In [11]: In [2]:	#importing libraries and packages import pandas as pd import numpy as np from sklearn.decomposition import PCA import matplotlib.pyplot as plt from sklearn.cluster import KMeans First we explore the key characteristics of the data set by loading the data set and inspecting basic features such as the variable names, the sample size. df=pd.read_csv("https://homepage.boku.ac.at/leisch/MSA/datasets/mcdonalds.csv")
<pre>In [3]: Out[3]: In [8]:</pre>	yummy convenient spicy fattening greasy fast cheap tasty expensive healthy disgusting Like Age VisitFrequency Gender No No Yes No Yes No Yes Yes No Yes Yes No No Yes No No No -3 61 Every three months Female Yes Yes No Yes Yes Yes Yes Yes Yes Yes No No Yes No No +2 51 Every three months Female No Yes Yes Yes Yes Yes Yes Yes Yes No No Yes No No +4 62 Every three months Female Yes Yes No Yes Yes Yes Yes Yes No No Yes Yes No No No Yes No No Yes Yes No No No Yes No Yes Yes No No No Yes No Yes No No Yes No No Yes No Yes Yes No No No Yes No Yes No No Yes No No Yes No No Yes No Yes No No Yes No Hale
Out[8]: In [9]: Out[9]: In [10]:	<pre>Index(['yummy', 'convenient', 'spicy', 'fattening', 'greasy', 'fast', 'cheap',</pre>
Out[10]: In [13]: Out[13]:	yummy convenient spicy fattening greasy fast cheap tasty expensive healthy disgusting Like Age VisitFrequency Gender 0 No Yes No Yes Yes No Yes No No No -3 61 Every three months Female 1 Yes Yes Yes Yes Yes Yes No No +2 51 Every three months Female 2 No Yes Yes Yes No Yes Yes No +1 62 Every three months Female matx = np.array(df.iloc[:, 0:11]) matx array([['No', 'Yes', 'No',, 'Yes',
In [14]:	<pre>""" ['Yes', 'Yes', 'No',, 'Yes', 'No', 'No'], ['Yes', 'Yes', 'No',, 'Yes', 'No'], ['No', 'Yes', 'No',, 'Yes', 'No', 'Yes']], dtype=object) matx = np.where(matx == "Yes", 1, 0) col_means = np.mean(matx, axis=0) # Round the calculated means to two decimal places rounded_col_means = np.round(col_means, 2) print(rounded_col_means) [0.55 0.91 0.09 0.87 0.53 0.9 0.6 0.64 0.36 0.2 0.24]</pre>
<pre>In [15]: Out[15]: In [16]:</pre>	<pre>list(df.columns) ['yummy', 'convenient', 'spicy', 'fattening', 'greasy', 'fast', 'cheap', 'tasty', 'expensive', 'healthy', 'disgusting', 'Like', 'Age', 'VisitFrequency', 'Gender']</pre> mapped_dict = {key: value for key, value in zip(df.columns, rounded_col_means)}
In [18]:	<pre>print(mapped_dict) {'yummy': 0.55, 'convenient': 0.91, 'spicy': 0.09, 'fattening': 0.87, 'greasy': 0.53, 'fast': 0.9, 'cheap': 0.6, 'tasty': 0.64, 'expensive': 0.36, 'healthy': 0.2, 'disg usting': 0.24} principal components analysis pca = PCA() MD_pca = pca.fit_transform(matx) # The transformed data is now stored in MD_pca</pre>
Out[18]: In [21]:	MD_pca array([[0.42536706, -0.21907878,
	<pre>MD_pca = pca.fit_transform(matx) def print_pca_summary(pca_result, num_digits=1): fmt_str = "{:." + str(num_digits) + "f}" print("Standard deviations of principal components:") print([fmt_str.format(val) for val in np.sqrt(pca_result.explained_variance_)]) print("\nProportion of variance explained by each principal component:") print([fmt_str.format(val) for val in pca_result.explained_variance_ratio_]) print("\nCumulative proportion of variance explained:") cumulative_variance_explained = np.cumsum(pca_result.explained_variance_ratio_) print([fmt_str.format(val) for val in cumulative_variance_explained]) print_pca_summary(pca, num_digits=1)</pre>
In [26]:	Standard deviations of principal components: ['0.8', '0.6', '0.5', '0.4', '0.3', '0.3', '0.3', '0.3', '0.2', '0.2'] Proportion of variance explained by each principal component: ['0.3', '0.2', '0.1', '0.1', '0.1', '0.0', '0.0', '0.0', '0.0'] Cumulative proportion of variance explained: ['0.3', '0.5', '0.6', '0.7', '0.8', '0.8', '0.9', '0.9', '1.0', '1.0'] data=matx # Step 1: Standardization data_std = (data - np.mean(data, axis=0)) / np.std(data, axis=0)
	# Step 2 and 3: PCA and Eigendecomposition pca = PCA() pca.fit(data) # Step 4: Explained variance ratio explained_variance_ratio = pca.explained_variance_ratio_ # Step 5: Formation of Principal Components principal_components = pca.transform(data) # Display the results print("Explained Variance Ratio:") print(explained_variance_ratio) print("\nPrincipal Components:") print(principal_components) Explained Variance Ratio:
	[0.29944723 0.19279721 0.13304535 0.08309578 0.05029956 0.0438491 0.03954779 0.0367609 0.03235329 0.02932326] Principal Components: [[0.42536706 -0.21907878 0.6632553 0.18100693 0.51570617 -0.56707389] [-0.21863768 0.38818996 -0.73082668 0.11147641 0.49331285 -0.509044093] [-0.37541475 0.73043507 -0.122039780.32228786 0.06175857 0.24274108] [-0.18589445 1.06266156 0.22085675 0.03825472 0.05651822 -0.01279977] [-1.18260441 -0.03856977 0.56156066 0.02226748 -0.00257265 -0.10531631] [1.55024186 0.27503101 -0.013737270.13658866 -0.43279782 -0.45607556]] Extracting Segments
In [27]:	<pre># Performing KMeans clustering on the principal components num_clusters = 4 kmeans = KMeans(n_clusters=num_clusters) cluster_labels = kmeans.fit_predict(MD_pca) # Plot the predicted clusters plt.scatter(MD_pca[:, 0], MD_pca[:, 1], c=cluster_labels, cmap='tab10', alpha=0.5) plt.colorbar(label='Cluster') plt.title('KMeans Clustering on PCA Components') plt.title('Principal Component 1') plt.ylabel('Principal Component 2') plt.show() def plot_projected_axes(pca_result): loadings = pca_result.componentsT for i in range(len(loadings)): x0, y0 = 0, 0 # Origin x1, y1 = loadings[i, 0], loadings[i, 1] plt.arrow(x0, y0, x1, y1, head_width=0.05, head_length=0.1, fc='blue', ec='blue') plt.title('Projected Axes on PCA Components') plt.title('Projected Component 1')</pre>
	plt.ylabel('Principal Component 2') plt.show() plot_projected_axes(pca) KMeans Clustering on PCA Components 10 25 20 15 80 10 05 -10
	-1.0 -0.5 0.0 0.5 1.0 1.5 Principal Component 1 Projected Axes on PCA Components 0.6 -0.4 -0.2 0.0 0.2 0.4 -0.6 -0.4 -0.2 0.0 0.2 0.4 Principal Component 1
In [28]:	np.random.seed(1234) n_clusters_range = range(2, 9) best_kmeans = None best_score = float('-inf') for n_clusters in n_clusters_range: kmeans = KMeans(n_clusters=n_clusters, n_init=10, random_state=1234) kmeans.fit(matx) score = kmeans.score(matx) # Select the best model based on the highest score (inertia) if score > best_score: best_kmeans = kmeans best_score = score # Retrieve the labels from the best clustering model cluster_labels = best_kmeans.labels_
In [29]:	<pre># Print the cluster labels print("Cluster Labels:") print(cluster_labels) Cluster Labels: [4 2 5 5 3 0] np.random.seed(1234) n_clusters_range = range(2, 9) inertia_values = [] for n_clusters_range: kmeans = KMeans(n_clusters=n_clusters, n_init=10, random_state=1234) kmeans.fit(matx) inertia_values.append(kmeans.inertia_) plt.plot(n_clusters_range, inertia_values, marker='o') plt.xlabel('Number of Segments (Clusters)')</pre>
	plt.ylabel('Inertia (Sum of Squared Distances)') plt.title('KMeans Clustering - Elbow Method') plt.show() KMeans Clustering - Elbow Method Sample Stances Stan
In [31]:	cluster_number = 4 indices_cluster_4 = np.where(cluster_labels == cluster_number)[0] data_cluster_4 = matx[indices_cluster_4] plt.hist(data_cluster_4, bins=np.linspace(0, 1, 11), edgecolor='black') plt.xlabel('Value') plt.ylabel('Frequency') plt.title('Histogram for Cluster 4') plt.xlim(0, 1) plt.grid(True) plt.show()
	Histogram for Cluster 4 0.04 0.02 -0.02 -0.04 0.02 0.04 0.00 0.02 0.4 0.6 0.8 10
In []:	<pre>Using Mixtures of Distributions from sklearn.mixture import BayesianGaussianMixture np.random.seed(1234) n_components_range = range(2, 9) aic_values = [] bic_values = [] icl_values = [] for n_components in n_components_range: gmm = BayesianGaussianMixture(n_components=n_components, n_init=10, random_state=1234)</pre>
	<pre>gmm_fit(matx) aic_values.append(gmm.aic(matx)) bic_values.append(gmm.bic(matx)) icl_values.append(gmm.lower_bound_) for n_components, aic, bic, icl in zip(n_components_range, aic_values, bic_values, icl_values): print(f"Number of Components: {n_components}, AIC: {aic}, BIC: {bic}, ICL: {icl}") # Plot the information criteria (AIC, BIC, ICL) plt.plot(n_components_range, aic_values, marker='o', label='AIC') plt.plot(n_components_range, bic_values, marker='o', label='BIC') plt.ylabel('Number of Clusters') plt.ylabel('Value of Information Criteria') plt.vlabel('Value of Information Criteria') plt.title('Model Selection - Bayesian Gaussian Mixture') plt.grid(True) plt.show()</pre>
In []:	Using Mixtures of Regression Models import statsmodels.api as sm columns_for_regression = df.columns[1:12] formula_string = "Like.n - " + " + ".join(columns_for_regression) formula = sm.formula.ols(formula_string, data=df) # Fit the linear regression model model = sm.OLS.from_formula(formula, data=df) results = model.fit() print(results.summary()) # Plot plt.figure() plt.scatter(results.fittedvalues, results.resid, alpha=0.5) plt.xlabel("Fitted Values") plt.xlabel("Fitted Values")
	<pre>plt.ylabel("Residuals") plt.title("Residual Plot") plt.axhline(y=0, color='r', linestyle='') plt.grid(True) plt.show()</pre>