Глава V ОПТИКА

§ 15. Геометрическая оптика и фотометрия

Значение показателя преломления n для некоторых веществ можно найти в таблице 18 приложения.

15.1. Горизонтальный луч света падает на вертикально расположенное зеркало. Зеркало поворачивается на угол α около вертикальной оси. На какой угол θ повернется отраженный луч?

Решение:

При повороте зеркала на угол α перпендикуляр к зеркалу, восстановленный в точке O падения луча, также повернется на угол α , поэтому угол падения тоже будет равен α , а угол между падающим и отраженным лучами равен 2α .

15.2. Радиус кривизны вогнутого зеркала R = 20 см. На расстоянии $a_1 = 30$ см от зеркала поставлен предмет высотой $y_1 = 1$ см. Найти положение и высоту y_2 изображения. Дать чертеж.

Решение:

Фокусное расстояние зеркала $F = \frac{R}{2} = 10$ см. Подставим значения a_1 и F в формулу вогнутого зеркала: $\frac{1}{a_1} + \frac{1}{a_2} = \frac{1}{F}$; отсюда $a_2 = \frac{Fa_1}{a_1 - F} = 15$ см. Т. к. стержень

расположен за центром зеркала. то его изображение действительное (f>0), обратиое. Увеличение уменьшенное.

$$k = \frac{a_2}{a_1} = 0,5$$
. Следовательно, вы-
сота изображения $y_2 = ky_1 = 0.5$ см.

15.3. На каком расстоянии a_{s} от зеркала получится $_{\rm H3O^{-}}$ бражение предмета в выпуклом зеркале с раднусом кривизны R=40 см, если предмет помещен на расстоянии $a_1=30$ см от зеркала? Какова будет высота у, изображения, если предмет имеет высоту $y_i = 2$ см? Проверить вычисления, сделав чергеж на миллиметровой бумаге.

Решение:

Изображение А'В' предмета АВ мнимое, прямое, уменьшенное. y А Фокусное расс. $F = -\frac{R}{2} = -20$ см. Используя фор-

$$F = -\frac{R}{2} = -20$$
 см. Используя фор-

мулу зеркала, имеем
$$\frac{1}{a_1}$$
 =

$$=\frac{1}{F}-\frac{1}{a_1}=-\frac{1}{12}$$
, откуда $a_2=-12$ см. Увеличение $k=\frac{|a_2|}{a_1}=0.4$. Высота изображения $y_2=ky_1=0.8$ см.

15.4. Выпуклое зеркало имеет раднус кривизны R = 60 см. На расстоянии $a_1 = 10$ см от зеркала поставлен предмет высотой $y_1 = 2$ см. Найти положение и высоту y_2 изображения. Дать чертеж.

-Изображение мнимое, прямое, уменьшенное (см. рисунок к **задаче** 15.3). Фокусное расстояние зеркала $F = -\frac{R}{2} =$ = -30 см. Используя формулу зеркала, имеем $\frac{1}{a_2} = \frac{1}{F} - \frac{1}{a_1}$, откуда $a_2 = -7.5$ см. Увеличение $k = \frac{|a_2|}{a} = 0.75$. Высота изображения $y_2 = ky_1 = 1.5$ см.

15.5. В вогнутом зеркале с радиусом кривизны R = 40 см хотят получить действительное изображение, высота которого влвое меньше высоты самого предмета. Где нужно поставить предмет и где получится изображение?

Решение:

Из подобия треугольников *ABF*

и-CDF следует, что
$$\frac{h_2}{h_1} = \frac{F}{a_1 - F}$$
 —

откуда
$$a_2 = \frac{a_1 F}{a_1 - F}$$
 — (3). Из

сравнения соотношений (1) и (2) получаем $\frac{h_1}{h} = \frac{a_1}{a}$. По

условию
$$\frac{h_1}{h_2} = 2$$
, следовательно, $\frac{a_1}{a_2} = 2$ или $a_1 = 2a_2$ —

(4). Фокусное расстояние зеркала
$$F = \frac{R}{2} = 20 \text{ см}$$
. Из (2)

найдем
$$F = \frac{a_1 a_2}{a_1 + a_2}$$
, подставляя (4), получим $F = a_2$, сле-

довательно, $a_{\rm I}=2F=R$. Таким образом, предмет нужно поместить в центр кривизны зеркала, а его изображение получится в фокусе.

15.6. Высота изображения предмета в вогнутом зеркале вдвое больше высоты самого предмета. Расстояние между предметом и изображением $a_1 + a_2 = 15$ см. Найти фокусное расстояние F и оптическую силу D зеркала.

Решение:

Имеем $\frac{h_2}{h_1}=2$, следовательно, $\frac{a_2}{a_1}=2$ (см. задачу 15.5). По условию $a_1+a_2=15$ см. Т. к. $a_2=2a_1$, то $a_1+2a_1=15$ см; $a_1=5$ см; $a_2=10$ см. Изображение получится прямое, мнимое и увеличенное, если предмет находится между зеркалом и фокусом. Тогда по формуле зеркала $\frac{1}{F}=\frac{1}{a_1}-\frac{1}{a_2}$, откуда фокусное расстояние $F=\frac{a_1a_2}{a_2-a_1}=10$ см. Оптическая сила зеркала $D=\frac{1}{F}=10$ дптр.

15.7. Перед вогнутым зеркалом на главной оптической оси перпендикулярно к ней на расстоянии $a_1=\frac{4F}{3}$ от зеркала поставлена горящая свеча. Изображение свечи в вогнутом зеркале попадает на выпуклое зеркало с фокусным расстоянием F'=2F. Расстояние между зеркалами d=3F, их оси совпадают. Изображение свечи в первом зеркале играет роль мнимого предмета по отношению ко второму зеркалу и дает действительное изображение, расположенное между обеими зеркалами. Построить это изображение и найти общее линейное увеличение k системы.

Имеем
$$\frac{1}{F} = \frac{1}{a_1} + \frac{1}{a_2}$$
 — (1);

$$\frac{1}{2F} = \frac{1}{a'_1} - \frac{1}{a'_2}$$
 — (2); по условию $a_2 - a'_1 = 3F$ — (3).

увеличение вогнутого зер-

кала $k_1 = \frac{a_2}{a_1}$, увеличение

выпуклого зеркала $k_2 = \frac{a_2'}{a_1'}$, общее увеличение системы

$$k = k_1 k_2 = \frac{a_2 a_2'}{a_1 a_1'}$$
 — (4). По условию $a_1 = \frac{4F}{3}$, тогда из (1)

найдем $a_2 = 4F$. Подставляя значение a_2 в (3), получим $\mathbf{4F} - a_1' = 3F$, откуда $a_1' = F$. Тогда из (2) найдем $a_2' = 2F$.

Подставляя значения a_1 , a_2 , a_1' и a_2' в (4), найдем

$$\mathbf{k} = \frac{4F \cdot 2F \cdot 3}{4F \cdot F} = 6.$$

15.8. Где будет находиться и какой размер y_2 будет иметь изображение Солнца, получаемое в рефлекторе, радиус **кривизны** которого R = 16 м?

Решение:

Диаметр Солнца $y_1 = 1.4 \cdot 10^9 \,\mathrm{M}$, расстояние от Земли до

Солнца
$$a_1 = 1.5 \cdot 10^{11}$$
 м. Имеем $\frac{y_2}{y_1} = \frac{a_2}{a_1}$ — (1), где a_2 —

расстояние от рефлектора до изображения Солнца (см.

задачу 15.5). По формуле зеркала $\frac{2}{R} = \frac{1}{a} + \frac{1}{a}$, откуда

 $a_2 = \frac{Ra_1}{2a_1 - R} \approx 8$ м, т. е. изображение будет находиться в

фокусе. Это следует также из того, что расстояние до Солниа очень велико и его лучи можно считать параллельными, следовательно, они дадут изображение в фокусе. Из (1) найдем $y_2 = y_1 a_2 / a_1 = 7.5$ см.

15.9. Если на зеркало падает пучок света, ширина которого определяется углом α , то луч, идущий параллельно главной оптической оси и падающий на край зеркала, после отражения от него пересечет оптическую ось уже не в фокусе, а на некотором расстоянии AF от фокуса. Расстояние x = AF называется продольной сферической аберрацией, расстояние y = FH поперечной сферической аберрацией. Вывести формулы, связывающие эти аберрации с углом а и радиусом кривизны зеркала R .

Решение:

Из равнобедренного треугольника ОАМ имеем $OA = \frac{R}{2} cos \alpha$. Продольная сферическая аберрация $x = AF = OA - \frac{R}{2}$, или $x = \frac{R}{2} \left(\frac{1}{cos \alpha} - 1 \right)$. При $\alpha = 0$ имеем

$$x = \frac{R}{2} \left(\frac{1}{\cos \alpha} - 1 \right)$$
. При $\alpha = 0$ имеем

 $\cos \alpha = 1$, следовательно, x = 0. Поперечная сферическая аберрация $y = FH = xtg \angle HAF$. Но $\angle HAF = 2\alpha$, как

внешний угол треугольника AOM, отсюда $y = \frac{\kappa}{2} \times$

 $\times \left(\frac{1}{\cos \alpha} - 1\right) t g 2\alpha$. При $\alpha = 0$ имеем $\cos \alpha = 1$, следовательно, $tg2\alpha = 0$ и y = 0.

15.10. Вогнутое зеркало с диаметром отверстня $d = 40 \, \text{cm}$ имеет радиус кривизны $R=60\,\mathrm{cm}$. Найти продольную x и по-360

перечную у сферическую аберрацию краевых лучей, параллельных главной оптической оси.

Решение:

Из задачи 15.9 имеем
$$x = \frac{R}{2} \left(\frac{1}{\cos \alpha} - 1 \right) - \frac{R}{2} \left(\frac{1}{\cos \alpha} - 1 \right) = \frac{R}{2}$$

отсюда $\alpha \approx 19.3^\circ$; $\cos \alpha \approx 0.94$; $tg2\alpha \approx 0.8$. Подставляя **числов**ые данные, получим x=1.8 см; y=1.44 см.

15.11. Имеется вогнутое зеркало с фокусным расстоянием F = 20 см. На каком наибольшем расстоянии h от главной оптической оси должен находиться предмет, чтобы продольная сферическая аберрация x составляла не больше 2% фокусного расстояния F?

Решение:

Имеем
$$x = F\left(\frac{1}{\cos\alpha} - 1\right)$$
 — (1) (см. задачу 15.9). Из рисунка видно, что $h = R \sin\alpha$ h или $\sin\alpha = \frac{h}{R} = \frac{h}{2F}$ — (2). Из основного тригонометрического тождества имеем $\cos\alpha = \sqrt{1 - \sin^2\alpha}$ или, с учетом (2), $\cos\alpha = \sqrt{1 - h^2/4F^2}$ — (3). Подставляя (3) в (1) и учитывая, что $x = 0.02F$, получим $0.02F = F\left(\frac{1}{\sqrt{1 - h^2/4F^2}} - 1\right)$; $\frac{1}{\sqrt{1 - h^2/4F^2}} = 1.02$; $\frac{h^2}{4F^2} = 0.04$; $h = 2F \cdot 0.2 = 0.08$ м.

15.12. Луч света падает под углом $i = 30^\circ$ на плоскопарал. лельную стеклянную пластинку и выходит из нее параллельно первоначальному лучу. Показатель преломления стекла n = 1.5Какова толщина d пластинки, если расстояние между $_{\rm ЛУЧами}$ l = 1.94 cm?

Решение:

Смещение луча $l = AB \sin(i-r)$, где r — угол преломления луча в стекле. Толщина пластинки d связана со смещением луча следующим соотношениem: $d = AB \cos r = \frac{l \cos r}{\sin i \cos r - \cos i \sin r}$

ем:
$$d = AB\cos r = \frac{t\cos r}{\sin i\cos r - \cos i\sin r}$$
. Согласно закону преломления

$$sinr = \frac{sini}{n}$$
, t. e. $cosr = \sqrt{1 - \frac{sin^2 i}{n^2}}$,

поэтому
$$d = \frac{l\sqrt{n^2 - \sin^2 i}}{\sin i \left(\sqrt{n^2 - \sin^2 i - \cos i}\right)}.$$

Подставляя числовые данные, получим d = 0.1 м.

15.13. На плоскопараллельную стеклянную пластинку толщиной d = 1 см падает луч света под углом $i = 60^{\circ}$. Показатель преломления стекла n = 1.73. Часть света отражается, а часть, преломляясь, проходит в стекло, отражается от нижней поверхности пластинки и, преломляясь вторично, выходит обратно в воздух параллельно первому отраженному лучу. Найти расстояние / между лучами.

Решение:

Согласно закону преломления $sin r = \frac{sin i}{n} = 0.5$, следовательно, угол преломления $r = 30^{\circ}$. Из ΔADC найдем $AD = d \cdot tgr$, тогда $AB = 2d \cdot tgr$, а $l = AB \sin(90^{\circ} - i) =$ 362

 $=2d \cdot tgr \sin 30^{\circ}$. Подставляя числовые данные, получим l=0,58 см.

15.14. Луч света падает под углом i на тело с показателем преломления n. Как должны быть связаны между собой величины i и n, чтобы отраженный луч был перпендикулярен к преломленному?

Решение:

Согласно закону преломления $\frac{\sin i}{\sin r} = S *$ A $= \frac{1}{n} - (1).$ Из рисунка видно, что $\angle KOB = \beta, \angle KOA = r \text{ (как углы с со-}$ ответственно перпендикулярными
сторонами). Поскольку по закону отражения $\beta = i$, а $\angle KOB + \angle KOA = 90^{\circ} \text{ (по условию), то } i + r = 90^{\circ}.$ Совместное решение (1) и (2) дает $\frac{\sin i}{\sin r} = \frac{\sin i}{\sin (90^{\circ} - i)} = \frac{\sin i}{\cos i} = tgi = n$.

15.15. Показатель преломления стекла n=1,52. Найти предельный угол полного внутреннего отражения β для поверхности раздела: а) стекло — воздух; б) вода — воздух; в) стекло — вода.

Полное внутреннее отражение происходит, если значение преломленного угла $r \ge 90^\circ$. При $r = 90^\circ$ из закона преломления имеем $\sin \beta = \frac{n_2}{n_1}$. Подставляя значение n_1 и n_2 для различных поверхностей раздела, найдем: a) $sin \beta =$ $=\frac{1}{152}=0.65$; $\beta \approx 41^{\circ}$; 6) $\sin \beta = \frac{1}{133}=0.75$; $\beta \approx 49^{\circ}$; B) $\sin \beta = \frac{1,33}{1.52} = \frac{1,33}{1.52} = 0.88$; $\beta \approx 61^{\circ}$.

15.16. В каком направлении пловец, нырнувший в воду, видит заходящее Солнце?

Решение:

Угол падения солнечных лучей $i = 90^{\circ}$. Из закона преломления имеем $\frac{sin i}{sin r} = n$ или $\frac{1}{sin r} = n$, откуда $sin r = \frac{1}{n} = 0.75$; $r \approx 49^{\circ}$. Следователь-

но, пловец видит Солице под углом $\beta=i-r=41^\circ$ к поверхности воды.

15.17. Луч света выходит из скипидара в воздух, Предельный угол полного внутреннего отражения для этого луча $\beta = 42^{\circ}23'$. Найти скорость у, распространения света в скипидаре.

Решение:

Физический смысл абсолютного показателя преломления заключается в том, что он показывает, во сколько раз скорость света в вакууме больше скорости света в данном веществе. Тогда скорости распространения света в скипидаре и в воздухе связаны с соответствующими пока-364

зателями преломления соотношением
$$\frac{n_1}{n_2} = \frac{v_2}{v_1}$$
 — (1).

Поскольку
$$n_2=1$$
, а $v_2=c$, то из (1) $n_1=\frac{c}{v_1}$ — (2), где $c=3\cdot 10^8\,\mathrm{m/c}$ — скорость света в воздухе. Значение n_1 найдем из соотношения $\sin\beta=\frac{n_2}{n_1}=\frac{1}{n_1}$, откуда $n_1=\frac{1}{\sin\beta}$.

Тогда из (2) найдем $v_1 = \frac{c}{n_1} = c \sin \beta$. Подставляя числовые данные, получим $v_1 = 2.02 \cdot 10^8 \, \mathrm{m/c}$.

15.18. На стакан, наполненный водой, положена стеклянная пластинка. Под каким углом i должен падать на пластинку луч света, чтобы от поверхности раздела вода — стекло произошло полное внутреннее отражение? Показатель преломления стекла n = 1,5.

Решение:

По закону преломления $\frac{\sin i}{\sin \beta} = n$. Если $\sin \beta = \frac{n_1}{n}$, где n_1 — показатель преломления воды, то произойдет полное внутреннее отражение от поверхности раздела стекло — вода. Тогда $\sin i = n \sin \beta = n_1 = 1.33$, т. е. условия задачи неосуществимы.

15.19. На дно сосуда, наполненного водой до высоты h=10 см, помещен точечный источник света. На поверхности воды плавает круглая непрозрачная пластинка так, что ее центр находится над источником света. Какой наименьший радпус r должна иметь эта пластинка, чтобы ни один луч не мог выйти через поверхность воды?

Лучи, идущие из светящейся точки A, падают на границу раздела вода — воздух расходящимся пучком. Те лучи, которые падают на границу раздела под углом, большим предельного α_0 , отразятся в воду, испытывая полное отражение, а в воздух выйдут лишь лучи, заключенные внутри конуса радиусом r и

вершиной в точке A. Для лучей, идущих из воды в воздух под предельным углом, можно записать: $\sin \alpha_0 = \frac{n_2}{n_1}$ — (1),

где n_1 и n_2 — показатели преломления воды и воздуха соответственно. Из ΔABC $r=htg\alpha_0$ — (2). Решая совместно (1) и (2) относительно радиуса пластинки, получим: $r=\frac{hn_2}{\sqrt{n_1^2-n_2^2}}$. Полагая, что показатели прелом-

ления воздуха и воды соответственно $n_1 = \frac{4}{3}$ и $n_2 = 1$, находим: $r = \frac{3}{\sqrt{7}} h = 11.3$ см.

15.20. При падении белого света под углом $i=45^{\circ}$ на стеклянную пластинку углы преломления β лучей различных длин волн получились следующие:

λ, HM	759	687	589	486	397
β	24°2′	23°57′	23°47′	23°27′	22°57′

Построить график зависимости показателя преломления n материала пластинки от длины волны λ .

Решенне:

Имеем
$$\frac{\sin i}{\sin \beta} = n$$
. Т. к. $\sin i = \frac{\sqrt{2}}{2}$, то $n = \frac{\sqrt{2}}{2 \sin \beta}$. Подставляя числовые данные, дополним таблицу значениями n и построим график зависимости $n = f(\lambda)$.

2, нм	759	687	589	486	397
β	24°2′	23°57′	23°47′	23°27′	22°57′
N	1,74	1,74	1,75	1,78	1,81

15.21. Показатели преломления некоторого сорта стскла для **красного** и фиолетового лучей равны $n_{\rm kp}=1,51$ и $n_{\rm \phi}=1,53$. Найти предельные углы полного внутреннего отражения $\beta_{\rm kp}$ и $\beta_{\rm \phi}$ при падении этих лучей на поверхность раздела стекло — возлух.

Решение:

Имеем
$$\sin\beta = \frac{1}{n}$$
 (см. задачу 15.15). Отсюда $\sin\beta_{\rm kp} = \frac{1}{n_{\rm kp}} = 0.66$; $\beta_{\rm kp} = 41.5^{\circ}$; $\sin\beta_{\rm \varphi} = \frac{1}{n_{\rm \varphi}} = 0.65$; $\beta_{\rm \varphi} = 40.8^{\circ}$.

15.22. Что происходит при падении белого луча под углом $i=41^\circ$ на поверхность раздела стекло — воздух, если взять стекло предыдущей задачи? (Воспользоваться результатами предыдущей задачи.)

Решение:

Поскольку полное внутреннее отражение происходит при значениях угла падения $i > \beta$ (предельного угла полного отражения), то фиолетовые лучи испытают полное внутреннее отражение, а красные лучи выйдут из стекла в воздух.

15.23. Монохроматический луч падает нормально на боковую поверхность призмы, преломляющий угол которой $\gamma=40^\circ$. Показатель преломления материала призмы для этого луча n=1,5. Найти угол отклонения δ луча, выходящего из призмы, от первоначального направления.

Решение:

Т. к. луч падает по нормали, то на первой поверхности он испытывает преломления. Обозначим через α и β углы падения и преломления на второй поверхности. δ — угол между входящим лучом и продолжением луча, выходящего из призмы. Угол $\varphi = \delta + (90^{\circ} - \beta)$ — (1). Из ΔABC :

 $90^{\circ} + \gamma + \varphi = 180^{\circ}$; $\gamma + \varphi = 90^{\circ}$ — (2). Подставим (2) в (1): $\gamma + \varphi + 90^{\circ} - \beta = 90^{\circ}$. Отсюда $\delta = \beta - \gamma$ — (3). Угол $\alpha = 90^{\circ} - \varphi$. Из уравнения (2) $\varphi = 90^{\circ} - \gamma$, следовательно, $\alpha = \gamma = 40^{\circ}$. Угол β найдем из закона преломления $\frac{\sin \alpha}{\sin \beta} = \frac{1}{n}$, откуда $\sin \beta = n \sin \alpha = n \sin \gamma$; $\sin \beta = 1.5 \cdot 0.64 = 0.96$, отсюда $\beta \approx 74^{\circ}$. Тогда из (2) $\delta \approx 74^{\circ} - 40^{\circ} = 34^{\circ}$.

15.24. Монохроматический луч падает нормально на боковую поверхность призмы и выходит из нее отклоненным на угол $\delta = 25^{\circ}$. Показатель преломления материала призмы для этого луча n = 1,7. Найти преломляющий угол γ призмы.

Решение:

См. решение задачи 15.23. Из уравнения (3) $\beta = \delta + \gamma$. Из закона преломления $n \sin \alpha = \sin \beta$; $\sin \beta = \sin(\delta + \gamma) = \sin \delta \cos \gamma + \cos \delta \sin \gamma$. Но $\alpha = \gamma$, отсюда $\sin \alpha = \sin \gamma$; $n \sin \gamma = \sin \delta \cos \gamma + \cos \delta \sin \gamma$; $\sin \gamma (n - \cos \delta) = \sin \delta \cos \gamma$; $tg\gamma = \frac{\sin \delta}{n - \cos \delta}$; $tg\gamma = \frac{0.42}{1.7 - 0.9} = 0.53$; $\gamma \approx 28^{\circ}$.

15.25. Преломляющий угол равнобедренной призмы $\gamma = 10^\circ$. Монохроматический луч падает на боковую грань под углом $i=10^\circ$. Показатель преломления материала призмы для этого луча n=1,6. Найти угол отклонения δ луча от первоначального направления.

Решенне:

 $\delta = 6.2^{\circ}$.

Преломляющий угол призмы и угол падения луча малы, для малых углов падения и преломления получаем $r_2 = \frac{\gamma}{n}$, $r_1 = i_2 n$. Поскольку $i_2 = \gamma - r_2$, находим $i_2 = \gamma - r_2$, $r_1 = \gamma \, n - i_1$. Угол отклонения луча призмой $\delta = \delta_1 + \delta_2 = (i_1 - r_2) + (r_1 - i_2) = \gamma (n - 1)$. Под-

ставляя числовые данные, получим

15.26. Преломляющий угол призмы $\gamma = 45^{\circ}$. Показатель преломления материала призмы для некоторого монохромати-

ческого луча n=1,6. Каков должен быть наибольший уго падения i этого луча на призму, чтобы при выходе луча из не наступало полное внутреннее отражение?

Решение:

Полное внутреннее отражение выходящего луча наступит при $r_2 = 90^\circ$. Согласно закону преломления $sin r_2 = n sin i_2$ или $n sin i_2 = 1$, откуда $sin i_2 = \frac{1}{n} = 0.625$; $i_2 = 38.7^\circ$. Поскольку сумма углов γ , $90^\circ - r_1$ и $90^\circ - i_2$

треугольника ABC равна 180° , найдем $r_1 = \gamma - i_2 = 6.3^\circ$. Далее имеем $sini_1 = nsinr_1$, откуда $i_1 = arcsin(nsinr_1) = 10^\circ$. Т. е. при углах падения больших 10° наступит полное внутреннее отражение.

15.27. Пучок света скользит вдоль боковой грани равно-бедренной призмы. При каком предельном преломляющем угле γ призмы преломленные лучи претерпят полное внутреннее отражение на второй боковой грани? Показатель преломления материала призмы для этих лучей n=1,6.

Решенне:

Полное внутреннее отражение выходящего луча наступит при $r_2 = 90^\circ$. Согласно закону преломления $sin r_2 = n sin i_2$ или $n sin i_2 = 1$, откуда $sin i_2 = \frac{1}{n} = 0.625$; $i_2 = 38.7^\circ$. Поскольку сумма углов γ , $90^\circ - r_1$ и $90^\circ - i_2$ треугольника

ABC равна 180°, найдем $\gamma=r_1+i_2$ — (1). Далее имеем $sini_1=nsinr_1$, откуда $r_1=arcsin\frac{1}{n}=38,7^\circ$. Тогда из (1) $\gamma=2\cdot38,7^\circ=77,4^\circ$.

15.28. Монохроматический луч падает на боковую поверхность прямоугольной равнобедренной призмы. Войдя в призму, луч претерпевает полное внутреннее отражение от основания призмы и выходит через вторую боковую поверхность призмы. Каким должен быть наименьший угол падения *i* луча на призму, чтобы еще происходило полное внутреннее отражение? Показатель преломления материала призмы для этого луча n = 1,5.

Решение:

Полное внутреннее отражение выходящего луча наступит при $r_2 = 90^\circ$. Согласно закону преломления $sin r_2 = n sin i_2$ или $n sin i_2 = 1$, откуда

$$i_2 = arcsin\frac{1}{n} = 41.8^{\circ}.$$

Поскольку сумма углов 45°, $90^{\circ}-r_1$ и $90^{\circ}-i_2$ треугольника ABC равна 180° , найдем $r_1=45^{\circ}-i_2=3,2^{\circ}$. Далее имеем $sini_1=nsinr_1$, откуда $i_1=arcsin(nsinr_1)=4.7^{\circ}$.

15.29. Монохроматический луч падает на боковую поверхность равнобедренной призмы и после преломления идет в призме параллельно ее основанию. Выйдя из призмы, он оказывается отклоненным на угол δ от своего первоначального на-

правления. Найти связь между преломляющим углом призмы γ , углом отклонения луча δ и показателем преломления для этого луча n.

Решение:

Согласно закону преломления $sini_1 = nsinr_1$ — (1). Поскольку сумма углов γ , $90^{\circ} - r_1$ и $90^{\circ} - i_2$ треугольника ABC равна 180° , найдем $\gamma = r_1 + i_2$ — (2). ΔABC — равнобедренный, следовательно, $\angle BAC = \angle BCA$ или $90^{\circ} - r_1 = 90^{\circ} - i_2$, откуда $r_1 = i_2$ — (3).

Тогда из (2) $\gamma = 2i_2$ или $i_2 = \frac{\gamma}{2}$ —

(4). $\triangle AOC$ также равнобедренный, сумма его углов $180^{\circ} - \delta + 2(i_1 - r_1) = 180^{\circ}$, откуда $\delta = 2i_1 - 2r_1$; $r_1 = i_1 = \frac{\delta}{2}$ — (5). Подставляя (5) в (2), с учетом (4), получим $\gamma = i_1 - \frac{\delta}{2} + \frac{\gamma}{2}$, откуда $i_1 = \frac{\gamma + \delta}{2}$ — (6). Поскольку $r_1 = i_2 = \frac{\gamma}{2}$, и с учетом (6), уравнение (1) можно записать в виде $\sin \frac{\gamma + \delta}{2} = n \sin \frac{\gamma}{2}$.

15.30. Луч белого света падает на боковую поверхность равнобедренной призмы под таким углом, что красный луч выходит из нее перпендикулярно к второй грани. Найти углы отклонения $\delta_{\rm кp}$ и $\delta_{\rm \varphi}$ красного и фиолетового лучей от первоначального направления, если преломляющий угол призмы $\gamma=45^{\circ}$. Показатели преломления материала призмы для красного и фиолетового лучей равны $n_{\rm kp}=1,37$ и $n_{\rm \varphi}=1,42$.

 $+(2.8^{\circ}-2^{\circ})=33.4^{\circ}$.

Рис.1

Рис.2

Красный луч выходит из второй грани под углом 0° (рис. 1), следовательно, $n_{\rm kD} \sin i_2 = 0$, откуда $\alpha_2 = 0^{\circ}$, т. е. красный луч падает на вторую грань перпендикулярно к ней. В **ДАВС** угол $\angle BAC$ равен 45°. Тогда $r_1 = 90^{\circ} - BAC = 45^{\circ}$. преломления $sin i_1 = n_{KD} sin r_1$, откуда По закону $i_{\rm i} = \arcsin \frac{\sqrt{2}}{2} n_{\rm sp} = 75,6^{\circ}$. Таким образом, мы найдем угол падения белого луча. Сумма углов треугольника АВС равна $\delta_{kn}(90^{\circ}-i_{1})+45^{\circ}+90^{\circ}=180^{\circ}$, откуда найдем угол **отражен**ия красного луча $\delta_{\kappa o} = 30.6^{\circ}$. Угол отражения фиолетового луча $\delta_{ab} = (i_1 - r_1) + (r_2 - i_2)$ — (1), как внешний угол $\triangle ABC$ (рис. 2). Кроме того, $\angle AEB = \angle BDK$, как углы со взаимно перпендикулярными сторонами. Угол ВДК является внешним углом треугольника ABD, поэтому $\gamma = r_1 + i_2$ — (2). По закону преломления $sin i_1 = n_{\phi} sin r_1$ — (3) и $sin r_2 = n_{\phi} sin i_2$ — (4). Из (3) найдем $r_1 = arcsin\left(\frac{sin i_1}{n_{th}}\right) = 43^{\circ}$. M₃ (2): $i_2 = \gamma - r_1 = 45^{\circ} - 43^{\circ} = 2^{\circ}$.

 M_3 (4): $r_2 = arcsin(n_{\phi} sin i_2) = 2.8^{\circ}$. Подставив найденные значения углов в (1), получим $\delta_{\phi} = (75.6^{\circ} - 43^{\circ}) +$