Pandas

- · Stands for PanelData
- · One of the data analysis library
- Used for data manipulation, analysis, and cleaning.
- · Contains mainly two data structures in it
 - 1. Series
 - 2. DataFrames
- · Series: is a sequence of data
- · DataFrame: is a data with rows and columns

```
In [1]:
```

```
1 import pandas as pd
In [2]:
1 pd.__version__
```

```
1 pd.__version__
```

Out[2]:

'1.0.5'

In [3]:

```
1  # Creating data with series:
2
3 a = pd.Series([1,2,3,4,5,6])
4 print(a)
```

```
0 1
```

1 2

2 3

3 4

4 5

5 6 dtype: int64

In [4]:

```
# Creating data series using numpy array
import numpy as np
a = np.array([1,2,3,4,5,6])
a
```

Out[4]:

```
array([1, 2, 3, 4, 5, 6])
```

```
Out[5]:
```

2
 3

3 4

4 5 5 6

dtype: int32

In [6]:

1

```
1  # Changing the index values in series:
2
3  s = pd.Series([10,11,12,13,14], index = [1,2,3,4,5])
4  print(s)
```

```
2 11
3 12
4 13
5 14
```

10

dtype: int64

In [8]:

```
1  s = pd.Series([2,4,6,8,10], index = np.arange(1,6))
2  print(s)
3  print(s.dtype)
```

```
1 2
2 4
3 6
4 8
5 10
dtype: int64
int64
```

In [9]:

```
1 s2 = pd.Series(['keerthi',221,9.8], index = ['str','int','float'])
2 print(s2)
```

```
str keerthi
int 221
float 9.8
dtype: object
```

```
In [10]:
```

```
1 # Creating Data Series using dictionary
2
3 dic = {'key1':'Keerthi','key2':221,'key3':9.0}
4 pd.Series(dic)
```

Out[10]:

```
key1 Keerthi
key2 221
key3 9
dtype: object
```

In [12]:

```
1  # Creating data series using tuple:
2
3  t = ('a','b',23,6.8,78)
4  pd.Series(t, np.arange(1,6))
```

Out[12]:

```
1 a
2 b
3 23
4 6.8
5 78
dtype: object
```

In [13]:

```
1 s = pd.Series(np.random.randint(20,40,8))
2 print(s)
```

```
0 311 372 343 394 20
```

5 34 6 21

7 32 dtype: int32

In [14]:

```
1 s[4]
```

Out[14]:

20

```
In [15]:
 1 s[2:5]
Out[15]:
2
     34
     39
3
     20
dtype: int32
In [17]:
 1 len(s)
Out[17]:
8
In [18]:
 1 s[len(s)-1]
Out[18]:
32
In [19]:
 1 s[6] = 'kits'
In [20]:
 1 print(s)
0
       31
1
       37
2
       34
3
       39
4
       20
5
       34
     kits
7
       32
dtype: object
```

```
In [21]:
 1 d = pd.DataFrame([1,2,3,4,5,6])
 2 d
Out[21]:
   0
0 1
2 3
3 4
4 5
5 6
In [23]:
 1 s = 'Hey I am keerthi'
 2 print(len(s))
16
In [24]:
 1 d = 'Hey I am keerthi'.split()
 2 print(d)
 3 print(len(d))
['Hey', 'I', 'am', 'keerthi']
In [25]:
 1 d = 'Hey I am keerthi'.split('a')
 2 print(d)
 3 print(len(d))
['Hey I ', 'm keerthi']
In [26]:
 1 d = 'Hey I am keerthi'.split()
    print(pd.DataFrame(d))
 2
 3
         0
       Hey
1
         Ι
        am
3
  keerthi
```

```
In [30]:
```

```
1  lst = [[1,2,3],[5,6,7]]
2  pd.DataFrame(lst, columns = ('a','b','c'),index = ['list1','list2'])
```

Out[30]:

```
        a
        b
        c

        list1
        1
        2
        3

        list2
        5
        6
        7
```

In [36]:

```
1 a = [['Sireesha',120,'A'],['Sindhu',131,'B'],['Nandini',222,'A']]
2 data = pd.DataFrame(a, columns=('Name','Rollno','Grades'), index = [1,2,3])
3 data
```

Out[36]:

	Name	Rollno	Grades
1	Sireesha	120	А
2	Sindhu	131	В
3	Nandini	222	Α

In [37]:

```
1 data.index
```

Out[37]:

Int64Index([1, 2, 3], dtype='int64')

In [38]:

```
1 data['Rollno']
```

Out[38]:

- 1 120
- 2 131
- 3 222

Name: Rollno, dtype: int64

In [39]:

```
1 data['Rollno'][3]
```

Out[39]:

222

```
In [40]:
```

```
1 data[-1:]
```

Out[40]:

	Name	Rollno	Grades
3	Nandini	222	Α

Matplotlib

• Is a cross-platform data visualization library for making 2D plots from data

Types of plotting

- * Line plot
- * Bar plot
- * Scatter plot
- * Area plot
- * Pie chart

In [41]:

```
1 import matplotlib.pyplot as plt
```

Line plot

In [42]:

```
import numpy as np

ypoints = np.array([3,8,1,10])
plt.plot(ypoints)
plt.show()
```


In [43]:

```
1 ypoints = np.array([3,8,1,10])
2 plt.plot(ypoints, linestyle='dotted')
3 plt.show()
```


In [45]:

```
1 ypoints = np.array([3,8,1,10])
2 plt.plot(ypoints, linestyle='dashed', color='r')
3 plt.show()
```


In [47]:

```
1 ypoints = np.array([3,8,1,10])
2 plt.plot(ypoints, color='r', linewidth=10)
3 plt.show()
```


In [49]:

```
1  y1 = np.array([3,8,1,10])
2  y2 = np.array([6,2,7,11])
3
4  plt.plot(y1)
5  plt.plot(y2)
6
7  plt.show()
```


In [52]:

```
1 plt.plot([1,2,3,4],[2,4,6,8])
2 plt.title('Line Graph')
3 plt.xlabel('X-Axis')
4 plt.ylabel('Y-Axis')
5 plt.show()
```


In [54]:

```
1 x = np.linspace(0,2,100)
2 print(x)

[0. 0.02020202 0.04040404 0.06060606 0.08080808 0.1010101
```

```
0.12121212 0.14141414 0.16161616 0.18181818 0.2020202 0.22222222
0.24242424 0.26262626 0.28282828 0.3030303 0.32323232 0.34343434
0.36363636 0.38383838 0.4040404 0.42424242 0.44444444 0.46464646
0.48484848 0.50505051 0.52525253 0.54545455 0.56565657 0.58585859
0.60606061 0.62626263 0.64646465 0.66666667 0.68686869 0.70707071
0.72727273 0.74747475 0.76767677 0.78787879 0.80808081 0.82828283
0.84848485 0.86868687 0.88888889 0.90909091 0.92929293 0.94949495
0.96969697 0.98989899 1.010101011 1.03030303 1.05050505 1.07070707
1.09090909 1.11111111 1.13131313 1.15151515 1.17171717 1.19191919
1.21212121 1.23232323 1.25252525 1.27272727 1.29292929 1.31313131
1.3333333 1.35353535 1.37373737 1.39393939 1.41414141 1.43434343
1.45454545 1.47474747 1.49494949 1.51515152 1.53535354 1.55555556
1.57575758 1.5959596 1.61616162 1.63636364 1.65656566 1.67676768
1.6969697 1.71717172 1.73737374 1.75757576 1.77777778 1.7979798
1.81818182 1.83838384 1.85858586 1.87878788 1.8989899
                                                       1.91919192
1.93939394 1.95959596 1.97979798 2.
                                           1
```

In [55]:

```
plt.plot(x, x, color='r', label = 'Normal Line')
plt.plot(x, x**2, color='g', label = 'Square Line')
plt.xlabel('X-Axis')
plt.ylabel('Y-Axis')
plt.title('Line plotting')
plt.legend()
plt.show()
```


Bar Plot

· Used to create a Bar chat

In [57]:

```
plt.bar([1,2,3,4],[20,30,40,50], width = 0.4)
plt.show()
```


In [58]:

```
1 marks = [60, 75, 70, 87, 90]
2 sbj = ['C','C++','Java','Oracle','Python']
3 plt.bar(sbj, marks, color=['red','blue','green','orange','yellow'], width=0.5)
4 plt.show()
```


Scatter plot

• A scatter plot is a diagram where each value in the data set is represented but a dot.

In [59]:

```
plt.scatter([1,2,3,4],[5,6,7,8], color='g')
plt.show()
```


In [60]:

```
1  x = [5,7,2,8,7,2,17,9,4,11,12,6]
2  y = [99,86,45,88,78,111,102,85,86,77,100,94]
3  plt.scatter(x,y, color = 'r')
5  plt.show()
```


Area plot

In [61]:

```
days = [1,2,3,4]
working = [8,11,9,10]
sleeping = [8,10,11,12]
plt.stackplot(days, working, sleeping, colors=['r','g'], labels=['Work','Rest'])
plt.legend()
plt.show()
```


Box plot

In [62]:

```
1 marks = np.random.randint(20,100,101)
2 print(marks)
```

```
[60 74 27 95 43 99 81 42 47 25 20 44 66 28 59 62 34 32 26 21 21 37 64 76 49 77 68 58 62 91 62 94 57 50 80 66 40 20 90 89 90 93 96 71 47 54 90 56 87 75 34 63 67 94 99 26 99 70 60 81 78 45 23 34 67 28 69 32 82 75 87 95 40 54 65 88 45 91 80 72 67 31 38 52 91 73 37 90 71 56 81 39 74 67 70 91 84 62 32 78 78]
```

In [63]:

```
plt.boxplot(marks)
plt.show()
```


In [64]:

```
plt.boxplot(marks, patch_artist=True)
plt.show()
```


Pie chart

In [70]:

```
marks = [60,72, 50, 87, 90, 40]
sbj = ['C','C++','Java','Oracle','Python','Django']
plt.pie(marks,labels=sbj)
plt.legend()
```

Out[70]:

<matplotlib.legend.Legend at 0x2093cc0fdc0>

Image reading in Matplotlib

In [71]:

```
print(plt.imshow(plt.imread('ml.jpg')))
```

AxesImage(54,36;334.8x217.44)

In [72]:

1 print(dir(plt))

['Annotation', 'Arrow', 'Artist', 'AutoLocator', 'Axes', 'Button', 'Circle', 'Figure', 'FigureCanvasBase', 'FixedFormatter', 'FixedLocator', 'FormatStrFo rmatter', 'Formatter', 'FuncFormatter', 'GridSpec', 'IndexLocator', 'Line2 D', 'LinearLocator', 'Locator', 'LogFormatter', 'LogFormatterExponent', 'Log FormatterMathtext', 'LogLocator', 'MaxNLocator', 'MultipleLocator', 'Normali ze', 'NullFormatter', 'NullLocator', 'Number', 'PolarAxes', 'Polygon', 'Rect angle', 'ScalarFormatter', 'Slider', 'Subplot', 'SubplotTool', 'Text', 'Tick Helper', 'Widget', '_INSTALL_FIG_OBSERVER', '_IP_REGISTERED', '__builtins_
_', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__packag e_', '_spec_', '_auto_draw_if_interactive', '_backend_mod', '_get_running _interactive_framework', '_interactive_bk', '_log', '_pylab_helpers', '_set p', '_setup_pyplot_info_docstrings', '_show', 'acorr', 'angle_spectrum', 'an notate', 'arrow', 'autoscale', 'autumn', 'axes', 'axhline', 'axhspan', 'axi s', 'axvline', 'axvspan', 'bar', 'barbs', 'barh', 'bone', 'box', 'boxplot', 'broken_barh', 'cbook', 'cla', 'clabel', 'clf', 'clim', 'close', 'cm', 'cohe re', 'colorbar', 'colormaps', 'connect', 'contour', 'contourf', 'cool', 'cop per', 'csd', 'cycler', 'dedent', 'delaxes', 'deprecated', 'disconnect', 'doc string', 'draw', 'draw_all', 'draw_if_interactive', 'errorbar', 'eventplot', 'figaspect', 'figimage', 'figlegend', 'fignum_exists', 'figtext', 'figure', 'fill', 'fill_between', 'fill_betweenx', 'findobj', 'flag', 'functools', 'gc a', 'gcf', 'gci', 'get_backend', 'get_cmap', 'get_current_fig_manage r', 'get_figlabels', 'get_fignums', 'get_plot_commands', 'get_scale_docs', 'get_scale_names', 'getp', 'ginput', 'gray', 'grid', 'hexbin', 'hist', 'hist 2d', 'hlines', 'hot', 'hsv', 'importlib', 'imread', 'imsave', 'imshow', 'inf erno', 'inspect', 'install_repl_displayhook', 'interactive', 'ioff', 'ion', 'isinteractive', 'jet', 'legend', 'locator_params', 'logging', 'loglog', 'ma gma', 'magnitude_spectrum', 'margins', 'matplotlib', 'matshow', 'minorticks_ off', 'minorticks_on', 'mlab', 'new_figure_manager', 'nipy_spectral', 'np', 'pause', 'pcolor', 'pcolormesh', 'phase_spectrum', 'pie', 'pink', 'plasma', 'plot', 'plot_date', 'plotfile', 'plotting', 'polar', 'prism', 'psd', 'quive r', 'quiverkey', 'rc', 'rcParams', 'rcParamsDefault', 'rcParamsOrig', 'rc_co ntext', 'rcdefaults', 'rcsetup', 're', 'register_cmap', 'rgrids', 'savefig', 'sca', 'scatter', 'sci', 'semilogx', 'semilogy', 'set_cmap', 'set_loglevel', 'setp', 'show', 'silent_list', 'specgram', 'spring', 'spy', 'stackplot', 'st em', 'step', 'streamplot', 'style', 'subplot', 'subplot2grid', 'subplot_too l', 'subplots', 'subplots_adjust', 'summer', 'suptitle', 'switch_backend',
'sys', 'table', 'text', 'thetagrids', 'tick_params', 'ticklabel_format', 'ti ght_layout', 'time', 'title', 'tricontour', 'tricontourf', 'tripcolor', 'tri plot', 'twinx', 'twiny', 'uninstall_repl_displayhook', 'violinplot', 'viridi s', 'vlines', 'waitforbuttonpress', 'warn_deprecated', 'winter', 'xcorr', 'x kcd', 'xlabel', 'xlim', 'xscale', 'xticks', 'ylabel', 'ylim', 'yscale', 'yti cks']

In [73]:

1 print(dir(pd))

['BooleanDtype', 'Categorical', 'CategoricalDtype', 'CategoricalIndex', 'Dat aFrame', 'DateOffset', 'DatetimeIndex', 'DatetimeTZDtype', 'ExcelFile', 'Exc elWriter', 'Float64Index', 'Grouper', 'HDFStore', 'Index', 'IndexSlice', 'Int16Dtype', 'Int32Dtype', 'Int64Dtype', 'Int64Index', 'Int8Dtype', 'Interva l', 'IntervalDtype', 'IntervalIndex', 'MultiIndex', 'NA', 'NaT', 'NamedAgg', 'Period', 'PeriodDtype', 'PeriodIndex', 'RangeIndex', 'Series', 'SparseDtyp e', 'StringDtype', 'Timedelta', 'TimedeltaIndex', 'Timestamp', 'UInt16Dtyp e', 'UInt32Dtype', 'UInt64Dtype', 'UInt64Index', 'UInt8Dtype', '__builtins_ _', '__cached__', '__doc__', '__docformat__', '__file__', '__getattr__', '__ git_version__', '__loader__', '__name__', '__package__', '__path__', '__spec version_', '_loader_', '__name__', '__package__', '__path__', '__spection__', '_config', '_hashtable', '_is_numpy_dev', '_lib', '_lib s', '_np_version_under1p14', '_np_version_under1p15', '_np_version_under1p16', '_np_version_under1p17', '_np_version_under1p18', '_testing', '_tslib', '_typing', '_version', 'api', 'array', 'arrays', 'bdate_range', 'compat', 'c oncat', 'core', 'crosstab', 'cut', 'date_range', 'describe_option', 'error s', 'eval', 'factorize', 'get_dummies', 'get_option', 'infer_freq', 'interva l_range', 'io', 'isna', 'isnull', 'json_normalize', 'lreshape', 'melt', 'mer
ge', 'merge_asof', 'merge_ordered', 'notna', 'notnull', 'offsets', 'option_c ontext', 'options', 'pandas', 'period_range', 'pivot', 'pivot_table', 'plott ing', 'qcut', 'read_clipboard', 'read_csv', 'read_excel', 'read_feather', 'r ead_fwf', 'read_gbq', 'read_hdf', 'read_html', 'read_json', 'read_orc', 'rea d_parquet', 'read_pickle', 'read_sas', 'read_spss', 'read_sql', 'read_sql_qu ery', 'read_sql_table', 'read_stata', 'read_table', 'reset_option', 'set eng _float_format', 'set_option', 'show_versions', 'test', 'testing', 'timedelta _range', 'to_datetime', 'to_numeric', 'to_pickle', 'to_timedelta', 'tserie s', 'unique', 'util', 'value_counts', 'wide_to_long']

In []:

1