

Parsing Natural Language

CKY-Algorithm

Parsing

- We have seen, that in order to get a parse tree, we need any context free grammar (CFG)
- And a parsing algorithm which can find the tree-structures according to this grammar (not unique in the natural language setting)

 Since we are only interested in a single output, we also want to find the best of these trees

08.12.21 Textmining

Parsing

• We can now phrase the problem of parsing:

Find the ordering of rules from our Grammar G, which produces the best syntax (or parse-) tree for a given sentence!

→ We are looking for all valid trees (according to our grammar), score them, and decide for the tree with the highest score

$$\widehat{tree} = \underset{t \in valid\ Trees}{\operatorname{argmax}} score(t, X)$$

Parsing

$$\widehat{tree} = \underset{t \in valid\ Trees}{argmax} \ score(t, X)$$

- We are facing two major challenges:
 - 1. How can we (efficiently!) get all valid trees?
 - 2. How can we score a tree?

Parsing -Scores

$$\widehat{tree} = \underset{t \in valid\ Trees}{\operatorname{argmax}} score(t, X)$$

- We are yet again looking for a repeated structure, that we can assign scores to
- →In this case, we repeatedly apply rules from our grammar, therefore one very intuitive approach would be to score a tree as:

$$score(t, X) = p(tree, X) = \prod_{i=1} score(rule_i)$$

Parsing -Scores

$$p(tree) = \prod_{i=1}^{n} score(rule_i)$$

- What would be a very easy way to get a score for a rule?
 - \rightarrow Read a probability q from a labelled corpus!

$$\Rightarrow q(\alpha \to \beta) = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

• Example:

$$q(VP \to Vt) = \frac{105}{1000}$$

Probabilistic context-free grammars (PCFG)

• This leads us to Probabilistic Context Free Grammars (PCFG), defined as follows:

- 1. A context free grammar $G = (N, \Sigma, R, S)$
- 2. A parameter $q(\alpha \to \beta)$ for each rule $\alpha \to \beta \in R$. The parameter $q(\alpha \to \beta)$ can be interpreted as a probability. Therefore it holds:

$$\sum_{\alpha \to \beta \in R: \alpha = X, X \in N} q(\alpha \to \beta) = 1$$
$$q(\alpha \to \beta) \ge 0$$

Probabilistic Context Free Grammar - Example

```
N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}

S = S

\Sigma = \{\text{sleeps, saw, man, woman, dog, telescope, the, with, in}\}
```

R	q	=
	_	

S	\rightarrow	NP	VP	1.0
VP	\rightarrow	Vi		0.3
VP	\rightarrow	Vt	NP	0.5
VP	\rightarrow	VP	PP	0.2
NP	\rightarrow	DT	NN	0.8
NP	\rightarrow	NP	PP	0.2
PP	\rightarrow	IN	NP	1.0

Vi	\rightarrow	sleeps	1.0
Vt	\rightarrow	saw	1.0
NN	\rightarrow	man	0.1
NN	\rightarrow	woman	0.1
NN	\rightarrow	telescope	0.3
NN	\rightarrow	dog	0.5
DT	\rightarrow	the	1.0
IN	\rightarrow	with	0.6
IN	\rightarrow	in	0.4
IN	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	with	0.6

CYK Algorithmus

- We found a way to decide for the best tree, now we need an algorithm capable of producing all valid trees that we can score!
- The CYK (or CKY) algorithm can do this for us, and the scoring process can be integrated into the algorithm to be even more efficient!
- Caveat: Our CFG has to take a special form!
- → That's why we have to convert our CFG into "Chomsky normal form"

Parsing Natural Language

Converting a CFG into Chomsky Normal Form

• A CFG is said to be in Chomsky normal form, if every rule $\alpha \to \beta$ is in either of the two following forms:

$$X \rightarrow Y_1Y_2 \ and \ X, Y_1, Y_2 \in N$$

 $X \rightarrow Y \ and \ X \in N, Y \in \Sigma$

- Each rule is either:
 - A non-terminal producing two non-terminals
 - A non-terminal producing exactly one terminal

$$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$$

 $S = S$
 $\Sigma = \{\text{sleeps, saw, man, woman, dog, telescope, the, with, in}\}$

R, q =				
S	\rightarrow	NP	VP	1.0
VP	\rightarrow	Vi		0.3
VP	\rightarrow	Vt	NP	0.5
VP	\rightarrow	VP	PP	0.2
NP	\rightarrow	DT	NN	0.8
NP	\rightarrow	NP	PP	0.2
PP	\rightarrow	IN	NP	1.0

\rightarrow	sleeps	1.0
\rightarrow	saw	1.0
\rightarrow	man	0.1
\rightarrow	woman	0.1
\rightarrow	telescope	0.3
\rightarrow	dog	0.5
\rightarrow	the	1.0
\rightarrow	with	0.6
\rightarrow	in	0.4
	$\begin{array}{c} \rightarrow \\ \rightarrow $	 → saw → man → woman → telescope → dog → the → with

→ We have to transform a single rule!

- Before transforming a CFG into Chomsky Normal Form, these issues may occur in our grammar:
 - 1. The start symbol S appears in the right hand side(RHS) (e.g. $S \rightarrow NPS$)
 - 2. There are "Null"-rules (e.g. $NP \rightarrow \epsilon$) ("we can delete a NP")
 - 3. Unit-production rules (e.g. $NP \rightarrow VP$)
 - 4. Production rules having more than 2 elements on the RHS (e.g. $NP \rightarrow PP \ VP \ PP$)
 - 5. "Mixed" production rules (e.g. $PP \rightarrow Der NP$)

- Sketch of the algorithm for the conversion of a CFG into CNF:
 - 1. If S appears on the RHS, introduce a new rule: $S_0 \rightarrow S$
 - 2. Eliminate ϵ rules
 - 3. Remove Unit-production rules as shown in the coming example
 - 4. Clean up (optional)
 - 5. Remove all rules with RHS > 2 as shown in the example

- Remove ϵ -rules by making them explicit
 - 1. Find a non-terminal which produces ϵ " $(A \rightarrow \epsilon)$ "
 - 2. Introduce a new symbol A' for A
 - Loop through your grammar, and whenever A occurs on the RHS of a rule
 →Replace that rule accordingly
 - 4. Add rules starting with A' as LHS
 - 5. Repeat until no more reachable ϵ productions in your grammar

08.12.21 Textmining 15

• Example ϵ elimination

1. Find a non-terminal which produces ϵ " $(A \rightarrow \epsilon)$ "

$$S \rightarrow NP \text{ and } PP$$

 $NP \rightarrow NP PP$
 $NP \rightarrow \epsilon$
 $PP \rightarrow PP PP$
 $PP \rightarrow \epsilon$

• Example ϵ elimination

2. Introduce a new symbol A' for A (we use PP')

 $S \rightarrow NP \text{ and } PP$ $NP \rightarrow NP PP$ $NP \rightarrow \epsilon$ $PP \rightarrow PP PP$ $PP \rightarrow \epsilon$

- Example ϵ elimination
 - 3. Loop through your grammar, and whenever A occurs on the RHS of a rule
 - → Replace that rule accordingly

 $S \rightarrow NP \text{ and } PP$ $NP \rightarrow NP PP$ $NP \rightarrow \epsilon$ $PP \rightarrow PP PP$ $PP \rightarrow \epsilon$

Add one rule of the form: $LHS \rightarrow \alpha A' \beta$

Add one rule of the form: $LHS \rightarrow \alpha\beta$

- Example ϵ elimination
 - 3. Loop through your grammar, and whenever *A* occurs on the RHS of a rule
 - → Replace that rule accordingly

Add one rule of the form: $LHS \rightarrow \alpha A' \beta$

Add one rule of the form: $LHS \rightarrow \alpha\beta$

```
S \rightarrow NP \text{ and } PP
NP \rightarrow NP PP
NP \rightarrow \epsilon
PP \rightarrow PP PP
PP \rightarrow \epsilon
S \rightarrow NP \text{ and } PP'
S \rightarrow NP \text{ and } NP \rightarrow NP PP'
NP \rightarrow NP
```


- Example ϵ elimination
 - 3. Loop through your grammar, and whenever A occurs on the RHS of a rule
 - → Replace that rule accordingly

Add one rule of the form: $LHS \rightarrow \alpha A'\beta$

Add one rule of the form: $LHS \rightarrow \alpha\beta$

```
S \rightarrow NP \text{ and } PP
NP \rightarrow NP PP
NP \rightarrow \epsilon
PP \rightarrow PP PP
PP \rightarrow \epsilon
S \rightarrow NP \text{ and } PP'
S \rightarrow NP \text{ and } PP'
S \rightarrow NP \text{ and } PP'
NP \rightarrow NP PP'
NP \rightarrow PP'PP'
PP \rightarrow PP'PP'
```


- Example ϵ elimination
 - 4. Add rules starting with A' as LHS (for every non ϵ rule of A)

```
NP \rightarrow \epsilon

PP \rightarrow \epsilon

S \rightarrow NP \text{ and } PP'

S \rightarrow NP \text{ and }

NP \rightarrow NP PP'

NP \rightarrow NP

PP \rightarrow PP'PP'

PP \rightarrow PP'PP'

PP' \rightarrow PP'PP'

PP' \rightarrow PP'
```


- Example ϵ elimination
 - 5. Repeat until no more reachable ϵ productions in your grammar

```
NP \rightarrow \epsilon
PP \rightarrow \epsilon
PP \rightarrow \epsilon
S \rightarrow NP \text{ and } PP'
S \rightarrow NP \text{ and } NP \rightarrow NP PP'
NP \rightarrow NP PP'
NP \rightarrow PP'PP'
PP \rightarrow PP'PP'
PP' \rightarrow PP'PP'
PP' \rightarrow PP'PP'
```


• Example ϵ elimination

- Can ϵ rules even occur in NLP?
- → Yes! If you allow rules with Kleene-* notations

- E.g. :
 - NP? Means an optional nominal phrase
 - NP * Means arbitrarily many or 0 NPs

```
NP \rightarrow \epsilon
PP \rightarrow \epsilon
PP \rightarrow \epsilon
S \rightarrow NP \text{ and } PP'
S \rightarrow NP \text{ and } NP \rightarrow NP PP'
NP \rightarrow NP PP'
PP \rightarrow PP'PP'
PP' \rightarrow PP'PP'
PP' \rightarrow PP'PP'
PP' \rightarrow PP'
```


- Sketch of the algorithm for the conversion of a CFG into CNF:
 - 1. If S appears on the RHS, introduce a new rule: $S_0 \rightarrow S$
 - 2. Eliminate ϵ rules
 - 3. Remove Unit-production rules as shown in the coming example
 - 4. Clean up (optional)
 - 5. Remove all rules with RHS > 2 as shown in the example

Example conversion to CNF

3. Remove Unit-production rules" ($S \rightarrow VP$) (We yet again make them explicit!)

This will usually produce more unit productions rules, so repeat until none left!

- Sketch of the algorithm for the conversion of a CFG into CNF:
 - 1. If S appears on the RHS, introduce a new rule: $S_0 \rightarrow S$
 - 2. Eliminate ϵ rules
 - 3. Remove Unit-production rules as shown in the coming example
 - 4. Clean up (optional)
 - 5. Remove all rules with RHS > 2 as shown in the example

Example conversion to CNF

- 4. Clean up (optional)
- This step has the job, to remove all useless rules (e.g. $NP \rightarrow NP$)
- And the remove all symbols that can never be reached
 - Usually leftovers from ϵ elimination
- And remove symbols that can not produce any terminals ("non-productive non terminals"

- Sketch of the algorithm for the conversion of a CFG into CNF:
 - 1. If S appears on the RHS, introduce a new rule: $S_0 \rightarrow S$
 - 2. Eliminate ϵ rules
 - 3. Remove Unit-production rules as shown in the coming example
 - 4. Clean up (optional)
 - 5. Remove all rules with RHS > 2 as shown in the example

Example conversion to CNF

5. Eliminate all "RHS >2 production rules" (by introducing placeholder non-terminals)

	$S \rightarrow NP VP$
$S \rightarrow NP VP$	$VP \rightarrow V NP$
$VP \rightarrow V NP$	$VP \rightarrow V NP PP$
$VP \rightarrow V$ "and" PP	$VP \rightarrow VPP$
$VP \rightarrow VPP$	$S \rightarrow V NP$
$S \rightarrow V NP$	S → V NP PP
$S \rightarrow V NP PP$	$S \rightarrow V PP$
$S \rightarrow V PP$	\rightarrow S \rightarrow X0 PP
	$X0 \rightarrow V NP$

Example conversion to CNF

5. Eliminate all "RHS >2 production rules" (by introducing placeholder non-terminals)

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V$ "and" PP

 $VP \rightarrow VPP$

 $S \rightarrow V NP$

 $S \rightarrow V NP PP$

 $S \rightarrow V PP$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V NP$

 $S \rightarrow V PP$

 $S \rightarrow XO PP$

 $XO \rightarrow V NP$

 $VP \rightarrow V X1 PP$

 $X1 \rightarrow$ "and"

- Sketch of the algorithm for the conversion of a CFG into CNF:
 - 1. If S appears on the RHS, introduce a new rule: $S_0 \rightarrow S$
 - 2. Eliminate ϵ rules
 - 3. Remove Unit-production rules as shown in the coming example
 - 4. Cleanup (optional)
 - 5. Remove all rules with RHS > 2 as shown in the example

CKY Parsing

A worked example

CKY-Parsing

- We are given sentence, which is already separated into tokens
- And a grammar in Chomsky normal form
- The CKY algorithm produces the parse-tree with highest score in runtime O(n³) and O(n²) used memory
- We reduce the exponential nature of the search by storing the right things (dynamic programming)

CKY-Parsing-Intuition

CKY-Parsing-Intuition

CKY-Parsing-Intuition

$S \rightarrow NP VP 0.8$	0	1		2 3	4
$S \rightarrow NP \ VP \ 0.8$ $VP \rightarrow V \ NP \ 0.5$ $S \rightarrow V \ NP \ 0.2$ $NP \rightarrow NP \ NP \ 0.3$ $V \rightarrow fish \ 1$ $VP \rightarrow people \ 0.1$ $VP \rightarrow fish \ 0.4$ $NP \rightarrow people \ 0.3$ $NP \rightarrow fish \ 0.3$ $NP \rightarrow tanks \ 0.3$	0 fish	score[0][1]	score[0][2]	score[0][3]	score[0][4]
	1 ¹	people	score[1][2]	score[1][3]	score[1][4]
			fish	score[2][3]	score[2][4]
	3			tanks	score[3][4]

C NDVDOO		1		2 3	4
$S \rightarrow NP \ VP \ 0.8$ $VP \rightarrow V \ NP \ 0.5$ $S \rightarrow V \ NP \ 0.2$ $NP \rightarrow NP \ NP \ 0.3$ $V \rightarrow fish \ 1$ $VP \rightarrow people \ 0.1$ $VP \rightarrow fish \ 0.4$ $NP \rightarrow people \ 0.3$ $NP \rightarrow fish \ 0.3$ $NP \rightarrow tanks \ 0.3$	0 fish 1	V: 1 NP: 0.3 VP:0.4	score[0][2]	score[0][3]	score[0][4]
		people	score[1][2]	score[1][3]	score[1][4]
			fish	score[2][3]	score[2][4]
	3			tanks	score[3][4]

S \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	1		2 3	4
$S \rightarrow NP \ VP \ 0.8$ $VP \rightarrow V \ NP \ 0.5$ $S \rightarrow V \ NP \ 0.2$ $NP \rightarrow NP \ NP \ 0.3$ $V \rightarrow fish \ 1$ $VP \rightarrow people \ 0.1$ $VP \rightarrow fish \ 0.4$ $NP \rightarrow people \ 0.3$ $NP \rightarrow fish \ 0.3$ $NP \rightarrow tanks \ 0.3$	0 fish	V: 1 NP: 0.3 VP:0.4	score[0][2]	score[0][3]	score[0][4]
	2	people	VP: 0.1 NP:0.3	score[1][3]	score[1][4]
			fish	score[2][3]	score[2][4]
	3			tanks	score[3][4]

C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1		2 3	4
$S \rightarrow NP \ VP \ 0.8$ $VP \rightarrow V \ NP \ 0.5$ $S \rightarrow V \ NP \ 0.2$ $NP \rightarrow NP \ NP \ 0.3$ $V \rightarrow fish \ 1$ $VP \rightarrow people \ 0.1$ $VP \rightarrow fish \ 0.4$ $NP \rightarrow people \ 0.3$ $NP \rightarrow fish \ 0.3$ $NP \rightarrow tanks \ 0.3$	0 fish 1	V: 1 NP: 0.3 VP:0.4	score[0][2]	score[0][3]	score[0][4]
	2	people	VP: 0.1 NP:0.3	score[1][3]	score[1][4]
	3		fish	V: 1 NP: 0.3 VP:0.4	score[2][4]
	3 4			tanks	score[3][4]

C \ ND VD O 9		1		2 3	4
$S \rightarrow NP \ VP \ 0.8$ $VP \rightarrow V \ NP \ 0.5$ $S \rightarrow V \ NP \ 0.2$ $NP \rightarrow NP \ NP \ 0.3$ $V \rightarrow fish \ 1$ $VP \rightarrow people \ 0.1$ $VP \rightarrow fish \ 0.4$ $NP \rightarrow people \ 0.3$ $NP \rightarrow fish \ 0.3$ $NP \rightarrow tanks \ 0.3$	0 fish	V: 1 NP: 0.3 VP:0.4	score[0][2]	score[0][3]	score[0][4]
	2	people	VP: 0.1 NP:0.3	score[1][3]	score[1][4]
			fish	V: 1 NP: 0.3 VP:0.4	score[2][4]
	3			tanks	NP: 0.3

CKY-Parsing Result

Consider the cell which contains the entire sentence:

NP:0.00243*0.3*0.3 S:0.00324 NP:0.027*0.027*0.3 VP:1*0.00243*0.5 S:0.000486 NP:0.3*0.00243*0.3

- If there is an S, the sentence is valid according to our grammar
- Parse is built by "following backpointers"
- Probability (or score) of the best tree: 0.00324

CKY-Parsing

```
function PROBABILISTIC-CKY(words,grammar) returns most probable parse and its probability
```

```
for j \leftarrow from 1 to LENGTH(words) do

for all \{A \mid A \rightarrow words[j] \in grammar\}

table[j-1,j,A] \leftarrow P(A \rightarrow words[j])

for i \leftarrow from j-2 downto 0 do

for k \leftarrow i+1 to j-1 do

for all \{A \mid A \rightarrow BC \in grammar,

and table[i,k,B] > 0 and table[k,j,C] > 0 }

if (table[i,k,B] < P(A \rightarrow BC) \times table[i,k,B] \times table[k,k,C]) then

table[i,k,A] \leftarrow P(A \rightarrow BC) \times table[i,k,B] \times table[k,k,C]

back[i,k,A] \leftarrow \{k,B,C\}

return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]
```


Evaluation

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$Recall = \frac{TP}{TP + FN}$$

•
$$F1 = \frac{2Prec \cdot Rec}{Prec + Rec}$$

Is addressed in more detail in the chapter "Evaluation"