Assignment Submission Sheet

Term: 321221 Submission Date: 22-11-2021

Assignment Number: 05

Course Code: ECE290 Section: E1901 Group: A

Registration Number: 11904463 Student Name: Mohit Rawat Roll No: 09

1. Concept Learned

I have learn about how to make 16 x 1 Multiplexer using 4 x 1 multiplexer and how to code in Verilog and make simulation of it.

2. Key Observations & Insights

Key observation is the output waveform was the multiplexer's output according to select line and the input given throw testbench.

3. Application Areas

Application of Multiplexer is in modern devices like microprocessor inside ALU.

4. A Verilog Program to implement 16 x 1 Multiplexer using 4 x 1 Multiplexers.

Date. Page. YX1 Multiplener.

Froth table:- \mathcal{S}° 0-O

	167		Mutin	Mener	using	YXIM	utiple
Trut	dot d	.9.	7		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		•
83	S2	51	Sol	00+	1111	in 11	.,,
D	0	0	0	J.			
0	0	07	$_{\lambda}A_{-}$	Time	<u> </u>	•.*	
0	0		0	T2	¥		
0	0	l	1	$\mathcal{I}_{\mathfrak{I}}$		1)	4
0	. 1	Ø	0	D v	-13.		-2/
0	l	0/7	22/1/	2 I			
0	1	1	0	I			
0	1	1	1	Iz			
	0	. 0	6	I 8	1/-	· 9 9	,
	0	0	A_{ij}^{k} .	"B I	181		
. 1	0	1	0	I 10			
	0	1. 1.		I. 11			
1	1.	0	0	I13			
1,	1	0	. 1	In'			
1	3.12	1 1	0	I14			
1]		J	215			

Verilog Code

```
`timescale 1ns / 1ps
 1
 3
     module Mux_4x1(I, S, O);
 4
    input I;
    wire [3:0] I; input S;
 5
 6
     wire [1:0] S;
 7
 8
 9
     output 0;
10
     reg O;
11
12
13
     always @ (I or S)
14
     begin
          if(S == 2'b00)
15
          0 <=I[0];
else if(S == 2'b01)</pre>
16
17
          0 <= I[1];
else if(S == 2'b10)
0 <= I[2];
else if(S == 2'b11)
18
19
20
21
22
              O<= I[3];
23 end
24
25 endmodule
26
27
28 module Mux 16x1(I, S, O);
29 input [15:0] I;
30 input [3:0] S;
31
     output 0;
32
33 wire [3:0] w;
34
35 Mux 4x1 M4 1(I[3:0], S[1:0], w[0]);
36 Mux 4x1 M4 2(I[7:4], S[1:0], w[1]);
37 Mux 4x1 M4 3(I[11:8], S[1:0], w[2]);
38 Mux 4x1 M4 4(I[15:12], S[1:0], w[3]);
39
40 Mux_4x1 M4_5(w, S[3:2], O);
41
42 endmodule
43
```

Test Bench For Verilog Code

```
timescale 1ns / 1ps
    module Mux_16x1_TB_v;
         // Inputs
        reg [15:0] I;
reg [3:0] S;
10
        // Outputs
11
        wire O;
12
13
         // Instantiate the Unit Under Test (UUT)
14
        Mux_16x1 uut (
15
            .I(I),
16
17
             .S(S),
            .0(0)
18
19
20
21
22
23
         initial begin
            // Initialize Inputs
I = 0;
S = 0;
24
            // Wait 100 ns for global reset to finish
25
26
27
28
            I=16'b0000000000000001; S=4'b0000; #10; I=16'b0000000000000001; S=4'b0001; #10;
29
            I=16'b000000000000000000; S=4'b0010; #10;
30
            I=16'b0000000000000000; S=4'b0011; #10;
31
            I=16'b0000000000010000; S=4'b0100; #10;
32
33
34
35
            I=16'b0000000000100000; S=4'b0101; #10;
            I=16'b000000001000000; S=4'b0110; #10; I=16'b0000000010000000; S=4'b0111; #10;
            I=16'b0000000100000000; S=4'b1000; #10;
36
            I=16'b0000001000000000; S=4'b1001; #10;
37
            I=16'b0000010000000000; S=4'b1010; #10;
            I=16'b0000100000000000; S=4'b1011; #10;
38
39
40
41
            I=16'b0001000000000000; S=4'b1100; #10; 
I=16'b0010000000000000; S=4'b1101; #10; 
I=16'b010000000000000; S=4'b1110; #10;
42
            I=16'b100000000000000; S=4'b1111; #10;
43
44
     endmodule
45
46
```

Schematic Diagram

Wave Form

