List 02. Regression Fitting

Nikita V. Artamonov

February 14, 2025

1

Contents

1 Regression fitting

2	Coefficient interpretation	•
3	Goodness-of-fit, Fitted values, Residuals	4
1	Regression fitting	
#	1. For the dataset sleep75 consider a regression	
	sleep on totwrk & age.	
	1. write down the specification	
	2. Evaluate matrices of regression design $\boldsymbol{y}, \boldsymbol{X}$	
	3. Evaluate coefficients of the fitted model via solving a system of lin equations	eai
	4. Evaluate coefficients of the fitted model via regression specification (method from statsmodels)	.ols
	5. Evaluate coefficients of the fitted model via matrices of regression sign (.OLS method from statsmodels)	de
#	2. For the dataset sleep75 consider a regression	

sleep on totwrk, age, age².

- 1. write down the specification
- 2. Evaluate matrices of regression design y, X
- 3. Evaluate coefficients of the fitted model via solving a system of linear equations
- 4. Evaluate coefficients of the fitted model via regression specification (.ols method from statsmodels)
- 5. Evaluate coefficients of the fitted model via matrices of regression design (.OLS method from statsmodels)
- #3. For the dataset sleep75 consider a regression

sleep/60 on totwrk/60, age, smsa, south.

- 1. write down the specification
- 2. Evaluate matrices of regression design y, X
- 3. Evaluate coefficients of the fitted model via solving a system of linear equations
- 4. Evaluate coefficients of the fitted model via regression specification (.ols method from statsmodels)
- 5. Evaluate coefficients of the fitted model via matrices of regression design (.OLS method from statsmodels)
- #4. For the dataset Labour consider a regression

log(output) on log(capital), log(labour).

- 1. write down the specification
- 2. Evaluate matrices of regression design y, X
- 3. Evaluate coefficients of the fitted model via solving a system of linear equations
- 4. Evaluate coefficients of the fitted model via regression specification (.ols method from statsmodels)
- 5. Evaluate coefficients of the fitted model via matrices of regression design (.OLS method from statsmodels)

Data selection & Regression fitting

#5. For the dataset sleep75 consider a regression

sleep on totwrk, age, south, male.

Fit the regression only for city dwellers (smsa==1).

#6. For the dataset sleep75 consider a regression

sleep on totwrk, age, south, smsa.

Fit the regression only for men (male==1).

#7. For the dataset sleep75 consider a regression

sleep on totwrk, age, south, smsa.

Fit the regression only for women (male==0).

2 Coefficient interpretation

#1. For the dataset sleep75 consider a regression

sleep on totwrk, age.

Fit the regression and give the interpretation of its coefficients.

#2. For the dataset sleep75 consider a regression

sleep on totwrk, age, male, smsa, south.

Fit the regression and give the interpretation of its coefficients.

#3. For the dataset wage2 consider a regression

log(wage) on exper, IQ.

Fit the regression and give the interpretation of its coefficients.

#4. For the dataset wage2 consider a regression

log(wage) on exper, IQ, south, urban, married.

Fit the regression and give the interpretation of its coefficients.

#5. For the dataset Labour consider a regression

log(output) on log(capital), log(labour).

Fit the regression and give the interpretation of its coefficients.

#6. For the dataset Labour consider a regression

log(output) on log(capital), log(labour), log(wage).

Fit the regression and give the interpretation of its coefficients.

3 Goodness-of-fit, Fitted values, Residuals

#1. For the dataset sleep75 consider a regression

sleep on totwrk, age.

Fit the regression and calculate:

- 1. TSS, ESS, RSS
- 2. R^2, R^2_{adi}
- 3. Fitted values, dependent variable, residuals for observations with indices [0, 3, 78, 197, 401, 561]

Give the interpretation for obtained values (if possible)

#2. For the dataset wage2 consider a regression

log(wage) on age, IQ, urban, married, south.

Fit the regression and calculate:

- 1. TSS, ESS, RSS
- 2. R^2, R_{adj}^2
- 3. Fitted values, dependent variable, residuals for observations with indices [5, 33, 82, 149, 392, 603]

Give the interpretation for obtained values (if possible)

#3. For the dataset wage2 consider a regression

log(wage) on age, IQ, urban, married, south.

Fit the regression and calculate:

- 1. TSS, ESS, RSS
- 2. R^2, R^2_{adj}
- 3. Fitted values, dependent variable, residuals for observations with indices [7, 29, 43, 86, 124, 138]

Give the interpretation for obtained values (if possible)