Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Mechanical Engineering Stream (BMATM101)

TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing atleast **ONE** question from each **MODULE**
- 2. VTU Formula Hand Book is Permitted
- **3.** M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	M	L	C
Q.1	a	Find the angle of intersection of the curves $r = \sin \theta + \cos \theta$, $r = 2\sin \theta$.	6	L2	CO1
	b	Find the pedal equation of the curve $r^2 = a^2 \sec 2\theta$.	7	L2	CO1
	c	Find the radius of curvature of the curve $x^4 + y^4 = 2$ at $(1, 1)$.	7	L2	CO1
		OR			
Q.2	a	Derive the radius of curvature for polar curve $ (r^2 + r_1^2)^{\frac{3}{2}} $	7	L2	CO1
		$r = f(\theta)$ in the form $\rho = \frac{(r^2 + r_1^2)^{\frac{3}{2}}}{(r^2 + 2r_1^2 - r r_2)}$.			
	b	Find the angle between the radius vector and the tangent and also find the slope of the tangent $r = a(1 + \cos \theta)$ at $\theta = \frac{\pi}{3}$.	8	L2	CO1
	Using modern mathematical tool write a program/code to plot the sine and cosine curve.				CO5
		Module – 2	r		
Q.3	a	Expand $\log(\cos x)$ by Maclaurin's series up to the term containing x^6	6	L2	CO2
	b	If $z = \frac{x^2 + y^2}{x + y}$, show that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$.	7	L2	CO2
	If $x + y + z = u$, $y + z = uv$, $z = uvw$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.				CO2
OR					
Q.4	a	If $u = f(ax - by, by - cz, cz - ax)$ Prove that	7	L2	CO2
		$\frac{1}{a}\frac{\partial u}{\partial x} + \frac{1}{b}\frac{\partial u}{\partial y} + \frac{1}{c}\frac{\partial u}{\partial z} = 0.$			

	1		1	1	
	b	Find the extreme values of $f(x, y) = x^3 + 3x^2 + 4xy + y^2$.	8	L3	CO2
	c	Using modern mathematical tool write a program/code to evaluate $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.	5	L3	CO5
		Module – 3			
Q.5	a	Solve $\frac{dy}{dx} - y \tan x = y^2 \sec x$.	6	L2	CO3
	b	Water at temperature $10^{\circ}C$ takes 5 minutes to warm up to $20^{\circ}C$ at room temperature of 40° . Find the temperature of the water after 20 minutes.	7	L3	CO3
	c	Solve $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$.	7	L2	CO3
		OR			
Q.6	a	Solve $(y \log y) dx + (x - \log y) dy = 0$	6	L2	CO3
	b	Find the orthogonal trajectories of the family curve	7	L3	CO3
		$r = 2a(\cos\theta + \sin\theta)$			
	c	Find the general and singular solutions of $xp^2 + xp - yp + 1 - y = 0$.	7	L2	CO3
		Module – 4			
Q.7	a	Solve $(D^3 - 6D^2 + 11D - 6)y = e^{2x}$	6	L2	CO3
	b	Solve $(D^2 - 4)y = \cos 2x$.	7	L2	CO3
	c	Solve by variation of parameters $(D^2 + 1)y = \sec x$.	7	L2	CO3
		OR			
Q.8	a	Solve $(D^2 + D + 1)y = x^2 + 1$.	6	L2	CO3
	b	Solve by variation of parameters $(D-2)^2 y = 8(x^2 + \sin 2x + e^{2x})$.	7	L2	CO3
	c	Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = \log x$.	7	L2	CO3
		Module – 5			
Q.9	a	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & -1 & 0 \\ 3 & 3 & 2 & 1 \\ 2 & 4 & 6 & 2 \end{bmatrix}$.	6	L2	CO4
	b	Solve the system of equations by Gauss-Elimination method $3x + y + 2z = 3$, $2x - 3y - z = -3$, $x + 2y + z = 4$.	7	L3	CO4
	c	Using the Gauss-Seidel iteration method, solve the equations	7	L3	CO4

		27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 Carryout four iterations starting with the initial approximations $(0, 0, 0)$.			
Q.10	a	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $ \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} $ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial eigenvector [carry out 6 iterations].	8	L3	CO4
	b	Using Gauss-Jordan method, solve $x + y + z = 11$, $3x - y + 2z = 12$, $2x + y - z = 3$.	7	L3	CO4
	c	Using modern mathematical tool write a program/code to test the consistency of the equations, x+2y-z=1, 2x+y+4z=2, 3x+3y+4z=1.	5	L3	CO5

Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Mechanical Engineering Stream (BMATM101)

TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing atleast **ONE** question from each **MODULE**
- 2. VTU Formula Hand Book is Permitted
- **3.** M: Marks, L: RBT levels, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a	Find the angle of intersection of the curves $r = \sin \theta + \cos \theta$, $r = 2\sin \theta$.	6	L2	CO1
	b	With usual notations prove that for the curve $r = f(\theta)$, $\frac{1}{r^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$	7	L2	CO1
	c	Find the radius of curvature for the curve $y = ax^{2} + bx + c \text{ at } x = \frac{1}{2a} \left(\sqrt{a^{2} - 1} - b \right).$	7	L3	CO1
		OR			
Q.2	a	Show that the pedal equation for the curve $r^{m} = a^{m} \cos m\theta \text{ is } pa^{m} = r^{m+1}.$	8	L2	CO1
	b	Derive the radius of curvature in Cartesian form.	7	L2	CO1
	c	Using modern mathematical tool write a program/code to plot the curve $r = 2 \cos 2\theta $.	5	L3	CO5
		Module – 2			
Q.3	a	Expand $e^{\cos x}$ by Maclaurin's series up to the term containing x^6 .	6	L2	CO2
	b	If $u = f(x - y, y - z, z - x)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	7	L2	CO2
	c	Examine the function $f(x, y) = x^3 + 3xy^2 + 15x^2 - 15y^2 + 72x$	7	L3	CO2
		for extreme values.			
	Г	OR	Г	T	
Q.4	a	Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x + d^x}{4}\right)^{\frac{1}{x}}$.	7	L2	CO2
	b	If $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	8	L3	CO2
	c	Using modern mathematical tool write a program/code to show that $u_{xx} + u_{yy} = 0$ given $u = e^x(x \cos y - y \sin y)$.	5	L3	CO5

		Module – 3			
Q.5	a	Solve $\frac{dy}{dx} + x\sin 2y = x^2\cos^2 y$.	6	L2	CO3
	b	Solve $(x^3 + y^3 + 6x)dx + (xy^2)dy = 0$.	7	L2	CO3
	c	Find the orthogonal trajectories of cardioid $r = a(1 - \cos \theta)$.	7	L3	CO3
		OR		T	I
Q.6	a	Solve $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$	6	L2	CO3
	b	A body is heated to 110° C and placed in air at 10° C. After an hour its temperature becomes 60° c. How much additional time is required for it to cool 30° C.	7	L3	CO3
	c	Find the general and singular solution of the equation	7	L2	CO3
		$x^{2}(y-px) = p^{2}y$ reducing into Clairaut's form, using the substitution $X = x^{2}$, $Y = y^{2}$.			
		Module – 4			T
Q.7	a	Solve $(D^4 - 4D^3 + 8D^2 - 8D + 4)y = 0$	6	L2	CO3
	b	Solve $(D^2 - 6D + 9)y = 6e^{3x} + 7e^{-2x} - \log 2$.	7	L3	CO3
	c	Solve by variation of parameters $(D^2 - 1)y = \frac{2}{1 + e^x}$	7	L2	CO3
		OR			T
Q.8	a	Solve $(D^3 - 3D^2 + 3D - 1)y = 0$.	6	L2	CO3
	b	Solve $\left(D^3 + 2D^2 + D\right)y = \sin 2x.$	7	L2	CO3
	c	Solve $(2x+3)^2 \frac{d^2y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$.	7	L2	CO3
	1	Module – 5			T
Q.9	a	Find the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$.	6	L2	CO4
	b	Solve the system of equations by Gauss-Jordan method $x + y + z = 8$, $-x - y + 2z = -4$, $3x + 5y - 7z = 14$.	7	L3	CO4
	c	Solve the system of equations using Gauss-Seidel method by taking $(0, 0, 0)$ as an initial approximate root $5x + 2y + z = 12$, $x + 4y + 2z = 15$, $x + 2y + 5z = 20$	7	L3	CO4

	OR							
Q.10	a	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 4 & 6 & 8 \\ 4 & 8 & 12 & 16 \\ 1 & 2 & 3 & 4 \end{bmatrix}$.	7	L2	CO4			
	b	For what values λ and μ the system of equations $2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$, has (i) no solution (ii) a unique solution and (iii) infinite number of solutions.	8	L2	CO4			
	С	Using modern mathematical tool write a program/code to find the largest eigen value of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by power method.	5	L3	CO5			

Model Question Paper-I with effect from2022(CBCS Scheme) USN

First Semester B.E Degree Examination

Mathematics-I for Mechanical Engineering stream (22MATM11)

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each module.

		Module -1	Marks
Q.01	a	Find the angle of intersection of the curves $r = \sin \theta + \cos \theta$ and $r = 2 \sin \theta$	06
	b	Find the pedal equation of the curve $r^2 = a^2 sec2\theta$.	07
	с	Find the radius of curvature of the curve $x^4 + y^4 = 2$ at the point $(1, 1)$	07
		OR	
Q.02	a	Derive the radius of curvature for polar curve $r = f(\theta)$ in the form $\rho = \frac{(r^2 + r_1^2)^{3/2}}{r^2 + 2r_1^2 - rr_2}$	06
	b	Find the angle between the radius vector and the tangent and also find the slope of the tangent $r = a(1 + \cos\theta)$ at $\theta = \pi/3$.	07
	С	Find that the radius of curvature of $a^2y = x^3 - a^3$ at the point where the curves cut the X-axis.	07
		Module-2	
Q. 03	a	Expand $\log \cos x$ by Maclaurin's series up to the term containing x^6	06
	b	If $z = \frac{x^2 + y^2}{x + y}$, show that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$	07
	с	If $u = x + y + z$, $uv = y + z$, $uvw = z$, evaluate $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	07
		OR	
Q.04	a	Evaluate (i) $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$ (ii) $\lim_{x \to 0} (\tan x)^{\tan x}$	6
	b	If $u = f(ax - by, by - cz, cz - ax)$, show that $\frac{1}{a} \frac{\partial u}{\partial x} + \frac{1}{b} \frac{\partial u}{\partial y} + \frac{1}{c} \frac{\partial u}{\partial z} = 0$	07
	c	Find the extreme values of $f(x,y) = x^3 + 3x^2 + 4xy + y^2$	07
		Module-3	
Q. 05	a	Solve $\frac{dy}{dx} - ytanx = y^2 secx$	06
	b	Water at temperature $10^{\circ}C$ takes 5 minutes to warm up to $20^{\circ}C$ at room temperature of 40° . Find the temperature of the water after 20 minutes.	07
	С	Solve $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$	07
		OR	

Q. 06	a	$Solve(y \log y)dx + (x - \log y)dy = 0$	06
	b	Find the orthogonal trajectories of the family curve $r = 2a(\cos\theta + \sin\theta)$.	07
	с	Find the general and singular solutions of $xp^2 + xp - yp + 1 - y = 0$	07
I	<u> </u>	Module-4	
Q. 07	a	Solve $(D^3 - 6D^2 + 11D - 6)y = e^{2x}$	06
	b	Solve $\frac{d^2y}{dx^2} - 4y = \cos 2x$	07
	с	Solve by variation of parameters method $(D^2 + 1)y = secx$	07
		OR	
Q. 08	a	Solve $(D^2 + D + 1)y = x^2 + 1$	06
	b	Solve $(D-2)^2y = 8(x^2 + \sin 2x + e^{2x})$	07
	c	Solve $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = \log x$	07
	1	Module-5	
Q. 09	a	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & -1 & 0 \\ 3 & 3 & 2 & 1 \\ 2 & 4 & 6 & 2 \end{bmatrix}$	06
	b	Solve the system of equations by using the Gauss elimination method $3x + y + 2z = 3$, $2x - 3y - z = -3$, $x + 2y + z = 4$.	07
	С	Using the Gauss-Seidel iteration method, solve the equations $27x + 6y - z = 85$, $6x + 15y + 2z = 72$, $x + y + 54z = 110$. Carryout four iterations starting with the initial approximations $(0, 0, 0)$	07
		OR	
Q. 10	a	Test for consistency and solve	06
		5x + 3y + 7z = 4, $3x + 26y + 2z = 9$, $7x + 2y + 10z = 5$	
	b	Using Gauss-Jordan method, solve	07
	С	x + y + z = 11, $3x - y + 2z = 12$, $2x + y - z = 3Find the largest eigenvalue and the corresponding eigenvector of \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} with the initial approximate eigenvector \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T. Carry out 4 iterations.$	07

Ques	stion	Bloom's Taxonom Level attached	ny Course Outcome		Program Outcome	
Q.1	(a)	L1		CO 01	PO 01	
	(b)	L2		CO 01	PO 01	
	(c)	L3		CO 01	PO 02	
Q.2	(a)	L1		CO 01	PO 01	
	(b)	L2		CO 01	PO 01	
	(c)	L3		CO 01	PO 02	
Q.3	(a)	L2		CO 02	PO 01	
_	(b)	L2		CO 02	PO 01	
	(c)	L3		CO 02	PO 02	
Q.4	(a)	L2		CO 02	PO 01	
-	(b)	L2		CO 02	PO 01	
	(c)	L3		CO 02	PO 03	
Q.5	(a)	L2		CO 03	PO 02	
	(b)	L3	CO 03		PO 03	
	(c)	L2		CO 03	PO 01	
Q.6	(a)	L2		CO 03	PO 02	
-	(b)	L3		CO 03	PO 03	
	(c)	L2		CO 03	PO 01	
Q.7	(a)	L2		CO 04	PO 02	
	(b)	L2		CO 04	PO 02	
	(c)	L2		CO 04	PO 02	
Q.8	(a)	L2		CO 04	PO 02	
_	(b)	L2		CO 04	PO 02	
	(c)	L2		CO 04	PO 02	
Q.9	(a)	L2		CO 05	PO 01	
	(b)	L3		CO 05	PO 01	
	(c)	L3		CO 05	PO 02	
Q.10	(a)	L2		CO 05	PO 01	
	(b)	L3		CO 05	PO 01	
	(c)	L3		CO 05	PO 02	
			Lower o	rder thinking skills	3	
Bloom's Taxonom y Levels		Remembering (Knowledge): L ₁	Understanding (Comprehension): L ₂		Applying (Application): L ₃	
-				order thinking skill		
		Analyzing (Analysis): L ₄	$(S_{1}, S_{2}, S_{2}) = S_{2}$ Using (Evaluation): S_{2} Creating (S ₂)			

Model Question Paper-2 with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Mechanical Engineering Stream (22MATM11)

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	Marks
Q.01	a	Find the angle between the polar curves $r = a(1 + \cos \theta)$ and $r^2 = a^2 \cos 2\theta$	06
	b	Prove with usual notations $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$	07
	С	Find the radius of curvature for the curve $y = ax^2 + bx + c$ at $x = \frac{1}{2a} (\sqrt{a^2 - 1} - b)$.	07
		OR	
Q.02	a	Show that the pedal equation for the curve $r^m = a^m \cos m\theta$ is $p a^m = r^{m+1}$	06
	b	Derive the radius of curvature in Cartesian form.	07
	С	Show that for the curve $r = a(1 - \cos\theta)$ is $\frac{\rho^2}{r} = \text{constant}$.	07
		Module-2	
Q. 03	a	Expand $e^{\cos x}$ up to the terms containing fourth degree using Maclaurin's series.	06
	b	If $u = f(x - y, y - z, z - x)$ show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	07
	С	Find the extreme values of the function $f(x, y) = x^3 + 3xy^2 + 15x^2 - 15y^2 + 72x$	07
		OR	
Q.04	а	Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x + d}{4} \right)^{1/x}$	06
	b	Find the total derivative $\frac{du}{dx}$ for $u = xy^2 + x^2y$; $x = at$; $y = 2at$	07
	С	If $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$, $w = x + y + z$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$	07
	<u> </u>	Module-3	
Q. 05	a	Solve $\frac{dy}{dx} + x\sin 2y = x^3\cos^2 y$	06

	b	Solve $(x^3 + y^3 + 6x) dx + (xy^2) dy = 0$	07
	С	Find the orthogonal trajectories of cardioid $r = a(1 - \cos \theta)$	07
	I	OR	
Q. 06	a	Solve $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$	06
	b	A body is heated to 110° C and placed in air at 10° C. After an hour its temperature becomes 60° C. How much additional time is required for it to cool to 30° C.	07
	С	Find the general solution of $x^2(y-px)=p^2y$ by reducing it to Clairaut's form	07
		using the substitution $X = x^2$, $Y = y^2$.	
	1	Module-4	
Q. 07	a	Solve $[D^4 - 4D^3 + 8D^2 - 8D + 4]y = 0.$	06
	b	Solve $[D^2 - 6D + 9]y = 6e^{3x} + 7e^{-2x} - log2$	07
	С	Solve by the method of variation of parameter $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$	07
	ı	OR	
Q. 08	a	Solve $(D^3 - 3D^2 + 3D - 1)y = 0$	06
	b	$Solve [D^3 + 2D^2 + D]y = sin2x$	07
	С	Solve $(2x+3)^2 \frac{d^2y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x$	07
		Module-5	
Q. 09	а	Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	06
	b	Solve the system of equations by Gauss-Jordan method $x + y + z = 8$; $-x - y + 2z = -4$; $3x + 5y + -7 = 14$	07
	С	Using Rayleigh's power method find the dominant eigenvalue and the	07
		corresponding eigenvector of $A = \begin{bmatrix} 23 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by taking $(1,0,0)^T$ as initial	
		eigenvector by carrying out 6 iterations.	
	<u> </u>	OR	

a	$\begin{bmatrix} 1 & 2 & 4 & 3 \end{bmatrix}$	06
	Find the rank of the matrix $A = \begin{bmatrix} 2 & 4 & 6 & 8 \end{bmatrix}$	
	This the rank of the matrix $A = \begin{bmatrix} 4 & 8 & 12 & 16 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$	
b	Investigate the value of λ and μ so that the equations	07
	$2x+3y+5z=9$, $7x+3y-2z=8$, $2x+3y+\lambda z=\mu$ may have	
	i) unique solution ii) many solution iii) no solution.	
С	Solve the system of equations using Gauss-Seidel method by taking (0, 0, 0) as an initial approximate root.	07
	5x + 2y + z = 12	
	x + 4y + 2z = 15	
	x + 2y + 5z = 20	
	b	Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 4 & 6 & 8 \\ 4 & 8 & 12 & 16 \\ 1 & 2 & 3 & 4 \end{bmatrix}$ b Investigate the value of λ and μ so that the equations $2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$ may have i) unique solution ii) many solution iii) no solution. c Solve the system of equations using Gauss-Seidel method by taking $(0, 0, 0)$ as an initial approximate root. $5x + 2y + z = 12$ $x + 4y + 2z = 15$

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome							
Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome			
Q.1	(a)	L1	CO 01	PO 01			
`	(b)	L2	CO 01	PO 01			
	(c)	L3	CO 01	PO 02			
Q.2	(a)	L1	CO 01	PO 01			
	(b)	L2	CO 01	PO 01			
	(c)	L3	CO 01	PO 02			
Q.3	(a)	L2	CO 02	PO 01			
	(b)	L2	CO 02	PO 01			
	(c)	L3	CO 02	PO 02			
Q.4	(a)	L2	CO 02	PO 01			
	(b)	L2	CO 02	PO 01			
	(c)	L3	CO 02	PO 03			
Q.5	(a)	L2	CO 03	PO 01			
	(b)	L3	CO 03	PO 02			
	(c)	L2	CO 03	PO 01			
Q.6	(a)	L2	CO 03	PO 01			
	(b)	L3	CO 03	PO 02			
	(c)	L2	CO 03	PO 01			
Q.7	(a)	L2	CO 04	PO 01			
	(b)	L2	CO 04	PO 01			
	(c)	L2	CO 04	PO 02			
Q.8	(a)	L2	CO 04	PO 01			
	(b)	L2	CO 04	PO 01			
	(c)	L2	CO 04	PO 02			
Q.9	(a)	L2	CO 05	PO 01			
	(b)	L3	CO 05	PO 01			
	(c)	L3	CO 05	PO 02			

Q.10	(a)	L2		CO 05	PO 01				
(b)		L3		CO 05	PO 01				
(c)		L3		CO 05	PO 02				
Lower order thinking skills									
Bloom's		Remembering	Understanding		Applying				
Taxonom		(knowledge):L ₁	(Comprehension): L ₂		(Application): L_3				
y Levels	s [Higher order thinking skills							
Analy		Analyzing (Analysis):L ₄	Valuating	g (Evaluation): L ₅	Creating (Synthesis): L ₆				