COS210 - Theoretical Computer Science Proofs

Theorem Proving Techniques

• **Theorem:** mathematical statement that is *true*

"
$$\sqrt{2}$$
 is an irrational number"

"the computational problem X is in complexity class Y"

$$"P \rightarrow Q"$$

• **Proof:** sequence of statements that form an argument to show that a theorem is *true*

$$\begin{array}{ccc}
P \\
\rightarrow & P' \\
\leftrightarrow & P'' \\
& \cdots \\
\rightarrow & Q
\end{array}$$

How to Approach a Theorem

- Read and understand the theorem
- Consider simple example cases of the theorem
- Check if the theorem can be divided into sub theorems
- Select a suitable proof strategy
- Formally write down all steps of the proof

Proof Strategies

Common strategies we will discuss (non exhaustive list) for proving a theorem, include:

- Direct proofs
- Constructive proofs
- Non-constructive proofs
- Proofs by contradiction
- Proofs by induction

Direct Proof

Approach the theorem directly

Theorem

$$P \rightarrow Q$$

by assuming P (the *premise*) is *true* and, through a sequence of logical deductions, showing that Q (conclusion) must be *true*.

Direct Proof: Example

Theorem

If n is an odd positive integer, then n^2 is odd as well.

Constructive Proof

Existence of a certain object is proven by constructing it

Theorem

There exists an object O with property P

- Construct an object O
- Prove that O satisfies P

Constructive Proof: Example

Theorem

For any $a, b \in \mathbb{R}$ where a < b there exists a $c \in \mathbb{R}$ such that a < c < b

Proof by Contradiction

Proof by contradiction relies on a logical manipulation of the statement to be proven.

Theorem

Statement S is true

Proof by Contradiction:

- Assume that statement *S* is *false*.
- Then, derive a contradiction.
- \bullet The contradiction implies that S cannot be false, therefore S is true.

Proof by Contradiction

Application to a conditional theorem:

Theorem

If A then B. $(A \Longrightarrow B)$

- Recall that $(A \Longrightarrow B) = \neg A \lor B$
- Assume that $A \implies B$ is false
- So $\neg (A \implies B) = \neg (\neg A \lor B) = A \land \neg B$
- We assume $A \wedge \neg B$, derive a contradiction, therefore $A \Longrightarrow B$ must be true

Proof by Contradiction: Example 1

Theorem

Let n be a positive integer. If n^2 is even then n is even.

Proof by Contradiction: Example 2

Theorem

The sum of a rational number x and an irrational number y is irrational.