Fundamentals of theory of computation I Test 1

Send your solutions as a single NEPTUNCODE.zip file to ktichler@inf.elte.hu or tichlerk@gmail.com

Exercise 1: Let $L_1 = \{b^n a^{2n} \mid n \in \mathbb{N}\}$, $L_2 = \{(ba)^n b^n \mid n \in \mathbb{N}\}$. Determine the following languages. $L_1 L_2 = ?$ $L_1 \cap L_2 = ?$ $\operatorname{Pre}(L_2) = ?$

 $(Pre(L_2))$ is the prefix language of L_2 , the set of prefixes of the words of L_2 .)

Exercise 2: Let $G = \langle \{S, A, B\}, \{a, b\}, P, S \rangle$ be a grammar, where the set of production rules P is as follows.

$$S \to aAa \mid bAb \mid \lambda$$
$$A \to aBa \mid bBb \mid \lambda$$
$$B \to aSa \mid bSb$$

Exercise 3: Let $|u|_t$ denote the number of t's in a word u. Make a deterministic finite automaton accepting the following language L.

$$L = \{ u \in \{0, 1\}^* \mid (\text{the last letter of } u \text{ is } 1) \land (|u|_0 \text{ is even}) \}.$$

Exercise 4: Make a deterministic finite automaton recognizing the same language as the following nondeterministic one. $A = \langle \{q_0, q_1, q_2\}, \{a, b\}, M, \{q_0\}, \{q_0, q_1\} \rangle$, where the transition function M is given as follows.

$$\begin{array}{ccccc}
 & a & b \\
 & \downarrow & q_0 & \{q_1, q_2\} & \emptyset \\
 & \leftarrow & q_1 & \{q_0, q_1\} & \{q_2\} \\
 & q_2 & \emptyset & \{q_0, q_1\}
\end{array}$$

Exercise 5: Make a minimal automaton, according to the algorithm we learnt (leaving unreachable states then contracing equivalent ones), recognizing the same language as the following automaton A. $A = \langle \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, \{a, b\}, M, 1, \{4, 5, 6, 7, 8\} \rangle$, where the transition function M is given as follows.

		a	b
\rightarrow	1	9	3
	2	4	1
	3	9	5
\leftarrow	4	1	8
\leftarrow	5	3	4
\leftarrow	6	6	2
\leftarrow	7	9	8
\leftarrow	8	3	7
	9	1	3

$$L_1 L_2 = \{ b^n a^{2n} (ba)^m b^m \mid m, n \in \mathbb{N} \}$$

$$L_1 \cap L_2 = \{ \mathcal{E} \mathcal{G} \}$$

Pre (L2) = { (ba) b ln EN3 U { (ba) ln EN3 U { b3

 $L(G) = \{ w \in \{a,b\}^* \mid w = w^{-1} \land |w| \in (0,2,b,8,...) \}$ This grammar generates parindromes, as basic, if we $\{a,b\}^*$, $w = w^{-1}$. From Step by step, we can see the length of wis flowing b, 2, 6, 8, 12, 14...

Exercise 3.

Exercise 5.

0: {1,2,3,93, {4,5,6,7,83

70	a b		a	Ь
< 4	{1,2,3,9} {4,5,6,7,8} {1,2,3,9} {4,5,6,7,8}	1	{1,2,3,9}	
<-5°	{1,2,3,9} {4,5,6,7,83	2	84,5,6,7,83	{1,2,3,9}
<-6 <-7	[4,5,6,7,8] [1,2,3,9] [1,2,3,9] [4,5,6,7,8] [1,2,3,9] [4,5,6,7,8]			[4,5,6,7,8]
< 8	{1,2,3,9} {4,5,6,7,8}	9	{1,2,3,9}	{1,2,3,9}

1: 51,93, 823, 833, 863, 84, 5, 7,83

	a	Ь			a	Ь	
	£1,93	ζ Ψ, 5, ₹,8 3	_	1	[1,9]	₹33	
< 5 < 2	E33 E1,93	{4,5,7,8} {4,5,7,8}		·	£1,93	{33	
← 3	{3}	(4, 5, 7, 8)		· /) 11 1 J	1 7]	

2: 51,93, {23, 233, 663, 64,73, 65,83

$$\frac{2}{2} = \lambda = \lambda$$

The minimal automaton

	α	Ь
→ {1,93	£1,93	233
{23	{4, X}	£1,93
{ 3 9	{1,93	{5,83
£ 863	{ 63	[23
← {4, }}	Z1,93	£5,83
< {5,8}	{33	84,73

