Content

- Introduction
- Data Description
- Feature Extraction
- Obstacles
- Method & Result
- Conclusion & Limitation

Introduction

- Business Problem
 - Merchant: run big promotions
 - Customers: one-time deal hunters
 - Purpose: predict loyal customers for given merchant
- Transactional Data
 - —The sales data of the "Double 11" shopping event in 2014 at Tmall.com
- Methods
 - Classification problem
 - Logistic Regression, Decision Tree, Random Forest, Gradient-Boosted Trees

Data Description

Test_table

User_id Merchant_id Probability

Trian_table

User_id Merchant_id label

User_info

User_id

Age: [0-8]

Gender: [0,1,2]

data	train	test
users	212,062	212,108
merchants	1,993	1,993
pairs	260,864	261,477
Positive pairs	15,952	16,037
Positive %	6.12%	-

User_activity_log

User_id

Merchant_id

Item_id

Cat_id

Brand_id

Action_type: [0,1,2,3]

Time_stamp

Data Description

Feature Extraction

Basic Features

- User-based features
 - Capture a user's overall buying behavior in terms of total actions made, number of merchants/items a user click/purchased/favored from, etc.
- Merchant-based features
 - Explore a merchant's overall characteristics
- User-Merchant interaction based features
 - Capture affinity of a user to the merchant

Repeat Features

- User repeat features
 - Average span between any two actions
 - Average span between two purchases
 - The number of days since the last purchase
- User-Merchant repeat features
 - Average active days for a merchant
 - Ratio of merchants with repeated actions
 - Ratio of the number of merchants that the user made a purchase from to the total number of merchants that the user took some actions
 - How many times a user purchased again in a merchant

Features: # 75

	Basic: #66		Repeat: #9
User-based	50	User repeat	3
Merchant-based	10	User-Merchant	6
User-Merchant	6		

Dataset	Features
10 schema	75

Obstacles

- Unbalanced data
 - Sparse metric
 - Class-imbalance ratio of 1:15
- Running time
 - Useless Row: join Training data and User Log table first
 - Out of Memory: save Feature data frame as csv file and reload it
 - Large Dataset: use small sample data to test

Method

Logistic Regression Decision Tree Random Forest GBT

Results

Validation	dataset	Balanced	Unbalanced
Basic Features		AUC	AUC
	LR	61.74%	59.45%
	DT	57.82%	78.86%
	RF	61.71%	96.95%
	GBT	59.70%	81.70%
Basic & Repeat Features		AUC	AUC
	LR	59.97% ↓	51.53% ↓
	DT	59.43% ↑	85.25% ↑
	RF	60.93% ↓	96.99% ↑
	GBT	59.59% ↓	83.35% ↑

Conclusion & Limitation

Conclusion

- —Basic + repeat features
- Random forest
- Unbalanced data
- -30th place in 971 teams

Limitation

- Ensemble method
- More complicated features, like similarity, etc.,