Chapter 2

Linear Transformations and Matrices

Review

Definition 1. Let $\beta = \{u_1, u_2, ..., u_n\}$ be an ordered basis for a finite dimensional vector space V. For $x \in V$, let $a_1, a_2, ..., a_n$ be the unique scalars such that

$$x = \sum_{i=1}^{n} a_i u_i$$

We define the **coordinate vector** x **relative to** β , denoted $[x]_{\beta}$, by

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

.

Definition 2. Using the notation above, we call the $m \times n$ matrix A defined by $A_{ij} = a_{ij}$ the **matrix representation of** T **in the ordered basis** β and γ and write $A = [\mathsf{T}]^{\gamma}_{\beta}$. If $\mathsf{V} = \mathsf{W}$ and $\beta = \gamma$, then we write $A = [\mathsf{T}]_{\beta}$. Notice that the jth column of A is simply $[T(v_j)]_{\gamma}$.

Theorem 2.1. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α , β and γ , respectively. Let $T: V \to W$ and $U: W \to Z$ be linear transformations. Then

$$[\mathsf{UT}]^{\gamma}_{\alpha} = [\mathsf{U}]^{\gamma}_{\beta} [\mathsf{T}]^{\beta}_{\alpha}$$

Theorem 2.2. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. For each j $(1 \le j \le p)$ let u_j and v_j denote the jth columns of AB and B, respectively. Then

- (a) $u_i = Av_i$
- (b) $v_i = Be_j$, where e_j is the jth standard vector of F^p

i.e.

$$AB = \begin{pmatrix} Av_1 \\ Av_2 \\ \vdots \\ Av_p \end{pmatrix}$$

Theorem 2.3. Let V and W be finite-dimensional vector spaces having ordered basis β and γ , respectively, and let $T:V\to W$ be linear. Then, for each $u\in V$, we have

$$[\mathsf{T}(u)]_{\gamma} = [\mathsf{T}]_{\beta}^{\gamma}[u]_{\beta}$$

Theorem 2.4. Let β and β' be two ordered basis for a finite-dimensional vector space V, and let $Q = [I_V]_{\beta}^{\beta'}$, $T : V \to V$. Then

- (a) Q is invertible
- (b) For any $v \in V$, $[v]_{\beta} = Q[v]_{\beta'}$
- (c) $\mathsf{T}_{\beta'} = Q^{-1}[\mathsf{T}]_{\beta}Q$

The matrix $Q = [\mathsf{I}_{\mathsf{V}}]_{\beta}^{\beta'}$ is called **change of coordinate matrix**. Also, we say that Q **changes** β' -coordinates into β -coordinates.

That is, jth column of Q is $[x'_j]_{\beta}$, where $\beta' = \{x'_1, x'_2, ..., x'_n\}$.

Chapter 5

Diagonalization

Eigenvalues and Eigenvectors

Definition 3. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix. A square matrix A is called **diagonalizable** if L_A is diagonalizable.

Definition 4. Let T be a linear operator on a vector space |mathsfV| A nonzero vector $v \in V$ is called an **eigenvector** of T if there exists a scalar λ such that $\mathsf{T}(v) = \lambda v$. The scalar λ is called the **eigenvalue** corresponding to the eigenvector v.

Let A be in $\mathsf{M}_{n\times n}(F)$. A nonzero vector $v\in\mathsf{F}^n$ is called an **eigenvector** of A if v is an eigenvector of L_A ; that is, if $Av=\lambda v$ for some scalar λ . The scalar λ is called the **eigenvalue** of A corresponding to the eigenvector v

Theorem 5.1. A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T.

Furthermore, if T is diagonalizable, $\beta = \{v_1, v_2, ..., v_n\}$ is an ordered basis of eigenvectors of T, and $D = [\mathsf{T}]_{\beta}$, then D is a diagonal matrix and D_{jj} is the eigenvalue corresponding to v_j for $1 \leq j \leq n$.

Theorem 5.2. Let $A \in \mathsf{M}_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\det(A - \lambda I_n) = 0$.

Definition 5. Let $A \in M_{n \times n}(F)$. The polynomial $f(t) = \det(A - tI_n)$ is called the **characteristic polynomial** of A.

Theorem 5.3. Let $A \in M_{n \times n}(F)$.

- (a) The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^n$
- (b) A has at most n distinct eigenvalues.

Theorem 5.4. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvalue of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T - \lambda I)$.

Problem 5.1. Let T be a linear operator on a finite-dimensional vector space V, and let β be an ordered basis for V. Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of $[T]_{\beta}$.

Problem 5.2. Prove following theorems.

- (a) Prove that a linear operator T on a finite-dimensional vector space is invertible if and only if zero is not an eigenvalue of T
- (b) Let T be an invertible linear operator. Prove that a scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .
- (c) State and prove results analogous to (a) and (b) for matrices.

Problem 5.3. Prove that the eigenvalues of an upper triangular matrix M are the diagonal entries of M.

Problem 5.4. Let V be a finite-dimensional vector space, and let λ be any scalar.

- (a) For any ordered basis β for $\mathsf{V},$ prove that $[\lambda \mathsf{I}_{\mathsf{V}}]_{\beta} = \lambda I.$
- (b) Compute the characteristic polynomial of λI_V .
- (c) Show that λI_V is diagonalizable and has only one eigenvalue.

Problem 5.5. A scalar matrix is a square matrix of the form λI for some scalar λ ; that is, a scalar matrix is a diagonal matrix in which all the diagonal entries are equal.

- (a) Prove that if a square matrix A is similar to a scalar matrix λI , then $A = \lambda I$.
- (b) Show that a diagonalizable matrix having only one eigenvalue is a scalar matrix.
- (c) Prove that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.

Problem 5.6.

- (a) Prove that similar matrices have the same characteristic polynomial.
- (b) Show that the definition of the characteristic polynomial of a linear operator on a finite-dimensional vector space V is independent of the choice of basis for V.

Problem 5.7. Let T be a linear operator on a finite-dimensional vector space V over a field F, let β be an ordered basis for V, and let $A = [T]_{\beta}$. In reference to Figure 5.1, prove the following.

$$\begin{array}{ccc}
V & \xrightarrow{T} & V \\
\phi_{\beta} \downarrow & & \downarrow \phi_{\beta} \\
F^n & \xrightarrow{L_A} & F^n
\end{array}$$

Figure 5.1

- (a) If $v \in V$ and $\Phi_{\beta}(v)$ is an eigenvector of A corresponding to the eigenvalue λ , then v is an eigenvector T corresponding to λ .
- (b) If λ is an eigenvalue of A (and hence of T), then a vector $y \in \mathsf{F}^n$ is an eigenvector of A corresponding to λ if and only if $\Phi_\beta^{-1}(y)$ is an eigenvector of T corresponding to λ .

Problem 5.8. For any square matrix A, prove that A and A^T have the same characteristic polynomial (and hence the same eigenvalues).

Problem 5.9. Solve following problems.

- (a) Prove that similar matrices have the same trace.
- (b) How would you define the trace of a linear operator on a finite-dimensional vector space? Justify that your definition is well-defined.

Problem 5.10. Let T be the linear operator on $M_{n\times n}(R)$ defined by $T(A) = A^T$.

- (a) Show that ± 1 are the only eigenvalues of T.
- (b) Describe the eigenvectors corresponding to each eigenvalue of T.
- (c) Find an ordered basis β for $M_{2\times 2}(R)$ such that $[T]_{\beta}$ is a diagonal matrix.
- (d) Find an ordered basis β for $\mathsf{M}_{n\times n}(R)$ such that $[\mathsf{T}]_{\beta}$ is a diagonal matrix for n>2.

Problem 5.11. Let $A, B \in M_{n \times n}(C)$.

- (a) Prove that if B is invertible, then there exists a scalar $c \in C$ such that A + cB is not invertible.
- (b) Find nonzero 2×2 matrices A and B such that both A and A + cB are invertible for all $c \in C$.

Problem 5.12. Let A and B be similar $n \times n$ natrices. Prove that there exists an n-dimensional vector space V, a linear operator T on V, and ordered basis β and γ for V such that $A = [T]_{\beta}$ and $B = [T]_{\gamma}$.

Problem 5.13. Let A be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$

Prove that $f(0) = a_0 = det(A)$. Deduce that A is invertible if and only if $a_0 \neq 0$.

Problem 5.14. Solve following problems.

- (a) Let T be a linear operator on a vector space V over the field F, and let g(t) be a polynomial with coefficients from F. Prove that if x is an eigenvector of T with corresponding eigenvalue λ , then $g(T)(x) = g(\lambda)(x)$. That is, x is an eigenvector of g(T) with corresponding eigenvalue $g(\lambda)$.
- (b) State and prove a comparable result for matrices.
- (c) Verify (b) for the matrix A in Exercise 3(a) with polynomial $g(t) = 2t^2 t + 1$, eigenvector $x = \binom{2}{3}$, and corresponding eigenvalue $\lambda = 4$.

Note that matrix A in Exercise 3(a) is $\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ for F = R.