

Последовательности: виды числовых последовательностей и примеры

В этом уроке

- Понятие числовой последовательности
- Способы задания числовой последовательности
- Свойства числовых последовательностей
- Арифметическая прогрессия

Основные определения

Функции, областью определения которых является множество натуральных чисел или его часть, называются числовыми последовательностями.

Общий вид последовательности: (a_n) , или $a_1, a_2, a_3, \ldots, a_n$.

В последовательности, где общая формула имеет вид $a_n=3n$, выписать: 1) первые четыре члена; 2) двадцатый член.

Решение:

- $m{0}$ Если n=1, то $a_1=3\cdot 1=3$, $a_2=3\cdot 2=6$, $a_3=3\cdot 3=9$, $a_4=3\cdot 4=12$.
- **②** Если n=20, то $a_{20}=3\cdot 20=60$.

Основные определения

Последовательность называется возрастающей, если для любого $n \in \mathbb{N}$ выполняется неравенство $a_n < a_{n+1}$.

Последовательность называется убывающей, если для любого $n \in \mathbb{N}$ выполняется неравенство $a_n > a_{n+1}$.

Возрастающие и убывающие последовательности называются монотонными.

Определите, является ли монотонной (возрастающей или убывающей) последовательность, заданная формулой: $a_n = \frac{n}{n+1}$.

Решение:

$$a_{n+1}-a_n=rac{n+1}{n+2}-rac{n}{n+1}=rac{1}{(n+1)\cdot(n+2)}>0$$
, то есть $a_n< a_{n+1}.$

Основные определения

Последовательность называется ограниченной сверху, если существует такое число $M \in \mathbb{R}$, что $a_n \leq M$. При этом число M называется верхней границей последовательности.

Последовательность называется ограниченной снизу, если существует такое число $m \in \mathbb{R}$, что $a_n \geq m$. Число m называется нижней границей последовательности.

Последовательность называется ограниченной, если она одновременно ограничена и сверху, и снизу.

- Последовательность, заданная формулой $a_n = n$ (1, 2, 3, ..., n, ...), ограничена снизу, но не ограничена сверху.
- Последовательность, заданная формулой $a_n=(-1)^n\cdot n$ (-1, 2, -3, 4, ..., $(-1)^n\cdot n$, ...), не ограничена ни сверху, ни снизу.

Как задаются последовательности

• Аналитически. Например, последовательность натуральных чисел:

$$a_n = n, n \in \mathbb{N}$$

Рекуррентно. Например, последовательность Фибоначчи:

$$a_{n+2} = a_{n+1} + a_n, \ n \in \mathbb{N}, \ a_1 = a_2 = 1$$

③ Описательно (простым перечислением всех элементов последовательности).

Арифметическая прогрессия

Аналитическая формула арифметической прогрессии:

$$a_n = a_1 + d \cdot (n-1)$$

Сумма первых n элементов арифметической последовательности:

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

Дана арифметическая прогрессия (a_n) , где $a_1=0$, d=2. Найдите девятый член прогрессии.

Решение:

Используем общую формулу $a_n = a_1 + d \cdot (n-1)$:

$$a_9 = 0 + 2 \cdot (9 - 1) = 16$$

Ответ: 16.

Дана арифметическая прогрессия (a_n) , где $a_1=0$, d=2. Найдите сумму первых четырёх членов последовательности.

Решение:

Используем общую формулу $a_n = a_1 + d \cdot (n-1)$:

$$a_4 = 0 + 2 \cdot (4 - 1) = 6$$

$$S_4 = \frac{(a_1 + a_4) \cdot 4}{2} = (0+6) \cdot 2 = 12$$

Ответ: 12.

