Relatório e análise do trabalho realizado no torno didático.

Cristóvão Bartholo Gomes – 14/0135081 UnB, Brasília 28/11/2018

1- Objetivos:

O objetivo deste projeto é projetar, programar e posteriormente analisar a peça no torno didático utilizando a teoria aprendida em sala de aula. A partir da peça produzida analizaremos as medidas e erros dimensionais e geométricos da peça e faremos a análise de capabilidade da máquina.

2- A peça:

A peça utilizada no torno didático foi uma vela de dimensões 150mm de comprimento e 50mm de diâmetro. Como a peça apresenta erros geométricos altos, planejou-se um balanceamento prévio de 2 milímetros.

Os primeiros 50 milímetros da peça foram designados para fixação, portanto o projeto consistiu em usinar os 100 milímetros da outra extremidade. Para que houvesse um melhor acabamento no topo da vela, que por fabricação apresenta algumas deformidades, foi realizado o faceamento nesta região ao final do processo de desbaste.

Dada a fragilidade do material e imperfeições no processo de fabricação a profundidade máxima de penetração na peça para este projeto foi estabelecida em 15 mm.

3- Projeto:

O software usado para o planejamento da peça foi o CNC Simulator, versão estudantil. Primeiramente foram ajustados parâmetros necessários no software para lidar com o projeto de maneira correta, como uso de milímetros como medida padrão, escolha da máquina e ativar uso do raio como referência ao invés de diâmetro, entre outros.

Em seguida foi definido o zero peça, que ficou no centro da vela na extremidade à direita. O plano de segurança foi definido em X30 e a posição de segurança à X30 Z5.

Dada as condições de usinagem foi definido que a quantidade máxima de material a ser retirado é de 2mm por passe. A compensação da raio é desativada, portanto foi calculada previamente, a ferramenta apresenta uma geometria de espessura de 2 milímetros, sendo que o ponto de referência é o vertice esquerdo da ferramenta.

A simulação em duas dimensões da peça ficou como mostra a figura 1 e a simulação em três dimensões na figura 2.

figura 1 – peça em simulação 2-D, CNC Simulator.

Parâmetros de torneamento:

Espessura da Ferramenta (mm)	2
Profundidade de Corte (mm/passe)	2
Zero Peça (mm)	(X,Y) = (0,150)
Zero Ferramenta (mm)	(X,Y) = (0,0)
Ponto de segurança	(X,Y) = (30, 5)
Velocidade de Corte (rpm)	900
Avanço (mm/min)	450

Tabela 1 – parâmetros de torneamento

4 - Código:

(\$Lathe) (\$Millimeters) (\$AddRegPart 3) (crisprog2)

G90 G40 G18 G21 G94

G90 G40 G G92 Z128 T8 M6 ET8 S900 M03

(Enter your CNC code here) G00 Z0 X23

G01 Z-100 G00 X30

Z5 G01 X21

Z-16 G00 X30

Z5

X19

G01 Z-14

G00 X30

Z5 X17 G01 Z-12

G00 X30 Z5

X15

G01 Z-10

X23 Z-20

G00 X30

Z-32 G01 X21

Z-96

G00 X30

Z-37

G01 X19 Z-69

X20 Z-78 X19 Z-94

G00 X30

Z-40 G01 X17

Z-45

X18 Z-52 X17 Z-67

G01 X20

Z-80

X17 Z-92

G00 X30 Z-27 X23

G1 X15 Z-42

Z-45

G03 X17.5 Z-47.5 R2.5

G1 Z-49.5 G03 X15 Z-52 R2.5

G01 Z-53 G03 X16 Z-54 R1 G01 Z-56

G03 X15 Z-57 R1

G01 Z-58

G03 X16 Z-59 R1

G01 Z-61 G03 X15 Z-62 R1

G01 Z-65

G02 X20 Z-70 R5 G01 Z-77 G02 X15 Z-80 R5 G01 Z-90

G01 X23 Z-100

G00 X30 Z-90

G01 X15 G02 X23 Z-100 R10

G00 X30 Z0

G01 X-1 G00 X30 Z5

(G01 X21)

(END) M30

Figura 2 – Simulação 3-D, CNC simulator.

Figura 3 – Resultado final, Vela.

5- Resultado:

A peça foi feita no torno didático e o resultado final é mostrado na figura 3. Para cada posição indicada na figura 2 que é a simulação em três dimensões do CNC simulator foram feitas oito medidas de diâmetro, em que se rotacionava a peça sobre a ferramenta de medição, resultando em um total de sessenta e quatro medidas mostradas na tabela 3, e os valores nominais mostrados na tabela 2.

Seção 1	Seção 2	Seção 3	Seção 4	Seção 5	Seção 6	Seção 7	Seção 8
30	46	30	30	30	30	40	30

Tabela 2 – Valores nominais (em milímetros).

	Seção 1	Seção 2	Seção 3	Seção 4	Seção 5	Seção 6	Seção 7	Seção 8
1	30.6840	46.3645	30.0878	30.3800	30.6705	29.5864	39.4143	29.2153
2	30.5373	46.3609	30.0861	30.0977	30.8268	29.7159	39.2367	29.2384
3	30.6328	46.4721	30.1133	30.3101	30.9219	29.7196	39.1295	29.2079
4	30.7007	46.3992	30.3779	30.5134	30.0774	29.7421	39.0922	29.2707
5	30.7225	46.3131	30.1893	30.5191	30.5190	29.6430	39.3112	29.1998
6	30.5720	46.4139	30.1522	30.1020	30.0890	29.6771	39.4351	29.2476
7	30.6308	46.3704	30.2004	29.9845	30.0041	29.6352	39.4389	29.2363
8	30.6558	46.3503	30.1531	30.1611	30.1330	30.1882	39.2295	29.2427
Média	30.6420	46.3805	30.1700	30.2585	30.4052	29.7384	39.2859	29.2323
Desvio Padrão	0.0632	0.0479	0.0942	0.2019	0.3723	0.1889	0.1365	0.0233

Tabela 3 – Valores medidos (em milímetros).

Houve um pequeno erro no zeramento da ferramenta, podemos assumir que foi um valor em torno de 0.64 milímetros, que é o desvio do valor esperado medido mais próximo do zeramento da ferramenta. Avaliando os demais desvios do valor esperado pode-se notar que há um consistente decrescimento deste valor.

Vale observarque houve um desvio padrão maior para as seções 4 e 5, isso se deve ao fato de que a posição de medição desses diâmetros era pouco espessa e dificultava o posicionamento no medidor. Portanto este desvio pode ser atribuido à um erro de medição.

Isso provavelmente se deve ao fato de que a máquina apresenta um erro na inclinação do trilho, uma maneira de calcular esse valor pode-se utilizar a estimação de diâmetro realizada (a média) e calcular o desvio para o valor nominal em cada região. Estes dados calculados são mostrados na tabela 4 juntamente com a posição estimada de medição destes valores (Z).

	Seção 1	Seção 2	Seção 3	Seção 4	Seção 5	Seção 6	Seção 7	Seção 8
Posição	-5	-22.5	-42.5	-51.5	-56.5	-62.5	-72.5	-85
Desvio	0.6420	0.3805	0.1700	0.2585	0.4052	-0.2616	-0.7141	-0.7677

Tabela 4 – Posição e Desvio (em milímetros).

Utilizando o software MatLab pôde-se realizar a regressão linear através do comando *polifit* e determinar o coeficiente angular e o coeficiente linear que foram respectivamente 0,0176 e 0.8881, como mostra a figura 4.

Figura 4 – Gráfico de regressão linear.

Podemos então usar a função *atan* para determinarmos a inclinação estimada pela regressão linear e em seguida usar o comando *rad2deg* para converter este valor para graus:

Portanto a inclinação estimada é de 1.0083 grau.

6 – Análises:

Foi feita a análise de capabilidade para cada diâmetro medido na tabela 3. Os limites superiores e inferiores foram definidos como 0.5 mm para cada medida, ou seja, um desvio de mais ou menos 0.5 mm para o valor nominal da peça.

A análise foi feita através do software Minitab, os valores de diâmetro estão indicados como a letra "d" e o seu respectivo índice da tabela (d1, d2, ...).

Process Capability Report for d2

		Performance	
	Observed	Expected Overall	Expected Within
% < LSL	0,00	0,00	0,00
% > USL	0,00	0,63	0,80
% Total	0,00	0,63	0,80

		Performance	
	Observed	Expected Overall	Expected Within
% < LSL	0,00	0,00	0,00
% > USL	0,00	0,02	0,04
% Total	0,00	0,02	0,04

Process Capability Report for d4

29,8

30,0

30,2

30,4

30,6

—— Overall — — – Within	
Overall C	apability
Pp	0,83
PPL	1,25
PPU	0,40
Ppk	0,40
Cpm	*
Potential (With	nin) Capability
Ср	0,80
CPL	1,21
CPU	0,38
Cpk	0,38

I			Performance	
		Observed	Expected Overall	Expected Within
	% < LSL	0,00	0,01	0,01
ı	% > USL	25,00	11,58	12,41
	% Total	25,00	11,58	12,43

29,6

30,0

		Performance	
	Observed	Expected Overall	Expected Within
% < LSL	0,00	0,75	0,95
% > USL	50,00	39,95	40,30
% Total	50,00	40,71	41,25

29,6

Process Capability Report for d6

30,4

31,2

30,8

Overall Within	
Overall C	apability
Pp	0,88
PPL	0,42
PPU	1,34
Ppk	0,42
Cpm	*
Potential (With	hin) Capability
Ср	0,85
CPL	0,41
CPU	1,30
Cpk	0,41

Γ			Performance	
		Observed	Expected Overall	Expected Within
	% < LSL	0,00	10,34	11,16
	% > USL	0,00	0,00	0,01
	% Total	0,00	10,35	11,17

		Performance	
	Observed	Expected Overall	Expected Within
% < LSL	100,00	94,16	93,50
% > USL	0,00	0,00	0,00
% Total	100.00	0// 16	02.50

Process Capability Report for d8

—— Overall — — – Within			
Overall Capability			
Pp	7,14		
PPL	-3,82		
PPU	18,11		
Ppk	-3,82		
Cpm	*		
Potential (Within) Capability			
Ср	6,89		
CPL	-3,69		
CPU	17,48		
Cpk	-3,69		

		Performance	
	Observed	Expected Overall	Expected Within
% < LSL	100,00	100,00	100,00
% > USL	0,00	0,00	0,00
% Total	100,00	100,00	100,00

Observando os resultados pode-se perceber que o impacto da inclinação do eixo. Nas extremidades há um deslocamento e na região central as medidas estão mais propensas a atender o requisito estabelecido. Isso se deve à uma combinação do fato do eixo estar inclinado e do zeramento impreciso da peça, o impacto disto é bastante alto na produção de peças com a tolerância estabelecida, portanto para a tolerância estabelecida deste projeto a peça produzida não satisfaz os requisitos estabelecidos e a máquina provavelmente não está apta para uma produção de peças de tolerância similares a estas.

7 – Conclusão

Ao longo deste projeto foi perceptível a necessidade da especificação dos parâmetros de planejamento, bem como analisar a capabilidade da máquina na realização dele.

Notou-se que diversos fatores limitam e direcionam a fabricação da peça, como limitações da ferramenta, qualidade do material de fabricação, problemas na máquina (como foi o caso neste projeto com o torno didático, que apresentou uma inclinação em seu eixo), limitações no driver da ferramenta que a impede de realizar certas funções em código G, material da peça não homogêneo, entre outros fatores.

A peça produzida não satisfez os requisitos estabelecidos no projeto, isto pode ser atribuido a diversos fatores, dentre eles o fato da vela utilizada não era homogênea, vibrações, zeramento da peça impreciso (realizado manualmente) e eixo do torno angulado (aprixmadamente um grau, como mostrado nos calculos apresentados).

8 - Bibliografia

http://alvarestech.com/temp/tcn/AnaliseCapabilidadeExemploRobo.pdf https://www.youtube.com/watch?v=phreoIGpBXc https://www.youtube.com/watch?v=A1R7rtHm7Dk http://www.portalaction.com.br/566-%C3%ADndices-de-capacidade-do-processo-cp-e-cpk