ARQUITECTURA DE AGENTES REACTIVOS

(PARTE 3)

Luís Morgado

AGENTES REACTIVOS SEM MEMÓRIA

ACOPLAMENTO PERCEPÇÃO - ACÇÃO

- Depende fortemente das capacidades sensoriais
- Depende das características do ambiente

Exemplo

- Comportamentos de exploração
 - Como evitar localizações já exploradas?

ARQUITECTURAS DE AGENTES REACTIVOS

- Problemas na implementação de comportamentos sem memória
 - Exploração
 - Necessidade de evitar o passado
 - Óptimos locais
 - Por exemplo, os veículos de Braitenberg ficam presos nos cantos, incapazes de dar a volta
 - Comportamentos cíclicos
 - Por exemplo, os Veículos de Braitenberg ficam a movimentar-se ciclicamente perante determinadas configurações de alvos e obstáculos
- Necessidade de manutenção de estado

ARQUITECTURAS DE AGENTES REACTIVOS

ARQUITECTURA REACTIVA COM MEMÓRIA

Exemplo

Comportamento "Evitar o Passado"

- Representação interna de percepções anteriores
- Evitar situações conhecidas
- Campos de potencial
 - Geração de forças virtuais repulsivas para áreas visitadas

- Reacções podem envolver não apenas percepções mas também estado interno (memória)
- Manipulação de estado
 - Regras e acções para alteração do estado interno
- Comportamentos com memória

COMPORTAMENTOS COM ESTADO

- Máquina de estados interna
 - Reinicialização (Reset)
 - Entradas

Saídas

Interligação entre comportamentos

- Vantagens da manutenção de estado
 - Uma arquitectura reactiva com estado pode produzir todo o tipo de comportamento
 - Possibilidade de representar dinâmicas temporais
 - Evolução do estado ao longo do tempo
 - Resposta não apenas em função das percepções actuais, mas também em função de memórias de percepções anteriores
 - Possibilidade de comportamentos mais complexos baseados na evolução de estado
 - Com continuidade no tempo
 - Agir devido a ausência de mudança
 - Capacidade de lidar com situações de falha por exploração de acções não realizadas anteriormente

- Desvantagens da manutenção de estado
 - Necessário memória (espaço)
 - Aumento da complexidade espacial
 - Necessário manter as representações de estado
 - Aumento da complexidade computacional
 - Mesmo com a manutenção de estado, as arquitecturas reactivas não suportam representações complexas, nem exploram planos alternativos de acção

- Comportamentos organizados em camadas (níveis de competência) e responsáveis pela concretização independente de um objectivo
- Resultado do comportamento pode ser a entrada de outro comportamento
- Possibilidade de comportamentos das camadas superiores assumirem o controlo sobre comportamentos das camadas inferiores
- Camadas inferiores **não têm conhecimento** das camadas superiores
 - Hierarquia de comportamentos

- Saídas das camadas inferiores podem ser utilizadas por camadas superiores
- Camadas superiores controlam as camadas inferiores
 - Inibição
 - Desactivação de comunicação entre módulos
 - Supressão
 - Desactivação de comportamento
 - Reinício (Reset)
 - Reposição do estado inicial de um comportamento

MÓDULOS COMPORTAMENTAIS

[Brooks, 1991]

IMPLEMENTAÇÃO DE MÓDULOS COMPORTAMENTAIS

- Implementação com base em sequências de activação fixa (procedimentos)
- Implementação com base em regras estímulo resposta
- Implementação com base em máquinas de estado aumentadas (AFSM - Augmented Finite State Machines)
 - Temporizadores
 - Cada AFSM realiza um comportamento e é responsável pela sua própria percepção do mundo

Exemplo: Tarefa de prospecção

- Tarefa consiste na procura de elementos do ambiente com características específicas (alvos)
- Quando o agente detecta um alvo, dirige-se até ele, pega no alvo e transporta-o até uma base
- Estas acções são repetidas até todos os alvos terem sido recolhidos para a base

Exemplo: Tarefa de prospecção

 Implementação com base em quatro comportamentos distintos

Vaguear

Movimentação em direcções aleatórias

Evitar

- Virar para a esquerda (direita) caso seja detectado um obstáculo à direita (esquerda) e de seguida avançar
- Após três tentativas sem sucesso recuar

Pegar

 Tomar a direcção do alvo e avançar até ele; após o alvo alcançado fechar a pega

Regressar

 Tomar a direcção da base e avançar até a atingir; após atingir a base parar

Exemplo: Tarefa de prospecção

- Proposta como alternativa a abordagens simbólicas
- Arquitectura definida por conjuntos de comportamentos
- Comportamentos organizados em camadas (níveis de competência)
- Desenvolvimento incremental
- Robustez
- Simplicidade relativa
 - Problemas de escala

Exemplo:

BIBLIOGRAFIA

[Russel & Norvig, 2003]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition, Prentice Hall, 2003

[Murphy, 2000]

R. Murphy, An Introduction to Al Robotics, MIT Press, 2000

[Wooldridge, 2002]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002

[Pfeifer & Scheier, 2002]

R. Pfeifer, C. Scheier, Understanding Intelligence, MIT Press, 2000

[Brooks, 1985]

R. Brooks, A Robust Layered Control System for a Mobile Robot, A. I. Memo 864, MIT AI-Lab, 1985

[Hoagland et al., 2001]

M. Hoagland, B. Dodson, J. Hauck, *Exploring The Way Life Works: The Science of Biology*, Jones & Bartlett Learning, 2001

[J. Staddon, 2001]

J. Staddon, Adaptive Dynamics: The Theoretical Analysis of Behavior, MIT Press, 2001

[Logan, 2001]

B. Logan, Designing Intelligent Agents, School of Computer Science, University of Nottingham, 2001