Pravděpodobnost a statistika - zkoušková písemka 20.5.2021

Jméno a příjmení	1	2	3	ústní	celkem	známka

Úloha 1. (celkem 40 bodů)

Do výdejového centra obchodu s elektronikou, které funguje v pracovní dny od 9:00 do 17:00, přicházejí zákazníci pro své zásilky zcela nezávisle na sobě, rovnoměrně během celého dne. Průměrně přijde 80 zákazníků za den, 40% z nich jsou studenti. Určete pravděpodobnost, že

- a) nejpozději čtvrtý příchozí zákazník bude student, (8 bodů)
- b) na příštího zákazníka budeme čekat alespoň 5 minut, (8 bodů)
- c) od 10:00 do 10:15 přijdou do výdejového centra alespoň tři zákazníci, (8 bodů)
- d) od 10:00 do 10:15 přijdou do výdejového centra alespoň tři zákazníci, přičemž žádný z nich nebude student, (8 bodů)
- e) mezi dalšími 150 zákazníky bude alespoň 50 studentů (řešte pomocí CLV; 8 bodů).

Úloha 2. (celkem 24 bodů)

Uvažujte náhodné veličiny X a Y se sdruženým rozdělením

	X = 0	X = 1	X=2
Y = 0	0.21	0.35	0.14
Y = 1	0.09	0.15	0.06

- a) Spočtěte korelaci $\operatorname{corr}(X,Y)$. (8 bodů)
- b) Rozhodněte, zda jsou náhodné veličiny X a Y nezávislé, a své tvrzení řádně matematicky zdůvodněte. (8 bodů)
- c) Definujte nezávislost spojitých náhodných veličin U, V a W. (8 bodů)

Úloha 3. (celkem 36 bodů)

Na pouti ve stánku se prodávají balíčky karamelek. Prodejce tvrdí, že balíček má (průměrnou) hmotnost 100 g. U 21 náhodně vybraných balíčků byly naměřené hmotnosti (zaokrouhleno na celé gramy):

93	95	96	97	97	98	99	100	101	103	92	95	95	96	97	99	104	99	100	103	99

Mezi těmito balíčky bylo 8 s klasickými, 8 s ovocnými a 5 s kávovými karamelkami.

- a) Nakreslete histogram a odhadněte z něj, jaké rozdělení má náhodná veličina udávající hmotnost náhodně vybraného balíčku karamelek. (7 bodů)
- b) Odhadněte z dat střední hodnotu a rozptyl náhodné veličiny z otázky a). (5 bodů) (hint: $\sum x_i = 2058$, $\sum (x_i \bar{x})^2 = 206$)
- c) Statisticky otestujte na hladině 1%, zda má prodejce pravdu. (8 bodů)
- d) Statisticky otestujte na hladině 5%, zda při náhodném výběru balíčku karamelek od prodejce jsou pravděpodobnosti výběru klasických, ovocných, resp. kávových karamelek stejné. (8 bodů)
- e) Bez ohledu na výsledek z bodu d) předpokládejte, že

 $P(\text{vybereme klasické karamelky}) = p + \varepsilon,$

P(vybereme ovocné karamelky) = p,

 $P(\text{vybereme kávové karamelky}) = p - \varepsilon.$

S využitím metody maximální věrohodnosti odhadněte parametry p a ε . (8 bodů) (hint: Nejprve z vlastnosti pravděpodobnosti určete p a poté metodou maximální věrohodnosti odhadněte ε .)

 $\mathbf{\acute{U}stn\acute{i}}$ $\mathbf{\acute{c}\acute{a}st}$ (celkem 10 bodů)

Spojitá náhodná veličina ${\cal X}$ má hustotu pravděpodobnosti

$$f(x) = \begin{cases} c \cdot 2^{-x} & \text{pro } x > 0, \\ 0 & \text{pro } x \le 0. \end{cases}$$

Určete

- (i) konstantu c,
- (ii) distribuční funkci náhodné veličiny X,
- (iii) distribuční funkci náhodné veličiny X + 3.