数字逻辑设计复习

Ch 1

Number Systems

进制转换

10进制转2进制

整数部分**除2取余,逆序排列**,小数部分**乘2取整,顺序排列**(这个过程直到为1时结束,但也有小数不能用有限位二进制数表示,保留至需要的精度即可)。

如 725.678 = 1011010101.101011011001

2进制转16进制

每四位转化即可,整数右对齐,小数左对齐。

如 $725.678 = (2D5.AD9)_{16}$

2进制转8进制

每三位转化,**整数右对齐,小数左对齐**。

如 $725.678 = (1325.6331)_8$

数字编码

10进制	BCD码 (8421码)	Excess-3码	84-2-1码	Gray码
0	0000	0011	0000	0000
1	0001	0100	0111	0100
2	0010	0101	0110	0101
3	0011	0110	0101	0111
4	0100	0111	0100	0110
5	0101	1000	1011	0010
6	0110	1001	1010	0011
7	0111	1010	1001	0001
8	1000	1011	1000	1001
9	1001	1100	1111	1000

BCD码

加法大于9时,加6校正,产生的进位为新的一位,如1000+0101=1101(13>9),1101+0110=0011, carry=1,最终结果为 $0001\,0011$ 。

Excess-3码和84-2-1码

十进制下和为9的两数,在Excess-3和84-2-1下和为1111。

Gray码

相邻两数之间至多有一位的变化。

校验位 | parity bit

	even parity	odd parity
1010100	1 1010100	0 1010100
1000001	0 1000001	1 1000001

偶检验:有偶数个1时最高位填0,反之填1。 奇校验:有偶数个1时最高位填1,反之填0。

Non-Numberic

字符编码

ASCII字符编码

7位二进制编码,可表示128个字符,高三位构成下表的列,低四位构成下表的行。

B ₄ B ₃ B ₂ B ₁	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P	5:	p
0001	SOH	DC1	1	1	A	Q	a	q
0010	STX	DC2	**	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	ř.	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	Î	Y	i	У
1010	LF	SUB	*	: -	J	Z	j	Z
1011	VT	ESC	+	;	K	1	k	{
1100	FF	FS	7	<	L	\	1	1
1101	CR	GS	-	=	M]	m	}
1110	SO	RS	×	>	N	۸	n	*
1111	SI	US	1	?	O	_	o	DEL
控制字符								

Unicode

2bytes, 几乎所有字符。

二值逻辑和逻辑门

容易忘的逻辑门

XOR&XNOR

			XY	F
异或	$X \longrightarrow F$	$F=X\overline{Y}+X\overline{Y}$	0 0	0
(XOR)	$Y \longrightarrow F$	$=X \oplus Y$	0 1	1
			1 0	1
			1 1	0
			XY	F
异或非	X	$F=XY+\overline{XY}$	0 0	1
(XNOR)	$Y \longrightarrow F$		0 1	0
(MITOIL)		$= X \oplus Y$	1 0	0
			1.1	1

三态门 | 3-State Buffer

EN	IN	OUT
0	х	Hi-Z (高阻)
1	0	0
1	1	1

AND-OR-INVERT | AOI

不加反相器是AND-OR (AO) , 类似地有OAI和OA。

传输门 | Transmission Gate

高电平通路, 低电平断路。

布尔代数

对偶式(duality), 反函数

def: 变量为字符(literal)。

对偶: and->or, or->and, 保持literal不变。对偶的对偶是函数本身。

反函数:记函数 \overline{F} 为F反函数,等价于F对偶后,再将所有literal取反。

相关恒等式

德摩根律	$\overline{X_1 + X_2 + \ldots + X_n} = \overline{X_1} \overline{X_2} \ldots \overline{X_n}$	$\overline{X_1X_2\dots X_n}=\overline{X_1}+\overline{X_2}+\dots\overline{X_n}$
分配律	X + YZ = (X + Y)(X + Z)	
Minimization	$XY + \overline{X}Y = Y$	$(X+Y)(\overline{X}+Y)=Y$
Absorption	X + XY = X	X(X+Y)=X
Simplification	$X + \overline{X}Y = X + Y$	$X(\overline{X} + Y) = XY$
Consensus	$XY + \overline{X}Z + YZ = XY + \overline{X}Z$	$(X+Y)(\overline{X}+Z)(Y+Z)=(X+Y)(\overline{X}+Z)$

Shannon Formula

- $xf(x, \overline{x}, y, \dots z) = xf(1, 0, y \dots z)$
- $\overline{x}f(x,\overline{x},y...z) = xf(0,1,y...z)$
- $x + f(x, \overline{x}, y...z) = x + f(0, 1, y...z)$
- $\overline{x} + f(x, \overline{x}, y...z) = \overline{x} + f(1, 0, y...z)$

Shannon Expansion

 $f(x, \overline{x}, y...z) = xf(x, \overline{x}, y...z) + \overline{x}f(x, \overline{x}, y...z) = xf(1, 0, y...z) + \overline{x}f(0, 1, y...z)$

PS: 直接化简较复杂时, 考虑先求对偶, 化简完后再求对偶。

标准形式

最大项(Maxterms)与最小项(Minterms)

- 最大项是以OR连接的,如 $X+Y+Z,X+\overline{Y}+Z$,分别记作 M_0,M_2 。
- 最小项是以AND连接的,如 XYZ, \overline{XYZ} ,分别记作 m_7, m_5 。
- 两者之间有 $M_i = \overline{m_i}$ 。

Sum of Minterms(SOM)&Product of Maxterms(POM)

SOM的找法是:根据真值表,找出其中所有函数结果为1的行,每行即为一个最小项,将他们之间用OR连接。

POM的找法是:根据真值表,找出其中所有函数结果为**0**的行,每行即为一个最大项,将他们之间用AND连接。

Sum of Products(SOP)&Products of Sum(POS)

即SOM和POM的标准形式。

反函数

注意下标就行了。

举个例子,
$$f(x,y,z) = \sum_{m} (1,3,5,7)$$

$$\overline{f}(x,y,z) = \sum_m (0,2,4,6)$$

也可写为:
$$\overline{f}(x,y,z) = \prod_{M} (1,3,5,7)$$

电路成本标准

Literal Cost

看literal的多少。如F = BD + ABC + ACD的cost是8。

Gate Input Cost

- literal的数目。
- 除单个literal外的项数。
- 不同取反值的单个literal。

如 $F=BD+A\overline{B}C+A\overline{C}\,\overline{D}$, G=11, GN=14。

貸 卡诺图 | K-map

几个概念

具体的讲解书上很清楚,这里再重申几个概念。

- 蕴含项 | implicant: 卡诺图中为1的方格。
- 主蕴含项 | prime implicant: $\mathrm{d}2^m(m=0,1,\ldots,n)$ 个1方格构成的矩形的集合,每个矩形包含了尽可能多的1方格。
- 质主蕴含项 | essential prime implicant: 至少包含了一个不被其他主蕴含项包含的1方格。

如上图,质主蕴含项是BD和 \overline{BD} 。

! 两种函数形式优化

若给出的是SOP形式函数:

- 找出标1的项, 化简得SOP形式;
- 找到标0的项,求出 \overline{F} 的SOP形式,再取反得到F的POS形式。

若给出的是POS形式函数:

- 利用 $M_i = \overline{m_i}$, 对POS形式的函数先求反;
- 对求反后的函数,将最小项对应的位置标0,其他地方标1;
- 合并1方格可得SOP表达式, **合并0方格再求反**得**POS**表达式。

无关项

合理使用无关项可以进一步化简函数。

门的传播延迟

传播延迟 | propagation delay

• t_{PHL} : 输出从高变到低时,从输入到输出的时间差; • t_{PLH} : 输出从低变到高时,从输入到输出的时间差;

• t_{pd} : $max(t_{PHL}, t_{PLH})$.

传输延迟 | transport delay

输入响应输出的变化,在指定的传播延迟之后发生改变。

惯性延迟 | inertial delay

类似传输延迟,但两次输入变化发生于小于拒绝时间(rejection time),那么两次变化中的第一次将不会发生。

PS: 拒绝时间小于等于传播延迟。

Ch 3

分层设计 | Hierarchical Design

注意模块的重复利用。

工艺映射 | Technology Mapping

译码

3-8 Decoder

一般性原则 $(n-to-2^n)$

可以拆成如下规模的decoder:

$$\left\{ egin{aligned} 2^{rac{n}{2}} and \, 2^{rac{n}{2}}, n \, is \, even \ 2^{rac{n-1}{2}} and \, 2^{rac{n+1}{2}}, n \, is \, odd \end{aligned}
ight.$$

重复上面步骤直到n=1,对于n=1,用1-to-2 decoder。

带使能的译码器

编码 | Encoding

Priority Encoder

如果有多于一个的输入1,选取优先级最高的。

表 3-6 优先编码器真值表

	输	入			输 出	
D_3	D_2	D_1	D_0	A_1	A_0	V
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

这样可以减少无关信号,在卡诺图中可以使用无关项化简。

多路复用器 | Mux

4-1 多路复用器

四重4-1多路复用器

 $2^n - 1$ 的Mux输出都是一位的,考虑将输出向量化,变为多位。

四重4-1Mux可以选择四个**四位**的向量,通过共享译码模块结合四个选择模块,用16个与门。 重数即为可选择向量数。

七段数码管

图 3-38 7 段显示

涉及到BCD码转换到七段码真值表,卡诺图化简。

迭代组合电路

半加器和全加器

图 3-40 半加器的逻辑电路图

图 3-42 全加器的逻辑图

行波进位加法器

图 3-43 4位行波进位加法器

补码

r进制系统均有**基数补码**和**基数反码**。

2进制:

反码(1's complement): 定义为 $(2^n-1)-N$,逐位求反得。

补码(2's complement):定义为 2^n-N ,逐位求反再加1。

采用补码的无符号数减法

图 3-45 加减法器电路

- 当执行减法 (S=1) , $C_4=0$, 即A-B>0时 ,得到的结果就为实际结果;
- $C_4=1$, $A-B\leq 0$ 时, 得到的结果为实际结果补码的相反数。

有符号数加减法

有符号数的加减法对上面做了校正使得减法结果统一起来,均为补码形式。正数补码为自身,负数补码取反加一。

溢出 | Overflow

无符号数: 最高位相加产生进位时则发生溢出。

有符号数: 溢出检测可以通过检测符号位的进位输入和进位输出是否相等,若不等,则发生溢出。

✔PS: 正+正, 负+负才可能产生溢出。

超前进位加法器 | Carry Lookahead

行波进位加法器是逐级传递进位的, 位数较多时, 会很慢。

某一级全加器

定义 $G_i = A_i B_i, P_i = A_i \oplus B_i$ 。

于是有 $S_i=P_i\oplus C_i$, $C_{i+1}=G_i+P_iC_i$,于是有如下代换:

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

$$C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

可以注意到每一级的进位不再依赖上一级的结果,而是在一开始就可以算好,这样就提高了计算速率。

Group Carry Lookahead

$$C_4 = G_{0 \sim 3} + P_{0 \sim 3} C_0$$
 $C_8 = G_{4 \sim 7} + P_{4 \sim 7} C_4$ $C_{12} = G_{8 \sim 11} + P_{8 \sim 11} C_8$ $C_{16} = G_{12 \sim 15} + P_{12 \sim 15} C_{12} 8$

通过逐次代换 C_4, C_8, C_{12} 可以使式子全部只含 C_0 , 16位CLA如下图:

加速后的时间复杂度从O(n)变为 $O(log_2n)$ (但是我不知道怎么证明的hhh)

? Question:要设计32位CLA,一种方案是把两个16CLA采用串联方式,即级内超前进位,级间行波串联。但这不符合设计**超前进位**的初衷,因此采用多级CLA的方式。

注:这里第三级CLA实际上只用到两位。

其他算数单元

- 自增 | Incrementing
- 自减 | Decrementing
- 乘常数/除常数 (这里进一步特殊化为常数2, 即为左移、右移)
- 零扩展/符号扩展

Ch4

时序电路

基础概念

定义

时序电路的输出由**输入**和**当前状态**决定。

类型

同步 | Synchronous:状态的改变总发生由时钟控制,改变发生在时钟变化时,是离散变化的。现在计算机几乎都是同步的。

异步 | Asynchronous: 状态改变可以发生在任何时候。

锁存器

S-R Latch (NOR)

R	S	Q	\overline{Q}	状态描述
0	0	X	X	储存未知状态
0	1	1	0	Q置1
0	0	1	0	Q储存为1
1	0	0	1	Q置0
0	0	0	1	Q储存为0
1	1	0	0	都为0,导致状态未定义
0	0	X	X	不稳定状态!

S=1, R=1是非法的,会导致锁存器处于未定义状态。

$\overline{S}-\overline{R}$ Latch (NAND)

\overline{R}	\overline{S}	Q	\overline{Q}	状态描述
1	1	Х	×	储存未知状态
1	0	1	0	Q置1
1	1	1	0	Q储存为1
0	1	0	1	Q置0
1	1	0	1	Q储存为0
0	0	1	1	都为1,导致状态未定义
1	1	X	X	不稳定状态!

 $\overline{S}=0,\overline{R}=0$ 是非法的,会导致锁存器处于未定义状态。

SR触发器 | Clocked S-R Latch

С	S	R	Next Q	Comment
0	X	Х	无变化	无变化
1	0	0	无变化	无变化
1	0	1	0	复位
1	1	0	1	置位
1	1	1	х	不允许

D锁存器 | D Latch

上面还是没有解决未定状态的问题, 因此引入D锁存器。

触发器 | Filp-Filops

问题引入

为了解决一个时钟周期内输出多次改变的空翻现象。在一个时钟周期内,我们希望触发器只翻转一次。

主从触发器 | Master Slave Filp-Flop

时钟在高电平时, master有效; 时钟低电平时, salve有效。

1's catching: 造成问题的原因是S端口有0->1->0的Giltch。假设R=0, Q=0, S=0, Gitch为从0到1再到0, 这样锁存器捕捉到1的信号,然后将Y置1, 在时钟低电平时,将Q置1。但是实际上S端的有效信号是0,Q端不应该有变化。R端口有Giltch也会造成这个问题。

边沿触发式触发器 | Edge-Triggered D Filp-Flop

这种触发器不会引发1's catching的问题。

负边沿触发

图 4-9 负边沿触发的 D 触发器

负边沿触发即C从1变到0时才触发(对于slave而言)。

正边沿触发

图 4-10 正边沿触发的 D 触发器

正边沿触发即C从0变到1时才触发。

标准图形符号

直接输入

即初始化输入,这部分输出不受时序电路的控制。

 \overline{R} 置0,触发器置0; \overline{S} 置0,触发器置1。

其他触发器

JK触发器

类似于SR触发器,J对应S,K对应R,**但J=K=1是允许的**,这时输出状态变为和之前的相反的状态。同样的,也有1's catching的问题。但可以用D触发器修正这个问题。

T触发器

T=0的时候,保持; T=1时,变为相反状态。其实就是把JK短接。

时序电路分析

状态表、图

时序电路中真值表变为状态表。

一般来说,包含m个触发器(m个状态变量)和n个输入的时序电路状态表有 2^{m+n} 行。

- 若电路输出和当前状态和输入都有关,则为Mealy型。
- 若只和当前状态有关,则为Moore型。

输出在**箭头**上: Mealy输出在**圆圈**里: Moore

如下图为Mealy

等价状态

对于两个状态,对于每一个可能的输入,他们的输出和状态转移的结果都一样。据此可以实现状态的合并化简。

时序电路设计

步骤

1. 形式化 | Formulation: 画状态图和状态表

- 2. 状态赋值
 - o counting order
 - 。 格雷码顺序
 - o one hot码
- 3. 确定触发器输入方程和输出方程
- 4. K-map优化

无效状态的处理

- Way1: 保证无效状态的输出不会危害正常状态
- Way2: 采取额外输出或者未使用的代码说明电路进入无效状态
- Way3: 定义无效状态的下一个状态,使得下一状态不论外界输入如何,电路在几个周期后可以回到正常状态。

状态机图 | State Machine Diagram

状态转移条件不是直接的0/1的值,而是具体的表达式了,如:

为了保证无效状态不会出现,对于每个状态的转换条件有:

$$T_{ij}T_{ik}=0\;(j
eq k) \ \sum T_{ij}=1$$

输出也要满足:

$$O_{ij}O_{ik}=0\;(j
eq k) \ \sum O_{ij}=1$$

无条件转移隐含1, 无条件输出隐含1。

几种输出模型

• Moore Output

Ex. 1: Moore Outputs

• TCI(Transition condition independent) Mealy Output

Ex. 2: TCI Outputs

• TCD Mealy Output

Ex. 3: TCD Outputs

• TCOD Mealy Output

Ex. 4: TCOD Outputs

Timing

触发器Timing

图 4-36 触发器的定时参数

- t_s 为setup time,建立时间,即需要维持输入一段时间不变以杜绝错误变化。
- t_h 为hold time,保持时间,即需要保持一段时间不变以保证锁存器的值不会响应输入而变化。
- t_w 为clock pulse width,时钟周期的最小值,不得小于这个值。

时序电路Timing

 t_{COMB} 为组合逻辑的延时, t_{slack} 为传播路径上需要的额外时间, $t_{pd,FF}$ 为触发器延时。

因此有:

$$t_p \geq max(t_{pd,FF} + t_{COMB} + t_s)$$

为最短时钟周期。

异步输入与亚稳态

书上说的清楚。

CMOS电路

CMOS晶体管

N型和P型

完全互补的CMOS电路

计概中曾讲过,p型晶体管不能直接接地,否则会导致输出电平不是二值,这就排除了直接p接地来构造逻辑门的可能。

给出逻辑表达式 $f(X_1, X_2, \ldots, X_n)$ 构造晶体管级电路方法:

• 直接用n型实现 $f(X_1, X_2, \ldots, X_n)$,再用p型实现 \overline{f} ,后接NOT即可。

可编程实现技术 | Programmable Implementation Technology

可编程逻辑部件

- PLD
 - o PROM | Programmable Read Only Memory

o PLA | Programmable Logic Array

• PAL | Programmable Array Logic

ROM

 $m \times n$ ROM是指m个地址,n位宽的数据的一块ROM。

Ch6

寄存器

Registers with Clock Gating

产生的问题: 有门控的时钟和没有门控的时钟之间可能产生时钟偏移。

Registers with Load-Controlled Feedback

寄存器传输

微操作

算术微操作

符号名称	描述
$R0 \leftarrow R1 + R2$	寄存器 R1 的值与寄存器 R2 的值相加,结果传输给 R0
$R2 \leftarrow \overline{R2}$	对寄存器 R2 的值求反码
$R2 \leftarrow \overline{R2} + 1$	对寄存器 R2 的值求补码
$R0 \leftarrow R1 + \overline{R2} + 1$	寄存器 R1 的值加上寄存器 R2 值的补码,结果传输给 R0
$R1 \leftarrow R1 + 1$	寄存器 R1 的值加 1
$R1 \leftarrow R1 - 1$	寄存器 R1 的值减 1

逻辑微操作

符号名称	描 述
$R0 \leftarrow \overline{R1}$	逻辑按位取反
$R0 \leftarrow R1 \ \land \ R2$	逻辑按位与
$R0 \leftarrow R1 \ \lor \ R2$	逻辑按位或
$R0 \leftarrow R1 \oplus R2$	逻辑按位异或

移位微操作

类型	符号名称	8 位数据示例	
		源寄存器 R2	移位后: 目的寄存器
左移	R1 ← s1 R2	10011110	00111100
右移	R1 ← sr R2	11100101	01110010

Mux-Based Transfer

以接受两个寄存器传输为例

$$K1:R0\leftarrow R1,\,\overline{K1}K2:R0\leftarrow R2$$

类似地,接受n个寄存器传输,

图 6-8 具有 n 个源的多路复用器的概括

Dedicated (专用) Mux-Based

Mux Bus

基于总线的Mux可以替换为三态门

Three State Bus

三态门的特性如下图

在使用三态门进行传输时,要保证 $E0,\,E1,\,E2$ 不能同时为1,否则传输会出现问题。解决方案是 Enable使用译码器来保证每次只有一个被选中。

移位寄存器 & 计数器

书或ppt