Multiple Linear Regression and Model Selection Biostat 705

Hussein Al-Khalidi, PhD

Department of Biostatistics and Bioinformatics,
Duke University

January 21, 2024

Multiple linear regression model

■ Multiple linear regression model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

- Here we are interested in linear associations between the response Y and predictors (independent variables) X_1, X_2, \ldots, X_p .
- Interpretation of the intercept β_0 is the expected value of Y when X_1, X_2, \ldots, X_p are all equal zero
- We interpret the slopes (coefficient of predictors) β_j $(j=1,\ldots,p)$ as the <u>average</u> effect on Y of a 1 unit change (increase or decrease) in X_j , holding all other predictors constant.

Estimation of Multiple linear regression model

Estimated multiple linear regression model:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

• We estimate regression parameters $\beta_0, \beta_1, \ldots, \beta_p$ using least-squares method, similar approach used in simple linear regression, that is by minimizing the sum squared errors:

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$

This is done using statistical software, such R or SAS. The values $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ that minimize SSE are multiple least-squares regression coefficient estimates.

Example from ISLR book

A few important questions

- 1 Is at least one of the predictors X_1, X_2, \ldots, X_p useful in predicting the response?
- 2 Do all predictors help to explain Y, or only a subset of the predictors are useful?
- 3 How well does the model fit the data?
- 4 Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

"Essentially, all model are wrong, but some are useful" George Box

Multiple linear regression in a matrix form

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

The regression model above, can be written in a matrix form as:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

$$\underbrace{Y}_{(n \times 1)} = \underbrace{X}_{[n \times (p+1)]} \underbrace{\beta} + \underbrace{\epsilon}_{(n \times 1)}$$

Multiple linear regression in a matrix form

$$Y = X\beta + \epsilon$$

Y is a vector of observed responses which has a distribution (usually normal) with mean $X\beta$ and Variance $\sigma^2_{\epsilon} I_n$, X is called the design-matrix and measured without error (ie, fixed). Note, normality assumption is not required to estimate the model parameters $\beta's$.

Thus, the estimated β 's are given as:

$$\hat{\beta} = (X'X)^{-1}X'Y$$

Hence, variance of $\hat{\beta}$ given as: $Var(\hat{\beta}) = \sigma^2(X'X)^{-1}$ and estimated varaince as: $\widehat{Var}(\hat{\beta}) = S_{y,x}^2(X'X)^{-1} = \mathrm{MSE}(X'X)^{-1}$

Assumptions

Assumptions:

- Linearity, $E(\epsilon_i) = 0$, which implies that $EY_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_p X_{ip}$
- Homoscedasticity (constant variance), $var(\epsilon_i) = \sigma_{\epsilon}^2$, which implies that $var(Y_i|X_{i1},\ldots,X_{ip}) = \sigma_{\epsilon}^2$
- Normality, $\epsilon_i \sim \mathsf{N}(0, \sigma_\epsilon^2)$, which implies that $Y_i | X_{i1}, \ldots, X_{ip} \sim \mathsf{N}(\beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_p X_{ik}, \sigma_\epsilon^2)$
- Independence, $\epsilon_i \epsilon_j$ are independent for $i \neq j$, ie Y values are independent from each other.

Partial F statistic

Testing overall (global) significance in multiple linear regression model, that is

- Model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \epsilon$
- $\begin{array}{ll} \blacksquare \mbox{ Hypothesis:} & H_0: \beta_1=\beta_2=\ldots=\beta_p=0 \\ & H_a: \mbox{ One or more of the } \beta_j \mbox{ are nonzero} \end{array}$
- Test statistic: $F = \frac{SS_{reg}/p}{SSE/(n-p-1)} \sim F_{(p,n-p-1)}$ where p+1 is number of parameters in the model (including the intercept β_0).
- \bullet or equivalently, $F=\frac{R^2/p}{(1-R^2)/(n-p-1)}\sim F_{(p,n-p-1)}$ where, $R^2=\frac{SS_{reg}}{SST}=1-\frac{SSE}{SST}$


```
weight height age
64 57
       8
71 59 10
53 49
      6
67 62 11
55 51
      8
58 50
77 55 10
57 48
      9
56 42 10
51 42
      6
76 61 12
68 57
      9
```


How to express the above example in a matrix form

weight =
$$\beta_0 + \beta_1 \text{ hight} + \beta_2 \text{ age} + \epsilon$$

The regression model above, can be written in a matrix form as:

$$\begin{bmatrix}
64 \\
71 \\
\vdots \\
68
\end{bmatrix} = \begin{bmatrix}
1 & 57 & 8 \\
1 & 59 & 10 \\
\vdots & \vdots \\
1 & 57 & 9
\end{bmatrix} \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2
\end{bmatrix} + \begin{bmatrix}
\epsilon_1 \\
\epsilon_2 \\
\vdots \\
\epsilon_{12}
\end{bmatrix}$$

$$\underbrace{Y}_{(12\times1)} = \underbrace{X}_{(12\times1)} \underbrace{\beta}_{(12\times1)} + \underbrace{\epsilon}_{(12\times1)}$$


```
library (MASS)
wha <- read.table("C:\\Users\\ha27\\Desktop\\wh.txt", header=T)
attach(wha)
m <- lm(weight " height + age)
#get summary of multiple resgression ANOVA
summary (m)
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5530 10.9448 0.599 0.5641
       0.7220 0.2608 2.768 0.0218 *
height
          2.0501 0.9372 2.187 0.0565 .
age
Residual standard error: 4.66 on 9 degrees of freedom
Multiple R-squared: 0.78, Adjusted R-squared: 0.7311
F-statistic: 15.95 on 2 and 9 DF. p-value: 0.001099
m1=lm(weight "height,data=wha)
summary (m1)
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.1898 12.8487 0.482 0.64035
height
       1.0722
                 0.2417 4.436 0.00126 **
Residual standard error: 5.471 on 10 degrees of freedom
Multiple R-squared: 0.663, Adjusted R-squared: 0.6293
F-statistic: 19.67 on 1 and 10 DF, p-value: 0.001263
```



```
m2=lm(weight ~ age,data=wha)
summary (m2)
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.5714 8.6137 3.549 0.00528 **
          3.6429
                   0.9551 3.814 0.00341 **
age
Residual standard error: 6.015 on 10 degrees of freedom
Multiple R-squared: 0.5926, Adjusted R-squared: 0.5519
F-statistic: 14.55 on 1 and 10 DF. p-value: 0.003407
###No regression, ie model without predictors
m0=lm(weight ~ 1,data=wha)
summary (m0)
*******
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 62.750 2.594 24.19 6.89e-11 ***
Residual standard error: 8.986 on 11 degrees of freedom
**************************************
```



```
###Regression model with interaction,
m3=lm(weight "height*age.data=wha)
summary (m3)
**************
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.06471 59.85950 0.018 0.986
height
          0.83032 1.19112 0.697 0.505
ag e
         2.63866 6.37515 0.414 0.690
height:age -0.01146 0.12259 -0.093 0.928
Residual standard error: 4.94 on 8 degrees of freedom
Multiple R-squared: 0.7802, Adjusted R-squared: 0.6978
F-statistic: 9.467 on 3 and 8 DF, p-value: 0.005211
Note: in situation where the interaction is significant, but the main effects are not significant,
it's a good practice to keep the main effects in the model, despite they're not significant, this
often called hierarchy principle.
```



```
data one;
input weight height age; int=height*age;datalines;
64 57 8
71 59 10
53 49 6
67 62 11
55 51 8
58 50 7
77 55 10
57 48 9
56 42 10
51 42 6
76 61 12
68 57 9
run:
title1 "*** Regression model without interaction***";
proc reg data=one;
model weight=height age;
run:
title1 "*** Regression model with interaction***";
proc reg data=one;
model weight=height age int;
run;
```


*** Regression model without interaction***
The REG Procedure

Model: MODEL1

age

Dependent Variable: weight

Number of Observations Read 12 Number of Observations Used 12

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	692.82261	346.41130	15.95	0.0011
Error	9	195.42739	21.71415		
Corrected Tota	1 11	888.25000			
Root MSE	4.65984	R-Square	0.7800		
Dependent Mean	62.75000	Adj R-Sq	0.7311		
Coeff Var	7.42605				
	Paramet	er Estimates			
	Par amet er	Standard			
Variable D	F Estimate	Error	t Value	Pr > t	
Intercept	1 6.55305	10.94483	0.60	0.5641	
height	1 0.72204	0.26081	2.77	0.0218	

0.93723 2.19

2.05013

0.0565

SAS output: Regression with interaction

*** Regression model with interaction***

The REG Procedure Model: MODEL1

Dependent Variable: weight

Number of Observations Read 12 Number of Observations Used 12

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	693.03575	231.01192	9.47	0.0052
Error	8	195.21425	24.40178		
Corrected Total	11	888.25000			
Root MSE	4.93982	R-Square	0.7802		
Dependent Mean	62.75000	Adj R-Sq	0.6978		
Coeff Var	7.87222				

Parameter Estimates

		Par am et er	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	1.06471	59.85950	0.02	0.9862
height	1	0.83032	1.19112	0.70	0.5055
ag e	1	2.63866	6.37515	0.41	0.6898
int	1	-0.01146	0.12259	-0.09	0.9278


```
data one;
input weight height age; datalines;
64 57 8
71 59 10
53 49 6
67 62 11
55 51 8
58 50 7
77 55 10
57 48 9
56 42 10
51 42 6
76 61 12
68 57 9
run:
title1 "*** ANOVA model without interaction***":
proc glm data=one;
model weight=height age /ss3 ss1;
run:
title1 "*** ANOVA model with interaction***";
proc glm data=one;
model weight=height |age /ss3 ss1; ***this is same as weight=height age height*age;
run;
```


The GLM Procedure *** ANOVA model without interaction***

Dependent Variable: weight

			C E			
		D.F.	Sum of	м а		ъ
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		2	692.8226065	346.4113033	15.95	0.0011
Error		9	195.4273935	21.7141548		
Corrected T	ot al	11	888.2500000			
R-Square	Coeff Var	Root	MSE weight	Mean		
0.779986	7.426048	4.659	9845 62.7	75000		
Source		DF	Type I SS	Mean Square	F Value	Pr > F
height		1	588.9225232	588.9225232	27.12	0.0006
age		1	103.9000834	103.9000834	4.78	0.0565
_						
Source		DF	Type III SS	Mean Square	F Value	Pr > F
height		1	166.4297494	166.4297494	7.66	0.0218
age		1	103.9000834	103.9000834	4.78	0.0565
			St andard			
Parameter	Estimate		Error t	Value Pr > t	1	
Intercept	6.553048251	1 (0.94482708	0.60 0.564		
height	0.722037958		0.26080506	2.77 0.021		

0.93722561

2.19

0.0565

2.050126352

age

The GLM Procedure *** ANOVA model with interaction***

Dependent Variable: weight

			Sum of			
Source		DF	Squares	Mean Squar	e F Val	ue Pr > F
Model		3	693.0357479	231.011916	9.	47 0.0052
Error		8	195.2142521	24.401781	5	
Corrected To	otal	11	888.2500000			
R-Square	Coeff Var		: MSE weight			
0.780226	7.872217	4.93	39816 62.	75000		
Source		DF	Type I SS	Mean Squar	e F Val	ue Pr > F
height		1	588.9225232			
age		1	103.9000834			26 0.0730
height*age		1	0.2131413	0.213141	3 0.	01 0.9278
0 0						
Source		DF	Type III SS	Mean Squar	e F Val	ue Pr > F
height		1	11.85765063	11.8576506	30.	49 0.5055
age		1	4.18031226	4.1803122	60.	17 0.6898
height*age		1	0.21314131	0.2131413	10.	0.9278
			Standard			
Parameter					. 1.1	
	Estimate		Error		> t	
Intercept	1.064709014		59.85950265		. 9862	
height	0.830319291		1.19112289		. 5055	
age	2.638664346		6.37515215		. 6898	
height*age	-0.011457482		0.12259313	-0.09 0	. 9278	

Multiple linear regression model with interaction

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

= \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon
= \beta_0 + \beta_1 X_1 + (\beta_2 + \beta_3 X_1) X_2 + \epsilon

In our example:

weight =
$$\beta_0 + \beta_1$$
height + β_2 age + β_3 height * age + ϵ
= $\beta_0 + (\beta_1 + \beta_3$ age)height + β_2 age + ϵ
= $\beta_0 + \beta_1$ height + $(\beta_2 + \beta_3$ height)age + ϵ

$$\widehat{\text{weight}} = 1.06 + 0.83 * \text{height} + 2.64 * \text{age} - 0.01 * \text{height} * \text{age}$$

$$= 1.06 + (0.83 - 0.01 * \text{age}) * \text{height} + 2.64 * \text{age}$$

$$= 1.06 + 0.83 * \text{height} + (2.64 - 0.01 * \text{height}) * \text{age}$$
PukeHealth

Interpretation of interaction in linear regression model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

When the interaction term (X_1X_2) in the model above is significant, that means the relationship between the two predictors (X_1,X_2) and the response variable (Y) is not additive, but rather <u>multiplicative</u>. In other words, the effect of one predictor on Y depends on the level of the other predictor.

A significant interaction term does not necessarily mean that the main effects of (X_1, X_2) are not important, it only means that the effect of one predictor on the response variable is conditional on the level of the other predictor.

For example: Suppose a clinician wants to study the relationship between cancer treatment (X_1) and survival rate (Y), and whether the relationship between cancer treatment and survival rate is different for patients who are at different stages of cancer. Thus, the model should include an interaction term between cancer treatment (X_1) and cancer stage (X_2) in the regression model. This allows the clinician to examine whether the relationship between cancer treatment and survival rate is different for patients who are at different stages of cancer, and to determine whether different cancer treatments may have a different effect on patients with different stages of cancer.

In general, when interpreting a significant interaction term, it's important to examine the simple slopes of the predictors at specific levels of the other predictor. For example, you can look at the effect of one predictor on the response variable when the other predictor is at its lowest and highest values. If the slopes are different, it indicates that the effect of one predictor on the response variable changes depending on the level of the other predictor.

Sequential and Partial SS

Definition of type I sum of sequares (SS) and type III sum of sequares in SAS output. Suppose we have a model with 3 independent variables (X_1,X_2,X_3) .

Variables	Type I SS (sequential)	Type III SS (partial)
$\overline{X_1}$	$SS(X_1)$	$SS(X_1 X_2,X_3)$
X_2	$SS(X_2 X_1)$	$SS(X_2 X_1,X_3)$
X_3	$SS(X_3 X_1,X_2)$	$SS(X_3 X_1,X_2)$

- In Type ISS (sequential) order is important. Type ISS are statistically independent of each other, ie each associated with 1 df and they do add up to the SS regression, for example $SS(X_1) + SS(X_2/X_1) + SS(X_3/X_1, X_2) = SS_{reg}(X_1, X_2, X_3).$ This type of SS is useful in polynomial regression modeling.
- There is also Type II SS (partial) which is similar to Type III and both produce same SS when the design is balanced. However, for unbalanced design we would use Type III SS. Unlike Type I SS, both Type II and Type III they don't add up to the $\mathrm{SS}_{\mathrm{reg}}$. Also, both Type II and Type III SS are invariant to the ordering, ie, order is not important.

Partial F test

In general, suppose we have the following model:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \beta_{k+1} X_{k+1} + \ldots + \beta_p X_p + \epsilon$$

Thus, testing $H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$ The test statistic (partial F) would be:

$$egin{aligned} F(X_1, X_2, \dots X_k | X_{k+1}, X_{k+2}, \dots, X_p) \ &= rac{[SS_{reg}(full) - SS_{reg}(reduced)]/k}{MSE(full)} \ &= rac{[SSE(reduced) - SSE(full)]/k}{MSE(full)} \end{aligned}$$

Note that the reduced model is nested within the full model meaning that all the terms remaining in the reduced model were in the full model as well.

As an example, suppose

$$\begin{array}{l} Y=\beta_0+\beta_1X_1+\beta_2X_2+\epsilon \quad \text{(Full-model)} \\ \text{Under } H_0:\beta_2=0 \rightarrow Y=\beta_0+\beta_1X_1+\epsilon \quad \text{(Reduced-model)} \end{array}$$

■ Test statistic:

$$\begin{split} F &= \frac{[SS_{reg(full)} - SS_{reg(reduced)}]/1}{SSE_{(full)}/(n-3)} \\ &= \frac{(SSE_{(reduced)} - SSE_{(full)})/1}{SSE_{(full)}/(n-3)} \sim F_{(1,n-3)}. \end{split}$$

- numerator df =# of parameters in the full-model minus # of parameters in the reduced-model (or simply # of parameters tested in H_0)
- denominator df = # of observations (sample size n) minus # of parameters in the full-model.

DukeHealth

Partial F: in-class workout problem

Using the QUET example (quet.txt), in which systolic blood pressure (sbp) is the response and QUET (quetelet index, quet=100*(weight/hight²), age and smoking history (smk).

■ model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$

where
$$Y = {\sf sbp}, X_1 = {\sf quet},$$

$$X_2 = {\sf age}, X_3 = {\sf smk} \ \mbox{(1=smoker, 0=non-smoker)}$$

- $SS(X_1)$ =sum squares regression explained using only X_1 predict Y.
- $SS(X_2|X_1)$ =sum squares regression explained using X_2 given X_1 in the model.
- $SS(X_3|X_1,X_2)$ =sum squares regression explained using X_3 given X_1 and X_2 in the model.

Example:

```
data one:
label sbp = 'Systolic blood pressure'
      quet= 'Quetelet index'
  age = 'Age'
  smk = 'Smoking histroy';
input sbp quet age smk @@:datalines:
135 2.876 45 0 122 3.251 41 0 130 3.100 49 0 148 3.768 52 0 146 2.979 54 1
129 2 790 47 1 162 3 668 60 1 160 3 612 48 1 144 2 368 44 1 180 4 637 64 1
166 3.877 59 1 138 4.032 51 1 152 4.116 64 0 138 3.673 56 0 140 3.562 54 1
134 2.998 50 1 145 3.360 49 1 142 3.024 46 1 135 3.171 57 0 142 3.401 56 0
150 3.628 56 1 144 3.751 58 0 137 3.296 53 0 132 3.210 50 0 149 3.301 54 1
132 3.017 48 1 120 2.789 43 0 126 2.956 43 1 161 3.800 63 0 170 4.132 63 1
152 3.962 62 0 164 4.010 65 0
run:
title1 "*** Full-model ***":
proc reg data=one;
 model sbp=quet age smk;
run;
title1 "*** ANOVA model ***";
proc glm data=one;
   class smk;
  model sbp=quet age smk/ss3 ss1;
run;
```

SAS outputs: PROC REG

The REG Procedure

Model: MODEL1

Dependent Variable: sbp Systolic blood pressure

Number of Observations Read 32 Number of Observations Used 32

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value
Model	3	4889.82570	1629.94190	29.71
Error	28	1536.14305	54.86225	
Corrected Total	31	6425.96875		

Analysis of Variance

Source Pr > F

Model <.0001

Root MSE 7.40691 R-Square 0.7609

Dependent Mean 144.53125 Adj R-Sq 0.7353

Coeff Var 5.12478

SAS outputs: PROC REG

The REG Procedure

Model: MODEL1

Dependent Variable: sbp Systolic blood pressure

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error
Intercept quet age smk	Intercept Quetelet index Age Smoking histroy	1 1 1	45.10319 8.59245 1.21271 9.94557	10.76488 4.49868 0.32382 2.65606

Parameter Estimates

Variable	Label	DF	t value	Pr > t
Intercept	Intercept	1	4.19	0.0003
quet	Quetelet index	1	1.91	0.0664
age	Age	1	3.75	0.0008
smk	Smoking histroy	1	3.74	0.0008

SAS outputs: PROC GLM

```
The GLM Procedure
      Dependent Variable: sbp Systolic blood pressure
                                         Sum of
Source
                                        Squares
                                                     Mean Square
Model
                              3
                                    4889.825697
                                                     1629.941899
Error
                             28
                                    1536.143053
                                                       54.862252
Corrected Total
                             31
                                    6425.968750
                                               Pr > F
          Source
                                   F Value
          Model
                                     29.71
                                               < . 0001
      R-Square
                   Coeff Var
                                   Root MSE
                                                  sbp Mean
      0.760948
                    5.124778
                                   7.406906
                                                  144.5313
Source
                             DF
                                      Type I SS
                                                     Mean Square
quet
                                    3537.945739
                                                     3537.945739
age
                                     582.646506
                                                      582.646506
                                                      769.233452
smk
                                     769.233452
          Source
                                   F Value
                                               Pr > F
                                               < .0001
          quet
                                     64.49
                                     10.62
                                               0.0029
          age
          smk
                                     14.02
                                               0.0008
Source
                                    Type III SS
                                                     Mean Square
quet
                                    200.1414685
                                                     200.1414685
                                    769.4592039
                                                     769.4592039
age
                                    769.2334521
smk
                                                     769.2334521
          Source
                                   F Value
                                               Pr > F
                                      3.65
                                               0.0664
          quet
          age
                                     14.03
                                               0.0008
                                     14.02
                                               0.0008
          smk
```


ANOVA Table

- Global null hypothesis: $H_0: \beta_1 = \beta_2 = \beta_3 = 0$
- ANOVA Table

Source	df	SS	MS	F
Regression	3	4889.83	$1629.9 = \frac{4889.83}{3}$	$\frac{1629.9}{54.86} \sim F_{3,28}$
X_1	1	3537.95	, and the second	31.00
$X_2 X_1$	1	582.65		
$X_3 X_1,X_2$	1	769.23		
Error	28	1536.14	$54.86 = \frac{1536.14}{28}$	
Total	31	6425.97		

■ Calculated $F=29.71\sim F_{3,28}.$ $F_{.95,3,28}=2.95,$ thus, $F=29.71>2.95\Rightarrow$ reject the global null hypothesis H_0

ANOVA Table

In general,

$$SS(X^*|X_1, X_2, ..., X_p) = SS_{reg}(X_1, X_2, ..., X_p, X^*) - SS_{reg}(X_1, X_2, ..., X_p)$$

$$= SSE(X_1, X_2, ..., X_p) - SSE(X_1, X_2, ..., X_p, X^*).$$

Definition

$$\begin{split} F(X^*|X_1,X_2,\ldots,X_p) \\ = & \frac{\text{extra sum of squares adding } X^*, \text{ given} X_1,\ldots,X_p}{\text{mean square residual for all variables } (X_1,X_2,\ldots,X_p,X^*) \text{ in the model}}. \end{split}$$

ANOVA Table

Definition

$$F(X^*|X_1, X_2, \dots, X_p) = \frac{SS_{reg}(X^*|X_1, \dots, X_p)}{MSE(X_1, X_2, \dots, X_p, X^*)}$$

Definition

$$F(X^*|X_1, X_2, \dots, X_p) = \frac{(SS_{reg}(X_1, X_2, \dots, X_p, X^*) - SS_{reg}(X_1, X_2, \dots, X_p))/1}{MSE(X_1, X_2, \dots, X_p, X^*)}$$

Definition

$$F(X^*|X_1, X_2, \dots, X_p) = \frac{(SSE(X_1, X_2, \dots, X_p) - SSE(X_1, X_2, \dots, X_p, X^*))/1}{MSE(X_1, X_2, \dots, X_p, X^*)}$$

Sum Squares Decomposition

Some notes on decomposition of SSR and SSE:

$$\begin{split} SSR(X_1,X_2,X_3) &= SSR(X_1) + SSR(X_2|X_1) + SSR(X_3|X_1,X_2) \\ &= SSR(X_2) + SSR(X_3|X_2) + SSR(X_1|X_2,X_3) \\ &= SSR(X_1) + SSR(X_2,X_3|X_1) \\ SSR(X_3|X_1,X_2) &= SSE(X_1,X_2) - SSE(X_1,X_2,X_3) \\ SSR(X_3|X_1,X_2) &= SSR(X_1,X_2,X_3) - SSR(X_1,X_2) \\ SSR(X_2,X_3|X_1) &= SSE(X_1) - SSE(X_1,X_2,X_3) \\ &= SSR(X_1,X_2,X_3) - SSR(X_1) \end{split}$$

Model Selection

There are several ways (criteria) can be used to find the 'best' subset model. In general, there are 2^p models that involve subsets of p predictors.

For example, in a case with 3 predictors, there are $2^3-1=7$ different possible subsets that can be formed from a pool of 3 independent variables. For $p{=}10$, leads to 1,023 to subsets, if $p{=}20$, there are 1,048,575 subsets. In practice, having 20 predictors is not unusual, especially in medical dataset.

"Best" Subset Selection

- There are primarily two types of variable selection:
 - i) Penalty based criterion approaches that attempt to find the model that optimizes some measure of goodness.
 - ii) A stepwise approach that compares one model to another, assessing the change in fit at each step.

"Best" Subset Selection

While there are many Penalty based criteria for comparing regression models, but the most commonly used are Mallow's C_p , mean-square error (MSE_p) , R_p^2 , adjusted- R_p^2 $(R_{a,p}^2)$, Akaike's information criterion (AIC_p) and Schwarz' Bayesian criterion (SBC_p) , also called Bayesian information criterion (BIC_p) . In practice, it is always good to weigh-in several criteria in selecting the 'best' model.

Model Selection: C_p

The Mallow's C_p is defined as:

Definition

 $C_p = \frac{SSE_p}{MSE_{full}} - (n-2p)$, where SSE_p is the error sum squares of the reduced model.

Plot C_p values against p, those models with small bias will tend to be near the line $C_p=p$.

Note: the expected value of C_p is approximately p (ie, $E(C_p) \approx p$).

Note: For the full model (ie, model with all variables) has $C_P=P$ exactly.

Model Selection: MSE_p and R_p^2

The mean-square error is defined as:

Definition

 $MSE_p = \frac{SSE_p}{n-p}$, where SSE_p is the sum-squares error for the reduced model.

Select models with small MSE_p .

Adjusted- R_p^2 is defined as:

Definition

$$R_{a,p}^2=1-(1-R_p^2)rac{n-1}{n-p}$$
, where $R_p^2=rac{SS_{reg(p)}}{SST}$.

Similar, to C_p , it is useful to plot $R_{a,p}^2$ (or R_p^2) values against p.

Note: That $R_{a,p}^2$ and MSE_p provide equivalent information.

Model Selection: AIC

Akaike's information criterion (AIC_p) is defined below. Assuming that all candidate regression models use the same number of observations (n)

Definition

 $AIC_p = n \ln \frac{SSE_p}{n} + 2p$, where \ln is the natural log. p includes the intercept parameter. Model with the smallest AIC_p is the best-fitting model from among the candidates.

- Akaike Information Criterion (AIC) is a measure of the divergence between the true distribution (model) and a candidate, measured in terms of the Kullback-Leibler distance.
- AIC is defined slightly differently in different software packages, but was originally defined as AIC $=-2l_{max}+2p$, where l_{max} is the log-likelihood maximum and p is the number of unknown parameters.

Model Selection: AIC

- Note that the +2p term is a term that increases the value of AIC_p when the number of predictors (p) is larger.
- Since we are looking for small values of AIC_p , this +2p term is a penalty term penalizing for more variables which encourages the researcher to use as few predictors as needed.
- Several researchers have suggested other types of information criteria - usually altering the penalty term, often as a function of sample size.

Model Selection: BIC

Another common information criterion measure is Schwartzs Bayesian information criterion (BIC_p) defined as:

Definition

$$BIC_p = n \ln \frac{SSE_p}{n} + [\ln n]p.$$
 Again, a better model is one with a smaller BIC_p .

Models with small SSE_p will do well under both criteria $(AIC_p$ and $BIC_p)$ as long as the penalties $(2p \text{ or } [\ln n]p)$ are not too large. Only when $n \geq 8$ the penalty for BIC_p is larger.

Drawbacks: AIC and BIC

- These information criteria measures have no distributional properties that would help us determine if the differences seen between models is "large" or "small".
- These measures work poorly in the presence of multicollinearity.
 - Consider adding (separately) two variables u and v where uis highly collinear with variables already in the model, but v is not. Suppose neither change the term $n \ln rac{SSE_p}{r}$ much (and both increase p by 1), so the AIC_n (or BIC_n) values are about the same for the two choices. However, adding u will adversely impact the t-statistics of the variables with which it is correlated, making them appear less important, which vdoes not. Clearly, v would be the better choice, but AIC_p (or BIC_n) can not distinguish between the two.

DukeHealth

Example:

```
data one;
label sbp = 'Systolic blood pressure'
      quet= 'Quetelet index'
  age = 'Age'
  smk = 'Smoking histroy';
input sbp quet age smk @@;datalines;
135 2.876 45 0 122 3.251 41 0 130 3.100 49 0 148 3.768 52 0 146 2.979 54 1
129 2.790 47 1 162 3.668 60 1 160 3.612 48 1 144 2.368 44 1 180 4.637 64 1
166 3.877 59 1 138 4.032 51 1 152 4.116 64 0 138 3.673 56 0 140 3.562 54 1
134 2.998 50 1 145 3.360 49 1 142 3.024 46 1 135 3.171 57 0 142 3.401 56 0
150 3.628 56 1 144 3.751 58 0 137 3.296 53 0 132 3.210 50 0 149 3.301 54 1
132 3.017 48 1 120 2.789 43 0 126 2.956 43 1 161 3.800 63 0 170 4.132 63 1
152 3.962 62 0 164 4.010 65 0
run:
title1 "*** R-square selection ***";
proc rsquare data=one;
 model sbp=quet age smk/adjrsq sse bic aic sbc cp mse rmse;
run:
```


Model Selection:

*** R-square selection ***

The RSQUARE Procedure Model: MODEL1 Dependent Variable: sbp

R-Square Selection Method

Number of Observations Read 32 Number of Observations Used 32

Number in Model	R-Square	Adjusted R-Square	C(p)	AIC	BIC	MSE	Root MSE
1	0.6009	0.5876 1	8.7414	144.2790	144.8186	85.47795	9.24543
1	0.5506	0.5356 2	4.6414	148.0829	148.2070	96.26743	9.81160
1	0.0612	0.0299 8	1.9640	171.6558	169.8144	201.09569	14.18082
2	0.7298	0.7112	5. 64 81	133.8005	135.8670	59.87188	7.73769
2	0.6412	0.6165 1	6.0212	142.8724	143.3278	79.49574	8.91604
2	0.6412	0.6165 1	6.0253	142.8756	143.3304	79.50353	8.91647
3	0.7609	0.7353	4.0000	131.8814	134.9835	54.86225	7.40691
Number in							
Model	R-Squar e	SSE	Vari	ables in Mode	1		
1	0.6009	2564.33838	age				
1	0.5506	2888.02301	quet				
1	0.0612	6032.87059	smk				
2	0.7298	1736.28452	age	smk	-		
2		2305.37650					
2	0.6412	2305.60226					
					=		

quet age smk

0.7609 1536.14305

Model Selection: Testing-Based Procedures

Backward Elimination

- The "backward elimination" procedure for model selection means that you start with all possible predictors in the model, and then remove the predictor that meets some criterion for "least important".
- 2) When implementing a backward elimination procedure using statistical testing, the criterion for "least important" is the variable with the highest p-value (from partial F-statistic) greater than some cutoff (e.g., α_{crit}). That is, Determine the partial F statistic for every variable in the model as if were the last variable to enter to the model,
- 3) The α_{crit} value; is often called the "p to remove" value, and does not need to be (nor probably should be) as small as 0.05. It is often chosen to be larger (e.g., 0.10 or 0.15), to allow variables to remain in the model that are correlated with other predictors.

Model Selection: Testing-Based Procedures

- 4) Once the "least important" is removed, the model is re-fit without it and the procedure repeated. It stops when all the variables remaining are significant at the α_{crit} level.
 - The drawback to this type of stepwise procedure is that it cannot guarantee that the final model is optimal in any way (e.g., not largest R^2 , R^2_{adj} or smallest MSE of any set of possible predictors).

Example:

```
data one;
label sbp = 'Systolic blood pressure'
      quet= 'Quetelet index'
  age = 'Age'
  smk = 'Smoking histroy';
input sbp quet age smk @@;datalines;
135 2.876 45 0 122 3.251 41 0 130 3.100 49 0 148 3.768 52 0 146 2.979 54 1
129 2.790 47 1 162 3.668 60 1 160 3.612 48 1 144 2.368 44 1 180 4.637 64 1
166 3.877 59 1 138 4.032 51 1 152 4.116 64 0 138 3.673 56 0 140 3.562 54 1
134 2.998 50 1 145 3.360 49 1 142 3.024 46 1 135 3.171 57 0 142 3.401 56 0
150 3.628 56 1 144 3.751 58 0 137 3.296 53 0 132 3.210 50 0 149 3.301 54 1
132 3.017 48 1 120 2.789 43 0 126 2.956 43 1 161 3.800 63 0 170 4.132 63 1
152 3.962 62 0 164 4.010 65 0
run:
title1 "*** Variable slection in regression: backward ***";
proc reg data=one;
 model sbp=quet age smk/selection=backward slentry=.05 slstay=.05;
run:
```


Backward Elimination:

```
*** Variable slection in regression: backward ***
              Backward Elimination: Step 0
  All Variables Entered: R-Square = 0.7609 and C(p) = 4.0000
                   Analysis of Variance
                              Sum of
                                           Mean
                             Squares
                                          Square F Value
Source
                    DF
Model
                    3 4889.82570 1629.94190
                                                   29.71
Error
                    28 1536.14305
                                        54.86225
Corrected Total 31 6425,96875
           Parameter Standard
 Variable Estimate
                          Error Type II SS F Value Pr > F
 Intercept 45.10319 10.76488 963.09739 17.55 0.0003
      8.59245 4.49868 200.14147 3.65 0.0664
 quet
            1.21271 0.32382 769.45920 14.03 0.0008
 age
             9.94557 2.65606 769.23345 14.02 0.0008
 smk
               Backward Elimination: Step 1
```

Variable quet Removed: R-Square = 0.7298 and C(p) = 5.6481

Backward Elimination:

Analysis of Variance Sum of Mean Source DF Squares Square F Value Model 4689.68423 2344.84211 39.16 1736.28452 Error 29 59.87188 Corrected Total 31 6425.96875 Parameter Standard Variable Estimate Error Type II SS F Value Pr > F Intercept 48.04960 11.12956 1115.95464 18.64 0.0002

Intercept 48.04960 11.12956 1115.95464 18.64 0.0002 age 1.70916 0.20176 4296.58607 71.76 <.0001 smk 10.29439 2.76811 828.05385 13.83 0.0009

All variables left in the model are significant at the 0.0500 level.

Summary of Backward Elimination

Summary of Backward Elimination
Step C(p) F Value Pr > F
1 5.6481 3.65 0.0664

Model Selection: Testing-Based Procedures

Forward Selection

- 1) The forward selection method is just the reverse of backward selection. Find the one predictor that has the lowest p-value smaller than α_{crit} .
- 2) Given that this first variable is in the model, find the next (single) variable that again has the lowest p-value smaller than α_{crit} . that is, Determine the partial F-statistic for the remaining variables giving the variable initially selected,
- 3) Continue in this fashion until no remaining variables have a p-value smaller than α_{crit} .
- 4) As with backward selection, this method is not guaranteed to result in the selection of a best model under any criterion.

Example:

```
data one;
label sbp = 'Systolic blood pressure'
      quet= 'Quetelet index'
  age = 'Age'
  smk = 'Smoking histroy';
input sbp quet age smk @@;datalines;
135 2.876 45 0 122 3.251 41 0 130 3.100 49 0 148 3.768 52 0 146 2.979 54 1
129 2.790 47 1 162 3.668 60 1 160 3.612 48 1 144 2.368 44 1 180 4.637 64 1
166 3.877 59 1 138 4.032 51 1 152 4.116 64 0 138 3.673 56 0 140 3.562 54 1
134 2.998 50 1 145 3.360 49 1 142 3.024 46 1 135 3.171 57 0 142 3.401 56 0
150 3.628 56 1 144 3.751 58 0 137 3.296 53 0 132 3.210 50 0 149 3.301 54 1
132 3.017 48 1 120 2.789 43 0 126 2.956 43 1 161 3.800 63 0 170 4.132 63 1
152 3.962 62 0 164 4.010 65 0
run:
title1 "*** Variable slection in regression: forward ***";
proc reg data=one;
  model sbp=quet age smk/selection=forward slentry=.05 slstay=.05;
run:
```


Forward Procedure:

```
*** Variable slection in regression: forward ***
Forward Selection: Step 1
Statistics for Entry
DF = 1,30
```

		Model		
Variable	Tolerance	R-Square	F Value	Pr > F
quet	1.000000	0.5506	36.75	< .0001
age	1.000000	0.6009	45.18	< .0001
smk	1.000000	0.0612	1.95	0.1723

Variable age Entered: R-Square = 0.6009 and C(p) = 18.7414Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value
Model	1	3861.63038	3861.63038	45.18
Error	30	2564.33838	85.47795	
Corrected Total	31	6425 96875		

Forward Procedure:

Variable

quet

```
Forward Selection: Step 2
```

Statistics for Entry DF = 1,29

 Variable
 Tolerance
 R-Square
 F Value
 Pr > F

 quet
 0.355591
 0.6412
 3.26
 0.0815

 smk
 0.980544
 0.7298
 13.83
 0.0009

Variable smk Entered: R-Square = 0.7298 and C(p) = 5.6481 Analysis of Variance

 Source
 Sum of Square
 Mean

 Model
 2
 4689.68423
 2344.84211
 39.16

 Error
 29
 1736.28452
 59.87188
 59.87188

 Corrected Total
 31
 6425.96875
 59.87188
 59.87188

 Variable
 Estimate
 Error
 Type II SS F
 Value Pr > F

 Intercept
 48.04960
 11.1.2956
 1115.95464
 18.64 0.0002

 age
 1.70916
 0.20176
 4296.58607
 71.76 < 0.001</td>

 smk
 10.29439
 2.76811
 328.05385
 13.83 0.0009

Forward Selection: Step 3
Statistics for Entry
DF = 1,28
Model
Tolerance R-Square F Value Pr > F
0.353910 0.7609 3.65 0.0664

No other variable met the 0.0500 significance level for entry

Model Selection: Testing-Based Procedures

Stepwise Selection

- 1) Stepwise selection is a combination of forward and backward selection. At each step, a variable can be removed or entered, based on a criterion, such as comparing its p-value to α_{crit} .
- 2) Again, it is not guaranteed to result in the selection of a "best" set of predictors.

Example:

```
data one;
label sbp = 'Systolic blood pressure'
      quet= 'Quetelet index'
  age = 'Age'
  smk = 'Smoking histroy';
input sbp quet age smk @@;datalines;
135 2.876 45 0 122 3.251 41 0 130 3.100 49 0 148 3.768 52 0 146 2.979 54 1
129 2.790 47 1 162 3.668 60 1 160 3.612 48 1 144 2.368 44 1 180 4.637 64 1
166 3.877 59 1 138 4.032 51 1 152 4.116 64 0 138 3.673 56 0 140 3.562 54 1
134 2.998 50 1 145 3.360 49 1 142 3.024 46 1 135 3.171 57 0 142 3.401 56 0
150 3.628 56 1 144 3.751 58 0 137 3.296 53 0 132 3.210 50 0 149 3.301 54 1
132 3.017 48 1 120 2.789 43 0 126 2.956 43 1 161 3.800 63 0 170 4.132 63 1
152 3.962 62 0 164 4.010 65 0
run:
title1 "*** Variable slection in regression: stepwise ***";
proc reg data=one;
  model sbp=quet age smk/selection=stepwise slentry=.05 slstay=.05;
run:
```


Stepwise Procedure:

Analysis of Variance

		Sum of	Mean	
Source	DF	Squares	Square	F Value
Model	1	3861.63038	3861.63038	45.18
Error	30	2564.33838	85.47795	
Corrected Total	31	6425.96875		

	Parameter	Standard		
Variable	Estimate	Error	Type II SS F	Value Pr > F
Intercept	59.09163	12.81626	1817.11840	21.26 <.0001
age	1.60450	0.23872	3861.63038	45.18 <.0001

Stepwise Selection: Step 2

Variable smk Entered: R-Square = 0.7298 and C(p) = 5.6481

	Analys	is of Variance		
		Sum of	Mean	
Source	DF	Squares	Square	F Value
Model	2	4689.68423	2344.84211	39.16
Error	29	1736.28452	59.87188	
Corrected Total	31	6425.96875		

Stepwise Procedure:

Dependent Variable: sbp Systolic blood pressure Stepwise Selection: Step 2

	Parameter	Standard		
Variable	Estimate	Error	Type II SS F	Value Pr > F
Intercept	48.04960	11.12956	1115.95464	18.64 0.0002
age	1.70916	0.20176	4296.58607	71.76 < .0001
smk	10.29439	2.76811	828.05385	13.83 0.0009

All variables left in the model are significant at the 0.0500 level.

No other variable met the 0.0500 significance level for entry
into the model.

Summary of Stepwise Selection

	Variable	Variable		Number
Step	Entered	Removed	Label	Vars In
1	age		Age	1
2	smk		Smoking histroy	2

Summary of Stepwise Selection

a .	Partial	Mo del	a()		
Step	R-Square	R-Square	C(p)	F Value	Pr > F
1	0.6009	0.6009	18.7414	45.18	<.0001
2	0.1289	0.7298	5.6481	13.83	0.0009

Variable selection R-code for quet example:

```
library(MASS)
quet <- read.table("FILE PATH\\Lecture 2\\QUET.txt", header=T)
quet
*************
fit=lm(sbp~QUET+age+smk, data=quet)
summary(fit)
*************
library(olsrr)
##all possible models
ols step all possible(fit)
************
##best subset -- this is similar to proc rsquare in SAS;
ols step best subset(fit)
*************
##backward elimination
ols_step_backward_p(fit,prem = 0.05)
*************
##forward selection
ols step forward p(fit.penter = 0.05)
##stepwise selection
ols_step_both_p(fit,pent = 0.05,prem = 0.05)
```


Model Selection: more about Testing-Based Methods

Drawbacks:

- 1) Because of the one-at-a-time process, the optimal model (based on some defined criterion) may be missed.
- 2) The multiple testing issue is present many significance tests means that p-values cannot be interpreted literally.
- The removal of less significant predictors tends to increase the significance of the remaining predictors - which could overstate their importance.
- 4) The procedure is not linked to the objectives of the study, and may not result in a model that can address key study objectives (e.g., assessing the impact of a key variable).

Model Selection: more about Testing-Based Methods

- 5) Stepwise procedures tend to result in smaller models than you may want for prediction purposes. That is, it may eliminate variables that are not statistically significant enough, but still useful for prediction.
- 6) There is a good chance that you will overfit the model to the particular dataset, resulting in a model that is very good for this dataset, but may not work well for a replicated study (and may not even make a lot of sense in terms of the problem at hand).
- 7) Automated procedures do not take into consideration residual analyses, influential points, etc.
- 8) Unless modified, the process would not keep all dummy variables for a categorical variable together (either in or out of the model). Unless modified, the process would not keep all dummy variables for a categorical variable together (either in out of the model).

Shrinkage Methods: James et al (2013) ISLR

As an alternative to model selection, we can fit a model which includes all p predictors using a technique that shrinks the coefficient estimates towards zero. The two commonly used techniques for shrinking the regression coefficients towards zero are ridge regression and the LASSO (Least Absolute Shrinkage and Selection Operator).

■ Ridge Regression: Recall, in the least-squares fitting procedure estimates $\beta_0, \beta_1, \ldots, \beta_p$ by minimizing

SSE =
$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

Ridge Regression

Ridge regression is very similar to least-squares fitting, except that the coefficients are estimated by minimizing a slightly different quantity. That is, ridge regression coefficients $\hat{\beta}$ are estimated by minimizing

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = SSE + \lambda \sum_{j=1}^{p} \beta_j^2$$

where $\lambda \geq 0$ is referred to as a tuning parameter.

Ridge Regression

- Similar to least-squares, ridge regression seeks coefficient estimates that fit the data well, by making the SSE small. However, the second term $\lambda \sum_{j=1}^p \beta_j^2$, called a shrinkage penalty, is small when β_1,\ldots,β_p are close to zero. The tuning parameter λ serves to control the relative impact of these two terms on the regression coefficient estimates.
- When $\lambda = 0$, then ridge regression will produce the least squares estimates.
- However, as $\lambda \longrightarrow \infty$, the impact of shrinkage penalty increases, and the ridge regression coefficient estimates will approach zero.

Ridge Regression

- Unlike leas-squares fitting, which generates only one set of coefficient estimates $\hat{\beta}$, ridge regression will produce a different set of coefficient estimates $\hat{\beta}_{\lambda}$, for each value of λ , thus selecting a good value for λ is critical.
- Note, the shrinkage penalty is applied to β_1, \ldots, β_p , but not to the intercept β_0 .
- Ridge regressions advantage over least squares is based on the bias-variance trade-off. As λ increases, the flexibility of the ridge regression fit decreases, leading to decreased variance but increased bias.
- lacksquare generally, cross-validation method has been used to select a good value for λ .

LASSO

- Ridge regression does have one obvious disadvantage. Unlike best subset, forward stepwise, and backward stepwise selection, which will generally select models that involve just a subset of the variables, ridge regression will include all p predictors in the final model.
- The penalty $\lambda \sum_{j=1}^p \beta_j^2$ will shrink all of the coefficients towards zero, but it will not set any of them exactly to zero (unless $\lambda = \infty$).
- This may not be a problem for prediction accuracy, but it can create a challenge in model interpretation in settings in which the number of predictors *p* is quite large.
- The lasso is an alternative to ridge regression that overcomes the disadvantage above.

LASSO

The LASSO has a very similar formulations to ridge regression, which differ in their expression of the shrinkage penalty. That is, LASSO coefficients $\hat{\beta}$ are estimated by minimizing

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j| = SSE + \lambda \sum_{j=1}^{p} |\beta_j|$$

where $\lambda \geq 0$ is a tuning parameter, similar to the rideg regression.

- The only difference is that β_j^2 term in the Ridge regression penalty has been replaced with $|\beta_j|$ in the lasso penalty. In statistical term, the lasso uses l_1 penalty instead of an l_2 penalty.
- lacktriangleright Similar to ridge regression, the lasso shrinks the model coefficient estimates towards zero. However, in the case of the lasso, the l_1 penalty has the effect of forcing some of the coefficient estimates to be exactly equal to zero when the tuning parameter λ is sufficiently large.

LASSO

- Hence, much like best subset selection, the lasso performs variable selection. As a result, models generated from the lasso are generally much easier to interpret than those produced by ridge regression.
- As in ridge regression, selecting a good value of λ for the lasso is critical; via cross-validation methods, in the sense select λ which produces smallest cross-valiation error.
- Finally, the model is re-fit using all of the available observations and the selected value of the tuning parameter.

help(mtcars) in R data:

carb Number of carburetors

```
* mtcars dataset: mpg is the response and there're 10 predictors
  in R if you invoke help(mtcars) this will give you the description of each predictors:
Description
The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption
and 10 aspects of automobile design and performance for 32 automobiles (1973/74 models).
Usage
mtcars
Format
A data frame with 32 observations on 11 (numeric) variables.
      mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[. 5] drat Rear axle ratio
      wt Weight (1000 lbs)
[. 7] asec 1/4 mile time
[, 8] vs Engine (0 = V-shaped, 1 = straight)
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10]
      gear Number of forward gears
```



```
library(glmnet)
## There is no model statement in glmnet, thus we need to create the x matrix and the response y
x=model.matrix(mpg".-1.data=mtcars)
y=mt cars $mpg
******************
### Ridge regression ###
*******************
### glmnet has a parameter alpha=0 (ridge regression)
fit.ridge=glmnet(x,y,alpha=0)
### plot log(lambda) vs. the regression coefficient
plot(fit.ridge,xvar="lambda",label=T)
### plot of fraction of deviance explained, similar to R-squares
plot(fit.ridge.xvar="dev".label=T)
### glmnet also does the cross-validation (cv)
cv.ridge=cv.glmnet(x.v.alpha=0)
plot(cv.ridge)
coef (cv.ridge)
*******************
### LASSO regression ###
********
### alpha=1 (LASSO regression) is the default in glmnet
fit.lasso=glmnet(x,y,alpha=1) ###or fit.lasso=glmnet(x,y)
### plot log(lambda) vs. the regression coefficient
plot(fit.lasso,xvar="lambda",label=T)
### plot of fraction of deviance explained, similar to R-squared
plot(fit.lasso.xvar="dev".label=T)
### glmnet also does the cross-validation (cv)
cv.lasso=cv.glmnet(x.v.alpha=1)
plot(cv.lasso)
coef (cv.lasso)
### Cross-validation
### use train/validation division to select "lambda" for lasso #
set.seed(1)
train=sample(seq(32),8,replace=FALSE)
train
lasso.tr=glmnet(x[train,],y[train])
pred=predict(lasso.tr,x[-train,])
rmse=sgrt(applv((v[-train]-pred)-2.2.mean))
plot(log(lasso.tr$lambda),rmse,type="b",xlab="log(lambda)")
lam.best=lasso.tr$lambda[order(rmse)[1]]
lam.best
```


coef (lasso.tr.s=lam.best)


```
> coef(cv.ridge)
11 x 1 sparse Matrix of class "dgCMatrix"
                       1
(Intercept) 19.772087586
cy1
           -0.356508690
disp
          -0.005166736
hp
          -0.009405988
drat
           0.968566691
wt
           -0.842240477
qsec
           0.150254825
            0.867150289
٧s
           1.143733962
am
           0.487695611
gear
carb
           -0.356201375
```



```
> coef(cv.lasso)
11 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 33.940487806
cy1
           -0.843038418
disp
hp
           -0.006965929
drat
wt
           -2.365917424
qsec
٧s
am
gear
carb
```



```
> lam.best=lasso.tr$lambda[order(rmse)[1]]
> lam.best
[1] 1.070826
> coef(lasso.tr,s=lam.best)
11 x 1 sparse Matrix of class "dgCMatrix"
(Intercept) 32.43505139
cy1
           -0.22313181
disp
hp
          -0.02435341
drat
           0.53761712
wt
           -2.42092591
qsec
٧s
am
gear
carb
           -0.29086140
```

