LAB 6 Deep Reinforcement Learning

TA 施囿維

Deadline: 2022/5/24(Tue) 23:59

No Demo

In this lab,

Must use sample code, otherwise no credit.

Outline

- 1. Solve LunarLander-v2 using DQN
- 2. Solve LunarLanderContinuous-v2 using DDPG
- 3. Modify and Run Sample Code
- 4. Scoring Criteria
- **5. Reminders**

LunarLander-v2

Observation [8]

- 1. Horizontal Coordinate
- 2. Vertical Coordinate
- 3. Horizontal Speed
- 4. Vertical Speed
- 5. Angle
- 6. Angle Speed
- 7. If first leg has contact
- 8. If second leg has contact

Action [4]

- No-op
- 2. Fire left engine
- 3. Fire main engine
- 4. Fire right engine

Action [2] (Continuous)

- Main engine: -1 to 0 off, 0 to +1 throttle from 50% to 100% power. Engine can't work with less than 50% power
- Left-right: -1.0 to -0.5 fire left engine, +0.5 to
 +1.0 fire right engine, -0.5 to 0.5 off

Deep Q-Network (DQN)

Algorithm 1 – Deep Q-learning with experience replay:

Initialize replay memory D to capacity N Initialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1.T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset Q = Q

TODO:

- Construct the neural network
- Select action according to epsilon-greedy
- Construct Q-values and target Q-values
- Calculate loss function
- Update behavior and target network
- Understand deep Q-learning mechanisms

End For

Deep Deterministic Policy Gradient (DDPG)

<u>Algorithm 2 – Deep Deterministic Policy Gradient Algorithm:</u>

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}$, $\theta^{\mu\prime} \leftarrow \theta^{\mu}$ Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t | \theta^{\mu}) + N_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled gradient:

$$\nabla_{\theta^{\mu}\mu}|s_{i}\approx\frac{1}{N}\sum_{i}\nabla_{a}Q(s,a|\theta^{Q})|_{s=s_{i},a=\mu(s_{i})}\nabla_{\theta^{\mu}\mu}(s|\theta^{\mu})|s_{i}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{\mu'}$$

TODO:

- Construct the neural network
- Select action according to epsilon-greedy
- Construct Q-values and target
 Q-values
- Calculate loss function
- Update behavior and target network
- Understand deep Q-learning mechanisms

end for

3. Modify Sample Code

- 1. Find a #TODO comment with hints
- 2. remove the raise NotImplementedError

3. Run Sample Code

- Simply train and test: python dqn.py
- Only test and render: python dqn.py --test_only --render

4. Scoring Criteria

Show your work, otherwise no credit will be granted.

- Report (80%)
 - (DO explain; do not only copy and paste your codes.)
- Report Bonus (25%)
 - Implement and Experiment on Double-DQN (10%)
 - Implement and Experiment on TD3 (Twin-Delayed DDPG) (10%)
 - Extra hyperparameter tuning, e.g., Population Based Training. (5%)
- Performance (20%)
 - [LunarLander-v2] Average reward of 10 testing episodes: Average ÷ 30
 - [LunarLanderContinuous-v2] Average reward of 10 testing episodes: Average ÷ 30

5. Reminders

- Your network architecture and hyper-parameters can differ from the defaults.
- Ensure the shape of tensors all the time especially when calculating the loss.
- Be aware of the indentation of hints.
- When testing DDPG, action selection need **NOT** include the noise.

References

- 1. Mnih, Volodymyr et al. "Playing Atari with Deep Reinforcement Learning." ArXiv abs/1312.5602 (2013).
- 2. Mnih, Volodymyr et al. "Human-level control through deep reinforcement learning." Nature 518 (2015):529-533.
- 3. Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep Reinforcement Learning with DoubleQ-Learning." AAAI. 2016.
- 4. Lillicrap, Timothy P. et al. "Continuous control with deep reinforcement learning." CoRRabs/1509.02971 (2015).
- 5. Silver, David et al. "Deterministic Policy Gradient Algorithms." ICML (2014).
- 6. Fujimoto, S., Hoof, H.V., & Meger, D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. ArXiv, abs/1802.09477.
- 7. OpenAI. "OpenAI Gym Documentation." Retrieved from Getting Started with Gym: https://gym.openai.com/docs/.
- 8. OpenAI. "OpenAI Wiki for Pendulum v0." Retrieved from Github: https://github.com/openai/gym/wiki/Pendulum-v0." Retrieved from Github: https://github.com/openai/gym/wiki/Pendulum-v0."
- 9. PyTorch. "Reinforcement Learning (DQN) Tutorial." Retrieved from PyTorch Tutorials: https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html.