

BUL FUNKSIYALARINI OʻZGARUVCHILAR BOʻYICHA YOYILMASI. MDNSH VA MKNSH

 $\{0,1\}$ Bul algebrasidagi xy kon'yunksiya amali oddiy arifmetikadagi 0 va 1 sonlar ustidagi ko'paytma amaliga mos keladi. Ammo 0 va 1 sonlarni qo'shish natijasi $\{0,1\}$ to'plam doirasidan chetga chiqadi. Shuning uchun I.I.Jegalkin (3.8.1869-28.3.1947) 2 moduliga asosan qo'shish amalini kiritadi (I.I.Jegalkin 30-yillarning boshida Moskva davlat universitetida birinchi bo'lib matematik mantiq bo'yicha ilmiy seminar tashkil etgan). x va y mulohazalarning 2 moduli bo'yicha qo'shishni x+y sifatida belgilaymiz va u quyidagi chinlik jadvali bilan beriladi:

х	у	x + y
0	0	0
0	1	1
1	0	1
1	1	0

Chinlik jadvalidan koʻrinib turibdiki, $x+y=\overline{x\leftrightarrow y}$. Mantiq algebrasidagi koʻpaytma va 2 moduli boʻyicha qoʻshish mantiq amallari uchun kommutativ, assotsiativ va distributiv arifmetik qonunlar oʻz kuchini saqlaydi.

Bul algebrasidagi asosiy mantiqiy amallarni kiritilgan arifmetik amallar orqali quyidagicha ifodalash mumkin:

1.
$$\bar{x} = x+1$$
; 2. $x \wedge y = xy$; 3. $x \vee y = xy + x + y$; 4. $x \rightarrow y = xy + x + 1$;

$$5. x \leftrightarrow y = x + y + 1.$$

2 moduli boʻyicha qoʻshish amalining ta'rifiga asosan x+x=0 va xx=x ($x^n=x$).

Bul funksiyalarining oʻzgaruvchilar boʻyicha yoyilmasi

Teorema 1. E_2 to 'plamdagi har bir $f(x_1,...,x_n)$ funksiya quyidagi ko 'rinishda ifodalanishi mumkin:

1.
$$f(x_1,...,x_n) = x_1 \cdot f(1,x_2,...,x_n) \vee \overline{x_1} \cdot f(0,x_2,...,x_n)$$
,

2.
$$f(x_1,...,x_n) = x_1 \cdot f(1,x_2,...,x_n) \oplus \bar{x}_1 \cdot f(0,x_2,...,x_n)$$
,

3.
$$f(x_1,...,x_n) = (x_1 \lor f(0,x_2,...,x_n)) \& (\bar{x}_1 \lor f(1,x_2,...,x_n))$$
.

Isbot. Ushbu formulalarni isbotlash uchun

1) Agar $x_1 = 0$ bo'lsa, unda

$$f(0,x_2,...,x_n) = 0 \lor f(0,x_2,...,x_n) = f(0,x_2,...,x_n)$$
.

2) Agar $x_1=1$ boʻlsa, unda

$$f(1, x_2, ..., x_n) = 1 \& f(1, x_2, ..., x_n) \lor 0 \& f(0, x_2, ..., x_n) = f(1, x_2, ..., x_n).$$

Xuddi shunday 2-3-tasdiqlarni ham isbotlashimiz mumkin.

Teorema 2. Har bir E_2 dan olingan $f(x_1,...,x_n)$ funksiyani quyidagicha ifodalash mumkin, bunda $\forall \kappa, 1 \leq k \leq n$:

1.
$$f(x_1,...,x_n) = V x_1^{\sigma_1} \& ... \& x_k^{\sigma_k} \& f(\sigma_1,...,\sigma_k,x_{k+1},...x_n),$$

bunda
$$x^{\sigma} = \begin{cases} x, agar \ \sigma = 1; \\ \overline{x}, agar \ \sigma = 0; \end{cases}$$
 $\bigvee_{i=1}^{n} x_i = x_1 \lor x_2 \lor \dots \lor x_n.$

$$2. f(x_1, ..., x_n) = \sum_{(\sigma_1, ..., \sigma_k)} x_1^{\sigma_1} \& ... \& x_k^{\sigma_k} \& f(\sigma_1, ..., \sigma_k, x_{k+1}, ... x_n), \text{ bunda}$$

$$\sum_{i=1}^{n} x_i = x_1 \oplus x_2 \oplus \ldots \oplus x_n.$$

3.
$$f(x_1,...,x_n) = \underset{(\sigma_1,...,\sigma_k)}{\&} (x_1^{\overline{\sigma}_1} \vee ... \vee x_k^{\overline{\sigma}_k} \vee f(\sigma_1,...,\sigma_k,x_{k+1},...x_n)),$$

bunda
$$\bigotimes_{i=1}^{n} x_i = x_1 \& x_2 \& \dots \& x_n, \qquad x^{\bar{\sigma}} = \begin{cases} x, agar \ \sigma = 0; \\ \bar{x}, agar \ \sigma = 1; \end{cases}$$

1-tasdiqning isboti: $k - (\alpha_1, ..., \alpha_k)$ boʻlsa, $f(x_1, ..., x_n)$ funksiya quyidagi koʻrinishga keladi - $f(\alpha_1, ..., \alpha_k, x_{k+1}, ..., x_n)$.

Ta'rifga asosan,

$$\alpha_{1}^{\sigma_{1}} = 1 \iff \alpha_{1} = \sigma_{1}$$

$$\alpha_{2}^{\sigma_{2}} = 1 \iff \alpha_{2} = \sigma_{2}$$

$$\alpha_{\nu}^{\sigma_{k}} = 1 \iff \alpha_{\nu} = \sigma_{\nu}$$

Bundan esa, $\alpha_1^{\sigma_1} \& \alpha_2^{\sigma_2} \& \dots \& \alpha_k^{\sigma_k} = 1 \Leftrightarrow \alpha_1 = \sigma_1, \alpha_2 = \sigma_2, \dots, \alpha_k = \sigma_k$.

1 & x = x dan f funksiya berilgan formulaga faqat va faqat $\alpha_1 = \sigma_1, \alpha_2 = \sigma_2, ..., \alpha_k = \sigma_k$ boʻlganda oʻrinli.

Bundan, formulaning o'ng tomoni

$$V = x_1^{\sigma_1} \dots x_k^{\sigma_k} & f(\sigma_1, \dots, \sigma_k, x_{k+1}, \dots x_n) = f(\sigma_1, \dots, \sigma_k, x_{k+1}, \dots x_n) \text{ ga teng}$$

$$(\sigma_1, \dots, \sigma_k)$$

chunki qolgan barcha kon'yunksiyalar = 0. Formulaning chap tomonining ham $f(\sigma_1,...,\sigma_k,x_{k+1},...x_n)$ ko'rinishga ega chunki, $\alpha_1 = \sigma_1, \alpha_2 = \sigma_2,...,\alpha_k = \sigma_k$.

Demak,
$$f(\sigma_1,...,\sigma_k,x_{k+1},...x_n) = f(\sigma_1,...,\sigma_k,x_{k+1},...x_n)$$
.

Xuddi shunday 2-3-tasdiqlarni ham isbotlashimiz mumkin.

MDNSH va MKNSH.

Natija 1. 2-teoremaning 1-tasdiqida k = n boʻlsa, unda yoyilma quyidagi koʻrinishga ega boʻladi:

$$f(x_1, \dots, x_n) = V \qquad x_1^{\sigma_1} \dots x_n^{\sigma_n} \cdot f(\sigma_1, \dots, \sigma_n). \tag{1}$$

Agar $f \neq 0$, unda (1) formuladan

$$f(x_1,...,x_n) = V \underset{f(\sigma_1,...,\sigma_n)=1}{V} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n} - Mukammal \ diz \ 'yunktiv \ normal$$

shakl (MDNSh).

Natija 2. Agar 2-teoremaning 3-tasdiqida k = n boʻlsa, unda unda yoyilma quyidagi koʻrinishga ega boʻladi:

$$f(x_1, \dots, x_n) = \mathcal{L}_{(\sigma_1, \dots, \sigma_n)} (x_1^{\overline{\sigma}_1} \vee \dots \vee x_n^{\overline{\sigma}_n} \vee f(\sigma_1, \dots, \sigma_n)).$$
 (2)

Agar $f \neq 1$, unda (2) formuladan

$$f(x_1,...,x_n) = \underset{f(\sigma_1,...,\sigma_n)}{\&} (x_1^{\overline{\sigma}_1} \vee ... \vee x_n^{\overline{\sigma}_n}) - Mukammal\ kon\ 'yunktiv\ normal\ shakl$$

(MKNSh).

Natija 3. Agar 2-teoremaning 2-tasdiqida k = n boʻlsa, unda unda yoyilma quyidagi koʻrinishga ega boʻladi:

$$f(x_1, ..., x_n) = \sum_{(\sigma_1, ..., \sigma_n)} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n} \& f(\sigma_1, ..., \sigma_n)$$
(3)

Agar $f \neq 0$, unda (3) formuladan

$$f(x_1,...,x_n) = \sum_{\substack{(\sigma_1,...,\sigma_n) \\ f(\sigma_1,...,\sigma_n) = 1}} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}.$$