Charge Decomposition Analysis

Shirong Wang
Kuang Yaming Honors School

December 17, 2019

Contents

Methodology

Technical Details

Generalized CDA

Expectations

Charge Decomposition Analysis

Charge Decomposition Analysis was proposed by S. Dapprich and G. Frenking, to analyze charge transfer.

Dapprich, S.; Frenking, G. J. Phys. Chem. 1995, 99, 9352-9362

Common approaches for analyzing charge transfer

- 1. Atomic charges
- 2. Density difference
- 3. Charge decomposition analysis
- 4. Energy decomposition analysis

Expand each MO with N AOs (basis)

$$\phi_i = \sum_{k}^{N} C_{ki} \chi_k \tag{1.1}$$

	math variable	subscript	number	number example
MO	φ	i	N	420
AO	χ	k	Ν	420
occupied MO			occ	52
virtual MO			vir	368

N is determined by user, e.g. def2TZVP . occ = K/2, where K is the number of electrons (In restricted case).

check .log file

```
Standard basis: def2TZVP (5D, 7F)

Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.

There are 466 symmetry adapted cartesian basis functions of A symmetry.

There are 420 symmetry adapted basis functions of A symmetry.

420 basis functions, 679 primitive gaussians, 466 cartesian basis functions
52 alpha electrons 52 beta electrons
...

NBasis= 420 RedAO= T EigKep= 6.59D-04 NBF= 420
NBsUse= 420 1.00D-06 EigRej= -1.00D+00 NBFU= 420
```

MO Coefficient and Overlap Matrix

$$K/2 = \sum_{i}^{occ} \langle \phi_i | \phi_i \rangle = \sum_{i}^{occ} \sum_{k}^{N} \sum_{l}^{N} C_{ki}^* C_{li} \langle \chi_k | \chi_l \rangle$$
 (1.2)

or

$$K = \sum_{i}^{N} \eta_{i} \langle \phi_{i} | \phi_{i} \rangle = \sum_{i}^{N} \eta_{i} \sum_{k}^{N} \sum_{l}^{N} C_{ki}^{*} C_{li} \langle \chi_{k} | \chi_{l} \rangle$$
 (1.3)

where

$$\eta_i = \begin{cases} 2 & i \in occ \\ 0 & i \in vir \end{cases}$$
(1.4)

Moreover, define

$$P_{k\ell} = \sum_{i}^{N} \eta_{i} C_{ki}^{*} C_{\ell i}$$

$$\sum \eta_i C_{ki}^* C_{\ell i} \tag{1.5}$$

$$S_{k\ell} = \langle \chi_k \, | \, \chi_\ell \rangle \tag{1.6}$$

thus

$$K = \sum_{k}^{N} \sum_{\ell}^{N} P_{k\ell} S_{k\ell} \tag{1.7}$$

Fragment Orbitals

Recall that

$$\langle \phi_i | \phi_i \rangle = \sum_{k}^{N} \sum_{\ell}^{N} C_{ki}^* C_{\ell i} S_{kl}$$
 (1.8)

where N is the number of AOs, and S is the overlap matrix between AOs. Do SCF calculation for two fragments at same geometry separately, we get two set of MOs of fragments. They are called fragment orbitals, with a total number N.

Expand total MO with FOs instead, we get

$$\eta_i \langle \phi_i | \phi_i \rangle = \eta_i \sum_{m=1}^{N} \sum_{n=1}^{N} C_{mi}^* C_{ni} S_{mn}$$
 (1.9)

where

$$S_{mn} = \langle \phi_m \, | \, \phi_n \rangle \tag{1.10}$$

Define

$$d_i = \sum_{m \in A}^{occ} \sum_{n \in B}^{vir} \eta_i C_{mi}^* C_{ni} S_{mn}$$
 (1.11)

$$b_i = \sum_{m \in A}^{vir} \sum_{n \in B}^{occ} \eta_i C_{mi}^* C_{ni} S_{mn}$$
 (1.12)

$$r_i = \sum_{m=A}^{occ} \sum_{n=R}^{occ} \eta_i C_{mi}^* C_{ni} S_{mn}$$
 (1.13)

$$r_{i} = \sum_{m \in A}^{occ} \sum_{n \in B}^{occ} \eta_{i} C_{mi}^{*} C_{ni} S_{mn}$$

$$d = \sum_{i} d_{i} \qquad b = \sum_{i} b_{i} \qquad r = \sum_{i} r_{i}$$

$$(1.13)$$

thus

d is the charge transfer from A to B, b is the charge transfer from B to A. d-b is the net charge transfer from A to B.

Technical Details

If use .log file

- use nosymm to prevent geometric transformation
- ▶ use pop=full to print all MO coefficients
- ▶ use iop(3/33=1) to print overlap matrix

Or, use .fchk file

- nosymm
- calculate overlap matrix by self

Technical Details

Other tips:

- ▶ Diffuse basis functions may destroy the result
- ► Atom coordinates must be arranged in the same order in complex and fragments

What if η_i is not integer?

In post-HF calculations, we can obtain non-integer occupied natural orbitals (NOs).

Tian Lu et al. proposed Generalized CDA

$$t_i = \sum_{m \in A} \sum_{n \in B} \eta_i \frac{\eta_m - \eta_n}{\eta_{\text{ref}}} C_{mi}^* C_{ni} S_{mn}$$
 (3.1)

$$r_{i} = \sum_{m \in A} \sum_{n \in B} \eta_{i} \frac{2 \min(\eta_{m}, \eta_{n})}{\eta_{\text{ref}}} C_{mi}^{*} C_{ni} S_{mn}$$
(3.2)

where $\eta_{\rm ref}=2$ for closed-shell cases, and $\eta_{\rm ref}=1$ for open-shell cases. Xiao, M.; Lu, T. *J. Adv. Phys. Chem.* **2015**, *04*, 111–124

Expectations

- How to access FO-FO charge transfer value?
- ► FO Composition of MOs

$$\Theta_{m,i} = \sum_{n} C_{mi} C_{ni} S_{mn} \tag{4.1}$$

► Is NBO works for CDA calculation?