Preparation Phase Prior Knowledge

Date	11 October 2022
Team ID	PNT2022TMID21553
Project Name	Project – Car Resale Value Prediction

Prior Knowledge – Car Resale Value Prediction:

1. Supervised and Unsupervised learning:

What is Machine Learning?

What is Machine Learning?

simplilearn

Simplifearn, All rights reserved.

Types of Machine Learning:

Types of Machine Learning

Supervised Learning:

Supervised Learning

Simplilearn. All rights reserved.

Types of Supervised Learning:

Types of Supervised Learning

©Simplilearn. All rights reserved.

Applications of Supervised Learning:

Applications of Supervised Learning

Simplilearn, All rights reserved.

Unsupervised Learning:

Unsupervised Learning

©Simplilearn. All rights reserved.

Types of Unsupervised Learning:

Types of Unsupervised Learning

Simplilearn. All rights reserved.

Applications of Unsupervised Learning:

Applications of Unsupervised Learning

©Simplilearn. All rights reserved.

2. Regression, Classification and Clustering:

Common ML Problems

- Classification
- Regression
- Clustering

Classification Problem:

Introduction to Machine Learning

Classification Problem

Goal: predict category of new observation

Classification Applications:

Classification Applications

• Medical Diagnosis Sick and Not Sick

Animal Recognition Dog, Cat and Horse

Important:

- Qualitative Output
- Predefined Classes

Regression:

Introduction to Machine Learning

Regression

Regression Model:

Regression Model

Fitting a linear function

Predictor: Weight

Height $\approx \beta_0 + \beta_1 \times \text{Weight}$

Response: Height

Coefficients: β_0, β_1

Estimate on previous input-output

> lm(response ~ predictor)

Regression Applications:

Introduction to Machine Learning

Regression Applications

- Payments — Credit Scores
- Time Subscriptions
- Grades
 — Landing a Job
- Quantitative Output
- Previous input-output observations

Clustering:

Clustering

- **Clustering:** grouping objects in clusters
 - Similar within cluster
 - Dissimilar between clusters
- **Example:** Grouping similar animal photos
 - No labels
 - No right or wrong
 - Plenty possible clusterings

k-Means clustering:

Introduction to Machine Learning

k-Means

Cluster data in k clusters!

3. Random Forest Regressor:

Applications of Random Forest:

Application of Random Forest

complicated

environments

Random Forest is used in a game console called Kinect

Tracks body movements and recreates it in the game

©Simplilearn. All rights reserved.

Random Forest definition:

Decision Tree definition:

Important terms in decision tree:

Random Forest Working:

Random Forest using python with iris dataset:

4. Python Flask:

Flask – introduction:

Installation of flask – pre-requisites

Flask Application:

Variable rules in Flask:

Flask - HTTP methods:

Flask uses jinga2 template

Flask - Templates

Flask uses jinga2 template engine

```
<!doctype html>
<html>
<body>
      <h1>Hello {{ name }}!</h1>
</html>
```

Flask will try to find the HTML file in the templates folder, in the same folder in which this script is present.

```
from flask import Flask, render_template
app = Flask(__name__)
@app.route('/hello/<user>')
def hello_name(user):
    return render_template('hello.html', name = user)
if __name__ == '__main__':
    app.run(debug = True)
```

The Jinga2 template engine uses the following delimiters for escaping from HTML

- {% ... %} for Statements
 {{ ... }} for Expressions to print to the template output
 {# ... #} for Comments not included in the template output
 # ... ## for Line Statements

edureka!

Python Certification Training

www.edureka.co/python