newtonexcelbach.wordpress.com

Cubic Splines

Posted on

Cubic splines are used to fit a smooth curve to a series of points with a piecewise series of cubic polynomial curves. In addition to their use in interpolation, they are of particular interest to engineers because the spline is defined as the shape that a thin flexible beam (of constant flexural stiffness) would take up if it was constrained to pass through the defined points. This post will present an Excel User Defined Function (UDF) to generate a "natural" cubic spline for any series of 3 or more points. Later posts will look at alternative spline formulations, and applications of the cubic spline to structural analysis.

A cubic spline is defined as the curve that for any two adjacent internal points:

- 1. The curve passes exactly through both points
- 2. The slope of the curve at the end points is equal to the slope of the adjacent segments
- 3. The curvature of the curve at the end points is equal to the curvature of the adjacent segments

Alternative provisions for the end segments will generate different spline curves over the full extent of the curve. The most common provision for the ends is that the curvature is zero at both ends. This is known as a "natural cubic spline". In a structural analysis context this corresponds to a beam that is free to rotate at both ends, but is constrained in position at the ends and a number of internal points.

Further details of the theory of cubic splines, and an algorithm for generating natural cubic splines are given in this <u>Wikipedia article</u>.

An excel spreadsheet with a UDF for generating cubic splines, based on the algorithm in the Wikipedia article, can be downloaded from: CSpline2.zip

The download is open source, and full VBA code for the UDF is freely accessible.

Example screen shots from this file are shown below:

	A	В	C	D	E	F	G	Н
1	Cubic Spline Func	tion						
2								
3	Fit a cubic spline to a	a series of XY o	oordinates	ē l				
4	=CSplineA(X Coords				ptional Outpu	ut type)		
5	Input:							
6	X Coords	X and Y coor	dinates of t	he line, x mus	t be in ascend	ling order		
7	X Coords	}						
8	Interpolation X Coords	X coordinates	where out	put is required				
9	Output Type	1 (default) for	Y values, s	lope, curvature	and radius			
10		2 for polynom	ial coefficie	nts and related	data			
11								
12	Output:							
13		lumn array, en	ter as an a	array function	:			
14	To enter an array fur					the output range	e	
15				entire output		T i		
16			Press F2		-			
17			Press Ctr	l-shift-enter				
18		Out = 1			Out = 2 (se	e algorithm ar	d fuction code)	
19	Column 1	Spline Y value	s	h(i) = x(i+1)	- x(i)			
20	Column 2	Slope		alpha(i) = (3	/ h(i) * (Y(i+1)	- Y(i))) - (3 / h(i-	1) * (Y(i) - Y(i-1)))	
21	Column 3	Curvature		I(i) = 2 * (x(i-1))	+1) - x(i-1)) - h	(i-1) * mu(i-1); I(1) = I(n) = 1	
22	Column 4	Radius		mu(i) = h(i) /	I(i); $mu(1) = 0$	0		
23	Column 5	Arc length		z(i) = (alpha	i) - h(i-1) * z(i-	-1) / $I(i)$; $z(1) = z$	e(n) = 0	
24	Column 6	Chord Length		b = (y(i+1) -	y(i)) / h(i) - h(i)) * c(i+1) + 2* c(i) / 3	
25	Columns 7 and 8 are of	only generated if	"out" = 2					
26	Column 7	-		c = z(i) - mu	(i) * c(i+1); c(i	n) = 0		
27	Column 8			d = (c(i+1) -	c(i)) / (3 * h(i))			
28								
29						+ X * b(j) + y(j)		
30				Where X = X	int(i) - x(j)	1000		

Csplinea Function

	D35	• (*) f _x {=	csplinea(A	35:A39,B35:B3	9,C35:C56))			
Z	A	В	С	D	E	F	G	Н
32	Example 1; Fit spline	to 5 data points						
33	Data	1	Spli	ne1	Dat	a2	Splin	e2
34	X	Υ	X	Y	X	Υ	X	Υ
35	1	0.75	1	0.75	1	0.75	1	0.75
36	2	0	1.2	0.70	2	-5	1.2	-0.89
37	3	-1	1.4	0.62	3	-1	1.4	-2.40
38	4	3	1.6	0.49	4	3	1.6	-3.68
39	5	3	1.8	0.29	5	3	1.8	-4.58
10	10-1		2	0.00			2	-5.00
11			2.2	-0.39			2.2	-4.85
12			2.4	-0.79			2.4	-4.24
43			2.6	-1.10			2.6	-3.30
44			2.8	-1.20			2.8	-2.17
45			3	-1.00			3	-1.00
46			3.2	-0.42			3.2	0.09
47			3.4	0.42			3.4	1.06
48			3.6	1.37			3.6	1.88

49	3.8	2.28	3.8	2.54
50	4	3.00	4	3.00
51	4.2	3.41	4.2	3.26
52	4.4	3.55	4.4	3.34
53	4.6	3.48	4.6	3.30
54	4.8	3.28	4.8	3.17
55	5	3.00	5	3.00
56	5.2	3.00	5.2	3.00

Example 1; Fit spline to 5 data points

Example 1; Fit spline to 5 data points

	D62	• () fs	{=csplinea(A6	2:A72,B62:B	72,C62:C82)}				
12.	A	В	C	D	E	F	G	Н	1
59	Example 2; Fit spli	ne to 9 data po	oints on a circu	lar arc	10000			120	
60	Data	1	Spline	e1					
61	X	Y	X	Y	Slope	Curvature	Radius	Arc Length	Chord Length
62	-3.33	2.27	-2.828427	2.828	1.0027	-0.6927	4.1000	-	-
63	-2.83	2.83	-2.597792	3.042	0.8551	-0.5875	-3.8767	0.3145	0.3145
64	-2.22	3.33	-2.351141	3.236	0.7240	-0.4751	-3.9606	0.3140	0.3139
65	-1.53	3.70	-2.089994	3.410	0.6128	-0.3966	4.0676	0.3139	0.3139
66	-0.78	3.92	-1.815962	3.564	0.5097	-0.3557	-3.9758	0.3142	0.3141
67	0.00	4.00	-1.530734	3.696	0.4144	-0.3130	4.0516	0.3142	0.3141

68	0.78	3.92	-1.236068	3.804	0.3251	-0.2928	-3.9704	0.3142	0.3141
69	1.53	3.70	-0.933781	3.890	0.2397	-0.2721	-3.9963	0.3141	0.3141
70	2.22	3.33	-0.625738	3.951	0.1585	-0.2589	-4.0096	0.3142	0.3141
71	2.83	2.83	-0.313836	3.988	0.0787	-0.2534	-3.9835	0.3142	0.3141
72	3.33	2.27	0	4.000	0.0000	-0.2478	-4.0348	0.3142	0.3141
73			0.3138364	3.988	-0.0787	-0.2534	-3.9835	0.3142	0.3141
74			0.6257379	3.951	-0.1585	-0.2589	4.0096	0.3142	0.3141
75			0.9337815	3.890	-0.2397	-0.2721	-3.9963	0.3142	0.3141
76			1.236068	3.804	-0.3251	-0.2928	-3.9704	0.3141	0.3141
77			1.5307337	3.696	-0.4144	-0.3130	4.0516	0.3142	0.3141
78			1.815962	3.564	-0.5097	-0.3557	-3.9758	0.3142	0.3141
79			2.0899943	3.410	-0.6128	-0.3966	4.0676	0.3142	0.3141
80			2.351141	3.236	-0.7240	-0.4751	-3.9606	0.3139	0.3139
81			2.5977922	3.042	-0.8551	-0.5875	-3.8767	0.3140	0.3139
82			2.8284271	2.828	-1.0027	-0.6927	-4.1000	0.3145	0.3145
83									76.055500
0.4									

Example 2; Fit spline to 9 data points on a circular arc

Example 2; Fit spline to 9 data points on a circular arc

"Dummy" data points at each end allow the curvature at the start and end points to be adjusted to the required value.

4 of 7 11/20/16, 4:05 PM

	B88 ▼ (Jx	=csplinea(A6	2:A /2,B62:B	72,C62:C82,2)	1			
	A	В	C	D	E	F	G	Н	
85	Polynomial coefficient	ts from exam	ple 2						
86									
87		h	alpha	1	mu	Z	b	С	d
88		0.50	0.000E+00	1.000	0.000	0.000E+00	1.175E+00	0.000E+00	-2.321E-01
89	ſ	0.61	-8.906E-01	2.207	0.275	-4.035E-01	1.003E+00	-3.463E-01	7.596E-02
90		0.69	-8.585E-01	2.429	0.285	-2.528E-01	6.666E-01	-2.082E-01	2.491E-02
91		0.75	-6.935E-01	2.687	0.279	-1.930E-01	4.144E-01	-1.565E-01	1.143E-02
92		0.78	-6.146E-01	2.852	0.274	-1.647E-01	1.988E-01	-1.308E-01	2.934E-03
93		0.78	-5.909E-01	2.908	0.268	-1.590E-01	-1.388E-17	-1.239E-01	-2.934E-03
94		0.75	-6.146E-01	2.852	0.263	-1.720E-01	-1.988E-01	-1.308E-01	-1.143E-02
95		0.69	-6.935E-01	2.686	0.257	-2.101E-01	-4.144E-01	-1.565E-01	-2.491E-02
96		0.61	-8.585E-01	2.417	0.251	-2.950E-01	-6.666E-01	-2.082E-01	-7.596E-02
97		0.50	-8.906E-01	2.055	0.242	-3.463E-01	-1.003E+00	-3.463E-01	2.321E-01
98		0.00	0.000E+00	1.000	0.000	0.000E+00	0.000E+00	0.000E+00	0.000E+00
99									

Example 2; Fit spline to 9 data points on a circular arc

	B88 •	f _x {:	-cspiiiical	A62:A72,B62:B	12,002,002,2	1	
	A	В	С	D	E	F	G
	Example 3; Fit splin	e to the deflecte					
103	Span lengths	m	10	30	15		
04	Mid-span deflection	mm	5	-15	10	1.00E-03	
05	Beam El	20000000					
06							
07							
08	Data	1	Sp	line1			Bending
109	X	Υ	X	Υ	Slope	Curvature	Moment
110	0.00	0.000	0	0.000E+00	1.502E-03	0.000E+00	0
111	5.00	0.005	1.25	1.838E-03	1.408E-03	-1.505E-04	-3,010
12	10.00	0.000	2.5	3.441E-03	1.125E-03	-3.010E-04	-6,021
13	25.00	-0.015	3.75	4.573E-03	6.551E-04	-4.515E-04	-9,031
14	40.00	0.000	5	5.000E-03	-3.436E-06	-6.021E-04	-12,041
15	47.50	0.010	6.25	4.565E-03	-6.607E-04	-4.495E-04	-8,990
16	55.00	0.000	7.5	3.428E-03	-1.127E-03	-2.969E-04	-5,938
17			8.75	1.827E-03	-1.403E-03	-1.443E-04	-2,887
18			10	0.000E+00	-1.488E-03	8.247E-06	165
19			13.75	-5.422E-03	-1.377E-03	5.086E-05	1,017
20		10	17.5	-1.013E-02	-1.107E-03	9.347E-05	1,869
21		-	21.25	-1.352E-02	-6.761E-04	1.361E-04	2,722
22			25	-1.500E-02	-8.591E-05	1.787E-04	3,574
23			28.75	-1.413E-02	5.365E-04	1.533E-04	3,065
24			32.5	-1.110E-02	1.064E-03	1.278E-04	2,557
25			36.25	-6.268E-03	1.495E-03	1.024E-04	2,048
26			40	0.000E+00	1.832E-03	7.698E-05	1,540
27			41.875	3.477E-03	1.828E-03	-8.041E-05	-1,608
28			43.75	6.672E-03	1.530E-03	-2.378E-04	-4,756
29			45.625	9.031E-03	9.366E-04	-3.952E-04	-7,904
30			47.5	1.000E-02	4.811E-05	-5.526E-04	-11,052
31			49.375	9.200E-03	-8.585E-04	-4.144E-04	-8,289
32			51.25	6.943E-03	-1.506E-03	-2.763E-04	-5,526
33			53.125	3.714E-03	-1.895E-03	-1.381E-04	-2,76

134	55	0.000E+00	-2.024E-03	-2.372E-20	0
120	_	-			

Example 3; Fit spline to the deflected shape of a 3 span beam

Example 3; Fit spline to the deflected shape of a 3 span beam

B140	• (1 fx	{=csplinea(A1	10:A116,B11	0:B116,C110:0	(134,2)			
A	В	C	D	E	F	G	Н	1
137 Polynomial	coefficients from exam	nple 3						
138								
139	h	alpha	1	mu	Z	b	С	d
140	5.0	0.000E+00	1.000	0.000	0.000E+00	1.502E-03	0.000E+00	-2.007E-05
141	5.0	0 -6.000E-03	20.000	0.250	-3.000E-04	-3.436E-06	-3.010E-04	2.034E-05
142	15.0	0.000E+00	38.750	0.387	3.871E-05	-1.488E-03	4.124E-06	1.894E-06
143	15.0	0 6.000E-03	54.194	0.277	1.000E-04	-8.591E-05	8.935E-05	-1.130E-06
144	7.5	0 1.000E-03	40.848	0.184	-1.224E-05	1.832E-03	3.849E-05	-1.399E-05
145	7.5	0 -8.000E-03	28.623	0.262	-2.763E-04	4.811E-05	-2.763E-04	1.228E-05
146	0.0	0.000E+00	1.000	0.000	0.000E+00	0.000E+00	0.000E+00	0.000E+00
147								

Polynomial coefficients from example 3

Example 3; Bending Moments

Bending moments are calculated by multiplying the curvature at each point by the beam flexural stiffness, EI.