Kriging Method for Missing Values in Spatial-temporal Data

Yuze Zhou

May.2022

■ The air pollutant of concern is PM2.5, the data of which is collected from 9 monitoring sites in the city of Beijing.

Figure 1: Location of Monitoring Sites

- For each site, the amount of PM2.5 is recorded hourly from Mar 1st 2013 to Dec 31 2013 with a total length of 7344 hours.
- Missing values for each site:

	Aotizhongxin	Changping	Dingling	Dongsi	Guanyuan	Nongzhanguan	Tiantan
[11	33	134	143	102	39	17

Wanliu	Wanshouxigong
21	41

- The spatial-temporal process: X(s;t), $s \in D_s$, $t \in D_t$
- D_s is the set of the location of all 9 sites, $D_t = \{1, \dots, 7344\}$ is the collection of all time when the air-pollutant data is recorded.
- Different levels in the mean value:

Aotizhongxin	Changping	Dingling	Dongsi	Guanyuan	Nongzhanguan	Tiantan
82.392	72.645	64.755	86.940	82.129	84.348	83.200

Wanliu	Wanshouxigong
91.596	84.028

Since the data is not normally distributed, transformation is applied to each of the process.

Figure 2: Log-transformation

 Stationarity: The auto-correlation of process at each site suggests stationarity. Results from stationarity test like Dick-Fuller test also suggests it.

Figure 3: Autocorrelation Function

Spatial-temporal Process

■ Denotes the process when applying log-transform on X(s;t) as Y(s;t). Y(s;t) is stationary for each $s \in D_s$, but they have different levels in the mean value. We can assume

$$EY(s; t) := \mu(s_0, t_0) = \mu(s)$$

Contour plot of the correlation function:

Figure 4: Contour Plot of Correlation

Spatial-temporal Process

■ The stripe patterns suggest that the covariance function of Y(s;t) is separable, which goes as followed:

$$cov(Y(\mathbf{s};t),Y(\mathbf{x};r)) = C^{(s)}(\mathbf{s};\mathbf{x})C^{(t)}(|t-r|)$$

- $C^{(s)}(\mathbf{s}; \mathbf{x})$ is the spatial covariance function that only depends on the location of site s and x; $C^{(t)}(|t-r|)$ is the temporal covariance function that only depends on the time lag |t-r|
- Separability guarantees that the covariance function could be estimated from easily by obtaining the spatial covariance and the temporal covariance separably.

Spatial-temporal Kriging

Assume we would like to predict the value of the process at site s_0 and time t_0 from observations $Z(s_i,t_{i,j}), i \in \{1,\cdots m\}, j \in \{1,\cdots,T_i\}$, the predictor $Y^*(s_0,t_0)$ is predicted using a linear combination of $Z(s_i,t_{i,j})$.

$$Y^*(s_0, t_0) = \sum_{i=1}^{m} \sum_{j=1}^{T_i} I_{ij} Z(s_i, t_{i,j}) + c$$

by denoting $I = \{I_{ij}\}$ and $\mathbf{Z} = \{Z_{ij}\}$, the predictor could be re-written as $Y^*(s_0, t_0) = I'Z + c$, where I and c are the parameters to be estimated.

8 / 12

Spatial-temporal Kriging

■ Since normality is satisfied for the transformed process, the conditional distribution of $Y(s_0, t_0)$ given **Z** is:

$$Y(s_0,t_0)|Z \sim \mathcal{N}(\mu(s_0,t_0)+c_0^{'}C_z^{-1}(\mathbf{Z}-\mu),c_{00}-c_0^{'}C_z^{-1}c_0)$$
 where $C_z=var(\mathbf{Z}),\ c_0=cov(Y(s_0,t_0),\mathbf{Z})$ and $c_{00}=var(Y(s_0,t_0)).$

■ The simple kriging predictor $Y^*(s_0, t_0)$ is the mean of the conditional distribution:

$$Y^*(s_0, t_0) = \mathbf{E}(Y(s_0, t_0)|\mathbf{Z}) = \mu(s_0, t_0) + c_0' C_z^{-1}(\mathbf{Z} - \mu)$$

Missing Values

- Assume missing value occurs at site s_0 at time t_0 , we use the simple kriging method to predict $Y^*(s_0, t_0)$ as a replacement for the missing value.
- The contour plot and acf plot both suggest that the correlation would decay to near 0 after around 40 hours, therefore for observations before time $t_0 40$ and after time $t_0 + 40$ would not be very helpful in prediting $Y^*(s_0, t_0)$.
- The contour plot also suggests that the value of cross-correlation is high when the time lag is small for every pair of the sites; thus all sites $s \in D_s$ should be considered in the kriging predictor.

Missing Values

- The kriging predictor $Y^*(s_0, t_0)$ requires the usage of all existing observations Z(j, t) such that $j \in D_s$ and $t \in [t_0 40, t_0 + 40]$.
- Kriging Predictor and actual observations

Figure 5: Kriging Predictor vs Actual Observations

Missing Values

■ Kriging Predictor and missing values

Figure 6: Kriging Predictor vs Actual Observations