Tricks

- 1. Use == to test for equality. In effect, A==B is equivalent to simplify(A-B)==0.
- 2. In a script, line breaking is allowed where the scanner needs something to complete an expression. For example, the scanner will automatically go to the next line after an operator.
- 3. Setting trace=1 in a script causes each line to be printed just before it is evaluated. Useful for debugging.
- 4. The last result is stored in symbol last.
- 5. Use contract(A) to get the mathematical trace of matrix A.
- 6. Use binding(s) to get the unevaluated binding of symbol s.
- 7. Use s=quote(s) to clear symbol s.
- 8. Use float(pi) to get the floating point value of π . Set pi=float(pi) to evaluate expressions with a numerical value for π . Set pi=quote(pi) to make π symbolic again.
- 9. Use e=exp(1) to assign the natural number e to symbol e.
- 10. Assign strings to unit names so they are printed normally. For example, setting meter="meter" causes symbol meter to be printed as meter instead of m_{eter} .
- 11. Use expsin and expcos instead of sin and cos. Trigonometric simplifications occur automatically when exponentials are used. See also expform for converting an expression to exponential form.
- 12. Use rect(expform(f)) to maybe find a new form of trigonometric expression f.

```
f = \cos(\frac{1}{2}\cos(\frac{1}{2})^2
rect(expform(f))
\frac{1}{2}\cos(\theta) + \frac{1}{2}
```

13. Complex number functions conj, mag, etc. treat undefined symbols as representing real numbers. To define symbols that represent complex numbers, use separate symbols for the real and imaginary parts.

```
z = x + i y

conj(z) z

x^2 + y^2
```

```
z = A \exp(i \text{ theta})

conj(z) z

A^2
```

14. Use mag for component magnitude, abs for vector magnitude.

```
y = (a, -b)
mag(y)
\begin{bmatrix} a \\ b \end{bmatrix}
abs(y)
[a^{2} + b^{2}]^{1/2}
```

15. Use draw(y[floor(x)],x) to plot the values of vector y.

```
y = (1,2,3,4)
draw(y[floor(x)],x)
```

16. The following example demonstrates some eval tricks. (See exercise 4-10 of *Quantum Mechanics* by Richard Fitzpatrick.)

Let

$$\psi = \frac{\phi_1 + \phi_2}{2} \exp\left(-\frac{iE_1t}{\hbar}\right) + \frac{\phi_1 - \phi_2}{2} \exp\left(-\frac{iE_2t}{\hbar}\right)$$

where ϕ_1 and ϕ_2 are orthogonal. Let operator A have the following eigenvalues.

$$A\phi_1 = a_1\phi_1$$
$$A\phi_2 = a_2\phi_2$$

Verify that

$$\langle A \rangle = \int \psi^* A \psi \, dx = \frac{a_1 + a_2}{2} + \frac{a_1 - a_2}{2} \cos \left(\frac{(E_1 - E_2)t}{\hbar} \right)$$

Because ϕ_1 and ϕ_2 are normalized we have $\int \phi_1^* \phi_1 dx = 1$ and $\int \phi_2^* \phi_2 dx = 1$. By orthogonality we have $\int \phi_1^* \phi_2 dx = 0$. Hence the integral can be accomplished with eval.