Aufgabe F15T3A1 (8 Punkte)

Gegeben seien eine Gruppe G und drei Untergruppen $U_1, U_2, V \subseteq G$ mit der Eigenschaft, dass $V \subseteq U_1 \cup U_2$. Zeigen Sie, dass $V \subseteq U_1$ oder $V \subseteq U_2$ gilt.

Lösung:

Nehmen wir an, es gilt $V \subseteq U_1 \cup U_2$, aber $V \not\subseteq U_1$ und $V \not\subseteq U_2$. Dann gibt es Elemente $g_1 \in V \setminus U_2$ und $g_2 \in V \setminus U_1$. Wegen $V \subseteq U_1 \cup U_2$ muss dann $g_1 \in U_1$ und $g_2 \in U_2$ gelten. Auf Grund der Untergruppen-Eigenschaft von U_1 und U_2 gilt auch $g_1^{-1} \in U_1$ und $g_2^{-1} \in U_2$.

Da V eine Untergruppe von G ist, liegt mit g_1 und g_2 auch das Element g_1g_2 in V, und aus $V \subseteq U_1 \cup U_2$ folgt $g_1g_2 \in U_1$ oder $g_1g_2 \in U_2$. Im ersten Fall erhalten wir zusammen mit $g_1^{-1} \in U_1$, dass $g_2 = g_1^{-1}(g_1g_2)$ in U_1 liegt, im Widerspruch zu $g_2 \in V \setminus U_1$. Im zweiten Fall folgt aus $g_2^{-1} \in U_2$, dass $g_1 = (g_1g_2)g_2^{-1}$ in U_2 liegt, was zu $g_1 \in V \setminus U_2$ im Widerspruch steht.