Laser a diodo

Alberto Bordin, Giulio Cappelli

7-8 novembre 2017

Sommario

Misura della corrente di soglia di un diodo laser per varie temperature di operazione. Misura della divergenza del fascio.

Misura della dipendenza della lunghezza d'onda dalla temperatura.

1 To do

2 Teoria

3 Apparato sperimentale

Come si vede in Figura per poter effettuare le varie misure abbiamo a disposizione:

4 Caratteristica P-I

Analizziamo la dipendenza della corrente di soglia del diodo laser dalla temperatura misurando la caratteristica P-I in tre diverse condizioni: $T=12,\ 25,\ 45$ °C.

4.1 Presa dati

Abbiamo misurato la potenza fornita dal diodo laser in funzione della corrente di alimentazione mantenendo la temperatura del diodo costante attraverso l'utilizzo della cella peltier.

Il fascio è stato focalizzato sul fotodiodo attraverso una lente e per ogni valore della corrente abbiamo registrato il corrispondente valore della potenza leggendolo sul power meter NOVA RS232.

Abbiamo effettuato questa misura per tre valori diversi della temperatura del laser a diodo; i valori misurati sono riportati nelle rispettive tabelle in appendice.

4.2 Analisi dati

5 Divergenza del fascio

5.1 Presa dati

5.2 Analisi dati

6 Dipendenza λ da T

6.1 Presa dati

6.2 Analisi dati

A Tabelle

\mid I(Δ I) [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$
82.0(1)	6230	67.3(1)	2990	50.8(1)	64.1	43.2(1)	34.8
81.0(1)	6030	64.8(1)	2468	51.3(1)	69.3	41.8(1)	32.2
79.9(1)	5800	63.0(1)	2077	52.6(1)	89.8	39.7(1)	28.5
78.8(1)	5480	60.5(1)	1544	49.9(1)	57.5	38.1(1)	26.10
77.8(1)	5290	58.5(1)	1100	49.4(1)	54.8	36.5(1)	23.96
76.6(1)	5050	57.3(1)	848	48.8(1)	51.9	34.4(1)	21.34
75.3(1)	4740	56.1(1)	578	48.1(1)	48.6	31.8(1)	18.53
73.9(1)	4430	55.1(1)	385	47.0(1)	44.8	29.5(1)	16.25
71.0(1)	3800	54.3(1)	218.9	45.9(1)	41.4	26.7(1)	13.82
69.1(1)	3380	53.7(1)	142.3	44.5(1)	37.8	25.1(1)	12.56

Tabella 1: Valori misurati di corrente e potenza alla temperatura di $T=12^{\circ}C$

\mid I(Δ I) [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	P $[\mu W]$
81.9(1)	5180	72.1(1)	3090	60.5(1)	655	47.2(1)	38.2
80.8(1)	4940	71.3(1)	2907	59.7(1)	497	45.8(1)	35.3
80.3(1)	4830	69.7(1)	2585	58.6(1)	270.9	43.3(1)	31.0
79.2(1)	4610	68.3(1)	2267	57.6(1)	138.5	40.5(1)	26.80
78.4(1)	4420	67.2(1)	2082	56.8(1)	101.3	38(1)	23.61
77.7(1)	4280	66.3(1)	1836	55.2(1)	72.2	35.6(1)	20.91
77.2(1)	4170	65.5(1)	1675	54.6(1)	67.4	32.5(1)	17.83
76.1(1)	3950	64.5(1)	1471	53.6(1)	60.3	30.6(1)	16.14
75.2(1)	3750	63.1(1)	1190	52.7(1)	55.5	28.3(1)	14.20
74.7(1)	3640	62.5(1)	1098	50.4(1)	46.5	26.8(1)	13.04
73.7(1)	3430	61.7(1)	924	48.4(1)	40.9	25.1(1)	11.80

Tabella 2: Valori misurati di corrente e potenza alla temperatura di $T=25^{\circ}\mathrm{C}$

$\mid I(\Delta I) \mid m$	$[\mu A] P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	$P [\mu W]$	$I(\Delta I)$ [mA]	P $[\mu W]$
82.4(1)	3760	72.8(1)	1659	64.4(1)	128.5	52.7(1)	40.8
81.1(1)	3480	71.1(1)	1314	63.8(1)	106.8	50.2(1)	36.2
80.4(1)	3330	70.0(1)	1077	62.9(1)	90.0	48.8(1)	33.9
79.5(1)	3130	68.8(1)	839	61.1(1)	71.3	45.3(1)	28.9
77.8(1)	2772	68.2(1)	695	60.3(1)	66.1	43.9(1)	27.2
77.4(1)	2679	67.5(1)	558	59.5(1)	61.4	37.8(1)	20.63
76.3(1)) 2431	66.8(1)	423	58.2(1)	55.9	33.9(1)	17.09
75.4(1)	2228	65.6(1)	338	57.2(1)	52.2	29.9(1)	13.98
74.5(1)	2027	65.0(1)	168.5	55.7(1)	48.0	25.2(1)	10.77

Tabella 3: Valori misurati di corrente e potenza alla temperatura di $T=43^{\circ}\mathrm{C}$

$\theta_{//}$	$P [\mu W]$	$\theta_{//}$	$P [\mu W]$	$\theta_{//}$	$P [\mu W]$	$\theta_{//}$	P $[\mu W]$
0.0(5)	4.30	11.0(5)	0.57	-3.5(5)	2.38	-1.5(5)	3.56
1.0(5)	4.53	12.0(5)	0.33	-4.0(5)	2.16	-0.5(5)	4.10
2.0(5)	4.83	14.0(5)	0.16	-4.5(5)	1.85	0.5(5)	4.69
3.0(5)	4.59	16.0(5)	0.06	-5.0(5)	1.54	0.0(5)	4.64
4.0(5)	4.26	19.0(5)	0.04	-5.5(5)	1.20	1.5(5)	4.52
5.0(5)	3.75	23.0(5)	0.03	-6.0(5)	1.05	2.5(5)	4.82
5.5(5)	3.38	30.0(5)	0.02	-7.0(5)	0.71	2.0(5)	4.95
6.0(5)	2.99	45.0(5)	0.02	-8.0(5)	0.44	2.0(5)	4.96
6.5(5)	2.58	90.0(5)	0.02	-10.0(5)	0.17	3.5(5)	4.37
7.0(5)	2.30	0.0(5)	4.40	-12.0(5)	0.07	4.5(5)	3.89
7.5(5)	1.98	-1.0(5)	3.73	-15.0(5)	0.03	-2.5(5)	3.19
8.0(5)	1.79	-2.0(5)	3.42	-30.0(5)	0.03	1.5(5)	4.44
9.0(5)	1.25	-2.5(5)	3.05	-45.0(5)	0.02	2.0(5)	4.61
10.0(5)	0.86	-3.0(5)	2.66	-85.0(5)	0.02	2.5(5)	4.27

Tabella 4: P vs angolo di incidenza parallelo

$ \hspace{.05cm} heta_{\perp}$	$P [\mu W]$	θ_{\perp}	$P [\mu W]$	θ_{\perp}	$P [\mu W]$	θ_{\perp}	P $[\mu W]$
-85.0(5)	0.02	-17.0(5)	1.73	-1.0(5)	4.27	14.0(5)	2.51
-70.0(5)	0.02	-16.0(5)	1.92	0.0(5)	4.71	15.0(5)	2.27
-60.0(5)	0.03	-15.0(5)	2.08	1.0(5)	4.22	16.0(5)	2.05
-50.0(5)	0.03	-14.0(5)	2.37	2.0(5)	4.31	17.0(5)	1.82
-45.0(5)	0.10	-13.0(5)	2.58	3.0(5)	4.38	18.0(5)	1.87
-40.0(5)	0.15	-12.0(5)	2.73	4.0(5)	4.47	19.0(5)	1.45
-37.0(5)	0.20	-11.0(5)	3.01	5.0(5)	4.16	21.0(5)	1.21
-34.0(5)	0.28	-10.0(5)	2.99	6.0(5)	4.15	23.0(5)	0.96
-31.0(5)	0.35	-11.0(5)	3.04	7.0(5)	3.90	25.0(5)	0.87
-28.0(5)	0.51	-10.0(5)	2.99	8.0(5)	3.31	27.0(5)	0.62
-25.0(5)	0.70	-8.0(5)	3.39	9.0(5)	3.72	30.0(5)	0.44
-23.0(5)	0.88	-6.0(5)	4.12	10.0(5)	3.21	35.0(5)	0.10
-21.0(5)	1.13	-4.0(5)	4.15	11.0(5)	3.13	45.0(5)	0.11
-19.0(5)	1.37	-3.0(5)	3.98	12.0(5)	2.88	40.0(5)	0.17
-18.0(5)	1.55	-2.0(5)	4.23	13.0(5)	2.70	50.0(5)	0.04
60.0(5)	0.02	90.0(5)	0.02				

Tabella 5: P vs angolo di incidenza perpendicolare