Latitude	Longitude	
Time Zone	Module Tilt	
Start Date	End Date	

Calculate

5				
4				
3				
2				
2				
1				
0				

Generation

Summary

About

Calculate

Generation

Summary

About

Calculate

kWh Generated:

78,000 kWh / year

Return on Investment:

\$250,000.00

Amount of Panels

183

Panel Angle

Panel Type

A

General

ROI

Solar Model

SolarSize Application

A tool that utilizes building energy consumption metrics and solar intensity data to calculate accurate ROIs on solar power generation. This tool will allow customers to see how different photovoltaic (PV) systems match up to their requirements, so they can make informed decisions.

SolarSize Team

Tristan Brown-Hannibal

- Data representation
- Server/web management
- Back-End Design

Karlee Fidek

- Documentation
- GitHub/Wiki Management
- Front-End Design

Kaden Goski

- Data Processing/Management
- Vlog Editor

General

ROI

Solar Model

Return on Investment Calculation

Total Savings

X 100

Total Cost

Cash Flows Considered

- Capital Cost
- Interest Costs
- Maintenance Costs
- Annual Savings
- Rebates/Grants

General

ROI

Solar Model

Solar Data API

Irradiance Values

The model considers both direct and diffuse irradiance components.

