Lei de Gauss

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

23 de Fevereiro de 2021

Prof. Flaviano W. Fernandes

Sumário

- Fluxo elétrico
- Lei de Gauss
- Aplicações da Lei de Gauss
- **Apêndice**

Definição de fluxo elétrico

Fluxo elétrico •00

> Definimos fluxo do campo elétrico \vec{E} que atravessa uma área ΔA como a somatória das linhas de campo elétrico que atravessam perpendicularmente essa área.

$$\Delta \Phi_E = (E cos \theta) \Delta A.$$

Fluxo do campo Elétrico

$$\Delta \Phi_F = \vec{E} \cdot \hat{n} \Delta A$$
.

 $\Delta \Phi_E$: E por area perpendicular a espira.

Fluxo elétrico zero.

Fluxo elétrico mínimo.

Corollary

Se o sentido do campo elétrico é para fora da superfície, o fluxo é positivo. Se for para dentro, o fluxo é negativo e se o campo elétrico é paralelo, o fluxo é zero.

Prof. Flaviano W. Fernandes

Fluxo elétrico

Fluxo total em uma superfície fechada

O fluxo total do campo elétrico que atravessa uma superfície fechada pode ser dado pela soma dos fluxos que atravessam cada parte dessa superfície.

$$\Delta \Phi_{E} = \sum \vec{E} \cdot \hat{n} \Delta A.$$

No limite $\triangle A \rightarrow dA$ a somatória se transforma em uma integral de superfície.

Fluxo do campo Elétrico

$$\Phi_{\it E} = \oint ec{\it E} \cdot \widehat{\it n} d{\it A}.$$

Linhas de campo elétrico atravessando uma superfície hipotética e fechada [1].

Prof. Flaviano W. Fernandes IFPR-Irati

Fluxo elétrico

000

Fluxo elétrico em uma superfície gaussiana

De acordo com a Lei de Gauss, o fluxo total do campo elétrico que atravessa uma superfíce fechada é proporcional a quantidade de carga no interior dessa superfície,

$$\Phi_{m{\mathcal{E}}} = \oint ec{m{\mathcal{E}}} \cdot \widehat{m{n}} dA \; lpha \; m{q}.$$

proporcionalidade como $1/\varepsilon_0$, onde $\varepsilon_0=8,854\,187\,817\,6\times 10^{-12}\,\mathrm{C}^2/(\mathrm{N}\,\mathrm{m}^2).$

Lei de Gauss

$$\oint \vec{E} \cdot \hat{n} dA = \frac{q}{\varepsilon_0}.$$

Escolhemos convenientemente a constante de

Corollary

Definimos superfície gaussiana como uma superfície hipotética e fechada por onde é possível calcular o fluxo total do campo elétrico que atravessa essa superfície.

Relação entre a Lei de Gauss e a Lei de Coulomb.

Considere uma superfície gaussiana na forma esférica que engloga uma carga puntiforme q, aplicando a Lei de Gauss temos

$$arepsilon_0\oint ec{m{E}}\cdot \widehat{m{r}} d{m{A}} = arepsilon_0\oint {m{E}} d{m{A}} = {m{q}},$$

O campo elétrico é igual em qualquer posição na superfície da esfera, assim podemos tratá-lo como constante ao longo da superfície.

$$\varepsilon_0 E \oint dA = q.$$

A área total da superfície esférica é dado por $4\pi r^2$, onde r é o raio da esfera, portanto

$$arepsilon_0 E(4\pi r^2) = q,$$

$$E(r) = rac{1}{4\pi arepsilon_0} rac{q}{r^2}.$$

Podemos concluir que $K = \frac{1}{4\pi\varepsilon_0}$.

Condutor carregado

No caso de um condutor eletrizado, as cargas em excesso estão livres para se moverem e irão se afastar mutuamente se concentrando na superfície, o que implica no interior que

$$\Phi_{E} = \oint \vec{E} \cdot \hat{n} dA = 0.$$

Na condição de equilíbrio eletrostático teremos $\vec{E} \parallel \hat{n}$, e para satisfazer a equação acima devemos ter E = 0.

Pedaço de metal [1].

Corollary

O campo elétrico de um condutor em equilíbrio eletrostático é zero no seu interior e na superfície é perpendicular a essa superfície.

Prof. Flaviano W. Fernandes

Simetria cilíndrica: Fio retilíneo

Considere uma barra cilíndrica contendo uma distribuição de cargas λ . Devido a simetria cilíndrica da distribuição de cargas, é conveniente considerarmos também uma superfície gaussiana com um formato também cilíndrico, pois assim poderemos determinar com uma certa simplicidade o fluxo nas bases e no corpo. O fluxo do campo elétrico é calculado somando o fluxo das bases e da lateral.

$$\Phi_{\textit{E}} = \Phi_{\textit{Base}} + \Phi_{\textit{Topo}} + \Phi_{\textit{Lateral}}.$$

Superfície gaussiana envolvendo um fio retilíneo carregado eletricamente [1].

Mas, devido a simetria das cargas a componente axial resultante das contribuicões do campo elétrico de cada carga elétrica elementar é zero, restando apenas a componente radial. Assim temos para cada contribuição da componente radial

$$egin{aligned} \Phi_{\mathsf{bases}} &= \int_{A_{\mathsf{Base}}} \mathsf{Ecos}(90^\circ) \mathsf{dA}, \ \Phi_{\mathsf{lateral}} &= \int_{A_{\mathsf{Lateral}}} \mathsf{Ecos}(0^\circ) \mathsf{dA}. \end{aligned}$$

Portanto, o fluxo nas bases será zero enquanto que na lateral será

Aplicações da Lei de Gauss

00000000

$$E\left(2\pi rh
ight)=rac{q}{arepsilon_{0}}.$$

A carga q dentro da superfície gaussiana é dada por $q = \lambda h$, portanto

$$egin{aligned} E\left(2\pi r\hbar
ight)&=rac{\lambda \hbar}{arepsilon_0},\ E&=rac{\lambda}{2\piarepsilon_0 r}. \end{aligned}$$

Simetria plana: Placa homogênea

Consideramos uma placa infinita, isolante, com uma densidade superficial de carga σ . Devido a distribuição uniforme de cargas é conveniente adotar uma simetria cilíndrica como mostra a figura ao lado. As componentes do campo elétrico permite que o fluxo da lateral seja zero enquanto que o fluxo nas bases serão máximos, portanto

$$arepsilon_0\ointec{m{E}}\cdot\widehat{m{n}}dm{A}=m{q}, \ arepsilon_0ig(m{E}m{A}+m{E}m{A}ig)=\sigmam{A}, \ m{E}=rac{\sigma}{2arepsilon_0}.$$

Vista lateral de uma pequena parte de uma placa de grande extensão com uma carga positiva [1].

Simetria esférica: Casca esférica

Considere uma casca esférica isolante de raio R carregada uniformemente com uma densidade superficial de carga σ . Para calcular o campo elétrico em um ponto a uma distância r do centro da casca, usamos uma superfície gaussiana também esférica mas de raio r. Aplicando a Lei de Gauss temos

$$arepsilon_0\oint ec{m{E}}\cdot\widehat{m{n}}dm{A}=m{q}.$$

Sabendo que o campo elétrico em uma superfície é perpendicular a ela, podemos dizer que em cada elemento de área temos $\vec{E} \cdot \hat{n} dA = E dA$.

Secão reta de uma casca esférica fina, uniformemente carregada, com uma carga q [1].

Simetria esférica: Casca esférica (continuação)

Substituindo na Lei de Gauss resulta em

$$arepsilon_0\oint extit{\it EdA}=q.$$

Podemos também supor que o campo elétrico em qualquer ponto da superfície é o mesmo considerando que a carga está igualmente distribuída, portanto

$$\varepsilon_0 E \oint dA = q,$$
 $\varepsilon_0 EA = q,$

onde a área superficial da superfície gaussiana é dada por $A = 4\pi r^2$, substituindo

$$arepsilon_0 E(4\pi r^2) = q, \ E = rac{1}{4\pi arepsilon_0} rac{q}{r^2}.$$

No caso r < R, temos que não haverá cargas no interior da superfície gaussiana, portanto o fluxo deverá ser zero, o que pode ser conseguido se E=0.

Simetria esférica: Esfera macica

Considere uma esfera maciça isolante de raio R carregada uniformemente com uma densidade volumétrica de carga p. Podemos considerar que a uma distância r do centro da esfera teremos diversas cascas esféricas com uma fina espessura sobrepostas, de modo que a carga total q' inserida na superfície gaussiana é a soma das cargas parciais de cada casca esférica, portanto

$$arepsilon_0\oint ec{E}\cdot\widehat{n}dA=q',$$

onde $q' = V\rho$ e $V = \frac{4\pi r^3}{3}$ representa o volume de parte da esfera inserida na superfície gaussiana.

Superfície gaussiana. r<R, envolvendo uma parcela q' da carga total q da esfera de raio R [1].

Simetria esférica: Esfera macica (continuação)

Substituímos na Lei de Gauss e sabendo. que a área da gaussiana é igual a $4\pi r^2$,

$$arepsilon_0 E(4\pi r^2) = rac{4\pi
ho r^3}{3},
onumber \ E = rac{
ho}{3arepsilon_0} r.$$

Porém, torna-se conveniente representar a solução em termos da carga total q. onde $q = \rho \frac{4\pi R^3}{2}$.

$$E = rac{q}{4\piarepsilon_0 R^3} r, \quad (r < R).$$

Se r > R o campo elétrico é de uma esfera com distribuição uniforme de carga.

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}, \quad (r \ge R).$$

Fora da esfera, o campo elétrico torna-se igual a de uma carga puntiforme.

Simetria esférica: Esfera macica (continuação)

Podemos resumir a solução encontrada para a esfera macica isolante na forma abaixo.

$$E(r) = egin{cases} rac{q}{4\piarepsilon_0 R^3} r, & (r < R), \ rac{1}{4\piarepsilon_0} rac{q}{r^2}, & (r \geq R). \end{cases}$$

No caso da esfera condutora temos que a carga total q se concentra na superfície, ou seja,

$$E(r) = egin{cases} 0, & (r < R), \ rac{1}{4\piarepsilon_0}rac{q}{r^2}, & (r \geq R). \end{cases}$$

Campo elétrico de uma esfera isolante (a) e condutora (b).

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1~\text{mm} = 1 \times 10^{(-1)\times 2}~\text{dm} \rightarrow 1 \times 10^{-2}~\text{dm}$$

$$2,5 \text{ g} = 2,5 \times 10^{(1) \times 3} \text{ mg} \rightarrow 2,5 \times 10^{3} \text{ mg}$$

10
$$\mu$$
C = 10 × 10^[(-3)×1+(-1)×3] C \rightarrow 10 × 10⁻⁶ C

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

10
$$\mu$$
m² = 10 × 10^[(-6)×1+(-2)×3] m² \rightarrow 10 × 10⁻¹² m²

Prof. Flaviano W. Fernandes

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Prof. Flaviano W. Fernandes

Alfa
$$A$$
 α
Beta B β
Gama Γ γ
Delta Δ δ
Epsílon E ϵ, ε
Zeta Z ζ
Eta H η
Teta Θ θ
lota I ι
Capa K κ
Lambda Λ λ
Mi M μ

 μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Р	ρ
Sigma	Σ	σ
Tau	T	au
Ípsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	$\psi \ \omega$
Ômega	Ω	ω

Referências e observações¹

- D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Eletromagnetismo, v.3. 10. ed., Rio de Janeiro, LTC (2016)
- R. D. Knight, Física: Uma abordagem estratégica, v.3, 2nd ed., Porto Alegre, Bookman (2009)
- H. M. Nussenzveig, Curso de física básica. Eletromagnetismo, v.1, 5. ed., São Paulo, Blucher (2014)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.