Connected Stocks: Evidence from Tehran Stock Exchange

S.M. Aghajanzadeh M. Heidari M. Mohseni

Tehran Institute for Advanced Studies

May , 2021

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- Methodology
- 6 Results
- 6 Robustness Check
- Conclusion

Motivation

Research Question

- Can the common ownership cause stock return comovement ?
 - We connect stocks through the common ownership by blockholders (ownership > 1%)
 - We focus on excess return comovement for a pair of the stocks
 - We use common ownership to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals

Why does it matter?

- Covariance
 - Covariance is a key component of risk in many financial applications. (Portfolio selection, Risk management, Hedging and Asset pricing)
 - Covariance is a significant input in risk measurement models (Such as Value-at-Risk)
- Return predictability
 - If it's valid, we can build a profitable buy-sell strategy

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Commonownership measurements
- 3 Empirical Studies
- 4 Methodology
- 6 Results
- 6 Robustness Check
- Conclusion

Main Effect

 Common-ownership and comovement effect [Antón and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

Common-ownership and liquidity demand

[Koch et al (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

• Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity

Papers' Detail

Commonownership measurements

Model-based measures

- ullet HJL $_I^A(A,B)=\sum_{i\in I^{A,B}}rac{lpha_{i,B}}{lpha_{i,A}+lpha_{i,B}}$ [Harford et al.-JFE-2011]
 - Bi-directional
 - Pair-level measure of common ownership
 - Its potential impact on managerial incentives
 - Measure not necessarily increases when the relative ownership increases
 - Accounts only for an investor's relative holdings
- $\bullet \quad \mathsf{MHHI} = \textstyle \sum_{j} \sum_{k} s_{j} s_{k} \frac{\sum_{i} \mu_{ij} \nu_{ik}}{\sum_{i} \mu_{ij} \nu_{ij}} \text{ [Azar et al.-JF-2018]}$
 - Capture a specific type of externality
 - Measured at the industry level
 - Assumes that investors are fully informed about the externalities
- $\operatorname{GGL}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ [Erik et al.-JFE-2019]
 - Bi-directional
 - Less information
 - Not sensitive to the scope
 - Measure increases when the relative ownership of firm A increases

Commonownership measurements

Ad hoc common ownership measures

- $Overlap_{Count}(A, B) = \sum_{i \in I^{A,B}} 1$ [He and Huang -RFS(2017)] [He et al-JFE(2019)]
- $Overlap_{Min}(A,B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A},\alpha_{i,B}\}$ [Newham et al.(2018)]
- $Overlap_{AP}(A,B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ [Antón and Polk -JF(2014)]
- $Overlap_{HL}(A,B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ [Hansen and Lott -JGQA(1996)] [Freeman-(2019)]
- Unappealing properties
 - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
 - Both Overlap_{Count} and Overlap_{AP} are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
 - Measuring Common Ownership
 - Correlation Calculation
 - Controls
- Methodology
- 6 Results
- 6 Robustness Check

Antón and Polk -JF(2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

SQRT

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

Example

 α and β are the percent of common owner's ownership from firms' market cap. For better observation, assume that $\alpha+\beta=100$ and both firm have equal market cap.

Comparison of three methods for calculating common ownership

Example of three common owner

Example of three common owner

Ownership	Type I	Type II	Type III	Type IV	Type V	Type VI	Type VII
α_1	1/3	20	10	20	10	5	1
eta_1	1/3	10	10	20	10	5	1
α_2	1/3	10	80	20	10	5	1
β_2	1/3	20	80	20	10	5	1
α_3	1/3	70	10	20	10	5	1
eta_3	1/3	70	10	20	10	5	1
SQRT	3	2.56	2.33	1.8	0.9	0.45	0.09
SUM	1	1	1	0.6	0.3	0.15	0.03
Quadratic	3	1.85	1.52	8.33	33.33	133.33	3333.33

Comparison

- For better comparison we relax previous assumptions:
 - Two Firms with different market caps.

	$(\alpha_1,\beta_1),(\alpha_2,\beta_2)$									
	(10,40),(10,40)		(15,35)	(15,35)	(20,30),	(20,30)				
MarketCap _x MarketCap _y	SQRT	SUM	SQRT	SUM	SQRT	SUM				
1	0.90	0.50	0.96	0.50	0.99	0.50				
2	0.80	0.40	0.89	0.43	0.96	0.47				
3	0.75	0.35	0.85	0.40	0.94	0.45				
4	0.71	0.32	0.83	0.38	0.92	0.44				
5	0.69	0.30	0.81	0.37	0.91	0.43				
6	0.67	0.29	0.80	0.36	0.91	0.43				
7	0.65	0.28	0.79	0.35	0.90	0.43				
8	0.64	0.27	0.78	0.34	0.90	0.42				
9	0.63	0.26	0.77	0.34	0.89	0.42				
10	0.62	0.25	0.76	0.34	0.89	0.42				

Comparison

Comparison of two methods for calculating common ownership

Conclusion

We use the SQRT measure because it has an acceptable variation and has fair values at a lower level of aggregate common ownership.

Pair Composition and Business Group

Business Group

Pair Composition and Business Group

Pair in the Business Group

Pair Composition and Business Group

Pair not in any of Business Groups

Pair Composition

- Pairs consist of two firms with at least one common owner
 - 9336 unique pairs which is 16% of possible pairs ($\frac{342*341}{2} = 58311$)

	mean	min	median	max
Number of unique paris	4325	3222	4157	5101

Year	2015	2016	2017	2018	2019	2020	Mean
No. of Pairs	4689	5868	6554	7430	6371	4094	5834
No. of Groups	40	41	43	43	38	38	41
No. of Pairs not in Groups	231	275	318	969	924	544.00	544
No. of Pairs in the same Group	662	793	1012	1118	1055	803	907
No. of Pairs not in the same Group	3778	4746	5183	5273	4308	2741	4338
Mea. Number of Common owner	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Mea. Number of Pairs in one Group	24	24	26	27	26	20	25
Med. Number of Pairs in one Group	10	11	9	10	11	8	10
Mea. Number of Pairs in one Group	25	26	27	29	28	21	26
Med. Number of Pairs in one Group	10	11	9	6	7	6	8
Med. Number of Owners	5.96	5.83	5.7	5.77	5.78	6	5.82
Medi. Percent of each Blockholder	10.18	10.27	10.46	10.3	10.69	11	10.49
Med. Block. Ownership	78.45	79.01	79.03	79.65	79.49	79.31	79.16

Data Summary

- We use blockholders' data from 2015/03/25 (1394/01/06) to 2020/03/18 (1398/12/28)
 - Includes of 1203 Days and 60 Months
 - Consists of 600 firm inculding 342 firm with common owners

Year	2015	2016	2017	2018	2019	2020	mean
No. of Firms	355	383	520	551	579	602	498
No. of Blockholders	724	887	1274	1383	1409	1390	1178
No. of Groups	41	42	46	45	40	40	42
No. of Firms not in Groups	113	128	207	224	247	602	254
No. of Firms in Groups	242	265	332	339	332	332	307
Mea Number of Members	6	6	7	8	8	8	7
Med. of Number of Members	4	4	6	5	6	6	5
Mea Of each Blockholder's ownership	21.30	22.00	20.80	20.50	21.90	23.00	21.58
Med. of Owners' Percent	7.94	7.55	6.95	6.34	8.31	9	8
Mea Number of Blockholders	5	5	5	5	5	4	5
Med. Number of Owners	4	4	4	4	4	3	4
Mea Block. Ownership	71.6	71.2	68	67.7	65.4	62.00	67.65
Med. Block. Ownership	79.9	80.1	77	77.1	72.9	69.70	76.12
Wed. Block. Ownership	19.9	00.1	- 11	11.1	12.9	09.70	10.12

Number of Pairs

FCA vs. FCAP Summary

	variable	$count(month \times id)$	mean	std	min	25%	median	75%	max
Total	FCA	258352	0.167	0.268	0.003	0.024	0.056	0.181	3.967
TOLAI	FCAP	258352	0.141	0.192	0.003	0.023	0.052	0.164	0.985
Same Group	FCA	41191	0.499	0.425	0.005	0.172	0.441	0.703	3.967
	FCAP	41191	0.399	0.262	0.004	0.146	0.410	0.615	0.985
Not Same Group	FCA	192551	0.100	0.154	0.003	0.021	0.043	0.109	2.166
Not Same Group	FCAP	192551	0.089	0.121	0.003	0.020	0.041	0.103	0.970
Not Same Group Same Industry	FCA	40364	0.377	0.416	0.007	0.060	0.242	0.571	3.967
	FCAP	40364	0.291	0.259	0.006	0.055	0.209	0.498	0.970
Not Same Industry	FCA	217988	0.128	0.208	0.003	0.022	0.047	0.132	2.555
Not Same industry	FCAP	217988	0.114	0.162	0.003	0.021	0.044	0.125	0.985

Results

- By the proposed measurement, common ownership increases
- Common ownership is greater in pairs that are in the same business group and insutry

FCA vs. FCAP Distributions

Monthly

Fortnight

Correlation Calculation

4 Factor + Industry

Frist Step:

Estimate each of these models on periods of three month:

• CAPM + Industry (2 Factor):

$$R_{i,t} = \alpha_i + \beta_{mkt,i}R_{M,t} + \beta_{Ind,i}R_{Ind,t} + \boxed{\varepsilon_{i,t}}$$

• 4 Factor :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

• 4 Factor + Industry (5 Factor) :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \beta_{\textit{Ind},i} R_{\textit{Ind},t} \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

Correlation Calculation Results

SMB 0.19 1.47 -5.64 19.52 HML -0.12 1.39 -4.90 23.20 Winner – Loser 0.69 1.06 -2.61 8.58 Market 0.24 1.23 -4.71 4.89	Factors	mean	std	min	max
Winner – Loser 0.69 1.06 -2.61 8.58	SMB	0.19	1.47	-5.64	19.52
	HML	-0.12	1.39	-4.90	23.20
Market 0.24 1.23 -4.71 4.89	Winner - Loser	0.69	1.06	-2.61	8.58
	Market	0.24	1.23	-4.71	4.89

mean	std	min	25%	50%	75%	max
0.007	0.328	-1	-0.194	0.006	0.208	1
0.038	0.338	-1	-0.172	0.035	0.248	1
0.006	0.326	-1	-0.194	0.005	0.206	1
0.006	0.325	-1	-0.194	0.006	0.206	1
	0.007 0.038 0.006	0.007 0.328 0.038 0.338 0.006 0.326	0.007 0.328 -1 0.038 0.338 -1 0.006 0.326 -1	0.007 0.328 -1 -0.194 0.038 0.338 -1 -0.172 0.006 0.326 -1 -0.194	0.007 0.328 -1 -0.194 0.006 0.038 0.338 -1 -0.172 0.035 0.006 0.326 -1 -0.194 0.005	0.007 0.328 -1 -0.194 0.006 0.208 0.038 0.338 -1 -0.172 0.035 0.248 0.006 0.326 -1 -0.194 0.005 0.206

Conclusion

We use the 4 Factor + Industry model to control for exposure to systematic risk because it almost captures all correlations between two firms in each pair.

Future Correlation via FCA

Controls

- $oldsymbol{
 ho}_t$: Current period correlation
- **SameGroup**: Dummy variable for whether the two stocks belong to the same business group.
- **SameIndustry**: Dummy variable for whether the two stocks belong to the same Industry.
- SameSize: The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket : The negative of absolute difference in percentile ranking of the book to market ratio across a pair
- **CrossOwnership**: The maximum percent of cross-ownership between two firms

Summary of Controls

Monthly

Type of Pairs	Yes	No
SameIndustry	1110 (11%)	8631 (88%)
SameGroup	1142 (12%)	8599 (89%)
SameGroup & SameIndustry	494 (5%)	9247 (95%)

	mean	std	min	25%	50%	75%	max
SameIndustry	0.16	0.36	0.00	0.00	0.00	0.00	1.00
SameGroup	0.18	0.38	0.00	0.00	0.00	0.00	1.00
Size1	0.75	0.21	0.01	0.61	0.81	0.93	1.00
Size2	0.47	0.25	0.00	0.27	0.44	0.66	1.00
SameSize	-0.28	0.21	-0.99	-0.42	-0.23	-0.10	0.00
BookToMarket1	0.53	0.26	0.00	0.33	0.54	0.75	1.00
BookToMarket2	0.51	0.24	0.00	0.31	0.50	0.70	1.00
SameBookToMarket	-0.29	0.21	-1.00	-0.42	-0.25	-0.12	0.00
MonthlyCrossOwnership	0.01	0.07	0.00	0.00	0.00	0.00	0.96

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- 5 Results
- 6 Robustness Check
- Conclusion

Fama-MacBeth Estimation

- Fama-MacBeth regression analysis is implemented using a two-step procedure.
 - The first step is to run periodic cross-sectional regressions of the dependent variable of interest using data from each time period t.
 - The second step is to analyze the time series of each of the regression coefficients to determine whether the average coefficient differs from zero.

Fama-MacBeth (1973)

- Two Step Regression
 - First Step

$$Y_{i1} = \delta_{0,1} + \delta_{1,1}^{1} X_{i,1}^{1} + \dots + \delta_{k,1}^{k} X_{i,1}^{k} + \varepsilon_{i,1}$$

$$\vdots$$

$$Y_{iT} = \delta_{0,1} + \delta_{1,T}^{1} X_{i,T}^{1} + \dots + \delta_{k,T}^{k} X_{i,T}^{k} + \varepsilon_{i,T}$$

Second Step

$$\begin{bmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_T \end{bmatrix}_{T \times 1} = \begin{bmatrix} 1 & \delta_1^0 & \delta_1^1 & \dots & \delta_1^k \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \delta_T^0 & \delta_T^1 & \dots & \delta_T^k \end{bmatrix}_{T \times (k+2)} \times \begin{bmatrix} \lambda \\ \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}_{(k+2) \times 1}$$

• Fama-MacBeth technique was developed to account for correlation between observations on different firms in the same period

10 × 4 = × 4 = × 4 = × 9 0 0

calculate the standard errors

- In most cases, the standard errors are adjusted following Newey and West (1987).
 - Newey and West (1987) adjustment to the results of the regression produces a new standard error for the estimated mean that is adjusted for autocorrelation and heteroscedasticity.
 - Only input is the number of lags to use when performing the adjustment

$$Lag = 4(T/100)^{\frac{2}{9}}$$

where T is the number of periods in the time series

Fixed effect or Fama-MacBeth

- Both methods rely on zero correlation between the error terms of non-contemporaneous periods. A difference is weighting:
 - The Fama-Macbeth procedure weights each time period equally.
 - A panel regression will effectively give greater weight to periods with more observations or greater variation in right hand side variables
- The econometric analysis of panel data depends in a crucial way on the cross-sectional and timeseries correlation of the regression residuals

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- Results
 - Normalized Rank-Transformed
 - Effective Business Group
 - Discontinuity
 - Logaritmic
 - Sum Factor

Estimation model

• Use Fama macbeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{1}$$

- Estimate that model on a monthly frequency
- Adjust standard errors by Newey and West adjustment with 4 lags $(4(60/100)^{\frac{2}{9}}=3.57\sim4)$

Future Correlation via FCA

Normalized Rank-Transformed

Fortnightly

Model Estimation

Normalized Rank-Transformed

	Depe	ndent Variab	le: Future Mo	nthly Correl	ation of 4F+I	ndustry Resid	duals
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	0.00476***	0.00394***	0.00373***	0.00105	-0.0000511	-0.000238	0.000299
	(4.88)	(5.16)	(5.04)	(1.23)	(-0.06)	(-0.28)	(0.37)
ρ_t		0.124***	0.125***	0.124***	0.124***	0.124***	0.123***
		(4.92)	(4.93)	(4.90)	(4.90)	(4.90)	(4.88)
SameIndustry			0.00187	-0.00386*	-0.00402*	-0.00505*	-0.00476
			(1.15)	(-2.01)	(-2.06)	(-2.58)	(-2.37)
SameGroup				0.0194***	0.0123***	0.0129***	0.00910*
				(7.86)	(4.30)	(4.54)	(2.26)
(FCA*) × SameGroup					0.00839**	0.00816**	0.00801*
					(3.29)	(3.20)	(3.02)
SameSize						0.0118***	0.0122**
						(4.61)	(4.67)
SameBookToMarket						0.00432	0.00624
						(1.28)	(1.63)
Observations	249030	248118	248118	248118	248118	248118	248118
Group FE	No	No	No	No	No	No	Yes
R^2	0.001	0.034	0.034	0.035	0.035	0.036	0.046

t statistics in parentheses

Fortnightly

 $^{^{*}}$ $\rho <$ 0.05, ** $\rho <$ 0.01, *** $\rho <$ 0.001

Bearish/Bullish Market

• Use Fama macbeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} \\ &+ \beta_2 * \mathsf{Bearish Market} \times \mathsf{SameGroup} \\ &+ \beta_3 * \mathsf{Bullish Market} \times \mathsf{SameGroup} \\ &+ \beta_4 * \mathsf{FCA}^*_{ij,t} \times \mathsf{Bearish Market} \times \mathsf{SameGroup} \\ &+ \beta_5 * \mathsf{FCA}^*_{ij,t} \times \mathsf{Bullish Market} \times \mathsf{SameGroup} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split}$$

• 37% of observations are bearish

Model Estimation

Normalized Rank-Transformed (Bearish Market)

	Fu. Month	ly Cor. of 4F+	-Ind. Residual
	(1)	(2)	(3)
FCA*	-0.000238	-0.000238	-0.000238
	(-0.28)	(-0.28)	(-0.28)
(FCA*) × SameGroup	0.00816**	0.00816**	
	(3.20)	(3.20)	
SameGroup	0.0129***	0.00880***	0.00880***
	(4.54)	(4.60)	(4.60)
Bearish Market × SameGroup		0.00415	0.00415
		(1.92)	(1.92)
(FCA*) × Bullish Market × SameGroup			0.00424*
			(2.64)
(FCA*) × Bearish Market × SameGroup			0.00393*
			(2.62)
Observations	248118	248118	248118
R^2	0.036	0.036	0.036

t statistics in parentheses

	Fu. Month	ly Cor. of 4F⊣	-Ind. Residua
	(1)	(2)	(3)
FCA*	-0.000238 (-0.28)	-0.000238 (-0.28)	-0.000238 (-0.28)
$(FCA^*) \times SameGroup$	0.00816** (3.20)	0.00816** (3.20)	
SameGroup	0.0129*** (4.54)		
Bearish Market × SameGroup		0.00415 (1.92)	0.00415 (1.92)
Bullish Market \times SameGroup		0.00880*** (4.60)	0.00880*** (4.60)
$(FCA^*) \times Bullish \ Market \times SameGroup$			0.00424* (2.64)
$(FCA^*) \times Bearish \ Market \times SameGroup$			0.00393* (2.62)
Observations R ²	248118 0.036	248118 0.036	248118 0.036

t statistics in parentheses

[&]quot; p < 0.05, "" p < 0.01, """ p < 0.001

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Business Group Dummy

• We use group dummies and its interaction with FCA*

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} + \sum_1^G \lambda_{1,g} * \gamma_g \\ &+ \sum_1^G \lambda_{2,g} * \mathsf{SameGroup}_{ij} * \gamma_g + \sum_1^G \lambda_{3,g} * \gamma_g * \mathsf{FCA}^*_{ij,t} \\ &+ \sum_1^G \lambda_{4,g} \mathsf{SameGroup}_{ij} * \gamma_g * \mathsf{FCA}^*_{ij,t} + \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split}$$

• $\delta_{ij,g} = \mathsf{SameGroup}_{ij} * \gamma_{\mathcal{g}}$ which $\gamma_{\mathcal{g}}$ is a business group dummy

Effective Business Group

Significant coefficients

$\gamma_{\rm g}$									
Coef.	t	uo							
0.05	3.85	Farhangian							
-0.01	-3.36	Bonyad							
-0.01	-2.67	Sepah bank							
-0.01	-2.11	Basij							
-0.01	-2.55	Government							
-0.01	-2.18	Tejarat bank							

	Same	$Group_{ij} * \gamma_{g}$						
Coef.	t	uo						
1.77	2.22	Sanat Bank						
-0.10	-0.10 -2.48 Governme							
$FCA^*_{ij,t} * \gamma_g$								
0.02	2.23	Saman bank						
0.01	2.12	Mirabi						
0.01	2.34	Alipour&Keshavarz						
0.01	2.15	Tipico						
0.01	2.51	Imidro						

Sar	neGroup	$o_{ij} * \gamma_g * FCA_{ij,t}^*$
Coef.	t	uo
0.07	3.60	C.S Pension fund
0.06	2.61	Maskan bank
0.05	2.51	Taira
0.02	3.64	vKosar
0.02	3.16	vSakht
0.02	2.68	Tapico
0.02	2.86	Melli bank
-0.04	-2.19	Imidro
-1.02	-2.17	Sanat Bank

Effective Business Group

Check banking and Investment

- We define three types of groups
 - Bank is Uo Groups that their ultimate owner is bank
 - Bank In Group: Groups that ,at least, consist of one bank
- Estimated model:

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{FCA}^*_{ij,t} * \; \mathsf{SameGroup}_{ij} + \beta_{10} * \mathsf{Bank} \; \mathsf{is} \; \mathsf{Uo} + \beta_{11} * \mathsf{Bank} \; \mathsf{in} \; \mathsf{group} \\ &+ \beta_4 * \mathsf{Bank} \; \mathsf{is} \; \mathsf{Uo} * \; \mathsf{SameGroup}_{ij} + \beta_5 * \mathsf{Bank} \; \mathsf{is} \; \mathsf{Uo} * \; \mathsf{SameGroup}_{ij} * \mathsf{FCA}^*_{ij,t} \\ &+ \beta_6 * \mathsf{Bank} \; \mathsf{In} \; \mathsf{Group} * \mathsf{SameGroup}_{ij} + \beta_7 * \mathsf{Bank} \; \mathsf{In} \; \mathsf{Group} * \mathsf{SameGroup}_{ij} * \mathsf{FCA}^*_{ij,t} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split}$$

Effective Business Group

Check banking and Investment

			De. V	ariable:Futur	e Monthly Co	rrelation of 4	F+Industry F	Residuals		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
FCA*	-0.000307 (-0.36)	-0.000294 (-0.35)	-0.000303 (-0.36)	-0.000299 (-0.35)	-0.000189 (-0.22)	-0.000199 (-0.24)	-0.000204 (-0.24)	-0.000161 (-0.19)	-0.000183 (-0.22)	-0.000180 (-0.21)
$(FCA^*) \times SameGroup$	0.00820** (3.22)	0.00830** (3.28)	0.00888*** (3.53)	0.00750° (2.64)	0.00810** (3.19)	0.00818** (3.20)	0.00790** (3.01)	0.00825** (3.27)	0.00884*** (3.52)	0.00698* (2.49)
SameGroup	0.0130*** (4.55)	0.0131*** (4.53)	0.0106** (3.08)	0.0121** (3.30)	0.0125*** (4.38)	0.0130*** (3.96)	0.0132*** (4.00)	0.0127*** (4.41)	0.0110** (2.85)	0.0131** (3.20)
Bank is Uo		0.00140 (1.49)	0.000550 (0.55)	0.000550 (0.55)				0.00214* (2.13)	0.00132 (1.27)	0.00133 (1.27)
$Bank \; is \; Uo \times SameGroup$			0.00804 (1.51)	0.00381 (0.70)					0.00711 (1.37)	0.00181 (0.34)
$(FCA^*) \times Bank \ is\ Uo \times SameGroup$				0.00458 (1.33)						0.00570 (1.68)
Bank in group					-0.00392** (-2.97)	-0.00378** (-3.30)	-0.00378** (-3.30)	-0.00431** (-3.12)	-0.00403** (-3.35)	-0.00404** (-3.35)
$Bank \; in \; group \times SameGroup$						-0.00244 (-0.42)	-0.00760 (-0.80)		-0.00269 (-0.46)	-0.00734 (-0.76)
$(FCA^*) \times Bank \; in \; group \times SameGroup$							0.00435 (0.64)			0.00313 (0.48)
Observations R ²	248118 0.035	248118 0.036	248118 0.036	248118 0.036	248118 0.036	248118 0.036	248118 0.036	248118 0.036	248118 0.037	248118 0.037

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Estimation model

Use Fama macbeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * (\mathsf{FCA}^*_{ij,t} > Q3[\mathsf{FCA}^*_{ij,t}]) \times \mathsf{FCA}^*_{ij,t} \\ &+ \beta_3 * (\mathsf{FCA}^*_{ij,t} > Q3[\mathsf{FCA}^*_{ij,t}]) \times \mathsf{FCA}^*_{ij,t} \mathsf{SameGroup}_{ij} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{3}$$

Estimate that model on a monthly frequency

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 下 ・ 夕 へ ○ ○

Future Correlation via FCA

Discontinuity

Fortnightly

Fama MacBeth Estimation

Discontinuity

	Dep. Varia	ble: Future	Monthly Cor	r. of 4F+Ind	l. Residuals
	(1)	(2)	(3)	(4)	(5)
FCA*	0.00476***	-0.000946	-0.000876	-0.00129	-0.00133
	(4.88)	(-0.93)	(-0.83)	(-1.25)	(-1.32)
$(FCA^* > Q3[FCA^*]) \times FCA^*$		0.0129***	0.0109***	0.00581**	0.00584**
		(6.77)	(6.12)	(3.11)	(3.14)
$\rho_{-}t$			0.124***	0.124***	0.124***
			(4.92)	(4.90)	(4.90)
SameGroup				0.0157***	0.0176***
				(7.09)	(7.21)
SameIndustry					-0.00540**
· · · · · · · · · · · · · · · · · · ·					(-2.80)
SameSize					0.0115***
					(4.50)
SameBookToMarket					0.00416
					(1.22)
Constant	0.00568***	0.00148	0.00128	0.000297	0.00511***
	(6.30)	(1.39)	(1.34)	(0.33)	(4.19)
Observations	249030	249030	248118	248118	248118
R^2	0.001	0.001	0.034	0.035	0.036

t statistics in parentheses

 $^{^{*}}$ p < 0.05, ** p < 0.01, *** p < 0.001

Estimation model

• Use Fama macbeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} \\ &+ \beta_2 * (\mathsf{FCA}^*_{ij,t} > Q3[\mathsf{FCA}^*_{ij,t}]) \times \mathsf{FCA}^*_{ij,t} \\ &+ \beta_3 * \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup} \\ &+ \beta_4 * (\mathsf{FCA}^*_{ij,t} > Q3[\mathsf{FCA}^*_{ij,t}]) \times \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{4}$$

• Estimate that model on a monthly frequency

4 Factor + Industry Future Correlation via FCA*

Discontinuity & Business Groups

Fama MacBeth Estimation

Correlation of controls

Correlation	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
(1) ρ_f	1.00										
(2) <i>ρ</i>	0.11	1.00									
(3) FCA*	0.02	0.01	1.00								
(4) $(FCA^* > Q3[FCA^*])$	0.02	0.02	0.75	1.00							
(5) $(FCA^* > Q3[FCA^*]) \times FCA^*$	0.02	0.02	0.76	0.98	1.00						
(6) $(FCA^*) \times SameGroup$	0.03	0.03	0.55	0.60	0.68	1.00					
(7) (FCA* $> Q3[FCA*]$) \times (FCA*) \times SameGroup	0.03	0.03	0.53	0.63	0.71	0.95	1.00				
(8) SameGroup	0.03	0.03	0.44	0.49	0.54	0.75	0.82	1.00			
(9) SameIndustry	0.01	0.01	0.28	0.30	0.32	0.33	0.36	0.38	1.00		
(10) SameSize	0.01	0.01	0.12	0.12	0.12	0.06	0.07	0.03	0.12	1.00	
(11) SameBookToMarket	0.01	0.01	0.02	0.03	0.04	0.05	0.06	0.06	0.11	0.07	1.00

Fama MacBeth Estimation

Discontinuity & Business Groups

	Dep	. Variable: F	uture Month	ly Correlati	on of 4F+In	dustry Resid	duals
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	-0.00133	-0.000238	-0.000251	-0.00150	-0.000223	-0.00109	-0.00110
	(-1.32)	(-0.28)	(-0.29)	(-1.49)	(-0.27)	(-1.09)	(-1.22)
$(FCA^* > Q3[FCA^*]) \times FCA^*$	0.00584**			0.00402		0.00282	0.00283
	(3.14)			(1.88)		(1.23)	(1.27)
$(FCA^*) \times SameGroup$		0.00816**		0.00659*	-0.00103		-0.000149
		(3.20)		(2.31)	(-0.20)		(-0.03)
$(FCA^* > Q3[FCA^*]) \times (FCA^*) \times SameGroup$			0.0120***		0.0132*	0.0102**	0.0103
			(3.85)		(2.14)	(2.75)	(1.66)
Observations	248118	248118	248118	248118	248118	248118	248118
R^2	0.036	0.036	0.036	0.036	0.036	0.036	0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Future Correlation via FCA*

Grouped by size

Model Estimation

Grouped by size

		All Firms			Big Firms		Big	z & Small Fir	ms		Small Firms	5
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
FCA*	-0.000238 (-0.28)	-0.00133 (-1.32)	-0.00109 (-1.09)	0.00319** (3.15)	0.000544 (0.34)	0.000480 (0.30)	-0.000936 (-0.76)	-0.00212 (-1.41)	-0.00209 (-1.41)	-0.00199 (-1.34)	-0.00138 (-0.88)	-0.000247 (-0.16)
$(FCA^* > Q3[FCA^*]) \times FCA^*$		0.00584** (3.14)	0.00282 (1.23)		0.00861* (2.48)	0.00771 (1.92)		0.00372 (1.52)	0.00324 (1.15)		0.00674* (2.17)	-0.00415 (-1.00)
SameGroup	0.0129*** (4.54)	0.0176*** (7.21)	0.00916** (2.85)	0.0118* (2.03)	0.0125** (2.80)	0.00959 (1.37)	0.0248*** (5.11)	0.0252*** (6.48)	0.0233*** (4.01)	-0.00585 (-1.42)	0.0106** (2.89)	-0.0118 (-1.96)
$(FCA^*) \times SameGroup$	0.00816** (3.20)			0.00490 (1.17)			0.00204 (0.68)			0.0224*** (6.03)		
$(FCA^* > Q3[FCA^*]) \times (FCA^*) \times SameGroup$			0.0102** (2.75)			0.00452 (0.64)			0.00207 (0.49)			0.0290*** (4.82)
SameIndustry	-0.00505* (-2.58)	-0.00540** (-2.80)	-0.00548** (-2.81)	0.00203 (0.39)	0.00172 (0.33)	0.00126 (0.24)	-0.0131*** (-5.49)	-0.0134*** (-5.57)	-0.0134*** (-5.62)	0.00242 (0.84)	0.00315 (1.12)	0.00189 (0.67)
Observations R ²	248118 0.036	248118 0.036	248118 0.036	61741 0.043	61741 0.043	61741 0.046	123757 0.038	123757 0.038	123757 0.039	62620 0.040	62620 0.040	62620 0.041

t statistics in parentheses

Fortnightly

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

FCA* summary

PairType	mean	std	min	25%	50%	75%	max
Small	0.25	0.99	-1.73	-0.57	0.27	1.18	1.73
Hybrid	-0.08	0.98	-1.73	-0.93	-0.10	0.72	1.73
Large	-0.02	1.01	-1.73	-0.91	-0.01	0.88	1.73

Estimation model

Use Fama macbeth to estimate this model

$$\rho_{ij,t+1} = \beta_0 + \beta_1 * ln(FCA_{ij,t}) + \beta_2 * SameGroup_{ij}$$

$$+ \beta_3 * ln(FCA_{ij,t}) \times SameGroup_{ij}$$

$$+ \sum_{k=1}^{n} \alpha_k * Control_{ij,t} + \varepsilon_{ij,t+1}$$
(5)

Estimate that model on a monthly frequency

Future Correlation via FCA

Logaritmic Transformation

Fortnightly

Fama MacBeth Estimation

Logaritmic Transformation

	Dependent Variable: Future Monthly Correlation of 4F+Industry Residuals						
	(1)	(2)	(3)	(4)	(5)	(6)	
In(FCA)	0.00420***	0.00351***	0.000907	-0.000249	-0.0000972	-0.000260	
	(5.55)	(5.88)	(1.24)	(-0.32)	(-0.13)	(-0.36)	
$\rho_{-}t$		0.124***	0.124***	0.124***	0.124***	0.124***	
		(4.92)	(4.90)	(4.90)	(4.90)	(4.90)	
SameGroup			0.0176***	0.0269***	0.0284***	0.0286***	
			(7.84)	(7.11)	(6.76)	(6.92)	
$(In(FCA)) \times SameGroup$				0.00582**	0.00589**	0.00574**	
				(3.43)	(3.41)	(3.34)	
SameIndustry					-0.00417*	-0.00518*	
•					(-2.13)	(-2.64)	
SameSize						0.0116***	
						(4.58)	
SameBookToMarket						0.00428	
						(1.27)	
Constant	0.0167***	0.0141***	0.00420	0.000755	0.00159	0.00563*	
	(7.38)	(7.77)	(1.92)	(0.32)	(0.74)	(2.61)	
Observations	249030	248118	248118	248118	248118	248118	
R ²	0.001	0.034	0.034	0.035	0.035	0.036	

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Future Correlation via FCAP*

Normalized Rank Transformed

Fama MacBeth Estimation

Normalized Rank Transformed

	Dependent Variable: Future Monthly Correlation of 4F+Industry Residuals							
	(1)	(2)	(3)	(4)	(5)	(6)		
FCAP*	0.00513***	0.00424***	0.00127	0.0000453	0.000188	-0.000110		
	(5.33)	(5.73)	(1.46)	(0.05)	(0.22)	(-0.13)		
ρ_t		0.124***	0.124***	0.124***	0.124***	0.124***		
•		(4.92)	(4.90)	(4.89)	(4.89)	(4.90)		
SameGroup			0.0176***	0.0100**	0.0114***	0.0120***		
			(8.16)	(3.43)	(3.94)	(4.16)		
(FCAP*) × SameGroup				0.00904**	0.00912**	0.00900**		
(, , , , , , , , , , , , , , , , , , ,				(3.13)	(3.12)	(3.08)		
SameIndustry					-0.00414*	-0.00513*		
					(-2.12)	(-2.62)		
SameSize						0.0116***		
Samesize						(4.59)		
SameBookToMarket						0.00443		
Same Book Folviar Rec						(1.31)		
Constant	0.00568***	0.00482***	0.00187*	0.00166*	0.00206**	0.00654***		
Constant	(6.30)	(6.07)	(2.56)	(2.20)	(2.85)	(6.33)		
Observations	249030	248118	248118	248118	248118	248118		
R^2	0.001	0.034	0.034	0.035	0.035	0.036		

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Methodology
- 6 Results
- Robustness Check
 - Random Pairs from Same Business Group
 - Random Pairs from Same Size
 - Random Pairs from Same Industry

Random Pairs from Same Business Group

 β_3 in model 1

 β_2 in model 3

 β_4 in model 4

Random Pairs from Same Size

 β_3 in model 1

 β_2 in model 3

 β_4 in model 4

Random Pairs from Same Industry

 β_3 in model 1

 β_2 in model 3

 β_4 in model 4

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- Methodology
- 6 Results
- 6 Robustness Check
- Conclusion

Conclusion

- We derive a measure that captures the extent of common ownership distribution.
- The common ownership comovement effect with a extra explanation:
 - Common ownership that crosses a threshold affect on comovement
 - Be in the same business group has a major effect on comovement
 - Business groups of banks affect more than normal business groups

- Anton, Polk, Connected Stocks , Jornal of Finance 2014
- Andrew Koch, Stefan Ruenzi, Laura Starks, Commonality in Liquidity A Demand-Side Explanation, The Review of Financial Studies 2016
 - Pastor, L., and R. Stambaugh, *Liquidity risk and expected stock returns*, Journal of Political Economy 2003
- Acharya, V., and L. Pedersen, Asset pricing with liquidity risk, Journal of Financial Fronomics 2005
- Khanna, T., Thomas, C., Synchronicity and firm interlocks in an emerging market, Journal of Financial Economics 2009
- Boubaker, S., Mansali, H., Rjiba, H.-Large controlling shareholders and stock price synchronicity, Journal of Banking and finance 2014
- Morck, R., Yeung, B., Yu, W., The information content of stock markets: Why do emerging markets have synchronous stock price, Journal of Financial Economics 2000
- Harford, J., Jenter, D., Li, K., Institutional cross-holdings and their effect on acquisition decisions, Journal of Financial Economics 2011
- AZAR, J., SCHMALZ, M. C., TECU, I,, Anticompetitive Effects of Common Ownership, Journal of Financial 2018
- He, Jie (Jack) Huang, Jiekun , Zhao, Shanc, Internalizing governance externalities The role of institutional cross-ownership. Journal of Financial 2019

Table of Contents

- 8 Appendix I
- 9 Appendix II
- Appendix III
- Appendix IV
- Appendix V

Measuring Common Ownership

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
 - Each holder owns 1/n of each firm.
 - Firm's market cap is α_1 and α_2 :
 - So for each holder of firms we have $S_{i,t}^f P_{i,t} = \alpha_i$
 - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$

Table of Contents

- 8 Appendix I
- Appendix II
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
- 10 Appendix III
- Appendix IV
- Appendix V

Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
 - Equity network
 - 2 Director network
 - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity = $\frac{\sum_{\mathbf{t}} (n_{i,j,\mathbf{t}}^{\text{ups}}, n_{i,j,\mathbf{t}}^{\text{down}})}{T_{i,j}}$
- 2 Correlation = $\frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where $R_{i,t}^2$ is the R-squared value from

$$RET_{i,w} = \alpha + \beta_1 MKRET_{w-1} + \beta_2 MKRET_w + \beta_3 INDRET_{i,w-1} + \beta_4 INDRET_{i,w} + \varepsilon_{i,w}$$

OLS estimation of

$$\begin{aligned} \textit{SYNCH}_{i,t} &= \beta_0 + \beta_1 \textit{Excess}_{i,t} + \beta_2 \textit{UCF}_{i,t} + \sum_k \beta_k \textit{Control}_{i,t}^k \\ &+ \textit{IndustryDummies} + \textit{YearDummies} + \varepsilon_{i,t} \end{aligned}$$

- Stock price synchronicity increases with excess control
- Firms with substantial excess control are more likely to experience stock price crashes

Connected Stocks

JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership
 - $FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$
 - ullet Using normalized rank-transformed as $FCAP_{ij,t}^*$
- $\rho_{ij,t}$: within-month realized correlation of each stock pair's daily four-factor returns

$$\rho_{ij,t+1} = a + b_f \times FCAPF_{ij,t}^* + \sum_{k=1}^{n} CONTROL_{ij,t,k} + \varepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama and MacBeth

Table of Contents

- 8 Appendix I
- 9 Appendix II
- Appendix III
- Appendix IV
- Appendix V

Normalized Rank Transformed for each cross section (Monthly)

Monthly variables

·	Depe	ndent Variab	le: Future Mo	nthly Correl	ation of 4F+I	ndustry Resid	luals
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	0.00476***	0.00394***	0.00373***	0.00105	-0.0000511	-0.000238	0.000299
	(4.88)	(5.16)	(5.04)	(1.23)	(-0.06)	(-0.28)	(0.37)
ρ_t		0.124***	0.125***	0.124***	0.124***	0.124***	0.123***
		(4.92)	(4.93)	(4.90)	(4.90)	(4.90)	(4.88)
SameIndustry			0.00187	-0.00386*	-0.00402*	-0.00505*	-0.00476*
			(1.15)	(-2.01)	(-2.06)	(-2.58)	(-2.37)
SameGroup				0.0194***	0.0123***	0.0129***	0.00910*
				(7.86)	(4.30)	(4.54)	(2.26)
(FCA*) × SameGroup					0.00839**	0.00816**	0.00801**
, ,					(3.29)	(3.20)	(3.02)
SameSize						0.0118***	0.0122***
						(4.61)	(4.67)
SameBookToMarket						0.00432	0.00624
						(1.28)	(1.63)
Observations	249030	248118	248118	248118	248118	248118	248118
Group FE	No	No	No	No	No	No	Yes
R^2	0.001	0.034	0.034	0.035	0.035	0.036	0.046

t statistics in parentheses

Fortnightly

 $^{^{*}}$ $\rho <$ 0.05, ** $\rho <$ 0.01, *** $\rho <$ 0.001

Table of Contents

- 8 Appendix I
- 9 Appendix II
- 10 Appendix III
- Appendix IV
 - Measuring Common Ownership
 - Controls
 - Logaritmic
 - Discontinuity
 - Business Group
 - Other
- Appendix V

FCA vs. FCAP Distributions

Fortnightly

Summary of Controls

Fortnightly

Type of Pairs	Yes	No
SameIndustry	1142	9125
	(11.1%)	(88.9%)
SameGroup	1173 (11.4%)	9094 (88.6%)
ActiveHolder	2819 (27.5%)	7448 (72.5%)

Variable	count	mean	std	min	25%	50%	75%	max
Size1	636641	0.75	0.21	0.01	0.61	0.81	0.93	1
Size2	636641	0.47	0.26	0.00	0.26	0.45	0.67	1.00
SameSize	636641	-0.28	0.22	-0.99	-0.42	-0.24	-0.10	0.00
BookToMarket1	636641	0.52	0.27	0.00	0.31	0.54	0.74	1.00
BookToMarket2	636641	0.50	0.25	0.00	0.29	0.49	0.70	1.00
${\sf SameBookToMarket}$	636641	-0.29	0.21	-1.00	-0.43	-0.25	-0.12	0.00

Future Correlation via FCA

4 Factor + Industry (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
In(FCA)	0.0108***	0.00989***	0.00964***	0.00511***	0.00499***	0.00271***	0.00276***	0.00281***	0.00297***
	(8.48)	(9.12)	(8.81)	(5.15)	(4.95)	(4.12)	(4.07)	(4.16)	(3.78)
$\rho_{-}t$		0.0740***	0.0739***	0.0734***	0.0733***	0.0710***	0.0708***	0.0711***	0.0723***
		(5.50)	(5.49)	(5.44)	(5.44)	(5.36)	(5.34)	(5.36)	(5.39)
ActiveHolder			0.00970***		0.00810***	0.00425*	0.00416*	0.00356	0.00410*
			(6.05)		(5.06)	(2.35)	(2.40)	(1.94)	(2.41)
SameGroup				0.0329***	0.0322***	0.0216***	0.0214***	0.0218***	0.0247***
				(10.98)	(10.80)	(7.32)	(7.29)	(7.47)	(9.32)
SameIndustry						0.0275***	0.0267***	0.0264***	0.0288***
•						(7.00)	(6.73)	(6.55)	(6.45)
Samesize								0.0403***	0.0235***
								(3.53)	(4.35)
SameBookToMarket								0.0127**	0.0146***
								(3.22)	(4.34)
Constant	0.0432***	0.0395***	0.0363***	0.0214***	0.0191***	0.0396**	0.0504**	0.0372***	0.0225***
	(8.14)	(8.73)	(8.10)	(5.32)	(4.71)	(3.13)	(3.20)	(4.04)	(5.91)
Value	No	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00152	0.0127	0.0131	0.0137	0.0141	0.0184	0.0193	0.0183	0.0164

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Normalized Rank Transformed for each cross section (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
FCA*	0.0124***	-0.00545***	-0.00518***	-0.00450***	-0.00440***	-0.00408**	-0.00537***	-0.00420**	-0.00526***	-0.00448**
	(7.43)	(-3.99)	(-3.90)	(-3.44)	(-3.40)	(-3.19)	(-4.06)	(-3.22)	(-3.98)	(-3.49)
(FCA* > Median[FCA*]) × FCA*		0.0360***	0.0332***	0.0314***	0.0240***	0.0232***	0.0228***	0.0156***	0.0231***	0.0231***
		(9.80)	(10.20)	(9.78)	(8.68)	(8.29)	(9.37)	(5.83)	(9.14)	(8.17)
$\rho_{-}t$			0.0738***	0.0737***	0.0727***	0.0727***	0.0711***	0.0708***	0.0712***	0.0724***
			(5.50)	(5.49)	(5.42)	(5.41)	(5.38)	(5.34)	(5.38)	(5.41)
ActiveHolder				0.00792***		0.00494**	0.00362	0.00322	0.00284	0.00354*
				(4.85)		(2.98)	(1.94)	(1.81)	(1.49)	(2.02)
SameIndustry					0.0363***	0.0357***	0.0315***	0.0261***	0.0303***	0.0339***
,					(8.06)	(7.91)	(7.93)	(6.60)	(7.47)	(7.54)
SameGroup								0.0191***		
								(6.14)		
Samesize									0.0416***	0.0213***
									(3.67)	(3.91)
SameBookToMarket									0.0128**	0.0147***
									(3.24)	(4.36)
Constant	0.0150***	-0.000422	-0.000591	-0.00187	-0.00234	-0.00312*	0.0300*	0.0375*	0.0258**	0.00782**
	(6.31)	(-0.25)	(-0.38)	(-1.19)	(-1.70)	(-2.19)	(2.59)	(2.50)	(3.22)	(3.56)
Value	No	No	No	No	No	No	Yes	Yes	No	No
nteraction	No	No	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00132	0.00208	0.0132	0.0136	0.0149	0.0151	0.0182	0.0196	0.0181	0.0162

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Normalized Rank Transformed for each cross section (Fortnightly)

Monthly variables

	(1)	(2)
FCA*	-0.00370**	-0.00472***
	(-2.79)	(-3.39)
(FCA* - M // [FCA*]) FCA*	0.0100***	0.0141***
$(FCA^* > Median[FCA^*]) \times FCA^*$	0.0128***	
	(4.34)	(5.15)
$\rho_u t$	0.0722***	0.0708***
,	(5.39)	(5.35)
	(3.33)	(5.55)
ActiveHolder	0.00140	0.000470
	(0.73)	(0.22)
	(/	(- /
$(FCA^* > Median[FCA^*]) \times ActiveHolder$	0.00338	0.00522
	(1.17)	(1.75)
SameGroup	0.0117**	0.0106**
	(3.29)	(2.87)
$(FCA^* > Median[FCA^*]) \times SameGroup$	0.0139***	0.0109**
(I CA > Median[I CA]) x Samedidap	(4.05)	(3.14)
	(4.05)	(3.14)
Constant	0.00973***	0.0380*
	(4.57)	(2.51)
Value	No	Yes
Interaction	No	Yes
N	613875	613875
r2	0.0173	0.0202

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Future Correlation via FCA*

4 Factor + Industry (by Business Group)

Fortnightly variables for subset of Same Business Group

(1)	(2)	(3)	(4)	(5)	(6)
0.0183***	-0.0127*	0.0100***	-0.00219	0.00842***	-0.00535
(7.04)	(-2.13)	(5.21)	(-0.39)	(5.37)	(-0.98)
	0.0460***		0.0186*		0.0210*
	(4.63)		(2.08)		(2.53)
					0.0174***
		(3.41)	(3.07)	(4.00)	(3.61)
		0.0226***	0.0222***	0.0220***	0.0327***
					(7.83)
		(7.05)	(1.10)	(7.95)	(7.65)
		0.0340**	0.0318**		
		(3.11)	(3.03)		
		0.0609***	0.0605***		
		(5.97)	(5.90)		
		, ,	, ,		
0.0344***	0.0149**	0.0399***	0.0314***	0.104***	0.0941***
(9.76)	(3.01)	(8.38)	(5.53)	(5.71)	(5.16)
No	No	No	No	Yes	Yes
No	No	No	No	Yes	Yes
103914	103914	103914	103914	103914	103914
0.00281	0.00488	0.0390	0.0407	0.0494	0.0511
	0.0344*** (9.76) No No 103914	0.0183*** -0.0127* (7.04) (-2.13) 0.0460*** (4.63) 0.0344*** 0.0149** (9.76) (3.01) No No No No 103914 103914	0.0183*** -0.0127* 0.0100*** (7.04) (-2.13) (5.21) 0.0460*** (4.63) 0.0162*** (3.41) 0.0336*** (7.85) 0.0340** (3.17) 0.0609*** (5.97) 0.0344*** 0.0149** 0.0399*** (9.76) (3.01) (8.38) No No No No No No No 103914 103914 103914	0.0183*** -0.0127* 0.0100*** -0.00219 (7.04) (-2.13) (5.21) (-0.39) 0.0460*** 0.0186* (2.08) 0.0162*** 0.0149** (3.41) (3.07) 0.0336*** 0.0333*** (7.78) (7.78) 0.0340*** 0.0318** (3.17) (3.03) 0.0609*** 0.0605*** (5.97) (5.90) 0.0344*** 0.0149** 0.0399*** 0.0314*** (9.76) (3.01) (8.38) (5.53) No No No No No No No No 103914 103914 103914 103914	0.0183*** -0.0127* 0.0100*** -0.00219 0.00842*** (7.04) (-2.13) (5.21) (-0.39) (5.37) 0.0460*** 0.0186* (2.08) 0.0162*** 0.0149** 0.0188*** (3.41) (3.07) (4.00) 0.0336*** 0.0333*** 0.0330*** (7.85) (7.78) (7.95) 0.0340** 0.0318** (3.17) (3.03) 0.0609*** 0.0605*** (5.97) (5.90) 0.0344*** 0.0149** 0.0399*** 0.0314*** 0.104*** (9.76) (3.01) (8.38) (5.53) (5.71) No No No No Yes No No No No Yes 103914 103914 103914 103914 103914

t statistics in parentheses

^{*} $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

Fortnightly variables for subset of Different Business Group

	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	0.00422**	-0.00178	0.00194*	-0.00210	0.00172	-0.00290*
	(3.11)	(-1.37)	(1.98)	(-1.75)	(1.93)	(-2.26)
(FCA*: A4 (' [FCA*]) FCA*		0.01.46+++		0.00006+++		0.0115***
$(FCA^* > Median[FCA^*]) \times FCA^*$		0.0146***		0.00996***		0.0115***
		(4.22)		(3.48)		(3.82)
ActiveHolder			0.000676	0.000186	-0.000437	-0.00102
Activeriolder			(0.48)	(0.13)	(-0.30)	(-0.70)
			(0.40)	(0.13)	(-0.50)	(-0.70)
SameIndustry			0.0238***	0.0231***	0.0211***	0.0202***
•			(4.34)	(4.23)	(4.23)	(4.05)
			(-)	(- /	(- /	()
Samesize			0.0217***	0.0217***		
			(3.94)	(3.94)		
SameBookToMarket			0.00482	0.00477		
			(1.49)	(1.48)		
Constant	0.00831***	0.00285	0.0124***	0.00886***	0.0240	0.0202
	(4.07)	(1.67)	(5.03)	(4.03)	(1.53)	(1.32)
Value	No	No	No	No	Yes	Yes
Interaction	No	No	No	No	Yes	Yes
N	509961	509961	509961	509961	509961	509961
r2	0.000490	0.000899	0.0120	0.0124	0.0148	0.0152

t statistics in parentheses

^{*} $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

Normalized Rank Transformed for each cross section (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
FCA*	0.0124***	0.0126***	0.0114***	0.0112***	0.00613***	0.00618***	0.00634***	0.00717***
	(7.43)	(7.54)	(8.09)	(7.90)	(8.02)	(7.89)	(8.12)	(7.01)
FCA*2		0.0109***	0.0101***	0.00959***	0.00697***	0.00700***	0.00701***	0.00710***
		(10.30)	(10.52)	(10.08)	(9.59)	(9.97)	(9.37)	(8.49)
$\rho_{-}t$			0.0737***	0.0736***	0.0711***	0.0709***	0.0712***	0.0724***
			(5.49)	(5.48)	(5.37)	(5.36)	(5.38)	(5.41)
ActiveHolder				0.00761***	0.00345	0.00331	0.00267	0.00336
				(4.62)	(1.84)	(1.84)	(1.40)	(1.90)
SameIndustry					0.0310***	0.0301***	0.0299***	0.0334***
					(7.85)	(7.57)	(7.40)	(7.46)
Samesize							0.0416***	0.0214***
							(3.66)	(3.91)
SameBookToMarket							0.0126**	0.0146***
							(3.19)	(4.29)
Constant	0.0150***	0.00429*	0.00372*	0.00224	0.0330**	0.0428**	0.0288***	0.0108***
	(6.31)	(2.35)	(2.24)	(1.35)	(2.82)	(2.85)	(3.52)	(4.76)
Value	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00132	0.00215	0.0133	0.0136	0.0183	0.0191	0.0182	0.0162

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- 8 Appendix I
- 9 Appendix II
- Appendix III
- Appendix IV
- Appendix V

Model Estimation

Normalized Rank-Transformed

	Dependent	Variable:Futu	ire Monthly	Correlation o	f 4F+Indust	ry Residuals
	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	0.00486***	0.00413***	0.00132	0.000275	0.000407	0.000219
	(5.38)	(5.52)	(1.43)	(0.27)	(0.41)	(0.22)
$\rho_{-}t$		0.127***	0.126***	0.126***	0.126***	0.126***
,		(5.01)	(4.98)	(4.98)	(4.98)	(4.97)
SameGroup			0.0174***	0.0111***	0.0123***	0.0129***
·			(6.97)	(4.51)	(4.93)	(5.19)
(FCA*) × SameGroup				0.00764**	0.00776**	0.00756**
				(3.21)	(3.21)	(3.11)
SameIndustry					-0.00384	-0.00484*
•					(-1.85)	(-2.28)
SameSize						0.0116***
						(5.96)
SameBookToMarket						0.00488
SameBook Tomarket						(1.55)
Constant	0.00583***	0.00515***	0.00233**	0.00214**	0.00249**	0.00715***
	(6.90)	(6.71)	(2.99)	(2.73)	(3.29)	(5.92)
Observations	254640	253828	253828	253828	253828	253828
R^2	0.000	0.034	0.035	0.035	0.036	0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Discontinuity

	Dependent	Variable:Futu	re Monthly C	orrelation of 4	F+Industry Residuals
	(1)	(2)	(3)	(4)	(5)
FCA*	0.00486***	0.0000346	-0.0000865	-0.000440	-0.000462
	(5.38)	(0.03)	(-0.08)	(-0.42)	(-0.44)
$(FCA^* > Q3[FCA^*]) \times FCA^*$		0.0109***	0.00956***	0.00464*	0.00456*
		(5.40)	(5.00)	(2.26)	(2.24)
$\rho_{-}t$			0.126***	0.126***	0.126***
,			(5.00)	(4.98)	(4.98)
SameGroup				0.0156***	0.0175***
•				(5.92)	(6.04)
SameIndustry					-0.00509*
,					(-2.51)
SameSize					0.0115***
					(5.83)
SameBookToMarket					0.00475
					(1.51)
Constant	0.00583***	0.00228*	0.00205*	0.00112	0.00610***
	(6.90)	(2.35)	(2.34)	(1.28)	(4.19)
Observations	254640	254640	253828	253828	253828
R^2	0.000	0.001	0.035	0.035	0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Discontinuity & Business Groups

		Future N	Nonthly Corr	elation of 4F	+Industry	Residuals	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
FCA*	-0.000462	0.000219	0.000262	-0.000639	0.000229	-0.000227	-0.000309
	(-0.44)	(0.22)	(0.27)	(-0.62)	(0.23)	(-0.22)	(-0.32)
$(FCA^* > Q3[FCA^*]) \times FCA^*$	0.00456*			0.00267		0.00158	0.00169
	(2.24)			(1.06)		(0.58)	(0.64)
$(FCA^*) \times SameGroup$		0.00756**		0.00652*	0.000306		0.000852
		(3.11)		(2.22)	(0.07)		(0.19)
$(FCA^* > Q3[FCA^*]) \times (FCA^*) \times SameGrouop$			0.0107***		0.0106	0.00964*	0.00894
			(3.68)		(1.93)	(2.53)	(1.65)
Observations	253828	253828	253828	253828	253828	253828	253828
R^2	0.036	0.036	0.036	0.036	0.036	0.036	0.037

t statistics in parentheses

^{*} $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$