

BGK-4500S/4500SR 系列渗(扬)压计 安装使用手册

(REV.C)

基康仪器股份有限公司

www.geokon.cn

版权声明

本文件所含信息归基康仪器股份有限公司所有,文件中所有信息、数据、设计以及 所含图样均属基康仪器股份有限公司所有,未经基康仪器股份有限公司书面许可,不得 以任何形式(包括影印或其他任何方式)翻印或复制,间接或直接透露给外界个人或团 体。

本仪器的安装、维护、操作需由专业技术人员进行,基康仪器股份有限公司对本产品拥有更改的权利,产品更改信息恕不另行通知。

©2014 基康仪器股份有限公司版权所有

Copyright©2014 China Geokon Instruments Co.,Ltd.

目 录

1.简介	1
2.安装	1
2.1初步检验及率定	1
2.1.1获取零读数	3
2.2在测压管或测井中安装	4
2.3在钻孔中的安装	5
2.4在填土和坝体上的安装	6
2.5渗压计的饱和与处理	6
2.6连接电缆及电缆屏蔽	7
2.7防雷保护	7
3.读数与计算	7
3.1气压修正	8
4.外部环境影响因素	9
5.故障排除	9
附录-A半导体温度计温度推导公式	10
附录B-关于干燥管气球的使用	11

1. 简介

BGK-4500S/SR/SV/AL 系列弦式渗压计埋设在水工建筑物、基岩内或安装在测压管、钻孔、堤坝、管道和压力容器里,测量孔隙水压力或液体液位。其各种性能非常优异,其主要部件均用特殊钢材制造,适合各种恶劣环境使用。特别是在完善电缆保护措施后,可直接埋设在对仪器要求较高的碾压混凝土中。标准的透水石是用带 50 微米小孔的烧结不锈钢制成,以利于空气从渗压计的空腔排出。BGK-4500AL 为小量程渗压计,通常指 0.2MPa 及以下量程。BGK-4500SV 型弦式渗压计采用专用通气电缆连接,可有效克服大气压力对测值的影响,更适合用于水位测量。

图 1-1 振弦式渗压计结构示意图

2. 安装

2.1 初步检验及率定

在验收时就应对渗压计读数进行检查和记录(读数方式详见第3节关于读数的说明)。 每支仪器都提供了率定系数,包括温度修正系数。(详见图2-1关于率定表的实例)。 下列过程可用来检查随率定表(图2-1)提供的率定系数。

- 1. 浸透透水石,并在透水石和膜片之间的空腔里充满水。
- 2. 用电缆将渗压计沉到测量孔的底部以测量实际深度。
- 3. 让渗压计热平衡 15-20 分钟,用读数仪记录该液面的读数。
- 4. 将渗压计提升一个已知的高度,记录读数,计算这个系数,给出压力和读数的变化。与率 定表中的值进行比较,必要时可重复这个试验。

此外,采用 0.05 级的标准活塞式压力计率定是最恰当的率定方式。

每支 BGK-4500 系列或 4560 型渗压计均提供有一份率定表,这些率定表中记录有重要的仪器 参数,因此用户应妥善保管这些率定表。

图 2-1A/1B 为 BGK-4500 型渗压计与 BGK-4560 型渗压计的率定表表样,安装或计算时,通常需要使用率定表中的参数来进行校准或校验。

G	okon							
	Vibratin	ıg Wire	e Pressu	ıre Tra	nsduc	er Cali	bration	
Model Number:		_		_			1	
Serial Number:	4803	56		Mfg.		. Number:	8	3-3275
					Ter	nperature:	21.1 '	°C
	n/						998.1 1	
	1305					Date:	Nov	v. 7, 1998
Cal. Std.	Control #(s): _	183,	468	. Τ ε	chnician:	8		
Pressure (psi) 0 20 40 60 80 100 Linear Gage	_	(psi) 0 20 40 60 80	Reading 2nd Cycle 9141 8456 7774 7083 6390 5687	Pressure 0 20 40 60 80 100	Reading 9139 8455 7773 7084 6391 5691	689 693 701	-0.19 -0.19 -0.08 0.25	Fit (%FS) -0.04 0.08 -0.01 -0.01 -0.03 0.03
Polyno	mial Gage Fac Thermal Fa					26943	. C:*_	257.8826
Calculated Pressures: Linear, $P = G(R_0 - R_1) + K(T_1 - T_0) - (S_1 - S_0) **$ $Polynomial, P = AR_1^2 + BR_1 + C + K(T_1 - T_0) - (S_1 - S_0) **$ **Barometric compensation is not required with vented transducers.								
Factory Zero Reading: GK-401 Pos. B or F(R ₀): 9128 Temp(T ₀): 21.8 °C Baro(S ₀): 1001.4mbar Date: Jan. 27, 1997 *The user is advised to establish zero conditions in the field by recording the reading at a known temperature and barometric pressure.								
	Wiring Code:	Red and	Black: Gag	e White	and Gree	n: Thermis	stor Bare:	Shield
The above 1	The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.							

图 2-1A BGK-4500S 渗压计率定表表样

检测环境条件: 温度: 21℃ 湿度: 53%RH

检 测 结 果

测量范围: (0---0.35)MPa

指 示 器: GK-403 振弦式读数仪(B)

标准压力	各测次示值			均值	精	度			
(MPa)	1	2	3	均值	直线	多项式			
0.00	9581. 4	9580. 9	9580. 9	9581.1	0. 069%	0. 032%			
0.07	9177. 3	9178.3	9177.3	9177.6	-0. 064%	-0. 057%			
0.14	8771.0	8769. 9	8771.0	8770.6	-0. 023%	0. 007%			
0. 21	8364. 0	8364.7	8365.4	8364.7	-0. 033%	-0. 004%			
0.28	7956. 1	7957. 1	7957. 7	7957.0	0. 045%	0. 052%			
0.35	7545.8	7553. 6	7555. 4	7551.6	0. 006%	-0. 031%			
/	/	/	/	/	/	/			
计算公式	直线 P (MPa) = ($G(\mathbf{R}_1 - \mathbf{R}_0)$	K (T ₁ -T	Γ_0)				
1774	多项式 P (M	\mathbf{IPa}) = \mathbf{A}	$\mathbf{R_1}^2 + \mathbf{B}\mathbf{R_1} + \mathbf{C}$	$C + K(T_1)$	$_{1}$ - T_{0})				
	直线系数								
	G =	-0.000172	MPa/Digit						
多项式系	A =	-0.0000000	00235	B =	-0.0001683	323104			
	C =	1.63440309	99020						
	温度系数								
	$\mathbf{K} = -0.000003 \text{MPa/}^{\circ}\text{C}$								
	$\mathbf{R_0} \dots$ 初始读数值								
	$\mathbf{T_0}\dots$ 初始温度值								
	以下空白								

图 2-1 BGK-4500SR/4560S 率定表表样

2.1.1 获取零读数

每一只渗压计都需要获取一个精确的零读数(即初始读数),而这个读数将用于后期的数据处理(除非监测相对压力)。一般来说,是在仪器安装之前(即未加压力时)读取的数值即为零读数。

下列的各项检查是必须的,以保证渗压计获取精准的零读数:

● 使渗压计的温度达到平衡:经过渗压计体的不均衡温度变化可能产生错误的读数,让渗压计经

过 15-20 分钟使之与被监测点的环境温度达到平衡。

- 使透水石与渗压计的腔体内的水必须达到饱和:如果是局部饱和,由于表面张力的影响,将影响读数的准确性,特别是低压型渗压计,更易出现这个问题。
- 在竖井或测压管里监测液位的情况下,应使液面达到平衡。当电缆较长和孔径较小时,如一只 BGK-4500 型渗压计,在 25mm(内径 22mm)的测压管里放到水面之下 15m 时,可使液面上 升大约 1m,必须用足够的时间使液面达到平衡就可以解决这个问题。
- 要确保在读取零读数时记录温度和气压,以便必要时修正。
- 水位测量需在空气中确定零读数:如果测量水位,获取零读数应该是在空气中获取的读数,但 应注意温度平衡过程。

2.2 在测压管或测井中安装

首先要建立一个零读数,透水石要浸透。然后可将渗压计用电缆放进测压管中所要求的位置,电缆上作深度标志,以使渗压计端头的位置达到精确的深度。在测压井里的安装可参照测压管进行,必要时可采用底端带透水孔的钢管或 PVC 管保护。

图 2-2 典型的水位监控安装

要保证电缆可靠地固定在测管的顶部,否则由于渗压计滑入测井将引起读数的误差。如果在测压管上用管口塞或堵塞,应避免管口塞切破电缆的护套。

2.3 在钻孔中的安装

各类型的渗压计无论在有套管或无套管的钻孔里,都可以单支安装或多支安装,见图 2-3,如果在一个特殊的地区监测微孔压力,就要特别注意钻孔的密封。推荐在钻孔中安装时使用加厚的聚乙烯护套电缆。

安装时不能使用随时间迅速下沉的材料,例如返料。钻孔应该钻至渗压计预定位置以下 15-30 厘米,并应洗净钻孔,然后将孔的底部用干净的细沙回填到渗压计端头以下 15 厘米时,即可放入渗压计,最好是将渗压计封装在一个砂袋里,保持干净。用水浸透砂子,然后放到位(在电缆上做标志),仪器在这个位置时,应环绕渗压计周围放进干净的砂子,砂子可以放到渗压计以上 15 厘米,图 2-3 详细说明了隔绝被监测区域的两种方法。

一旦到了上述的"集水区",就要将孔密封,可用两种方法,一是用膨润土和适量的沙回填交替层约 25 厘米,然后用普通的土回填,或是用不透水的膨润土与水泥浆的混合物回填。如果在一个单孔里安装多支渗压计,膨润土与沙应回填到上部渗压计的下部,并以每两个渗压计之间的距离为间隔交替进行。在设计与使用填塞工具时特别要小心,避免损坏渗压计的电缆。

由于振弦式渗压计基本上是一个非流量仪器,所以其集水区不需要很大的尺寸,事实上,渗压计可以与大多数材质接触,因为这些材料的颗粒不能通过过滤器。

图 2-3 典型孔的安装

2.4 在填土和坝体上的安装

渗压计出厂时通常都提供有可直接埋入式电缆,以便在高速公路,大坝等现场布置,绝大多数情况下渗压计可以直接放在混凝土或土体里,如果出现有大粒径的骨料时,可将渗压计装入浸透水的沙袋,并采用适当的措施保护电缆以避免大骨料对电缆的损伤。

低通气滤体透水石适用于大多数的日常测量。而在细的粘土中,在渗压计的周围不要用砂袋。在经常碾压的地区或预计位移较大的地区,就应该使用铠装电缆,特别是沿坝轴线布置时最好采用。

电缆通常是安装在地沟内,用小粒径骨料的材料来回填。回填时要小心的用人工方法在电缆周围捣实,并以规定的间隔用膨润土填充,以免沿电缆沟形成渗流通道。

<u>A 类安装</u> <u>B 类安装</u>

图 2-4 典型的大坝上的安装

2.5 渗压计的饱和与处理

渗压计在安装前,应排除透水石内腔体中的空气,否则会在安装后将会产生严重的滞后或测量 误差甚至读数不稳,因此排气是必须的。

最恰当的方法是将渗压计前端的透水石取下,然后将渗压计完全浸泡在盛满净水的容器中,在 水下将透水石缓慢重新装回渗压计上,并在安装前一直浸泡在水中。

有时,需要使用沙袋将渗压计包裹,这个过程可与上述操作一并进行,包裹后的渗压计也应在 安装前一致浸泡在水中。

2.6连接电缆及电缆屏蔽

因为振弦仪器的输出信号是频率,所以电缆电阻细微的变化、电缆的连接,不会影响读数仪对仪器的读数。

用于连接的电缆应是高质量的 **100%**屏蔽的绞合电缆(带有整体屏蔽的抗干扰芯线)。连接时,将屏蔽线接到一起并接到接地点。

2.7 防雷保护

在渗压计的内部装有一个三极等离子浪涌避雷器(见图 1-1),可防止峰值电压通过导线进入。 以下是一些可用的防雷措施:

- 1) 如果仪器使用一个便携读数仪手动读数,那么最简单的防雷办法是,平时将电缆良好接地。
- 2) 从基康仪器股份公司订货的集线箱可与内装的雷击保护一起订货,有两种保护级别:
 - 所用的终端板已安装等离子浪涌避雷器(类似于渗压计内部的装置)。
 - 终端箱可以装入避雷器板,该装置利用避雷器来进一步保护渗压计。

无论哪种情况,数据采集终端箱都要可靠接地。

3. 读数与计算

BGK-4500S/4560S 型渗(扬)压计读数时可使用 BGK-408 型或 GK-403 型读数仪,读数时请选择"B"挡。

例如: 一个渗压计的当前读数 R1 是 8000,初始读数(或零读数)R0 为 9581.1,当前温度 T1 是 15℃,初始温度 T0 是 22℃,温度系数 K=-0.000003MPa/℃,率定系数 G=-0.000172MPa/Digit,A=-0.000000000235,B=-0.000168323104,C=1.634403099020(有关系数请参见率定表)。

直线: P= G×R1-R0)+K (T1-T0)

 $= (-0.000172) \ \mathbf{x} \ (8000-9581.1) \ + \ (-0.000003) \ \mathbf{x} \ (15\text{-}22)$

=0.2719702 MPa

多项式: P=AR12+BR1+C

 $\mathsf{P} = \text{(-0.000000000235)} \times 80002 + \text{(-0.000168323104)} \times 8000 + \text{1.634403099020}$

 $+(-0.000003) \times (15-22)$

=0.272799267 MPa

可见,使用多项式可获取更高的计算精度,因此在用于水位测量时推荐使用多项式计算。

下表可用于其它工程单位的转换:

来自 → 转化到	psi	"H ₂ O	'H ₂ O	$\operatorname{mm}\operatorname{H}_2\operatorname{O}$	m H ₂ O	"Hg	mm Hg	atm	mbar	bar	kPa	MPa
_												
psi	1	.036127	.43275	.0014223	1.4223	.49116	.019337	14.696	.014503	14.5039	.14503	145.03
"H ₂ O	27.730	1	12	.039372	39.372	13.596	.53525	406.78	.40147	401.47	4.0147	4016.1
'H ₂ O	2.3108	.08333	1	.003281	3.281	1.133	.044604	33.8983	.033456	33.4558	.3346	334.6
$\rm mm~H_2O$	704.32	25.399	304.788	1	1000	345.32	13.595	10332	10.197	10197	101.97	101970
m H ₂ O	.70432	.025399	.304788	.001	1	.34532	.013595	10.332	.010197	10.197	.10197	101.97
"Hg	2.036	.073552	.882624	.0028959	2.8959	1	.03937	29.920	.029529	29.529	.2953	295.3
mm Hg	51.706	1.8683	22.4196	.073558	73.558	25.4	1	760	.75008	750.08	7.5008	7500.8
atm	.06805	.0024583	.0294996	.0000968	.0968	.03342	.0013158	1	.0009869	.98692	.009869	9.869
mbar	68.947	2.4908	29.8896	.098068	98.068	33.863	1.3332	1013.2	1	1000	10	10000
bar	.068947	.0024908	.0298896	.0000981	.098068	.033863	.001333	1.0132	.001	1	.01	10
kPa	6.8947	.24908	2.98896	.0098068	9.8068	3.3863	.13332	101.320	.1	100	1	1000
MPa	.006895	.000249	.002988	.00000981	.009807	.003386	.000133	.101320	.0001	.1	.001	1

表 4-1 工程单位转换系数

注意: 由于密度随温度而变化,上表中汞和水的系数是近似的

3.1 气压修正

除通气型渗压计外,标准渗压计是密封而不通气的,多数情况下,并不需要进行气压修正。对 那些高灵敏度的低压型号,可能需要修正。此时,每次渗压计读数时,同时读取并记录气压。(可用 一个单独压力传感器测量气压,进行修正)

下列公式给出了同时进行温度和气压修正的压力计算方法。对于前面的例子,假设初始气压为 101.320kPa, 当前气压为 101.035kPa, 则:

式中: F=转换系数

S1=当前气压

S0=初始气压

用户应注意,这种修正是假设在理想条件下。实际上,条件并不总是理想的,例如,如果测压管或井是密封的,气压对渗压计的影响可能很小,或者实际的表面变化被减弱。这样,应用气压修正时反而可能产生误差,请根据实际情况进行。

4. 外部环境影响因素

因为安装渗压计的目的是监测现场工况,因此,那些可能影响这些工况的因素始终都要观察和记录。这些因素包括(并不限于这些因素): 刮风、下雨、潮汐、地下挖掘、土方的连续回填、交通、温度和气压变化(及其它气候条件)、附近建筑活动,人员变化,季节变化等等。在对渗压计结果进行分析时,请考虑这些因素。

5. 故障排除

如果装置读数出问题,应采取以下步骤:

- 1. 检查线圈电阻,正常情况下线圈电阻是 $180\pm10\Omega$ 加上电缆电阻。(标准 22 号规格的铜导线电阻:每 100m 约 5Ω)
 - a) 如果电阻太大或无穷大,应怀疑电缆断路。
 - b) 如果电阻太低或接近于 0,则应怀疑是短路。
- c) 如果电阻正常而任何一个传感器都没有读数,就该怀疑是读数仪有问题,这时应向厂家咨询。
- d) 如果所有的电阻都正常仅其中一个传感器没有读数,就应怀疑传感器有问题,这时也应向 厂家咨询。
 - 2. 如果发现电缆是断路或短路,可按推荐的电缆连接步骤重新接上。

附录-A 半导体温度计温度推导公式

适用温度计类型: YSI 44005

电阻转化为温度的公式:

$$T = \frac{1}{A + B(LnR) + C(LnR)^3} - 273.2$$

公式 A-1 半导体温度计阻值-温度换算关系

这里: T=摄氏温度

LnR =阻值的自然对数

A=1.4051×10⁻³(在-50 至+150℃范围内计算有效)

B=2.369×10⁻⁴

 $C=1.019\times10^{-7}$

电阻(Ω)	温度℃	电阻(Ω)	温度℃	电阻(Ω)	温度℃	电阻(Ω)	温度℃	电阻(Ω)	温度℃
201.1K	-50	16.60K	-10	2417	+30	525.4	+70	153.2	+110
187.3K	-49	15.72K	-9	2317	31	507.8	71	149.0	111
174.5K	-48	14.90K	-8	2221	32	490.9	72	145.0	112
162.7K	-47	14.12K	-7	2130	33	474.7	73	141.1	113
151.7K	-46	13.39K	-6	2042	34	459.0	74	137.2	114
141.6K	-45	12.70K	-5	1959	35	444.0	75	133.6	115
132.2K	-44	12.05K	-4	1880	36	429.5	76	130.0	116
123.5K	-43	11.44K	-3	1805	37	415.6	77	126.5	117
115.4K	-42	10.86K	-2	1733	38	402.2	78	123.2	118
107.9K	-41	10.31K	-1	1664	39	389.3	79	119.9	119
101.0K	-40	9796	0	1598	40	376.9	80	116.8	120
94.48K	-39	9310	+1	1535	41	364.9	81	113.8	121
88.46K	-38	8851	2	1475	42	353.4	82	110.8	122
82.87K	-37	8417	3	1418	43	342.2	83	107.9	123
77.66K	-36	8006	4	1363	44	331.5	84	105.2	124
72.81K	-35	7618	5	1310	45	321.2	85	102.5	125
68.30K	-34	7252	6	1260	46	311.3	86	99.9	126
64.09K	-33	6905	7	1212	47	301.7	87	97.3	127
60.17K	-32	6576	8	1167	48	292.4	88	94.9	128
56.51K	-31	6265	9	1123	49	283.5	89	92.5	129
53.10K	-30	5971	10	1081	50	274.9	90	90.2	130
49.91K	-29	5692	11	1040	51	266.6	91	87.9	131
46.94K	-28	5427	12	1002	52	258.6	92	85.7	132
44.16K	-27	5177	13	965.0	53	250.9	93	83.6	133
41.56K	-26	4939	14	929.6	54	243.4	94	81.6	134
39.13K	-25	4714	15	895.8	55	236.2	95	79.6	135
36.86K	-24	BGK-	16	863.3	56	229.3	96	77.6	136
34.73K	-23	4297	17	832.2	57	222.6	97	75.8	137
32.74K	-22	4105	18	802.3	58	216.1	98	73.9	138
30.87K	-21	3922	19	773.7	59	209.8	99	72.2	139
29.13K	-20	3748	20	746.3	60	203.8	100	70.4	140
27.49K	-19	3583	21	719.9	61	197.9	101	68.8	141
25.95K	-18	3426	22	694.7	62	192.2	102	67.1	142
24.51K	-17	3277	23	670.4	63	186.8	103	65.5	143
23.16K	-16	3135	24	647.1	64	181.5	104	64.0	144
21.89K	-15	3000	25	624.7	65	176.4	105	62.5	145
20.70K	-14	2872	26	603.3	66	171.4	106	61.1	146
19.58K	-13	2750	27	582.6	67	166.7	107	59.6	147
18.52K	-12	2633	28	562.8	68	162.0	108	58.3	148
17.53K	-11	2523	29	543.7	69	157.6	109	56.8	149
								55.6	150

表 A-1 半导体温度计阻值-温度对照表

附录 B-关于干燥管气球的使用

为消除大气压变化对仪器测值产生的附加影响,基康公司的部分通气型传感器包括4500ALV、4500SV、4580(气压计除外)等,这些 仪器均配备有干燥管及相应的干燥剂,以避免潮湿空气进入仪器内部而对仪器产生影响,但这些干燥剂在使用一段时间后可能会逐渐失效,具体表现为干燥剂由蓝色变化为红色,所以需定期或不定期检查更换。但是在露天或滴水严重的部位安装仪器后,干燥剂的作用便显得有限,故在出厂时我公司将给每支相关仪器配备一个气球,用以套在干燥管上端,注意在套入前须将干燥管上的通气螺丝拧松,以保证通气孔通气,然后套上气球将气球颈部用扎绳在干燥管端部扎紧,注意保持气球基本呈自然干瘪状态,但也不可将气球内部的空气完全排空,如下图所示:

安装时尽可能将干燥管呈竖直向放置,并使气球在下方。

按照此方法处理后,其干燥剂的使用周期将高于气球本身的寿命。即使如此,还应经常检查气球是 否有破损,如有破损应立即更换,必要时还应更换干燥剂。

请告知我们您的需求

金原収 添版 17 年 限 公司 地址: 北京市海淀区彩和坊路8号天创科技大厦Ⅲ室 邮箱: info@geokon.com.cn		电话: 010-62698899 网址: www.geokon.cn	传真: 010-62698866 客服专线: 010-6269885	邮编: 100080		
成都分公司 电话: 028-85265767	上海办事处 电话: 021-32535933	广州办事处 电话: 020-28855166	沈阳办事处 电话: 024-83953991	武汉办事处 电话: 027-85511500	西安办事处 电话: 029-84500508	
佳 直、028_85266881	佐直,021_32535037	佳 直,020_28855227	传真, 02/L-83053005	佳 直,027_85511200	佳直,020_84500508_606	