Escola de Engenharia Elétrica, Mecânica e de Computação Universidade Federal de Goiás

Laboratório de Microprocessadores e Microcontroladores

Experimento 5:

Comunicação Serial

Alunos:	Matrícula:	
	_	
	- -	

Prof. Dr. José Wilson Lima Nerys

SUMÁRIO

1 Co	municação Serial	
	vidades do Experimento	
2.1	Transmissão serial síncrona	6
2.2	Transmissão serial assíncrona	7
2.3	Recepção serial assíncrona	8
2.4	Rotação de LEDs usando recepção assíncrona	10
2.5	Envia para o display LCD o caractere recebido via serial	11
2.6	Envia para um computador o estado de componentes	12

1 Comunicação Serial

O canal serial do 8051 pode operar em 4 modos diferentes, definidos através do registrador especial **SCON** (mostrado na Tabela 1), cujos bits podem ser manipulados individualmente. O modo 0 é uma comunicação síncrona. Os demais modos são do tipo assíncrono.

Tabela 1: Registrador de Controle da Comunicação Serial

(SCON) =	SM0	SM1	SM2	REN	TB8	RB8	TI	RI

<u>SM0</u>	<u>SM1</u>	<u>Modo</u>	<u>Descrição</u>	<u>Baud Rate</u>		
0	0	0	Registrador de Deslocamento	$f_{osc}./12$		
0	1	1	UART de 8 bits	variável		
1	0	2	UART de 9 bits	$f_{\rm osc}$./64 ou $f_{\rm osc}$./32		
1	1	3	UART de 9 bits	variável		
<u>Símbolo</u>			<u>Nome e Significado</u>			
SM2	Habilita a característica de comunicação de multiprocessadores no modo 2 e 3. Nesses modos, se SM2=1, RI não será ativado se o nono <i>bit</i> de dado recebido for igual a 0. No modo 1, se SM2=1, RI não será ativado se um <i>stop bit</i> válido não for recebido. No modo 0, deverá ser 0.					
REN	<i>Bit</i> habitador da recepção serial. Setado/limpado por <i>software</i> para habilitar ou desabilitar a recepção serial.					
TB8	É o nono <i>bit</i> de dado que será transmitido no modo 2 e 3. Setado ou limpado por <i>software</i> .					
RB8	No modo 2 e 3, é o nono <i>bit</i> de dado que foi recebido. No modo 1, se SM2=0, RB8 é o <i>stop bit</i> que foi recebido. No modo 0, RB8 não é usado.					
TI	É o <i>flag</i> de interrupção de transmissão. Setado por <i>hardware</i> no final do tempo do 8° <i>bit</i> no modo 0 ou no início do <i>stop bit</i> em outros modos, em qualquer transmissão serial. Deverá ser limpado por <i>software</i> .					
RI	É o <i>flag</i> de interrupção de recepção. Setado por <i>hardware</i> no final do tempo do 8° <i>bit</i> no modo 0 ou na metade do tempo do <i>stop bit</i> em outros modos, em qualquer recepção serial. Deverá ser limpado por <i>software</i> .					

Modo 0:

Baud rate fixa e igual à frequência de clock dividida por 12. A recepção tem início com REN = 1 e RI = 0. Ao final da recepção o bit RI é setado por hardware e o conteúdo recebido é transferido para um registrador denominado por **SBUF**. RI deve ser ressetado pelo usuário antes da próxima recepção.

Baud Rate =
$$\frac{f_{osc}}{12}$$
 (bits/s)

A transmissão é iniciada automaticamente quando o conteúdo do acumulador é transferido para o **SBUF**. Quanto ao registrador **SBUF** da transmissão, embora tenha o mesmo nome do registrador da recepção, trata-se de outro registrador, específico para a transmissão. Ao final da transmissão o bit TI é setado por hardware. TI deve ser ressetado pelo usuário antes da próxima transmissão.

O pino **TxD** (pino P3.0) transporta o sinal de sincronismo, tanto na recepção quanto na transmissão. O pino **RxD** (pino P3.1) transporta os dados, tanto na transmissão quanto na recepção.

Modo 1:

Comunicação assíncrona com taxa de transmissão definida pelo usuário. São transmitidos 8 bits de dados, além de um bit de início e um bit de fim. A recepção tem início quando há uma transição do nível lógico 1 para 0 no pino **RxD** (pino P3.0) e o bit RI está zerado. Ao final da recepção o RI é setado por hardware.

Band Rate =
$$\frac{2^{SMOD}}{32} \times \frac{f_{osc}}{12 \times (256 - TH1)} (bits/s)$$

A transmissão é iniciada quando há uma transferência de dados para **SBUF**. Ao final da transmissão o bit TI é setado. O bit TI deve ser ressetado pelo usuário antes da próxima transmissão.

O **temporizador 1** deve ser configurado para operar no **modo de recarga automática (modo 2)**. O valor da recarga (TH1), juntamente com o bit SMOD (bit 7 do registrador especial **PCON**), é que define a frequência de comunicação (transmissão e recepção). A Tabela 2 fornece alguns dos valores mais comuns de taxa de transmissão.

				Timer	r 1
Baud Rate (bits/seg)	Freq. Osc. (MHz)	SMOD	C/Tbarra	Modo	Valor Recar.
Modo 0 Máx: 1MHz	12	X	X	X	X
Modo 2 Máx: 375K	12	1	X	X	X
Modo 1, 3: 62,5K	12	1	0	2	FFh
19,2K	11,059	1	0	2	FDh
9,6K	11,059	0	0	2	FDh
4,8K	11,059	0	0	2	FAh
2,4K	11,059	0	0	2	F4h
1.2K	11,059	0	0	2	E8h
137,5	11,059	0	0	2	1Dh
110	6	0	0	2	72h
110	12	0	0	1	FEEBh

Tabela 2: Taxas de transmissão mais comuns

Modo 2:

Modo assíncrono onde 11 bits são transmitidos (bit de início + 9 bits de dados + bit de fim). A taxa de transmissão/recepção pode ser 1/32 ou 1/64 da frequência de clock. A recepção tem início quando há uma transição do nível lógico 1 para 0 no pino **RxD** (pino P3.0) e o bit RI está zerado. Ao final da recepção o bit RI é setado por hardware. O nono bit de dados é guardado em RB8. Esse bit pode ser o bit de paridade.

A transmissão é iniciada quando há uma transferência de dados para **SBUF**. Ao final da transmissão o bit TI é setado. O nono bit a ser transmitido é guardado em TB8. Esse bit pode ser o bit de paridade. Expressão que define a taxa de transmissão no modo 2.

Baud Rate =
$$2^{SMOD} \times \frac{f_{osc}}{64}$$
 (bits/s)

Se o bit SMOD for zero, a taxa é 1/64, caso seja igual a 1, a taxa é 1/32.

Modo 3:

É semelhante ao modo 1. A diferença está no bit a mais de dados no modo 3. Tanto no modo 1 quanto no modo 3 a taxa de transmissão é definida pelo usuário, seguindo a equação a seguir:

Baud Rate =
$$\frac{2^{SMOD}}{32} \times \frac{f_{osc}}{12 \times (256 - TH1)} (bits/s)$$

O bit menos significativo (**LSB**) é o primeiro bit a ser enviado, ou recebido em todos os modos da comunicação serial. A Fig. 1 representa a onda vista na tela de um osciloscópio digital e mostra um exemplo de sinal presente no pino **TxD** durante uma transmissão serial no modo 1, com baud rate de 9600

bps. O dado mostrado é 15H (0001 0101b). Observa-se, além dos 8 bits de dados, um bit de start (nível lógico zero) e um bit de parada (nível lógico alto). Observa-se ainda que o intervalo de cada bit equivale aproximadamente a 104 µs. O tempo medido no osciloscópio para os 8 bits da transmissão foi de 830 µs.

Fig. 1: Onda na tela de um osciloscópio digital para transmissão serial com baud rate de 9600 bps

A conexão serial entre o microcontrolador 8051 e um computador exige um componente para adaptação dos níveis de tensão. Enquanto no microcontrolador tensão zero representa nível lógico 0 e tensão de 5 V representa o nível lógico 1, no computador o nível lógico 0 é representado por uma tensão de + 12 V e o nível lógico 1 é representado por uma tensão de - 12 V. Essa adaptação entre os níveis de tensão é conseguida com o componente MAX232. A conexão pode ser feita usando um cabo invertido, como o mostrado na Fig. 2, ou através de um cabo direto, conforme Fig. 3.

Fig. 2: Conexão entre um PC e um microcontrolador através de um cabo invertido e um driver RS232.

Fig. 3: Conexão entre um PC e um microcontrolador através de um cabo direto e um driver RS232.

Os computadores mais atuais, principalmente notebooks, não tem o terminal DB9, mas apenas terminais USB. Nesse caso, uma opção é usar um transmissor/receptor bluetooth para a comunicação serial. Assim, dispensa-se o componente MAX232. A Fig. 4 mostra os módulos bluetooth que podem ser usados nos experimentos desse roteiro.

Fig. 4: Módulos bluetooth para comunicação serial entre microcontrolador e computador

2 Atividades do Experimento

Os programas das tarefas a seguir devem ser **digitados** e **compilados** no simulador **MCU8051** ou similar e **executados** no simulador do kit didático e no **kit didático real** do microcontrolador 8051.

2.1 Transmissão serial síncrona

No programa da Tabela 3 a porta serial é configurada no **modo 0** e usada para transmitir uma contagem crescente. Usar o osciloscópio para observar e interpretar os sinais de saída nos pinos **P3.0** (**RxD**) e **P3.1** (**TxD**). Congele as ondas na tela do osciloscópio, num instante qualquer da contagem, e esboçe os sinais nos pinos **TxD** e **RxD**.

TT 1 1	_		. ~		,
Tahela	٦.	Tra	nsmissão	CATIO	cincrons
I abcia	J.	11a	пошьовао	SCITAL	SHICIOH

Rótulo	Mnemônico
	ORG 00H
	LJMP INICIO
	ORG 30H
INICIO:	MOV SP,#2FH
	MOV A,#00H
LOOP:	MOV SBUF,A
	JNB TI,\$
	CLR TI
	INC A

Rótulo	Mnemônico
	LCALL ATRASO
	SJMP LOOP
ATRASO:	MOV R0,#100
V1:	MOV R1,#250
	DJNZ R1,\$
	DJNZ R0,V1
	RET
	END

A Fig. 5 ilustra a forma de onda esperada para o programa de transmissão síncrona. O canal TxD transporta o sinal de sincronismo. O canal RxD transporta os dados transmitidos e recebidos (Dado mostrado: 12 H).

Fig. 5: Transmissão síncrona de uma contagem crescente (valor mostrado: 12H)

Questão 1: Qual é o tempo correspondente a 1 bit do sinal transmitido? Qual é a taxa de transmissão?

Tabela 4: Valores para a transmissão síncrona

Grandeza	Valor no Simulador	Valor no Osciloscópio real
Tempo correspondente a 1 bit do sinal lido no pino RxD (Período do sinal de sincronismo – lido no pino TxD)		
Taxa de Transmissão (MHz ou kHz)		

Questão 2: Capture a imagem da tela do osciloscópio do simulador mostrando o sinal de sincronismo e o sinal correspondente ao dado transmitido.

Fig. 6: Formas de onda do canal serial síncrono

2.2 Transmissão serial assíncrona

O programa a seguir é equivalente ao anterior, mas utiliza o modo 1 da comunicação serial com **baud rate de 9600 bps**. Uma vez que o cristal oscilador é de 11,0592 MHz, da Tabela 2, tem-se um valor de recarga **TH1 = FDH**, para o temporizador 1 no modo 2 (recarga automática). Execute o programa no simulador do kit didático e no kit real.

Tabela 5: Transmissão serial assíncrona com baud rate de 9600 bps

Rótulo	Mnemônico
	ORG 00H
	LJMP INICIO
	ORG 30H
INICIO:	MOV SP,#2FH
	MOV SCON,#40H
	MOV TMOD,#20H
	MOV TL1,#0FDH
	MOV TH1,#0FDH
	MOV A,#00H
	SETB TR1

Rótulo	Mnemônico
LOOP:	MOV SBUF,A
	JNB TI,\$
	CLR TI
	INC A
	LCALL ATRASO
	SJMP LOOP
ATRASO:	MOV R0,#100
V1:	MOV R1,#250
	DJNZ R1,\$
	DJNZ R0,V1
	RET
	END

Use uma interface configurada para a taxa de comunicação de 9600 bps, 8 bits de dados, para visualizar os caracteres recebidos do microcontrolador.

Obs.: Use um cabo DB9 para a conexão do microcontrolador com o computador, ou utilize um módulo bluetooth para a comunicação com o computador ou com um celular (que tenha instalado um aplicativo para comunicação serial).

A Fig. 7 ilustra a forma de onda esperada para o programa de transmissão assíncrona. O canal TxD transporta o sinal transmitido (valor mostrado: 37H)

Fig. 7: Transmissão assíncrona de contagem crescente (valor mostrado: 37H)

Questão 3: Qual é o tempo correspondente a 1 bit da transmissão? Qual é a taxa de transmissão?

Tabela 6: Valores para a transmissão assíncrona com baud rate de 9600 bps

Grandeza	Valor no Simulador	Valor no Osciloscópio real
Tempo correspondente a 1 bit medido com o osciloscópio		
Taxa de Transmissão medida (bps)		

Questão 4: Capture a imagem da tela do osciloscópio do simulador mostrando o sinal correspondente ao dado transmitido

Fig. 8: Formas de onda no pino TxD do canal serial assíncrono de 8 bits

2.3 Recepção serial assíncrona

No programa da Tabela 7 o microcontrolador recebe dados via serial no modo 1, com taxa de recepção de **4800 bps**, usando interrupção. O dado recebido é enviado para a porta P1 (LEDs). A frequência do cristal oscilador é de **11,0592 MHz**. Assim, da Tabela 2, tem-se o valor de recarga **TH1** = **FAH**, para o temporizador 1 no modo 2 (recarga automática). Use uma interface configurada para 4800 bps e 8 bits de dados para transmitir os dados para o microcontrolador. Execute o programa no simulador do kit didático e no kit real.

Tabela 7: Recepção serial assíncrona com baud rate de 4800 bps e usando interrupção

Rótulo	Mnemônico	Comentário sobre o Efeito da Operação
	ORG 00H	
	LJMP INICIO	
	ORG 23H	
	CLR RI	; Limpa flag de recepção
	MOV A,SBUF	; Transfere para o acumulador conteúdo recebido via serial
	RETI	; Retorna da subrotina de atendimento da serial
	ORG 30H	
INICIO:	MOV SP,#2FH	; Apontador de pilha SP = 2FH
	MOV SCON,#40H	; Configura serial para modo 1 assíncrono
	MOV IE,#90H	; Habilita interrupção da serial. IE = 1 0 0 1 0 0 0 0b
	MOV TMOD,#20H	; Configura o temporizador 2 para operar no modo 2
	MOV TL1,#0FAH	; Faz TL1 = FAH \rightarrow baud rate de 4800 bps para $f = 11,0592$ MHz
	MOV TH1,#0FAH	; Carrega TH1 com o valor de recarga automática
	MOV A,#00H	; Carrega acumulador com 0
	SETB TR1	; Dispara temporizador 1
	CLR RI	; Limpa flag de recepção da serial
	SETB REN	; Habilita recepção serial
V1:	MOV P1,A	; Transfere para a porta P1 o conteúdo do acumulador
	SJMP V1	; Loop mostrando o conteúdo de A. Esse valor muda a cada recepção
	END	

Fig. 8: Forma de onda para recepção assíncrona do número "5" (ASCII 35H) enviado pelo computador

Questão 5: Qual é o valor (em binário) mostrado nos Leds, para os valores recebidos via serial, mostrados na Tabela 8?

Tabela 8: Valores recebidos via serial

Caractere digitado na Interface		Valor binário mostrado nos Leds						
de Comunicação		bit6	bit5	bit4	bit3	bit2	bit1	bit0
1								
M								
t								
/								
#								

Questão 6: Quais são os valores de recarga (TH1) para as taxas de transmissão 1200 bps e 2400 bps, usando o cristal de 11,0592 MHz? (Ver Tabela 2, página 4)

Tabela 9: Valores de recarga

Baud Rate	TH1
1200 bps	
2400 bps	

2.4 Rotação de LEDs usando recepção assíncrona

No programa da Tabela 10 o microcontrolador recebe dados via serial no modo 1, com taxa de recepção de **9600 bps**, usando interrupção. O dado recebido é usado para definir a rotação de LEDs na porta P1. Se o dado recebido for a letra "D" os LEDs são rotacionados para a direita. A letra "E" rotaciona os LEDs para a esquerda. A frequência do cristal oscilador é de **11,0592 MHz**. Assim, da Tabela 2, tem-se o valor de recarga **TH1 = FDH**, para o temporizador 1 no modo 2 (recarga automática).

Tabela 10: Rotação de Leds a partir de informações recebidas via serial

Rótulo	Mnemônico
	ORG 00H
	LJMP INICIO
	ORG 23H
	CLR RI
	MOV R0,SBUF
	RETI
	ORG 30H
INICIO:	MOV SP,#2FH
	MOV SCON,#40H
	MOV IE,#90H
	MOV TMOD,#20H
	MOV TL1,#0FDH
	MOV TH1,#0FDH
	MOV R0,#00H
	MOV A,#01H
	SETB TR1
	CLR RI
	SETB REN

Rótulo	Mnemônico
V2:	CJNE R0,#'D',V1
	LJMP DIREITA
V1:	CJNE R0,#'E',V2
	LJMP ESQUERDA
DIREITA:	MOV P1,A
	RR A
	LCALL ATRASO
	SJMP V2
ESQUERDA:	MOV P1,A
	RL A
	LCALL ATRASO
	SJMP V2
ATRASO:	MOV R7,#200
V3:	MOV R6,#250
	DJNZ R6,\$
	DJNZ R7,V3
	RET
	END

Questão 7: O que ocorre com os Leds quando se digita na interface os caracteres "D" e "E"?

Questão 8: O que ocorre com os Leds quando se digita um caractere diferente de "D" e "E"?

2.5 Envia para o display LCD o caractere recebido via serial

O programa a seguir mostra no display LCD os caracteres recebidos do computador via porta serial. **Baude Rate: 9600 bps**.

Tabela 11: Recebe caracteres via serial e envia para display LC	Tabela	11:	Recebe	caracteres	via	serial	e envia	para di	splay	v LC
---	--------	-----	--------	------------	-----	--------	---------	---------	-------	------

	bela 11: Recebe caract
Rótulo	Mnemônico
	RS EQU P3.5
	RW EQU P3.6
	EN EQU P3.7
	DADOS EQU P0
	ORG 00H
	LJMP INICIO
	ORG 23H
	CLR RI
	MOV A,SBUF
	LCALL TEXTO_WR
	RETI
	ORG 30H
INICIO:	MOV SP,#2FH
	MOV SCON,#40H
	MOV IE,#90H
	MOV TMOD,#20H
	MOV TL1,#0FDH
	MOV TH1,#0FDH
	MOV R7,#0FFH
	SETB TR1
	CLR RI
	SETB REN
	LCALL INICIA
	SJMP \$

Rótulo Mnemônico INICIA: MOV A,#38H LCALL INSTR_WR MOV A,#38H LCALL INSTR_WR MOV A,#0EH LCALL INSTR_WR MOV A,#06H LCALL INSTR_WR MOV A,#06H LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR INSTR_WR RET	
LCALL INSTR_WR MOV A,#38H LCALL INSTR_WR MOV A,#0EH LCALL INSTR_WR MOV A,#06H LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR RET	
MOV A,#38H LCALL INSTR_WR MOV A,#0EH LCALL INSTR_WR MOV A,#06H LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR RET	
LCALL INSTR_WR MOV A,#0EH LCALL INSTR_WR MOV A,#06H LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR RET	
MOV A,#0EH LCALL INSTR_WR MOV A,#06H LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR RET	
LCALL INSTR_WR MOV A,#06H LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR RET	
MOV A,#06H LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR RET	
LCALL INSTR_WR MOV A,#01H LCALL INSTR_WR RET	
MOV A,#01H LCALL INSTR_WR RET	
LCALL INSTR_WR RET	
RET	
INSTR WR: SETREN	
INSTR WR SETREN	
HISTR_WK. SETE EN	
CLR RW	
CLR RS	
MOV DADOS,A	
CLR EN	
LCALL ATRASO_LCI)
RET	
TEXTO_WR: SETB EN	
CLR RW	
SETB RS	
MOV DADOS,A	
CLR EN	
LCALL ATRASO_LCI)
RET	
ATRASO_LCD: MOV R4,#10	
V6: MOV R5,#80	
DJNZ R5,\$	
DJNZ R4,V6	
RET	
END	

Questão 9: Por que não é necessário fazer a transformação para ASCII do caractere recebido do computador e enviado para o display LCD?

Questão 10: Explique o funcionamento do programa.

2.6 Envia para um computador o estado de componentes

O programa a seguir é usado para ligar/desligar uma lâmpada de 220 V, através de uma chave no pino P3.3, e, ao mesmo tempo enviar, via serial, para o computador, o estado da lâmpada. Quando P3.3=1 a lâmpada está desligada; quando P3.3=0 a lâmpada está ligada.

Tabela 12: Aciona motor de corrente contínua e envia status via serial para o computador

Rótulo	Mnemônico
	CHAVE EQU P3.3
	STATUS EQU 22H
	LAMP EQU P3.4
	ORG 00H
	LJMP INICIO
	ORG 30H
INICIO:	MOV SP,#2FH
	MOV TMOD,#20H
	MOV SCON,#40H
	MOV TH1,#0FAH
	MOV TL1,#0FAH
	SETB TR1
	MOV R7,#00H
	MOV STATUS,#00H
	CLR LAMP
V1:	MOV A,P3
	ANL A,#00001000B
	XRL A,STATUS
	JZ V1
	JNB CHAVE,LIGA
	MOV DPTR,#L_OFF
	LCALL SERIAL
	CLR LAMP
	SETB STATUS.3
	SJMP V1
	INICIO:

Ord	Rótulo	Mnemônico
30	LIGA:	MOV DPTR,#L_ON
31		LCALL SERIAL
32		SETB LAMP
33		CLR STATUS.3
34		SJMP V1
35		
36	SERIAL:	MOV A,R7
37		MOVC A,@A+DPTR
38		CJNE A,#0FFH,ENVIA
39		MOV R7,#00H
40		RET
41		
42	ENVIA:	MOV SBUF,A
43		JNB TI,\$
44		CLR TI
45		INC R7
46		SJMP SERIAL
47		
48	L_ON:	DB 'LAMPADA LIGADA', 0DH, 0FFH
49	L_OFF:	DB 'LAMPADA DESLIGADA', 0DH, 0DH, 0FFH
50		END
51		

Questão 11: Como funciona o trecho do programa da linha 19 à linha 22?

Questão 12: Como funciona o trecho do programa, da linha 24 à linha 34?

Questão 13: Na linha 2 do programa da Tabela 12 foi atribuído ao endereço 22H da RAM o nome STATUS. A Figura 10 destaca esse registrador na região de bits/bytes da memória RAM. Dentro desse registrador 22H, o bit 13H foi utilizado para guardar o estado da lâmpada (nível lógico alto indica lâmpada desligada; nível lógico baixo indica lâmpada ligada).

Fig. 10: Memória RAM de 00h a 7Fh, com destaque para o byte 22h da memória

No programa da Tabela 12 a referência ao bit 13H foi feita usando STATUS.3, porque o bit 13 corresponde ao bit 3 do registrador STATUS.

Apresente ao menos uma opção extra para fazer referência ao bit 13H, que seja equivalente à instrução **SETB STATUS.3**.