

Misr University For Science & Technology

College: Information Technology

Project by

Fady Amr 94304

Abdelrahman Wael 94109

Ahmed Elsayed 94215

Eslam Mohammed 94222

Muhammad Usamah 94284

Course Name: Ai Programming Languages

Course Code: AI 301

Essay Title: Egyptian Car Plates Reader

Supervised by:

Dr:/ Mohammad Tawfik

Problem Definition

- Currently, we have a problem in our university, where for a car to enter the gates and traverse through the uni grounds, human intervention is required.
- We aim to solve this problem with the powers of Deep Learning and Neural Networks, thus automating the whole process.

Proposed Network architecture:

The network architecture. The architecture consists of three parts:

- 1) The convolutional layers, extract a feature sequence from the input image.
- 2) The recurrent layers, which predict a label distribution for each frame.
- 3) The transcription layer, which translates the per-frame predictions into the final label sequence.

1- The convolutional layers:

- The architecture of the convolutional layers is based on the VGG architecture.
- The convolutional layers automatically extract a feature sequence from each input image.

CNN output to RNN:

Each vector in the extracted feature sequence is associated with a receptive field on the input image and can be considered the feature vector of that field.

2- The Recurrent layers:

A deep bidirectional Recurrent Neural Network is built on the top of the convolutional layers.

We used bidirectional LSTM

Combining a forward (left to right) and a backward (right to left) LSTMs results in a bidirectional LSTM. Stacking multiple bidirectional LSTM results in a deep bidirectional LSTM.

3- The transcription layer:

- Transcription is the process of converting the per-frame predictions made by RNN into a label sequence.
- Mathematically, transcription is to find the label sequence with the highest probability conditioned on the per-frame predictions. In practice, there exist two modes of transcription, namely lexicon-free and lexicon-based transcriptions.
- A lexicon is a set of label sequences that prediction is constrained to, e.g., a spell-checking dictionary.
- In lexicon-free mode, predictions are made without any lexicon. In lexicon-based mode, predictions are made by choosing the label sequence that has the highest probability.
- · We used lexicon-free mode.

Model Summary

Layer (type)	Output Shape	Param #	Connected to
the_input (InputLayer)	[(None, 128, 64, 1)]		[]
VGG_Block1 (VggBlock1)	(None, 64, 32, 64)	896	['the_input[0][0]']
VGG_Block2 (VggBlock1)	(None, 32, 16, 128)	74368	['VGG_Block1[0][0]']
VGG_Block3 (VggBlock2)	(None, 32, 8, 256)	887296	['VGG_Block2[0][0]']
VGG_Block4 (VggBlock2)	(None, 32, 4, 512)	3544064	['VGG_Block3[0][0]']
VGG_Block5 (VggBlock1)	(None, 32, 4, 512)	2361856	['VGG_Block4[0][0]']
reshape (Reshape)	(None, 32, 2048)	0	['VGG_Block5[0][0]']
dense1 (Dense)	(None, 32, 64)	131136	['reshape[0][0]']
BI_LSTM_Block1 (BI_LSTM_Block)	(None, 32, 256)	658432	['dense1[0][0]']
BI_LSTM_Block2 (BI_LSTM_Block)	(None, 32, 256)	395264	['BI_LSTM_Block1[0][0]']
dropout (Dropout)	(None, 32, 256)	0	['BI_LSTM_Block2[0][0]']
dense2 (Dense)	(None, 32, 31)	7967	['dropout[0][0]']
softmax (Activation)	(None, 32, 31)	0	['dense2[0][0]']
the_labels (InputLayer)	[(None, 7)]	0	[]
input_length (InputLayer)	[(None, 1)]	0	0
label_length (InputLayer)	[(None, 1)]	0	n
ctc (Lambda)	(None, 1)	0	['softmax[0][0]', 'the_labels[0][0]', 'input_length[0][0]', 'label_length[0][0]']
Total params: 8,061,279 Trainable params: 8,055,775 Non-trainable params: 5,504			

Optimizer:

 For optimization, we use the ADADELTA to automatically calculate per-dimension learning rates. Compared with the conventional momentum method, ADADELTA requires no manual setting of a learning rate. More importantly, we find that optimization using ADADELTA converges faster than the momentum method.

Loss Function:

For the loss function, we used **Connectionist Temporal Classification (CTC).**

Why we used CTC?

- We only have to tell the CTC loss function of the text that
 occurs in the image. Therefore, we ignore both the position
 and width of the characters in the image.
- No further processing of the recognized text is needed.

DATASET:

- Training set = 9947 image
- Images dimensions = $(128, 64, 1) \rightarrow \text{greyscale}$

Augmentation Methods:

Rotation

Random Erasing

Random Distortion

MIX AND MATCH!!

Data Labeling:

We mapped Arabic letters and numbers to English ones

9 ٤ ٣ ٦ ص و ن ٢ ٣ ٤ Will be

If the number of characters in the plate number is less than 7, we use the letter X for padding.

9432NWX و ن ۲ ۳ و ن ۲ ۳

Training the model:

Training Parameters:

- Epochs = 50
- Batch size = 8
- Steps per epoch = dataset size/batch size (9947 / 8 = 1243)

System Pipeline:

Plate Detection:

We used transfer learning to fine-tune an object detection (YOLOv7) model.

Plate Reading:

Then, it's passed to our model so that it can read the plates.

Database:

Finally, the plate's numbers are sent to the database to check if it's in it or not.

GUI:

