Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ234-МЗ239, весна 2019 года

Домашнее задание №1: «знакомство с исчислением высказываний»

- 1. Расставьте скобки:
 - (a) $\alpha \to \alpha \to \neg \beta \lor \beta \& \neg \alpha \lor \neg \beta \to \alpha \& \alpha \to \alpha \lor \beta \lor \beta$
- 2. Покажите следующие утверждения, построив полный вывод (в частности, если пользуетесь теоремой о дедукции раскройте все преобразования):
 - (a) $\alpha \vee \beta \vdash \neg (\neg \alpha \& \neg \beta)$
 - (b) $\alpha \& \beta \vdash \neg(\neg \alpha \lor \neg \beta)$
 - (c) $\alpha \to \beta \to \gamma \vdash \alpha \& \beta \to \gamma$
 - (d) $\alpha \& \beta \to \gamma \vdash \alpha \to \beta \to \gamma$
 - (e) $\alpha, \neg \alpha \vdash \beta$
- 3. Покажите следующие утверждения, построив полный вывод (за полный ответ будет считаться доказательство пяти утверждений из списка):
 - (a) $\gamma \vdash \alpha \rightarrow \gamma$
 - (b) $\alpha, \beta \vdash \alpha \& \beta$
 - (c) $\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$
 - (d) $\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (e) $\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (f) $\alpha, \beta \vdash \alpha \lor \beta$
 - (g) $\neg \alpha, \beta \vdash \alpha \lor \beta$
 - (h) $\alpha, \neg \beta \vdash \alpha \lor \beta$
 - (i) $\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$
 - (j) $\alpha, \beta \vdash \alpha \rightarrow \beta$
 - (k) $\alpha, \neg \beta \vdash \neg(\alpha \to \beta)$
 - (1) $\neg \alpha, \beta \vdash \alpha \rightarrow \beta$
 - (m) $\neg \alpha, \neg \beta \vdash \alpha \rightarrow \beta$
 - (n) $\neg \alpha \vdash \neg \alpha$
 - (o) $\alpha \vdash \neg \neg \alpha$

Домашнее задание №2: «исчисление высказываний»

- 1. (Теоремы о корректности и полноте) Пусть Γ какой-то список высказываний и пусть α высказывание.
 - (a) Покажите, что $\Gamma \vdash \alpha$ влечёт $\Gamma \models \alpha$.
 - (b) Покажите, что $\Gamma \models \alpha$ влечёт $\Gamma \vdash \alpha$.
- 2. (Теорема Гливенко) Рассмотрим исчисление высказываний, в котором 10 схема аксиом (аксиома снятия двойного отрицания)

$$\neg \neg \alpha \rightarrow \alpha$$

заменена на следующую:

$$\alpha \to \neg \alpha \to \beta$$

Такой вариант исчисления высказываний назовём интуиционистским. Будем писать $\Gamma \vdash_{\mathbf{z}} \alpha$, если существует вывод формулы α из гипотез Γ в интуиционистском исчислении высказываний. Если же вывод производится в классическом исчислении (изученном на 1 и 2 занятиях), будем указывать это как $\Gamma \vdash_{\mathbf{z}} \alpha$.

- (а) Покажите, что если $\Gamma \vdash_{\mathbf{z}} \alpha$, то $\Gamma \vdash_{\mathbf{z}} \alpha$.
- (b) Покажите, что если α аксиома (1...9 схемы), то $\vdash_{\mathbf{z}} \neg \neg \alpha$.
- (c) Покажите, что $\vdash_{\pi} \neg \neg (\neg \neg \alpha \to \alpha)$.
- (d) Покажите, что если $\vdash_{\mathbf{n}} \neg \neg \alpha$ и $\vdash_{\mathbf{n}} \neg \neg (\alpha \to \beta)$, то $\vdash_{\mathbf{n}} \neg \neg \beta$.
- (е) Покажите, что если $\vdash_{\mathtt{k}} \alpha$, то $\vdash_{\mathtt{k}} \neg \neg \alpha$ (теорема Гливенко).
- (f) Покажите, что если $\Gamma \vdash_{\mathbf{k}} \alpha$, то $\Gamma \vdash_{\mathbf{u}} \neg \neg \alpha$.
- (g) Назовём (классическое или интуиционистское) исчисление *противоречивым*, если для любой формулы α выполнено $\vdash \alpha$. Покажите, что формула α исчисления, такая, что $\vdash \alpha$ и $\vdash \neg \alpha$, существует тогда и только тогда, когда исчисление противоречиво.
- (h) Покажите, что если классическое исчисление высказываний противоречиво, то противоречиво и интуиционистское исчисление высказываний.

Домашнее задание №3: «общая топология»

Назовём топологическим пространством упорядоченную пару $\langle X,\Omega\rangle$, где X — некоторое множество, а $\Omega\subseteq\mathcal{P}(X)$ — множество каких-то подмножеств X. Множество X мы назовём носителем топологии (также можем назвать его топологическим пространством), а Ω — топологией. Элементы множества Ω мы будем называть открытыми множествами. При этом пара должна удовлетворять следующим свойствам (аксиомам топологического пространства):

- 1. $\varnothing \in \Omega, X \in \Omega$ (пустое множество и всё пространство открыты);
- 2. Если $\{A_i\}$, $A_i \in \Omega$ некоторое семейство элементов Ω , то $\bigcup_i A_i \in \Omega$ (объединение произвольного семейства открытых множеств открыто);
- 3. Если $A_1, A_2, \ldots, A_n, A_i \in \Omega$ конечное множество открытых множеств, то его пересечение также открыто: $A_1 \cap A_2 \cap \cdots \cap A_n \in \Omega$

Решите следующие задачи:

- 1. Задачи на определение пространства:
 - (a) Покажите, что при $X=\{0,1\},\ \Omega=\{\varnothing,\{0\},\{0,1\}\}$ пара $\langle X,\Omega\rangle$ является топологическим пространством.
 - (b) Покажите, что если X непустое множество, то пара $\langle X, \{\varnothing, X\} \rangle$ является топологическим пространством.
 - (c) Предложите примеры как минимум двух множеств $\Omega \subseteq \mathcal{P}\{0,1\}$, для которых $\langle \{0,1\},\Omega \rangle$ не топологическое пространство.
 - (d) Для каждой аксиомы топологического пространства приведите примеры таких пар $\langle X, \Omega \rangle$, в которых бы аксиома не была выполнена.
 - (e) Для $X = \mathbb{R}^n$ и Ω , содержащего все открытые множества (в смысле метрического определения, данного на мат. анализе), покажите, что $\langle X, \Omega \rangle$ является топологическим пространством.
- 2. Про каждое определение ниже покажите, что оно действительно задаёт топологическое пространство.
 - (a) $X = \mathbb{R}$, $\Omega = \{(x, +\infty) | x \in \mathbb{R}\} \cup \{\emptyset\}$ (топология стрелки)
 - (b) $X \neq \emptyset$, $\Omega = \mathcal{P}(X)$ (дискретная топология)
 - (c) $X=\mathbb{R},\ \Omega=\{A|A\subseteq\mathbb{R},\mathbb{R}\setminus A-$ конечно $\}$ множество всех множеств, дополнение которых конечно (топология Зарисского)
 - (d) X некоторое дерево, а открытыми множествами на нём назовём все множества, которые содержат узел вместе со всеми своими потомками: $A \in \Omega$ тогда и только тогда, когда если $a \in A$ и $a \ge b$, то $b \in A$.
- 3. Замкнутым множеством назовём множество, дополнение которого открыто.
 - (а) Покажите, что пересечение произвольного семейство замкнутых множеств замкнуто.
 - (b) Пусть A замкнутое, а B открытое множество в некотором пространстве. Что вы можете сказать про замкнутость или открытость $B \setminus A$ и $A \setminus B$?

- 4. Определим операции «взятие внутренности» и «взятие замыкания», покажите корректность этих определений (т.е. что определяемый объект существует):
 - (a) Для множества A внутренностью A° назовём максимальное открытое множество, что $A^{\circ} \subseteq A$.
 - (b) Для множества A замыканием \overline{A} назовём минимальное замкнутое множество, содержащее A.
- 5. Найдите $[0,1]^{\circ}$ и $\overline{[0,1]}$ в первых трёх топологиях из п. 2 (если взять в качестве носителя \mathbb{R})?
- 6. Найдите $\{0\}^{\circ}$ и $\overline{\{0\}}$ в первых трёх топологиях из п. 2 (если взять в качестве носителя \mathbb{R})?

Домашнее задание №4: «решётки, псевдобулевы и булевы алгебры»

- 1. Пусть задана некоторая решётка, в которой задано псевдодополнение. Докажите, что эта решётка является дистрибутивной.
- 2. Пусть задана дистрибутивная решётка. Покажите, что в ней для любых элементов a,b,c выполнено $(a+b)\cdot c = a\cdot c + b\cdot c$. А будет ли выполнено $(a+b)\cdot c = a\cdot c \to b\cdot c$?
- 3. Покажите, что если в решётке есть ∂ иамант или nентагон (то есть, найдутся 5 элементов указанным образом упорядоченных, среди которых есть две или три пары несравнимых), то решётка не является дистрибутивной:

- 4. Предложите пример дистрибутивной, но не импликативной решётки.
- 5. Докажите, что в импликативной решётке при любых значениях $a,\ b$ и c выполнены следующие утверждения:
 - (a) Из $a \sqsubseteq b$ следует $b \to c \sqsubseteq a \to c$ и $c \to a \sqsubseteq c \to b$;
 - (b) Из $a \sqsubseteq b \to c$ следует $a \cdot b \sqsubseteq c$;
 - (c) $a \sqsubseteq b$ выполнено тогда и только тогда, когда $a \to b = 1$;
 - (d) $b \sqsubseteq a \rightarrow b$;
 - (e) $a \to b \sqsubseteq ((a \to (b \to c)) \to (a \to c));$
 - (f) $a \sqsubseteq b \rightarrow a \cdot b$;
 - (g) $a \to c \sqsubseteq (b \to c) \to (a + b \to c)$
- 6. Пусть заданы некоторая алгебра Гейтинга $\langle H, \sqsubseteq \rangle$ и переменные A, B, C со значениями a, b, c $(a, b, c \in H)$. Покажите, что:
 - (a-i) Если ϕ схема аксиом 1–9, то при подстановке переменных A, B, C вместо вместо метапеременных при любых a, b, c будет выполнено $\llbracket \phi \rrbracket = \mathtt{H}$;
 - (j) Аналогично, будет выполнено $[\alpha \to \neg \alpha \to \beta] = \text{И}$;
 - (k) Если заданная алгебра Гейтинга булева, то тогда выполнено и $[\![\alpha \to \neg \neg \alpha]\!] = \mathsf{И}$ и $[\![\alpha \lor \neg \alpha]\!] = \mathsf{И}$.
 - (l) Пусть ϕ и $\phi \to \tau$ некоторые истинные высказывания в указанной алгебре при указанных значениях переменных. Тогда τ тоже истинное высказывание
- 7. На основании предыдущего пункта покажите, что алгебра Гейтинга корректна как модель ИИВ, и что булева алгебра корректна как модель ИВ.
- 8. Про следующие высказывания определите, являются ли они доказуемыми в ИИВ:
 - (a) $((P \to Q) \to P) \to P$ (закон Пирса);
 - (b) $(\neg P \to Q) \lor (P \to \neg Q)$;
 - (c) $(P \rightarrow \neg Q) \rightarrow (Q \rightarrow \neg P)$;
 - (d) $P \rightarrow \neg \neg P$;
 - (e) $\neg \neg P \lor \neg \neg \neg P$;

Домашнее задание №5: «Гёделевы алгебры, модели Крипке»

1. Ещё немного про решётки. Будем говорить, что решётка содержит диамант или пентагон, если найдутся 5 элементов указанным на диаграмме образом упорядоченных. При этом, если p+q=r или $p\cdot q=r$ на данной диаграмме, то это же свойство выполнено и в исходной решётке.

- (а) Назовём решётку *модулярной*, если при всяких x и z, таких, что $z \sqsubseteq x$, выполнено $(x \cdot y) + z = x \cdot (y+z)$. Покажите, что решётка является модулярной тогда и только тогда, когда не содержит пентагонов.
- (b) Рассмотрим модулярную решётку: покажите, что она дистрибутивна тогда и только тогда, когда не содержит диамантов.
- 2. Покажите, что (\approx) является отношением эквивалентности. На основании этого покажите, что определение $[\alpha]_{\approx} \sqsubseteq [\beta]_{\approx}$ корректно (не зависит от выбора конкретных представителей класса эквивалентности).
- 3. Пусть A алгебра Гейтинга. Покажите, что $\Gamma(A)$ тоже алгебра Гейтинга.
- 4. Пусть задана алгебра Гейтинга А:

Постройте $\Gamma(A)$.

- 5. Можно ли для алгебры $\Gamma(\mathbb{R})$ построить топологию, порождающую данную алгебру? Вам нужно определить какой-то новый носитель и открытые множества для нём или указать, что это невозможно.
- 6. Могло сложиться впечатление, что $\mathscr L$ и $\Gamma(\mathscr L)$ почти ничем не отличаются. В связи с этим давайте немного изучим данный вопрос:
 - (a) Мы выяснили, что алгебра Линденбаума полная модель ИИВ. А справедливо ли это для $\Gamma(\mathcal{L})$ существует ли формула α , общезначимая в $\Gamma(\mathcal{L})$, но недоказуемая?
 - (b) Приведите пример неатомарной формулы α и такой оценки переменных, что $\llbracket \alpha \rrbracket_{\Gamma(\mathscr{L})} = \omega$.
 - (c) Мы можем построить аналог алгебры Линденбаума для классического ИВ, а потом применить к ней операцию «гёделевизации». Но если так получится доказать свойство дизъюнктивности для классической логики, то мы найдём противоречие в логике. Какое противоречие мы получим и какой переход в наших рассуждениях не получится сделать по аналогии?
- 7. Рассмотрим два множества, $a=(-\infty,1)$ и $b=(0,\infty)$. Пусть $[\![A]\!]=a$ и $[\![B]\!]=b$. Понятно, что $[\![A\vee B]\!]_{\mathbb{R}}=1R$. Однако, ни A, ни B не истинны не закралась ли где ошибка в теорему о дизъюнктивности ИИВ?
- 8. Модели Крипке. Рассмотрим некоторый ориентированный граф без циклов (без потери общности можем взять дерево вместо такого графа). Узлы назовём *мирами* и пронумеруем натуральными числами: $W = \{W_1, W_2, \dots, W_n\}$. Будем писать $W_i \preceq W_j$, если существует путь из W_i в W_j . Понятно, что $W_i \preceq W_i$.

4

Каждому узлу сопоставим множество вынужденных переменных ИИВ и будем писать $W_i \Vdash A_k$, если переменная A_k вынуждена в мире W_i . При этом, если $W_i \preceq W_j$, то всегда должно быть выполнено и $W_i \Vdash A_k$ (знание, полученное нами, не исчезает в последующих мирах).

Обобщим отношение вынужденности на случай произвольной формулы:

- Если $W_i \Vdash \alpha$ и $W_i \vdash \beta$, то $W_i \vdash \alpha \& \beta$;
- Если $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, то $W_i \Vdash \alpha \vee \beta$;
- Если в любом мире $W_k: W_i \leq W_k$ выполнено, что из $W_k \Vdash \alpha$ следует $W_k \Vdash \beta$, то $W_i \Vdash \alpha \rightarrow \beta$;
- Если ни в каком мире $W_k: W_i \leq W_k$ не выполнено α , то $W_i \Vdash \neg \alpha$.

Так определённую упорядоченную тройку $\langle W, (\preceq), (\Vdash) \rangle$ — множество миров, отношение порядка на мирах и отношение вынужденности — назовём моделью Крипке. Будем говорить, что формула α вынуждается моделью (или является истинной в данной модели), если $W_i \Vdash \alpha$ в любом мире W_i . Будем записывать это как $\Vdash \alpha$.

(a) Построим пример модели, опровергающей формулу $P \vee \neg P$ (деревья в моделях Крипке у нас будут расти вправо):

В данной модели переменная P вынуждена только в мире W_2 .

Укажите все узлы, в которых вынуждено P, $\neg P$, $P \lor \neg P$ и сделайте вывод о вынужденности закона исключённого третьего в данной модели.

- (b) Постройте модель, опровергающую формулу $((P \to Q) \to P) \to P$.
- (c) Покажите, что любая модель Крипке обладает свойством: для любых W_i, W_j, α , если $W_i \preceq W_j$ и $W_i \Vdash \alpha$, то $W_j \Vdash \alpha$.
- (d) Покажите, что по любой модели Крипке K можно построить такую алгебру Гейтинга H, что $\Vdash_K \alpha$ тогда и только тогда, когда $[\![\alpha]\!]_H = 1_H$. Покажите из этого, что любая модель Крипке действительно модель ИИВ.
- (e) Предложите формулу, глубина опровергающей модели для которой (если её рассматривать как дерево) не может быть меньше 2. Можете ли предложить соответствующую конструкцию для произвольной глубины n?
- 9. Теорема о нетабличности интуиционистской логики.
 - (а) Рассмотрим следующее утверждение $(A \to B) \lor (B \to C) \lor (C \to A)$: покажите, что это утверждение верно в классической логике, но недоказуемо в интуиционистской. Интуитивно недоказуемость в интуиционистской логике очевидна: пусть A сегодня дождь, B сегодня мороз -30° по Цельсию, C сегодня понедельник. У нас нет никаких конструктивных способов показать из одного утверждения другое.
 - (b) Обозначим за R(n) следующее утверждение:

$$\bigvee_{1 \le i < j \le n} (A_i \to A_j)$$

Покажите, что для любой табличной модели ИИВ T найдётся такой n, что $[\![R(n)]\!]_T \neq \mathtt{M}.$

(c) Покажите, что $\nvdash R(n)$ в ИИВ ни при каком n>1. Как из этого показать, что никакая табличная модель ИИВ не является полной?