WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/60, 5/10, 1/21, 9/88, C12Q 1/68, C07K 16/40, G01N 33/50, 33/68

(11) International Publication Number:

WO 99/16888

(43) International Publication Date:

8 April 1999 (08.04.99)

(21) International Application Number:

PCT/US98/20365

A2

(22) International Filing Date:

29 September 1998 (29.09.98)

(30) Priority Data:

08/939,309

29 September 1997 (29.09.97) US

(71) Applicant: CHILDREN'S HOSPITAL OAKLAND RE-SEARCH INSTITUTE [US/US]; 747 Fifty Second Street, Oakland, CA 96409-1809 (US).

(72) Inventors: SABA, Julie, D.; Apartment 7317, 6401 Bay Street, Emeryville, CA 95608 (US). ZHOU, Jianhui; 246 Bearritz Court, Redwood City, CA 94065 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SPHINGOSINE-1-PHOSPHATE LYASE POLYPEPTIDES, POLYNUCLEOTIDES AND MODULATING AGENTS AND METHODS OF USE THEREFOR

(57) Abstract

Compositions, methods and kits for diagnosing and treating cancer are provided. Therapeutic compositions may comprise agents that modulate the expression or activity of a sphingosine—1—phosphate lyase (SPL). Such compositions may be administered to a mammal afflicted with cancer. Diagnostic methods and kits may employ an agent suitable for detecting alterations in endogenous SPL. Such methods and kits may be used to detect the presence of a cancer or to evaluate the prognosis of a known disease. SPL polypeptides, polynucleotides and antibodies are also provided.

GET	GAT	GAT	TTG	ATC	CAC	TTA	CAA	ACA	ATC	6CA	TAC	GAA	м	TAT	TGC	578
Gly	Asp	Asp			His	Leu	Gln			Ala	Tyr	61 u			Cyra	
			180					185					190			
GIT	ecc.	AAT	CAA	TTA	CAT	CCC	GAT	atc	111	CCT	ACC	GTA	CST	AAA	ATG	624
					His											
		195					200					205				
	TP-C	C14	ATA.		TOT	470		***	404	ATO	111	AAT	-	~~	TCT	672
					Ser											0/2
	210		•••		•••	215					220			•••		
					ACC											720
225	1134	orl	cy s	ary	Thr 230	IAF	ш	061.	шy	235	ш	OTO	9et.	LEU	240	
															•	
					CCT											768
Leu	Ale	Cys	Lev	8er 245	Ala	Lys	Ket	Tyr	Ala 250		His	His	Arg	61y 255		
				~					200					233		
ACC	BAA	CCA	GAA	ATA	ATT	6CT	CCC	GTA	ACT	GCA	CAT	OCT	G88	ш	GAC	818
Thr	G1 u	Pro			H	Ala	Pro			Ala	His	Ala		Phe	Asp	
			260					265					270			
м	ect	SCT	TAT	TAC	ш	ecc	ATG	AAG	CTA	C	CAC	ата	GAB	CTA	GAT	684
					Phe											
		275					280					285				
ec.	***	404	747	***	ата	040	~~	004	***	σn	***	***	TTP	ATC	AAT	912
					Val											312
	290		.,.	;	-	295		,	-,-	-	300	-,-				
												_				
					CTG Leo											960
305		HB	114	Lau	310	441	u.y	361	~4	315	Aaii	rue	710	LITS	320	
					GAA											1008
He	Ala	ASP	Asp	11e 325	Gjn	Gly	Leu	Gly	230 230		Ala	etv	Lys	Tyr 335	Lys	
				323					330					333		
стт	CCT	TTA	CAC	arc	BAC	AGT	TGT	CTA	6 81	TOC	Ш	ATT	втт	TCA	ш	1056

Leu Pro Leu His Val Asp Ser Cys Leu Gly Ser Phe Ile Val Ser Phe 340 345 350

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho '	SI	Slovenia
AM	Armenia `	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan ·	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland .	MW	Malawi	US	United States of America
CA	Canada	IT	Italy .	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cī	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/16888 PCT/US98/20365

Description

SPHINGOSINE-1-PHOSPHATE LYASE POLYPEPTIDES, POLYNUCLEOTIDES AND MODULATING AGENTS AND METHODS OF USE THEREFOR

Technical Field

5

25

The present invention relates generally to cancer detection and therapy. The invention is more particularly related to sphingosine-1-phosphate lyase polynucleotides and polypeptides, and to agents that modulate the expression and/or activity of such polypeptides. Such agents may be used, for example, to diagnose and/or treat cancers such as breast cancer.

15 Background of the Invention

Breast cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the most common form of cancer, and the second leading cause of cancer death, in American women. Among African-American women and women between 15 and 54 years of age, breast cancer is the leading cause of cancer death. One out of every eight women in the United States will develop breast cancer, a risk which has increased 52% during 1950-1990. In 1994, it is estimated that 182,000 new cases of female breast cancer were diagnosed, and 46,000 women died from the disease.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of

- 10

15

25

specific tumor markers. However, the use of established markers often leads to a result that is difficult to interpret.

With current therapies, tumor invasiveness and metastasis is a critical determinant in the outcome for breast cancer patients. Although the five year survival for women diagnosed with localized breast cancer is about 90%, the five year survival drops to 18% for women whose disease has metastasized. Present therapies are inadequate for inhibiting tumor invasiveness for the large population of women with this severe disease.

Accordingly, improvements are needed in the treatment, diagnosis and prevention of breast cancer. The present invention fulfills this need and further provides other related advantages.

Summary of the Invention

Briefly stated, the present invention provides compositions and methods for the diagnosis and therapy of cancer. Within one aspect, the present invention provides isolated polynucleotides comprising a sequence selected from the group consisting of: (a) a sequence recited in SEQ ID NO:1; (b) a sequence recited in SEQ ID NO:3; (c) nucleotide sequences that hybridize to a polynucleotide complementary to either of the foregoing sequences under 20 moderately stringent conditions, wherein the nucleotide sequences encode polypeptides having sphingosine-1-phosphate lyase activity; and (d) nucleotide sequences that encode a polypeptide encoded by any of the foregoing sequences.

Within a related aspect, an isolated polynucleotide is provided that encodes a polypeptide recited in SEQ ID NO:2, or a variant of such a polypeptide that has sphingosine-1-phosphate lyase activity. In another related aspect, an isolated polynucleotide comprising a sequence recited in SEQ ID NO:4, or a variant of such a polypeptide that has sphingosine-1-phosphate lyase activity, is provided.

Recombinant expression vectors comprising any of the foregoing polynucleotides, and host cells transformed or transfected with such expression 30 vectors, are also provided.

25

30

Within further aspects, SPL polypeptides are provided. polypeptides may be encoded by any of the foregoing polynucleotides. Alternatively, a polypeptide may comprise an amino acid sequence recited in SEQ ID NO:2 or 4, or a variant thereof, wherein the polypeptide has sphingosine-1phosphate lyase activity.

Within a further aspect, the present invention provides isolated polynucleotides comprising at least 100 nucleotides complementary to a sequence recited in SEQ ID NO:1 or 3.

Within other aspects, methods are provided for preparing a sphingosine-1-phosphate lyase, comprising culturing a host cell transformed or transfected with a polynucleotide as described above under conditions promoting expression of the polynucleotide and recovering a sphingosine-1-phosphate lyase.

In further aspects, the present invention provides methods for identifying an agent that modulates sphingosine-1-phosphate lyase activity. In one such aspect, the method comprises: (a) contacting a candidate agent with cells that express sphingosine-1-phosphate lyase; and (b) subsequently measuring the level of sphingosine-1-phosphate lyase or mRNA encoding sphingosine-1phosphate lyase in the cells, relative to a predetermined level in the absence of Within another such aspect, the method comprises: (a) candidate agent. 20 contacting a candidate agent with a polypeptide comprising a sequence recited in any one of SEQ ID NOs: 2, 4, 6 or 8, or a variant of such a sequence having sphingosine-1-phosphate lyase activity, wherein the step of contacting is carried out under conditions and for a time sufficient to allow the candidate modulator to interact with the polypeptide; and (b) subsequently measuring the ability of the polypeptide to degrade sphingosine-1-phosphate or a derivative thereof, relative to an ability in the absence of candidate agent. The step of contacting may be performed by incubating a cell expressing the polypeptide with the candidate modulator, and the step of measuring the ability to degrade sphingosine-1phosphate may be performed using an in vitro assay and a cellular extract.

pharmaceutical provides The present invention further compositions comprising an agent that modulates sphingosine-1-phosphate lyase

25

30

activity in combination with a pharmaceutically acceptable carrier. Such agents preferably inhibit sphingosine-1-phosphate lyase activity. Such inhibition may be achieved by inhibiting expression of an endogenous SPL gene, or by inhibiting the ability of an endogenous SPL to degrade sphingosine-1-phosphate. Within certain preferred embodiments, a modulating agent comprises a polynucleotide or an antibody or an antigen-binding fragment thereof.

Within still further aspects, the present invention provides methods for modulating sphingosine-1-phosphate activity, comprising contacting a sphingosine-1-phosphate lyase with an effective amount of an agent that modulates sphingosine-1-phosphate lyase activity, wherein the step of contacting is performed under conditions and for a time sufficient to allow the agent and the sphingosine-1-phosphate lyase to interact. To modulate sphingosine-1-phosphate lyase activity in a cell, a cell expressing sphingosine-1-phosphate may be contacted with such an agent.

Within related aspects, the present invention provides methods for inhibiting the growth of a cancer cell, comprising contacting a cancer cell with an agent that inhibits sphingosine-1-phosphate lyase activity. In a preferred embodiment, the cancer cell is a breast cancer cell.

The present invention also provides methods for inhibiting the development and/or metastasis of a cancer in a mammal, comprising administering to a mammal an agent that inhibits sphingosine-1-phosphate lyase activity. Within certain embodiments, an agent may comprise, or be linked to, a targeting component, such as an anti-tumor antibody or a component that binds to an estrogen receptor.

Within other aspects, methods for diagnosing cancer in a mammal are provided, comprising detecting an alteration in an endogenous sphingosine-1-phosphate lyase gene in a sample obtained from a mammal, and therefrom diagnosing a cancer in the mammal. In certain embodiments the cancer is breast cancer and the sample is a breast tumor biopsy.

In related aspects, the present invention provides methods for evaluating a cancer prognosis, comprising determining the presence or absence of

WO 99/16888 PCT/US98/20365

an alteration in an endogenous sphingosine-1-phosphate lyase gene in a sample obtained from a mammal afflicted with cancer, and therefrom determining a prognosis.

5

The present invention further provides isolated antibodies that bind to a polypeptide having a sequence recited in any one of SEQ ID NOs: 2, 4 or 6. Such antibodies may be polyclonal or monoclonal, and may inhibit the ability of a polypeptide having a sequence recited in any one of SEQ ID NOs: 2, 4 or 6 to degrade sphingosine-1-phosphate.

In still further aspects, the present invention provides methods for detecting sphingosine-1-phosphate lyase in a sample, comprising: (a) contacting a sample with an antibody as described above under conditions and for a time sufficient to allow the antibody to bind to sphingosine-1-phosphate lyase; and (b) detecting in the sample the presence of sphingosine-1-phosphate lyase bound to the antibody.

Kits for use in the above methods are also provided. A kit for detecting sphingosine-1-phosphate lyase in a sample comprises an antibody as described above and a buffer or detection reagent. A kit for detecting an alteration in a sphingosine-1-phosphate gene in a sample comprises a polynucleotide and a detection reagent.

Within further aspects, the present invention provides transgenic animals in which sphingosine-1-phosphate lyase activity is reduced, and cell lines derived from such transgenic animals.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

Brief Description of the Drawings

10

15

25

Figures 1A-1C present the sequence of a S. cerevisiae 30 polynucleotide encoding a representative SPL polypeptide

15

25

Figures 2A and 2B present the sequence of a *C. elegans* polynucleotide encoding a representative SPL polypeptide.

Figures 3A and 3B present the sequence of a *Mus musculus* polynucleotide encoding a representative SPL polypeptide.

Figure 4 presents a comparison of the endogenous SPL genomic sequences from *C. elegans*, yeast and mouse.

Figure 5 is a photograph showing the growth of yeast cells grown to saturation in liquid culture and then plated on YPD with (top plate) and without (lower plate) 50µM sphingosine. On each plate, the top row of cells is BST1∆ (JS16, which is a variation of SGP3 (leu2-3,112 trpl ura3-52 his3 ade8 ras1::HIS3) in which the BST1 gene has been replaced by a G418-resistant marker, NEO). The second row is JS16 transformed with vector alone. The third row and the bottom two rows (mBST1) show JS60 cells (JS16[pYES-mouseSPL]) and the fourth row (ceBST1) shows JS61 cells (JS16[pYES2-C. elegansBST1]). The fifth row on each plate (BST1-WT) shows the growth of the wildtype SGP3 strain.

Figure 6A is an autoradiogram showing the products of an SPL assay performed on extracts obtained from JS16 transformed with JS29=pYES2-yeast BST1 (ytBST1), JS60=pYES2-mouseSPL (mBST1) or pYES2 without insert (vehicle control). Figure 6B is a histogram depicting the activity in the strains shown in Figure 6A, as determined by scraping a TLC plate as shown in Figure 6A and assessing the level of radioactivity.

Figure 7 is an autoradiogram depicting the results of a Northern blot analysis of the level of mouse SPL in various mouse tissues, as indicated.

Figures 8A-8C present a sequence of a human polynucleotide encoding a representative SPL polypeptide.

Detailed Description of the Invention

As noted above, the present invention is generally directed to compositions and methods for the diagnosis and therapy of cancers such as breast cancer. The invention is more particularly related to sphingosine-1-phosphate

lyase (SPL) polypeptides, which have the ability to cleave sphingosine-1-phosphate into inactive metabolites, and to polynucleotides encoding such polypeptides. Sphingosine-1-phosphate is an endogenous tumor-suppressor lipid that potently inhibits breast cancer cell growth and invasiveness, while not affecting the growth of non-tumor cells (see Sadahira et al., Proc. Natl. Acad. Sci. USA 89:9686-90, 1992). In vivo, SPL catalyzes the cleavage of sphingosine-1-phosphate at the C2-3 carbon bond to yield a long chain aldehyde and ethanolamine phosphate, the final step in the degradation of all higher order sphingolipids. Agents that decrease the expression or activity of endogenous SPL polypeptides are encompassed by the present invention. Such modulating agents may be identified using methods described herein and used, for example, in cancer therapy. It has also been found, within the context of the present invention, that the detection of alterations in an endogenous SPL sequence can be used to diagnose cancer, and to assess the prognosis for recovery. The present invention further provides such diagnostic methods and kits.

As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length endogenous (i.e., native) SPL proteins and variants of endogenous sequences. "Variants" are polypeptides that differ in sequence from a native SPL only in substitutions, deletions and/or other 20 modifications, such that the variant retains SPL activity, which may be determined using a representative method described herein. Within an SPL polypeptide variant, amino acid substitutions are preferably made at no more than 50% of the amino acid residues in the native polypeptide, and more preferably at no more than 25% of the amino acid residues. Such substitutions are preferably conservative. A conservative substitution is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. Substitutions, deletions and/or amino acid

WO 99/16888 PCT/US98/20365

8

additions may be made at any location(s) in the polypeptide, provided that the modification does not diminish the SPL activity of the variant. Thus, a variant may comprise only a portion of a native SPL sequence. In addition, or alternatively, variants may contain additional amino acid sequences (such as, for example, linkers, tags and/or ligands), preferably at the amino and/or carboxy termini. Such sequences may be used, for example, to facilitate purification, detection or cellular uptake of the polypeptide.

10

15

25

30

The SPL activity of an SPL polypeptide may generally be assessed using an in vitro assay that detects the degradation of labeled substrate (i.e., sphingosine-1-phosphate, or a derivative thereof). Within such assays, pyridoxal 5'-phosphate is a requirement for SPL activity. In addition, the reaction generally proceeds optimally at pH 7.4-7.6 and requires chelators due to sensitivity toward heavy metal ions. The substrate should be a D-erythro isomer, but in derivatives of sphingosine-1-phosphate the type and chain length of sphingoid base may vary. In general, an assay as described by Van Veldhoven and Mannaerts, J. Biol. Chem. 266:12502-07, 1991 may be employed. Briefly, a solution (e.g., a cellular extract) containing the polypeptide may be incubated with 40 µM substrate at 37°C for 1 hour in the presence of, for example, 50 mM sucrose, 100 mM Kphosphate buffer pH 7.4, 25 mM NaF, 0.1% (w/v) Triton X-100, 0.5 mM EDTA, 2 mM DTT, 0.25 mM pyridoxal phosphate. Reactions may then be terminated and analyzed by thin-layer chromatography to detect the formation of labeled fatty aldehydes and further metabolites. In general, a polypeptide has SPL activity if, within such an assay: (1) the presence of 2 - 50 µg polypeptide (or 0.1 - 10 mg/mL) results in a statistically significant increase in the level of substrate degradation, preferably a two-fold increase, relative to the level observed in the absence of polypeptide; and (2) the increase in the level of substrate degradation is pyridoxal 5'-phosphate dependent.

Within certain embodiments, an *in vitro* assay for SPL activity may be performed using cellular extracts prepared from cells that express the polypeptide of interest. Preferably, in the absence of a gene encoding an SPL polypeptide, such cells do not produce a significant amount of endogenous SPL

20

25

30

(i.e., a cellular extract should not contain a detectable increase in the level of SPL, as compared to buffer alone without extract). It has been found, within the context of the present invention, that yeast cells containing deletion of the SPL gene (BST1) are suitable for use in evaluating the SPL activity of a polypeptide. $bst1\Delta$ cells can be generated from S. cerevisiae using standard techniques, such as PCR, as described herein. A polypeptide to be tested for SPL activity may then be expressed in $bst1\Delta$ cells, and the level of SPL activity in an extract containing the polypeptide may be compared to that of an extract prepared from cells that do not express the polypeptide. For such a test, a polypeptide is preferably expressed on a high-copy yeast vector (such as pYES2, which is available from Invitrogen) yielding more than 20 copies of the gene per cell. In general, a polypeptide has SPL activity if, when expressed using such a vector in a $bst1\Delta$ cell, a cellular extract results in a two-fold increase in substrate degradation over the level observed for an extract prepared from cells not expressing the polypeptide.

A further test for SPL activity may be based upon functional complementation in the $bstl\Delta$ strain. It has been found, within the context of the present invention, that $bstl\Delta$ cells are highly sensitive to D-erythro-sphingosine. In particular, concentrations as low as 10 μ M sphingosine completely inhibit the growth of $bstl\Delta$ cells. Such a level of sphingosine has no effect on the growth of wildtype cells. A polypeptide having SPL activity as provided above significantly diminishes (i.e., by at least two fold) the sphingosine sensitivity when expressed on a high-copy yeast vector yielding more than 20 copies of the gene per cell.

In general, SPL polypeptides, and polynucleotides encoding such polypeptides, may be prepared using any of a variety of techniques that are well known in the art. For example, a DNA sequence encoding native SPL may be prepared by amplification from a suitable cDNA or genomic library using, for example, polymerase chain reaction (PCR) or hybridization techniques. Libraries may generally be prepared and screened using methods well known to those of ordinary skill in the art, such as those described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring

30

Harbor, NY, 1989. cDNA libraries may be prepared from any of a variety of sources known to contain enzymes having SPL activity. SPL activity is ubiquitous with regard to species and mammalian tissues, with the exception of platelets, in which SPL activity is notably absent. In rat tissues, the highest levels of activity have been demonstrated in intestinal mucosa, liver and Harderian gland, with low activity in skeletal muscle and heart. Activity has also been demonstrated in a number of human (hepatoma cell line HB 8065, cervical carcinoma HeLa), mouse (hepatoma line BW1, mouse embryo 3T3-L1, Swiss 3T3 cells) and other cell lines, as well as in human cultured fibroblasts. Preferred cDNA libraries may prepared from human liver, intestine or brain tissues or cells. Other libraries that may be employed will be apparent to those of ordinary skill in the art. Primers for use in amplification may be readily designed based on the sequence of a native SPL polypeptide or polynucleotide, as provided herein.

Alternatively, an endogenous SPL gene may be identified using a screen for cDNAs that complement the BST1 deletion in yeast. A cDNA expression library may be generated using a regulatable yeast expression vector (e.g., pYES, which is available from Invitrogen, Inc.) and standard techniques. A yeast bst1\Delta strain may then be transformed with the cDNA library, and endogenous cDNAs having the ability to functionally complement the yeast lyase defect (i.e., restore the ability to grow in the presence of D-erythro-sphingosine) may be isolated.

An endogenous SPL gene may also be identified based on cross-reactivity of the protein product with anti-SPL antibodies, which may be prepared as described herein. Such screens may generally be performed using standard techniques (see Huynh et al., "Construction and Screening cDNA Libraries in $\lambda gt11$," in D.M. Glover, ed., DNA Cloning: A Practical Approach, 1:49-78, 1984 (IRL Press, Oxford)).

Polynucleotides encompassed by the present invention include DNA and RNA molecules that comprise an endogenous SPL gene sequence. Such polynucleotides include those that comprise a sequence recited in any one of SEQ ID NOs:1, 3, 5 and 7. Also encompassed are other polynucleotides that

15

. 25

30

encode an SPL amino acid sequence provided in any one of SEQ ID NOs: 2, 4, 6 and 8, as well as polynucleotides that encode variants of a native SPL sequence that retain SPL activity. Polynucleotides that are substantially homologous to a sequence complementary to an endogenous SPL gene are also within the scope of the present invention: "Substantial homology," as used herein refers to polynucleotides that are capable of hybridizing under moderately stringent conditions to a polynucleotide complementary to a sequence provided in SEQ ID NO:1 or SEQ ID NO:3, provided that the encoded SPL polypeptide variant retains SPL activity. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50-65°C, 5X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Nucleotide sequences that, because of code degeneracy, encode a polypeptide encoded by any of the above sequences are also encompassed by the present invention.

Polypeptides of the present invention may be prepared by expression of recombinant DNA encoding the polypeptide in cultured host cells. Preferably, the host cells are bacteria, yeast, insect or mammalian cells, and more preferably the host cells are S cerevisiae $bstl\Delta$ cells. The recombinant DNA may be cloned into any expression vector suitable for use within the host cell and transfected into the host cell using techniques well known to those of ordinary skill in the art. A suitable expression vector contains a promoter sequence that is active in the host cell. A tissue-specific or conditionally active promoter may also be used. Preferred promoters express the polypeptide at high levels.

Optionally, the construct may contain an enhancer, a transcription terminator, a poly(A) signal sequence, a bacterial or mammalian origin of replication and/or a selectable marker, all of which are well known in the art. Enhancer sequences may be included as part of the promoter region or separately. Transcription terminators are sequences that stop RNA polymerase-mediated transcription. The poly(A) signal may be contained within the termination sequence or incorporated separately. A selectable marker includes any gene that confers a phenotype on the host cell that allows transformed cells to be identified.

WO 99/16888 PCT/US98/20365

12

Such markers may confer a growth advantage under specified conditions. Suitable selectable markers for bacteria are well known and include resistance genes for ampicillin, kanamycin and tetracycline. Suitable selectable markers for mammalian cells include hygromycin, neomycin, genes that complement a deficiency in the host (e.g., thymidine kinase and TK-cells) and others well known in the art. For yeast cells, one suitable selectable marker is URA3, which confers the ability to grow on medium without uracil.

DNA sequences expressed in this manner may encode a native SPL polypeptide (e.g., human), or may encode portions or other variants of native SPL polypeptide. DNA molecules encoding variants of a native SPL may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis, and sections of the DNA sequence may be removed to permit preparation of truncated polypeptides.

10

15

25

To generate cells that express a polynucleotide encoding an SPL polypeptide, cells may be transfected using any of a variety of techniques known in the art. Such transfection may result in stable transformants or may be transient. One suitable transfection technique is electroporation, which may be performed on a variety of cell types, including mammalian cells, yeast cells and bacteria, using commercially available equipment. Optimal conditions for 20 electroporation (including voltage, resistance and pulse length) are experimentally determined for the particular host cell type, and general guidelines for optimizing electroporation may be obtained from manufacturers. Other suitable methods for transfection will depend upon the type of cell used (e.g., the lithium acetate method for yeast), and will be apparent to those of ordinary skill in the art. Following transfection, cells may be maintained in conditions that promote expression of the polynucleotide within the cell. Appropriate conditions depend upon the expression system and cell type, and will be apparent to those skilled in the art.

SPL polypeptides may be expressed in transfected cells by 30 culturing the cell under conditions promoting expression of the transfected polynucleotide. Appropriate conditions will depend on the specific host cell and WO 99/16888 PCT/US98/20365

13

expression vector employed, and will be readily apparent to those of ordinary skill in the art. For commercially available expression vectors, the polypeptide may generally be expressed according to the manufacturer's instructions. For certain purposes, expressed polypeptides of this invention may be isolated in substantially pure form. Preferably, the polypeptides are isolated to a purity of at least 80% by weight, more preferably to a purity of at least 95% by weight, and most preferably to a purity of at least 99% by weight. In general, such purification may be achieved using, for example, the standard techniques of ammonium sulfate fractionation, SDS-PAGE electrophoresis, and/or affinity chromatography.

The present invention further provides antibodies that bind to an SPL polypeptide. Antibodies may function as modulating agents (as discussed further below) to inhibit or block SPL activity in vivo. Alternatively, or in addition, antibodies may be used within screens for endogenous SPL polypeptides or modulating agents, for purification of SPL polypeptides, for assaying the level of SPL within a sample and/or for studies of SPL expression. Such antibodies may be polyclonal or monoclonal, and are generally specific for one or more SPL polypeptides and/or one or more variants thereof. Within certain preferred embodiments, antibodies are polyclonal.

10

15

Antibodies may be prepared by any of a variety of techniques

known to those of ordinary skill in the art (see, e.g., Harlow and Lane, Antibodies:

A Laboratory Manual, Cold Spring Harbor Laboratory, 1988). In one such technique, an immunogen comprising an SPL polypeptide or antigenic portion thereof is initially injected into a suitable animal (e.g., mice, rats, rabbits, sheep and goats), preferably according to a predetermined schedule incorporating one or more booster immunizations. The use of rabbits is preferred. To increase immunogenicity, an immunogen may be linked to, for example, glutaraldehyde or keyhole limpet hemocyanin (KLH). Following injection, the animals are bled periodically to obtain post-immune serum containing polyclonal anti-SPL antibodies. Polyclonal antibodies may then be purified from such antisera by, for example, affinity chromatography using an SPL polypeptide or antigenic portion

WO 99/16888

15

PCT/US98/20365

thereof coupled to a suitable solid support. Such polyclonal antibodies may be used directly for screening purposes and for Western blots.

More specifically, an adult rabbit (e.g., NZW) may be immunized with 10 µg purified (e.g., using a nickel-column) SPL polypeptide emulsified in complete Freund's adjuvant (1:1 v/v) in a volume of 1mL. Immunization may be achieved via injection in at least six different subcutaneous sites. For subsequent immunizations, 5 µg of an SPL polypeptide may be emulsified in in complete Freund's adjuvant and injected in the same manner. Immunizations may continue until a suitable serum antibody titer is achieved (typically a total of about three immunizations). The rabbit may be bled immediately before immunization to obtain pre-immune serum, and then 7-10 days following each immunization.

For certain embodiments, monoclonal antibodies may be desired. Monoclonal antibodies may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion 20 partner, preferably one that is syngeneic with the immunized animal. example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may

25

then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, chromatography, gel filtration, precipitation, and extraction.

As noted above, the present invention provides agents that modulate, preferably inhibit, the expression (transcription or translation), stability and/or activity of an SPL polypeptide. To identify such a modulating agent, any of a variety of screens may be performed. Candidate modulating agents may be obtained using well known techniques from a variety of sources, such as plants, fungi or libraries of chemicals, small molecules or random peptides. Antibodies that bind to an SPL polypeptide, and anti-sense polynucleotides that hybridize to a polynucleotides that encodes an SPL, may be candidate modulating agents. Preferably, a modulating agent has a minimum of side effects and is non-toxic. For some applications, agents that can penetrate cells are preferred.

Screens for modulating agents that decrease SPL expression or stability may be readily performed using well known techniques that detect the level of SPL protein or mRNA. Suitable assays include RNAse protection assays, in situ hybridization, ELISAs, Northern blots and Western blots. Such assays may generally be performed using standard methods (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring 20 Harbor, NY, 1989). For example, to detect mRNA encoding SPL, a nucleic acid probe complementary to all or a portion of the SPL gene sequence may be employed in a Northern blot analysis of mRNA prepared from suitable cells. To detect SPL protein, a reagent that binds to the protein (typically an antibody, as described herein) may be employed within an ELISA or Western assay. Following binding, a reporter group suitable for direct or indirect detection of the reagent is employed (i.e., the reporter group may be covalently bound to the reagent or may be bound to a second molecule, such as Protein A, Protein G, immunoglobulin or lectin, which is itself capable of binding to the reagent). Suitable reporter groups include, but are not limited to, enzymes (e.g., horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. Such reporter groups may be used to

PCT/US98/20365 WO 99/16888

16

directly or indirectly detect binding of the reagent to a sample component using standard methods known to those of ordinary skill in the art.

To use such assays for identifying a modulating agent, the level of SPL protein or mRNA may be evaluated in cells treated with one or more candidate modulating agents. An increase or decrease in SPL levels may be measured by evaluating the level of SPL mRNA and/or protein in the presence and absence of candidate modulating agent. For example, an antisense modulating agent may be evaluated by assaying the effect on SPL levels. Suitable cells for use in such assays include the breast cancer cell lines MCF-7 (ATCC 10 Accession Number HTB-22) and MDA-MB-231 (ATCC Accession Number HTB-26). A candidate modulator may be tested by transfecting the cells with a polynucleotide encoding the candidate and evaluating the effect of expression of the polynucleotide on SPL levels. Alternatively, the cells may be contacted with a candidate modulator, typically in an amount ranging from about 10 nM to about 10 mM. A candidate that results in a statistically significant change in the level of SPL mRNA and/or protein is a modulating agent.

15

25

Alternatively, or in addition, a candidate modulating agent may be tested for the ability to inhibit SPL activity, using an in vitro assay as described herein (see Van Veldhoven and Mannaerts, J. Biol. Chem. 266:12502-07, 1991) that detects the degradation of labeled substrate (i.e., sphingosine-1-phosphate, or a derivative thereof). Briefly, a solution (e.g., a cellular extract) containing an SPL polypeptide (e.g., 10 nM to about 10 mM) may be incubated with a candidate modulating agent (typically 1 nM to 10 mM, preferably 10 nM to 1 mM) and a substrate (e.g., 40 µM) at 37°C for 1 hour in the presence of, for example, 50 mM sucrose, 100 mM K-phosphate buffer pH 7.4, 25 mM NaF, 0.1% (w/v) Triton X-100, 0.5 mM EDTA, 2 mM DTT, 0.25 mM pyridoxal phosphate. Reactions may then be terminated and analyzed by thin-layer chromatography to detect the formation of labeled fatty aldehydes and further metabolites. A modulating agent (e.g., an antibody) that inhibits SPL activity results in a statistically significant decrease in the degradation of sphingosine-1-phosphate, relative to the level of

30

PCT/US98/20365

degradation in the absence of modulating agent. Such modulating agents may be used to inhibit SPL activity in a cell culture or a mammal, as described below.

A modulating agent may additionally comprise, or may be associated with, a targeting component that serves to direct the agent to a desired tissue or cell type. As used herein, a "targeting component" may be any substance (such as a compound or cell) that, when linked to a compound enhances the transport of the compound to a target tissue, thereby increasing the local concentration of the compound. Targeting components include antibodies or fragments thereof, receptors, ligands and other molecules that bind to cells of, or in the vicinity of, the target tissue. Known targeting components include hormones, antibodies against cell surface antigens, lectins, adhesion molecules, tumor cell surface binding ligands, steroids, cholesterol, lymphokines, fibrinolytic enzymes and other drugs and proteins that bind to a desired target site. In particular, anti-tumor antibodies and compounds that bind to an estrogen receptor may serve as targeting components. An antibody employed in the present invention may be an intact (whole) molecule, a fragment thereof, or a functional equivalent thereof. Examples of antibody fragments are F(ab')2, -Fab', Fab and F[v] fragments, which may be produced by conventional methods or by genetic or protein engineering. Linkage may be via any suitable covalent bond using 20 standard techniques that are well known in the art. Such linkage is generally covalent and may be achieved by, for example, direct condensation or other reactions, or by way of bi- or multi-functional linkers.

For in vivo use, a modulating agent as described herein is generally incorporated into a pharmaceutical composition prior to administration. pharmaceutical composition comprises one or more modulating agents in combination with a physiologically acceptable carrier. To prepare a pharmaceutical composition, an effective amount of one or more modulating agents is mixed with any pharmaceutical carrier(s) known to those skilled in the art to be suitable for the particular mode of administration. A pharmaceutical carrier may be liquid, semi-liquid or solid. Solutions or suspensions used for parenteral, intradermal, subcutaneous or topical application may include, for WO 99/16888 PCT/US98/20365

18

example, a sterile diluent (such as water), saline solution, fixed oil, polyethylene glycol, glycerine, propylene glycol or other synthetic solvent; antimicrobial agents (such as benzyl alcohol and methyl parabens); antioxidants (such as ascorbic acid and sodium bisulfite) and chelating agents (such as ethylenediaminetetraacetic acid (EDTA)); buffers (such as acetates, citrates and phosphates). If administered intravenously, suitable carriers include physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, polypropylene glycol and mixtures thereof. In addition, other pharmaceutically active ingredients (including other anti-cancer agents) and/or suitable excipients such as salts, buffers and stabilizers may, but need not, be present within the composition.

10

15

20

25

30

A modulating agent may be prepared with carriers that protect it against rapid elimination from the body, such as time release formulations or coatings. Such carriers include controlled release formulations, such as, but not limited to, implants and microencapsulated delivery systems, and biodegradable, biocompatible polymers, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, polyorthoesters, polylactic acid and others known to those of ordinary skill in the art.

Administration may be achieved by a variety of different routes, including oral, parenteral, nasal, intravenous, intradermal, subcutaneous or topical. Preferred modes of administration depend upon the nature of the condition to be treated or prevented. An amount that, following administration, inhibits, prevents or delays the progression and/or metastasis of a cancer is considered effective. Preferably, the amount administered is sufficient to result in regression, as indicated by 50% mass or by scan dimensions. The precise dosage and duration of treatment is a function of the disease being treated and may be determined empirically using known testing protocols or by testing the compositions in model systems known in the art and extrapolating therefrom. Controlled clinical trials may also be performed. Dosages may also vary with the severity of the condition to be alleviated. A pharmaceutical composition is generally formulated and administered to exert a therapeutically useful effect

WO 99/16888 PCT/US98/20365

while minimizing undesirable side effects. The composition may be administered one time, or may be divided into a number of smaller doses to be administered at intervals of time. For any particular subject, specific dosage regimens may be adjusted over time according to the individual need.

5

30

As an alternative to direct administration of a modulating agent, a polynucleotide encoding a modulating agent may be administered. Such a polynucleotide may be present in a pharmaceutical composition within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid, bacterial and viral expression systems, and colloidal dispersion systems such as liposomes. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal, as described above). The DNA may also be "naked," as described, for example, in Ulmer et al., *Science 259*:1745-49, 1993.

Various viral vectors that can be used to introduce a nucleic acid sequence into the targeted patient's cells include, but are not limited to, vaccinia or other pox virus, herpes virus, retrovirus, or adenovirus. Techniques for incorporating DNA into such vectors are well known to those of ordinary skill in the art. Another delivery system for polynucleotides is a colloidal dispersion system. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preparation and use of liposomes is well known to those of ordinary skill in the art.

Within certain aspects of the present invention, one or more modulating agents may be used to modulate SPL expression and/or activity in vitro, in a cell or in a mammal. In vitro, an SPL polypeptide may be contacted with a modulating agent that inhibits SPL activity (e.g., certain antibodies). For use within a cell or a mammal, such modulation may be achieved by contacting a target cell with an effective amount of a modulating agent, as described herein. Administration to a mammal may generally be achieved as described above.

As noted above, inhibition of SPL expression and/or activity provides a method for inhibiting the growth (i.e., proliferation) of a cancer cell,

30

either in culture or in a mammal afflicted with cancer. In vivo, such inhibition may also be used to inhibit cancer development, progression and/or metastasis. Accordingly, one or more modulating agents as provided herein may be administered as described above to a mammal in need of anti-cancer therapy.

5 Patients that may benefit from administration of a modulating agent are those afflicted with cancer. Such patients may be identified based on standard criteria that are well known in the art. Within preferred embodiments, a patient is afflicted with breast cancer, as identified based on tissue biopsy and microscopic evaluation, using techniques well known in the art. In particular, patients whose tumor cells contain a tissue-specific deletion and/or alteration within an endogenous SPL gene may benefit from administration of a modulating agent, as provided herein.

Within other aspects, the present invention provides methods and kits for diagnosing cancer and/or identifying individuals with a risk for metastasis that is higher or lower than average. It has been found, within the context of the present invention, that certain human tumor cells contain an altered SPL gene. In particular, certain brain tumor cells contain a deletion of residues 354 to 433 of the human SPL sequence indicated in Figure 8 and SEQ ID NO:4. Specific alterations present in other tumor cells, such as breast tumor cells, may be readily identified using standard techniques, such as PCR. Alterations that may be associated with a paticular tumor include amino acid deletions, insertions, substitutions and combinations thereof. Methods in which the presence or absence of such an alteration is determined may generally be used to detect cancer and to evaluate the prognosis for a patient known to be afflicted with cancer.

To detect an altered SPL gene, any of a variety of well-known techniques may be used including, but not limited to, PCR and hybridization techniques. Any sample that may contain cancerous cells may be assayed. In general, suitable samples are tumor biopsies. Within a preferred embodiment, a sample is a breast tumor biopsy.

Kits for diagnosing or evaluating the prognosis of a cancer generally comprise reagents for use in the particular assay to be employed. In

general, a kit of the present invention comprises one or more containers enclosing elements, such as probes, reagents or buffers, to be used in an assay. For example, a kit may contain one or more polynucleotide probes comprising at least 100 nucleotides, and preferably at least 200 nucleotides, complementary to an SPL mRNA. Such probe(s) may be used to detect an altered SPL gene by hybridization. For example, a kit may contain one probe that hybridizes to a region of an SPL gene that is not generally altered in tumors (a control) and a second probe that hybridizes to a region commonly deleted in breast cancer. A sample that contains mRNA that hybridizes to the first probe, and not to the second (using standard techniques) contains an altered SPL gene. Suitable control probes include probes that hybridize to a portion of the SPL gene outside of the commonly deleted region encoding amino acid resides 354 to 433; suitable probes for an altered region include probes that hybridize to a portion of the SPL gene that encodes amino acid residues 354 to 433. Alternatively, a kit may comprise one or more primers for PCR analyses, which may be readily designed based upon the sequences provided herein by those of ordinary skill in the art. Optionally, a kit may further comprise one or more solutions, compounds or detection reagents for use within an assay as described above.

15

In a related aspect of the present invention, kits for detecting SPL are provided. Such kits may be designed for detecting the level of SPL or nucleic acid encoding SPL within a sample, or may detect the level of SPL activity as described herein. A kit for detecting the level of SPL, or nucleic acid encoding SPL, typically contains a reagent that binds to the SPL protein, DNA or RNA. To detect nucleic acid encoding SPL, the reagent may be a nucleic acid probe or a PCR primer. To detect SPL protein, the reagent is typically an antibody. The kit may also contain a reporter group suitable for direct or indirect detection of the reagent as described above.

Within further aspects, the present invention provides transgenic mammals in which SPL activity is reduced, compared to a wild-type animal. Such animals may contain an alteration, insertion or deletion in an endogenous SPL gene, or may contain DNA encoding a modulating agent that inhibits

15

expression or activity of an SPL gene. Transgenic animals may be generated using techniques that are known to those of ordinary skill in the art. For example, a transgenic animal containing an insertion or deletion in the coding region for the SPL gene may be generated from embryonic stem cells, using standard techniques. Such stem cells may be generated by first identifying the full genomic sequence of the gene encoding the SPL, and then creating an insertion or deletion in the coding region in embryonic stem cells. Alternatively, appropriate genetically altered embryonic stem cells may be identified from a bank. Using the altered stem cells, hybrid animals may be generated with one normal SPL gene and one marked, abnormal gene. These hybrids may be mated, and homozygous progeny identified.

Transgenic aminals may be used for a variety of purposes, which will be apparent to those of ordinary skill in the art. For example, such animals may be used to prepare cell lines from different tissues, using well known techniques. Such cell lines may be used, for example, to evaluate the effect of the alteration, and to test various candidate modulators.

Summary of Sequence Listing

SEQ ID NO:1 is cDNA sequence encoding mouse endogenous 20 SPL.

SEQ ID NO:2 is amino acid sequence of mouse endogenous SPL.

SEQ ID NO:3 is cDNA sequence encoding human endogenous

SPL.

SEQ ID NO:4 is amino acid sequence of human endogenous SPL.

SEQ ID NO:5 is cDNA sequence encoding C. elegans endogenous

SPL.

25

30

SEQ ID NO:6 is amino acid sequence of C. elegans endogenous

SPL.

SEQ ID NO:7 is cDNA sequence encoding yeast endogenous SPL.

SEQ ID NO:8 is amino acid sequence of yeast endogenous SPL.

SEQ ID NO:9 is cDNA sequence encoding an altered human SPL.

WQ 99/16888 PCT/US98/20365

23

SEQ ID NO:10 is amino acid sequence of an altered human SPL.

The following Examples are offered by way of illustration and not by way of limitation.

5

25

30

24

EXAMPLES

Example 1

Isolation and Characterization of SPL cDNA from Yeast

This Example illustrates the preparation of an S. cerevisiae cDNA molecule encoding an endogenous SPL polypeptide.

Wild-type yeast cells (SGP3 (Garrett and Broach, Genes and Dev. 3:1336-1348, 1989); leu2-3,112 trp1 ura3-52 his3 ade8 ras1::HIS3) were transformed with a yeast genomic library carried on the pRS202 high-copy shuttle vector (Sikorski and Heiter, Genetics 122:19-27, 1989) containing a selectable nutritional marker (URA3). pRS202 is a modified version of the pRS306 vector, into which a 2 micron plasmid piece was inserted. Inserts from this library are approximately 6-8 kb in length. Wild type yeast were transformed with the high copy library as described by Ito et al., J. Bact. 153:163-68, 1983, selected for uracil prototrophy (i.e., the ability to grow on medium lacking uracil), and transformants were pooled and replated at a concentration of 10⁶ cells per plate onto 1 mM D-erythro-sphingosine plates.

Six transformants which grew large colonies on 1mM D-erythrosphingosine plates were grown in selective medium, and control SGP3 colonies were grown in minimal medium, at 30°C until saturated. Absorbance at 660 nm was used to correct for small variations in cell concentration between cultures. Serial dilutions were performed, and cells were template-inoculated onto 1 mM D-erythro-sphingosine plates and incubated at 30°C for 48 hours.

The most highly represented insert, 13-1, was subcloned and sequenced, and named *BST1* (bestower of sphingosine tolerance; GenBank accession number U51031; *Saccharomyces cerevisiae* genome database accession number YDR294C). The *BST1* nucleotide sequence encodes a previously unknown predicted protein of 65,523 kilodaltons and 589 amino acids in length. This sequence is 23% identical to *gadA* and *gadB*, two nearly identical *E. coli* genes encoding glutamate decarboxylase (GAD), a pyridoxal-5'-phosphate-dependent enzyme which catalyzes synthesis of the neurotransmitter γ-amino

15

25

butyric acid. BST1 has been localized to S. cerevisiae chromosome 4. The sequence of BST1 is provided in Figure 1 and SEQ ID NO:7.

To explore the function of BST1, a deletion strain was created through homologous recombination using a NEO selectable marker (Wach et al., Yeast 10:1793-1808, 1994). Genomic BST1 was replaced with kanMX (Wach et al., Yeast 10:1793-1808, 1994), which confers resistance to G418. Disruption was confirmed using PCR amplification of genomic DNA from G418 resistant clones, using primers to genomic sequence just 5' and 3' to the region replaced by the Deletion of BST1 and all subsequent biological studies were performed in both SGP3 and in JK93d (Hietman et al., Proc. Natl. Acad. Sci. USA 88:1948-52, 1991); ura3-52 leu2-3,112 his4 trp1 rme1). Heterozygous diploids were sporulated, and spores segregated 2:2 for G418 resistance. Both G418 resistant and sensitive progeny were viable, indicating that BST1 is not an essential gene.

Analysis of GAD activity in cytosolic extracts from wild type, BST1 overexpression and $bst1\Delta$ strains indicated that BST1 does not encode the S. cervisiae homologue of GAD. However, deletion of BST1 was associated with severe sensitivity to D-erythro-sphingosine. Concentrations as low as 10 µM sphingosine completely inhibited growth of bst1\Delta strains but had no effect on the 20 viability of wild type cells. In comparison to the control strain, the bst1\Delta strain also demonstrated greater sensitivity to 100 µM phytosphingosine, the long chain base endogenous to S. cerevisia. No difference between the growth of wild type and BST1 overexpression strains on phytosphingosine, which is only minimally toxic to wild type cells at this concentration, was observed.

To determine whether differences in sphingosine uptake or metabolism were responsible for these sensitivity differences, BST1 wild type, overexpression and bst1\Delta strains were exposed to [C3-3H]labeled sphingosine (American Radiolabeled Chemical, Inc., St. Louis, MO), washed in sterile water and subjected to Bligh-Dyer extractions (Bligh and Dyer, Can. J. Buichem. Physiol. 37:911-17, 1959). There were no major differences in sphingosine

10

recovery among the three strains. However, the aqueous phase from the $bst1\Delta$ strain contained a ten-fold increase in radioactivity over that of control and BST1 overexpression strains. Thin layer chromatography (TLC) analysis of the lipid fractions in butanol:acetic acid:water (3:1:1) revealed a sphingosine band which appeared equivalent in each strain.

Radioactive sphingosine-1-phosphate (S-1-P) was also observed in the extracts from the $bstl\Delta$ strain, but not in the wild type or BSTl overexpression strains. This compound accumulated rapidly, reaching a plateau by 60 minutes. Three separate TLC conditions were used to confirm the presence of S-1-P. These conditions, along with the resulting RF values, are shown below:

butanol:water:acetic acid (3:1:1)

:47

chloroform:methanol:water (60:35:8)

15 .22

chloroform:methanol:water:acetic acid (30:30:2:5)

.33

Hyperaccumulation of S-1-P and hypersensitivity to D-erythro-sphingosine suggeset a failure to metabolize S-1-P, indicating that BST1 is a yeast SPL. To confirm this identification, lyase activity in BST1 wild type, overexpression and deletion strains were evaluated as described by Veldhoven and Mannaerts, J. Biol. Chem. 266:12502-07, 1991, using unlabeled D-erythro-dihydrosphingosine-1-phosphate (Biomol, Plymouth Meeting, PA) and D-erythro-dihydrosphingosine [4,5-3H]1-phosphate (American Radiolabeled Chemicals, Inc., St. Louis, MO). Specific activity was 100 mCi/mmol. SPL activity was found to correlate with BST1 expression, confirming BST1 to be the yeast homologue of sphingosine-1-phosphate lyase.

These results indication that *BST1* is a yeast SPL, and that SPL catalyzes a rate-limiting step in sphingolipid catabolism. Regulation of SPL activity may therefore result in regulation of intracellular S-1-P levels.

5

10

Example 2

Isolation and Characterization of SPL cDNA from C. elegans and Mouse

This Example illustrates the identification of endogenous SPL cDNAs from *C. elegans* and *Mus musculus*.

Comparison of the yeast BST1 sequence to sequences within the GenBank database identified a full length gene from C. elegans that was identified during the systematic sequencing of the C. elegans genome. This sequence was found to encode SPL, and is shown in Figure 2 and SEQ ID NOs:5 and 6. This and other DNA homology searches described hereinwere performed via the National Center for Biotechnology Information website using BLAST search program.

Using both *S. cerevisiae* and *C. elegans* SPL sequences to search the EST database, an expressed sequence tag from early embryonic cells of the mouse (day 8 embryo, strain C57BL/6J) was identified. The cDNA clone containing this putative mouse SPL was purchased from Genome Systems, Inc (St. Louis, MO). Completion of the full length cDNA sequence revealed an 1709 bp open reading frame (Figure 3 and SEQ ID NOs:1 and 2). This mouse sequence showed significant homology to *BST1* and to other pyridoxal phosphate-binding enzymes such as glutamate decarboxylase, with greatest conservation surrounding the predicted pyridoxal phosphate-binding lysine (Figure 4). Since the two genes encoding mouse glutamate decarboxylase have been identified previously, and the identified sequence was unique and had no known function, it was a likely candidate mouse SPL gene.

To confirm the SPL activity of the mouse gene, a two step process 30 was undertaken. First, the sequence was cloned into the high-copy yeast expression vector, pYES2 (Invitrogen, Inc., Carlsbad, CA), in which the gene of

WO 99/16888 " PCT/US98/20365

28

interest is placed under control of the yeast GAL promoter and is, therefore, transcriptionally activated by galactose and repressed by glucose. pYES2 also contains the *URA3* gene (which provides transformants the ability to grow in media without uracil) and an ampicillin resistance marker and origin of replication functional in *E. coli*.

The expression vector containing the full-length mouse SPL gene was then introduced into the yeast $bst1\Delta$ strain whichn as noted above, is extremely sensitive to D-erythro-sphingosine, as a result of metabolism of sphingosine to S-1-P. S-1-P cannot be further degraded in the absence of SPL activity and overaccumulates, causing growth inhibition. Transformation was performed using the lithium acetate method (Ito et al., J. Bact. 153:163-68, 1983). Transformants were grown on medium containing 20g/L galactose and selected for uracil prototrophy.

Transformants were then evaluated for sphingosine resistance. Strains of interest were grown to saturation in liquid culture for 2-3 days. They were then resuspended in minimal medium, placed in the first row of a 96-well plate and diluted serially from 1:2 to 1:4000 across the plate. The cultures were then template inoculated onto a control plate (YPD) and a plate containing minimal synthetic media supplemented with 50 μM D-erythro-sphingosine (Sigma Chemical Co., St. Louis, MO) and 0.0015% NP40 (Sigma Chemical Co.). At this concentration of NP40, no effects on cell viability were observed. Plates were incubated at 30°C for two days and assessed visually for differences in growth. Transformants containing the mouse SPL gene were resistant to sphingosine present in galactose-containing plates (Figure 5). A strain transformed with vector alone remained sensitive to sphingosine. Therefore, the mouse SPL gene was capable of reversing the sphingosine-sensitive phenotype of a yeast bst1Δ strain.

15

30

In order to determine whether the mouse SPL gene was able to restore biochemical SPL activity to the $bstl\Delta$ strain, the untransformed $bstl\Delta$ strain, and the $bstl\Delta$ strain transformed with pYES2 containing either BST1 or the

putative mouse SPL gene were grown to exponential phase (A₆₀₀=1.0) in either minimal (JS16) or uracil medium containing galactose as a carbon source. Whole cell extracts were prepared from each strain as described above, adjusted for protein concentration, and evaluated for sphingosine phosphate lyase activity as ³H-dihydrosphingosine-1-phosphate using (American described above, Radiolabeled Chemicals, Inc., St. Louis, MO). Qualitative analysis of product was performed by autoradiography. Quantitative measurement was performed by scraping TLC plates and determining radioactivity present using a standard scintillation counter.

The results of the sphingosine phosphate lyase assays are shown in Figures 6A and 6B. Expression of both the yeast and mouse sequences restored SPL activity to the bst1\Delta strain, whereas vector alone had no effect, confirming the identity of the mouse sequence as SPL.

10

15

25

30

To determine whether the expression of the mouse SPL transcript coincided with previously reported tissue-specific SPL activity in the mouse, total RNA was obtained from a variety of mouse tissues and probed with the complete mouse SPL cDNA sequence. Northern analysis was performed as described by Thomas, Proc. Natl. Acad. Sci. USA 77:5201, 1980, using a full length mouse SPL cDNA probe labeled by random labeling technique (Cobianchi and Wilson, 20 Meth. Enzymol. 152:94-110, 1987). This analysis revealed a pattern of expression consistent with the known SPL activity in various mouse tissues, providing further confirmation that this sequence encodes mouse SPL (Figure 7).

Example 3

Isolation and Characterization of Human SPL cDNA

This Example illustrates the identification of an endogenous human cDNA.

An EST database was searched using the mouse SPL sequence described herein. Two distinct EST sequences having strong homology to the mouse sequence were identified from human sources. One of these sequences corresponded to the C-terminus, and the other corresponded to the N-terminus.

Primers were designed based on these sequences, and a DNA fragment was amplified by PCR from a human expression library made from human glioblastoma multiforme tissue RNA. The fragment was sequenced and was shown to contain a deletion, so the primers were used to amplify the gene from human fibroblast RNA. This gene has the sequence provided in SEQ ID NO:3, and the sequence of the gene containing the deletion is provided in SEQ ID NO:9.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

Claims

- 1. An isolated polynucleotide comprising a sequence selected from the group consisting of:
 - (a) a sequence recited in SEQ ID NO:1;
 - (b) a sequence recited in SEQ ID NO:3;
- (c) nucleotide sequences that hybridize to a polynucleotide complementary to either of the foregoing sequences under moderately stringent conditions, wherein the nucleotide sequences encode polypeptides having sphingosine-1-phosphate lyase activity; and
- (d) nucleotide sequences that encode a polypeptide encoded by any of the foregoing sequences.
- 2. An isolated polynucleotide encoding a polypeptide recited in SEQ ID NO:2, or a variant of such a polypeptide that has sphingosine-1-phosphate lyase activity.
- 3. An isolated polynucleotide encoding a polypeptide comprising a sequence recited in SEQ ID NO:4, or a variant of such a polypeptide that has sphingosine-1-phosphate lyase activity.
- 4. A recombinant expression vector comprising a polynucleotide according to any one of claims 1-3.
- 5. A host cell transformed or transfected with an expression vector according to claim 4.
- 6. An isolated polynucleotide comprising at least 100 nucleotides complementary to a sequence recited in SEQ ID NO:1 or 3.

- 7. A method for preparing a sphingosine-1-phosphate lyase, the method comprising culturing a host cell transformed or transfected with a polynucleotide according to any one of claims 1-3 under conditions promoting expression of the polynucleotide and recovering a sphingosine-1-phosphate lyase.
- 8. A polypeptide comprising an amino acid sequence encoded by a polynucleotide according to claim 1.
- 9. A polypeptide comprising an amino acid sequence recited in SEQ ID NO:2 or 4, or a variant thereof, wherein the polypeptide has sphingosine-1-phosphate lyase activity.
- 10. A method for identifying an agent that modulates sphingosine-1-phosphate lyase activity, comprising:
- (a) contacting a candidate agent with cells that express sphingosine-1-phosphate lyase; and
- (b) subsequently measuring the level of sphingosine-1-phosphate lyase or mRNA encoding sphingosine-1-phosphate lyase in the cells, relative to a predetermined level in the absence of candidate agent, and therefrom identifying an agent that modulates sphingosine-1-phosphate lyase activity.
- 11. A method for identifying an agent that modulates sphingosine-1-phosphate lyase activity, comprising:
- (a) contacting a candidate agent with a polypeptide comprising a sequence recited in any one of SEQ ID NOs: 2, 4, 6 or 8, or a variant of such a sequence having sphingosine-1-phosphate lyase activity, wherein the step of contacting is carried out under conditions and for a time sufficient to allow the candidate modulator to interact with the polypeptide; and
- (b) subsequently measuring the ability of the polypeptide to degrade sphingosine-1-phosphate or a derivative thereof, relative to an ability in the absence

of candidate agent, and therefrom identifying an agent that modulates sphingosine-1phosphate lyase activity.

- 12. A method according to claim 11, wherein the step of contacting is performed by incubating a cell expressing the polypeptide with the candidate modulator, and wherein the step of measuring the ability to degrade sphingosine-1-phosphate is performed using an *in vitro* assay and a cellular extract.
- 13. A pharmaceutical composition comprising an agent that modulates sphingosine-1-phosphate lyase activity in combination with a pharmaceutically acceptable carrier.
- 14. A composition according to claim 13, wherein the sphingosine-1-phosphate lyase comprises a sequence recited in any one of SEQ ID NOs:2, 4 or 6.
- 15. A composition according to claim 13, wherein the agent inhibits expression of an endogenous sphingosine-1-phosphate lyase gene.
- 16. A composition according to claim 15, wherein the agent comprises a polynucleotide.
- 17. A composition according to claim 13, wherein the agent inhibits the ability of an endogenous sphingosine-1-phosphate lyase to degrade sphingosine-1-phosphate.
- 18. A composition according to claim 17, wherein the agent comprises an antibody or an antigen-binding fragment thereof.
- 19. A method for modulating sphingosine-1-phosphate lyase activity, comprising contacting a sphingosine-1-phosphate lyase with an effective amount of an agent that modulates sphingosine-1-phosphate lyase activity, wherein the step of contacting is

performed under conditions and for a time sufficient to allow the agent and the sphingosine-1-phosphate lyase to interact.

- 20. A method according to claim 19, wherein the step of contacting is performed by incubating a cell expressing the polypeptide with the agent.
- 21. A method according to claim 19, wherein the agent inhibits expression of an endogenous sphingosine-1-phosphate lyase gene.
- 22. A method according to claim 21, wherein the agent comprises a polynucleotide.
- 23. A method according to claim 19, wherein the agent is capable of inhibiting the ability of a polypeptide comprising a sequence recited in any one of SEQ ID NOs: 2, 4 or 6 to degrade sphingosine-1-phosphate.
- 24. A method for inhibiting the growth of a cancer cell, comprising contacting a cancer cell with an agent that inhibits sphingosine-1-phosphate lyase activity.
- 25. A method according to claim 24, wherein the agent inhibits expression of an endogenous sphingosine-1-phosphate lyase gene.
- 26. A method according to claim 25, wherein the agent comprises a polynucleotide according to claim 6.
- 27. A method according to claim 24, wherein the agent is capable of inhibiting the ability of a polypeptide comprising a sequence recited in any one of SEQ ID NOs: 2, 4 or 6 to degrade sphingosine-1-phosphate.
- . 28. A method according to claim 24, wherein the cancer cell is a breast cancer cell.

- 29. A method for inhibiting the development and/or metastasis of a cancer in a mammal, comprising administering to a mammal an agent that inhibits sphingosine-1phosphate lyase activity.
- 30. A method according to claim 29, wherein the agent inhibits expression of an endogenous sphingosine-1-phosphate lyase gene.
- 31. A method according to claim 30, wherein the agent comprises a polynucleotide according to claim 6.
- 32. A method according to claim 29, wherein the agent is capable of inhibiting the ability of a polypeptide comprising a sequence recited in any one of SEQ ID NOs: 2, 4 or 6 to degrade sphingosine-1-phosphate.
- 33. A method according to claim 29, wherein the agent is linked to a targeting component.
- 34. A method according to claim 33, wherein the targeting component is an anti-tumor antibody.
- 35. A method according to claim 33, wherein the targeting component binds to an estrogen receptor.
- 36. A method according to claim 29, wherein the mammal is afflicted with breast cancer.
- 37. A method for diagnosing a cancer in a mammal, comprising detecting an alteration in an endogenous sphingosine-1-phosphate lyase gene in a sample obtained from a mammal, and therefrom diagnosing a cancer in the mammal.

- 38. A method according to claim 37, wherein the alteration is a deletion.
- 39. A method according to claim 37, wherein the cancer is breast cancer and the sample is a breast tumor biopsy.
- 40. A method for evaluating a cancer prognosis, comprising determining the presence or absence of an alteration in an endogenous sphingosine-1-phosphate lyase gene in a sample obtained from a mammal afflicted with cancer, and therefrom determining a prognosis.
 - 41. A method according to claim 40, wherein the alteration is a deletion.
- 42. A method according to claim 41, wherein the deletion comprises amino acid residues 354-433 of SEQ ID NO:4.
- 43. A method according to claim 40, wherein the cancer is breast cancer and the sample is a breast tumor biopsy.
- 44. An isolated antibody that binds to a polypeptide having a sequence recited in any one of SEQ ID NOs: 2, 4 or 6.
- 45. A monoclonal antibody that binds to a polypeptide having a sequence recited in any one of SEQ ID NOs: 2, 4 or 6.
- 46. An antibody according to claim 44 or claim 45, wherein the antibody inhibits the ability of a polypeptide having a sequence recited in any one of SEQ ID NOs: 2, 4 or 6 to degrade sphingosine-1-phosphate.
- 47. A method for detecting sphingosine-1-phosphate lyase in a sample, comprising:

- (a) contacting a sample with an antibody according to claim 44 or claim 45 under conditions and for a time sufficient to allow the antibody to bind to sphingosine-1-phosphate lyase; and
- (b) detecting in the sample the presence of sphingosine-1-phosphate lyase bound to the antibody.
- 48. A kit for detecting sphingosine-1-phosphate lyase in a sample, comprising an antibody according to claim 44 or claim 45 and a buffer or detection reagent.
- 49. A kit for detecting an alteration in a sphingosine-1-phosphate gene in a sample, comprising a polynucleotide according to claim 6 and a detection reagent.
- 50. A transgenic animal in which sphingosine-1-phosphate lyase activity is reduced compared to a wild-type animal.
 - 51. A cell line derived from a transgenic animal according to claim 50.

Fig. 1A

									TCA . Ser 10							48
									GGC Gly							96
ATT Ile	CTA Leu	ACC Thr 35	ATC Ile	AAC Asn	GAA Glu	TTA Leu	AAA Lys 40	ATA Ile	GCC Ala	ATA Ile	CAT His	GGT Gly 45	TAC Tyr	CTC Leu	AGA Arg	144
AAT Asn	ACC Thr 50	CCA Pro	TGG Trp	TAC Tyr	AAC Asn	ATG Met 55	TTG Leu	AAG Lys	GAT Asp	TAT Tyr	TTG Leu 60	TTT Phe	GTG Val	ATC Ile	TTT Phe	192
TGT Cys 65	Tyr	AAG Lys	CTA Leu	ATA Ile	AGT Ser 70	AAT Asn	TTT Phe	TTT Phe	TAT Tyr	CTG Leu 75	Leu	AAA Lys	GTT Val	TAT Tyr	GGG Gly 80	240
CCG Pro	GTG Val	AGG Arg	TTA Leu	GCA Ala 85	Val	AGA Arg	ACA Thr	TAC Tyr	GAG Glu 90	CAT His	AGT Ser	TCC Ser	AGA Arg	AGA Arg 95	Leu	288
TTT Phe	CGT	TGG Trp	TTA Leu 100	Leu	GAC Asp	TCA Ser	CCA Pro	TTT Phe 105	Leu	AGG Arg	GGT Gly	ACC Thr	GTA Val 110	Glu	AAG Lys	336
GAA Glu	GTC Val	ACA Thr	Lys	GTC Val	AAA Lys	CAA Gln	TCG Ser 120	Ile	GAA Glu	GAC Asp	GAA Glu	CTA Leu 125	Ile	AGA Arg	TCG Ser	384
GAC Asp	TCT Ser 130	Glr	i TTA I Leu	ATG Met	: Asr	Phe	e Pro	Glr	TTG Leu	Pro	TCC Ser 140	· Asr	GG(ATA / Ile	CCT Pro	432
CAG Glr 145	n Asp	GAT Asj	GTT Val	T ATT	GA/ Glu 150	Glu	CT/ Lei	raa <i>l</i> 12a l	F AAA 1 Lys	TT0	ı Asr	GAC Asp	TT(Le	G ATA	CCA Pro 160	480
CAT His	F ACC	C CA	A TG(n Trj	AA(Ly:	s Glu	GG/ Gly	A AA(y Ly:	G GT(s Val	C TCT L Ser 170	Gly	T GCC y Ala	GT a Val	TA(C CAC r His	GGT Gly	528

Fig. 1B

GGT Gly	GAT Asp	GAT Asp	TTG Leu 180	ATC Ile	CAC His	TTA Leu	CAA Gln	ACA Thr 185	ATC Ile	GCA Ala	TAC Tyr	GAA Glu	AAA Lys 190	TAT Tyr	TGC Cys	576
GTT Val	GCC Ala	AAT Asn 195	CAA Gln	TTA Leu	CAT His	CCC Pro	GAT Asp 200	GTC Val	TTT Phe	CCT Pro	GCC Ala	GTA Val 205	CGT Arg	AAA Lys	ATG Met	624
GAA Glu	TCC Ser 210	GAA Glu	GTG Val	GTT Val	TCT Ser	ATG Met 215	GTT Val	TTA Leu	AGA Arg	ATG Met	TTT Phe 220	AAT Asn	GCC Ala	CCT Pro	TCT Ser	672
GAT Asp 225	ACA Thr	GGT Gly	TGT Cys	GGT Gly	ACC Thr 230	ACA Thr	ACT Thr	TCA Ser	GGT Gly	GGT Gly 235	ACA Thr	GAA Glu	TCC Ser	TTG Leu	CTT Leu 240	720
TTA Leu	GCA Ala	TGT Cys	CTG Leu	AGC Ser 245	Ala	AAA Lys	ATG Met	TAT Tyr	GCC Ala 250	CTT Leu	CAT His	CAT	CGT Arg	GGA Gly 255	Ile	768
ACC Thr	GAA Glu	CCA Pro	GAA Glu 260	Ile	ATT	GCT Ala	CCC Pro	GTA Val 265	Thr	GCA Ala	CAT	GCT	GGG Gly 270	Phe	GAC Asp	816
			Tyr					Lys					Glu		GAT Asp	864
CCA Pro	ACG Thr 290	Thr	TAT Tyr	CAA Gln	GTG Val	GAC Asp 295	Leu	GGA Gly	AAA Lys	GTG Val	Lys 300	Lys	TTC Phe	ATC	AAT Asn	912
AA(Lys	Asn	ACA Thr	ATT	TTA Leu	CTG Leu 310	Val	GGT Gly	Ser	Ala	CCA Pro 315	Asr	Phe	Pro	CAT His	GGT Gly 320	960
AT	GC(Ala	GAT Asp	r gat Asp	ATT Ile 325	Glu	GG/ Gly	Leu	GGT Gly	Lys 330	Ile	A GC/	A CA a Glr	A AA/ 1 Lys	TAT Tyr 33!	F AAA S Lys	1008
CT Le	T CCT	TT/ Lei	A CA(His 34)	val	C GA(L Asp	AGT Ser	r TG1 Cys	CT/ S Lei 34!	ı Gly	TC(Ser	TT Pho	T AT	T GT e Va: 35	L Sei	A TTT r Phe	1056

Fig. 1C

								Leu			Leu	GAC Asp 365	Phe			1104
												TAT Tyr				1152
				Ser								GAC Asp				1200
												TTA Leu			Ser	1248
				Gly								GTA Val				1296
			Vaļ					Asn				GAG Glu 445	Ser			1344
		Val					Lys					ATC Ile				1392
	Pro					Met					Tyr	TCA Ser		Ile	TCA Ser 480	1440
TTT Phe	TCT Ser	TCA Ser	AAG Lys	Thr	TTG Leu	Asn	Ile	His	Glu	Leu	Ser	GAC Asp	Arg	Leu 495	TCC Ser	1488
				His					Gln					Leu	A CAC I His	1536
			e Thr					ı His					Ile		C GAC S Asp	1584

SUBSTITUTE SHEET (RULE 26)

Fig. 1D

															TCT		1632
~	Ile-	Leu	Arg	Thr	Thr	Val	Gln	Glu	Leu	Lys	Ser	Glu	Ser	Asn	Ser	Lys.	
		530					535				•	540			;		
	004	TOO	004	CAC	CCA	ACT	ACC	CCT	CTA	TAT	CCT	GTC	CCC	CCC	AGC	GTT	1680
																	1000
	Pro	Ser	Pro	Asp	Gly	Thr	Ser	Ala	Leu	ıyr	GTA	vai	ATA	GIY	Ser	AST	
	545					550			•		555					560	
	AAA	ACT	GCT	GGC	GTT	GCA	GAC	AAA	TTG	ATT	GTG	GGA	TTC	CTA	GAC	GCA	1728
															Asp		
	Lys		n.u	ur,		/ LL U	, wh	-,0		570		,			575	. — —	
					565					310					313		
	TTA	TAC	AAG	TTG	GGT	CCA	GGA	GAG	GAT	ACC	GCC	ACC	AAG	TAG	٠,		1770
	Leu	Tvr	Lvs	Leu	Glv	Pro	Glv'	Glu	Asp	Thr	Ala	Thr	Lvs				
		. ,	-,0	580	,		,		585				3				
				JOU					JUJ								

Fig. 2A

C. elegans S-1-P Lyase Gene [1 to 1629] -> 1-phase Translation

DNA sequence 1629 b.p. ATGGATTTTGCA ... TTAACAGAGTGA linear

1/1 31/11 ATG GAT TIT GCA CTG GAG CAA TAT CAT AGT GCA AAG GAT TTG TTA ATA TIT GAG CTT CGA M D F A L E Q Y H S A K D L L I F E L R 61/21 91/31 AAG TTC AAT CCA ATT GTT CTG GTT TCT AGT ACT ATT GTT GCA ACA TAC GTA CTC ACC AAT K F N P I V L V S S T I V A T Y V L T N 151/51 121/41 CTG AGA CAT ATG CAT ITA GAT GAA ATG GGC ATC CGG AAA CGT TTG AGC ACT TGG TTT TTC LRHMHLDEMGIRKRLSTWFF 211/71 181/61 ACC ACT GTA AAG CGT GTG CCT TTC ATC AGG AAA ATG ATT GAC AAA CAA CTA AAC GAA GTA TTVKRVPFIRKMIDKQ:LNEV 241/81 271/91 AAG GAC GAG CTT GAG AAA AGT CTG AGA ATT GTG GAT CGA AGC ACC GAA TAC TTC ACT ACA K D E L E K S L R I V D R S T E Y F T T 331/111 301/101 ATC CCA AGC CAT TCA GTT GGA AGA ACT GAA GTA CTT CGC CTT GCT GCC ATC TAT GAT GAT I P S H S V G R T E V L R L A A I Y D D 361/121 391/131 TTG GAA GGA CCA GCT TIT TTG GAA GGA AGA GTA TCT GGA GCA GTC TTC AAT AGA GAA GAC EGRVSGAVFNRED LEGPAFL 421/141 451/151 GAC AAG GAC GAA CGG GAG ATG TAT GAG GAG GTG TTC GGA AAA TTT GCC TGG ACC AAC CCA DKDEREMYEEVFGKFANTNP 511/171 481/161 CTT TGG CCA AAA TTG TTC CCT GGA GTG AGA ATC ATG GAG GCT GAA GTT GTT CGC ATG TGT LWPKLFPGVRIMEAEVVRMC 571/191 541/181 TGT AAT ATG ATG AAT GGA GAT TCG GAG ACA TGT GGA ACT ATG TCA ACT GGT GGA TCC ATT CNMMNGDSETCGTMSTGGSI 601/201 631/211 TCA ATT CTT TTG GCG TGC CTG GCT CAT CGT AAT CGT CTT TTG AAA AGA GGA GAA AAG TAC SILLACLAHRNRLLKRGEKY 691/231 661/221 ACA GAG ATG ATT GTC CCA TCA TCC GTC CAT GCA GCG TTC TTC AAA GCT GCC GAA TGT TTC. TEMIVPSSVHAAFFKAAECF

-6/20

Fig. 2B

C. elegans S-1-P Lyase Gene [1 to 1629] -> 1-phase Translation

751/251 721/241 CGT ATC AAA GTT CGC AAG ATT CCA GTT GAT CCT GTT ACT TTC AAA GTA GAC CTT GTC AAA RIKVRKIPVDPVTFKVDLVK 781/261 811/271 ATG AAA GCC GCA ATT AAC AAG AGA ACA TGT ATG TTA GTT GGA TCT GCT CCA AAC TTT CCA M K A A I N K R T C M L V G S A P Ñ F P 871/291 841/281 TIT GGA ACT GTT GAT GAC ATT GAA GCT ATT GGA CAG CTA GGA CTT GAA TAT GAC ATC CCA F G T V D D I E A I G Q L G L E Y D I P 931/311 901/301 GTT CAT GTT GAT GCT TGT CTT GGT GGT TTC CTT CTT CCA TTC CTT GAA GAA GAC GAG ATT V H V D A C L G G F L L P F L E E D E I 991/331 961/321 CGC TAT GAC TTC CGT GTT CCT GGT GTA TCT TCG ATT TCT GCA GAT AGT CAC AAA TAC GGA RYDFRVPGVSSISADSHKYG 1051/351 1021/341 CTC GCT CCA AAG GGG TCA TCA GTT GTT CTT TAT CGC AAT AAG GAA CTT CTT CAT AAT CAG LAPKGSSVVLYRNKELLHNQ 1111/371 1081/361 TAC TTC TGT GAT GCT GAT TGG CAA GGA GGT ATC TAT GCA TCG GCT ACT ATG GAA GGA TCA Y F C D A D W Q G G I Y A S A T M E G S 1171/391 1141/381 CGC GCT GGG CAC AAC ATT GCA CTT TGC TGG GCC GCA ATG CTT TAT CAC GCT CAG GAA GGA RAGHNIAL CWAAMLYHAQEG 1231/411 1201/401 TAC AAG GCC AAT GCT AGA AAG ATT GTT GAC ACT ACA AGA AAG ATT AGA AAT GGA CTT TCA Y K A N A R K I V D T T R K I R N G L S 1291/431 1261/421 AAC ATT AAG GGA ATC AAA TTA CAA GGG CCA AGT GAT GTT TGT ATT GTT AGC TGG ACA ACC N I K G I K L Q G P S D V C. I V S W T T 1351/451 AAT GAT GGA GTT GAA CTC TAC AGA TTC CAT AAC TTC ATG AAG GAA AAA CAT TGG CAA CTG N D G V E L Y R F H N F M K E K H W Q L 1411/471 1381/461 AAT GGA CTT CAA TTC CCA GCT GGA GTT CAT ATC ATG GTC ACT ATG AAT CAT ACT CAT CCT NGLQFPAGVHIMVTMNHTHP 1441/481 1471/491 GGA CTC GCT GAA GCT TTC GTC GCC GAT TGC AGA GCT GCA GTT GAG TTT GTC AAA AGC CAC G I A F A F V A D C R A A V E F V K S H

Fig. 2C

C. elegans S-1-P Lyase Gene [1 to 1629] -> 1-phase Translation

1501/501

AAA CCA TCG GAA TCC GAC AAG ACA AGT GAA GCA GCC ATC TAC GGA CTT GCT CAA AGT ATT K P S E S D K T S E A A I Y G L A Q S I 1591/531

CCA GAC CGA TCG CTT GTT CAC GAG TTT GCT CAC AGC TAT ATC GAT GCT GTT TAT GCT TTA P D R S L V H E F A H S Y I D A V Y A L 1621/541

ACA GAG TGA
T E *

Fig. 3A

House S-1-P Lyase Gene -> 1-phase Translation

DNA sequence 1707 b.p. ATGCCCGGAACC ... AAGCCCCGCTGA linear

31/11 1/1 ATG CCC GGA ACC GAC CTC CTC AAG CTG AAG GAC TTC GAG CCT TAT TTG GAG ATT TTG GAA M P G T D L L K L K D F E P Y L I L E S 91/31 61/21 TCT TAT TCC ACA AAA GCC AAG AAT TAT GTG AAT GGA TAT TGC ACC AAA TAT GAG CCC TGG EYSTKAKNYVNGYCTKYEPW 121/41 151/51 CAG CTC ATT GCG TGG AGT GTC CTG TGT ACT CTG CTG ATA GTC TGG GTG TAT GAG CTT ATC O L I A W S V L C T L L I V W V Y E L I 211/71 181/61 TTC CAG CCA GAG AGT TTA TGG TCT CGG TTT AAA AAA AAA TTA TTT AAG CTT ATC AGG AAG FOPESLWSRFKKKLFKLIRK 241/81 271/91 ATG CCA TTT ATT GGA CGT AAG ATC GAA CAA CAG GTG AGC AAA GCC AAG AAG GAT CTT GTC M P F I G R K I E Q Q V S K A K K D L V 301/101 331/111 AAG AAC ATG CCA TTC CTA AAG GTG GAC AAG GAT TAT GTG AAA ACT CTG CCT GCT CAG GGT K N M P F L K V D K D Y V K T L P A Q G 391/131 361/121 ATG GGC ACA GCT GAG GTT CTG GAG AGA CTC AAG GAG TAC AGC TCC ATG GAT GGT TCC TGG M G T A E V L E R L K E Y S S M D G S H 451/151 421/141 CAA GAA GGG AAA GCC TCA GGA GCT GTG TAC AAT GGG GAA CCG AAG CTC ACG GAG CTG CTG Q E G K A S G A V Y N G E P K L T E L L 481/161 511/171 GTG CAG GCT TAT GGA GAA TTC ACG TGG AGC AAT CCA CTG CAT CCA GAT ATC TTC CCT GGA V Q A Y G E F T W S N P L H P D I F P G 541/181 571/191 TTG CGG AAG TTA GAG GCA GAA ATC GTT AGG ATG ACT TGT TCC CTC TTC AAT GGG GGA CCA LRKLEAEIVRMTCSLFNGGP 631/211 601/201 GAT TCC TGT GGA TGT GTG ACT TCT GGG GGA ACG GAA AGC ATC CTG ATG GCC TGC AAA GCT D S C G C V T S G G T E S I L M A C K A 661/221 691/231 TAC CGG GAC TTG GCG TTA GAG AAG GGG ATC AAA ACT CCA GAA ATT GTG GCT CCC GAG AGT Y R D L A L E K G I K T P E I V A P E S 751/251 721/241 GCC CAT GCT GCA TTC GAC AAA GCA GCT CAT TAT TTT GGG ATG AAG ATT GTC CGA GTT GCA A H A A F D K A A H Y F G M K I V R V A

Fig. 3B

Mouse S-1-P Lyase Gene -> 1-phase Translation

781/261 811/271	
CTG AAA AAG AAC ATG GAG GTG GAT GTG CAG GCA ATG AAG	AGA GCC ATC TCC AGG AAC ACA
LKKNMEVDVQAMK	RAISRINT
841/281 871/291	
GCT ATG CTG GTC TGT TCT ACC CCA CAG TTT CCT CAT GGT	GTG ATG GAT CCT GTC CCC GAA
A M L V C S T P Q F P H G	VMDPVPE
901/301 931/311	
GTG GCC AAG TTA ACT GTC AGA TAT AAA ATC CCA CTC CAT	GTG GAT GCT TGT CTG GGG GGC
VAKLTVRYKIPLH	V D A C L G G
961/321 991/331	
TTC CTC ATT GTC TTC ATG GAG AAA GCA GGG TAC CCA CTG	GAG AAA CCA TTT GAT TTC CGG
FLIVFMEKAGYPL	EKPFDFR
.1021/341 1051/351	
GTG AAA GGT GTG ACC AGC ATT TCA GCA GAT ACT CAT AAG	TAT GGC TAT GCT CCT AAA GGT
V K G V T S I S A D T H K	YGYAPKG
1081/361. 1111/371	
TCA TCA GTG GTG ATG TAC TCT AAC GAG AAG TAC AGG ACG	TAC CAG TTC TTT GTT GGT GCA
SSVVMYSNEKYRT	YQFFVGA
1141/381 1171/391	
GAC TGG CAA GGT GGT GTC TAC GCA TCT CCA AGC ATA GCT	
D W Q G G V Y A S P S I A	GSRPGGI
1201/401 1231/411	
ATT GCA GCC TGT TGG GCG GCC TTG ATG CAC TTC GGT GAG	
IAACWAALMHFGE	NGYVEAT
1261/421 1291/431	
AAA CAG ATC ATC AAA ACT GCT CGC TTC CTG AAG TCA GAA	
KQIIKTARFLKSE	LENIK.NI
1321/441 1351/451	•
TTC ATT TTC GGT GAT CCT CAA TTG TCA GTT ATT GCT CTG	
FIFGDPQLSVIAL	GSNDFDI
1381/461 1411/471	• .
TAC CGA CTA TCT AAT ATG ATG TCT GCT AAG GGG TGG AAT	
YRLSNMMSAKGWN	FNYL.QFP
1441/481 1471/491	
AGA AGC ATT CAT TTC TGC ATT ACG TTA GTA CAT ACT CGG	
RSIHFCITLVHTR	KRVAIQF
1501/501 1531/511	
CTA AAG GAT ATC COG GAA TCA GTC ACA CAA ATC ATG AAG	
LKDIRESVTQIMK	NPKAKTT

Fig. 3C

Mouse S-1-P Lyase Gene -> 1-phase Translation

1561/521

GGA ATG GGT GCC ATC TAT GGC ATG GCC CAG GCA ACC ATT GAC AGG AAG CTG GTT GCA GAA
G M G A I Y G M A Q A T I D R K L V A E

1621/541

ATA TCC TCC GTC TTC TTG GAC TGC CTT TAT ACT ACG GAC CCC GTG ACT CAG GGC AAC CAG
I S S V F L D C L Y T T D P V T Q G N Q

1681/561

ATG AAC GGT TCT CCA AAG CCC CGC TGA
M N G S P K P R *

Fig. 4A

CLUSTAL W(1	.60) multiple sequence alignment: C.elegans/Yeast/Mouse Lyase Seq.
C.elgns Yeast Mouse	MDFALEQYHS-AKDLLIFELRKFNPIVLVS MSGVSNKTVSINGWYGMPIHLLREEGDFAQFMILTINELKIAIHGYLRNTPWYNMLKDYLMPGTDLLKLKDFEPYLEILESYSTKAKNYVNGYCTKYEPWQLIA *
C.elgns Yeast Mouse	STIVATYVLTNLRHMHLDEMGIRKRLSTWFFTTVKRVPFIRKMIDKQLNEVKDE FVIFCYKLISNFFYLLKVYGPVRLAVRTYEHSSRRLFRWLLDSPFLRGTVEKEVTKVKQS WSVLCTLLIVWVYELIFQPESLWSRFKKKLFKLIRKMPFIGRKIEQQVSKAKKD * ** **
C.elgns Yeast Mouse	LEKSLRIVORSTEYFTTIPSHSVGRTEVLRLAAIYDDLEGP-AFLEGRVSGAVFNREDDK IEDELIRSDSQLMNFPQLPSNGIPQDDVIEELNKLNDLIPHTQWKEGKVSGAVYHGGD LVKNMPFLKVDKDYVKTLPAQGNGTAEVLERLKEYSSMDGSWQEGKASGAVYNGEP***********
C.elgns Yeast Mouse	DEREMYEEVFGKFANTNPLWPKLFPGVRIMEAEVVRMCCMMNGDSET-CGTMSTGGSIS DLIHLQTIAYEKYCVANQLHPDVFPAVRKMESEVVSMVLRMFNAPSDTGCGTTTSGGTES KLTELLVQAYGEFTWSNPLHPDIFPGLRKLEAEIVRMTCSLFNGGPDS-CGCVTSGGTES * * * . * * . * . * . * . * . *
C.elgns Yeast Mouse	ILLACLAHRNRLLK-RGEKYTEMIVPSSVHAAFFKAAECFRIKVRKIPVDPVTFKVDLVK LLLACLSAKMYALHHRGITEPEIIAPVTAHAGFDKAAYYFGMKLRHVELDPTTYQVDLGK ILMACKAYRDLALE-KGIKTPEIVAPESAHAAFDKAAHYFGMKIVRVALK-KNMEVDVQA ****
C.elgns Yeast Mouse	MKAAINKRTCMLVGSAPNFPFGTVDDIEAIGQLGLEYDIPVHVDACLGGFLLPFLEED VKKFINKNTILLVGSAPNFPHGIADDIEGLGKIAQKYKLPLHVDSCLGSFIVSFMEKAGY MKRAISRNTAMLVCSTPQFPHGVMDPVPEVAKLTVRYKIPLHVDACLGGFLIVFMEKAGY .* * . * . * . * . * . * . * . * . * .
C.elgns Yeast Mouse	EIRYDFRVPGVSSISADSHKYGLAPKGSSVVLYRNKELLHNQYFCDADWQGGIYASAT KNLPLLDFRVPGVTSISCDTHKYGFAPKGSSVIMYRNSDLRNHQYYVNPANTGGLYGSPT PLEKPFDFRVKGVTSISADTHKYGYAPKGSSVVMYSNEKYRTYQFFVGADWQGGVYASPS
C.elgns Yeast Mouse	MEGSRAGHNIAL CWAAMLYHAQEGYKANARKIVDTTRKIRN-GLSNIKGIKLOGPSDVCI LAGSRPGAIVVGCWATMVNMGENGYIESCQEIVGAAMKFKKYIQENIPDLNIMGNPRYSV IAGSRPGGIIAACWAALMHFGENGYVEATKQIIKTARFLKS-ELENIKNIFIFGDPQLSV

Fig. 4B

Cielgns -VSWTTNDGVELYRFHNFMKEKHWQLNGLQFPAGVHIMVTMNHTHG-LAEAFVADCRAAVE Yeast * ISFSSKT-LNIHELSDRLSKKGMHFNALQKPVALHMAFTRLSAHV--VDEICDILRTTVQ Mouse: IALGSND-FDIYRLSNMMSAKGMNFNYLQFPRSIHFCITLVHTRKRVAIQFLKDIRESVT * * * * * * * C.elgns FVKSHKPSESDKTSEAAIYGLAQSIPDRSLVHEFAHSYIDAVYALTE------Yeast ELKSESNSKPSPDGTSALYGVAGSVKTAGVADKLIVGFLDALYKLGPGEDTATK-----QIMKN-P-KAKTTGMGAIYGMAQATIDRKLYAEISSVFLDCLYTTDPVTQGNQMNGSPKP Mouse C.elgns Yeast Mouse 🗄

Note to the sequence alignment: * = identical residues; . = conserved residues; - = gap

Abstivehicle control
mBSTi
mBSTi
mBSTi
mBSTi
ceBSTi

8ST1-WT
mBSTi
mBSTi
mBSTi
mBSTi
mBSTi
mBSTi
mBSTi
mBSTi

Fig. 5

Fig. 6A

Fig. 6B

Fig. 7

Fig. 8A

48							AAG									
	Leu	15 15	Pro	GTU	rne	ATA	Lys 10	Leu	Met	Leu	Leu	ASP 5	Thr	Ser	Pro	Met 1
96							GCC									
	GIY	ASN	30 30	ıyr	ASN	Lys	Ala	Lys 25	Inr	Ser	Tyr	Val	G1u 20	Leu.	Ile	Glu
144							СТА									
	vaı	vaı	ser	1rp 45	ATa	116	Leu	Gln	Trp 40	Pro	Glu	Tyr	Lys	Thr 35	Cys	His
192							GAG									
	GIU	Pro	GIN	Phe	60 80	Phe	Glu	Tyr		Trp 55	Val	Ile	Leu		Thr 50	Trp
240							TGT									
	80	Arg	INC	Leu	Lys	75	Cys	Lys	Lys	_	Phe 70	Arg	Ser	Trp		Ser 65
288							GAC									
,		95	Lys	ASN	Leu	Lys	Asp 90	GIN	116	Lys	_	G1y 85	Ile	Ile	Pro	Met
336	TAT															
	Tyr	СТÑ	110	ASP	AaT	Lys		105	: Ser	Met	ASN	-	Ser 100	Ile	Asp	Asp
384	GAG															
	Glu	Leu		A1a 125	Ser	Ser	Ser		Gly 120	Gln	Ser	Pro		Ala 115	Lys	Val
432	AGA															
	Arg	Gly	Glu		Trp 140	Phe	Ala	Asp		Ser 135	Ser	Tyr	Glu	•	Leu 130	Lys
480	CTT															
	Leu 160	Leu	Glu	Thr		Lys 155	ı Glu	/ Glu	· Gly		Tyr 150	' Val	Thr	Gly		Ala 145
										,						173

Fig. 8B

									AAC Asn					ŧ	528
								Ala	GAA Glu						576
									TGT Cys					(524
									AAA Lys		Cys			(672
									ATT Ile 235	Val				•	720
				Asn					TAC Tyr					•	768
			Leú					Glu					ATG Met		816
		Ile					Ala		CTC Leu			Ser	CCA Pro		864
	Pro					Asp			CCT Pro		Val			i	912
Val					Pro					Ala			GGC Gly 320		960

Fig. 8C

									TAC Tyr						1008
									ATT Ile						1056
									TTG Leu						1104
									GAT Asp		Asp				1152
					Thr				TCA Ser 395						1200
				Ala					Phe						1248
			Lys					Thr					Lys	TCA Ser	1296
		Asn					Phe					Pro		TTG Leu	1344
	Ile					Arg					Tyr			A TCA 3 Ser	1392
Let					Gly					Glr				C CCA e Pro 480	1440

Fig. 8D

						GCC Ala			1488
						GTC Val			1536
						GCC Ala			1584
						GAA Glu 540			1632
Leu						ACC Thr			1680
			CCC Pro	TGA			•	-	1707

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Saba, Julie D. Zhou, Jianhui
 - (ii) TITLE OF INVENTION: SPHINGOSINE-1-PHOSPHATE LYASE

 POLYPEPTIDES, POLYNUCLEOTIDES AND MODULATING AGENTS AND

 METHODS OF USE THEREFOR
 - (iii) NUMBER OF SEQUENCES: 10
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington
 - (E) COUNTRY: USA
 - (F) ZIP: 98104
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE: 29-SEP-1997
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: David, Maki J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 200116.402

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (206) 622-4900

(B) TELEFAX: (206) 682-6031

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1707 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1...1704

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATG CCC GGA ACC GAC CTC CTC AAG CTG AAG GAC TTC GAG CCT TAT TTG

Met Pro Gly Thr Asp Leu Leu Lys Leu Lys Asp Phe Glu Pro Tyr Leu

1 5 10 15

GAG ATT TTG GAA TCT TAT TCC ACA AAA GCC AAG AAT TAT GTG AAT GGA 96
Glu Ile Leu Glu Ser Tyr Ser Thr Lys Ala Lys Asn Tyr Val Asn Gly
20 25 30

TAT TGC ACC AAA TAT GAG CCC TGG CAG CTC ATT GCG TGG AGT GTC CTG

Tyr Cys Thr Lys Tyr Glu Pro Trp Gln Leu Ile Ala Trp Ser Val Leu

35

40

45

TGT ACT CTG CTG ATA GTC TGG GTG TAT GAG CTT ATC TTC CAG CCA GAG

192

Cys Thr Leu Leu Ile Val Trp Val Tyr Glu Leu Ile Phe Gln Pro Glu

624

	50					55					60					
	mm.h	mcc.	TCT	ccc	mmm	222	222		ጥጥ አ	ጥጥጥ	7 7 C	ርጥጥ	ስጥC	NGG	A A C	240
	Leu	Trp	Ser	Arg		гуѕ	гÀ2	гÀг	Leu		ьуѕ	Leu	TTE	Arg	Lys	•
65					70					75					80	
ATG	CCA	TTT	ATT	GGA	CGT	AAG	ATC	GAA	CAA	CAG	GTG	AGC	AAA	GCC	AAG	288
Met	Pro	Phe	Ile	Gly	Arg	Lys	Ile	Glu	Gln	Gln	Val	Ser	Lys	Ala	Lys	
				85					90					95		
AAG	GAT	CTT.	GTC	AAG	AAC	ATG	CCA	TTC	CTA	AAG	GTG	GAC	AAG	GAT	TAT	336
Lys	Asp	Leu	Val	Lys	Asn	Met	Pro	Phe	Leu	Lys	Val	Asp	Lys	Asp	Tyr	
-	•		100	_				105					110			•
GTG	AAA	ACT	CTG	CCT	GCT	CAG	GGT	ATG	GGC	ACA	GCT	GAG	GTT	CTG	GAG	384
Val	Lys	Thr	Leu	Pro	Ala	Gln	Gly	Met	Gly	Thr	Ala	Glu	Val	Leu	Glu	
	-	115					120					125				•
								:								
AGA	CTC	AAG	GAG	TAC	AGC	TCC	ATG	GAT	GGT	TCC	TGG	CAA	GAA	GGG	AAA	. 432
Arg	Leu	Lys	Glu	Tyr	Ser	Ser	Met	Asp	Gly	Ser	Trp	Gln	Glu	Gly	Lys	
	130					135					140					
							•									
GCC	TCA	GGA	GCT	GTG	TAC	AAT	GGG	GAA	CCG	AAG	CTC	ACG	GAG	CTG	CTG	480
Ala	Ser	Gly	Ala	Val	Tyr	Asn	Gly	Glu	Pro	Lys	Leu	Thr	Glu	Leu	Leu	
145					150					155					160	
														-		
GTG	CAG	GCT	TAT	GGA	GAA	TTC	ACG	TGG	AGC	AAT	CCA	CTG	CAT	CCA	GAT	528
Val	Gln	Ala	Tyr	Gly	Glu	Phe	Thr	Trp	Ser	Asn	Pro	Leu	His	Pro	Asp	
				165					170					175		
ATC	TTC	CCT	GGA	TTG	CGG	AAG	TTA	GAG	GCA	GAA	ATC	GTT	AGG	ATG	ACT	576
Ile	Phe	Pro	Gly	Leu	Arg	Lys	Leu	Glu	Ala	Glu	Ile	Val	Arg	Met	Thr:	
			180					185					190			

205

TGT TCC CTC TTC AAT GGG GGA CCA GAT TCC TGT GGA TGT GTG ACT TCT

Cys Ser Leu Phe Asn Gly Gly Pro Asp Ser Cys Gly Cys Val Thr Ser

200.

195

GGG	GGA	ACG	GAA	AGC	ATC	CTG	ATG	GCC	TGĊ	AAA	`GCT	TAC	CGG	GAC	TTG	672
Gly	Gly	Thr	Glu	Ser	Ile	Leu	Met	Ala	Cys	Lys	Ala	Tyr	Arg	Asp	Leu	
	210					215					220	•				
									*					•		
GCG	TTA	GAG	AAG	GGG	ATC	AAA	ACT	CCA	GAA	ATT	GTG	GCT	CCC	GAG	AGT	720
Ala	Leu	Glu	Lys	Gly	Ile	Lys	Thr	Pro	Glu	Ile	Val	Ala	Pro	Glu	Ser	
225					230			•		235					240	
											•				-	
GCC	CAT	GCT	GCA	TTC	GAC	AAA	GCA	GCT	CAŢ	TAT	TTT	GGG	ATG	AAG	ATT	768
Ala	His	Ala	Ala	Phe	Asp	Lys	Ala	Ala	His	Tyr	Phe	Gly	Met	Lys	Ile	
				245					250					255		
				٠.												
GTC	CGA	GTT	GCA	CTG	AAA	AAG	AAC	ATG	GAG	GTG	GAT	GTG	CAG	GCA	ATG	816
Val	Arg	Val	Ala	Leu	Lys	Lys	Asn	Met	Glu	Val	Asp	Val	Gln	Ala	Met	
			260					265		•			270			
AAG	AGA	GCC	ATC	TCC	AGG	AAC	ACA	GCT	ATG	CTG	GTC	TGT	TCT	ACC	CCA	864
Lys	Arg	Ala	Ile	Ser	Arg	Asn	Thr	Ala	Met	Leu	Val	Cys	Ser	Thr	Pro	
		275					280					285				
CAG	TTT	CCT	CAT	GGT	GTG	ATG	GAT	CCT	GTC	CCC	GAA	GTG	GCC	AAG	TTA	912
Gln	Phe	Pro	His	Gly	Val	Met	Asp	Pro	Val	Pro	Glu	Val	Ala	Lys	Leu	
1,	290					295					300					•
		•														
ACT	GTC	AGA	TAT	AAA	ATC	CCA	CTC	CAT	GTG	GAT	GCT	TGT	CTG	GGG	GGC	960
Thr	Val	Arg	Tyr	Lys	Ile	Pro	Leu	His	Val	Asp	Ala	Cys	Leu	Gly	Gly	
305					310					315					320	
TTC	CTC	ATT	GTC	TTC	ATG	GAG	AAA	GCA	GGG	TAC	CCA	CTG	GAG	AAA	CCA	1008
Phe	Leu	Ile	Val	Phe	Met	Glu	Lys	Ala	Gly	Tyr	Pro	Leu	Glu	Lys	Pro	
				325					330		•			335		
TTT	GAT	TTC	CGG	GTG	AAA	GGT	GTG	ACC	AGC	ATT	TCA	GCA	GAT	ACT	CAT	1056
Phe	Asp	Phe	Arg	Val	Lys	Gly	Val	Thr	Ser	Ile	Ser	Ala	Asp	Thr	His	
			340					345					350			

AAG	TAT	GGC	TAT	GCT	ССТ	AAA	GGT	TCA	TCA	GTG	GTG	ATG	TAC	TCT	AAC	1104
Lys	Tyr	Gly	Tyr	Ala	Pro	Lys	Gly	Ser	Ser	Val	Val	Met	Tyr	Ser	Asn	
		355					360					365				
GAG	AAG	TAC	AGG	ACG	TAC	CAG	TTC	TTT	GTT	GGT	GCA	GAC	TGG	CAA	GGT	1152
Glu	Lys	Tyr	Arg	Thr	Tyr	Gln	Phe	Phe	Val	Gly	Ala	Asp	Trp	Gln	Gly	
	370					375					380					
GGT	GTC	TAC	GCA	TCT	CCA	AGC	ATA	GCT	GGC	TCA	CGG	CCT	GGT	GGC	ATC	1200
Gly	Val	Tyr	Ala	Ser	Pro	Ser	Ile	Ala	Gly	Ser	Arg	Pro	Gly	Gly	Ile	
385					390					395		•			400	
		GCC														1248
Ile	Ala	Ala	Cys	_	Ala	Ala	Leu	Met		Phe	Gly	Glu	Asn		Tyr	
				405					410					415		
					an a	200	NMC	222	3 CM	CCM	000	mmc	CTC	***	TC N	1206
		GCT														1296
vai	GIU	Ala	420	гля	GIN	116	iie	425	Inr	Ala	Arg	Pne	430	гу	Ser	
			420					423					430		•	
CAA	ርሞር	GAA	ם מ	ATC	ΔΔΔ	AAC	АТС	TTC	АТТ	ፐፐር	GGT	GAT	ССТ	CAA	TTG	1344
		Glu														
OIL	Dea	435	11011		_,,		440				J-1	445				
TCA	GTT	ATT	GCT	CTG	GGA	TCC	AAC	GAT	TTT	GAC	ATT	TAC	CGA	СТА	TCT	1392
Ser	Val	Ile	Ala	Leu	Gly	Ser	Asn	Asp	Phe	Asp	Ile	Tyr	Arg	Leu	Ser	
	450					455					460					
AAT	ATG	ATG	TCT	GCT	AAG	GGG	TGG	AAT	TTT	AAC	TAC	CTG	CAG	TTC	CCA	1440
Asn	Met	Met	Ser	Ala	Lys	Gly	Trp	Asn	Phe	Asn	Tyr	Leu	Gln	Phe	Pro	
465					470					475	•				480	
AGA	AGC	ATT	CAT	TTC	TGC	ATT	ACG	TTA	GTA	CAT	ACT	CGG	AAG	CGA	GTG	1488
Arg	Ser	Ile	His	Phe	Cys	Ile	Thr	Leu	Val	His	Thr	Arg	Lys	Arg	Val	
				485					490					495		
		•														
GCG	ATC	CAG	TTC	CTA	AAG	GAT	ATC	CGG	GAA	TCA	GTC	ACA	CAA	ATC	ATG	1536

Ala Ile Gln Phe Leu Lys Asp Ile Arg Glu Ser Val Thr Gln Ile Met 505 510 500 AAG AAT CCT AAA GCT AAG ACC ACA GGA ATG GGT GCC ATC TAT GGC ATG 1584 . Lys Asn Pro Lys Ala Lys Thr Thr Gly Met Gly Ala Ile Tyr Gly Met 520 525 515 GCC CAG GCA ACC ATT GAC AGG AAG CTG GTT GCA GAA ATA TCC TCC GTC 1632 Ala Gln Ala Thr Ile Asp Arg Lys Leu Val Ala Glu Ile Ser Ser Val 535 540 530 1680 TTC TTG GAC TGC CTT TAT ACT ACG GAC CCC GTG ACT CAG GGC AAC CAG Phe Leu Asp Cys Leu Tyr Thr Thr Asp Pro Val Thr Gln Gly Asn Gln 545 550 555 560 ATG AAC GGT TCT CCA AAG CCC CGC TGA 1707

(2) INFORMATION FOR SEQ ID NO:2:

Met Asn Gly Ser Pro Lys Pro Arg 565

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 568 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Pro Gly Thr Asp Leu: Leu Lys Leu Lys Asp Phe Glu Pro Tyr Leu

1 5 10 15

Glu Ile Leu Glu Ser Tyr Ser Thr Lys Ala Lys Asn Tyr Val Asn Gly
20 25 30

Tyr	Cys	Thr	Lys	Tyr	Glu	Pro	Trp	Gln	Leu	Ile	Ala	Trp	Ser	Val	Leu
		35					40					45			

- Cys Thr Leu Leu Ile Val Trp Val Tyr Glu Leu Ile Phe Gln Pro Glu 50 55 60
- Ser Leu Trp Ser Arg Phe Lys Lys Leu Phe Lys Leu Ile Arg Lys 65 70 75 80
- Met Pro Phe Ile Gly Arg Lys Ile Glu Gln Gln Val Ser Lys Ala Lys 85 90 95
- Lys Asp Leu Val Lys Asn Met Pro Phe Leu Lys Val Asp Lys Asp Tyr 100 105 110
- Val Lys Thr Leu Pro Ala Gln Gly Met Gly Thr Ala Glu Val Leu Glu 115 120 125
- Arg Leu Lys Glu Tyr Ser Ser Met Asp Gly Ser Trp Gln Glu Gly Lys 130 135 140
- Ala Ser Gly Ala Val Tyr Asn Gly Glu Pro Lys Leu Thr Glu Leu Leu 145 150 155 160
- Val Gln Ala Tyr Gly Glu Phe Thr Trp Ser Asn Pro Leu His Pro Asp 165 170 175
- Ile Phe Pro Gly Leu Arg Lys Leu Glu Ala Glu Ile Val Arg Met Thr 180 185 190
- Cys Ser Leu Phe Asn Gly Gly Pro Asp Ser Cys Gly Cys Val Thr Ser 195 200 205
- Gly Gly Thr Glu Ser Ile Leu Met Ala Cys Lys Ala Tyr Arg Asp Leu 210 215 220
- Ala Leu Glu Lys Gly Ile Lys Thr Pro Glu Ile Val Ala Pro Glu Ser

225					230					235	i				240
Ala	His	Ala	Ala	Phe 245		Lys	Ala	Ala	His 250		Phe	Gly	Met	Lys 255	
Val	Arg	Val	Ala 260	Leu	Lys	Lys	Asn	Met 265		Val	Asp	Val	Gln 270	Ala	Met
Lys	Arg	Ala 275		Ser			Thr 280	Ala	Met	Leu	Val	Cys 285	Ser	Thr	Pro
Gln	Phe 290		His	Gly	Val		Asp	Pro	Val	Pro	Glu 300	Val	Ala	Lys	Leu
Thr 305	Val	Arg	Tyr	Lys	Ile 310	Pro	Leu	His	Val	Asp 315	Ala	Cys	Leu	Gly	Gly 320
Phe	Leu	Ile	Val	Phe 325	Met	Glu	Lys	Ala	Gly 330	Tyr	Pro	Leu	Glu	Lys 335	Pro
Phe	Asp	Phe	Arg 340	Val	Lys	Gly	Val	Thr 345	Ser	Ile	Ser	Ala	Asp 350	Thr	His
Lys	Tyr	Gly 355	Tyr	Ala	Pro	Lys	Gly 360	Ser	Ser	Val	Val	Met 365	Tyr	Ser	Asn
Glu	Lys 370	Tyr	Arg	Thr	Tyr	Gln 375	Phe	Phe	Val	Gly	Ala 380	Asp	Trp	Gln	Gly
Gly 385	Val	Tyr	Ala	Ser	Pro 390	Ser	Ile	Ala	Gly	Ser 395	Arg	Pro	Gly	Gly	Ile 400
Ile	Ala	Ala	Cys	Trp 405	Ala	Ala	Leu	Met	His 410	Phe	Gly	Glu	Asn	Gly 415	Tyr
Val	Glu	Ala	Thr 420	Lys	Gln	Ile	Ile	Lys 425	Thr	Ala	Arg	Phe	Leu 430	Lys	Ser

Glu Leu Glu Asn Ile Lys Asn Ile Phe Ile Phe Gly Asp Pro Gln Leu 435 440 445 Ser Val Ile Ala Leu Gly Ser Asn Asp Phe Asp Ile Tyr Arg Leu Ser 450 455 460 Asn Met Met Ser Ala Lys Gly Trp Asn Phe Asn Tyr Leu Gln Phe Pro 470 475 465 Arg Ser Ile His Phe Cys Ile Thr Leu Val His Thr Arg Lys Arg Val 490 485 495 Ala Ile Gln Phe Leu Lys Asp Ile Arg Glu Ser Val Thr Gln Ile Met 500 505 Lys Asn Pro Lys Ala Lys Thr Thr Gly Met Gly Ala Ile Tyr Gly Met 520 : 525 515 Ala Gln Ala Thr Ile Asp Arg Lys Leu Val Ala Glu Ile Ser Ser Val 535 540 530 Phe Leu Asp Cys Leu Tyr Thr Thr Asp Pro Val Thr Gln Gly Asn Gln 550 555

(2) INFORMATION FOR SEQ ID NO:3:

Met Asn Gly Ser Pro Lys Pro Arg 565

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1707 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1704

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATG	CCT	AGC	ACA	GAC	CTT	CTG	ATG	TTG	AAG	GCC	TTT	GAG	ccc	TAC	TTA	48
Met	Pro	Ser	Thr	Asp	Leu	Leu	Met	Leu	Lys	Ala	Phe	Glu	Pro	Tyr	Leu	
1				5					10					15		
GAG	ATT	TTG	GAA	GTA	TAC	TCC	ACA	AAA	GCC	AAG	AAT	TAT	GTA	AAT	GGA	96
Glu	Ile	Leu	Glu	Val	Tyr	Ser	Thr	Lys	Ala	Lys	Asn	Tyr	Val	Asn	Gly	
			20					25					30			
CAT	TGC	ACC	AAG	TAT	GAG	CCC	TGG	CAG	CTA	ATT	GCA	TGG	AGT	GTC	GTG	144
His	Cys	Thr	Lys	Tyr	Glu	Pro	Trp	Gl'n	Leu	Ile	Ala	Trp	Ser	Val	Val	
		35					40					45				
											.*					
TGG	ACC	CTG	CTG	ATA	GTC	TGG	GGA	TAT	GAG	TTT	GTC	TTC	CAG	CCA	GAG	192
Trp		Leu	Leu	Ile	Val	-	Gly	Tyr	Glu	Phe	Val	Phe	Gln	Pro	Glu	
	50					55					60					
*,																
					TTT		•						-			240
Ser	Leu	Trp	Ser	Arg	Phe	Lys	Lys	Lys	Cys		Lys	Leu	Thr	Arg		
65					70					75					80	
		٠											,			
					CGT											288
Met	Pro	Ile	Ile	-	Arg	Lys	Ile	Gln	-	Lys	Leu	Asn	Lys		Lys	
				85					90					95		
																224
					AAC											336
Asp	Asp	Ile		Lys	Asn	Met	Ser		Leu	Lys	Val	Asp	-	Glu	Tyr	
•			100					105					110			
					me					mc*	mc=				~~	20.
GTG	AAA	GCT	TTA	CCC	TCC	CAG	GGT'	CTG	AGC	TCA	TCT	GCT	GTT	TTG	GAG	384

Val Lys Ala Leu Pro Ser Gln Gly Leu Ser Ser Ser Ala Val Leu Glu AAA CTT AAG GAG TAC AGC TCT ATG GAC GCC TTC TGG CAA GAG GGG AGA Lys Leu Lys Glu Tyr Ser Ser Met Asp Ala Phe Trp Gln Glu Gly Arg GCC TCT GGA ACA GTG TAC AGT GGG GAG GAG AAG CTC ACT GAG CTC CTT Ala Ser Gly Thr Val Tyr Ser Gly Glu Glu Lys Leu Thr Glu Leu Leu GTG AAG GCT TAT GGA GAT TTT GCA TGG AGT AAC CCC CTG CAT CCA GAT Val Lys Ala Tyr Gly Asp Phe Ala Trp Ser Asn Pro Leu His Pro Asp ATC TTC CCA GGA CTA CGC AAG ATA GAG GCA GAA ATT GTG AGG ATA GCT Ile Phe Pro Gly Leu Arg Lys Ile Glu Ala Glu Ile Val Arg Ile Ala TGT TCC CTG TTC AAT GGG GGA CCA GAT TCG TGT GGA TGT GTG ACT TCT Cys Ser Leu Phe Asn Gly Gly Pro Asp Ser Cys Gly Cys Val Thr Ser GGG GGA ACA GAA AGC ATA CTC ATG GCC TGC AAA GCA TGT CGG GAT CTG Gly Gly Thr Glu Ser Ile Leu Met Ala Cys Lys Ala Cys Arg Asp Leu 210. GCC TTT GAG AAG GGG ATC AAA ACT CCA GAA ATT GTG GCT CCC CAA AGT Ala Phe Glu Lys Gly Ile Lys Thr Pro Glu Ile Val Ala Pro Gln Ser GCC CAT GCT GCA TTT AAC AAA GCA GCC AGT TAC TTT GGG ATG AAG ATT Ala His Ala Ala Phe Asn Lys Ala Ala Ser Tyr Phe Gly Met Lys Ile GTG CGG GTC CCA TTG ACG AAG ATG ATG GAG GTG GAT GTG AGG GCA ATG Val Arg Val Pro Leu Thr Lys Met Met Glu Val Asp Val Arg Ala Met

AGA AGA GCT ATC TCC AGG AAC ACT GCC ATG CTC GTC TGT TCT ACC CCA Arg Arg Ala Ile Ser Arg Asn Thr Ala Met Leu Val Cys Ser Thr Pro CAG TTT CCT CAT GGT GTA ATA GAT CCT GTC CCT GAA GTG GCC AAG CTG Gln Phe Pro His Gly Val Ile Asp Pro Val Pro Glu Val Ala Lys Leu GCT GTC AAA TAC AAA ATA CCC CTT CAT GTC GAC GCT TGT CTG GGA GGC Ala Val Lys Tyr Lys Ile Pro Leu His Val Asp Ala Cys Leu Gly Gly TTC CTC ATC GTC TTT ATG GAG AAA GCA GGA TAC CCA CTG GAG CAC CCA Phe Leu Ile Val Phe Met Glu Lys Ala Gly Tyr Pro Leu Glu His Pro TTT GAT TTC CGG GTG AAA GGT GTA ACC AGC ATT TCA GCT GAC ACC CAT Phe Asp Phe Arg Val Lys Gly Val Thr Ser Ile Ser Ala Asp Thr His AAG TAT GGC TAT GCC CCA AAA GGC TCA TCA TTG GTG TTG TAT AGT GAC Lys Tyr Gly Tyr Ala Pro Lys Gly Ser Ser Leu Val Leu Tyr Ser Asp AAG AAG TAC AGG AAC TAT CAG TTC TTC GTC GAT ACA GAT TGG CAG GGT Lys Lys Tyr Arg Asn Tyr Gln Phe Phe Val Asp Thr Asp Trp Gln Gly GGC ATC TAT GCT TCC CCA ACC ATC GCA GGC TCA CGG CCT GGT GGC ATT Gly Ile Tyr Ala Ser Pro Thr Ile Ala Gly Ser Arg Pro Gly Gly Ile AGC GCA GCC TGT TGG GCT GCC TTG ATG CAC TTC GGT GAG AAC GGC TAT Ser Ala Ala Cys Trp Ala Ala Leu Met His Phe Gly Glu Asn Gly Tyr

GTT	GAA	GCT	ACC	AAA	CAG	ATC	ATC	AAA	ACT	GCT	CGC	TTC	СТС	AAG	TCA	1296
Val	Glu	Ala	Thr	Lys	Gln	Ile	Ile	Lys	Thr	Aia	Arg	Phe	Leu	Lys	Ser	
			420					425					430		•	
GAA	CTG	GAA	AAT	ATC	AAA	GGC	ATC	ттт	GTT	TTT	GGG	AAT	ccc	CAA	TTG	1344
Glu	Leu	Glu	Asn	Ile	Lys	Gly	Ile	Phe	Val	Phe	Gly	Asn	Pro	Gln	Leu	
		435					440					445				
TCA	СТС	ATT	GCT	CTG	GGA	TCC	CGT	GAT	TTT	GAC	ATC	TAC	CGA	СТА	TCA	1392
Ser	Leu	Ile	Ala	Leu	Gly	Ser	Arg	Asp	.Phe	Asp	Ile	Tyr	Arg	Leu	Ser	
	450		,			455		,			460					
•	_															
AAC	CTG	ATG	ACT	GCT	AAG	GGG	TGG	AAC	TTG	AAC	CAG	TTG	CAG	TTC	CCA	1440
Asn	Leu	Met	Thr	Ala	Lys	Gly	Trp	Asn	Leu	Asn	Gln	Leu	Gln	Phe	Pro	
465					470					475					480	
		•														
ccc	AGT	ATT	CAT	TTC	TGC	ATC	ACA	TTÀ	CTA	CAC	GCC	CGG	AAA	CGA	GTA	1488
Pro	Ser	Ile	His	Phe	Cys	Ile	Thr	Leu	Leu	His	Ala	Arg	Lys	Arg	Val .	
				485					490					495		
GCT	ATA	CAA	TTC	CTA	AAG	GAC	ATT	CGA	GAA	TCT	GTC	ACT	CAA	ATC	ATG	1536
Ala	Ile	Gln	Phe	Leu	Lys	Asp	Ile	Arg	Glu	Ser	Val	Thr	Gln	Ile	Met	•
ŧ _k			500					505					510			
AAG	AAT	CCT	AAA	GCG	AAG	ACC	ACA	GGA	ATG	GGT	GCC	ATC	TAT	GCC	ATG	1584
Lys	Asn	Pro	Lys	Ala	Lys	Thr	Thr	Gly	Met	Gly	Ala	Ile	Tyr	Ala	Met	
		515					520					525				
GCC	CAG	ACA	ACT	GTT	GAC	AGG	AAT	ATG	GTT	GCA	GAA	TTG	TCC	TCA	GTC	1632
Ala	Ġln	Thr	Thr	Val	Asp	Arg	Asn	Met	Val	Ala	Glu	Leu	Ser	Ser	Val	
	530					535					540					
																•
TTC	TTG	GAC	AGC	TTG	TAC	AGC	ACC	GAC	ACT	GTC	ACC	CAG	GGC	AGC	CAG	1680
Phe	Leu	Asp	Ser	Leu	Tyr	Ser	Thr	Asp	Thr	Val	Thr	Gln	Gly	Ser	Gln	
545					550					555					560	

ATG AAT GGT TCT CCA AAA CCC CAC TGA Met Asn Gly Ser Pro Lys Pro His . 1707

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 568 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Pro Ser Thr Asp Leu Leu Met Leu Lys Ala Phe Glu Pro Tyr Leu

1 5 10 15

Glu Ile Leu Glu Val Tyr Ser Thr Lys Ala Lys Asn Tyr Val Asn Gly
20 25 30

His Cys Thr Lys Tyr Glu Pro Trp Gln Leu Ile Ala Trp Ser Val Val
35 40 45

Trp Thr Leu Leu Ile Val Trp Gly Tyr Glu Phe Val Phe Gln Pro Glu
50 55 60

Ser Leu Trp Ser Arg Phe Lys Lys Cys Phe Lys Leu Thr Arg Lys 65 70 75 80

Met Pro Ile Ile Gly Arg Lys Ile Gln Asp Lys Leu Asn Lys Thr Lys 85 90 95

Asp Asp Ile Ser Lys Asn Met Ser Phe Leu Lys Val Asp Lys Glu Tyr
100 105 110

Val Lys Ala Leu Pro Ser Gln Gly Leu Ser Ser Ser Ala Val Leu Glu Lys Leu Lys Glu Tyr Ser Ser Met Asp Ala Phe Trp Gln Glu Gly Arg Ala Ser Gly Thr Val Tyr Ser Gly Glu Glu Lys Leu Thr Glu Leu Leu Val Lys Ala Tyr Gly Asp Phe Ala Trp Ser Asn Pro Leu His Pro Asp Ile Phe Pro Gly Leu Arg Lys Ile Glu Ala Glu Ile Val Arg Ile Ala Cys Ser Leu Phe Asn Gly Gly Pro Asp Ser Cys Gly Cys Val Thr Ser Gly Gly Thr Glu Ser Ile Leu Met Ala Cys Lys Ala Cys Arg Asp Leu Ala Phe Glu Lys Gly Ile Lys Thr Pro Glu Ile Val Ala Pro Gln Ser Ala His Ala Ala Phe Asn Lys Ala Ala Ser Tyr Phe Gly Met Lys Ile Val Arg Val Pro Leu Thr Lys Met Met Glu Val Asp Val Arg Ala Met Arg Arg Ala Ile Ser Arg Asn Thr Ala Met Leu Val Cys Ser Thr Pro Gln Phe Pro His Gly Val Ile Asp Pro Val Pro Glu Val Ala Lys Leu

Ala Val Lys Tyr Lys Ile Pro Leu His Val Asp Ala Cys Leu Gly Gly

305					310					315					320
Phe	Leu	Ile	Val	Phe 325	Met	Glu	Lys	Ala	Gly 330	Tyr	Pro	Leu	Glu	His 335	Pro
Phe	Asp	Phe	Arg 340	Val	Lys	Gly	Val	Thr 345	Ser	Ile	Ser	Ala	Asp 350	Thr	His
Lys	Tyr	Gly 355	T _. yr	Ala	Pro	Lys	Gly 360	Ser	Ser	Leu	Val	Leu 365	Tyr	Ser	Asp
Lys	Lys 370	Tyr	Arg	Asn	Tyr	Gln 375	Phe	Phe	Val	Asp	Thr 380	Asp	Trp	Gln	Gly
Gly 385	Ile	Tyr	Ala	Ser	Pro 390		Ile	Ala	Gly	Ser 395	Arg	Pro	Gly	Gly	Ile 400
Ser	Ala	Ala	.Cys	Trp 405	Ala	Ala	Leu	Met	His 410	Phe	Gly	Glu	Asn	Gly 415	Tyr
Val	Glu	Ala	Thr 420	Lys	Gln	Ile	Ile	Lys 425	Thr	Ala	Arg	Phe	Leu 430	Lys	Ser
Gļu	Leu	Glu 435	Asn	Ile	Lys	Gly	Ile 440	Phe	Val	Phe	Gly	Asn 445	Pro	Gln	Leu
Ser	Leu 450	Ile	Ala	Leu		Ser 455		Asp	Phe	Asp	Ile 460	Туг	Arg	Leu '	Ser
Asn 465	Leu	Met	Thr	Ala	Lys 470	Gly	Trp	Asn	Leu	Asn 475	Ģln	Leu	Gln	Phe	Pro 480
Pro	Ser	Ile _.	His	Phe 485	Cys	Ile	Thr	Leu	Leu 490	His	Ala	Arg	Lys	Arg 495	Val
Ala	Ile	Gln	Phe 500	Leu	Lys	Asp	Ile	Arg 505	Glu	Ser	Val	Thr	Gln 510	Ile	Met

Lys Asn Pro Lys Ala Lys Thr Thr Gly Met Gly Ala Ile Tyr Ala Met 515 520 525

Ala Gln Thr Thr Val Asp Arg Asn Met Val Ala Glu Leu Ser Ser Val 530 535 540

Phe Leu Asp Ser Leu Tyr Ser Thr Asp Thr Val Thr Gln Gly Ser Gln 545 550 555 560

Met Asn Gly Ser Pro Lys Pro His 565

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1629 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1626

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATG GAT TTT GCA CTG GAG CAA TAT CAT AGT GCA AAG GAT TTG TTA ATA

Met Asp Phe Ala Leu Glu Gln Tyr His Ser Ala Lys Asp Leu Leu Ile

1 5 10 15

TTT GAG CTT CGA AAG TTC AAT CCA ATT GTT CTG GTT TCT AGT ACT ATT

96
Phe Glu Leu Arg Lys Phe Asn Pro Ile Val Leu Val Ser Ser Thr Ile
20
25
30

17 / 38

GTT	GCA	ACA	TAC	GTA	CTC	ACC	AAT	CTG	AGA	CAT	ATG	CAT	TTA	GAT	GAA		144
Val	Ala	Thr	Tyr	Val	Leu	Thr	Asn	Leu	Arg	His	Met	His	Leu	Asp	Glu		
		35					40					45					
				AAA				•									192
met	50 50	iie	Arg	Lys	Arg	55	Ser	, IIII	тrр	Pne	Fne 60	IRE	Inr	vaı	ьys		
	30					33					50						
CGT	GTG	CCT	TTC	ATC	AGG	AAA	ATG	ATT	GAC	AAA	CAA	CTA	· AAC	GAA	GTA		240
Arg	Val	Pro	Phe	Ile	Arg	Lys	Met	Ile	Asp	Lys	Gln	Leu	Asn	Glu	Val		
65					70		-			75					80		
			,												٠		
AAG	GAC	GAG	CTT	GAG	AAA	AGT	CTG	AGA	ATT	GTG	GAT	CGA	AGC	ACC	GAA		288
Lys	Asp	Glu	Leu	Glu	Lys	Ser	Leu	Arg	Ile	Val	Asp	Arg	Ser	Thr	Glu		
				85					90					95			
m N C	mmo		202	N.M.C	CCR	200	C a m	mc 'n	C m m	CCB	202	1 Om	GD D	C.T.R	com.		226
				ATC Ile					•								336
ıyı	riie	1111	100	116	FIU	361	птэ	105	vai	сту	AIG	1111	110	vai	rea	,	
			100					103					110				
CGC	СТТ	GCT	GCC	ATC	TAT	GAT	GAT	TTG	GAA	GGA	CCA	GCT	TTT	TTG	GAA		384
Arg	Leu	Ala	Ala	Ile	Tyr	Asp	Asp	Leu	Glu	Gly	Pro	Ala	Phe	Leu	Glu		
		115					120					125					
			,	**				,									
GGA	AGA	GTA	TCT	GGA	GCA	GTC	TTC	AAT	AGA	GAA	GAC	GAC	AAG	GAC	GAA		432
Gly	Arg	Val	Ser	Gly	Ala	Val	Phe	Asn	Arg	Glu	Asp	Asp	Lys	Asp	Glu		
	130					135					140						
200				63.6	63.6		mmo.						•••				400
				GAG													480
145	GIU	Met	ıyr	Glu	150	vaı	rne	GIÀ	гÀ2	155	ALA	Trp	Inr	ASI	160		
-73					130					100		•			100		
CTT	TGG	CCA ·	AAA	TTG	TTC	CCT	GGA	GTG	AGA	ATC	ATG	GAG	GCT	GAA	GTT		528
				Leu									-				
	-		-	165			-		170					175			

GTT	CGC	ATG	TGT	TGT	AAT	ATG	ATG	AAT	GGA	GAT	TCG	GAG	ACA	TGT	GGA	576
Val	Arg	Met	Cys	Cys	Asn	Met	Met	Asn	Gly	Asp	Ser	Glu	Thr	Cys	Gly	
			180					185					190			
ACT	ATG	TCA	ACT	GGT	GGA	TCC	ATT	TCA	ATT	CTT	TTG	GCG	TGC	CTG	GCT	624
Thr	Met	Ser	Thr	Gly	Gly	Ser	Ile	Ser	Ile	Leu	Leu	Ala	Cys	Leu	Ala	
		195			•		200					205				
CAT	CGT	AAT	CGT	CTT	TTG	AAA	AGA	GGA	GAA	AAG	TAC	ACA	GAG	ATG	ATT	672
His	Arg	Asn	Arg	Leu	Leu	Lys	Arg	Gly	Glu	Lys	Tyr	Thr	Glu	Met	Ile	
,	210					215		¥.			220					
GTC	CCA	TCA	TCC	GTC.	CAT	GCA	GCG	TTC	TTC	AAA	GCT	GCC	GAA	TGT	TTC	720
Val	Pro	Ser	Ser	Val	His	Ala	Ala.	Phe	Phe	Lys	Ala	Ala	Glu	Cys	Phe	
225	•				230			•	•	235					240	
CGT	ATC	AAA	GTT	CGC	AAG	ATT	CCA	GTT	GAT	CCT	GTT	ACT	TTC	AAA	GTA	768
Arg	Ile	Lys	Val	Arg	Lys	Ile	Pro	Val	Asp	Pro	Val	Thr	Phe	Lys	Val	
				245					250					255		
GAC	СТТ	GTC	AAA	ATG	AAA	GCC	GCA	ATT	AAC	AAG	AGA	ACA	TGT	ATG	TTA	816
Asp	Leu	Val	Lys	Met	Lys	Ala	Ala	Ile	Asn	Lys	Arg	Thr	Cys	Met	Lęu	
			260					265					270			
				CCA												864
Val	Gly	Ser	Ala	Pro	Asn	Phe	Pro	Phe	Gly	Thr	Val	Asp	Asp	Ile	Glu.	
	•	275					280					285				
GCT	ATT	GGA	CAG	CTA	GGA	CTT	GAA	TAT	GAC	ATC	CCA	GTT	CAT	GTT	GAT	, 912
Ala	Ile	Gly	Gln	Leu	Gly	Leu	Glu	Tyr	Asp	Ile	Pro	Val	His	Val	Asp	
	290.					295					300					
				GGT												960
Ala	Cys	Leu	Gly	Gly	Phe	Leu	Leu	Pro	Phe	Leu	Glu	Glu	Asp	Glu	Ile	
305					310					315					320	
CGC	TAT	GAC	TTC	CGT	GTT	CCT	GGT	GŢA	TCT	TCG	ATT	TCT	GCA	GAT	AGT	1008

	Arg	Tyr	Asp	Phe	Arg	Val	Pro	Gly	Val	Ser	Ser	Ile	Ser	Ala	Asp	Ser	
					325					330					335		
									•								
	CAC	AAA	TAC	GGA	CTC	GCT	CCA	AAG	GGG	TCA	TCA	GTT	GTT	CTT	TAT	CGC	1056
	His	Lys	Tyr	Gly	Leu	Ala	Pro	Lys	Gly	Ser	Ser	Val	Val	Leu	Tyr	Arg	
				340			-		345					350			
	AAT	AAG	GAA	CTT	CTT	CAT	AAT	CAG	TAC	TTC	TGT	GAT	GCT	GAT	TGG	CAA	1104
	Asn	Lys	Glu	Leu	Leu	His	Asn	Gln	Tyr	Phe	Cys	Asp	Ala	Asp	Trp	Gln	
			355					360					365				•
		•						•				,					
	GGA	GGT	ATC	TAT	GCA	TCG	GCT	ACT	ATG	GAA	GGA	TCA	CGC	GCT	GGG	CAC	1152
	Gly	Gly	Ile	Tyr	Ala	Ser	Ala	Thr	Met	Glu	Gly	Ser	Arg	Ala	Gly	His	
		370					375					380					
	-																
	AAC	ATT	GCA	CTT	TGC	TGG	GCC	GCA	ATG	CTT	TAT	CAC	GCT.	CAG	GAA	GGA	1200
٠	Asn	Ile	Ala	Leu	Cys	Trp	Ala	Ala	Met	Leu	Tyr	His	Ala	Gln	Glu	Gly	
	385					390			:		395					400	
	TAC	AAG	GCC	AAT	GCT	AGA	AAG	ATT	GTT	GAC	ACT	ACA	AGA	AAG	ATT	AGA	1248
	Tyr	Lys	Ala	Asn	Ala	Arg	Lys	Ile	Val	Asp	Thr	Thr	Arg	Lys	Ile	Arg	
					405					410					415		
																•	
	AAŢ	GGA	CTT	TCA	AAC	ATT	AAG	GGA	ATC	AAA	TTA	CAA	GGG	CCA	AGT	GAT	1296
	Asn	Gly	Leu	Ser	Asn	Ile	Lys	Gly	Ile	Lys	`Leu	Gln	Gly	Pro	Ser	Asp	
				420					425					430	•		
	GTT	TGT	ATT	GTT	AGC	TGG	ACA	ACC	AAT	GAT	GGA	GTT	GAA	CTC	TAC	AGA	1344
	Val	Cys	Ile	Val	Ser	Trp	Thr	Thr	Asn	Asp	Gly	Val	Glu	Leu	Tyr	Arg	
			435					440					445				
						•								•			
	TTC	CAT	AAC	TTC	ATG	AAG	GAA	AAA	CAT	TGG	CAA	CTG	AAT	GGA	CTT	CAA	1392
	Phe	His	Asn	Phe	Met	Lys	Glu	Lys	His	Trp	Gln	Leu	Asn	Gly	Leu	Gln	
		450					455					460					
	TTC	CCA	GCT	GGA	GTT	CAT	ATC	ATG	GTC	ACT	ATG	AAT	CAT	ACT	CAT	CCT	1440
	Phe	Pro	Ala	Ġly	Val	His	Ile	Met	Val	Thr	Met	Asn	His	Thr	His	Pro	
				_													

PCT/US98/20365

475 480 470 465 GGA CTC GCT GAA GCT TTC GTC GCC GAT TGC AGA GCT GCA GTT GAG TTT 1488 Gly Leu Ala Glu Ala Phe Val Ala Asp Cys Arg Ala Ala Val Glu Phe 490 485 GTC AAA AGC CAC AAA CCA TCG GAA TCC GAC AAG ACA AGT GAA GCA GCC 1536 Val Lys Ser His Lys Pro Ser Glu Ser Asp Lys Thr Ser Glu Ala Ala 510 505 500 ATC TAC GGA CTT GCT CAA AGT ATT CCA GAC CGA TCG CTT GTT CAC GAG 1584 Ile Tyr Gly Leu Ala Gln Ser Ile Pro Asp Arg Ser Leu Val His Glu 520 525 - 515 TTT GCT CAC AGC TAT ATC GAT GCT GTT TAT GCT TTA ACA GAG 1626 Phe Ala His Ser Tyr Ile Asp Ala Val Tyr Ala Leu Thr Clu 535 540 530 1629 TGA

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 542 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Asp Phe Ala Leu Glu Gln Tyr His Ser Ala Lys Asp Leu Leu Ile 1 5 10 15

Phe Glu Leu Arg Lys Phe Asn Pro Ile Val Leu Val Ser Ser Thr Ile 20 25 30

Val	Ala	Thr	Tyr	Val	Leu	Thr	Asn	Leu	Arg	His	Met	His	Leu	Asp	Glu
		35					40					45	-		
Met	Glv	Ile	Ara	Lvs	Arq	Leu	Ser	Thr	Trp	Phe	Phe	Thr	Thr	Val	Lys
	50			•	_	55			_		60				
	30														
					_	_			_	_	- 1			61	**- 1
Arg	Val	Pro	Phe	Ile		Lys	Met	TTE	Asp		Gln	Leu	Asn	GIU	
65					70					75					80
••															
Lys	Asp	Glu	Leu	Glu	Lys	Ser	Leu	Arg	Ile	Val	Asp	Arg	Ser	Thr	Glu
				85					90					95	
Tur	Phe	Thr	Thr	Ile	Pro	Ser	His	Ser	Val	Glv	Arg	Thr	Glu	Val	Leu
-1-			100					105		•	_		110		
			100					100							
													_,	•	01
Arg	Leu	Ala	Ala	Ile	Tyr	Asp		Leu	Glu	GLy	Pro	Ala	Pne	Leu	GIU
		115					120					125			
											•				
Gly	Arg	Val	Ser	Gly	Ala	Val	Phe	Asn	Arg	Glu	Asp	Asp	Lys	Asp	Glu
	130					135					140				
Ara	Glu	Met	Tvr	Glu	Glu	Val	Phe	Gly	Lys	Phe	Ala	Trp	Thr	Asn	Pro
145			- 4		150			_	-	155		_			160
Tán															
_	_	_		_	51	5	61	**- 1	N '		14	C1		C1	Va I
Leu	Trp	Pro	Lys		Pne	Pro	GTÀ	vaı		ile	Met	GIU	Ald		Val
				165					170				•	175	
			٠,												
Val	Arg	Met	Cys	Cys	Asn	Met	Met	Asn	Gly	Asp	Ser	Glu	Thr	Cys	Gly
			180					185					190		
											•				
Thr	Met	Ser	Thr	Gly	Gly	Ser	Ile	Ser	Ile	Leu	Leu	Ala	Cys	Leu	Ala
		195		•	-		200					205			
		1,,							-						
	_	_	_		T	T	3	C1 -	C1	T	70	m L	C1	Mot	Tla
His		Asn	Arg	Leu	ьeu		Arg	GTÀ	GIU	ьys	Tyr	rnr	GIU	met	TTG
	210					215					220				

Val	Pro	Ser	Ser	Val	His	Ala	Ата	Phe	Pne		Ala	Ala	GIu	Cys	
225					230					235					240
Ara	Tle	Lvs	Va l	Ara	Lvs	Ile	Pro	Val	Asp	Pro	Val	Thr	Phe	Lys	Val
9		2,0		245	-,-				250					255	
Asp	Leu	Val	Lys	Met	Lys	Ala	Ala	Ile	Asn	Lys	Arg	Thr	Cys	Met	Leu
			260					265					270		:
Val	Gly	Ser	Ala	Pro	Asn	Phe	Pro	Phe	Gly	Thr	Val	Asp	Asp	Ile	Glu
	•	275					280					285	•		
						٠									
Ala	Ile	Gly	Gln	Leu	Gly		Glu	Tyr	Asp	Ile		Val	His	Val	Asp
	290		•			295					300	•			
	_	_	01	0 1	DL -	7	T	D	Dha	T 0	Cl.	Clu	N an	Cl.	Tla
	Cys	Leu	GIÀ	GIY		ren	Leu	PIO	File	315	GIU	GIU	wsb	GIU	320
305					310			7		313					320
Ara	Tvr	Asp	Phe	Ara	Val	Pro	Gly		Ser	Ser	Ile	Ser	Ala	Asp	Ser
	-1-			325			•		330					335	
His	Lys	Tyr	Gly	Leu	Ala	Pro	Lys	Gly	Ser	Ser	Val	Val	Leu	Tyr	Arg
			340					345					350		
;															
Asn	Lys	Glu	Leu	Leu	His	Asn	Gln	Tyr	Phe	Cys	Asp	Ala	Asp	Trp	Gln
		355					360					3 65	·		
Gly	Gly	Ile	Tyr	Ala	Ser	Ala	Thr	Met	Glu	Gly		Arg	Ala	Gly	His
	370			÷		375					380				
			_			21-	21-	Mah	7		U: a	71-	Cl n	Cl v	Clv
	Ile	Ala	Leu	Cys		Ата	Ala	Met	Leu	395	uis	Ala	GIII	GIU	400
385					390					393					300
Tvr	Lvs	Δla	Asn	Ala	Ara	Lvs	Ile	Val	Asp	Thr	Thr	Arg	Lys	Ile	Arg
- 1 -	-,,,			405					410			,	-	415	,
Asn	Gly	Leu	Ser	Asn	Ile	Lys	Gly	Ile	Lys	Leu	Gln	Gly	Pro	Ser	Asp

420 425 430

Val Cys Ile Val Ser Trp Thr Thr Asn Asp Gly Val Glu Leu Tyr Arg
435 440 445

Phe His Asn Phe Met Lys Glu Lys His Trp Gln Leu Asn Gly Leu Gln 450 455 460

Phe Pro Ala Gly Val His Ile Met Val Thr Met Asn His Thr His Pro 465 470 475 480

Gly Leu Ala Glu Ala Phe Val Ala Asp Cys Arg Ala Ala Val Glu Phe
485 490 495

Val Lys Ser His Lys Pro Ser Glu Ser Asp Lys Thr Ser Glu Ala Ala 500 505 510

Ile Tyr Gly Leu Ala Gln Ser Ile Pro Asp Arg Ser Leu Val His Glu 515 520 525

Phe Ala His Ser Tyr Ile Asp Ala Val Tyr Ala Leu Thr Glu 530 535 540

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1770 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..1767

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATG	AGT	GGA	GTA	TCA	AAT	AAA	ACA	GTA	TCA	ATT	AAT	GGT	TGG	TAT	GGC	48
Met	Ser	Gly	Val	Ser	Asn	Lys	Thr	Val	Ser	Ile	Asn	Gly	Trp	Tyr	Gly	
1				5					10					15		
			CAT													96
Met	Pro	Ile	His	Leu	Leu	Arg	Glu	Glu	Gly	Asp	Phe	Ala	Gln	Phe	Met	
			20		•			25					30			
																144
			ATC													144
Ile	Leu		Ile	Asn	Glu	Leu		Ile	Ala	Ile	His		Tyr	Leu	Arg	
		35					40					45				
						3 M.C	mmc	220	C N M	m a m	mm.c	ጥጥጥ	CTC	እጥር	ጥጥጥ	. 192
			TGG					•								. 132
Asn		Pro	Trp	Tyr	Asn		Leu	rys.	ASP	ıyı	60 Eeu	File	Vai	116	THE	
	50					55		•			00					
ጥርጥ	ተልር	AAG	СТА	ата	AGT	ААТ	ттт	ттт	ТАТ	CTG	TTG	AAA	GTT	TAT	GGG	240
			Leu													
65	1 7 1	Буз	nc u		70	•••			-1-	75		•		<u>-</u>	80	
03																•
CCG	GTG	AGG	TTA	GCA	GTG	AGA	ACA	TAC	GAG	CAT	AGT	TCC	AGA	AGA	TTG	288
			Leu		_											
		-		85					90				-	95		
ттт	CGT	TGG	TTA	TTG	GAC	TCA	CCA	TTT	TTG	AGG	GGT	ACC	GŢA	GAA	AAG	336
Phe	Arg	Trp	Leu	Leu	Asp	Ser	Pro	Phe	Leu	Arg	Gly	Thr	Val	Glu	Lys	
			100					105					110			
GAA	GTC	ACA	AAG	GTC	АЛА	CAA	TCG	ATC	GAA	GAC	GAA	CTA	ATT	AGA	TCG	384
Glu	Val	Thr	Lys	Val	Lys	Gln	Ser	Ile	.Glu	Asp	Glu	Leu	Ile	Arg	Ser	
		115					120					125				
															CCT	432
Asp	Ser	Gln	Leu	Met	Asn	Phe	Pro	Gln	Leu	Pro	Ser	Asn	Gly	Ile	Pro	

	130					133					140						•
CAG	GAT	GAT	GTT	АТТ	GAA	GAG	СТА	ААТ	AAA	TTG	AAC	GAC	TTG	АТА	CCA		480
			Val												•		
145	_				150				-1-	155	•••				160		
CAT	ACC	CAA	TGG	AAG	GAA	GGA	AAG	GTC	TCT	GGT	GCC	GTT	TAC	CAC	GGT		528
His	Thr	Gln	Trp	Lys	Glu	Gly	Lys	Val	Ser	Gly	Ala	Val	Tyr	His	Gly		
				165					170					175			
GGT	GAT	GAT	TTG	ATC	CAC	TTA	CAA	ACA	ATC	GCA	TAC	GAA	AAA	TAT	TGC		576
Gly	Asp	Asp	Leu	Ile	His	Leu	Gln	Thr	Ile	Ala	Tyr	Glu	Lys	Tyr	Cys		
			180				•	185					190				
GTT	GCC	AAT	CAA	TTA	CAT	CCC	GAT	GTC	TTT	CCT	GCC	GTA	CGT	AAA	ATG		624
Val	Ala	Asn	Gln	Leu	His	Pro	Asp	Val	Phe	Pro	Ala	Val	Arg	Lys	Met		
		195					200				•	205					
								:									
GAA	TCC	GAA	GTG	GTT	TCT	ATG	GTT	TTA	AGA	ATG	TTT	AAT	GCC	CCT	TCT	•	672
Glu	Ser	Glu	Val	Val	Ser	Met	Val	Leu	Arg	Met	Phe	Asn	Ala	Pro	Ser		
	210					215					220						
GAT	ACA	GGT	TGT	GGT	ACC	ACA	ACT	TCA	GGT	GGT	ACA	GAA	TCC	TTG	CTT		720
Asp	Thr	Gly	Cys	Gly	Thr	Thr	Thr	Ser	Gly	Gly	Thr	Glu	Ser	Leu	Leu		
225					230					235					240		
									•					•			
			CTG		•												768
Leu	Ala	Cys	Leu	Ser	Ala	Lys	Met	Tyr	Ala	Leu	His	His	Arg	Gly	Ile		
			-	245				•	250					255			
			GAA														816
Thr	Glu	Pro	Glu	Ile	Ile	Ala	Pro		Thr	Ala	His	Ala	Gly	Phe	Asp		
			260					265					270				
		•	TAT														864
Lys	Ala		Tyr	Tyr	Phe	Gly		Lys	Leu	Arg	His		Glu	Leu	Asp		
		275					280					285					

280

275

CCA	ACG	ACA	TAT	CAA	GTG	GAC	СТG	GGA	AAA	GTG	AAA	AAA	TTC	ATC	AAT	912
Pro	Thr	Thr	Tyr	Gľn	Val	Asp	Leu	Gly	Lys	Val	Lys	Lys	Phe	Ile	Asn	
	290					295					300					
AAG	AAC	ACA	ATT	TTA	CTG	GTC	GGT	TCC	GCT	CCA	AAC	TTT	CCT	CAT	GGT	960
Lys	Asn	Thr	Ile	Leu	Leu	Val	Gly	Ser	Ala	Pro	Asn	Phe	Pro	His	Gly	
305					310					315					320	
	,															
ATT	GCC	GAT	GAT	ATT	GAA	GGA	TTG	GGT	AAA	ATA	GCA	CAA	AAA	TAT	AAA	1008
Ile	Ala	Asp	Asp	Ile	Glu	Gly	Leu	Gly	Lys	Ile	Ala	Gln	Lys	Tyr	Lys	
				325					330					335		
CTT	CCT	TTA	CAC	GTC	GAC	AGT	TGT	CTA	GGT	TCC	TTT	ATT	GTT	TCA	TTT	1056
Leu	Pro	Leu	His	Val	Asp	Ser	Cys	Leu	Gly	Ser	Phe	Ile	Val	Ser	Phe	
			340					345					350			
ATG	GAA	AAG	GCT	GGT	TAC	AAA	AAT	CTG	CCA	TTA	CTT	GAC	TTT	AGA	GTC	1104
Met	Glu	Lys	Ala	Gly	Tyr	Lys	Asn	Leu	Pro	Leu	Leu	Asp	Phe	Arg	Val	
		355					360					365				
CCG	GGA	GTC	ACC	TCA	ATA	TCA	TGT	GAC	ACT	CAT	AAA	TAT	GGA	TTT	GCA	1152
Pro	Gly	Val	Thr	Ser	Ile	Ser	Cys	Asp	Thr	His	Lys	Tyr	Gly	Phe	Ala	
1	370					375					380					
CCA	AAA	GGC	TCG	TCA	GTT	ATA	ATG	TAT	AGA	AAC	AGC	GAC	TTA	CGA	ATG	1200
Pro	Lys	Gly	Ser	Ser	Val	Ile	Met	Tyr	Arg	Asn	Ser	Asp	Leu	Arg	Met	•
385					390					395					400	
CAT	CAG	TAT	TAC	GTA	AAT	CCT	GCT	TGG	ACT	GGC	GGG	TTA	TAT	GGC	TCT	1248
His	Gln	Tyr	Tyr	Val	Asn	Pro	Ala	Trp	Thr	Gly	Gly	Leu	Tyr	Gly	Ser	
				405					410					415		
CCT	ACA	TTA	GCA	GGG	TCC	AGG	CCT	GGT	GCT	ATT	GTC	GTA	GGT	TGT	TGG	1296
Pro	Thr	Leu	Ala	Gly	Ser	Arg	Pro	Gly	Ala	Ile	Val	Val	Gly	Cys	Trp	
			420					425					430			

GCC	АСТ	ATG	GTC	AAC	ATG	GGT	GAA	AAT	GGG	TAC	ATT	GAG	TCG	TGC	CAA	1344
									Gly							
7144		435				•	440		_	_		445				
		100														*
GAA	ATA	GTC	GGT	GCA	GCA	ATG	AAG	TTT	AAA	AAA	TAC	ATC	CAG	GAA	AAC	1392
Glu	Ile	Val	Gly	Ala	Ala	Met	Lys	Phe	Lys	Lys	Tyr	Ile	Gln	Glu	Asn	
	450		_			455					460					
ATT	CCA	GAC	CTG	AAŢ	ATA	ATG	GGC	AAC	ССТ	AGA	TAT	TCA	GTC	ATT	TCA	1440
Ile	Pro	Asp	Leu	Asn	Ile	Met	Gly	Asn	Pro	Arg	Tyr	Ser	Val	Ile	Ser	
465					470					475					480	
TTT	TCT	TCA	AAG	ACC	TTG	AAC	ATA	CAC	GAA	CTA	TCT	GAC	AGG	TTG	TCC	1488
Phe	Ser	Ser	Lys	Thṛ	Leu	Asn	Ile	His	.Glu	Leu	Ser	Asp	Arg	Leu	Ser	
				485					490					495		
AAG	AAA	GGC	TGG	CAT	TTC	AAT	GCC	CTA	CAA	AAG	CCG	GTT	GCA	CTA	CAC	1536
Lys	Lys	Gly	Trp	His	Phe	Asn	Ala	Leù	Gln	Lys	Pro	Val	Ala	Leu	His	
			500					505					510			
ATG	GCC	TTC	ACG	AGA	TTG	AGC	GCT	CAT	GTT	GTG	GAT	GAG	ATC	TGC	GAC	1584
Met	Ala	Phe	Thr	Arg	Leu	Ser	Ala	His	Val	Val	Asp	Glu	Ile	Cys	Asp	
		515					520					525		,		
ATT	TTA	CGT	ACT	ACC	GTG	CAA	GAG	TTG	AAG	AGC	GAA	TCA	AAT	TCT	AAA	1632
Ile	Leu	Arg	Thr	Thr	Val	Gln	Glu	Leu	Lys	Ser	Glu	Ser	Asn	Ser	Lys	
	530					535					540					
CCA	TCC	CCA	GAC	GGA	ACT	AGC	GCT	CTA	TAT	GGT	GTC	GCC	GGG	AGC	GTT	1680
Pro	Ser	Pro	Asp	Gly	Thr	Ser	Ala	Leu	Tyr	Gly	Val	Ala	Gly	Ser	Val	
545	,				550)				555					560	
ААА	ACI	GCI	GGC	GTI	GCA	GAC	AAA	TTG	ATT	GTG	GGA	TTC	CTA	GAC	GCA	1728
Lys	Thr	Ala	Gly	val	Ala	Asp	Lys	Leu	Ile	Val	Gly	Phe	Leu	Asp	Ala	
				565	5				570)				575	i	
TTA	A TAC	C AAC	TTG	GGI	CCF	A GGA	GAG	GAT	ACC	GCC	ACC	: AAG	TAG	;		1770

Leu Tyr Lys Leu Gly Pro Gly Glu Asp Thr Ala Thr Lys 580 585

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 589 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ser Gly Val Ser Asn Lys Thr Val Ser Ile Asn Gly Trp Tyr Gly

1 5 10 15

Met Pro Ile His Leu Leu Arg Glu Glu Gly Asp Phe Ala Gln Phe Met 20 25 30

Ile Leu Thr Ile Asn Glu Leu Lys Ile Ala Ile His Gly Tyr Leu Arg
35 40 45

Asn Thr Pro Trp Tyr Asn Met Leu Lys Asp Tyr Leu Phe Val Ile Phe 50 55 60

Cys Tyr Lys Leu Ile Ser Asn Phe Phe Tyr Leu Leu Lys Val Tyr Gly
65 70 75 80

Pro Val Arg Leu Ala Val Arg Thr Tyr Glu His Ser Ser Arg Arg Leu 85 90 95

Phe Arg Trp Leu Leu Asp Ser Pro Phe Leu Arg Gly Thr Val Glu Lys
100 105 110

Glu Val Thr Lys Val Lys Gln Ser Ile Glu Asp Glu Leu Ile Arg Ser

											:				
		115					120					125			
Asp	Ser 130	Gln	Leu	Met	Asn	Phe 135	Pro	Gln	Leu	Pro	Ser 140	Asn	Gly	Ile	Pro
Gln 145	Asp	Asp	Val	Ile	Glu 150	Glu	Leu	Asn	Lys	Leu 155	Asn	Asp	Leu	Ile	Pro 160
His	Thr	Gln	Trp	Lys 165	Glu	Gly	Lys	Val	Ser 170	Gly	Ala	Val	Tyr	His 175	Gly
Gly	Asp	Asp	Leu 180	Ile	His	Leu	Gln	Thr 185	Ile	Ala	Tyr	Glu	Lys 190	Tyr	Cys
Val	Ala	Asn 195	Gln	Leu	His	Pro	Asp 200	Val	Phe	Pro	Ala	Val 205	Arg	Lys	Met
Glu	Ser 210	Glu	Val	Val	Ser	Met 215	Val	Leū	Arg	Met	Phe 220	Asn	Ala	Pro	Ser
Asp 225	Thr	Gly	Cys	Gly	Thr 230	Thr	Thr	Ser	Gly	Gly 235	Thr	Glu	Ser	Leu	Leu 240
Lęu	Ala	Cys	Leu	Ser 245	Ala	Lys	Met	Tyr	Ala 250	Leu	His	His	Arg	Gly 255	Ile
Thr	Glu	Pro	Glu 260	Ile	Ile	Ala	Pro	Val 265		Ala	His	Ala	Gly 270	Phe	Asp
Lys	Ala	Ala 275	Туг	Tyr	Phe	Gly	Met 280	Lys	Leu	Arg	His	Val 285	Glu	Leu	Asp
Pro	Thr 290	Thr	Tyr	Gln	Val	Asp 295	Leu	Gly	Lys	Val	Lys 300	Lys	Phe	Ile	Asn
Lys	Asn	Thr	Ile	Leu	Leu	Val	Gly	Ser	Ala	Pro	Asn	Phe	Pro	His	Gly

Ile Ala Asp Asp Ile Glu Gly Leu Gly Lys Ile Ala Gln Lys Tyr Lys

			,	325					330					335	
Leu	Pro	Leu	His 340	Val	Asp	Ser	Cys	Leu 345	Gly	Ser	Phe	Ile	Val 350	Ser	Phe
Met	Glu	Lys 355	Ala	Gly	Tyr	Lys	Asn 360	Leu	Pro	Leu	Leu	Asp 365	Phe	Arg	Val
Pro	Gly 370	Val	Thr	Ser	Ile	Ser 375		Asp	Thr	His	Lys 380	Tyr	Gly	.Phe	Ala
Pro 385	Lys	Gly	Ser	Ser	Val 390	Ile	Met	Tyr	Arg	Asn 395	Ser	Asp	Leu	Arg	Met 400
His	Gln	Туr	Tyr	Val 405	Asn	Pro	Ala		Thr 410	Gly	Gly	Leu	Tyr	Gly 415	Ser
Pro	Thr	Leu	Ala 420	Gly	Ser	Arg	Pro	Gly 425	Ala	Ile	Val	Val	Gly 430	Cys	Trp
Ala	Thr	Met 435	Val	Asn	Met	Gly	Glu 440	Asn	Gly	Tyr	Ile	Glu 445	Ser	Cys	Gln
Glu	Ile 450	Val	Gly	Ala	Ala	Met 455	Lys	Phe	Lys	Lys ·	Tyr 460	Ile	Gl'n	Glu	Asn
11e 465	Pro	Asp	Leu		Ile 470	Met	Gly	Asn			Tyr				Ser 480
Phe	Ser	Ser	Lys	Thr 485	Leu	Asn	Ile	His	Glu 490	Leu	Ser	Asp	Arg	Leu 495	Ser
Lys	Lys	Gly _.	Trp 500	His	Phe	Asn	Ala	Leu 505	Gln	Lys	Pro	Val	Ala 510	Leu	His

Met Ala Phe Thr Arg Leu Ser Ala His Val Val Asp Glu Ile Cys Asp 515 520 525

Ile Leu Arg Thr Thr Val Gln Glu Leu Lys Ser Glu Ser Asn Ser Lys
530 535 540

Pro Ser Pro Asp Gly Thr Ser Ala Leu Tyr Gly Val Ala Gly Ser Val 545 550 555 560

Lys Thr Ala Gly Val Ala Asp Lys Leu Ile Val Gly Phe Leu Asp Ala 565 570 575.

Leu Tyr Lys Leu Gly Pro Gly Glu Asp Thr Ala Thr Lys
580 585

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1467 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1464
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATG CCT AGC ACA GAC CTT CTG ATG TTG AAG GCC TTT GAG CCC TAC TTA 48

Met Pro Ser Thr Asp Leu Leu Met Leu Lys Ala Phe Glu Pro Tyr Leu

1 5 10 15

GAG ATT TTG GAA GTA TAC TCC ACA AAA GCC AAG AAT TAT GTA AAT GGA

Glu	Ile	Leu	Glu	Val	Tyr	Ser	Thr	Lys	Ala	Lys	Asn	Tyr	Val	Asn	Gly	
			20					25					30			•
				m » m	CA C	000	mcc.	CAC	CTA	200	CCA	ጥርር	አ <i>ር</i> ጥ	CTC	CTC	144
			AAG													144
HIS	Cys	35	Lys	lyr.	GIU	PLO	40	GIII	neu	116	мта	45	361	Val	Val	
		33					40					1.5				
TGG	ACC	CTG	CTG	ATA	GTC	TGG	GGA	TAT	GAG	TTT	GTC	TTC	CAG	CCA	GAG	192
Trp	Thr	Leu	Leu	Ile	Val	Trp	Gly	Tyr	Glu	Phe	Val	Phe	Gln	Pro	Glu	
	50					55					60					•
AGT	TTA	TGG	TCA	AGG	TTT	AAA	AAG	AAA	TGT	TTT	AAG	CTC	ACC	AGG	AAG	240
Ser	Leu	Trp	Ser	Arg	Phe	Lys	Lys	Lys	Cys	Phe	Lys	Leu	Thr	Arg	Lys	
65					70					75					80	
			ATT													288
Met	Pro	Ile	Ile		Arg	Lys	Ile	Gln		Lys	Leu	Asn	Lys		Lys	
				85					90					95		
		3 mm	1 C C	220	220	እመሮ	mc x	TTTC	CTC	ת ת ת	CTC	CAC	ממג	CAG	ጥልጥ	336
			AGC Ser													330
ASP	Asp	116	100	гуз	ASII	Mec	361	105	пей	цуз	401	nop	110	014	- ,	
			100					103			e					
GTG	AAA	GCT	TTA	CCC	TCC	CAG	GGT	CTG	AGC	TCA	TCT	GCT	GTT	TTG	GAG	384
Val	Lys	Ala	Leu	Pro	Ser	Gln	Gly	Leu	Ser	Ser	Ser	Ala	Val	Leu	Glu	
		115					120					125	-	•		
AAA	CTT	AAG	GAG	TAC	AGC	TCT	ATG	GAC	GCC	TTC	TGG	CAA	GAG	GGG	AGA	432
Lys	Leu	Lys	Glu	Tyr	Ser	Ser	Met	Asp	Ala	Phe	Trp	Gln	Glu	Gly	Arg	
	130					135					140					
GCC	TCT	GGA	ACA	GTG	TAC	AGT	GGG	GAG	GAG	AAG	CTC	ACT	GAG	CTC	CTT	480
Ala	Ser	Gly	Thr	Vál	Tyr	Ser	Gly	Glu	Glu	Lys	Leu	Thr	Glu	Leu	Leu	
145					150					155					160	
																500
			TAT													528
Val	Tuc	ת 1 ת	ጥ፡፡	GIV	ASD	PNE	ДΙА	Trn	SAT	ASD	PTO.	ьец	H1S	rro	ASD	

ATC TTC CCA GGA CTA CGC AAG ATA GAG GCA GAA ATT GTG AGG ATA GCT Ile Phe Pro Gly Leu Arg Lys Ile Glu Ala Glu Ile Val Arg Ile Ala TGT TCC CTG TTC AAT GGG GGA CCA GAT TCG TGT GGA TGT GTG ACT TCT Cys Ser Leu Phe Asn Gly Gly Pro Asp Ser Cys Gly Cys Val Thr Ser GGG GGA ACA GAA AGC ATA CTC ATG GCC TGC AAA GCA TGT CGG GAT CTG Gly Gly Thr Glu Ser Ile Leu Met Ala Cys Lys Ala Cys Arg Asp Leu GCC TTT GAG AAG GGG ATC AAA ACT CCA GAA ATT GTG GCT CCC CAA AGT Ala Phe Glu Lys Gly Ile Lys Thr Pro Glu Ile Val Ala Pro Gln Ser GCC CAT GCT GCA TTT AAC AAA GCA GCC AGT TAC TTT GGG ATG AAG ATT Ala His Ala Ala Phe Asn Lys Ala Ala Ser Tyr Phe Gly Met Lys Ile GTG CGG GTC CCA TTG ACG AAG ATG ATG GAG GTG GAT GTG AGG GCA ATG Val Arg Val Pro Leu Thr Lys Met Met Glu Val Asp Val Arg Ala Met AGA AGA GCT ATC TCC AGG AAC ACT GCC ATG CTC GTC TGT TCT ACC CCA Arg Arg Ala Ile Ser Arg Asn Thr Ala Met Leu Val Cys Ser Thr Pro CAG TTT CCT CAT GGT GTA ATA GAT CCT GTC CCT GAA GTG GCC AAG CTG Gln Phe Pro His Gly Val Ile Asp Pro Val Pro Glu Val Ala Lys Leu

GCT GTC AAA TAC AAA ATA CCC CTT CAT GTC GAC GCT TGT CTG GGA GGC

Ala Val Lys Tyr Lys Ile Pro Leu His Val Asp Ala Cys Leu Gly Gly

Phe Asp Phe Arg Val Lys Gly Val Thr Ser Ile Ser Ala Asp Thr His 340 345 350	TTC	CTC	ATC	GTC	TTT	ATG	GAG	AAA	GCA	GGA	TAC	CCA	CTG	GAG	CAC	CCA	1008
TTT GAT TTC CGG GTG AAA GGT GTA ACC AGC ATT TCA GCT GAC ACC CAT Phe Asp Phe Arg Val Lys Gly Val Thr Ser Ile Ser Ala Asp Thr His 340 345 350 AAG CTG GAA AAT ATC AAA GGC ATC TTT GTT TTT GGG AAT CCC CAA TTG	Phe	Leu	Ile	Val	Phe	Met	Glu	Lys	Ala	Gly	Tyr	Pro	Leu	Glu	His	Pro	
Phe Asp Phe Arg Val Lys Gly Val Thr Ser Ile Ser Ala Asp Thr His 340 345 350 AAG CTG GAA AAT ATC AAA GGC ATC TTT GTT TTT GGG AAT CCC CAA TTG 110					325					330					335		•
Phe Asp Phe Arg Val Lys Gly Val Thr Ser Ile Ser Ala Asp Thr His 340 345 350 AAG CTG GAA AAT ATC AAA GGC ATC TTT GTT TTT GGG AAT CCC CAA TTG 110				•												-	
340 345 350 AAG CTG GAA AAT ATC AAA GGC ATC TTT GTT TTT GGG AAT CCC CAA TTG 110	TTT	GAT	TTC	CGG	GTG	AAA	GGT	GTA	ACC	AGC	ATT	TCA	GCT	GAC	ACC	CAT	1056
AAG CTG GAA AAT ATC AAA GGC ATC TTT GTT TTT GGG AAT CCC CAA TTG 110	Phe	Asp	Phe	Arg	Val	Lys	Gly	Val	Thr	Ser	Ile	Ser	Ala	Asp	Thr	His	
	•		,	340			•		345					350			
										•							
Lys Leu Glu Asn Ile Lys Gly Ile Phe Val Phe Gly Asn Pro Gln Leu	AAG	CTG	GAA	AAT	ATC	AAA	GGC	ATC	TTT	GTT	TTT	GGG	AAT	CCC	CAA	TTG	1104
	Lys	Leu	Gļu	Asn	Ile	Lys	Gly	Ile	Phe	Val	Phe	Gly	Asn	Pro	Gln	Leu	
355 360 365		•	3 5 5			*		360					365				
							•										1152
Ser Leu Ile Ala Leu Gly Ser Arg Asp Phe Asp Ile Tyr Arg Leu Ser	Ser	Leu	Ile	Ala	Leu	Gly	Ser	Arg	Asp	Phe	Asp		Tyr	Arg	Leu	Ser	
370 375 380		370					375		•			380			•	• •	
120									%								1000
and the me her ter the term the transfer																	1200
Asn Leu Met Thr Ala Lys Gly Trp Asn Leu Asn Gln Leu Gln Phe Pro		Leu	Met	Thr	Ala		Gly	Trp	Asn	Leu		Gln	Leu	Gin	Pne		
385 390 395 400	385					390					395					400	
124						maa	3.00	202	mm 3	CM P	CA C	666	ccc	***	CCN	CTA	1248
de ner mir din 110 100 me den 111 till																	1240
Pro Ser Ile His Phe Cys Ile Thr Leu Leu His Ala Arg Lys Arg Val 405 410 415	Pro	Ser	ire	HIS		суѕ	шe	1111	ьеи			MIG	Ary	БЙЗ		Va.	
415	1,				405					410					413		
GCT ATA CAA TTC CTA AAG GAC ATT CGA GAA TCT GTC ACT CAA ATC ATG 129	CCT	አሞአ	CNN	ምሞር	ርሞአ	N N C	GAC	a ጥጥ	CCA	CDD	ጥርጥ	GTC	ΔСΤ	CAA	АТС	ATG	1296
Ala Ile Gln Phe Leu Lys Asp Ile Arg Glu Ser Val Thr Gln Ile Met																	
420 425 430	nia				Bea	БуЗ	, iop										
													•				
AAG AAT CCT AAA GCG AAG ACC ACA GGA ATG GGT GCC ATC TAT GCC ATG 134	AAG	AAT	CCT	AAA	GCG	AAG	ACC	ACA	GGA	ATG	GGT	GCC	ATC	TAT	GCC	ATG	1344
Lys Asn Pro Lys Ala Lys Thr Thr Gly Met Gly Ala Ile Tyr Ala Met																	
435 440 445	-3-			•		•			•		•						
GCC CAG ACA ACT GTT GAC AGG AAT ATG GTT GCA GAA TTG TCC TCA GTC 139	GCC	CAG	ACA	ACT	GTT	GAC	AGG	AAT	ATG	GTT	GCA	GAA	TTG	TCC	TCA	GTC	1392
Ala Gln Thr Thr Val Asp Arg Asn Met Val Ala Glu Leu Ser Ser Val	Ala	Gln	Thr	Thr	Val	Asp	Arg	Asn	Met	Val	Ala	Glu	Leu	Ser	Ser	Val	
450 455 460		450					455					460					

66

TTC TTG GAC AGC TTG TAC AGC ACC GAC ACT GTC ACC CAG GGC AGC CAG

Phe Leu Asp Ser Leu Tyr Ser Thr Asp Thr Val Thr Gln Gly Ser Gln

465 470 475 480

1467

ATG AAT GGT TCT CCA AAA CCC CAC TGA
Met Asn Gly Ser Pro Lys Pro His
485

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 488 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Pro Ser Thr Asp Leu Leu Met Leu Lys Ala Phe Glu Pro Tyr Leu

1 5 10 15

Glu Ile Leu Glu Val Tyr Ser Thr Lys Ala Lys Asn Tyr Val Asn Gly
20 25 30

His Cys Thr Lys Tyr Glu Pro Trp Gln Leu Ile Ala Trp Ser Val Val
35 40 45

Trp Thr Leu Leu Ile Val Trp Gly Tyr Glu Phe Val Phe Gln Pro Glu
50 55 60 .

Ser Leu Trp Ser Arg Phe Lys Lys Lys Cys Phe Lys Leu Thr Arg Lys
65 70 75 80

Met Pro Ile Ile Gly Arg Lys Ile Gln Asp Lys Leu Asn Lys Thr Lys
85 90 95

			100	2,3			5 01	105		Буз	491	տար	110	GIU	Tyr
Val	Lys	Ala 115	Leu	Pro	Ser	Gln	Gly 120	Leu	Ser	Ser	Ser	Ala 125	Val	Leu	Glu
Lys	Leu 130	Lys	Glu	Tyr	Ser	Ser 135	Met	Asp	Ala	Phe	Trp 140	Gln	Glu	Gly	Arg
Ala 145	Ser	Gly	Thr	Val	Туг 150	Ser	Gly	Glu	Glu	Lys 155	Leu	Thr	Glu	Leu	Leu 160
Val	Lys	Ala	Tyr	Gly 165	Asp	Phe	Ala		Ser 170	Asn	Pro	Leu	His	Pro 175	Asp
Ile	Phe	Pro	Gly 180	Leu	Arg	Lys	Ile	Glu 185	Ala	Glu	Ile	Val	Arg 190	Ile	Ala
Cys	Ser	Leu 195		Asn	Gly	Gly	Pro 200	Asp	Ser	Cys	Gly	Cys 205	Val	Thr	Ser
Gly	Gly 210	Thr	Glu	Ser	Ile	Leu 215	Met	Ala	Cys	Lys	Ala 220	Cys	Arg	Asp	Leu
Ala 225	Phe	Glu	Lys	Gly	Ile 230	Lys	Thr	Pro	Glu	11e 235	Val	Ala	Pro	Gln	Ser 240
Ala	His	Ala	Ala	Phe 245	Asn	Lys	Ala	Ala	Ser 250	Tyr	Phe	Gly	Met	Lys 255	Ile
/al	Arg	Val	Pro 260	Leu	Thr	Lys	Met	Met 265	Glu	Val	Asp	Val	Arg 270	Ala	Met
Arg	Arg	Ala 275 _.	Ile	Ser	Arg	Asn	Thr 280	Ala	Met	Leu	Val	Cys 285	Ser	Thr	Pro
~ 1 –	DL.	D	u: -	C1	Wa 1	Tl a	N ===	Dra	W~ 1	Dro	C1	17-3	7 1 ~	T wo	Lau

	290					295					300				
Ala 305	Val ·	Lys	Туr	Lys	Ile 310	Pro	Leu	His	Val	Asp 315	Ala	Cys	Leu	Gly	Gly 320
Phe	Leu	Ile	Val	Phe 325	Met	G1u	Lys	Ala	Gly 330	Tyr	Pro	Leu	Glu	His 335	Pro
Phe	Asp	Phe	Arg 340	Val	Lys	G1y	Val	Thr 345	Ser	Ile	Ser	Ala	Asp 350	Thr	His
Lys	Leu	Glu 355	As'n	Ile	Lys	Gly	Ile 360	Phe	Val	Phe	Gly	Asn 365	Pro	Gln	Leu
Ser	Leu 370	Ile	Ala	Leu	Gly	Ser 375	Arg	Asp	Phe	Asp	Ile 380	Tyr	Arg	Leu	Ser
Asn 385	Leu	Met	Thr	Ala	Lys 390	Gly	Trp	As'n	Leu	Asn 395	Gln	Leu	Gln	Phe	Pro
Pro	Ser	Ile	His	Phe 405	Cys	Ile	Thr	Leu	Leu 410	His	Ala	Arg	Lys	Arg 415	Val
Alą	Ile	Gln	Phe 420	Leu	Lys	Asp	Ile	Arg 425	Glu	Ser	Val	Thr	Gln 430	Ile	Met
Lys	Asn	Pro 435	Lys	Ala	Lys	Thr	Thr 440	Gly	Met	Gly	Ala	Ile 445	Tyr	Ala	Met
Ala	Gln 450	Thr	Thr	Val	Asp	Arg 455	Asn	Met	Val	Ala	Glu 460	Leu	Ser	Ser	Val
Phe	Leu	Asp	Ser	Leu	Tyr	Ser	Thr	Asp	Thr	Val	Thr	Gln	Gly	Ser	Gln

Met Asn Gly Ser Pro Lys Pro His

