2IL50 Data Structures

2023-24 Q3

Lecture 11: Elementary Graph Algorithms

Honors track:

Competitive Programming and Problem Solving

Introduction Event: March 21, 13:30 - 17:00, Atlas -1.825

Sign up: send email to k.a.b.verbeek@tue.nl

For more info: Honors Academy TUe

Networks and other graphs

road network

computer network

execution order for processes

Graphs: Basic definitions and terminology

A graph G is a pair G = (V, E)

- \blacksquare V is the set of nodes or vertices of G
- $E \subset V \times V$ is the set of edges or arcs of GIf $(u, v) \in E$ then vertex v is adjacent to vertex u

undirected graph

(u, v) is an unordered pair: (u, v) = (v, u) self-loops forbidden

directed graph

(u, v) is an ordered pair: $(u, v) \neq (v, u)$ self-loops possible

Graphs: Basic definitions and terminology

Degree of a vertex number of edges attached to vertex

Path in a graph sequence $\langle v_0, v_1, ..., v_k \rangle$ of vertices,

such that $(v_{i-1}, v_i) \in E$ for $1 \le i \le k$

Cycle path with $v_0 = v_k$

Length of a path number of edges in the path

Distance between vertex u and v

length of a shortest path between u and v (∞ if v is not reachable from u)

Graphs: Basic definitions and terminology

An undirected graph is connected if every pair of vertices is connected by a path.

connected components

A directed graph is strongly connected if every two vertices are reachable from each other.

For every pair of vertices u and v we have a directed path from u to v and a directed path from v to u.

strongly connected components

Some special graphs

Tree connected, undirected, acyclic graph

Every tree with n vertices has exactly n-1 edges

DAG directed, acyclic graph

Check Appendix B.4 for more basic definitions

Graph G = (V, E)

1. Adjacency lists array Adj of |V| lists, one per vertex Adj[u] = linked list of all vertices <math>v with $(u, v) \in E$

works for both directed and undirected graphs

Graph G = (V, E)

1. Adjacency lists array Adj of |V| lists, one per vertex $\mathrm{Adj}[u] = \mathrm{linked}$ list of all vertices v with $(u, v) \in E$

works for both directed and undirected graphs

Graph
$$G = (V, E)$$

- 1. Adjacency lists array Adj of |V| lists, one per vertex Adj[u] = linked list of all vertices <math>v with $(u, v) \in E$
- 2. Adjacency matrix $|V| \times |V|$ matrix $A = (a_{ij})$

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

also works for both directed and undirected graphs

	1	2	3	4	5
1		1	1		
2	1		1		
2345	1	1		1	
4			1		
5					

Graph
$$G = (V, E)$$

- 1. Adjacency lists array Adj of |V| lists, one per vertex Adj[u] = linked list of all vertices <math>v with $(u, v) \in E$
- 2. Adjacency matrix $|V| \times |V|$ matrix $A = (a_{ij})$

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

also works for both directed and undirected graphs

	1	2	3	4	5
1		1			
2					
2	1	1			
4 5			1		
5					

Adjacency lists vs. adjacency matrix

	1	2	3	4	5
1		1	1		
2	1		1		
3	1	1		1	
4			1		
5					

	Adjacency li	ists	Adjacency matrix
Space	$\Theta(V+E)$		$\Theta(V^2)$
Time to list all vertices adjacent to u	$\Theta(\text{degree}(u))$		$\Theta(V)$
Time to check if $(u, v) \in E$	$\Theta(degree(\imath$	ι))	Θ(1)

Searching a graph: BFS and DFS

Basic principle:

■ start at source *s*

```
    each vertex has a color: white = not yet visited (initial state)
    gray = visited, but not finished
    black = visited and finished
```

Searching a graph: BFS and DFS

Basic principle:

- start at source s
- each vertex has a color: white = not yet visited (initial state)
 gray = visited, but not finished
 black = visited and finished

```
1 s. \operatorname{color} = \operatorname{gray}; S = \{s\}

2 while S \neq \emptyset

3 remove a vertex u from S

4 for each v \in \operatorname{Adj}[u]

5 if v. \operatorname{color} = = \operatorname{white}

6 v. \operatorname{color} = \operatorname{gray}; S = S \cup \{v\}

7 u. \operatorname{color} = \operatorname{black}
```


BFS and DFS choose u in different ways; BFS visits only the connected component that contains s.

BFS and DFS

Breadth-first search

BFS uses a queue

 \rightarrow it first visits all vertices at distance 1 from s, then all vertices at distance 2, ...

BFS and DFS

Breadth-first search

BFS uses a queue

→ it first visits all vertices at distance 1 from s, then all vertices at distance 2, ...

Depth-first search

DFS uses a stack

Breadth-first search (BFS)

```
BFS(G, s)
                            u. d becomes distance from s to u
 1 for each u \neq s
         u. color = white; u.d = \infty; u.\pi = NIL
 3 s.color = gray; s.d = 0; s.\pi = NIL
 4 Q = \emptyset
                                        u.\pi becomes predecessor of u
 5 Enqueue(Q, s)
 6 while Q \neq \emptyset
         u = \mathsf{Dequeue}(Q)
         for each v \in Adj[u]
 8
              if v, color == white
                    v.color = gray; v.d = u.d + 1; v.\pi = u
10
                    Enqueue(Q, v)
 11
         u. color = black
12
```

BFS on an undirected graph

Adjacency lists

- 1 3
- 2 6, 7, 5
- 3 | 1, 6, 4
- 4 5, 3
- 5 2, 4, 8
- 6 3, 2
- 7 2, 9
- 8 9, 5
- 9 7, 8
- 10 11
- 11 | 10

Source s = 6

Queue Q XXXXXXXXX

BFS on an undirected graph

Adjacency lists

Source s = 6

Queue Q XXXXXXXXX

Note: BFS only visits the nodes that are reachable from s

BFS: Properties

Invariants

- Q contains only gray vertices
- gray and black vertices never become white again
- the queue has the following form:

- \blacksquare the d fields of all gray vertices are correct
- for all white vertices we have: (distance to s) > u.d

BFS: Analysis

Invariants

- Q contains only gray vertices
- gray and black vertices never become white again

This implies

- every vertex is enqueued at most once
 - → every vertex is dequeued at most once
- processing a vertex u takes $\Theta(1 + |Adj[u]|)$ time
 - \rightarrow running time at most $\sum_{u} \Theta(1 + |Adj[u]|) = O(V + E)$

BFS: Properties

After BFS has been run from a source s on a graph G we have

- \blacksquare each vertex \underline{u} that is reachable from s has been visited
- \blacksquare for each vertex \underline{u} we have \underline{u} . d = distance to s
- if $u.d < \infty$, then there is a shortest path from s to u that is a shortest path from s to $u.\pi$ followed by the edge $(u.\pi, u)$

Proof: follows from the invariants (details see book)

Depth-first search (DFS)

```
\mathsf{DFS}(G)
 1 for each u \in V
         u. color = white; u.\pi = NIL
                                                time = global timestamp for discovering
 3 \text{ time} = 0
                                                        and finishing vertices
 4 for each u \in V
         if u. color == white: DFS-Visit(u)
 5
\mathsf{DFS}\text{-Visit}(u)
 1 u. color = gray; u. d = time; time = time + 1
 2 for each v \in Adj[u]
                                                                   u.d = discovery time
         if v color == white
                                                                   u.f = finishing time
              v.\pi = u; DFS-Visit(v)
 5 u.color = black; u.f = time; time = time + 1
```

DFS on a directed graph

Adjacency lists

DFS on a directed graph

Adjacency lists

Note: DFS always visits all vertices

DFS: Properties

DFS visits all vertices and edges of G

Running time: $\Theta(V + E)$

DFS forms a depth-first forest comprised of ≥ 1 depth-first trees.

Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

DFS: Edge classification

Tree edges

edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v); the tree edges form a forest, the DF-forest

Back edges

edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree

Forward edges

non-tree edges (u, v) connecting a vertex u to a descendant v

Cross edges

all other edges

DFS: Edge classification

Tree edges

edge (u, v) is a tree edge if v was first discovered by exploring edge (u, v); the tree edges form a forest, the DF-forest

Back edges

edges (u, v) connecting a vertex u to an ancestor v in a depth-first tree

Forward edges

non-tree edges (u, v) connecting a vertex u to a descendant v

Cross edges

all other edges

Undirected graph

(u, v) and (v, u) are the same edge; classify by first type that matches.

DFS: Properties

DFS visits all vertices and edges of G

Running time: $\Theta(V + E)$

DFS forms a depth-first forest comprised of ≥ 1 depth-first trees.

Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

DFS of an undirected graph yields only tree and back edges. No forward or cross edges.

Discovery and finishing times have parenthesis structure.

Discovery and finishing times

Theorem

In any depth-first search of a (directed or undirected) graph G = (V, E), for any two vertices u and v, exactly one of the following three conditions holds:

1. the intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint neither of u or v is a descendant of the other

2. the interval [u, d, u, f] entirely contains the interval [v, d, v, f] v is a descendant of u

3. the interval [v, d, v, f] entirely contains the interval [u, d, u, f]

u is a descendant of v

DFS: Discovery and finishing times

Proof (sketch)

 \blacksquare assume u, d < v, d

case 1: v is discovered in a recursive call from u

- $\rightarrow v$ becomes a descendant of u recursive calls are finished before u itself is finished
- $\rightarrow v f < u f$

case 2: v is not discovered in a recursive call from u

- $\rightarrow v$ is not reachable from u and not one of u's descendants
- $\rightarrow v$ is discovered only after u is finished
- $\rightarrow u.f < v.d$
- ightharpoonup u cannot become a descendant of v since it is already discovered

DFS: Discovery and finishing times

Corollary v is a proper descendant of u if and only if $u \cdot d < v \cdot d < v \cdot f < u \cdot f$.

Theorem (White-path theorem)

v is a descendant of u if and only if at time u. d, there is a path $u \sim v$ consisting of only white vertices.

(Except for *u* which was *just* colored gray.)

(See the book for details and proof.)

Using depth-first search ...

Input directed, acyclic graph (DAG) G = (V, E)Output a linear ordering $v_1, v_2, ..., v_n$ of the vertices such that if $(v_i, v_j) \in E$ then i < j

DAGs are useful for modeling processes and structures that have a partial order

Partial order

- \blacksquare a > b and $b > c \implies a > c$
- but may have a and b such that neither a > b nor b > a


```
Input directed, acyclic graph (DAG) G = (V, E)
Output a linear ordering v_1, v_2, ..., v_n of the vertices such that if (v_i, v_j) \in E then i < j
```

DAGs are useful for modeling processes and structures that have a partial order

Partial order

- \blacksquare a > b and $b > c \implies a > c$
- but may have a and b such that neither a > b nor b > a
- a partial order can always be turned into a total order (either a > b or b > a for all $a \neq b$)

that's what a topological sort does ...

Input directed, acyclic graph (DAG) G = (V, E)

Output a linear ordering $v_1, v_2, ..., v_n$ of the vertices such that if $(v_i, v_j) \in E$ then i < j

Every directed, acyclic graph has a topological order

Lemma A directed graph G is acyclic if and only if DFS of G yields no back edges.

TopologicalSort(V, E)

- 1 call DFS(V, E) to compute finishing time v.f for all $v \in E$
- 2 output vertices in order of decreasing finishing time

TopologicalSort(V, E)

- 1 call DFS(V, E) to compute finishing time v.f for all $v \in E$
- 2 output vertices in order of decreasing finishing time

TopologicalSort(*V*, *E*)

- 1 call DFS(V, E) to compute finishing time v.f for all $v \in E$
- 2 output vertices in order of decreasing finishing time

Lemma

TopologicalSort(V, E) produces a topological sort of a directed acyclic graph G = (V, E).

Lemma

TopologicalSort(V, E) produces a topological sort of a directed acyclic graph G = (V, E).

```
Proof Let (u, v) \in E be an arbitrary edge.
        To show: u.f > v.f
        Consider the intervals [d, f] and assume u, f < v, f
           v.d u.d u.f v.f \rightarrow u is a descendant of v
   case 1:
                                      G has a cycle f
           u.d \qquad u.f \quad v.d \qquad v.f
   case 2:
           When DFS-Visit(u) is called, v has not been discovered yet.
           DFS-Visit(u) examines all outgoing edges from u, also (u, v).
           \rightarrow v is discovered before u is finished. //
```

Lemma

TopologicalSort(V, E) produces a topological sort of a directed acyclic graph G = (V, E).

Running time?

- we do not need to sort by finishing times
- just output vertices as they are finished
- \rightarrow $\Theta(V + E)$ for DFS and $\Theta(V)$ for output
- $\rightarrow \Theta(V+E)$

Honors track:

Competitive Programming and Problem Solving

Introduction Event: March 21, 13:30 - 17:00, Atlas -1.825

Sign up: send email to k.a.b.verbeek@tue.nl

For more info: Honors Academy TUe

