

#### 🖁 Задача

<u>Предсказать повышение по</u> должности и подразделению

| Номер класса | По должности | По<br>подразделению |
|--------------|--------------|---------------------|
| О            | 1            | 0                   |
| 1            | О            | 1                   |
| 2            | 1            | 1                   |
| 3            | О            | 0                   |

#### Особенности данных.

- 1. Данные избыточны и очень высоко разреженны
- 2. Очень сильный дисбаланс классов

ВЫВОД: Нужна правильная <u>предобработка</u> данных и постобработка результатов модели

## Дисбаланс классов. Что взлетело, а что нет.

# Распределение пренировочных данных





#### Модель

#### Почему catboost?

- Показывает самые лучшие результаты на большинстве современных бэнчмарков
- Имеет собственные адаптированные алгоритмы работы с категориальными и текстовыми данными и эмбеддингами
- Удобна в эксплуатации и большая часть функций уже оптимизирована "из коробки"
- Применима к широкому спектру задач

#### Multiclass classification

DATA MultiClass Classifier Div

Max score: 0.42

### Binary classification



Max score < 0.42

#### Multilabel classification

MultiLabel Classifier False False Div proba Job proba

Max score: 0.54

### Метрика

Recall("полнота" в пер. с англ.) - количество правильных ответов.

#### Особенности:

- За N 1 итераций можно узнать распределение классов
- За 2 итерации можно узнать приблизительный размер датасета
- Очень чувствительна к ошибкам
- Используя данные особенности, я узнал что классы в тестовой выборке распределены равномерно

#### Disbalance

 В тренировочном датасете ощутимый дисбаланс, классов, а в тестовом наоборот, таким образом предсказания обученной модели обесцениваются.

Эту проблему решают <u>трешхолдинг</u> и <u>синтетические данные</u>

#### Tresholding

Фсновная идея: выбрать трешхолды, при которых распределение классов будет наиболее близко к априорному.
 Loss = abs(mean - median) + median + std + 2(max - min)
 В результате, трешхолд подбирается с
 точностью до 0.005

Г

#### Synthetic Data

- Фсновная идея: отобрать наиболее вероятных работников принадлежащих к самому непопулярному классу из неизвестных данных. Алгоритм:
  - 1. Находим трешхолды
- 2. Предсказываем на признаках всех сотрудников
- 3. Отсекаем по *трешхолду const*. вероятные данные остальных классов
- <sub>¬</sub>4. Объединяем с исходным трейном
  - 5. Заново обучаем классификатор на новом

# Feature engineering

#### Education

Данная таблица содержит информацию обо всех работниках и является самой информативной и наименее разреженной. Колонку с образованием упростил, так как некоторые классы были очень похожи(заменил похожие значения на ближайшие). Ключевые признаки из этой таблицы:

- До 6-и специализаций сотрудников в хронологическом порядке
- До 3-х образований в хронологическом порядке
- Продублировал все признаки(в т.ч. из других таблиц) на иденентификаторе руководителя

### Connection Time

Данная таблица очень важна с точки зрения повышения по должности.

Ключевыми признаками являются стандартные статистики(сумма, стандартное отклонение, медиана, количество - "count")\* по времени⁰опоздания.

\* - те же статистики будут мною использоваться и далее

# Выбросы

Формулировка:

"Правильными" вещественные числовые данные считаются если входят в интервал
[med - mad; med + mad]

med - медиана, а

mad - медианное отклонение от медианы

# Working Day

#### Ключевые признаки:

- Статистика по колонкам ActiveTime и MonitorTime
- Количество выбросов по будням и выходным по ActiveTime и MonitorTime
- Также добавил признак частоты("frequency"),
   который представляет собой count/(max\_count min\_count + 1)
- Примечание: max и min глобальные, т.е. среди всех сотрудников в данных

#### "Network

- Очень похожа на предыдущую, но имеет более релевантные значения и в ней нет классификации на будни/выходные, как и колонки ActiveTime. Ключевые признаки:
- Статистика по Monitor Time + frequency
- Количество выбросов
- Статистика по всем іd таких же специализации, образования(текущих) и руководителя(все по отдельности)

### Tasks

- Самая информативная таблица с точки зрения ценности информации, но она также отличается не очень большим количеством уникальных id(1272). Ключевые признаки:
- Мода задачи
- Количество просроченных задач и сколько задач всего
- Распределение решаемых задач(количество данной задачи делить на общее количество задач)
- Статистика по количеству просроченных дней.

#### Calls

- Небольшая таблица необходимая для точного предсказания позиции людей работающих непосредственно с людьми. Ключевые признаки:
- Статистика по длительности звонков
- Количество звонков в будни, исходящих, всего
- Количество выбросов (пересечение выбросов в NumberOfCalls и CallTime)

#### SKUD

- Самая маленькая по количеству уникальных id таблица
  Ключевые признаки:
- Количество выбросов общей длительности
- Усеченная статистика по общей длительности рабочего дня(std и медиана)

Графики Спасибо за внимание! Github



