- 巡回群を例として -

\$1: IGP & NP (Inverse Galous Problem, Noether Problem)

§2: Stably / hetract rationality.

§3 : NP for Cn/Q ← Cnは位數nn 巡回群.

\$1

IGP.

Problem

IGP (R.G): R: a field

G: finite group

Then is there

L/G: Galois extension (s,t.) Gol (L/R) = G?

 \longrightarrow (i.e.) $\exists H \leq GL(\sqrt[T]{g})$ (s.t.) $GL(\sqrt[T]{g})/H \simeq G$?

Notation

R: a field

G: finite group

GE:= Gol (7/E)

Fq: a finite field

Example 1

Cases where IGP(R, VG) does Not hold: (农:fix L在X之口, GE任意に与えたら...?)

① R = R ~ GR ~ {1}

2 $k = F_q \longrightarrow G_R \simeq \hat{\mathbb{Z}} = \varprojlim_n \mathbb{Z}/n\mathbb{Z}$ (i.e.) i is cyclic group.

3 $R = \mathbb{Q}_p \longrightarrow \frac{\forall \ \text{K/R}}{} : \text{sovable extension (i.e.)} \ \text{Gol(L/R)} \ \text{is solvable}.$

Example 2

Cases where IGP (R, VG) holds:

- ① $\mathbb{F}_{q}(t)^{ab} \leftarrow Abel extension$
- ② {(t)

Example 3

Cases where IGP (Q,G) holds:

(1) G: Abel [Kronecker-Weber]

G: solvable [Shafarevich]

(2) G: Simple

(i) $C_p \subset (\text{condition}(1))$

(ii) An (nz5) [Hilbert] …… NPは n≥6 で未解決

(iii) groups of Lie type / Fg

· PSL2(Fg) [Zywina] Galouis representation!

(iv) Sporadic group except for M23. ("rigidity criterion": Monster [Tompson] others [Malle]

Example 4

Open cases:

 $PSL_2(\mathbb{F}_{p^n})$ for p=2, $n\geq 9$, p:odd, $n\geq 3$.

M23

. SPU₃(Fq) for 9+3,5.

Problem

G: a finite group

 $G \cap R(\chi_g) g \in G$) as $h \cdot (\chi_g) := \chi_{hg} \text{ for } \forall h, g \in G$.

GOR: trivial.

Then is $k(G) := k(x_g | g \in G)^G$ ration l / k?

(i.e.) $R(G) = R(\exists t_1, \dots, \exists t_{HG})$: purely trans.

· Noether's strategy.

NP(R,G) is affirmative.

(i.e.) R(G) is rational/k.

func. field

k(xg | geG) + P#6

G-ext.

1P#G/G

Variety

$$\stackrel{\text{def}}{\longrightarrow} \exists f(\underline{t}; \chi) \in k(\underline{t})[\chi] \quad \text{(s.t.)} \quad \underset{\text{def}}{\underbrace{Spl}} \left(\frac{f(\underline{t}; \chi)}{k(\underline{t})}\right) / k(\underline{t}) : G_{-}ext.$$

minimal splitting field

 $f_{i}: Hilbert$ $\Rightarrow \infty Q_{i} \in f_{i}^{(b)}$ (s.t.) $G_{i}(f(\alpha_{i}; X)/f_{k}) \simeq G$. $\Rightarrow IGP(f_{i},G) holds$

Remark

- · k: NF (fin. ext of Q) is Hilbert.
- · R = R, R = Fg is Not Hilbert.
- · Henselian > Op, to[t] is Not Hilbert

 $f(\underline{t}:X)$ has "nice property".

"generic"

Definition [generic G/R polynomicl]

R: infinite field. G: finite group.

 $f(t:x) \in \Re(t)[X]$ is a generic G/R - polynomial

 $\stackrel{\text{def}}{\iff} \mathbb{O}: Spl\left(f(\underline{t}; X) \middle/ f(\underline{t})\right) \middle/ f(\underline{t}) : G - ext$

@: YK > to, YL/K: G-ext. Then = ale to (still spl (f(al;x)/K) = L.

Theorem [Kyuk'84]

R: Hilbert.

 $f(\pm;X)$ in \bigcirc is a genelic G/R - palyporial.

Remark [DeMeyer '83] [Kemper '01]

1983年 De Meyer が generic G/A-poly.を 定義していたときは、以下の条件も含まれていた:

3: $\forall H \leq G$, $\& C \ltimes : fix$. Then, for $\forall M/K : Hilbert$, $\exists Q \in \& n \quad (S.t.) \quad Spl(f(Q;X)/K) = M$.

-方, 2001年 Kempen が ①,②から③が従うことを示した.

<u>§2</u>

1 Rationality Problem & NP

Problem

RP

: R: a field

6: a finite group F/B: fin.gen.ext.

GOR: trivial & GOF as automorphism (i.e. G \le Autr(F))

Is FG rational / R?

Remark

- · RP for left regular action is NP(k.G.) ($k(xg|g \in G)$)
- · For F = k(t), always F^G is rational /k [Lüroth's theorem]

Theorem [Kemper - Matting 100]

GOB: trivial

R: Hilbert.

G 7 : linear faithful

Then F^G is rational /k $\Rightarrow f(\underline{t}; X)$ is a generic G/k - puly. $p^{-1}(f(X))$

Example 1 [Kummer theory]

$$G := C_{\eta} = \langle \sigma \rangle$$

$$F := k(x)$$

$$\sigma : x \longmapsto \exists n \mathcal{I}$$

$$\sigma: x \mapsto 3n\chi$$

$$f_{\alpha}(X) = X^{n} - \chi^{n}$$
 is trieducible / $f_{\alpha}(x^{n})$

$$\phi^{-1}(f_{\alpha}(x)) = f(t;x) = x^n - t$$
 is a gen $C_{\alpha}/g_{\alpha} - paly$.

Proposition [Endo - Mixata '73 Proposition 1.1]

F: a field

GNF: faithful.

$$V := \bigoplus_{i=1}^n Fu_{\bar{\iota}} : F \text{-vector space}.$$

$$\sigma(\alpha u_{\bar{\imath}}) := \sigma(\alpha) \sum_{F=1}^{n} \alpha_{i\bar{\jmath}}(\sigma) u_{\bar{J}} \qquad (\alpha, \alpha_{i\bar{\jmath}} \in F)$$

Then

(proof)

$$\mathcal{C}\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \underbrace{\begin{pmatrix} \alpha_i \beta(\alpha) \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}}_{\substack{i \in \\ i \in \\ i$$

We define

$$f: G \longrightarrow GL_n(F)$$
 $\sigma \longmapsto A\sigma$

Then we obtain

$$\sigma\tau\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix} = \left((A\sigma)\cdot\sigma(A\tau)\right)\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix} = f(\sigma)\,\sigma f(t)\begin{pmatrix}u_1\\\vdots\\u_n\end{pmatrix}$$

Fact: [Hilbert 90 for 6Ln(F)]

$$H^1(G,GL_n(F))=1$$

Remark

$$H^{1}(G,A) = \mathbb{Z}^{1}(G,A) / n$$
, where $f \sim g \iff \exists a \in A \ (s,t) \ (\sigma a)^{-1} a g(\sigma) \ (\sigma \in G)$

By Hilb 90, we have $f \sim 1$ (identity matrix). \longrightarrow $\exists P \in GL_n(F)$ (s.t.) $f(\sigma) = (\sigma(P))^{-1}P$.

We put

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} := P \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} .$$

Then

$$\sigma\left(\begin{smallmatrix} \mathcal{V}_{1} \\ \vdots \\ \mathcal{V}_{n} \end{smallmatrix}\right) \ = \ \sigma\left(\begin{smallmatrix} P\left(\begin{smallmatrix} u_{1} \\ \vdots \\ u_{n} \end{smallmatrix}\right)\right) \ = \ \sigma(P)\left(\begin{smallmatrix} \sigma\left(\begin{smallmatrix} u_{1} \\ \vdots \\ u_{n} \end{smallmatrix}\right)\right) \ = \ \sigma(P)\ f(\sigma)\left(\begin{smallmatrix} u_{1} \\ \vdots \\ u_{n} \end{smallmatrix}\right) \ = \ P\left(\begin{smallmatrix} u_{1} \\ \vdots \\ u_{n} \end{smallmatrix}\right) = \left(\begin{smallmatrix} \mathcal{V}_{1} \\ \vdots \\ \mathcal{V}_{n} \end{smallmatrix}\right)$$

F(V)6 is rational / FG. (E)

Corollary [No name lemma]

 $W \subseteq V$: faithful F(G)-submodule.

Then F(V) is rational / F(W) G

Corollary [Permutation NP]

 $k(x_1, ..., x_n)^G$ is rational $/k \Rightarrow NP(R.G)$ hald.

 $\frac{\partial nollary}{\partial nollary}$ [Permutation NP] $G \leq Sn, \quad R: \text{ a field}. \qquad G \text{ is faithful In作用LIN3以要为!}). \qquad V = \oplus R \chi_g ------ NP$ $G \cap R(\chi_1,...,\chi_h) \text{ as } r(\chi_{\bar{t}}) = \chi_{\sigma(\chi_1)}$ $W = \bigoplus_{i=1}^n R \chi_{\bar{t}} ------ Perm NP$

Example 2 [Perm. NP]

G = Sn.

发(x1,..., xn) (St II T次春次基本対形式)

By (Con. Perm. NP) NP(R, Sn) holds.

Stably / retract rational

Definition

k: a field.

F: fin. gen. field / &

· F is stable rational /k def F(3si, ..., 3st) is rational /k

· Fis retract rational / & (&: Infinite field) def = &-alg R = F (s.t.)

(i) F = Quot(R)

(ii) =fe &[x, ..., x,]

 $R \stackrel{\psi}{\iff} k[\alpha_1 \dots \alpha_n] \begin{bmatrix} \frac{1}{4} \end{bmatrix}$

(S,t) \$ = idR.

· Fis uni rational/& def FC = E: rationl/&

"retract rational" \Rightarrow "retract rational" \Rightarrow "uni rational" [Beautille, Colliots, Sunsuc, Synnerton - Dyen 85] [Soltman 82] Q(Ce)

F = Q(V)

 $V: \chi^2 + 3y^2 = t^3 - 2$

Soltman 847

D(C47) : Not Stab. rat.

(C.f.) "Not ration!" [Shan '69]

Definition

F, F': fin. gen / R.

Fig. $F' \Leftrightarrow F(\exists x_1, ..., \exists x_n) = F(\exists y_1, ..., \exists y_m)$ $\exists x_1 \in F' \Leftrightarrow F(\exists x_1, ..., \exists x_n) = F(\exists y_1, ..., \exists y_m)$

Theorem

R: Infinite field

 $F \stackrel{\text{stab}}{\rightleftharpoons} F'$ 735時, $F : \text{ret. ration} d / k \iff F' : \text{ret. ration} d / k$. 特に, $F : \text{Stable}, \text{ pat. } / k \implies F : \text{ ret. ration} d / k$

(proof)

1 F: retract noticel /k.

Lemma [Show's lem]

R: a field

G: a fin group

F: La 拡大体で fin.gen.

GMF.

R,S: fin. gen sub R-alg of F (s.t.) R,S are closed under the action, Quot (R) = Q wot (S) of G

Then $\exists r \in \mathbb{R}^6$, $\exists s \in S^6$ (s.t.) $\mathbb{R}[\frac{1}{r}] = S[\frac{1}{s}]$

 $\frac{(\text{prof})}{[\alpha_1, \dots, \alpha_n]} = 2$

Then $a_{\ell} = \frac{\chi_{\ell}}{c_{\ell}}$ for some $\chi_{\ell} \in \mathbb{R}$, $c_{\ell} \in \mathbb{R}$ since $Q_{uot}(R) = Q_{uot}(S)$

 $C := G_1, \dots G_h$, $r := \prod_{\sigma \in G} \sigma(c) \in \mathbb{R}^G$.

 \rightarrow SCR[\ddagger]

Similarly BSESG (S.T.) R[+] CS[=].

 \Box

t= sr" ∈ R⁶. Then

$$0 \quad S[\frac{1}{5}] = R[\frac{1}{rt}]$$

We show that
$$F: \text{ret ration} / R \implies F(x_1, ..., x_n) : \text{ret ration} / R$$

F: Not notice
$$1/R \iff 3 Ro C F: 1R-elg 15:1.) \cdot Quer(Ro) = F$$

· Ro
$$\stackrel{\phi}{\longleftrightarrow}$$
 R[$\chi_{m+1}, \dots, \chi_{m}$][$\frac{1}{3F}$]

We put
$$R := Ro[x_1,...,x_n]$$
, where $F(x_1,...,x_n) = F'(y_1,...,y_m)$

Then F(21,..., 2m) To not. rutical /R.

$$\begin{array}{c}
\bigcirc \\
R \subset F(x_1, ..., x_n) : \text{k-algebra} \ (s,\pi) \cdot \Theta_{n}(R) = F(x_1,..., x_n)
\end{array}$$

Then
$$Quot(R) = Quot(A[y_1...ym])$$

$$Q := \psi'(t) \in A (CR[\frac{1}{t}]) = \frac{2}{t^e}$$
 for some $S \in R$, $e \in \mathbb{N}$

F' is net ratial /k.

Theorem [Sattman /82, Remayer /83]

G: fin group F: fin.gen./k: infinite.

GOF: farthful.

FG: ret rationls \ => 3 generic G/R-poly.