Importing the Dependencies

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

loading the dataset to a Pandas Dataframe
ccdp = pd.read_csv('/content/CreditCardDefault.csv')

first 5 rows of the dataset
ccdp.head()

	Time	V1	V2	V3	V4	V5	V6	V7	
0	0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.09
1	0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.08
2	1	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.24
3	1	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.37
4	2	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.27

5 rows × 31 columns

ccdp.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	
5843	6339	-2.262193	2.436048	-1.230114	-1.257178	1.999487	3.164989	-0.326910	
5844	6340	-1.134217	0.166310	1.306848	1.667260	-0.570757	0.814229	2.103197	-
5845	6345	-0.865862	0.295617	3.940337	3.606141	-0.672490	1.242731	-0.897963	
5846	6345	1.203971	0.927268	0.041463	1.669881	-0.007861	-1.477041	0.300909	-
5847	6347	1.122792	-0.064138	1.035259	1.775286	-0.649522	0.282818	-0.613878	

5 rows × 31 columns

dataset information
ccdp.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5848 entries, 0 to 5847 Data columns (total 31 columns): Column Non-Null Count Dtype ----------0 Time 5848 non-null int64 1 V1 5848 non-null float64 2 V2 5848 non-null float64 3 float64 V3 5848 non-null float64 4 V4 5848 non-null 5 V5 float64 5848 non-null 6 ۷6 5848 non-null float64 7 5848 non-null float64 V7 8 ٧8 5848 non-null float64 9 5848 non-null float64 V9 10 V10 5848 non-null float64 5848 non-null float64 11 V11 float64 12 V12 5848 non-null 13 V13 5848 non-null float64 5848 non-null float64 14 V14 15 V15 5848 non-null float64 float64 16 V16 5848 non-null 5848 non-null float64 17 V17 5848 non-null float64 18 V18 19 V19 5848 non-null float64 5848 non-null float64 20 V20 21 V21 5848 non-null float64 float64 22 V22 5848 non-null 23 V23 5848 non-null float64 24 V24 5848 non-null float64 25 V25 5848 non-null float64 26 V26 5847 non-null float64 float64 27 V27 5847 non-null 28 V28 float64 5847 non-null float64 29 Amount 5847 non-null 5847 non-null float64 30 Class dtypes: float64(30), int64(1)

memory usage: 1.4 MB

checking the number of missing value in each column
ccdp.isnull().sum()

Time	0
V1	0
V2	0
V3	0
V4	0
V5	0
V6	0
V7	0
V8	0
V9	0
V10	0
V11	0
V12	0
V13	0
V14	0
V15	a

```
V16
          0
V17
          0
          0
V18
V19
          0
V20
          0
V21
          0
V22
          0
V23
          0
V24
          0
V25
          0
V26
          1
V27
          1
V28
          1
Amount
Class
          1
dtype: int64
```

import matplotlib.pyplot as plt

import seaborn as sns

```
# anlalyse the distribution of data in the column from V21 to V28
fig, ax = plt.subplots(figsize=(8,8))
sns.distplot(ccdp.V20)
```

```
ccdp['V20'].fillna(ccdp['V20'].mean(),inplace=True)
ccdp.isnull().sum()
    Time
            0
    V1
            0
    V2
            0
    V3
            0
    ٧4
            0
    V5
            0
    ۷6
            0
    V7
            0
    V8
            0
    V9
            0
    V10
            0
    V11
            0
    V12
            0
    V13
            0
    V14
            0
    V15
            0
    V16
            0
    V17
            0
    V18
            0
    V19
            0
    V20
            0
    V21
            0
    V22
            0
    V23
            0
            0
    V24
    V25
            0
    V26
            1
    V27
            1
    V28
            1
    Amount
    Class
            1
    dtype: int64
sns.distplot(ccdp.V21)
ccdp['V21'].fillna(ccdp['V21'].mean(),inplace=True)
ccdp.isnull().sum()
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
       warnings.warn(msg, FutureWarning)
     Time
     ٧1
                0
     V2
                0
     V3
                0
     ٧4
                0
     V5
                0
     ۷6
                0
     V7
                0
     V8
                0
     V9
                0
     V10
                0
     V11
                0
     V12
                0
     V13
                0
     V14
                0
     V15
                0
                0
     V16
     V17
                0
     V18
                0
     V19
                0
     V20
                0
     V21
                0
     V22
                0
     V23
                0
     V24
                0
     V25
                0
     V26
                1
     V27
                1
     V28
                1
     Amount
     Class
     dtype: int64
sns.distplot(ccdp.V22)
```

```
ccdp['V22'].fillna(ccdp['V22'].mean(),inplace=True)
ccdp.isnull().sum()
```

```
۷6
          0
V7
          0
V8
          0
V9
          0
V10
          0
V11
          0
V12
          0
V13
          0
V14
          0
V15
          0
          0
V16
V17
          0
V18
          0
V19
          0
V20
          0
V21
          0
V22
          0
V23
          0
V24
          0
          0
V25
V26
          1
V27
          1
V28
          1
Amount
```

```
sns.distplot(ccdp.V23)
ccdp['V23'].fillna(ccdp['V23'].mean(),inplace=True)
ccdp.isnull().sum()
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)
```

```
Time
V1
           0
V2
           0
V3
           0
٧4
           0
V5
           0
۷6
           0
V7
           0
V8
           0
V9
           0
V10
           0
V11
           0
V12
           0
V13
           0
V14
           0
V15
           0
V16
           0
           0
V17
V18
           0
V19
           0
V20
           0
V21
           0
V22
           0
V23
           0
V24
           0
V25
           0
```

```
sns.distplot(ccdp.V24)
ccdp['V24'].fillna(ccdp['V24'].mode(),inplace=True)
ccdp.isnull().sum()
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)
```

```
Time
V1
          0
V2
          0
V3
          0
٧4
          0
V5
          0
۷6
          0
V7
          0
V8
          0
V9
          0
V10
          0
V11
          0
V12
          0
V13
          0
V14
          0
V15
          0
V16
          0
V17
          0
V18
          0
          0
V19
V20
          0
V21
```

```
sns.distplot(ccdp.V25)
ccdp['V25'].fillna(ccdp['V25'].mean(),inplace=True)
ccdp.isnull().sum()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

```
Time
V1
           0
V2
           0
V3
           0
٧4
           0
V5
           0
۷6
           0
V7
           0
V8
           0
V9
           0
V10
           0
V11
           0
V12
           0
V13
           0
V14
           0
V15
           0
           0
V16
           0
V17
```

```
sns.distplot(ccdp.V26)
ccdp['V26'].fillna(ccdp['V26'].mode(),inplace=True)
ccdp.isnull().sum()
```

ccdp.isnull().sum()

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)
```

```
Time
     V1
               0
     V2
               0
     V3
               0
     ٧4
               0
     V5
               0
     V6
               0
     V7
               0
     V8
               0
     V9
               0
     V10
               0
     V11
               0
     V12
               0
               0
     V13
sns.distplot(ccdp.V27)
ccdp['V27'].fillna(ccdp['V27'].mean(),inplace=True)
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
   warnings.warn(msg, FutureWarning)
Time 0
```

```
V1
           0
V2
           0
V3
           0
٧4
           0
V5
           0
V6
           0
V7
           0
V8
           0
۷9
           0
\/1A
```

```
sns.distplot(ccdp.V28)
ccdp['V28'].fillna(ccdp['V28'].mean(),inplace=True)
ccdp.isnull().sum()
```

V3

٧4

0

0

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
   warnings.warn(msg, FutureWarning)
Time    0
V1     0
V2    0
```

```
V5 0
V6 A
sns.distplot(ccdp.Amount)
ccdp['Amount'].fillna(ccdp['Amount'].mean(),inplace=True)
ccdp.isnull().sum()
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
# distribution of legit transactions and fraudulent transactions
ccdp['Class'].value counts()
     0.000000
                 5844
     1.000000
                    3
     0.000513
                    1
     Name: Class, dtype: int64
     ٧7
               0
This dataset is highly unbalanced.
0 -> normal transactions
1 -> fraudulent transactions
               Ø
     V14
# separating the data for analysis
legit = ccdp[ccdp.Class == 0]
fraud = ccdp[ccdp.Class == 1]
     ۷⊥۶
               ט
print(legit.shape)
print(fraud.shape)
     (5844, 31)
     (3, 31)
     v _ U
# statistical messages of the data
legit.Amount.describe()
              5844.000000
     count
                65.002214
     mean
     std
               193.404607
     min
                 0.000000
     25%
                 4.397500
     50%
                15.655000
     75%
                56.570000
     max
              7712.430000
     Name: Amount, dtype: float64
          fraud.Amount.describe()
     count
                3.000000
              256.310000
     mean
              264.880121
     std
     min
                0.000000
     25%
              119.965000
     50%
              239.930000
     75%
              384.465000
              529.000000
     max
     Name: Amount, dtype: float64
# compare the values for both transactions
```

ccdp.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	
Class								
0.000000	2595.144422	-0.261024	0.280833	0.843675	0.088231	-0.003062	0.188308	С
0.000513	6347.000000	1.122792	-0.064138	1.035259	1.775286	-0.649522	0.282818	-C
1.000000	1780.000000	-2.553039	0.184644	-0.293711	2.872264	0.005330	-0.855718	-C

3 rows × 30 columns

Under-Sampling

Build a sample dataset containing similar distribution of normal taransactions and fraudulent transactions

Number of fraudulent transactions -> 81

legit_sample = legit.sample(n=81)

Concatenating two Dataframes

new_dataset = pd.concat([legit_sample, fraud], axis=0)

new_dataset.head()

	Time	V1	V2	V3	V4	V5	V6	V7	
5755	6117	-0.812460	0.280784	1.274797	1.310739	-0.580612	0.038560	1.597415	-(
5630	5829	-0.688969	-0.162450	1.389613	-3.740448	0.306288	-0.554524	0.495774	-(
764	574	-1.062129	-0.618574	0.615388	-3.335834	0.746649	-0.540531	0.705932	(
4491	3789	1.125017	0.155286	1.467918	2.004638	-0.832711	0.052231	-0.723182	(
3658	3126	1.017152	-0.572347	1.058118	0.318101	-1.169185	-0.315466	-0.420007	-(

5 rows × 31 columns

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	
5594	5756	-1.069526	-0.149317	1.679008	-2.419008	0.789008	-0.217896	1.113164	-
3859	3410	1.501353	-1.108203	0.814055	-1.309409	-1.894297	-0.826509	-1.291526	
541	406	-2.312227	1.951992	-1.609851	3.997906	-0.522188	-1.426545	-2.537387	
623	472	-3.043541	-3.157307	1.088463	2.288644	1.359805	-1.064823	0.325574	-
4920	4462	-2.303350	1.759247	-0.359745	2.330243	-0.821628	-0.075788	0.562320	-

5 rows × 31 columns

new_dataset['Class'].value_counts()

0.0 81 1.0 3

Name: Class, dtype: int64

new_dataset.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	1
Class								
0.0	2539.54321	-0.288968	0.356879	1.028599	0.256676	0.006768	0.285301	0.0377
1.0	1780.00000	-2.553039	0.184644	-0.293711	2.872264	0.005330	-0.855718	-0.5498
2 rows × 30 columns								

Splitting the data into Features and Target

```
x = new_dataset.drop(columns='Class',axis=1)
y = new_dataset['Class']
```

print(x)

	Time	V1	V2	V3	V4	V5	V6	\
5755	6117	-0.812460	0.280784	1.274797	1.310739	-0.580612	0.038560	
5630	5829	-0.688969	-0.162450	1.389613	-3.740448	0.306288	-0.554524	
764	574	-1.062129	-0.618574	0.615388	-3.335834	0.746649	-0.540531	
4491	3789	1.125017	0.155286	1.467918	2.004638	-0.832711	0.052231	
3658	3126	1.017152	-0.572347	1.058118	0.318101	-1.169185	-0.315466	
					• • •			
5594	5756	-1.069526	-0.149317	1.679008	-2.419008	0.789008	-0.217896	
3859	3410	1.501353	-1.108203	0.814055	-1.309409	-1.894297	-0.826509	
541	406	-2.312227	1.951992	-1.609851	3.997906	-0.522188	-1.426545	
623	472	-3.043541	-3.157307	1.088463	2.288644	1.359805	-1.064823	

```
4920 4462 -2.303350 1.759247 -0.359745 2.330243 -0.821628 -0.075788
```

```
V8
                                V9
                                               V20
                                                         V21
                                                                   V22
5755
      1.597415 -0.195905
                          0.496023
                                         0.585061
                                                   0.035528 -0.138674
                                    . . .
5630
     0.495774 -0.290648
                          1.250978
                                    ... -0.301001 -0.708265 -0.926938
764
      0.705932 0.032525
                          1.334181
                                         0.311059 -0.114269 -0.661122
4491 -0.723182 0.119859
                          1.088655
                                    ... -0.152402 0.013169 0.347485
3658 -0.420007 -0.054179 0.974584
                                         0.220932 -0.155981 -0.347512
. . .
           . . .
                     . . .
                               . . .
                                    . . .
                                               . . .
                                                         . . .
                                    ... -0.348998 -0.379733 -0.289215
5594
     1.113164 -0.610826
                          3.102446
3859 -1.291526 -0.111048 -1.512937
                                    ... -0.358382 -0.067718
541
     -2.537387
               1.391657 -2.770089
                                         0.126911
                                                   0.517232 -0.035049
623
      0.325574 -0.067794 -0.270953
                                         2.102339
                                                   0.661696
                                                             0.435477
                                    . . .
4920 0.562320 -0.399147 -0.238253
                                    ... -0.430022 -0.294166 -0.932391
           V23
                     V24
                               V25
                                         V26
                                                    V27
                                                              V28
                                                                   Amount
     0.769209 0.286840 -0.484240 -0.597981
                                              0.064021
                                                        0.186632
                                                                   303.90
5630 -0.256803 -0.547499
                          0.323130 -0.425269
                                              0.125349 -0.080506
                                                                    18.79
764
      0.136250 -1.377245
                          0.263820 -1.115516
                                              0.079213
                                                        0.116638
                                                                   131.37
4491 -0.023424 0.539720
                          0.198475
                                    1.025332 -0.072794
                                                         0.001137
                                                                     5.03
3658 -0.025914 0.517160
                          0.148134
                                    0.926493 -0.043377
                                                         0.035135
                                                                   109.63
                                . . .
5594 -0.161039 -0.416205 -0.136385 -1.291803 -0.818651 -0.380878
                                                                    45.01
3859 0.007487 0.362487
                         0.322289 -0.101170
                                             0.048733 0.025776
                                                                    10.50
541
     -0.465211 0.320198
                          0.044519 0.177840
                                              0.261145 -0.143276
                                                                     0.00
623
      1.375966 -0.293803
                          0.279798 -0.145362 -0.252773
                                                        0.035764
                                                                   529.00
    0.172726 -0.087330 -0.156114 -0.542628 0.039566 -0.153029
                                                                   239.93
```

[84 rows x 30 columns]

```
print(y)
```

```
5755
         0.0
5630
         0.0
764
         0.0
4491
         0.0
3658
         0.0
        . . .
5594
        0.0
3859
         0.0
541
         1.0
623
         1.0
4920
         1.0
Name: Class, Length: 84, dtype: float64
```

Split the data into Training data & Testing data

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y, rando
print(x.shape, x_train.shape, x_test.shape)

(84, 30) (67, 30) (17, 30)
```

Model Training

Logistic Regression

Model Evaluation

Accuracy Score

Colab paid products - Cancel contracts here

✓ 0s completed at 12:59 PM

×