Pipelined A/D Converter Using Voltage-A 12-b 30-MS/s, Low-Power, Low-Area Mode and Current-Mode Stages

Mani Mohajerin

Introduction:

A/D converters are the interface between analog circuits and digital circuits. Examples:

High-Definition Television, Multimedia, Wireless communication, Radar systems, Modems, Control systems and etc...

Digital Signal Processing

Conventional Architecture of Pipelined ADC

and produces digital outputs and the analog output. The digital output is stored in digital delay line and analog output is processed by the second stage. While The input is sampled and held, the first stage processes the sampled signal the second stage is processing the analog output of the previous stage, the previous stage is processing a new sample.

Advantages: High speed, Low area and low power dissipation.

Asymmetrical digital subscriber line(ADSL). 1MHZ-100MHZ, 8-16 bits. Applications: Battery powered devices, Video processing, cable modem,

Generic Architecture of one Stage

Pipelined Stages Circuit Design

A) Fully Differential Voltage Mode (Conventional)

Advantages: High accuracy, High speed.

Which requires large biasing current therefore high power dissipation. Disadvantages: Requires High gain, fast settling time Op-amps Requires large and linear capacitors which consume large area.

B) Current Mode:

No op-amp with large biasing current needed there Less Advantages: No large and accurate capacitors needed. power dissipation and area.

Disadvantage: Less accuracy

Proposed Architecture

Current Mode Stages Architecture

Sub-ADC outputs

$$| \begin{cases} 2Lin - I_1 & \text{if } - I_{ref} \le I_{in} < -\frac{I_{ref}}{4} \\ 2Lin - I_2 & \text{if } -\frac{I_{ref}}{4} \le I_{in} < +\frac{I_{ref}}{4} \\ 2Lin - I_3 & \text{if } +\frac{I_{ref}}{4} \le I_{in} \le +I_{ref} \end{aligned}$$

Schematic Design of Current Mode MDAC

Voltage Mode Stages

Voltage Mode Stages
$$\begin{cases}
2V_{in} - V_{ref} & \text{if } -V_{ref} \leq V_{in} < -\frac{V_{ref}}{4} \\
Vout = \begin{cases}
2V_{in} & \text{if } -\frac{V_{ref}}{4} \leq V_{in} < +\frac{V_{ref}}{4} \\
2V_{in} + V_{ref} & \text{if } +\frac{V_{ref}}{4} \leq V_{in} \leq +V_{ref}
\end{cases}$$

Sub-ADC outputs

¥în+ → | M1

Pseudo-differential op-amp

Zero static power latch comparator

Current comparator

Improved resolution Voltage comparator

Low Power Voltage-to-Current Converter

Estimation of Power dissipation and Area

Proposed Architecture

Fully differential Architecture

Stage	Type	Sampling capacitor	Power dissipation	Area mm ²	Stage	Type	Sampling capacitor	Power dissipation	Area
H/S	PD	0.5pF	2.2mW	0.011	S/H PD	PD	0.5pF	4.2mW 0.014	0.014
1st, 2nd PD	PD	0.5pF	0.5pF 2.45mW	0.0284	1st, 2nd PD	PD	0.5pF	0.5pF 4.5mW 0.032	0.032
3rd	D	0.4pF	3.84mW 0.0315	0.0315	3-5 th	PD	0.4pF	3.84mW 0.031	0.031
VIC	S		2.4mW	0.012	6-8 th	PD	0.3pF	0.3pF 2.5mW	0.03
4-7 th S	S	0.25pF	1.1mW	0.019	9-10 th D	D	0.2pF	0.2pF 2 mW	0.025
8-10th S	S	0.25pF	0.8mW	0.019	11th			0.3mW	0.019
11th	S		0.3mW	0.004					
Total			20.44mW 0.2483	0.2483	Total			36.52mW 0.332	0.332

Results

(Including digital circuits) Sampling Rate
Full Scale input range
SFDR@6.73MHZ
Estimated Area Technology
Supply Voltage
Resolution

0.18-µm TSMC CMOS 1.8 V 12-bits 30-Msample/s 1.4 V_{P-P} 59.2 dB 0.345 mm²

22mW

Estimated Power dissipation

Conclusion

design of low-power, low-area and high-speed ADCs. pseudo-differential and current mode is suitable for -Proposed Architecture using combination of

-By Improving the Voltage-to-Current converter much better accuracy can be achieved.