CS303: DataBases and Information System

Suyash Gaurav 210010054

Theory Assignment 1

1 Q1

Figure 1: ER Diagram

Roll No. 210010054

Figure 2: Relational Schema

Activity		
a_id	a_name	category
1	Judo	Combat
2	Karate	Combat
3	Martial Arts	Combat
4	Taekwondo	Combat
5	English Boxing	Boxing
6	French Bexing	Boxing
7	Cardio Boxing	Boxing
8	Diving	Aquatic sport
9	Swimming	Aquatic sport
10	Snorkeling	Aquatic sport

Instructor		
i_id	i_name	
1	Macron	
2	Trudeau	
3	Merkel	
4	Jacinda	
5	Theresea	

Student		
s_id	s_name	Level
1	Stan	L3
2	Eminem	L3
3	Marshall	L3
4	Marie	L2
5	Malala	L2
6	Diana	L2
7	Alex	L1
8	Peter	L1
9	Stewie	L1
10	Brayant	L1
11	Rick	L1
12	Morty	L1

a_id	s_id
1	2
1	1
1	6
1	8
2	1
2	2
3	3
3	5
4	12
4	11
4	4
5	4
5	5
5	6
6	4
7	7
7	12
8	9
8	11
9	6
10	5
10	4
10	6

student_activity

Instructor_activity	
a_id	i_id
1	2
2	3
3	4
4	3
5	5
6	4
9	2
10	3

Figure 1: Database instance for Question 2.

Figure 3: Data for Q2

2.1 (a)

2.1.1 (i) Relational Algebra

R1 $\leftarrow \Pi_{i_id}(\sigma(instructor_activity))$ R2 $\leftarrow \Pi_{i_id,i_name}(\sigma_{i_id\ not\ in\ (R1)}(instructor))$

2.1.2 (ii) Tuple Relational Calculus Formula:

 $\{(t|\exists p \in Instructor(p[i_id] = t[i_id]) \land p[i_name] = t[i_name]) \land \neg(\exists q \in instructor_activity(p[i_id] = q[i_id])\}$

2.1.3 (iii) Domain Relational Calculus Formula:

 $\{<\!i_id,\,i_name>\mid\exists\;a_id\;(Instructor(i_id,\,i_name))\land\neg\;\exists\;a_id\;(Instructor_activity(a_id,\,i_id))\;\}$

2.1.4 (iv) Output Table

i_id	i_name
1	Macron

2.2 (b)

2.2.1 (i) Relational Algebra

```
R1 \leftarrow \Pi_{i\_id}(\sigma_{category='Combat'}(Activity))

R2 \leftarrow \Pi_{i\_id}(\sigma_{category='Boxing'}(Activity))

R3 \leftarrow \Pi_{i\_id}(\sigma_{a\_idin(R1) \land a\_idin(R2)}(Instructor\_activity))

R4 \leftarrow \Pi_{i\_name}(\sigma_{i\_idin(R3)}(Instructor))
```

2.2.2 (ii) Tuple Relational Calculus Formula:

```
 \{(t|\exists p \in Instructor(p[i\_name] = t[i\_name]) \land (\exists q \in Instructor\_activity(p[i\_id] = q[i\_id]) \land (\exists r \in Activity(r[s\_id] = q[s\_id]) \land r[category] =' Combat')) \\ \land (\exists p 1 \in Instructor(p1[i\_name] = t[i\_name]) \land (\exists q 1 \in Instructor\_activity(p1[i\_id] = q1[i\_id]) \land (\exists r 1 \in Activity(r1[s\_id] = q1[s\_id]) \land r1[category] =' Boxing')) \}
```

2.2.3 (iii) Domain Relational Calculus Formula:

```
\{(\text{name}) \mid \exists id(Instructor(id, name) \land \exists a\_id, i\_id(Instructor\_activity(a\_id, i\_id) \land Activity(a\_id, category) \land category =' Boxing') \land \exists a\_id', i\_id' \\ (Instructor\_activity(a\_id', i\_id') \land Activity(a\_id', category') \land category' =' \\ Combat'))\}
```

2.2.4 (iv) Output Table

```
i_name
Jacinda
```

2.3 (c)

2.3.1 (i) Relational Algebra

R1
$$\leftarrow \Pi_{s_id}(\sigma_{Level='L2'}(Student))$$

R2 $\leftarrow \Pi_{a_id}(\sigma_{s_id\ not\ in\ (R1)}(student_activity))$
R3 $\leftarrow \Pi_{a_name}(\sigma_{a\ id\ in\ (R2)}(Activity))$

2.3.2 (ii) Tuple Relational Calculus Formula:

 $\{(t|\exists s \in Activity(s[a_name] = t[a_name]) \neg (\exists p \in Activity(p[a_name] = t[a_name]) \land (\exists q \in student_activity(p[a_id] = q[a_id]) \land (\exists r \in student(r[s_id] = q[s_id]) \land r[Level] =' L2')))\}$

2.3.3 (iii) Domain Relational Calculus Formula:

 $\{(a_name) \mid \forall a_id(Activity(a_id, a_name) \rightarrow \neg \exists s_id(Student_activity(a_id, s_id) \land \exists level(Student(s_id, level) \land level =' L2'))\}$

2.3.4 (iv) Output Table

a_name	
Karate	
Cardio Boxing	
Diving	

2.4 (d)

2.4.1 (i) Relational Algebra

R1 $\leftarrow \Pi_{s_id}(\sigma_{Level='L2'}(Student))$ R2 $\leftarrow \Pi_{a_id}(\sigma_{s_id\ in\ ALL(R1)}(student_activity))$ R3 $\leftarrow \Pi_{i_id}(\sigma_{a_id\ in\ (R2)}(Instructor_activity))$ R4 $\leftarrow \Pi_{i_name}(\sigma_{i_id\ in\ (R3)}(Instructor))$

2.4.2 (ii) Tuple Relational Calculus Formula:

 $\{(t|\exists p \in Instructor(p[i_iname] = t[i_iname]) \land (\exists q \in instructor_activity(p[i_id] = q[i_id]) \land (\exists r \in student_activity(r[s_id] = q[s_id]) \land (\exists l \in student(l[s_id] = r[s_id]) \land l[level] =' L2'))\}$

2.4.3 (iii) Domain Relational Calculus Formula:

 $\{(i_name) \mid \forall i_id, a_id(Instructor(i_id, i_name) \land Instructor_activity(i_id, a_id) \rightarrow \neg \exists s_id(Student(s_id, level) \land level =' L2' \land \exists a_id'(Student_activity(s_id, a_id') \land a_id' = a_id))\}$

2.4.4 (iv) Output Table

i_name
Merkel
Theresea

2.5 (e)

2.5.1 (i) Relational Algebra

R1
$$\leftarrow \Pi_{s_id}(\sigma_{Level='L1'}(Student))$$

R2 $\leftarrow \Pi_{s_id}(\sigma_{Level='L2'}(Student))$
R3 $\leftarrow \Pi_{a_id}(\sigma_{s_id\ in\ any(R1) \land s_id\ in\ any(R2)}(student_activity))$
R4 $\leftarrow \Pi_{category}(\sigma_{a_id\ in\ (R3)}(Activity))$

2.5.2 (ii) Tuple Relational Calculus Formula:

$$\{(t|\exists p \in activity(p[category] = t[category]) \land (\exists q \in student_activity(p[a_id] = q[a_id]) \land (\exists r \in student(r[s_id] = q[s_id]) \land r[level] =' L2')) \land (\exists p1 \in activity(p1[category] = t[category]) \land (\exists q1 \in student_activity(p1[a_id] = q1[a_id]) \land (\exists r1 \in student(r1[s_id] = q1[s_id]) \land r1[level] =' L1')) \}$$

2.5.3 (iii) Domain Relational Calculus Formula:

 $\{(\text{category}) \longrightarrow \forall a_id(Activity(a_id, category) \rightarrow (\exists s_id(Student_activity(a_id, s_id) \land \exists level(Student(s_id, level) \land level =' L1')) \land (\exists s_id'(Student_activity(a_id, s_id') \land \exists level'(Student(s_id', level') \land level' =' L2')))\}$

2.5.4 (iv) Output Table

Category	
Combat	

3 Q3

Given Table R:

A1	A2	A3
a	р	1
b	p	2
a	q	1
c	p	4
d	r	1

3.1 (a)
$$\{A3\} \rightarrow \{A1\}$$

No,

Because same value of A3 is giving different value of A1 for different tuples. we can see that A3 = 1 is associated with both A1 = a and A1 = d. Therefore, A3 does not functionally determine A1. This functional dependency does not exist.

$$t_1[A_3] = t_5[A_3]$$
 but $t_1[A_1] \neq t_5[A_1]$

3.2 (b)
$$\{A1\} \rightarrow \{A3\}$$

Yes

3.3 (c)
$$\{A2\} \rightarrow \{A3\}$$

No,

because same value of A2 is giving different value of A3 for different tuples.

$$t_1[A_2] = t_2[A_2]$$
 but $t_1[A_3] \neq t_2[A_3]$

3.4 (d)
$$\{A1,A2\} \rightarrow \{A1,A2\}$$

Yes

this functional dependency essentially says that A1 and A2 determine themselves, which is trivially true. So, the functional dependency A1, A2 \rightarrow A1, A2 holds.

3.5 (e)
$$\{A1,A3\} \rightarrow \{A3\}$$

Yes.

if we know A1 = 'a' and A2 = 'p', A3 is 1. If we know A1 = 'b' and A2 = 'p', A3 is 2. Therefore, A1, A2 uniquely determines A3. The correct answer is "Yes."

4 Q4

To determine whether the given schema is in BCNF (Boyce-Codd Normal Form) and 3NF (Third Normal Form), we need to analyze the functional dependencies and identify any violations.

Given Functional Dependencies:

FD1: B1, B2 \rightarrow B4

FD2: B2, B3 \rightarrow B5

FD3: $B5 \rightarrow B6$

4.1 (i) BCNF (Boyce-Codd Normal Form)

Condition to be satisfied:

For every non-trivial functional dependency $X \to Y$ in the set of functional dependencies F, X must be a superkey.

The attributes B1, B2, B3 are a candidate key since they form the primary key.

Now, let's check if FD1, FD2, and FD3 violate the BCNF requirements:

- (i) FD1: B1, B2 \rightarrow B4 B1, B2 is a superkey (it contains a candidate key), so FD1 satisfies BCNF.
- (ii) FD2: B2, B3 \rightarrow B5 B2, B3 is a superkey (it contains a candidate key), so FD2 satisfies BCNF.
- (iii) FD3: B5 \rightarrow B6 B5 is not a superkey because it doesn't contain a candidate key. Therefore, FD3 violates BCNF.

Since FD3 violates BCNF, we need to decompose the schema to achieve BCNF. To do this, we can create a new schema where each relation has a superkey on the left-hand side of its functional dependencies. In this case, we can create two tables:

- (i) R1(B5, B6) with FD3: B5 \rightarrow B6
- (ii) R2(B1, B2, B4) with FD1: B1, B2 \rightarrow B4

4.2 (ii) 3NF (Third Normal Form)

Condition to be satisfied:

- (i) The schema must be in BCNF.
- (ii) For every non-trivial functional dependency $X \to Y$ in F, X must be a superkey or X must be a subset of a superkey.

Since we've already ensured that the schema is in BCNF, let's check if FD1 and FD2 satisfy the second requirement:

- (i) FD1: B1, B2 \rightarrow B4
- (ii) B1, B2 is a superkey, so FD1 satisfies 3NF. FD2: B2, B3 \rightarrow B5
- B2, B3 is not a superkey, but it is a subset of a superkey B1, B2, B3.

Therefore, FD2 satisfies 3NF. The schema satisfies both BCNF and 3NF requirements after decomposition, and there are no further violations.