

Analiza numeryczna (L). Wykład I. DZIWNE RZECZY!

Paweł Woźny

Wstęp, czyli trochę historii...

Wstęp, czyli trochę historii...

Wstęp, czyli trochę historii...

1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa

1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa 1958 Pierwszy Polski komputer XYZ

- 1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa
- 1958 Pierwszy Polski komputer XYZ
- 1959 Wrocławskie Zakłady Elektroniczne Elwro

- 1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa
- 1958 Pierwszy Polski komputer XYZ
- 1959 Wrocławskie Zakłady Elektroniczne Elwro
- 1961 Seryjna produkcja ZAM 2 Odra 1001 (Elwro)

- 1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa
- 1958 Pierwszy Polski komputer XYZ
- 1959 Wrocławskie Zakłady Elektroniczne Elwro
- 1961 Seryjna produkcja ZAM 2 Odra 1001 (Elwro)
- 1962 Katedra Metod Numerycznych, Instytut Matematyczny, Uniwersytet Wrocławski (komputer Elliott 803; kierownik: Stefan Paszkowski)

 Specjalność maszyny matematyczne, Wydział Łączności Politechniki Wrocławskiej

- 1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa
- 1958 Pierwszy Polski komputer XYZ
- 1959 Wrocławskie Zakłady Elektroniczne Elwro
- 1961 Seryjna produkcja ZAM 2 Odra 1001 (Elwro)
- 1962 Katedra Metod Numerycznych, Instytut Matematyczny, Uniwersytet Wrocławski (komputer Elliott 803; kierownik: Stefan Paszkowski)

 Specjalność maszyny matematyczne, Wydział Łączności Politechniki Wrocławskiej
- 1963 Katedra Budowy Maszyn Matematycznych, Politechnika Warszawska Katedra Konstrukcji Maszyn Cyfrowych, Politechnika Wrocławska Odra 1003

- 1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa
- 1958 Pierwszy Polski komputer XYZ
- 1959 Wrocławskie Zakłady Elektroniczne Elwro
- 1961 Seryjna produkcja ZAM 2 Odra 1001 (Elwro)
- 1962 Katedra Metod Numerycznych, Instytut Matematyczny, Uniwersytet Wrocławski (komputer Elliott 803; kierownik: Stefan Paszkowski)

 Specjalność maszyny matematyczne, Wydział Łączności Politechniki Wrocławskiej
- 1963 Katedra Budowy Maszyn Matematycznych, Politechnika Warszawska Katedra Konstrukcji Maszyn Cyfrowych, Politechnika Wrocławska Odra 1003
- 1964 Zakład Obliczeń Numerycznych, Uniwersytet Warszawski

- 1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa
- 1958 Pierwszy Polski komputer XYZ
- 1959 Wrocławskie Zakłady Elektroniczne Elwro
- 1961 Seryjna produkcja ZAM 2 Odra 1001 (Elwro)
- 1962 Katedra Metod Numerycznych, Instytut Matematyczny, Uniwersytet Wrocławski (komputer Elliott 803; kierownik: Stefan Paszkowski)

 Specjalność maszyny matematyczne, Wydział Łączności Politechniki Wrocławskiej
- 1963 Katedra Budowy Maszyn Matematycznych, Politechnika Warszawska Katedra Konstrukcji Maszyn Cyfrowych, Politechnika Wrocławska Odra 1003
- 1964 Zakład Obliczeń Numerycznych, Uniwersytet Warszawski
- 1967 Seryjna produkcja Odry 1204 (Elwro)

- 1948 Grupa Aparatów Matematycznych, Państwowy Instytut Matematyczny, Warszawa
- 1958 Pierwszy Polski komputer XYZ
- 1959 Wrocławskie Zakłady Elektroniczne Elwro
- 1961 Seryjna produkcja ZAM 2 Odra 1001 (Elwro)
- 1962 Katedra Metod Numerycznych, Instytut Matematyczny, Uniwersytet Wrocławski (komputer Elliott 803; kierownik: Stefan Paszkowski)

 Specjalność maszyny matematyczne, Wydział Łączności Politechniki Wrocławskiej
- 1963 Katedra Budowy Maszyn Matematycznych, Politechnika Warszawska Katedra Konstrukcji Maszyn Cyfrowych, Politechnika Wrocławska Odra 1003
- 1964 Zakład Obliczeń Numerycznych, Uniwersytet Warszawski
- 1967 Seryjna produkcja Odry 1204 (Elwro)
- 1975 Utworzenie Instytutów Informatyki na Uniwersytecie Warszawskim, Uniwersytecie Wrocławskim i Politechnice Warszawskiej

1958: Pierwszy Polski komputer XYZ

1961: Seryjna produkcja ZAM 2

1962: Komputer Elliott 803 (KMN, IM, UWr)

1962: Komputer Elliott 803 (KMN, IM, UWr)

1962: Komputer Odra 1003 (Elwro)

1967: Seryjna produkcja Odry 1204 (Elwro)

Informatyka w Polsce

- Jan Madey, Maciej M. Sysło, Początki informatyki w Polsce, Informatyka, numery 9, 10, rok 2000.
- http://pl.wikipedia.org/wiki/Historia_informatyki_w_Polsce

Przykład 1. Co się do licha dzieje...

• Przeanalizujmy następujący program:

Przykład 1. Co się do licha dzieje...

• Przeanalizujmy następujący program:

```
x:=1.0:
    while 1<>1+x
        do
            x:=x/2.0
        od:

print(x); print(1+x);

if x<>0 then print("TAK!!!") fi;

if 1=1+x then print("TAK!!!") fi;
```

Przykład 1. Co się do licha dzieje...

Przeanalizujmy następujący program:

```
x:=1.0:
    while 1<>1+x
        do
            x:=x/2.0
        od:

print(x); print(1+x);

if x<>0 then print("TAK!!!") fi;

if 1=1+x then print("TAK!!!") fi;
```

Wniosek. W komputerze istnieje przynajmniej jedna taka liczba $x \neq 0$, dla której

$$1 + x = 1$$
.

• Można wykazać, że wierzchołki $W_0, W_1, \ldots, W_{N-1}$ N-kąta foremnego wpisanego w okrąg o promieniu r=1, gdzie $W_0=(1,0)$, mają współrzędne

$$W_{i} = \left(\cos\left(2\pi\frac{i}{N}\right), \sin\left(2\pi\frac{i}{N}\right)\right).$$

• Można wykazać, że wierzchołki $W_0, W_1, \ldots, W_{N-1}$ N-kąta foremnego wpisanego w okrąg o promieniu r=1, gdzie $W_0=(1,0)$, mają współrzędne

$$W_{i} = \left(\cos\left(2\pi\frac{i}{N}\right), \sin\left(2\pi\frac{i}{N}\right)\right).$$

• Można wykazać, że wierzchołki $W_0, W_1, \ldots, W_{N-1}$ N-kąta foremnego wpisanego w okrąg o promieniu r=1, gdzie $W_0=(1,0)$, mają współrzędne

$$W_{i} = \left(\cos\left(2\pi\frac{i}{N}\right), \sin\left(2\pi\frac{i}{N}\right)\right).$$

• Można wykazać, że wierzchołki $W_0, W_1, \ldots, W_{N-1}$ N-kąta foremnego wpisanego w okrąg o promieniu r=1, gdzie $W_0=(1,0)$, mają współrzędne

$$W_{i} = \left(\cos\left(2\pi\frac{i}{N}\right), \sin\left(2\pi\frac{i}{N}\right)\right).$$

Przykład 3. Obliczanie pochodnej

Jak wiadomo

$$f'(x) \stackrel{\text{def.}}{=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Przykład 3. Obliczanie pochodnej

Jak wiadomo

$$f'(x) \stackrel{\text{def.}}{=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
.

Oznacza to, że

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

dla małych h.

Przykład 3. Obliczanie pochodnej

Jak wiadomo

$$f'(x) \stackrel{\text{def.}}{=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Oznacza to, że

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

dla małych h.

• Wykorzystamy powyższą obserwację do numerycznego wyznaczania pochodnej funkcji e^{2x} . Przyjmijmy

$$f(x) := e^{2x}, \qquad x := 0.5, \qquad h \equiv h_i := 2^{-i} \qquad (i = 0, 1, 2, ...).$$

Rozważmy następujący związek rekurencyjny:

$$x_0 := \frac{1}{3},$$
 $x_1 := -\frac{1}{9},$ $x_{n+2} = \frac{8}{3}x_{n+1} + x_n$ $(n = 0, 1, ...).$

Rozważmy następujący związek rekurencyjny:

$$x_0 := \frac{1}{3},$$
 $x_1 := -\frac{1}{9},$ $x_{n+2} = \frac{8}{3}x_{n+1} + x_n$ $(n = 0, 1, ...).$

Oczywiście

$$x_2 = \frac{1}{27}$$
, $x_3 = -\frac{1}{81}$, $x_4 = \frac{1}{243}$, $x_5 = -\frac{1}{729}$, itd.

Rozważmy następujący związek rekurencyjny:

$$x_0 := \frac{1}{3},$$
 $x_1 := -\frac{1}{9},$ $x_{n+2} = \frac{8}{3}x_{n+1} + x_n$ $(n = 0, 1, ...).$

Można sprawdzić, że jedynym rozwiązaniem jest

$$x_n = \frac{(-1)^n}{3^{n+1}}.$$

Rozważmy następujący związek rekurencyjny:

$$x_0 := \frac{1}{3}, \qquad x_1 := -\frac{1}{9}, \qquad x_{n+2} = \frac{8}{3}x_{n+1} + x_n \qquad (n = 0, 1, ...).$$

Można sprawdzić, że jedynym rozwiązaniem jest

$$x_n = \frac{(-1)^n}{3^{n+1}}.$$

$$x[0]:=1.0/3.0;$$
 $x[1]:=-1.0/9.0;$ for n from 2 to N do $x[n]:=8.0*x[n-1]/3.0+x[n-2]$ od

Przykład 5. Perfidny wielomian

• Zajmijmy się teraz wielomianem $f(x) := (x-1)^8$.

Przykład 5. Perfidny wielomian

- Zajmijmy się teraz wielomianem $f(x) := (x 1)^8$.
- ullet Jak łatwo sprawdzić dla każdego $x\in\mathbb{R}$ zachodzi

$$f(x) = f_2(x) = f_3(x),$$

gdzie

$$f_2(x) := x^8 - 8x^7 + 28x^6 - 56x^5 + 70x^4 - 56x^3 + 28x^2 - 8x + 1,$$

$$f_3(x) := ((((((x - 8)x + 28)x - 56)x + 70)x - 56)x + 28)x - 8)x + 1.$$

Przykład 5. Perfidny wielomian

- Zajmijmy się teraz wielomianem $f(x) := (x 1)^8$.
- ullet Jak łatwo sprawdzić dla każdego $\mathbf{x} \in \mathbb{R}$ zachodzi

$$f(x) = f_2(x) = f_3(x),$$

gdzie

$$f_2(x) := x^8 - 8x^7 + 28x^6 - 56x^5 + 70x^4 - 56x^3 + 28x^2 - 8x + 1,$$

$$f_3(x) := ((((((x - 8)x + 28)x - 56)x + 70)x - 56)x + 28)x - 8)x + 1.$$

• Wykorzystamy komputer do obliczenia wartości wielomianów f, f_2 i f_3 w 501 równoodległych punktach przedziału [0.99, 1.01]. Wyznaczymy więc liczby $f(x_i)$, $f_2(x_i)$ oraz $f_3(x_i)$ dla

$$x_i := 0.99 + \frac{0.02i}{500}$$
 (i = 0, 1, ..., 500).

Rozważmy równanie kwadratowe postaci

$$w(x) = 0$$
, gdzie $w(x) := \alpha x^2 + bx + c$ $(\alpha \neq 0)$. (1)

Rozważmy równanie kwadratowe postaci

$$w(x) = 0$$
, gdzie $w(x) := ax^2 + bx + c$ $(a \neq 0)$. (1)

• Załóżmy, że $\Delta:=b^2-4\alpha c>0$. Wiadomo, że wtedy rozwiązaniami równania (1) są liczby

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Rozważmy równanie kwadratowe postaci

$$w(x) = 0$$
, gdzie $w(x) := ax^2 + bx + c$ $(a \neq 0)$. (1)

• Załóżmy, że $\Delta:=b^2-4\alpha c>0$. Wiadomo, że wtedy rozwiązaniami równania (1) są liczby

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

• Program:

Rozważmy równanie kwadratowe postaci

$$w(x) = 0$$
, gdzie $w(x) := ax^2 + bx + c$ $(a \neq 0)$. (1)

• Załóżmy, że $\Delta:=b^2-4\alpha c>0$. Wiadomo, że wtedy rozwiązaniami równania (1) są liczby

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \qquad x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Program:

Przeprowadzimy testy dla następujących danych:

1.
$$a := 1.0$$
, $b := 10^9$, $c := 1.0$. 2. $a := 1.0$, $b := 10^{10}$, $c := 1.0$.

Przykład 7. Prawo łączności

 Już w szkole podstawowej mówiono nam, że dodawanie jest działaniem przemiennym i łącznym,

$$a+b=b+a$$
, $a+(b+c)=(a+b)+c$ $(a,b,c\in\mathbb{R})$.

Przykład 7. Prawo łączności

 Już w szkole podstawowej mówiono nam, że dodawanie jest działaniem przemiennym i łącznym,

$$a+b=b+a$$
, $a+(b+c)=(a+b)+c$ $(a,b,c\in\mathbb{R})$.

Obliczymy zatem wartość sumy

$$S_N := \sum_{k=1}^N \frac{1}{k(k+1)}$$

przy pomocy następujących programów:

• Kapitalizacja odsetek:

$$W_{n} = W_{0} \left(1 + \frac{r}{n} \right)^{n}$$

• Oznaczenia:

 W_0 – wkład początkowy; n – tyle razy naliczamy odsetki w ciągu roku;

r — oprocentowanie; $W_{
m n}$ — stan konta po roku oszczędzania

• Kapitalizacja odsetek:

$$W_{n} = W_{0} \left(1 + \frac{r}{n} \right)^{n}$$

Oznaczenia:

 W_0 – wkład początkowy; n – tyle razy naliczamy odsetki w ciągu roku;

r – oprocentowanie; $W_{\mathfrak{n}}$ – stan konta po roku oszczędzania

Obserwacje:

1. Jeśli r>0, to $W_n>W_0$ dla każdego $n\in\mathbb{N}$.

• Kapitalizacja odsetek:

$$W_{n} = W_{0} \left(1 + \frac{r}{n} \right)^{n}$$

Oznaczenia:

 W_0 – wkład początkowy; n – tyle razy naliczamy odsetki w ciągu roku;

m r — oprocentowanie; $m \it W_n$ — stan konta po roku oszczędzania

- Obserwacje:
 - 1. Jeśli r>0, to $W_n>W_0$ dla każdego $n\in\mathbb{N}$.
 - 2. Im częściej naliczamy odsetki (r > 0), tym więcej zarabiamy, tzn.

$$W_{n+1} > W_n$$
 $(n \in \mathbb{N})$.

• Kapitalizacja odsetek:

$$W_{n} = W_{0} \left(1 + \frac{r}{n} \right)^{n}$$

Oznaczenia:

```
W_0 – wkład początkowy; n – tyle razy naliczamy odsetki w ciągu roku; r – oprocentowanie; W_n – stan konta po roku oszczędzania
```

• Program:

```
w:=1.0

for i from 1 to n
    do
    w:=w*(1+r/n)
    od:

W[n]:=W[0]*w
```

• Jeśli $f \in C^n[a, b]$ i jeśli $f^{(n+1)}$ istnieje w przedziałe otwartym (a, b), to dla dowolnych punktów c i x z przedziału domkniętego [a, b]

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n}(x),$$

gdzie dla pewnego punktu ξ leżącego między c i x

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{k!} (x - c)^{n+1}.$$

• Jeśli $f \in C^n[a, b]$ i jeśli $f^{(n+1)}$ istnieje w przedziałe otwartym (a, b), to dla dowolnych punktów c i x z przedziału domkniętego [a, b]

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n}(x),$$

gdzie dla pewnego punktu ξ leżącego między c i x

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{k!} (x - c)^{n+1}.$$

Przy pewnych założeniach dotyczących funkcji f (jakich?) zachodzi wzór

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^{k}.$$

• Jeśli $f \in C^n[a, b]$ i jeśli $f^{(n+1)}$ istnieje w przedziałe otwartym (a, b), to dla dowolnych punktów c i x z przedziału domkniętego [a, b]

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n}(x),$$

gdzie dla pewnego punktu ξ leżącego między c i x

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{k!} (x - c)^{n+1}.$$

Przy pewnych założeniach dotyczących funkcji f (jakich?) zachodzi wzór

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^{k}.$$

Przykłady:

$$\log(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k-1}}{k} x^k, \qquad x \in (-1,1]$$

• Jeśli $f \in C^n[a, b]$ i jeśli $f^{(n+1)}$ istnieje w przedziałe otwartym (a, b), to dla dowolnych punktów c i x z przedziału domkniętego [a, b]

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + E_{n}(x),$$

gdzie dla pewnego punktu ξ leżącego między c i x

$$E_n(x) = \frac{f^{(n+1)}(\xi)}{k!}(x-c)^{n+1}.$$

Przy pewnych założeniach dotyczących funkcji f (jakich?) zachodzi wzór

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^{k}.$$

Przykłady:

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}, \qquad x \in \mathbb{R}.$$

Twierdzenia o szeregu naprzemiennym

• (Kryterium Leibniza) Szereg naprzemienny

$$\sum_{k=1}^{\infty} (-1)^k \alpha_k$$

jest zbieżny, jeśli

$$a_1 \geq a_2 \geq a_3 \geq \dots$$
 oraz $\lim_{k \to \infty} a_k = 0$.

Twierdzenia o szeregu naprzemiennym

(Kryterium Leibniza) Szereg naprzemienny

$$\sum_{k=1}^{\infty} (-1)^k a_k$$

jest zbieżny, jeśli

$$a_1 \geq a_2 \geq a_3 \geq \dots$$
 oraz $\lim_{k \to \infty} a_k = 0.$

Niech dany będzie zbieżny szereg naprzemienny

$$S := \sum_{k=1}^{\infty} (-1)^k a_k \qquad (a_1 \ge a_2 \ge a_3 \ge \ldots).$$

Zachodzi następujące oszacowanie:

$$|S - S_n| \le a_{n+1}$$

gdzie

$$S_n := \sum_{k=1}^n (-1)^k \alpha_k.$$