Convolutional Networks

Motivation, working with images, trainable kernels

Machine Learning and Data Mining, 2024

Majid Sohrabi

National Research University Higher School of Economics

How to work with image-like data?

Working with images

Extreemly high-dimensional input

- E.g. even a small 640x480 color image would make up almost 1M input features (pixel brightness levels in R, G and B)
- So a fully-connected hidden representation with just 100 units would require 100M parameters

Working with images

Extreemly high-dimensional input

- E.g. even a small 640x480 color image would make up almost 1M input features (pixel brightness levels in R, G and B)
- So a fully-connected hidden representation with just 100 units would require 100M parameters

Is quite data-hungry to train when using fully-connected layers:

 Identifying an object on a picture would require examples with all possible locations of that object on the picture

Probability of locating the object

Probability of locating the object

A cat moved from one part of an image to another is still a cat

Why don't we use the same model to look at different patches of an image trying to identify the object of interest:

This may be implemented with a 2D convolution!

Image Input

Probability of locating the object **Output**

Output
$$(i,j) = \sum_{i',j'} \text{Input}(i',j') \cdot \text{Kernel}(i'-i,j'-j)$$

а	b	С
d	e	f
g	h	i

Input

Kernel

Output
$$(i,j) = \sum_{i',j'} \text{Input}(i',j') \cdot \text{Kernel}(i'-i,j'-j)$$

а	b	С
d	e	f
g	h	i

Input

Kernel

Output
$$(i,j) = \sum_{i',j'} \text{Input}(i',j') \cdot \text{Kernel}(i'-i,j'-j)$$

а	b	С
d	e	f
g	h	i

Input

Kernel

Output
$$(i,j) = \sum_{i',j'} \text{Input}(i',j') \cdot \text{Kernel}(i'-i,j'-j)$$

а	b	С
d	e	f
g	h	i

Input

Kernel

Output
$$(i,j) = \sum_{i',j'} \text{Input}(i',j') \cdot \text{Kernel}(i'-i,j'-j)$$

а	b	С
d	e	f
g	h	i

Input

Kernel

ax + by + dz + ew	bx + cy + ez + fw
dx + ey + gz + hw	ex + fy + $hz + iw$

Output

Different kernels may extract different features

Input

Blur:

$$kernel = \begin{pmatrix} 1 & 4 & 7 & 4 & 1 \\ 4 & 16 & 26 & 16 & 4 \\ 7 & 26 & 41 & 26 & 7 \\ 4 & 16 & 26 & 16 & 4 \\ 1 & 4 & 7 & 4 & 1 \end{pmatrix} \cdot \frac{1}{273}$$

Ouput

Input

Sharpen:

$$kernel = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

Ouput

Input

Edge detection:

$$kernel = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

Ouput

Input

Edge detection:

$$kernel = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

Ouput

In the context of deep learning, the kernel parameters are **trainable**

I.e. the network **learns the kernel** to **extract useful features**

2D convolution as a matrix multiplication

Unwrap the 2D images into 1D vectors

Re-write the convolution as a regular matrix-vector multiplication

I.e. fully-connected layers comprise convolutions

Yet they are much more complex

а	b	С
d	e	f
g	h	i

x	у	
Z	w	
Kornol		

ax + by + dz + ew	bx + cy + ez + fw
dx + ey + gz + hw	ex + fy + $hz + iw$

Output

ax + by + dz + ew
bx + cy + ez + fw
dx + ey + gz + hw
ex + fy

	=	

x	у	0	Z	W	0	0	0	0
0	х	у	0	Z	W	0	0	0
0	0	0	х	у	0	Z	W	0
0	0	0	0	х	у	0	Z	W

а

b

С

d

e

X

f

g

h

2D convolutional layers

Input channels

In practice images have multiple channels

- E.g. 3 color channels of a color image

Channel #3

Output channels

In practice we want to extract multiple features

Kernel becomes 4D: $H_K \times W_K \times C_{in} \times C_{out}$

Output becomes 3D: $H \times W \times C_{out}$

Putting it all together

bias term

Note: with this approach the output width/height is smaller than the input width/height

– By how much (for a given kernel width and hight)?

Sometimes the border of the input image is **padded** with some values (e.g. s.t. the output has the same size)

Controlled by the "padding" parameter

Some other parameters:

- "stride" by how many pixels the kernel window steps (equals 1 in the examples here)
- "dilation" kernel "spread" (e.g. see <u>this animation</u>)

Typical network architecture

Deep convolutional network

Convolution is typically followed by a pooling operation (aggregating values of nearby pixels), e.g. maxpool:

1	-2	5	7
2	1	4	-3
4	- 9	2	0
-4	15	2	1

 $\xrightarrow{\text{maxpool}(2\times2)} \begin{array}{|c|c|c|c|c|c|}\hline 2 & 7 \\\hline 15 & 2 \\\hline \end{array}$

Deep convolutional network

Convolution is typically followed by a pooling operation (aggregating values nearby pixels), e.g. maxpool:

Motivation: Deeper layers extract "higher level" (i.e. more complex) features, and we're less interested in their spacial location. Hence, fewer pixels and more channels.

Thank you!

Majid Sohrabi

msohrabi@hse.ru

