

Contents

- Problem Statement
- Anti-roll bar
- Vehicle model
- Simulation and Results
- Conclusion

Problem Statement

- National Highway Traffic Safety Administration (NHTSA 2011),
 - > 46.4% of the fatal traffic accidents
- ☐ Vehicle body roll affects,
 - Road holding
 - Ride handling
 - **Ride comfort**
- ☐ Active suspension system is an expensive technology

How to effectively and cost efficiently reduce the vehicle's body roll, enhancing its performances?

Anti-Roll Bar (ARB)

- An anti-roll bar is intended to force each side of the vehicle to lower, or rise, to similar heights:
 - **to reduce the sideways tilting (roll)** of the vehicle
 - **counteracting the inertial forces** during cornering maneuvers
- The bar's torsional stiffness (resistance to twist) determines its ability to reduce body roll, and is named as "Roll Stiffness"
- **□** Properties (Steel):
 - > Rolling Stiffness: 408.56 Nm/deg
 - Mass of the Bar: 1.86 Kg
 - Outer Diameter: 21.8 mm
 - > Inner diameter: 16 mm

Anti-Roll Bar (ARB)

- ☐ The amount of lateral load transfer that occurs between two wheels of an axle has a significant influence on vehicle's lateral or handling dynamics.
- ☐ During a maneuver, the normal force on left and right wheels are not equal in magnitude.
- ☐ This behavior <u>results in a net decrease in average</u> <u>lateral force of the axle during corners</u> and is proportional to the amount of load transfer.

Active Anti-Roll Bar (A-ARB)

- ☐ The design drawback of an ARB is that it couples the two wheels of an axle.
- ☐ If one of the wheels would <u>hit an obstacle</u> such as a pothole then this will <u>induce torsion</u> of the ARB and hence <u>both wheels will be effected</u>.
 - > In such a situation, this is often referred to as the copying effect.
- ☐ This gives a higher negative impact on ride comfort.
- ☐ To reduce this <u>trade-off active ARBs</u>, with <u>variable stiffness</u>, are considered.
- Double-lead compensator

Vehicle Model

■ The vehicle model considered is a 8 DOFs model

- **☐** Assumptions:
 - > Self-aligning moment not accounted for
 - Rolling resistance and drag not considered
 - > Vehicle symmetry along the X-Z plane

Vehicle Model

$$F_{z}^{long} = m\frac{a_{x}}{2L}h_{cg}$$

$$F_{z}^{lat} = \frac{mgh\sin(\phi) + ma_{y}h\cos(\phi)}{B}$$

$$F_{zfl} = mg\frac{l_{r}}{2L} - F_{z}^{long} - F_{z,f}^{lat},$$

$$F_{zfr} = mg\frac{l_{r}}{2L} - F_{z}^{long} + F_{z,f}^{lat},$$

$$F_{zrl} = mg\frac{l_{f}}{2L} + F_{z}^{long} - F_{z,r}^{lat},$$

$$F_{zrr} = mg\frac{l_{f}}{2L} + F_{z}^{long} + F_{z,r}^{lat},$$

- Assumptions:
 - > Pitch and heave motions neglected
 - Effect of unsprung mass not considered

Fishhook Test

- Objective
 - > Evaluation of roll response of the vehicle through a fixed steering characteristic
- Procedure
 - Open loop test
 - Defined vehicle speed 40 km/h
 - > Consists of a straight line, one
 - Left turn and sudden right turn
- Criteria
 - Vehicle handling and stability
 - Determine vehicle's roll-over behaviour

☐ Vehicle data

- VCII	icic uata		
Symbol	Description	Value	Unit
I_{xx}	Inertia along x-axis	580	$[kgm^2]$
I_{zz}	Inertia along z-axis	3,240	$[kgm^2]$
I_{xz}	Coupling Inertia	50	$[kgm^2]$
$r_{oldsymbol{w}}$	Effective Wheel Radius	0.24	[m]
l_f	Front Wheelbase	1.253	[m]
l_r	Rear Wheelbase	1.508	[m]
В	Track	1.5	[m]
h_{cg}	Height of CoG	0.75	[m]
h_r	Height of Rear Roll Centre	0.4	[m]
h_f	Height of Front Roll Centre	0.4	[m]
C_{df}^{\prime}	Front Damping Coefficient	2,000	[kg/s]
$C_{m{dr}}$	Rear Damping Coefficient	2,000	[kg/s]
K_f	Front Spring Stiffness	20,000	$[kg/s^2]$
K_r	Rear Spring Stiffness	20,000	$[kg/s^2]$
C_f	Front Cornering Stiffness	57,000	$[kg \cdot m/s^2]$
C_r	Rear Cornering Stiffness	47,000	$[kg \cdot m/s^2]$
C_{κ}	Front/Rear Long. Slip Coeff.	200,000	[-]
i_s	Steering Ratio	17	[-]

Symbol	Description	Value	Unit
K_{ϕ_f}	ARB_p Front Roll stiffness	10,000	$[kg \cdot m^2/s^2 \cdot rad]$
K_{ϕ_r}	ARB_p Rear Roll stiffness	7,500	$[kg \cdot m^2/s^2 \cdot rad]$
K_p	Proportional Gain	$1.7 \cdot 10^{6}$	[-]
a	Zero of G(s)	3	[1/s]
b	Zero of G(s)	1	[1/s]
c	Pole of $G(s)$	9	[1/s]
d	Pole of $G(s)$	7	[1/s]

☐ Fishhook Trajectory

- □ Roll angle
- **☐** Ride comfort

- ☐ Front axle normal load transfer
- □ Road holding

$$LTR = \frac{F_{zr} - F_{zl}}{F_{zr} + F_{zl}}$$

- Maximum Achievable Lateral Acceleration
- ☐ Ride handling

Conclusion

- ☐ Incorporation of an ARB improves the vehicle roll-over stability characteristics
 - **Ride comfort**
 - Road holding
 - Ride handling
- ☐ Inclusion of ARB reduces lateral load transfer resulting in an improvement of vehicle handling
- ☐ The implementation of an ARB increases the average lateral force that can be generated during a cornering maneuvre, therefore increasing the maximum achievable lateral acceleration
- **☐** Increases driver confidence
- Implementation of a simple control law amplifies the capability of the ARB to decrease the overall body-roll (A-ARB)

Extra slides (1): Vehicle Parameters

Symbol	Description	Value	Unit
I_{xx}	Inertia along x-axis	580	$[kgm^2]$
I_{zz}	Inertia along z-axis	3,240	$[kgm^2]$
I_{xz}	Coupling Inertia	50	$[kgm^2]$
$r_{m{w}}$	Effective Wheel Radius	0.24	[m]
l_f	Front Wheelbase	1.253	[m]
l_r^*	Rear Wheelbase	1.508	[m]
В	Track	1.5	[m]
h_{cg}	Height of CoG	0.75	[m]
h_r	Height of Rear Roll Centre	0.4	[m]
h_f	Height of Front Roll Centre	0.4	[m]
C_{df}	Front Damping Coefficient	2,000	[kg/s]
$C_{m{dr}}$	Rear Damping Coefficient	2,000	[kg/s]
K_f	Front Spring Stiffness	20,000	$[kg/s^2]$
K_r	Rear Spring Stiffness	20,000	$[kg/s^2]$
C_f	Front Cornering Stiffness	57,000	$[kg \cdot m/s^2]$
$C_{m{r}}$	Rear Cornering Stiffness	47,000	$[kg \cdot m/s^2]$
$C_{m{\kappa}}$	Front/Rear Long. Slip Coeff.	200,000	[-]
i_s	Steering Ratio	17	[-]

Symbol	Description	Value	Unit
K_{ϕ_f}	ARB_p Front Roll stiffness	10,000	$[kg \cdot m^2/s^2 \cdot rad]$
K_{ϕ_r}	ARB_p Rear Roll stiffness	7,500	$[kg \cdot m^2/s^2 \cdot rad]$
K_p	Proportional Gain	$1.7 \cdot 10^{6}$	[-]
a	Zero of G(s)	3	[1/s]
\boldsymbol{b}	Zero of G(s)	1	[1/s]
c	Pole of $G(s)$	9	[1/s]
d	Pole of $G(s)$	7	[1/s]

Extra slides (2): Effect on Understeer Gradient

• If $K_{\Phi f} \uparrow K_{\Phi r} =$, then $F_{z,f}^{lat} \uparrow$, thus more understeer

$$F_{z,f}^{lat} = \frac{m_a a_y}{B} \left(\frac{l_r}{L} h_f + \frac{K_{\phi f} h}{K_{\phi f} + K_{\phi r} - m_a g h} \right)$$

$$F_{z,r}^{lat} = \frac{m_a a_y}{B} \left(\frac{l_f}{L} h_r + \frac{K_{\phi r} h}{K_{\phi f} + K_{\phi r} - m_a g h} \right)$$

Extra slides (3): Load Transfer Ratio

•
$$LTR = \frac{F_{zr} - F_{zl}}{F_{zr} + F_{zl}}$$

Extra slides (4): PDD Controller

$$G(s) = 17 \cdot 10^5 \frac{(s+1)(s+3)}{(s+7)(s+9)}$$

Extra slides (5): Transient response

Extra slides (6): Normal Load Transfer Equations

$$F_{zfl} = mg \frac{l_r}{2L} - F_z^{long} - F_{z,f}^{lat}$$

$$F_{zfr} = mg \frac{l_r}{2L} - F_z^{long} + F_{z,f}^{lat}$$

$$F_{zrl} = mg \frac{l_f}{2L} + F_z^{long} - F_{z,r}^{lat}$$

$$F_{zrr} = mg \frac{l_f}{2L} + F_z^{long} + F_{z,r}^{lat}$$

$$F_z^{long} = m \frac{a_x}{2L} h_{cg}$$

$$F_z^{lat} = \frac{mgh\sin(\phi) + ma_yh\cos(\phi)}{B}$$

$$h = \frac{h_{cg} - h_{rc}}{B}.$$

$$h = \frac{h_{cg} - h_{rc}}{\cos(\phi)}.$$