- (32%) For each of the following relations decide whether it is reflexive, whether it is symmetric, 1. whether it is antisymmetric, and whether it is transitive? (請直接於表格中填O或X)
 - (a) The relation R_1 on $\{w, x, y, z\}$ where $R_1 = \{(w, w), (w, x), (x, w), (x, x), (x, z), (y, y), (z, y), (z, z)\}$.
 - (b) The relation R_2 on Z where a R_2 b means $|a b| \le 1$.
 - (c) The relation R_3 on Z where aR_3 b means $a^2 = b^2$.
 - (d) The relation R_4 on $\{a, b, c\}$ where $R_4 = \{(a, a), (b, b), (a, b), (a, c), (c, b)\}$.

Ans:

	reflexive	symmetric	antisymmetric	transitive	
R_1	0	X 设有 {z, x}	X找耐到到了b, af	X沒有的品	
R_2	0	0	X {21}, [1,2]	X {1,2}, {2,3}	, 放在 (1,37
R_3	0	0	X {2,-23, [-2,2]	0	
R_4	X治在{C,C}	X 没在 (b, a3	0	0	

- (16%) For each of the following relations decide whether it is a partial ordering and whether it is an 2. equivalence relation? (請直接於表格中填O或X)
 - (a) The relation R_1 on $\{1, 2, 3, ...\}$ where a R_1 b means a | b.
 - (b) The relation R_2 on $\{w, x, y, z\}$ where $R_2 = \{(w, w), (x, x), (y, y), (z, z)\}$.
 - (c) R₃ is the symmetry closure of a partial ordering ⇒對稱閉色。即滴足似咖啡
 - (d) The relation R_4 on the set of all functions $f: N \to \mathbb{R}^+$ where $R_4 = \{(f_1, f_2) \mid f_1(n) \le f_2(n), \forall n \in \mathbb{N} \}$.

Ans:

	partial ordering	equivalence relation
R_1	0	X
R ₂	0	0
R_3	X	0
R_4	0	X

(8%) {{1,2,3}, {4}} is a partition of A={1, 2, 3, 4}. Find the equivalence relation R on A such that R's different equivalence classes form the same partition of A.

Ans: $R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4)\}$

- 4. Let $R = \{(1, 2), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1)\}$ be the relation on the set $\{1,2,3,4\}$.

 - (b) (4%) Find the symmetric closure of R. $\frac{1}{2} \left\{ \frac{1}{2}, \frac{$
 - (c) (5%) Find the matrix representation (矩陣表示法) for the transitive closure of R

Ans: (a) {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 4)}

(b) {(1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 1), (1, 3), (3, 3), (4, 1), (1, 4)}

b)
$$\{(1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 1), (1, 3), (3, 3), (4, 1), (1, 4)\}$$

$$\begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{pmatrix}
\xrightarrow{M_R^{E_2}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 & | & 0 & 0 \\
0 & | & 0 & 0
\end{bmatrix}
\xrightarrow{M_R^{E_3}}
\xrightarrow{M_R^{E_3}}
\begin{bmatrix}
0 &$$

- Let $A=\{1,2,3,4,5,6,7,8,9,10\}$. 5.
 - (a) (4%) How many **reflexive** relations on A are there?
 - (b) (4%) how many **symmetric** relations on A are there?
 - (c) (4%) how many anti-symmetric relations on A are there?

Ans: (a) 2^{90} (b) 2^{55} (c) $2^{10} \times 7^{45}$

(8%) Draw the **Hasse diagram** for the relation R on A = $\{1, 2, 3, 4, 6, 8, 12\}$ where a R b means a | b. 6.

Ans:

- 7. For the partial order represented by the Hasse diagram shown right.
 - (a) (18%) Answer these questions (請直接於表格中作答, 若該題答案不存在請填X)

Question	Answer
Find the maximal element(s).	1
Find the greatest element.	1
Find the minimal elements(s).	8,9,10,11,12
Find the least element.	X
Find all upper bounds of {5,10}.	5,2,1
Find the least upper bound of {5,10}.	5
Find all lower bounds of {2, 4, 5}.	9, 10
Find the greatest lower bound of {b, d, e}.	X
Is it a lattice? (Yes or No)	No

(b) (4%) Give a total order of the elements that are compatible with the partial order.

Ans: (b) 8,9,10,11,12,4,5,6,7,2,3,1