一辺の長さが 2 の立方体 C がある。 $S_0$  を C の 6 つの面に内接する球とする。次に  $S_0$  に外接し,C の  $S_0$  つの面と内接する球  $S_1$  を取る。 $S_1$  に外接し, $S_0$  の  $S_0$  つの面に内接する球  $S_2$  を  $S_1$  の外側( $S_0$  と反対側)に取る。以下帰納的に, $S_0$ ,..., $S_n$  まで取れたとして, $S_n$  に外接し, $S_n$  の  $S_n$  のの面に内接する球  $S_n$  の外側に取る。

- 1.  $S_n$  の半径を n の式で表せ.
- 2. 立方体 C の中でどの  $S_n$   $(n=0,1,2,\ldots)$  にも含まれない部分の体積を求めよ.

## [解]

(1) fig. 1 のように,立方体の頂点 A, B, C, D, E, F, G, H に対し題意の 3 面を ABCD,AEFB,AEHD とする.各球の中心は立方体及び球の対称性から対角線 AG 上にある. $S_n$  の中心を  $O_n$ ,半径を  $r_n$  とおく.断面 AEGC をfig. 2 に示す. $AC=2\sqrt{2},AE=2$  より, $\angle$ GAC=|theta と置くと

$$\sin \theta = \frac{AE}{AG} = \frac{1}{\sqrt{3}} \tag{1}$$

$$\cos \theta = \frac{AC}{AG} = \frac{\sqrt{2}}{\sqrt{3}} \tag{2}$$

が成り立つことに注意する.



図1 立方体と頂点の定義



図2 断面 AEGC

半径  $r_n$  に関する漸化式を導出することで  $r_n$  の一般項

を求める. 円  $S_n$  と  $S_{n+1}$  に着目して fig. 3 を考える.



図 3  $S_n$  と  $S_{n+1}$  の関係

 $O_n$  から AC に引いた垂線と AC との交点を  $T_n$  と置く と、その定義より  $O_nT_n$  の長さは  $r_n$  に等しい。一方で、 $O_{n+1}$  から  $O_nT_n$  に引いた垂線と  $O_nT_n$  の交点を  $R_n$  と置くと、

$$O_n T_n = O_{n+1} T_{n+1} + O_n R_n$$
  
=  $O_{n+1} + O_n O_{n+1} \sin \theta$   
=  $r_{n+1} + (r_n + r_{n+1} \sin \theta)$ 

と表されるので、 $r_n$  と  $r_{n+1}$  の関係は

$$r_n = r_{n+1} + (r_n + r_{n+1}\sin\theta)$$
 (3)

$$\therefore r_{n+1} = \frac{1 - \sin \theta}{1 + \sin \theta} r_n \tag{4}$$

となる.  $r_0 = 1$  と合わせると、この等比級数の解は

$$r_n = \left(\frac{1 - \sin \theta}{1 + \sin \theta}\right)^n \tag{5}$$

$$= (2 - \sqrt{3})^n \tag{6}$$

となる. ただし, eq. (1) を用いた. ···(答)

(2) 立方体 C の中でどの  $S_k$   $(k=0,1,\ldots,n)$  にも含まれない部分の体積を  $V_n$  とする.求めるべき値は  $V=\lim_{n\to\infty}V_n$  である. $S_k$   $(k=0,1,\cdots,n)$  同士は互いに体積を共有することはないから,体積  $V_n$  は立方体 C の

体積から、 $S_k \, (k=0,1,\cdots,n)$  の体積を減じたものに等しく、

$$V_n = 8 - \frac{4}{3}\pi \sum_{k=0}^n r_k^3$$

$$= 8 - \frac{4}{3}\pi \sum_{k=0}^n (2 - \sqrt{3})^{3k}$$

$$= 8 - \frac{4}{3}\pi \frac{1 - (2 - \sqrt{3})^{3(n+1)}}{1 - (2 - \sqrt{3})^3}$$

となる.

$$(2-\sqrt{3})^3 < 1$$
 だから求める体積  $V$  は

$$V = \lim_{n \to \infty} V_n$$

$$= 8 - \frac{4}{3}\pi \frac{1}{1 - (2 - \sqrt{3})^3}$$

$$= 8 - \frac{6\sqrt{3} + 10}{15}\pi$$

である. …(答)

[解説]