section 6

CD V-700-6B

specifications:

Ranges: 0-0.5, 0-5, 0-50 mr/hr

Sensing Element: Geiger Tube

Accuracy: ±15% of true dose rate from

cobalt 60 or cesium 137

gamma radiation

Batteries: Four 1-1/2 volt NEDA 13

Dimensions: approx. 8-3/4" long x

4-1/2" wide x 6-3/4"

high including handle

Weight: approx. 4 lbs. including

batteries

table of contents

GENERAL DESCRIPTION	
Introduction	6-1
Sensing Indicators and Control	6-1
Readings	6-1
Batteries	6-3
Electronic Circuitry	6-4
SERVICING	
Precautions	6-7
Disassembly Instructions	6-8
Preventive Maintenance	6-8
Repairs	6-9
Trouble Shooting	6-11
PARTS LIST	
Electrical Components	6-23
Mechanical Components	6-27

list of illustrations

Figure 6-1	Meter Face	6-2
Figure 6-2	Battery Installation	6-3
Figure 6-3	VR Tube Placement	6-10
Figure 6-4	Location of Test Points	6-19
Figure 6-5	Schematic Circuit Diagram	6-20
Figure 6-6	Location of Components	6-21
Table 6-1	Switch Positions vs Meter Readings	6-2
Table 6-2	Test Point Chart	6-18

GENERAL DESCRIPTION

Introduction

The Victoreen CD V-700 model 6B is a portable geiger counter instrument designed for the detection of low levels of beta and gamma radiation. The geiger tube is mounted in a probe on the end of a thirty-six inch cable. The entire instrument and its accessories include a circuit box, a probe, a headphone, and a carrying strap. A radioactive sample is mounted on the side of the case for checking the operation of the instrument.

Sensing Indicators and Control

A meter with a scale reading in milliroentgens per hour (mR/hr) is used for visual indication, and a headphone is used for aural monitoring. The meter is ruggedized and sealed in a plastic case to meet the instrument requirements for water-tightness, shock and vibration resistance.

The meter is controlled by the range selector switch labeled "OFF, X100, X10, and X1". The range switch changes only the meter ranges. It does not affect the number of "clicks" in the headphone.

Readings

Table 6-1 lists switch positions and the corresponding meter readings.

Figure 6-1 shows the meter face. Readings should not be taken with the pointer indicating in the lower 10% of the scale. Turn to the next most sensitive range until the pointer indicates in the upper 90% of the scale.

Switch Position	Counts/Minute	mR/hr
X1	0-300	0-0.5
X10	0-3000	0-5.0
X100	0-30,000	0-50

Table 6-1. Switch Positions vs Meter Readings

Figure 6-1. Meter Face

Initial Check

With the batteries installed, turn the range switch to the X10 position. Close the beta window of the probe. After thirty seconds the circuit should be stabilized and the meter should read zero in the absence of radiation.

Open the beta window on the probe and place the open window on the center of the OPERATIONAL CHECK SOURCE on the side of the instrument. The meter reading should average between 1.5 and 2.5 mR/hr.

Background Count

Normal background radioactivity is about 0.01 to 0.02 mR/hr or about 20 counts per minute. Counts are randomly spaced and several seconds may

elapse before any activity registers on either the meter or the headphone. Accurate measurements of background and other low level radiation can be made by counting the headphone "clicks" against a watch that has a second hand. Note the number of counts occurring in a time period of 5 minutes. Divide the number of counts by 5 and the background count is expressed in terms of counts per minute. More accurate measurements may be made by extending the time period.

Batteries

The CD V-700 model 6B is powered by four 1-1/2 volt "D" size flashlight batteries. The batteries will operate the instrument continuously for over 100 hours and intermittently for over 175 hours. Refer to Appendix A for acceptable types and makes of batteries.

Installation (see figure 6-2)

Open the instrument by lifting the pull catches at each end of the case and separating the two halves to expose the battery compartments and the battery

Figure 6-2. Battery Installation

retaining clips. Remove the clips by squeezing the ends and lifting. Insert fresh batteries according to the polarity marked on the inside of the battery compartments. The compartments will not accept batteries with the polarity reversed. Install the battery clips and close the case by aligning the two halves and closing the pull catches.

Replacement

If the instrument fails to operate, check the batteries before attempting to make any repairs or adjustments. The batteries may be checked with a voltmeter while installed in the instrument. With the range switch in the X100 position, the batteries in the front battery compartment should measure at least 1 volt each under load. In the rear compartment, each battery should measure at least 1.25 volts. The batteries may also be removed and tested with a battery tester. It is recommended that all the batteries be replaced at one time to avoid exceeding the shelf life of any one cell.

Electronic Circuitry

All electrical components which make up the circuitry are fastened to a printed circuit board. The circuitry serves to count the geiger tube pulses and to indicate their frequency in terms of dose rate on a calibrated scale.

High Voltage Supply

The high voltage supply required by the geiger tube is a blocking oscillator driven "fly-back" circuit. The blocking oscillator portion of the circuit consists of Q2, R5A, T2 windings 3-4 and 5-6, and batteries BT1 and BT2. When the instrument is turned on, Q2 conducts and an increasing current flows through transformer winding 3-4. The increasing collector current induces a voltage in transformer winding 5-6 which maintains conduction of Q2. The collector current increases until Q2 has sufficient current gain to remain saturated when the circuit rapidly turns off due to the regenerative action of the transformer. During the "turn-off" action, large "fly-back" voltages appear across all transformer windings. A peak voltage of about 1100 volts appears across winding 1-2 because of the large number of turns of wire in the winding. This voltage "fly-back" is rectified by CR3 in a conventional manner.

R9 and C4 filter and smooth the pulsations of voltage across C5. V2 is a corona-discharge regulator tube which maintains the voltage at the proper level for operation of the geiger tube.

Pulse Shaping Circuit

The pulse shaping circuit is a blocking oscillator similar to the power supply, but with some exceptions. The circuit is held "cut-off" by the bias formed by resistors R7 and R8 and the power supply batteries. The blocking oscillator consists of components Q1 and T1. Negative pulses from the geiger tube appear across winding 3-4 of T1. These pulses are coupled into winding 2-5 and into the base circuit of Q1. When Q1 is turned on by the geiger tube pulse, Q1 saturates, and nearly all of the battery voltage of BT3 and BT4 appears across transformer winding 1-6. The winding current increases, and a voltage is induced in transformer winding 2-5. The induced voltage is in a direction such that conduction of Q1 is maintained. The current in transformer winding 2-5 increases linearly until the transformer core saturates. At this time the circuit rapidly turns off, and an inductive "fly-back" voltage appears across both windings.

Metering Circuit

The metering circuit consists basically of diode CR1, integrating capacitor C1, range multiplier resistors R1, R2, and R3, and the meter. Diode CR1 rectifies the "fly-back" voltage induced in the transformer windings and couples it to the meter and capacitor C1. The amount of charge that is placed on C1 during the pulse period of the blocking oscillator is determined by the multiplier resistors. The capacitor is discharged by the meter and R4. R5B is used for calibration.

Audio Circuit

The voltage pulse for the headphone is taken from the "fly-back" of the transformer winding 1-6 through diode CR2. C3 is an integrating capacitor used to stretch the "fly-back" pulse. C2 couples the pulse to the headphone.

SERVICING

Precautions

High Voltage Power Supply

The high voltage supply of the instrument operates in excess of 900 volts. The shock is uncomfortable rather than dangerous but should be avoided. The high voltage components should not be touched even when the instrument is turned off until the high voltage capacitors have been discharged. These capacitors are to be discharged by shorting the voltage regulator tube. Do not short the geiger tube leads since this causes component failure in some models.

Geiger Tube

Care must be exercised not to dent the geiger tube. Dents in the tube may cause arcing at voltages lower than the operating voltages and the tube will be useless. Dropping the tube may cause leakage of the gas mixture.

Semi-Conductor Components (Diodes and Transistors)

The diodes and transistors used in the instrument may be damaged by prolonged heating during soldering. When replacing any of these components, the soldering operation should be done quickly. Hold the lead between the com-

CD V-700-6B

Victoreen

ponent and the joint with a heat sink to decrease the amount of heat transmitted to the component. Techniques are described in section 1 of this Manual. The leads of the high voltage rectifier may break if subjected to strain when removing the component from the circuit board. Use a soldering aid to lift the leads.

Disassembly Instructions

- 1. Open the pull catches at the ends of the case and remove the instrument from the case bottom.
- 2. Remove the batteries.
- 3. Remove the eight screws from the battery compartments. Note that the screw at the rear of the circuit board near the transformer is slightly longer than the others.
- 4. Remove the range switch knob from the front panel by loosening both set screws.
- Disconnect the meter by removing the two nuts holding the connecting lugs.
- 6. Remove the circuit board from the case top by pressing on the range switch shaft. Remove the board slowly since the geiger tube lead and the headphone jack lead are still connected.
- 7. Reassembly is the reverse of the above process.

Preventive Maintenance

It is recommended that preventive maintenance be carried out once a month when the instrument is in use and once every six months when the instrument is in storage.

- 1. Remove the batteries, clean the battery contacts and battery terminals if necessary, and remove any corrosion present.
- 2. Replace all batteries which do not exceed minimum voltages.
- 3. Perform the Initial Check as described on page 6-2.
- 4. If the instrument is to be shipped or stored, remove the batteries and set the range switch to one of the sensing ranges. This will shunt the meter and minimize damage from movement of the pointer during shipment or storage.

Do not use solvents on plastic parts. Clean with soap and water. If the batteries have leaked, remove the case bottom and wash it with warm soapy water. The battery spillage will be loosened in a short while and can be rinsed out.

Repairs

Adjusting the High Voltage Power Supply

The special high voltage adjustment on the CD V-700 model 6B permits greater instrument life by compensating for component aging. Whenever fresh batteries are installed in the instrument and the instrument still fails to operate, check the high voltage adjustment. The voltage at test point H should be checked with a high impedance voltmeter (see Appendix B for procedure). If the voltage is too low, adjust the high voltage oscillator as follows:

- 1. Connect a VOM or a 100 ma panel meter in series with the power supply batteries in the front battery compartment.
- 2. Turn the high voltage adjustment, R5B, fully clockwise.
- 3. Turn the range selector switch to X100.
- 4. Rotate the screwdriver adjustment counterclockwise until the meter reads 33 milliamperes, or until the high voltage output, as measured at point H, is correct.

Replacing the Geiger Tube

- 1. Grasp the two ends of the probe and twist in a counterclockwise direction to unscrew the tube housing from the socket housing.
- Insert the new geiger tube into the socket pressing the tube into the socket and against the rubber gasket. Do not handle the thin beta window.
- 3. Place the tube housing over the geiger tube.
- 4. Engage the threads of the tube housing and socket housing with a steady pressure against the shock mounting spring and screw together in a clockwise direction. Overtightening may interfere with the operation of the beta shield.

CD V-700-6B

Victoreen

Replacing the Voltage Regulator Tube

The VR tube is held to the circuit board with a rubber grommet and metal clip. To remove the tube, unsolder the leads and press on the top of tube to

lift the leads. Twist the tube while pulling it out of the protective grommet. Coat the top half of the new tube with a lubricant such as silicone grease and slide it into the grommet. Connect the cathode to ground and the anode (red dot) to point H. (See figure 6-4) Position the tube so that the leads will not short to the instrument case. Figure 6-3 shows a properly installed regulator tube.

Figure 6-3. VR Tube

Replacing Transformers

The power supply transformer must be removed by drilling out the eyelet holding it to the circuit board. To be sure that transformer replacement will cure the fault, unsolder the leads and substitute another transformer before removing the old one.

The pulse transformer may be removed easily by unsoldering the leads and lifting it from the circuit board.

Replacing the Geiger Probe

- 1. Remove the rear battery compartment and unsolder the probe leads.
- 2. Remove the seal nut with an adjustable wrench.
- 3. Until the knot and pull the cable through the hole in the case top.
- 4. Prepare the new cable according to the instructions in section 1 of this Manual.
- 5. Twist the center conductor and shield together to allow the wire to be inserted through the case top. Pull on the end of the cable with pliers until a sufficient amount extends through the case top.
- 6. Replace the seal nut and washers on the new cable and tighten the seal nut using moderate pressure. Excessive tightening can damage the cable. Tie a knot in the cable near the seal nut.

6 - 10

7. Connect the cable to the circuit board and replace the battery compartment. The braid is connected to a lug under the handle mounting screw.

Replacing the Switch

- 1. Follow the Disassembly Instructions through step 6.
- 2. Heat each switch terminal on the circuit board, one at a time, and press sideways on the switch shaft. This will tend to lift the terminals from the circuit board. Repeat this procedure several times, pushing away from the solder joint each time, until the switch is free.
- 3. Open the holes on the circuit board with a soldering pencil and soldering aid to allow the switch terminals to be inserted.
- 4. Insert the new switch and solder each terminal using a minimum amount of heat. Be sure the switch is seated properly so that the shaft will fit through the hole in the case top.

Trouble Shooting

The information in this section is presented as an aid to the service technician in determining the causes of specific instrument faults. The Trouble Shooting Guide lists the most probable causes of instrument failure together with suggestions for corrective action. This should be consulted and followed after the following preliminary steps have been taken:

- 1. Disassemble the instrument through step 3 of the Disassembly Instructions.
- Check all batteries. Make sure they provide sufficient voltage for proper operation of the instrument.
- Check the printed circuit board for broken foil, cold solder joints, or solder bridges.
- 4. Check for broken components.

Table 6-2, Test Point Chart, and figure 6-4, Location of Test Points, eliminate the need for circuit tracing when making voltage and resistance measurements. The Test Points are referred to in the NOTES column of the Trouble Shooting Guide, and are also found on the schematic circuit diagram.

TROUBLE SHOOTING GUIDE

N H C N	NOTES	Check starting voltage of tube. This must be lower than voltage at point H		Voltage at H=0 or low	Voltage at H=0			Voltage at H≈0 or low	Check Q1 for beta and shorts
CORRECTIVE	ACTION	Replace geiger tube or correct instrument's high voltage	Check batteries and contacts	Adjust R5A	Dress leads	Repair or replace geiger probe	Replace CR1	Replace CR3	Replace Q1
PROBABLE	CAUSE	Geiger tube defective or not compatible with instrument's high voltage	Batteries low or making poor contact	High voltage power supply Adjust R5A not properly adjusted	Probe shield shorting to high voltage power supply	Geiger probe defective	CR1 shorted	CR3 defective	Q1 defective
SYMPTOM	Headphone	Dead	-1	7	7	1	,	> 1	`
SYMI	Meter	Dead N. Marches							

N FF FF FF	200	Voltage at H=0. Check Q2 for beta and shorts. Check T2 before replacing Q2	Check resistances at C-▲ B-J H-K	Check resistances at F - M E - M G - ▲	Voltage at H=0 or low	Voltage at H=0 or low	Voltage at H low	Check continuity at D-N	Check continuity at L-▲	
CORRECTIVE	ACTION	Replace Q2	Repair or replace T1	Repair or replace T2	Replace C4	Replace C5	Replace C5	Repair switch	Repair switch	Repair or replace meter
PROBABLE	CAUSE	Q2 defective	T1 defective	T2 defective	-C4 shorted	C5 shorted	C5 open	Open contact on S1B	Open contact on S1C	Meter defective
SYMPTOM	Headphone	Dead (cont'd)	7	7						Normal
SYMI	Meter	Dead (cont'd)								Dead

			Check resistances at A-▲						Check Q1 for shorts	Check resistances at C-▲ B-J H-K		
Recalibrate	Replace CR1	Replace C1	Repair switch	Repair connection	Repair or replace headphone	Replace CR2	Replace C2	Replace C3	Replace Q1	Replace T1	Replace CR2	Replace Q1
Calibration control turned fully counterclockwise	CR1 open	C1 defective	Open contact on S1A	Poor connection in headphone plug or jack	Headphone defective	CR2 open	C2 open	C3 defective	Q1 defective	T1 defective	CR2 defective	Q1 defective
				Dead or Weak					Dead		Squeal or	7700
				Normal					Upscale		Upscale	

	NOTES	Symptom appears only when headphone is connected	Check voltage at H. Symptom may cease when voltmeter is connected	Check resistances at C-▲ B-J H-K		Voltage at H low or intermittent	Voltage at H low or intermittent		Voltage at H high	Voltage at H low or intermittent
CORRECTIVE	ACTION	Replace C2	Replace C5	Replace T1	Replace T2	Dress leads	Repair or replace geiger probe	Replace geiger tube	Replace or resolder V2	Repair or replace T2
PROBABLE	CAUSE	C2 shorted	C5 open	T1 defective	T2 defective	Probe shield shorted to high voltage power supply	Geiger probe defective	Geiger tube defective	V2 defective or not making contact to circuit board	T2 defective
SYMPTOM	Headphone	Squeal or Buzz (cont'd)				Hiss or Click				
SYMI	Meter	Upscale (cont'd)				Upscale				

						Voltage at H low		Voltage at H low		Check resistances at
Replace C1	Repair or replace meter	Recalibrate	Replace geiger tube or correct instrument's high voltage	Replace meter	Replace CR1	Replace CR3	Replace with transistor having proper gain	Replace V2	Replace C1	Repair switch
C1 open	Meter defective	R5B not adjusted properly	Geiger tube defective or not compatible with instrument's high voltage	Meter defective	CR1 defective	CR3 defective	Q1 beta low	V2 defective	C1 defective	Open contact on S1A
Normai		Normal			,	•	>	>	ر	
Erratic		High or	·.							

Low Voltage - Ch, OR CR,

Full Scale Meter DeFlection When Toaned on worrstof to Defective

DeAD INSTANCE OF TOBE DEFECTIVE ON DIRTY TUBE PRONDE Low Response 6m Tene on meten

4

RESISTANCE CHART

Remove batteries before checking resistances. Values $\pm 20\%$ except as noted.

Component	Points	Range Switch Position	Resistance (ohms)
*SIA and calibration resistors	A - A	X100 X10 X1	1900 ±5% 200 ±5% 16.5 ±5%
SIB	D - · N	All except OFF	0
S1C	<u>L</u> - •	All except OFF	0
T1 1-6 3-5 3-4	C - ▲ B - J H - K	Any Any Any	3.2 36 40
Т2	F - M E - M G - 🛦	Any Any Any	5 11 4500

^{*}Remove one meter terminal before making this test.

VOLTAGE CHART

Voltages measured with respect to point \triangle . Use a 20,000 ohms per volt meter. All values $\pm 20\%$.

Point	Voltage	Voltmeter Range
Н	920	ale ale
D	6	10
J	3.1	10
M	3.0	10

^{**} Use a high impedance voltmeter. See Appendix B.

Table 6-2. Test Point Chart

Figure 6-4. Location of Test Points

Figure 6-5. Schematic Circuit Diagram

Figure 6-6. Location of Components

BUZZ in Instrument - L, Everything else O.K.

Ή
23
\mathbb{R}^{Γ}
RT
Z.

Electrical Components

Victoreen Part No.	52-35	52-1	489-17	700-16	700-102	700-95	23-17	23-6	185-1412	185-560	185-450
Manufacturer & Part No.	Victoreen Instrument Co. 52-35	Victoreen Instrument Co. 52-1	Electronic Devices, Inc. SQ40HP	Superex Electronics, Inc.	Victoreen Instrument Co. 700-102	Victoreen Instrument Co. 700-95	Victoreen Instrument Co. 23-17	Victoreen Instrument Co. 23-6	International Resistance Co. GBT 1/2	International Resistance Co. GBT 1/2	International Resistance Co. GBT 1/2
Function	Meter rectifier	Headphone coupling	High voltage rectifier	Aural indicator	Headphone connector	Visual indicator	Ratemeter transistor	Power supply transistor	X100 range multiplier	X10 range multiplier	X1 range multiplier
Description	Diode, silicon	Diode, germanium	Rectifier, selenium	Headphone 4K ohms at 1 kc	Phone jack assembly	Meter assembly 0.50 ua	Transistor, PNP	Transistor, PNP	Resistor 1900 ohms $1/2W$ 5%	Resistor 220 ohms $1/2W$ 5%	Resistor 18 ohms $1/2W$ 5%
Circuit Symbol	CR1	CR2	CR3	田	J1	M1	Q 1	Q 2	R1	R2	R3

Victoreen Part No.	185-252	22-158			185-1365	185-78	185-200	185-1305	700-6		
Manufacturer & Part No.	International Resistance Co. GBT 1/2	Centralab Model 5 type 70-2 60K - 8K			International Resistance Co. GBT 1/2	International Resistance Co. GBT 1/2	International Resistance Co. GBT 1/2	International Resistance Co. GBT 1/2	Victoreen Instrument Co. 700-6		
Function	Meter time constant		Power supply adjust	Calibration control	Headphone time constant	1/2 of ratemeter bias	1/2 of ratemeter bias	Filter resistor	Range switch	Range multiplier selector	Power supply battery switch
Description	Resistor 2.7K ohms $1/2$ W 10%	Potentiometer 8K ohm 60K ohms 30%	Dual Potentiometer 8K 30%	Section of R5 60K 30%	Resistor 22K 1/2W 20%	Resistor 270 ohms $1/2$ W 10%	Resistor 8.2K $1/2$ W 10%	Resistor 1 meg 1/2W 20%	Switch	Section of S1	Section of S1
Circuit Symbol	R4	R5	R5A	R5B	R6	R7	R8	R9	S1	S1A	SIB

Manufacturer Victoreen & Part No.	Ratemeter battery switch	Pulse transformer Victoreen Instrument Co. 700-154	Power supply transformer Victoreen Instrument Co. 14-32	Detecting element Victoreen Instrument Co. CPO-352 CPO-352	Regulates high voltage Victoreen Instrument Co. CPO-240
Description	Section of S1	Transformer	Transformer	Geiger tube 6993	High voltage regulator
Circuit	SIC	TI	T2	V1	V2
6-26		21139			15122

•

Mechanical Components			
Description	Function	Manufacturer & Part No.	Victoreen Part No.
Battery compartment (2)	Houses batteries	Victoreen Instrument Co. 700-66	200-66
Battery contact (8)	Electrical connections to batteries	Victoreen Instrument Co. 700-68	700-68
Battery retainer clip (2)	Holds batteries in battery box	Victoreen Instrument Co. 720-121	720-121
Cap plug and chain assembly	Covers phone jack	Victoreen Instrument Co. 700-65	700-65
Case bottom and clamp assembly	Bottom case of instrument	Victoreen Instrument Co. 700-158	700-158
Case gasket	Water seal between case top and case bottom	Victoreen Instrument Co. 720-157	720-157
Case top	Top panel of instrument	Victoreen Instrument Co. 700-162	700-162
Circuit label	Circuit diagram in case bottom	Victoreen Instrument Co. 700-161	700-161
Detent ball	Positions sliding probe shield	New Departure Div. GMC 1/16" ball 44055 Gr. 2	700-89
Detent spring	Holds detent ball in place	Victoreen Instrument Co. 700-171	700-171

	End cap of probe		
		Victoreen Instrument Co. 700-78	700-78
	Seals probe	Victoreen Instrument Co. 700-174	700-174
	Holds voltage regulator tube	Philpott Rubber Co. GB-225	51-7
instruction manual (2)	Operating instructions	Victoreen Instrument Co. 700-151	700-151
Knob	Range switch knob	Harry Davies Molding Co. 1500K	6-6
Meter gasket	Water seal between case top and meter	Victoreen Instrument Co. 700-63	700-63
"O" ring	Seals phone jack	Parker Appliance Co. 2-12	46-47
"O" ring	Seals probe stand	Parker Appliance Co. 2-9	46-25
"O" ring	Switch shaft water seal	Parker Appliance Co. 5427-1	46-38
Phone plug	Headphone connection	Zoron Inc. 40121	700-57

Description	Function	Manufacturer & Part No.	Victoreen Part No.
Printed circuit board	Supports components	Victoreen Instrument Co. 700-159	700-159
Probe assembly	Holds geiger tube	Victoreen Instrument Co. 700-175	700-175
Probe clip	Holds probe to case handle	Victoreen Instrument Co. 700-169	700-169
Probe shield retaining spring	Holds probe shield in place	Victoreen Instrument Co. 700-87	700-87
Probe stand handle	Instrument carrying handle; holds probe clip	Victoreen Instrument Co. 700-73	700-73
Rubber gland	Seals probe cable	Victoreen Instrument Co. 700-71	700-71
Seal nut	Clamps probe cable	Victoreen Instrument Co. 700-72	700-72
Shoulder strap	Carrying strap	Victoreen Instrument Co. 700-81	700-81
Strap buckle (2)	Carrying strap length adjustment	Waterbury Buckle Co. 807 5047	710-44
Strap fastener (2)	Attaches shoulder strap to instrument	Victoreen Instrument Co. 700-82	700-82

turer Victoreen	rument Co. 700-94	rument Co. 44-61
Manufacturer & Part No.	Victoreen Instrument Co. 700-94	Victoreen Instrument Co.
Function	Holds voltage regulator tube to circuit board	Bearing surface
Description	Tube clip	Washer