

Predicting and analyzing the COVID-19 pandemic in Italy using SEIR-type and deep learning models: a comparative study

COVID-19 pandemic

- First cases at the end of 2019 in Wuhan, China

- 30th January 2020: OMS declares Public Health Emergency

- 24th February 2020: first "red zone" areas in Italy

Our work

- Studying the pandemic in Italy

- Mathematical model: SEIR-type model

- Deep learning: LSTM

- Results and comparison

SIR model

$$\begin{aligned} \frac{dS}{dt} &= -\beta SI \\ \frac{dI}{dt} &= \beta SI - \gamma I \\ \frac{dR}{dt} &= \gamma I \end{aligned}$$

SEIR model

$$\begin{split} \frac{dS}{dt} &= -\beta SI \\ \frac{dE}{dt} &= \beta SI - \alpha E \\ \frac{dI}{dt} &= \alpha E - \gamma I \\ \frac{dR}{dt} &= \gamma I \end{split}$$

SEIIR model

$$\frac{dS}{dt} = -(\beta_s I_s + \beta_a I_a)S$$

$$\frac{dE}{dt} = (\beta_s I_s + \beta_a I_a)S - \alpha E$$

$$\frac{dI_a}{dt} = (1 - f)\alpha E - \gamma I_a$$

$$\frac{dI_s}{dt} = f\alpha E - \gamma I_s$$

$$\frac{dR}{dt} = \gamma (I_s + I_a)$$

SEIIRHD model

$$\frac{dS}{dt} = -(\beta_s I_s + \beta_a I_a)S$$

$$\frac{dE}{dt} = (\beta_s I_s + \beta_a I_a)S - \alpha E$$

$$\frac{dI_a}{dt} = (1 - f)\alpha E - \gamma I_a$$

$$\frac{dI_s}{dt} = f\alpha E - (\gamma + \mu + \nu_s)I_s$$

$$\frac{dR}{dt} = \gamma (I_s + I_a + H)$$

$$\frac{dH}{dt} = \nu_s I_s - (\gamma + \mu)H$$

$$\frac{dD}{dt} = \mu (I_s + H)$$

2.2 Qualitative Analysis

The SEIIRHD model has one equilibrium point:

- Disease free equilibrium point (DFE): no disease is present in the population.

Qualitative Analysis: SEIIRHD

Feasible Region for the SEIIRHD model:

$$\Omega_{\mathtt{SEIIRHD}} = \{ (S(t), E(t), I_a(t), I_s(t), H(t), R(t), D(t)) \in R^7_+ : 0 \le N(t) \le N_0 \}$$

- Disease-free equilibrium point

$$(S_{DFE}^*, E_{DFE}^*, I_{aDFE}^*, I_{sDFE}^*, R_{DFE}^*, H_{DFE}^*, D_{DFE}^*) = (1, 0, 0, 0, 0, 0, 0)$$

$$\mathcal{F} = \begin{bmatrix} \beta_a I_a S + \beta_s I_s S \\ 0 \\ 0 \end{bmatrix} \quad \mathcal{V} = \begin{bmatrix} \alpha E \\ \gamma I_a - (1 - f)\alpha E \\ (\gamma + \mu + \nu_s)I_s - f\alpha E \end{bmatrix}$$

Vector of new infection rates

Vector of other rates

Qualitative Analysis: SEIIRHD

Next Generation Matrix

$$FV^{-1} = \begin{bmatrix} \frac{f\beta_s}{\gamma + \mu + \nu_s} + \frac{(1-f)\beta_a}{\gamma} & \frac{\beta_s}{\gamma + \mu + \nu_s} & \frac{\beta_a}{\gamma} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathcal{R}_0 = \rho(FV^{-1}) = \frac{f\beta_s}{\gamma + \mu + \nu_s} + \frac{(1 - f)\beta_a}{\gamma}$$

Theorem. The DFE point is asymptotically stable if $\mathcal{R}_0 < 1$

3 Results

- 3.1 Model Simulation
- 3.2 Sensitivity analysis
- 3.3 Estimating parameters from real data with the SEIIRHD model
- 3.4 LSTM model
- 3.5 A comparison between SEIIRHD and LSTM models

3.1 Model simulations

- Generate a sample of size 1000 from a uniform distribution U(a; b);
- Compute first and third quartile and median for each sample;
- Plot the results.

Parameter	Description	Distribution interval
f	Probability of being symptomatic	(0.3, 0.9)
$eta_{m{a}}$	Transmission rate from S to E from contact with I_a	(0.0, 0.6)
$eta_{m s}$	Transmission rate from S to E from contact with I_s	(0.0, 0.6)
γ	Recovery rate	(0.0, 0.4)
α	Inverse of the incubation period	(0.15, 0.35)
ν_s	Hospitalization rate from state I_s	(0.0, 0.4)
μ	Death Rate	(0.0, 0.2)

3.1 Model simulations

3.1 Model simulations

	Parameters						
	$\mathcal{R}_0 = 1.23$	$\mathcal{R}_0 = 1.05$	$\mathcal{R}_0 = 0.83$				
f	0.4528	0.6013	0.7479				
β_{a}	0.1587	0.3176	0.4434				
$\beta_{m{s}}$	0.1504	0.3210	0.4442				
γ	0.0919	0.1911	0.2912				
α	0.1982	0.2515	0.3003				
ν_s	0.0991	0.2027	0.3096				
μ	0.0462	0.1018	0.1498				

Maximum value for each compartment						
I_a	16.90M	9.99M	5.61M			
I_s	9.09M	9.08M	9.82M			
H	4.05M	4.34M	4.79M			
D	9.05M	12.54M	15.24M			

3.2 Sensitivity Analysis

Sensitivity index: correlation between each parameter and the basic reproduction number \mathcal{R}_0

$$C_p^{\mathcal{R}_0} = \frac{\partial \mathcal{R}_0}{\partial p} \times \frac{p}{\mathcal{R}_0}$$

$C^{\mathcal{R}_0}_{eta_a}$	$C^{\mathcal{R}_0}_{eta_s}$	$C_f^{\mathcal{R}_0}$	$C^{\mathcal{R}_0}_{\gamma}$	$C_{ u_s}^{\mathcal{R}_0}$	$C^{\mathcal{R}_0}_{\mu}$
0.7670	0.2330	-0.4017	-0.0728	-0.0066	-0.0031

3.3 Numerical Simulations

Two periods are considered:

- Second wave from October 8th 2020 to November 23rd 2020;
- Third wave from January 21st to February 21th 2021.

```
Algorithm 1: Concatenated SEIIRHD fitting

Result: f, \alpha, \gamma, \beta_a, \beta_s, nu_s, \mu

Initialize \beta_0, \gamma_0;

[\beta_{SIR}, \gamma_{SIR}] = \text{SIR} (\beta_0, \gamma_0);

Initialize \alpha_0;

[\beta_{SEIR}, \gamma_{SEIR}, \alpha_{SEIR}] = \text{SEIR}(\beta_{SIR}, \gamma_{SIR}, \alpha_0);

Initialize f_0, \beta_{a,0}, \beta_{s,0};

[f_{SEIIR}, \alpha_{SEIIR}, \gamma_{SEIIR}, \beta_{a,SEIIR}, \beta_{s,SEIIR}] = \text{SEIIR} (f_0, \alpha_{SEIR}, \gamma_{SEIR}, \beta_{a,0}, \beta_{s,0});

Initialize \nu_0, \mu_0;

SEIIRHD (f_{SEIIR}, \alpha_{SEIIR}, \alpha_{SEIIR}, \gamma_{SEIIR}, \beta_{a,SEIIR}, \beta_{s,SEIIR}, \nu_0, \mu_0);
```

3.3.1 Italy

Second wave

Third wave

20

3.3.2 Molise

Second wave Third wave

21

3.3.3 Sardegna

Second wave Third wave

22

3.3.4 Summary of numerical simulations

Parameters	Second wave			Third wave		
Farameters	Italy	Molise	Sardegna	Italy	Molise	Sardegna
f	0.4600	0.6363	0.4679	0.5164	0.4820	0.5211
$eta_{m{a}}$	0.0833	0.0564	0.0708	0.0217	0.0508	0.0076
$eta_{m s}$	0.1281	0.0754	0.0103	0.0253	0.0692	0.0087
γ	0.0200	0.0198	0.0132	0.0351	0.0391	0.0183
α	0.2741	0.3061	0.1774	0.0884	0.1803	0.0356
$\tau(\frac{1}{\alpha})$	3.6483	3.2662	5.6369	11.3122	5.2500	28.080
ν_s	0.0102	0.0053	0.0068	0.0039	0.0075	0.0012
μ	0.0025	0.0035	0.0024	0.0022	0.0052	0.0014
\mathcal{R}_0	4.8531	5.5499	4.4216	0.6197	1.4386	0.4199

3.4 LSTM: a deep learning model for predictions

Vectors:

- Inputs: X
- Long-term state: H
- Short-term state: C

Functions:

- Output $g_{(t)}$ Forget Gate $f_{(t)}$
- Input Gate $i_{(t)}$ Output Gate $o_{(t)}$

Results on second wave

Results on third wave

3.5 A comparison between SEIIRHD and LSTM model

	Second wave					
Compartment	SEIIRHD			LSTM		
	MAE	RMSE	R_2	MAE	RMSE	R_2
Infected	2489632.79	3235121.77	-0.86	156992.10	201420.69	0.27
Hospitalized	378468.57	508199.33	-0.78	3702.55	3935.55	-0.25
Deaths	125326.99	178037.58	0.91	2171.30	2819.07	0.94
Recovered	1655269.79	2550386.67	0.91	138311.86	186830.11	0.87
	Third wave					
Infected	71694.57	83659.48	-0.99	186830.11	94799.61	0.56
Hospitalized	5784.88	7492.38	-0.98	1945.79	2302.81	0.55
Deaths	4603.20	4629.50	0.99	2671.78	3393.29	0.67
Recovered	17408.67	25839.88	0.99	20282.58	20282.58	0.98

3.6 When the pandemic will end?

3.6 When the pandemic will end?

Date	Infe	cted	Deaths		
Date	SEIIRHD	LSTM	SEIIRHD	LSTM	
June 2021	2.82M	172.24K	1.85M	129.99K	
September 2021	63.06K	24.00K	1.85M	1.62M	
December 2022	1469	3560	1.85M	1.97M	
March 2022	35	2589	1.85M	2.24M	
June 2022	0	1328	1.85M	2.93M	
September 2022	0	873	1.85M	3.57M	
December 2022	0	726	1.85M	4.33M	

Conclusions

Conclusions and future work

Asymptomatic individuals play a huge role in the epidemic

LSTM has a better forecast performance in the short term

Include vaccination, treatment strategies, NPI measures to the SEIIRHD model

Merge the SEIIRHD model with the LSTM

Thanks for your attention!

Any questions?