Конспекты по математическому анализу. Карелин Владимир Витальевич.

Авѕткаст. Напечатаны Щербаковым Глебом.

Contents

История математического анализа	1
1. Множества и действия над ними. Точные грани числовых множеств.	2
1.1. Алгебра высказываний	2
1.2. Аксиомы множеств	2
2. Понятие отображения, образ и прообраз множества при	
отображении, суперпозиция отображений, сужение отображения,	
график отображения. Сюрьективные, инъективные и биективные	
отображения. Обратное отображение.	2
2.1. Аксиомы Пеано	3
2.2. Точные грани числовых множеств.	5
2.3. Иррациональные числа	7
2.4. Показателная функция	7
2.5. Логарифмы.	7
2.6. Свойства полноты множества действительных чисел	8
3. Счетные и не счетные множества	8
3.1. Комплексные числа	10
4. Числовые последовательности и ряды	10
4.1. Понятие предела числовой последовательности. Сходящиеся	
последовательности.	10

История математического анализа

Definition. Математический анализ — область науки, где изучается переменная величина своеобразными методами иследования (анализом посредством б.м. или посредством предельных переходов).

Предшествинеками были: метод исчерпывания и метод неделимого.

Definition. Метод исчерпывания — античный метод для исследования площадей или объёмов тела. Для нахождения некоторой фигуры вписывалась монотоная последовательность других фигур и доказывалось, что их площадь неограничено приближается к площади искомой фигуры. Затем вычислялся предел и выдвагалась гипотиза , что этот предмет равен R , доказывалось, что обратное приводит к противоречию.

Definition. Метод неделимового — совокупность предметов для вычисления площадей геометрических тел. Идея метода для плоских фигур: разделить их

на фигуры нулевой ширины, потом собирать без изменения длины , площадь которых известна.

1. Множества и действия над ними. Точные грани числовых множеств.

1.1. Алгебра высказываний.

- (1) $p \land q$ конъюкция (логическое произведение)
- (2) $p \lor q$ дизъюнкция (логическое или)
- (3) $p \to q$ импликация с посылкой р (если..., то...)
- (4) $p \equiv q$ эквиваленция (тогда и только тогда)
- (5) \overline{q} отрицание
- (6) V произвольное истиное
- (7) F произвольное ложное
- (8) ∃ квантор существования
- (9) ∀ квантор всеобщности

p,q,r — произвольные высказывания.

Definition. Множество — совокупность неупорядоченных неповторяющихся объектов .

1.2. Аксиомы множеств.

- (1) Аксиома объемности: если множества A и B состоят из одних и тех же элементов, то они совпадают: A=B.
- (2) Аксиома суммы: для произвольных множеств A и B существует множество, элементы которого являются элементами множества A и все элементы множества B. $A \cup B$
- (3) Аксиома разности: для произвольного множества A и B существует множество, элементами которого являются те и только те элементы множества A, которые не являются элементами множеста B. $A \setminus B$
- (4) Существет по крайней мере одно множество
 - (a) Произведение: $A\cap B$ множеств A и B общая часть сомножетелей: $\forall x\in A\cap B\equiv (x\in A)(x\in B)$
 - (b) Симметричная разность: разность двух множеств A и B определяется как : $A \triangle B \equiv (A \setminus B) \cup (B \setminus A)$

Definition. Включение множества A называется подмножеством B, если каждый элемент множества A принадлежит множеству B. $A \subset B$

Definition. $C_M A$ — дополненое множества A в M. $C_m = A \backslash B$.

2. Понятие отображения, образ и прообраз множества при отображении, суперпозиция отображений, сужение отображения, график отображения. Сюрьективные, инъективные и биективные отображения. Обратное отображение.

Definition. Прямым (декартовым) произведением множеств X и Y называется множество всех упорядочных пар $\{(x,y): x \in X, y \in Y\}$, при этом $X \times Y \neq Y \times X$

Definition. Отображение — правило f, по которому каждому элементу $x \in X$ ставится в соответсвие опредленый, и при этом единственный, элемент $y \in$ Y. (отображение множества X в множество Y). Здесь X называется областью определения, а Y — областью значения.

Definition. Отображение $f: N \to Y$ множества N в произвольное множество У будем называть последовательностью (в У). Числовой последовательностью же мы будем называть : $\{x_n\}_{i=1}^{\infty}$

Definition. График функции — $\Gamma_f = \{(x,y) \in X \times Y \mid y = f(x)\}$

Definition. Образом множества A при отображении f называется множество $f(A) = \{ y \in Y \mid \exists x \in A : y = f(x) \}$

Definition. Прообразом множества B при отображении $f: X \to Y \ (B \subset Y)$ называется множество $f^{-1}(B) = \{x \in X \mid f(x) \in B\}$

Definition. Транзитивность — $f: X \to Y \ g: Y \to Z \Rightarrow h: X \to Z \ h(x) =$ $g(f(x)) \forall x \in X$, где g(f(x)) --- суперпозиция отображения.

Definition. $f \circ g$ — суперпозиция $f: X \to Y \ g: Y \to Z \Rightarrow h: X \to Z$

Claim.
$$g \circ (f \circ g) = (h \circ g) \circ f \ \forall x \in X$$

$$Proof. \ \left[h \circ (g \circ f)\right] = h\left(\left(g \circ f\right)(x)\right) = h\left(g\left(f\left(x\right)\right)\right) = \left(h \circ g\right)\left(f\left(x\right)\right) = \left[\left(h \circ g\right) \circ f\right](x)$$

Definition. $f: X \to Y$ отображение f от X в Y называется:

TODO: переформулировать это.

- сюръективным или отображением "на" f(X) = Y
- инъективным или взаимно однозначным отображением "в" $\forall x_1, x_2 \in X$ $x_1 \neq x_2$ $f(x_1) \neq f(x_2)$, $x_1 = x_2$ $f(x_1) = f(x_2)$
- биективным или взаимно однозначным отображением "на" (одновременно и сюръективно и инъективно)

Путь наше отображение биективно ⇒ можно установить новое отображение:

$$g: Y \to X \ (y \in Y, g(x) = x \in X) \ (g(y) = x) \Leftrightarrow (f(x) = y) \ g = f^{-1}$$

- (1) обратное отображение биективно
- (2) Имеют место равенства:

(a)
$$f^{-1}(f(x)) = x \ \forall x \in X$$

(b) $f(f^{-1}(y)) = y \ \forall x \in Y$

(b)
$$f(f^{-1}(y)) = y \, \forall x \in Y$$

(3)
$$f^{-1}: Y \to X, f: X \to Y \Rightarrow (f^{-1})^{-1} = f$$

//дописать

Example. Отображение. Инъективное, не сюръективное.//вставить картинку.

Example. Отображение. Не инъективное, сюръективное.

Example. Отображение. Инъективное, сюръективное ⇒ биективное

2.1. Аксиомы Пеано.

- (1) l натуральное число
- (2) Для каждого натурального числа n есть однозначно определенное следующее число $\rho(n)$
- (3) Не существует такого натурального числа n , для которого $\rho(n) = l$

- (4) Если n_1 и n_2 различные натуральные числа, то то $\rho(n_1) \neq \rho(n_2)$
- (5) (Аксиома индукции)Пусть P --- некоторое свойство, которым может обладать натуральное число; таким образом P(n) --- верно, если натуральное число п обладает свойством P и ложно в противном случае.Тогда если P(1) истино и для любого наторального числа из $P(n) \Rightarrow P(\rho(n)) \Rightarrow P(n)$ выполняется для любого натурального п.

Definition. P(1) — база индукции

 $P(n) \rightarrow P(S(n))$ — шаг индукции

N — множество натуральных чисел

Z — множество целых чисел

Q — множество рациональных чисел

R — множество вещественных чисел

Определение действительных чисел.

- (1) Действительное (вещественное) число a записывается в виде бесконечной десятичной дроби $a=\pm a_0,...a_n$, где a_0 --- неотрицательное целое число , а каждое $a_n\in N_+$
- (2) Бесконечная десятичная дробь называется периодической и записывается в виде $a=\pm a_0,...a_n$ ($\beta_1,...\beta_n$), если после некоторого десятичного разряда группе цифр ($\beta_1,...\beta_n$) Бесконечные переодические числа являются рациональными числами $\frac{p}{q}$, где $p\in Z, q\in N$. TODO: переформулировать это.
- (3) Переход от записи рационального числа $a=\pm a_0,...a_n$ к виду $\frac{p}{q}$ производится по формуле // написать формулу
- (4) Число $\alpha_0,, \alpha_n$ абсолютная величина (модуль) числа

$$|\alpha| = \begin{cases} \alpha & \alpha > 0 \\ 0 & \alpha = 0 \\ -\alpha & \alpha < 0 \end{cases}$$

(5) Бесконечная десятичная дробь называется допустимой, если она не содержит периода, состоит только из цифр 9. Любое действиетельное число может быть записано в виде допустимой бесконечной дроби.

Свойства действительных чисел:

- (1) Операции сложения $\forall a, b$ существет сумма a + b:
 - (a) Для любой пары чисел a, b верно a + b = b + a (коммутативность)
 - (b) $\forall a, b, c$ верно a + (b + c) = (a + b) + c (ассоциативность)
 - (c) $\forall a$ верно a + 0 = a (существует нейтральный элемент)
 - (d) $\forall a \ \exists (-a): \ a + (-a) = 0$ (существует противоположный элемент)
- (2) Операция умножения $\forall a, b$ определяет и при том однозначным образом число, называющиеся их призведение a*b
 - (a) a * b = b * a
 - (b) a * (b * c) = (a * b * c)
 - (c) a * 1 = a
 - (d) $a \neq 0 \exists \frac{1}{a}, a^{-1} : a^{-1} * a = 1$
- (3) Связь операций сложения и умножения $\forall a,b,c \ (a+b)*c = ac+bc$ (дистрибутивность)
- (4) Упорядоченность a > 0, a = 0, a > 0
 - (a) a + b > 0, если $a > 0 \hat{b} > 0$
 - (b) a*b>0, если a>0 ^ b>0

Сравнение действительных чисел.

- (1) Сравнение неотрицательных чисел $\alpha = \alpha_1, ..., \alpha_n \beta = \beta_1, ..., \beta_n \beta_n =$ $\alpha_n \, \forall n = 0, 1...$ Если неотрицательное действительное число можно записать в виде допустимой бесконечной дроби, то говорят, что $\alpha < \beta$, если $\alpha_0 \le \beta_0$ и существует такое номер n, что $\alpha_n = \beta_n \, \forall n = 0, 1, ..., n-1$, а $\alpha_n < \beta_n$
- (2) Сравнение произвольных действительных чисел. Если a— неотрицательное,b— отрицательное $\Rightarrow a > b$. Если $a \le 0 \hat{b} \le 0 \Rightarrow |a| = |b|$
- (3) Неравенства, содержащие знак модуля. $|a+b| \le |a| + |b|, |a+b| \ge |a| - |b|$ (неравенство треугольника)

Действительные числа обладают свойством непрерывности.

Definition. Нетривиальное множество элементов, обладающих выше перечислеными свойствами, называют множеством дейстительных чисел.

Definition. Расширенная числовая прямая — дополним множество элементов следующими символами: $+\infty$, $-\infty$. Обозначим \overline{R}

Definition. $\forall a, b \in R, a \leq b$ можно соотнести множество:

- $\begin{array}{ll} (1) \ [a,b] \underline{\triangle} \ \{x \in R | a \leq x \leq b\} \ \text{— отрезок или сегмент} \\ (2) \ (a,b) \underline{\triangle} \ \{x \in R | a < x < b\} \ \text{— интервал} \\ (3) \ [a,b) \underline{\triangle} \ \{x \in R | a \leq x < b\} \ \text{— полуинтервал} \end{array}$

2.2. Точные грани числовых множеств.

Conjecture. Множеесство $E \subset R$ называется

- ограниченным сверху, если существует такое число $M \in R$, что $x \leq M$
- \bullet ограниченым снизу, если существует такое число $m \in R$, что $m \le x$ $\forall x \in E$
- ограниченным, если оно ограниченно сверху и снизу.

Lemma. Для того чтобы множесво $E \subset R$ было ограничено необходимо uдостаточно, чтобы $\exists C \in R$,что $|x| \leq C \ \forall x \in E$

Proof.

Необходимость. \Rightarrow Пусть множество $E \subset R \Rightarrow m \in R \ M \in R \Rightarrow m \leq x \leq$ $M, \forall x \in E \Rightarrow -C \leq x \leq C \ \forall x \in E \ C = max\{|m|, |M|\} \ C \geq |m| \geq -m \Rightarrow$ $-C \le m \ M \le |M| \le C$ По свойству абсолютной величины $x \le C \ \forall x \in E(4)$ Достаточность. $\Leftarrow \exists C \in R$ Если выполняется условие $-c \leq x \leq c$, то $M \leq |M| \leq C \Rightarrow$ множество ограниченно.

Definition. Если множесво $E \subset R$ ограничено сверху, то всякое такое число $M \in R$, что $x \leq M \ \forall x \in E$, будем называть верхней гранью этого множества. Аналогично , если множесво $E\subset R$ ограничено снизу, то всякое такое число $m \in R$, что $M \le x \ \forall x \in E$ будем называть нижней гранью этого множества.

Definition. Наименьшая из верхних граней множесва $E \subset R$ называется точной верхней гранью $\sup E$ — supremum этого множества, а наибольшая из его

Remark. С учетом определиния 2 и 3 определение точной верхней грани в развернутой форме можно сформулировать так: Число $C \in R$ называется точной нижней гранью множества, если

- (1) $x \le E \ \forall x \in E$
- (2) $\forall \varepsilon > 0 \; \exists x_{\varepsilon} \in E : C \varepsilon < x$ (никакое число меньше C верхних граний множесва E никакой верхней гранью не является)

Remark. С учетом определиний точной нижней грани в развернутой форме можно сформулировать так: Число $C \in R$ называется точной верхней гранью множества, если

- (1) $x \le C \ \forall x \in E$
- (2) $\forall \varepsilon > 0$ Никакое число меньше C верхней гранью множества E не является
- (3) $\exists x_{\varepsilon} \in E : C \varepsilon < x_{\varepsilon}$

Remark. Число $C \in R$ называется точной верхней гранью множества , если

- (1) $C \le x \ \forall x \in E$
- (2) $\forall \varepsilon > 0$ Никакое число большей С нижней гранью множества E не является
- (3) $\exists x_{\varepsilon} \in E : x_{\varepsilon} < C + \varepsilon$

Definition. Не всякое числовое множество имеет наибольший или наименьший элемент.

Наибольший элемент(max E) множества $E\subset R$ $M(M\in E)$ $x\leq M$ $\forall x\in E$ Наименьший элемент(min E) множества $E\subset R$ $m(m\in E)$ $x\geq M$ $\forall x\in E$

Definition. Всякое непустое, ограниченное сверху числовое множесвто имеет точную верхнюю грань, а всякое непустое, ограниченное снизу числое множество имеет точную нижную грань.

Ргооf. (1) Пусть множество $E \subset R$ не пусто, тогда оно обязанно иметь хотя бы одну грань. ⇒ множество всех верхних граней не пусто (F). $x \le y \ \forall x \in E \ \forall y \in F$. По аксиоме непрерывности ⇒ $\exists c \in R \ x \le c \le y \ \forall x \in E \ \forall y \in F \Rightarrow c$ —верхняя грань $E \Rightarrow c$ наименьшее из всех граней ⇒ $c = \sup E$ (точная верхняя грань)

Если неограниено сверху $\sup E = +\infty$, неограничену снизу $\inf E = -\infty$

Theorem. Принцип Архимеда: каково бы ни было действительное число a, \exists такое натуральное число n, что n > a: $\forall a \in R \ \exists n \in N \ n > a$

Proof. (от противного)

Допустим, что принцип Архимеда не выполняется. $\exists a \in R, \forall n \in N \ n \leq a \Rightarrow$ число a ограничивает сверху множество натуральных чисел. Множество натуральных чисел как всякое непустое ограниченное множество имеет конечную верхную грань. $\beta = \sup N \ \beta - 1 < \beta \Rightarrow$ Согласно свойству верхних граней $\exists n > \beta - 1 \Rightarrow n + 1 > \beta \ n + 1 \in N$

Corollary. Каковы бы ни были числа a и b: 0 < a < b существет такое натуральное число n , что na > b

Example. $\frac{1}{n}, n=1,2,...$ найдём $\sup X$, найдём $\inf X$. Возьмем $c>0 \Rightarrow \exists n: \frac{1}{n} < c \ \forall c$ уже не ограничивает $X \Rightarrow \inf \left\{ \frac{1}{n} \right\} = 0$ $\frac{1}{n} \in (0,1]$

2.3. Иррациональные числа.

Definition. Иррациональные числа. (Дедекинд). Расмотрим разбиения множества всех рациональных чисел на два не пустых подмножества A и \acute{A} назовём такое разбиение сечением, если выполняются 2 условия:

- (1) каждое рациональное число попадает в одно из множества A или \acute{A}
- (2) каждое число a множества A меньше каждого числа \acute{a} множества \acute{A}

А: А --- нижний класс сечения

 \hat{A} --- верхний класс сечения

Definition. Три вида сечения

- (1) в нижнем классе нет наибольшего числа, а в верхнем классе есть наименьшее чило
- (2) в нижнем классе имеется наибольшеее число, а в верхнем класее нет наибольшего
- (3) ни в нижнем классе нет наибольшего числа, ни в верхнем классе наименьшего

в первых двух случаях говорят что сечение призводиться рациональным числом г которое явлеятся пограничным между множеством A и $\acute{A}.$ r --- определяет сечение

Definition. Всякое сечение вида 3 определяет некоторе иррациональное число а.

Definition. Иррациональное число — вещественное число, которе не является рациональным Q. Иррациональные числа можно представить в виде бесконечной не периодической дроби.

- 2.4. Показателная функция. $a^r, a > 0 \ r \in Q$
 - (1) $r_1 < r_2 \ a > 1 \ a^{r_1} < a^{r_2}$, если $a < 1 \ a^{r_1} > a^{r_2}$
 - (2) $a^{r_1}a^{r_2} = a^{r_1+r_2}$
 - (3) $(a^{r_1})^{r_2} = a^{r_1 r_2}$
 - $(4) \ a^{-r} = \frac{1}{a^r}$

Определим теперь степень α^{β} для любого действительного β и $\alpha > 0$ α^{b} $b, \acute{b} \in Q$ $b < \beta < b$ $\alpha > 1$ α^{β} называется некторое число γ : $\alpha^{b} < \gamma < \alpha^{b}$ $\left\{a^{b}\right\}$ ограниченное сверху: $\alpha^{\acute{\beta}} \gamma = \sup_{b < \beta} \left\{\alpha\right\}^{\beta} \alpha^{\beta} < \gamma < \alpha^{\acute{\beta}}$

2.5. **Логарифмы.** Задача: установить существование логарифма любого вещественного числа $\gamma \in N$ $\alpha > 1$. Если $\exists r$ $\alpha^r = \gamma$, то r — искомый логарифм

Proof. Предоложим что нет r .Тогда проведем сечение по следущему правилу B/\acute{B} . В классе B заменим все b: $\alpha^b < \gamma$,а в классе \acute{B} все \acute{b} : $\alpha^{\acute{b}} > \gamma$. Эти члены B и \acute{B} не пустые. В силу неравенства Бернули.

$$\alpha^{n} > 1 + n(\alpha - 1) > n(\alpha - 1), \ n > \frac{\gamma}{(\alpha - 1)}, \ \alpha^{n} > \gamma \Rightarrow n \in \acute{B}$$

$$\alpha^{-n} = \frac{1}{\alpha^{n}} < \frac{1}{n(\alpha - 1)}, \ n > \frac{1}{\gamma(\alpha - 1)}, \ \alpha^{-n} < \gamma - n \in B$$

Таким образом построенное сечение определяет число вещественное которое является пограничным между этими плоскостями.

По определению степени $\alpha^b < \alpha^\beta < \alpha^{\acute{b}}$ причем α^β — единственное удовлетворяющее всех подобным неравенствам. Для самого числа $b < \beta < \acute{b}$ $\alpha^\beta < \gamma < \alpha^\beta \Rightarrow \alpha^\beta = \gamma \ \beta = log_\alpha \gamma$

2.6. **Свойства полноты множества действительных чисел.** Принцип вложенных отрезком.(принцип Коши --- Кантора)

Conjecture. Система числовых отрезков

 $[a_1,b_1]$, $[a_2,b_1]$,..., $[a_nb_{,n}]$,... $a_n\in R,b\in R_n,n=1,2...$ называется системой вложенных отрезков, если

$$a_1 \le a_2 \dots \le a_n \le b_n \le \dots \le b_2 \le b_1$$

$$m.e.$$
 если каждый следующий отрезок $[a_{n+1},b_{n+1}]\subset [a_n,b_n]$: $[a_n,b_n]\subset [a_{n-1},b_{n-1}]\subset ...\subset [a_1,b_1]$

Theorem. (Теорема Кантора). Для всякой системы вложенных отрезков существует хотя бы одно число, которе принадлежит всем отрезкам данной системы.

Proof. // рисунок

$$A$$
 --- множество всех концов a_n B --- множество всех правых концов b_m . $\forall m,n:a_m\leq b_n$ $\exists \xi\;a_m<\xi< b_n\Rightarrow \xi\in [a_n,b_m]$

Definition. Пусть задана система отрезков $[a_n,b_n]$, $a_n,b_n \in R$. Будем говорить, что длина b_n-a_m отрезков этой системы стремится к нулю, если $\forall \varepsilon>0$ существует такое номер n_{ε} , что для всех номеров выполняется неравенство $b_n-a_m<\varepsilon\ \forall n,m$.

Theorem. (Теорема Кантора 2). Для всякой системы, вложенных отрезков с длинами, стремящимися к нулю, существует единственная точка, принадлежащая всем отрезкам данной системы, причем для всякой системы, вложенных открезков с длинами, стремящимися к нулю, \exists ! точка, придлежащая всем отрезкам данной системы, причем

$$\xi = \sup_{n \in \mathbb{N}} \{a_n\} = \inf_{n \in \mathbb{N}} \{b_n\}.$$

 $Proof. \,$ Пусть длина отрезков стремится к нулю. Покажем, что существет только одна точка, приндалежащая всем отрезкам.

(от противного). Пусть имеется две точки
$$\xi, \acute{\xi} \in [a_n, b_n]$$
. Тогда $\forall n \left| \xi - \acute{\xi} \right| < |b_n - a_n| \ b_n - a_n < \varepsilon$. Возьмем $\varepsilon = \frac{1}{2} \left| \acute{\xi} - \xi \right| \left| \acute{\xi} - \xi \right| < \frac{1}{2} \left| \acute{\xi} - \xi \right|$!!!

3. Счетные и не счетные множества

Definition. Множество X и Y называются эквивалентными или равномощными, если между ними можно установить взаимно --- однозначное соответсвие (биекция). $X \sim Y$

Свойства:

- (1) (рефлексивность) $X \sim X$ для любого множества X
- (2) (симметричность) $X \sim Y \Rightarrow Y \sim X$
- (3) (транзитивность) $X \sim Y$ и $Y \sim Z \Rightarrow X \sim Z$

Definition. Множество X называется конечным если существует такое натуральное n, что $X \sim [1, n]$. В противном случае оно называется бесконечным.

Definition. Множество X называется счётным, если $X \sim N$

Theorem. Всякое бесконечное множество содержит счётные подмножества.

Proof. Возьмём множество A и выбирем элемент $a_1:A_1=A\smallsetminus\{a_1\}$. Так же $a_2:A_2=A\smallsetminus\{a_1,a_2\}$. Такие элементы не повторяются $\Rightarrow B=\{a_n|n\in N\}$ является счётным подмножеством множества A

Theorem. Всякое бесконечное подмножество счётного множества счётно.

Proof. Пусть X — счетное множество, введём бесконечное подмножество Y. $X = \{x_n | n \in N\}$ Возьмём элемент n_1 — наименьший из тех $N: x_n \in Y$ Выбираем $n_2: n_2 > n_1, \ x_n \in Y$ Пронумеруем $Y \ Y = \{x_{n_k} | k \in N\} \Rightarrow Y$ — счётные множество.

Следствие: Всякое подмоножество не более чем счётного множества не более чем счётно.

Theorem. Объединение счётного числа и счётного множества счётно

Proof. $A_n, n \in \mathbb{N}$ --- счётные множество

$$A = \bigcup_{n=1}^{x}$$

$$A_n = \{a_{n_1}, a_{n_2}, ...\} \ n \in N$$
 //рисунок

Theorem. Множество всех рациональных чисел счётно.

Proof. Рассмотрим множество: $A_1=\{1,2,3...\}$ $A_2=\left\{\frac{1}{2},\frac{2}{2},\frac{3}{2},...\right\}$ $A_3=\left\{\frac{1}{3},\frac{2}{3},\frac{3}{3},...\right\}$ Этой матрицей //дописать

Theorem. Множество всех вещественных числе несчётно

Proof. Достаточно доказать, что несчётные множество всех всщественных чисел несчётно. Будем считать, что множество всех

бесконечных доробей можно пересчитать.

T.e $x_1, x_2, \dots (1)$ $x_1 = a_0^1, a_1^1, a_2^1 \dots x_2 = a_0^2, a_1^2, a_2^2 \dots$

Докажем, что существет $x=b_0,b_1,b_2...$ (2), которое не содержится в последовательности (1), где b_0 --- произвольное целове положительное число, остальные цифры b_n (1 $\leq b_n \leq$ 8), $b_n \neq a_n \forall n$

По построению дробь 2 не содержится в плосткости 1. Это противоречит тому, что плоскость 1 содержит все бесконечные положительные дроби. \Box

Definition. Мощность множества --- это то общее, что есть у всех эквивалентных между собой подмножеств.

Мощность множества --- класс эвивалентных ему множеств.

CardX --- мощность Card --- кардинальное число

Алеф нуль (\aleph_0) --- кардинальное число, являющееся мощностью счётного множества (не описуемая буква)

CardX > CardY --- множество X больше Y

Theorem. (Теоема Кантора-Берштейна)

Пусть A и B --- произвольные множества. Если $\exists A_1 \subset A: A_1 \sim B, \ a$ $\exists B_1 \subset B: B_1 \sim A \Rightarrow A \sim B$

3.1. Комплексные числа.

Definition. Комплексные числа --- является расширенным множеством действительных чисел, было введено понятие мнимой единицы $\sqrt{i^2} = -1$ z = a + ib

$$a=R(z)$$
 --- действительная часть $b=Im(z)$ --- мнимая часть $|z_0|=\sqrt{a^2+b^2}$ --- модулем ϕ --- комплексного числа

Definition. Показательная формула комплексного числа

$$z_0 = exp(i\phi) = (z_0)(cos\phi + isin\phi)$$

- 3.1.1. Операции над комплексными числами. $z_0 = a + ib, z_1 = c + id$.
 - (1) $z = z_0 + z_1 = a + c + i(b+d)$

 - (2) $z = z_0 z_1 = a b + i(b d)$ (3) $z = z_0 * z_1 = (a + bi)(c + id) = (ac bd) + i(ad + cb)$
- 3.1.2. Комплексное сопряженные числа. $\begin{cases} z_0 = a + ib \\ z_1 = a ib \end{cases}$ --- комплексно-сопряженные

чилса
$$z_1=\bar{z_0}$$
 $|\bar{z_0}|=|z_0|$ $\phi_{\bar{z_0}}=-\phi_{z_0}$ $(a+ib)(a-ib)=a^2+b^2=\left|z_0\right|^2$

3.1.3. Деление комплексных чисел.
$$z=\frac{z_1}{z_0}, |z_0|>0$$

$$z=\frac{a+ib}{c+id}=\frac{(a+ib)(c-id)}{(c+id)(c-id)}=\frac{(ac+bd)+i(dc-ad)}{c^2+b^2}=\frac{ac+bd}{c^2+b^2}+i\frac{bc-ad}{c^2+d^2}$$

- 4. Числовые последовательности и ряды
- 4.1. Понятие предела числовой последовательности. Сходящиеся последовательности.

Definition. Числовые последовательностью $\{x_n\}_{n=1}^{\infty}$ называются всякие отображение натуральных чисел N во множество вещественных чисел R.

$$f: N \cup \{0\} \to R$$

$$g: N \setminus \{1, 2, ..., R - 1\} \to R$$

$$\{f_n\}_{n=0}^{\infty}$$

Definition. Число называется пределом последовательности $\{x_n\}$ если $\forall \varepsilon > 0$ $\exists N = N(\varepsilon) : \forall n > N \mid x_n - a \mid < \varepsilon \ (a \in R)$

Remark. В любом ε окрестности числа а содержится бесконечное число этой последовательности, при этом вне этой окрестности содержится только конечное

чило.
$$a = \lim_{n \to \infty} x_n \ x_n \to_{n \to \infty} a$$

 $-\varepsilon < x_n - a < \varepsilon \sim |x_n - a| < \varepsilon$