1.a) softmax
$$(X_i + c) = \frac{e^{X_i + c}}{Z_i e^{X_i + c}} = \frac{e^{C_i} e^{X_i}}{e^{C_i} (Z_i e^{X_i})} = \frac{e^{X_i}}{Z_i e^{X_i}} = softmax (X_i)$$

b)
$$G(x) = \frac{1}{1+e^{x}}$$

$$\frac{d[G(x)]}{dx} = -1 \cdot \frac{(e^{-x})}{(1+e^{x})^{2}} = \frac{e^{-x} \cdot 1}{(1+e^{x})} = \frac{1}{1+e^{x}} \cdot (1 - \frac{1}{1+e^{x}}) = G(x) \cdot [1 - G(x)]$$

C)i.
$$\hat{y}_i = P(i|c) = \frac{e^{u_i^* \cdot V_c}}{Z_w \cdot e^{u_w^* \cdot V_c}}$$
 $\hat{y} = [P(i|c) P(2|c) \cdots P(d|c)]$

From chain rules, we get
$$\frac{\partial J_{cE}}{\partial V_{c}} = -\overline{Z}_{i} \dot{y}_{i} \cdot \frac{\partial \log \hat{y}_{i}}{\partial V_{c}} = -\overline{Z}_{i} \dot{y}_{i} \cdot \frac{\partial \hat{y}_{i}}{\partial \hat{z}_{w}} \cdot \frac{\partial \hat{y}_{i}}{\partial V_{c}} \cdot \frac{\partial \hat{y}_{i}}{\partial \hat{z}_{w}} \cdot \frac{\partial \hat{z}_{w}}{\partial V_{c}} \cdot \frac{\partial \hat{z}_{w}}{\partial V_{c}$$

$$\frac{\partial \vec{k}_{E}}{\partial V_{C}} = -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \frac{\partial \hat{y}_{o}}{\partial z_{o}} \cdot \frac{\partial \vec{z}_{o}}{\partial V_{C}} + O$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot (1 - \hat{y}_{o}) \cdot V_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot \hat{y}_{o} \cdot \hat{y}_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot \hat{y}_{o} \cdot \hat{y}_{o} \cdot \hat{y}_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot \hat{y}_{o} \cdot \hat{y}_{o} \cdot \hat{y}_{o}$$

$$= -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \hat{y}_{o} \cdot \hat{$$

$$\frac{\partial J_{\omega}}{\partial \mathcal{L}_{\omega}} = -y_{o} \cdot \frac{1}{\hat{y}_{o}} \cdot \frac{\partial \hat{y}_{o}}{\partial z_{o}} \cdot \frac{\partial z_{o}}{\partial \mathcal{L}_{\omega}} + 0$$

$$= [-(1-\hat{y}_{0}) \cdot \mathcal{U}_{0}] \rightarrow (\hat{y}_{0}-1) \cdot \mathcal{U}_{0}] \qquad \frac{\partial \hat{y}_{w_{0}}}{\partial z_{w_{0}}} = \frac{\partial \hat{z}_{w_{0}}}{\partial z_{w_{0}}} = \frac{\partial \hat{$$

$$\frac{\partial J_{cc}}{\partial U} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{\partial J_{cc}}{\partial U_{c}} \\ \frac{\partial J_{cc}}{\partial U_{c}} \end{bmatrix} = \begin{bmatrix} -c & \frac{$$

Name: YANG, Wei

Name: YANG, Wei

Report

Name: YANG, Wei

Hyperparameters:

- Embedding dimension = 10
- Context size = 5
- GD Step size = 0.3
- Anneal rate = 0.5 for every 20000 iterations
- Initialized Input WV with uniform: (-0.5, 0.5)/ Embedding dimension

Sample info

words = 19539

Training time: (40000 iterations)

• 11288 seconds

Future Improvement:

Preprocessing: Stop words should be deleted

• High frequency word pairs could be treated as one single word

• Increase the embedding dimension

• Stop the random seeds

• Regularization: Unknown

Learning rate: unknown

The graph tells us the word vectors do capture the features between different words. For example, the vector of "femalemale" is similar to "king-queen". Although the "man-woman" vector doesn't show the same pattern, it may be trigger by dimension reduction, which loss information. Or maybe they will show similarity on a higher dimension graph.

Name: YANG, Wei

The output of KNN show us the most similar 5 words (for the neat format), the self is excluded. From this result, we can hardly find some common underlying characteristics between them apparently. As the 2D graph above, the similar vectors may have stayed together, but it's not distinguished to separate different concepts. However, after we put those words in the original sentences, we may observe that they share some common sentence structures.

I only use the input-W vector to generate similar words below, which doesn't contain all the information of words. Also, with the more training data, the accuracy of the distribution representation of those words may increase.

	great cool brilliant wonderful well amazing worth sweet enjoyable boring bad dumb annoying female male queen king man woman rain snow hail	<pre>: kenneth : fast-edit : undermines : inclination : labored : cultist : devolves : ambiguous : whiney : six : bang-up : overinflated : haynes : illuminates : chaplin : unqualified : lector : subjects : wears : bartlett : compensate : skullduggery : sinner</pre>	fun-for-fun intelligence shared gag entirety madness creatively delusional flamboyant road any bonanza titled relevant scripted wanes composition manifesto zen cagney snatch riveted	juan right stephen unforced countenance him dilbert helps impressed xerox skeleton notably portrayed clear hype chew xtc inexorably impersonal diversions savvy fish	toast determined ugly-duckling disappointing operational overwhelmingly fiddle on-screen reef symbols dragon rice call dogs racism cornball changed craven paulette perilously free scum	pianist schmaltzy dignified repulsive salacious people dating wrap spit definition frozen foreboding impressions hand josh aggrieved submarine below autobiographical oftentimes bluffs delves
coffee : sinner demographic developments nonconformity amazingly tea : bringing homiletic scarlet banging detached	coffee	: skullduggery : sinner	riveted demographic	developments	nonconformity	delves amazingly

I uploaded the model's parameters training with 40000 iterations.

BTW, for HW1, the result is not converged, which may result from the regularization term, which is too large (I set with 0.02 before). If the framework of coding is given, it will be more time-saving. Thanks for kindly giving opportunity on the first HW, I didn't expect the difficulties and time spent on assignment for the first time.