Logica cap 3

25/09/2021

Completitud

Consistencia

Sea $\Gamma \subseteq PROP$. Decimos que Γ es consistente sii $\Gamma \nvdash \bot$. Si $\Gamma \vdash \bot$ decimos que Γ es inconsistente.

Lema 1 Def. alternativas de consistencia

Las siguientes proposiciones son equivalentes.

- Γ es consistente
- $\not\equiv \phi/\Gamma \vdash \phi \land \Gamma \vdash \neg \phi$
- existe al menos una $\phi/\Gamma \nvdash \phi$

equivalentemente, tenemos

- Γ inconsistente
- $\exists \phi / \Gamma \vdash \phi \land \Gamma \vdash \neg \phi$
- $\forall \phi, \Gamma \vdash \phi$

Lema 2

Sea $\Gamma \subseteq PROP$. Si existe $v/[[\Gamma]]_v = T \Rightarrow \Gamma$ es consistente.

Sea $\Gamma \subseteq PROP \ y \ v/[[\Gamma]]_v = T$.

Supongamos $\Gamma \vdash \bot$, por el lema de correccion, $\Gamma \vDash \bot$, como $[[\Gamma]]_v = T$ tenemos $[[\bot]]_v = T$ Absurdo

Proposicion 3

Sean $\Gamma \subseteq PROP, \phi \in PROP$

(a) Si $\Gamma \cup \{\neg \phi\}$ inconsistente, entonces $\Gamma \vdash \phi$.

(b) Si $\Gamma \cup \{\phi\}$ inconsistente, entonces $\Gamma \vdash \neg \phi$.

Demostracion de (a) por RAA, (b) por i_{\neg}

Consistente maximal

Un conjunto $\Gamma \subseteq PROP$ es consistente maximal sii

(a) Γ es consistente

(b) $\Gamma \subseteq \Gamma'$ y Γ' consistente entonces $\Gamma = \Gamma'$

"Cualquier formula que le agregue lo vuelve inconsistente"

Lema 4

Todo conjunto consistente esta contenido en un consistente maximal.

Sea $\Gamma \subseteq PROP$ consistente. Primero, observemos que PROP es numerable. Es decir, puedo listar todos los elementos de PROP como

 ψ_0, ψ_1, \cdots

Definimos una sucesion de conjuntos:

$$\Gamma_{n} = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{\psi_n\} & si \ \Gamma_n \cup \{\psi_n\} \not\vdash \bot, \\ \Gamma_n & si \ no. \end{cases}$$

$$\Gamma^* = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

(a) $\forall n, \Gamma_n$ es consistente

Dem

CB: n = 0, $\Gamma_0 = \Gamma$ que es consistente por hipotesis

HII: Γ_n consistente

PI: caso 1: $\Gamma_{n+1} = \Gamma_n$ entonces Γ_{n+1} es consistente por HII.

caso2: $\Gamma_{n+1} = \Gamma_n \cup \{\psi_n\}$ si $\Gamma_n \cup \{\psi_n\} \nvdash \bot$, entonces por lema 1 Γ_{n+1} es consistente.

 \therefore Γ_{n+1} es consistente, $\forall n$

(b) Γ^* es consistente

Dem

Supongamos que no, $\Gamma^* \vdash \bot$

Por def de \vdash , existe una derivacion de \bot a partir de un subconjunto finito de premisas de Γ^* Sean ψ_1, \cdots, ψ_k tales premisas, como $\Gamma^* = \bigcup_{n \in \mathbb{N}} \Gamma_n$ existen n_1, \cdots, n_k tal que $\psi_i \in \Gamma_{n_i}$ sea $m = max\{n_1, \cdots, n_k\}$ tenemos $\{\psi_1, \cdots, \psi_k\} \subseteq \Gamma_m$. Pero si $\{\psi_1, \cdots, \psi_k\} \subseteq \Gamma_m$ entonces $\Gamma_m \vdash \bot$, absurdo por contradiccion. Por lo tanto Γ^* consistente.

(c) Γ^* es maximal

Sea Δ consistente tal que $\Gamma^* \subseteq \Delta$ veremos que $\Delta \subseteq \Gamma^*$.

Sea $\phi \in \Delta$. Existe $m \in \mathbb{N}/\psi_m = \phi$

$$\left. \begin{array}{l} \Gamma_m \subseteq \Gamma^* \subseteq \Delta \\ \psi_m \in \Delta \end{array} \right\} \Gamma_m \cup \{\phi_m\} \subseteq \Delta$$

Como Δ es consistente, $\Gamma_m \cup \{\psi_m\}$ es consistente.

Por def, $\Gamma_{m+1} = \Gamma_m \cup \{\phi_m\}$ pero $\Gamma_{m+1} \subseteq \Gamma^*$. En particular, $\phi = \psi_m \in \Gamma^*$ $\therefore \Delta \subseteq \Gamma^*$

Lema 5

Si Γ es consistente maximal entonces es cerrado bajo derivacion

 $\Gamma \vdash \phi \text{ entonces } \phi \in \Gamma$

Dem

Sea $\phi \in PROP$ tal que $\Gamma \vdash \phi$. Supongamos que $\phi \notin \Gamma$. Como Γ es consistente maximal, $\Gamma \cup \{\phi\}$ es inconsistente. Por (3.b) $\Gamma \vdash \neg \phi$

$$\left. \begin{array}{c} \Gamma \vdash \phi \\ \Gamma \vdash \neg \phi \end{array} \right\} \Gamma \text{ inconsistente, absurdo. } \vdots \phi \in \Gamma$$

Lema 6

Sea Γ consistente maximal

(a)
$$\forall \phi, \phi \in \Gamma \lor \neg \phi_1 \in \Gamma$$

Primero, observemos que no puede ocurrir que $\phi \in \Gamma$ y $\neg \phi \in \Gamma$.

Sea $\Gamma' = \Gamma \cup \{\phi\}$ tenemos dos casos:

- i) $\Gamma' = \Gamma$, entocnes $\phi \in \Gamma$
- ii) $\Gamma' \neq \Gamma$, entonces $\Gamma' = \Gamma \cup \{\phi\}$ es inconsistente. Por lema 3, $\Gamma \vdash \neg \phi$, y por lema 5 $\neg \phi \in \Gamma$
- (b) $\phi_1 \to \phi_2 \in \Gamma$ sii $\neg \phi_1 \in \Gamma \lor \phi_2 \in \Gamma$
- \Rightarrow) $\phi_1 \to \phi_2 \in \Gamma$
- i) Si $\neg \phi_1 \in \Gamma$ se cumple
- ii) Si $\neg \phi_1 \notin \Gamma$ por (a), $\phi_1 \in \Gamma$, tenemos por (e_{\rightarrow}) que $\Gamma \vdash \phi_2$. Por lema 5, $\phi_2 \in \Gamma$
- \Leftarrow) $\neg \phi_1 \in \Gamma \lor \phi_2 \in \Gamma$
- i) $\neg \phi_1 \in \Gamma$

$$\frac{\neg \phi_1 \qquad [\phi_1]^{(1)}}{\stackrel{\underline{\perp}_{e_\perp}}{\stackrel{\phi_2}{\underset{i \to}{\downarrow}}} \phi_1 \xrightarrow{\phi_2}} \phi_2}$$

$$\begin{array}{c} \Gamma \vdash \phi_1 \rightarrow \phi_2 \xrightarrow{L.5} \phi_1 \rightarrow \phi_2 \in \Gamma \\ \text{ii)} \ \phi_2 \in \Gamma \end{array}$$

$$\frac{\neg \phi_2 \quad [\phi_1]^{(1)}}{\phi_2 \underset{\rightarrow}{i_{\rightarrow}} \downarrow} t$$

$$\phi_1 \xrightarrow{\phi_2} \phi_2$$

$$\Gamma \vdash \phi_1 \to \phi_2 \xrightarrow{L.5} \phi_1 \to \phi_2 \in \Gamma$$

 $\therefore \phi_1 \to \phi_2 \in \Gamma$

(c) $\phi_1 \wedge \phi_2 \in \Gamma$ sii $\phi_1 \in \Gamma \wedge \phi_2 \in \Gamma$

 \Rightarrow) $\phi_1 \land \phi_2 \in \Gamma$, tomemos las derivaciones, $(e_{\land 1})$ y $(e_{\land 2})$, entonces $\Gamma \vdash \phi_1$ y $\Gamma \vdash \phi_2$, y por lema 5, $\phi_1 \in \Gamma$ y $\phi_2 \in \Gamma$

 \Leftarrow) $\phi_1 \in \Gamma$ y $\phi_2 \in \Gamma$, tenemos la derivación (i_{\land}) , por lo tanto $\Gamma \vdash \phi_1 \land \phi_2$ y por lema 5, $\phi_1 \land \phi_2 \in \Gamma$

(d) $\phi_1 \lor \phi_2 \in \Gamma \text{ sii } \phi_1 \in \Gamma \lor \phi_2 \in \Gamma$

 \Rightarrow) $\phi_1 \lor \phi_2 \in \Gamma$. Supongamos que $\phi_1 \notin \Gamma$ y $\phi_2 \notin \Gamma$, entonces por (a), $\neg \phi_1 \in \Gamma$ y $\neg \phi_2 \in \Gamma$. Veamos la siguiente derivacion

 $\Gamma \vdash \bot$, absurdo, por lo tanto $\phi_1 \in \Gamma \lor \phi_2 \in \Gamma$

 \Leftarrow) $\phi_1 \in \Gamma \lor \phi_2 \in \Gamma$

Veamos por casos:

i) $\phi_1 \in \Gamma$ entonces por (i_{\vee}) , $\Gamma \vdash \phi_1 \vee \phi_2$. Por lema 5, $\phi_1 \vee \phi_2 \in \Gamma$

ii) $\phi_2 \in \Gamma$ entonces por (i_{\vee}) , $\Gamma \vdash \phi_1 \lor \phi_2$. Por lema 5, $\phi_1 \lor \phi_2 \in \Gamma$

 $\therefore \phi_1 \lor \phi_2 \in \Gamma$

Lema 7 (vuelta del 2)

Si Γ es consistente entonces existe $n/[[\Gamma]]_v = T$

Dem

Por lema 4, Γ esta contenido en un conjunto consistente maximal. Sea Γ^* tal conjunto, definimos v:

$$v(p_i) = \begin{cases} T & si \ p_i \in \Gamma^*, \\ F & si \ p_i \notin \Gamma^*. \end{cases}$$

Proposicion: $\forall \phi \in PROP, [[\phi]]_v = T \text{ sii } \phi \in \Gamma^*$

Dem por ind en PROP

(i) $\phi = \bot$, $[[\bot]]_v = F \ y \bot \notin \Gamma^*$

(ii) $\phi = p_i$ directo de la def de v.

(iii)
$$\phi = \phi_1 \wedge \phi_2$$
, $[[\phi_1 \wedge \phi_2]]_v = T \Leftrightarrow [[\phi_1]]_v = T \text{ y } [[\phi_2]]_v = T \Leftrightarrow \phi_1 \in \Gamma^* \text{ y } \phi_2 \in \Gamma^* \Leftrightarrow \phi_1 \wedge \phi_2 \in \Gamma^*$

(iv)
$$\phi = \phi_1 \to \phi_2$$
, $[[\phi_1 \to \phi_2]]_v = F \Leftrightarrow [[\phi_1]]_v = T$ y $[[\phi_2]]_v = F \Leftrightarrow \phi_1 \in \Gamma^*$ y $\phi_2 \notin \Gamma^* \Leftrightarrow \phi_1 \in \Gamma^*$ y $\phi_2 \notin \Gamma^* \Leftrightarrow \phi_1 \to \phi_2 \notin \Gamma^*$

$$(\mathbf{v}) \ \phi = \phi_1 \lor \phi_2, \ [[\phi_1 \lor \phi_2]]_v = T \Leftrightarrow [[\phi_1]]_v = T \ \mathbf{o} \ [[\phi_2]]_v = T \Leftrightarrow \phi_1 \in \Gamma^* \ \mathbf{o} \ \phi_2 \in \Gamma^* \Leftrightarrow \phi_1 \lor \phi_2 \in \Gamma^*$$

(vi)
$$\phi = \neg \phi_1$$
, $[[\neg \phi_1]]_v = T \Leftrightarrow [[\phi_1]]_v = f \Leftrightarrow \phi_1 \notin \Gamma^* \Leftrightarrow \neg \phi_1 \in \Gamma^*$

Terminada esta proposicion, como $\Gamma \subseteq \Gamma^*$, obtenemos $[[\Gamma]]_v = T$

Corolario 8

Sean $\Gamma \subseteq PROP, \phi \in PROP, \Gamma \nvdash \phi$ sii existe $v/[[\Gamma]]_v = T$ y $[[\phi]]_v = F$

 $\Gamma \nvdash \phi \Leftrightarrow \Gamma \cup \{\neg \phi\} \text{ consistente } \Leftrightarrow \exists v / [[\Gamma \cup \{\neg \phi\}]]_v = T \Leftrightarrow \exists v / [[\Gamma]]_v = T \text{ y } [[\phi]]_v = F$

Teorema (completitud)

 $\Gamma \vdash \phi \Leftrightarrow \Gamma \vDash \phi$

 \Rightarrow) Soundness \Leftarrow) $\Gamma \vDash \phi$. Supongamos que $\gamma \nvDash \phi$, por corolario 8 existe $v/[[\Gamma]]_v = T$ y $[[\phi]]_v = F$. Entonces $\Gamma \nvDash \phi$, Absurdo.

 $\Gamma \vdash \phi$