

Packing

John C. Hart

Department of Computer Science University of Illinois at Urbana-Champaign

Word Cloud

Data Visualization MOOC Overview, as summarized by wordle.net

Quantitative

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Ordinal

Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Quantitative

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Ordinal

Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

consistent

shapes

Quantitative

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

Ordinal

Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area

Quantitative

Position

Length

Angle

Slope

Area

Volume

Density

Saturation

Hue

aligned

shapes

Packing

Like graph visualization, uses
 2-D canvas to visually separate
 data items

 Unlike graph visualization, no need to draw explicit edge relationships, though proximity can still matter (e.g. hierarchy, MDS)

WDI Population (as area via Tableau)

Cartogram

 Area of (vector) region outline shape scaled by data value

 Region outline shape data available from:

http://www.mappinghacks.com/data/

Regions scaled by population.

Courtesy Prof. Mark Newman, U. Mich.

http://www-personal.umich.edu/~mejn/cartograms/

 Fill a grid with density data (e.g. local population density)

0.5	0.5	0.5	0.5	0.5
0.5	1	1	1	0.5
1	2	3	1	0.5
1	2	1	1	0.5
0.5	1	0.5	0.5	0.5

- Fill a grid with density data (e.g. local population density)
- Expand grid cells individually so area represents density

- Fill a grid with density data (e.g. local population density)
- Expand grid cells individually so area represents density
- Create new grid vertices at centroid of cell corners

- Fill a grid with density data (e.g. local population density)
- Expand grid cells individually so area represents density
- Create new grid vertices at centroid of cell corners
- Repeat until area equals density

0.5	0.5	0.5	0.5	0.5
0.5	1	1	1	0.5
1	2	3	1	0.5
1	2	1	1	0.5
0.5	1	0.5	0.5	0.5

- Fill a grid with density data (e.g. local population density)
- Expand grid cells individually so area represents density
- Create new grid vertices at centroid of cell corners
- Repeat until area equals density
- Results in a deformation used to reposition shape vertices

0.5	0.5	0.5	0.5	0.5
0.5	1	1	, 1	0.5
1	2	3	1	0.5
1	2	1	1	0.5
0.5	1	0.5	0.5	0.5

Ordinal

Position

Density

Saturation

Hue

Texture

Connection

Containment

Length

Angle

Slope

Area