ALGORITMI DI ORDINAMENTO

	CASO MIGLIORE	CASO MEDIO	CASO PEGGIORE
INSERTION SORT	O(N)	$O(N^2)$	$O(N^2)$
SELECTION SORT	O(N²)	O(N ²)	$O(N^2)$
BUBBLE SORT	$O(N^2)$	$O(N^2)$	$O(N^2)$
SHELL SORT	O(N logN)	dipende	dipende(knuth,sedgewick)
COUNTING SORT	O(N)	O(N)	O(N)
MERGE SORT	O(N logN)	O(N logN)	O(N logN)
QUICK SORT	O(N logN)	O(N logN)	$O(N^2)$

LIMITE INFERIORE LASCO ALG. DI ORDINAMENTO CON CONFRONTO

 $\Omega(N \log N)$

PROGRAMMAZIONE DINAMICA

LIS: $O(N^2)$ **PARENTESIZZAZIONE OTTIMA:** $T(n)=O(N^3)$ $S(n)=\Theta(N^2)$

CODICI HUFFMAN

Heap implementato come albero binario, operazioni di estrazione e inserzione in coda a priorità: O(N logN)

TABELLE DI SIMBOLI

VETTORE NON ORDINATO: INSERZIONE(in testa) O(1)

RICERCA LINEARE O(N)

VETTORE ORDINATO: INSERZIONE/CANCELLAZIONE O(N)

RICERCA LINEARE O(N)

RICERCA DICOTOMICA O(logN)

LISTA NON ORDINATA/ORDINATA: come vettore ordinato/non ordinato

BST (altezza h, n nodi)

OPERAZIONI: O(h) nel caso medio, O(n) nel caso peggiore

VISITA: O(n)

TABELLE DI HASH (alpha=N/M)

INSERIMENTO: O(1)

RICERCA: caso peggiore: $\Theta(N)$ caso medio: O(1+alpha)

CANCELLAZIONE: O(1)

HEAP

HEAPIFY: O(logN) **HEAPSORT:** O(N logN) **HEAPBUILD:** O(N)

CODA A PRIORITA

PQINSERT: O(logN) PQEXTRACTMAX: O(logN) PQCHANGE: O(N)

GRAFO

MATRICE ADIACENZE: $S(N) = \Theta(|V|^2)$

LISTA ADIACENZE: $S(N) = \Theta(|V| + |E|)$

CAMMINO SEMPLICE: O(|V|+|E|)

CICLO DI EULERO: O(|E|)

DFS: $\Theta(|V|^2)$ (con matrice), O(|V|+|E|) (con lista)

BFS: $\Theta(|V|^2)$ (con matrice), $\Theta(|V|+|E|)$ (con lista)

PRIM: $O(|E| \log |V|)$

KRUSKAL: Dipende dalle strutture dati utilizzate.

Con strutture efficienti T(n) = (|E| |g|E|).

DIJKSTRA: $O((|V|+|E|) \log |V|)$

O(|E| lg |V|) se tutti i vertici sono raggiungibili da vertice di partenza

BELLMAN-FORD: O(|V||E|)

CAMMINO MINIMO SU DAG PESATO: O(|V|+|E|)