Physics 8.321, Fall 2021 Homework #2

Due Friday, October 1 by 6:00 PM.

- 1. A skew-Hermitian operator A is an operator satisfying $A^{\dagger} = -A$.
 - (a) Prove that A can have at most one real eigenvalue (which may be degenerate).
 - (b) Prove that the commutator of two Hermitian operators is skew-Hermitian.
- 2. Show that if H and K are both Hermitian operators with non-negative eigenvalues, then

Tr
$$HK \geq 0$$
,

and that equality implies that HK = 0.

- **3.** Consider a Hermitian operator H whose eigenvectors form a complete orthonormal set, and whose eigenvalues are all positive.
 - (a) Prove that for any two vectors $|\alpha\rangle$, $|\beta\rangle$

$$|\langle \alpha | H | \beta \rangle|^2 \le \langle \alpha | H | \alpha \rangle \langle \beta | H | \beta \rangle$$

- (b) Prove that Tr(H) > 0.
- 4. Let U be a unitary operator. Consider the eigenvalue equation

$$U|\lambda\rangle = \lambda|\lambda\rangle$$
 .

- (a) Prove that λ is of the form $e^{i\theta}$ with θ real.
- (b) Show that if $\lambda \neq \mu$ then $\langle \mu | \lambda \rangle = 0$.
- **5.** (a) Show that the set of $N \times N$ complex matrices form a vector space of dimension N^2 .
 - (b) Show that Tr $(A^{\dagger}B)$ defines an inner product on this vector space.
 - (c) Show that the set of 2×2 matrices is spanned by the basis

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

How can these matrices be used to form an orthonormal basis?

- (d) Find the spectrum and eigenvectors for each of the matrices in (c)
- (e) Prove that if A, B are two vector operators that commute with σ , it follows that

$$(\sigma \cdot \mathbf{A})(\sigma \cdot \mathbf{B}) = (\mathbf{A} \cdot \mathbf{B})\mathbb{1} + i\sigma \cdot \mathbf{A}\mathbf{x}\mathbf{B}$$

(f) Prove that

$$\exp(i\theta\,\sigma\cdot\mathbf{n}) = \cos\theta + i\,\sigma\cdot\mathbf{n}\,\sin\theta$$

where \mathbf{n} is a unit 3-vector.

- 6. [Sakurai and Napolitano Problem 24, Chapter 1 (page 63)]
 - (a) Prove that $(1/\sqrt{2})(1+i\sigma_x)$ acting on a two-component spinor can be regarded as the matrix representation of the rotation operator about the x-axis by angle $-\pi/2$. (The minus sign signifies that the rotation is clockwise.)
 - (b) Construct the matrix representation of S_z when the eigenkets of S_y are used as base vectors.
- 7. [Sakurai and Napolitano Problem 26, Chapter 1 (page 63)]

Construct the transformation matrix that connects the S_z diagonal basis to the S_x diagonal basis. Show that your result is consistent with the general relation

$$U = \sum_{r} |b^{(r)}\rangle \langle a^{(r)}|.$$