Homework 1

David L. Olson

February 2, 2025

Contents

Homework 1 1 of 4

Problem 1

1. Exercise Consider the Fredholm integral equation of the first kind,

$$\int_0^1 g(x,z)m(z)dz = d(x)$$

with $g(x, z) = 5\sin(xz)$, and $d(x) = 50\sin(x) - 50\sin(x)\cos(x)$, $0 \le x \le 1$. The exact solution to this equation is $m(x) = 10x\sin(x)$ as can easily be verified by substituting it into the equation.

- (a) Using MATLAB, discretize this integral equation using midpoints of n = 20 equally spaced intervals of width 0.05. Your discretized model should be of the form Gm = d. Output G and d. Use the MATLAB backslash command to solve for m and output your inverse model.
- (b) What is the condition number of G?
- (c) Plot your solution and the exact solution.
- (d) Why is the solution to the discretized model so poor?

Solution

First, let's verify the solution of m(x) via substitution. (This helped me understand the problem immensely, so I will include it here for the sake of completeness)

$$\int_0^1 g(x,z)m(z)dz = d(x)$$

$$\int_0^1 5\sin(xz)m(z)dz = 50\sin(x) - 50\sin(x)\cos(x)$$

$$\int_0^1 5\sin(xz)m(z)dz = \int_0^1 5\sin(xz)m(x)dz$$

$$= \int_0^1 5\sin(xz)\left(10x\sin(x)\right)dz$$

$$= 50x\sin(x)\int_0^1 \sin(xz)dz$$

Homework 1 2 of 4

$$= -\frac{50x\sin(x)}{x} [\cos(xz)] |_0^1$$

$$= -\frac{50x\sin(x)}{x} (\cos(x) - \cos(0))$$

$$= 50\sin(x) (1 - \cos(x))$$

$$= 50\sin(x) - 50\sin(x)\cos(x) = d(x)$$

Part A

Now, suppose that I do not know m(x) for the purposes of this question. Discretizing the given integral using 20 midpoints such that the index j is a member of the set $\{j \in \mathbb{Z} : 1 \leq j \leq 20\}$. Approximating the given Fredholm integral equation of the first kind leads to

$$\int_0^1 g(x,z)m(z)dz = d(x)$$

$$\int_0^1 5\sin(xz)m(z)dz \approx \sum_{j=1}^{20} 5\sin(xz_j)m(z_j)\Delta z$$

$$\approx 5\sin(xz_1)m(z_1)\Delta z + 5\sin(xz_2)m(z_2)\Delta z + \cdots + 5\sin(xz_{20})m(z_{20})\Delta z$$

To fit this discrete numerical integration to the form Gm = d, let the variable x be sampled at 20 equally spaced such that the index i is a member of set $\{x \in \mathbb{Z} : 1 \le i \le 20\}$. (Note: A bold symbol indicates a vector quantity) This above summation can be expressed as a linear system of equations such that

$$\begin{bmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,20} \\ g_{2,1} & g_{2,2} & \cdots & g_{2,20} \\ \vdots & \vdots & \ddots & \vdots \\ g_{20,1} & g_{20,2} & \cdots & g_{20,20} \end{bmatrix} \begin{bmatrix} m(z_1) \\ m(z_2) \\ \vdots \\ m(z_{20}) \end{bmatrix} = \begin{bmatrix} d(x_1) \\ d(x_2) \\ \vdots \\ d(x_{20}) \end{bmatrix}$$

where,

$$G \in \mathbb{R}^{20 \times 20} : g_{i,j} = 5\sin(x_i z_j)\Delta z$$

$$\mathbf{d} \in \mathbb{R}^{20} : d_i = 50\sin(x_i) - 50\sin(x_i)\cos(x_i)$$

The vector $\boldsymbol{m} \in \mathbb{R}^{20}$ can be solved as

Homework 1 3 of 4

$$\boldsymbol{m} = G^{-1} \boldsymbol{d}$$

Constructing these vectors and matrices in MATLAB® (provided in file prob1.m), this results in the following quantities for G and m.

Homework 1 4 of 4