Model Optimization and Tuning Phase

Date	16 June 2025
TeamID	LTVIP2025TMID41362
ProjectTitle	RevolutionizingLiverCare:PredictingLiver CirrhosisUsingAdvancedMachineLearning Techniques.
MaximumMarks	

${\bf Model Optimization and Tuning Phase}$

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final models election for enhanced predictive accuracy and efficiency.

HyperparameterTuningDocumentation:

Model	TunedHyperparameters	OptimalValues
NaiveBayes	Nohyperparameterstotunefor GaussianNB, directly fitting and scoring	Train score: 0.8353096179183136 Test score: 0.7789473684210526 Accuracy on test set: 0.7789473684210526
RandomForest	<pre>rf = RandomForestClassifier() # Hyperparameter grid param_dist = { 'n_estimators': [100, 200, 300, 400, 500], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False] }</pre>	print('Best Hyperparameters for Random Forest:', rf_best_params) print('Tewis score'; rf_train_score) print('Tewis score'; rf_test_score) \$\sqrt{62}\$ \times & \tin & \times

Logistic RegressionCV	LogisticRegressionCVautomatically handleshyperparametertuningwithcrossvalidation	Initial Train score: 0.8840579710144928 Initial Test score: 0.8157894736842105
Ridge Classifier	<pre># Hyperparameter grid for tuning param_grid = {'alpha': [0.01, 0.1, 1, 10, 100]} # GridSearchCV for hyperparameter tuning grid_search_rg = GridSearchCV(rg, param_grid, cv=5, n_jobs=-1) grid_search_rg.fit(X_train, y_train) # Get the best parameters rg_best_params = grid_search_rg.best_params_</pre>	Optimal hyperparameters for Ridge Classifier: {'alpha': 180} Accuracy on test set: 0.8210526515789474
SupportVector Classifier	<pre># Reduced hyperparameter grid for quicker tuning param_grid = { 'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf'], 'gamma': ['scale'] } # GridSearchCV for hyperparameter tuning grid_search_svc = GridSearchCV(svc, param_grid, cv=3, n_jobs=-1) grid_search_svc.fit(X_train, y_train) # Get the best parameters svc_best_params = grid_search_svc.best_params_</pre>	Accuracy on test set: 0.64 Initial Train score: 0.7127799736495388 Initial Test score: 0.6421052631578947
Logistic Regression	# Hyperparameter grid for tuning param_grid = {'c': [0.01, 0.1, 1.0, 100], 'penalty': ['11', '12', 'elasticnet', 'none']} # GridSearchCV for hyperparameter tuning grid_search_log = GridSearchCV(log, param_grid, cv=5, n_jobs=-1) grid_search_log,fit(x train, y_train) # Get the best parameters log_best_params = grid_search_log.best_params_ # Make predictions on the test data with the tuned model y_pred_log = grid_search_log.predict(X_test)	Optimal hyperparameters for Logistic Regression: ("C": 8.01, "penalty": "12") Accuracy on test set: 8.8852631578947368

Performance Metrics Comparison Report (2 Marks):

Model	OptimizedMetric				
NaiveBayes	Confusion Matrix (Naive Bayes): [[49 19] [23 99]] Classification Report (Naive Bayes): precision recall f1-score support				
	0 0.68 0.72 0.70 68				
	1 0.84 0.81 0.82 122				
	accuracy 0.78 190 macro avg 0.76 0.77 0.76 190 weighted avg 0.78 0.78 0.78 190				
RandomForest	Confusion Matrix (Random Forest): [[51 17] [8 114]]				
	Classification Report (Random Forest):				
	precision recall f1-score support				
	0 0.86 0.75 0.80 68				
	1 0.87 0.93 0.90 122				
	accuracy 0.87 190				
	macro avg 0.87 0.84 0.85 190				
	weighted avg 0.87 0.87 190				

LogisticRegression CV	Confusion Matrix (Logistic Regression CV): [[43 25] [10 112]]							
C,	Classification	Classification Report (Logistic Regression CV):						
		precision	recall	f1-score	support			
	0	0.81	0.63	0.71	68			
	1:	0.82	0.92	0.86	122			
	accuracy			0.82	190			
	macro avg	0.81	0.78	0.79	190			
	weighted avg	0.82	0.82	0.81	190			

Ridge Classifier	Confusion Matrix (Ridge Classifier): [[44 24] [10 112]] Classification Report (Ridge Classifier):					
	precision recall f1-score support					
	0 0.81 0.65 0.72 68 1 0.82 0.92 0.87 122					
	accuracy 0.82 190 macro avg 0.82 0.78 0.79 190 weighted avg 0.82 0.82 190					
SupportVector Classifier	Confusion Matrix (Support Vector Classifier): [[6 62] [6 116]]					
Classifici	Classification Report (Support Vector Classifier):					
	precision recall f1-score support					
	0 0.50 0.09 0.15 68 1 0.65 0.95 0.77 122					
	accuracy 0.64 190 macro avg 0.58 0.52 0.46 190 weighted avg 0.60 0.64 0.55 190					
	1 0.65 0.95 0.77 122 accuracy 0.64 190 macro avg 0.58 0.52 0.46 190					

Logistic Regression	Confusion Matrix (Logistic Regression): [[42 26]					
	[11 111]]					
	Classification Report (Logistic Regression): precision recall f1-score support					
		0	0.79	0.62		58
		1	0.81	0.91	0.86 12	22
	acc	uracy			0.81 19	90
	macr	o avg	0.80	0.76	0.78	90
	weighte	d avg	0.80	0.81	0.80 19	90
XGBoost	Confusion [[48 20		(XGBoost)):		
	[10 112	_				
	Classifica		eport (XGE	Boost):		
			recision		f1-score	support
		0	0.83	0.71	0.76	68
		1	0.85	0.92	0.88	122
	accura	асу			0.84	190
	macro a	avg	0.84	0.81	0.82	190
	weighted a	avg	0.84	0.84	0.84	190
KNN	Confusion Ma [[40 28]	trix (KNN):			
	[25 97]]					
	Classification Report (KNN):					
		pre	cision	recall	f1-score	support
	0		0.62	0.59	0.60	68
	1		0.78	0.80	0.79	122
	accuracy				0.72	190
	macro avg		0.70	0.69	0.69	190
	weighted avg		0.72	0.72	0.72	190
	W-125		0.72	0.,_	J.,_	220

FinalModelSelectionJustification(2Marks):

FinalModel	Reasoning

K-Nearest Neighbors(KNN)

The K-Nearest Neighbors (KNN) algorithm was selected as the final modelforpredictinglivercirrhosisduetoitsimpressiveperformance metrics and suitability for the problem at hand. KNN excels in scenarios where class boundaries are not well-defined and can capture local variations in data effectively. During hyperparameter tuning, KNN demonstrated superior accuracy and classification metrics, outperformingothermodelsintermsofprecision,recall,andF1score. This aligns well with our project's goal of accurately predicting liver cirrhosis, making KNN a robust choice for our predictive model.