Workflow: Physical Activity and Well-Being

Sofia Gil-Clavel

• Open the Data

```
#### Opening the Data ####
DATA<-read.table("Replicability/DATA/cchs2012_mh.tab",sep="\t",header = TRUE)</pre>
```

• From the variable "PHSGAPA" (Moderate/vigorous physical activity -average/hours) drop those individuals whose content is "NOT STATED".

```
# The variable of interest is "PHSGAPA" 99.99 means "NOT STATED"

DATA<-DATA%>%filter(PHSGAPA<99)
```

• Transform the variable sex (DHH_SEX) into factor

- Create the variable "GROUP" by transforming "PHSGAPA" into the next categories:
 - "NOT" if they do 0 hours of exercise
 - "0%-25%" for those in the first quantile without considering those that do 0 hours of exercise.
 - "25-50" for those in the second quantile without considering those that do 0 hours of exercise.
 - "50-75" for those in the third quantile without considering those that do 0 hours of exercise.
 - "75-100" for those in the fourth quantile without considering those that do 0 hours of exercise.

• Create a table that shows the percentage of population in each "GROUP" by age-groups breaking down by sex

```
#### Some Basic Demogs ####

# DHH_SEX: MALE(1) & FEMALE(2)

# DHHGAGE: Age - grouped variable
```

```
A1 < -seq(15, 80, 5)
A2<-A1+4; A2[length(A2)]="more"
Alabels<-paste0(A1,"-",A2)
ALL$DHHGAGE<-factor(ALL$DHHGAGE,
                     levels = 1:14,
                     labels = Alabels)
TABLE=ALL%>%
  group_by(GROUPS,DHHGAGE,DHH_SEX)%>%
  count(DHHGAGE,DHH_SEX)%>%
  ungroup()%>%
  group_by(GROUPS,DHH_SEX)%>%
  mutate(perc=100*n/sum(n))# %>%
# select(-n)%>%
# spread(GROUPS, perc)
(TABLE%>%
    ggplot() +
    geom_tile(aes(GROUPS,DHHGAGE,fill= perc))+
    geom_text(aes(GROUPS,DHHGAGE,label = round(perc, 1)),size=2.8) +
    facet_grid(DHH_SEX~.)+
    theme_minimal(base_size = 8)+
    theme(axis.text.x = element_text(hjust = 0.5, size = 8),
          axis.title = element_blank(),
          legend.position= "right",
          plot.caption = element_text(hjust =1,size = 8))+
    scale_fill_distiller(palette = "Spectral",trans = 'log10')+
    guides(fill=guide_colorbar(title = "%",
                               title.position = "right",
                               title.hjust = 0.5,
                               barwidth = 0.5, barheight = 10,
                               ticks.colour = "black",
                               ticks.linewidth = 8,ticks = TRUE)))
```

80-more	5.1	4	3.3	2.5	8.7	
75–79	2.9	4.2	3.5	2.7	6.5	
70–74	5.1	4.8	4.9	4.9	7.7	
65-69	6.2	6.8	7.7	7.1	8.9	_
60-64	6.7	8	8.4	8.9	10.1	_
55-59	7.7	7.8	8.5	9.5	10.4	_
50-54	6.8	7.8	8.1	7.9	8.8	MALE
45-49	9.3	7	6	6.3	6.9	— fi
40-44	9.9	9	7	6.8	6.9	_
35-39	8.4	7.2	7.2	7.8	6.3	
30-34	8.5	8.2	6.6	7.7	5.4	10
25–29	7.2	6.4	7.5	7.5	4.6	_
20-24	7.4	9	9.9	9.6	5.4	
15–19	8.8	9.9	11.5	10.9	3.2	<u> </u>
					40.0	%
80-more	5.6	4.4	3.9	3.9	13.8	5
75–79	4.3	4.3	4.3	4.1	7.4	
70–74	4.2	5.1	5.5	7	7	
65–69	6.5	7.1	8.5	8.9	8.4	_
60–64	8	8.5	9.7	10.1	9	3
55–59	8.3	8.5	8.5	9.9	9.6	
50-54	8.1	6.7	7.7	7.9	7.9	FEMALE
45-49	6.6	7.2	5.2	7.2	5.8	— E
40–44	7	6.5	5.6	6.3	4.7	
35–39	7.2	7.6	6	6.7	5.6	
30-34	9.6	8.4	8	6.3	6.3	
25–29	7.8	7.2	7	6.4	4.6	
20–24	8.4	9.6	9.1	7.5	5.3	
15–19	8.3	8.7	11	8	4.6	
	0%-25%	25%-50%	50%-75%	75%-100%	NOT	

• Transform to NA all the values in "GEN_02A2", "GEN_04", "GEN_07", and "GEN_10" that correspond to responds: "DON'T KNOW", "REFUSAL", and "NOT STATED".

 \bullet Run a linear model where the outcome is "PHSGAPA" and the independent variables are "DHH_SEX", "DHHGAGE", "GEN_02A2", "GEN_04", "GEN_07", "GEN_10", and "GENDHDI".

```
#### Running simple linear model ####
fit<-lm(PHSGAPA~.,data = DATA2)</pre>
```

```
SUM<-summary(fit)
```

• Report the results as a table (Table 1) with the coefficients and their 95% confidence intervals, standard errors, p-values, and the standard p-value< '*' coding. Also rename the variables into more descriptive names:

```
DHH_SEXFEMALE: "Sex:Female"
DHHGAGE: "Age"
GEN_02A2: "Satif. Life"
GEN_04: "Trob. Sleep."
GEN_07: "Life Stress"
GEN_10: "Sense Belong."
GENDHDI: "Health"
```

```
Coef<-coef(fit)</pre>
# Confidence Interval
conf<-confint(fit)</pre>
CI1<-data.frame(lower=round(conf[,1],4),
                 mean=round(Coef,4),
                 upper=round(conf[,2],4))
# SE
CI1$SE<-SUM$coefficients[,2]</pre>
# p-values
p <- SUM$coefficients[,4]</pre>
CI1$`p-value`=round(p,digits = 4)
CI1$NAMES=row.names(CI1)
CI<-rbind(CI1)
CI$`p-value<`<-c("***","**","*","."," ")[findInterval(CI$`p-value`,
                                           sort(c(1, 0.1, 0.05, 0.01, 0.001, 0))) ]
CI<-CI[-1,]
CI$NAMES<-factor(CI$NAMES,
                  levels = rev(CI$NAMES),
                  labels = rev(c("Sex:Female", "Age", "Satif. Life", "Trob. Sleep.",
                              "Life Stress", "Sense Belong.", "Health")))
CI \leftarrow CI[,c(6,1:5,7)]
row.names(CI)<-NULL
kableExtra::kbl(CI, booktabs = T, caption="Results Liner Model") #%>%
```

• Plot the results

kableExtra::kable_styling(position = "center")

Table 1: Results Liner Model

NAMES	lower	mean	upper	SE	p-value	p-value<
Sex:Female	-1.3546	-1.2545	-1.1544	0.0510510	0.0000	***
Age	-0.0941	-0.0808	-0.0675	0.0067900	0.0000	***
Satif. Life	0.0432	0.0770	0.1109	0.0172717	0.0000	***
Trob. Sleep.	-0.0220	0.0216	0.0651	0.0222102	0.3314	
Life Stress	-0.0938	-0.0395	0.0147	0.0276776	0.1531	
Sense Belong.	-0.2799	-0.2213	-0.1626	0.0299329	0.0000	***
Health	0.5083	0.5639	0.6194	0.0283423	0.0000	***

```
geom_hline(yintercept = 0, linetype="dashed",color="red")+
theme(panel.spacing = unit(1, "lines"),
      axis.title.x = element_blank(),
      axis.title.y = element_blank(),
      legend.position = "top",text = element_text(size = 10),
      panel.background = element_rect(fill = "white"),
      panel.grid.major.y = element_line(size = 0.25,
                                        linetype = 'dashed',
                                        colour = "gray"),
      panel.grid.major.x = element_line(size = 0.25,
                                        linetype = 'dashed',
                                        colour = "gray"),
      strip.background = element_rect(color = NA,
                                      fill = NA, size = 1),
      axis.line = element_line(color = 'black'),
      plot.caption = element_text(hjust = 0.5,size = 10))+
geom_text(hjust=0, vjust=0,size=8,position = position_dodge(1))
```

