Machine Learning VIII : Minimisation du risque

Nicolas Bourgeois

- Outils de base
 - Fonction de Perte
 - Risque empirique
 - Matrice de confusion
 - Courbe ROC
- Risque et Consistance
 - ERM
 - Consistance
 - Exemple déroulé : kNN
 - Décomposition approximation-estimation

- Fonction de Perte
- Risque empirique
- Matrice de confusion
- Courbe ROC

Risque et Consistance

- ERM
- Consistance
- Exemple déroulé : kNN
- Décomposition approximation-estimation

Fonction de Perte

Soit $\mathit{LF}: E \to \mathbb{R}_+$ une fonction de perte, telle que

$$LF(Y, Y) = 0$$

Et Φ une fonction d'agrégation Objectif :

$$\min_{f} \Phi \left(LF(f(X_i), Y_i) \right)$$

Outils de base

Fonction de Perte

Exercice

Exercice

Suggérez des fonctions de perte pour la régression

Exercice

Suggérez des fonctions de perte pour la classification

$$LF(X, Y) = (X - Y)^{q}$$

$$LF(X, Y) = \frac{|X - Y|}{|X + Y|}$$
2)
$$LF(X, Y) = \mathbf{1}_{X \neq Y}$$

$$LF(X, Y) = 1 \text{ si } X > Y, \epsilon \text{ si } X < Y, 0 \text{ sinon.}$$

- Fonction de Perte
- Risque empirique
- Matrice de confusion
- Courbe ROC

Risque et Consistance

- ERM
- Consistance
- Exemple déroulé : kNN
- Décomposition approximation-estimation

Risque empirique

Soit $LF : E \to \mathbb{R}_+$ une fonction de perte, telle que

$$LF(Y, Y) = 0$$

Et on fait la moyenne *sur l'échantillon observé* : Objectif :

$$\frac{1}{N}\sum_{i\in I}\left(LF(f(X_i),Y_i)\right)$$

Exercice

Exercice

En reprenant les données iris, programmez (sans utiliser scipy ou scikit-learn) une régression linéaire entre la longueur et l'épaisseur des pétales, en choisissant respectivement :

- $LF(X, Y) = (X Y)^2$
- LF(X, Y) = |X Y|

Affichez les deux droites sur le même graphe.

Résultat attendu


```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
iris = pd.read csv('data1.csv')
Y, X=iris. PetalLength, iris. PetalWidth
plt.scatter(X,Y,c="green")
for p in range(1,3):
    coefs, score=list (np. linspace (0,3,601)),[]
    for c in coefs:
        m=sum(Y[i]-c*X[i]  for i in range(len(X)))/len(X)
        score.append(sum(abs(Y[i]-c*X[i]-m)**p for i in range(len(X)))
    s opt=min(score)
    c opt=coefs[score.index(s opt)]
    m opt=sum(Y[i]-c opt*X[i] for i in range(len(X)))/len(X)
    plt.plot(X,c opt*X+m opt)
    print(c_opt, m_opt)
plt.show()
```

Outils de base

Risque empirique

Exercice

Exercice

Construisez un exemple pour lequel le choix de la fonction de perte a un gros impact sur la régression.

```
import numpy as np
import random
from matplotlib import pyplot as plt
X=[x+random.normalvariate(0,0.2)  for x in range(30)]
Y=[x+random.normalvariate(0,0.2) for x in range(30)]
Y[29]+=200
plt.scatter(X,Y,c="green")
for p in range (1,3):
    coefs, score=list(np.linspace(0.3.601)),[]
    for c in coefs:
        m=sum(Y[i]-c*X[i] for i in range(len(X)))/len(X)
        score.append(sum(abs(Y[i]-c*X[i]-m)**p for i in range(len(X)))
    s opt=min(score)
    c_opt=coefs[score.index(s_opt)]
    m opt=sum(Y[i]-c \text{ opt}*X[i] \text{ for } i \text{ in range}(len(X)))/len(X)
    plt.plot(X,[c_opt*x+m_opt for x in X])
    print(c opt, m opt)
plt.show()
```

Outils de base

Risque empirique

- Fonction de Perte
- Risque empirique
- Matrice de confusion
- Courbe ROC

Risque et Consistance

- ERM
- Consistance
- Exemple déroulé : kNN
- Décomposition approximation-estimation

Principe

Dans le cas d'une classification supervisée, on considère :

$$c_{jk} = |i, g(X_i) = j \& Y_i = k|$$

Outils de base

Matrice de confusion

Exercice

Exercice

Avec scikit-learn, entrainez un k-means sur l'iris set et produisez à la main la matrice de confusion associée.

Outils de base

Matrice de confusion

```
from sklearn import datasets, cluster
iris = datasets.load_iris()
X,Y= iris.data, iris.target
km = cluster.KMeans(n_clusters=3)
km.fit(X,Y)
res = km.predict(X)
cm = [[len([i for i in range(len(Y)) if res[i]==j
    and Y[i]==k]) for j in range(3)] for k in range(3)]
print(cm)
```

exercice

On considère deux modèles dont les matrices de confusion sont les suivantes :

40	5
4	40

43	2
9	35

Si nous considérons une loi de perte asymétrique $(1,\epsilon)$, pour quelles valeurs de ϵ le premier modèle est-il meilleur au sens du risque empirique que le second ? Faites une représentation graphique.

Outils de base

Matrice de confusion

Résultat attendu


```
import numpy as np
from matplotlib import pyplot as plt
m1,m2=[[40,5],[4,40]],[[43,2],[9,35]]
eps=np.linspace(0.1,1,100)
y1=[m1[0][1]+x*m1[1][0] for x in eps]
y2=[m2[0][1]+x*m2[1][0] for x in eps]
plt.plot(eps,y1)
plt.plot(eps,y2)
plt.show()
```

- 1 Outils de base
 - Fonction de Perte
 - Risque empirique
 - Matrice de confusion
 - Courbe ROC
- Risque et Consistance
 - ERM
 - Consistance
 - Exemple déroulé : kNN
 - Décomposition approximation-estimation

Outils de base Courbe ROC

Receiver Operating Characteristic

On se place dans le cas d'une classification binaire

On trace la courbe du nombre de vrais positifs (sensibilité) sur le nombre de faux positifs (non-spécificité) par ordre décroissant de certitude.

Exemple

Outils de base Courbe ROC

Exercice

Exercice

Avec scikit-learn, entraînez un SVM à deux valeurs sur les données du titanic en prenant uniquement l'age et le prix du billet comme variable X, et bien sûr Y pour la survie. Puis produisez la courbe ROC associées.

```
from sklearn import sym
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
titanic = pd.read csv("data2.csv").loc[:,['age','fare',
    'survived'll.dropna()
X,Y=titanic [['age', 'fare']], list (titanic.survived)
svc=svm.SVC(probability=True)
svc. fit (X,Y)
pr = [(x[0], Y[i]) for i,x in enumerate(list(svc.predict proba(X)))]
pr.sort(key=lambda x:x[0],reverse=True)
print(pr)
TP.FP = [0].[0]
abc = np.linspace(0, len(Y), len(Y)+1)
for i in range(len(Y)):
    TP.append(TP[-1]+(1 \text{ if } pr[i][1]==0 \text{ and } pr[i][0]>0.5 \text{ else } 0))
    FP.append(FP[-1]+(1 if pr[i][1]==1 and pr[i][0]>0.5 else 0))
plt.plot(FP,TP,color='red')
plt.show()
```

Outils de base Courbe ROC

- Outils de base
 - Fonction de Perte
 - Risque empirique
 - Matrice de confusion
 - Courbe ROC
- Risque et Consistance
 - ERM
 - Consistance
 - Exemple déroulé : kNN
 - Décomposition approximation-estimation

Erreur du modèle

La bonne mesure serait de minimiser :

$$D(\tilde{f}) = \mathbb{E}(LF(\tilde{f}(X), Y))$$

Mais comme on ne connaît pas la loi de (X, Y) c'est impossible.

Erreur moyenne empirique

On dispose d'un échantillon de test $\tau = (X_j, Y_j)_{j \le n}$. On se rabat sur l'erreur empirique :

$$\tilde{D}(\tilde{f},\tau) = \frac{1}{n} \sum_{j \le n} LF(\tilde{f}(X_j), Y_j)$$

Loi des Grands Nombres

Si les (X_i, Y_i) sont i.i.d. alors

$$\frac{1}{n}\sum_{j\leq n} LF(\tilde{f}(X_j),Y_j) \longrightarrow \mathbb{E}(LF(\tilde{f}(X),Y))$$

Loi des Grands Nombres

Si les (X_i, Y_i) sont i.i.d. alors

$$\frac{1}{n}\sum_{j\leq n} LF(\tilde{f}(X_j),Y_j) \longrightarrow \mathbb{E}(LF(\tilde{f}(X),Y))$$

Sous cette hypothèse, il suffit donc d'un échantillon suffisamment grand.

Machine Learning VIII : Minimisation du risque
Risque et Consistance

ERM

Exercice

Exercice

Produisez des exemples de données non i.i.d. pour lesquelles cette convergence n'existe pas.

- Outils de base
 - Fonction de Perte
 - Risque empirique
 - Matrice de confusion
 - Courbe ROC
- Risque et Consistance
 - ERM
 - Consistance
 - Exemple déroulé : kNN
 - Décomposition approximation-estimation

Risque Optimal

Risque théorique associé à un estimateur :

$$D(\tilde{f}) = \mathbb{E}(LF(\tilde{f}(X), Y))$$

Risque optimal:

$$ROPT = \min_{\tilde{f}} \mathbb{E}(LF(\tilde{f}(X), Y))$$

Risque Optimal

Risque théorique associé à un estimateur :

$$D(\tilde{f}) = \mathbb{E}(LF(\tilde{f}(X), Y))$$

Risque optimal:

$$ROPT = \min_{\tilde{f}} \mathbb{E}(LF(\tilde{f}(X), Y))$$

Consistance:

$$D(\tilde{f}) \longrightarrow ROPT$$

En résumé

Si les (X_i, Y_i) sont i.i.d. alors la moyenne empirique converge vers l'espérance du modèle

$$\frac{1}{n}\sum_{j\leq n}LF(\tilde{f}(X_j),Y_j)\longrightarrow \mathbb{E}(LF(\tilde{f}(X),Y))$$

Si le modèle est consistant alors l'espérance du modèle converge vers celle du modèle optimal

$$\mathbb{E}(LF(\tilde{f}(X), Y)) \longrightarrow \min_{\tilde{g}} \mathbb{E}(LF(\tilde{g}(X), Y))$$

- Outils de base
 - Fonction de Perte
 - Risque empirique
 - Matrice de confusion
 - Courbe ROC
- Risque et Consistance
 - ERM
 - Consistance
 - Exemple déroulé : kNN
 - Décomposition approximation-estimation

Algorithme

 σ_X est une permutation sur (X_i) telle que :

$$\forall i, d(X_{\sigma_x(i)}, x) \leq d(X_{\sigma_x(i+1)}, x)$$

$$knn(x) = argmax_{y \in Y} \mid \{x_{\sigma_X(i)}, i \leq k, Y_{\sigma(i)} = y\} \mid$$

Risque et Consistance Exemple déroulé : kNN

Résultat

Si *k* est constant, knn n'est pas consistant.

Si $k \to \infty$ et $k/n \to 0$, knn est consistant

Risque et Consistance Exemple déroulé : kNN

Exercice

Exercice

Construisez à la main un set de variables aléatoires (X, Y) vérifiant une relation Y = f(X), puis un jeu d'observations biaisé $(X_i)_{i \le n}$, $(Y_i)_{i \le n}$ pour lequel il n'y a pas convergence de la moyenne empirique pour un 2nn.

Exercice

Construisez à la main un set de variables aléatoires (X, Y) vérifiant une relation Y = f(X), puis un jeu d'observations iid $(X_i)_{i \le n}$, $(Y_i)_{i \le n}$ pour lequel il y a convergence de la moyenne empitique MAIS il n'y a pas consistance de 2nn et le modèle prédit mal.

Risque et Consistance

Exemple déroulé : kNN

Resultat

Risque et Consistance

Exemple déroulé : kNN

Resultat

Risque et Consistance

Exemple déroulé : kNN

Resultat

Risque et Consistance

Exemple déroulé : kNN

Solution

```
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
from matplotlib import pyplot as plt
for n in range (1,5):
   X = np.concatenate((np.random.normal(0,1,n*5),
        np.random.normal(5,1,n*5))
    Y = np.concatenate((np.full(n*5,0),np.full(n*5,1)))
    X train, Y train = X[:n*4].reshape(-1,1),Y[:n*4]
    knn = KNeighborsClassifier(n neighbors=2)
    knn. fit (X train, Y train)
    fX = knn.predict(X.reshape(-1,1))
    plt.subplot(2,4,n)
    plt.scatter(X, X, c=list(fX))
    plt.subplot(2,4,n+4)
    plt.scatter(X, X, c = list(Y))
plt.show()
```

Risque et Consistance

Exemple déroulé : kNN

Solution

```
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
from matplotlib import pyplot as plt
for n in range (1,5):
    X = np.concatenate((np.random.normal(0,1,n*5),
        np.random.normal(5,1,n))
    Y = np. concatenate((np. full(n*5,0), np. full(n,1)))
    I = list(np.random.randint(0,n*6-1,n*3))
    X_{train}, Y_{train} = X[I]. reshape(-1,1), Y[I]
    knn = KNeighborsClassifier(n neighbors=2)
    knn.fit(X train, Y train)
    fX = knn.predict(X.reshape(-1,1))
    plt.subplot(2,4,n)
    plt.scatter(X, X, c=list(fX))
    plt.subplot(2,4,n+4)
    plt.scatter(X, X, c = list(Y))
plt.show()
```

- Outils de base
 - Fonction de Perte
 - Risque empirique
 - Matrice de confusion
 - Courbe ROC
- Risque et Consistance
 - ERM
 - Consistance
 - Exemple déroulé : kNN
 - Décomposition approximation-estimation

Minimiseur du reste empirique

Pour:

$$\tilde{D}(\tilde{t},\tau) = \frac{1}{n} \sum_{j \leq n} LF(\tilde{t}(X_j), Y_j)$$

On peut prendre:

$$\tilde{F} = \operatorname{argmin}_{\tilde{f}} \tilde{D}(\tilde{f}, \tau)$$

Décomposition du risque

$$\begin{split} D(\tilde{F}) - ROPT &= D(\tilde{F}) - \min_{\tilde{g} \in \mathcal{Z}} \mathbb{E}(LF(\tilde{g}(X), Y)) \\ &+ \min_{\tilde{g} \in \mathcal{Z}} \mathbb{E}(LF(\tilde{g}(X), Y)) - ROPT \end{split}$$

Risque et Consistance

Décomposition approximation-estimation

exemples

Machine Learning VIII : Minimisation du risque
Risque et Consistance
Décomposition approximation-estimation

exercice

Sur l'exemple de la régression iris précédente, suggérez (et implémentez) des solutions pour réduire, soit l'approximation au détriment de l'estimation, soit l'inverse.