TD M2102 - Architecture des réseaux CSMA/CD -Ethernet

1. Détection des collisions par Ethernet

La taille minimale des trames est de 64 octets. La vitesse de propagation est de 10 km/s, le débit est de 10 Mo/s, soit 80.10 bits/s.

- 1-Quelle est la couverture maximale d'un réseau Ethernet à 10Mo/s?
- 2-Quelle est la couverture si le débit augmente à 100Mo/s?
- 3-On considère un réseau métropolitain sur fibre optique de débit 100Mo/s; il couvre une distance de 60km.
 - Avec ces paramètres, quelle serait la taille minimale d'une trame en supposant que la vitesse de propagation est égale à 2x10⁵ km/s?
 - Quelle est la valeur du slot-time ?
 - Quelles sont les conséquences d'avoir un long slot-time ?
 - Que se passera-t-il si des centaines de machines sont connectées à ce réseau?

2. Gestion des collisions par CSMA/CD

Extrait de http://en.wikipedia.org/wiki/Truncated binary exponential backoff:

"After i collisions, a random number of slot times between 0 and $2^{i} - 1$ is chosen. For the first collision, each sender might wait 0 or 1 slot times. After the second collision, the senders might wait 0, 1, 2, or 3 slot times, and so forth. As the number of retransmission attempts increases, the number of possibilities for delay increases.

The 'truncated' simply means that after a certain number of increases, the exponentiation stops; i.e. the retransmission timeout reaches a ceiling, and thereafter does not increase any further. For example, if the ceiling is set at i=10, then the maximum delay is 1023 slot times.

Because these delays cause other stations who are sending to collide as well, there is a possibility that, on a busy network, hundreds of people may be caught in a single collision set. Because of this possibility, after 16 attempts at transmission, the process is aborted."

Dans un réseau CSMA/CD, deux trames tr1 et tr2 entrent en collision. Pour la trame tr1, il s'agit de la première collision, mais pour tr2 il s'agit de la deuxième collision.

- > 1-Quelle est la probabilité qu'il y ait une deuxième collision entre tr1 et tr2 ? (on suppose que les autres stations du réseau n'ont pas de trame à émettre). S'il n'y a pas de deuxième collision, dans le pire des cas, quel est le délai pour la transmission de la trame tr2 ?
- ➤ 2-Quelle est la probabilité qu'il y ait une troisième collision entre tr1 et tr2 ? (on suppose que les autres stations du réseau n'ont pas de trame à émettre). S'il n'y a pas de troisième collision, dans le pire des cas, quel est le délai pour la transmission de la trame tr2 ?
- > 3-Quelle est la probabilité qu'il y ait une quatrième collision entre tr1 et tr2 ? (on suppose que les autres stations du réseau n'ont pas de trame à émettre). S'il n'y a pas de quatrième collision, dans le pire des cas, quel est le délai pour la transmission de la trame tr2 ?

3. Analyse de traces Ethernet.

Un analyseur de protocole Ethernet a fourni la trace donnée en annexe 1 (hors préambule, délimiteur, et CRC). On rappelle la structure de trame Ethernet (hors préambule, délimiteur, et CRC) en annexe 2.

- (a) Quelles sont les adresses Ethernet des machines qui interviennent dans ce dialogue?
- (b) Quelle est la nature des données transportées par ces trames?
- (c) Peut-on savoir si ces trames contiennent, ou non, des caractères de bourrage?
 - 1. Sans connaître le format des données transportées par ces trames,
 - 2. En connaissant le format des données transportées par ces trames. L'annexe 3 fournit en exemple le format des datagrammes IP.

ANNEXE 1

```
Date: Fri, 28 Oct 2003 13:27:33
Trame n°1
00 40 07 03 04 2b 02 60 8c e8 02 91 08 00 45 00
00 2c 14 ee 00 00 3c 06 85 7a 93 d2 5e 63 93 d2
5e 5c 10 a4 09 e7 42 0c 56 01 00 00 00 00 60 02
40 00 c1 29 00 00 02 04 05 b4 02 80
Trame n^{\circ}2
02 60 8c e8 02 91 00 40 07 03 04 2b 08 00 45 00
00 2c 8b 46 00 00 40 06 0b 22 93 d2 5e 5c 93 d2
5e 63 09 e7 10 a4 4d 91 6c 01 42 0c 56 02 60 12
16 d0 30 b6 00 00 02 04 05 b4 00 00
Trame n^3
00 40 07 03 04 2b 02 60 8c e8 02 91 08 00 45 00
00 28 14 ef 00 00 3c 06 85 7d 93 d2 5e 63 93 d2
5e 5c 10 a4 09 e7 42 0c 56 02 4d 91 6c 02 50 10
3e bc 20 87 00 00 3d 00 00 04 02 80
Trame n°4
02 60 8c e8 02 91 00 40 07 03 04 2b 08 00 45 00
00 2a 8b 47 00 00 40 06 0b 23 93 d2 5e 5c 93 d2
5e 63 09 e7 10 a4 4d 91 6c 02 42 0c 56 02 50 18
16 d0 17 36 00 00 31 33 00 08 00 00
Trame n°5
00 40 07 03 04 2b 02 60 8c e8 02 91 08 00 45 00
00 28 14 f8 00 00 3c 06 85 74 93 d2 5e 63 93 d2
5e 5c 10 a4 09 e7 42 0c 56 02 4d 91 6c 04 50 10
3e bc 20 85 00 00 3d 00 00 04 02 80
Trame n°6
02 60 8c e8 02 91 00 40 07 03 04 2b 08 00 45 00
00 2c 8b 4a 00 00 40 06 0b 1e 93 d2 5e 5c 93 d2
5e 63 09 e7 10 a4 4d 91 6c 04 42 0c 56 02 50 18
16 d0 e2 fb 00 00 32 37 33 32 8c e8
Trame n°7
00 40 07 03 04 2b 02 60 8c e8 02 91 08 00 45 00
00 28 14 fd 00 00 3c 06 85 6f 93 d2 5e 63 93 d2
5e 5c 10 a4 09 e7 42 0c 56 02 4d 91 6c 08 50 11
3e bc 20 80 00 00 00 01 86 a3 00 00
Trame n°8
02 60 8c e8 02 91 00 40 07 03 04 2b 08 00 45 00
00 28 8b 4b 00 00 40 06 0b 21 93 d2 5e 5c 93 d2
5e 63 09 e7 10 a4 4d 91 6c 08 42 0c 56 03 50 10
16 d0 48 6c 00 00 32 37 00 08 00 00
```

ANNEXE 2: Structure des trames ETHERNET.

Adresse	Adresse	Type de	'données'
Destinataire	Origine	trame	

Signification et taille des différents champs :

Adresse destinataire (6 octets): Adresse ETHERNET du destinataire, Adresse origine (6 octets): Adresse ETHERNET de l'émetteur,

<u>Type de trame</u> (2 octets) : précise à quel protocole s'adresse les données,

0600 XNS 0800 IP 0806 ARP

Données (46-1500 octets): les données!

Au minimum 46 octets (avec caractères de bourrage si nécessaire).

ANNEXE 3: Structure des datagrammes IP.

0 8		16	24	31		
Version	Taille de l'entête	Type de service	Longueur totale			
Identification		Flags	Offset (fragment)			
Durée	de vie	Protocole transporté	Checksum			
		Adresse	IP source			
		Adresse IP	destinataire			
Options						
		Données (Segment	de niveau suj	périeur)		

Signification et taille des différents champs :

<u>Version</u> (4 bits): Numéro de version du protocole <u>Taille de l'entête</u> (4 bits): Longueur de l'en-tête en mots de 32 bits

(les options font partie de l'en-tête),

Type de service (8 bits): Priorité au délai, au débit, à la fiabilité,

00 pas de service, 08 priorité au délai, 10 priorité au débit, 20 priorité à la fiabilité,

...

<u>Longueur totale</u> (16 bits): Longueur totale, en octets, entête et données comprises,

 Identification
 (16 bits):
 Identifiant du datagramme

 Flags
 (3 bits):
 Gestion de la fragmentation

 000
 dernier fragment

 001
 fragment à suivre

 010
 pas de fragment

 Décelore de la fragment tripus

Offset (13 bits): Décalage de la fragmentation:

position relative par rapport au début du datagramme initial, si celui-ci a été fragmenté (exprimé

en unité de 8 octets),

<u>Durée de vie</u> (8 bits): Temps écoulé depuis l'émission, exprimé en nombre de sauts,

Protocole transporté (8 bits): Protocole de niveau supérieur

 $\begin{array}{ccc} 01_h & & ICMP \\ 06_h & & TCP \\ 09_h & & IGP \\ 11_h & & UDP \end{array}$

1D_h Transport ISO Classe 4

...

<u>Checksum</u> (16 bits): Total de contrôle, <u>Adresse IP source</u> (32 bits) Adresse IP de l'émetteur <u>Adresse IP destinataire</u> (32 bits) Adresse IP du destinataire

Options (n mots de 32 bits) : Facultatives, **Données** (n octets) : Les données.