

FCC PART 90 TEST AND MEASUREMENT REPORT

For

SYM Technology, Inc.

234 E. Colorado Blvd., STE 410 Pasadena, CA 91101

FCC ID: W74-V308919

Report Type: **Product Type:** Original Report Bi-Directional Amplifier **Test Engineer:** Jeffrey Wu **Report Number:** R12043014-90 **Report Date:** 2012-06-19 Victor Zhang **Reviewed By:** EMC/RF Lead Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"...

TABLE OF CONTENTS

1	GE	ENERAL INFORMATION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION	
	1.3	Objective	
	1.4	RELATED SUBMITTAL(S)/GRANT(S)	
	1.5	TEST METHODOLOGY	
	1.6	MEASUREMENT UNCERTAINTY	
	1.7	TEST FACILITY	
•			
2		STEM TEST CONFIGURATION	
	2.1	JUSTIFICATION	
	2.2	EUT EXERCISE SOFTWARE	
	2.3	EQUIPMENT MODIFICATIONS	7
	2.4	LOCAL SUPPORT EQUIPMENT AND SOFTWARE LIST AND DETAILS	
	2.5	EUT HOST INTERNAL CONFIGURATION	
	2.6	INTERFACE PORTS AND CABLES	7
3	SU	JMMARY OF TEST RESULTS	8
4	FC	CC §2.1046 & §90.635 – RF OUTPUT POWER	0
•	4.1	APPLICABLE STANDARD	
	4.1	TEST PROCEDURE	
	4.2	TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
	4.4	TEST ENVIRONMENTAL CONDITIONS	
	4.5	TEST RESULTS	
5	FC	CC §2.1049 – OCCUPIED BANDWIDTH	11
	5.1	APPLICABLE STANDARD	11
	5.2	TEST PROCEDURE	
	5.3	TEST EQUIPMENT LIST AND DETAILS	11
	5.4	TEST ENVIRONMENTAL CONDITIONS	
	5.5	Test Results	
6	FC	CC §2.1051 & §90.691 – EMISSION MASK	17
	6.1	Applicable Standard	
	6.2	TEST PROCEDURE	
	6.3	TEST I ROCEDURE TEST EQUIPMENT LIST AND DETAILS	
	6.4	TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS	
	6.5	TEST RESULTS	
7		CC §2.1051 & §90.669 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
		APPLICABLE STANDARD	
	7.2	TEST PROCEDURE	
	7.3	TEST EQUIPMENT LIST AND DETAILS	
	7.4 7.5	TEST ENVIRONMENTAL CONDITIONS	
_			
8		CC §2.1053 & §90.669 - SPURIOUS RADIATED EMISSIONS	
	8.1	APPLICABLE STANDARD	
	8.2	TEST PROCEDURE	
	8.3	TEST EQUIPMENT LIST AND DETAILS	
	8.4	TEST ENVIRONMENTAL CONDITIONS	
	8.5	TEST RESULTS	
9	FC	CC §1.1310 & §2.1091 - RF EXPOSURE	40
	9.1	APPLICABLE STANDARD	40

9.2	MPE PREDICTION	
9.3	TEST RESULTS	40
10	EXHIBIT A - FCC ID LABELING AND WARNING STATEMENT	42
10.1	FCC ID LABEL REQUIREMENT	42
10.2	FCC ID LABEL CONTENT	
10.3	FCC ID LABEL	42
11	EXHIBIT B - TEST SETUP PHOTOGRAPHS	43
11.1	RADIATED EMISSIONS – REAR VIEW (BELOW 1 GHZ)	43
11.2	RADIATED EMISSIONS - FRONT VIEW (BELOW 1 GHz)	
11.3	RADIATED EMISSIONS - REAR VIEW (ABOVE 1 GHz)	
11.4	RADIATED EMISSIONS - FRONT VIEW (ABOVE 1 GHz)	
11.5	BENCH SETUP VIEW	
12	EXHIBIT C - EUT PHOTOGRAPHS	46
12.1	VISION 800/900MHz SERVICE CARD FRONT VIEW	50
12.2	VISION 800/900MHz Service Card Rear View	
12.3	VISION 800/900MHz Service Card Top View	
12.4	VISION 800/900MHz Service Card Bottom View	
12.5	VISION 800/900MHz SERVICE CARD DIGITAL UNIT PCB TOP VIEW	
12.6	VISION 800/900MHz Service Card Digital Unit PCB Bottom View	
12.7	VISION 800/900MHz Service Card RF Unit Shielded View	
12.8	VISION 800/900MHz Service Card RF Unit PCB 1 Top View	
12.9	VISION 800/900MHz SERVICE CARD RF UNIT PCB 1 BOTTOM VIEW	
12.10		
12.11		
12.12		
12.13		
12.14		
12.15		
12.16		
12.17		
12.18 12.19		
12.19		
12.20		
12.22		
12.23		
12.24		
12.25		
12.26		49
12.27		-
12.28		
12.29		
12.30		
12.31		
12.32		
12.33		
12.34	VISION NETWORK CONTROLLER FRONT VIEW	54
12.35	VISION NETWORK CONTROLLER PCB TOP VIEW	63
12.36		63

DOCUMENT REVISION HISTORY

Revision Number	ion Number Report Number Description of Revision		Date of Revision
0	R12043014-90	Original Report	2012-08-07

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report was prepared on behalf of *SYM Technology, Inc.* and their product *FCC ID: W74-V308919*, model: *Vision30*, or the "EUT" as referred to in this report. The EUT is a bi- directional amplifier with removable service cards operating in the PCS and SMR bands. The frequency bands are: 806-824/896-901/1850-1915 MHz for uplink and 851-869/935-940/1930-1995 MHz for downlink. Modulation types are iDEN, CDMA and LTE.

1.2 Mechanical Description

The EUT Approximate measurement is: 48 cm (L) x 29 cm (W) x 50 cm (H). Weight: 40823g.

The test data gathered are from typical production sample, serial number: R12043014 assigned by Manufacture.

1.3 Objective

This type approval report is prepared on behalf of *SYM Technology, Inc.* in accordance with Part 90 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, frequency stability, Emission Mask, and conducted and radiated margin.

1.4 Related Submittal(s)/Grant(s)

No Related Submittals

1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 90 Private Land Mobile Radio Services

Applicable Standards: TIA/EIA-603-C

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Report Number: R12043014-90 Page 5 of 63 FCC Part 90 Test Report

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from +2.0 dB for Conducted Emissions tests and +4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2003, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b

Report Number: R12043014-90 Page 6 of 63 FCC Part 90 Test Report

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

2.2 EUT Exercise Software

The software used was web based GUI via Lan Port(Http://192.168.2.1) provided by Sym Technology and was verified by BACL (name of tester) to comply with the standard requirements being tested against.

2.3 Equipment Modifications

No modifications were made to the EUT.

2.4 Local Support Equipment and Software List and Details

Manufacturer	Description	Model	Serial Number
Dell	Laptop	Latitude D600	-

2.5 EUT Host Internal Configuration

Manufacturer	Description	Model	Serial Number
SYM Technology	Vision Rectifier (Power Supply)	VS-RET	-
SYM Technology	Vision Network Controller	VS-CTR	-
SYM Technology	Vision Main Frame Enclosure	VS-MF	-
SYM Technology	Vision 800/900MHz Digital Unit	V89DTU	-
SYM Technology	Vision 800/900MHz RF Unit	V89RFM	-
SYM Technology	Vision 800/900MHz 30dBm HPA	V3089HPA	-

2.6 Interface Ports and Cables

Cable Description	Length (m)	То	From
RF cable	<1	Signal Generator	Input/ EUT
RF cable	<1	Output/ EUT	Spectrum Analyzer

Report Number: R12043014-90 Page 7 of 63 FCC Part 90 Test Report

3 SUMMARY OF TEST RESULTS

FCC Rules	Description of Tests	Results
§2.1046, §90.635	RF Output Power	Compliant
§2.1047	Modulation Characteristics	N/A ¹
§2.1049	Occupied Bandwidth	Compliant
§2.1051, §90.691	Emission Mask	Compliant
§ 2.1051,§ 90.669	Spurious Emissions at Antenna Terminals	Compliant
§2.1053, §90.669	Field Strength of Spurious Radiation	Compliant
§2.1055	Frequency Stability	N/A ¹
§2.1091	RF Exposure	Compliant

Note¹: Not applicable, the EUT is an amplifier; there is no oscillator circuit in the EUT, and there are no modulation characteristics.

Report Number: R12043014-90 Page 8 of 63 FCC Part 90 Test Report

4 FCC §2.1046 & §90.635 – RF OUTPUT POWER

4.1 Applicable Standard

According to FCC §2.1046, and §90.635, (a) The effective radiated power and antenna height for base stations may not exceed 1 kilowatt (30 dBw) and 304 m. (1,000 ft.) above average terrain (AAT), respectively, or the equivalent thereof as determined from the Table. These are maximum values, and applicants will be required to justify power levels and antenna heights requested, (b) The maximum output power of the transmitter for mobile stations is 100 watts (20 dBw).

4.2 Test Procedure

Conducted:

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through sufficient attenuation.

4.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10
Agilent	Signal Generator	E4438C	MY45091309	2012-05-03

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

4.4 Test Environmental Conditions

Temperature:	21°C
Relative Humidity:	49 %
ATM Pressure:	101.2 kPa

The testing was performed by Jeffrey Wu on 2012-05-22 in RF Site.

4.5 Test Results

Please refer to the following tables.

Me	Mode		Frequency (MHz)	Input Power (dBm)	Output Power (dBm)
		Low	806.1	-59	30.3
	806-824 Uplink	Middle	815	-59	30.26
	1	High	823.9	-58	30.26
		Low	851.1	-58	30.63 30.48 29.87
	851-869 Downlink	Middle	860	-60	30.48
iDEN		High	868.9	-59	29.87
	896-901 Uplink	Low	896.1	-59	30.69
		Middle	898.5	-59	30.08
		High	900.9	-59	30.69
	935-940 Downlink	Low	935.1	-59	30.01
		Middle	937.5	-59	30.67
		High	939.9	-59	30.76

5 FCC §2.1049 – OCCUPIED BANDWIDTH

5.1 Applicable Standard

Requirements: FCC §2.1049.

5.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

According to the FCC 2-11-04/EAB/RF, Input and output signals were compared to verify that there was no any degradation to the signal due to amplification and conversion from the repeater using an RBW of 300 Hz or 1% of the emission bandwidth. Then the 26 dB & 99% bandwidth was recorded.

5.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10
Agilent	Signal Generator	E4438C	MY45091309	2012-05-03

Statement of Traceability: **BACL Corp.** attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

5.4 Test Environmental Conditions

Temperature:	22 °C
Relative Humidity:	51 %
ATM Pressure:	101.3kPa

The testing was performed by Jeffrey Wu on 2012-05-23 in RF Site.

5.5 Test Results

Please refer to the following tables.

Mode		Channel	Frequency (MHz)	Emission Bandwidth Input (kHz)	Emission Bandwidth Output (kHz)
	806-824 Uplink	Middle	815	16.5697	16.1536
iDEN	851-869 Downlink	Middle	860	16.1000	15.9209
	896-901 Uplink	Middle	898.5	16.1944	16.4289
	935-940 Downlink	Middle	937.5	15.7968	15.7124

Please refer to the following plots:

851-869 MHz Downlink

Middle Channel

Input

806-824 MHz Uplink

Middle Channel

Input

935-940 MHz Downlink

Middle Channel

Input

896-901 MHz Uplink

Middle Channel

Input

6 FCC §2.1051 & §90.691 – EMISSION MASK

6.1 Applicable Standard

According to FCC §90.691: (a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:

- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

6.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

6.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10
Agilent	Signal Generator	E4438C	MY45091309	2012-05-03

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

6.4 Test Environmental Conditions

Temperature:	21°C
Relative Humidity:	49 %
ATM Pressure:	101.3kPa

The testing was performed by Jeffrey Wu on 2012-05-24 in RF Site.

6.5 Test Results

Please refer to the following plots.

851-869 MHz Downlink

Middle Channel

806-824 MHz Uplink

Middle Channel

935-940 MHz Downlink

Middle Channel

896-901 MHz Uplink

Middle Channel

7 FCC §2.1051 & §90.669 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

7.1 Applicable Standard

Requirements: FCC §2.1051 & §90.669.

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1057.

7.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

7.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10
Agilent	Signal Generator	E4438C	MY45091309	2012-05-03
Rohde & Schwarz	Signal Generator	SMIQ03	849192/0085 / DE23746	2011-04-231

Note 1: Two year calibration cycle.

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	21 °C
Relative Humidity:	49 %
ATM Pressure:	101.3kPa

The testing was performed by Jeffrey Wu on 2012-05-24 in RF Site.

7.5 Test Results

Please refer to the following plots.

851-869 MHz Downlink

Middle Channel

30MHz to 1GHz

806-824 MHz Uplink

Middle Channel

30MHz to 1GHz

935-940 MHz Downlink

Middle Channel

30MHz to 1GHz

896-901 MHz Uplink

Middle Channel

30MHz to 1GHz

Inter-modulation

851-869 MHz Downlink

Low Channel

Input

Middle Channel

Input

High Channel

Input

806-824 MHz Uplink

Low Channel

Input

Middle Channel

Input

High Channel

Input

935-940 MHz Downlink

Low Channel

Input

Middle Channel

Input

High Channel

896-901 MHz Uplink

Low Channel

Input

Middle Channel

Input

High Channel

Input

8 FCC §2.1053 & §90.669 - SPURIOUS RADIATED EMISSIONS

8.1 Applicable Standard

Requirements: FCC §2.1053 & §90.669.

8.2 Test Procedure

The transmitter was placed on a turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \log (TX \text{ Power in Watts}/0.001)$ – the absolute level Spurious attenuation limit in $dB = 43 + 10 \log 10$ (power out in Watts)

8.3 Test Equipment List and Details

Manufacturers	Descriptions	Models	Serial Numbers	Calibration Dates	
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	
Sunol Science Corp	System Controller	SC99V	011003-1	N/R	
Sunol Science Corp	Combination Antenna	JB3	A020106-2	2011-08-10	
Hewlett Packard	Pre amplifier	8447D	2944A06639	2011-06-09	
EMCO	Horn antenna	3115	9511-4627	2011-10-03	
Mini-Circuits	Pre Amplifier	ZVA-183-S	570400946	2012-05-09	
Eaton	Horn Antenna	96001	Mar-07	2011-10-03	
Rohde & Schwarz	Signal Generator	SMIQ03	849192/0085 / DE23746	2011-04-23 ¹	

Note 1: Two year calibration cycle.

Statement of Traceability: BACL Corp. attests that all calibrations have been performed according to A2LA requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Temperature:	21 °C
Relative Humidity:	49 %
ATM Pressure:	101-102kPa

The testing was performed by Jeffrey Wu on 2012-05-25 in 5 Meter Chamber 2.

8.5 Test Results

851-869 MHz Downlink- Worst Channel

Indic	ated	Turntable	Turntable Test Antenna			Substituted					
Frequency (MHz)	S.A. Amp. (dBuV)	A • 43		Polarity (H/V)	Frequency (MHz)	Level (dBm)	Cord		Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1200	60.19	335	100	Н	1200	-50.32	6.53	1.34	-45.13	-13	-32.13
1200	54.03	225	167	V	1200	-56.48	6.92	1.34	-50.9	-13	-37.9
4000	52.41	332	117	Н	2460	-47.1	10.26	2	-38.84	-13	-25.84
4000	52.11	312	107	V	2460	-47.4	10.27	2	-39.13	-13	-26.13

Note: All other emissions are on/under noise floor level.

806-824 MHz Uplink- Worst Channel

Indicated Turntable		Test Antenna		Substituted							
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (m)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1200	60.17	337	106	Н	1200	-50.34	6.53	1.34	-45.15	-13	-32.15
1200	55.64	167	124	V	1200	-54.87	6.92	1.34	-49.29	-13	-36.29
4000	54.27	30	142	Н	2460	-45.24	10.26	2	-36.98	-13	-23.98
4000	52.05	66	125	V	2460	-47.46	10.27	2	-39.19	-13	-26.19

Note: All other emissions are on/under noise floor level.

935-940 MHz Downlink- Worst Channel

Ī	Indic	licated Turntable		Test Antenna		Substituted						
]	Frequency (MHz)	C A			Polarity (H/V)	Frequency (MHz)	Level (dBm)	Cord		Absolute Level (dBm)	Limit (dBm)	Margin (dB)
	1200	60.27	335	103	Н	1200	-50.24	6.53	1.34	-45.05	-13	-32.05
	1200	54.13	224	232	V	1200	-56.38	6.92	1.34	-50.8	-13	-37.8
	4000	52.86	331	116	Н	4000	-46.65	10.26	2	-38.39	-13	-25.39
	4000	52.04	312	173	V	4000	-47.47	10.27	2	-39.2	-13	-26.2

Note: All other emissions are on/under noise floor level.

896-901 MHz Uplink- Worst Channel

Indic	ated	Turntable Test Antenna			Substituted						
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth	Height (m)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1200	60.14	322	107	Н	1200	-50.37	6.53	1.34	-45.18	-13	-32.18
1200	55.15	176	120	V	1200	-55.36	6.92	1.34	-49.78	-13	-36.78
4000	54.05	30	140	Н	4000	-45.46	10.26	2	-37.2	-13	-24.2
4000	51.79	67	127	V	4000	-47.72	10.27	2	-39.45	-13	-26.45

Note: All other emissions are on/under noise floor level.

9 FCC §1.1310 & §2.1091 - RF EXPOSURE

9.1 Applicable Standard

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)
	(A) Limits for (- Occupational/Control	led Exposure	
0.3-1.34	614	1.63	*(100)	6
1.34-30	1842/f	4.89/f	$*(900/f^2)$	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	f/300	6
1500-100,000	/	/	5	6

f = frequency in MHz

9.2 MPE Prediction

Predication of MPE limit at a given distance, equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

9.3 Test Results

800 MHz Band UL:

<u>30.26</u>	Maximum peak output power at antenna input terminal (dBm):
1061.7	Maximum peak output power at antenna input terminal (mW):
<u>23</u>	Prediction distance (cm):
<u>823.9</u>	Prediction frequency (MHz):
<u>12</u>	Antenna Gain, typical (dBi):
<u>15.85</u>	Maximum Antenna Gain (numeric):
<u>2.531</u>	Power density at predication frequency and distance (mW/cm ²):
<u>2.746</u>	MPE limit for uncontrolled exposure at predication frequency (mW/cm²):

^{* =} Plane-wave equivalent power density

800 MHz Band DL:

Maximum peak output power at antenna input terminal (dBm): 30.63 Maximum peak output power at antenna input terminal (mW): 1156.1 Prediction distance (cm): 23 Prediction frequency (MHz): 851.1 Antenna Gain, typical (dBi): 12 Maximum Antenna Gain (numeric): 15.85 Power density at predication frequency and distance (mW/cm²): 2.757 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 2.837

900 MHz Band UL:

Maximum peak output power at antenna input terminal (dBm): 30.69 Maximum peak output power at antenna input terminal (mW): 1172.2 Prediction distance (cm): <u>23</u> Prediction frequency (MHz): 896.1 12 Antenna Gain, typical (dBi): Maximum Antenna Gain (numeric): 15.85 2.795 Power density at predication frequency and distance (mW/cm²): MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 2.987

900 MHz Band DL:

30.76 Maximum peak output power at antenna input terminal (dBm): Maximum peak output power at antenna input terminal (mW): 1191.2 Prediction distance (cm): 23 Prediction frequency (MHz): 939.9 Antenna Gain, typical (dBi): <u>12</u> 15.85 Maximum Antenna Gain (numeric): Power density at predication frequency and distance (mW/cm²): 2.840 MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 3.133

Result:

The highest power density level at 23 cm is below the MPE controlled limit.

10 EXHIBIT A - FCC ID LABELING AND WARNING STATEMENT

10.1 FCC ID Label Requirement

FCC § 2.925 Identification of equipment

(a) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

(1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be of a type size large enough to be legible without the aid of magnification.

Example: FCC ID XXX123. XXX—Grantee Code 123—Equipment Product Code

FCC ID: XXX-XXXXXX

10.2 FCC ID Label Content

10.3 FCC ID Label

11 EXHIBIT B - TEST SETUP PHOTOGRAPHS

11.1 Radiated Emissions – Rear View (Below 1 GHz)

11.2 Radiated Emissions - Front View (Below 1 GHz)

11.3 Radiated Emissions - Rear View (Above 1 GHz)

11.4 Radiated Emissions - Front View (Above 1 GHz)

11.5 Bench Setup View

12 EXHIBIT C - EUT PHOTOGRAPHS

12.1 EUT-Main Frame Enclosure Front View

12.2 EUT-Main Frame Enclosure Rear View

12.3 EUT-Main Frame Enclosure Top View

12.4 EUT-Main Frame Enclosure Bottom View

12.5 EUT-Main Frame Enclosure Left Side View

12.6 EUT-Main Frame Enclosure Right Side View

12.7 EUT-Main Frame Enclosure Open View 1

12.8 EUT-Main Frame Enclosure Open View 2

12.9 Vision30 800/900MHz Service Card Front View

12.10 Vision30 800/900MHz Service Card Rear View

12.11 Vision30 800/900MHz Service Card Top View

12.12 Vision30 800/900MHz Service Card Bottom View

12.13 Vision30 Filter and Combiner BTS Front View

12.14 Vision30 Filter and Combiner BTS Rear View

12.15 Vision30 Filter and Combiner Mobile Front View

12.16 Vision30 Filter and Combiner Mobile Rear View

12.17 Vision30 Rectifier (Power Supply) Front View

12.18 Vision30 Network Controller Front View

12.19 Vision30 800/900MHz Service Card Digital Unit PCB Top View

12.20 Vision30 800/900MHz Service Card Digital Unit PCB Bottom View

12.21 Vision30 800/900MHz Service Card RF Unit Shielded View

12.22 Vision30 800/900MHz Service Card RF Unit PCB 1 Top View

12.23 Vision30 800/900MHz Service Card RF Unit PCB 1 Bottom View

12.24 Vision30 800/900MHz Service Card RF Unit PCB 2 Top View

12.25 Vision30 800/900MHz Service Card RF Unit PCB 2 Bottom View

12.26 Vision30 800/900MHz Service Card HPA Shielded View

12.27 Vision30 800/900MHz Service Card HPA PCB Top View

12.28 Vision30 800/900MHz Service Card HPA PCB Bottom View

12.29 Main Frame PCB 1 Top View

12.30 Main Frame PCB 1 Bottom View

12.31 Main Frame PCB 2 Top View

12.32 Main Frame PCB 2 Bottom View

12.33 Vision30 Rectifier PCB Top View

12.34 Vision30 Rectifier PCB Bottom View

12.35 Vision30 Network Controller PCB Top View

12.36 Vision30 Network Controller PCB Bottom View

--- END OF REPORT ---