

sistemas electrónicos

Diodo: exercícios

1. - Com I = $400 \,\mu\text{A}$, calcule V_D

2. - Calcule a corrente de pico e a máxima tensão inversa no diodo.

3. - Considerando $V\gamma = 0.6$ V, para cada uma das situações (a) e (b), calcule: o valor mínimo de I_I para que o diodo conduza e o valor de I_D para $I_I = 5.6$ mA.

4. - Considere $V\gamma$ = 0.65V, V_I = 8V, R_1 = 2k Ω . Calcule V_O , I_{D1} e I_{D2} .

5. - Considerando $V\gamma$ = 0.6V, para cada uma das situações (a) a (d), calcule I e V_O .

6. - Considere $V\gamma$ =0.6V, 5.6V \leq V_{PS} \leq 10.6V, I_{Dmin} =2mA. A potência no diodo deve ser limitada a 7.2mW. Calcule R_1 e R_2 .

sistemas electrónicos

7.- Considere o diodo ideal e atente nas polaridades indicadas.Qual das situações (a) a (d) ilustra o funcionamento do circuito ?

8. - Considere o diodo ideal, que Vi é sinusoidal com 10Vp e atente nas polaridades indicadas. Qual das situações (a) a (d) ilustra o funcionamento do circuito ?

- 9. Considere $V\gamma = 0.6V$.
 - O sinal de entrada é sinusoidal com 20Vpp.
 - Calcule a máxima tensão inversa e a máxima corrente no diodo.
 - Sugestão: pode usar o teorema de Thévenin.

- 10. Considere $V\gamma$ = 0.7V, R = 1k Ω , V_{Z1} = 4.3V, V_{Z2} = 3.3V.
 - A entrada é uma onda quadrada de 10kHz, com 20Vpp e centrada em zero.
 - Calcule os valores máximo, mínimo e médio da corrente nos zeners.
 - Calcule os valores máximo, mínimo e médio da tensão de saída.

sistemas electrónicos

- 11.- Considere o circuito abaixo em que a tensão de entrada tem um máximo de 15V e um ripple de 3V. A CARGA consome 0.81W, mas pode ser desligada (0W). Para estabilizar a tensão na carga usou-se um zener de 9V que, no mínimo, deve ser percorrido por uma corrente de 10mA.
 - a) Calcule Ri.
 - b) Calcule a potência máxima no zener.
 - c) Calcule a potência de pico na resistência Ri.

12.- Considere $V\gamma = 0.7 \text{V}$ e $R = 100\Omega$. O sinal de entrada é uma sinusoide de 50Hz com 43.4Vpp. Pretende-se uma tensão de *ripple* (*) à saída de 2V. Calcule o valor do condensador e a máxima tensão inversa no diodo.

13.- Considere $V\gamma = 0.8 \text{V}$, $C = 2000 \mu\text{F}$ e $R_L = 100 \Omega$. O sinal de entrada é uma sinusoide de 50Hz com 16Vrms. Calcule o valor da tensão de *ripple* (*) na saída.

ripple (*)
$$Vr = I_{Lmed}T/C$$
 $Vr = I_{Lmed}T/2C$