 \end{array} \}$		D	$\begin{array}{c} 41.3 \\ 43.26 \end{array}$	5743.8
	1		1						2	B?	46,06	5746.6
···•	nn D	49.85	1-2	nn D	49.43	i	n D	48.83		Ď.	48.98	5749.4
	D	(42.2										} 574
	1	₹50.8					[1
								22.77		11.5	 	5751.7
			2	n B?	56.23	max	В	57.55	2	n B	56.41	5757.1
	• • • • •			• • • • •		1	В	(53.0				{ 575
3	n D	62.23		n D?	61.72	i	n D	$\begin{pmatrix} 61.4 \\ 62.95 \end{pmatrix}$				5762.6
			1-2	B?	$\frac{66.82}{66.82}$	3	n B	67.63	1-2		67.09	5767.5
3	n D	70.71					nn D	71.39	2	ő	70.10	5771.1
				B?		1			3	В	73.33	5773.3
						1-2	n B?	76.41				5776.1
	1			D??							11111	5778.1
			1-2	B?	79.65	2	n B	80.87	4	В	80.11	5780.3
	В	571.9		В	(71.5)							5772.3 5781.1
		{ 80.5			$\{80.9$		D	84.81	··· <u>;</u>	w D	84.11	5784.8
3	wn D	85.23			(80.9		wn D	!				
				D	86.7							{ 578
i	nn D?	89.93		D??					···i	<u>.</u> D	89.40	5789.7
												} 578
					:::::						07.00)
2	n D	97.61	1	n D	97.60				1	n D	97,32	$5798.1 \\ 5822.7$
1	nn D	23.44	2	n D	22.11				1	D	22.09	5848.6
1	n D	49.82										0.6256

of the adopted wave-lengths is increased by the poor quality of the comparison lines on R 37, which has the best star lines.

The star line $H\delta$ is nebulous on plate R 38, and apparently 5 t.m. wide; the uncorrected wavelength is 4103.5; corrected wave-length, 4100.4. On plate R 37 the line seems quite narrow and sharp, the wave-length being 4100.5. The correction to reduce to the wave-length in the Sun, +1.5 t.m., is within the errors of measurement.

The mean wave-lengths from the three plates are given in the following table:

LINES IN THE VIOLET REGION OF 19 PISCIUM
Plates R 34, 37, and 38

Intensity	Character	No. Plates	Wave-Length	Solar Lines	Intensity	Character	No. Plates	Wave-Length	Solar Lines
Spec.	begins		393	K		Limits		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	wn D	1	3967.0	H 3968.6 Ca		n D	1	4254.4	
	nn D?	1	4004,4			nn D	2	4274.0	
	nn D	1	4018.3		1	n D	1	4282.8	
i	n D	1	4034.8			n D	3	4289.0	
3	n D nn D	$\frac{1}{2}$	$\frac{4058.2}{4078.7}$			w D	2	$\begin{cases} 4303.5 \\ 4312.6 \end{cases}$	G group
4	n D	$\bar{2}$	4100.5	Hδ 4102.0		nn D	2	4325.9	
	nn D?	$-\bar{2}$	4132.3		3	D	1	4340.4	$H\gamma$ 4340.6
	wn D	1	4145.4		2	D	1	4354.2	
	nn D?	1	4197.5		2	D	1	4363.4	
10	D.	2	4227.6	Ca 4226.9	6	D	1	4383.7	

WAVE-LENGTHS OF LINES IN THE RED REGION OF 152 SCHJELLERUP

Plate G 211, taken on an Erythro plate with camera No. 2 and a single dense flint prism, gives the approximate positions of the lines in the red and orange region of the spectrum of 152 Sehjellerup. The following measures were made by Mr. Ellerman. On account of the small scale of the spectrum in this region, they may be considerably in error, but they suffice for the identification of some of the strongest lines. This photograph is reproduced in Plate VI.

LINES IN THE RED REGION OF 152 SCHJELLERUP
Plate G 211

Intensity	Character	Wave-Length	Remarks
		t.m.	
2	В	5592.4	
	D	5731.1	End of zone
2	Ð	5748.9	
1 1 1	B?	5757.4	
1	B?	5778.2	
1	n D	5808.4	
	B?	5845.3	Very n
10	D	5894.3	Sodium, D_1 and D_2
1	n D	5921.9	
1	Ð	5945.9	
1	В	6020-8	
1	В	6050.0	
1	n D	6059.1	
4.	В	6086.1	Brightest part of bright band
3 7 2 8 2 10	D	6098.5	
7	В	6108.4	
2	D	6119.0	
8	В	6130.5	Double?
2	В	6154.9	
	В	6176.0	
2	D	6190.3	
10	В	6200.9	
	В	(6222.1	Pand ingressing (from
	ь	7 6253.4	Band increasing $\begin{cases} from \\ to \end{cases}$
10	Ð	6269.6	Very broad
1	В	6310.8	•
1	В	6330.2	
3	D	6357.6	
	D	6425.3	Center of broad, hazy band
3	В	6444.8	·
		6488.2	Spectrum drops off here, dark space
٠.		6587.5	tô
		6631.	end of faint continuous spectrum

PRECISION OF THE MEAN WAVE-LENGTHS

The sources of error in this investigation are numerous, and render it impossible to secure a high degree of precision in the results. In the spectrograph the wide slit necessarily employed, the instability of the prism supports, and the variations in temperature of the prisms during the long exposures, tended to produce wide and diffuse lines on the photographs, and to introduce irregular displacements of unknown magnitude. In comparison with these sources of error, which affect both stellar and comparison spectra, all errors due to the measuring machines or to the method of reduction are comparatively unimportant and may be neglected. During the progress of this research the old spectrograph was used by Messrs. Frost and Adams for the measurement of stellar motions in the line of sight. Most of this work was confined to bright stars having well-defined lines in their spectra. But, in spite of the short exposures required for such objects, errors arising from unknown causes were frequently apparent in the results. For example, the star ϵ Leonis, as photographed on seventeen occasions between February 11 and April 25, 1900, gave velocities ranging from -10 to +13 km. This led to the belief that ϵ Leonis varied in its radial velocity, but it was afterward shown that the star has an apparently constant radial velocity of about 5 km. On many other occasions, however,

the spectrograph gave excellent results, agreeing well among themselves and with recent determinations for the same stars made with the Bruce spectrograph. On account of the uncertain behavior of the instrument, it is impossible to base conclusions regarding the precision of our own results upon the contemporaneous observations of known stars by Messrs. Frost and Adams.

A source of error which undoubtedly affected seriously our determinations of radial velocity, giving rise to the widely different values obtained for different lines, is the physical condition of fourth-type stars. As will be shown later, the spectra of these stars differ widely from the solar spectrum, partly through marked changes in the relative intensities of the dark lines, and partly through the presence of bright lines. Both of these causes greatly complicate the determination of radial velocity, and thus introduce errors which appear later in the corrected wave-lengths.

An idea of the precision of the measures may be obtained from the following table, which gives the average deviation of the wave-length of a line in one star from the mean for six, seven, and eight stars. The number of lines used is given in parenthesis after each deviation.

PRECISION OF THE MEASURES
AVERAGE DEVIATIONS

No. of Stars	Blue Region	¡Yellow-Green Region	Both Regions
	t.m.	t.m.	t.m.
3	0.15(29)	0.28 (28)	0.22(57)
	0.17(22)	0.22(24)	0.20(46)
3	0.22(19)	0.23 (30)	0.23(49)
Means	0.18 (70)	0.25 (82)	0.22 (152)

The probable error of the mean averages 0.07 t.m.

In such a comparison it is of course assumed that the wave-length of a line does not vary from star to star. That this assumption is in some degree warranted is shown by the residuals at the foot of the following table, which contains the wave-lengths of the forty-nine dark lines measured in all of the stars, with their average deviations from the mean. These results also give a final check on the adopted values of the velocities of motion in the line of sight, as the mean wave-lengths should agree if the velocities were correct. The actual residuals, ranging from -4 to +4 km. (mean ± 2.3 km.), show that the adopted values are not greatly in error. The stars in the table are arranged in the assumed order of development (Plate IX).

LINES MEASURED IN ALL OF THE STARS

280 Schj.	19 Pisc.	318 Birm.	74 Schj.	78 Schj.	132 Schj.	115 Schj.	152 Schj.	Means	a. d.
4435.22	35.52	35.49	35.72	35.92	35.60	35.47	35.97	35,61	0.19
4501.22	01.78	01.87	01.97	01.87	01.92	00.91	02.15	01.71	-0.29
4506.38	06 77	07.08	07.04	07.09	07.12	06.74	07.24	06.93	0.22
4512.83	12.76	12.64	12.30	13.08	12.83	13.05	12.81	12.79	0.16
4518.15	18.27	18.31	18.38	18.53	18.35	18.21	18.23	18.31	0.09
4522.91	23.00	23.06	23.20	23.23	23.17	23.08	23.21	23.11	0.10
4535.30	35.84	35.84	35.90	35.70	36.04	35.56	36.21	35.67	0.24
4560.11	60.39	60.42	60.48	60.47	60.23	60.35	60.21	60.34	0.11
4606.26	06.87	06.86	06.88	07.20	06.83	06.24	06.38	06.69	0.27

²⁸ Out of 537 catalogued lines and spaces, only 49 were common to all the 8 stars. The reasons for this are as follows:

^{1.} The appearance of any given line varied greatly with exposure time and temperature changes, so that it might be unmistakable in character on one plate and so indefinite as to be left unmeasured on another, as the choice of lines to be measured was made independently on each plate.

^{2.} Lines marked doubtful on both plates of a star were not catalogued unless unmistakable in character in other stars.

^{3.} Plates of the faint stars 280 Schj., 74 Schj., and 115 Schj. contained comparatively few lines, and at the same time the proportion of doubtful lines on these plates was greater than the average.

By this process of exclusion the number of lines common to all the stars was greatly reduced, though the number measured in 5 or 6 stars was much greater.

LINES MEASURED IN ALL OF THE STARS -- Continued

	280 Schj.	19 Pisc.	318 Birm.	74 Schj.	78 Schj.	132 Schj.	115 Schj.	152 Schj.	Means	a. d.
	4617.74	17.80	18.03	17.99	18.09	18.23	17.74	18.15	17.97	0.15
	4619.29	19.68	19.86	19.70	19.85	19.56	19.42	19.40	19.60	0.19
	4638.03	38.75	39,19	39.03	39.15	39.07	38.78	38.96	38.87	0.26
	4766.78	66.11	66.47	66,33	66.55	66.47	66.98	66.54	66.50	0.18
	4822.75	23 91	23.86	23.51	24.02	23.96	23.27	23.86	23.64	0.45
	4826.52	27.81	28.21	28.23	28.31	28.19	27.88	27.90	27.88	0.46
	4832.49	32.51	32.56	32.57	32.61	32.30	32.48	-32.46	32.48	0.07
	4882.07	81.69	81.55	81.75	81.71	81.53	81.09	81.52	81.61	0.19
	4900.70	00.81	00,95	01.37	01.34	00.67	01.87	01.18	01.11	0.33
	4920.65	21.03	20.78	20.97	21.00	20.52	21.23	20.54	20.84	0.22
	5226.19	26.19	26.33	26.17	26.35	27.28	26.78	26.98	26.49	0.31
	5234.33	31.27	34.22	33.95	33.97	33.91	33.99	33.44	-34.01	0.20
	5247.48	47.56	47.31	47.32	47.43	47.41	47.49	47.21	47.37	0.10
	5251.30	51.44	51.28	51.66	51.47	51.46	51.83	51.31	51.47	0.15
	5270.62	70.46	70.02	70.17	70.55	70.41	70.75	70.05	70.38	0.22
	5298.16	98.19	97.77	97.70	97.63	98.11	98.37	97.40	98.00	0.20
1	5315.31	15.27	15.12	15,30	15.09	15.28	15.30	15.40	15.26	0.09
	5337.05	36.94	36,83	36.65	36.86	36.82	36.97	37.30	36.93	0.14
	5341.84	41.30	41.26	41.35	41.59	41.63	41.78	41.61	41.54	0.19
	5372.07	71.70	71.50	71.52	71.68	71.89	71.64	72.10	71.76	0.19
	5377,48	77.58	77.36	77.38	77.38	77.44	77.29	77.07	77.37	0.10
	5380.54	79.82	79.72	79.91	80.47	80.46	80.68	79.91	80.19	0.35
1	5397.47	97.58	96,81	97.28	96.91	97,97	96.75	97.88	97.33	0.39
	5420.44	20.17	20.22	19,66	20.53	20.43	20.49	20.13	20.26	0.21
	5430.33	30,39	30.13	29.87	30.27	30.33	30.17	30,24	30.22	0.11
	5448.31	48.09	47.72	47.94	47.62	47,73	47.54	47,06	47.75	0.28
	5456.54	56.96	56,43	56.54	56.81	56.92	56.46	57.13	56.72	0.23
	5461.13	60.99	60.84	60,49	60.96	60.99	60.80	61.18	60.92	0.16
	5475.08	74 56	74.38	74.33	74.46	74.20	74.34	74.35	74.46	0.19
	5557.27	56.32	56,28	55.80	56 38	56.30	56.36	56.24	56.37	0.23
	5567.60	66 60	66.86	66.57 83.98	67.23	66.84	$\begin{bmatrix} 67.42 \\ 83.83 \end{bmatrix}$	68.08 83.69	67.15 83.96	$0.43 \\ 0.19$
	5584.65	83.98	83.70	86.89	84.02	83.86 86.97	87.66	87.57	87.22	$0.19 \\ 0.28$
	5587.54	86.95	$86.96 \\ 34.11$	34.20	$87.23 \\ 31.23$	33.79	34.58	33.76	34.12	$\begin{array}{c} 0.28 \\ 0.24 \end{array}$
	$5634.05 \\ 5645.22$	34.21 44.07	$\frac{54.11}{43.74}$	$\frac{54.20}{43.71}$	$\frac{31,25}{44,29}$	43.89	$\frac{54.55}{45.20}$	35.70 44.57	44.34	$0.24 \\ 0.48$
	0040,22 5071,71		71.44	$\frac{43.71}{71.26}$	$\frac{44.29}{71.34}$	70.99	71.68	71.22	71.31	$0.48 \\ 0.23$
	5671.71	70,83 93,78	93,89	93.62	93.79	93.21	94.16	93.17	93.76	0.23
	$5694,41 \\ 5706,71$	05.41	05.42	05.25	05.05	04.53	05.14	04.97	05.31	$0.31 \\ 0.29$
	5731.70	31.20	31.56	$\frac{05.25}{31.76}$	31.48	30.72	31.97	31.60	31.60	0.14
	5731.40 5744.32	44.35	43.89	$\frac{31.76}{43.96}$	43.02	43.60	43.73	$\frac{31.00}{43.26}$	43.77	0.37
	0(44.02	44	45,00	49,00	40.02	49.00	49.69	40,20	30.77	0.91
Means	5150.86	50.78	50.74	50.72	50.85	50,77	50,84	50.79	50.79	0.23
Residuals t.m	+0.07	-0.01	-0.05	-0.07	+0.06	-0.02	-0.05	.00	,	
" km	+4	-1	-3	-1	+3	-1	-3	0	± 02.3	
** KIII	++	1			——·)	- 1	—,,		I TV=.0	

THE CARBON BANDS

Since the time of Secchi the characteristic dark bands of fourth-type stars have been attributed to some form of carbon. For the reasons mentioned by Dunér, 29 the measures of Secchi, though they appear to be sufficient to identify the bands, can be given but little weight. The measures of Vogel and Dunér have therefore formed the only reliable basis of comparison. The means of these measures, compared with the wave-lengths of the heads of the carbon bands, are as follows:

Star	Carbon Bands	$\Delta \lambda_{\gamma}$ Star-Laboratory	
t.m.	t.m.	t.m.	
437	4381.93	-10.±	Edge of violet band
4729	4737.18	- 8.	Edge of blue band
5162	5165.30	- 3.	Edge of green band
5633	5635,43	-2.	Edge of yellow band

While the differences are in some cases considerable, these measures leave no doubt that the dark bands of the fourth-type stars correspond with the bands of the Swan spectrum. The systematic shift toward the violet of the bands in the star is presumably due to a physiological effect arising from the presence of the bright zones on their less refrangible edges. The largest errors naturally correspond to the faintest bands.

As our photographs show not only the principal heads, but also the secondary heads of the flutings, a careful comparison with the carbon flutings in the electric arc seemed desirable. Photographs of the various bands, compared with photographs of the bands of the carbon arc, are reproduced in Plate VII. From these it will be seen that the fluted structure of the bands is repeated in the stars with perfect fidelity.

The following table contains the mean wave-lengths of the heads of the various flutings, as derived from all of our measures; the number of stars in which each fluting was measured; the maximum and average deviation from the mean wave-length in all of the stars measured; the assumed origin of the flutings; the wave-lengths of the flutings as measured by various investigators in the laboratory; and the differences between the star and laboratory determinations. In these last comparisons the wave-length determinations of Crew and Basquin are used for the cyanogen flutings, and those of Kayser and Runge for the flutings of the Swan spectrum.

F	Ieads o	F THE CARE	SON FLUTIS	NGS		WAVE-LE		Star - $\mathbf{L}^{\Delta\lambda}$,			
Mean Wave- Length in Stars	No. of Stars	Deviation Me		Origin	Eder and Valenta	Fievez	Hassel- berg	Kayser and	Crew and Basquin	Kayser and	Crew and Basquin
Corrected for Slit-Width	Stars	Maximum	Average		, meada		-	Rnnge		Runge	
_		t.m.	t.m.		t.m.	t.m.	t.m.	t.m.	t.m.	t.m.	t.m.
4380.6				Swan Spec.	4380						
4503.2	5	0.5	0.2	CN					4502.35		+0.9
4515.0	2	0.4	0.4	CN					4514.95		0.0
4532.6	4	0.4	0.4	CN					4532.06		± 0.5
4555.3	5	0.4	0.3	CN					4553.31		+2.0
4578.4	6	0.6	0.5	CN					4578.19		+0.2
4608.8	6	0.6	0.3	CN					4606.33		+2.5
4697.2	1			Swan Spec.	4697.66		4696.2	4697.57		-0.4	
4716.5	4	$(1.3)^{30}$	0.2		4715.73?		4713.7	4715.31		+1.2	
4738.6	7	0.6	$0.\overline{2}$	**	4737.25	4736.3	4735.7	4737.18		+1.4	
$[5169.1]^{30}$	3	$(1.8)^{30}$	0.4	14		5165.6	5165.4	5165.30			
5505.4	l ä	[-0.9]	0.7	64		5504.6	5501.6				
5543.5	4	0.4	0.2	**		5543.3	5538.5	5540.86		+2.6	
5587.7	$-\hat{3}$	0.2	$0.\overline{1}$			5581.5	5586.2	5585,50		+2.2	
5638.8	8	0.8	0.4			5635.0	5637.5	5635,43		+3.4	

Mean, 0.3

Mean Shift, +1.4 t.m.

As the average deviation from the mean for a single star is only 0.3 t.m., while the mean shift of the heads of the flutings is 1.4 t.m. toward the red, there would appear to be some actual shift of the flutings in the star. The mean of Vogel's and Dunér's wave-lengths, as given above, indicates a somewhat larger shift toward the violet. It should be remembered, however, that these observations were made visually with very limited instrumental means, which did not permit a high degree of precision to be attained. Dunér's measures of the heads of the carbon flutings, for example, show the following range, which is surprisingly small, in view of the circumstances under which they were made:

$\frac{132}{152}$	Schjellerup Schjellerup Schjellerup Schjellerup	5640 5634 5625 5635	5168 5161 5169 5165	4715 4730 4721 4740	=
	•				

³⁰ End of plate; too faint for precise measurement.

Our measures of these heads for the same stars are:

132 Schjellerup	5638.7	5169.5	4738.7
132 Schjellerup	5638.2	5169.0	4738.5
152 Schjellerup	5638.1	5169.1	4739.2
152 Schjellerúp	5637.8	5168.6	

It is therefore evident, as might be expected from the use of photographic methods with a much more powerful telescope, that the precision of our determinations of the positions of the flutings is considerably higher than that of Dunér's measures. But it is nevertheless unsafe to conclude that the apparent shift of the flutings in the stars is actually due to some peculiarity of their carbon radiation; for, even with all the advantages of such determinations, the differences between the wave-lengths measured in the laboratory by excellent observers are quite as great as the differences between our wave-lengths for the stars and the laboratory determinations of Kayser and Runge. The measurement of the edge of a more or less diffuse band is always liable to error. But in the fourth-type stars the difficulty of measurement is greatly increased by the presence of closely adjoining, or even overlapping, bright and dark lines. Thus the lines of the b group have prevented us from obtaining a satisfactory measure of the head at λ 5165. Under these circumstances we are not inclined to adopt the conclusion that the carbon flutings in the fourth-type stars are actually displaced from their normal positions.

The long discussion on the origin of the Swan spectrum, which has played so conspicuous a part in the literature of spectroscopy, cannot be said to have terminated. This is hardly an appropriate place to present the numerous arguments advanced by the supporters of the various views which are still entertained. The assignment of these bands to earbon monoxide by Smithells,31 with its subsequent confirmation by Baly and Syers, 22 seemed for a time to set the matter at rest. But the recent work of Konen 33 has revived the discussion. Konen investigated the spectrum of the electric discharge in various liquids containing carbon, and obtained the Swan spectrum in many cases when every precaution had been taken to exclude oxygen. He is therefore inclined to the belief that the Swan spectrum is due to carbon alone, though he admits that if the discharge is very easily affected by minute quantities of oxygen, the Swan spectrum may be due to CO. Although Smithells apparently made out a fairly good case in assigning the bands of the Swan spectrum to carbon monoxide, we believe that the importance of the difficulties raised by Konen should not be underestimated. As he points out, the presence of considerable quantities of salts in the solution in which the discharge takes place may not suffice to bring out metallic lines, and the cyanogen bands do not appear in weak solutions of ammonia. It may be, however, that a very small amount of oxygen would act energetically, and suffice to give rise to the Swan spectrum. But the last word on this subject has not been said, and it is to be hoped that further investigations will be made on the spectra of the electric discharge in liquids.34

There seems to be little difference of view regarding the origin of the cyanogen bands, which we have identified in the blue part of the spectrum. These bands also appear in the spectra of stars of Secchi's third type, as may be seen from an examination of the spectra reproduced in Plate VII.

Some discussion on the probable condition of carbon in stars of the third and fourth types, as well as in the Sun, may be found on p. 128.

IDENTIFICATION OF THE DARK LINES

The following table, supplemented by remarks on the several elements identified, summarizes the results of our study of the origin of the dark lines. The numbers in the column headed "Widened in Sun-Spots" are those given by Maunder in the Greenwich Spectroscopic and Photographic Results

 $^{^{31}{}^{\}alpha}$ On the Spectra of Carbon Compounds, $^{\alpha}$ PhiL Mag., 6th Ser., Vol. I (1991), p. 176.

³²⁴ On the Spectrum of Cyanogon," Phil. Mag., 6th Ser., Vol. II (1901), p. 386.

^{33&}quot;Ein Beitrag zur Kenntnis spectroskopischer Methoden," Annalen der Physik, Vol. 1X (1902), p. 742.

 $^{^{34}\}mathrm{The}$ investigations by one of us on spark spectra in liquids were undertaken with a different object in view,

for 1880. The amount of widening is in tenths of the normal width; the next column gives the number of spots in which the line was widened, out of eighteen observed. In the red region the amount of widening is taken from Cortie's papers in *Monthly Notices*, Vol. XLIX, p. 410. and Vol. LXII, p. 516.

We are fortunately able to include in the table the wave-lengths of lines in the spectrum of a Orionis, as measured by the late Professor Keeler on photographs taken with a three-prism spectrograph at the Allegheny Observatory. These were sent to us by Professor Keeler in manuscript for the purposes of this comparison. At the Conference of Astronomers held at the Yerkes Observatory in 1897 he described his photographs of third-type spectra as follows:

The series of slides included the spectra of a Bootis, a Aurigae, a Tauri, a Orionis, a Scorpii, β Pegasi, and a Herculis, in which may be observed a transition from the second to the third type. In stars like a Orionis the lines are essentially those of the solar spectrum, but the relative intensities are not the same, and the general aspect of the spectrum is different from that of the spectrum of the Sun. The dark bands characteristic of third-type stars are well shown, though they are not resolved into lines. The separate lines are doubtless far beyond the resolving power of the instrument. These bands are not always terminated by strong metallic lines, and the appearance noted by early observers was probably due to insufficient optical power. The strong lines are mostly those of iron—apparently the low-temperature lines. Their relatively greater strength in the star spectrum gives to some well-known solar groups (notably the b group) quite an unfamiliar aspect.

In a Herculis only a comparatively few of the strong metallic lines remain, while the bands are deep, and beautifully distinct. It is impossible to avoid the conclusion that the edges of the zones bordering on the dark bands are bright—much brighter, that is, than the average continuous spectrum—and that they are due to a real predominance of emission at the regions of the spectrum in which they occur. They are not merely the effect of absorption in adjoining regions. In the ease of stars like a Orionis, of a less pure type, such a conclusion could not be safely drawn; yet the superior brightness of the spectrum at these places is obvious, and it can be traced even in second-type stars. May there not after all be bright regions in the solar spectrum, such as Draper supposed he had found in the places of the bright oxygen lines? And what is the relation between the dark bands in third-type stars and the bright zones which border on them?

It is an interesting fact that some of the bright lines, and also some of the dark lines in fourthtype spectra, similarly lie in close proximity to dark and bright zones.

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS

FOURTH-TYP	E STARS			NED IN SPOTS				Type III a Orionis—Keeler
Wave- Length	Intensity	Probable Origin	Amount of Widening	Number of Spots	REMARKS		Wave-Length	Intensity and Character
t.m. 3933 3967 4004.4 4018.3 4034.8	10 w	Ca (K) Ca (H) Fe, Ti Fe, Mn Fe, Mn		Lio	Strong lines See note 5	ncertain	t.m.	
4058.2 4078.7 4100.5 4132.3 4145.4 4197.5 4227.6 4254.4	3 4 1 10	Fe, Co, Cr Fe, Ti $H(H\delta)$ Fe Fe Ca Cr		No widened lines in this region	See note 5 { See note 1 } Characteristic lines	wave-lengths uncertain y 1 t.m.		
4274.0 4282.8 4289.0 4304 to 4313 4325.9	1	Fe, Cr, Ti Ca, Fe Ca, Cr, Ti		No widened I	G group	One-prism plate, w		
$4340.4 \\ 4354.2 \\ 4363.4$	3 2 2	$H(H\gamma)$ Cr			See note 5	[Ö .		

оскти-Түр	E STARS		WIDE: SUN-S	NED IN SPOTS			TYPE III a Orionis-Keeler
Wave- Length	Intensity	Probable Origin	Amount of Widening	Number of Spots	Remarks	Wave-Leugth	Intensity and Character
4383.7 4389.9 4392.0 4395.0 4398.0	6 2 6 7 1-2	Fe, V V Fe, Cr, V V, Cr, Ti			Carbon head	t.m.	
4101.0 4403.3 4405.1 4408.5	$\begin{bmatrix} \frac{4}{4} \\ 3-4 \\ 3 \end{bmatrix}$	$ \begin{vmatrix} Fe, V, Ni \\ Fe, Y \\ Fe, V \\ Ni \end{vmatrix} $			See note 4		
4410.9 4412.4 4415.3 4416.7 4420.6	2 3 2 2	$egin{array}{c} V,Cr \ Fe \ V \ V,Zr \end{array}$			See note 4		
4421.7 4423.0 4425.9 4427.7 4430.3 4433.9 4435.6	2-3 2-3 2-3 2-3 1 5	V, Ti Fe, Ti, Y Cu, Ti, V Fe, Ti Fe, V Fe, Ti Ca, V			See note 4		
4438.2 4444.6 4415.7 4447.4 4450.1 4455.3 4456.7 4458.1 4462.2 4466.9 4471.7 4475.3 4475.6 4480.2 4482.3	2-3 2-3 2 2 3 2 0-1 1 4 2 2 1 1-2 1 1-2 2-3	Fe, V Fe, Ti, V Fe Fe, Mu Ti, V Ti, Ca, Mu Fe, Ca V, Ti, Mu Fe, V, Mu Cr, Ti Fe V, Ti Ti, Co Ti Cr V, Fe Fe	V	No Widened lines in this region	See note 4		
4487.5 4489.7 4497.0 4501.8 4507.0 4509.8 4512.8 4516.2	2 2-3 4 2-3 3 1-2 2	Fe, V, Cr Ti, V, Cr Ti, V			Carbon head		
4518.3 4520.5 4523.1 4523.1 4528.7 4531.3 4533.4 4535.7 4540.5	2 1 3-4 2 2 1-2 3 4-5 2-3	Ti Fe Ti Ca, Cr, Ti V, Fe Fe, Cr Ti Cr, Ti Cr			Important Ti group See note 7		
4512.9 4544.9 4519.3 4552.8 4560.3	2 2 4 7 3 4	Fe, Cr Cr, Ti Fe, Ti Ti Fe, Ti Fe, Cs			See note 7 Carbon head Strongest Caline in Bunsen flame		

OURTH-TYP	E STARS		WIDE SUN-	NED IN Spots			Type III a Orionis-Keeler
Wave- Length	Intensity	Probable Origin	Amount of Widening	Number of Spots	Remarks	Wave-Length	Intensity and Character
t.m. 4571,8 4575,4 4577,5 4580,6 4584,7 4586,4 4587,4 4587,4 4602,9 4602,9 4602,9 4607,5 4610,3 4611,4 4613,9 4613,9 4613,4 4619,5 4622,9 4628,7 4628,7 4629,7 4634,4	$\begin{array}{c} 2\\ 1 - 2\\ 1 - 2\\ 1 - 2\\ 2\\ 2 - 3\\ 1 - 2\\ 2\\ 2 - 3\\ 1 - 2\\ 2\\ 2 - 3\\ 3 - 4\\ 1\\ 2\\ 2 - 3\\ 3 - 4\\ 3 - 4\\ 1\\ 1\\ 4\\ 1\end{array}$	Ti, Cr Fe V Cr, Fe, V Fe, Ca Fe V, Ca Fe Cr, V V Cs Cr, Ni Fe Ni Fe, Sr Fe Cr, Fe Cr, Fe Cr Ti, Co			Carbon head 4609	t.m.	
4637.6 4640.4 4646.4 4654.1 4654.1 4668.1 4674.9 4688.6 4691.1 4672.0 4702.0 4702.0 4714.7 4715.6 4722.6 4722.6 4729.1 47432.5 4743.9 4743.9 4751.6 4751.6 4751.6 4766.5 4776.8 4784.5 4784.5 4888.6	1	Fe Fe, V, Ti Cr Fe Ti Cr Fe, Ti, Ni Fe, Ti Ti Fe Ti, Fe Cr Ni Ni Ni Ni Ni Ti, Zn Fe Ni Fe V Fe, Cr Ti W Fe, Cr Ti Ti Fe, Cr Ti Ti Fe, Cr Ti Ti Fe, Cr Ti Fe, Cr Ti Fe, Cr Ti Fe, Cr Ti Fe, Cr Ti Fe, Cr Ti Fe, Cr Ti Fe, Cr	No widonol lines in this rection		Carbon head 4716 Carbon head \(\frac{4738}{4744} \) Carbon head 4754 in 152° Schj.	Bright zone: dark lines may be obscured Dark band, continuous spectrum or displaced by bright lines	

эвти-Түр	E STARS		WIDES SUN-S					TYPE III a Orionis—Keeler
Wave- Length	Intensity	Origin	Amount of Widening Number of Spots		Remarks	Remarks		Intensity and Character
t.m. 4855.5 4859.6 4861.3	1-2 1 10	$Ni \atop Fe \atop H, (Heta)$			Bright in 280 Schj.	hseured	t.m. 4861.5	About the same as Sun
4865.1 4867.7 4871.5 4875.5 4878.3 4881.6 4886.0 4890.3 4901.1 4906.4 4910.3 4925.2 4934.1 4945.6 4958.4 4958.4	2 123 2-3 2 3-4 4 1-2 2 3-4 2 3-4 2 2 3-4 2 2 3-4 2	V (To Le V) (To Le V) (To Le V), Fe Fe, Y V (To V) Fe Fe, Y V Fe Fe, Ea Fe, Ba	4 6 2 5 6 2 7 2-3 5 6 4	7 14 3 13 9 2 4 13 6 13	note 5	Bright zone: dark lines may be obscured or displaced by bright line	4864.4 	Stronger than Sun Same as Sun Strong in star Sun? Same as Sun Triple, as in Sun, but stronge Same as Sun Stronger than Sun Same as Sun Same as Sun Same as Sun Stronger than Sun Stronger than Sun Group, same as Sun Group, same as Sun Edge of band. All in dark band
							34 lines no	t in Type IV, in dark band
5167.2 5173.4 5183.8	2 5 3	$Fe, Mg, (b_4)$ $Ti, Mg, (b_2)$ $Mg, (b_1)$	5 8 9 5	15 15 15	Carbon head 5164, see Bright space See note 6	e note 6 {	5167.6 5169.2 5171.8 5172.9 5183.8	Very strong, same as Sun Stronger than Sun Same as Sun Same as Sun
5189.2 5193.3	1-2 3 4	$\left\{egin{array}{l} F_{i}^{gg}, \langle G_{1} \rangle \\ F_{i}^{g}, \langle T_{i} \rangle \end{array}\right\}$	5-6 4-5	7			5191.6 5192.5 5195	Same as Sun or a little stronger
5202.4 5205.8 to 5210.1	1 / 10	Fe Cr, Fe, Ti	6 	12	Very strong line See notes 3, 4, and 7		5204.8 5206.2 5208.6 5210.6	Equal lines stronger than Su Weak in Sun
5216.7 5226,5	7	Fe Cr, Fe, Ti	5-6	8	See notes 3 and 4		5219.6 5224 to 5227.2	Not in Sun Group, stronger than Sun
5234.0 5239.8 5217.4 5251.5 5255.6	3 2 3 4 3 1 1-2	Γ Cr, Fe, Ti Fe, Ti Cr, Fe	4-5 2 1 3 5	3212121 5	See note 4		5247.7 5250.6 5252.3 5255.1	Strong, weak in Sun Stronger than Sun
5265 .9 5270 .4	1 4-5	Ca, Cr	2-3 5-6	7 12	E. See notes 2 and 4		5261.1 5269.7 5270.4	Stronger than Sun

FOURTH-TYP	E STARS		WIDEN SUN-S				Type III a Orionis — Keeler
Wave- Length	Intensity	PROBABLE ORIGIN	Amount of Widening	Number of Spots	Remarks	Wave-Length	Intensity and Character
t.m. 5283.6	1–2	Fe	-1	5		t.m.	Stronger than Sun
5298.2 5302.5 5307.5 5315.2 5320.8 5325.3	$ \begin{array}{c c} 3 & 4 \\ 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} $	Cr, Ti Fe Fe Fe Fe Co	5 5 8	5 1	Strong Cr group; see note 3	5297.0 5298.0	Same as Sun
5329.0 5336.9 5341.5	$\begin{array}{c} 3-4 \\ 2 \\ 3 \end{array}$	Cr, Fe Ti Fe, Mn	6 5 3-4	3 6 6	Strong Cr group, note 3	5341.2 5346.0	Somewhat stronger than Sun Stronger than Sun Stronger than Sun
5350.0 5362.7 5366.6	$\frac{3}{1}$	Ca, Fe Fe, Co	$\frac{5}{2-3}$	6 3		5348.5 5319	A little stronger than Sun
5371.7	7.8	Fe, Cr	6	8	See note 4	5370 5371.6	Same as Sun Stronger than Sun
5377.4 5384.7	2-3 1	Fe, Mn	8	1		5376.0	Not in Sun
$5391.1 \\ 5397.3$	1 4	Fe, Ti	$\begin{vmatrix} \frac{4}{6} \end{vmatrix}$	3 6		5397.2	Stronger than Sun Weaker than Sun
$5406.4 \\ 5408.3$	$\frac{1}{2-3}$	Fe	8	6		5404 5406	Stronger than Sun
5410.4	2-3	Cr	5 6	5		$5410.0 \\ 5411.1$	Stronger than Sun Same as Sun
$5414.2 \\ 5420.2$	1-2 3		1	2		5424.2	Same as Sun
5425.1	1	Ni				5426.5	Not in Sun
5430.2 5434.3	3 1-2	Fe, V	6	6 5		5429,9 5433-0 5134,7 5436	Stronger than Sun Stronger than Sun Stronger than Sun Same as Sun
5438.6	1-2	Fe, Ti				5145.2	Same as Sun
5447.8 5456.8	7	Fe, Ti	G	5	See note 1	5447.0 5455.7	Stronger than Sun, edge of band Stronger than Sun
5460.9	2-3 1-2					$5461.0 \\ 5463.0$	Not in Sun Weaker than Sun
5467.3 5474.5 5478.0 5483.0	1-2 1-2 1-2 1-2	Fe Fv Ti Fe	$\begin{array}{c c} & 1\\ & 2\\ & 3-4\\ & 3 \end{array}$	1 1 1 1		5477	Same as Sun
5498.0 5501.8 5507.1 5512.4 5524.3	1-2 4 2 1 2-3 1-2	$egin{array}{c} Fe \ Fe \ Fe,\ Ti \ Fe \end{array}$	5-6 5 5	4 5 5	Carbon head 5505	5497.6 5501.6 - 5507.0	Stronger than Sun Stronger than Sun Stronger than Sun
5525 4 5528.6 5533.9 5539.5 5546.6	1-2 1 1 7 1-2	$egin{array}{c} F_e \ Mg \ F_e \end{array}$	6 5	1 6	Carbon head 5543	5528,5?	Same as Sun
5548.3 5552.5 5556.4 5562.6 5567.0 5570.2	1 1-2 1 2 1	Fe Fe	1 2	1 1	Carbon		Region here same as Sun

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS — Continued

Fоскти-Ту	PE STARS		WIDE SUN-S	SED IN				Type III a Orwais – Keeler
Wave- Leugth	Inten- sity	Probable Origin	Amount of Widening	Number of Spots	Remarks		Wavi -Length	Intensity and Character
t.m, 5573,7 5576,2 5583,9 5589,2 5594,7	$egin{array}{c} 1 \\ 8 \\ 1 \\ 1-2 \end{array}$	Fe Ca Ca	1	1 5	Carbon head 5587	Carbon flutings	t.m. 5598.5	Region here same as Sun Stronger than Sun
5609.1 5615.7 5620.3 5625.1 5631.0 5614.2	$\begin{array}{ccc} & 2 & \\ & 1 & \\ & 2 & 3 \\ & 1 & \\ & 10 & \\ & 1-2 & \end{array}$	Fe 1', Fe Fe Ti	4 2 2 1	4 1 3	See Note 8 Carbon head 5638	Carbon	5615.7 5624.7	Same as Sun Stronger than Sun
5050.1 5058.2 5071.3	$1 \\ 1-2$ $1-2$	Fr 1	3	3		lentifica- rtain	5658.5 5663.0 5669	Stronger than Sun Stronger than Sun
5675.5 5676.7 5696.7 5708.3	$\begin{array}{c c} & 2 \\ 1-2 \\ & 1 \\ & 2 \\ & 3 \end{array}$	Ti Fe, Ti	2	3		Bright zone, identifica- tions uncertain	5682 5709.6	Strong, diffuse band not Sun Stronger than Sun
5712.8 5721.3 5731.6 5743.7	1-2 3-1 2 2	F_{V},V	3	2		Brig	5712 5727.2 5732.0	Stronger than Sun Stronger than Sun Stronger than Sun
5749.4 5751.7 5762.5 5771.0 5778.0 5784.8 5789.6 5798.1	1 2 1 3 1 1 1	Fe, Ti Fe Fe	1	2				
5822.9 5848.5	1	Fe					5856 5860 5865 5869 5875 5882	
5921.9 5921.9 5945.9 6035	10	Na (D)	5 5 10		Widened lines obs. by Co	rtie	5890.2 5896.4 5911	{ Stronger than Sun Sun?
6059 1 6098,5 6119 0 6190,3 6269,6 6357 6 6425,3 6488	1 3 2 2 10 3 w	Sr = Sr CaO, V	10 5 6 6 7 4 5 10 2 3 6 7		Broad B line Broad B line Very strong. See note 1			

^{1.} Calcium is well represented in these stars, the only contradictory evidence being the possible absence of the lines $\lambda 5260$ to $\lambda 5265$ (lines but slightly broadened in Sun-spots), which are probably obscured or displaced by emission spectrum. The line $\lambda 4226$ 9 is nearly as strong as H and K, suggesting a low temperature. The

strong flame lines at λ 6183 and λ 6202 fall on bright lines, but the very strong star line at λ 6270 may include the flame line at λ 6265, attributed by Eder to CaO.

- 2. The group at $\lambda 5270$ consists of two strong Fe lines and one strong Ca line. In the are, with iron or carbon poles, the two iron lines are of equal intensity, but they are so different in the spark that the are intensity (relative to the spark line as unity) is 0.9 for the line $\lambda 5269.7$ and 5 for $\lambda 5270.5$. When titanium carbide (85 per cent. Ti) was placed on the lower carbon of the arc lamp, with four times the original exposure the line $\lambda 5269.7$ kept its intensity, while $\lambda 5270.5$ dropped to one-third. The wave-length of the center of the strong star line corresponds with the Fe line, which is strengthened in the arc, but weakened in the presence of Ti. This is also the wave-length of the Ca line.
- 3. Chromium.—The chromium lines in the region $\lambda 4400$ to $\lambda 4900$ are relatively weak in the are and not represented by strong star lines. On the other hand, in the region $\lambda 5100$ to $\lambda 5700$ the most prominent chromium lines are relatively very strong in the arc, are usually widened in Sun-spots, and are represented by strong star lines. For example, the group $\lambda 5204$ to $\lambda 5208$ coincides very nearly with one of the most intense star lines outside the carbon flutings. The chromium line at $\lambda 5225.1$ seems to form with the iron lines at $\lambda 5227$, the strong star line $\lambda 5224.4$ to 5228.6. The groups $\lambda 5296$ to $\lambda 5298$ and $\lambda 5328$ to $\lambda 5329$ coincide closely with strong star lines. The principal item of contradictory evidence is the lack of a star line to match the chromium group $\lambda 5275$ to $\lambda 5276$, but it will be noticed that this group is but slightly widened in Sun-spots.
- 4. Iron is doubtless present in the star, but represented by comparatively weak lines. The principal cases in the blue region where the star lines are strong are $\lambda\lambda$ 4405, 4415, 4427, 4462. In the yellow-green region numerous Fe lines, strong in the arc and broadened in Sun-spots, correspond with strong star lines; for example: associated with Ti at $\lambda\lambda$ 5251, 5370, 5447; with Cr and Ti at $\lambda\lambda$ 5208, 5227; and with Ca at λ 5270.
- 5. Hydrogen.—Of the hydrogen lines $H\beta$ is present as a strong bright line in some plates of 280 Schjellerup and absent in others, but never appears as a dark line. $H\gamma$ is present and $H\delta$ prominent in the violet plates of 19 Piscium as dark lines.
 - 6. Magnesium.—The b group is a prominent feature of the spectrum, and numerous other lines are present.
- 7. Tilanium.—The group λ 4512 to λ 4536 gives striking evidence of the presence of titanium in the star. Of the eleven lines, ten are strong in the arc and represented in the star, while the line λ 4534.2 alone is weak in the arc and absent in the star. For remarks on the behavior of the lines of this group in other stellar types, see p. 134. In the yellow region the titanium lines which are strong in the arc and much widened in Sun-spots are represented by strong star lines; for example, the line λ 5210.6, which according to Cortie 35 was the most widened line between D and b in the spot of May, 1901, is the strongest star line, and no line which is missing in the star has an intensity greater than 1 in the arc, or a widening greater than 4 in Sun-spots.
- 8. Vanadium.—The presence of vanadium seems well attested. The triplet at $\lambda 5624$ –5628 is especially remarkable, as it is very strong in the arc and coincides closely with the strong star line whose limits in the best plates are $\lambda 5623$ –5628. In the vanadium arc used the vanadium lines are weak in the region $\lambda 5100$ to $\lambda 5500$, and strong in the region $\lambda 5500$ to $\lambda 5900$. These strong lines are well represented in the star or obscured by the bright lines and zones. In general the vanadium lines which are missing in the star are weak in the arc.

No vanadium lines are identified as among those widened in Sun-spots by Maunder in the *Greenwich Results* for 1880. Photographs taken at the Yerkes Observatory show numerous vanadium lines widened, and it is now well known that vanadium lines are very characteristic of Sun-spots.

LINES WIDENED IN SUN-SPOTS

The agreement of the fourth-type with Sun-spot spectra is especially noticeable in the region $\lambda 5160-5500$. The numerous lines in the region $\lambda 5500-5700$ which are widened in Sun-spots are masked in the stars by the carbon flutings, so that but few coincidences are found. Taking the data from the *Greenwich Results* for 1880, the forty-six lines which are most strongly and frequently widened in the spots are found to be the most prominent dark lines in the star. They are identified as follows:

Fe -				$22 ext{ lines}$	Mg	-		-	-		-	3 lines
Ti	-		-	9 lines	Ca -		-	-		-		2 lines
V -		-		5 lines	Mn	-		-	-		-	1 line
Cr	_		_	4 lines								

²⁵ Monthly Notices, Vol. LXII, p. 516.

THANIUM A comparison of Hasselberg's list in the region λ 5186–5823 gives the following results:

Lines Found in	Lines Not Found in the Stars	
Widened in spots. 23 Mean number of spots. 4 Mean widening. 5 Mean intensity in star. 3		Widened

It is unfortunate that a similar comparison cannot be given for vanadium. Maunder does not give wave-length determinations, and his tables of vanadium lines were apparently inadequate for the identification of the fainter lines, which are frequently greatly widened in spots.

The following table contains Young's observations of lines widened in Sun-spots, compared with the fourth-type lines:

YOUNG'S LINES WIDENED IN SUN-SPOTS

Wave-Length Reduced to Rowland's Scale	Amt. Wid.	Wave-Length and Character in Star (Dark line unless otherwise stated)	Wave-Length Reduced to Rowland's Scale	Amt. Wid.	Wave-Length and Character in Star (Dark line unless otherwise stated)
5191 5	2	B? lines	5424.7	3	25.1
5192.7	2	B? lines	5129.9	3	30.2
5198.9	3	B? lines	5434 1	4	34.3
5202.5	•)	02.4	5447.0	4	46 to 49
5204.7	4		5455.8	3	56.77, shifted by B at 53.8
5208.6	4	(04.6 to 11.5	5487.9	3	B 86.5
5227.2	->	124 4 4 4 4 2 4	5197.7	2	98 0
5230.0	$\bar{2}$	{ 24 1 to 28.6	5501.6	2	01.8
5233.1	•)		5532.7	- 9	1
5266.8	2		5572.8	2 2	(Carbon fluting
5269.5	$\bar{3}$	1.00	5584.8	1	1/20 0 1 2 2 0 1 0 2 0 1
5270.5	3	⟨ 69 to 71	5586.6	3	$\frac{1}{6}$ 83.9; strong, limits 81.9 to 85.9
5328.17		'	5592.3		
5328 3 \	$\overline{2}$		5598 3	2 2	& B zone
5340.2	+3		5602.9	1)) Bane
5341.2	$\overline{2}$	41.5	5615.7	ã	15.7
5353.5	-5	11.0	5624.2	2	18.6 to 26.2
5370,1	ī	1	5662.7	4	1
5371.6	ĵ.	{ 70.1 to 73.7	5706.3	4	(B zone
5397 2	7	97 3 w	6065.7	3	59 w
5404.2	i		6136.8	$\frac{3}{3}$	***************************************
5405 9	4	(06.4)	6191.7	5	90. narrow, between two B line
5415,6	3	14.2	6358.9	-	eo, millow, between two D init

Young's list contains forty-six widened lines between λ 5167 and λ 6357. Of these twenty-five appear in the star (53 per cent.), while twelve are obscured by bright lines. In the region best photographed and most favorable for identification, λ 5167 to λ 5531, Young has thirty-three widened lines, of which twenty appear in the star (60 per cent.) and three are obscured by bright lines.

IDENTIFICATION OF THE BRIGHT LINES

We have met with little success in attempting to identify the bright lines in fourth-type spectra. If numerous Sun-spots exist on these stars, it might be expected that violent eruptive phenomena would accompany them, and perhaps be recognizable spectroscopically. But a careful comparison with the chromospheric lines has given no evidence of genuine coincidences, except in the case of $H\beta$, which is bright in a few of the fourth-type stars. Comparisons with the spectra of nebulæ, the aurora, various terrestrial gases, etc., have resulted similarly. Only in the case of the Wolf-Rayet stars is there any evidence of a common origin, and here it is too insecure to have much weight. The following table contains the results of a comparison of some of the Wolf-Rayet lines, as measured by Campbell, with bright lines in fourth-type spectra.

In examining this evidence it should be borne in mind that the "very bright" (++) Wolf-Rayet lines $\lambda\lambda$ 4442, 4688, and the "bright" (+) lines $\lambda\lambda$ 4480, 4504, 4626, 4636, are certainly absent from fourth-type spectra. It will be noticed that these include Rydberg's principal series hydrogen line at λ 4688, which is one of the most conspicuous and characteristic lines of the Wolf-Rayet stars. In some of them, however, it is inconspicuous, and in $SDM.-11^{\circ}4593$ it is not observable visually, though shown on Campbell's photographs. λ 4442 is very bright in many of the Wolf-Rayet stars, but in some of them it was neither seen nor photographed. From the range of Campbell's measures it seems quite improbable that the Wolf-Rayet line λ 4466 can coincide with the fourth-type line λ 4464.0. The Wolf-Rayet line λ 4473 is presumably the helium line λ 4471.7; hence it probably

F	OURTH-TYPE ST	FARS		WOLF-RAYET STARS—CAMPBELL					
Wave	ve-Length Intensity No. Stars						No. Stars	Remarks	
Mean 4464.0 4473.6 4508.6 4517.3 4539.0 4596.1 4615.1 4653.0 4861.3 5412.4 5472.3 5592.4 5693.8	Range 63.8-64.1 73.6-73.6 08.2-08.7 17.1-17.7 38.7-39.2 95.8-96.2 15.0-15.2 52.8-53.1 60.7-61.5 12.3-12.6 71.8-72.4 91.8-93.2 93.2-94.4	4 5 4 4 2 3 4 5 3 2 9 2 3 4 4 2 3 6	7 2 4 5 6 7 6 3 4 5 6 7 8	Mean 4466 4473 4509 4517 4541 4596 4615 4652 4862 5472 5593 5693	Range 65-67 73-74 04-10 15-18 34-44 92-98 14-16 50-54 10-16 69-74 90-96 90-95	+++++++++++++++++++++++++++++++++++++++	4 2 (Dark in 3) 4 (Dark in 1) 4 21 5 4 14 21 24 13 15 18	 Helium line λ 4471.7 Blend of λ 4504 with λ 4517 Second series H line λ 4542.0 Hβ Second series H line Sharp in DM. + 30° 3639, where wavelength is 5694.0 	

does not correspond with the fourth-type line λ 4473.6. The Wolf-Rayet line λ 4541 is undoubtedly a line of the second series of hydrogen; the mean wave-length of this line, as determined by Messrs. Frost and Adams on ten plates of four *Orion* stars, is 4542.0; hence it does not correspond with the fourth-type line λ 4539.0. This fact, together with the absence of the λ 4688 line of the principal series, makes it improbable that the agreement of the fourth-type line λ 5412.46 with the second series hydrogen line λ 5412 can have any meaning. On account of the well-known relationship between Wolf-Rayet and *Orion* type stars, it may be that the Wolf-Rayet lines $\lambda\lambda$ 4596, 4615, 4652 correspond with the oxygen and nitrogen lines $\lambda\lambda$ 4596.29 (O), 4614.0 (N), 4650.9 (O). This would admit of the presence of the first of these lines in fourth-type stars, but would exclude the second and third. In this connection it should be added that oxygen and nitrogen lines (not present in Wolf-Rayet stars) may possibly coincide with fourth-type lines as follows:

Oxygen and Nitrogen	Four	TH-TYPE STARS	
Wave-Length (Frost and Adams)	Wave-Length	Intensity	No. Stars
4591.07 (O)	4590,3	3	3
$4621.55\ (N)$	4621.5	5-6	5
4630,7 (N)	4631.2	4	5
4638,94 (O)	4638.9	4	8
4641.89~(O)	4642.1	-1	6
4661.73 (O)	4660.6	2.3	3

In the first case the agreement is not satisfactory; in the last the line is so broad in the stars that it might include the oxygen line. The other four lines are conspicuous in most of the stars, and the close agreement of wave-lengths may perhaps be significant. It should be remarked, however, that many of the most prominent lines of oxygen and nitrogen do not appear among the fourth-type lines.

³⁷ Wave-lengths of Frost and Adams; identifications of Neovius.

With further reference to the Wolf-Rayet stars, it may be said that the generally broad and diffuse character of the lines, while it undoubtedly complicates the comparison by rendering the measures less accurate, may not preclude coincidence, in some cases at least, with the narrower fourth-type lines; for Campbell states that in the Wolf-Rayet star $DM.+30^{\circ}3639$ the lines are better defined than in any of the other spectra, and that $\lambda 5694$ is so sharp that it appears to be monochromatic. The close agreement of the wave-length of this line, determined from a long series of measures of this star made by Campbell, with that of the very strong and characteristic fourth-type line $\lambda 5693.8$ suggests a common origin.

Since $H\gamma$ and $H\delta$ have been found with the two-foot reflector to be present as very prominent dark lines in the spectrum of 19 Piscium, while $H\beta$ is present as a strong bright line in 280 Schjellerup, it becomes a matter of great interest to determine the character of the $H\beta$ line in the spectra of other stars of the fourth type. From an examination of the catalogue of lines (see line No. 278, p. 100) it will be seen that $H\beta$ appears to be absent from the spectra of 19 Piscium, 318 Birmingham, 78 Schjellerup, and 132 Schjellerup, while it is recorded as follows in the spectra of four stars:

Star	Intensity	Character	Wave-Length
280 Schjellerup	9	13	4861.4
78 Schjellerup	22	nn B	4861.5
115 Schjellerup	"Max"	В	4861.5
152 Schjellerûp	1 - 2	n B??	4860.7

Hitherto the presence of dark $H\delta$ and $H\gamma$ lines in the spectra of fourth-type stars has been proved only in the case of 19 Piscium.³⁹ In the spectrum of this star $H\beta$ is very faint or absent. Thus the condition of hydrogen in this star (and presumably in others of the fourth type) resembles its condition in the Wolf-Rayet stars, where the ultra-violet lines of this gas are dark, while some of the less refrangible lines are absent or bright.⁴⁰

We would base no final conclusion on the data now available, but we believe that the slender evidence of similarity of spectra here presented, together with the collateral evidence afforded by the peculiarity of the hydrogen radiation in both types of stars, and their tendency to cluster in the Milky Way, should lead to a thorough investigation of the bright lines in the future. Some discussion of the bearing of these matters on stellar evolution and the classification of stellar spectra may be found elsewhere.⁴¹

The bright $H\beta$ line in 280 *Schjellerup* seems to vary in intensity. The following photographs are available to test the question, and seem to leave no doubt regarding the fact, though the dispersion of the one-prism plates is insufficient to show minor changes:

INTENSITY OF THE BRIGHT $H\beta$ LINE IN 280 SCHJELLERUP

Plate No.	Date	Intensity	Plate No.	Date	Intensity
	y. m. d.			y. m. d.	
G-202	1898 6 3	Not shown	346	1899 10 18	10
234	9 7	10	360	12 21	Not showr
245	10 - 26	Not shown	366	12 28	
246	(10 31)		307	12 29	** **
240	111 15		370	1900 1 2	
274	1899 1 14	** **	385	2 - 15	44 44
345	10 12	** **	388	2 25	** **

Pickering states that the $H\beta$ line is of variable intensity in the spectrum of the star A.G.C. 9181.

³⁸ Loc. cit., p. 461.

 $^{^{39}}$ With existing instruments the experiment of photographing the violet region of the spectrum of 280 Schjellerup (in which $H\!B$ is sometimes bright) would be rendered extremely difficult by the faintness of this star.

⁴⁰ Sec p. 130,

⁴¹ See p. 134.

³² Astrophysical Journal, Vol. VII (1898), p. 139.

VARIABILITY OF FOURTH-TYPE STARS

There are 237 stars of this type included in Espin's Revised Catalogue of the Stars of the IV Type, ⁴³ published in 1898. Of this number twenty-eight are recognized as variable in Chandler's Third Catalogue, and twenty more are included in the supplement issued in 1901 by the committee of the Astronomische Gesellschaft. The total, forty-eight, is 20 per cent. of the whole number. The amount of variation, as given by the above catalogues, averages 2.4 magnitudes for forty-one stars. The range of variation is distributed as follows:

Range	Number of	Percentage		
RANGE	STARS	Type IV	All Stars	
Less than 1 mag	1	2	10	
I mag. and less than 2	$\frac{13}{12}$	$\frac{32}{29}$	18	
3 mag, and less than 4	5	$\frac{17}{12}$	50 18	
5 mag. and greater		•	137	

Column two gives the number and column three the percentage of stars having each range, and the last column gives corresponding percentages from Chandler's table ⁴⁵ for all the variables well determined in his *First Catalogue*. In comparing the two columns of percentages, it should be remembered that Chandler's stars include the short-period variables, of small range, giving a maximum to the curve at a range between 1 and 2 magnitudes; but none of these short-period stars are of Type IV. Leaving these out of consideration, the maximum range for variables in general is about 4 or 5 magnitudes, but for Type IV the maximum range is about 2 magnitudes.

It now becomes interesting to consider the proportion of variables among stars of Types III and IV, as shown in the following table:

List	Number of Stars	Number of Variables	Percentage	Types	
Espin ⁴⁶	237 297	48 45	20 15	$_{\rm III}^{\rm IV}$	
Frost-Scheiner *	1,217	125	10	III an	

The above tables are necessarily incomplete, and it is probable that the number of variables in each class will be increased as observations are multiplied. But, as they stand, the tables are fairly comparable, and show that the tendency to variability is somewhat greater in stars of Type IV than in those of Type III.

DISTRIBUTION OF FOURTH-TYPE STARS

The distribution of 242 stars of the fourth type with respect to the Milky Way was investigated by Mr. Parkhurst in 1898 and the results were presented at the Second Conference of Astronomers in August of that year. In 1899 Rev. T. E. Espin published in the Astrophysical Journal (Vol. X, p. 169) the results of a similar count of 224 stars, showing close agreement with Mr. Parkhurst's count. Both show that the distribution in north and south galactic latitude is quite similar, and that the stars are scattered quite evenly in the zone of latitudes greater than 30°. The following table gives the results found by Espin and Parkhurst, also the distribution of 9676 Durchmusterung stars of magni-

⁴³ Monthly Notices, Vol. LVIII (1898), p. 443.

⁴⁴ Astronomical Journal, Vol. XXII, p. 77.

⁴⁵ Ibid., Vol. 1X, p. 2.

⁴⁶ Loc. cit., p. 444.

^{47 &}quot;Sur les étoiles à spectres de la troisième classe," p. 15.

⁴⁸ Astronomical Spectroscopy, p. 402.

tudes 6.5 to 9.5, from Seeliger's count in the second Munich catalogue. The "Density" column gives the number per unit area (the sphere being taken as unity); the column "Condensation" gives for each zone the ratio of its density to the density in the zone >30°.

Zone	NUMBER	NUMBER OF STARS		DENSITY		Condensation		
Galactic Lat.	Espin	Parkhurst	Espin	Parkhurst	Espin	Parkhurst	DM. Stars	
0° - 5° 5 - 10 10 -20 20° -30° >30°.	123 43 27 31	92 46 58 17 29	708 256 171 62	1,060 532 345 108 58	$ \begin{cases} -11.4 \\ -4.0 \\ -3.0 \\ 1.0 \end{cases} $	18.3 9.2 6.0 1.9 1.0	$\begin{array}{c} 2.7 \\ 2.6 \\ 2.1 \\ 1.5 \\ 1.0 \end{array}$	
Total	224	242						

PHYSICAL CONDITION OF FOURTH-TYPE STARS

The results described in the foregoing pages enable us to draw certain conclusions regarding the physical and chemical condition of fourth-type stars. It has long been assumed, perhaps on insufficient grounds, that the red color of these stars, indicating great general absorption in their atmospheres, might be considered as an index to a temperature lower than that of the Sun. Although we have been able, by giving a very prolonged exposure, to photograph the H and K lines in the spectrum of 19 Piscium, the faintness of this region in fourth-type spectra is so great that with ordinary exposures no trace of it is shown. With this marked increase of general absorption we also find evidence of increased selective absorption. This is most conspicuous in the case of the carbon bands and the violet cyanogen band, which are wholly absent from the solar spectrum. The metallic lines are also in many cases much stronger than in the solar spectrum. These changes of intensity, for the most part, are such as would probably result from the cooling of a star like the Sun, especially if such cooling were accompanied by the development of extensive Sun-spots.

Let us now inquire more closely into the physical constitution of the fourth-type stars, at first with special reference to the level in their atmospheres at which the carbon absorption occurs. It is fortunately possible to answer this question with some definiteness, in view of certain observations of the carbon bands in the solar chromosphere made by one of us.⁵⁰ According to Lockyer's early view, the carbon flutings in the solar spectrum were due to the absorption of carbon vapor in the corona, at some distance above the chromosphere.⁵¹ The large solar image given by the forty-inch Yerkes refractor permitted a test of this question to be made in 1897. With excellent atmospheric conditions and a very narrow tangential slit the numerous fine lines which constitute the green carbon fluting were seen to be bright at the very base of the chromosphere. As the least displacement of the instrument caused the lines to disappear, it was evident that the layer of carbon vapor is very thin, probably not exceeding a single second of arc in thickness. Subsequently, under exceptionally favorable conditions, seven lines in the yellow earbon fluting were seen as bright lines in the chromosphere. At the eclipse of January 22, 1898, the arcs corresponding to the heads of the cyanogen fluting at λ3883 were among the shortest photographed in the flash spectrum.⁵²

The probability thus derived from solar observations that the earbon vapor in fourth-type stars lies in close contact with the photosphere is strengthened by the fact that several of the bright lines in fourth-type spectra are superposed upon the carbon flutings. It would thus appear that the unknown gases which produce these bright lines rise above the low-lying earbon vapor, just as hydrogen, helium,

⁴⁹Throughout this discussion the bands or flutings of the Swan spectrum are referred to for convenience as the "carbon" bands. These may be due to some compound of carbon; presumably, if this is the case, to carbon monoxide (see p. 116).

⁵⁰ GEORGE E. HALE, "On the Presence of Carbon in the Chromo-

sphere," Astrophysical Journal, Vol. VI (1897), p. 412; Vol. X (1899), p. 287.

⁵¹ Proc. Roy. Soc., Vol. XXVII, p. 308,

⁵² LOCKYER, "Total Eclipse of the Sun, January 22, 1898 Observations at Viziadrug," Phil. Trans., Vol. CXCVII (1901), p. 203.

and calcium do in the solar chromosphere and prominences. We also find that many of the dark lines of iron and other elements are absent from fourth-type spectra, their places being covered by overlapping bright lines. Thus again, as in the case of the Sun, we have evidence that carbon in some form is associated with low-lying metallic vapors, above which rise the gases whose radiations reach us without reversal.

It is a curious fact, perhaps not without significance, that the cyanogen flutings beginning at \$\lambda4609\$ in fourth-type spectra do not appear to increase in strength from star to star, in harmony with the increase of intensity observed in the case of the carbon bands (see Plate VIII). This is the more remarkable when it is remembered that the cyanogen absorption in these stars is much stronger than in the case of the Sun, where these violet flutings appear to be entirely absent. For some reason the maximum intensity of these flutings seems to have been attained in so slightly developed a fourth-type star as 280 Schjellerup. In this connection the presence of these flutings in third-type stars, as indicated in Fig. 3, Plate VII, is of interest, particularly in view of the fact that the carbon (Swan spectrum) flutings seem to be absent from stars of the third type.

Further evidence of increased absorption, and possibly of decreased temperature, is afforded by the behavior of the metallic lines in fourth-type stars. Calcium offers an interesting case. It is well known that in the laboratory the line at $\lambda 4227$ increases in relative strength as the temperature of the calcium vapor falls, and also, according to Huggins, as the density of the calcium vapor increases. In the Bunsen burner this is a conspicuous line, while H and K are absent. The great strength of this line in the spectrum of 19 Piscium (Fig. 2, Plate XI) should afford a valuable criterion as to the physical condition of these stars. It should be noted in this connection, as the figure indicates, that this line is equally strong in the spectra of third-type stars. The very strong and broad line at $\lambda 6270$ in the spectrum of 152 Schjellerup may possibly coincide with the strong line in the flame spectrum ascribed by Eder and Valenta to calcium oxide.

The tables of identifications contain more evidence of the same character. Perhaps the most interesting case of this kind is the variation of the relative intensities of the titanium lines in the group λ 4534–4536, referred to more particularly below in connection with the question of the classification of fourth-type stars. The lines of this group are strongly developed in fourth-type spectra, with the exception of λ 4534.14, which is the only line of the group present in the spectra of the early *Orion* stars. This is an "enhanced" line, which in the spark spectrum is greatly reduced in intensity when the self-induction of the secondary circuit is increased. The changes in this group may be due to electrical rather than to thermal causes, but they at least harmonize with what might be expected to result from a reduction of temperature.

The possibility that spots like those on the Sun may form a characteristic feature of fourth-type stars is strongly suggested by the evidence which we have accumulated (p. 123). It is hardly necessary to say, however, that much more evidence in this direction is needed. In view of the ease with which Sun-spot spectra may be observed with instruments of moderate size, our knowledge of the widened lines is surprisingly meager. Much systematic work on spot spectra must therefore be done before the data desired for a thorough study of the question will become available. If the lines widened in Sun-spots are to be regarded as characteristic of fourth-type stars, they seem to be equally characteristic of stars of the third type. This fact will permit a rigorous test of the identification of the lines to be made, since several stars bright enough to be photographed with very high dispersion occur among the stars of the third type. It is hoped that the investigations now in progress at the Yerkes Observatory on the spectra of Sun-spots, and those which may soon be undertaken here with a colostat reflecting telescope and concave grating spectrograph on the spectra of a few of the brightest third-type stars, may permit a final decision to be reached regarding the presence of the

⁵³ It is hoped that experiments in progress at the Yerkes Observatory may permit the effects of temperature to be distinguished from those of density.

widened lines in the spectra of red stars. Sun-spots are presumably to be associated with a late rather than an early stage of solar development, and there is reason to suppose that they may grow more numerous as the Sun continues to cool. On a priori grounds, therefore, they might well be expected to be prominent features of red stars. The strong tendency of these stars to variability, which is even more pronounced in the case of fourth-type than in that of third-type stars, certainly does not lessen the probability that numerous Sun-spots are present.

The bright lines, of whose existence in fourth-type spectra we have given ample evidence, have offered difficulties of identification which we have hitherto been unable to overcome. It is a curious fact that the bright lines of the Wolf-Rayet stars, most of which have also proved impossible to identify, seem to agree in some cases with the bright lines of fourth-type spectra. From the detailed comparisons which are given elsewhere (p. 125) it will be seen that the evidence is by no means conclusive. The positions of the lines are not yet known with sufficient accuracy, and in any event the number of apparent coincidences is too small to have much meaning. In the course of this comparison, however, we could not fail to take into consideration the fact that the Wolf-Rayet and fourth-type stars possess in common a peculiarity which is shared by few other objects in the heavens, namely, the presence in their spectra of both bright and dark hydrogen lines. ⁵⁵

In a study of the spark discharge in liquids and in compressed gases ⁵⁶ it has been found that as the conditions become more and more favorable to absorption—for example, as the pressure of the gas is increased—the reversals, which appear first in the ultra-violet, advance gradually into the visible spectrum. This dependence of selective absorption upon wave-length harmonizes completely with the earlier experiments of Liveing and Dewar, who obtained similar results with the electric furnace.⁵⁷

In the Sun, although the entire series of hydrogen lines has been observed in the chromosphere, only the less refrangible members appear among the Fraunhofer lines. In this case we have a partial inversion of the phenomenon observed in Wolf-Rayet and fourth-type stars: the more refrangible members of the series are absent, while dark lines are present at the less refrangible end.

Kayser has proposed an explanation of such phenomena as a direct consequence of Kirchhoff's law. If the coefficient of absorption were identical for all spectral lines, the reversals should begin in the ultra-violet and advance toward the red. In the series lines of hydrogen, as represented in the Sun, the coefficient of absorption decreases so rapidly with the wave-length that the strong lines in the visible spectrum reverse first. The reversals should be strongest near the wave-length of maximum energy for the absorbing body.⁵⁸ As compared with the Sun, the Wolf-Rayet stars should therefore show a shift of the maximum of intensity in the hydrogen spectrum toward the violet.

It is fortunately possible to test this assumption, as Campbell has shown that the Wolf-Rayet star DM. $+30^{\circ}3639$ has an extensive hydrogen atmosphere, the bright lines of which can be observed directly. Campbell, indeed, found that in this case Ha is very faint, while $H\gamma$ is brighter and $H\beta$ is very bright indeed.

Langenbach has recently shown that the maximum of intensity in a line spectrum shifts toward the violet with increasing temperature, just as it does in the case of a continuous spectrum from a solid body. Thus with hydrogen an increase of current strength through the primary of the induction coil increased the intensity of the Ha, $H\beta$, and $H\gamma$ lines, but the increase was most rapid for the more refrangible of these lines. Similar results were found for lithium and helium.⁵⁹

Langenbach concludes that his experiments indicate a very high temperature for the nebulæ, where a similar shift of the maximum has been observed. Such a conclusion might perhaps apply to the Wolf-Rayet stars, but it would be out of harmony with what we know regarding stars of

 $^{^{45}\}mathrm{The}$ bearing of this fact on the classification of stellar spectra is discussed on p. 134.

⁵⁶George E. Hale," Note on the Spark Spectrum of Iron in Liquids and in Air at High Pressures," Astrophysical Journal, Vol. XV (1902), p. 132; George E. Hale, "Selective Absorption as a Function of Wave-Length," ibid., p. 227; George E. Hale and N. A.

KENT, "Second Note on the Spark Spectrum of Iron in Liquids and Compressed Gases," ibid., Vol. XVII (1903), p. 154.

⁵⁷ Proc. Cambridge Phil. Soc., Vol. IV (1882), p. 256.

^{58.} Istrophysical Journal, Vol. XIV (1901), p. 313.

⁵⁹ Annalen der Physik (4), Vol. X, p. 789.

the fourth type. Pickering states that in a photograph of the spectrum of a meteor $H\delta$ is the most intense of the hydrogen lines. But would it be safe to conclude that the hydrogen in the meteor was hotter than the hydrogen in the Sun? In such a star as γ Cassiopeiae, where the temperature may be considerably higher than in the Sun, $H\beta$ is more intense than any of the other lines. But in certain variable stars of long period, which are generally supposed to be cooler than the Sun, $H\gamma$ is the strongest hydrogen line. 60

In the case of the nebulæ, meteor, and third-type variables, Thomson's observation of the spectrum of hydrogen in a vacuum tube, separated into two parts by an aluminium partition, may perhaps be significant. He found that Ha was brighter than $H\beta$ at the positive pole, while at the negative pole the relative intensities of the two lines were reversed. Although Kirchhoff's law could not be supposed to hold for a gas radiating in this way, a shift of the maximum thus produced might perhaps cause the effects observed in the case of the fourth-type stars. We believe that since much evidence favors the view that the fourth-type stars are cooler instead of hotter than the Sun, a further study of the whole subject must be made.

CLASSIFICATION AND EVOLUTION OF FOURTH-TYPE STARS

Although we have investigated in detail the spectra of but eight stars, our collection of photographs comprises the spectra of the following stars of the fourth type: 7 Schjellerup, DM.+57° 702, 27a Schj., 41 Schj., 51 Schj., 72 Schj., 74 Schj., 78 Schj., 115 Schj., 318 Birmingham, 132 Schj., 152 Schj., 155b Schj., 458 Birm., 219 Schj., 229 Schj., 509 Birm., 521 Birm., 541 Birm., 238 Schj., 249a Schj., 251 Schj., 280 Schj., 19 Piscium. All of these spectra have been used in a study of the classification and evolution of fourth-type stars. This inquiry divides naturally into two parts: (1) the development of these stars, as shown by changes in their spectra; (2) their relationship to other stars and their place in a general scheme of classification.

The criteria which we employed in arranging the stars in a series were the changes of the intensity of the earbon bands and of various groups of lines. The several series obtained independently by means of the different criteria in general agreed very well, though the peculiarities of certain lines sometimes changed the order somewhat in a few cases. The average series, based upon all the criteria, is illustrated in Plates VIII and IX. From these plates it will be seen that the spectra naturally fall into three divisions: (1), represented in the plates by the spectrum of 280 Schj., includes also 541 Birm.; (2), represented in the plates by 19 Pisc., 318 Birm., 74 Schj., 78 Schj., 132 Schj., and 115 Schj., includes also 7 Schj., 229 Schj., 249a Schj., 51 Schj., 219 Schj., 251 Schj., 238 Schj., 72 Schj., and 458 Birm.; (3), represented in the plates by 152 Schj. and 155b Schj., includes also 41 Schi., 521 Birm., 509 Birm., 27a Schj., and DM.+57° 702. It will be seen that the second division contains a large proportion of the stars. Within this division the order of arrangement is somewhat uncertain, as the differences among the spectra are so inconspicuous that they are frequently offset by such effects as may arise from differences of slit-width, exposure time, development, etc. The approximate order in this division is indicated by the foregoing enumeration of the stars which comprise it. Many of these are so nearly alike that their relative places in the series cannot be certainly determined from available data.⁶³

⁶⁰ Harvard College Observatory Circular, No. 20.

⁶¹ Proc. Roy. Soc., Vol. LVIII (1895), p. 255.

⁶² We are informed by Professor Schuster that he has worked out a new explanation of the simultaneous presence of bright and dark lines in stellar spectra, which will soon be published. It is hoped that the solar work now in progress at the Yerkes Observatory may also throw some light on this question. We reserve a detailed discussion until certain experiments are completed.

⁶³ To indicate the character of some of the changes which occur in passing through the series of stars, the following lines are noted as peculiar to 152 *Schj*, and other stars in the third division:

^{1.} Blue region. - The strong dark line A 4751.6, which shades off

toward the violet and appears like a fluting, is found only in 152 *Schj*. No high dispersion photographs were made for other stars of the third division.

^{2.} Yellow-green region:

Bright line at λ 5235.2, intensity 10; this line has intensity 6 in 115 Schj., and is present, though less conspicuous, in the other stars.

Bright line at λ 5508.3, intensity 5-6; this line has intensity 2-3 in 74, 78, and 132 *Schj*.

Bright line at λ 5591.4, intensity 10. The most conspicuous bright line in the spectrum. It is near the brightest part of a carbon fluting; the other stars show a group of bright lines here whose combined intensity is very much less than that of the line in 152 Schj.

According to Dunér, the relative intensities of the earbon bands are not the same in all of these stars: in 19 Piscium the yellow band is much fainter than the other principal bands, while in 152 Schjellerup it is as strong as the blue band and nearly as strong as the green band. As our spectra were photographed in sections, we are not in a position to discuss this question, and we shall not undertake to do so. We can only say that our plates show nothing capricious about the behavior of the bands, as the stars occupy practically the same order in the series whether they be arranged with reference to the intensity of the blue or that of the yellow band. It therefore might appear that the absorption of carbon, as represented by either the blue or the yellow bands, increases gradually with the star's development. As Dunér's method of observation was better adapted than our own to show differences in the relative intensities of the bands, we would nevertheless attach greater weight to his opinion on this subject.

It will be noticed that the order of development in our series corresponds exactly with that given by Dunér in his memoir. In fact, so far as our results are comparable with those of Dunér, they generally tend to confirm them in all respects.

With few exceptions, spectroscopists have agreed that on account of the close resemblance between the two great classes of red stars, their spectra should be classed together. This was the view of Vogel when he prepared his system of classification and provided in the two subdivisions of his third class for the stars of Seechi's third and fourth types. Dunér, to whose valuable memoir we have had so many occasions to refer, considered that his observations went to confirm Vogel's classification, which he adopted without modification. Pechüle, on the contrary, held that the stars of Seechi's third and fourth types could not be considered as co-ordinate branches starting from the Sun, since no star was known to occupy a position intermediate between that of a fully developed fourth-type star and the Sun. As Pechüle's memoir is not accessible to us, we quote the following extract as given by Lockyer in *The Metcoritic Hypothesis* (p. 346):

M. Vogel a proposé une classification suivant les diverses phases de refroidissement indiquées par les spectres, dans laquelle il fait des types III et IV de Secchi deux subdivisions d'une même classe, III a et III b. Mais je trouve certaines difficultés négatives contre cette classification relativement au rôle qu'y joue le IIIb. En effet, il est admis que le IV type de Secchi se distingue nettement du III type, non seulement par la position et la quantité des zones obscures, mais aussi par le fait très-remarquable, que les principales de ces zones sont bien définies et brusquement interrompues du côté du violet dans le III type, du côté du rouge dans le IV. Or, si le IV type doit représenter une des phases de refroidissement, par lesquelles passent les étoiles, on peut faire deux hypothèses. La première est que le spectre du IV type soit co-ordonné au spectre du III type, de manière qu'il y ait des étoiles, qui passent de la phase représentée par le II type, à la phase représentée par le III type, et d'autres, qui passent directement du II type au IV. Mais cette hypothèse est inadmissible. Car on connaît des spectres intermédiaires entre le I et le II type, et entre le II et III; mais on ne connaît pas, à ce que je sache, des spectres du 11 type tendant au IV. Reste done l'hypothèse, que la phase de refroidissement, représentée par le spectre du IV type, soit postérieure à la phase représentée par le III type, de manière que les spectres des étoiles passent du III au IV type. Si ce passage se fait peu à peu, il devrait y avoir des spectres intermédiaires entre le III et le IV type; mais quoique Secchi par example le 17 janvier 1868, ait déterminé le spectre de l'étoile 273 Schjell,, comme semblant intermédiaire entre le III et le IV type, il l'a plus tard reconnu du IV type, et l'existence des spectres de III-IV type n'est nullement prouvée. On pourrait objecter que les étoiles du IV type sont peu nombreuses et en général si petites que leurs spectres sont difficiles à voir, et que par conséquent il pourrait y avoir parmi ces spectres quelquesuns, qui se rapprochassent du III type. Mais je réponds à cette remarque, que les spectres du III-IV type, indiquant une phase moins refroidie, devraient au contraire en général appartenir à des étoiles plus grandes que celles ayant des spectres du IV type. Si on veut supposer que le passage du III au IV type se fasse subitement, ou par une catastrophe, pendant laquelle apparaissent des lignes brillantes, cette supposition même constituerait une différence plysique bien plus distincte entre le III et le IV type qu'entre le II et le III; et le IV type représenterait une phase bien distincte, la dernière peut-être ayant l'extinction totale Le rôle physique du IV type est donc encore si mystérieux, que j'ai eru pouvoir encore me conformer à l'exemple de d'Arrest, en suivant la classification formelle de Secchi.

Pechüle's objections were well answered by Dunér, who showed that in view of the comparatively small number of stars known to have spectra of Secchi's fourth type, it is not at all surprising that objects representing the transition from the solar stage have not been observed. As Dunér very justly remarks, it would be difficult to recognize stars in this transition stage without a much more thorough spectroscopic survey than has yet been made. Although 280 Schjellerup, which represents the earliest state of a fourth-type star that we have observed, contains many features characteristic of the fourth type, these might easily be overlooked in photographs taken with very low dispersion. the spectra reproduced in Plates VIII and IX show, the carbon absorption bands in this star are relatively very feeble. In the yellow, the band is reduced to a single pair of heavy lines. Stars earlier in point of development would of course show even less marked evidence of carbon absorption, and would probably be classed as solar stars. 541 Birmingham (DM. +38°3957), the star considered by Dunér to represent better than any other the transition stage, is shown by our photographs to have a spectrum practically identical with that of 280 Schjellerup (though we have no evidence as to the presence of the bright $H\beta$ line). It may confidently be expected that when spectra of the solar type are better known, objects intermediate in development between 280 Schjellerup and the Sun will be discovered. This argument of Dunér's, which we can only confirm, disposes of Pechüle's principal objection to Vogel's classification. We shall have occasion farther on to refer more particularly to the close resemblance between the line spectra of the third and fourth types, as well as to other details which lead us to adopt the views of Vogel and Dunér.

According to the classification of stellar spectra developed by Lockyer in conjunction with his meteoritic hypothesis, stars of Secchi's third and fourth types are far removed from each other in point of development. The third type represents a swarm of meteorites in the first stage of transition from the nebulous to the stellar condition, while the fourth type represents the last stage in stellar life, immediately following the condition of the Sun.

So far as the fourth-type stars are concerned, it therefore appears that Lockyer adopts the view held by other investigators, and confirmed by the present research, namely, that they represent the last stage of stellar development. But we do not think that he has given sufficient reasons for separating fourth-type stars from those of the third type. In the first place, we are unable to understand how the spectra of third-type stars can be considered to resemble in any way the spectra of nebulæ, or to be evolved from nebular spectra. So far as we are aware, no star showing a spectrum intermediate in character between that of a nebula and the spectrum of a third-type star has hitherto been detected. This seems to us a most serious objection to Lockyer's classification.

Furthermore, the results of the present investigation offer reasons for believing that the two great classes of red stars are closely related to each other, and that they are to be regarded as co-ordinate branches, each of which can be traced back to the Sun. The dark lines of the two types agree remarkably well (Plates X and XI). There is every reason to believe that if the bands were absent from the two types of spectra the line spectra would resemble each other very closely indeed—much more closely than either would resemble the spectrum of the Sun (Fig. 2, Plate XI). The chief distinction between the two types is thus confined to the bands and flutings, and even here we have a close resemblance in the case of cyanogen. The great strength of the λ 4227 calcium line, and the probable presence as conspicuous features in both types of the lines greatly widened in Sun-spots, certainly tend to emphasize the relationship of the two classes of red stars. It would seem very important to secure further evidence regarding the question of widened lines, especially with reference to their exact identification in third-type spectra. If Sun-spots exist on these stars, they can hardly be regarded as slightly condensed meteor swarms, as required by the meteoritic hypothesis.

We may sum up the points of resemblance of third- and fourth-type stars as follows:

The stars resemble each other: (1) in their red color; (2) their remarkable tendency to variability; (3) the very close resemblance of the dark lines in their spectra; (4) the possibility that

the spectra of both may contain the lines which are widened in Sun-spots; (5) the similar physical conditions indicated by the character of their spectra; (6) the presence of bright lines in their spectra; (7) the presence in their spectra of dark flutings, of which the cyanogen flutings are common to both types; (8) the connection between both types of spectra and the spectra of solar stars.

Some of these points of resemblance are suggested rather than demonstrated by the results of the present research, and much work must be done in the future on the spectra of both these classes of stars. But we believe that the existing evidence is decidedly favorable to the views of Vogel and Dunér, and that stars of Secchi's third and fourth types should therefore be classed as co-ordinate branches, having their origin in solar stars.

Apart from the evidence afforded by the similarity of stars of the third and fourth types, certain other considerations bearing on the general question of classification should be presented here. It has already been shown that the Wolf-Rayet and fourth-type stars have three points in common: (1) their tendency to cluster in the Milky Way; (2) the presence in their spectra of bright lines, a few of which may be common to both types; (3) the presence in their spectra of both bright and dark hydrogen lines. If any organic relationship between these two classes of stars could be established, it would conflict seriously with current ideas regarding stellar evolution. The Wolf-Rayet stars, for many excellent reasons, are generally believed to be related to the Orion stars, and to precede stars like Sirius in point of development. We consider that the results of the present investigation do not oppose this view, but rather tend to strengthen it. In the first place, we are not prepared to say that the tendency of certain classes of stars to cluster in or near the Milky Way necessarily indicates any organic relationship between such objects. If it were assumed, for example, that the fourth-type stars are at immense distances from the Earth, 64 and that an absorbing medium, most dense near the poles of the Milky Way, exists in space, an apparent clustering of these stars toward the Milky Way would result. It would be impossible, of course, to account in this way for the fact that all of the Wolf-Ravet stars occur in the Milky Way (or in the Magellanic Clouds), but it does seem to follow that such a distribution of the fourth-type stars as we actually observe need not indicate any relationship with Wolf-Rayet stars.[□] Bright lines have been found in so many different types of spectra that they cannot be regarded as a safe basis for classification, and they are not employed for this purpose. Finally, as we have already remarked (p. 131), the variations in the relative intensities of the hydrogen lines in nebuke, Wolf-Rayet stars, third-type variables, and meteors are such as to permit no final conclusion to be drawn at present as to the physical condition implied by these phenomena. We therefore see no reason to believe that any important relationship connects the Wolf-Rayet and the fourth-type stars, though the bright lines and the physical condition of hydrogen in both should be made the subjects of further investigation.

The variations of the relative intensities of certain lines of titanium have an interesting bearing on the general classification of stellar spectra. The line λ 4534.14, ascribed by Rowland to Ti-Co, is first seen in β and γ Orionis as an extremely faint and diffuse darkening on the continuous spectrum. The line grows steadily stronger in the following stars: ζ Tauri, γ Corvi (Vogel's Ib), ϵ Ursae Majoris, a Cygui, a Canis Majoris (Vogel's Ia2)—and reaches maximum intensity in a Persei, where it is narrow and sharp, and in ϵ Aurigae, where it is broad. The line then decreases in intensity through the solar stars γ Piscium and a $Bo\"{o}tis$, and in the third-type stars a Orionis and a Tauri, where it is the faintest line of the titanium group. In the fourth-type stars this line is the only one of the titanium group which is absent. In the spark spectrum of titanium, the line varies greatly

⁶⁴ Professor Boss, who has very kindly looked up for us in his records the proper motions of a large number of fourth-type stars, finds that for seventeen stars the average proper motion is only about 0.701, while in other cases, which are not so well determined, the proper motion is apparently in no in-tance greater than 0.710, and for more than half the stars it is less than 0.705.

⁶⁵ The assumption that stars may differ in chemical composition, and that this may be related in some way to their distribution in space, must not be left out of account in an exhaustive discussion of stellar classification; but it need not be considered here.

with change of self-induction in the secondary circuit, becoming fainter with increasing self-induction. It is stronger in the spark than in the arc.

The three lines of the group λ 4538.8 – 4536.3, on the other hand, are absent or very faint in all of the stars preceding γ Piscium in the above list. They then appear as strong lines, and they are strongly represented in solar, third-type, and fourth-type stars. The changes of these lines are illustrated in Fig. 3, Plate XI. All of the photographs, except that of the fourth-type star 132 Schjellerup, were made with the Bruce spectrograph by Messrs. Frost and Adams, to whom we are indebted for some of the information given here.

SUMMARY OF RESULTS AND CONCLUSIONS

- 1. The spectra of stars of Secchi's fourth type contain a large number of bright and dark lines, in addition to the violet flutings of cyanogen and the flutings of the Swan spectrum.
 - 2. The approximate radial velocities of eight stars range from +5 km. to -28 km.
 - 3. Measures of the wave-lengths of 307 dark lines (average probable error of the mean, 0.07 t.m.) indicate that the following substances are represented: carbon (as cyanogen and in the elementary or combined state corresponding to the Swan spectrum), hydrogen, vanadium, calcium, magnesium, sodium, iron, chromium, titanium, nickel, manganese, and possibly two or three other substances.
 - 4. The carbon and metallic vapors are very dense, and lie immediately above the photosphere.
 - 5. Above these dense vapors of the reversing layer rise other vapors or gases, represented in the spectra by bright lines. The conditions are thus similar to those that exist on the Sun.
 - 6. The bright lines, of which about 200 are present, seem to represent unknown gases, since none of them could be identified with certainty. A few of these lines may perhaps correspond with bright lines in the spectra of Wolf-Rayet stars.
- 7. The great strength of such lines as λ 4227 of calcium, and the fact that are and flame lines are strong, while spark lines are less prominent or missing, suggests, though it does not prove, that the temperature of the reversing layer may be lower than in the case of the Sun.
- 8. The fact that many lines widened in Sun-spots are represented by strong dark lines suggests that spots similar to those on the Sun may be numerous on fourth-type stars.
- 9. In the spectrum of 10 Piscium $H\gamma$ and $H\delta$ are present as dark lines, while $H\beta$ is absent. In the spectrum of 280 Schjellerup and in some of the other stars $H\beta$ appears as a bright line. Fourth-type spectra thus resemble spectra of the Wolf-Rayet type in showing the more refrangible hydrogen lines dark and the less refrangible ones bright or absent.
- 10. The bright $H\beta$ line in the spectrum of 280 Schjellerup undergoes variations of intensity.
- 11. About 20 per cent, of the fourth-type stars are variable. The tendency to variability, therefore, seems to be even greater than in the case of stars of Secchi's third type.
 - 12. The condensation of fourth-type stars in and near the Milky Way is very marked.
- 13. Stars of the third and fourth types resemble each other in color, tendency to variability, spectra, possible presence of Sun-spots, physical condition, and probable relationship to solar stars. They should therefore be classed together, as co-ordinate branches leading back to stars like the Sun.
- 14. Variations in the relative intensities of certain titanium lines indicate that fourth-type stars are probably very widely separated from Wolf-Rayet stars in point of development.
 - 15. Fourth-type stars probably develop from stars like the Sun through loss of heat by radiation.

THREE-PRISM SPECTROGRAPH ATTACHED TO FORTY-INCH REFRACTOR

•

Fig. 1. Spectra of Fourth-Type Stars (Vogel)

Fig. 2. Spectra of Fourth-Type Stars (Dunér)

Fig. 3. Bright Lines in the Spectrum of 132 Schiellerup

Fig. 1. Red End of the Spectrum of 152 Schiellerup

Fig. 2. Bright Lines in the Spectrum of 152 Schiellerup

Fig. 3. Bright Lines in the Spectrum of 152 Schiellerup

•

Fig. 1. Blue Cyanogen and "Carbon" Flutings

Fig. 2. Green "Careon" Fluting

Fig. 3. Yellow "Carbon" Fluting

SPECTRUM OF CARBON ARC COMPARED WITH SPECTRA OF THIRD AND FOURTH TYPES

SPECTRA OF FOURTH-TYPE STARS (BLUE REGION)

SPECTRA OF FOURTH-TYPE STARS (YELLOW AND GREEN REGION)

Fig. 1. Blue Region

Fig. 2. Green and Yellow Region COMPARISON OF SPECTRA OF SECOND, THIRD, AND FOURTH TYPES

Fig. 1. Spectra of Second and Fourth Types (Blue Region)

Fig. 2. Spectra of Second, Third, and Fourth Types (Violet Region)

Fig. 3. TITANIUM LINES IN STELLAR SPECTRA

.

	7.	

ASTRONOMICAL PHOTOGRAPHY WITH THE FORTY-INCH REFRACTOR AND THE TWO-FOOT REFLECTOR OF THE YERKES OBSERVATORY

G. W. RITCHEY

I. PHOTOGRAPHY WITH THE FORTY-INCH REFRACTOR

In the original design of the forty-inch refractor of the Yerkes Observatory no provision of any kind was made for direct photography. The objective is a visual one; there is no photographic corrector such as was provided for the great Lick refractor; and there is no powerful auxiliary telescope for guiding, such as are used in the cases of the "standard" photographic telescopes and of the very large photographic refractors at Potsdam and Meudon.

By the use of a method perfected by the writer in 1900, and described in the Astrophysical Journal for December of that year, the forty-inch visual refractor was made available for direct photography. The photographic attachment is simple and inexpensive; the entire apparatus cost less than \$100. A large number of photographs of star-clusters and of the Moon have been obtained, which are valuable on account of their great scale and fine definition.

The results described in the above-mentioned article were obtained with a small photographic attachment which allowed a field only three inches (about fourteen minutes of arc) square to be photographed at one time. A similar, but larger and more perfect, attachment, taking 8×10 -inch plates, has since been constructed from my designs, for use with the great refractor. This allows a field of approximately 36×45 minutes of arc to be photographed at one time, and of course includes the entire disk of the Moon. Many of the photographs described in the present article have been made with the larger apparatus.

The photographic attachment consists of a double-slide plate-carrier for guiding, on which is supported the plate-holder containing a yellow color-screen or ray-filter very nearly in contact with a yellow-sensitive (Cramer instantaneous isoehromatic) plate.

The yellow screen freely transmits to the sensitive plate the sharp and intense yellow or visual image produced by the visual objective, and effectually excludes from the plate the blue and other wave-lengths of light which are not included in the visual image, and which would entirely destroy the sharpness of the photographs. Two very fine 8×10-inch yellow screens, one of slightly stronger tint than the other, were obtained after some experimenting. Each screen consists of two thin plates of glass, ground and polished approximately flat; one of these is coated with a film of collodion of a delicate yellow tint. After the collodion film is dry it is flowed with Canada balsam, and the second thin plate, which serves as a cover-glass, is put on. The two plates are bound together with adhesive tape. The screens are brilliantly transparent. When in use one of the screens is placed in the plateholder directly in front of the yellow-sensitive plate. Screen and plate are separated only by the thickness of the binding tape around the edges of the former.

The double-slide plate-carrier, a device originally suggested by Dr. Common and described by him in *Monthly Notices*, Vol. XLIX, p. 297, permits very perfect guiding or following to be done, without the necessity of an auxiliary or guiding telescope. The large photographic attachment of the forty-inch refractor is illustrated in Plate XII. When in use, the apparatus is connected by four bolts to the large and massive ring, well shown in the illustration, to which all of the various attachments, spectroseopes, etc., with the exception of the micrometer, are in turn connected. This large ring can be racked in and out, and firmly clamped in any position, thus serving for focusing the various attachments. When the four connecting bolts are loosened, the entire attachment can be rotated in positionangle. Such rotation of the double-slide plate-carrier alone can be accomplished by means of the two

smaller rings (one of which can be rotated on the other) which directly support the double-slide. This rotation is convenient, and often necessary, in finding a suitable guiding star. The double-slide arrangement one slide being at right angles to the other, is shown fairly well in the illustration. The two serews with large milled heads, by which the slides are moved in guiding, are well shown, one to the right of, the other below, the rectangular frame or box which carries the 8×10-inch plate-holder. The plate-holder is not shown.

To the upper side of the rectangular box is connected the small eyepiece by means of which the guiding star at the edge of the field being photographed is watched. A small diagonal prism, which can be seen inside of the rectangular box, overhangs the edge of the photographic plate, receives the light of the guiding star, and reflects it at right angles into the eyepiece. By this arrangement it is almost always possible to use a guiding star whose image is less than four inches distant from the center of the field being photographed. In the cyepiece are two fine cross-lines of spider-web, which are illuminated by faint red light from a very small incandescent lamp, the tubular socket for which is attached to the side of the eyepiece tube. To assist in finding a suitable guiding star, the eyepiece and its accessories are mounted on a slide which can be moved to any desired position on the upper side of the rectangular box, and firmly clamped there. The star which is to be used in guiding is brought to the intersection of the cross-lines in the eyepiece, and is kept there throughout the exposure of the sensitive plate, sometimes lasting four or five hours. The observer sits with his eye at the guiding eyepiece and his fingers on the two screws which move the slides, and thus he introduces any minute corrections of position which he sees are necessary.

The guiding eyepiece gives a magnifying power of about one thousand diameters. It is very seldom, indeed, that a star-image appears quiet in a very large telescope with such a magnifying power as this. Minute irregularities in the movement of the telescope in right ascension are almost always present, and render necessary continual watching and guiding. But larger and more troublesome are the irregular movements of the image which are due to the disturbed condition of the atmosphere. The effects of this lack of tranquillity and homogeneity of the atmosphere are of many kinds. Sometimes the image of the guiding star appears nearly quiet, but is very large and nebulous. At other times the star-image is a small brilliant point, but is dancing about so rapidly that many hundreds of corrections per minute would be necessary in order to follow it. After months of practice with the guiding apparatus the observer is able to introduce between one hundred and two hundred corrections per minute, when necessary. The work becomes almost automatic, but is extremely trying to the eyes when the tremors of the guiding star are rapid. The corrections can be made with great accuracy and almost instantaneously with the double-slide plate-carrier — with an effectiveness incomparably superior to that which can be attained by any other means now known.

The question arises whether the irregular movements of the images of the objects being photographed correspond exactly with those of the image of the guiding star. It would not be difficult to devise an apparatus by means of which the images of two or more stars in different parts of the field could be brought into apparent superposition, and thus this question could be answered. This has not been done, but the sharpness of the photographs obtained when guiding is done with great care is so superior to that resulting from less careful guiding that the conclusion is warranted that when the image of the guiding star is kept at the intersection of the cross-wires, the images of the objects being photographed are kept immovable on the photographic plate.

I have described the double-slide plate-carrier and its use somewhat in detail, because of the very great importance of this apparatus in long-exposure photography, especially with large telescopes. It has been asserted by prominent astronomers that such difficult objects as the dense star-clusters and the planets could never be satisfactorily photographed, because the very powerful telescopes which are necessary to show these objects satisfactorily are so large and heavy that they cannot be moved with the delicacy and quickness necessary to compensate for the constant irregular tremors always visible

with such great telescopes. Experience with the forty-inch refractor, with its enormous weight, the largest instrument thus far successfully used in direct photography, shows that the difficulty is completely solved by the use of the double-slide plate-carrier, in which the mass to be moved in making the necessary corrections is two or three pounds instead of ten or twenty tons. It is safe to assert that for the largest telescopes which could now be constructed, refractors or reflectors, the problem of efficient guiding during long exposures in direct photography is satisfactorily solved.

The photographs of star-clusters and the Moon obtained with the forty-inch refractor and its photographic attachment are certainly not inferior in separation or resolution to those obtained with the largest and best telescopes constructed especially for photography. In the best photographs of star-clusters obtained with the former instrument double stars of 1" distance are distinctly separated and measurable; and in the best lunar photographs craters one second of are in diameter (corresponding to a little more than one mile) are shown as distinct rings. These results are due in part to the great size and focal length of the telescope, and in part to the effectiveness of the yellow screen in transmitting to the sensitive plate only those wave-lengths of light for which the color-curve of the objective is very nearly flat.

Even more surprising is the speed of the color-screen method. Although the ratio of focal length to aperture of the telescope is nearly as 19 to 1, fully timed photographs of the Moon are obtained with exposures varying from one-fourth of a second to one second. Stars which are at the visual limit of the instrument (approximately seventeenth magnitude) are photographed with two hours' exposure when atmospheric conditions are good, and with the most rapid yellow-sensitive plates. With five hours' exposure stars fully a magnitude fainter are photographed. This speed is possible, however, only after the observer has become expert in the use of the guiding apparatus, so that he introduces the necessary corrections instantly and almost automatically.

While this speed is greatly inferior to that of a well-made modern reflecting telescope with silvered glass mirrors, it is probable that the forty-inch visual refractor with the color-screen and the best yellow-sensitive plates now obtainable is nearly, if not quite, as rapid in photographing stars and the Moon as a forty-inch photographic refractor (one with its objective corrected for the blue, or so-called photographic, rays) would be. This opinion is based, in part, upon a comparison of photographs obtained with the largest photographic refractors and those obtained with the forty-inch visual instrument. The yellow-screen method utilizes the rays of light which are most freely transmitted by a large objective; it is a well-known fact that while only a small percentage of the yellow rays are lost by transmission through a large and necessarily thick objective, a very large percentage of the blue rays are thus lost; this is undoubtedly the reason why a yellow screen of delicate tint is sufficient to exclude the blue light from the photographic plate when this process is used with the forty-inch refractor.

The color-screen method and the double-slide plate-carrier are of course applicable for photography with all visual refractors, large or small, which are provided with clock-work for driving. By their use fainter stars can readily be photographed with any visual refractor than can be seen directly with the same instrument. In the work with the forty-inch refractor this is particularly noticeable in such cases as those of the fainter stars in the globular star-clusters. Stars which can be detected visually only with difficulty, and with fine atmospheric conditions, appear strong and distinct on the negatives obtained with moderately good atmospheric conditions.

In photographing the Moon at the focus of the forty-inch refractor (without amplification or enlargement of the image) the exposures required are so short that the double-slide plate-carrier is dispensed with, and a simpler apparatus is used to support the plate-holder. This apparatus is so arranged that an exposing shutter mounted in suitable guides can be moved across by hand, in front of the sensitive plate, in making the exposures. Diaphragms with apertures of various shapes, depending upon the phase of the Moon, are attached to the exposing shutter, and serve to equalize

the exposure time, the lunar terminator requiring a much longer exposure than that required for the bright limb. In making the photographs of the Moon, the instant of exposure is not chosen at random. An eye-piece with fine cross-wires is arranged in a tube with a diagonal prism at one end. This tube rests in a V-bearing, so that it can be instantly withdrawn without danger of jarring the telescope. The observer watches the lunar image by means of this eyepiece until an instant occurs when the definition is good and the image appears quiet with reference to the cross-wires; he then instantly withdraws the eyepiece tube (since this would overhang the photographic plate) and at the same time gives the signal to the assistant to move the exposing shutter across. I am indebted to Mr. F. L. Sullivan for able assistance in this and all other direct photographic work with the great refractor.

Plates XIII to XXI, which accompany this article, are from negatives obtained with the forty-inch refractor and its photographic attachment. The photograph of the lunar crater *Theophilus* and its surroundings (Plate XIII) is one of the best of the series, for it was made when atmospheric conditions were exceptionally fine, on the night of October 12, 1900. Much smaller details of the Moon's surface are shown here than have been photographed before. The exposure required in this case was less than one-half of a second. *Theophilus*, with its diameter of sixty-four miles, with its terraced wall or rampart rising three miles in vertical height above the crater-floor, with its great group of central mountains, and the enormous ridges and ravines of its outer slopes, is in many respects the most magnificent example of a lunar crater. The intricate system of radiating ridges of its outer slopes can be traced in the photograph for nearly one hundred miles from the crest of the rampart. Innumerable details are here reproduced with a minuteness and fidelity which are possible only by means of photography.

The illustration of Mare Serenitatis and Mare Tranquilitatis (Plate XIV) was obtained on the night of August 3, 1901, with an exposure of one second. The enlargement in this case is not nearly great enough to show the finer details visible in the negative, but was decided upon in order to include both plains on one plate. The surfaces of these plains are crossed by numerous ridges or wrinkles, large and small, which are beautifully shown in the original negatives, and on glass positives made from them, but which are difficult to reproduce, on account of the lack of sufficient contrast. The great serpentine ridge in Mare Serenitatis and the remarkable system of radiating ridges on Mare Tranquilitatis are among the most interesting features of the Moon's surface.

It was a fortunate coincidence, in the case of *Theophilus*, that exceptionally fine atmospheric conditions occurred when the crater was in the best position with reference to the terminator. No opportunity has occurred for photographing *Copernicus* under extremely fine conditions, although on account of the prominence of this superb object such an opportunity has been carefully watched for. The photograph of *Copernicus* shown in Plate XV is from a negative obtained on the night of November 20, 1901, with fairly good atmospheric conditions, and with an exposure of one-half of a second. While *Copernicus* is neither so large nor so deep as *Theophilus*, the system of radiating ridges and deep gullies constituting the outer slopes of the former is probably the most rugged and magnificent to be found on the Moon. The well-known rows of small craters at the west of *Copernicus*, as well as the much smaller rows to the south and northeast of the crater, are well shown in the photograph.

The illustration of *Mare Nubium* and *Bullialdus* (Plate XVI) is from the same large negative as that of *Copernicus*. The photograph shows well the remarkable details of the surface of this great plain—details strikingly different in character from those of *Mare Serenitalis* and *Mare Tranquilitatis*. The region of *Bullialdus* is in such a condition of illumination that it is particularly well seen. In the original negative the details of the outer slopes of *Bullialdus* are shown with remarkable sharpness; some idea of this can be gained from the half-tone illustration.

The photograph of *Clavius* and the surrounding region (Plate XVII) is also from the same negative as that of *Copernicus*. At the time when this photograph was taken the conditions of libration

and of illumination were unusually favorable for this region of the Moon's surface. Clarius, with its numerous included craters and other details; Longomontanus and Wilhelm, in which the details of the ramparts and of the crater-floors are unusually well shown; the extremely rough country north of Wilhelm; and the "metropolitan" crater Tycho conspicuous for its enormous depth, are among the most remarkable objects of this region.

The photograph of the great system of bright rays about *Tycho* (Plate XVIII) is from a negative obtained March 31, 1901. While the negative is not so extremely sharp as some others, a much greater enlargement than was possible here would be necessary to show well the astonishing richness of detail in this system of bright rays which is present in the original negative. The exposure time in this case was one-fourth of a second.

The half-tone process of reproduction is especially disappointing in the case of the star-clusters. Not only are hundreds of the fainter stars entirely lost, but the groups of bright stars which are sharply separated in the original negatives appear only as white patches in the half-tone illustrations. The writer expects to include, with the copies of this paper which are sent to observatories and individuals especially interested in astronomical photography, large prints, on photographic paper, of the subjects which have suffered most in reproduction by the half-tone process. The expense of these photographic prints has been met by a generous friend who is interested in the work.

The illustration of the Great Cluster in *Hercules*, *Messier* 13 (Plate XIX), is from a negative obtained on the night of April 25, 1901, with the large photographic attachment and with an exposure of three hours. In the original negative the center of the cluster is well resolved. Lines and groups of stars of between the sixteenth and seventeenth magnitudes, and with distances down to 1", are well shown and distinctly separated. More than three thousand stars are shown on the negative, many of which are so faint that they are beyond the visual limit of the great telescope.

Smaller, but richer and more condensed, than Messier 13 is that superb cluster Messier 15 Pegasi (Plate XX), although the effect of richness and condensation is to a large extent lost in the illustration, on account of the great scale and the loss of the fainter stars. The sharpest negative of this object was obtained on the night of October 3, 1900, with an exposure of three hours. On account of exceptionally fine atmospheric conditions during nearly one hour of this exposure, this is one of the best of the star-cluster photographs. A comparison of this photograph with others of the same object which have been published will demonstrate the advantages of telescopes of great focal length, and of an efficient guiding mechanism, in the photography of these difficult objects.

Two or more very sharp negatives of each of the dense globular clusters Messier 2 Aquarii, Messier 3 Canum Venaticorum, and Messier 5 Librae, as well as of some of the larger and more open clusters, have also been obtained. It is believed that on account of the great scale and excellent definition of these photographs they will prove extremely valuable for comparison with photographs obtained several years later, in the search for change and rotation in these clusters.

The photograph of the central parts of the great nebula in *Orion* (Plate XXI) was obtained with the forty-inch refractor with an exposure of three hours, January 20, 1901. The night was extremely transparent, but atmospheric conditions were not fine in other respects, so that the star-images appear large. The yellow-screen process is not well adapted for the photography of nebulæ, since the light of these objects consists almost exclusively of green and blue rays. The blue rays are entirely excluded by the yellow screen, and the green rays, which are imperfectly transmitted (and by which the nebula is photographed) are not brought to a focus in the same plane in which the star-images are in best focus. But similar difficulties in regard to focus are encountered even with the best photographic refractors.

It is only with the reflecting telescope that the intolerable difficulties due to imperfect achromatism are entirely absent. In the present case the focal setting used was that which is best for the stars; consequently the details of the nebula are slightly out of focus. The photograph is introduced

in order to call attention to the difficulties just described, and also because, on account of the great scale, the details of the central parts of this celebrated nebula are shown better than in any other photographs of this object with which the writer is acquainted.

H. PHOTOGRAPHY WITH THE TWO-FOOT REFLECTOR

The two-foot reflector of this observatory (Plate XXII) was described somewhat at length in my article in the Astrophysical Journal for November, 1901; a detailed description of the instrument is therefore not necessary here; the following statements may, however, be made in regard to it:

The large mirror has a clear aperture of $23\frac{1}{2}$ inches and a focal length of 93 inches. The instrument is used as a Newtonian for direct photography, and also as a Cassegrain for direct photography and spectroscopic work; the convex Cassegrain mirror is 5 inches in diameter and gives an equivalent focal length of 38 feet; as there is no central hole through the large mirror, three reflections are necessary when the convex mirror is used. The mounting is massive and rigid. The tube consists of a skeleton framework of steel tubes and east-aluminum rings. The driving-clock and clock-connections are unusually large and strong. A small double-slide plate-carrier which allows a field three inches square to be photographed, is used for guiding in direct photography at either the primary or secondary focus. All of the mechanical parts of the instrument were made in the instrument shop of the observatory; the optical parts were made by the writer.

Special attention was given to the perfection of the optical parts; to the stability of the mirror supports and the rigidity of the skeleton tube, in order that the adjustment or collimation of the optical parts might remain perfect during long exposures; and to the refinement of the driving mechanism and the guiding apparatus. In nearly all respects the same degree of care and refinement was used in the making of this instrument as is given in the case of the best modern refractors.

The performance of the instrument in direct photography at the primary focus is highly satisfactory. As stated in my previous article, "the combination of (1) stability of position of the mirrors, (2) rigidity of skeleton tube, (3) smoothness of clock-driving, and (4) accuracy of guiding made possible by the use of the double-slide plate-carrier, is so effective that when atmospheric conditions are good the image of a guiding star in the eyepiece does not wander so much as one one-hundreth of a millimeter during an exposure of three or four hours. The accuracy with which the star-images are kept immovable on the photographic plate is nearly as great, as is shown by the photographs. In the best negative with four hours' exposure the images of the smaller stars near the center of the field are about 2" in diameter. Double stars of 2.5 distance are sharply separated, and those of 2" distance, corresponding to about 0.02 mm. on the photographic plate, are measurable."

"No greater mistake could be made than to suppose that the finest atmospheric conditions are unnecessary to secure the best results in photographing the nebulæ. With such conditions the photographs show that these objects are not diffused hazy masses, but that their structure is generally most complicated, often consisting of exquisitely fine filaments and delicate narrow rifts. In these photographs the intersections of such filaments and rifts can be set upon, in the measuring machine, with almost the same degree of accuracy that is possible in the case of star-images. Changes of form in the nebulæ, if such occur, could be detected with certainty by means of such photographs."

A large refracting telescope, whether visual or photographic, is not an efficient and economical instrument for photography, either direct or with the spectroscope, when compared with a modern reflector. The two-foot reflector, with its focal length of ninety-three inches and with its aperture reduced to fifteen inches, photographs seventeenth-magnitude stars with two hours' exposure. This speed is equal to that of the forty-inch refractor with the color-screen, with the finest atmospheric conditions, i. e., when the guiding star appears in the eyepiece as an extremely small point, and when irregular movements of the guiding star are so slow and so small that they can be readily followed. It is probable that this speed is nearly, if not quite, equal to that of the largest photographic refrac-

tors in use. When the full aperture is used, the two-foot reflector photographs seventeenth-magnitude stars with forty minutes' exposure.

That the great difference in speed between refractors and reflectors in photographing stars is not due largely to difference of angular aperture is amply proved by the few results which have been obtained with the two-foot reflector when used as a Cassegrain, i. e., with the addition of the convex mirror, which gives an equivalent focal length of thirty-eight feet. Photographs made for comparison when atmospheric conditions are good (so that star-images appear as very small points even at the secondary focus), show that with this great equivalent focal length stars are photographed very nearly as rapidly as at the primary focus; the difference in speed is so slight that it is readily accounted for by the assumption that about 10 per cent. of the light is lost by the additional reflection at the convex mirror. I am aware that this result is apparently at variance with theories in regard to the effect of focal length (when the aperture remains constant) upon the size and intensity of the diffraction disks of star-images, and consequently upon the speed with which such images are photographed.

The great superiority of the reflecting telescope in photography is unquestionably due, primarily, to its perfect achromatism. The importance of this has of course been recognized for many years, but I think that the degree of the importance, in photography, of perfect achromatism has not been appreciated—that the effect of this achromatism in giving great speed as well as great sharpness has not been fully recognized. Hardly less important is the fact that in the case of large instruments much less light is lost, of the wave-lengths which are most effective in photography, by absorption at the silver surfaces of a reflector than by absorption and reflection in an objective.

In the case of the refractor the difficulties due to imperfect achromatism, as well as the percentage of light lost in transmission, increase rapidly with increase of size of the objective. In the case of the reflector, however, a large instrument is as perfectly achromatic as a small one, and the percentage of light lost does not increase with increase of aperture. But the reflecting telescope has not been developed to the state of refinement which has been attained in the case of the refractor. This is probably due, to a large extent, to the fact that the difficulties and peculiarities of the reflector have not been thoroughly understood; at any rate, it is certain that these difficulties have not, in the past, been successfully met. It is almost superfluons to state that the great reflectors of the past, without exception, have been in many respects extremely crude instruments; in all cases without the great rigidity and stability of construction which are absolutely essential to the successful performance of a reflector; and in all cases without the refinement of workmanship, in both optical and mechanical parts, which are attained in the great modern refractors. In saying this I certainly intend no criticism of the able and skilful men who have been the pioneers in the development of the reflecting telescope, and who have contributed so much to both the methods and the results of astronomical observation.

It is safe to assert that the peculiar difficulties of the reflecting telescope are now thoroughly understood, and that all difficulties which relate to its mechanical and optical construction have been successfully solved.

As a result of the improvements and developments in glass-making, in optical work, and in the methods and materials of modern mechanical construction; and as a result, no less, of the experience of those who have both made reflecting telescopes of moderate size and used them successfully in astronomical photography, there can be no doubt whatever that a great reflecting telescope of five or eight feet aperture could now be constructed with all of the refinement of the two-foot reflector or the forty-inch refractor.

The speed of the reflector in the photography of nebulæ is of course due largely to its great angular aperture. All of the reflector photographs which accompany this article, with the exception of that of Messier 51, were made with the aperture of the $23\frac{1}{2}$ -inch mirror reduced to 18 inches, in order that good definition might be secured over a larger field than is well covered when the full aperture is used. The ratio of focal length to aperture was therefore as $5\frac{1}{6}$ to 1. These photographs

show what can be done with a reflecting telescope of very moderate size (aperture 18 inches, focal length 93 inches) when sufficient care is given to the perfection of the mirrors and mounting, and when an effective method of guiding is employed.

The photograph of the great nebula in *Orion* (Plate XXIII) was obtained with an exposure of one hour. Even with this short exposure faint extensions of the nebula and a great amount of delicate structure in the moderately bright parts are shown, which cannot be detected visually with either the two-foot reflector or the 40-inch refractor. A comparison of this photograph with that of the central part of the same nebula obtained with the forty-inch refractor (Plate XXI), and also with other published photographs of this object obtained with photographic refractors, gives some idea of the great efficiency of a well-made modern reflector of large angular aperture in such work.

The photograph of the great nebula in Andromeda (Plate XXIV) was obtained with an exposure of four hours, although one hour's exposure, or less, is sufficient to show the general characteristics of the object well. This is one of the most magnificent examples of a spiral nebula to be found in the heavens, yet its spiral character was never suspected from visual observations. In the original negative the spiral structure is visible almost to the center of the nebula, and the stellar nucleus is distinctly seen. Sharply defined narrow rifts and dark holes near the center are shown on all of the negatives of this object; no trace of these can be detected visually with any telescope.

The photograph of the spiral nebula Messier 33 Trianguli (Plate XXV) was obtained with an exposure of four hours. This nebula is very large and very faint; the spiral character of its central parts was discovered by Lord Rosse; by far the greater part of the complicated structure shown in the photograph is too faint to be detected visually. While differing greatly in general appearance from the great Andromeda nebula, Messier 33 resembles the latter in several striking characteristics; in the presence of dark rifts and holes in and near the bright central parts, and in the tendency of its outer branches to break up into stars. The central parts of this object appear decidedly nebulous; the outer parts consist of very faint nebulosity and of numerous curved streams or wisps of nebulous stars; hundreds of these star-like condensations are so distinctly shown on the original negative that they may be well seen even in the half-tone reproduction. There can be no doubt of the physical connection between the nebulosity and the streams of minute stars; this object therefore affords what is apparently a most striking example of a spiral nebula condensing into stars.

The illustration of the nebulosities in the *Pleiades* (Plate XXVI) is from a negative obtained with an exposure of three and one-half hours. This photograph is extremely difficult to reproduce properly, on account of the great difference in brightness between the bright stars and the faint masses of nebulosity. Some idea of the intricate filamentous structure of these masses may be gained from the half-tone plate. In the original negative, from which I hope a more satisfactory reproduction may yet be secured, the entire field, nearly two degrees square, is covered with a network of filaments, of which those in the southwest part of the photograph, and apparently connected with the great curved mass of streamers about *Merope*, are the most conspicuous. Only the brighter filaments of this vast network are shown in the reproduction.

The photograph of the nebula N. G. C. 6960 (Plate XXVIII) was obtained with an exposure of four hours, and that of N. G. C. 6992 (Plate XXVIII) with an exposure of three hours. These nebulæ are the most remarkable examples of filamentous nebulæ which I have photographed. They lie near together in the Milky Way in the constellation of Cygnus; they are apparently only the brightest parts of one great nebula, as extremely faint nebulous masses can be seen in the negatives, extending from one to the other. The nebula N. G. C. 6960 apparently lies exactly on the boundary between the dense region of stars to the east (the right-hand side in the illustration) and the region to the west which is comparatively void of stars. Instances of this kind occur again and again, and strongly suggest some intimate physical connection between such nebulæ and the dense masses of stars in their neighborhood. These photographs afford striking illustrations of the wonderful richness and complexity of structure

of the nebule, and of the importance of photography in the study of these very faint objects. When it is remembered that these photographs, showing such delicacy of detail, are obtained with a reflecting telescope of only eighteen inches aperture and ninety-three inches focal length, we can gain some idea of the results which might be obtained in the photographic study of the nebulæ with a thoroughly well-made reflecting telescope which would be comparable in size, cost, and refinement of workmanship with the great modern refractors.

The photograph of Messier 51 (Plate XXIX) was obtained with an exposure of six hours and with an aperture of 22 inches. With this long exposure and large angular aperture a very intense negative was obtained, which shows much exterior nebulosity; the latter is so faint, however, that it is almost entirely lost in the half-tone reproduction. Perhaps the most remarkable part of the very faint outer nebulosity is a great curved mass which forms a continuation of the conspicuous branch of the nebula to the extreme south; this continues toward the east, curves toward the north, and then toward the northwest, and joins the parts of the nebula to the north. The reproduction shows well the details of the two bright main branches of the spiral, and also the faint wisps and filaments between them; the latter are far beyond the reach of all telescopes visually. The faintest stars shown on the original negative are about two magnitudes fainter than those which are at the visual limit of the forty-inch refractor.

I am indebted to Mr. F. G. Pease for able assistance in securing the reflector photographs, and in preparing all of the photographic enlargements for the engraver's use. Great credit is due to the Binner-Wells Co., engravers, for the unusual care and skill with which the photographs have been reproduced.

	·

Large Double-Slide Plate Carrier Attached to Forty-Inch Refractor

LUXAR CRATER THEORIGIS AND SURROUNDINGS

•

Mark Strandards Mark Transportations and Streetings

Sexual 0.62 Meter to Moon's Diameter

LINAR CRATTER COLLEND & AND SURROUNDINGS

 $M_{\mathrm{ch},\ell} = X_{\ell,\ell} r \iota \iota \iota u - B_{\ell,\ell} \iota \iota \iota \iota \iota \iota \iota \iota \iota \iota = \mathrm{exc.}$

 $S_{\rm CALL}=0.79$ Meter to Moon's Diameter.

CALL SOLF

•

LUNAR CRATERS CLIFTES, LONGOROMERES, TYPIO, ETC.

Scaller 6.79 Meter to Moon's Diameter

DECENNIAL PUBLICATIONS, VIII

.

STAR CLUSTER MISSILE 43 HIBERTS

STAR CLUSTIR MISSIR 15 Project

CENTRAL PART OF GREAT NEBULA IN ORION

Two-Foot Relecting Telescope of the Yurkes Observatory

•

GREAT NUMBER IN ASSOCIATION

Spiral Nebber Messer 33 Treeser

NUMBERS IN THE PRESENT

NICLARY 6 N. C. C. 5960

.

 $N_{\rm EBHACIN}(C_{\rm SOC}) = N_{\rm e}G_{\rm e}C_{\rm e} (6992)$

.

.

THE ORBIT OF THE MINOR PLANET (334)

THE ORBIT OF THE MINOR PLANET (334)

KURT LAVES

INTRODUCTION. THE MINOR PLANETS OF THE HILDA TYPE

OF the four principal types of characteristic planets those of the Hestia $\left(\mu=\frac{1}{3}\right)$ and Hecuba $\left(\mu=\frac{1}{2}\right)$ types have led to frequent and elaborate investigations. The planets of the Hilda $\left(\mu=\frac{2}{3}\right)$ and Thule $\left(\mu=\frac{3}{4}\right)$ types have so far attracted very little attention. This is due, first, to the paucity of the number of planets of these two groups, and, secondly, to the close proximity of the perturbing planet Jupiter, which renders the development of the perturbative function laborious and difficult. The methods best adapted for the planets of the Hilda and Thule types will most likely be that of Gyldén and the periodic solution method of Poincaré. The planets of the Hilda type are four in number: (153), (190), (334), and (361). The characteristic elements of these planets are:

	(153)	(190)	(334)	(361)
n	452:197	452.5998	459.742	450/396
	9° 44:5	9° 19.58	0° 50.4	11° 32/9
	7° 52:7	6° 6.7	4° 38.1	12° 37/0

The planets of the Hilda and Thule types are in peculiar contrast to the gaps (lacunes) which occur in the regions of commensurability of the planets of the Hestia and Hecuba types. Tisserand, Gyldén, Poincaré, and Callandreau have shown that the absence of planets in these regions cannot be explained by an action of Jupiter on these planets. Indeed, the orbits of planets which pass through values of the mean daily motion which are commensurable to that of Jupiter continue to be stable. In the twenty-fifth chapter of the fourth volume of his Mécanique céleste Tisserand has investigated whether or not there are any planets in these two realms, where Jupiter will bring about a librational effect. Of the Hestia type the planet (132) is the only one where libration is likely to occur. Tisserand points to the three planets (332), (381), and (325) of the Hecuba type which in the future, when their elements will be known with greater accuracy, may prove to be "librational" planets. In the table which Tisserand has given on p. 419 the planet (132) is stated to have a mean daily motion of 888.8, which is incorrect and should read 904." Planet (332) is erroneously put in the Hecuba group, since it really is a planet of the type $\frac{2}{5}$. Allowing for these changes and employing the elements as they appear in Professor Bauschinger's up-to-date table, there are left, then, three ambiguous planets, namely, (132), (381), and (325). Planet (132) has unfortunately not been observed since its first discovery by Watson in 1873; therefore very little weight can be placed upon the accuracy of its elements. As will be shown, it is the only planet of the two types where Tisserand's criterion will bring out a librational effect. The planets (381) and (325), discovered in 1894 and 1892 respectively, have been observed in five and four oppositions respectively. Their elements may therefore now be considered to be trustworthy, at least as far as is necessary for the accuracy required by Tisserand's criterion. Neither one of them shows any libration whatever. We have, therefore, as yet to find a "librational" planet belonging to either group. Extending Tisserand's investigations to the planets of the Hilda and Thule types, we encounter at once planets of a very marked librational character. Tisserand, in

¹See J. Bauschinger, Tabellen zur Geschichte und Statistik der kleinen Planeten, Tabelle II, "Veröffentlichungen des kgl. astronomischen Recheninstituts zu Berlin," No. 16.

deriving his criterion, has taken into account but one term of the perturbative function; he has integrated the differential equation for θ [equation (1) on p. 421 of Vol. IV] as if h were a constant, which it is not; and lastly he has considered the Keplerian ellipse as a sufficient first approximation for the elements. The failure to find librational planets might therefore be considered from the standpoint of the mathematician as an indication that the method is at fault and that instability of the orbits will really take place. Such an argument is contradicted by the existence of librational planets of very marked degree, and that in the closest proximity to the perturbing planet. The attempt has been made to improve Tisserand's method in this respect that not only one of the characteristic perturbative terms is taken into account, but two. Considering the average magnitude of the eccentricity of the orbits involved, it seemed necessary not to neglect the term which carries the square of the eccentricity. It was found that the numerical results thus obtained are very little different from those obtained by Tisserand's original proceeding, but that it is considerably more laborious to obtain them. In what follows the results are given for the planets of the four groups, using Tisserand's criterion without change.

I. THE HESTIA TYPE

Libration takes place if the following inequality is fulfilled:

$$(n_1 - 3n')^2 < \frac{3}{2}m' \frac{n'^2}{a^2}e^2 \sin^2 \frac{\theta_1}{2} \left(21b^{(3)} + 10a \frac{db^{(3)}}{da} + a^2 \frac{d^2b^{(3)}}{da^2} \right) ;$$

or, reducing it to numbers for $\alpha = \frac{1}{\overline{t^3} \cdot \overline{9}}$, we obtain:

$$|\overline{n}_{\scriptscriptstyle
m I} - 3\,n^{\,\prime}| < 52^{\,\prime\prime}\,e\sinrac{ heta_{\scriptscriptstyle
m I}}{2}$$
 .

For the planet (132)

$$|n_1 - 3n'| = 6.3$$
 52.' $e \sin \frac{\theta_1}{2} = 9.8$.

The inequality is therefore fulfilled, since 6.3 < 9.8.

The general formulas for planets where $\frac{n'}{n} = \frac{i-1}{i}$ is approximately fulfilled are, i being an integer:

$$\theta = + (i - 1) (L - \pi) - i (L' - \pi) . \tag{1}$$

$$R = -\frac{k^2 m'}{2a'} \left(2i A^{(i)} - A_1^{(i)} \right) \cos \left(iL' - (i-1)L - \pi \right) . \tag{2}$$

$$h^2 = 3 (i-1) (2 i A^{(i)} + A_1^{(i)}) \frac{n'^2 e}{a^2}$$
 (3)

$$\frac{d^2\theta}{dt^2} = -\frac{1}{2}m'\,b^2\sin\,\theta \ . \tag{4}$$

Libration takes place if

$$\left| n_1 - \frac{i}{i-1} n' \right| < \frac{h}{i-1} \cos \frac{\theta_1}{2} + \overline{2m'}$$
 (5)

Putting i=2, 3, 4 into these formulas, we obtain the formulas that hold for the *Hecuba*, *Hilda*, and *Thule* types respectively.

II. THE HECUBA TYPE

Equation (5) becomes $|n_1 - 2n'| < 56" \text{ } \overline{e} \cos \frac{\theta_1}{2} \text{ }.$

For planet (325) the inequality becomes 16.6 < 4.0. For planet (381) the inequality becomes 21.4 < 19.4.

Both of these, therefore, fail to be "librational" planets.

III. THE HILDA TYPE

Equation (2) becomes

$$R = -\frac{k^2 m'}{2 a'} e \left(6b^{(3)} + a \frac{db^{(3)}}{da}\right) \cos(2L - 3L' + \pi) .$$

Equation (5) becomes

$$\left| \, n_{\rm i} - \frac{3}{2} \, n^{\, \prime} \, \right| < 58.\!\!\! '67 \, \sqrt{e} \, \cos \, \frac{\theta_{\rm i}}{2} \ . \label{eq:ni_energy}$$

Applying this to the four planets, we obtain

	(153)	(190)	(334)	(361)
$n_1 = \frac{3}{2}n' \dots$	3.51	4.731	11.'05	1:70
$58.671^{\prime}\bar{e}\cos\frac{\theta_1}{2}\dots$	23.789	22.'91	5:70	22.39

With the exception of (334), all of these planets have a marked libration.

IV. THE THULE TYPE

The inequality (5) reduced to numbers is

$$\left| n_1 - \frac{4}{3} n' \right| < 62.0 \sqrt{e} \cos \frac{\theta_1}{2}$$
.

For Thule $n_1 - \frac{4}{3}n'$ is = 4.35, while 62" $\sqrt{e} \cos \frac{\theta_1}{2} = 18.39$, which shows that libration will take place.

THE DEVELOPMENT OF THE PERTURBATIVE FUNCTION

The minor planet (334) has been named Chicago by Professor M. Wolf of Heidelberg, in commemoration of the conference of astronomers and mathematicians held during the World's Exposition in the city of Chicago. The planet is marked for the small eccentricity and inclination of the orbit. It therefore suggested at once the application of Le Verrier's method of general perturbations. a course of lectures on general perturbations given by the writer in the spring of 1896 the planet was used as an example for illustrating certain modes of computation. At that time but a limited number of observations was known, from which an orbit had been derived by Professor Berberich. The mean motion given in this system of elements was used in the computations. It was soon realized that in order to accomplish something by means of the calculations carried on to some extent by the writer and Professor Moulton in 1896, the perturbative function would have to be extended far beyond the original scope. For a few years the computations were allowed to rest and when taken up again by the writer they were continued with the same value of the mean daily motion, since a recomputation of the previous work seemed unnecessary. For a determination of the mean value of the major axis the set of available observations seemed insufficient. It was therefore argued that if osculating elements were to be used, an epoch of the elements could be determined in such a manner as to bring the value of the major axis used in the computations as near as possible to the major axis of the epoch to be selected. By means of special perturbations the change of the major axis between 1897 and 1894 due to the action of Jupiter was determined, and it was found that the major axis passed, during this interval of time, through the value assumed in the computations. The tables constructed will be of usefulness, too, if at some future epoch new tables of the planet shall be constructed, even if the mean value of the major axis shall appreciably differ from the value employed here. Indeed, by a differential method the change can be taken

into account without very much labor. Pains have been taken to avoid errors in the computations. The coefficients $b^{(i)}$, $b_1^{(i)}$, $b_1^{(i)}$, $c^{(i)}$, $c^{(i)}$, from i=0 to i=15 and the quantities which depend only upon these were computed independently by Mr. Moulton and myself. The other coefficients were almost all of them checked by a repeated calculation in which the calculating machine was used. To enable a checking of any part of the work all the necessary quantities are given from the beginning. It may prove necessary in the second part of this investigation, which will be published at an early date, to add a number of terms which at the present state of the work seemed to be negligible. The planet has been observed in eight oppositions, nine oppositions having occurred since its discovery. It is to be hoped that it will prove in the future to be an object from which much valuable information may be obtained, a new determination of the mass of Jupiter appearing to be of the most immediate importance.

In developing the perturbative function the value of $a = \frac{a}{a'}$ was assumed to be 0.7543102 $\log a = 9.8775500$.

The development of this function necessitates the calculation of the coefficients of the Fourier series into which $(1 + a^2 - 2a \cos \psi)^{-s}$ is to be developed, when s takes the values $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$, $\frac{7}{2}$.

The designations used in what follows are those of Le Verrier (see *Annales de l'Observatoire de Paris*, Vol. X). We therefore put

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{1}{2}} = \sum_{i}^{\infty} b^{(i)} \cos i\psi ,$$

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{3}{2}} = \sum_{i} c^{(i)} \cos i\psi ,$$

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{5}{2}} = \sum_{i} e^{(i)} \cos i\psi ,$$

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{7}{2}} = \sum_{i} f^{(i)} \cos i\psi .$$
(1)

Only one-half of the absolute terms are to be taken in these developments.

Each of the coefficients $b^{(i)}$, $c^{(i)}$, $c^{(i)}$, $c^{(i)}$, $f^{(i)}$ is given by means of power series in a, the coefficients of which depend upon the respective values of s. In the second volume of the Annales Le Verrier has given these coefficients of the various powers of a with sufficient accuracy. Recursion formulas are easily obtainable by means of which the higher $b_{\ell}^{(i)}$, $c^{(i)}$.. may be calculated when the lower ones are known. On account of the slow convergence of the series it was deemed necessary to compute the coefficients $b^{(i)}$, and $c^{(i)}$ up to and including the term for which i is equal to 30.

In Le Verrier's method the perturbative function is developed, by Taylor's principle, by starting from the circular form of the orbit. Owing to the small value of the eccentricity of (334), a close approach to the true orbit should be obtained by stopping at the fourth degree terms in the periodic terms, and carrying the development up to the sixth degree in the secular terms.

$$R_{01} = (r^2 + r'^2 - 2rr'\cos\psi)^{-\frac{1}{2}} - \frac{r\cos\psi}{r'^2}$$

is the expression for the perturbative function. From the development given above the A^i, B^i, C^i, D^i coefficients are derived by means of the formulas:

$$(a^{2} + a'^{2} - 2aa'\cos\psi)^{-\frac{1}{2}} = \frac{1}{2} \Sigma A^{(i)}\cos i\psi ,$$

$$aa' (a^{2} + a'^{2} - 2aa'\cos\psi)^{-\frac{1}{2}} = \frac{1}{2} \Sigma B^{(i)}\cos i\psi ,$$

$$a^{2}a'^{2}(a^{2} + a'^{2} - 2aa'\cos\psi)^{-\frac{1}{2}} = \frac{1}{2} \Sigma C^{(i)}\cos i\psi .$$
(2)

Comparing set (1) with (2) it follows that we have:

$$a'A^{(i)} = b^{(i)} \qquad a'B^{(i)} = ac^{(i)}$$

$$a'A^{(i)}_1 = b^{(i)}_1 \qquad a'B^{(i)}_1 = a(c^{(i)}_1 + c^{(i)})$$

$$a'A^{(i)}_2 = \frac{1}{2}b^{(i)}_2 \qquad a'B^{(i)}_2 = \frac{a}{2}(c^{(i)}_2 + 2c^{(i)}_1)$$

$$a'A^{(i)}_3 = \frac{1}{2 \cdot 3}b^{(i)}_3 \qquad a'B^{(i)}_3 = \frac{a}{2 \cdot 3}(c^{(i)}_3 + 3c^{(i)}_2)$$

$$a'A^{(i)}_4 = \frac{1}{2 \cdot 3 \cdot 4}b^{(i)}_4 \qquad a'C^{(i)}_1 = a^2e^{(i)}$$

$$a'A^{(i)}_3 = \frac{1}{2 \cdot 3 \cdot 4 \cdot 5}b^{(i)}_5 \qquad a'C^{(i)}_1 = a^2(e^{(i)}_1 + 2e^{(i)})$$

$$a'B^{(i)}_4 = \frac{a}{2}(c^{(i)}_1 + 2c^{(i)})$$

$$a'B^{(i)}_5 = \frac{a}{2}(c^{(i)}_1 + 2c^{(i)})$$

$$a'C^{(i)}_1 = a^2e^{(i)}_1 + 2e^{(i)}_1$$

$$a'C^{(i)}_1 = a^2(e^{(i)}_1 + 2e^{(i)}_1)$$

$$a'C^{(i)}_1 = \frac{3}{8}(a'C^{(i-2)}_1 + a'C^{(i)}_1 + a'C^{(i+2)}_1)$$

$$a'L^{(i)}_1 = \frac{3}{4}(a'C^{(i-2)}_1 + a'C^{(i)}_1)$$

The development for $R_1 = (r^2 + r'^2 - 2rr'\cos\psi)^{-\frac{1}{2}}$ will be obtained by means of the foregoing formulas; this being done, R_{01} is deduced from it. Those coefficients of R_{01} which are affected by the development of $\frac{r\cos\psi}{r'^2}$ are given at the bottom of each table with the proper designation. In the six differential equations for the elements will enter the partial differential quotients of R_{01} with respect to the various elements involved. For all of them except $\frac{\partial R_{01}}{\partial a}$ the coefficients that hold for R_{01} will be the same. It is therefore necessary to give for $\frac{\partial R_{01}}{\partial a}$ a special development. The calculation for the coefficients of this quantity rests upon the following formulas, which closely resemble the foregoing formulas:

$$a' a \frac{dA_{4}^{(i)}}{da} = a' A_{1}^{(i)} \qquad a' a \frac{dA_{4}^{(i)}}{da} = 5 a' A_{5}^{(i)} + 4 a' A_{4}^{(i)}$$

$$a' a \frac{dA_{1}^{(i)}}{da} = 2 a' A_{2}^{(i)} + a' A_{1}^{(i)} \qquad a' a \frac{dB_{1}^{(i)}}{da} = a' B_{1}^{(i)}$$

$$a' a \frac{dA_{2}^{(i)}}{da} = 3 a' A_{3}^{(i)} + 2 a' A_{2}^{(i)} \qquad a' a \frac{dB_{1}^{(i)}}{da} = 2 a' B_{2}^{(i)} + a' B_{1}^{(i)}$$

$$a' a \frac{dA_{3}^{(i)}}{da} = 4 a' A_{4}^{(i)} + 3 a' A_{3}^{(i)}$$

$$a' a \frac{dB_{2}^{(i)}}{da} = 3 a' B_{3}^{(i)} + 2 a' B_{2}^{(i)}$$

$$a' a \frac{dC_{1}^{(i)}}{da} = a' C_{1}^{(i)}$$

$$a' a \frac{dC_{1}^{(i)}}{da} = 2 a' C_{2}^{(i)} + a' C_{1}^{(i)}$$

$$a' a \frac{dB_{1}^{(i)}}{da} = \frac{1}{2} \left(a' a \frac{dB_{1}^{(i-1)}}{da} + a' a \frac{dB_{1}^{(i+1)}}{da} \right)$$

$$a' a \frac{dG_{1}^{(i)}}{da} = \frac{3}{8} \left(a' a \frac{dC_{1}^{(i-2)}}{da} + 4 a' a \frac{dC_{1}^{(i)}}{da} + a' a \frac{dC_{1}^{(i)}}{da} \right)$$

$$a' a \frac{dL_{1}^{(i)}}{da} = \frac{3}{4} \left(a' a \frac{dC_{1}^{(i-2)}}{da} + a' a \frac{dC_{1}^{(i)}}{da} \right)$$

TABLE I

i	$b_{\mathrm{u}}^{(i)}$	$b_1^{(i)}$	$b_2^{(i)}$	$oldsymbol{b}_3^{(i)}$	$oldsymbol{b_4^{(i)}}$	$b_5^{(i)}$	$b_6^{(i)}$
0	2,441305	1.443403	5,590232	34.898984	327.1807	4050.409	62512.41
1	1.016735	1.913511	5.497506	35.271067	327.9349	4057.947	62583.87
2	0.596121	1.785029	6.099221	35.749825	331.2201	4079.383	63106.04
:3	0.381915	1.549698	6.483219	37.527031	336.3891	4117.862	63128.86
4	0.255109	1.300851	6.552158	39,806480	346.1931	4174.097	
5	0.174627	1 070263	6.351655	41.821026	360,6489	4258.352	
G	0.121483	0.868749	5.958702	43.089983	377.7701	4378,645	
7	0.085489	0.698331	5,447238	43.404727	391.8075	4534.445	
8	0.060680	0.557208	4.877527	42.753952	409.1497	4716,083	
9	0.013359	0.442019	4.294311	41.247667	418.8124	4899.008	
10	0.031148	0.348991	3.728425	39.057161	422.5994	5089.724	
11	0.022475	0.274477	3.199295	36.374347	420.0530	5236.467	
12	0.016276	0.215164	2.718241	33.37593	411,4613	5355,954	
13	0.011823	0.168201	2.289570	30.23708	397.1126	5410.922	
14	0.008612	0.131167	1.914574	27.06107	378.7607	5406.813	
15	0.006287	0.102078	1.590132	23.99735	355,6490	5355,452	
16	0.004599	0.079289	1.3137	21.0520			
17	0.003370	0.061493	1.0789	18.3651			
18	0.002473	0.047622	0.8831	15.8222			
19	0.001817	0.036835	0.7186	13.656			
20	0.001337	0.028450	0.5840	11.554			
21	0.000985	0.021967	0.4711	9.942			
22	0.000726	0.016944	0.3810	8.214			
23	0.000536	0.013050	0.3050	7.136			
24	0.000396	0.010066	0.2450	5.712			
$\frac{1}{25}$	0.000293	0.007735	0.1956	5.048			
26	0.000217	0.005971	0.1551	3.922			
$\overline{27}$	0.000161	0.004575	0.1246	3.476			
$\frac{1}{28}$	0.000120	0.003527	0.0964	2.754			
29	0.000090	0.002687	0.0791	2.281			
30	0.000068	0.002065	0.0587	2.066			

i	$e_0^{(i)}$	$\epsilon_1^{(t)}$	$e_2^{(\ell)}$	$e_3^{(i)}$	$e_{n}^{(i)}$	$e_1^{(i)}$	
()	12,36175	68.6237	621.7857	7553.544	134.8231	1582.967	
1	11.23813	68.4992	618.8126	7538.537	132.0236	1570,668	
2	9,66595	66,2459	611,9514	7489.341	124.8907	1532.359	
3	8.0770	62.1949	599.078	7408.474	114.9379		
4	6.6281	56.9571	578.959	7289,902	103.4751		
5	5.3714	51.1037	i 551.770	7128.134	91.5053		
6	4.3130	45.0838	518.578	6916.374			
7	3.4387	39.2155	480.757				
8	2.7263	33.7093	440 218				
9	2.1517	28.6831	398.372				
ö	1.6917	24.1970	356.748	******			
1	1.3258	20,2550	316-409				
$\frac{1}{2}$	1.0362	16.8471	278.092				
$\tilde{\vec{3}}$	0.8079	13 9271	242.629				
1	0.6286	11.4574	209.897				
5	$0.6250 \\ 0.4882$	9.407	180.256				
$\frac{9}{6}$	$0.4882 \\ 0.3786$	9.407	180.200				
7	0.2932						
.8	0.2268						
9	0.1751						
20	0.1350						
21	0.1011						
22	0.0802						
2:3	0.0616						
24	0.0473						
25	0.0363						
26	0.0279						
27	0.0212						
28	0.0161						
29	0.0122						
3()	0.0092						

TABLE II

	$a'A^{(i)}$	$a'A_1^{(l)}$	$a'A_2^{(i)}$	$a'A_3^{(i)}$	$a'A_4^{(i)}$	$a'A_5^{(i)}$	$a'A_b^{(i)}$	$a'B^{(i)}$	$a'B_1^{(i)}$	$a'B_2^{(i)}$	$a'B_3^{(i)}$	$a'C^{(i)}$
<i>i</i> 	(# 24.0)	<i>n</i> A1	CC 212	α A3		W Als	((Z1 _b	<i>a b</i>	D1	<i>a B</i> ₂	<i>u D</i> ₃	
0	2.441305	1.443403	2,795116	5.816497	13.63253	33.7534	86.823	9.3245	61.0871	286,2732	1184,125	76.7122
1	1.016735	1.913541	2.748753	5.878511	13.66395	33.8162	86.923	8.4770	60.1466	285.0504	1181.117	75.1193
$\bar{2}$	0.596121	1.785029	3.049610	5.958304		33.9949	87.647	7.2911	57.2610	282.2646	1172.344	71,0608
$\bar{3}$	0.381915	1.549698	3.241609	6.254505	14.01621	34.3155	87.679	6.0926	53.0066	272.860	1157.323	65.398
4	0.255109	1.300851	3.276079	6.634413	14.42472	34.7841		4.9996	47.9630	261.321	1134.829	58.876
					15.02704	35.4863						52.065
5	0.174627	1.070263	3.175827	6.970171				4.0508	42.5997	246.651	1104.237	
6	0.121483	0.868749	2.979351	7.181664	15.74044	36.4887		3.2533	37.2605	221.592	1065.096	
7	0.085489	0.698334	2.723619	7.234121	16.41261	37.7870		2.5938	32.1745	210,900		
8	0.060680	0.557208	2.438763	7.125658	17.04793	39.3007		2.0565	27.4837	191.457		
9	0.043359	0.442019	$ \ 2.147155 $	6.874611	17.41283	40.8251		1.6231	23.2590	171.507		
10	0.031148	0.348991	1.864212	6.509527	17.69258	42.4144		1.2761	19.5281	152.805		
11	0.022475	0.274477	1.599647	6.062391		43.6372		1.0001	16.2786	134.614		
12	0.016276	0.215164	1.359120	5.562655	17.22759	44.6329		0.7816	13.4896	117.592		
13	0.011823	0.168201	1.144785	5.039513	16.50868	45.0910		0.6094	11.1148	102.014		
14	0.008612	0.131167	0.957287	4.510178	15.86506	45.0568		0.4742	9.1166	87.806		
15	0.006287	0.102078	0.795066	3.999559		44.6288		0.3682		75,080		
16	0.004599	0.079289	0.65685	3.5087				0.2856				
17	0.003370	0.061493	0.53947	3.0608				0.2212				
18	0.002473	0.047622	0.44155	2.6367				0.1711				
19	0.001817	0.036835	0.3593	2.2760				0.1321				
20		0.028450	0.2920	1.9257				0.1018				
$\frac{20}{21}$	$\begin{bmatrix} 0.001337 \\ 0.000985 \end{bmatrix}$	0.028430 0.021967	$0.2320 \\ 0.2355$	1.6570								
$\frac{21}{22}$				1 260	• • • • • • • • •			0.0785				••••
$\frac{22}{23}$	0.000726	0.016944	0.1905	1.369 1.189	*****			0.0605				
	0.000536	0.013050	0.1525	1.189				0.0465				• • • • • •
24	0.000396	0.010066	0.1225	0.952		• • • • •		0.0357				• • • • • • •
25	0.000293	0.007735	0.0978	0.841				0.0274				• • • • • •
26	0.000217	0.005971	0.0775	0.654				0.0210				
27	0.000161	0.004575	0.0623	0.579				0.0160				
28	0.000120	0.003527	0.0482	0.459				0.0121				
29	0.000090	0.002687	0.0395	0.380				-0.0092				• • • • • •
30	0.000068	0.002065	0.0298	0.344				0.0069				
						J						
==							1	1	1			
==	dA(i)	J 1 (b)		A 1 (t)	11(0)	$dR^{(i)}$	d R.(i)	$dR^{(i)}$	dE($\frac{1}{ a } \cdot dE_1$	i) AF	ii
	$a'a\frac{dA^{(i)}}{dA^{(i)}}$	$a'a \frac{dA_1^{(i)}}{dA_1^{(i)}}$	$a'a \frac{dA_2^{(i)}}{a}$	$a'a \frac{dA_3^{(i)}}{dA_3^{(i)}}$	$a'a \frac{dA_4^{(i)}}{dA_4^{(i)}}$	$a'a\frac{dB^{(i)}}{I}$	$a'a \frac{dB_1^{(i)}}{dB_1^{(i)}}$	$\int_{a'a} dB_2^{(i)}$	$\left a'a \frac{dE'}{dE'} \right $	$\frac{1}{a'a} \frac{dE_1^4}{dA_2}$	$\begin{vmatrix} a & a \end{vmatrix} = \begin{vmatrix} a & a \end{vmatrix} a \begin{vmatrix} a \end{vmatrix} = \begin{vmatrix} a \end{vmatrix}$	i)
	$a'a \frac{dA^{(i)}}{da}$	$a'a \frac{dA_1^{(i)}}{da}$	$a'a\frac{dA_2^{(i)}}{da}$	$a'a \frac{dA_3^{(i)}}{da}$	$a'a \frac{dA_4^{(i)}}{da}$	$a^{\dagger}a\frac{dB^{(i)}}{da}$	$a'a\frac{dB_1^{(i)}}{da}$	$a'a \frac{dB_2^{(i)}}{da}$	$\left a'a \frac{dE'}{da} \right $	$\frac{\partial}{\partial a'a} \frac{dE_1^a}{da}$	$\left a'a\frac{dE_2^{\dagger}}{da}\right $	i)
i	$a'a \frac{dA^{(i)}}{da}$	$a'arac{dA_1^{(i)}}{da}$	$\left a'a \frac{dA_2^{(i)}}{da} \right $	$a'arac{dA_3^{(i)}}{du}$	$a'a \frac{dA_4^{(i)}}{da}$	$a'a \frac{dB^{(i)}}{da}$	$a'arac{dB_1^{(i)}}{da}$	$a'a \frac{dB_2^{(i)}}{da}$	$\left a'a \frac{dE'}{da} \right $	$\left a'a\frac{dE_1^t}{da}\right $	$\left a'a\frac{dE_2^4}{da}\right $	i)
_							-		-			
0	1.443403	7.033635	23.039723	71.979611	223.2871	61.0871	633,6278	4124,921	60.1466	630.247	4113.45	1
0	1.443403 1.913541	7.033635 7.411047	23.039723 23.133039	71.979611 72.291333	$\begin{array}{r} - \\ - \\ 223.2871 \\ 223.7368 \end{array}$	61.0871 60.1466	633,6278 630,2333	4124,921 3 4113,452	60.1466 2 59.1740	630.247 627.711	4113.45	I
0	1.443403	7.033635	23.039723 23.133039 23.974133	71.979611 72.291333 73.078272	223.2871 223.7368 225.1779	61.0871	633,6278 630,2333 621,7829	4124,921 4113,452 4081,56	60.1466	630.247 627.711 616.614	4113.45 4103.24 4115.57	I
0	1.443403 1.913541	7.033635 7.411047	23.039723 23.133039	71.979611 72.291333	$\begin{array}{r} - \\ - \\ 223.2871 \\ 223.7368 \end{array}$	61.0871 60.1466	633,6278 630,2333 621,7829 602,981	3 4124,921 4113,452 4081,56 4117,69	60.1466 2 59.1740	630.247 627.711 616.614 598.719	4113.45 4103.24 4115.570 4004.34	1
$\begin{array}{c} - \\ 0 \\ 1 \\ 2 \end{array}$	1.443403 1.913541 1.785029	7.033635 7.411047 7.884250 8.032917 7.853009	23.039723 23.133039 23.974133	71.979611 72.291333 73.078272 74.828355 77.602119	223.2871 223.7368 225.1779	61.0871 60.1466 57.2610	633,6278 630,2333 621,7829	4124,921 4113,452 4081,56	60.1466 59.1740 56.5766	630.247 627.711 616.614 598.719	4113.45 4103.24 4115.57 4004.34 3 3961.80	1
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	1.443403 1.913541 1.785029 1.549698 1.300851	7.033635 7.411047 7.884250 8.032917 7.853009	23.039723 23.133039 23.974133 25.246731 26.455397	71.979611 72.291333 73.078272 74.828355 77.602119	223.2871 223.7368 225.1779 226.6423	61.0871 60.1466 57.2610 53.0066	633,6278 630,2333 621,7829 602,981	3 4124,921 4113,452 4081,56 4117,69	$\begin{array}{c c} 60.1466 \\ 259.1740 \\ 56.5766 \\ 52.6120 \end{array}$	630.247 6627.711 6616.614 7598.719 7572.123	4113.45 4103.24 4115.57 4004.34 3 3961.80	1
$\begin{array}{c} -0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168	71.979611 72.291333 73.078272 74.828355 77.602119 81.018673	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997	633,6278 630,2333 621,7829 602,981 575,649	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01	$\begin{array}{c c} & & & \\ \hline & 60.1466 \\ \hline & 59.1740 \\ \hline & 56.5766 \\ \hline & 52.6120 \\ \hline & 47.8032 \\ \hline & 42.6115 \\ \hline \end{array}$	630.247 627.711 616.614 598.719 572.123 530.716	4113.45 4103.24 4115.57 4004.34 3961.80 3782.80	1
$\begin{array}{c} -0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451	23,039723 23,133039 23,974133 25,246731 26,455397 27,262168 27,503694	71,979611 72,291333 73,078272 74,828355 77,602119 81,018673 84,506752 87,352803	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053	61.0871 60.1466 57.2610 53.0066 47.9630	633,6278 630,2333 621,7829 602,981 575,649 541,265	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	$\begin{array}{c c} & & & \\ \hline & 60.1466 \\ \hline & 59.1740 \\ \hline & 56.5766 \\ \hline & 52.6120 \\ \hline & 47.8032 \\ \hline & 42.6115 \\ \hline & 37.3871 \\ \hline \end{array}$	630.247 627.711 616.614 598.719 572.123 530.716 500.162	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	1
$\begin{array}{c} -0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572	23,039723 23,133039 23,974133 25,246731 26,455397 27,262168 27,503694 27,149601	71,979611 72,291333 73,078272 74,828355 77,602119 81,018673 84,506752 87,352803	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01	60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436	4113.45 4103.24 4115.54 4004.34 3961.80 3782.80	1
0 1 2 3 4 5 6 7 8	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208	7,033635 7,411047 7,884250 8,032917 7,853009 7,421918 6,827451 6,145572 5,434735	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501	71.979611 72.291333 73.078272 74.828355 77.602119 81.018673 84.506752 87.352803 89.568894	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088	3 4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167	630.247 6627.711 6616.614 598.712 572.122 530.716 500.162 450.436 409.778	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	1
0 1 2 3 4 5 6 7 8 9	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.698334 0.557208 0.442019	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 4.45572 5.434735 4.736330	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 26.254501 24.918144	71,979611 72,291333 73,078272 74,828355 77,602119 81,018673 84,506752 87,352803 89,568894 90,275153	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498	3 4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019	6 630.247 6 627.711 6 616.614 7 598.712 7 572.125 7 530.716 7 500.165 7 450.43 7 409.779 7 371.978	4113.45 4103.24 4115.57 4004.34 3961.80 3782.80	1
0 1 2 3 4 5 6 7 8 9	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006	71, 979611 72, 291333 73, 078272 74, 828355 77, 002119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869	3 4124,921 3 4113,452 5 4081,56 4117,69 3927,13 3806,01 3638,47	60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688	630.247 6 627.711 6 616.614 6 598.712 5 572.123 6 500.162 450.436 409.773 371.978 324.647	4113.45 4103.24 4115.57 4004.34 3961.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 26.254501 24.918144 23.257606 21.386468	71, 979611 72, 291333 73, 078272 74, 828355 77, 002119 81, 018673 84, 506752 87, 352803 89, 268894 90, 275153 90, 298901 88, 045253	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441	61.0871 60.1466 57.2610 53.0066 47.9590 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756	4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088	630.247 6 627.711 6 616.614 5 598.712 5 572.123 6 530.716 500.162 450.430 409.773 371.978 6 324.647 290.166	4113.45 4103.24 4115.570 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 26.254501 24.918144 23.257006 21.386468 19.406206	71, 979611 72, 291333 73,078272 74, 828355 77,002119 81,018673 84,506752 87,352803 89,568894 90,275153 90,298901 88,045253 85,598325	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463	4124,921 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967	630.247 6 627.711 6 616.614 6 598.712 5 530.716 5 500.162 4 50.430 4 09.772 3 371.978 3 224.647 3 290.166 2 253.137	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 26.254501 24.918144 23.257006 21.386468 19.406206 17.408109	71.979611 72.291333 73.078272 74.828355 77.602119 81.018673 84.506752 87.362803 89.568894 90.275153 90.298901 98.298901 85.598825 81.153259	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518	3 4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	6 630.247 6 627.711 6 616.614 6 598.712 5 530.716 5 500.162 4 50.436 4 409.773 3 324.647 6 324.647 6 329.166 2 53.137 2 19.003	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1 1 20 1 20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 2.045741	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 117, 408109 15, 445108	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81,018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 228901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727	3 4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	6 630.247 6 627.711 6 616.614 0 598.719 1 572.123 5 530.716 5 500.163 4 409.779 3 71.978 6 324.647 7 290.166 2 253.137 2 19.095 188.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1 1 20 1 20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 2.045741 1.692210	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 24, 918144 23, 257606 21, 386468 19, 406206 17, 408109 15, 445108 13, 588809	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 52 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.712 5572.129 530.716 500.162 450.430 409.778 324.647 290.166 253.137 219.005 188.397	4113.45 4103.24 4115.570 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 15, 445108 13, 588809 11, 8398	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 52 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 6 627.711 6 616.614 5 598.718 2 572.129 5 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45 4103.24 4115.57 4004.34 3961.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.079289	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.7736330 4.077416 3.473772 2.933405 2.457771 2.045741 1.692210 1.3930 1.1404	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 26.254501 24.918144 23.257006 11.408109 15.445108 13.588809 11.8398 10.2613	71, 979611 72, 291333 73,078272 74, 828355 77,002119 81,018673 84,506752 87,352803 89,568894 90,275153 80,298901 88,045253 85,598325 81,153259 76,990786	223. 2871 223. 7368 225. 1779 226. 6423 231. 6194 237. 5397 245. 4053 254. 5854 264. 7029 273. 7668 282. 8423 288. 0441 292. 0749 291. 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518 186,727 159,277	4124,921 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 52 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 6 627.711 6 616.614 0 598.712 2 572.125 5 530.716 500.165 450.436 409.773 371.978 6 324.647 3 290.166 2 253.137 2 19.095 188.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.145572 5.434735 4.736330 4.077416 2.457771 2.045741 1.692210 1.3930 1.1404 0.9307	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 15, 445108 13, 588809 11, 8398 10, 2613 8, 7932	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81,018673 84,506752 87,352803 89,568894 90,275153 90,298901 88,045253 85,598325 81,153259 76,990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518 186,727 159,277	3 4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 6 627.711 6 616.614 0 598.712 5 530.716 5 500.162 4 50.436 4 409.775 3 324.647 2 290.166 2 253.137 2 19.005 1 88.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 5.434735 2.933405 2.457771 2.045741 1.692210 1.3930 1.1404 0.9307 0.7554	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 11, 408109 15, 4445108 13, 588809 11, 8398 10, 2613 8, 7932 7, 5466	71, 979611 72, 291333 73,078272 74, 828355 77,002119 81,018673 84,506752 87,352803 89,568894 90,275153 80,298901 88,045253 85,598325 81,153259 76,990786	223. 2871 223. 7368 225. 1779 226. 6423 231. 6194 237. 5397 245. 4053 254. 5854 264. 7029 273. 7668 282. 8423 288. 0441 292. 0749 291. 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518 186,727 159,277	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	60.1466 52.59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 6 627.711 6 616.614 0 598.712 5 530.716 5 500.162 4 50.436 4 409.773 3 324.647 3 290.166 2 253.137 2 19.005 1 88.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 4.736330 4.7377416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.7554 0.6124	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257606 21.386468 19.406206 17.408109 15.445108 13.588809 11.8398 10.2613 8.7932 7.5466 6.3611	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81,018673 84,506752 87,352803 89,568894 90,275153 90,298901 88,045253 85,598325 81,153259 76,990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 282.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518 186,727 159,277	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	60.1466 52.59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.7112 5572.122 530.716 500.162 450.430 409.778 324.647 3290.166 253.137 219.003 188.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 5.434735 2.933405 2.457771 2.045741 1.692210 1.3930 1.1404 0.9307 0.7554	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257006 21.386468 19.406206 17.408109 15.445108 13.588809 11.8398 10.2613 8.7932 7.5466 6.3611 5.4421	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	3 4124,921 3 4113,452 9 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 52 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 572.123 530.716 500.162 450.43 409.773 371.978 324.647 290.166 253.137 219.093 188.397	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 4.736330 4.7377416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.7554 0.6124	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257606 21.386468 19.406206 17.408109 15.445108 13.588809 11.8398 10.2613 8.7932 7.5466 6.3611	71, 979611 72, 291333 73, 078272 74, 828355 77, 002119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	3 4124,921 3 4113,452 9 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 22.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 572.125 530.716 500.162 450.433 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.021967	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.7736330 4.077416 2.457771 2.0457410 1.3930 1.1404 0.9307 0.6124 0.6124 0.4931	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257006 21.386468 19.406206 17.408109 15.445108 13.588809 11.8398 10.2613 8.7932 7.5466 6.3611 5.4421	71, 979611 72, 291333 73,078272 74, 828355 77,002119 81,018673 84,506752 87,352803 89,568894 90,275153 90,298901 88,045253 85,598325 81,153259 76,990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9590 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 6 627.711 6 616.614 0 598.712 5 530.716 500.162 450.436 409.772 371.978 324.647 290.166 253.137 219.095 188.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.668749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.021967 0.016944	7.033635 7.411047 7.884250 8.032917 7.85207 7.421918 6.827451 6.145572 5.434735 5.434735 2.933405 2.457771 2.045741 1.692210 1.1404 0.9307 0.7554 0.6124 0.4931 0.3979 0.3180	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257006 21.386468 19.406206 17.408109 15.445108 13.588809 11.8398 10.2613 8.7932 7.5466 6.3611 5.4421 4.4883	71, 979611 72, 291333 73,078272 74, 828355 77,002119 81,018673 84,506752 87,352803 89,568894 90,275153 80,298901 88,045253 85,598325 81,153259 76,990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 228,756 251,463 217,518 186,727 159,277	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.7112 5572.122 530.716 500.162 450.436 409.77 371.978 324.647 253.137 219.095 188.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.013050 0.016944 0.016944 0.016946	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.9307 0.7554 0.6124 0.4931 0.3979 0.3180 0.2551	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 11, 408109 15, 445108 13, 588809 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8720	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518 186,727 159,277	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 572.125 530.716 500.162 450.433 409.778 371.978 324.647 290.166 253.137 219.005	4113.45 4103.24 4115.570 4004.34 3361.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.568749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.021967 0.016944 0.013050 0.010066 0.007735	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.9357 0.7554 0.6124 0.4931 0.3979 0.3180 0.2551 0.2033	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257006 21.386468 19.406206 17.408109 15.445108 13.588809 11.8398 10.2613 8.7932 7.5466 6.3611 5.4421 4.4883 3.8720 3.1010 2.7186	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9590 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 572.125 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.668334 0.557208 0.442019 0.274477 0.215164 0.168201 0.131167 0.102078 0.047622 0.036835 0.042967 0.021967 0.019050 0.019050 0.010066 0.007735 0.005971	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.145572 5.434735 4.7736330 4.077416 3.473772 2.933405 2.457771 2.0457410 1.3930 1.1404 0.9307 0.7554 0.6124 0.4931 0.3979 0.3180 0.2551 0.2033 0.1611	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257006 21.386468 19.406206 17.408109 15.445108 10.2613 8.7932 7.5466 6.3611 5.4421 4.4883 3.8720 3.1010 2.7186 2.1171	71, 979611 72, 291333 73,078272 74, 828355 77,002119 81,018673 84,506752 87,352803 89,568894 90,275153 80,298901 88,045253 85,598325 81,153259 76,990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9590 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	3 4124,921 3 4113,452 9 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 22.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.712 598.713 500.162 450.436 409.773 371.978 6324.647 2290.166 253.137 219.093 188.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.061493 0.047622 0.036835 0.028450 0.021967 0.016944 0.013050 0.010066 0.007735 0.005971 0.005971	7. 033635 7. 411047 7. 884250 8. 032917 7. 853090 6. 827451 6. 145572 5. 434735 5. 434735 2. 933405 2. 457771 2. 045741 1. 692210 1. 1404 0. 6124 0. 6124 0. 4931 0. 2933 0. 2551 0. 2033 0. 1611 0. 1292	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 11, 408109 11, 4398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8720 3, 1010 2, 7186 2, 1171 1, 8616	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518 186,727 159,277	4124.921 4113.452 4081.56 4117.69 3927.13 3806.01 3638.47	1 60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.7112 530.716 500.162 450.436 409.778 371.978 324.647 253.137 219.095 188.397	4113.45 4103.24 4115.57 4004.34 3361.80 3782.80	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.016944 0.013050 0.010066 0.007735 0.005971 0.004575 0.003527	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 2.457771 2.933405 2.457771 1.692210 1.3930 1.1404 0.4931 0.3979 0.379 0.379 0.2551 0.2033 0.16111 0.1292 0.0999	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8720 3, 1010 2, 7186 2, 1171 1, 8616 1, 4734	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	3 4124,921 3 4113,452 9 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 572.125 530.716 500.162 450.433 409.778 371.978 324.647 290.166 253.137 219.005	4113.45 4103.24 4115.570 4004.34 3361.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.029450 0.013050 0.013050 0.010066 0.007735 0.005971 0.004575 0.003527 0.003527	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.4931 0.3939 0.3180 0.2551 0.2033 0.1611 0.1292 0.0999 0.0818	23.039723 23.133039 23.974133 25.246731 26.455397 27.262168 27.503694 27.149601 24.918144 23.257606 21.386468 19.406206 17.408109 11.8398 10.2613 8.7932 7.5466 6.3611 5.4421 4.4883 3.8720 3.1010 2.7186 2.1171 1.8616 1.4734 1.2191	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9596 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	3 4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 52 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 572.123 530.716 500.162 450.433 409.773 371.978 324.647 290.166 253.137 219.093 188.397	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.016944 0.013050 0.010066 0.007735 0.005971 0.004575 0.003527	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 2.457771 2.933405 2.457771 1.692210 1.3930 1.1404 0.4931 0.3979 0.379 0.379 0.2551 0.2033 0.16111 0.1292 0.0999	23, 039723 23, 133039 23, 974133 25, 246731 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8720 3, 1010 2, 7186 2, 1171 1, 8616 1, 4734	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	3 4124,921 3 4113,452 9 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 52 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 572.123 530.716 500.162 450.433 409.773 371.978 324.647 290.166 253.137 219.093 188.397	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	

TABLE HI ${\hbox{The Secclar Part of $a'R_1$ and $a'a}} \frac{d\,R_1}{d\,a}$

	$a^*R_1^*$	$= a'a \frac{dR_1}{da}$		$a^{i}R_{1}$	$a \ a \ \frac{d \ R_1}{d \ a}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +0.0865918 \\ +0.0251538 \\ +0.0251538 \\ -0.6272122 \\ -0.2607311 \\ +0.56190 \\ +1.33401 \\ +0.88184 \\ -1.93599 \\ -1.93599 \\ +1.76281 \\ -1.24424 \\ -1.40074 \end{array}$	$\begin{array}{c} +9.8583567 \\ +0.8761220 \\ +0.8761220 \\ -1.4781822 \\ -1.1557895 \\ +1.74322 \\ +2.47198 \\ +1.98512 \\ -3.07405 \\ -3.07405 \\ +3.06850 \\ -2.40640 \\ -2.52614 \end{array}$	$\begin{array}{ c c c c c c }\hline e^2e'^2\cos{(2\pi'-2\omega)}$	$\begin{array}{c} +0.99969 \\ +1.78790 \\ -1.92947 \\ +1.46501 \\ +1.27508 \\ +2.43034 \\ +2.62632 \\ +1.87452 \\ -1.15232 \\ -2.82749 \\ -2.54231 \\ +2.24628 \\ +2.43887 \\ -1.85260 \\ \end{array}$	+2.15413 $+2.86277$ -3.06977 $+2.64637$

TABLE IV ${\tt The \ Periodic \ Part \ of \ } R_{\rm ^{0}l \ \ AND \ } a'\,a \frac{dR_{\rm ^{0}l}}{da}$

	$a' R_1$	$a \ a \ \frac{d R_1}{d a}$		a^+R_1	$a'a \frac{dR_1}{da}$
$\cos (l' - \lambda)^*$	0.00721	+0.28184	$e^2 \cos 5 (l' - \lambda)$	-0.35075	-0.97380
$(2l'-2\lambda)$	9,77533	0.25164	6 (")	-0.38904	-1.14951
$(3U-3\lambda)$	9.58197	0.19025	7(")	-0.39410	-1.24479
$(4U-4\lambda)$	9,40673	0.11423	8 (··)	-0.37758	-1.29703
$(5U-5\lambda)$	9.24211	0.02949	9 (")	-0.34586	-1.32173
$(67'-6\chi)$	9.08452	9.93889	10 (")	-0.30281	-1.32699
$(7l'-7\lambda)$	8.93191	9.84406	11 (")	-0.25101	-1.31768
$(8I' - 8\lambda)$	8.78305	9.74602	12 (")	-0.19218	-1.29697
$(9I' - 9\lambda)$	8,63708	9.64544	13 (")	-0.12762	-1.26701
$(10l'-10\lambda)$	8.49313	9.54281	14 (")	-0.05835	-1,22951
$(11l'-11\lambda)$	8.35170	9,43851	15 (")	-9.98498	-1.18546
$(12l'-12\lambda)$	8.21155	9.33277] ,		1110010
$(13l'-13\lambda)$	8.07273	9.22583	$ e^{-2}\cos 1 (l'-\lambda)1 $	+0.11873	+1.12581
$(14l'-14\lambda)$	7,93510	9.11782	2 (")	+8.51634	+0.94394
$(157'-15\lambda)$	7.79844	9,00893	2 (")	-0.01770	+0.43016
$(16l'-16\lambda)$	7.66266	8.89921	1(")	-0.25362	-0.56341
$(17l'-17\lambda)$	7.52763	8.78883	5(")	-0.35075	-0.97380
$(18t'-18\lambda)$	7.39322	8.67781	6 (")	-0.38904	-1.14951
$(19l'-19\lambda)$	7,25935	8,56626	7(")	1 - 0.39410	-1.24479
$(207'-20\lambda)$	7.12613	8.45408	8 (")	-0.37758	-1.29703
$(21l'-21\lambda)$	6,99341	8.34177	9 (")	1 - 0.31586	-1.32173
$(22l'-22\lambda)$	6.86094	8,20260	10 (")	-0.30281	-1.32699
$(23l'-23\lambda)$	6.72916	8.11561	11 (")	-0.25101	-1.31768
$(24l'-24\lambda)$	6.59770	8.00286	12 ($\cdot\cdot$)	-0.19218	-1.29697
$(25U-25\lambda)$	6.46687	7.88846	$1\overline{3}$ (")	-0.12762	-1.26701
$(267'-26\lambda)$	6,33646	7,77605	11 (")	-0.05835	-1.22951
$(27l'-27\lambda)$	6,20683	7.66039	15 (")	-9.98498	-1.18546
$(28l'-28\lambda)$	6.07948	7.54741	16 (")	-9.90806	-1.10319
(201 — 2011)	0.01343	1.01141	17 (")	-9.82827	-1.08171
$^{2}\cos 1(U-\lambda)^{\dagger}$	+0.11873	+1.12581	187 - 1	-9.74554	-1.02395
2 (")	+8.51634	+0.94394	19 (")	-9.66068	-0.96123
3(")	-0.01770	+0.43016	20 ()	-9.57357	-0.89724
4 (")	-0.25362	-0.56341	21 (")	-9.48515	-0.82730
- ' /	0.27702	0	\ /	0.10710	0.02100

	a R ₀₁	$a^{\dagger}a\frac{dR_{01}}{da}$		a R ₀₁	$a \ a \ \frac{dR_{o_1}}{da}$
$ \begin{array}{l} *\cos(l - \lambda) \\ \dagger e^{2}\cos(l - \lambda) \end{array} $	9 41901 0 22828	0 06418 1 13790	$\ddagger e^{\cdot 2}\cos\left(U - \lambda\right)$	0.22828	1 13790

TABLE IV - Continued

	$a' R_1$	$a'a\frac{dR_1}{da}$		a^+R_1	$a^{\dagger}a\frac{dR_{1}}{da}$
$e^{\prime 2}\cos 22(l'-\lambda)$ $23("")$ $24("")$ $25("")$ $26("")$ $27("")$ $\eta^2\cos 1(l'-\lambda)^*$ $2("")$ $3("")$ $4("")$ $5("")$ $6("")$ $7("")$ $8("")$ $9("")$ $10("")$ $11("")$ $12("")$ $13("")$ $14("")$ $ee^\prime\cos \left(-14l'+14\lambda-\pi'+\omega\right)$ $\left(-13l'+13\lambda-\pi'+\omega\right)$ $\left(-12l'+13\lambda-\pi'+\omega\right)$ $\left(-12l'+13\lambda-\pi'+\omega\right)$ $\left(-12l'+13\lambda-\pi'+\omega\right)$ $\left(-12l'+10\lambda-\pi'+\omega\right)$ $\left(-9l'+9\lambda-\pi'+\omega\right)$ $\left(-9l'+9\lambda-\pi'+\omega\right)$ $\left(-8l'+6\lambda-\pi'+\omega\right)$ $\left(-9l'+9\lambda-\pi'+\omega\right)$ $\left(-8l'+6\lambda-\pi'+\omega\right)$ $\left(-7l'+7\lambda-\pi'+\omega\right)$ $\left(-8l'+6\lambda-\pi'+\omega\right)$ $\left(-3l'+3\lambda-\pi'+\omega\right)$ $\left(-4l'+4\lambda-\pi'+\omega\right)$ $\left(-3l'+3\lambda-\pi'+\omega\right)$ $\left(-1l'+1\lambda-\pi'+\omega\right)$ $\left(-1l'+1\lambda-\pi'+\omega\right)$ $\left(+1l'-1\lambda-\pi'+\omega\right)$ $\left(+1l'-1\lambda-\pi'+\omega\right)$ $\left(+3l'-3\lambda-\pi'+\omega\right)$ $\left(+4l'-4\lambda-\pi'+\omega\right)$ $\left(+3l'-3\lambda-\pi'+\omega\right)$ $\left(+4l'-4\lambda-\pi'+\omega\right)$ $\left(+3l'-3\lambda-\pi'+\omega\right)$ $\left(+3l'-3\lambda-\pi'+\omega\right)$ $\left(+3l'-3\lambda-\pi'+\omega\right)$ $\left(+3l'-13\lambda-\pi'+\omega\right)$ $\left(+13l'-13\lambda-\pi'+\omega\right)$ $\left(-13l'+13\lambda-\pi'+\omega\right)$ $\left(-13l'-13\lambda-\pi'+\omega\right)$ \left	-9.39375 -9.30276 -9.20898 -9.11528 -9.01870 -8.92376 -0.91949 -0.86242 -0.78855 -0.70515 -0.61557 -0.52144 -0.42405 -0.32396 -0.22089 -0.11780 -0.01235 -9.90566 -9.7941 -9.6874 +9.96354 +0.03481 +0.10201 +0.16646 +0.21979 +0.26775 +0.30586 +0.33099 +0.35423 +0.31908 +0.25649 +0.10825 +9.67090 -9.79862 -0.32618 -9.90635 +9.75072 +0.20803 +0.42800 +0.44829 +0.448301 +0.44929 +0.44361 +0.41967 +0.38249 +0.42800 +0.44929 +0.44361 +0.41967 +0.38249 +0.42800 +0.44929 +0.44361 +0.41967 +0.38249 +0.42800 +0.44829 +0.44860 +0.44861 +0.41967 +0.38249 +0.45803 +0.25648 +0.20803 +0.45800 +0.45800 +0.45800 +0.45803	-0.76103 -0.68869 -0.61236 -0.53135 -0.42275 -0.36881 -1.77208 -1.75256 -1.72103 -1.67940 -1.61780 -1.57267 -1.49467 -1.44270 -1.37112 -1.29593 -1.19052 -1.13657	$\begin{array}{c} e \cos{(-15l'+16\lambda-\omega)} \\ (-14l'+15\lambda-\omega) \\ (-13l'+14\lambda-\omega) \\ (-12l'+13\lambda-\omega) \\ (-11l'+12\lambda-\omega) \\ (-10l'+11\lambda-\omega) \\ (-9l'+10\lambda-\omega) \\ (-8l'+9\lambda-\omega) \\ (-7l'+8\lambda-\omega) \\ (-6l'+7\lambda-\omega) \\ (-5l'+6\lambda-\omega) \\ (-4l'+5\lambda-\omega) \\ (-3l'+4\lambda-\omega) \\ (-1l'+2\lambda-\omega)^{\ddagger} \\ (0+11\lambda-\omega) \\ (+1l'+0-\omega)^{\parallel} \\ (+2l'-1\lambda-\omega) \\ (+3l'-2\lambda-\omega) \\ (+4l'-3\lambda-\omega) \\ (+6l'-5\lambda-\omega) \\ (+7l'-6\lambda-\omega) \\ (+7l'-6\lambda-\omega) \\ (+8l'-7\lambda-\omega) \\ (+9l'-8\lambda-\omega) \\ (+10l'-9\lambda-\omega) \\ (+11l'-10\lambda-\omega) \\ (+12l'-11\lambda-\omega) \\ (+12l'-11\lambda-\omega) \\ (+12l'-11\lambda-\omega) \\ (+2l'-12\lambda-\omega) \\ (+2l'-21\lambda-\omega) \\ (+2l'-21\lambda-\omega) \\ (+2l'-22\lambda-\omega) \\ (+2l'-22\lambda-\omega) \\ (+2ll'-22\lambda-\omega) \\ (+2ll'$	+8.63615 +8.70024 +8.84260 +8.94315 +8.9994 +9.13667 +9.22846 +9.31558 +9.39664 +9.46912 +9.56825 +9.56825 +9.56825 +9.47673 +8.77790 -9.85336 -0.29524 -0.31905 -0.29524 -0.31905 -0.29524 -0.31905 -0.29524 -0.31905 -0.29524 -0.31905 -0.985312 -9.97662 -9.88312 -9.97662 -9.88312 -9.78621 -9.68661 -9.58485 -9.48128 -9.37621 -9.6987 -9.16240 -9.05346 -8.94448 -8.8325 -8.7193 -8.6128 -8.94448 -8.3802 -8.2787 -8.1461 -8.0414 -7.7781 -9.5670 -0.3363 -0.78866 -1.03902 -1.23930 -1.23930 -1.63711 -1.667513 -1.66951 -1.63782 -1.60461 -1.555660 -1.50213	+9.83573 +9.91034 +9.98124 +0.04738 +0.10800 +0.16173 +0.20683 +0.24062 +0.25901 +0.25498 +0.10616 +9.80115 -9.57062 -0.25333 -0.54615 -0.74966 -0.87577 -0.93780 -0.96047 -0.95724 -0.93582 -0.90097 -0.85582 -0.90097 -0.85582 -0.74262 -0.67725 -0.60731 -0.53345 -0.20832 -0.12140 -0.03041 -9.98909 -9.71742 -9.66238 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29832 -0.12140 -0.3041 -9.98909 -9.71742 -9.66238 -9.59450 -9.46982 -9.36254 -9.27439 -1.64789 -1.86721 -2.53806 -2.66388 -2.65296 -2.66388 -2.65296 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66395 -2.66393
$\begin{array}{c} (-18l' + 19\lambda - \omega) \\ (-18l' + 19\lambda - \omega) \\ (-17l' + 18\lambda - \omega) \\ (-16l' + 17\lambda - \omega) \end{array}$	+8.31597 $+8.42325$ $+8.53020$	$ \begin{array}{r} +9.59306 \\ +9.67688 \\ +9.75747 \end{array} $	$(+10l' - 9\lambda - \pi') (+11l' - 10\lambda - \pi') (+12l' - 11\lambda - \pi')$	$ \begin{array}{r} 1.30213 \\ -1.44059 \\ -1.37392 \\ -1.30085 \end{array} $	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	a R ₀₁	$a \cdot a \frac{dR_{01}}{da}$		a R ₀₁	$a'a \frac{dR_{01}}{da}$
$ \begin{array}{l} * \eta^2 \cos{(l - \lambda)} \\ \dagger ee^c \cos{(2l - 2\lambda - \pi + \omega)} \\ \dagger e \cos{(-1l + 2\lambda - \omega)} \end{array} $	$\begin{array}{c} -0.87815 \\ -0.19321 \\ -9.50312 \end{array}$	-1.76651 -1.11913 -0.33627	$\begin{cases} e \cos (+1l - \omega) \\ \$ e' \eta^2 \cos (2l - \lambda - \pi) \end{cases}$	$-9.92532 \\ -1.60785$	-0.82933 -2.60325

 ${\tt TABLE\ IV-Continued}$

	$a' R_1$	$a'a \frac{dR_1}{da}$		$a' R_1$	$a^{\dagger}a\frac{dR_1}{da}$
$e^{2}e' \cos (-5l' + 4\lambda - \pi' + 2\omega) \\ (-4l' + 3\lambda - \pi' + 2\omega) \\ (-3l' + 2\lambda - \pi' + 2\omega) \\ (-2l' + 1\lambda - \pi' + 2\omega) \\ (-1l' - \pi' + 2\omega) \\ (-1l' - 2\lambda - \pi' + 2\omega) \\ (+1l' - 2\lambda - \pi' + 2\omega) \\ (+2l' - 3\lambda - \pi' + 2\omega) \\ (+3l' - 4\lambda - \pi' + 2\omega) \\ (+4l' - 5\lambda - \pi' + 2\omega) \\ (+5l' - 6\lambda - \pi' + 2\omega) \\ (+6l' - 7\lambda - \pi' + 2\omega) \\ (+6l' - 2\lambda - 2\omega) \\ (+6l' - 2\omega) \\ $	-0.8880 -0.69966 -0.30291 +9.92231 +0.44722 +0.50232 +0.33640 +0.25082 +0.33062 +0.46735 +0.59298 +0.67669	-1.56745 -0.96806 +1.14196 +1.63487 +1.57314 +1.54949 +1.44892 +1.31174 +1.20852 +1.20702 +1.30750 +1.43470	$\begin{array}{c} e'\eta^2\cos\left(-5l'+6\lambda+\pi'-2\tau'\right)\\ \left(-4l'+5\lambda+\pi'-2\tau'\right)\\ \left(-3l'+4\lambda+\pi'-2\tau'\right)\\ \left(-2l'+3\lambda+\pi'-2\tau'\right)\\ \left(-l'+2\lambda+\pi'-2\tau'\right)\\ \left(+\lambda+\pi'-2\tau'\right)\\ \left(+l'+\pi'-2\tau'\right)\\ \left(+2l'-\lambda+\pi'-2\tau'\right)\\ \left(+3l'-2\lambda+\pi'-2\tau'\right)\\ \left(+4l'-3\lambda+\pi'-2\tau'\right)\\ \left(+5l'-4\lambda+\pi'-2\tau'\right)\\ \end{array}$	+1.29596 +1.31680 +1.31943 +1.29627 +1.23431 +1.11194 +0.93827 +0.71600 +0.41280 +9.869 +9.695	+2.40281 +2.35763 +2.33646 +2.29751 +2.23702 +2.15580 +2.05097 +1.92361 +1.76335 +1.49128 +0.50284
$(+7l' - 8\lambda - \pi' + 2\omega) (+8l' - 9\lambda - \pi' + 2\omega) (+9l' - 10\lambda - \pi' + 2\omega) ee'^2 \cos(-3l' + 4\lambda - 2\pi' + \omega) (-2l' + 3\lambda - 2\pi' + \omega) (-1l' + 2\lambda - 2\pi' + \omega)$	$ \begin{vmatrix} +0.73775 \\ +0.77320 \\ +0.79085 \end{vmatrix} $ $ \begin{vmatrix} -0.27967 \\ -0.27183 \\ -0.34415 \end{vmatrix} $	$ \begin{vmatrix} +1.55163 \\ +1.64573 \\ & \cdots \\ -1.85450 \\ -1.33136 \\ -1.43722 \end{vmatrix} $	$\begin{vmatrix} e^2 \cos(-15l' + 17\lambda - 2\omega) \\ (-14l' + 16\lambda - 2\omega) \\ (-13l' + 15\lambda - 2\omega) \\ (-12l' + 14\lambda - 2\omega) \\ (-11l' + 13\lambda - 2\omega) \\ (-10l' + 12\lambda - 2\omega) \\ (-9l' + 11\lambda - 2\omega) \end{vmatrix}$	$\begin{array}{c} +9.24027 \\ +9.31742 \\ +9.39085 \\ +9.46082 \\ +9.52625 \\ +9.58652 \\ +9.64061 \end{array}$	$ \begin{array}{c} +0.43503 \\ +0.48170 \\ +0.52397 \\ +0.55912 \\ +0.58718 \\ +0.60623 \\ +0.61491 \end{array} $
$(+1l' - 2\pi' + \omega) + (+2l' - \lambda - 2\pi' + \omega) + (+2l' - \lambda - 2\pi' + \omega) + (+2l' - \lambda - 2\pi' + \omega) + (+3l' - 2\lambda - 2\pi' + \omega) + (+3l' - 3\lambda - 2\pi' + \omega) + (+5l' - 4\lambda - 2\pi' + \omega) + (+6l' - 5\lambda - 2\pi' + \omega) + (+7l' - 6\lambda - 2\pi' + \omega) + (+8l' - 7\lambda - 2\pi' + \omega) + (+9l' - 8\lambda - 2\pi' + \omega) + (+10l' - 9\lambda - 2\pi' + \omega) + (+10l' - 9\lambda - 2\pi' + \omega) + (+11l' - 10\lambda - 2\pi' + \omega) + (+12l' - 11\lambda - 2\pi' + \omega) + (+13l' - 12\lambda - 2\pi' + \omega) + (+13l' - 12\lambda - 2\pi' + \omega)$	-0.49862 -0.67435 -0.76926 -0.63517 -9.84466 +0.58035 +0.92130 +1.08595 +1.18222 +1.23636 +1.26588 +1.27442 +1.30750 +1.2923	$\begin{array}{c} -1.60499 \\ -1.66780 \\ -1.73583 \\ -1.74196 \\ -1.64784 \\ -1.33764 \\ +1.00639 \\ +1.67554 \\ +1.93308 \\ +2.08651 \\ +2.18250 \\ +2.25244 \\ +2.29465 \\ +2.3124 \end{array}$	$(-8l'+10\lambda-2\omega)$ $(-8l'+10\lambda-2\omega)$ $(-6l'+8\lambda-2\omega)$ $(-5l'+7\lambda-2\omega)$ $(-4l'+6\lambda-2\omega)$ $(-2l+4\lambda-2\omega)$ $(-1l'+3\lambda-2\omega)$ $(+1l'+\lambda-2\omega)$ $(+2l'-2\omega)$ $(+2l'-2\omega)$ $(+3l'-\lambda-2\omega)$ $(+3l'-\lambda-2\omega)$ $(+3l'-\lambda-2\omega)$ $(+3l'-\lambda-2\omega)$ $(+3l'-\lambda-2\omega)$ $(+3l'-\lambda-2\omega)$ $(+3l'-\lambda-2\omega)$ $(+3l'-\lambda-2\omega)$	+9.68729 +9.72481 +9.75101 +9.75645 +9.75645 +9.75645 +9.59754 +9.59754 +9.52883 +0.01641 +0.40522 +0.57404 +0.65307 +0.68475	+0.61095 +0.59171 +0.55413 +0.49529 +0.41556 +0.32907 +0.28771 +0.60222 +0.86905 +1.12207 +1.31007 +1.43951 +1.52567
$(+14l' - 13\lambda - 2\pi' + \omega) (+15l' - 14\lambda - 2\pi' + \omega) (+16l' - 15\lambda - 2\pi' + \omega) (+17l' - 16\lambda - 2\pi' + \omega) (+18l' - 17\lambda - 2\pi' + \omega) (+19l' - 18\lambda - 2\pi' + \omega) (+20l' - 19\lambda - 2\pi' + \omega) $	+1.2624 +1.2253 +1.1861 +1.1400 +1.0864 +1.0294 +0.9689	+2.3302 +2.3248 +2.3193 +2.2944 +2.2695	$(+6l - 4\lambda - 2\omega) (+7l' - 5\lambda - 2\omega) (+8l' - 6\lambda - 2\omega) (+9l' - 7\lambda - 2\omega) (+10l' - 8\lambda - 2\omega) (+11l' - 9\lambda - 2\omega) (+12l' - 10\lambda - 2\omega) (+13l' - 11\lambda - 2\omega) (+13l' - 12\lambda - 2\omega)$	$\begin{array}{c} +0.68708 \\ +0.66940 \\ +0.63725 \\ +0.59411 \\ +0.54238 \\ +0.48375 \\ +0.41942 \\ +0.35033 \\ +0.37328 \end{array}$	+1.58014 +1.61081 +1.62313 +1.62091 +1.60692 +1.58323 +1.57516 +1.51267
$ \eta^{2} \cos \left(-7l' + 8\lambda + \omega - 2\tau'\right) \\ \left(-6l' + 7\lambda + \omega - 2\tau'\right) \\ \left(-5l' + 6\lambda + \omega - 2\tau'\right) \\ \left(-4l' + 5\lambda + \omega - 2\tau'\right) \\ \left(-3l' + 4\lambda + \omega - 2\tau'\right) $	$ \begin{vmatrix} -1.2074 \\ -1.2652 \\ -1.3038 \\ -1.3579 \\ -1.3890 \end{vmatrix} $	$\begin{array}{r} -2.38643 \\ -2.40115 \\ -2.42015 \\ -2.42130 \\ -2.40954 \end{array}$	$(+14l' - 12\lambda - 2\omega)$ $(+15l' - 13\lambda - 2\omega)$ $e^{4} \cos (6l' - 4\lambda - 2\omega)$	$\begin{array}{c} +0.27722 \\ +0.20117 \\ -1.12189 \end{array}$	+1.46801 +1.41817
$(-2l'+3\lambda+\omega-2 au') \ (-1l'+2\lambda+\omega-2 au') \ (-1\lambda+\omega-2 au')$	$\begin{array}{r} -1.4053 \\ -1.40226 \\ -1.37107 \end{array}$	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{vmatrix} e^2e^{-2}\cos(6l' - 4\lambda - 2\omega) \\ e^2\eta^2\cos(6l' - 4\lambda - 2\omega) \end{vmatrix}$	-1.96412 -2.37355	
$(+1l' + \omega - 2\tau') \parallel (+2l' - 1\lambda + \omega - 2\tau') (+3l' - 2\lambda + \omega - 2\tau') (+4l' - 3\lambda + \omega - 2\tau') (+5l' - 4\lambda + \omega - 2\tau') $	$ \begin{vmatrix} -1.29957 \\ -1.17705 \\ -1.02811 \\ -0.85473 \\ -0.6522 \end{vmatrix} $	$\begin{array}{c} -2.19749 \\ -2.10319 \\ -1.99008 \\ -1.68111 \\ -1.45964 \end{array}$	$\begin{array}{c} ee' \cos{(-14l' + 16\lambda - \pi' + \omega)} \\ (-13l' + 15\lambda - \pi' + \omega) \\ (-12l' + 14\lambda - \pi' + \omega) \\ (-11l' + 13\lambda - \pi' + \omega) \end{array}$	$\begin{array}{c} -9.45461 \\ -9.52409 \\ -9.59232 \\ -9.65343 \\ 0.71070 \end{array}$	$ \begin{array}{c c} -0.66219 \\ -0.68980 \\ -0.72546 \\ -0.75293 \end{array} $
$ \begin{array}{l} r'\eta^2 \cos \left(-12l' + 13\lambda + \pi' - 2\tau'\right) \\ \left(-11l' + 12\lambda + \pi' - 2\tau'\right) \\ \left(-10l' + 11\lambda + \pi' - 2\tau'\right) \\ \left(-9l' + 10\lambda + \pi' - 2\tau'\right) \\ \left(-8l' + 9\lambda + \pi' - 2\tau'\right) \\ \left(-7l' + 8\lambda + \pi' - 2\tau'\right) \\ \left(-6l' + 7\lambda + \pi' - 2\tau'\right) \end{array} $	$\begin{array}{c} +0.8957 \\ +0.9694 \\ +1.03910 \\ +1.10898 \\ +1.16382 \\ +1.21675 \\ +1.24785 \end{array}$	$\begin{array}{c} +2.14747 \\ +2.19770 \\ +2.24296 \\ +2.27639 \\ +2.31562 \\ +2.34110 \\ +2.35007 \end{array}$	$(-10l' + 12\lambda - \pi' + \omega)$ $(-9l' + 11\lambda - \pi' + \omega)$ $(-8l' + 10\lambda - \pi' + \omega)$ $(-7l' + 9\lambda - \pi' + \omega)$ $(-6l' + 8\lambda - \pi' + \omega)$ $(-5l' + 7\lambda - \pi' + \omega)$ $(-4l' + 6\lambda - \pi' + \omega)$ $(-3l' + 5\lambda - \pi' + \omega)$	-9.71070 -9.76026 -9.80168 -9.83322 -9.85272 -9.85763 -9.84562 -9.81730	$\begin{array}{c} -0.77237 \\ -0.78155 \\ -0.77921 \\ -0.76337 \\ -0.73261 \\ -0.68749 \\ -0.63481 \\ -0.60033 \end{array}$
		,1 T2			dR
	α'K ₀₁	$a'a \frac{dR_{01}}{da}$		α R _{σ1}	$a^{*}a\frac{dR_{01}}{da}$
$ \begin{array}{l} * c^2 e' \cos \left(2 l' - 3 \lambda - \pi' + 2 \omega \right) \\ \dagger c e^{ 2} \cos \left(l - 2 \pi + \omega \right) \\ \dagger e e^{ 2} \cos \left(3 l - 2 \lambda - 2 \pi' + \omega \right) \end{array} $	+0.08489 -0.66115 -0.74740	$\begin{array}{r} +1.29959 \\ +1.66348 \\ -1.75186 \end{array}$		$ \begin{array}{r} -1.27419 \\ +9.05308 \\ +9.97509 \end{array} $	$ \begin{array}{r} -2.19436 \\ +0.32112 \\ +0.68348 \end{array} $

TABLE IV - Continued

	$a'R_1$	$a'a\frac{dR_1}{da}$		$a'R_1$	$a'a\frac{dR_1}{da}$
$ee' \cos \left(-\frac{2l'+4\lambda-\pi'+\omega}{(-1l'+3\lambda-\pi'+\omega)}\right) \\ \left(-\frac{1l'+3\lambda-\pi'+\omega}{(+2\lambda-\pi'+\omega)}\right) \\ \left(+\frac{2\lambda-\pi'+\omega}{(+1l'+1\lambda-\pi'+\omega)}\right) \\ \left(+\frac{3l'-1\lambda-\pi'+\omega}{(+3l'-2\lambda-\pi'+\omega)}\right) \\ \left(+\frac{4l'-2\lambda-\pi'+\omega}{(+5l'-3\lambda-\pi'+\omega)}\right) \\ \left(+\frac{6l'-4\lambda-\pi'+\omega}{(+7l'-5\lambda-\pi'+\omega)}\right) \\ \left(+\frac{8l'-6\lambda-\pi'+\omega}{(+9l'-7\lambda-\pi'+\omega)}\right) \\ \left(+\frac{9l'-7\lambda-\pi'+\omega}{(+1ll'-9\lambda-\pi'+\omega)}\right) \\ \left(+\frac{11l'-9\lambda-\pi'+\omega}{(+13l'-11\lambda-\pi'+\omega)}\right) \\ \left(+\frac{13l'-11\lambda-\pi'+\omega}{(+15l'-13\lambda-\pi'+\omega)}\right) \\ \left(+\frac{16l'-14\lambda-\pi'+\omega}{(+17l'-15\lambda-\pi'+\omega)}\right) \\ \left(+\frac{17l'-15\lambda-\pi'+\omega}{(+17l'-15\lambda-\pi'+\omega)}\right) \\ \left(+17l'-15\lambda-15\lambda-15\lambda-15\lambda-15\lambda-15\lambda-15\lambda-15\lambda-15\lambda-15\lambda$	$\begin{array}{c} a'R_1\\ \hline -9.78599\\ -9.80319\\ -9.96440\\ -0.32618\\ -0.76116\\ -0.95270\\ -1.04356\\ -1.08220\\ -1.08907\\ -1.07461\\ -1.04473\\ -1.00354\\ -0.95327\\ -0.89581\\ -0.83247\\ -0.61583\\ -0.61583\\ -0.53674\\ -0.45500\\ \end{array}$	$\begin{array}{c} a'a\frac{dR_1}{da} \\ -0.61951 \\ -0.74161 \\ -0.94535 \\ -1.17716 \\ -1.40475 \\ -1.60877 \\ -1.75595 \\ -1.85722 \\ -1.96385 \\ -1.96385 \\ -1.98376 \\ -1.98771 \\ -1.97885 \\ -1.95945 \\ -1.93127 \\ -1.89567 \\ -1.84138 \\ -1.80627 \\ -1.75403 \\ \dots \end{array}$	$e'^{2}\cos\left(+13l'-11\lambda-2\pi'\right) \\ \left(+14l'-12\lambda-2\pi'\right) \\ \left(+15l'-13\lambda-2\pi'\right) \\ \left(+15l'-13\lambda-2\pi'\right) \\ \left(+16l'-14\lambda-2\pi'\right) \\ \left(+17l'-15\lambda-2\pi'\right) \\ \left(+19l'-17\lambda-2\pi'\right) \\ \left(+20l'-18\lambda-2\pi'\right) \\ \left(+20l'-18\lambda-2\pi'\right) \\ \left(+21l'-19\lambda-2\pi'\right) \\ \left(+22l'-20\lambda-2\pi'\right) \\ \left(+23l'-21\lambda-2\pi'\right) \\ \left(+24l'-22\lambda-2\pi'\right) \\ \left(+25l'-23\lambda-2\pi'\right) \\ \left(+25l'-23\lambda-2\pi'\right) \\ e^{2}e'^{2}\cos\left(6l'-4\lambda-2\pi'\right) \\ e'^{2}q^{2}\cos\left(6l'-4\lambda-2\pi'\right) \\ e'^{2}q^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a$	$\begin{array}{c} +0.56873\\ +0.50405\\ +0.42870\\ +0.32885\\ +0.26891\\ +0.18518\\ +0.09914\\ +0.01641\\ +9.92174\\ +9.828\\ +9.736\\ +9.642\\ +9.549\\ -1.43088\\ -1.38917\\ -2.41885\\ \end{array}$	a' a \frac{dR_1}{da} +1.67392 +1.63504 +1.59026 +1.54035 +1.48593
$(+18l' - 16\lambda - \pi' + \omega)$ $(+19l' - 17\lambda - \pi' + \omega)$ $(+20l' - 18\lambda - \pi' + \omega)$ $(+21l' - 19\lambda - \pi' + \omega)$ $(+22l' - 20\lambda - \pi' + \omega)$ $(+23l' - 21\lambda - \pi' + \omega)$ $(+23l' - 22\lambda - \pi' + \omega)$ $(+23l' - 23\lambda - \pi' + \omega)$ $(+25l' - 23\lambda - \pi' + \omega)$ $(+25l' - 24\lambda - \pi' + \omega)$ $e^{3}e' \cos (6l' - 4\lambda - \pi' - \omega)$ $ee'^{3}\cos (6l' - 4\lambda - \pi' + \omega)$ $ee'^{3}\cos (6l' - 4\lambda - \pi' + \omega)$ $ee'^{3}\cos (6l' - 4\lambda - \pi' + \omega)$ $ee'^{3}\cos (6l' - 4\lambda - \pi' + \omega)$	$\begin{array}{c} -0.37162 \\ -0.28443 \\ -0.19590 \\ -0.10619 \\ -0.01410 \\ -9.92169 \\ -9.82802 \\ -9.73320 \\ +1.55169 \\ +1.90298 \\ +2.67076 \\ +9.05721 \end{array}$	+0.25209	$ \begin{array}{c c} ee'^3\cos\left(6l'-4\lambda-2\pi'\right) \\ \hline \eta^2\cos\left(-9l'+11\lambda-2\tau'\right) \\ \left(-8l'+10\lambda-2\tau'\right) \\ \left(-7l'+9\lambda-2\tau'\right) \\ \left(-6l'+8\lambda-2\tau'\right) \\ \left(-5l'+7\lambda-2\tau'\right) \\ \left(-4l'+6\lambda-2\tau'\right) \\ \left(-3l'+5\lambda-2\tau'\right) \\ \left(-2l'+4\lambda-2\tau'\right) \\ \left(-1l'+3\lambda-2\tau'\right) \\ \left(+1l'+1\lambda-2\tau'\right) \\ \left(+2l'-2\tau'\right) \\ \left(+3l'-1\lambda-2\tau'\right) \\ \left(+3l'-1\lambda-2\tau'\right) \\ \left(+3l'-2\lambda-2\tau'\right) \\ \left(+5l'-3\lambda-2\tau'\right) \end{array} $	$\begin{array}{c} +0.61278 \\ +9.80482 \\ +9.90875 \\ +0.01207 \\ +0.11295 \\ +0.21128 \\ +0.30652 \\ +0.39791 \\ +0.48377 \\ +0.62721 \\ +0.66859 \\ +0.62721 \\ +0.62721 \\ +0.56176 \\ +0.48377 \\ +0.39791 \end{array}$	+0.98963 +1.06556 +1.13965 +1.26049 +1.26022 +1.32837 +1.37988 +1.4234 +1.45683 +1.47818 +1.48493 +1.47818 +1.45683 +1.47831 +1.37988
$(-12l'+14\lambda-2\pi')$ $(-11l'+13\lambda-2\pi')$ $(-10l'+12\lambda-2\pi')$ $(-9l'+11\lambda-2\pi')$ $(-8l'+10\lambda-2\pi')$ $(-7l'+9\lambda-2\pi')$ $(-6l'+8\lambda-2\pi')$ $(-5l+7\lambda-2\pi')$ $(-4l'+6\lambda-2\pi')$ $(-3l'+5\lambda-2\pi')$ $(-2l'+4\lambda-2\pi)$ $(-1l'+3\lambda-2\pi')$ $(+1l'+1\lambda-2\pi')$	$\begin{array}{c} +9.12087 \\ +9.17921 \\ +9.23160 \\ +9.27674 \\ +9.31260 \\ +9.33832 \\ +9.35170 \\ +9.35120 \\ +9.33760 \\ +9.31988 \\ +9.32919 \\ +0.42933 \\ +0.66761 \\ +0.01535 \end{array}$	+0.28538 +0.31322 +0.33160 +0.34096 +0.32542 +0.29997 +0.26624 +0.23602 +0.23562 +0.30124 +0.44797 +0.65018 +0.86905	$ \begin{vmatrix} (+6l' - 4\lambda - 2\tau') \\ (+7l' - 5\lambda - 2\tau') \\ (+8l' - 6\lambda - 2\tau') \\ (+9l' - 7\lambda - 2\tau') \\ (+9l' - 7\lambda - 2\tau') \\ (+10l' - 8\lambda - 2\tau') \\ (+11l' - 9\lambda - 2\tau') \end{vmatrix} $ $ e^{2}\eta^{2} \cos (6l' - 4\lambda - 2\tau') $ $ e^{3}\cos (6l' - 4\lambda - 2\tau') $ $ e^{3}\cos (-4l' + 7\lambda - 3\omega) $	$ \begin{vmatrix} +0.30652 \\ +0.21128 \\ +0.21129 \\ +0.11295 \\ +0.01207 \\ +9.90875 \\ +9.80482 \end{vmatrix} $ $ \begin{vmatrix} +1.60097 \\ -9.77815 \\ -1.8902 \\ +9.8553 \end{vmatrix} $	+1.32837 +1.26022 +1.26649 +1.13965 +1.06556 +0.98963 +0.40115
$(+2l' - 2\pi')$ $(+3l' - 1\lambda - 2\pi')$ $(+4l' - 2\lambda - 2\pi')$ $(+5l' - 3\lambda - 2\pi')$ $(+6l' - 4\lambda - 2\pi')$ $(+7l' - 5\lambda - 2\pi')$ $(+8l' - 6\lambda - 2\pi')$ $(+9l' - 7\lambda - 2\pi')$ $(+10l' - 8\lambda - 2\pi')$ $(+11l' - 9\lambda - 2\pi')$ $(+12l' - 10\lambda - 2\pi')$	+0.47741 $+0.71910$ $+0.82723$ $+0.87482$ $+0.87649$ $+0.84943$ $+0.81018$ $+0.76153$ $+0.70536$ $+0.64307$	+1.07029 $+1.28134$ $+1.45132$ $+1.57246$ $+1.65437$ $+1.70646$ $+1.73492$ $+1.74713$ $+1.74292$ $+1.70594$	$(-3l' + 6\lambda - 3\omega)$ $(-2l' + 5\lambda - 3\omega)$ $(-1l' + 4\lambda - 3\omega)$ $(+1l' + 2\lambda - 3\omega) * †$ $(+2l' + 1\lambda - 3\omega)$ $(+3l' - 3\omega)$ $(+3l' - 3\omega)$ $(+3l' - 3\omega)$ $(+6l' - 2\lambda - 3\omega)$ $(+6l' - 3\lambda - 3\omega)$ $(+7l' - 4\lambda - 3\omega)$	+9.7528 +9.5688 +8.91434 -9.47553 -9.76373 -0.19564 -0.57471 -0.81489 -0.96891 -1.06843 -1.13096	$ \begin{vmatrix} +9.98511 \\ -9.72835 \\ -0.36710 \\ -0.65861 \\ -0.91747 \\ -1.19371 \\ -1.45904 \\ -1.68553 \\ -1.86215 \\ -1.99642 \\ -2.09720 \end{vmatrix} $
* $ee \cos(l' + \lambda - \pi' + \omega)$ † $e^2 \cos(l + \lambda - 2\pi)$ † $e^2 \cos(3l - \lambda - 2\pi')$	-0.54492 +0.22818 +0.43000	$ \begin{array}{c c} & a & \overline{da} \\ & -1.36718 \\ & +0.86347 \\ & +1.21926 \end{array} $		$ \begin{array}{r} & a R_{03} \\ & +0.59194 \\ & -9.22874 \\ & -9.78663 \end{array} $	$ \begin{array}{c c} & a & \frac{1}{da} \\ & & \\ &$

TABLE IV — Continued

$c^{3}\cos\left(+\frac{8l'-5\lambda-3\omega}{(+9l'-6\lambda-3\omega)}\right) \\ (+9l'-6\lambda-3\omega) \\ (+10l'-7\lambda-3\omega) \\ (+11l'-8\lambda-3\omega) \\ (+12l'-9\lambda-3\omega)$ $e^{3}\cos\left(-\frac{9l'+10\lambda-\omega}{(+8l'+9\lambda-\omega)}\right) \\ (-\frac{8l'+9\lambda-\omega}{(-6l'+7\lambda-\omega)}\right) \\ (-\frac{5l'+6\lambda-\omega}{(-5l'+6\lambda-\omega)}$	$\begin{array}{c} a'R_1\\ -1.16689\\ -1.22853\\ -1.18324\\ -1.16615\\ -1.14907\\ -0.74554\\ -0.73687\\ -0.71240\\ \end{array}$	$a' a \frac{dR_1}{da}$ -2.15963 -2.22382 -2.25182 -2.27985	$ \begin{array}{c c} \hline e\eta^2\cos\left(-\frac{1}{2}l'+\frac{2\lambda-\omega}{2\lambda-\omega}\right) \\ \left(+\frac{1}{2}l'-\frac{1\lambda-\omega}{2\lambda-\omega}\right) \\ \left(+\frac{2}{3}l'-\frac{2\lambda-\omega}{2\lambda-\omega}\right) \end{array} $	$\begin{array}{c} a'R_1 \\ +1.32789 \\ +1.47807 \\ +1.57859 \\ +1.66789 \end{array}$	$\begin{array}{c} a'a \frac{dR_1}{da} \\ +2.40601 \\ +2.49862 \\ +2.57175 \end{array}$
$(+9l' - 6\lambda - 3\omega) (+10l' - 7\lambda - 3\omega) (+11l' - 8\lambda - 3\omega) (+12l' - 9\lambda - 3\omega) (+2l' - 9\lambda - \omega) e^{3} \cos(-9l' + 10\lambda - \omega) (-8l' + 9\lambda - \omega)$	$\begin{array}{c} -1.22853 \\ -1.18324 \\ -1.16615 \\ -1.14907 \\ -0.74554 \\ -0.73687 \\ -0.71240 \end{array}$	$\begin{array}{c} -2.22382 \\ -2.25182 \\ -2.27985 \\ \cdots \end{array}$	$(+1l' - \omega)$ $(+2l' - 1\lambda - \omega)$	$\begin{array}{r} +1.47807 \\ +1.57859 \end{array}$	+2.49862
$(-4l' + 5\lambda - \omega)$ $(-3l' + 4\lambda - \omega)$ $(-2l' + 3\lambda - \omega)$ $(-1l' + 2\lambda - \omega)^*$ $(0 + 1\lambda - \omega)$ $(+1l' $	$\begin{array}{c} -0.66521\\ -0.59757\\ -0.49870\\ -0.37293\\ -0.25876\\ -0.25551\\ -0.41652\\ -0.55374\\ -0.46545\\ -9.84061\\ +0.36700\\ +0.73745\\ +0.91761\\ +1.01983\\ +1.08200\\ +1.11383\\ +1.17909\\ +1.17387\\ +1.15698\\ -0.97630\\ -0.96205\\ -0.96205\\ -0.96205\\ -0.96205\\ -0.72779\\ -0.65040\\ -0.63759\\ -0.72779\\ -0.65040\\ -0.63759\\ +0.25003\\ +0.95436\\ +1.20194\\ +1.33746\\ +1.41716\\ +1.4828\\ +1.48712\\ +1.447711\\ +1.416\\ +1.382\\ +1.48712\\ +1.447712\\ +1.447\\ +1.416\\ +1.382\\ +1.48712\\ +1.47712\\ +1.417\\ +1.416\\ +1.382\\ +1.41712\\ +1.417\\ +1.317\\ +1.317\\ +1.317\\ +1.307\\ +1.253\\ +1.190\\ +1.113\\ +9.02531\\ +0.855755\\ +0.89581\\ +1.13714\\ \end{array}$	-1.58587 -1.48655 -1.36900 -1.25081 -1.19089 -1.23550 -1.36203 -1.49739 -1.58743 -1.60121 -1.49760 -1.13464 +1.04552 +1.24087 +1.84233 -1.58470 -1.59266 -1.89546 -1.82367 -1.73521 -1.64523 -1.58470 -1.59260 -1.67586 -1.79520 -1.89643 -1.94869 -1.91679 -1.74228 -0.96182 +1.65287 +2.06060 +2.25373 +2.5159 +2.56194 +2.56738 +2.56738 +2.56738 +2.56738 +2.56738 +2.56738 +2.56738 +2.5315	$(+3l'-3\lambda-\omega) \\ (+5l'-4\lambda-\omega) \\ (+6l'-5\lambda-\omega) \\ (+6l'-5\lambda-\omega) \\ (+8l'-5\lambda-\omega) \\ (+8l'-7\lambda-\omega) \\ (+9l'-8\lambda-\omega) \\ (+10l'-9\lambda-\omega) \\ (+11l'-10\lambda-\omega) \\ (+12l'-11\lambda-\omega)$ $e' \cos\left(-20l'+21\lambda-\pi'\right) \\ (-19l'+20\lambda-\pi') \\ (-18l'+19\lambda-\pi') \\ (-18l'+18\lambda-\pi') \\ (-16l'+17\lambda-\pi') \\ (-16l'+17\lambda-\pi') \\ (-16l'+13\lambda-\pi') \\ (-11l'+12\lambda-\pi') \\ (-11l'+12\lambda-\pi') \\ (-11l'+12\lambda-\pi') \\ (-10l'+11\lambda-\pi') \\ (-10l'+11\lambda-\pi') \\ (-9l'+10\lambda-\pi') \\ (-8l'+9\lambda-\pi') \\ (-6l'+7\lambda-\pi') \\ (-6l'+7\lambda-\pi') \\ (-6l'+7\lambda-\pi') \\ (-6l'+7\lambda-\pi') \\ (-8l'+9\lambda-\pi') \\ (-1l'+2\lambda-\pi') \\ (-4l'+5\lambda-\pi') \\ (-4l'+5\lambda-\pi') \\ (-4l'+5\lambda-\pi') \\ (-4l'+5\lambda-\pi') \\ (+1l'-3\lambda-\pi') \\ (+1l'-3\lambda-\pi') \\ (+1l'-3\lambda-\pi') \\ (+1l'-3\lambda-\pi') \\ (+1l'-10\lambda-\pi') \\ (+6l'-5\lambda-\pi') \\ (+9l'-8\lambda-\pi') \\ (+11l'-10\lambda-\pi') \\ (+11l'-10\lambda-\pi') \\ (+11l'-10\lambda-\pi') \\ (+12l'-11\lambda-\pi') \\ (+12l'-1$	+1.64068 +1.64527 +1.61669 +1.58686 +1.53107 +1.48746 +1.42730 +1.36171 +1.29159 +1.21759 -7.954 -8.0792 -8.1760 -8.2900 -8.3979 -8.4983 -8.60338 -8.70483 -8.80405 -8.90087 -8.99677 -9.08426 -9.16892 -9.24673 -9.36881 -9.36881 -9.36881 -9.36881 +9.365167 +0.28833 +0.36881 +0.32460 +0.25489 +0.17480 +0.08779 +9.99578 +9.99578 +9.99578 +9.99578 +9.90003 +9.9003 +9.9003 +9.17480 +0.08779 +9.99578 +9.99578 +9.99578 +9.99578 +9.99578 +9.99578 +9.90003 +9.17480 +9.59737 +9.99578 +9.99578 +9.99578 +9.90003 +9.80135 +9.70031 +9.59777 +9.17169 +9.595284 +8.6180 +8.5071 +8.50538	+2.62475 +2.66011 +2.67877 +2.67981 +2.67615 +2.65498 +2.55940 +2.55940 +2.55630 +2.51412 +2.46377 -9.3090 -9.3955 -9.4824 -9.5658 -9.6478 -9.7262 -9.8021 -9.7387 -9.9413 -0.0034 -0.0588 -0.1061 -0.1427 -0.16485 -0.16624 -0.13494 -0.04347 -9.79691 +9.15297 +0.10195 +0.43914 +0.62721 +0.81795 +0.92452 +0.97499 +0.99035 +0.98215 +0.9716 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.5440 +0.4621 +0.97667 +0.9489 +9.8567 +9.7634 +9.86676 +9.6676 +9.6002 +9.4756
	a'R ₀₁	$a'a \frac{dR_{01}}{da}$		a R ₀₁	$a'a \frac{dR_{01}}{da}$
	-0.18139 -0.71402	-1.35665 -1.79389	$ \begin{vmatrix} c\eta^2 \cos(-l + 2\lambda - \omega) \\ \xi c\eta^2 \cos(-l - \omega) \end{vmatrix} $	$\begin{array}{c c} & 4.35514 \\ & +1.56543 \end{array}$	+2 40665 +2.57043

TABLE IV - Continued

	$a'R_1$	$a'a\frac{dR_1}{da}$		$a'R_1$	$a^{\dagger}a \frac{dR_1}{da}$
$e^{2}e' \cos \left(-7l' + 8\lambda - \pi'\right) \\ \left(-6l' + 7\lambda - \pi'\right) \\ \left(-5l' + 6\lambda - \pi'\right) \\ \left(-4l' + 5\lambda - \pi'\right) \\ \left(-3l' + 4\lambda - \pi'\right) \\ \left(-2l' + 3\lambda - \pi'\right) \\ \left(-1l' + 2\lambda - \pi'\right) \\ \left(+1l' - \pi'\right) \\ \left(+2l' - 1\lambda - \pi'\right)^{*} \\ \left(+3l' + 2\lambda - \pi'\right) \\ \left(+4l' - 3\lambda - \pi'\right) \\ \left(+6l' - 5\lambda - \pi'\right) \\ \left(+6l' - 5\lambda - \pi'\right) \\ \left(+8l' - 7\lambda - \pi'\right) \\ \left(+9l' - 8\lambda - \pi'\right) \\ \left(+9l' - 9\lambda - \pi'\right) \\ \left(+10l' - 9\lambda - \pi'\right) \\ \left(-6l' + 7\lambda - \pi'\right) \\ \left(-6l' + 7\lambda - \pi'\right) \\ \left(-6l' + 7\lambda - \pi'\right) \\ \left(-4l' + 5\lambda - \pi'\right) \\ \left(-4l' + 5\lambda - \pi'\right) \\ \left(-3l' + 4\lambda - \pi'\right) \\ \left(-3l' + 4\lambda - \pi'\right) \\ \end{array}$	$\begin{array}{c} +0.90217\\ +0.86457\\ +0.80557\\ +0.80557\\ +0.73111\\ +0.64802\\ +0.58662\\ +0.63801\\ +0.77974\\ +0.92443\\ +0.93706\\ +0.65094\\ -0.36158\\ -0.99561\\ -1.23150\\ -1.36124\\ -1.43727\\ -1.47979\\ -1.51569\\ +0.51348\\ +0.47012\\ +0.41162\\ +0.34713\\ +0.31190\\ \end{array}$	+1.76226 +1.67484 +1.60148 +1.57523 +1.60714 +1.84224 +1.83856 +1.93602 +1.97961 +1.93932 +1.75312 +0.86503 -1.73756 -1.08641 -1.38807 -1.38807 -1.38807 -1.38838 +1.33270 +1.29632 +1.31836	$(-2l'+3\lambda-\pi')$ $(-1l'+2\lambda-\pi')$ $(+1l'-\pi')$ $(+2l'-\lambda-\pi')^{\dagger}$ $(+3l'-2\lambda-\pi')^{\dagger}$ $(+3l'-3\lambda-\pi')$ $(+5l'-4\lambda-\pi')$ $(+6l'-5\lambda-\pi')$ $(+7l'-6\lambda-\pi')$ $(+7l'-6\lambda-\pi')$ $(+9l'-8\lambda-\pi')$ $(+10l'-9\lambda-\pi')$ $(+11l'-10\lambda-\pi')$ $(+12l'-11\lambda-\pi')$ $(+13l'-12\lambda-\pi')$ $(+13l'-12\lambda-\pi')$ $(+14l'-13\lambda-\pi')$ $(+16l'-15\lambda-\pi')$ $(+16l'-15\lambda-\pi')$ $(+17l'-16\lambda-\pi')$ $(+18l'-13\lambda-\pi')$ $(+19l'-18\lambda-\pi')$ $(+19l'-18\lambda-\pi')$ $(+19l'-18\lambda-\pi')$ $(+19l'-18\lambda-\pi')$ $(+19l'-18\lambda-\pi')$	$\begin{array}{c} +0.33417\\ +0.44469\\ +0.60576\\ +0.70807\\ +0.60160\\ +9.88412\\ -0.53788\\ -0.89185\\ -1.06225\\ -1.16523\\ -1.22011\\ -1.25003\\ -1.26035\\ -1.2958\\ -1.2778\\ -1.2526\\ -1.1313\\ -1.0785\\ -1.0213\\ -0.9624\\ -0.9017\\ \end{array}$	+1.40159 +1.51683 +1.62587 +1.70018 +1.71297 +1.62638 +1.32931 -0.94718 -1.64883 -1.91255 -2.06915 -2.17036 -2.23523 -2.28193 -2.3006 -2.3194 -2.3142 -2.3099 -2.2790 -2.2624
	a' R ₀₁	$a a \frac{dR_{a_1}}{da}$		a Rot	$a \cdot a \frac{dR_{01}}{da}$

 ± 1.98303

 ± 0.97336

 $*e^2e^c\cos(2U-\lambda-\pi)$

 $\dagger \epsilon^3 \cos{(2l-\lambda \!-\! \pi')}$

 ± 0.70988

 ± 1.72237

*				
	•			
8				

UNIVERSITY OF CALIFORNIA LIBRARY, BERKELEY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

Books not returned on time are subject to a fine of 50c per volume after the third day overdue, increasing to \$1.00 per volume after the sixth day. Books not in demand may be renewed if application is made before expiration of loan period.

MAR. 17 1925 RECD LD .W. 14'66-3PM

OCT 8 1925

DEC 26 1924

14 Mar 49 h 30

JUN 2 8 1960

REC'D LD

JUN 11 28 1966

20m-1,'22

UNIVERSITY OF CALIFORNIA LIBRARY

1 241 4 21

