Cor	eedy Method. DATE: //	PROENCE:
	find the optimal soln for the	items (XI) wixi Pi=P+Pixi
	knapstack distance n=7, m=15, and p, to p7 one 10,5,15,7,6,18,3 and their weights are 2,3,5,7,1,4,1	₹ i, i2, i3, i4, is, i6, i7} 15-1 € 6 ₹ 0, 0, 0, 0, 1, 10, 0, 0 2 = 14
\rightarrow	m= knapsack Capacity. P= profit w= coeignts.	£1,0,0,0,1,0,03 14-2 6+10=16.
	$M = 15$ $P = \{10, 5, 15, 7, 6, 18, 3\}$ $w = \{2, 3, 5, 7, 1, 4, 1\}$	£1,0,0,0,1,1,0} 12-4=8 16+18=34
	in i2 i3 i4 i5 i6 i7	31,0,1,0,1,1,03 8-5=3 34+15=49
pi wa	2 3 5 7 6 18 3	21,0,1,0,1,1,13 3-1=2 49+3=52
Pi wi	= 5, 1.66, 3, 1, 6, 4.5, 3	[1,1,1,0,1,1,1] 2-2=0 52+2×3
Pí wì	Arrange them in decreasing order of their piloi ratio 1 1.66 6 54.58 3 1.66 1 15 11 16 13 17 12 14 Teacher's Signature	- 5 2 + 16 3 - 52 + 3.3 Profit

	PAGE NO.: DATE: / /			PROSTIC:
(2)	S= { a,b, c,d,e,f,g).		Arrange them In dearea	sing order
	Be a Glection of object with		of their Pilwi ratio	0.9
_ =	profit weight are values are follows.	Pi =	4, 4,6, 3, 1,66, 1,1	6, 157, 15
	A=12,4 E=14,3	0)	feabc	9 8
	B=10,6 F= 7,1		Tud2 Fabl base of	- dlade-
	C= 8,5 G= 9,6		items (xi) wixi	Pi=P+Pixi
	0=11,7		99, b, c, d, e, f, g) 18-1	4 -
	what is the optimal solution to the		£0,0,0,0,0,1,0) = 17	
	Practional Anapsack problem Foras.			
	assume the knapsack capacity has		{0,0,0,0,1,1,0) 17-3	7+14=21
	the weight is 15/8 what is the		2 14	- 00
	complexity of this method.		{1,0,0,0,1,1,0) = 14-4	21+12=33
->	10=15		2 10	0 - 10 /2 -
	p= { 12, 10, 8, 11, 14, 7, 9}		£1,1,0,0,1,1,03 = 10-6	33+10=43
	0= { 4, 6, 5, 7, 3, 1, 6}		24	121678
	ab C d e f g		£1,1,1,0,1,1,03 = 4 \$	0 = 43+110
3	12 10 8 11 14 7 9 4 6 5 7 3 1 6		L'1111-1-1	1,2+32
4	4 6 5 7 3 1 6		=	43+32
-	3, 1.66, 1.6, 1.57, 4.6, 7, 1.5		2	43+64
			9 1 4	Teacher's Signature
	Teacher's Signature		Profit = 49.4	

P

INGENC:	Sale: 1 1
+ Job Sequencing Problem	D Gilven the jobs & deadline associated profits as shown
J3 J2 J4 J5 4	Jobs 51 J2 J3 J4 J5 J6 Dealines 5 3 3 2 4 2
1 profit = 40+ 60+100+80 = 280.	Profits 200 180 190 300 120 100 -
Job sequence= { J3, J2, J4, J5}	Marrite the optimal Schedule that
	gives the maximum profit igne
jobs J1 J2 J3 J4 J5	all the jobs Completed in a optimal
Ocadlines 2 2 1 3 4	Schedule and likehat is the maximum
profits 20 60 40 100 80	corned profit?
	-> Maximum deadline = 5
maximum deadline=4	Arrange the job in decreasing ordered
Amange Job Pn decreasing order of	their profit.
their profit	1 TO TO 30
1 Jobs J4 J5 J2 J3 J1	2 1
Deadlines 3 4 2 1 2	profit 800 200 190 180 120 100 1
profit 100 80 60 40 20.	
	J2 J4 J3 J5 J1
	profit = 180 + 300 + 190 + 120+ 200
	profit = 180 + 300 Teacher's Signature
Teacher's Signature	= 990

	Printing Continue Acres
	DATE: / /
0)	optimal schedule = \{ 72, 74, 73, 75, 013}
9	all the jobs Completed in optimal Schedule :- NO
3	Job J, J2 J3 J4 J5 J6 J7 J8 Jo Deadline 7 2 5 3 4 5 2 7 3
	maximum deadline = 7
	Arrange Job in decreasing order of their profit: x Jobs J3 J9 J7 J2 J4 J5 J8 J1 J1
	profit 30 25 23 20 18 18 16 15 10
4	0 1 2 3 4 5 6 7
	profit = 20 + 23 + 25 + 18 + 30 + 15 + 147
	Job sequence & J2, J7, J9, J5, J3, J1, J Teacher's Signature