Forecasting issues

Forecast Padawan 2 November 17, 2016

The goal of this experiment is to design the best model to forcaste the number of issue in the per day in the comming two weeks. We think that this could help Open Source organisation to manage there human ressources.

Load the data

```
#install.packages('forecast')

library('forecast')

library(knitr)

#load the data frame
repository.csv <- read.csv("time_series/tensorflow_tensorflow_daily.csv")

repository.csv$date = as.POSIXlt(as.Date(repository.csv$date,format='%Y-%m-%d'))</pre>
```

keep the last 12 months

```
to_date <- repository.csv$date[length(repository.csv$date)]
from_date <- to_date
from_date$year <- from_date$year - 1

repository.csv <- subset(repository.csv, date <= to_date & date >= from_date)

#loading issues and commits into a ts object
issues.ts <- ts(repository.csv$number_of_issues, frequency = 7)

Acf(issues.ts, lag.max = 14, main = "")</pre>
```



```
commits.ts <- ts(repository.csv$number_of_commits, frequency = 7)
pull_requests.ts <- ts(repository.csv$number_of_pull_requests, frequency = 7)
plot(issues.ts, main = 'TensorFlow Issues', bty = 'l', ylab = 'Number of Issues')</pre>
```

TensorFlow Issues


```
plot(commits.ts, main = 'Commits', bty = 'l', ylab = 'Number of Commits')
```

Commits


```
time <- time(issues.ts)</pre>
n.sample <- 28
n.valid <- 21
separate.train.test <- function(timeserie, n.valid) {</pre>
  time <- time(timeserie)</pre>
 n.train <- length(timeserie) - n.valid</pre>
  results <- list()
  results$train.ts <- window(timeserie, start=time[1], end=time[n.train])</pre>
  results$valid.ts <- window(timeserie, start=time[n.train+1], end=time[n.train+n.valid])
  return(results)
}
# create a matrix of 14 column, each column is a time series create by rolling forward
all.issues <- sapply(0:(n.sample - 1), function(i) return(separate.train.test(window(issues.ts,start=timest))
all.commits <- sapply(0:(n.sample - 1), function(i) return(separate.train.test(window(commits.ts,start=
issues <- separate.train.test(issues.ts, n.valid)</pre>
commits <- separate.train.test(commits.ts, n.valid)</pre>
# utility functions
\# all.forecast is a matirx of 21(length of validation period) * 14(14 rolling forward)
mean.all.accuracy <- function(all.forecast) {</pre>
  Reduce("+", all.forecast['summary',])/length(all.forecast['summary',])
```

}

```
plot.all.residuals <- function(all.forecast) {</pre>
  plot(1, type="l", main="Residuals", xlim=c(35, 53.3), ylim=c(-40, 40), xlab = 'Week', ylab = 'Errors'
  sapply(1:n.sample, function(i) lines(all.forecast['train', i]$train - all.forecast['fitted', i]$fitte
  sapply(1:n.sample, function(i) lines(all.forecast['residual',i]$residual, col = 'blue'))
  return(NULL)
}
plot.all.pred <- function(all.forecast) {</pre>
  plot(issues.ts, main="Prediction", xlim=c(35, 53.3), xlab = 'Week', ylab = 'Number of Issues')
  if (class(all.forecast['pred',1]$pred) == "forecast") {
    sapply(1:n.sample, function(i) lines(all.forecast['pred',i]$pred$mean, col=rgb(0, 0, 1, 0.5)))
    sapply(1:n.sample, function(i) lines(all.forecast['pred',i]$pred, col=rgb(0, 0, 1, 0.5)))
  return(NULL)
}
plot.pred <- function(forecast.with.interval.ts) {</pre>
  plot(issues.ts, main="Prediction Interval", xlim=c(35, 53.3), xlab = 'Week', ylab = 'Number of Issues
  # how to plot shade, why is it not working here...~''
  apply(forecast.with.interval.ts, 2, function(x) lines(x))
  return(NULL)
}
hist.all.residuals <- function(all.forecast) {</pre>
  residuals <- sapply(1:n.sample, function(i) as.numeric(all.forecast['residual',i]$residual))
  hist(residuals)
  quantile(residuals, c(0.975, 0.90, 0.10, 0.025))
# plot the boxplot of 21 validation period prediction residuals
boxplot.all.residuals <- function(all.forecast) {</pre>
  residuals <- sapply(1:n.sample, function(i) as.numeric(all.forecast['residual',i]$residual))
  boxplot(apply(residuals, 1, quantile.helper))
  return (quantile(residuals, c(0.975,0.90,0.10,0.025)))
}
# retrun the vector of qunatile of 0.975, 0.90, 0.10, 0.025
quantile.helper <- function(matrix) {</pre>
  return (quantile(matrix, c(0.975, 0.90, 0.10, 0.025)))
# get the quantile of each point prediction
get.quantile.of.residuals <- function(all.forecast) {</pre>
  residuals <- sapply(1:n.sample, function(i) as.numeric(all.forecast['residual',i]$residual))
  return (apply(residuals, 1, quantile.helper))
}
forecast.confidence <- function(ets.test.model.pred, quantile.of.residuals) {</pre>
  forecast.confidence.interval <- apply(quantile.of.residuals, 1, function(a.quantile) return(a.quantil
  return(forecast.confidence.interval)
}
```

```
forecast.manual.interval <- function(x.train, f.train, f.pred, f.lower, f.upper) {</pre>
  mean <- f.pred
  x <- x.train
 residuals <- x.train - f.train
  fitted <- f.train
  level <-c(80, 95)
 lower <- f.lower</pre>
  upper <- f.upper
  # Construct output list
  output <- list(mean=mean, x=x, residuals=residuals, fitted=fitted, level=level, lower=lower, upper=up
  # Return with forecasting class
  return(structure(output, class='forecast'))
# to build custom forecast object
forecast.manual <- function(x.train, f.train, f.pred) {</pre>
  mean <- f.pred
 x <- x.train
 residuals <- x.train - f.train
  fitted <- f.train
  # Construct output list
 output <- list(mean=mean, x=x, residuals=residuals, fitted=fitted)</pre>
  # Return with forecasting class
 return(structure(output, class='forecast'))
```

Naive Forecast

Naive

```
naive.forecast <- function(sample) {
  results <- list()
  results$train <- sample$train.ts
  results$valid <- sample$valid.ts
  results$pred <- naive(sample$train.ts, h=n.valid)
  results$fitted <- results$pred$fitted
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)
  return(results)
}
all.naive.forecast <- sapply(1:n.sample, function(i) return(naive.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.naive.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.0362191	7.740198	5.984758	-16.92127	48.38444	1.089436	-0.2809288	NA
Test set	1.9353741	10.001513	8.401360	-11.99704	47.87292	1.529827	0.1266963	0.8643042

NULL

plot.all.residuals(all.naive.forecast)

Residuals

NULL

hist.all.residuals(all.naive.forecast)

Histogram of residuals


```
## 97.5% 90% 10% 2.5%
## 20.325 14.300 -11.000 -18.000
```

boxplot.all.residuals(all.naive.forecast)

Seasonal Naive

```
snaive.forecast <- function(sample) {
  results <- list()
  results$train <- sample$train.ts
  results$valid <- sample$valid.ts
  results$pred <- snaive(sample$train.ts, h=n.valid)
  results$fitted <- results$pred$fitted
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)

  return(results)
}
all.snaive.forecast <- sapply(1:n.sample, function(i) return(snaive.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.snaive.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.222269	7.133274	5.493520	-12.165041	43.18270	1.000000	0.1995944	NA
Test set	2.0476190	7.450688	6.088435	-1.947782	30.79628	1.108953	-0.1822976	0.6699061

NULL

plot.all.residuals(all.snaive.forecast)

Residuals

NULL

hist.all.residuals(all.snaive.forecast)

Histogram of residuals


```
## 97.5% 90% 10% 2.5%
## 18 11 -8 -11
```

```
boxplot.all.residuals(all.snaive.forecast)
```


Smoothing

Exponential smoothing ZMM

```
hw.forecast <- function(sample) {
  results <- list()
  results$train <- sample$train.ts
  results$valid <- sample$valid.ts
  results$model <- ets(sample$train.ts, model = "ZMM")
  results$pred <- forecast(results$model, h=n.valid)
  results$fitted <- results$pred$fitted
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)
  return(results)
}
all.hw.forecast <- sapply(1:n.sample, function(i) return(hw.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.hw.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.0268633	5.232163	4.104117	-15.944895	35.26945	0.7470828	0.1386387	NA
Test set	1.3127929	5.795947	4.917541	-4.604707	26.26229	0.8955106	-0.1160116	0.5146231

plot.all.pred(all.hw.forecast)

NULL

plot.all.residuals(all.hw.forecast)

Residuals

NULL

hist.all.residuals(all.hw.forecast)

Histogram of residuals


```
## 97.5% 90% 10% 2.5%
## 12.223959 9.525994 -6.136258 -8.313395
```

boxplot.all.residuals(all.hw.forecast)

Double differencing

```
ma.dd.forecast <- function(sample) {</pre>
  train.issues.d1 <- diff(sample$train.ts, lag = 1)</pre>
  train.issues.d1.d7 <- diff(train.issues.d1, lag = 7)</pre>
  ma.trailing <- rollmean(train.issues.d1.d7, k = 7, align = "right")</pre>
  last.ma <- tail(ma.trailing, 1)</pre>
  ma.trailing.pred <- ts(c(ma.trailing, rep(last.ma, n.valid)), start=c(3, 1), frequency = 7)</pre>
  ma.dd.pred.d1 <- train.issues.d1</pre>
  ma.dd.pred <- sample$train.ts</pre>
  for(i in 1:(n.valid/7)) {
    ma.dd.pred.d1 <- ma.trailing.pred + lag(ma.dd.pred.d1,k = -7)
    ma.dd.pred <- ma.dd.pred.d1 + lag(ma.dd.pred,k = -8)
  }
  results <- list()
  results$train <- sample$train.ts
  results$valid <- sample$valid.ts
  valid.time <- time(results$valid)</pre>
  train.time <- time(results$train)</pre>
```

```
dd.fitted <- window(ma.dd.pred, start=c(5,3), end=end(train.time), frequency=frequency(train.time))
dd.pred <- window(ma.dd.pred, start=start(valid.time), end=end(valid.time), frequency=frequency(valid

results$pred <- forecast.manual(window(results$train, start=c(5,3)), dd.fitted, dd.pred)
    results$fitted <- results$pred$fitted

results$residual <- sample$valid.ts - results$pred$mean
    results$summary <- accuracy(results$pred, sample$valid.ts)

return(results)
}
all.ma.dd.forecast <- sapply(1:n.sample, function(i) return(ma.dd.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.ma.dd.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.9008647	6.811868	5.386710	-3.838190	38.74571	0.9559362	0.1534380	NA
Test set	2.0017007	9.694547	7.654276	-2.681855	39.09663	1.3584964	-0.1009088	0.8742482

plot.all.pred(all.ma.dd.forecast)

NULL

Residuals

NULL

hist.all.residuals(all.ma.dd.forecast)

Histogram of residuals

97.5% 90% 10% 2.5% ## 22.264286 14.328571 -9.857143 -18.189286

boxplot.all.residuals(all.ma.dd.forecast)

97.5% 90% 10% 2.5% ## 22.264286 14.328571 -9.857143 -18.189286

Regression

Linear additive regression season

```
regr.add.forecast <- function(sample) {
   results <- list()
   results$train <- sample$train.ts
   results$valid <- sample$valid.ts
   results$model <- tslm(sample$train.ts ~ season + trend)
   results$pred <- forecast(results$model, h=n.valid)
   results$fitted <- results$pred$fitted
   results$residual <- sample$valid.ts - results$pred$mean
   results$summary <- accuracy(results$pred, sample$valid.ts)

   return(results)
}
all.regr.add.forecast <- sapply(1:n.sample, function(i) return(regr.add.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.regr.add.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set							0.2104383	NA 0.5105607
Test set	1.792356	6.280787	5.254605	-4.740692	27.92253	0.9570341	-0.0912699	0.5195687

```
plot.all.pred(all.regr.add.forecast)
```


NULL

plot.all.residuals(all.regr.add.forecast)

Residuals

NULL

Histogram of residuals

97.5% 90% 10% 2.5% ## 13.949857 11.071882 -5.894789 -9.771909

boxplot.all.residuals(all.regr.add.forecast)

97.5% 90% 10% 2.5% ## 13.949857 11.071882 -5.894789 -9.771909

linear multiplicative regression

```
regr.mult.forecast <- function(sample.issues) {</pre>
  train.ts <- sample.issues$train.ts</pre>
  valid.ts <- sample.issues$valid.ts</pre>
  train.lm <- tslm(train.ts ~ season + trend, lambda = 0)</pre>
  train.lm.pred <- forecast(train.lm, h=n.valid)</pre>
  lm.summary <- accuracy(train.lm.pred, valid.ts)</pre>
  results <- list()
  results$train <- train.ts
  results$valid <- valid.ts
  results$model <- train.lm
  results$pred <- train.lm.pred
  results$fitted <- train.lm.pred$fitted</pre>
  results$residual <- valid.ts - train.lm.pred$mean</pre>
  results$summary <- lm.summary</pre>
  return(results)
}
all.regr.mult.forecast <- sapply(1:n.sample, function(i) return(regr.mult.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.regr.mult.forecast))
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.8836526	5.209053	4.036375	-7.784251	32.05142	0.7347547	0.2142670	NA
Test set	1.4627136	5.838436	4.964767	-2.978273	26.07463	0.9042351	-0.1013327	0.5354692

```
plot.all.pred(all.regr.mult.forecast)
```


NULL

plot.all.residuals(all.regr.mult.forecast)

Residuals

NULL

Histogram of residuals

97.5% 90% 10% 2.5% ## 12.244596 9.066479 -6.451632 -7.836283

boxplot.all.residuals(all.regr.mult.forecast)

97.5% 90% 10% 2.5% ## 12.244596 9.066479 -6.451632 -7.836283

Neural Network (repeats = 20, p=1, P=1, size=7)

```
nnetar.forecast <- function(sample) {
  results <- list()
  results$train <- sample$train.ts
  results$valid <- sample$valid.ts
  results$model <- nnetar(sample$train.ts, repeats = 20, p=1, P=1, size=7)
  results$pred <- forecast(results$model, h=n.valid)
  results$fitted <- results$pred$fitted
  results$residual <- sample$valid.ts - results$pred$mean
  results$summary <- accuracy(results$pred, sample$valid.ts)

  return(results)
}
all.nnetar.forecast <- sapply(1:n.sample, function(i) return(nnetar.forecast(all.issues[,i])))
kable(mean.all.accuracy(all.nnetar.forecast))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0034192	5.459053	4.353965	-18.792661	38.65364	0.7925785	0.0126479	NA
Test set	2.8166244	8.276614	7.086151	-5.584128	38.73241	1.2905682	0.0635875	0.6748557

```
plot.all.pred(all.nnetar.forecast)
```

Prediction

NULL

Residuals

NULL

hist.all.residuals(all.nnetar.forecast)

Histogram of residuals

97.5% 90% 10% 2.5% ## 17.134195 13.661779 -9.722986 -14.023674

boxplot.all.residuals(all.nnetar.forecast)

External info Numerical using regression model

```
regr.ext.forecast <- function(issues, commits.sample) {</pre>
      commits_x \leftarrow ts(c(commits.sample\$train.ts[1:(length(commits.sample\$train.ts) - 1)]), frequency = 7, states the following states are supported by the states of the states
      issues$train.ts <- window(issues$train.ts, start=c(1,2))</pre>
      newdata <- data.frame(as.numeric(snaive(commits x, h=n.valid)$mean))</pre>
      colnames(newdata) <- c('commits_x')</pre>
      results <- list()
      results$train <- issues$train.ts
      results$valid <- issues$valid.ts
      results$model <- tslm(issues$train.ts ~ season + trend + commits_x)
      results$pred <- forecast(results$model, h=n.valid, newdata=newdata)
      results$fitted <- results$pred$fitted</pre>
      \verb|results| \verb|residual| <- issues| \verb|valid.ts| - results| \verb|pred| mean| \\
      results$summary <- accuracy(results$pred, issues$valid.ts)</pre>
      return(results)
all.regr.ext.forecast <- sapply(1:n.sample, function(i) return(regr.ext.forecast(all.issues[,i], all.com
kable(mean.all.accuracy(all.regr.ext.forecast))
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.000000	5.145321	4.126345	-14.222141	34.84697	0.7496657	0.1511997	NA
Test set	1.408232	6.627177	5.417145	-7.092694	29.66271	0.9847067	-0.0742656	0.5656583

```
plot.all.pred(all.regr.ext.forecast)
```


NULL

plot.all.residuals(all.regr.ext.forecast)

Residuals

NULL

Histogram of residuals

90% ## 97.5% 10% 2.5% 13.83989 10.46163 -6.66626 -10.52706

boxplot.all.residuals(all.regr.ext.forecast)

13.83989 10.46163 -6.66626 -10.52706

Ensemble (all.regr.mult.forecast[,i], all.hw.forecast[,i])

```
ensemble.forecast <- function(list.of.forecast) {</pre>
  results <- list()
  results$train <- list.of.forecast[[1]]$train</pre>
  results$valid <- list.of.forecast[[1]]$valid
  valid.time <- time(results$valid)</pre>
  train.time <- time(results$train)</pre>
  mean.pred <- ts(</pre>
    rowMeans(sapply(list.of.forecast, function(forecast) forecast$pred$mean)),
    start=start(valid.time),
    end=end(valid.time),
    frequency=frequency(valid.time))
  mean.fitted <- ts(</pre>
    rowMeans(sapply(list.of.forecast, function(forecast) window(forecast$fitted, start=c(5,3)))),
    start=start(train.time),
    end=end(train.time),
    frequency=frequency(train.time))
  results$pred <- forecast.manual(window(results$train, start=c(5,3)), mean.fitted, mean.pred)
  results$fitted <- results$pred$fitted
  results$residual <- results$valid - results$pred$mean</pre>
  results$summary <- accuracy(results$pred, results$valid)</pre>
  return(results)
all.ensemble.forecast <- sapply(</pre>
  1:n.sample,
  function(i) return(ensemble.forecast(list(all.regr.mult.forecast[,i], all.hw.forecast[,i])))
kable(mean.all.accuracy(all.ensemble.forecast))
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.6469228	8.913922	7.355136	-24.83879	61.12687	1.3052871	0.4323747	NA
Test set	1.3877533	5.790308	4.932371	-3.79149	26.12635	0.8758456	-0.1110769	0.521521

```
Acf(all.ensemble.forecast[,1]$residual, lag.max = 14, main = "")
```


plot.all.pred(all.ensemble.forecast)

NULL

plot.all.residuals(all.ensemble.forecast)

Residuals

NULL

Histogram of residuals

97.5% 90% 10% 2.5% **##** 12.109749 9.363365 -6.165749 -8.076651

boxplot.all.residuals(all.ensemble.forecast)

12.109749 9.363365 -6.165749 -8.076651

TensorFlow Forecasted No. of issues

