

- You have found your way to Phys 110: Astronomy!
- If you are in Lab Group A, we are meeting for lab this week!
- Things to do before next class:
 - Access the course page at http://www.willamette.edu/~jjrembold/classes/wu110/main/
 - Read over the syllabus
 - Get yourself a copy of the digital book
 - Remember your phone or computer for polling questions on Wednesday
- WebWorK Assignment 1 is posted and due Wednesday
 - Instructions and web address for logging in on the class website

My Vitals

- Name: Jed Rembold
- Office: Collins 311 (it's shared)
- Office Hours: M,W,Th 2-4pm and open door (pproxalways)
- Goudy Hours: M–Th 1-2pm near the windows in Goudy Commons
- Email: jjrembold@willamette.edu
- Phone: 503-370-6860

Grading

Attendance is mandatory for both lecture and labs!

Attendance	Attendance Lab		3 Midterms	Final
5%	20%	25%	30%	20%

Attendance

- Class attendance is graded through participation in class polls
- Generally 1-3 polls per day
- Answering at all gets you full points for the day
- Answering correctly gets you bits of extra credit
- http://rembold-class.ddns.net
- Will start on Wednesday

Homework

- Homework will predominantly be online through WebWorK
- Small assignments will be given after each class, to be due before the start of the next class
- You can do the assignments late, but will be only receive 75% credit
- Don't be confused by WebWorK's terms
 - Reduced Scoring Period: is the time when it is technically due (the next class period)
 - Due date: is the point at which you can no longer receive any credit for the assignment

Tests

- 3 Midterms
 - Test 1: Sep 28 Chapters 1-6
 - Test 2: Oct 26 Chapters 7-14
 - Test 3: Nov 16 Chapters 15-24
- Final
 - Dec 12: 8:00-11:00am
 - Will be comprehensive
- You will want access to at least a basic scientific calculator for test days, as you can't use your phone calculator for tests!

Labs

- Labs will be Monday from 7-10pm
- You must be at lab in order to receive credit
- Groups A and B will alternate weeks for lab
 - The schedule is posted on the webpage if you ever lose track!
- I will post each week's lab manual on the website. You are responsible for printing it off and bringing it with you to lab.
- Labs will be a mix of observation activities (when weather allows), planetarium software demonstrations, and other activities
- Let me know as soon as possible if you are going to need to miss a lab
 - May be able to have you work through it at the other group's date
 - May be able to make it up at a later week in the semester

Campuswire

- Invitations to Campuswire should be going out today
- Classroom forum to better communication and asking of questions
- Asking questions there allows others to benefit from seeing my (or other students!) responses
- I will also use it for general communication and some occassional polling, so check it out!

Astronomy

Some Basics

- Distances
 - Meters instead of feet
 - Kilometers instead of miles
 - Astronomical Units (AU)
 - Average distance from Earth to Sun
 - \approx 150 million km
 - Light-year
 - Distance light travels in a year
 - ho pprox 10 trillion km
 - A light-year is a distance not a time!
- Times
 - Still use seconds, days, years, etc

10 ⁿ	Prefix	Symbol	Scale	
10^{-2}	centi	С	Hundredth	0.01
10^{0}			One	1
10^{3}	kilo	k	Thousand	1000
10^{6}	mega	M	Million	1000000
10^{9}	giga	G	Billion	1000000000
10^{12}	tera	Т	Trillion	1000000000000

What does this look like?

Copyright © 2012 Cary and Michael Huang (http://htwins.net)

Banana for Scale August 27, 2018 Jed Rembold

The Implications of Light Speed

- ullet Light travels at a constant, fast speed $(3 imes 10^8\,{
 m m/s})$
- Astronomic distances so large though that light takes measurable time to reach us
- Looking at distant objects is really looking back in time

Extrasolar Sizes

- Our own Solar System seems huge enough
- Space really kicks in once we leave our system
 - Nearest star (Alpha Centauri) is \approx 8000x the distance to Pluto
 - This is a common star separation distance in the Milky Way
 - The Milky Way has has many stars as all the grains of dry sand on all Earth's beaches
 - With the Milky Way shrunk to the scale of a football field, the entire Solar System would be a microscopic dot on roughly the 20 yard line
 - \bullet The Milky Way is just one of ${\approx}100$ billion galaxies that we've seen in the observable universe

Extrasolar Sizes

- Our own Solar System seems huge enough
- Space really kicks in once we leave our system
 - Nearest star (Alpha Centauri) is ≈8000x the distance to Pluto
 - This is a common star separation distance in the Milky Way
 - The Milky Way has has many stars as all the grains of dry sand on all Earth's beaches
 - With the Milky Way shrunk to the scale of a football field, the entire Solar System would be a microscopic dot on roughly the 20 yard line
 - ullet The Milky Way is just one of pprox100 billion galaxies that we've seen in the observable universe

Moral of the Story

Space is big. Like, unbelievably gigantic big. Stupidly big.

• Let's shrink the entire history of the Universe into a single year

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct
 - On Dec 31:

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct
 - On Dec 31:
 - 9pm Early apes evolve

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct
 - On Dec 31:
 - 9pm Early apes evolve
 - 11:58pm Modern Humans evolve

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct
 - On Dec 31:
 - 9pm Early apes evolve
 - 11:58pm Modern Humans evolve
 - 11:59:49pm Pyramids built

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct
 - On Dec 31:
 - 9pm Early apes evolve
 - 11:58pm Modern Humans evolve
 - 11:59:49pm Pyramids built
 - 11:59:59pm Discover that the Earth orbits the Sun

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct
 - On Dec 31:
 - 9pm Early apes evolve
 - 11:58pm Modern Humans evolve
 - 11:59:49pm Pyramids built
 - 11:59:59pm Discover that the Earth orbits the Sun
- Humans have been around for 0.0004% the history of the universe

- Let's shrink the entire history of the Universe into a single year
 - Jan 1 The Big Bang
 - Feb The Milky Way forms
 - Sept 3 Earth forms
 - Sept 22 Life begins on Earth
 - Dec 26 Dinosaurs rise up
 - Dec 30 Dinosaurs extinct
 - On Dec 31:
 - 9pm Early apes evolve
 - 11:58pm Modern Humans evolve
 - 11:59:49pm Pyramids built
 - 11:59:59pm Discover that the Earth orbits the Sun
- Humans have been around for 0.0004% the history of the universe
- Check out "History of the Universe" by Halycon in the app store on your phone!

Movement: Motion within Motion within...

Small to Big:

- Earth rotates on it's axis each 24 hours
- Earth rotates around the Sun in 365.25 days
- The Sun rotates around the center of the Milky Way in \approx 230 million years
- We also have random and erratic bits of movements from local effects (nearby planets, stars, galaxies etc)
- All galaxies are moving away from each other due to the universe expanding
 - Raisin cake analogy

Takeaways

Distance

Compared to us, the universe is nearly unimaginably large

Time

Our lives are an indistinguishable speck in the age of the universe

Movement

Literally everything is undergoing some sort motion. Both organized (orbits) and chaotic (pushes and pulls from neighbors).

PSA: Calculator Advice

- Remember your order of operations!
 - Parenthesis, Exponents, Mult/Div, Add/Sub
 - Don't forget parenthesis when dividing by multiple things! (But don't go overboard with parenthesis either, or things get confusing!)
- Lots of large or tiny numbers in this class
 - $6 \times 10^8 = 6$ \times 10° 8 = 6 EE 8
 - Most calculators will return values in E notation

									0
()	mc	m+	m-	mr	AC	+/_	%	÷
2 nd	X ²	X ³	×y	e ^x	10 ^x	7	8	9	×
1 <u>x</u>	²√x	³√x	√×	ln	log ₁₀	4	5	6	_
x!	sin	cos	tan	е	EE	1	2	3	+
Rad	sinh	cosh	tanh	π	Rand	0			=