The Foundations: Logic and Proofs

Chapter 1, Part II: Predicate Logic

Summary

- Predicate Logic (First-Order Logic (FOL),
 Predicate Calculus)
 - The Language of Quantifiers
 - Logical Equivalences
 - Nested Quantifiers
 - Translation from Predicate Logic to English
 - Translation from English to Predicate Logic

Predicates and Quantifiers

Section 1.4

Section Summary

- Predicates
- Variables
- Quantifiers
 - Universal Quantifier
 - Existential Quantifier
- Negating Quantifiers
 - De Morgan's Laws for Quantifiers
- Translating English to Logic
- Logic Programming

Propositional Logic Not Enough

• If we have:

"All men are mortal."

"Socrates is a man."

- Does it follow that "Socrates is mortal?"
- Can't be represented in propositional logic. Need a language that talks about objects, their properties, and their relations.

Later we'll see how to draw inferences.

Introducing Predicate Logic

- Predicate logic uses the following new features:
 - Variables: x, y, z
 - Predicates: P, M
 - Quantifiers (to be covered in a few slides)
- Propositional functions are a generalization of propositions.
 - They contain variables and a predicate, e.g., P(x)
 - Variables can be replaced by elements from their *domain*.

Propositional Functions

- Propositional functions become propositions (and have truth values) when their variables are each replaced by a value from the domain or bound by a quantifier (as we will see later).
- The statement P(x) is said to be the value of the propositional function P at x.
- For example, let P(x) denote "x > 0" and the domain be the integers. Then:
 - P(-3) is false.
 - P(0) is false.
 - P(3) is true.
- Often the domain is denoted by *U*. So in this example *U* is the integers.

Examples of Propositional Functions

• Let "x + y = z" be denoted by R(x, y, z) and U (for all three variables) be the integers. Find these truth values:

```
R(2,-1,5)
Solution: F
R(3,4,7)
Solution: T
R(x, 3, z)
Solution: Not a Proposition
```

- In general, a statement involving the n variables $x_1, x_2, ..., x_n$ can be denoted by $P(x_1, x_2, ..., x_n)$
- A statement of the form $P(x_1,x_2,...,x_n)$ is the value of the propositional function P at the n-tuple $(x_1,x_2,...,x_n)$ and P is called a n-ary predicate.

Compound Expressions

- Connectives from propositional logic carry over to predicate logic.
- If P(x) denotes "x > 0," find these truth values:

```
P(3) \vee P(-1) Solution: T
```

$$P(3) \wedge P(-1)$$
 Solution: F

$$P(3) \rightarrow P(-1)$$
 Solution: F

$$P(-1) \rightarrow P(3)$$
 Solution: T

• Expressions with variables are not propositions and therefore do not have truth values. For example,

$$P(3) \wedge P(y)$$

$$P(x) \rightarrow P(y)$$

 When used with quantifiers (to be introduced next), these expressions (propositional functions) become propositions.

Quantifiers

- We need *quantifiers* to express the meaning of English words including *all* and *some*:
 - "All men are Mortal."
 - "Some cats do not have fur."
- The two most important quantifiers are:

```
Universal Quantifier, "For all," symbol: ∀
Existential Quantifier, "There exists," symbol: ∃
```

- We write as in $\forall x P(x)$ (the universal quantification of P(x)) and $\exists x P(x)$.
 - $\forall x P(x)$ asserts P(x) is true for <u>every</u> x in the <u>domain</u>. $\exists x P(x)$ asserts P(x) is true for <u>some</u> x in the <u>domain</u>.
- The quantifiers are said to bind the variable *x* in these expressions.

Universal Quantifier

• $\forall x P(x)$ is read as 'For all x, P(x)' or 'For every x, P(x)''

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
- If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is true.
- If P(x) denotes "x is even" and U is the integers, then $\forall x$ P(x) is false.

Remark:

The universal quantification of P(x) create a proposition from a propositional function.

Existential Quantifier

• $\exists x P(x)$ is read as 'For some x, P(x)'', or as "There is an x such that P(x)," or "For at least one x, P(x)."

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\exists x \ P(x)$ is true. It is also true if U is the positive integers.
- If P(x) denotes "x < 0" and U is the positive integers, then $\exists x P(x)$ is false.
- If P(x) denotes "x is even" and U is the integers, then $\exists x$ P(x) is true.

Thinking about Quantifiers

- When the domain of discourse is finite, we can think of quantification as looping through the elements of the domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - ➤ If at every step P(x) is true, then $\forall x P(x)$ is true.
 - ➤ If at a step P(x) is false, then $\forall x P(x)$ is false and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - ➤ If at some step, P(x) is true, then $\exists x P(x)$ is true and the loop terminates.
 - ➤ If the loop ends without finding an x for which P(x) is true, then $\exists x P(x)$ is false.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

Properties of Quantifiers

• The truth value of $\exists x P(x)$ and $\forall x P(x)$ depend on both the propositional function P(x) and on the domain U.

Statement	When true?	When false?
∀ <i>x P</i> (<i>x</i>)	P(x) is true for every x.	There is an x for which P(x) is false.
∃ <i>x P</i> (<i>x</i>)	There is an x for which P(x) is true.	P(x) is false for every x.

Thinking about Quantifiers as Conjunctions and Disjunctions

- If the domain is finite, a universally quantified proposition is equivalent to a conjunction of propositions without quantifiers and an existentially quantified proposition is equivalent to a disjunction of propositions without quantifiers.
- If *U* consists of the integers 1,2, and 3:

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

• Even if the domains are infinite, you can still think of the quantifiers in this fashion, but the equivalent expressions without quantifiers will be infinitely long.

Uniqueness Quantifier

- $\exists ! x P(x)$ means that P(x) is true for one and only one x in the universe of discourse.
- This is commonly expressed in English in the following equivalent ways:
 - "There is a unique X such that P(X)."
 - "There is one and only one X such that P(X)"
- Examples:
 - If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists ! x P(x)$ is true.
 - But if P(x) denotes "x > 0," then $\exists ! x P(x)$ is false.
- The uniqueness quantifier is not really needed as the restriction that there is a unique x such that P(x) can be expressed as:

$$\exists x (P(x) \land \forall y (P(y) \rightarrow y = x))$$

Precedence of Quantifiers

 The quantifiers ∀ and ∃ have higher precedence than all the logical operators.

For example,

- $\triangleright \forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$
- $\triangleright \forall x (P(x) \lor Q(x))$ means something different.
- ▶ Unfortunately, often people write $\forall x P(x) \lor Q(x)$ when they mean $\forall x (P(x) \lor Q(x))$.

Translating from English to Logic

Example 1: Translate the following sentence into predicate logic: "Every student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If U is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as $\forall x J(x)$.

Solution 2: But if U is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as $\forall x (S(x) \rightarrow J(x))$.

 $\forall x (S(x) \land J(x))$ is not correct. What does it mean?

Translating from English to Logic

Example 2: Translate the following sentence into predicate logic: "Some student in this class has taken a course in Java."

Solution:

First decide on the domain *U*.

Solution 1: If *U* is all students in this class, translate as $\exists x J(x)$

Solution 1: But if *U* is all people, then translate as $\exists x (S(x) \land J(x))$ $\exists x (S(x) \rightarrow J(x))$ is not correct. What does it mean?

Returning to the Socrates Example

- Introduce the propositional functions Man(x) denoting "x is a man" and Mortal(x) denoting "x is mortal."
- The two premises are:

$$\forall x Man(x) \rightarrow Mortal(x)$$

• The conclusion is:

Mortal(Socrates)

Later we will show how to prove that the conclusion follows from the premises.

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value no matter
 - which predicates are substituted into these statements and
 - which domain of discourse is used for the variables in these propositional functions
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x \neg \neg S(x) \equiv \forall x S(x)$

Negating Quantified Expressions

- Consider $\forall x J(x)$
 - "Every student in your class has taken a course in Java."
 - Here J(x) is "x has taken a course in calculus" and the domain is students in your class.
- Negating the original statement gives "It is not the case that every student in your class has taken Java." This implies that "There is a student in your class who has not taken calculus."

Symbolically $\neg \forall x J(x)$ and $\exists x \neg J(x)$ are equivalent

Negating Quantified Expressions (cont)

- Now Consider ∃x J(x)
 "There is a student in this class who has taken a course in Java."
 Where J(x) is "x has taken a course in Java."
- Negating the original statement gives "It is not the case that there is a student in this class who has taken Java." This implies that "Every student in this class has not taken Java"

Symbolically $\neg \exists x J(x)$ and $\forall x \neg J(x)$ are equivalent

De Morgan's Laws for Quantifiers

The rules for negating quantifiers are:

TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.	
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .	

The reasoning in the table shows that:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

These are important. You will use these.

More Logical Equivalences

$$\forall x (A(x) \land B(x)) \equiv \forall x A(x) \land \forall x B(x)$$

$$\exists x (A(x) \lor B(x)) \equiv \exists x A(x) \lor \exists x B(x)$$

Note:

$$\forall x (A(x) \lor B(x)) \qquad \Leftrightarrow \qquad \forall x A(x) \lor \forall x B(x)$$
$$\exists x (A(x) \land B(x)) \qquad \Leftrightarrow \qquad \exists x A(x) \land \exists x B(x)$$

$$\exists x (A(x) \land B(x)) \Rightarrow \exists x A(x) \land \exists x B(x)$$
$$\forall x A(x) \lor \forall x B(x) \Rightarrow \forall x (A(x) \lor B(x))$$

More Logical Equivalences

x is not occurring in P.

$$(1) \qquad \forall x A(x) \lor P \qquad \equiv \qquad \forall x (A(x) \lor P)$$

(2)
$$\forall x A(x) \land P \equiv \forall x (A(x) \land P)$$

$$(3) \qquad \exists x A(x) \lor P \qquad \equiv \qquad \exists x (A(x) \lor P)$$

$$(4) \exists x A(x) \land P \equiv \exists x (A(x) \land P)$$

More Logical Equivalences

x is not occurring in P and B.

$$(1) \qquad \forall x A(x) \lor P \qquad \equiv \qquad \forall x (A(x) \lor P)$$

(2)
$$\forall x A(x) \land P \equiv \forall x (A(x) \land P)$$

$$(3) \qquad \exists x A(x) \lor P \qquad \equiv \qquad \exists x (A(x) \lor P)$$

$$(4) \exists x A(x) \land P \equiv \exists x (A(x) \land P)$$

$$(5) \qquad \forall x (B \to A(x)) \qquad \equiv \qquad B \to \forall x A(x)$$

Proof:

$$\forall x (B \rightarrow A(x)) \equiv \forall x (\neg B \lor A(x))$$

$$\equiv \neg B \lor \forall x A(x)$$

$$\equiv B \rightarrow \forall x A(x)$$

Translation from English to Logic

Examples:

(1) "Some student in this class has visited Mexico."

Solution:

Let M(x) denote "x has visited Mexico" and S(x) denote "x is a student in this class," and U be all people.

$$\exists x \ (S(x) \land M(x))$$

(2) "Every student in this class has visited Canada or Mexico."

Solution: Add C(x) denoting "x has visited Canada."

$$\forall x (S(x) \rightarrow (M(x) \lor C(x)))$$

Some Fun with Translating from English into Logical Expressions

• U = {lions, mammals(哺乳动物), carnivorous animals(肉食动物)}

L(x): x is a lion

M(x): x is a mammal

C(x): x is a carnivorous animal

Translate "Everything is a lion"

Solution: $\forall x L(x)$

• U = {lions, mammals(哺乳动物), carnivorous animals(肉食动物)}

L(x): x is a lion

M(x): x is a mammal

C(x): x is a carnivorous animal

"Nothing is a mammal."

Solution: $\neg \exists x M(x)$

What is this equivalent to?

Solution: $\forall x \neg M(x)$

• U = {lions, mammals(哺乳动物), carnivorous animals(肉食动物)}

L(x): x is a lion

M(x): x is a mammal

C(x): x is a carnivorous animal

"All lions are mammals."

Solution: $\forall x (L(x) \rightarrow M(x))$

U = {lions, mammals(哺乳动物), carnivorous animals(肉 食动物)}

L(x): x is a lion

M(x): x is a mammal

C(x): x is a carnivorous animal

"Some mammals are carnivorous animals."

Solution: $\exists x \ (M(x) \land C(x))$

• U = {lions, mammals(哺乳动物), carnivorous animals(肉食动物)}

L(x): x is a lion

M(x): x is a mammal

C(x): x is a carnivorous animal

"No mammal is a carnivorous animal."

Solution: $\neg \exists x \ (M(x) \land C(x))$

What is this equivalent to?

Solution: $\forall x (\neg M(x) \lor \neg C(x))$

$$\equiv \forall x \ (M(x) \rightarrow \neg C(x))$$

• U = {lions, mammals(哺乳动物), carnivorous animals(肉食动物)}

L(x): x is a lion

M(x): x is a mammal

C(x): x is a carnivorous animal

"If any lion is a mammal then it is also a carnivorous animal."

Solution: $\forall x ((L(x) \land M(x)) \rightarrow C(x))$

System Specification Example

- Predicate logic can be used for representing system specification also.
- For example, translate into predicate logic:
 - "Every mail message larger than one megabyte will be compressed."
 - "If a user is active, at least one network link will be available."
- Decide on predicates and domains (left implicit here) for the variables:
 - \triangleright Let L(m, y) be "Mail message m is larger than y megabytes."
 - \triangleright Let C(m) denote "Mail message m will be compressed."
 - \triangleright Let A(u) represent "User u is active."
 - \triangleright Let S(n, x) represent "Network link n is state x.
- Now we have:

$$\exists u \, A(u) \to \exists n \, S(n, available)$$

$$\forall u \ (A(u) \rightarrow \exists n \ S(n, available))$$
?

Lewis Carroll Example

Charles Lutwidge Dodgson (AKA Lewis Caroll) (1832-1898)

An argument

- 1. "All lions are fierce."
- 2. "Some lions do not drink coffee."
- "Some fierce creatures do not drink coffee."

The first two are called *premises* and the third is called the *conclusion*.

One way to translate these statements to predicate logic:

Let p(x), q(x), and r(x) be the propositional functions "x is a lion," "x is fierce," and "x drinks coffee," respectively. Domain of x: All creatures.

- 1. $\forall x (p(x) \rightarrow q(x))$
- 2. $\exists x (p(x) \land \neg r(x))$
- 3. $\exists x (q(x) \land \neg r(x))$

Later we will see how to prove that the conclusion follows from the premises.

Homework:

Seventh Edition:

P.53 16, 24, 34, 51, 62