МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Курсова робота з курсу "Чисельні методи" на тему: "Мінімаксна апроксимація функцій многочленними сплайнами"

> Виконав: ст. гр. ПМКМ-11 Левантович Богдан Перевірив: доц. каф. ПМ Пізюр Я.В.

Зміст

Bo	ступ		3			
1	Найкраще чебишовське наближення					
	1.1	Схема Ремеза побудови чебишовського наближення	5			
	1.2	Алгоритм Валле-Пуссена заміни точок альтернансу	7			
2	Наближення сплайнами					
	2.1	Рівномірне наближення сплайнами. Точність	9			
	2.2	Алгоритм побудови рівномірного наближення чебишовськи-				
		ми сплайнами	11			
3	Опис програми та отриманих результатів					
	3.1	Вхідні дані	12			
	3.2	Вихідні дані	12			
Bı	иснов	зки	13			
Cı	тисог	к використаної літератури	14			
4	Дод	атки	15			
		Текст програми	15			
		Приклади виконання програми	17			

Вступ

Необхідність моделювання функціональних залежностей виникає в багатьох галузях прикладної математики та інформатики. При розв'язуванні багатьох задач науково-технічного характеру доводиться використовувати функції задані таблицею. Проте часто необхідно мати значення функції в точках, яких немає в таблиці. Також виникає необхідність використання простої функції замість складної.

Особливістю моделей, які побудовані на основі мінімаксного (чеби- шовського) наближення, є те, що вони забезпечують найменшу із можливих похибку апроксимації при заданій кількості параметрів. Саме це зумовлює їхню практичну цінність в отриманні розв'язків задач, для яких важлива висока точність відтворення функціональної залежності. Також інтерес викликає побудова мінімаксних сплайнів, які дають змогу суттєво зменшити величину похибки для задач, які вимагають високої точності.

1 Найкраще чебишовське наближення

За теоремою Вейєрштрасса для довільних неперервних на обмеженому проміжку [a,b] функцій f(x) та w(x)>0 і довільного $\epsilon>0$ можна знайти такий многочлен $P_m(x)$, що

$$|\rho(x)| = \frac{|f(x) - P_m(x)|}{w(x)} < \epsilon, \quad x \in [a, b].$$

Ясно, що найменше при цьому значення степеня m многочлена $P_m(x)$ суттєво залежить від способу наближення. Серед усіх способів наближення функцій найменшу похибку а, значить, і найменше m при заданому ϵ , дає найкраще чебишовське наближення.

Вираз $F(A,x) \in F(B,x)$, для якого максимальне значення абсолютної величини зваженої похибки $(\ref{eq:constraint})$ досягає на проміжку [a,b] найменшого значення

$$\min_{c \in B} \max_{x \in [a,b]} \frac{|f(x) - F(C,x)|}{w(x)} = \max_{x \in [a,b]} \frac{|f(x) - F(A,x)|}{w(x)},\tag{1}$$

звемо найкращим чебишовським зваженим (з вагою w(x)) наближенням функції f(x) за допомогою виразу виду F(A,x) на проміжку [a,b].

У цій курсові розглянуто лише найкращі чебишовські наближення. Слова "чебишовські" і "зважені" будемо часом пропускати. При w(x)=1 маємо найкраще абсолютне наближення, при w(x)=f(x) - найкраще відносне.

Величину (1) називатимемо мінімальним (зваженим) відхиленням і позначаємо $E(f,W) \equiv \mu_0; \ E(f,1) \equiv E(f) \equiv \Delta_0$ - мінімальне абсолютне відхилення; $E(f,f) \equiv \delta_0$ - мінімальне відхилення.

Далі розглянемо властивості найкращих наближень многочленом.

Теорема 1. Для будь-яких неперервних на проміжку [a,b] функцій f(x) та w(x) > 0 і довільного ϵ , існує єдиний многочлен $P_m(x)$ степеня m, що має найменше відхилення E(f,w).

Теорема 2. Нехай на проміжку [a,b] задано неперервні функції f(x) та w(x) > 0. Тоді для того, щоб деякий многочлен $P_m(x)$ степеня не вище т був многочленом найкращого чебишовського зваженого наближення функції f(x) на проміжку [a,b] необхідно і достатнью, щоб на цьому проміж-

ку знайшлась принаймні одна система з m+2 точок $T = \{t_k\}_{k=0}^{m+1} \ a \le t_0 < t_1 < t_2 < \ldots \le t_{m+1}, \ y$ яких зважена різниця (??) почергово набувала значень різних знаків і досягала за модулем найбільшого на [a,b] значення тобто:

$$\rho(t_0) = -\rho(t_1) = \rho(t_2) = \dots = (-1)^{m+1} \rho(t_{m+1}) = \pm E(f, W). \tag{2}$$

Система точок T із теореми 2 зветься системою точок (чебишовського альтернансу). Для побудови многочлена найкращого наближення необхідно визначити ці точки. Точно визначити їх значення можна тільки у часткових випадках.

1.1 Схема Ремеза побудови чебишовського наближення

У загальному випадку процес знаходження точок T побудовано на ітераційних методах. Найбільше практичне значення мають методи розроблені українським математиком $\mathfrak{C}.\mathfrak{A}$. Ремезом. Коротко розглянемо один з методів. Він складається з таких етапів.

1. З проміжку [a,b] вибираємо початкове наближення T_0 до альтернансу

$$T: t_0^{(0)} < t_1^{(0)} < t_2^{(0)} < \ldots < t_{m+1}^{(0)}.$$

Можна, наприклад, прийняти $t_k^{(0)} = a + \frac{(b-a)k}{m+1}$.

2. Здійснюємо чебишовську інтерполяцію для множини точок $T_j = \{t_k\}_{k=0}^{m+1}, t_k^{(j)} < t_{k+1}^{(j)}, k = \overline{0,m}$, тобто визначаємо коефіцієнти многочлена $P_m^i(x)$ і величину μ_j , для яких виконуються умови $\rho(t_k^{(j)}) = (-1)^k \mu_k$ $k = \overline{0,m+1}$. Для знаходження вказаних величин розв'язуємо систему рівнянь:

Система є системою m+2 алгебраїчних рівнянь з m+2 невідомими: a_0,a_1,\ldots,a_m та μ .

3. Перевіряємо виконання рівності

$$|\mu_j| = \max_{x \in [a,b]} |f(x) - P_m^{(j)}(x)| / w(x) \equiv \rho_j.$$
 (4)

Якщо рівність виконується, то у відповідності з теоремою 2 многочлен $P_m^{(j)}(x)$ і є шуканий многочлен найкращого наближення. При машинній реалізації алгоритму перевірку рівності заміняють перевіркою нерівності

$$\rho_j - |\mu_j| \le \epsilon |\mu_j|,\tag{5}$$

де ϵ - допустима відносна помилка у визначенні похибки наближення. Можна, наприклад, прийняти $\epsilon=10^{-2}$ чи $\epsilon=10^{-3}$.

4. Якщо умова 4 чи 5 не виконується, то приймаємо j:=j+1 і вибираємо наступне (уточнене) наближення до точок чебишовського альтернансу (наступний V-альтернанс). Далі виконання алгоритму повторюється починаючи з п.2.

При обчисленнях на ЕОМ у цьому пункті іноді додатково перевіряються умови

$$\left| t_k^{(j-1)} - t_k^j \right| < \eta, \quad k = \overline{0, m+1},$$

де η - допустима помилка у визначенні точок альтернансу. Якщо остання нерівність справедлива для всіх точок $k=\overline{0,m+1}$, то вважаємо, що многочлен найкращого наближення знайдено.

1.2 Алгоритм Валле-Пуссена заміни точок альтернансу

Існує кілька методів заміни точок альтернансу. Можлива заміна одної або кількох точок одночасно. Найпростішим алгоритмом є алгоритм Є.Я. Ремеза з одноточковою заміною (алгоритм Валлє-Пуссена). Опишемо цей алгоритм.

Нехай при виконанні п.3 знайдена точка \tilde{x} , для якої справедливо $\rho_j = |\rho(\tilde{x})|$. Можливі три випадки взаємного розміщення точок V-альтернансу та точки \tilde{x} :

1.
$$t_0^{(j)} < \tilde{x} < t_{m+1}^{(j)}$$

2.
$$\tilde{x} < t_0^{(j)}$$

3.
$$\tilde{x} > t_{m+1}^{(j)}$$

Розглянемо спосіб заміни точок V-альтернансу у кожному випадку.

- 1. Знайдемо ціле число v таке, що $t_v^{(j)} < \tilde{x} < t_{v+1}^{(j)}$. Якщо $\mathrm{sign}(\rho(\tilde{x})) = \mathrm{sign}(\rho(t_{m+1}^{(j)}))$, то приймаємо $t_v^{(j+1)} := \tilde{x}$, у протилежному випадку $t_{v+1}^{(j+1)} := \tilde{x}$. Решту точок V-альтеранансу не змінюємо.
- 2. Якщо $\operatorname{sign} \rho(\tilde{x}) = \operatorname{sign} \rho(t_0^{(j)})$, то приймаємо $t_0^{(j+1)} := \tilde{x}$, а решту точок V-альтернансу не змінюємо. Якщо це не так, то заміняємо усі точки альтернансу за формулами:

$$t_0^{(j+1)} := \tilde{x}; \quad t_k^{(j+1)} := t_{k-1}^{(j)}, \quad k = \overline{1, m+1}.$$

У цьому випадку із V-альтернансу виключається точка $t_{m+1}^{(j)}$

3. Якщо $\operatorname{sign} \rho(\tilde{x}) = \operatorname{sign} \rho(t_{m+1}^{(j)})$, то приймаємо $t_{m+1}^{(j)} := \tilde{x}$. і решту точок V-альтернансу не змінюємо. Якщо це не так, то замінюємо усі точки V-альтернансу за формулами:

$$t_k^{(j+1)} := t_{k+1}^{(j)}, \quad k = \overline{0, m}; \quad t_{m+1}^{(j+1)} := \tilde{x}.$$

У цьому випадку із V-альтернансу виключається точка $t_0^{(j)}$.

Отже черговий V-альтернанс відрізняєтся від попереднього тим, що точка \tilde{x} , у якій досягається максимум абсолютної величини зваженої похибки, вводиться у V-альтернанс замість однієї із старих точок. Відомо, що алгоритм Валле-Пуссена для заміни точок альтернансу при знаходженні найкращого наближення попередньої функції многочленом на проміжку [a,b] збігається незалежно від початкового наближення до точок альтернансу. Більш того у цьому випадку цей алгоритм збігається зі швидкістю гометричної прогресії у тому сенсі, що знайдуться такі числа A та 0 < q < 1, що відхилення $E^{(k)}(f,W)$ многочлена $P_m^{(k)}(x)$ від функції f(x) будуть задовольняти нерівності

$$E^{(k)}(f, W) - E(f, W) \le Aq^k; \quad k = 1, 2, \dots$$

Фактична швидкість збіжності залежить від диференціальних властивостей функції та використовуваного алгоритму заміни точок альтернансу. Відомо, що коли $f(x) \in C^{m+1}[a,b], w(x) = 1$ або w(x) = f(x) і $f^{(m+1)}(x)$ не змінює знак при $x \in [a,b]$, то граничні точки проміжку [a,b] є точками альтернансу. Тому у цьому випадку алгоритм Валле-Пуссена для наближення многочленами невисоких степенів $m = \overline{0,2}$ практично не програє у швидкості порівняно з іншими алгоритмами типу Є.Я. Ремеза. Зазначимо, що всі перелічені властивості найкращого чебишовського наближення непервної при $x \in [a,b]$ функції f(x) многочленом справедливі також і для наближення табличної функції. Більш того, при заміні неперервної функції її значенями в точках $x_k = a + \frac{(b-a)k}{N}$ різниця між відповідними відхиленнями при $N \to \infty$ прямує до нуля.

2 Наближення сплайнами

2.1 Рівномірне наближення сплайнами. Точність

На проміжку [a,b] розглянемо множину точок $Z=z_{i=0}^r$ $a=z_0 < z_1 < \ldots < z_r = b$. Якщо на кожному проміжку $[z_{i-1},z_i]$ функцію f(x) наближати за допомогою виразу $F(A_i,x)$ виду

$$F(A, x) = F(a_0, a_1, \dots, a_m; x),$$
 (6)

, то на всьому проміжку [a,b] функція f(x) буде наближена сплайном

$$S(F,x) = \sum_{i=1}^{r} F(A_i, x)\theta((x - z_{i-1})(z_i - x))$$
 (7)

де

$$\theta(x) = egin{cases} 0 & \text{при } x < 0 \\ 1 & \text{при } x \geq 0 \end{pmatrix} - функція Хевісайда \end{cases}$$

Сплайн 7, кожна ланка якого $F(A_i,x)$, $\overline{1,r}$ є найкращим чебишовським наближенням функції f(x) на проміжку $[z_{i-1},z_i]$, звемо чебишовським сплайном. Можа розглядати многочлений, раціональний чи нелінійний чебишовський сплайн.

Наближення функції f(x) сплайном S(F,x) звемо рівномірним наближенням із заданою похибкою μ , якщо

$$\mu_i = \max_{x \in [z_{i-1}, z_i]} |f(x) - S(F, x)| / w(x) = \mu, i = \overline{1, r-1}, \mu_r \le \mu$$
 (8)

Наближення функції f(x) сплайном S(F,x) називаємо рівномірним наближенням із заданою кількість r ланок, якщо

$$\max_{x \in [z_0, z_1]} \frac{|f(x) - S(F, x)|}{w(x)} = \max_{x \in [z_{i-1}, z_i]} \frac{|f(x) - S(F, x)|}{w(x)}, i = \overline{2, r}$$
 (9)

З умов рівномірності 8 чи 9 визначаються границі ланок (вузли Z сплайна S(F,x). Рівномірні наближення неперервної функції чебишовським сплайном є і оптимальні у тому сенсі, що при заданій похибці одержуємо міні-

мально можливу кількість ланок, а при заданій кількості ланок - мінімально можливу похибку. Ця властивість справедлива і для наближення деякими многочленним сплайнами степеня m, якщо $f^{(m+1)(x)} \neq 0$ при $x \in [a,b]$. В таких випадках говорять також про оптимальний розподіл вузлів сітки. Рівномірне наближення із заданою кількістю ланок будемо іноді називати просто рівномірним наближенням сплайнами. Встановимо точність рівномірного наближення сплайнами

Теорема. Нехай $f(x) \in C^{m+2}[a, b], w(x) \in C^{1}[a, b],$

$$\eta(f, F) = \eta(f(x), F) \in C^1[a, b], w(x) > 0, \eta(f, F) \neq 0$$

при $x \in [a,b]$ і максимальна зважена похибка $\mu_i = \max_{x \in [z_{i-1},z_i]} \frac{|f(x)-S(F,x)|}{w(x)}$ Наближення сплайном S(F,x) функції f(x) на кожному проміжку $[z_{i-1},z_i]$

може бути представлена у вигляді

$$\mu_i = \frac{1}{\lambda_i} \frac{|\eta(f(\xi_i), F)|}{w(\xi_i)} \Delta x_i^{m+1},$$

де $\Delta x_i = z_i - z_{i-1}, \xi_i \in (z_{i-1}, z_i), \lambda_i$ - константа не залежна від $f(x), \lambda_i > 0, i = \overline{1,r}$. Тоді при $r \to \infty$ похибка μ рівномірного наближення функції f(x) сплайном S(F,x) з r ланками визначається на проміжку [a,b] за формулою

$$\mu = S_r^{m-1} \left(\int_a^b |\eta(f, F)/w(x)|^{\frac{1}{m+1}} dx \right)^{m+1} \left[1 + O\left(\frac{b-a}{r}\right) \right],$$

де
$$S_r = \sum_{j=1}^r \lambda_j^{1/m+1)}$$

2.2 Алгоритм побудови рівномірного наближення че- бишовськими сплайнами

Наведемо алгоритм рівномірного наближення чебишовськими сплайнами із заданою похибкою. Алгоритм не залежить від виду сплайна.

- 1. Будуємо ланку нелінійного чебишовського сплайна на всьому інтервалі [a,b]. Ліва границя $z_e=a$, права $z_p=b$.
- 2. Знаходимо похибку наближення $\mu_1 = max \left| \frac{f(x) S(A,x)}{w(x)} \right|$.
- 3. Якщо $\mu_1 < \mu$, то наближення побудоване. Кінець
- 4. Якщо $\mu_1 > \mu$, то зсуваємо праву границю інтервалу вліво, поки похибка на даному інтервалі не стане меншою від заданої похибки μ . Допустимо, що при k-му зсуві границі вліво (т. z^-) похибка рівна $\mu_k < \mu$, а на попередньому кроці $\mu_{k-1} > \mu$ (права границя $z^+, z^+ > z^-$). Тоді можна знайти таку праву границю $z_p \in [z^-, z^+]$, при якій похибка μ^* буде як завгодно мало відрізнятись від заданої $|\mu \mu^*| < \epsilon (\epsilon = O(\mu))$. Точку z_p можна знайти одним із відомих способів, наприклад методом ділення відрізка навпіл або методом хорд.
- 5. Запам'ятовуємо границі ланки і параметри чебишовського сплайна.
- 6. Лівою границею наступної ланки є права границя попередньої ланки. Правою границею можна завжди вважати точку b, але можна також екстраполюватися точкою $z_p = z_p + \Delta z$, де Δz довжина попередньої ланки.
- 7. Будуємо сплайн і знаходимо похибку.
- 8. Якщо $\mu_1 > \mu$, то переходимо до пункту 4.

Очевидно, що описаний алгоритм приводить до єдиного рішення, якщо наближувана функція f(x) і сплайн S(A,x) такі, що функція похибки $\rho(b) = \max_{x \in [z_e,b]} |(f(x) - S(A,x))/w(x)|$ є неспадною функцію від b. Для цього достатньо, щоб ядро наближення $\eta(f,F) \neq 0$ при $x \in [a,b]$.

3 Опис програми та отриманих результатів

Мета програми: знаходження найкращого чебишовського наближення сплайнами для заданої функції і допустимої похибки на кожній ланці сплайна.

Програма написана на мові програмування Python з використанням таких бібліотек: Sympy, Numpy, Plotly.

3.1 Вхідні дані

- 1. Початок інтервалу.
- 2. Кінець інтервалу.
- 3. Степінь многочлена.
- 4. Функція для апроксимації.
- 5. Точність (за замовчуванням 10^{-2}).
- 6. Допустима похибка на одній ланці сплайна.

3.2 Вихідні дані

- 1. Коефіцієнти многочлена і похибки на кожній ланці сплайна.
- 2. Графік похибоки.
- 3. Графік сплайна і функції.

Висновки

У цій курсовій я розглянув найкраще чебишовське наближення многочленами сплайнами. Написав програму для знаходження ланок цього сплайна при заданій допустимій похибці. Також в програмі реалізув побудову графіків похибки та наближення сплайном, вивід максимальної похибки на кожній ланці, коєфіцієнтів ланок сплайна та їх інтервали.

Список використаної літератури

- 1. Демьянов В.Ф., Малоземов В.Н. Введение в минимакс. -М.: Наука, 1972. 368 с.
- 2. Попов Б.А. Равномерное приближение сплайнами. -Киев: Наук. дум-ка, 1989. 272 с.
- 3. Попов Б.А., Теслер Г.С. Приближение функций для технических приложений. Киев: Наук. думка, 1980. 352 с.
- 4. Ремез Е.Я. Основы численных методов чебышовского приближения. Киев: Наук. думка, 1969, - 623 с.
- 5. Попов Б.О. Чисельні методи рівномірного наближення сплайнами. Конспект лекцій. -Львів: ЛДУ, 1992. 92 с.
- 6. Самарский А.А., Гулин А.В. Численные методы. -М.: Наука, 1989. 432 с.
- 7. https://plot.ly/ для побудови графіків
- 8. http://www.sympy.org/ для розв'язування систем
- 9. http://www.numpy.org/ для наукових розрахунків

4 Додатки

4.1 Текст програми

```
1 import minmax
  def getError(result):
    iterations = len(result)
    error = result [str(iterations)]["max err"]
    return abs(error)
  def shrinkInterval(interval, history = []):
    [start, end] = interval
    if (start > end):
      print ('Begining of interval is greater than its end')
12
    left boundaries = sorted (filter (lambda x: x < end, map(lambda x: x[1],
13
     history)))
    if len(left boundaries) > 0:
14
      nearest left neighbor = left boundaries [-1]
      delta = (end - nearest_left_neighbor) / 2.0
16
      return | start, end - delta |
17
    else:
18
      mid = (end - start) / 2.0
19
      return [start, start + mid]
20
21
  def expandInterval(interval, history):
22
    [start, end] = interval
23
    if (start > end):
24
      print('Begining of interval is greater than its end')
25
26
    if len(history) = 0:
27
      print('when expanding there should be history')
28
29
30
    right boundaries = sorted (filter (lambda x: x > end, map(lambda x: x[1],
31
     history)))
    if len(right_boundaries) > 0:
32
      nearest right neighbor = right boundaries [0]
      delta = (nearest\_right\_neighbor - end) / 2.0
34
      return [start, end + delta]
35
36
  def main(func, deg, start, end, precision, allowed_error):
38
39
    interval = [start, end]
    historyOfIntervals = []
40
    splines = []
41
42
    def approximate(interval):
43
    if type(interval) is list:
```

```
return minmax.main(f str=func, start=interval[0], end=interval[1],
45
     degree=deg, precision=precision)
46
47
    def make approximation on one segment (overallInterval):
      if not type(overallInterval) is list:
48
        print overallInterval
49
        return
50
      result = approximate(overallInterval)
      max error = getError(result)
      print("Interval {}".format(overallInterval))
53
      # print("max error: {} Interval {} history {}".format(max error,
54
      overallInterval, historyOfIntervals))
      condition = abs(abs(max error) - allowed error)
56
      if condition > (allowed error / 10):
57
58
        if (max error > allowed error):
59
          shrinkedInterval = shrinkInterval (overallInterval, historyOfIntervals)
          if len(historyOfIntervals) = 0:
61
             historyOfIntervals.append(overallInterval)
          historyOfIntervals.append(shrinkedInterval)
          make approximation on one segment(shrinkedInterval)
        else:
          if overallInterval[1] != interval[1]:
            expandedInterval = expandInterval (overallInterval,
      historyOfIntervals)
            historyOfIntervals.append(expandedInterval)
68
            make approximation on one segment (expandedInterval)
69
          else:
70
             splines.append({
71
               "interval": overallInterval,
               "spline": result,
73
               "max error": max error
74
            })
75
      else:
        splines.append({
          "interval": overallInterval,
78
          "spline": result,
79
          "max error": max error
        })
81
        if overallInterval [1] < interval [1]:
82
          historyOfIntervals[:] = []
83
          make approximation on one segment([overallInterval[1], interval[1]])
85
    make approximation on one segment(interval)
86
    return splines
87
89 \# print main('sin(x)', deg=2, start=1, end=4, precision=0.1, allowed error
    =0.001)
```

4.2 Приклади виконання програми

Приклад 1 Знайдемо чебишовське наближення поліномом степеня 2 для функції $f(x)=\frac{ln(x)}{x}$ на проміжку [1,4]. Точність ($\epsilon=0.01$). Максимально допустима похибка на ланці сплайна 0.01

Результат роботи програми:

0.004

 $-0.0227x^2 + 0.1338x + 0.1707$

[1.938; 4.000]

Приклад 2 Вхідні дані:

Функція, яку апроксимуємо
sin(x)

Степінь многочлена

1

Початок інтервалу

О

Кінець інтервалу

3.1415

Точність

0.01

Допустима похибка на одному відрізку сплайна

0.01

Результат роботи програми:

Апроксимація мінімаксними сплайнами

Графік функції похибки

Сегмент	Максимальна похибка	Інтервал	Аналітичний вигляд
1	0.01009	[0.000; 0.687]	0.9231x + 0.0100
2	0.01048	[0.687; 1.147]	0.6026x + 0.2307
3	0.00997	[1.147; 1.552]	0.2175x + 0.6719
4	0.00967	[1.552; 1.950]	-0.1781x + 1.2860
5	0.01026	[1.950; 2.397]	-0.5618x + 2.0348
6	0.01086	[2.397; 3.048]	-0.8973x + 2.8394
7	0.00003	[3.048; 3.142]	-0.9985x + 3.1370

Приклад 3 Вхідні дані:

Функція, яку апроксимуємо

е^x

Степінь многочлена

2

Початок інтервалу

1

Кінець інтервалу

4

Точність

0.01

Допустима похибка на одному відрізку сплайна

0.01

Результат роботи програми:

Апроксимація мінімаксними сплайнами

Графік функції похибки

Сегмент	Максимальна похибка	Інтервал	Аналітичний вигляд
1	0.01080	[1.000; 1.797]	$2.0581x^2 - 1.6265x + 2.2975$
2	0.01026	[1.797; 2.417]	$4.1517x^2 - 9.1727x + 9.1184$
3	0.00910	[2.417; 2.911]	$7.2221x^2 - 24.0156x + 27.0762$
4	0.01037	[2.911; 3.354]	$11.5238x^2 - 49.1252x + 63.7371$
5	0.01024	[3.354; 3.737]	$17.3951x^2 - 88.5323x + 129.8808$
6	0.00452	[3.737; 4.000]	$23.9830x^2 - 137.5833x + 221.1976$