UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

Laboratorio de Cálculo Integral

Nombre del Alumno	Diego Joel Zuñiga Fragoso	Grupo	514
Fecha de la Práctica	17/05/2023	No Práctica	9
Nombre de la Práctica	Integral de Riemann. Series		
Unidad	Integral definida		

OBJETIVOS

Aplicar correctamente las series y límites para calcular el área exacta bajo una función e introducir el concepto de integral

EQUIPO Y MATERIALES

Ningún equipo en clase, computadora para resolver y enviar

DESARROLLO

Utilizando el concepto de series finitas calcular el área bajo la curva de las siguientes funciones en el intervalo indicado. Graficar los rectángulos formados y resolver siguiendo el procedimiento

$$f(x) = x^{2} + 2 \qquad [0,3]$$

$$\Delta x = \frac{3-0}{n} = \frac{3}{n}$$

$$x_{i} = \frac{3i}{n}$$

$$f(x_{i}) = (\frac{3i}{n})^{2} + 2 = \frac{9i^{2}}{n^{2}} + 2$$

$$\frac{3}{n} \sum_{0}^{3} (\frac{9i^{2}}{n^{2}} + 2) = \frac{3i}{n} (\frac{9}{n^{2}} \sum_{0}^{3} i^{2} + \sum_{0}^{3} 2) = \frac{3}{n} \left[\frac{9}{n^{2}} (\frac{n(n+1)(2n+1)}{6}) + 2n \right]$$

$$= \frac{3}{n} \left[\frac{9}{n^{2}} (\frac{2n^{2} + 3n+1}{6}) + 2n \right] = \frac{3}{n} [18n + 27 + \frac{3}{2n} + 2n]$$

$$= \frac{3}{n} [20n + 27 + \frac{3}{2n}] = 60 + \frac{81}{n} + \frac{9}{2n^{2}}$$

$$\lim_{x \to \infty} (60 + \frac{81}{n} + \frac{9}{2n^{2}}) = 60$$

$$f(x) = 5 - x^{3} \qquad [0,2]$$

$$\Delta x = \frac{2-0}{n} = \frac{3}{n}$$

$$x_{i} = \frac{2i}{n}$$

$$f(x_{i}) = 5 - (\frac{2i}{n})^{3} = 5 - \frac{8i}{n^{3}}$$

$$\frac{2}{n} \sum_{0}^{2} (5 - \frac{8i}{n^{3}}) = \frac{2}{n} \left[\sum_{0}^{2} 5 - \frac{8}{n^{3}} \sum_{0}^{2} i^{3} \right] = \frac{2}{n} \left[5n - \frac{8}{n^{3}} (\frac{4}{n}n^{4} + \frac{1}{2}n^{3} + \frac{1}{4}n^{2}) \right]$$

$$= \frac{2}{n} [8n + 2 + \frac{2}{n}]$$

$$= \frac{2}{n} [8n + 2 + \frac{4}{n^{2}}] = 6 + \frac{8}{n} + \frac{4}{n^{2}}$$

$$\lim_{x \to \infty} (6 + \frac{8}{n} + \frac{4}{n^{2}}) = 6$$

$$f(x) = 3x^{2} + 2 \qquad [1,3]$$

$$\Delta x = \frac{3-1}{n} = \frac{2}{n}$$

$$x_{i} = 1 + \frac{2i}{n}$$

$$f(x_{i}) = 3(1 + \frac{2i}{n})^{2} + 2 = 3(1 + \frac{4i}{n} + \frac{4i^{2}}{n^{2}}) + 2 = 5 + \frac{12i}{n} + \frac{12i^{2}}{n^{2}}$$

$$\frac{2}{n} \sum_{1}^{3} (5 + \frac{12i}{n} + \frac{12i^{2}}{n^{2}}) = \frac{2}{n} \left[\sum_{1}^{3} 5 + \frac{12}{n} \sum_{1}^{3} i + \frac{12}{n^{2}} \sum_{1}^{3} i^{2} \right]$$

$$= \frac{2}{n} \left[5n + \frac{12}{n} \left(\frac{n(n+1)}{2} \right) + \frac{12}{n^{2}} \left(\frac{n(n+1)(2n+1)}{6} \right) \right]$$

$$= \frac{2}{n} \left[5n + 6n + 6 + \frac{2}{n} (2n^{2} + 3n + 1) \right] = \frac{2}{n} \left[11n + 6 + 4n + 6 + \frac{2}{n} \right]$$

$$= \frac{2}{n} \left[15n + 12 + \frac{2}{n} \right] = \frac{15}{2} + \frac{24}{n} + \frac{4}{n^{2}}$$

$$\lim_{x \to \infty} \left(\frac{15}{2} + \frac{24}{n} + \frac{4}{n^{2}} \right) = \frac{15}{2}$$

Procedimiento

Partición del intervalo en n subintervalos: $\Delta x = \frac{b-a}{n}$

Definir el valor de cualquier x **en el intervalo** i: $x_i = x_0 + i\Delta x$; $x_i = x_0 + \frac{b-a}{n}i$

Definir la función en el punto x_i sustituyendo en la función: $f(x_i)$

Calcular el área del rectángulo i A=bh: $A_i = f(x_i)\Delta x$

Calcular la suma de todos los rectángulos: $A_{total} = \sum_{i=1}^{n} A_{i}$ Necesitarás las teoremas de series que se encuentran en la siguiente parte

Calcular el área bajo la curva utilizando un número infinito de rectángulos $A_{curva} = \lim_{n \to \infty} \sum_{i=1}^{n} A_i$

Calcula el área bajo la curva integrando las funciones en el intervalo dado y compara los resultados Teoremas de series

$$1. \sum_{i=0}^{n} c = cn$$

2.
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

3.
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

4.
$$\sum_{i=0}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

CONCLUSIONES

Los resultados obtenidos de las áreas ¿son valores aproximados o exactos?

Son valores exactos que se obtuvieron con la definición de la integral

¿Qué relación hay entre la suma infinita de rectángulos y la integral definida?

Es exactamente lo mismo pues las sumas de Riemann son la definición de la integral

EVALUACIÓN DE LA PRÁCTICA

Se evaluará el documento con los datos solicitados, las gráficas y conclusiones enviado a través del Campus Virtual