PRATEEK MEHTA

@ pmehta1@nd.edu **412-417-0152**

% prtkm.github.io

梦 @prtk_m

in linkedin.com/in/prtkm

orcid.org/0000-0001-6233-8072

RESEARCH EXPERIENCE

Doctoral Research

William F. Schneider

University of Notre Dame

2014-present

Apr-Jun 2018

Notre Dame, IN

Computational modeling of heterogeneous catalysis at metal/oxide interfaces and plasma-enabled catalysis

Visiting Scholar Annemie Bogaerts, Richard van de Sanden

Univ. Antwerp and Dutch Institute for Fundamental Energy Research Antwerp, Belgium & Eindhoven, Netherlands

Modeling of plasma and plasma-catalytic ammonia synthesis

Brandon Wood Research Fellow

Lawrence Livermore National Laboratory

♀ Livermore, CA

Discovery of mechanisms of ionic conductivity in solid electrolytes using ab-initio molecular dynamics simulations and graph theory

Computational Materials Intern

Boris Kozinsky

Robert-Bosch LLC

2014

Cambridge, MA

Discovery of descriptors for fast Li-ion mobility in solid-state battery electrolytes using high-throughput computational screening

John Kitchin Master's Dissertation

Carnegie Mellon University

2012-2013

Pittsburgh, PA

Identifying metal oxide polymorphs for epitaxial growth candidates

Undergraduate Research Fellow

Frerich Keil

Hamburg University of Technology

PUBLICATIONS

- 7. P. Mehta, P. Barboun, F. Herrera, J. Kim, P. Rumbach, D.B. Go, J.C. Hicks, W.F. Schneider, Overcoming Ammonia Synthesis Scaling Relations with Plasma-enabled Catalysis. Nature Catalysis, 2018, 1, 269
- 6. A. Bajpai*, **P. Mehta***, K. Frey, A. Lehmer, W.F. Schneider, Benchmark First-Principles Calculations of Adsorbate Free Energies. ACS Catalysis, 2018, 8, 1945 (* = co-first author)
- 5. K. Kweon, J. Varley, P. Shea, N. Adelstien, P. Mehta, T.W. Heo, T. Udovic, V. Stavila, B.C. Wood. Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closo-borate solid electrolytes. Chemistry of Materials, 2017, 29, 9142
- 4. P. Mehta, J. Greeley, W.N. Delgass, W.F. Schneider. Adsorption Energy Correlations at the Metal-Support Boundary. ACS Catalysis, 2017, 7, 4707

EDUCATION

PhD in Chemical Engineering

University of Notre Dame GPA: 4.0/4.0

2019 ♀ Notre Dame, IN

M.S. in Chemical Engineering

Carnegie Mellon University GPA: 4.0/4.0

Pittsburgh, PA

B. Tech. in Chemical Engineering

National Institute of Technology GPA: 7.7/10.0

Ourgapur, India May 2012

AWARDS

CRC Award for Computational Sciences and Visualization 2018 Center for Research Computing, University

of Notre Dame **CoMSEF Graduate Student Award**

Computational and Molecular Engineering Forum, American Institute of Chemical Engineers

ACS Meeting Registration Award 2017 Catalysis Division, American Chemical Society

Richard J. Kokes Award 2017 North American Catalysis Society, NAM 25

Outstanding Teaching Assistant 2017 Notre Dame Graduate Student Union Top 3 across all graduate programs

Outstanding Teaching Assistant 2017 Department of Chemical Engineering, University of Notre Dame

Best Research Poster 2016 Lawrence Livermore National Laboratory, Summer Scholars Symposium

CCMS Fellowship 2016 Lawrence Livermore National Laboratory

California Initiative Grant 2016 Notre Dame Career Center

2016 **Eilers Graduate Fellowship** Center for Sustainable Energy, University of Notre Dame

Best Research Poster 2015 SUNCAT Summer Institute, Stanford University

Battery Division Travel Award 2015 227th Electrochemical Society Meeting

- 3. J. Varley, K. Kweon, **P. Mehta**, P. Shea, T. Heo, T. Udovic, V. Stavila, B.C. Wood. Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics. *ACS Energy Letters*, 2017, 2, 250
- B. Kozinsky, S. Akhade, P. Hirel, A. Hashibon, C. Elsasser, P. Mehta, A. Logeat, U. Eisele. Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes. *Physical Review Letters*, 2016, 116, 055901
- P. Mehta, P.A. Salvador, J.R. Kitchin. Identifying Potential BO2 Oxide Polymorphs for Epitaxial Growth Candidates. ACS Applied Materials & Interfaces, 2014, 6, 3630

CONFERENCE PRESENTATIONS

- P. Mehta, P. Barboun, F. Herrera, J. Kim, P. Rumbach, D.B. Go, J.C. Hicks, W.F. Schneider, Breaking Ammonia Synthesis Scaling Relations with Plasma-enabled Catalysis. AIChE Annual Meeting, Minneapolis, MN, 2017
- 14. P. Mehta, A. Bajpai, K. Frey, A. Lehmer, W.F. Schneider, Benchmark First-Principles Calculations of Adsorbate Free Energies. *AIChE Annual Meeting*, *Minneapolis*, *MN*, 2017
- P. Mehta, A. Bajpai, K. Frey, A.Lehmer, W.F. Schneider. A First-Principles Approach to Adsorbate Free Energies. American Chemical Society Meeting, Washington, D.C., 2017
- 12. P. Mehta, J.P. Greeley, W.N. Delgass, W.F. Schneider. Adsorption Energy Correlations at the Metal-Support Boundary. *American Chemical Society Meeting*, Washington, D.C., 2017
- 11. P. Mehta, J.P. Greeley, W.N. Delgass, W.F. Schneider. Adsorption Energy Correlations at the Metal-Support Boundary. *North American Meeting*, *NACS*, *Denver*, CO, 2017
- 10. P. Mehta, J. Kim, D. Go, J. Hicks, W.F. Schneider. Ammonia Synthesis Using Plasma Assisted Catalysis: Understanding Rate Enhancements by Excited Species. *Chicago Catalysis Club Meeting, Chicago, IL*, 2017
- 9. **P. Mehta**, J.P. Greeley, W.N. Delgass, W.F. Schneider. Unraveling the Nature of Boundary Sites on Metal-on-Oxide Catalysts (**selected as best talk of session**). *AIChE Annual Meeting, San Francisco, CA*, 2016
- 8. P. Mehta, J. Varley, K. Kweon, P. Shea, and B. Wood. Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics (invited). Electrochemical Energy Symposium, Carnegie Mellon University, Pittsburgh, PA, 2016
- 7. P. Mehta, J.P. Greeley, W.N. Delgass, W.F. Schneider. Unraveling the Nature of Boundary Sites on Metal-on-Oxide Catalysts. *Chicago Catalysis Club Meeting*, *Chicago*, IL, 2016
- 6. P. Mehta, J.P. Greeley, W.N. Delgass, W.F. Schneider. Energetics at Metal-Oxide Interfaces: Effect on Water Gas Shift Intermediates (selected as best talk of session). AIChE Annual Meeting, Salt Lake City, UT, 2015
- P. Mehta, B. Kozinsky. Structural Descriptors Controlling Ionic Motion in Solid Electrolytes from Automated Atomistic Computations (invited). Lawrence Livermore National Laboratory, Livermore, CA, 2015
- 4. **P. Mehta**, H. Zhu, J.P. Greeley, W.N. Delgass, F.H. Ribeiro, W.F. Schneider. Influence of the Metal-Oxide Interface on Water Gas Shift Intermediates. *SUNCAT Summer Institute, Stanford University, Palo Alto, CA*, 2015
- 3. P. Mehta, H. Zhu, J.P. Greeley, W.N. Delgass, F.H. Ribeiro, W.F. Schneider. Influence of the Metal-Oxide Interface on Water Gas Shift Intermediates. *North American Meeting, NACS, Pittsburgh, PA*, 2015
- 2. **P. Mehta**, B. Kozinsky. Structural Descriptors Controlling Ionic Motion in Solid Electrolytes from Automated Atomistic Computations. *227th ECS Meeting, Chicago, IL*, 2015
- P. Mehta, J. R. Kitchin. Trends in BO₂ Oxide Polymorph Stability. Pittsburgh-Cleveland Catalysis Society, Spring Meeting, 2013

SERVICE

- Instructor 2016-present Software Carpentry Foundation
- President 2016–17
 Chemical and Biomolecular Engineering
 Graduate Student Organization
- Manuscript Reviewer
 Journal of Physical Chemistry C
 Journal of Physical Chemistry Letters
- Undergraduate Research Mentor 2015–17
 Andrew Lehmer, ND Energy Slatt Fellow

TEACHING

- Software Carpentry
 Led Fundamentals of Python Programming
 Workshap at the Foderal Reserve Bank of
 - Workshop at the Federal Reserve Bank of Chicago, 2017
- Teaching Assistant
 Numerical and Statistical Analysis
 Advanced Thermodynamics
 Computational Chemistry
 Transport Phenomena

TECHNICAL SKILLS

catalysis	electronic structure
statistical mechanics	Python MATLAB
shell scripting VASP Quantum Espresso	
LAMMPS Atomic Simulation Environment	
COMSOL GAMS	Aspen Plus Emacs
org-mode ETEX Git Linux	