

Art of Problem Solving 1987 Balkan MO

Balkan	MO	1987

1	Let a be a real number and let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying: $f(0) = \frac{1}{2}$ and $f(x+y) = f(x)f(a-y) + f(y)f(a-x), \forall x,y \in \mathbb{R}$. Prove that f is constant.	
2	Find all real numbers x, y greater than 1, satisfying the condition that the numbers $\sqrt{x-1} + \sqrt{y-1}$ and $\sqrt{x+1} + \sqrt{y+1}$ are nonconsecutive integers.	
3	In the triangle ABC the following equality holds: $\sin^{23}\frac{A}{2}\cos^{48}\frac{B}{2}=\sin^{23}\frac{B}{2}\cos^{48}\frac{A}{2}$	
	Determine the value of $\frac{AC}{BC}$.	
4	Two circles K_1 and K_2 , centered at O_1 and O_2 with radii 1 and $\sqrt{2}$ respectively, intersect at A and B . Let C be a point on K_2 such that the midpoint of AC lies on K_1 . Find the length of the segment AC if $O_1O_2 = 2$	