Exercise 1 1) Population: the 200 days (0.5 pt), variable X:number of rooms occupied each day (0.5 pt), sample size=200(0.5 pt), range $=120 \cdot 0 = 120 \ (0.5 \text{ pt})$.

	class	c_i	n_i	f_i	f_i^{cum}	$n_i * c_i$	$n_i * c_i^2$	
	[0, 20[10	10	10/200	10/200	100	1000	
	[20, 40[30	32	32/200	42/200	960	28800	
2)	[40, 60[50	62	62/200	104/200	3100	155000	(3 pt)
	[60, 80[70	50	50/200	154/200	3500	245000	
	[80, 100[90	28	28/200	182/200	2520	226800	
	[100, 120[110	18	18/200	200/200	1980	217800	

3) $\bar{x} = 12160/200 = 60.8$; the average of occupied rooms is 61; (1 pt)

$$Var(X) = 874400/200 - 60.8^2 = 675.36.(1 pt)$$

$$\sigma = 675.36^{0.5} = 25.99. (1 pt)$$

4) The highest number of rooms occupied is Mo;

$$Mo \in [40, 60[, Mo = 40 + 20 * \frac{(62-32)}{(62-32)+(62-50)} = 54.28.(2 pt)$$

5)
$$F_X(x) = \frac{10}{200} + \frac{32}{200} (\frac{x-20}{20})$$
 (1 pt)

5) $F_X(x) = \frac{10}{200} + \frac{32}{200}(\frac{x-20}{20})$ (1 pt) Let N be the number of days when more than 30 rooms were occupied;

$$N = 200 * (1 - F_X(30)) = 174 (1 pt)$$

Exercise 2 1)

(1 pt)

2) Let N be the number of staff taking between 10 and 30 minutes to get to work, $N = 80 * (F_X(30) - F_X(100)) = 76 - 11 = 65.(2 pt)$ 3)

9)					
class	c_i	n_i	f_i	$n_i * c_i$	
[0, 5[2.5	3	3/80	7.5	
[5, 10[7.5	11-3=8	8/80	60.0	
[10, 15[12.5	24-11=13	13/80	162.5	(0 nt)
[15, 20[17.5	56-24=32	32/80	560.0	(2 pt)
[20, 25[22.5	<i>68-56=12</i>	12/80	270.0	
[25, 30[27.5	76-68=8	8/80	220.0	
[30, 35]	32.5	80-76=4	4/80	130.0	

4) $\bar{x} = 1410/80 = 17.625$. (1 pt)

4)
$$x = 1410/80 = 17.625$$
. (1 pt)
 $Mo \in [15, 20[, Mo = 15 + 5 * \frac{(32-13)}{(32-13)+(32-12)} = 17.44$. (1 pt)
 $Me \in [15, 20[, Me = 15 + 5 * \frac{40-24}{56-24} = 17.5$ (1 pt)

$$Me \in [15, 20[, Me = 15 + 5 * \frac{40 - 24}{56 - 24} = 17.5 (1 pt)]$$