Learning Map

Introduction to the Learning Map

Regression: The output of the target function f is "scalar".

Training Data:

Input: Output:

9/01 PM2.5=63 9/02 PM2.5=65 9/03 PM2.5=100

Input: Output:

9/12 PM2.5=30 9/13 PM2.5=25 9/14 PM2.5=20

Learning Map: Part I

Classification

Binary Classification

Multi-Class Classification

Class 1, Class 2, ... Class N

Binary Spam filtering Classification

Classification

Learning Map: Part II

Deep Learning

- Deep learning, SVM, decision tree
 - Using different ways to represent a function
- Using neural network to represent a function

Classification—Deep Learning: Part I

Each possible object is a class.

Training Data

"monkey"

"cat"

"dog"

Classification—Deep Learning: Part II

Playing GO

Each position is a class.

(19 x 19 classes) Function Next move

Learning Map: Part III

Hard to collect a large amount of labelled data

Free: stock, clicks, house

Expensive: diagnosis, drug trial, chip

design

Training data:

Input/output pair of target function

Function output = label

Semi-Supervised Learning

For example, recognizing cats and dogs

Labelled data

• Unlabeled data

Learning Map: Part IV

Unsupervised Learning: Part I

Machine Reading: Machine learns the meaning of words from reading a lot of documents.

Unsupervised Learning: Part II

Machine Reading: Machine learns the meaning of words from reading a lot of documents.

Training data is a lot of text.

Unsupervised Learning: Part III

Draw something!

Learning Map: Part V

Reinforcement Learning

Supervised Versus Reinforcement

Supervised

Learning from teacher

Reinforcement

Learning from critics

Supervised Versus Reinforcement, Continued

• Supervised:

Next move: "5-5"

Next move: "3-3"

Reinforcement Learning:

First move

..... many moves

Win!

Alpha Go is supervised learning + reinforcement learning.

Learning Map: Part VI

