CS 154

More on Reductions, Rice's Theorem

Reducing One Problem to Another

 $f: \Sigma^* \to \Sigma^*$ is a computable function if there is a Turing machine M that halts with just f(w) written on its tape, for every input w

A language A is mapping reducible to language B, written as $A \leq_m B$, if there is a computable $f: \Sigma^* \to \Sigma^*$ such that for every w,

$$w \in A \iff f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B

Let $f: \Sigma^* \to \Sigma^*$ be a computable function such that $w \in A \Leftrightarrow f(w) \in B$

Say: "A is mapping reducible to B" Write: $A \leq_m B$

Examples

 A_{DFA} = { (D, w) | D encodes a DFA over some Σ , and D accepts w $\in \Sigma^*$ } A_{NFA} = { (N, w) | N encodes an NFA, D accepts w }

Theorem: $A_{DFA} \leq_m A_{NFA}$ Every DFA can be trivially written as an NFA. So one mapping reduction f from A_{DFA} to A_{NFA} is: f(D,w) := Construct NFA N which is equivalent to DOutput (N,w)

Theorem: $A_{NFA} \leq_m A_{DFA}$ f(N,w) := Use the subset construction to convertNFA N into an equivalent DFA D. Output (D,w) Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable

Theorem: A_{TM} ≤_m HALT_{TM}

Output (M', w)

Define

f(z) := Decode z into a pair (M, w)
 Construct M' with the specification:
 "M'(w) = Simulate M on w.
 if M(w) accepts then accept
 else loop forever"

We have $z \in A_{TM} \Leftrightarrow (M', w) \in HALT_{TM}$

Theorem: A_{TM} ≤_m HALT_{TM}

Corollary: $\neg A_{TM} \leq_m \neg HALT_{TM}$

Corollary: ¬HALT_{TM} is unrecognizable!

Proof: If $\neg HALT_{TM}$ were recognizable, then $\neg A_{TM}$ would be recognizable...

Theorem: $HALT_{TM} \leq_m A_{TM}$

Proof: Define the computable function:

```
f(z) := Decode z into a pair (M, w)

Construct M' with the specification:

"M'(w) = Simulate M on w.

If M(w) halts then accept

else loop forever"

Output (M', w)
```

Observe $(M, w) \in HALT_{TM} \Leftrightarrow (M', w) \in A_{TM}$

Corollary: $HALT_{TM} \equiv_m A_{TM}$

Yo, T.M.! I can give you the magical power to either compute the halting problem, or the acceptance problem. Which do you want?

The Emptiness Problem for TMs

 $EMPTY_{TM} = \{ M \mid M \text{ is a TM such that } L(M) = \emptyset \}$ Given a program, does it reject or loop on every input? Theorem: EMPTY_{TM} is *not recognizable* Proof: Show that $\neg A_{TM} \leq_m EMPTY_{TM}$ f(z) := Decode z into a pair (M, w).Output a TM M' with the behavior: "M'(x) := if(x = w) then output answer of M(w), else reject" $z \notin A_{TM} \Leftrightarrow M doesn't accept w$ \Leftrightarrow L(M') = \varnothing \Leftrightarrow M' \in EMPTY_{TM} \Leftrightarrow f(z) \in EMPTY_{TM}

The Emptiness Problem for Other Stuff

 $EMPTY_{DFA} = \{ M \mid M \text{ is a DFA such that } L(M) = \emptyset \}$

Given a DFA, does it reject every input?

Theorem: EMPTY_{DFA} is decidable

Why?

 $EMPTY_{NFA} = \{ M \mid M \text{ is a NFA such that } L(M) = \emptyset \}$

 $EMPTY_{REX} = \{ R \mid M \text{ is a regexp such that } L(M) = \emptyset \}$

The Equivalence Problem

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

Do two programs compute the same function?

Theorem: EQ_{TM} is *unrecognizable*

Proof: Reduce EMPTY_{TM} to EQ_{TM}

Let M_{\varnothing} be a TM that always loops forever, so $L(M_{\varnothing}) = \varnothing$

Define $f(M) := (M, M_{\varnothing})$

$$M \in EMPTY_{TM} \Leftrightarrow L(M) = L(M_{\varnothing})$$

 $\Leftrightarrow (M, M_{\varnothing}) \in EQ_{TM}$

Moral: Analyzing Programs is Really, Really Hard.

How can we more easily tell when some "program analysis" problem is undecidable?

Problem 1 Undecidable

{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the input }

Problem 2 Decidable

{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point}

Problem 1 Undecidable

L' = { (M, w) | M is a TM that on input w, tries to move its head past the left end of the input }

Proof: Reduce A_{TM} to L'

On input (M,w), make a TM N that shifts w over one cell, marks a special symbol \$ on the leftmost cell, then simulates M(w) on the tape.

If M's head moves to the cell with \$ but has not yet accepted, N moves the head back to the right.

If M accepts, N tries to move its head past the \$.

(M,w) is in A_{TM} if and only if (N,w) is in L'

Problem 2 Decidable

{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point}

```
On input (M,w), run M on w for 
|Q| + |w| + 1 steps,
where |Q| = number of states of M.
```

Accept If M's head moved left at all Reject Otherwise

(Why does this work?)

Problem 3

REVERSE = $\{ M \mid M \text{ is a TM with the property:}$ for all w, M(w) accepts \Leftrightarrow M(w^R) accepts $\}$.

Decidable or not?

REVERSE is undecidable.

Rice's Theorem

Let P: {Turing Machines} \rightarrow {0,1}. (Think of 0=false, 1=true) Suppose P satisfies:

1. (Nontrivial) There are TMs M_{YES} and M_{NO} where $P(M_{YES}) = 1$ and $P(M_{NO}) = 0$

2. (Semantic) For all TMs M_1 and M_2 , If $L(M_1) = L(M_2)$ then $P(M_1) = P(M_2)$

Then, $L = \{M \mid P(M) = 1\}$ is undecidable.

A Huge Hammer for Undecidability!

Some Examples and Non-Examples

Semantic Properties P(M)

- M accepts 0
- for all w, M(w) accepts
 iff M(w^R) accepts
 - $L(M) = \{0\}$
 - L(M) is empty
 - $L(M) = \Sigma^*$
 - M accepts 154 strings

Not Semantic!

- M halts and rejects 0
- M tries to move its head off the left end of the tape, on input 0
- M never moves its head left on input 0
- M has exactly 154 states
 - M halts on all inputs

L = {M | P(M) is true} is undecidable

There are M_1 and M_2 such that $L(M_1) = L(M_2)$ and $P(M_1) \neq P(M_2)$ Rice's Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L Define M_{\emptyset} to be a TM such that $L(M_{\emptyset}) = \emptyset$ Case 1: $P(M_{\emptyset}) = 0$

Since P is nontrivial, there's M_{YES} such that $P(M_{YES}) = 1$

Reduction from A_{TM} to L On input (M,w), output: " $M_w(x) := If ((M accepts w) & (M_{YES} accepts x)) then$ ACCEPT, else REJECT"

If M accepts w, then $L(M_w) = L(M_{YES})$ Since $P(M_{YES}) = 1$, we have $P(M_w) = 1$ and $M_w \in L$ If M does not accept w, then $L(M_w) = L(M_{\varnothing}) = \varnothing$ Since $P(M_{\varnothing}) = 0$, we have $M_w \notin L$ Rice's Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L Define M_{\varnothing} to be a TM such that $L(M_{\varnothing}) = \varnothing$ Case 2: $P(M_{\varnothing}) = 1$ Since P is nontrivial, there's M_{NO} such that $P(M_{NO}) = 0$ Reduction from $\neg A_{TM}$ to L On input (M, w), output:

"M_w(x) := If ((M accepts w) & (M_{NO} accepts x)) then

ACCEPT, else REJECT"

If M does not accept w, then $L(M_w) = L(M_{\varnothing}) = \varnothing$ Since $P(M_{\varnothing}) = 1$, we have $M_w \in L$ If M accepts w, then $L(M_w) = L(M_{NO})$ Since $P(M_{NO}) = 0$, we have $M_w \notin L$

The Regularity Problem for Turing Machines

REGULAR_{TM} = { M | M is a TM and L(M) is regular}

Given a program, is it equivalent to some DFA?

Theorem: REGULAR_{TM} is *not recognizable*

Proof: Use Rice's Theorem!

P(M) := "L(M) is regular" is nontrivial:

- there's an M_{\varnothing} which never halts: $P(M_{\varnothing}) = 1$
- there's an M' deciding $\{0^n1^n | n \ge 0\}$: P(M') = 0

P is also semantic:

If L(M) = L(M') then L(M) is regular iff L(M') is regular, so P(M) = 1 iff P(M') = 1, so P(M) = P(M') By Rice's Thm, we have $\neg A_{TM} \leq_m REGULAR_{TM}$

Recognizability via Logic

Def. A decidable predicate R(x,y) is a proposition about the input strings x and y, such that some TM M implements R. That is,

for all x, y, R(x,y) is $TRUE \Rightarrow M(x,y)$ accepts R(x,y) is $FALSE \Rightarrow M(x,y)$ rejects

Can think of R as a function from $\Sigma^* \times \Sigma^* \to \{T,F\}$

EXAMPLES: R(x,y) = "xy has at most 100 zeroes"R(N,y) = "TM N halts on y in at most 99 steps" Theorem: A language A is *recognizable* if and only if there is a decidable predicate R(x, y) such that:

$$A = \{ x \mid \exists y R(x, y) \}$$

Proof: (1) If $A = \{x \mid \exists y R(x,y)\}$ then A is recognizable

Define the TM M(x): For all finite-length strings y, If R(x,y) is true, accept.

Then, M accepts exactly those x s.t. $\exists y \ R(x,y)$ is true

(2) If A is recognizable, then $A = \{x \mid \exists y R(x,y)\}$

Suppose TM M recognizes A.

Let R(x,y) be TRUE iff M accepts x in |y| steps

Then, M accepts x ⇔ ∃y R(x,y)