CEFET-MG / Campus Divinópolis

Introdução à Linguagem de Programação PDL2

(Parte 3)

CEFET-MG / Campus Divinópolis

Comando de Movimentação na Linguagem PDL2

Linguagem PDL2 – Instruções

> MOVE

Inicia um comando de movimentação.

Funções de movimentação

```
MOVE <arm_clause> <traj_clause> dest_clause <opt_clauses> <sync_clause>
```

Se for necessário continuar na linha seguinte, é preciso usar "virgula" ao final da linha, após um argumento. Então, é preciso usar ENDMOVE no fim do comando.

```
PROGRAM armtest PROG_ARM=1
. . .

BEGIN

MOVE TO perch -- moves arm 1

MOVE ARM[2] TO normal -- moves arm 2

END armtest
```


Campo ARM

- Múltiplos braços podem ser controlados por um único programa PDL2.
- Se somente um braço será acionado o campo ARM não precisa ser especificado.
- Se o campo ARM não for incluído, o braço padrão será usado.
- O programador pode designar o braço padrão, como no exemplo anterior.

Campo TRAJECTORY

➤ A trajetória pode ser especificada ou associada às constantes predefinidas JOINT, LINEAR, CIRCULAR, ou associada com a variável predefinida \$MOVE_TYPE.

Campo TRAJECTORY

A trajetória pode ser especificada ou associada às constantes predefinidas JOINT, LINEAR, CIRCULAR, ou associada com a variável predefinida \$MOVE_TYPE.

Ex.: MOVE LINEAR TO p1

O padrão para \$MOVE_TYPE é JOINT

```
$MOVE_TYPE := JOINT
MOVE TO perch
MOVE LINEAR TO slot
MOVE TO perch
```

-- assigns modal value -- joint move -- linear move -- joint move

Campo TRAJECTORY

- Um movimento do tipo JOINT irá coordenar as juntas do braço de forma que iniciem e terminem seus movimentos ao mesmo tempo.
- Um movimento com trajetória LINEAR irá mover o ponto virtual da ferramenta do braço robótico por uma linha reta do ponto inicial até o ponto final.
- Uma trajetória CIRCULAR irá mover o ponto virtual da ferramenta segundo um arco.

Campo DESTINATION

De acordo com o tipo de movimento, especifica o destino.

- MOVE TO TO || destination | joint_list || <VIA_clause>
- MOVE NEAR
 NEAR destination BY distance
- MOVE AWAY
 AWAY distance
- MOVE RELATIVE
 RELATIVE vector IN frame
- MOVE ABOUT
 ABOUT vector BY distance IN frame
 - MOVE BY

BY relative_joint_list

MOVE FOR FOR distance TO destination

MOVE TO

- O destino pode ser alguma expressão resultando em um dos tipos:
 - > POSITION
 - > JOINTPOS
 - > XTNDPOS

Por exemplo:

```
MOVE LINEAR TO POS(x, y, z, e1, e2, e3, config)

MOVE TO perch

MOVE TO home
```


Ângulos de Euler de rotação

- 1 Flange Frame
- 2 Tool Frame

3 - Taught Position

4 - User Frame

5 - Base Frame

6 - World Frame

The world frame is predefined for each arm. The programmer can define the base frame (\$BASE) as a position, relative to the world frame. The programmer also can define the end-of-arm tooling (\$TOOL) as a position, relative to the faceplate of the arm. \$UFRAME is a transformation used to describe the position of the workpiece with respect to the world.

VIA Clause

- É usado para especificar uma posição pela qual o braço passe entre a posição inicial e o destino.
- ➤ É normalmente usado para definir um arco de um movimento circular.

MOVE TO initial
MOVE CIRCULAR TO destination VIA arc

MOVE NEAR

- Permite ao operador posicionar a ferramenta a uma distância (expressa em Real) de uma posição de destino.
- ➤ A distância é medida em mm ao longo do sentido negativo do vetor de aproximação da ferramenta.

MOVE NEAR destination BY 250.0

MOVE AWAY

Permite ao operador mover a ferramenta para uma distância em mm em relação ao sentido negativo do vetor de aproximação da ferramenta.

MOVE AWAY 250.0

MOVE RELATIVE

Permite ao operador indicar um destino, dado por um vetor, em relação à posição atual.

MOVE RELATIVE VEC(100, 0, 100) IN TOOL MOVE LINEAR RELATIVE VEC(100, 0, 100) IN TOOL

MOVE ABOUT

➤ Permite especificar um destino alcançado através da rotação da ferramenta de um ângulo em relação à pose inicial.

MOVE ABOUT VEC(0, 100, 0) BY 90 IN TOOL

MOVE BY

Permite especificar um destino como uma lista de expressões Reais, correspondendo a movimento (em graus ou em milímetros) incremental das juntas de um manipulador.

```
MOVE BY {alpha, beta, gamma, delta, omega}
-- where alpha corresponds to joint 1, beta to joint 2, etc.
```


MOVE FOR

Permite especificar um movimento parcial ao longo de uma trajetória especificada.

MOVE FOR distance TO destination

MECATRÔNICA

Movimento Contínuo (MOVEFLY)

Permite mover o manipulador sem parada entre trechos de uma movimentação.

MOVE TO a MOVEFLY TO b ADVANCE MOVE TO c MOVERLY TO b Start of motion to a End of motion to b MOVE TO C **MECATRÔNICA**

Temporização e Sincronização

- Se o tempo requerido por um MOVEFLY é menor que o tempo gasto pelo interpretador para setar o próximo MOVE, o FLY não ocorrerá. Isso ocorre porque o sistema não obtém a informação que ele precisa a tempo de fazer o FLY.
- ➤ O FLY não terá efeito se houverem comandos adicionais entre o MOVEFLY e o próximo MOVE, que faça com que o interpretador demore em setar a próxima movimentação.

