SGGW (18.12.2010) Sprawdzian z matematyki

Numer indeksu:	
Imię i nazwisko:	

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty **a**, **b** i **c**. W każdym podpunkcie należy skreślić **nieprawidłową** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błędna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

TAK		4
TAK		$\log_2 16$
	NIE	7

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech
$$g = \lim_{x \to 0^+} x^{\frac{3}{4 + \ln(x)}}$$

$$TAK \mid NIE \mid \mathbf{a}. \ g = e^3$$

TAK NIE **b.**
$$g = 1$$
TAK NIE **c.** $g = 0$

 ${\bf 2.}$ Równanie stycznej do krzywej $K=\{(x,y)|\ y=\operatorname{tg}(2x)\}$ w punkcie (0,0)ma postać

		a. $y = x + 1$
TAK	NIE	b. $y = 1/\cos^2(x)$
TAK	NIE	$\mathbf{c.}\ y = 2x$

3. Niech
$$f(x) = \frac{\ln(x)}{1+x^2}$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$$
TAK NIE **b.** $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2}$
TAK NIE **c.** $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$

4. Niech
$$F(x) = \int 4\sqrt{x} dx$$
.

TAK NIE a.
$$F(x) = \frac{1}{8\sqrt{x}} + c$$
TAK NIE b. $F(x) = \frac{8}{3x\sqrt{x}} + c$
TAK NIE c. $F(x) = \frac{4}{3x\sqrt{x}} + c$

5. Niech
$$f(x) = 5 - \frac{1}{x} + 4 \ln(x)$$
. Wówczas

$$\begin{array}{|c|c|c|}\hline \text{TAK NIE a. } f^{(2)}(x) = \frac{-2}{x^3} - \frac{4}{x^2}\\\hline\hline \text{TAK NIE b. } \int f(x)\,dx = x - \ln(x) + 4\,x\,\ln(x)\\\hline\hline \text{TAK NIE c. } f'(x) = x^{-2} + \frac{4}{x^2}\\\hline \end{array}$$

6. Niech
$$f(x) = x^2$$

TAK NIE **a.**
$$f^{(2)}(x) = 2$$
TAK NIE **b.** Funkcja $f(x)$ jest rosnąca dla $x \in (0,5)$
TAK NIE **c.** $f'(x) = 2x$

7. Niech
$$f(x) = (-8 - e^{-4x}) (4 + x)$$
. Wówczas

TAK NIE **a.**
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

TAK NIE **b.** $f'(x) = -8 - e^{-4x} + \frac{4(4+x)}{e^{4x}}$
TAK NIE **c.** $f'(x) = -8 + 4e^{-4x} + \frac{(4+x)}{e^{4x}}$

8. Niech funkcja
$$f(x) = x^3 - 3x + 1$$
. Wówczas

TAK	NIE	a. funkcja $f(x)$ ma ekstrema lokalne w punktach: $x=-1$ oraz $x=1$.
TAK	NIE	b. funkcja $f(x)$ jest rosnąca na przedziale (1.5,2)
TAK	NIE	c. funkcja $f(x)$ jest wypukła na przedziale $(0,1)$

9. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$
TAK NIE **b.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$
TAK NIE **c.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)})$

10. Przy wyznaczaniu całki
$$\int (x-4)e^{x^2} dx$$
 zastosowano podstawienie $y=(x-4)^2$.

TAK NIE a. Czy
$$\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$$
?

TAK NIE b. Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$$
?

TAK NIE c. Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(\sqrt{y}+4)^2} dy$$
?

11. Niech
$$f(x)=x^2+\operatorname{tg}(x+1)$$
. Niech $g(y)$ jest funkcją odwrotną do $f(x)$. Pochodna $g'(y_0)$, dla $y_0=f(\pi-1)$ wynosi

- TAK NIE $\mathbf{a}. 2\pi$
- TAK NIE **b.** π
- TAK NIE $\mathbf{c}. \pi + 1$

12. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

- TAK NIE a. $w = 2\pi$
- TAK NIE **b.** w = 1
- TAK NIE c. $w = \pi$

13. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

- TAK NIE a. ma w punkcie x = 3.2 maksimum globalne
- TAK NIE **b.** ma w punkcie x = 3.2 minimum lokalne
- TAK NIE c. ma w punkcie x = 3.2 ekstremum lokalne

14. Równanie stycznej do krzywej
$$K=\{(x,y)|\ y=\arcsin\left(\frac{x-1}{2}\right)\}$$
 w punkcie przecięcia tej krzywej z osia OX ma postać

- TAK NIE **a.** 3x 2y + 10 = 0
- TAK NIE b. y = x
- TAK NIE c. x 2y 1 = 0

15. Niech
$$w = \int_{0}^{\pi} xe^{x} dx$$

- TAK NIE **a.** $w = 1 + e^{x\pi} (-2 + \pi)$
- TAK NIE **b.** $w = 1 + e^{\pi} (-1 + \pi)$
- TAK NIE c. $w = e^{\pi} (-1 + \pi)$

16. Niech $f(x) = 5 + 4x^5 - \sin(x)$

- TAK NIE a. Funkcja pierwotna funkcji f(x) wynosi $\frac{x(15+2x^5)}{3} + \cos(x)$
- TAK NIE **b.** Pierwsza pochodna funkcji f(x) wynosi $20 x^4 \cos(x)$
- TAK NIE c. Druga pochodna funkcji f(x) wynosi $80 x^3 + \sin(x)$

17. Funkcja $f(x) = x \sin(x)$

- TAK NIE a. jest okresowa
- TAK NIE **b.** jest nieparzysta
- TAK NIE c. jest parzysta

18. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

- TAK NIE a. w = 124
- TAK | NIE | **b.** w = 12/5
- TAK NIE **c.** w = 124/3

19. Niech
$$g = \lim_{x \to 0^+} \frac{\ln(x)}{\text{ctg}(x)}$$

- TAK NIE **a.** g = 0
- TAK NIE **b.** $g = \infty$
- TAK NIE $\mathbf{c} \cdot g = 1$

20. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

- TAK NIE a. Czy $\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$?
- TAK NIE b. Czy $\int x \sin(x^2 + 4) dx = \int_0^2 \sqrt{y 4} \sin y dy$?
- TAK NIE c. Czy $\int x \sin(x^2 + 4) dx = \int \sin y dy$?

SGGW (18.12.2010) Sprawdzian z matematyki

${\bf Numer\ indeksu:}$														 											
Imie i nazwisko:																						 	 	 	

Test składa się z dwudziestu zadań. W każdym z zadań podane sa trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany iest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

		a. $w = 12/5$
		b. $w = 124/3$
TAK	NIE	c. $w = 124$

2. Niech
$$f(x) = x^2$$

TAK NIE a.
$$f'(x) = 2x$$
TAK NIE b. Funkcja $f(x)$ jest rosnąca dla $x \in (0,5)$
TAK NIE c. $f^{(2)}(x) = 2$

3. Niech $f(x) = 5 + 4x^5 - \sin(x)$

TAK NIE a. Druga pochodna funkcji f(x) wynosi $80 x^3 + \sin(x)$

TAK NIE **b.** Funkcja pierwotna funkcji f(x) wynosi $\frac{x(15+2x^5)}{3} + \cos(x)$

TAK NIE c. Pierwsza pochodna funkcji f(x) wynosi $20x^4 - \cos(x)$

4. Niech
$$f(x) = \frac{\ln(x)}{1+x^2}$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2}$$

TAK NIE **b.** $f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$

TAK NIE **b.**
$$f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$$

TAK NIE c.
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$$

5. Niech $F(x) = \int 4\sqrt{x} dx$.

TAK NIE a.
$$F(x) = \frac{1}{8\sqrt{x}} + c$$

TAK NIE b.
$$F(x) = \frac{4}{3x\sqrt{x}} + \epsilon$$

TAK NIE **b.**
$$F(x) = \frac{4}{3x\sqrt{x}} + c$$
TAK NIE **c.** $F(x) = \frac{8}{3x\sqrt{x}} + c$

6. Równanie stycznej do krzywej $K = \{(x,y)| y = \operatorname{tg}(2x)\}$ w punkcie (0,0) ma postać

- TAK NIE **a.** y = 2x
- TAK NIE b. y = x + 1
- TAK NIE $\mathbf{c} \cdot y = 1/\cos^2(x)$

7. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

- TAK NIE a. ma w punkcie x = 3.2 ekstremum lokalne
- TAK NIE **b.** ma w punkcie x = 3.2 minimum lokalne
- TAK NIE c. ma w punkcie x = 3.2 maksimum globalne

8. Niech
$$f(x) = (-8 - e^{-4x}) (4+x)$$
. Wówczas

TAK NIE **a.**
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

TAK NIE a.
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

TAK NIE b. $f'(x) = -8 - e^{-4x} + \frac{4(4+x)}{e^{4x}}$

TAK NIE c.
$$f'(x) = -8 + 4e^{-4x} + \frac{(4+x)}{e^{4x}}$$

9. Niech
$$f(x) = 5 - \frac{1}{x} + 4 \ln(x)$$
. Wówczas

TAK NIE **b.**
$$f^{(2)}(x) = \frac{-2}{x^3} - \frac{4}{x^2}$$

TAK NIE c.
$$\int f(x) dx = x - \ln(x) + 4x \ln(x)$$

10. Przy wyznaczaniu całki $\int (x-4)e^{x^2} dx$ zastosowano podstawienie $y=(x-4)^2$.

TAK NIE a. Czy
$$\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$$
?

TAK NIE **b.** Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$$

TAK NIE **b.** Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$$
?

TAK NIE **c.** Czy $\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(\sqrt{y}+4)^2} dy$?

11. Funkcja
$$f(x) = x \sin(x)$$

12. Niech
$$w = \int_{0}^{\pi} x e^{x} dx$$

TAK NIE **a.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

TAK NIE
$$\mathbf{c.}\ w = e^{\pi} (-1 + \pi)$$

13. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE **a.**
$$w = \pi$$

TAK NIE **b.**
$$w = 1$$

TAK NIE
$$\mathbf{c}. \ w = 2\pi$$

14. Niech
$$f(x) = x^2 + \operatorname{tg}(x+1)$$
. Niech $g(y)$ jest funkcją odwrotną do $f(x)$. Pochodna $g'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK NIE **a.**
$$\pi + 1$$

TAK NIE b.
$$\pi$$

TAK NIE
$$\mathbf{c}$$
. 2π

15. Niech funkcja $f(x) = x^3 - 3x + 1$. Wówczas

TAK	NIE	a. funkcja f	(x) 1	ma ekstrema	lokalne w	punktach:	x = -1	oraz $x =$: 1.
-----	-----	-----------------------	-------	-------------	-----------	-----------	--------	------------	------

TAK NIE **b.** funkcja
$$f(x)$$
 jest wypukła na przedziale $(0,1)$

TAK NIE c. funkcja
$$f(x)$$
 jest rosnaca na przedziale (1.5,2)

16. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osią OX ma postać

TAK NIE **a.**
$$y = x$$

TAK NIE **b.**
$$x - 2y - 1 = 0$$

TAK NIE **c.**
$$3x - 2y + 10 = 0$$

17. Niech
$$g = \lim_{x \to 0^+} x^{\frac{3}{4 + \ln(x)}}$$

TAK NIE **a.**
$$q = e^3$$

TAK NIE **b.**
$$g = 0$$

TAK NIE
$$\mathbf{c.} \ g = 1$$

18. Niech $f(x) = \sin(x^2 + \sqrt{\ln(x)})$. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$

TAK NIE b.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

19. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

TAK NIE b. Czy
$$\int x \sin(x^2 + 4) dx = \int_0^2 \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

20. Niech
$$g = \lim_{x \to 0^+} \frac{\ln(x)}{\text{ctg}(x)}$$

TAK NIE **a.**
$$g = \infty$$

TAK NIE **b.**
$$g = 0$$

TAK NIE
$$\mathbf{c} \cdot g = 1$$

SGGW (18.12.2010) Sprawdzian z matematyki

Numer indeksu:																				 				
Imie i nazwisko:																		 	 	 	 			

Test składa sie z dwudziestu zadań. W każdym z zadań podane sa trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błędna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każda prawidłowa odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie beda uwzględniane!

1. Niech
$$g = \lim_{x \to 0^+} \frac{\ln(x)}{\operatorname{ctg}(x)}$$
TAK NIE a. $g = 0$

TAK	NIE	b. $g = 1$
TAK	NIE	$\mathbf{c} \cdot a = \infty$

TAK NIE
$$\mathbf{c.} \ g = \infty$$

2. Funkcja
$$f(x) = x \sin(x)$$

		a. jest parzysta
TAK	NIE	b. jest nieparzysta
TAK	NIE	c. jest okresowa

3. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK	NIE	a. $w=\pi$
TAK	NIE	b. $w = 1$
TAK	NIE	$\mathbf{c.} \ w = 2\pi$

4. Niech $F(x) = \int 4\sqrt{x} dx$.

TAK NIE a.
$$F(x) = \frac{4}{3x\sqrt{x}} + c$$
TAK NIE b. $F(x) = \frac{1}{8\sqrt{x}} + c$
TAK NIE c. $F(x) = \frac{8}{3x\sqrt{x}} + c$

5. Przy wyznaczaniu całki $\int (x-4)e^{x^2} dx$ zastosowano podstawienie $y=(x-4)^2$.

TAK NIE **a.** Czy
$$\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$$
?
TAK NIE **b.** Czy $\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$?
TAK NIE **c.** Czy $\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(\sqrt{y}+4)^2} dy$?

6. Niech $f(x) = \sin(x^2 + \sqrt{\ln(x)})$. Wówczas

TAK NIE **a.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$
TAK NIE **b.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$
TAK NIE **c.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$

7. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

		a. ma w punkcie $x = 3.2$ maksimum globalne
TAK	NIE	b. ma w punkcie $x = 3.2$ ekstremum lokalne
TAK	NIE	\mathbf{c} ma w punkcie $x = 3.2$ minimum lokalne

8. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcją odwrotną do f(x). Pochodna $g'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

		$\mathbf{a.} \ \pi + 1$
TAK	NIE	$\mathbf{b}. \pi$
TAK	NIE	$\mathbf{c.}\ 2\pi$

9. Niech
$$f(x) = x^2$$

TAK NIE **a.**
$$f^{(2)}(x) = 2$$

TAK NIE b.
$$f'(x) = 2x$$

TAK NIE c. Funkcja f(x) jest rosnaca dla $x \in (0,5)$

10. Niech
$$f(x) = (-8 - e^{-4x}) (4 + x)$$
. Wówczas

TAK NIE a.
$$f'(x) = -8 + 4e^{-4x} + \frac{(4+x)}{e^{4x}}$$

TAK NIE b.
$$f'(x) = -8 - e^{-4x} + \frac{e^{4x}}{e^{4x}}$$

TAK NIE c.
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

11. Równanie stycznej do krzywej $K = \{(x,y) | y = \operatorname{tg}(2x)\}$ w punkcie (0,0) ma postać

TAK NIE **a.**
$$y = x + 1$$

TAK NIE **b.**
$$y = 1/\cos^2(x)$$

$$\overline{\text{TAK} \mid \text{NIE} \mid} \mathbf{c.} \ y = 2x$$

12. Niech funkcja
$$f(x) = x^3 - 3x + 1$$
. Wówczas

TAK NIE a. funkcja
$$f(x)$$
 jest wypukła na przedziale $(0,1)$

TAK NIE **b.** funkcja
$$f(x)$$
 jest rosnąca na przedziale (1.5,2)

TAK NIE c. funkcja
$$f(x)$$
 ma ekstrema lokalne w punktach: $x = -1$ oraz $x = 1$.

13. Niech
$$f(x) = 5 - \frac{1}{x} + 4 \ln(x)$$
. Wówczas

TAK NIE a.
$$\int f(x) dx = x - \ln(x) + 4x \ln(x)$$

TAK NIE **b.**
$$f^{(2)}(x) = \frac{-2}{x^3} - \frac{4}{x^2}$$

TAK NIE c.
$$f'(x) = x^{-2} + \frac{4}{x}$$

14. Niech
$$f(x) = \frac{\ln(x)}{1+x^2}$$
. Wówczas

TAK NIE a.
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$$

TAK NIE b. $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{(1 + x^2)^2}$

TAK NIE b.
$$f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$$

TAK NIE c.
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1+x^2)^2}$$

15. Niech
$$f(x) = 5 + 4x^5 - \sin(x)$$

TAK NIE a. Funkcja pierwotna funkcji
$$f(x)$$
 wynosi $\frac{x(15+2x^5)}{3} + \cos(x)$

TAK NIE **b.** Pierwsza pochodna funkcji
$$f(x)$$
 wynosi $20 x^4 - \cos(x)$

TAK NIE c. Druga pochodna funkcji
$$f(x)$$
 wynosi $80 x^3 + \sin(x)$

16. Niech
$$w = \int_{0}^{\pi} xe^{x} dx$$

TAK NIE a.
$$w = e^{\pi} (-1 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE **c.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

17. Przy wyznaczaniu całki
$$\int x \sin(x^2 + 4) dx$$
 zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE b. Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

18. Niech
$$g = \lim_{x \to 0^+} x^{\frac{3}{4 + \ln(x)}}$$

TAK NIE **a.**
$$g = e^3$$

TAK NIE **b.**
$$q = 1$$

TAK NIE
$$\mathbf{c} \cdot g = 0$$

19. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

TAK NIE **a.**
$$w = 124$$

TAK NIE **b.**
$$w = 12/5$$

TAK NIE **c.**
$$w = 124/3$$

20. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osią OX ma postać

TAK NIE **a.**
$$3x - 2y + 10 = 0$$

TAK NIE **b.**
$$x - 2y - 1 = 0$$

TAK NIE c.
$$y = x$$

SGGW (18.12.2010) Sprawdzian z matematyki

Numer indeksu:	
Imię i nazwisko:	

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżei. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

TAK		4
TAK		$\log_2 16$
	NIE	7

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Równanie stycznej do krzywej $K = \{(x,y)| y = \operatorname{tg}(2x)\}$ w punkcie (0,0) ma postać

$$\begin{array}{|c|c|c|c|c|} \hline {\rm TAK} & {\rm NIE} \\ \hline \end{array} \ \ \mathbf{a.} \ \ y = 1/\cos^2(x) \\ \hline \ \ \mathbf{c.} \ \ y = x+1 \\ \hline$$

3. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osia OX ma postać

TAK	NIE	$\mathbf{a.}\ y = x$
TAK	NIE	b. $x - 2y - 1 = 0$
TAK	NIE	c. $3x - 2y + 10 = 0$

4. Funkcja $f(x) = x \sin(x)$

		a. jest parzysta
TAK	NIE	b. jest nieparzysta
TAK	NIE	c. jest okresowa

5. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

		a. ma w punkcie $x = 3.2$ ekstremum lokalne
TAK	NIE	b. ma w punkcie $x = 3.2$ minimum lokalne
TAK	NIE	c. ma w punkcie $x = 3.2$ maksimum globalne

6. Niech
$$f(x) = 5 + 4x^5 - \sin(x)$$

TAK NIE a. Pierwsza pochodna funkcji f(x) wynosi $20 x^4 - \cos(x)$

TAK NIE b. Funkcja pierwotna funkcji
$$f(x)$$
 wynosi $\frac{x(15+2x^5)}{3} + \cos(x)$

TAK NIE c. Druga pochodna funkcji
$$f(x)$$
 wynosi $80 x^3 + \sin(x)$

7. Przy wyznaczaniu całki $\int (x-4)e^{x^2} dx$ zastosowano podstawienie $y=(x-4)^2$.

TAK NIE **a.** Czy
$$\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$$
?
TAK NIE **b.** Czy $\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$?
TAK NIE **c.** Czy $\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(\sqrt{y}+4)^2} dy$?

8. Niech
$$F(x) = \int 4\sqrt{x} dx$$
.

TAK NIE a.
$$F(x) = \frac{4}{3x\sqrt{x}} + c$$
TAK NIE b. $F(x) = \frac{1}{8\sqrt{x}} + c$

TAK NIE **b.**
$$F(x) = \frac{1}{8\sqrt{x}} + \epsilon$$

TAK NIE c.
$$F(x) = \frac{8}{3x\sqrt{x}} + c$$

9. Niech
$$f(x) = 5 - \frac{1}{x} + 4 \ln(x)$$
. Wówczas

TAK NIE a.
$$\int f(x) dx = x - \ln(x) + 4x \ln(x)$$

TAK NIE **b.**
$$f^{(2)}(x) = \frac{-2}{x^3} - \frac{4}{x^2}$$

TAK NIE c.
$$f'(x) = x^{-2} + \frac{4}{x}$$

10. Niech funkcja
$$f(x) = x^3 - 3x + 1$$
. Wówczas

TAK NIE	a. funkcja	f(x)	jest	wypukła	na p	orzedziale	(0,1)
---------	------------	------	------	---------	------	------------	-------

TAK NIE **b.** funkcja
$$f(x)$$
 ma ekstrema lokalne w punktach: $x = -1$ oraz $x = 1$.

TAK NIE c. funkcja
$$f(x)$$
 jest rosnąca na przedziale (1.5,2)

11. Niech
$$f(x) = x^2$$

TAK NIE **a.**
$$f'(x) = 2x$$

TAK NIE **b.**
$$f^{(2)}(x) = 2$$

TAK NIE c. Funkcja
$$f(x)$$
 jest rosnąca dla $x \in (0,5)$

12. Niech
$$g = \lim_{x \to 0^+} x^{\frac{3}{4 + \ln(x)}}$$

TAK NIE
$$\mathbf{a}. g = 0$$

TAK NIE **b.**
$$g=1$$

TAK NIE
$$\mathbf{c.}\ g = e^3$$

13. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

TAK NIE **a.**
$$w = 124/3$$

TAK NIE **b.**
$$w = 12/5$$

TAK NIE c.
$$w = 124$$

14. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE **a.**
$$w = \pi$$

TAK NIE **b.**
$$w = 2\pi$$

TAK NIE
$$\mathbf{c.} \ w = 1$$

15. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE b. Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

16. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcja odwrotna do f(x). Pochodna $q'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK NIE a.
$$\pi + 1$$

TAK NIE **b.**
$$2\pi$$

TAK NIE
$$\mathbf{c}. \pi$$

17. Niech
$$w = \int_{0}^{\pi} x e^{x} dx$$

TAK NIE **a.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE **b.**
$$w = e^{\pi} (-1 + \pi)$$

TAK NIE c.
$$w = 1 + e^{x\pi} (-2 + \pi)$$

18. Niech
$$g = \lim_{x \to 0^+} \frac{\ln(x)}{\text{ctg}(x)}$$
.

TAK NIE **a.**
$$g = \infty$$

TAK NIE **b.**
$$g = 0$$

TAK NIE
$$\mathbf{c.} \ g = 1$$

19. Niech $f(x) = \sin(x^2 + \sqrt{\ln(x)})$. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$
TAK NIE b. $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$

TAK NIE **b.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

20. Niech
$$f(x) = (-8 - e^{-4x}) (4+x)$$
. Wówczas

TAK NIE a.
$$f'(x) = -8 + 4e^{-4x} + \frac{(4+x)}{e^{4x}}$$

TAK NIE b. $f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$

TAK NIE **b.**
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)^{-4x}}{e^{4x}}$$

TAK NIE c.
$$f'(x) = -8 - e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

SGGW (18.12.2010) Sprawdzian z matematyki

${\bf Numer\ indeksu:}$																									 		
Imie i nazwisko:																											

Test składa się z dwudziestu zadań. W każdym z zadań podane sa trzy punkty a. b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczvn $2 \cdot 2$ iest równy

TAK		4
TAK		$\log_2 16$
	NIE	7

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcją odwrotną do f(x). Pochodna $g'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK		
TAK	NIE	b. 2π
TAK	NIE	c. $\pi + 1$

2. Niech $f(x) = 5 + 4x^5 - \sin(x)$

		a. Funkcja pierwotna funkcji $f(x)$ wynosi $\frac{x\left(15+2x^{5}\right)}{3}+\cos(x)$
TAK N	IIE	b. Druga pochodna funkcji $f(x)$ wynosi $80 x^3 + \sin(x)$

TAK NIE c. Pierwsza pochodna funkcji f(x) wynosi $20x^4 - \cos(x)$

3. Przy wyznaczaniu całki $\int (x-4)e^{x^2} dx$ zastosowano podstawienie $y=(x-4)^2$.

TAK NIE **a.** Czy
$$\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$$
?
TAK NIE **b.** Czy $\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(\sqrt{y}+4)^2} dy$?
TAK NIE **c.** Czy $\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$?

4. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osią OX ma postać

TAK NIE
 a.
$$x - 2y - 1 = 0$$

 TAK NIE
 b. $y = x$

 TAK NIE
 c. $3x - 2y + 10 = 0$

5. Niech funkcja $f(x) = x^3 - 3x + 1$. Wówczas

TAK NIE a. funkcja f(x) jest rosnąca na przedziale (1.5,2) TAK NIE b. funkcja f(x) ma ekstrema lokalne w punktach: x = -1 oraz x = 1.

TAK NIE c. funkcja f(x) jest wypukła na przedziale (0,1)

6. Niech $F(x) = \int 4\sqrt{x} dx$.

TAK NIE a.
$$F(x) = \frac{8}{3x\sqrt{x}} + c$$
TAK NIE b. $F(x) = \frac{4}{3x\sqrt{x}} + c$

TAK NIE c.
$$F(x) = \frac{1}{8\sqrt{x}} + c$$

7. Niech
$$f(x) = 5 - \frac{1}{x} + 4 \ln(x)$$
. Wówczas

TAK NIE a.
$$\int f(x) dx = x - \ln(x) + 4x \ln(x)$$

TAK NIE **b.**
$$f^{(2)}(x) = \frac{-2}{x^3} - \frac{4}{x^2}$$

TAK NIE c.
$$f'(x) = x^{-2} + \frac{4}{x}$$

8. Niech
$$f(x) = \frac{\ln(x)}{1+x^2}$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2}$$
TAK NIE **b.** $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$
TAK NIE **c.** $f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$

TAK NIE **b.**
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$$

TAK NIE c.
$$f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$$

9. Niech
$$w = \int_{0}^{\pi} x e^{x} dx$$

TAK NIE **a.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

TAK NIE c.
$$w = e^{\pi} (-1 + \pi)$$

10. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

TAK NIE **a.**
$$w = 124$$

TAK | NIE | **b.**
$$w = 12/5$$

TAK NIE c.
$$w = 124/3$$

11. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

TAK NIE b.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

TAK NIE **b.**
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$
TAK NIE **c.** $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$

12. Niech
$$g = \lim_{x \to 0^+} \frac{\ln(x)}{\text{ctg}(x)}$$
.

TAK NIE **a.**
$$g = 1$$

TAK NIE b.
$$g = \infty$$

$$\overline{\text{TAK} \mid \text{NIE} \mid} \mathbf{c.} \ g = 0$$

13. Niech
$$g = \lim_{x \to 0^+} x^{\frac{3}{4 + \ln(x)}}$$

TAK NIE **a.**
$$g = e^3$$

TAK NIE **b.**
$$g = 0$$

TAK NIE
$$\mathbf{c.} \ g = 1$$

14. Funkcja
$$f(x) = x \sin(x)$$

15. Niech
$$f(x) = (-8 - e^{-4x}) (4 + x)$$
. Wówczas

TAK NIE a.
$$f'(x) = -8 + 4e^{-4x} + \frac{(4+x)}{e^{4x}}$$

TAK | NIE | **b.**
$$f'(x) = -8 - e^{-4x} + \frac{4(4+x)^{1/2}}{4(4+x)^{1/2}}$$

TAK NIE **a.**
$$f'(x) = -8 + 4e^{-4x} + \frac{(4+x)}{e^{4x}}$$

TAK NIE **b.** $f'(x) = -8 - e^{-4x} + \frac{4(4+x)}{e^{4x}}$
TAK NIE **c.** $f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$

16. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

- TAK NIE a. ma w punkcie x = 3.2 maksimum globalne
- TAK NIE **b.** ma w punkcie x = 3.2 minimum lokalne
- TAK NIE c. ma w punkcie x = 3.2 ekstremum lokalne

17. Niech
$$f(x) = x^2$$

- TAK NIE a. Funkcja f(x) jest rosnaca dla $x \in (0,5)$
- TAK NIE **b.** f'(x) = 2x
- TAK NIE c. $f^{(2)}(x) = 2$
- 18. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.
- TAK NIE a. Czy $\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$?
- TAK NIE **b.** Czy $\int x \sin(x^2 + 4) dx = \int \sin y dy$?
- TAK NIE c. Czy $\int x \sin(x^2 + 4) dx = \int \sqrt{y 4} \sin y dy$?
- 19. Równanie stycznej do krzywej $K = \{(x,y) | y = \operatorname{tg}(2x)\}$ w punkcie (0,0) ma postać

TAK NIE **a.**
$$y = x + 1$$

TAK NIE **b.**
$$y = 2x$$

TAK NIE c.
$$y = 1/\cos^2(x)$$

20. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE a.
$$w=1$$

TAK NIE **b.**
$$w = \pi$$

TAK NIE c.
$$w = 2\pi$$

SGGW (18.12.2010) Sprawdzian z matematyki

Numer indeksu:																													
Imię i nazwisko:																													

Test składa się z dwudziestu zadań. W każdym z zadań podane są trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłową** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błędna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Niech
$$f(x) = 5 + 4x^5 - \sin(x)$$

TAK	NIE	a. Funkcja pierwotna funkcji $f(x)$ wynosi $\frac{x(15+2x^5)}{3} + \cos(x)$
TAK	NIE	b. Pierwsza pochodna funkcji $f(x)$ wynosi $20 x^4 - \cos(x)$
TAK	NIE	c. Druga pochodna funkcji $f(x)$ wynosi $80 x^3 + \sin(x)$

2. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \operatorname{tg}(2x)\}$ w punkcie (0,0)ma postać

		stycznej do kizyv
TAK	NIE	a. $y = x + 1$
		b. $y = 1/\cos^2(x)$
TAK	NIE	c. $y = 2x$

3. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

- 1			a. ma w punkcie $x = 3.2$ ekstremum lokalne
	TAK	NIE	b. ma w punkcie $x = 3.2$ minimum lokalne
Ī	TAK	NIE	\mathbf{c} ma w punkcie $x = 3.2$ maksimum globalne

4. Niech
$$w = \int_{0}^{\pi} xe^{x} dx$$

TAK NIE a.
$$w = 1 + e^{x\pi} (-2 + \pi)$$
TAK NIE b. $w = 1 + e^{\pi} (-1 + \pi)$
TAK NIE c. $w = e^{\pi} (-1 + \pi)$

5. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$
TAK NIE b. $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$
TAK NIE c. $f'(x) = \cos(x^2 + \sqrt{\ln(x)})$

6. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$
TAK NIE b. $f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$
TAK NIE c. $f'(x) = \cos(x^2 + \sqrt{\ln(x)})$

7. Niech
$$f(x) = 5 - \frac{1}{x} + 4 \ln(x)$$
. Wówczas

$$\begin{array}{l} \boxed{\text{TAK NIE }} \ \mathbf{a.} \ f'(x) = x^{-2} + \frac{4}{x} \\ \\ \boxed{\text{TAK NIE }} \ \mathbf{b.} \ f^{(2)}(x) = \frac{-2}{x^3} - \frac{4}{x^2} \\ \hline \boxed{\text{TAK NIE }} \ \mathbf{c.} \ \int f(x) \, dx = x - \ln(x) + 4 \, x \ln(x) \end{array}$$

8. Niech
$$f(x) = \frac{\ln(x)}{1+x^2}$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$$
TAK NIE **b.** $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2}$
TAK NIE **c.** $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$

9. Niech
$$g = \lim_{x \to 0^+} \frac{\ln(x)}{\text{ctg}(x)}$$
.

TAK NIE **a.**
$$g = 0$$

$$\overline{\text{TAK} \mid \text{NIE} \mid \mathbf{b.} \ g = 1}$$

TAK NIE
$$\mathbf{c.} \ g = \infty$$

10. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

TAK NIE **a.**
$$w = 12/5$$

TAK NIE b.
$$w = 124$$

TAK NIE **c.**
$$w = 124/3$$

11. Przy wyznaczaniu całki
$$\int x \sin(x^2 + 4) dx$$
 zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

TAK NIE **b.** Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y \, dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

12. Niech
$$g = \lim_{x \to 0^+} x^{\frac{3}{4 + \ln(x)}}$$

TAK NIE **a.**
$$g = 0$$

TAK NIE **b.**
$$g = 1$$

TAK NIE
$$\mathbf{c} \cdot g = e^3$$

13. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE a.
$$w=2\pi$$

TAK NIE b.
$$w = \pi$$

$$\overline{\text{TAK} \mid \text{NIE} \mid} \mathbf{c.} \ w = 1$$

14. Niech
$$f(x)=x^2+\operatorname{tg}(x+1)$$
. Niech $g(y)$ jest funkcją odwrotną do $f(x)$. Pochodna $g'(y_0)$, dla $y_0=f(\pi-1)$ wynosi

TAK NIE
$$\mathbf{a}. \ \pi$$

TAK NIE **b.**
$$2\pi$$

TAK NIE
$$\mathbf{c.} \ \pi + 1$$

15. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osia OX ma postać

TAK NIE **a.**
$$x - 2y - 1 = 0$$

TAK NIE **b.**
$$3x - 2y + 10 = 0$$

TAK NIE
$$\mathbf{c} \cdot y = x$$

16. Funkcja $f(x) = x \sin(x)$

TAK	NIE	a.	jest	okresowa
-----	-----	----	------	----------

17. Niech
$$f(x) = x^2$$

TAK NIE a. Funkcja
$$f(x)$$
 jest rosnąca dla $x \in (0,5)$

TAK NIE **b.**
$$f'(x) = 2x$$

TAK NIE **c.**
$$f^{(2)}(x) = 2$$

18. Niech funkcja
$$f(x) = x^3 - 3x + 1$$
. Wówczas

TAK NIE a. funkcja
$$f(x)$$
 jest wypukła na przedziale $(0,1)$

TAK NIE **b.** funkcja
$$f(x)$$
 jest rosnąca na przedziale (1.5,2)

TAK NIE c. funkcja
$$f(x)$$
 ma ekstrema lokalne w punktach: $x = -1$ oraz $x = 1$.

19. Przy wyznaczaniu całki $\int (x-4)e^{x^2} dx$ zastosowano podstawienie $y=(x-4)^2$.

[TAK] NIE] a. Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$$
?

TAK NIE b. Czy
$$\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$$
?

TAK NIE c. Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(\sqrt{y}+4)^2} dy$$
?

20. Niech
$$f(x) = (-8 - e^{-4x}) (4 + x)$$
. Wówczas

TAK NIE a.
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)^2}{e^{4x}}$$

TAK NIE **a.**
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

TAK NIE **b.** $f'(x) = -8 + 4e^{-4x} + \frac{(4+x)}{e^{4x}}$

TAK NIE c.
$$f'(x) = -8 - e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

SGGW (18.12.2010) Sprawdzian z matematyki

Numer indeksu:																								
Imię i nazwisko:																								

Test składa się z dwudziestu zadań. W każdym z zadań podane sa trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłowa** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błedna odpowiedź.

Przykład

0. Iloczyn $2 \cdot 2$ jest równy

TAK		4
TAK		$\log_2 16$
	NIE	7

Obliczanie punktów:

za każdą prawidłową odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

1. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

TAK	NIE	a. ma w punkcie $x = 3.2$ minimum lokalne
TAK	NIE	b. ma w punkcie $x=3.2$ ekstremum lokalne
TAK	NIE	c. ma w punkcie $x = 3.2$ maksimum globali

2. Niech
$$g = \lim_{x \to 0^+} x^{\frac{3}{4 + \ln(x)}}$$

TAK NIE
$$\mathbf{a}. g = 1$$
TAK NIE $\mathbf{b}. g = 0$
TAK NIE $\mathbf{c}. q = e^3$

3. Niech $f(x) = 5 + 4x^5 - \sin(x)$

TAK NIE a. Druga pochodna funkcji f(x) wynosi $80 x^3 + \sin(x)$

TAK NIE **b.** Pierwsza pochodna funkcji f(x) wynosi $20 x^4 - \cos(x)$

TAK NIE **c.** Funkcja pierwotna funkcji f(x) wynosi $\frac{x(15+2x^5)}{3} + \cos(x)$

4. Niech $f(x) = (-8 - e^{-4x}) (4 + x)$. Wówczas

TAK NIE **a.**
$$f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

TAK NIE b.
$$f'(x) = -8 - e^{-4x} + \frac{4(4+x)}{e^{4x}}$$

TAK NIE c.
$$f'(x) = -8 + 4e^{-4x} + \frac{{4 + x \choose 4 + x}}{e^{4x}}$$

5. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

- TAK NIE a. w = 124
- TAK NIE **b.** w = 124/3
- TAK NIE c. w = 12/5

6. Równanie stycznej do krzywej $K = \{(x,y) | y = \operatorname{tg}(2x)\}$ w punkcie (0,0) ma postać

- TAK NIE **a.** y = x + 1
- TAK NIE **b.** $y = 1/\cos^2(x)$
- TAK NIE $\mathbf{c}. \ y = 2x$
- 7. Przy wyznaczaniu całki $\int (x-4)e^{x^2} dx$ zastosowano podstawienie $y=(x-4)^2$.

- TAK NIE c. Czy $\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$?
- **8.** Niech $f(x) = 5 \frac{1}{x} + 4 \ln(x)$. Wówczas
- TAK NIE a. $f'(x) = x^{-2} + \frac{4}{x}$ TAK NIE b. $\int f(x) dx = x \ln(x) + 4x \ln(x)$
- TAK NIE c. $f^{(2)}(x) = \frac{-2}{x^3} \frac{4}{x^2}$

9. Niech
$$f(x) = \frac{\ln(x)}{1+x^2}$$
. Wówczas

TAK NIE **a.**
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$$

TAK NIE b.
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2}$$

TAK NIE a.
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$$

TAK NIE b. $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2}$
TAK NIE c. $f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$

10. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osią OX ma postać

TAK NIE **a.**
$$3x - 2y + 10 = 0$$

TAK NIE **b.**
$$y = x$$

TAK NIE **c.**
$$x - 2y - 1 = 0$$

11. Funkcja
$$f(x) = x \sin(x)$$

12. Niech
$$g = \lim_{x \to 0^+} \frac{\ln(x)}{\text{ctg}(x)}$$

TAK NIE **a.**
$$g = 0$$

TAK NIE b.
$$g = \infty$$

TAK NIE
$$\mathbf{c.} g = 1$$

13. Niech funkcja $f(x) = x^3 - 3x + 1$. Wówczas

TAK	NIE	a.	funkcja	f((x)	jest	wypukła	na	przedziale ((0,1))

TAK NIE **b.** funkcja
$$f(x)$$
 jest rosnąca na przedziale (1.5,2)

TAK NIE c. funkcja
$$f(x)$$
 ma ekstrema lokalne w punktach: $x = -1$ oraz $x = 1$.

14. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

TAK NIE **b.** Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$$
?

15. Niech
$$w = \int_{0}^{\pi} x \sin(x) dx$$

TAK NIE a.
$$w = 1$$

TAK NIE **b.**
$$w = 2\pi$$

TAK NIE c.
$$w = \pi$$

16. Niech
$$f(x) = \sin(x^2 + \sqrt{\ln(x)})$$
. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

TAK NIE b.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)})$$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$

17. Niech
$$F(x) = \int 4\sqrt{x} \, dx$$
.

TAK NIE a.
$$F(x) = \frac{8}{3x\sqrt{x}} + c$$

TAK NIE **b.**
$$F(x) = \frac{1}{8\sqrt{x}} + c$$

TAK NIE c.
$$F(x) = \frac{4}{3x\sqrt{x}} + c$$

18. Niech
$$w = \int_0^\pi x e^x dx$$

TAK NIE **a.**
$$w = e^{\pi} (-1 + \pi)$$

TAK NIE **b.**
$$w = 1 + e^{x\pi} (-2 + \pi)$$

TAK NIE **c.**
$$w = 1 + e^{\pi} (-1 + \pi)$$

19. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcją odwrotną do f(x). Pochodna $g'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

TAK NIE a.
$$\pi + 1$$

TAK NIE b.
$$\pi$$

TAK NIE c.
$$2\pi$$

20. Niech
$$f(x) = x^2$$

TAK NIE **a.**
$$f'(x) = 2x$$

TAK NIE **b.** Funkcja
$$f(x)$$
 jest rosnąca dla $x \in (0,5)$

TAK NIE **c.**
$$f^{(2)}(x) = 2$$

SGGW (18.12.2010) Sprawdzian z matematyki

Numer indeksu:	
Imię i nazwisko:	

Test składa się z dwudziestu zadań. W każdym z zadań podane sa trzy punkty a, b i c. W każdym podpunkcie należy skreślić **nieprawidłową** odpowiedź; przykład poniżej. Brak skreślenia traktowany jest jako błędna odpowiedź.

Przykład

0. Iloczvn $2 \cdot 2$ iest równy

Obliczanie punktów:

za każda prawidłowa odpowiedź na pytanie TAK lub NIE przyznawany jest mały punkt; jeżeli w danym pytaniu uzyskano trzy małe punkty, to przyznawany jest jeden duży punkt (w powyższym przykładowym pytaniu uzyskano trzy małe punkty i jeden duży).

Wynik testu = suma dużych punktów +
$$\frac{\text{suma małych punktów}}{100}$$

UWAGA: żadne poprawki nie będą uwzględniane!

2. Niech $f(x) = x^2 + \operatorname{tg}(x+1)$. Niech g(y) jest funkcją odwrotną do f(x). Pochodna $g'(y_0)$, dla $y_0 = f(\pi - 1)$ wynosi

0 -		, ,
	NIE	
TAK	NIE	b. 2π
TAK	NIE	c. $\pi + 1$

3. Równanie stycznej do krzywej $K = \{(x,y)|\ y = \arcsin\left(\frac{x-1}{2}\right)\}$ w punkcie przecięcia tej krzywej z osia OX ma postać

		$\mathbf{a.}\ 3x - 2y + 10 = 0$
TAK	NIE	b. $x - 2y - 1 = 0$
TAK	NIE	$\mathbf{c.} \ y = x$

4. Niech $f(x) = 5 + 4x^5 - \sin(x)$

TAK NIE a. Druga pochodna funkcji f(x) wynosi $80 x^3 + \sin(x)$

TAK NIE b. Pierwsza pochodna funkcji f(x) wynosi $20 x^4 - \cos(x)$

 $\boxed{\text{TAK} \mid \text{NIE} \mid}$ c. Funkcja pierwotna funkcji f(x)wynosi $\frac{x \, \left(15 + 2 \, x^5\right)}{2} + \cos(x)$

5. Niech
$$w = \int_{0}^{\pi} xe^{x} dx$$

TAK NIE a.
$$w = e^{\pi} (-1 + \pi)$$
TAK NIE b. $w = 1 + e^{\pi} (-1 + \pi)$
TAK NIE c. $w = 1 + e^{x\pi} (-2 + \pi)$

6. Niech
$$w = \int_{1}^{5} (-3 + x + x^2) dx$$

	TAK	NIE	a. $w = 124/3$
ĺ	TAK	NIE	b. $w = 12/5$
	TAK	NIE	$\mathbf{c.} \ w = 124$

7. Niech $f(x) = \sin(x^2 + \sqrt{\ln(x)})$. Wówczas

TAK NIE a.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{\sqrt{\ln(x)}}\right)$$

TAK NIE b. $f'(x) = \cos(x^2 + \sqrt{\ln(x)})$

TAK NIE c.
$$f'(x) = \cos(x^2 + \sqrt{\ln(x)}) \left(2x + \frac{1}{2x\sqrt{\ln(x)}}\right)$$

8. Niech
$$f(x) = \frac{\ln(x)}{1+x^2}$$
. Wówczas

TAK NIE a.
$$f'(x) = \frac{1 + x^2 - x^2 \ln(x)}{(1 + x^2)^2}$$

TAK NIE b.
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{x(1 + x^2)^2}$$
TAK NIE c. $f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$

TAK NIE c.
$$f'(x) = \frac{1 + x^2 - 2x^2 \ln(x)}{2(1 + x^2)}$$

9. Przy wyznaczaniu całki $\int x \sin(x^2 + 4) dx$ zastosowano podstawienie $y = x^2 + 4$.

TAK NIE a. Czy $\int x \sin(x^2 + 4) dx = \frac{1}{2} \int \sin y dy$?
---	---

TAK NIE b. Czy
$$\int x \sin(x^2 + 4) dx = \int \sin y dy$$
?

TAK NIE c. Czy
$$\int x \sin(x^2 + 4) dx = \int \sqrt{y - 4} \sin y dy$$
?

10. Niech $g = \lim_{x \to 0^+} \frac{\ln(x)}{\text{ctg}(x)}$.

		1	
TAK	NIE	$\mathbf{a.} \ q =$	

TAK NIE **b.**
$$g = 0$$

TAK NIE
$$\mathbf{c.} \ g = \infty$$

11. Niech funkcja $f(x) = x^3 - 3x + 1$. Wówczas

TAK NIE	a funkcia	f(x) ma	aketrama	lokalne w	punktach: $r = -$	-1 or 27 r - 1	

TAK NIE **b.** funkcja
$$f(x)$$
 jest wypukła na przedziale $(0,1)$

TAK NIE c. funkcja
$$f(x)$$
 jest rosnąca na przedziale (1.5,2)

12. Przy wyznaczaniu całki $\int (x-4)e^{x^2} dx$ zastosowano podstawienie $y=(x-4)^2$.

TAK NIE a. Czy
$$\int (x-4)e^{x^2} dx = 2 \int \sqrt{y}e^{(\sqrt{y}+4)^2} dy$$
?

TAK NIE b. Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(y+4)^2} dy$$
?

TAK NIE c. Czy
$$\int (x-4)e^{x^2} dx = \frac{1}{2} \int e^{(\sqrt{y}+4)^2} dy$$
?

13. Funkcja $f(x) = x \sin(x)$

TAK	NIE	a.	jest	okresowa

14. Niech $F(x) = \int 4\sqrt{x} dx$.

TAK NIE a.
$$F(x) = \frac{8}{3x\sqrt{x}} + \epsilon$$

$$\begin{array}{|c|c|}\hline {\rm TAK} & {\rm NIE} & {\bf a.} \ F(x) = \frac{8}{3x\sqrt{x}} + c \\ \hline {\rm TAK} & {\rm NIE} & {\bf b.} \ F(x) = \frac{1}{8\sqrt{x}} + c \\ \hline {\rm TAK} & {\rm NIE} & {\bf c.} \ F(x) = \frac{4}{3x\sqrt{x}} + c \end{array}$$

TAK NIE c.
$$F(x) = \frac{4}{3x\sqrt{x}} +$$

15. Funkcja
$$f(x) = \frac{(x-2)(8-x)}{x^2}$$

TAK NIE a. ma w punkcie x = 3.2 maksimum globalne

TAK NIE b. ma w punkcie x = 3.2 ekstremum lokalne

TAK NIE c. ma w punkcie x = 3.2 minimum lokalne

16. Równanie stycznej do krzywej $K = \{(x,y) | y = \operatorname{tg}(2x)\}$ w punkcie (0,0) ma postać

TAK NIE a. y = x + 1

TAK NIE **b.** $y = 1/\cos^2(x)$

TAK NIE c. y = 2x

17. Niech $g = \lim_{x \to 0^+} x^{\overline{4 + \ln(x)}}$

TAK NIE **a.** $q = e^3$

TAK NIE **b.** q=0

TAK NIE c. q=1

18. Niech $f(x) = 5 - \frac{1}{x} + 4 \ln(x)$. Wówczas

TAK NIE a. $\int f(x) dx = x - \ln(x) + 4x \ln(x)$

TAK NIE **b.** $f^{(2)}(x) = \frac{-2}{x^3} - \frac{4}{x^2}$

TAK NIE c. $f'(x) = x^{-2} + \frac{4}{x^{-2}}$

19. Niech $f(x) = (-8 - e^{-4x}) (4+x)$. Wówczas

TAK NIE **a.** $f'(x) = -8 - 4e^{-4x} + \frac{4(4+x)}{e^{4x}}$ TAK NIE **b.** $f'(x) = -8 - e^{-4x} + \frac{4(4+x)}{e^{4x}}$

TAK NIE c. $f'(x) = -8 + 4e^{-4x} + \frac{(4+x)^{2}}{2^{4x}}$

20. Niech $w = \int_{0}^{\pi} x \sin(x) dx$

TAK NIE a. $w=2\pi$

TAK NIE **b.** w=1

TAK NIE $\mathbf{c.} \ w = \pi$

.....

SGGW (18.12.2010) Sprawdzian z matematyki

Odpowiedzi

SGGW (18.12.2010) Sprawdzian z matematyki

SGGW (18.12.2010) Sprawdzian z matematyki

Odpowiedzi

.....

SGGW (18.12.2010) Sprawdzian z matematyki

EEEEEEEEEEEEEEEEEEEEEEEEEE

SGGW (18.12.2010) Sprawdzian z matematyki

Odpowiedzi

SGGW (18.12.2010) Sprawdzian z matematyki

.....

SGGW (18.12.2010) Sprawdzian z matematyki

Odpowiedzi

.....

SGGW (18.12.2010) Sprawdzian z matematyki

