

## Intro

- The purpose of this project is to build a model to predict hand gestures and users.
- Classification methods were used.
- Hand gesture recognition can be a very powerful tool in interaction with electronic devices.
- Obtained from <u>UCI Machine Learning Repository</u>.



# **Dataset Recap**



#### Class of Gestures:

- $1 \mapsto \text{Fist (with thumb out)},$
- $2 \mapsto \text{Stop (hand flat)},$
- $3 \mapsto \text{Point1}$  (point with pointer finger),
- $4 \mapsto \text{Point2}$  (point with pointer and middle fingers),
- $5 \mapsto \text{Grab}$  (fingers curled as if to grab).

## **EDA Recap**

Missing values appear in most of the columns, from 5% to 100%, and are missing not at random.

To utilize this information, a new column is created to show which markers are missing at each data point.



### Cross Validation, Gesture Prediction

#### Split Data:

Data leakage can easily occur if a user appears in both train and cv or test.

To prevent that, train, cv and test sets were split by users. Train took up 60%, cv and test both took up 20%.

#### Preprocess:

- XGBoost: MinMaxScaler.
- SVC: MinMaxScaler, drop columns with more than 10% missing values, random forest to impute the rest.

#### Hyperparameters:

- XGBoost: λ and max\_depth are tuned.
- SVC with rbf kernel: C and γ are tuned.

### Results, Gesture Prediction

#### Accuracy:

XGBoost did better in both accuracy and standard deviation.

| Model Comparison Summary, Predicting Gestures |          |                  |                    |                                   |  |  |  |  |  |
|-----------------------------------------------|----------|------------------|--------------------|-----------------------------------|--|--|--|--|--|
| Model                                         | Baseline | Average accuracy | Standard deviation | Standard deviation above baseline |  |  |  |  |  |
| XGBoost                                       | 20.93%   | 88.85%           | 0.0405             | 16.78                             |  |  |  |  |  |
| SVC                                           |          | 79.65%           | 0.0414             | 14.2                              |  |  |  |  |  |



## Results, Gesture Prediction

#### Confusion Matrix:

Confusions for XGBoost: (3, 4), (2, 5)

Confusions for SVC: (3, 4), (2, 5), (1, 3), (4, 5)





### Results, Gesture Prediction

#### Local Feature importance for XGBoost:

Force plot for XGBoost, ordered from Class 1 to 5. Actual Class is 1.



## Cross Validation, User Prediction

#### 1st method:

Split by gestures. Tried to predict users with gestures the model haven't seen. Didn't work, only got 35% accuracy.

#### 2nd method:

Tried to predict users given a certain gesture, it worked:

- Split data by gesture, then split into train, cv, test. Train models within each gesture.
- Compare results and find the best gesture and model.

#### Preprocess & Hyperparameters:

Models used are still XGBoost and SVC with rbf kernel.

Basically the same as predicting gestures.

### Accuracy:

Both models did a good job. XGBoost did better in general.

| Model Comparison Summary, Predicting Users |          |                     |                  |                    |                                   |  |  |  |  |
|--------------------------------------------|----------|---------------------|------------------|--------------------|-----------------------------------|--|--|--|--|
| Model                                      | Baseline | <b>Best Gesture</b> | Average accuracy | Standard deviation | Standard deviation above baseline |  |  |  |  |
| XGBoost                                    | 12.26%   | Class 5             | 99.64%           | 0.0013             | 674.11                            |  |  |  |  |
| SVC                                        |          | Class 4             | 97.67%           | 0.0007             | 1237.48                           |  |  |  |  |



Confusion Matrix for XGB: Almost no confusions



Confusion Matrix for SVC:

Almost no confusions



Local Feature importance for XGBoost:

Force plot for XGBoost, the first plot is on User 0, the second plot is on User 1. Actual User is 1.



### Outlook

#### For models:

- Tune hyperparameters more precisely.
- Try more machine learning models like neural network, logistic regression and KNN.

#### For features:

- Perform a more thorough EDA on coordinates and missing values.
- Try more feature engineering methods.

