INTRODUÇÃO À INTELIGÊNCIA ARTIFICIAL 22-23

07. ALGORITMOS GENÉTICOS

Carlos Pereiro

Índice

2

- □ Índice
 - Introdução
 - Funcionamento
 - Selecção
 - Recombinação
 - Mutação

Introdução

□ Computação Evolucionária (CA)

- □ A área de investigação designada por "Computação evolucionária (EC)" envolve:
 - Algoritmos Genéticos (GA)
 - Estratégias Evolucionárias (ES)
 - Programação Evolucionária (EP)

Charles Darwin

Introdução

□ Algoritmos Genéticos

- □ Técnica para resolução de problemas que necessitem de optimização The Origin of Species
- □ Baseados na Teoria de Evolução de Darwin
 - Sub-classe da computação evolucionária.
 - A Computação evolucionária desenvolveu-se nos
 - Os GAs foram criados a meio da década de 70 por John Holland

Introdução

□ Princípio Básico de Funcionamento

Funcionamento

□ Selecção

- As "melhores hipóteses" são as de maior "aptidão".
 Esta aptidão é avaliada por uma função (fitness function).
- □ Recombinação (crossover) e Mutação:
 - Em vez de procurarem sistematicamente uma solução (hipótese h), os AGs geram hipóteses sucessoras das actuais (descendência/offspring) recombinando propabilisticamente as melhores hipóteses entre si, e "mutando" algumas outras.

5

Funcionamento

7

Protótipo

- · Fitness: Função de avaliação
- Fitness_threshold: Critério de Fim de Ciclo
- p = Número de hipóteses da população
- r = Fracção da população a ser recombinada
- m = Mutation Rate

 $GA(Fitness, Fitness_threshold, p, r, m)$

- Initialize: $P \leftarrow p$ random hypotheses
- Evaluate: for each h in P, compute Fitness(h)
- \bullet While $[\max_h Fitness(h)] < Fitness_threshold$
 - 1. Select: Probabilistically select (1-r)p members of P to add to P_S .

$$\Pr(h_i) = rac{Fitness(h_i)}{\Sigma_{j=1}^p Fitness(h_j)}$$

- 2. Crossover: Probabilistically select $\frac{r\cdot p}{2}$ pairs of hypotheses from P. For each pair, $\langle h_1, h_2 \rangle$, produce two offspring by applying the Crossover operator. Add all offspring to P_s .
- 3. Mutate: Invert a randomly selected bit in $m \cdot p$ random members of P_s
- 4. Update: $P \leftarrow P_s$
- 5. Evaluate: for each h in P, compute Fitness(h)
- ullet Return the hypothesis from P that has the highest fitness.

Funcionamento

П ...

Funcionamento

9

□ ...

- □ Função de Fitness (aptidão)
 - Define o critério que avalia cada hipótese de acordo com o objectivo a atingir.
 - É a base de qualquer critério de selecção na geração seguinte.
 - **■** Exemplos:
 - Mochila: Lucro da solução
 - N-Rainhas: A função de fitness calcula a soma dos ataques que as rainhas produzem, em cada configuração.

Funcionamento

10

□ ...

- Selecção
 - Com base na função fitness, há vários métodos de selecção das hipóteses a incluir na próxima geração:
 - (1-r).p hipóteses são copiadas
 - r.p hipóteses são sujeitas a recombinação produzindo outros tantos descendentes

11

□ Selecção Proporcional

- A probabilidade de selecção de uma hipótese é proporcional ao quociente q entre a sua aptidão e a soma das aptidões das restantes
- As hipóteses com maior valor de q são seleccionadas mais vezes)

Selecção

12

□ ...

Exemplo: a solução de maior fitness foi seleccionada duas vezes!

Working Sheet of a GA

The problem is to optimize f(x) = x

String Number	Before Crossover (generation 0)			After Fitness Prop. Selection		After Crossover (generation 1)		
i	String	Fitness	$f(X_i)$	String	Fitness	Cross-	X_i	$f(X_i)$
	X_i	$f(X_i)$	$\Sigma f(X_i)$	X_i	$f(X_i)$	Point		
1	011	3	0.25	(011)	3	2	(111)	7
2	001	1	0.08	110	6	2	010	2
3	110	6	0.50	110	6	-	110	6
4	010	2	0.17	010	2	-	010	2
Total		12			17			17
Worst		1			2			2
Average		3.00			4.25			4.25
Best		6			6	2 3	,	7

Creating generation 1 from generation 0 by application of selection and crossover

□ Implementação da Selecção Proporcional

- Método da Roleta
 - Cada hipótese de uma dada população possui uma fitness f_i
 - f1=1/6, f2=1/3, f3=1, f4=1/2
 - Calculam-se os valores acumulados:
 - A=f1=1/6; B=f1+ f2=1/2; C=f1+f2+f3=3/2; D=f1+f2+f3+f4=2
 - Normalizam-se este valores
 - A=0.0833, B=0.25, C=0.75, D=1

Selecção

п

- Gera-se um número aleatório x entre 0 e 1 e verifica-se sobre qual das hipóteses ele "cai"
 - Como qualquer x é igualmente provável, ele cairá mais vezes sobre a zona correspondente à hipótese que ocupa maior espaço na recta
 - Exemplos

15

□ ...

- □ Seleção por Torneio:
 - Selecionar k hipóteses (Tamanho do Torneio) de entre a população.
 - De entre elas, selecionar a de maior fitness.
 - Duas hipóteses são selecionadas aleatoriamente de entre a população.
 - Com uma probabilidade pré-definida p, a de maior aptidão é selecionada (a outra é selecionada com probabilidade (1-p)).

Selecção

16

□ ...

- □ Seleção por Posicionamento (Ranking Selection)
 - As hipóteses são ordenadas de acordo com a sua aptidão, da melhor para a pior.
 - O valor do ranking (posição depois da ordenação) é usado (em vez da aptidão) por uma função que determina a probabilidade de seleção da hipótese (o espaço que ocupará na roleta)

17

■ Exemplo:

- Escolher um número k entre 0 e 1: Seja k=0.6
- O indivíduo de maior aptidão, ID1, ocupará 60% da área da roleta
- D2 ocupará 60% da área restante: (1-0.6)*0.6=24%
- ID3 ocupará 60% da área restante: (1-0.6-0.24)*0.6=0.16*0.6=9.6%
- **...**
- IDn ocupará a área restante

Recombinação

18

□ Operadores de recombinação

- As hipóteses são, muitas vezes, representadas por strings, o que permite uma implementação simples das operações de recombinação e mutação
 - Exemplos
 - Problema da mochila
 - "1" = objecto na mochila, "0" = objecto fora da mochila)
 - 8 Rainhas
 - Cada hipótese é um "estado do tabuleiro", representado por uma string do tipo "q1q2q3q4q5q6q7q8"
 - a hipótese "62714053" é uma solução "Rainha 1 = C1,L6... Rainha 8 = C8, L3"

Recombinação

19

...

- A string "62714053" representa o genótipo (alusão ao material genético que caracteriza cada indivíduo)
- A configuração do tabuleiro representa o <u>fenótipo</u> (a tradução no mundo real daquilo que o genótipo determina)

Recombinação e Mutação

20

□ ...

Recombinação

21

Single-Point Crossover

Posição escolhida aleatoriamente

Progenitores: 1010001110 0011010010

Descendentes: 1010010010 0011001110

Recombinação

22

■ Double-Point Crossover

Posições escolhidas aleatoriamente:

Progenitores: 1010001110 0011010010

Descendentes: 1010010010 0011001110

Recombinação

23

□ ...

□ Uniform Crossover

Máscara: 0110011000 (Gerada aleatoriamente)

Progenitores: 1010001110 0011010010

Descendentes: 0011001010 1010010110

Mutação

24

□ Operadores de Mutação

Gera posição aleatória

Progenitor: 1010001110

Descendente: 1010101110

Problema do Caixeiro Viajante

25

□ TSP

- Neste caso, são necessários novos operadores.
- Para a recombiação é importante não perder informação, tais como:
 - Ordem pela qual as cidades são visitadas
 - Adjacência entre cidades
 - <u>Posição</u> absoluta das cidades na sequência

Problema do Caixeiro Viajante

26

...

- Recombinação por ordem
 - Considerem-se os progenitores P1e P2
 - O descendente D1 é criado da seguinte forma:
 - Seleccionar dois pontos de corte C1 e C2 (C2>C1)
 - Copiar secção entre C1 e C2 de P1 para D1
 - Com início em C2, copiar as cidades de P2 para D1, omitindo as que já se encontram na sequência
 - O Descendente D2 é criado de forma análoga

Problema do Caixeiro Viajante

27

P1: 123456789
P2: 248139576

... 456728

... 139 456728

Problema do Caixeiro Viajante

28

□ ...
□ Operadores de Mutação
□ Inserção
□ I: 1 2 3 4 5 6 I: 1 2 4 5 3 6
□ Troca
□ I: 1 2 3 4 5 6 I: 1 2 6 4 5 3
□ Inversão
□ I: 1 2 3 4 5 6 I: 1 2 4 3 5 6