MITSCHRIEB

Analysis II

Sommersemester 2025

Emma Bach

Vorlesung gehalten von Prof. Dr. Michael Růžička

Inhalt

1	Wie	ederholung	2
2	Der	Euklidische Raum	3
	2.1	Abbildungen und Koordinatenfunktionen auf \mathbb{R}^n	5
	2.2	Mehrdimensionale Ableitungen	7
	2.3	Differenzierbarkeit	8

Chapter 1

Wiederholung

Chapter 2

Der Euklidische Raum

Lemma 2.1. Sei $(V, \langle _, _ \rangle)$ ein euklidischer Vektorraum. Dann wird durch

$$||u|| = \sqrt{\langle u, u \rangle}$$

auf V eine Norm erklärt. Diese bezeichnet man als die durch das Skalarprodukt induzierte Norm.

Definition 2.2. Seu $(V, \langle _, _ \rangle)$ ein euklidischer Vektorraum, Die Vektoren $u, v \in V$ heißen **orthogonal**, wenn

$$\langle u, v \rangle = 0$$

ist. Für $u, v \in V \setminus \{0\}$ Wird die reelle Zahl

$$\phi = \arccos \frac{\langle u, v \rangle}{\|u\| \; \|v\|}$$

als der Winkel zwischen u und v bezeichnet.

Anmerkung 2.3. Es gilt

$$\frac{|\langle u, v \rangle|}{\|u\| \ \|v\|} \le 1$$

Lemma 2.4. Für $X = (x_1, \ldots, x_n) \in \mathbb{R}^n$ sei

$$||X||_{\max} := \max\{|x_1|, \dots, |x_n|\}$$

Dann ist $|| \cdot ||_{\max}$ eine Norm auf \mathbb{R}^n und es gilt

$$||X||_{\max} \le ||X|| \le \sqrt{n} ||X||_{\max}$$

Satz 2.5. Die Menge \mathbb{Q}^n der Punkte mit rational Koordinaten ist dicht in \mathbb{R}^n .

Beweis. Sei $X \in \mathbb{R}^n$ und $\varepsilon \in \mathbb{R}^+$. Da \mathbb{Q} dicht in \mathbb{R} ist gilt

$$\forall i \in \{1, \dots, n\} : \exists y_i \in \mathbb{Q} : |x_i - y_i| \le \frac{\varepsilon}{\sqrt{n}}$$

Durch Lemma 2.4 folgt:

$$||x - y|| \le \sqrt{n}||X - Y|| < \varepsilon$$

Satz 2.6. Sei $(X_k)_{k\in\mathbb{N}}$ eine Folge aus \mathbb{R}^n . Sei $X_k=(x_1^{(k)},\ldots,x_n^{(k)})$. Dann gilt:

$$\lim_{k \to \infty} X_k = X \Leftrightarrow \forall i : \lim_{k \to \infty} x_i^{(k)} = x_i$$

Insbesondere ist X_k eine Cauchyfolge, wenn die Komponenten Cauchyfolgen sind.

Beweis. $X_k \to X$, $i \in \{1, ..., n\}$, $\varepsilon \in \mathbb{R}^+$. Dann gilt

$$\exists k_o \in \mathbb{N} : \forall k \ge k_0 : ||X_k - X|| \le \varepsilon \implies \forall i : \left| x_i^{(k)} - x_i \right| < \varepsilon \implies \lim_{k \to \infty} x_i^{(k)} = x_i$$

Und umgekehrt:

$$\forall i: x_i^{(k)} \to x_i, \varepsilon \in \mathbb{R}^+ \implies \exists k_0^i \in \mathbb{N}: \forall k \ge k_0^i \left| x_i^{(k)} - x_i \right| \le \frac{\varepsilon}{\sqrt{n}}$$
$$k_0 := \max\{k_0^n, \dots, k_0^n\} \implies \forall k \ge k_0: \left| x_i^{(k)} - x_i \right| < \frac{\varepsilon}{\sqrt{n}} \implies \|X_k - X\| \le \sqrt{n} \|X_k - X\| < \varepsilon$$

Satz 2.7. Für konvergente Folgen $(X_k), (Y_k) \in \mathbb{R}^n, (\lambda_k) \in \mathbb{R}$ gilt:

$$\lim_{k \to \infty} (X_k + Y_k) = \lim_{k \to \infty} X_k + \lim_{k \to \infty} Y_k \tag{2.1}$$

$$\lim_{k \to \infty} \lambda_k X_k = \left(\lim_{k \to \infty} \lambda_k\right) \left(\lim_{k \to \infty} X_k\right) \tag{2.2}$$

$$\lim_{k \to \infty} \langle X_k, Y_k \rangle = \left\langle \lim_{k \to \infty} X_k, \lim_{k \to \infty} Y_k \right\rangle \tag{2.3}$$

Satz 2.8. \mathbb{R}^n ist vollständig.

Beweis. Ist X_k eine Cauchyfolge in \mathbb{R}^n , so sind nach Satz 2.6 alle Teilfolgen Cauchy in \mathbb{R} . Also:

$$\exists x_i \in \mathbb{R} : x_i^{(k)} \to x_i \implies \exists X \in \mathbb{R}^n : X_k \to X$$

Satz 2.9. (Bolzano-Weierstrass:) Jede beschränkte Folge in \mathbb{R}^n besitzt eine konvergente Teilfolge.

Beweis. Sei (X_k) eine beschränkte Folge in \mathbb{R}^n . Nach 2.4 müssen die Komponentenfolgen ebenfalls beschränkt sein. Nach dem eindimensionalen Fall des Satzes von Bolzano-Weierstrass existieren also konvergente Teilfolgen der Koordinatenfolgen. Angenommen, die konvergente Teilfolge der ersten Komponente ist gegeben durch $x_1^{(k_n)} \to x_1$. So ist $x_2^{(k_n)}$ ebenfalls eine beschränkte Teilfolge, also existiert eine Teilfolge $x_2^{(k_n)_m}$ welche in den ersten beiden Komponenten konvergiert. Führt man dieses Verfahren induktiv fort, erhält man eine konvergente Teilfolge von (X_k) .

Satz 2.10. Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abgeschlossener beschränkter nichtleerer Teilmengen des \mathbb{R}^n , sodass $A_1 \supseteq A_2 \supseteq \ldots$ Dann ist $\bigcap_{i\in\mathbb{N}} \neq \emptyset$

Beweis. $A_i \neq \emptyset \implies \exists X_i \in A$ sd. $(X_i)_{i \in \mathbb{N}}$ eine Folge ist. Da A_i beschränkt ist ist $(X_i)_{i \in \mathbb{N}}$ beschränkt, also hat X_i eine konvergente Teilfolge X_{i_k} mit Limes X. Es gilt $X_{i_k} \in A_{i_k} \subseteq A_i$, also ist X ein Berührpunkt von A_i , also $X \in A_i$.

Satz 2.11. Jede abgeschlossene beschränkte Teilmenge des \mathbb{R}^n ist kompakt.

Beweis. Analog zur eindimensionalen Version, wobei statt Intervallen $[a_i, b_i]$ Hyperwürfel $[a_i^{(1)}, b_i^{(1)}] \times \dots \times [a_i^{(n)}, b_i^{(n)}]$ genutzt werden müssen.

Satz 2.12. Seien $\|.\|_1$ und $\|.\|_2$ Normen auf \mathbb{R}^n . So existieren $k, K \in \mathbb{R}^+$ mit

$$\forall X \in \mathbb{R}^n : k \|X\|_1 \le \|X\|_2 \le K \|X\|_1$$

Beweis. Diese Normenäquivalenz bildet eine Äquivalenzrelation. Es reicht also, zu zeigen, dass jede Norm $\|\cdot\|_2$ äquivalent zu einer spezifischen Norm $\|\cdot\|_1$ ist. Wir wählen $\|\cdot\|_{\max}$. Sei (E_i) die Standardbasis des \mathbb{R}^n . Wir definieren:

$$K := ||E_1||_2 + \ldots + ||E_n||_2$$

Dann gilt:

$$||X||_{2} = ||x_{1}E_{1} + \ldots + x_{n}E_{n}||$$

$$\leq |x_{1}||E_{1}||_{2} + \ldots + |x_{n}||E_{n}||_{2}$$

$$\leq ||X||_{\max}K \quad \text{[citation needed]}$$

Es bleibt die Rückrichtung zu zeigen.

Lemma 2.13. $f(X) := ||X||_2$ ist stetig.

Beweis.

$$|||X||_2 - ||Y||_2| \le ||X - Y||_2 \le K||X - Y||_{\max} \le K||X - Y||$$

Also ist $\| \cdot \|_2$ stetig bezüglich der euklidischen Norm $\| \cdot \|$.

Wir definieren nun:

$$A := \{ X \in \mathbb{R}^n \mid ||X||_{\max} = 1 \}$$

Diese Menge ist beschränkt. Wir wollen Zeigen, dass sie außerdem abgeschlossen ist. Sei $X_i \to X$, $X_i \in A$. Es gilt:

$$|||X_i||_{\max} - ||X||_{\max}| \le ||X_i - X||_{\max} \le ||X_i - X||$$

Also konvergiert jede Menge, also ist A kompakt, also auch abgeschlossen. Dementsprechend muss f auf A ein Minimum k annehmen. Wir wissen $f \geq 0$, also ist $k \geq 0$. Es gilt sogar k > 0, da keiner der Vektoren in A der Nullvektor ist. Nun gilt also $\forall X \in A : ||X||_2 \geq k$. Wir definieren:

$$\lambda := \frac{1}{\left\|X\right\|_{\max}}$$

$$\|\lambda X\|_{\max} = |\lambda| \|X\|_{\max} = 1$$

$$\left|\lambda\right|\left\|X\right\|_{2}=\left\|\lambda X\right\|_{2}\geq k\implies \left\|X_{2}\right\|\geq k\|X\|_{\max}$$

Anmerkung 2.14. Im unendlichdimensionalen Fall gilt Satz 2.12 nicht.

2.1 Abbildungen und Koordinatenfunktionen auf \mathbb{R}^n

In diesem Abschnitt betrachten wir Funktionen $F: \mathbb{R}^n \to \mathbb{R}^k$. Betrachten wir zuerst den Spezialfall Linearer Funktionen, also $\forall X, Y \in \mathbb{R}^n : \forall \lambda, \mu \in \mathbb{R} : F(\lambda X + \mu Y) = \lambda F(X) + \mu F(Y)$.

Sei (E_i) die Standardbasis des \mathbb{R}^n und sei (E_i) die Standardbasis des \mathbb{R}^k . Nun gilt:

$$F(E_j) = \sum_{i=1}^k a_{ij} E_i'$$

Daraus erhalten wir Koeffizienten a_{ij} , welche eine Matrix bilden. Umgekehrt können wir aus den Koeffizienten die Abbildung F rekonstruieren, indem wir definieren:

$$F(X) = F\left(\sum_{j=1}^{n} x_j E_j\right)$$

$$= \sum_{j=1}^{n} x_j F(E_j)$$

$$= \sum_{j=1}^{n} x_j \sum_{i=1}^{k} a_{ij} E'_i$$

$$= \sum_{i=1}^{k} \left(\sum_{j=1}^{n} a_{ij} x_j\right) E'_i$$

[missing stuff here]

Definition 2.15. Wir bezeichnen als $p_i: M \to k$ die Projektion eines Vektors auf die *i*-te Komponente.

Satz 2.16. Sei M ein metrischer Raum, $F: M \to \mathbb{R}^n$ eine Abbildung und $x \in M$. Dann ist F stetig in x genau dann, wenn $p_i \circ F$ stetig für alle i ist.

Beweis. 1. p_i ist stetig. Ist also F stetig folgt direkt, dass auch $p_i \circ F$ stetig ist.

2. Angenommen, $p_i \circ F$ ist stetig $\forall i, \varepsilon \in \mathbb{R}^+$. Da $p_i \circ F$ stetig ist existiert eine Umgebung U_i von x, sodass $|f_i(x) - f_i(y)| < \frac{\varepsilon}{\sqrt{n}} \forall y \in U_i$. Ebenso für die anderen Komponenten. Nun gilt:

$$||F(y) - F(x)|| \le \sqrt{n} ||F(x) - F(y)||_{\max} \le \varepsilon$$

Analog gilt das Selbe für Stetigkeit auf M, gleichmäßige Stetigkeit, etc.

Definition 2.17. Sei $M \subseteq \mathbb{R}^n$, $F: M \to \mathbb{R}^k$ eine Abbildung, x_0 ein Häufungspunkt, $y \in \mathbb{R}^k$. Dann definieren wir:

$$\lim_{x \to x_0} F(x) = y \Leftrightarrow \forall \varepsilon \in \mathbb{R}^+ : \exists \delta \in \mathbb{R}^+ : \forall x \in M \setminus \{x_0\} : ||x - x_0|| \le \delta \implies ||F(x) - y|| < \varepsilon$$

F ist stetig in x_0 genau dann, wenn $\lim_{x\to x_0} F(x) = F(x_0)$.

Satz 2.18. Sei $M \subseteq \mathbb{R}^n$, $F: M \to \mathbb{R}^k$ eine Abbildung, $X_0 \in M$ ein Häufungspunkt, $Y \in \mathbb{R}^k$ und $f_i = p_i \circ F$. Dann gilt:

$$\lim_{X \to X_0} F(X) = Y \Leftrightarrow \forall i : \lim_{X \to X_0} f_i(X) = y_i$$

Beweis. Analog zu Beweis 2.16.

Korollar 2.19.

$$F(X) \to Y, G(X) \to Z \implies F(X) + G(X) \to Y + Z$$

2.2 Mehrdimensionale Ableitungen

Beispiel 2.20. Sei $f: M \to \mathbb{R}$ definiert auf einer offenen Menge $M \subseteq \mathbb{R}^n$.

$$f(X) = f(x_1, \dots, x_n)$$
 bzgl. der Standardbasis

Wir können aber auch $X = \sum x_i' E_i'$ bezüglich einer beliebigen anderen Basis darstellen. Also:

$$f(X) = f(x_1, \dots, x_n) = g(x'_1, \dots, x'_n)$$

Da f in der Regel nicht linear ist, ist ein solcher Basiswechsel sehr viel komplizierter als in der Linearen Algebra! Wo möglich ist es also besser, über f(X) zu reden.

Definition 2.21. Sei $f: \mathbb{R}^n \to \mathbb{R}, \overline{X} \in M$. Betrachte die Abbildung

$$t \to f(\overline{x}_1, \dots \overline{x}_{i-1}, t, \overline{x}_{i+1}, \dots, \overline{x}_n),$$

welche eine Mehrdimensionale Funktion $f(x_1, \dots x_n)$ auf eine eindimensionale Funktion f(t) abbildet. Achtung: Wir nehmen hier implizit eine Darstellung bezüglich der Standardbasis an!

Beispiel 2.22. Betrachte folgende Funktion:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

f ist an (0,0) partiellen differenzierbar, die Partiellen Ableitungen sind 0. Allerdings gilt

$$\forall x : f(x, x) = \frac{1}{2}$$

Also ist f an 0 nicht stetig! Es existieren also Funktionen, die an einem Punkt partiell Differenzierbar sind, an dem sie nicht stetig sind.

<u>Idee</u>: Fordere partielle Differenzierbarkeit bezüglich jeder möglichen Basis, also partielle Differenzierbarkeit in jedem Vektor.

Beispiel 2.23.

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Wir betrachten die "Linearisierung" $t \to f(t, \alpha t)$. Einsetzen liefert:

$$f(t, \alpha t) = \frac{\alpha t}{t^2 + a^2}$$

Diese Funktion ist differenzierbar, also ist f differenzierbar bezüglich beliebiger Basen. Das reicht jedoch immer noch nicht:

$$f(a, a^2) = \frac{a^2 a^2}{a^4 + a^4} = \frac{1}{2}$$

Also ist f immer noch nicht stetig - es ist stetig für Folgen, welche den Nullpunkt durch Geraden erreichen, aber nicht, wenn wir durch kompliziertere Pfade gegen den Nullpunkt gehen.

Wir wollen die Begriffe aus der Analysis I über Stetigkeit und Ableitbarkeit retten, also brauchen wir einen komplizierteren Ableitungsbegriff.

2.3 Differenzierbarkeit

Sei f eine beliebige Funktion $\mathbb{R} \to \mathbb{R}$. Die Ableitung gibt uns die Tangente der Funktion an einem beliebigen Punkt, also die beste affine Approximation der Funktion an diesem Punkt.

Definition 2.24. Eine Funktion $F: \mathbb{R}^n \to \mathbb{R}^k$ heißt **affin**, wenn es eine Lineare Funktion $L: \mathbb{R}^n \to \mathbb{R}^k$ und eine Konstante $Z \in \mathbb{R}^k$ gibt, sodass:

$$F(X) = L(X) + Z$$

Sei $g: \mathbb{R} \to \mathbb{R}$ affin, also g(x) = cx + t für $c, t \in \mathbb{R}$. Sei $f: \mathbb{R} \to \mathbb{R}$. Wir wollen eine beliebige Funktion f an der Stelle x_0 approximieren. Für eine gute Approximation wollen wir $f(x_0) = g(x_0)$, also erhalten wir:

$$g(x) = c(x - x_0) + f(x_0).$$

Schreibe $x = x_0 + h$ und lasse h gegen 0 gehen.

$$h \to f(x_0 + h) - g(x_0 + h) = f(x_0 + h) - f(x_0) - ch$$

Wir sagen, die Approximation ist gut, wenn $f(x_0 + h) - f(x_0) - ch$ schneller gegen 0 geht als h selbst, also:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - ch}{h} = 0 \tag{2.4}$$

Was äquivalent ist zu:

$$c = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Wir sagen also, f ist in x_0 differenzierbar, genau dann, wenn eine lineare Abbildung L existiert, sodass:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{h} = 0$$

Diese geometrische Intuition, nach der die Ableitung die beste affine Approximation ist, können wir auf den \mathbb{R}^n übertragen.

Definition 2.25. Sei $M \subset \mathbb{R}^n$ offen, $F: M \to \mathbb{R}^k$ eine Abbildung, sei $X_0 \in M$. Die Abbildung F heißt differenzierbar am Punkt X_0 , wenn es eine Lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^k$ gibt, sodass:

$$\lim_{H \to 0} \frac{F(X_0 + H) - F(X_0) - L(H)}{\|H\|} = 0.$$

Wir nennen sie das **Differenzial von** F **im Punkt** X_0 und notieren sie als DF_{X_0} . F heißt differenzierbar, wenn sie differenzierbar an jedem Punkt $X \in M$ ist.

Satz 2.26. Gibt es ein Differential, ist es eindeutig bestimmt.

Beweis. Seien L_1, L_2 Differentiale. Es folgt:

$$\lim_{H \to 0} \frac{L_1(H) - L_2(H)}{\|H\|} = 0$$

Sei $X \in \mathbb{R}^n \setminus \{0\}$. Dann gilt:

$$\lim_{t\to 0} \frac{L_1(tX) - L_2(tX)}{\|tX\|} = 0$$

$$\implies \frac{L_1(X) - L_2(X)}{\|X\|} = 0$$

$$\implies L_1(X) - L_2(X) = 0$$

also sind die beiden Differentiale identisch.

Anmerkung 2.27. Unserer Differenzierbarkeitsbegriff wird insbesonders in der älteren Literatur oft als total Differenzierbarkeit bezeichnet.