Generalized Radon transforms and mathematical economics

Alexey Agaltsov agaltsov@cmap.polytechnique.fr

last update: May 12, 2017

The generalized Houthakker–Johansen model

- The first microfounded model of production goes back to (Houthakker, 1955), (Johansen, 1972)
- It was fruitfully applied to study of macroeconomic processes (Petrov, Pospelov, Shananin); e.g. impact of technological innovation on production (Johansen, 1972)
- Globalization led to qualitative changes in production processes (increase in substitutability of factors), which are out of scope of the classical model
- A natural generalization was proposed in (Sato, 1975), (Shananin, 1997), which allows to overcome this problem

The generalized Houthakker-Johansen model

- ullet Technologies are parametrized by vectors $x \in \mathbb{R}^n_{\geq 0}$
- Each technology x has a capacity $f(x) \ge 0$ (number of production units using this technology)
- Technologies are described by the unit cost of production $q_p(x) = q(p_1x_1, \dots, p_nx_n)$ (here p are the prices of resources)
- The maximal possible profit for the industry is given by the profit function $(\Pi_q f)(p_0, p)$ $(p_0$ the price of the final product):

$$(\Pi_q f)(p_0, p) = \int_{\mathbb{R}^n_{\geq 0}} \max\{0, p_0 - q_p(x)\} f(x) dx$$

Production technologies

- Neoclassical *n*-input, 1-output technologies Q(n): smooth, 1-homogeneous $q: \mathbb{R}^n_{>0} \to \mathbb{R}_{>0}$ with bounded level sets
- Action of $\mathbb{R}^n_{>0}$ on $\mathcal{Q}(n)$, $(p,q)\mapsto q_p$:

$$q_p(x_1,\ldots,x_n)=q(p_1x_1,\ldots,p_nx_n)$$

• Partial composition $\circ_i : \mathcal{Q}(m) \times \mathcal{Q}(n) \to \mathcal{Q}(m+n-1)$:

$$(f \circ_i g)(x_1, \ldots, x_{m+n-1})$$

= $f(x_1, \ldots, x_{i-1}, g(x_i, \ldots, x_{i+m-1}), x_{i+m}, \ldots)$

Main operators

Let $q \in \mathcal{Q}(n)$, $h: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$.

• The generalized Radon transform:

$$(R_q f)(p) = \int_{q_p^{-1}(1)} f(x) \frac{dS_x}{|\nabla q_p(x)|}$$

Radon-type integral operators:

$$(R_q^h f)(p) = \int_{\mathbb{R}_{\geq 0}^n} h(q_p(x)) f(x) dx$$

The profit function:

$$(\Pi_q f)(p_0, p) = \int_{\mathbb{R}^n_{\geq 0}} \max\{0, p_0 - q_p(x)\} f(x) dx$$

Main questions

Characterization. Determine the scope of the model. When a given profit function Π of an industry can be constructed using our framework, i.e. $\Pi = \Pi_q f$ for some q, f?

Uniqueness. If $\Pi = \Pi_q f$, when such a representation is unique?

Inversion. If $\Pi = \Pi_q f$ for unique q and f, how to find q and f?

Identification. Given trade statistics, how to identify compatible q and f?

Main spaces

• Weighted spaces $L^r_c(\mathbb{R}^n_{\geq 0})$ with finite norms

$$||f||_{r,c} = \left(\int_{\mathbb{R}^n_{\geq 0}} |f(x)|^r x^{rc-1} dx\right)^{1/r}, \quad 1 \leq r < \infty,$$

$$||f||_{\infty,c} = \inf\{K \geq 0 \colon |f(x)x^c| \leq K \text{ for a.e. } x \in \mathbb{R}^n_{\geq 0}\},$$

where $c \in \mathbb{R}^n_{>0}$, $I = (1, \dots, 1)$

- R_q , R_q^h , Π_q are continious from $L_{l-c}^r(\mathbb{R}^n_{\geq 0})$ to $L_c^r(\mathbb{R}^n_{\geq 0})$
- The Mellin transform

$$(Mf)(z) = \int_{\mathbb{R}^n_{>0}} x^{z-I} f(x) dx, \quad z \in \mathbb{C}^n$$

is isometric from $L^2_c(\mathbb{R}^n_{>0})$ to $L^2(\Re z=c)$

Injectivity

Question U. If $\Pi = \Pi_q f$, when such a representation is unique?

Let S, $H \subseteq \mathbb{C}^n$. We say that

- o *S* is 1-meagre in *H* iff $S \cap H$ is nowhere dense in *H*;
- o S is 2-meagre in H iff $S \cap H$ has measure zero in H;
- o *S* is ∞-meagre in *H* iff $S \cap H = \emptyset$.

Theorem (A, Inverse Problems 2016)

Let $q \in \mathcal{Q}(n)$, $c \in \mathbb{R}^n_{>0}$, $r \in \{1, 2, \infty\}$. The following statements are equivalent:

- Π_q is injective in $L^r_{l-c}(\mathbb{R}^n_{\geq 0})$.
- R_q is injective in $L^r_{l-c}(\mathbb{R}^n_{\geq 0})$.
- The nullset of Me^{-q} is r-meagre in the plane $\Re z = c$.

Injectivity: idea

- Recall that $(R_q f)(p) = \int_{q_p(x)=1} f(x) \frac{dS_x}{|\nabla q_p(x)|}$
- If $f(x) = f_1(q_{p_1}(x)) + \cdots + f_N(q_{p_N}(x))$, then Π_q is injective:

$$\int_{\mathbb{R}^n_{\geq 0}} |f(x)|^2 dx = \sum_{k=1}^N \int_0^\infty \overline{f_k(t)} t^{-1} (R_q f) \left(\frac{p_k}{t}\right) dt.$$

• Generalizes to infinite sums. When functions of the form $\varphi(q_p(x))$ with varying φ and p span $L^1_{I-c}(\mathbb{R}^n_{\geq 0})$, $L^2_{I-c}(\mathbb{R}^n_{\geq 0})$?

Injectivity: idea

Question. When functions of the form $\varphi(q_p(\cdot))$ with varying φ , p span $L^1_{I-c}(\mathbb{R}^n_{\geq 0})$, $L^2_{I-c}(\mathbb{R}^n_{\geq 0})$?

- \Downarrow Wiener Tauberian theorems: translates $\phi(\cdot a)$ of $\phi \in L^1(\mathbb{R}^n)$ span $L^1(\mathbb{R}^n)$ iff $\mathcal{F}\varphi(\xi) \neq 0 \ \forall \xi$. Similar in $L^2(\mathbb{R}^n)$.
- \Downarrow Define $E_c : \mathbb{C}^{\mathbb{R}^n_{\geq 0}} \to \mathbb{C}^{\mathbb{R}^n}$ by $(E_c f)(y) = e^{cy} f(e^y)$. Then:

 E_c is an isometry from $L_c^r(\mathbb{R}^n_{\geq 0})$ to $L^r(\mathbb{R}^n)$,

 E_c maps the Mellin transform to the Fourier transform E_c maps the action $(p,q) \rightarrow q_p$ to the additive translation

Conclusion. Functions of the form $\varphi(q_p(\cdot))$ with varying φ , p span $L^1_{I-c}(\mathbb{R}^n_{\geq 0})$ iff $Me^{-q}(z) \neq 0$ for $\Re z = c$. Similar in $L^2_{I-c}(\mathbb{R}^n_{\geq 0})$.

Injectivity: example

A CES function is a function of the form

$$q(x) = C(a_1x_1^{\alpha} + \cdots + a_nx_n^{\alpha})^{\frac{1}{\alpha}},$$

where C > 0, $a_j \ge 0$, $a_1 + \cdots + a_n = 1$ (and here $\alpha \in (0,1]$) (Arrow, Solow et al, 1961)

 A nested CES function is obtained from CES functions using finite compositions (Sato, 1967). It allows to take into account such effects as capital-skill complementarity (Griliches, 1969)

Theorem (A, http://arxiv.org/abs/1508.02014)

If q is a nested CES, then Π_q injective in L^r_{l-c} , $r \in \{1,2,\infty\}$.

Injectivity: example: idea

Question. How the injectivity behaves with respect to composition \circ_i of technologies? Define $\widehat{f}(z) = Me^{-f}(z)/\Gamma(\Sigma(z))$.

- $\Downarrow \Pi_f$ is injective in $L^2_{I-c}(\mathbb{R}^n_{\geq 0})$ iff $\widehat{f}(z) \neq 0$ for $\Re z = c$ a.e.
- \Downarrow One can show that $\widehat{f\circ_i g}(z\circ_i w)=\widehat{f}(z\circ_i \Sigma(w))\widehat{g}(w)$
- \Downarrow One can show that $\widehat{q}(z)=rac{a^{-z/lpha}\Gamma(\Sigma(z))B(z/lpha)}{lpha^{n-1}C^{\Sigma(z)}}$ for CES q

Conclusion. Injectivity propagates.

Main questions

Question E. Determine the scope of the model. When a given profit function Π of an industry can be constructed using our framework, i.e. $\Pi = \Pi_q f$ for some q, f?

Question U. If $\Pi = \Pi_q f$, when such a representation is unique?

 \Rightarrow f is uniquely determined by q iff Me^{-q} has no zeros [A, http://arxiv.org/abs/1508.02014]

Question I. If $\Pi = \Pi_q f$ for unique q and f, how to find q and f?

Characterisation

Question. How to decide whether Π is in image of Π_q ?

 \Downarrow We know that $\Pi_q=R_q^{h''}$, $h''(t)=\max\{0,1-t\}$.

Question'. How to decide whether F is in image of $R_q^{h''}$?

 \Downarrow We know the answer for the Laplace transform $R_{q'}^{h'}$, where $h'(t)=e^{-t}$, $q'(x)=x_1+\cdots+x_n$

Theorem (S. Bernstein, V. Hilbert, S. Bochner)

Let $F \in \mathbb{R}^{\mathbb{R}^n_{\geq 0}}$. Then $F = R^{h'}_{q'}\mu$ for some finite Borel $\mu \geq 0$ iff F is completely monotone, i.e. F is smooth with non-negative even derivatives and non-positive odd derivatives.

Question". How to relate the image of $R_q^{h'}$ to the image of $R_{q'}^{h'}$?

Characterization

Question". How to relate the image of $R_q^{h'}$ to the image of $R_{q'}^{h'}$?

A remarkable property

$$M(R_q^{h''}F) = \Gamma^{-1} \cdot MF \cdot Me^{-q} \cdot Mh'',$$

 $M(R_{q'}^{h'}F) = \Gamma^{-1} \cdot MF \cdot Me^{-q'} \cdot Mh'$

It implies

$$R_{q'}^{h'}F = M^{-1} \frac{Me^{-q'} \cdot Mh'}{Me^{-q} \cdot Mh''} M(R_q^h F)$$

Explicit formulas:

$$Me^{-q'}(z) = \Gamma(z_1)\cdots\Gamma(z_n),$$

 $Mh'(s) = \Gamma(s),$
 $Mh''(s) = \frac{1}{s(s+1)}.$

Characterization

Set
$$T_q = M^{-1}\rho_q M$$
, where $\rho_q(z) = \frac{\Gamma(z_1 + \dots + z_n + 2)\Gamma(z_1) \dots \Gamma(z_n)}{Me^{-q}(z)}$.
Denote $\mathcal{Q}_c^{\text{reg}}(n) = \{ q \in \mathcal{Q}(n) \colon \rho_q \in L^2 \cup L^\infty(\Re z = c) \}$

Theorem (A, Func. Ann. App. 2015)

Let $q \in \mathcal{Q}^{reg}_c(n)$, $c \in \mathbb{R}^n_{>0}$. Then $\Pi \in \mathbb{R}^{\mathbb{R}^n_{\geq 0}}$ is of the form $\Pi = \Pi_q \mu$ with Borel $\mu \geq 0$ such that $\int x^{-c} d\mu < \infty$ iff

 $\Pi \in L^2_c(\mathbb{R}^n_{\geq 0}), \ T_q\Pi \in L^1_c(\mathbb{R}^n_{\geq 0}), \ T_q\Pi$ is completely monotone

Main questions

Question E. Determine the scope of the model. When a given profit function Π of an industry can be constructed using our framework, i.e. $\Pi = \Pi_q f$ for some q, f?

 $\Rightarrow \Pi = \Pi_q f$ for some f iff $T_q \Pi$ is completely monotone, where T_q is a Mellin multiplier given by an explicit formula [A, Funk. Anal. Appl. 2015]

Question U. If $\Pi = \Pi_q f$, when such a representation is unique?

 \Rightarrow f is uniquely determined by q iff Me^{-q} has no zeros [A, http://arxiv.org/abs/1508.02014]

Question I. If $\Pi = \Pi_q f$ for some q and f, how to find q and f?

Inversion

Question. If $\Pi = \Pi_q f$ and q is known, how to find f?

• A remarkable property:

$$M(\Pi_q f) = \Gamma^{-1} \cdot Me^{-q} \cdot Mf$$

• N-smooth functions $C_c^{N,\sigma}(\mathbb{R}^n_{>0})$, N, $\sigma>n$, with finite norm

$$\|f\|_{C_c^{N,\sigma}} = \sup_{|\alpha| \le N, y \in \mathbb{R}^n} (1+|y|)^{\frac{\sigma}{n}} \left| \frac{\partial^{|\alpha|} u}{\partial y^{\alpha}} \right|, \quad u(y) = e^{cy} f(e^y)$$

Theorem (A, Proc. of MIPT 2014)

Let $q \in \mathcal{Q}(n)$, $Me^{-q}(z) \neq 0$ for $\Re z = c$ a.e., $f \in C^{N,\sigma}_{l-c}(\mathbb{R}^n_{>0})$, $\Pi = \Pi_q f$. Set $s = z_1 + \cdots + z_n$. Then $f = f_R + f_R^{er}$, where

$$f_{R}(x) = (2\pi)^{-n} \int_{c+iB_{R}} \frac{x^{z-I}\Gamma(s+2)}{(Me^{-q})(z)} \cdot (M\Pi)(z) dz,$$
$$\|f_{R}^{err}\|_{C_{I-c}^{N,\sigma}} \leq C(n,N,\sigma) \|f\|_{C_{I-c}^{N,\sigma}} R^{n-N}.$$

Main questions

Question E. Determine the scope of the model. When a given profit function Π of an industry can be constructed using our framework, i.e. $\Pi = \Pi_q f$ for some q, f?

 \Rightarrow $\Pi = \Pi_q f$ for some f iff $T_q \Pi$ is completely monotone, where T_q is a Mellin multiplier given by an explicit formula [A, Funk. Anal. Appl. 2015]

Question U. If $\Pi = \Pi_q f$, when such a representation is unique?

 \Rightarrow f is uniquely determined by q iff Me^{-q} has no zeros [A, http://arxiv.org/abs/1508.02014]

Question I. If $\Pi = \Pi_q f$ for some q and f, how to find q and f?

⇒ explicit inversion formula [A, Proceedings of MIPT 2014]

Further comments

The class $Q_{CES}(n)$ of CES technologies

$$q(x) = C(a_1x_1^{\alpha} + \cdots + a_nx_n^{\alpha})^{\frac{1}{\alpha}},$$

where C > 0, $a_j \ge 0$, $a_1 + \cdots + a_n = 1$ (and $\alpha \in (0, 1]$).

- \Rightarrow If $\Pi_{q_1}f_1=\Pi_{q_2}f_2$, $q_1\neq q_2$ are $\mathcal{Q}_{CES}(n)$, and f_1 , $f_2\geq 0$ decay fast, then $f_1=f_2=0$. Otherwise, there are counter-examples [A, Proceedings of MIPT 2014]
- ⇒ There is a more simple characterization [A, Proceedings of MIPT 2013]

References

[1] A. Agaltsov

Characterization and inversion theorems for a generalized Radon transform Proceedings of MIPT 5 (4), 2013, 48–61

[2] A. Agaltsov

Inversion and uniqueness theorems for Radon-type integral operators Proceedings of MIPT 6 (2), 2014, 3–14

[3] A. Agaltsov

A characterization theorem for a generalized Radon transform arising in a model of mathematical economics

Funk. Anal. Appl. 49 (3), 2015, 201–204

[4] A. Agaltsov

On the injectivity of a generalized Radon transform arising in a model of mathematical economics

Inverse Problems 32 (11), 2016, 115022-1-17

[5] A. Agaltsov, E. Molchanov, A. Shananin Inverse problems in models of resource distribution Journal of Geometric Analysis, 2017, doi:10.1007/s12220-017-9840-1

