AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Appln. No. 09/676,487

wherein Q^1 and Q^2 each represents an oxygen atom, Q^3 represents an oxygen atom or a sulfur atom; R^1 and R^2 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; L^1 and L^2 each independently represents a methine group which may be substituted; m represents an integer of 0 to 3; V^3 and V^4 each independently represents a hydrogen atom or a monovalent substituent;

or a compound represented by the following formula (7):

Formula (7)

$$V^{\delta}$$
 V^{δ}
 V^{δ

wherein Q^1 and Q^2 each represents an oxygen atom, Q^3 represents an oxygen atom or a sulfur atom; R^1 and R^2 each independently represents a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group; L^1 and L^2 each independently represents a methine group which may be substituted; m represents an integer of 0 to 3; V^5 to V^9 each independently represents a hydrogen atom or a monovalent substituent;

and an organoboron compound represented by the following formula (A):

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. Appln. No. 09/676,487

Formula (A)

wherein R_a^{-1} , R_a^{-2} and R_a^{-3} each independently represents an aliphatic group, an aromatic group, a heterocyclic group, or $-SiR_a^{-5}R_a^{-6}R_a^{-7}$ where R_a^{-5} , R_a^{-6} , and R_a^{-7} each independently represents an aliphatic group or an aromatic group; R_a^{-4} represents an aliphatic group; and Y^+ represents a group capable of forming a cation.