# 양자 컴퓨터와 미래

컴퓨터정보공학부 2021202040 문경원 AI사무업무활용 4주차 과제



### 양자 컴퓨터란

비트를 사용하는 기존 컴퓨터와 달리 큐비트를 사용하여 정보를 처리하는 컴퓨터



# 큐비트(Qubit)



### 큐비트의 특징



# 기존 컴퓨터와의 비교

| 구분     | 기존 컴퓨터           | 양자 컴퓨터               |
|--------|------------------|----------------------|
| 정보 단위  | 비트 (0 또는 1)      | 큐비트 (0과 1 동시 표현)     |
| 연산 방식  | 순차적 연산           | 병렬 연산 (동시 계산)        |
| 처리 속도  | 한 번에 한 연산        | 여러 연산 동시 처리 가능       |
| 문제 해결력 | 복잡한 문제에 많은 시간 소요 | 특정 문제는 <b>압도적</b> 속도 |

#### 양자 컴퓨터의 장점

- 고전 컴퓨터는 정보를 한 줄씩 계산하는 순차적 연산 방식
- 양자 컴퓨터는 큐비트를 이용해 여러 계산을 동시에 수행 가능
- 특정 분야(암호 해독, 최적화 문제, 물리 시뮬레이션 등)에서 **압도적인 가능성**

### 양자 컴퓨터의 단점

- 양자 컴퓨터는 특정 계산에만 효과적이며, 일상적 작업에는 부적합
- **극한의 환경**과 고비용 장비가 필요해 상용화에 큰 장벽 존재
- 큐비트의 불안정성과 높은 오류율도 해결 과제로 남아 있음

#### 양자 컴퓨터의 미래

• 고전 컴퓨터와 양자 컴퓨터는 함께 쓰이는 하이브리드 환경으로 발전할 것

• 완전한 상용화는 아직 멀지만, 산업별 부분 적용은 가까워지고 있음

• 양자 알고리즘과 응용 기술은 빠르게 발전 중

• 미래 기술을 대비해 지금부터 준비가 필요



### 참고 문헌

- AWS. (n.d.). What is quantum computing? Retrieved from <a href="https://aws.amazon.com/ko/what-is/quantum-computing/">https://aws.amazon.com/ko/what-is/quantum-computing/</a>
- Built In. (n.d.). Quantum vs. classical computing: What's the difference? Retrieved from <a href="https://builtin.com/software-engineering-perspectives/quantum-classical-computing">https://builtin.com/software-engineering-perspectives/quantum-classical-computing</a>
- IBM. (n.d.). Quantum computing: What it is, why we want it, and how we're trying to get there. Retrieved from <a href="https://www.ibm.com/think/topics/quantum-computing">https://www.ibm.com/think/topics/quantum-computing</a>
- Youhan. (2023, April 5). 양자컴퓨터의 현재와 미래. 브런치. Retrieved from <a href="https://brunch.co.kr/@youhan/58">https://brunch.co.kr/@youhan/58</a>
- 키움증권. (2024, March). 양자컴퓨터와 관련 산업 전망. Retrieved from https://blog.naver.com/kiwoomammkt/223689963568
- Sungyu1223. (n.d.). 양자컴퓨터를 쉽게 설명해주는 비유. Steemit. Retrieved from <a href="https://steemit.com/quantum/@sungyu1223/54aek6">https://steemit.com/quantum/@sungyu1223/54aek6</a>

