Let G(x, y) be the Green's function for the Laplace equation in a bounded domain with smooth boundary $\partial\Omega$, and let $\nu(y)$ be the outward normal vector to $\partial\Omega$ at $y\in\partial\Omega$. Then we want to show that the normal derivative of G(x,y)with respect to $\partial\Omega$ is positive for $x\in\Omega$ and $y\in\partial\Omega$, i.e.,

To prove this, we first note that the Green's function G(x,y) satisfies the following properties:

G(x,y) = G(y,x) $\Delta_x G(x,y) = \delta(x-y)$ in the sense of distributions G(x,y) = 0 for $x \in \partial \Omega$ or $y \in \partial \Omega$ The boundary values of G(x,y) satisfy the boundary condition $G(x,y)|_{\partial \Omega} = 0$ for $x,y \in \partial \Omega$.

Using these properties, we can compute the normal derivative of G(x,y) as follows:

```
\frac{\partial G_{\overline{\partial \nu_y(x,y)}=\lim_{\epsilon \to 0^+} \frac{G(x,y+\epsilon\nu(y))-G(x,y)}{\epsilon} \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \int_0^\epsilon \frac{d}{dt} \left(\frac{1}{\epsilon} G(x,y+t\nu(y))\right) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt} G(x,y+t\nu(y)) dt \ =\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_0^\epsilon \frac{d}{dt}
```

Note that $H_{\epsilon}(z,y)$ is a non-negative function, since $G(z,y+t\nu(y))$ is positive for t>0 and G(z,y) is zero. Therefore, to show that the normal derivative of G(x,y) is positive, it suffices to show that the integral