Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №1

x + 2y + z = 4 $\begin{cases} 3x - 5y + 3z = 1, \text{ TO} \end{cases}$ Если $(x_0; y_0; z_0)$ — решение системы 2x + 7y - z = 8значение выражения $2y_0 - 3z_0$ равно:

1

3

Задание №2

Если
$$A = \begin{pmatrix} -1 & 4 & 7 \\ 3 & 1 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$$
, то $A \cdot B$ равно

$$\begin{pmatrix} -1 & -12 & -14 \\ 3 & -3 & 4 \end{pmatrix}$$
 $\begin{pmatrix} -1 & -12 & -14 \end{pmatrix}$ $\begin{pmatrix} -27 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 11 \\ 16 \\ -7 \end{pmatrix}$

$$\binom{-27}{4}$$

$$\begin{pmatrix} 11\\16\\-7 \end{pmatrix}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №3

Найти элемент матрицы, обратной к $A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 3 & 1 \\ 5 & 3 & 4 \end{pmatrix}$, расположенный на пересечении третьего столбца и второй строки.

$$-\frac{1}{5}$$

$$-1$$

5

Задание №4

Если $\vec{a} = \{4; 8\}, \vec{b} = \{5; 7\}, \vec{c} = \{2; 4\},$ то разложение вектора \vec{a} по базису \vec{b} , \vec{c} ($\vec{a} = \alpha \vec{b} + \beta \vec{c}$) имеет вид:

$$\vec{a} = \frac{1}{2}\vec{b}$$

$$\vec{a} = 4\vec{b} + 3\vec{c}$$

$$\vec{a} = \frac{1}{2}\vec{b} \qquad \vec{a} = 4\vec{b} + 3\vec{c} \qquad \vec{a} = 5\vec{b} - 7\vec{c} \qquad \vec{a} = 2\vec{c}$$

$$\vec{a} = 2\vec{c}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №5

Проекция вектора $\vec{a} = \{-2, 4, 0\}$ на вектор $\vec{b} = \{7, 2, 4\}$ равна:

$$-\frac{6}{\sqrt{20}\sqrt{69}}$$

$$-\frac{6}{\sqrt{69}}$$

$$-\frac{6}{\sqrt{20}}$$

$$\frac{6}{\sqrt{20}\sqrt{69}}$$
 -6 $-\frac{6}{\sqrt{69}}$ $-\frac{6}{\sqrt{20}}$ $-\sqrt{20}\sqrt{69}$

Задание №6

Если $|\vec{a}|=3$, $|\vec{b}|=2$, угол между векторами \vec{a} и \vec{b} равен $\frac{\pi}{3}$, то значение выражения $(3\vec{a}-2\vec{b})\cdot(4\vec{a}+\vec{b})$ равно:

85

-15

133

70

35

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №7

Площадь треугольника ABC: A(1; -2; 1), B(3; -3; 1), C(1; 1; 0),составляет:

$$\sqrt{41}$$

Задание №8

Векторы $\vec{a} = \{\alpha; 3; 5\}, \vec{b} = \{0; -1; 4\}, \vec{c} = \{1; -1; 3\},$ компланарны при α равном:

0

1 -17

Вариант № 2

Осталось сделать

Перейти к заданию

ЗАВЕРШИТЬ

ЗАКРЫТЬ

Осталось

мин.

Задание №9

Сумма собственных значений матрицы $\begin{pmatrix} 2 & 0 \\ 4 & 7 \end{pmatrix}$ равна:

9

14

13

10

56

Результаты

Набранные баллы (тах=100)

Неверно выполнены задания

Не выполнены задания