Grade 11 Chemistry

Solutions and Solubility
Class 11

Solubility

- The ability of a solvent to dissolve a solute depends on the forces of attraction between the particles
- Solubility the amount of solute that dissolves in a given quantity of solvent at a certain temperature
 - Ex: NaCl in water at 20°C is 36g per 100ml of water

Saturated vs. Unsaturated

- Saturated solution formed when no more solute will dissolve in a solution
- Supersaturated solution formed when excess solute is present
- Unsaturated solution a solution that is not yet saturated and can therefore dissolve more solute
 - Ex: a 20g sample of NaCl dissolved in 100mL of water at 20°C is unsaturated. The solution has the potential to dissolve another 16g of salt

- Soluble solubility is greater than 1g per 100ml of solvent
- Insoluble –
 solubility is less
 than 0.1g per 100ml
 of solvent
- Slightly soluble solubility between 0.1g to 1g

Factors that Affect Solubility

 Molecule Size – Small molecules are more soluble than large molecules

Name	Methanol	Ethanol	Propanol	Butanol	Pentanol
Chemical Formula	CH ₃ OH	CH ₃ CH ₂ OH	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH
Solubility	Infinitely soluble	Infinitely soluble	Very Soluble	9g/100ml (25°C)	3g/100ml (25°C)

Temperature

- Solubility of solids increases with temperature
 - Caffeine's solubility in water is 2.2g/100ml at 25°C but increases to 40g/100ml at 100°C
- Solubility of most liquids is not as greatly affected by temperature
- Solubility of gases decreases with higher temperatures
 - Causes heat pollution in lakes; heated water causes the dissolved oxygen in the water to decrease

Solubility Curve

- The line represents saturation
- Anything above the line is supersaturated
- Anything below the line is unsaturated

Checkpoint STOP

25.0 ml of a saturated solution of $K_2Cr_2O_7$ at 90°C is cooled to 50°C.

What mass will precipitate from the solution?

- Pressure Changes in pressure have little effect on solid and liquid solutions but has a great effect on gas
- The solubility of a gas is proportional to the pressure of the gas above the liquid
 - Ex: Carbonated Drinks inside a soft drink bottle, the pressure of CO₂ is 400kPa. Once you open the bottle, the gas escapes and the pressure of CO₂ is reduced to 0.03kPa
 - Carbon dioxide's solubility decreases as pressure decreases, which causes the fizzing

Scuba Diving

- As a scuba diver goes deeper underwater, the water pressure increases
- Solubility of nitrogen gas dissolves in diver's blood because pressure increases

- If the diver comes out of the water too quickly, the pressure suddenly decreases and the nitrogen gas is no longer soluble
- Bubbles of nitrogen gas form in the blood, known as a condition called "the bends"

Factors that Affect Solubility

Ionic Substances

- Effect of Ion Charge
 - Compounds of ions with small charges tend to be soluble while compounds of ions with large charges tend to be insoluble
 - Increasing the charge increases the force that holds the ions together
 - Ex: Alkali metal cations are soluble Na⁺; PO₄³⁻ is insoluble except when bonded to alkali metals

- Effect of Ion Size
 - Compounds with smaller ions tend to be less soluble than compounds with larger ions
 - Ions of metals are smaller than their corresponding neutral atom
 - lons of non-metals are larger than their corresponding neutral atom
- Attraction between ions depends on the charge to size ratio – the higher the charge and/or smaller the size, the greater the attraction

Table 9.1 General Solubility Guidelines

Guideline	Cations	Anions	Result	Exceptions
1	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , NH ₄ ⁺	NO ₃ -, CH ₃ COO-, ClO ₃ -	soluble	Ca(ClO ₃) ₂ is insoluble
2	Ag ⁺ , Pb ²⁺ , Hg ⁺	CO ₃ ²⁻ , PO ₄ ³⁻ , O ²⁻ , S ²⁻ , OH	insoluble	BaO and Ba(OH) ₂ are soluble. Group 2 sulfides tend to decompose.
3		Cl-, Br-, I-	soluble	
4	Ba ²⁺ , Ca ²⁺ , Sr ²⁺		insoluble	
5	$Mg^{2+}, Cu^{2+}, Zn^{2+},$ $Fe^{2+}, Fe^{3+}, Al^{3+}$	SO ₄ ²⁻	soluble	

Poppy Seeds

- Poppy seeds come from the poppy plant, which is an opioid (morphine)
- Poppy seeds have around 0.025% morphine by weight
- A medical oral dose of morphine is 10-30mg
- You would need to consume 40g of poppy seeds to get the same effect as 10mg of morphine

• 40g is around 12 poppy seeds bagels

 Do not eat poppy seed bagels before taking a drug test because it could lead to a false positive reading for your employer/sports competition

Concentration of Solutions

- Concentration the amount of solute per quantity of solvent
- Many ways to express concentration:
 - Mass/Volume Percent
 - Mass/Mass Percent
 - Volume/Volume Percent
 - Parts per Million or Parts per Billion
 - Molar Concentration

Mass/Volume Percent

Mass/Volume Percent = Mass of solute (g) x 100% Volume of solution (ml)

Practice: A pharmacist adds 2.00ml of distilled water to 4.00 g of a powdered drug. The final volume of the solution is 3.00ml. What is the concentration of the drug in g/100ml of solution? What is the percent (m/v) of the solution?

Mass/Mass Percent

Mass/Mass Percent = Mass of solute (g) x 100%

Mass of solution (g)

Practice: CaCl₂ can be used to melt ice on roads. A sample of slush had a mass of 23.47g. When the slush was evaporated the residue had a mass of 4.58g (assume no other solutes were present). What was the mass/mass percent? How many grams were present in 100g of solution?

Volume/Volume Percent

Volume/Volume Percent = <u>Volume of solute (ml)</u> x 100% Volume of solution (ml)

Practice: Rubbing alcohol is sold as 70% (v/v) solution of isopropyl alcohol in water. What volume of isopropyl alcohol is used to make 500 ml of rubbing alcohol?

Parts per Million/Billion

ppb = $\underline{\text{Mass of solute}}$ x 10⁹ Mass of solution

Practice: A fungus on peanuts produces a deadly toxin. Any shipment of peanuts with more than 25ppb is rejected. If a company receives 20t of peanuts, what is the maximum mass (in g) of fungus that is allowed?

Molar Concentration

Molar Concentration (mol/L) = <u>Amount of Solute (mol)</u>
Volume of solution (L)

Practice: A saline solution contains 0.90g of NaCl, dissolved in 100ml of solution. What is the molar concentration of the solution?

