Package 'meaca'

January 4, 2017 Title Mixed-effects Enrichment Analysis with Correlation Adjusted.			
			Version 0.0.0.0009
Author Bin Zhuo Maintainer Bin Zhuo <zhuob@oregonstate.edu>, Duo Jiang <jiangd@stat.oregonstate.edu>. Description This package produces all results needed in the paper.</jiangd@stat.oregonstate.edu></zhuob@oregonstate.edu>			
			Depends R (>= $3.2.1$)
			License What license is it under?
LazyData true			
RoxygenNote 5.0.1			
btw_gene_corr estimate_sigma meaca_multiple meaca_single read_gene_set standardize_expression_data			
Index			
btw_gene_corr			
Description			

Average correlations for genes

Usage

```
btw_gene_corr(expression_data, trt, geneset, standardize = T,
 minSetSize = 5)
```

2 estimate_sigma

Arguments

expression_data

the expressoin matrix.

trt treatment labels

geneset an object from read_gene_set()

standardize whether the data should be standaridzed

minSetSize the minimum number of genes contained for a gene set to be considered.

Value

a data frame with columns:

set_name The name of the gene set

testSetCor Average correlation for genes in the test set

interCor Average correlation between genes in the test set and those not in the test set

backSetCor Average correlations for genes not in the test set.

Description

Estimate test-statistic covariance

Usage

```
estimate_sigma(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

Value

a list

sigma estimated covariance matrix for the gene-level test statistics.

t_val the gene level statistics, one for each gene

meaca_multiple 3

meaca_multiple	meaca-multiple.
----------------	-----------------

Description

meaca for testing multiple gene sets.

Usage

```
meaca_multiple(expression_data, trt, geneset, standardize = T,
    minSetSize = 5, fdr_method = "BH")
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels, 1 for treatment 0 for control.

gene sets to be tested, an object having the same structure as that returned from

read_gene_set.

standardize whether the data should be standaridzed.

minSetSize the minimum number of genes contained in a gene set for it to be considered as

a test set.

fdr_method which method is used to adjust the p values. Options are "holm", "hochberg",

"hommel", "bonferroni", "BH", "BY", "fdr", "none", see arguments in function

p.adjust for more details.

Value

a data frame with the following columns

set_name the name of the gene set set_sizel the size of the gene set

status "Up" for up-regulated gene sets and "Down" for down-regulated gene sets

p1 chi square test p value

p1_fdr adjusted p1, using p.adjust with appropriate method p2 a two-sided t-test p value equivalent to the chi square test

p2_fdr adjusted p2

Examples

```
m <- 100  # number of rows (genes)  
n <- 50  # number of columns (samples)  
y <- matrix(rnorm(5000), 100, 50)  # expression matrix  
rownames(y) <- paste("gene", 1:m, sep = "")  
colnames(y) <- paste("sample", 1:n, sep = "")  
trt <- rep(c(0, 1), each = n/2)  # treatment labels  
## create the gene set format, desired for this function.  
total <- 15  # number of gene sets in the database  
set.seed(100)
```

4 meaca_single

```
size <- sample(1:30, replace=F, total)
go_term <- rep(0, m)
gs_line <- list()
set_name <- paste("set", 1:length(size), sep = "")
for (i in 1:total) {
    set.seed(i)
    gs_line[[i]] <- rownames(y)[sample(1:m, size[i])]
}
gs <- list(total=total, size=size,set_name = set_name, gene_set=gs_line)
# run the multiple gene set test
result <- meaca_multiple(y, trt, gs)</pre>
```

meaca_single

Testing the enrichment status of a single pre-defined gene set.

Description

meaca for single gene set test.

Usage

```
meaca_single(expression_data, trt, go_term, standardize = T)
```

Arguments

```
expression_data
```

the expressoin matrix.

trt treatment labels, should be 0s and 1s.

go_term an indicator vector with value 1 for genes in the test, 0 otherwise.

standardize whether the data should be standardized. Set to be TRUE for real data analysis.

Value

a list

stat test statistic for meaca p1 chi square test p value

status "Up" for up-regulated gene sets and "Down" for down-regulated gene sets

p2 a two-sided p value for conducting t-test from the test statstic stat

Examples

```
m <- 100  # number of rows (genes)
n <- 50  # number of columns (samples)
y <- matrix(rnorm(m*n), m, n)  # expression matrix
trt <- rep(c(0, 1), each = n/2)  # treatment labels
go_term <- rep(0, m)
go_term[sample(1:m, 20)] <- 1  # the rows in the test set are labeled as 1
result <- meaca_single(y, trt, go_term)</pre>
```

read_gene_set 5

read_gene_set

Convert gene sets to lists

Description

read the gene sets of the MsigDB format.

Usage

```
read_gene_set(msigdb)
```

Arguments

msigdb

gene set ensemble downloaded from broad institute.

Value

a list

total

number of gene sets contained.

size

a numerical vector containing the size of each gene set.

gene_set

a list. The first element is the set name. From the third element, each corre-

sponds to a member gene of the gene set.

standardize_expression_data

standardize expression data, with method described in the paper.

Description

Standardize the expression data.

Usage

```
standardize_expression_data(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt

sample labels. 0 for control and 1 for treatment

Value

the standardized expression, a matrix of the same dimension as input expression data.

Index

```
btw_gene_corr, 1
estimate_sigma, 2
meaca_multiple, 3
meaca_single, 4
read_gene_set, 5
standardize_expression_data, 5
```