Intelligent Agents

COEN166 Artificial Intelligence

Outlines

Agents and environments

The concept of rationality

Environment types

The structure of agents

- Agent: an entity that perceives its environment through sensors and acts upon that environment through actuators.
- Agents interact with environments through sensors and actuators

Figure 2.1 FILES: figures/agent-environment.eps (Tue Nov 3 16:22:19 2009). Agents interact with environments through sensors and actuators.

- Human agent
 - Sensors: eyes, ears, ...
 - Actuators: hands, legs, ...
- Robotic agent
 - Sensors: cameras, infrared range finders, ...
 - Actuators: motors
- Software agent
 - Sensors:
 - file contents, network packets
 - Keyboard, mouse, touchscreen, voice
 - Actuators: Writing files, sending network packets, displaying information, and generating sounds, ...

- Percept: the agent's perceptual inputs at any given instant
- Percept sequence: the complete history of everything the agent has ever perceived

 Agent function: maps any given percept sequence to an action

f: percepts→action

An abstract mathematical description

- Agent program: implements the agent function
 - A concrete implementation, running with some physical system

Vacuum-Cleaner World

Percept sequence	Action
{A, Clean}	Right
{A, Dirty}	Suck
{B, Clean}	Left
{A, Clean},{A, Clean}	Right
{A, Clean},{A Dirty}	Suck

Rationality

- Whether an agent is rational depends on
 - Performance measure: an objective criterion for the success of an agent's behavior
 - E.g., performance measure of a vacuum-cleaner agent: the amount of dirt cleaned up, amount of time taken, amount of electricity consumed, amount of noise generated, etc.
 - Agent's prior knowledge of the environment
 - Actions that the agent can perform
 - Agent's percept sequence to date

Rational Agent

- For each possible percept sequence, a **rational agent** should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.
- Rationality is distinct from omniscience (all-knowing with infinite knowledge).

 An agent is autonomous if its behavior is determined by its own percepts & experience (with ability to learn and adapt) without depending solely on build-in knowledge.

Vacuum Cleaner World

- Agent's prior knowledge:
 - Geography: known
 - Dirt distribution and location: unknown
- The available actions: left, right, up, down, and suck
- The agent correctly perceives its location and whether the location is dirty
- Performance measure: awarded 1 point for each clean room over a lifetime of 1,000 time steps

Example

 An agent that senses only partial information about the state cannot be perfectly rational.

a) True, b) False

- Answer:
- b) False. The vacuum-cleaning agent is rational but doesn't observe the state of the square that is adjacent to it

Example

• Imagine a Mars-rover which does not have a program to plan its route. As a result of this the Mars-rover is performing suboptimal. From this we can deduce that this Mars-rover is not a rational agent.

a) True, b) False

- Answer:
- a) True. Since we know there is a better algorithm (one that includes route planning)

Task Environment

- To design a rational agent we must specify its task environment
- **PEAS** description of the environment

Performance measure

Environment

Actuators

Sensors

- Agent = taxi driver
- Performance measure: safety, fast, legal, comfortable trip, maximize profits ...
- Environment: Roads, traffic, pedestrians, weather, ...
- Actuators: steering wheel, accelerator, brake, horn, signal, touch pad,...
- Sensors: camera, sonar, GPS, odometer, engine sensor, ...

Medical Diagnosis System

Performance measure:

- (a) Correct diagnosis
- (b) Minimize costs (equipment usage & treatment, time spent)

• Environment:

 Patient, doctor, hospital, emergency rooms, clinic, staff

Medical Diagnosis System

Sensors:

 Keyboard entry of symptoms, findings, patient's answer

Actuators:

 Questions asked by doctors, tests, treatments, diagnoses

The Agent of Water Jug

You are given two jugs with no measuring marks,

a 4-gallon one and a 3-gallon one. There is a pump to fill the jugs with water from a pool. How can you get exactly 2 gallons of water into the 4-gallon jug? For the agent of water jug, develop a **PEAS** description of this task environment.

Performance measure:

- (a) correctness. (successfully reach the goal?)
- (b) speed (how many steps this agent takes?)

The Agent of Water Jug

You are given two jugs with no measuring marks,

a 4-gallon one and a 3-gallon one. There is a pump to fill the jugs with water from a pool. How can you get exactly 2 gallons of water into the 4-gallon jug? For the agent of water jug, develop a **PEAS** description of this task environment.

Environment:

- (a) the jugs
- (b) the pool

The Agent of Water Jug

You are given two jugs with no measuring marks, a 4-gallon one and a 3-gallon one. There is a pump to fill the jugs with water from a pool. How can you get exactly 2 gallons of water into the 4-gallon jug? For the agent of water jug, develop a **PEAS** description of this task environment.

Actuators:

The pump

The Agent of Water Jug

You are given two jugs with no measuring marks, a 4-gallon one and a 3-gallon one. There is a pump to fill the jugs with water from a pool. How can you get exactly 2 gallons of water into the 4-gallon jug? For the agent of water jug, develop a **PEAS** description of this task environment.

Sensors:

Human eyes/cameras (if the agent has one)

Environment Types (Fully/Partially Observable)

Fully observable

 If an agent's sensors give it access to the complete state of the environment at each point in time

Partially observable

- Noisy and inaccurate sensors, or
- Parts of the state are missing from the sensor data
 - e.g. A vacuum agent with a local dirt sensor

Unobservable

No sensors

Environment Types

- Deterministic (vs. stochastic):
 - The next state of the environment is completely determined by the current state and the action executed by the agent.
 - An environment is uncertain if it is not fully observable or not deterministic.
 - e.g. Game with dice: uncertainty, unpredictable
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic

Environment Types (Episodic vs. Sequential)

Episodic

- The agent's experience is divided into atomic "episodes"
- In each episode: the agent receives a percept, and then performs a single action
- The next episode does not depend on the actions taken in previous episodes
- Simple reflex vacuum cleaner, part-picking robot

Environment Types (Episodic vs. Sequential)

- Sequential
 - The current decision could affect all future decisions
 - Chess and taxi driving

Which is simpler, episodic or sequential?

Environment Types

- Single agent (vs. Multi-agent):
 - An agent operating by itself in an environment.
 - Crossword puzzle vs. chess

Environment Types

- Single agent (vs. Multi-agent):
 - Does the other agent interfere with my performance measure?
 - Examples?
 - Online bookshop, Auction

Environment Types (Static vs. Dynamic/Semidynamic)

Static

 The environment is unchanged while an agent is deliberating (passage of time)

Dynamic

The environment changes with the passage of time

Crossword puzzles?

Taxi driving?

Environment Types (Static vs. Dynamic/Semidynamic)

Semidynamic

- The environment itself does not change with the passage of time but the agent's performance score does
- Chess (when played with a clock)

Environment Types

- Discrete (vs. continuous):
 - States of the environment
 - Percepts and Actions of the agent
 - Limited number, distinct, clearly defined
 - Chess vs. taxi driving (infinite: speed and location are continuous values)

	Medical Diagnosis	Chess with a clock	Backgammon	Taxi driving	Vacuum Cleaner (no memory)
Observable?					
Deterministic?					
Episodic?					
Static?					
Discrete?					
Single-agent?					

Environment Types

- The simplest environment is
 - Fully observable, deterministic, episodic, static, discrete and single-agent.
- Most real situations are
 - partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

The Structure of Agents

- How does the agent work?
- agent = architecture + program
 - Agent program: implements the agent function
 - the mapping from percepts to actions
 - Architecture: computing devices with physical sensors and actuators
- The program has to be appropriate for the architecture
 - If the program recommends actions like Walk, the architecture had better have legs

The Structure of Agents

- How does the agent work?
- Architecture: PC, robotic car w/ onboard computers, cameras, and other sensors
 - Makes the percepts from the sensors available to the program, runs the program, and feeds the program's action choices to the actuators

Example

- Every agent function is implementable by some program/machine combination.
- a) True, b) False
- Answer:
- b) False. Consider
 - an agent who perceives a bit each turn, and
 - the agent function is to return an integer that matches the value of the entire bit string perceived so far.
 - It gains a point of performance if the integer returned is correct.

Eventually, any agent program will fail because it will run out of memory.

Summary

- Agent: perceives and acts in an environment
- Agent function: maps percept sequence to actions
- Agent program: implements the agent function
- Performance measure: defines the criterion of success
- Rational agent: maximize the expected value of the performance measure
- Task environment specification PEAS (Performance, Environment, Actuators, Sensors)
- Types of environment
- The structure of agents: architecture + program