POIS

FANTASTIC Q	When is a problem Intosec and? And lunen the problem is impossible to solve	logically / perjecting.
	Will be showing with standard exa	
	eg): Inashing passwirt.	
	theosphally impossible to be perfect if length is not injurite.	
	egl: <u>Secure communication</u> (S) (S)	Fantastic)
	Q to $inpo(R) = inpo(eve)$ (3) (6)	tantastic tascinating
	egs: Data integrity	Fundamental
	If m was seen modified to m! It is the same to receiver.	, I and amental
	and if m' " " Cannot their identity.	
000 Eg of	non whose — myosec	
	· problem in distributed computing now an infosec problem.	
	Solution, use signatures ⇒ implying signo	tures are impossible.
FASCINATING Q.	How to logically solve/arcument a logical impossibility?	
	[Ans] Bring in another impossibility and make it destructionly interfere w	ith the original one.
	We focus an 4-t sources of impossibilities in the semester.	Random Words
		- Hanning Distance
	Course: See impressibilities	
		information security is God
	Introduce offer FUNDAMENTAL	- all nontrivial works of
	Save them	Science must include
	per monder happrox.	
	Sources of Impossibility.	-logical nogo
	() Computational Hardness [Resource Complexity]	
	Only larger (2) Practical Uncertainties	
	Speech of Lings 3 Natural Limits	
	4 Logical / Philosophical Impossibilities	
	S Symmet Market Market Miles	

	7.1.20
	Topics to cover
	· Kerckholf's Principle
	· Designing/Braduing classical ciphers.
	Starting off with secure communication naturals.
	. fraditional ciphers, and how to break them. Shannan next class. M = Dec(C)
	- defined information C = Euc(M)
	- path aredong.
	Caesar Cipher Big talk about his perspective of
	M= Message
	No= no. og charasters in rant an untak is art and unhalt is all and unhalt is art and unhalt is all and unhalt is
	Schena.
ed words in	Karckhoff's Principle
book ,	Security of a system must NOT depend on the OBSCURITY of the
	algorithm, rather must solely depend on the SECRECY of the KEY.
	Kerchhall's Reasonings
	1. Algorithms are reverse engineeroble.
	<u> </u>
	Attacher can beed next, ky and see that all outputs h(xi)
	8 h(xi) -h(xj). And then some for c.
	if passions rounded in season systems change pers. 2. Updadian/ Recovery Complexity_ if also "in absorby ": 11 hours.
	3. Secure Memory is costly.
	On the state and the material
Ask	ATHLETA bad information storage efficiency.
	4. Scalable
	Without: Diff elgorithm for everyone.
	(F) (P2) With: Only they wanges among people.

Additional Reasoning
1. Etheral Hacking hypothesis: no system is secure. To bug exists To nonethical people exist
bug (algo) with be only " search for bug found because to big F, take that L
town detail
2. Standards and by allighous
2. Standards . needed for efficiency
Thus we can see why caesar apher fails.
Next Heration:
Shigh Cipher:
C= (x+k) mod n _k M= message → If keyspoce is <u>Smol</u> , attachez.
C=coder ruessage k= key
M= no.ox characters in the proper care
ATTACK applicat. Principle of large key space
2. Autobaccahing:
- frequency analysis
$P_i = P(i^m \text{ on } i \land m)$ Recompute $\sum_{i=0}^{2N} P_i^2 \simeq 6.065$
Now compute $\sum_{i=0}^{2r} (P_i q_{ipt})$ wrong $\frac{2r}{2u}$
fuel 20.065
Next iteration:
Mano alpha betic Substitution apher
-Dill alphabets shift by different ands.
- no repetitions allowed
for brute fore: 26! keys to search
η σ το στο (το στο γ
ATTACK
Hi ∃i : qr ≥ p; ⇒ 1. Sort qi S since didribudion 15 some,
2 Sort P_i S rule distribution is some, 2 Sort P_i S $P_a = q_A$, $P_c = q_b$

Issue: susceptive to frequency attacks.

	The above probability fells us that the encryption
	Of wo and my are undistinguishable.
	For Vernam Cipher:
	L48=p [C = c M = mo]
	= P[C=moDk] = P[K=CDmo]
	= 1/2n = RMS (P is not dependent on)
	A Imbrs_ B secure
	$(A) = \underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$
	Seme
	Uses of vernam Cipher:
	i) To some your shady loveriness from the fed
	Encrypt sue dates and delenget after raid
	ii) Use some channel on how load days to
	transfer keys and on Righ boad days, use inserve channel by encrypting,
	inserve Channel by encrypting,
	Now, beforeation in the field. Symmetric least cryptocycaptry. Impossible if project security
	Slow secure channel } Fast secure channel
	Two impossibilities
	Public Key crystography
	Only In secure channel \Rightarrow slow secure channel $\frac{1}{2}$
	·
	Now showing that United Drs of Vernam cipher apply to any perfect
	apher system as per Shannon's definition
	D. COUPP '
Main	action from
16	$\frac{1}{1}$ Thm: For any perfectly secret encryption schene $ K \ge M $
ssug have: Mis compress	the.
	1 We use a hadry bypass
	Shannon did: $H(K) \ge H(M)$ to this
	ASK ATHREYA FOR INTUITION

Ni

Proof: Suppose not (the contrary) |K| < | th/ we will show this directly implies this cannot be perfectly secret Some ciphetest c D = Em | JK EK Dec(c)=m} N_{DW} , $|D| \leq |K| : < |M|$ CAFM .t. Math CE consider a dist where P(M=m*) \$6 ; P[M=m * | C=c] =0 but we said P(N=m+) +0 = Scheme is not perfectly secret to For perfectly searet scheme, IKI must be at least IMI of one time pad not a one-off. 17.1.20 Oh no 1t's Chiranjaevi Class on either 1 Finite Fields 2. Elliptic Curve Groups: (set, binary separation) satisfying axioms eq: (Z, +)- dosure - Identity - associative - Invest far dromb C' if H C G and satisfies property. It is a subgroup of G. Cyclic group if a = G , and G= {a', a', a', ...} eq. of (Z, ·n) groups Rivy, Integral Domain, Field Next. (R, t, .) two binary operations on a set R a) (R, +) is a commutative groupb) Closure: ab ER 4 alb ER c) Associative: (ab). c = a(bc) + ab & R

d) Distributive lows: (a+b).c= a.c+b.c; allote) = a.b+a.c

```
Ring need not be communded the with.
  Commutative Ring is also "
   eq. of eng: (Z, +, \cdot) is a ring (Q, +, \cdot) " " "
Zero Divisors: For a rmg R, a, b s.t a (70) ER, J bek, b =0, ab=0 or b,a=0
              eg: (Zn, + |n, - (n)
Integral Domain? A commutative ring with no zero divisors.
Division Ring: An integral domain s.t (R-Eoy, .) is a group
 Field: (F, +, .)
                                                                 Finite field: Field where set F
                                                                          is frik
                 a) (F,+) is commutative group
                b) (F-{0},·) "
                 c) Distributive laws: (a+b).c= a,c+b,c; a(b+c) = a,b+a.c
     Not a field: (Z,+,·), (Zn,+n,·n) generally
            field: (R, + +), (Q,+,-), (Zn, +n, in) if n=p, (Zn, +n, n)
Characteristic of Integral Domain (I)
     least positive integer in s.t m.a = 0 ta EI
     if such my does not exist, characteristic of I is 0.
  14 (F,+,.) is finit, char F = p (for some prime)
            · = at least 0,1. Now 1+1, 1+1+1, 1+1+1....
                                    sums have to be repeated, as finite
                  1. j = 1. j
                  0 = 1.(i-5)
                  N = i-j
  is prime . if N is not prime, n = ab.
                 (x.16) . 1 =0
                Done of all zero dissor
                                          contrasictory to definition
                => n is prime.
 Now, (Zp,+p, p) is a field the =P
 if for any guen F, charF=p, Zp(=Zpz) CF
```

