Chapter 3 Discrete Random Variables and Probability Distributions

Part 1: Discrete Random Variables

Section 2.8 Random Variables

Section 3.1 Discrete Random Variables

Section 3.2 Probability Distributions and Probability Mass Functions

Section 3.3 Cumulative Distribution Functions

Random Variables

- Consider tossing a coin two times. We can think of the following ordered sample space: $S = \{(T,T),(T,H),(H,T),(H,H)\}$ NOTE: for a fair coin, each of these are equally likely.
- The outcome of a random experiment need not be a number, but we are often interested in some (numerical) measurement of the outcome.
- For example, the *Number of Heads* obtained is numeric in nature can be 0, 1, or 2 and is a **random variable**.

Definition (Random Variable)

A <u>random variable</u> is a *function* that assigns a real number to each outcome in the sample space of a random experiment.

Random Variables

Definition (Random Variable)

A <u>random variable</u> is a *function* that assigns a real number to each outcome in the sample space of a random experiment.

Example (Random Variable)

For a fair coin flipped twice, the probability of each of the possible values for *Number of Heads* can be tabulated as shown:

SampleSpace	Number of Heads
(H,H)	→ 2
(H,T) —	1
(T,H)	0
(T T)	175

Number of Heads	0	1	2
Probability	1/4	2/4	1/4

Let $X \equiv \#$ of heads observed. X is a random variable.

Discrete Random Variables

Definition (Discrete Random Variable)

A <u>discrete</u> random variable is a variable which can only take-on a <u>countable</u> number of values (finite or countably infinite)

Example (Discrete Random Variable)

- Flipping a coin twice, the random variable <u>Number of Heads</u> $\in \{0, 1, 2\}$ is a discrete random variable.
- Number of flaws found on a randomly chosen part $\in \{0, 1, 2, \ldots\}$.
- Proportion of defects among 100 tested parts $\in \{0/100, 1/100, \dots, 100/100\}.$
- Weight measured to the nearest pound.*
 - but it might be a more convenient, simple approximation to assume that the measurements are values on a continuous random variable as 'weight' is theoretically continuous.

*Because the possible values are discrete and countable, this random variable is discrete,

Continuous Random Variables

Definition (Continuous Random Variable)

A **continuous random variable** is a random variable with an interval (either finite or infinite) of real numbers for its range.

Example (Continuous Random Variable)

- Time of a reaction.
- Electrical current.
- Weight.

Discrete Random Variables

We often omit the discussion of the underlying sample space for a random experiment and directly describe the distribution of a particular random variable.

Example (Production of prosthetic legs)

Consider the experiment in which prosthetic legs are being assembled **until** a defect is produced. Stating the sample space...

$$S = \{d, gd, ggd, gggd, \ldots\}$$

Let X be the trial number at which the experiment terminates (i.e. the sample at which the first defect is found).

The possible values for the random variable X are in the set $\{1,2,3,\ldots\}$

We may skip a formal description of the sample space ${\cal S}$ and move right into the random variable of interest ${\cal X}.$

Probability Distributions and Probability Mass Functions

Definition (Probability Distribution)

A **probability distribution** of a random variable X is a description of the probabilities associated with the possible values of X.

Example (Number of heads)

Let $X \equiv \#$ of heads observed when a coin is flipped twice.

Number of Heads	0	1	2
Probability	1/4	2/4	1/4

Probability distributions for discrete random variables are often given as a table or as a function of $X\dots$

Example (Probability defined by function f(x))

Function of *X*: $f(x) = \frac{1}{10}x$ for $x \in \{1, 2, 3, 4\}$

Probability Distributions and Probability Mass Functions

Example (Transmitted bits, example 3-4 p.68)

There is a chance that a bit transmitted through a digital transmission channel is received in error.

Let X equal the number of bits in error in the next four bits transmitted. The possible values for X are $\{0,1,2,3,4\}$.

Suppose that the probabilities are...

x	P(X = x)
0	0.6561
1	0.2916
2	0.0486
3	0.0036
4	0.0001

Probability Distributions and Probability Mass Functions

Example (Transmitted bits, example 3-4 p.68, cont.)

The probability distribution shown graphically:

Notice that the sum of the probabilities of the possible random variable values is equal to 1.

Probability Mass Function (PMF)

Definition (Probability Mass Function (PMF))

For a discrete random variable X with possible values $x_1, x_2, x_3, \ldots, x_n$, a **probability mass function** $f(x_i)$ is a function such that

- **1** $f(x_i) \ge 0$
- $\sum_{i=1}^{n} f(x_i) = 1$

Example (Probability Mass Function (PMF))

For the transmitted bit example,

$$f(0) = 0.6561, f(1) = 0.2916, ..., f(4) = 0.0001$$

$$\sum_{i=1}^{n} f(x_i) = 0.6561 + 0.2916 + \dots + 0.0001 = 1$$

The probability distribution for a <u>discrete random variable</u> is described with a <u>probability mass function</u> (probability distributions for continuous random variables will use different terminology).

Probability Mass Function (PMF)

Example (Probability Mass Function (PMF))

Toss a coin 3 times.

• Let X be the number of heads tossed. Write down the probability mass function (PMF) for X: {Use a table...}

Show the PMF graphically:

Probability Mass Function (PMF)

Example (Probability Mass Function (PMF))

A box contains 7 balls numbered 1,2,3,4,5,6,7. Three balls are drawn at random and *without replacement*.

Let X be the number of 2's drawn in the experiment.

Write down the probability mass function (PMF) for X: {Use your counting techniques}

Sometimes it's useful to quickly calculate a **cumulative probability**, or $P(X \le x)$, denoted as F(x), which is the probability that X is less than or equal to some specific x.

Example (Widgets, PMF and CDF)

Let X equal the number of widgets that are defective when 3 widgets are randomly chosen and observed. The possible values for X are $\{0,1,2,3\}$.

The probability mass function for X:

\underline{x}	P(X=x) or $f(x)$
0	0.550
1	0.250
2	0.175
3	0.025

Suppose we're interested in the probability of getting 2 or less errors (i.e. either 0, or 1, or 2). We wish to calculate $P(X \le 2)$.

Example (Widgets, PMF and CDF, cont.)

$$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$

= 0.550 + 0.250 + 0.175 = 0.975

Below we see a table showing $P(X \leq x)$ for each possible x.

Cumulative

0.550

		Probabilities	
x	P(X=x)	$P(X \le x) = F(x)$	

0.550

U	0.550	0.550	$\Gamma(\Lambda \leq 0) = \Gamma(0)$
1	0.250	0.800	$P(X \le 1) = F(1)$
2	0.175	0.975	$P(X \le 2) = F(2)$
3	0.025	1.000	$P(X \le 3) = F(3)$

D(V < 0) = E(0)

As x increases across the possible values for x, the cumulative probability increases, eventually getting 1, as you accumulate all the probability.

Example (Widgets, PMF and \overline{CDF} , cont.)

The cumulative probabilities are shown below as a function of x or $F(x) = P(X \le x)$.

The above cumulative distribution function F(x) is associated with the probability mass function f(x) below:

Connecting the PMF and the CDF

- Connecting the PMF and the CDF
 - We can get the PMF (i.e. the probabilities for $P(X=x_i)$) from the CDF by determining the height of the jumps.
 - Specifically, because a CDF for a discrete random variable is a step-function with left-closed and right-open intervals, we have

$$P(X = x_i) = F(x_i) - \lim_{x \uparrow x_i} F(x_i)$$

and this expression calculates the difference between $F(x_i)$ and the limit as x increases to x_i .

Definition (CDF for a discrete random variable)

The <u>cumulative distribution function</u> of a discrete random variable X, denoted as F(x), is

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$$

Definition (CDF for a discrete random variable)

For a discrete random variable X, F(x) satisfies the following properties:

- **1** $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$
- **2** $0 \le F(x) \le 1$
- The CDF is defined on the real number line.
- The CDF is a non-decreasing function of X (i.e. increases or stays constant as $x \to \infty$).

- For each probability mass function (PMF), there is an associated CDF.
- If you're given a CDF, you can come-up with the PMF and vice versa (know how to do this).
- Even if the random variable is discrete, the CDF is defined between the discrete values (i.e. you can state $P(X \le x)$ for any $x \in \Re$).
- The CDF 'step function' for a discrete random variable is composed of left-closed and right-open intervals with steps occurring at the values which have positive probability (or 'mass').

• The cumulative distribution function F(x) for a discrete random variable is a step-function.

Example (Widgets, PMF and CDF, cont.)

In the widget example, the range of X is $\{0,1,2,3\}$. There is no chance of a getting value outside of this set, e.g. f(1.8)=P(X=1.8)=0.

But
$$F(1.8) = P(X \le 1.8) \ne 0$$
. Specifically...

$$F(1.8) = P(X \le 1.8) = P(X \le 1)$$

= $P(X = 0) + P(X = 1) = 0.800$.

So, if f(x) = 0, it does not necessarily mean F(x) = 0.

Here is F(x) for the widget example:

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.550 & \text{if } 0 \le x < 1 \\ 0.800 & \text{if } 1 \le x < 2 \\ 0.975 & \text{if } 2 \le x < 3 \\ 1.0000 & \text{if } x \ge 3 \end{cases}$$

Example (Monitoring a chemical process)

The output of a chemical process is continually monitored to ensure that the concentration remains within acceptable limits. Whenever the concentration drifts outside the limits, the process is shut down and recalibrated. Let X be the number of times in a given week that the process is recalibrated. The following table presents values of the cumulative distribution function F(x) of X.

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.17 & \text{if } 0 \le x < 1 \\ 0.53 & \text{if } 1 \le x < 2 \\ 0.84 & \text{if } 2 \le x < 3 \\ 0.97 & \text{if } 3 \le x < 4 \\ 1.0000 & \text{if } x \ge 4 \end{cases}$$

From the values in the far right column, I know that $X \in \{0, 1, 2, 3, 4\}$.

Example (Monitoring a chemical process, cont.)

(1) Graph the cumulative distribution function.

Example (Monitoring a chemical process, cont.)

(2) What is the probability that the process is recalibrated fewer than 2 times during a week?

(3) What is the probability that the process is recalibrated more than three times during a week?

Example (Monitoring a chemical process, cont.)

(4) What is the probability mass function (PMF) for X?

(5) What is the most probable number of recalibrations in a week? (I'm not asking for an *expected value* here, just the one most likely).