LECTURE 3

September 14, 2023

1. Norms on Vector Spaces

NOTATION 1.1. We denote \mathbb{K} to denote \mathbb{R} or \mathbb{C} .

DEFINITION 1.2. Let V be a vector space over \mathbb{K} . A norm on V is a function $\|\cdot\|:V\to [0,\infty)$ such that

- (1) For all $x \in V$, ||x|| = 0 if and only if x = 0.
- (2) For all $x \in V$ and $\alpha \in \mathbb{K}$, $\|\alpha x\| = |\alpha| \|x\|$.
- (3) (Triangle Inequality) For all $x, y \in V$, $||x + y|| \le ||x|| + ||y||$.

NOTATION 1.3. Let X be any set. Then we denote

$$(\mathbb{R}^X)^* = \{f : X \to \mathbb{R} : f \text{ is a bounded function}\}\$$

EXAMPLE 1.4. Let $f \in (\mathbb{R}^X)^*$ be a function. Then

$$||f||_{\infty} = \sup_{x \in X} |f(x)|$$

is a norm on X. We will show that the triangle inequality will hold. We show that

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

We claim that it suffices to show that for all $\varepsilon > 0$, $r - \varepsilon < ||f||_{\infty} + ||g||_{\infty}$. Then $r - \varepsilon$ is not an upper bound for $\{|f(x) + g(x)| : x \in X\}$. Fix $x_0 \in X$ so that $r - \varepsilon < |f(x_0) + g(x_0)| \le |f(x_0)| + |g(x_0)| \le ||f||_{\infty} + ||g||_{\infty}$, as desired.

Example 1.5. \mathbb{R} is a vector space over \mathbb{Q} .

Given a norm on a vector space V, we define a metric

$$d(x,y) = ||x - y||$$

which we have already seen with some examples. This is always a metric space.

THEOREM 1.6. Let $x, y \in \mathbb{R}^n$, and let $1 \le p < q \le \infty$, then

$$||x||_{\infty} \le ||x||_q \le ||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} ||x||_q$$

PROOF. When p = 1 and $q = \infty$, then $||x||_{\infty} \le ||x||_1$, clearly,

$$\max_{1 \le i \le n} |x_i| \le \sum_{i=1}^n |x_i|$$

For any p and $q = \infty$, then $||x||_{\infty} \le ||x||_p$, since

$$\max_{1 \le i \le n} (|x_i|^p)^{\frac{1}{p}} \le \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Now let us consider when p < q. Consider $||x||_q$, which is given by

$$||x||_q = \left(\sum_{i=1}^n |x_i|^q\right)^{\frac{1}{q}}$$

For a p-norm given as above, we want to show that

$$||x||_q \le ||x||_p \Leftrightarrow \left(\sum_{i=1}^n |x_i|^q\right)^{\frac{1}{q}} \le \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Observe that

$$||x||_{q} = \left(\sum_{i=1}^{n} |x_{i}|^{q}\right)^{\frac{1}{q}} = \left(\sum_{i=1}^{n} |x_{i}|^{q-p} |x_{i}|^{p}\right)^{\frac{1}{q}}$$

$$\leq \left(\max_{1 \leq i \leq n} |x_{i}|^{q-p} \sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{q}}$$

$$= \max_{1 \leq i \leq n} |x_{i}|^{\frac{q-p}{q}} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{q}}$$

$$= \max_{1 \leq i \leq n} |x_{i}|^{\frac{q-p}{q}} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p} \cdot \frac{p}{q}}$$

$$\leq ||x||_{p}^{\frac{q-p}{q}} (||x||_{p})^{\frac{p}{q}}$$

$$= ||x||_{p}$$

as desired.

Lastly, we want to show that

$$||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} ||x||_q$$

Note that

(Hölder's Inequality)

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p} \cdot 1\right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{n} |x_{i}|^{p \cdot r}\right)^{\frac{1}{r}} \cdot \left(\sum_{i=1}^{n} 1^{s}\right)^{\frac{1}{s}}$$
$$= \left(\sum_{i=1}^{n} |x_{i}|^{pr}\right)^{\frac{1}{pr}} \cdot n^{\frac{1}{s} \cdot p}$$

Take $r = \frac{q}{r}$ and $s = \frac{q}{q-p}$

DEFINITION 1.7. A sequence $(x_n)_{n\in\mathbb{N}}$ on a set \mathbb{K}^n is said to be bounded if there exists some $M\in\mathbb{R}$ such that

$$\sup_{n\in\mathbb{N}}|x_n|\leq M$$

for all $n \in \mathbb{N}$

NOTATION 1.8. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence. We denote the ℓ_p norm as the set of all sequences in \mathbb{K}^n such that

$$\ell_p = \left\{ (x_n)_{n \in \mathbb{N}} : \sum_{i=1}^n |x_i|^p < \infty \right\}$$

Alternatively, if $p = \infty$, then

$$\ell_{\infty} = \{(x_n)_{n \in \mathbb{N}} : (x_n)_{n \in \mathbb{N}} \text{ is bounded}\}$$

Example 1.9. Take p=2, then ℓ_2 is the set of all sequences in \mathbb{K}^n such that

$$\ell_2 = \left\{ (x_n)_{n \in \mathbb{N}} : \sum_{i=1}^n |x_i|^2 < \infty \right\}$$

Then the sequence $(x_n)_{n\in\mathbb{N}} = \left(\frac{1}{n}\right)_{n\in\mathbb{N}} \in \ell_2$, but $(y_n)_{n\in\mathbb{N}} = \left(\frac{1}{\sqrt{n}}\right)_{n\in\mathbb{N}} \notin \ell_2$.

DEFINITION 1.10. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in ℓ_p Then for any $\varepsilon > 0$, there exists an $n \in \mathbb{N}$ such that $\|(x_n)_{n\in\mathbb{N}}\|_p \geq \|(x_n)_{n\in\mathbb{N}}\|_p - \varepsilon$, i.e. restricting the sequence $(x_n)_{n\in\mathbb{N}}$ to $(x_1, x_2, ..., x_n)$.