2022-2023 MP2I

DM 1, corrigé

Exercice 1. Un calcul.

1)

- a) Un petit calcul montre que $\forall k \in [0, n], \binom{n}{k} = \binom{n}{n-k}$ (cf cours).
- b) La question précédente nous incite à faire appraitre un terme en $\binom{n}{n-k}$. On va donc effectuer dans la définition de u_n le changement d'indice j=n-k. On obtient alors :

$$u_n = \sum_{j=0}^{n} \frac{(-1)^{n-j}}{\binom{n}{n-j}}$$
$$= \sum_{j=0}^{n} \frac{(-1)^n \times (-1)^{-j}}{\binom{n}{j}}.$$

Or, on peut remarquer que pour tout $j \in \mathbb{N}$, $(-1)^{-j} = (-1)^j$. En effet, $(-1)^j$ vaut 1 si j et pair et -1 si j est impair et j et -j ont la même parité. On en déduit donc que pour tout $n \in \mathbb{N}$, $u_n = (-1)^n u_n$.

Ceci entraine que pour n impair, on a $u_n = -u_n$, ce qui implique que $u_n = 0$.

2) Soit $n \in \mathbb{N}$ pair. On va reposer le même changement d'indice (j = n - k) en partant de v_n . On obtient :

$$v_n = \frac{1}{n+1} \sum_{j=0}^n \left(\frac{(-1)^{n-j} \times (n-j)}{\binom{n}{n-j}} \right)$$
$$= \frac{1}{n+1} \sum_{j=0}^n \left(\frac{(-1)^n \times (-1)^{-j} \times (n-j)}{\binom{n}{j}} \right).$$

On a toujours $(-1)^{-j} = (-1)^j$ et puisque n est pair, on a $(-1)^n = 1$. On en déduit que :

$$v_n = \frac{1}{n+1} \sum_{j=0}^n \left(\frac{(-1)^j \times (n-j)}{\binom{n}{j}} \right)$$

$$= \frac{n}{n+1} \sum_{j=0}^n \left(\frac{(-1)^j}{\binom{n}{j}} \right) - \frac{1}{n+1} \sum_{j=0}^n \left(\frac{(-1)^j \times j}{\binom{n}{j}} \right)$$

$$= \frac{n}{n+1} u_n - v_n.$$

On a donc bien le résultat voulu.

3)

a) Soit $k \in [0, n]$. On a alors:

$$\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!}$$
$$= \frac{(n+1) \times n!}{k!(n-k+1) \times (n-k)!}$$
$$= \frac{n+1}{n-k+1} \times \binom{n}{k}.$$

b) Pour $n \in \mathbb{N}$, on a :

$$u_{n} - u_{n+1} = \sum_{k=0}^{n} \frac{(-1)^{k}}{\binom{n}{k}} - \sum_{k=0}^{n+1} \frac{(-1)^{k}}{\binom{n+1}{k}}$$

$$= \sum_{k=0}^{n} \frac{(-1)^{k}}{\binom{n}{k}} - \left(\sum_{k=0}^{n} \frac{(-1)^{k}}{\binom{n+1}{k}}\right) - \frac{(-1)^{n+1}}{1}$$

$$= \sum_{k=0}^{n} (-1)^{k} \times \left(\frac{1}{\binom{n}{k}} - \frac{1}{\binom{n+1}{k}}\right) + (-1)^{n}$$

$$= \sum_{k=0}^{n} (-1)^{k} \times \left(\frac{1}{\binom{n}{k}} - \frac{(n-k+1)}{(n+1)\binom{n}{k}}\right) + (-1)^{n} \quad \text{(d'après le a)}$$

$$= \sum_{k=0}^{n} \frac{(-1)^{k}}{\binom{n}{k}} \times \left(\frac{n+1-(n-k+1)}{(n+1)}\right) + (-1)^{n}$$

$$= \sum_{k=0}^{n} \frac{(-1)^{k}}{\binom{n}{k}} \times \left(\frac{k}{(n+1)}\right) + (-1)^{n}$$

$$= v_{n} + (-1)^{n}.$$

4) Lorsque n est pair, on a d'après $u_{n+1}=0$ (d'après la question 1.b) et d'après la question précédente :

$$u_n - 0 = v_n + 1.$$

Or, on a également $2v_n = \frac{n}{n+1}u_n$ d'après la question 1.c. En réinjectant, on en déduit que :

$$2(u_n - 1) = \frac{n}{n+1}u_n \quad \Leftrightarrow \quad \frac{2(n+1) - n}{n+1}u_n = 2$$

$$\Leftrightarrow \quad u_n = \frac{2n+2}{n+2}.$$

On vérifie par exemple que le résultat est juste pour n=0 (on trouve 1) et pour n=2 (on trouve $\frac{3}{2}$).

PROBLÈME

RÉSOLUTION D'UNE ÉQUATION FONCTIONNELLE

Partie I. Étude de fonctions

- 1) Étude de φ
 - a) Une exponentielle étant toujours strictement positive, le dénominateur ne s'annule jamais. φ est donc définie sur \mathbb{R} . Elle est d'ailleurs dérivable sur \mathbb{R} (ce qui nous servira dans la question suivante) en tant que quotient de fonctions dérivables sur \mathbb{R} (le dénominateur ne s'annulant pas). Soit $x \in \mathbb{R}$. On a alors :

$$\varphi(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1}
= \frac{e^{2x}}{e^{2x}} \times \frac{e^{-2x} - 1}{e^{-2x} + 1}
= \frac{1 - e^{2x}}{1 + e^{2x}}
= -\frac{e^{2x} - 1}{e^{2x} + 1}
= -\varphi(x).$$

 φ est donc une fonction impaire.

b) Comme on l'a vu à la question précédente, φ est dérivable sur \mathbb{R} . On a alors pour tout $x \in \mathbb{R}$:

$$\varphi'(x) = \frac{2e^{2x}}{e^{2x} + 1} - (e^{2x} - 1) \times \frac{-2e^{2x}}{(e^{2x} + 1)^2}$$

$$= \frac{2e^{2x}}{(e^{2x} + 1)^2} \times ((e^{2x} + 1) - (e^{2x} - 1))$$

$$= \frac{4e^{2x}}{(e^{2x} + 1)^2}.$$

Ceci entraine que $\forall x \in \mathbb{R}, \ \varphi'(x) > 0. \ \varphi$ est donc strictement croissante sur \mathbb{R} .

Puisque $\lim_{y\to -\infty}e^y=0$, on en déduit par quotient de limites que $\lim_{x\to -\infty}\varphi(x)=-1$. Puisque la fonction est impaire, on a alors $\lim_{x\to +\infty}\varphi(x)=1$.

c) On a le tracé suivant (la tangente à l'origine est la droite d'équation y = x):

2) Étude de ψ

a) On doit étudier le signe de $x\mapsto \frac{1+x}{1-x}$. On remarque déjà que cette fonction n'est pas définie en 1. On a $1-x>0 \Leftrightarrow x<1$ et $1+x>0 \Leftrightarrow x>-1$. Un tableau de signes nous permet d'obtenir que $\frac{1+x}{1-x}>0$ si et seulement si $x\in]-1,1[$. Ceci entraîne que ψ est définie sur]-1,1[.

On remarque que ψ est définie sur un ensemble symétrique par rapport à l'origine et que $\forall x \in]-1,1[$:

$$\psi(-x) = \frac{1}{2} \ln \left(\frac{1-x}{1+x} \right) = -\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = -\psi(x).$$

La fonction ψ est donc impaire.

b) Sur I, ψ est un composée de fonctions dérivables et est donc dérivable. On remarque que pour $x \in I$, on peut écrire $\psi(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = \frac{1}{2} \ln (1+x) - \frac{1}{2} \ln (1-x)$. On a alors pour tout $x \in I$:

$$\psi'(x) = \frac{1}{2} \left(\frac{1}{1+x} - \frac{-1}{1-x} \right)$$

$$= \frac{1}{2} \left(\frac{(1-x) + (1+x)}{(1-x)(1+x)} \right)$$

$$= \frac{1}{1-x^2}.$$

c) D'après la question précédente, $\forall x \in I, \ \psi'(x) > 0. \ \psi$ est donc strictement croissante sur I =]-1,1[. On a $\frac{1+x}{1-x} \to_{x\to 1^-} +\infty$. Par composition de limites, on a donc $\psi(x) \to_{x\to 1^-} = +\infty$. De la même façon, $\frac{1+x}{1-x} \to_{x\to -1^+} 0^+$ donc par composition de limites, $\psi(x) \to_{x\to -1^-} = -\infty$.

d) On peut montrer que comme la fonction φ , ψ est impaire sur I. On a à nouveau une tangente d'équation y=x en 0. On en déduit le tracé suivant :

3) On remarque que l'on a le droit de composer φ et ψ . En effet, ψ est définie sur]-1,1[et à valeurs dans \mathbb{R} et ψ est définie sur \mathbb{R} . On a alors pour $y \in]-1,1[$:

$$\varphi(\psi(y)) = \frac{e^{2\psi(y)} - 1}{e^{2\psi(y)} + 1}$$

$$= \frac{e^{\ln\left(\frac{1+y}{1-y}\right)} - 1}{e^{\ln\left(\frac{1+y}{1-y}\right)} + 1}$$

$$= \frac{\frac{1+y}{1-y} - 1}{\frac{1+y}{1-y} + 1}$$

$$= \frac{\frac{1+y - (1-y)}{1-y}}{\frac{1-y}{1-y}}$$

$$= \frac{\frac{2y}{1-y}}{\frac{2}{1-y}}$$

On remarque que les graphes de ϕ et ψ sont symétriques par rapport à la droite y=x. Nous (re)verrons ceci dans le prochain chapitre...

Partie II. Une première équation

4) Dans toute cette question, on suppose qu'il existe f solution.

a) On a f(0) = 2f(0) donc f(0) = 0. Puisque f est dérivable en 0, on en déduit que $\lim_{t \to 0, t \neq 0} \frac{f(t) - f(0)}{t - 0}$ existe et est finie (et égale à f'(0)).

b)

i) On a $\frac{x}{2^n} \to 0$ quand n tend vers l'infini. Pour $n \in \mathbb{N}$, si on pose $x_n = \frac{x}{2^n}$, on remarque que l'on a alors $u_n = \frac{f(x_n) - f(0)}{x_n - 0}$. Autrement dit, quand n tend vers l'infini, puisque x_n tend vers 0, alors $(u_n)_{n \in \mathbb{N}}$ converge vers la limite du taux d'accroissement de f en 0, c'est à dire f'(0) (puisque f est dérivable en 0).

ii) Soit $n \in \mathbb{N}$. On a alors :

$$u_n = \frac{f\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}}$$

$$= \frac{f\left(2 \times \frac{x}{2^{n+1}}\right)}{\frac{x}{2^n}}$$

$$= 2\frac{f\left(\frac{x}{2^{n+1}}\right)}{\frac{x}{2^n}}$$

$$= \frac{f\left(\frac{x}{2^{n+1}}\right)}{\frac{x}{2^{n+1}}}$$

$$= u_{n+1}.$$

On montre alors par récurrence directe que $\forall n \in \mathbb{N}, \ u_n = u_0 = \frac{f(x)}{x}$.

c) La question précédente implique que la suite (u_n) est constante. Or, on a démontré qu'elle convergeait vers f'(0). Ceci entraine en particulier que $u_0 = f'(0)$. Or, on a $u_0 = \frac{f(x)}{x}$. On a donc montré que pour tout $x \in \mathbb{R}^*$, f(x) = f'(0)x.

On remarque que cette égalité est encore vraie en x=0 (puisque f(0)=0). On a donc montré qu'il existait $a \in \mathbb{R}$ (on prend a=f'(0) tel que $\forall x \in \mathbb{R}, f(x)=ax$.

5) Si f est solution du problème, alors d'après l'étude précédente, il existe $a \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, f(x) = ax. Réciproquement, si f est de la forme $f: x \mapsto ax$ où a est constant, on a bien f dérivable en 0 et :

$$\forall x \in \mathbb{R}, \ f(2x) = 2ax = 2f(x).$$

On a donc bien déterminé l'ensemble des fonctions solutions de cette équation.

Partie III. La résolution proprement dite

6) On suppose dans cette question que f est une solution à ce problème.

a) On a $f(0) = \frac{2f(0)}{1 + (f(0))^2}$. On peut donc avoir f(0) = 0. Si $f(0) \neq 0$, on doit alors avoir $1 + f(0)^2 = 2$, ce qui donne $f(0)^2 = 1$. Les différentes valeurs possibles pour f(0) sont donc -1, 0 et 1.

b) Posons g=-f. Puisque f est dérivable en 0 et définie sur \mathbb{R} , g l'est également. On a alors pour $x\in\mathbb{R}$:

$$g(2x) = -f(2x)$$

$$= -\frac{2f(x)}{1 + (f(x))^2}$$

$$= \frac{2g(x)}{1 + (g(x))^2}.$$

Ceci entraine que g=-f est également solution du problème étudié.

c) Montrons tout d'abord que pour tout $u \in \mathbb{R}, -1 \le \frac{2u}{1+u^2} \le 1$. Soit $u \in \mathbb{R}$. On a alors :

$$1 - \frac{2u}{1 + u^2} = \frac{u^2 - 2u + 1}{1 + u^2}$$
$$= \frac{(u - 1)^2}{1 + u^2}$$
$$\ge 0.$$

Ceci nous permet donc d'affirmer que $\forall u \in \mathbb{R}, \ \frac{2u}{1+u^2} \leq 1$. On procède de même :

$$\frac{2u}{1+u^2} + 1 = \frac{u^2 + 2u + 1}{1+u^2}$$
$$= \frac{(u+1)^2}{1+u^2}$$
$$\ge 0.$$

On en déduit que $\forall u \in \mathbb{R}, -1 \leq \frac{2u}{1+u^2}$. On a donc bien montré l'encadrement voulu.

Soit $x \in \mathbb{R}$. Posons $u = f\left(\frac{x}{2}\right)$. On a alors $f(x) = \frac{2u}{1+u^2}$. D'après l'étude précédente, on a donc $-1 \le f(x) \le 1$. On a donc bien montré l'encadrement voulu pour tout $x \in \mathbb{R}$.

7)

- a) Soit $n \in \mathbb{N}$. En utilisant la relation vérifiée par f en $\frac{x}{2^{n+1}}$, on obtient directement que $u_n = \frac{2u_{n+1}}{1+u_{n+1}^2}$.
- b) Puisque pour tout $n \in \mathbb{N}$, $\frac{2}{1+u_{n+1}^2} > 0$ et que $u_n = u_{n+1} \times \frac{2}{1+u_{n+1}^2}$, on en déduit que u_n et u_{n+1} sont de même signe. Par récurrence en posant $\mathcal{P}(n)$: « u_n est du signe de u_0 », on montre alors que la suite $(u_n)_{n \in \mathbb{N}}$ garde un signe constant.

Or, on a a admis que $(u_n)_{n\in\mathbb{N}}$ converge vers f(0)=1. La suite $(u_n)_{n\in\mathbb{N}}$ est donc toujours de signe positif (si elle était de signe négatif, sa limite serait aussi négative ou nulle, ce qui n'est pas le cas).

c) Soit $n \in \mathbb{N}$. D'après la définition de $(u_n)_{n \in \mathbb{N}}$ et d'après la question 6.c, on a $u_{n+1} \leq 1$. De plus, la suite $(u_n)_{n \in \mathbb{N}}$ est positive d'après ce que l'on vient de montrer. On a donc $0 \leq u_{n+1} \leq 1$, ce qui implique par croissance de $x \mapsto x^2$ sur \mathbb{R}_+ que $1 \leq u_{n+1}^2 + 1 \leq 2$. On en déduit que :

$$\frac{2}{1 + u_{n+1}^2} \ge 1.$$

On en déduit, puisque $u_{n+1} \ge 0$ (ce qui préserve donc les inégalités quand on multiplie par u_{n+1}) que :

$$u_n = \frac{2u_{n+1}}{1 + u_{n+1}^2} \ge u_{n+1}.$$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc décroissante. Il s'agit donc d'une suite décroissante qui converge vers 1. Ceci entraine que tous les termes de la suite sont supérieurs ou égaux à 1. Or, toujours d'après la question 6.c et la définition de la suite, on a $\forall n \in \mathbb{N}, \ u_n \leq 1$. Ceci entraine que $\forall n \in \mathbb{N}, \ u_n = 1$. La suite est donc constante égale à 1.

- d) On en déduit que $1 = u_0 = f(x)$. Ceci entraine que pour tout $x \in \mathbb{R}$, f(x) = 1. La fonction f est alors constante égale à 1.
- e) Supposons à présent que f(0) = -1. Alors, d'après la question III.6.b, g = -f est aussi solution du problème et vérifie cette fois g(0) = 1. D'après la question précédente, on a alors g constante égale à 1. Ceci entraine que f est constante égale à -1.
- 8) On suppose à présent que f est solution du problème posé et que f(0) = 0.
 - a) On suppose par l'absurde qu'il existe $x \in \mathbb{R}$ tel que f(x) = 1. On peut montrer par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: « $u_n = 1$ ».
 - La propriété est vraie au rang 0 (par hypothèse)
 - Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$. On a alors $u_n = 1$. Or, on a également :

$$u_n = \frac{2u_{n+1}}{1 + u_{n+1}^2}.$$

Ceci entraine que $1 + u_{n+1}^2 = 2u_{n+1}$, ce qui implique que $(1 - u_{n+1})^2 = 0$. On a donc $u_{n+1} = 1$.

- La propriété étant intialisée et héréditaire, elle est vraie pour tout $n \in \mathbb{N}$. On en déduit que la suite $(u_n)_{n \in \mathbb{N}}$ est constante égale à 1. Or, cette suite converge quand n tend vers l'infini vers f(0) = 0: c'est absurde!
 - b) Pour vérifier que g est bien définie, il faut que l'on ait le droit de composer f par ψ . Or, le domaine de définition de ψ est]-1,1[. Il faut donc que f soit à valeurs dans]-1,1[. Or, on a montré en question III.6.c que $\forall x \in \mathbb{R}, -1 \leq f(x) \leq 1$ et à la question précédente que l'on ne pouvait jamais avoir égalité. On en déduit que :

$$\forall x \in \mathbb{R}, -1 < f(x) < 1.$$

On en déduit que $g = \psi \circ f$ est définie sur \mathbb{R} . Elle est de plus dérivable en 0 puisque f est dérivable en 0 et ψ est dérivable sur I (composée de fonctions dérivables). Enfin, pour $x \in \mathbb{R}$, on a :

$$g(2x) = \psi(f(2x))$$

$$= \psi\left(\frac{2f(x)}{1 + (f(x))^2}\right)$$

$$= \frac{1}{2}\ln\left(\frac{1 + \frac{2f(x)}{1 + (f(x))^2}}{1 - \frac{2f(x)}{1 + (f(x))^2}}\right)$$

$$= \frac{1}{2}\ln\left(\frac{(1 + f(x))^2}{(1 - f(x))^2}\right)$$

$$= \ln\left(\frac{1 + f(x)}{1 - f(x)}\right)$$

$$= 2\psi(f(x))$$

$$= 2g(x).$$

c) D'après la partie II, on a alors qu'il existe $a \in \mathbb{R}$ tel que g(x) = ax. On a donc $\forall x \in \mathbb{R}$, $ax = \psi(f(x))$. Or, d'après la dernière question de la partie I, on a $\varphi(\psi(f(x))) = f(x)$ (puisque $f(x) \in]-1,1[$). Ceci entraine alors en composant par φ que :

$$\forall x \in \mathbb{R}, \ f(x) = \varphi(ax).$$

9) On a donc montré que si f était solution, alors soit f était constante égale à 1, soit constante égale à -1, soit qu'il existait $a \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, $f(x) = \varphi(ax)$.

Réciproquement, on vérifie que les fonctions constantes égales à 1 et -1 sont bien dérivables en 0 et vérifient bien l'égalité proposée. Elles sont donc solutions. Il faut également vérifier si les fonctions de la forme $f: x \mapsto \varphi(ax)$ sont également solutions. Elles sont bien dérivables en 0 (composées de fonctions dérivables). On a également, pour tout $x \in \mathbb{R}$:

$$\frac{2\varphi(ax)}{\varphi^2(ax)+1} = \frac{2\frac{e^{2ax}-1}{e^{2ax}+1}}{\left(\frac{e^{2ax}-1}{e^{2ax}+1}\right)^2+1}$$

$$= \frac{2\frac{e^{2ax}-1}{e^{2ax}+1}}{\frac{e^{4ax}-e^{2ax}+1}{(e^{2ax}+1)^2}+1}$$

$$= \frac{2\frac{e^{2ax}-1}{e^{2ax}+1}}{\frac{2e^{4ax}+2}{(e^{2ax}+1)^2}}.$$

On peut alors simplifier cette expression, ce qui donne :

$$\frac{2\varphi(ax)}{\varphi^2(ax)+1} = \frac{(e^{2ax}-1)(e^{2ax}+1)^2}{(e^{2ax}+1)(e^{4ax}+1)}$$

$$= \frac{(e^{2ax}-1)(e^{2ax}+1)}{e^{4ax}+1}$$

$$= \frac{e^{4ax}-1}{e^{4ax}+1}$$

$$= \varphi(2ax).$$

On en déduit que pour tout $a \in \mathbb{R}$, les fonctions $f : x \mapsto \varphi(ax)$ sont bien solutions. On a donc déterminé toutes les solutions du problème.