Πολυδιάστατες τυχαίες μεταβλητές (multivariate random variables)

Πολυδιάστατες μεταβλητές

• Ποσοτικά χαρακτηριστικά που σχετίζονται με τη διαδικασία εκτέλεσης ενός πειράματος.

- Παράδειγμα:
 - Πειραματική διαδικασία: τυχαία επιλογή ατόμου
 - Μετράμε πολλές τυχαίες μεταβλητές (χαρακτηριστικά):
 - Ηλικία (X₁)
 - Βάρος (X₂)
 - Υψος (X₃)
 -

Πολυδιάστατες μεταβλητές

Επικεντρωνόμαστε στα εξής:

- από κοινού συμπεριφορά όλων των μεταβλητών (χαρακτηριστικών) ως μία διανυσματική οντότητα εκφρασμένη σε έναν πολυδιάστατο χώρο,
- ατομική συμπεριφορά μιας μεταβλητής εκφρασμένη πάνω σε έναν άξονα του πολυδιάστατου χώρου,
- συσχετίσεις μεταξύ των μεταβλητών ώστε να βρίσκουμε τον βαθμό εξάρτησής τους και να μελετούμε ένα υποσύνολο των μεταβλητών όταν γνωρίζουμε τις τιμές των υπολοίπων (δεσμευμένη έκφραση).

Επέκταση σε πολλές διαστάσεις

Επεκτείνουμε τη βασική θεωρία μίας μεταβλητής εισάγοντας

- ✓ από-κοινού κατανομή (joint distribution): κατανομή του συνόλου όλων των *n* μεταβλητών
- ✓ περιθώρια κατανομή (marginal distribution): κατανομή υποσυνόλου των μεταβλητών
- ✓ δεσμευμένη ή υπό συνθήκη κατανομή (conditional distribution): κατανομή υποσυνόλου των μεταβλητών όταν οι υπόλοιπες έχουν σταθερή τιμή (είναι γνωστές)
- Επικεντρωνόμαστε στις **δύο διαστάσεις (Χ, Υ)**, και γενικεύουμε για την περίπτωση πολλών διαστάσεων **Χ=(X₁, X₂,..., X_n).**

Διακριτές δυσδιάστατες τυχαίες μεταβλητές

• Έστω δύο τυχαίες μεταβλητές(X, Y) (δυσδιάστατο διάνυσμα) με τιμές από ένα αριθμήσιμο σύνολο με ζεύγη τιμών:

$$\Omega_{X,Y} = \{(x_j, y_k), j = 1, ..., n_x \ k = 1, ..., n_y\}$$

• Δηλαδή, πλήθος ζευγών: $n_x \times n_y$

Διακριτή τυχαία μεταβλητή (υπενθύμιση)

- Η συνάρτηση κατανομής πιθανότητας *F(x)=P(X ≤ x)* είναι μη φθίνουσα, δεξιά συνεχής και κλιμακωτή με άλματα στις τιμές της μεταβλητής.
- Η συνάρτηση πυκνότητας (ή μάζας) πιθανότητας (σ.π.π.) είναι το σύνολο πιθανοτήτων των τιμών μιας διακριτής τ.μ. *X* :

$$f(x) = P(X = x) \ge 0 \quad \forall x \in \Omega_X = \{x_1, x_2, \dots, x_n\}$$

Ισχύει:
$$\sum_{i=1}^{n} f(x_i) = 1$$

από-κοινού συνάρτηση πυκνότητας

Η από-κοινού συνάρτηση πυκνότητας (ή μάζας) πιθανότητας (joint density) των (X, Y) εκφράζει τις από-κοινού πιθανότητες όλων των δυνατών ζευγών τιμών (x_j, y_k) των δύο μεταβλητών:

$$f_{X,Y}(x_j, y_k) = P(X = x_j \cap Y = y_k) =$$

$$= P(X = x_j, Y = y_k)$$

Ισχύει ότι:
$$\sum_{j=1}^{n_x} \sum_{k=1}^{n_y} f_{X,Y}(x_j, y_k) = 1$$

Υπολογισμός πιθανότητας ενδεχομένων

- Ένα **ενδεχόμενο Α** περιλαμβάνει τιμές (*x_j*, *y_k*) των δύο μεταβλητών (μία ή περισσότερες).
- Η πιθανότητα ενός ενδεχομένου *Α* εκφράζεται ως το άθροισμα πιθανοτήτων όλων των ζευγών τιμών που περιλαμβάνονται στο *Α*, δηλ.

$$P(A) = \sum_{(x_j, y_k) \in A} P(X = x_j, Y = y_k) =$$

$$= \sum_{(x_j, y_k) \in A} f_{X,Y}(x_j, y_k)$$

Περιθώρια κατανομή (marginal distribution)

- Ενώ η από-κοινού κατανομή μας δίνει πληροφορίες για την από-κοινού συμπεριφορά των δύο μεταβλητών Χ και Υ, πολλές φορές μας ενδιαφέρει ξεχωριστά η συμπεριφορά μιας εκ των δύο μεταβλητών.
- Ορίζεται η περιθώρια κατανομή (marginal distribution) μιας μεταβλητής,
- ή κατ' επέκταση ενός υποσυνόλου των n τυχαίων μεταβλητών του διανύσματος.

Περιθώρια κατανομή (marginal distribution)

- Έστω 2 τ.μ. **X, Y** με από-κοινού σ.π.π. $f_{X,Y}(x,y)$ $\Omega_{X,Y} = \{(x_j, y_k), j = 1, ..., n_x \ k = 1, ..., n_y\}$
- Δηλαδή το πλήθος τιμών είναι $n_x \times n_y$.
- Η περιθώρια κατανομή του *X* καθορίζεται μέσω του προσδιορισμού της συνάρτησης πυκνότητας (ή μάζας) πιθανότητας της τυχαίας μεταβλητής:

$$f_X(x_j) = P(X = x_j) \quad \Omega_X = \{x_j, \quad j = 1, \dots, n_x\}$$

Περιθώρια κατανομή (marginal distribution)

• Εύρεση της περιθώριας κατανομής

ολική πιθανότητα
$$f_X(x_j) = P(X = x_j) = P(X = x_j \cap Y = ' οτιδηποτε') =$$

$$= P\left(\{X = x_j \cap Y = y_1\} \cup \{X = x_j \cap Y = y_2\} \cup \dots \cup \{X = x_j \cap Y = y_{n_y}\}\right) =$$

$$= P(X = x_j, Y = y_1) + P(X = x_j, Y = y_2) + \dots + P\left(X = x_j, Y = y_{n_y}\right) =$$

$$= \sum_{k=1}^{n_y} f_{X,Y}(x_j, y_k)$$

$$\Omega_X = \{x_j, j = 1, \dots, n_x\}$$

•
$$\varphi$$
UOIK $\acute{\alpha}$ IO χ Ú ϵ I \acute{o} TI:
$$\sum_{j=1}^{n_{\chi}} f_{\chi}(x_{j}) = \sum_{j=1}^{n_{\chi}} \sum_{k=1}^{n_{y}} f_{\chi,Y}(x_{j}, y_{k}) = 1$$

Παρόμοια, η περιθώρια κατανομή της μεταβλητής Υ υπολογίζεται ως:

$$f_{Y}(\mathbf{y}_{k}) = P(Y = \mathbf{y}_{k}) = P(X = 'oti\delta\eta\pi ote' \cap Y = \mathbf{y}_{k}) =$$

$$= P(\{X = \mathbf{x}_{1} \cap Y = \mathbf{y}_{k}\} \cup \{X = \mathbf{x}_{2} \cap Y = \mathbf{y}_{k}\} \cup \dots \cup \{X = \mathbf{x}_{n_{x}} \cap Y = \mathbf{y}_{k}\}) =$$

$$= \sum_{j=1}^{n_{x}} f_{X,Y}(\mathbf{x}_{j}, \mathbf{y}_{k})$$

$$\Omega_{Y} = \{\mathbf{y}_{k}, k = 1, \dots, n_{y}\}$$

ισχύει ότι:
$$\sum_{k=1}^{n_y} f_Y(y_k) = 1$$

Δεσμευμένη (υπό-συνθήκη) κατανομή (conditional distribution)

- Θέλουμε να βρούμε την κατανομή μιας μεταβλητής (*X*) όταν η τιμή της άλλης έχει σταθερή τιμή (*Y=y*).
- Έστω 2 τυχαίες μεταβλητές X, Y με από-κοινού σ.π.π. $f_{XY}(x,y)$ και περιθώριες $f_{X}(x)$, $f_{Y}(y)$
- Ορίζεται έτσι η **δεσμευμένη κατανομή X | Y=y**

Δεσμευμένη κατανομή (conditional distribution)

• Δεσμευμένη κατανομή **Χ | Υ=y** με σ.π.π.

$$f_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Έτσι, η δεσμευμένη του *X* ισούται με το πηλίκο της από-κοινού προς την περιθώρια του *Y* (δέσμευσης)
- Παρόμοια, η δεσμευμένη σ.π.π. του Υ / Χ=χ

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

• Χρήσιμοι τύποι:

$$f_{XY}(x, y) = f_{X|Y}(x | y) f_Y(y)$$

ή

$$f_{XY}(x,y) = f_{Y|X}(y \mid x) f_X(x)$$

• Η από-κοινού σ.π.π. είναι το γινόμενο της δεσμευμένης με την περιθώρια σ.π.π.

Συνεχείς δυσδιάστατες τυχαίες μεταβλητές

• Δύο τυχαίες μεταβλητές X, Yείναι από-κοινού συνεχείς όταν υπάρχει μία μη-αρνητική συνάρτηση $f_{X,Y}(x,y) \ge 0$ που ονομάζεται από-κοινού συναρτηση πυκνότητας πιθανότητας για την οποία ισχύει ότι:

$$\int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f_{X,Y}(x,y) dxdy = 1$$

Παρατηρήσεις

- Καθώς υπάρχουν άπειρα σημεία (x,y) η μάζα πιθανότητας που υπάρχει στο καθένα από αυτά είναι μηδέν.
- Στον συνεχή χώρο η συνάρτηση $f_{X,Y}(x,y) \ge 0$ δεν παριστάνει πιθανότητα.
- Προσεγγιστικά ισχύει:

$$P(X = x, Y = y) =$$

$$= P(x \le X < x + dx, y \le Y < y + dy) =$$

$$= f_{X,Y}(x, y) dx dy$$

$$P(X = x, Y = y) = f_{X,Y}(x, y) \frac{dxdy}{dx}$$

Υπολογισμός πιθανοτήτων στο συνεχή χώρο

Τα ενδεχόμενα ορίζονται ως περιοχές του x-y επιπέδου.
 Παραδείγματα:

$$A = \{X + Y \le 10\}$$

$$B = \{\min(X, Y) \le 5\} = \{X \le 5\} \cup \{Y \le 5\}$$

$$C = \{X^2 + Y^2 \le 100\}.$$

Υπολογισμός πιθανοτήτων στο συνεχή χώρο

Τότε, η πιθανότητα ενός ενδεχομένου υπολογίζεται από το διπλό ολοκλήρωμα της από-κοινού συνάρτησης πυκνότητας των 2 μεταβλητών στην περιοχή ολοκλήρωσης που ορίζει το ενδεχόμενο:

$$P((X,Y) \in A) = \int_{A} \int f_{X,Y}(x,y) dxdy$$

Δηλαδή ισούται με τον όγκο κάτω από την σ.π.π.
 f_{χ.Υ}(x,y) στην περιοχή ολοκλήρωσης του ενδεχομένου A.

Συνεχείς δυσδιάστατες τυχαίες μεταβλητές (συν.)

Παράδειγμα:

$$f(x,y) = \frac{2}{75} (2x^2y + xy^2)$$
 for $0 \le x \le 3$ and $1 \le y \le 2$,

Ο όγκος της περιοχής κάτω

Συνεχείς δυσδιάστατες τυχαίες μεταβλητές (συν.)

Παράδειγμα:

$$f(x,y) = \frac{2}{75}(2x^2y + xy^2)$$
 for $0 \le x \le 3$ and $1 \le y \le 2$,

$P\left(1 \le X \le 2, \frac{4}{3} \le Y \le \frac{5}{3}\right) = \int_{1}^{2} \int_{\frac{4}{3}}^{\frac{5}{3}} f(x, y) \, dx \, dy$ $= \frac{2}{75} \int_{1}^{2} \left(\int_{\frac{4}{3}}^{\frac{5}{3}} (2x^{2}y + xy^{2}) \, dy \right) dx$ $= \frac{2}{75} \int_{1}^{2} \left(x^{2} + \frac{61}{81}x \right) dx = \frac{187}{2025}.$

Εύρεση περιθώριας κατανομής (marginal distribution)

• Η περιθώρια κατανομή μιας συνεχής τυχαίας μεταβλητής (π.χ. Χ) προκύπτει ολοκληρώνοντας την από-κοινού συνάρτηση πυκνότητας ως προς την άλλη μεταβλητή (π.χ. Υ):

$$f_X(\mathbf{x}) = \int_{-\infty}^{\infty} f_{X,Y}(\mathbf{x}, \mathbf{y}') d\mathbf{y}'$$
 $\kappa \alpha \iota$
 $f_Y(\mathbf{y}) = \int_{-\infty}^{\infty} f_{X,Y}(\mathbf{x}', \mathbf{y}) d\mathbf{x}'$

Πιθανότητες & Στατιστική - Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων - Δ14 (23

Δεσμευμένη (ή υπό-συνθήκη) κατανομή (conditional distribution)

- Έστω 2 τ.μ. Χ, Υ με από-κοινού σ.π.π. $f_{XY}(x, y)$
- Ορίζεται η δεσμευμένη συνάρτηση πυκνότητας πιθανότητας μιας εκ των 2 μεταβλητών, θεωρώντας ότι η άλλη έχει σταθερή τιμή

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
 $\kappa \alpha i$ $f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$

(Δεσμευμένη = πηλίκο της από-κοινού προς την περιθώρια)

Η από-κοινού αθροιστική συνάρτηση κατανομής πιθανότητας $F_{X,Y}$ για δυσδιάστατες τυχαίες μεταβλητές

Η αθροιστική συνάρτηση κατανομής πιθανότητας
 F_{X,Y}(x,y) εκφράζει την ποσότητα μάζας πιθανότητας που περιέχεται στην ορθογώνια περιοχή που ορίζεται από το σημείο (x,y)

Η από-κοινού αθροιστική συνάρτηση κατανομής πιθανότητας $F_{\chi,\gamma}$ για δυσδιάστατες τυχαίες μεταβλητές

Ορισμός:

Άθροισμα τιμών της συνάρτησης πυκνότητας (πιθανοτήτων) για τις τιμές της ορθογώνιας περιοχής

$$F_{X,Y}\big(x,y\big) = P\big(X \leq x,Y \leq y\big) = \begin{cases} \sum_{x' \leq x} \sum_{y' \leq y} f_{X,Y}\big(x',y'\big) & \text{X,Y διακριτές} \\ \int_{-\infty-\infty}^{x} \int_{-\infty-\infty}^{y} f_{X,Y}\big(x',y'\big) dx' dy' & \text{X,Y συνεχείς} \end{cases}$$

$$\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x',y') dx' dy' \quad X, Y συνεχείς$$

ολοκληρώνουμε την από-κοινού συνάρτηση πυκνότητας στην ορθογώνια περιοχή

Ιδιότητες της από-κοινού αθροιστικής συνάρτησης κατανομής F_{χ,Υ}

(a)
$$0 \le F_{X,Y}(x,y) \le 1$$

(β)
$$F_{X,Y}(x,-\infty) = F_{X,Y}(-\infty,y) = 0$$

 $F_{X,Y}(\infty,\infty) = 1$

(Y)
$$x_1 \le x_2 \land y_1 \le x_2 \Rightarrow F_{X,Y}(x_1, y_1) \le F_{X,Y}(x_2, y_2)$$

δηλ. είναι μη-φθίνουσα συνάρτηση

(δ) Περιθώριες συναρτήσεις κατανομής πιθανότητας

$$F_X(x) = F_{X,Y}(x,\infty)$$
 $F_Y(y) = F_{X,Y}(\infty, y)$

(ε) Συνεχής από δεξιά:

$$F_{X,Y}(x,y) = \lim_{h\to 0} F_{X,Y}(x+h,y) = F_{X,Y}(x^+,y)$$

$$F_{X,Y}(x,y) = \lim_{h\to 0} F_{X,Y}(x,y+h) = F_{X,Y}(x,y^+)$$

$$P(x_1 < X < x_2, y_1 < Y < y_2) = P(A) =$$

$$= F_{X,Y}(x_1, y_1) + F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) - F_{X,Y}(x_2, y_1)$$

$$P(x_1 < X < x_2, y_1 < Y < y_2) = P(A) =$$

$$= F_{X,Y}(x_1, y_1) + F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) - F_{X,Y}(x_2, y_1)$$

Απόδειξη

$$\{X < x_2, Y < y_2\} = A + B + \{X < x_1, Y < y_2\} \Rightarrow$$

$$P(X < x_2, Y < y_2) = P(A) + P(B) + P(X < x_1, Y < y_2) \Rightarrow$$

$$F_{X,Y}(x_2, y_2) = P(A) + P(B) + F_{X,Y}(x_1, y_2) \Rightarrow$$

$$P(A) = F_{X,Y}(x_2, y_2) - P(B) - F_{X,Y}(x_1, y_2)$$

$$(1)$$

$$P(x_1 < X < x_2, y_1 < Y < y_2) = P(A) =$$

$$= F_{X,Y}(x_1, y_1) + F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) - F_{X,Y}(x_2, y_1)$$

Απόδειξη

$$\begin{aligned}
&\{X < x_2, Y < y_2\} = A + B + \{X < x_1, Y < y_2\} \Rightarrow \\
&P(X < x_2, Y < y_2) = P(A) + P(B) + P(X < x_1, Y < y_2) \Rightarrow \\
&F_{X,Y}(x_2, y_2) = P(A) + P(B) + F_{X,Y}(x_1, y_2) \Rightarrow \\
&P(A) = F_{X,Y}(x_2, y_2) - P(B) - F_{X,Y}(x_1, y_2)
\end{aligned}$$
(1)

παρόμοια βρίσκουμε ότι:

$$\begin{aligned}
&\{X < x_2, Y < y_1\} = B + \{X < x_1, Y < y_1\} \Rightarrow \\
&P(X < x_2, Y < y_1) = P(B) + P(X < x_1, Y < y_1) \Rightarrow \\
&F_{X,Y}(x_2, y_1) = P(B) + F_{X,Y}(x_1, y_1) \Rightarrow \\
&P(B) = F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_1)
\end{aligned}$$
(2)

$$P(x_1 < X < x_2, y_1 < Y < y_2) = P(A) =$$

$$= F_{X,Y}(x_1, y_1) + F_{X,Y}(x_2, y_2) - F_{X,Y}(x_1, y_2) - F_{X,Y}(x_2, y_1)$$

Απόδειξη

$$\begin{aligned}
&\{X < x_2, Y < y_2\} = A + B + \{X < x_1, Y < y_2\} \Longrightarrow \\
&P(X < x_2, Y < y_2) = P(A) + P(B) + P(X < x_1, Y < y_2) \Longrightarrow \\
&F_{X,Y}(x_2, y_2) = P(A) + P(B) + F_{X,Y}(x_1, y_2) \Longrightarrow \\
&P(A) = F_{X,Y}(x_2, y_2) - P(B) - F_{X,Y}(x_1, y_2)
\end{aligned}$$
(1)

παρόμοια βρίσκουμε ότι:

$$\begin{aligned}
&\{X < x_2, Y < y_1\} = B + \{X < x_1, Y < y_1\} \Rightarrow \\
&P(X < x_2, Y < y_1) = P(B) + P(X < x_1, Y < y_1) \Rightarrow \\
&F_{X,Y}(x_2, y_1) = P(B) + F_{X,Y}(x_1, y_1) \Rightarrow \\
&P(B) = F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_1)
\end{aligned}$$
(2)

Έτσι, συνδυάζοντας τις (1), (2) σχέσεις προκύπτει η παραπάνω σχέση.

• Η από-κοινού συνάρτηση κατανομής πιθανότητας στο συνεχή χώρο είναι παντού συνεχής

Ισχύει:

$$F_{X,Y}(a,b) = P(X \le a, Y \le b) = \int_{-\infty-\infty}^{a} \int_{-\infty-\infty}^{b} f_{X,Y}(x,y) dxdy$$

$$f_{X,Y}(x,y) = \frac{dF_{X,Y}(x,y)}{dxdy}$$

- Η γνωστή **έννοια της ανεξαρτησίας** των ενδεχομένων **επεκτείνεται** στην περίπτωση πολλών μεταβλητών.
- Υπενθύμιση:

Δύο ενδεχόμενα Α, Β είναι ανεξάρτητα αν:

$$P(A \mid B) = P(A)$$

$$P(A \cap B) = P(A,B) = P(A)P(B)$$

• Παρόμοια, 2 τυχαίες μεταβλητές X και Y είναι ανεξάρτητες εάν ισχύει:

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$$

$$A \cap B$$
 $A \in B$

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

Ισοδύναμες σχέσεις

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

- ή ισοδύναμα $F_{XY}(x,y) = F_X(x)F_Y(y)$
- ή ισοδύναμα (παραγωγίζοντας): $f_{XY}(x,y) = f_X(x)f_Y(y)$
- ή ισοδύναμα η δεσμευμένη ισούται με την περιθώρια

$$f_{X|Y}(x | y) = f_X(x)$$
 $f_{Y|X}(y | x) = f_Y(y)$

2 μεταβλητές είναι ανεξάρτητες όταν ισχύει

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

Η από-κοινού γράφεται ως γινόμενο των περιθωρίων

Ένα παράδειγμα

• Εστω η από-κοινού συνάρτηση πυκνότητας

$$f_{X,Y}(x,y) = abe^{-(ax+by)}$$
, $x, y > 0$ $(a,b > 0)$

Να εξεταστούν οι 2 μεταβλητές ως προς την ανεξαρτησία

Λύση

1. Βρίσκουμε τις περιθώριες συναρτήσεις πυκνότητας

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{+\infty} abe^{-(ax+by)} dy = ae^{-ax} \int_{-\infty}^{+\infty} be^{-by} dy = ae^{-ax}$$
$$f_Y(y) = \int_{-\infty}^{-\infty} f(x, y) dx = \int_{0}^{+\infty} abe^{-(ax+by)} dx = be^{-by} \int_{0}^{0} ae^{-ax} dx = be^{-by}$$

2. Ελέγχουμε για ανεξαρτησία

$$f_{X,Y}(x,y) = abe^{-(ax+by)} = f_X(x)f_Y(y)$$

3. Συμπεραίνουμε ότι οι δύο μεταβλητές είναι ανεξάρτητες

• <u>Θεώρημα:</u> Αν η από-κοινού συνάρτηση πυκνότητας γράφεται ως γινόμενο δύο συναρτήσεων μία ως προς x και η άλλη ως προς y, δηλ. $f_{X,Y}(x,y) = g(x)h(y)$

τότε αυτομάτως οι δύο μεταβλητές Χ, Υείναι ανεξάρτητες

Απόδειξη

Βρίσκουμε τις περιθώριες συναρτήσεις πυκνότητας:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{-\infty}^{\infty} g(x)h(y) dy = g(x) \int_{-\infty}^{\infty} h(y) dy = g(x)C_y$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{-\infty}^{\infty} g(x)h(y) dx = h(y) \int_{-\infty}^{\infty} g(x) dx = h(y)C_x$$

$$f_X(x)f_Y(y) = g(x)h(y)C_xC_y$$

$$\alpha\lambda\lambda\dot{\alpha} \qquad \int_{-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f_{X,Y}(x,y) dx dy = \int_{-\infty-\infty}^{\infty} g(x)h(y) dx dy = \int_{-\infty}^{\infty} g(x) dx \int_{-\infty}^{\infty} h(y) dy = C_yC_x = 1$$

άρα ανεξάρτητες μεταβλητές καθώς: $f_{X,Y}(x,y) = g(x)h(y) = f_X(x)f_Y(y)$

Παραδείγματα

- Δίνεται η από-κοινού συνάρτηση πυκνότητας 2 διακριτών τυχαίων μεταβλητών $x \setminus y = 1 = 2$
 - α) Να βρεθούν οι περιθώριες κατανομές $f_{X,Y}(x,y) = 1$ 1/8 1/4 των δύο μεταβλητών, X και Y, 2 1/8 1/2
 - β) Να υπολογίσετε τις μέσες τιμές και τις διακυμάνσεις τους.

• Δύο τυχαίες μεταβλητές *X*, *Y* έχουν από-κοινού συνάρτηση πυκνότητας:

$$f_{X,Y}(x,y) = \begin{cases} xye^{\frac{-x^2+y^2}{2}} & x,y > 0\\ 0 & \alpha\lambda\lambda ov \end{cases}$$

Να βρεθεί η από-κοινού συνάρτηση κατανομής $F_{X,Y}(x,y)$ και οι περιθώριες κατανομές των X και Y.

• Δύο τυχαίες μεταβλητές *X*, *Y* έχουν από-κοινού συνάρτηση πυκνότητας:

$$f_{X,Y}(x,y) = \begin{cases} 15y & x^2 \le y \le x \\ 0 & \alpha\lambda\lambda ov \end{cases}$$

Να βρεθούν οι περιθώριες κατανομές των X και Y, και οι μέσες τιμές τους.

• Έστω 2 μεταβλητές Χ,Υ με από-κοινού συνάρτηση πυκνότητας

$$f_{X,Y}(x,y) = c x y (1-x)$$
 , $0 < x, y < 1$

- α) Να βρείτε την σταθερά c
- β) Να βρείτε τις περιθώριες κατανομές των Χ, Υ
- γ) Να βρείτε τις δεσμευμένες κατανομές Χ/Υ και Υ/Χ
- δ) Υπολογίστε τις παρακάτω πιθανότητες:

δ1)
$$P(Y<1/2 \cap X>1/2)$$

 Να βρεθούν οι περιθώριες κατανομές μιας δυσδιάστατης τυχαίας μεταβλητής με από-κοινού συνάρτηση πυκνότητας πιθανότητας:

$$f_{X,Y}(x,y) = \begin{cases} ce^{-x}e^{-y} & 0 \le y \le x < \infty \\ 0 & \alpha\lambda\lambda ov \end{cases}$$

 Εστω 2 μεταβλητές Χ,Υ με από-κοινού συνάρτηση πυκνότητας

$$f_{XY}(x,y) = \begin{cases} kx^2y^{-3} & 1 \le x, y \le 2\\ 0 & \text{otherwise.} \end{cases}$$

- (α) Να εξεταστεί εάν οι 2 μεταβλητές είναι ανεξάρτητες.
- (β) Να βρεθούν οι περιθώριες κατανομές.
- (γ) Να υπολογιστεί η πιθανότητα P(X>Y).