Stock Market Volatility Networks

Creating fear spillover networks

What is Spillover?

Crisis -> High stock market volatility & decreasing stock prices

Global connectedness -> Contagion

- 1. Who are the leading players in stock markets?
- 2. Are there any special connections between particular stock markets?

But first! What is stock market volatility?

Volatility is latent

Therefore, it has to be estimated!

$$\sigma^2 = \frac{\Sigma(x-\mu)^2}{N}$$

Best to use 5 minute returns: >100 / day! (and extremely hard to get...)

But first! What is stock market volatility?

Volatility is latent

Therefore, it has to be estimated!

$$\sigma^2 = \frac{\Sigma(x-\mu)^2}{N}$$

Best to use 5 minute returns: >100 / day!

Garman-Klass (1980)'s range based volatility estimator:

(1)
$$\sigma^2 = 0.5 * (h - l)^2 - (2 * \ln(2) - 1) * c^2$$

Open, Close, High, Low price: 4 / day!

Now we have volatility time series!

1. We aim to have directed effects.

1. We aim to have directed effects.

2. We aim to have **conditional** effects.

1. We aim to have directed effects.

2. We aim to have **conditional** effects.

We need a better method!

Diebold-Yilmaz (2009) Spillover Framework

Let's fit a VAR model on the time series of volatilities!

16 leading stock market index (4-4 from Europe, Asia, North and South America), for a 10 year period

(12)
$$X_{t+1} = \theta * X_t + \epsilon_{t+1,t}; X_{t+1,t} = \theta * X_t$$

A vector of volatities in time t.

$$\mathbf{e}_{t+1,t} = \mathbf{x}_{t+1} - \mathbf{x}_{t+1,t} = \mathbf{A}_0 \mathbf{u}_{t+1} = \begin{bmatrix} a_{0,11} & a_{0,12} \\ a_{0,21} & a_{0,22} \end{bmatrix} \begin{bmatrix} u_{1,t+1} \\ u_{2,t+1} \end{bmatrix},$$

Forecast error

Spillover table

Diagonals: effect of own shocks

Non-diagonals: Spillover

Daily volatility changes

A Spillover Table

SPILLOVER	SP500	NASDAQ	DOW	TSX	IBOV	MERVAL	IPSA	MEXBOL	FTSE100	DAX	CAC40	WIG	SHCOMP	KOSPI	HSI	NIKKEI225	FROM
SP500	0,17	0,13	0,16	0,10	0,06	0,04	0,03	0,06	0,07	0,05	0,05	0,03	0,00	0,02	0,02	0,01	0,83
NASDAQ	0,15	0,17	0,14	0,09	0,05	0,04	0,03	0,06	0,06	0,05	0,05	0,03	0,01	0,03	0,02	0,01	0,83
DOW	0,16	0,12	0,17	0,10	0,06	0,04	0,03	0,06	0,07	0,05	0,05	0,03	0,01	0,02	0,02	0,02	0,83
TSX	0,12	0,09	0,12	0,20	0,06	0,05	0,04	0,06	0,07	0,05	0,05	0,03	0,01	0,03	0,02	0,01	0,80
IBOV	0,10	0,08	0,10	0,10	0,24	0,07	0,04	0,08	0,05	0,03	0,03	0,02	0,00	0,02	0,01	0,02	0,76
MERVAL	0,07	0,06	0,07	0,09	0,08	0,40	0,03	0,05	0,03	0,03	0,03	0,01	0,00	0,01	0,01	0,01	0,60
IPSA	0,08	0,06	0,08	0,07	0,06	0,04	0,31	0,08	0,05	0,03	0,03	0,03	0,01	0,02	0,02	0,02	0,69
MEXBOL	0,10	0,08	0,10	0,09	0,07	0,04	0,04	0,22	0,06	0,03	0,03	0,04	0,01	0,03	0,02	0,02	0,78
FTSE100	0,10	0,08	0,09	0,08	0,04	0,03	0,03	0,05	0,17	0,10	0,10	0,04	0,01	0,03	0,03	0,02	0,83
DAX	0,09	0,07	0,09	0,08	0,04	0,03	0,03	0,04	0,11	0,17	0,13	0,04	0,00	0,02	0,02	0,01	0,83
CAC40	0,10	0,08	0,09	0,07	0,04	0,03	0,03	0,04	0,12	0,14	0,18	0,04	0,00	0,02	0,02	0,01	0,82
WIG	0,08	0,07	0,07	0,07	0,05	0,03	0,03	0,07	0,07	0,07	0,06	0,27	0,01	0,04	0,02	0,01	0,73
SHCOMP	0,03	0,03	0,04	0,03	0,02	0,01	0,02	0,03	0,02	0,01	0,01	0,01	0,64	0,03	0,07	0,01	0,36
KOSPI	0,08	0,08	0,08	0,07	0,04	0,03	0,02	0,06	0,05	0,04	0,02	0,03	0,01	0,28	0,07	0,03	0,72
HSI	0,07	0,07	0,07	0,07	0,04	0,03	0,03	0,06	0,07	0,04	0,03	0,03	0,03	0,07	0,26	0,03	0,74
NIKKEI225	0,07	0,06	0,08	0,06	0,04	0,04	0,03	0,06	0,06	0,03	0,03	0,02	0,01	0,06	0,04	0,30	0,70
TO	1,42	1,16	1,40	1,18	0,74	0,55	0,47	0,86	0,95	0,76	0,72	0,42	0,11	0,45	0,39	0,26	Total connectedness
NET	0,59	0,33	0,57	0,38	-0,01	-0,05	-0,22	0,08	0,12	-0,07	-0,11	-0,31	-0,24	-0,27	-0,35	-0,43	0,74

Spillover Network - Volatilities

Arrows: volatility spillover (directed)

Edge thickness & color: strength of spillover

Node size: average daily trade volume of the index

Node color: Net spillover (green-positive; purplenegative)

Visualization algorithm: Force Atlas 2 (node closeness shows edge strength as well)

Visualization program: Gephi

Spillover Network - Volatilities

SP500 -	0.59	0.37	0.36	0.08	0.12
NASDAQ -	0.59	0.38	0.37	0.00	0.12
DOW -	0.59	0.37	0.36	0.01	0.12
NIKKEI225 -	0.57	0.00	0.08	0.00	0.01
IPSA -	0.55	0.00	0.08	0.00	0.01
WIG -	0.55	0.00	0.08	0.00	0.01
HSI -	0.54	0.00	0.10	0.05	0.02
KOSPI -	0.51	0.00	0.10	0.00	0.01
TSX -	0.49	0.38	0.37	0.03	0.12
IBOV -	0.49	0.28	0.27	0.07	0.08
FTSE100 -	0.49	0.35	0.33	0.05	0.11
MEXBOL -	0.49	0.33	0.33	0.01	0.10
MERVAL -	0.48	0.04	0.11	0.00	0.02
CAC40 -	0.46	0.25	0.25	0.00	0.07
DAX -	0.45	0.25	0.25	0.00	0.07
SHCOMP -	0.37	0.00	0.08	0.00	0.01
	doseness	eigenvector	katz	betweenness	pagerank

We found the key players!

Let's dig for special relationships between particular subsets of indices!

A State-Space model - Commandeur & Koopman (2007)

The global volatility factor

The Global factor has some notable spikes at globally relevant events

Variance decomposition

North America

VARIANCE SHARES	SP500	NASDAQ	DOW	TSX
Global factor	80,69%	76,87%	77,12%	73,73%
North American factor	18,87%	11,07%	21,20%	1,94%
Local factor	0,44%	12,07%	1,68%	24,33%

Europe

VARIANCE SHARES	FTSE100	DAX	CAC40	WIG
Global factor	75,33%	70,17%	66,35%	46,80%
European factor	11,75%	24,18%	28,28%	2,82%
Local factor	12,92%	5,65%	5,37%	50,38%

South (Latin) America

VARIANCE SHARES	IBOV	MERVAL	IPSA	MEXBOL
Global factor	51,12%	27,73%	35,71%	58,93%
South American factor	30,68%	24,44%	21,65%	7,96%
Local factor	18,20%	47,83%	42,63%	33,11%

Asia

VARIANCE SHARES	SHCOMP	KOSPI	HSI	NIKKEI225
Global factor	12,70%	51,13%	46,92%	37,95%
Asian factor	20,66%	20,03%	38,22%	10,88%
Local factor	66,64%	28,84%	14,86%	51,16%

Variance decomposition

North America

VARIANCE SHARES	SP500	NASDAQ	DOW	TSX
Global factor	80,69%	76,87%	77,12%	73,73%
North American factor	18,87%	11,07%	21,20%	1,94%
Local factor	0,44%	12,07%	1,68%	24,33%
	<u> </u>			

There is nothing local for SP500

South (Latin) America

VARIANCE SHARES	IBOV	MERVAL	IPSA	MEXBOL
Global factor	51,12%	27,73%	35,71%	58,93%
South American factor	30,68%	24,44%	21,65%	7,96%
Local factor	18,20%	47,83%	42,63%	33,11%

Maybe Mexico is in the wrong group...

Europe

VARIANCE SHARES	FTSE100	DAX	CAC40	WIG
Global factor	75,33%	70,17%	66,35%	46,80%
European factor	11,75%	24,18%	28,28%	2,82%
Local factor	12,92%	5,65%	5,37%	50,38%

Western Europe is much like North America Poland has a strong local factor

Asia

VARIANCE SHARES	SHCOMP	KOSPI	HSI	NIKKEI225
Global factor	12,70%	51,13%	46,92%	37,95%
Asian factor	20,66%	20,03%	38,22%	10,88%
Local factor	66,64%	28,84%	14,86%	51,16%

South Korea & Hong-Kong globalized Japan is unique China is even more unique

Spillover Network – Local components

Arrows: volatility spillover (directed)

Edge thickness & color: strength of spillover

Node size: average daily trade volume of the index

Node color: Net spillover (green-positive; purplenegative)

Visualization algorithm: Force Atlas 2 (node closeness shows edge strength as well)

Visualization program: Gephi

Spillover Network – Local components

L	Weights: 1 - spillover							
HSI -	0.24	0.61	0.29	0.02	0.10			
DAX -	0.20	0.00	0.27	0.02	0.09			
CAC40 -	0.20	0.00	0.26	0.02	0.09			
KOSPI -	0.19	0.50	0.27	0.00	0.06			
SHCOMP -	0.17	0.54	0.28	0.00	0.07			
IPSA -	0.17	0.00	0.27	0.01	0.09			
IBOV -	0.16	0.00	0.25	0.00	0.05			
NIKKEI225 -	0.14	0.30	0.25	0.00	0.04			
FTSE100 -	0.14	0.00	0.24	0.00	0.04			
WIG -	0.14	0.00	0.24	0.00	0.05			
SP500 -	0.12	0.00	0.26	0.01	0.12			
DOW -	0.12	0.00	0.26	0.01	0.12			
NASDAQ -	0.12	0.00	0.22	0.00	0.01			
TSX -	0.12	0.00	0.22	0.00	0.01			
MERVAL -	0.11	0.00	0.27	0.00	0.07			
	doseness	eigenvector	katz	betweenness	pagerank			

References

- Commandeur, J. J. F., & Koopman, S. J. (2007): An Introduction to State Space Time Series Analysis. Oxford University Press, New York.
- Diebold, F. X. & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. *The Economic Journal*, 119(534), pp. 158-171.
- Garman, M. B., & Klass, M. J. (1980): On the estimation of security price volatilities from historical data. The Journal of Business, 53, pp. 67–78.

Thank you for your attention!