

Gestão de entrada/ saída - hardware

Conteúdo

- Dispositivos de E/S
- 2 Componentes de um dispositivo
- 3 Barramentos
- 4 Interface de E/S
- 5 Endereçamento
- 6 Interrupções

Dispositivos de entrada/saída

Interação da CPU com o mundo exterior.

Função: informações físicas ⇌ informações digitais.

Grande variedade de dispositivos:

- Interação com o usuário: mouse, teclado, tela, fones
- **Armazenamento** de dados: discos, SSDs, CDROMs
- Impressão e captura de dados: impressora, scanner
- Comunicação com outros sistemas: ethernet, Bluetooth
- Gerência do sistema: tempo, energia, temperatura
- Localização: GPS, bússola, giroscópio
- **..**.

Dispositivos de E/S em um *smartphone*

Componentes de um dispositivo de E/S

- Entrada de dados:
 - **Sensor**: transforma grandeza física em sinal elétrico.
 - Amplificador: aumenta e limpa o sinal elétrico.
 - Conversor AD: converte o sinal em informação digital.
- Saída de dados:
 - Conversor DA: converte dados em sinais elétricos.
 - Transdutor: transforma sinais elétricos em ações físicas.
- Elementos comuns:
 - **Buffer**: armazena dados coletados e/ou enviados.
 - Controlador de barramento: permite acesso da CPU.
 - Microcontrolador: gerencia o hardware do dispositivo.
 - Firmware: código executado pelo controlador.

Um dispositivo de E/S de áudio

Barramentos

Barramento: via de comunicação:

- interliga CPU, memória e dispositivos de E/S
- parte do *chipset* da placa-mãe

North-bridge: componentes rápidos

- CPU e RAM
- Portas AGP e PCI-express (vídeo)

South-bridge: componentes lentos

- PCI, USB, SATA
- BIOS, legacy controllers

Barramentos em um PC típico

Velocidades de transferência de dados

Dispositivo	velocidade
Teclado	10 B/s
Mouse ótico	100 B/s
Interface paralela padrão	125 KB/s
Interface de áudio digital S/PDIF	384 KB/s
Pendrive ou disco USB 2.0	60 MB/s
Interface de rede Gigabit Ethernet	116 MB/s
Disco rígido SATA 2	300 MB/s
Interface gráfica high-end	4.2 GB/s

Interface de acesso

Interação CPU *⇒ device* feita por **portas de E/S**.

Existem 4 tipos básicos de portas:

tipo de porta	sentido	função
entrada	$disp \to CPU$	Receber dados do dispositivo.
saída	$CPU \to disp$	Enviar dados ao dispositivo.
status	$disp \to CPU$	Consultar o estado do dispositivo; Verificar status de uma operação.
controle	$CPU \rightarrow disp$	Enviar comandos ao dispositivo; Alterar configuração do dispositivo.

Interface de acesso

Exemplo: interface paralela (SPP)

Interface muito antiga, já em desuso.

Usada para E/S em impressoras, scanners, plotadoras, etc.

Estrutura:

- Porta de dados (8 bits)
- Porta de status (8 bits)
- Porta de controle (8 bits)
- Portas dos modos estendidos

```
STROBE → 1

D0 ← 2

D1 ← 3

D2 ← 4

D3 ← 5

D4 ← 6

D5 ← 7

D6 ← 8

D7 ← 9

ACK → 10

BUSY → 11

Select → 13

Paper Out → 12

Select → 13
```

Exemplo: interface paralela

P₀ (data port): porta de saída/entrada, 8 bits

 P_1 (status port), 8 bits

- o reservado
- reservado
- nIRQ: se 0, gerou uma interrupção
- g error: há um erro interno na impressora
- 4 select: a impressora está pronta (online)
- paper_out: falta papel na impressora
- ack: se 0, dado foi recebido
- busy: controlador está ocupado

Exemplo: interface paralela

P_2 (control port):

- strobe: há um dado em P_0
- auto_1f: line feed a cada carriage return
- reset: a impressora deve ser reiniciada
- select: a impressora está selecionada para uso
- enable_IRQ: permite gerar interrupções
- bidirectional: ativa modo bidirecional
- 6 reservado
- reservado

 P_3 a P_7 : usadas em modos estendidos (EPP e ECP)

Funcionamento da interface paralela

- Porta *P*₀: dados da CPU
 - Um byte por vez
- Porta P_1 : status
 - busy
 - ack
- Porta P_2 : controle
 - strobe
 - enable IRQ

Endereçamento

Como acessar os registradores da interface do dispositivo?

- Entrada/saída mapeada em portas
- Entrada/saída mapeada em memória
- Canais de entrada/saída

Entrada/saída mapeada em portas

Registradores acessados por instruções específicas.

Na família Intel: instruções IN e OUT.

```
IN %AL, $0x60 // lê caractere do teclado em AL

OUT $0x3f8, %AL // escreve byte em AL na saída paralela
```

Espaço de endereços de E/S:

- Separado da memória principal.
- Geralmente de 8 ou 16 bits.
- \blacksquare CPU usa um sinal IO/M no barramento de controle.

Tabela de endereços de portas (típico)

Dispositivo	Endereços
teclado e mouse PS/2	0060h e 0064h
barramento IDE primário	0170h a 0177h
barramento IDE secundário	01F0h a 01F7h
relógio de tempo real	0070h e 0071h
interface serial COM1	02F8h a 02FFh
interface paralela LPT1	0378h a 037Fh

No Linux, consultar arquivo /proc/ioports

Entrada/saída mapeada em memória

Registradores dos dispositivos vistos como RAM:

- São mapeados em faixas de endereços de RAM.
- Podem ser usadas as instruções de acesso à memória.
- Usado para dispositivos de rede, áudio e vídeo.

No Linux, consultar arquivo /proc/iomem

Canais de entrada/saída

Uso de um hardware independente com processador dedicado.

Deixa o processador principal livre para outras tarefas.

Adotada em sistemas de grande porte (mainframes).

Usada em periféricos de alto desempenho (GPU vídeo).

Interrupções

As portas servem para as interações iniciadas pela CPU.

Como fazer para interações iniciadas pelo controlador?

Requisição de interrupção (IRq - Interrupt Request):

- Sinal elétrico enviado através do barramento de controle.
- Notifica o processador sobre algum evento importante.
- Desvia a execução para uma rotina de tratamento.

Roteiro de uma interrupção

Roteiro de uma interrupção

- A CPU está executando um programa.
- O usuário aciona uma tecla do teclado.
- 3 O controlador gera uma interrupção.
- A CPU recebe a interrupção e desvia sua execução para uma rotina de tratamento da interrupção.
- **5** A rotina interage com o controlador do teclado para buscar os dados do buffer.
- 6 A rotina conclui e o programa anterior retoma a execução.

Interrupções típicas

Dispositivo	Interrupção
teclado	1
mouse PS/2	12
barramento IDE primário	14
barramento IDE secundário	15
relógio de tempo real	8
interface serial COM1	4
interface paralela LPT1	7

No Linux, consultar arquivo /proc/interrupts

Exceções típicas

Exceção	Descrição
0	divide error
3	breakpoint
5	bound range exception
6	invalid opcode
11	segment not present
12	stack fault
13	general protection
14	page fault
16	floating point error

PIC - Programmable Interrupt Controller

Hardware dedicado no chipset da placa-mãe ou na CPU.

Organiza o sistema de interrupções de hardware:

- Recebe as interrupções dos dispositivos.
- Associa cada dispositivo a um número.
- Informa a CPU sobre cada interrupção ocorrida.
- Enfileira as interrupções não-tratadas (pendentes).
- Pode ser programado pela CPU.
- Pode ignorar/mascarar ou priorizar interrupções.

PIC - Programmable Interrupt Controller

