Symbolic Weighted Language Models andQuantitative Parsing over Infinite Alphabets

- 3 Florent Jacquemard @ H ORCID
- 4 Inria & CNAM, Paris, France

S Abstract

- We propose a framework for weighted parsing over infinite alphabets. It is based on language models called Symbolic Weighted Automata (swA) at the joint between Symbolic Automata (sA) and
- 8 Weighted Automata (wA), as well as Transducers (swT) and Visibly Pushdown (sw-VPA) variants.
- 9 Like sA, swA deal with large or infinite input alphabets, and like wA, they output a weight value
- in a semiring domain. The transitions of swA are labeled by functions from an infinite alphabet
- into the weight domain. This is unlike sA whose transitions are guarded by boolean predicates
- $_{12}$ overs symbols in an infinite alphabet and also unlike wA whose transitions are labeled by constant
- 13 weight values, and who deal only with finite automata. We present some properties of swA, swT
- $_{14}$ $\,$ and sw-VPA models, that we use to define and solve a variant of parsing over infinite alphabets.
- 15 We illustrate the models with examples taken from a motivating application, namely a parse-based
- 16 approach to automated music transcription.
- 17 2012 ACM Subject Classification Theory of computation ightarrow Quantitative automata
- 18 Keywords and phrases Weighted Automata, Symbolic Automata, Visibly Pushdown, Parsing
- 19 Digital Object Identifier 10.4230/LIPIcs...
- 20 Funding Florent Jacquemard: Inria AEx Codex, ANR Collabscore, EU H2020 Polifonia
- 21 Acknowledgements I want to thank ...

1 Introduction

33

41

Parsing is the problem of structuring a linear representation on input (a finite word), according to a language model. Most of the context-free parsing approaches [15] assume a finite and reasonably small input alphabet. Such a restriction makes perfect sense in the context of NLP tasks such as constituency parsing, or of programming languages compilers or interpreters. Considering large or infinite alphabets can however be of practical interest, for instance, when dealing with large characters encodings such as UTF-16, e.g. for vulnerability detection in Web-applications [8], for the analysis (e.g. validation or filtering) of data streams or serialization of structured documents (with textual or numerical attributes) [26], or for processing timed execution traces [3].

The latter case is related to a study that motivated the present work: automated music transcription. Most representations of music are essentially linear. This is true for audio files, but also for widely used symbolic representations like MIDI. Such representations ignore the hierarchical structures that frame the conception of music, at least in the western area. These structures, on the other hand, are present, either explicitly or implicitly, in music notation [14]: music scores are partitioned in measures, measures in beats, and so on so forth. Music events do not occur at arbitrary timestamps, but respect a discrete division of the timeline incurred by these recursive divisions. The transcription problem takes a linear input (audio or MIDI) and aims at re-constructing these structures by mapping input events to this hierarchical rhythmic space. It can therefore be stated as a parsing problem [12], over an infinite alphabet of timed events.

Various extensions of language models for handling infinite alphabets have been studied.

register: skip refs and details, add Mikolaj recent

48

49

50

51

53

54

55

56

57

58

59

61

62

63

64

72

73

74

75

76

86 87

89

between s and A in [21].

For instance, some automata with memory extensions allow restricted storage and comparison of input symbols, (see [26] for a survey), with pebbles for marking positions [25], registers [18], or the possibility to compute on subsequences with the same attribute values [2]. The automata at the core of model checkers compute on input symbols represented by large bitvectors [27] (sets of assignments of Boolean variables) and in practice, each transition accepts a set of such symbols (instead of an individual symbol), represented by Boolean formula or Binary Decision Diagrams. Following a similar idea, in symbolic automata (sA) [7, 8], the transitions are guarded by predicates over infinite alphabet domains. With appropriate closure conditions on the sets of such predicates, all the good properties enjoyed by automata over finite alphabets are preserved.

Other extensions of language models help in dealing with non-determinism, by the computation of weight values. With an ambiguous grammar, there may exist several derivations (abstract syntax trees – AST) yielding one input word. The association of one weight value to each AST permits to select a best one (or n bests). This is roughly the principle of weighted parsing approaches [13, 24, 23]. In weighted language models, like e.g. probabilistic context-free grammars and weighted automata (wA) [11], a weight value is associated to each transition rule, and the rule's weights can be combined with an associative product operator \otimes into the weight of an AST. A second operator \oplus , associative and commutative, is moreover used to resolve the ambiguity raised by the existence of several (in general exponentially many) AST associated to a given input word. Typically, \oplus will select the best of two weight values. The weight domain, equipped with these two operators shall be, at minima, a semiring where \oplus can be extended to infinite sums, such as the Viterbi semiring and the tropical min-plus algebra, see Figure 2.

«««< HEAD In this paper, we present a framework for weighted parsing over infinite input alphabets. It is based on symbolic weighted finite states language models (swM), generalizing both sA, with functions into an arbitrary semiring instead of Boolean guards, and wA, by

handling infinite alphabets, see Figure 1. ====== In this paper, we present a uniform framework for weighted parsing over infinite input alphabets. It is based on symbolic weighted finite states language models (swM), generalizing the Boolean guards of sA into functions

into an arbitrary semiring, and generalizing also wA, by handling infinite alphabets, see

Figure 1. »»»> 84929b6c837ccc2cffbc4f7d0f70b25a9312aa19 «««< HEAD In the transition

rules of swM models, input symbols appear as variables, and the weight associated to a

transition rule is a function of these variables. ===== In short, a transition rule $q \stackrel{\phi}{\to} q'$

from state q to q' of a swM, is labeled by a function ϕ associating to every input symbol a a

weight value $\phi(a)$ in a semiring domain. »»»> 84929b6c837ccc2cffbc4f7d0f70b25a9312aa19 The models presented here are finite automata called symbolic-weighted (swA), transducers

(swT), and pushdown automata with a visibly restriction [1] (sw-VPA). The latter model

of automata operates on nested words [1], a structured form of words parenthesized with

markup symbols, corresponding to a linearization of trees. In the context of parsing, they can represent (weighted) AST of CF grammars. More precisely, a sw-VPA A associates a weight value A(t) to a given nested word t, which is the linearization of an AST. On the other hand, a swT can define a distance T(s,t) between finite words s and t over infinite alphabets. Then, the SW-parsing problem aims at finding t minimizing $T(s,t) \otimes A(t)$ (wrt

La figure 2 est citée avant la fig-ure 1 mais apparait longtemps après. A

model et automata?

This sentence (symbols as variables) is not immediately clear to me. Maybe short example or

modified

intuition?

Like weighted-parsing methods [13, 24, 23], our approach proceeds in two steps, based on properties of the swM. The first step is an intersection (Bar-Hillel construction [15]) where, given a swT T, a sw-VPA A, and an input word s, a sw-VPA $A_{T,s}$ is built, such that for all t,

the ranking defined by \oplus), given an input word s. The latter value is called the distance

chap. intersection in [15]

Figure 1 Classes of Symbolic/Weighted Automata. Σ_{fin} is a finite alphabet, Σ_{inf} is a countable alphabet, \mathbb{B} is the Boolean algebra, \mathbb{S} is a commutative semiring, $q \xrightarrow{\cdots} q'$ is a transition between states q and q'.

 $A_{T,s}(t) = T(s,t) \otimes A(t)$. In the second step, a best AST t is found by applying to $A_{T,s}$ a best search algorithm similar to the shortest distance in graphs [20, 17].

The main contributions of the paper are: (i) the introduction of automata, swA, transducers, swT (Section 3), and visibly pushdown automata sw-VPA (Section 4), generalizing the corresponding classes of symbolic and weighted models, (ii) a polynomial best-search algorithm for sw-VPA, and (iii) a uniform framework (Section 5) for parsing over infinite alphabets, the keys to which are (iii.a) the swT-based definition of generic edit distances between input and output (yield) words, and (iii.b) the use, convenient in this context, of nested words, and sw-VPA, instead of syntax trees and grammars.

The notation $A_{T,s}$ has not been introduced so far. It is not clear why T is a

expressiveness: VPA have restricted equality test. comparable to pebble automata? \rightarrow conclusion

2 Preliminary Notions

Semirings

94

95

97

99

100

101

102

103

104

109

111

112

113

114

116

117

We shall consider semirings for the weight values of our language models. A semiring $(\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$ is a structure with a domain \mathbb{S} , equipped with two associative binary operators \oplus and \otimes , with respective neutral elements \mathbb{O} and $\mathbb{1}$, and such that:

 \blacksquare \oplus is commutative: $(\mathbb{S}, \oplus, \mathbb{O})$ is a commutative monoid and $(\mathbb{S}, \otimes, \mathbb{1})$ a monoid,

 \bullet \bullet distributes over \oplus : $\forall x, y, z \in \mathbb{S}$, $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$, and $(x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$,

 \blacksquare 0 is absorbing for \otimes : $\forall x \in \mathbb{S}$, $0 \otimes x = x \otimes 0 = 0$.

Intuitively, in the models presented in this paper, \oplus selects an optimal value from two given values, in order to handle non-determinism, and \otimes combines two values into a single value, in a chaining of transitions.

A semiring $\mathbb S$ is *commutative* if \otimes is commutative. It is *idempotent* if for all $x \in \mathbb S$, $x \oplus x = x$. Every idempotent semiring $\mathbb S$ induces a partial ordering \leq_{\oplus} called the *natural ordering* of $\mathbb S$ [20] defined, by: for all $x,y \in \mathbb S$, $x \leq_{\oplus} y$ iff $x \oplus y = x$. The natural ordering is sometimes defined in the opposite direction [10]; We follow here the direction that coincides with the usual ordering on the Tropical semiring min-plus (Figure 2). An idempotent semiring $\mathbb S$ is called total if it \leq_{\oplus} is total i.e. when for all $x,y \in \mathbb S$, either $x \oplus y = x$ or $x \oplus y = y$.

▶ **Lemma 1** (Monotony, [20]). Let $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ be an idempotent semiring. For all $x, y, z \in \mathbb{S}$, if $x \leq_{\oplus} y$ then $x \oplus z \leq_{\oplus} y \oplus z$, $x \otimes z \leq_{\oplus} y \otimes z$ and $z \otimes x \leq_{\oplus} z \otimes y$.

The results are established for a general class of semirings. They can be instantiated for concrete cases.

There is sometimes a confusion in the text between the struture and the domain S. Not essential

is total necessary?

XX:4 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

	domain	\oplus	\otimes	0	1
Boolean	$\{\bot, \top\}$	V	^	Τ	Т
Counting	N	+	×	0	1
Viterbi	$[0,1] \subset \mathbb{R}$	max	×	0	1
Tropical min-plus	$\mathbb{R}_+ \cup \{\infty\}$	min	+	∞	0

Figure 2 Some commutative, bounded, total and complete semirings.

To express the property of Lemma 1, we call \mathbb{S} monotonic $wrt \leq_{\oplus}$. Another important semiring property in the context of optimization is superiority [16], which corresponds to the non-negative weights condition in shortest-path algorithms [9]. Intuitively, it means that combining elements with \otimes always increase their weight. Formally, it is defined as the 124 property (i) below. 125

▶ **Lemma 2** (Superiority, Boundedness). Let $(S, \oplus, 0, \otimes, 1)$ be an idempotent semiring. The two following statements are equivalent:

```
i. \ \ \textit{for all} \ x,y \in \mathbb{S}, \ x \leq_{\oplus} x \otimes y \ \ \textit{and} \ y \leq_{\oplus} x \otimes y
ii. for all x \in \mathbb{S}, \mathbb{1} \oplus x = \mathbb{1}.
```

Proof. $(ii) \Rightarrow (i) : x \oplus (x \otimes y) = x \otimes (\mathbb{1} \oplus y) = x$, by distributivity of \otimes over \oplus . Hence $x \leq_{\oplus} x \otimes y$. Similarly, $y \oplus (x \otimes y) = (\mathbb{1} \oplus x) \otimes y = y$, hence $y \leq_{\oplus} x \otimes y$. $(i) \Rightarrow (ii)$: by the second inequality of (i), with y = 1, $1 \le_{\oplus} x \otimes 1 = x$, i.e., by definition of \le_{\oplus} , $1 \oplus x = 1$. 132

In [16], when the property (i) holds, S is called superior wrt the ordering \leq_{\oplus} . We have seen in the proof of Lemma 2 that it implies that $\mathbb{1} \leq_{\oplus} x$ for all $x \in \mathbb{S}$. Similarly, by the first inequality of (i) with y = 0, $x \leq_{\oplus} x \otimes 0 = 0$. Hence, in a superior semiring, it holds that for all $x \in \mathbb{S}$, $\mathbb{1} \leq_{\oplus} x \leq_{\oplus} \mathbb{O}$. Intuitively, from an optimization point of view, it means that 1 is the best value, and 0 the worst. In [20], $\mathbb S$ with the property (ii) of Lemma 2 is called bounded – we shall use this term in the rest of the paper. It implies that, when looking for a best path in a graph whose edges are weighted by values of S, the loops can be safely avoided, because, for all $x \in \mathbb{S}$ and $n \ge 1$, $x \oplus x^n = x \otimes (\mathbb{1} \oplus x^{n-1}) = x$.

▶ **Lemma 3.** Every bounded semiring is idempotent.

Proof. By boundedness, $\mathbb{1} \oplus \mathbb{1} = \mathbb{1}$, and idempotency follows by multiplying both sides by x and distributing.

133

134

136

137

139

142

148

149

150

151 152

We shall need below infinite sums with \oplus . A semiring $\mathbb S$ is called *complete* [11] if it has an operation $\bigoplus_{i\in I} x_i$ for every family $(x_i)_{i\in I}$ of elements of $dom(\mathbb{S})$ over an index set $I\subset\mathbb{N}$, such that:

 $i.\ infinite\ sums\ extend\ finite\ sums:$

$$\bigoplus_{i \in \emptyset} x_i = 0, \quad \forall j \in \mathbb{N}, \bigoplus_{i \in \{j\}} x_i = x_j, \, \forall j, k \in \mathbb{N}, j \neq k, \bigoplus_{i \in \{j,k\}} x_i = x_j \oplus x_k,$$

ii. associativity and commutativity:

for all
$$I \subseteq \mathbb{N}$$
 and all partition $(I_j)_{j \in J}$ of I , $\bigoplus_{j \in J} \bigoplus_{i \in I_j} x_i = \bigoplus_{i \in I} x_i$,

iii. distributivity of product over infinite sum: for all
$$I \subseteq \mathbb{N}$$
, $\bigoplus_{i \in I} (x \otimes y_i) = x \otimes \bigoplus_{i \in I} y_i$, and $\bigoplus_{i \in I} (x_i \otimes y) = (\bigoplus_{i \in I} x_i) \otimes y$.

results of this paper; for semirings com-mutative, bounded, total and complete

Label Theory

We shall now define the functions labeling the transitions of SW automata and transducers, generalizing the Boolean algebras of [7] from Boolean to other semiring domains. We 156 consider alphabets, which are countable sets of symbols denoted Σ , Δ ,... Given a semiring 157 $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$, a label theory over \mathbb{S} is a set $\bar{\Phi}$ of recursively enumerable sets denoted Φ_{Σ} , containing unary functions of type $\Sigma \to \mathbb{S}$, or $\Phi_{\Sigma,\Delta}$, containing binary functions $\Sigma \times \Delta \to \mathbb{S}$, 159 and such that:

préhension du form

- for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$, we have $\Phi_{\Sigma} \in \bar{\Phi}$ and $\Phi_{\Delta} \in \bar{\Phi}$
- every $\Phi_{\Sigma} \in \bar{\Phi}$ contains all the constant functions from Σ into \mathbb{S} ,
- for all $\alpha \in \mathbb{S}$ and $\phi \in \Phi_{\Sigma}$, $\alpha \otimes \phi : x \mapsto \alpha \otimes \phi(x)$, and $\phi \otimes \alpha : x \mapsto \phi(x) \otimes \alpha$ belong to Φ_{Σ} , and similarly for \oplus and for $\Phi_{\Sigma,\Delta}$
- for all $\phi, \phi' \in \Phi_{\Sigma}, \ \phi \otimes \phi' : x \mapsto \phi(x) \otimes \phi'(x)$ belongs to Φ_{Σ}
- for all $\eta, \eta' \in \Phi_{\Sigma, \Delta}$ $\eta \otimes \eta' : x, y \mapsto \eta(x, y) \otimes \eta'(x, y)$ belongs to $\Phi_{\Sigma, \Delta}$
- for all $\phi \in \Phi_{\Sigma}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\phi \otimes_1 \eta : x, y \mapsto \phi(x) \otimes \eta(x,y)$ and
- $\eta \otimes_1 \phi : x, y \mapsto \eta(x, y) \otimes \phi(x)$ belong to $\Phi_{\Sigma, \Delta}$
- for all $\psi \in \Phi_{\Delta}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\psi \otimes_2 \eta : x, y \mapsto \psi(y) \otimes \eta(x,y)$ and
- $\eta \otimes_2 \psi : x, y \mapsto \eta(x, y) \otimes \psi(y)$ belong to $\Phi_{\Sigma, \Delta}$
- similar closures hold for \oplus . 171

172

175

181

182

193

Intuitively, the operators \bigoplus_{Σ} return global minimum, $wrt \leq_{\oplus}$, of functions of Φ_{Σ} . When the semiring S is complete, we consider the following operators on the functions of Φ .

partial application is needed?

$$\bigoplus_{\Sigma} : \Phi_{\Sigma} \to \mathbb{S}, \ \phi \mapsto \bigoplus_{a \in \Sigma} \phi(a)$$

$$\bigoplus_{\Sigma}^{1} : \Phi_{\Sigma,\Delta} \to \Phi_{\Delta}, \ \eta \mapsto \left(y \mapsto \bigoplus_{a \in \Sigma} \eta(a,y) \right) \quad \bigoplus_{\Delta}^{2} : \Phi_{\Sigma,\Delta} \to \Phi_{\Sigma}, \ \eta \mapsto \left(x \mapsto \bigoplus_{b \in \Delta} \eta(x,b) \right)$$

In what follows, we might omit the sub- and superscripts in \otimes_1 , \bigoplus_{Σ}^1 ..., when there is no ambiguity. We shall keep them only for the special case $\Sigma = \Delta$, i.e. $\eta \in \Phi_{\Sigma,\Sigma}$, in order to be 177 able to distinguish between the first and the second argument. 178

▶ **Definition 4.** A label theory $\bar{\Phi}$ is complete when the underlying semiring \mathbb{S} is complete, 179 and for all $\Phi_{\Sigma,\Delta} \in \bar{\Phi}$ and all $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma}^1 \eta \in \Phi_{\Delta}$ and $\bigoplus_{\Delta}^2 \eta \in \Phi_{\Sigma}$. 180

The following facts are immediate.

for transitions in practice

mv appendix

▶ Lemma 5. For $\bar{\Phi}$ complete $\alpha \in \mathbb{S}$, $\phi, \phi' \in \Phi_{\Sigma}$, $\psi \in \Phi_{\Delta}$, and $\eta \in \Phi_{\Sigma, \Delta}$:

$$i. \bigoplus_{\Sigma} \bigoplus_{\Delta}^2 \eta = \bigoplus_{\Delta} \bigoplus_{\Sigma}^1 \eta$$

186
$$iii.$$
 $(\bigoplus_{\Sigma}\phi)\oplus(\bigoplus_{\Sigma}\phi')=\bigoplus_{\Sigma}(\phi\oplus\phi')$ and $(\bigoplus_{\Sigma}\phi)\otimes(\bigoplus_{\Sigma}\phi')=\bigoplus_{\Sigma}(\phi\otimes\phi')$

$$(n, iv) (\bigoplus^2 n) \oplus (\bigoplus^2 n') = \bigoplus^2 (n \oplus n') \text{ and } (\bigoplus^2 n) \otimes (\bigoplus^2 n') = \bigoplus^2 (n \otimes n')$$

ii. $\triangle \otimes \bigoplus_{\Sigma} \phi = \bigoplus_{\Sigma} (\alpha \otimes \phi)$ and $(\bigoplus_{\Sigma} \phi) \otimes \alpha = \bigoplus_{\Sigma} (\phi \otimes \alpha)$, and similarly for \oplus iii. $(\bigoplus_{\Sigma} \phi) \oplus (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \oplus \phi')$ and $(\bigoplus_{\Sigma} \phi) \otimes (\bigoplus_{\Sigma} \phi') = \bigoplus_{\Sigma} (\phi \otimes \phi')$ iv. $(\bigoplus_{\Delta}^2 \eta) \oplus (\bigoplus_{\Delta}^2 \eta') = \bigoplus_{\Delta}^2 (\eta \oplus \eta')$, and $(\bigoplus_{\Delta}^2 \eta) \otimes (\bigoplus_{\Delta}^2 \eta') = \bigoplus_{\Delta}^2 (\eta \otimes \eta')$ v. $\phi \otimes (\bigoplus_{\Delta}^2 \eta) = \bigoplus_{\Delta} (\phi \otimes_1 \eta)$, and $(\bigoplus_{\Delta}^2 \eta) \otimes \phi = \bigoplus_{\Delta} (\eta \otimes_1 \phi)$, and similarly for \oplus vi. $\psi \otimes (\bigoplus_{\Sigma}^1 \eta) = \bigoplus_{\Sigma} (\psi \otimes_2 \eta)$, and $(\bigoplus_{\Sigma}^1 \eta) \otimes \psi = \bigoplus_{\Sigma} (\eta \otimes_2 \psi)$, and similarly for \oplus

$$vi. \ \psi \otimes (\bigoplus_{1}^{n} \eta) = \bigoplus_{2} (\psi \otimes_{2} \eta). \ and \ (\bigoplus_{1}^{n} \eta) \otimes \psi = \bigoplus_{2} (\eta \otimes_{2} \psi). \ and \ similarly \ for \oplus_{2} (\eta \otimes_{2} \psi).$$

190 A label theory is called *effective* when for all $\phi \in \Phi_{\Sigma}$ and $\eta \in \Phi_{\Sigma,\Delta}$, $\bigoplus_{\Sigma} \phi$, $\bigoplus_{\Delta} \bigoplus_{\Sigma} \eta$, and 191 $\bigoplus_{\Sigma} \bigoplus_{\Delta} \eta$ can be effectively computed from ϕ and η . 192

Concretely, in one of the language models defined below, we consider a finite number of base functions ϕ, η of the underlying label theory, labelling transitions, and combine them beaucoup de notions à retenir (complete, effective) et ça devient difficile pour un lecteur non spécialiste. Est-ce que tout est nécessaire (je ne sais plus qui m'avait sais plus qui m'avait

un point en

∃ oracle returning in worst time com-

with the above operators for construction of other models. The combinations might be represented by dags (diagrams) whose leaves are labeled by base functions and inner nodes by operators.

3 SW Automata and Transducers

We follow the approach of [21] for the computation of distances, between words and languages, using weighted transducers, and extend it to infinite alphabets. The models introduced in this section generalize weighted automata and transducers [11] by labeling each transition with a weight function (instead of a simple weight value), that takes the input and output symbols as parameters. These functions are similar to the guards of symbolic automata [7, 8], but they can return values in a generic semiring, whereas the latter guards are restricted to the Boolean semiring.

Let $\mathbb S$ be a commutative semiring, Σ and Δ be alphabets called respectively *input* and *output*, and $\bar{\Phi}$ be a label theory over $\mathbb S$ containing Φ_{Σ} , Φ_{Δ} , $\Phi_{\Sigma,\Delta}$.

Definition 6. A symbolic-weighted transducer (swT) over Σ , Δ , \mathbb{S} and $\bar{\Phi}$ is a tuple $T = \langle Q, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$, where Q is a finite set of states, $\mathsf{in}: Q \to \mathbb{S}$ (respectively $\mathsf{out}: Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) computation in a state, and $\bar{\mathsf{w}}$ is a triplet of transition functions $\mathsf{w}_{10}: Q \times Q \to \Phi_{\Sigma}$, $\mathsf{w}_{01}: Q \times Q \to \Phi_{\Delta}$, and $\mathsf{w}_{11}: Q \times Q \to \Phi_{\Sigma,\Delta}$.

We call number of transitions of T the number of pairs of states $q, q' \in Q$ such that w_{10} or w_{01} or w_{11} is not the constant \mathbb{O} . For convenience, we shall sometimes present transitions as functions of $Q \times (\Sigma \cup \{\varepsilon\}) \times (\Delta \cup \{\varepsilon\}) \times Q \to \mathbb{S}$, overloading the function names, such that, for all $q, q' \in Q$, $a \in \Sigma$, $b \in \Delta$,

I missed sth: what is this ε ? Intuitively clear but not defined?

$$\mathsf{w}_{10}(q, a, \varepsilon, q') = \phi(a) \qquad \text{where } \phi = \mathsf{w}_{10}(q, q') \in \Phi_{\Sigma},$$
 $\mathsf{w}_{01}(q, \varepsilon, b, q') = \psi(b) \qquad \text{where } \psi = \mathsf{w}_{01}(q, q') \in \Phi_{\Delta},$
 $\mathsf{w}_{11}(q, a, b, q') = \eta(a, b) \qquad \text{where } \eta = \mathsf{w}_{11}(q, q') \in \Phi_{\Sigma, \Delta}.$

The swT T computes on pairs of words $\langle s,t\rangle \in \Sigma^* \times \Delta^*$, s and t, being respectively called input and output word. More precisely, T defines a mapping from $\Sigma^* \times \Delta^*$ into $\mathbb S$, based on an intermediate function weight defined recursively, for every states $q,q' \in Q$, and every pairs of strings $\langle s,t\rangle \in \Sigma^* \times \Delta^*$, where au, and bv, denote the concatenation of the symbol $a \in \Sigma$ (resp. $b \in \Delta$) with a word $u \in \Sigma^*$ (resp. $v \in \Delta^*$).

added u and v def u

223 weight
$$_{T}(q, \varepsilon, \varepsilon, q') = \mathbb{1}$$
 if $q = q'$ and $\mathbb{0}$ otherwise

224 weight $_{T}(q, s, t, q') = \bigoplus_{\substack{q'' \in Q \\ s = au, a \in \Sigma}} \mathsf{w}_{10}(q, a, \varepsilon, q'') \otimes \mathsf{weight}_{T}(q'', u, t, q')$

225 $\bigoplus_{\substack{q'' \in Q \\ t = bv, b \in \Delta}} \mathsf{w}_{01}(q, \varepsilon, b, q'') \otimes \mathsf{weight}_{T}(q'', s, v, q')$

226 $\bigoplus_{\substack{q'' \in Q \\ s = au, t = bv}} \mathsf{w}_{11}(q, a, b, q'') \otimes \mathsf{weight}_{T}(q'', u, v, q')$

OK tout ça se lit

We recall that, by convention (Section 2), an empty sum with \bigoplus is equal to \mathbb{O} . Intuitively, using a transition $\mathsf{w}_{ij}(q,a,b,q')$ means for T: when reading respectively a and b at the current positions in the input and output words, increment the current position in the input word if and only if i=1, and in the output word iff j=1, and change state from q to q'. When $a=\varepsilon$ (resp. $b=\varepsilon$), the current symbol in the input (resp. output) is not read. Since \mathbb{O} is absorbing for \otimes in \mathbb{S} , one term $\mathsf{w}_{ij}(q,a,b,q'')$ equal to \mathbb{O} in the above expression will be ignored in the sum, meaning that there is no possible transition from state q into state q' while reading a and b. This is analogous to the case of a transition's guard not satisfied by $\langle a,b \rangle$ for symbolic transducers.

The expression (1) can be seen as a stateful definition of an edit-distance between a word $s \in \Sigma^*$ and a word $t \in \Delta^*$, see also [22]. Intuitively, $\mathsf{w}_{10}(q,a,\varepsilon,r)$ is the cost of the deletion of the symbol $a \in \Sigma$ in s, $\mathsf{w}_{01}(q,\varepsilon,b,r)$ is the cost of the insertion of $b \in \Delta$ in t, and $\mathsf{w}_{11}(q,a,b,r)$ is the cost of the substitution of $a \in \Sigma$ by $b \in \Delta$. The cost of a sequence of such operations transforming s into t, is the product, with \otimes , of the individual costs of the operations involved; and the distance between s and t is the sum, with \oplus , of all possible products. Formally, the weight associated by T to $\langle s,t \rangle \in \Sigma^* \times \Delta^*$ is:

$$T(s,t) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_T(q,s,t,q') \otimes \operatorname{out}(q') \tag{2}$$

▶ Example 7. In Common Western Music Notation [14], several symbols may be used to represent one single sounding event. For instance, several notes can be combined with a tie, like in \checkmark , and one note can be augmented by half its duration with a dot like in \checkmark . These notations are perceived equivalent when played, as their duration is equal, yet the notation is different. We thus want to be able to compare a music score with music played by a performer. We propose a small weighted transducer model that calculates the distance bewteen an input sequence of sounding events (music "performance") to an output sequence of written events (music "score"). Let us consider the tropical (min-plus) semiring \$ of Figure 2 and let $\Sigma = \mathbb{R}_+$ be an input alphabet of event dates and $\Delta = \{e, -\} \times \mathbb{R}_+$ be an output alphabet of symbols with timestamps. A symbol $\langle e, d \rangle \in \Delta$ represents an event starting at date d, and $\langle -, d \rangle$ is a continuation of the previous event.

We consider a swT with two states q_0 and q_1 whose purpose is to compare a recorded performance $s \in \Sigma^*$ with a notated music sheet $t \in \Delta^*$. One timestamp $d_i \in \Sigma$ may correspond to one notated event $\langle \mathsf{e}, d_i' \rangle \in \Delta$, in which case the weight value computed by the swT is the time distance between both (see transitions w_{11} below). If $\langle \mathsf{e}, d_i' \rangle$ is followed by continuations $\langle -, d_{i+1}' \rangle$..., they are just skipped with no cost (transitions w_{01} or weight 1).

$$\begin{array}{lcl} \mathbf{w}_{11}(q_0,d,\langle\mathbf{e},d'\rangle,q_0) & = & |d'-d| & \quad \mathbf{w}_{11}(q_1,d,\langle\mathbf{e},d'\rangle,q_0) & = & |d'-d| \\ \mathbf{w}_{01}(q_0,\varepsilon,\langle-,d'\rangle,q_0) & = & \mathbb{1} & \quad \mathbf{w}_{01}(q_1,\varepsilon,\langle-,d'\rangle,q_0) & = & \mathbb{1} \\ \mathbf{w}_{10}(q_0,d,\varepsilon,q_1) & = & \alpha & \end{array}$$

We also must be able to take performing errors into account, while still being able to compare with the score, since a performer could, for example, play an unwritten extra note. This is modelled by the transition w_{10} with an arbitrary weight value $\alpha \in \mathbb{S}$, switching from state q_0 (normal) to q_1 (error). The transitions in the second column below switch back to the normal state q_0 . At last, we let q_0 be the only initial and final state, with $in(q_0) = out(q_0) = 1$, and $in(q_1) = out(q_1) = 0$.

That way, an swT is capable of evaluating the differences between a score and a performance, all the while ensuring that performance errors are plausible.

Je crois qu'il faudrait numéroter les exemples indépendamment des définitions. Cet exemple est le premier qui donne des détail sur l'application visée. Il arrive peutètre un peu tard et est long. On pourrait introduire la me tivation dans l'intro et développer des petits exemples au

unique → similar

 $similar \rightarrow single$

modif.

changed end

reformulated this

ccl to the ex

271

The *Symbolic Weighted Automata* are defined similarly as the transducers of Definition 6, by simply omitting the output symbols.

▶ **Definition 8.** A symbolic-weighted automaton (swA) over Σ , \mathbb{S} and $\bar{\Phi}$ is a tuple $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, where Q is a finite set of states, $\mathsf{in} : Q \to \mathbb{S}$ (respectively $\mathsf{out} : Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) computation in a state, and w_1 is a transition function from $Q \times Q$ into Φ_{Σ} .

As above in the case of swT, when $\mathbf{w}_1(q,q') = \phi \in \Phi_{\Sigma}$, we may write $\mathbf{w}_1(q,a,q')$ for $\phi(a)$.

The computation of A on words $s \in \Sigma^*$ is defined with an intermediate function weight_A, defined as follows for $q, q' \in Q$, $a \in \Sigma$, $u \in \Sigma^*$,

$$\begin{array}{ll} \text{weight}_A(q,\varepsilon,q) = \mathbb{1} \\ \text{weight}_A(q,\varepsilon,q') = \mathbb{0} \quad \text{if } q \neq q' \\ \\ \text{283} \qquad \text{weight}_A(q,au,q') = \bigoplus_{q'' \in Q} \mathsf{w}_1(q,a,q'') \otimes \mathsf{weight}_A(q'',u,q') \\ \\ \text{284} \end{array}$$

and the weight value associated by A to $s \in \Sigma^*$ is defined as follows:

$$A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_A(q,s,q') \otimes \operatorname{out}(q') \tag{4}$$

The following property will be useful to the approach on symbolic weighted parsing presented in Section 5.

Proposition 9. Given a swT T over Σ , Δ , $\mathbb S$ commutative, bounded and complete, and $\bar{\Phi}$ effective, and a swA A over Σ , $\mathbb S$ and $\bar{\Phi}$, there exists an effectively constructible swA $B_{A,T}$ over Δ , $\mathbb S$ and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{A,T}(t) = \bigoplus_{s \in \Sigma^*} A(s) \otimes T(s,t)$.

Proof. Let $T = \langle Q, \mathsf{in}_T, \bar{\mathsf{w}}, \mathsf{out}_T \rangle$, where $\bar{\mathsf{w}}$ contains w_{10} , w_{01} , and w_{11} , from $Q \times Q$ into respectively Φ_{Σ} , Φ_{Δ} , and $\Phi_{\Sigma,\Delta}$, and let $A = \langle P, \mathsf{in}_A, \mathsf{w}_1, \mathsf{out}_A \rangle$ with $\mathsf{w}_1 : Q \times Q \to \Phi_{\Sigma}$. The 293 state set of $B_{A,T}$ will be $Q' = P \times Q$. The entering, leaving and transition functions of $B_{A,T}$ 294 will simulate synchronized computations of A and T, while reading an output word of Δ^* . 295 Its state entering functions is defined for all $p \in P$, $q \in Q$ by $\mathsf{in}'(p,q) = \mathsf{in}_A(p) \otimes \mathsf{in}_T(q)$. The 296 transition function w'_1 will roughly perform a synchronized product of transitions defined by w_1 , w_{01} (T reading in output word and not an input word) and w_{11} (T reading both an input 298 word and an output word). Moreover, w'_1 also needs to simulate transitions defined by w_{10} : 299 T reading in input word and not an output word. Since $B_{A,T}$ will read only in the output word, such a transition corresponds to an ε -transition of swA, but swA have been defined 301 without ε -transitions. Therefore, in order to take care of this case, we perform an on-the-fly 302 suppression of ε -transition in the swA in construction, following the algorithm of [19]. Initially, for all $p_1, p_2 \in P$, and $q_1, q_2 \in Q$, let 304

$$\mathsf{w}_1'\big(\langle p_1,q_1\rangle,\langle p_2,q_2\rangle\big)=\mathsf{w}_1(p_1,p_2)\otimes\big[\mathsf{w}_{01}(q_1,q_2)\oplus\bigoplus_\Sigma\mathsf{w}_{11}(q_1,q_2)\big].$$

Iterate the following for all $p_1 \in P$ and $q_1, q_2 \in Q$: for all $p_2 \in P$ and $q_3 \in Q$,

$$\mathsf{w}_1'ig(\langle p_1,q_1
angle,\langle p_2,q_3
angleig) \oplus = igoplus_\Sigma \mathsf{w}_{10}(q_1,q_2) \otimes \mathsf{w}_1'ig(\langle p_1,q_2
angle,\langle p_2,q_3
angleig)$$

and $\operatorname{\mathsf{out}}'(p_1,q_1) \oplus = \bigoplus_{\Sigma} \mathsf{w}_{10}(q_1,q_2) \otimes \operatorname{\mathsf{out}}'(p_1,q_2)$

286

305

The construction time and size for $B_{A,T}$ are $O(\|T\|^3.\|A\|^2)$, where the sizes $\|T\|$ and $\|A\|$ are their number of states.

revise with nb of tr.

▶ Corollary 10. Given a swT T over Σ , Δ , $\mathbb S$ commutative, bounded and complete, and $\bar{\Phi}$ effective, and $s \in \Sigma^+$, there exists an effectively constructible swA $B_{s,T}$ over Δ , $\mathbb S$ and $\bar{\Phi}$, such that for all $t \in \Delta^*$, $B_{s,T}(t) = T(s,t)$.

4 SW Visibly Pushdown Automata

311

312

314

315

316

317

318

324

325

327

334

335

337

338

340

341

342

343

344

345

The model presented in this section generalizes Symbolic VPA [6] from Boolean semirings to arbitrary semiring weight domains. It will compute on nested words over infinite alphabets, associating to every such word a weight value. Nested words are able to describe structures of labeled trees, and in the context of parsing, they will be useful to represent AST.

Let Ω be a countable alphabet that we assume partitioned into three subsets $\Omega_{\rm i}$, $\Omega_{\rm c}$, $\Omega_{\rm r}$, whose elements are respectively called *internal*, *call* and *return* symbols. Let $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{I} \rangle$ be a commutative and complete semiring and let $\bar{\Phi} = \langle \Phi_{\rm i}, \Phi_{\rm c}, \Phi_{\rm r}, \Phi_{\rm ci}, \Phi_{\rm cc}, \Phi_{\rm cr} \rangle$ be a label theory over \mathbb{S} where $\Phi_{\rm i}$, $\Phi_{\rm c}$, $\Phi_{\rm r}$ and $\Phi_{\rm cx}$ (with $x \in \{i, c, r\}$) stand respectively for $\Phi_{\Omega_{\rm i}}$, $\Phi_{\Omega_{\rm c}}$, $\Phi_{\Omega_{\rm c}}$, and $\Phi_{\Omega_{\rm c},\Omega_{\rm x}}$.

▶ **Definition 11.** A Symbolic Weighted Visibly Pushdown Automata (sw-VPA) over $\Omega = \Omega_i \uplus \Omega_c \uplus \Omega_r$, \mathbb{S} and $\bar{\Phi}$ is a tuple $A = \langle Q, P, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$, where Q is a finite set of states, P is a finite set of stack symbols, $\mathsf{in}: Q \to \mathbb{S}$ (respectively $\mathsf{out}: Q \to \mathbb{S}$) are functions defining the weight for entering (respectively leaving) a state, and $\bar{\mathsf{w}}$ is a sextuplet composed of the transition functions : $\mathsf{w}_i: Q \times P \times Q \to \Phi_{\mathsf{ci}}$, $\mathsf{w}_i^e: Q \times Q \to \Phi_i$, $\mathsf{w}_c: Q \times P \times Q \times P \to \Phi_{\mathsf{cc}}$, $\mathsf{w}_c^e: Q \times P \times Q \to \Phi_c$, $\mathsf{w}_r: Q \times P \times Q \to \Phi_r$, $\mathsf{w}_r: Q \times P \times Q \to \Phi_r$.

Similarly as in Section 3, we extend the above transition functions as follows for all $q, q' \in Q$, $p \in P$, $a \in \Omega_i$, $c \in \Omega_c$, $r \in \Omega_r$, overloading their names:

```
w_i: Q \times \Omega_c \times P \times \Omega_i \times Q \to \mathbb{S}
                                                                                                                                                                                        where \eta_{ci} = w_i(q, p, q'),
                                                                                                    \mathsf{w}_{\mathsf{i}}(q,c,p,a,q') = \eta_{\mathsf{ci}}(c,a)
\mathsf{w}_{\mathsf{i}}^{\mathsf{e}}: Q \times \Omega_{\mathsf{i}} \times Q \to \mathbb{S}
                                                                                                    \mathrm{w_i^e}(q,a,q') = \phi_\mathrm{i}(a)
                                                                                                                                                                                        where \phi_i = \mathsf{w}_i^{\mathsf{e}}(q, q').
\mathsf{w_c}: Q \times \Omega_\mathsf{c} \times P \times \Omega_\mathsf{c} \times P \times Q \to \mathbb{S} \quad \mathsf{w_c}(q,c,p,c',p',q') = \eta_\mathsf{cc}(c,c')
                                                                                                                                                                                       where \eta_{cc} = \mathsf{w}_{c}(q, p, p', q'),
\mathbf{w}_{\mathbf{c}}^{\mathbf{e}}: Q \times \Omega_{\mathbf{c}} \times P \times Q \to \mathbb{S}
                                                                                                    \mathsf{w}_\mathsf{c}^\mathsf{e}(q,c,p,q') = \phi_\mathsf{c}(c)
                                                                                                                                                                                        where \phi_c = \mathsf{w}_c^{\mathsf{e}}(q, p, q').
\mathsf{w_r}: Q \times \Omega_\mathsf{c} \times P \times \Omega_\mathsf{r} \times Q \to \mathbb{S}
                                                                                                    \mathbf{w_r}(q,c,p,r,q') = \eta_{\mathrm{cr}}(c,r)
                                                                                                                                                                                       where \eta_{cr} = w_r(q, p, q'),
                                                                                                    \mathbf{w}_{\mathbf{r}}^{\mathbf{e}}(q, r, q') = \phi_{\mathbf{r}}(r)
\mathsf{w}_{\mathsf{r}}^{\mathsf{e}}: Q \times \Omega_{\mathsf{r}} \times Q \to \mathbb{S}
                                                                                                                                                                                        where \phi_{\mathbf{r}} = \mathbf{w}_{\mathbf{r}}^{\mathbf{e}}(q, q').
```

The intuition is the following for the above transitions. w_i^e , w_c^e , and w_r^e describe the cases where the stack is empty. w_i and w_i^e both read an input internal symbol a and change state from q to q', without changing the stack. Moreover, w_i reads a pair made of $c \in \Omega_c$ and $p \in P$ on the top of the stack (c is compared to a by the weight function $\eta_{ci} \in \Phi_{ci}$). w_c and w_c^e read the input call symbol c', push it to the stack along with p', and change state from q to to q'. Moreover, w_c reads c and p at the top of the stack (c is compared to c'). w_r and w_r^e read the input return symbol r, and change state from q to to q'. Moreover, w_r reads and pop from stack a pair made of c and c and c and c is compared to c'.

Formally, the transitions of the automaton A are defined in term of an intermediate function weight_A , like in Section 3. A configuration, denoted by $q[\gamma]$, is here composed of a state $q \in Q$ and a stack content $\gamma \in \Gamma^*$, where $\Gamma = \Omega_{\mathsf{c}} \times P$. Hence, weight_A is a function from $[Q \times \Gamma^*] \times \Omega^* \times [Q \times \Gamma^*]$ into $\mathbb S$. The empty stack is denoted by \bot , and the upmost symbol is the last pushed content. The following functions illustrate each of the possible cases, being : reading $a \in \Omega_{\mathsf{i}}$, or $c \in \Omega_{\mathsf{c}}$, or $r \in \Omega_{\mathsf{r}}$ for each possible state of the stack (empty or not), to add to $u \in \Omega^*$.

Là je crois qu'il faudrait expliquer ces Omega, je commence à fatiguer et je suis un peu largué par toutes ces définitions. J'intuite qu'il s'agit des symboles, parenthèses ouvrantes et fermantes? Pourquoi il faut un alphabet pour les parenthèses?

Est-ce que tout le monde sait ce qu'est un pushdown automata? Je suppose que c'est lié à la pile.

moved this to the beginning

(intro to func

introduced the 6

notation cp for $\langle c, p \rangle$?

XX:10 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

$$\begin{aligned} & \text{weight}_A(q[\bot], \varepsilon, q'[\bot]) = \mathbb{1} \text{ if } q = q' \text{ and } \mathbb{0} \text{ otherwise} \end{aligned}$$

$$(5)$$

$$\text{weight}_A(q\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array}\right], a \, u, q'[\gamma']) = \bigoplus_{q'' \in Q} \mathsf{w}_{\mathsf{i}}(q, c, p, a, q'') \otimes \mathsf{weight}_A(q''\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array}\right], u, q'[\gamma'])$$

$$\text{weight}_A(q[\bot], a \, u, q'[\gamma']) = \bigoplus_{q'' \in Q} \mathsf{w}_{\mathsf{i}}^{\mathsf{e}}(q, a, q'') \otimes \mathsf{weight}_A(q''[\bot], u, q'[\gamma'])$$

$$\text{weight}_A(q\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array}\right], c' \, u, q'[\gamma']) = \bigoplus_{\substack{q'' \in Q \\ p' \in P}} \mathsf{w}_{\mathsf{c}}(q, c, p, c', p', q'') \otimes \mathsf{weight}_A(q''\left[\begin{array}{c} \langle c', p' \rangle \\ \langle c, p \rangle \\ \gamma \end{array}\right], u, q'[\gamma'])$$

$$\text{weight}_A(q[\bot], c \, u, q'[\gamma']) = \bigoplus_{\substack{q'' \in Q \\ p \in P}} \mathsf{w}_{\mathsf{c}}^{\mathsf{e}}(q, c, p, q'') \otimes \mathsf{weight}_A(q''[\langle c, p \rangle], u, q'[\gamma'])$$

$$\text{weight}_A(q\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array}\right], r \, u, q'[\gamma']) = \bigoplus_{\substack{q'' \in Q \\ p \in P}} \mathsf{w}_{\mathsf{r}}(q, c, p, r, q'') \otimes \mathsf{weight}_A(q''[\gamma], u, q'[\gamma'])$$

$$\text{weight}_A(q\left[\begin{array}{c} \langle c, p \rangle \\ \gamma \end{array}\right], r \, u, q'[\gamma']) = \bigoplus_{\substack{q'' \in Q \\ q'' \in Q}} \mathsf{w}_{\mathsf{r}}(q, c, p, r, q'') \otimes \mathsf{weight}_A(q''[\gamma], u, q'[\gamma'])$$

$$\text{weight}_A(q\left[\bot], r \, u, q'[\gamma']) = \bigoplus_{\substack{q'' \in Q \\ q'' \in Q}} \mathsf{w}_{\mathsf{r}}(q, r, q'') \otimes \mathsf{weight}_A(q''[\bot], u, q'[\gamma'])$$

c p to <c, p>

The weight associated by A to $s \in \Omega^*$ is defined according to empty stack semantics:

$$A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_{A}(q[\bot], s, q'[\bot]) \otimes \operatorname{out}(q'). \tag{6}$$

todo example VPA

▶ **Example 12.** structured words with timed symbols... intro language of music notation? (markup = time division, leaves = events etc)

Every swA $A = \langle Q, \mathsf{in}, \mathsf{w}_1, \mathsf{out} \rangle$, over Σ , $\mathbb S$ and $\bar{\Phi}$ is a particular case of sw-VPA $\langle Q, \emptyset, \mathsf{in}, \bar{\mathsf{w}}, \mathsf{out} \rangle$ over Ω , $\mathbb S$ and $\bar{\Phi}$ with $\Omega_{\mathsf{i}} = \Sigma$ and $\Omega_{\mathsf{c}} = \Omega_{\mathsf{r}} = \emptyset$, and computing with an always empty stack:

 $w_i^e = w_1$ and all the other functions of \bar{w} are the constant \mathbb{O} .

Like VPA and symbolic VPA, the class of sw-VPA is closed under the binary operators of

365 the underlying semiring.

Proposition 13. Let A_1 and A_2 be two sw-VPA over the same Ω , $\mathbb S$ and $\bar{\Phi}$. There exists two effectively constructible sw-VPA $A_1 \oplus A_2$ and $A_1 \otimes A_2$, such that for all $s \in \Omega^*$, $(A_1 \oplus A_2)(s) = A_1(s) \oplus A_2(s)$ and $(A_1 \otimes A_2)(s) = A_1(s) \otimes A_2(s)$.

Proof. The construction is essentially the same as in the case of the Boolean semiring [6].

total?

Let us assume that the semiring $\mathbb S$ is commutative, bounded, and complete, and that $\bar\Phi$ is an effective label theory. We propose a Dijkstra algorithm computing, for a sw-VPA A over Ω , $\mathbb S$ and $\bar\Phi$, the minimal weight for a word in Ω^* . We distinguish two cases : when the stack is empty, and when it is not. In the case of an empty stack, let $b_\perp: Q\times Q\to \mathbb S$ be such that :

introduced 2 cases for b

$$b_{\perp}(q, q') = \bigoplus_{s \in \Omega^*} \mathsf{weight}_A(q[\perp], s, q'[\perp]). \tag{7}$$

Since $\mathbb S$ is complete, the infinite sum in (7) is well defined, and, providing that $\mathbb S$ is total, it is the minimum in Ω^* , $wrt \leq_{\oplus}$, of the fonction $s \mapsto \mathsf{weight}_A(q[\sigma], s, q'[\sigma])$. The term

For all $q_0, q_3 \in Q$,

$$\begin{array}{lll} d_{\top}(q_1,p,q_3) & \oplus = & d_{\top}(q_1,p,q_2) \otimes \bigoplus_{\Omega_{\mathsf{i}}} \mathsf{w}_{\mathsf{i}}(q_2,p,q_3) \\ \\ d_{\bot}(q_1,p,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes \bigoplus_{\Omega_{\mathsf{i}}} \mathsf{w}_{\mathsf{i}}^{\mathsf{e}}(q_2,q_3) \\ \\ d_{\top}(q_0,p,q_3) & \oplus = & \bigoplus_{\Omega_{\mathsf{c}}}^2 \left[\left(\mathsf{w}_{\mathsf{c}}(q_0,p,p',q_1) \otimes_2 d_{\top}(q_1,p',q_2) \right) \otimes_2 \bigoplus_{\Omega_{\mathsf{r}}} \mathsf{w}_{\mathsf{r}}(q_2,p',q_3) \right] \\ d_{\bot}(q_0,q_3) & \oplus = & \bigoplus_{\Omega_{\mathsf{c}}} \left(\mathsf{w}_{\mathsf{c}}^{\mathsf{e}}(q_0,p,q_1) \otimes d_{\top}(q_1,p,q_2) \otimes \bigoplus_{\Omega_{\mathsf{r}}} \mathsf{w}_{\mathsf{r}}(q_2,p,q_3) \right) \\ d_{\bot}(q_1,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes \bigoplus_{\Omega_{\mathsf{r}}} \mathsf{w}_{\mathsf{r}}^{\mathsf{e}}(q_2,q_3) \\ d_{\top}(q_1,p,q_3) & \oplus = & d_{\top}(q_1,p,q_2) \otimes d_{\top}(q_2,p,q_3), \text{if } \langle q_2,\top,q_3 \rangle \notin P \\ d_{\bot}(q_1,q_3) & \oplus = & d_{\bot}(q_1,q_2) \otimes d_{\bot}(q_2,q_3), \text{if } \langle q_2,\bot,q_3 \rangle \notin P \end{array}$$

Figure 3 Update d_{\perp} with $\langle q_1, q_2 \rangle$ or d_{\perp} with $\langle q_1, p, q_2 \rangle$.

so ? 378

381

383

384

390

391

392

393

394

395

396

 $q[\perp], s, q'[\perp]$ of this sum is the central expression in the definition (6) of $A(s_0)$, for the minimum s_0 of the function weight_A.

If the stack is not empty, let \top be a fresh stack symbol which does not belong to Γ , and let $b_{\top}: Q \times P \times Q \to \Phi_{\mathbf{c}}$ be such that, for every two states $q, q' \in Q$ and stack symbol $p \in P$:

$$b_{\top}(q, p, q') : c \mapsto \bigoplus_{s \in \Omega^*} \mathsf{weight}_A \left(q \left[\begin{array}{c} \langle c, p \rangle \\ \top \end{array} \right], s, q' \left[\begin{array}{c} \langle c, p \rangle \\ \top \end{array} \right] \right) \tag{8}$$

Intuitively, the function defined in (8) associates to $c \in \Omega_c$ the minimum weight of a computation of A starting in state q with a stack $\langle c, p \rangle \cdot \gamma \in \Gamma^+$ and ending in state q' with the same stack, such that the computation can not pop the pair made of c and p at the top of this stack, but may only read these symbols. Moreover, A may push another pair $\langle c', p' \rangle$ on the top of $\langle c, p \rangle \cdot \gamma$, following the third case of in the definition (5) of weight_A, and may pop $\langle c', p' \rangle$ later, following the fifth case of (5) (return symbol).

■ Algorithm 1 Best search for sw-VPA

Algorithm 1 constructs iteratively markings $d_{\perp}:Q\times Q\to\mathbb{S}$ and $d_{\top}:Q\times P\times Q\to\Phi_{\mathsf{c}}$ that converges eventually to b_{\top} and b_{\perp} .

The infinite sums in the updates of d in Algorithm 1, Figure 3 are well defined since \mathbb{S} is complete. ** effectively computable by hypothesis that the label theory is effective** The algorithm performs $2 \cdot |Q|^2$ iterations until P is empty, and each iteration has a time complexity $O(|Q|^2 \cdot |P|)$. That gives a time complexity $O(|Q|^4 \cdot |P|)$. It can be reduced by implementing P as a priority queue, prioritized by the value returned by d.

The correctness of Algorithm 1 is ensured by the invariant expressed in the following lemma.

explication Fig. 3 suivant cas de (5)

complete **

detail with nb tr. and states

XX:12 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

- ▶ **Lemma 14.** For all $(q_1, q_2) \notin \mathcal{Q}$, $d_{\perp}(q_1, q_2) = b_{\perp}(q_1, q_2)$
- The proof is by contradiction, assuming a counter-example minimal in the length of the witness word.
- ▶ **Lemma 15.** For all $\langle q_1, p, q_2 \rangle \notin \mathcal{Q}$, $d_{\top}(q_1, p, q_2) = b_{\top}(q_1, p, q_2)$,
- For computing the minimal weight of a computation of A, we use the fact that, at the termination of Algorithm 1, $\bigoplus_{s \in \Omega^*} A(s) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes d_{\perp}(q,q') \otimes \operatorname{out}(q')$.

 In order to obtain effectively a witness (word of Ω^* with a computation of A of minimal
- In order to obtain effectively a witness (word of Ω^* with a computation of A of minima weight), we require the additional property of convexity of weight functions.
- Proposition 16. For a sw-VPA A over Ω , $\mathbb S$ commutative, bounded, total and complete, and $\bar{\Phi}$ effective, one can construct in PTIME a word $t \in \Omega^*$ such that A(t) is minimal wrt the natural ordering for $\mathbb S$.

5 Symbolic Weighted Parsing

Let us now apply the models and results of the previous sections to the problem of parsing over an infinite alphabet. Let Σ and $\Omega = \Omega_i \uplus \Omega_c \uplus \Omega_r$ be countable input and output alphabets, let $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ be a commutative, bounded, and complete semiring and let $\bar{\Phi}$ be an effective label theory over \mathbb{S} , containing Φ_{Σ} , Φ_{Σ,Ω_i} , as well as Φ_i , Φ_c , Φ_r , Φ_{cr} (following the notations of Section 4). We assume given the following input:

- a swT T over Σ , Ω_i , \mathbb{S} , and $\bar{\Phi}$, defining a measure $T: \Sigma^* \times \Omega_i^* \to \mathbb{S}$,

- a sw-VPA A over Ω , \mathbb{S} , and $\bar{\Phi}$, defining a measure $A: \Omega^* \to \mathbb{S}$,

- an input word $s \in \Sigma^*$.

409

410

total?

For all $u \in \Sigma^*$ and $t \in \Omega^*$, let $d(u,t) = T(u,t|_{\Omega_i})$, where $t|_{\Omega_i} \in {\Omega_i}^*$ is the projection of t onto Ω_i , obtained from t by removing all symbols in $\Omega \setminus \Omega_i$. Symbolic weighted parsing is the problem, given the above input, to find $t \in \Omega^*$ minimizing $d(s,t) \otimes A(t)$ wrt \leq_{\oplus} , i.e. s.t.

$$d(s,t) \otimes A(t) = \bigoplus_{t' \in \mathcal{T}(\Omega)} d(s,t') \otimes A(t')$$
(9)

Following the terminology of [21], sw-parsing is the problem of computing the distance (9) between the input s and the output weighted language of A, and returning a witness t.

Proposition 17. The problem of Symbolic Weighted parsing can be solved in PTIME in
the size of the input swT T, sw-VPA A and input word s, and the computation time of the
functions and operators of the label theory.

Proof. (sketch) We follow a Bar-Hillel construction, for parsing by intersection. Let us first extend the swT T over Σ , $\Omega_{\rm i}$ into a swT T' over Σ and Ω (and the same semiring and label theory $\mathbb S$ and $\bar{\Phi}$), such that for all $u \in \Sigma^*$, and $t \in \Omega^*$, $T'(u,u) = T(u,t|_{\Omega_{\rm i}})$. The transducer T' simply skips every symbol $b \in \Omega \setminus \Omega_{\rm i}$, by the addition to T, of new transitions of the form $\mathsf{w}_{01}(q,\varepsilon,b,q')$. Then, using Corolary 10, we construct from the input word $s \in \Sigma^*$ and T' a swA $B_{s,T'}$, such that for all $t \in \Omega^*$, $B_{s,T'}(t) = d(s,t)$. Next, we compute the sw-VPA $B_{s,T'} \otimes A$, using Proposition 13. It remains to compute a best nested-word $t \in \Omega^*$ using the best-search procedure of Proposition 16.

The sw-parsing generalizes the problem of searching the best derivation (AST) of a weighted CF-grammar that yields a given input word. The latter problem, sometimes called *weighted*

parsing, (see e.g. [13] and [23] for general weighted parsing frameworks) corresponds to sw-parsing in the case of finite alphabets, a transducer T computing the identity and some 437 sw-VPA A obtained from the weighted CF grammar. Indeed, the depth-first traversal of an 438 AST τ yields a well-parenthesised word $\operatorname{lin}(\tau)$ over an alphabet $\Omega = \Omega_i \uplus \Omega_c \uplus \Omega_r$, assuming e.g. that Ω_i contain the symbols labelling the leaves of τ (symbols of rank 0) and Ω_c and Ω_r 440 contain respectively one left and right parenthesis $\langle b \rangle$ for each symbol b labelling inner 441 nodes of τ (symbols of rank > 0). With this representation, the projection $\lim_{\Omega_i} t$ is then 442 the sequence of leaves of τ . We show in Appendix A how to convert a (sw) tree automaton A 443 into a sw-VPA computing $A(\operatorname{lin}(\tau))$ for every tree τ . That also holds for the set of ASTs of a weighted CF-grammar. 445

Ah oui, ça aurait pu

2 lines Application to Automated Music Transcription: implementation ≠ but same principle, on-the-fly automata construction during best search, for efficiency.

Conclusion

446

463

464

465

466

467

468

471

472

473

We have introduced weighted language models (SW transducers and visibly pushdown automata) computing over infinite alphabets, and applied them to the problem of parsing with infinitely many possible input symbols (typically timed events). This approach extends conventional parsing and weighted parsing by computing a derivation tree modulo a generic distance between words, defined by a SW transducer given in input. This enables to consider finer word relationships than strict equality, opening possibilities of quantitative analysis via this method.

Ongoing and future work include

The study of other theoretical properties of SW models, such as the extension of the best search algorithm from 1-best to *n*-best [17], and to *k*-closed semirings [20] (instead of bounded, which corresponds to 0-closed).

 $_{459}\,$ – ... there is room to improve the complexity bounds for the algorithms ... modular approach with oracles ...

present here an offline algorithm for best search, semi-online implementation for AMT
 (bar-by-bar approach) with an on-the-fly automata construction.

References

- 1 Rajeev Alur and Parthasarathy Madhusudan. Adding nesting structure to words. *Journal of the ACM (JACM)*, 56(3):1–43, 2009.
- 2 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic on data words. ACM Transactions on Computational Logic (TOCL), 12(4):1–26, 2011.
- Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to data languages and timed languages. *Information and Computation*, 182(2):137–162, 2003.
 - 4 Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot. Visibly pushdown automata with multiplicities: finiteness and k-boundedness. In *International Conference on Developments in Language Theory*, pages 226–238. Springer, 2012.
- Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Christoph Löding, Denis
 Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and Applications.
 http://tata.gforge.inria.fr, 2007.
- Loris D'Antoni and Rajeev Alur. Symbolic visibly pushdown automata. In *International Conference on Computer Aided Verification*, pages 209–225. Springer, 2014.
- The power of symbolic automata and transducers. In International Conference on Computer Aided Verification, pages 47–67. Springer, 2017.

TODO future work

XX:14 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

- 481 8 Loris D'Antoni and Margus Veanes. Automata modulo theories. Communications of 482 the ACM, 64(5):86-95, 2021. URL: seealsoseealsohttps://pages.cs.wisc.edu/~loris/ 483 symbolicautomata.html.
- 9 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
 1(1):269-271, 1959.
- Manfred Droste and Werner Kuich. Semirings and formal power series. In *Handbook of Weighted Automata*, pages 3–28. Springer, 2009.
- 488 11 Manfred Droste, Werner Kuich, and Heiko Vogler. *Handbook of weighted automata*. Springer Science & Business Media, 2009.
- Francesco Foscarin, Florent Jacquemard, Philippe Rigaux, and Masahiko Sakai. A Parsebased Framework for Coupled Rhythm Quantization and Score Structuring. In *Mathematics and Computation in Music (MCM)*, volume 11502 of *Lecture Notes in Artificial Intelligence*, Madrid, Spain, 2019. Springer. URL: https://hal.inria.fr/hal-01988990, doi:10.1007/978-3-030-21392-3_20.
- ⁴⁹⁵ 13 Joshua Goodman. Semiring parsing. Computational Linguistics, 25(4):573–606, 1999.
- ⁴⁹⁶ 14 Elaine Gould. Behind Bars: The Definitive Guide to Music Notation. Faber Music, 2011.
- Dick Grune and Ceriel J.H. Jacobs. *Parsing Techniques*. Number 2nd edition in Monographs in Computer Science. Springer, 2008.
- 499 **16** Liang Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In $In\ COLING$, 2008.
- Liang Huang and David Chiang. Better k-best parsing. In *Proceedings of the Ninth International Workshop on Parsing Technology*, Parsing '05, pages 53-64, Stroudsburg, PA, USA, 2005.

 Association for Computational Linguistics. URL: http://dl.acm.org/citation.cfm?id=
 1654494.1654500.
- Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
 134:329-363, November 1994. URL: http://dx.doi.org/10.1016/0304-3975(94)90242-9,
 doi:http://dx.doi.org/10.1016/0304-3975(94)90242-9.
- Sylvain Lombardy and Jacques Sakarovitch. The removal of weighted ε-transitions. In
 International Conference on Implementation and Application of Automata, pages 345–352.
 Springer, 2012.
- Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. *Journal* of Automata, Languages and Combinatorics, 7(3):321–350, 2002.
- Mehryar Mohri. Edit-distance of weighted automata: General definitions and algorithms. International Journal of Foundations of Computer Science, 14(06):957-982, 2003. URL: https://www.worldscientific.com/doi/abs/10.1142/S0129054103002114, doi:10. 1142/S0129054103002114.
- Mehryar Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.
- Richard Mörbitz and Heiko Vogler. Weighted parsing for grammar-based language models.

 In Proceedings of the 14th International Conference on Finite-State Methods and Natural
 Language Processing, pages 46-55, Dresden, Germany, September 2019. Association for
 Computational Linguistics. URL: https://www.aclweb.org/anthology/W19-3108, doi:10.
 18653/v1/W19-3108.
- Mark-Jan Nederhof. Weighted deductive parsing and Knuth's algorithm. *Computational Linguistics*, 29(1):135–143, 2003. URL: https://doi.org/10.1162/089120103321337467.
- 527 **25** Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings 528 over infinite alphabets. *ACM Trans. Comput. Logic*, 5(3):403-435, July 2004. URL: http: 529 //doi.acm.org/10.1145/1013560.1013562.
- Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In *Computer Science Logic*, volume 4207 of *LNCS*. Springer, 2006.

Moshe Y Vardi. Linear-time model checking: automata theory in practice. In *International Conference on Implementation and Application of Automata*, pages 5–10. Springer, 2007.

A Nested-Words and Parse-Trees

535

536

538

539

540

541

544

546

557

560

562

563

565

570

The hierarchical structure of nested-words, defined with the *call* and *return* markup symbols suggest a correspondence with trees. The lifting of this correspondence to languages, of tree automata and VPA, has been discussed in [1], and [4] for the weighted case. In this section, we describe a correspondence between the symbolic-weighted extensions of tree automata and VPA.

Let Ω be a countable ranked alphabet, such that every symbol $a \in \Omega$ has a rank $\mathsf{rk}(a) \in [0..M]$ where M is a fixed natural number. We denote by Ω_k the subset of all symbols a of Ω with $\mathsf{rk}(a) = k$, where $0 \le k \le M$, and $\Omega_{>0} = \Omega \setminus \Omega_0$. The free Ω -algebra of finite, ordered, Ω -labeled trees is denoted by $\mathcal{T}(\Omega)$. It is the smallest set such that $\Omega_0 \subset \mathcal{T}(\Omega)$ and for all $1 \le k \le M$, all $a \in \Omega_k$, and all $t_1, \ldots, t_k \in \mathcal{T}(\Omega)$, $a(t_1, \ldots, t_k) \in \mathcal{T}(\Omega)$. Let us assume a commutative semiring $\mathbb S$ and a label theory Φ over $\mathbb S$ containing one set Φ_{Ω_k} for each $k \in [0..M]$.

▶ **Definition 18.** A symbolic-weighted tree automaton (swTA) over Ω , S, and $\bar{\Phi}$ is a triplet $A = \langle Q, \mathsf{in}, \bar{\mathsf{w}} \rangle$ where Q is a finite set of states, $\mathsf{in} : Q \to \Phi_{\Omega}$ is the starting weight function, and $\bar{\mathsf{w}}$ is a tuplet of transition functions containing, for each $k \in [0..M]$, the functions $\mathsf{w}_k : Q \times Q^k \to \Phi_{\Omega_{>0},\Omega_k}$ and $\mathsf{w}_k^e : Q \times Q^k \to \Phi_{\Omega_k}$.

We define a transition function $w: Q \times (\Omega_{>0} \cup \{\varepsilon\}) \times \Omega \times \bigcup_{k=0}^{M} Q^k \to S$ by:

$$\begin{array}{lll} \mathsf{w}(q_0,a,b,q_1\ldots q_k) & = & \eta(a,b) & \text{where } \eta = \mathsf{w}_k(q_0,q_1\ldots q_k) \\ \mathsf{w}(q_0,\varepsilon,b,q_1\ldots q_k) & = & \phi(b) & \text{where } \phi = \mathsf{w}_k^\varepsilon(q_0,q_1\ldots q_k). \end{array}$$

where $q_1 \dots q_k$ is ε if k = 0. The first case deals with a strict subtree, with a parent node labeled by a, and the second case is for a root tree.

Every swTA defines a mapping from trees of $\mathcal{T}(\Omega)$ into \mathbb{S} , based on the following intermediate function weight_A: $Q \times (\Omega \cup \{\varepsilon\}) \times \mathcal{T}(\Omega) \to \mathbb{S}$

$$\mathsf{weight}_A(q_0, a, t) = \bigoplus_{q_1 \dots q_k \in Q^k} \mathsf{w}(q_0, a, b, q_1 \dots q_k) \otimes \bigotimes_{i=1}^k \mathsf{weight}_A(q_i, b, t_i) \tag{10}$$

where $q_0 \in Q$, $a \in \Omega_{>0} \cup \{\varepsilon\}$ and $t = b(t_1, \ldots, t_k) \in \mathcal{T}(\Omega)$, $0 \le k \le M$.

Finally, the weight associated by A to $t \in \mathcal{T}(\Omega)$ is

$$A(t) = \bigoplus_{q \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_A(q, \varepsilon, t) \tag{11}$$

Intuitively, $w(q_0, a, b, q_1 \dots q_k)$ can be seen as the weight of a production rule $q_0 \to b(q_1, \dots, q_k)$ of a regular tree grammar [5], that replaces the non-terminal symbol q_0 by $b(q_1, \dots, q_k)$, provided that the parent of q_0 is labeled by a (or q_0 is the root node if $a = \varepsilon$). The above production rule can also be seen as a rule of a weighted CF grammar, of the form $[a, b] q_0 := q_1 \dots q_k$ if k > 0, and $[a] q_0 := b$ if k = 0. In the first case, b is a label of the rule, and in the second case, it is a terminal symbol. And in both cases, a is a constraint on the label of rule applied on the parent node in the derivation tree. This features of observing the parent's label are useful in the case of infinite alphabet, where it is not possible to memorize a label with the states. The weight of a labeled derivation tree t of the weighted CF grammar associated to t0 as above, is weight t1, when t2 is the start non-terminal. We shall now establish a correspondence between such derivation tree t3 and some word describing a linearization of t4, in a way that weight t2, can be computed by a sw-VPA.

```
Let \hat{\Omega} be the countable (unranked) alphabet obtained from \Omega by: \hat{\Omega} = \Omega_i \uplus \Omega_c \uplus \Omega_r, with
       \Omega_{\mathsf{i}} = \Omega_0, \, \Omega_{\mathsf{c}} = \{ \, \langle_a | \, a \in \Omega_{>0} \}, \, \Omega_{\mathsf{r}} = \{ \, {}_a \rangle \mid a \in \Omega_{>0} \}.
574
       We associate to \hat{\Omega} a label theory \hat{\Phi} like in Section 4, and we define a linearization of trees of
575
       \mathcal{T}(\Omega) into words of \hat{\Omega}^* as follows:
         lin(a) = a for all a \in \Omega_0,
577
         \lim(b(t_1,\ldots,t_k)) = \langle b \lim(t_1)\ldots \lim(t_k) \rangle when b \in \Omega_k for 1 \le k \le M.
578
       ▶ Proposition 19. For all swTA A over \Omega, \mathbb{S} commutative, and \bar{\Phi}, there exists an effectively
579
       constructible sw-VPA A' over \hat{\Omega}, \mathbb{S} and \hat{\Phi} such that for all t \in \mathcal{T}(\Omega), A'(\text{lin}(t)) = A(t).
580
       Proof. Let A=\langle Q,\mathsf{in},\bar{\mathsf{w}}\rangle where \bar{\mathsf{w}} is presented as above by a function We build A'=\langle Q',P',\mathsf{in'},\bar{\mathsf{w}'},\mathsf{out'}\rangle, where Q'=\bigcup_{k=0}^M Q^k is the set of sequences of state symbols of A, of
581
582
       length at most M, including the empty sequence denoted by \varepsilon, and where P'=Q' and \bar{\mathbf{w}} is
```

```
\begin{array}{llll} & \mathsf{w_i}(q_0\,\bar{u},\langle_c,\bar{p},a,\bar{u}) & = & \mathsf{w}(q_0,c,a,\varepsilon) & \text{for all } c\in\Omega_{>0}, a\in\Omega_0 \\ & \mathsf{w_i^e}(q_0\,\bar{u},a,\bar{u}) & = & \mathsf{w}(q_0,\varepsilon,a,\varepsilon) & \text{for all } a\in\Omega_0 \\ & \mathsf{w_c}(q_0\,\bar{u},\langle_c,\bar{p},\langle_d,\bar{u},\bar{q}) & = & \mathsf{w}(q_0,c,d,\bar{q}) & \text{for all } c,d\in\Omega_{>0} \\ & \mathsf{w_c^e}(q_0\,\bar{u},\langle_c,\bar{u},\bar{q}) & = & \mathsf{w}(q_0,\varepsilon,c,\bar{q}) & \text{for all } c\in\Omega_{>0} \\ & \mathsf{w_r}(\varepsilon,\langle_c,\bar{p},c\rangle,\bar{p}) & = & \mathbb{1} & \text{for all } c\in\Omega_{>0} \\ & \mathsf{w_c^e}(\bar{u},c\rangle,\bar{q}) & = & \mathbb{0} & \text{for all } c\in\Omega_{>0} \end{array}
```

defined by:

584

All cases not matched by one of the above equations have a weight \mathbb{O} , for instance $\mathsf{w}_\mathsf{r}(\bar{u},\langle_c,\bar{p},_d\rangle,\bar{q}) = \mathbb{O}$ if $c \neq d$ or $\bar{u} \neq \varepsilon$ or $\bar{q} \neq \bar{p}$.

XX:18 Symbolic Weighted Language Models and Parsing over Infinite Alphabets

588 Todo list

589	register: skip refs and details, add Mikolaj recent	2
590	La figure 2 est citée avant la figure 1 mais apparait longtemps après. A corriger	2
591	Tu fais une différence entre model et automata?	2
592	Tu veux dire: les modèles formels que tu combines?	2
593	chap. intersection in $[15]$	3
594	The notation $A_{T,s}$ has not been introduced so far. It is not clear why T is a	
595	parameter there	3
596	expressiveness: VPA have restricted equality test. comparable to pebble automata?	
597	\rightarrow conclusion	3
598	The results are established for a general class of semirings. They can be instantiated	
599	for concrete cases	3
600	There is sometimes a confusion in the text between the struture and the domain S .	
601	 Not essential	3
602	is total necessary?	3
603	Here the difference between $\mathbb S$ as a structure and as a domain is blurred	4
604	$j \in \mathbb{N}$: j is en element of \mathbb{N} , not the same s $j \subset \mathbb{N}$	4
605	results of this paper: for semirings commutative, bounded, total and complete	4
606	OK, donc c'est là que les fonctions d'étiquettes prennent en argument l'input de la	
607	règle. Je ne sais pas dans quelle mesure il faut donner un peu d'explications pour	
608	faciliter la compréhension du formalisme.	4
609	partial application is needed?	5
610	notion of diagram of functions akin BDD for transitions in practice	5
611	mv appendix?	5
612	Je trouve qu'il y a beaucoup de notions à retenir (complete, effective) et ça devient	
613	difficile pour un lecteur non spécialiste. Est-ce que tout est nécessaire (je ne sais	J
614	plus qui m'avait dit: un concept en plus, un point en moins	5
615	\exists oracle returning in worst time complexity T	5
616	I missed sth: what is this ε ? Intuitively clear but not defined?	6
617	added u and v def	6
618	OK tout ça se lit bien :-)	6
619	Je crois qu'il faudrait numéroter les exemples indépendamment des définitions. Cet	
620	exemple est le premier qui donne des détails sur l'application visée. Il arrive	
621	peut-être un peu tard et est long. On pourrait introduire la motivation dans	7
622	l'intro, et développer des petits exemples au fur et à mesure	7
623	$similar \rightarrow single$	7
624 625	modif	7
626	changed end	7
627	reformulated this sentence	7
628	ccl to the ex	7
629	proof correctness	8
630	revise with nb of tr. and states	8
631	Là je crois qu'il faudrait expliquer ces Omega, je commence à fatiguer et je suis un peu	J
632	largué par toutes ces définitions. J'intuite qu'il s'agit des symboles, parenthèses	
633	ouvrantes et fermantes? Pourquoi il faut un alphabet pour les parenthèses?	9
634	Est-ce que tout le monde sait ce qu'est un pushdown automata? Je suppose que	,
635	c'est lié à la pile	9
	r ·	

636	moved this to the beginning	9
637	intro to func	9
638	introduced the 6 cases	9
639	notation cp for $\langle c,p \rangle$?	9
640	$ c p \text{ to } \langle c, p \rangle \dots \dots$)
641	todo example VPA)
642	total?)
643	introduced 2 cases for b)
644	so? 10)
645	b_{\top} : mot bien parenthèsé c/r	1
646	explication Fig. 3 suivant cas de (5)	1
647	complete **	1
648	detail with nb tr. and states	1
649	$\mid ag{total} ? \dots $	2
650	Ah oui, ça aurait pu être dit avant	2
651	2 lines Application to Automated Music Transcription: implementation \neq but same	
652	principle, on-the-fly automata construction during best search, for efficiency 13	3
653	TODO future work	3