Matematika I

27. január 2017 13:00

Meno a priezvisko: Podpis: Podpis:
Ročník: Študijný program:
1. (7b) Daná je všeobecná rovnica kužeľosečky $x^2 + y + 6x + 10 = 0$. Doplňte
a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Napíšte
c_1) súradnice vrcholu kužeľosečky: c_2) súradnice ohniska kužeľosečky: c_3) rovnicu hlavnej osi kužeľosečky:
d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej významné prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \sqrt{x} + \ln(4 - x^2 - y^2)$$

b)
$$f(x,y) = \arcsin x + \sqrt{4 - x^2 - y^2}$$

c)
$$f(x,y) = \frac{\ln(x+1)}{\sqrt{4-x^2-y^2}}$$

d)
$$f(x,y) = \frac{\arcsin(x+y)}{\sqrt{4-x^2-y^2}}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, dxdy,$$

kde množina M je trojuholník s vrcholmi A = [1, 1], B = [2, 1] a C = [2, 3].

Výsledok:

- **4.** (4b) Bod M má v sférickej súradnicovej sústave súradnice: $M = \left[2\sqrt{2}, \frac{3\pi}{4}, \frac{\pi}{6}\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [1, -1, \sqrt{6}]$$

c)
$$M = [-1, 1, \sqrt{6}]$$

b)
$$M = [-1, -1, \sqrt{6}]$$

d)
$$M = [1, 1, -\sqrt{6}]$$

b) (2b) Znázornite tento bod ${\cal M}$ v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna diferenciálna rovnica (LDR) $y'' + 7y' + 12y = x^2$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení LDR je
b) (2b) Napíšte tvar vhodného partikulárneho riešenia.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie LDR je
6. (4b) Vypočítajte nasledujúcu limitu
$\lim_{[x,y]\to[0,\frac{\pi}{2}]}\frac{\sin(x+y)}{x+y}.$
Výsledok:
7. (6b) Napíšte všeobecnú rovnicu dotykovej roviny ku grafu funkcie
$f(x,y) = x^2 + y^2 - 4x + 6y + 8,$
ak hľadaná dotyková rovina je rovnobežná s rovinou R_{xy} .
Súradnice dotykového bodu sú:
Všeobecná rovnica dotykovej roviny je:
8. (6b) Daná je funkcia $f(x,y)=\frac{1}{x^2+y^2}$, bod $A=[-1,1]$ a vektor $\vec{l}=(2,-2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=x^3+3xy^2-51x-24y$ a oblasť M . Oblasť M je mnohouholník $ABCD$, ktorého vrcholy majú súradnice $A=[0,0],\ B=[6,0],\ C=[2,2]$ a $D=[6,4].$	
a) Načrtnite oblasť M :	
Náčrt:	
Pomocou rovníc popíšte hranice oblasti M :	
(a) (2b) <i>AB</i>	
(b) (2b) AC	
(c) (2b) <i>BD</i>	
(d) (2b) CD	
b) (5b) Nájdite lokálne extrémy funkcie v M . Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne	
c) Nájdite viazané lokálne extrémy funkcie na hraniciach oblasti $M.$ Na hranici	
(a) (3b) AB má funkcia $f(x,y)$ má v bode viazané lokálne	
(b) (3b) AC má funkcia $f(x,y)$ má v bode viazané lokálne	
(c) (3b) BD má funkcia $f(x,y)$ má v bode viazané lokálne	
(d) (3b) CD má funkcia $f(x,y)$ má v bode viazané lokálne	
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti M .	
Najväčšia hodnota funkcie $f(x, y)$ je:	
Najmenšia hodnota funkcie $f(x,y)$ je:	