МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Філінюк В. С.

3BIT

до лабораторної роботи

Дослідження ВАХ діодів

Київ, КНУ ім. Тараса Шевченка, 2021

УДК 053.08 (002.21)

ББК 73Ц

I-72

Укладач: Філінюк В. С.

І-72 Звіт. Дослідження ВАХ диодів./ укл. Філінюк В. С.

КНУ ім. Т. Шевченка, 2021. – 11 с. (Укр. мов.)

У звіті наведено хід математичного моделювання лабораторної роботи та подальшу обробку результатів. Моделювання виконано у програмі LTspice

УДК 053.08 (002.21)

ББК 73Ц

©Київський Національний

Університет імені Тараса Шевченка,

2021

Реферат

Звіт про моделювання діодів різного типу: 11 с.

Мета роботи — навчитися одержувати зображення ВАХ діодів на екрані двоканального осцилографа, дослідити властивості p-n—переходів напівпровідникових діодів різних типів

Об'єкт дослідження – діоди різних типів, характериограф, р-п перехід

Предмет дослідження — теоретичні основи, принципи роботи, фізичний зміст і застосування напівпровідникових діодів

Методи дослідження:

- 1) Одержання зображення ВАХ діодів на екрані двоканального осцилографа, який працює в режимі характериографа
- 2) Побудова ВАХ діодів шляхом вимірювання певної кількості значень сили струму ІД, що відповідають певним значенням та полярності напруги UД, і подання результатів вимірів у вигляді графіка

Зміст

Теоретич	ні відомості		
	Основні означення		4
	Вольт-амперні характеристики діодів		4
Виконан	ня роботи		
	Випрямляючий діод		7
	Стабілітрон		8
	Світлодіод		9
	Діод Шоткі		10
Висновки		11	
Лууорол	•	11	

Теоретичні відомості

Напівпровідниковий діод (англ. semiconductor diode) — це напівпровідниковий прилад з одним p-n—переходом і двома виводами

p-n-перехід (англ. p-n junction) — перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша — провідність p-типу

Вольт-амперна характеристика (ВАХ) діода (англ. current-voltage characteristic) — це залежність сили струму I_D через p-n-перехід діода від величини і полярності прикладеної до діода напруги U_D

Характериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму I_D від напруги U_D .

Вольт-амперна характеристика напівпровідникового діода. Існує чотири режими роботи напівпровідникового діода. При оберненій напрузі, більшій за V_p , наступає пробій — різке збільшення струму, яке використовується в роботі лавинних діодів та діодів Зенера. При оберненій напрузі, меншій від V_p , існує тільки малий струм насичення, здебільшого, порядку мікроамперів. При прикладенні напруги в прямому напрямку, струм зростає експоненційно, залишаючись малим до напруги V_D , — напруги відкривання діода. Ця напруга може бути різною, в залежності від типу діода, — від 0,2 В для діодів Шоткі, до 4 В у блакитних світлодіодів.

Вольт-амперні характеристики деяких діодів, наприклад, діода Ганна і резонансного тунельного діода можуть містити ділянки з від'ємною диференціальною провідністю, тобто ділянки, на яких сила струму в діоді зменшується, при збільшенні прикладеної напруги. Такі діоди зручні для використання в генераторах електричних коливань.

Виконання роботи

Будемо досліджувати такі типи діодів: випрямлювальний (rectifier diode), стабілітрон (Zener diode), фотодіод (photodiode), світлодіод (LED), а також тунельний діод (tunnel diode).

Налаштуємо нашу схему, як вказано в методичці. Вона в нас буде універсальна для всіх типів діодів.

<u>Параметри джерела</u> (буду змінювати V для різних діодів):

Схема досліду:

ВАХ випрямлюючого діода (біля області пробою та при $V pprox \mathbf{0}$):

ВАХ стабілітрона:

Як бачимо, в стабілітрона $\frac{dI}{dU} \neq \infty$, на відміну від випрямлюючого діода, в якого $\frac{dI}{dU} \approx \infty$.

ВАХ світлодіода:

Відмінність ВАХ світлодіода полягає в тому, що при досягненні напруги пробою, він просто перегоряє і не пропускає більше ні в яких напрямах.

ВАХ діоду Шоткі:

Висновки

У цій роботі ми дослідили загальні принципи роботи діодів, їх різні типи та відмінності. За допомогою моделювання були зроблені ВАХ різних діодів.

Результати отримані нами правдоподібні і відповідають очікуваним.

Джерела

- Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету. Слободянюк О.В.
- Вивчення радіоелектронних схем методом комп'ютерного моделювання. Ю. О. Мягченко