

Candidate session number

Mathematics						
Higher level						
Paper 1						
Trial Examination 2020						
2 hours						

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in the answer booklet provided. Fill in your session number on the front of the answer booklet, and attach it to this examination paper.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [100 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions. Answers must be written within the answer boxes provided. Working may be continued below the lines if necessary.

1. [M	aximum mark: 9]	
Give	the function $f(x) = \ln x - \ln(1 - x)$,	
(a)	Find:	
	(i) the domain	
	(ii) the range	
	(iii) the inverse function $f^{-1}(x)$	[5]
(b)	Sketch $y = f(x)$ and $y = f^{-1}(x)$, labelling any intercepts and asymptotes.	[4]
•••••		
•••••		

_		
	[Maximum]	

,	(a)	Drovo	tha	idontity
((a)	Prove	une	identity

$$\frac{\cos\theta}{1+\sin\theta} + \frac{1+\sin\theta}{\cos\theta} = 2\sec\theta.$$
 [2]

(b) Solve the equation
$$\sec^2 x + 2\tan x = 0$$
, $-\pi \le x \le \pi$. [4]

•	F3 # '	1	σ
3.	[Maximum	mark:	1/1
			' 1

(a) Write the first three derivatives of $f(x) = x^2 e^x$. [3]

[4]

(b) Use mathematical induction to prove that

$$f^{(n)}(x) = e^x[x^2 + 2nx + n(n-1)]$$

where $n \in \mathbb{Z}^+$ and $f^{(n)}(x)$ represents the n^{th} derivative.

	•••••
••	
•	
••	
	•••••

4	C3 6 '	1	$^{\circ}$
4.	[Maximum	mark:	81
			\sim 1

(a)	Factorise $2x^2 - 3x - 5$.	[2]
(b)	Hence, or otherwise, find the coefficient of x^{23} in the expansion of $(2x^2 - 3x - 5)^{12}$, writing your answer in the form $k \times 2^m$ where $k, m \in \mathbb{Z}$.	[6]

(a)	Find $\int x^2 \sin x dx$.	[4]
(b)	Evaluate $\int_{-1}^{1} x^2 \sin x dx$.	[2]

5. [Maximum mark: 6]

6. [M	Iaximum mark: 9]	
(a)	Let the probability that it rains on any one day be p and the weather on any day is independent of the weather on any other day. Using $p = 0.5$, find the probability that during a period of one week:	
(4)	(i) it will rain on at least five;	
	(ii) it will rain on the last day;	
	(iii) raining and non-raining days will alternate.	[5]
(b)	Find p , if during a full week period, it is equally likely that there will be five raining days as there will be six raining days.	[4]

_	[Maximum]		
,	IIVIaximiim	mark:	ור

Use Mathematical Induction to prove $1 + \operatorname{cis} \theta + \operatorname{cis} 2\theta + ... + \operatorname{cis} n\theta = \frac{1 - \operatorname{cis}(n+1)\theta}{1 - \operatorname{cis}\theta}$.

Do **NOT** write solutions on this page.

Section B

Answer all the questions on the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 12]

A triangle has sides of length (x + 1), (2x + 1) and (2x + 3) cm.

- (a) Show that x > 1.
- (b) Find the value of x for which that triangle is right-angled. [3]
- (c) (i) Find, in terms of x, the cosine of the largest angle;
 (ii) hence find the value of x for which one angle of the triangle is 120°.
- (d) Find the value of x for which one angle of the triangle is 60° . [3]

9. [Maximum mark: 12]

- (a) Find the x-coordinates of the two stationary points on the curve $y = x^3 3x^2 2x 6$. [3]
- (b) Show that the x-coordinate of the point of inflexion is the mean of the x-coordinates of the two stationary points. [2]
- (c) Write the equation of the tangent to the curve $y = x^3 3x^2 2x 6$ at the point where it crosses the *y*-axis. [2]
- (d) Evaluate the area enclosed by the tangent from (c) and the cubic curve. [5]

Do **NOT** write solutions on this page.

10. [Maximum mark: 26]

(a) (i) Show that the line
$$l$$
 given by:
$$\frac{x-1}{2} = y + 2 = \frac{z+1}{3}$$

and the line m, defined by the parametric equations:

$$x = 3\lambda + 2$$
, $y = -2\lambda + 2$, $z = \lambda + 4$ intersect.

(ii) Hence, find the coordinates of their point of intersection *C*.

[3]

- (b) Find the equation of the plane Π containing the lines l and m. [6]
- (c) Determine the normal vector of the plane Π which has unit length. [4]
- Line k is perpendicular to the plane Π and passes through the point C. Find the coordinates of points P_1 and P_2 which lie on the line k and at a distance of 5 units from C.
- (e) Determine the equation of the plane which is parallel to the plane Π and passes through P_1 . [5]