Activity Recognition Using Both Computer Vision and Audio Processing

Sancharz Gore
Harvard University

Alyssa LachButler University

Bella Murrer
University of
Notre Dame

Regina Rex University of Wisconsin

Fiona Ryan Indiana University

Kara Schatz
Xavier University

Sophie Tian
University of
Washington

Trang Tran Knox College

Violet Xiang
Indiana University

David Crandall Indiana University

Donald Williamson Indiana University

• How do you recognize an acquaintance?

- How do you recognize an acquaintance?
 - by voice and appearance

- How do you recognize an acquaintance?
 - by voice and appearance
- What about machines?

- How do you recognize an acquaintance?
 - by voice and appearance
- What about machines?
 - with our findings in the machine learning field and labeled data, will machines have the ability to recognize the speakers?

Applications

- Personalized Smart Assistants (Alexa, Google Home, Siri...)
- Smart Baby Monitors
- Emotion Detection
- Image Captioning

Task

Given audio and visual data of a person talking, can we identify who it is?

Task

Given audio and visual data of a person talking, can we identify who it is?

Data Collection:

- Background Variation:
 - 5 different backgrounds
- Sentence Variation:
 - 10 different sentences
- Clothing Variation:
 - 2 different clothing (jacket/no jacket)
- Total Data Collected (10 people):
 - Video Samples: 188
 - Audio Samples: 188
 - Image Samples: 16,668

Visual Recognition

Training data: sampled frames from videos labeled with correct person in video

Output from Google Cloud Vision API

Standard size JPEG image for neural network

Determines most likely person in a given picture by comparing it to the training data

Audio Recognition

- Collecting data
- Converting mp3 to wav file
- Loaded wav file data to Google Colab
- Converting wav file to spectrograms
- Shuffle, batch and normalize the spectrograms
- Build Convolutional Neural Network
- Parameter tuning Learning rate

Spectrogram of Bella's Voice

Convoluted Neural Network

Preliminary Results

- Computer Vision:
 - Classification Accuracy:
 - Frame Classification Model: 45%
 - Classifies every frame in the video
 - Video Classification Model: 60%
 - Groups the frames and weight the videos based on the classification of the Group
- Audio Processing:
 - Training Model: Hasn't been applied to the test data (set)
 - Minimum data loss: .286 from Audio Training Model

Preliminary Results

Confusion(Error) Matrix:

	Alyssa	Bardia	Bella	Fiona	Kara	Regina	Sancharz	Sophie	Trang	Violet
Alyssa	2									
Bardia		2								
Bella				2						
Fiona					2					
Kara					2					
Regina		2								
Sancharz		1					1			
Sophie								2		
Trang				1					1	
Violet				·						2

Bardia (Graduate Student)

Me

Future work

- 1. Improvement on Image Classification
 - a. Aggregate information from a sequence of frames, such as motion
 - b. Method for improving classification accuracy, i.e. cropping faces
 - c. Identify multiple people in images
- 2. Improvement on Speaker Identification
 - a. Finish Training
 - b. Audio to identify speakers from multi-speakers
- 3. Combine audio and video information to get better results
- 4. Be able to identify strangers in video

