PPP Fraud Detection and Exploratory Analysis

Advanced Data Analytics and Machine Learning in **Python**

Authors: Aayush Bakre, Ajanya Sharma

Table of Contents

- Problem Description
- Evaluation
- Dataset
- Setup Imports & Variables
- Exploring the Data

Problem Discription

lalt text/cloudfront-us-east-1.images.arcpublishing.com/gray/YT67CCYJY5FDNJDURKRAGZYETY.jpg)

PPP Loan Fraud Detection

The Paycheck Protection Program (PPP) is a loan program by the U.S. government in 2020 to help certain businesses, self-employed workers, sole proprietors, nonprofit organizations, and tribal businesses keep paying their workers during the COVID-19 pandemic. PPP loans are private loans with low interest rates that can be used to cover payroll costs, rent, interest, and utilities. The loan amount is based on the average monthly payroll costs of the applicant, business type and can be forgiven if the business is unable to sustain duing the pandemic. The program is run by the U.S. Small Business Administration and the deadline to apply for a PPP loan was March 31, 2021.

The project is aimed at exploring loan data from the Paycheck Protection Program (PPP), which provided relief to small and medium-sized businesses during the COVID-19 pandemic. The primary objective is to create graphical visualizations of the data and apply anomaly detection methods to identify potentially fraudulent loans. The project outline suggests a few starting points, including reviewing PPP loan program eligibility criteria, downloading the full PPP loan dataset and NAICS codes data dictionary for businesses, summarizing the data through tabular summaries and graphical visualizations, investigating loans that have a high potential for fraud by grouping together loans in common categories and identifying outlier loans, and exploring the use of traditional unsupervised learning techniques such as anomaly detection.

Evaluation

The dataset is a collection of entries on the PPP Loan Fraud application form. There is no training or a test dataset. Initial review doesn't point towards any strong correlations and predictors that would categorize the problem as a predictive or a dependence exerceise. At first glance, the dataset seems to be a good fit for unsupervised outlier detection methods just as the Project Brief suggests.

Approach to Analysis

In order to better understand the PPP Loan dataset, we investigated the data and performed initial exploratory analysis along with data visualizations.

Bringing in the dataset and cleaning the data, which includes handling missing values and fixing inconsistent formatting using tranformations, will be the first steps in getting the data ready for analysis. Following that, we normalized selective features of the dataset to ensure meaningful variability that would better support the analysis.

In order to acquire a deeper understanding of the data, we visualized it using a variety of visualization techniques, including line charts, histograms, correlation matrix, and heatmaps.

Fraud Detection Techniques

We employed two main approaches to Fraud Detection.

- 1. Calculating risk scores for each loan application by comparing its key attributes (Jobs Reported, Loan Amounts, and Loan Amounts per Employee) to other businesses of the same size in the same industry to rank extremely atypical loan applications. We also checked the dataset against specific conditionalities and logic, which we believed if the loan applications are displaying, would make those applications fraudulent.
- 2. We applied the unsupervised machine-learning algorithm, Isolation Forest anomaly detection, to forecast anomaly scores for loan applications to find the most anomalous loans, which could be signs of PPP loan fraud.

In the cases above, we treated the high-risk and anomaly scores over a threshold as potentially fraudulent.

Finally, we also conducted exploratory studies on the resulting fraud-identified data to find additional patterns, connections, and trends.

The way this study is designed, we approached it with the intention to aid analysts at SBA and other relevant agencies to help investigate fraud and gain insight into the PPP Loan dataset with the identification of probable PPP loan frauds.

Dataset

The dataset with PPP data is sourced from the official SBA website which can be accessed using the following URL: https://data.sba.gov/dataset/ppp-foia/resource/aab8e9f9-36d1-42e1-b3ba-e59c79f1d7f0?inner_span=True

The dataset with NAICS code is sourced from https://www.sba.gov/document/supporttable-size-standards

Setup Imports and Variables

```
In [ ]: %matplotlib inline
        import matplotlib.pyplot as plt
        import seaborn as sns; sns.set()
        import numpy as np
        import pandas as pd
        # Set the global default size of matplotlib figures
        plt.rc('figure', figsize=(10, 5))
        # Size of matplotlib figures that contain subplots
        fizsize_with_subplots = (10, 10)
        # Size of matplotlib histogram bins
        bin size = 10
```

Explore the Data

Read the Data

Read the first few entries

```
In [2]: # Read in CSV file
        df = pd.read csv('public 150k plus 230101.csv')
        # View first few rows of data
        df.head()
```

Out[2]:		LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	BorrowerAc
	0	9547507704	5/1/20	464	РРР	SUMTER COATINGS, INC.	2410 High
	1	9777677704	5/1/20	464	PPP	PLEASANT PLACES, INC.	7684 So
	2	5791407702	5/1/20	1013	PPP	BOYER CHILDREN'S CLINIC	1850 BOYE
	3	6223567700	5/1/20	920	PPP	KIRTLEY CONSTRUCTION INC	1661 M RAN
	4	9662437702	5/1/20	101	PPP	AERO BOX LLC	

5 rows × 53 columns

Read the last five entries

In [3]: # View last few rows of data df.tail()

Out[3]:		LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
	968526	4395967002	4/3/20	897	PPP	ROY E PAULSON, JR., P.C.	10
	968527	6985647108	4/14/20	897	PPP	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	,
	968528	7996438405	2/12/21	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
	968529	9054647103	4/15/20	897	PPP	EDEN LIFE CARE	Str
	968530	9184687004	4/9/20	897	РРР	S & S JOHNSON ENTERPRISES INC	

5 rows × 53 columns

Observed misread values in columns with dates. So next we call information about data types and missing values

In [4]: # Get information about data types and missing values df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 968531 entries, 0 to 968530

Data columns (total 53 columns):

	columns (total 53 columns):						
#	Column	Non-Null Count	Dtype				
0	LoanNumber	968531 non-null	int64				
1	DateApproved	968531 non-null	object				
2	SBAOfficeCode	968531 non-null	int64				
3	ProcessingMethod	968531 non-null	object				
4	BorrowerName	968527 non-null	object				
5	BorrowerAddress	968517 non-null	object				
6	BorrowerCity	968519 non-null	object				
7	BorrowerState	968518 non-null	object				
8	BorrowerZip	968518 non-null	object				
9	LoanStatusDate	942818 non-null	object				
10	LoanStatus	968531 non-null	object				
11	Term	968531 non-null	int64				
12	SBAGuarantyPercentage	968531 non-null	int64				
13	InitialApprovalAmount	968531 non-null	float64				
14	CurrentApprovalAmount	968531 non-null	float64				
15	UndisbursedAmount	968484 non-null	float64				
16	FranchiseName	35405 non-null	object				
17	ServicingLenderLocationID	968531 non-null	int64				
18	ServicingLenderName	968531 non-null	object				
19	ServicingLenderAddress	968531 non-null	object				
20	ServicingLenderCity	968531 non-null	object				
21	ServicingLenderState	968531 non-null	object				
22	ServicingLenderZip	968531 non-null	object				
23	RuralUrbanIndicator	968531 non-null	object				
24	HubzoneIndicator	968531 non-null	object				
25	LMIIndicator	968531 non-null	object				
26			object				
	BusinessAgeDescription	968530 non-null					
27	ProjectCity	968518 non-null	object				
28	ProjectCountyName	968474 non-null	object				
29	ProjectState	968522 non-null	object				
30	ProjectZip	968517 non-null	object				
31	CD	968485 non-null	object				
32	JobsReported	968530 non-null	float64				
33	NAICSCode	961903 non-null	float64				
34	Race	968531 non-null	object				
35	Ethnicity	968531 non-null	object				
36	UTILITIES_PROCEED	339377 non-null	float64				
37	PAYROLL_PROCEED	966699 non-null	float64				
38	MORTGAGE_INTEREST_PROCEED	46183 non-null	float64				
39	RENT_PROCEED	99533 non-null	float64				
40	REFINANCE_EIDL_PROCEED	22855 non-null	float64				
41	HEALTH_CARE_PROCEED	57446 non-null	float64				
42	DEBT_INTEREST_PROCEED	31717 non-null	float64				
43	BusinessType	967809 non-null	object				
44	OriginatingLenderLocationID	968531 non-null	int64				
45	OriginatingLender	968531 non-null	object				
46	OriginatingLenderCity	968531 non-null	object				
47	OriginatingLenderState	968531 non-null	object				
48	Gender	968531 non-null	object				
49	Veteran	968531 non-null	object				
50	NonProfit	59341 non-null	object				
51	ForgivenessAmount	938885 non-null	float64				
52	ForgivenessDate	938885 non-null	object				
dtype	pes: float64(13), int64(6), object(34)						

dtypes: float64(13), int64(6), object(34)

memory usage: 391.6+ MB

Now we call for summary statistics for the variables

```
In [5]:
        # Get summary statistics for numerical columns
        df.describe()
```

Out[5]:	[5]: LoanNumber		SBAOfficeCode	Term	SBAGuarantyPercentage	InitialApprovalAr
	count	9.685310e+05	968531.000000	968531.000000	968531.0	9.68531(
	mean	5.427137e+09	571.519065	36.377761	100.0	5.32253
	std	2.551313e+09	263.024816	17.291796	0.0	7.442514
	min 1.000007e+09	1.000007e+09	101.000000	0.000000	100.0	0.000000
	25%	3.271108e+09	373.000000	24.000000	100.0	2.002000
	50%	5.400677e+09	515.000000	24.000000	100.0	2.951770
	75%	7.546303e+09	811.000000	60.000000	100.0	5.402000
	max	9.999007e+09	1094.000000	180.000000	100.0	1.000000

We retrieve the exact counts of missing values for each variable.

```
In [6]: # Count the number of rows with missing values in each column
        num_missing = df.isnull().sum(axis=0)
        print(f"Total number of rows with missing values: {num missing}")
```

Total number of rows with 0	missing values:	LoanNumber
DateApproved	0	
SBAOfficeCode	0	
ProcessingMethod	0	
BorrowerName	4	
BorrowerAddress	14	
BorrowerCity	12	
BorrowerState	13	
BorrowerZip	13	
LoanStatusDate	25713	
LoanStatus	0	
Term	0	
SBAGuarantyPercentage	0	
InitialApprovalAmount	0	
CurrentApprovalAmount	0	
UndisbursedAmount	47	
FranchiseName	933126	
ServicingLenderLocationID	0	
ServicingLenderName	0	
ServicingLenderAddress	0	
ServicingLenderCity	0	
ServicingLenderState	0	
ServicingLenderZip	0	
RuralUrbanIndicator	0	
HubzoneIndicator	0	
LMIIndicator	0	
BusinessAgeDescription	1	
ProjectCity	13	
ProjectCountyName	57	
ProjectState	9	
ProjectZip	14	
CD	46	
JobsReported	1	
NAICSCode	6628	
Race	0028	
Ethnicity	0	
UTILITIES_PROCEED	629154	
PAYROLL PROCEED	1832	
_	922348	
MORTGAGE_INTEREST_PROCEED RENT PROCEED	868998	
REFINANCE_EIDL_PROCEED	945676	
	911085	
HEALTH_CARE_PROCEED	936814	
DEBT_INTEREST_PROCEED BusinessType	722	
OriginatingLenderLocation		
OriginatingLender	0	
OriginatingLenderCity	0	
OriginatingLenderState Gender	0	
	0	
Veteran	0	
NonProfit	909190	
ForgivenessAmount	29646	
ForgivenessDate	29646	
dtype: int64		

Total number of observations with at least one missing variable

```
In [7]:
        # Count the number of rows with missing values
        num_rows_missing = (df.isnull().sum(axis=1) > 0).sum()
        print(f"Total number of rows with missing values: {num rows missing}")
```

Total number of rows with missing values: 968530

Total number of rows with missing values is the same as the total observations in the dataset. This means that all observations have at least one null value. Upon looking closely at the dataset and the data dictionary, we can say that it may be because some of the variables are mutually exclusive responses to form questions.

Data Transformation and Feature Introduction

Given that we now have an overview of the dataset. We can now carried out initial tranformations which will allow us to break down and visualize individual elements of the dataset such as processing methods, approval dates, forgiveness dates, and loan amounts with respect to business size and employees. We can also use this opportunity to construct feature variables that may help us derive a more meaningful interpretation from the analysis.

First, we transform columns with misinterpreted dates to correctly identify and validaate date values

In [8]:	# Transform columns with date values from Object DType to DateTime DType
	<pre>df[['DateApproved', 'LoanStatusDate', 'ForgivenessDate']] = df[['DateApproved',</pre>
	<pre>df.head()</pre>

BorrowerAc	BorrowerName	ProcessingMethod	SBAOfficeCode	DateApproved	LoanNumber	
2410 High	SUMTER COATINGS, INC.	РРР	464	2020-05-01	9547507704	0
7684 So	PLEASANT PLACES, INC.	1 9777677704 2020-05-01 464 PPP				
1850 BOYE	BOYER CHILDREN'S CLINIC	РРР		5791407702	2	
1661 M RAN	KIRTLEY CONSTRUCTION INC	РРР	920		3	
	AERO BOX LLC	PPP	101	2020-05-01	9662437702	4

5 rows × 53 columns

Given the high variability in the loan amounts sanctioned, lets introduce a feature containing normalized loan amounts by adjusting the loan amounts for the number of employees disclosed.

In [9]: df['loan_amount_per_employee'] = df['CurrentApprovalAmount'] / df['JobsReported #do box plot, try to find min, max and any outliers In [10]: df Out[10]: LoanNumber DateApproved SBAOfficeCode ProcessingMethod **BorrowerName** Bor **SUMTER** 24 9547507704 2020-05-01 464 PPP COATINGS, INC. **PLEASANT** 9777677704 2020-05-01 464 PPP PLACES, INC. **BOYER** 18 2 5791407702 2020-05-01 1013 PPP CHILDREN'S **CLINIC KIRTLEY** 6223567700 2020-05-01 920 PPP CONSTRUCTION INC PPP 9662437702 2020-05-01 101 AERO BOX LLC ROY E PAULSON, 968526 4395967002 2020-04-03 897 PPP JR., P.C.

968531 rows × 54 columns

6985647108

7996438405

9054647103

9184687004

2020-04-14

2021-02-12

2020-04-15

2020-04-09

968527

968528

968529

968530

Let's import NAICS Industry Descriptions, Industry Size standards in millions of dollars, and Size standards in number of employees based on NAICS Code into the dataframe.

897

897

897

897

In [11]: naicsdata=pd.read excel('Table of Size Standards.xlsx', sheet name='table of size naicsdata.head()

SWEETWATER COUNTY CHILD

ELECTRICAL

SYSTEMS OF WYOMING INC

EDEN LIFE CARE

S & S JOHNSON

ENTERPRISES

INC

Str

DEVELOPMENTAL CENTER, ...

PPS

PPP

PPP

In [14]: naicsdata.dropna(subset=['NAICS Codes'])

Size standards Size standards in Out[11]: **NAICS Industry NAICS Codes** \nin millions of number of Footnotes **Description** dollars employees Sector 11 -0 NaN Agriculture, Forestry, NaN NaN NaN Fishing and... Subsector 111 -1 NaN NaN NaN NaN **Crop Production** 2 111110 Soybean Farming 2.25 NaN NaN Oilseed (except 3 111120 2.25 NaN NaN Soybean) Farming Dry Pea and Bean 4 111130 2.75 NaN NaN Farming In [12]: naicsdata.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1105 entries, 0 to 1104 Data columns (total 5 columns): Non-Null Count Dtype Column ----_____ ----NAICS Codes 1082 non-null object NAICS Industry Description 1019 non-null object Size standards in millions of dollars 513 non-null object Size standards in number of employees float64 483 non-null Footnotes 37 non-null object dtypes: float64(1), object(4) memory usage: 43.3+ KB In [13]: unique values = naicsdata.nunique() # Print the result print(unique values) NAICS Codes 1082 NAICS Industry Description 1015 Size standards \nin millions of dollars 74 Size standards in number of employees 27 Footnotes 17 dtype: int64

Out[14]:

		NAICS Codes	NAICS Industry Description	Size standards \nin millions of dollars	Size standards in number of employees	Footnotes
	1	Subsector 111 – Crop Production	NaN	NaN	NaN	NaN
	2	111110	Soybean Farming	2.25	NaN	NaN
	3	111120	Oilseed (except Soybean) Farming	2.25	NaN	NaN
	4	111130	Dry Pea and Bean Farming	2.75	NaN	NaN
	5	111140	Wheat Farming	2.25	NaN	NaN
10	098	813910	Business Associations	15.5	NaN	NaN
10	099	813920	Professional Organizations	23.5	NaN	NaN
1	100	813930	Labor Unions and Similar Labor Organizations	16.5 NaN		NaN
1	101	813940	Political Organizations	14	4 NaN	NaN
1	102	813990	Other Similar Organizations (except Business,	13.5	NaN	NaN
10	82 r	ows × 5 columns				

```
In [15]: df = df.dropna(subset=['NAICSCode'])
         missing count = df['NAICSCode'].isna().sum()
         missing count
Out[15]: 0
```

Creating columns for NAICS Industry Description, Size standards in millions of dollars, and Size standards in number of employees

```
In [16]: # Create a dictionary mapping NAICS Codes to NAICS Industry Description in naid
         naics dict = dict(zip(naicsdata['NAICS Codes'], naicsdata['NAICS Industry Descr
         # Create a dictionary mapping NAICS Codes to Size standards \nin millions of de
         naics dict2 = dict(zip(naicsdata['NAICS Codes'], naicsdata['Size standards \nir
         # Create a dictionary mapping NAICS Codes to Size standards in number of employ
         naics dict3 = dict(zip(naicsdata['NAICS Codes'], naicsdata['Size standards in r
         # Create a new column in df (public 150k plus 230101.csv) with the values from
         df['NAICS Industry Description'] = df['NAICSCode'].map(naics dict)
         # Create a new column in df (public 150k plus 230101.csv) with the values from
         df['Size standards \nin millions of dollars'] = df['NAICSCode'].map(naics dict2
```

> # Create a new column in df (public 150k plus 230101.csv) with the values from df['Size standards in number of employees'] = df['NAICSCode'].map(naics_dict3) df.head()

/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/1652607285.p y:11: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy

df['NAICS Industry Description'] = df['NAICSCode'].map(naics_dict)

/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/1652607285.p y:14: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy

df['Size standards \nin millions of dollars'] = df['NAICSCode'].map(naics_di

/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/1652607285.p y:17: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy df['Size standards in number of employees'] = df['NAICSCode'].map(naics dict 3)

Out[16]:

LoanNumber DateApproved SBAOfficeCode ProcessingMethod BorrowerName BorrowerAc

2410 High	SUMTER COATINGS, INC.	РРР	464	2020-05-01	9547507704	0
7684 So	PLEASANT PLACES, INC.	PPP	464	2020-05-01	9777677704	1
1661 M RAN	KIRTLEY CONSTRUCTION INC	PPP	920	2020-05-01	6223567700	3
	AERO BOX LLC	PPP	101	2020-05-01	9662437702	4
	HUDSON EXTRUSIONS INC.	PPP	101	2020-05-01	9774337701	5

5 rows × 57 columns

Looking for observed format inconsistencies in NAICSCode columns

```
In [17]: # create a boolean mask to filter the data
         mask = df['Size standards in number of employees'].isnull()
         # use boolean indexing to filter the data and group by 'NAICS Codes'
         naics_nullcounts = df.loc[mask].groupby('NAICSCode').size()
         # print the counts of unique values in 'NAICS Codes' for rows where 'Size stand
         naics nullcounts
         NAICSCode
Out[17]:
         111110.0
                      203
         111120.0
                      34
         111130.0
                      17
         111140.0
                      54
         111150.0
                     204
                     . . .
         926150.0
                       40
                      27
         927110.0
         928110.0
                      23
         928120.0
                      30
                   4090
         999990.0
         Length: 727, dtype: int64
In [18]: missing count = df['Size standards in number of employees'].isna().sum()
         missing_count
         793572
Out[18]:
In [19]: # convert the 'NAICSCode' column to integer and then back to string
         df['NAICSCode'] = df['NAICSCode'].astype(int).astype(str)
         # show the transformed column
         print(df['NAICSCode'])
                   325510
                   561730
         1
         3
                   236115
                   484210
         5
                   326199
         968526 621210
         968527
                  624410
         968528 238210
         968529 621610
         968530
                   722511
         Name: NAICSCode, Length: 961903, dtype: object
         /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/865044654.py:
         2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           df['NAICSCode'] = df['NAICSCode'].astype(int).astype(str)
```

> Imputing Null values with adjusted means for JobsReported by Industry Type as will be required for further analysis

```
In [20]: # group by NAICSCode and calculate the mean of JobsReported
         mean jobs reported = df.groupby('NAICSCode')['JobsReported'].mean()
         # fill null values in Size standards in number of employees column with mean of
         df['Size standards in number of employees'] = df.groupby('NAICSCode')['Size sta
         /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/2122538760.p
         y:5: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user_guide/indexing.html#returning-a-view-versus-a-copy
           df['Size standards in number of employees'] = df.groupby('NAICSCode')['Size
         standards in number of employees'].apply(lambda x: x.fillna(mean_jobs_reported
         [x.name]))
In [21]: missing count = df['Size standards in number of employees'].isna().sum()
         missing_count
Out[21]:
         Imputing Null values with adjusted means for CurrentApprovalAmount by Industry Type as
```

will be required for further analysis

```
In [22]: # group by NAICSCode and calculate the mean of # group by NAICSCode and calculate
         mean CurrentApprovalAmount = df.groupby('NAICSCode')['CurrentApprovalAmount'].n
         # fill null values in CurrentApprovalAmount column with mean of CurrentApproval
         df['CurrentApprovalAmount'] = df.groupby('NAICSCode')['CurrentApprovalAmount'].
         /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/2207975816.p
         y:5: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           df['CurrentApprovalAmount'] = df.groupby('NAICSCode')['CurrentApprovalAmoun
         t'].apply(lambda x: x.fillna(mean jobs reported[x.name]))
In [23]: missing count CurrentApprovalAmount = df['CurrentApprovalAmount'].isna().sum()
         missing count CurrentApprovalAmount
Out[23]:
```

Imputing Null values with adjusted means for Loan Amopunt Per Employee by Industry Type as will be required for further analysis

```
In [24]: # group by NAICSCode and calculate the mean of # group by NAICSCode and calculate
         mean loan amount per employee = df.groupby('NAICSCode')['loan amount per employ
```

```
# fill null values in loan amount per employee column with mean of loan amount
         df['loan amount_per_employee'] = df.groupby('NAICSCode')['loan_amount_per_employee']
         /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/125080320.py:
         5: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user_guide/indexing.html#returning-a-view-versus-a-copy
           df['loan_amount_per_employee'] = df.groupby('NAICSCode')['loan_amount_per_em
         ployee'].apply(lambda x: x.fillna(mean loan amount per employee[x.name]))
         missing_count_loan_amount_per_employee = df['loan_amount_per_employee'].isna().
         missing count loan amount per employee
Out[25]:
```

Now that we have executed the initial transformations, it is time to visualize the data!

Correlation Matrix to look at variable dependencies

```
In [26]:
                 #correlation Matrix to study correlation between different variables
                 matrix=df.corr()
                 f,ax=plt.subplots(figsize=(18,10))
                 sns.heatmap(matrix, annot=True)
                 <AxesSubplot:>
Out[26]:
                                                               0.0083 0.0087 0.00052 0.0061 - 0.0084 0.025 0.0083 0.0083 0.038 - 0.0073 0.047 0.018 - 0.005 0.0084 0.0021 0.006
                                                               -0.007 -0.0068-0.0032 0.0026-0.0016 0.0044 -0.0069 0.076 0.00051 0.079 -0.0087 0.05 0.011 -0.0076-0.0049 0.0074
                               SBAOfficeCode
                                                               -0.069 -0.068 0.0015 0.06 -0.076 -0.23 -0.056 0.013 0.015 0.073 0.0064 0.011 0.045 -0.072 0.0024 -0.015
                                           0.0083 -0.007 -0.069
                                                                1 0.99 0.0038 -0.014 0.76 0.36 0.98
                                                                                                            0.013
                                                                                                                        0.34 -0.014 0.98
                           InitialApprovalAmount
                                                               0.99 1 0.0038 -0.016 0.76 0.36 0.99 0.42 0.65 0.016
                                                                                                                       0.34 -0.016 0.99 0.065 0.066
                         CurrentApprovalAmount 0.0087 -0.0068 -0.068
                            UndisbursedAmount 0.00052-0.0032 0.0015
                                                               0.0038 0.0038 1 0.0016 0.0051 -0.0011 0.004
                                                                                                       -0.0013
                                                                                                                            0.0019 0.000380.000350.00059
                                                               -0.014 -0.016 0.0016 1 -0.02 -0.024 -0.013 0.011 0.018 <mark>0.15</mark> 0.011 0.071 <mark>0.97</mark> -0.013 0.0056 -0.028
                               JobsReported -0.0084-0.0016 -0.076
                                                               UTILITIES_PROCEED 0.025 0.0044 -0.23

        0.98
        0.99
        0.004
        -0.013
        0.75
        0.33
        1
        0.47
        0.58
        -0.026
        0.63

                           PAYROLL_PROCEED 0.0083 -0.0069 -0.056
                                                                                                                       0.29 -0.013 0.99 0.066 0.065
                                                                             0.011 0.34 0.38 0.47 1 0.14 0.095 0.16 0.1 0.021
                 MORTGAGE_INTEREST_PROCEED 0.00083 0.076 0.013
                                                                         0.0013 0.018 0.44 0.35 0.58 0.14 1 0.002 0.32 0.2 0.019
                             RENT PROCEED 0.038 0.00051 0.015
                                                                                                                                      0.037 0.028
                                                                                                                                                           - 0.2
                                                               0.013 0.016 0.15 0.0022 0.0073 -0.026 0.095 0.002 1 -0.0018 0.0081 0.14 0.0093 0.11 -0.0068
                     REFINANCE_EIDL_PROCEED -0.0073 0.079 0.073
                       HEALTH_CARE_PROCEED 0.047 -0.0087 0.0064
                                                                         0.34 0.34 0.071 0.27 0.14 0.29 0.1 0.2 0.0081 0.21 1 0.071 0.34 0.013 0.053
                      DEBT INTEREST PROCEED 0.018 0.05 0.011
                                                                                                                                                           - 0.0
                                                               -0.014 -0.016 0.0019 <mark>0.97</mark> -0.019 -0.019 -0.013 0.021 0.019 <mark>0.14</mark> 0.012 0.071 1 -0.013 0.0051 -0.029
                       OriginatingLenderLocationID -0.005 0.011 0.045
                                                               ForgivenessAmount 0.0084 -0.0076 -0.072
                                                               0.062 0.065 0.00035 0.0056 -0.097 0.018 0.066 0.033 0.037 0.11 0.057 0.013 0.0051 0.062 1
                                                                0.066 0.066 0.00059-0.028 0.037 0.026 0.065 0.039 0.028 -0.0069 0.084
```

> Key observations: High correlation between Payroll proceeds and Initial/Current Loan amounts. This suggests that most applications were applying to use the proceeds to process Payroll.

Other observed correlations between LoanApproval Amounts and Forgiveness amounts are not as telling.

Comparing Processing Methods

```
In [27]:
         # create a countplot
         sns.countplot(x='ProcessingMethod', data=df)
         # set the axis labels and title
         plt.xlabel('Processing Method')
         plt.ylabel('Count')
         plt.title('Count Plot of Processing Method')
         # display the plot
         plt.show()
```


Visualizing the counts for Loan Status

```
In [28]: # create a countplot
         sns.countplot(x='LoanStatus', data=df)
         # set the axis labels and title
         plt.xlabel('Loan Status')
         plt.ylabel('Count')
         plt.title('Count Plot of Loan Status')
         # display the plot
         plt.show()
```


Further qualitative analysis revealed that even forgiven loans and grants issued were recorded as "Paid in Full".

Plotting Box Outliers for Loan Statuses

```
In [29]:
         plt.figure(figsize=(10,10))
         sns.boxplot(x='LoanStatus', y='CurrentApprovalAmount', data=df)
         <AxesSubplot:xlabel='LoanStatus', ylabel='CurrentApprovalAmount'>
Out[29]:
```


Loan Applications by State

```
In [30]:
         # create a countplot
         plt.figure(figsize=(15,6)) #this creates an 8 inch wide, 4 inch high
         ax=sns.countplot(x="BorrowerState", data=df, order=df['BorrowerState'].value_cc
         ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
         plt.tight_layout()
         plt.show()
```


Now let us try and plot this on the map

```
In [31]: # create a dictionary to map state abbreviations to full names
    state_dict = {'AL': 'Alabama', 'AK': 'Alaska', 'AZ': 'Arizona', 'AR': 'Arkansas

# create a new column with full state names
    df['state_name'] = df['BorrowerState'].map(state_dict)

# display the updated DataFrame
    df.head()

/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/3189627533.p
    y:6: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
    able/user_guide/indexing.html#returning-a-view-versus-a-copy
    df['state_name'] = df['BorrowerState'].map(state_dict)
```

Out[31]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	BorrowerAc
0	9547507704	2020-05-01	464	PPP	SUMTER COATINGS, INC.	2410 High
1	9777677704	2020-05-01	464	РРР	PLEASANT PLACES, INC.	7684 So
3	6223567700	2020-05-01	920	PPP	KIRTLEY CONSTRUCTION INC	1661 M RAN
4	9662437702	2020-05-01	101	РРР	AERO BOX LLC	
5	9774337701	2020-05-01	101	PPP	HUDSON EXTRUSIONS INC.	

5 rows x 58 columns

```
In [32]: # count the unique values in column_1
         borrowerstatecounts = df['BorrowerState'].value counts()
         # create a new DataFrame with the counts
         borrowerstatecounts_df = pd.DataFrame({'unique_values': borrowerstatecounts.inc
         borrowerstatecounts df['state name'] = borrowerstatecounts df['unique values']
         # display the new DataFrame
         print(borrowerstatecounts_df)
```

			Maste
	unique_values	count	state_name
0	CA	129265	California
1	TX	75729	Texas
2	NY	72941	New York
3	${ t FL}$	59617	Florida
4	${\tt IL}$	40548	Illinois
5	PA	38296	Pennsylvania
6	ОН	32434	Ohio
7	NJ	31934	New Jersey
8	MI	29608	Michigan
9	MA	27361	Massachusetts
10	GA	25726	Georgia
11	WA	23631	Washington
12	VA	23208	Virginia
13	NC	22763	North Carolina
14	MN	19696	Minnesota
15	CO	19637	Colorado
16	MD	18899	Maryland
17	WI	17313	Wisconsin
18	IN	16544	Indiana
19	MO	16303	Missouri
20	TN	15842	Tennessee
21	AZ	15668	Arizona
22	LA	13615	Louisiana
23	OR	13386	Oregon
24	CT	12818	Connecticut
25	AL	10899	Alabama
26	SC	10701	South Carolina
27	OK	9988	Oklahoma
28	UT	9233	Utah
29	KY	9144	
30	IA	8289	Kentucky Iowa
31	KS	8195	Kansas
32	NV	8108	Nevada
33	AR	5849	Arkansas
34			Nebraska
35	NE MS	5800 5498	
36		5051	Mississippi New Hampshire
37	NH	4979	неw нашрынге Наwaii
	HI		
38	NM	4477	New Mexico Idaho
39 40	ID	4400	NaN
	DC	4359	
41	ME	4178	Maine
42	RI	3780	Rhode Island
43	VW	3362	West Virginia
44	ND	3219	North Dakota
45	MT	3140	Montana
46	DE	2978	Delaware
47	PR	2897	NaN
48	SD	2695	South Dakota
49	AK	2657	Alaska
50	VT	2263	Vermont
51	WY	2137	Wyoming
52	GU	443	NaN
53	VI	289	NaN
54	MP	81	NaN
55	AS	20	NaN

In [33]: #graph showing loan applications per state across the United States
import geopandas as gpd

```
# load data from a csv file
#data = pd.read csv('data.csv')
# load shapefile data of the USA
usa = gpd.read file('geo export f042980c-ca77-4dd6-bff4-38d915a31cce.shp')
# merge the data and shapefile data based on the state column
merged = usa.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.set_index('state_name').join(borrowerstatecounts_df.
# create a choropleth map
fig, ax = plt.subplots(figsize=(10, 6))
merged.plot(column='count', cmap='YlOrRd', linewidth=0.8, edgecolor='black', ax
# set the axis labels and title
ax.set_xlabel('Longitude')
ax.set ylabel('Latitude')
ax.set_title('Heat Map of Observations Across Different States')
# display the plot
plt.show()
```


Loan Applications by Type of Business

fig.canvas.print figure(bytes io, **kw)

```
In [34]:
        # loan application counts by industry
         plt.figure(figsize=(15,6)) #this creates an 8 inch wide, 4 inch high
         ax=sns.countplot(x="NAICS Industry Description", data=df,
                          order=df['NAICS Industry Description'].value_counts().iloc[:10
         ax.set xticklabels(ax.get xticklabels(), rotation=40, ha="right")
         plt.show()
         /opt/anaconda3/lib/python3.9/site-packages/IPython/core/pylabtools.py:151: Use
         rWarning: Glyph 8209 (\N{NON-BREAKING HYPHEN}) missing from current font.
```


Loan Applications by Lender

Calculating Application Risk Scores

> Calculating Application Risk Scores for each loan application by comparing its key attributes (Jobs Reported, Loan Amounts, and Loan Amounts per Employee) to other businesses of the same size in the same industry to rank extremely atypical loan applications.

Calculating Deviant Jobs Reported to see which applications are reporting jobs atypical of their industry type and firm size

```
In [36]: df['Deviant Jobs Reported'] = np.abs(df['JobsReported'] - df['Size standards ir
         # calculate the percentile rank of each observation in the 'Deviant Jobs Report
         df['Deviant JR Risk Score'] = df['Deviant Jobs Reported'].rank(pct=True, method
         df.head()
         /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/3475568661.p
         y:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user_guide/indexing.html#returning-a-view-versus-a-copy
           df['Deviant Jobs Reported'] = np.abs(df['JobsReported'] - df['Size standards
         in number of employees']) / df['Size standards in number of employees']
         /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/3475568661.p
         y:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
           df['Deviant JR Risk Score'] = df['Deviant Jobs Reported'].rank(pct=True, met
         hod='min')
```

Out[36]:

BorrowerAc	BorrowerName	ProcessingMethod	SBAOfficeCode	DateApproved	LoanNumber	
2410 High	SUMTER COATINGS, INC.	PPP	464	2020-05-01	9547507704	0
7684 So	PLEASANT PLACES, INC.	PPP	464	2020-05-01	9777677704	1
1661 M RAN	KIRTLEY CONSTRUCTION INC	PPP	920	2020-05-01	6223567700	3
	AERO BOX LLC	РРР	101	2020-05-01	9662437702	4
	HUDSON EXTRUSIONS INC.	РРР	101	2020-05-01	9774337701	5

5 rows × 60 columns

Calculating Deviant Loan Amounts to see which applications are requesting loans atypical of their industry type and firm size

```
In [37]: # group by NAICSCode and calculate mean of CurrentApprovalAmount
grouped_mean = df.groupby('NAICSCode')['CurrentApprovalAmount'].transform('mean
df['Deviant_CurrentApprovalAmount'] = np.abs(df['CurrentApprovalAmount'] - grou
# calculate the percentile rank of each observation in the 'Deviant_CurrentAppr
df['Deviant CAA Risk Score'] = df['Deviant_CurrentApprovalAmount'].rank(pct=Tru
df.head()
```

```
/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/1525821375.p
y:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
 df['Deviant CurrentApprovalAmount'] = np.abs(df['CurrentApprovalAmount'] - g
rouped_mean) / grouped_mean
/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/1525821375.p
y:7: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
 df['Deviant CAA Risk Score'] = df['Deviant_CurrentApprovalAmount'].rank(pct=
True, method='min')
```

Out[37]:

LoanNumber DateApproved SBAOfficeCode ProcessingMethod BorrowerName BorrowerAc

2410 High	SUMTER COATINGS, INC.	PPP	464	2020-05-01	9547507704	0
7684 So	PLEASANT PLACES, INC.	PPP	464	2020-05-01	9777677704	1
1661 M RAN	KIRTLEY CONSTRUCTION INC	PPP	920	2020-05-01	6223567700	3
	AERO BOX LLC	PPP	101	2020-05-01	9662437702	4
	HUDSON EXTRUSIONS INC.	PPP	101	2020-05-01	9774337701	5

5 rows × 62 columns

Calculating Deviant Loan Amount Per Employee to see which applications are showing Per-employee Loan Amounts atypical of their industry type and firm size

```
In [38]: # group by NAICSCode and calculate mean of loan amount per employee
         grouped mean loan amount per employee = df.groupby('NAICSCode')['loan amount pe
         df['Deviant loan amount per employee'] = np.abs(df['loan amount per employee']
         # calculate the percentile rank of each observation in the 'Deviant loan amount
```

df['Deviant LAPE Risk Score'] = df['Deviant loan amount per employee'].rank(pct df.head()

/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/507173473.py: 4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy

df['Deviant_loan_amount_per_employee'] = np.abs(df['loan_amount_per_employe e'] - grouped_mean_loan_amount_per_employee) / grouped_mean_loan_amount_per_em ployee

/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/507173473.py: 7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy

df['Deviant LAPE Risk Score'] = df['Deviant_loan_amount_per_employee'].rank (pct=True, method='min')

Out[38]:

LoanNumber	DateAnnroyed	SBAOfficeCode	ProcessingMethod	BorrowerName	BorrowerAc
Loannumber	DateApproved	SBAUTHCeCode	Processingmethod	Borrowername	Borrowerac

2410 High	SUMTER COATINGS, INC.	PPP	464	2020-05-01	9547507704	0
7684 So	PLEASANT PLACES, INC.	PPP	464	2020-05-01	9777677704	1
1661 M RAN	KIRTLEY CONSTRUCTION INC	РРР	920	2020-05-01	6223567700	3
	AERO BOX LLC	PPP	101	2020-05-01	9662437702	4
	HUDSON EXTRUSIONS INC.	PPP	101	2020-05-01	9774337701	5

5 rows × 64 columns

Calculating Total Average Risk Scores as a combination of all Risk Scores to retrieve overall loan applications atypical of their industry type and firm size

In [39]: #Average Risk Score

```
df['Total Average Risk Score'] = df[['Deviant JR Risk Score', 'Deviant CAA Risk
df.head()
/var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/2194753620.p
y:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  df['Total Average Risk Score'] = df[['Deviant JR Risk Score', 'Deviant CAA R
isk Score', 'Deviant LAPE Risk Score']].mean(axis=1)
```

Out[39]:

LoanNumber DateApproved SBAOfficeCode ProcessingMethod BorrowerName BorrowerAc

2410 High	SUMTER COATINGS, INC.	PPP	464	2020-05-01	9547507704	0
7684 So	PLEASANT PLACES, INC.	777677704 2020-05-01 464 PPP	9777677704	1		
1661 M RAN	KIRTLEY CONSTRUCTION INC	РРР	920	2020-05-01	6223567700	3
	AERO BOX LLC	PPP	101	2020-05-01	9662437702	4
	HUDSON EXTRUSIONS INC.	PPP	101	2020-05-01	9774337701	5

5 rows × 65 columns

Possible Frauds based on Exporatory Analysis

```
In [40]: # check null values for each column
         null counts = df.isnull().sum()
         # Print the results
         print('Null value counts by column:')
         print(null counts)
```

```
Null value counts by column:
                                         0
LoanNumber
                                         0
DateApproved
SBAOfficeCode
                                         0
ProcessingMethod
                                         0
BorrowerName
                                         4
Deviant_CurrentApprovalAmount
                                         0
Deviant CAA Risk Score
                                         0
Deviant_loan_amount_per_employee
                                     17589
Deviant LAPE Risk Score
                                     17589
Total Average Risk Score
                                         0
Length: 65, dtype: int64
```

```
In [41]: # Drop rows with null values in columns
                                                                                                                                        df = df.dropna(subset=['BorrowerName','BorrowerAddress','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','BorrowerState','
                                                                                                                                        # Print the result
```

Out[41]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
13	5502308207	2020-08-08	1084	PPP	KAKIVIK ASSET MANAGEMENT, LLC	5
14	6110847106	2020-04-14	1084	PPP	ARCTIC SLOPE NATIVE ASSOCIATION, LTD.	
15	4539098204	2020-08-06	1084	PPP	CORVUS AIRLINES INC	
16	5120868804	2021-04-17	1084	PPP	HOPE COMMUNITY RESOURCES INC.	540
17	6650277102	2020-04-14	1084	PPP	SOUTH PENINSULA HOSPITAL INC	4:
•••						
968526	4395967002	2020-04-03	897	PPP	ROY E PAULSON, JR., P.C.	1(
968527	6985647108	2020-04-14	897	PPP	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	
968528	7996438405	2021-02-12	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
968529	9054647103	2020-04-15	897	РРР	EDEN LIFE CARE	Str
968530	9184687004	2020-04-09	897	РРР	S & S JOHNSON ENTERPRISES INC	

961882 rows × 65 columns

```
In [42]: # check null values for each column
         null_counts = df.isnull().sum()
         # Print the results
         print('Null value counts by column:')
         print(null_counts)
```

```
Null value counts by column:
                                         0
LoanNumber
DateApproved
                                         0
SBAOfficeCode
                                         0
                                         0
ProcessingMethod
                                         0
BorrowerName
Deviant_CurrentApprovalAmount
                                         0
Deviant CAA Risk Score
                                         0
Deviant_loan_amount_per_employee
                                     17589
Deviant LAPE Risk Score
                                     17589
Total Average Risk Score
                                         0
Length: 65, dtype: int64
```

PPP loan eligibility criteria

```
First draw PPP loans
```

```
Your business was operational before February 15, 2020(startup
done)
You have no more than 500 employees(done)
```

took loan from different lenders

Took loan within between those loans is every near

Second draw PPP loans

You have used up your first PPP loan

Your business was operational before February 15, 2020

You have no more than 300 employees (done)

If your business has multiple locations, you have no more than 300 employees per location

Check for spike in number of employees

Not eligible for PPP loans due to size, type of business, or other criteria, applied for and received loans

```
In [43]: | df['BusinessAgeDescription'].unique()
         array(['Existing or more than 2 years old', 'Unanswered',
Out[43]:
                 'New Business or 2 years or less', 'Change of Ownership',
                 'Startup, Loan Funds will Open Business', nan], dtype=object)
In [44]: # business is fraud id loan used to open new business
         def Is Fraud business start date(BusinessAgeDescription):
             if BusinessAgeDescription == 'Startup, Loan Funds will Open Business':
                 return 1
             else:
                 return 0
         df['Is Fraud business start date'] = df['BusinessAgeDescription'].apply(Is Fraud)
         # Print the updated DataFrame
```

> /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel_13709/3465551521.p y:7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy df['Is_Fraud_business_start_date'] = df['BusinessAgeDescription'].apply(Is_F

raud_business_start_date)

Out[44]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
13	5502308207	2020-08-08	1084	PPP	KAKIVIK ASSET MANAGEMENT, LLC	5
14	6110847106	2020-04-14	1084	PPP	ARCTIC SLOPE NATIVE ASSOCIATION, LTD.	
15	4539098204	2020-08-06	1084	PPP	CORVUS AIRLINES INC	
16	5120868804	2021-04-17	1084	PPP	HOPE COMMUNITY RESOURCES INC.	540
17	6650277102	2020-04-14	1084	PPP	SOUTH PENINSULA HOSPITAL INC	43
•••						
968526	4395967002	2020-04-03	897	PPP	ROY E PAULSON, JR., P.C.	1(
968527	6985647108	2020-04-14	897	РРР	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	-
968528	7996438405	2021-02-12	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
968529	9054647103	2020-04-15	897	РРР	EDEN LIFE CARE	Str
968530	9184687004	2020-04-09	897	PPP	S & S JOHNSON ENTERPRISES INC	

961882 rows × 66 columns

```
In [45]: # Make a count plot to show the number of True and False values in the 'is frat
         ax = sns.countplot(data=df, x='Is Fraud business start date')
         # Label the axes
         ax.set_xlabel('Is Fraud (Startup or New Business')
```

```
ax.set_ylabel('Count')
# Add count labels
for p in ax.patches:
    ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))
# Show the plot
plt.show()
```



```
In [46]: # Use boolean indexing to filter the rows where 'is fraud business description
         filtered_df_startup = df[df['Is_Fraud_business_start_date'] == 1]
         # Print the filtered DataFrame
         filtered df startup
```

Out[46]:

3111	CLAY COUNTY ELECTRIC COOPERATIVE COOPERATION	PPP	669	2020-07-30	1580718209	13977
24	SUNLAND SPRINGS MEMORY CARE LLC	PPP	988	2020-04-27	3614747209	22677
•	SVAZ LLC	PPP	988	2020-05-01	8295587704	28070
45 N	FIREPIT HOLDINGS CORP DBA SERVPRO OF GI LBERT	PPP	988	2020-05-01	2634907702	30361
18 Suite	ROOSTIFY INC.	PPP	912	2020-04-13	4841347103	37722
				•••		•••
4246	MAD CITY POWER SPORTS, INC.	PPP	563	2020-04-08	8663017005	957934
110	PORTAGE COLD STORAGE, INC.	PPP	563	2020-04-09	9290727007	958581
17:	CRR FRANCHISING INC	РРР	563	2020-04-09	1040697110	958931
4211	UNIFIED COLD STORAGE LLC	PPP	563	2020-04-10	1281487107	958932
41	ILA PROPERTIES INC	PPP	390	2020-04-07	6916557003	964477

LoanNumber DateApproved SBAOfficeCode ProcessingMethod BorrowerName Borro

287 rows × 66 columns

```
In [47]: # Check for number of jobs reported based on 500 employees for First Round PPP
         max income = df['JobsReported'].max()
         min_income = df['JobsReported'].min()
         # Print the results
         print(f"The maximum JobsReported is {max_income}.")
         print(f"The minimum JobsReported is {min income}.")
         zero_JobsReported_df = df[df['JobsReported'] == 0]
         # Print the filtered DataFrame
         zero JobsReported df
```

> The maximum JobsReported is 500.0. The minimum JobsReported is 0.0.

Out[47]:

		LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Вс
	123809	6557167306	2020-04-30	914	PPP	ST. MARGARET MARY SCHOOL	25
	550930	5780187005	2020-04-06	766	PPP	RELIANT TRANSPORTATION, INC.	
	763779	4864227203	2020-04-27	303	PPP	VINCERA REHAB LLC	12
	967205	4563247009	2020-04-03	897	РРР	WEEDEN CONSTRUCTION LLC	

⁴ rows × 66 columns

In [48]: # business is fraud id if jobs reoprted as 0, hence updated fraud columns for t df.loc[df['JobsReported'] == 0, 'Is_Fraud_JobsReported'] = 1

Out[48]:

		LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
	13	5502308207	2020-08-08	1084	PPP	KAKIVIK ASSET MANAGEMENT, LLC	5
	14	6110847106	2020-04-14	1084	PPP	ARCTIC SLOPE NATIVE ASSOCIATION, LTD.	
	15	4539098204	2020-08-06	1084	PPP	CORVUS AIRLINES INC	
	16	5120868804	2021-04-17	1084	PPP	HOPE COMMUNITY RESOURCES INC.	540
	17	6650277102	2020-04-14	1084	PPP	SOUTH PENINSULA HOSPITAL INC	4:
	•••	•••	•••				
	968526	4395967002	2020-04-03	897	РРР	ROY E PAULSON, JR., P.C.	1(
	968527	6985647108	2020-04-14	897	PPP	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	
	968528	7996438405	2021-02-12	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
	968529	9054647103	2020-04-15	897	РРР	EDEN LIFE CARE	Str
	968530	9184687004	2020-04-09	897	PPP	S & S JOHNSON ENTERPRISES INC	

961882 rows × 67 columns

In [49]: #mark rows as fraud based on jobs reported, if jobs> 300 in PPS, its a fraud # Select the rows where loan processing method is 'PPS' and jobs reported is gr df_filtered2=df.loc[(df['ProcessingMethod'] == 'PPS') & (df['JobsReported'] > 3 df filtered2

Out[49]:

		LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Borro
	19943	3363518505	2021-02-23	988	PPS	KIND HOSPITALITY INC.	1225
	19955	4715638505	2021-02-26	988	PPS	SOUTHWEST PIZZA INC.	5925
	20874	2677328908	2021-04-27	988	PPS	YAWBUS INC	
	24010	1344808907	2021-04-24	988	PPS	ARIZONA SUBWAY DEVELOPMENT CORP	
	24118	4024268709	2021-03-31	988	PPS	FIRST CUP PARTNERS LAS VEGAS LLC	106
	•••						
ç	922837	9323328608	2021-03-25	1013	PPS	GRAND CENTRAL BAKERY INC	21
g	946294	1252898610	2021-03-13	563	PPS	DECADE PROPERTIES INC	1355
ģ	946301	1865908505	2021-02-19	563	PPS	THE LOWLANDS GROUP LLC	142
ę	946386	9534238605	2021-03-26	563	PPS	NORTH CENTRAL STAFFING INC.	1600
(966431	5785798507	2021-03-01	897	PPS	NORTHERN ARAPAHO ENTERPRISE 2	18(

284 rows × 67 columns

```
In [50]: # business is fraud id if jobs reoprted are greater than 300 in PPS round, hence
         df.loc[(df['ProcessingMethod'] == 'PPS') & (df['JobsReported'] > 300), 'Is_Frat
         df.loc[(df['ProcessingMethod'] == 'PPS') & (df['JobsReported'] <= 300), 'Is_Fra</pre>
         df.loc[df['LoanNumber'] == 9323328608]
         df['Is Fraud JobsReported'] = df['Is Fraud JobsReported'].fillna(0).replace([nr
In [51]: df
```

Out[51]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
13	5502308207	2020-08-08	1084	PPP	KAKIVIK ASSET MANAGEMENT, LLC	5
14	6110847106	2020-04-14	1084	PPP	ARCTIC SLOPE NATIVE ASSOCIATION, LTD.	
15	4539098204	2020-08-06	1084	PPP	CORVUS AIRLINES INC	
16	5120868804	2021-04-17	1084	PPP	HOPE COMMUNITY RESOURCES INC.	540
17	6650277102	2020-04-14	1084	PPP	SOUTH PENINSULA HOSPITAL INC	40
•••	•••					
968526	4395967002	2020-04-03	897	PPP	ROY E PAULSON, JR., P.C.	11
968527	6985647108	2020-04-14	897	PPP	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	Í
968528	7996438405	2021-02-12	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
968529	9054647103	2020-04-15	897	РРР	EDEN LIFE CARE	Str
968530	9184687004	2020-04-09	897	РРР	S & S JOHNSON ENTERPRISES INC	

961882 rows × 67 columns

```
In [52]: # Make a count plot to show the number of True and False values in the 'Is_Frau
         ax = sns.countplot(data=df, x='Is_Fraud_JobsReported')
         # Label the axes
         ax.set_xlabel('Is_Fraud_JobsReported')
         ax.set ylabel('Count')
         # Add count labels
         for p in ax.patches:
             ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))
         # Show the plot
         plt.show()
```



```
In [53]:
         # Find duplicate values based on business name ,processing method and locations
         duplicates = df[df.duplicated(['BorrowerName','BorrowerAddress','BorrowerState'
         if not duplicates.empty:
             print('Duplicate values found:')
             #print(duplicates)
         else:
             print('No duplicate values found.')
```

Duplicate values found:

In [54]: duplicates

Out[54]:

		LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Borro
	4667	7959257001	2020-04-08	459	РРР	CREEK INDIAN ENTERPRISES DEVELOPMENT AUTHORITY	100 B
	8600	5710377106	2020-04-13	459	PPP	CREEK INDIAN ENTERPRISES DEVELOPMENT AUTHORITY	100 B
	9721	4470468405	2021-02-06	459	PPS	KEEP INFORMATION TECHNOLOGY SIMPLE LLC	190
	10382	6359988910	2021-05-01	459	PPS	KEEP INFORMATION TECHNOLOGY SIMPLE LLC	190
	19635	9773187201	2020-04-28	988	PPP	FITNESS ALLIANCE, LLC	1 E
	•••		•••				
	937766	1002737206	2020-04-15	1013	PPP	WILDFIN NORTHWEST, LLC	835
	951900	5267107209	2020-04-27	563	PPP	EXQUISITE THREADING, LLC	2727
	952372	2214287710	2020-05-01	563	PPP	EXQUISITE THREADING, LLC	2727
	955569	5028227006	2020-04-04	563	PPP	LARSON OAKWOOD BUSINESS PARK LLC	35
	962384	4985867007	2020-04-04	563	PPP	LARSON OAKWOOD BUSINESS PARK LLC	35
1	64 rows	× 67 columns					

In [55]: #Fraud loan example with loans taken for same business twice in First round PPI df[df['BorrowerName'] == 'LARSON OAKWOOD BUSINESS PARK LLC']['JobsReported']

955569 23.0 Out[55]: 962384 14.0

Name: JobsReported, dtype: float64

In [56]: #Fraud loan examples with loans taken by a business within same week from diffe

```
duplicates.loc[df['BorrowerName'] == 'EXQUISITE THREADING, LLC']
```

Out[56]:

LoanNumber DateApproved SBAOfficeCode ProcessingMethod BorrowerName Borrow

951900	5267107209	2020-04-27	563	PPP	EXQUISITE THREADING, LLC	2727 1
952372	2214287710	2020-05-01	563	PPP	EXQUISITE THREADING, LLC	2727 1

2 rows × 67 columns

```
In [57]:
         df[df['BorrowerName'] == 'EXQUISITE THREADING, LLC']['OriginatingLender']
         951900
                                       The Bippus State Bank
Out[57]:
         952372
                   JPMorgan Chase Bank, National Association
         Name: OriginatingLender, dtype: object
In [58]: df[df['BorrowerName'] == 'EXQUISITE THREADING, LLC']['NAICSCode']
         951900
                   812112
Out [58]:
         952372
                   812113
         Name: NAICSCode, dtype: object
In [59]: #identifying duplicated businesses and flagging them as Is Fraud duplicated
         df['is_Fraud_duplicate'] = ((df.duplicated(subset=['BorrowerName', 'BorrowerAdd
                                                     keep=False))).astype(int)
In [60]: df
```

Out[60]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
13	5502308207	2020-08-08	1084	PPP	KAKIVIK ASSET MANAGEMENT, LLC	5
14	6110847106	2020-04-14	1084	PPP	ARCTIC SLOPE NATIVE ASSOCIATION, LTD.	
15	4539098204	2020-08-06	1084	PPP	CORVUS AIRLINES INC	
16	5120868804	2021-04-17	1084	PPP	HOPE COMMUNITY RESOURCES INC.	540
17	6650277102	2020-04-14	1084	PPP	SOUTH PENINSULA HOSPITAL INC	43
•••						
968526	4395967002	2020-04-03	897	РРР	ROY E PAULSON, JR., P.C.	1(
968527	6985647108	2020-04-14	897	PPP	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	
968528	7996438405	2021-02-12	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
968529	9054647103	2020-04-15	897	РРР	EDEN LIFE CARE	Str
968530	9184687004	2020-04-09	897	РРР	S & S JOHNSON ENTERPRISES INC	

961882 rows × 68 columns

```
In [61]: # Make a count plot to show the number of True and False values in the 'is Frau
         ax = sns.countplot(data=df, x='is_Fraud_duplicate')
         # Label the axes
         ax.set_xlabel('is_Fraud_duplicate')
         ax.set ylabel('Count')
         # Add count labels
         for p in ax.patches:
             ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))
         # Show the plot
         plt.show()
```


In [62]: #introducing threshold for risk score in top 10 percentifile as probable fraud threshold_risk = df['Total Average Risk Score'].quantile(0.90) # create a new column and set the value to "fraud" if the condition is true df['Is_Fraud_risk_avg'] = [1 if x > threshold_risk else 0 for x in df['Total Av df

Out[62]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
13	5502308207	2020-08-08	1084	PPP	KAKIVIK ASSET MANAGEMENT, LLC	5
14	6110847106	2020-04-14	1084	PPP	ARCTIC SLOPE NATIVE ASSOCIATION, LTD.	
15	4539098204	2020-08-06	1084	PPP	CORVUS AIRLINES INC	
16	5120868804	2021-04-17	1084	PPP	HOPE COMMUNITY RESOURCES INC.	54(
17	6650277102	2020-04-14	1084	PPP	SOUTH PENINSULA HOSPITAL INC	4:
•••						
968526	4395967002	2020-04-03	897	PPP	ROY E PAULSON, JR., P.C.	1(
968527	6985647108	2020-04-14	897	PPP	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	1
968528	7996438405	2021-02-12	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
968529	9054647103	2020-04-15	897	РРР	EDEN LIFE CARE	Str
968530	9184687004	2020-04-09	897	РРР	S & S JOHNSON ENTERPRISES INC	

961882 rows × 69 columns

```
In [63]: # Make a count plot to show the frauds based on average risk score
         ax = sns.countplot(data=df, x='Is_Fraud_risk_avg')
         # Label the axes
         ax.set_xlabel('Is_Fraud_risk_avg')
         ax.set_ylabel('Count')
         # Add count labels
         for p in ax.patches:
             ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))
         # Show the plot
         plt.show()
```



```
In [64]:
         #Accumulate all fraud cases together
         Is_Fraud = df[['Is_Fraud_risk_avg', 'Is_Fraud_business_start_date', 'Is_Fraud_0
         # introduce new column 'Is_Fraud' with value 1 if any of the four columns have
         df['Is_Fraud'] = Is_Fraud.astype(int)
         df
```

Out[64]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Bor
13	5502308207	2020-08-08	1084	PPP	KAKIVIK ASSET MANAGEMENT, LLC	5
14	6110847106	2020-04-14	1084	PPP	ARCTIC SLOPE NATIVE ASSOCIATION, LTD.	
15	4539098204	2020-08-06	1084	PPP	CORVUS AIRLINES INC	
16	5120868804	2021-04-17	1084	PPP	HOPE COMMUNITY RESOURCES INC.	540
17	6650277102	2020-04-14	1084	PPP	SOUTH PENINSULA HOSPITAL INC	43
•••						
968526	4395967002	2020-04-03	897	РРР	ROY E PAULSON, JR., P.C.	1(
968527	6985647108	2020-04-14	897	PPP	SWEETWATER COUNTY CHILD DEVELOPMENTAL CENTER,	
968528	7996438405	2021-02-12	897	PPS	ELECTRICAL SYSTEMS OF WYOMING INC	
968529	9054647103	2020-04-15	897	РРР	EDEN LIFE CARE	Str
968530	9184687004	2020-04-09	897	РРР	S & S JOHNSON ENTERPRISES INC	

961882 rows × 70 columns

```
In [65]: # Make a count plot to show the frauds identified in the entire dataset
         ax = sns.countplot(data=df, x='Is_Fraud')
         # Label the axes
         ax.set_xlabel('Is_Fraud')
         ax.set_ylabel('Count')
         # Add count labels
         for p in ax.patches:
             ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))
         # Show the plot
         plt.show()
```



```
In [66]: # create a dictionary to map state abbreviations to full names
         state_dict = {'AL': 'Alabama', 'AK': 'Alaska', 'AZ': 'Arizona', 'AR': 'Arkansas
         # create a new column with full state names
         df['state_name'] = df['BorrowerState'].map(state_dict)
In [67]: #frauds density state wise
         fraud_count = df.groupby('BorrowerState')['Is_Fraud'].sum().reset_index()
         fraud_count['BorrowerState'] = fraud_count['BorrowerState'].astype(str)
```

```
import plotly.express as px
fig = px.choropleth(fraud count, locations='BorrowerState',
                    locationmode="USA-states", color='Is_Fraud', scope="usa")
fig.update layout(title='State-wise Fraud Counts in the USA')
fig.show()
```

Anomaly Detection using Isolation Forest

```
In [68]: num_missing = df[['PAYROLL_PROCEED', 'JobsReported','CurrentApprovalAmount', 'F
                             'BorrowerAddress', 'BorrowerCity', 'BorrowerState', 'Origina
         print(f"Total number of rows with missing values: {num missing}")
         #df[['PAYROLL PROCEED', 'JobsReported','InitialApprovalAmount']]
         Total number of rows with missing values: PAYROLL PROCEED
                                                                             1820
         JobsReported
         CurrentApprovalAmount
         BorrowerName
         BorrowerAddress
         BorrowerCity
         BorrowerState
         OriginatingLender
                                     0
         NAICSCode
         dtype: int64
In [69]: df = df.dropna(subset=['PAYROLL PROCEED', 'JobsReported'])
         num missing = df[['PAYROLL PROCEED', 'JobsReported','CurrentApprovalAmount', 'F
                             'BorrowerAddress', 'BorrowerCity', 'BorrowerState', 'Origina
```

```
print(f"Total number of rows with missing values: {num_missing}")
         Total number of rows with missing values: PAYROLL PROCEED
         JobsReported
         CurrentApprovalAmount
                                  0
         BorrowerName
                                  0
                                  0
         BorrowerAddress
         BorrowerCity
         BorrowerState
                                  0
         OriginatingLender
                                  0
         NAICSCode
         dtype: int64
In [70]: LAPE_nan_count = df['loan_amount_per_employee'].isna().sum()
         print(LAPE_nan_count)
In [71]: df['loan amount per employee'] = df['loan amount per employee'].replace([np.inf
         /var/folders/f1/8rl13vpj76b49z9s20c53bp80000gn/T/ipykernel 13709/2005413637.p
         y:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
In [72]: LAPE nan count = df['loan amount per employee'].isna().sum()
         print(LAPE nan count)
In [73]: df = df.dropna(subset=['loan amount per employee'])
         LAPE nan count = df['loan amount per employee'].isna().sum()
         print(LAPE nan count)
         0
In [74]: TARS nan count = df['Total Average Risk Score'].isna().sum()
         print(TARS nan count)
In [75]: from sklearn.ensemble import IsolationForest
         from sklearn.preprocessing import StandardScaler
         # Scale the features to have zero mean and unit variance
         X = df[['PAYROLL PROCEED', 'JobsReported', 'InitialApprovalAmount', 'loan amoun
         scaler = StandardScaler()
         X scaled = scaler.fit transform(X)
         # Initialize the Isolation Forest model
         clf = IsolationForest(n estimators=100, max samples='auto', contamination=0.01,
         # Fit the model to the data
```

```
clf.fit(X_scaled)

# Predict the anomaly scores for each data point
scores = clf.decision_function(X_scaled)

# Add the anomaly scores as a new column in your dataframe
df['anomaly_score'] = scores

# Sort the dataframe by anomaly score in descending order
df = df.sort_values(by='anomaly_score', ascending=False)

# Print the rows with the highest anomaly scores, which could potentially indic
df.head(10)
```

Out[75]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Borro
858306	7496047207	2020-04-28	610	PPP	GENESIS RESOURCES, LLC	
581363	9655287108	2020-04-15	299	PPP	KAM MAN SUPERMARKET LLC	
779878	1577258408	2021-02-02	165	PPS	CHURCHILL & BANKS COMPANIES LLC	
858108	8753077408	2020-05-19	671	PPP	COASTWIDE MARINE SERVICES, LLC	163
779879	5855487007	2020-04-06	165	PPP	CHURCHILL & BANKS COMPANIES LLC	10
804514	6250327203	2020-04-27	474	РРР	FIRST CHOICE SERVICES INC.	4135
177855	9934747107	2020-04-15	811	PPP	JACK'S BEAN COMPANY, LLC	INTEF
700781	8234128306	2021-01-29	549	PPS	MCMAHON MASONRY RESTORATION LTD MCMAHON MASONR	944
508836	5878107001	2020-04-06	768	PPP	I & I, INC.	5105
804445	1554467108	2020-04-10	474	РРР	EMB QUALITY MASONRY	2 Ro

10 rows × 71 columns

```
In [76]: # Get split values of the individual trees
    tree_split_values = np.zeros((X.shape[1], clf.n_estimators))
    for i, tree in enumerate(clf.estimators_):
        for j in range(X.shape[1]):
```

5/10/23, 5:37 PM

```
Master_Final
                 tree_split_values[j, i] = tree.tree_.threshold[j]
         # Calculate feature importance based on split values
         feat_importance = np.mean(tree_split_values, axis=1)
         # Print feature importances in descending order
         for i in np.argsort(feat importance)[::-1]:
             print(f"{X.columns[i]}: {feat_importance[i]}")
         PAYROLL PROCEED: 2.651886161705919
         JobsReported: 1.0553154151301845
         InitialApprovalAmount: 0.301919596242056
         loan_amount_per_employee: -0.0261636964201355
         Total Average Risk Score: -0.13883244503281827
In [77]: # calculate the 95th percentile value
         threshold = df['anomaly_score'].quantile(0.90)
         # create a new column and set the value to "fraud" if the condition is true
         df['Is_Fraud_Anomaly'] = [1 if x > threshold else 0 for x in df['anomaly_score'
         df
```

Out[77]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Borro
858306	7496047207	2020-04-28	610	PPP	GENESIS RESOURCES, LLC	
581363	9655287108	2020-04-15	299	PPP	KAM MAN SUPERMARKET LLC	
779878	1577258408	2021-02-02	165	PPS	CHURCHILL & BANKS COMPANIES LLC	
858108	8753077408	2020-05-19	671	PPP	COASTWIDE MARINE SERVICES, LLC	163
779879	5855487007	2020-04-06	165	PPP	CHURCHILL & BANKS COMPANIES LLC	10
•••						
810634	4688397001	2020-04-04	678	РРР	VENABLE'S WELDING & ROUSTABOUT	C(
560561	8015747003	2020-04-08	299	РРР	APPLE FOOD SERVICE OF NEW JERSEY LLC	
2675	1517597200	2020-04-15	459	PPP	ACTION ENTERPRISE HOLDINGS LLC	20
605898	7569987307	2020-04-30	202	РРР	COUNTY AGENCY INC.	
605942	3319697106	2020-04-11	202	РРР	SH GROUP, INC.	118 1

960057 rows × 72 columns

```
In [78]: #Countplot of Frauds vs Non-Frauds based on isolation forest
    ax = sns.countplot(data=df, x='Is_Fraud_Anomaly')

# Label the axes
    ax.set_xlabel('Is_Fraud_Anomaly')
    ax.set_ylabel('Count')

# Add count labels
for p in ax.patches:
    ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))

# Show the plot
plt.show()
```



```
In [79]:
         fraud_count = df.groupby('BorrowerState').agg({'Is_Fraud_Anomaly': 'sum', 'Loar
         fraud_count['state_name'] = fraud_count['BorrowerState'].map(state_dict)
         fraud_count
```

Out[79]:

5/10/23, 5:37 PM

	BorrowerState	Is_Fraud_Anomaly	LoanNumber	state_name
0	AK	208	2650	Alaska
1	AL	1331	10860	Alabama
2	AR	650	5842	Arkansas
3	AS	0	20	NaN
4	AZ	1627	15638	Arizona
5	CA	12036	129043	California
6	СО	2003	19592	Colorado
7	СТ	1218	12785	Connecticut
8	DC	290	4350	NaN
9	DE	293	2975	Delaware
10	FL	6487	59502	Florida
11	GA	2702	25684	Georgia
12	GU	22	443	NaN
13	HI	552	4977	Hawaii
14	IA	935	8265	Iowa
15	ID	503	4393	Idaho
16	IL	3424	40487	Illinois
17	IN	1872	16501	Indiana
18	KS	827	8171	Kansas
19	KY	1074	9130	Kentucky
20	LA	1550	13595	Louisiana
21	MA	2368	27304	Massachusetts
22	MD	1800	18869	Maryland
23	ME	535	4167	Maine
24	MI	3053	29509	Michigan
25	MN	1747	19663	Minnesota
26	МО	1595	16263	Missouri
27	MP	2	81	NaN
28	MS	604	5481	Mississippi
29	MT	382	3127	Montana
30	NC	2623	22723	North Carolina
31	ND	330	3213	North Dakota
32	NE	687	5775	Nebraska
33	NH	520	5039	New Hampshire
34	NJ	2885	31865	New Jersey

Master_Final 5/10/23, 5:37 PM

	BorrowerState	Is_Fraud_Anomaly	LoanNumber	state_name
35	NM	501	4470	New Mexico
36	NV	853	8098	Nevada
37	NY	6399	72843	New York
38	ОН	3365	32358	Ohio
39	OK	1135	9949	Oklahoma
40	OR	1372	13367	Oregon
41	PA	3842	38214	Pennsylvania
42	PR	156	2896	NaN
43	RI	352	3774	Rhode Island
44	SC	1259	10689	South Carolina
45	SD	327	2684	South Dakota
46	TN	1776	15820	Tennessee
47	TX	7632	75583	Texas
48	UT	1030	9222	Utah
49	VA	2330	23166	Virginia
50	VI	44	289	NaN
51	VT	285	2255	Vermont
52	WA	2260	23610	Washington
53	WI	1716	17295	Wisconsin
54	WV	377	3360	West Virginia
55	WY	256	2133	Wyoming

```
In [80]: #plot fraud count per state based on anamoly detection
         fraud_count_states = df.groupby('BorrowerState')['Is_Fraud_Anomaly'].sum().rese
         fraud_count_states['BorrowerState'] = fraud_count_states['BorrowerState'].astyr
         import plotly.express as px
         fig = px.choropleth(fraud_count_states, locations='BorrowerState',
                             locationmode="USA-states", color='Is_Fraud_Anomaly', scope=
         fig.update_layout(title='State-wise Fraud Counts in the USA')
         fig.show()
```

```
In [81]: # fraud count = df.groupby('BorrowerState')['Is Fraud Anomaly'].sum().reset ind
         # fraud count['BorrowerState'].dtypes
In [82]: # sort the DataFrame in descending order by the 'Fraud' column based on isolati
         fraud count sorted = fraud count.sort values('Is Fraud Anomaly', ascending=Fals
         # create a multiple line plot using plotly express
         fig = px.line(fraud count sorted, x='BorrowerState', y=['Is Fraud Anomaly', 'Lo
                       title='Fraud vs. LoanNumber by State (sorted by Fraud)')
         # show the plot
         fig.show()
```

```
In []:
In [83]: # create a new column for the fraud-to-loan ratio
         fraud_count['FraudRatio'] = fraud_count['Is_Fraud_Anomaly'] / fraud_count['Loar
         fraud_count['FraudRatio'] = fraud_count['FraudRatio'].round(2)
         fraud count sorted = fraud count.sort values('FraudRatio', ascending=False)
         # create a bar plot using plotly express
         fig = px.bar(fraud_count_sorted, x='state_name', y='FraudRatio', title='Fraud-t
         # show the plot
         fig.show()
```

Few other observations and conclusions based on our own Fraud analysis

```
In [84]: #total initial approval loan amount
    column_sums = df['InitialApprovalAmount'].sum()
    print("InitialApprovalAmount:",column_sums)
    column_sums_b=column_sums/1000000000
    print("InitialApprovalAmount in billions:",column_sums_b)
    InitialApprovalAmount: 511963558645.63965
    InitialApprovalAmount in billions: 511.96355864563964

In [85]: #total current approval loan amount
    column_sums = df['CurrentApprovalAmount'].sum()
    print("CurrentApprovalAmount:",column_sums)
    column_sums_b=column_sums/1000000000
    print("CurrentApprovalAmount in billions:",column_sums_b)

CurrentApprovalAmount: 510388406009.3
CurrentApprovalAmount in billions: 510.3884060093
```

```
In [86]:
         #total forgiveness amount
         column_sums = df['ForgivenessAmount'].sum()
         print("ForgivenessAmount:",column_sums)
         column sums b=column sums/1000000000
         print("ForgivenessAmount in billions:",column_sums_b)
         ForgivenessAmount: 492922605322.24994
         ForgivenessAmount in billions: 492.9226053222499
In [87]: # fraud forgiveness amount
         fraud_df = df[df['Is_Fraud'] == 1] # select only the rows where is_fraud is 1
         forgiveness_sum = fraud_df['ForgivenessAmount'].sum()
         print("ForgivenessAmount:",forgiveness_sum)
         forgiveness sum b=forgiveness sum/1000000000
         print("ForgivenessAmount in Fraud data in billions:",forgiveness_sum_b)
         ForgivenessAmount: 115567368358.58
         ForgivenessAmount in Fraud data in billions: 115.56736835858
In [88]: # identify top 5 lenders
         counts = df['NAICS Industry Description'].value_counts()
         # Select the top 5 categories
         top_categories = counts[:5].index.tolist()
         # Create a countplot for the top 5 categories with vertical x-axis labels
         sns.countplot(x='NAICS Industry Description', data=df[df['NAICS Industry Descri
         plt.xticks(rotation=90)
Out[88]: (array([0, 1, 2, 3, 4]),
          [Text(0, 0, 'Full-Service Restaurants'),
           Text(1, 0, 'Offices of Physicians (except Mental Health Specialists)'),
           Text(2, 0, 'Offices of Lawyers'),
           Text(3, 0, 'Hotels (except Casino Hotels) and Motels'),
           Text(4, 0, 'Plumbing, Heating, and Air-Conditioning Contractors
                                                                              ')])
         /opt/anaconda3/lib/python3.9/site-packages/IPython/core/events.py:89: UserWarn
         ing:
         Glyph 8209 (\N{NON-BREAKING HYPHEN}) missing from current font.
         /opt/anaconda3/lib/python3.9/site-packages/IPython/core/pylabtools.py:151: Use
         rWarning:
         Glyph 8209 (\N{NON-BREAKING HYPHEN}) missing from current font.
```



```
In [89]: # identify top 5 lenders
    counts = df['OriginatingLender'].value_counts()

# Select the top 5 categories
    top_categories = counts[:5].index.tolist()

# Create a countplot for the top 5 categories with vertical x-axis labels
    sns.countplot(x='OriginatingLender', data=df[df['OriginatingLender'].isin(top_c
    plt.xticks(rotation=90)

Out[89]: (array([0, 1, 2, 3, 4]),
    [Text(0, 0, 'JPMorgan Chase Bank, National Association'),
    Text(1, 0, 'Bank of America, National Association'),
    Text(2, 0, 'Truist Bank'),
    Text(3, 0, 'PNC Bank, National Association'),
    Text(4, 0, 'Manufacturers and Traders Trust Company')])
```



```
In [90]: #Identify top five lenders who did fraud
         frauds by lender = df[df['Is Fraud'] == 1].groupby('OriginatingLender').size().
         # Sort the results by count and select the top 5 lenders
         top lenders = frauds by lender.sort values(by='fraud count', ascending=False).h
         # Create a barplot of the top 5 lenders with vertical x-axis labels
         sns.barplot(x='OriginatingLender', y='fraud count', data=top_lenders)
         plt.xticks(rotation=90)
Out[90]: (array([0, 1, 2, 3, 4]),
          [Text(0, 0, 'JPMorgan Chase Bank, National Association'),
           Text(1, 0, 'Bank of America, National Association'),
           Text(2, 0, 'PNC Bank, National Association'),
           Text(3, 0, 'Truist Bank'),
           Text(4, 0, 'Manufacturers and Traders Trust Company')])
```



```
In [91]: FirstRound=df.loc[df['ProcessingMethod']=='PPP']
SecondRound=df.loc[df['ProcessingMethod']=='PPS']

In [92]: #frauds in First Round
    ax = sns.countplot(data=FirstRound, x='Is_Fraud')

# Label the axes
    ax.set_xlabel('Is Fraud')
    ax.set_ylabel('Count')

# Add count labels
for p in ax.patches:
    ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))

# Show the plot
plt.show()
```



```
In [93]: #frauds in First Round
ax = sns.countplot(data=SecondRound, x='Is_Fraud')

# Label the axes
ax.set_xlabel('Is Fraud')
ax.set_ylabel('Count')

# Add count labels
for p in ax.patches:
    ax.annotate(p.get_height(), (p.get_x() + 0.3, p.get_height() + 0.5))

# Show the plot
plt.show()
```


% of fraud loans issued both by amount

```
In [94]: column_sums = df['CurrentApprovalAmount'].sum()
```

```
print("CurrentApprovalAmount:",column sums)
column_sums_b=column_sums/100000000
print("CurrentApprovalAmount in billions:",column_sums_b)
fraud_df = df[df['Is_Fraud'] == 1] # select only the rows where is_fraud is 1
fraud CAA sum = fraud df['CurrentApprovalAmount'].sum()
print("Fraud loan approved amount:",fraud_CAA_sum)
fraud_CAA_b=forgiveness_sum/100000000
print("Fraud loan approved amount: in billions:",fraud_CAA_b)
fraud amount percent=fraud CAA b/column sums b
print("% of fraud loans issued both by amount",fraud_amount_percent*100)
CurrentApprovalAmount: 510388406009.3
CurrentApprovalAmount in billions: 510.3884060093
Fraud loan approved amount: 121633664550.96
Fraud loan approved amount: in billions: 115.56736835858
% of fraud loans issued both by amount 22.64302382222887
```

Minimum loans having atleast one fraud flag

```
In [95]: df
```

Out[95]:

	LoanNumber	DateApproved	SBAOfficeCode	ProcessingMethod	BorrowerName	Borro
858306	7496047207	2020-04-28	610	PPP	GENESIS RESOURCES, LLC	
581363	9655287108	2020-04-15	299	PPP	KAM MAN SUPERMARKET LLC	
779878	1577258408	2021-02-02	165	PPS	CHURCHILL & BANKS COMPANIES LLC	
858108	8753077408	2020-05-19	671	PPP	COASTWIDE MARINE SERVICES, LLC	163
779879	5855487007	2020-04-06	165	PPP	CHURCHILL & BANKS COMPANIES LLC	10
•••						
810634	4688397001	2020-04-04	678	РРР	VENABLE'S WELDING & ROUSTABOUT	C(
560561	8015747003	2020-04-08	299	РРР	APPLE FOOD SERVICE OF NEW JERSEY LLC	
2675	1517597200	2020-04-15	459	PPP	ACTION ENTERPRISE HOLDINGS LLC	20
605898	7569987307	2020-04-30	202	РРР	COUNTY AGENCY INC.	
605942	3319697106	2020-04-11	202	РРР	SH GROUP, INC.	118 1

960057 rows × 72 columns

```
In [96]: # Assuming the dataset is stored in a DataFrame named df
    mask_1 = df['Is_Fraud'] == 1
    mask_2 = df['Is_Fraud_risk_avg'] == 1

count_1 = mask_1.sum()
    count_2 = mask_2.sum()

min_count = min(count_1, count_2)

percentage = min_count / len(df)

print("Minimum count:", min_count)
    print("Percentage of minimum fraud:", percentage)
```

Minimum count: 95985

Percentage of minimum fraud: 0.09997843878019742

More than 9% of PPP loans had at least one indication of potential fraud

In []: