

Embedding Memory into Advanced Dialogue Management

Chia-An Yu
Under the supervision of Pr. Martin Jaggi, Dr. Claudiu Musat
EPFL

Introduction

- This project focuses on frame tracking [1], a way to incorporate memory into a goal-oriented dialogue system.
- We propose a model with attention mechanism that is inspired by how human resolves frame references.
- We introduce a method to generate synthetic frame tracking data and use the data for pre-training.

Frame tracking

- In a goal-oriented dialogue, a frame summarizes an option for the user. It is represented as a list of slot-value pairs.
- The goal of frame tracking is to find out the most related frame for each natural language tag in the utterance.
- We use FRAMES dataset [1] as the training set.

Model

- We use a lookup table for act and slot embedding.
- We consider two types of text embedding for value tags: pre-trained BERT feature and GRU-based embedding training from scratch.
- We experiment with several attention mechanisms, including dot product, query-key attention, etc.

Synthetic datasets

- We generate synthetic frame tracking data by interleaving dialogues from MultiWOZ, a large dataset without frame tracking labels.
- We transform dialogue state labels into frames, and create synthetic frame references.

Dataset	# dialogues	Domain(s)
FRAMES	1369	Hotel + flight
Synthetic 1	5488	Single domain
Synthetic 2	3820	Hotel + restaurant
Synthetic 3	3820	Hotel + transportation (taxi and train)

Results

- We evaluate the model by the accuracy of frame reference prediction on FRAMES dataset.
- The model achieves 83.1% accuracy after hyperparameter tuning.

No attention	Attention (dot product)
58.1 ± 0.22	_
76.4 ± 4.49	_
77.5 ± 0.52	81.0 ± 0.69
79.3 ± 0.28	81.9 ± 1.05
81.0 ± 0.73	82.3 ± 1.70
79.5 ± 0.65	82.8 ± 0.52
	58.1 ± 0.22 76.4 ± 4.49 77.5 ± 0.52 79.3 ± 0.28 81.0 ± 0.73

Conclusion

- We propose a frame tracking model with attention mechanism, and improve the accuracy by 6.7 percentage point.
- The model pre-trained on synthetic frame tracking data converges faster comparing to the model training from scratch.

References

- [1] Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer, Justin Harris, Emery Fine, Rahul Mehrotra, and Kaheer Suleman. Frames: A corpus for adding memory to goal-oriented dialogue systems. arXiv preprint arXiv:1704.00057, 2017.
- [2] Hannes Schulz, Jeremie Zumer, Layla El Asri, and Shikhar Sharma. A frame tracking model for memory-enhanced dialogue systems. arXiv preprint arXiv:1706.01690, 2017.