

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Конспект лекций

«Преобразования Лапласа и Фурье»

Лектор к.ф.-м.н., доцент И.В. Рублёв

Содержание

1	Kak	к заполнять документ	3
	1.1	doc.tex	3
	1.2	bib.tex	1
	1.3	set.tex	5
	1.4	Заключение	1
2	Сво	ойства преобразования Фурье	6

1 Как заполнять документ

Сейчас я расскажу, как максимально быстро собрать лекцию, чтобы никому ничего не сломать. Предлагаю также ориентироваться на этот пример (папка ch0). Итак, порядок действий:

- 1. Скачать себе этот архив. Он собирается командой таке или pdflatex doc, если вы используете Windows.
- 2. Создать в корне вашу папку сh
НОМЕРГЛАВЫ. В примере папка ${\it ch0}.$
- 3. Заполнить в этой папке три документа: doc.tex, bib.tex, set.tex, положить туда все ваши картинки и все, что вам нужно.
- 4. Проверить, что все собралось правильно.
- 5. Отослать мне на почту kireku@gmail.com с темой "ВКР" или, если вы умеете, сделать pull request.

1.1 doc.tex

Это файл с вашим текстом. Туда вы пишите лекцию.

Я добавил уже ряд математических операторов. Если вы хотите добавить свои смотри раздел про set.tex.

Код	Результат
\sgn	sgn
\const	const
\T	Т
\SetN	N
\SetZ	\mathbb{Z}
\SetQ	Q
\SetR	\mathbb{R}
\SetC	\mathbb{C}
\Prb	\mathbb{P}
\Ind	I
\Exp	\mathbb{E}
\Var	Var
\SetX	\mathcal{X}
\SetP	\mathcal{P}

Также встроены окружения. Они как в книжке Арама, то есть красивые, не используйте другие.

Код	Результат
\begin{theorem} Это теорема. \end{theorem}	Теорема 1.1. Это теорема.
\begin{definition} Это определение \textit{сходимости}. \end{definition}	Определение 1.1. Это определение <i>cxo-</i> димости.
\begin{lemma} Это лемма. \end{lemma}	Лемма 1.1. Это лемма.
\begin{assertion} Это утверждение. \end{assertion}	Утверждение 1.1. Это утверждение.
\begin{example} Это пример. \end{example}	Пример 1.1. Это пример.
\begin{proof} Это доказательство чего-либо. \end{proof}	Доказательство чего-либо.

Чтобы добавить картинку, положите ее в вашу папку и укажите полный путь:

Используя метки, обязательно ставьте префикс-название папки:

Код	Результат
<pre>\begin{equation} \label{ch0.square}</pre>	$x^2 = 0. (1.1)$

1.2 bib.tex

Если вам нужна библиография — сюда можно написать библиографию, она автоматом окажется внизу. Все ссылки, по-прежнему с префиксом.

1.3 set.tex

Если вам жизненно не хватает какой-нибудь суперштуки, которую обычно объявляют в начале файла: новую команду, окружение или что-то в этом духе, то напишите сюда. Но все это пишите с каким-нибудь префиксом.

Например, я очень захотел писать прикольные дроби, типа $^{3}/_{4}$ и новый оператор Kirill $_{x\in\mathcal{X}}$, тогда я должен туда написать:

Содержимое ch0/bib.tex			
\usepackage{nicefrac} \DeclareMathOperator{\zeroKir}{Kirill}			

Но вообще, если вы не уверены, что все не перестанет компилиться, то не стоит подключать пакеты. Пакеты будут действовать на весь документ в целом.

1.4 Заключение

Вообще, было бы круто, чтобы все получилось примерно одинаково и красиво. В библиографии есть книжка хорошая по Латеху, если кому нужна.

2 Свойства преобразования Фурье

В этом разделе мы опишем основные свойства преобразования Фурье и докажем наиболее интересные из них. Прежде всего, напомним внешний вид преобразования:

$$F[f](\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt,$$

где $f \in L_1(-\infty, +\infty)$, то есть функция f интегрируема по Риману (Лебегу) на всей числовой прямой и выполнено условие

$$\int_{-\infty}^{+\infty} |f(t)| \, dt < +\infty.$$

Замечание 2.1. Принадлежность функции f классу L_1 гарантирует существование ее преобразования Фурье F[f].

Для начала выпишим свойства, которые напрямую следуют из определения: линейность, масштабируемость и сдвиг. Мы не будем долго на них останавливаться.

1. Линейность.

$$F[\alpha f_1 + \beta f_2] = \alpha F[f_1] + \beta F[f_2], \quad \forall f_1, f_2 \in L_1, \forall \alpha, \beta \in \mathbb{R}.$$

2. Сдвиг.

$$F[f(t - t_0)] = e^{-\lambda t_0} \cdot F[f],$$

$$F[e^{i\lambda_0 t} \cdot f(t)] = F[f] \cdot (\lambda - \lambda_0).$$

3. Масштабируемость.

$$F[f(\alpha t)](\lambda) = \frac{1}{|\alpha|} F[f(t)] \left(\frac{\lambda}{\alpha}\right), \quad \forall \alpha \in \mathbb{R}, \ \alpha \neq 0.$$

4. **О четности.** Если функция f является четной, то ее образ F[f] будет действительной функцией. Если же f — нечетная, то образ F[f] будет чисто мнимой функцией.

Теперь перейдем к более интересным свойствам. Далее каждая теорема, следствие или замечание будут являться свойствами преобразования Фурье. Большая часть из них будет доказана.

Теорема 2.1. Рассмотрим последовательность функций из класса L_1 , стремящююся по норме L_1 к некоторой функции f из того же класса, то есть

$$\{f_n\}_{n=1}^{\infty}, f_n \in L_1(-\infty, +\infty) : f_n \xrightarrow[n \to \infty]{L_1} f \in L_1.$$

Tог ∂a

$$F[f_n] \rightrightarrows F[f].$$

Доказательство. Приведем несложные выкладки:

$$\sup_{\lambda} |F[f_m](\lambda) - F[f_n](\lambda)| =$$

$$= \sup_{\lambda} \left| \int_{-\infty}^{+\infty} (f_m(t) - f_n(t))e^{-i\lambda t} dt \right| \leq$$

$$\leq \int_{-\infty}^{+\infty} |f_m(t) - f_n(t)| dt < \varepsilon.$$

Теорема 2.2. Преобразование Фурье F[f] есть непрерывная ограниченная функция.

Доказательство. На самом деле ограниченность мы нечаянно вывели в предыдущей теореме. Действительно,

$$|F[f](\lambda)| = \left| \int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt \right| \le \int_{-\infty}^{+\infty} |f(t)| dt = \text{const.}$$

С непрерывностью дела обстоят куда сложнее. Здесь нам придется записать наше преобразование в виде

$$F[f](\lambda) = \int_{-\infty}^{+\infty} f(t)\cos(\lambda t) dt - i \int_{-\infty}^{+\infty} f(t)\sin(\lambda t) dt$$

и сослаться на книгу А. М. Тер-Крикорова, М. И. Шабунина «Курс математического анализа,» где на 645 странице доказана непрерывность каждого из кусочков.

Замечание 2.2. Из последней теоремы следует, например, что

$$F[f](\lambda) \xrightarrow[|\lambda| \to \infty]{} 0.$$

Теперь рассмотрим специальный вид функций, который часто встречается на практике непрерывные и дифференцируемые функции.

Теорема 2.3. Пусть функция f непрерывно дифференцируема, абсолютно интегрируема, u ее производная так же абсолютно интегрируема, то есть 1

$$f \in C^1(-\infty, +\infty) \cap L_1(-\infty, +\infty), f' \in L_1(-\infty, +\infty)$$

Tог ∂a

$$F[f'](\lambda) = i\lambda \cdot F[f](\lambda).$$

 $^{^1}$ Теорема ходит в интернете в нескольких вариантах условий: совершенно не понятно, f или f' должна быть непрерывной или интегрируемой. Причем доказательства везде примерно одинаковые. Здесь приведен вариант к.ф.-м.н. доцента И. В. Рублева.

Доказательство. Предствавим функцию в виде

$$f(t) = f(0) + \int_{0}^{t} f'(t) dt.$$

Из сходимости интеграла $\int_0^{+\infty} f'(t) dt$ следует существование пределов $\lim_{t\to +\infty} f(t)$ и $\lim_{t\to -\infty} f(t)$. Они не могут быть отличными от нуля в силу сходимости интеграла $\int_{-\infty}^{+\infty} |f(t)| dt$. С помощью интегрирования по частям получаем

$$F[f'](\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f'(t)e^{-i\lambda t} dt =$$

$$= \frac{1}{\sqrt{2\pi}} f(t)e^{-i\lambda t} \Big|_{-\infty}^{+\infty} + \frac{i\lambda}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(t)e^{-i\lambda t} dt = i\lambda \cdot F[f](\lambda).$$

Замечание 2.3. Как следствие, получаем более занятную формулу:

Пусть
$$f \in \mathbf{C}^{k-1}(-\infty, +\infty)$$
, $\exists f^{(k)} : f^{(k)} \in \mathbf{L}_1(-\infty, +\infty)$, тогда
$$F[f^{(k)}](\lambda) = (i\lambda)^k \cdot F[f].$$

Теорема 2.4. Пусть функция f непрерывно дифференцируема, абсолютно интегрируема, u ее производная так же абсолютно интегрируема, то есть

$$f \in C^1(-\infty, +\infty) \cap L_1(-\infty, +\infty), f' \in L_1(-\infty, +\infty)$$

Tог ∂a

$$|F[f](\lambda)| \leqslant \frac{C}{|\lambda|}$$

Доказательство.

$$\left| \int_{-T}^{+T} f(t)e^{-i\lambda t} dt \right| = \left. \frac{f(t)e^{-i\lambda t}}{-i\lambda} \right|_{-T}^{+T} + \frac{1}{\lambda} \int_{-T}^{+T} f(t)e^{-i\lambda t} dt$$

Замечание 2.4. Как следствие, получаем более занятную формулу:

Пусть
$$f \in \mathbf{C}^{k-1}(-\infty, +\infty)$$
, $\exists f^{(k)} : f^{(k)} \in \mathbf{L}_1(-\infty, +\infty)$, тогда

$$F[f](\lambda) \leqslant \frac{C_m}{|\lambda|^m}$$
, где $C_m = \int_{-\infty}^{+\infty} |f^{(k)}(t)| dt$.

Теорема 2.5. Пусть задана функция f такая, что $\int_{-\infty}^t f(s) \, ds \in L_1(-\infty, +\infty)$, тогода

$$F\left[\int_{-\infty}^{t} f(s) \, ds\right](\lambda) = \frac{1}{i\lambda} F[f](\lambda).$$

Теорема 2.6. Пусть задана функция f такая, что $t \cdot f(t) \in L_1(-\infty, +\infty)$, тогда

$$F[f]'(\lambda) = F[-it \cdot f(t)](\lambda).$$

Доказательство.

$$\left(\int_{-\infty}^{+\infty} f(t)e^{-i\lambda t} dt\right)'_{\lambda} = \int_{-\infty}^{+\infty} (-it)f(t)e^{-i\lambda t} dt.$$

Замечание 2.5. Как следствие:

Пусть
$$f: t^p f(t) \in L_1(-\infty, +\infty), \ p = \overline{1, k}, \$$
тогда

$$F[f]^{(k)}(\lambda) = F[(-it)^k \cdot f(t)].$$

Теорема 2.7. Пусть $t^p f(t) \in \mathcal{L}_1(-\infty, +\infty) \ \forall p, \ mor\partial a$

$$F\left[-\frac{1}{it}f(t)\right](\lambda) = \int_{-\infty}^{\lambda} F[f](\xi) d\xi.$$

Теперь поговорим о свойствах преобразования Фурье, связанных с операцие свертки. Напомним, как выглядит эта операция:

$$(f_1 * f_2)(t) = \int_{-\infty}^{+\infty} f_1(s) f_2(t-s) ds.$$

Эта операция является билинейной, коммутативной и ассоциативной.

Список литературы

[1] К. В. Воронцов. *ВТЕХв примерах.* — М.: МЦНМО, 2005.