Amendment Pursuant to 37 C.F.R. § 1.121

IN THE CLAIMS:

The claims set forth below with amendments as indicated will replace all prior versions and listing of claims in the application.

1. (currently amended) A compound of formula (1):

wherein

R¹ and R² may be same or different and independently represent hydrogen, halogen, nitro, cyano, amino, hydroxy or optionally substituted group selected from alkyl, cycloalkyl, alkoxy, cycloalkoxy, aryl, aralkyl, alkylcarbonyl, alkoxycarbonyl, arylcarbonyl, aryloxycarbonyl, aralkoxycarbonyl, heteroarylcarbonyl, aryloxycarbonylamino, aralkoxycarbonylamino, heteroarylcarbonylamino, heteroaryl, heteroaralkyl, heteroarylcarbonylamino, heteroaryl, fluorenylmethoxycarbonyl (Fmoc), fluorenylmethoxycarbonyl (Fmoc), fluorenylmethoxycarbonylamino (NFmoc), -OSO₂R⁸, -OCONR⁸R⁹, NR⁸COOR⁹, -NR⁸COR⁹, -NR⁸COR⁹, -NR⁸COR⁹, -NR⁸COR⁹, -NR⁸COR⁹, -SO₂R⁸, -SOR⁸, and R¹⁰ may be same or different and independently represent hydrogen, optionally substituted group selected from alkyl, aryl, aralkyl, aryloxy or heteroaryl;

or R¹ and R² together represent a monocyclic or polycyclic aromatic or nonaromatic ring or an aromatic ring fused to a non aromatic ring or

DRF33028US -2 of 36-

Application Ser. No.: 10/575,122 Filing Date: April 7, 2006

Examiner: Zucker, Paul A.

polycyclic aromatic ring, which may optionally contain 1 to 3 heteroatoms selected from N, S, or O and may be unsubstituted or have 1

R3 represents hydrogen, halogen, optionally substituted group selected from alkyl, cycloalkyl, alkanoyl, aryl, aroyl, aralkyl or aralkanoyl group;

to 4 substituents which may be identical or different;

R4 represents hydrogen, halogen, optionally substituted group selected from alkyl, cycloalkyl, alkanoyl, aroyl, aralkyl or aralkanoyl group;

'n' represents 0-6;

'n' represents 0:

X represents O, S, NR where R represents hydrogen or optionally substituted group selected from alkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, alkanoyl, or aroyl;

Ar represents optionally substituted phenvl:

Z represents O, S, NR where R is as defined above;

- R5, R6 and R7 may be same or different and independently represent hydrogen, hydroxy, halogen or optionally substituted group selected from alkyl, cycloalkyl, alkoxy, aryl, aralkyl, heteroaryl, heterocyclyl or heteroaralkyl groups;
- or R5 and R6 together may form a 5 or 6 membered cyclic rings, which may contain one or two hetero atoms selected from O, S or N;
- Y represents O or NR11 where R11 represents hydrogen, optionally substituted group selected from alkyl, aryl, aralkyl, alkanoyl, aroyl, aralkanoyl, heterocyclyl or heteroaryl;
- or R⁷ and R¹¹ together may also form a 5 or 6 membered cyclic ring, which may contain one or two hetero atoms selected from O, S or N; and
- '---' represents a bond or no bond;

or a stereoisomer, or a pharmaceutically acceptable salt thereof; and

-3 of 36-DRF33028US

> when the fused rings formed by R¹ and R² are substituted, the substituents are selected from alkyl, halogen, hydroxy, haloalkyl, nitro, amino, cyano, oxo, or thioxo:

- when the groups represented by R¹ and R² are substituted, the substituents are selected from halogen, hydroxy, nitro, amino, oxo, thioxo, optionally substituted groups selected from alkyl, cycloa1kyl, alkoxy, aryl, aralkyl, alkylsulfonyl, alkylsulfinyl, alkylsulfinyl, alkylsulfonyloxy, alkylsulfinyloxy or alkylsulfanyloxy, the substituents are selected from halogen, hydroxy, nitro, amino, cyano or alkyl:
- when the groups represented by R, R³, R⁴ and R¹¹ are substituted, the substituents are selected from halogen, nitro, amino, hydroxy, alkyl, oxo or aralkyl;
- when the groups represented by R⁵, R⁶ and R⁷ are substituted, the substituents are selected from halogen, hydroxy, nitro, alkyl, cycloalkyl, alkoxy, aryl, aralkyl, aralkoxyalkyl, heterocyclyl, heteroaryl or amino;
- when the cyclic rings formed by R⁵ and R⁶ are substituted, the substituents are selected from alkyl, halogen, hydroxy, haloalkyl, nitro, amino, cyano, oxo, or thioxo; and
- the groups defined for R, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ may be unsubstituted, or have 1 to 4 substituents, which may be identical or different.
- (previously presented) The compound of claim 1, wherein the stereoisomer is an enantiomer or a geometrical isomer.
- 3. 5. (canceled)
- (previously presented) The compound of claim 1, wherein:
 R¹ and R² are same or different and independently represent hydrogen, halogen, nitro, evano, amino, hydroxy or optionally substituted groups selected

DRF33028US -4 of 36-

from alkyl, alkoxy, aryl, aralkyl, aralkoxy, heteroaryl, heteroaralkoxy, -OSO₂R⁸, -SO₂R⁸ or -NR⁸R⁹;

- R³ and R⁴ are same or different and independently represent hydrogen, halogen, optionally substituted group selected from alkyl or aralkyl;
- R⁵ and R⁶ are same or different and independently represent hydrogen, hydroxy, ontionally substituted alkyl, cycloalkyl, arvl;
- or R⁵ and R⁶ together represent a 5 or 6 membered aromatic or non aromatic cyclic ring system optionally containing 1 or 2 heteroatoms selected from O, S or N; and
- R⁷ and R¹¹ may form a cyclic ring system selected from pyrrolidinyl, piperidinyl, morpholinyl, piperazinyl, oxazolinyl or diazolinyl.

7. (currently amended) The compound of claim 1 wherein

R¹ and R² together represent an optionally substituted monocyclic or polycyclic aromatic or non aromatic ring or an aromatic ring fused to a non aromatic ring or polycyclic aromatic ring selected from:

DRF33028US -5 of 36-

Application Ser. No.: 10/575,122 Filing Date: April 7, 2006

Examiner: Zucker, Paul A.

- 8. (previously presented) The compound of claim 1, wherein:
 - R1 and R2 are same or different and independently represent hydrogen, halogen, nitro, amino, hydroxy or optionally substituted group selected from alkyl, aryl, aralkyl, aralkoxy, heteroaryl, heteroaralkoxy or -OSO2R8;
 - R3 and R4 are same or different and independently represent hydrogen or optionally substituted alkyl; and
 - R5 and R6 are same or different and independently represent hydrogen, optionally substituted alkyl, cycloalkyl or aryl;
 - or R5 and R6 together represent an optionally substituted 5 or 6 membered saturated cyclic ring system.
- 9. (currently amended) The compound of claim 1, wherein:
 - R1 and R2 together represent an optionally susbstituted monocyclic or polycyclic aromatic or non aromatic ring or an aromatic ring fused to a non aromatic ring or polycyclic aromatic ring selected from:

DRF33028US -6 of 36-

 R^3 and R^4 are same or different and independently represent hydrogen or optionally substituted alkyl; and

R⁵ and R⁶ are same or different and independently represent hydrogen, optionally substituted group selected from alkyl, cycloalkyl, aryl;

or R5 and R6 together represent a 5 or 6 membered saturated cyclic ring system.

- 10. (previously presented) The compound of claim 1, wherein:
 - R¹ is selected from -OSO₂CH₃, halogen, alkyl, optionally substituted phenyl wherein the substituent is selected from alkyl or halogen;
 - R^2 , R^3 , R^4 , R^5 , R^6 and R^7 are same or different and independently represent hydrogen, methyl, ethyl or propyl;

Ar represents optionally substituted phenyl wherein the substituent is alkyl;

X, Y and Z independently represent oxygen; and

n represents 0 or 1.

11. (previously presented) The compound of claim 1, wherein:

DRF33028US -7 of 36-

> R¹ is selected from optionally substituted phenyl wherein the substituent is selected from halogen;

> R², R³, R⁴, R⁵, R⁶ and R⁷ are same or different and independently represent hydrogen, methyl, ethyl or propyl;

Ar represents optionally substituted phenyl wherein the substituent is alkyl;

X, Y and Z independently represent oxygen; and n represents 0 or 1.

12. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

DRF33028US -8 of 36-

$$\begin{array}{c} CI \\ CH_3 \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ CO_2H \\ CH_5 \\ C$$

$$F_{3}C$$

$$F$$

14. (previously presented) The compound of formula (1) as claimed in claim 1, which is selected from the group consisting of:

DRF33028US -14 of 36-

$$F_3C$$

$$CO_2H$$

$$CH_3$$

$$CO_2H$$

$$CH_3$$

$$CO_2H$$

$$CH_3$$

$$CO_2H$$

15. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

DRF33028US -16 of 36-

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$\begin{array}{c} F_3C \\ \\ \\ \\ CH_3 \end{array}$$

19. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

DRF33028US -21 of 36-

20. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

DRF33028US -22 of 36-

$$\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$$

21. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

DRF33028US -23 of 36-

22. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

$$\begin{array}{c} CO_2Et \\ CH_3 \\ CH_4 \\ CH_5 \\$$

23. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

$$\begin{array}{c} F \\ CH_3 \end{array} \qquad \begin{array}{c} F \\ H_3C \end{array} \qquad \begin{array}{c} F \\ CH_3 \end{array} \qquad \begin{array}{c} CO_2H \\ H_3C \end{array} \qquad \begin{array}{c} CO_2H \\ CH_3 \end{array} \qquad \begin{array}{c} CO_2H$$

DRF33028US -24 of 36-

24. (previously presented) The compound of formula (I) as claimed in claim 1, which is selected from the group consisting of:

$$\begin{bmatrix} CO_2H & CO$$

25. (previously presented) The compound of formula (I) as claimed in claim 1, which is

26. (previously presented) The compound of formula (1) as claimed in claim 1, which is

27. (previously presented) The compound of formula (I) as claimed in claim 1, which is

DRF33028US -25 of 36-

Application Ser. No.: 10/575,122 Filing Date: April 7, 2006

Examiner: Zucker, Paul A.

28. (previously presented) The compound of formula (1) as claimed in claim 1, which is

29. (previously presented) The compound of formula (I) as claimed in claim 1, which is

30. (previously presented) The compound of formula (I) as claimed in claim 1, which is

31. (previously presented) The compound of formula (I) as claimed in claim 1, which is

-26 of 36-DRF33028US

32. (previously presented) The compound of formula (I) as claimed in claim 1, which is

33. (previously presented) The compound of formula (I) as claimed in claim 1, which is

$$\bigcap_{\mathsf{CH}_3}\mathsf{CO}_2\mathsf{Et}$$

34. (previously presented) The compound of formula (I) as claimed in claim 1, which is

DRF33028US -27 of 36-

35. (previously presented) The compound of formula (I) as claimed in claim 1, which is

36. (previously presented) The compound of formula (I) as claimed in claim 1, which is

- 37. 39. (canceled)
- (previously presented) A pharmaceutical composition, which comprises a compound of formula (I):

or a stereoisomer or a pharmaceutically acceptable salt thereof as defined in claim 1 and a pharmaceutically acceptable carrier, diluent, or an excipient.

 (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

DRF33028US -28 of 36-

42. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

ĊH₂

43. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

$$\begin{array}{c} F \\ \\ \\ CH_3 \end{array} O \begin{array}{c} O \\ \\ \\ \\ H_3C \end{array} CO_2Et$$

44. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

DRF33028US -29 of 36-

 (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

 (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

47. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

48. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

DRF33028US -30 of 36-

Application Ser. No.: 10/575,122 Filing Date: April 7, 2006

Examiner: Zucker, Paul A.

49. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

50. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

$$\bigcap_{CH_3} O \bigcap_{H_3 \stackrel{i}{\subset} CO_2} CO_2 Et$$

51. (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

 (previously presented) The pharmaceutical composition of claim 40, wherein the compound is

- 53. (original) The pharmaceutical composition as claimed in claim 40 in the form of a tablet, capsule, powder, syrup, solution or suspension.
- 54. (withdrawn) A method for treating dyslipidemia in a patient comprising administering to said patient a compound of formula (I) or a stereoisomer or a pharmaceutically acceptable salt thereof as defined in claim 1.
- 55. (withdrawn) A method for treating diabetes caused by insulin resistance or impaired glucose tolerance comprising administering a compound of formula (I) or a stereoisomer or a pharmaceutically acceptable salt thereof as defined in claim 1.
- 56. 57. (canceled)

58. (previously presented) A medicine for treating diabetes caused by dyslipidemia comprising administering a pharmaceutical composition according to claim 40 to a patient in need thereof.

59. (previously presented) A medicine for treating diabetes caused by insulin resistance or impaired glucose tolerance comprising administering a pharmaceutical composition according to claim 40 to a patient in need thereof.

DRF33028US -33 of 36-