2024/9/14

1.

设 $D\subseteq \mathbb{R}^2$ 是一个有界区域, z=f(x,y) 是 \overline{D} 上的连续函数, 且对 $\forall (x,y)\in D$, 有 f(x,y)>0. 再设 z=g(x,y) 在 D 上有定义, 且 $\exists (x_0,y_0)\in D$ s.t. $g(x_0,y_0)>0$, 以及 f(x,y)=g(x,y), 对 $\forall (x,y)\in \overline{D}\setminus \{(x_0,y_0)\}$ 成立. 问:

- 1. 当 $g(x_0, y_0)$ 满足什么条件时, $\{(x, y, z) | (x, y) \in D, 0 < z < g(x, y)\}$ 是 \mathbb{R}^3 中的开集?
- 2. 当 $g(x_0,y_0)$ 满足什么条件时, $\{(x,y,z)|(x,y)\in\overline{D},0\leq z\leq g(x,y)\}$ 是 \mathbb{R}^3 中的闭集?

Answer:

- 1. $g(x_0, y_0) \leq f(x_0, y_0)$
- 2. $g(x_0, y_0) \geq f(x_0, y_0)$

Proof:

注意到 $g(x_0,y_0)=f(x_0,y_0)$ 时,两问的要求都得到了满足,分别设得到了开集A和闭集B,此时 $g(x_0,y_0)$ 的变化相当于为原集合并/割了一条线段,设为 $A\cup L_+$, $B\cup L_+$, $A\setminus L_-$, $B\setminus L_-$ 多出 L_+ 等价于为原集合增加孤立点,减去 L_- 等价于原集合的补集增加孤立点,因此只有 $A\cup L_-$ 开,只有 $B\setminus L_-$ 闭.

从而1和2要求的充要条件分别是 $g(x_0,y_0) \leq f(x_0,y_0)$ 和 $g(x_0,y_0) \geq f(x_0,y_0)$

2.

证明函数 $f(x,y) = \sqrt{xy}$ 在闭区域 $D = \{(x,y)|x \ge 0, y \ge 0\}$ 上不一致连续.

Proof:

对给定的 ϵ 和 $\forall \delta$, 令 $\mathbf{x}_1 = (\lceil \frac{2\epsilon^2}{\delta} \rceil, 0), \mathbf{x}_2 = (\lceil \frac{2\epsilon^2}{\delta} \rceil, \frac{\delta}{2}).$ 此时 $|\mathbf{x}_1 - \mathbf{x}_2| = \frac{\delta}{2}$, 而 $|f(\mathbf{x}_1) - f(\mathbf{x}_2)| = \sqrt{\lceil \frac{2\epsilon^2}{\delta} \rceil \frac{\delta}{2}} \ge \epsilon$. 因此不一致连续.

3.

设函数 f(x,y) 在 $D=[0,1]\times[0,1]$ 上连续,它的最大值为 M,最小值为 m. 证明: $\forall c\in(m,M)$,存在无限多个 $(\xi,\eta)\in D$,s.t. $f(\xi,\eta)=c$.

Proof:

当 M=m 时, 结论平凡. 当 M>m 时, 设 $f(x_1,y_1)=M$, $f(x_2,y_2)=m$, 则 (x_1,y_1) 和 (x_2,y_2) 是不同的两个点, 它们之间存在无穷多条两两交集仅有端点的道路. 根据中值定理, 对于每一条 道路, $\exists (\xi,\eta) \in D$, s.t. $f(\xi,\eta)=c$, 因此结论成立.

4.

设函数 f(x,y) 在 $D=[0,1]\times[0,1]$ 上有定义,且对固定的 x, f(x,y) 是 y 的连续函数,对固定的 y, f(x,y) 是 x 的连续函数。证明:当满足下列条件之一时,则 f(x,y) 在 D 内连续:

- 1. 对固定的 x, f(x,y) 是 y 的单调上升函数;
- 2. $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $|f(x,y_1) f(x,y_2)| < \varepsilon$, 对 $\forall x \in [0,1]$, $\forall y_1,y_2 \in [0,1]$, 只要 $|y_1 y_2| < \delta$. 即 f(x,y) 关于 y 一致连续.

Proof:

对于固定的 y_0 ,对 orall arepsilon > 0,使得当 $|y-y_0| < \delta$ 时,

$$|f(x,y)-f(x,y_0)|<\varepsilon$$

对 $\forall x \in [0,1]$ 成立,则 f(x,y) 在 D 上连续.

证明1.

考虑某个固定的 x, 由介值原理, 存在 $\delta_x > 0$, 使得

$$f(x, y_0 - \delta_x) - \epsilon < f(x, y_0) < f(x, y_0 + \delta_x)$$

并且

$$f(x, y_0 - \delta_x) < f(x, y_0) < f(x, y_0 + \epsilon) + \delta_x$$

因此,当 $|y-y_0|<\delta_x$ 时,有

$$|f(x,y)-f(x,y_0)| .$$

取 $\delta=\min\{\delta_x,\delta_y\}$,当 $|y-y_0|<\delta$ 时, $|f(x,y)-f(x,y_0)|<arepsilon$ 对 $orall x\in[0,1]$ 成立

证明2.

考察 D 上的任一点 (x_0,y_0) ,对 $\forall \varepsilon > 0$,存在 $\delta_1 > 0$,当 $x \in N(x_0,\delta_1)$ 时,有

$$|f(x,y_0)-f(x_0,y_0)|<rac{arepsilon}{2};$$

存在 $\delta_2 > 0$,当 $x \in [0,1]$ 且 $y \in N(y_0, \delta_2)$ 时,有

$$|f(x,y)-f(x,y_0)|<\frac{\varepsilon}{2}.$$

取 $\delta = \min\{\delta_1, \delta_2\}$,则当 $(x,y) \in N((x_0, y_0), \delta)$ 时,有

$$|f(x,y)-f(x_0,y_0)|\leq |f(x,y)-f(x,y_0)|+|f(x,y_0)-f(x_0,y_0)|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon_\circ$$

故 f(x,y) 在 (x_0,y_0) 处连续,从而 f(x,y) 在 D 上连续。证毕。

5.

设 $U\subseteq\mathbb{R}^n$ 是一个非空开集,证明:向量函数 $f:U\to\mathbb{R}^m$ 在 U 内连续的充分必要条件是开集的原像是开集.

Proof:

- 必要性: 假设 U_1 的原像 $f^{-1}(U_1)$ 中存在孤立点 x_0 . 由于 $f(x_0)$ 是 U_1 的聚点, $\exists \epsilon > 0$ s.t. $f(x_0) \in U_1$ 并且 $(x_0 \epsilon, x_0 + \epsilon) \subset U_1$. 由 f 的连续性, $\exists \delta > 0$ s.t. $(x_0 \delta, x_0 + \delta) \subset f^{-1}(U_1)$, 这与 x_0 是 $f^{-1}(U_1)$ 中的孤立点矛盾. 因此, $f^{-1}(U_1)$ 是开集. 即开集的原像是开集.
- 充分性: 假设 f 在 $x_0 \in U$ 处不连续,则 $\exists \epsilon > 0$ s.t. $\forall \delta > 0$, $\exists x \in (x_0 \delta, x_0 + \delta)$ s.t. $f(x) \notin (f(x_0) \epsilon, f(x_0) + \epsilon)$. 这意味着开集 $(f(x_0) \epsilon, f(x_0) + \epsilon)$ 的原像 $f^{-1}((f(x_0) \epsilon, f(x_0) + \epsilon))$ 中存在孤立点 x_0 ,这与开集的原像是开集矛盾. 因此,f 在 U 上连续.

2024/9/18

1.

设 $D\subset\mathbb{R}^n$ 是紧集,映射 $T:D\to D$,且存在常数 $\theta\in[0,1)$, $k\in\mathbb{N}$,使得对任意 $x,y\in D$,都有

$$\|T^k(x)-T^k(y)\|\leq heta\|x-y\|$$

证明: T 有唯一的不动点。

唯一性:

假设 a,b 都是 T 的不动点, $\|a-b\| \neq 0$, 则有,

$$\|a-b\|=\|T^k(a)-T^k(b)\|\leq heta\|a-b\|\Rightarrow 1\leq heta$$

矛盾, 因此 T 最多只有一个不动点.

以上唯一性证明对 T^k 同样成立, 也即 $S=T^k$ 最多只有一个不动点

存在性:

任取 $a_0\in D$, 生成点列 $\{a_n\}$ s.t. $a_{n+1}=T(a_n)$, 设 $c=\max_{i\in [n]}\|a_i-a_{i-1}\|$ 注意到

$$\|a_{n+1} - a_n\| \le heta^{[n/k]} \|T(a_{n-k[n/k]}) - a_{n-k[n/k]}\| \le heta^{n/k} c$$

从而

$$\|a_m - a_n\| \leq \sum_{i=n}^{m-1} \|a_{i+1} - a_i\| \leq \sum_{i=n}^{m-1} heta^{i/k} c = rac{ heta^{n/k} - heta^{m/k}}{1 - heta^{1/k}} c o 0, \; (m > n o + \infty)$$

因此 $\{a_n\}$ 是柯西列,设其极限为 a ,则有,

$$||T^{k}(a) - a|| \le ||T^{k}(a) - T^{k}(a_{n})|| + ||a_{n+k} - a||$$

 $\le \theta ||a - a_{n}|| + ||a_{n+k} - a||$
 $< \epsilon$

因此 a 是 T^k 的唯一不动点,从而有 $T^k(T(a))=T^{k+1}(a)=T(T^k(a))=T(a)$,因此T(a) 也是 T^k 的不动点,从而 T(a)=a,也即 T 存在不动点

2.

设函数 u=f(x) 在 $U(x_0,\delta_0)\subset\mathbb{R}^n$ 中存在各个偏导数,且所有偏导数在该邻域内有界,证明 f(x) 在 x_0 处连续。

同时,举例说明存在这样的函数 u=g(x),它的各个偏导数在 x_0 的任何邻域内无界,但它在 x_0 点连续。

Proof:

利用微分中值定理,注意到

$$f(x_1 + \Delta x_1, \ldots x_i + \Delta x_i, x_{i+1}, \ldots, x_n) \ = f(x_1 + \Delta x_1, \ldots x_{i-1} + \Delta x_{i-1}, x_i, \ldots, x_n) \ + \Delta x_i f'_{x_i} (x_1 + \Delta x_1, \ldots x_i + heta_i \Delta x_i, x_{i+1}, \ldots, x_n)$$

令 $c=\max_{i\in[n]}f'_{x_i}(x_1+\Delta x_1,\dots x_i+ heta_i\Delta x_i,x_{i+1},\dots,x_n)$,令 i 遍历 [n] 联立上式得,

$$f(oldsymbol{x} + \Delta oldsymbol{x}) - f(oldsymbol{x}) \leq c \left(\sum_{i \in [n]} |\Delta x_i|
ight)
ightarrow 0, \; (\sum_{i \in [n]} |\Delta x_i|
ightarrow 0)$$

从而 $\lim_{E \in m{x} o m{x}_0} f(m{x}) = f(m{x}_0)$,也即 f 在 $m{x}_0$ 连续

Example:

 $\Rightarrow x_0 = (0,0)$

$$f(x,y) = egin{cases} (x^2+y^2)\sinrac{1}{x^2+y^2}, & x^2+y^2
eq 0, \ 0, & x^2+y^2=0 \end{cases}$$

连续:
$$|(x^2+y^2)\sin\frac{1}{x^2+y^2}-0|\leq |x^2+y^2|\leq |x|+|y|<\epsilon$$
 偏导数无界: $f_x'=2x\left(\sin\frac{1}{x^2+y^2}-\frac{1}{x^2+y^2}\cos\frac{1}{x^2+y^2}\right)$ 此时令 $y=0,x=\frac{1}{\sqrt{2k\pi}}$,则有

$$f_x'=-2\sqrt{2k\pi}
ightarrow -\infty,\;(k
ightarrow +\infty)$$

 f_y^\prime 同理

3.

举例说明在 \mathbb{R}^2 内存在函数 z=f(x,y),使得 f(x,y) 在 \mathbb{R}^2 内处处不连续,但它在原点处存在两个偏导数。

Example:

$$f(x,y) = egin{cases} 1, & x \in \mathbb{Q} \ or \ y \in \mathbb{Q}, \ 0, & x,y
otin \mathbb{Q} \end{cases}$$

处处不连续: 由有理数和无理数的稠密性, 任一点的邻域一定同时存在函数值为 1 和 0 的点存在两个偏导数: x 轴和 y 轴上点都是 1, 因此原点处偏导数都存在且值为 0

4.

求函数 $u = \ln(1 + \|\boldsymbol{x}\|)$ 的各个偏导数,其中 $\boldsymbol{x} \in \mathbb{R}^n$.

规定 $x_{-i}^2=\sum_{j
eq i} x_j^2$,则有 $u=\ln(1+\sqrt{x_i^2+x_{-i}^2})$,此时,

$$rac{\partial u}{\partial x_i} = rac{x_i}{x_i^2 + x_{-i}^2 + \sqrt{x_i^2 + x_{-i}^2}} = rac{x_i}{\sum_{j \in [n]} x_j^2 + \sqrt{\sum_{j \in [n]} x_j^2}}$$

5.

求函数 $f(x) = \ln(||x||)$,其中 $\boldsymbol{x} \in \mathbb{R}^n \setminus \{0\}$,的全微分。

$$df = \sum_{i \in [n]} rac{x_i}{\|oldsymbol{x}\|^2} dx_i$$