FACULTY OF SCIENCE & TECHNOLOGY

Department of Computer Science

2015 - 2016

Code: ECSE610 Level: 6 Semester: 1

Title: Formal Specification

Date: 12th May 2016

Time: 10:00 – 12:00

INSTRUCTIONS TO CANDIDATES

Answer ALL questions in Section A and TWO questions from Section B.

Section A is worth a total of 50 marks.

Each question in section B is worth 25 marks.

The B-Method's Abstract Machine Notation (AMN) is given in Appendix B.

CODE: ECSE610 PAGE 1 OF 18
TITLE: Formal Specification DATE: 12th May 2016

Section A

Answer ALL questions from this section. You may wish to consult the B-Method notation given in Appendix B.

Question 1

- (a) The building block of a B-method specification is the concept of an *Abstract Machine (AM)*. Explain what a B Abstract Machine is, in particular, you should answer the following questions:
 - What is it similar to?
 - What is it a specification of?
 - What are its main logical parts?

[6 marks]

- **(b)** Explain the purpose of the following B Abstract Machine *clauses* and illustrate their meaning by giving an example for each clause.
 - SETS
 - CONSTANTS
 - PROPERTIES
 - VARIABLES
 - INVARIANT
 - INITIALISATION
 - OPERATIONS

[14 marks] [TOTAL 20] **CODE:** ECSE610 **PAGE** 2 **OF** 18 **TITLE:** Formal Specification **DATE:** 12th May 2016

Question 2

You are given the following collection of B set and function declarations:

```
SHAPE = \{ Oval, Circle, Triangle, Rectangle, Square, Rhombus, Pentagon, Hexagon \}
Quadrilaterals \in \mathbb{P}(SHAPE)
Quadrilaterals = \{ Rectangle, Square, Rhombus \}
NonPolygons \in \mathbb{P}(SHAPE)
NonPolygons = \{ Oval, Circle \}
edges \in SHAPE \rightarrow \mathbb{N}
edges = \{ Oval \mapsto 1, Circle \mapsto 1, Triangle \mapsto 3, Rectangle \mapsto 4, Square \mapsto 4, Rhombus \mapsto 4, Pentagon \mapsto 5, Hexagon \mapsto 6 \}
```

Evaluate the following expressions:

(a)	$Quadrilaterals \cup NonPolygons$	[1 mark]
(b)	$Quadrilaterals \setminus \{ Rhombus \}$	[1 mark]
(c)	$\operatorname{card}(edges)$	[1 mark]
(d)	dom(edges)	[1 mark]
(e)	$\operatorname{ran}(edges)$	[1 mark]
(f)	edges(Hexagon)	[1 mark]
(g)	$\mathbb{P}(NonPolygons)$	[2 marks]
(h)	$edges \rhd \{\ 4\ \}$	[2 marks]
(i)	$NonPolygons \lhd edges$	[2 marks]
(j)	$(\ Quadrilaterals \cup NonPolygons\) \lessdot edges$	[3 marks] [TOTAL 15]

CODE: ECSE610 PAGE 3 OF 18
TITLE: Formal Specification DATE: 12th May 2016

Question 3

Given the following B declarations of the set of Letters and the relations R_1 , $R_2 \& R_3$:

$$\begin{array}{l} Letter \ = \ \{ \ a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z \ \} \\ \\ R_1 \ \in \ Letter \leftrightarrow \mathbb{N} \\ \\ R_1 \ = \ \{ \ a \mapsto 1, \ b \mapsto 1, \ c \mapsto 3, \ d \mapsto 2, \ e \mapsto 4, \\ \\ f \mapsto 4, \ g \mapsto 5, \ h \mapsto 6 \ \} \\ \\ \\ R_2 \ \in \ Letter \leftrightarrow \mathbb{N} \\ \\ R_2 \ = \ \{ \ a \mapsto 1, \ b \mapsto 1, \ b \mapsto 2, \ c \mapsto 3, \ d \mapsto 2 \ \} \\ \\ \\ R_3 \ \in \ \mathbb{N} \leftrightarrow Letter \\ \\ R_3 \ = \ \{ \ 1 \mapsto x, \ 2 \mapsto y, \ 4 \mapsto z \ \} \\ \end{array}$$

(a) Evaluate the following expressions:

(i)
$$R_1 \ [\{ a, c, e \}]$$
 [2 marks]
(ii) $R_3 \Leftrightarrow \{ 0 \mapsto w, 4 \mapsto a \}$ [3 marks]
(iii) $R_2 \ ; R_3$ [4 marks]

(b) For each of the relations R_1 , R_2 and R_3 state whether it is just a *relation* or is also a *function*. In addition, if you decide that one of these relations is a function then state what kind of function it is, e.g. partial, total, injective, etc.

[6 marks]
[TOTAL 15]

CODE: ECSE610 PAGE 4 OF 18
TITLE: Formal Specification DATE: 12th May 2016

Section B

Answer TWO questions from this section. You may wish to consult the B-Method notation given in Appendix B.

Question 4

Write a B-Method machine that specifies a *queue* of people waiting to be "served". For example, at a bank, supermarket checkout, etc. Due to the lack of available space the queue has a maximum permitted length.

Your B machine should deal with error handling where required and should include the following:

(a) Any sets, constants and variables, and any state invariant that the *queue* requires.

[9 marks]

- **(b)** The queuing operations:
 - (i) JoinQueue a new person joins the end of the *queue*. [6 marks]
 - (ii) GetServed the next person gets "served", i.e., leaves the front of the *queue*. [6 marks]
 - (iii) QueueStatus reports via a suitable message whether the queue is empty, full or neither full or empty. [4]

[4 marks]

[TOTAL 25]

CODE: ECSE610 PAGE 5 OF 18
TITLE: Formal Specification DATE: 12th May 2016

Question 5

Appendix A contains the Library B machine, this specifies a simple book lending library.

The library has a catalogue of book titles (BOOK) and lends individual copies of each book (COPY) to its readers (READER).

The library's system holds the following information about its books and readers:

- The book title for each book copy (copyof).
- The books each reader has previously read (hasread).
- If a reader is currently reading a book then it records which copy he/she is reading (reading).

The system provides the following operations:

- Recording that a reader has started/finished reading a book.
- Check if a reader is currently reading a book; what book he/she is reading; has he/she read a book.

With reference to the Library B machine answer the following questions.

(a) The Library's invariant, is given in the INVARIANT clause:

Using "plain English" only, answer the following questions:

(i) In Inv-1 explain what the use of a *relation* \leftarrow \rightarrow \leftarrow means about the relationship between readers and books. Why would it not make sense to use a function?

[4 marks]

(ii) In Inv-2 explain what the choice of a partial injection >+> (++) means regarding how many books a reader can read at any one time and how many readers can read the same book? What would it mean if this was changed to a relation?

[4 marks]

(iii) Explain what Inv-3 means.

[2 marks]

[Continued Overleaf]

CODE: ECSE610 PAGE 6 OF 18
TITLE: Formal Specification DATE: 12th May 2016

(b) Explain in "plain English" the meaning of the *preconditions* for the operations:

(i)	startReading	[4 marks]
(ii)	finishReading	[3 marks]
(iii)	currentlyReading	[2 marks]

(c) Draw the Structure Diagram for the Reading machine. [6 marks]

[TOTAL 25]

CODE: ECSE610 **PAGE** 7 **OF** 18 **TITLE:** Formal Specification **DATE:** 12th May 2016

Question 6

- (a) The B-Method is used to develop software systems. B is suitable for this task because it allows a system designer to specify important aspects of a system. Within this context of using a B machine to specify a system, answer the following questions.
 - (i) There are three categories of states that a system (B machine) can be in, what are they? Illustrate your answer by means of a diagram.

[4 marks]

(ii) What is the role of the state invariant and what is its relationship to the system states?

[2 marks]

(iii) Explain what important property the initial value(s) of a B machine's variables must satisfy.

[2 marks]

(iv) When specifying an operation it is usually necessary to define an explicit precondition for the operation using PRE. What are preconditions and what is their purpose?

[4 marks]

(v) If the specification of a machine's operation is required to be "total", explain what this means.

[2 marks]

(b) Given an abstract B machine specification, such as the following:

MACHINE Name

```
SETS Sets
CONSTANTS Consts
PROPERTIES Props
VARIABLES Vars
INVARIANT Inv
INITIALISATION Init
```

OPERATIONS

[Continued Overleaf]

CODE: ECSE610 PAGE 8 OF 18
TITLE: Formal Specification DATE: 12th May 2016

Particular informal claims are usually made about its *correctness*. For example, it makes sense and is coherent; it can be instantiated; its operations perform correctly. These implicit claims are formalised in the B-Method by means of logical *"proof obligations"* on a B machine.

With reference to the above B machine describe the three main types of *proof obligations*:

(i) Data Proof Obligation
 (ii) Initialisation Proof Obligation
 (iii) Operation Proof Obligation
 [5 marks]
 [TOTAL 25]

CODE: ECSE610 PAGE 9 OF 18
TITLE: Formal Specification DATE: 12th May 2016

Appendix A. Library B Machine

The following is a B Machine – Library that specifies a simple book lending library.

```
MACHINE Library
1
2
3
       SETS
         READER ; BOOK ; COPY ; RESPONSE = { yes, no }
4
5
       CONSTANTS
6
7
         copyof
8
       PROPERTIES
9
10
         copyof : COPY -->> BOOK
                                          /* Total Surjection */
11
12
       VARIABLES
         hasread, reading
13
14
15
       INVARIANT
16
         hasread : READER <-> BOOK &
                                            /* Relation */
         reading : READER >+> COPY &
                                            /* Partial Injection */
17
18
         (reading ; copyof) /\ hasread = {}
19
       INITIALISATION
20
21
         hasread := {} || reading := {}
22
       OPERATIONS
23
24
       startReading( rr, cc ) =
25
         PRE
26
27
             rr : READER & cc : COPY
             copyof(cc) /: hasread[ { rr } ]
28
             rr /: dom(reading)
29
30
             cc /: ran(reading)
31
         THEN
32
            reading := reading \/ { rr |-> cc }
33
         END ;
34
```

[Continued on next page.]

TITLE: Formal Specification

```
35
       finishReading( rr, cc ) =
36
         PRE
37
            rr : dom( reading ) &
            rr : READER & cc : COPY & reading(rr) = cc
38
39
         THEN
            hasread := hasread \/ { rr |-> copyof(cc) } ||
40
            reading := { rr } << | reading</pre>
41
42
         END ;
43
       resp <-- isReading( rr ) =</pre>
44
45
         PRE
            rr : READER
46
47
         THEN
                 ( rr : dom(reading) )
           IF
48
           THEN resp := yes
49
50
           ELSE resp := no
51
           END
         END ;
52
53
       bb <-- currentlyReading(rr) =</pre>
54
55
         PRE
            rr : READER & rr : dom(reading)
56
57
         THEN
            bb := copyof( reading(rr) )
58
59
       END ;
60
61
       resp <-- hasReadBook( rr, bb ) =
62
         PRE
            rr : READER & bb : BOOK
63
64
         THEN
           IF ( bb : hasread[ { rr } ] )
65
66
           THEN resp := yes
67
           ELSE resp := no
68
           END
69
         END
70
71
     END /* Library */
```

CODE: ECSE610 PAGE 11 OF 18
TITLE: Formal Specification DATE: 12th May 2016

Appendix B. B-Method's Abstract Machine Notation (AMN)

The following tables present AMN in two versions: the "pretty printed" symbol version & the ASCII machine readable version used by the B tools: *Atelier B* and *ProB*.

B.1 AMN: Number Types & Operators

B Symbol	ASCII	Description
N	NAT	Set of natural numbers from 0
\mathbb{N}_1	NAT1	Set of natural numbers from 1
\mathbb{Z}	INTEGER	Set of integers
pred(x)	pred(x)	predecessor of x
succ(x)	succ(x)	successor of x
x+y	x + y	x plus y
x-y	х - у	x minus y
x * y	x * y	\boldsymbol{x} multiply \boldsymbol{y}
$x \div y$	x div y	\boldsymbol{x} divided by \boldsymbol{y}
$x \bmod y$	x mod y	remainder after \boldsymbol{x} divided by \boldsymbol{y}
x^y	х ** у	x to the power y , x^y
$\min(A)$	min(A)	$\ {\rm minimum\ number\ in\ set}\ A$
$\max(A)$	max(A)	$\label{eq:maximum number in set } A$
$x \dots y$	х у	range of numbers from \boldsymbol{x} to \boldsymbol{y} inclusive

B.2 AMN: Number Relations

B Symbol ASCII		Description
x = y	х = у	x equal to y
$x \neq y$	x /= y	\boldsymbol{x} not equal to \boldsymbol{y}
x < y	х < у	x less than y
$x \leq y$	х <= у	x less than or equal to y
x > y	х > у	\boldsymbol{x} greater than \boldsymbol{y}
$x \ge y$	x >= y	\boldsymbol{x} greater than or equal to \boldsymbol{y}

CODE: ECSE610 PAGE 12 OF 18
TITLE: Formal Specification DATE: 12th May 2016

B.3 AMN: Set Definitions

B Symbol	ASCII	Description
$x \in A$	x : A	\boldsymbol{x} is an element of set \boldsymbol{A}
$x \notin A$	x /: A	\boldsymbol{x} is not an element of set \boldsymbol{A}
Ø, { }	{}	Empty set
{ 1 }	{ 1 }	Singleton set (1 element)
{ 1,2,3 }	{ 1, 2, 3 }	Set of elements: 1, 2, 3
$x \dots y$	х у	Range of integers from x to y inclusive
$\mathbb{P}(A)$	POW(A)	Power set of A
$\mathbb{P}_1(A)$	POWn(A)	Power set of Non-empty sets ${\cal A}$
card(A)	card(A)	Cardinality, number of elements in set A

B.4 AMN: Set Operators & Relations

B Symbol	ASCII	Description
$A \cup B$	A \/ B	Union of A and B
$A \cap B$	A /\ B	Intersection of A and B
$A \setminus B$	A \ B	Set subtraction of A and B
$\bigcup AA$	Union AA	Distributed union of AA
$\bigcap AA$	Intersection AA	Distributed intersection of ${\cal A}{\cal A}$
$A \subseteq B$	A <: B	${\cal A}$ is a subset of or equal to ${\cal B}$
$A \not\subseteq B$	A /<: B	${\cal A}$ is not a subset of or equal to ${\cal B}$
$A \subset B$	A <<: B	A is a strict subset of B
$A \not\subset B$	A /<<: B	A is not a strict subset of B
	{ x x : TS & C }	Set comprehension

CODE: ECSE610 PAGE 13 OF 18
TITLE: Formal Specification DATE: 12th May 2016

B.5 AMN: Logic

B Symbol	ASCII	Description
$\neg P$	not P	Logical negation (not) of P
$P \wedge Q$	P & Q	Logical and of P , Q
$P \vee Q$	P or Q	Logical or of P , Q
$P \Rightarrow Q$	P => Q	Logical implication of P , Q
$P \Leftrightarrow Q$	P <=> Q	Logical equivalence of P , Q
$\forall xx \cdot (P \Rightarrow Q)$!(xx).(P => Q)	Universal quantification of xx over $(P \Rightarrow Q)$
$\exists xx \cdot (P \land Q)$	#(xx).(P & Q)	Existential quantification of xx over $(P \wedge Q)$
TRUE	TRUE	Truth value $TRUE$.
FALSE	FALSE	Truth value $FALSE$
BOOL	BOOL	Set of boolean values { $TRUE, FALSE$ }
bool(P)	bool(P)	Convert predicate P into $BOOL$ value

B.6 AMN: Ordered Pairs & Relations

B Symbol	ASCII	Description
$X \times Y$	Х * У	Cartesian product of X and Y
(x,y)	(x, y)	Ordered pair
$x \mapsto y$	х -> у	Ordered pair, (maplet)
$\operatorname{prj}_1(S,T)(x,y)$	prj1(S,T)(x, y)	Ordered pair projection function
$\operatorname{prj}_2(S,T)(x,y)$	prj2(S,T)(x, y)	Ordered pair projection function
$\mathbb{P}(X \times Y)$	POW(X * Y)	Set of relations between \boldsymbol{X} and \boldsymbol{Y}
$X \leftrightarrow Y$	Х <-> Y	Set of relations between \boldsymbol{X} and \boldsymbol{Y}
dom(R)	dom(R)	Domain of relation ${\cal R}$
ran(R)	ran(R)	Range of relation ${\cal R}$

CODE: ECSE610 PAGE 14 OF 18
TITLE: Formal Specification DATE: 12th May 2016

B.7 AMN: Relations Operators

B Symbol	ASCII	Description
$A \lhd R$	A < R	Domain restriction of R to the set A
$A \triangleleft R$	A << R	Domain subtraction of ${\cal R}$ by the set ${\cal A}$
$R \rhd B$	R > B	Range restriction of R to the set B
$R \Rightarrow B$	R >> B	Range anti-restriction of R by the set B
R[B]	R[B]	Relational Image of the set ${\cal B}$ of relation ${\cal R}$
$R_1 \Leftrightarrow R_2$	R1 <+ R2	R_1 overridden by relation R_2
R;Q	R;Q	Forward Relational composition
id(X)	id(X)	Identity relation
R^{-1}	R~	Inverse relation
R^n	iterate(R,n)	Iterated Composition of ${\cal R}$
R^+	closure1(R)	Transitive closure of ${\cal R}$
R^*	closure(R)	Reflexive-transitive closure of ${\cal R}$

B.8 AMN: Functions

B Symbol	ASCII	Description
$X \rightarrow Y$	Х +-> Ү	Partial function from X to Y
$X \to Y$	Х> Ү	Total function from X to Y
$X \rightarrowtail Y$	Х >+> Ү	Partial injection from X to Y
$X \rightarrowtail Y$	Х >-> Ү	Total injection from X to Y
$X \twoheadrightarrow Y$	Х +->> Ү	Partial surjection from X to Y
$X \rightarrow Y$	Х>> Ү	Total surjection from X to Y
$X \rightarrowtail Y$	Х >->> Ү	(Total) Bijection from X to Y
$f \Leftrightarrow g$	f <+ g	Function f overridden by function g

CODE: ECSE610 PAGE 15 OF 18
TITLE: Formal Specification DATE: 12th May 2016

B.9 AMN: Sequences

B Symbol	ASCII	Description
[]	[]	Empty Sequence
[e1]	[e1]	Singleton Sequence
[e1, e2]	[e1, e2]	Constructed (enumerated) Sequence
seq(X)	seq(X)	Set of Sequences over set X
$seq_1(X)$	seq1(X)	Set of non-empty Sequences over set X
iseq(X)	iseq(X)	Set of injective Sequences over set X
$iseq_1(X)$	iseq1(X)	Set of non-empty injective Sequences over set \boldsymbol{X}
perm(X)	perm(X)	Set of bijective Sequences (permutations) of set \boldsymbol{X}
size(s)	size(s)	Size (length) of Sequence s

B.10 AMN: Sequences Operators

B Symbol	ASCII	Description
$s \cap t$	s^t	Concatenation of Sequences $s\ \&\ t$
$e \rightarrow s$	e -> s	Insert element \boldsymbol{e} to front of sequence \boldsymbol{s}
$s \leftarrow e$	s <- e	Append element e to end of sequence s
rev(s)	rev(s)	Reverse of sequence s
first(s)	first(s)	First element of sequence s
last(s)	last(s)	Last element of sequence s
front(s)	front(s)	Front of sequence s , excluding last element
tail(s)	tail(s)	Tail of sequence s , excluding first element
conc(SS)	conc(SS)	Concatenation of sequence of sequences SS
$s \uparrow n$	s / \ n	Take first n elements of sequence s
$s \downarrow n$	s \ / n	Drop first n elements of sequence s

CODE: ECSE610 PAGE 16 OF 18
TITLE: Formal Specification DATE: 12th May 2016

B.11 AMN: Miscellaneous Symbols & Operators

B Symbol	ASCII	Description
var := E	var := E	Assignment
$var :\in A$	var :: E	Nondeterministic assignment an element of set
		A to var
S1 S2	S1 S2	Parallel execution of $S1$ and $S2$

B.12 AMN: Operation Statements

B.12.1 Assignment Statements

```
xx := xxval
xx, yy, zz := xxval, yyval, zzval
xx := xxval || yy := yyval
```

B.12.2 Deterministic Statements

skip

BEGIN S END

PRE PC THEN S END

IF B THEN S END

IF B THEN S1 ELSE S2 END

IF B1 THEN S1 ELSIF B2 THEN S2 ELSE S3 END

```
CASE E
         OF
  EITHER
         v1
              THEN
                    S1
  OR
          v2
              THEN
                    S2
  OR
          vЗ
              THEN
                    S3
  ELSE
          S4
END
```

LET xx BE xx = E IN S END

CODE: ECSE610 PAGE 17 OF 18
TITLE: Formal Specification DATE: 12th May 2016

B.12.3 Nondeterministic Statements

xx :: AA

ANY xx WHERE P THEN S END

CHOICE S1 OR S2 OR S3 END

SELECT B1 THEN S1 WHEN B2 THEN S2 WHEN B3 THEN S3

ELSE

S4

END

CODE: ECSE610 PAGE 18 OF 18
TITLE: Formal Specification DATE: 12th May 2016

B.13 B Machine Clauses

```
MACHINE Name( Params )
  CONSTRAINTS
                  Cons
                  M1, M2, ...
  EXTENDS
                  M3, M4, ...
  INCLUDES
  PROMOTES
                  op1, op2, ...
  SEES
                  M5, M6, ...
                  M7, M8, ...
  USES
  SETS
                   Sets
  CONSTANTS
                   {\tt Consts}
  PROPERTIES
                   Props
  VARIABLES
                   Vars
                   Inv
  INVARIANT
  INITIALISATION
                   Init
  OPERATIONS
    yy \leftarrow -- op(xx) =
           PRE PC
           THEN Subst
           END ;
END
```