Symmetry Protected Topological Phases and Group cohomology*

Xiaodong Hu[†]
Department of Physics, Boston College
(Dated: January 20, 2019)

Notes of SPT.

Contents

I.	Group Cohomology	1
	A. Preliminary	1
	B. Algebraic Definition of Group Cohomology	2

I. GROUP COHOMOLOGY

A. Preliminary

<u>Definition 1.</u> (Ring) A ring (with identity) $(R, +, \cdot)$ is an abelian group of (R, +) and monoid of (R, \cdot) such that the multiplication of monoid is distributive. Particularly if $a \cdot b \equiv b \cdot a$, then R is said to be commutative **Example 1.** (Group Ring) A group ring or \mathbb{Z} -group ring $\mathbb{Z}[G]$ is the set of finite sum

$$\mathbb{Z}[G] := \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{Z}, \text{ almost all } a_g = 0 \right\}$$

on which the sum and multiplication are naturally defined as

$$\sum_{g} a_g g + \sum_{h} a_h h = \sum_{g \in G} (a_g + b_g) g,$$

and

$$\left(\sum_g a_g g\right) \cdot \left(\sum_h a_h h\right) \equiv \sum_{g,h} (a_g \cdot b_h) g h = \sum_{g,gh} (a_g \cdot b_{g^{-1}gh}) g h = \sum_{g,k} (a_g \cdot b_{g^{-1}k}) k,$$

where we replace dummy group index h by gh since it suns over the entire group G.

Definition 2. (Left *R*-module) A left *R*-module denoted as *M* over a ring $(R, +, \cdot)$ consists of an abelian group (M, \times) and a ring homomorphism² $\sigma : R \to \operatorname{End}_{\mathsf{Ab}}(M), \sigma(r)(m) \mapsto rm \in M$ called scalar multiplication such that this mapping is associative and distributive for (M, +).

Example 2. Denoting F as field, an F-module is a F-vector space. So module can be regarded as the "vector space" over a ring.

Example 3. Z-module is an abelian group.

Example 4. (G-Module) A $\mathbb{Z}[G]$ -module (or simply referred as G-module) is an abelian group (A, +) with the ring homomorphism $\sigma : \mathbb{Z}[G] \to \operatorname{End}_{\mathsf{Ab}}(A)$ compatible with the abelian group multiplication. Studying the representation of a group can be equivalently converted to study the module over its group ring.

$$f(a+b) = f(a) + f(b), \quad f(a \cdot b) = f(a) \cdot f(b), \quad f(1_R) = 1_R.$$

^{*}This is a note of

[†]Electronic address: xiaodong.hu@bc.edu

 $^{^{1}}$ A monoid is a semi-group with an identity 1_{R} (called two-sided multiplication identity).

² A ring homomorphism $f \in \text{End}(R)$ is an addition, multiplication, and multiplication identity preserving mapping

B. Algebraic Definition of Group Cohomology

Given an G-module M and an arbitrary function (called n-cochain) $\omega: \underbrace{G \times \cdots \times G}_n \to M$, we can naturally assgin an abelian group multiplication on the collection of these functions $\mathcal{C}^n(G,M) \equiv \{\omega | G^n \to M\}$ from the ablian group structure of (M,+) by

$$(\omega * \omega')(g_1, \cdots, g_n) := \omega(g_1, \cdots, g_n) + \omega'(g_1, \cdots, g_n).$$

If we define an n-th differential $d^n:C^n(G,M)\to C^{n+1}(G,M)$ as usual

$$d^n \omega(g_0, g_1, \cdots, g_n) := g_0 \cdot \omega(g_1, \cdots, g_n) + \tag{1}$$