5(3)

SOV/79-29-8-33/81

AUTHORS:

Skvarchenko, V. R., Levina, R. Ya., Karpenko, N. F.

TITLE:

Aromatic Hydrocarbons. X. Synthesis of Polymethyl-diethyl Benzenes From Adducts of 3,4-Diethyl-hexadiene-2,4 With Maleic and

Alkyl-maleic Anhydrides

PERIODICAL: Zhurnal obshchey khimii, 1959, Vol 29, Nr 8, pp 2605 - 2609 (USSR)

ABSTRACT:

The aromatization of the tetrahydrophthalic anhydrides under the action of phosphorus pentoxide carried out previously according to the scheme

was used in the present paper for the synthesis of polymethyldiethyl benzenes hitherto unknown (dimethyl-, trimethyl-, and tetramethyl-diethyl benzenes). The transformation of the adducts of tetraalkyl-butadiene (of 3,4-diethyl-hexadiene-2,4) with maleic, methyl- and dimethyl-maleic anhydride under the action

Card 1/2

Aromatic Hydrocarbons. X. Synthesis of Polymethyl-diethyl SOV/79-29-8-33/81 Benzenes From Addacts of 3,4-Diethyl-hexadiene-2,4 With Maleic and Alkyl-maleic .Anhydrides

> of P205 was investigated. The behavior of 3,4-diethyl-hexadiene-2,4 in the "diene synthesis" has so far not been investigated. It was carried out on heating in the autoclave at 120,130, and 190° respectively, within 10, 20, and 30 hours (yields 72.41 and 67%) (Scheme 2). From compound (I) compound (IV) was obtained by heating with P_2O_5 in a 71% yield (Scheme 3). By reaction of P_2O_5 with (II), (V) was formed (89%) (Scheme 4). The adduct of 3,4diethyl-hexadiene-2,4 with dimethyl-maleic anhydride, compour (III), was more resistant to P205. Compound (VI) could only be obtained by heating the reaction mass for 10 hours (Scheme 5)(77%). The synthesized hydrocarbons not yet described were closely characterized. The initial diene, the 3,4-diethyl-hexadiene-2,4, was obtained by dehydration of 3,4-dimethyl-hexanediol-3,4 with acetic anhydride in the presence of orthophosphoric acid (50-54%). There are 11 references, 6 of which are Soviet.

SUBMITTED: Card 2/2

ASSOCIATION: Moskovskiy gosudarstvennyy universitet (Moscow State University) July 4, 1958

KELER, E.K.; KARPENKO, N.B.

Interaction of BaCo, with TiO and ZrO during heating. Zhur. neorg. khim. 5 no.3:668-675 Mr '60. (MIRA 14:6)

1. Institut khimii silikatov AN SSSR.

(Barium carbonate)

(Titanium)

(Zirconium oxide)

s/078/60/005/06/12/030 B004/B014

AUTHORS:

Karpenko, N. B., Keler, E. K.

TITLE:

Interaction of BaCO3 With ThO2 and ZrO3 on Heating

PERIODICAL:

Zhurnal neorganicheskoy khimii; 1960, Vol. 5; No. 6,

pp. 1267 - 1282

TEXT: By way of introduction, the authors discuss publications concerning the above subject, and mention P. Z. Tandura, T. N. Verbitskaya, T. N. Burakova, G. A. Smolenskiy, A. I. Avgustinit, and N. S. Antselewith. Fig. 1 offers a comparison of the data supplied by P. Z. Tandura and T. N. Verbitskaya for the parameters of the unit call of the solid BaTiO₃-BaZrO₃ solutions with the data obtained by the authors. The authors had already investigated the interaction of BaCO₃ with TiO₂ and ZrO₂ in an equivalent ratio of the components (Ref. 4), and had worked out a method for the quantitative determination of the various phases by X-ray, optical, and chemical analysis. The present paper deals with

Card 1/4

Interaction of BaCO₃ With TiO₂ and ZrO₂ on S/078/60/005/06/12/030 Heating B004/B014

the interaction at various ratios among the components (Fig. 2). The samples were continuously annealed up to 1,200°C, then constantly at 1,200, 1,250, 1,300, 1,400, 1,500, and 1,600°C. Thermograms were taken by means of a device designed by E. K. Keler and A. K. Kuznetsov (Ref. 7), which permitted the simultaneous recording of the thermal differential curve, the curve of weight loss, and the curve of volume change. Fig. 3 shows such thermograms. For comparison, Fig. 4 illustrates the thermograms for TiO2, ZrO2, BaCO3, and the binary mixtures BaCO3+TiO2 and BaCO3+ZrO2. The endothermic effect observed between 1,000 and 1,100°C was explained by a redistribution of BaO in the titanate and zirconate on the establishment of equilibrium in the solid solutions, which was confirmed by the thermogram (Fig. 5) of BaZrO3 + + TiO, Experimental data are given in Tables 1,2. Figs. 6,7 show the composition of the phases for different mixtures of $BaTiO_\chi + ZrO_2$ and BaZrO3 + TiO2 at temperatures between 1,200 and 1,600°C. The interaction between the oxides of the system BaO - TiO, - ZrO, proceeds in a Card 2/4

Interaction of BaCO3 With TiO_2 and ZrO_2 on Heating

S/078/60/005/06/12/030 B004/B014

different way, depending on temperature and composition of the mixture. The formation of the solid solution BaTiO₃ BaZrO₃, which takes place only above 1,200°C, is determinant for the subsequent processes. The components which do not enter the solid solution, form barium dititanates and barium trititanates below 1,300°C, barium tetratitanate at 1,300 s. 1,400°C, and girconium titanates above 1,200°C, and girconium titanates above 1,200°C,

and barium trititanates below 1,300°C, barium tetratitanate at 1,300 = 1,400°C, and zirconium titanate above 1,400°C. If the mixture has a high TiO₂ content, a new compound is formed, which corresponds to

one of the compounds Ba₂Ti₅O₁₂ or Ba₂Ti₉O₂₀ given by G. H. Jonker and W. Kwestroo (Ref. 5). The processes took place at different rates in the system investigated. Inhibited, retarded reactions occur for a part (formation of the solid solution below 1,200°C, formation of barium distinante) which do not attain equilibrium with the usual technical burning times. Hence, the phase compositions found do not correspond to equilibrium states, but to stable, relatively invariant states. These phase diagrams can therefore be valuable in the field of electroceramics of barium titanate and other compounds. There are 7 figures, 2 tables, and 8 references: 7 Soviet and 1 American.

Card 3/4

Inch. of plicate Chemistry, And Sci USSR

KARPENKO, N. B.

Dissertation defended for the degree of <u>Candidate of Chemical Sciences</u> at the Institute of Silicate Chemistry imeni I. V. Grebenshchikov in 1962:

"Study of Barium Carbonate Reactions with Dioxides of Titanium and Zirconium Upon Heating."

Vest. Akad. Nauk SSSR. No. 4, Moscow, 1963, pages 119-145

MARCHENKO, A.I., kand.med.nauk (Klyev); KARPENKO, N.G. (Klyev);
SHCHERBINA, A.S. (Klyev)

Frequency of paradentosis among the rural population of Fastov and Brovary Districts of Klyev Province, Probl.stom. 4:201-204

158. (KIEV PROVINCE-GUMS--DISEASES)

KARPENKO, N. I., assistent

Reconstruction of the masticatory function in the orthopedic treatment of some forms of pathologic occlusion. Trudy KCMI no.2:196-206 '60. (MIRA 15:7)

1. Iz kafedry ortopedicheskoy stomatologii - zav. kafedroy dotsent M. A. Solomonov.

(MASTICATION) (DENTAL PROSTHESIS)

GAVRILOV, Ye.I., prof.; KARPENKO, N.I., assistent

Recording the chewing movements of the lower jaw (oscillography). Stomatologiia 41 no.5:69-72 S-0 '62. (MIRA 16:4)

1. Iz kafedry ortopedicheskoy stomatologii (zav. - prof. Ye.I. Gavrilov) Kalininskogo meditsinskogo instituta.

(MASTICATION) (OSCILLOGRAPHY)

Some results of regional generalization of electric logging data.

Geol. nefti i gaza 5 no.6:35-40 Je '61. (MIRA 14:5)

1. Upravleniye Krasnodarneft'. (Electric prospecting)

	Recovery factor based on depleted pools in eastern fields of the Oil Field Administration of the Khadyzhensk Petroleum Trust. Neft. khoz. 40 no.1:44-49 Ja '62. (MIRA 15:2) (Krassodar Territory-Oil fieldsProduction methods)
*	olit - Neftegozoraya goologiya i geofizika Misson Novigebook ema 1964

KARPENFO, N. N.

h07h1

\$/120/62/000/004/007/047 E039/E420

AUTHORS:

Card 1/2

Malyshev, I.F., Popkovich, A.V., Mikhelis, Ya.L., Martyugov, G.M., Artemov, A.D., Karpenko, N.M.

TITLE: The vacuum system of the 7 Gev proton synchrotron PERIODICAL: Pribory i tekhnika eksperimenta, no.4, 1962, 46-51

TEXT: The vacuum chamber of the synchrotron consists of 112 curved sections in the magnet gaps and 112 straight sections situated between the magnet blocks. The curved sections (except for 11 sections containing accelerating electrodes, situated in X-blocks) are constructed from corrugated tubes of 1X18H9T (1Kh18N9T) steel; thickness 0.3 mm, convolutions 3 mm deep (1Kh18N9T) steel; thickness 0.3 mm, convolutions 3 mm deep and a pitch of 7 mm and of elliptical cross-section 114 and 84 mm along axes. On the straight sections are mounted the vacuum manifolds and apparatus for observing the beam, e.g. measurement of intensity and position of beam and also lost particles. 56 Oil diffusion pumps type 8A-05 (VA-05) with semiconductor refrigorators and liquid nitrogen traps are used to evacuate the working space and there are 14 forevacuum pumps type 8H-1 (VN-1). The vacuum chamber can be divided into 14 sections by means of

S/120/62/000/004/007/047

The vacuum system of ...

Sate valves which can be operated manually or by remote control.

A working pressure of about 2 x 10⁻⁶ mm is achieved. Detailed diagrams of the layout of the system and the main components are given. There are 7 figures.

ASSOCIATION: Nauchno-issledovatel'skiy institut elektrofizicheskoy apparatury GKAE (Scientific Research Institute for Electrophysical Apparatus GKAE)

SUBMITTED: April 6, 1962

Card 2/2

MALYSHEV, I.F.; POPKOVICH, A.V.; MIKHELIS, Ye.L.; MARTYUGOV, G.M.; ARTEMOV, A.D.; KARPENKO, N.M.

Vacuum system of the ? bev. proton synchrotron. Prib. i tekh. eksp. 7 no.4:46-51 Jl-Ag '62. (MIRA 16:4)

1. Nauchno-issledovatel skiy institut elektrofizicheskoy apparatury Gosudarstvennogo komiteta po ispol zovaniyu atcmnoy energii SSSR.

(Vacuum apparatus) (Synchrotron)

KARPENKO, H.P.; KUSLIK, M.I., professor, zaveduyushchiy.

Knock knee (gemi valgum). Vest.khir. 73 no.5:12-17 S-0 '53. (MLRA 6:11)

1. Kafedra ortopedii i protezirovaniya Gosudarstvennogo ordena Lenina Lenina gradskogo instituta usovershenstvovaniya vrachey im. S.M.Kirova (for Kuslik).
2. Ortopedicheskoye otdeleniye TSentral'nogo gosudarstvennogo travmatologicheskogo instituta im. R.R.Vredena. (Leg--Abnormities and deformities)

Example No. N.P., kandidat meditsinskikh nauk(Leningrad ul. Plutalova d.5 kv.38)

Dislovations in childred. Vest.khir.74 no.7:46-50 0-k '54.

(MLRA 8:10)

1. Iz Gosudarstvennogo nauchno-issledovatel skogo detskogo ortopedicheskogo instituta im. G.I.Turnora.

(DISLOCATIONS, in infant and child)

KARPENKO, N.P., kand.med.nauk

Objective examination of the curvature of the spine and trunk; measurement by a transparent comparative millimetric grid. Ortop.travm. i protez. 20 no.7:55-57 J1 159. (MIRA 12:10)

1. Iz Stalinskogo nauchno-issledovatel skogo instituta travmato-logii, ortopedii i protezirovaniya (dir. - kand.med.nauk T.A. Revenko).

(ORTHOPEDICS equipment & supplies) (SCOLIOSIS diag.)

Surgical treatment of a deformity of the spine. Vest. khir. 85 no. 8:132-133 Ag '60. (MIRA 14:1)

(PHLECMON) (SPINE—SURGERY)

KARPENKO, N.P. (Leningrad, Barmaleyeva ul., d.5, kv.38)

Treatment of fractures of long tubular bones with the aurthor's own apparatus. Vest.khir. no.4:126-129 '61. (MIRA 14:4)

1. Iz travmatologicheskogo otdeleniya (nauchn. rukovod. - prof. G.Ya. Epshteyn) bol'nitsy im. Raukhfusa (gl. vrach - Yu.S. Chistyakova).

(FRACTURES)

KARPENKO, N. V.

KARPENKO, N. V. -- "Investigation of the Laws of Movement and Precipitation of Granules in Locks with Low Water Levels." Min Higher Education USSR. Leningrad Order of Lenin and Order of Labor Red Banner Mining Inst. Leningrad, 1955. (Dissertation for the Degree of Candidate of Technical Sciences.)

SO: Knizhnava letopis', No. 4, Moscow, 1956

ANDREYEVA, Ye.V.; KARPENKO, N.V.

Forecasting the runoff of spring floods in western Kazakhstan, as exemplified by the Uil River. Trudy Kaz.NIGMI no.16:3-19 '61.

(Uil River-Flood forecasting)

AKININ, P. I., inzh.; BUGAYEV, A. B., inzh.; GAZIN, V. V., inzh.; GINDIS, Ya. P., inzh.; ZAYTSEV, V. V., inzh.; KANDENKO, V. M., inzh.

Automatic control of ladle turning. Mekh.i avtom.proizv.18 no. 5:14-16 My '64. (MIRA 17:5)

S/598/61/000/006/009/034 D228/D303

AUTHORS:

Ogurtsov, S.V., Reznichenko, V.A., Karpenko, O.A.,

and Yegorov, S.I.

TITLE:

The two-stage method of the sodiothermic preparation

of titanium

SOURCE:

Akademiya nauk SSSR. Institut metallurgii. Titan i yego splavy. no. 6, 1961. Metallomermiya i elektro-

khimiya titana, 60 = 67

TEXT: In re-examining the two-stage method for the sodiothermic production of Ti the authors' aim was to secure information on the optimum temperature conditions for the formation of "black salt"—13NaCl·3TiCl3·2TiCl2; the distribution of the reaction products during the prereduction of this compound; the influence of both the rate of Na input and the excess of NaCl on the crystallization of Ti; and the main structure of the resulting metal. "Black salt" crystallizes in one of the lower systems, and has a refractive—index and melting—point of 1.66 — 1.68 and 502 — 5030 respectively; Card 1/3

The two-stage method of the ...

\$/598/61/000/006/009/034 D228/D303

it arises as an intermediate product in the first stage of the sodiothermic process and eliminates the formation of finely-dispersed Ti -- a possible source of metal contamination. The work was done in a laboratory reactor fitted with a distillation crucible and a feeder for the liquid reducing agent which was added either rapidly (in 1 or 2 portions) or slowly in small successive increments. The experimental data show that a homogeneous crystalline mass of "black salt" may be obtained in all cases, particularly at 750 -8500. The simultaneous addition of all greagents gives a fine sponge. But coarser dendritic material -- with crystal dimensions of up to 25 mm and having the properties of "iodide" Ti (HR = 90) - is formed on the addition of liquid Na to molten "black salt" at 650 -7500. The slow rather than the rapid addition of Na also promotes the growth of coarser Ti. Structures identified by the authors include compact sponge consisting of a homogeneous mass of small grains, dendritic material, and acicular material with discrete Ti crystals whose size is increased by decreasing the rate of the reducer's input. However, in the event of an excess of NaCl over the amount required for the formation of "black salt", the rapid addi-Oard 2/3

The two-stage method of the ...

S/598/61/000/006/009/034 D228/D303

tion of the reducer is conducive to the development of large crystals. The author conclude that the further elaboration of this method could lead to both the decreased consumption of Na and Cl in the sodiothermic process and the considerable improvement of the quality of the end-product. There are 4 figures.

Card 3/3

GOROSHCHENKO, Ya.G.; UDE, E.O.; KARPENKO, O.A.

Chlorination of sphene concentrates by chlorine gas without a reducing agent. Titan i ego splavy no.9:123-126 '63. (MIRA 16:9) (Titanium ores) (Chlorination)

Compression, Ya.G.; UDE, E.O.; KARPENKO, O.A.

Chlorination of sphene concentrates by chlorine gas with a reducing agent. Titan i ego splavy no.9:127-135 '63. (MIRA 16:9) (Titanium ores) (Chlorination)

VOLOSHIN, A.M. (Krivoy Rog); KARPENKO, O.A. (Krivoy Rog)

Using short-delay blasting at the "Kommunar-Pobeda" mine of the Dzerzhinskii Mining Administration. Met. 1 gornorud. prom. no.3: 75-76 My-Je '63.

(MIRA 17:1)

AGOSHKOV, M.T.; KARPENKO, O.M.

Discussion of principles governing the planning of scientific research. Vest. AN SSSR 35 no.5:81-85 My '65.

(MIRA 18:6)

1. Chlen-korrespondent AN SSSR (for Agoshkov).

L 1301-66 -- EWT(d)/EWT(1)/EWT(m)/EMP(w)/T-2/EWP(1) -- IJF(c) -- WW/EM/EG-UR/0209/65/000/009/0019/0023 ACCESSION NR: AP5022453 AUTHORS: Grukhin, N. (Engineer, Captain); Karpenko, V. (Engineer, Major); Shirokov, B. (Engineer, Lieutenant Colonel) TITLE: In bumpy air conditions SOURCE: Aviatsiya i kosmonavtika, no. 9, 1965, 19-23 TOPIC TAGS: aircraft stress, aircraft control, aircraft control system, atmospheric turbulence, automatic pilot, aircraft stability, gust lcad ABSTRACT: The control problems involved in flying through bumpy air were studied to determine the best control system. Structural overloading (caused by the wind) and maneuvering stress components must be minimized, and angles of attack exceeding the critical one must be avoided. Manual control causes up to 50% more overloading situations than autopilot control, since the plane's moment of inertia prevents the pilot from rapidly changing the pitch angle. An autopilot can react to pitch angle, angular acceleration, and altitude or may be insensitive to altitude. Small altitude changes produce insignificant control signals, and large altitude changes result in control with increased maneuvering overloading. Thus, in all conditions (except for gale gusts which must be studied further) the Card 1/2

OVNATANYAN, K.T., prof., zasluzhennyy deyatel' nauki UkrSSR; KARPENKO, V.S., dotsent

Clinical aspects, diagnosis and treatment of cysts and tumors of the tail portion of the pancreas. Vest. khir. 94 no.1:14-17 Ja '65.

(MIRA 18:7)

1. Iz fakul'tetskoy khirurgicheskoy kliniki (zav. - prof. K.T. Ovnatanyan) lechebnogo fakul'teta Donetskogo meditsinskogo instituta imeni Gor'kogo.

KARPENKO, O.Yu.

Seviet gevernment in the Western Ukraine in 1920. Visnyk AN
UESR 26 no.11:8-14 N '55. (MIRA 9:2)
(Ukraine--Revolution, 1917-1921)

KARPENKO, O. YU. USSR/Miscellaneous - Politics Card 1/1 : Pub. 138 - 6/11 Authors Karpenko, O. Yu. Title : From the history of revolution. Struggle of West Ukrainian labor masses for the Communist regime Periodical : Visnik AN URSR, 8, 51-60, Aug 1954 Abstract : Fragments from the October 1917 uprising of labor masses in Western Ukraine (Drohobycz Petroleum Region, former Poland) against the Austro-Hungarian regime. Remarks by Lenin and Stalin regarding this unsuccessful revolution, are included. Institution Submitted

KARPENKO, P.

Reliable spark extinguishers for tractors and combines. Pozh. delo 4 no.1:16 Ja 158. (MIRA 11:1)

l. Nachal'nik otdela tekhnicheskogo kontrolya Dzhambulskogo remontnogo zavoda.

(Dzhambul Province -- Tractors -- Safety appliances)

ZALOGIN, Nikolay Savel'yevich [Zalchin, M.S.]; KARPENKO, P., red.;

GUSAROV, K. [Huserov, K.], tekhn.red.

[Examination problems in mathematics] Konkursni zadachi z

matematyky. Kyiv, Derzh.vyd-vo tekhn.lit-ry URSR, 1959.

436 p. (Mina 13:8)

(Mathematics--Problems, exercises, etc.)

KARPENKO, P.D.

Determining the distribution of pressure on the profile during the flow of an incompressible fluid around it. Dop. AN URSR no.12:1560-1566 '61. (MIRA 16:11)

1. Drogobichskiy gosudarstvennyy pedagogicheskiy institut. Predstavleno akademikom AN UkrSSR 6.N.Savinym [Savin, H.M.].

L 21765-65 ENP(m)/ENG(v)/ENA(h)/ENP(k)/ENT(d)/ENT(1)/ENT(m)/FCS(k)/FS(m)/T-2/ EWA(d)/EWA(1)/EWP(w)/EWP(w) Pd-1/Pe-5/Pf-4/Peb SSD/AEDC(a)/AFVIL/ASD(f)-3 ACCESSION NR: AT5002839

5/3123/64/000/001/0035/0044

AUTHOR: Karpenko, P. D.

Incompressible flow around an arbitrary wing profile

SOURCE: AN UKTSSR, Institut matematiki, Voprosy matematicheskoy fiziki i teorii funktsiy, no. 1, 1964, 35-44

TOPIC TACS: incompressible flow, arbitrary wing profile, flow around wing profile, successive conformal mapping

ABSTRACT: The problem of determining the transformation function which conformally maps a region of incompressible fluid flow around an arbitrary wing profile onto the exterior of a circle is analyzed. The numerical solution of this problem by using the method of successive conformal mappings developed by P. F. Fil chakov (Ukrainskiy matematicheskiy zhurnal, v. 10, no. 4, 1958) is proposed. A procedure is presented for conformal mapping of a wing profile into a curve which is close to the unit circle, then mapping into the unit circle. Pecularities of such mappings are analyzed and transformation functions are given. The author claims that the advantage of this method rests

Card = 1/2

L 21765-65

ACCESSION NR: AT5002839

in the fact that all transformations are carried out by means of elementary functions which can be calculated easily on simple digital computers. Besides, this method does not require knowing the equation of the wing profile—it is sufficient to know a certain number of its points. In addition, the article analyzes the problem of determining the lifting force of the wing, which is reduced to the problem of it is shown how the first three coefficients of transformation, functions expanded into Laurent series which are necessary for the circulation velocity of the determined to any desired accuracy. The circulation velocity of the flow and the lifting force are determined from the obtained value of the first coefficient. A concrete example is analyzed to illustrate the method. Orig. art. has: 5

ASSOCIATION: none

SUBMITTED: 00

ENCL: 00

SUB CODE: AS, ME

NO REF SOV: 006

OTHER: QOO

ATD PRESS: 3168

Card 2/2

ACCESSION NR: AP4012584

\$/0021/64/000/002/0177/0180

AUTHOR: Karpenko, P. D.

TITLE: A numerical method of maping a polygon on a circle

SOURCE: AN UkrRSR. Dopovidi, no. 2, 1964, 177-180

TOPIC TAGS: tracking, tracing, aerostructures, conformal mapping, aircraft wing

ABSTRACT: An approximate method of mapping a polygon on a circle and of determining the constants of the Christoffel-Schwartz integral by the method of successive conformal mapping (P. F. Fy'l'chakov, Ukrayins'ky'y Matematy'chny'y Zhurnal, v. 10, 1958, 340) is considered. The mapping of the outer region of a broken line (a degenerate tetragon) on the outside of a circle is considered as a numerical example in connection with calculations that can be applied in designing an aircraft wing. Orig. art. has 2 figures, 1 table, and 11 formulas.

ASSOCIATION: Drogoby*ts'ky*y Dorzhavny*y Pedagogichny*y Insty*tut (Drogobitsy State Pedagogic Institute)

Card 1/7 /

27 Ime 43

10.1210

21366 S/021/61/000/012/003/011 D251/D305

AUTHOR:

Karpenko, P. D.

TITLE:

Determining the pressure distribution on a profile with a flow of incompressible liquid

PERIODICAL:

Akademiya nauk Ukrayins'koyi RSR. Dopovidi, no. 12, 1961, 1560-1566

TEXT: It is assumed that a profile is given with an angular point in its rear edge. The Karman-Trefetz function is applied

 $\frac{z' - \mathcal{H}q}{z' + \mathcal{H}q} = \frac{(\zeta' - q)^{X}}{(\zeta + q)^{X}}$ (1)

where $\mathcal{H}=2-\frac{1}{\pi}$ and 0 is the angle between the tangents in angular strip, and q is given approximately by

$$c \approx 2\pi q = \sqrt{A^{\dagger}B^{\dagger}}$$
 (2)

Card 1/5

21366 \$/021/61/000/012/003/011 D251/D305

Determining the pressure ...

(See also figure at end.) By means of a conformal transformation

$$z' = z - \mathcal{H}q; \quad \zeta' = \zeta - q \tag{3}$$

(1) is mapped onto a quasi circle K' in the ζ -plane. K' is then surrounded by a circle K, such that at B (the transform of the angular point B') there is a minimum divergence between K and K'. The center of K, $M(\xi_0,\eta_0)$ is found by the method of least squares. By means of the transformation

K' is mapped onto K, the angles being as shown. If

$$W = \frac{a}{1 - \left(1 - \frac{a}{I}\right)^{6}} \tag{9}$$

Card 2/5

Determining the pressure ... 21366 S/021/61/000/012/003/011' D251/D305

where a is the angle of attack, and

$$w_1 = w + \xi_0 + i\eta_0$$
 (14)

then, for a definite solution, it is necessary to evaluate $\left|\frac{dw}{dz}1\right|$. Writing, in the usual way,

$$\frac{dw_1}{dz} = \frac{dw_1}{dw} \left| \frac{dw}{d\zeta} \right| \left| \frac{d\zeta}{dz} \right| \tag{19}$$

it is shown that $\frac{dw_1}{dz} = 1$, and

$$\frac{d\zeta}{dz} = \frac{(2q)^{2}}{\left[1 - \left(1 - \frac{2xq}{z}\right)^{\frac{1}{x}}\right]^{2}} \cdot \frac{\left(1 - \frac{2xq}{z}\right)^{\frac{1}{x}}}{1 - \frac{2xq}{z}} \cdot \frac{1}{z^{2}}.$$
(20)

Card 3/5

Determining the pressure ...

21366 S/021/61/000/012/003/011 D251/D305

$$\left| \frac{\mathrm{d} \mathcal{S}}{\mathrm{d} \mathbf{z}} \right| = \frac{\overset{2}{\approx}^2 + \eta^2}{\overset{2}{\times}^2 + y^2} \quad \frac{\mathrm{b}}{\mathrm{b}}$$

(21)

where

$$\rho = \sqrt{\frac{(\mathcal{E} - \mathbf{a})^2 + \eta^2}{\xi^2 + \eta^2}}$$

In conclusion, the pressure distribution on the profile RAD-38-12.66 is calculated by this method, using a computor. The results obtained are compared in tabular form with the experimental data of Ye. Karafoli (Ref. 4: Aerodinamika kryla samoleta (Aerodynamics of an Aircraft Wing), M. 1956). There are 1 figure, 2 tables and 5 Soviet-bloc references.

Card 4/5

"APPROVED FOR RELEASE: 06/13/2000

CIA-RDP86-00513R000720820013-8

S/021/61/000/012/003/011 D251/D305

Determining the pressure ...

Drohobyts'kyy derzhavnyy pedahohichnyy instytut (State Pedagogic Institute of Drohobych)

PRESENTED:

ASSOCIATION:

by H. M. Savin, Academician AS UkrSSR

SUBMITTED:

March 10, 1961

Card 5/5

KARPENKO, P.D.

Numerical method of mapping a polygon on a circle. Dop. AN URSR no. (MIRA 17:4)

1. Drogobychskiy gosudarstvennyy pedagogichoskiy institut. Fred stavleno akademikom AN UkrSSR Yu.A.Mitropol'skim [Mytropol's'kyi. IU.O.].

KARPENKO, P.D. (Drogobich)

Conformal representation of the appearance of a disk with a hole in it and the application of this representation to the problems of flow about given regions. Prykl. mekh. 10 no.28198-204 *64 (MIRA Tre7)

1. Drogebychskiy gosudarstvennyy padamogicheskiy anatitut.

Setup for demonstration of the speed of electrochemical corrosion of clean metal in contact with another metal. Khim. v shkole 13 no.5:56 S-0 '58. (Electrolytic corrosion)

Improved fastening of the barrel of the EP screw press. Masl.-zhir. prom. 24 no.10:37-38 '58. (MIRA 11:10)

1. Severskiy gosmaslozavod. (Power presses)

KARPENKO, PM.

AID P = 3229

Subject

: USSR/Electricity

Card 1/1

Pub. 29 - 14/30

Authors

: Sayapin, N. I., and P. M. Karpenko, Foremen

Title

: Production of tubular manometric springs

Periodical

: Energetik, 8, 14-15, Ag 1955

Abstract

: At one of the hydroelectric power stations, 30- and 100-at manometric

springs were produced according to the authors' designs. The authors describe the production procedure. Four drawings.

Institution : None

Submitted

: No date

AKHMEDBABAYEV, M.Kh.; ARIFDZHANOV, K.A.; BELOUSOV, N.A.; BELYAKOV, S.P.;

ZOTOV, V.G.; ISAYEVA, Z.D.; MAKHMUDOV, I.A.; ISHCHERKO, F.S.;

KRASIL'NIKOV, Ya.A.; NIKOL'SKIY, I.P.; NETSETSKIY, A.M.;

PERGAT, F.F.; PAVLOVSKAYA, M.D.; SAMSONOV, L.S.; POLIZHAYEV,

A.I.; SMIRNOV, F.Ye.; SABININ, M.N.; SHUTYAYEV, N.A.; CHIZHIK,

V.I.; KARPENKO, P.M.; IMEROV, A.I.

Mikhail Aleksandrovich Nenetskil; obituary. Veterinariia 37

no.10:94 0 'co. (MIRA 15:14)

(Nenetskii, Mikhail Aleksandrovich, 1899-1960)

KARPENKO, P.T., brigadir puti (Stantsiya Olegovo, Yugo-Vostochnoy dorogi.)

Always in excellent condition. Put' i put.khoz. 5 no.10:9 0 '61.

(Railroads--Track)

Einary magnetic trigger. Trudy MEI no.14:63-72 '53. (MIRA P:7)
(Electric circuits) (Electric relays)

KARPTIKO, P. V.

F. V. Karnenko, Semenovodstvo sukharnov svekly (Surgar-Beet Seed Growing) Seltkhezriz, 14 sheets, 1413.

A booklat on sugar best selection and seed growing, treating the biological (vital) peculiarities and structure of plants during the first and second years of growth, the technical agronomy of beets and transplantation, the storage of seeds and seed roots.

The booklet is intended for agricultural supervisory workers and specialists, directors and a ronomists of best southouses and machine-tractor stations.

SO: U_6h72, 18 Nov 195h

KARPENKO, Pavel Vasil'yevich

[Growing sugar beets] Sveklovodstvo. 2., perer. izd. Dopushcheno v kachestve uchebnogo posobiya dlya agronomicheskikh
fakul'tetov sel'khoz.in-tov. Moskva, Gos.izd-vo sel'khoz.lit-ry,
1958. 314 p.

(Sugar beets)

CIA-RDP86-00513R000720820013-8 "APPROVED FOR RELEASE: 06/13/2000

USSR / Cultivated Plants. Plants for Technical Use. 011 Plants. Sugar Plants.

Abs Jour : Ref Zhur - Biologiya, No 6, 1959, No. 25004

Author

: Karpenko, P. V. : Voronezh Agricultural Institute Inst

: Forty Years of Labor with the Sugar Beet Title

: Zap. Voronezhak. s.-kh. in-ta, 1958, 28, Orig Pub

No 1, 37-38

Abstract : No abstract given

Card 1/1

KARPENKO, P.V.

Means of increasing the yield of sugar-beet seeds. Sakh.prom. 34 no.5:62-66 My '60. (MIRA 14:5)

1. Voronezhskiy sel'skokhozyaystvennyy institut. (Sugar beets)

KARPENKO, P.V.: YAKIMENKO, I.Ya.; GONCHAROV, G.A.

Mechanization of labor-consuming processes involved in the growing of sugar-beet seeds. Sakh.prom. 34 no.8: 58-59 Ag '60. (MIRA 13:8)

1. Voronezhskiy sel'skokhozyaystvennyy institut (for Karpenko, Yakimenko). 2. Mikhaylovskiy sveklosovkhoz (for Goncharov).

(Sugar beets)

KARPETKO, F.,

Alarm? It is a drill... Pozh.delo 7 no.9:20 S '61.

(MIRA 14:11)

1. Nachal'nik pozharnov komandy, Kamyzyan, Astrakhanskov oblasti.

(Astrakhan Province—Fire departments)

PAVLOV, A.I., kand.tekhn. nauk, dotsent; KARPENKO, R.A., inzh.

Hungarian apparatus for testing textiles. Izv. vys. ucheb.
zav.; tekh. leg. prom. no.2:138-144 '60. (MIRA 13:11)

1. Kiyevskiy tekhnologicheskiy institut legkoy promshlennosti.
(Hungary--Textile industry--Equipment and supplies)
(Textile fabrics--Testing)

KARPENKO, R.A., inzh.

Instrument for determining the yarn length of a loop in knit goods. Izv.vys.ucheb.zav.; tekh.leg.prom. no.4:157-160 '60. (MIRA 13:10)

1. Kiyevskiy tekhnologicheskiy institut legkcy promyshlennosti.
(Knitting machinery) (Hungary--Measuring instruments)

Coagulation of black slimes in the manufacture of titanium dioxide pigment. Lakokras.mat.i ikh prim. no.3:45-47 '62.

(Titanium dioxide)

(Surface-active agents)

KARPENKO, S.

Cotton Growing - Ukraine

Cultivation of cotton by the foremost machine-tractor stations of the Ukraine. Khlopkovodstvo no. 4, 1952

Monthly List of Russian Accessions, Library of Congress, August 1952. Unclassified.

ZAYTSEV, T.F.; KARPELIKO, S.A.; NESVITSKIY, Ya.I.; kandidat tekhnicheskiy nauk; STEPAHENKO, A.M.; YAVORSKIY, A.A.; SHAGOMYALO, V.I., redaktor; KRAVCHENKO, M.F., tekhnicheskiy redaktor

[Tractor brigade leader's manual] Spravochnik brigadira traktornoi brigady. Izd. 2-os, dop. Kiev. Gos. izd-vo sel'khoz. lit-ry USSR, 1956. 48) p. (MLRA 10:4)

(Tractors)

KARPENKO, S.A., inzh.

Developments in welding procedures in White Russia. Svar. proizv. no.7:33 Jl '61. (MIRA 14:6)

1. Belorusskiy sovnarkhoz. (White Russia-Welding)

TKACHENKO, Aleksey Yefimovich; KARPENKO, Sergey Aleksandrovich; VORONEZHSKIY, V.I., inzh., retsenzent; PILIPENKO, Yu.P., inzh., red.; GORNOSTAYPOL'SKAYA, M.S., tekhn. red.

[Machines for the over-all mechanization of field crop cultivation] Mashiny dlia kompleksnoi mekhanizatsii rabot v polevodstve. Moskva, Gos. nauchno-tekhn.izd-vo mashinostroit. lit-ry, 1961. 128 p. (MRA 15:2)

(Farm mechanization)

KOVTUN, I.G. [Kovtun, I.H.], kand.ekonom.nauk; KARPENKO, S.Ø., inzh.

Determining the economic effectiveness of new machinery. Mekh.
sil'.hosp. 12 no.8:19-21 Ag '61. (MIRA 14:7)

(Agricultural machinery)

TUGARINOV, A.I.; ZYKOV, S.I.; KARPENKO, S.F.

Absolute age of the Saksagan Plagioclase granites in the Krivoy Rog Basin. Geckhimila no.2:245-247 F 165. (MIRA 18:6)

l. Institut geokhimii i analiticheskoy khimii imeni Vernadskogo AN SSSR, Moskva.

KARPENKO, S.K., inzh.-mekhanik (stantsiya Mozhaysk Kalininskoy dorogi)

Improved frame for a rail-drilling machine. Put'i put.khoz.
no.1:13 Ja '59.
(HIRA 12:2)
(Railroads--Rails)

(Drilling and boring machinery)

KARPENKO, S.K., inzh.-mekhanik (st.Mozhaysk, Kalininskoy dorogi).

Mobile bridge gauge. Put' i put. khoz. no.5:25 My '59.

(NIRA 12:8)

(Railroad bridges) (Gauges)

KARPENKO, T.F.; PCHELKIN, Yu.N.

Electric solar fruit drier. Sbor. nauch.-tekh. inform.

po elektr. sel'khoz. no.16/17:66-69 '64. (MIRA 18:11)

DVORKO, G.F.; KARPENKO, T.F.; SHILOV, Ye.A.

Kinetics and mechanism of hydrogen iodide addition to multiple carbon-carbon bonds in organic solvents. Part 5: Addition of hydrogen iodide to methyl ester of propiclic acid in chlorcbenzene. Kin.i kat. 6 no.5:809-814 S-0 '65.

(MIRA 18:11)

l. Institut organicheskoy khimii AN UkrSSR.

DVORKO, G.F.; KARPENKO, T.F.

Contribution to the theory of nucleophilic additions. Part 13: Addition of hydrogen iodide to acetylenecarboxylic esters from mixtures of N-butyl quinolinium iodide and carboxylic acids in chloroform. Ukr. khim. zhur. 31 no.1:75-83 165. (MIRA 18:5)

1. Institut organicheskoy khimii AN UkrSSR.

DVORKO, G.F.; KARPENKO, T.F.; MIRONOVA, D.F.; SHILOV, Ye.A.

Contributions to the theory of nucleophilic additions. Part 15:
Nature of the acid as an important factor in the kinetics of hydrogen iodide addition to dimethyl ester of acerylenedicarboxylic acid in methanol and methanol - chloroform mixtures. Ukr. khim. zhur. 31 no. 11:1177-1182 *65 (MIRA 19:1)

1. Institut organicheskoy khimii AN UkrSSr.

MINASYAN, T.S.; SEROV, V.V.; OYSTANNIKOV, P.V.; ZHUKOV, I.S.;

KARPENKO, T.G.

Using cracking residues as material for secondary cracking.
Azerb.neft.khoz. 35 no.4:19-22 p '56. (MLRA 9:10)

(Cracking process)

KARPENKO, T.G.

\$/081/61/000/021/070/094 B138/B101

AUTHORS:

Bolotov, L. T., Shumovskiy, V. G., Ovayannikov, P. V., Pal'chikov, G. F., Minasyan, T. S., Afanagenko, M. M., Rusakov,

A. P., Burlakov, A. G., Karpenko, T. G.

TITLE:

Pilot run for the commercial processing of a secondary raw

material on a catalytic cracking unit

PERIODICAL: Referativnyy zhurnal. Khimiya, no. 21, 1961, 401 - 402, abstract 21M82 ([Tr.] Groznensk. neft. in-t. cb. 23, 1960,

97 - 105)

TEXT: With the aim of increasing supplies of quality high-speed diesel fuels, experiments have been conducted, in commercial conditions, for the refining of the medium fractions of the thermal cracking process by redistribution of the hydrogen on the aluminosilicate catalyst. The characteristics of the starting material and of the end product are enumerated. It is said that it would be possible to use this method for the production of the components of high-octane automobile gasolines and low pour-point high-speed diesel fuels. Data are given for the production

Card 1/2

KARFENKO, T. N.

GLOTOVA, Ye. V. and KARPENKO, T. N. "The barrier function of the lymphatic glands of rabbits inmunized by follywaccines," Truly Kirovskogo in-the epidemiologii i sikrobiologii, Collection 2, 1948, p. 139-43, - Bibliog: p. 183.

SO: U-3736, 21 May '53, (Letopis 'Zhurnal 'nykh Statey, No. 17, 1949)

KARPENKO T.V.

PHASE I BOOK EXPLOITATION

SOV/6025

جيري کاند

Soveshchaniye po ustalosti metallov. 2nd., Moscow, 1960.

Tsiklicheskaya prochnost' metallov; materialy vtorogo soveshchaniya po ustalosti metallov, 24 - 27 maya 1950 g. (Cyclic Metal Strength; Materials of the Second Conference on the Patigue of Metals, held May 24 - 27, 1960) Moscow, Izd-vo AN SSSR, 1962. 338 p. Errata slip inserted. 2800 copies printed.

Resp. Ed.: I. A. Oding, Corresponding Nember of the Academy of Sciences of the USSR; Ed. of Publishing House: A. N. Chernov; Tech. Ed.: A. P. Guseva.

PURPOSE: This collection of articles is intended for scientific research workers and metallurgists.

COVERAGE: The collection contains papers presented and discussed at the second conference on fatigue of metals, which was held at the Institute of Metallurgy in May 1960. These papers deal with the nature of Tatigue fracture, the mechanism of formation

Card 1/#

Cyclic Metal Strength (Cont.)

SOV/6025

and growth of fatigue cracks, the role of plastic deformation in fatigue fracture, an accelerated method of determining fatigue strength, the plotting of fatigue diagrams, and various fatigue test methods. How data are presented on the sensitivity of high-strength steel to stress concentration, the effect of stress concentration on the criterion of fatigue failure, the effect of the size factor on the strength of metal under cyclic loads, and results of endurance tests of various machine parts. Problems connected with cyclic metal toughness, internal friction, and the effect of corrosion media and temperature on the fatigue strength of metals are also discussed. No personalities are mentioned. Each article is accompanied by references, mostly Soviet.

TABLE OF CONTENTS:

NATURE OF PATIGUE FRACTURE

Oding, I. A. Diffusionless Mechanism of Formation and Growth of a Fatigue Crack Card $2/\beta$

3

Cyclic Metal Strength (Cont.)	sov/6025	
Postnikov, V. S., I. V. Zolotukhin, and G. A. Gors Investigation of Mechanical and Thermal Fatigue of by the Method of Internal Friction	hkov. Metals 218	
Pochtennyy, Ye. K. Heat Effect in Cyclic Symmetric of Parts	Loading 227	
EFFECT OF ENVIRONMENT ON THE FATIGUE STRENGTH		
Karpenko, T. V. Basic Factors in the Investigation Effect of Environment on Fatigue Strength	of the	
Bykov, V. A., and G. N. Vsevolodov. Corrosion-Fat Strength of Cast Brass	1gue 238	
Chayevskiy, M. I. Effect of Melts of Low-Melting Metals on the Fatigue Strength of Carbon and Chronickel Steels	mium - 243	
Card 7/9		

8/137/62/000/012/030/085 A006/A101

AUTHOR:

Karpenko, T. V.

TITLE:

Basic factors in investigations of the effect of external media

upon fatigue strength

PERIODICAL: Referativnyy zhurnal, Metallurgiya, no. 12, 1962, 49, abstract 121293 (In collection: "Tsiklich. prochnost' metallov", Moscow,

AN SSSR, 1962, 233 - 237)

An analysis is made of literature data on the effect of various external media upon the fatigue strength of metals and mechanisms of interaction of these media with the metal.

P. Zubarev

[Abstracter's note: Complete translation]

Card 1/1

CIA-RDP86-00513R000720820013-8" APPROVED FOR RELEASE: 06/13/2000

KARPENKO, T.Ye.

Giant myoma of the ligamentum teres uteri. Akush. i gin. 34 no.5:114-115 S-0 '58 (MIRA 11:10)

1. Iz akushersko-ginekologicheskoy kliniki (zav.-prof. Ya.G. Bukhanov) na baze Stalingradskoy oblastnoy klinicheskoy bol'nitsy (glavnyy vrach A.O. Gusev).

(UTERUS-TUMORS)

ACC NR: AN7002252

SOURCE CODE: UR/9014/67/000/018/0004/0004

AUTHOR: Karpenko, V. (Special correspondent of Pravda Vostoka); Tatur, S. (Special correspondent of Pravda Vostoka)

ORG: none

TITLE: Studies of Antarctica

SOURCE: Pravda vostoka, no. 18, 21 Jan 67, p. 4, cols. 5-6

TOPIC TAGS: geophysic expedition, meteorologic expedition

ABSTRACT: The 12th Soviet antarctic expedition is on its way to Antarctica. The last group, made up of 73 people; is headed by G. I. Mel'nichuk, a meteorologist, who was with the station "Severnyy polyus-3." He said that Antarctia is a free territory, open for scientists of all countries. Any military activity there is forbidden by international law. At present, there are four stationary stations on that continent: Miznyy; Molodezhnaya; Vostok; and Novo-Lazarevskaya. Because of the snow, the main base is being transferred from Mirnyy to Molodezhnaya. The most difficult station is still Vostok, which is 3400 mabove sea level. People working there say that it is not only necessary to work slowly, but also to think slowly. Incidentally, it is there that the world's lowest temperature of minus 87° was recorded. As regards the observations, they will be meteorological, geophysical (Earth magnetism, ionosphere, propagation of radiowaves), glaciological (study of the

Card 1/2

ACC NR: AN7002252

ice cover of the continent), and geological. For the first time, there will be some important medical research. Scientists are interested in the influence of Antarctica on the life activity and psychology of man. This year the Arctic and Antarctic Institute will publish the second volume of the Antarctica Atlas. This expedition, as was the last, is being organized by the Administration of the Hydrometeorological Service of the USSR. The head of the Novo-Lazarevskaya station O. K. Sedov, Candidate of Geophysic Sciences, said that the station will have 14 people, including meteorologists, aerologists, mechanics, doctors, and a microbiologist (R. Tashpulatov). Meteorologist G. A. Khlopushin, a veteran of 30 years experience, then described some of his past achievements.

SUB CODE: 08/ SUBM DATE: none/ ATD PRESS: 5110

Card 2/2

PLOTKIN, S., inzh.; KARPENKO, V., inzh.

Manufacture of large brick blocks for walls. Bud. mat. i konstr.
4 nc.3:30-34 My-Je '62. (MIRA 15:5)

(Brick walls)