САНКТ - ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ

Группа	К работе допущен
-	Работа выполнена
Преподаватель	Отчет принят
Лаборант	
	ий протокол и отчет по
лабо	ораторной работе №2.02
ТЕМПЕРАТУРНАЯ ЗАВИСИМО	ОСТЬ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛА И ПОЛУПРОВОДНИКА
. Цель работы.	
Определение температурного коз полупроводника.	эффициента сопротивления металла и ширины запрещенной зоны
. Задачи, решаемые при выполн	чении работы.
диапазоне температур от комнати 2. По результатам п. 1 вычислить	температурный коэффициент сопротивления металла и ширину
запрещенной зоны полупроводни 3. Объект исследования.	тка.
Металлический и полупровод	дниковый образцы
4. Метод экспериментального	исследования.
Температурной зависимости	электрического сопротивления металла и полупроводника
. Рабочие формулы и исходные $=rac{1}{R_0}*rac{\Delta R}{\Delta T}$ $S_g=2krac{\Delta lnR_S}{\Delta \left(rac{1}{T} ight)}$	данные.

	6.	Измерительные	приборы.
--	----	---------------	----------

	. ориноление приобрен				
№ п/п	Наименование	Тип прибора Используемы диапазон		Погрешность прибора	
1	Мультиметр	Цифровой	0-4,59 кОм	0,01 кОм	
2	Термометр	Цифровой	0-60 град.	1 град.	
3					
4					

- 7. Схема установки (перечень схем, которые составляют Приложение 1).
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

№ изм	t, град.	Rm, кОм	Rs, кОм	Т, К	1/T, K^(- 1)	In(Rs)	1000/T, K^(-1)
1	-10	0,964	140,2	263	0,003802	4,94307	3,802281
2	-5	0,984	104,3	268	0,003731	4,647271	3,731343
3	0	1	75,2	273	0,003663	4,320151	3,663004
4	5	1,022	60,7	278	0,003597	4,105944	3,597122
5	10	1,04	48,3	283	0,003534	3,877432	3,533569
6	15	1,058	38,54	288	0,003472	3,651697	3,472222
7	20	1,076	30,01	293	0,003413	3,401531	3,412969
8	25	1,095	22,47	298	0,003356	3,112181	3,355705
9	30	1,112	18,37	303	0,0033	2,910719	3,30033
10	35	1,134	14,04	308	0,003247	2,64191	3,246753
11	40	1,153	11,71	313	0,003195	2,460443	3,194888
12	45	1,168	9,42	318	0,003145	2,242835	3,144654
13	50	1,189	7,67	323	0,003096	2,037317	3,095975
14	55	1,206	6,2	328	0,003049	1,824549	3,04878
15	60	1,223	5,18	333	0,003003	1,644805	3,003003
16	65	1,246	4,19	338	0,002959	1,432701	2,95858
17	70	1,262	3,432	343	0,002915	1,233143	2,915452
18	75	1,279	2,862	348	0,002874	1,051521	2,873563

Экстраполяция зависимости Rm(t):

Данная линейная зависимость имеет вид y = kx + b. В нашем случае $R_0 = y(0) = 1,00$ кОм.

На миллиметровке строим график зависимости Rm(t), далее «на глаз» (мы это сделали линией тренда в ексель) проводим так скажем экстраполяцию (примерное поведение графика вне наших значений), находим пересечение с осью Оу

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

					<u></u>
пары точек	$R_i - R_j$, кОм	$t_i - t_j$, град.	α_{ij}, K^{-1}	$\alpha_{ij} - < \alpha >, K^{-1}$	$\left(\alpha_{ij} - <\alpha>\right)^2, K^{-2}$
6-13	0,131	35	0,003743	4,67206E-05	2,18281E-09
7-14	0,13	35	0,003714	1,81491E-05	3,29392E-10
8-15	0,128	35	0,003657	-3,89937E-05	1,52051E-09
9-16	0,134	35	0,003829	0,000132435	1,7539E-08
10-17	0,128	35	0,003657	-3,89937E-05	1,52051E-09
11-18	0,126	35	0,0036	-9,61366E-05	9,24224E-09
12-19	-1,168	-318	0,003673	-2,31806E-05	5,3734E-10

$$R_0 = y(0) = 1,00 \text{ кОм}$$
 $<\alpha_{ij}>= 0,003696 \text{ K}^{-1};$ $\alpha = \frac{1}{R_0} * \frac{\Delta R}{\Delta T}$ $\sum (\alpha_{ij} - <\alpha>)^2 = 0.3287 * 10^{-7} \text{ K}^{-2}$

Для пары 6 - 13:

$$\alpha = \frac{1}{R_0} * \frac{\Delta R}{\Delta T} = \frac{1}{1,0} * \frac{0,131}{35} = 0,003743 \ K^{-1}$$

пары точек	$ln(R_i/R_j)$	$\frac{1}{T_i} - \frac{1}{T_j} , K^{-1}$	γ_{ij}, K	$\gamma_{ij} - < \gamma >, K$	$(\gamma_{ij} - < \gamma >)^2, K^2$
1-5	1,065638	0,000268712	3965,72008	-71,19971271	5069,399091
2-6	0,995575	0,000259121	3842,12188	-194,7979098	37946,22567
3-7	0,918621	0,000250034	3673,97704	-362,9427436	131727,4351
4-8	0,993763	0,000241418	4116,36349	79,4437026	6311,301883
5-9	0,966713	0,000233239	4144,7322	107,812412	11623,51618
6-10	1,009786	0,000225469	4478,60404	441,6842515	195084,9781

$$\gamma_{ij} = \frac{\ln\left(\frac{R_i}{R_j}\right)}{\frac{1}{T_i} - \frac{1}{T_j}}$$

$$<\gamma_{ij}> = 4036,9198 \text{ K};$$

$$\Sigma(\gamma ij - <\gamma>)^2 = 3,878*10^5 \text{ K}^2$$

$$\begin{split} E_g &= 2k\frac{\Delta lnR_s}{\Delta\left(\frac{1}{T}\right)} = 2k*\gamma = 2k\frac{\Delta lnR_s}{\Delta\left(\frac{1}{T}\right)} = 2k*\gamma = 2*1.38*10^{-23}*4036,9198 = 1,1142*10^{-19} Дж \\ &= \frac{1,1142*10^{-19}}{1.6*10^{-19}} = 0,6964 \ \text{эB} \end{split}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\sigma_{<\alpha>} = \sqrt{\frac{\sum (\alpha_i - \langle \alpha \rangle)^2}{n \cdot (n-1)}} = \sqrt{\frac{0.3287 * 10^{-7}}{7 * 6}} = 2,7976 * 10^{-5} \text{ K}^{-1};$$

$$\Delta \alpha = \sigma_{<\alpha>} * t(0.68,7) = 2,7976 * 10^{-5} * 1.1 = 3,0774 * 10^{-5} K^{-1}$$

$$\sigma_{<\gamma>} = \sqrt{\frac{\sum (\gamma i - \langle \gamma \rangle)^2}{n \cdot (n-1)}} = \sqrt{\frac{3,878 * 10^5}{4 * 3}} = 113,6900 \text{ K}$$

$$\Delta \gamma = \sigma_{<\gamma>} * t(0.68, 4) = 113,6900 * 1,3 = 136,4280 \text{ K}$$

$$\Delta E_g = \frac{\Delta \gamma}{\langle \gamma \rangle} E_g = \frac{136,4280}{4036,9198} * 0,6964 = 0.02353 \text{ } 3B = 0.02353 * 1.6 * 10^{-19} = 0.03765 * 10^{-19} \text{ Дж}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

Puc 1. Зависимость $R_m(t)$

Рис 2. Зависимость $lnR_s(1000/T)$

12. Окончательные результаты.

$$\alpha = (3,696 \pm 0,031) * 10^{-3} \text{ K}^{-1}$$
 $\gamma = (4037 \pm 140) \text{ K}$ $E_g = (0,696 \pm 0,024) \ \exists \text{B}; \qquad E_g = (1,1 \pm 0,04) * 10^{-19} \ Дж$

- 13. Выводы и анализ результатов работы.
- В ходе лабораторной работы была снята зависимость сопротивления металла и проводника от температуры. Построены зависимости $R_m(T)$ и $lnR_s(1000/T)$.
- Определено значение $R_0 = 1{,}00$ кОм графической экстраполяцией линейной зависимости $R_m(t)$ к температуре t = 0 град.
- Вычислен температурный коэффициент сопротивления металла и его погрешность $\alpha = (3,696 \pm 0,031)*10^{-3} \text{ K}^{-1}$. Табличное значение $\alpha = 3,9*10^{-3} \text{ K}^{-1}$ не попадает в доверительный интервал, но близко к нему.
- Вычислен угловой коэффициент зависимости $lnR_s(1000/T)$ и найдена его погрешность $\gamma = (4037 \pm 140) \, \mathrm{K}$
- Для германиевого полупроводника найдена ширина запрещенной зоны и вычислена её погрешность $E_g = (0.696 \pm 0.024)$ Эв. Табличное значение $E_g = 0.7$ Эв попадает в доверительный интервал экспериментально полученного значения. Это говорит о точности проведенных измерений