Лекция 8

Определение. f — допустимая функция на [a,b) $\int_a^b f$ — абсолютно сходится, если:

- 1. $\int_a^b f$ сходится
- 2. $\int_{a}^{b} |f| \text{сходится}$

Теорема 1. $f - \partial$ on. на [a, b). Тогда эквивалентны следующие утверждения:

- 1. $\int_a^b f$ сходится
- 2. $\int_a^b |f| \operatorname{cxodumca}$
- 3. $\int_{a}^{b} f^{+}, \int_{a}^{b} f^{-}$ оба сходятся

Доказательство. $1\Rightarrow 2$ — тривиально

$$2 \Rightarrow 3: 0 \le f^{\pm} \le |f|$$

$$3 \Rightarrow 1: f = f^{+} - f^{-} \Rightarrow \int_{a}^{b} f = \int_{a}^{b} f^{+} - \int_{a}^{b} f^{-}$$

Пример.

$$\int_{10}^{+\infty} \frac{\sin x}{x} dx \stackrel{\text{to yactsm}}{=} \left[\begin{array}{cc} u = \frac{1}{x} & du = -\frac{1}{x^2} dx \\ dv = \sin x dx & v = -\cos x \end{array} \right] = -\cos \frac{1}{x} \bigg|_{10}^{+\infty} - \int_{10}^{+\infty} \frac{\cos x}{x^2} dx$$

Также можно было оставить нижнюю границу 0, но использовать $v=1-\cos x$ Первое слагаемое очевидно конечно, а второе конечно по абсолютной сходимости: $\left|\frac{\cos x}{x^2}\right| \leq \frac{1}{x}$. Тогда искомый интеграл сходится.

Пример.

$$\int_{1}^{+\infty} \frac{\sin x}{x^{p}}$$

- При каких p сходится?
- При каких p абсолютно сходится?
- 1. $p>1\Rightarrow$ абсолютно сходится, т.к. $\left|\frac{\sin x}{x^p}\right|<\frac{1}{x^{p-1}}$
- 2. $p > 0 \Rightarrow$ сходится, т.к. (по частям):

$$\int_{1}^{+\infty} \frac{\sin x}{x^p} = -\frac{\cos x}{x^p} \bigg|_{1}^{+\infty} - p \int_{1}^{+\infty} \frac{\cos x}{x^{p+1}}$$

Первое конечно, второе абсолютно сходится.

3. $p \le 0$, по критерию Коши:

$$\exists A_n,B_n\to b\quad \int_{A_n}^{B_n}f\not\to 0\Rightarrow \int_a^bf\ \text{расходится}$$

$$A_n:=2\pi n,B_n:=2\pi n+\pi\quad \int_{A_n}^{B_n}\frac{\sin x}{x^p}dx\geq (2\pi n)^{-p}\int_{A_n}^{B_n}\sin x\ \text{расходится}$$

Итого для $p \leq 0$ расходится.

4.
$$0$$

M3137y2019

Скипнуто до конца лекции

Пример. Интеграл Дирихле.

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

М3137у2019 Лекция 8