

CANDIDATE

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mathem	natics 1 (P1)		May/June 2019
			1 hour 45 minutes
Candidates answer or	the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 21 printed pages and 3 blank pages.

BLANK PAGE

Find the value of k .	1
For this value of k , find the coefficient of x^2 in the expansion.	

The line 4y = x + c, where c is a constant, is a tangent to the curve $y^2 = x + 3$ at the point P on the

` /	Find the value of c .
ii)	Find the coordinates of P .

of r and A .						
		 			••••••	•••••
		 	••••••			•••••
		 			••••••	•••••
		 				•••••
		 				•••••
		 				•••••
		 				•••••
•••••••••	•••••	••••••	••••••	••••••	•••••••••••	•••••
••••••	•••••	 •••••		•••••	••••••	•••••
		 		•••••		•••••
		 				•••••
		 				•••••
		 				•••••
		 				•••••

(i)

The diagram shows a trapezium ABCD in which the coordinates of A, B and C are (4, 0), (0, 2) and (h, 3h) respectively. The lines BC and AD are parallel, angle $ABC = 90^{\circ}$ and CD is parallel to the x-axis.

Find, by calculation, the value of h .	[3]

Hence find the coordinates of D .	[3

)	Express $-2x^2 + 12x - 3$ in the form $-2(x + a)^2 + b$, where a and b are constants.
)	State the greatest value of $f(x)$.

The function g is defined by g(x) = 2x + 5 for $x \in \mathbb{R}$.

(iii)	Find the values of x for which $gf(x) + 1 = 0$.	[3]

6	(i)	Prove the identity	y (-	$-\tan x$ =	1	•		[4]
			$\cos x$,	$1 + \sin x$			
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	•••••	•••••		•••••	•••••	•••••
			•••••	•••••		•••••	•••••	
		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••	•••••		•••••	•••••	
			•••••	•••••		•••••	•••••	
		•••••	•••••	•••••		•••••	•••••	•••••
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
			•••••	•••••		•••••	•••••	
		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	
		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	
		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	
		•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
			•••••	•••••		•••••	•••••	
			•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	

	ve the equatio	·	·				
•••••	•••••		•••••		•••••	•••••	
•••••							
•••••		••••••	•••••	••••••	•••••	•••••••••••	•••••
••••••	••••••••	•••••••••••	••••••	••••••	••••••	•	
		•••••	•••••				•••••
	•••••						
		•••••	•••••		•••••		•••••
•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••
•••••		••••••	•••••	••••••	•••••	•••••••••••	•••••
••••••	•••••••••••	••••••••••	••••••	•••••••	••••••	••••••••••••	••••••
•••••							

The diagram shows a three-dimensional shape in which the base OABC and the upper surface DEFG are identical horizontal squares. The parallelograms OAED and CBFG both lie in vertical planes. The point M is the mid-point of AF.

Unit vectors **i** and **j** are parallel to \overrightarrow{OA} and \overrightarrow{OC} respectively and the unit vector **k** is vertically upwards. The position vectors of \overrightarrow{A} and \overrightarrow{D} are given by $\overrightarrow{OA} = 8\mathbf{i}$ and $\overrightarrow{OD} = 3\mathbf{i} + 10\mathbf{k}$.

(i)	Express each of the vectors \overrightarrow{AM} and \overrightarrow{GM} in terms of i , j and k .	[3]

•••••
••••••
 •••••
••••••

The third and fourth terms of a geometric progression are 48 and 32 respectively. It infinity of the progression.	Find the sum [3]
	•••••
	••••••
	••••••

(b) Two schemes are proposed for increasing the amount of household waste that is recycled each week.

Scheme *A* is to increase the amount of waste recycled each month by 0.16 tonnes.

Scheme B is to increase the amount of waste recycled each month by 6% of the amount recycled in the previous month.

The proposal is to operate the scheme for a period of 24 months. The amount recycled in the first month is 2.5 tonnes.

For each scheme, find the total amount of waste that would be recycled over the 24-month	[5]
Scheme A	
	•••••
	••••
Scheme B	
	••••

9	The	e function f is defined by $f(x) = 2 - 3\cos x$ for $0 \le x \le 2\pi$.	
	(i)	i) State the range of f.	[2]
	(ii)	Sketch the graph of $y = f(x)$.	[2]

The function g is defined by $g(x) = 2 - 3\cos x$ for $0 \le x \le p$, where p is a constant.

	State the largest value of p for which g has an inverse.	
		••••••
		•••••
		•
)	For this value of p , find an expression for $g^{-1}(x)$.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		•••••

Find the equation of the curve.			
	••••••		
	•••••		•••••
	•••••	•••••	•••••

•		
•		
•		
•		
1	Determine the nature of each of the stationary points.	[2
•		
•		
•		
•		
•		
•		
•		
•		

(i)

The diagram shows part of the curve $y = \frac{3}{\sqrt{(1+4x)}}$ and a point P(2, 1) lying on the curve. The normal to the curve at P intersects the x-axis at Q.

Show that the x-coordinate of Q is $\frac{10}{9}$.	[5]

Find, showing all necessary working, the area of the shaded region.	[6]
	•••••••
	••••••
	•••••••
	•••••

Additional Page

must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.