

ПРОГРАММИРОВАНИЕ CUDA C/C++, АНАЛИЗ ИЗОБРАЖЕНИЙ И DEEP LEARNING

Лекция №6

Спасёнов Алексей

План занятия

1. Решающие деревья (decision trees)

- 2. Ансамбли деревьев
- 3. Случайный лес (random forest)
- 4. Gradient Boosting

Бинарное решающее дерево

Бинарное решающее дерево

Бинарное решающее дерево

Бинарное решающее дерево

Бинарное решающее дерево

Бинарное решающее дерево

Titanic dataset

https://www.kaggle.com/c/titanic

Бинарное решающее дерево, классификация

Iris dataset

Бинарное решающее дерево, регрессия

Бинарное решающее дерево

Критерий разбиения

Имеется множество: X

Мера неоднородности: H(X)

Решаем задачу бинарной классификации

- 1) Misclassification criteria: $H(X) = 1 p_{max}$
- 2) Entropy criteria: $H(X) = -p_0 \ln(p_0) p_1 \ln(p_1)$
- 3) Gini criteria: $H(X) = 2p_0p_1$

где p_0 и p_1 - доли объектов из класса 0 и 1

Бинарное решающее дерево

Уменьшения неопределённости (неоднородности) в узле:

$$G(X) = \frac{|X_L|}{|X|} H(X_L) + \frac{|X_R|}{|X|} H(X_R) \to min$$

Бинарное решающее дерево

Критерий разбиения

Имеется множество: X

Мера неоднородности: H(X)

В случае, если имеется N классов:

1) Misclassification criteria: $H(X) = 1 - p_{max}$

- 2) Entropy criteria: $H(X) = -\sum_{i=1}^{N} p_i \ln(p_i)$
- 3) Gini criteria: $H(X) = \sum_{i=1}^{N} p_i (1 p_i)$

где p_0 и p_1 - доли объектов из класса 0 и 1

Bootstrap aggregation (bagging)

Бутстреп - способ оценки стандартной ошибки статистик выборочного вероятностного распределения и способ семплирования выборок из набора данных основанный на методе Монте-Карло.

Bootstrap

Имеется обучающая выборка X размера N

Шаг 1. Равномерно возьмем из выборки N объектов с возвращением. Будем N раз выбирать произвольный объект выборки (считаем, что каждый объект «достается» с одинаковой вероятностью 1/N), причем каждый раз мы выбираем из всех исходных N объектов.

Шаг 2. Повторяем действия из <u>Шага 1</u> М раз. В результате сгенерируем M подвыборок X_1, \dots, X_M . (уникальные элементы ~ $(1-1/e)\sim 0.63$)

Шаг 3. Оценивать различные статистики исходного распределения.

Bagging

Bagging

Шаг 1) На основе bootstrap сгенерируем M подвыборок X_1, \dots, X_M из исходного множества X

Шаг 2) На каждой из подвыборок обучим классификатор h(X)

Шаг 3) Итоговый классификатор получается путём усреднения ответов: $h(x) = \frac{1}{M} \sum_{i=1}^M h_i(x)$

Random forest

Шаг 1) На основе bootstrap сгенерируем M подвыборок

Шаг 2) Строим на каждой подвыборке дерево, причём в узле будем выбирать k случайных признаков

Random forest

Шаг 3) Усредняем полученный результат от каждого дерева

Gradient boosting decision trees

Имеется обучающая выборка $S = \{(x_i, y_i)\}_{i=1}^N$

Итоговый классификатор: $h(x) = h_1(x) + h_2(x) + \dots + h_M(x)$

Gradient boosting decision trees

Обучение модели

Ошибка для i-ого объекта: $J(y_i,h(x_i))=(y_i-h(x_i))^2$ Функция потерь:

$$L = \sum_{i=1}^{N} J(y_i, h(x_i)) = \sum_{i=1}^{N} (y_i - h(x_i))^2$$

Gradient boosting decision trees

Обучение модели

Функция потерь:

$$L = \sum_{i=1}^{N} J(y_i, h(x_i)) = \sum_{i=1}^{N} (y_i - h(x_i))^2$$

$$\frac{\partial L}{\partial h_i} = \sum_{i=1}^{N} \frac{\partial}{\partial h_i} J(y_i, h_i) = 2(y_i - h_i)$$

Gradient boosting decision trees

Обучение модели

$$\frac{\partial L}{\partial h_i} = \sum_{i=1}^{N} \frac{\partial}{\partial h_i} J(y_i, h_i) = 2(y_i - h_i)$$

$$h(x_i) = \sum_{j=1}^{M} a_j h_j(x_i)$$

- 1) Каждое новое дерево j обучаем на ответах $y_i h_{i-1}$
- 2) Коэффициенты a_j подбираются на основе численной оптимизации функции ошибки L

Контакты:

a.spasenov@corp.mail.ru
alex_spasenov (Skype)

Спасибо за внимание!