Genetic Algorithm for Decision Making

Problem statement : Deciding combination of crops to be planted such that profit is maximum and risk is minimum.

Programming language - Python3

Algorithm - *Genetic Algorithm*

Library used - Distributed Evolutionary Algorithms in Python (DEAP)

Data Set - Gudur Rythu Bazar 2017

Objective Function:

Where, P - Profit

R - Risk

w1 - Weightage of profit

w2 - Weightage of risk

Profit (P): Profit earned on specific crop on a specific month in 1acre.

Risk (R): There are several types of risks in mixed cropping, Few of which considered for this problem are Root System, Water Requirement, Market Volatility.

$$R = (r1 \times R_{rs} + r2 \times R_{wr} + r3 \times R_{mv})/(r1 + r2 + r3)$$

Where, Rrs - Risk due to root system

Rwr - Risk due to water requirement

R_{mv} - Risk due to market volatility

r1, r2, r3 - Weights

Risk due to root system (Rrs):

- No crop with similar root system should be planted side by side. Root system types, Shallow, Medium, Deep.
- Crop with similar root system as the crop in the previous cycle at a location should not be planted.

Risk due to water requirement (R_{wr}):

- Cops which consume less water are better in places with water scarcity.
- In places with abundant water supply 'r2' is zero as it does not contribute to risk.

Risk due to market volatility (R_{mv}):

 This accounts risk due to market fluctuation which is calculated using standard deviation.

Std(12 months) x Sqrt(12)

 According to market standards, Standard deviation is multiplied by Square root of 12 if we calculate for a year with monthly interval.

On Violation of any of the conditions a specific constant value is added which increases the risk value, So this helps the Objective function to converge.

n - no.of crops available

m - no.of crops to be planted in each crop cycle

c - no.of crop cycles

Individual size: c x m

Custom Crossover and mutation functions are use to maintain the uniqueness of the individual which always outputs individual with unique gens in each cycles.

Test Solution:

n = 20

m = 5

c = 3

w1 = 0.5

w2 = 0.5

r1 = 0.7

 $r^2 = 0$

r3 = 0.3

N = 3000 (no.of individuals in each generations)

Ngen = 30 (no.of generations)

CXPB = 0.7 (probability with which two individuals are crossed)

MUTPB = 0.4 (probability for mutating an individual)

INDPB = 0.2 (probability for mutating each gene of an individual)

Output for 3x5 individual:

• Fitness value over generations, Optimised at 7th generation.

Terminal Output

Profit	: 4300000.0					
Risk	: -20.627219157906033					
Combined_val	: 204.68639042104698					
Risk_root	: [0, 0]					
Risk_water	: [150, 190]					
Volatility	: [40.6173882518157, 28.140008941204417]					
Risk_list	: [0, 170.0, 68.75739719302011]					
[[3, 20, 7, 5, 1], [2, 6, 5, 1, 3]]						
204.68639042104698						
+	+	+	++		·+	+
Cycles	Crop	Planting Month	Harvest Month	Root Sys	Water Req	Profit
1	Bitter Gourd	July	November	Medium	M	320000
1	Tomato	July	September	Deep	M i	256000
1	Carrot	July	October	Medium	M j	426000
1	Brinjal	July	October	Deep	M	835000
1	Beet Root	July	October	Shallow	M	520000
2	Bhendi	December	February	Deep	н	275000
2	Cabbage	October	December	Shallow	Н	459000
2	Brinjal	November	February	Deep	M	635000
2	Beet Root	November	February	Shallow	M	380000
2	Bitter Gourd	November	March	Medium	M	194000
Total :	- <u> </u>	- <u> </u>	<u> </u>	-	<u> </u>	4300000
+	+	+	++		 	+

3

Visual Representation:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Months

Still to Improvements:

- Make it scalable for bigger individuals and bigger datasets.
- Improve crossover and mutation function to preserve uniqueness of the individuals
- · Parellel operations.