LADR 2C

Lucas Zheng

Dimension

Difficusion
2.35 Basis length doesn't depend on basis
Proof. Let B_1, B_2 be bases for V . Then, $len(B_1) \ge len(B_2) \land len(B_2) \ge len(B_1) \implies len(B_1) = len(B_2)$.
2.36 Definition: dimension (dim V)
Length of any basis of V.
2.38 Dimension of a subspace \leq the space
Proof. Trivial.
2.39 Linearly independent list of right length is basis
2.42 Spanning list of right length is basis
2.43 Dimension of a sum
$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$
<i>Proof.</i> Intersection is a subspace w/ dimension m. We can extend it by j vectors to create a basis for U_1 . Similarly, we can extend it by k vectors to create a basis for U_2 . Finally, $\dim(U_1 + U_2) = (m+j) + (m+k) - m$.

Problem 9

Suppose $v_1 \dots v_m$ is linearly independent in V and $w \in V$. Prove $\dim \operatorname{span}(v_1 + w \dots v_m + w) \geq m - 1$.

Proof. The given span is equivalent to the span of any linear combination of its spanning list. Thus, the given span is equivalent to $\operatorname{span}(v_1-v_2,v_2-v_3,\ldots,v_m+w)$. Since v_1,\ldots,v_m is linearly independent and $v_1-v_2,v_2-v_3,\ldots,v_{m-1}-v_m$ is a linear combination of v_1,\ldots,v_m , it is also linearly independent. Thus, $\dim \operatorname{span}(v_1-v_2,v_2-v_3,\ldots,v_{m-1}-v_m)=m-1$, and $\dim \operatorname{span}(v_1-v_2,v_2-v_3,\ldots,v_m+w)\geq m-1$.

Problem 11

Suppose that U and W are subspaces of \mathbb{R}^8 such that dim U=3, dim W=5 and $U+W=\mathbb{R}^8$. Prove that $\mathbb{R}^8=U\oplus W$.

Proof. We've proven earlier that

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

$$8 = 3 + 5 - \dim(U \cap W).$$

Since $\dim(U \cap W) = 0$, we have it that the intersection is $\{0\}$. We've also proven earlier that

$$U \cap W = \{0\} \implies U + W = U \oplus W.$$

Problem 17

Prove or disprove:

$$\dim(U_1 + U_2 + U_3) = \dim(U_1) + \dim(U_2) + \dim(U_3)$$
$$-\dim(U_1 \cap U_2) - \dim(U_2 \cap U_3) - \dim(U_3 \cap U_1)$$
$$+ \dim(U_1 \cap U_2 \cap U_3)$$

Proof. Counterexample: $U_1 = \text{span}\{(1,0)\}, U_2 = \text{span}\{(1,1)\}, U_3 = \text{span}\{(0,1)\}.$ $2 \neq 1 + 1 + 1 - 1 - 1 - 0 + 0.$