TN T	D /
Nom •	Pronom :
Nom:	Prénom :

<u> </u>	•	
Questions	de	cours

Soient A un ensemble non vide inclus dans $\mathbb R$ et α un réel.

Donner les définitions de « α est un minorant de A » et de « α est la borne inférieure de A ».

/2 points

Soient $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $\ell \in \mathbb{R}$. Donner la définition de « (u_n) converge vers ℓ ».

/2 points

Exercices

• Soient $A_1 = \left\{5 + \frac{1}{n+1}; \ n \in \mathbb{N}\right\}$ et $A_2 = \{-6\} \cup]-4, +\infty[$. Sans justifier, compléter le tableau suivant :

	A_1	A_2
Ensemble des minorants		
Ensemble des majorants		
Plus petit élément		
Plus grand élément		
Borne supérieure		
Borne inférieure		

/3 points

• Soit (u_n) la suite définie par :

$$\forall n \in \mathbb{N}, \quad u_n = \frac{n}{n+1}.$$

Montrer, à l'aide de la définition, que (u_n) a pour limite 1.