EXERCISES

determinism

Aşağıdaki dillerin deterministik CFL olduğunu gösteriniz.

(a) $\{ca^mb^m : m \ge 0\} \cup \{da^mb^{2m} : m \ge 0\}$

(b) $\{a^m c b^m : m \ge 0\} \cup \{a^m d b^{2m} : m \ge 0\}$

SORU 1) Aşağıdaki dilin deterministik CFL olduğunu gösteriniz.

 $\{ca^mb^m : m \ge 0\} \cup \{da^mb^{2m} : m \ge 0\}$

 $L = \{ca^mb^m : m \ge 0\} \cup \{da^mb^{2m} : m \ge 0\}$. Diğer iki dilin birleşiminden oluşan bir dil için deterministik bir PDA oluşturmak genellikle zordur. Örneğin,

 $\{a^mb^m: m \ge 0\} \cup \{a^mb^{2m}: m \ge 0\}$ zor olurdu (aslında imkansız) çünkü b'ler bitene kadar her bir a için iki b mi yoksa sadece bir b mi beklediğimizi bilmemizin hiçbir yolu yoktur.

Fakat $\{ca^mb^m : m \ge 0\} \cup \{da^mb^{2m} : m \ge 0\}$ aslında oldukça kolaydır. Her katar bir c veya bir d ile başlar. Eğer bir c ile başlıyorsa, o zaman her a için bir b aramamız gerektiğini biliyoruz; eğer bir d ile başlıyorsa, o zaman iki tane b aramamız gerektiğini biliyoruz.

Yani yaptığımız ilk şey, makinemizi şu şekilde başlatmak: Durum 1'de başlayan makine, aⁿbⁿ için klasik makinemizdir, tabii ki son durumuna \$ üzerinde son bir geçiş yapması gerekir.

Durum 2'de başlayan makine için iki seçeneğimiz var.

Ya gördüğü her a için yığına bir a'ya atabilir ve ardından her b çifti için bir a çekebilir ya da gördüğü her a için iki a yığına atabilir ve ardından her b için bir a çekebillir.

SORU 2) Aşağıdaki dilin deterministik CFL olduğunu gösteriniz. $\{a^mcb^m: m \ge 0\} \cup \{a^mdb^{2m}: m \ge 0\}$

Ancak bu kez ilk karaktere bakarak dilin hangi bölümüyle uğraştığımıza dair bir ipucu alamıyoruz. Yine de sorun yok, çünkü b'leri işlemeye başlamadan önce her bir a için iki b'ye mi yoksa sadece bir b'ye mi sahip olduğumuzu öğreniyoruz.

Burada ihtiyacımız olan şey, öncelikle gördüğü her a için yığına tek bir a atmak. Ardından, bir c veya d gördüğünde dallara ayrılarak, c durumunda her b için bir a çekeriz veya d durumunda her iki b gördüğümüzde bir a çekeriz.

Bağlamdan bağımsız grameri (CFG) ele alalım:

$$G = (V, \Sigma, R, S)$$
, burada
 $V = \{(,), ., a, S, A\}$,
 $\Sigma = \{(,), .\}$, ve kurallar
 $R = \{S \rightarrow (),$
 $S \rightarrow a$,
 $S \rightarrow (A)$,
 $A \rightarrow S$,
 $A \rightarrow A.S\}$ olsun

(a) Yukarıdan aşağıya bir ayrıştırma (top down parsing) yaparak L(G)\$ dilini kabul eden deterministik bir PDA Makinesi oluşturun. ((()).a) dizisindeki M'nin hesaplanmasını inceleyin.

Heuristic Rule 1: Eğer

$$A \rightarrow \alpha \beta_1, A \rightarrow \alpha \beta_2, \ldots, A \rightarrow \alpha \beta_n$$

şeklinde kurallar varsa ve $\alpha \neq e$ ve $n \geq 2$ ise,

bu kurallar $A \rightarrow \alpha A'$, $A' \rightarrow \beta_i$

kurallarıyla degiştirilir. A' yeni nonterminaldir.

(a) We need to apply left factoring to the two rules $S \rightarrow ()$ and $S \rightarrow (A)$. We also need to eliminate the left recursion from $A \rightarrow A$. S. Applying left factoring, we get the first column shown here. Then getting rid of left recursion gets us the second column:

$$S \rightarrow (),$$
 $S \rightarrow (S')$ $S \rightarrow (S')$
 $S \rightarrow a,$ $S' \rightarrow)$ $S' \rightarrow A)$
 $S \rightarrow (A),$ $S' \rightarrow A)$ $S' \rightarrow A)$
 $A \rightarrow S,$ $S \rightarrow a$ $S \rightarrow a$
 $A \rightarrow A.S$ $A \rightarrow SA'$
 $A \rightarrow A.S$ $A' \rightarrow .SA'$
 $A' \rightarrow \epsilon$

Heuristic Rule 1: Eğer

$$A \rightarrow \alpha \beta_1, A \rightarrow \alpha \beta_2, \ldots, A \rightarrow \alpha \beta_n$$

şeklinde kurallar varsa ve $\alpha \neq e$ ve $n \geq 2$ ise,

bu kurallar $A \rightarrow \alpha A'$, $A' \rightarrow \beta_i$

kurallarıyla degiştirilir. A' yeni nonterminaldir.