1. Preliminaries

Let k be a Noetherian commutative ring, A a $\mathbb{Z}_{\geq 0}$ -graded right Noetherian ring. Denote by Gr-A (resp. gr-A) the category of graded right A-modules (resp. finite) with morphisms

$$\operatorname{Hom}_{\operatorname{Gr}-A}(M,N) = \{ f \in \operatorname{Hom}_{A}(M,N) \mid f(M_{d}) \subseteq N_{d} \}.$$

This is a Grothendieck category with injective envelopes. That is,

- Gr-A is abelian (zero object, finite biproducts, all kernels and cokernels, monics and epics are normal—every monic is a kernel and every epic is a cokernel),
- every family of objects has a direct limit/filtered colimit,
- the presheaf h^A : Gr-A $\to \mathfrak{Set}$ is faithful; for any morphism $M \to N$ the morphism

$$\operatorname{Hom}_{\operatorname{Gr}-A}(M,N) \longrightarrow \operatorname{Hom}_{\mathfrak{Set}}(h^A(M),h^A(N))$$

$$f \longmapsto h^A(f)$$

is injective.

Definition 1. A full subcategory, \mathscr{A} , of \mathscr{C} is called a Serre (or épaisse/thick/dense) subcategory if for any short exact sequence

$$0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$$

of \mathscr{C} , X is an object of \mathscr{A} if and only if both X' and X'' are.

Denote by Tors (resp. tors) the Serre subcategory of torsion modules (resp. finite), where a module M is called torsion if

$$\tau(M) = \{ m \in M \mid xA_{>s} = 0 \text{ for some } s \} = M$$

2. Quotient Categories

Throughout, let $\mathscr C$ be an abelian category.

Definition 2. Let X be an object of \mathscr{C} . For two subobjects $i_1: X_1 \to X$ and $i_2: X_2 \to X$ denote by $X_1 \cap X_2$ the fibered product

$$X_1 \cap X_2 \xrightarrow{x_2'} X_1$$

$$\downarrow^{x_1'} \qquad \downarrow^{i_1}$$

$$X_2 \xrightarrow{i_2} X$$

and denote by $X_1 + X_2$ the fibered coproduct

$$X_1 \cap X_2 \xrightarrow{i_2'} X_1$$

$$\downarrow^{i_1'} \qquad \downarrow^{u_1}$$

$$X_2 \xrightarrow{u_2} X_1 + X_2.$$

These are both subobjects of X and endow the subobjects of X with lattice structure under the relation

$$X_1 \leq X_2$$

if there exists a monomorphism making the diagram

$$X_1 \xrightarrow{\exists 1} X_2$$

$$X_1 \xrightarrow{i_1} X_2$$

commute.

Remark 1. Alternatively, one can construct $X_1 + X_2$ as the image of the morphism s below

Definition 3. Given an object X of \mathscr{C} , an essential extension is a monomorphism $i: X \to E$ such that for any non-zero subobject $E' \to E$, $E \cap X$ is non-zero.

If E is an injective object, then we say that i is an injective envelope/hull.

Proposition 1. Let $f: X \to Y$ be a morphism of \mathscr{C} . The following are equivalent

(1) For any subobject $Y' \to Y$, in the pullback diagram

$$\begin{array}{ccc}
f^{-1}(Y') & \longrightarrow X \\
\downarrow & & \downarrow f \\
Y' & \longrightarrow Y
\end{array}$$

$$f^{-1}(Y') = 0 \text{ implies } Y' = 0, \text{ and }$$

(2) if $\zeta: Z \to X$ is a morphism such that $\ker(f \circ \zeta) = \ker f$, then f is a monomorphism.

In particular, f is an essential extension if and only if whenever $f \circ \zeta$ is a monomorphism, ζ is a morphism.

Proposition 2. Let Q be an object of \mathscr{C} . The following are equivalent.

- (a) Q is injective,
- (b) every morphism $X \to Q$ lifts over monics,

- (c) the presheaf of abelian groups h_Q is exact, and
- (d) every short exact sequence

$$0 \longrightarrow Q \longrightarrow X \longrightarrow X/Q \longrightarrow 0$$

splits.

Definition 4. We say that a subobject, X', of an object, X, is an \mathscr{A} -subobject of X if X' is an object of \mathscr{A} . We say that an \mathscr{A} -subobject, X', is maximal if for every \mathscr{A} -subobject X'' we have a commutative diagram

If X has no non-zero $\mathscr A$ subobjects, then we say that X is $\mathscr A$ -torsionfree.

Proposition 3. Let X and Y be objects of \mathscr{C} . The collection of pairs of subobjects (X',Y') such that X/X' and Y' are objects of \mathscr{A} is directed by the relation

$$(X', Y') \le (X'', Y'')$$

if $X'' \leq X'$ and $Y' \leq Y''$.

Moreover, the system of Abelian groups

$$\operatorname{Hom}_{\mathscr{C}}(X',Y/Y')$$

induced by pairs (X',Y') above is a directed system with morphisms

$$\operatorname{Hom}_{\mathscr{C}}(X',Y/Y') \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X'',Y'')$$

$$(X' \to Y/Y') \longmapsto (X'' \to X' \to Y/Y' \to Y/Y'')$$

whenever $(X', Y') \leq (X'', Y'')$.

Definition 5. Define the quotient category, \mathscr{C}/\mathscr{A} , to be the category with objects the objects of \mathscr{C} and morphisms

$$\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(X,Y) = \operatorname{colim}_{(X',Y')} \operatorname{Hom}_{\mathscr{C}}(X',Y/Y').$$

Let $\pi: \mathscr{C} \to \mathscr{C}/\mathscr{A}$ be the canonical projection functor, defined by $\pi(X) = X$ and sending a morphism $f: X \to Y$ to its image, $\pi(f)$, in the colimit.

Lemma 1. The quotient category, \mathscr{C}/\mathscr{A} , is an additive category and π is an additive functor.

Lemma 2. Let $f: X \to Y$ be a morphism of \mathscr{C} . We have a factorization of f

$$X \xrightarrow{f} Y$$

$$f(X)$$

and an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

Then

- (i) $\pi(f) = 0$ if and only if f(X) is an object of \mathscr{A} ,
- (ii) $\pi(f)$ is a monomorphism if and only if K is an object of \mathscr{A} , and
- (iii) $\pi(f)$ is an epimorphism if and only if C is an object of \mathscr{A} .

Lemma 3. For any morphism $f: X \to Y$ of \mathscr{C} , we have an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

The morphism $\pi(f)$ has a kernel and a cokernel,

$$0 \longrightarrow \mathcal{K} \xrightarrow{\ker \pi(f)} \pi(X) \xrightarrow{\pi(f)} \pi(Y) \xrightarrow{\operatorname{coker} \pi(f)} \mathcal{C} \longrightarrow 0.$$

Moreover, $\pi(\ker f)$ induces an isomorphism $\pi(K) \cong \mathcal{K}$ and $\pi(\operatorname{coker} f)$ induces an isomorphism $\pi(C) \cong \mathcal{C}$.

Lemma 4. Given an exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} X \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0.$$

of \mathscr{C} , f is an isomorphism if and only if K and C are both objects of \mathscr{A} .

Proposition 4. The quotient category \mathscr{C}/\mathscr{A} is an abelian category and π is an exact functor.

3. Proj

Denote by QGr-A (resp. qgr-A) the quotient category Gr-A/Tors (resp. gr-A/tors). It can be shown that QGr-A is an Ab 5 category; see III.4 of Des Catègories Abélienne. We view QGr-A as the analogue of quasi-coherent sheaves and qgr-A as the analogue of coherent sheaves.

Definition 6. (i) Let \mathscr{C} , and \mathscr{C}' be k-linear abelian categories; that is categories enriched over $\operatorname{Mod} -k$. For X and X' objects of \mathscr{C} and \mathscr{C}' , a morphism of pairs

$$(\mathscr{C},X) \to (\mathscr{C}',X')$$

is a pair (f, θ) consisting of an isomorphism $\theta \colon f(X) \to X'$ and a k-linear functor $f \colon \mathscr{C} \to \mathscr{C}'$; that is, the canonical morphism

$$\operatorname{Hom}_{\mathscr{C}}(A,B) \longrightarrow \operatorname{Hom}_{\mathscr{C}'}(f(A),f(B)).$$

is k-linear.

- (a) A morphism of pairs is said to be an isomorphism if f is an equivalence of categories.
- (b) A morphism of pairs is said to be right exact if f preserves direct limits.
- (c) Two morphisms of pairs (f, θ) and (f', θ') are said to be equivalent if there is a natural isomorphism $\eta: f \to f'$ compatible with θ and θ' .
- (ii) Given two k-linear abelian categories $\mathscr C$ and $\mathscr C'$ equipped with autoequivalences $s:\mathscr C\to\mathscr C$ and $s':\mathscr C'\to\mathscr C'$, and objects X of $\mathscr C$ and X' of $\mathscr C$, a morphism of triples

$$(\mathscr{C}, X, s) \to (\mathscr{C}', X', s')$$

is a triple (f, θ, μ) with $f : \mathscr{C} \to \mathscr{C}'$ a k-linear functor, $\theta : f(X) \to X'$ an isomorphism, and $\mu : f \circ s \to s' \circ f$ a natural isomorphism.

- (a) A morphism of triples is said to be right exact if f preserves direct limits.
- (b) Two morphisms of triples (f_1, θ_1, μ_1) and (f_2, θ_2, μ_2) are said to be equivalent if there exists a natural isomorphism $\eta: f_1 \to f_2$ such that

$$\theta_1 = \theta_2 \circ \eta(A)$$

and for all objects A of $\mathscr C$

$$(s' \circ \eta(A)) \circ \mu_1 = \mu_2 \circ \eta(s(A)).$$

(c) A morphism of triples is said to be an isomorphism if f is an equivalence of categories.

- (iii) Let s be the twist functor, s(M) = M[1], $s^d(M) = M[d]$, which is an automorphism of Gr-A. Since QGr-A is a quotient category, it inherits this autoequivalence in an obvious way. The general (resp. Noetherian) projective scheme of A, Proj A (resp proj A), is the pair (QGr-A, $\pi(A)$) (resp. (qgr-A, $\pi(A)$)).
- (iv) A morphism $F : \operatorname{Proj} B \to \operatorname{Proj} A$ is an equivalence class of right exact morphisms of pairs $(\operatorname{QGr} A, \pi(A)) \to (\operatorname{QGr} B, \pi(B))$.
- (v) A morphism of general schemes is an equivalence class of morphisms of triples $(QGr A, \pi(A), s_A) \rightarrow (QGr B, \pi(B), s_B)$.

Analogous definitions are made for proj A by substituting QGr-A with qgr-A as necessary.

The next two propositions describe the morphisms of QGr-A explicitly.

Proposition 5. Given two objects M, N of Gr-A,

$$\operatorname{Hom}_{\operatorname{QGr} - A}(\pi(M), \pi(N)) = \operatorname{colim}_{M'} \operatorname{Hom}_{\operatorname{Gr} - A}(M', N/\tau(N)).$$

Proof. Consider the indexing category \mathscr{I} with objects pairs of subobjects (M', N') such that M/M' and N' are objects of Tors and morphisms induced by the relation \leq defined above. We note that because N' is a subobject of $\tau(N)$ for all N', the full subcategory, \mathscr{J} , with objects $(M', \tau(N))$ is cofinal. Therefore

$$\operatorname{Hom}_{\operatorname{QGr}-A}\left(\pi(M),\pi(N)\right) = \operatorname{colim}_{\mathscr{I}}\operatorname{Hom}_{\operatorname{Gr}-A}\left(M',N/N'\right) = \operatorname{colim}_{\mathscr{I}}\operatorname{Hom}_{\operatorname{Gr}-A}\left(M',N/\tau(N)\right).$$

Proposition 6. If M is an object of qgr - A, then

$$\operatorname{Hom}_{\operatorname{QGr}-A}\left(\pi(M),\pi(N)\right) = \lim_{n \to \infty} \operatorname{Hom}_{\operatorname{Gr}-A}\left(M_{\geq n},N\right)$$

where

$$M_{\geq n} = \bigoplus_{d \geq n} M_d.$$

Proof. Let $M' \to M$ be a subobject with torsion quotient. By definition, for each $m \in M$ there is an n_m such that $mA_{\geq n_m} \subseteq M'$. Let m_1, \ldots, m_s be a set of generators for M and let $n = \max \{\deg(m_i) + n_{m_i} \mid i = 1, \ldots, s\}$. The subobject $M_{\geq n}$ has torsion quotient, $M/M_{\geq n}$, and we get the kernel diagram

because for each $m \in M_d$ with $n \leq d$ we can write

$$m = a_1 m_1 + \dots a_s m_s$$

and by construction we have

$$n_{m_i} = (\deg(m_i) + n_{m_i}) - \deg(m_i) \le n - \deg(m_1) \le d - \deg(m_1) = \deg(a_i).$$

With \mathscr{I} as above, we see that for any object (M', N') of \mathscr{I} there exists some n such that

$$(M', N') \le (M_{>n}, N)$$

and hence the full subcategory \mathscr{J} with objects $(M_{\geq n}, N)$ is cofinal. Therefore

$$\begin{array}{lcl} \operatorname{Hom}_{\operatorname{QGr}-A}\left(\pi(M),\pi(N)\right) & = & \operatorname{colim}_{\mathscr{I}}\operatorname{Hom}_{\operatorname{Gr}-A}\left(M',N'\right) \\ \\ & = & \operatorname{colim}_{\mathscr{J}}\operatorname{Hom}_{\operatorname{Gr}-A}\left(M_{\geq n},N\right) \\ \\ & = & \lim_{n \to \infty}\operatorname{Hom}_{\operatorname{Gr}-A}\left(M_{\geq n},N\right). \end{array}$$

4. The Section Functor

Lemma 5. If X is an object of \mathscr{C} , then the following are equivalent.

(1) Given a short exact sequence

$$0 \longrightarrow K \xrightarrow{\ker f} Z \xrightarrow{f} Y \xrightarrow{\operatorname{coker} f} C \longrightarrow 0$$

with K and C objects of \mathscr{A} , then the canonical morphism

$$h_X(f): h_X(Y) \to h_X(Z)$$

is an isomorphism,

(2) X is \mathscr{A} -torsionfree and any short exact sequence

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{\operatorname{coker} f}{\longrightarrow} C \longrightarrow 0$$

with C an object of \mathscr{A} splits, and

(3) For any object Y of \mathscr{C} , $\pi:\mathscr{C}\to\mathscr{C}/\mathscr{A}$ induces an isomorphism

$$\operatorname{Hom}_{\mathscr{C}}(Y,X) \cong \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$
.

Proof. (1) \implies (2). Given an \mathscr{A} -subobject $i: X' \to X$, then we have the short exact sequence

$$0 \longrightarrow X' \stackrel{i}{\longrightarrow} X \stackrel{\operatorname{coker} i}{\longrightarrow} X/X' \longrightarrow 0$$

both X' and 0 are objects of \mathcal{A} , hence an isomorphism

$$h_X(\operatorname{coker} i) \colon \operatorname{Hom}_{\mathscr{C}}(X/X',X) \to \operatorname{Hom}_{\mathscr{C}}(X,X)$$

which implies that coker i is monic. Therefore coker $i \circ i = 0$ implies i = 0.

Now, if we let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{p}{\longrightarrow} C \longrightarrow 0$$

be a short exact sequence with C an object of \mathscr{A} , then the isomorphism

$$h_X(f) \colon \operatorname{Hom}_{\mathscr{C}}(Y,X) \to \operatorname{Hom}_{\mathscr{C}}(X,X)$$

yields a section $s \colon Y \to X$ of f, so the sequence splits.

(2) \Longrightarrow (3). Let Y be an object of \mathscr{C} . Given a morphism $f:\pi(Y)\to\pi(X)$, we lift to a morphism $f'\colon Y'\to X/X'$ with Y/Y' and X' objects of \mathscr{A} . Since we have assumed that X has no non-trivial \mathscr{A} -subobjects, it follows that X/X'=X. By dualizing the relevant theorems on fiber products, this gives the commutative diagram with exact rows

$$0 \longrightarrow Y' \xrightarrow{j} Y \xrightarrow{\operatorname{coker} j} Y/Y' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f''} \qquad \downarrow^{\exists !h}$$

$$0 \longrightarrow X \xrightarrow{i} Y \coprod_{Y'} X \xrightarrow{\operatorname{coker} i} (Y \coprod_{Y'} X)/X \longrightarrow 0$$

and with h an isomorphism. Since Y/Y' was assumed to be an object of \mathscr{A} , so too is $(Y\coprod_{Y'}X)/X$ and thus there exists a section $s:Y\coprod_{Y'}X\to X$ of i so that

$$f' = id_X \circ f' = s \circ i \circ f' = s \circ f'' \circ j.$$

By commutativity of the diagram

$$\operatorname{Hom}_{\mathscr{C}}(Y,X) \xrightarrow{-\circ j} \operatorname{Hom}_{\mathscr{C}}(Y',X)$$

$$\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$

we see that $\pi(s \circ f'') = f$ and thus

$$\operatorname{Hom}_{\mathscr{C}}(Y,X) \to \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$

is surjective. For injectivity, suppose that $f: Y \to X$ satisfies $\pi(f) = 0$. Then f(Y) is an object of \mathscr{A} and from the short exact sequence

$$0 \longrightarrow f(Y) \xrightarrow{\operatorname{im} f} X \xrightarrow{\operatorname{coker} f} C \longrightarrow 0$$

we see that im f = 0. Therefore $f = \text{im } f \circ \text{coim } f = 0$, as desired.

$$(3) \implies (1)$$
. Let

$$0 \longrightarrow K \stackrel{i}{\longrightarrow} Z \stackrel{f}{\longrightarrow} Y \stackrel{p}{\longrightarrow} C \longrightarrow 0$$

be an exact sequence with K and C objects of \mathscr{A} . We have the commutative diagram

$$Z \qquad \qquad \operatorname{Hom}_{\mathscr{C}}(Y,X) \longrightarrow \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Y),\pi(X))$$

$$\downarrow^{f} \qquad \qquad \downarrow^{h_{X}(f)} \qquad \qquad \downarrow^{h_{\pi(X)}(\pi(f))}$$

$$Y \qquad \qquad \operatorname{Hom}_{\mathscr{C}}(Z,X) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Z),\pi(X))$$

with $h_{\pi(X)}(\pi(f))$ an isomorphism because $\pi(f)$ is. Therefore $h_X(f)$ is an isomorphism, as desired.

Definition 7. (i) If X is an object of $\mathscr C$ satisfying any of the conditions in Lemma 5, then we say that X is $\mathscr A$ -closed.

(ii) A morphism $X \to Y$ is an \mathscr{A} -envelope if in the exact sequence

$$0 \longrightarrow K \longrightarrow X \longrightarrow Y \longrightarrow C \longrightarrow 0$$

Y is \mathscr{A} -closed, and both K and C are objects of \mathscr{A} .

Lemma 6. If X has a maximal \mathscr{A} -subobject, $X_{\mathscr{A}}$, then $X/X_{\mathscr{A}}$ is \mathscr{A} -torsionfree.

Proof. Let $j: Y \to X/X_{\mathscr{A}}$ be a monic with Y an object of \mathscr{A} . We have the commutative diagram

with h an isomorphism, and h' monic, hence an isomorphism. The top row gives us the short exact sequence

$$0 \longrightarrow K \xrightarrow{\ker p'} X \times_{X/X_{\mathscr{A}}} Y \xrightarrow{p'} Y \xrightarrow{\operatorname{coker} p'} 0$$

with K and Y objects of \mathscr{A} , hence $X \times_{X/X_{\mathscr{A}}} Y$ is also an object of \mathscr{A} . By maximality of $X_{\mathscr{A}}$, i' factors through i uniquely,

and so we see

$$j \circ p' = p \circ i = p \circ (i \circ i'') = (p \circ i) \circ i'' = 0$$

implies, because p' is epic, that j=0. Therefore $X/X_{\mathscr{A}}$ is \mathscr{A} -torsionfree, as desired.

Lemma 7. If \mathscr{C} is such that every object of \mathscr{C} has a maximal \mathscr{A} -subobject and every \mathscr{A} -torsionfree object has a monomorphism to an \mathscr{A} -closed object, then every object of \mathscr{C} has an \mathscr{A} -envelope.

Proof. Let X be an object of $\mathscr C$ and let $X_{\mathscr A}$ be its maximal $\mathscr A$ -subobject, so we have the short exact sequence

$$0 \longrightarrow X_{\mathscr{A}} \stackrel{i}{\longrightarrow} X \stackrel{p}{\longrightarrow} X/X_{\mathscr{A}} \longrightarrow 0.$$

By assumption, there exists an \mathcal{A} -closed object Y and a short exact sequence

$$0 \longrightarrow X/X_{\mathscr{A}} \stackrel{j}{\longrightarrow} Y \stackrel{q}{\longrightarrow} C \longrightarrow 0$$

from which we construct the pullback

$$0 \longrightarrow K \xrightarrow{\ker q'} q^{-1}(C_{\mathscr{A}}) \xrightarrow{q'} C_{\mathscr{A}} \longrightarrow 0$$

$$\downarrow^{\exists!h} \qquad \downarrow^{k'} \qquad \downarrow^{k}$$

$$0 \longrightarrow X/X_{\mathscr{A}} \xrightarrow{j} Y \xrightarrow{q} C \longrightarrow 0,$$

with h an isomorphism. Then from the short exact sequence

$$0 \longrightarrow X/X_{\mathscr{A}} \cong K \xrightarrow{\ker q'} q^{-1}(C_{\mathscr{A}}) \xrightarrow{q'} C_{\mathscr{A}} \longrightarrow 0$$

it suffices to show that $q^{-1}(C_{\mathscr{A}})$ is \mathscr{A} -closed.

It's clear that $q^{-1}(C_{\mathscr{A}})$ is \mathscr{A} -torsionfree because it is a subobject of the \mathscr{A} -closed object Y. If we have any short exact sequence

$$0 \longrightarrow q^{-1}(C_{\mathscr{A}}) \stackrel{s}{\longrightarrow} A \stackrel{\operatorname{coker} s}{\longrightarrow} B \longrightarrow 0$$

with B an object of \mathscr{A} , then by Lemma 1 there is a unique morphism $\varphi:A\to Y$ such that

$$k' = \varphi \circ s = h_Y(s)(\varphi).$$

Now we have the commutative diagram

from which we see that

$$k' \circ id_{q^{-1}(C_{q'})} = k' = \varphi \circ s = (k' \circ r) \circ s = k'(\circ r \circ s)$$

and thus $r \circ s = id_{q^{-1}(C_{\mathscr{A}})}$. Therefore $q^{-1}(C_{\mathscr{A}})$ is \mathscr{A} -closed by Lemma 5.2, as desired.

Lemma 8. If $\pi: \mathscr{C} \to \mathscr{C}/\mathscr{A}$ has a right adjoint, $\omega: \mathscr{C}/\mathscr{A} \to \mathscr{C}$, then

- (1) for each object Y of \mathscr{C} , $\omega \pi(Y)$ is \mathscr{A} -closed,
- (2) for Y an object of \mathscr{C} , the morphism $\eta_{\pi(Y)}: \pi\omega\pi(Y) \to \pi(Y)$ is an isomorphism, and
- (3) ω is fully faithful.

Proof. (1) Given an exact sequence

$$0 \longrightarrow K \longrightarrow Z \stackrel{f}{\longrightarrow} Y \longrightarrow C \longrightarrow 0$$

with K and C objects of \mathscr{A} , we have that $\pi(f)$ is an isomorphism and hence $h_{\pi(Y)}(\pi(f))$ is also an isomorphism. From the adjunction we get the commutative diagram

$$\operatorname{Hom}_{\mathscr{C}}(X, \omega\pi(Y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X), \pi(Y))$$

$$\downarrow^{h_{\omega\pi(Y)}(f)} \qquad \qquad \downarrow^{h_{\pi(Y)}(\pi(f))}$$

$$\operatorname{Hom}_{\mathscr{C}}(Z, \omega\pi(Y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(Z), \pi(Y))$$

which shows that $h_{\pi(Y)}\pi(F)$ is an isomorphism. Therefore $\omega\pi(Y)$ is \mathscr{A} -closed by part 1 of Lemma 5.

(2) We have the commutative diagram

$$\operatorname{Hom}_{\mathscr{C}}(\omega\pi(Y),\omega\pi(Y)) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi\omega\pi(Y),\pi\omega\pi(Y))$$

$$\stackrel{\sim}{\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi\omega\pi(Y),\pi(Y))}$$

since for any morphism $f: \omega \pi(Y) \to \omega \pi(Y)$, the image under the adjunction isomorphism is just $\eta_{\pi(Y)} \circ \pi(f)$. This immediately implies that $h_{\pi\omega\pi(Y)}(\eta_{\pi(Y)})$ is an isomorphism, and hence so is $\eta_{\pi(Y)}$.

(3) Since ω being fully faithful is equivalent to η being a natural isomorphism, this is a consequence of the definition of \mathscr{C}/\mathscr{A} . Indeed, every object of \mathscr{C}/\mathscr{A} is $\pi(X)$ for some object X of \mathscr{C} , and the result follows.

Theorem 1. The following are equivalent.

- (1) $\pi: \mathscr{C} \to \mathscr{C}/\mathscr{A}$ has a right adjoint, and
- (2) Every object of $\mathscr A$ has a maximal $\mathscr A$ -subobject and every $\mathscr A$ -torsionfree object has a monomorphism into an $\mathscr A$ -closed object.

Proof. First assume that π has a right adjoint, $\omega \colon \mathscr{C}/\mathscr{A} \to \mathscr{C}$, and let Y be an object of \mathscr{C} . There are then two natural transformations of adjunction, $\varepsilon : \mathrm{id}_{\mathscr{C}} \to \omega \pi$ (unit) and $\eta : \pi \omega \to \mathrm{id}_{\mathscr{C}/\mathscr{A}}$ (counit), the latter being an isomorphism by Lemma 8. It follows from the commutative diagram

$$\pi(Y) \xrightarrow{\pi(\varepsilon_Y)} \pi\omega\pi(Y)$$

$$\downarrow^{\eta_{\pi(Y)}}$$

$$\pi(Y)$$

that $\pi(\varepsilon_Y) = \eta_{\pi(Y)}^{-1}$ is an isomorphism, whence in the short exact sequence

$$0 \longrightarrow K \longrightarrow Y \xrightarrow{\varepsilon_Y} \omega \pi(Y) \longrightarrow C \longrightarrow 0$$

both K and C are objects of \mathscr{A} . We show that K is the desired subobject. Indeed, let $j: Y' \to Y$ be a subobject of Y with Y' and object of \mathscr{A} . We have the commutative diagram

$$Y' \xrightarrow{\varepsilon_Y \circ j} \omega \pi(Y)$$

$$coim(\varepsilon_Y \circ j) \qquad im(\varepsilon_Y \circ j)$$

$$\varepsilon_Y(Y')$$

and we note that because $\omega\pi(Y)$ is \mathscr{A} -closed and $\varepsilon_Y(Y')\cong Y'/(Y'\cap K)$ is an object of \mathscr{A} , the monic im $(\varepsilon_Y\circ j)$ is zero. Therefore by the kernel diagram

we see that j' is monic, and K is maximal, as desired.

Conversely, assume that every object of \mathscr{C} has a maximal \mathscr{A} -subobject and every \mathscr{A} -torsionfree object has a monomorphism into an \mathscr{A} -closed object. Let Y be an object of \mathscr{C} . By Lemma 7, Y has an \mathscr{A} -envelope $Y \to E$. Hence $\pi(Y) \cong \pi(E)$ and by the natural isomorphisms

$$\operatorname{Hom}_{\mathscr{C}}(\,\underline{\ },E) \cong \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\,\underline{\ }),\pi(E)) \cong \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\,\underline{\ }),\pi(Y)),$$

the presheaf $\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\underline{\ }),\pi(Y))$ on \mathscr{C} is representable. Therefore π admits a right adjoint.

Definition 8. If π has a right adjoint, then we say that \mathscr{A} is a localizing subcategory.

Corollary 1. Assume that π has a right adjoint, $\omega \colon \mathscr{C}/\mathscr{A} \to \mathscr{C}$. Then

- (1) A-envelopes are unique up to unique isomorphism,
- (2) for every object X of \mathscr{C} , $\omega \pi(X) \cong E$, where $X \to E$ is an \mathscr{A} -envelope of X,

Proof. (1) By the proof of Theorem 1, an \mathscr{A} -envelope of an object Y of \mathscr{C} represents the presheaf $\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(\,{}_{-}),Y)$ and thus is unique up to unique isomorphism.

(2) This is immediate from Yoneda's Lemma.

Lemma 9. Assume that \mathscr{A} is a localizing subcategory, X, Y, objects of \mathscr{C} , $X_{\mathscr{A}}$, $Y_{\mathscr{A}}$, their maximal \mathscr{A} -subobjects. A morphism $f: X \to Y$ induces a morphism

and the morphism $\pi(f)$ is an essential extension if and only if h is.

Proof. We first note that $\pi(p)$ and $\pi(h)$ are isomorphisms, hence essential extensions, so

$$\pi(f) = \pi(q)^{-1} \circ \pi(h) \circ \pi(p)$$

is an essential extension if and only if $\pi(h)$ is. Hence it suffices to assume that $X_{\mathscr{A}} = Y_{\mathscr{A}} = 0$ and h = f. Assume first that $\pi(f)$ is an essential extension. Given a subobject $k: Y' \to Y$ we get the pullback

$$\pi(Y' \times_Y X) \xrightarrow{\pi(k')} \pi(X)$$

$$\downarrow^{\pi(f')} \qquad \downarrow^{\pi(f)}$$

$$\pi(Y') \xrightarrow{\pi(k)} \pi(Y)$$

because π is exact. We note that so long as Y' is not an object of \mathscr{A} , $\pi(Y')$ is not zero. Since Y was assumed to be \mathscr{A} -torsionfree, this is equivalent to Y' being non-zero. Therefore $\pi(Y' \times_Y X)$ is non-zero whenever Y' is non-zero because $\pi(f)$ is essential and hence so is $Y' \times_Y X$.

Conversely, assume that f is an essential extension. Given $i:\pi(Z)\to\pi(Y)$ a non-zero subobject, we may lift to a morphism

$$0 \longrightarrow K \xrightarrow{\ker j} Z' \xrightarrow{j} Y$$

with Z/Z' and K objects of $\mathscr A$ since k is monic and Y has no non-zero $\mathscr A$ -subobjects. Since f is an essential extension we have the non-zero pullback

$$Z'/K \times_Y X \xrightarrow{k} X$$

$$\downarrow^{f'} \qquad \qquad \downarrow^{f}$$

$$Z/K \xrightarrow{\operatorname{im} j} Y$$

As K is an object of \mathscr{A} , the short exact sequence

$$0 \longrightarrow K \xrightarrow{\ker j} Z' \xrightarrow{\operatorname{coim} j} Z'/K \longrightarrow 0$$

gives the isomorphism

$$\pi(Z'/K) \cong \pi(Z') \cong \pi(Z).$$

Therefore

$$\pi(Z'/K \times_Y X) \cong \pi(Z'/K) \times_{\pi(Y)} \pi(X) \cong \pi(Z) \times_{\pi(Y)} \pi(X)$$

is non-zero, as desired.

Lemma 10. If Q is an \mathscr{A} -closed injective, then $\pi(Q)$ is injective.

Proof. Given a short exact sequence

$$0 \longrightarrow \pi(Q) \xrightarrow{s} \pi(X) \xrightarrow{\operatorname{coker} s} \pi(X/Q) \longrightarrow 0$$

it is enough to show that s is a section; that is, there exists a morphism $r \colon \pi(X) \to \pi(Q)$ such that $r \circ s = \mathrm{id}_{\pi(Q)}$. We can lift s to a morphism

$$0 \longrightarrow K \xrightarrow{\ker t} Q' \xrightarrow{t} X/X'$$

with K, Q/Q', and X' objects of \mathscr{A} . Since we have assumed that Q is \mathscr{A} -closed, the diagram

$$K \xrightarrow{\ker t} Q' \xrightarrow{i} Q$$

commutes and thus we see that $\ker t = 0$ because i is a monomorphism. Since Q was assumed to be injective, we have the lift

$$0 \longrightarrow Q' \xrightarrow{t} X/X'$$

$$\downarrow^{i} \qquad \exists r$$

$$Q.$$

If we let $q: X \to X/X'$ be the canonical projection, then we have the diagram

$$\pi(Q') \xrightarrow{\pi(t)} \pi(X/X')$$

$$\pi(i) \downarrow \qquad \qquad \uparrow \pi(q)$$

$$\pi(Q) \xrightarrow{s} \pi(X)$$

with $\pi(i)$ and $\pi(q)$ isormorphisms, the top left triangle commutative, and the outer square commutative. Therefore

$$\mathrm{id}_{\pi(O)} \circ \pi(i) = \pi(i) = \pi(r) \circ \pi(t) = \pi(r) \circ \pi(q) \circ s \circ \pi(i)$$

implies, because $\pi(i)$ is an isomorphism, that

$$(\pi(r) \circ \pi(q)) \circ s = \mathrm{id}_{\pi(Q)},$$

as desired.

Lemma 11. If $i: X \to E$ is an injective envelope and X is \mathscr{A} -torsionfree, then E is \mathscr{A} -closed and the morphism $\pi(i): \pi(X) \to \pi(E)$ is an injective envelope.

Proof. Since E is injective, every short exact sequence

$$0 \longrightarrow E \longrightarrow A \longrightarrow B \longrightarrow 0$$

splits. To see that E is \mathscr{A} -closed, it then suffices by Lemma 5.2 to show that E is \mathscr{A} -torsionfree. Given an \mathscr{A} -subobject $j: E' \to E$, we have the pullback

$$E' \times_E X \xrightarrow{j'} X$$

$$\downarrow^{i'} \qquad \qquad \downarrow^{i}$$

$$E' \xrightarrow{j} E$$

and the morphism i' gives $E' \times_E X$ E-subobject structure, hence is an object of \mathscr{A} . Since X is \mathscr{A} -torsionfree by assumption, $E' \times_E X = 0$ and thus E' is also zero because i is essential.

By Lemma 10 we see that $\pi(E)$ is injective, so it remains to show that $\pi(i)$ is essential. To see this, we note that the assumption \mathscr{A} is a localizing subcategory in Lemma 9 was only used to produce maximal \mathscr{A} -subobjects, and hence the same argument shows that $\pi(i)$ is essential. Therefore $\pi(i)$ is an injective envelope.

Proposition 7. Assume that \mathscr{A} is a localizing subcategory. If \mathscr{C} has injective envelopes, then

- (i) \mathscr{C}/\mathscr{A} has injective envelopes,
- (ii) Every injective object of \mathscr{C}/\mathscr{A} is isomorphic to $\pi(Q)$ for some \mathscr{A} -closed injective, Q, and
- (iii) Every injective object Q of $\mathscr C$ is isomorphic to $E \oplus \omega(Q_2)$, where $Q_{\mathscr A} \to E$ is an injective envelope of the maximal $\mathscr A$ -subobject of Q and Q_2 is an injective object of $\mathscr C/\mathscr A$.

Proof. (i) Given an object $\pi(X)$ of \mathscr{C}/\mathscr{A} , let $X_{\mathscr{A}}$ be the maximal \mathscr{A} -subobject of X. Since \mathscr{C} has injective envelopes and $X/X_{\mathscr{A}}$ is \mathscr{A} -torsionfree, an injective envelope $X/X_{\mathscr{A}} \to E$ gives the injective envelope

$$\pi(X) \cong \pi(X/X_{\mathscr{A}}) \to \pi(E)$$

by Lemma 11.

- (ii) Given an injective object $\pi(Q)$ of \mathscr{C}/\mathscr{A} , $\omega\pi(Q)$ is \mathscr{A} -closed by Lemma 8.1 and is injective because π is exact. Therefore by Lemma 8.3, $\pi(Q) \cong \pi(\omega\pi(Q))$.
- (iii) Let Q be an injective object of \mathscr{C} , let $i: Q_{\mathscr{A}} \to Q$ be its maximal \mathscr{A} -subobject, and let $j: Q_{\mathscr{A}} \to E$ be an injective envelope. Since Q is injective we have the lift

$$0 \longrightarrow Q_{\mathscr{A}} \xrightarrow{j} E$$

$$\downarrow^{i}_{\mathbb{Z}} \exists k$$

with k a monomorphism because j is essential and $\ker(k \circ j) = \ker i = 0$. Because E is injective we get the split exact sequence

$$0 \longrightarrow E \stackrel{k}{\longleftrightarrow} Q \stackrel{p}{\longleftrightarrow} Q/E \longrightarrow 0$$

so we need only show that Q/E is an \mathscr{A} -closed injective, for then $\pi(Q/E)$ is injective by Lemma 10, and $Q/E \cong \omega \pi(Q/E)$.

The fact that Q/E is injective follows from the fact that both Q and E are injective. Thus every monomorphism out of Q/E splits, so by Lemma 5.2 it is enough to show that Q/E is \mathscr{A} -torsionfree. Given an \mathscr{A} -subobject $\varphi \colon X \to E$, the fact that $Q/Q_{\mathscr{A}}$ is \mathscr{A} -torsionfree gives the kernel diagram

Therefore

$$\varphi = \mathrm{id}_{Q/E} \circ \varphi = p \circ s \circ \varphi = p \circ i \circ h = p \circ k \circ j \circ h = 0,$$

as desired.

Corollary 2. Assume that \mathscr{A} is a localizing subcategory and that \mathscr{C} has injective envelopes. If the injective envelope of an object of \mathscr{A} is a morphism of \mathscr{A} , then

- (i) the maximal subobject of an injective is injective and thus the \mathscr{A} -envelope of an injective, Q, is $Q \to Q/Q_{\mathscr{A}}$, where $Q_{\mathscr{A}}$ is the maximal \mathscr{A} -subobject,
- (ii) π preserves injectives, and

Proof. (i) Let Q be an injective object of $\mathscr C$ and $i: Q_\mathscr A \to Q$ its maximal $\mathscr A$ -subobject. Given an injective envelope $j: Q_\mathscr A \to E$, we have the lift

$$0 \longrightarrow Q_{\mathscr{A}} \xrightarrow{j} E$$

$$\downarrow^{i}_{Q} \xrightarrow{\exists k}$$

with k a monomorphism because j is essential. Since E is assumed to be an object of \mathscr{A} , k factors through i uniquely,

So we see that

$$k \circ j \circ \varphi = i \circ \varphi = k = k \circ id_E$$

implies that $j \circ \varphi = id_E$ and

$$i \circ \varphi \circ j = k \circ j = i = i \circ id_{Q_{\mathscr{A}}}$$

implies $\varphi \circ j = id_{Q_{\mathscr{A}}}$. Hence φ is an isomorphism. Therefore by Proposition 7 we have the short exact sequence

$$0 \longrightarrow Q_{\mathscr{A}} \longrightarrow Q_{\mathscr{A}} \oplus Q/Q_{\mathscr{A}} \longrightarrow Q/Q_{\mathscr{A}} \longrightarrow 0$$

and $Q/Q_{\mathscr{A}}$ is \mathscr{A} -closed, as desired.

(ii) If Q is an injective object of \mathscr{C} , then by the above $Q/Q_{\mathscr{A}}$ is \mathscr{A} -closed and hence $\pi(Q) \cong \pi(Q/Q_{\mathscr{A}})$ is injective by Lemma 10.

Proposition 8. Let A be a right noetherian $\mathbb{Z}_{\geq 0}$ graded algebra over a commutative noetherian ring, k. If $i \in \operatorname{Hom}_{\operatorname{Gr} - A}(M, N)$ is an essential extension, then

- (a) the right bounds of N and M are equal; that is, if there exists some $0 \ll n$ such that $M_d = 0$ for all $n \leq d$, then $N_d = 0$ for all $n \leq d$, and
- (b) if M is torsion, then so is N.

Proof. See Proposition 2.2 on page 234 of *Noncommutative Projective Schemes*.

Remark 2. In this case, every object M of Gr-A has a maximal Tors-subobject, $\tau(M)$, and hence Tors is a localizing subcategory. In particular, every injective object, Q, of Gr-A decomposes as $\tau(Q) \oplus Q/\tau(Q)$

with $Q/\tau(Q)$ a Tors-closed object, and $\omega\pi(Q) \cong Q/\tau(Q)$ and the injective objects of QGr-A are precisely $\pi(Q/Q(\tau))$ for Q an injective object of Gr-A.

5. Cohomology

Corollary 3. Assume that \mathscr{A} is a localizing subcategory and that \mathscr{C} has injective envelopes. If the injective envelope of an object of \mathscr{A} is a morphism of \mathscr{A} , then for objects X and Y of \mathscr{C}

$$\operatorname{Ext}_{\mathscr{C}/\mathscr{A}}^{i}(\pi(X), \pi(Y)) \cong R^{i} \operatorname{Hom}_{\mathscr{C}}(X, \omega \pi(Y)).$$

Proof. Take an injective resolution

$$Q: 0 \longrightarrow Y = Q^0 \xrightarrow{d^0} Q^1 \xrightarrow{d^1} \cdots$$

of Y. By Corollary 2.ii, $\pi(Q)$ is an injective resolution of $\pi(Y)$. Using the natural transformation $\varepsilon \colon id_{\mathscr{C}} \to \omega \pi$ we have for each n an isomorphism of adjunction

$$\Phi^n : \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X), \pi(Q^n)) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X, \omega\pi(Q^n))$$

$$\varphi \longmapsto \omega(\varphi) \circ \varepsilon_{X}$$

and so we get an isomorphism of chain complexes

$$\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X),\pi(Q^{\boldsymbol{\cdot}})):0 \longrightarrow \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X),\pi(Y)) \overset{h^{\pi(X)}(\pi(d^0))}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(\pi(X),\pi(Q^1)\right) \overset{h^{\pi(X)}(\pi(d^1))}{\longrightarrow} \cdots \\ \downarrow^{\Phi^0} \qquad \qquad \downarrow^{\Phi^1} \\ \operatorname{Hom}_{\mathscr{C}}(X,\omega\pi(Q^{\boldsymbol{\cdot}})):0 \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X,\omega\pi(Y)) \overset{h^X(\omega\pi(d^0))}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Q^1)\right) \overset{h^X(\omega\pi(d^1))}{\longrightarrow} \cdots$$

since for $\varphi \in \operatorname{Hom}_{\mathscr{C}/\mathscr{A}}(\pi(X), Q^n)$ we have

$$h^X(\omega\pi(d^n))\circ\Phi^n(\varphi)=\omega\pi(d^n)\circ\omega(\varphi)\circ\varepsilon_X=\omega(\pi(d^n)\circ\varphi)\circ\varepsilon_X=\Phi^{n+1}\circ h^X(\pi(d^n))(\varphi).$$

Therefore

$$\operatorname{Ext}_{\mathscr{C}/\mathscr{A}}^{i}\left(\pi(X),\pi(Y)\right)\cong h^{i}\left(\operatorname{Hom}_{\mathscr{C}/\mathscr{A}}\left(\pi(X),\pi(Q^{\cdot})\right)\right)\cong h^{i}\left(\operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Q^{\cdot})\right)\right)\cong R^{i}\operatorname{Hom}_{\mathscr{C}}\left(X,\omega\pi(Y)\right)$$

From here on, let A be a right Noetherian $\mathbb{Z}_{\geq 0}$ -graded algebra over a commutative Noetherian ring k, $\mathscr{C} = \operatorname{Gr} - A$, $\mathscr{A} = \operatorname{Tors}$, $\mathscr{C}/\mathscr{A} = \operatorname{QGr} - A$.

Definition 9. Define the graded modules

$$\underline{\operatorname{Hom}}_{\operatorname{Gr}\text{-}A}\left(M,N\right) = \bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Gr}\text{-}A}\left(M,N[d]\right)$$

and

$$\underline{\operatorname{Hom}}_{\operatorname{QGr}\text{-}A}\left(\pi(M),\pi(N)\right) = \bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Gr}\text{-}A/A}\left(\pi(M),\pi(N)[d]\right).$$

Proposition 9. The right derived functors of $\underline{\mathrm{Hom}}_{\mathrm{Gr}\text{-}A}\left(M,N\right)$ and $\underline{\mathrm{Hom}}_{\mathrm{QGr}\text{-}A}\left(\pi(M),\pi(N)\right)$ are

$$\underline{\operatorname{Ext}}_{\operatorname{Gr} \operatorname{-} A}^{i}\left(M,N\right) = \bigoplus_{d \in \mathbb{Z}} \operatorname{Ext}_{\operatorname{Gr} \operatorname{-} A}^{i}\left(M,N[d]\right)$$

and

$$\underline{\mathrm{Ext}}_{\mathrm{QGr}\,\text{-}A}^i\left(\pi(M),\pi(N)\right) = \bigoplus_{d \in \mathbb{Z}} \mathrm{Ext}_{\mathrm{QGr}\,\text{-}A}^i\left(\pi(M),\pi(N)[d]\right).$$

Moreover, for Q an injective resolution of N,

$$\underline{\operatorname{Ext}}_{\operatorname{QGr}\text{-}A}^{i}\left(\pi(M),\pi(N)\right)\cong h^{i}\left(\underline{\operatorname{Hom}}_{\operatorname{Gr}\text{-}A}\left(M,\omega\pi(Q^{\cdot})\right)\right)\cong R^{i}\,\underline{\operatorname{Hom}}_{\operatorname{Gr}\text{-}A}\left(M,\omega\pi(N)\right).$$

Proof. The first is a consequence of the shift operator, s, being an automorphism of Gr-A and cohomology being an additive functor. In particular, if Q is an injective resolution of N, then we have

$$h^{i}(\underline{\operatorname{Hom}}_{\operatorname{Gr}-A}(M,Q^{\cdot})) = h^{i}\left(\bigoplus_{d\in\mathbb{Z}}\operatorname{Hom}_{\operatorname{Gr}-A}(M,(Q^{\cdot})[d])\right)$$

$$\cong \bigoplus_{d\in\mathbb{Z}}h^{i}\left(\operatorname{Hom}_{\operatorname{Gr}-A}(M,(Q^{\cdot})[d])\right)$$

$$= \bigoplus_{d\in\mathbb{Z}}\operatorname{Ext}_{\operatorname{Gr}-A}^{i}\left(M,N[d]\right).$$

Similarly, for QGr - A we have

$$h^{i}(\underline{\operatorname{Hom}}_{\operatorname{QGr}-A}(M,(Q^{\cdot})[d]) = h^{i}\left(\bigoplus_{d\in\mathbb{Z}} \operatorname{Hom}_{\operatorname{QGr}-A}(M,(Q^{\cdot}[d]))\right)$$

$$\cong \bigoplus_{d\in\mathbb{Z}} h^{i}\left(\operatorname{Hom}_{\operatorname{QGr}-A}(M,(Q^{\cdot}[d]))\right)$$

$$= \bigoplus_{d\in\mathbb{Z}} \operatorname{Ext}_{\operatorname{QGr}-A}^{i}(M,N[d]).$$

$$\cong \bigoplus_{d\in\mathbb{Z}} R^{i}\operatorname{Hom}_{\operatorname{Gr}-A}(M,\omega\pi(N)[d]).$$

$$\cong \bigoplus_{d\in\mathbb{Z}} h^{i}\left(\operatorname{Hom}_{\operatorname{Gr}-A}(M,\omega\pi(Q^{\cdot})[d])\right)$$

$$\cong h^{i}\left(\bigoplus_{d\in\mathbb{Z}} \operatorname{Hom}_{\operatorname{Gr}-A}(M,\omega\pi(Q^{\cdot})[d])\right)$$

$$= h^{i}\left(\underbrace{\operatorname{Hom}_{\operatorname{Gr}-A}(M,\omega\pi(Q^{\cdot}))}\right)$$

Proposition 10. For any object M of Gr-A, the canonical morphism

$$\operatorname{Hom}_{\operatorname{Gr} - A} (A, M) \longrightarrow M_0$$

$$\varphi \longmapsto \varphi(1)$$

is an isomorhism. In particular, taking degree zero is an exact because A is a projective object in Gr-A and, moreover, Hom_{Gr} -A $(A, M[d]) \cong M_d$.

Definition 10. Let M be an object of Gr-A and Q an injective resolution. Define the cohomology functors

$$H^{i}(\pi(M)) = \operatorname{Ext}_{\operatorname{QGr}-A}^{i}(\pi(A), \pi(M)) \cong h^{i}(\operatorname{Hom}_{\operatorname{Gr}-A}(A, \omega \pi(Q^{\cdot}))) \cong h^{i}(\omega \pi(Q^{\cdot})_{0}) \cong h^{i}(\omega \pi(Q^{\cdot}))_{0},$$

and note that the last isomorphism follows from the fact that taking degree 0 is an exact functor. Define the graded cohomology functors

$$\underline{H}^i(\pi(M)) = \bigoplus_{d \in \mathbb{Z}} H^i(\pi(M)[d]) \cong \bigoplus_{d \in \mathbb{Z}} h^i(\omega \pi(Q^{\cdot}))_d \cong h^i(\omega \pi(Q^{\cdot})).$$

Remark 3. Note that for M an object of Gr-A we have

$$H^0(\pi(M)) = \operatorname{Ext}^0_{\operatorname{QGr}-A}(\pi(A), \pi(M)) \cong R^0 \operatorname{Hom}_{\operatorname{Gr}-A}(A, \omega \pi(M)) = \operatorname{Hom}_{\operatorname{Gr}-A}(A, \omega \pi(M)) \cong \omega \pi(M)_0$$
 and so it follows that $\underline{H}^0(\pi(M)) \cong \omega \pi(M)$.

Proposition 11. Let M be an object of Gr-A and let N be an object of GGr-A. Then

(a) For $i \geq 0$

$$\underline{\operatorname{Ext}}_{\operatorname{QGr}-A}^{i}\left(\pi(N),\pi(M)\right) \cong \lim_{n\to\infty}\underline{\operatorname{Ext}}_{\operatorname{Gr}-A}^{i}\left(N_{\geq n},M\right)$$

and

$$\underline{H}^{i}(\pi(M)) \cong \lim_{n \to \infty} \underline{\operatorname{Ext}}^{i}_{\operatorname{Gr} - A} (A_{\geq n}, M).$$

(b) There is an exact sequence

$$0 \longrightarrow \tau(M) \longrightarrow M \longrightarrow \underline{H}^{0}(\pi(M)) \longrightarrow \lim_{n \to \infty} \underline{\operatorname{Ext}}^{1}_{\operatorname{Gr} - A}(A/A_{\geq n}, M) \longrightarrow 0$$

and for i > 1,

$$\underline{H}^{i}(\pi(M)) \cong \lim_{n \to \infty} \underline{\operatorname{Ext}}_{\operatorname{Gr}-A}^{i+1} \left(A/A_{\geq n}, M \right) \cong h^{i+1}(\tau(Q^{\cdot}))$$

for Q an injective resolution of M.

- (c) $\underline{H}^i(\pi(M))$ is an object of Tors if $i \geq 1$.
- (d) $\operatorname{\underline{Ext}}^i_{\operatorname{QGr}-A}(\pi(N),\pi(M))$ and $\operatorname{\underline{H}}^i(\pi(M))$ are compatible with direct limits of objects $\pi(M)$.

Proof. (a) Let Q be an injective resolution of M. For each $0 \le i$ and for each d we have

$$\lim_{n \to \infty} \operatorname{Hom}_{\operatorname{Gr}-A} \left(N_{\geq n}, Q^{i}[d] \right) \cong \operatorname{Hom}_{\operatorname{QGr}-A} \left(\pi(N), \pi(Q^{i})[d] \right).$$

Since Gr - A is an Ab 5 category we have

$$\lim_{n \to \infty} \underline{\operatorname{Hom}}_{\operatorname{Gr}-A} \left(N_{\geq n}, Q^{i} \right) = \lim_{n \to \infty} \bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Gr}-A} \left(N_{\geq n}, Q^{i}[d] \right)$$

$$\cong \bigoplus_{d \in \mathbb{Z}} \lim_{n \to \infty} \operatorname{Hom}_{\operatorname{Gr}-A} \left(N_{\geq n}, Q^{i}[d] \right)$$

$$\cong \bigoplus_{d \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{QGr}-A} \left(\pi(N), \pi(Q^{i})[d] \right)$$

$$= \underline{\operatorname{Hom}}_{\operatorname{QGr}-A} \left(\pi(N), \pi(Q^{i}) \right).$$

Next we note that

$$\left(\lim_{n\to\infty} \underline{\operatorname{Hom}}_{\operatorname{Gr}-A}\left(N_{\geq n},Q^{\cdot}\right)\right)_{i} \cong \lim_{n\to\infty} \underline{\operatorname{Hom}}_{\operatorname{Gr}-A}\left(N_{\geq n},Q^{i}\right) \cong \underline{\operatorname{Hom}}_{\operatorname{QGr}-A}\left(\pi(N),\pi(Q^{i})\right)$$

and hence

$$\begin{split} \lim_{n \to \infty} & \underline{\operatorname{Ext}}_{\operatorname{Gr}-A}^{i} \left(N_{\geq n}, M \right) &= & \lim_{n \to \infty} h^{i} (\underline{\operatorname{Hom}}_{\operatorname{Gr}-A} \left(N_{\geq n}, Q^{\cdot} \right)) \\ & \cong & h^{i} \left(\lim_{n \to \infty} \underline{\operatorname{Hom}}_{\operatorname{Gr}-A} \left(N_{\geq n}, Q^{\cdot} \right) \right) \\ & \cong & h^{i} \left(\underline{\operatorname{Hom}}_{\operatorname{QGr}-A} \left(\pi(N), \pi(Q^{\cdot}) \right) \right) \\ & \cong & \underline{\operatorname{Ext}}_{\operatorname{OGr}-A}^{i} \left(\pi(N), \pi(M) \right) \end{split}$$

That $\underline{H}^i(\pi(M)) \cong \lim_{n \to \infty} \underline{\operatorname{Ext}}^i_{\operatorname{Gr-}A}(A_{\geq n}, M)$ follows by taking N = A. The short exact sequence

$$0 \longrightarrow A_{\geq n} \longrightarrow A \longrightarrow A/A_{\geq n} \longrightarrow 0$$

gives rise to a long exact sequence

$$0 \longrightarrow \underline{\operatorname{Hom}}_{\operatorname{Gr-}A}\left(A/A_{\geq n}, M\right) \longrightarrow M \longrightarrow \underline{\operatorname{Hom}}_{\operatorname{Gr-}A}\left(A_{\geq n}, M\right) \longrightarrow \underline{\operatorname{Ext}}_{\operatorname{Gr-}A}^{1}\left(A/A_{\geq n}, M\right) \longrightarrow \operatorname{Ext}_{\operatorname{Gr-}A}^{1}\left(A, M\right) = 0 \longrightarrow \dots$$

We see that

$$\lim_{n \to \infty} \underline{\operatorname{Hom}}_{\operatorname{Gr}-A} (A_{\geq n}, M) \cong \underline{\operatorname{Hom}}_{\operatorname{QGr}-A} (\pi(A), \pi(M))$$

$$\cong \underline{\operatorname{Hom}}_{\operatorname{Gr}-A} (A, \omega \pi(M))$$

$$\cong \omega \pi(M)$$

$$\cong H^{0}(\pi(M))$$

and so by taking limits we get the exact sequence

$$0 \longrightarrow \lim_{n \to \infty} \underline{\operatorname{Hom}}_{\operatorname{Gr-}A} \left(A/A_{\geq n}, M \right) \longrightarrow M \longrightarrow \underline{H}^0(\pi(M)) \longrightarrow \lim_{n \to \infty} \underline{\operatorname{Ext}}_{\operatorname{Gr-}A}^1 \left(A/A_{\geq n}, M \right) \longrightarrow 0$$
 It remains only to show that $\lim_{n \to \infty} \underline{\operatorname{Hom}}_{\operatorname{Gr-}A} \left(A/A_{\geq n}, M \right) \cong \tau(M).$