International Rectifier

AUTOMOTIVE MOSFET

IRF1405

Typical Applications

- Electric Power Steering (EPS)
- Anti-lock Braking System (ABS)
- Wiper Control
- Climate Control
- Power Door

Benefits

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this Stripe Planar design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	169©	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	118©	A
I _{DM}	Pulsed Drain Current ①	680	
P _D @T _C = 25°C	Power Dissipation	330	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy②	560	mJ
I _{AR}	Avalanche Current	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy®		mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	°C/W
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		
$R_{\theta JA}$	Junction-to-Ambient		62	

IRF1405

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.6	5.3	mΩ	V _{GS} = 10V, I _D = 101A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
g _{fs}	Forward Transconductance	69			S	V _{DS} = 25V, I _D = 110A
1	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 55V, V_{GS} = 0V$
I _{DSS}	Brain to Godice Leakage Guiterit			250	μΑ	$V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage	_		200	nA .	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	I IIA	V _{GS} = -20V
Qg	Total Gate Charge		170	260		I _D = 101A
Q _{gs}	Gate-to-Source Charge		44	66	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		62	93		V _{GS} = 10V4
t _{d(on)}	Turn-On Delay Time		13			$V_{DD} = 38V$
t _r	Rise Time		190			I _D = 101A
t _{d(off)}	Turn-Off Delay Time		130		ns	$R_G = 1.1\Omega$
t _f	Fall Time		110			V _{GS} = 10V 4
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		¦ nH 	from package and center of die contact
C _{iss}	Input Capacitance	_	5480			V _{GS} = 0V
Coss	Output Capacitance		1210		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		280			f = 1.0MHz, See Fig. 5
C _{oss}	Output Capacitance		5210		1	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		900]	$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance ⑤		1500		1	$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			100@		MOSFET symbol
	(Body Diode)		- 1696	169⑥	Α	showing the
I _{SM}	Pulsed Source Current			600		integral reverse
	(Body Diode) ①			680		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 101A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		88	130	ns	$T_J = 25^{\circ}C, I_F = 101A$
Q _{rr}	Reverse RecoveryCharge		250	380	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intr	insic tu	irn-on ti	me is ne	egligible (turn-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $\label{eq:tau} \begin{tabular}{ll} \begin{ta$
- $\label{eq:loss_distance} \begin{tabular}{ll} \Im & I_{SD} \leq 101A, \ di/dt \leq 210A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ & T_{J} \leq 175^{\circ}C \end{tabular}$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- ① Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF1405 International Internat

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

I_{SD}, Reverse Drain Current (A)

Fig 7. Typical Source-Drain Diode Forward Voltage

V_{SD}, Source-to-Drain Voltage (V)

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International IOR Rectifier

IRF1405

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF1405

International

TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs.Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche. D = Duty cycle in avalanche = t_{av} ·f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} = 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) &= \triangle \text{T/} \; Z_{thJC} \\ \text{I}_{av} = 2\triangle \text{T/} \; [1.3 \cdot \text{BV} \cdot Z_{th}] \\ \text{E}_{AS \; (AR)} = P_{D \; (ave)} \cdot t_{av} \end{split}$$

IRF1405 International Properties International Properties International Properties International Int

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 17. For N-channel HEXFET® power MOSFETs

International

TOR Rectifier

IRF1405

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

ISONG ARE SHOWN IN INCHES [MILLUMETERS]. DIMENSION AND FINISH UNCONTROLLED IN L1. ISON D & E DO NOT INCLUDE WIDD FLASH. MOLD FLASH. L NOT EXCEED .005* (0.127) PER SIDE. THESE DIMENSIONS ARE. URED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. ISON DIA & CA EMPLY TO BASE MITTAL ONLY.
NSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH L NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE URED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
L NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE URED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
URED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
ICION N. S. A. ADDIV TO DACE METAL ONLY
ROLLING DIMENSION : INCHES.
MAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
NSION E2 X H1 DEFINE A ZONE WHERE STAMPING
SINGULATION IRREGULARITIES ARE ALLOWED.
RI N

	DIMENSIONS					
SYMBOL	MILLIMETERS		INC	1		
	MIN.	MAX,	MIN.	MAX.	NOTES	
A	3.56	4.82	.140	.190		
A1	0.51	1.40	.020	.055		
A2	2.04	2.92	.080	.115		
b	0.38	1.01	.015	.040		
ь1	0.38	0.96	.015	.038	5	
b2	1.15	1,77	.045	.070		
ь3	1.15	1.73	.045	.068		
С	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16,51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	12.19	12.88	.480	.507	7	
E	9.66	10.66	.380	.420	4,7	
E1	8.38	8.89	.330	.350	7	
e	2.54	2.54 BSC		.100 BSC		
e1	5.	08	.200 BSC		l	
H1	5.85	6.55	.230	.270	7,8	
L	12.70	14.73	.500	.580		
L1	-	6.35	-	.250	3	
øP	3,54	4.08	,139	.161		
0	2.54	3.42	.100	.135		
ø	90,-	90'-93'		90'-93'		

TO-220AB Part Marking Information

TO-220AB packages are not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 12/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/