

MITx: 6.041x Introduction to Probability - The Science of Uncertainty

Unit 0: Overview

- EntranceSurvey
- Unit 1: Probability models and axioms
- Unit 2: Conditioning and independence
- Unit 3: Counting
- Unit 4: Discrete random variables
- ▶ Exam 1
- Unit 5: Continuous random variables
- Unit 6: Further topics on random variables
- ▼ Unit 7: Bayesian inference

Unit 7: Bayesian inference > Problem Set 7b > Problem 1 Vertical: Determining the type of a lightbulb

■ Bookmark

Problem 1: Determining the type of a lightbulb

(3/3 points)

The lifetime of a type-A bulb is exponentially distributed with parameter λ . The lifetime of a type-B bulb is exponentially distributed with parameter μ , where $\mu > \lambda > 0$. You have a box full of lightbulbs of the same type, and you would like to know whether they are of type A or B. Assume an *a priori* probability of 1/3 that the box contains type-B lightbulbs.

1. You observe the value t_1 of the lifetime, T_1 , of a lightbulb. A MAP decision rule implies that the lightbulb is of type A if and only if $t_1 \geq \alpha$.

Assuming that $\mu \geq 2\lambda$, find α . Express your answer in terms of μ and λ . Use 'mu', 'lambda' and 'ln' to denote μ , λ , and the natural logarithm function, respectively. For example, $\ln \frac{2\mu}{\lambda}$ should be entered as 'ln((2*mu)/lambda)'.

$$\alpha = \boxed{\ln(\text{mu/(2*lambda))/(ml})}$$

2. Assuming that $\mu \geq 2\lambda$, what is the probability of error of the MAP estimator?

$$ullet rac{1}{3}e^{-\mulpha}+rac{2}{3}(1-e^{-\lambdalpha})$$

$$= rac{2}{3}e^{-\mulpha} + rac{1}{3}(1-e^{-\lambdalpha})$$

$$0 \qquad rac{1}{3}(1-e^{-\mulpha})+rac{2}{3}e^{-\lambdalpha}$$

$$\circ \qquad rac{2}{3}(1-e^{-\mulpha})+rac{1}{3}e^{-\lambdalpha}$$

3.

Unit overview

Lec. 14: Introduction to Bayesian inference Exercises 14 due Apr 06, 2016 at 23:59 UT

Lec. 15: Linear models with normal noise

Exercises 15 due Apr 06, 2016 at 23:59 UT

Problem Set 7a

Problem Set 7a due Apr 06, 2016 at 23:59 UTC

Lec. 16: Least mean squares (LMS) estimation Exercises 16 due Apr

13, 2016 at 23:59 UT 🗗

Lec. 17: Linear least mean squares (LLMS) estimation

Exercises 17 due Apr 13, 2016 at 23:59 UT 2

Problem Set 7b

Problem Set 7b due Apr 13, 2016 at 23:59 UTC

Solved problems

Additional theoretical material

Unit summary

 Unit 8: Limit theorems and classical statistics Assume that $\lambda=2$ and $\mu=3$. Find the LMS estimate of T_2 , the lifetime of another lightbulb from the same box, based on observing $T_1=2$. Assume that conditioned on the bulb type, bulb

lifetimes are independent. (For this part, you will need a calculator. Provide an answer with an accuracy of two decimal places.)

LMS estimate of $T_2 = \boxed{ ext{ 0.48}}$

You have used 2 of 2 submissions

Printable problem set available here.

DISCUSSION

Click "Show Discussion" below to see discussions on this problem.

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

