南昌大学物理实验报告

课程名称:	普	·通物理实验(3)	
实验名称:		电表改装		
学院:	理学院	专业班级: _	物理学 151 班	
学生姓名:	黄泽豪	学号:	5502115014	
实验地点:	B513		14	
实验时间:	第二周	星期四上午九点	瓦四十五开始	

普通物理实验(3) 电表改装

【实验目的】

- 1. 掌握测定微安表 (表头) 量程和内阻的方法.
- 2. 掌握校准电流表、电压表的基本方法,熟练数字多用表、面包板等仪表原件的使用.
- 3. 将 $100 \mu A$ 的表头改装成 $10 \, \text{mA}$ 、 $5 \, \text{V}$ 电流电压两用电表并校准.

【实验原理】

我们一般用的电表都是通过对微安表(表头)改装制成的。而表头可承受的电压和电流都很有限,即量程有限,要使其满足我们的日常使用便需要并联一个电阻(小)分流,形成电流表;或串联一个电阻(较大)分压,形成电压表;或经过更复杂的改装形成欧姆表。

 $1. 表头参数 I_g 及 R_g$ 的测定

使用替代法测量 R_g 。 先将表头和标准安培表串联(使用滑动变阻器分压),测出 I_g ,再将表头换成变阻箱,调整变阻箱阻值,使标准安培表示数为 I_g ,此时变阻箱的阻值就是表头的 R_g 。

2. 电流表量程的扩大

依据并联分流

$$R_s = \frac{I_g R_g}{I - I_g}$$

令 $n = \frac{I}{I_g}$,则 $R_s = \frac{R_g}{n-1}$,式中 I 为扩充后的量程,n 为量程扩大的倍数。

3. 改装成电压表

串联一高阻值电阻 R_{H} , 电表总内阻 $R_{H}+R_{g}=rac{U}{I_{g}}$ 。所以 $R_{H}=rac{U}{I_{g}}$ - R_{g} ,式中 U 为改

装后电表的量程。

4. 改装成欧姆表

当 $R_x = 0$ 时,调节R使表指针到满刻度电路中的电流为 I_g ,则

普通物理实验(3) 电表改装

$$I_{g} = \frac{U}{R_{g} + R_{o} + R_{i}} = \frac{U}{R_{g} + r} \text{ 。将带测电阻 } R_{x}$$
接入电路
$$I = \frac{U}{R_{g} + r + R_{x}}$$

【实验仪器】

直流稳压电源、微安表头、滑线变阻器、变阻箱、小型变阻器、数字多用表、面包板、 导线若干

【实验内容及步骤】

- 1. 将电压调至 0. 5V,按图 1 连接电路,记录 I_{g} 数值。将表头换成变阻箱,调整变阻箱阻值,使标准安培表示数为 I_{g} ,记录 R_{g} 。
- 2. 将电压调至 1. 5V, 按图 2 连接电路, 调节滑线变阻器和变阻箱, 使万用表示数为 10mA, 表头满偏。记录此时电阻箱阻值 R_{sy} 。调节滑线变阻器,使万用表示数下降到 0,每隔 1mA记录一次表头指针的格数。
- 3. 将电压调至 5. 2V,按图 3 连接电路,调节滑线变阻器和变阻箱,使万用表示数为 5V,表头满偏。记录此时电阻箱阻值 $R_{\rm Hy}$ 调节滑线变阻器,使万用表示数下降到 0,每隔 0. 5V记录一次表头指针的格数。
- 4. 将电压调至 0. 1V,按图 4 连接电路,调整变阻箱阻值,使表头满偏,记录滑线变阻器阻值。调变阻箱阻值至 $50\,\Omega$ 、 $100\,\Omega$ 、 $200\,\Omega$ 、 $300\,\Omega$ 、 $400\,\Omega$ 、 $500\,\Omega$ 、 $1000\,\Omega$ 、 $2000\,\Omega$ 、 $3000\,\Omega$ 、 $1000\,\Omega$ 、 $1000\,\Omega$,并记录表头指针格数。

【注意事项】

电路连通前应将滑动变阻器滑动头移至输出电压最小处。

【数据处理】

 $1. 表头参数 I_a 及 R_a$ 的测定

I_g (μA)	$R_g (\Omega)$	$R_{s\pm}$ (Ω)	$R_{sx} (\Omega)$	$R_{\mathrm{H}^{\pm}}$ (Ω)	R_{H} (Ω)
102.5	1276. 0	13.2	13.0	47504.5	47100.0

2. 电流表量程的扩大

I_s /mA	10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0
$I_{s_{rac{\infty}{2}}}/{ m mA}$	25.0	22.6	20.0	17.4	14.9	12. 1	9.9	7. 1	4.6	2.0	0
$I_{s \mp} / \mathrm{mA}$	25.0	22.5	20.0	17.5	15.0	12.5	10.0	7. 5	5.0	2. 5	0
$\Delta I/\text{mA}$	0	0.04	0	0.04	0.04	0.16	0.04	0.16	0.16	0.2	0

 $\Delta I - I_x$ 校准曲线

普通物理实验(3) 电表改装

_	-1 \LL	. D L .	\rightarrow
٠,	77.75	ET TH	压表
.) .	L X 7	IJX, HI	11111

U_s /V	10.0	9.0	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0
$U_{s_{ m y}}$ /格	25.0	22.6	20.0	17.4	14.9	12. 1	9.9	7. 1	4.6	2.0	0
$U_{s理}$ /格	25.0	22.5	20.0	17.5	15.0	12.5	10.0	7. 5	5.0	2. 5	0
ΔU /V	0	0.04	0	0.04	0.04	0.16	0.04	0.16	0.16	0.2	0

 $\Delta U - U_x$ 校准曲线

4. 改装成欧姆表

阻值/Ω	0	50	100	200	300	400	500
格数/格	25.0	24.4	23.5	22. 1	21.0	19.9	18.8
阻值/Ω	1000	2000	3000	5000	8000	10000	
格数/格	14.9	10.3	7.0	5. 2	3.8	3.0	

【误差分析】

- 1. 电阻箱的阻值可能存在误差,每一个一格的阻值可能不均匀,不同档位的阻值之间也可能存在误差。
 - 2. 实验元器件老化也可能产生阻值上的偏差。

【实验结果分析与小结】

- 1. 这次实验让我复习了相关有关电表改装的知识点,对曾经学过的理论知识有了新的认识。
- 2. 在校验欧姆表时,使用变阻箱可以加快实验速度,但是因为变阻箱每一个档位之间可能存在误差,会影响实验结果的准确性,在电阻较小时尤为明显。所以可以先用小的滑动变阻器测量 0–500 Ω 电阻的刻度,再用调节变阻箱的电阻进行测量,减小相对误差。

【原始数据】 (见下页)

)南	昌大	学	实验	会 报	告
学生姓	名:黄海	弘	学号:	50211501	4 专	业班级:	分覆了了
实验类	型:□验证	□综合[口设计 口创	新 实验	日期:	实验	成绩:
	*	V					R Pur
102-5		1276.0	17	2	13.0	47504	5 47100
25/4	- 1		2.11	2 1			
25/1	25 22.0	200.0	1/.4 14	9 12.1	9,9	7.1	4.6 2.0
Usfint	10 9	8	_76	5	4	3	2 /
15-64	25 2	Ė .0	2 72	./, 9		20 7	-1 4.9
USIMIT	1,0 4.9	9 4,0	5, 5	3.0	2 () 2	2.0 /	1.0
阻倒人	0	to 10	0 200	360	400	100	1000 N
校数	25.0 2	4.4 23	5 22.1	21.0	19.9	188	14.9
			5000				
			5.2				
							发生.
							744