Homework 8

VE370 - Intro to Computer Organization Summer 2022

* Name: Huang Yucheng ID: 519021910885

Exercise 1

Assume that main memory accesses take 70 ns and that memory accesses are 36% of all instructions. The following table shows parameters for a two-level cache memory.

	Size	Miss Rate	Hit Time
L1	16 KB	7.3%	1.18 ns
L2	1MB	1.5%	5.34 ns

- (1) What is the AMAT for the computer?
- (2) Assuming the L1 hit time determines the cycle times and a base CPI is 1.0 without any memory stalls, what is the total CPI?

Answer:

(1)
$$AMAT = 1.18 + 7.3\% * 5.34 + 7.3\% * 1.5\% * 70 = 1.18 + 0.384 + 0.077 = 1.646 \text{ ns}$$

(2) Total CPI =
$$1 + 36\% * 7.3\% * 98.5\% * 5.34/1.18 + 36\% * 7.3\% * 1.5\% * (70 + 5.34)/1.18 = 1.142$$

Exercise 2

In this exercise, we will examine how replacement policies impact miss rate. Assume a 2-way set associative cache with 4 blocks. Following table gives addresses for memory access.

- (1) Assuming an LRU replacement policy, how many hits does this address sequence exhibit?
- (2) Assuming an MRU (most recently used) replacement policy, how many hits does this address sequence exhibit?
- (3) Simulate a random replacement policy by flipping a coin. For example, "heads" means to evict the first block in a set and "tails" means to evict the second block in a set. How many hits does this address sequence exhibit? Note: you should flip the coin yourself, not by computer.

You may find following table is useful:

Block Address	Hit/Miss	Evicted	Contents of Cache			
of memory		Block	Se	t 0	Se	t 1
1						
3						
5						
1						
3						
1						
3						
5						
3						

Answer:

	Block Address	Hit/Miss	Evicted		Contents	of Cache	
	of memory		Block	Set	0	Se	t 1
	1	M				1	
	3	M				1	3
	5	M	1			5	3
(1)	1	M	3			5	1
	3	M	5			3	1
	1	H				3	1
	3	H				3	1
	5	M	1			3	5
	3	Н				3	5

There are 3 hits.

	Block Address	Hit/Miss	Evicted	Contents	of Cache	
	of memory		Block	Set 0	Se	t 1
	1	M			1	
	3	M			1	3
	5	M	3		1	5
(2)	1	H			1	5
	3	M	1		3	5
	1	M	3		1	5
	3	M	1		3	5
	5	Н			3	5
	3	H			3	5

There are 3 hits.

(3) I flipped a coin and get the sequence "HHHTHTTTH". If we need to change the block, I will use this sequence.

Block Address	Hit/Miss	Evicted	Content	s of Cache	
of memory		Block	Set 0	Se	et 1
1	M			1	
3	M			1	3
5	M	1		5	3
1	M	5		1	3
3	H			1	3
1	Н			1	3
3	Н			1	3
5	M	1		5	3
3	Н			5	3

There are 4 hits.

Exercise 3

Virtual memory uses a page table to track the mapping of virtual addresses to physical addresses. The following is a stream of virtual byte addresses used to access memory. Virtual addresses (in decimal): 12648, 45419, 46824, 16975, 40004, 12707, 52236

Assume 4 KB pages, a 4-entry fully associative TLB, and LRU replacement. If pages must be brought in from disk, increment to the next largest page number.

TLB:

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
0	4	9

Page Table:

Valid	Physical Page Number
1	5
0	Disk
0	Disk
1	6
1	9
1	11
0	Disk
1	4
0	Disk
0	Disk
1	3
1	12

- (1) Given the virtual address stream, and the initial TLB and page table states shown above, show the final state of the system. Also list for each reference if it is a hit in the TLB, a hit in the page table, or a page fault.
- (2) Repeat question (1), but this time use 16 KB pages instead of 4 KB pages.
- (3) What would be some of the advantages and disadvantages of having a larger page size?
- (4) Show the final contents of the TLB if it is 2-way set associative.

Answer:

(1) a. 12648 = 0x3168, VPN = 3, hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
0	4	9

b. 45419 = 0xB16B, VPN = 11, hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
0	4	9

c. 46824 = 0xB6E8, VPN = 11 , hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
0	4	9

d. 16975 = 0x424F, VPN = 4, miss in TLB but can find it in Page Table

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
1	4	9

e. 40004=0 x9C44, VPN=9, miss in TLB and Page Table, which means it is a Page Fault and we use LRU to change Tag 7 to 9. The PPN will be incremented to 13.

Valid	Tag	Physical Page Number
1	11	12
1	9	13
1	3	6
1	4	9

f. 12707 = 0x31A3, VPN = 3, hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	11	12
1	9	13
1	3	6
1	4	9

g. 52236=0xCC0C, VPN = 12 , miss in TLB and Page Table, which means it is a Page Fault and we use LRU to change Tag 11 to 12. The PPN will be incremented to 14.

Valid	Tag	Physical Page Number
1	12	14
1	9	13
1	3	6
1	4	9

Page Table:

Valid	Physical Page Number
1	5
0	Disk
0	Disk
1	6
1	9
1	11
0	Disk
1	4
0	Disk
1	13
1	3
1	12
1	14

(2) a. 12648 = 0x3168, VPN = 0, miss in TLB but can find it in Page Table

Valid	Tag	Physical Page Number
1	11	12
1	7	4
1	3	6
1	0	5

b. 45419=0 xB 16 B, VPN=2, miss in TLB and Page Table, which means it is a Page Fault and we use LRU to change Tag 11 to 2. The PPN will be incremented to 13.

Valid	Tag	Physical Page Number
1	2	13
1	7	4
1	3	6
1	0	5

c. 46824 = 0xB6E8, VPN = 2, hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	2	13
1	7	4
1	3	6
1	0	5

d. 16975=0x424F, VPN=1, miss in TLB and Page Table, which means it is a Page Fault and we use LRU to change Tag 7 to 1. The PPN will be incremented to 14.

Valid	Tag	Physical Page Number
1	2	13
1	1	14
1	3	6
1	0	5

e. 40004 = 0x9C44, VPN = 2 , hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	2	13
1	1	14
1	3	6
1	0	5

f. 12707 = 0x31A3, VPN = 1, hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	2	13
1	1	14
1	3	6
1	0	5

g. 52236 = 0xCC0C, VPN = 3, hit in TLB and Page Table

Valid	Tag	Physical Page Number
1	2	13
1	1	14
1	3	6
1	0	5

Page Table:

Valid	Physical Page Number
1	5
1	14
1	13
1	6
1	9
1	11
0	Disk
1	4
0	Disk
0	Disk
1	3
1	12

- (3) Advantage: page fault rate will be reduced because it can store more page numbers.

 Disadvantage: Miss penalty for page fault will be increased gradually because we need to spend more time to find the page.
- (4) a. 12648 = 0x3168, VPN = 3, Set Index = 1, Tag = 1, miss in TLB and Page Table, which means it is a Page Fault and we use LRU to change Tag 0 to 1. The PPN will be incremented to 13.

Set Index	Valid	Tag	Physical Page Number
0	1	11	12
0	1	7	4
1	1	3	6
1	1	1	13

b. 45419 = 0xB16B, VPN = 11, Set Index = 1, Tag = 5, miss in TLB but can find it in Page Table

Set Index	Valid	Tag	Physical Page Number
0	1	11	12
0	1	7	4
1	1	5	11
1	1	1	13

c. 46824 = 0xB6E8, VPN = 11, Set Index = 1, Tag = 5, hit in TLB and Page Table

Set Index	Valid	Tag	Physical Page Number
0	1	11	12
0	1	7	4
1	1	5	11
1	1	1	13

d. 16975 = 0x424F, VPN = 4, Set Index = 0, Tag = 2, miss in TLB and Page Table, which means it is a Page Fault and we use LRU to change Tag 11 to 2. The PPN will be incremented to 14.

Set Index	Valid	Tag	Physical Page Number
0	1	2	14
0	1	7	4
1	1	5	11
1	1	1	13

e. 40004 = 0x9C44, VPN = 9, Set Index = 1, Tag = 4, miss in TLB but can find it in Page Table

Set Index	Valid	Tag	Physical Page Number
0	1	2	14
0	1	7	4
1	1	5	11
1	1	4	9

f. 12707 = 0x31A3, VPN = 3, Set Index = 1, Tag = 1, miss in TLB but can find it in Page Table

Set Index	Valid	Tag	Physical Page Number
0	1	2	14
0	1	7	4
1	1	1	13
1	1	4	9

g. 52236 = 0xCC0C, VPN = 12, Set Index = 0, Tag = 6, miss in TLB and Page Table, which means it is a Page Fault and we use LRU to change Tag 7 to 6. The PPN will be incremented to 15.

Set Index	Valid	Tag	Physical Page Number
0	1	2	14
0	1	6	15
1	1	1	13
1	1	4	9

Page Table:

Valid	Physical Page Number
1	5
1	13
1	14
1	6
1	9
1	11
1	15
1	4
0	Disk
0	Disk
1	3
1	12