Group Theory

Langston Barrett

Spring 2017

Contents

• Instructor: Mckenzie West

• Textbook:

- Title: Abstract Algebra, 3rd Edition

- Author: David S. Dummit & Richard M. Foote

- ISBN: 0471452343, 9780471452348

Definition 0.1. A diagram

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} & B \\ \downarrow_h & & \downarrow_g \\ C & \stackrel{i}{\longrightarrow} & D \end{array}$$

is said to be commutative if $g \circ f = h \circ i$

1 Introduction to Groups

1.1 Basic Axioms and Examples

[Here, I skip some notions from Analysis, such as binary operations, associativity, commutativity, etc.]

Definition 1.1. A group is an ordered pair (G, \star) where G is a set and \star is a binary operation on G satisfying

- 1. Associativity: $\forall a, b, c \in G, (a \star b) \star c = a \star (b \star c)$
- 2. Identity: $\exists e \in G, \forall a \in G, e \star a = a \star e = a$
- 3. Inverse: $\forall a \in G, \exists a^{-1} \in G, a \star a^{-1} = a^{-1} \star a = e$

A group is commutative (abelian) if $\forall a, b \in G, a \star b = b \star a$.

Example 1.2. 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}$ are groups under + with e = 0 and $a^{-1} = -a$

- 2. $\mathbb{Q} \setminus \{0\}, \mathbb{R} \setminus \{0\}, \mathbb{C} \setminus \{0\}$ are groups under \cdot with e = 1 and $a^{-1} = 1/a$
- 3. Roots of unity\(\sigma\)cyclic group of order n\(\sime\) the integers mod n. The roots of unity are $C_n := \{x \in \mathbb{C} : x^n = 1\}$ and the operation is multiplication.

Definition 1.3. If $(A, \star), (B, \diamond)$ are groups, their direct product is

$$A \times B = \{(a, b) | a \in A, b \in B\}$$

with the pointwise group operation

$$(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \diamond b_2)$$

and pointwise inversion:

$$(a_1, b_1)^{-1} = (a_1^{-1}, b_1^{-1})$$

Theorem 1.4 (Four Basic Group Properties). Let (G, \star) be a group. Then

- 1. The identity of G is unique.
- 2. Inverses are unique: $\forall a \in G, \exists! a^{-1}$
- 3. Inversion is involutive: $\forall a \in G, (a^{-1})^{-1} = a$
- 4. $(a \star b)^{-1} = (b^{-1}) \star (a^{-1})$

Proof. 1. Assume that $e_1, e_2 \in G$ are identities. Then

$$e_1 e_2 = e_1$$
 $e_1 e_2 = e_2$

By the transitivity of =, $e_1 = e_2$.

2.

3.

$$(a \star b) \star (-b \star -a) = a \star (b \star -b) \star -a$$
 Generalized associativity
 $= a \star e \star -a$ Definition of inverses
 $= a \star -a$ Left identity
 $= e$ Definition of inverses

So
$$-(a \star b) = (-b \star -a)$$
.

4.

Theorem 1.5 (Left and Right Cancellation in Groups). If (G, \star) is a group, $\forall a, u, v \in G$,

$$au = av \implies u = v$$
 $ua = va \implies u = v$

Definition 1.6. The order of a group is its cardinality |G|. A group is finite if $|G| < \infty$.

The order of an element $x \in G$ is the smallest positive integer n such that $x^n = 1$. Equivalently, the order of $x \in G$ is the order of the (cyclic) subgroup of G generated by x, $|x| = |\langle x \rangle|$.

1.2 Dihedral Groups

Definition 1.7. Let $n \geq 3$. The dihedral group D_{2n} is the group of symmetries of a regular n-gon. It is of order $|D_{2n}| = 2n$.

If we let r be rotation by $2\pi/n$ radians and s be a flip across the vertical axis, these suffice in building D_{2n} .

Example 1.8. The symmetry group for the equalateral triangle is D_6 .

Remark 1.9. • $1, r, r^2, \dots, r^{n-1}$ are all distinct, |r| = n.

- 1, s are distinct and $s^2 = 1$, so |s| = 2.
- $\forall 0 < i, j < n 1, r^i \neq s^j$
- $\bullet \quad rs = sr^{-1}$
- $D_{2n} = \{1, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}$

Definition 1.10. A subset $S \subseteq G$ is a set of generators of G if every element of G can be written as a product of elements of S and their inverses. We write this $G = \langle S \rangle$.

Example 1.11. 1. For D_{2n} , $S = \{r, s\}$ is a set of generators.

- 2. For $(\mathbb{Z}, +)$, $S = \{1\}$ is a set of generators.
- 3. For $(\mathbb{Q} \setminus \{0\}, \cdot)$, $S = \mathbb{Z} \setminus \{0\}$ generates \mathbb{Q} multiplicatively.

Definition 1.12. Any equality satisfied by generators of a group (and the identity) is called a relation.

Example 1.13. In D_{2n} , $S = \{r, s\}$.

$$rs = sr^{-1} \qquad \qquad r^n = 1 = s^2$$

Any other relation on D_{2n} can be derived from these.

Definition 1.14. If S generates (G, \star) and R_1, R_2, \ldots, R_m are relations satisfied by the elements of S and the identity, such that all other relations satisfied by elements of S can be constructed (combined using the group operation, equalities, etc.) using these, then a presentation of G is

$$G = \langle S|R_1, R_2, \dots, R_m \rangle$$

Note that this set R_1, R_2, \ldots, R_m might not be minimal.

Example 1.15. 1.

$$D_{2n} = \langle r, s | rs = sr^{-1}, r^n = s^n = 1 \rangle$$

2.

$$\mathbb{Z} = \langle 1 \rangle$$

3. A finite group of order 4:

$$G = \langle x, y | x^2 = y^2 = (xy)^2 = 1 \rangle$$

4. An infinite group:

$$H = \langle x, y | x^3 = y^3 = (xy)^3 = 1 \rangle$$

1.3 Symmetric Groups

Definition 1.16. If Ω is a non-empty set, the symmetric group S_{Ω} is the group of bijections $\varphi: \Omega \to \Omega$ where the operation is composition \circ .

If $\Omega = \{1, ..., n\}$ we write S_n for S_{Ω} . This is called the symmetric group of degree n.

An element $\varphi \in S_{\Omega}$ is called a permutation.

Note. What is the order of $|S_n|$?

Well if we fix the image of the first element, the next one has n-1 choices. Then the next one has n-2. So we get

$$|S_n| = n!$$

Remark 1.17. How can we write the symmetric group concisely? If we have

$$1 \rightarrow 4$$

$$2 \rightarrow 3$$

$$3 \rightarrow 2$$

$$4 \rightarrow 1$$

We write

(1423)

But this doesn't work if we have

$$1 \rightarrow 2$$

$$2 \rightarrow 1$$

$$3 \rightarrow 4$$

$$4 \rightarrow 3$$

for which we write

Our algorithm is as follows:

- 1. Pick the smallest integer not in a cycle and call it a, our new cycle is now (a
- 2. Let $b = \varphi(a)$.

- (a) If b = a then close the cycle as (a), return to (1)
- (b) Otherwise, write b next to a in the cycle as (ab
- 3. Let $c = \varphi(b)$
 - (a) If c = a, close the cycle
 - (b) Otherwise, write (abc and repeat from step 3 with b = c.
- 4. Remove anything of the form (a), called 1-cycles.

Two cycles are disjoint if they have no integers in common.

Note. While S_n is in general non-abelian, disjoint cycles _. Commute.

Note. The order of a cycle in S_n is also the $_$. Least common multiple of the lengths of the cycles in its cycle decomposition.

1.4 Matrix Groups

Definition 1.18. A field is a set F together with binary operations + and \cdot such that (F, +) is a commutative group with identity 0 and $(F \setminus \{0\}, \cdot)$ is also a commutative group with the left distributive law between them:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

For any field F, $F^{\times} = F \setminus \{0\}$.

Example 1.19. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields. So is $\mathbb{Z}/p\mathbb{Z}$ where p is prime:

- $\overline{0}$ is the additive identity
- $\overline{1}$ is the multiplicative identity
- $(\mathbb{Z}/p\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \dots, \overline{p-1}\} = \mathbb{Z}/p\mathbb{Z} \setminus \{\overline{0}\}$

We notate this \mathbb{F}_p .

Definition 1.20. For each an arbitrary field F and $n \in \mathbb{N}$, let the general linear group of degree n (denoted $\mathrm{GL}_n(F)$) be the set of $n \times n$ matrices whose entries come from F and whose determinant is nonzero.

1.5 The Quaternion Group

Definition 1.21. The quaternion group Q_8 is defined to be

$$Q_8 := \{1, -1, i, -i, j, -j, k, -k\}$$

with product \cdot computed as follows (for all $a \in Q_8$):

$$1 \cdot a = a \cdot 1 = a$$
 $-1 \cdot -1 = 1$
 $-1 \cdot a = a \cdot -1 = -a$
 $i \cdot i = j \cdot j = k \cdot k = -1$
 $i \cdot j = k$
 $j \cdot k = -i$
 $k \cdot i = j$
 $j \cdot k = -i$
 $k \cdot j = -i$
 $j \cdot k = -i$

Note. What are the generators for the Quaternion Group Q_8 ? $\{i, j\}$ generates Q_8 :

$$i \cdot j = k$$
$$j \cdot i = k$$
$$i \cdot i = j \cdot j = 1$$

1.6 Homomorphisms and Isomorphisms

Definition 1.22. Let (G, \star) and (H, \diamond) be groups. A map $f: G \to H$ is a homomorphism if for all $x, y \in G$,

$$f(x \star y) = f(x) \diamond f(y)$$

Definition 1.23. Let (G,\star) and (H,\diamond) be groups. A map $f:G\to H$ is an isomorphism if

- 1. f is a homomorphism
- 2. f is a bijection

In this case, G and H are isomorphic, and we write $G \cong H$

Example 1.24. 1. For any group $G, G \cong G$ with the identity map (and possibly others)

- 2. The exponential function $\exp : \mathbb{R} \to \mathbb{R}^+$ is an isomorphism between $(\mathbb{R}, +)$ and (\mathbb{R}^+, \cdot) . It is a bijection because it has an inverse, and preserves the group operations: $e^{x+y} = e^x e^y$.
- All symmetric groups of the same cardinality are isomorphic, and the converse holds as well.
- 4. Isomorphism is an equivalence relation (with transitivity being provided by composition and symmetry by inverses).

Note. What conditions need to hold for it to be *possible* that two groups are isomorphic?

For two groups (G, \star) and (H, \diamond) , we need to have

- 1. |G| = |H|
- 2. G is commutative if and only if H is commutative
- 3. The order of elements is preserved under the isomorphism

Theorem 1.25 (Homomorphisms and Presentations). If

- a. (G, \star) is a finite group or order n with presentation,
- b. $S = \{s_1, \ldots, s_m\}$ is its set of generators,
- c. H is another group with $r_1, \ldots, r_m \in H$,
- d. every relation satisfied in G by s_i is satisfied in H by r_i ,

then there is a unique homomorphism $f: G \to H$ which maps s_i to r_i . If H is generated by $\{r_1, \ldots, r_m\}$ and is also of order n, then $G \cong H$.

1.7 Group Actions

Definition 1.26. If (G, \star) is a group and A is a set, then a group action by G on A is a map $(\cdot): G \times A \to A$ denoted by $(g \cdot a)$ such that

1. For all $g_1, g_2 \in G, a \in A$,

$$g_1 \cdot (g_2 \cdot a) = (g_1 \star g_2) \cdot A$$

2. For all $a \in A$,

$$1 \cdot a = a$$

If G acts on A, we call A a G-set.

Example 1.27. 1. Scalar mutliplication: the map from $\mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ given by

$$c \cdot \vec{v} = c\vec{v}$$

- 2. (D_{2n}, \circ) and $A = \{1, \ldots, n\}$: Fix a labeling of the vertices of the *n*-gon, then for $\alpha \in D_{2n}$, we define $\sigma_{\alpha} : D_{2n} \times A \to A$ to be the permutation of these vertices that's induced by α .
- 3. $GL_n(F)$ acts on F^n via applying the (invertible) linear transformation that corresponds to the matrix via the standard basis. In this way, $GL_n(F) \leftarrow Aut(F^n)$.
- 4. A group G acts on itself via left multiplication:

$$G \times G \longrightarrow G$$
 $(g, x) \longmapsto gx$

This gives the associated map

$$G \hookrightarrow \operatorname{Aut}(G)$$

which means that any finite group is isomorphic to a subgroup of $S_{|G|}$.

Note. What is the trivial group action of a group G on a set A? For all $g \in G, a \in A$, define $g \cdot a = a$.

Theorem 1.28 (Group Actions as Permutations). If

- a. (G, \cdot) is a group
- b. A is a set
- c. G acts on A

then $\sigma_g:A\to A, \sigma_g(a)=g\cdot a$ is a permutation (bijection) of A for all $g\in G.$ Proof.

$$\sigma_g \circ \sigma_{g^{-1}}(a) = \sigma_g(g^{-1} \cdot a) = g \cdot (g^{-1} \cdot a) = (gg^{-1}) \cdot a = 1 \cdot a = a$$

Since we chose g arbitrarily, we can swap g, g^{-1} to show that it is a double-sided inverse. Thus, σ_g has an inverse, and as so, is bijective.

Theorem 1.29. If

a. (G, \cdot) is a group,

- b. A is a set,
- c. G acts on A, and
- d. for each $g \in G$ we define the permutation

$$\sigma_q: A \longrightarrow A$$
 by $\sigma(a) := g \cdot a$

then there is a group homomorphism

$$\varphi: G \longrightarrow S_A$$
 defined by $\varphi(g) \coloneqq \sigma_g$

Proof. Let $g_1, g_2 \in G, a \in A$. We want to show that

$$\varphi(g_1g_2) = \varphi(g_1) \circ \varphi(g_2)$$

We need:

$$\varphi(g_1g_2)(a) = (\varphi(g_1) \circ \varphi(g_2))(a)$$

We have

$$\varphi(g_1g_2) = \sigma_{g_1g_2}(a)
= (g_1g_2) \cdot a
= g_1 \cdot (g_2 \cdot a)
= \sigma_{g_1}(\sigma_{g_2}(a))
= (\varphi(g_1) \circ \varphi(g_2))(a)$$

Remark 1.30. We have a correspondence from actions by G on A to homomorphisms from G to S_A . Can we invert this correspondence? Let $\varphi: G \to S_A$ be a homomorphism. Define a map

$$G \times A \longrightarrow A$$
 by $(g, a) \longmapsto g \cdot a = \varphi(g)(a)$

Claim: This is an action.

Proof.

$$1_G \cdot a = \varphi(1)(a)$$

= $\mathrm{id}_A(a)$ (Homomorphisms preserve identities)
= a

and

$$(g_1g_2) \cdot a = \varphi(g_1g_2)(a)$$

$$= (\varphi(g_1) \circ \varphi(g_2))(a) \quad \varphi \text{ is a homomorphism}$$

$$= \varphi(g_1)(\sigma_{g_2}(a))$$

$$= \sigma_{g_1}(\sigma_{g_2}(a))$$

Thus, we have a bijection between group actions by G on A and homomorphisms from $G \to S_A$.

Note. There is a bijection between group actions by a group G on a set A and $\ .$

There is a bijection between group actions by a group G on a set A and homomorphisms from G into S_A , the symmetric group on A.

Definition 1.31. A group action of G on A is faithful if every $g \in G$ induces a unique permutation on A. Equivalently,

$$\varphi: G \longrightarrow S_A = \operatorname{Aut}(A)$$
 $g \longmapsto (x \mapsto g \cdot x)$

is injective. Equivalently, the kernel of the action is the identity.

Definition 1.32. For any group (G, \cdot) , we can define an action of G on G:

$$G \times G \longrightarrow G$$
 $(g,a) \longmapsto gag^{-1}$

This is called conjugation by G.

2 Subgroups

2.1 Definition and Examples

Definition 2.1. If (G, \star) is a group, we say $H \subseteq G$ is a subgroup of G if $(H, \star|_H)$ is a group. We denote this $H \leqslant G$. If $H \neq G$, then H is a proper subgroup of G.

Lemma 2.2 (Necessary and Sufficient Conditions for Subgroups). If (G, \star) is a group, then $(H, \star|_H)$ is a group if and only if

1.
$$1_G \in H$$

- $2. h_1, h_2 \in H \implies h_1 \star h_2 \in H$
- 3. $h \in H \implies h^{-1} \in H$

Example 2.3. 1. If $G=(\mathbb{Z},+),\ n\in\mathbb{Z},\ \text{then}\ n\mathbb{Z}=\{nm|m\in Z\}$ is a subgroup of G.

2. If $G = (D_8, \circ)$, then $\{1, r, r^2, r^3\} \leqslant G$. You can see the relationships between more subgroups in Figure ??.

Figure 1: Some subgroups of D_8

2.2 Centralizers and Normalizers, Stabilizers and Kernels

Definition 2.4. If (G,\cdot) is a group and $a\in G$, then the centralizer of a is

$$C_G(a) := \left\{ g \in G | gag^{-1} = a \right\}$$

If $A \subseteq G$,

$$C_G(A) := \left\{ g \in G | gag^{-1} = h \ \forall a \in A \right\}$$

Note. What is the meaning of the centralizer of $A \subseteq G$? It is the set of elements that commute with g.

$$xgx^{-1} = g \iff xg = gx$$

Theorem 2.5 (Centralizers and Subgroups). If $H \subseteq G$ then $C_G(H)$ is a subgroup of G.

Proof. 1. Identity: $1a1^{-1} = a$ for all $a \in H$, so $1 \in C_G(H)$

2. Closure: Let $x, y \in C_G(H)$. Then for $z \in H$, we have

$$(xy)z(xy)^{-1} = xyzy^{-1}x^{-1} = xzx^{-1} = z$$

Definition 2.6. If (G, \cdot) is a group, then

$$Z(G) = \{g \in G | gx = xg \ \forall x \in G\} = C_G(G)$$

is the **center** (Zentrum) of G, the set of elements that commute with everything.

Definition 2.7. If $A \subseteq G$, we define

$$gAg^{-1} = \left\{ gag^{-1} | a \in A \right\}$$

for any $g \in G$. The normalizer of A in G is

$$N_G(A) = \left\{ g \in G | gAg^{-1} = A \right\}$$

Lemma 2.8 (Relationship Between the Normalizer and Centralizer). If $x \in C_G(A)$, then $xAx^{-1} = \{gag^{-1} | a \in A\} = A$, and so $C_G(A) \subseteq N_G(A)$.

Example 2.9.

$$C_{D_8}(r^2) = \{1, r, r^2, r^3, s, \ldots\} = D_8$$

since $sr^2 = r^{-2}s = r^2s$.

$$C_{D_8}(\{sr, sr^3\}) = \{1, r^2, sr, sr^3\}$$

Definition 2.10. The kernel of an action of (G, \cdot) on A is

$$\{g \in G | g \cdot a = a, \forall a \in A\}$$

Definition 2.11. If (G, \cdot) acts on A and $a \in A$, then the stabilizer of a in G is

$$G_s := \{g \in G | ga = a\}$$

This is a subgroup of G.

2.3 Cyclic Groups and Cyclic Subgroups

Definition 2.12. A group G is cyclic if it is generated by one element, i.e. there is some $x \in G$ such that

$$G = \{x^n (= nx) : n \in Z\}$$

We write

$$G = \langle x \rangle$$

Lemma 2.13. Cyclic groups are commutative.

Example 2.14.

$$\mathbb{Z} = \langle 1 \rangle$$
 $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$ $\langle r \rangle \leqslant D_{2n}$

Lemma 2.15 (The Order of Cyclic Subgroups). If

- a. G is a group
- b. (H, \cdot) is a subgroup of G
- c. H is cyclic

then

- $|H| = \infty$ if and only if $x^a \neq x^b$ for all $a, b \in \mathbb{Z}$ with $a \neq b$
- |H| = n for $n \in \mathbb{N}_{>0}$ if and only if $H = \{1, x, \dots, x^{n-1}\}$ and |x| = n.

Lemma 2.16. If $(G, \cdot, 1)$ is a group, then

- 1. If $x^n = 1$, $x^m = 1$, then $x^{\gcd(m,n)} = 1$
- 2. If $x^n = 1$, then |x||n
- 3. If $|x| = \infty$, then $|x^a| = \infty$
- 4. If $|x| = n < \infty 0$, then $|x^a| = \frac{n}{\gcd(n,a)}$
- 5. If $|x| = \infty$, then $H = \langle x^a \rangle \iff a = \pm 1$
- 6. If $|x| = n < \infty$, then $H = \langle x^a \rangle \iff \gcd(n, a) = 1$

Theorem 2.17 (Classification of Cyclic Groups). Any two cyclic groups of the same order are isomorphic.

1. If $\langle x \rangle$ and $\langle y \rangle$ are finite groups of order n, then

$$\varphi: \langle x \rangle \longrightarrow \langle y \rangle \qquad \qquad \varphi(x^a) \longmapsto y^a$$

2. If $\langle x \rangle$ is an infinite group, then

$$\psi: \mathbb{Z} \longrightarrow \langle x \rangle \qquad \qquad \psi(n) \longmapsto x^n$$

is an isomorphism.

Theorem 2.18. Let $H = \langle x \rangle$ be a cyclic group. Then every subgroup of H is cyclic, and is generated by x^a where a is the smallest possible integer such that $x^a \in K$ (or $K = \{1\}$).

Additionally, if $|H| = \infty$, then the subgroups generated by distinct powers of x are not equal.

If $|H| = n < \infty$ then for every d|n, there is a unique subgroup of H of order $d: \langle x^{nd^{-1}} \rangle$.

2.4 Subgroups Generated by Subsets of a Group

Example 2.19. If $A = \{x\}$, then $\langle A \rangle = \langle x \rangle$

Lemma 2.20 (The Intersection of Subgroups). If $\{H_i : i \in I\}$ is a collection of subgroups of a group $(G, \cdot, 1)$, then $H = \bigcap \{H_i : i \in I\}$ is a subgroup of G.

Definition 2.21. If $A \subseteq G$ for some group $(G, \cdot, 1)$, the subgroup generated by A is the intersection of all subgroups of G that contain A:

$$\langle A \rangle := \bigcap_{H \leqslant G, \ A \subseteq H} H$$

We write

$$\langle A \rangle = \langle a_1, \dots, a_k \rangle$$

if $\{a_1,\ldots,a_k\}$ and

$$\langle A \cup B \rangle = \langle A, B \rangle$$

Theorem 2.22. Define

$$\overline{A} = \{a_1^{\varepsilon_1} \cdot \dots \cdot a_n^{\varepsilon_n} | n \in \mathbb{Z}, \varepsilon_i \in \mathbb{Z}, a_i \in A \ \forall i\}$$

The set of all products of finite powers of a_i . Then $\overline{A} = \langle A \rangle$.

2.5 The Lattice of Subgroups of a Group

Definition. A lattice is a partially ordered set (L, \leq) where every two-element subset of L has both a least upper bound (supremum/join) and a greatest lower bound (infimum/meet).

Naturally, it follows via induction that all finite subsets of L have suprema and infima.

Definition 2.23. The lattice of subgroups of a group G is a lattice which has subgroups of G as elements and set inclusion as a partial order. The join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection.

3 Quotient Groups and Homomorphisms

3.1 Definitions and Examples

Consider the map $\varphi : \mathbb{Z} \to Z_n$, the cyclic group of order n. For any $x^a \in \mathbb{Z}$, we have $\varphi^{-1}(x^a) = a + nm$ for all $m \in \mathbb{Z}$. We also have that $\varphi^{-1}(1) = nm$ and all other fibers are translates of this by elements of \mathbb{Z} .

Definition 3.1. The kernel of a group homomorphism $\varphi: G \to H$ is the set of elements that map to the identity:

$$\ker(\varphi) \coloneqq \{g \in G | \varphi(g) = 1\} = \varphi^{-1}(1)$$

This is a subgroup of G.

Definition 3.2. If G, H are groups and $\varphi : G \to H$ is a group homomorphism, then we can make a group out of the fibers (preimages) of elements of G:

- The elements are "fibers", or preimages of elements a of G under φ , denoted $\varphi^{-1}(a)$.
- The operation is defined by

$$\varphi^{-1}(a) \cdot \varphi^{-1}(b) = \varphi^{-1}(ab)$$

we inherit associativity and identity for free from G.

If $K := \ker(\varphi)$, we call the above group the quotient group G/K (pronounced $G \mod K$).

Definition 3.3. Let $(H, \cdot, 1_H)$ be a subgroup of $(G, \cdot, 1_G)$ and $g \in G$. Then a left coset of H is

$$gH \coloneqq \{gn|n \in H\}$$

and the right coset of H is

$$Hg := \{ng | n \in H\}$$

The set of left cosets of H in G is G/H

Theorem 3.4. Let $\varphi: G \to H$ be a group homomorphism with $K = \ker(\varphi)$ and let $\varphi^{-1}(a) \in G/K$ be the fiber above a. Then

1. For any $g \in \varphi^{-1}(a)$,

$$\varphi^{-1}(a) = \{gu|u \in K\} = gK$$

2. For any $g \in \varphi^{-1}(a)$,

$$\varphi^{-1}(a) = \{ug | u \in K\} = Kg$$

Definition 3.5. If $\varphi: G \to H$ is a group homomorphism and $\varphi^{-1}(x)$ is the preimage of some element $x \in H$, then an element $g \in \varphi^{-1}(x)$ is called a representative of $\varphi^{-1}(x)$, and we write $gK = \varphi^{-1}(x)$. Any element in a coset is called a representative of that coset.

Definition 3.6. Let $(G, \cdot, 1_G)$ be a group and A be a G-set. We can define an equivalence relation \sim where

$$a \sim b \iff a = ab$$

for some $g \in G$. Then the equivalence class of $a \in A$ is the orbit of a under the action of G.

Theorem 3.7 (Left Cosets and Quotient Groups). If

- a. $(G, \star, 1_G), (H, \diamond, 1_H)$ are groups,
- b. $\varphi:G\to H$ is a group homomorphism,
- c. $K = \ker(\varphi)$

then the set G/K with the operation defined by

$$(gK) \bullet (hK) := (g \star h)K$$

for $g, h \in G$ forms a group.

- **Example 3.8.** Consider the groups $(\mathbb{Z}, +, 0)$ and \mathbb{Z}_n , the cyclic group of order n. Then $\ker(\varphi) = n\mathbb{Z}$, all the multiples of n. So the quotient is $\mathbb{Z}/n\mathbb{Z}$.
 - Consider the quotient of just one group: If we have $\varphi: G \to H$ where $\varphi(g) = 1$, then $\ker(\varphi) = G$, so $G/G \cong \{1\}$.
 - What about the identity morphism $\varphi: G \to G, \varphi(g) = g$? Then $\ker(\varphi) = 1$, and $G/\{1\} \cong G$.
 - How about the map $\varphi : \mathbb{R}^2 \to \mathbb{R}$, $\varphi(x,y) = x$? Then $\ker \varphi = \{(0,y)|y \in \mathbb{R}\} = \{0\} \times \mathbb{R}$ so our quotient group is $\mathbb{R}^2/\mathbb{R} \cong \mathbb{R}$.

Lemma 3.9 (Cosets of a Subgroup). Let N be a subgroup of G. Then the set of left cosets of N forms a partition of G. Furthermore, for all $u, v \in G$, we have

$$uN = vN \iff v^{-1}u \in N$$

Lemma 3.10. If $(N, \cdot, 1_G)$ is a subgroup of $(G, \cdot, 1_G)$, then

- 1. The operation on the set of left cosets given by $uN \star gN = (uv)N$ is well-defined if and only if $gng^{-1} \in N$ for all $g \in G, n \in N$.
- 2. If this operation is well-defined, then the set of left cosets is a group under this operation with identity 1_GN and inverses $(gN)^{-1} = g^{-1}N$.

Definition 3.11. For a group $(G,\cdot,1_G)$ and subgroup $(N,\cdot,1_G)$ and elements $g\in G, n\in N$, the element gng^{-1} is called the conjugate of n by g. The set gNg^{-1} is the conjugate of N by g. If $gNg^{-1}=N$, then we say that g normalizes N. A subgroup N of a group G is normal if every element of G normalizes it: $\{gNg^{-1}|g\in G\}=N$, i.e. the left cosets of N form a group. We write this $N \triangleleft G$.

Lemma 3.12 (When is a Subgroup Normal?). A subgroup N of a group G is normal if and only if it is the kernal of some homomorphism from G to some other group.

Definition 3.13. The map

$$\pi: G \longrightarrow N$$
 defined by $\pi(g) \coloneqq gN$

is a group homomorphism, called the natural projection. Its kernel is N.

Definition 3.14. If \overline{H} is a subgroup of G/N, the complete preimage of \overline{H} is the preimage of H under the natural projection. It is a subgroup of G: $\pi^{-1}(\overline{H}) \leq G$, and contains $N: N \leq \pi^{-1}(H)$.

Note. For a group G, what is G/G?

$$G/G \cong 1_G$$

Note. For a group G, what is G/1?

$$G/1 \cong G$$

Note. All subgroups of an Abelian group are _. All subgroups of an Abelian group are normal.

3.2 More on Cosets and Lagrange's Theorem

Another intro to cosets:

Definition 3.15. Let $(G, \cdot, 1)$ be a group and H a subgroup. Define a relation on a G by $x \sim y$ iff $y^{-1}x \in H$. This is an equivalence.

The left coset of H containing x is the equivalence class containing x under \sim , denoted xH.

Theorem 3.16 (Lagrange's Theorem). If $(G, \cdot, 1)$ is a finite group and H is a subgroup of G, then |H| divides |G|, and the number of cosets of H in G is |G|/|H|.

Definition 3.17. If G is a finite group and H is a subgroup, then the positive integer

 $\frac{|G|}{|H|}$

guaranteed by Lagrange's Theorem is the index of H in G.

More generally, the index of H in G is the number of left cosets of H in G.

Definition 3.18. If H, K are subgroups of G, then

$$HK \coloneqq \{hk|h \in H, k \in K\} \subseteq G$$

and

$$hK := \{hk | k \in K\} \subseteq G$$

Lemma 3.19.

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

Lemma 3.20. If G is a group with subgroups of K, H, then HK is a subgroup of G if and only if HK = KH.

Theorem 3.21 (Cauchy's Theorem). If

- a. G is a finite group
- b. $p \in \mathbb{N}$ is a prime dividing G

then G has an element of order p.

Theorem 3.22 (Groups of Prime Order). If $(G, \cdot, 1)$ is a group of prime order, then G is cyclic.

Corollary: all groups of a given prime order are isomorphic.

Proof. Let $x \in G, x \neq 1$. Then $|x| = |\langle x \rangle| > 1$ and |x| ||G|. Since |G| is prime, |x| = p so $G = \langle x \rangle$.

Lemma 3.23 (Subgroup Products and the Normalizer). Let $H, K \leq G$ with $H \leq N_G(K)$. Then $HK \leq G$.

3.3 The Isomorphism Theorems

Theorem 3.24 (First Isomorphism Theorem for Groups). If $\varphi : G \to H$ is a group homomorphism, then $\ker \varphi \subseteq G$ and $G/\ker \varphi \cong \varphi(G)$.

Corollary 3.25. If $\varphi : G \to H$ is a group homomorphism, then φ is injective if and only if $\ker \varphi = \{1\}$.

Theorem 3.26 (Second Isomorphism Theorem). If

- a. A, B, G are groups,
- b. A, B are subgroups of G,
- c. A is a subgroup of $N_G(B)$,

then $B \subseteq AB$, $A \cap B \subseteq A$, and

$$AB/B \cong A/(A \cap B)$$

Theorem 3.27 (Third Isomorphism Theorem). Let $K \subseteq H \subseteq G$ and $K \subseteq H$. Then

$$H/_K \unlhd G/_K$$

and

$$(G/K) / (H/K) \cong G/H$$

Note. When does a group homomorphism $\Phi: G \to H$ factor through G/N? What does that even mean?

If $N \leq \ker \Phi$, then we can define a homomorphism

$$\varphi: G/N \longrightarrow H$$
 $\varphi(gN) := \Phi(g)N.$

This homomorphism is well-defined and unique. It is called the induced homomorphism. If we let

$$\pi: G \longrightarrow G/N$$
 $\pi(g) \coloneqq gN$

be the natural projection, than for any Φ , the following diagram commutes:

3.4 The Hölder Program and Simple and Solvable Groups

Lemma 3.28 (Finite Groups and Elements of Prime Order). Let $(G, \cdot, 1_G)$ be a finite commutative group and p a prime dividing |G|. Then $\exists g \in G$ such that |g| = p.

Definition 3.29. A group $(G, \cdot, 1)$ is simple if the only normal subgroups of G are the trivial ones $(\{1\}, G)$.

Theorem 3.30 (Feit-Thompson). If G is an odd-order simple group, then $G \cong \mathbb{Z}_p$ for some prime p. This result was ~ 250 pages.

Definition 3.31. A group G is solvable if there is a chain of subgroups $\{1\} = G_0 \leq G_1 \leq \cdots \leq G_s = G$ such that G_{i+1}/G_i is commutative for $i = 0, \ldots, s-1$.

Theorem 3.32. If

- a. G is a group with normal subgroup N,
- b. N is solvable, and
- c. G/N is solvable,

then G is solvable.

3.5 Transpositions and the Alternating Group

Definition 3.33. A two-cycle in the symmetric group S_n is also called a transposition. We can write a general cycle $(a_1 \ldots a_m) \in S_n$ as

$$(a_1 \ldots a_m) = (a_1 \ a_m)(a_1 \ a_{m-1}) \cdots (a_1 a_2)$$

i.e. the product of two-cycles. Thus, the symmetric group is generated by transpositions.

Definition 3.34. The alternating group is the subgroup of S_n containing all permutations that can be written as the product of an even number of transpositions.

Example 3.35. The alternating group is the subgroup of S_n that is made of permutations that are the product of an even number of transpositions.

Theorem 3.36 (The Order of $|S_n/A_n|$). For all $n \geq 2$, $|S_n/A_n| = 2$.

4 Group Actions

4.1 Group Actions and Permutation Representations

Theorem 4.1. Let G be a finite group and p the smallest prime dividing |G|. Then any subgroup $H \subseteq G$ of index p is normal.

Note. The kernel of a group action $\cdot: G \times A \to A$ is the same as $_$. The kernel of the associated permutation representation

$$\sigma_q: A \longrightarrow A$$
 $\sigma_q(a) \coloneqq g \cdot a$,

or the intersection of the stabilizers of all the $a \in A$.

Example 4.2. Consider S_n where $n \ge 3$. We have $A_n \le S_n$ with $|S_n : A_n| = 2$. By the above theorem, $A_n \le S_n$, so S_n is not simple for $n \ge 3$.

Theorem 4.3 (Orbit-Stabilizer Coset Correspondence). Let G act on A. Then the relation $a \sim b \iff \exists g \in G \text{ such that } a = gb \text{ is an equivalence}$ relation on A. Let $G_a = \{g \in G | ga = a\}$ the stabilizer of a in G, and $G \cdot a = \{g \cdot a | g \in G\}$ the orbit of a in G. Then $|G \cdot a| = |G : G_a|$.

Definition 4.4. A group action is transitive if it has only one orbit.

4.2 Groups Acting on Themselves by Left Multiplication—Cayley's Theorem

Theorem 4.5 (Cayley's Theorem). Every group G is isomorphic to some subgroup of a symmetric group. Specifically, if |G| = n, then G is isomorphic to a subgroup of S_n .

4.3 Groups Acting on Themselves by Conjugation—The Class Equation

Definition 4.6. For $a, b \in G$, we say that a is conjugate to b if $\exists g \in G$ such that $a = gbg^{-1}$. In fact, G acts on itself via conjugation:

$$: G \times G \longrightarrow G \qquad (g, a) \xrightarrow{\cdot} gag^{-1}$$

The orbits of this action are called conjugation classes, often denoted $[a] = \{gag^{-1} : g \in G\}.$

Two sets are conjugate if $\exists g \in G$ such that $S = gTg^{-1}$.

Note. What is the conjugation class of $c \in C_G(G) = Z(G)$? $\{c\}$, since it commutes with everything, $gcg^{-1} = c$, $\forall g$.

Note. A normal subgroup is conjugate to _. itself.

Theorem 4.7. The number of conjugates of $S \subseteq G$ is $|G: N_G(S)|$. In particular, the number of conjugates of $s \in G$ is $|G: C_G(s)|$.

Theorem 4.8 (The Class Equation). Let G be a finite group and $g_1, \ldots, g_r \in G$ be representatives of the conjugacy classes of G not contained in $C_G(G)$. Then

$$|G| = |C_G(G)| + \sum_{i=1}^r |G : C_G(g_i)|$$

Theorem 4.9. If G is a group with order p^a for some prime p, then $C_G(G)$ is non-trivial.

Proof. Since |G| is p^a , if $g_i \notin C_G(G)$, then $|G:C_G(G)| = p^b$ for some b < a. Then the class equation gives

$$p^a = |C_G(G)| + pn$$

for some 0 < n < a, so $p||C_G(G)|$.

Corollary 4.10. If $|G| = p^2$ for some prime p, then G is commutative. Moreover, G is isomorphic to Z_{p^2} or $Z_p \times Z_p$.

4.3.1 Conjugacy in S_n

Lemma 4.11. If $\sigma, \tau \in S_n$ and

$$(a_1 \ a_2 \ a_3 \ \ldots)(b_1 \ b_2 \ b_3 \ \ldots)$$

then

$$\tau \circ \sigma \circ \tau^{-1} = (\tau a_1 \ \tau a_2 \ \tau a_3 \ \ldots)(\tau b_1 \ \tau b_2 \ \tau b_3 \ \ldots)$$

Definition. Let $\sigma \in S_n$ and assume σ can be written as disjoint cycles of lengths $n_1 \leq n_2 \leq \cdots \leq n_k$. Then n_1, \ldots, n_k is the cycle type of σ .

4.4 Automorphisms

Definition 4.12. An isomorphism of a group onto itself is an automorphism. The set of automorphisms of a group G is itself a group under composition, denoted $\operatorname{Aut}(G)$.

Theorem 4.13 (Conjugating a normal subgroup). If H is a normal subgroup of G, then G acts on H by conjugation:

$$G \times H \longrightarrow H$$
 $(g,h) \longmapsto ghg^{-1}$

and for each $g \in G$, conjugation by g is an automorphism of H. The permutation representation of this action is a homomorphism of G into Aut(H).

Definition 4.14. If G is a group, then conjugation of G by g is an inner automorphism. The subgroup of $\operatorname{Aut}(G)$ consisting of all inner automorphisms is denoted $\operatorname{Inn}(G)$.

Definition 4.15. A subgroup H of a group G is characteristic if every automorphism of G maps H to itself, i.e. $\sigma(H) = H$ for all $\sigma \in \operatorname{Aut}(G)$.

Theorem 4.16 (Properties of characteristic subgroups). 1. Characteristic subgroups are normal.

- 2. If H is the unique subgroup of G of a given order, then H is characteristic in G.
- 3. If K is characteristic in H and $H \subseteq G$, then $K \subseteq G$.

4.5 The Sylow Theorems

Definition 4.17. A group G of prime order p is a p-group, a subgroup of G of prime order p is a p-subgroup, and if G is of order $p^a m$ where p is prime and $p \nmid m$, then a subgroup of order p^a is a Sylow p-subgroup of G.

Theorem 4.18 (Sylow's theorem (simplified)). If

- a. $(G,\cdot,1)$ is a group,
- b. $|G| = p^a m$ for prime p with $p \nmid m$,

then there are Sylow p-subgroups of G, they are all conjugate to one another, and the number of Sylow p-subgroups is of the form 1 + kp for $k \in \mathbb{N}$.

Corollary 4.19. If P is a Sylow p-subgroup of G, then the following are equivalent:

- 1. P is the unique p-subgroup of G,
- 2. P is normal in G, and
- 3. P is characteristic in G.