EE-309: Microprocessor Project 1: IITB-RISC Multi-Cycle Implementation

Team:

200070031 : Sri Lavya Kancheti

200070035 : Jaideep Kotani

200070063: Pullabhotla Bhuvana Chandra

200070074 : Seepana Venkata Sai Siddartha

R Type Instruction format

Opcode	Register A (RA)	Register B (RB)	Register B (RB)	Unused	Condition (CZ)	
(4 bit)	(3 bit)	(3-bit)	(3-bit)	(1 bit)	(2 bit)	

I Type Instruction format

Opcode	Register A (RA)	Register C (RC)	Immediate
(4 bit)	(3 bit)	(3-bit)	(6 bits signed)

J Type Instruction format

Opcode	Register A (RA)	Immediate
(4 bit)	(3 bit)	(9 bits signed)

Instructions Encoding:

ADD:	00_01	RA	RB	RC	0	00	
ADC:	00_01	RA	RB	RC	0	10	
ADZ:	00_01	RA	RB	RC	0	01	
ADL:	00_01	RA	RB	RC	0	11	
ADI:	00_00	RA	RB	6 bit Immediate			
NDU:	00_10	RA	RB	RC	0	00	
NDC:	00_10	RA	RB	RC	0	10	
NDZ:	00_10	RA	RB	RC	0	01	
LHI:	00_00	RA	9 bit Immediate				
LW:	01_11	RA	RB	6 bit Immediate			
SW:	01_01	RA	RB	RB 6 bit Immediate			
LM:	11_00	RA	0 + 8 bits corresponding to Reg R0 to R7 (right to left)				
SM:	11_01	RA	0 + 8 bits corresponding to Reg R0 to R7 (right to left)				
BEQ:	10_00	RA	RB	6 bit Immediate			
JAL:	10_01	RA	9 bit Immediate offset				
JLR:	10_10	RA	RB	B 000_000			
JRI	10_11	RA	9 bit Immediate offset				

Project Aims-

Designing multi-syste processor, IITB-RISC-22 with it instruction set architecture given. It is a 16-bit very simple computer developed for teaching based on Computer Architecture. It is implemented using 8-negiter, 16-bit system using VHDL as hardance devoiption larguage that was point to point communication infrastructure.

ALU:

-> takes 2 vectors of size 16-bit and performs addition

§ ward operations according to another input and

gives output vector of performed operation and C 5 2 plags.

innediate - Ebit and 9bit:-

There components extend eign of input voctors of eize 6,9 bits to vector eize -16.

Memory Unit :-

This component a outputs the data in given address if read inful is '1' & writes given data if giverite is '1' and there's a riese in edge of clock (CLK).

Register-file:This consists of 8 registers which we use according
to the state where we are worently in.

RISU wit:-

This is important unit of machine. It integrates various subcomponents we already implemented. This is a melay really machine as outfut depends on input. (FSM).

This takes opcode z values of c, z registers as input to give outpert.

There are 3 machine code initraction formats R, I, J and total of 15 instructions.

States:-

SI

 $PC \rightarrow mem - A$ $mem - D \rightarrow IR$ $PC \rightarrow ALU - A$ $+2 \rightarrow ALU - B$ $ALU - C \rightarrow T4$

(52)

IR 18-03 -> II

 $\begin{array}{c} (53) \\ \hline TA \rightarrow RF-D3 \\ \hline IR\{11-9\} \rightarrow RF-A3 \\ \hline T4 \rightarrow PC \end{array}$

IR 111-93 -> RF-A, IR 48-63 -> RF-Az RF-D, -> Fat, RF- D2 - T2

(55) TI -> ALU-A

5 → ALO-B ALU-C-TI ALU-7- Z ALU -CA -C subtraction.

THORF-D3 IR {5-3} - RF-A3

T4 -> PC

(36)

(57)

IR-911-93 --> RF-A1 RF_DI -> T1 IR 15-03 -> SE-16 SE-16 → T2

(58)

IR-48-63-> RE-12 RF-D2 - 3 T2 IRAS-03-5E-16 SE-16 -> T1

(59)

IR 44-93 -> RE-A1 REOJ -TI 000' -> T2

(510)

Tit mem=A Mem D -> Tz

SII

T3-> RF-D3 T3 2-03 -> RF-A3 T2 -> ALU-A T, - ALV-B AW-C -> T2

114

(512)

T, -> ALU-A to- ALU-B ALU-C -> T4 TI -> PC

(513)

T2-> ABO-A tI -> ALU-B ALU-C -> To

(5/4)

IR 48-6] ARE-A1 RE-AI RE-DA -> PC

(515)

T2- AUU-A +1-> ALU-B ALU_C -> To

516

T2-d2-03 -> REA2 RFO - T3 Ti -> Mam- A 72-> Mem D

(518)

PC- ALU-A IR45-03-5E-16 SE-16 - ALW-B ALU-C-PC

(\$19)

TI sman -A man D -> RF-DC3 IR (11-9) -> RF-A3 T4-PC

521

PC-2 RF-D3

IR-11-93-7 RF-A3

IR-JU-93-> RF-AZ

RF-D2-> T1

T1-> ALU-A

Imag-> ALUB

ALU-at-> PC

$$ADD$$
, ADC , ADZ , ADZ

$$(3) \rightarrow (5) \rightarrow (5) \rightarrow (5)$$

$$\begin{array}{c} ADI \\ \hline (51) \rightarrow (57) \rightarrow (55) \rightarrow (521) \\ \hline NDI NO(100) DZ \end{array}$$

$$\frac{1}{(5)} \rightarrow (52) \rightarrow (53)$$

$$\begin{array}{c} (51) \rightarrow (58) \rightarrow (55) \rightarrow (519) \\ \\ \underline{SW} \end{array}$$

$$\frac{W}{\text{Si}} \rightarrow \text{Ss} \rightarrow \text{S20}$$

BEB

(S) -> (S13) -> (S23)

$$(5) \rightarrow (54) \rightarrow (55) \rightarrow (8)$$

General Data Flow

State Machine View

