## Chapter 7, Solution 66.

Using Fig. 7.131, design a problem to help other students to better understand first-order op amp circuits.

Although there are many ways to work this problem, this is an example based on the same kind of problem asked in the third edition.

## **Problem**

For the op-amp circuit of Fig. 7.131, find  $v_o$ . Assume that  $v_s$  changes abruptly from 0 to 1 V at t=0. Find  $v_o$ .



**Figure 7.131 For Prob. 7.66.** 

## **Solution**

For t<0-,  $v_s = 0$  so that  $v_o(0) = 0$ 

:Let v be the capacitor voltage

For t>0,  $v_s=1$ . At steady state, the capacitor acts like an open circuit so that we have an inverting amplifier

$$v_o(\infty) = -(50k/20k)(1V) = -2.5 \text{ V}$$

$$\tau = RC = 50x10^3x0.5x10^{-6} = 25 \text{ ms}$$

$$v_o(t) = v_o(\infty) + (v_o(0) - v_o(\infty))e^{-t/0.025} = 2.5(e^{-40t} - 1) \text{ V}.$$