Функциональное программирование Лекция 3. Просто типизированное лямбда-исчисление

Денис Николаевич Москвин

СПбГУ, факультет МКН, бакалавриат «Современное программирование», 2 курс

18.09.2025

План лекции

- Понятие типа
- 2 Просто типизированное λ-исчисление
- \bigcirc Формализм систем λ_{\rightarrow}
- $lack \Delta$ Свойства λ_{\rightarrow}

План лекции

- 1 Понятие типа
- 2 Просто типизированное λ-исчисление
- Ормализм систем λ—
- 4 Свойства λ_—

Что такое типы?

Система типов — это гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Бенджамин Пирс

- В λ-исчислении:
 - выражения λ-термы;
 - вычисление их редукция;
 - значения (WH)NF.
- Типы синтаксические конструкции, приписываемые термам по определённым правилам:

M:A

Для чего нужны типы?

• Типы дают частичную спецификацию

$$f: \mathbb{N} \to \mathbb{N}$$
 $g: (\forall n: \mathbb{N}. \exists m: \mathbb{N}. m \leq n)$

- Правильно типизированные программы не могут «сломаться» (Робин Милнер, 1978)
- Типизированные программы всегда завершаются. (это не всегда так :)
- Проверка типов отлавливает простые ошибки.

Стрелочный тип в функциональных языках

• В большинстве систем типизации тождественной функции $I \equiv \lambda \, x. \, x$ может быть приписан тип lpha o lpha

$$\mathbf{I}: \boldsymbol{\alpha} \to \boldsymbol{\alpha}$$

- ullet В общем случае lpha
 ightarrow eta является типом функции из lpha в eta.
- Если имеется у типа α , являющийся аргументом функции I, то выражение I у тоже имеет тип α .
- Гипотезы о типе переменных записывают в контексте

$$y: \alpha \vdash (\mathbf{I} y) : \alpha$$

Примеры (на некотором условном языке)

 $sin: Double \rightarrow Double$

 $\mathtt{length}:\mathtt{Array} \to \mathtt{Int}$

Системы Карри и Чёрча

В λ -исчислении с типами выделяют два семейства систем типов.

Системы в стиле Карри

Термы те же, что и в бестиповой теории. Каждый терм обладает множеством различных типов (обычно их бесконечно много).

Системы в стиле Чёрча

Термы — аннотированные версии бестиповых термов. Каждый терм имеет тип (обычно уникальный), выводимый из способа, которым терм аннотирован.

Два взгляда на системы типов

Подход программиста

Термы интерпретируются как программы, а типы — как их частичные спецификации.

- Системы в стиле Карри: неявная типизация (например, Haskell, Ocaml).
- Системы в стиле Чёрча: явная типизация (большинство типизированных языков).

Логический подход

Типы интерпретируются как высказывания, а термы — как их доказательства.

Связь между «вычислительными» и логическими системами называют соответствием Карри-Говарда.

План лекции

- 1 Понятие типа
- 2 Просто типизированное λ-исчисление
- $oldsymbol{3}$ Формализм систем $\lambda_{
 ightarrow}$
- $oldsymbol{4}$ Свойства $\lambda_{
 ightarrow}$

Просто типизированное λ-исчисление

Самая простая система — это *просто типизированное* λ -*исчисление* (λ $_{\rightarrow}$ или Simple Type Theory (STT)).

Определение

Множество типов $\mathbb T$ системы $\lambda_{
ightarrow}$ определяется индуктивно:

$$lpha,eta,\ldots\in\mathbb{T}$$
 (переменные типа)

 $A,B\in\mathbb{T}\Rightarrow (A o B)\in\mathbb{T}$ (типы пространства функций)

• В абстрактном синтаксисе:

$$\mathbb{T} ::= \mathbb{V} \mid (\mathbb{T} \to \mathbb{T})$$

Здесь $\mathbb{V} = \{\alpha, \beta, \ldots\}$ — множество типовых переменных.

• Соглашение: α , β , γ используем для типовых переменных, а A, B, C — для произвольных типов.

Соглашения и примеры

Стрелка правоассоциативна: если $A_1,\dots,A_n\in\mathbb{T}$, то

$$\begin{array}{ccc} A_1 \rightarrow & A_2 \rightarrow \ldots \rightarrow & A_{n-1} \rightarrow A_n \equiv \\ (A_1 \rightarrow (A_2 \rightarrow \ldots \rightarrow (A_{n-1} \rightarrow A_n) \ldots)) \end{array}$$

$$(\alpha \to \beta) \equiv \alpha \to \beta$$

$$(\alpha \to (\beta \to \gamma)) \equiv \alpha \to \beta \to \gamma$$

$$((\alpha \to \beta) \to \gamma) \equiv (\alpha \to \beta) \to \gamma$$

$$((\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))) \equiv$$

$$(\alpha \to \beta) \to ((\beta \to \gamma) \to \alpha \to \gamma)$$

$$((\alpha \to \beta) \to (((\alpha \to \beta) \to \beta) \to \beta)) \equiv$$

$$(\alpha \to \beta) \to ((\alpha \to \beta) \to \beta) \to \beta$$

Всякий тип в $\lambda_{
ightarrow}$ может быть записан в виде

$$A_1 \to A_2 \to \ldots \to A_n \to \alpha$$

Как приписать тип терму? (переменные и аппликация)

• Если терм *переменная* — как угодно:

$$\begin{array}{l} x:\alpha\\ y:\alpha\rightarrow\beta\\ w:(\alpha\rightarrow\beta)\rightarrow((\alpha\rightarrow\beta)\rightarrow\beta)\rightarrow\beta \end{array}$$

- Если терм *аппликация* М N, то
 - M должно быть функцией, то есть иметь стрелочный тип $M:A\to B;$
 - N должно быть подходящим аргументом, то есть иметь тип N:A:
 - вся аппликация при этом получит тип результата функции:
 M N : B.

$$\begin{array}{cccc} x^{\alpha}, y^{\alpha \to \beta} & \vdash & y \, x : \beta \\ x^{\alpha}, y^{\alpha \to \beta}, z^{\beta \to \gamma} & \vdash & z \, (y \, x) : \gamma \end{array}$$

А какие должны иметь типы x и y, чтобы $x(yx):\gamma?$

Как приписать тип терму? (абстракция)

- Если терм *абстракция* λx. M, то
 - его тип должен быть стрелочным $\lambda x. M : A \to B;$
 - тип аргумента x должен быть A;
 - тип тела абстракции М должен быть В.
- Например, для $x : \alpha$ имеем $\lambda x . x : \alpha \to \alpha$
- Но писать $x^{\alpha} \vdash \lambda x. \, x: \alpha \to \alpha$ плохая идея! Контекст глобален, а переменная x локальна, и ее имя может использоваться многократно в разных областях видимости.
- Можно ли как-то указать, что переменная χ имеет тип α ?
 - Если не указать, то допустимо и $\lambda x. \ x: \beta \to \beta$ и даже $\lambda x. \ x: (\alpha \to \beta) \to \alpha \to \beta$ стиль Карри.
 - Если указать λx^{α} . $x : \alpha \to \alpha$, то тип терма определяется однозначно стиль Чёрча.
- Типизируйте по Чёрчу: $\lambda x^{?}$. $\lambda y^{?}$. x(yx):?

Согласованность договоренностей об ассоциативности

Правила ассоциативности для типовой стрелки (вправо) и аппликации (влево) хорошо согласованы друг с другом

$$\begin{array}{lll} f^{\alpha \to (\beta \to (\gamma \to \delta))}, \alpha^{\alpha} & \vdash & f \, \alpha : \beta \to (\gamma \to \delta) \\ f^{\alpha \to (\beta \to (\gamma \to \delta))}, \alpha^{\alpha}, b^{\beta} & \vdash & (f \, \alpha) \, b : \gamma \to \delta \\ f^{\alpha \to (\beta \to (\gamma \to \delta))}, \alpha^{\alpha}, b^{\beta}, c^{\gamma} & \vdash & ((f \, \alpha) \, b) \, c : \delta \end{array}$$

Все зелёные скобки необязательны и почти всегда опускаются. Ассоциативности абстракции и стрелки тоже согласованы

$$\begin{array}{cccc} f^{\alpha \to \beta \to \gamma \to \delta}, b^\beta, c^\gamma & \vdash & \lambda a^\alpha. \, f \, a \, b \, c : \alpha \to \delta \\ f^{\alpha \to \beta \to \gamma \to \delta}, c^\gamma & \vdash & \lambda b^\beta. \, (\lambda a^\alpha. \, f \, a \, b \, c) : \beta \to (\alpha \to \delta) \\ f^{\alpha \to \beta \to \gamma \to \delta} & \vdash & \lambda c^\gamma. \, (\lambda b^\beta. \, (\lambda a^\alpha. \, f \, a \, b \, c)) : \\ & & \gamma \to (\beta \to (\alpha \to \delta)) \end{array}$$

План лекции

- 1 Понятие типа
- 2 Просто типизированное λ-исчисление
- $oldsymbol{3}$ Формализм систем $\lambda_{
 ightarrow}$
- $oldsymbol{4}$ Свойства $\lambda_{
 ightarrow}$

Предтермы системы $\lambda_{ ightarrow}$ а ля Карри

Определение

Множество *предтермов* (или *псевдотермов*) Λ строится из переменных из $V = \{x, y, z, \ldots\}$ с помощью аппликации и абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda \\ M, N \in \Lambda & \Rightarrow & (M N) \in \Lambda \\ M \in \Lambda, x \in V & \Rightarrow & (\lambda x. M) \in \Lambda \end{array}$$

• В абстрактном синтаксисе

$$\Lambda ::= V | (\Lambda \Lambda) | (\lambda V. \Lambda)$$

• Предтермы системы в стиле Карри — это в точности термы бестипового λ-исчисления.

Предермы системы $\lambda_{ ightarrow}$ а ля Чёрч

Определение

Множество *предтермов* $\Lambda_{\mathbb{T}}$ строится из переменных из $V = \{x,y,z,\ldots\}$ с помощью аппликации и аннотированной типами абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda_{\mathbb{T}} \\ M, N \in \Lambda_{\mathbb{T}} & \Rightarrow & (M \ N) \in \Lambda_{\mathbb{T}} \\ M \in \Lambda_{\mathbb{T}}, x \in V, \textcolor{red}{A} \in \textcolor{blue}{\mathbb{T}} & \Rightarrow & (\lambda x^{\textcolor{red}{A}}. \ M) \in \Lambda_{\mathbb{T}} \end{array}$$

• В абстрактном синтаксисе

$$\Lambda_{\mathbb{T}} ::= V \mid (\Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}}) \mid (\lambda V^{\mathbb{T}} . \Lambda_{\mathbb{T}})$$

• Все соглашения о скобках и ассоциативности те же, что и в системе Λ .

Примеры предтермов

Система $\lambda_{ ightarrow}$ а ля Карри:

$$\lambda x y. x$$
 $\lambda f g x. f (g x)$
 $\lambda x. x x$

C Истема $\lambda_{ ightarrow}$ а ля Чёрч:

$$\lambda x^{\alpha} y^{\beta}. x$$

$$\lambda x^{\alpha} y^{\alpha}. x$$

$$\lambda f^{\alpha} g^{\beta} x^{\gamma}. f(gx)$$

$$\lambda f^{\beta \to \gamma} g^{\alpha \to \beta} x^{\alpha}. f(gx)$$

$$\lambda x^{\alpha}. x x$$

Красные предтермы так и останутся в этом статусе.

Утверждение о типизации

Определение

Утверждение типизации в λ_{\rightarrow} «а ля Карри» имеет вид

M:A

где $M \in \Lambda$ и $A \in \mathbb{T}$. Тип A иногда называют *предикатом*, а терм M - cyбъектом утверждения.

Для λ_{\to} «а ля Чёрч» надо лишь заменить Λ на $\Lambda_{\mathbb{T}}$.

Примеры утверждений типизации

Система в стиле Карри

Система в стиле Чёрча λx^{α} . $x : \alpha \rightarrow \alpha$

$$\lambda x. x : \alpha \to \alpha$$

 $\lambda x. x : (\alpha \to \beta) \to \alpha \to \beta$

$$\lambda x. x: (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$$

 $\lambda x. y. x: \alpha \rightarrow \beta \rightarrow \alpha$

$$\lambda x^{\alpha \to \beta} \cdot x : (\alpha \to \beta) \to \alpha \to \beta$$

 $\lambda x^{\alpha} y^{\beta} \cdot x : \alpha \to \beta \to \alpha$

$$\lambda x^{\alpha} y^{\beta} . x : \alpha \to \beta \to \alpha$$

Объявления

Определение

Объявление — это утверждение типизации с термовой переменной в качестве субъекта.

$$\begin{aligned} &x:\alpha\\ &y:\beta\\ &f:\alpha\to\beta\\ &g:(\alpha\to\beta)\to\gamma \end{aligned}$$

Или, в «степенном» синтаксисе

$$\begin{array}{l} x^{\alpha} \\ y^{\beta} \\ f^{\alpha \to \beta} \\ g^{(\alpha \to \beta) \to \gamma} \end{array}$$

Контексты

Определение

Контекст — это множество объявлений с *различными* переменными в качестве субъекта

$$\Gamma \ = \ \{x_1^{A_1}, x_2^{A_2}, \dots, x_n^{A_n}\}$$

Контекст иногда называют базисом или окружением.

• Фигурные скобки множества обычно опускают

$$\Gamma = x^{\alpha}, f^{\alpha \to \beta}, g^{(\alpha \to \beta) \to \gamma}$$

 Контексты можно расширять, добавляя объявление свежей переменной

$$\Delta = \Gamma, y^{\beta} \equiv x^{\alpha}, f^{\alpha \to \beta}, g^{(\alpha \to \beta) \to \gamma}, y^{\beta}$$

• Контекст можно рассматривать как (частичную) функцию из множества переменных V в множество типов \mathbb{T} .

Правила типизации $\lambda_{ ightarrow}$ «а ля Карри»

Утверждение M: C называется **выводимым** в контексте Γ , обозначение

$$\Gamma \vdash M : C$$

если его вывод может быть произведен по правилам:

$$\begin{array}{ll} \hbox{(аксиома)} & \Gamma \vdash x : A, \ \mathsf{если} \ x^A \in \Gamma \\ \\ \hbox{(\rightarrow E)$} & \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M \, N : B} \\ \\ \hbox{(\rightarrow I)$} & \frac{\Gamma, x^A \vdash M : B}{\Gamma \vdash \lambda x. \, M : A \to B} \end{array}$$

Если для предтерма M существуют Γ и C, такие что $\Gamma \vdash M : C$, то его называют (допустимым) термом.

Типизация λ_{\rightarrow} «а ля Карри»: пример

(аксиома)
$$\Gamma \vdash x : A$$
, если $x^A \in \Gamma$
$$(\to E) \qquad \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M \, N : B}$$

$$(\to I) \qquad \frac{\Gamma, x^A \vdash M : B}{\Gamma \vdash \lambda x. \, M : A \to B}$$

$$\frac{x^{\alpha}, y^{\beta} \vdash x : \alpha}{x^{\alpha} \vdash \lambda y. x : \beta \to \alpha} \xrightarrow{(\to I)} (\to I)$$
$$\vdash \lambda x y. x : \alpha \to \beta \to \alpha$$

Для любых $A,B\in\mathbb{T}$ верно $\vdash \lambda x\,y.\,x:A\to B\to A.$

Пример дерева вывода для ${f B}$ в $\lambda_{ ightarrow}$ «а ля Карри»

Введем сокращение $\Gamma \equiv f^{\beta \to \gamma}, g^{\alpha \to \beta}, \chi^{\alpha}$ для повторяющегося контекста.

$$\frac{\Gamma \vdash g : \alpha \to \beta \qquad \Gamma \vdash x : \alpha}{\Gamma \vdash g x : \beta} \xrightarrow{(\to E)} (\to E)$$

$$\frac{f^{\beta \to \gamma}, g^{\alpha \to \beta}, x^{\alpha} \vdash f(gx) : \gamma}{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x. f(gx) : \alpha \to \gamma} \xrightarrow{(\to I)} (\to I)$$

$$\frac{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x. f(gx) : \alpha \to \gamma}{(\to I)} \xrightarrow{(\to I)} (\to I)$$

$$\vdash \lambda f g x. f(gx) : (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} \xrightarrow{(\to I)} (\to I)$$

Типизация λ_{\rightarrow} «а ля Чёрч» в виде деревьев вывода

(аксиома)
$$\Gamma \vdash x : A$$
, если $x^A \in \Gamma$
$$(\to E) \qquad \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M \, N : B}$$

$$(\to I) \qquad \frac{\Gamma, x^A \vdash M : B}{\Gamma \vdash \lambda x^A . \, M : A \to B}$$

$$\frac{x^{\alpha}, y^{\beta} \vdash x : \alpha}{x^{\alpha} \vdash \lambda y^{\beta}. x : \beta \to \alpha} \xrightarrow{(\to I)} (\to I)$$
$$\vdash \lambda x^{\alpha} y^{\beta}. x : \alpha \to \beta \to \alpha$$

Для каждой пары $A, B \in \mathbb{T}$ верно $\vdash \lambda x^{\mathbf{A}} \, y^{\mathbf{B}} . \, x : A \to B \to A.$

Пример дерева вывода для B в $\lambda_{ ightarrow}$ «а ля Чёрч»

Введем сокращение $\Gamma \equiv f^{\beta \to \gamma}, g^{\alpha \to \beta}, \chi^{\alpha}$ для повторяющегося контекста.

$$\frac{\Gamma \vdash g : \alpha \to \beta \qquad \Gamma \vdash x : \alpha}{\Gamma \vdash g x : \beta} \xrightarrow{(\to E)} (\to E)$$

$$\frac{f^{\beta \to \gamma}, g^{\alpha \to \beta}, x^{\alpha} \vdash f(gx) : \gamma}{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x^{\alpha}. f(gx) : \alpha \to \gamma} \xrightarrow{(\to I)} (\to I)$$

$$\frac{f^{\beta \to \gamma}, g^{\alpha \to \beta} \vdash \lambda x^{\alpha}. f(gx) : (\alpha \to \beta) \to \alpha \to \gamma}{(\to I)} \xrightarrow{(\to I)}$$

$$\vdash \lambda f^{\beta \to \gamma} g^{\alpha \to \beta} x^{\alpha}. f(gx) : (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} \xrightarrow{(\to I)}$$

План лекции

- 1 Понятие типа
- 2 Просто типизированное λ-исчисление
- Ормализм систем λ—
- f 4 Свойства $\lambda_{
 ightarrow}$

Технические леммы

Лемма об инверсии (лемма генерации)

- $\bullet \ \Gamma \vdash \chi : A \ \Rightarrow \ \chi^A \in \Gamma.$
- $\bullet \ \Gamma \vdash M \ N : B \ \Rightarrow \ \exists A \ [\Gamma \vdash M : A \to B \ \land \ \Gamma \vdash N : A].$
- $\Gamma \vdash \lambda x. M : C \Rightarrow \exists A, B \ [\Gamma, x^A \vdash M : B \land C \equiv A \rightarrow B].$ (λ_{\rightarrow} аля Карри)
- $\Gamma \vdash \lambda x^{\mathbf{A}} . M : C \Rightarrow \exists \mathbf{B} \ [\Gamma, x^{\mathbf{A}} \vdash M : \mathbf{B} \ \land \ C \equiv \mathbf{A} \to \mathbf{B}].$ (λ_{\rightarrow} а ля Чёрч)

Лемма о типизируемости подтерма

Пусть M' — подтерм M. Тогда $\Gamma \vdash M : A \ \Rightarrow \ \Gamma' \vdash M' : A'$ для некоторых Γ' и A'.

То есть, если терм имеет тип, то каждый его подтерм тоже имеет тип.

Леммы о контекстах

Какой контекст требуется, чтобы произвести присваивание типов?

Лемма «разбавления» (Thinning)

Пусть Γ и Δ — контексты, причём $\Delta\supseteq \Gamma$. Тогда $\Gamma \vdash M : A \Rightarrow \Delta \vdash M : A$. Расширение контекста не влияет на выводимость утверждения типизации.

Лемма о свободных переменных

 $\Gamma \vdash M : A \Rightarrow FV(M) \subseteq dom(\Gamma)$. Свободные переменные типизированного терма должны присутствовать в контексте.

Лемма сужения

 $\Gamma \vdash M : A \Rightarrow \Gamma \upharpoonright FV(M) \vdash M : A$. Сужение контекста до множества свободных переменных терма не влияет на выводимость утверждения типизации.

Свойства λ_{\rightarrow} : нетипизируемые предтермы

- Рассмотрим предтерм х х. Предположим, что это терм.
- Тогда имеются Г и В, такие что

$$\Gamma \vdash x x : B$$

- По лемме об инверсии существует такой A, что правый подтерм x:A, а левый подтерм (тоже x) имеет тип $A \to B$.
- По лемме о контекстах $x \in \mathrm{dom}(\Gamma)$ и должен иметь там единственное связывание по определению контекста. То есть $A \equiv A \to B$ тип является подвыражением себя, чего не может быть, поскольку (и пока) типы конечны.

По лемме о типизируемости подтерма предтермы $\pmb{\omega}=\lambda x.\,x\,x$, $\pmb{\Omega}=\pmb{\omega}\,\pmb{\omega}$ и $\pmb{Y}=\lambda f\,.\,(\lambda x\,.\,f(x\,x))(\lambda x\,.\,f(x\,x))$ не имеют типа

$$x^{A} \not\vdash x x : B, \quad \not\vdash \omega : A, \quad \not\vdash \Omega : A, \quad \not\vdash Y : A.$$

Лемма подстановки типа для $\lambda_{ ightarrow}$

Определение

Для типов $A,B\in\mathbb{T}$ подстановку A вместо переменной типа α в B обозначим $[\alpha\mapsto A]B.$

Лемма подстановки типа

$$\begin{array}{ll} \Gamma \vdash M : B \ \Rightarrow \ [\alpha \mapsto A]\Gamma \vdash M : [\alpha \mapsto A]B. \\ \mbox{(λ_{\rightarrow} Карри)} \\ \Gamma \vdash M : B \ \Rightarrow \ [\alpha \mapsto A]\Gamma \vdash [\alpha \mapsto A]M : [\alpha \mapsto A]B. \\ \mbox{(λ_{\rightarrow} Чёрч)} \end{array}$$

$oxedsymbol{\cap}$ Подстановка $[lpha \mapsto (\gamma o \gamma)]$

$$\begin{array}{ccc} x^{\alpha} & \vdash & \lambda y^{\alpha} z^{\beta}. \ x : \alpha \to \beta \to \alpha & \Rightarrow \\ x^{\gamma \to \gamma} & \vdash & (\lambda y^{\gamma \to \gamma} z^{\beta}. x) : (\gamma \to \gamma) \to \beta \to \gamma \to \gamma \end{array}$$

Лемма подстановки $extit{терма}$ для $\lambda_{ ightarrow}$

Лемма подстановки терма

Пусть $\Gamma, x^A \vdash M : B$ и $\Gamma \vdash N : A$, тогда $\Gamma \vdash [x \mapsto N]M : B$.

То есть, подходящая по типу подстановка терма сохраняет тип.

Пример

Берём утверждение о типизации

$$x^{\gamma \to \gamma} \vdash \lambda y^{\beta}. x : \beta \to \gamma \to \gamma$$

и подставляем в него вместо свободной переменной x типа $\gamma \to \gamma$ терм $\lambda z^\gamma.\,z$ подходящего типа $\gamma \to \gamma.$ Получаем

$$\vdash \lambda y^{\beta} z^{\gamma}.z: \beta \rightarrow \gamma \rightarrow \gamma$$

Что произойдет с деревом вывода типа при такой подстановке?

Редукция субъекта в $\lambda_{ ightarrow}$

Лемма подстановки терма позволяет доказать теорему о сохранении типа в процессе вычислений.

Теорема о редукции субъекта

Пусть $M \twoheadrightarrow_{\beta} N$. Тогда $\Gamma \vdash M : A \Rightarrow \Gamma \vdash N : A$.

- То есть тип терма сохраняется при β-редукциях.
- С вычислительной точки зрения это одно из ключевых свойств любой системы типов.

Следствие

Множество типизируемых в $\lambda_{
ightarrow}$ термов замкнуто относительно редукции.

В обратную сторону эта теорема (и следствие из нее) не верны для $\lambda_{\rightarrow}.$

Единственность типа в $\lambda_{ ightarrow}$

Теорема о единственности типа для $\lambda_{ ightarrow}$ а ля Чёрч

Пусть $\Gamma \vdash_{\mathsf{q}} M : A$ и $\Gamma \vdash_{\mathsf{q}} M : B$. Тогда $A \equiv B$.

Терм в λ_{\rightarrow} а ля Чёрч имеет единственный тип.

Следствие

Пусть $\Gamma \vdash_{\mathsf{Ч}} M : A$, $\Gamma \vdash_{\mathsf{Ч}} N : B$ и $M =_{\beta} N$. Тогда $A \equiv B$.

Типизируемые β -конвертируемые термы имеют одинаковый тип в λ_{\rightarrow} а ля Чёрч.

Для систем в стиле Карри единственности типа нет.

Контрпример для системы а ля Карри

Оба типа подходят для $\mathbf{K} = \lambda x \, \mathbf{y}. \, \mathbf{x}$

$$\vdash_{\mathsf{K}} \lambda x\,y.\,x:\alpha \to (\delta \to \gamma \to \delta) \to \alpha$$

$$\vdash_{\kappa} \lambda x y. x : (\gamma \rightarrow \gamma) \rightarrow \beta \rightarrow \gamma \rightarrow \gamma$$

Связь между системами Карри и Чёрча

ullet Зададим на термах стирающее отображение $|\cdot|:\Lambda_{\mathbb{T}} o \Lambda$:

$$|x| = x$$

$$|M N| = |M| |N|$$

$$|\lambda x^{A}. M| = \lambda x. |M|$$

$$M \in \Lambda_{\mathbb{T}} \ \land \ \Gamma \vdash_{\mathsf{Y}} M : A \ \Rightarrow \ \Gamma \vdash_{\mathsf{K}} |M| : A$$

$$M \in \Lambda \land \Gamma \vdash_{\mathsf{K}} M : A \ \Rightarrow \ \exists N \in \Lambda_{\mathbb{T}} \left[\Gamma \vdash_{\mathsf{Y}} N : A \ \land \ |N| \equiv M \right]$$

ullet Для произвольного типа $A\in\mathbb{T}$ выполняется

A обитаем в $\lambda \!\! \to \!\! -$ Карри $\ \Leftrightarrow \ A$ обитаем в $\lambda \!\! \to \!\! -$ Чёрч

Проблемы разрешимости

• Есть ли алгоритм, который позволяют решить задачу?

⊢ M : A?	Задача проверки типа Type Checking Problem	TCP
⊢ M : ?	Задача синтеза (вывода) типа Type Synthesis (or Assgnment) Problem	3CT, 3BT TSP, TAP

⊢ ? : A	Задача обитаемости типа	30T
	Type Inhabitation Problem	TIP

- Для λ_{\to} (и в стиле Чёрча, и в стиле Карри) все эти задачи разрешимы.
- ЗПТ выглядит проще ЗСТ, но в системах Карри они эквивалентны: проверка $M \, N : A?$ требует синтеза N : ?.

T еорема о нормализации $\lambda_{\! ightarrow}$

Определение

Систему типов называют *слабо нормализуемой*, если все ее допустимые термы слабо нормализуемы.

Определение

Систему типов называют *сильно нормализуемой*, если все ее допустимые термы сильно нормализуемы.

${\sf Teopema}$ о нормализации $\lambda_{ ightarrow}$

Обе системы λ_{\rightarrow} (и Карри, и Чёрча) сильно нормализуемы.

То есть любой допустимый терм в λ_{\to} всегда редуцируется к нормальной форме независимо от стратегии редукции.