Materials 7 - IRFs and making sure RE is right

Laura Gáti

October 25, 2019

Overview

1	Mod	del summary with interest rate smoothing ρi_{t-1}	2
2	2 Compact notation - with lagged interest rate term in TR		3
3	IRF	s splitting by decreasing, constant and endogenous gain learning	4
	3.1	Natural rate shock	4
	3.2	Monetary policy shock	6
	3.3	Cost-push shock	8

1 Model summary with interest rate smoothing ρi_{t-1}

$$x_{t} = -\sigma i_{t} + \hat{\mathbb{E}}_{t} \sum_{T=t}^{\infty} \beta^{T-t} \left((1 - \beta) x_{T+1} - \sigma(\beta i_{T+1} - \pi_{T+1}) + \sigma r_{T}^{n} \right)$$
 (1)

$$\pi_t = \kappa x_t + \hat{\mathbb{E}}_t \sum_{T=t}^{\infty} (\alpha \beta)^{T-t} \left(\kappa \alpha \beta x_{T+1} + (1-\alpha) \beta \pi_{T+1} + u_T \right)$$
 (2)

$$i_t = \psi_\pi \pi_t + \psi_x x_t + \rho i_{t-1} + \bar{i}_t \tag{3}$$

$$\hat{\mathbb{E}}_t z_{t+h} = \begin{bmatrix} \bar{\pi}_{t-1} \\ 0 \\ 0 \end{bmatrix} + bhx^{h-1} s_t \quad \forall h \ge 1 \qquad b = gx \ hx \qquad \text{PLM}$$
(4)

$$\bar{\pi}_t = \bar{\pi}_{t-1} + k_t^{-1} \underbrace{\left(\pi_t - (\bar{\pi}_{t-1} + b_1 s_{t-1})\right)}_{\text{fcst error using (4)}} \qquad (b_1 \text{ is the first row of } b)$$
 (5)

$$k_t = \mathbb{I} \times (k_{t-1} + 1) + (1 - \mathbb{I}) \times \bar{g}^{-1}$$
 (6)

$$\mathbb{I} = \begin{cases}
1 & \text{if } \theta_t \le \bar{\theta} \\
0 & \text{otherwise.}
\end{cases}
\tag{7}$$

$$\theta_t = |\hat{\mathbb{E}}_{t-1}\pi_t - \mathbb{E}_{t-1}\pi_t|/\sigma_s$$
 CEMP criterion for the gain (8)

The alternative criterion for the choice of gain is a recursive variant of the CUSUM-test (Brown, Durbin, Evans 1975):

- 1. Let FE_t denote the short-run forecast error, and ω_t firms' estimate of the FE variance.
- 2. Let $\kappa \in (0,1)$ and $\tilde{\theta}$ be the new threshold value for the criterion.
- 3. Then for initial (ω_0, θ_0) , firms in every period estimate the criterion and the FEV as:

$$\omega_t = \omega_{t-1} + \kappa k_{t-1}^{-1} (F E_t^2 - \omega_{t-1}) \tag{9}$$

$$\theta_t = \theta_{t-1} + \kappa k_{t-1}^{-1} (F E_t^2 / \omega_t - \theta_{t-1})$$
(10)

$$k_t = \mathbb{I} \times (k_{t-1} + 1) + (1 - \mathbb{I}) \times \bar{g}^{-1}$$
 (11)

$$\mathbb{I} = 1 \quad \text{if} \quad \theta_t \le \tilde{\theta} \tag{12}$$

2 Compact notation - with lagged interest rate term in TR

$$z_t = A_p^{RE} \, \mathbb{E}_t \, z_{t+1} + A_s^{RE} s_t \tag{13}$$

$$z_t = A_a^{LH} f_a(t) + A_b^{LH} f_b(t) + A_s^{LH} s_t (14)$$

$$s_t = Ps_{t-1} + \epsilon_t \qquad \rightarrow \quad s'_t = hx \ s'_{t-1} + \epsilon'_t \tag{15}$$

where
$$s'_{t} \equiv \begin{pmatrix} r_{t}^{n} \\ \bar{i}_{t} \\ u_{t} \\ i_{t-1} \end{pmatrix}$$
 $hx \equiv \begin{pmatrix} \rho_{r} & 0 & 0 & 0 \\ 0 & \rho_{i} & 0 & 0 \\ 0 & 0 & \rho_{u} & 0 \\ gx_{3,1} & gx_{3,2} & gx_{3,3} & gx_{3,4} \end{pmatrix}$ $\epsilon'_{t} \equiv \begin{pmatrix} \varepsilon_{t}^{r} \\ \varepsilon_{t}^{i} \\ \varepsilon_{t}^{u} \\ 0 \end{pmatrix}$ and $\Sigma' = \begin{pmatrix} \sigma_{r} & 0 & 0 & 0 \\ 0 & \sigma_{i} & 0 & 0 \\ 0 & 0 & \sigma_{u} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ (16)

 i_{t-1} is an endogenous state and breaks the link that previously had P = hx; now this is no longer true. In particular, using Matlabby notation, P = hx(1:3,1:3).

And the A_s^{RE} and A_s^{LH} are given by:

$$A_s^{RE} = \begin{pmatrix} \frac{\kappa \sigma}{w} & -\frac{\kappa \sigma}{w} & 1 - \frac{\kappa \sigma \psi_{\pi}}{w} & 0\\ \frac{\sigma}{w} & -\frac{\sigma}{w} & -\frac{\sigma \psi_{\pi}}{w} & 0\\ \psi_x(\frac{\sigma}{w}) + \psi_{\pi}(\frac{\kappa \sigma}{w}) & \psi_x(-\frac{\sigma}{w}) + \psi_{\pi}(-\frac{\kappa \sigma}{w}) + 1 & \psi_x(-\frac{\sigma \psi_{\pi}}{w}) + \psi_{\pi}(1 - \frac{\kappa \sigma \psi_{\pi}}{w}) & \rho \end{pmatrix}$$
(17)

$$A_s^{LH} = \begin{pmatrix} g_{\pi s} & & & \\ g_{xs} & & & \\ \psi_{\pi} g_{\pi s} + \psi_x g_{xs} + \begin{bmatrix} 0 & 1 & 0 & \rho \end{bmatrix} \end{pmatrix}$$
 (18)

$$g_{\pi s} = (1 - \frac{\kappa \sigma \psi_{\pi}}{w}) \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} (I_4 - \alpha \beta hx)^{-1} - \frac{\kappa \sigma}{w} \begin{bmatrix} -1 & 1 & 0 & \rho \end{bmatrix} (I_4 - \beta hx)^{-1}$$
(19)

$$g_{xs} = \frac{-\sigma\psi_{\pi}}{w} \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} (I_4 - \alpha\beta hx)^{-1} - \frac{\sigma}{w} \begin{bmatrix} -1 & 1 & 0 & \rho \end{bmatrix} (I_4 - \beta hx)^{-1}$$
 (20)

$3\,\,$ IRFs splitting by decreasing, constant and endogenous gain learning

3.1 Natural rate shock

Figure 1: Moving ρ

Placeholder Placeholder 0.5 0.5 -0.5 -0.5 10 (b) Gain, $\psi_{\pi} = 1.1$ (a) IRFs, $\psi_{\pi} = 1.1$ Placeholder Placeholder 0.5 0.5 0 -0.5 -0.5 -1₀ 8 10 10 (c) IRFs, $\psi_{\pi} = 1.5$ (d) Gain, $\psi_{\pi} = 1.5$ Placeholder Placeholder 0.5 0.5 0 -0.5 -0.5 8 10 10 (e) IRFs, $\psi_{\pi} = 2$ (f) Gain, $\psi_{\pi} = 2$

Figure 2: Moving ψ_{π}

3.2 Monetary policy shock

Figure 3: Moving ρ

Figure 4: Moving ψ_{π}

3.3 Cost-push shock

Figure 5: Moving ρ

Figure 6: Moving ψ_{π}