Improving
Transparency and
Fairness in Loan
Approval Algorithms
Through Explainable AI

Final Class Project – Two-Person Team

Table of contents

 $01 \longrightarrow What is the problem?$

02 — Why is this an interesting problem?

03 — How did we tackle the problem?

04 → Findings

01 —

What is The Problem?

What is The Problem?

- Lack of Transparency in Loan Approval: Loan approval algorithms are often "black boxes," making decisions without clear explanations.
- Bias in Decision-Making: These algorithms may inadvertently discriminate based on race, gender, or income, leading to unfair loan denials or approvals.
- Impact on Marginalized Groups: Discriminatory decisions disproportionately affect marginalized groups, exacerbating economic inequality.

02 →

Why is This an Interesting Problem?

Why is This an Interesting Problem?

- Ethical and Economic Justice: Access to fair financial opportunities is a critical aspect of economic justice.
- Bias in Al: Machine learning models in financial systems can perpetuate historical biases, making it essential to address these issues.
- Relevance to Current Al Debates: There is increasing concern over Al's role in societal outcomes, especially in high-stakes areas like finance.
- Innovation in XAI: Few studies have applied Explainable AI (XAI) techniques to loan approval systems, making this research particularly relevant.

03 →

How Did We Tackle The Problem?

How Did We Tackle The Problem?

- Dataset: We analyzed the Home Mortgage Disclosure Act (HMDA) 2022 dataset for New Jersey, focusing on factors like race, gender, income, and loan outcomes.
- Data Cleaning & Preprocessing: We handled outliers, missing values, and ensured consistency in variables like race and income.
- Use of XAI: We applied fairness algorithms and XAI techniques (e.g., SHAP) to enhance the transparency and interpretability of loan decisions.
- Modeling: We tested multiple machine learning models, including Logistic Regression, Random Forest, and XGBoost, to assess fairness and accuracy.

Flowchart: Project Workflow

04 →

Findings

Findings

Biases Identified:

- Race: Significant disparities in loan approval rates between racial groups, with White and Asian applicants having higher approval rates.
- Income: Higher income levels correlated with higher approval rates.
- Gender: Minor gender differences, but statistically significant.

Figure 1: Loan Approval Rates by Race

Figure 2: Loan Approval Rates by Income Bracket

Figure 3: Loan Approval Rates by Gender

Figures 4-5: SHAP Waterfall Plot Analysis

Figure 6: Random Forest Feature Importance Analysis

Findings

Loan Amount and Debt-to-Income Ratio: Key reasons for loan denials

Income: A primary driver for approvals.

Demographic Influence: Race and gender play a smaller role but may still cause bias.

Conclusion

Bias Exists: Significant biases related to race and income were identified in loan approval processes.

XAI Helps: Using XAI techniques such as SHAP improves model transparency, but it's not a complete solution to bias.

Next Steps: Additional work is needed to improve recall for loan rejections and to further refine fairness algorithms in loan approval systems.

Thank You!

