D. Doces

Time limit: 3s

Pequeno Charlie é um bom garoto viciado em doces. Ele até assina a Revista Todos Doces (All Candies Magazine) e foi selecionado para participar na Competição Internacional de Coleta de Doces (International Candy Picking Contest).

Nessa competição um número aleatório de caixas contendo doces são dispostas em M linhas com N colunas cada (então, existe um total de M x N caixas). Cada caixa tem um número indicando quantos doces ela contém.

O competidor pode pegar uma caixa (qualquer uma) e pegar todos os doces dentro dela. Mas existe uma sacada (sempre existe uma sacada): quando uma caixa é escolhida, todas as caixas das linhas logo acima e logo abaixo são esvaziadas, assim como as caixas à direita e à esquerda da caixa escolhida. O competidor continua pegando uma caixa até que não hajam mais doces.

A figura abaixo ilustra isso, passo a passo. Cada célula representa uma caixa e o número de doces que ela contém. A cada passo, a caixa escolhida é circulada e as células sombreadas representam as caixas que serão esvaziadas. Após oito etapas o jogo acaba e Charlie pegou 10 + 9 + 8 + 7 + 6 + 10 + 1 = 54 doces.

1	8	2	1	9		1	8	2	1	9		1	8	2	0	0		0	0	0	0	0
1	7	3	5	2		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
1	2	0	3	10		1	0	0	0	10		1	0	0	0	10		1	0	0	0	10
8	4	7	9	1	ſ	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
7	1	3	1	6	ſ	7	1	3	1	6		7	1	3	1	6	Γ	7	1	3	1	6
0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0
1	0	0	0	10		1	0	0	0	10		1	0	0	0	10	[1	0	0	0	0
0	0	0	0	0		0	0	0	0	0	l	0	0	0	0	0		0	0	0	0	0
0	0	0	0	6		0	0	0	0	6		0	0	0	0	0		0	0	0	0	0

Para pequenos valores de M e N, Charlie consegue achar o número máximo de doces que ele consegue coletar facilmente, mas quando os números são muito grandes ele começa a se perder. Você pode ajudar Charlie a maximizar o número de doces que ele pode pegar?

Entrada

A entrade contém vários casos de teste. A primeira linha de um caso de teste contém dois números inteiros $\bf M$ e $\bf N$ (1 \leq $\bf M$ x $\bf N$ \leq 10⁵), separados por um espaço, indicando o número de linhas e colunas, respectivamente. Cada uma das $\bf M$ linhas seguintes contém $\bf N$ inteiros separados por espaço, cada uma representando o número inicial de doces na caixa correspondente. Cada caixa terá inicialmente pelo menos 1 e no máximo 10³ doces.

O final da entrade é indicado por uma linha contendo dois zeros separados por um espaço.

Saída

Para cada caso de teste da entrada, seu programa deve imprimir uma única linha, contendo um único valor, o inteiro indicando o número máximo de doces que Charlie pode pegar.

Exemplo de Entrada	Exemplo o	de Saída
5 5	54	
18219	40	
1 7 3 5 2	17	
1 2 10 3 10		
8 4 7 9 1		
7 1 3 1 6		
1 4		
10 1 1 10		
111		
. 1 1 1		
0 1 1 10		
2 4		
10 2 7		
5 1 1 5		
0 0		

ACM/ICPC South America Contest 2008.

Por Pedro Demasi, UFRJ 💽 Brasil