f) show
$$2^n = r^n(\cos(n\phi) + i\sin(n\phi))$$

Euler formula. $2 = re^{i\phi}$
 $2^n = (re^{i\phi})^n = r^n e^{in\phi} = r^n(\cos(n\phi) + i\sin(n\phi))$

g) show $\ln(2) = \ln r + i(\phi + 2\pi n)$
 $2 = re^{i\phi}$
 $\ln(2) = \ln(re^{i\phi}) = \ln r + \ln(e^{i\phi}) = \ln r + i\phi$
 $\ln(2) = \ln r + i(\phi + 2\pi r)$

| Modern | (a) Show
$$R(z^1) = x^2 - y^2$$
, $Im(z^1) - 2xy$
 $\frac{1}{2} = x + iy$
 $\frac{1}{2} = (x + iy)^2 = x^2 + 2ixy - y^2 = (x^2 - y^2) + i(2xy)$
 $R(z^2) - x^2 - y^2$ $Im(z^1) - 2xy$

| (a) $\frac{1}{2} = x^2 + 2ixy - y^2 = (x^2 - y^2) + i(2xy)$

| (b) $\frac{1}{2} = x^2 + 2ixy - 2xy$
 $\frac{1}{2} = x + iy$
 $\frac{1}{2} = x^2 + 2xy$

| (a) $\frac{1}{2} = x^2 + 2xy$

| (a) $\frac{1}{2} = \frac{1}{x^2 + y^2}$

| (b) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (a) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (b) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (a) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (b) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (a) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (b) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (a) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (b) $\frac{1}{2} = \frac{1}{x^2 + y^2}$
| (a) $\frac{1}{2} = \frac{1}{x^$

a) How many roods do you expect?

since its a degree of 4, we except 4 roots (real or complex)

$$f(x) = x(x^3 - 20x + 1) = 0$$

[X,=0] We expect 3 move roots from above equation

$$9(x) = \frac{x^3 + 1}{20}$$

$$9_2(x) = \sqrt[3]{20x-1}$$

$$g_3(x) = \frac{1}{20} + \frac{x^3}{20}$$

$$93(x) = \frac{3x^2}{10}$$

$$9!(x) = \frac{3x^2}{20} \left| \frac{3x^2}{20} \right| < 1 \quad 3x^2 < 20$$

$$\left| \frac{3}{2} \right| < 1 \quad 3x^2 < 20$$

$$\frac{20}{3(20x-1)^{2/3}}$$
 \(\lambda \) \(\frac{20}{3(20x-1)^{2/3}} \)

$$20 < 3(30 \times -1)^{2/3}$$
 $\left(\frac{20}{3}\right)^2 < 20 \times -1$

$$\left(\frac{20}{3}\right)^{3/2} \approx 10.65$$
 $11.65 < 20 \times$

