* Now we will talk about **testing**.

** Testing linear parametric functions (first principles test)

** Testing models

** Confidence intervals and multiple comparisons

Consider two-way crossed model wil · Ex 1 (Interaction)

interactions

$$y_{ijk} = \mu + \alpha_i + \beta_j + \delta_{ij} + \epsilon_{ijk}$$
, $i=1, ..., \alpha(=2)$
 $j=1, ..., b(=2)$
 $k=1, ..., n_{ij}(=2)$

for no interactions 169t Goal:

model comparison

creduced)

(full model)

$$r(x_0) = 3 = a + b - 1$$

$$= 2 + 2 - 1$$

$$= 3$$

$$(4/+3/+8/1) - (4/+3/+8/1+8/1)$$

$$= (4/+3/2+8/2+8/2) - (4/+3/2+8/2+8/2)$$

$$8/11 - 8/21 = 8/12 - 8/22$$

Ho:
$$\lambda^T \beta = 0$$
 where $\lambda = [0000001-1-11]^T$

VS Ha: $\lambda^T \beta \neq 0$

$$y_{ij} = \mu + \alpha_i + e_{ij}$$
, $i = 1, 2, 3$
 $j = 1, ..., \frac{n_i}{2}$

(a) want to test the hypothesis of a linear effect w/
the group covariate
$$X_k^* = \hat{v}$$
 (linear erend)

A. model comparison

Ho:
$$y\eta = \mu + i\alpha + eij$$
 $x_0 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & 2 & 1 & 2 & 0 & 0 & 0 \\ 1 & 3 & 1 & 3 & 1 & 0 & 0 \\ 1 &$

Yank (Yo) = 2

Ho:
$$d_1 - d_2 = d_2 - d_3$$
 $\chi \beta = 0$ $\chi = [01 - 21]$
VS H4: $d_1 - d_2 + d_2 - d_3$ $\chi \beta \neq 0$

Ho:
$$4ij = \mu + eij$$
 US Ha: $4ij = \mu + \alpha i + eij$ rank(x)=3

B. linear hypothesis

$$\begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Lambda$$
: sxp = 2x4

· Ex 2 (General Subset)

Test if
$$\beta_i = 0$$

A. Model Comparison

e(x)

$$rank(x)=r$$

B. Linear Hypothesis

idity?
$$e(P_X - P_{Xo}) = e(Xo)_{e(X)}^{\perp} = e((I - P_{Xo})X) = e((I - P_{Xo})X_i)$$

The perpendicular projection operator onto = S

orthogonal complement of $e(Xo)$ with respect to

- \clubsuit Given the Gauss-Markov model with normal errors, $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I)$, let's consider the general *linear* hypothesis.
- * Consider a system of linear equations:

$$H_0: \Lambda^T \boldsymbol{\beta} = \mathbf{m}$$
 vs $H_1: \Lambda^T \boldsymbol{\beta} \neq \mathbf{m}$

- \bullet Λ is $p \times s$ with full-column rank (to avoid redundancy in writing hypotheses).
- ullet Each component of $\Lambda^T eta$, $oldsymbol{\lambda}^T eta$ is estimable $(oldsymbol{\lambda} \in \mathcal{C}(oldsymbol{X}^T))$

Let's do testing models.

Start with a model that we assume valid

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}, \qquad \mathbf{e} \sim N_n(\mathbf{0}, \sigma^2 I).$$
 (1)

Our wish is to reduce this model (i.e. simpler model, putting more constraints on the estimation space)

$$\mathbf{y} = \mathbf{X}_0 \boldsymbol{\gamma} + \mathbf{e}, \qquad \mathbf{e} \sim N_n(\mathbf{0}, \sigma^2 I) \qquad C(\mathbf{X}_0) \in C(\mathbf{X}).$$
 (2)

Note: if the reduced model is correct, the big model is also correct. Our question is whether the reduced model is correct.

}

- Given the Gauss-Markov model with normal errors, $\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I)$, let's consider the general *linear* hypothesis.
- * Consider a system of linear equations:

$$\Lambda^{\mathsf{T}} \beta = \mathbf{0}$$

$$\mathcal{B}$$

$$\mathsf{Fank}(\Lambda) = \mathbf{S} H_0 : \Lambda^T \boldsymbol{\beta} = \mathbf{m} \qquad \mathsf{vs} \qquad H_1 : \Lambda^T \boldsymbol{\beta} \neq \mathbf{m}$$

- Λ is $p \times s$ with full-column rank (to avoid redundancy in writing hypotheses). $\Lambda = [\lambda_1 : \lambda_2 : \dots : \lambda_s]$
- ullet Each component of $\Lambda^T eta$, $oldsymbol{\lambda}^T eta$ is estimable $(oldsymbol{\lambda} \in \mathcal{C}(oldsymbol{X}^T))$

13 / 46

† Def 6.1 The general linear hypothesis $H_0: \Lambda^T \beta = \mathbf{m}$ is **testable** iff Λ has full-column rank and each component of $\Lambda^T \beta$ is <u>estimable</u>. If any of the components of $\Lambda^T \beta$ are not estimable, then the hypothesis is considered **nontestable**.

* Intuition?

14/46

* Ex3 (contd): Consider the one-way ANOVA model;

$$y_{ij} = \mu + \alpha_i + e_{ij}, i = 1, 2, 3$$
 and $j = 1, 2$.

•
$$\lambda_1^T = [0, 1, 0, -1]$$
 $d_1 = \alpha_2 = 0$ \Rightarrow reduce $r(x)$

noneseimable
$$\lambda_{2}^{T} = [0, 1, 1, 1] \qquad \begin{array}{c} \lambda_{1}^{T} = 0 \\ \lambda_{2} \notin e(x^{T}) \end{array}$$

$$\lambda_{2}^{T} = [0, 1, 1, 1] \qquad \begin{array}{c} \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \end{array}$$

$$d_1 + d_2 + d_3 = 0$$

$$\sum \alpha_i = 0$$

does not reduce r(x)

* Recall: we found that the BLUE of $\Lambda^T \beta$, $\Lambda^T \hat{\beta}$ follows

$$\Lambda^{T} \hat{\boldsymbol{\beta}} \sim N_{s}(\Lambda^{T} \boldsymbol{\beta}, \sigma^{2} \Lambda^{T} (\mathbf{X}^{T} \mathbf{X})^{-} \Lambda).$$

$$= \Lambda^{T} (\mathbf{X}^{T} \mathbf{X})^{T} \mathbf{X}^{T} \mathbf{y}$$

• Result 6.3 If $\Lambda^T \beta$ is estimable, then $s \times s$ matrix $\mathbf{H} = \Lambda^T (\mathbf{X}^T \mathbf{X})^- \Lambda$ is nonsingular. $\Rightarrow \Lambda^T \hat{\beta}$ is nonsingular!

* We have $\Lambda^T \hat{\boldsymbol{\beta}} - \mathbf{m} \sim N_s(\Lambda^T \boldsymbol{\beta} - \mathbf{m}, \sigma^2 \mathbf{H})$.

$$\Rightarrow (\Lambda^T \hat{\boldsymbol{\beta}} - \mathbf{m})^T (\sigma^2 \mathbf{H})^{-1} (\Lambda^T \hat{\boldsymbol{\beta}} - \mathbf{m}) \sim \chi^2(\boldsymbol{s}, \phi)$$
where $\phi = \frac{1}{2} (\Lambda^T \boldsymbol{\beta} - \mathbf{m})^T (\sigma^2 \mathbf{H})^{-1} (\Lambda^T \boldsymbol{\beta} - \mathbf{m})$

where $\phi = \frac{1}{2} (\Lambda^T \beta - \mathbf{m})^T (\sigma^2 \mathbf{H})^{-1} (\Lambda^T \beta - \mathbf{m})$ H: nonsingular \Rightarrow HT : positive definit

 $\chi^{T}(H^{-1})\chi > 0$ for all $x \neq 0$

* $\phi > 0$ for $(\Lambda^T \boldsymbol{\beta} - \mathbf{m}) \neq \mathbf{0}$. Why?

$$\sqrt{\beta} - m = 0 \rightarrow \phi = 0$$

The

$$\frac{(\Lambda^{2}\beta - m)^{T} H^{+}(\Lambda^{r}\beta - m)}{\sigma^{2}} \sim \chi^{2}(s, \phi)$$

$$SSE = V^{T}(I-P)Y \qquad \frac{(\chi p)^{T}(I-p)(\chi p)}{z\sigma^{2}} \qquad In \lambda \epsilon p$$

$$\frac{Y^{T}(I-P)Y}{\sigma^{2}} \sim \chi^{2}(n-r, o) \perp \Lambda^{2}\beta$$

$$\frac{(\Lambda^{T}\hat{\beta}-m)^{T}H^{-1}(\Lambda^{T}\hat{\beta}-m)}{\sqrt{\sqrt{(I-P)}\sqrt{(n-r)}}} > F(s, n-r, \phi)$$

$$\sim F(s, n-r, \phi)$$
 $\sim F(s, n-r, \phi)$
 $\sim F(s, n-r, \phi)$

MSE

$$\Rightarrow$$
 under Ho; NB=m, $\phi = 0$

reject to if
$$F > F_{\alpha}(s, n-r)$$

* Consider

$$F = \frac{(\Lambda^T \hat{\boldsymbol{\beta}} - \mathbf{m})^T (\sigma^2 \mathbf{H})^{-1} (\Lambda^T \hat{\boldsymbol{\beta}} - \mathbf{m})/s}{SSE/(n-r)} \sim F(S, n-r, \phi)$$

 \mathbb{Q} : What is the distribution of F?

* Resulting test procedure: Reject H_0 if

$$F = \frac{(\Lambda^T \hat{\boldsymbol{\beta}} - \mathbf{m})^T (\sigma^2 \mathbf{H})^{-1} (\Lambda^T \hat{\boldsymbol{\beta}} - \mathbf{m})/s}{SSE/(n-r)} > F_{\alpha}(s, n-r)$$

** test with level α

** increasing power when the alternative is true

19 / 46

 \clubsuit Let's consider s=1, that is, test $H_0: \lambda^T \beta = m$.

$$egin{aligned} oldsymbol{\lambda}^T \hat{oldsymbol{eta}} - m &\sim \mathsf{N}(oldsymbol{\lambda}^T oldsymbol{eta} - \mathbf{m}, \sigma^2 oldsymbol{\lambda}^T (\mathbf{X}^T \mathbf{X})^- oldsymbol{\lambda}). \end{aligned}$$
 $\Rightarrow \quad (oldsymbol{\lambda}^T \hat{oldsymbol{eta}} - m) / \sqrt{\sigma^2 oldsymbol{\lambda}^T (\mathbf{X}^T \mathbf{X})^- oldsymbol{\lambda}} \sim \mathsf{N}(oldsymbol{\lambda}^T oldsymbol{eta} - \mathbf{m}, 1)$

* Consider

$$t = (\boldsymbol{\lambda}^T \hat{\boldsymbol{\beta}} - m) / \sqrt{\hat{\sigma}^2 \boldsymbol{\lambda}^T (\mathbf{X}^T \mathbf{X})^{-} \boldsymbol{\lambda}}$$

Q: What is the distribution of t? $t = \frac{\lambda^{\tau} \beta - m}{\sqrt{\sigma^2 \lambda^{\tau} (\lambda^{\tau} \lambda)^{-} \lambda}}$

under Ho:
$$ATB=My$$
 $\Rightarrow \phi=0$

Roject Ho If $|+|>\pm\alpha_{1/2}(n-r)'$
 $20/46$

Let's do testing models.

Start with a model that we assume valid

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}, \quad \mathbf{e} \sim N_n(\mathbf{0}, \sigma^2 I).$$
 Full model (3)

Our wish is to reduce this model (i.e. simpler model, putting more constraints on the estimation space)

$$\mathbf{y} = \mathbf{X}_0 \boldsymbol{\gamma} + \mathbf{e}, \quad \mathbf{e} \sim N_n(\mathbf{0}, \sigma^2 I) \quad C(\mathbf{X}_0) \stackrel{\subset}{\boldsymbol{\omega}} C(\mathbf{X}).$$
 (4)

Note: if the reduced model is correct, the big model is also correct. Our question is whether the reduced model is correct.

* Ex3 (contd): Consider the one-way ANOVA model;

$$y_{ij} = \mu + \alpha_i + e_{ij}, i = 1, 2, 3$$
 and $j = 1, 2$.

• Define the reduced model to test for no treatment effects.

$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad X_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Define the reduced model to test $\alpha_1 - \alpha_3 = 0$.

* Ex4: Consider the full multiple regression the one-way ANOVA model;

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + e_i, i = 1, 2, 3 \text{ and } j = 1, 2.$$

• Define the reduced model to test whether x_1 and x_3 are adding significantly to the explanatory capability of the regression model.

• Define the reduced model to test $\beta_2 - \beta_3 = 0$. ($\beta_2 = \beta_3$)

$$y_{i} = y_{0} + y_{1} \times x_{1} + y_{2} \times x_{2} + y_{3} + e_{i}$$

$$y = \begin{bmatrix} y_{0} \\ y_{1} \\ y_{2} \end{bmatrix}$$

$$\beta = \begin{bmatrix} \beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{bmatrix}$$

$$23/46$$

* Consider the following hypothesis.

$$H_0: \mathsf{E}(\mathbf{y}) = \mathbf{X}_0 \gamma$$
 for some $\gamma \Leftrightarrow H_0: \mathsf{E}(\mathbf{y}) \in C(\mathbf{X}_0)$

versus

Q: How to build a test statistic?

• Recall! Let **P** and **P**₀ be the perpendicular projection operators onto $C(\mathbf{X})$ and $C(\mathbf{X}_0)$, respectively.

With $C(\mathbf{X}_0) \subset C(\mathbf{X})$, $\mathbf{P} - \mathbf{P}_0$ is the perpendicular projection operator onto the orthogonal complement of $C(\mathbf{X}_0)$ with respect to $C(\mathbf{X})$, that is, $C(\mathbf{P} - \mathbf{P}_0) = C(\mathbf{X}_0)^{\perp}_{C(\mathbf{X})}$.

 $\hat{\mathbf{y}} = \mathbf{P}\mathbf{y}$ and $\hat{\mathbf{y}} = \mathbf{P}_0\mathbf{y}$ are estimates of $\mathbf{E}(\mathbf{y})$ under models (1) and (2), respectively.

E(Y)= XB

If model (2) is true,

* $\mathbf{P}\mathbf{y}$ and $\mathbf{P}_0\mathbf{y}$ are estimates of the same quantity

$$*\ \mathsf{E}(\mathbf{P}-\mathbf{P}_0)\mathbf{y}=\mathbf{0}.$$

$$\Rightarrow$$
 small $\mathbf{P}\mathbf{y} - \mathbf{P}_0\mathbf{y} = (\mathbf{P} - \mathbf{P}_0)\mathbf{y}$

reduced medel

• If model (2) is NOT true,

$$* E(y) = X\beta \in C(X) = C(P)$$

$$* \mathbf{P}_0 \mathsf{E}(\mathbf{y}) = \mathbf{P}_0 \mathbf{X} \boldsymbol{\beta} \neq \mathsf{E}(\mathbf{y})$$

* Py and P_0y estimate different things.

$$\Rightarrow$$
 large $Py - P_0y = (P - P_0)y$

- The difference is $\mathbf{P}\mathbf{y} \mathbf{P}_0\mathbf{y} = (\mathbf{P} \mathbf{P}_0)\mathbf{y}$.
- * The length of the difference is $\|(P-P_0)y O\|^2 = y^T(P P_0)y$
- * The distribution of $\mathbf{y}^T(\mathbf{P} \mathbf{P}_0)\mathbf{y}$?

=
$$\| (P-P_0)y \|^2$$

= $((P-P_0)y)^T((P-P_0)y)$
= $y^T(P-P_0)y$