

Dr. Ananda M

Department of Electronics and Communication.

Unit-3 Digital Electronics

Realization of Boolean expression using Universal Gates

Dr. Ananda M

Department of Electronics and Communication.

Realization of Boolean expression using Universal Gates

Universal Gates: (i) NAND Gate

(ii) NOR Gate

- ❖ Any digital logic circuit can be implemented by using NAND or NOR logic gates.
- ❖ NAND and NOR gates are easier to fabricate with electronic components and are used in all Integrated Circuit (IC's) digital logic families.

Realization of Boolean expression using Universal Gates

Realization of logic gates using NAND Gates:

❖ NOT Gate:

Reference: https://www.electronics-tutorials.ws/logic/universal-gates.html

Realization of Boolean expression using Universal Gates

AND Gate:

❖ OR Gate:

$$Y = ((A+B)')' = (A' . B')' = A+B$$

Realization of Boolean expression using Universal Gates

❖ NOR Gate:

Realization of Boolean expression using Universal Gates

***** XOR Gate:

$$Y = A.B' + A'B = A (A.B)' + B. (A.B)'$$
 $Y = ((A (A.B)' + B. (A.B)')')'$
 $Y = ((A. (A.B)')' . (B.(A.B)')')'$

Realization of Boolean expression using Universal Gates

***** XNOR Gate:

$$Y = (A \oplus B)' = A \odot B$$

Realization of Boolean expression using Universal Gates

Realization of logic gates using NOR Gates:

Truth Table

NOR		
Input		Output
Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

❖ NOT Gate:

Symbol

(Input) A

(Output) Y

$$A \cap A \cap A$$
 $A \cap A \cap A$
 $A \cap A$

Realization of Boolean expression using Universal Gates

AND Gate:

$$Y = ((A.B)')' = (A' + B')' = A.B$$

❖ OR Gate:

$$Y = ((A+B)')' = A + B$$

Realization of Boolean expression using Universal Gates

❖ NAND Gate:

Realization of Boolean expression using Universal Gates

XNOR Gate:

Y1 =
$$((A+B)' + A)' = (A+B)$$
. A' = A'.B
Y2 = $((A+B)' + B)' = (A+B)$. B' = A.B'
Y = $(A'.B + A.B')' = (A'.B)'$. $(A.B')' = (A + B')$. $(A' + B)$
Y = A.B + A'.B'
Y = A \odot B

Realization of Boolean expression using Universal Gates

***** XOR Gate:

$$Y = (A \odot B)' = A \oplus B$$

Realization of Boolean expression using Universal Gates

$$F = X.Y + Z$$

$$F = ((X.Y + Z)')'$$

$$F = ((X.Y)'. Z'))'$$

THANK YOU

Dr. Ananda M
Department of Electronics and Communication
anandam@pes.edu