

LECTURE 2

Aircraft Propulsion AENG 31102

Aircraft Gas Turbine Performance & Design

Recap on Fundamentals

Objectives ~ Lecture 2

University of Bristol

- To describe the International Standard Atmosphere and its significance.
- To show the ideal efficiency of the Joule or Brayton Cycle.
- To calculate the main characteristics of a practical turbojet.

International Standard Atmosphere ISA *Gravity*

- The term "acceleration due to gravity" is more correctly "the acceleration in free fall" due to the combined effects of gravitational attraction and the Earth's rotation, which varies with latitude.
- Variations with latitude are inconvenient for comparing aircraft and engine performance and a standard value at sea level e.g. 9.80665 m/s² is used.
- For many calculations, it is convenient to keep the sea level value constant with altitude, by defining geopotential altitude (see next slide).

International Standard Atmosphere ISA Altitudes

- Geometric height Z: The actual height above mean-sealevel.
- Geopotential height H: The height in a uniform gravitational field (g constant with altitude) which gives the same potential energy as exists in the actual, variable gravitational field.
- Pressure height: Aircraft normally fly at altitudes defined by barometric means. The pressure height in any atmosphere is the geopotential height in the standard atmosphere giving the same pressure.

International Standard Atmosphere ISA

• The International Standard Atmosphere is based on an idealised, mean-annual, steady-state model, assuming a period of moderate solar activity at a latitude of 45° N.

Non-standard atmospheres:

- Both temperature and pressure are independent functions of geopotential height.
- Thus ISA + 10C may be obtained by adding 10C to the ISA temperatures with the pressures remaining constant.

International Standard Atmosphere ISA

Standard Atmosphere & Non Standard Atmosphere

297-4 295.2 295-1 295-1 295-1 295-1 295-1 295.1 295-1 295.1 295-1 295-1 295-1 295-1 295-1 295-1 295-1 295-1 295-1 295-1

International Standard Atmosphere

International Standard Atmosphere

<u>z</u> [m]	p [bar]	<u>T</u> [K]	ρ/ρ_0	$\frac{a}{[m/s]}$	<u>z</u> [m]	$\frac{p}{[\text{bar}]}$	<u>T</u> [K]	ρ/ρ_0
0	1-01325	288-15	1-0000	340-3	10 500	0-2454	220-0	0.3172
500	0.9546	284.9	0.9529	338-4	11000	0.2270	216-8	0.2978
1 000	0.8988	281.7	0.9075	336-4	11 500	0.2098	216.7	0.2755
1 500	0.8456	278-4	0.8638	334-5	12 000	0.1940	216.7	0.2546
2 000	0.7950	275.2	0.8217	332.5	12 500	0.1793	216.7	0.2354
2 500	0.7469	271.9	0.7812	330.6	13 000	0-1658	216.7	0.2176
3 000	0.7012	268.7	0.7423	328-6	13 500	0.1533	216.7	0.2012
3 500	0.6578	265-4	0.7048	326-6	14 000	0.1417	216-7	0.1860
4 000	0.6166	262-2	0.6689	324-6	14 500	0.1310	216-7	0.1720
4 500	0.5775	258-9	0.6343	322.6	15 000	0.1211	216.7	0.1590
5 000	0-5405	255-7	0.6012	320-5	15 500	0.1120	216.7	0.1470
5 500	0.5054	252-4	0.5694	318-5	16 000	0-1035	216-7	0.1359
6 000	0-4722	249-2	0.5389	316-5	16500	0.09572	216.7	0.1256
6 500	0-4408	245.9	0.5096	314-4	17 000	0.08850	216-7	0.1162
7 000	0.4111	242.7	0.4817	312.3	17500	0.08182	216-7	0.1074
7 500	0.3830	239.5	0.4549	310.2	18 000	0.07565	216.7	0.09930
8 000	0-3565	236-2	0-4292	308-1	18 500	0.06995	216.7	0.09182
8 500	0.3315	233-0	0-4047	306-0	19 000	0.06467	216-7	0.08489
9 000	0.3080	229-7	0.3813	303-8	19 500	0.05980	216-7	0.07850
9 500	0.2858	226-5	0-3589	301.7	20 000	0.05529	216-7	0.07258
10 000	0.2650	223-3	0.3376	299-5				

Density at sea level $\rho_0 = 1.2250 \text{ kg/m}^3$.

Extracted from: ROGERS G F C and MAYHEW Y R
Thermodynamic and Transport Properties of Fluids (Blackwell

1995)

THRUST is equal to rate of change of momentum:

$$\mathbf{F} = \dot{m}(C_j - C_a) = \dot{m}(C_{jN} - C_a) + A_j (P_j - Pa)$$

Fuel flow = \dot{m}_f

Net calorific value of fuel $= Q_{net}$

Specific Fuel Consumption is equal to the *fuel flow / unit of thrust:*

$$SFC = \frac{\dot{m}_f}{F}$$

OVERALL EFFICIENCY is equal to useful work / energy supplied by fuel: $\eta_{overall} = \frac{F \cdot C_a}{\dot{m}_f \cdot Q_{net}}$

Efficiency of Energy Conversion is equal to useful mechanical energy / energy supplied by fuel:

$$\eta_e = \frac{1}{2}\dot{m} \frac{(Cj^2 - Ca^2)}{Q_{net} \cdot \dot{m}_f}$$

Propulsive (Froude) Efficiency is equal to useful work / useful work + unused KE in jet:

$$\eta_p = \frac{F \cdot C_a}{F \cdot C_a + \frac{1}{2} \dot{m} (C_j - C_a)^2} = \frac{2}{(1 + C_j / C_a)}$$

OVERALL EFFICIENCY is the product of efficiency of energy conversion and propulsive efficiency:

$$\eta_{overall} = \eta_e \cdot \eta_p$$

Overall Efficiency:

$$\eta_{overall} = \frac{F \cdot C_a}{\dot{m}_f \cdot Q_{net}}$$

Specific Fuel Consumption: $SFC = \frac{\dot{m}_f}{F}$

Hence overall efficiency (for a given fuel) ∞ flight speed / SFC:

$$\eta_{overall} = \frac{c_a}{SFC \cdot Q_{net}}$$

That means that SFC is a measure of overall efficiency

Fuel Air Ratio (FAR):

$$FAR = \frac{fuel\ flow}{air\ flow} = \frac{\dot{m}_f}{\dot{m}}$$

Specific Thrust (ST) is equal to Thrust / unit Mass Flow: $ST = \frac{F}{\dot{m}} = (C_j - C_a)$

$$ST = \frac{F}{\dot{m}} = (C_j - C_a)$$

That means that:

$$SFC = \frac{FAR}{ST} = \frac{\dot{m}_f}{F}$$

Isentropic Compression and Expansion

Increase in entropy due to temperature rise <u>exactly</u> balances decrease due to volume effect.

In an isentropic compression from state 1 to state 2 increases in entropy are exactly balanced by decreases due to the volume effect.

Decrease in entropy due to temperature effect exactly balances increase in entropy due to volume effect

In an isentropic expansion from state 3 to state 4 decreases in entropy are exactly balanced by increases due to the volume effect.

 T_{01}

Basic Relationships ~ 4

Isentropic efficiency* of (say) a compressor:

University of Bristol

$$m{\eta_{isen}} = rac{\textit{Isentropic Total Temperature rise}}{\textit{Actual Total Temperature rise}} = rac{T_{o2}' - T_{o1}}{T_{o2} - T_{o1}}$$

Total Temperature:

$$T_0 = T + \frac{C^2}{2C_p}$$

 $T_0 = T(1 + \frac{1}{2}(\gamma - 1)M^2)$

Sonic Velocity: $\mathbf{a} = \sqrt{\gamma RT}$ Mach Number: $\mathbf{M} = \frac{C}{\sqrt{\gamma RT}}$

Isentropic Pressure - Temperature Relationship:

$$\frac{T_{02}}{T_{01}} = \left(\frac{P_{02}}{P_{01}}\right)^{\frac{\gamma - 1}{\gamma}}$$

Note there is another way of defining the efficiency of a process: Polytropic Efficiency ~ see lecture on Compressors:

Joule or Brayton Cycle for a Gas Turbine

$$\eta = 1 - \{1/(p_2/p_1)\}^{\gamma-1/\gamma}$$

Derivation of Ideal Efficiency

Assumptions for Ideal Cycle for gas turbine (Joule or Brayton):

University of Bristol

- Compression & expansion processes are reversible adiabatic i.e. isentropic;
- Change in K E between inlet & outlet of each component is negligible;
- Pressure losses are negligible;
- Working fluid is a perfect gas with constant specific heats;
- Mass flow constant throughout the cycle;
- Heat transfer i.e. combustion is complete.

Steady Flow Energy Equation (per unit mass):

$$\mathbf{Q} = (h_2 - h_1) + 1/2 (C_2^2 - C_1^2) + W$$

Hence:

$$W_{12} = -(h_2 - h_1) = -C_p (T_2 - T_1)$$
 $Q_{23} = (h_3 - h_2) = C_p (T_3 - T_2)$
 $W_{34} = (h_3 - h_4) = C_p (T_3 - T_4)$
AENG 31102 Lecture 2

Derivation of Ideal Efficiency

Cycle efficiency equals net work output / heat supplied:

$$\boldsymbol{\eta} = \frac{C_p \left[(T_3 - T_4) - (T_2 - T_1) \right]}{C_p \left(T_3 - T_2 \right)}$$

Using the isentropic Pressure & Temperature relationship:

$$\frac{T_{02}}{T_{01}} = \left(\frac{P_{02}}{P_{01}}\right)^{\frac{\gamma - 1}{\gamma}} = \frac{T_3}{T_4}$$

$$\eta = 1 - \left[\frac{1}{\frac{P_2}{P_1}}\right]^{\frac{\gamma - 1}{\gamma}}$$

Thus the efficiency depends only on the pressure ratio and the nature of the gas.

Ambient Conditions:

$$egin{aligned} \emph{M} &= 0.8 &@ \emph{h} &= 10km \text{ ISA Conditions} \ & \emph{P}_a &= 0.265 \ bar \ & \emph{Temperature} & \emph{T}_a &= 223.3K \ & \emph{Speed of Sound} & \emph{a} &= 299.5 \ m/s \ & \emph{Flight Speed} & \emph{C}_a &= 239.6 \ m/s \end{aligned}$$

Cycle Details:

No Intake Loss: $\frac{P_{o2}}{P_{o1}} = 1$

Compression Ratio of 8: $\frac{P_{o3}}{P_{o2}} = 8$

With an Isentropic Efficiency of 0.87: $\eta_{isen} = 0.87$ (compressor)

Combustion Chamber Temperature: $T_{04} = 1200K$

Turbine Isentropic Efficiency of 0.9: $\eta_{isen} = 0.9$ (turbine)

Combustion Pressure Loss is 4%: $\frac{P_{o4}}{P_{o3}} = 0.96$

Transmission Efficiency is 99%: $\eta_{transmission} = 0.99$

- Step 1: Total Temperature & Pressure at entry
 - We find the stagnation properties at the fan:
 - $T_{o1} \& P_{o1}$
- Step 1-2: Intake
 - For this example, there is no loss at the intake, and hence:
 - $P_{o2} = P_{o1} \& T_{o2} = T_{o1}$

Step 2-3: Compression

University of Bristol

- We calculate P_{03} , the Isentropic Temperature Rise T'_{03} and the Real temperature Rise T_{o3}
- We then calculate the Specific Power required to drive the compressor $\frac{P_{ow}}{\cdot}$
- Step 3-4: Combustion Heat Addition
 - We calculate P_{04}

• Step 4-5: Expansion through turbine

University of Bristol

 Using the transmission efficiency, we can find how much power the turbine is producing to drive the compressor, and so we can find T_{05} , T'_{05} and P_{05}

Step 5A: Fully expanded in the Ideal Con-Di Nozzle

- Since there are no losses, $T_{o5} = T_{oN} \& P_{o5} = P_{oN}$.
- We calculate the temperature of the fully expanded jet T_{FE} , and the velocity of it C_{FF}
- We can then calculate the Specific Thrust ST.

Step 5B: Expansion in a Convergent Nozzle

- Since there are no losses, $T_{o5} = T_{oN} \& P_{o5} = P_{oN}$.
- We need to check if the nozzle is choked. That will happen when $\frac{P_{oN}}{P_a} > \frac{P_{oN}}{P_{N^*}}$
- Since nozzle is choked, the exit conditions of the jet will be those at M=1: T_{N^*} , & P_{N^*}
- We calculate the speed of sound at the exit temperature C_{N^*} , and we also find the density of the flow ρ_{N^*}
- We can now calculate the ratio of jet area A_N to mass flow \dot{m} , and once we know that we can find the Specific Thrust ST

Combustion ~ Heat addition

Fuel/air ratio

SPECIFIC THRUST CALCULATION

Thrust = $m(C_N - C_a) + A_N (P_N - P_a)$ Specific Thrust = Thrust/Mass Flow

SPECIFIC FUEL CONSUMPTION

Fuel Air Ratio (from Chart of Combustion Temperature Rise v Fuel Air Ratio)

Inlet Air temperature = T_{03}

Combustion Temperature Rise = $(T_{04} - T_{03})$

Fuel Air Ratio (from Chart)

Fuel Flow = Fuel Air Ratio x Engine Mass Flow

Specific Fuel Consumption SFC = Fuel Flow / Thrust

= Fuel Air ratio / Specific Thrust

Overall Efficiency = $C_a/SFC \times Q_{net}$

A detailed step by step calculation can be found on Blackboard.

Key Points from Lecture 2

- Relevance of the International Standard Atmosphere
- Basic Definitions of Thrust, Efficiency & Fuel Consumption
- Review of basic thermodynamic relationships for use in cycle calculations
- The method for the calculation of the performance of a simple turbojet

Different Turbofan Types

Civil Turbofan~ Trent

Military Turbofan ~ EJ200

Lecture 3

Design Point & Off-Design Performance

Objective ~ Lecture 3

To outline the way that the performance of a propulsion system can be characterised