Euler method

*
$$\frac{dy}{dn} = n^2 x^2$$
; $y(p) = 1$ so $y(p) = 0$, $y(p) = 0$

From Euler method

 $y(p) = y(p) = y(p)$

There $y(p) = y(p) = 1$
 $y(p) = y(p) = 1$

Now
$$y = y(.01) = y(.01) + .01 \times f(.01) = 1 + .01 \times 1 = 1.01$$

 $y_1 = y(.01) = y(.01) + .01 \times f(.01) = 1 + .01 \times 1 = 1.01$
 $y_2 = y(.02) + .01 \times f(.01, 1.01) = 1.0201$
 $y_3 = y(.03) = y(.02) + .01 \times f(.02, 1.0201) = 1.0303$
 $y_4 = y(.04) = y(.03) + .01 \times f(.03, 1.0303) = 1.0408$
 $y_5 = y(.05) = y(.04) + .01 \times f(.04, 1.0400) = 1.0510$
 $y_6 = y(.06) = y(.05) + .01 \times f(.05, 1.0510) = 1.0615$