Rev01 Initial Release Schematic - 11/03/2014 Rev02 Second Release Schematic - 11/14/2014 Updates: D Updates - 11/05/2014 Rev03 Third Release Schematic - 12/19/2014 BT U3 Updates 01/30/2015 - BT GPIO 2 signal brought out to Module Pin TP162 - Updated FL1 to 0603 - Murata LFB182G45CL3D178 Updates 11/21/2014 BT Section Updates - 11/06/2014 BT U3 Updates 02/02/2015 - FL2 changed to mirrored diplexer Murata - LFD182G45MJ5R653 - BT XTAL (Y2) Changed to 40MHz 8Q40070003 Part - Updated Y2 20MHz XTAL to 1.6x1.2mm - TXC - 8Q20070002 43907 Section U1 Updates 12/02/2014 - R3 Popoulated and R2 Depopopped to enable BT 40MHz XTAL Mode BT Section U3 Updates - 11/12/2014 - C44 changed to 1uF 0201 cap (GRM033R60J105MEA2D) 43907 U1 Updates 02/05/2015 - VDDIO_SD (U1 Pin255) separated from VDDIO and brought out to TP1 15 - Added note that BT LPO IN can be fed from GPIO 12, 13, 14 or 15 of BCM43909 or external 32KHz Clock RF Section Updates 12/08/2014 - Added R3 10K (depopped) on BT_XTAL_STRAP_1 (To provide option for 40MHz XTAL if needed) - Added C11 and C18 10pF caps and option for WL 2G to bypass Diplexer and go to Module Ant Pin - Depopped R4 since BT has dedicated XTAL - Swapped the locations of C65 and C44 Caps on Module to match schematic - BT_OTP_VDD3P3V (U3 Pin 104) & BT_USB_VDDO (U3 Pin41) - Tied together and now connect to VDD_3V3_BT BT Section U3 Updates 12/09/2014 - Updated the netname of VDDIO_RF supply to VDDIO_RF_3V3 - Removed 0 Ohm resistor (R1) on BT_VCOVDD1P2 (U3 Pin48) - Remove BT GPIO_2 signal going to Module Pin - Renamed R6 resistor to R1 - Bring Out 5 Additional BT Signals to Module Pins (4 for BT ADC and 1 for BT JTAG_SEL) - Removed the C4 cap (2.2uF) on supply feeding PAD_I_VBAT(U3 Pin1) & PAD_I_VIN_LDO2P5 (U3 Pin4) and added note to include this cap externally on carrier board RF Front End Updates 03/03/2015 - Removed BT_GPIO3 & BT_GPIO_5 going to Module pins, they are NC - FL2 Diplexer Updated to Cyntec TDP-2012-205-VAS BT Section U3 Updates 12/12/2014 - C25 and C21 changed to 10pF Cap - FL1 BPF Updated to Murata LFB182G45CGXR030 - Remove BT GPIO_4 signal going to Module Pin - Remove BT SFLASH Signals going to Module Pins RF Front End Updates 03/18/2015 43907 Section U1 Updates 11/12/2014 - FL2 Diplexer Updated to TDK DPX205850DT-9048A2BR - Removed C22 (100pF) & C11 (1uF) and FB3 on USB Supply pins (U1 Pins 166, 173, 176) - Added note to have these components externally on carrier board 43907 Section U1 Updates 12/15/2014 - Replaced C3 with 1uF 0201 cap and add additional 1uF (GRM033R60G105MEA2D) cap on VOUT_LNLDO supply (U1, Pin 106) RF Front End Updates - Set WLAN to Ant0, BT to Ant1 05/04/2019 C2 changed to 2.2uF 0402 cap (GRM155R60J225ME15D) - Replaced C2 and C33 with 1uF 0201 cap (GRM033R60G105MEA2D) cap on AVDD1P2 supply (U1, Pin 204) - Depop C59, C46, C54, C21 - C33 changed to 0.1uF 01005 Cap - Populate C60, C45, C61, C25 43907 Section U1 Updates 12/17/2014 BT Section U3 Updates - 11/13/2014 - Depop U4 - 2.4G DPDT Switch - Added additional 0.1uF cap before FB2 (Depopped by default) - BT(U3) Pin1, Pin4 supply changed back to BT_3V3_VDD, removed the extra module pin for BT_VDD - Change FL2 to TDK DPX205850DT-9043B1BR (2.4G LPF /5G BPF) Part - Changed FL2 to 0805 Diplexer - C5 cap on PAD_O_VDD2P5 (U3 Pin3) changed to 2.2uF, 0402 size (GRM155R60J225M), removed the additional 1uF cap (C4) on the line 43907 Section U1 Updates 11/13/2014 - Added another module pin VDD_3V3_IN, to feed the WLAN Radio (WRF_SYNTH_VDD3P3, WRF_PA_VDD3P3, WRF_TXMIX_VDD), VDDIO_RF & OTP_VDD3P3, on the carrier board this pin can be connected to VOUT_3P3 through VDD_3V3_LDO module pin or disconnected using resistor - Replaced C3 cap on VOUT_LNLDO(U1 Pin 106) with 2.2uF 0402 cap (GRM155R60J225M) 43907 Updates 12/17/2014 BCM43907 XTAL Section Updates- 05/22/2015 - RF_Inductors: Replaced L1 with 3.3nH 0201 (LQP03TN3N3B02D), and L2 with 0.6nH 0201 (LQP03TN0N6B02D) Inductor - C23 and C24 changed to 33pF GRM0225C1C330JD05D Parts - Removed C11 and C18 caps and Dixplexer Bypass Option - U2 5G T/R Switch replaced with Skyworks SKY13351-378LF part 1mmx1mm - Removed R10 - Removed extra GND TP's RF Front End Updates - 05/22/2015 43907 Section U1 Updates 11/14/2014 - Change FL2 to TDK DPX205850DT-9043B2BR (2.4G LPF /5G BPF) Part RF Section Updates 12/18/2014 - C12 and C65 changed to 1uF 6.3V Rated Caps (GRM033R60J105MEA2D) on U1 (Pin223) and U1 (Pin240,241) WLAN Radio Supplies - C15 matching cap changed to NoLoad (Depop) - Removed R11, C68 & C67 - Removed C18 and C19 0.001uF caps on U1 VDDC Rail - L1 changed to 3.6nH Murata (LQP03TN3N6B02D) Part BT U3 Updates 01/15/2015 - Added 10pF(C4) DC Block Cap on RF Signal to Ant1 Path - Updated BT Symbol to BCM20707 Part - C52 PMU Cap on SR_VDDBAT5V (U1, Pins 108, 113,122,125) changed to 6.3V Rated Part (GRM155R60J475ME87D) as per PMU Team recommendation - C29 PMU Cap on VOUT_HSICLDO (U1, Pin107) changed to 6.3V Rated Part (GRM033R60J474ME90D) as per PMU Team recommendation Approvals - C27 PMU Cap on VOUT_3P3, VOUT_3P3_SENSE (U1, Pins 118,119,117) changed to 6.3V Rated Part (GRM155R60J475ME87D) as per PMU Team recommendation **Broadcom** - Marked U1, PMU Caps, XTAL, XTAL Caps, RF Components Critical Designer Company Confidential - Changed net name of RF 2G signals going to FL1 to RF_2G_FL_A1 SCHEMATIC DIAGRAM SIZE TITLE - Changed net name of RF 2G signals going to FL2 to RF_2G_FL_A0 824-127858-0020 Reviewer BCM943907WLCSP_1 B BT Section U1 Updates 11/18/2014 PRINTED CIRCUIT BOARD Reviewe - C50 cap BT 20703 Chip (U4) Pin 13 removed Designer Drawing Number Version 200-127858-0010 VIJAY DESAI - R7 replaced with 3.3 Ohms 01005 Resistor 824-127858-0010 09 Reviewer Date DATE SHEET 1 OF 11 22/05/2015:16:46

PMU Section Recommendation By Broadcom Corporation PMU Team

1. External 43909 CBUCK Inductor Any inductor any other than LQM2MPN2R2MG0, please review the new inductor with PMU team.

2. BCM43907 PMU Caps:

- a. VBAT Cap: Nominal value 4.7uF. 0402 inch, 10V, 20%, X5R, ceramic surface-mount
 - i.Effective capacitance should NOT drop below 1.645uF at 4.8V.
 - ii. Effective capacitance should NOT drop below 1.88uF at 4.2V
 - iii.Effective capacitance should NOT drop below 2.2uF at 3.6V
 - iv.Recommended cap: Murata GRM155R61A475M or any cap matching or better than above DC bias profile
 - v.This 4.7uF can be shared with SR_VDDBAT5V & LDO_VDDBAT5V pins but the cap must be closer to SR_VDDBAT5V.
- b. CBUCK CapNominal value 4.7uF. 0402 inch, 6.3V, 20%, X5R, ceramic surface-mount
 - i.Effective capacitance should NOT drop below 3.622uF at 1.35V.
 - ii.Recommended cap: Murata GRM155R60J475ME87 or any cap matching or better than above DC bias profile
 - iii.I noted you used GRM155R61A475MEAA 10V cap; this is fine but it's an overkill & more expensive than 6.3V cap.
- c. LDO3P3 Cap Nominal value 4.7uF. 0402 inch, 6.3V, 20%, X5R, ceramic surface-mount
 - i.Effective capacitance should NOT drop below 1.773uF at 3.3V.
 - ii.Recommended cap: Murata GRM155R60J475ME87 or any cap matching or better than above DC bias profile
- d. CLDO Cap: Nominal value 4.7uF. 0402 inch, 6.3V, 20%, X5R, ceramic surface-mount
 - i.Effective capacitance should NOT drop below 3.91uF at 1.2V.
 - ii.Recommended cap: Murata GRM155R60J475ME87 or any cap matching or better than above DC bias profile
- d. LNLDO Cap :Nominal value 2.2uF. 0402 inch, 6.3V, 20%, X5R, ceramic surface-mount
 - i.Effective capacitance should NOT drop below 1.87uF at 1.2V.
 - ii.Recommended cap: Murata GRM155R60J225ME15 or any cap matching or better than above DC bias profile
- iii.If you want to use 2 pcs of 0201 inch size 1uF, the total effective capacitance at 1.2V DC bias must meet 1.87uF typical.
- e. HSICLDO Callominal value 0.47uF. 0201 inch, 6.3V, 20%, X5R, ceramic surface-mount
 - i.Effective capacitance should NOT drop below 0.376uF at 1.2V.
 - ii.Recommended cap: Murata GRM033R60J474ME90 or any cap matching or better than above DC bias profile

2. BCM20703 BT PMU Caps:

- a. BT 2.5V LDO Out Callominal value 2.3uF. 0402 inch, 6.3V, 20%, X5R, ceramic surface-mount
 - i.Effective capacitance should NOT drop below 1.056uF at 2.5V.
 - ii.Recommended cap: Murata GRM155R60J225ME15D or any cap matching or better than above DC bias profile

Broadcom									
	Company Confidential								
SIZE	TITLE								
В	BCM943909WLCS	SP_1							
DATE	17/12/2014:16:40	SH	HEET	9	OF	11			

PMU Section Recommendation By Broadcom Corporation PMU Team cntd... 4. Module Layout: We consider module layout the same as FCFBGA package substrate routing. PMU team needs to review the module pins relating to VBAT, SR_VLX, VSS which can impact CBUCK chip reliability. Module Layout Routing Guidelines Please ensure module designer extracts all these parasitic inductances & resistances for our review. The following needs to be achieved: a. SR_VDDBAT5V pin to VBAT cap : i.Top-layer routing, length < 42mils (1.066mm), width >10mils (0.254mm) ii.Routing ESR<5mOhms, ESL<400pH at 4MHz - 200MHz b. CBUCK output cap to LDO_VDD1p5 pin: i. 2nd layer routing, length < 42mils(1.066mm), width>10mils(0.254mm) ii. Routing ESR<10mOhms. c. SR_VLX pin to inductor: i. Routing length < 80mils(2.032mm), 10mils(0.254mm)<width<30mils(0.762mm) d. Top-Layer GND island connecting SR_PVSS pin, CBUCK cap gnd, VBAT cap gnd: i. Routing ESR<5mOhms, ESL<300pH at 4MHz - 200MHz **Broadcom** Company Confidential SIZE BCM943907WLCSP_1 В 17/12/2014:16:40

Potential CBUCK Noise if Routing Not Optimized

Figure 17: EMI Loops in Buck Switching Regulator

Picture Above Shows Two Loops through MOSFETs of CBUCK

- 1)Each loop starts from a cap and ends at its ground terminal.
- 2) The area within each loop is proportional to the EMI. Routing of sensitive signals through the areas
- 3)bounded by these two loops should be strictly avoided.
- 4)Top-layer routings are used to conduct switching currents to avoid micro-via inductances.
- 5) VBAT, CBUCK cap sits on a top-layer gnd island connecting to SR_PVSS pin directly.
- 6)Micro-vias are still used to connect this top-layer gnd island to 2nd-layer GND Plane and this only carries DC currents.
- 7) The 2nd Layer GND Plane also acts as a shield over the 2 EMI loops to prevent noise radiation to other layers.

Broadcom							
	Company Confidential						
SIZE	TITLE						
В	BCM943907WLCSP_1						
DATE	17/12/2014:16:41	SHEET	11	OF	11		