Portfolio Bandit with Thompson Sampling

김민석 서지완 이유경 이영송 염예진

CONTENTS

프로젝트 개요	데이터셋 생성	포트폴리오 구성	분석 결과	시사점 및 한계

CONTENTS

프로젝트 개요

- 주제 선정 이유
- 포트폴리오란?
- 2-Fund Theorem과 Portfolio 종류
- Thompson Sampling

데이터셋 생성

포트폴리오 구성

분석 결과

시사점 및 한계

- 주제 선정 이유

- 전통적 재무이론 (포트폴리오 이론) + 통계학
- 달성 가능한 최적 위험 포트폴리오 모색

〈목적〉

포트폴리오를 구성하는 자산에 대해 변동성과 수익률을 기준으로 success / fail 베타분포를 학습하기

- 포트폴리오란?

* 포트폴리오란? 동일한 수익에 비해 변동성이 적고, 위험이 적은 방식으로 투자할 수 있게 함

N개의 자산에 대해 N이 충분히 많을 때, 개별 위험은 0에 가까워지고 Covariance만 남게 된다.

- 2-Fund Theorem과 Portfolio 종류

Equally Weighted Portfolio

- ✓ 포트폴리오 구성 자산들에 동일한 weight 부여
- ✓ 소규모 회사와 대규모 회사 모두 동일한 weight 부여
- ✓ 상대적으로 변동성이 크다
- ✓ Small cap 자산들의 상대적으로 큰 변동성 반영

Value Weighted Portfolio

- ✓ Weight = 기업 1의 자산 / (포트폴리오를 구성하는 자산 시가총액)
- ✓ 유통 주식수 X 주가
- ✓ 일반적으로 small cap 자산들이 고위험 고수익 자산으로 알려짐

- 2-Fund Theorem과 Portfolio 종류

Mean-Variance Portfolio

- ✓ 투자자의 선호체계는 평균-분산 기준을 사용하여포르폴리오들을 비교 가능
- ✓ 최소분산 포트폴리오 (Minimum-Variance Portfolio) 아래에 위치하는 포트폴리오는 비효율적인 것으로 간주
- ✓ 위험 (standard deviation)을 최소화하는weight 식별

- 2-Fund Theorem과 Portfolio 종류

2-Fund Theorem

- ✓ 미국의 경제학자 '토빈'에 의해 제안된 개념
- ✓ 본래 무위험 자산(Risk Free Asset)과 MV 포트폴리오의 Efficient Portfolio를 결합하기 위해 제안된 개념
- ✓ 무위험 자산이 아닌 2개의 펀드를 결합할 때, 각 모델이 가지는 biαs가 줄어들 수 있다는 연구 결과 존재함

>> 2-Fund의 비율을 Thompson Sampling을 이용해 결정해보자!!!

- Thompson Sampling

✓ 베이지안 최적화 기법 중 하나인, 톰슨 샘플링 기법 을 통해 n개의 포트폴리오를 혼합

✓ 포트폴리오 블렌딩을 통하여 out-of-sample 데이 터에도 좋은 성능 유지

Portfolio Blending via Thompson Sampling

Weiwei Shen^{†,‡} and Jun Wang[†]

†School of Computer Science and Software Engineering East China Normal University, Shanghai, China ‡GE Global Research Center, Niskayuna, NY, USA, realsww@gmail.com, wongjun@gmail.com

Abstract

As a definitive investment guideline for institutions and individuals, Markowitz's modern portfolio theory is ubiquitous in financial industry. However, its noticeably poor out-of-sample performance due to the inaccurate estimation of parameters evokes unremitting efforts of investigating effective remedies. One common retrofit that blends portfolios from disparate investment perspectives has received growing attention. While even a naive portfolio blending strategy can be empirically successful, how to effectually and robustly blend portfolios to generate stable performance improvement remains less explored. In this paper, we present a novel online algorithm that leverages Thompson

the smallest variance. All other portfolios are "inefficient" in terms of having a higher variance representing a higher risk. However, due to the hurdle of accurately estimating involved parameters, the mean-variance portfolio often performs poorly in out-of-sample settings [Broadie, 1993].

On the other hand, the concept of blending portfolios arising from different investment perspectives to construct a new portfolio can be traced back to the ingenious two-fund separation theorem by [Tobin, 1958]. In the mean-variance framework, the two-fund separation theorem states that the efficient portfolio can be considered as a linear combination of two portfolios. Given the unsatisfactory out-of-sample performance of the mean-variance portfolio, the two-fund separation theorem naturally brings us the opportunity of blending portfolios to achieve better performance than the mean-variance portfolio and other heuristic strategies. However as

- Thompson Sampling

	Bernoulli Bandit	Portfolio Blending
가치(value)	각 bandit의 성공 확률	분포로부터의 임의의 $\delta_k=$ blending coefficient $$ 추출
행동(action)	특정 bαndit의 슬롯 당김	MV or EW 포트폴리오 선택 (MV-VW 동일)
보상(reward)	해당 bandit의 성공/실패 결과에 따라 해당 베타 분포 업데이트	아래 비교 후 섬공/실패 결과에 따라 베타 분포 업데이트 $\delta_k \ vs \ ar{\delta}_k$ 의 gross return $vs \ ar{\delta}_k$ 의 gross return
Exploit & Explore	기대 수익이 낮은 Bandit도 확률적으로 돌려 보며 최고의 Bandit으로 수렴해 감	δ_k 값이 낮은 포트폴리오 구성도 선택해가며 정확한 cut-off point, δ_k 을 찾아 감

$$\bar{\omega}_{k}^{\text{EM (VM)}} = \bar{\delta}_{k} \omega_{k}^{\text{MV}} + (1 - \bar{\delta}_{k}) \omega_{k}^{\text{EW (VW)}}$$

Success
$$\mathbf{R}_{k}^{\top} \tilde{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} > \mathbf{R}_{k}^{\top} \bar{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} \text{ and } \tilde{\delta}_{k} > \bar{\delta}_{k}$$
Success $\mathbf{R}_{k}^{\top} \tilde{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} < \mathbf{R}_{k}^{\top} \bar{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} \text{ and } \tilde{\delta}_{k} < \bar{\delta}_{k}$
Failure $\mathbf{R}_{k}^{\top} \tilde{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} > \mathbf{R}_{k}^{\top} \bar{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} \text{ and } \tilde{\delta}_{k} < \bar{\delta}_{k}$
Failure $\mathbf{R}_{k}^{\top} \tilde{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} < \mathbf{R}_{k}^{\top} \bar{\omega}_{k}^{\mathrm{EM}\,(\mathrm{VM})} \text{ and } \tilde{\delta}_{k} > \bar{\delta}_{k}$

CONTENTS

데이터셋 생성 포트폴리오 구성 프로젝트 개요 분석 결과 시사점 및 한계 - 데이터셋 기본 정보 - 데이터셋 구성 순서

- 데이터셋 기본 정보

- ✓ 데이터셋 3가지 생성 (주간 수익률, 시가 총액, 주별 주가)
- ✓ 15년 ~ 19년 260주, 회사 173개
- ✓ 테이블 shape : 260x173

EX) 주간 수익률 테이블 (469x173)

	삼성전자	현대차	POSCO	현대모비 스	SK하이닉 스	NAVER	한국전력	삼성전자 우	신한지주	기아차
week										
15Y_week1	0.003005	-0.020619	0.000000	0.004211	-0.008360	0.035330	-0.024693	-0.009843	-0.048575	-0.019048
15Y_week2	-0.012835	0.055007	0.040392	0.000000	0.054123	0.001334	-0.005970	0.013753	-0.015964	0.019048
15Y_week3	0.020309	-0.028573	-0.063965	0.055172	-0.067858	0.034079	-0.060475	0.005836	-0.008079	-0.028710
15Y_week4	0.033678	-0.047487	-0.014788	0.013821	0.026248	-0.006464	0.082974	0.035259	0.073694	-0.103205
15Y_week5	-0.015234	0.038753	-0.053550	-0.021805	-0.034795	-0.081016	0.018562	-0.007519	-0.037285	0.002151
19Y_week48	-0.027399	-0.028399	0.017392	-0.041714	-0.014797	-0.014472	0.014260	-0.017997	-0.017056	-0.046946
19Y_week49	0.015748	-0.016598	0.004301	0.022067	0.002481	0.020203	0.012313	0.014423	0.011403	0.016279
19Y_week50	0.066124	-0.004193	0.039963	0.033174	0.093393	0.025389	-0.041041	0.071377	0.006780	0.025058
19Y_week51	0.014519	0.028988	0.004115	-0.001921	0.065526	0.024761	0.016261	0.002220	0.031045	0.006726
19Y_week52	0.005391	-0.016461	-0.029169	-0.015504	-0.005299	0.013495	-0.003591	0.006630	-0.054977	-0.010107

- ✓ 톰슨 샘플링 방법을 적용할 기간 :2015년~2019년
- ✓ 일별 데이터가 아닌 주별 데이터
- ✓ 2017년 : 53주, 나머지 52주
- ✓ 2011년~2019년까지 데이터가 모두존재하는 회사는 173개

1) 한국거래소(KRX)에서 KOSPI시장 시가총액 기준으로 내림차순으로 정렬한 삼위 231개 기업을 선정 및 고정 (기준 : 2015년 1월 6일 월요일)

2) 한국거래소에서 크롤링한 데이터셋에서 231개의 종목코드, 종목명, 시가총액 column만 사용

	종목코 드	종목명	현재가	대비	등 라 률	거래량	거래대금	시가	고가	저기	시가총액	시가 총액 비중 (%)	상장주식수	외국인 보유 주식수
0	005930	삼성전 자 1	, 07,000	11,000	0.8	394,716	516,318,909,000	1,303,000	1,320,000	1,296,000	192,520,233,459,000	6.71	147,299,337	72,945,660
1	005380	현대차	28,500	4,500	2.0	669,198	152,858,518,300	224,000	231,000	222,500	50,333,175,451,500	4.37	220,276,479	99,399,937
2	005490	POSCO	16,500	-4,000	-1.2	174,169	55,064,977,900	317,500	320,000	314,000	27,594,633,277,500	2.40	87,186,835	46,106,877
3	012330	현대모 비스	79,500	3,500	1.3	129,770	36,238,628,000	276,000	282,000	273,000	27,207,609,708,500	2.36	97,343,863	47,787,709
4	000660	SK하이 닉스	37,650	1,350	3.7	5,489,696	204,708,639,570	36,400	37,700	36,350	26,739,063,546,150	2.32	710,200,891	306,099,981
	•••			***	***			***	***		***		(4.4.4	***
226	175330	JB금융 지주	6,240	100	1.6	613,972	3,819,761,010	6,140	6,260	6,130	416,984,018,880	0.04	66,824,362	10,081,519
227	003000	부광약 품	14,000	150	1.1	49,999	698,136,150	13,800	14,050	13,800	415,622,494,000	0.04	29,687,321	3,317,624
228	015350	부산가 스	37,750	-100	-0.3	350	13,168,000	37,550	37,900	37,550	415,250,000,000	0.04	11,000,000	189,317
229	051310	포스코 플랜텍	6,590	180	2.8	49,196	315,460,940	6,450	6,700	6,190	410,152,347,640	0.04	62,238,596	668,962
230	005740	크라운 제과	78,000	2,000	0.7	1,480	414,642,000	273,500	284,000	273,000	409,639,672,000	0.04	1,473,524	7,358
231 r	231 rows × 15 columns													

3) Yahoo Finance에서 231개의 기업에 해당하는 주가 데이터를 크롤링함

4) 2017년 10월 5일 기간에는 일주일 추석 연휴로 주가 데이터가 존재하지 않음 따라서 해당 주는 삭제

- 기업의 결측값 多
 ⇒ 기업 합병 및 상장 폐지 원인
 Column 삭제
- 요일 결측값 약간 있는 경우
- ⇒ 목요일 주가 데이터로 대체함

	Date	삼성 전자	현대 차	POSCO	현대 모비 스	SK 하이 닉스	NAVER	한국 전력	삼성 전자 우	신한 지주	기아 차	삼성 생명	LG 화학	현대 중공 업
14Y_week18	2014- 05-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
17Y_week41	2017- 10-05	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

5) Price 데이터로 로그 수익률을 생성했음

이를 통해 15년 ~ 19년의 주별 covariance matrix를 생성 (mean-variance portfolio 구성을 위한 것)

Weekreturn (주간 수익률)

	삼성전자	현대차	POSCO	현대모비 스	SK하이닉 스	NAVER	한국전력	삼성전자 우
14Y_week1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
14Y_week2	-0.009224	-0.002191	-0.019139	0.000000	0.013193	-0.042373	0.001417	-0.027737
14Y_week3	0.016086	0.013072	0.001609	0.026480	-0.034670	0.067798	-0.014266	-0.023183
14Y_week4	-0.018406	-0.033006	-0.039349	0.024098	-0.044390	-0.084352	-0.041062	0.011659
14Y_week5	-0.015601	0.035168	-0.013468	0.023530	0.073804	0.025470	0.062384	0.018790
19Y_week48	-0.027399	-0.028399	0.017392	-0.041714	-0.014797	-0.014472	0.014260	-0.017997
19Y_week49	0.015748	-0.016598	0.004301	0.022067	0.002481	0.020203	0.012313	0.014423
19Y_week50	0.066124	-0.004193	0.039963	0.033174	0.093393	0.025389	-0.041041	0.071377
19Y_week51	0.014519	0.028988	0.004115	-0.001921	0.065526	0.024761	0.016261	0.002220
19Y_week52	0.005391	-0.016461	-0.029169	-0.015504	-0.005299	0.013495	-0.003591	0.006630

6) 시가 총액의 비중을 구하기 위해 연 초 유통 주식수를 연도별로 고정하여 주가와 곱함

	삼성전자	현대차	SK하이닉스	한국전력	NAVER	POSCO	삼성생명
14Y_week1	1.02157e+10	4.41012e+13	2.48112e+13	1.96735e+13	4.46196e+12	2.33601e+13	1.85401e+13
14Y_week2	1.01219e+10	4.40047e+13	2.51407e+13	1.97014e+13	4.27685e+12	2.29172e+13	1.83574e+13
14Y_week3	1.0286e+10	4.45837e+13	2.42841e+13	1.94223e+13	4.57686e+12	2.29541e+13	1.84487e+13
14Y_week4	1.00984e+10	4.31361e+13	2.32297e+13	1.8641e+13	4.20663e+12	2.20685e+13	1.82113e+13
14Y_week5	9.94209e+09	4.46802e+13	2.50089e+13	1.98409e+13	4.31515e+12	2.17732e+13	1.8814e+13
19Y_week48	7.42389e+12	2.67636e+13	5.86042e+13	1.81355e+13	5.6531e+12	2.02273e+13	1.45e+13
19Y_week49	7.54173e+12	2.6323e+13	5.87498e+13	1.83602e+13	5.76847e+12	2.03145e+13	1.46e+13
19Y_week50	8.05727e+12	2.62129e+13	6.4501e+13	1.76219e+13	5.9168e+12	2.11428e+13	1.516e+13
19Y_week51	8.17511e+12	2.69839e+13	6.8869e+13	1.79108e+13	6.06513e+12	2.123e+13	1.524e+13
19Y_week52	8.2193e+12	2.65433e+13	6.8505e+13	1.78466e+13	6.14754e+12	2.06197e+13	1.49e+13

- 데이터셋 구성

	기업 (173개)
주 별 날 짜 11~ 19 년	Price (주별 주가)

	기업 (173개)
주별날짜 11~ 19년	Return (주간 수익률)

	기업 (173개)
주별날짜 15~19년	Mkt cap (시가 촘액)

SHAPE: (470 X 173) SHAPE: (469 X 173) SHAPE: (260 X 173)

CONTENTS

프로젝트 개요

데이터셋 생성

포트폴리오 구성

- EW
- VW
- MV (min variance)
- MV (max sharpe)
- Thompson(EW + MV min variance)
- Thompson(VW + MV min variance)
- 2019년 1주~50주에 가중 치의 변화 PLOT

분석 결과

시사점 및 한계

- EW (Equally-Weighted Portfolio)

Weight: 1/N

삼성전자 X 1/173 현대차 X 1/173

. . .

두산건설 X 1/173

EW 포트폴리오 구성:

가중치 X 기대 수익률

1) 가중치 생성

	삼성전자	현대차	P0S00	현대모비스	SK하이닉스	 한화손해보험
week						
14Y_week2	-4.66355e-06	-7.94852e-05	-0.000332661	0	0.000454109	 9.86578e-05
14Y_week3	5.15042e-06	0.000306291	3.08397e-05	0.00055494	-0.00190213	 -1.49843e-05
14Y_week4	-5.44074e-06	-0.00121379	-0.000862333	0.000756899	-0.00178733	 9.84557e-06
14Y_week5	-6.18675e-06	0.00146746	-0.000317059	0.000824894	0.00306058	 8.99094e-06
14Y_week6	8.82036e-07	0.000287891	-0.000591912	0.000688618	0.0011552	 -7.083e-06
19Y_week48	-0.00923491	-0.00105388	0.000304302	-0.000882299	-0.000821172	 3.93458e-07
19Y_week49	0.00274881	-0.000720121	6.29452e-05	0.000547118	0.000184563	 -9.3188e-06
19Y_week50	0.0136583	-0.000166122	0.000677892	0.000663842	0.00719976	 2.49068e-06
19Y_week51	0.00277395	0.00181744	4.9788e-05	-3.56669e-05	0.00373077	 1.98851e-06
19Y_week52	0.0010129	-0.000373888	-0.000420261	-0.000170722	-0.000374268	 -1.46753e-06

	return_EW
week	
15Y_week1	-0.007394
15Y_week2	0.001896
15Y_week3	-0.003627
15Y_week4	0.011634
15Y_week5	0.024299
19Y_week48	-0.008233
19Y_week49	-0.014826
19Y_week50	0.026661
19Y_week51	0.010754
19Y_week52	-0.003587

- VW (Value-Weighted Portfolio)

Weight:
시가총액/ 포트폴리오
구성하는 기업의 전체 시가총액

VW 포트폴리오 구성 :

Weight x 기대수익률

1) 가중치 생성

	삼성전자	현대차	P0S00	현대모비스	SK하이닉스	 한화손해보험
week						
14Y_week2	-4.25059e-05	-1.00945e-05	-8.81983e-05	0	6.07966e-05	 0.000270024
14Y_week3	7.41297e-05	6.02398e-05	7.41441e-06	0.000122028	-0.00015977	 -0.000113796
14Y_week4	-8.48181e-05	-0.000152103	-0.000181332	0.000111049	-0.000204563	 0.000141809
14Y_week5	-7.18943e-05	0.000162067	-6.2066e-05	0.000108435	0.00034011	 9.21716e-05
14Y_week6	1.80798e-05	3.96416e-05	-0.000134732	0.000180152	0.000125771	 -0.000124874
19Y_week48	-0.000126263	-0.000130873	8.01463e-05	-0.000192231	-6.81881e-05	 2.44472e-05
19Y_week49	7.25731e-05	-7.6488e-05	1.98207e-05	0.000101692	1.1435e-05	 -0.000199309
19Y_week50	0.00030472	-1.9322e-05	0.000184162	0.000152875	0.000430384	 5.06411e-05
19Y_week51	6.69093e-05	0.000133583	1.89642e-05	-8.8536e-06	0.000301961	 0.000172986
19Y_week52	2.48426e-05	-7.58584e-05	-0.000134418	-7.14479e-05	-2.44213e-05	 -4.0602e-05

	return_V₩
week	
15Y_week1	-0.012904
15Y_week2	0.008866
15Y_week3	-0.013704
15Y_week4	0.019657
15Y_week5	0.016394
19Y_week48	-0.011578
19Y_week49	-0.002344
19Y_week50	0.032153
19Y_week51	0.016586
19Y_week52	-0.010228

- MV (Mean-Variance Portfolio) -> min variance

공식
$$\min_{\pi} \pi' \Sigma \pi,$$
제약조건 $\pi' \mu = c$
 $\pi' \mathbf{1} = 1$
 $\pi \geq 0$

- 제약조건을 만족하면서 해당 공식을 최소화하는 WEIGHT를 찾기

1) 가중치 생성

	삼성전자	현대차	P0SC0	현대모비스	SK하이닉스	 한화손해보험	18금융지주	부광약품	부산가스	크라운제과
week										
19Y_week1	0.57	0	1.06	0	2.43	 0	0	0	14.04	0
19Y_week2	0.55	0	1.08	0	2.49	 0	0	0	13.75	0
19Y_week3	0.74	0	0.67	0	2.41	 0	0	0	14.5	0
19Y_week4	0.5	0	0.6	0	2.09	 0	0	0	15.09	0
19Y_week5	0.46	0	0.55	0	2.02	 0	0	0	14.99	0
19Y_week48	0	0.43	0.54	0	3.13	 0	0	0	18.14	0
19Y_week49	0	0	0.3	0	3.11	 0	0	0	17.93	0
19Y_week50	0	0	0.29	0	3.08	 0	0	0	18.03	0
19Y_week51	0	0.27	80.0	0	3.46	 0	0	0	16.25	0
19Y_week52	0	0.48	0.14	0	3.45	 0	0	0	16.47	0

	EW	ΛM	MV_sha	MV_var
week				
15Y_week1	-0.007394	-0.012904	0.029309	0.003129
15Y_week2	0.001896	0.008866	0.019637	0.008332
15Y_week3	-0.003627	-0.013704	0.011890	-0.017004
15Y_week4	0.011634	0.019657	0.021816	0.012279
15Y_week5	0.024299	0.016394	0.013613	0.010659
19Y_week48	-0.008233	-0.011578	-0.017323	-0.008585
19Y_week49	-0.014826	-0.002344	0.023013	-0.007,494
19Y_week50	0.026661	0.032153	0.034755	0.012831
19Y_week51	0.010754	0.016586	0.025721	0.015851
19Y_week52	-0.003587	-0.010228	-0.008010	-0.020156

- MV (Mean-Variance Portfolio) -> max sharpe

공식
$$\min_{\pi} \pi' \Sigma \pi,$$
 제약조건 $\pi' \mu = c$ $\pi' \mathbf{1} = 1$ $\pi \geq 0$

Sharpe란?

- 초과 수익률/표준편차
- 위험을 고려한 경우 최고의 수익률로 해석 가능

1) 가중치 생성

	삼성전자	현대차	P0SC0	현대모비스	SK하이닉스	 한화손해보험	JEG용지주	부광약품	부산가스	크라운제과
week										
19Y_week1	4.65	0	0	0	0	 0	0	0.47	0	0
19Y_week2	4.56	0	0	0	0	 0	0	0	3.5	0
19Y_week3	4.62	0	0	0	0	 0	0	0	0	0
19Y_week4	4.7	0	0	0	0	 0	0	0	0	0
19Y_week5	4.76	0	0.01	0	0.01	 0	0	0	0.01	0

19Y_week48	4.93	0	0	0	5.44	 0	0	0	0	0
19Y_week49	4.73	0	0	0	5.27	 0	0	0	0	0
19Y_week50	4.74	0	0	0	6.54	 0	0	0	0	0
19Y_week51	4.83	0	0	0	7.32	 0	0	0	0	0
19Y_week52	4.75	0	0	0	6.88	 0	0	0	0	0

	EW	VW	MV_sha	MV_var
week				
15Y_week1	-0.007394	-0.012904	0.029309	0.003129
15Y_week2	0.001896	0.008866	0.019637	0.008332
15Y_week3	-0.003627	-0.013704	0.011890	0.017004
15Y_week4	0.011634	0.019657	0.021816	0.012279
15Y_week5	0.024299	0.016394	0.013613	0.010659
19Y_week48	-0.008233	-0.011578	-0.017323	0.008585
19Y_week49	-0.014826	-0.002344	0.023013	0.007,494
19Y_week50	0.026661	0.032153	0.034755	0.012831
19Y_week51	0.010754	0.016586	0.025721	0.015851
19Y_week52	-0.003587	-0.010228	-0.008010	0.020156

- Thompson Sampling (EW(VW) + MV(min variance))

```
12 8
0.60,0.69 & -0.00,-0.00
False.True
12.9
0.57,0.53 & -0.00,-0.00
True, False
12 10
0.55.0.54 & 0.01.0.01
True, True
13 10
0.57.0.40 & -0.01.-0.02
True, True
14 10
0.58.0.69 & 0.00.0.01
False, False
15 10
0.60.0.52 & 0.00.0.00
True, False
15 11
0.58,0.48 & -0.02,-0.02
True.False
```

```
False, False
98 97
0.50.0.49 & 0.00.0.00
True.False
98 98
0.50.0.42 & 0.00.0.00
True, True
99 98
0.50,0.53 & -0.01,-0.01
False, False
100 98
0.51,0.51 & -0.01,-0.01
False False
101 98
0.51,0.51 & -0.01,-0.01
False.False
102 98
0.51,0.55 & 0.02,0.02
False, True
102 99
0.51,0.60 & 0.01,0.01
False.False
103 99
```

```
# TS loop
for j in range(window_len) :
    # mean delta & weight & net retrun
    mean_delta = beta.mean(beta_a, beta_b)
    mean_weight_EM = mean_delta * portpolio1_weight.iloc[(j+i+8),] + #
                    (1-mean_delta) * portpolio2_weight.iloc[(j+i+8),]
    mean\_netreturn\_EM = return\_full.iloc[j+i+8,].T.dot(mean\_weight\_EM)
    # random delta & weight & net retrun
    rand_delta = beta.rvs(beta_a, beta_b)
    rand_weight_EM = rand_delta * portpolio1_weight.iloc[(i+i+8).] + #
                    (1-rand_delta) * portpolio2_weight.iloc((i+i+8).)
    rand_netreturn_EM = return_full.iloc[j+i+8,].T.dot(rand_weight_EM)
    # update
    if (mean_netreturn_EM > rand_netreturn_EM) == (mean_delta > rand_delta):
        # success
        beta_a += 1
    else:
       # failure
        beta_b += 1
      print(beta_a, beta_b)
```

- Thompson Sampling (EW(VW) + MV(min variance))

- 2019년 1주~50주에 가중치의 변화 PLOT

- EW Weight

- MW_VAR Weight

- VW Weight

- TS_EM_MV Weight

- MW_SHA Weight

- TS_VM_MV Weight

CONTENTS

분석 결과 프로젝트 개요 데이터셋 생성 포트폴리오 구성 시사점 및 한계 - 결과 비교

- 결과 비교

Sharpe-ratio	EW	VW	MV_var	MV_Sha	TS EM	TS VM	TS EM_Sha	TS VM_Sha
Return-rate	-0.0508	0.0684	0.0326	0.2320	-0.0204	0.0586	0.1368	0.1824

MV_min_variance와 MV_max_sharpe의 log(return)값 비교 PLOT

CONTENTS

시사점 및 한계 프로젝트 개요 데이터셋 생성 포트폴리오 구성 분석 결과

- 시사점 및 한계

〈의도〉 **포르폴리오 모델에 반영된 biαs를**제거하기 위한 펀드 결합

〈시사점〉
톰슨 샘플링을 통해 목적에 부합하는
적정 cut-off 포인트를 생성할 수 있음

(한계)I) MV를 잘못 구했을 가능성(코딩, overfitting)

- 2) 데이터셋 문제
- 3) 톰슨 샘플링의 success/fail 기준에서 noise 가능성

- Thompson Sampling (Detail)

- 추가 업데이트 1. Risk-Retrun 그래프 / 각 포트폴리오 포지션

< 2019년 랜덤 포트폴리오 집합 >

- ✓ 랜덤한 weight를 준 포트폴리오의 기대 수익은 - 수치를 기록하고 분산 또한 큰 값을 가진다

〈 우리의 포트폴리오들의 포지션〉

- ✓ EW포트폴리오는 랜덤 포트폴리오 안에 속하여 크게 수익을 내지 못하는 모습을 보인다.
- ✓ Min-variance max sharpe 포트폴리오는 가장 높은 수익을 보이지만 분 산이 크다
- ✓ Min-variance max sharpe 포트폴리오는 분산은 가장 작지만 수익을 내지 못한다

-> 이 두 포트폴리오를 blending한 결과를 보자!

- 추가 업데이트 2. Risk-Retrun 그래프, TS Blending 효과

< Thomspon samping blending>

- ✓ 이 두 포트폴리오와 blending한 포트폴리오를 찍어보자.
- ✓ 각 시점에서 blending weight를 다르게 가진다.
- ✓ 따라서 단순 선형 결합이 아니라 더 높은 수익률을 기록하는 것을 알 수있다.

- 추가 업데이트 3. Risk-Retrun 그래프, SR과 무차별 곡선

< Metric : Sharpe Ratio >

〈 Metric : 무차별 곡선 〉

- ✓ Min variance(max sharpe) 포트폴리오와 Thompson sampling [Min variance(max sharpe), Min variance(min variance)] 포트폴리오를 그래프 상에서 비교해보자
- ✓ 단순 Sharpe ratio는 Min variance(max sharpe) 포트폴리오가 높은 것으로 나타난다.
- ✓ 하지만 위험 성향을 가진 투자자가 가지는 무차별곡선에서의 효용값은 TS blending 포트폴리오 이 더 높을 것이다.-> 따라서 톰슨 샘플링을 통한 블렌딩으로서 효율적인 포트폴리오를 만들어 낼다고 할 수 있을 것이다.

