

A thesis presented to the Faculty of Science Master of Science in physics at the Niels Bohr Institute

TITLE

Your name

Your mail

Your name: TITLE , Master of Science (Cand.scient.), $@~7^{th}$ of Spooktober, 2020

ABSTRACT

THE ABSTRACT

ACKNOWLEDGEMENTS

I Acknowledge myself. Good job me.

INTRODUCTION

INtro

CONTENTS

Ι	THE LORD OF THE RINGS	1
1	THE FELLOWSHIP OF THE RING	3
	1.1 The Shire	
	1.1.1 Frodo be chillin	
	1.1.2 Gandalf Commth	3
2	THE TWO TOWERS	5
	2.0.1 Feynman diagrams	
3	THE RETURN OF THE KING	7
II	THE HOBBIT	9
4	LET'S WASTE 10 HOURS IN THE SHIRE - THE MOVIE	11
5	SOME SHIT OR SOMETHING IDK DON'T REMBER	13
	5.1 blop	13
	5.2 Same blop	13
6	WAIT THERE'S THREE?	15
III	APPENDICES	17
Α	APPENDIX A: THEORY AND PRODUCTION	19
В	APPENDIX B: PRODUCTION AND DATA	21
C	APPENDICES	23
Ac	cronyms	24
	st of Figures	28
	st of Tables	30
ві	BLIOGRAPHY	32

Part I THE LORD OF THE RINGS

1

THE FELLOWSHIP OF THE RING

I am a pretext!

1.1 THE SHIRE

I will site a book! Quantum Field Theory by Srednicki [4].

1.1.1 Frodo be chillin

Not a lot happens

1.1.2 Gandalf Commth

Some weird shit happens Here's a figure on the side! Use Hspace and Vspace to fineadjust.

Figure 1: Simple overview of the elementary particles of the Standard Model. Schematic from Purcell [2]

2

THE TWO TOWERS

In Chapter 1 we see that pippin is pimpin. The first chapter has the label 'ch:fellowship'. Using ref gives: 1. Using autoref gives: Chapter 1.

2.0.1 Feynman diagrams

We are not only interested in the probability of collision, but also how particles in that collision decays and what they decay to after an interaction. This requires some theoretical calculation. Fermi's Golden rule describes the probability of some initial particle (i) decaying into a specific final mode f and is given by [3]:

$$\Gamma_{i \to f} \sim |M_{i \to f}|^2 \delta(E_f - E_i) \tag{1}$$

q Z/γ^* l l

Figure 2: Feynman diagram for the $q\bar{q}\to Z/\gamma^*\to l\bar{l}$ decay where γ^* is a virtual photon

Equation 1 is an equation.

THE RETURN OF THE KING

The best one

An acronym the first time it is used: Conseil européen pour la recherche nucléaire [English: European Organization for Nuclear Research] (CERN).

An acronym the post-first time: CERN

Part II THE HOBBIT

LET'S WASTE 10 HOURS IN THE SHIRE - THE MOVIE

Figure 3: A very cute cat

SOME SHIT OR SOMETHING IDK DON'T REMBER

- 5.1 BLOP
- 5.2 SAME BLOP

WAIT THERE'S THREE?

Part III APPENDICES

APPENDIX A: THEORY AND PRODUCTION

Figure 4: A comparison of two different targets when training a regression model. Top graph showing the true energy as target. Bottom graph showing the true energy divided by the raw E Cluster energy measured by the detector

B

APPENDIX B: PRODUCTION AND DATA

	1
EGAM ₁	$J \rightarrow ee$ (central)
EGAM2	$J/\psi o ee$
EGAM3	$Z \rightarrow ee\gamma, Z \rightarrow eee$
EGAM4	$Z ightarrow \mu\mu\gamma$, $Z ightarrow \mu\mu e$
EGAM5	W o ev
EGAM6	$Z \rightarrow ee$
LGAIVIO	(looser than EGAM1)
EGAM ₇	(looser than EGAM1) Inclusive electrons
EGAM ₇	,
	Inclusive electrons
EGAM ₇ EGAM8	Inclusive electrons $Z \rightarrow ee$
EGAM ₇	Inclusive electrons $Z \rightarrow ee$ (At least 1 fwd e)

Table 1: Overview of egamma xAOD derivations types. For more information see *Twiki: egamma xAOD derivations*[1]

C

APPENDICES

Stuff

ACRONYMS

AKA Also Known As

ALICE A Large Ion Collider Experiment

ATLAS A Toroidal LHC ApparatuS

AUC Area Under the Curve

BDT Boosted Decition Tree

CERN Conseil européen pour la recherche nucléaire [English: European Organization for Nuclear Research]

cms center-of-mass

CMS Compact Muon Solenoid

CSC Cathode Strip Chambers

ECAL Electromagnetic CALorimeter

EF Event Fitler

EMEC ElectroMagnetic Endcap Calorimeter

ER Energy Regression

FCAL Forward CALorimeter

FPR False Positive Rate

GBReweighter Gradient Boosted Reweighter

IBL Insertable B-layer

IQR InterQuartile Range

HCAL Hadronic CALorimeter

HEC Hadronic Endcap Calorimeter

HLT High Level Trigger

L1 Level-1 trigger

L2 Level-2 trigger

LAr Liquid Argon

LDA Linear Discriminant Analysis

LH Likelihood

HL-LHC High-Luminosity Large Hadron Collider

HP Hyper Parameters

ID Inner Detector

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty

MAE Mean Absolute Error

MC Monte Carlo

MDT Monitored Drift Tubes

MET Missing E_T

ML Machine Learning

MS Muon Spectrometer

MSE Mean Squared Error

NN Neural Network

p Proton

PDF Probability Density Function

PI Permutation Importance

PID Particle IDentification

PP Particle Physics

QCD Quantum ChromoDynamics

QFT Quantum Field Theory

RE Relative Error

RF Random Forest

rIQR relative InterQuartile Range

ROC Receiver Operating Characteristics

RPC Resistive Plate Chambers

SHAP SHapeley Additive exPlanations

SCT SemiConductor Tracker

SM Standard Model

TGC Thin Gap Chambers

TPR True Positive Rate

TRT Transition Radiation Tracker

VBF Vector-Boson Fusion

VBS Vector-Boson Scattering

LIST OF FIGURES

Figure 1	Simple overview of the elementary particles of			
	the Standard Model. Schematic from Purcell [2]	4		
Figure 2	Feynman diagram for the $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l\bar{l}$			
_	decay where γ^* is a virtual photon	5		
Figure 3	A very cute cat	11		
Figure 4	A comparison of two different targets when			
	training a regression model. Top graph show-			
	ing the true energy as target. Bottom graph			
	showing the true energy divided by the raw			
	E Cluster energy measured by the detector	19		

LIST OF TABLES

Table 1	Overview of egamma xAOD derivations types.	
	For more information see Twiki: egamma xAOD	
	derivations[1]	22

BIBLIOGRAPHY

- [1] The ATLAS Collaboration. *Twiki: egamma xAOD derivations*. Requires ATLAS login. URL: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/EGammaxAODDerivations.
- [2] Andrew Purcell. "Go On a Particle Quest at the First CERN Webfest." In: (2012). URL: https://cds.cern.ch/record/1473657.
- [3] Matthew D. Schwartz. *Quantum Field Theory and the Standard Model*. 1st Edition. Cambridge University Press, 2013. ISBN: 978-1-107-03473-0.
- [4] Mark Srednicki. *Quantum Field Theory*. 1st Edition. Cambridge University Press, 2006. ISBN: 978-0-521-86449-7.