2025 하반기 Challenger Track

자율스터디 기획서

팀명	듣말보쓰
팀장	임시현
팀원	김태경, 안서현, 이예은, 이헌성, 임시현

1. 스터디 주제/목표

스터디 주제	LLM·CV 분야의 주요 모델 공부
스터디 목표	- LM과 CV의 기초가 되는 주요 모델의 개념 및 구조 이해 - 각 모델이 어떤 문제를 해결하고, 어떻게 동작하는지를 설명할 수 있는 수준에 도달 - PyTorch 기반으로 주요 모델들을 직접 구현하며 구조적 이해 심화 - 필요 시 대회 및 학술제 참여를 통해 실전 적용 경험도 함께 추구

2. 참가대회

대회명	추후 논의
링크	
0-1	
디위에기	
대회에서	
진행할 주제	

3. 스터디 계획

매주 목요일 저녁 9시

주차	학습 주제	세부 활동
1	딥러닝 파이토치 교과서	- 파이토치 2장 부분 공부
2	Transformer	- Attention is all you need 논문 읽기
3	딥러닝 파이토치 교과서	- 7.4 RNN 구조, 7.5 LSTM
4	AlexNet	- ImageNet Classification with Deep Convolutional Neural Networks 논문 읽기
5	딥러닝 파이토치 교과서	- 5.1 합성곱 신경망 - 5.2 합성곱 신경망 맛보기 - 5.3 전이 학습

6	Bert	- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 논문 읽기
7	VGGNet	- Very Deep Convolutional Networks for Large- Scale Image Recognition 논문 읽기
8	Llama	- LLaMA: Open and Efficient Foundation Language Models 논문 읽기
9	ResNet	- Deep Residual Learning for Image Recognition 논 문 읽기
10	GPT	- GPT-3논문 제목: Language Models are Few-Shot Learners - (선택) Improving Language Understanding by Generative Pre-Training (블로그 형식) https://openai.com/index/language-unsupervised/

11	UNet	- U-Net: Convolutional Networks for Biomedical Image Segmentation 논문 읽기
12	ViT	- AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE 논문 읽기
13	llava (llm기반)	- Visual Instruction Tuning 논문 읽기

4. 스터디 규칙

출석

- 1. 스터디 무단 결석 1 회 이상 시 5000원
- 2. 스터디 지각(10분) 1 회 이상 시 2500원
- 3. <과제 1> 안 했을 시 3000원 + 그 다음주까지 과제 완료하기!
- 4. <과제 2> 안 했을 시 3000원 + 그 다음주까지 과제 완료하기!

스터디 과제

- 1. <과제 1> 위 표에 적힌 논문이나 책의 챕터
- 2. <과제 2> 공부할 때 참고한 추가 자료
- 3. 스터디 직전까지 노션에 제출!

공유회 발표

1. 스터디원 전원이 돌아가며 자료 제작 및 발표 필수, 이를 지키지 않을 경우 트랙 경고 1회 부여

5. 예산안 신청서

1	항목	"딥러닝 파이토치 교과서"
	비용	32400원 (정가 36000원. 해당 가격은 쿠폰 적용가라서, 정확한 비용은
		구매 후 알려드릴 수 있을 것 같습니다.)
	링크	https://ebook-product.kyobobook.co.kr/dig/epd/ebook/E000002950874
	사용계획	파이토치를 이용한 딥러닝 모델에 대한 기본 개념 학습을 위해 구매.
2	항목	
	비용	
	링크	
	사용계획	
3	항목	
	비용	
	링크	
	사용계획	
4	 항목	
	비용	
	링크	
	사용계획	