Systems of Linear Equations

Exercise 7

Solving a Linear System with LU Decomposition

Author Cesare De Cal Professor
Annie Cuyt
Assistant Professor
Ferre Knaepkens

1 Introduction

In this exercise I am going to use solve a linear system $A\vec{x} = \vec{y}$ using LU decomposition. The goal is to verify that first element of the unknowns vector, x_1 , will contain an approximation of e-2.

As we've seen in class, there are multiple ways of solving a linear system AX = B. Assume A is a $n \times n$ square matrix, B is a "constant" term matrix $n \times h$, and X is a $n \times h$ unknown matrix. To solve for X, we could compute the inverse of A and find $x = A^{-1}y$. We've seen that this approach, however, requires more computations than necessary and returns a less accurate result.

On the other hand, the LU decomposition technique is a way to represent the matrix A in the form of simpler matrices, L and U (lower triangular and upper triangular matrices, respectively):

$$PA = LU$$

This method uses forward substitution (solving for Y from LY = B) and backward substitution (solving for X from UX = Y). I'll be specifically solving the system by using Gaussian Elimination with partial pivoting, which reduces round-offs errors compared to its naive implementation. I'll also be calculating the error and the condition number as the variable n increases, and plot the results.

2 Tools

The following programming language and libraries have been used in this exercise:

- C
- GSL (GNU Scientific Library)

The following double-precision GSL data types have been used in the exercise:

- gsl_vector
- gsl_matrix
- gsl_permutation

The following GSL methods have been used in the exercise:

- gsl_matrix_alloc(size1, size2)
- gsl_matrix_set_zero(matrix)
- gsl_matrix_set(matrix, row, column, value)
- gsl_matrix_get(matrix, row, column)
- gsl_vector_alloc(size)
- gsl_vector_set_zero(vector)
- gsl_vector_set(vector, index, value)
- gsl_vector_get(vector, index)
- gsl_matrix_memcpy(matrixToCopyFrom, matrix)
- gsl_linalg_SV_decomp(A, V, S, workspaceVector)
- gsl_vector_minmax(vector, minInVector, maxInVector)

In order to factorize a matrix into the LU decomposition, and then solve the square system Ax = y using the decomposition of A, I've used the following methods:

- gsl_linalg_LU_decomp(A, permutation, signum)
- gsl_linalg_LU_solve(LU, permutation, b, x)
- gsl_permutation_alloc(size)

3 Solving the linear system

In order to solve the system Ax = y, I first need to build the matrix A by understanding how it's build. The requirements are to build a tridiagonal matrix with the values -1 on the adjacent upper diagonal, the entries +1 on the adjacent lower diagonal, and on the main diagonal the values b_i , with i = 1, ..., n given by

$$b_i = \frac{2(i+1)}{3}, \quad i+1=3,6,9,\dots$$

 $b_i = 1, \quad i+1=2,4,5,7,8,\dots$

By looking closely at the first rule, we see that the i+1 are all multiples of 3 (i+1=3*k, for some k). Hence the i are of the form i=3*k-1, for some k. For n=5, for example, this is what the matrix looks like:

1.0000000000	-1.0000000000	0.0000000000	0.0000000000	0.00000000000
1.00000000000	2.00000000000	-1.00000000000	0.0000000000	0.0000000000
0.00000000000	1.0000000000	1.0000000000	-1.0000000000	0.0000000000
0.00000000000	0.0000000000	1.0000000000	1.0000000000	-1.00000000000
0.00000000000	0.0000000000	0.0000000000	1.00000000000	4.0000000000

The coefficients matrix A is first allocated by using the gsl_matrix_alloc method, then I set all the elements to zero with gsl_matrix_set_zero and finally nested for loops fill the diagonal values by checking the indexes. The coefficients reported above on the diagonal have 5 significant digits for improve the readability of this report.

I used the gsl_vector_alloc method to create an instance of the vector. All of its elements were set to zero by using $gsl_vector_set_zero(vector)$. The exercise asks us to set the first element of the y vector to one, so I used $gsl_vector_set(vector, 0, 1)$ to assign the value 1 to index 0. For n = 5, we have:

Given the Ax = y system, my goal is now to find the vector of the unknowns x. To do so, I first factorize A into its LU decomposition by allocating a new matrix (so that the matrix which represents A doesn't get overridden) using gsl_matrix_memcpy and then by calling $gsl_linalg_LU_decomp$. This method utilizes Gaussian Elimination with partial pivoting to compute the decomposition. The following is the LU matrix for n=5:

I can now use the LU matrix to solve the system by passing LU, x, a permutation structure gsl_permutation (it contains the order of the indexes of the equations in the system to keep track of swapping) and y to gsl_linalg_LU_solve. This method uses forward and back-substitution to modify the contents of the x vector given in input, which now looks like this (for n = 5):

$$\vec{x} = \begin{bmatrix} 0.7187500000 \\ -0.2812500000 \\ 0.1562500000 \\ -0.1250000000 \\ 0.0312500000 \end{bmatrix}$$

The first element looks contains an approximation of e-2. By increasing the size of the matrix n, x_i becomes increasingly more precise. For n=10, for example:

$$\vec{x} = \begin{bmatrix} 0.7182817183 \\ -0.2817182817 \\ 0.1548451548 \\ -0.1268731269 \\ 0.0279720280 \\ -0.0149850150 \\ 0.0129870130 \\ -0.0019980020 \\ 0.0009990010 \\ -0.0009990010 \end{bmatrix}$$

Then, I calculate the condition number of the matrix A of order n which will give me a better idea if this is a well-conditioned or an ill-conditioned linear system. In GSL there is no direct function that calculates the condition number, but it's possible to use the ratio of the largest singular value of matrix A, $\sigma_n(A)$, to the smallest $\sigma_1(A)$:

$$\kappa(A) := \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{\|A\|}{\|A^{-1}\|^{-1}}$$

I proceed to factorize A into its singular value decomposition SVD using the $gsl_linalg_SV_decomp$ method, and then use gsl_vector_minmax to extract the minimum and maximum singular values out of the vector S that contains the diagonal elements of the singular value matrix.

For n = 5, the condition number is

$$\kappa(A) = \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{4.2051006107}{1.1426432872} = 3.6801516779$$

For n = 10, the condition number is

$$\kappa(A) = \frac{\sigma_n(A)}{\sigma_1(A)} = \frac{6.2820508697}{1.1424251953} = 5.4988728328$$

I calculate the error by subtracting the computed solution x_1^* from the exact mathematical solution \tilde{x} (which can be obtained by using the M.E GSL constant minus 2).

Finally, I am now going to insert the x_1 component, the error, and the condition number for n from 1 to 50 in the next page. I chose n = 50 as the upper limit because it looks like the error doesn't improve after a certain threshold (n = 20).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	\widetilde{x}_1	$x_1^* - \widetilde{x}_1$	$\kappa(A_n)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	1.00000000000000000	-0.281718171540955	1.00000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02	0.66666666666666	0.051615161792378	1.767591879243998
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03	0.7500000000000000	-0.031718171540955	2.561552812808830
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04	0.714285714285714	0.003996114173331	2.258696038055887
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05	0.718750000000000	-0.000468171540955	3.680151677879533
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06	0.717948717948718	0.000333110510327	3.953864002022550
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07	0.718309859154930	-0.000028030695884	3.847674609118915
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08	0.718279569892473	0.000002258566572	5.377037588047721
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06	0.718283582089552	-0.000001753630507	5.727581839289335
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.718281718281718	0.000000110177327	5.498872832802596
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.718281835205993	-0.000000006746947	7.100335770367996
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0.718281822943950	0.000000005515095	7.582164637599711
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	0.718281828735696	-0.000000000276651	7.195531702121659
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	0.718281828445401	0.000000000013644	8.833149892375440
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.718281828470584	-0.000000000011539	9.488074730049041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	0.718281828458563	0.0000000000000482	8.911558696408528
19 0.718281828459046 -0.0000000000000001 10.63813407462738 20 0.718281828459045 -0.000000000000000 12.31319965865430 21 0.718281828459045 -0.00000000000000 13.36883104317075 22 0.718281828459045 -0.00000000000000 12.37107821261400 23 0.718281828459045 -0.000000000000000 14.05700479401655	17	0.718281828459065	-0.000000000000000000000000000000000000	10.571522848352377
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	0.718281828459028	0.0000000000000017	11.420182460381190
21 0.718281828459045 -0.000000000000000 13.36883104317075 22 0.718281828459045 -0.00000000000000 12.37107821261400 23 0.718281828459045 -0.00000000000000 14.05700479401655	19	0.718281828459046	-0.0000000000000001	10.638134074627382
22 0.718281828459045 -0.000000000000000 12.37107821261400 23 0.718281828459045 -0.00000000000000 14.05700479401655	20	0.718281828459045	-0.0000000000000000	12.313199658654300
23 0.718281828459045 -0.000000000000000 14.05700479401655	21	0.718281828459045	-0.0000000000000000	13.368831043170752
	22	2 0.718281828459045		12.371078212614004
				14.057004794016557
				15.328629826257806
				14.108163769731830
				15.802262487437682
				17.296307059194255
				15.848093475192302
				17.548556166163607
				19.269757243499750
				17.590060434351265
				19.295614845413013
				21.247563252611098
				19.333536447042945
				21.043254557744980
				23.228736221077760
				21.078161279333553
				22.791345987426897 25.212565199999691
				22.823680837817037
				24.539795564146115
				27.198526001362339
				24.569910774893234
				26.288533903235187
				29.186223702087091
				26.316714104617667
				28.037508462052152
				31.175355146341044
				28.063986916895736
				29.786678720210102

4 Observations

The linear system presented in this exercise gets increasingly ill-conditioned as n grows (as $\kappa(A_n) \geq$ for most n). It can be noticed, however, that a large condition number doesn't necessarily mean that the error will be large in all cases, just that it is possible to have a large error. The linear system appears to be ill-conditioned for most n as the condition number gets increasingly bigger = than 1. However, it can be observed that as n increases, the \tilde{x}_1 component gets incrementally closer to the actual e-2 value. This error I have calculated represents how well the computed solution \tilde{x}_1 approximates the true solution x_1^* , even though I operated in double-precision and there have been truncation errors when calculating e-2 and \tilde{x}_1 . It can be noted that the Gaussian elimination with partial pivoting doesn't introduce any additional truncation errors.