

## Chapter 22 Capacitance, Dielectrics, Electric Energy Storage



#### § 22-1 Capacitance (P525)

- Capacitors
  - → Any two conductors separated by an insulator (or a vacuum) form a capacitor, which can store amount of charge.





#### **Capacitance of a capacitor**



**→** The capacitance C of a capacitor

$$Q = C(\Delta V)$$

$$C \equiv \frac{Q}{\Delta V}$$







▶ The capacitance of a capacitor depends on the geometric arrangement of the conductors, and is independent of the charge Q or the potential difference  $\Delta V$ . Because the potential difference is proportional to the charge, the ratio  $Q/\Delta V$  is constant for a given capacitor.



### § 22-2 Determination of Capacitance (P526)



#### **Problem-Solving Strategy:**

- A convenient charge of magnitude Q is assumed.
- The potential difference  $\Delta V$  is calculated.
- Use  $C=Q/\Delta V$  to evaluate the capacitance.



#### **The parallel-plate capacitor (P527)**



A parallel-plate capacitor consists of two parallel plates of equal area A, separated by a distance d.

Find the capacitance.





#### The parallel-plate capacitor



Solution: Assume the two plates have opposite charges +Q and -Q. An uniform electric field is:

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A}$$

#### The potential difference:

$$\Delta V = \int_{+}^{-} \vec{E} \cdot d\vec{l} = Ed = \frac{Qd}{\varepsilon_0 A}$$

$$C = \frac{Q}{\Delta V} = \frac{\varepsilon_0 A}{d}$$



## -

#### The parallel-plate capacitor



$$C = \varepsilon_0 \frac{A}{d}$$

→ The capacitance of a parallel-plate capacitor is proportional to the area of its plates and inversely proportional to the plate separation, which are the geometrical factors.



- The capacitance does not depend on the potential difference or the charge carried by the plates.
- ▶ The capacitance has form of  $\varepsilon_0$  times a quantity with the dimension of length (A/d), which is essential form for all the capacitors.

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m} = 8.85 \text{pF/m}$$



#### The parallel-plate capacitor



$$C = \frac{\mathcal{E}_0 A}{d}$$





Key on a computer keyboard

A radio tuner



#### **The Spherical Capacitor (P529 Ex. 22-3)**



A spherical capacitor in which the inner conductor is a solid sphere of radius *a*, and outer conductor is a hollow spherical shell of inner radius *b*. Find the capacitance.



#### **The Spherical Capacitor**



Solution: Assume the inner and outer sphere have opposite charges +Q and -Q. In the region a < r < b, we can use Gauss' law to determine:

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}, \qquad (a < r < b)$$

#### The potential difference:

$$\Delta V = \int_{+}^{-} \vec{E} \cdot d\vec{s} = \frac{Q}{4\pi\varepsilon_{0}} \int_{r_{a}}^{r_{b}} \frac{dr}{r^{2}} = \frac{Q}{4\pi\varepsilon_{0}} \left( \frac{1}{a} - \frac{1}{b} \right)$$

$$= \frac{Q}{4\pi\varepsilon_{0}} \frac{b - a}{ab}, \qquad C = \frac{Q}{\Delta V} = 4\pi\varepsilon_{0} \frac{ab}{b - a}$$



#### **The Spherical Capacitor**



$$C = 4\pi\varepsilon_0 \frac{ab}{b-a}$$





- **▶** When  $b\to\infty$ ,  $C=4\pi\epsilon_0 a$  (isolated conducting sphere )
- ▶ When b-a<<a, ab≈ $a^2$ , d=b-a, A= $4\pi a^2$ , C= $ε_0A/d$  (parallel-plate capacitor)



#### **The Cylindrical Capacitor (P528 Ex.22-2)**



# A cylindrical capacitor consists of a cylindrical conductor of radius *a* coaxial with a larger cylindrical shell of radius *b*. Find the capacitance of this device if its length is *l*.



coaxial cable





#### **The Cylindrical Capacitor**



## Solution: Assume the inner and outer conductors have opposite charges +Q and -Q. In the region a < r < b, we can use Gauss' law to determine:

$$\bigoplus_{S} \vec{E} \cdot d\vec{A} = E(2\pi rl) = \frac{\lambda l}{\varepsilon_0}, \qquad E = \frac{\lambda}{2\pi \varepsilon_0 r}$$

#### The potential difference:

$$\Delta V = \int_{+}^{-} \vec{E} \cdot d\vec{s} = \int_{a}^{b} \frac{\lambda}{2\pi\varepsilon_{0}} \frac{dr}{r} = \frac{\lambda}{2\pi\varepsilon_{0}} \ln\left(\frac{b}{a}\right)$$

$$Q = \lambda l$$
,  $C = \frac{Q}{\Delta V} = \frac{2\pi \varepsilon_0 l}{\ln(b/a)}$ 





#### **The Cylindrical Capacitor**



$$C = \frac{2\pi\varepsilon_0 l}{\ln(b/a)}$$

- ▶ The form of  $\varepsilon_0$  times a quantity with dimension of length.
- ightharpoonup When d=b-a<< a

$$\ln\left(\frac{b}{a}\right) = \ln\left(\frac{a+d}{a}\right) = \ln\left(1 + \frac{d}{a}\right) \approx \frac{d}{a}$$

$$C = \frac{2\pi\varepsilon_0 la}{d} = \varepsilon_0 \frac{A}{d}, \quad A = (2\pi a)l$$

(parallel-plate capacitor)





#### § 22-3 Combinations of Capacitor (P529)



#### Parallel Combination

$$C_1 = \frac{Q_1}{\Delta V_1}, \quad C_2 = \frac{Q_2}{\Delta V_2}, \quad C_{eq} = \frac{Q}{\Delta V} = \frac{Q_1 + Q_2}{\Delta V} = C_1 + C_2$$

$$Q = Q_1 + Q_2, \quad \Delta V = \Delta V_1 = \Delta V_2$$





The equivalent capacitance of a parallel combination of capacitors is the algebraic sum of the individual capacitances.





#### **Combinations of Capacitor**



#### Series Combination

$$C_{1} = \frac{Q_{1}}{\Delta V_{1}}, \quad C_{2} = \frac{Q_{2}}{\Delta V_{2}}, \qquad \frac{1}{C_{eq}} = \frac{\Delta V}{Q} = \frac{\Delta V_{1} + \Delta V_{2}}{Q} = \frac{1}{C_{1}} + \frac{1}{C_{2}}$$

$$Q = Q_1 = Q_2, \ \Delta V = \Delta V_1 + \Delta V_2$$

→ The inverse of the equivalent capacitance is the algebraic sum of the inverse of the individual capacitances.









## § 22-4 Electric Energy Storage (P532)



### A capacitor can store charge, and can also store energy!



Sandia's Z machine is the world's most powerful and efficient laboratory radiation source.



#### The potential energy of a charged capacitor



- The potential energy of a charged capacitor
  - → The energy stored in a capacitor will be equal to the work done to charge it.
  - We evaluate the work of charging that an external agent continuously pulls charge dq from negative plate to positive plate until the capacitor has the opposite charge of ±Q.





#### The potential energy of a charged capacitor



Suppose that q is the charge on the capacitor at some instant during this charging process, the potential difference across the capacitor is  $\Delta V = q/C$ . Imaging that the external agent transfers an additional increment of charge dq from the plate of charge -q to the plate of charge q, the resulting small change dU in the electric potential energy is:

$$dU = (\Delta V)dq = \frac{q}{C}dq$$

▶If this process is continued until to charge the capacitor from q = 0 to the final charge q = Q, the total potential energy is:

$$U = \int dU = \int_0^Q \frac{q}{C} dq = \frac{Q^2}{2C}$$



#### The potential energy of a charged capacitor



Using 
$$C = \frac{Q}{\Delta V}$$
,  $U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C (\Delta V)^2 = \frac{1}{2} Q \Delta V$ 

#### **Graphical interpretation:**

A plot of potential difference versus charge for a capacitor is a straight line having slope 1/C.

The total area under the curve is the potential energy stored in a charged capacitor.



#### Where does the potential energy reside?



Question: Which one is the storehouse of the energy? The charges or the electric field itself?

- **▶** From the equation  $U=Q^2/2C$ , we conclude that the energy relates to the charging.
- Another point of view:

$$C = \varepsilon_0 \frac{A}{d}$$
,  $U = \frac{1}{2}C(\Delta V)^2 = \left(\frac{1}{2}\varepsilon_0 \mathbf{E}^2\right)(Ad)$ 

U is proportional to the volume Ad between the two plates.

▶ Because the electric field is present in the space between the two plates, the energy is stored in the electric field that is present in this region.

#### Where does the potential energy reside?



$$U = \left(\frac{1}{2}\varepsilon_0 E^2\right) (Ad)$$

- → The energy density:  $u = \frac{U}{Ad} = \frac{1}{2} \varepsilon_0 E^2$
- ▶ If an electric field E exists at any point in empty space, we can think of that point as the site of stored energy in amount of  $\frac{1}{2} \varepsilon_0 E^2$ .

$$U = \int dU = \iiint_{V} u dV = \iiint_{V} \left(\frac{1}{2} \varepsilon_{0} E^{2}\right) dV$$



#### Where does the potential energy reside?



- In the case of electrostatic field, we can not answer which one is the storehouse of the energy.
  - Because in the case of electrostatic field, the electric field is always accompanied with the charge.
- In the case of time-varying electromagnetism field
  - → The electromagnetic wave can exists in the vacuum, whether the charge exists or not.

#### Example



## How much electrostatic energy is stored in the electric field of an isolated conducting sphere of radius R and charge Q.



#### **Solution (I):**

The energy stored in the electric field is 
$$U = \iiint_V \left(\frac{1}{2}\varepsilon_0 E^2\right) dV$$

The electric field distribution: 
$$E = \begin{cases} 0 & \text{if } r < R \\ \frac{Q}{4\pi\varepsilon_0 r^2} & \text{if } r > R \end{cases}$$

We choose a differential spherical shell of radius r and thickness dr and integrate the energies in the shells

$$U = \iiint \left[ \frac{1}{2} \varepsilon_0 \left( \frac{Q}{4\pi \varepsilon_0 r^2} \right)^2 \right] dV = \int_R^{\infty} \left[ \frac{1}{2} \varepsilon_0 \left( \frac{Q}{4\pi \varepsilon_0 r^2} \right)^2 \right] \left( 4\pi r^2 dr \right) = \frac{Q^2}{8\pi \varepsilon_0} \int_R^{\infty} \frac{dr}{r^2} = \frac{Q^2}{8\pi \varepsilon_0 R}$$

#### **Example**



#### **Solution (II):**

The energy stored in the spherical capacitor is

$$U = \frac{Q^2}{2C}$$
,  $C = 4\pi\varepsilon_0 R$ ,  $U = \frac{Q^2}{8\pi\varepsilon_0 R}$ 

$$U = \frac{Q^2}{8\pi\varepsilon_0 R}$$



#### **Solution (III):**

The work required to bring a differential charge dq to the sphere is

$$dU = Vdq, \qquad V = \frac{1}{4\pi\varepsilon_0} \frac{q}{R}$$

$$U = \int_0^Q V dq = \frac{1}{4\pi\varepsilon_0 R} \int_0^Q q dq = \frac{Q^2}{8\pi\varepsilon_0 R}$$



#### **Problems**



## Ch22 Prob. 49, 50, 85 (P543)



## § 22-5, 22-6 Dielectric Materials (P533, P536)



#### Dielectrics vs. conductors

Most capacitors have a nonconducting material, or dielectric, between their conducting plates.





#### **Polar vs. nonpolar dielectric materials**



In the absence of an electric field, Polar molecules orient randomly.



Nonpolar molecules are not electric dipoles.



When an electric field is applied, polar molecules tend to align with it.



**Nonpolar** molecules are made effectively polar.



#### **Polar and nonpolar dielectric materials**



Polar dielectric material —— its molecule has a permanent electric dipole moment, such as water.

The external electric field exerts a torque on the dipole that tries to align it with the field.



$$\vec{\tau} = \vec{p} \times \vec{E}$$

Nonpolar dielectric material —— its molecule has no permanent electric dipole.

The atom acquires an induced dipole moment when the atom is placed in an external electric field.





#### **Polarization of a dielectric material**







Either polar or nonpolar materials are put in an external field.

The induced surface charges arise as a result of redistribution of positive and negative charge within the dielectric material, a phenomenon called polarization.



#### **Induced polarization field**



▶ When a dielectric material is placed in an external applied field  $E_0$ , induced surface charges  $q_{\rm ind}$  appear that tend to weaken the original field  $E_0$  by a polarization field  $E_{\rm ind}$  within the material. For a linear material, the net field inside the material is

$$\vec{E} = \vec{E}_0 + \vec{E}_{ind}$$

The charge  $q_0$ , the origin of  $E_0$ , that resides in the conductors is called free charge, and induced charge  $q_{ind}$  that resides in the surface of dielectric materials, that not free to move and bound to a molecule, is called induced bound charge.



#### **Permittivity**



$$\overrightarrow{E} = \overrightarrow{E}_0 + \overrightarrow{E}_{\text{ind}}$$
,

$$E = \frac{E_0}{\kappa}$$

→ K is called the relavitity permittivity (dielectric constant) (相对介电 常数), which is greater than 1.

#### **Absolute** permittivity of the dielectric: $\varepsilon = \kappa \varepsilon_0$

The electric field within the dielectric:  $E = \frac{E_0}{\kappa} = \frac{\sigma_0}{\kappa \varepsilon_0} = \frac{\sigma_0}{\varepsilon}$ 

**Induced charge density:** 

$$\begin{split} E &= E_0 - E_{\text{ind}} \\ \frac{\sigma_0}{\kappa \mathcal{E}_0} &= \frac{\sigma_0}{\mathcal{E}_0} - \frac{\sigma_{\text{ind}}}{\mathcal{E}_0} \Longrightarrow \quad \sigma_{\text{ind}} = \left(1 - \frac{1}{\kappa}\right) \sigma_0 \end{split}$$





#### The dielectric strength



ullet The dielectric strength:  $E_{
m break}$ 

If we apply a large enough electric field to an insulator, we can ionize atoms or molecules of the insulator and thus create a condition for electric charge to flow, as in a conductor. The field necessary for the breakdown of the insulator is called the dielectric strength.

| Material                   | Dielectric Constant $\kappa$ | Dielectric Strength <sup>a</sup> (10 <sup>6</sup> V/m) |
|----------------------------|------------------------------|--------------------------------------------------------|
| Air (dry)                  | 1.000 59                     | 3                                                      |
| Bakelite                   | 4.9                          | 24                                                     |
| Fused quartz               | 3.78                         | 8                                                      |
| Mylar                      | 3.2                          | 7                                                      |
| Neoprene rubber            | 6.7                          | 12                                                     |
| Nylon                      | 3.4                          | 14                                                     |
| Paper                      | 3.7                          | 16                                                     |
| Paraffin-impregnated paper | 3.5                          | 11                                                     |
| Polystyrene                | 2.56                         | 24                                                     |
| Polyvinyl chloride         | 3.4                          | 40                                                     |
| Porcelain                  | 6                            | 12                                                     |
| Pyrex glass                | 5.6                          | 14                                                     |
| Silicone oil               | 2.5                          | 15                                                     |
| Strontium titanate         | 233                          | 8                                                      |
| Teflon                     | 2.1                          | 60                                                     |
| Vacuum                     | $1.000\ 00$                  | <del></del>                                            |
| Water                      | 80                           | _                                                      |



### § 7 Capacitors with Dielectrics (P534)



Placing a solid dielectric between the plates of a capacitor serves three functions.

First, it solves the mechanical problem of maintaining two large metal sheets at a very small separation without actual contact.

Second, using a dielectric increases the maximum possible potential difference between the capacitor plates. (without dielectric breakdown)



Third, the capacitance of a capacitor of given dimensions is greater when there is a dielectric material between the plates than when there is vacuum.

#### **Capacitors with Dielectrics**

Two identical capacitors, filling one with a dielectric material and leaving the other with air between its plates

 When both capacitors are connected to batteries with the same potential difference.

$$\Delta V = \Delta V' \implies E = E'$$

$$E = \frac{Q}{\varepsilon_0 A}, \quad E' = \frac{1}{\kappa} \frac{Q'}{\varepsilon_0 A}$$

$$Q' = \kappa Q$$

$$Q' = \kappa Q$$

$$KS A SA$$

$$C' = \frac{Q'}{\Delta V'} = \frac{\kappa Q}{\Delta V} \Rightarrow C' = \kappa C \implies C' = \frac{\kappa \varepsilon_0 A}{d} = \frac{\varepsilon A}{d}$$

 $\varepsilon = \kappa \varepsilon_0$  permittivity



#### **Capacitors with Dielectrics**



When both are disconnected the batteries with the same charge.



$$Q' = Q, \quad E' = \frac{E}{\kappa},$$

$$\Delta V' = E'd = \frac{Ed}{\kappa} = \frac{\Delta V}{\kappa}$$

$$C' = \frac{Q'}{\Delta V'} = \kappa \frac{Q}{\Delta V} = \kappa C = \frac{\varepsilon A}{d}$$



## The electric field energy stored in a capacitor with dielectric



The electric field energy stored in a capacitor with

dielectric

$$U = \frac{Q^2}{2C} = \frac{Q^2 d}{2\kappa\varepsilon_0 A} = \frac{1}{2}\kappa\varepsilon_0 \left(\frac{Q}{\kappa\varepsilon_0 A}\right)^2 (Ad)$$

$$E = \frac{E_0}{\kappa} = \frac{1}{\kappa} \frac{\sigma}{\varepsilon_0} = \frac{Q}{\kappa \varepsilon_0 A}, \quad U = \frac{1}{2} \kappa \varepsilon_0 E^2(Ad)$$



■ The electric field energy density in dielectric

materials

$$u = \frac{1}{2} \kappa \varepsilon_0 E^2 = \frac{1}{2} \varepsilon E^2$$

#### **Example**



- In following two cases, find the electric field energy stored in a parallel-plate capacitor before and after the dielectric is inserted. The capacitor without dielectric is  $C_0$ , and dielectric material has dielectric constant  $\kappa$ .
  - (1) At beginning, the capacitor, with empty, is connected to the battery of voltage  $\Delta V$ . The battery is then removed, and the capacitor is fill with the dielectric material.
  - (2) From beginning to end, the capacitor is always connected to the battery of voltage  $\Delta V$ ;



#### Solution



$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C(\Delta V)^2 = \frac{1}{2} Q \Delta V$$

Before and after removing the battery, the charges in the capacitor are the same and the capacitance increases.



Before inserting the dielectric: 
$$U_{before} = \frac{1}{2} \frac{Q^2}{C_0}$$

After inserting the dielectric: 
$$U_{after} = \frac{1}{2} \frac{Q^2}{\kappa C_0} = \frac{U_{before}}{\kappa}$$

$$\Delta U = U_{after} - U_{before} = (1 - \kappa)U_{after} < 0$$

The dielectric, when inserted, is pulled into the device. To keep the dielectric from accelerating, an external agent must do negative work on the dielectric.



#### **Solution**



$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C (\Delta V)^2 = \frac{1}{2} Q \Delta V$$

#### (2) Before inserting the dielectric:

$$U_{before} = \frac{1}{2} C_0 \left( \Delta V \right)^2$$



## After inserting the dielectric:

$$U_{after} = \frac{1}{2} \kappa C_0 \left( \Delta V \right)^2 = \kappa U_{before}$$

$$\Delta U = U_{after} - U_{before} = (\kappa - 1)U_{before} > 0$$



#### **Problems**



## Ch22 Prob. 65, 87 (P544)