- 机器数是多少位就要写多少位,前后的0都不能省略!也不能随便增加0!
- 机器数里的小数点可写可不写
- 不同进制的后缀要写清楚! (十进制可省略)
- double是64位
- 补码的+0,-0是一样的
- 真值一定注意正负!
- 浮点数换算时不要忘记符号位(正负)!
- 存储地址要计算正确
- 细心。。。

(1)
$$(25.8125)_{10} = (11001.1101)_2 = (31.64)_8 = (19.D)_{16}$$

第一章

(2) $(101101.011)_2 = (45.375)_{10} = (55.3)_8 = (2D.6)_{16} = (01000101.001101110101)_{8421}$

(3) $(0101\ 1001\ 0110.0011)_{8421} = (596.3)_{10} = (1001010100.010011...)_2 = (254.4...)_{16}$

(4) $(4E.C)_{16} = (78.75)_{10} = (100 1110.11)_2$

数值。	原码
+0.1001	0.1001000
-0.1001	1.1001000
+1.0	溢出
-1.0	溢出
+0.010100	0.0101000
-0.010100	1.0101000
+0	0.0000000
-0.	1.0000000

数值	补码	移码(偏置常数=10000000)
+1001	0 0001001	1 0001001
-1001	1 1110111	0 1110111
+1	0 0000001	1 0000001
-1	1 11111111	0 1111111
+10100	0 0010100	1 0010100
-10100	1 1101100	0 1101100
+0	0.0000000	1 0000000
-0	0 0000000	1 0000000

$[x]_{\dagger h} = 11100111$	x=-001 1001B= -25
$[x]_{\dagger h} = 100000000$	x=-1000 0000B=-128
$[x]_{\dagger h} = 0101\ 0010$	x=+101 0010B= 82
$[x]_{\dagger h} = 100 \ 0011$	$x = -010 \ 1101B = -45$

ے

- 在32位计算机中运行一个C语言程序,在该程序中出现了一些变量, 已知这些变量在某一时刻的机器数(用十六进制表示)如下,请写出 它们对应的真值。
- (1) int x: FFFF0006H
- =1...1 0000 0000 0000 0110B,
- 故x=-1111 1111 1111 1010B=-(65535-5)=-65530。
 - (2) short y: DFFCH
- =1101 1111 1111 1100B=-010 0000 0000 0100B,故y=-(8192+4)=-8196。
 - (3) unsigned z: FFFFFFAH
- =1...1 1010B,故z=2³²-6。
 - (4) char c: 2AH
- =0010 1010B, 故c=42, c表示字符,则c为字符'*' (ASCII码)
 - (5) float a: C4480000H
- =1100 0100 0100 1000 0...0B,阶码为10001000,阶为136-127=9,尾数为-1.1001B,故a=-1.1001B×2⁹= -11 0010 0000B= -800。
 - (6) double b: C02480000000000H
- =1100 0000 0010 0100 1000 0 0...0B,阶码为100 0000 0010,阶为1026-1023=3,尾数为1.01001B,故b = -1.01001B×2³ = -1010.01B = -10.25。

12 (5)

符号s(1位)

阶码e (8位移码)

尾数f(7位原码数值部分)

<u>没有明确说明的情况下,就没有规格化,没有隐藏位,阶码也无</u> <u>需专门留给**0**、无穷大、非数等。</u>

e=1111 1111 对应指数为127

e=1000 0000 对应指数为0

e=0000 0000 对应指数为-128

f=000 0000 对应0.000 0000, 此时无论阶码是多少,都表示0

f=000 0001 对应0.000 0001

f=111 1111 对应0.111 1111

最大正数: +0.111 1111B×2¹²⁷

最小非0正数: +0.000 0001B×2-128

最大非0负数: -0.000 0001B×2-128 -

最小负数: -0.111111B×2127 ___

另外,可以表示+0和-0

X	x	000 0000
X	x	000 0000

0 1111 1111 1111 11111

0 | 0000 0000 | 000 0001

1 0000 0000 000 0001

1 | 1111 1111 | 111 1111

14 设一个变量的值为4098,要求分别用32位补码整数和IEEE 754单精度浮点格式表示该变量(结果用十六进制表示),并说明哪段二进制序列在两种表示中完全相同,为什么会相同?

 $4098 = 0001\ 0000\ 0000\ 0010B$ = $+1.0000\ 0000\ 001\ B \times 2^{12}$

用32位补码整数表示为0000 0000 0000 0000 0001 0000 0000 0010 用十六进制形式表示为 0000 1002H;

用IEEE 754单精度浮点数格式表示时,符号位s=0,

阶码e=12+127=10001011B,

尾数的小数部分f为0000 0000 001B

因此,4098用IEEE 754单精度浮点数格式表示为

在上述两种表示中,存在相同的二进制序列0000 0000 001。因为float编码中,有效数值部分中最前面的1被隐藏,其余数值部分为0000 0000 001,而32位补码整数表示中保留了完整的有效数值部分,但最前面的1没有被隐藏,所以除了开头一个1之外,后面的二进制序列是相同的。

17 假定在一个程序中定义了变量x、y和i,其中,x和y是float型变量,i是16位short型变量(用补码表示)。程序执行到某一时刻,x=-0.125、y=7.5、i=100,它们都被写到了主存(按字节编址),其地址分别是100,108和112。请分别画出在大端机器和小端机器上变量x、y和i中每个字节在主存的存放位置。

i = 100 = 000000001100100B, 用16位补码表示为0064H

数据在大端和小端机器中的存放位置(16 进制表示)

地址。	大端机器。	小端机器。
&x (100) 0	BE₽	00₽
&x+1 (101)	00₽	00₽
&x+2 (102)	00₽	00₽
&x+3 (103)	00₽	BE₽
&y (108) Ф	40₽	00₽
&y+1 (109)	F0₽	00€
&y+2 (110)	00₽	F0.
&y+3 (111)	00₽	40₽
&i (112) +	00₽	640
&i+1 (113) 4	64₽	00₽