Lista 2

Adrian Mucha 236526

9 listopada 2018

1 Zaburzenie danych w iloczynie wektorów

1.1 Problem

Sprawdzić, jaki wpływ na wyniki z zadania 5 z listy 1 mają niewielkie zmiany danych? Dane zostają zaburzone poprzez usunięcie ostatniej cyfry z x_4 oraz x_5 .

$$\begin{array}{l} x_4 = 0.5772156649, \, x_4' = 0.577215664 \\ x_5 = 0.3010299957, \, x_5' = 0.301029995 \end{array}$$

1.2 Rozwiązanie

Sumowanie zostało przeprowadzone identycznie jak na poprzedniej liście zadań (suma do przodu, suma do tyłu, najpierw dodatnie, najpierw ujemne). Wyniki zostały przedstawione w tabeli $1~{\rm oraz}~2$

1.3 Wyniki

Metoda sumowania	Bez zaburzenia	Z zaburzeniem
Do przodu	-0.4999443	-0.4999443
Do tyłu	-0.4543457	-0.4543457
Najpierw dodatnie	-0.5	-0.5
Najpierw ujemne	-0.5	-0.5

Tabela 1: Wyniki sumowania przed i po zaburzeniu wektorów dla Float32

Metoda sumowania	Bez zaburzenia	Z zaburzeniem
Do przodu	1.0251881368296672e - 10	-0.004296342739891585
Do tyłu	-1.5643308870494366e - 10	-0.004296342998713953
Najpierw dodatnie	0.0	-0.004296342842280865
Najpierw ujemne	0.0	-0.004296342842280865

Tabela 2: Wyniki sumowania przed i po zaburzeniu wektorów dla Float64

1.4 Wnioski

Zaburzenie danych w przypadku Float32 nie spowodowało zmian w wyniku końcowym w żadnym z przypadków sumowania. Jest to następstwem słabej prezcyzji Float32. Fakt ten można poprzeć przyglądając się zapisowi bitowemu liczb x_4 oraz x_4' w precyzji Float32, gdzie zauważamy, że mają ten sam zapis zarówno przed jak i po zaburzeniu. W przypadku x_5 i x_5' różnica w zapisie bitowym pojawia się na najmniej znaczącym bicie.

Dla arytmetyki Float64 widać już znaczące różnice w wynikach dla zmienionych danych. Wynika to ze zwiększonej precyzji obliczeń. Ponownie, to że podane wektory są prawie ortogonalne, przyczynia się do generowania błędów ostatecznych obliczeń.

Algorytm jest niestabilny obliczeniowo, a zadanie źle uwarunkowane, ponieważ małe zmiany w danych wejściowych wpływają na ogromne błędy w wynikach końcowych.

2 Badanie $e^x \cdot ln(1 + e^{-x})$

2.1 Problem

Narysować wykres funkcji $f(x) = e^x \cdot ln(1+e^{-x})$ w co najmniej dwóch dowolnych programach do wizualizacji oraz policzyć granicę funkcji $lim_{x\to\infty}f(x)$. Porównać wykresy funkcji z policzoną granicą. Wyjaśnić zjawisko.

2.2 Rozwiązanie

Wykresy wygenerowałem w programach GNUPlot znajdującego się w standardowych narzędziach systemu linux, oraz platformy chmurowej Wolfram Alpha. Oba narzędzia dały podobne wyniki.

2.3 Wynik

Obliczona granica przez użycie zapytania limit x->inf $\,e^x*ln(1+e^{-x})\,$ w Wolfram Alpha

$$\lim_{x \to \infty} e^x \cdot \ln(1 + e^{-x}) = 1$$

2.4 Wnioski

Od pewnego miejsca, x > 30, można zauważyć, że wykres zaczyna oscylować i przyjmować wartości f(x) > 1 co jest niezgodne z obliczoną powyżej granicą funkcji. Błędy tych obliczeń biorą się z mnożenia bardzo dużej liczby e^x oraz bardzo małej - $ln(1 + e^{-x})$. Gdy x rośnie, wartość $1 + e^{-x} \approx 1$, stąd ln(1) = 0.

2.5 Wykresy

Wygenerowane wykresy widzimy na rysunkach 1 oraz 2.

Rysunek 1: Wykresy wygenerowane przy pomocy GNUPLOT

Rysunek 2: Wykresy wygenerowane przy pomocy WOLFRAM ALPHA

3 Rozwiązywanie układu równań liniowych

3.1 Problem

Rozważamy rozwiązanie układu równa
ńAx=b,dla danej macierzy współczynników
 $A\in\mathbb{R}^{n\times n}$ i wektora prawych stron $b\in\mathbb{R}^n.$

Macierz A generujemy w następujący sposób:

- 1. $A = H_n$, gdzie H_n jest macierzą Hilberta stopnia n wygenerowaną za pomocą funkcji A = hilb(n)
- 2. $A = R_n$, gdzie R_n jest losową macierzą stopnia n z zadanym wskaźnikiem uwarunkowania c wygenerowaną za pomocą funkcji A = matcond(n, c)

Musimy rozwiązać Ax=b za pomocą dwóch algorytmów: eliminacji Gaussa oraz $x=A^{-1}b$. Wykonujemy eksperymenty dla macierzy Hilberta H_n z rosnącym stopniem n>1 oraz dla macierzy losowej R_n , n=5,10,20 z rosnącym wskaźnikiem uwarunkowania $c=1,10,10^3,10^7,10^{12},10^{16}$ i obliczamy błędy względne obu metod.

3.2 Rozwiązanie

Napisano program wykonujący powyższe wymagania, który oblicza dla macierzy Hilberta jak i dla macierzy losowej takie wartości jak: błąd względny metody Gaussa, błąd względny metody odwrotności macierzy, wskaźnik uwarunkowania badanej macierzy oraz jej rząd. Implementacja w języku Julia.

3.3 Wyniki

Uzyskano następujące wyniki, pokazane w tabelach 3 oraz 4.

3.4 Wnioski

Błąd względny dla macierzy Hilberta rośnie razem ze zwiększającym się uwarunkowaniem macierzy, co w przypadku macierzy Hilberta jest jednoznacznie związane z jej wielkością. Obserwujemy sumarycznie większy błąd względny gdy do obliczeń używana jest metoda inwersji. W przypadku macierzy generowanej losowo, bezpośredni wpływ na błąd obliczeń ma stopień macierzy i oraz jej wskaźnik uwarunkowania. Im wskaźnik jest większy, tym większe otrzymamy odchylenia od oczekiwanego wyniku.

4 Wilkinson

4.1 Problem

Badamy "złośliwy wielomian Wilkinsona", postaci

$$p(x) = \prod_{i=1}^{20} (x - i)$$

n	Gauss	Inv	Cond	Rank
1	0.0	0.0	1.0	1
2	$5.661048867003676\mathrm{e}\text{-}16$	1.4043333874306803e-15	19.28147006790397	2
3	$8.022593772267726\mathrm{e}\text{-}15$	0.0	524.0567775860644	3
4	$4.137409622430382\mathrm{e}\text{-}14$	0.0	15513.73873892924	4
5	$1.6828426299227195\mathrm{e}\text{-}12$	3.3544360584359632e-12	476607.25024259434	5
6	$2.618913302311624 \mathrm{e}\text{-}10$	$2.0163759404347654 \mathrm{e}\text{-}10$	$1.4951058642254665\mathrm{e}7$	6
7	1.2606867224171548e-8	4.713280397232037e-9	$4.75367356583129\mathrm{e}8$	7
8	$6.124089555723088\mathrm{e}\text{-}8$	3.07748390309622e-7	$1.5257575538060041\mathrm{e}{10}$	8
9	3.8751634185032475e-6	4.541268303176643e-6	$4.931537564468762\mathrm{e}{11}$	9
10	8.67039023709691e-5	0.0002501493411824886	$1.6024416992541715\mathrm{e}{13}$	10
11	0.00015827808158590435	0.007618304284315809	$5.222677939280335\mathrm{e}{14}$	11
12	0.13396208372085344	0.258994120804705	$1.7514731907091464\mathrm{e}{16}$	11
13	0.11039701117868264	5.331275639426837	3.344143497338461e18	11
14	1.4554087127659643	8.71499275104814	6.200786263161444e17	12
15	4.696668350857427	7.344641453111494	$3.674392953467974\mathrm{e}{17}$	12
16	54.15518954564602	29.84884207073541	$7.865467778431645\mathrm{e}{17}$	12
17	13.707236683836307	10.516942378369349	$1.263684342666052\mathrm{e}{18}$	12
18	9.134134521198485	7.575475905055309	$2.2446309929189128\mathrm{e}{18}$	12

Tabela 3: Błędy, wskaźnik uwarunkowania i rząd dla macierzy Hilberta

\overline{n}	c	Gauss	Inv	Cond	Rank
5	1.0	1.719950113979703e-16	1.7901808365247238e-16	1.00000000000000000	5
5	10.0	2.381163109968744e-16	$1.9229626863835638\mathrm{e}\text{-}16$	10.0000000000000004	5
5	1000.0	1.4649896587576702e- 14	9.532931148469528e-15	1000.0000000000565	5
5	1.0e7	$2.545190235354581\mathrm{e}\text{-}10$	$2.4369570680331473 \mathrm{e}\text{-}10$	9.999999997294577e6	5
5	$1.0\mathrm{e}12$	3.416049679263684e-5	3.343033187897742e-5	$1.0000484354173798\mathrm{e}{12}$	5
5	1.0e16	0.0982032383014505	0.14925760292611562	$5.045253102924761\mathrm{e}{15}$	4
10	1.0	$2.1355566272775288 \mathrm{e}\text{-}16$	2.830524433501838e-16	1.00000000000000000	10
10	10.0	1.890641683868921e- 16	3.3121136700345433e-16	9.9999999999995	10
10	1000.0	1.454667573192289e-14	1.6227192306827873e-14	999.999999999449	10
10	1.0e7	2.938368557913579e-10	3.246088394336096e-10	9.999999994371504e6	10
10	$1.0\mathrm{e}12$	4.491533894867606e-5	$4.1020191951648577\mathrm{e}\text{-}5$	$9.999916725791464\mathrm{e}{11}$	10
10	$1.0\mathrm{e}16$	0.9335544430733206	0.8946182408575178	$1.4638406408363638\mathrm{e}{16}$	9
20	1.0	5.183683495748049e-16	4.406061034464155e-16	1.00000000000000018	20
20	10.0	3.789423922623494e-16	3.8298671591131183e-16	10.0000000000000007	20
20	1000.0	1.3188496276310147e-14	1.608559532353378e-14	1000.0000000000059	20
20	1.0e7	7.334798281596067e-11	8.86801641837911e-11	9.99999999819007e6	20
20	$1.0\mathrm{e}12$	$1.7902073255017923\mathrm{e}\text{-}6$	5.272232148050303e-6	$9.999513645109017\mathrm{e}{11}$	20
20	$1.0\mathrm{e}16$	0.1359985709340461	0.0606916112793811	$6.764850422530947\mathrm{e}{15}$	19

Tabela 4: Błędy, wskaźnik uwarunkowania i rząd dla macierzy losowej

$$P(x) = x^{20} - 210x^{19} - 20615x^{18} - \dots$$

Mamy sprawdzić obliczone pierwiastki $x_k, 1 \leq k \leq 20$, obliczając $|P(z_k)|, |p(z_k)|$ i $|z_k - k|$.

4.2 Rozwiązanie

Napisano program w języku Julia wykorzystujący pakiet Polynomials, umożliwiający manipulację wielomianami. Utworzono wielomian P(x) ze zbioru współczynników (współczynniki ilorazu wielomianu p(x)) oraz wielomian p(x) z ilorazu $(x-i), i \in [1..20]$. Obliczono pierwiastki $z_k, k \in [1..20]$ wielomianu P(x) za pomocą funkcji roots(), a następnie policzono wartości wielomianów od pierwiastków. Następnie eksperyment powtórzono, zmieniając drugi współczynnik z -210 na $-210-2^{-23}$.

4.2.1 Wyniki

Wyniki przedstawiają tabele 5 oraz 6

k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	19.999809291236637	$2.7462952745472\mathrm{e}{13}$	1.4019117414364248e23	0.00019070876336257925
2	19.00190981829944	$1.0278376162816\mathrm{e}{13}$	1.1990376202486947e23	0.0019098182994383706
3	17.99092135271648	$7.199554861056\mathrm{e}{12}$	$1.0144799361089491\mathrm{e}23$	0.009078647283519814
4	17.025427146237412	$3.777623778304\mathrm{e}{12}$	$8.568905825727875\mathrm{e}22$	0.025427146237412046
5	15.946286716607972	$1.555027751936\mathrm{e}{12}$	$7.01087410689741\mathrm{e}22$	0.05371328339202819
6	15.075493799699476	$6.13987753472\mathrm{e}{11}$	$5.901011420239329\mathrm{e}22$	0.07549379969947623
7	13.914755591802127	$3.65383250944\mathrm{e}{11}$	$4.612719853149547\mathrm{e}22$	0.08524440819787316
8	13.07431403244734	$2.15723629056\mathrm{e}{11}$	$3.807325552825022\mathrm{e}22$	0.07431403244734014
9	11.953283253846857	$7.216771584\mathrm{e}{10}$	2.8869446884129956e22	0.04671674615314281
10	11.025022932909318	$3.5759895552\mathrm{e}{10}$	2.2478332979247994e22	0.025022932909317674
11	9.990413042481725	$1.2707126784\mathrm{e}{10}$	$1.6552601335207813\mathrm{e}22$	0.009586957518274986
12	9.002915294362053	4.465326592e9	1.196559421646318e22	0.002915294362052734
13	7.999355829607762	1.682691072e9	$8.26205014011023\mathrm{e}21$	0.0006441703922384079
14	7.000102002793008	4.80398336e8	$5.423593016891272\mathrm{e}{21}$	0.00010200279300764947
15	5.999989245824773	1.20152064e8	$3.320394888870126\mathrm{e}{21}$	1.0754175226779239e-5
16	5.000000665769791	2.4114688e7	$1.8446752056545675\mathrm{e}{21}$	6.657697912970661e-7
17	3.9999999837375317	3.106816e6	$8.854437035384718\mathrm{e}{20}$	$1.626246826091915\mathrm{e}\text{-}8$
18	2.9999999995920965	209408.0	$3.320413931687578\mathrm{e}{20}$	$4.0790348876384996\mathrm{e}\text{-}10$
19	2.0000000000283182	181760.0	$7.378697629901744\mathrm{e}{19}$	$2.8318236644508943\mathrm{e}\text{-}11$
20	0.9999999999996989	36352.0	5.517824e6	3.0109248427834245e-13

Tabela 5: Wyniki wielomianu Wilkinsona od obliczonego pierwiastka

4.3 Wnioski

Mogliśmy się spodziewać, że wyniki obu funkcji będą równe zeru, jeśli wywołamy je z argumentem równym pierwiastkowi wielomianu. Tak jednak nie jest, a

k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	$20.846910+0.0\mathrm{im}$	1.114453504512e13	$1.591108408283123\mathrm{e}23$	0.8469102151947894
2	$19.502442+1.940331\mathrm{im}$	9.539424609817828e12	1.318194782057474e23	2.004329444309949
3	19.502442 - 1.940331im	9.539424609817828e12	1.318194782057474e23	2.454021446312976
4	$16.730744+2.812624\mathrm{im}$	$3.315103475981763\mathrm{e}{11}$	$8.484694713574187\mathrm{e}22$	2.825483521349608
5	16.730744 - 2.812624im	3.315103475981763e11	$8.484694713574187\mathrm{e}22$	2.9060018735375106
6	$13.992406+2.518824\mathrm{im}$	$1.0612064533081976\mathrm{e}{11}$	$4.934647147685479\mathrm{e}22$	2.7128805312847097
7	13.992406 - 2.518824im	$1.0612064533081976\mathrm{e}{11}$	$4.934647147685479\mathrm{e}22$	2.5188358711909045
8	$11.793890+1.652477\mathrm{im}$	3.357756113171857e10	$2.8568401004080516\mathrm{e}22$	2.045820276678428
9	11.793890 - 1.652477im	3.357756113171857e10	$2.8568401004080516\mathrm{e}22$	1.665281290598479
10	$10.09545+0.644932\mathrm{im}$	$7.143113638035824\mathrm{e}9$	1.7212892853671066e22	1.1109180272716561
11	10.09545 - 0.644932im	$7.143113638035824\mathrm{e}9$	1.7212892853671066e22	0.6519586830380406
12	$8.915816+0.0\mathrm{im}$	3.065575424e9	$1.1607472501770085\mathrm{e}22$	0.0841836320674414
13	$8.007772+0.0\mathrm{im}$	1.072547328e9	$8.289399860984229\mathrm{e}21$	0.007772029099445632
14	$6.999602+0.0\mathrm{im}$	3.88123136e8	$5.422366528916045\mathrm{e}21$	0.00039792957757978087
15	$6.000020+0.0\mathrm{im}$	1.29148416e8	$3.320450195282314\mathrm{e}21$	$2.0476673030955794\mathrm{e}\text{-}5$
16	$4.999998+0.0{\rm im}$	3.9463936e7	1.8446726974084148e21	$1.4261120897529622 \mathrm{e}\text{-}6$
17	$4.000000 + 0.0 \mathrm{im}$	1.046784e7	$8.854437817429645\mathrm{e}{20}$	8.972436216225788e-8
18	$2.999999 + 0.0 \mathrm{im}$	2.221568e6	$3.3204139201100146\mathrm{e}{20}$	3.3965799062229962e-9
19	$2.000000+0.0\mathrm{im}$	349184.0	$7.37869763029606\mathrm{e}{19}$	5.503730804434781e-11
20	$0.999999+0.0\mathrm{im}$	20992.0	3.012096e6	1.6431300764452317e-13

Tabela 6: Wyniki wielomianu Wilkinsona od obliczonego pierwiastka, ze zmodyfikowanym współczynnikiem -210 na $-210-2^{-23}$

wyniki są bardzo dalekie od zera. Błąd obliczeń, który bierze się z niedokładności przedstawienia współczynników wielomianu buduje błąd, który narasta wraz z każdą kolejną operacją. Współczynniki wielomianu P(x) są reprezentowane z błędem, ponieważ w arytmetyce Float64 mamy około 15 do 17 miejsc na cyfry znaczące systemu dziesiętnego.

Następny eksperyment, w którym zmieniliśmy współczynnik przy x^{19} spowodował, że miejsca zerowe stały się liczbami zespolonymi. Ta minimalna zmiana sprawiła, że wyniki zmieniły się diametralnie. Zadanie jest więc źle uwarunkowane.

5 Model wzrostu populacji

5.1 Problem

Przeprowadzić eksperymenty wykorzystując następujący model:

$$p_{n+1} := p_n + rp_n(1 - p_n)$$
, dla $n = 0, 1, ...$, $p_0 = 0.01, r = 3$

1. Wykonać 40 iteracji powyższego wyrażenia w arytmetyce Float32

- 2. Wykonać 40 iteracji, ale po 10 iteracji obciąć wynik do 3 miejsc po przecinku i kontynuować do 40 iteracji w arytmetyce Float32
- 3. Wykonać 40 iteracji w arytmetyce Float64

5.2 Rozwiązanie

Zaimplementowano funkcję realizującą w sposób iteracyjny powyższy wzór rekurencyjny, z parametrem pozwalającym obciąć wynik 10-tej iteracji do trzech miejsc po przecinku. Funkcja jest inicjalizowana $p_n=p_0$, a w kolejnych iteracjach wartość p_n zastępowana jest przez $p_n+r\cdot pn\cdot (1-p_n)$, dopóki, dopóty nie osiągniemy żądanego n. Program został zaimplementowany w języku Julia.

5.3 Wyniki

Wyniki zostały przedstawione w tabeli 7

5.4 Wnioski

Pierwszym spostrzeżeniem jest, że wyniki końcowe, różnią się dla każdego eksperymentu. Pierwsze kilka wyników jest takie samo dla każdego z eksperymentów, natomiast błąd narastający z powodu ograniczonej precyzji arytmetyki prowadzi do niewiarygodnych wyników. Można zauważyć, że dla eksperymentów w arytmetyce Float32, rozbieżności zaczynają się bardzo szybko. Jeszcze szybciej dzieje się to w przypadku gdy dojdzie do obcięcia do trzech miejsc po przecinku dziesiątej operacji. Float64 radzi sobie nieco lepiej, ale ze względów na kwadratowy wzrost wartości tracimy cyfry znaczące i nawet podwójna precyzja w niczym tu nie pomaga. Nie jesteśmy w stanie stwierdzić, który eksperyment dał prawidłowe wyniki - możemy jedynie przypuszczać, że był to Float64 (a przynajmniej, do pewnego n). Ten typ zależności rekurencyjnej nazywamy sprzężeniem zwrotnym, w którym wynik jest używany jako wejście (np. do procesora) i ponownie przetwarzany. W sprzężeniu zwrotnym, lekkie zaburzenie początkowych obliczeń ma olbrzymi wpływ na wynik końcowy, więc to zadanie nie jest dobrze uwarunkowane.

6 Równanie rekurencyjne

6.1 Problem

Rozważamy równanie rekurencyjne

$$x_{n+1} := x_n^2 + c \text{ dla } n = 0, 1, \dots$$

W arytmetyce Float64 wykonujamy 40 iteracji dla danych:

1.
$$c = -2 i z_0 = 1$$

2.
$$c = -2 i z_0 = 2$$

i	Float32 + Obciecie	Float32	Float64
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.722	0.7229306	0.722914301179573
11	1.3241479	1.3238364	1.3238419441684408
12	0.036488414	0.037716985	0.03769529725473175
13	0.14195944	0.14660022	0.14651838271355924
14	0.50738037	0.521926	0.521670621435246
15	1.2572169	1.2704837	1.2702617739350768
16	0.28708452	0.2395482	0.24035217277824272
17	0.9010855	0.7860428	0.7881011902353041
18	1.1684768	1.2905813	1.2890943027903075
19	0.577893	0.16552472	0.17108484670194324
20	1.3096911	0.5799036	0.5965293124946907
21	0.09289217	1.3107498	1.3185755879825978
22	0.34568182	0.088804245	0.058377608259430724
23	1.0242395	0.3315584	0.22328659759944824
24	0.94975823	0.9964407	0.7435756763951792
25	1.0929108	1.0070806	1.315588346001072
26	0.7882812	0.9856885	0.07003529560277899
27	1.2889631	1.0280086	0.26542635452061003
28	0.17157483	0.9416294	0.8503519690601384
29	0.59798557	1.1065198	1.2321124623871897
30	1.3191822	0.7529209	0.37414648963928676
31	0.05600393	1.3110139	1.0766291714289444
32	0.21460639	0.0877831	0.8291255674004515
33	0.7202578	0.3280148	1.2541546500504441
34	1.3247173	0.9892781	0.29790694147232066
35	0.034241438	1.021099	0.9253821285571046
36	0.13344833	0.95646656	1.1325322626697856
37	0.48036796	1.0813814	0.6822410727153098
38	1.2292118	0.81736827	1.3326056469620293
39	0.3839622	1.2652004	0.0029091569028512065
40	1.093568	0.25860548	0.011611238029748606

Tabela 7: Kolejne iteracje funkcji wzrostu populacji

Rysunek 3: $c=-2, x_0=1$ oraz $c=-2, x_0=2$

4.
$$c = -1$$
 i $z_0 = 1$

5.
$$c = -1$$
 i $z_0 = -1$

6.
$$c = -1$$
 i $z_0 = 0.75$

7.
$$c = -1 i z_0 = 0.25$$

6.2 Rozwiązanie

Napisano program obliczający powyższą zależność rekurencyjną, dla każdego $i \in [1..40]$ i dla każdej pary (c, x_0) . Na podstawie tych siedmiu zbiorów danych generujemy wykresy funkcji reprezentujące wyniki.

6.3 Wyniki

Wyniki zostały przedstawione na wykresach (rysunkach) 3, 4, 5 oraz 6

Rysunek 5: $c=-1, x_0=-1$ oraz $c=-1, x_0=0.75$

Rysunek 6: $c=-1, x_0=-1$ oraz $c=-1, x_0=0.25$

6.4 Wnioski