Álgebra de Boole

Tema 5

¿Qué sabrás al final del capítulo?

- Leyes y propiedades del Algebra de Boole
- Simplificar funciones utilizando el Algebra de Boole
- Analizar circuitos mediante Algebra de Boole y simplificarlos
- Pasar de una tabla de verdad a Suma de Productos y Producto de Sumas
- Utilizar Mapas de Karnaugh para simplificar funciones lógicas

Algebra de Boole

En Algebra habéis aprendido leyes y propiedades. Por ejemplo, la propiedad Conmutativa de la Suma A + B = B + A (A y B son números enteros o reales)

En 1860 George Boole desarrolló un Algebra en la que los valores de A y B sólo podían ser "verdadero" o "falso" (1 ó 0). Se llama *Algebra de Boole* y se utiliza en Electrónica Digital

Operaciones del Algebra de Boole

Suma Booleana es la función lógica OR

$$X=A+B$$

Multiplicación Booleana es la función lógica AND

$$X = AB$$

Commutativa de la suma

$$A+B=B+A$$

El orden en la OR no importa

Commutativa del producto

AB = BA

El orden en la AND no importa

$$\begin{array}{c|c}
A & & \\
B & & \\
\end{array}$$

$$AB = \begin{bmatrix}
B & \\
A & \\
\end{array}$$

$$BA$$

Asociativa de la suma

$$A + (B + C) = (A + B) + C$$

Agrupar variables en la OR no importa

$$A \longrightarrow A + (B+C) = B \longrightarrow A+B$$

$$C \longrightarrow B+C \longrightarrow (A+B)+C$$

Asociativa del producto

$$A (B C) = (A B) C$$

Agrupar variables en la AND no importa

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$A(BC) = B \\
C$$

$$C$$

$$AB \\
C$$

$$C$$

$$C$$

$$AB \\
C$$

$$C$$

Distributiva

Distributiva

A+0=A

Hacer una operación OR con 0 no cambia nada.

X=A

$$A+1=1$$

Hacer una operación OR con 1 da siempre 1.

X=1

 $A \bullet 0 = 0$

Hacer una operación AND con 0 siempre da 0

$$A \cdot 1 = A$$

Hacer una operación AND con 1 no cambia nada

A+A=A

Hacer una operación OR consigo mismo da el mismo resultado

A

A=A

$$A + \overline{A} = 1$$

O bien A o A serán 1, luego la salida será 1

$$X=1$$

$A \cdot A = A$

Hacer una operación AND consigo mismo da el mismo resultado

A=A

$$A \cdot \overline{A} = 0$$

Bien A o \overline{A} son 0 luego la salida será 0.

$$A = \overline{A}$$

Si negamos algo dos veces volvemos al principio

A + AB = A

A + AB = A + B (absorción)

(A + B)(A + C) = A + BC

Tres leyes y doce propiedades en Algebra de Boole

Leyes de De Morgan

De Morgan ayuda a simplificar circuitos digitales usando NORs y NANDs.

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

$$\frac{y}{A+B} = \overline{A} \cdot \overline{B}$$

Igual para más de 2 variables.

Ambos circuitos tienen la misma salida: De Morgan funciona

$$\overline{A + B + C + D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$

Cálculo de la expresión algebraica de salida (ejemplo 1)

$$(A + B)(CD) = (A + B) + (CD)$$

$$= A + B + CD$$

$$X = ((A + B)(CD))^{*}$$

$$X = Y \text{ son iguales}$$

Cálculo de la expresión algebraica de salida (ejemplo 2)

$$X = \overline{(A+B)} C + \overline{CD} + B$$

$$= \overline{(A+B)} C \overline{CD} + B$$

$$= \overline{(A+B)} C \overline{(CD+B)}$$

$$= \overline{A} \overline{B} C (\overline{C} + \overline{D} + B)$$

$$= \overline{A} \overline{B} C \overline{C} + \overline{A} \overline{B} C \overline{D} + \overline{A} \overline{B} C$$

$$= \overline{A} \overline{B} C \overline{D}$$

Análisis Booleano de Funciones Lógicas

El propósito de este apartado es obtener expresiones booleanas simplificadas a partir de un circuito

Se examina puerta a puerta a partir de sus entradas

Se simplifica usando las leyes y propiedades booleanas.

Ejemplo 1

Puerta a puerta a partir de sus entradas

$$X = AB + (C+D)$$

$$X = AB + C + D$$

$$X = (AB + \overline{B})BC$$

Usando la propiedad distributiva:

$$X = ABBC + \overline{B}BC$$

$$X = ABC + \overline{B}BC$$

$$X = ABC + 0 \cdot C$$

$$X = ABC + 0$$

$$X = ABC$$

En la siguiente transparencia se ve cómo las dos cosas son lo mismo

Ejemplo 5

$$X = (A + AB) + (B(C+D))$$

$$X = (\overline{A} + B) + (\overline{B}(C + D))$$

$$X = (\overline{A} + B) + (\overline{B}C + \overline{B}D)$$

$$X = \overline{A} + B + \overline{B}C + \overline{B}D$$

 $X = \overline{A} + B + C + \overline{BD}$ (sigue en la próxima transparencia)

$$X = \overline{A} + B + C + \overline{BD}$$

$$X = \overline{A} + B + C + D$$

Los circuitos son iguales

Expresiones booleanas desde tablas de verdad

Producto de sumas

$$Y=(A+B+C)\cdot(D+C)\cdot(E+F)$$

Suma de productos

$$Y = A \cdot B \cdot C + B \cdot C \cdot D + A \cdot C \cdot D$$
 o directamente

Sumas de productos

Cuando ABCD=1111, el producto ABCD y sólo ése es 1.

Cuando ABCD=1110, el producto ABCD' y sólo ése es 1,...

...y así sucesivamente... resultando que

ABCD + ABCD' + AB'CD + A'B'CD

La función es 1
cuando
ABCD=1111 o
cuando
ABCD=1110 o
cuando
ABCD=1011 o
cuando
ABCD=0011 y en

ningún otro caso

Productos de sumas

Cuando ABCD=0010, la suma A+B+C'+D y sólo ésa es 0.

Cuando ABCD=0100, la suma A+B'+C+D y sólo ésa es 0, ...

...y así sucesivamente... resultando que

La función es 0 cuando

ABCD=0010 o cuando

ABCD=0100 o cuando

ABCD=0111 o cuando

ABCD=1010 o cuando

ABCD=1101

y en ningún otro caso

Minimización de funciones lógicas

Mapas de Karnaugh: se usan para minimizar el número de puertas requeridas en un circuito digital

Es adecuado en vez de usar leyes y propiedades cuando el circuito es grande

Se consigue, aplicando adecuadamente el método, el circuito más simplificado posible

Mapa de Karnaugh

El mapa se hace con una tabla con tantas celdas como Sumas de Productos posibles, teniendo en cuenta el número de variables que se utilice.

- 2 variables, entonces mapa 2x2
- 3 variables, entonces mapa 4x2
- 4 variables, entonces mapa 4x4
- 5 variables, entonces mapa 8x4

Mapa de Karnaugh

Lo interesante del mapa es moverse de una celda a otra contigua con el cambio de una sola variable.

Los movimientos son arriba-abajo o derecha-izquierda (nunca en diagonal).

El mapa también se dobla sobre sí mismo con la misma regla: solo una variable cambia de la última columna a la derecha a la primera a la izquierda, o de la fila de abajo a la de arriba.

Emplearemos un código Gray, que se caracteriza porque entre dos códigos consecutivos (incluidos los extremos) sólo hay un bit de diferencia.

El mapa va de Falso a Verdadero, de izquierda a derecha y de arriba abajo

La celda de arriba a la izquierda es A B. Si F= A B, entonces hay que poner 1 en esa celda

$$\begin{array}{c|c}
\hline
B & B \\
\hline
0 & 1 \\
\hline
A_0 & 1 \\
\hline
A_1 & \\
\end{array}$$

Esto muestra que F = 1 cuando A=0 y B=0 Si F=AB + AB
entonces hay que
poner 1 en las dos
celdas

Sabemos por el Algebra de Boole que $\overline{A} \, \overline{B} + A \, \overline{B} = \overline{B}$

En el mapa de Karnaugh podemos agrupar celdas adyacentes y ver que $F = \overline{B}$

$$\begin{array}{c|c}
\overline{B}_{0} & B \\
\overline{A} & 1 \\
A & 1
\end{array}$$

Mapas de 3 variables

Cada término de 3 variables es una celda en un mapa de Karnaugh 4 X 2

Una simplificación podría ser:

$$X = \overline{A} \overline{B} + A \overline{B}$$

Otra simplificación podría ser:

$$X = \overline{B} \ \overline{C} + \overline{B} \ C$$

El mapa de Karnaugh se dobla circularmente

La mejor simplificación sería

$$X = \overline{B}$$

En un mapa de 3 variables

•Una celda a 1 implica a 3 variables

•Dos celdas adyacentes a 1 implican a 2 variables

•Cuatro celdas adyacentes a 1 implican a 1 variable

•Ocho celdas adyacentes a 1 constituyen función de valor 1

Mapa de Karnaugh de 4 variables

Simplificar

$$X = \overline{A} \overline{B} C D + \overline{A} \overline{B} C D$$

En un mapa de 4 variables

•Una celda a 1 implica a 4 variables

•Dos celdas adyacentes a 1 implican a 3 variables

•Cuatro celdas adyacentes a 1 implican a 2 variables

•Ocho celdas adyacentes a 1 implican a 1 variable

•Dieciséis celdas adyacentes a 1 constituyen función de valor 1

Simplificar

$$Z = \overline{B} \overline{C} D + \overline{B} \overline{C} D + \overline{C} \overline{D} + \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C$$

Dado un circuito encontrar otro más sencillo usando Mapas de Karnaugh

Primero lo pasamos a Suma de Productos

$$Y = A + B + B C + (A + B) (C + D)$$

$$Y = AB + BC + AB(C+D)$$

$$Y = AB + BC + ABC + ABD$$

$$Y = AB + BC + ABCABD$$

$$Y = A \overline{B} + B \overline{C} + (\overline{A} + B + \overline{C}) (\overline{A} + B + \overline{D})$$

$$Y = A B + B C + A + A B + A D + B + B D + A C + C D$$

$$Y = A B + B C + A + B + C D = A + B + B + C D = 1$$

SIMPLIFICACIÓN POR KARNAUGH

- Realizar agrupaciones de 1's, con sus adyacentes, lo mayor posibles, pero siempre en cantidades potencias de 2.
- 2. No dejar ningún 1 sin agrupar. Puede ocurrir que un 1 pertenezca a más de una agrupación. No se pueden coger agrupaciones dentro de agrupaciones.
- Por cada agrupación de 1's resulta un producto de variables. Cuanto más 1's se agrupen, más sencilla resultará la expresión de esa agrupación. En MK de 5 variables, las agrupaciones que tomen 1's de las dos porciones deben ser simétricas respecto al eje central.
- 4. En cada agrupación, cada una de las variables puede aparecer en alguno de los siguientes casos:
 - a) Si siempre vale 1 ----> Se pone afirmada.
 - b) Si siempre vale 0 ----> Se pone negada.
 - c) Si cambia de valor (50% de los casos un valor y el otro 50% otro valor) ----> No se pone.
- 5. La expresión de la función booleana será la suma lógica de todos los productos que hayan salido.

Diseñar un sistema de alarma

Sensores disponibles

- 1. V = Ventana (V=0 CERRADA, V=1 ABIERTA)
- 2. P = Puerta (P=0 CERRADA, P=1 ABIERTA)
- 3. C = Calefacción (C=0 APAGADA,
 - C=1 ENCENDIDA)
- 4. A = Aire acondicionado (A=0 APAGADO,
 - A=1 ENCENDIDO)
- 5. I = Alarma de proximidad de intruso (I=0 NO HAY INTRUSO,
 - I=1 SI HAY INTRUSO)

El sistema de alarma debe activarse cuando:

- 1. La puerta está abierta y la calefacción encendida (P=1, C=1)
- 2. La puerta está abierta y el aire acondicionado encendido (P=1, A=1)
- 3. La puerta está abierta con una alarma de proximidad de intruso (P=1, I=1)
- 4. La ventana está abierta y la calefacción encendida. (V=1, C=1)
- 5. La ventana está abierta y el aire acondicionado encendido (V=1, A=1)
- 6. La ventana está abierta con una alarma de proximidad de intruso (V=1, I=1)

Rellenando el mapa...(P=1, C=1)

Rellenando el mapa...(P=1, A=1)

Rellenando el mapa...(P=1, I=1)

Rellenando el mapa...(V=1, C=1)

	CAI CAI CAI CAI CAI CAI							
	000	001	011	010	110	111	101	100
V P 00								
$\overline{V} P = 01$		1	1	1	1	1	1	1
V P 11		1	1	1	1	1	1	1
$\sqrt{{P}}$ 10					1	1	1	1

Rellenando el mapa...(V=1, A=1)

	CAI CAI CAI CAI CAI CAI								
	000	001	011	010	110	111	101	100	
V P 00									
\overline{V} P 01		1	1	1	1	1	1	1	
V P 11		1	1	1	1	1	1	1	
$V = \frac{10}{P}$			1	1	1	1	1	1	

Rellenando el mapa...(V=1, I=1)

	CAI CAI CAI CAI CAI CAI								
	000	001	011	010	110	111	101	100	
V P 00									
$\overline{V} P = 01$		1	1	1	1	1	1	1	
V P 11		1	1	1	1	1	1	1	
V = 10		1	1	1	1	1	1	1	

Podemos agrupar así...

O usando los ceros...

CAICAICAICAICAICAICAI									
	000	001	011	010	110	111	101	100	
$\overline{V} \overline{P} 00$	10	0	0	0	0	0	0	0	
$\overline{V} P^{01}$	O	1	1	1	1	1	1	1	
V P 11	0	1	1	1	1	1	1	1	
\overline{VP}^{10}	0	1	1	1	1	1	1	1	

$$X = \overline{\overline{C} \overline{A} \overline{I} + \overline{V} \overline{P}}$$

Sólo dos chips

Patillaje de los circuitos 7404 y 7454

Conexionado físico

Circuito diseñado

Ya sabes...

- Leyes y propiedades del Algebra de Boole
- Simplificar funciones utilizando el Algebra de Boole
- Analizar circuitos mediante Algebra de Boole y simplificarlos
- Pasar de una tabla de verdad a Suma de Productos y Producto de Sumas
- Utilizar Mapas de Karnaugh para simplificar funciones lógicas

Final del Tema 5