第十一章 序列与级数不等式

§1 序列不等式

前面各章中,实际上包含了许多数列不等式.本章作进一步系统的论述,但在内容上不与前面重复.

1. [MCM]. 设 $\{a_n\}$ 为等差数列,首项 $a_1 > 0$,公差 d > 0,则当 $n \ge 2$ 时,有

$$2(\sqrt{a_{n+1}} - \sqrt{a_n}) < \frac{d}{\sqrt{a_n}} < 2(\sqrt{a_n} - \sqrt{a_{n-1}}).$$

提示:因为 $a_{n+1} - a_n = d > 0$,所以 $a_{n+1} > a_n > 0$,从而

$$2(\sqrt{a_{n+1}} - \sqrt{a_n}) = \frac{2(a_{n+1} - a_n)}{\sqrt{a_{n+1}} + \sqrt{a_n}} < \frac{2d}{2\sqrt{a_n}} = \frac{d}{\sqrt{a_n}},$$

$$2(\sqrt{a_n} - \sqrt{a_{n-1}}) = \frac{2d}{\sqrt{a_n} + \sqrt{a_{n-1}}} > \frac{d}{\sqrt{a_n}}$$
. 李胜明的改进见[345]2000,3:28 - 29.

- 2. 设 $\{a_k\}$ 成等差数列,公差 d>0,则 $a_k^2>a_{k-1}a_{k+1}$, $(k\geq 2)$.
- 3. 设 $|a_k|$ 成等差数列, $a_k > 0, k = 1, \dots, 2n + 1, 则$

$$\frac{a_1}{\sqrt{a_2 a_{2n}}} < \frac{a_1}{a_2} \cdot \frac{a_3}{a_4} \cdots \frac{a_{2n-1}}{a_{2n}} < \sqrt{\frac{a_1}{a_{2n+1}}}.$$

杨克昌改进为: 当公差 d > 0 时,

$$\frac{a_1}{a_2} \left(\frac{a_1 + a_4}{a_1 + a_{4n}} \right)^{1/2} \leqslant \frac{a_1 a_3 \cdots a_{2n-1}}{a_2 a_4 \cdots a_{2n}} \leqslant \frac{a_1 a_3}{a_2 a_{2n+1}} \left(\frac{a_2 + a_{4n+1}}{a_2 + a_5} \right)^{1/2}.$$

若 d < 0,则不等号反向,仅当 n = 1 时等号成立.见[345]2000,7:30 - 31.

4. 设 $\{a_k\}$ 为等差数列, $a_k > 0$, $k = 1, 2, \dots, n+1$, 公差 d > 0, 则

(1)
$$\frac{n}{d} \left[\sqrt[n]{\frac{a_{n+1}}{a_n}} - 1 \right] < \sum_{k=1}^n \frac{1}{a_k} < \frac{1}{a_1} + \frac{n-1}{d} \left[1 - \left(\frac{a_1}{a_n} \right)^{1/(n-1)} \right].$$

(2)
$$0 < \sum_{k=1}^{n} \sqrt{a_k} - \frac{2}{3d} (a_n^{3/2} - a_0^{3/2}) < \frac{1}{2} (\sqrt{a_n} - \sqrt{a_0}).$$

- 5. 设 $\{a_n\}$ 为等差数列,首项 $a_1 > 0$,公差 d > 0,则
- (1) 当 $n \ge 2$ 时,有

$$\frac{1}{2\sqrt{a_n}} \leqslant \sum_{k=2}^n \frac{1}{\sqrt{a_{k-1}} + \sqrt{a_k}} \leqslant \frac{1}{2\sqrt{a_1}};$$

(2) 当 $n \ge 3$ 时,有

$$\frac{2a_n + \sqrt{2}d}{3d}\sqrt{a_n} - \frac{2a_2 - (3 - \sqrt{2})d}{3d}\sqrt{a_2} + \sqrt{a_1} \leqslant \sum_{k=1}^n \sqrt{a_k} < \frac{4a_n + 3d}{6d}\sqrt{a_n} - \frac{2a_2 - (3 - \sqrt{2})d}{6d}\sqrt{a_n}$$

$$-\frac{4a_2-3d}{6d}\sqrt{a_2}+\sqrt{a_1}$$
.(李胜明,[345]2000,3:28 - 29.)

(3) 设 $a_1 > d/2 > 0$, p 为正实数,则当 $n \ge m + 1$ 时,成立

$$\left(\frac{2a_{n+1}+p}{2a_{m+1}+p}\right)^{p/d} \leqslant \prod_{k=m+1}^n \left(1+\frac{p}{a_k}\right) \leqslant \left(\frac{2a_n+d}{2a_{m+1}-d}\right)^{p/d}.$$

续铁权,[351]2003,2:16-19.

6. 设 $\{a_k\}$ 是等差正数列,公差 $d \ge 0$.则当 $n \ge 2$ 时,有

$$\sum_{k=2}^{n} a_{k}^{-2} \leqslant ((n-1)/2)(a_{1}a_{n} + a_{2}a_{n+1})/(a_{1}a_{2}a_{n}a_{n+1})$$
 仅当 $d = 0$ 时等号成立.

特别,取 $a_k = k$, $(1 \le k \le n + 1)$,得

$$\sum_{k=2}^{n} (1/k^2) < \frac{(n-1)(3n+2)}{4n(n+1)} < 1,$$

取 $a_k = 2k - 1, (1 \le k \le n + 1),$ 得

$$\sum_{k=2}^{n} \frac{1}{(2k-1)^2} < \frac{(n-1)(4n+1)}{3(4n^2-1)} < \frac{1}{3}.$$

- 7. 设 $|a_k|$ 为等差数列; $|b_k|$ 为等比数列,且 $a_1 = b_1, a_2 = b_2, a_1 \neq a_2, a_k > 0$ ($k = 1, 2, \dots$),则当 $n \ge 3$ 时, $a_n < b_n$.(提示:用数学归纳法).
- 8. 设 $\{a_n\}$ 是等差数列,若 $a_1>1$,则当公差d>0时, $\{\log_{a_n}a_{n+1}\}$ 是严格递减数列,即 $\log_{a_n}(a_n+d)>\log_{(a_n+d)}(a_n+2d)$.

注 自然数列 $\{n\}$ 可看成公差为1的等差数列;因此有关自然数n的不等式容易推广到以正的公差d的等差数列 $\{a_n\}$ 上去.另见第2章 $\{1,N2-3.$

9. [MCM] 设
$$|a_n|$$
 满足 $a_0 = 1/2$, $a_{k+1} = a_k + (a_k^2/n)$, $k = 0, 1, 2, \dots, n-1$, 则 $1 - 1/n < a_n < 1$.

这道数学竞赛题的命题者给出的证明太繁,前后用了四次数学归纳法,但若用"加强命题"手法,只用一次数学归纳法,就可证明

$$\frac{n+1}{2n-k+2} < a_k < \frac{n}{2n-k}, \quad 1 \leqslant k \leqslant n.$$

取 k = n,即得

$$1 - \frac{1}{n} < \frac{n+1}{n+2} < a_n < 1$$
.

见[345]1982,3:33.

10. 设 $|a_n|$ 满足 $a_{n+2} = a_n + a_{n+1}, 8/5 \leqslant a_1 \leqslant 9/5, (8/5)^2 \leqslant a_2 \leqslant (9/5)^2$,则对于所有 n,成立 $(8/5)^n \leqslant a_n \leqslant (9/5)^n$.

提示:用数学归纳法,还可证明 $\frac{5}{4} < \sum_{n=1}^{\infty} \frac{1}{a_n} < \frac{5}{3}$.

11. 设 $\{a_n\}$ 满足 $a_1 > \sqrt{\beta}, \beta > 0, a_{n+1} = (a_n^2 + \beta)/(2a_n), 则 a_{n+1} < a_n, 且当 n > (2^{1/\alpha} - 1)^{-1}$ 时,有

$$0 < a_n - \sqrt{\beta} < n^{-\alpha} \quad (\alpha \geqslant 1).$$

这是计算机上常用的计算平方根的牛顿法. 特别, 当 $\beta = 2$ 时, 有 $\sqrt{2} < a_n < 1 + \sqrt{2}$.

12. 设 $|a_k|$ 满足: $a_1 = 1$. 且 $n \ge 1$ 时 $a_{n+1} = a_n + a_n^{-1}$. 则 $\sqrt{2n} < a_n < \sqrt{2n + (1/2)\ln n}$, $(n \ge 3)$, 当 n > 4 时,下限 $\sqrt{2n}$ 可改进为 $\sqrt{2n + (1/2)\log(n/4)}$.

令 $G(n) = 2n + (1/2)\log n - a_n^2$,则 G(n) 严格递增且上有界,从而 $\lim G(n) = c$.

对于上述极限 c 提出了以下三个猜想:

- ① c是超越数;
- ② 对任意整数 $m, n (n \neq 0)$,成立 $|c m/n| > 1/(10n^2)$;
- ③ 对于任给正数 ϵ ,有无穷多对素数 p,q,使得 $|c \frac{p}{q}| < \frac{1}{q^{2-\epsilon}}$.

见[348]1991.8. 当 $n \ge 14$,还有

$$0 < G(n+1) - G(n) < \frac{\log n}{8n^2};$$

 $0 < G(13) < G(14) < \dots < G(n) < G(n+1) < G(13) + \sum_{k=13}^{n} \frac{1}{8k^2} (\log k).$

见[67] P.12 和[305] 1988,95(7):654;1990,97(3):244.

若取 $a_1 = 5$,得常见的估计式: $45 < a_{1000} < 45.1$.

14. 设 $a_{n+1} = \frac{a_n^2}{2(a_n - 1)}$, 则当 $2 < a_1 < 3$ 时, $0 < a_n - 2 < 2^{1-n}$, 而当 $a_n > 3$ ($\forall n \in N$) 时, $a_{n+1}/a_n < 3/4$,

提示:用数学归纳法.

15. [MCM] 设
$$a_1 = \frac{1}{2}, a_n = \left(1 - \frac{3}{2n}\right) a_{n-1}, n \geqslant 2,$$
则
$$\sum_{k=1}^{n} a_k < 1. (1988 年 IMO 备选题).$$

提示:由条件知所有 $a_n > 0$ 且当 $k \ge 2$ 时 $a_k + (2k-1)a_k = (2k-3)a_{k-1}$. 在上式中依次令 $k = 2,3,\dots,n$ 然后相加.

17. [MCM] 设
$$a_1 > a_0, a_k = 3a_{k-1} - 2a_{k-2},$$
则

$$a_n \geqslant 2^n$$
; $a_{n+1} - a_n \geqslant 2^n$.(提示:用数学归纳法.)

18. [MCM] 设
$$\{a_n\}$$
 是正的递减数列,且 $\sum_{k=1}^n (1/k) a_k^2 \le 1$,则 $\sum_{k=1}^n a_k/k \le 3$.

则 $1 < a_n < 1 + \beta, (n \ge 2)$.(提示:用数学归纳法.)

20. [MCM]
$$\mathfrak{P}_{a_1} = 1, a_{n+1} = n/a_n, \mathfrak{p}_{a_n} = \sum_{k=1}^n (1/a_k) \geqslant 2\sqrt{n} - 1.$$

21. [MCM]
$$\mathfrak{P}_{a_1} = 1, a_{n+1} = 1 + \frac{n}{a_n}, n \ge 1, \mathbb{N}$$
 $\sqrt{n} < a_n < \sqrt{n} + 1 \quad (n \ge 2).$

提示:用数学归纳法.

(1) 当
$$n > \frac{4}{a_1^3}$$
 时,是否成立 $a_{n+1} > a_n$?(陈计提出见[31]P.116 – 123)

(2) 当
$$a_1 \geqslant 1$$
 时 $\sqrt{n-1 + \frac{a_1^2}{4} + \frac{a_1}{2}} \leqslant a_n \leqslant \sqrt{n + \frac{1}{4}a_1^2 + \frac{a_1}{2}}, n \geqslant 1$. 见[305]1996,103(10):912.

23. [MCM],设
$$a_1 = 1, a_n = a_{n-1} + \frac{1}{a_{n-1}}$$
,则
$$\sqrt{2n-1} < a_n < \sqrt{3n-2}.$$

(天津"中等数学",1993,4:35).

24. [MCM]. 设 $a_0 = 1$, $a_n = \frac{\sqrt{1 + a_{n-1}^2 - 1}}{a_n - 1}$, 则 $a_n > \frac{\pi}{2^{n+2}}$ (1990 年匈牙利奥赛试题).

25. [IMO]. 设
$$a_0 = \frac{\sqrt{2}}{2}$$
, $a_{n+1} = a_0 \cdot \sqrt{1 - \sqrt{1 - a_n^2}}$, $n = 0, 1, 2, \dots, b_0 = 1$, $b_{n+1} = \frac{\sqrt{-1 + b_n^2} - 1}{b_n}$. 则

$$2^{n+2}a_n < \pi < 2^{n+1}b_n$$
. $n = 0, 1, 2, \dots, (1989 年 30 届 IMO 预选题).$

26. [MCM]. 设
$$a_k \geqslant 0$$
, $a_{n+m} \leqslant a_n + a_m$, 则对 $\forall n \geqslant m$, 成立

$$a_n \leq ma_1 + (\frac{n}{m} - 1)a_m$$
. 特别,若 $a_1 = 1, a_n > 1 (n \geq 2)$ 且 $a_{n+m} \leq a_n + a_m$,则 $a_n < n$.

27. [MCM]. 设
$$|a_k|$$
 满足 $a_n > 0$, $a_n^2 < a_n - a_{n+1}$,则 $a_n < \frac{1}{n+2}$ $(n \ge 2)$.

提示:用数学归纳法,或利用 $f(x) = x - x^2$ 在 $x \le 1/2$ 时递增,于是,

$$a_{k+1} \le a_k - a_k^2 < \frac{1}{k+2} - (\frac{1}{k+2})^2 = \frac{k+1}{(k+2)^2} < \frac{1}{k+3}$$

28. Khinchin 不等式:设 $\{a_k\}$ 为复数列. $\epsilon_k = \pm 1, 1 \le k \le n, c > 1, 则$

$$\left(\sum_{k=1}^{n} |a_k|^2\right)^{1/2} \leqslant c2^{-n} \sum_{|\epsilon_k|} |\sum_{k=1}^{n} \epsilon_k a_k|,$$

式中 $\sum_{|\epsilon_k|}$ 表示对所有 $\epsilon_k = \pm 1$ 求和,见[125]Vol.1:186.

29. (1) [MCM]. 设
$$S_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}$$
 $(n \land 根号),$ 令
$$f(n) = \frac{2 - S_n}{2 - S_{n-1}}. 则 \quad \frac{1}{4} < f(n) < \frac{\pi^2}{27}; \quad S_n < S_{n+1} < 2.$$

证 令
$$a_n = \frac{\pi}{2^{n+2}}$$
,则 $S_n = 2\cos(2a_n)$. 问题变成要证 $\sqrt{f(n)} = \frac{\sin a_n}{\sin(2a_n)} > \frac{1}{2}$.

(2) 问题:若
$$a > 1$$
,令 $S_n = \sqrt{a + \dots + \sqrt{a}} (n \land R \dashv S)$.

$$g(n) = \frac{a - S_n}{a - S_{n-1}}$$
,问 $g(n)$ 的最优上、下界是多少?

已知 a > 0 时, S_n 递增且 $\lim_{n \to \infty} S_n = \frac{1}{2} (\sqrt{4a+1} + 1)$.

(3)
$$\forall a \geq 2, S_1 = \sqrt{a}, S_2 = \sqrt{a - \sqrt{a}}, S_3 = \sqrt{a - \sqrt{a + \sqrt{a}}}, S_4 =$$

$$\sqrt{a-\sqrt{a+\sqrt{a+\sqrt{a}}}}$$
,…,这里,根号套中符号序列 -, +, +, … 按周期 3 出现,则 $S_{6n+4} < S_{6n+3} < S_{6n+2} < S_{6n+1}; S_{6n+4} < S_{6n+5} < S_{6n+6} < S_{6n+7};$

$$0 < S_4 < S_{10} < \dots < S_{6n+4} < S_{6n+7} < S_{6n-1} < \dots < S_7 < S_1 = \sqrt{a}$$

$$\lim_{n\to\infty} S_n = \frac{\beta-1}{6} + \frac{2}{3}\sqrt{4a+\beta}\sin(\frac{1}{3}\arctan\frac{2\beta+1}{3\sqrt{3}}).$$

式中 $\beta = \sqrt{4a-7}$. 见[305]1993,100(7):650.

30. 设
$$a_0 = 1$$
, $a_{n+1} = \sqrt{2 + a_n}$, 则

$$0 < 2 - a_n < \frac{1}{(2 + \sqrt{3})^n}$$
.(提示:用数学归纳法.)

31. [MCM]. 设
$$S_n = \sqrt{2 + \sqrt[3]{3 + \dots + \sqrt[n]{n}}}$$
 ,则 $S_{n+1} - S_n < \frac{1}{n!}$ $(n = 2, 3, \dots)$

(1985年 IMO 备选试题). [99](3):49.

32. 设
$$a_0 = 1$$
, $a_{n+2} = \sin a_n$, 则

$$\frac{1}{\sqrt{3n+2}} \leqslant a_n \leqslant \sqrt{\frac{5}{n}}.$$

33. 设
$$a_1 = 1, a_{n+1} = \frac{9a_n}{6+a_n}$$
,则当 $n \ge 2$,成立
$$3[1 - (\frac{2}{3})^{n/2}] < a_n < 3[1 - (\frac{2}{3})^n]. (见[348]1990, 10:33.).$$

34. [MCM]. 设
$$1 = a_0 \leqslant a_1 \leqslant a_2 \leqslant \cdots \leqslant a_n \leqslant \cdots$$
,令

$$S_n = \sum_{k=1}^n (1 - \frac{a_{k-1}}{a_k}) \frac{1}{\sqrt{a_k}},$$

则 $0 \leq S_n < 2, (n = 1, 2, \dots)$

$$\widetilde{\mathbf{u}} \quad 0 \leqslant S_n = \sum_{k=1}^n \frac{a_{k-1}}{\sqrt{a_k}} \left(\frac{1}{a_{k-1}} - \frac{1}{a_k} \right) = \sum_{k=1}^n \frac{a_{k-1}}{\sqrt{a_k}} \left(\frac{1}{\sqrt{a_{k-1}}} + \frac{1}{\sqrt{a_k}} \right) \left(\frac{1}{\sqrt{a_{k-1}}} - \frac{1}{\sqrt{a_k}} \right) \\
\leqslant 2 \sum_{k=1}^n \left(\frac{1}{\sqrt{a_{k-1}}} - \frac{1}{\sqrt{a_k}} \right) = 2 \left(\frac{1}{\sqrt{a_0}} - \frac{1}{\sqrt{a_n}} \right) < 2.$$

35. 设
$$F_n(x) = \frac{1}{n!} \prod_{k=1}^n (k-x), n \ge 2, I(n) = \int_0^1 F_n(x) dx,$$
则当 $n \ge 2$ 时,有
$$I(n) > \frac{1}{2\ln 2n}, \quad 从而 \quad \sum_{k=1}^\infty \frac{1}{n} I(n) = +\infty. \text{ (Gabovic, [4]P494)}$$

36. 设
$$a > 0$$
, $f \in [a, \infty)$ 上严格递减和严格凸, $\lim_{x \to \infty} f(x) = 0$, $xf(x) \in [0, \infty)$ 上

是凹函数. 令
$$a_n = \sum_{k=n_0}^n f(k) - \int_{n_0}^n f(x) dx$$
, $\lim_{n \to \infty} a_n = l$. 则
$$\frac{f(n)}{2 + (1/n)} < a_n - l < \frac{f(n)}{2}.$$

(见 Astra Mat. 1990,1(3):3-7)

37. **凸序列不等式**:设 $\{a_n\}$ 为实数列, $\Delta a_n = a_n - a_{n+1}$, $\Delta^2 a_n = \Delta a_n - \Delta a_{n+1}$ 若 $\Delta^2 a_n \geqslant 0$, $(\forall n)$, 则称 $\{a_n\}$ 为**凸序列**; 更一般地, 若 $\forall 1 \leqslant m < k < n$, 成立 $a_k \leqslant \frac{k-m}{n-m} a_n + \frac{n-k}{n-m} a_m$,则称 $\{a_n\}$ 为凸序列;若 $\sum_{n=0}^{\infty} (n+1) \mid \Delta^2 a_n \mid < \infty$,则称 $\{a_n\}$ 为

拟凸序列;若 $\sum\limits_{n=0}^{\infty} |\Delta a_n| < \infty$,则称 $\{a_n\}$ 为有界变差序列,记为 $\{a_n\} \in BV$.若 $\{a_n\}$ 是有界拟凸序列,则 $\{a_n\} \in BV$ 且 $\{n\Delta a_n\}$ 是有界序列.令

$$L_r(a_n) = a_{n+2} - (r+1)a_{n+1} + ra_n(r > 0).$$

这是 $L_1(a_n) = \Delta^2 a_n$ 的推广. 若 $L_r(a_n) > 0$, 则称 $\{a_n\}$ 关于算子 $L_r(a_n)$ 是凸的; 若 $L_r(\ln a_n) \ge 0$, ($\forall a_n > 0$), 则称 $\{a_n\}$ 关于 $L_r(a_n)$ 是对数凸的(Copson, E. T., Proc. Edinb. Math, Soc. II Sec. 1970, 17:159 – 164).

若 φ 是(0,∞) 上的凸函数,则 $a_n = \varphi(n)$ 为凸序列.

(1) [IMO]. (29 届 IMO 备选题):设 $\{a_n\}$ 为非负凸序列,且 $\sum_{k=1}^n a_k \leqslant 1$,则 $0 \leqslant a_n - a_{n+1} < 2/n^2$.

提示:令 $b_n = \Delta a_n$,由条件可推出 $\{a_n\}$ 递减且 $b_n \geqslant b_{n+1} \geqslant 0,1 \geqslant \sum_{k=1}^n a_k \geqslant \sum_{k=1}^n (kb_k)$ $\geqslant (\sum_{k=1}^n k)b_k = (1/2)n(n+1)b_k$.

(2) 设 $|a_n|$ 为严格凸序列,即 $a_n > 0$, $\Delta a_n > 0$, $\Delta^2 a_n > 0$, 则

$$\frac{a_0}{2} < \sum_{k=0}^{\infty} (-1)^k a_k < a_0 - \frac{1}{2} a_1.$$

(3) Nanson 不等式:设{a_n} 为凸序列,则

$$\frac{1}{n}\sum_{k=1}^{n}a_{2k} \leqslant \frac{1}{n+1}\sum_{k=0}^{n}a_{2k+1}$$
,仅当 $\{a_n\}$ 为等差数列时等号成立.

提示:对 $k(n-k+1)\Delta^2 a_{2k-1} \ge 0$ 与 $k(n-k)\Delta^2 a_{2k} \ge 0$ 求和.(见[1]P.107.) 1989 年,Adamovic,D.D.作了推广,见 Math,Balkanica(N.S.)1989,3(1):3-11.

(4) 设 $|a_n|$ 是有界凸序列,则

$$\sum_{k=0}^{n} (k+1) \Delta^2 a_k \leqslant a_0.$$

(5) 设 $\{a_n\}$ 为凸序列, $\{p_k\}$ 是正的对称序列,即 $p_k = p_{n-k+1}, k = 1, \cdots, n. [r]$ 表示 r 的整数部分. 记 $r_1 = [(n+1)/2], r_2 = [(n+2)/2], 则$

$$\frac{1}{2}(a_{r_1}+a_{r_2}) \leqslant \frac{\sum_{k=1}^{n} p_k a_k}{\sum_{k=1}^{n} p_k} \leqslant \frac{1}{2}(a_1+a_n).$$

(见 Toader, Gh., Rev. Anal. Numer. Theor. Approx. 1992, 21(1):83 - 88)

38. **高阶凸序列不等式:**设 $\{a_n\}$ 为实数列,令

$$\Delta^{\circ}a_k = a_k, \Delta^1 a_k = \Delta a_k = a_{k+1} - a_k.$$
 (注意定义与 N37 不同).

$$\Delta^{m}a_{k} = \Delta(\Delta^{m-1}a_{k}) = \sum_{k=0}^{m} (-1)^{m-k} {m \choose k} a_{n+k}, m = 2, 3, \cdots,$$

$$S_n = \sum_{k=0}^m a_k, \qquad \sigma_n = \frac{1}{n+1} \sum_{k=0}^n a_k.$$

(1) 若 $\Delta^{j}a_{k} > 0$ $(j = 0, 1, \dots, m), \Delta^{o}a_{1} = a_{1}, \Delta^{m+1}a_{k} = 0.$ 则

$$(1+\frac{N}{n})<\frac{S_{N+n}}{S_n}<\binom{N+n}{m+1}/\binom{n}{m+1}.$$

(Markovic, D., Bull. Soc. Math. Phys. Serbie, 1949, 1(2):17 - 21)

(2) $\forall b \ge -1, (-1)^n \Delta^n a_0 > 0, \underline{1}(-1)^{n-k} \Delta^{n-k} a_k \ge 0, k = 1, \dots, n. \underline{M}$

$$\sum_{k=0}^{n} \binom{n}{k} b^k a_k > 0.$$

(3) 若 $b \le -1, \Delta^n a_0 > 0$,且 $\Delta^{n-k} a_k \ge 0, k = 1, \dots, n$,则

$$(-1)^n \sum_{k=0}^n \binom{n}{k} b^k a_k > 0.$$

(4) 设 $b \ge -1$, f_k 在[0,n] 上连续, 在(0,n) 上 n 次可微, 且 $f_k(n) < 0$, $k = 1, \cdots$, $m, j = 1, \cdots, n$. 若 $(-1)^j f_k^{(j)}(x) \ge 0$, n - j < x < n, 则

$$\sum_{j=0}^{n} {n \choose j} b^j \prod_{k=1}^{m} f_k(x) > 0.$$

 $(N(2) \sim (4), \mathbb{R} \text{ Drazin}, M.P., [305] 1955, 62:226 - 232)$

(5) 若存在常数 m_k, M_k 使得 $m_k \leq \Delta^k a_n \leq M_k, n = 0, 1, 2, \dots, 则$

$$\frac{1}{k+1}m_k \leqslant \Delta^k \sigma_n \leqslant \frac{1}{k+1}M_k.$$

(见[305]1985,92(6):428)

39. $0 1/2 < a < 2, b_n = (a^n + a^{-n})/2, M$

$$\sum_{k=1}^{n} b_k < 2^n - 2^{-1}.$$

40. 设 $a_{n_0} > b_{n_0}$,且对所有 $n > n_0$,有 $a_n - a_{n-1} \ge b_n - b_{n-1}$,则对所有 $n \ge n_0$,有 $a_n \ge b_n$.

41. 设
$$a_n > 0, b_n > 0, a_{n_0} > b_{n_0}$$
,且当 $n > n_0$ 时 $a_n / a_{n-1} \geqslant b_n / b_{n-1}$,则 $a_n \geqslant b_n \quad (n \geqslant n_0)$.

见[348]1989,12:18-20.

42. 设正数 a_k, b_k ,满足 $a_{2k-1} < b_{2k-1} < b_{2k} < a_{2k}, 1 \leq k \leq n$; $a_{2k-1} + a_{2k} = b_{2k-1} + b_{2k}$,则

(1)
$$\sum_{k=1}^{2n} (\sqrt[n]{b_k} - \sqrt[n]{a_k}) > 0; \quad (2) \quad \sum_{k=1}^{2n} (b_k^{-1/n} - a_k^{-1/n}) < 0;$$

(3)
$$\sum_{j=2}^{n} \sum_{k=1}^{2n} (b_k^{1/j} - a_k^{1/j}) > 0; \quad (4) \quad \sum_{j=2}^{n} \sum_{k=1}^{2n} (b_k^{-\frac{1}{j}} - a_k^{-\frac{1}{j}}) < 0.$$

43. [MCM]. 设
$$a_1 = 1, a_k = a_{k-1} + (a_{k-1})^{-1}$$
,则

$$\sqrt{2n-1} < a_n < \sqrt{3n-2}.$$

证 当 k > 1 时, $a_k^2 = a_{k-1}^2 + 2 + a_{k-1}^{-2}$,且 $a_k > 1$,于是 $a_{k-1}^2 + 2 < a_k^2 < a_{k-1}^2 + 3$, $1 \le k \le n$,将这些不等式相加即可得证.

44. [MCM]. 已知在数 $\{a_k\}_{k=1}^n + 1, 1/2, 1/3, \dots, 1/n$ 只出现 1 次, 且在数 $\{b_k\}_{k=1}^n$ 中也只出现一次. 此外, 还已知 $a_k + b_k \geqslant a_{k+1} + b_{k+1}, 1 \leqslant k \leqslant n-1, 则 <math>a_k + b_k \leqslant 4/k$. $(1 \leqslant k \leqslant n)$.

证 在 m 个数对 $(a_k,b_k)(1 \le k \le m)$ 中, $a_k \ge b_k$ 或 $b_k \ge a_k$ 中之一成立的个数不少于 m/2 对. 例如, 设 $b_k \ge a_k$ 是在不少于 m/2 个数对中成立的不等式, 若 b_i 是这些 b_k 的最大值,则 $b_i \le 2/m$. 所以 $a_i + b_i \le 2b_i \le 4/m$,又 $i \le m$,故 $a_m + b_m \le a_i + b_i \le 4/m$.

45. [MCM]. 有序数组 a_1, a_2, \dots, a_n 由下面的条件确定: $a_1 = 0$,

提示:将原式平方再相加,化简后得 $a_{n+1}^2 = 2(\sum_{k=1}^n a_k) + n \geqslant 0$.

46. [MCM].设 $\{a_k\}$ 严格递增无界,则存在 N,使 $\forall n \ge N$.有

$$S_n = \sum_{k=1}^n \frac{a_k}{a_{k+1}} < n-1.$$

47. [IMO] 设 $|a_k|$ 为递增数列 $,a_0=1$,令 $S_n=\sum_{k=1}^n\left(\frac{x_{k-1}^2}{x_k}\right)$,则当 $n\geqslant 14$ 时 $,S_n\geqslant 2^\alpha$,式中 $\alpha=\sum_{k=0}^{n-2}\left(\frac{1}{2}\right)^k$.

48. 设 $a_0 = 0$, $\{a_n\}$ 递增, $\{a_n - a_{n-1}\}$ 递减,则 $\{a_n/n\}$ 也递减.

49. [MCM]. 设 $\{a_n\}$ 满足 $0 \leqslant a_1 \leqslant a_2 \leqslant 2a_1, a_2 \leqslant a_3 \leqslant 2a_2, \cdots, a_{n-1} \leqslant a_n \leqslant 2a_{n-1},$ 则在和 $S = \sum_{k=1}^{n} (\pm a_k)$ 中可以适当选择正负号,使得 $0 \leqslant S \leqslant a_1$.

证 用数学归纳法. n=1 时,结论显然成立,今设对于 n 个数 a_2,a_3,\cdots,a_{n+1} ,存在 形如和 $S'=\sum_{k=2}^n (\pm a_k)$ 满足 $0 < S' < a_2, \text{则} \ 0 \leqslant S' \leqslant a_1$,此时 $0 \leqslant S=a_1-S' \leqslant a_1$ 或 $a_1 < S' \leqslant a_2 \leqslant 2a_1$,于是 $S=S'-a_1 \leqslant a_2-a_1 \leqslant a_1$ 都是所求的解.

50. [MCM].设 $\{a_1,\dots,a_n\}$ 是 n 个互不相同的实数,令 $M = \min\{(a_i - a_k)^2:$

 $1 \leq j < k \leq n$,

$$\sum_{k=1}^{n} a_{k}^{2} \geqslant \frac{nM}{12}(n^{2}-1).$$

(单壿在[99]6-9:12 - 14 给出了三种不同的证法.)

51. (1) 由 $\{a_k\}$ 与 $\{b_k\}$ 构造两个新的数列:

$$\mathbf{\hat{A}}_{k} = \begin{cases} 1, & k = 0 \\ a_{1}, & k = 1 \\ a_{k}A_{k-1} + A_{k-2}, k \geqslant 2 \end{cases} \qquad B_{k} = \begin{cases} 1, & k = 0 \\ b_{1}, & k = 1 \\ b_{k}B_{k-1} + B_{k-2}, k \geqslant 2 \end{cases}$$

r>1, s 为非负整数,若 $\forall k \geqslant s+1$,有 $a_k \geqslant rb_{k-s}$,且当 $k \geqslant 2$ 时, $b_k \geqslant 2$,则当 $k \geqslant s$ 时,成立 $A_k \geqslant r^a B_{k-s}$,式中 $\alpha=(k-s)/2$. 证明见[345]1990,2.

(2) 设数列 $\{x_n\}$ 满足条件: $|x_{n+1}| \le p | x_n| + q, n = 0,1,2,\dots,$ 则

52. [MCU]. 设 $0 \le f(k, m) \le 1, 1 \le k \le n, 1 \le m \le kN,$ 则

$$\sum \left(\frac{f(k,m)}{k}\right)^2 \leqslant 2N \sum f(k,m).$$

式中 \sum 是对所有可能的数对(k,m) 求和.

提示:令 $a_k = \frac{1}{k} \sum_{m=1}^{kN} f(k,m)$,则 $0 \le a_k \le N$,用数学归纳法证明与原命题等价的命题:

$$\left(\sum_{k=1}^n a_k\right)^2 \leqslant 2N\left(\sum_{k=1}^n \left(ka_k\right)\right).$$

(第39届普特南数学竞赛,见[66],P.409,475-476)

53. 设 $\{a_n\}$ 由方程 $\exp(e^x) = \sum_{n=0}^{\infty} a_n x^n$ 确定,则

$$(e \cdot \ln n)^{-n} < a_n < \left(\frac{e}{\ln n}\right)^n.$$

见[67]P12,75 - 77.

54. 设 $\{a_n\}$ 是非负递减数列,令 $S_n = \sum_{k=1}^n a_k$,则 $S_{2^n-1} \leqslant \sum_{k=0}^{n-1} 2^k a_{2^k} \leqslant 2S_{2^n} - 2^n a_{2^n}$. 提示:用数学归纳法.

55. 设 $a_k \ge 0$, q > 0, 令 $S_n(q) = \frac{1}{(n+1)^{q+1}} \sum_{k=0}^n (k+1)^q a_k$ 则存在常数 $c_q > 0$, 使

$$\sup_{n} |S_n(0)| \leqslant c_p \sup_{n} |s_n(q)|. (\$ \$ \|[334] 1984, 27(6). \$ 13).$$

56. 设 $f(x) = \log_a(x + \sqrt{x^2 - 1}), x \ge 1, a > 0, a \ne 1, \ \ \ \ b_n = f^{-1}(n),$ $S_n = \sum_{i=1}^n b_i, \, \text{则当}\frac{1}{2} < a < 2 \text{ 时}, S_n < 2^n - \left(\frac{\sqrt{2}}{2}\right)^n. (见[345]1991, 12:19.)$

57. 设
$$|x_k|$$
 为实数或复数列, $1 \le m \le n$. $||x|| = \left(\sum_{k=0}^n ||x_k||^2\right)^{1/2}, r = 2(\left[\frac{n}{m}\right] + 1)$.

则:

(1)
$$0 \leqslant \left(\sum_{k=0}^{n-m} \mid x_k \pm x_{k+m} \mid^2\right)^{1/2} \leqslant c_1 \parallel x \parallel;$$

(2)
$$c_2 \| x \| \leqslant \left(\sum_{k=0}^{n} \| x_k \pm x_{k+m} \|^2 \right)^{1/2} \leqslant c_3 \| x \| ;$$

式中 $x_{n+1} = \cdots = x_{n+m} = 0$;

(3)
$$c_2 \| x \| \leqslant \left(\sum_{k=-m}^{n-m} | x_k \pm x_{k+m} |^2 \right)^{1/2} \leqslant c_3 \| x \|,$$

式中 $x_{-m} = \cdots = x_{-1} = 0$;

(4)
$$c_4 \| x \| \leqslant \left(\sum_{k=-\infty}^{n} | x_k \pm x_{k+m} |^2 \right)^{1/2} \leqslant c_3 \| x \|,$$

式中 $x_{-n} = \cdots x_{-1} = x_{n+1} = \cdots = x_{n+m} = 0; c_1 = 2\cos(\pi/r);$

$$c_2 = 2\sin\frac{\pi}{2(r+1)}; c_3 = 2\cos\left(\frac{\pi}{r+1}\right); c_4 = 2\sin\left(\frac{\pi}{r+2}\right).$$

(见[54]5:73-85)

58. **FTT 不等式(Fan - Taussky - Todd 不等式):**设 z_1, \dots, z_n 为复数,令 $\Delta z_k = z_k - z_{k+1}, \Delta^2 z_k = z_k - 2z_{k+1} + z_{k+2}, z_0 = z_n, z_{n+1} = z_1$,

$$\|z\|_{r} = \left(\sum_{k=1}^{n} + z_{k} + r\right)^{1/r}, \|\Delta z\|_{r} = \left(\sum_{k=1}^{n} + \Delta z_{k} + r\right)^{1/r},$$

$$\|\Delta^2 z\|_r = \left(\sum_{k=1}^n |\Delta^2 z_{k-1}|^r\right)^{1/r}, 1 \leqslant r < \infty, \|z\|_{\infty} = \max_{1 \leqslant k \leqslant n} |z_k|.$$

(1) 若 $\sum_{k=1}^{n} z_{k} = 0$,则 $\forall m \in N$,成立 $\|z\|_{m} \leqslant (\frac{n-1}{2}) \|\Delta z\|_{m}; \|z\|_{m} \leqslant \frac{1}{12} (n^{2}-1) \|\Delta^{2} z\|_{m}.$

(2) 设 $a = \{a_1, a_2, \dots, a_n, \dots\}$ 是具有周期为 n 的序列,对任意数列 $b = \{b_1, b_2, \dots, b_n\}$

(3) 若 $x = (x_1, x_2, \dots, x_n, \dots)$ 为实数列,且 $\sum_{k=1}^{n} x_k = 0$, $||x||_{\infty} = 1$,,则 $||\Delta x||_{\infty} \ge c_n$.

式中当 n=2m 为偶数时, $c_n=\frac{4}{n}$; 而当 n=2m-1 为奇数时, $c_n=\frac{4n}{n^2-1}$.

上述(1) 是 Bellman 不等式的离散类似,(3) 是 Northcott 不等式的离散类似.

证明见 Monatshefte für mathematik, 1955, 59(2):73 - 90.

59. [MCM]. 设 $(0,\infty)$ 上的函数列 $\{f_n\}$ 由下式定义: $f_1(x) = x, f_{n+1}(x) = (f_n(x) + 1/n)f_n(x)$,则存在惟一的正数 a,使得对于所有 n $0 < f_n(a) < f_{n+1}(a) < 1$.

60. [MCM]. 设 x > 0, 定义

$$f_n(x) = x^{x^{n-1}} \} \not \perp n \uparrow x.$$

则对所有 $k \ge 3$, $f_{n+1}(k) > 2f_n(k+1)$. (用数学归纳法).

1983年,孙传昆证明:当1 \leqslant x<exp(1/e)时, $f_n(x)$ \leqslant $f_{n+1}(x)$;而当0<x<1时,有 $f_1(x)$ < $f_3(x)$ < \cdots < $f_{2n-1}(x)$ < \cdots < $f_{2n}(x)$ < \cdots < $f_2(x).见[345]1983,5:28 - 29.$

61. [MCM]. 设
$$A_n = 3^{3^{-3}} | n \uparrow 3; B_n = 8^{8^{-8}} | n \uparrow 8,$$
则对所有 n ,有 $A_{n+1} > B_n$. (1.1)

证 直接用数学归纳法证(1.1) 式就很困难,可通过"加强命题" 技巧,证明

$$A_{n+1} > 3B_n. \tag{1.2}$$

实际上,n=1时(1.2) 式显然成立,设 n=k时(1.2) 式成立,即 $A_{k+1}>3B_k$,于是 当 n=k+1时, $A_{k+2}=3^{A_{k+1}}>3^{3B_k}=27^{B_k}>24^{B_k}=3^{B_k}\cdot 8^{B_k}>3B_{k+1}$.

62. 设数列 $\{x_n\}$ 由 $x_n = f(x_{n-1})$ 递归定义,f 连续且有不动点a,(即 f(x) = x 有实根 a). 当 f 是递增函数时,若 x < a 时,f(x) > x,而 x > a 时 f(x) < x,则当 $x_1 < a$ 时, $\{x_n\}$ 是递增数列,而当 $x_1 > a$ 时, $\{x_n\}$ 是递减数列,且 $\lim_{n \to \infty} x_n = a$;当 f 是递减函数时,若 x < a 时,有 f[f(x)] > x,而 x > a 时,有 f[f(x)] < x,则

 $x_1 < x_3 < \dots < x_{2n-1} < \dots < a < \dots < x_{2n} < \dots < x_4 < x_2$,且 $\lim_{n \to \infty} x_n = a$. 利用不动点原理,可以统一证明许多由递推关系式确定的数列不等式,例如,

(1) 设 $x_1 > 0$, $x_{n+1} = \frac{x_n(x_n^2 + 3a)}{3x_n^2 + a}$, a > 0, 则当 $0 < x_1 < \sqrt{a}$ 时, $x_n < x_{n+1} < \sqrt{a}$, $x_1 > \sqrt{a}$ 时, 不等号反向.

提示:找 $f(x) = \frac{x(x^2 + 3a)}{3x^2 + a}$ 的不动点.

- (2) 设 $a > 0, x_1 = \sqrt[3]{a}, x_n = \sqrt[3]{ax_{n-1}},$ 则当 a > 1 时, $x_n < x_{n+1} < \sqrt{a}$, 而当 0 < a < 1 时, 不等号反向. (提示:找 $f(x) = (ax)^{1/3}$ 的不动点.)
- (3) 设 $x_1 > 0$, $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$, 则当 $x_1 < \sqrt{3}$ 时, 不等号反向.
- 63. (1) 设 a,b,c>0, a+b+c=1, $x_0,y_0,z_0>0$, x_n,y_n,z_n 的加权算术平均,加权几何平均,加权调和平均依次定义为: $x_{n+1}=ax_n+by_n+cz_n$, $y_{n+1}=x_n^ay_n^bz_n^c$, $z_{n+1}=\left(\frac{a}{x_n}+\frac{b}{y_n}+\frac{c}{z_n}\right)^{-1}$,则 $z_{n+1}\leqslant y_{n+1}\leqslant x_{n+1}$,且 $\{x_n\}\setminus\{y_n\}\setminus\{z_n\}$ 均收敛于同一极限.

(见[371]1993,66(3))

(2) Schwab 数列不等式:由关系式 $a_{n+1} = \frac{1}{2}(a_n + b_n)$ 与 $b_{n+1} = \sqrt{b_n a_{n+1}}$, n = 0, $1,2,\cdots,a_0,b_0>0$ 所定义的数列 $\{a_n\}$ 、 $\{b_n\}$ 称为 Schwab 数列,不妨设 $b_0>a_0>0$,则 $\{a_n\}$ 递增上有界, $\{b_n\}$ 递减下有界,且 $a_0< a_1<\cdots< a_{n+1}< a_{n+2}< b_{n+2}< b_{n+1}<\cdots$

 $< b_0 \cdot \lim a_n = \lim b_n \cdot$

(黄友谦,"初等数学研究论文选",上海教育出版社,1992,P207 - 222)

64. 设 $\forall y_k, q_k > 0$,且 $\{\frac{x_k}{y_k}\}$ 和 $\{\frac{p_k}{q_k}\}$ 同时递增或递减,则

$$\left(\sum_{k=1}^{n} p_{k} y_{k}\right) \left(\sum_{k=1}^{n} q_{k} x_{k}\right) \leqslant \left(\sum_{k=1}^{n} p_{k} x_{k}\right) \left(\sum_{k=1}^{n} q_{k} y_{k}\right).$$

(Toader, Gh., Rev. Anal. Numer. Theor. Approx. 1992, 21(1):83 - 88)

65. **Meir 不等式:**设{a_k},{p_k} 为递增数列,即

$$0 = a_0 \leqslant a_1 \leqslant \dots \leqslant a_n, a_k - a_{k-1} \leqslant p_k, k = 1, \dots, n;$$

$$p_1 \leqslant p_2 \leqslant \dots \leqslant p_n, r \geqslant 1, q_k = \frac{1}{2} (p_k + p_{k+1}), k = 1, \dots, n-1,$$

$$s + 1 \geqslant 2(r+1), \diamondsuit$$

$$F(s) = \left((s+1) \sum_{k=1}^{n-1} q_k a_k^s \right)^{1/(s+1)}, \text{ } \emptyset \text{ } F(s) \leqslant F(r).$$

(Pecaric, J. E. [401]1992,22(1):329 - 330)

66. **Fourier 系数不等式:**设 f 的 Fourier 系数第 n 部分和为

$$S_n(f,x) = \sum_{k=-n}^{n} c_k \exp(ikx) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx).$$

式中
$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx$$
, $a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx dx$, $b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx dx$.

以下若特别声明 f 定义在 $[-\pi,\pi]$ 上,则上述 c_k,a_k,b_k 中的积分限都从 $[0,2\pi]$ 改为 $[-\pi,\pi]$.

- (1) 若 f 是 $[0,2\pi]$ 上的凸函数,则 $a_k \ge 2$;若 f 是 $[-\pi,\pi]$ 上的凸函数,且 f'(x) 有界,则 $a_{2k} \ge 0$, $a_{2k+1} \le 0$.
 - (2) 若 f 在[0,2 π] 上递减,则 $b_k \geqslant 0$;若 f 在[$-\pi$, π] 上递减,则 $b_{2k} \geqslant 0$, $b_{2k+1} \leqslant 0$. 提示:用积分第二中值定理.
 - (3) 若 f 在(0,2 π) 上的导数 f' 递增有界,则 $a_n \ge 0$ (n > 0).
 - (4) 设 f 是以 2π 为周期的连续函数,则

$$|c_k| \leq 1/2\omega(f,\pi/|k|), |a_k|, |b_k| \leq \omega(f,\pi/k),$$

式中 $\omega(f,h) = \sup\{|f(x) - f(y)|\}; |x - y| < h\}$ 为 f 的连续模.

(5) 设 $f \in C_{2\pi}$,则

$$\frac{|a_0|}{\sqrt{2}} + \sum_{k=1}^n (|a_k| + |b_k|) \leqslant \sqrt{2(2n+1)} \| f \|_c.$$

(6) 若 f 是以 2π 为周期的局部可积函数,则

$$|c_k| \leq \frac{1}{4\pi}\omega_1(f,\pi/|k|); |a_k|, |b_k| \leq \frac{1}{2\pi}\omega_1(f,\pi/k),$$

式中 $\omega_1(f,\delta)$ 是 f 的积分连续模:

$$\omega_1(f,\delta) = \sup \left\{ \int_{-\pi}^{\pi} |f(x+h) - f(x)| dx : 0 \leqslant h \leqslant \delta \right\}.$$

(7) 设 f 在 $[0,2\pi]$ 上有 k 阶连续导数,并且以 2π 为周期,则

$$|c_n| \leqslant \frac{1}{2n^k} \omega(f^{(k)}, \frac{\pi}{n})(n > 0).$$

(8) 若 $f^{(k)}$ 是[0,2 π] 上有界变差函数,则

$$|c_n| \leq \frac{1}{\pi} n^{-k} V_0^{2\pi}(f^{(k)})$$
, 式中 $V_0^{2\pi}(f^{(k)})$ 是 $f^{(k)}$ 在 $[0,2\pi]$ 上的全变差.

- (9) 若 $f^{(k)}$ 在 $[0,2\pi]$ 上既连续又属于 Lipa $(k \ge 1,0 < \alpha \le 1)$,则 $|a_n|$, $|b_n| \le cn^{-(k+\alpha)}$.
- (10) Caratheodory 不等式:设 f 以 2π 为周期、非负且不恒等于 0,则 $+a_n + < a_0$, $+b_n + < a_0$, $+c_n + < a_0$, 0. 见[57]Vol. 1 P.71.
- (11) **Rogosinski 不等式:**设 f 在(0, π) 上是非负的奇函数,且不恒等于 0,则 $|b_n| < nb_1$,($n = 2,3,\cdots$) 见[57] Vol. 1 P. 71.

提示:令 $g(x) \sim \sum_{k \neq 0} \frac{1}{k} \exp(ikx) = i(\pi - x), 0 < x < 2\pi$,则 β_n 是 fg 的 Fourier 系数,而且有 $\|fg\|_2 \leqslant \pi \|f\|_2$,即

$$\int_{0}^{2\pi} |fg|^{2} \leqslant \pi^{2} \int_{0}^{2\pi} |f|^{2}. \quad \mathbb{R}[15] \text{P.261}.$$

$$\sum_{k=-\infty}^{\infty} \frac{|c_k|}{|k|+1} \leqslant c_1 + c_2 \int_T |f(x)| \log^+ |f(x)| dx. (\Re[87]P.162.)$$

(14) HL 不等式(Hardy – Littlewood 不等式):设 $f \in L^p(-\pi,\pi), 1 则$

$$\left\{ \sum_{k=-\infty}^{\infty} |c_k|^p (|k|+1)^{p-2} \right\}^{1/p} \leqslant A_p \left(\int_{-\pi}^{\pi} |f(x)|^p dx \right)^{1/p}; \tag{1.3}$$

反之,若复数列{c,} 满足

$$\sum_{k=-\infty}^{\infty} |c_k|^q (|k|+1)^{q-2} < \infty, q \geqslant 2,$$

则 c_k 必为某个 $f \in L^q$ 的 Fourier 系数,且

$$\left(\int_{-\pi}^{\pi} |f(x)|^q dx\right)^{1/q} \leqslant A_q \left\{ \sum_{k=-\infty}^{\infty} |c_k|^q (|k|+1)^{q-2} \right\}^{1/q}. \tag{1.4}$$

见[57]Vol,2.P.109-110.另见下节 N.47(3).

注重:p=1时,(1.3)式不成立,替代的结果是下述著名的 Hardy 不等式.

(15) Hardy 不等式:若 $f \in H^1(T)$,则

$$\sum_{k\neq 0} \frac{\mid c_k \mid}{k} \leqslant A_1 \parallel f \parallel_{H^1}.$$

式中 T 为单位圆周.

证 定义在 T 上的函数 a(x) 称为 $(1,\infty,0)$ 原子,指 a(x) 满足

- i) a 的支集 $suppa \subset I \subset [-\pi,\pi);$
- ii) $||a||_{\infty} \leq |I|^{-1}$;

iii)
$$\int_{I} a(x) dx = 0.$$

其中 I 是中心在 x_0 的区间,|I| 表示区间 I 的长,根据 Hardy 空间的实变理论(例如见 [87]),只要对任意 $(1, \infty, 0)$ 原子 a ,证明

$$\sum_{k\neq 0} |c_k(a)| \leqslant c.$$

实际上,利用 $(1,\infty,0)$ 原子 a(x) 满足的三个条件有:

$$|c_k(a)| = |\int_I a(t) \exp(-2\pi i k t) dt| = |\int_I a(t) [\exp(-2\pi i k t) - 1] dt|$$

 $\leq 2\pi |k| \int_I |a(t)| |t| dt \leq 2\pi |k| |I|.$

所以, $\frac{1}{|k|} \mid c_k(a) \mid \leq 2\pi \mid I \mid$.

$$\sum_{1\neq 0} \frac{1}{k} + c_k(a) + \sum_{0 \leq |k| \leq |I|^{-1}} \left(\frac{1}{k} + c_k(a) + \right) + \sum_{|k| \geq |I|^{-1}} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1} \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + c_k(a) + \right) = \sum_{1 \leq k} \left(\frac{1}{k} + c_k(a) + c_$$

 \sum_1 至多有 $|I|^{-1}$ 项,所以, $\sum_1 \leq 2\pi |I| \cdot |I|^{-1} = 2\pi$,利用 Cauchy 不等式和 Parseval 等式,有

$$\sum_{2} \leqslant \left(\sum_{|k| \geqslant |I|^{-1}} |c_{k}(a)|^{2}\right)^{1/2} \left(\sum_{|k| \geqslant |I|^{-1}} \frac{1}{k^{2}}\right)^{1/2}.$$

$$\leqslant c \left(\sum_{k=-\infty}^{\infty} |c_{k}(a)|^{2}\right)^{1/2} = c \left(\frac{1}{|I|} \int_{I} |a(t)|^{a} dt\right)^{1/2} = c$$

于是 $\sum_{k\neq 0} \frac{1}{k} \mid c_k(a) \mid \leq c$.

由此可见,上述方法比 Hardy 原来用的复方法(见[85]P.91.) 要简捷得多. 见[376]1977,83(4):569 - 645.

(16) Paley 不等式: 设 $f(x) \sim \sum_{k=0}^{\infty} c_k \exp(ikx) \in H^1$, $|\lambda_k|$ 为 Hadamard 序列, 即 $\inf(\lambda_{k+1}/\lambda_k) > 1$,则

$$\sum_{k=0}^{\infty} |c_{\lambda_k}|^2 \leqslant c \|f\|_{H^1}^2, \mathbb{R}[87]384.$$

(17) 设 f 以 2π 为周期,且 $f \in \text{Lip} a$,即 $+ f(x) - f(y) | \leq M + x - y |^{\alpha}$ (0 $< a \leq 1$),则 $+ a_n | \leq cn^{-\alpha}$, $+ b_n | \leq cn^{-\alpha}$;

若 f 在 $(-\pi,\pi)$ 上分段单调有界,则 $|a_n| \leq c/n$, $|b_n| \leq c/n$.

67. **Schur 不等式:**设 $a_k > 0, k = 1, \dots, n, q_k$ 由下式定义:

$$\prod_{k=1}^{n} (1-a_k x)^{-1} = \sum_{k=0}^{\infty} {n+k-1 \choose k} q_k x^k,$$

则除了所有 a, 相等以外,都有

- (1) $q_k^2 < q_{k-1}q_{k+1}$; (2) $q_1 < q_2^{1/2} < q_3^{1/3} < \cdots$.
- 68. **序列** $\{a_n\}$ 的上下极限不等式: $\{a_n\}$ 的上下极限分别定义为

$$\limsup_{n\to\infty} a_n = \inf_{n\geqslant 1} (\sup_{k\geqslant n} \{a_k\}), \liminf_{n\to\infty} a_n = \sup_{n\geqslant 1} (\inf_{k\geqslant n} \{a_k\}).$$

- 则: (1) $\inf\{a_n\} \leqslant \liminf_{n \to \infty} a_n \leqslant \limsup_{n \to \infty} a_n \leqslant \sup\{a_n\}.$
 - (2) $\lim_{n\to\infty}\inf a_n + \lim_{n\to\infty}\inf b_n \leqslant \liminf_{n\to\infty}(a_n + b_n) \leqslant \liminf_{n\to\infty}a_n + \limsup_{n\to\infty}b_n \leqslant \lim_{n\to\infty}\sup (a_n + b_n) \leqslant \limsup_{n\to\infty}a_n + \limsup_{n\to\infty}b_n.$
 - (3) Cauchy 不等式: 设 $a_n > 0$,则

$$\liminf_{n\to\infty}\frac{a_{n+1}}{a_n}\leqslant \liminf_{n\to\infty}\sqrt[n]{a_n}\leqslant \limsup_{n\to\infty}\sqrt[n]{a_n}\leqslant \limsup_{n\to\infty}\frac{a_{n+1}}{a_n}.$$

(4) 若 $p_n > 0$, $p_1 \geqslant p_2 \geqslant p_3 \geqslant \cdots$, $\sum_{k=1}^{\infty} p_k = \infty$, $\sum_{k=1}^{\infty} \varepsilon_k p_k < \infty$, 其中 ε_n 只取 -1, 1的值,则

$$\liminf_{n\to\infty} \left(\frac{1}{n}\sum_{k=1}^n \varepsilon_k\right) \leqslant 0 \leqslant \limsup_{n\to\infty} \left(\frac{1}{n}\sum_{k=1}^n \varepsilon_k\right).$$

证明见[56]P.33.

(5) Cauchy 不等式中 $a_n > 0$ 可推广为复数列 $\{z_n\}$ 的模,即

$$\liminf_{n\to\infty} ||z_{n+1}/z_n|| \leqslant \liminf_{n\to\infty} \sqrt[n]{+|z_n|} \leqslant \limsup_{n\to\infty} \sqrt[n]{+|z_n|} \leqslant \limsup_{n\to\infty} ||z_{n+1}/z_n||.$$

提示:利用
$$\left| \frac{z_2}{z_1} \cdot \frac{z_3}{z_2} \cdots \frac{z_{n+1}}{z_n} \right| = \left| \frac{z_{n+1}}{z_1} \right|$$
,得
$$\frac{1}{n} \sum_{i=1}^n \log \left| \frac{z_{k+1}}{z_k} \right| = \frac{n+1}{n} \left(\frac{1}{n+1} \log |z_{n+1}| \right) - \frac{1}{n} \log |z_1|.$$

令 $m = \lim_{k \to \infty} \inf |z_{k+1}/z_k|$,对于任给 $\delta > 0$, $\{\log |z_{k+1}/z_k|\}$ 中只有有限项小于 $\log m - \delta$.

同理,若令 $M = \lim_{n \to \infty} \inf \sqrt[n]{|z_n|}$,则对任给 $\epsilon > 0$, $\{(1/n)\log |z_n|\}$ 中有无限多项不大于 $\log M + \epsilon$. 于是对充分大的 n,有

$$(\log m) - \delta < \frac{1}{n} \sum_{k=1}^{n} \log |z_{k+1}/z_k| < \frac{n+1}{n} (\log M + \varepsilon) - \frac{1}{n} \log |z_1|,$$

由 δ , ε 的任意性, \diamondsuit $n \to \infty$, 得 $\log m \le \log M$, 即 $m \le M$.

(6) Stolz 不等式:设 $\{b_n\}$ 严格递增到 ∞ , $b_n > 0$,则对任意实数列 $\{a_n\}$,都有

$$\liminf_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\leqslant \liminf_{n\to\infty}\frac{a_n}{b_n}\leqslant \limsup_{n\to\infty}\frac{a_n}{b_n}\leqslant \limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}.$$

当 $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ 存在(有限或 ± ∞) 时,即得著名的 Stolz 定理:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}.$$

(7) 对任意实数列 $\{a_n\}$,有

$$\liminf_{n\to\infty} |a_{n+1} - a_n| \leqslant \liminf_{n\to\infty} \frac{a_n}{n} \leqslant \leqslant \limsup_{n\to\infty} \frac{a_n}{n} \leqslant \limsup_{n\to\infty} (a_{n+1} - a_n).$$

(8) 设
$$\sigma_n = \frac{1}{n} \sum_{k=1}^n a_k$$
,则

$$\underset{n\to\infty}{\liminf} a_n \leqslant \underset{n\to\infty}{\liminf} \sigma_n \leqslant \underset{n\to\infty}{\limsup} \sigma_n \leqslant \underset{n\to\infty}{\limsup} a_n.$$

(9) Toeplitz 不等式:设给定双向无穷的实数矩阵

$$M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & \cdots \\ a_{21} & a_{22} & \cdots & a_{2n} & \cdots \\ \cdots & & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} & \cdots \\ \cdots & & & & & \\ & & & & & \\ \end{pmatrix}$$

满足① 对所有 $m \in N$, $\sum_{n=1}^{\infty} |a_{mm}| \leq A$; ② $\lim_{m \to \infty} \sum_{n=1}^{\infty} a_{mm} = 1$;

③ 对所有 n, $\lim_{n\to\infty} a_{mn} = 0$.

则对于给定的数列 $\{S_n\}$,若 $\lim_{n\to\infty}\inf S_n=\underline{S}$, $\lim_{n\to\infty}\sup S_n=\overline{S}$ 均为有限,令 $\sigma_m=\sum_{n=1}^\infty a_{mn}S_n$,则

$$\frac{1}{2}(\overline{S} + \underline{S}) - \frac{A}{2}(\overline{S} - \underline{S}) \leqslant \lim_{n \to \infty} \inf \sigma_n \leqslant \lim_{n \to \infty} \sup \sigma_n \leqslant \frac{1}{2}(\overline{S} + \underline{S}) + \frac{A}{2}(\overline{S} - \underline{S}).$$

69. [MCU]. 设 $\{a_n\}$ 是正实数序列,则

$$\limsup_{n\to\infty} n\left(\frac{1+a_{n+1}}{a_n}-1\right) \ge 1$$
. 式中下界是最佳的.

证 用反证法, 若存在某个 k, 使得 $\forall n \ge k$, 有

$$n\left(\frac{1+a_{n+1}}{a_n}-1\right) \leqslant 1, \tag{1.5}$$

即 $\frac{a_n}{n} \geqslant \frac{1}{n+1} + \frac{a_{n+1}}{n+1}$, 于是, 对任意自然数 p, 有

$$\frac{a_k}{k} \geqslant \frac{1}{k+1} + \frac{a_{k+1}}{k+1} \geqslant \cdots \geqslant \frac{1}{k+1} + \frac{1}{k+2} + \cdots + \frac{1}{k+p} + \frac{a_{k+p}}{k+p},$$

但由调和级数的发散性即知不等式(1.5) 不能成立. 因此,对任一自然数 k,必存在某个 $n \ge k$, 使得

$$n\left(\frac{1+a_{n+1}}{a_n}-1\right) > 1$$
. \mathbb{R} $\lim_{n\to\infty} \sup n\left(\frac{1+a_{n+1}}{a_n}-1\right) \geqslant 1$.

为了证明下界 1 是最好的,我们只要取 $a_n = n \ln n$,则对于 $n \ge 2$,有

$$n\left(\frac{1+a_{n+1}}{a_n}-1\right) = \frac{1}{\ln n} \left[1+n\ln\frac{n+1}{n} + \ln(n+1)\right] < \frac{1}{\ln n} \left[2+\ln(n+1)\right] \to 1 \ (n+1)$$

→ ∞). 另一方面, 若取 $a_n = n^{1+\epsilon}$, $(\epsilon > 0)$, 则用二项式级数展开式即可证得

$$\limsup_{n\to\infty} \left(\frac{1+a_{n+1}}{a_n}-1\right) = 1+\varepsilon.$$

70. [MCU]. 设所有 $a_n > 0$,则

$$\limsup_{n\to\infty} \left(\frac{a_1+a_{n+1}}{a_n}\right)^n \geqslant e. \tag{1.6}$$

证 利用 $e = \lim_{n \to \infty} (1 + 1/n)^n$,可将(1.6)式变成

$$\limsup_{n\to\infty} \left(\frac{n(a_1 + a_{n+1})}{(n+1)a_n} \right)^n \geqslant 1.$$
 (1.7)

用反证法,设(1.7) 式不成立,即存在 n_0 ,使所有 $n \ge n_0$,有

$$\frac{n(a_1+a_{n+1})}{(n+1)a_n}$$
 < 1. 从而对所有 $n \ge n_0$,有 $\frac{a_{n+1}}{n+1} - \frac{a_n}{n} < -\frac{a_1}{n+1}$.

令 $n = n_0, n_0 + 1, \dots,$ 然后相加得

$$\frac{a_n}{n} - \frac{a_{n_0}}{n_0} < (-a_1)(\sum_{k=1}^n \frac{1}{k}).$$

令 $n \to \infty$,得 $\lim_{n \to \infty} \frac{a_n}{n} = -\infty$.但这与所有 $a_n > 0$ 的假设相矛盾

用同样的方法,利用 $e^p = \lim_{n \to \infty} (1 + p/n)^n$ 可将(1.6) 式推广为:

设所有 $a_n > 0, p > 0, 则$

$$\limsup_{n \to \infty} \left(\frac{a_1 + a_{n+p}}{a_n} \right)^n \geqslant e^p. \tag{1.8}$$

- (1.3) 和(1.8) 式中的下界均不能再改进. 见[305]1949,56(7):451.
- 71. Pachpatte 不等式: y(n), f(n), g(n) 为非负实数列, c_1 , $c_2 > 0$, 若 $\forall n \in N$,

$$y(n) \leq [c_1 + \sum_{k=0}^{n-1} f(k)y(k)][c_2 + \sum_{k=0}^{n-1} g(k)y(k)].$$
 而且 $c_1c_2 \sum_{k=0}^{n-1} a_k b_k < 1$. 式中

$$a_n = g(n) \sum_{k=0}^{n-1} f(k) + f(n) \sum_{k=0}^{n-1} g(k), \quad b_n = \prod_{k=0}^{n-1} [1 + c_1 g(k) + c_2 f(k)].$$

则
$$y(n) \leqslant \frac{c_1 c_2 b_n}{1 - c_1 c_2 \sum_{k=0}^{n-1} a_k b_k}$$
. (见[301]1995,195(3):638 - 644.)

72. [MCM]. 设实系数多项式 $P_n(x) = \sum_{k=0}^{n} a_k x^{n-k}$ 的根全为正根,且 $a_0 > 0$,则

$$2^{n}[(-1)^{n}a_{0}a_{n}]^{1/2} \leqslant \sum_{k=1}^{n} |a_{k}| \leqslant a_{0}(1-\frac{a_{1}}{na_{0}})^{n}.$$

(33届 IMO 中国集训队试题,证明见中等数学 1993.1:13)

注 Copson 不等式及其推广见[320]1988,39(156):385 - 400. 级数形式见本章 § 2N36(3) 和 N37(2).

§ 2 级数不等式

1. [MCU].
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)n^{1/p}} < p, (p > 1).$$

提示:利用
$$\frac{1}{(n+1)n^{1/p}} = (\frac{1}{n} - \frac{1}{n+1}) \frac{n}{n^{1/p}}.$$

2. 设 1/p + 1/q = 1, 1 ,则