Course Logistics

- CS533: Intelligent Agents and Decision Making
 - ▲ M, W, F: 1:00—1:50 (KEC1001)
 - Instructor: Alan Fern (KEC2071)
 - Office hours: Thursdays 3-4
- Course Piazza Site:
 - Sign Up: https://piazza.com/oregonstate/spring2015/cs533/
 - ◆ Home Page: https://piazza.com/oregonstate/spring2015/cs533/home
 - Will post lecture-schedule, notes, reading, and assignments
- Grading
 - ↑ 75% Instructor Assigned Projects (mostly implementation and evaluation)
 - 25% Student Selected Final Project (work in teams of 2-3)
- Assigned Projects (work alone)
 - Generally will be implementing and evaluating one or more algorithms
- Final Project (teams allowed)
 - Last month of class
 - You select a project related to course content

Optimizing Fire & Rescue Response Policies

Conservation Planning: Recovery of Red-cockaded Woodpecker

Conservation Planning: Recovery of Red-cockaded Woodpecker

Klondike Solitaire

Real-Time Strategy Games

Al for General Atari 2600 Games

Robotics Control

Helicopter Control

Laundry

Legged Robot Control

Knot Tying

Intelligent Simulator Agents

Immersive real-time training

Smart Grids

Some Al Planning Problems

- Health Care
 - Personalized treatment planning
 - Hospital Logistics/Scheduling
- Transportation
 - Autonomous Vehicles
 - Supply Chain Logistics
 - Air traffic control
- Assistive Technologies
 - Dialog Management
 - Automated assistants for elderly/disabled
 - Household robots
 - Personal planner

Common Elements

- We have a controllable system that can change state over time (in some predictable way)
 - The state describes essential information about system (the visible card information in Solitaire)
- We have an objective that specifies which states, or state sequences, are more/less preferred

 Can (partially) control the system state transitions by taking actions

- Problem: At each moment must select an action to optimize the overall objective
 - Produce most preferred state sequences

Some Dimensions of Al Planning

Classical Planning Assumptions

(primary focus of AI planning until early 90's)

Classical Planning Assumptions

(primary focus of AI planning until early 90's)

Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model

Stochastic/Probabilistic Planning: Markov Decision Process (MDP) Model

Example MDP

State describes all visible info about cards

Goal
win the game or
play max # of cards

Action are the different legal card movements

Course Outline

Course is structured around algorithms for solving MDPs

- Different assumptions about knowledge of MDP model
- Different assumptions about prior knowledge of solution
- Different assumptions about how MDP is represented
- 1) Markov Decision Processes (MDPs) Basics
 - Basic definitions and solution techniques
 - Assume an exact MDP model is known
 - Exact solutions for small/moderate size MDPs
- 2) Monte-Carlo Planning
 - Assumes an MDP simulator is available
 - Approximate solutions for large MDPs

Course Outline

- 3) Reinforcement learning
 - MDP model is not known to agent
 - Exact solutions for small/moderate MDPs
 - Approximate solutions for large MDPs

4a or 4b) as time allows

- a) Planning w/ Symbolic Representations of Huge MDPs
 - Symbolic Dynamic Programming
 - Classical planning for deterministic problems
- b) Imitation Learning