EJERCICIOS PARA PRACTICAR

(1) Deriva:

a)
$$y = x^3 e^x$$

$$d) y = x \ln x$$

$$f) y = \operatorname{sen}^2 x$$

b)
$$y = x^2 \operatorname{sen} x$$

c)
$$y = x \cos x$$

e)
$$y = \frac{-x^{10} + 7x^2}{5x^6 - 4}$$
 g) $y = \cot x$

$$g) y = \cot x$$

- (2) Dadas las rectas y = 3x + b y la parábola $y = x^2$.
 - a) Calcula la abcisa del punto dond ela recta tangente a la parábola es paralela a la recta dada.
 - b) Calcula el valor del parámetro b para que la recta sea tangente a la parábola.
- (3) Calcula la ecuación de la recta tangente a la curva $y = 4x \ln x$ en el punto (1,0).
- (4) Considérese la función y = |x| + |x 2|.
 - a) Exprese f(x) como una función definida a trozos.
 - b) Represente f(x).
 - c) Escriba el intervalo abierto de la recta real formado por los puntos en los que f(x) es derivable y se anule su derivada.
- (5) Deriva:

a)
$$f(x) = \arcsin 2x - \operatorname{tg} 3x \text{ en } x = 0$$

b)
$$g(x) = \sqrt{e^{x^2 - 4} + \cos \pi x}$$
 en $x = 2$

(6) Representa
$$f(x) = \frac{\sqrt{x^2 - 9}}{x - 1}$$

- (7) Dada la función $f(x) = Ax^3 + Bx$ sabemos que pasa por el punto P(1,1) y además que en ese punto tiene tangente paralela a la recta y = -3x.
 - a) De acuerdo a dichas condiciones calcular los valores de A y de B.
 - b) Determinar los extremos relativos, sus inntervalos de crecimiento y decrecimiento, y representar la función.
- (8) Dada la función $f(x) = x^3 + ax^2 + bx + c$ calcula los parámetros $a, b, c \in \mathbb{R}$ sabiendo que:
 - a) la recta tangente a su gráfica en el punto de abcisa x = -1 tiene pendiente -3.
 - b) f(x) tiene un punto de inflexión de coordenadas (1,2).
- (9) La concentración (en %) de N_2 de un compuesto viene dada, en función del tiempo $t \in [0, \infty)$ medido en segundos, por la función $N(t) = \frac{60}{1 + 2e^{-t}}$.
 - a) Comrpueba que la concentración de N_2 crece con el tiempo. ¿Para qué $t \in$ $[0,\infty)$ la concentración de N_2 es mínima y cuál es esta concentración?

- b) ¿A qué valor tiende la concentración de N_2 cuando el tiempo tiende a infinito?
- (10) ¿En qué punto de la gráfica de la función $f(x) = x^2 5x + 4$ la tangente es paralela a las abcisas? ¿Cómo se llama ese punto en la parábola?
- (11) ¿En qué punto de la gráfica de la parábola $f(x) = x^2 + 2x 3$ la tangente es paralela a la bisectriz del primer cuadrante?
- (12) Calcula los puntos de la curva $y=x^3+9x^2-9x+15$ en los que la tangente es paralela a la recta y = 12x + 5
- (13) Es correcto definir la tangente a una curva C en uno de sus puntos P como la recta que sólo tiene un único punto en común P con C? Responde con un ejemplo.
- (14) Dibuja las funciones $f(x) = x^2$ y $g(x) = x^2 1$. Calcula sus derivadas. ¿Tiene sentido lo que obtienes?
- (15) ¿Puede haber 2 funciones que tengan la misma derivada?
- (16) Calcular a y b para que la función $f(x) = \begin{cases} x^2 \text{ si } x \ge 2\\ ax + b \text{ si } x < 2 \end{cases}$ sea derivable en x = 2.
- (17) Calcula las ecuaciones de las rectas tangentes a la curva $y = -x^2 + 7x 12$ en los puntos en que corta a los ejes de coordenadas.
- (18) La curva $y = ax^2 + bx + c$ pasa por el punto A(1,3) y es tangente en el origen de coordenadas a la bisectriz del primer cuadrante. Calcula a, b y c.
- (19) Demuestra que
 - a) $y = -x^2 + 4x + 3$ es estrictamente creciente en x = 1.
 - b) $y = x^3 2x^2 + 4$ es estrictamente creciente en x = -1.
 - c) $y = -x^2 + 4x + 3$ es estrictamente decreciente en x = 4.
 - d) $y = x^3 3x^2 + 4$ es estrictamente decreciente en $x = \frac{1}{2}$.
 - e) $y = \frac{x-1}{e^{x+1}}$ es creciente en x = 1? y = x = 3?
- (20) Calcula los extremos relativos de:
 - a) $y = 2x^3 + 3x^2 12x$ c) $y = x^2$ b) $y = x^3 3x + 3$ d) $y = -x^2$

 $e) \ y = \frac{x-1}{e^{x+1}}$

- (21) Estudiar el crecimiento y decrecimiento de:
 - a) $y = x^2$

- c) $y = 2x^3 + 3x^2 12x$ e) $y = \frac{2-x}{e^{x+1}}$

- b) $y = -x^2$
- d) $y = x^3 3x + 3$

▶ Ejercicios de la PAEU

- (22) **PAEU 2004S.** Dada la función $f:[1,e] \mapsto \mathbb{R}$ definida por $f(x) = \frac{1}{x} + \ln x$, determínese de entre todas las rectas tangentes a la gráfica de f la que tiene máxima pendiente. Escríbase la ecuación de dicha recta.
- (23) **PAEU 2005J.**
 - a) Calcúlense los intervalos de crecimiento y decrecimiento de la función $f(x) = e^{1-x^2}$, sus extremos relativos, puntos de inflexión y asíntotas.
 - b) Esbócese la gráfica de f.
- (24) **PAEU 2006S.** Estúdiense los intervalos de crecimiento y decrecimiento de $f(x) = xe^{-x}$, sus máximos y mínimos relativos, asíntotas y puntos de inflexión.
- (25) **PAEU 2006S.** ¿Existen máximo y mínimo absolutos de la función $f(x) = \cos x + 1$ en el intervalo $[0, \pi]$? Justifíquese su existencia y calcúlense.
- (26) **PAEU 2006S.** Calcúlense la ecuación de la recta tangente a la gráfica de la función $f(x) = \frac{x^2}{x^2 + 1}$ en el punto x = 0.
- (27) **PAEU 2007J.** Sea la función $f(x) = x + e^{-x}$. Hallar los intervalos de crecimiento y decrecimiento, los extremos relativos, los intervalos de concavidad y convexidad y las asíntotas. Esbozar su gráfica.
- (28) **PAEU 2008J.** Sea $f(x) = \frac{\ln x}{x^2}$ con $x \in (0, \infty)$. Se pide calcular los intervalos de crecimiento y decrecimiento, los extremos relativos y las asíntotas. Esbozar su gráfica.
- (29) **PAEU 2008S.** Sea $f(x) = 2 x + \ln x$ con $x \in (0, +\infty)$. Determinar los intervalos de crecimiento y decrecimiento, los extremos relativos, los intervalos de concavidad y convexidad y las asíntotas de f. Esbozar la gráfica de f.
- (30) **PAEU 2009S.** Hallar los puntos en los que la recta tangente a la gráfica de la función $f(x) = x^3$ es paralela a la recta de ecuación y = 3x + 2.
- (31) **PAEU 2009S.** Sea la función $f(x) = \text{sen}(x) + \cos(x)$, definida en el intervalo $[0, 2\pi]$. Hallar los intervalos de crecimiento y decrecimiento, y los extremos relativos. Esbozar su gráfica.
- (32) **PAEU 2011S.** Dada la función $y = \frac{\ln x}{x}$ determinar su dominio de definición, sus asíntotas, extremos relativos y puntos de inflexión. Hacer un esbozo de su representación gráfica.
- (33) **PAEU 2012J.** Dada la función $f(x) = \frac{ae^{2x}}{1+x}$, se pide:
 - a) Hallar a para que la pendiente de la recta tangente a la función x = 0 valga 2.

- b) Para a = 1 estudiar el crecimiento, decrecimiento y extremos relativos.
- c) Para a = 1 hallar sus asíntotas.
- (34) **PAEU 2012J.** Se considera la función $f(x) = e^x + \ln(x)$, $x \in (0, \infty)$, donde $\ln(x)$ denota el logaritmo neperiano. Estudiar la monotonía y las asíntotas de f(x).
- (35) **PAEU 2012S.** Determinar en qué puntos de la gráfica de la función $y = x^3 6x^2 + 4x + 8$ la recta tangente a la misma es paralela a la recta y = 4x + 7.
- (36) **PAEU 2012S.** Sea la función $f(x) = (2x^2 + 3)e^x$.
 - a) Estudiar asíntotas, crecimiento, decrecimiento, extremos relativos, convexidad y puntos de inflexión.
 - b) Esbozar su gráfica.
- (37) **PAEU 2012S.** Determinar los extremos absolutos de la función $f(x) = x^2 4x + 4$ en el intervalo [1, 4].