1.3. Medidas exteriores. Extensión de medidas

 ${f 1}.$ Dado un conjunto X, consideramos la aplicación

$$\mu^*(A) = \begin{cases} 0 & \text{si } A = \emptyset, \\ 1 & \text{si } A \neq \emptyset. \end{cases}$$

Mostrar que μ^* es una medida exterior y hallar los conjuntos μ^* -medibles.

2. Sea X un conjunto no contable. Consideramos la aplicación

$$\mu^*(A) = \begin{cases} 0 & \text{si } A \text{ es contable,} \\ 1 & \text{si } A \text{ es no contable.} \end{cases}$$

Mostrar que μ^* es una medida exterior y hallar los conjuntos μ^* -medibles.

1.4. La medida de Lebesgue

- 3. Sea $A \in \mathcal{L}(\mathbb{R})$. Mostrar que m(A) = 0 si y sólo si para cada $\epsilon > 0$ existe una sucesión de intervalos $\{I_n\}$ tal que $A \subset \bigcup_{n=1}^{\infty} I_n$ y la suma de sus longitudes es menor que ϵ .
- **4.** Sea $A \in \mathcal{L}(\mathbb{R})$ con m(A) > 0. Mostrar que para cualquier $\alpha < 1$, existe un intervalo abierto I verificando que $m(I \cap A) > \alpha m(I)$.

Sugerencia: téngase en cuenta que $m(A) = \inf \left\{ \sum_{j=1}^{\infty} m((a_j, b_j)) : A \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}.$

5. Sea $f:[0,\infty)\to\mathbb{R}$ definida mediante

$$f(0) = 0,$$
 y $f(x) = x \sin \frac{1}{x},$ para $x > 0.$

Calcular la medida de Lebesgue del conjunto $A=\{x\in[0,1/\pi]:f(x)\geq 0\}.$ Ayuda: Recuérdese que $\sum_{n=1}^{\infty}(-1)^{n+1}/n=\log 2.$

- **6**. Sea H un espacio afín n-1 dimensional de \mathbb{R}^n . Mostrar que m(H)=0.
- 7. Sean $v_1, \ldots, v_n \in \mathbb{R}^n$. Calcular m(A), donde $A = \{x = \lambda_1 v_1 + \cdots + \lambda_n v_n : 0 \le \lambda_j \le 1\}$.
- **8**. Sea U un abierto acotado de \mathbb{R}^n . Supongamos que $\overline{U} \subset \lambda U$, para todo $\lambda > 1$. Mostrar que ∂U (la frontera de U) es medible Borel y que $m(\partial U) = 0$.