Tutorium

Physikalische Grundlagen

Sommersemester 2020

Dr. Anne Baumann

Teil 1 – Grundlagen & Mechanik

Physikalische Größe und Einheiten

- physikalische Größe = Maßzahl · Maßeinheit
- Internationales Einheitensystem (SI) mit den 7 Basiseinheiten:

Grösse		Einheit	
Länge	S	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	S
elektrische Stromstärke	i	Ampere	A
Temperatur	T	Kelvin	K
Stoffmenge	n	Mol	mol
Lichtstärke	I_V	Candela	cd

Zehnerpotenzen

Abkürzungszeichen:

Faktor	Name	Kurz- zeichen
10 ⁻¹	Dezi	d
10 ⁻²	Zenti	c
10 ⁻³	Milli	m
10 ⁻⁶	Mikro	μ
10-9	Nano	n
10 ⁻¹²	Piko	p

Faktor	Name	Kurz- zeichen
101	Deka	D
10 ²	Hekto	h
10 ³	Kilo	k
10 ⁶	Mega	M
109	Giga	G
10 ¹²	Tera	T

Skalare und vektorielle Größen

- Skalar
 - Nur Betrag, keine Richtung
 - Beispiele:
 - Temperatur,
 - Masse,
 - · Zeit,
 - Energie
- Vektor
 - Betrag und Richtung
 - Beispiele:
 - · Ort,
 - · Geschwindigkeit,
 - · Kraft,
 - Impuls

Vektoren

- Vektoren in der 2-dimensionalen Ebene
- Darstellung von Vektoren
 - Vektoren lassen sich im kartesischen Koordinatensystem darstellen
 - Die Projektionen auf die X- und Y-Achse entsprechen den Koordinaten

- Grafisch:

Parallelverschiebung, s.d. ein Parallelogramm entsteht.

Die Diagonale entspricht dem Summenvektor

Rechnerisch:Addition der X- und Y-Komponenten

Bewegungen

• Bewegung = zeitliche Veränderung des Ortes

• Definition der Geschwindigkeit:

Geschwindigkeit =
$$\frac{Strecke}{Zeit}$$
 $Kurzform:$ $v = \frac{\Delta s}{\Delta t}$ $Einheit:$ $[v] = \frac{[s]}{[t]} = \frac{m}{s}$

Beschleunigung: Änderung der Geschwindigkeit

Definition:

$$a(t) = \frac{dv(t)}{dt} = \dot{v}(t) \qquad [a] = \frac{[v]}{[t]} = \frac{m}{s^2}$$

Bewegungen - Zusammenfassung

gleichförmige Beschleunigung	gleichförmige Bewegung	
a = konstant	a = 0	
$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$	$s(t) = v_0 \cdot t + s_0$	
$v(t) = a_0 \cdot t + v_0$	$v(t) = v_0$	
$a(t) = a_0$	a(t) = 0	

Bewegung in der Ebene

Bewegungen in der Ebene lassen sich mit Ortsvektoren in einem kartesischen Koordinatensystem beschreiben

- Beispiel:
 - "Schräger Wurf", ohne Reibungen, konstante Beschleunigung

$$\overline{a(t)} = \begin{pmatrix} 0 \\ -g \end{pmatrix}$$

$$\overrightarrow{v(t)} = \begin{pmatrix} v_{x,0} \\ -g \cdot t + v_{y,0} \end{pmatrix}$$

$$\overline{s(t)} = \begin{pmatrix} v_{x,0} \cdot t + s_{x,0} \\ -\frac{1}{2} g \cdot t^2 + v_{y,0} \cdot t + s_{y,0} \end{pmatrix}$$

Kreisbewegung

Winkelgeschwindigkeit

$$\omega = \frac{d \varphi}{dt}$$
 $[\omega] = \frac{[\varphi]}{[t]} = \frac{1}{s}$

Bahngeschwindigkeit

$$v_{B} = \omega \cdot r$$

Winkelbeschleunigung

$$\alpha = \dot{\omega} = \frac{d \omega}{dt}$$
 $\left[\alpha\right] = \frac{\left[\omega\right]}{\left[t\right]} = \frac{1}{s^2}$

Zentripetalbeschleunigung

Damit der Punkt auf der Kreisbahn bleibt, muss er ständig in Richtung Mittelpunkt beschleunigt werden

Zentripetalbeschleunigung:

$$a_{\perp} = \omega^2 \cdot r = \frac{v_B^2}{r}$$

Newtonsche Axiome

Aktionsprinzip

- Wirkt auf einen Körper der Masse m die Kraft F, so wird der Körper mit a(t) = F(t)/m beschleunigt.

Trägheitsprinzip

- Ein Körper, auf den keine resultierenden äußeren Kräfte wirken, bewegt sich geradlinig und gleichförmig, d.h. er wird nicht beschleunigt: a(t) = 0

Reaktionsprinzip

Wenn ein Körper die Kraft F auf einen anderen Körper ausübt, so wirkt auf den ursprünglichen Körper die Gegenkraft -F (actio gleich reactio).

Kraft

• Definition der Kraft:

$$F = m \cdot a$$
 $[F] = [m] \cdot [a] = \frac{kg \cdot m}{s^2} = N(Newton)$

 Die Kräfte können vektoriell addiert werden

• Wichtige Kräfte: $\circ F_{elast} = c \cdot s$

Elast. Kraft oder Federkraft

$$\circ F_{gravitation} = m \cdot g$$

Gravitations- bzw. Gewichtskraft

$$\circ F_Z = \frac{m \cdot v^2}{r}$$

Zentripetalkraft

Arbeit

Definition der Arbeit:

- Entlang eines Weges s wird die Kraft F ausgeübt. Die Arbeit ist dann:

$$W = F \cdot s$$
 $[W] = [F] \cdot [s] = Nm = J(Joule)$

Energie

In der Mechanik:

- Potentielle Energie
$$W_{pot} = m \cdot g \cdot h$$

- Kinetische Energie
$$W_{kin} = \frac{1}{2} m v^2$$

- Elastische Energie
$$W_{elast} = \frac{1}{2} c \cdot s^2$$

Energieerhaltungssatz:

- In einem abgeschlossenen System ist die Summe der Energien konstant

$$\sum_{i} W_{i} = konstant$$

Leistung & Wirkungsgrad

Definition:

- Leistung ist die pro Zeit umgesetzte Energie

$$P = \frac{dW}{dt}$$
 $[P] = \frac{[W]}{[t]} = \frac{Nm}{s} = W(Watt)$

Wirkungsgrad!!!

Drehmoment

Durch räumliche Ausdehnung können Kräfte an verschiedenen Punkten angreifen

- Wirklinie der Kraft F kann gegenüber einem Bezugspunkt um die Strecke r verschoben sein

Definition des Drehmoments:

- Verschiebung um *r* wird berücksichtigt

$$M = r \cdot F$$
 $[M] = [r] \cdot [F] = Nm(Newtonmeter)$

Schwingungen

Periodendauer T

Zeitdauer, nach der sich Schwingung wiederholt

Frequenz f

- Anzahl der Schwingungen pro Zeit
- Kehrwert der Periodendauer

$$f = \frac{1}{T}$$
 $[f] = \frac{1}{[t]} = \frac{1}{s} = Hz$ (Hertz)

Federpendel

Masse *m* und Feder *c*

- Auslenkung der Feder um Strecke s aus der Ruhelage erzeugt Rückstellkraft $F_{r \ddot{u} c k}$
- Energieformen: Kinetische und elastische Energie

Fadenpendel

Masse *m* und Faden *L*

- Auslenkung der Masse um Strecke s' (Näherung: $s' \approx s$) aus der Ruhelage erzeugt Rückstellkraft F_{riick}
- Energieformen: Kinetische und potentielle Energie

$$f = \frac{1}{2\pi} \cdot \sqrt{\frac{g}{L}}$$