Aula 1: Informação

- Docente: João Breda.
- Avaliação padrão: discreta. Podem escolher avaliação por exame final no moodle se assim o desejarem.
- Data limite para inscrição ao exame final: 17 Março (limite dado pelo PACO).
- Avaliação discreta: 1º teste: 10 de abril (4-feira).
 2º teste: exame final.
- Vai haver duas questões de aulas (25% da nota).

Questão 1 (séries): na semana 4-8 de março.

Questão 2: na semana 13-17 Maio.

Nota > 18: prova de defesa de nota. Consultar Moodle para mais informações.

- OT1-4: Sexta feira das 16-17.
- Slides das aulas aqui: https://www.dropbox.com/sh/ o79ℓ7o8qf82rzkg/AAA_BGOcCAcG-hb693fq839Za?dℓ=0
- Recomendo o software livre Geogebra para visualizarem superfícies e curvas.
- Vídeos de Cálculo 2
 — https://siacua.web.ua.pt/

Aula 1: Programa

- Séries de Potências e Fórmula de Taylor.
- Sucessões e séries de funções: Convergência pontual e uniforme; Critério de Weierstrass;
 Séries de Fourier.
- Extremos de funções reais de várias variáveis reais: Derivação parcial; Extremos locais;
 Extremos globais; Extremos condicionados.
- Equações diferenciais ordinárias (EDOs): Equações diferenciais de 1^a ordem equações diferenciais de variáveis separadas, de variáveis separáveis, redutíveis a variáveis separáveis, homogéneas, exatas, com fator integrante, lineares de primeira ordem, de Bernoulli; equações diferenciais de ordem superior; equações diferenciais lineares de ordem n homogénea de coeficientes constantes, completa de coeficientes constantes.
- Transformada de Laplace e sua aplicação à resolução de EDOs Bibliografia: consultar o moodle.

Séries

Aula 1: Sumário

- Revisão sumária sobre séries
- Séries de potências
- Domínio de convergência
- Raio de convergência
- Intervalo de convergência versus domínio de convergência
- Cálculo do raio de convergência
- Exercícios

Revisão sumária sobre séries (5 slides)

Natureza e critérios gerais de convergência de séries numéricas

- A natureza de uma série não depende dos seus primeiros termos.
- Se $\sum_{n=0}^{\infty} a_n$ é convergente, então $\lim_{n\to\infty} |a_n| = 0$.
- Teste de divergência: Se $\lim_{n\to\infty}|a_n|$ não existe ou $\lim_{n\to\infty}|a_n|\neq 0$, então $\sum_{n=1}^\infty a_n$ é divergente. Se $\lim_{n\to\infty}|a_n|=0$ nada se pode concluir acerca da natureza de $\sum_{n=1}^\infty a_n$.
- $\forall \lambda \in \mathbb{R}, \lambda \neq 0$, $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=0}^{\infty} \lambda a_n$ têm a mesma natureza. Se convergem temos:
- $\sum_{n=0}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n \ .$ Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são convergentes, também $\sum_{n=0}^{\infty} (a_n + b_n)$ é convergente e tem-se: $\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$ Se $\sum_{n=1}^{\infty} a_n$ converge e $\sum_{n=1}^{\infty} b_n$ diverge, então $\sum_{n=0}^{\infty} (a_n + b_n)$ diverge.
- Se $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ divergem, nada se pode concluir acerca da natureza de $\sum_{n=0}^{\infty} (a_n + b_n)$.

Séries geométricas

 $\sum_{n=1}^{\infty}a_n, \ \text{com}\ a_1\neq 0, \ \text{\'e}\ \text{uma s\'erie geom\'etrica}\ \text{de raz\~ao}\ r\ \text{se}\ \frac{a_{n+1}}{a_n}=r\ \text{\'e}\ \text{constante}$ (não depende de n). Neste caso $a_n=a_1\,r^n$, pelo que a forma de uma série geom\'etrica \'e: $\sum_{n=1}^{\infty}a\,r^n\,,\quad (a\neq 0)$

Seja $u_1 = ar^k$ o 1º termo da série geométrica $\sum_{n=k}^{\infty} a \, r^n$ de razão $r \neq 1$. Então:

- Soma parcial dos primeiros n termos: $S_n = u_1 \frac{1 r^n}{1 r}$
- $\sum_{n=k}^{\infty} a \, r^n$ converge $\Leftrightarrow |r| < 1$. Se |r| < 1, $S = \sum_{n=k}^{\infty} a \, r^n = \frac{u_1}{1-r}$.

Critérios de convergência para séries $\sum a_n \operatorname{com} a_n \geq 0$

- ullet Critério do Integral: Se $f:[1,+\infty[\longrightarrow \mathbb{R}$ é função decrescente tal que $f(n)=a_n$, $\forall\,n\in\mathbb{N}$, então a série $\sum_{n=1}^{\infty} a_n$ e o integral impróprio $\int_{1}^{\infty} f(x) dx$ têm a mesma natureza.
- Critério de Comparação: Se existe $n_0 \in \mathbb{N}$ tal que $0 \le a_n \le b_n$, para todo $n \ge n_0$, então
 - (i) $\sum_{n=1}^{\infty} b_n$ converge $\Rightarrow \sum_{n=1}^{\infty} a_n$ converge. (ii) $\sum_{n=1}^{\infty} a_n$ diverge $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverge.
- Critério de Comparação no limite: Se $b_n \geq 0$ e existe $\lim_{n \to \infty} \frac{a_n}{b_n} = \ell$, então:

 - (i) $\ell \in]0, +\infty[: \sum_{n=1}^{\infty} a_n \text{ e } \sum_{n=1}^{\infty} b_n \text{ são da mesma natureza.}$ (ii) $\ell = 0: \sum_{n=1}^{\infty} b_n \text{ converge } \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converge.}$ (ii) $\ell = \infty: \sum_{n=1}^{\infty} b_n \text{ diverge } \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverge.}$

Critérios de convergência absoluta para séries $\sum a_n, a_n \in \mathbb{R}$

Critério de D'Alembert: Se $a_n \neq 0$, $\forall n > n_0$, e existe $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$, então:

- (1) $L<1\Rightarrow\sum_{n=1}^{\infty}a_n$ é absolutamente convergente. (2) L>1, a série $\sum_{n=1}^{\infty}a_n$ é divergente. (3) Se L=1, nada se pode concluir.

- Critério da raiz : Se existe $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$, então: (1) $L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ é absolutamente convergente. (2) $L > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ é divergente. (3) L = 1, nada se pode concluir.

Critério de convergência de séries alternadas $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n > 0$.

Critério de Leibniz: Se (a_n) é uma sucessão tal que

(i)
$$a_n = f(n) > 0, \forall n \in \mathbb{N},$$

(ii) (a_n) é uma sucessão decrescente (por exemplo se $f'(x) < 0, x \in]1, +\infty[)$ e

(iii)
$$\lim_{n\to\infty} a_n = 0$$
,

então a série alternada $\sum_{n=1}^{\infty} (-1)^n a_n$ é convergente.

Além disso, se S representa a sua soma e S_n a n-ésima soma parcial, então verifica-se

$$0 < (-1)^n (S_n - S) < a_{n+1}, n \in N.$$

Numa série alternada convergente com $a_n=f(n)>0$ decrescente, o erro que se comete ao tomar S_n como valor aproximado de S é: $Erro=|S_n-S|< a_{n+1}$.

Séries de potências

Aula 1: Séries de potências e domínio de convergência

Série de potências centrada em c, ou série de potências de x-c:

$$\sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_1 (x-c)^2 + \dots$$

 $a_n \in \mathbb{R}$ são os coeficientes da série. Convenção: $(x-c)^0=1$.

Ao conjunto dos pontos $x \in \mathbb{R}$ para os quais a série é convergente designa-se por domínio de convergência da série.

A série converge sempre em x=c, sendo a sua soma a_0 .

Logo c pertence sempre ao domínio de convergência da série.

O domínio de convergência de uma série de potências pode ser determinado pelos critérios D'Alembert ou da raiz.

Exemplo: $\sum_{n=0}^{\infty} (x-c)^n$ tem domínio de convergência]c-1,c+1[e aqui a soma é $\frac{1}{1-(x-c)}$.

• Mostre que $\sum_{n} a_n (x-c)^{2n+3}$ é uma série de potências.

Aula 1: Raio de convergência

Teor. 4.2 Numa série de potências $\sum_{n=0}^\infty a_n(x-c)^n$ verifica-se uma e uma só das condições seguintes:

- (a) A série converge absolutamente apenas em x=c e diverge para $x\neq c$;
- **(b)** A série converge absolutamente $\forall x \in \mathbb{R}$;
- (c) Existe R>0 tal que a série converge absolutamente se |x-c|< R e diverge se |x-c|> R.
- \star Ao número R da alínea (c) chama-se raio de convergência da série de potências.
- \star No caso da alínea (a) o raio de convergência é nulo, R=0.
- \star No caso da alínea (b) o raio de convergência é infinito, $R=+\infty$.
- \star Quando $R \neq 0$, ao intervalo]c R, c + R[(= \mathbb{R} no caso de $R = +\infty$) designa-se por intervalo de convergência.

Aula 1: Intervalo de convergência versus domínio de convergência

$$\sum_{n=0}^{\infty} a_n (x-c)^n$$

lacktriangle O intervalo de convergência (absoluta) da série é centrado em c e é:

$$=\mathbb{R}$$
 , se $R=+\infty$ ou
$$=]c-R,c+R[\,,\quad \text{se }R\ \, \text{\'e finito e diferente de zero}.$$

♦ Domínio de convergência da série:

```
pode ser \{c\}, no caso em que R=0, ou \mathbb{R}, no caso em que R=+\infty; e caso em que R\in\mathbb{R}^+\backslash\{0\} pode ser:
```

]c-R,c+R[, caso em que a série diverge em x=c-R e em x=c+R; [c-R,c+R[, caso em que a série converge em x=c-R e diverge em x=c+R;]c-R,c+R[, caso em que a série diverge em x=c-R e converge em x=c+R; ou [c-R,c+R[, caso em que a série converge em x=c-R e em x=c+R;

Aula 1: Cálculo do raio de convergência 1 (não aconselho)

Prop. 4.1 Seja $\sum_{n=0}^{\infty}a_n(x-c)^n$ ou $\sum_{n=0}^{\infty}a_n(x-c)^{n+k}$ ou $\sum_{n=b}^{\infty}a_n(x-c)^n$ uma série de

potências. Então, o raio de convergência R da série pode ser obtido de duas formas: (desde que os limites existam, finitos ou $+\infty$)

(1)
$$R = \lim_{n \to \infty} \frac{1}{\frac{|a_{n+1}|}{|a_n|}} = \frac{1}{\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}}$$
, se $a_n \neq 0$, para $\forall n > n_0$;

ou

(2)
$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}};$$

A série de potências $\sum_{n=0}^{\infty} a_n (x-c)^{kn}$ tem raio de convergência $R = \sqrt[k]{r}$, em que $r = \frac{1}{\lim \frac{|a_{n+1}|}{|a_n|}}$ ou $r = \frac{1}{\lim \sqrt[n]{|a_n|}}$. Note-se que r é o raio de convergência da série $\sum_{n=0}^{\infty} a_n X^n$ em que $X = (x-c)^k$. Esta série não é a série dada $\sum_{n=0}^{\infty} a_n (x-c)^{kn} = \sum_{n=0}^{\infty} b_n (x-c)^n$ em que b_n .

de convergência da série $\sum_{n=0}^{\infty} a_n X^n$, em que $X=(x-c)^k$. Esta série não é a série dada $\sum_{n=0}^{\infty} a_n (x-c)^{kn} = \sum_{n=0}^{\infty} b_n (x-c)^n$ em que b_m satisfaz: $b_m=0$ se $\frac{m}{k}$ não é inteiro (i.e. se $m \neq 0 \mod k$) e $b_m=a_{\frac{m}{k}}$ se $m=0 \mod k$; m surge tomando m=kn).

Aula 1: Cálculo do raio de convergência 2

Prop. 4.1 Seja $\sum_{n=0}^{\infty} a_n (x-c)^{rn+k}$ uma série de potências. Aconselho a que o raio de convergência R da série seja obtido usando ou critério d'Alembert ou o critério da raiz (desde

convergência R da série seja obtido usando ou critério d'Alembert ou o critério da raiz (desde que os limites existam, finitos ou $+\infty$):

Seja $u_n(x) = a_n(x-c)^{rn+k}$. Usando o critério d'Alembert (critério da raiz é o mesmo procedimento) : Seja

$$L = \lim_{n \to \infty} |\frac{u_{n+1}(x)}{u_n(x)}| = |x - c|^r \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = |x - c|^r Q;$$
 em que $Q = \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = 0^+, \infty \text{ ou } r \in \mathbb{R}.$

Então

$$L < 1 \Leftrightarrow |x - c|^r Q < 1 \Leftrightarrow |x - c|^r < \frac{1}{Q} \Leftrightarrow |x - c| < \frac{1}{\sqrt[r]{Q}} = R;$$

O raio é
$$R=\frac{1}{\sqrt[r]{Q}}$$
 $[R=\frac{1}{0^+}=+\infty,$ ou $R=\frac{1}{\infty}=0$ se $Q=0^+,$ ou $Q=\infty,$ resp.].

Aula 1: Exercícios 1

Determine o domínio de convergência das séries seguintes, indicando os pontos onde a convergência é simples ou absoluta:

(1)
$$\sum_{n=0}^{\infty} \frac{x^n}{3^n \sqrt{n+1}}$$
 (3) $\sum_{n=1}^{\infty} \frac{n-1}{n^{2n}} x^n$

(3)
$$\sum_{n=1}^{\infty} \frac{n-1}{n^{2n}} x^n$$

(5)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{3^n}$$

(2)
$$\sum_{n=1}^{\infty} \frac{2}{9^{n+1}n!} (x-3)^n$$
 (4) $\sum_{n=0}^{\infty} \frac{(2n)!}{n!} x^n$

(4)
$$\sum_{n=0}^{\infty} \frac{(2n)!}{n!} x^n$$

(6)
$$\sum_{n=0}^{\infty} (-1)^n \frac{n^{2n}}{(n+1)^{2n}} (x-1)^n$$

Aula 1: Exercícios 2

Indique o domínio de convergência de cada uma das seguintes séries potências:

(1)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{2n+1}} x^n$$
.

(3)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

(2)
$$\sum_{n=0}^{\infty} \frac{n+1}{2^n} (x-2)^n$$

(4)
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n} (x+2)^n$$

Aula 1: Exercícios 3

Indique o intervalo e o domínio de convergência de cada uma das seguintes séries potências:

(1)
$$\sum_{n=1}^{\infty} \frac{n!}{n-1} (x-2)^n$$
.

$$(2) \sum_{n=2}^{\infty} \frac{x^{2n}}{\ln(n)}$$

- (3) Se $\sum_{n=0}^{\infty} a_n x^n$ é absolutamente convergente num dos extremos do seu domínio de convergência, mostre que ela é também absolutamente convergente no outro extremo.
- (4) Se o domínio de convergência de $\sum_{n=0}^{\infty} a_n x^n$ é]-r,r], mostre que a série é simplesmente convergente em x=r.
- (5) Se uma série de potências $\sum_{n=0}^\infty a_n(x-c)^n$ tem intervalo de convergência]-2,8[, em que ponto c a série está centrada e qual o raio de convergência?

Aula 1: Soluções dos exercícios

Série de potências de centro c e raio R. I = intervalo de convergência. D = domínio de convergência.

1.1
$$c = 0$$
. $L = |x| \frac{1}{3}$. $R = 3$. $I =]-3, 3[$. $D = [-3, 3[$.

1.2
$$c = 3$$
. $L = \frac{|x-3|}{9} \times 0^+$. $R = \infty$. $I = D = \mathbb{R}$.

1.3
$$c = 0$$
. $L = |x| \times 0^+$. $R = \infty$. $I = D = \mathbb{R}$.

1.4
$$c = 0$$
. $L = |x| \times \infty$. $R = 0$. $I = \emptyset$. $D = \{0\}$.

1.5
$$c = 0$$
. $L = \frac{|x|}{3}$. $r = 3$. $I =]-3,3[$. $D =]-3,3[$.

1.6
$$c = 1$$
. $L = |x - 1|$. $R = 1$. $I =]0, 2[$. $D =]0, 2[$.

2.1
$$c=0$$
. $L=2|x|$. $R=\frac{1}{2}$. $I=]-\frac{1}{2},\frac{1}{2}[$. $D=]-\frac{1}{2},\frac{1}{2}[$.

2.2
$$c = 2$$
. $L = \frac{|x-2|}{2}$. $R = 2$. $I =]0, 4[$. $D =]0, 4[$.

2.3
$$c = 0$$
. $L = |x|$. $R = 1$. $I =]-1,1[$. $D =]-1,1[$.

2.4
$$c = -2$$
. $L = |x + 2|$. $R = 1$. $I =]-3, -1[$. $D = [-3, -1[$.

3.1
$$c = 2$$
. $L = |x - 2| \times \infty$. $R = 0$. $I = \emptyset$. $D = \{2\}$.

3.2
$$c = 0$$
. $L = |x|^2$. $R = 1$. $I =]-1, 1[$. $D =]-1, 1[$.

- 3.3 Seja D = [-r, r]. Nos extremos x = -r e x = r, a série dos valores absolutos é a mesma, pelo que se a série é absolutamente convergente num dos extremos ela também será absolutamente convergente no outro extremo. Isto também diz que se a série não for absolutamente convergente num dos extremos ela também não será absolutamente convergente no outro extremo.
- **3.4** Se o domínio de convergência é]-r,r], isto significa que a série não é convergente em x=-r, pelo que a série não pode ser absolutamente convergente em x=-r. Não sendo absolutamente convergente num dos extremos a série não pode ser absolutamente convergente no outro extremo. Assim a série é apenas simplesmente convergente em x=r.