Mech	usa	un	7.10																
Cow	ple	te 1	Netri	S	pales														
det	a	We	tri(sp	ale	(N	n,d)	is	call	ويلا	Con	npleti	e if	for	eve	14	Tauch	ny s	equence
										elem								J	
ex														me	etri(Sna	æ		
															e m			al e	
															lete				
			, w)						,,,,,,					····p	1010			- Pu	
								ıcla.	Sec	wwa		Co	00)						
		1 1400											ر می						
										ny 5									
										ome									
										5= im									
	(F) .														point	in	La, o	٥)	
										plete									
										omp									
(3)								M	etric	on (R	Conv	urges	siw	e w	e Kno	m en	evy	Cauchy seq
	COV	verg	es ii	n R?		NO													
	PAO	OF	let	S	n= (c	an, k	(n	be	a Cu	auchi	see	i es	² .	Ther	n (a	8 (N	(br) ar	e
			(au	chy	seq	, en	R (4	∌) و	xeiu:	se)									
			The	M	(a _n)	8	(b	"7	conv	to	som	e a	e k	eR					
			and	he	nce	(s	N) (OME	rges	to	(a,b))							
Cons	truc	tion	of R	for	m (D	using	Ca	uchy	se	quer	ices							
													aucho	sea	luence	es of	- rati	onal	numbers
										Cauc									
										me									
		_																	

						seq s n→	00 Wences	(s,	n) &	l (tr	to (rati	ional	num	n bens	are	equ	nivale	unt il	
We	Cav) de	fine	R o	is th	୧ ୧	t of	equ	ivalea	nce (classe	s of	- (ai	ıchy	sequ	lence:	s of	(atjo	nal t	† 5
	sequ																			
							in 17 N ar						lbseq	nence	e of	· (s,	۱ (۲	s a	sequ	lence
	(Sq,																			
ex)	Sn=	1/1	, r	EM																
	subs	seque	nes	3.					上											
	(1,	1/3,	1/5,	1/7,	19,)	Sn	K*	ak-	1	nk:	e dk	-1							
	(1/3	, 1/9,	/a:	1 1/8	١,)	Sur	د د	3K		NK	= 3k								
	NOT (1,1	S(ubse.	quen) e	es: ven	× (1,	1, 1	2, ¹ /:	3	ר										
	(10,	1/9,	1/20	1/19,)	e c	hang	ed	orde	w										
				h TE																
ex)	Sh	× 5	in	<u>a</u>	, ne	(N														
					0,.															
	sub	sequ	lenc	es:																
	(1)	ا را	,)																
					>															
							, 1, 0 ,)												

thm	I	f (s _n)	in	(m,	d)	CONV	erges	, th	nen o	ll it:	5 ZU/0	sequ	ence	s con	verge	to 4	the	Same	limil
															(s _h)					
								(e x e												
															٧v	>N				
							•	:N,												
							2>N													
				Sny																
Cord	olary			_				vqivq	Su	ubsea	ven	e o	r ô	d su	bsequ	ences	COV	nver	ging	
								n (9							V				<i>J</i>	
											U									
frid	ay	2.21																		
exl	Sne	vos.	(NT	(-7																
				_	cos	(aпI	c)= 1	for	all I	(ell)										
	S	o the	Subse	eq.	S ₂₀₀ x	Co	nv to	ı												
Sloves	90V. =	Cos	(<u>400 t</u>	100k) []	· 005(π+ 2	תע) =	-1	for a	II KEN	N								
								copy												
								ey to			limi	ts, it	- dive	erges						
TIF	Eve	wy s	eque	nce i	n R	has	a cov	nverge	nt s	ubseq	uence	F	alse							
								n + (
thm	J Bo	Izan	0- h)eiers	strass	Th	eoven	- ev	ery	boun	ded	seq	uonce	en	has	a con	iver ge	nt s	ubse	zueno
								e in												
	W	e w	ill (constv	uct	a	Cauci	ny	sequ	wu	- of	(s _n)	in	duch	vely					
	Siv	nce	(sn)	15	bdd,	, th	ene	exist	3	m>	0 8	uch	that							
	fo	r all	N.E	IN,	Ish	14 M		ie	- 1	n≤ s	s _n < 1	n								
	h	^		1 7	5	I		S _n		m										
								-1												

We let I, = (-M, M) and N,=1 We divide I, into haves, denoting a half w/ voly many terms of (sn) by Iz, & choose nz > N, 3+ Sn, EIz Suppose I, >Iz > ..>I, and n, < n2 < ... < n, st Snk EIk are chosen We divide In into haires, denote a half w/ only many terms of (Sn) by Iky & choose new > 1/2 St Snew & Iky The resulting subsequence (snk) is (auchy Indoed, for each NEN, Snk EIn for all KZN and $|I_N| = \frac{\Delta M}{2^{N-1}} \rightarrow 0$ as $N \rightarrow \infty$ (explain) It follows that (Snx) converges I Limits of Subsequences def a subsequential limit of (sn) is the limit of a subsequence of (sn) it can be a real number, -00, or on ex) sn= cos(\frac{n\pi}{4})+1/h Sub seg limits; $\frac{12}{2}$ 0, $\frac{12}{2}$ -1 Sn = (-n)" subseq limits: 00, - 00 thm let (sn) be a bounded sequence ER then limsups, is the largest of its subsequential limits, & liminf is the smallest PROOF for limsup. let (sn) be a bold sequence ETR & let b=limsupsn (1) for each E>O, there is NEN St Sn < b+E 4n>N (2) For each E>0, there are only many not sn>b-E (3) There is a subsequence (sny) com to b We construct (snk) st | snk-b| < 1/k for all k inductively it follows that Snx > b (explain)

By (1) & (2), for each E>0 there are only many n st sne (b-E, b+E) We take n, st | Sn, -b| < 1 Suppose nicnz <... < nk are chosen st | b-sni | < /i for all i= 1,...,k Since there are so many n st $|s_n-b| < \frac{1}{k+1}$, we can choose nkt, >nk st (Snkt, -b) < 1/kt, (4) (sn) has no subsequence (sne) whose limit limsnx >6 exercise ? How many subsequential limits can a sequence (sn) ER have? (1, 2, ..., N, 1, 2, ..., N, ...) has exactly N subseq limits ? (an (sn) have infinitely many subseq limits? ex) of a sequence st every SEIR is its subseq limit. We construct (sn) that it contains every rational number 0 1 > -1 > 2 -2 3 -3 1/3 -1/2 2/3 -2/3 3/3 -3/3 ... similar to (3) in earlier proof, use density of w and -∞ are also its subseq limits So the set of all subseq limits of (Sy) is RUE 00, -004