GLMM

Emily Huang and Leo Collado

March 10th, 2014

- GLMM
 - LMM
 - GLMM
 - Estimation

- Simulation
 - Setup
 - Results

What are GLMM's?

- Extension of linear mixed models to allow response variables from different distributions
- Extension of GLMs to allow random effects and within-subject correlation

LMM in the GLMM Framework

- 1) Distributional assumption
 - $Y_{ij}|b_i \sim Normal(E[Y_{ij}|b_i], Var(Y_{ij}|b_i))$
 - $Var(Y_{ij}|b_i) = \sigma^2$
 - $Cov(Y_{ij}, Y_{ik}|b_i) = 0$
- 2) Systematic component
 - $\eta_{ij} = X_{ij}\beta + Z_{ij}b_i$
 - Linear predictor incorporates both fixed effects and subject-specific effects.
 - $b_i \sim N(0, G)$, b_i is independent of the covariates
- 3) Link function
 - g is the identity link, so we have $g\{E[Y_{ij}|b_i]\}=E[Y_{ij}|b_i]=X_{ij}\beta+Z_{ij}b_i$

General Setup of GLMM

- 1) Distribution assumption
 - ullet $Y_{ij}|b_i\sim {\sf Exponential}$ family
 - $Var(Y_{ij}|b_i) = v\{E(Y_{ij}|b_i)\}\phi$, where v is a known function
 - $Cov(Y_{ij}, Y_{ik}|b_i) = 0$
- 2) Systematic component
 - $\bullet \ \eta_{ij} = X_{ij}\beta + Z_{ij}b_i$
- 3) Link function
 - $g\{E(Y_{ij}|b_i)\} = \eta_{ij} = X_{ij}\beta + Z_{ij}b_i$ for some known link function, g
- 4) Random effects
 - Assumed to have some probability distribution, such as $b_i \sim MVN(0, G)$
 - b_i are assumed to be independent of the covariates

Example: Logistic model with random intercept

- 1) Distributional Assumption:
 - \bullet Given b_i , Y_{ij} are independent and have a Bernoulli distribution
 - $Var(Y_{ij}|b_i) = E(Y_{ij}|b_i)\{1 E(Y_{ij}|b_i)\}$
- 2) Systematic Component
 - $\bullet \ \eta_{ij} = \beta_0 + b_i + \beta_1 age_{ij}$
- 3) Link function
 - $logit{E[Y_{ij}|b_i]} = \eta_{ij} = \beta_0 + b_i + \beta_1 age_{ij}$
- 4) Random effects
 - The single random effect b_i is assumed to be $N(0, g_{11})$

Likelihood-based Estimation

- The joint distributions of both $Y_i|b_i$ and b_i are fully specified
 We can base estimation and inference on the likelihood function (ML estimation for β)
- We can base estimation and inference on the likelihood function (ML estimation for β , ϕ , and G)
- Data can be missing at random (GEE required missing completely at random)

Likelihood Function

$$f(Y_{i}, b_{i}) = f(Y_{i}|b_{i})f(b_{i})$$

$$= f(Y_{i1}|b_{i})f(Y_{i2}|b_{i})...f(Y_{in_{i}}|b_{i})f(b_{i}) = \prod_{j=1}^{n_{i}} f(Y_{ij}|b_{i})f(b_{i})$$

$$L(\beta, \phi, G) = \prod_{i=1}^{N} \int f(Y_{i}, b_{i})db_{i}$$

$$= \prod_{i=1}^{N} \int \{\prod_{i=1}^{n_{i}} f(Y_{ij}|b_{i})\}f(b_{i})db_{i}$$

• Since b_i is unobserved, inference about β , ϕ , and G is based on the integrated likelihood function $L(\beta, \phi, G)$.

Gauss-Hermite Quadrature

$$\int_{-\infty}^{\infty} h(v)e^{-v^2}dv \approx \sum_{k=1}^{d} h(x_k)w_k$$

- d quadrature points (weights, w_k , and evaluation points, x_k)
- The more quadrature points used, the more accurate the approximation
- But computational burden increases with quadrature points, and grows exponentially with the number of random effects

Example for Random Intercept GLMM

$$L(\beta, \phi, \sigma_{b}^{2}) = \prod_{i=1}^{N} \int_{-\infty}^{\infty} \{ \prod_{j=1}^{n_{i}} f(Y_{ij}|b_{i}) \} f(b_{i}) db_{i}$$

$$= \prod_{i=1}^{N} \int_{-\infty}^{\infty} exp \left\{ \sum_{j=1}^{n_{i}} \frac{Y_{ij}\theta_{ij} - b(\theta_{ij})}{a(\phi)} + \sum_{j=1}^{n_{i}} c(Y_{ij}, \phi) \right\} \frac{1}{\sqrt{2\pi\sigma_{b}^{2}}} exp \left\{ -\frac{b_{i}^{2}}{2\sigma_{b}^{2}} \right\} db_{i}$$

$$= \prod_{i=1}^{N} \int_{-\infty}^{\infty} exp \left\{ \sum_{j=1}^{n_{i}} \frac{Y_{ij}\theta_{ij} - b(\theta_{ij})}{a(\phi)} + \sum_{j=1}^{n_{i}} c(Y_{ij}, \phi) \right\} \frac{\sqrt{2}\sigma_{b}}{\sqrt{2\pi\sigma_{b}^{2}}} exp \left\{ -\nu_{i}^{2} \right\} d\nu_{i}$$

$$= \prod_{i=1}^{N} \int_{-\infty}^{\infty} h(\nu_{i}) exp \{ -\nu_{i}^{2} \} d\nu_{i} \approx \prod_{i=1}^{N} \sum_{k=1}^{d} h(x_{k}) w_{k}$$

Setup

Some slide 4

Some slide 5

Thank you!