Lecture - 8A

Energy Resources, Economics and Environment

Energy Resources – Renewables

Rangan Banerjee

<u>Department</u> of Energy Science and Engineering

IIT Bombay

Energy Conversion Routes

Share of Renewables- Global Final Energy Use

Note: Data should not be compared with previous years because of revisions due to improved or adjusted data or methodology. Totals may not add up due to rounding.

Source: Based on OECD/IEA and IEA SHC.
See endnote 54 for this chapter.

Share of Renewables In End Use

2008 Global Energy Flows in EJ

Source: SRREN, IPCC

Share of Renewables In Electricity

Hydropower Potential

Estimation method	Comments	Hydrootential [EJ/yr]
Energy in the water cycle (Tester et al., 2005)	40,000 TW of instant solar power serving to evaporate water 40% of the time	504,000
Theoretical potential (Lehner et al., 2001)	For most rivers: mass of runoff × gravitational acceleration × height	200
Maximum technical potential, based on rivers and or sites ^a	Technical potential of known sites, assuming a very high use factor	140–145
Technical potential, based on sites at 2–20¢ per kWh ^b	Portion of technical potential, with a realistic use factor, that is sufficiently promising to justify a site assessment	50–60
Economical potential, based on sites at 2–8¢ per kWh ^c	Portion of technical potential, with a realistic use factor, that is competitive with large thermal power plants	30

2008- 3200 TWh 16%

Hydropower Generation Trend

4200 TWh 2018

Source: SRREN, IPCC

1267 GW

2017

Renewable Energy Growth Rates

Energy Fluxes- Renewables

Renewable source	Annual Flux (EJ/yr)	Ratio (Annual energy flux/ 2008 primary energy supply)
Bloenergy	1,548#	3.1
Solar Energy	3,900,000	7,900
Geothermal Energy	1,400°	2.8
Hydropower	1472	0.30
Ocean Energy	7,400°	15
Wind Energy	6,000°	12

Source: SRREN, IPCC

Renewable Potential

- How do we estimate the potential?
- Flows/ Fluxes Not stocks
- Technical/ Economic Potential
- Spatial Distribution of resource
- Daily/ Seasonal Variation
- Uncertainty

Wind measurement

Wind Sock

http://www.weatherwizkids.com/?page_id=82

Wind Vane Anemometer set

Wind speed vs height

- Wind speed varies with height from ground
- $V_2/V_1 = (z_2/z_1)^{\alpha}$ where α ranges from 0.1-0.4 depending on terrain smooth 0.1, rough 0.4 valid at heights up to 150m

For site - speed frequency distribution,
 speed duration curve

Wind Monthly Average- Tamil Nadu (2007)

Source: George M. and Banerjee R. (2011)

Wind - Daily Variation Tamil Nadu

Source: Powergrid (2012)

Variation in Wind Speed

Wind speed(m/s) measured at 10m at Chandrodi station, Kutch Gujarat

Map of Median Wind Power density

References

- GEA, 2012: Global Energy Assessment Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria. Chapter 7, Available online: https://www.iiasa.ac.at/web/home/research/Flagship-Projects/Global-Energy-Assessment/GEA Chapter7 resources lowres.pdf
- George M., and Banerjee R. (2011), A methodology for analysis of impacts of grid integration of renewable energy, Energy Policy, 39, 1265-1276, https://doi.org/10.1016/j.enpol.2010.11.054
- Powergrid (2012), Transmission Plan for Envisaged Renewable Capacity, Vol-1, Report by Power Grid Corporation of India Ltd., July 2012, Available online: https://www.powergridindia.com/sites/default/files/Our Business/Smart Grid/Vol 1.pdf
- REN21: Renewables 2019 Global Status Report, available online: https://www.ren21.net/gsr-2019/
- REN21: Renewables 2012 Global Status Report Available online: http://ren21.net/Portals/0/documents/Resources/GSR2012 low%20res FINAL.pdf
- SRREN, IPCC: Renewable Energy Sources and Climate Change Mitigation, Special Report of the Intergovernmental Panel on Climate Change, 2012, available online: http://www.ipcc-wq3.de/report/IPCC SRREN Full Report.pdf

Lecture - 8B

Energy Resources, Economics and Environment

Energy Resources – Renewables

Rangan Banerjee

<u>Department of Energy Science and Engineering</u>

IIT Bombay

Pyrheliometer

Pyranometer

Solar Radiation basics

- Extraterrestial Radiation 1361 W/m²
- Direct Normal Irradiance ~Peak 1000 W/m²
- Direct normal irradiance (DNI) is the flux density of direct (un-scattered) light from the sun measured on a flat plane perpendicular to the sun's rays.

Spectrum of Solar Radiation

Solar PV Variation

Charanka (Gujarat) Solar Generation

Time of the Day

GHI(W/m²)measured at Chandrodi station, Kutch Gujarat

Source: Gujarat SLDC

Energy flow/ Solar Radiation for a typical day of April

GHI for the month of February 2015 at IIT Bombay

Source: GEA Chapter 7

Global Solar Irradiance - Dec, Jan, Feb

Global Solar Irradiance - June, July, Aug

Annual Insolation

Area for Power Generation

India's present electricity requirement approx. 500 billion kWh, can be met by installing **2500** sq. km of solar field.

A square of 50km x 50km, or

4 smaller squares of 25km x 25km.

Daily GHI and Power Output comparison at IIT Bombay

Yearly(2015)-10 min duration DNI Variation at Noida

Source: NETRA

Difficult to estimate the tide period and Range of period

Source: wikipedia.org

Tidal Range Map

Barrage	Country	Capacity (MW)	Power generation (GWh)	Construction costs (million USD)	Construction costs per kW (USD/kW)
Operating					
La Rance	France	240	540	817 ¹	340
Sihwa Lake	Korea	254	552	298	117
Proposed/planned					
Gulf of Kutch	India	50	100	162	324
Wyre barrage	UK	61.4	131	328	534
Garorim Bay	Korea	520	950	800	154
Mersey barrage	UK	700	1340	5 741	820
Incheon	Korea	1320	2 410	3 772	286
Dalupiri Blue	Philippines	2200	4000	3 0 3 4	138
Severn barrage	UK	8640	15 600	36 085	418
Penzhina Bay	Russia	87 000	200 000	328 066	377

Source: GEA Chapter 7

Ocean Current Map

Source: SRREN, IPCC

Wave Power Distribution

Wave Energy Potential

REGION	Wave Energy TWh/yr (EJ/yr)
Western and Northern Europe	2,800 (10.1)
Mediterranean Sea and Atlantic Archipelagos (Azores, Cape Verde, Canarles)	1,300 (4.7)
North America and Greenland	4,000 (14.4)
Central America	1,500 (5.4)
South America	4,600 (16.6)
Africa	3,500 (12.6)
Asia	6,200 (22.3)
Australia, New Zealand and Padflic Islands	5,600 (20.2)
TOTAL	29,500 (106.2)

Source: SRREN , IPCC

Source: SRREN, IPCC

Supply Curve Geothermal Electricity

Source: GEA Chapter 7

Supply Curve Geothermal Heat

Source: GEA Chapter 7

Map of India showing the geothermal provinces

Source: Geothermal Energy Potential in India

Biomass

Bagasse - fibre residue from milling of sugarcane

Energy content of biomass

Biomass type	Ash content %	Energy content of fuel (MJ/kg)		
		Moisture content 0%	Moisture content 13%	
Wood	1	18.7	16	
Crop residues	5	16.5	14.2	
	10	15.8	13.5	
	20	14.1	11.9	
Animal dung	20	17	14.5	
	25	16	13.6	

Сгор	Residue	Residue ratio ^a	Residue energy (MJ/dry kg) ^b	Typical current residue uses ^c
Barley ^d	straw	2.3	17.0	
Coconut	shell	0.1 kg/nut	20.56	household fuel
Coconut	fibre	0.2 kg/nut	19.24	mattress making, carpets, etc.
Cocanut	pith	0.2 kg/nut		
Cotton	stalks	3.0	18.26	household fuel
Mustard Cotton	gin waste	0.1	16.42	fuel in small industry
Groundnut	shells	0.3		fuel in industry
Groundnut	haulms	2.0		household fuel
Maize	cobs	0.3	18.77	cattle feed
Maize	stalks	1.5	17.65	cattle feed, household fuel
Millet	straw	1.2		household fuel
seed	stalks	1.8		household fuel
Other seeds	straws	2.0		household fuel
Pulses	straws	1.3		household fuel
Rapeseed	stalks	1.8		household fuel

Source: Kartha and Larson, Bioprimer

Crop Residue					energy ry kg) ^b	Typical current residue uses	
Rice	straw	1.5	16.2	28	cattle feed, roof thatching, field burned		
Rice	husk	0.25	16.	14	fuel in small industry, ash used for cement production		
Soybeanse	stalks	1.5	15.9	91			
Sugarcane	garcane bagasse 0.		0.15 17.33		fuel at sugar factories, feedstock for paper production		
Sugarcane	tops/leaves	0.15	5		cattle f	feed, field burned	
Tobacco	stalks	5.0			heat supply for tobacco processing, household fuel		
Tubers*	straw	0.5	14.2	24			
Wheat	straw	1.5	17.	51	cattle feed		
Wood products ^f	waste wood	0.5	20.0	0			

Source: Kartha and Larson, Bioprimer

BIOMASS CONVERSION ROUTES

Biomass Conversion Routes

Biomass Plantation

Biomass category	Comment	2050 Technical potential (
Category 1. Residues from agriculture	By-products associated with food/fodder production and processing, both primary (e.g., cereal straw from harvesting) and secondary (e.g., rice husks from rice milling) residues.	15 – 70
Category 2. Dedicated blomass production on surplus agricultural land	Includes both conventional agriculture crops and dedicated bioenergy plants including oil crops, lignocellulosic grasses, short-rotation coppice and tree plantations. Only land not required for food, fooder or other agricultural commodities production is assumed to be available for bioenergy. However, surplus agriculture land (or abandoned land) need not imply that its development is such that less total land is needed for agriculture; the lands may become excluded from agriculture use in modelling runs due to land degradation processes or dimate change (see also 'marginal lands' below). Large technical potential requires global development towards high-yielding agricultural production and low demand for grazing land. Zero technical potential reflects that studies report that food sector development can be such that no surplus agricultural land will be available.	0 ~ 700
Category 3. Dedicated blomass production on marginal lands	Refers to biomass production on deforested or otherwise degraded or marginal land that is judged unsuitable for conventional agriculture but suitable for some bioenergy schemes (e.g., via reforestation). There is no globally established definition of degraded/marginal land and not all studies make a distinction between such land and other land judged as suitable for bioenergy. Adding categories 2 and 3 can therefore lead to double counting if numbers come from different studies. High technical potential numbers for categories 2 and 3 assume biomass production on an area exceeding the present global cropland area (ca. 1.5 billion ha or 15 million km²). Zero technical potential reflects low potential for this category due to land requirements for, for example, extensive grazing management and/or subsistence agriculture or poor economic performance if using the marginal lands for bioenergy.	0-110
Category 4. Forest blomass	Forest sector by-products including both primary residues from silvicultural thinning and logging, and secondary residues such as sawdust and bark from wood processing. Dead wood from natural disturbances, such as fires and insect outbreaks, represents a second category. Blomass growth in natural/semi-natural forests that is not required for industrial roundwood production to meet projected biomaterials demand (e.g., sawn wood, paper and board) represents a third category. By-products provide up to about 20 EVyr Implying that high forest biomass technical potentials correspond to a much larger forest biomass extraction for energy than what is presently achieved in industrial wood production. Zero technical potential indicates that studies report that demand from sectors other than the energy sector can become larger than the estimated forest supply capacity.	0-110
Category 5. Dung	Animal manure. Population development, diets and character of animal production systems are critical deter- minants.	5-50
Category 6. Organic wastes	Biomass associated with materials use, for example, organic waste from households and restaurants and dis- carded wood products including paper, construction and demolition wood; availability depends on competing uses and implementation of collection systems.	5->50
Total		<50->1000

Bioenergy crops Supply Curve

Source: GEA Chapter 7

Fuel Supply Curve- Europe

Aggregate Supply Curve MSW, Animal wastes, crop residues

Large Scale Storage Options

References

- GEA, 2012: Global Energy Assessment Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria. Chapter 7, Available online: https://www.iiasa.ac.at/web/home/research/Flagship-Projects/Global-Energy-Assessment/GEA Chapter7 resources lowres.pdf
- Geothermal Energy Potential in India, Available online: https://www.geni.org/globalenergy/library/renewable-energy-resources/world/asia/geo-asia/geo-india.shtml
- Kartha S. and Larson E. D. (2000), Bioenergy Primer: Modernised Biomass Energy for Sustainable Development, UNDP, Available online:
 <a href="https://www.undp.org/content/dam/aplaws/publication/en/publications/environment-energy/www-ee-library/sustainable-energy/bioenergy-primer-modernised-biomass-energy-for-sustainable-development/Bioenergy%20Primer 2000.pdf</p>
- SRREN, IPCC: Renewable Energy Sources and Climate Change Mitigation, Special Report of the Intergovernmental Panel on Climate Change, 2012, available online: http://www.ipcc-wg3.de/report/IPCC SRREN Full Report.pdf

Lecture - 8C

Energy Resources, Economics and Environment

Materials

Rangan Banerjee
Department of Energy Science and Engineering

IIT Bombay

Issues

- Will we run out of materials?
- Can we create a closed loop materials system?
- Which renewable energy materials will be constrained and what will be the impact?

Critical Materials

Source: Allwood et al, 2011

Examples of Energy Materials

Material Efficiency

J.M. Allwood et al. / Resources, Conse

Materials Strategies

Energy and Carbon Efficiency strategies:

- Energy efficiency
- 2. More recycling
- 3. Carbon Capture process or energy

Material Efficiency strategies:

- 4. Longer life, more use, repair and re-sale
- 5. Product upgrade, modularity, remanufacturing
- 6. Component re-use
- 7. Less metal, same service
- 8. Yield improvements

Global Material Usage

Energy intensive materials 50% of industrial energy use

Cement, Steel, Paper, Chemicals and fertilisers etc.

Substitution

Higher growth rate in developing countries

GEA, Chapter 8

Understanding Material Usage Trends

Kuznetz curve- Apparent consumption as a function of income

High growth rates for developing countries

Saturation

Implications on global energy use

GEA, Chapter 8

Cement Consumption

Figure 8.4. Apparent cement consumption (expressed as kg/capita/year) as a function of income (expressed as US\$₁₉₉₅/capita) for different regions in the world.

Demand Growth - Materials

Material Choice

Material Choice

Embodied Energy of Elements

Element	Standard chemical exergy ^a		Estimated embodied	Apparent
	kJ/mol	MJ/kg	energy (MJ/kg)	efficiency (%
Al	795.7	29.5	190-230	14
Cu	134.2	2.1	60-150	2
Fe	374.3	6.7	20-25	30
Mg	626,1	25.8	356-394	7
Ni	232.7	4.0	135-150	3
Pb	232.8	1.1	30-50	3
Sn	558.7	4.71	40	12
Ti	907.2	18.9	600-1000	2
Zn	339,2	5.2	70-75	7

^a Standard chemical exergy is the minimum reversible work required to produce a pure material from its reference composition at standard temperature and pressure. As an illustration, iron (Fe) is produced from Fe₂O₃ at its crustal composition.

Betting on the Planet

Cornucopians

Prof Julian Simon, Professor Business Administration, Univ of Maryland 1932-1998

Article in Science 1980

Resources, Population, Environment: An Oversupply of False Bad News

Julian L. Simon

incredible as it may seem at first," he wrote in his 1980 article -- the planet's resources are actually not finite.

Betting on the Planet

Malthusians

Paul Ehrlich

Ecologist , Professor Of Stanford University

The Population Bomb, 1968

John Harte, John Holdren, UC Berkeley

— Professors of Energy and Resources

Simon's Challenge

- 1980
- If scarcity due to population growth -prices of natural resource grain, oil, timber, metals
 should rise - at future date
- Willing to bet anyone that prices would decline at a future date (offer – pick any natural resource and any future date)

The Bet

- Ehrlich, John Holdren, John Harte accepted challenge – October 1980
- Chose Chrome
 - Copper
 - Nickel
 - Tin
 - Tungsten

US \$ 200 each at 1980 prices

Fig. 1. Commodity prices 1900-2008.

Fig. 2. Price Index for Ehrlich-Simon bet commodities 1900-2008.

Betting the Planet Revisited

http://www.economist.com/node/21525472

Figure 1. Trends in natural resource prices relative to other prices in United States 1879-1957

Real Price of Copper Variation

Real Price of Lead Variation

Real Price of Petroleum Variation

Price trend of metals

Fossil Fuel Prices

References

GEA 2012: Banerjee, R., Y. Cong, D. Gielen, G. Jannuzzi, F. Maréchal, A. T. McKane, M. A. Rosen, D. van Es and E. Worrell, 2012: Chapter 8 - Energy End Use: Industry. In Global Energy Assessment - Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 513-574.

Tahvonen, Economic Sustainability and Scarcity of Natural Resources: A Brief Historical Review, June 2000, RFF report

Krautkraemer, Economics of Natural Resource Scarcity, 2005 RFF report

Allwood, JM and Ashby, MF and Gutowski, TG and Worrell, E (2011) *Material efficiency: A white paper.* RESOUR CONSERV RECY, 55. pp. 362-381. ISSN 0921-3449

Katherine Kiel, Victor Matheson, Kevin Golembiewski (2010) Luck or skill? An examination of the Ehrlich-Simon bet, Ecological Economics 69 (2010) 1365–1367.

http://www.economist.com/node/21525472