Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Παράλληλος Προγραμματισμός 2023-24

Work - Span

(και οι περιπτώσεις των λειτουργιών map και reduce)

https://mixstef.github.io/courses/parprog/

Μ.Στεφανιδάκης

Ορισμός Work και Span

- Η παράλληλη εκτέλεση γίνεται με την ολοκλήρωση tasks
 - Ακολουθώντας τη ροή των αλληλεξαρτήσεων των δεδομένων
 - Ένας κατευθυνόμενος μη κυκλικός γράφος (DAG)

Ορισμός Work και Span

- Τ₁ είναι ο χρόνος σειριακής εκτέλεσης (work)
 - Μια οποιαδήποτε έγκυρη σειριοποίηση της δουλειάς που πρέπει να γίνει

Ορισμός Work και Span

- Τ_∞ είναι ο χρόνος σε ένα ιδανικά παράλληλο σύστημα (span)
 - Διαθέσιμα άπειρα επεξεργαστικά στοιχεία
 - Η καλύτερη περίπτωση παραλληλίας
 - Το όριο είναι το κρίσιμο μονοπάτι tasks (critical path)

Ανάλυση Work – Span

Αν Τ_P είναι ο χρόνος σε σύστημα με P επεξεργαστικά στοιχεία, τότε

$$T_{P} = O(T_{I}/P + T_{\infty})$$

- Το Τ εμποδίζει την επεκτασιμότητα
- Η αύξηση του Τ₁ επιβαρύνει την απόδοση
- Συνεπώς η σχεδίαση των παράλληλων αλγορίθμων θα πρέπει να αποσκοπεί στην μείωση του Τ (span)
 - Αποφεύγοντας την υπέρμετρη αύξηση του Τ₁ (work), εκτός κι αν αυτό μειώνει δραστικά το span

Η λειτουργία map ξανά

- Εφαρμογή μιας συνάρτησης σε κάθε στοιχείο μιας ακολουθίας δεδομένων
 - Work = O(n)
 - Span = O(1) (αν η f έχει σταθερό κόστος)

Η λειτουργία reduce

• Συνδυάζει όλα τα στοιχεία μιας συλλογής (collection) σε ένα μοναδικό στοιχείο μέσω τελεστή *f*

Παραλληλοποίηση της reduce

- Δεν είναι πάντα δυνατή
 - Θα πρέπει ο τελεστής f να είναι προσεταιριστικός
 - $\nabla \tau \alpha v (((x1 \circ x2) \circ x3) \circ x4 = (x1 \circ x2) \circ (x3 \circ x4)$

Reduce: Work και Span

- Στην ιδανική περίπτωση
 - Work = O(n) όσο και η σειριακή εκδοχή
 - Span = O(logn)

Reduce και εντολές SSE/AVX

- Για την άμεση υλοποίηση θα ήταν απαραίτητες εντολές με μη-κάθετες πράξεις
 - «Οριζόντιες» λειτουργίες
 - Διάσχιση κάθετων λωρίδων (cross-lane operations)
 - Μη αποδοτικές πράξεις σε σχέση με τις «κάθετες»
 - Πολλές εντολές έχουν περιορισμούς στη διάσχιση λωρίδων
 - Σρειάζεται υλοποίηση με όσο το δυνατόν περισσότερες «κάθετες» πράξεις
 - Ιδίως στα κρίσιμα για την απόδοση σημεία του κώδικα

Παράδειγμα reduction: Άθροισμα πίνακα

Βιβλιογραφία

- Michael McCool, James Reinders, and Arch Robison. 2012. Structured Parallel Programming: Patterns for Efficient Computation (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Intel® Intrinsics Guide (https://software.intel.com/sites/landingpage/IntrinsicsGuide/)