Optimisation

AMAL Youssef

ENSAT

Google Classroom: kzgrskw yamal@uae.ac.ma

1445/2023

- Introduction
- Existence et unicité de minimum
- Algorithmes de minimisation sans contraintes
- Algorithmes de minimisation avec contraintes
- Calculs par le logiciel R

Référence Recommandée :

• Numerical Optimization by Jorge Nocedal et Stephen Wright.

Introduction Généralités

• L'optimisation consiste en la recherche du minimum (ou du maximum) d'une certaine quantité sans ou avec contraintes :

$$(P) \quad \inf_{x \in C} f(x)$$

• On dit que problème (P) admet une solution s'il existe $x_0 \in C$ tel que

$$\forall x \in C, \ f(x_0) \le f(x)$$

- Dans ce cas, $f(x_0) = \inf_{x \in C} f(x)$ est un minimum de f sur C.
- Les valeurs maximales de fonctions f sont obtenues en remplacant f par -f:

$$\sup_{x \in C} f(x) = \inf_{x \in C} f(x)$$

3 / 30

Introduction Généralités

Exemple: Une entreprise de production d'ordinateurs de types: laptops
et ordinateurs de bureau. Les laptops se vendent à 10M Dhs chacun, tandis que les ordinateurs de bureau se vendent à 16M Dhs chacun. Cependant, la production de ces ordinateurs nécessite des ressources limitées
en composants techniques.

• Modèle Mathématique :
$$\begin{cases} \max(10Mx_1 + 16Mx_2) \\ \text{contraintes :} \\ x_1 + x_2 \le 400 \\ x_1 + 2x_2 \le 600 \\ x_1, x_2 > 0 \end{cases}$$
où x_1 et x_2 sont les quantités respectives de laptons et d'

où x_1 et x_2 sont les quantités respectives de laptops et d'ordinateurs de bureau à produire.

• **Objectif**: Maximiser les revenus de la production d'ordinateurs portables et de bureau, en respectant les limitations des ressources disponibles.

4 / 30

Introduction Contexte

- Existence et Unicité du minimum,
 - liée à la continuité,
 - liée à la convexité (stricte).

• Résolution du problème :

- Étude analytique,
- Étude approchée par méthodes numériques.

- On se place dans \mathbb{R}^N muni de la norme euclidienne $\|.\|$ et du produit scalaire $\langle .,. \rangle$ avec $\langle x,x \rangle = \|x\|^2$.
- Soit $U \subset \mathbb{R}^N$ un ouvert et $f: U \to \mathbb{R}$ une application scalaire. Soit $a \in U$.
- On dit que f est différentiable au point a s'il existe une application linéaire $df_a \in \mathcal{L}(\mathbb{R}^N,\mathbb{R})$ tels que $\exists \alpha > 0, \forall \|h\| \leq \alpha$,

$$f(a+h) = f(a) + df_a(h) + ||h||\varepsilon(h)$$

avec
$$\lim_{h\to 0} \varepsilon(h) = 0$$
.

• Formule de Taylor - Young à l'ordre 2 :

$$\begin{split} f(a+h) &= f(a) + \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(a) + \sum_{i=1}^n \sum_{j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(a) + o(\|h\|^2) \\ &\text{où } \langle \nabla f(a), h \rangle = \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(a) \\ &\text{et } \sum_{i=1}^n \sum_{j=1}^n h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(a) =^t h. H_f(a). h \end{split}$$

- Soit $x_0 \in K$. On dit que la fonction f admet
 - un minimum global sur K au point x_0 , si

$$\forall x \in K, \ f(x_0) \le f(x)$$

• un minimum local sur K au point x_0 , si

$$\exists r > 0, \ x \in B(x_0, r) \cap K, \ f(x_0) \le f(x).$$

• Soit K un compact de \mathbb{R}^N et $f:K\to\mathbb{R}$ une application continue sur K. Alors f est bornée et atteint ses bornes :

$$\exists x_0 \in K \text{ tel que } \inf_{x \in K} f(x) = f(x_0)$$

- Contre-exemples:
 - Soient $X=\mathbb{R}$ et $f(x)=x^2+1$ sur \mathbb{R}^* et f(0)=3, on a $\inf_{x\in\mathbb{R}}f(x)=?$
 - Soient X=]0;1] et $f(x)=x^2+1,$ on a $\inf_{x\in\mathbb{R}}f(x)=?$

• Fonctions coercives : Une fonction $f:\mathbb{R}^n\to\mathbb{R}$ est dite coercive si $\lim_{\|x\|\to+\infty}f(x)=+\infty.$

- Soient U une partie non vide fermée non bornée de \mathbb{R}^n et $f: \mathbb{R}^n \to \mathbb{R}$ une fonction coercive et continue. Alors il existe au moins un élément $x_0 \in U$ tel que $\inf_{x \in U} f(x) = f(x_0)$.
- C.exp : Soit $X = \mathbb{R}$ et $f(x) = -x^2$, alors $\inf_{x \in \mathbb{R}} f(x) = ?$

11/30

• Soit $K \subset \mathbb{R}^N$. L'ensemble X est dite convexe si :

$$\forall (x,y) \in K^2, \ \forall t \in [0,1] \text{ tels que } tx + (1-t)y \in K$$

- Exemple : \mathbb{R}^N est un convexe.
- Soit $K \subset \mathbb{R}^N$ convexe et $f: K \to \mathbb{R}$.
 - \bullet f est dite convexe si:

$$\forall (x,y) \in K^2, \ \forall t \in]0,1[, \ f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$$

• f est dite strictement convexe si:

$$\forall (x,y) \in K^2, x \neq y, \forall t \in]0,1[, f(tx+(1-t)y) < tf(x)+(1-t)f(y)$$

• Exemple : toute fonction affine, f(x) = ax + b, est convexe mais non strictement convexe.

- Critéres de convexité : On suppose que f est deux fois différentiable en tout point de K. On a équivalence entre :
 - \bullet f convexe sur K.
 - ② $\forall (u,v) \in K^2$, ${}^t(v-u).H_f(u).(v-u) \ge 0$ ($H_f(u)$ est semi-définie positive).
- Critéres de convexité stricte : :
 - Si $\forall (u, v) \in K^2$, $u \neq v$, $^t(v u).H_f(u).(v u) > 0$ ($H_f(u)$ est définie positive), alors f est strictement convexe sur K.
- Théorème (critère de Sylvester): Pour qu'une matrice $H_f = (a_{ij})_{1 \le i,j \le n}$ réelle symétrique soit définie positive, il faut et suffit que les n sous matrices mineurs principaux $H_f^p = (a_{ij})_{1 \le i,j \le p}$ de H_f aient leur déterminant strictement positif pour tout $p = 1, \ldots, n$.

12/30

- Soient K un ouvert de \mathbb{R}^N et $f: K \to \mathbb{R}$ différentiable en a,
- On dit qu'un point a est un point critique de f si $\nabla f(a) = 0$.
- Soit f une fonction de classe C^2 sur un **voisinage** de a. $H_f(a)$ est alors une matrice symétrique réelle dont les valeurs propres, nécessairement réelles, sont ordonnées comme suit: $\lambda_{min} = \lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$. On a alors :
 - $H_f(a)$ est semi-définie positive si et seulement si $\lambda_{min} \geq 0$.
 - $H_f(a)$ est définie positive si et seulement si $\lambda_{min} > 0$.
- Si $\lambda_{min} > 0$ alors f admet un minimum local en a.

- Si f est convexe sur K et si elle admet un point critique en $a \in K$ vérifiant $\nabla f(a) = 0$, alors f admet un minimum local et global en a sur K.
- C. Exemple: fonctions affines.
- Soit $K \subset \mathbb{R}^N$ un ensemble non vide et convexe. Si $f: K \to \mathbb{R}$ admet un minimum local en u sur K. Alors.
 - Si f est convexe alors f admet un minimum global en u sur K.
 - Si f est strictement convexe alors alors u est l'unique point de minimum global de f sur K.
- C. Exemple : $f(x) = e^x$.

• Exemple : Étudier le problème de minimisation des fonctions suivantes .

$$f(x,y) = x^2 + y^2 + 3xy - y.$$

$$g(x,y) = x^2 + y^3 - 2xy - y.$$

- Considérons un ensemble de données expérimentales représentant le temps nécessaire à l'exécution d'un algorithme en fonction de la taille de l'entrée.
- Modéliser cette relation à l'aide de la régression linéaire afin de prédire le temps d'exécution pour de nouvelles tailles d'entrée :

Tailles d'entrée	Temps d'exécution
10	5
20	12
30	21
40	35
50	48

Objectif : Trouver une droite de régression y = ax + b pour un ensemble de données $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$.

- Fonction Objectif: $f(a,b) = \sum_{i=1}^{n} (y_i (ax_i + b))^2$
- Le problème est la minimisation de la fonction f : $\inf_{(a,b)\in\mathbb{R}^2}f(a,b),$

• Point critique solution de $\nabla f(a,b) = (0,0)$:

$$a_0 = \frac{\overline{xy} - \overline{x}.\overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{Cov(x,y)}{V(x)}, \ b_0 = \overline{y} - a\overline{x}$$

- On a $H_f(a,b)=\begin{pmatrix} 2\overline{x^2} & 2\overline{x} \\ 2\overline{x} & 2 \end{pmatrix}$ qui est définie positive pour tout $(a,b)\in\mathbb{R}^2$ avec $a\neq b$.
- (a_0, b_0) est l'unique point de minimum global de f sur \mathbb{R}^2 .

• Exemple : Le calcul donne a = 1.09 et b = -8.5.

Contexte

- **Hypothèses** : $f: \mathbb{R}^n \to \mathbb{R}^n$ strictement convexe, de classe C^2 .
- Objectif : Trouver numériquement $x^* \in \mathbb{R}^n$ tel que $f(x^*) = \min_{x \in \mathbb{R}^n} f(x)$.
- Le problème se ramène à résoudre le système $\nabla f(x) = 0_{\mathbb{R}^n}.$

- Rappel (Dérivée directionnelle) :
 - $\lim_{t\to 0} \frac{f(x+t.d)-f(x)}{t} = D_d f(x),$ • $D_d f(x) = \langle \nabla f(x), d \rangle.$
- Direction de descente : Une direction de descente de f en x est un vecteur $d \in \mathbb{R}^n$ tel que

$$D_d f(x) < 0$$
 ou encore $\langle \nabla f(x), d \rangle < 0$

 $\bullet \ \text{c.à.d}: \exists \alpha > 0, \forall 0 < t < \alpha: f(x+td) < f(x).$

• Construction d'une suite $(x_k)_{k\in\mathbb{N}}$ vérifiant

$$f(x_{k+1}) \le f(x_k)$$

- Pour x_0 choisi arbitrairement, on a : $x_{k+1} = x_k + \rho_k d_k$, avec
 - d_k : la direction descente.
 - ρ_k : le pas de la k-ième itération.

• **Remarque**: $d = -\nabla f(x)$ est la direction de plus forte descente.

• Algorithme de gradient :

- Choisir x_0 , tol > 0, $k \le k_{max}$
- ② Calculer $x_{k+1} = x_k \rho_k \nabla f(x_k)$, et k = k+1, tant que $||x_{k+1} x_k|| > tol$ (ou $||\nabla f(x_k)|| > tol$) et $k \le k_{max}$.
- Reste à préciser ρ_k :
 - Algorithme de gradient à pas fixe : $\rho_k = \rho$
 - Algorithme de gradient à pas optimal :

$$f(x_k - \rho_k \nabla f(x_k)) = \min_{t>0} f(x_k - t \nabla f(x_k)).$$

24 / 30

• Théoriquement, pour un pas $\rho_k > 0$ assez petit, la suite $(x_k)_k$ converge et la convergence est au moins géométrique, c.à.d :

$$\exists \beta \in]0,1[\text{ tel que } ||x_k - x^*|| \le \beta^k ||x_0 - x^*||, \ \forall k \in \mathbb{N}$$

- Si le pas est trop grand, la descente vers le minimum est rapide mais le risque d'osciller autour du minimum sans converger est élevé.
- Le pas devrait être assez petit pour converger vers le minimum mais pas trop petit sinon le coût numérique sera très élevé.
- Le choix du pas fixe convenable est obtenu par le test de plusieurs valeurs.

• Recherche exacte de pas optimal ρ_k solution de :

$$\min_{t>0} f(x_k - t\nabla f(x_k))$$

- **Exemple :** Soit $f(x,y) = \frac{1}{2}x^2 + \frac{7}{2}y^2$.

 - $\bullet \ x_{k+1} = x_k \rho_k x_k$
 - $y_{k+1} = y_k \rho_k y_k$

• Résoudre le problème d'optimisation suivant :

$$\inf_{x \in \mathbb{R}^2} f(x)$$

οù

$$f(x,y) = x^4 - 2x^3 + \frac{1}{6}y^2 - 3x - xy$$

• Considérons la Fonction objectif de forme quadratique :

$$f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle$$

oú A est une matrice symétrique définie positive.

- La fonction f est strictement convexe et de classe $C^{+\infty}$,
- Le minimum global de f est atteint en x^* tel que $Ax^* = b$, en effet :
 - $\nabla f(x) = Ax b$ et $H_f(x) = A$.
- La méthode du gradient conjugué est une méthode itérative directe pour résoudre l'équation Ax = b.

29 / 30

- Algorithme du gradient conjugué : Pour tout $k \ge 0$, $r_k = -\nabla f(x_k) = b Ax_k$,
 - Choisir un vecteur initial x_0 , poser $d_{-1} = 0 \in \mathbb{R}^n$ et calculer $r_0 = b Ax_0$,
 - ② Pour k = 0, 1, ..., n ou jusqu'à la convergence :
 - \circ Si $r_k > tol$ alors $x_k = x^*$ arrêt. Sinon,

Il en résulte que :

- $\bullet \ \alpha_k = -\frac{\langle Ar_k, d_k \rangle}{\langle Ad_k, d_k \rangle} \ \text{et} \ t_k = \frac{\langle r_k, d_k \rangle}{\langle Ad_k, d_k \rangle}.$
- La méthode consiste à construire une suite $(d_k)_k$ A-orthogonale formant une base de \mathbb{R}^n dans le cas où la convergence est atteint en n itérations.

30 / 30

• Minimiser la fonction suivante, en utilisant la méthode des gradients conjugués :

$$f(x,y) = x^2 + 4xy + y^2 - 4x - 4y$$