# Sage Reference Manual: Schemes

Release 8.4

**The Sage Development Team** 

# **CONTENTS**

| 1  | 1.1 TODO List                                                                                                                                                                                                                                                      | 2                                      |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| 2  | Schemes                                                                                                                                                                                                                                                            | 5                                      |  |  |
| 3  | The Spec functor                                                                                                                                                                                                                                                   | 15                                     |  |  |
| 4  | Scheme obtained by gluing two other schemes                                                                                                                                                                                                                        | 17                                     |  |  |
| 5  | Points on schemes                                                                                                                                                                                                                                                  | 19                                     |  |  |
| 6  | Ambient spaces                                                                                                                                                                                                                                                     | 21                                     |  |  |
| 7  | Algebraic schemes                                                                                                                                                                                                                                                  | 25                                     |  |  |
| 8  | 8 Hypersurfaces in affine and projective space                                                                                                                                                                                                                     |                                        |  |  |
| 9  | Set of homomorphisms between two schemes                                                                                                                                                                                                                           | 47                                     |  |  |
| 10 | 10 Scheme morphism                                                                                                                                                                                                                                                 |                                        |  |  |
| 11 | Divisors on schemes                                                                                                                                                                                                                                                | 67                                     |  |  |
| 12 | Divisor groups                                                                                                                                                                                                                                                     | 71                                     |  |  |
| 13 | Affine Schemes  13.1 Affine n space over a ring  13.2 Morphisms on affine varieties  13.3 Points on affine varieties  13.4 Subschemes of affine space  13.5 Enumeration of rational points on affine schemes  13.6 Set of homomorphisms between two affine schemes | 73<br>73<br>79<br>86<br>90<br>95<br>99 |  |  |
| 14 |                                                                                                                                                                                                                                                                    | 142<br>154                             |  |  |
|    | 14.6 Set of homomorphisms between two projective schemes                                                                                                                                                                                                           |                                        |  |  |

| 15 Products of Projective Spaces |                     |                                                              |     |  |  |  |
|----------------------------------|---------------------|--------------------------------------------------------------|-----|--|--|--|
|                                  | 15.1                | Products of projective spaces                                | 177 |  |  |  |
|                                  | 15.2                | Set of homomorphisms                                         | 185 |  |  |  |
|                                  | 15.3                | Polynomial morphisms for products of projective spaces       | 188 |  |  |  |
|                                  | 15.4                | Points for products of projective spaces                     | 191 |  |  |  |
|                                  | 15.5                | Subschemes of products of projective spaces                  | 196 |  |  |  |
|                                  | 15.6                | Enumeration of rational points on product projective schemes | 200 |  |  |  |
| 16                               | Toric               | Varieties                                                    | 205 |  |  |  |
|                                  | 16.1                | Toric varieties                                              | 205 |  |  |  |
|                                  | 16.2                | Fano toric varieties                                         | 239 |  |  |  |
|                                  | 16.3                | Library of toric varieties                                   | 257 |  |  |  |
|                                  | 16.4                | Toric divisors and divisor classes                           | 272 |  |  |  |
|                                  | 16.5                | Toric rational divisor classes                               |     |  |  |  |
|                                  | 16.6                | The Chow group of a toric variety                            | 293 |  |  |  |
|                                  | 16.7                | Toric ideals                                                 |     |  |  |  |
|                                  | 16.8                | Morphisms of toric varieties                                 | 307 |  |  |  |
|                                  | 16.9                | Subschemes of toric space                                    | 327 |  |  |  |
|                                  | 16.10               | Weierstrass form of a toric elliptic curve                   | 335 |  |  |  |
|                                  | 16.11               | Map to the Weierstrass form of a toric elliptic curve        | 341 |  |  |  |
|                                  | 16.12               | Weierstrass for elliptic curves in higher codimension        | 345 |  |  |  |
|                                  |                     | Set of homomorphisms between two toric varieties             |     |  |  |  |
|                                  |                     | Enumerate points of a toric variety                          |     |  |  |  |
|                                  |                     | Construct sheaves on toric varieties                         |     |  |  |  |
|                                  | 16.16               | Klyachko bundles and sheaves                                 | 364 |  |  |  |
| 17                               | Indic               | es and Tables                                                | 375 |  |  |  |
| Bil                              | bliogra             | aphy                                                         | 377 |  |  |  |
| Рy                               | Python Module Index |                                                              |     |  |  |  |
| Inc                              | Index               |                                                              |     |  |  |  |

# SCHEME IMPLEMENTATION OVERVIEW

Various parts of schemes were implemented by Volker Braun, David Joyner, David Kohel, Andrey Novoseltsev, and William Stein.

### **AUTHORS:**

- David Kohel (2006-01-03): initial version
- William Stein (2006-01-05)
- William Stein (2006-01-20)
- Andrey Novoseltsev (2010-09-24): update due to addition of toric varieties.
- **Scheme:** A scheme whose datatype might not be defined in terms of algebraic equations: e.g. the Jacobian of a curve may be represented by means of a Scheme.
- AlgebraicScheme: A scheme defined by means of polynomial equations, which may be reducible or defined over a ring other than a field. In particular, the defining ideal need not be a radical ideal, and an algebraic scheme may be defined over Spec(R).
- AmbientSpaces: Most effective models of algebraic scheme will be defined not by generic gluings, but by embeddings in some fixed ambient space.
- AffineSpace: Affine spaces and their affine subschemes form the most important universal objects from which
  algebraic schemes are built. The affine spaces form universal objects in the sense that a morphism is uniquely
  determined by the images of its coordinate functions and any such images determine a well-defined morphism.
  - By default affine spaces will embed in some ordinary projective space, unless it is created as an affine patch of another object.
- **ProjectiveSpace:** Projective spaces are the most natural ambient spaces for most projective objects. They are locally universal objects.
- **ProjectiveSpace\_ordinary (not implemented)** The ordinary projective spaces have the standard weights [1,..,1] on their coefficients.
- ProjectiveSpace weighted (not implemented): A special subtype for non-standard weights.
- **ToricVariety:** Toric varieties are (partial) compactifications of algebraic tori  $(\mathbf{C}^*)^n$  compatible with torus action. Affine and projective spaces are examples of toric varieties, but it is not envisioned that these special cases should inherit from ToricVariety.
- AlgebraicScheme\_subscheme\_affine: An algebraic scheme defined by means of an embedding in a fixed ambient affine space.
- **AlgebraicScheme\_subscheme\_projective:** An algebraic scheme defined by means of an embedding in a fixed ambient projective space.

• QuasiAffineScheme (not yet implemented): An open subset  $U = X \setminus Z$  of a closed subset X of affine space; note that this is mathematically a quasi-projective scheme, but its ambient space is an affine space and its points are represented by affine rather than projective points.

**Note:** AlgebraicScheme\_quasi is implemented, as a base class for this.

• QuasiProjectiveScheme (not yet implemented): An open subset of a closed subset of projective space; this datatype stores the defining polynomial, polynomials, or ideal defining the projective closure X plus the closed subscheme Z of X whose complement  $U = X \setminus Z$  is the quasi-projective scheme.

**Note:** The quasi-affine and quasi-projective datatype lets one create schemes like the multiplicative group scheme  $\mathbb{G}_m = \mathbb{A}^1 \setminus \{(0)\}$  and the non-affine scheme  $\mathbb{A}^2 \setminus \{(0,0)\}$ . The latter is not affine and is not of the form  $\operatorname{Spec}(R)$ .

# 1.1 TODO List

PointSets and points over a ring: For algebraic schemes X/S and T/S over S, one can form the point set X(T) of morphisms from T → X over S.

```
sage: PP.<X,Y,Z> = ProjectiveSpace(2, QQ)
sage: PP
Projective Space of dimension 2 over Rational Field
```

The first line is an abuse of language – returning the generators of the coordinate ring by gens ().

A projective space object in the category of schemes is a locally free object – the images of the generator functions *locally* determine a point. Over a field, one can choose one of the standard affine patches by the condition that a coordinate function  $X_i \neq 0$ 

```
sage: PP(QQ)
Set of rational points of Projective Space
of dimension 2 over Rational Field
sage: PP(QQ)([-2,3,5])
(-2/5: 3/5: 1)
```

Over a ring, this is not true, e.g. even over an integral domain which is not a PID, there may be no *single* affine patch which covers a point.

```
sage: R. <x> = ZZ[]
sage: S. <t> = R.quo(x^2+5)
sage: P. <X,Y,Z> = ProjectiveSpace(2, S)
sage: P(S)
Set of rational points of Projective Space of dimension 2 over
Univariate Quotient Polynomial Ring in t over Integer Ring with
modulus x^2 + 5
```

In order to represent the projective point (2:1+t)=(1-t:3) we note that the first representative is not well-defined at the prime pp=(2,1+t) and the second element is not well-defined at the prime qq=(1-t,3), but that pp+qq=(1), so globally the pair of coordinate representatives is well-defined.

```
sage: P( [2, 1+t] )
(2 : t + 1 : 1)
```

In fact, we need a test R.ideal([2,1+t]) == R.ideal([1]) in order to make this meaningful.

1.1. TODO List

**CHAPTER** 

**TWO** 

# **SCHEMES**

### **AUTHORS:**

- William Stein, David Kohel, Kiran Kedlaya (2008): added zeta\_series
- Volker Braun (2011-08-11): documenting, improving, refactoring.

Class for general affine schemes.

### See also:

For affine spaces over a base ring and subschemes thereof, see sage.schemes.generic.algebraic\_scheme.AffineSpace.

### Element

alias of SchemeTopologicalPoint\_prime\_ideal

### $base\_extend(R)$

Extend the base ring/scheme.

# INPUT:

• R – an affine scheme or a commutative ring

### **EXAMPLES:**

```
sage: Spec_ZZ = Spec(ZZ); Spec_ZZ
Spectrum of Integer Ring
sage: Spec_ZZ.base_extend(QQ)
Spectrum of Rational Field
```

# coordinate\_ring()

Return the underlying ring of this scheme.

### **OUTPUT**:

A commutative ring.

```
sage: Spec(QQ).coordinate_ring()
Rational Field
sage: Spec(PolynomialRing(QQ, 3, 'x')).coordinate_ring()
Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
```

### dimension()

Return the absolute dimension of this scheme.

**OUTPUT**:

Integer.

**EXAMPLES:** 

```
sage: S = Spec(ZZ)
sage: S.dimension_absolute()
1
sage: S.dimension()
1
```

### dimension\_absolute()

Return the absolute dimension of this scheme.

**OUTPUT**:

Integer.

**EXAMPLES:** 

```
sage: S = Spec(ZZ)
sage: S.dimension_absolute()
1
sage: S.dimension()
1
```

### dimension\_relative()

Return the relative dimension of this scheme over its base.

**OUTPUT:** 

Integer.

**EXAMPLES:** 

```
sage: S = Spec(ZZ)
sage: S.dimension_relative()
0
```

### hom(x, Y=None)

Return the scheme morphism from self to Y defined by x.

### INPUT:

- x anything that determines a scheme morphism; if x is a scheme, try to determine a natural map to x
- Y the codomain scheme (optional); if Y is not given, try to determine Y from context
- check boolean (optional, default: True); whether to check the defining data for consistency

# OUTPUT:

The scheme morphism from self to Y defined by x.

### **EXAMPLES:**

We construct the inclusion from  $\operatorname{Spec}(\mathbf{Q})$  into  $\operatorname{Spec}(\mathbf{Z})$  induced by the inclusion from  $\mathbf{Z}$  into  $\mathbf{Q}$ :

```
sage: X = Spec(QQ)
sage: X.hom(ZZ.hom(QQ))
Affine Scheme morphism:
   From: Spectrum of Rational Field
   To: Spectrum of Integer Ring
   Defn: Natural morphism:
        From: Integer Ring
        To: Rational Field
```

### is noetherian()

Return True if self is Noetherian, False otherwise.

### **EXAMPLES:**

```
sage: Spec(ZZ).is_noetherian()
True
```

**class** sage.schemes.generic.scheme.**Scheme**(X=None, category=None)

Bases: sage.structure.parent.Parent

The base class for all schemes.

### INPUT:

- X a scheme, scheme morphism, commutative ring, commutative ring morphism, or None (optional). Determines the base scheme. If a commutative ring is passed, the spectrum of the ring will be used as base.
- category the category (optional). Will be automatically constructed by default.

### **EXAMPLES**

```
sage: from sage.schemes.generic.scheme import Scheme
sage: Scheme(ZZ)
<sage.schemes.generic.scheme_with_category object at ...>
```

A scheme is in the category of all schemes over its base:

```
sage: ProjectiveSpace(4, QQ).category()
Category of schemes over Rational Field
```

There is a special and unique  $Spec(\mathbf{Z})$  that is the default base scheme:

```
sage: Spec(ZZ).base_scheme() is Spec(QQ).base_scheme()
True
```

# $base\_extend(Y)$

Extend the base of the scheme.

Derived classes must override this method.

# **EXAMPLES:**

```
sage: from sage.schemes.generic.scheme import Scheme
sage: X = Scheme(ZZ)
sage: X.base_scheme()
Spectrum of Integer Ring
sage: X.base_extend(QQ)
Traceback (most recent call last):
```

(continues on next page)

(continued from previous page)

```
...
NotImplementedError
```

### base\_morphism()

Return the structure morphism from self to its base scheme.

**OUTPUT**:

A scheme morphism.

**EXAMPLES:** 

```
sage: A = AffineSpace(4, QQ)
sage: A.base_morphism()
Scheme morphism:
   From: Affine Space of dimension 4 over Rational Field
   To:   Spectrum of Rational Field
   Defn: Structure map

sage: X = Spec(QQ)
sage: X.base_morphism()
Scheme morphism:
   From: Spectrum of Rational Field
   To:   Spectrum of Integer Ring
   Defn: Structure map
```

### base ring()

Return the base ring of the scheme self.

**OUTPUT**:

A commutative ring.

EXAMPLES:

```
sage: A = AffineSpace(4, QQ)
sage: A.base_ring()
Rational Field

sage: X = Spec(QQ)
sage: X.base_ring()
Integer Ring
```

# $base\_scheme()$

Return the base scheme.

**OUTPUT:** 

A scheme.

```
sage: A = AffineSpace(4, QQ)
sage: A.base_scheme()
Spectrum of Rational Field

sage: X = Spec(QQ)
sage: X.base_scheme()
Spectrum of Integer Ring
```

### coordinate ring()

Return the coordinate ring.

### **OUTPUT:**

The global coordinate ring of this scheme, if defined. Otherwise raise a ValueError.

### **EXAMPLES:**

```
sage: R.<x, y> = QQ[]
sage: I = (x^2 - y^2)*R
sage: X = Spec(R.quotient(I))
sage: X.coordinate_ring()
Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the_
\rightarrowideal (x^2 - y^2)
```

### count\_points(n)

Count points over finite fields.

### INPUT:

• n – integer.

### **OUTPUT**:

An integer. The number of points over  $\mathbf{F}_q, \dots, \mathbf{F}_{q^n}$  on a scheme over a finite field  $\mathbf{F}_q$ .

### **EXAMPLES:**

```
sage: P.<x> = PolynomialRing(GF(3))
sage: C = HyperellipticCurve(x^3+x^2+1)
sage: C.count_points(4)
[6, 12, 18, 96]
sage: C.base_extend(GF(9,'a')).count_points(2)
[12, 96]
```

```
sage: P.<x,y,z> = ProjectiveSpace(GF(4,'t'), 2)
sage: X = P.subscheme([y^2*z - x^3 - z^3])
sage: X.count_points(2)
[5, 17]
```

### dimension()

Return the absolute dimension of this scheme.

# **OUTPUT:**

Integer.

```
sage: R.<x, y> = QQ[]
sage: I = (x^2 - y^2)*R
sage: X = Spec(R.quotient(I))
sage: X.dimension_absolute()
Traceback (most recent call last):
...
NotImplementedError
sage: X.dimension()
Traceback (most recent call last):
...
NotImplementedError
```

### dimension absolute()

Return the absolute dimension of this scheme.

**OUTPUT**:

Integer.

**EXAMPLES:** 

```
sage: R.<x, y> = QQ[]
sage: I = (x^2 - y^2)*R
sage: X = Spec(R.quotient(I))
sage: X.dimension_absolute()
Traceback (most recent call last):
...
NotImplementedError
sage: X.dimension()
Traceback (most recent call last):
...
NotImplementedError
```

### dimension\_relative()

Return the relative dimension of this scheme over its base.

**OUTPUT:** 

Integer.

**EXAMPLES:** 

```
sage: R.<x, y> = QQ[]
sage: I = (x^2 - y^2)*R
sage: X = Spec(R.quotient(I))
sage: X.dimension_relative()
Traceback (most recent call last):
...
NotImplementedError
```

### hom(x, Y=None, check=True)

Return the scheme morphism from self to Y defined by x.

### INPUT:

- x anything that determines a scheme morphism; if x is a scheme, try to determine a natural map to x
- Y the codomain scheme (optional); if Y is not given, try to determine Y from context
- check boolean (optional, default: True); whether to check the defining data for consistency

### **OUTPUT**:

The scheme morphism from self to Y defined by x.

```
sage: P = ProjectiveSpace(ZZ, 3)
sage: P.hom(Spec(ZZ))
Scheme morphism:
   From: Projective Space of dimension 3 over Integer Ring
   To: Spectrum of Integer Ring
   Defn: Structure map
```

### identity\_morphism()

Return the identity morphism.

### **OUTPUT**:

The identity morphism of the scheme self.

### **EXAMPLES**:

```
sage: X = Spec(QQ)
sage: X.identity_morphism()
Scheme endomorphism of Spectrum of Rational Field
   Defn: Identity map
```

# point (v, check=True)

Create a point.

### INPUT:

- v anything that defines a point
- check boolean (optional, default: True); whether to check the defining data for consistency

### **OUTPUT**:

A point of the scheme.

### **EXAMPLES:**

```
sage: A2 = AffineSpace(QQ,2)
sage: A2.point([4,5])
(4, 5)

sage: R.<t> = PolynomialRing(QQ)
sage: E = EllipticCurve([t + 1, t, t, 0, 0])
sage: E.point([0, 0])
(0 : 0 : 1)
```

# point\_homset (S=None)

Return the set of S-valued points of this scheme.

### INPUT:

• S – a commutative ring.

# OUTPUT:

The set of morphisms Spec(S)oX.

### **EXAMPLES:**

```
sage: P = ProjectiveSpace(ZZ, 3)
sage: P.point_homset(ZZ)
Set of rational points of Projective Space of dimension 3 over Integer Ring
sage: P.point_homset(QQ)
Set of rational points of Projective Space of dimension 3 over Rational Field
sage: P.point_homset(GF(11))
Set of rational points of Projective Space of dimension 3 over
Finite Field of size 11
```

# point\_set (S=None)

Return the set of S-valued points of this scheme.

### INPUT:

• S – a commutative ring.

### **OUTPUT**:

The set of morphisms Spec(S)oX.

### **EXAMPLES:**

```
sage: P = ProjectiveSpace(ZZ, 3)
sage: P.point_homset(ZZ)
Set of rational points of Projective Space of dimension 3 over Integer Ring
sage: P.point_homset(QQ)
Set of rational points of Projective Space of dimension 3 over Rational Field
sage: P.point_homset(GF(11))
Set of rational points of Projective Space of dimension 3 over
Finite Field of size 11
```

### structure\_morphism()

Return the structure morphism from self to its base scheme.

### **OUTPUT**:

A scheme morphism.

### **EXAMPLES:**

```
sage: A = AffineSpace(4, QQ)
sage: A.base_morphism()
Scheme morphism:
   From: Affine Space of dimension 4 over Rational Field
   To:   Spectrum of Rational Field
   Defn: Structure map

sage: X = Spec(QQ)
sage: X.base_morphism()
Scheme morphism:
   From: Spectrum of Rational Field
   To:   Spectrum of Integer Ring
   Defn: Structure map
```

### $\mathtt{union}(X)$

Return the disjoint union of the schemes self and X.

### **EXAMPLES:**

```
sage: S = Spec(QQ)
sage: X = AffineSpace(1, QQ)
sage: S.union(X)
Traceback (most recent call last):
...
NotImplementedError
```

### zeta function()

Compute the zeta function of a generic scheme.

Derived classes should override this method.

OUTPUT: rational function in one variable.

**EXAMPLES:** 

12

```
sage: P.<x,y,z> = ProjectiveSpace(GF(4,'t'), 2)
sage: X = P.subscheme([y^2*z - x^3 - z^3])
sage: X.zeta_function()
Traceback (most recent call last):
...
NotImplementedError
```

### zeta series(n, t)

Return the zeta series.

Compute a power series approximation to the zeta function of a scheme over a finite field.

### INPUT:

- n the number of terms of the power series to compute
- t the variable which the series should be returned

### **OUTPUT**:

A power series approximating the zeta function of self

### **EXAMPLES:**

```
sage: P.<x> = PolynomialRing(GF(3))
sage: C = HyperellipticCurve(x^3+x^2+1)
sage: R.<t> = PowerSeriesRing(Integers())
sage: C.zeta_series(4,t)
1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)
sage: (1+2*t+3*t^2)/(1-t)/(1-3*t) + O(t^5)
1 + 6*t + 24*t^2 + 78*t^3 + 240*t^4 + O(t^5)
```

If the scheme has a method <code>zeta\_function</code>, this is used to provide the required approximation. Otherwise this function depends on <code>count\_points</code>, which is only defined for prime order fields for general schemes. Nonetheless, since trac ticket #15108 and trac ticket #15148, it supports hyperelliptic curves over non-prime fields:

```
sage: C.base_extend(GF(9,'a')).zeta_series(4,t)
1 + 12*t + 120*t^2 + 1092*t^3 + 9840*t^4 + O(t^5)
```

```
sage: P.<x,y,z> = ProjectiveSpace(GF(4,'t'), 2)
sage: X = P.subscheme([y^2*z - x^3 - z^3])
sage: R.<t> = PowerSeriesRing(Integers())
sage: X.zeta_series(2,t)
1 + 5*t + 21*t^2 + O(t^3)
```

 $sage.schemes.generic.scheme.is\_AffineScheme(x)$ 

Return True if x is an affine scheme.

### **EXAMPLES:**

```
sage: from sage.schemes.generic.scheme import is_AffineScheme
sage: is_AffineScheme(5)
False
sage: E = Spec(QQ)
sage: is_AffineScheme(E)
True
```

```
\verb|sage.schemes.generic.scheme.is_Scheme| (x)
```

Test whether x is a scheme.

# INPUT:

• x - anything.

# OUTPUT:

Boolean. Whether x derives from Scheme.

```
sage: from sage.schemes.generic.scheme import is_Scheme
sage: is_Scheme(5)
False
sage: X = Spec(QQ)
sage: is_Scheme(X)
True
```

**CHAPTER** 

# **THREE**

# THE SPEC FUNCTOR

### **AUTHORS:**

- William Stein (2006): initial implementation
- Peter Bruin (2014): rewrite Spec as a functor

```
sage.schemes.generic.spec.Spec (R, S=None) Apply the Spec functor to R.
```

### INPUT:

- R either a commutative ring or a ring homomorphism
- S a commutative ring (optional), the base ring

### **OUTPUT**:

• AffineScheme – the affine scheme  $\operatorname{Spec}(R)$ 

### **EXAMPLES:**

Applying Spec twice to the same ring gives identical output (see trac ticket #17008):

```
sage: A = Spec(ZZ); B = Spec(ZZ)
sage: A is B
True
```

A TypeError is raised if the input is not a commutative ring:

```
sage: Spec(5)
Traceback (most recent call last):
...
TypeError: x (=5) is not in Category of commutative rings
sage: Spec(FreeAlgebra(QQ,2, 'x'))
Traceback (most recent call last):
```

(continues on next page)

(continued from previous page)

... 
TypeError: x (=Free Algebra on 2 generators (x0, x1) over Rational Field) is not  $\rightarrow$  in Category of commutative rings

class sage.schemes.generic.spec.SpecFunctor(base\_ring=None)

 ${\bf Bases:} \ {\tt sage.categories.functor.Functor, sage.structure.unique\_representation.} \\ {\tt UniqueRepresentation}$ 

The Spec functor.

**CHAPTER** 

# **FOUR**

# SCHEME OBTAINED BY GLUING TWO OTHER SCHEMES

 ${\tt class} \ \, {\tt sage.schemes.generic.glue.GluedScheme} \ \, (\textit{f},\textit{g},\textit{check=True})$ 

Bases: sage.schemes.generic.scheme.Scheme

# INPUT:

- f open immersion from a scheme U to a scheme X
- $\bullet\,$  g open immersion from U to a scheme Y

OUTPUT: The scheme obtained by gluing X and Y along the open set U.

**Note:** Checking that f and g are open immersions is not implemented.

gluing\_maps()



# **POINTS ON SCHEMES**

```
class sage.schemes.generic.point.SchemePoint(S, parent=None)
    Bases: sage.structure.element.Element
    Base class for points on a scheme, either topological or defined by a morphism.
    scheme()
         Return the scheme on which self is a point.
         EXAMPLES:
         sage: from sage.schemes.generic.point import SchemePoint
         sage: S = Spec(ZZ)
         sage: P = SchemePoint(S)
         sage: P.scheme()
         Spectrum of Integer Ring
class sage.schemes.generic.point.SchemeRationalPoint(f)
    Bases: sage.schemes.generic.point.SchemePoint
    INPUT:
       • f - a morphism of schemes
    morphism()
class sage.schemes.generic.point.SchemeTopologicalPoint(S)
    Bases: sage.schemes.generic.point.SchemePoint
    Base class for topological points on schemes.
class sage.schemes.generic.point.SchemeTopologicalPoint_affine_open (u, x)
    Bases: sage.schemes.generic.point.SchemeTopologicalPoint
    INPUT:
       • u – morphism with domain an affine scheme U
       • x – topological point on U
    affine_open()
         Return the affine open subset U.
    embedding_of_affine_open()
         Return the embedding from the affine open subset U into this scheme.
    point_on_affine()
         Return the scheme point on the affine open U.
```

 $\textbf{class} \texttt{ sage.schemes.generic.point.SchemeTopologicalPoint\_prime\_ideal} (S, \qquad P, \\ check = False)$ 

Bases: sage.schemes.generic.point.SchemeTopologicalPoint

# INPUT:

- S an affine scheme
- P a prime ideal of the coordinate ring of S, or anything that can be converted into such an ideal

### prime\_ideal()

Return the prime ideal that defines this scheme point.

```
sage.schemes.generic.point.is_SchemeRationalPoint(x)
sage.schemes.generic.point.is_SchemeTopologicalPoint(x)
```

# **AMBIENT SPACES**

```
class sage.schemes.generic.ambient_space.AmbientSpace(n, R=Integer Ring)
    Bases: sage.schemes.generic.scheme.Scheme
```

Base class for ambient spaces over a ring.

### INPUT:

- n dimension
- R ring

### ambient\_space()

Return the ambient space of the scheme self, in this case self itself.

### **EXAMPLES:**

```
sage: P = ProjectiveSpace(4, ZZ)
sage: P.ambient_space() is P
True

sage: A = AffineSpace(2, GF(3))
sage: A.ambient_space()
Affine Space of dimension 2 over Finite Field of size 3
```

### $base\_extend(R)$

Return the natural extension of self over R.

### INPUT:

• R – a commutative ring, such that there is a natural map from the base ring of self to R.

# OUTPUT:

• an ambient space over R of the same structure as self.

**Note:** A ValueError is raised if there is no such natural map. If you need to drop this condition, use self.change\_ring(R).

### **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: PQ = P.base_extend(QQ); PQ
Projective Space of dimension 2 over Rational Field
sage: PQ.base_extend(GF(5))
Traceback (most recent call last):
...
```

(continues on next page)

(continued from previous page)

```
ValueError: no natural map from the base ring (=Rational Field)
to R (=Finite Field of size 5)!
```

### $change\_ring(R)$

Return an ambient space over ring R and otherwise the same as self.

### INPUT:

• R – commutative ring

### **OUTPUT**:

• ambient space over R

**Note:** There is no need to have any relation between R and the base ring of self, if you want to have such a relation, use self.base\_extend(R) instead.

### defining\_polynomials()

Return the defining polynomials of the scheme self. Since self is an ambient space, this is an empty list.

### **EXAMPLES:**

```
sage: ProjectiveSpace(2, QQ).defining_polynomials()
()
sage: AffineSpace(0, ZZ).defining_polynomials()
()
```

### dimension()

Return the absolute dimension of this scheme.

### **EXAMPLES:**

```
sage: A2Q = AffineSpace(2, QQ)
sage: A2Q.dimension_absolute()
2
sage: A2Q.dimension()
2
sage: A2Z = AffineSpace(2, ZZ)
sage: A2Z.dimension_absolute()
3
sage: A2Z.dimension()
```

# dimension\_absolute()

Return the absolute dimension of this scheme.

```
sage: A2Q = AffineSpace(2, QQ)
sage: A2Q.dimension_absolute()
2
sage: A2Q.dimension()
2
sage: A2Z = AffineSpace(2, ZZ)
sage: A2Z.dimension_absolute()
3
sage: A2Z.dimension()
```

### dimension relative()

Return the relative dimension of this scheme over its base.

### **EXAMPLES:**

```
sage: A2Q = AffineSpace(2, QQ)
sage: A2Q.dimension_relative()
2
sage: A2Z = AffineSpace(2, ZZ)
sage: A2Z.dimension_relative()
2
```

# gen(n=0)

Return the n-th generator of the coordinate ring of the scheme self.

### **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: P.gen(1)
y
```

### gens()

Return the generators of the coordinate ring of the scheme self.

### **EXAMPLES:**

```
sage: AffineSpace(0, QQ).gens()
()
sage: P.<x, y, z> = ProjectiveSpace(2, GF(5))
sage: P.gens()
(x, y, z)
```

# is\_projective()

Return whether this ambient space is projective n-space.

# **EXAMPLES:**

```
sage: AffineSpace(3,QQ).is_projective()
False
sage: ProjectiveSpace(3,QQ).is_projective()
True
```

### ngens()

Return the number of generators of the coordinate ring of the scheme self.

# **EXAMPLES:**

```
sage: AffineSpace(0, QQ).ngens()
0
sage: ProjectiveSpace(50, ZZ).ngens()
51
```

# $\verb|sage.schemes.generic.ambient_space.is_AmbientSpace|(x)$

Return True if x is an ambient space.

```
sage: from sage.schemes.generic.ambient_space import is_AmbientSpace
sage: is_AmbientSpace(ProjectiveSpace(3, ZZ))
True
sage: is_AmbientSpace(AffineSpace(2, QQ))
True
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: is_AmbientSpace(P.subscheme([x+y+z]))
False
```

**CHAPTER** 

SEVEN

# ALGEBRAIC SCHEMES

An algebraic scheme is defined by a set of polynomials in some suitable affine or projective coordinates. Possible ambient spaces are

- Affine spaces (AffineSpace),
- Projective spaces (ProjectiveSpace), or
- Toric varieties (ToricVariety).

Note that while projective spaces are of course toric varieties themselves, they are implemented differently in Sage due to efficiency considerations. You still can create a projective space as a toric variety if you wish.

In the following, we call the corresponding subschemes affine algebraic schemes, projective algebraic schemes, or toric algebraic schemes. In the future other ambient spaces, perhaps by means of gluing relations, may be introduced.

Generally, polynomials  $p_0, p_1, \ldots, p_n$  define an ideal  $I = \langle p_0, p_1, \ldots, p_n \rangle$ . In the projective and toric case, the polynomials (and, therefore, the ideal) must be homogeneous. The associated subscheme V(I) of the ambient space is, roughly speaking, the subset of the ambient space on which all polynomials vanish simultaneously.

Warning: You should not construct algebraic scheme objects directly. Instead, use .subscheme () methods of ambient spaces. See below for examples.

### **EXAMPLES:**

We first construct the ambient space, here the affine space  $\mathbb{Q}^2$ :

```
sage: A2 = AffineSpace(2, QQ, 'x, y')
sage: A2.coordinate_ring().inject_variables()
Defining x, y
```

Now we can write polynomial equations in the variables x and y. For example, one equation cuts out a curve (a one-dimensional subscheme):

```
sage: V = A2.subscheme([x^2+y^2-1]); V
Closed subscheme of Affine Space of dimension 2
over Rational Field defined by:
    x^2 + y^2 - 1
sage: V.dimension()
1
```

Here is a more complicated example in a projective space:

```
sage: P3 = ProjectiveSpace(3, QQ, 'x')
sage: P3.inject_variables()
Defining x0, x1, x2, x3
sage: Q = matrix([[x0, x1, x2], [x1, x2, x3]]).minors(2); Q
[-x1^2 + x0*x2, -x1*x2 + x0*x3, -x2^2 + x1*x3]
sage: twisted_cubic = P3.subscheme(Q)
sage: twisted_cubic
Closed subscheme of Projective Space of dimension 3
over Rational Field defined by:
    -x1^2 + x0*x2,
    -x1*x2 + x0*x3,
    -x2^2 + x1*x3
sage: twisted_cubic.dimension()
1
```

Note that there are 3 equations in the 3-dimensional ambient space, yet the subscheme is 1-dimensional. One can show that it is not possible to eliminate any of the equations, that is, the twisted cubic is **not** a complete intersection of two polynomial equations.

Let us look at one affine patch, for example the one where  $x_0 = 1$ 

```
sage: patch = twisted_cubic.affine_patch(0)
sage: patch
Closed subscheme of Affine Space of dimension 3
over Rational Field defined by:
  -x0^2 + x1,
 -x0*x1 + x2,
  -x1^2 + x0*x2
sage: patch.embedding_morphism()
Scheme morphism:
  From: Closed subscheme of Affine Space of dimension 3
  over Rational Field defined by:
  -x0^2 + x1,
  -x0*x1 + x2,
  -x1^2 + x0*x2
  To: Closed subscheme of Projective Space of dimension 3
  over Rational Field defined by:
  x1^2 - x0*x2
  x1*x2 - x0*x3
  x2^2 - x1*x3
  Defn: Defined on coordinates by sending (x0, x1, x2) to
        (1 : x0 : x1 : x2)
```

# **AUTHORS:**

- David Kohel (2005): initial version.
- William Stein (2005): initial version.
- Andrey Novoseltsev (2010-05-17): subschemes of toric varieties.
- Volker Braun (2010-12-24): documentation of schemes and refactoring. Added coordinate neighborhoods and is\_smooth()
- Ben Hutz (2014): subschemes of Cartesian products of projective space
- Ben Hutz (2017): split subschemes types into respective folders

```
class sage.schemes.generic.algebraic_scheme.AlgebraicScheme (A)
    Bases: sage.schemes.generic.scheme.Scheme
```

An algebraic scheme presented as a subscheme in an ambient space.

This is the base class for all algebraic schemes, that is, schemes defined by equations in affine, projective, or toric ambient spaces.

### ambient\_space()

Return the ambient space of this algebraic scheme.

### **EXAMPLES:**

```
sage: A.<x, y> = AffineSpace(2, GF(5))
sage: S = A.subscheme([])
sage: S.ambient_space()
Affine Space of dimension 2 over Finite Field of size 5

sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([x-y, x-z])
sage: S.ambient_space() is P
True
```

### coordinate ring()

Return the coordinate ring of this algebraic scheme. The result is cached.

### **OUTPUT:**

The coordinate ring. Usually a polynomial ring, or a quotient thereof.

### **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([x-y, x-z])
sage: S.coordinate_ring()
Quotient of Multivariate Polynomial Ring in x, y, z over Integer Ring by the_
ideal (x - y, x - z)
```

### embedding center()

Return the distinguished point, if there is any.

If the scheme Y was constructed as a neighbourhood of a point  $p \in X$ , then  $embedding\_morphism()$  returns a local isomorphism  $f: Y \to X$  around the preimage point  $f^{-1}(p)$ . The latter is returned by  $embedding\_center()$ .

# OUTPUT:

A point of self. Raises AttributeError if there is no distinguished point, depending on how self was constructed.

# **EXAMPLES:**

(continues on next page)

(continued from previous page)

### embedding\_morphism()

Return the default embedding morphism of self.

If the scheme Y was constructed as a neighbourhood of a point  $p \in X$ , then  $embedding\_morphism()$  returns a local isomorphism  $f: Y \to X$  around the preimage point  $f^{-1}(p)$ . The latter is returned by  $embedding\_center()$ .

If the algebraic scheme Y was not constructed as a neighbourhood of a point, then the embedding in its  $ambient\_space()$  is returned.

### **OUTPUT:**

A scheme morphism whose domain () is self.

- By default, it is the tautological embedding into its own ambient space ambient\_space().
- If the algebraic scheme (which itself is a subscheme of an auxiliary <code>ambient\_space()</code>) was constructed as a patch or neighborhood of a point then the embedding is the embedding into the original scheme.
- A NotImplementedError is raised if the construction of the embedding morphism is not implemented yet.

### **EXAMPLES:**

```
sage: A2.\langle x, y \rangle = AffineSpace(QQ,2)
sage: C = A2.subscheme(x^2+y^2-1)
sage: C.embedding_morphism()
 Scheme morphism:
 From: Closed subscheme of Affine Space of dimension 2 over Rational Field,
→defined by:
 x^2 + y^2 - 1
       Affine Space of dimension 2 over Rational Field
 Defn: Defined on coordinates by sending (x, y) to
        (x, y)
sage: P1xP1.<x,y,u,v> = toric_varieties.P1xP1()
sage: P1 = P1xP1.subscheme(x-y)
sage: P1.embedding_morphism()
Scheme morphism:
From: Closed subscheme of 2-d CPR-Fano toric variety covered
     by 4 affine patches defined by:
     2-d CPR-Fano toric variety covered by 4 affine patches
Defn: Defined on coordinates by sending [x : y : u : v] to
      [y : y : u : v]
```

So far, the embedding was just in the own ambient space. Now a bit more interesting examples:

Note that p = (1, 1, 0) is a singular point of X. So the neighborhood of p is not just affine space. The neighborhood () method returns a presentation of the neighborhood as a subscheme of an auxiliary 2-dimensional affine space:

```
sage: nbhd.ambient_space()
Affine Space of dimension 2 over Rational Field
```

But its <code>embedding\_morphism()</code> is not into this auxiliary affine space, but the original subscheme X:

### A couple more examples:

```
sage: patch1 = P1xP1.affine_patch(1)
sage: patch1
2-d affine toric variety
sage: patch1.embedding_morphism()
 Scheme morphism:
 From: 2-d affine toric variety
      2-d CPR-Fano toric variety covered by 4 affine patches
 Defn: Defined on coordinates by sending [y : u] to
       [1:y:u:1]
sage: subpatch = P1.affine_patch(1)
sage: subpatch
Closed subscheme of 2-d affine toric variety defined by:
sage: subpatch.embedding_morphism()
Scheme morphism:
 From: Closed subscheme of 2-d affine toric variety defined by:
 -y + 1
       Closed subscheme of 2-d CPR-Fano toric variety covered
       by 4 affine patches defined by:
 x - v
 Defn: Defined on coordinates by sending [y : u] to
       [1:y:u:1]
```

# is\_projective()

Return True if self is presented as a subscheme of an ambient projective space.

**OUTPUT**:

Boolean.

### **EXAMPLES:**

```
sage: PP.<x,y,z,w> = ProjectiveSpace(3,QQ)
sage: f = x^3 + y^3 + z^3 + w^3
sage: R = f.parent()
sage: I = [f] + [f.derivative(zz) for zz in PP.gens()]
sage: V = PP.subscheme(I)
sage: V.is_projective()
True
sage: AA.<x,y,z,w> = AffineSpace(4,QQ)
sage: V = AA.subscheme(I)
sage: V.is_projective()
False
```

Note that toric varieties are implemented differently than projective spaces. This is why this method returns False for toric varieties:

```
sage: PP.<x,y,z,w> = toric_varieties.P(3)
sage: V = PP.subscheme(x^3 + y^3 + z^3 + w^3)
sage: V.is_projective()
False
```

### ngens()

Return the number of generators of the ambient space of this algebraic scheme.

### **EXAMPLES:**

```
sage: A.<x, y> = AffineSpace(2, GF(5))
sage: S = A.subscheme([])
sage: S.ngens()
2
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([x-y, x-z])
sage: P.ngens()
3
```

```
class sage.schemes.generic.algebraic_scheme.AlgebraicScheme_quasi(X, Y)
    Bases: sage.schemes.generic.algebraic_scheme.AlgebraicScheme
```

The quasi-affine or quasi-projective scheme X-Y, where X and Y are both closed subschemes of a common ambient affine or projective space.

**Warning:** You should not create objects of this class directly. The preferred method to construct such subschemes is to use complement () method of algebraic schemes.

# **OUTPUT:**

An instance of AlgebraicScheme\_quasi.

### **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([])
sage: T = P.subscheme([x-y])
sage: T.complement(S)
```

(continues on next page)

(continued from previous page)

```
Quasi-projective subscheme X - Y of Projective Space of dimension 2 over Integer Ring, where X is defined by:
  (no polynomials)
and Y is defined by:
  x - y
```

**X**()

Return the scheme X such that self is represented as X - Y.

### **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([])
sage: T = P.subscheme([x-y])
sage: U = T.complement(S)
sage: U.X() is S
True
```

**Y**()

Return the scheme Y such that self is represented as X - Y.

### **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([])
sage: T = P.subscheme([x-y])
sage: U = T.complement(S)
sage: U.Y() is T
True
```

### rational\_points(\*\*kwds)

Return the set of rational points on this algebraic scheme over the field F.

### INPUT:

kwds:

- bound integer (optional, default=0). The bound for the coordinates for subschemes with dimension at least 1.
- F field (optional, default=base ring). The field to compute the rational points over.

```
sage: A.\langle x, y \rangle = AffineSpace(2, GF(7))
sage: S = A.subscheme([x^2-y])
sage: T = A.subscheme([x-y])
sage: U = T.complement(S)
sage: U.rational_points()
[(2, 4), (3, 2), (4, 2), (5, 4), (6, 1)]
sage: U.rational_points(F=GF(7^2, 'b'))
[(2, 4), (3, 2), (4, 2), (5, 4), (6, 1), (b, b + 4), (b + 1, 3*b + 5), (b + 2,
\rightarrow 5*b + 1),
(b + 3, 6), (b + 4, 2*b + 6), (b + 5, 4*b + 1), (b + 6, 6*b + 5), (2*b, 4*b + 1)
→2),
(2*b + 1, b + 3), (2*b + 2, 5*b + 6), (2*b + 3, 2*b + 4), (2*b + 4, 6*b + 4),
(2*b + 5, 3*b + 6), (2*b + 6, 3), (3*b, 2*b + 1), (3*b + 1, b + 2), (3*b + 2, 3*b + 1)
(3*b + 3, 6*b + 3), (3*b + 4, 5*b + 3), (3*b + 5, 4*b + 5), (3*b + 6, 3*b + 4)
→2),
                                                                     (continues on next page)
```

(continued from previous page)

```
(4*b, 2*b + 1), (4*b + 1, 3*b + 2), (4*b + 2, 4*b + 5), (4*b + 3, 5*b + 3),
(4*b + 4, 6*b + 3), (4*b + 5, 5), (4*b + 6, b + 2), (5*b, 4*b + 2), (5*b + 1, ..., 3),
(5*b + 2, 3*b + 6), (5*b + 3, 6*b + 4), (5*b + 4, 2*b + 4), (5*b + 5, 5*b + ..., 6),
(5*b + 6, b + 3), (6*b, b + 4), (6*b + 1, 6*b + 5), (6*b + 2, 4*b + 1), (6*b, ..., 4),
(6*b + 4, 6), (6*b + 5, 5*b + 1), (6*b + 6, 3*b + 5)]
```

Bases: sage.schemes.generic.algebraic\_scheme.AlgebraicScheme

An algebraic scheme presented as a closed subscheme is defined by explicit polynomial equations.

An algebraic scheme presented as a closed subscheme is defined by explicit polynomial equations. This is as opposed to a general scheme, which could, e.g., be the Neron model of some object, and for which we do not want to give explicit equations.

### INPUT:

- A ambient space (e.g. affine or projective n-space)
- polynomials single polynomial, ideal or iterable of defining polynomials; in any case polynomials must belong to the coordinate ring of the ambient space and define valid polynomial functions (e.g. they should be homogeneous in the case of a projective space)

### **OUTPUT:**

algebraic scheme

# **EXAMPLES:**

### Jacobian()

Return the Jacobian ideal.

This is the ideal generated by

- the  $d \times d$  minors of the Jacobian matrix, where d is the codimension () of the algebraic scheme, and
- the defining polynomials of the algebraic scheme. Note that some authors do not include these in the definition of the Jacobian ideal. An example of a reference that does include the defining equations is [LazarsfeldJacobian].

### OUTPUT:

An ideal in the coordinate ring of the ambient space.

### REFERENCES:

### **EXAMPLES:**

```
sage: P3.<w,x,y,z> = ProjectiveSpace(3, QQ)
sage: twisted_cubic = P3.subscheme(matrix([[w, x, y],[x, y, z]]).minors(2))
sage: twisted_cubic.Jacobian()
Ideal (-x^2 + w*y, -x*y + w*z, -y^2 + x*z, x*z, -2*w*z, w*y, 3*w*y, -2*w*x, w^2, y*z, -2*x*z, w*z, 3*w*z, -2*w*y, w*x, z^2, -2*y*z, x*z, 3*x*z, -2*w*z, w*y) of Multivariate Polynomial Ring in w, x, y, z over Rational Field
sage: twisted_cubic.defining_ideal()
Ideal (-x^2 + w*y, -x*y + w*z, -y^2 + x*z) of Multivariate Polynomial Ring in w, x, y, z over Rational Field
```

This example addresses ticket trac ticket #20512:

```
sage: X = P3.subscheme([])
sage: X.Jacobian() == P3.coordinate_ring().unit_ideal()
True
```

### Jacobian\_matrix()

Return the matrix  $\frac{\partial f_i}{\partial x_i}$  of (formal) partial derivatives.

### **OUTPUT:**

A matrix of polynomials.

### **EXAMPLES:**

This example addresses ticket trac ticket #20512:

```
sage: X = P3.subscheme([])
sage: X.Jacobian_matrix().base_ring() == P3.coordinate_ring()
True
```

### $base_extend(R)$

Return the base change to the ring R of this scheme.

## **EXAMPLES:**

## $change\_ring(R)$

Returns a new algebraic subscheme which is this subscheme coerced to R.

### INPUT:

• R – ring or morphism.

### **OUTPUT**:

• A new algebraic subscheme which is this subscheme coerced to R.

#### **EXAMPLES:**

```
sage: K.<w> = QuadraticField(2)
sage: R.<z> = K[]
sage: L.<v> = K.extension(z^3-5)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: X = P.subscheme(x - w*y)
sage: X.change_ring(L)
Closed subscheme of Projective Space of dimension 1 over Number Field in v
→with
defining polynomial z^3 - 5 over its base field defined by:
    x + (-w)*y
```

```
sage: K.<w> = QuadraticField(2)
sage: R.<z> = K[]
sage: L.<v> = K.extension(z^3-5)
sage: P.<x,y,z> = AffineSpace(L,3)
sage: X = P.subscheme([x-w*y, z^2-v*x])
sage: emb = L.embeddings(QQbar)
sage: X.change_ring(emb[0])
Closed subscheme of Affine Space of dimension 3 over Algebraic Field defined by:
    x + (-1.414213562373095? + 0.?e-16*I)*y,
    z^2 + (0.8549879733383485? + 1.480882609682365?*I)*x
```

```
sage: K.<w> = QuadraticField(2)
sage: R.<z> = K[]
sage: L.<v> = K.extension(z^3-5)
sage: P.<x,y,z> = AffineSpace(L,3)
sage: X = P.subscheme([x-w*y, z^2-v*x])
sage: emb = L.embeddings(QQbar)
sage: X.change_ring(emb[1])
Closed subscheme of Affine Space of dimension 3 over Algebraic Field defined by:
    x + (-1.414213562373095? + 0.?e-16*I)*y,
    z^2 + (0.8549879733383485? - 1.480882609682365?*I)*x
```

```
sage: K.<w> = QuadraticField(-3)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: X = P.subscheme(x-w*y)
sage: X.change_ring(CC)
Closed subscheme of Projective Space of dimension 1 over Complex Field
```

```
with 53 bits of precision defined by:
    x + (-1.73205080756888*I)*y
```

```
sage: K.<w> = QuadraticField(3)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: X = P.subscheme(x-w*y)
sage: X.change_ring(RR)
Closed subscheme of Projective Space of dimension 1 over Real Field
with 53 bits of precision defined by:
    x - 1.73205080756888*y
```

```
sage: K.<v> = CyclotomicField(7)
sage: O = K.maximal_order()
sage: P.<x,y> = ProjectiveSpace(O, 1)
sage: X = P.subscheme([x^2+O(v)*y^2])
sage: X.change_ring(CC)
Closed subscheme of Projective Space of dimension 1 over Complex Field
with 53 bits of precision defined by:
    x^2 + (0.623489801858734 + 0.781831482468030*I)*y^2
sage: X.change_ring(K).change_ring(K.embeddings(QQbar)[0])
Closed subscheme of Projective Space of dimension 1 over Algebraic Field_
    defined by:
    x^2 + (-0.9009688679024191? - 0.4338837391175581?*I)*y^2
```

```
sage: R.<x> = QQ[]
sage: f = x^6-2
sage: L.<b> = NumberField(f, embedding=f.roots(CC)[2][0])
sage: A.<x,y> = AffineSpace(L, 2)
sage: H = Hom(A,A)
sage: X = A.subscheme([b*x^2, y^2])
sage: X.change_ring(CC)
Closed subscheme of Affine Space of dimension 2 over Complex Field with
53 bits of precision defined by:
    (-0.561231024154687 - 0.972080648619833*I)*x^2,
    y^2
```

### codimension()

Return the codimension of the algebraic subscheme.

**OUTPUT:** 

Integer.

**EXAMPLES:** 

```
sage: PP.<x,y,z,w,v> = ProjectiveSpace(4,QQ)
sage: V = PP.subscheme(x*y)
sage: V.codimension()
1
sage: V.dimension()
3
```

### complement (other=None)

Return the scheme-theoretic complement other - self, where self and other are both closed algebraic subschemes of the same ambient space.

If other is unspecified, it is taken to be the ambient space of self.

### **EXAMPLES:**

```
sage: A.\langle x, y, z \rangle = AffineSpace(3, ZZ)
sage: X = A.subscheme([x+y-z])
sage: Y = A.subscheme([x-y+z])
sage: Y.complement(X)
Quasi-affine subscheme X - Y of Affine Space of
dimension 3 over Integer Ring, where X is defined by:
 x + y - z
and Y is defined by:
 x - y + z
sage: Y.complement()
Quasi-affine subscheme X - Y of Affine Space of
dimension 3 over Integer Ring, where X is defined by:
 (no polynomials)
and Y is defined by:
 x - y + z
sage: P.\langle x, y, z \rangle = ProjectiveSpace(2, QQ)
sage: X = P.subscheme([x^2+y^2+z^2])
sage: Y = P.subscheme([x*y+y*z+z*x])
sage: Y.complement(X)
Quasi-projective subscheme X - Y of Projective Space of
dimension 2 over Rational Field, where X is defined by:
 x^2 + y^2 + z^2
and Y is defined by:
 x*y + x*z + y*z
sage: Y.complement(P)
Quasi-projective subscheme X - Y of Projective Space of
dimension 2 over Rational Field, where X is defined by:
  (no polynomials)
and Y is defined by:
 x*y + x*z + y*z
```

## defining\_ideal()

Return the ideal that defines this scheme as a subscheme of its ambient space.

#### **OUTPUT:**

An ideal in the coordinate ring of the ambient space.

# **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([x^2-y*z, x^3+z^3])
sage: S.defining_ideal()
Ideal (x^2 - y*z, x^3 + z^3) of Multivariate Polynomial Ring in x, y, z over

→Integer Ring
```

# defining\_polynomials()

Return the polynomials that define this scheme as a subscheme of its ambient space.

#### **OUTPUT**:

A tuple of polynomials in the coordinate ring of the ambient space.

# **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: S = P.subscheme([x^2-y*z, x^3+z^3])
```

```
sage: S.defining_polynomials()
(x^2 - y*z, x^3 + z^3)
```

### intersection (other)

Return the scheme-theoretic intersection of self and other in their common ambient space.

#### **EXAMPLES:**

```
sage: A.<x, y> = AffineSpace(2, ZZ)
sage: X = A.subscheme([x^2-y])
sage: Y = A.subscheme([y])
sage: X.intersection(Y)
Closed subscheme of Affine Space of dimension 2 over Integer Ring defined by:
    x^2 - y,
    y
```

### irreducible\_components()

Return the irreducible components of this algebraic scheme, as subschemes of the same ambient space.

### **OUTPUT**:

an immutable sequence of irreducible subschemes of the ambient space of this scheme

The components are cached.

### **EXAMPLES:**

We define what is clearly a union of four hypersurfaces in  $\P^4_{\mathbf{O}}$  then find the irreducible components:

```
sage: PP.<x,y,z,w,v> = ProjectiveSpace(4,QQ)
sage: V = PP.subscheme((x^2 - y^2 - z^2)*(w^5 - 2*v^2*z^3)*w*(v^3 - x^2)*(w^5 - y^2*z^5)*(w^5 - y^5*z^5)*(w^5 - y^5*z^5)*(
 \hookrightarrow 2 \times z) )
sage: V.irreducible_components()
Closed subscheme of Projective Space of dimension 4 over Rational Field,
 →defined by:
w,
Closed subscheme of Projective Space of dimension 4 over Rational Field,
→defined by:
x^2 - y^2 - z^2
Closed subscheme of Projective Space of dimension 4 over Rational Field,
 →defined by:
x^2 * z - v^3
Closed subscheme of Projective Space of dimension 4 over Rational Field,
 →defined by:
w^5 - 2*z^3*v^2
```

We verify that the irrelevant ideal isn't accidently returned (see trac ticket #6920):

```
sage: PP.<x,y,z,w> = ProjectiveSpace(3,QQ)
sage: f = x^3 + y^3 + z^3 + w^3
sage: R = f.parent()
sage: I = [f] + [f.derivative(zz) for zz in PP.gens()]
sage: V = PP.subscheme(I)
sage: V.irreducible_components()
[
```

The same polynomial as above defines a scheme with a nontrivial irreducible component in affine space (instead of the empty scheme as above):

#### is irreducible()

Return whether this subscheme is or is not irreducible.

OUTPUT: Boolean.

### **EXAMPLES:**

```
sage: K = QuadraticField(-3)
sage: P.<x,y,z,w,t,u> = ProjectiveSpace(K, 5)
sage: X = P.subscheme([x*y - z^2 - K.0*t^2, t*w*x + y*z^2 - u^3])
sage: X.is_irreducible()
True
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: X = P.subscheme([(y + x - z)^2])
sage: X.is_irreducible()
False
```

### normalize\_defining\_polynomials()

Function to normalize the coefficients of defining polynomials of given subscheme.

Normalization as in removing denominator from all the coefficients, and then removing any common factor between the coefficients. It takes LCM of denominators and then removes common factor among coefficients, if any.

### **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(2, QQ)
sage: S = A.subscheme([2*x^2 + 4*x*y, 1/8*x + 1/3*y])
sage: S.normalize_defining_polynomials()
sage: S.defining_polynomials()
(x^2 + 2*x*y, 3*x + 8*y)
```

### rational\_points(\*\*kwds)

Return the rational points on the algebraic subscheme.

For a dimension 0 subscheme, if the base ring is a numerical field such as the ComplexField the results

returned could be very far from correct. If the polynomials defining the subscheme are defined over a number field, you will get better results calling rational points with F defined as the numberical field and the base ring as the field of definition. If the base ring is a number field, the embedding into F must be known.

In the case of numerically approximated points, the points are returned over as points of the ambient space.

#### INPUT:

#### kwds:

- bound integer (optional, default=0). The bound for the coordinates for subschemes with dimension at least 1.
- prec integer (optional, default=53). The precision to use to compute the elements of bounded height for number fields.
- F field (optional, default=base ring). The field to compute the rational points over.
- point\_tolerance positive real number (optional, default=10^(-10)). For numerically inexact fields, two points are considered the same if their coordinates are within tolerance.
- zero\_tolerance positive real number (optional, default=10^(-10)). For numerically inexact fields, points are on the subscheme if they satisfy the equations to within tolerance.
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4

OUTPUT: list of points in subscheme or ambient space

**Warning:** For numerically inexact fields such as ComplexField or RealField the list of points returned is very likely to be incomplete at best.

### **EXAMPLES:**

Enumerate over a projective scheme over a number field:

```
sage: u = QQ['u'].0
sage: K.<v> = NumberField(u^2 + 3)
sage: A.<x,y> = ProjectiveSpace(K,1)
sage: X=A.subscheme(x^2 - y^2)
sage: X.rational_points(bound=3)
[(-1 : 1), (1 : 1)]
```

One can enumerate points up to a given bound on a projective scheme over the rationals:

```
sage: E = EllipticCurve('37a')
sage: E.rational_points(bound=8)
[(-1 : -1 : 1), (-1 : 0 : 1), (0 : -1 : 1), (0 : 0 : 1), (0 : 1 : 0), (1/4 : -

5/8 : 1),
(1/4 : -3/8 : 1), (1 : -1 : 1), (1 : 0 : 1), (2 : -3 : 1), (2 : 2 : 1)]
```

For a small finite field, the complete set of points can be enumerated.

The class of hyperelliptic curves does not (yet) support desingularization of the places at infinity into two points:

```
sage: K.<v> = QuadraticField(3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: X = A.subscheme([x^2 - v^2*y, y*x-v])
sage: X.rational_points(F=RR)
[(1.73205080756888, 1.00000000000000)]
```

**Todo:** Implement Stoll's model in weighted projective space to resolve singularities and find two points (1:1:0) and (-1:1:0) at infinity.

#### reduce()

Return the corresponding reduced algebraic space associated to this scheme.

EXAMPLES: First we construct the union of a doubled and tripled line in the affine plane over Q

```
sage: A.<x,y> = AffineSpace(2, QQ)
sage: X = A.subscheme([(x-1)^2*(x-y)^3]); X
Closed subscheme of Affine Space of dimension 2 over Rational Field defined

→by:
    x^5 - 3*x^4*y + 3*x^3*y^2 - x^2*y^3 - 2*x^4 + 6*x^3*y
    - 6*x^2*y^2 + 2*x*y^3 + x^3 - 3*x^2*y + 3*x*y^2 - y^3
sage: X.dimension()
1
```

Then we compute the corresponding reduced scheme:

```
sage: Y = X.reduce(); Y
Closed subscheme of Affine Space of dimension 2 over Rational Field defined_
\rightarrowby:
    x^2 - x*y - x + y
```

Finally, we verify that the reduced scheme Y is the union of those two lines:

```
Closed subscheme of Affine Space of dimension 2 over Rational Field defined \rightarrow by: x^2 - x + y - x + y sage: Y == W True
```

### specialization (D=None, phi=None)

Specialization of this subscheme.

Given a family of maps defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

### INPUT:

- D dictionary (optional)
- phi SpecializationMorphism (optional)

OUTPUT: SchemeMorphism\_polynomial

### **EXAMPLES:**

# union (other)

Return the scheme-theoretic union of self and other in their common ambient space.

EXAMPLES: We construct the union of a line and a tripled-point on the line.

```
sage: S.reduce()
Closed subscheme of Affine Space of dimension 2 over Rational Field defined

→by:
y^2 - y,
x*y - x
```

We can also use the notation "+" for the union:

```
sage: A.subscheme([x]) + A.subscheme([y^2 - (x^3+1)])
Closed subscheme of Affine Space of dimension 2 over Rational Field defined_\rightarrowby:
x^4 - x*y^2 + x
```

Saving and loading:

```
sage: loads(S.dumps()) == S
True
```

### weil\_restriction()

Compute the Weil restriction of this variety over some extension field. If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted  $Res_{L/k}$  - is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another corresponding variety  $Res_{L/k}(X)$ , defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

This function does not compute this Weil restriction directly but computes on generating sets of polynomial ideals:

Let d be the degree of the field extension L/k, let a generator of L/k and p the minimal polynomial of L/k. Denote this ideal by I.

Specifically, this function first maps each variable x to its representation over k:  $\sum_{i=0}^{d-1} a^i x_i$ . Then each generator of I is evaluated over these representations and reduced modulo the minimal polynomial p. The result is interpreted as a univariate polynomial in a and its coefficients are the new generators of the returned ideal.

If the input and the output ideals are radical, this is equivalent to the statement about algebraic varieties above.

OUTPUT: Affine subscheme - the Weil restriction of self.

### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^5-2)
sage: R.<x> = K[]
sage: L.<v> = K.extension(x^2+1)
sage: A.<x,y> = AffineSpace(L,2)
sage: X = A.subscheme([y^2-L(w)*x^3-v])
sage: X.weil_restriction()
Closed subscheme of Affine Space of dimension 4 over Number Field in w
with defining polynomial x^5 - 2 defined by:
    (-w)*z0^3 + (3*w)*z0*z1^2 + z2^2 - z3^2,
    (-3*w)*z0^2*z1 + (w)*z1^3 + 2*z2*z3 - 1
```

```
sage: X.weil_restriction().ambient_space() is A.weil_restriction()
True
```

```
sage: A.<x,y,z> = AffineSpace(GF(5^2,'t'),3)
sage: X = A.subscheme([y^2-x*z, z^2+2*y])
sage: X.weil_restriction()
Closed subscheme of Affine Space of dimension 6 over Finite Field of
size 5 defined by:
    z2^2 - 2*z3^2 - z0*z4 + 2*z1*z5,
    2*z2*z3 + z3^2 - z1*z4 - z0*z5 - z1*z5,
    z4^2 - 2*z5^2 + 2*z2,
    2*z4*z5 + z5^2 + 2*z3
```

sage.schemes.generic.algebraicScheme(x)

Test whether x is an algebraic scheme.

#### INPUT:

• x – anything.

### **OUTPUT**:

Boolean. Whether x is an algebraic scheme, that is, a subscheme of an ambient space over a ring defined by polynomial equations.

# **EXAMPLES:**

```
sage: A2 = AffineSpace(2, QQ, 'x, y')
sage: A2.coordinate_ring().inject_variables()
Defining x, y
sage: V = A2.subscheme([x^2+y^2]); V
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
    x^2 + y^2
sage: from sage.schemes.generic.algebraic_scheme import is_AlgebraicScheme
sage: is_AlgebraicScheme(V)
True
```

Affine space is itself not an algebraic scheme, though the closed subscheme defined by no equations is:

```
sage: from sage.schemes.generic.algebraic_scheme import is_AlgebraicScheme
sage: is_AlgebraicScheme(AffineSpace(10, QQ))
False
sage: V = AffineSpace(10, QQ).subscheme([]); V
Closed subscheme of Affine Space of dimension 10 over Rational Field defined by:
    (no polynomials)
sage: is_AlgebraicScheme(V)
True
```

We create a more complicated closed subscheme:

```
sage: A,x = AffineSpace(10, QQ).objgens()
sage: X = A.subscheme([sum(x)]); X
Closed subscheme of Affine Space of dimension 10 over Rational Field defined by:
x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
sage: is_AlgebraicScheme(X)
True
```

```
sage: is_AlgebraicScheme(QQ)
False
sage: S = Spec(QQ)
sage: is_AlgebraicScheme(S)
False
```

**CHAPTER** 

**EIGHT** 

# HYPERSURFACES IN AFFINE AND PROJECTIVE SPACE

### **AUTHORS:**

- William Stein <wstein@gmail.com> (2005-12-08)
- David Kohel <kohel@maths.usyd.edu.au> (2005-12-08)
- Alex Ghitza <aghitza@alum.mit.edu> (2009-04-17)

class sage.schemes.generic.hypersurface.AffineHypersurface(poly, ambient=None)
 Bases: sage.schemes.affine.affine\_subscheme.AlgebraicScheme\_subscheme\_affine

The affine hypersurface defined by the given polynomial.

### **EXAMPLES**:

```
sage: A.<x, y, z> = AffineSpace(ZZ, 3)
sage: AffineHypersurface(x*y-z^3, A)
Affine hypersurface defined by -z^3 + x*y in Affine Space of dimension 3 over

→Integer Ring
```

```
sage: A.<x, y, z> = QQ[]
sage: AffineHypersurface(x*y-z^3)
Affine hypersurface defined by -z^3 + x*y in Affine Space of dimension 3 over
\rightarrowRational Field
```

# defining\_polynomial()

Return the polynomial equation that cuts out this affine hypersurface.

### **EXAMPLES**:

```
sage: R.<x, y, z> = ZZ[]
sage: H = AffineHypersurface(x*z+y^2)
sage: H.defining_polynomial()
y^2 + x*z
```

class sage.schemes.generic.hypersurface.ProjectiveHypersurface(poly, ambi-

ent=None)
Bases: sage.schemes.projective.projective subscheme.AlgebraicScheme subscheme projective

The projective hypersurface defined by the given polynomial.

```
sage: P.<x, y, z> = ProjectiveSpace(ZZ, 2)
sage: ProjectiveHypersurface(x-y, P)
Projective hypersurface defined by x - y in Projective Space of dimension 2 over

→Integer Ring
```

```
sage: R.<x, y, z> = QQ[]
sage: ProjectiveHypersurface(x-y)
Projective hypersurface defined by x - y in Projective Space of dimension 2 over

→Rational Field
```

### defining\_polynomial()

Return the polynomial equation that cuts out this projective hypersurface.

# **EXAMPLES:**

```
sage: R.<x, y, z> = ZZ[]
sage: H = ProjectiveHypersurface(x*z+y^2)
sage: H.defining_polynomial()
y^2 + x*z
```

# sage.schemes.generic.hypersurface.is\_Hypersurface(self)

Return True if self is a hypersurface, i.e. an object of the type ProjectiveHypersurface or AffineHypersurface.

```
sage: from sage.schemes.generic.hypersurface import is_Hypersurface
sage: R.<x, y, z> = ZZ[]
sage: H = ProjectiveHypersurface(x*z+y^2)
sage: is_Hypersurface(H)
True
```

```
sage: H = AffineHypersurface(x*z+y^2)
sage: is_Hypersurface(H)
True
```

```
sage: H = ProjectiveSpace(QQ, 5)
sage: is_Hypersurface(H)
False
```

**CHAPTER** 

**NINE** 

# SET OF HOMOMORPHISMS BETWEEN TWO SCHEMES

For schemes X and Y, this module implements the set of morphisms Hom(X,Y). This is done by  $SchemeHomset\_generic$ .

As a special case, the Hom-sets can also represent the points of a scheme. Recall that the K-rational points of a scheme X over k can be identified with the set of morphisms  $Spec(K) \to X$ . In Sage the rational points are implemented by such scheme morphisms. This is done by  $SchemeHomset\_points$  and its subclasses.

Note: You should not create the Hom-sets manually. Instead, use the Hom () method that is inherited by all schemes.

### **AUTHORS:**

- William Stein (2006): initial version.
- Volker Braun (2011-08-11): significant improvement and refactoring.
- Ben Hutz (June 2012): added support for projective ring

```
class sage.schemes.generic.homset.SchemeHomsetFactory
    Bases: sage.structure.factory.UniqueFactory
```

Factory for Hom-sets of schemes.

# **EXAMPLES:**

```
sage: A2 = AffineSpace(QQ,2)
sage: A3 = AffineSpace(QQ,3)
sage: Hom = A3.Hom(A2)
```

The Hom-sets are uniquely determined by domain and codomain:

```
sage: Hom is copy(Hom)
True
sage: Hom is A3.Hom(A2)
True
```

The Hom-sets are identical if the domains and codomains are identical:

```
sage: loads(Hom.dumps()) is Hom
True
sage: A3_iso = AffineSpace(QQ,3)
sage: A3_iso is A3
True
sage: Hom_iso = A3_iso.Hom(A2)
sage: Hom_iso is Hom
True
```

 $\begin{tabular}{ll} {\tt create\_key\_and\_extra\_args} (X, & Y, & category=None, & base=Integer & Ring, & check=True, \\ & as\_point\_homset=False) \end{tabular}$ 

Create a key that uniquely determines the Hom-set.

### INPUT:

- X a scheme. The domain of the morphisms.
- Y a scheme. The codomain of the morphisms.
- category a category for the Hom-sets (default: schemes over given base).
- base a scheme or a ring. The base scheme of domain and codomain schemes. If a ring is specified, the spectrum of that ring will be used as base scheme.
- check boolean (default: True).

### **EXAMPLES:**

```
sage: A2 = AffineSpace(QQ, 2)
sage: A3 = AffineSpace(QQ,3)
sage: A3.Hom(A2)
                 # indirect doctest
Set of morphisms
 From: Affine Space of dimension 3 over Rational Field
 To: Affine Space of dimension 2 over Rational Field
sage: from sage.schemes.generic.homset import SchemeHomsetFactory
sage: SHOMfactory = SchemeHomsetFactory('test')
sage: key, extra = SHOMfactory.create_key_and_extra_args(A3,A2,check=False)
sage: key
(..., ..., Category of schemes over Integer Ring, False)
sage: extra
{'X': Affine Space of dimension 3 over Rational Field,
 'Y': Affine Space of dimension 2 over Rational Field,
 'base_ring': Integer Ring,
 'check': False}
```

## create\_object (version, key, \*\*extra\_args)

Create a SchemeHomset generic.

### INPUT:

- version object version. Currently not used.
- key a key created by create\_key\_and\_extra\_args().
- extra\_args a dictionary of extra keyword arguments.

class sage.schemes.generic.homset.SchemeHomset\_generic(X, Y, category=None, check=True, base=None)

Bases: sage.categories.homset.HomsetWithBase

The base class for Hom-sets of schemes.

#### **INPUT:**

- X a scheme. The domain of the Hom-set.
- Y a scheme. The codomain of the Hom-set.
- category a category (optional). The category of the Hom-set.
- check boolean (optional, default="True"). Whether to check the defining data for consistency.

### **EXAMPLES:**

```
sage: from sage.schemes.generic.homset import SchemeHomset_generic
sage: A2 = AffineSpace(QQ,2)
sage: Hom = SchemeHomset_generic(A2, A2); Hom
Set of morphisms
   From: Affine Space of dimension 2 over Rational Field
   To: Affine Space of dimension 2 over Rational Field
sage: Hom.category()
Category of endsets of schemes over Rational Field
```

#### Element

alias of SchemeMorphism

### natural\_map()

Return a natural map in the Hom space.

### **OUTPUT:**

A SchemeMorphism if there is a natural map from domain to codomain. Otherwise, a NotImplementedError is raised.

# EXAMPLES:

```
sage: A = AffineSpace(4, QQ)
sage: A.structure_morphism() # indirect doctest
Scheme morphism:
  From: Affine Space of dimension 4 over Rational Field
  To: Spectrum of Rational Field
  Defn: Structure map
```

Bases: sage.schemes.generic.homset.SchemeHomset\_generic

Set of rational points of the scheme.

Recall that the K-rational points of a scheme X over k can be identified with the set of morphisms Spec(K)oX. In Sage, the rational points are implemented by such scheme morphisms.

If a scheme has a finite number of points, then the homset is supposed to implement the Python iterator interface. See <code>SchemeHomset\_points\_toric\_field</code> for example.

### INPUT:

See SchemeHomset\_generic.

```
sage: from sage.schemes.generic.homset import SchemeHomset_points
sage: SchemeHomset_points(Spec(QQ), AffineSpace(ZZ,2))
Set of rational points of Affine Space of dimension 2 over Rational Field
```

## cardinality()

Return the number of points.

**OUTPUT**:

An integer or infinity.

**EXAMPLES:** 

```
sage: toric_varieties.P2().point_set().cardinality()
+Infinity

sage: P2 = toric_varieties.P2(base_ring=GF(3))
sage: P2.point_set().cardinality()
13
```

### extended codomain()

Return the codomain with extended base, if necessary.

**OUTPUT:** 

The codomain scheme, with its base ring extended to the codomain. That is, the codomain is of the form Spec(R) and the base ring of the domain is extended to R.

### **EXAMPLES:**

```
sage: P2 = ProjectiveSpace(QQ,2)
sage: K.<a> = NumberField(x^2 + x - (3^3-3))
sage: K_points = P2(K); K_points
Set of rational points of Projective Space of dimension 2
over Number Field in a with defining polynomial x^2 + x - 24

sage: K_points.codomain()
Projective Space of dimension 2 over Rational Field

sage: K_points.extended_codomain()
Projective Space of dimension 2 over Number Field in a with defining polynomial x^2 + x - 24
```

### list()

Return a tuple containing all points.

**OUTPUT**:

A tuple containing all points of the toric variety.

#### **EXAMPLES:**

```
sage: P1 = toric_varieties.P1(base_ring=GF(3))
sage: P1.point_set().list()
([0 : 1], [1 : 0], [1 : 1], [1 : 2])
```

### value\_ring()

Return R for a point Hom-set X(Spec(R)).

**OUTPUT**:

# A commutative ring.

# **EXAMPLES:**

```
sage: P2 = ProjectiveSpace(ZZ,2)
sage: P2(QQ).value_ring()
Rational Field
```

sage.schemes.generic.homset.is\_SchemeHomset(H)

Test whether H is a scheme Hom-set.

```
sage: f = Spec(QQ).identity_morphism(); f
Scheme endomorphism of Spectrum of Rational Field
   Defn: Identity map
sage: from sage.schemes.generic.homset import is_SchemeHomset
sage: is_SchemeHomset(f)
False
sage: is_SchemeHomset(f.parent())
True
sage: is_SchemeHomset('a string')
False
```

**CHAPTER** 

**TEN** 

# **SCHEME MORPHISM**

Note: You should never create the morphisms directly. Instead, use the hom() and Hom() methods that are inherited by all schemes.

If you want to extend the Sage library with some new kind of scheme, your new class (say, myscheme) should provide a method

myscheme.\_morphism(\*args, \*\*kwds) returning a morphism between two schemes in your category, usually defined via polynomials. Your morphism class should derive from SchemeMorphism\_polynomial. These morphisms will usually be elements of the Hom-set SchemeHomset\_generic.

Optionally, you can also provide a special Hom-set class for your subcategory of schemes. If you want to do this, you should also provide a method

• myscheme.\_homset(\*args, \*\*kwds) returning a Hom-set, which must be an element of a derived class of SchemeHomset\_generic. If your new Hom-set class does not use myscheme.\_morphism then you do not have to provide it.

Note that points on schemes are morphisms  $Spec(K) \to X$ , too. But we typically use a different notation, so they are implemented in a different derived class. For this, you should implement a method

• myscheme.\_point (\*args, \*\*kwds) returning a point, that is, a morphism  $Spec(K) \to X$ . Your point class should derive from  $SchemeMorphism\_point$ .

Optionally, you can also provide a special Hom-set for the points, for example the point Hom-set can provide a method to enumerate all points. If you want to do this, you should also provide a method

• myscheme.\_point\_homset(\*args, \*\*kwds) returning the homset of points. The Hom-sets of points are implemented in classes named SchemeHomset\_points\_... If your new Hom-set class does not use myscheme.\_point then you do not have to provide it.

### **AUTHORS:**

- · David Kohel, William Stein
- William Stein (2006-02-11): fixed bug where P(0,0,0) was allowed as a projective point.
- Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
- Ben Hutz (June 2012): added support for projective ring
- Simon King (2013-10): copy the changes of Morphism that have been introduced in trac ticket #14711.

class sage.schemes.generic.morphism.SchemeMorphism (parent, codomain=None)

Bases: sage.structure.element.Element

Base class for scheme morphisms

### INPUT:

• parent - the parent of the morphism.

**Todo:** For historical reasons, *SchemeMorphism* copies code from Map rather than inheriting from it. Proper inheritance should be used instead. See trac ticket #14711.

#### **EXAMPLES:**

```
sage: X = Spec(ZZ)
sage: Hom = X.Hom(X)
sage: from sage.schemes.generic.morphism import SchemeMorphism
sage: f = SchemeMorphism(Hom)
sage: type(f)
<class 'sage.schemes.generic.morphism.SchemeMorphism'>
```

### category()

Return the category of the Hom-set.

**OUTPUT**:

A category.

#### **EXAMPLES:**

```
sage: A2 = AffineSpace(QQ,2)
sage: A2.structure_morphism().category()
Category of homsets of schemes
```

### category\_for()

Return the category which this morphism belongs to.

### **EXAMPLES:**

```
sage: A2 = AffineSpace(QQ,2)
sage: A2.structure_morphism().category_for()
Category of schemes
```

# glue\_along\_domains (other)

Glue two morphism

### INPUT:

• other – a scheme morphism with the same domain.

### **OUTPUT**:

Assuming that self and other are open immersions with the same domain, return scheme obtained by gluing along the images.

### **EXAMPLES:**

We construct a scheme isomorphic to the projective line over  $\operatorname{Spec}(\mathbf{Q})$  by gluing two copies of  $\mathbb{A}^1$  minus a point:

```
sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S.<xbar, ybar> = R.quotient(x*y - 1)
sage: Rx = PolynomialRing(QQ, 'x')
sage: i1 = Rx.hom([xbar])
sage: Ry = PolynomialRing(QQ, 'y')
```

```
sage: i2 = Ry.hom([ybar])
sage: Sch = Schemes()
sage: f1 = Sch(i1)
sage: f2 = Sch(i2)
```

Now f1 and f2 have the same domain, which is a  $\mathbb{A}^1$  minus a point. We glue along the domain:

```
sage: P1 = f1.glue_along_domains(f2)
sage: P1
Scheme obtained by gluing X and Y along U, where
 X: Spectrum of Univariate Polynomial Ring in x over Rational Field
 Y: Spectrum of Univariate Polynomial Ring in y over Rational Field
 U: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
 over Rational Field by the ideal (x*y - 1)
sage: a, b = P1.gluing_maps()
sage: a
Affine Scheme morphism:
From: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
      over Rational Field by the ideal (x*y - 1)
       Spectrum of Univariate Polynomial Ring in x over Rational Field
 Defn: Ring morphism:
         From: Univariate Polynomial Ring in x over Rational Field
              Quotient of Multivariate Polynomial Ring in x, y over
                Rational Field by the ideal (x*y - 1)
         Defn: x \mid --> xbar
sage: b
Affine Scheme morphism:
 From: Spectrum of Quotient of Multivariate Polynomial Ring in x, y
        over Rational Field by the ideal (x*y - 1)
       Spectrum of Univariate Polynomial Ring in y over Rational Field
 Defn: Ring morphism:
         From: Univariate Polynomial Ring in y over Rational Field
              Quotient of Multivariate Polynomial Ring in x, y over
                Rational Field by the ideal (x*y - 1)
         Defn: y |--> ybar
```

### is\_endomorphism()

Return wether the morphism is an endomorphism.

### OUTPUT:

Boolean. Whether the domain and codomain are identical.

### **EXAMPLES:**

```
sage: X = AffineSpace(QQ,2)
sage: X.structure_morphism().is_endomorphism()
False
sage: X.identity_morphism().is_endomorphism()
True
```

### class sage.schemes.generic.morphism.SchemeMorphism\_id (X)

 $Bases: \verb|sage.schemes.generic.morphism.SchemeMorphism|\\$ 

Return the identity morphism from *X* to itself.

INPUT:

• X – the scheme.

# **EXAMPLES:**

```
sage: X = Spec(ZZ)
sage: X.identity_morphism() # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
Defn: Identity map
```

class sage.schemes.generic.morphism.SchemeMorphism\_point(parent,

codomain=None)

Bases: sage.schemes.generic.morphism.SchemeMorphism

Base class for rational points on schemes.

Recall that the K-rational points of a scheme X over k can be identified with the set of morphisms Spec(K)oX. In Sage, the rational points are implemented by such scheme morphisms.

### **EXAMPLES:**

```
sage: from sage.schemes.generic.morphism import SchemeMorphism
sage: f = SchemeMorphism(Spec(ZZ).Hom(Spec(ZZ)))
sage: type(f)
<class 'sage.schemes.generic.morphism.SchemeMorphism'>
```

### change\_ring(R, check=True)

Returns a new SchemeMorphism point which is this point coerced to "R".

If check is true, then the initialization checks are performed.

### INPUT:

• R - ring or morphism.

### kwds:

• check - Boolean

OUTPUT: SchemeMorphism\_point

# **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: X = P.subscheme(x^2-y^2)
sage: X(23,23,1).change_ring(GF(13))
(10: 10: 1)
```

```
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: P(152,113).change_ring(Zp(5))
(2 + 5^2 + 5^3 + 0(5^20) : 3 + 2*5 + 4*5^2 + 0(5^20))
```

```
sage: K.<v> = QuadraticField(-7)
sage: O = K.maximal_order()
sage: P.<x,y> = ProjectiveSpace(0, 1)
sage: H = End(P)
sage: F = H([x^2+O(v)*y^2, y^2])
sage: F.change_ring(K).change_ring(K.embeddings(QQbar)[0])
```

```
Scheme endomorphism of Projective Space of dimension 1 over Algebraic Field Defn: Defined on coordinates by sending (x : y) to (x^2 + (-2.645751311064591?*I)*y^2 : y^2)
```

```
sage: K.<v> = QuadraticField(2)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: Q = P([v,1])
sage: Q.change_ring(K.embeddings(QQbar)[0])
(-1.414213562373095? : 1)
```

```
sage: R.<x> = QQ[]
sage: f = x^6-2
sage: L.<b> = NumberField(f, embedding=f.roots(QQbar)[1][0])
sage: A.<x,y> = AffineSpace(L,2)
sage: P = A([b,1])
sage: P.change_ring(QQbar)
(1.122462048309373?, 1)
```

### scheme()

Return the scheme whose point is represented.

## **OUTPUT**:

A scheme.

### **EXAMPLES:**

```
sage: A = AffineSpace(2, QQ)
sage: a = A(1,2)
sage: a.scheme()
Affine Space of dimension 2 over Rational Field
```

### specialization (D=None, phi=None, ambient=None)

Specialization of this point.

Given a family of points defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

## INPUT:

- D dictionary (optional)
- phi SpecializationMorphism (optional)
- ambient ambient space of specialized point (optional)

OUTPUT: SchemeMorphism\_polynomial

```
sage: R.<c> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: Q = P([c,1])
sage: Q.specialization({c:1})
(1 : 1)
::
sage: R.<a,b> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: Q = P([a^2 + 2*a*b + 34, 1])
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: phi = SpecializationMorphism(P.coordinate_ring(),dict({a:2,b:-1}))
sage: T = Q.specialization(phi=phi); T
(34 : 1)
sage: Q2 = P([a,1])
sage: T2 = Q2.specialization(phi=phi)
sage: T2.codomain() is T.codomain()
False
sage: T3 = Q2.specialization(phi=phi, ambient=T.codomain())
sage: T3.codomain() is T.codomain()
True
```

```
sage: R.<1> = PolynomialRing(QQ)
sage: S.<k, j> = PolynomialRing(R)
sage: K.<a,b,c,d> = S[]
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: H = End(P)
sage: Q = P([a^2,b^2])
sage: Q.specialization({a:2})
(4 : b^2)
```

Bases: sage.schemes.generic.morphism.SchemeMorphism

A morphism of schemes determined by polynomials that define what the morphism does on points in the ambient space.

### INPUT:

- parent Hom-set whose domain and codomain are affine or projective schemes.
- polys a list/tuple/iterable of polynomials defining the scheme morphism.
- check boolean (optional, default:True). Whether to check the input for consistency.

An example involving the affine plane:

```
sage: R.<x,y> = QQ[]
sage: A2 = AffineSpace(R)
sage: H = A2.Hom(A2)
sage: f = H([x-y, x*y])
sage: f([0,1])
(-1, 0)
```

An example involving the projective line:

```
sage: R.<x,y> = QQ[]
sage: P1 = ProjectiveSpace(R)
sage: H = P1.Hom(P1)
sage: f = H([x^2+y^2,x*y])
sage: f([0,1])
(1 : 0)
```

Some checks are performed to make sure the given polynomials define a morphism:

```
sage: f = H([exp(x),exp(y)])
Traceback (most recent call last):
...
TypeError: polys (=[e^x, e^y]) must be elements of
Multivariate Polynomial Ring in x, y over Rational Field
```

#### base\_ring()

Return the base ring of self, that is, the ring over which the coefficients of self is given as polynomials.

### **OUTPUT:**

• ring

# EXAMPLES:

```
sage: P.<x,y>=ProjectiveSpace(QQ,1)
sage: H=Hom(P,P)
sage: f=H([3/5*x^2,6*y^2])
sage: f.base_ring()
Rational Field
```

```
sage: R.<t>=PolynomialRing(ZZ,1)
sage: P.<x,y>=ProjectiveSpace(R,1)
sage: H=Hom(P,P)
sage: f=H([3*x^2,y^2])
sage: f.base_ring()
Multivariate Polynomial Ring in t over Integer Ring
```

## change\_ring(R, check=True)

Returns a new SchemeMorphism\_polynomial which is this map coerced to R.

If check is True, then the initialization checks are performed.

### INPUT:

- R ring or morphism.
- check Boolean

### **OUTPUT**:

• A new SchemeMorphism\_polynomial which is this map coerced to R.

### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: H = Hom(P,P)
sage: f = H([3*x^2, y^2])
sage: f.change_ring(GF(3))
Traceback (most recent call last):
...
ValueError: polys (=[0, y^2]) must be of the same degree
```

### Check that trac ticket #16834 is fixed:

```
sage: A.<x,y> = ProjectiveSpace(ZZ, 1)
sage: B.<u,v> = AffineSpace(QQ, 2)
sage: h = Hom(A,B)
sage: f = h([x^2, y^2])
sage: f.change_ring(QQ)
Scheme morphism:
    From: Projective Space of dimension 1 over Rational Field
    To: Affine Space of dimension 2 over Rational Field
    Defn: Defined on coordinates by sending (x : y) to
    (x^2, y^2)
```

```
sage: A.<x,y> = AffineSpace(QQ,2)
sage: H = Hom(A,A)
sage: f = H([3*x^2/y, y^2/x])
```

(continues on next page)

60

```
sage: R.<x> = PolynomialRing(QQ)
sage: K. < a > = NumberField(x^3-x+1)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: H = End(P)
sage: f = H([x^2 + a*x*y + a^2*y^2, y^2])
sage: emb = K.embeddings(QQbar)
sage: f.change_ring(emb[0])
Scheme endomorphism of Projective Space of dimension 1 over Algebraic
   Defn: Defined on coordinates by sending (x : y) to
         (x^2 + (-1.324717957244746?)*x*y + 1.754877666246693?*y^2 : y^2)
sage: f.change_ring(emb[1])
Scheme endomorphism of Projective Space of dimension 1 over Algebraic
Field
   Defn: Defined on coordinates by sending (x : y) to
         (x^2 + (0.6623589786223730? - 0.5622795120623013?*I)*x*y +
(0.1225611668766537? - 0.744861766619745?*I)*y^2 : y^2)
```

```
sage: R.<x> = QQ[]
sage: f = x^6-2
sage: L.<b> = NumberField(f, embedding=f.roots(QQbar)[1][0])
sage: A.<x,y> = AffineSpace(L,2)
sage: H = Hom(A,A)
sage: F = H([b*x/y, 1+y])
sage: F.change_ring(QQbar)
```

```
Scheme endomorphism of Affine Space of dimension 2 over Algebraic Field Defn: Defined on coordinates by sending (x, y) to (1.122462048309373?*x/y, y + 1)
```

### coordinate\_ring()

Returns the coordinate ring of the ambient projective space the multivariable polynomial ring over the base ring

#### **OUTPUT:**

• ring

### **EXAMPLES:**

```
sage: P.<x,y>=ProjectiveSpace(QQ,1)
sage: H=Hom(P,P)
sage: f=H([3/5*x^2,6*y^2])
sage: f.coordinate_ring()
Multivariate Polynomial Ring in x, y over Rational Field
```

```
sage: R.<t>=PolynomialRing(ZZ,1)
sage: P.<x,y>=ProjectiveSpace(R,1)
sage: H=Hom(P,P)
sage: f=H([3*x^2,y^2])
sage: f.coordinate_ring()
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring
in t over Integer Ring
```

# defining\_polynomials()

Return the defining polynomials.

#### OUTPUT

An immutable sequence of polynomials that defines this scheme morphism.

# **EXAMPLES:**

```
sage: R.<x,y> = QQ[]
sage: A.<x,y> = AffineSpace(R)
sage: H = A.Hom(A)
sage: H([x^3+y, 1-x-y]).defining_polynomials()
(x^3 + y, -x - y + 1)
```

# $\verb"specialization" (D=None, phi=None, homset=None)$

Specialization of this map.

Given a family of maps defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

# INPUT:

- D dictionary (optional)
- phi SpecializationMorphism (optional)
- homset homset of specialized map (optional)

OUTPUT: SchemeMorphism\_polynomial

#### **EXAMPLES:**

```
sage: R.<c> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: H = End(P)
sage: f = H([x^2 + c*y^2, y^2])
sage: f.specialization({c:1})
Scheme endomorphism of Projective Space of dimension 1 over Rational Field
     Defn: Defined on coordinates by sending (x : y) to
            (x^2 + y^2 : y^2)
::
sage: R.<a,b> = PolynomialRing(QQ)
sage: P.<x,y> = ProjectiveSpace(R, 1)
sage: H = End(P)
sage: f = H([x^3 + a*x*y^2 + b*y^3, y^3])
sage: from sage.rings.polynomial.flatten import SpecializationMorphism
sage: phi = SpecializationMorphism(P.coordinate_ring(), dict({a:2,b:-1}))
sage: F = f.specialization(phi=phi); F
Scheme endomorphism of Projective Space of dimension 1 over Rational Field
      Defn: Defined on coordinates by sending (x : y) to
            (x^3 + 2*x*y^2 - y^3 : y^3)
sage: q = H([x^2 + a*y^2, y^2])
sage: G = g.specialization(phi=phi)
sage: G.parent() is F.parent()
False
sage: G = g.specialization(phi=phi, homset=F.parent())
sage: G.parent() is F.parent()
True
```

```
sage: R.<c> = QQ[]
sage: P.<x,y> = ProjectiveSpace(R,1)
sage: f = DynamicalSystem_projective([x^2 + c*y^2, y^2], domain=P)
sage: F = f.dynatomic_polynomial(3)
sage: g = F.specialization({c:1}); g
x^6 + x^5*y + 4*x^4*y^2 + 3*x^3*y^3 + 7*x^2*y^4 + 4*x*y^5 + 5*y^6
```

```
sage: g == f.specialization({c:1}).dynatomic_polynomial(3)
True
```

 $\textbf{class} \ \, \texttt{sage.schemes.generic.morphism.SchemeMorphism\_spec} \, (\textit{parent}, \textit{phi}, \textit{check=True})$ 

Bases: sage.schemes.generic.morphism.SchemeMorphism

Morphism of spectra of rings

#### INPUT:

- parent Hom-set whose domain and codomain are affine schemes.
- phi a ring morphism with matching domain and codomain.
- check boolean (optional, default:True). Whether to check the input for consistency.

### **EXAMPLES:**

```
sage: R. < x > = PolynomialRing(QQ)
sage: phi = R.hom([QQ(7)]); phi
Ring morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Rational Field
 Defn: x \mid --> 7
sage: X = Spec(QQ); Y = Spec(R)
sage: f = X.hom(phi); f
Affine Scheme morphism:
 From: Spectrum of Rational Field
 To: Spectrum of Univariate Polynomial Ring in x over Rational Field
 Defn: Ring morphism:
         From: Univariate Polynomial Ring in x over Rational Field
         To: Rational Field
         Defn: x |--> 7
sage: f.ring_homomorphism()
Ring morphism:
 From: Univariate Polynomial Ring in x over Rational Field
 To: Rational Field
 Defn: x \mid --> 7
```

## ring\_homomorphism()

Return the underlying ring homomorphism.

#### **OUTPUT:**

A ring homomorphism.

```
sage: R.<x> = PolynomialRing(QQ)
sage: phi = R.hom([QQ(7)])
sage: X = Spec(QQ); Y = Spec(R)
sage: f = X.hom(phi)
sage: f.ring_homomorphism()
Ring morphism:
   From: Univariate Polynomial Ring in x over Rational Field
   To: Rational Field
   Defn: x |--> 7
```

class sage.schemes.generic.morphism.SchemeMorphism\_structure\_map (parent,

codomain=None)

 $Bases: \ \textit{sage.schemes.generic.morphism.SchemeMorphism}$ 

The structure morphism

### INPUT:

• parent – Hom-set with codomain equal to the base scheme of the domain.

### **EXAMPLES:**

```
sage: Spec(ZZ).structure_morphism() # indirect doctest
Scheme endomorphism of Spectrum of Integer Ring
Defn: Structure map
```

sage.schemes.generic.morphism.is\_SchemeMorphism(f)

Test whether f is a scheme morphism.

### INPUT:

• f – anything.

# OUTPUT:

Boolean. Return True if f is a scheme morphism or a point on an elliptic curve.

**CHAPTER** 

# **ELEVEN**

# **DIVISORS ON SCHEMES**

### **AUTHORS:**

- · William Stein
- David Kohel
- · David Joyner
- Volker Braun (2010-07-16): Documentation, doctests, coercion fixes, bugfixes.

#### **EXAMPLES:**

```
sage: x,y,z = ProjectiveSpace(2, GF(5), names='x,y,z').gens()
sage: C = Curve(y^2*z^7 - x^9 - x*z^8)
sage: pts = C.rational_points(); pts
[(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1), (3 : 1 : 1), (3 : 4 : 1)]
sage: D1 = C.divisor(pts[0])*3
sage: D2 = C.divisor(pts[1])
sage: D3 = 10*C.divisor(pts[5])
sage: D1.parent() is D2.parent()
True
sage: D = D1 - D2 + D3; D
3*(x, y) - (x, z) + 10*(x + 2*z, y + z)
sage: D[1][0]
-1
sage: D[1][1]
Ideal (x, z) of Multivariate Polynomial Ring in x, y, z over Finite Field of size 5
sage: C.divisor([(3, pts[0]), (-1, pts[1]), (10,pts[5])])
3*(x, y) - (x, z) + 10*(x + 2*z, y + z)
```

sage.schemes.generic.divisor.CurvePointToIdeal(C, P)

Return the vanishing ideal of a point on a curve.

### **EXAMPLES:**

```
sage: x,y = AffineSpace(2, QQ, names='xy').gens()
sage: C = Curve(y^2 - x^9 - x)
sage: from sage.schemes.generic.divisor import CurvePointToIdeal
sage: CurvePointToIdeal(C, (0,0))
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Rational Field
```

```
Bases: sage.schemes.generic.divisor.Divisor_generic
```

For any curve C, use C. divisor (v) to construct a divisor on C. Here v can be either

• a rational point on C

- a list of rational points
- a list of 2-tuples (c, P), where c is an integer and P is a rational point.

TODO: Divisors shouldn't be restricted to rational points. The problem is that the divisor group is the formal sum of the group of points on the curve, and there's no implemented notion of point on E/K that has coordinates in L. This is what should be implemented, by adding an appropriate class to schemes/generic/morphism. py.

#### **EXAMPLES:**

```
sage: E = EllipticCurve([0, 0, 1, -1, 0])
sage: P = E(0,0)
sage: 10*P
(161/16 : -2065/64 : 1)
sage: D = E.divisor(P)
sage: D
(x, y)
sage: 10*D
10*(x, y)
sage: E.divisor([P, P])
2*(x, y)
sage: E.divisor([(3,P), (-4,5*P)])
3*(x, y) - 4*(x - 1/4*z, y + 5/8*z)
```

### coefficient(P)

Return the coefficient of a given point P in this divisor.

#### **EXAMPLES:**

```
sage: x,y = AffineSpace(2, GF(5), names='xy').gens()
sage: C = Curve(y^2 - x^9 - x)
sage: pts = C.rational_points(); pts
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
sage: D = C.divisor(pts[0])
sage: D.coefficient(pts[0])
1
sage: D = C.divisor([(3,pts[0]), (-1,pts[1])]); D
3*(x, y) - (x - 2, y - 2)
sage: D.coefficient(pts[0])
3
sage: D.coefficient(pts[1])
-1
```

#### support()

Return the support of this divisor, which is the set of points that occur in this divisor with nonzero coefficients.

```
sage: x,y = AffineSpace(2, GF(5), names='xy').gens()
sage: C = Curve(y^2 - x^9 - x)
sage: pts = C.rational_points(); pts
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
sage: D = C.divisor_group()([(3,pts[0]), (-1, pts[1])]); D
3*(x, y) - (x - 2, y - 2)
sage: D.support()
[(0, 0), (2, 2)]
```

```
class sage.schemes.generic.divisor.Divisor_generic(v, parent, check=True, reduce=True)
```

 $Bases: \verb|sage.structure.formal_sum.FormalSum|$ 

A Divisor.

scheme()

Return the scheme that this divisor is on.

# **EXAMPLES:**

```
sage: A.<x, y> = AffineSpace(2, GF(5))
sage: C = Curve(y^2 - x^9 - x)
sage: pts = C.rational_points(); pts
[(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)]
sage: D = C.divisor(pts[0])*3 - C.divisor(pts[1]); D
3*(x, y) - (x - 2, y - 2)
sage: D.scheme()
Affine Plane Curve over Finite Field of size 5 defined by -x^9 + y^2 - x
```

sage.schemes.generic.divisor.is\_Divisor(x)

Test whether x is an instance of Divisor\_generic

INPUT:

• x - anything.

OUTPUT:

True or False.

```
sage: from sage.schemes.generic.divisor import is_Divisor
sage: x,y = AffineSpace(2, GF(5), names='xy').gens()
sage: C = Curve(y^2 - x^9 - x)
sage: is_Divisor( C.divisor([]) )
True
sage: is_Divisor("Ceci n'est pas un diviseur")
False
```

**CHAPTER** 

# **TWELVE**

# **DIVISOR GROUPS**

### **AUTHORS:**

- David Kohel (2006): Initial version
- Volker Braun (2010-07-16): Documentation, doctests, coercion fixes, bugfixes.

sage.schemes.generic.divisor\_group.**DivisorGroup**(*scheme*, *base\_ring=None*)
Return the group of divisors on the scheme.

#### INPUT:

- scheme a scheme.
- base\_ring usually either **Z** (default) or **Q**. The coefficient ring of the divisors. Not to be confused with the base ring of the scheme!

### **OUTPUT:**

An instance of DivisorGroup\_generic.

### **EXAMPLES:**

```
sage: from sage.schemes.generic.divisor_group import DivisorGroup
sage: DivisorGroup(Spec(ZZ))
Group of ZZ-Divisors on Spectrum of Integer Ring
sage: DivisorGroup(Spec(ZZ), base_ring=QQ)
Group of QQ-Divisors on Spectrum of Integer Ring
```

class sage.schemes.generic.divisor\_group.DivisorGroup\_curve(scheme, base\_ring)
 Bases: sage.schemes.generic.divisor\_group.DivisorGroup\_generic

Special case of the group of divisors on a curve.

```
 \textbf{class} \  \, \text{sage.schemes.generic.divisor\_group.DivisorGroup\_generic} \, (\textit{scheme}, \\ \textit{base\_ring}) \\ \text{Bases: sage.structure.formal\_sum.FormalSums}
```

The divisor group on a variety.

# $base_extend(R)$

# **EXAMPLES:**

```
sage: from sage.schemes.generic.divisor_group import DivisorGroup
sage: DivisorGroup(Spec(ZZ),ZZ).base_extend(QQ)
Group of QQ-Divisors on Spectrum of Integer Ring
sage: DivisorGroup(Spec(ZZ),ZZ).base_extend(GF(7))
Group of (Finite Field of size 7)-Divisors on Spectrum of Integer Ring
```

Divisor groups are unique:

```
sage: A.<x, y> = AffineSpace(2, CC)
sage: C = Curve(y^2 - x^9 - x)
sage: DivisorGroup(C,ZZ).base_extend(QQ) is DivisorGroup(C,QQ)
True
```

# scheme()

Return the scheme supporting the divisors.

# **EXAMPLES:**

```
sage: from sage.schemes.generic.divisor_group import DivisorGroup
sage: Div = DivisorGroup(Spec(ZZ)) # indirect test
sage: Div.scheme()
Spectrum of Integer Ring
```

# sage.schemes.generic.divisor\_group.is\_DivisorGroup(x)

Return whether x is a DivisorGroup\_generic.

### INPUT:

• x - anything.

# **OUTPUT**:

True or False.

```
sage: from sage.schemes.generic.divisor_group import is_DivisorGroup, DivisorGroup
sage: Div = DivisorGroup(Spec(ZZ), base_ring=QQ)
sage: is_DivisorGroup(Div)
True
sage: is_DivisorGroup('not a divisor')
False
```

**CHAPTER** 

# **THIRTEEN**

# **AFFINE SCHEMES**

# 13.1 Affine n space over a ring

sage.schemes.affine.affine\_space.**AffineSpace** (n, R=None, names='x') Return affine space of dimension n over the ring R.

### **EXAMPLES:**

The dimension and ring can be given in either order:

```
sage: AffineSpace(3, QQ, 'x')
Affine Space of dimension 3 over Rational Field
sage: AffineSpace(5, QQ, 'x')
Affine Space of dimension 5 over Rational Field
sage: A = AffineSpace(2, QQ, names='XY'); A
Affine Space of dimension 2 over Rational Field
sage: A.coordinate_ring()
Multivariate Polynomial Ring in X, Y over Rational Field
```

Use the divide operator for base extension:

```
sage: AffineSpace(5, names='x')/GF(17)
Affine Space of dimension 5 over Finite Field of size 17
```

The default base ring is **Z**:

```
sage: AffineSpace(5, names='x')
Affine Space of dimension 5 over Integer Ring
```

There is also an affine space associated to each polynomial ring:

```
sage: R = GF(7)['x, y, z']
sage: A = AffineSpace(R); A
Affine Space of dimension 3 over Finite Field of size 7
sage: A.coordinate_ring() is R
True
```

```
\textbf{class} \texttt{ sage.schemes.affine\_space.AffineSpace\_field} (\textit{n}, \textit{R}, \textit{names})
```

```
Bases: sage.schemes.affine.affine_space.AffineSpace_generic
```

# ${\tt curve}\,(F)$

Return a curve defined by F in this affine space.

#### INPUT:

• F - a polynomial, or a list or tuple of polynomials in the coordinate ring of this affine space.

### **EXAMPLES:**

```
sage: A.\langle x, y, z \rangle = AffineSpace(QQ, 3)
sage: A.curve([y - x^4, z - y^5])
Affine Curve over Rational Field defined by -x^4 + y, -y^5 + z
```

#### points\_of\_bounded\_height(\*\*kwds)

Returns an iterator of the points in this affine space of absolute height of at most the given bound.

Bound check is strict for the rational field. Requires this space to be affine space over a number field. Uses the Doyle-Krumm algorithm 4 (algorithm 5 for imaginary quadratic) for computing algebraic numbers up to a given height [Doyle-Krumm].

The algorithm requires floating point arithmetic, so the user is allowed to specify the precision for such calculations. Additionally, due to floating point issues, points slightly larger than the bound may be returned. This can be controlled by lowering the tolerance.

### INPUT:

### kwds:

- bound a real number
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4
- precision the precision to use for computing the elements of bounded height of number fields

# **OUTPUT**:

• an iterator of points in self

#### EXAMPLES:

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: list(A.points_of_bounded_height(bound=3))
[(0, 0), (1, 0), (-1, 0), (1/2, 0), (-1/2, 0), (2, 0), (-2, 0), (0, 1),
(1, 1), (-1, 1), (1/2, 1), (-1/2, 1), (2, 1), (-2, 1), (0, -1), (1, -1),
(-1, -1), (1/2, -1), (-1/2, -1), (2, -1), (-2, -1), (0, 1/2), (1, 1/2),
(-1, 1/2), (1/2, 1/2), (-1/2, 1/2), (2, 1/2), (-2, 1/2), (0, -1/2), (1, -1/2),
(-1, -1/2), (1/2, -1/2), (-1/2, -1/2), (2, -1/2), (-2, -1/2), (0, 2), (1, 2),
(-1, 2), (1/2, 2), (-1/2, 2), (2, 2), (-2, 2), (0, -2), (1, -2), (-1, -2), (1/2, -2),
(-1/2, -2), (2, -2), (-2, -2)]
```

```
sage: u = QQ['u'].0
sage: A.<x,y> = AffineSpace(NumberField(u^2 - 2, 'v'), 2)
sage: len(list(A.points_of_bounded_height(bound=2, tolerance=0.1)))
529
```

#### weil restriction()

Compute the Weil restriction of this affine space over some extension field.

If the field is a finite field, then this computes the Weil restriction to the prime subfield.

OUTPUT: Affine space of dimension d \* self.dimension\_relative() over the base field of self.base\_ring().

# **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^5-2)
sage: AK.<x,y> = AffineSpace(K, 2)
```

```
sage: AK.weil_restriction()
Affine Space of dimension 10 over Rational Field
sage: R.<x> = K[]
sage: L.<v> = K.extension(x^2+1)
sage: AL.<x,y> = AffineSpace(L, 2)
sage: AL.weil_restriction()
Affine Space of dimension 4 over Number Field in w with defining
polynomial x^5 - 2
```

 $\verb|class| sage.schemes.affine\_space.AffineSpace\_finite\_field| (n, R, names)$ 

Bases: sage.schemes.affine.affine space.AffineSpace field

class sage.schemes.affine.affine\_space.AffineSpace\_generic(n, R, names)

 ${\bf Bases:}\ sage.schemes.generic.ambient\_space.AmbientSpace,\ sage.schemes.generic.scheme.AffineScheme$ 

Affine space of dimension n over the ring R.

#### **EXAMPLES:**

```
sage: X.<x,y,z> = AffineSpace(3, QQ)
sage: X.base_scheme()
Spectrum of Rational Field
sage: X.base_ring()
Rational Field
sage: X.category()
Category of schemes over Rational Field
sage: X.structure_morphism()
Scheme morphism:
   From: Affine Space of dimension 3 over Rational Field
   To: Spectrum of Rational Field
   Defn: Structure map
```

#### Loading and saving:

```
sage: loads(X.dumps()) == X
True
```

### We create several other examples of affine spaces:

```
sage: AffineSpace(5, PolynomialRing(QQ, 'z'), 'Z')
Affine Space of dimension 5 over Univariate Polynomial Ring in z over Rational
→Field

sage: AffineSpace(RealField(), 3, 'Z')
Affine Space of dimension 3 over Real Field with 53 bits of precision

sage: AffineSpace(Qp(7), 2, 'x')
Affine Space of dimension 2 over 7-adic Field with capped relative precision 20
```

# Even 0-dimensional affine spaces are supported:

```
sage: AffineSpace(0)
Affine Space of dimension 0 over Integer Ring
```

# ${\tt change\_ring}\,(R)$

Return an affine space over ring  $\mbox{\it R}$  and otherwise the same as this space.

### INPUT:

• R – commutative ring or morphism.

## **OUTPUT**:

· affine space over R.

**Note:** There is no need to have any relation between R and the base ring of this space, if you want to have such a relation, use self.base\_extend(R) instead.

### **EXAMPLES:**

```
sage: A.<x,y,z> = AffineSpace(3, ZZ)
sage: AQ = A.change_ring(QQ); AQ
Affine Space of dimension 3 over Rational Field
sage: AQ.change_ring(GF(5))
Affine Space of dimension 3 over Finite Field of size 5
```

```
sage: K.<w> = QuadraticField(5)
sage: A = AffineSpace(K,2,'t')
sage: A.change_ring(K.embeddings(CC)[1])
Affine Space of dimension 2 over Complex Field with 53 bits of precision
```

# chebyshev\_polynomial (n, kind='first')

Generates an endomorphism of this affine line by a Chebyshev polynomial.

Chebyshev polynomials are a sequence of recursively defined orthogonal polynomials. Chebyshev of the first kind are defined as  $T_0(x) = 1$ ,  $T_1(x) = x$ , and  $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ . Chebyshev of the second kind are defined as  $U_0(x) = 1$ ,  $U_1(x) = 2x$ , and  $U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)$ .

# INPUT:

- n a non-negative integer.
- kind first or second specifying which kind of chebyshev the user would like to generate.
   Defaults to first.

OUTPUT: DynamicalSystem\_affine

```
sage: A.<x> = AffineSpace(QQ, 1)
sage: A.chebyshev_polynomial(5, 'first')
Dynamical System of Affine Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x) to
(16*x^5 - 20*x^3 + 5*x)
```

```
sage: A.<x> = AffineSpace(QQ, 1)
sage: A.chebyshev_polynomial(3, 'second')
Dynamical System of Affine Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x) to
(8*x^3 - 4*x)
```

```
sage: A.<x> = AffineSpace(QQ, 1)
sage: A.chebyshev_polynomial(3, 2)
Traceback (most recent call last):
...
ValueError: keyword 'kind' must have a value of either 'first' or 'second'
```

```
sage: A.<x> = AffineSpace(QQ, 1)
sage: A.chebyshev_polynomial(-4, 'second')
Traceback (most recent call last):
...
ValueError: first parameter 'n' must be a non-negative integer
```

```
sage: A = AffineSpace(QQ, 2, 'x')
sage: A.chebyshev_polynomial(2)
Traceback (most recent call last):
...
TypeError: affine space must be of dimension 1
```

#### coordinate\_ring()

Return the coordinate ring of this scheme, if defined.

### **EXAMPLES:**

```
sage: R = AffineSpace(2, GF(9,'alpha'), 'z').coordinate_ring(); R
Multivariate Polynomial Ring in z0, z1 over Finite Field in alpha of size 3^2
sage: AffineSpace(3, R, 'x').coordinate_ring()
Multivariate Polynomial Ring in x0, x1, x2 over Multivariate Polynomial Ring
in z0, z1 over Finite Field in alpha of size 3^2
```

# ngens()

Return the number of generators of self, i.e. the number of variables in the coordinate ring of self.

#### **EXAMPLES:**

```
sage: AffineSpace(3, QQ).ngens()
3
sage: AffineSpace(7, ZZ).ngens()
7
```

### projective\_embedding(i=None, PP=None)

Returns a morphism from this space into an ambient projective space of the same dimension.

# INPUT:

- i integer (default: dimension of self = last coordinate) determines which projective embedding to compute. The embedding is that which has a 1 in the i-th coordinate, numbered from 0.
- PP (default: None) ambient projective space, i.e., codomain of morphism; this is constructed if it is not given.

# **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: A.projective_embedding(2).codomain().affine_patch(2) == A
True
```

# rational\_points(F=None)

Return the list of F-rational points on the affine space self, where F is a given finite field, or the base ring of self.

#### **EXAMPLES:**

```
sage: A = AffineSpace(1, GF(3))
sage: A.rational_points()
[(0), (1), (2)]
sage: A.rational_points(GF(3^2, 'b'))
[(0), (b), (b + 1), (2*b + 1), (2), (2*b), (2*b + 2), (b + 2), (1)]
sage: AffineSpace(2, ZZ).rational_points(GF(2))
[(0, 0), (1, 0), (0, 1), (1, 1)]
```

### subscheme(X)

Return the closed subscheme defined by X.

# INPUT:

• X - a list or tuple of equations.

# **EXAMPLES:**

 $sage.schemes.affine.affine\_space.is\_AffineSpace(x)$ 

Returns True if x is an affine space.

#### **EXAMPLES:**

```
sage: from sage.schemes.affine.affine_space import is_AffineSpace
sage: is_AffineSpace(AffineSpace(5, names='x'))
True
sage: is_AffineSpace(AffineSpace(5, GF(9, 'alpha'), names='x'))
True
sage: is_AffineSpace(Spec(ZZ))
False
```

# 13.2 Morphisms on affine varieties

A morphism of schemes determined by rational functions that define what the morphism does on points in the ambient affine space.

# **AUTHORS**:

- · David Kohel, William Stein
- Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
- Ben Hutz (2013-03) iteration functionality and new directory structure for affine/projective

class sage.schemes.affine\_morphism.SchemeMorphism\_polynomial\_affine\_space (parent, polys, check=True)

 $Bases: \textit{sage.schemes.generic.morphism.SchemeMorphism\_polynomial} \\$ 

A morphism of schemes determined by rational functions.

### **EXAMPLES:**

```
sage: RA.<x,y> = QQ[]
sage: A2 = AffineSpace(RA)
sage: RP.<u,v,w> = QQ[]
sage: P2 = ProjectiveSpace(RP)
sage: H = A2.Hom(P2)
sage: f = H([x, y, 1])
```

### as dynamical system()

Return this endomorphism as a Dynamical System\_affine.

#### **OUTPUT:**

• DynamicalSystem\_affine

### **EXAMPLES:**

```
sage: A.<x,y,z> = AffineSpace(ZZ, 3)
sage: H = End(A)
sage: f = H([x^2, y^2, z^2])
sage: type(f.as_dynamical_system())
<class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
```

```
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: H = End(A)
sage: f = H([x^2-y^2, y^2])
sage: type(f.as_dynamical_system())
<class 'sage.dynamics.arithmetic_dynamics.affine_ds.DynamicalSystem_affine'>
```

```
sage: P.<x,y> = AffineSpace(RR, 2)
sage: f = DynamicalSystem([x^2 + y^2, y^2], P)
sage: g = f.as_dynamical_system()
sage: g is f
True
```

# dynatomic\_polynomial (period)

Return the dynatomic polynomial.

# **EXAMPLES:**

```
sage: A.<x> = AffineSpace(QQ, 1)
sage: H = End(A)
sage: f = H([x^2-10/9])
sage: f.dynatomic_polynomial([2, 1])
doctest:warning
...
531441*x^4 - 649539*x^2 - 524880
```

# global\_height (prec=None)

Returns the maximum of the heights of the coefficients in any of the coordinate functions of the affine morphism.

# INPUT:

• prec – desired floating point precision (default: default RealField precision).

OUTPUT: A real number.

# **EXAMPLES:**

```
sage: A.<x> = AffineSpace(QQ, 1)
sage: H = Hom(A, A)
sage: f = H([1/1331*x^2 + 4000]);
sage: f.global_height()
8.29404964010203
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: k.<w> = NumberField(x^2 + 5)
sage: A.<x,y> = AffineSpace(k, 2)
sage: H = Hom(A, A)
sage: f = H([13*w*x^2 + 4*y, 1/w*y^2]);
sage: f.global_height(prec=100)
3.3696683136785869233538671082
```

```
sage: A.<x> = AffineSpace(ZZ, 1)
sage: H = Hom(A, A)
sage: f = H([7*x^2 + 1513]);
sage: f.global_height()
7.32184971378836
```

#### homogenize(n)

Return the homogenization of this map.

If it's domain is a subscheme, the domain of the homogenized map is the projective embedding of the domain. The domain and codomain can be homogenized at different coordinates: n[0] for the domain and n[1] for the codomain.

# INPUT:

• n – a tuple of nonnegative integers. If n is an integer, then the two values of the tuple are assumed to be the same.

# **OUTPUT:**

• SchemeMorphism\_polynomial\_projective\_space.

# **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(CC, 2)
sage: H = Hom(A, A)
sage: f = H([(x^2-2)/(x*y), y^2-x])
sage: f.homogenize((2, 0))
Scheme endomorphism of Projective Space of dimension 2
over Complex Field with 53 bits of precision
```

```
Defn: Defined on coordinates by sending (x0 : x1 : x2) to (x0*x1*x2^2 : x0^2*x2^2 + (-2.0000000000000)*x2^4 : x0*x1^3 - x0^2*x1*x2)
```

```
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: X = A.subscheme([x-y^2])
sage: H = Hom(X, X)
sage: f = H([9*y^2, 3*y])
sage: f.homogenize(2)
Scheme endomorphism of Closed subscheme of Projective Space
of dimension 2 over Integer Ring defined by:
    x1^2 - x0*x2
    Defined on coordinates by sending (x0 : x1 : x2) to
        (9*x1^2 : 3*x1*x2 : x2^2)
```

```
sage: R.<t> = PolynomialRing(ZZ)
sage: A.<x,y> = AffineSpace(R, 2)
sage: H = Hom(A, A)
sage: f = H([(x^2-2)/y, y^2-x])
sage: f.homogenize((2, 0))
Scheme endomorphism of Projective Space of dimension 2
over Univariate Polynomial Ring in t over Integer Ring
Defn: Defined on coordinates by sending (x0 : x1 : x2) to
(x1*x2^2 : x0^2*x2 + (-2)*x2^3 : x1^3 - x0*x1*x2)
```

```
sage: A.<x> = AffineSpace(QQ, 1)
sage: H = End(A)
sage: f = H([x^2-1])
sage: f.homogenize((1, 0))
Scheme endomorphism of Projective Space of dimension 1
over Rational Field
Defn: Defined on coordinates by sending (x0 : x1) to
(x1^2 : x0^2 - x1^2)
```

```
sage: P.<x,y,z> = AffineSpace(QQ, 3)
sage: H = End(P)
sage: f = H([x^2 - 2*x*y + z*x, z^2 -y^2, 5*z*y])
sage: f.homogenize(2).dehomogenize(2) == f
True
```

```
sage: K.<c> = FunctionField(QQ)
sage: A.<x> = AffineSpace(K, 1)
sage: f = Hom(A, A)([x^2 + c])
sage: f.homogenize(1)
Scheme endomorphism of Projective Space of
```

```
dimension 1 over Rational function field in c over Rational Field Defn: Defined on coordinates by sending (x0 : x1) to (x0^2 + c*x1^2 : x1^2)
```

# jacobian()

Return the Jacobian matrix of partial derivative of this map.

The (i, j) entry of the Jacobian matrix is the partial derivative diff(functions[i], variables[j]).

# **OUTPUT**:

• matrix with coordinates in the coordinate ring of the map.

```
sage: A.<z> = AffineSpace(QQ, 1)
sage: H = End(A)
sage: f = H([z^2 - 3/4])
sage: f.jacobian()
[2*z]
```

# multiplier (P, n, check=True)

Return the multiplier of the point.

### **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: H = End(A)
sage: f = H([x^2, y^2])
sage: f.multiplier(A([1, 1]), 1)
doctest:warning
...
[2 0]
[0 2]
```

# $nth_iterate(P, n)$

Return the nth iterate of the point.

### **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: H = End(A)
sage: f = H([(x-2*y^2)/x, 3*x*y])
sage: f.nth_iterate(A(9, 3), 3)
doctest:warning
...
(-104975/13123, -9566667)
```

# $nth\_iterate\_map(n)$

Return the symbolic nth iterate.

# **EXAMPLES:**

### orbit(P, n)

Return the orbit of the point.

### **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: H = End(A)
sage: f = H([(x-2*y^2)/x, 3*x*y])
```

```
sage: f.orbit(A(9, 3), 3)
doctest:warning
...
[(9, 3), (-1, 81), (13123, -243), (-104975/13123, -9566667)]
```

Bases: sage.schemes.affine.affine\_morphism.SchemeMorphism\_polynomial\_affine\_space

## weil\_restriction()

Compute the Weil restriction of this morphism over some extension field.

If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted  $Res_{L/k}$  - is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another corresponding variety  $Res_{L/k}(X)$ , defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields. Since it is a functor it also applied to morphisms. In particular, the functor applied to a morphism gives the equivalent morphism from the Weil restriction of the domain to the Weil restriction of the codomain.

OUTPUT: Scheme morphism on the Weil restrictions of the domain and codomain of the map.

#### **EXAMPLES:**

```
sage: K.<v> = QuadraticField(5)
sage: PS.<x,y> = AffineSpace(K, 2)
sage: H = Hom(PS, PS)
sage: f = H([x, y])
sage: F = f.weil_restriction()
sage: P = PS(2, 1)
sage: Q = P.weil_restriction()
sage: f(P).weil_restriction() == F(Q)
True
```

class sage.schemes.affine\_morphism.SchemeMorphism\_polynomial\_affine\_space\_finite\_fic

Bases: sage.schemes.affine.affine morphism.SchemeMorphism polynomial affine space field

# cyclegraph()

Return the directed graph of the map.

```
sage: A.<x,y> = AffineSpace(GF(5), 2)
sage: H = End(A)
sage: f = H([x^2-y, x*y+1])
sage: f.cyclegraph()
doctest:warning
...
Looped digraph on 25 vertices
```

# $orbit_structure(P)$

Return the tail and period of the point.

# **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(GF(13), 2)
sage: H = End(A)
sage: f = H([x^2 - 1, y^2])
sage: f.orbit_structure(A(2, 3))
doctest:warning
...
[1, 6]
```

# 13.3 Points on affine varieties

Scheme morphism for points on affine varieties.

#### **AUTHORS:**

- · David Kohel, William Stein
- Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
- Ben Hutz (2013)

```
class sage.schemes.affine.affine_point.SchemeMorphism_point_affine(X, v, check=True)

Bases: sage.schemes.generic.morphism.SchemeMorphism_point
```

A rational point on an affine scheme.

# INPUT:

- X a subscheme of an ambient affine space over a ring R.
- v a list/tuple/iterable of coordinates in R.
- check boolean (optional, default: True). Whether to check the input for consistency.

# **EXAMPLES:**

```
sage: A = AffineSpace(2, QQ)
sage: A(1, 2)
(1, 2)
```

# global\_height (prec=None)

Returns the logarithmic height of the point.

#### INPUT:

• prec – desired floating point precision (default: default RealField precision).

# **OUTPUT**:

• a real number.

### **EXAMPLES:**

```
sage: P.<x,y> = AffineSpace(QQ, 2)
sage: Q = P(41, 1/12)
sage: Q.global_height()
3.71357206670431
```

```
sage: P = AffineSpace(ZZ, 4, 'x')
sage: Q = P(3, 17, -51, 5)
sage: Q.global_height()
3.93182563272433
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: k.<w> = NumberField(x^2+5)
sage: A = AffineSpace(k, 2, 'z')
sage: A([3, 5*w+1]).global_height(prec=100)
2.4181409534757389986565376694
```

**Todo:** P-adic heights.

# homogenize(n)

Return the homogenization of the point at the nth coordinate.

### INPUT:

• n – integer between 0 and dimension of the map, inclusive.

## **OUTPUT:**

• A point in the projectivization of the codomain of the map.

# **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(ZZ, 2)
sage: Q = A(2, 3)
sage: Q.homogenize(2).dehomogenize(2) == Q
True
::
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: Q = A(2, 3)
sage: P = A(0, 1)
sage: Q.homogenize(2).codomain() == P.homogenize(2).codomain()
True
```

### $nth_iterate(f, n)$

Returns the point  $f^n(self)$ 

# INPUT:

- f a SchemeMorphism\_polynomial with self if f.domain().
- n a positive integer.

#### **OUTPUT**:

• a point in f.codomain().

### **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: H = Hom(A, A)
sage: f = H([(x-2*y^2)/x,3*x*y])
sage: A(9,3).nth_iterate(f, 3)
doctest:warning
...
(-104975/13123, -9566667)
```

## $\mathtt{orbit}(f, N)$

Returns the orbit of the point by f.

If n is an integer it returns  $[self, f(self), \dots, f^n(self)]$ .

If n is a list or tuple n = [m, k] it returns  $[f^m(self), \dots, f^k(self)]$ .

# INPUT:

- f a SchemeMorphism\_polynomial with the point in f.domain().
- N a non-negative integer or list or tuple of two non-negative integers.

# **OUTPUT**:

• a list of points in f.codomain().

#### **EXAMPLES:**

```
sage: A.<x,y>=AffineSpace(QQ, 2)
sage: H = Hom(A, A)
sage: f = H([(x-2*y^2)/x, 3*x*y])
sage: A(9, 3).orbit(f, 3)
doctest:warning
...
[(9, 3), (-1, 81), (13123, -243), (-104975/13123, -9566667)]
```

class sage.schemes.affine.affine\_point.SchemeMorphism\_point\_affine\_field(X,

v, check=True)

Bases: sage.schemes.affine.affine\_point.SchemeMorphism\_point\_affine

### $intersection_multiplicity(X)$

Return the intersection multiplicity of the codomain of this point and X at this point.

This uses the intersection\_multiplicity implementations for projective/affine subschemes. This point must be a point on an affine subscheme.

### INPUT:

• X – a subscheme in the same ambient space as that of the codomain of this point.

OUTPUT: Integer.

# **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(GF(17), 2)
sage: X = A.subscheme([y^2 - x^3 + 2*x^2 - x])
sage: Y = A.subscheme([y - 2*x + 2])
sage: Q1 = Y([1,0])
sage: Q1.intersection_multiplicity(X)
2
sage: Q2 = X([4,6])
```

```
sage: Q2.intersection_multiplicity(Y)
1
```

```
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: X = A.subscheme([x^2 - y*z^2, z - 2*w^2])
sage: Q = A([2,1,2,-1])
sage: Q.intersection_multiplicity(X)
Traceback (most recent call last):
...
TypeError: this point must be a point on an affine subscheme
```

# multiplicity()

Return the multiplicity of this point on its codomain.

Uses the subscheme multiplicity implementation. This point must be a point on an affine subscheme.

OUTPUT: an integer.

### **EXAMPLES:**

```
sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: X = A.subscheme([y^2 - x^7*z])
sage: Q1 = X([1,1,1])
sage: Q1.multiplicity()
1
sage: Q2 = X([0,0,2])
sage: Q2.multiplicity()
2
```

## weil\_restriction()

Compute the Weil restriction of this point over some extension field.

If the field is a finite field, then this computes the Weil restriction to the prime subfield.

A Weil restriction of scalars - denoted  $Res_{L/k}$  - is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another corresponding variety  $Res_{L/k}(X)$ , defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields. This functor applied to a point gives the equivalent point on the Weil restriction of its codomain.

OUTPUT: Scheme point on the Weil restriction of the codomain of this point.

# **EXAMPLES:**

```
sage: A.<x,y,z> = AffineSpace(GF(5^3, 't'), 3)
sage: X = A.subscheme([y^2-x*z, z^2+y])
sage: Y = X.weil_restriction()
sage: P = X([1, -1, 1])
sage: Q = P.weil_restriction();Q
(1, 0, 0, 4, 0, 0, 1, 0, 0)
sage: Q.codomain() == Y
True
```

```
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^5-2)
sage: R.<x> = K[]
sage: L.<v> = K.extension(x^2+w)
sage: A.<x,y> = AffineSpace(L, 2)
```

```
sage: P = A([w^3-v,1+w+w*v])
sage: P.weil_restriction()
(w^3, -1, w + 1, w)
```

 $\verb|class| | sage.schemes.affine\_point.SchemeMorphism\_point\_affine\_finite\_field(X, fine the content of the cont$ 

check=True)

 $\textbf{Bases: } \textit{sage.schemes.affine\_point.SchemeMorphism\_point\_affine\_field }$ 

# $orbit_structure(f)$

This function returns the pair [m, n] where m is the preperiod and n is the period of the point by f.

Every point is preperiodic over a finite field.

# INPUT:

• f - a ScemeMorphism\_polynomial with the point in f.domain().

#### **OUTPUT:**

• a list [m, n] of integers.

# **EXAMPLES:**

```
sage: P.<x,y,z> = AffineSpace(GF(5), 3)
sage: f = DynamicalSystem_affine([x^2 + y^2, y^2, z^2 + y*z], domain=P)
sage: f.orbit_structure(P(1, 1, 1))
[0, 6]
```

```
sage: P.<x,y,z> = AffineSpace(GF(7), 3)
sage: X = P.subscheme(x^2 - y^2)
sage: f = DynamicalSystem_affine([x^2, y^2, z^2], domain=X)
sage: f.orbit_structure(X(1, 1, 2))
[0, 2]
```

```
sage: P.<x,y> = AffineSpace(GF(13), 2)
sage: f = DynamicalSystem_affine([x^2 - y^2, y^2], domain=P)
sage: P(3, 4).orbit_structure(f)
doctest:warning
...
[2, 6]
```

```
sage: P.<x,y> = AffineSpace(GF(13), 2)
sage: H = End(P)
sage: f = H([x^2 - y^2, y^2])
sage: f.orbit_structure(P(3, 4))
doctest:warning
...
[2, 6]
```

# 13.4 Subschemes of affine space

# **AUTHORS:**

- David Kohel (2005): initial version.
- William Stein (2005): initial version.

• Ben Hutz (2013): affine subschemes

Bases: sage.schemes.generic.algebraic\_scheme.AlgebraicScheme\_subscheme

Construct an algebraic subscheme of affine space.

**Warning:** You should not create objects of this class directly. The preferred method to construct such subschemes is to use <code>subscheme()</code> method of <code>affine space</code>.

#### INPUT:

- A ambient affine space
- polynomials single polynomial, ideal or iterable of defining polynomials.

### **EXAMPLES:**

```
sage: A3.<x, y, z> = AffineSpace(QQ, 3)
sage: A3.subscheme([x^2-y*z])
Closed subscheme of Affine Space of dimension 3 over Rational Field defined by:
    x^2 - y*z
```

# dimension()

Return the dimension of the affine algebraic subscheme.

OUTPUT: Integer.

# **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(2, QQ)
sage: A.subscheme([]).dimension()
2
sage: A.subscheme([x]).dimension()
1
sage: A.subscheme([x^5]).dimension()
1
sage: A.subscheme([x^2 + y^2 - 1]).dimension()
1
sage: A.subscheme([x*(x-1), y*(y-1)]).dimension()
```

# Something less obvious:

#### intersection multiplicity (X, P)

Return the intersection multiplicity of this subscheme and the subscheme X at the point P.

The intersection of this subscheme with X must be proper, that is  $\operatorname{codim}(self \cap X) = \operatorname{codim}(self) + \operatorname{codim}(X)$ , and must also be finite. We use Serre's Tor formula to compute the intersection multiplicity. If I, J are the defining ideals of self, X, respectively, then this is  $\sum_{i=0}^{\infty} (-1)^i \operatorname{length}(\operatorname{Tor}_{\mathcal{O}_{A,p}}^i(\mathcal{O}_{A,p}/I,\mathcal{O}_{A,p}/J))$  where A is the affine ambient space of these subschemes.

#### INPUT:

- X subscheme in the same ambient space as this subscheme.
- P a point in the intersection of this subscheme with X.

OUTPUT: An integer.

#### **EXAMPLES:**

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: C = Curve([y^2 - x^3 - x^2], A)
sage: D = Curve([y^2 + x^3], A)
sage: Q = A([0,0])
sage: C.intersection_multiplicity(D, Q)
4
```

# is\_smooth (point=None)

Test whether the algebraic subscheme is smooth.

### INPUT:

• point - A point or None (default). The point to test smoothness at.

### **OUTPUT:**

Boolean. If no point was specified, returns whether the algebraic subscheme is smooth everywhere. Otherwise, smoothness at the specified point is tested.

### **EXAMPLES:**

```
sage: A2.\langle x, y \rangle = AffineSpace(2,QQ)
sage: cuspidal_curve = A2.subscheme([y^2-x^3])
sage: cuspidal_curve
Closed subscheme of Affine Space of dimension 2 over Rational Field defined,
⇒by:
 -x^3 + v^2
sage: smooth_point = cuspidal_curve.point([1,1])
sage: smooth_point in cuspidal_curve
sage: singular_point = cuspidal_curve.point([0,0])
sage: singular_point in cuspidal_curve
True
sage: cuspidal_curve.is_smooth(smooth_point)
True
sage: cuspidal_curve.is_smooth(singular_point)
False
sage: cuspidal_curve.is_smooth()
False
```

## multiplicity(P)

Return the multiplicity of P on this subscheme.

This is computed as the multiplicity of the local ring of this subscheme corresponding to  $\mathbb{P}$ . This subscheme must be defined over a field. An error is raised if  $\mathbb{P}$  is not a point on this subscheme.

#### INPUT:

• P - a point on this subscheme.

# OUTPUT:

An integer.

```
sage: A.<x,y,z,w> = AffineSpace(QQ, 4)
sage: X = A.subscheme([z*y - x^7, w - 2*z])
sage: Q1 = A([1,1/3,3,6])
sage: X.multiplicity(Q1)
1
sage: Q2 = A([0,0,0,0])
sage: X.multiplicity(Q2)
2
```

```
sage: A.<x,y,z,w,v> = AffineSpace(GF(23), 5)
sage: C = A.curve([x^8 - y, y^7 - z, z^3 - 1, w^5 - v^3])
sage: Q = A([22,1,1,0,0])
sage: C.multiplicity(Q)
3
```

```
sage: K.<a> = QuadraticField(-1)
sage: A.<x,y,z,w,t> = AffineSpace(K, 5)
sage: X = A.subscheme([y^7 - x^2*z^5 + z^3*t^8 - x^2*y^4*z - t^8])
sage: Q1 = A([1,1,0,1,-1])
sage: X.multiplicity(Q1)
1
sage: Q2 = A([0,0,0,-a,0])
sage: X.multiplicity(Q2)
7
```

# projective\_closure (i=None, PP=None)

Return the projective closure of this affine subscheme.

### INPUT:

- i (default: None) determines the embedding to use to compute the projective closure of this affine subscheme. The embedding used is the one which has a 1 in the i-th coordinate, numbered from 0.
- PP (default: None) ambient projective space, i.e., ambient space of codomain of morphism; this is constructed if it is not given.

# **OUTPUT:**

• a projective subscheme.

#### **EXAMPLES:**

```
sage: A.<x,y,z,w> = AffineSpace(QQ,4)
sage: X = A.subscheme([x^2 - y, x*y - z, y^2 - w, x*z - w, y*z - x*w, z^2 - y*w])
sage: X.projective_closure()
Closed subscheme of Projective Space of dimension 4 over Rational Field
defined by:
    x0^2 - x1*x4,
    x0*x1 - x2*x4,
    x1^2 - x3*x4,
    x0*x2 - x3*x4,
    x1*x2 - x0*x3,
    x2^2 - x1*x3
```

```
sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: P.<a,b,c,d> = ProjectiveSpace(QQ, 3)
sage: X = A.subscheme([z - x^2 - y^2])
sage: X.projective_closure(1, P).ambient_space() == P
True
```

### projective\_embedding(i=None, PP=None)

Returns a morphism from this affine scheme into an ambient projective space of the same dimension.

The codomain of this morphism is the projective closure of this affine scheme in PP, if given, or otherwise in a new projective space that is constructed.

## INPUT:

- i integer (default: dimension of self = last coordinate) determines which projective embedding to compute. The embedding is that which has a 1 in the i-th coordinate, numbered from 0.
- PP (default: None) ambient projective space, i.e., ambient space of codomain of morphism; this is constructed if it is not given.

```
sage: A.<x,y,z> = AffineSpace(QQ, 3)
sage: X = A.subscheme([y - x^2, z - x^3])
sage: X.projective_embedding()
Scheme morphism:
   From: Closed subscheme of Affine Space of dimension 3 over Rational
Field defined by:
   -x^2 + y,
   -x^3 + z
   To: Closed subscheme of Projective Space of dimension 3 over
Rational Field defined by:
   x0^2 - x1*x3,
   x0*x1 - x2*x3,
   x1^2 - x0*x2
   Defn: Defined on coordinates by sending (x, y, z) to
        (x : y : z : 1)
```

# 13.5 Enumeration of rational points on affine schemes

Naive algorithms for enumerating rational points over **Q** or finite fields over for general schemes.

Warning: Incorrect results and infinite loops may occur if using a wrong function.

(For instance using an affine function for a projective scheme or a finite field function for a scheme defined over an infinite field.)

# Affine, over Q:

### Affine over a finite field:

```
sage: from sage.schemes.affine.affine_rational_point import enum_affine_finite_field
sage: A.<w,x,y,z> = AffineSpace(4, GF(2))
sage: enum_affine_finite_field(A(GF(2)))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),
        (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),
        (1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0),
        (1, 1, 1, 1)]
```

#### **AUTHORS:**

- David R. Kohel <kohel@maths.usyd.edu.au>: original version.
- John Cremona and Charlie Turner <charlotteturner@gmail.com> (06-2010): improvements to clarity and documentation.

sage.schemes.affine\_affine\_rational\_point.enum\_affine\_finite\_field(X) Enumerates affine points on scheme X defined over a finite field.

#### INPUT:

• X - a scheme defined over a finite field or a set of abstract rational points of such a scheme.

# **OUTPUT**:

• a list containing the affine points of X over the finite field, sorted.

## **EXAMPLES:**

```
sage: F = GF(7)
sage: A.\langle w, x, y, z \rangle = AffineSpace(4, F)
sage: C = A.subscheme([w^2+x+4, y*z*x-6, z*y+w*x])
sage: from sage.schemes.affine_affine_rational_point import enum_affine_finite_
sage: enum_affine_finite_field(C(F))
sage: C = A.subscheme([w^2+x+4, y*z*x-6])
sage: enum_affine_finite_field(C(F))
[(0, 3, 1, 2), (0, 3, 2, 1), (0, 3, 3, 3), (0, 3, 4, 4), (0, 3, 5, 6),
(0, 3, 6, 5), (1, 2, 1, 3), (1, 2, 2, 5), (1, 2, 3, 1), (1, 2, 4, 6),
(1, 2, 5, 2), (1, 2, 6, 4), (2, 6, 1, 1), (2, 6, 2, 4), (2, 6, 3, 4)
(2, 6, 4, 2), (2, 6, 5, 3), (2, 6, 6, 6), (3, 1, 1, 6), (3, 1, 2, 3),
(3, 1, 3, 2), (3, 1, 4, 5), (3, 1, 5, 4), (3, 1, 6, 1), (4, 1, 1, 6),
(4, 1, 2, 3), (4, 1, 3, 2), (4, 1, 4, 5), (4, 1, 5, 4), (4, 1, 6, 1),
(5, 6, 1, 1), (5, 6, 2, 4), (5, 6, 3, 5), (5, 6, 4, 2), (5, 6, 5, 3),
(5, 6, 6, 6), (6, 2, 1, 3), (6, 2, 2, 5), (6, 2, 3, 1), (6, 2, 4, 6),
(6, 2, 5, 2), (6, 2, 6, 4)
```

```
sage: A.<x,y,z> = AffineSpace(3, GF(3))
sage: S = A.subscheme(x+y)
```

```
sage: enum_affine_finite_field(S)
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2),
(2, 1, 0), (2, 1, 1), (2, 1, 2)]
```

# ALGORITHM:

Checks all points in affine space to see if they lie on X.

**Warning:** If X is defined over an infinite field, this code will not finish!

### **AUTHORS:**

• John Cremona and Charlie Turner (06-2010)

```
sage.schemes.affine_rational_point.enum_affine_number_field(X, **kwds)

Enumerates affine points on scheme X defined over a number field. Simply checks all of the points of absolute
```

Enumerates affine points on scheme X defined over a number field. Simply checks all of the points of absolute height up to B and adds those that are on the scheme to the list.

This algorithm computes 2 lists: L containing elements x in K such that  $H_k(x) \le B$ , and a list L' containing elements x in K that, due to floating point issues, may be slightly larger then the bound. This can be controlled by lowering the tolerance.

#### ALGORITHM:

This is an implementation of the revised algorithm (Algorithm 4) in [Doyle-Krumm]. Algorithm 5 is used for imaginary quadratic fields.

# INPUT:

# kwds:

- bound a real number
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4
- precision the precision to use for computing the elements of bounded height of number fields.

## **OUTPUT:**

• a list containing the affine points of X of absolute height up to B, sorted.

sage.schemes.affine.affine\_rational\_point.enum\_affine\_rational\_field (X,B) Enumerates affine rational points on scheme X up to bound B.

### INPUT:

- X a scheme or set of abstract rational points of a scheme.
- B a positive integer bound.

### **OUTPUT:**

• a list containing the affine points of X of height up to B, sorted.

### **EXAMPLES:**

```
sage: A.<x,y,z> = AffineSpace(3, QQ)
sage: from sage.schemes.affine_affine_rational_point import enum_affine_rational_

\rightarrow field
sage: enum_affine_rational_field(A(QQ), 1)

[(-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, -1), (-1, 0, 0), (-1, 0, 1),
(-1, 1, -1), (-1, 1, 0), (-1, 1, 1), (0, -1, -1), (0, -1, 0), (0, -1, 1),
(0, 0, -1), (0, 0, 0), (0, 0, 1), (0, 1, -1), (0, 1, 0), (0, 1, 1), (1, -1, -1),
(1, -1, 0), (1, -1, 1), (1, 0, -1), (1, 0, 0), (1, 0, 1), (1, 1, -1), (1, 1, 0),
(1, 1, 1)]
```

```
sage: A.<w,x,y,z> = AffineSpace(4, QQ)
sage: S = A.subscheme([x^2-y*z+1, w^3+z+y^2])
sage: enum_affine_rational_field(S(QQ), 1)
[(0, 0, -1, -1)]
sage: enum_affine_rational_field(S(QQ), 2)
[(0, 0, -1, -1), (1, -1, -1, -2), (1, 1, -1, -2)]
```

```
sage: A.<x,y> = AffineSpace(2, QQ)
sage: C = Curve(x^2+y-x)
sage: enum_affine_rational_field(C, 10) # long time (3 s)
[(-2, -6), (-1, -2), (-2/3, -10/9), (-1/2, -3/4), (-1/3, -4/9),
(0, 0), (1/3, 2/9), (1/2, 1/4), (2/3, 2/9), (1, 0),
(4/3, -4/9), (3/2, -3/4), (5/3, -10/9), (2, -2), (3, -6)]
```

# **AUTHORS:**

- David R. Kohel <kohel@maths.usyd.edu.au>: original version.
- Charlie Turner (06-2010): small adjustments.
- Raman Raghukul 2018: updated.

# 13.6 Set of homomorphisms between two affine schemes

For schemes X and Y, this module implements the set of morphisms Hom(X,Y). This is done by SchemeHomset\_generic.

As a special case, the Hom-sets can also represent the points of a scheme. Recall that the K-rational points of a scheme X over k can be identified with the set of morphisms  $Spec(K) \to X$ . In Sage the rational points are implemented by such scheme morphisms. This is done by SchemeHomset\_points and its subclasses.

Note: You should not create the Hom-sets manually. Instead, use the Hom () method that is inherited by all schemes.

## **AUTHORS:**

- William Stein (2006): initial version.
- Ben Hutz (2018): add numerical point support

class sage.schemes.affine.affine\_homset.SchemeHomset\_points\_affine (X, Y, cate-gory=None, check=True, base=Integer Ring)

Bases: sage.schemes.generic.homset.SchemeHomset\_points

Set of rational points of an affine variety.

INPUT:

See SchemeHomset\_generic.

# EXAMPLES:

```
sage: from sage.schemes.affine.affine_homset import SchemeHomset_points_affine
sage: SchemeHomset_points_affine(Spec(QQ), AffineSpace(ZZ,2))
Set of rational points of Affine Space of dimension 2 over Rational Field
```

# numerical\_points(F=None, \*\*kwds)

Return some or all numerical approximations of rational points of an affine scheme.

This is for dimension 0 subschemes only and the points are determined through a groebner calculation over the base ring and then numerically approximating the roots of the resulting polynomials. If the base ring is a number field, the embedding into F must be known.

### INPUT:

F - numerical ring

kwds:

• zero\_tolerance - positive real number (optional, default=10^(-10)). For numerically inexact fields, points are on the subscheme if they satisfy the equations to within tolerance.

OUTPUT: A list of points in the ambient space.

**Warning:** For numerically inexact fields the list of points returned may contain repeated or be missing points due to tolerance.

```
sage: K.<v> = QuadraticField(3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: X = A.subscheme([x^3 - v^2*y, y - v*x^2 + 3])
sage: L = X(K).numerical_points(F=RR); L # abs tol 1e-14
[(-1.18738247880014, -0.558021142104134),
  (1.57693558184861, 1.30713548084184),
  (4.80659931965815, 37.0162574656220)]
sage: L[0].codomain()
Affine Space of dimension 2 over Real Field with 53 bits of precision
```

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: X = A.subscheme([y^2 - x^2 - 3*x, x^2 - 10*y])
sage: len(X(QQ).numerical_points(F=ComplexField(100)))
4
```

```
sage: A.<x1, x2> = AffineSpace(QQ, 2)
sage: E = A.subscheme([30*x1^100 + 1000*x2^2 + 2000*x1*x2 + 1, x1 + x2])
sage: len(E(A.base_ring()).numerical_points(F=CDF, zero_tolerance=1e-9))
100
```

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: X = A.subscheme([y^2 - x^2 - 3*x, x^2 - 10*y])
sage: X(QQ).numerical_points(F=CC, zero_tolerance=-1)
Traceback (most recent call last):
...
ValueError: tolerance must be positive
```

# points(\*\*kwds)

Return some or all rational points of an affine scheme.

For dimension 0 subschemes points are determined through a groebner basis calculation. For schemes or subschemes with dimension greater than 1 points are determined through enumeration up to the specified bound.

Over a finite field, all points are returned. Over an infinite field, all points satisfying the bound are returned. For a zero-dimensional subscheme, all points are returned regardless of whether the field is infinite or not.

For number fields, this uses the Doyle-Krumm algorithm 4 (algorithm 5 for imaginary quadratic) for computing algebraic numbers up to a given height [Doyle-Krumm].

The algorithm requires floating point arithmetic, so the user is allowed to specify the precision for such calculations. Additionally, due to floating point issues, points slightly larger than the bound may be returned. This can be controlled by lowering the tolerance.

#### INPUT:

#### kwds:

- bound real number (optional, default: 0). The bound for the height of the coordinates. Only used for subschemes with dimension at least 1.
- zero\_tolerance positive real number (optional, default=10^(-10)). For numerically inexact fields, points are on the subscheme if they satisfy the equations to within tolerance.
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4 for enumeration over number fields.
- precision the precision to use for computing the elements of bounded height of number fields.

### **OUTPUT:**

• a list of rational points of a affine scheme

**Warning:** For numerically inexact fields such as ComplexField or RealField the list of points returned is very likely to be incomplete. It may also contain repeated points due to tolerance.

### EXAMPLES: The bug reported at #11526 is fixed:

```
sage: A2 = AffineSpace(ZZ, 2)
sage: F = GF(3)
sage: A2(F).points()
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
```

```
sage: A.<x,y> = ZZ[]
sage: I = A.ideal(x^2-y^2-1)
sage: V = AffineSpace(ZZ, 2)
sage: X = V.subscheme(I)
sage: M = X(ZZ)
sage: M.points(bound=1)
[(-1, 0), (1, 0)]
```

```
sage: u = QQ['u'].0
sage: K.<v> = NumberField(u^2 + 3)
sage: A.<x,y> = AffineSpace(K, 2)
sage: len(A(K).points(bound=2))
1849
```

```
sage: A.<x,y> = AffineSpace(QQ, 2)
sage: E = A.subscheme([x^2 + y^2 - 1, y^2 - x^3 + x^2 + x - 1])
sage: E(A.base_ring()).points()
[(-1, 0), (0, -1), (0, 1), (1, 0)]
```

Bases: sage.schemes.generic.homset.SchemeHomset\_generic

Set of rational points of an affine variety.

# INPUT:

See SchemeHomset\_generic.

```
sage: from sage.schemes.affine.affine_homset import SchemeHomset_points_spec
sage: SchemeHomset_points_spec(Spec(QQ), Spec(QQ))
Set of rational points of Spectrum of Rational Field
```

**CHAPTER** 

# **FOURTEEN**

# **PROJECTIVE SCHEMES**

# 14.1 Projective n space over a ring

### **EXAMPLES:**

We construct projective space over various rings of various dimensions.

The simplest projective space:

```
sage: ProjectiveSpace(0)
Projective Space of dimension 0 over Integer Ring
```

A slightly bigger projective space over **Q**:

```
sage: X = ProjectiveSpace(1000, QQ); X
Projective Space of dimension 1000 over Rational Field
sage: X.dimension()
1000
```

We can use "over" notation to create projective spaces over various base rings.

```
sage: X = ProjectiveSpace(5)/QQ; X
Projective Space of dimension 5 over Rational Field
sage: X/CC
Projective Space of dimension 5 over Complex Field with 53 bits of precision
```

The third argument specifies the printing names of the generators of the homogenous coordinate ring. Using the method .objgens() you can obtain both the space and the generators as ready to use variables.

```
sage: P2, vars = ProjectiveSpace(10, QQ, 't').objgens()
sage: vars
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10)
```

You can alternatively use the special syntax with < and >.

```
sage: P2.<x,y,z> = ProjectiveSpace(2, QQ)
sage: P2
Projective Space of dimension 2 over Rational Field
sage: P2.coordinate_ring()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

The first of the three lines above is just equivalent to the two lines:

```
sage: P2 = ProjectiveSpace(2, QQ, 'xyz')
sage: x,y,z = P2.gens()
```

For example, we use x, y, z to define the intersection of two lines.

```
sage: V = P2.subscheme([x+y+z, x+y-z]); V
Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
    x + y + z,
    x + y - z
sage: V.dimension()
```

### **AUTHORS:**

- Ben Hutz: (June 2012): support for rings
- Ben Hutz (9/2014): added support for Cartesian products
- Rebecca Lauren Miller (March 2016): added point\_transformation\_matrix

sage.schemes.projective.projective\_space.**ProjectiveSpace** (n, R=None, names='x') Return projective space of dimension n over the ring R.

EXAMPLES: The dimension and ring can be given in either order.

```
sage: ProjectiveSpace(3, QQ)
Projective Space of dimension 3 over Rational Field
sage: ProjectiveSpace(5, QQ)
Projective Space of dimension 5 over Rational Field
sage: P = ProjectiveSpace(2, QQ, names='XYZ'); P
Projective Space of dimension 2 over Rational Field
sage: P.coordinate_ring()
Multivariate Polynomial Ring in X, Y, Z over Rational Field
```

The divide operator does base extension.

```
sage: ProjectiveSpace(5)/GF(17)
Projective Space of dimension 5 over Finite Field of size 17
```

The default base ring is **Z**.

```
sage: ProjectiveSpace(5)
Projective Space of dimension 5 over Integer Ring
```

There is also an projective space associated each polynomial ring.

```
sage: R = GF(7)['x,y,z']
sage: P = ProjectiveSpace(R); P
Projective Space of dimension 2 over Finite Field of size 7
sage: P.coordinate_ring()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 7
sage: P.coordinate_ring() is R
True
```

```
sage: ProjectiveSpace(3, Zp(5), 'y')
Projective Space of dimension 3 over 5-adic Ring with capped relative precision 20
```

```
sage: ProjectiveSpace(2,QQ,'x,y,z')
Projective Space of dimension 2 over Rational Field
```

```
sage: PS.<x,y>=ProjectiveSpace(1,CC)
sage: PS
Projective Space of dimension 1 over Complex Field with 53 bits of precision
```

```
sage: R.<x,y,z> = QQ[]
sage: ProjectiveSpace(R).variable_names()
('x', 'y', 'z')
```

Projective spaces are not cached, i.e., there can be several with the same base ring and dimension (to facilitate gluing constructions).

```
sage: R.<x> = QQ[]
sage: ProjectiveSpace(R)
Projective Space of dimension 0 over Rational Field
```

class sage.schemes.projective.projective\_space.ProjectiveSpace\_field(n,

R=Integer Ring,

names=None)

Bases: sage.schemes.projective.projective\_space.ProjectiveSpace\_ring

## $\mathtt{curve}\,(F)$

Return a curve defined by F in this projective space.

#### INPUT:

• F – a polynomial, or a list or tuple of polynomials in the coordinate ring of this projective space.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: P.curve([y^2 - x*z])
Projective Plane Curve over Rational Field defined by y^2 - x*z
```

## point\_transformation\_matrix (points\_source, points\_target)

Returns a unique element of PGL that transforms one set of points to another.

Given a projective space of degree n and a set of n+2 source points and a set of n+2 target points in the same projective space, such that no n+1 points of each set are linearly dependent finds the unique element of PGL that translates the source points to the target points.

Warning:: will not work over precision fields

## INPUT:

- points\_source points in source projective space.
- points\_target points in target projective space.

OUTPUT: Transformation matrix - element of PGL.

#### **EXAMPLES:**

```
sage: P.<a,b> = ProjectiveSpace(GF(13),1)
sage: points_source = [P([-6,7]), P([1,4]), P([3,2])]
sage: points_target = [P([-1,2]), P([0,2]), P([-1,6])]
sage: P.point_transformation_matrix(points_source, points_target)
[10 4]
[10 1]
```

```
sage: P.<a,b> = ProjectiveSpace(QQ,1)
sage: points_source = [P([-6,-4]), P([1,4]), P([3,2])]
sage: points_target = [P([-1,2]), P([0,2]), P([-7,-3])]
sage: P.point_transformation_matrix(points_source, points_target)
Traceback (most recent call last):
...
ValueError: source points not independent
```

```
sage: P.<a,b> = ProjectiveSpace(QQ,1)
sage: points_source = [P([-6,-1]), P([1,4]), P([3,2])]
sage: points_target = [P([-1,2]), P([0,2]), P([-2,4])]
sage: P.point_transformation_matrix(points_source, points_target)
Traceback (most recent call last):
...
ValueError: target points not independent
```

```
sage: P.<a,b,c>=ProjectiveSpace(QQ, 2)
sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1])]
sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P([6,-1,1])]
sage: P.point_transformation_matrix(points_source, points_target)
Traceback (most recent call last):
...
ValueError: incorrect number of points in source, need 4 points
```

```
sage: P.<a,b,c>=ProjectiveSpace(QQ, 2)
sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1]),P([1,-1,1])]
sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P([6,-1,1]),P([7,8,-9])]
sage: P.point_transformation_matrix(points_source, points_target)
Traceback (most recent call last):
...
ValueError: incorrect number of points in target, need 4 points
```

```
sage: P.<a,b,c>=ProjectiveSpace(QQ, 2)
sage: P1.<x,y,z>=ProjectiveSpace(QQ, 2)
sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1]),P1([1,-1,1])]
sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P([6,-1,1])]
sage: P.point_transformation_matrix(points_source, points_target)
Traceback (most recent call last):
...
ValueError: source points not in self
```

```
sage: P.<a,b,c>=ProjectiveSpace(QQ, 2)
sage: P1.<x,y,z>=ProjectiveSpace(QQ, 2)
sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1]),P([1,-1,1])]
sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P1([6,-1,1])]
sage: P.point_transformation_matrix(points_source, points_target)
Traceback (most recent call last):
...
ValueError: target points not in self
```

## points\_of\_bounded\_height (\*\*kwds)

Returns an iterator of the points in self of absolute height of at most the given bound.

Bound check is strict for the rational field. Requires self to be projective space over a number field. Uses the Doyle-Krumm algorithm 4 (algorithm 5 for imaginary quadratic) for computing algebraic numbers up to a given height [Doyle-Krumm].

The algorithm requires floating point arithmetic, so the user is allowed to specify the precision for such calculations. Additionally, due to floating point issues, points slightly larger than the bound may be returned. This can be controlled by lowering the tolerance.

#### INPUT:

#### kwds:

- bound a real number
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4
- precision the precision to use for computing the elements of bounded height of number fields.

#### **OUTPUT**:

• an iterator of points in this space

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: sorted(list(P.points_of_bounded_height(bound=5)))
[(0 : 1), (1 : -5), (1 : -4), (1 : -3), (1 : -2), (1 : -1), (1 : 0),
    (1 : 1), (1 : 2), (1 : 3), (1 : 4), (1 : 5), (2 : -5), (2 : -3),
    (2 : -1), (2 : 1), (2 : 3), (2 : 5), (3 : -5), (3 : -4), (3 : -2),
    (3 : -1), (3 : 1), (3 : 2), (3 : 4), (3 : 5), (4 : -5), (4 : -3),
    (4 : -1), (4 : 1), (4 : 3), (4 : 5), (5 : -4), (5 : -3), (5 : -2),
    (5 : -1), (5 : 1), (5 : 2), (5 : 3), (5 : 4)]
```

```
sage: u = QQ['u'].0
sage: P.<x,y,z> = ProjectiveSpace(NumberField(u^2 - 2, 'v'), 2)
sage: len(list(P.points_of_bounded_height(bound=1.5, tolerance=0.1)))
57
```

## $subscheme\_from\_Chow\_form(Ch, dim)$

Returns the subscheme defined by the Chow equations associated to the Chow form Ch.

These equations define the subscheme set-theoretically, but only for smooth subschemes and hypersurfaces do they define the subscheme as a scheme.

## ALGORITHM:

The Chow form is a polynomial in the Plucker coordinates. The Plucker coordinates are the bracket polynomials. We first re-write the Chow form in terms of the dual Plucker coordinates. Then we expand

Ch(span(p, L)) for a generic point p and a generic linear subspace L. The coefficients as polynomials in the coordinates of p are the equations defining the subscheme. [DalbecSturmfels].

#### INPUT:

- Ch a homogeneous polynomial.
- dim the dimension of the associated scheme.

OUTPUT: a projective subscheme.

## **EXAMPLES:**

```
sage: P = ProjectiveSpace(QQ, 3, 'z')
sage: R.<x0,x1,x2,x3,x4,x5> = PolynomialRing(QQ)
sage: H = x1-x2-x3+x5+2*x0
sage: P.subscheme_from_Chow_form(H, 1)
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
    -z1 + z3,
    z0 + z2 + z3,
    -z1 - 2*z3,
    -z0 - z1 + 2*z2
```

```
sage: P.\langle x0, x1, x2, x3 \rangle = ProjectiveSpace(GF(7), 3)
sage: X = P.subscheme([x3^2+x1*x2,x2-x0])
sage: Ch = X.Chow_form();Ch
t0^2 - 2*t0*t3 + t3^2 - t2*t4 - t4*t5
sage: Y = P.subscheme_from_Chow_form(Ch, 1); Y
Closed subscheme of Projective Space of dimension 3 over Finite Field of
size 7 defined by:
 x1*x2 + x3^2,
  -x0*x2 + x2^2,
  -x0*x1 - x1*x2 - 2*x3^2
 x0^2 - x0*x2
 x0*x1 + x3^2
  -2*x0*x3 + 2*x2*x3,
 2*x0*x3 - 2*x2*x3,
 x0^2 - 2*x0*x2 + x2^2
sage: I = Y.defining_ideal()
sage: I.saturation(I.ring().ideal(list(I.ring().gens())))[0]
Ideal (x0 - x2, x1*x2 + x3^2) of Multivariate Polynomial Ring in x0, x1,
x2, x3 over Finite Field of size 7
```

class sage.schemes.projective.projective\_space.ProjectiveSpace\_finite\_field(n,

R=Integer Ring, names=None)

Bases: sage.schemes.projective.projective\_space.ProjectiveSpace\_field

## rational\_points(F=None)

Return the list of F-rational points on this projective space, where F is a given finite field, or the base ring

of this space.

#### **EXAMPLES:**

```
sage: P = ProjectiveSpace(1, GF(3))
sage: P.rational_points()
[(0:1), (1:1), (2:1), (1:0)]
sage: P.rational_points(GF(3^2, 'b'))
[(0:1), (b:1), (b+1:1), (2*b+1:1), (2:1), (2*b:1), (2*b+2:0)
\rightarrow 1), (b + 2 : 1), (1 : 1), (1 : 0)]
```

## rational\_points\_dictionary()

Return dictionary of points.

#### **OUTPUT**:

· dictionary

#### **EXAMPLES:**

```
sage: P1 = ProjectiveSpace(GF(7),1,'x')
sage: P1.rational_points_dictionary()
\{(0:1):0,
(1 : 0) : 7,
(1:1):1,
(2:1):2,
(3:1):3,
 (4 : 1) : 4,
 (5:1):5,
 (6:1):6
```

class sage.schemes.projective.projective\_space.ProjectiveSpace\_rational\_field(n,

R=Integer Ring, names=None)

Bases: sage.schemes.projective.projective\_space.ProjectiveSpace\_field

## rational\_points(bound=0)

Returns the projective points  $(x_0 : \cdots : x_n)$  over  $\mathbf{Q}$  with  $|x_i| \leq \text{bound}$ .

#### ALGORITHM:

The very simple algorithm works as follows: every point  $(x_0 : \cdots : x_n)$  in projective space has a unique largest index i for which  $x_i$  is not zero. The algorithm then iterates downward on this index. We normalize by choosing  $x_i$  positive. Then, the points  $x_0, \ldots, x_{i-1}$  are the points of affine i-space that are relatively prime to  $x_i$ . We access these by using the Tuples method.

#### **INPUT:**

• bound - integer.

```
sage: PP = ProjectiveSpace(0, QQ)
sage: PP.rational_points(1)
[(1)]
sage: PP = ProjectiveSpace(1, QQ)
sage: PP.rational_points(2)
[(-2:1), (-1:1), (0:1), (1:1), (2:1), (-1/2:1), (1/2:1),
\hookrightarrow (1 : 0)]
sage: PP = ProjectiveSpace(2, QQ)
                                                            (continues on next page)
```

```
sage: PP.rational_points(2)
[(-2:-2:1), (-1:-2:1), (0:-2:1), (1:-2:1), (2:-2:
→1),
(-2:-1:1), (-1:-1:1), (0:-1:1), (1:-1:1), (2:-1:1),
(-2:0:1), (-1:0:1), (0:0:1), (1:0:1), (2:0:1), (-2.
→:
1:1), (-1:1:1), (0:1:1), (1:1:1), (2:1:1), (2:0:1), (-2.
1:1), (-1:2:1), (0:2:1), (1:2:1), (2:2:1), (-1/2:-1:1), (1/2:-1:1), (1/2:-1:1), (1/2:-1:1), (1/2:-1/2:1), (1/2:-1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1), (1/2:1:1:1
```

#### **AUTHORS:**

• Benjamin Antieau (2008-01-12)

 $\textbf{class} \ \, \text{sage.schemes.projective.projective\_space.} \\ \textbf{ProjectiveSpace\_ring} \, (n, \\ \textbf{R=Integer} \\ \textbf{Ring}, \\ \textbf{names=None})$ 

Projective space of dimension n over the ring R.

Bases: sage.schemes.generic.ambient\_space.AmbientSpace

#### **EXAMPLES:**

```
sage: X.<x,y,z,w> = ProjectiveSpace(3, QQ)
sage: X.base_scheme()
Spectrum of Rational Field
sage: X.base_ring()
Rational Field
sage: X.structure_morphism()
Scheme morphism:
   From: Projective Space of dimension 3 over Rational Field
   To: Spectrum of Rational Field
   Defn: Structure map
sage: X.coordinate_ring()
Multivariate Polynomial Ring in x, y, z, w over Rational Field
```

## Loading and saving:

```
sage: loads(X.dumps()) == X
True
```

## Lattes\_map (E, m)

Given an elliptic curve  $\mathbb{E}$  and an integer  $\mathbb{m}$  return the Lattes map associated to multiplication by m.

In other words, the rational map on the quotient  $E/\{\pm 1\} \cong \mathbb{P}^1$  associated to  $[m]: E \to E$ .

## INPUT:

- E an elliptic curve.
- m an integer.

OUTPUT: a dynamical system on this projective space.

Examples:

## affine\_patch(i, AA=None)

Return the  $i^{th}$  affine patch of this projective space.

This is an ambient affine space  $\mathbb{A}^n_R$ , where R is the base ring of self, whose "projective embedding" map is 1 in the  $i^{th}$  factor.

## INPUT:

- i integer between 0 and dimension of self, inclusive.
- AA (default: None) ambient affine space, this is constructed if it is not given.

#### **OUTPUT**:

• An ambient affine space with fixed projective\_embedding map.

## **EXAMPLES:**

```
sage: PP = ProjectiveSpace(5) / QQ
sage: AA = PP.affine_patch(2)
sage: AA
Affine Space of dimension 5 over Rational Field
sage: AA.projective_embedding()
Scheme morphism:
 From: Affine Space of dimension 5 over Rational Field
 To: Projective Space of dimension 5 over Rational Field
 Defn: Defined on coordinates by sending (x0, x1, x2, x3, x4) to
        (x0 : x1 : 1 : x2 : x3 : x4)
sage: AA.projective_embedding(0)
Scheme morphism:
 From: Affine Space of dimension 5 over Rational Field
 To: Projective Space of dimension 5 over Rational Field
 Defin: Defined on coordinates by sending (x0, x1, x2, x3, x4) to
       (1 : x0 : x1 : x2 : x3 : x4)
```

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: P.affine_patch(0).projective_embedding(0).codomain() == P
True
```

## cartesian\_product (other)

Return the Cartesian product of this projective space and other.

## INPUT:

• other - A projective space with the same base ring as this space.

## OUTPUT:

• A Cartesian product of projective spaces.

## **EXAMPLES:**

```
sage: P1 = ProjectiveSpace(QQ, 1, 'x')
sage: P2 = ProjectiveSpace(QQ, 2, 'y')
```

```
sage: PP = P1.cartesian_product(P2); PP
Product of projective spaces P^1 x P^2 over Rational Field
sage: PP.gens()
(x0, x1, y0, y1, y2)
```

#### $change_ring(R)$

Return a projective space over ring R.

#### **INPUT:**

• R – commutative ring or morphism.

#### **OUTPUT**:

• projective space over R.

**Note:** There is no need to have any relation between R and the base ring of this space, if you want to have such a relation, use self.base\_extend(R) instead.

## **EXAMPLES:**

```
sage: P.<x, y, z> = ProjectiveSpace(2, ZZ)
sage: PQ = P.change_ring(QQ); PQ
Projective Space of dimension 2 over Rational Field
sage: PQ.change_ring(GF(5))
Projective Space of dimension 2 over Finite Field of size 5
```

```
sage: K.<w> = QuadraticField(2)
sage: P = ProjectiveSpace(K,2,'t')
sage: P.change_ring(K.embeddings(QQbar)[0])
Projective Space of dimension 2 over Algebraic Field
```

## chebyshev\_polynomial (n, kind='first')

Generates an endomorphism of this projective line by a Chebyshev polynomial.

Chebyshev polynomials are a sequence of recursively defined orthogonal polynomials. Chebyshev of the first kind are defined as  $T_0(x) = 1$ ,  $T_1(x) = x$ , and  $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ . Chebyshev of the second kind are defined as  $U_0(x) = 1$ ,  $U_1(x) = 2x$ , and  $U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)$ .

## INPUT:

- n a non-negative integer.
- kind first or second specifying which kind of chebyshev the user would like to generate. Defaults to first.

OUTPUT: DynamicalSystem\_projective

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: P.chebyshev_polynomial(5, 'first')
Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y) to
(16*x^5 - 20*x^3*y^2 + 5*x*y^4 : y^5)
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: P.chebyshev_polynomial(3, 'second')
Dynamical System of Projective Space of dimension 1 over Rational Field
Defn: Defined on coordinates by sending (x : y) to
(8*x^3 - 4*x*y^2 : y^3)
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: P.chebyshev_polynomial(3, 2)
Traceback (most recent call last):
...
ValueError: keyword 'kind' must have a value of either 'first' or 'second'
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: P.chebyshev_polynomial(-4, 'second')
Traceback (most recent call last):
...
ValueError: first parameter 'n' must be a non-negative integer
```

```
sage: P = ProjectiveSpace(QQ, 2, 'x')
sage: P.chebyshev_polynomial(2)
Traceback (most recent call last):
...
TypeError: projective space must be of dimension 1
```

#### coordinate\_ring()

Return the coordinate ring of this scheme.

#### **EXAMPLES:**

```
sage: ProjectiveSpace(3).coordinate_ring()
Multivariate Polynomial Ring in x0, x1, x2, x3 over Integer Ring
```

```
sage: ProjectiveSpace(2, QQ, ['alpha', 'beta', 'gamma']).coordinate_ring()
Multivariate Polynomial Ring in alpha, beta, gamma over Rational Field
```

#### is\_projective()

Return that this ambient space is projective n-space.

## **EXAMPLES:**

```
sage: ProjectiveSpace(3,QQ).is_projective()
True
```

## ngens()

Return the number of generators of this projective space.

This is the number of variables in the coordinate ring of self.

#### **EXAMPLES:**

```
sage: ProjectiveSpace(3, QQ).ngens()
4
```

```
sage: ProjectiveSpace(7, ZZ).ngens()
8
```

#### point (v, check=True)

Create a point on this projective space.

## INPUT:

- v anything that defines a point
- check boolean (optional, default: True); whether to check the defining data for consistency

OUTPUT: A point of this projective space.

#### **EXAMPLES:**

```
sage: P2 = ProjectiveSpace(QQ, 2)
sage: P2.point([4,5])
(4 : 5 : 1)
```

```
sage: P = ProjectiveSpace(QQ, 1)
sage: P.point(infinity)
(1 : 0)
```

```
sage: P = ProjectiveSpace(QQ, 2)
sage: P.point(infinity)
Traceback (most recent call last):
...
ValueError: +Infinity not well defined in dimension > 1
```

```
sage: P = ProjectiveSpace(ZZ, 2)
sage: P.point([infinity])
Traceback (most recent call last):
...
ValueError: [+Infinity] not well defined in dimension > 1
```

## subscheme(X)

Return the closed subscheme defined by X.

## INPUT:

• X - a list or tuple of equations.

## **EXAMPLES:**

```
[x*y^2, y^2*z, x*z^2]
sage: X.dimension()
sage: X.base_ring()
Rational Field
sage: X.base_scheme()
Spectrum of Rational Field
sage: X.structure_morphism()
Scheme morphism:
 From: Closed subscheme of Projective Space of dimension 2 over Rational,
\hookrightarrowField defined by:
 x*z^2,
 y^2 * z,
 x*y^2
 To: Spectrum of Rational Field
 Defn: Structure map
sage: TestSuite(X).run(skip=["_test_an_element", "_test_elements",
   _test_elements_eq", "_test_some_elements", "_test_elements_eq_reflexive", _
            "_test_elements_eq_symmetric", "_test_elements_eq_transitive",
          "_test_elements_neq"])
\hookrightarrow
```

## veronese\_embedding(d, CS=None, order='lex')

Return the degree d Veronese embedding from this projective space.

#### INPUT:

- d a positive integer.
- CS a projective ambient space to embed into. If this projective space has dimension N, the dimension of CS must be  $\binom{N+d}{d} 1$ . This is constructed if not specified. Default: None.
- order a monomial order to use to arrange the monomials defining the embedding. The monomials will be arranged from greatest to least with respect to this order. Default: 'lex'.

## **OUTPUT**:

• a scheme morphism from this projective space to CS.

## **EXAMPLES:**

## Veronese surface:

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: Q.<q,r,s,t,u,v> = ProjectiveSpace(QQ, 5)
sage: vd = P.veronese_embedding(2, Q)
sage: vd
Scheme morphism:
   From: Projective Space of dimension 2 over Rational Field
   To: Projective Space of dimension 5 over Rational Field
```

sage.schemes.projective.projective\_space.is\_ProjectiveSpace(x)
Return True if x is a projective space.

In other words, if x is an ambient space  $\mathbb{P}^n_R$ , where R is a ring and  $n \geq 0$  is an integer.

#### **EXAMPLES:**

```
sage: from sage.schemes.projective.projective_space import is_ProjectiveSpace
sage: is_ProjectiveSpace(ProjectiveSpace(5, names='x'))
True
sage: is_ProjectiveSpace(ProjectiveSpace(5, GF(9,'alpha'), names='x'))
True
sage: is_ProjectiveSpace(Spec(ZZ))
False
```

## 14.2 Morphisms on projective varieties

A morphism of schemes determined by rational functions that define what the morphism does on points in the ambient projective space.

## **AUTHORS:**

- · David Kohel, William Stein
- William Stein (2006-02-11): fixed bug where P(0,0,0) was allowed as a projective point.
- Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
- Ben Hutz (2013-03) iteration functionality and new directory structure for affine/projective, height functionality
- Brian Stout, Ben Hutz (Nov 2013) added minimal model functionality
- Dillon Rose (2014-01): Speed enhancements
- Ben Hutz (2015-11): iteration of subschemes

class sage.schemes.projective\_projective\_morphism.SchemeMorphism\_polynomial\_projective\_space

```
Bases: sage.schemes.generic.morphism.SchemeMorphism_polynomial
```

A morphism of schemes determined by rational functions that define what the morphism does on points in the ambient projective space.

An example of a morphism between projective plane curves (see trac ticket #10297):

#### A more complicated example:

## We illustrate some error checking:

```
sage: R.<x,y> = QQ[]
sage: P1 = ProjectiveSpace(R)
sage: H = P1.Hom(P1)
sage: f = H([x-y, x*y])
Traceback (most recent call last):
...
ValueError: polys (=[x - y, x*y]) must be of the same degree

sage: H([x-1, x*y+x])
Traceback (most recent call last):
...
ValueError: polys (=[x - 1, x*y + x]) must be homogeneous

sage: H([exp(x),exp(y)])
Traceback (most recent call last):
...
```

```
TypeError: polys (=[e^x, e^y]) must be elements of Multivariate Polynomial Ring in x, y over Rational Field
```

We can also compute the forward image of subschemes through elimination. In particular, let  $X = V(h_1, \ldots, h_t)$  and define the ideal  $I = (h_1, \ldots, h_t, y_0 - f_0(\bar{x}), \ldots, y_n - f_n(\bar{x}))$ . Then the elimination ideal  $I_{n+1} = I \cap K[y_0, \ldots, y_n]$  is a homogeneous ideal and  $f(X) = V(I_{n+1})$ :

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: H = End(P)
sage: f = H([(x-2*y)^2, (x-2*z)^2, x^2])
sage: X = P.subscheme(y-z)
sage: f(f(f(X)))
Closed subscheme of Projective Space of dimension 2 over Rational Field
defined by:
    y - z
```

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: H = End(P)
sage: f = H([(x-2*y)^2, (x-2*z)^2, (x-2*w)^2, x^2])
sage: f(P.subscheme([x,y,z]))
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
    w,
    y,
    x
```

#### as\_dynamical\_system()

Return this endomorphism as a Dynamical System\_projective.

#### OUTPUT

• DynamicalSystem\_projective

```
sage: P.<x,y> = ProjectiveSpace(RR, 1)
sage: f = DynamicalSystem([x^2 + y^2, y^2], P)
sage: g = f.as_dynamical_system()
sage: g is f
True
```

## automorphism\_group(\*\*kwds)

Return the automorphism group.

## **EXAMPLES**:

```
sage: R.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(R)
sage: f = H([x^2-y^2, x*y])
sage: f.automorphism_group(return_functions=True)
doctest:warning
...
[x, -x]
```

## canonical\_height (P, \*\*kwds)

Return the canonical height of the point.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: H = End(P)
sage: f = H([x^2+y^2, 2*x*y]);
sage: f.canonical_height(P.point([5,4]), error_bound=0.001)
doctest:warning
...
2.1970553519503404898926835324
```

#### conjugate(M)

Return the conjugate of this map.

#### **EXAMPLES:**

## critical\_height(\*\*kwds)

Return the critical height.

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^3+7*y^3, 11*y^3])
sage: f.critical_height()
doctest:warning
...
1.1989273321156851418802151128
```

## critical\_point\_portrait (check=True, embedding=None)

Return the directed graph of critical point portrait.

#### **EXAMPLES:**

## critical\_points(R=None)

Return the critical points.

#### Examples:

```
sage: set_verbose(None)
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^3-2*x*y^2 + 2*y^3, y^3])
sage: f.critical_points()
doctest:warning
...
[(1 : 0)]
```

## critical subscheme()

Return the critical subscheme.

#### Examples:

```
sage: set_verbose(None)
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^3-2*x*y^2 + 2*y^3, y^3])
sage: f.critical_subscheme()
doctest:warning
...
Closed subscheme of Projective Space of dimension 1 over Rational Field
defined by:
9*x^2*y^2 - 6*y^4
```

## degree()

Return the degree of this map.

The degree is defined as the degree of the homogeneous polynomials that are the coordinates of this map.

## OUTPUT:

· A positive integer

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = Hom(P,P)
sage: f = H([x^2+y^2, y^2])
```

```
sage: f.degree()
2
```

```
sage: P.<x,y,z> = ProjectiveSpace(CC,2)
sage: H = Hom(P,P)
sage: f = H([x^3+y^3, y^2*z, z*x*y])
sage: f.degree()
3
```

```
sage: R.<t> = PolynomialRing(QQ)
sage: P.<x,y,z> = ProjectiveSpace(R,2)
sage: H = Hom(P,P)
sage: f = H([x^2+t*y^2, (2-t)*y^2, z^2])
sage: f.degree()
2
```

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: X = P.subscheme(x^2-y^2)
sage: H = Hom(X,X)
sage: f = H([x^2, y^2, z^2])
sage: f.degree()
```

## degree\_sequence (iterates=2)

Return the sequence of degrees of iterates.

#### **EXAMPLES:**

```
sage: P2.<X,Y,Z> = ProjectiveSpace(QQ, 2)
sage: H = End(P2)
sage: f = H([Z^2, X*Y, Y^2])
sage: f.degree_sequence(15)
doctest:warning
...
[2, 3, 5, 8, 11, 17, 24, 31, 45, 56, 68, 91, 93, 184, 275]
```

#### dehomogenize(n)

Returns the standard dehomogenization at the n[0] coordinate for the domain and the n[1] coordinate for the codomain.

Note that the new function is defined over the fraction field of the base ring of this map.

## INPUT:

• n – a tuple of nonnegative integers. If n is an integer, then the two values of the tuple are assumed to be the same.

## OUTPUT:

• SchemeMorphism\_polynomial\_affine\_space.

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: H = Hom(P,P)
sage: f = H([x^2+y^2, y^2])
sage: f.dehomogenize(0)
```

```
Scheme endomorphism of Affine Space of dimension 1 over Integer Ring Defn: Defined on coordinates by sending (x) to (x^2/(x^2 + 1))
```

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: X = P.subscheme(x^2-y^2)
sage: H = Hom(X,X)
sage: f = H([x^2, y^2, x*z])
sage: f.dehomogenize(2)
Scheme endomorphism of Closed subscheme of Affine Space of dimension 2 over

→Integer Ring defined by:
x0^2 - x1^2
Defn: Defined on coordinates by sending (x0, x1) to
(x0, x1^2/x0)
```

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2 - 2*x*y, y^2])
sage: f.dehomogenize(0).homogenize(0) == f
True
```

```
Defn: Defined on coordinates by sending (x) to (x^2 - w)
```

## $dynamical\_degree(N=3, prec=53)$

Return the dynamical degree.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = End(P)
sage: f = H([x^2 + (x*y), y^2])
sage: f.dynamical_degree()
doctest:warning
...
2.000000000000000
```

## dynatomic\_polynomial (period)

Return the dynatomic polynomial.

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2 + y^2, y^2])
sage: f.dynatomic_polynomial(2)
doctest:warning
...
x^2 + x*y + 2*y^2
```

#### global\_height (prec=None)

Returns the maximum of the absolute logarithmic heights of the coefficients in any of the coordinate functions of this map.

#### INPUT:

• prec – desired floating point precision (default: default RealField precision).

## OUTPUT:

· a real number.

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = Hom(P,P)
sage: f = H([1/1331*x^2+1/4000*y^2, 210*x*y]);
sage: f.global_height()
8.29404964010203
```

## This function does not automatically normalize:

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: H = Hom(P,P)
sage: f = H([4*x^2+100*y^2, 210*x*y, 10000*z^2]);
sage: f.global_height()
9.21034037197618
sage: f.normalize_coordinates()
sage: f.global_height()
8.51719319141624
```

```
sage: R.<z> = PolynomialRing(QQ)
sage: K.<w> = NumberField(z^2-2)
sage: O = K.maximal_order()
sage: P.<x,y> = ProjectiveSpace(O,1)
sage: H = Hom(P,P)
sage: f = H([2*x^2 + 3*O(w)*y^2, O(w)*y^2])
sage: f.global_height()
1.44518587894808
```

```
sage: P.<x,y> = ProjectiveSpace(QQbar,1)
sage: P2.<u,v,w> = ProjectiveSpace(QQbar,2)
sage: H = Hom(P,P2)
sage: f = H([x^2 + QQbar(I)*x*y + 3*y^2, y^2, QQbar(sqrt(5))*x*y])
sage: f.global_height()
1.09861228866811
```

## green\_function (P, v, \*\*kwds)

Return the value of the Green's function at the point.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2+y^2, x*y]);
sage: Q = P(5, 1)
sage: f.green_function(Q, 0, N=30)
doctest:warning
...
1.6460930159932946233759277576
```

## height\_difference\_bound(prec=None)

Return the bound on the difference of the height and canonical height.

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2+y^2, x*y])
sage: f.height_difference_bound()
doctest:warning
...
1.38629436111989
```

## is\_PGL\_minimal(prime\_list=None)

Return whether the representation is PGL minimal.

## **EXAMPLES:**

```
sage: PS.<X,Y> = ProjectiveSpace(QQ,1)
sage: H = End(PS)
sage: f = H([X^2+3*Y^2, X*Y])
sage: f.is_PGL_minimal()
doctest:warning
...
True
```

## is\_morphism()

returns True if this map is a morphism.

The map is a morphism if and only if the ideal generated by the defining polynomials is the unit ideal (no common zeros of the defining polynomials).

#### **OUTPUT**:

Boolean

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = Hom(P,P)
sage: f = H([x^2+y^2, y^2])
sage: f.is_morphism()
True
```

```
sage: P.<x,y,z> = ProjectiveSpace(RR,2)
sage: H = Hom(P,P)
sage: f = H([x*z-y*z, x^2-y^2, z^2])
sage: f.is_morphism()
False
```

```
sage: R.<t> = PolynomialRing(GF(5))
sage: P.<x,y,z> = ProjectiveSpace(R,2)
sage: H = Hom(P,P)
sage: f = H([x*z-t*y^2, x^2-y^2, t*z^2])
sage: f.is_morphism()
True
```

Map that is not morphism on projective space, but is over a subscheme:

```
sage: P.<x,y,z> = ProjectiveSpace(RR,2)
sage: X = P.subscheme([x*y + y*z])
sage: H = Hom(X,X)
sage: f = H([x*z-y*z, x^2-y^2, z^2])
sage: f.is_morphism()
True
```

## is\_postcritically\_finite(err=0.01, embedding=None)

Return whether the map is postcritically finite.

#### Examples:

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2 - y^2, y^2])
sage: f.is_postcritically_finite()
doctest:warning
...
True
```

#### local\_height (v, prec=None)

Returns the maximum of the local height of the coefficients in any of the coordinate functions of this map.

## INPUT:

- v a prime or prime ideal of the base ring.
- prec desired floating point precision (default: default RealField precision).

## **OUTPUT**:

a real number.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = Hom(P,P)
sage: f = H([1/1331*x^2+1/4000*y^2, 210*x*y]);
sage: f.local_height(1331)
7.19368581839511
```

This function does not automatically normalize:

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: H = Hom(P,P)
sage: f = H([4*x^2+3/100*y^2, 8/210*x*y, 1/10000*z^2]);
sage: f.local_height(2)
2.77258872223978
sage: f.normalize_coordinates()
sage: f.local_height(2)
0.0000000000000000
```

```
sage: R.<z> = PolynomialRing(QQ)
sage: K.<w> = NumberField(z^2-2)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: H = Hom(P,P)
sage: f = H([2*x^2 + w/3*y^2, 1/w*y^2])
sage: f.local_height(K.ideal(3))
1.09861228866811
```

#### local\_height\_arch (i, prec=None)

Returns the maximum of the local height at the i-th infinite place of the coefficients in any of the coordinate functions of this map.

## INPUT:

- i an integer.
- prec desired floating point precision (default: default RealField precision).

## OUTPUT:

• a real number.

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = Hom(P,P)
sage: f = H([1/1331*x^2+1/4000*y^2, 210*x*y]);
sage: f.local_height_arch(0)
5.34710753071747
```

```
sage: R.<z> = PolynomialRing(QQ)
sage: K.<w> = NumberField(z^2-2)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: H = Hom(P,P)
sage: f = H([2*x^2 + w/3*y^2, 1/w*y^2])
sage: f.local_height_arch(1)
0.6931471805599453094172321214582
```

## minimal\_model (return\_transformation=False, prime\_list=None)

Return the minimal model.

#### **EXAMPLES:**

## multiplier (P, n, check=True)

Return the multiplier at the point.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: H = End(P)
sage: f = H([x^2,y^2, 4*z^2]);
sage: Q = P.point([4,4,1], False);
sage: f.multiplier(Q,1)
doctest:warning
...
[2 0]
[0 2]
```

## multiplier\_spectra(n, formal=False, embedding=None, type='point')

Computes the formal n multiplier spectra of this map.

This is the set of multipliers of the periodic points of formal period n included with the appropriate multiplicity. User can also specify to compute the n multiplier spectra instead which includes the multipliers of all periodic points of period n. The map must be defined over projective space of dimension 1 over a number field.

The parameter type determines if the multipliers are computed one per cycle (with multiplicity) or one per point (with multiplicity). Note that in the cycle case, a map with a cycle which collapses into multiple smaller cycles will have more multipliers than one that does not.

## INPUT:

- n a positive integer, the period.
- formal a Boolean. True specifies to find the formal n multiplier spectra of this map. False specifies to find the n multiplier spectra of this map. Default: False.
- embedding embedding of the base field into  $\overline{\mathbf{Q}}$ .
- type string either point or cycle depending on whether you compute one multiplier per point or one per cycle. Default: point.

## OUTPUT:

• a list of  $\overline{\mathbf{Q}}$  elements.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([4608 \times x^{10} - 2910096 \times x^{9} \times y + 325988068 \times x^{8} \times y^{2} + 31825198932 \times x^{9})
\rightarrow 7*y^3 - 4139806626613*x^6*y^4\
\rightarrow7 + 2561851642765275*x^2*y^8\
+ 113578270285012470*x*y^9 - 150049940203963800*y^10, 4608*y^10])
sage: f.multiplier_spectra(1)
doctest:warning
. . .
[0, -7198147681176255644585/256, 848446157556848459363/19683, -
\rightarrow 3323781962860268721722583135/35184372088832,
529278480109921/256, -4290991994944936653/2097152, 1061953534167447403/19683,
\rightarrow -3086380435599991/9,
82911372672808161930567/8192, -119820502365680843999,
\rightarrow3553497751559301575157261317/8192]
```

#### normalize\_coordinates()

Scales by 1/gcd of the coordinate functions.

Also, scales to clear any denominators from the coefficients. This is done in place.

## **OUTPUT**:

• None.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(GF(7),2)
sage: X = P.subscheme(x^2-y^2)
sage: H = Hom(X,X)
sage: f = H([x^3+x*y^2, x*y^2, x*z^2])
sage: f.normalize_coordinates(); f
Scheme endomorphism of Closed subscheme of Projective Space of dimension
2 over Finite Field of size 7 defined by:
    x^2 - y^2
    Defn: Defined on coordinates by sending (x : y : z) to
        (2*y^2 : y^2 : z^2)
```

```
sage: R.<a,b> = QQ[]
sage: P.<x,y,z> = ProjectiveSpace(R, 2)
sage: H = End(P)
sage: f = H([a*(x*z+y^2)*x^2, a*b*(x*z+y^2)*y^2, a*(x*z+y^2)*z^2])
sage: f.normalize_coordinates(); f
Scheme endomorphism of Projective Space of dimension 2 over Multivariate
Polynomial Ring in a, b over Rational Field
```

```
Defn: Defined on coordinates by sending (x : y : z) to (x^2 : b*y^2 : z^2)
```

**Note:** gcd raises an error if the base\_ring does not support gcds.

## nth\_iterate(P, n, \*\*kwds)

Return the nth iterate of the point.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(ZZ,1)
sage: H = End(P)
sage: f = H([x^2+y^2, 2*y^2])
sage: Q = P(1,1)
sage: f.nth_iterate(Q,4)
doctest:warning
...
(32768 : 32768)
```

## nth\_iterate\_map (n, normalize=False)

Return the nth iterate of the map.

## **EXAMPLES**:

## orbit(P, N, \*\*kwds)

Return the orbit of the point.

## **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: H = End(P)
sage: f = H([x^2+y^2, y^2-z^2, 2*z^2])
sage: f.orbit(P(1,2,1), 3)
doctest:warning
...
[(1 : 2 : 1), (5 : 3 : 2), (34 : 5 : 8), (1181 : -39 : 128)]
```

# periodic\_points (n, minimal=True, R=None, algorithm='variety', return\_scheme=False) Return the periodic points.

## **EXAMPLES:**

```
sage: set_verbose(None)
sage: P.<x,y> = ProjectiveSpace(QQbar,1)
sage: H = End(P)
```

## possible\_periods(\*\*kwds)

Return the possible periods of a rational periodic point.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2-29/16*y^2, y^2])
sage: f.possible_periods(ncpus=1)
doctest:warning
...
[1, 3]
```

## primes\_of\_bad\_reduction (check=True)

Return the primes of bad reduction.

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([1/3*x^2+1/2*y^2, y^2])
sage: f.primes_of_bad_reduction()
doctest:warning
...
[2, 3]
```

## reduced\_form (prec=300, return\_conjugation=True, error\_limit=1e-06)

Return the reduced form of the map.

#### **EXAMPLES:**

## resultant (normalize=False)

Computes the resultant of the defining polynomials of this dynamical system.

If normalize is True, then first normalize the coordinate functions with

normalize\_coordinates(). Map must be an endomorphism

#### INPUT:

• normalize - Boolean (optional - default: False).

OUTPUT: an element of the base ring of this map.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2+y^2, 6*y^2])
sage: f.resultant()
doctest:warning
...
36
```

```
sage: P2.<x,y,z> = ProjectiveSpace(QQ,2)
sage: P1.<u,v> = ProjectiveSpace(QQ,1)
sage: H = Hom(P2,P1)
sage: f = H([x,y])
sage: f.resultant()
Traceback (most recent call last):
...
ValueError: must be an endomorphism
```

#### $scale_by(t)$

Scales each coordinate by a factor of t.

A TypeError occurs if the point is not in the coordinate\_ring of the parent after scaling.

## INPUT:

• t - a ring element.

## **OUTPUT**:

• None.

```
sage: P.<x,y,z> = ProjectiveSpace(GF(7),2)
sage: X = P.subscheme(x^2-y^2)
sage: H = Hom(X,X)
sage: f = H([x^2,y^2,z^2])
sage: f.scale_by(x-y);f
Scheme endomorphism of Closed subscheme of Projective Space of dimension
2 over Finite Field of size 7 defined by:
    x^2 - y^2
Defn: Defined on coordinates by sending (x : y : z) to
        (x*y^2 - y^3 : x*y^2 - y^3 : x*z^2 - y*z^2)
```

## sigma\_invariants (n, formal=False, embedding=None, type='point')

Computes the values of the elementary symmetric polynomials of the n multiplier spectra of this dynamical system.

#### **EXAMPLES:**

## wronskian\_ideal()

Returns the ideal generated by the critical point locus.

This is the vanishing of the maximal minors of the Jacobian matrix. Not implemented for subvarieties.

OUTPUT: an ideal in the coordinate ring of the domain of this map.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<w> = NumberField(x^2+11)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: H = End(P)
sage: f = H([x^2-w*y^2, w*y^2])
sage: f.wronskian_ideal()
Ideal ((4*w)*x*y) of Multivariate Polynomial Ring in x, y over Number
Field in w with defining polynomial x^2 + 11
```

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: P2.<u,v,t> = ProjectiveSpace(K,2)
sage: H = Hom(P,P2)
sage: f = H([x^2-2*y^2, y^2, x*y])
sage: f.wronskian_ideal()
Ideal (4*x*y, 2*x^2 + 4*y^2, -2*y^2) of Multivariate Polynomial Ring in
x, y over Rational Field
```

class sage.schemes.projective\_morphism.SchemeMorphism\_polynomial\_projective\_space

Bases: sage.schemes.projective.projective\_morphism.SchemeMorphism\_polynomial\_projective\_

## all\_rational\_preimages (points)

Return the list of all rational preimages.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([16*x^2 - 29*y^2, 16*y^2])
sage: sorted(f.all_rational_preimages([P(-1,4)]))
doctest:warning
...
[(-7/4 : 1), (-5/4 : 1), (-3/4 : 1), (-1/4 : 1), (1/4 : 1), (3/4 : 1),
(5/4 : 1), (7/4 : 1)]
```

## A non-periodic example

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2 + y^2, 2*x*y])
sage: sorted(f.all_rational_preimages([P(17,15)]))
[(1/3 : 1), (3/5 : 1), (5/3 : 1), (3 : 1)]
```

## A number field example.:

```
sage: z = QQ['z'].0
sage: K. < w > = NumberField(z^3 + (z^2)/4 - (41/16)*z + 23/64);
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: H = End(P)
sage: f = H([16*x^2 - 29*y^2, 16*y^2])
sage: f.all_rational_preimages([P(16*w^2 - 29,16)])
[(-w^2 + 21/16 : 1),
 (w : 1),
 (w + 1/2 : 1),
 (w^2 + w - 33/16 : 1),
 (-w^2 - w + 25/16 : 1),
 (w^2 - 21/16 : 1),
 (-w^2 - w + 33/16 : 1),
 (-w : 1),
 (-w - 1/2 : 1),
 (-w^2 + 29/16 : 1),
 (w^2 - 29/16 : 1),
 (w^2 + w - 25/16 : 1)
```

```
sage: K.<w> = QuadraticField(3)
sage: P.<u, v> = ProjectiveSpace(K,1)
sage: H = End(P)
sage: f = H([u^2+v^2, v^2])
```

```
sage: f.all_rational_preimages(P(4))
[(-w : 1), (w : 1)]
```

#### conjugating\_set (other)

Return the set of PGL element that conjugate this map to other.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(GF(7),1)
sage: H = End(P)
sage: D6 = H([y^2, x^2])
sage: D6.conjugating_set(D6)
doctest:warning
...
[
[1 0] [0 1] [0 2] [4 0] [2 0] [0 4]
[0 1], [1 0], [1 0], [0 1], [1 0]
]
```

## connected rational component (P, n=0)

Return the component of all rational preimage and forward images.

#### **EXAMPLES:**

```
sage: R.<x> = PolynomialRing(QQ)
sage: K. < w > = NumberField(x^3+1/4*x^2-41/16*x+23/64)
sage: PS.<x,y> = ProjectiveSpace(1,K)
sage: H = End(PS)
sage: f = H([x^2 - 29/16*y^2, y^2])
sage: P = PS([w,1])
sage: f.connected_rational_component(P)
doctest:warning
. . .
[(w : 1),
 (w^2 - 29/16 : 1),
 (-w^2 - w + 25/16 : 1),
 (w^2 + w - 25/16 : 1),
 (-w : 1),
 (-w^2 + 29/16 : 1),
 (w + 1/2 : 1),
 (-w - 1/2 : 1),
 (-w^2 + 21/16 : 1),
 (w^2 - 21/16 : 1),
 (w^2 + w - 33/16 : 1),
 (-w^2 - w + 33/16 : 1)
```

## indeterminacy\_locus()

Return the indeterminacy locus of this map.

Only for rational maps on projective space defined over a field. The indeterminacy locus is the set of points in projective space at which all of the defining polynomials of the rational map simultaneously vanish.

## **OUTPUT:**

• subscheme of the domain of the map. The empty subscheme is returned as the vanishing of the coordinate functions of the domain.

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: H = End(P)
sage: f = H([x^2, y^2, z^2])
sage: f.indeterminacy_locus()
Closed subscheme of Projective Space of dimension 2 over Rational Field
defined by:
    x^2,
    y^2,
    z^2
```

```
sage: P1.<x,y,z> = ProjectiveSpace(RR,2)
sage: P2.<t,u,v,w> = ProjectiveSpace(RR,3)
sage: H = Hom(P1,P2)
sage: h = H([y^3*z^3, x^3*z^3, y^3*z^3, x^2*y^2*z^2])
sage: h.indeterminacy_locus()
Closed subscheme of Projective Space of dimension 2 over Real Field with
53 bits of precision defined by:
    y^3*z^3,
    x^3*z^3,
    x^3*z^3,
    x^2*y^2*z^2
```

#### If defining polynomials are not normalized, output scheme will not be normalized:

```
sage: P.<x,y,z>=ProjectiveSpace(QQ,2)
sage: H=End(P)
sage: f=H([x*x^2,x*y^2,x*z^2])
sage: f.indeterminacy_locus()
Closed subscheme of Projective Space of dimension 2 over Rational Field
defined by:
    x^3,
    x*y^2,
    x*z^2
```

#### indeterminacy\_points(F=None)

Return the indeterminacy locus of this map defined over F.

Only for rational maps on projective space. Returns the set of points in projective space at which all of the defining polynomials of the rational map simultaneously vanish.

## INPUT:

• F - a field (optional).

#### **OUTPUT:**

• indeterminacy points of the map defined over F, provided the indeterminacy scheme is 0-dimensional.

## **EXAMPLES**:

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: H = End(P)
sage: f = H([x*z-y*z, x^2-y^2, z^2])
sage: f.indeterminacy_points()
[(-1 : 1 : 0), (1 : 1 : 0)]
```

```
sage: P1.<x,y,z> = ProjectiveSpace(RR,2)
sage: P2.<t,u,v,w> = ProjectiveSpace(RR,3)
sage: H = Hom(P1,P2)
sage: h = H([x+y, y, z+y, y])
sage: h.indeterminacy_points()
[]
sage: g = H([y^3*z^3, x^3*z^3, y^3*z^3, x^2*y^2*z^2])
sage: g.indeterminacy_points()
Traceback (most recent call last):
...
ValueError: indeterminacy scheme is not dimension 0
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: H = End(P)
sage: f = H([x^2+y^2, x*z, x^2+y^2])
sage: f.indeterminacy_points()
[(0 : 0 : 1)]
sage: R.<t> = QQ[]
sage: K.<a> = NumberField(t^2+1)
sage: f.indeterminacy_points(F=K)
[(-a : 1 : 0), (0 : 0 : 1), (a : 1 : 0)]
sage: set_verbose(None)
sage: f.indeterminacy_points(F=QQbar)
[(-1*I : 1 : 0), (0 : 0 : 1), (1*I : 1 : 0)]
```

```
sage: set_verbose(None)
sage: K.<t>=FunctionField(QQ)
sage: P.<x,y,z>=ProjectiveSpace(K,2)
sage: H=End(P)
sage: f=H([x^2-t^2*y^2,y^2-z^2,x^2-t^2*z^2])
sage: f.indeterminacy_points()
[(-t:-1:1), (-t:1:1), (t:-1:1)]
```

```
sage: set_verbose(None)
sage: P.<x,y,z>=ProjectiveSpace(Qp(3),2)
sage: H=End(P)
```

```
sage: f=H([x^2-7*y^2,y^2-z^2,x^2-7*z^2])
sage: f.indeterminacy_points()
[(2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 2*3^6 + 3^8 + 3^9 + 2*3^11 + 3^15 +
2*3^16 + 3^18 + 0(3^20) : 1 + 0(3^20) : 1 + 0(3^20),
(2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 2*3^6 + 3^8 + 3^9 + 2*3^11 + 3^15 +
2*3^16 + 3^18 + 0(3^20) : 2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 +
2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^{10} + 2*3^{11} + 2*3^{12} + 2*3^{13} +
2*3^14 + 2*3^15 + 2*3^16 + 2*3^17 + 2*3^18 + 2*3^19 + O(3^20) : 1 +
0(3^20)),
  (1 + 3 + 3^2 + 2*3^4 + 2*3^7 + 3^8 + 3^9 + 2*3^{10} + 2*3^{12} + 2*3^{13} +
2*3^14 + 3^15 + 2*3^17 + 3^18 + 2*3^19 + 0(3^20) : 1 + 0(3^20) : 1 +
0(3^20),
 (1 + 3 + 3^2 + 2*3^4 + 2*3^7 + 3^8 + 3^9 + 2*3^{10} + 2*3^{12} + 2*3^{13} +
2*3^14 + 3^15 + 2*3^17 + 3^18 + 2*3^19 + 0(3^20) : 2 + 2*3 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 + 2*3^2 +
2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^{10} + 2*3^{11}
+2*3^12 + 2*3^13 + 2*3^14 + 2*3^15 + 2*3^16 + 2*3^17 + 2*3^18 + 2*3^19
+ \circ (3^2) : 1 + \circ (3^2)
```

## is\_conjugate(other)

Return if this map and other are conjugate.

#### **EXAMPLES:**

```
sage: K.<w> = CyclotomicField(3)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: H = End(P)
sage: D8 = H([y^2, x^2])
sage: D8.is_conjugate(D8)
doctest:warning
...
True
```

#### is polynomial()

Return if this map is a polynomial.

## **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: K.<w> = QuadraticField(7)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: H = End(P)
sage: f = H([x**2 + 2*x*y - 5*y**2, 2*x*y])
sage: f.is_polynomial()
doctest:warning
...
False
```

## lift\_to\_rational\_periodic (points\_modp, B=None)

Return the rational lift of the modp periodic points.

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = End(P)
sage: f = H([x^2 - y^2, y^2])
sage: f.lift_to_rational_periodic([[P(0,1).change_ring(GF(7)), 4]])
doctest:warning
```

```
[[(0 : 1), 2]]
```

#### normal\_form (return\_conjugation=False)

Return a normal form conjugate to this map.

#### **EXAMPLES:**

```
sage: R.<x> = QQ[]
sage: K.<w> = NumberField(x^2 - 5)
sage: P.<x,y> = ProjectiveSpace(K,1)
sage: H = End(P)
sage: f = H([x^2 + w*x*y, y^2])
sage: g,m,psi = f.normal_form(return_conjugation = True);m
doctest:warning
...
[    1 -1/2*w]
[    0    1]
```

## rational\_periodic\_points(\*\*kwds)

Return the list of all rational periodic points.

#### **EXAMPLES:**

## rational\_preimages (Q, k=1)

Determine all of the rational k-th preimages of Q by this map.

Given a rational point  $\mathbb Q$  in the domain of this map, return all the rational points  $\mathbb P$  in the domain with  $f^k(P) == Q$ . In other words, the set of k-th preimages of  $\mathbb Q$ . The map must be defined over a number field and be an endomorphism for k>1.

If Q is a subscheme, then return the subscheme that maps to Q by this map. In particular,  $f^{-k}(V(h_1,\ldots,h_t))=V(h_1\circ f^k,\ldots,h_t\circ f^k)$ .

## INPUT:

- Q a rational point or subscheme in the domain of this map.
- k positive integer.

#### **OUTPUT:**

• a list of rational points or a subscheme in the domain of this map.

#### Examples:

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = End(P)
sage: f = H([16*x^2 - 29*y^2, 16*y^2])
sage: f.rational_preimages(P(-1, 4))
[(-5/4 : 1), (5/4 : 1)]
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: H = End(P)
sage: f = H([76*x^2 - 180*x*y + 45*y^2 + 14*x*z + 45*y*z\
    - 90*z^2, 67*x^2 - 180*x*y - 157*x*z + 90*y*z, -90*z^2])
sage: f.rational_preimages(P(-9, -4, 1))
[(0 : 4 : 1)]
```

## A non-periodic example

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = End(P)
sage: f = H([x^2 + y^2, 2*x*y])
sage: f.rational_preimages(P(17, 15))
[(3/5 : 1), (5/3 : 1)]
```

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: H = End(P)
sage: f = H([x^2 - 2*y*w - 3*w^2, -2*x^2 + y^2 - 2*x*z\
+ 4*y*w + 3*w^2, x^2 - y^2 + 2*x*z + z^2 - 2*y*w - w^2, w^2])
sage: f.rational_preimages(P(0, -1, 0, 1))
[]
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = End(P)
sage: f = H([x^2 + y^2, 2*x*y])
sage: f.rational_preimages([CC.0, 1])
Traceback (most recent call last):
...
TypeError: point must be in codomain of self
```

## A number field example

```
sage: z = QQ['z'].0
sage: K.<a> = NumberField(z^2 - 2);
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: H = End(P)
sage: f = H([x^2 + y^2, y^2])
sage: f.rational_preimages(P(3, 1))
[(-a : 1), (a : 1)]
```

```
sage: z = QQ['z'].0
sage: K.<a> = NumberField(z^2 - 2);
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: X = P.subscheme([x^2 - z^2])
sage: H = End(X)
sage: f = H([x^2 - z^2, a*y^2, z^2 - x^2])
sage: f.rational_preimages(X([1, 2, -1]))
[]
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: X = P.subscheme([x^2 - z^2])
sage: H = End(X)
sage: f= H([x^2-z^2, y^2, z^2-x^2])
sage: f.rational_preimages(X([0, 1, 0]))
Traceback (most recent call last):
```

```
...
NotImplementedError: subschemes as preimages not implemented
```

```
sage: P.<x, y> = ProjectiveSpace(QQ, 1)
sage: H = End(P)
sage: f = H([x^2-y^2, y^2])
sage: f.rational_preimages(P.subscheme([x]))
Closed subscheme of Projective Space of dimension 1 over Rational Field
defined by:
   x^2 - y^2
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = End(P)
sage: f = H([x^2 - 29/16*y^2, y^2])
sage: f.rational_preimages(P(5/4, 1), k=4)
[(-3/4 : 1), (3/4 : 1), (-7/4 : 1), (7/4 : 1)]
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: P2.<u,v,w> = ProjectiveSpace(QQ, 2)
sage: H = Hom(P, P2)
sage: f = H([x^2, y^2, x^2-y^2])
sage: f.rational_preimages(P2(1, 1, 0))
[(-1 : 1), (1 : 1)]
```

## rational\_preperiodic\_graph(\*\*kwds)

Return the digraph of rational preperiodic points.

## **EXAMPLES:**

```
sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: H = End(PS)
sage: f = H([7*x^2 - 28*y^2, 24*x*y])
sage: f.rational_preperiodic_graph()
doctest:warning
...
Looped digraph on 12 vertices
```

## rational\_preperiodic\_points(\*\*kwds)

Return the list of all rational preperiodic points.

#### **EXAMPLES:**

```
sage: PS.<x,y> = ProjectiveSpace(1,QQ)
sage: H = End(PS)
sage: f = H([x^2 -y^2, 3*x*y])
sage: sorted(f.rational_preperiodic_points())
doctest:warning
...
[(-2:1), (-1:1), (-1/2:1), (0:1), (1/2:1), (1:0), (1:1),
(2:1)]
```

class sage.schemes.projective\_morphism.SchemeMorphism\_polynomial\_projective\_space

Bases: sage.schemes.projective.projective\_morphism.SchemeMorphism\_polynomial\_projective\_

## automorphism\_group (\*\*kwds)

return the automorphism group of this map.

#### **EXAMPLES:**

```
sage: R.<x,y> = ProjectiveSpace(GF(7^3,'t'),1)
sage: H = End(R)
sage: f = H([x^2-y^2, x*y])
sage: f.automorphism_group()
doctest:warning
...
[
[1 0] [6 0]
[0 1], [0 1]
]
```

## cyclegraph()

Return the digraph of the map.

## **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(GF(13),1)
sage: H = End(P)
sage: f = H([x^2-y^2, y^2])
sage: f.cyclegraph()
doctest:warning
...
Looped digraph on 14 vertices
```

## orbit structure (P)

Return the tail and period of the point.

# **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2)
sage: H = End(P)
sage: f = H([x^2 + y^2,y^2, z^2 + y*z])
sage: f.orbit_structure(P(2,1,2))
doctest:warning
...
[0, 6]
```

## possible\_periods (return\_points=False)

Return the possible periods of a periodic point of this map.

```
sage: P.<x,y> = ProjectiveSpace(GF(23),1)
sage: H = End(P)
sage: f = H([x^2-2*y^2, y^2])
sage: f.possible_periods()
doctest:warning
...
[1, 5, 11, 22, 110]
```

# 14.3 Points on projective varieties

Scheme morphism for points on projective varieties

## **AUTHORS:**

- · David Kohel, William Stein
- William Stein (2006-02-11): fixed bug where P(0,0,0) was allowed as a projective point.
- Volker Braun (2011-08-08): Renamed classes, more documentation, misc cleanups.
- Ben Hutz (June 2012) added support for projective ring; (March 2013) iteration functionality and new directory structure for affine/projective, height functionality

class sage.schemes.projective\_point.SchemeMorphism\_point\_abelian\_variety\_field()

```
Bases: sage.structure.element.AdditiveGroupElement, sage.schemes.projective.projective_point.SchemeMorphism_point_projective_field
```

A rational point of an abelian variety over a field.

## **EXAMPLES:**

```
sage: E = EllipticCurve([0,0,1,-1,0])
sage: origin = E(0)
sage: origin.domain()
Spectrum of Rational Field
sage: origin.codomain()
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

check=7

Bases: sage.schemes.projective.projective\_point.SchemeMorphism\_point\_projective\_ring

A rational point of projective space over a field.

## INPUT:

- X a homset of a subscheme of an ambient projective space over a field K.
- v a list or tuple of coordinates in K.
- check boolean (optional, default:True). Whether to check the input for consistency.

#### **EXAMPLES:**

```
sage: P = ProjectiveSpace(3, RR)
sage: P(2, 3, 4, 5)
(0.40000000000000 : 0.6000000000000 : 0.8000000000000 : 1.000000000000)
```

# clear\_denominators()

scales by the least common multiple of the denominators.

OUTPUT: None.

## **EXAMPLES:**

```
sage: R.<t> = PolynomialRing(QQ)
sage: P.<x,y,z> = ProjectiveSpace(FractionField(R), 2)
sage: Q = P([t, 3/t^2, 1])
```

```
sage: Q.clear_denominators(); Q
(t^3 : 3 : t^2)
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<w> = NumberField(x^2 - 3)
sage: P.<x,y,z> = ProjectiveSpace(K, 2)
sage: Q = P([1/w, 3, 0])
sage: Q.clear_denominators(); Q
(w : 9 : 0)
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: X = P.subscheme(x^2 - y^2);
sage: Q = X([1/2, 1/2, 1]);
sage: Q.clear_denominators(); Q
(1 : 1 : 2)
```

```
sage: PS.<x,y> = ProjectiveSpace(QQ, 1)
sage: Q = PS.point([1, 2/3], False); Q
(1 : 2/3)
sage: Q.clear_denominators(); Q
(3 : 2)
```

## $intersection_multiplicity(X)$

Return the intersection multiplicity of the codomain of this point and X at this point.

This uses the intersection\_multiplicity implementations for projective/affine subschemes. This point must be a point of a projective subscheme.

## INPUT:

• X – a subscheme in the same ambient space as that of the codomain of this point.

# OUTPUT: Integer.

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: X = P.subscheme([x*z - y^2])
sage: Y = P.subscheme([x^3 - y*w^2 + z*w^2, x*y - z*w])
sage: Q1 = X([1/2, 1/4, 1/8, 1])
sage: Q1.intersection_multiplicity(Y)

1
sage: Q2 = X([0,0,0,1])
sage: Q2.intersection_multiplicity(Y)
5
sage: Q3 = X([0,0,1,0])
sage: Q3.intersection_multiplicity(Y)
```

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: X = P.subscheme([x^2 - y^2])
sage: Q = P([1,1,1,0])
sage: Q.intersection_multiplicity(X)
Traceback (most recent call last):
...
TypeError: this point must be a point on a projective subscheme
```

## multiplicity()

Return the multiplicity of this point on its codomain.

Uses the subscheme multiplicity implementation. This point must be a point on a projective subscheme.

OUTPUT: an integer.

## **EXAMPLES:**

```
sage: P.<x,y,z,w,t> = ProjectiveSpace(QQ, 4)
sage: X = P.subscheme([y^6 - x^3*w^2*t + t^5*w, x^2 - t^2])
sage: Q1 = X([1,0,2,1,1])
sage: Q1.multiplicity()
1
sage: Q2 = X([0,0,-2,1,0])
sage: Q2.multiplicity()
8
```

## normalize\_coordinates()

Normalizes the point so that the last non-zero coordinate is 1.

OUTPUT: None.

## **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2)
sage: Q = P.point([GF(5)(1), GF(5)(3), GF(5)(0)], False); Q
(1 : 3 : 0)
sage: Q.normalize_coordinates(); Q
(2 : 1 : 0)
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: X = P.subscheme(x^2-y^2);
sage: Q = X.point([23, 23, 46], False); Q
(23 : 23 : 46)
sage: Q.normalize_coordinates(); Q
(1/2 : 1/2 : 1)
```

class sage.schemes.projective\_projective\_point.SchemeMorphism\_point\_projective\_finite\_field

Bases: sage.schemes.projective\_projective\_point.SchemeMorphism\_point\_projective\_field

## orbit structure(f)

This function returns the pair [m, n] where m is the preperiod and n is the period of the point by the map f.

Every point is preperiodic over a finite field so this is always possible.

## INPUT:

• f - a ScemeMorphism\_polynomial with this point in f.domain().

#### **OUTPUT**:

• a list [m, n] of integers.

```
sage: P.<x,y,z> = ProjectiveSpace(GF(5),2)
sage: f = DynamicalSystem_projective([x^2 + y^2, y^2, z^2 + y*z], domain=P)
sage: P(1, 0, 1).orbit_structure(f)
doctest:warning
...
[0, 1]
```

class sage.schemes.projective\_projective\_point.SchemeMorphism\_point\_projective\_ring(X,

v, check=Tr

Bases: sage.schemes.generic.morphism.SchemeMorphism\_point

A rational point of projective space over a ring.

## INPUT:

- X a homset of a subscheme of an ambient projective space over a ring K.
- v a list or tuple of coordinates in K.
- check boolean (optional, default:True). Whether to check the input for consistency.

## **EXAMPLES:**

```
sage: P = ProjectiveSpace(2, ZZ)
sage: P(2,3,4)
(2 : 3 : 4)
```

## canonical height(F, \*\*kwds)

Evaluates the (absolute) canonical height of this point with respect to the map F.

Must be over number field or order of a number field or QQbar. Specify either the number of terms of the series to evaluate or the error bound required.

# ALGORITHM:

The sum of the Green's function at the archimedean places and the places of bad reduction.

If function is defined over QQ uses Wells' Algorithm, which allows us to not have to factor the resultant.

# INPUT:

• F - a projective morphism.

# kwds:

- badprimes a list of primes of bad reduction (optional).
- N positive integer. number of terms of the series to use in the local green functions. (optional default:10)
- prec positive integer, float point or p-adic precision, default: 100.
- error\_bound a positive real number (optional).

OUTPUT: a real number.

## **AUTHORS:**

- Original algorithm written by Elliot Wells [WELLS]
- Wells' Algorithm implemented as part of GSOC 2017 by Rebecca Lauren Miller and Paul Fili

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([1000*x^2-29*y^2, 1000*y^2], domain=P)
sage: Q = P(-1/4, 1)
sage: Q.canonical_height(f, error_bound=0.01)
doctest:warning
...
3.7996079979254623065837411853
```

## dehomogenize(n)

Dehomogenizes at the nth coordinate.

## INPUT:

• n – non-negative integer.

## OUTPUT:

• SchemeMorphism\_point\_affine.

## **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: X = P.subscheme(x^2-y^2);
sage: Q = X(23, 23, 46)
sage: Q.dehomogenize(2)
(1/2, 1/2)
```

```
sage: R.<t> = PolynomialRing(QQ)
sage: S = R.quo(R.ideal(t^3))
sage: P.<x,y,z> = ProjectiveSpace(S,2)
sage: Q = P(t, 1, 1)
sage: Q.dehomogenize(1)
(tbar, 1)
```

```
sage: P. <x, y, z> = ProjectiveSpace(GF(5),2)
sage: Q = P(1, 3, 1)
sage: Q.dehomogenize(0)
(3, 1)
```

```
sage: Q.dehomogenize(2)
Traceback (most recent call last):
...
ValueError: can't dehomogenize at 0 coordinate
```

## global\_height (prec=None)

Returns the absolute logarithmic height of the point.

## INPUT:

• prec – desired floating point precision (default: default RealField precision).

## **OUTPUT**:

· a real number.

#### **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: Q = P.point([4, 4, 1/30])
sage: Q.global_height()
4.78749174278205
```

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: Q = P([4, 1, 30])
sage: Q.global_height()
3.40119738166216
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: k.<w> = NumberField(x^2+5)
sage: A = ProjectiveSpace(k, 2, 'z')
sage: A([3, 5*w+1, 1]).global_height(prec=100)
2.4181409534757389986565376694
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQbar,2)
sage: Q = P([QQbar(sqrt(3)), QQbar(sqrt(-2)), 1])
sage: Q.global_height()
0.549306144334055
```

# $green_function(G, v, **kwds)$

Evaluates the local Green's function with respect to the morphism G at the place v for this point with N terms of the series or to within a given error bound.

Must be over a number field or order of a number field. Note that this is the absolute local Green's function so is scaled by the degree of the base field.

Use v=0 for the archimedean place over  $\mathbf{Q}$  or field embedding. Non-archimedean places are prime ideals for number fields or primes over  $\mathbf{Q}$ .

#### ALGORITHM:

See Exercise 5.29 and Figure 5.6 of [Sil2007].

# INPUT:

- G a projective morphism whose local Green's function we are computing.
- v non-negative integer. a place, use v=0 for the archimedean place.

kwds:

- N positive integer. number of terms of the series to use, default: 10.
- prec positive integer, float point or p-adic precision, default: 100.
- error\_bound a positive real number.

## **OUTPUT:**

· a real number.

#### **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: H = Hom(P,P)
sage: f = H([x^2+y^2, x*y]);
sage: Q = P(5, 1)
sage: Q.green_function(f, 0, N=200, prec=200)
doctest:warning
...
1.6460930160038721802875250367738355497198064992657997569827
```

## is\_preperiodic (f, err=0.1, return\_period=False)

Determine if the point is preperiodic with respect to the map f.

This is only implemented for projective space (not subschemes). There are two optional keyword arguments: error\_bound sets the error\_bound used in the canonical height computation and return\_period a boolean which controls if the period is returned if the point is preperiodic. If return\_period is True and this point is not preperiodic, then (0,0) is returned for the period.

## ALGORITHM:

We know that a point is preperiodic if and only if it has canonical height zero. However, we can only compute the canonical height up to numerical precision. This function first computes the canonical height of the point to the given error bound. If it is larger than that error bound, then it must not be preperiodic. If it is less than the error bound, then we expect preperiodic. In this case we begin computing the orbit stopping if either we determine the orbit is finite, or the height of the point is large enough that it must be wandering. We can determine the height cutoff by computing the height difference constant, i.e., the bound between the height and the canonical height of a point (which depends only on the map and not the point itself). If the height of the point is larger than the difference bound, then the canonical height cannot be zero so the point cannot be preperiodic.

## INPUT:

• f – an endomorphism of this point's codomain.

# kwds:

- error\_bound a positive real number (optional default: 0.1).
- return\_period boolean (optional default: False).

## **OUTPUT:**

- boolean True if preperiodic.
- if return\_period is True, then (0,0) if wandering, and (m, n) if preperiod m and period n.

# **EXAMPLES:**

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^3-3*x*y^2, y^3], domain=P)
sage: Q = P(-1, 1)
```

```
sage: Q.is_preperiodic(f)
True
```

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: f = DynamicalSystem_projective([x^2-29/16*y^2, y^2], domain=P)
sage: Q = P(1, 4)
sage: Q.is_preperiodic(f, return_period=True)
(1, 3)
sage: Q = P(1, 1)
sage: Q.is_preperiodic(f, return_period=True)
(0, 0)
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: K.<a> = NumberField(x^2+1)
sage: P.<x,y> = ProjectiveSpace(K, 1)
sage: f = DynamicalSystem_projective([x^5 + 5/4*x*y^4, y^5], domain=P)
sage: Q = P([-1/2*a+1/2, 1])
sage: Q.is_preperiodic(f)
True
sage: Q = P([a, 1])
sage: Q.is_preperiodic(f)
False
```

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ,3)
sage: f = DynamicalSystem_projective([(-y - w)*x + (-13/30*y^2 + 13/30*w*y + w^2),\
-1/2*x^2 + (-y + 3/2*w)*x + (-1/3*y^2 + 4/3*w*y),-3/2*z^2 + 5/2*z*w + w^2,w^2], domain=P)
sage: Q = P([3,0,4/3,1])
sage: Q.is_preperiodic(f, return_period=True)
(2, 24)
```

```
sage: set_verbose(-1)
sage: P.<x,y,z> = ProjectiveSpace(QQbar,2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2], domain=P)
sage: Q = P([QQbar(sqrt(-1)), 1, 1])
sage: Q.is_preperiodic(f)
True
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: f = DynamicalSystem_projective([16*x^2-29*y^2, 16*y^2], domain=P)
sage: Q = P(-1,4)
sage: Q.is_preperiodic(f)
True
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: H = End(P)
sage: f = H([16*x^2-29*y^2, 16*y^2])
sage: Q = P(-1,4)
sage: Q.is_preperiodic(f)
Traceback (most recent call last):
...
TypeError: map must be a dynamical system
```

## local\_height (v, prec=None)

Returns the maximum of the local height of the coordinates of this point.

## INPUT:

- v a prime or prime ideal of the base ring.
- prec desired floating point precision (default: default RealField precision).

## **OUTPUT**:

· a real number.

## **EXAMPLES:**

```
sage: P.<x,y,z>= ProjectiveSpace(QQ,2)
sage: Q = P.point([4,4,1/150], False)
sage: Q.local_height(5)
3.21887582486820
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: Q = P([4, 1, 30])
sage: Q.local_height(2)
0.693147180559945
```

## local\_height\_arch(i, prec=None)

Returns the maximum of the local heights at the i-th infinite place of this point.

#### INPUT:

- i an integer.
- prec desired floating point precision (default: default RealField precision).

## OUTPUT:

· a real number.

```
sage: P.<x,y,z> = ProjectiveSpace(QQ,2)
sage: Q = P.point([4, 4, 1/150], False)
sage: Q.local_height_arch(0)
1.38629436111989
```

```
sage: P.<x,y,z> = ProjectiveSpace(QuadraticField(5, 'w'), 2)
sage: Q = P.point([4, 1, 30], False)
sage: Q.local_height_arch(1)
3.401197381662155375413236691607
```

## multiplier (f, n, check=True)

Returns the multiplier of this point of period n by the function f.

f must be an endomorphism of projective space.

## INPUT:

- f a endomorphism of this point's codomain.
- n a positive integer, the period of this point.
- check check if P is periodic of period n, Default:True.

#### **OUTPUT**:

• a square matrix of size self.codomain().dimension\_relative() in the base\_ring of this point.

## **EXAMPLES:**

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ,3)
sage: f = DynamicalSystem_projective([x^2, y^2, 4*w^2, 4*z^2], domain=P)
sage: Q = P.point([4, 4, 1, 1], False);
sage: Q.multiplier(f, 1)
[ 2  0 -8]
[ 0  2 -8]
[ 0  0 -2]
```

# normalize\_coordinates()

Removes the gcd from the coordinates of this point (including -1).

Warning: The gcd will depend on the base ring.

# OUTPUT: None.

```
sage: P = ProjectiveSpace(ZZ,2,'x')
sage: p = P([-5, -15, -20])
sage: p.normalize_coordinates(); p
(1 : 3 : 4)
```

```
sage: P = ProjectiveSpace(Zp(7),2,'x')
sage: p = P([-5, -15, -2])
sage: p.normalize_coordinates(); p
(5 + O(7^20) : 1 + 2*7 + O(7^20) : 2 + O(7^20))
```

```
sage: R.<t> = PolynomialRing(QQ)
sage: P = ProjectiveSpace(R,2,'x')
sage: p = P([3/5*t^3, 6*t, t])
sage: p.normalize_coordinates(); p
(3/5*t^2 : 6 : 1)
```

```
sage: P.<x,y> = ProjectiveSpace(Zmod(20),1)
sage: Q = P(3, 6)
sage: Q.normalize_coordinates()
sage: Q
(1 : 2)
```

Since the base ring is a polynomial ring over a field, only the  $\gcd c$  is removed.

```
sage: R.<c> = PolynomialRing(QQ)
sage: P = ProjectiveSpace(R,1)
sage: Q = P(2*c, 4*c)
sage: Q.normalize_coordinates();Q
(2 : 4)
```

A polynomial ring over a ring gives the more intuitive result.

```
sage: R.<c> = PolynomialRing(ZZ)
sage: P = ProjectiveSpace(R,1)
sage: Q = P(2*c, 4*c)
sage: Q.normalize_coordinates();Q
(1 : 2)
```

```
sage: R.<t> = PolynomialRing(QQ,1)
sage: S = R.quotient_ring(R.ideal(t^3))
sage: P.<x,y> = ProjectiveSpace(S,1)
sage: Q = P(t, t^2)
sage: Q.normalize_coordinates()
sage: Q
(1 : tbar)
```

## nth\_iterate(f, n, \*\*kwds)

Return the n-th iterate of this point for the map f.

If normalize==True, then the coordinates are automatically normalized. If check==True, then the initialization checks are performed on the new point.

#### INPUT:

- f a SchmemMorphism\_polynomial with the points in its domain.
- n a positive integer.

## kwds:

- check Boolean (optional default: True).
- normalize Boolean (optional Default: False).

## **OUTPUT:**

• A point in the domain of f.

```
sage: P.<x,y> = ProjectiveSpace(ZZ, 1)
sage: f = DynamicalSystem_projective([x^2+y^2, 2*y^2], domain=P)
sage: P(1, 1).nth_iterate(f, 4)
doctest:warning
...
(32768 : 32768)
```

#### **orbit** (*f*, *N*, \*\**kwds*)

Returns the orbit of this point by the map f.

If N is an integer it returns  $[P, self(P), \ldots, self^N(P)]$ . If N is a list or tuple N = [m, k] it returns  $[self^m(P), \ldots, self^k(P)]$ . Automatically normalize the points if normalize=True. Perform the checks on point initialization if check=True

#### INPUT:

- f a SchemeMorphism polynomial with this point in the domain of f.
- N a non-negative integer or list or tuple of two non-negative integers.

## kwds:

- check boolean (optional default: True).
- normalize boolean (optional default: False).

## **OUTPUT:**

• a list of points in the domain of f.

## **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: f = DynamicalSystem_projective([x^2+y^2, y^2-z^2, 2*z^2], domain=P)
sage: P(1, 2, 1).orbit(f, 3)
doctest:warning
...
[(1 : 2 : 1), (5 : 3 : 2), (34 : 5 : 8), (1181 : -39 : 128)]
```

## $scale_by(t)$

Scale the coordinates of the point by t.

A TypeError occurs if the point is not in the base\_ring of the codomain after scaling.

## INPUT:

t – a ring element.

OUTPUT: None.

```
sage: R.<t> = PolynomialRing(QQ)
sage: P = ProjectiveSpace(R, 2, 'x')
sage: p = P([3/5*t^3, 6*t, t])
sage: p.scale_by(1/t); p
(3/5*t^2 : 6 : 1)
```

```
sage: R.<t> = PolynomialRing(QQ)
sage: S = R.quo(R.ideal(t^3))
sage: P.<x,y,z> = ProjectiveSpace(S, 2)
sage: Q = P(t, 1, 1)
sage: Q.scale_by(t);Q
(tbar^2 : tbar : tbar)
```

```
sage: P.<x,y,z> = ProjectiveSpace(ZZ,2)
sage: Q = P(2, 2, 2)
sage: Q.scale_by(1/2);Q
(1 : 1 : 1)
```

# 14.4 Subschemes of projective space

# **AUTHORS:**

- David Kohel (2005): initial version.
- William Stein (2005): initial version.
- Volker Braun (2010-12-24): documentation of schemes and refactoring. Added coordinate neighborhoods and is smooth()
- Ben Hutz (2013) refactoring

pol<sub>:</sub> no-

> mials

 $Bases: \ sage.schemes.generic.algebraic\_scheme.AlgebraicScheme\_subscheme$ 

Construct an algebraic subscheme of projective space.

**Warning:** You should not create objects of this class directly. The preferred method to construct such subschemes is to use subscheme () method of projective space.

## INPUT:

- A ambient projective space.
- polynomials single polynomial, ideal or iterable of defining homogeneous polynomials.

#### **EXAMPLES:**

## Chow\_form()

Returns the Chow form associated to this subscheme.

For a k-dimensional subvariety of  $\mathbb{P}^N$  of degree D. The (N-k-1)-dimensional projective linear subspaces of  $\mathbb{P}^N$  meeting X form a hypersurface in the Grassmannian G(N-k-1,N). The homogeneous form of degree D defining this hypersurface in Plucker coordinates is called the Chow form of X.

The base ring needs to be a number field, finite field, or  $\overline{\mathbf{Q}}$ .

# ALGORITHM:

For a k-dimension subscheme X consider the k+1 linear forms  $l_i=u_{i0}x_0+\cdots+u_{in}x_n$ . Let J be the ideal in the polynomial ring  $K[x_i,u_{ij}]$  defined by the equations of X and the  $l_i$ . Let J' be the saturation of J with respect to the irrelevant ideal of the ambient projective space of X. The elimination ideal  $I=J'\cap K[u_{ij}]$  is a principal ideal, let R be its generator. The Chow form is obtained by writing R as a polynomial in Plucker coordinates (i.e. bracket polynomials). [DalbecSturmfels].

OUTPUT: a homogeneous polynomial.

REFERENCES:

```
sage: P.<x0,x1,x2,x3> = ProjectiveSpace(GF(17), 3)
sage: X = P.subscheme([x3+x1,x2-x0,x2-x3])
sage: X.Chow_form()
t0 - t1 + t2 + t3
```

```
sage: P.<x0,x1,x2,x3> = ProjectiveSpace(QQ,3)
sage: X = P.subscheme([x3^2 -101*x1^2 - 3*x2*x0])
sage: X.Chow_form()
t0^2 - 101*t2^2 - 3*t1*t3
```

```
sage: P. < x0, x1, x2, x3 > = ProjectiveSpace(QQ, 3)
sage: X = P.subscheme([x0*x2-x1^2, x0*x3-x1*x2, x1*x3-x2^2])
sage: Ch = X.Chow_form(); Ch
t2^3 + 2*t2^2*t3 + t2*t3^2 - 3*t1*t2*t4 - t1*t3*t4 + t0*t4^2 + t1^2*t5
sage: Y = P.subscheme_from_Chow_form(Ch, 1); Y
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
 x2^2*x3 - x1*x3^2,
  -x2^3 + x0*x3^2
 -x2^2*x3 + x1*x3^2,
 x1*x2*x3 - x0*x3^2,
 3*x1*x2^2 - 3*x0*x2*x3
  -2*x1^2*x3 + 2*x0*x2*x3
  -3*x1^2*x2 + 3*x0*x1*x3
 x1^3 - x0^2 \times x3
 x2^3 - x1*x2*x3
  -3*x1*x2^2 + 2*x1^2*x3 + x0*x2*x3
  2*x0*x2^2 - 2*x0*x1*x3,
  3*x1^2*x2 - 2*x0*x2^2 - x0*x1*x3
  -x0*x1*x2 + x0^2*x3
  -x0*x1^2 + x0^2*x2
  -x1^3 + x0*x1*x2
 x0*x1^2 - x0^2*x2
sage: I = Y.defining_ideal()
sage: I.saturation(I.ring().ideal(list(I.ring().gens())))[0]
Ideal (x2^2 - x1*x3, x1*x2 - x0*x3, x1^2 - x0*x2) of Multivariate
Polynomial Ring in x0, x1, x2, x3 over Rational Field
```

## affine\_patch (i, AA=None)

Return the  $i^{th}$  affine patch of this projective scheme. This is the intersection with this  $i^{th}$  affine patch of its ambient space.

## INPUT:

- i integer between 0 and dimension of self, inclusive.
- AA (default: None) ambient affine space, this is constructed if it is not given.

# OUTPUT:

An affine algebraic scheme with fixed <code>embedding\_morphism()</code> equal to the default <code>projective\_embedding()</code> map'.

## **EXAMPLES:**

```
sage: PP = ProjectiveSpace(2, QQ, names='X,Y,Z')
sage: X,Y,Z = PP.gens()
sage: C = PP.subscheme(X^3*Y + Y^3*Z + Z^3*X)
```

```
sage: U = C.affine_patch(0)
sage: U
Closed subscheme of Affine Space of dimension 2 over Rational Field defined.
⇒by:
 x0^3*x1 + x1^3 + x0
sage: U.embedding_morphism()
Scheme morphism:
 From: Closed subscheme of Affine Space of dimension 2 over Rational Field.
→defined by:
 x0^3*x1 + x1^3 + x0
 To: Closed subscheme of Projective Space of dimension 2 over Rational,
→Field defined by:
 X^3*Y + Y^3*Z + X*Z^3
 Defn: Defined on coordinates by sending (x0, x1) to
        (1 : x0 : x1)
sage: U.projective_embedding() is U.embedding_morphism()
True
```

```
sage: A.<x,y,z> = AffineSpace(QQ,3)
sage: X = A.subscheme([x-y*z])
sage: Y = X.projective_embedding(1).codomain()
sage: Y.affine_patch(1,A).ambient_space() == A
True
```

```
sage: P.<u,v,w> = ProjectiveSpace(2,ZZ)
sage: S = P.subscheme([u^2-v*w])
sage: A.<x, y> = AffineSpace(2, ZZ)
sage: S.affine_patch(1, A)
Closed subscheme of Affine Space of dimension 2 over Integer Ring
defined by:
   x^2 - y
```

## degree()

Return the degree of this projective subscheme.

If  $P(t) = a_m t^m + \ldots + a_0$  is the Hilbert polynomial of this subscheme, then the degree is  $a_m m!$ .

OUTPUT: Integer.

## **EXAMPLES:**

```
sage: P.<x,y,z,w,t,u> = ProjectiveSpace(QQ, 5)
sage: X = P.subscheme([x^7 + x*y*z*t^4 - u^7])
sage: X.degree()
7

sage: P.<x,y,z,w> = ProjectiveSpace(GF(13), 3)
sage: X = P.subscheme([y^3 - w^3, x + 7*z])
sage: X.degree()
3

sage: P.<x,y,z,w,u> = ProjectiveSpace(QQ, 4)
sage: C = P.curve([x^7 - y*z^3*w^2*u, w*x^2 - y*u^2, z^3 + y^3])
sage: C.degree()
63
```

## dimension()

Return the dimension of the projective algebraic subscheme.

## **OUTPUT:**

Integer.

## **EXAMPLES:**

```
sage: P2.<x,y,z> = ProjectiveSpace(2, QQ)
sage: P2.subscheme([]).dimension()
2
sage: P2.subscheme([x]).dimension()
1
sage: P2.subscheme([x^5]).dimension()
1
sage: P2.subscheme([x^2 + y^2 - z^2]).dimension()
1
sage: P2.subscheme([x*(x-z), y*(y-z)]).dimension()
```

## Something less obvious:

#### dual()

Return the projective dual of the given subscheme of projective space.

## INPUT:

• X – A subscheme of projective space. At present, X is required to be an irreducible and reduced hypersurface defined over **Q** or a finite field.

## **OUTPUT:**

• The dual of X as a subscheme of the dual projective space.

# **EXAMPLES:**

The dual of a smooth conic in the plane is also a smooth conic:

```
sage: R.<x, y, z> = QQ[]
sage: P.<x, y, z> = ProjectiveSpace(2, QQ)
sage: I = R.ideal(x^2 + y^2 + z^2)
sage: X = P.subscheme(I)
sage: X.dual()
Closed subscheme of Projective Space of dimension 2 over Rational Field
→defined by:
y0^2 + y1^2 + y2^2
```

The dual of the twisted cubic curve in projective 3-space is a singular quartic surface. In the following example, we compute the dual of this surface, which by double duality is equal to the twisted cubic itself. The output is the twisted cubic as an intersection of three quadrics:

```
sage: R.<x, y, z, w> = QQ[]
sage: P.<x, y, z, w> = ProjectiveSpace(3, QQ)
sage: I = R.ideal(y^2*z^2 - 4*x*z^3 - 4*y^3*w + 18*x*y*z*w - 27*x^2*w^2)
sage: X = P.subscheme(I)
sage: X.dual()
Closed subscheme of Projective Space of dimension 3 over
Rational Field defined by:
    y2^2 - y1*y3,
    y1*y2 - y0*y3,
    y1^2 - y0*y2
```

The singular locus of the quartic surface in the last example is itself supported on a twisted cubic:

```
sage: X.Jacobian().radical()
Ideal (z^2 - 3*y*w, y*z - 9*x*w, y^2 - 3*x*z) of Multivariate
Polynomial Ring in x, y, z, w over Rational Field
```

An example over a finite field:

```
sage: R = PolynomialRing(GF(61), 'a,b,c')
sage: P.<a, b, c> = ProjectiveSpace(2, R.base_ring())
sage: X = P.subscheme(R.ideal(a*a+2*b*b+3*c*c))
sage: X.dual()
Closed subscheme of Projective Space of dimension 2 over
Finite Field of size 61 defined by:
y0^2 - 30*y1^2 - 20*y2^2
```

## $intersection_multiplicity(X, P)$

Return the intersection multiplicity of this subscheme and the subscheme X at the point P.

This uses the intersection\_multiplicity function for affine subschemes on affine patches of this subscheme and X that contain P.

#### INPUT:

- X subscheme in the same ambient space as this subscheme.
- P a point in the intersection of this subscheme with X.

OUTPUT: An integer.

## **EXAMPLES:**

```
sage: P.<x,y,z> = ProjectiveSpace(GF(5), 2)
sage: C = Curve([x^4 - z^2*y^2], P)
sage: D = Curve([y^4*z - x^5 - x^3*z^2], P)
sage: Q1 = P([0,1,0])
sage: C.intersection_multiplicity(D, Q1)
4
sage: Q2 = P([0,0,1])
sage: C.intersection_multiplicity(D, Q2)
```

```
sage: R.<a> = QQ[]
sage: K.<b> = NumberField(a^4 + 1)
sage: P.<x,y,z,w> = ProjectiveSpace(K, 3)
sage: X = P.subscheme([x^2 + y^2 - z*w])
sage: Y = P.subscheme([y*z - x*w, z - w])
sage: Q1 = P([b^2,1,0,0])
```

```
sage: X.intersection_multiplicity(Y, Q1)
1
sage: Q2 = P([1/2*b^3-1/2*b,1/2*b^3-1/2*b,1,1])
sage: X.intersection_multiplicity(Y, Q2)
1
```

# is\_smooth (point=None)

Test whether the algebraic subscheme is smooth.

#### INPUT:

• point – A point or None (default). The point to test smoothness at.

#### **OUTPUT:**

Boolean. If no point was specified, returns whether the algebraic subscheme is smooth everywhere. Otherwise, smoothness at the specified point is tested.

## **EXAMPLES:**

## multiplicity(P)

Return the multiplicity of P on this subscheme.

This is computed as the multiplicity of the corresponding point on an affine patch of this subscheme that contains P. This subscheme must be defined over a field. An error is returned if P not a point on this subscheme.

# INPUT:

• P - a point on this subscheme.

## **OUTPUT**:

An integer.

# **EXAMPLES:**

```
sage: P.<x,y,z,w,t> = ProjectiveSpace(QQ, 4)
sage: X = P.subscheme([y^2 - x*t, w^7 - t*w*x^5 - z^7])
sage: Q1 = P([0,0,1,1,1])
sage: X.multiplicity(Q1)

sage: Q2 = P([1,0,0,0,0])
sage: X.multiplicity(Q2)

sage: Q3 = P([0,0,0,0,1])
sage: X.multiplicity(Q3)
7
```

```
sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3)
sage: X = P.subscheme([z^5*x^2*w - y^8])
sage: Q = P([2,0,0,1])
sage: X.multiplicity(Q)
5
```

```
sage: P.<x,y,z,w> = ProjectiveSpace(GF(29), 3)
sage: C = Curve([y^17 - x^5*w^4*z^8, x*y - z^2], P)
sage: Q = P([3,0,0,1])
sage: C.multiplicity(Q)
8
```

## neighborhood(point)

Return an affine algebraic subscheme isomorphic to a neighborhood of the point.

#### INPUT:

• point – a point of the projective subscheme.

## **OUTPUT**:

An affine algebraic scheme (polynomial equations in affine space) result such that

- embedding\_morphism is an isomorphism to a neighborhood of point
- embedding\_center is mapped to point.

## **EXAMPLES:**

## $nth_iterate(f, n)$

The nth forward image of this scheme by the map f.

## INPUT:

- f a DynamicalSystem\_projective with self in f.domain()
- n a positive integer.

#### **OUTPUT**:

• A subscheme in f.codomain()

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: f = DynamicalSystem_projective([y^2, z^2, x^2, w^2])
sage: f.nth_iterate(P.subscheme([x-w,y-z]), 3)
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
    y - z,
    x - w
```

```
sage: PS.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
sage: X = PS.subscheme([x-y])
sage: X.nth_iterate(f,-2)
Traceback (most recent call last):
...
TypeError: must be a forward orbit
```

```
sage: PS.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: P2.<u,v,w>=ProjectiveSpace(QQ, 2)
sage: H = Hom(PS, P2)
sage: f = H([x^2, y^2, z^2])
sage: X = PS.subscheme([x-y])
sage: X.nth_iterate(f,2)
Traceback (most recent call last):
...
TypeError: map must be a dynamical system for iteration
```

```
sage: PS.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
sage: X = PS.subscheme([x-y])
sage: X.nth_iterate(f,2.5)
Traceback (most recent call last):
...
TypeError: Attempt to coerce non-integral RealNumber to Integer
```

#### $\mathtt{orbit}(f, N)$

Returns the orbit of this scheme by f.

If N is an integer it returns  $[self, f(self), \ldots, f^N(self)]$ . If N is a list or tuple N = [m, k] it returns  $[f^m(self), \ldots, f^k(self)]$ .

## INPUT:

- f a DynamicalSystem\_projective with self in f.domain()
- N a non-negative integer or list or tuple of two non-negative integers

## **OUTPUT**:

· a list of projective subschemes

#### **EXAMPLES:**

```
sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3)
sage: f = DynamicalSystem_projective([(x-2*y)^2, (x-2*z)^2, (x-2*w)^2, x^2])
sage: f.orbit(P.subscheme([x]),5)
[Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
  х,
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
  z - w,
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
  y - z,
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
  x - y,
Closed subscheme of Projective Space of dimension 3 over Rational Field
defined by:
  x - w]
```

```
sage: PS.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: P1.<u,v> = ProjectiveSpace(QQ, 1)
sage: H = Hom(PS, P1)
sage: f = H([x^2, y^2])
sage: X = PS.subscheme([x-y])
sage: X.orbit(f,2)
Traceback (most recent call last):
...
TypeError: map must be a dynamical system for iteration
```

```
sage: PS.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: f = DynamicalSystem_projective([x^2, y^2, z^2])
sage: X = PS.subscheme([x-y])
sage: X.orbit(f,[-1,2])
Traceback (most recent call last):
...
TypeError: orbit bounds must be non-negative
```

## point (v, check=True)

Create a point on this projective subscheme.

## INPUT:

- v anything that defines a point
- check boolean (optional, default: True); whether to check the defining data for consistency

OUTPUT: A point of the subscheme.

#### **EXAMPLES:**

```
sage: P2.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: X = P2.subscheme([x-y,y-z])
sage: X.point([1,1,1])
(1 : 1 : 1)
```

```
sage: P2.<x,y> = ProjectiveSpace(QQ, 1)
sage: X = P2.subscheme([y])
sage: X.point(infinity)
(1 : 0)
```

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: X = P.subscheme(x^2+2*y^2)
sage: X.point(infinity)
Traceback (most recent call last):
...
TypeError: Coordinates [1, 0] do not define a point on Closed subscheme
of Projective Space of dimension 1 over Rational Field defined by:
    x^2 + 2*y^2
```

## preimage(f, k=1, check=True)

The subscheme that maps to this scheme by the map  $f^k$ .

In particular,  $f^{-k}(V(h_1, \ldots, h_t)) = V(h_1 \circ f^k, \ldots, h_t \circ f^k)$ . Map must be a morphism and also must be an endomorphism for k > 1.

#### INPUT:

- f a map whose codomain contains this scheme
- k a positive integer
- check Boolean, if False no input checking is done

# OUTPUT:

• a subscheme in the domain of f.

## Examples:

```
sage: PS.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: H = End(PS)
sage: f = H([y^2, x^2, z^2])
sage: X = PS.subscheme([x-y])
sage: X.preimage(f)
Closed subscheme of Projective Space of dimension 2 over Integer Ring
defined by:
   -x^2 + y^2
```

```
sage: P.<x,y,z,w,t> = ProjectiveSpace(QQ, 4)
sage: H = End(P)
sage: f = H([x^2-y^2, y^2, z^2, w^2, t^2+w^2])
```

```
sage: f.rational_preimages(P.subscheme([x-z, t^2, w-t]))
Closed subscheme of Projective Space of dimension 4 over Rational Field
defined by:
    x^2 - y^2 - z^2,
    w^4 + 2*w^2*t^2 + t^4,
    -t^2
```

```
sage: P1.<x,y> = ProjectiveSpace(QQ, 1)
sage: P3.<u,v,w,t> = ProjectiveSpace(QQ, 3)
sage: H = Hom(P1, P3)
sage: X = P3.subscheme([u-v, 2*u-w, u+t])
sage: f = H([x^2,y^2, x^2+y^2, x*y])
sage: X.preimage(f)
Closed subscheme of Projective Space of dimension 1 over Rational Field
defined by:
    x^2 - y^2,
    x^2 - y^2,
    x^2 + x*y
```

```
sage: P1.<x,y> = ProjectiveSpace(QQ, 1)
sage: P3.<u,v,w,t> = ProjectiveSpace(QQ, 3)
sage: H = Hom(P3, P1)
sage: X = P1.subscheme([x-y])
sage: f = H([u^2, v^2])
sage: X.preimage(f)
Traceback (most recent call last):
...
TypeError: map must be a morphism
```

```
sage: PS.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: H = End(PS)
sage: f = H([x^2, x^2, x^2])
sage: X = PS.subscheme([x-y])
sage: X.preimage(f)
Traceback (most recent call last):
...
TypeError: map must be a morphism
```

```
sage: PS.<x,y,z> = ProjectiveSpace(ZZ, 2)
sage: P1.<u,v> = ProjectiveSpace(ZZ, 1)
sage: Y = P1.subscheme([u^2-v^2])
sage: H = End(PS)
sage: f = H([x^2, y^2, z^2])
sage: Y.preimage(f)
Traceback (most recent call last):
...
TypeError: subscheme must be in ambient space of codomain
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: Y = P.subscheme([x-y])
sage: H = End(P)
sage: f = H([x^2, y^2, z^2])
sage: Y.preimage(f, k=2)
Closed subscheme of Projective Space of dimension 2 over Rational Field
defined by:
```

```
x^4 - y^4
```

# veronese\_embedding(d, CS=None, order='lex')

Return the degree d Veronese embedding of this projective subscheme.

#### INPUT:

- d a positive integer.
- CS a projective ambient space to embed into. If the projective ambient space of this subscheme is of dimension N, the dimension of CS must be 
   \begin{align\*} N+d \ d \end{align\*} = 1. This is constructed if not specified. Default: None.
- order a monomial order to use to arrange the monomials defining the embedding. The monomials will be arranged from greatest to least with respect to this order. Default: 'lex'.

#### **OUTPUT:**

• a scheme morphism from this subscheme to its image by the degree d Veronese embedding.

#### **EXAMPLES:**

```
sage: P.\langle x, y, z \rangle = ProjectiveSpace(QQ, 2)
sage: L = P.subscheme([y - x])
sage: v = L.veronese_embedding(2)
sage: v
Scheme morphism:
 From: Closed subscheme of Projective Space of dimension 2 over
Rational Field defined by:
 -x + y
 To: Closed subscheme of Projective Space of dimension 5 over
Rational Field defined by:
  -x4^2 + x3*x5
 x2 - x4
 x1 - x3
 x0 - x3
 Defn: Defined on coordinates by sending (x : y : z) to
        (x^2 : x*y : x*z : y^2 : y*z : z^2)
sage: v.codomain().degree()
sage: C = P.subscheme([y*z - x^2])
sage: C.veronese_embedding(2).codomain().degree()
4
```

## twisted cubic:

```
sage: P.<x,y> = ProjectiveSpace(QQ, 1)
sage: Q.<u,v,s,t> = ProjectiveSpace(QQ, 3)
sage: P.subscheme([]).veronese_embedding(3, Q)
Scheme morphism:
  From: Closed subscheme of Projective Space of dimension 1 over
Rational Field defined by:
  (no polynomials)
  To: Closed subscheme of Projective Space of dimension 3 over
Rational Field defined by:
  -s^2 + v*t,
  -v*s + u*t,
  -v^2 + u*s
```

```
Defn: Defined on coordinates by sending (x : y) to (x^3 : x^2*y : x*y^2 : y^3)
```

# 14.5 Enumeration of rational points on projective schemes

Naive algorithms for enumerating rational points over Q or finite fields over for general schemes.

**Warning:** Incorrect results and infinite loops may occur if using a wrong function. (For instance using an affine function for a projective scheme or a finite field function for a scheme defined over an infinite field.)

## **EXAMPLES:**

Projective, over Q:

Projective over a finite field:

## **AUTHORS:**

- David R. Kohel <a href="maths.usyd.edu.au">kohel@maths.usyd.edu.au</a>: original version.
- John Cremona and Charlie Turner <charlotteturner@gmail.com> (06-2010): improvements to clarity and documentation.
- Raghukul Raman <raghukul.raman01@gmail.com> (2018): Added sieve algorithm

sage.schemes.projective.projective\_rational\_point.enum\_projective\_finite\_field(X) Enumerates projective points on scheme X defined over a finite field.

## INPUT:

• X - a scheme defined over a finite field or a set of abstract rational points of such a scheme.

## **OUTPUT:**

• a list containing the projective points of X over the finite field, sorted.

```
sage: F = GF(9,'a')
sage: P.<X,Y,Z> = ProjectiveSpace(2,F)
sage: C = Curve(X^3-Y^3+Z^2*Y)
sage: enum_projective_finite_field(C(F))
[(0 : 0 : 1), (0 : 1 : 1), (0 : 2 : 1), (1 : 1 : 0), (a + 1 : 2*a : 1),
(a + 1 : 2*a + 1 : 1), (a + 1 : 2*a + 2 : 1), (2*a + 2 : a : 1),
(2*a + 2 : a + 1 : 1), (2*a + 2 : a + 2 : 1)]
```

```
sage: F = GF(5)
sage: P2F.<X,Y,Z> = ProjectiveSpace(2,F)
sage: enum_projective_finite_field(P2F)
[(0 : 0 : 1), (0 : 1 : 0), (0 : 1 : 1), (0 : 2 : 1), (0 : 3 : 1), (0 : 4 : 1),
(1 : 0 : 0), (1 : 0 : 1), (1 : 1 : 0), (1 : 1 : 1), (1 : 2 : 1), (1 : 3 : 1),
(1 : 4 : 1), (2 : 0 : 1), (2 : 1 : 0), (2 : 1 : 1), (2 : 2 : 1), (2 : 3 : 1),
(2 : 4 : 1), (3 : 0 : 1), (3 : 1 : 0), (3 : 1 : 1), (3 : 2 : 1), (3 : 3 : 1),
(3 : 4 : 1), (4 : 0 : 1), (4 : 1 : 0), (4 : 1 : 1), (4 : 2 : 1), (4 : 3 : 1),
(4 : 4 : 1)]
```

## ALGORITHM:

Checks all points in projective space to see if they lie on X.

```
Warning: If X is defined over an infinite field, this code will not finish!
```

## **AUTHORS:**

• John Cremona and Charlie Turner (06-2010).

```
\verb|sage.schemes.projective_rational_point.enum_projective_number_field | (X, **kwds) |
```

Enumerates projective points on scheme X defined over a number field.

Simply checks all of the points of absolute height of at most B and adds those that are on the scheme to the list.

This algorithm computes 2 lists: L containing elements x in K such that  $H_k(x) \le B$ , and a list L' containing elements x in K that, due to floating point issues, may be slightly larger then the bound. This can be controlled by lowering the tolerance.

# ALGORITHM:

This is an implementation of the revised algorithm (Algorithm 4) in [Doyle-Krumm]. Algorithm 5 is used for imaginary quadratic fields.

## INPUT:

## kwds:

- bound a real number
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4

• precision - the precision to use for computing the elements of bounded height of number fields.

## **OUTPUT:**

• a list containing the projective points of X of absolute height up to B, sorted.

## **EXAMPLES:**

sage.schemes.projective\_projective\_rational\_point.enum\_projective\_rational\_field (X, R)

Enumerates projective, rational points on scheme X of height up to bound B.

# INPUT:

- X a scheme or set of abstract rational points of a scheme.
- B a positive integer bound.

## **OUTPUT**:

• a list containing the projective points of X of height up to B, sorted.

## **EXAMPLES:**

```
sage: P.<X,Y,Z> = ProjectiveSpace(2, QQ)
sage: C = P.subscheme([X+Y-Z])
sage: from sage.schemes.projective.projective_rational_point import enum_

→ projective_rational_field
sage: enum_projective_rational_field(C(QQ), 6)
[(-5 : 6 : 1), (-4 : 5 : 1), (-3 : 4 : 1), (-2 : 3 : 1),
    (-3/2 : 5/2 : 1), (-1 : 1 : 0), (-1 : 2 : 1), (-2/3 : 5/3 : 1),
    (-1/2 : 3/2 : 1), (-1/3 : 4/3 : 1), (-1/4 : 5/4 : 1),
    (-1/5 : 6/5 : 1), (0 : 1 : 1), (1/6 : 5/6 : 1), (1/5 : 4/5 : 1),
    (1/4 : 3/4 : 1), (1/3 : 2/3 : 1), (2/5 : 3/5 : 1), (1/2 : 1/2 : 1),
    (3/5 : 2/5 : 1), (2/3 : 1/3 : 1), (3/4 : 1/4 : 1), (4/5 : 1/5 : 1),
    (5/6 : 1/6 : 1), (1 : 0 : 1), (6/5 : -1/5 : 1), (5/4 : -1/4 : 1),
    (4/3 : -1/3 : 1), (3/2 : -1/2 : 1), (5/3 : -2/3 : 1), (2 : -1 : 1),
    (5/2 : -3/2 : 1), (3 : -2 : 1), (4 : -3 : 1), (5 : -4 : 1),
    (6 : -5 : 1)]
```

```
sage: P3.<W,X,Y,Z> = ProjectiveSpace(3, QQ)
sage: enum_projective_rational_field(P3, 1)
[(-1:-1:-1:1), (-1:-1:0:1), (-1:-1:1:0), (-1:-1:1:1),
(-1:0:-1:1), (-1:0:0:1), (-1:0:1:0), (-1:0:1:1),
(-1:1:1:1), (-1:1:0:0), (-1:1:0:1), (-1:1:1:0),
(-1:1:1:1), (0:-1:-1:1), (0:-1:0:1), (0:-1:1:0),
(0:-1:1:1), (0:0:-1:1), (0:0:0:1), (0:0:1:0),
(0:0:1:1), (0:1:-1:1), (0:1:-1:1), (0:1:0:0), (0:1:0:1),
(0:1:1:0), (0:1:1:1), (1:-1:1), (1:-1:1), (1:-1:0:0),
(1:0:0:1), (1:0:1:0), (1:1:1:1), (1:0:1:1), (1:1:1:1)
```

## ALGORITHM:

We just check all possible projective points in correct dimension of projective space to see if they lie on X.

#### **AUTHORS:**

• John Cremona and Charlie Turner (06-2010)

```
sage.schemes.projective.projective_rational_point.sieve(X, bound)
Returns the list of all projective, rational points on scheme X of height up to bound.
```

Height of a projective point  $X = (x_1, x_2, ..., x_n)$  is given by  $H_X = \max(y_1, y_2, ..., y_n)$ , where  $H_X$  is height of point X and  $y_i$ 's are the normalized coordinates such that all  $y_i$  are integers and  $gcd(y_1, y_2, ..., y_n) = 1$ .

# ALGORITHM:

Main idea behind the algorithm is to find points modulo primes and then reconstruct them using chinese remainder theorem. We find modulo primes parallely and then lift them and apply LLL in parallel.

For the algorithm to work correctly, sufficient primes need to be present, these are calculated using the bound given in this([Hutz2015]) paper.

## INPUT:

- X a scheme with ambient space defined over projective space
- bound a positive integer bound

## **OUTPUT:**

• a list containing the projective rational points of X of height up to bound, sorted

```
sage: from sage.schemes.projective.projective_rational_point import sieve
sage: E = EllipticCurve('37a')
sage: sorted(sieve(E, 14))
[(-1 : -1 : 1), (-1 : 0 : 1), (0 : -1 : 1),
  (0 : 0 : 1), (0 : 1 : 0), (1/4 : -5/8 : 1),
  (1/4 : -3/8 : 1), (1 : -1 : 1), (1 : 0 : 1),
  (2 : -3 : 1), (2 : 2 : 1), (6 : 14 : 1)]
```

# 14.6 Set of homomorphisms between two projective schemes

For schemes X and Y, this module implements the set of morphisms Hom(X,Y). This is done by SchemeHomset\_generic.

As a special case, the Hom-sets can also represent the points of a scheme. Recall that the K-rational points of a scheme X over k can be identified with the set of morphisms  $Spec(K) \to X$ . In Sage the rational points are implemented by such scheme morphisms. This is done by SchemeHomset\_points and its subclasses.

Note: You should not create the Hom-sets manually. Instead, use the Hom () method that is inherited by all schemes.

#### **AUTHORS:**

- William Stein (2006): initial version.
- Volker Braun (2011-08-11): significant improvement and refactoring.
- Ben Hutz (June 2012): added support for projective ring
- Ben Hutz (2018): add numerical point support

 $\textbf{class} \ \, \texttt{sage.schemes.projective\_homset.SchemeHomset\_points\_abelian\_variety\_field} \, (A a constant of the projective of the proje$ 

 $\textbf{Bases: } \textit{sage.schemes.projective\_homset.SchemeHomset\_points\_projective\_field }$ 

Set of rational points of an Abelian variety.

# INPUT:

See SchemeHomset\_generic.

# base extend (R)

Extend the base ring.

This is currently not implemented except for the trivial case R==ZZ.

## **INPUT:**

• R - a ring.

```
sage: E = EllipticCurve('37a')
sage: Hom = E.point_homset(); Hom
Abelian group of points on Elliptic Curve defined
by y^2 + y = x^3 - x over Rational Field
sage: Hom.base_ring()
Integer Ring
sage: Hom.base_extend(QQ)
Traceback (most recent call last):
...
NotImplementedError: Abelian variety point sets are not
implemented as modules over rings other than ZZ
```

category=N check=T base=Ir Ring)

Bases: sage.schemes.generic.homset.SchemeHomset\_points

Set of rational points of a projective variety over a field.

INPUT:

See SchemeHomset\_generic.

**EXAMPLES:** 

## numerical\_points(F=None, \*\*kwds)

Return some or all numerical approximations of rational points of a projective scheme.

This is for dimension 0 subschemes only and the points are determined through a groebner calculation over the base ring and then numerically approximating the roots of the resulting polynomials. If the base ring is a number field, the embedding into F must be known.

INPUT:

F - numerical ring

kwds:

- point\_tolerance positive real number (optional, default=10^(-10)). For numerically inexact fields, two points are considered the same if their coordinates are within tolerance.
- zero\_tolerance positive real number (optional, default=10^(-10)). For numerically inexact fields, points are on the subscheme if they satisfy the equations to within tolerance.

OUTPUT: A list of points in the ambient space.

**Warning:** For numerically inexact fields the list of points returned may contain repeated or be missing points due to tolerance.

## **EXAMPLES:**

```
sage: S.<a> = QQ[]
sage: K.<v> = NumberField(a^5 - 7, embedding=CC((7)**(1/5)))
sage: P.<x,y,z> = ProjectiveSpace(K,2)
sage: X = P.subscheme([x^2 - v^2*z^2, y-v*z])
sage: len(X(K).numerical_points(F=CDF))
2
```

```
sage: P.<x1, x2, x3> = ProjectiveSpace(QQ, 2)
sage: E = P.subscheme([3000*x1^50 + 9875643*x2^2*x3^48 + 12334545*x2^50, x1 +_{\rightarrow}x2])
sage: len(E(P.base_ring()).numerical_points(F=CDF, zero_tolerance=1e-6))
49
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: E = P.subscheme([y^3 - x^3 - x*z^2, x*y*z])
sage: E(QQ).numerical_points(F=CC, zero_tolerance=-1)
Traceback (most recent call last):
...
ValueError: tolerance must be positive
```

```
sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
sage: E = P.subscheme([y^3 - x^3 - x*z^2, x*y*z])
sage: E(QQ).numerical_points(F=QQbar)
Traceback (most recent call last):
...
TypeError: F must be a numerical field
```

## points (\*\*kwds)

Return some or all rational points of a projective scheme.

For dimension 0 subschemes points are determined through a groebner basis calculation. For schemes or subschemes with dimension greater than 1 points are determined through enumeration up to the specified bound.

## INPUT:

## kwds:

- bound real number (optional, default=0). The bound for the coordinates for subschemes with dimension at least 1.
- precision integer (optional, default=53). The precision to use to compute the elements of bounded height for number fields.
- point\_tolerance positive real number (optional, default=10^(-10)). For numerically inexact fields, two points are considered the same if their coordinates are within tolerance.
- zero\_tolerance positive real number (optional, default=10^(-10)). For numerically inexact fields, points are on the subscheme if they satisfy the equations to within tolerance.

 tolerance - a rational number in (0,1] used in doyle-krumm algorithm-4 for enumeration over number fields.

#### **OUTPUT:**

• a list of rational points of a projective scheme

**Warning:** For numerically inexact fields such as ComplexField or RealField the list of points returned is very likely to be incomplete. It may also contain repeated points due to tolerances.

```
sage: P.<x,y> = ProjectiveSpace(QQ,1)
sage: P(QQ).points(bound=4)
[(-4 : 1), (-3 : 1), (-2 : 1), (-3/2 : 1), (-4/3 : 1), (-1 : 1),
(-3/4 : 1), (-2/3 : 1), (-1/2 : 1), (-1/3 : 1), (-1/4 : 1), (0 : 1),
(1/4 : 1), (1/3 : 1), (1/2 : 1), (2/3 : 1), (3/4 : 1), (1 : 0), (1 : 1),
(4/3 : 1), (3/2 : 1), (2 : 1), (3 : 1), (4 : 1)]
```

```
sage: u = QQ['u'].0
sage: K.<v> = NumberField(u^2 + 3)
sage: P.<x,y,z> = ProjectiveSpace(K,2)
sage: len(P(K).points(bound=1.8))
381
```

```
sage: P1 = ProjectiveSpace(GF(2),1)
sage: F.<a> = GF(4,'a')
sage: P1(F).points()
[(0:1), (1:0), (1:1), (a:1), (a+1:1)]
```

```
sage: P.<x,y,z> = ProjectiveSpace(CC, 2)
sage: E = P.subscheme([y^3 - x^3 - x*z^2, x*y*z])
sage: L=E(P.base_ring()).points();L
verbose 0 (71: projective_homset.py, points) Warning: computations in the ...
→numerical fields are inexact; points may be computed partially or_
⇒incorrectly.
\hookrightarrow 0000000000000000),
(-0.5000000000000000000 - 0.866025403784439*\text{I}: 1.000000000000000: 0.
\rightarrow 000000000000000),
(-1.0000000000000000 * I : 0.0000000000000 : 1.0000000000000),
(1.000000000000000 \times I : 0.0000000000000 : 1.000000000000),
sage: L[0].codomain()
Projective Space of dimension 2 over Complex Field with 53 bits of precision
```

class sage.schemes.projective\_projective\_homset.SchemeHomset\_points\_projective\_ring (X, Y, Y, Y)

category=No. check=Tr base=Inte Ring)

Bases: sage.schemes.generic.homset.SchemeHomset\_points

Set of rational points of a projective variety over a commutative ring.

INPUT:

See SchemeHomset\_generic.

#### **EXAMPLES:**

# points (B=0)

Return some or all rational points of a projective scheme.

## INPUT:

• B – integer (optional, default=0). The bound for the coordinates.

## **EXAMPLES:**

```
sage: from sage.schemes.projective.projective_homset import SchemeHomset_
→points_projective_ring
sage: H = SchemeHomset_points_projective_ring(Spec(ZZ), ProjectiveSpace(ZZ,2))
sage: H.points(3)
[(0:0:1), (0:1:-3), (0:1:-2), (0:1:-1), (0:1:0), (0
: 1 : 1), (0 : 1 : 2), (0 : 1 : 3), (0 : 2 : -3), (0 : 2 : -1), (0 : 2 :
1), (0:2:3), (0:3:-2), (0:3:-1), (0:3:1), (0:3:2),
(1:-3:-3), (1:-3:-2), (1:-3:-1), (1:-3:0), (1:-3:1),
(1:-3:2), (1:-3:3), (1:-2:-3), (1:-2:-2), (1:-2:-1),
(1:-2:0), (1:-2:1), (1:-2:2), (1:-2:3), (1:-1:-3),
(1:-1:-2), (1:-1:-1), (1:-1:0), (1:-1:1), (1:-1:2),
(1:-1:3), (1:0:-3), (1:0:-2), (1:0:-1), (1:0:0), (1:0:1)
: 0 : 1), (1 : 0 : 2), (1 : 0 : 3), (1 : 1 : -3), (1 : 1 : -2), (1 : 1 : -3)
-1), (1:1:0), (1:1:1), (1:1:2), (1:1:3), (1:2:-3),
(1:2:-2), (1:2:-1), (1:2:0), (1:2:1), (1:2:2), (1:2:1)
2:3), (1:3:-3), (1:3:-2), (1:3:-1), (1:3:0), (1:3:
1), (1:3:2), (1:3:3), (2:-3:-3), (2:-3:-2), (2:-3:
(2:-3:0), (2:-3:1), (2:-3:2), (2:-3:3), (2:-2:
(2:-2:-1), (2:-2:1), (2:-2:1), (2:-1:-3), (2:-1:-3)
```

```
-2), (2:-1:-1), (2:-1:0), (2:-1:1), (2:-1:2), (2:-1:3), (2:0:-3), (2:0:-1), (2:0:1), (2:0:3), (2:1:-3), (2:1:-3), (2:1:-2), (2:1:-1), (2:1:0), (2:1:1), (2:1:2), (2:1:3), (2:2:-3), (2:2:-1), (2:2:1), (2:2:3), (2:3:-3), (2:3:-2), (2:3:-1), (2:3:0), (2:3:1), (2:3:2), (2:3:3), (3:-3:-2), (3:-3:-1), (3:-3:1), (3:-3:2), (3:-2:-3), (3:-2:-2), (3:-2:-1), (3:-2:0), (3:-2:1), (3:-2:2), (3:-1:-1), (3:-1:0), (3:-1:1), (3:-1:2), (3:-1:3), (3:0:-2), (3:0:-1), (3:0:2), (3:2:-3), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-2), (3:2:-3), (3:2:-2), (3:2:-3), (3:2:-2), (3:2:-1), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:2), (3:2:3), (3:3:2:2), (3:3:2:1), (3:3:2:2), (3:2:2), (3:2:3), (3:3:2:2), (3:3:2:1), (3:3:2:2), (3:2:3), (3:3:2:2), (3:3:2:1), (3:3:2:2), (3:2:3), (3:3:2:2), (3:3:2)]
```

**CHAPTER** 

**FIFTEEN** 

# PRODUCTS OF PROJECTIVE SPACES

# 15.1 Products of projective spaces

This class builds on the projective space class and its point and morphism classes.

Products of projective spaces of varying dimension are convenient ambient spaces for complete intersections.

Group actions on them, and the interplay with representation theory, provide many interesting examples of algebraic varieties.

## **EXAMPLES:**

We construct products projective spaces of various dimensions over the same ring:

```
sage: P1 = ProjectiveSpace(ZZ, 1, 'x')
sage: P2 = ProjectiveSpace(ZZ, 2, 'y')
sage: ProductProjectiveSpaces([P1, P2])
Product of projective spaces P^1 x P^2 over Integer Ring
```

We can also construct the product by specifying the dimensions and the base ring:

```
sage: ProductProjectiveSpaces([1, 2, 3], QQ, 'z')
Product of projective spaces P^1 x P^2 x P^3 over Rational Field

sage: P2xP2 = ProductProjectiveSpaces([2, 2], QQ, names=['x', 'y'])
sage: P2xP2.coordinate_ring().inject_variables()
Defining x0, x1, x2, y0, y1, y2
```

```
sage.schemes.product_projective.space.ProductProjectiveSpaces(n, R=None, names='x')
```

Returns the Cartesian product of projective spaces.

Can input either a list of projective space over the same base ring or the list of dimensions, the base ring, and the variable names.

## INPUT:

- n a list of integers or a list of projective spaces.
- R a ring.
- names a string or list of strings.

```
sage: P1 = ProjectiveSpace(QQ, 2, 'x')
sage: P2 = ProjectiveSpace(QQ, 3, 'y')
sage: ProductProjectiveSpaces([P1, P2])
Product of projective spaces P^2 x P^3 over Rational Field
```

```
sage: ProductProjectiveSpaces([2, 2],GF(7), 'y')
Product of projective spaces P^2 x P^2 over Finite Field of size 7
```

```
sage: P1 = ProjectiveSpace(ZZ, 2, 'x')
sage: P2 = ProjectiveSpace(QQ, 3, 'y')
sage: ProductProjectiveSpaces([P1, P2])
Traceback (most recent call last):
...
AttributeError: components must be over the same base ring
```

class sage.schemes.product\_projective.space.ProductProjectiveSpaces\_field(N,

R=Rational Field.

names=None)

Bases: sage.schemes.product\_projective.space.ProductProjectiveSpaces\_ring

## points\_of\_bounded\_height(\*\*kwds)

Returns an iterator of the points in this product of projective spaces with the absolute heights of the components of at most the given bound.

Bound check is strict for the rational field. Requires the base field of this space to be a number field. Uses the Doyle-Krumm algorithm 4 (algorithm 5 for imaginary quadratic) for computing algebraic numbers up to a given height [Doyle-Krumm].

The algorithm requires floating point arithmetic, so the user is allowed to specify the precision for such calculations. Additionally, due to floating point issues, points slightly larger than the bound may be returned. This can be controlled by lowering the tolerance.

## INPUT:

- bound a real number
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4
- precision the precision to use for computing the elements of bounded height of number fields.

## **OUTPUT**:

• an iterator of points in this space

```
(0:1,1:1:0), (0:1,1:1:1), (1:0,-1:-1:1), (1:0,-1...)

→: 0:1),
(1:0,-1:1:0), (1:0,-1:1:1), (1:0,0:-1:1), (1:0,0...)

→: 0:1),
(1:0,0:1:0), (1:0,0:1:1), (1:0,1:1:1), (1:0,1:-1:1), (1:0,1:...)

→0:0),
(1:0,1:0:1), (1:0,1:1:0), (1:1:0), (1:0,1:1:1), (1:1,-1:...)

→-1:1),
(1:1,-1:0:1), (1:1,-1:1:0), (1:1,0:1:1), (1:1,1:1), (1:1,1:-1:1), (1:1,1:1), (1:1,1:-1:1), (1:1,1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1,1:1:1), (1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1:1), (1:1:1:1), (1:1:1:1), (1:1:1:1), (1:1:1:1), (1:1:1:1), (1:1:1:1), (1:1:1:1),
```

```
sage: u = QQ['u'].0
sage: P = ProductProjectiveSpaces([1, 1], NumberField(u^2 - 2, 'v'))
sage: sorted(list(P.points_of_bounded_height(bound=1.5)))
[(-v:1,-v:1),(-v:1,-1:1),(-v:1,-1/2*v:1),(-v:1,0:]
\hookrightarrow 1), (-v : 1 , 1/2*v : 1),
(-v:1,1:0), (-v:1,1:1), (-v:1,v:1), (-1:1,-v:1), (-1,1)

→: 1 , -1 : 1),

(-1:1,-1/2*v:1), (-1:1,0:1), (-1:1,1/2*v:1), (-1:1,1/2*v:1)
\hookrightarrow 0), (-1 : 1 , 1 : 1),
(-1:1,v:1), (-1/2*v:1,-v:1), (-1/2*v:1,-1:1), (-1/2*v:1,-1:1)
\rightarrow -1/2*v : 1), (-1/2*v : 1 , 0 : 1),
(-1/2*v : 1 , 1/2*v : 1), (-1/2*v : 1 , 1 : 0), (-1/2*v : 1 , 1 : 1), (-1/2*v : 1 , 1 : 1)
\Rightarrow 2 * v : 1 , v : 1), (0 : 1 , -v : 1),
(0:1,-1:1), (0:1,-1/2*v:1), (0:1,0:1), (0:1,1/2*v:1),
\leftrightarrow (0 : 1 , 1 : 0),
(0:1,1:1), (0:1,v:1), (1/2*v:1,-v:1), (1/2*v:1,-1:1),
\hookrightarrow (1/2*v : 1 , -1/2*v : 1),
(1/2*v : 1 , 0 : 1), (1/2*v : 1 , 1/2*v : 1), (1/2*v : 1 , 1 : 0), (1/2*v : __
\hookrightarrow 1 , 1 : 1), (1/2*v : 1 , v : 1),
(1:0,-v:1), (1:0,-1:1), (1:0,-1/2*v:1), (1:0,0:1),
\hookrightarrow (1 : 0 , 1/2*\forall : 1),
(1:0,1:0), (1:0,1:1), (1:0,v:1), (1:1,-v:1), (1:1,
\rightarrow -1 : 1),
(1:1,-1/2*v:1), (1:1,0:1), (1:1,1/2*v:1), (1:1,1:0),...
\hookrightarrow (1 : 1 , 1 : 1),
(1:1,v:1),(v:1,-v:1),(v:1,-1:1),(v:1,-1/2*v:1),...
\hookrightarrow (v : 1 , 0 : 1),
(v : 1 , 1/2*v : 1), (v : 1 , 1 : 0), (v : 1 , 1 : 1), (v : 1 , v : 1)]
```

class sage.schemes.product\_projective.space.ProductProjectiveSpaces\_finite\_field(N,

R=Rational Field, names=None

 $Bases: sage.schemes.product\_projective.space.ProductProjectiveSpaces\_field$ 

## rational points(F=None)

Return the list of F-rational points on this product of projective spaces, where F is a given finite field, or the base ring of this space.

class sage.schemes.product\_projective.space.ProductProjectiveSpaces\_ring(N,

R=Rational Field, names=None)

Bases: sage.schemes.generic.ambient\_space.AmbientSpace

Cartesian product of projective spaces  $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ .

## **EXAMPLES:**

```
sage: P.\langle x0, x1, x2, x3, x4 \rangle = ProductProjectiveSpaces([1, 2], QQ); P
Product of projective spaces P^1 x P^2 over Rational Field
sage: P.coordinate_ring()
Multivariate Polynomial Ring in x0, x1, x2, x3, x4 over Rational Field
sage: P[0]
Projective Space of dimension 1 over Rational Field
sage: P[1]
Projective Space of dimension 2 over Rational Field
sage: Q = P(6, 3, 2, 2, 2); Q
(2:1,1:1:1)
sage: Q[0]
(2 : 1)
sage: H = Hom(P, P)
sage: f = H([x0^2 \times x3, x2 \times x1^2, x2^2, 2 \times x3^2, x4^2])
sage: f(Q)
(4:1,1:2:1)
```

## affine\_patch (I, return\_embedding=False)

Return the  $I^{th}$  affine patch of this projective space product where I is a multi-index.

INPUT:

- I a list or tuple of positive integers.
- return\_embedding Boolean, if true the projective embedding is also returned.

## **OUTPUT**:

- · An affine space.
- An embedding into a product of projective spaces (optional).

#### **EXAMPLES:**

## $change\_ring(R)$

Return a product of projective spaces over a ring R and otherwise the same as this projective space.

## INPUT:

• R – commutative ring or morphism.

## **OUTPUT**:

• Product of projective spaces over R.

**Note:** There is no need to have any relation between R and the base ring of this space, if you want to have such a relation, use self.base\_extend(R) instead.

## **EXAMPLES:**

```
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], QQ)
sage: T.change_ring(GF(17))
Product of projective spaces P^2 x P^2 over Finite Field of size 17
```

# components()

Return the components of this product of projective spaces.

OUTPUT: A list of projective spaces.

## **EXAMPLES:**

```
sage: P.<x,y,z,u,v> = ProductProjectiveSpaces(QQ,[2,1])
sage: P.components()
[Projective Space of dimension 2 over Rational Field,
Projective Space of dimension 1 over Rational Field]
```

#### dimension()

Return the absolute dimension of the product of projective spaces.

OUTPUT: A positive integer.

```
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], GF(17))
sage: T.dimension_absolute()
4
sage: T.dimension()
4
```

## dimension\_absolute()

Return the absolute dimension of the product of projective spaces.

OUTPUT: A positive integer.

## **EXAMPLES:**

```
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], GF(17))
sage: T.dimension_absolute()
4
sage: T.dimension()
4
```

## dimension\_absolute\_components()

Return the absolute dimension of the product of projective spaces.

OUTPUT: A list of positive integers.

## **EXAMPLES:**

```
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], GF(17))
sage: T.dimension_absolute_components()
[2, 2]
sage: T.dimension_components()
[2, 2]
```

## dimension components()

Return the absolute dimension of the product of projective spaces.

OUTPUT: A list of positive integers.

# **EXAMPLES:**

```
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], GF(17))
sage: T.dimension_absolute_components()
[2, 2]
sage: T.dimension_components()
[2, 2]
```

## dimension\_relative()

Return the relative dimension of the product of projective spaces.

OUTPUT: A positive integer.

## **EXAMPLES:**

```
sage: T.<a,x,y,z,u,v,w> = ProductProjectiveSpaces([3,2],QQ)
sage: T.dimension_relative()
5
```

## dimension\_relative\_components()

Return the relative dimension of the product of projective spaces.

OUTPUT: A list of positive integers.

## **EXAMPLES:**

```
sage: T.<a,x,y,z,u,v,w> = ProductProjectiveSpaces([3, 2], QQ)
sage: T.dimension_relative_components()
[3, 2]
```

#### ngens()

Return the number of generators of this space.

This is the number of variables in the coordinate ring of the projective space.

OUTPUT: An integer.

## **EXAMPLES:**

```
sage: T = ProductProjectiveSpaces([1, 1, 1], GF(5), 'x')
sage: T.ngens()
6
```

#### num\_components()

Returns the number of components of this space.

OUTPUT: An integer.

## **EXAMPLES:**

```
sage: T = ProductProjectiveSpaces([1, 1, 1], GF(5), 'x')
sage: T.num_components()
3
```

## segre\_embedding(PP=None, var='u')

Return the Segre embedding of this space into the appropriate projective space.

## INPUT:

- PP (default: None) ambient image projective space; this is constructed if it is not given.
- var string, variable name of the image projective space, default u (optional).

# OUTPUT:

Hom – from this space to the appropriate subscheme of projective space.

**Todo:** Cartesian products with more than two components.

#### **EXAMPLES:**

```
sage: X.<y0,y1,y2,y3,y4,y5> = ProductProjectiveSpaces(ZZ, [2, 2])
sage: phi = X.segre_embedding(); phi
Scheme morphism:
  From: Product of projective spaces P^2 x P^2 over Integer Ring
  To: Closed subscheme of Projective Space of dimension 8 over Integer Ring_
    defined by:
        -u5*u7 + u4*u8,
        -u5*u6 + u3*u8,
        -u4*u6 + u3*u7,
        -u2*u7 + u1*u8,
        -u2*u4 + u1*u5,
        -u2*u6 + u0*u8,
        -u1*u6 + u0*u7,
```

```
-u2*u3 + u0*u5,
 -u1*u3 + u0*u4
 Defn: Defined by sending (y0 : y1 : y2 , y3 : y4 : y5) to
        (y0*y3:y0*y4:y0*y5:y1*y3:y1*y4:y1*y5:y2*y3:y2*y4:__
\hookrightarrowy2*y5).
::
sage: T = ProductProjectiveSpaces([1, 2], CC, 'z')
sage: T.segre_embedding()
Scheme morphism:
 From: Product of projective spaces P^1 x P^2 over Complex Field with 53
→bits of precision
 To: Closed subscheme of Projective Space of dimension 5 over Complex.
→Field with 53 bits of precision defined by:
 -u2*u4 + u1*u5
 -u2*u3 + u0*u5,
 -u1*u3 + u0*u4
 Defn: Defined by sending (z0 : z1 , z2 : z3 : z4) to
        (z0*z2 : z0*z3 : z0*z4 : z1*z2 : z1*z3 : z1*z4).
::
sage: T = ProductProjectiveSpaces([1, 2, 1], QQ, 'z')
sage: T.segre_embedding()
Scheme morphism:
 From: Product of projective spaces P^1 x P^2 x P^1 over Rational Field
       Closed subscheme of Projective Space of dimension 11 over
Rational Field defined by:
 -u9*u10 + u8*u11,
 -u7*u10 + u6*u11,
 -u7*u8 + u6*u9,
  -u5*u10 + u4*u11,
  -u5*u8 + u4*u9,
  -u5*u6 + u4*u7,
 -u5*u9 + u3*u11,
 -u5*u8 + u3*u10,
 -u5*u8 + u2*u11,
 -u4*u8 + u2*u10,
 -u3*u8 + u2*u9,
 -u3*u6 + u2*u7,
 -u3*u4 + u2*u5.
 -u5*u7 + u1*u11,
 -u5*u6 + u1*u10,
 -u3*u7 + u1*u9,
  -u3*u6 + u1*u8,
  -u5*u6 + u0*u11,
  -u4*u6 + u0*u10,
 -u3*u6 + u0*u9,
 -u2*u6 + u0*u8,
 -u1*u6 + u0*u7,
 -u1*u4 + u0*u5,
 -u1*u2 + u0*u3
 Defn: Defined by sending (z0:z1, z2:z3:z4, z5:z6) to
        (z0*z2*z5 : z0*z2*z6 : z0*z3*z5 : z0*z3*z6 : z0*z4*z5 : z0*z4*z6
: z1*z2*z5 : z1*z2*z6 : z1*z3*z5 : z1*z3*z6 : z1*z4*z5 : z1*z4*z6).
```

#### subscheme(X)

Return the closed subscheme defined by X.

#### INPUT:

• X - a list or tuple of equations.

## **OUTPUT**:

AlgebraicScheme\_subscheme\_projective\_cartesian\_product.

## **EXAMPLES:**

```
sage: P. <x, y, z, w> = ProductProjectiveSpaces([1, 1], GF(5))
sage: X = P.subscheme([x-y, z-w]); X
Closed subscheme of Product of projective spaces P^1 x P^1 over Finite Field_
→of size 5 defined by:
     x - y,
      z - w
sage: X.defining_polynomials ()
[x - y, z - w]
sage: I = X.defining_ideal(); I
Ideal (x - y, z - w) of Multivariate Polynomial Ring in x, y, z, w over
Finite Field of size 5
sage: X.dimension()
sage: X.base_ring()
Finite Field of size 5
sage: X.base_scheme()
Spectrum of Finite Field of size 5
sage: X.structure_morphism()
Scheme morphism:
     From: Closed subscheme of Product of projective spaces P^1 x P^1 over.
→Finite Field of size 5 defined by:
     x - y,
      z - w
     To:
           Spectrum of Finite Field of size 5
     Defn: Structure map
```

sage.schemes.product\_projective.space.is\_ProductProjectiveSpaces(x)

Return True if x is a product of projective spaces.

This is an ambient space defined by  $\mathbb{P}^n_R \times \cdots \times \mathbb{P}^m_R$ , where R is a ring and  $n, \ldots, m \geq 0$  are integers.

OUTPUT: Boolean.

## **EXAMPLES:**

```
sage: is_ProductProjectiveSpaces(ProjectiveSpace(5, names='x'))
False
sage: is_ProductProjectiveSpaces(ProductProjectiveSpaces([1, 2, 3], ZZ, 'x'))
True
```

# 15.2 Set of homomorphisms

## **AUTHORS:**

- Volker Braun and Ben Hutz (2014): initial version
- Raghukul Raman (2018): code cleanup and added support for rational field

class sage.schemes.product\_projective.homset.SchemeHomset\_points\_product\_projective\_spaces

Bases: sage.schemes.product\_projective.homset.SchemeHomset\_points\_product\_projective\_spa

```
points (**kwds)
```

Return some or all rational points of a projective scheme.

Over a finite field, all points are returned. Over an infinite field, all points satisfying the bound are returned. For a zero-dimensional subscheme, all points are returned regardless of whether the base ring is a field or not.

For number fields, this uses the Doyle-Krumm algorithm 4 (algorithm 5 for imaginary quadratic) for computing algebraic numbers up to a given height [Doyle-Krumm].

The algorithm requires floating point arithmetic, so the user is allowed to specify the precision for such calculations. Additionally, due to floating point issues, points slightly larger than the bound may be returned. This can be controlled by lowering the tolerance.

## INPUT:

- bound a real number
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4
- precision the precision to use for computing the elements of bounded height of number fields.

# **OUTPUT**:

• a list of rational points of a projective scheme

## **EXAMPLES:**

```
sage: P.<x,y,z,w> = ProductProjectiveSpaces([1, 1], QQ)
sage: X = P.subscheme([x - y, z^2 - 2*w^2])
sage: X(P.base_ring()).points()
[]
```

```
sage: u = QQ['u'].0
sage: P.<x,y,z,w> = ProductProjectiveSpaces([1,1], NumberField(u^2 - 2, 'v'))
sage: X = P.subscheme([x^2 - y^2, z^2 - 2*w^2])
sage: X(P.base_ring()).points()
[(-1 : 1 , -v : 1), (1 : 1 , v : 1), (1 : 1 , -v : 1), (-1 : 1 , v : 1)]
```

```
sage: u = QQ['u'].0
sage: K = NumberField(u^2 + 1, 'v')
sage: P.<x,y,z,w> = ProductProjectiveSpaces([1, 1], K)
sage: P(K).points(bound=1)
[(-1 : 1 , -1 : 1), (-1 : 1 , -v : 1), (-1 : 1 , 0 : 1), (-1 : 1 , v : 1),
(-1 : 1 , 1 : 0), (-1 : 1 , 1 : 1), (-v : 1 , -1 : 1), (-v : 1 , -v : 1),
(-v : 1 , 0 : 1), (-v : 1 , v : 1), (-v : 1 , 1 : 0), (-v : 1 , 1 : 1),
(0 : 1 , -1 : 1), (0 : 1 , -v : 1), (0 : 1 , 0 : 1), (0 : 1 , v : 1),
(0 : 1 , 1 : 0), (0 : 1 , 1 : 1), (v : 1 , -1 : 1), (v : 1 , -v : 1),
(v : 1 , 0 : 1), (v : 1 , v : 1), (v : 1 , 1 : 0), (v : 1 , 1 : 1),
```

```
(1:0,-1:1), (1:0,-v:1), (1:0,0:1), (1:0,v:1),
(1:0,1:0), (1:0,1:1), (1:1,-1:1), (1:1,-v:1),
(1:1,0:1), (1:1,v:1), (1:1,1:0), (1:1,1:1)]
```

```
sage: P.<x,y,z,u,v> = ProductProjectiveSpaces([2, 1], GF(3))
sage: P(P.base_ring()).points()
[(0:0:1,0:1),(0:0:1,1:0),(0:0:1,1:1),(0:0:1,...)
\hookrightarrow2 : 1),
(0:1:0,0:1), (0:1:0,1:0), (0:1:0,1:1), (0:1:0,2...
(0:1:1,0:1), (0:1:1,1:0), (0:1:1,1:1), (0:1:1,2)

→: 1),
(0:2:1,0:1), (0:2:1,1:0), (0:2:1,1:1), (0:2:1,2:1)
(1:0:0,0:1), (1:0:0,1:0), (1:0:0,1:1), (1:0:0,2)
\hookrightarrow: 1).
(1:0:1,0:1), (1:0:1,1:0), (1:0:1,1:1), (1:0:1,2)
→: 1),
(1:1:0,0:1), (1:1:0,1:0), (1:1:0,1:1), (1:1:0,2]
\hookrightarrow: 1),
(1:1:1,0:1), (1:1:1:1,1:0), (1:1:1,1:1), (1:1:1:1,2...)
\hookrightarrow: 1),
(1:2:1,0:1), (1:2:1,1:0), (1:2:1,1:1), (1:2:1,2:1)
\hookrightarrow: 1).
(2:0:1,0:1), (2:0:1,1:0), (2:0:1,1:1), (2:0:1,2:0)
\hookrightarrow: 1),
(2:1:0,0:1), (2:1:0,1:0), (2:1:0,1:1), (2:1:0,2...
(2:1:1,0:1), (2:1:1,1:0), (2:1:1,1:1), (2:1:1,2...)
(2:2:1,0:1), (2:2:1,1:0), (2:2:1,1:1), (2:2:1,2...)
→: 1)]
```

class sage.schemes.product\_projective.homset.SchemeHomset\_points\_product\_projective\_spaces

Bases: sage.schemes.generic.homset.SchemeHomset\_points

Set of rational points of a product of projective spaces.

INPUT:

See SchemeHomset\_generic.

# 15.3 Polynomial morphisms for products of projective spaces

This class builds on the projective space class and its point and morphism classes.

## **EXAMPLES:**

class sage.schemes.product\_projective.morphism.ProductProjectiveSpaces\_morphism\_ring (parent,

Bases: sage.schemes.generic.morphism.SchemeMorphism\_polynomial

polys, check=7

The class of morphisms on products of projective spaces.

The components are projective space morphisms.

#### **EXAMPLES:**

## as\_dynamical\_system()

Return this endomorphism as a Dynamical System\_producte\_projective.

#### **OUTPUT:**

• DynamicalSystem\_produce\_projective

## **EXAMPLES:**

## global\_height (prec=None)

Returns the maximum of the absolute logarithmic heights of the coefficients in any of the coordinate functions of this map.

## INPUT:

• prec – desired floating point precision (default: default RealField precision).

## **OUTPUT**:

· a real number.

**Todo:** Add functionality for  $\overline{\mathbf{Q}}$ , implement function to convert the map defined over  $\overline{\mathbf{Q}}$  to map over a number field.

## **EXAMPLES:**

```
sage: P1xP1.<x,y,u,v> = ProductProjectiveSpaces([1, 1], ZZ)
sage: H = End(P1xP1)
sage: f = H([x^2*u, 3*y^2*v, 5*x*v^2, y*u^2])
sage: f.global_height()
1.60943791243410
```

```
sage: u = QQ['u'].0
sage: R = NumberField(u^2 - 2, 'v')
sage: PP.<x,y,a,b> = ProductProjectiveSpaces([1, 1], R)
sage: H = End(PP)
sage: O = R.maximal_order()
sage: g = H([3*O(u)*x^2, 13*x*y, 7*a*y, 5*b*x + O(u)*a*y])
sage: g.global_height()
2.56494935746154
```

## is\_morphism()

Returns True if this mapping is a morphism of products of projective spaces.

For each component space of the codomain of this mapping we consider the subscheme of the domain of this map generated by the corresponding coordinates of the map. This map is a morphism if and only if each of these subschemes has no points.

OUTPUT: Boolean.

## **EXAMPLES:**

```
sage: Z.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], ZZ)
sage: H = End(Z)
sage: f = H([a^2, b^2, x*z-y*z, x^2-y^2, z^2])
sage: f.is_morphism()
False
```

```
sage: P.<x,y,z,u,v,w>=ProductProjectiveSpaces([2, 2], QQ)
sage: H = End(P)
sage: f = H([u, v, w, u^2, v^2, w^2])
sage: f.is_morphism()
True
```

```
sage: P.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ)
sage: Q.<a,b,c,d,e> = ProductProjectiveSpaces([1, 2], QQ)
sage: H = Hom(P, Q)
sage: f = H([x^2, y^2, u^3, w^3, u^3])
sage: f.is_morphism()
False
```

# local\_height (v, prec=None)

Returns the maximum of the local height of the coefficients in any of the coordinate functions of this map.

#### INPUT:

•  $\nabla$  – a prime or prime ideal of the base ring.

• prec – desired floating point precision (default: default RealField precision).

## **OUTPUT**:

· a real number.

## **EXAMPLES:**

```
sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ)
sage: H = T.Hom(T)
sage: f = H([4*x^2+3/100*y^2, 8/210*x*y, 1/10000*z^2, 20*w^2, 1/384*u*w])
sage: f.local_height(2)
4.85203026391962
```

```
sage: R.<z> = PolynomialRing(QQ)
sage: K.<w> = NumberField(z^2-5)
sage: P.<x,y,a,b> = ProductProjectiveSpaces([1, 1], K)
sage: H = Hom(P,P)
sage: f = H([2*x^2 + w/3*y^2, 1/w*y^2, a^2, 6*b^2 + 1/9*a*b])
sage: f.local_height(K.ideal(3))
2.19722457733622
```

## nth\_iterate(P, n, normalize=False)

Return the nth iterate of the point.

#### **EXAMPLES:**

```
sage: Z.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], QQ)
sage: H = End(Z)
sage: f = H([a^3, b^3 + a*b^2, x^2, y^2 - z^2, z*y])
sage: P = Z([1, 1, 1, 1, 1])
sage: f.nth_iterate(P, 3)
doctest:warning
...
(1/1872 : 1 , 1 : 1 : 0)
```

## nth\_iterate\_map(n)

Return the nth iterate of this map.

## **EXAMPLES:**

# orbit (P, N, \*\*kwds)

Return the orbit of this point.

## EXAMPLES:

```
sage: Z.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], QQ)
sage: H = End(Z)
```

# 15.4 Points for products of projective spaces

This class builds on the projective space class and its point and morphism classes.

**EXAMPLES:** 

We construct products projective spaces of various dimensions over the same ring.:

```
sage: P1xP1.<x,y, u,v> = ProductProjectiveSpaces(QQ, [1, 1])
sage: P1xP1([2, 1, 3, 1])
(2 : 1 , 3 : 1)
```

Bases: sage.schemes.product\_projective.point.ProductProjectiveSpaces\_point\_ring

## $intersection_multiplicity(X)$

Return the intersection multiplicity of the codomain of this point and subscheme X at this point.

This uses the subscheme implementation of intersection\_multiplicity. This point must be a point on a subscheme of a product of projective spaces.

## INPUT:

• X – a subscheme in the same ambient space as the codomain of this point.

OUTPUT: An integer.

## **EXAMPLES:**

```
sage: PP.<x,y,z,u,v> = ProductProjectiveSpaces(QQ, [2,1])
sage: X = PP.subscheme([y^2*z^3*u - x^5*v])
sage: Y = PP.subscheme([u^3 - v^3, x - y])
sage: Q = X([0,0,1,1,1])
sage: Q.intersection_multiplicity(Y)
2
```

## multiplicity()

Return the multiplicity of this point on its codomain.

This uses the subscheme implementation of multiplicity. This point must be a point on a subscheme of a product of projective spaces.

OUTPUT: an integer.

```
sage: PP.<x,y,z,w,u,v,t> = ProductProjectiveSpaces(QQ, [3,2])
sage: X = PP.subscheme([x^8*t - y^8*t + z^5*w^3*v])
sage: Q1 = X([1,1,0,0,-1,-1,1])
sage: Q1.multiplicity()

sage: Q2 = X([0,0,0,1,0,1,1])
sage: Q2.multiplicity()

sage: Q3 = X([0,0,0,1,1,0,0])
sage: Q3.multiplicity()
6
```

 ${\bf class} \ \ {\bf sage.schemes.product\_projective.point.ProductProjectiveSpaces\_point\_finite\_field\ (\it parential projectiveSpaces\_point\_finite\_field\ (\it parential projectiveSpaces\_point\_field\ (\it parential projectiveSpaces\_point$ 

Bases: sage.schemes.product\_projective.point.ProductProjectiveSpaces\_point\_field

Bases: sage.schemes.generic.morphism.SchemeMorphism\_point

The class of points on products of projective spaces.

The components are projective space points.

#### **EXAMPLES:**

```
sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ)
sage: T.point([1, 2, 3, 4, 5]);
(1/3 : 2/3 : 1 , 4/5 : 1)
```

## change\_ring(R, \*\*kwds)

Returns a new ProductProjectiveSpaces\_point which is this point coerced to R.

If the keyword check is True, then the initialization checks are performed. The user may specify the embedding into R with a keyword.

#### INPUT:

• R - ring.

#### kwds:

- check Boolean.
- embedding field embedding from the base ring of this point to R.

#### **OUTPUT:**

ProductProjectiveSpaces\_point.

## **EXAMPLES:**

```
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([1, 1, 1], ZZ)
sage: P = T.point([5, 3, 15, 4, 2, 6]);
sage: P.change_ring(GF(3))
(1 : 0 , 0 : 1 , 1 : 0)
```

## dehomogenize(L)

Dehomogenizes  $k^{th}$  point at  $L[k]^{th}$  coordinate.

checi

This function computes the appropriate affine patch using  $\mathbb{L}$  and then returns the dehomogenized point on of this affine space.

#### INPUT:

• L - a list of non-negative integers

## **OUTPUT**:

• SchemeMorphism\_point\_affine.

## **EXAMPLES:**

```
sage: PP = ProductProjectiveSpaces([2, 2, 2], QQ, 'x')
sage: A = PP([2, 4, 6, 23, 46, 23, 9, 3, 1])
sage: A.dehomogenize([0, 1, 2])
(2, 3, 1/2, 1/2, 9, 3)
```

```
sage: PP = ProductProjectiveSpaces([1, 1], ZZ)
sage: A = PP([0,1,2,4])
sage: A.dehomogenize([0,0])
Traceback (most recent call last):
...
ValueError: can't dehomogenize at 0 coordinate
```

#### global\_height (prec=None)

Returns the absolute logarithmic height of the point.

This function computes the maximum of global height of each component point in the product. Global height of component point is computed using function for projective point.

#### INPUT

• prec – desired floating point precision (default: default RealField precision).

# **OUTPUT**:

· a real number.

# **EXAMPLES:**

```
sage: PP = ProductProjectiveSpaces(QQ, [2,2], 'x')
sage: Q = PP([1, 7, 5, 18, 2, 3])
sage: Q.global_height()
1.94591014905531
```

```
sage: PP = ProductProjectiveSpaces(ZZ, [1,1], 'x')
sage: A = PP([-30, 2, 1, 6])
sage: A.global_height()
3.40119738166216
```

```
sage: R.<x> = PolynomialRing(QQ)
sage: k.<w> = NumberField(x^2 + 5)
```

```
sage: PP = ProductProjectiveSpaces(k, [1, 2], 'y')
sage: Q = PP([3, 5*w+1, 1, 7*w, 10])
sage: Q.global_height()
2.30258509299405
```

```
sage: PP = ProductProjectiveSpaces(QQbar, [1, 1], 'x')
sage: Q = PP([1, QQbar(sqrt(2)), QQbar(5^(1/3)), QQbar(3^(1/3))])
sage: Q.global_height()
0.536479304144700
```

## local\_height (v, prec=None)

Returns the maximum of the local height of the coordinates of this point.

This function computes the maximum of local height of each component point in the product. Local height of component point is computed using function for projective point.

## INPUT:

- $\nabla$  a prime or prime ideal of the base ring.
- prec desired floating point precision (default: default RealField precision).

## **OUTPUT:**

· a real number.

# **EXAMPLES:**

```
sage: PP = ProductProjectiveSpaces(QQ, [1, 1], 'x')
sage: A = PP([11, 5, 10, 2])
sage: A.local_height(5)
1.60943791243410
```

```
sage: P = ProductProjectiveSpaces(QQ, [1,2], 'x')
sage: Q = P([1, 4, 1/2, 2, 32])
sage: Q.local_height(2)
4.15888308335967
```

## normalize\_coordinates()

Removes common factors (componentwise) from the coordinates of this point (including -1).

OUTPUT: None.

## **EXAMPLES:**

```
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], ZZ)
sage: P = T.point([5, 10, 15, 4, 2, 6]);
sage: P.normalize_coordinates()
sage: P
(1 : 2 : 3 , 2 : 1 : 3)
```

## nth\_iterate (f, n, normalize=False)

For a map of this point and a point P in self.domain() this function returns the nth iterate of P by this point.

If normalize == True, then the coordinates are automatically normalized.

## INPUT:

• f - a ProductProjectiveSpaces\_morphism\_ring with self in f.domain().

- n a positive integer.
- normalize Boolean (optional Default: False).

## **OUTPUT**:

• A point in self.codomain()

#### **EXAMPLES:**

```
sage: Z.<a,b,x,y> = ProductProjectiveSpaces([1, 1], ZZ)
sage: f = DynamicalSystem_projective([a*b, b^2, x^3 - y^3, y^2*x], domain=Z)
sage: P = Z([2, 6, 2, 4])
sage: P.nth_iterate(f, 2, normalize = True)
doctest:warning
...
(1 : 3 , 407 : 112)
```

**Todo:** Is there a more efficient way to do this?

## orbit (f, N, \*\*kwds)

Returns the orbit this point by f.

If N is an integer it returns  $[P, self(P), \dots, self^N(P)]$ .

If N is a list or tuple N=[m,k] it returns  $[self^m(P),\ldots,self^k(P)]$ . Automatically normalize the points if normalize == True. Perform the checks on point initialization if check==True

## INPUT:

- f a ProductProjectiveSpaces\_morphism\_ring with the orbit of P in f.domain().
- N a non-negative integer or list or tuple of two non-negative integers.

## kwds:

- check Boolean (optional default: True).
- normalize Boolean (optional default: False).

## OUTPUT:

• a list of points in self.codomain().

## **EXAMPLES:**

# $scale_by(t)$

Scale the coordinates of the point by t, done componentwise.

A TypeError occurs if the point is not in the base ring of the codomain after scaling.

# INPUT:

• t – a ring element

## **EXAMPLES:**

```
sage: T.<x, y, z, u, v, w> = ProductProjectiveSpaces([1, 1, 1], ZZ)
sage: P = T.point([5, 10, 15, 4, 2, 6]);
sage: P.scale_by([2, 1, 1])
sage: P
(10 : 20 , 15 : 4 , 2 : 6)
```

# 15.5 Subschemes of products of projective spaces

## **AUTHORS:**

• Ben Hutz (2014): subschemes of Cartesian products of projective space

class sage.schemes.product\_projective.subscheme.AlgebraicScheme\_subscheme\_product\_projective

Bases: sage.schemes.projective.projective\_subscheme.AlgebraicScheme\_subscheme\_projective Construct an algebraic subscheme of a product of projective spaces.

**Warning:** You should not create objects of this class directly. The preferred method to construct such subschemes is to use <code>subscheme()</code> method of <code>Product of Projective Spaces</code>.

## INPUT:

- A ambient Product of Projective Spaces.
- polynomials single polynomial, ideal or iterable of defining multi-homogeneous polynomials.

## **EXAMPLES:**

```
sage: P.<x, y, u, v> = ProductProjectiveSpaces([1,1], QQ)
sage: P.subscheme([u*x^2-v*y*x])
Closed subscheme of Product of projective spaces P^1 x P^1 over Rational
Field defined by:
  x^2*u - x*y*v
```

# affine\_patch (I, return\_embedding=False)

Return the  $I^{th}$  affine patch of this projective scheme where 'I' is a multi-index.

# INPUT:

- I a list or tuple of positive integers
- return\_embedding Boolean, if true the projective embedding is also returned

## **OUTPUT:**

- An affine algebraic scheme
- An embedding into a product of projective space (optional)

```
sage: PP.\langle x, y, z, w, u, v \rangle = ProductProjectiveSpaces([3,1],QQ)
sage: W = PP.subscheme([y^2*z-x^3,z^2-w^2,u^3-v^3])
sage: W.affine_patch([0,1],True)
(Closed subscheme of Affine Space of dimension 4 over Rational Field defined_
⇒by:
 x0^2*x1 - 1,
 x1^2 - x2^2
 x3^3 - 1, Scheme morphism:
 From: Closed subscheme of Affine Space of dimension 4 over Rational Field.
→defined by:
 x0^2 \times x1 - 1,
 x1^2 - x2^2
 x3^3 - 1
 To: Closed subscheme of Product of projective spaces P^3 x P^1 over.
→Rational Field defined by:
 -x^3 + y^2 * z
 z^2 - w^2,
 u^3 - v^3
 Defn: Defined on coordinates by sending (x0, x1, x2, x3) to
        (1 : x0 : x1 : x2 , x3 : 1))
```

#### dimension()

Return the dimension of the algebraic subscheme.

**OUTPUT**:

Integer.

```
sage: X.<x,y,z,w,u,v> = ProductProjectiveSpaces([2,2],QQ)
sage: L = (-w - v)*x + (-w*y - u*z)
sage: Q = (-u*w - v^2)*x^2 + ((-w^2 - u*w + (-u*v - u^2))*y + (-w^2 - u*v)*z)*x + \
((-w^2 - u*w - u^2)*y^2 + (-u*w - v^2)*z*y + (-w^2 + (-v - u)*w)*z^2)
sage: W = X.subscheme([L,Q])
sage: W.dimension()
```

```
sage: PP.<x,y,z,u,v,s,t> = ProductProjectiveSpaces([2,1,1], QQ)
sage: X = PP.subscheme([x^3, x^5+y^5, z^6, x*u-v*y, s^2-t^2])
sage: X.dimension()
-1
```

```
sage: PP = ProductProjectiveSpaces([2,1,3], CC, 't')
sage: PP.subscheme([]).dimension()
6
```

```
sage: PP = ProductProjectiveSpaces([1,3,1], ZZ, 't')
sage: PP.subscheme([]).dimension()
5
```

```
sage: PP.<x,y,u,v,s,t> = ProductProjectiveSpaces([1,1,1], CC)
sage: X = PP.subscheme([x^2-y^2, u-v, s^2-t^2])
sage: X.dimension()
0
```

#### intersection multiplicity (X, P)

Return the intersection multiplicity of this subscheme and the subscheme X at the point P.

This uses the intersection\_multiplicity function for affine subschemes on affine patches of this subscheme and X that contain P.

## INPUT:

- X subscheme in the same ambient space as this subscheme.
- P a point in the intersection of this subscheme with X.

OUTPUT: An integer.

## **EXAMPLES:**

Multiplicity of a fixed point of the map  $z^2 + \frac{1}{4}$ :

```
sage: PP.<x,y,u,v> = ProductProjectiveSpaces(QQ, [1,1])
sage: G = PP.subscheme([(x^2 + 1/4*y^2)*v - y^2*u])
sage: D = PP.subscheme([x*v - y*u])
sage: G.intersection(D).rational_points()
[(1 : 0 , 1 : 0), (1/2 : 1 , 1/2 : 1)]
sage: Q = PP([1/2,1,1/2,1])
sage: G.intersection_multiplicity(D, Q)
2
```

```
sage: F.<a> = GF(4)
sage: PP.<x,y,z,u,v,w> = ProductProjectiveSpaces(F, [2,2])
sage: X = PP.subscheme([z^5 + 3*x*y^4 + 8*y^5, u^2 - v^2])
sage: Y = PP.subscheme([x^6 + z^6, w*z - v*y])
sage: Q = PP([a,a+1,1,a,a,1])
sage: X.intersection_multiplicity(Y, Q)
16
```

```
sage: PP.<x,y,z,u,v,w> = ProductProjectiveSpaces(QQ, [2,2])
sage: X = PP.subscheme([x^2*u^3 + y*z*u*v^2, x - y])
sage: Y = PP.subscheme([u^3 - w^3, x*v - y*w, z^3*w^2 - y^3*u*v])
sage: Q = PP([0,0,1,0,1,0])
sage: X.intersection_multiplicity(Y, Q)
Traceback (most recent call last):
...
TypeError: the intersection of this subscheme and (=Closed subscheme of_ →Affine Space of dimension 4
over Rational Field defined by: x2^3 - x3^3, -x1*x3 + x0, -x1^3*x2 + x3^2)_ →must be proper and finite
```

# is\_smooth (point=None)

Test whether the algebraic subscheme is smooth.

#### **EXAMPLES:**

```
sage: X.<x,y,z,w,u,v> = ProductProjectiveSpaces([2,2],QQ)
sage: L = (-w - v)*x + (-w*y - u*z)
sage: Q = (-u*w - v^2)*x^2 + ((-w^2 - u*w + (-u*v - u^2))*y + (-w^2 - u*v)*z)*x + \
((-w^2 - u*w - u^2)*y^2 + (-u*w - v^2)*z*y + (-w^2 + (-v - u)*w)*z^2)
sage: W = X.subscheme([L,Q])
sage: W.is_smooth()
Traceback (most recent call last):
```

```
...
NotImplementedError: Not Implemented
```

#### multiplicity(P)

Return the multiplicity of P on this subscheme.

This is computed as the multiplicity of the corresponding point on an affine patch of this subscheme that contains P. This subscheme must be defined over a field. An error is returned if P not a point on this subscheme.

## INPUT:

• P - a point on this subscheme.

OUTPUT: an integer.

## **EXAMPLES:**

```
sage: PP.<x,y,z,w> = ProductProjectiveSpaces(QQ, [1,1])
sage: X = PP.subscheme([x^4*z^3 - y^4*w^3])
sage: Q1 = PP([1,1,1,1])
sage: X.multiplicity(Q1)
1
sage: Q2 = PP([0,1,1,0])
sage: X.multiplicity(Q2)
3
```

```
sage: PP.<x,y,z,w,u> = ProductProjectiveSpaces(GF(11), [1,2])
sage: X = PP.subscheme([x^7*u - y^7*z, u^6*x^2 - w^3*z^3*x*y - w^6*y^2])
sage: Q1 = PP([1,0,10,1,0])
sage: X.multiplicity(Q1)
1
sage: Q2 = PP([1,0,1,0,0])
sage: X.multiplicity(Q2)
4
```

# $segre\_embedding(PP=None)$

Return the Segre embedding of this subscheme into the appropriate projective space.

## INPUT:

• PP – (default: None) ambient image projective space; this is constructed if it is not given.

#### OUTPUT:

Hom from this subscheme to the appropriate subscheme of projective space

```
sage: X.<x,y,z,w,u,v> = ProductProjectiveSpaces([2,2], QQ)
sage: P = ProjectiveSpace(QQ,8,'t')
sage: L = (-w - v)*x + (-w*y - u*z)
sage: Q = (-u*w - v^2)*x^2 + ((-w^2 - u*w + (-u*v - u^2))*y + (-w^2 - u*v)*z)*x + \
((-w^2 - u*w - u^2)*y^2 + (-u*w - v^2)*z*y + (-w^2 + (-v - u)*w)*z^2)
sage: W = X.subscheme([L,Q])
sage: phi = W.segre_embedding(P)
sage: phi.codomain().ambient_space() == P
True
```

```
sage: PP.\langle x,y,u,v,s,t\rangle = ProductProjectiveSpaces([1,1,1], CC)
sage: PP.subscheme([]).segre_embedding()
Scheme morphism:
 From: Closed subscheme of Product of projective spaces P^1 x P^1 x P^1
over Complex Field with 53 bits of precision defined by:
 (no polynomials)
 To: Closed subscheme of Projective Space of dimension 7 over Complex
Field with 53 bits of precision defined by:
 -u5*u6 + u4*u7,
 -u3*u6 + u2*u7,
 -u3*u4 + u2*u5,
 -u3*u5 + u1*u7,
  -u3*u4 + u1*u6,
  -u3*u4 + u0*u7,
  -u2*u4 + u0*u6,
 -u1*u4 + u0*u5,
 -u1*u2 + u0*u3
 Defn: Defined by sending (x : y , u : v , s : t) to
       (x*u*s : x*u*t : x*v*s : x*v*t : y*u*s : y*u*t : y*v*s : y*v*t).
```

```
sage: PP.<x,y,z,u,v,s,t> = ProductProjectiveSpaces([2,1,1], ZZ)
sage: PP.subscheme([x^3, u-v, s^2-t^2]).segre_embedding()
Scheme morphism:
 From: Closed subscheme of Product of projective spaces P^2 \times P^1 \times P^1
over Integer Ring defined by:
 x^3,
 u - v,
 s^2 - t^2
 To: Closed subscheme of Projective Space of dimension 11 over
Integer Ring defined by:
 u10^2 - u11^2
 u9 - u11,
 u8 - u10,
 -u7*u10 + u6*u11,
 u6*u10 - u7*u11,
 u6^2 - u7^2
 u5 - u7,
 u4 - u6,
 u3^3,
 -u3*u10 + u2*u11,
 u2*u10 - u3*u11,
  -u3*u6 + u2*u7,
 u2*u6 - u3*u7,
 u2*u3^2,
 u2^2 - u3^2,
 u1 - u3,
 u0 - u2
 Defn: Defined by sending (x : y : z , u : v , s : t) to
       (x*u*s : x*u*t : x*v*s : x*v*t : y*u*s : y*u*t : y*v*s : y*v*t :
z*u*s : z*u*t : z*v*s : z*v*t).
```

# 15.6 Enumeration of rational points on product projective schemes

Naive algorithms for enumerating rational points over Q, number fields or finite fields over general schemes.

**Warning:** Incorrect results and infinite loops may occur if using a wrong function. (For instance using an affine function for a product projective scheme or a finite field function for a scheme defined over an infinite field.)

#### **EXAMPLES:**

Product Projective, over Q:

Product projective over finite field:

## **AUTHORS:**

- Volker Braun and Ben Hutz (2014): initial version
- Raghukul Raman (2018): code cleanup and added support for rational fields

sage.schemes.product\_projective.rational\_point.enum\_product\_projective\_finite\_field(X) Enumerates projective points on scheme X defined over a finite field.

## INPUT:

• X - a scheme defined over a finite field or a set of abstract rational points of such a scheme.

## **OUTPUT:**

• a list containing the projective points of X over the finite field, sorted.

```
sage.schemes.product_projective.rational_point.enum_product_projective_number_field(X,
```

\*\*kwds)

Enumerates product projective points on scheme X defined over a number field.

Simply checks all of the points of absolute height of at most B and adds those that are on the scheme to the list.

This algorithm computes 2 lists: L containing elements x in K such that  $H_k(x) \le B$ , and a list L' containing elements x in K that, due to floating point issues, may be slightly larger then the bound. This can be controlled by lowering the tolerance.

## ALGORITHM:

This is an implementation of the revised algorithm (Algorithm 4) in [Doyle-Krumm]. Algorithm 5 is used for imaginary quadratic fields.

## INPUT:

#### kwds:

- bound a real number
- tolerance a rational number in (0,1] used in doyle-krumm algorithm-4
- precision the precision to use for computing the elements of bounded height of number fields.

## **OUTPUT:**

• a list containing the product projective points of X of absolute height up to B, sorted.

## **EXAMPLES:**

sage.schemes.product\_projective.rational\_point.enum\_product\_projective\_rational\_field (X, P)

Enumerates projective, rational points on scheme X of height up to bound B.

## INPUT:

- X a scheme or set of abstract rational points of a scheme
- B a positive integer bound

## **OUTPUT:**

• a list containing the product projective points of X of height up to B, sorted.

```
sage: PP.\langle x0, x1, x2, x3, x4 \rangle = ProductProjectiveSpaces([1, 2], QQ)
sage: from sage.schemes.product_projective.rational_point import \
     enum_product_projective_rational_field
sage: enum_product_projective_rational_field(PP,1)
[(-1:1,-1:-1:1), (-1:1,-1:0:1), (-1:1,-1:0)
(-1:1,-1:1:1), (-1:1,0:-1:1), (-1:1,0:0:1),
(-1:1,0:1:0), (-1:1,0:1:1), (-1:1,1:-1:1),
(-1:1,1:0:0), (-1:1,1:0:1), (-1:1:1:0),
(-1:1,1:1:1), (0:1,-1:-1:1), (0:1,-1:0:1),
(0:1,-1:1:0), (0:1,-1:1:1), (0:1,0:-1:1),
(0:1,0:0:1), (0:1,0:1:0), (0:1,0:1:1),
   1 , 1 : -1 : 1), (0 : 1 , 1 : 0 : 0), (0 : 1 , 1 : 0 : 1),
(0:1,1:1:0), (0:1,1:1:1), (1:0,-1:-1:1),
(1:0,-1:0:1), (1:0,-1:1:0), (1:0,-1:1:1),
(1:0,0:-1:1), (1:0,0:0:1), (1:0,0:1:0),
(1:0,0:1:1), (1:0,1:-1:1), (1:0,1:0:0),
(1:0,1:0:1), (1:0,1:1:0), (1:0,1:1:1),
(1:1,-1:-1:1), (1:1,-1:0:1), (1:1,-1:1:0),
(1:1,-1:1:1), (1:1,0:-1:1), (1:1,0:0:1),
(1:1,0:1:0), (1:1,0:1:1), (1:1,1:-1:1),
(1:1,1:0:0), (1:1,1:0:1), (1:1,1:1:0),
(1:1,1:1:1)
```

**CHAPTER** 

# SIXTEEN

# **TORIC VARIETIES**

# 16.1 Toric varieties

This module provides support for (normal) toric varieties, corresponding to rational polyhedral fans. See also fano\_variety for a more restrictive class of (weak) Fano toric varieties.

An **excellent reference on toric varieties** is the book "Toric Varieties" by David A. Cox, John B. Little, and Hal Schenck [CLS].

The interface to this module is provided through functions AffineToricVariety() and ToricVariety(), although you may also be interested in normalize\_names().

**Note:** We do NOT build "general toric varieties" from affine toric varieties. Instead, we are using the quotient representation of toric varieties with the homogeneous coordinate ring (a.k.a. Cox's ring or the total coordinate ring). This description works best for simplicial fans of the full dimension.

# **REFERENCES:**

## **AUTHORS:**

- Andrey Novoseltsev (2010-05-17): initial version.
- Volker Braun (2010-07-24): Cohomology and characteristic classes added.

# **EXAMPLES:**

We start with constructing the affine plane as an affine toric variety. First, we need to have a corresponding cone:

```
sage: quadrant = Cone([(1,0), (0,1)])
```

If you don't care about variable names and the base field, that's all we need for now:

```
sage: A2 = AffineToricVariety(quadrant)
sage: A2
2-d affine toric variety
sage: origin = A2(0,0)
sage: origin
[0 : 0]
```

Only affine toric varieties have points whose (homogeneous) coordinates are all zero.

```
sage: parent(origin)
Set of rational points of 2-d affine toric variety
```

As you can see, by default toric varieties live over the field of rational numbers:

```
sage: A2.base_ring()
Rational Field
```

While usually toric varieties are considered over the field of complex numbers, for computational purposes it is more convenient to work with fields that have exact representation on computers. You can also always do

```
sage: C2 = AffineToricVariety(quadrant, base_field=CC)
sage: C2.base_ring()
Complex Field with 53 bits of precision
sage: C2(1,2+i)
[1.000000000000000 : 2.0000000000000 + 1.0000000000000*I]
```

or even

```
sage: F = CC["a, b"].fraction_field()
sage: F.inject_variables()
Defining a, b
sage: A2 = AffineToricVariety(quadrant, base_field=F)
sage: A2(a,b)
[a : b]
```

OK, if you need to work only with affine spaces, AffineSpace() may be a better way to construct them. Our next example is the product of two projective lines realized as the toric variety associated to the face fan of the "diamond":

```
sage: diamond = lattice_polytope.cross_polytope(2)
sage: diamond.vertices()
M(1, 0),
M(0, 1),
M(-1, 0),
M(0, -1)
in 2-d lattice M
sage: fan = FaceFan(diamond)
sage: P1xP1 = ToricVariety(fan)
sage: P1xP1
2-d toric variety covered by 4 affine patches
sage: P1xP1.fan().rays()
M(1, 0),
M(0, 1),
M(-1, 0),
M(0, -1)
in 2-d lattice M
sage: P1xP1.gens()
(z0, z1, z2, z3)
```

We got four coordinates - two for each of the projective lines, but their names are perhaps not very well chosen. Let's make (x,y) to be coordinates on the first line and (s,t) on the second one:

```
sage: P1xP1 = ToricVariety(fan, coordinate_names="x s y t")
sage: P1xP1.gens()
(x, s, y, t)
```

Now, if we want to define subschemes of this variety, the defining polynomials must be homogeneous in each of these pairs:

```
sage: P1xP1.inject_variables()
Defining x, s, y, t
```

```
sage: P1xP1.subscheme(x)
Closed subscheme of 2-d toric variety
covered by 4 affine patches defined by:
sage: P1xP1.subscheme (x^2 + y^2)
Closed subscheme of 2-d toric variety
covered by 4 affine patches defined by:
 x^2 + y^2
sage: P1xP1.subscheme (x^2 + s^2)
Traceback (most recent call last):
ValueError: x^2 + s^2 is not homogeneous
on 2-d toric variety covered by 4 affine patches!
sage: P1xP1.subscheme([x^2*s^2 + x*y*t^2 + y^2*t^2, s^3 + t^3])
Closed subscheme of 2-d toric variety
covered by 4 affine patches defined by:
 x^2*s^2 + x*y*t^2 + y^2*t^2,
  s^3 + t^3
```

While we don't build toric varieties from affine toric varieties, we still can access the "building pieces":

The patch above was specifically chosen to coincide with our representation of the affine plane before, but you can get the other three patches as well. (While any cone of a fan will correspond to an affine toric variety, the main interest is usually in the generating fans as "the biggest" affine subvarieties, and these are precisely the patches that you can get from <code>affine\_patch()</code>.)

All two-dimensional toric varieties are "quite nice" because any two-dimensional cone is generated by exactly two rays. From the point of view of the corresponding toric varieties, this means that they have at worst quotient singularities:

```
sage: P1xP1.is_orbifold()
True
sage: P1xP1.is_smooth()
True
sage: TV = ToricVariety(NormalFan(diamond))
sage: TV.fan().rays()
N( 1,  1),
N( 1,  -1),
N(-1,  -1),
N(-1,  -1),
N(-1,  1)
in 2-d lattice N
sage: TV.is_orbifold()
```

(continues on next page)

16.1. Toric varieties 207

```
True
sage: TV.is_smooth()
False
```

In higher dimensions worse things can happen:

```
sage: TV3 = ToricVariety(NormalFan(lattice_polytope.cross_polytope(3)))
sage: TV3.fan().rays()
N( 1, -1, -1),
N( 1, 1, -1),
N( 1, 1, 1),
N( 1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(-1, 1, 1)
in 3-d lattice N
sage: TV3.is_orbifold()
False
```

Fortunately, we can perform a (partial) resolution:

```
sage: TV3_res = TV3.resolve_to_orbifold()
sage: TV3_res.is_orbifold()
True
sage: TV3_res.fan().ngenerating_cones()
12
sage: TV3.fan().ngenerating_cones()
6
```

In this example we had to double the number of affine patches. The result is still singular:

```
sage: TV3_res.is_smooth()
False
```

You can resolve it further using resolve() method, but (at least for now) you will have to specify which rays should be inserted into the fan. See also CPRFanoToricVariety(), which can construct some other "nice partial resolutions."

The intersection theory on toric varieties is very well understood, and there are explicit algorithms to compute many quantities of interest. The most important tools are the *cohomology ring* and the *Chow group*. For d-dimensional compact toric varieties with at most orbifold singularities, the rational cohomology ring  $H^*(X, \mathbf{Q})$  and the rational Chow ring  $A^*(X, \mathbf{Q}) = A_{d-*}(X) \otimes \mathbf{Q}$  are isomorphic except for a doubling in degree. More precisely, the Chow group has the same rank

$$A_{d-k}(X) \otimes \mathbf{Q} \simeq H^{2k}(X, \mathbf{Q})$$

and the intersection in of Chow cycles matches the cup product in cohomology.

In this case, you should work with the cohomology ring description because it is much faster. For example, here is a weighted projective space with a curve of  $\mathbb{Z}_3$ -orbifold singularities:

```
sage: P4_11133 = toric_varieties.P4_11133()
sage: P4_11133.is_smooth(), P4_11133.is_orbifold()
```

```
(False, True)
sage: cone = P4_11133.fan(3)[8]
sage: cone.is_smooth(), cone.is_simplicial()
(False, True)
sage: HH = P4_11133.cohomology_ring(); HH
Rational cohomology ring of a 4-d CPR-Fano toric variety covered by 5 affine patches
sage: P4_11133.cohomology_basis()
(([1],), ([z4],), ([z4^2],), ([z4^3],), ([z4^4],))
```

Every cone defines a torus orbit closure, and hence a (co)homology class:

```
sage: HH.gens()
([3*z4], [3*z4], [z4], [z4])
sage: list(map(HH, P4_11133.fan(1)))
[[3*z4], [3*z4], [z4], [z4], [z4]]
sage: list(map(HH, P4_11133.fan(4)))
[[9*z4^4], [9*z4^4], [9*z4^4], [9*z4^4], [9*z4^4]]
sage: HH(cone)
[3*z4^3]
```

We can compute intersection numbers by integrating top-dimensional cohomology classes:

```
sage: D = P4_11133.divisor(0)
sage: HH(D)
[3*z4]
sage: P4_11133.integrate( HH(D)^4 )
9
sage: P4_11133.integrate( HH(D) * HH(cone) )
1
```

Although computationally less efficient, we can do the same computations with the rational Chow group:

The real advantage of the Chow group is that

- it works just as well over **Z**, so torsion information is also easily available, and
- its combinatorial description also works over worse-than-orbifold singularities. By contrast, the cohomology groups can become very complicated to compute in this case, and one usually only has a spectral sequence but no toric algorithm.

Below you will find detailed descriptions of available functions. If you are familiar with toric geometry, you will likely see that many important objects and operations are unavailable. However, this module is under active development and hopefully will improve in future releases of Sage. If there are some particular features that you would like to see implemented ASAP, please consider reporting them to the Sage Development Team or even implementing them on your own as a patch for inclusion!

16.1. Toric varieties 209

```
sage.schemes.toric.variety.AffineToricVariety(cone, *args, **kwds)
Construct an affine toric variety.
```

#### INPUT:

• cone - strictly convex rational polyhedral cone.

This cone will be used to construct a rational polyhedral fan, which will be passed to *ToricVariety()* with the rest of positional and keyword arguments.

#### **OUTPUT:**

• toric variety.

**Note:** The generating rays of the fan of this variety are guaranteed to be listed in the same order as the rays of the original cone.

## **EXAMPLES:**

We will create the affine plane as an affine toric variety:

```
sage: quadrant = Cone([(1,0), (0,1)])
sage: A2 = AffineToricVariety(quadrant)
sage: origin = A2(0,0)
sage: origin
[0 : 0]
sage: parent(origin)
Set of rational points of 2-d affine toric variety
```

Only affine toric varieties have points whose (homogeneous) coordinates are all zero.

```
class sage.schemes.toric.variety.CohomologyClass(cohomology_ring, representative)
    Bases: sage.rings.quotient_ring_element.QuotientRingElement
```

An element of the CohomologyRing.

**Warning:** You should not create instances of this class manually. The generators of the cohomology ring as well as the cohomology classes associated to cones of the fan can be obtained from <code>ToricVariety\_field.cohomology\_ring()</code>.

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.cohomology_ring().gen(0)
[z]
sage: HH = P2.cohomology_ring()
sage: HH.gen(0)
[z]
sage: cone = P2.fan(1)[0]; HH(cone)
[z]
```

## deg()

The degree of the cohomology class.

#### **OUTPUT:**

An integer d such that the cohomology class is in degree 2d. If the cohomology class is of mixed degree, the highest degree is returned.

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.cohomology_ring().gen(0).deg()
1
sage: P2.cohomology_ring().zero().deg()
-1
```

#### exp()

Exponentiate self.

**Note:** The exponential  $\exp(x)$  of a rational number x is usually not rational. Therefore, the cohomology class must not have a constant (degree zero) part. The coefficients in the Taylor series of exp are rational, so any cohomology class without constant term can be exponentiated.

## **OUTPUT**:

The cohomology class  $\exp(\ \text{self}\ )$  if the constant part vanishes, otherwise a ValueError is raised.

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: H_class = P2.cohomology_ring().gen(0)
sage: H_class
[z]
sage: H_class.exp()
[1/2*z^2 + z + 1]
```

## part\_of\_degree (d)

Project the (mixed-degree) cohomology class to the given degree.

$$pr_d: H^{\bullet}(X_{\Delta}, \mathbf{Q}) \to H^{2d}(X_{\Delta}, \mathbf{Q})$$

# INPUT:

• An integer d

## **OUTPUT:**

• The degree-2d part of the cohomology class.

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: t = P1xP1.cohomology_ring().gen(0)
sage: y = P1xP1.cohomology_ring().gen(2)
sage: 3*t+4*t^2*y+y+t*y+t+1
[t*y + 4*t + y + 1]
sage: (3*t+4*t^2*y+y+t*y+t+1).part_of_degree(1)
[4*t + y]
```

# class sage.schemes.toric.variety.CohomologyRing(variety)

```
Bases: sage.rings.quotient_ring.QuotientRing_generic, sage.structure.unique_representation.UniqueRepresentation
```

The (even) cohomology ring of a toric variety.

Irregardles of the variety's base ring, we always work with the variety over C and its topology.

16.1. Toric varieties 211

The cohomology is always the singular cohomology with Q-coefficients. Note, however, that the cohomology of smooth toric varieties is torsion-free, so there is no loss of information in that case.

Currently, the toric variety must not be "too singular". See *ToricVariety\_field. cohomology\_ring()* for a detailed description of which toric varieties are admissible. For such varieties the odd-dimensional cohomology groups vanish.

Warning: You should not create instances of this class manually. Use <code>ToricVariety\_field.cohomology\_ring()</code> to generate the cohomology ring.

## INPUT:

• variety — a toric variety. Currently, the toric variety must be at least an orbifold. See <code>ToricVariety\_field.cohomology\_ring()</code> for a detailed description of which toric varieties are admissible.

#### **EXAMPLES:**

# This is equivalent to:

#### gen(i)

Return the generators of the cohomology ring.

## INPUT:

• i – integer.

## **OUTPUT**:

The i-th generator of the cohomology ring. If we denote the toric variety by X, then this generator is associated to the ray X.fan().ray(i), which spans the one-cone X.fan(1)[i]

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.cohomology_ring().gen(2)
[z]
```

#### gens()

Return the generators of the cohomology ring.

# OUTPUT:

A tuple of generators, one for each toric divisor of the toric variety X. The order is the same as the ordering of the rays of the fan X.fan().rays(), which is also the same as the ordering of the one-cones in X.fan(1)

```
sage: P2 = toric_varieties.P2()
sage: P2.cohomology_ring().gens()
([z], [z], [z])
```

Construct a toric variety.

# INPUT:

- fan rational polyhedral fan;
- coordinate\_names names of variables for the coordinate ring, see normalize\_names() for acceptable formats. If not given, indexed variable names will be created automatically;
- names an alias of coordinate\_names for internal use. You may specify either names or coordinate\_names, but not both;
- coordinate\_indices list of integers, indices for indexed variables. If not given, the index of each variable will coincide with the index of the corresponding ray of the fan;
- base\_ring base ring of the toric variety (default: Q). Must be a field.
- base\_field alias for base\_ring. Takes precedence if both are specified.

#### **OUTPUT:**

• toric variety.

# **EXAMPLES:**

We will create the product of two projective lines:

```
sage: fan = FaceFan(lattice_polytope.cross_polytope(2))
sage: fan.rays()
M( 1,  0),
M( 0,  1),
M(-1,  0),
M( 0, -1)
in 2-d lattice M
sage: PlxP1 = ToricVariety(fan)
sage: PlxP1.gens()
(z0, z1, z2, z3)
```

# Let's create some points:

```
sage: P1xP1(1,1,1,1)
[1 : 1 : 1 : 1]
sage: P1xP1(0,1,1,1)
[0 : 1 : 1 : 1]
sage: P1xP1(0,1,0,1)
Traceback (most recent call last):
...
TypeError: coordinates (0, 1, 0, 1)
are in the exceptional set!
```

We cannot set to zero both coordinates of the same projective line!

Let's change the names of the variables. We have to re-create our toric variety:

```
sage: P1xP1 = ToricVariety(fan, "x s y t")
sage: P1xP1.gens()
(x, s, y, t)
```

Now (x, y) correspond to one line and (s, t) to the other one.

```
sage: P1xP1.inject_variables()
Defining x, s, y, t
sage: P1xP1.subscheme(x*s-y*t)
Closed subscheme of 2-d toric variety
covered by 4 affine patches defined by:
    x*s - y*t
```

Here is a shorthand for defining the toric variety and homogeneous coordinates in one go:

```
sage: P1xP1.<a,b,c,d> = ToricVariety(fan)
sage: (a^2+b^2) * (c+d)
a^2*c + b^2*c + a^2*d + b^2*d
```

Bases: sage.schemes.generic.ambient\_space.AmbientSpace

Construct a toric variety associated to a rational polyhedral fan.

**Warning:** This class does not perform any checks of correctness of input. Use *ToricVariety()* and *AffineToricVariety()* to construct toric varieties.

# INPUT:

- fan-rational polyhedral fan;
- coordinate\_names names of variables, see normalize\_names() for acceptable formats. If None, indexed variable names will be created automatically;
- coordinate\_indices list of integers, indices for indexed variables. If None, the index of each variable will coincide with the index of the corresponding ray of the fan;
- base\_field base field of the toric variety.

# **OUTPUT**:

• toric variety.

## Aut\_dimension()

Return the dimension of the automorphism group

There are three kinds of symmetries of toric varieties:

- Toric automorphisms (rescaling of homogeneous coordinates)
- Demazure roots. These are translations  $x_i \to x_i + \epsilon x^m$  of a homogeneous coordinate  $x_i$  by a monomial  $x^m$  of the same homogeneous degree.
- Symmetries of the fan. These yield discrete subgroups.

# **OUTPUT:**

An integer. The dimension of the automorphism group. Equals the dimension of the M-lattice plus the number of Demazure roots.

# **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.Aut_dimension()
8
```

## Chern character (deg=None)

Return the Chern character (of the tangent bundle) of the toric variety.

## INPUT:

• deg – integer (optional). The degree of the Chern character.

## **OUTPUT:**

- If the degree is specified, the degree-deg part of the Chern character.
- If no degree is specified, the total Chern character.

# **REFERENCES:**

• Wikipedia article Chern\_character#The\_Chern\_character

#### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6.Chern_character()
[3*w^2 + y + 2*v + 2*z + w + 2]
sage: dP6.ch()
[3*w^2 + y + 2*v + 2*z + w + 2]
sage: dP6.ch(1) == dP6.c(1)
True
```

# Chern\_class(deg=None)

Return Chern classes of the (tangent bundle of the) toric variety.

# INPUT:

• deg – integer (optional). The degree of the Chern class.

# **OUTPUT**:

- If the degree is specified, the deg-th Chern class.
- If no degree is specified, the total Chern class.

# REFERENCES:

• Wikipedia article Chern\_class

# **EXAMPLES:**

```
sage: X = toric_varieties.dP6()
sage: X.Chern_class()
[-6*w^2 + y + 2*v + 2*z + w + 1]
sage: X.c()
[-6*w^2 + y + 2*v + 2*z + w + 1]
sage: X.c(1)
[y + 2*v + 2*z + w]
sage: X.c(2)
[-6*w^2]
sage: X.integrate( X.c(2) )
6
```

(continues on next page)

```
sage: X.integrate( X.c(2) ) == X.Euler_number()
True
```

# Chow\_group (base\_ring=Integer Ring)

Return the toric Chow group.

## INPUT:

• base\_ring - either ZZ (default) or QQ. The coefficient ring of the Chow group.

#### **OUTPUT:**

A sage.schemes.toric.chow\_group.ChowGroup\_class

#### **EXAMPLES:**

```
sage: A = toric_varieties.P2().Chow_group(); A
Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches
sage: A.gens()
(( 1 | 0 | 0 ), ( 0 | 1 | 0 ), ( 0 | 0 | 1 ))
```

## Demazure roots()

Return the Demazure roots.

## **OUTPUT**:

The roots as points of the M-lattice.

#### REFERENCES:

# **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.Demazure_roots()
(M(-1, 0), M(-1, 1), M(0, -1), M(0, 1), M(1, -1), M(1, 0))
```

Here are the remaining three examples listed in [Bazhov], Example 2.1 and 2.3:

```
sage: s = 3
sage: cones = [(0,1),(1,2),(2,3),(3,0)]
sage: Hs = ToricVariety(Fan(rays=[(1,0),(0,-1),(-1,s),(0,1)], cones=cones))
sage: Hs.Demazure_roots()
(M(-1, 0), M(1, 0), M(0, 1), M(1, 1), M(2, 1), M(3, 1))

sage: P11s = ToricVariety(Fan(rays=[(1,0),(0,-1),(-1,s)], cones=[(0,1),(1,2),(-2,0)]))
sage: P11s.Demazure_roots()
(M(-1, 0), M(1, 0), M(0, 1), M(1, 1), M(2, 1), M(3, 1))
sage: P11s.Demazure_roots() == Hs.Demazure_roots()
True

sage: Bs = ToricVariety(Fan(rays=[(s,1),(s,-1),(-s,-1),(-s,1)], cones=cones))
sage: Bs.Demazure_roots()
```

## Euler number()

Return the topological Euler number of the toric variety.

Sometimes, this is also called the Euler characteristic. chi () is a synonym for Euler\_number ().

REFERENCES:

• Wikipedia article Euler\_characteristic

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1.Euler_number()
4
sage: P1xP1.chi()
4
```

**K**()

Returns the canonical divisor of the toric variety.

**EXAMPLES:** 

Lets test that the del Pezzo surface  $dP_6$  has degree 6, as its name implies:

```
sage: dP6 = toric_varieties.dP6()
sage: HH = dP6.cohomology_ring()
sage: dP6.K()
-V(x) - V(u) - V(y) - V(v) - V(z) - V(w)
sage: dP6.integrate( HH(dP6.K())^2 )
6
```

## Kaehler\_cone()

Return the closure of the Kähler cone of self.

# **OUTPUT**:

• cone.

**Note:** This cone sits in the rational divisor class group of self and the choice of coordinates agrees with  $rational\_class\_group()$ .

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: Kc = P1xP1.Kaehler_cone()
sage: Kc
2-d cone in 2-d lattice
sage: Kc.rays()
Divisor class [0, 1],
Divisor class [1, 0]
in Basis lattice of The toric rational divisor class group
of a 2-d CPR-Fano toric variety covered by 4 affine patches
sage: [ divisor_class.lift() for divisor_class in Kc.rays() ]
[V(x), V(s)]
sage: Kc.lattice()
Basis lattice of The toric rational divisor class group of a
2-d CPR-Fano toric variety covered by 4 affine patches
```

# Mori\_cone()

Returns the Mori cone of self.

#### **OUTPUT**:

• cone.

Note:

- The Mori cone is dual to the Kähler cone.
- We think of the Mori cone as living inside the row span of the Gale transform matrix (computed by self.fan().Gale\_transform()).
- The points in the Mori cone are the effective curves in the variety.
- The i-th entry in each Mori vector is the intersection number of the curve corresponding to the generator of the i-th ray of the fan with the corresponding divisor class. The very last entry is associated to the origin of the fan lattice.
- The Mori vectors are also known as the gauged linear sigma model charge vectors.

## **EXAMPLES:**

```
sage: P4_11169 = toric_varieties.P4_11169_resolved()
sage: P4_11169.Mori_cone()
2-d cone in 7-d lattice
sage: P4_11169.Mori_cone().rays()
(3, 2, 0, 0, 0, 1, -6),
(0, 0, 1, 1, 1, -3, 0)
in Ambient free module of rank 7
over the principal ideal domain Integer Ring
```

#### Spec (cone=None, names=None)

Return the spectrum associated to the dual cone.

Let  $\sigma \in N_{\mathbf{R}}$  be a cone and  $\sigma^{\vee} \cap M$  the associated semigroup of lattice points in the dual cone. Then

$$S = \mathbf{C}[\sigma^{\vee} \cap M]$$

is a C-algebra. It is spanned over C by the points of  $\sigma \cap N$ , addition is formal linear combination of lattice points, and multiplication of lattice points is the semigroup law (that is, addition of lattice points). The C-algebra S then defines a scheme Spec(S).

For example, if  $\sigma = \{(x,y)|x \geq 0, y \geq 0\}$  is the first quadrant then S is the polynomial ring in two variables. The associated scheme is  $Spec(S) = \mathbb{C}^2$ .

The same construction works over any base field, this introduction only used C for simplicity.

# INPUT:

- cone a Cone. Can be omitted for an affine toric variety, in which case the (unique) generating cone is used.
- names (optional). Names of variables for the semigroup ring, see normalize\_names() for acceptable formats. If not given, indexed variable names will be created automatically.

## Output:

The spectrum of the semigroup ring  $\mathbb{C}[\sigma^{\vee} \cap M]$ .

# **EXAMPLES:**

```
sage: quadrant = Cone([(1,0),(0,1)])
sage: AffineToricVariety(quadrant).Spec()
Spectrum of Multivariate Polynomial Ring in z0, z1 over Rational Field
```

A more interesting example:

```
sage: A2Z2 = Cone([(0,1),(2,1)])
sage: AffineToricVariety(A2Z2).Spec(names='u,v,t')
Spectrum of Quotient of Multivariate Polynomial Ring
in u, v, t over Rational Field by the ideal (-u*v + t^2)
```

# Stanley\_Reisner\_ideal()

Return the Stanley-Reisner ideal.

## **OUTPUT:**

• The Stanley-Reisner ideal in the polynomial ring over **Q** generated by the homogeneous coordinates.

#### **EXAMPLES:**

```
sage: fan = Fan([[0,1,3],[3,4],[2,0],[1,2,4]], [(-3, -2, 1), (0, 0, 1), (3, - \rightarrow2, 1), (-1, -1, 1), (1, -1, 1)])
sage: X = ToricVariety(fan, coordinate_names='A B C D E', base_field=GF(5))
sage: SR = X.Stanley_Reisner_ideal(); SR
Ideal (A*E, C*D, A*B*C, B*D*E) of Multivariate Polynomial Ring in A, B, C, D,
→E over Rational Field
```

# **Td** (deg=None)

Return the Todd class (of the tangent bundle) of the toric variety.

## INPUT:

• deg – integer (optional). The desired degree part.

## **OUTPUT**:

- If the degree is specified, the degree-deg part of the Todd class.
- If no degree is specified, the total Todd class.

# REFERENCES:

• Wikipedia article Todd\_class

#### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6.Todd_class()
[-w^2 + 1/2*y + v + z + 1/2*w + 1]
sage: dP6.Td()
[-w^2 + 1/2*y + v + z + 1/2*w + 1]
sage: dP6.integrate( dP6.Td() )
1
```

## Todd\_class (deg=None)

Return the Todd class (of the tangent bundle) of the toric variety.

# INPUT:

• deg – integer (optional). The desired degree part.

# **OUTPUT**:

- If the degree is specified, the degree-deg part of the Todd class.
- If no degree is specified, the total Todd class.

# REFERENCES:

• Wikipedia article Todd\_class

## **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6.Todd_class()
[-w^2 + 1/2*y + v + z + 1/2*w + 1]
sage: dP6.Td()
[-w^2 + 1/2*y + v + z + 1/2*w + 1]
sage: dP6.integrate( dP6.Td() )
1
```

# affine\_algebraic\_patch (cone=None, names=None)

Return the patch corresponding to cone as an affine algebraic subvariety.

## INPUT:

• cone – a Cone  $\sigma$  of the fan. It can be omitted for an affine toric variety, in which case the single generating cone is used.

#### **OUTPUT**:

A affine algebraic subscheme corresponding to the patch  $Spec(\sigma^{\vee} \cap M)$  associated to the cone  $\sigma$ .

See also affine\_patch(), which expresses the patches as subvarieties of affine toric varieties instead.

#### **EXAMPLES:**

## $affine_patch(i)$

Return the i-th affine patch of self.

# INPUT:

• i – integer, index of a generating cone of the fan of self.

# **OUTPUT:**

• affine toric variety corresponding to the i-th generating cone of the fan of self.

The result is cached, so the i-th patch is always the same object in memory.

See also affine\_algebraic\_patch(), which expresses the patches as subvarieties of affine space instead.

### **EXAMPLES:**

```
sage: fan = FaceFan(lattice_polytope.cross_polytope(2))
sage: P1xP1 = ToricVariety(fan, "x s y t")
sage: patch0 = P1xP1.affine_patch(0)
sage: patch0
2-d affine toric variety
sage: patch0.embedding_morphism()
```

```
Scheme morphism:

From: 2-d affine toric variety

To: 2-d toric variety covered by 4 affine patches

Defn: Defined on coordinates by sending [y : t] to

[1 : 1 : y : t]

sage: patch1 = P1xP1.affine_patch(1)

sage: patch1.embedding_morphism()

Scheme morphism:

From: 2-d affine toric variety

To: 2-d toric variety covered by 4 affine patches

Defn: Defined on coordinates by sending [s : y] to

[1 : s : y : 1]

sage: patch1 is P1xP1.affine_patch(1)

True
```

# c (deg=None)

Return Chern classes of the (tangent bundle of the) toric variety.

## INPUT:

• deg – integer (optional). The degree of the Chern class.

## **OUTPUT:**

- If the degree is specified, the deg-th Chern class.
- If no degree is specified, the total Chern class.

## REFERENCES:

• Wikipedia article Chern\_class

# **EXAMPLES:**

```
sage: X = toric_varieties.dP6()
sage: X.Chern_class()
[-6*w^2 + y + 2*v + 2*z + w + 1]
sage: X.c()
[-6*w^2 + y + 2*v + 2*z + w + 1]
sage: X.c(1)
[y + 2*v + 2*z + w]
sage: X.c(2)
[-6*w^2]
sage: X.integrate( X.c(2) )
6
sage: X.integrate( X.c(2) ) == X.Euler_number()
True
```

cartesian\_product (other, coordinate\_names=None, coordinate\_indices=None)

Return the Cartesian product of self with other.

# INPUT:

- other-a toric variety;
- coordinate\_names names of variables for the coordinate ring, see normalize\_names() for acceptable formats. If not given, indexed variable names will be created automatically;
- coordinate\_indices list of integers, indices for indexed variables. If not given, the index of each variable will coincide with the index of the corresponding ray of the fan.

# **OUTPUT**:

-a toric variety.

# **EXAMPLES:**

```
sage: P1 = ToricVariety(Fan([Cone([(1,)]), Cone([(-1,)])]))
sage: P1xP1 = P1.cartesian_product(P1); P1xP1
2-d toric variety covered by 4 affine patches
sage: P1xP1.fan().rays()
N+N(-1, 0),
N+N(1, 0),
N+N(0, -1),
N+N(0, 1)
in 2-d lattice N+N
```

# **ch** (deg=None)

Return the Chern character (of the tangent bundle) of the toric variety.

## **INPUT:**

• deg – integer (optional). The degree of the Chern character.

## **OUTPUT**:

- If the degree is specified, the degree-deg part of the Chern character.
- If no degree is specified, the total Chern character.

## **REFERENCES:**

• Wikipedia article Chern\_character#The\_Chern\_character

# **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6.Chern_character()
[3*w^2 + y + 2*v + 2*z + w + 2]
sage: dP6.ch()
[3*w^2 + y + 2*v + 2*z + w + 2]
sage: dP6.ch(1) == dP6.c(1)
True
```

# $change\_ring(F)$

Return a toric variety over F and otherwise the same as self.

#### INPUT:

• F – field.

# **OUTPUT**:

• toric variety over F.

**Note:** There is no need to have any relation between F and the base field of self. If you do want to have such a relation, use base\_extend() instead.

# **EXAMPLES:**

```
sage: P1xA1 = toric_varieties.P1xA1()
sage: P1xA1.base_ring()
Rational Field
sage: P1xA1_RR = P1xA1.change_ring(RR)
sage: P1xA1_RR.base_ring()
Real Field with 53 bits of precision
sage: P1xA1_QQ = P1xA1_RR.change_ring(QQ)
sage: P1xA1_QQ.base_ring()
Rational Field
sage: P1xA1_RR.base_extend(QQ)
Traceback (most recent call last):
ValueError: no natural map from the base ring
(=Real Field with 53 bits of precision)
to R (=Rational Field)!
sage: R = PolynomialRing(QQ, 2, 'a')
sage: P1xA1.change_ring(R)
Traceback (most recent call last):
TypeError: need a field to construct a toric variety!
Got Multivariate Polynomial Ring in a0, a1 over Rational Field
```

# chi()

Return the topological Euler number of the toric variety.

Sometimes, this is also called the Euler characteristic. chi () is a synonym for Euler\_number ().

#### REFERENCES:

• Wikipedia article Euler characteristic

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1.Euler_number()
4
sage: P1xP1.chi()
4
```

# $cohomology\_basis(d=None)$

Return a basis for the cohomology of the toric variety.

## INPUT:

• d (optional) – integer.

# **OUTPUT:**

- Without the optional argument, a list whose d-th entry is a basis for  $H^{2d}(X, \mathbf{Q})$
- If the argument is an integer d, returns basis for  $H^{2d}(X, \mathbf{Q})$

# **EXAMPLES:**

```
sage: X = toric_varieties.dP8()
sage: X.cohomology_basis()
(([1],), ([z], [y]), ([y*z],))
sage: X.cohomology_basis(1)
([z], [y])
sage: X.cohomology_basis(dimension(X))[0] == X.volume_class()
True
```

## cohomology\_ring()

Return the cohomology ring of the toric variety.

#### **OUTPUT:**

- If the toric variety is over C and has at most finite orbifold singularities:  $H^{\bullet}(X, \mathbf{Q})$  as a polynomial quotient ring.
- · Other cases are not handled yet.

## Note:

- Toric varieties over any field of characteristic 0 are treated as if they were varieties over C.
- The integral cohomology of smooth toric varieties is torsion-free, so in this case there is no loss of information when going to rational coefficients.
- self.cohomology\_ring().gen(i) is the divisor class corresponding to the i-th ray of the fan.

#### **EXAMPLES:**

## coordinate\_ring()

Return the coordinate ring of self.

For toric varieties this is the homogeneous coordinate ring (a.k.a. Cox's ring and total ring).

# **OUTPUT**:

· polynomial ring.

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1.coordinate_ring()
Multivariate Polynomial Ring in s, t, x, y
over Rational Field
```

# count\_points()

Return the number of points of self.

This is an alias for point\_set().cardinality(), see cardinality() for details.

#### **EXAMPLES:**

```
sage: o = lattice_polytope.cross_polytope(3)
sage: V = ToricVariety(FaceFan(o))
sage: V2 = V.change_ring(GF(2))
sage: V2.point_set().cardinality()
27
sage: V2.count_points()
```

## dimension\_singularities()

Return the dimension of the singular set.

## **OUTPUT:**

Integer. The dimension of the singular set of the toric variety. Often the singular set is a reducible subvariety, and this method will return the dimension of the largest-dimensional component.

Returns -1 if the toric variety is smooth.

#### **EXAMPLES:**

```
sage: toric_varieties.P4_11169().dimension_singularities()
1
sage: toric_varieties.Conifold().dimension_singularities()
0
sage: toric_varieties.P2().dimension_singularities()
-1
```

# divisor (arg, base\_ring=None, check=True, reduce=True)

Return a divisor.

# INPUT:

The arguments are the same as in sage.schemes.toric.divisor.ToricDivisor(), with the exception of defining a divisor with a single integer: this method considers it to be the index of a ray of the fan() of self.

## **OUTPUT**:

• A sage.schemes.toric.divisor.ToricDivisor\_generic

# **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6.coordinate_ring()
Multivariate Polynomial Ring in x, u, y, v, z, w
over Rational Field
sage: dP6.divisor(list(range(6)))
V(u) + 2*V(y) + 3*V(v) + 4*V(z) + 5*V(w)
sage: dP6.inject_variables()
Defining x, u, y, v, z, w
sage: dP6.divisor(x*u^3)
V(x) + 3*V(u)
```

You can also construct divisors based on ray indices:

(continues on next page)

```
V(x): generated by ray N(0, 1)
V(u): generated by ray N(-1, 0)
V(y): generated by ray N(-1, -1)
V(v): generated by ray N(0, -1)
V(z): generated by ray N(1, 0)
V(w): generated by ray N(1, 1)
```

# divisor group (base ring=Integer Ring)

Return the group of Weil divisors.

#### INPUT:

• base\_ring - the coefficient ring, usually ZZ (default) or QQ.

# **OUTPUT:**

The (free abelian) group of Cartier divisors, that is, formal linear combinations of polynomial equations over the coefficient ring base\_ring.

These need not be toric (=defined by monomials), but allow general polynomials. The output will be an instance of sage.schemes.generic.divisor\_group.DivisorGroup\_generic.

**Warning:** You almost certainly want the group of toric divisors, see <code>toric\_divisor\_group()</code>. The toric divisor group is generated by the rays of the fan. The general divisor group has no toric functionality implemented.

# **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: Div = dP6.divisor_group(); Div
Group of ZZ-Divisors on 2-d CPR-Fano toric variety
covered by 6 affine patches
sage: Div(x)
V(x)
```

# embedding\_morphism()

Return the default embedding morphism of self.

Such a morphism is always defined for an affine patch of a toric variety (which is also a toric varieties itself).

# OUTPUT:

• scheme morphism if the default embedding morphism was defined for self, otherwise a ValueError exception is raised.

#### **EXAMPLES:**

```
sage: fan = FaceFan(lattice_polytope.cross_polytope(2))
sage: P1xP1 = ToricVariety(fan, "x s y t")
sage: P1xP1.embedding_morphism()
Traceback (most recent call last):
...
ValueError: no default embedding was
defined for this toric variety!
sage: patch = P1xP1.affine_patch(0)
sage: patch
```

```
2-d affine toric variety
sage: patch.embedding_morphism()
Scheme morphism:
  From: 2-d affine toric variety
  To: 2-d toric variety covered by 4 affine patches
  Defn: Defined on coordinates by sending [y : t] to
      [1 : 1 : y : t]
```

# fan (dim=None, codim=None)

Return the underlying fan of self or its cones.

# INPUT:

- dim dimension of the requested cones;
- codim codimension of the requested cones.

#### **OUTPUT**:

rational polyhedral fan if no parameters were given, tuple of cones otherwise.

## **EXAMPLES:**

```
sage: fan = FaceFan(lattice_polytope.cross_polytope(2))
sage: P1xP1 = ToricVariety(fan)
sage: P1xP1.fan()
Rational polyhedral fan in 2-d lattice M
sage: P1xP1.fan() is fan
True
sage: P1xP1.fan(1)[0]
1-d cone of Rational polyhedral fan in 2-d lattice M
```

# inject\_coefficients (scope=None, verbose=True)

Inject generators of the base field of self into scope.

This function is useful if the base field is the field of rational functions.

# INPUT:

- scope namespace (default: global, not just the scope from which this function was called);
- verbose if True (default), names of injected generators will be printed.

# OUTPUT:

• none.

# **EXAMPLES:**

```
sage: fan = FaceFan(lattice_polytope.cross_polytope(2))
sage: F = QQ["a, b"].fraction_field()
sage: P1xP1 = ToricVariety(fan, base_field=F)
sage: P1xP1.inject_coefficients()
Defining a, b
```

We check that we can use names a and b, trac ticket #10498 is fixed:

```
sage: a + b
a + b
sage: a + b in PlxP1.coordinate_ring()
True
```

#### integrate (cohomology class)

Integrate a cohomology class over the toric variety.

#### INPUT:

• cohomology\_class - A cohomology class given as a polynomial in self. cohomology\_ring()

#### **OUTPUT:**

The integral of the cohomology class over the variety. The volume normalization is given by <code>volume\_class()</code>, that is, <code>self.integrate(self.volume\_class())</code> is always one (if the volume class exists).

## **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: HH = dP6.cohomology_ring()
sage: D = [ HH(c) for c in dP6.fan(dim=1) ]
sage: matrix([ [ D[i]*D[j] for i in range(0,6) ] for j in range(0,6) ])
                             [0] [-w^2]]
[ [w^2] [-w^2]
               [0]
                       [0]
[-w^2] [w^2] [-w^2]
                        [0]
                                [0]
                                       [0]
   [0] [-w^2] [w^2] [-w^2]
                                [0]
                                       [0]
    [0]
          [0] [-w^2] [w^2] [-w^2]
                                       [0]]
   [0]
          [0]
                 [0] [-w^2] [w^2] [-w^2]
[[-w^2]
          [0]
                 [0]
                        [0] [-w^2] [w^2]
sage: matrix([ [ dP6.integrate(D[i]*D[j]) for i in range(0,6) ] for j in_
\rightarrowrange(0,6)])
[-1 \quad 1 \quad 0 \quad 0 \quad 0]
                11
          0 0
[1 -1]
       1
                0.1
    1 -1
          1
             0
                0]
0 ]
       1 -1 1
    0
0
    0
       0 1 -1
1
    0
       0 0 1 -11
```

If the toric variety is an orbifold, the intersection numbers are usually fractional:

```
sage: P2_123 = toric_varieties.P2_123()
sage: HH = P2_123.cohomology_ring()
sage: D = [ HH(c) for c in P2_123.fan(dim=1) ]
sage: matrix([ [ P2_123.integrate(D[i]*D[j]) for i in range(0,3) ] for j in_
\rightarrowrange(0,3)])
[2/3 1 1/3]
[ 1 3/2 1/2]
[1/3 1/2 1/6]
sage: A = P2_123.Chow_group(QQ)
sage: matrix([ [ A(P2_123.divisor(i))
                 .intersection_with_divisor(P2_123.divisor(j))
                 .count_points() for i in range(0,3) ] for j in range(0,3) ])
. . . . :
[2/3 1 1/3]
[ 1 3/2 1/2]
[1/3 1/2 1/6]
```

# is affine()

Check if self is an affine toric variety.

An affine toric variety is a toric variety whose fan is the face lattice of a single cone. See also AffineToricVariety().

**OUTPUT**:

## Boolean.

## **EXAMPLES:**

```
sage: toric_varieties.A2().is_affine()
True
sage: toric_varieties.P1xA1().is_affine()
False
```

# is\_complete()

Check if self is complete.

## **OUTPUT**:

• True if self is complete and False otherwise.

#### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1.is_complete()
True
sage: P1xP1.affine_patch(0).is_complete()
False
```

# is\_homogeneous (polynomial)

Check if polynomial is homogeneous.

The coordinate ring of a toric variety is multigraded by relations between generating rays of the underlying fan.

#### INPUT:

 $\bullet$  polynomial – polynomial in the coordinate ring of self or its quotient.

# OUTPUT:

• True if polynomial is homogeneous and False otherwise.

# **EXAMPLES:**

We will use the product of two projective lines with coordinates (x, y) for one and (s, t) for the other:

```
sage: P1xP1.<x,y,s,t> = toric_varieties.P1xP1()
sage: P1xP1.is_homogeneous(x - y)
True
sage: P1xP1.is_homogeneous(x*s + y*t)
True
sage: P1xP1.is_homogeneous(x - t)
False
sage: P1xP1.is_homogeneous(1)
True
```

Note that by homogeneous, we mean well-defined with respect to the homogeneous rescalings of self. So a polynomial that you would usually not call homogeneous can be homogeneous if there are no homogeneous rescalings, for example:

```
sage: A1.<z> = toric_varieties.A1()
sage: A1.is_homogeneous(z^3+z^7)
True
```

Finally, the degree group is really the Chow group  $A_{d-1}(X)$  and can contain torsion. For example, take  $\mathbb{C}^2/\mathbb{Z}_2$ . Here, the Chow group is  $A_{d-1}(\mathbb{C}^2/\mathbb{Z}_2) = \mathbb{Z}_2$  and distinguishes even-degree homogeneous polynomials from odd-degree homogeneous polynomials:

```
sage: A2_Z2.<x,y> = toric_varieties.A2_Z2()
sage: A2_Z2.is_homogeneous(x+y+x^3+y^5+x^3*y^4)
True
sage: A2_Z2.is_homogeneous(x^2+x*y+y^4+(x*y)^5+x^4*y^4)
True
sage: A2_Z2.is_homogeneous(x+y^2)
False
```

# is\_isomorphic(another)

Check if self is isomorphic to another.

## INPUT:

• another - toric variety.

## **OUTPUT:**

• True if self and another are isomorphic, False otherwise.

#### **EXAMPLES:**

```
sage: TV1 = toric_varieties.P1xA1()
sage: TV2 = toric_varieties.P1xP1()
```

Only the most trivial case is implemented so far:

```
sage: TV1.is_isomorphic(TV1)
True
sage: TV1.is_isomorphic(TV2)
Traceback (most recent call last):
...
NotImplementedError:
isomorphism check is not yet implemented!
```

# is orbifold()

Check if self has only quotient singularities.

A toric variety with at most orbifold singularities (in this sense) is often called a simplicial toric variety. In this package, we generally try to avoid this term since it mixes up differential geometry and cone terminology.

# **OUTPUT**:

• True if self has at most quotient singularities by finite groups, False otherwise.

#### **EXAMPLES:**

```
sage: fan1 = FaceFan(lattice_polytope.cross_polytope(2))
sage: P1xP1 = ToricVariety(fan1)
sage: P1xP1.is_orbifold()
True
sage: fan2 = NormalFan(lattice_polytope.cross_polytope(3))
sage: TV = ToricVariety(fan2)
sage: TV.is_orbifold()
False
```

#### is smooth()

Check if self is smooth.

## **OUTPUT:**

• True if self is smooth and False otherwise.

## **EXAMPLES:**

```
sage: fan1 = FaceFan(lattice_polytope.cross_polytope(2))
sage: P1xP1 = ToricVariety(fan1)
sage: P1xP1.is_smooth()
True
sage: fan2 = NormalFan(lattice_polytope.cross_polytope(2))
sage: TV = ToricVariety(fan2)
sage: TV.is_smooth()
False
```

#### linear\_equivalence\_ideal()

Return the ideal generated by linear relations

## **OUTPUT:**

ullet The ideal generated by the linear relations of the rays in the polynomial ring over  ${f Q}$  generated by the homogeneous coordinates.

## **EXAMPLES:**

```
sage: fan = Fan([[0,1,3],[3,4],[2,0],[1,2,4]], [(-3, -2, 1), (0, 0, 1), (3, - \rightarrow2, 1), (-1, -1, 1), (1, -1, 1)])

sage: X = ToricVariety(fan, coordinate_names='A B C D E', base_field=GF(5))

sage: lin = X.linear_equivalence_ideal(); lin

Ideal (-3*A + 3*C - D + E, -2*A - 2*C - D - E, A + B + C + D + E) of_

→Multivariate Polynomial Ring in A, B, C, D, E over Rational Field
```

#### orbit closure(cone)

Return the orbit closure of cone.

The cones  $\sigma$  of a fan  $\Sigma$  are in one-to-one correspondence with the torus orbits  $O(\sigma)$  of the corresponding toric variety  $X_{\Sigma}$ . Each orbit is isomorphic to a lower dimensional torus (of dimension equal to the codimension of  $\sigma$ ). Just like the toric variety  $X_{\Sigma}$  itself, these orbits are (partially) compactified by lower-dimensional orbits. In particular, one can define the closure  $V(\sigma)$  of the torus orbit  $O(\sigma)$  in the ambient toric variety  $X_{\Sigma}$ , which is again a toric variety.

See Proposition 3.2.7 of [CLS] for more details.

# INPUT:

• cone – a cone of the fan.

#### **OUTPUT:**

• a torus orbit closure associated to cone as a toric variety.

## **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: H = P1xP1.fan(1)[0]
sage: V = P1xP1.orbit_closure(H); V
1-d toric variety covered by 2 affine patches
sage: V.embedding_morphism()
Scheme morphism:
```

(continues on next page)

```
From: 1-d toric variety covered by 2 affine patches
To: 2-d CPR-Fano toric variety covered by 4 affine patches
Defn: Defined by embedding the torus closure associated to the 1-d
cone of Rational polyhedral fan in 2-d lattice N.

sage: V.embedding_morphism().as_polynomial_map()

Scheme morphism:
From: 1-d toric variety covered by 2 affine patches
To: 2-d CPR-Fano toric variety covered by 4 affine patches
Defn: Defined on coordinates by sending [z0 : z1] to
[0 : 1 : z1 : z0]
```

# plot (\*\*options)

Plot self, i.e. the corresponding fan.

# INPUT:

• any options for toric plots (see toric\_plotter.options), none are mandatory.

# **OUTPUT:**

a plot.

**Note:** The difference between X.plot() and X.fan().plot() is that in the first case default ray labels correspond to variables of X.

#### **EXAMPLES:**

```
sage: X = toric_varieties.Cube_deformation(4)
sage: X.plot()
Graphics3d Object
```

# rational\_class\_group()

Return the rational divisor class group of self.

Let *X* be a toric variety.

The **Weil divisor class group** Cl(X) is a finitely generated abelian group and can contain torsion. Its rank equals the number of rays in the fan of X minus the dimension of X.

The **rational divisor class group** is  $Cl(X) \otimes_{\mathbf{Z}} \mathbf{Q}$  and never includes torsion. If X is *smooth*, this equals the **Picard group** of X, whose elements are the isomorphism classes of line bundles on X. The group law (which we write as addition) is the tensor product of the line bundles. The Picard group of a toric variety is always torsion-free.

# **OUTPUT:**

• rational divisor class group.

# Note:

- Coordinates correspond to the rows of self.fan().gale transform().
- Kaehler\_cone () yields a cone in this group.

## **EXAMPLES:**

```
sage: P1xA1 = toric_varieties.P1xA1()
sage: P1xA1.rational_class_group()
The toric rational divisor class group
of a 2-d toric variety covered by 2 affine patches
```

## resolve(\*\*kwds)

Construct a toric variety whose fan subdivides the fan of self.

The name of this function reflects the fact that usually such subdivisions are done for resolving singularities of the original variety.

## INPUT:

This function accepts only keyword arguments, none of which are mandatory.

- coordinate\_names names for coordinates of the new variety. If not given, will be constructed from the coordinate names of self and necessary indexed ones. See <a href="mailto:normalize\_names">normalize\_names</a>() for the description of acceptable formats;
- coordinate\_indices coordinate indices which should be used for indexed variables of the new variety;
- all other arguments will be passed to subdivide() method of the underlying rational polyhedral fan, see its documentation for the available options.

#### **OUTPUT:**

• toric variety.

#### **EXAMPLES**:

First we will "manually" resolve a simple orbifold singularity:

```
sage: cone = Cone([(1,1), (-1,1)])
sage: fan = Fan([cone])
sage: TV = ToricVariety(fan)
sage: TV.is_smooth()
False
sage: TV_res = TV.resolve(new_rays=[(0,1)])
sage: TV_res.is_smooth()
True
sage: TV_res.fan().rays()
N( 1,  1),
N(-1,  1),
N(-1,  1),
N( 0,  1)
in 2-d lattice N
sage: [cone.ambient_ray_indices() for cone in TV_res.fan()]
[(0, 2), (1, 2)]
```

Now let's "automatically" partially resolve a more complicated fan:

```
sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: TV = ToricVariety(fan)
sage: TV.is_smooth()
False
sage: TV.is_orbifold()
False
sage: TV.fan().nrays()
8
sage: TV.fan().ngenerating_cones()
```

(continues on next page)

```
6
sage: TV_res = TV.resolve(make_simplicial=True)
sage: TV_res.is_smooth()
False
sage: TV_res.is_orbifold()
True
sage: TV_res.fan().nrays()
sage: TV_res.fan().ngenerating_cones()
12
sage: TV.gens()
(z0, z1, z2, z3, z4, z5, z6, z7)
sage: TV_res.gens()
(z0, z1, z2, z3, z4, z5, z6, z7)
sage: TV_res = TV.resolve(coordinate_names="x+",
                          make_simplicial=True)
. . . . :
sage: TV_res.gens()
(x0, x1, x2, x3, x4, x5, x6, x7)
```

# resolve\_to\_orbifold(\*\*kwds)

Construct an orbifold whose fan subdivides the fan of self.

It is a synonym for resolve () with make\_simplicial=True option.

## INPUT:

• this function accepts only keyword arguments. See resolve () for documentation.

## **OUTPUT**:

• toric variety.

# **EXAMPLES:**

```
sage: fan = NormalFan(lattice_polytope.cross_polytope(3))
sage: TV = ToricVariety(fan)
sage: TV.is_orbifold()
False
sage: TV.fan().nrays()
8
sage: TV.fan().ngenerating_cones()
6
sage: TV_res = TV.resolve_to_orbifold()
sage: TV_res.is_orbifold()
True
sage: TV_res.fan().nrays()
8
sage: TV_res.fan().nrays()
```

# sheaves

Return the factory object for sheaves on the toric variety.

See sage.schemes.toric.sheaf.constructor.SheafLibrary for details.

#### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6.sheaves
```

```
Sheaf constructor on 2-d CPR-Fano toric variety covered by 6 affine patches sage: dP6.sheaves.trivial_bundle()
Rank 1 bundle on 2-d CPR-Fano toric variety covered by 6 affine patches.
```

# subscheme (polynomials)

Return the subscheme of self defined by polynomials.

#### INPUT:

• polynomials – list of polynomials in the coordinate ring of self.

#### **OUTPUT:**

• subscheme of a toric variety.

#### **EXAMPLES:**

We will construct a subscheme of the product of two projective lines with coordinates (x, y) for one and (s, t) for the other:

```
sage: P1xP1.<x,y,s,t> = toric_varieties.P1xP1()
sage: X = P1xP1.subscheme([x*s + y*t, x^3+y^3])
Closed subscheme of 2-d CPR-Fano toric variety
covered by 4 affine patches defined by:
 x*s + y*t,
 x^3 + y^3
sage: X.defining_polynomials()
(x*s + y*t, x^3 + y^3)
sage: X.defining_ideal()
Ideal (x*s + y*t, x^3 + y^3)
of Multivariate Polynomial Ring in x, y, s, t
over Rational Field
sage: X.base_ring()
Rational Field
sage: X.base_scheme()
Spectrum of Rational Field
sage: X.structure_morphism()
Scheme morphism:
 From: Closed subscheme of 2-d CPR-Fano toric variety
       covered by 4 affine patches defined by:
 x*s + y*t,
 x^3 + y^3
 To:
       Spectrum of Rational Field
 Defn: Structure map
```

# toric\_divisor\_group (base\_ring=Integer Ring)

Return the group of toric (T-Weil) divisors.

#### INPUT:

• base\_ring - the coefficient ring, usually ZZ (default) or QQ.

# **OUTPUT:**

The free Abelian agroup of toric Weil divisors, that is, formal base\_ring-linear combinations of codimension-one toric subvarieties. The output will be an instance of sage.schemes.toric.divisor.ToricDivisorGroup.

The *i*-th generator of the divisor group is the divisor where the *i*-th homogeneous coordinate vanishes,  $\{z_i = 0\}$ .

## **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: TDiv = dP6.toric_divisor_group(); TDiv
Group of toric ZZ-Weil divisors on 2-d CPR-Fano toric variety
covered by 6 affine patches
sage: TDiv == dP6.toric_divisor_group()
True
sage: TDiv.gens()
(V(x), V(u), V(y), V(v), V(z), V(w))
sage: dP6.coordinate_ring()
Multivariate Polynomial Ring in x, u, y, v, z, w over Rational Field
```

# volume\_class()

Return the cohomology class of the volume form on the toric variety.

Note that we are using cohomology with compact supports. If the variety is non-compact this is dual to homology without any support condition. In particular, for non-compact varieties the volume form  $dVol = \wedge_i (dx_i \wedge dy_i)$  does not define a (non-zero) cohomology class.

#### **OUTPUT:**

A CohomologyClass. If it exists, it is the class of the (properly normalized) volume form, that is, it is the Poincaré dual of a single point. If it does not exist, a ValueError is raised.

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.volume_class()
[z^2]

sage: A2_Z2 = toric_varieties.A2_Z2()
sage: A2_Z2.volume_class()
Traceback (most recent call last):
...
ValueError: Volume class does not exist.
```

If none of the maximal cones is smooth things get more tricky. In this case no torus-fixed point is smooth. If we want to count an ordinary point as 1, then a G-orbifold point needs to count as  $\frac{1}{|G|}$ . For example, take  $\mathbb{P}^1 \times \mathbb{P}^1$  with inhomogeneous coordinates (t,y). Take the quotient by the action  $(t,y) \mapsto (-t,-y)$ . The  $\mathbf{Z}_2$ -invariant Weil divisors  $\{t=0\}$  and  $\{y=0\}$  intersect in a  $\mathbf{Z}_2$ -fixed point, so they ought to have intersection number  $\frac{1}{2}$ . This means that the cohomology class  $[t] \cap [y]$  should be  $\frac{1}{2}$  times the volume class. Note that this is different from the volume normalization chosen in [Schubert]:

```
sage: P1xP1_Z2 = toric_varieties.P1xP1_Z2()
sage: Dt = P1xP1_Z2.divisor(1); Dt
V(t)
sage: Dy = P1xP1_Z2.divisor(3); Dy
V(y)
sage: P1xP1_Z2.volume_class()
[2*t*y]
sage: HH = P1xP1_Z2.cohomology_ring()
sage: HH (Dt) * HH(Dy) == 1/2 * P1xP1_Z2.volume_class()
True
```

The fractional coefficients are also necessary to match the normalization in the rational Chow group for simplicial toric varieties:

```
sage: A = P1xP1_Z2.Chow_group(QQ)
sage: A(Dt).intersection_with_divisor(Dy).count_points()
1/2
```

#### REFERENCES:

```
sage.schemes.toric.variety.is_CohomologyClass(x)
```

Check whether x is a cohomology class of a toric variety.

#### INPUT:

• x - anything.

## **OUTPUT:**

True or False depending on whether x is an instance of CohomologyClass

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: HH = P2.cohomology_ring()
sage: from sage.schemes.toric.variety import is_CohomologyClass
sage: is_CohomologyClass( HH.one() )
True
sage: is_CohomologyClass( HH(P2.fan(1)[0]) )
True
sage: is_CohomologyClass('z')
False
```

sage.schemes.toric.variety.is ToricVariety(x)

Check if x is a toric variety.

# INPUT:

• x – anything.

# **OUTPUT:**

• True if x is a toric variety and False otherwise.

**Note:** While projective spaces are toric varieties mathematically, they are not toric varieties in Sage due to efficiency considerations, so this function will return False.

# **EXAMPLES:**

```
sage: from sage.schemes.toric.variety import is_ToricVariety
sage: is_ToricVariety(1)
False
sage: fan = FaceFan(lattice_polytope.cross_polytope(2))
sage: P = ToricVariety(fan)
sage: P
2-d toric variety covered by 4 affine patches
sage: is_ToricVariety(P)
True
sage: is_ToricVariety(ProjectiveSpace(2))
False
```

sage.schemes.toric.variety.normalize\_names(names=None, ngens=None, prefix=None, indices=None, return\_prefix=False)

Return a list of names in the standard form.

## INPUT:

All input parameters are optional.

- names names given either as a single string (with individual names separated by commas or spaces) or a list of strings with each string specifying a name. If the last name ends with the plus sign, "+", this name will be used as prefix (even if prefix was given explicitly);
- ngens number of names to be returned;
- prefix prefix for the indexed names given as a string;
- indices list of integers (default: range (ngens)) used as indices for names with prefix. If given, must be of length ngens;
- return\_prefix if True, the last element of the returned list will contain the prefix determined from names or given as the parameter prefix. This is useful if you may need more names in the future.

## **OUTPUT:**

· list of names given as strings.

These names are constructed in the following way:

- 1. If necessary, split names into separate names.
- 2. If the last name ends with "+", put it into prefix.
- 3. If ngens was given, add to the names obtained so far as many indexed names as necessary to get this number. If the k-th name of the *total* list of names is indexed, it is prefix + str(indices[k]). If there were already more names than ngens, discard "extra" ones.
- 4. Check if constructed names are valid. See certify\_names() for details.
- 5. If the option return\_prefix=True was given, add prefix to the end of the list.

# **EXAMPLES:**

As promised, all parameters are optional:

```
sage: from sage.schemes.toric.variety import normalize_names
sage: normalize_names()
[]
```

One of the most common uses is probably this one:

```
sage: normalize_names("x+", 4)
['x0', 'x1', 'x2', 'x3']
```

Now suppose that you want to enumerate your variables starting with one instead of zero:

```
sage: normalize_names("x+", 4, indices=list(range(1,5)))
['x1', 'x2', 'x3', 'x4']
```

You may actually have an arbitrary enumeration scheme:

```
sage: normalize_names("x+", 4, indices=[1, 10, 100, 1000])
['x1', 'x10', 'x100', 'x1000']
```

Now let's add some "explicit" names:

```
sage: normalize_names("x y z t+", 4)
['x', 'y', 'z', 't3']
```

Note that the "automatic" name is  $\pm 3$  instead of  $\pm 0$ . This may seem weird, but the reason for this behaviour is that the fourth name in this list will be the same no matter how many explicit names were given:

```
sage: normalize_names("x y t+", 4)
['x', 'y', 't2', 't3']
```

This is especially useful if you get names from a user but want to specify all default names:

```
sage: normalize_names("x, y", 4, prefix="t")
['x', 'y', 't2', 't3']
```

In this format, the user can easily override your choice for automatic names:

```
sage: normalize_names("x y s+", 4, prefix="t")
['x', 'y', 's2', 's3']
```

Let's now use all parameters at once:

```
sage: normalize_names("x, y, s+", 4, prefix="t",
...: indices=list(range(1,5)), return_prefix=True)
['x', 'y', 's3', 's4', 's']
```

Note that you still need to give indices for all names, even if some of the first ones will be "wasted" because of the explicit names. The reason is the same as before - this ensures consistency of automatically generated names, no matter how many explicit names were given.

The prefix is discarded if ngens was not given:

```
sage: normalize_names("alpha, beta, gamma, zeta+")
['alpha', 'beta', 'gamma']
```

Finally, let's take a look at some possible mistakes:

```
sage: normalize_names("123")
Traceback (most recent call last):
...
ValueError: variable name '123' does not start with a letter
```

A more subtle one:

```
sage: normalize_names("x1", 4, prefix="x")
Traceback (most recent call last):
...
ValueError: variable name 'x1' appears more than once
```

# 16.2 Fano toric varieties

This module provides support for (Crepant Partial Resolutions of) Fano toric varieties, corresponding to crepant subdivisions of face fans of reflexive lattice polytopes. The interface is provided via CPRFanoToricVariety().

A careful exposition of different flavours of Fano varieties can be found in the paper by Benjamin Nill [Nill2005]. The main goal of this module is to support work with Gorenstein weak Fano toric varieties. Such a variety corresponds to a coherent crepant refinement of the normal fan of a reflexive polytope  $\Delta$ , where crepant means that primitive generators of the refining rays lie on the facets of the polar polytope  $\Delta^{\circ}$  and coherent (a.k.a. regular or projective) means that there exists a strictly upper convex piecewise linear function whose domains of linearity are precisely the

maximal cones of the subdivision. These varieties are important for string theory in physics, as they serve as ambient spaces for mirror pairs of Calabi-Yau manifolds via constructions due to Victor V. Batyrev [Batyrev1994] and Lev A. Borisov [Borisov1993].

From the combinatorial point of view "crepant" requirement is much more simple and natural to work with than "coherent." For this reason, the code in this module will allow work with arbitrary crepant subdivisions without checking whether they are coherent or not. We refer to corresponding toric varieties as **CPR-Fano toric varieties**.

#### REFERENCES:

## **AUTHORS:**

• Andrey Novoseltsev (2010-05-18): initial version.

#### **EXAMPLES:**

Most of the functions available for Fano toric varieties are the same as for general toric varieties, so here we will concentrate only on Calabi-Yau subvarieties, which were the primary goal for creating this module.

For our first example we realize the projective plane as a Fano toric variety:

```
sage: simplex = LatticePolytope([(1,0), (0,1), (-1,-1)])
sage: P2 = CPRFanoToricVariety(Delta_polar=simplex)
```

Its anticanonical "hypersurface" is a one-dimensional Calabi-Yau manifold:

In many cases it is sufficient to work with the "simplified polynomial moduli space" of anticanonical hypersurfaces:

```
sage: P2.anticanonical_hypersurface(
...: monomial_points="simplified")
Closed subscheme of 2-d CPR-Fano toric variety
covered by 3 affine patches defined by:
  a0*z0^3 + a1*z1^3 + a6*z0*z1*z2 + a2*z2^3
```

The mirror family to these hypersurfaces lives inside the Fano toric variety obtained using simplex as Delta instead of Delta\_polar:

Here we have taken the resolved version of the ambient space for the mirror family, but in fact we don't have to resolve singularities corresponding to the interior points of facets - they are singular points which do not lie on a generic anticanonical hypersurface:

```
sage: FTV = CPRFanoToricVariety(Delta=simplex,
...: coordinate_points="all but facets")
sage: FTV.anticanonical_hypersurface(
...: monomial_points="simplified")
Closed subscheme of 2-d CPR-Fano toric variety
covered by 3 affine patches defined by:
   a0*z0^3 + a1*z1^3 + a3*z0*z1*z2 + a2*z2^3
```

This looks very similar to our second version of the anticanonical hypersurface of the projective plane, as expected, since all one-dimensional Calabi-Yau manifolds are elliptic curves!

Now let's take a look at a toric realization of M-polarized K3 surfaces studied by Adrian Clingher and Charles F. Doran in [CD2007]:

```
sage: p4318 = ReflexivePolytope(3, 4318)
sage: FTV = CPRFanoToricVariety(Delta_polar=p4318)
sage: FTV.anticanonical_hypersurface()
Closed subscheme of 3-d CPR-Fano toric variety
covered by 4 affine patches defined by:
   a0*z2^12 + a4*z2^6*z3^6 + a3*z3^12
+ a8*z0*z1*z2*z3 + a2*z1^3 + a1*z0^2
```

Below you will find detailed descriptions of available functions. Current functionality of this module is very basic, but it is under active development and hopefully will improve in future releases of Sage. If there are some particular features that you would like to see implemented ASAP, please consider reporting them to the Sage Development Team or even implementing them on your own as a patch for inclusion!

Construct an anticanonical hypersurface of a CPR-Fano toric variety.

#### INPUT:

- P\_Delta CPR-Fano toric variety associated to a reflexive polytope  $\Delta$ ;
- see CPRFanoToricVariety\_field.anticanonical\_hypersurface() for documentation on all other acceptable parameters.

#### **OUTPUT:**

• anticanonical hypersurface of P\_Delta (with the extended base field, if necessary).

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: import sage.schemes.toric.fano_variety as ftv
sage: ftv.AnticanonicalHypersurface(P1xP1)
Closed subscheme of 2-d CPR-Fano toric variety
covered by 4 affine patches defined by:
  a0*s^2*x^2 + a3*t^2*x^2 + a6*s*t*x*y + a1*s^2*y^2 + a2*t^2*y^2
```

See anticanonical\_hypersurface() for a more elaborate example.

```
sage.schemes.toric.fano_variety.CPRFanoToricVariety(Delta=None,
```

Delta\_polar=None, coordinate\_points=None,
charts=None, coordinate\_names=None,
names=None, coordinate\_name\_indices=None,
make\_simplicial=False,
base\_ring=None,
base\_field=None, check=True)

Construct a CPR-Fano toric variety.

**Note:** See documentation of the module fano\_variety for the used definitions and supported varieties.

Due to the large number of available options, it is recommended to always use keyword parameters.

## INPUT:

- Delta reflexive lattice polytope. The fan of the constructed CPR-Fano toric variety will be a crepant subdivision of the *normal fan* of Delta. Either Delta or Delta\_polar must be given, but not both at the same time, since one is completely determined by another via polar method;
- Delta\_polar reflexive lattice polytope. The fan of the constructed CPR-Fano toric variety will be a crepant subdivision of the *face fan* of Delta\_polar. Either Delta or Delta\_polar must be given, but not both at the same time, since one is completely determined by another via polar method;
- coordinate\_points list of integers or string. A list will be interpreted as indices of (boundary) points of Delta\_polar which should be used as rays of the underlying fan. It must include all vertices of Delta\_polar and no repetitions are allowed. A string must be one of the following descriptions of points of Delta\_polar:
  - "vertices" (default),
  - "all" (will not include the origin),
  - "all but facets" (will not include points in the relative interior of facets);
- charts list of lists of elements from coordinate\_points. Each of these lists must define a generating cone of a fan subdividing the normal fan of Delta. Default charts correspond to the normal fan of Delta without subdivision. The fan specified by charts will be subdivided to include all of the requested coordinate\_points;
- coordinate\_names names of variables for the coordinate ring, see normalize\_names() for acceptable formats. If not given, indexed variable names will be created automatically;
- names an alias of coordinate\_names for internal use. You may specify either names or coordinate\_names, but not both;
- coordinate\_name\_indices list of integers, indices for indexed variables. If not given, the index of each variable will coincide with the index of the corresponding point of Delta\_polar;
- make\_simplicial if True, the underlying fan will be made simplicial (default: False);
- base ring base field of the CPR-Fano toric variety (default: Q);
- base\_field alias for base\_ring. Takes precedence if both are specified.

• check — by default the input data will be checked for correctness (e.g. that charts do form a subdivision of the normal fan of Delta). If you know for sure that the input is valid, you may significantly decrease construction time using check=False option.

# **OUTPUT:**

• CPR-Fano toric variety.

#### **EXAMPLES:**

We start with the product of two projective lines:

```
sage: diamond = lattice_polytope.cross_polytope(2)
sage: diamond.vertices()
M(1, 0),
M(0, 1),
M(-1, 0),
M(0, -1)
in 2-d lattice M
sage: P1xP1 = CPRFanoToricVariety(Delta_polar=diamond)
sage: P1xP1
2-d CPR-Fano toric variety covered by 4 affine patches
sage: P1xP1.fan()
Rational polyhedral fan in 2-d lattice M
sage: P1xP1.fan().rays()
M(1, 0),
M(0, 1),
M(-1, 0),
M(0, -1)
in 2-d lattice M
```

"Unfortunately," this variety is smooth to start with and we cannot perform any subdivisions of the underlying fan without leaving the category of CPR-Fano toric varieties. Our next example starts with a square:

```
sage: square = diamond.polar()
sage: square.vertices()
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1)
in 2-d lattice N
sage: square.points()
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N(0, -1),
N(0,
      0),
N(0,
     1),
N(1,
      0)
in 2-d lattice N
```

We will construct several varieties associated to it:

```
sage: FTV = CPRFanoToricVariety(Delta_polar=square)
sage: FTV.fan().rays()
N( 1,  1),
N( 1, -1),
```

```
N(-1, -1),
N(-1, 1)
in 2-d lattice N
sage: FTV.gens()
(z0, z1, z2, z3)
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
            coordinate_points=[0,1,2,3,8])
sage: FTV.fan().rays()
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1),
N(1, 0)
in 2-d lattice N
sage: FTV.gens()
(z0, z1, z2, z3, z8)
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
. . . . :
            coordinate_points=[8,0,2,1,3],
. . . . :
            coordinate_names="x+")
sage: FTV.fan().rays()
N(1,0),
N(1, 1),
N(-1, -1),
N(1, -1),
N(-1, 1)
in 2-d lattice N
sage: FTV.gens()
(x8, x0, x2, x1, x3)
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
. . . . :
           coordinate_points="all",
            coordinate_names="x y Z+")
. . . . :
sage: FTV.fan().rays()
N(1, 1),
N(1, -1),
N(-1, -1),
N(-1, 1),
N(-1, 0),
N(0, -1),
N(0, 1),
N(1,0)
in 2-d lattice N
sage: FTV.gens()
(x, y, Z2, Z3, Z4, Z5, Z7, Z8)
```

Note that Z6 is "missing". This is due to the fact that the 6-th point of square is the origin, and all automatically created names have the same indices as corresponding points of <code>Delta\_polar()</code>. This is usually very convenient, especially if you have to work with several partial resolutions of the same Fano toric variety. However, you can change it, if you want:

```
sage: FTV.gens()
(x, y, Z2, Z3, Z4, Z5, Z6, Z7)
```

Note that you have to provide indices for *all* variables, including those that have "completely custom" names. Again, this is usually convenient, because you can add or remove "custom" variables without disturbing too much "automatic" ones:

If you prefer to always start from zero, you will have to shift indices accordingly:

```
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
          coordinate_points="all",
           coordinate_names="x Z+",
. . . . :
            coordinate_name_indices=[0] + list(range(7)))
. . . . :
sage: FTV.gens()
(x, Z0, Z1, Z2, Z3, Z4, Z5, Z6)
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
. . . . :
           coordinate points="all",
           coordinate_names="x y Z+",
. . . . :
            coordinate_name_indices=[0]*2 + list(range(6)))
. . . . :
sage: FTV.gens()
(x, y, Z0, Z1, Z2, Z3, Z4, Z5)
```

So you always can get any names you want, somewhat complicated default behaviour was designed with the hope that in most cases you will have no desire to provide different names.

Now we will use the possibility to specify initial charts:

```
sage: charts = [(0,1), (1,2), (2,3), (3,0)]
```

(these charts actually form exactly the face fan of our square)

If charts are wrong, it should be detected:

```
sage: bad_charts = charts + [(3,0)]
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
```

```
...: coordinate_points=[0,1,2,3,4],
...: charts=bad_charts)
Traceback (most recent call last):
...
ValueError: you have provided 5 cones, but only 4 of them are maximal!
Use discard_faces=True if you indeed need to construct a fan from these cones.
```

These charts are technically correct, they just happened to list one of them twice, but it is assumed that such a situation will not happen. It is especially important when you try to speed up your code:

In this case you still get an error message, but it is harder to figure out what is going on. It may also happen that "everything will still work" in the sense of not crashing, but work with such an invalid variety may lead to mathematically wrong results, so use check=False carefully!

Here are some other possible mistakes:

```
sage: bad_charts = charts + [(0,2)]
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
        coordinate_points=[0,1,2,3,4],
           charts=bad_charts)
Traceback (most recent call last):
ValueError: (0, 2) does not form a chart of a subdivision of
the face fan of 2-d reflexive polytope #14 in 2-d lattice N!
sage: bad_charts = charts[:-1]
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
....: coordinate_points=[0,1,2,3,4],
           charts=bad_charts)
Traceback (most recent call last):
ValueError: given charts do not form a complete fan!
sage: FTV = CPRFanoToricVariety(Delta polar=square,
          coordinate_points=[1,2,3,4])
Traceback (most recent call last):
ValueError: all 4 vertices of Delta_polar
must be used for coordinates!
Got: [1, 2, 3, 4]
sage: FTV = CPRFanoToricVariety(Delta_polar=square,
....: coordinate_points=[0,0,1,2,3,4])
Traceback (most recent call last):
ValueError: no repetitions are
allowed for coordinate points!
Got: [0, 0, 1, 2, 3, 4]
```

Here is a shorthand for defining the toric variety and homogeneous coordinates in one go:

```
sage: P1xP1.<a,b,c,d> = CPRFanoToricVariety(Delta_polar=diamond)
sage: (a^2+b^2) * (c+d)
a^2*c + b^2*c + a^2*d + b^2*d
```

 $Bases: \textit{sage.schemes.toric.variety.ToricVariety\_field}$ 

Construct a CPR-Fano toric variety associated to a reflexive polytope.

**Warning:** This class does not perform any checks of correctness of input and it does assume that the internal structure of the given parameters is coordinated in a certain way. Use <code>CPRFanoToricVariety()</code> to construct CPR-Fano toric varieties.

**Note:** See documentation of the module fano\_variety for the used definitions and supported varieties.

# INPUT:

- Delta\_polar reflexive polytope;
- fan rational polyhedral fan subdividing the face fan of Delta\_polar;
- coordinate\_points list of indices of points of Delta\_polar used for rays of fan;
- point\_to\_ray dictionary mapping the index of a coordinate point to the index of the corresponding ray;
- coordinate\_names names of the variables of the coordinate ring in the format accepted by normalize\_names();
- coordinate\_name\_indices indices for indexed variables, if None, will be equal to coordinate\_points;
- base\_field base field of the CPR-Fano toric variety.

# **OUTPUT:**

• CPR-Fano toric variety.

#### Delta()

Return the reflexive polytope associated to self.

#### **OUTPUT:**

• reflexive lattice polytope. The underlying fan of self is a coherent subdivision of the *normal* fan of this polytope.

# **EXAMPLES:**

```
sage: diamond = lattice_polytope.cross_polytope(2)
sage: P1xP1 = CPRFanoToricVariety(Delta_polar=diamond)
sage: P1xP1.Delta()
2-d reflexive polytope #14 in 2-d lattice N
sage: P1xP1.Delta() is diamond.polar()
True
```

# Delta\_polar()

Return polar of Delta().

# **OUTPUT**:

• reflexive lattice polytope. The underlying fan of self is a coherent subdivision of the *face fan* of this polytope.

#### **EXAMPLES:**

```
sage: diamond = lattice_polytope.cross_polytope(2)
sage: P1xP1 = CPRFanoToricVariety(Delta_polar=diamond)
sage: P1xP1.Delta_polar()
2-d reflexive polytope #3 in 2-d lattice M
sage: P1xP1.Delta_polar() is diamond
True
sage: P1xP1.Delta_polar() is P1xP1.Delta().polar()
True
```

# anticanonical\_hypersurface(\*\*kwds)

Return an anticanonical hypersurface of self.

**Note:** The returned hypersurface may be actually a subscheme of **another** CPR-Fano toric variety: if the base field of self does not include all of the required names for generic monomial coefficients, it will be automatically extended.

Below  $\Delta$  is the reflexive polytope corresponding to self, i.e. the fan of self is a refinement of the normal fan of  $\Delta$ . This function accepts only keyword parameters.

# INPUT:

- monomial points a list of integers or a string. A list will be interpreted as indices of points of
   Δ which should be used for monomials of this hypersurface. A string must be one of the following
   descriptions of points of Δ:
  - "vertices",
  - "vertices+origin",
  - "all",
  - "simplified" (default) all points of  $\Delta$  except for the interior points of facets, this choice corresponds to working with the "simplified polynomial moduli space" of anticanonical hypersurfaces;

- coefficient\_names names for the monomial coefficients, see normalize\_names() for acceptable formats. If not given, indexed coefficient names will be created automatically;
- coefficient\_name\_indices a list of integers, indices for indexed coefficients. If not given, the index of each coefficient will coincide with the index of the corresponding point of  $\Delta$ ;
- coefficients as an alternative to specifying coefficient names and/or indices, you can give the coefficients themselves as arbitrary expressions and/or strings. Using strings allows you to easily add "parameters": the base field of self will be extended to include all necessary names.

#### **OUTPUT:**

• an anticanonical hypersurface of self (with the extended base field, if necessary).

#### **EXAMPLES:**

We realize the projective plane as a Fano toric variety:

```
sage: simplex = LatticePolytope([(1,0), (0,1), (-1,-1)])
sage: P2 = CPRFanoToricVariety(Delta_polar=simplex)
```

Its anticanonical "hypersurface" is a one-dimensional Calabi-Yau manifold:

In many cases it is sufficient to work with the "simplified polynomial moduli space" of anticanonical hypersurfaces:

The mirror family to these hypersurfaces lives inside the Fano toric variety obtained using simplex as Delta instead of Delta\_polar:

```
sage: FTV = CPRFanoToricVariety(Delta=simplex,
...: coordinate_points="all")
sage: FTV.anticanonical_hypersurface(
...: monomial_points="simplified")
Closed subscheme of 2-d CPR-Fano toric variety
covered by 9 affine patches defined by:
    a2*z2^3*z3^2*z4*z5^2*z8
+ a1*z1^3*z3*z4^2*z7^2*z9
+ a3*z0*z1*z2*z3*z4*z5*z7*z8*z9
+ a0*z0^3*z5*z7*z8^2*z9^2
```

Here we have taken the resolved version of the ambient space for the mirror family, but in fact we don't have to resolve singularities corresponding to the interior points of facets - they are singular points which do not lie on a generic anticanonical hypersurface:

```
sage: FTV = CPRFanoToricVariety(Delta=simplex,
...: coordinate_points="all but facets")
sage: FTV.anticanonical_hypersurface(
...: monomial_points="simplified")
Closed subscheme of 2-d CPR-Fano toric variety
covered by 3 affine patches defined by:
   a0*z0^3 + a1*z1^3 + a3*z0*z1*z2 + a2*z2^3
```

This looks very similar to our second anticanonical hypersurface of the projective plane, as expected, since all one-dimensional Calabi-Yau manifolds are elliptic curves!

All anticanonical hypersurfaces constructed above were generic with automatically generated coefficients. If you want, you can specify your own names

```
sage: FTV.anticanonical_hypersurface(
...: coefficient_names="a b c d")
Closed subscheme of 2-d CPR-Fano toric variety
covered by 3 affine patches defined by:
   a*z0^3 + b*z1^3 + d*z0*z1*z2 + c*z2^3
```

#### or give concrete coefficients

```
sage: FTV.anticanonical_hypersurface(
...: coefficients=[1, 2, 3, 4])
Closed subscheme of 2-d CPR-Fano toric variety
covered by 3 affine patches defined by:
  z0^3 + 2*z1^3 + 4*z0*z1*z2 + 3*z2^3
```

or even mix numerical coefficients with some expressions

```
sage: H = FTV.anticanonical_hypersurface(
....: coefficients=[0, "t", "1/t", "psi/(psi^2 + phi)"])
sage: H
Closed subscheme of 2-d CPR-Fano toric variety
covered by 3 affine patches defined by:
    t*z1^3 + (psi/(psi^2 + phi))*z0*z1*z2 + 1/t*z2^3
sage: R = H.ambient_space().base_ring()
sage: R
Fraction Field of
Multivariate Polynomial Ring in phi, psi, t
over Rational Field
```

cartesian\_product (other, coordinate\_names=None, coordinate\_indices=None)

Return the Cartesian product of self with other.

#### INPUT:

- other a (possibly CPR-Fano) toric variety;
- coordinate\_names names of variables for the coordinate ring, see normalize\_names()
  for acceptable formats. If not given, indexed variable names will be created automatically;
- coordinate\_indices list of integers, indices for indexed variables. If not given, the index of each variable will coincide with the index of the corresponding ray of the fan.

### **OUTPUT:**

• a toric variety, which is CPR-Fano if other was.

### **EXAMPLES:**

```
sage: P1 = toric_varieties.P1()
sage: P2 = toric_varieties.P2()
sage: P1xP2 = P1.cartesian_product(P2); P1xP2
3-d CPR-Fano toric variety covered by 6 affine patches
sage: P1xP2.fan().rays()
N+N( 1,  0,  0),
N+N( 1,  0,  0),
N+N( 0,  1,  0),
N+N( 0,  1,  0),
N+N( 0,  0,  1),
N+N( 0,  -1,  -1)
in 3-d lattice N+N
sage: P1xP2.Delta_polar()
3-d reflexive polytope in 3-d lattice N+N
```

#### change ring(F)

Return a CPR-Fano toric variety over field F, otherwise the same as self.

#### INPUT:

• F - field.

#### **OUTPUT:**

• CPR-Fano toric variety over F.

**Note:** There is no need to have any relation between F and the base field of self. If you do want to have such a relation, use base\_extend() instead.

## **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1.base_ring()
Rational Field
sage: P1xP1_RR = P1xP1.change_ring(RR)
sage: P1xP1_RR.base_ring()
Real Field with 53 bits of precision
sage: P1xP1_QQ = P1xP1_RR.change_ring(QQ)
sage: P1xP1_QQ.base_ring()
Rational Field
sage: P1xP1_RR.base_extend(QQ)
Traceback (most recent call last):
ValueError: no natural map from the base ring
(=Real Field with 53 bits of precision)
to R (=Rational Field)!
sage: R = PolynomialRing(QQ, 2, 'a')
sage: P1xP1.change_ring(R)
Traceback (most recent call last):
TypeError: need a field to construct a Fano toric variety!
Got Multivariate Polynomial Ring in a0, a1 over Rational Field
```

### coordinate\_point\_to\_coordinate(point)

Return the variable of the coordinate ring corresponding to point.

## INPUT:

• point - integer from the list of coordinate\_points().

### **OUTPUT:**

• the corresponding generator of the coordinate ring of self.

### **EXAMPLES:**

### coordinate\_points()

Return indices of points of <code>Delta\_polar()</code> used for coordinates.

#### **OUTPUT:**

• tuple of integers.

### **EXAMPLES:**

Note that one point is missing, namely

```
sage: square.origin()
6
```

### nef\_complete\_intersection (nef\_partition, \*\*kwds)

Return a nef complete intersection in self.

**Note:** The returned complete intersection may be actually a subscheme of **another** CPR-Fano toric variety: if the base field of self does not include all of the required names for monomial coefficients, it will be automatically extended.

Below  $\Delta$  is the reflexive polytope corresponding to self, i.e. the fan of self is a refinement of the normal fan of  $\Delta$ . Other polytopes are described in the documentation of nef-partitions of reflexive polytopes.

Except for the first argument, nef\_partition, this method accepts only keyword parameters.

### INPUT:

- nef\_partition a k-part nef-partition of  $\Delta^{\circ}$ , all other parameters (if given) must be lists of length k;
- monomial\_points the *i*-th element of this list is either a list of integers or a string. A list will be interpreted as indices of points of  $\Delta_i$  which should be used for monomials of the *i*-th polynomial of this complete intersection. A string must be one of the following descriptions of points of  $\Delta_i$ :
  - "vertices",
  - "vertices+origin",
  - "all" (default),

when using this description, it is also OK to pass a single string as monomial\_points instead of repeating it k times;

- coefficient\_names the *i*-th element of this list specifies names for the monomial coefficients of the *i*-th polynomial, see *normalize\_names()* for acceptable formats. If not given, indexed coefficient names will be created automatically;
- coefficient\_name\_indices the i-th element of this list specifies indices for indexed coefficients of the i-th polynomial. If not given, the index of each coefficient will coincide with the index of the corresponding point of  $\Delta_i$ ;
- coefficients as an alternative to specifying coefficient names and/or indices, you can give the coefficients themselves as arbitrary expressions and/or strings. Using strings allows you to easily add "parameters": the base field of self will be extended to include all necessary names.

#### **OUTPUT:**

• a nef complete intersection of self (with the extended base field, if necessary).

### **EXAMPLES:**

We construct several complete intersections associated to the same nef-partition of the 3-dimensional reflexive polytope #2254:

```
sage: p = ReflexivePolytope(3, 2254)
sage: np = p.nef_partitions()[1]
sage: np
Nef-partition {2, 3, 4, 7, 8} U {0, 1, 5, 6}
sage: X = CPRFanoToricVariety(Delta_polar=p)
sage: X.nef_complete_intersection(np)
Closed subscheme of 3-d CPR-Fano toric variety
covered by 10 affine patches defined by:
    a0*z1*z4^2z*z5^2*z7^3 + a2*z2*z4*z5*z6*z7^2z*z8^2
    + a3*z2*z3*z4*z7*z8 + a1*z0*z2,
    b3*z1*z4*z5^2z*z6^2z*z7^2z*z8^2 + b0*z2*z5*z6^3*z7*z8^4
    + b5*z1*z3*z4*z5*z6*z7*z8 + b2*z2*z3*z6^2z*z8^3
    + b1*z1*z3^2z*z4 + b4*z0*z1*z5*z6
```

Now we include only monomials associated to vertices of  $\Delta_i$ :

```
sage: X.nef_complete_intersection(np, monomial_points="vertices")
Closed subscheme of 3-d CPR-Fano toric variety
covered by 10 affine patches defined by:
    a0*z1*z4^2*z5^2*z7^3 + a2*z2*z4*z5*z6*z7^2*z8^2
    + a3*z2*z3*z4*z7*z8 + a1*z0*z2,
    b3*z1*z4*z5^2*z6^2*z7^2*z8^2 + b0*z2*z5*z6^3*z7*z8^4
    + b2*z2*z3*z6^2*z8^3 + b1*z1*z3^2*z4 + b4*z0*z1*z5*z6
```

(effectively, we set b5=0). Next we provide coefficients explicitly instead of using default generic names:

Finally, we take a look at the generic representative of these complete intersections in a completely resolved ambient toric variety:

#### resolve(\*\*kwds)

Construct a toric variety whose fan subdivides the fan of self.

This function accepts only keyword arguments, none of which are mandatory.

#### INPUT:

- new\_points list of integers, indices of boundary points of <code>Delta\_polar()</code>, which should be added as rays to the subdividing fan;
- all other arguments will be passed to resolve() method of (general) toric varieties, see its documentation for details.

### **OUTPUT**:

• CPR-Fano toric variety if there was no new\_rays argument and toric variety otherwise.

### **EXAMPLES:**

```
sage: diamond = lattice_polytope.cross_polytope(2)
sage: FTV = CPRFanoToricVariety(Delta=diamond)
sage: FTV.coordinate_points()
(0, 1, 2, 3)
sage: FTV.gens()
(z0, z1, z2, z3)
sage: FTV_res = FTV.resolve(new_points=[6,8])
Traceback (most recent call last):
...
ValueError: the origin (point #6)
cannot be used for subdivision!
```

```
sage: FTV_res = FTV.resolve(new_points=[8,5])
sage: FTV_res
2-d CPR-Fano toric variety covered by 6 affine patches
sage: FTV_res.coordinate_points()
(0, 1, 2, 3, 8, 5)
sage: FTV_res.gens()
(z0, z1, z2, z3, z8, z5)

sage: TV_res = FTV.resolve(new_rays=[(1,2)])
sage: TV_res
2-d toric variety covered by 5 affine patches
sage: TV_res.gens()
(z0, z1, z2, z3, z4)
```

class sage.schemes.toric.fano\_variety.NefCompleteIntersection(P\_Delta,

```
nef_partition,
mono-
mial_points='all',
coeffi-
cient_names=None,
coeffi-
cient_name_indices=None,
coeffi-
cients=None)
```

Bases: sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme toric

Construct a nef complete intersection in a CPR-Fano toric variety.

#### INPUT:

- P\_Delta a CPR-Fano toric variety associated to a reflexive polytope  $\Delta$ ;
- see CPRFanoToricVariety\_field.nef\_complete\_intersection() for documentation on all other acceptable parameters.

### **OUTPUT**:

• a nef complete intersection of P\_Delta (with the extended base field, if necessary).

#### **EXAMPLES:**

```
sage: o = lattice_polytope.cross_polytope(3)
sage: np = o.nef_partitions()[0]
sage: np
Nef-partition {0, 1, 3} U {2, 4, 5}
sage: X = CPRFanoToricVariety(Delta_polar=o)
sage: X.nef_complete_intersection(np)
Closed subscheme of 3-d CPR-Fano toric variety
covered by 8 affine patches defined by:
    a2*z0^2*z1 + a5*z0*z1*z3 + a1*z1*z3^2
    + a3*z0^2*z4 + a4*z0*z3*z4 + a0*z3^2*z4,
    b1*z1*z2^2 + b2*z2^2*z4 + b5*z1*z2*z5
    + b4*z2*z4*z5 + b3*z1*z5^2 + b0*z4*z5^2
```

See CPRFanoToricVariety\_field.nef\_complete\_intersection() for a more elaborate example.

## cohomology\_class()

Return the class of self in the ambient space cohomology ring.

#### **OUTPUT:**

• a cohomology class.

### **EXAMPLES:**

```
sage: o = lattice_polytope.cross_polytope(3)
sage: np = o.nef_partitions()[0]
sage: np
Nef-partition {0, 1, 3} U {2, 4, 5}
sage: X = CPRFanoToricVariety(Delta_polar=o)
sage: CI = X.nef_complete_intersection(np)
sage: CI
Closed subscheme of 3-d CPR-Fano toric variety
covered by 8 affine patches defined by:
    a2*z0^2*z1 + a5*z0*z1*z3 + a1*z1*z3^2
    + a3*z0^2*z4 + a4*z0*z3*z4 + a0*z3^2*z4,
    b1*z1*z2^2 + b2*z2^2*z4 + b5*z1*z2*z5
    + b4*z2*z4*z5 + b3*z1*z5^2 + b0*z4*z5^2
sage: CI.cohomology_class()
[2*z3*z4 + 4*z3*z5 + 2*z4*z5]
```

## nef\_partition()

Return the nef-partition associated to self.

#### **OUTPUT:**

• a nef-partition.

#### **EXAMPLES:**

```
sage: o = lattice_polytope.cross_polytope(3)
sage: np = o.nef_partitions()[0]
sage: np
Nef-partition \{0, 1, 3\} U \{2, 4, 5\}
sage: X = CPRFanoToricVariety(Delta_polar=o)
sage: CI = X.nef_complete_intersection(np)
sage: CI
Closed subscheme of 3-d CPR-Fano toric variety
covered by 8 affine patches defined by:
 a2*z0^2*z1 + a5*z0*z1*z3 + a1*z1*z3^2
 + a3*z0^2*z4 + a4*z0*z3*z4 + a0*z3^2*z4
 b1*z1*z2^2 + b2*z2^2*z4 + b5*z1*z2*z5
 + b4*z2*z4*z5 + b3*z1*z5^2 + b0*z4*z5^2
sage: CI.nef partition()
Nef-partition \{0, 1, 3\} U \{2, 4, 5\}
sage: CI.nef_partition() is np
True
```

sage.schemes.toric.fano\_variety.add\_variables(field, variables)

Extend field to include all variables.

### INPUT:

- field a field;
- variables a list of strings.

### **OUTPUT**:

• a fraction field extending the original field, which has all variables among its generators.

#### **EXAMPLES:**

We start with the rational field and slowly add more variables:

```
sage: from sage.schemes.toric.fano_variety import *
sage: F = add_variables(QQ, []); F
                                       # No extension
Rational Field
sage: F = add_variables(QQ, ["a"]); F
Fraction Field of Univariate Polynomial Ring
in a over Rational Field
sage: F = add_variables(F, ["a"]); F
Fraction Field of Univariate Polynomial Ring
in a over Rational Field
sage: F = add_variables(F, ["b", "c"]); F
Fraction Field of Multivariate Polynomial Ring
in a, b, c over Rational Field
sage: F = add_variables(F, ["c", "d", "b", "c", "d"]); F
Fraction Field of Multivariate Polynomial Ring
in a, b, c, d over Rational Field
```

sage.schemes.toric.fano\_variety.is\_CPRFanoToricVariety(x)

Check if x is a CPR-Fano toric variety.

#### INPUT:

• x – anything.

#### **OUTPUT:**

• True if x is a CPR-Fano toric variety and False otherwise.

**Note:** While projective spaces are Fano toric varieties mathematically, they are not toric varieties in Sage due to efficiency considerations, so this function will return False.

### **EXAMPLES:**

```
sage: from sage.schemes.toric.fano_variety import (
...: is_CPRFanoToricVariety)
sage: is_CPRFanoToricVariety(1)
False
sage: FTV = toric_varieties.P2()
sage: FTV
2-d CPR-Fano toric variety covered by 3 affine patches
sage: is_CPRFanoToricVariety(FTV)
True
sage: is_CPRFanoToricVariety(ProjectiveSpace(2))
False
```

# 16.3 Library of toric varieties

This module provides a simple way to construct often-used toric varieties. Please see the help for the individual methods of toric\_varieties for a more detailed description of which varieties can be constructed.

### **AUTHORS:**

• Volker Braun (2010-07-02): initial version

#### **EXAMPLES:**

```
sage: toric_varieties.dP6()
2-d CPR-Fano toric variety covered by 6 affine patches
```

You can assign the homogeneous coordinates to Sage variables either with inject\_variables() or immediately during assignment like this:

```
sage: P2.<x,y,z> = toric_varieties.P2()
sage: x^2 + y^2 + z^2
x^2 + y^2 + z^2
sage: P2.coordinate_ring()
Multivariate Polynomial Ring in x, y, z over Rational Field
```

```
class sage.schemes.toric.library.ToricVarietyFactory
    Bases: sage.structure.sage_object.SageObject
```

The methods of this class construct toric varieties.

**Warning:** You need not create instances of this class. Use the already-provided object toric\_varieties instead.

**A** (*n*, *names='z+'*, *base\_ring=Rational Field*)

Construct the n-dimensional affine space.

### INPUT:

- n positive integer. The dimension of the affine space.
- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

### **OUTPUT**:

A toric variety.

### **EXAMPLES:**

```
sage: A3 = toric_varieties.A(3)
sage: A3
3-d affine toric variety
sage: A3.fan().rays()
N(1, 0, 0),
N(0, 1, 0),
N(0, 0, 1)
in 3-d lattice N
sage: A3.gens()
(z0, z1, z2)
```

**A1** (names='z', base\_ring=Rational Field)

Construct the affine line  $\mathbb{A}^1$  as a toric variety.

## INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: Q). The base ring for the toric variety.

### **OUTPUT**:

A toric variety.

### **EXAMPLES:**

```
sage: A1 = toric_varieties.A1()
sage: A1
1-d affine toric variety
sage: A1.fan().rays()
N(1)
in 1-d lattice N
sage: A1.gens()
(z,)
```

## **A2** (names='x y', base\_ring=Rational Field)

Construct the affine plane  $\mathbb{A}^2$  as a toric variety.

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT**:

A toric variety.

### **EXAMPLES:**

```
sage: A2 = toric_varieties.A2()
sage: A2
2-d affine toric variety
sage: A2.fan().rays()
N(1, 0),
N(0, 1)
in 2-d lattice N
sage: A2.gens()
(x, y)
```

#### **A2\_Z2** (names='x y', base\_ring=Rational Field)

Construct the orbifold  $\mathbb{A}^2/\mathbb{Z}_2$  as a toric variety.

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

## OUTPUT:

A toric variety.

### **EXAMPLES:**

```
sage: A2_Z2 = toric_varieties.A2_Z2()
sage: A2_Z2
2-d affine toric variety
sage: A2_Z2.fan().rays()
N(1, 0),
N(1, 2)
```

```
in 2-d lattice N
sage: A2_Z2.gens()
(x, y)
```

BCdlOG (names='v1 v2 c1 c2 v4 v5 b e1 e2 e3 f g v6', base\_ring=Rational Field)
Construct the 5-dimensional toric variety studied in [BCdlOG], [HLY2002]

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

### **OUTPUT**:

A CPR-Fano toric variety.

#### **EXAMPLES:**

```
sage: X = toric_varieties.BCdlOG()
sage: X
5-d CPR-Fano toric variety covered by 54 affine patches
sage: X.fan().rays()
N(-1, 0, 0, 2, 3),
N(0, -1, 0, 2, 3),
N(0, 0, -1, 2, 3),
N(0, 0, -1, 1, 2),
N(0,
      Ο,
         0, -1,
N(0,
      Ο,
         0, 0, -1),
N(0,
          0, 2,
      0,
                 3),
N(0,
      Ο,
         1,
             2,
                 3),
N(0,
      Ο,
          2,
             2,
N(0,
      0,
         1,
             1,
                 1),
             2,
N(0,
      1,
         2,
                 3),
             2,
     1,
         3,
N(0,
                 3),
         4,
N(1,0,
             2,
                 3)
in 5-d lattice N
sage: X.gens()
(v1, v2, c1, c2, v4, v5, b, e1, e2, e3, f, g, v6)
```

### REFERENCES:

• [HLY2002]

BCdlOG\_base (names='d4 d3 r2 r1 d2 u d1', base\_ring=Rational Field)

Construct the base of the  $\mathbb{P}^2(1,2,3)$  fibration BCdlog().

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

### **OUTPUT**:

A toric variety.

### **EXAMPLES:**

```
sage: base = toric_varieties.BCdlOG_base()
sage: base
3-d toric variety covered by 10 affine patches
sage: base.fan().rays()
N(-1, 0, 0),
N(0, -1, 0),
N(0, 0, -1),
N(0, 0, 1),
N(0, 1, 2),
N(0, 1, 3),
N(1, 0, 4)
in 3-d lattice N
sage: base.gens()
(d4, d3, r2, r1, d2, u, d1)
```

## Conifold (names='u x y v', base\_ring=Rational Field)

Construct the conifold as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: Q). The base ring for the toric variety.

### **OUTPUT:**

A toric variety.

#### **EXAMPLES:**

```
sage: Conifold = toric_varieties.Conifold()
sage: Conifold
3-d affine toric variety
sage: Conifold.fan().rays()
N(0, 0, 1),
N(0, 1, 1),
N(1, 0, 1),
N(1, 1, 1)
in 3-d lattice N
sage: Conifold.gens()
(u, x, y, v)
```

### **Cube\_deformation** (k, names=None, base\_ring=Rational Field)

Construct, for each  $k \in \mathbb{Z}_{\geq 0}$ , a toric variety with  $\mathbb{Z}_k$ -torsion in the Chow group.

The fans of this sequence of toric varieties all equal the face fan of a unit cube topologically, but the (1,1,1)-vertex is moved to (1,1,2k+1). This example was studied in [FS].

## INPUT:

- k integer. The case k=0 is the same as Cube\_face\_fan().
- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base ring a ring (default: Q). The base ring for the toric variety.

## OUTPUT:

A toric variety  $X_k$ . Its Chow group is  $A_1(X_k) = \mathbf{Z}_k$ .

#### **EXAMPLES:**

```
sage: X_2 = toric_varieties.Cube_deformation(2)
sage: X_2
3-d toric variety covered by 6 affine patches
sage: X_2.fan().rays()
N( 1,  1,  5),
N( 1,  -1,  1),
N(-1,  1,  1),
N(-1,  -1,  1),
N(-1,  -1,  -1),
N(-1,  1,  -1),
N( 1,  -1,  -1),
N( 1,  1,  -1)
in 3-d lattice N
sage: X_2.gens()
(z0, z1, z2, z3, z4, z5, z6, z7)
```

#### REFERENCES:

## Cube\_face\_fan (names='z+', base\_ring=Rational Field)

Construct the toric variety given by the face fan of the 3-dimensional unit lattice cube.

This variety has 6 conifold singularities but the fan is still polyhedral.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT:**

A CPR-Fano toric variety.

## **EXAMPLES:**

```
sage: Cube_face_fan = toric_varieties.Cube_face_fan()
sage: Cube_face_fan
3-d CPR-Fano toric variety covered by 6 affine patches
sage: Cube_face_fan.fan().rays()
N(1, 1, 1),
N(1, -1, 1),
N(-1, -1, 1),
N(-1, -1, 1),
N(-1, -1, -1),
N(-1, 1, -1),
N(1, -1, -1),
N(1, 1, -1)
in 3-d lattice N
sage: Cube_face_fan.gens()
(z0, z1, z2, z3, z4, z5, z6, z7)
```

### Cube\_nonpolyhedral (names='z+', base\_ring=Rational Field)

Construct the toric variety defined by a fan that is not the face fan of a polyhedron.

This toric variety is defined by a fan that is topologically like the face fan of a 3-dimensional cube, but with a different N-lattice structure.

### INPUT:

• names – string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.

• base\_ring - a ring (default: Q). The base ring for the toric variety.

#### **OUTPUT**:

A toric variety.

#### Note:

- This is an example of an non-polyhedral fan.
- Its Chow group has torsion:  $A_2(X) = \mathbf{Z}^5 \oplus \mathbf{Z}_2$

### **EXAMPLES:**

```
sage: Cube_nonpolyhedral = toric_varieties.Cube_nonpolyhedral()
sage: Cube_nonpolyhedral
3-d toric variety covered by 6 affine patches
sage: Cube_nonpolyhedral.fan().rays()
N( 1,  2,  3),
N( 1,  -1,  1),
N(-1,  1,  1),
N(-1,  1,  1),
N(-1,  -1,  1),
N(-1,  -1,  -1),
N( 1,  -1,  -1),
N( 1,  1,  -1)
in 3-d lattice N
sage: Cube_nonpolyhedral.gens()
(z0, z1, z2, z3, z4, z5, z6, z7)
```

#### Cube\_sublattice (names='z+', base\_ring=Rational Field)

Construct the toric variety defined by a face fan over a 3-dimensional cube, but not the unit cube in the N-lattice. See [FultonP65].

Its Chow group is  $A_2(X) = \mathbb{Z}^5$ , which distinguishes it from the face fan of the unit cube.

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT**:

A CPR-Fano toric variety.

#### **EXAMPLES:**

```
sage: Cube_sublattice = toric_varieties.Cube_sublattice()
sage: Cube_sublattice
3-d CPR-Fano toric variety covered by 6 affine patches
sage: Cube_sublattice.fan().rays()
N( 1,  0,  0),
N( 0,  1,  0),
N( 0,  0,  1),
N(-1,  1,  1),
N(-1,  1,  1),
N(-1,  0,  0),
N( 0,  -1,  0),
N( 0,  0,  -1),
```

```
N(1,-1,-1)
in 3-d lattice N
sage: Cube_sublattice.gens()
(z0, z1, z2, z3, z4, z5, z6, z7)
```

### **REFERENCES:**

**P** (*n*, *names='z+'*, *base\_ring=Rational Field*)

Construct the n-dimensional projective space  $\mathbb{P}^n$ .

### INPUT:

- n positive integer. The dimension of the projective space.
- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

### **OUTPUT:**

A CPR-Fano toric variety.

#### **EXAMPLES:**

```
sage: P3 = toric_varieties.P(3)
sage: P3
3-d CPR-Fano toric variety covered by 4 affine patches
sage: P3.fan().rays()
N( 1,  0,  0),
N( 0,  1,  0),
N( 0,  0,  1),
N(-1, -1, -1)
in 3-d lattice N
sage: P3.gens()
(z0, z1, z2, z3)
```

P1 (names='s t', base\_ring=Rational Field)

Construct the projective line  $\mathbb{P}^1$  as a toric variety.

## INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT**:

A CPR-Fano toric variety.

## **EXAMPLES:**

```
sage: P1 = toric_varieties.P1()
sage: P1
1-d CPR-Fano toric variety covered by 2 affine patches
sage: P1.fan().rays()
N( 1),
N(-1)
in 1-d lattice N
sage: P1.gens()
(s, t)
```

### P1xA1 (names='s t z', base\_ring=Rational Field)

Construct the Cartesian product  $\mathbb{P}^1 \times \mathbb{A}^1$  as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT:**

A toric variety.

### **EXAMPLES:**

```
sage: P1xA1 = toric_varieties.P1xA1()
sage: P1xA1
2-d toric variety covered by 2 affine patches
sage: P1xA1.fan().rays()
N( 1,  0),
N( -1,  0),
N( 0,  1)
in 2-d lattice N
sage: P1xA1.gens()
(s, t, z)
```

### **P1xP1** (names='s t x y', base\_ring=Rational Field)

Construct the del Pezzo surface  $\mathbb{P}^1 \times \mathbb{P}^1$  as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT:**

A CPR-Fano toric variety.

### **EXAMPLES:**

## P1xP1\_Z2 (names='s t x y', base\_ring=Rational Field)

Construct the toric  $\mathbb{Z}_2$ -orbifold of the del Pezzo surface  $\mathbb{P}^1 \times \mathbb{P}^1$  as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT:**

A CPR-Fano toric variety.

### **EXAMPLES:**

```
sage: P1xP1_Z2 = toric_varieties.P1xP1_Z2()
sage: P1xP1_Z2
2-d CPR-Fano toric variety covered by 4 affine patches
sage: P1xP1_Z2.fan().rays()
N( 1,  1),
N(-1,  -1),
N(-1,  -1),
N( 1,  -1)
in 2-d lattice N
sage: P1xP1_Z2.gens()
(s, t, x, y)
sage: P1xP1_Z2.Chow_group().degree(1)
C2 x Z^2
```

## **P2** (names='x y z', base\_ring=Rational Field)

Construct the projective plane  $\mathbb{P}^2$  as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

### **OUTPUT**:

A CPR-Fano toric variety.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2
2-d CPR-Fano toric variety covered by 3 affine patches
sage: P2.fan().rays()
N( 1,  0),
N( 0,  1),
N(-1, -1)
in 2-d lattice N
sage: P2.gens()
(x, y, z)
```

## **P2\_112** (names='z+', base\_ring=Rational Field)

Construct the weighted projective space  $\mathbb{P}^2(1,1,2)$ .

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

## OUTPUT:

A CPR-Fano toric variety.

#### **EXAMPLES:**

### **P2\_123** (names='z+', base\_ring=Rational Field)

Construct the weighted projective space  $\mathbb{P}^2(1,2,3)$ .

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: Q). The base ring for the toric variety.

### **OUTPUT:**

A CPR-Fano toric variety.

### **EXAMPLES:**

```
sage: P2_123 = toric_varieties.P2_123()
sage: P2_123
2-d CPR-Fano toric variety covered by 3 affine patches
sage: P2_123.fan().rays()
N( 1,  0),
N( 0,  1),
N( -2,  -3)
in 2-d lattice N
sage: P2_123.gens()
(z0, z1, z2)
```

### **P4\_11133** (names='z+', base\_ring=Rational Field)

Construct the weighted projective space  $\mathbb{P}^4(1,1,1,3,3)$ .

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

## **OUTPUT**:

A CPR-Fano toric variety.

### **EXAMPLES:**

```
sage: P4_11133 = toric_varieties.P4_11133()
sage: P4_11133
4-d CPR-Fano toric variety covered by 5 affine patches
sage: P4_11133.fan().rays()
N( 1,  0,  0,  0),
N( 0,  1,  0,  0),
N( 0,  1,  0,  0),
N( 0,  0,  1,  0),
```

```
N(0,0,0,1),
N(-3,-3,-1,-1)
in 4-d lattice N
sage: P4_11133.gens()
(z0, z1, z2, z3, z4)
```

### **P4\_11133\_resolved** (names='z+', base\_ring=Rational Field)

Construct the weighted projective space  $\mathbb{P}^4(1,1,1,3,3)$ .

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT**:

A CPR-Fano toric variety.

### **EXAMPLES:**

```
sage: P4_11133_resolved = toric_varieties.P4_11133_resolved()
sage: P4_11133_resolved
4-d CPR-Fano toric variety covered by 9 affine patches
sage: P4_11133_resolved.fan().rays()
N( 1,  0,  0,  0),
N( 0,  1,  0,  0),
N( 0,  0,  1,  0),
N( 0,  0,  0,  1),
N( 0,  0,  0,  1),
N( -3,  -3,  -1,  -1),
N( -1,  -1,  0,  0)
in 4-d lattice N
sage: P4_11133_resolved.gens()
(z0, z1, z2, z3, z4, z5)
```

### **P4\_11169** (names='z+', base\_ring=Rational Field)

Construct the weighted projective space  $\mathbb{P}^4(1,1,1,6,9)$ .

## INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base ring a ring (default: Q). The base ring for the toric variety.

#### **OUTPUT**:

A CPR-Fano toric variety.

## **EXAMPLES:**

```
sage: P4_11169 = toric_varieties.P4_11169()
sage: P4_11169
4-d CPR-Fano toric variety covered by 5 affine patches
sage: P4_11169.fan().rays()
N( 1,  0,  0,  0),
N( 0,  1,  0,  0),
N( 0,  0,  1,  0),
N( 0,  0,  0,  1),
```

```
N(-9, -6, -1, -1)
in 4-d lattice N
sage: P4_11169.gens()
(z0, z1, z2, z3, z4)
```

### **P4\_11169\_resolved** (names='z+', base\_ring=Rational Field)

Construct the blow-up of the weighted projective space  $\mathbb{P}^4(1,1,1,6,9)$  at its curve of  $\mathbb{Z}_3$  orbifold fixed points.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: Q). The base ring for the toric variety.

#### **OUTPUT:**

A CPR-Fano toric variety.

#### **EXAMPLES:**

```
sage: P4_11169_resolved = toric_varieties.P4_11169_resolved()
sage: P4_11169_resolved
4-d CPR-Fano toric variety covered by 9 affine patches
sage: P4_11169_resolved.fan().rays()
N(1, 0, 0, 0),
N(0, 1,
          0, 0),
N(0,0,
          1, 0),
N(0,0,
          0, 1),
N(-9, -6, -1, -1),
N(-3, -2, 0,
              0)
in 4-d lattice N
sage: P4_11169_resolved.gens()
(z0, z1, z2, z3, z4, z5)
```

## **WP** (\*q, \*\*kw)

Construct weighted projective n-space over a field.

#### INPUT:

• q – a sequence of positive integers relatively prime to one another. The weights q can be given either as a list or tuple, or as positional arguments.

Two keyword arguments:

- base\_ring a field (default: Q).
- names string or list (tuple) of strings (default 'z+'). See normalize\_names() for acceptable formats.

### **OUTPUT:**

• A toric variety. If  $q=(q_0,\ldots,q_n)$ , then the output is the weighted projective space  $\mathbb{P}(q_0,\ldots,q_n)$  over base\_ring. names are the names of the generators of the homogeneous coordinate ring.

### **EXAMPLES:**

A hyperelliptic curve C of genus 2 as a subscheme of the weighted projective plane  $\mathbb{P}(1,3,1)$ :

```
sage: X = toric_varieties.WP([1,3,1], names='x y z')
sage: X.inject_variables()
Defining x, y, z
sage: g = y^2-(x^6-z^6)
sage: C = X.subscheme([g]); C
Closed subscheme of 2-d toric variety covered by 3 affine patches defined by:
    -x^6 + z^6 + y^2
```

#### **dP6** (names='x u y v z w', base\_ring=Rational Field)

Construct the del Pezzo surface of degree 6 ( $\mathbb{P}^2$  blown up at 3 points) as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT:**

A CPR-Fano toric variety.

#### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6
2-d CPR-Fano toric variety covered by 6 affine patches
sage: dP6.fan().rays()
N( 0,   1),
N( -1,   0),
N(-1,   -1),
N( 0,   -1),
N( 1,   0),
N( 1,   1)
in 2-d lattice N
sage: dP6.gens()
(x, u, y, v, z, w)
```

## dP6xdP6 (names='x0 x1 x2 x3 x4 x5 y0 y1 y2 y3 y4 y5', base\_ring=Rational Field)

Construct the product of two del Pezzo surfaces of degree 6 ( $\mathbb{P}^2$  blown up at 3 points) as a toric variety.

### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

## **OUTPUT**:

A CPR-Fano toric variety.

#### **EXAMPLES:**

```
sage: dP6xdP6 = toric_varieties.dP6xdP6()
sage: dP6xdP6
4-d CPR-Fano toric variety covered by 36 affine patches
sage: dP6xdP6.fan().rays()
N( 0,  1,  0,  0),
N(-1,  0,  0,  0),
N(-1,  -1,  0,  0),
```

```
N(0, -1, 0, 0),
N(1, 0, 0, 0),
N(1, 1, 0, 0),
N(0,0,0,1),
N(0, 0, -1,
             0),
N(0, 0, -1, -1),
N(0,
     Ο,
         0, -1),
N(0,
     Ο,
         1,
            0),
N(0,0,
         1, 1)
in 4-d lattice N
sage: dP6xdP6.gens()
(x0, x1, x2, x3, x4, x5, y0, y1, y2, y3, y4, y5)
```

### **dP7** (names='x u y v z', base\_ring=Rational Field)

Construct the del Pezzo surface of degree 7 ( $\mathbb{P}^2$  blown up at 2 points) as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### OUTPUT

A CPR-Fano toric variety.

### **EXAMPLES:**

```
sage: dP7 = toric_varieties.dP7()
sage: dP7
2-d CPR-Fano toric variety covered by 5 affine patches
sage: dP7.fan().rays()
N( 0,  1),
N(-1,  0),
N(-1,  -1),
N( 0,  -1),
N( 1,  0)
in 2-d lattice N
sage: dP7.gens()
(x, u, y, v, z)
```

## **dP8** (names='t x y z', base\_ring=Rational Field)

Construct the del Pezzo surface of degree 8 ( $\mathbb{P}^2$  blown up at 1 point) as a toric variety.

#### INPUT:

- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT**:

A CPR-Fano toric variety.

### **EXAMPLES:**

```
sage: dP8 = toric_varieties.dP8()
sage: dP8
```

```
2-d CPR-Fano toric variety covered by 4 affine patches
sage: dP8.fan().rays()
N( 1,  1),
N( 0,  1),
N(-1, -1),
N( 1,  0)
in 2-d lattice N
sage: dP8.gens()
(t, x, y, z)
```

torus (n, names='z+', base\_ring=Rational Field)

Construct the n-dimensional algebraic torus  $(\mathbb{F}^{\times})^n$ .

#### INPUT:

- n non-negative integer. The dimension of the algebraic torus.
- names string. Names for the homogeneous coordinates. See normalize\_names() for acceptable formats.
- base\_ring a ring (default: **Q**). The base ring for the toric variety.

#### **OUTPUT**:

A toric variety.

#### **EXAMPLES:**

```
sage: T3 = toric_varieties.torus(3); T3
3-d affine toric variety
sage: T3.fan().rays()
Empty collection
in 3-d lattice N
sage: T3.fan().virtual_rays()
N(1, 0, 0),
N(0, 1, 0),
N(0, 0, 1)
in 3-d lattice N
sage: T3.gens()
(z0, z1, z2)
sage: sorted(T3.change_ring(GF(3)).point_set().list())
[[1 : 1 : 1], [1 : 1 : 2], [1 : 2 : 1], [1 : 2 : 2],
[2 : 1 : 1], [2 : 1 : 2], [2 : 2 : 1], [2 : 2 : 2]]
```

## 16.4 Toric divisors and divisor classes

Let X be a toric variety corresponding to a rational polyhedral fan  $\Sigma$ . A toric divisor D is a T-Weil divisor over a given coefficient ring (usually  $\mathbf{Z}$  or  $\mathbf{Q}$ ), i.e. a formal linear combination of torus-invariant subvarieties of X of codimension one. In homogeneous coordinates  $[z_0 : \cdots : z_k]$ , these are the subvarieties  $\{z_i = 0\}$ . Note that there is a finite number of such subvarieties, one for each ray of  $\Sigma$ . We generally identify

- Toric divisor D,
- Sheaf  $\mathcal{O}(D)$  (if D is Cartier, it is a line bundle),
- Support function  $\phi_D$  (if D is Q-Cartier, it is a function linear on each cone of  $\Sigma$ ).

### **EXAMPLES:**

We start with an illustration of basic divisor arithmetic:

```
sage: dP6 = toric_varieties.dP6()
sage: Dx,Du,Dy,Dv,Dz,Dw = dP6.toric_divisor_group().gens()
sage: Dx
V(x)
sage: -Dx
-V(x)
sage: 2*Dx
2*V(x)
sage: Dx*2
2 * V(x)
sage: (1/2)*Dx + Dy/3 - Dz
1/2*V(x) + 1/3*V(y) - V(z)
sage: Dx.parent()
Group of toric ZZ-Weil divisors
on 2-d CPR-Fano toric variety covered by 6 affine patches
sage: (Dx/2).parent()
Group of toric QQ-Weil divisors
on 2-d CPR-Fano toric variety covered by 6 affine patches
```

Now we create a more complicated variety to demonstrate divisors of different types:

```
sage: F = Fan(cones=[(0,1,2,3), (0,1,4)],
         rays=[(1,1,1), (1,-1,1), (1,-1,-1), (1,1,-1), (0,0,1)]
sage: X = ToricVariety(F)
sage: QQ_Cartier = X.divisor([2,2,1,1,1])
sage: Cartier = 2 * QQ_Cartier
sage: Weil = X.divisor([1,1,1,0,0])
sage: QQ_Weil = 1/2 * Weil
sage: [QQ_Weil.is_QQ_Weil(),
....: QQ_Weil.is_Weil(),
....: QQ_Weil.is_QQ_Cartier(),
....: QQ_Weil.is_Cartier()]
[True, False, False, False]
sage: [Weil.is_QQ_Weil(),
....: Weil.is_Weil(),
....: Weil.is_QQ_Cartier(),
....: Weil.is_Cartier()]
[True, True, False, False]
sage: [QQ_Cartier.is_QQ_Weil(),
....: QQ_Cartier.is_Weil(),
....: QQ_Cartier.is_QQ_Cartier(),
....: QQ_Cartier.is_Cartier()]
[True, True, True, False]
sage: [Cartier.is_QQ_Weil(),
....: Cartier.is_Weil(),
....: Cartier.is_QQ_Cartier(),
....: Cartier.is_Cartier()]
[True, True, True, True]
```

The toric (Q-Weil) divisors on a toric variety X modulo linear equivalence generate the divisor class group Cl(X), implemented by ToricRationalDivisorClassGroup. If X is smooth, this equals the **Picard group** Pic(X). We continue using del Pezzo surface of degree 6 introduced above:

```
sage: Cl = dP6.rational_class_group(); Cl
```

```
The toric rational divisor class group
of a 2-d CPR-Fano toric variety covered by 6 affine patches

sage: Cl.ngens()
4

sage: c0,c1,c2,c3 = Cl.gens()
sage: c = c0 + 2*c1 - c3; c
Divisor class [1, 2, 0, -1]
```

Divisors are mapped to their classes and lifted via:

```
sage: Dx.divisor_class()
Divisor class [1, 0, 0, 0]
sage: Dx.divisor_class() in Cl
True
sage: (-Dw+Dv+Dy).divisor_class()
Divisor class [1, 0, 0, 0]
sage: c0
Divisor class [1, 0, 0, 0]
sage: c0.lift()
V(x)
```

The (rational) divisor class group is where the Kaehler cone lives:

```
sage: Kc = dP6.Kaehler_cone(); Kc
4-d cone in 4-d lattice
sage: Kc.rays()
Divisor class [0, 1, 1, 0],
Divisor class [0, 0, 1, 1],
Divisor class [1, 1, 0, 0],
Divisor class [1, 1, 1, 0],
Divisor class [0, 1, 1, 1]
in Basis lattice of The toric rational divisor class group
of a 2-d CPR-Fano toric variety covered by 6 affine patches
sage: Kc.ray(1).lift()
V(y) + V(v)
```

Given a divisor D, we have an associated line bundle (or a reflexive sheaf, if D is not Cartier)  $\mathcal{O}(D)$ . Its sections are:

```
sage: P2 = toric_varieties.P2()
sage: H = P2.divisor(0); H
V(x)
sage: H.sections()
(M(-1, 0), M(-1, 1), M(0, 0))
sage: H.sections_monomials()
(z, y, x)
```

Note that the space of sections is always spanned by monomials. Therefore, we can grade the sections (as homogeneous monomials) by their weight under rescaling individual coordinates. This weight data amounts to a point of the dual lattice.

In the same way, we can grade cohomology groups by their cohomological degree and a weight:

```
sage: M = P2.fan().lattice().dual()
sage: H.cohomology(deg=0, weight=M(-1,0))
Vector space of dimension 1 over Rational Field
sage: _.dimension()
1
```

Here is a more complicated example with  $h^1(dP_6, \mathcal{O}(D)) = 4$ 

```
sage: D = dP6.divisor([0, 0, -1, 0, 2, -1])
sage: D.cohomology()
{0: Vector space of dimension 0 over Rational Field,
    1: Vector space of dimension 4 over Rational Field,
    2: Vector space of dimension 0 over Rational Field}
sage: D.cohomology(dim=True)
(0, 4, 0)
```

### **AUTHORS:**

• Volker Braun, Andrey Novoseltsev (2010-09-07): initial version.

Construct a divisor of toric\_variety.

#### INPUT:

- toric\_variety a toric variety;
- arg one of the following description of the toric divisor to be constructed:
  - None or 0 (the trivial divisor);
  - monomial in the homogeneous coordinates;
  - one-dimensional cone of the fan of toric\_variety or a lattice point generating such a cone;
  - sequence of rational numbers, specifying multiplicities for each of the toric divisors.
- ring usually either **Z** or **Q**. The base ring of the divisor group. If ring is not specified, a coefficient ring suitable for arg is derived.
- check bool (default: True). Whether to coerce coefficients into base ring. Setting it to False can speed up construction.
- reduce reduce (default: True). Whether to combine common terms. Setting it to False can speed up construction.

**Warning:** The coefficients of the divisor must be in the base ring and the terms must be reduced. If you set check=False and/or reduce=False it is your responsibility to pass valid input data arg.

#### **OUTPUT:**

• A sage.schemes.toric.divisor.ToricDivisor\_generic

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.divisor import ToricDivisor
sage: dP6 = toric_varieties.dP6()
sage: ToricDivisor(dP6, [(1,dP6.gen(2)), (1,dP6.gen(1))])
V(u) + V(y)
sage: ToricDivisor(dP6, (0,1,1,0,0,0), ring=QQ)
V(u) + V(y)
sage: dP6.inject_variables()
Defining x, u, y, v, z, w
sage: ToricDivisor(dP6, u+y)
Traceback (most recent call last):
...
```

```
ValueError: u + y is not a monomial!
sage: ToricDivisor(dP6, u*y)
V(u) + V(y)
sage: ToricDivisor(dP6, dP6.fan(dim=1)[2])
V(y)
sage: cone = Cone(dP6.fan(dim=1)[2])
sage: ToricDivisor(dP6, cone)
V(y)
sage: N = dP6.fan().lattice()
sage: ToricDivisor(dP6, N(1,1))
V(w)
```

We attempt to guess the correct base ring:

```
sage: ToricDivisor(dP6, [(1/2,u)])
1/2*V(u)
sage: _.parent()
Group of toric QQ-Weil divisors on
2-d CPR-Fano toric variety covered by 6 affine patches
sage: ToricDivisor(dP6, [(1/2,u), (1/2,u)])
V(u)
sage: _.parent()
Group of toric ZZ-Weil divisors on
2-d CPR-Fano toric variety covered by 6 affine patches
sage: ToricDivisor(dP6, [(u,u)])
Traceback (most recent call last):
...
TypeError: Cannot deduce coefficient ring for [(u, u)]!
```

class sage.schemes.toric.divisor.ToricDivisorGroup (toric\_variety, base\_ring)

Bases: sage.schemes.generic.divisor\_group.DivisorGroup\_generic

The group of (Q-T-Weil) divisors on a toric variety.

**EXAMPLES:** 

```
sage: P2 = toric_varieties.P2()
sage: P2.toric_divisor_group()
Group of toric ZZ-Weil divisors
on 2-d CPR-Fano toric variety covered by 3 affine patches
```

## class Element (v, parent, check=True, reduce=True)

Bases: sage.schemes.generic.divisor.Divisor\_generic

## $base\_extend(R)$

Extend the scalars of self to R.

INPUT:

• R – ring.

**OUTPUT**:

· toric divisor group.

**EXAMPLES:** 

```
sage: P2 = toric_varieties.P2()
sage: DivZZ = P2.toric_divisor_group()
```

```
sage: DivQQ = P2.toric_divisor_group(base_ring=QQ)
sage: DivZZ.base_extend(QQ) is DivQQ
True
```

#### qen(i)

Return the i-th generator of the divisor group.

#### INPUT:

• i – integer.

#### **OUTPUT**:

The divisor  $z_i = 0$ , where  $z_i$  is the *i*-th homogeneous coordinate.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: TDiv = P2.toric_divisor_group()
sage: TDiv.gen(2)
V(z)
```

### gens()

Return the generators of the divisor group.

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: TDiv = P2.toric_divisor_group()
sage: TDiv.gens()
(V(x), V(y), V(z))
```

## ngens()

Return the number of generators.

#### **OUTPUT**:

The number of generators of self, which equals the number of rays in the fan of the toric variety.

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: TDiv = P2.toric_divisor_group()
sage: TDiv.ngens()
3
```

```
Bases: sage.schemes.generic.divisor.Divisor_generic
```

Construct a (toric Weil) divisor on the given toric variety.

## INPUT:

- v a list of tuples (multiplicity, coordinate).
- parent ToricDivisorGroup. The parent divisor group.
- check boolean. Type-check the entries of v, see sage.schemes.generic.divisor\_group. DivisorGroup\_generic.\_\_init\_\_().

• reduce - boolean. Combine coefficients in v, see sage.schemes.generic.divisor\_group. DivisorGroup\_generic.\_\_init\_\_().

**Warning:** Do not construct <code>ToricDivisor\_generic</code> objects manually. Instead, use either the function <code>ToricDivisor()</code> or the method <code>divisor()</code> of toric varieties.

### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: ray = dP6.fan().ray(0)
sage: ray
N(0, 1)
sage: D = dP6.divisor(ray); D
V(x)
sage: D.parent()
Group of toric ZZ-Weil divisors
on 2-d CPR-Fano toric variety covered by 6 affine patches
```

### Chern\_character()

Return the Chern character of the sheaf  $\mathcal{O}(D)$  defined by the divisor D.

You can also use a shortcut ch ().

### **EXAMPLES:**

### Chow\_cycle (ring=Integer Ring)

Returns the Chow homology class of the divisor.

### INPUT:

• ring – Either ZZ (default) or QQ. The base ring of the Chow group.

#### **OUTPUT:**

The ChowCycle represented by the divisor.

### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6() sage: cone = dP6.fan(1)[0] sage: D = dP6.divisor(cone); D V(x) sage: D.Chow_cycle() (0 | -1, 0, 1, 1 | 0) sage: dP6.Chow_group()(cone) (0 | -1, 0, 1, 1 | 0)
```

### Kodaira\_map (names='z')

Return the Kodaira map.

The Kodaira map is the rational map  $X_{\Sigma} \to \mathbb{P}^{n-1}$ , where n equals the number of sections. It is defined by the monomial sections of the line bundle.

If the divisor is ample and the toric variety smooth or of dimension 2, then this is an embedding.

### INPUT:

• names – string (optional; default 'z'). The variable names for the destination projective space.

### **EXAMPLES:**

```
sage: P1.<u,v> = toric_varieties.P1()
sage: D = -P1.K()
sage: D.Kodaira_map()
Scheme morphism:
 From: 1-d CPR-Fano toric variety covered by 2 affine patches
       Closed subscheme of Projective Space of dimension 2
       over Rational Field defined by:
 -z1^2 + z0*z2
 Defn: Defined on coordinates by sending [u : v] to
        (v^2 : u*v : u^2)
sage: dP6 = toric_varieties.dP6()
sage: D = -dP6.K()
sage: D.Kodaira_map(names='x')
Scheme morphism:
 From: 2-d CPR-Fano toric variety covered by 6 affine patches
       Closed subscheme of Projective Space of dimension 6
       over Rational Field defined by:
 -x1*x5 + x0*x6,
 -x2*x3 + x0*x5,
 -x1*x3 + x0*x4,
 x4*x5 - x3*x6,
 -x1*x2 + x0*x3
 x3*x5 - x2*x6,
 x3*x4 - x1*x6,
 x3^2 - x1*x5
 x2*x4 - x1*x5,
 -x1*x5^2 + x2*x3*x6
 -x1*x5^3 + x2^2*x6^2
 Defn: Defined on coordinates by sending [x : u : y : v : z : w] to
        (x*u^2*y^2*v : x^2*u^2*y*w : u*y^2*v^2*z : x*u*y*v*z*w :
        x^2*u*z*w^2 : y*v^2*z^2*w : x*v*z^2*w^2
```

#### **ch**()

Return the Chern character of the sheaf  $\mathcal{O}(D)$  defined by the divisor D.

You can also use a shortcut ch ().

### **EXAMPLES:**

### coefficient(x)

Return the coefficient of x.

### INPUT:

• x – one of the homogeneous coordinates, either given by the variable or its index.

#### **OUTPUT:**

The coefficient of x.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: D = P2.divisor((11,12,13)); D

11*V(x) + 12*V(y) + 13*V(z)
sage: D.coefficient(1)
12
sage: P2.inject_variables()
Defining x, y, z
sage: D.coefficient(y)
12
```

### cohomology (weight=None, deg=None, dim=False)

Return the cohomology of the line bundle associated to the Cartier divisor or reflexive sheaf associated to the Weil divisor.

**Note:** The cohomology of a toric line bundle/reflexive sheaf is graded by the usual degree as well as by the M-lattice.

#### INPUT:

- weight (optional) a point of the *M*-lattice.
- deg (optional) the degree of the cohomology group.
- dim boolean. If False (default), the cohomology groups are returned as vector spaces. If True, only the dimension of the vector space(s) is returned.

#### **OUTPUT:**

The vector space  $H^{\text{deg}}(X, \mathcal{O}(D))$  (if deg is specified) or a dictionary {degree: cohomology (degree)} of all degrees between 0 and the dimension of the variety.

If weight is specified, return only the subspace  $H^{\text{deg}}(X, \mathcal{O}(D))_{\text{weight}}$  of the cohomology of the given weight.

If dim==True, the dimension of the cohomology vector space is returned instead of actual vector space. Moreover, if deg was not specified, a vector whose entries are the dimensions is returned instead of a dictionary.

#### ALGORITHM:

Roughly, Chech cohomology is used to compute the cohomology. For toric divisors, the local sections can be chosen to be monomials (instead of general homogeneous polynomials), this is the reason for the extra grading by  $m \in M$ . General references would be [Fu1993], [CLS]. Here are some salient features of our implementation:

• First, a finite set of M-lattice points is identified that supports the cohomology. The toric divisor determines a (polyhedral) chamber decomposition of  $M_{\mathbf{R}}$ , see Section 9.1 and Figure 4 of [CLS]. The cohomology vanishes on the non-compact chambers. Hence, the convex hull of the vertices of the chamber decomposition contains all non-vanishing cohomology groups. This is returned by the private method \_sheaf\_cohomology\_support().

It would be more efficient, but more difficult to implement, to keep track of all of the individual chambers. We leave this for future work.

• For each point  $m \in M$ , the weight-m part of the cohomology can be rewritten as the cohomology of a simplicial complex, see Exercise 9.1.10 of [CLS], [Perling]. This is returned by the private method \_sheaf\_complex().

The simplicial complex is the same for all points in a chamber, but we currently do not make use of this and compute each point  $m \in M$  separately.

• Finally, the cohomology (over  $\mathbf{Q}$ ) of this simplicial complex is computed in the private method  $\_$ sheaf $\_$ cohomology (). Summing over the supporting points  $m \in M$  yields the cohomology of the sheaf'.

#### REFERENCES:

#### **EXAMPLES:**

Example 9.1.7 of Cox, Little, Schenck: "Toric Varieties" [CLS]:

```
sage: F = Fan(cones=[(0,1), (1,2), (2,3), (3,4), (4,5), (5,0)],
             rays=[(1,0), (1,1), (0,1), (-1,0), (-1,-1), (0,-1)]
sage: dP6 = ToricVariety(F)
sage: D3 = dP6.divisor(2)
sage: D5 = dP6.divisor(4)
sage: D6 = dP6.divisor(5)
sage: D = -D3 + 2*D5 - D6
sage: D.cohomology()
{0: Vector space of dimension 0 over Rational Field,
1: Vector space of dimension 4 over Rational Field,
2: Vector space of dimension 0 over Rational Field}
sage: D.cohomology(deg=1)
Vector space of dimension 4 over Rational Field
sage: M = F.dual_lattice()
sage: D.cohomology( M(0,0) )
{0: Vector space of dimension 0 over Rational Field,
1: Vector space of dimension 1 over Rational Field,
2: Vector space of dimension 0 over Rational Field}
sage: D.cohomology( weight=M(0,0), deg=1 )
Vector space of dimension 1 over Rational Field
sage: dP6.integrate( D.ch() * dP6.Td() )
-4
```

#### Note the different output options:

```
sage: D.cohomology()
{0: Vector space of dimension 0 over Rational Field,
   1: Vector space of dimension 4 over Rational Field,
   2: Vector space of dimension 0 over Rational Field}
sage: D.cohomology(dim=True)
(0, 4, 0)
sage: D.cohomology(weight=M(0,0))
{0: Vector space of dimension 0 over Rational Field,
   1: Vector space of dimension 1 over Rational Field,
   2: Vector space of dimension 0 over Rational Field}
sage: D.cohomology(weight=M(0,0), dim=True)
(0, 1, 0)
sage: D.cohomology(deg=1)
Vector space of dimension 4 over Rational Field
sage: D.cohomology(deg=1, dim=True)
```

```
sage: D.cohomology(weight=M(0,0), deg=1)
Vector space of dimension 1 over Rational Field
sage: D.cohomology(weight=M(0,0), deg=1, dim=True)
1
```

Here is a Weil (non-Cartier) divisor example:

```
sage: K = toric_varieties.Cube_nonpolyhedral().K()
sage: K.is_Weil()
True
sage: K.is_QQ_Cartier()
False
sage: K.cohomology(dim=True)
(0, 0, 0, 1)
```

### cohomology\_class()

Return the degree-2 cohomology class associated to the divisor.

#### **OUTPUT:**

Returns the corresponding cohomology class as an instance of CohomologyClass. The cohomology class is the first Chern class of the associated line bundle  $\mathcal{O}(D)$ .

#### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: D = dP6.divisor(dP6.fan().ray(0) )
sage: D.cohomology_class()
[y + v - w]
```

## cohomology\_support()

Return the weights for which the cohomology groups do not vanish.

### **OUTPUT**:

A tuple of dual lattice points. self.cohomology (weight=m) does not vanish if and only if m is in the output.

**Note:** This method is provided for educational purposes and it is not an efficient way of computing the cohomology groups.

#### **EXAMPLES:**

### divisor\_class()

Return the linear equivalence class of the divisor.

### **OUTPUT**:

Returns the class of the divisor in  $Cl(X) \otimes_{\mathbf{Z}} \mathbf{Q}$  as an instance of ToricRationalDivisorClassGroup.

#### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: D = dP6.divisor(0)
sage: D.divisor_class()
Divisor class [1, 0, 0, 0]
```

### function\_value (point)

Return the value of the support function at point.

Let X be the ambient toric variety of self,  $\Sigma$  the fan associated to X, and N the ambient lattice of  $\Sigma$ .

#### INPUT:

• point – either an integer, interpreted as the index of a ray of  $\Sigma$ , or a point of the lattice N.

#### OUTPUT

• an integer or a rational number.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: D = P2.divisor([11,22,44])  # total degree 77
sage: D.function_value(0)
11
sage: N = P2.fan().lattice()
sage: D.function_value( N(1,1) )
33
sage: D.function_value( P2.fan().ray(0) )
11
```

### is Cartier()

Return whether the divisor is a Cartier-divisor.

**Note:** The sheaf  $\mathcal{O}(D)$  associated to the given divisor D is a line bundle if and only if the divisor is Cartier.

### **EXAMPLES:**

```
sage: X = toric_varieties.P4_11169()
sage: D = X.divisor(3)
sage: D.is_Cartier()
False
sage: D.is_QQ_Cartier()
True
```

## is\_QQ\_Cartier()

Return whether the divisor is a Q-Cartier divisor.

A Q-Cartier divisor is a divisor such that some multiple of it is Cartier.

### **EXAMPLES:**

```
sage: X = toric_varieties.P4_11169()
sage: D = X.divisor(3)
sage: D.is_QQ_Cartier()
True

sage: X = toric_varieties.Cube_face_fan()
sage: D = X.divisor(3)
sage: D.is_QQ_Cartier()
False
```

### is\_QQ\_Weil()

Return whether the divisor is a Q-Weil-divisor.

**Note:** This function returns always True since *ToricDivisor* can only describe Q-Weil divisors.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: D = P2.divisor([1,2,3])
sage: D.is_QQ_Weil()
True
sage: (D/2).is_QQ_Weil()
True
```

#### is Weil()

Return whether the divisor is a Weil-divisor.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: D = P2.divisor([1,2,3])
sage: D.is_Weil()
True
sage: (D/2).is_Weil()
False
```

## is\_ample()

Return whether a Q-Cartier divisor is ample.

#### **OUTPUT**:

• True if the divisor is in the ample cone, False otherwise.

## Note:

- For a QQ-Cartier divisor, some positive integral multiple is Cartier. We return whether this associated divisor is ample, i.e. corresponds to an ample line bundle.
- In the orbifold case, the ample cone is an open and full-dimensional cone in the rational divisor class group <code>ToricRationalDivisorClassGroup</code>.
- If the variety has worse than orbifold singularities, the ample cone is a full-dimensional cone within the (not full-dimensional) subspace spanned by the Cartier divisors inside the rational (Weil) divisor class group, that is, <code>ToricRationalDivisorClassGroup</code>. The ample cone is then relative open (open in this subspace).
- See also is\_nef().

• A toric divisor is ample if and only if its support function is strictly convex.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: K = P2.K()
sage: (+K).is_ample()
False
sage: (0*K).is_ample()
False
sage: (-K).is_ample()
```

### Example 6.1.3, 6.1.11, 6.1.17 of [CLS]:

### A (worse than orbifold) singular Fano threefold:

```
sage: points = [(1,0,0),(0,1,0),(0,0,1),(-2,0,-1),(-2,-1,0),(-3,-1,-1),(1,1,0)]
sage: facets = [[0,1,3],[0,1,6],[0,2,4],[0,2,6],[0,3,5],[0,4,5],[1,2,3,4,5,6]]
sage: X = ToricVariety(Fan(cones=facets, rays=points))
sage: X.rational_class_group().dimension()
4
sage: X.Kaehler_cone().rays()
Divisor class [1, 0, 0, 0]
in Basis lattice of The toric rational divisor class group
of a 3-d toric variety covered by 7 affine patches
sage: antiK = -X.K()
sage: antiK.divisor_class()
Divisor class [2, 0, 0, 0]
sage: antiK.is_ample()
True
```

### is\_integral()

Return whether the coefficients of the divisor are all integral.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: DZZ = P2.toric_divisor_group(base_ring=ZZ).gen(0); DZZ
V(x)
sage: DQQ = P2.toric_divisor_group(base_ring=QQ).gen(0); DQQ
V(x)
sage: DZZ.is_integral()
```

```
True
sage: DQQ.is_integral()
True
```

#### is\_nef()

Return whether a Q-Cartier divisor is nef.

#### **OUTPUT:**

• True if the divisor is in the closure of the ample cone, False otherwise.

#### Note:

- For a Q-Cartier divisor, some positive integral multiple is Cartier. We return whether this associated divisor is nef.
- The nef cone is the closure of the ample cone.
- See also is\_ample().
- A toric divisor is nef if and only if its support function is convex (but not necessarily strictly convex).
- A toric Cartier divisor is nef if and only if its linear system is basepoint free.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: K = P2.K()
sage: (+K).is_nef()
False
sage: (0*K).is_nef()
True
sage: (-K).is_nef()
```

# Example 6.1.3, 6.1.11, 6.1.17 of [CLS]:

### m (cone)

Return  $m_{\sigma}$  representing  $\phi_D$  on cone.

Let X be the ambient toric variety of this divisor D associated to the fan  $\Sigma$  in lattice N. Let M be the lattice dual to N. Given the cone  $\sigma = \langle v_1, \ldots, v_k \rangle$  in  $\Sigma$ , this method searches for a vector  $m_{\sigma} \in M_{\mathbf{Q}}$  such that  $\phi_D(v_i) = \langle m_{\sigma}, v_i \rangle$  for all  $i = 1, \ldots, k$ , where  $\phi_D$  is the support function of D.

INPUT:

• cone – A cone in the fan of the toric variety.

#### **OUTPUT**:

- If possible, a point of lattice M.
- If the dual vector cannot be chosen integral, a rational vector is returned.
- If there is no such vector (i.e. self is not even a Q-Cartier divisor), a ValueError is raised.

#### **EXAMPLES:**

```
sage: F = Fan(cones=[(0,1,2,3), (0,1,4)],
         rays=[(1,1,1), (1,-1,1), (1,-1,-1), (1,1,-1), (0,0,1)]
sage: X = ToricVariety(F)
sage: square_cone = X.fan().cone_containing(0,1,2,3)
sage: triangle_cone = X.fan().cone_containing(0,1,4)
sage: ray = X.fan().cone_containing(0)
sage: QQ_Cartier = X.divisor([2,2,1,1,1])
sage: QQ_Cartier.m(ray)
M(0, 2, 0)
sage: QQ Cartier.m(square_cone)
(3/2, 0, 1/2)
sage: QQ_Cartier.m(triangle_cone)
M(1, 0, 1)
sage: QQ_Cartier.m(Cone(triangle_cone))
M(1, 0, 1)
sage: Weil = X.divisor([1,1,1,0,0])
sage: Weil.m(square_cone)
Traceback (most recent call last):
. . .
ValueError: V(z0) + V(z1) + V(z2) is not QQ-Cartier,
cannot choose a dual vector on 3-d cone
of Rational polyhedral fan in 3-d lattice N!
sage: Weil.m(triangle_cone)
M(1, 0, 0)
```

# monomial(point)

Return the monomial in the homogeneous coordinate ring associated to the point in the dual lattice.

# INPUT:

• point - a point in self.variety().fan().dual\_lattice().

### **OUTPUT**:

For a fixed divisor D, the sections are generated by monomials in ToricVariety.  $coordinate\_ring$ . Alternatively, the monomials can be described as M-lattice points in the polyhedron D.polyhedron(). This method converts the points  $m \in M$  into homogeneous polynomials.

# **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: O3_P2 = -P2.K()
sage: M = P2.fan().dual_lattice()
sage: O3_P2.monomial( M(0,0) )
x*y*z
```

# ${\tt move\_away\_from}\ (cone)$

Move the divisor away from the orbit closure of cone.

### INPUT:

A cone of the fan of the toric variety.

### **OUTPUT**:

A (rationally equivalent) divisor that is moved off the orbit closure of the given cone.

**Note:** A divisor that is Weil but not Cartier might be impossible to move away. In this case, a ValueError is raised.

#### **EXAMPLES:**

```
sage: F = Fan(cones=[(0,1,2,3), (0,1,4)],
...: rays=[(1,1,1), (1,-1,1), (1,-1,-1), (1,1,-1), (0,0,1)])
sage: X = ToricVariety(F)
sage: square_cone = X.fan().cone_containing(0,1,2,3)
sage: triangle_cone = X.fan().cone_containing(0,1,4)
sage: line_cone = square_cone.intersection(triangle_cone)
sage: Cartier = X.divisor([2,2,1,1,1])
sage: Cartier
2*V(z0) + 2*V(z1) + V(z2) + V(z3) + V(z4)
sage: Cartier.move_away_from(line_cone)
-V(z2) - V(z3) + V(z4)
sage: QQ_Weil = X.divisor([1,0,1,1,0])
sage: QQ_Weil.move_away_from(line_cone)
V(z2)
```

### polyhedron()

Return the polyhedron  $P_D \subset M$  associated to a toric divisor D.

#### **OUTPUT:**

 $P_D$  as an instance of Polyhedron\_base.

### **EXAMPLES:**

```
sage: dP7 = toric_varieties.dP7()
sage: D = dP7.divisor(2)
sage: P_D = D.polyhedron(); P_D
A 0-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex
sage: P_D.Vrepresentation()
(A vertex at (0, 0),)
sage: D.is_nef()
False
sage: dP7.integrate( D.ch() * dP7.Td() )
sage: P_antiK = (-dP7.K()).polyhedron(); P_antiK
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 5 vertices
sage: P_antiK.Vrepresentation()
(A vertex at (1, -1), A vertex at (0, 1), A vertex at (1, 0),
A vertex at (-1, 1), A vertex at (-1, -1))
sage: P_antiK.integral_points()
((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0))
```

Example 6.1.3, 6.1.11, 6.1.17 of [CLS]:

A more complicated example where  $P_D$  is not a lattice polytope:

```
sage: X = toric_varieties.BCdlOG_base()
sage: antiK = -X.K()
sage: P_D = antiK.polyhedron()
sage: P_D
A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 8 vertices
sage: P_D.Vrepresentation()
(A vertex at (1, -1, 0), A vertex at (1, -3, 1),
A vertex at (1, 1, 1), A vertex at (-5, 1, 1),
A vertex at (1, 1, -1/2), A vertex at (1, 1/2, -1/2),
A vertex at (-1, -1, 0), A vertex at (-5, -3, 1))
sage: P_D.Hrepresentation()
(An inequality (-1, 0, 0) \times + 1 \ge 0, An inequality (0, -1, 0) \times + 1 \ge 0,
An inequality (0, 0, -1) \times + 1 >= 0, An inequality (1, 0, 4) \times + 1 >= 0,
An inequality (0, 1, 3) \times + 1 \ge 0, An inequality (0, 1, 2) \times + 1 \ge 0
sage: P_D.integral_points()
((-1, -1, 0), (0, -1, 0), (1, -1, 0), (-1, 0, 0), (0, 0, 0),
 (1, 0, 0), (-1, 1, 0), (0, 1, 0), (1, 1, 0), (-5, -3, 1),
 (-4, -3, 1), (-3, -3, 1), (-2, -3, 1), (-1, -3, 1), (0, -3, 1),
 (1, -3, 1), (-5, -2, 1), (-4, -2, 1), (-3, -2, 1), (-2, -2, 1),
 (-1, -2, 1), (0, -2, 1), (1, -2, 1), (-5, -1, 1), (-4, -1, 1),
 (-3, -1, 1), (-2, -1, 1), (-1, -1, 1), (0, -1, 1), (1, -1, 1),
 (-5, 0, 1), (-4, 0, 1), (-3, 0, 1), (-2, 0, 1), (-1, 0, 1),
 (0, 0, 1), (1, 0, 1), (-5, 1, 1), (-4, 1, 1), (-3, 1, 1),
 (-2, 1, 1), (-1, 1, 1), (0, 1, 1), (1, 1, 1))
```

### sections()

Return the global sections (as points of the M-lattice) of the line bundle (or reflexive sheaf) associated to the divisor.

### **OUTPUT**:

• tuple of points of lattice M.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.fan().nrays()
3
sage: P2.divisor(0).sections()
(M(-1, 0), M(-1, 1), M(0, 0))
```

```
sage: P2.divisor(1).sections()
(M(0, -1), M(0, 0), M(1, -1))
sage: P2.divisor(2).sections()
(M(0, 0), M(0, 1), M(1, 0))
```

The divisor can be non-nef yet still have sections:

### sections\_monomials()

Return the global sections of the line bundle associated to the Cartier divisor.

The sections are described as monomials in the generalized homogeneous coordinates.

### **OUTPUT**:

• tuple of monomials in the coordinate ring of self.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.fan().nrays()
3
sage: P2.divisor(0).sections_monomials()
(z, y, x)
sage: P2.divisor(1).sections_monomials()
(z, y, x)
sage: P2.divisor(2).sections_monomials()
(z, y, x)
```

### From [CoxTutorial] page 38:

```
sage: lp = LatticePolytope([(1,0),(1,1),(0,1),(-1,0),(0,-1)])
sage: lp
2-d reflexive polytope #5 in 2-d lattice M
sage: dP7 = ToricVariety( FaceFan(lp), 'x1, x2, x3, x4, x5')
sage: AK = -dP7.K()
sage: AK.sections()
(N(-1, 0), N(-1, 1), N(0, -1), N(0, 0),
N(0, 1), N(1, -1), N(1, 0), N(1, 1))
sage: AK.sections_monomials()
(x3*x4^2*x5, x2*x3^2*x4, x1^2*x2*x5^2, x1^2*x2^2*x3*x5, x1^2*x2^3*x3^2)
```

### **REFERENCES:**

```
class sage.schemes.toric.divisor.ToricRationalDivisorClassGroup(toric_variety)
    Bases: sage.modules.free_module.FreeModule_ambient_field, sage.structure.
    unique representation.UniqueRepresentation
```

The rational divisor class group of a toric variety.

The **T-Weil divisor class group** Cl(X) of a toric variety X is a finitely generated abelian group and can contain torsion. Its rank equals the number of rays in the fan of X minus the dimension of X.

The **rational divisor class group** is  $Cl(X) \otimes_{\mathbf{Z}} \mathbf{Q}$  and never includes torsion. If X is *smooth*, this equals the **Picard group** Pic(X), whose elements are the isomorphism classes of line bundles on X. The group law (which we write as addition) is the tensor product of the line bundles. The Picard group of a toric variety is always torsion-free.

**Warning:** Do not instantiate this class yourself. Use  $rational\_class\_group()$  method of toric varieties if you need the divisor class group. Or you can obtain it as the parent of any divisor class constructed, for example, via  $ToricDivisor\_generic.divisor\_class()$ .

### INPUT:

• toric\_variety - toric variety <sage.schemes.toric.variety.
ToricVariety\_field.

### **OUTPUT:**

• rational divisor class group of a toric variety.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.rational_class_group()
The toric rational divisor class group of a 2-d CPR-Fano
toric variety covered by 3 affine patches
sage: D = P2.divisor(0); D
V(x)
sage: Dclass = D.divisor_class(); Dclass
Divisor class [1]
sage: Dclass.lift()
V(y)
sage: Dclass.parent()
The toric rational divisor class group of a 2-d CPR-Fano
toric variety covered by 3 affine patches
```

#### Element

alias of ToricRationalDivisorClass

class sage.schemes.toric.divisor.ToricRationalDivisorClassGroup\_basis\_lattice(group)
 Bases: sage.modules.free module.FreeModule ambient pid

Construct the basis lattice of the group.

#### INPUT:

• group - toric rational divisor class group.

### **OUTPUT:**

• the basis lattice of group.

# EXAMPLES:

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: L = P1xP1.Kaehler_cone().lattice()
sage: L
Basis lattice of The toric rational divisor class group of a
2-d CPR-Fano toric variety covered by 4 affine patches
sage: L.basis()
[
Divisor class [1, 0],
Divisor class [0, 1]
]
```

#### Element

alias of ToricRationalDivisorClass

```
sage.schemes.toric.divisor.is_{ToricDivisor}(x)
```

Test whether x is a toric divisor.

#### INPUT:

• x - anything.

# **OUTPUT**:

• True if x is an instance of ToricDivisor\_generic and False otherwise.

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.divisor import is_ToricDivisor
sage: is_ToricDivisor(1)
False
sage: P2 = toric_varieties.P2()
sage: D = P2.divisor(0); D
V(x)
sage: is_ToricDivisor(D)
True
```

# 16.5 Toric rational divisor classes

This module is a part of the framework for toric varieties.

# **AUTHORS:**

• Volker Braun and Andrey Novoseltsev (2010-09-05): initial version.

```
class sage.schemes.toric.divisor_class.ToricRationalDivisorClass
    Bases: sage.modules.vector_rational_dense.Vector_rational_dense
```

Create a toric rational divisor class.

Warning: You probably should not construct divisor classes explicitly.

### INPUT:

• same as for Vector rational dense.

### **OUTPUT:**

• toric rational divisor class.

#### lift()

Return a divisor representing this divisor class.

#### **OUTPUT:**

An instance of ToricDivisor representing self.

### **EXAMPLES:**

```
sage: X = toric_varieties.Cube_nonpolyhedral()
sage: D = X.divisor([0,1,2,3,4,5,6,7]); D
V(z1) + 2*V(z2) + 3*V(z3) + 4*V(z4) + 5*V(z5) + 6*V(z6) + 7*V(z7)
sage: D.divisor_class()
Divisor class [29, 6, 8, 10, 0]
sage: Dequiv = D.divisor_class().lift(); Dequiv
6*V(z1) - 17*V(z2) - 22*V(z3) - 7*V(z4) + 25*V(z6) + 32*V(z7)
sage: Dequiv == D
False
sage: Dequiv.divisor_class() == D.divisor_class()
True
```

sage.schemes.toric.divisor\_class.is\_ToricRationalDivisorClass(x)

Check if x is a toric rational divisor class.

### INPUT:

• x - anything.

### **OUTPUT:**

• True if x is a toric rational divisor class, False otherwise.

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.divisor_class import (
...: is_ToricRationalDivisorClass)
sage: is_ToricRationalDivisorClass(1)
False
sage: dP6 = toric_varieties.dP6()
sage: D = dP6.rational_class_group().gen(0)
sage: D
Divisor class [1, 0, 0, 0]
sage: is_ToricRationalDivisorClass(D)
True
```

# 16.6 The Chow group of a toric variety

In general, the Chow group is an algebraic version of a homology theory. That is, the objects are formal linear combinations of submanifolds modulo relations. In particular, the objects of the Chow group are formal linear combinations of algebraic subvarieties and the equivalence relation is rational equivalence. There is no relative version of the Chow group, so it is not a generalized homology theory.

The Chow groups of smooth or mildly singular toric varieties are almost the same as the homology groups:

- For smooth toric varieties,  $A_k(X) = H_{2k}(X, \mathbf{Z})$ . While they are the same, using the cohomology ring instead of the Chow group will be much faster! The cohomology ring does not try to keep track of torsion and uses Groebner bases to encode the cup product.
- For simplicial toric varieties,  $A_k(X) \otimes \mathbf{Q} = H_{2k}(X, \mathbf{Q})$ .

Note that in these cases the odd-dimensional (co)homology groups vanish. But for sufficiently singular toric varieties the Chow group differs from the homology groups (and the odd-dimensional homology groups no longer vanish). For singular varieties the Chow group is much easier to compute than the (co)homology groups.

The toric Chow group of a toric variety is the Chow group generated by the toric subvarieties, that is, closures of orbits under the torus action. These are in one-to-one correspondence with the cones of the fan and, therefore, the toric Chow group is a quotient of the free Abelian group generated by the cones. In particular, the toric Chow group has finite rank. One can show [FMSS1] that the toric Chow groups equal the "full" Chow group of a toric variety, so there is no need to distinguish these in the following.

### **AUTHORS:**

• Volker Braun (2010-08-09): Initial version

#### REFERENCES:

### **EXAMPLES:**

```
sage: X = toric_varieties.Cube_deformation(7)
sage: X.is_smooth()
False
sage: X.is_orbifold()
False
sage: A = X.Chow_group()
sage: A.degree()
(Z, C7, C2 x C2 x Z^5, Z)
sage: A.degree(2).ngens()
7
sage: a = sum( A.gen(i) * (i+1) for i in range(0,A.ngens()) ) # an element of A
sage: a # long time (2s on sage.math, 2011)
( 3 | 1 mod 7 | 0 mod 2, 1 mod 2, 4, 5, 6, 7, 8 | 9 )
```

The Chow group elements are printed as ( a0 | a1 mod 7 | a2 mod 2, a3 mod 2, a4, a5, a6, a7, a8 | a9 ), which denotes the element of the Chow group in the same basis as A.degree(). The | separates individual degrees, so the example means:

- The degree-0 part is  $3 \in \mathbf{Z}$ .
- The degree-1 part is  $1 \in \mathbb{Z}_7$ .
- The torsion of the degree-2 Chow group is  $(0,1) \in \mathbf{Z}_2 \oplus \mathbf{Z}_2$ .
- The free part of the degree-2 Chow group is  $(4, 5, 6, 7, 8) \in \mathbb{Z}^5$ .
- The degree-3 part is  $9 \in \mathbf{Z}$ .

Note that the generators A.gens() are not sorted in any way. In fact, they may be of mixed degree. Use A.gens(degree=d) to obtain the generators in a fixed degree d. See ChowGroup\_class.gens() for more details.

Cones of toric varieties can determine their own Chow cycle:

```
sage: A = X.Chow_group(); A
Chow group of 3-d toric variety covered by 6 affine patches
sage: cone = X.fan(dim=2)[3]; cone
2-d cone of Rational polyhedral fan in 3-d lattice N
sage: A_cone = A(cone); A_cone
( 0 | 1 mod 7 | 0 mod 2, 0 mod 2, 0, 0, 0, 0 | 0 )
sage: A_cone.degree()
1
sage: 2 * A_cone
```

```
( 0 | 2 mod 7 | 0 mod 2, 0 mod 2, 0, 0, 0, 0 | 0 )

sage: A_cone + A.gen(0)
( 0 | 1 mod 7 | 0 mod 2, 1 mod 2, 0, 0, 0, 0 | 0 )
```

Chow cycles can be of mixed degrees:

```
sage: mixed = sum(A.gens()); mixed
(1 | 4 mod 7 | 1 mod 2, 1 mod 2, 1, 1, 1, 1, 1 | 1 )
sage: mixed.project_to_degree(1)
(0 | 4 mod 7 | 0 mod 2, 0 mod 2, 0, 0, 0, 0 | 0 )
sage: sum( mixed.project_to_degree(i) for i in range(0, X.dimension()+1) ) == mixed
True
```

```
class sage.schemes.toric.chow_group.ChowCycle(parent, v, check=True)
    Bases: sage.modules.fg_pid.fgp_element.FGP_Element
```

The elements of the Chow group.

**Warning:** Do not construct *ChowCycle* objects manually. Instead, use the parent *ChowGroup* to obtain generators or Chow cycles corresponding to cones of the fan.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: A = P2.Chow_group()
sage: A.gens()
(( 1 | 0 | 0 ), ( 0 | 1 | 0 ), ( 0 | 0 | 1 ))
sage: cone = P2.fan(1)[0]
sage: A(cone)
( 0 | 1 | 0 )
sage: A( Cone([(1,0)]) )
( 0 | 1 | 0 )
```

### cohomology\_class()

Return the (Poincaré-dual) cohomology class.

Consider a simplicial cone of the fan, that is, a d-dimensional cone spanned by d rays. Take the product of the corresponding d homogeneous coordinates. This monomial represents a cohomology classes of the toric variety X, see  $cohomology\_ring()$ . Its cohomological degree is 2d, which is the same degree as the Poincaré-dual of the (real)  $\dim(X) - 2d$ -dimensional torus orbit associated to the simplicial cone. By linearity, we can associate a cohomology class to each Chow cycle of a simplicial toric variety.

If the toric variety is compact and smooth, the associated cohomology class actually is the Poincaré dual (over the integers) of the Chow cycle. In particular, integrals of dual cohomology classes perform intersection computations.

If the toric variety is compact and has at most orbifold singularities, the torsion parts in cohomology and the Chow group can differ. But they are still isomorphic as rings over the rationals. Moreover, the normalization of integration (volume\_class) and count\_points() are chosen to agree.

### **OUTPUT**:

The CohomologyClass which is associated to the Chow cycle.

If the toric variety is not simplicial, that is, has worse than orbifold singularities, there is no way to associate a cohomology class of the correct degree. In this case, <code>cohomology\_class()</code> raises a <code>ValueError</code>.

### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: cone = dP6.fan().cone_containing(2,3)
sage: HH = dP6.cohomology_ring()
sage: A = dP6.Chow_group()
sage: HH(cone)
[-w^2]
sage: A(cone)
( 1 | 0, 0, 0, 0 | 0 )
sage: A(cone).cohomology_class()
[-w^2]
```

Here is an example of a toric variety with orbifold singularities, where we can also use the isomorphism with the rational cohomology ring:

```
sage: WP4 = toric_varieties.P4_11169()
sage: A = WP4.Chow_group()
sage: HH = WP4.cohomology_ring()
sage: cone3d = Cone([(0,0,1,0), (0,0,0,1), (-9,-6,-1,-1)])
sage: A(cone3d)
(0 | 1 | 0 | 0 | 0)
sage: HH(cone3d)
[3*z4^3]
sage: D = -WP4.K() # the anticanonical divisor
sage: A(D)
(0 | 0 | 0 | 18 | 0 )
sage: HH(D)
[18*z4]
sage: WP4.integrate( A(cone3d).cohomology_class() * D.cohomology_class() )
sage: WP4.integrate( HH(cone3d) * D.cohomology_class() )
sage: A(cone3d).intersection_with_divisor(D).count_points()
```

# count\_points()

Return the number of points in the Chow cycle.

### **OUTPUT:**

An element of self.base\_ring(), which is usually **Z**. The number of points in the Chow cycle.

# **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: A = P2.Chow_group()
sage: a = 5*A.gen(0) + 7*A.gen(1); a
( 5 | 7 | 0 )
sage: a.count_points()
```

In the case of a smooth complete toric variety, the Chow (homology) groups are Poincaré dual to the integral cohomology groups. Here is such a smooth example:

```
sage: D = P2.divisor(1)
sage: a = D.Chow_cycle()
```

```
sage: aD = a.intersection_with_divisor(D)
sage: aD.count_points()
1
sage: P2.integrate( aD.cohomology_class() )
1
```

For toric varieties with at most orbifold singularities, the isomorphism only holds over **Q**. But the normalization of the integral is still chosen such that the intersection numbers (which are potentially rational) computed both ways agree:

```
sage: P1xP1_Z2 = toric_varieties.P1xP1_Z2()
sage: Dt = P1xP1_Z2.divisor(1); Dt
V(t)
sage: Dy = P1xP1_Z2.divisor(3); Dy
V(y)
sage: Dt.Chow_cycle(QQ).intersection_with_divisor(Dy).count_points()
1/2
sage: P1xP1_Z2.integrate( Dt.cohomology_class() * Dy.cohomology_class() )
1/2
```

#### degree()

The degree of the Chow cycle.

### **OUTPUT**:

Integer. The complex dimension of the subvariety representing the Chow cycle. Raises a ValueError if the Chow cycle is a sum of mixed degree cycles.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: A = P2.Chow_group()
sage: [ a.degree() for a in A.gens() ]
[0, 1, 2]
```

# intersection\_with\_divisor(divisor)

Intersect the Chow cycle with divisor.

See [FultonChow] for a description of the toric algorithm.

### INPUT:

• divisor – a *ToricDivisor* that can be moved away from the Chow cycle. For example, any Cartier divisor. See also *ToricDivisor.move\_away\_from*.

#### **OUTPUT**:

A new ChowCycle. If the divisor is not Cartier then this method potentially raises a ValueError, indicating that the divisor cannot be made transversal to the Chow cycle.

# **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: cone = dP6.fan().cone_containing(2); cone
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: D = dP6.divisor(cone); D
V(y)
sage: A = dP6.Chow_group()
sage: A(cone)
```

```
( 0 | 0, 0, 0, 1 | 0 )
sage: intersection = A(cone).intersection_with_divisor(D); intersection
( -1 | 0, 0, 0, 0 | 0 )
sage: intersection.count_points()
-1
```

You can do the same computation over the rational Chow group since there is no torsion in this case:

```
sage: A_QQ = dP6.Chow_group(base_ring=QQ)
sage: A_QQ(cone)
( 0 | 0, 0, 0, 1 | 0 )
sage: intersection_QQ = A_QQ(cone).intersection_with_divisor(D); intersection
( -1 | 0, 0, 0, 0 | 0 )
sage: intersection_QQ.count_points()
-1
sage: type(intersection_QQ.count_points())
<... 'sage.rings.rational.Rational'>
sage: type(intersection.count_points())
<... 'sage.rings.integer.Integer'>
```

### project\_to\_degree (degree)

Project a (mixed-degree) Chow cycle to the given degree.

#### INPUT:

• degree – integer. The degree to project to.

### **OUTPUT:**

The projection of the Chow class to the given degree as a new ChowCycle of the same Chow group.

### **EXAMPLES:**

```
sage: A = toric_varieties.P2().Chow_group()
sage: cycle = 10*A.gen(0) + 11*A.gen(1) + 12*A.gen(2)
sage: cycle
( 10 | 11 | 12 )
sage: cycle.project_to_degree(2)
( 0 | 0 | 12 )
```

# class sage.schemes.toric.chow\_group.ChowGroupFactory

Bases: sage.structure.factory.UniqueFactory

Factory for ChowGroup\_class.

### create\_key\_and\_extra\_args (toric\_variety, base\_ring=Integer Ring, check=True)

Create a key that uniquely determines the ChowGroup\_class.

# INPUT:

- toric\_variety a toric variety.
- $\bullet$  base\_ring either  $\mathbf{Z}$  (default) or  $\mathbf{Q}.$  The coefficient ring of the Chow group.
- check boolean (default: True).

# **EXAMPLES:**

```
sage: from sage.schemes.toric.chow_group import *
sage: P2 = toric_varieties.P2()
```

# create\_object (version, key, \*\*extra\_args)

Create a ChowGroup class.

#### INPUT:

- version object version. Currently not used.
- key a key created by create\_key\_and\_extra\_args().
- \*\*extra\_args Currently not used.

### **EXAMPLES:**

```
sage: from sage.schemes.toric.chow_group import *
sage: P2 = toric_varieties.P2()
sage: ChowGroup(P2) # indirect doctest
Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches
```

```
class sage.schemes.toric.chow_group.ChowGroup_class(toric_variety, base_ring, check)
```

Bases: sage.modules.fg\_pid.fgp\_module.FGP\_Module\_class, sage.misc.fast\_methods.WithEqualityById

The Chow group of a toric variety.

# **EXAMPLES:**

```
sage: P2=toric_varieties.P2()
sage: from sage.schemes.toric.chow_group import ChowGroup_class
sage: A = ChowGroup_class(P2,ZZ,True); A
Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches
sage: A.an_element()
( 1 | 0 | 0 )
```

### Element

alias of ChowCycle

### coordinate\_vector (chow\_cycle, degree=None, reduce=True)

Return the coordinate vector of the chow\_cycle.

#### INPUT:

- chow\_cycle a ChowCycle.
- degree None (default) or an integer.
- reduce boolean (default: True). Whether to reduce modulo the invariants.

# **OUTPUT**:

- If degree is None (default), the coordinate vector relative to the basis self.gens() is returned.
- If some integer degree=d is specified, the chow cycle is projected to the given degree and the coordinate vector relative to the basis self.gens (degree=d) is returned.

### **EXAMPLES:**

```
sage: A = toric_varieties.P2().Chow_group()
sage: a = A.gen(0) + 2*A.gen(1) + 3*A.gen(2)
sage: A.coordinate_vector(a)
(1, 2, 3)
sage: A.coordinate_vector(a, degree=1)
(2)
```

### degree (k=None)

Return the degree-k Chow group.

### INPUT:

• k – an integer or None (default). The degree of the Chow group.

### **OUTPUT:**

- if k was specified, the Chow group  $A_k$  as an Abelian group.
- if k was not specified, a tuple containing the Chow groups in all degrees.

#### Note:

- For a smooth toric variety, this is the same as the Poincaré-dual cohomology group  $H^{d-2k}(X, \mathbf{Z})$ .
- For a simplicial toric variety ("orbifold"),  $A_k(X) \otimes \mathbf{Q} = H^{d-2k}(X, \mathbf{Q})$ .

#### **EXAMPLES:**

Four exercises from page 65 of [FultonP65]. First, an example with  $A_1(X) = \mathbf{Z} \oplus \mathbf{Z}/3\mathbf{Z}$ :

Second, an example with  $A_2(X) = \mathbf{Z}^2$ :

```
sage: points = [[1,0,0],[0,1,0],[0,0,1],[1,-1,1],[-1,0,-1]]
sage: l = LatticePolytope(points)
sage: l.show3d()
sage: X = ToricVariety(FaceFan(l))
sage: A = X.Chow_group()
sage: A.degree(2)
Z^2
```

Third, an example with  $A_2(X) = \mathbf{Z}^5$ :

Fourth, a fan that is not the fan over a polytope. Combinatorially, the fan is the same in the third example, only the coordinates of the first point are different. But the resulting fan is not the face fan of a cube, so the variety is "more singular". Its Chow group has torsion,  $A_2(X) = \mathbf{Z}^5 \oplus \mathbf{Z}/2$ :

### Finally, Example 1.3 of [FS]:

```
sage: points_mod = lambda k: matrix([[ 1, 1, 2*k+1],[ 1,-1, 1],
                                  [-1, 1, 1], [-1, -1, 1], [-1, -1, -1],
                                 [-1, 1, -1], [1, -1, -1], [1, 1, -1]]
. . . . :
sage: rays = lambda k: matrix([[1,1,1],[1,-1,1],[-1,1,1]]
                                 ).solve_left(points_mod(k)).rows()
sage: cones = [[0,1,2,3],[4,5,6,7],[0,1,7,6],
              [4,5,3,2],[0,2,5,7],[4,6,1,3]]
sage: X_Delta = lambda k: ToricVariety(Fan(cones=cones, rays=rays(k)))
sage: X_Delta(0).Chow_group().degree() # long time (3s on sage.math, 2011)
(Z, Z, Z^5, Z)
sage: X_Delta(1).Chow_group().degree() # long time (3s on sage.math, 2011)
(Z, 0, Z^5, Z)
sage: X_Delta(2).Chow_group().degree() # long time (3s on sage.math, 2011)
(Z, C2, Z^5, Z)
sage: X_Delta(2).Chow_group(base_ring=QQ).degree() # long time (4s on sage.
→math, 2011)
(Q, 0, Q^5, Q)
```

### gens (degree=None)

Return the generators of the Chow group.

### INPUT:

• degree – integer (optional). The degree of the Chow group.

### **OUTPUT**:

- if no degree is specified, the generators of the whole Chow group. The chosen generators may be of mixed degree.
- if degree= k was specified, the generators of the degree-k part  $A_k$  of the Chow group.

### **EXAMPLES:**

```
sage: A = toric_varieties.P2().Chow_group()
sage: A.gens()
(( 1 | 0 | 0 ), ( 0 | 1 | 0 ), ( 0 | 0 | 1 ))
sage: A.gens(degree=1)
(( 0 | 1 | 0 ),)
```

# relation\_gens()

Return the Chow cycles equivalent to zero.

For each d-k-1-dimensional cone  $\rho \in \Sigma^{(d-k-1)}$ , the relations in  $A_k(X)$ , that is the cycles equivalent to zero, are generated by

$$0 \stackrel{!}{=} \operatorname{div}(u) = \sum_{\rho < \sigma \in \Sigma^{(n-p)}} \langle u, n_{\rho,\sigma} \rangle V(\sigma), \qquad u \in M(\rho)$$

where  $n_{\rho,\sigma}$  is a (randomly chosen) lift of the generator of  $N_{\sigma}/N_{\rho} \simeq \mathbf{Z}$ . See also Exercise 12.5.7 of [CLS].

See also relations () to obtain the relations as submodule of the free module generated by the cones. Or use self.relations().gens() to list the relations in the free module.

#### **OUTPUT:**

A tuple of Chow cycles, each rationally equivalent to zero, that generates the rational equivalence.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: A = P2.Chow_group()
sage: first = A.relation_gens()[0]
sage: first
( 0 | 0 | 0 )
sage: first.is_zero()
True
sage: first.lift()
(0, 1, 0, -1, 0, 0, 0)
```

#### scheme()

Return the underlying toric variety.

#### **OUTPUT**:

A ToricVariety.

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: A = P2.Chow_group()
sage: A.scheme()
2-d CPR-Fano toric variety covered by 3 affine patches
sage: A.scheme() is P2
True
```

```
class sage.schemes.toric.chow_group.ChowGroup_degree_class (A, d) Bases: sage.structure.sage_object.SageObject
```

A fixed-degree subgroup of the Chow group of a toric variety.

```
Warning: Use degree () to construct ChowGroup_degree_class instances.
```

### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: A = P2.Chow_group()
sage: A
Chow group of 2-d CPR-Fano toric variety covered by 3 affine patches
sage: A.degree()
(Z, Z, Z)
sage: A.degree(2)
Z
sage: type(_)
<class 'sage.schemes.toric.chow_group.ChowGroup_degree_class'>
```

### gen(i)

Return the i-th generator of the Chow group of fixed degree.

INPUT:

• i – integer. The index of the generator to be returned.

### **OUTPUT**:

A tuple of Chow cycles of fixed degree generating module ().

### **EXAMPLES:**

```
sage: projective_plane = toric_varieties.P2()
sage: A2 = projective_plane.Chow_group().degree(2)
sage: A2.gen(0)
( 0 | 0 | 1 )
```

### gens()

Return the generators of the Chow group of fixed degree.

### **OUTPUT**:

A tuple of Chow cycles of fixed degree generating module ().

### **EXAMPLES:**

```
sage: projective_plane = toric_varieties.P2()
sage: A2 = projective_plane.Chow_group().degree(2)
sage: A2.gens()
(( 0 | 0 | 1 ),)
```

#### module()

Return the submodule of the toric Chow group generated.

#### **OUTPUT:**

A sage.modules.fg\_pid.fgp\_module.FGP\_Module\_class

### **EXAMPLES:**

```
sage: projective_plane = toric_varieties.P2()
sage: A2 = projective_plane.Chow_group().degree(2)
sage: A2.module()
Finitely generated module V/W over Integer Ring with invariants (0)
```

# ngens()

Return the number of generators.

### **OUTPUT**:

An integer.

### **EXAMPLES:**

```
sage: projective_plane = toric_varieties.P2()
sage: A2 = projective_plane.Chow_group().degree(2)
sage: A2.ngens()
1
```

```
sage.schemes.toric.chow_group.is_ChowCycle(x)
```

Return whether x is a ChowGroup\_class

### INPUT:

• x - anything.

### **OUTPUT**:

True or False.

### **EXAMPLES:**

```
sage: P2=toric_varieties.P2()
sage: A = P2.Chow_group()
sage: from sage.schemes.toric.chow_group import *
sage: is_ChowCycle(A)
False
sage: is_ChowCycle(A.an_element())
True
sage: is_ChowCycle('Victoria')
False
```

sage.schemes.toric.chow\_group.is\_ChowGroup(x)

Return whether x is a ChowGroup\_class

### INPUT:

• x - anything.

### **OUTPUT:**

True or False.

#### **EXAMPLES:**

```
sage: P2=toric_varieties.P2()
sage: A = P2.Chow_group()
sage: from sage.schemes.toric.chow_group import is_ChowGroup
sage: is_ChowGroup(A)
True
sage: is_ChowGroup('Victoria')
False
```

# 16.7 Toric ideals

A toric ideal (associated to an integer matrix A) is an ideal of the form

$$I_A = \langle x^u - x^v : u, v \in \mathbf{Z}_{\geq}^n, u - v \in \ker(A) \rangle$$

In other words, it is an ideal generated by irreducible "binomials", that is, differences of monomials without a common factor. Since the Buchberger algorithm preserves this property, any Groebner basis is then also generated by binomials.

#### **EXAMPLES:**

```
sage: A = matrix([[1,1,1],[0,1,2]])
sage: IA = ToricIdeal(A)
sage: IA.ker()
Free module of degree 3 and rank 1 over Integer Ring
User basis matrix:
[-1 2 -1]
sage: IA
Ideal (-z1^2 + z0*z2) of Multivariate Polynomial
Ring in z0, z1, z2 over Rational Field
```

Here, the "naive" ideal generated by  $z_0z_2 - z_1^2$  does already equal the toric ideal. But that is not true in general! For example, this toric ideal ([ProcSympPureMath62], Example 1.2) is the twisted cubic and cannot be generated by  $2 = \dim \ker(A)$  polynomials:

```
sage: A = matrix([[3,2,1,0],[0,1,2,3]])
sage: IA = ToricIdeal(A)
sage: IA.ker()
Free module of degree 4 and rank 2 over Integer Ring
User basis matrix:
[-1  1  1 -1]
[-1  2 -1  0]
sage: IA
Ideal (-z1*z2 + z0*z3, -z1^2 + z0*z2, z2^2 - z1*z3) of
Multivariate Polynomial Ring in z0, z1, z2, z3 over Rational Field
```

The following family of toric ideals is from Example 4.4 of [ProcSympPureMath62]. One can show that  $I_d$  is generated by one quadric and d binomials of degree d:

```
sage: I = lambda d: ToricIdeal(matrix([[1,1,1,1,1],[0,1,1,0,0],[0,0,1,1,d]]))
sage: I(2)
Ideal (-z3^2 + z0*z4,
      z0*z2 - z1*z3,
      z2*z3 - z1*z4) of
Multivariate Polynomial Ring in z0, z1, z2, z3, z4 over Rational Field
sage: I(3)
Ideal (-z3^3 + z0^2*z4)
      z0*z2 - z1*z3
      z2*z3^2 - z0*z1*z4
      z2^2*z3 - z1^2*z4) of
Multivariate Polynomial Ring in z0, z1, z2, z3, z4 over Rational Field
sage: I(4)
Ideal (-z3^4 + z0^3*z4)
      z0*z2 - z1*z3,
      z2*z3^3 - z0^2*z1*z4
       z2^2*z3^2 - z0*z1^2*z4
       z2^3*z3 - z1^3*z4) of
Multivariate Polynomial Ring in z0, z1, z2, z3, z4 over Rational Field
```

# Finally, the example in [GRIN]

### REFERENCES:

### **AUTHORS**:

• Volker Braun (2011-01-03): Initial version

```
\begin{tabular}{ll} \textbf{class} & \texttt{sage.schemes.toric.ideal.ToricIdeal} (A, & \textit{names='z'}, & \textit{base\_ring=Rational} \\ & Field, & \textit{polynomial\_ring=None}, & \textit{algorithm='HostenSturmfels'}) \\ & \textbf{Bases:} & \texttt{sage.rings.polynomial.multi\_polynomial\_ideal.MPolynomialIdeal} \\ \end{tabular}
```

This class represents a toric ideal defined by an integral matrix.

16.7. Toric ideals 305

### INPUT:

- A integer matrix. The defining matrix of the toric ideal.
- names string (optional). Names for the variables. By default, this is 'z' and the variables will be named z0, z1,...
- base\_ring a ring (optional). Default: Q. The base ring of the ideal. A toric ideal uses only coefficients ±1.
- polynomial\_ring a polynomial ring (optional). The polynomial ring to construct the ideal in.

You may specify the ambient polynomial ring via the polynomial\_ring parameter or via the names and base\_ring parameter. A ValueError is raised if you specify both.

• algorithm – string (optional). The algorithm to use. For now, must be 'HostenSturmfels' which is the algorithm proposed by Hosten and Sturmfels in [GRIN].

### **EXAMPLES:**

```
sage: A = matrix([[1,1,1],[0,1,2]])
sage: ToricIdeal(A)
Ideal (-z1^2 + z0*z2) of Multivariate Polynomial Ring
in z0, z1, z2 over Rational Field
```

First way of specifying the polynomial ring:

```
sage: ToricIdeal(A, names='x,y,z', base_ring=ZZ)
Ideal (-y^2 + x*z) of Multivariate Polynomial Ring
in x, y, z over Integer Ring
```

Second way of specifying the polynomial ring:

```
sage: R.<x,y,z> = ZZ[]
sage: ToricIdeal(A, polynomial_ring=R)
Ideal (-y^2 + x*z) of Multivariate Polynomial Ring
in x, y, z over Integer Ring
```

It is an error to specify both:

```
sage: ToricIdeal(A, names='x,y,z', polynomial_ring=R)
Traceback (most recent call last):
...
ValueError: You must not specify both variable names and a polynomial ring.
```

**A**()

Return the defining matrix.

**OUTPUT**:

An integer matrix.

**EXAMPLES:** 

```
sage: A = matrix([[1,1,1],[0,1,2]])
sage: IA = ToricIdeal(A)
sage: IA.A()
[1 1 1]
[0 1 2]
```

ker()

Return the kernel of the defining matrix.

### **OUTPUT:**

The kernel of self.A().

# **EXAMPLES:**

```
sage: A = matrix([[1,1,1],[0,1,2]])
sage: IA = ToricIdeal(A)
sage: IA.ker()
Free module of degree 3 and rank 1 over Integer Ring
User basis matrix:
[-1 2 -1]
```

#### nvariables()

Return the number of variables of the ambient polynomial ring.

### **OUTPUT:**

Integer. The number of columns of the defining matrix A().

### **EXAMPLES:**

```
sage: A = matrix([[1,1,1],[0,1,2]])
sage: IA = ToricIdeal(A)
sage: IA.nvariables()
3
```

# 16.8 Morphisms of toric varieties

There are three "obvious" ways to map toric varieties to toric varieties:

- 1. Polynomial maps in local coordinates, the usual morphisms in algebraic geometry.
- 2. Polynomial maps in the (global) homogeneous coordinates.
- 3. Toric morphisms, that is, algebraic morphisms equivariant with respect to the torus action on the toric variety.

Both 2 and 3 are special cases of 1, which is just to say that we always remain within the realm of algebraic geometry. But apart from that, none is included in one of the other cases. In the examples below, we will explore some algebraic maps that can or can not be written as a toric morphism. Often a toric morphism can be written with polynomial maps in homogeneous coordinates, but sometimes it cannot.

The toric morphisms are perhaps the most mysterious at the beginning. Let us quickly review their definition (See Definition 3.3.3 of [CLS]). Let  $\Sigma_1$  be a fan in  $N_{1,\mathbf{R}}$  and  $\Sigma_2$  be a fan in  $N_{2,\mathbf{R}}$ . A morphism  $\phi:X_{\Sigma_1}\to X_{\Sigma_2}$  of the associated toric varieties is toric if  $\phi$  maps the maximal torus  $T_{N_1}\subseteq X_{\Sigma_1}$  into  $T_{N_2}\subseteq X_{\Sigma_2}$  and  $\phi|_{T_N}$  is a group homomorphism.

The data defining a toric morphism is precisely what defines a fan morphism (see fan\_morphism), extending the more familiar dictionary between toric varieties and fans. Toric geometry is a functor from the category of fans and fan morphisms to the category of toric varieties and toric morphisms.

**Note:** Do not create the toric morphisms (or any morphism of schemes) directly from the SchemeMorphism... classes. Instead, use the hom () method common to all algebraic schemes to create new homomorphisms.

### **EXAMPLES:**

First, consider the following embedding of  $\mathbb{P}^1$  into  $\mathbb{P}^2$ 

```
sage: P2.<x,y,z> = toric_varieties.P2()
sage: P1.<u,v> = toric_varieties.P1()
sage: P1.hom([0,u^2+v^2,u*v], P2)
Scheme morphism:
   From: 1-d CPR-Fano toric variety covered by 2 affine patches
   To: 2-d CPR-Fano toric variety covered by 3 affine patches
   Defn: Defined on coordinates by sending [u : v] to
        [0 : u^2 + v^2 : u*v]
```

This is a well-defined morphism of algebraic varieties because homogeneously rescaled coordinates of a point of  $\mathbb{P}^1$  map to the same point in  $\mathbb{P}^2$  up to its homogeneous rescalings. It is not equivariant with respect to the torus actions

$$\mathbf{C}^{\times} \times \mathbb{P}^1, (\mu, [u:v]) \mapsto [u:\mu v] \quad \text{and} \quad (\mathbf{C}^{\times})^2 \times \mathbb{P}^2, ((\alpha, \beta), [x:y:z]) \mapsto [x:\alpha y:\beta z],$$

hence it is not a toric morphism. Clearly, the problem is that the map in homogeneous coordinates contains summands that transform differently under the torus action. However, this is not the only difficulty. For example, consider

```
sage: phi = P1.hom([0,u,v], P2); phi
Scheme morphism:
  From: 1-d CPR-Fano toric variety covered by 2 affine patches
  To: 2-d CPR-Fano toric variety covered by 3 affine patches
  Defn: Defined on coordinates by sending [u : v] to
      [0 : u : v]
```

This map is actually the embedding of the  $orbit\_closure()$  associated to one of the rays of the fan of  $\mathbb{P}^2$ . Now the morphism is equivariant with respect to **some** map  $\mathbf{C}^{\times} \to (\mathbf{C}^{\times})^2$  of the maximal tori of  $\mathbb{P}^1$  and  $\mathbb{P}^2$ . But this map of the maximal tori cannot be the same as phi defined above. Indeed, the image of phi completely misses the maximal torus  $T_{\mathbb{P}^2} = \{[x:y:z]|x \neq 0, y \neq 0, z \neq 0\}$  of  $\mathbb{P}^2$ .

Consider instead the following morphism of fans:

```
sage: fm = FanMorphism( matrix(ZZ,[[1,0]]), P1.fan(), P2.fan() ); fm
Fan morphism defined by the matrix
[1 0]
Domain fan: Rational polyhedral fan in 1-d lattice N
Codomain fan: Rational polyhedral fan in 2-d lattice N
```

which also defines a morphism of toric varieties:

```
sage: P1.hom(fm, P2)
Scheme morphism:
   From: 1-d CPR-Fano toric variety covered by 2 affine patches
   To: 2-d CPR-Fano toric variety covered by 3 affine patches
   Defn: Defined by sending Rational polyhedral fan in 1-d lattice N
        to Rational polyhedral fan in 2-d lattice N.
```

The fan morphism map is equivalent to the following polynomial map:

```
sage: _.as_polynomial_map()
Scheme morphism:
   From: 1-d CPR-Fano toric variety covered by 2 affine patches
   To: 2-d CPR-Fano toric variety covered by 3 affine patches
   Defn: Defined on coordinates by sending [u : v] to
      [u : v : v]
```

Finally, here is an example of a fan morphism that cannot be written using homogeneous polynomials. Consider the blowup  $O_{\mathbb{P}^1}(2) \to \mathbb{C}^2/\mathbb{Z}_2$ . In terms of toric data, this blowup is:

```
sage: A2_Z2 = toric_varieties.A2_Z2()
sage: A2_Z2.fan().rays()
N(1, 0),
N(1, 2)
in 2-d lattice N
sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)])
sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2)
sage: blowup.as_polynomial_map()
Traceback (most recent call last):
...
TypeError: The fan morphism cannot be written in homogeneous polynomials.
```

If we denote the homogeneous coordinates of  $O_{\mathbb{P}^1}(2)$  by x, t, y corresponding to the rays (1, 2), (1, 1), and (1, 0) then the blow-up map is [BB]:

$$f: O_{\mathbb{P}^1}(2) \to \mathbf{C}^2/\mathbf{Z}_2, \quad (x, t, y) \mapsto \left(x\sqrt{t}, y\sqrt{t}\right)$$

which requires square roots.

### 16.8.1 Fibrations

If a toric morphism is <code>dominant</code>, then all fibers over a fixed torus orbit in the base are isomorphic. Hence, studying the fibers is again a combinatorial question and Sage implements additional methods to study such fibrations that are not available otherwise (however, note that you can always <code>factor()</code> to pick out the part that is dominant over the image or its closure).

For example, consider the blow-up restricted to one of the two coordinate charts of  $O_{\mathbb{P}^1}(2)$ 

The fibers are labeled by torus orbits in the base, that is, cones of the codomain fan. In this case, the fibers over lower-dimensional torus orbits are:

Lets look closer at the one-dimensional fiber. Although not the case in this example, connected components of fibers over higher-dimensional cones (corresponding to lower-dimensional torus orbits) of the base are often not irreducible. The irreducible components are labeled by the primitive\_preimage\_cones(), which are certain cones of the domain fan that map to the cone in the base that defines the torus orbit:

The fiber over the trivial cone is the generic fiber that we have already encountered. The interesting fiber is the one over the 2-dimensional cone, which represents the exceptional set of the blow-up in this single coordinate chart. Lets investigate further:

So we see that the fiber over this point is an affine line. Together with another affine line in the other coordinate patch, this covers the exceptional  $\mathbb{P}^1$  of the blowup  $O_{\mathbb{P}^1}(2) \to \mathbf{C}^2/\mathbf{Z}_2$ .

Here is an example with higher dimensional varieties involved:

Let's use factorization mentioned above:

```
sage: phi_i, phi_b, phi_s = phi.factor()
```

It is possible to study fibers of the last two morphisms or their composition:

```
sage: phi_d = phi_b * phi_s
sage: phi_d
Scheme morphism:
 From: 3-d affine toric variety
 To: 2-d toric variety covered by 3 affine patches
 Defn: Defined by sending Rational polyhedral fan in 3-d lattice {\tt N} to
        Rational polyhedral fan in Sublattice \langle N(1, 0, 0), N(0, 1, 0) \rangle.
sage: phi_d.as_polynomial_map()
Scheme morphism:
 From: 3-d affine toric variety
 To: 2-d toric variety covered by 3 affine patches
  Defn: Defined on coordinates by sending [z0 : z1 : z2] to
        [z0^2*z1*z2^3 : z1*z2 : 1]
sage: phi_d.codomain().fan().rays()
N(1, 0, 0),
N(0, 1, 0),
N(-1, -1, 0)
in Sublattice <N(1, 0, 0), N(0, 1, 0)>
sage: for c in phi_d.codomain().fan():
         c.ambient_ray_indices()
. . . . :
(1, 2)
(0, 2)
(0, 1)
```

We see that codomain fan of this morphism is a projective plane, which can be verified by

```
sage: phi_d.codomain().fan().is_isomorphic(toric_varieties.P2().fan()) # known bug
True
```

(Unfortunately it cannot be verified correctly until trac ticket #16012 is fixed.)

We now have access to fiber methods:

```
sage: fiber = phi_d.fiber_generic()
sage: fiber
(1-d affine toric variety, 2)
sage: fiber[0].embedding_morphism()
Scheme morphism:
 From: 1-d affine toric variety
  To: 3-d affine toric variety
 Defn: Defined by sending
        Rational polyhedral fan in Sublattice \langle N(1, 1, -1) \rangle to
        Rational polyhedral fan in 3-d lattice N.
sage: fiber[0].embedding_morphism().as_polynomial_map()
Traceback (most recent call last):
NotImplementedError: polynomial representations for
fans with virtual rays are not implemented yet
sage: fiber[0].fan().rays()
Empty collection
in Sublattice \langle N(1, 1, -1) \rangle
```

We see that generic fibers of this morphism consist of 2 one-dimensional tori each. To see what happens over boundary points we can look at fiber components corresponding to the cones of the domain fan:

```
sage: fm = phi_d.fan_morphism()
sage: for c in flatten(phi_d.domain().fan().cones()):
....: fc, m = phi_d.fiber_component(c, multiplicity=True)
```

Now we see that over one of the coordinate lines of the projective plane we also have one-dimensional tori (but only one in each fiber), while over one of the points fixed by torus action we have two affine planes intersecting along an affine line. An alternative perspective is provided by cones of the codomain fan:

```
sage: for c in flatten(phi_d.codomain().fan().cones()):
....:     print("{} connected components over {}, each with {} irreducible components.

→".format(
....:     fm.index(c), c.ambient_ray_indices(),
....:     len(fm.primitive_preimage_cones(c))))
2 connected components over (), each with 1 irreducible components.
1 connected components over (0,), each with 1 irreducible components.
None connected components over (1,), each with 0 irreducible components.
None connected components over (2,), each with 0 irreducible components.
None connected components over (1, 2), each with 0 irreducible components.
None connected components over (0, 2), each with 0 irreducible components.
1 connected components over (0, 1), each with 2 irreducible components.
```

### **REFERENCES:**

Bases: sage.schemes.generic.morphism.SchemeMorphism

The embedding of a fiber component of a toric morphism.

Note that the embedding map of a fiber component of a toric morphism is itself not a toric morphism!

# INPUT:

- toric\_morphism a toric morphism. The toric morphism whose fiber component we are describing.
- defining\_cone a cone of the fan of the domain of toric\_morphism. See fiber\_component() for details.

#### **EXAMPLES:**

(continues on next page)

ing\_cone)

```
sage: primitive_cone = primitive_cones[0]
sage: fiber_component = fibration.fiber_component(primitive_cone)
sage: fiber_component
2-d toric variety covered by 4 affine patches
sage: fiber_component.embedding_morphism()
Scheme morphism:
 From: 2-d toric variety covered by 4 affine patches
      4-d toric variety covered by 23 affine patches
 Defn: Defined by embedding a fiber component corresponding to
       1-d cone of Rational polyhedral fan in 4-d lattice N.
sage: fiber_component.embedding_morphism().as_polynomial_map()
Scheme morphism:
 From: 2-d toric variety covered by 4 affine patches
 To: 4-d toric variety covered by 23 affine patches
 Defn: Defined on coordinates by sending [z0 : z1 : z2 : z3] to
        [1:1:1:1:1:2:2:2:2:1:1:1:1:1:2:2:2:2:2:1:1]
sage: type(fiber_component.embedding_morphism())
<class 'sage.schemes.toric.morphism.SchemeMorphism_fan_fiber_component_toric_</pre>
→variety'>
```

### as\_polynomial\_map()

Express the embedding morphism via homogeneous polynomials.

#### **OUTPUT:**

A SchemeMorphism\_polynomial\_toric\_variety. Raises a ValueError if the morphism cannot be written in terms of homogeneous polynomials.

### **EXAMPLES:**

```
sage: polytope = Polyhedron(
        [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
          (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4))
sage: P2 = toric_varieties.P2()
sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]])
sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True)
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
sage: primitive_cone = Cone([(0, 1, 0, 0)])
sage: f = fibration.fiber_component(primitive_cone).embedding_morphism()
sage: f.as_polynomial_map()
Scheme morphism:
 From: 2-d toric variety covered by 4 affine patches
 To: 4-d toric variety covered by 23 affine patches
 Defn: Defined on coordinates by sending [z0 : z1 : z2 : z3] to
       [1:1:1:1:1:21:0:1:20:1:1:1:2:2:23:1:1]
sage: primitive_cone = Cone([(-1, 2, -1, 0)])
sage: f = fibration.fiber_component(primitive_cone).embedding_morphism()
sage: f.as_polynomial_map()
Traceback (most recent call last):
ValueError: The morphism cannot be written using homogeneous polynomials.
```

# base\_cone()

Return the base cone  $\sigma$ .

The fiber is constant over the base orbit closure  $V(\sigma)$ .

#### **OUTPUT**:

A cone of the base of the toric fibration.

### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)]))
sage: f = fc.embedding_morphism()
sage: f.defining_cone().rays()
N(1, 0)
in 2-d lattice N
sage: f.base_cone().rays()
N(1)
in 1-d lattice N
```

### defining\_cone()

Return the cone corresponding to the fiber torus orbit.

#### **OUTPUT:**

A cone of the fan of the total space of the toric fibration.

### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: fc = P1xP1.hom(matrix([[1],[0]]), P1).fiber_component(Cone([(1,0)]))
sage: f = fc.embedding_morphism()
sage: f.defining_cone().rays()
N(1, 0)
in 2-d lattice N
sage: f.base_cone().rays()
N(1)
in 1-d lattice N
```

### pullback\_divisor (divisor)

Pull back a toric divisor.

### INPUT:

• divisor – a torus-invariant QQ-Cartier divisor on the codomain of the embedding map.

### **OUTPUT**:

A divisor on the domain of the embedding map (irreducible component of a fiber of a toric morphism) that is isomorphic to the pull-back divisor  $f^*(D)$  but with possibly different linearization.

### **EXAMPLES:**

```
sage: fc = f.fiber_component(Cone([(1,0,0)]))
sage: fc.embedding_morphism().pullback_divisor(D)
-3*V(z0) - 3*V(z1) - V(z2)
```

class sage.schemes.toric.morphism.SchemeMorphism\_fan\_toric\_variety (parent,

fan\_morphism, check=True)

Bases: sage.schemes.generic.morphism.SchemeMorphism, sage.categories.morphism.Morphism

Construct a morphism determined by a fan morphism

**Warning:** You should not create objects of this class directly. Use the hom() method of toric varieties instead.

### INPUT:

- parent Hom-set whose domain and codomain are toric varieties.
- fan\_morphism A morphism of fans whose domain and codomain fans equal the fans of the domain and codomain in the parent Hom-set.
- check boolean (optional, default: True). Whether to check the input for consistency.

**Warning:** A fibration is a dominant morphism; if you are interested in these then you have to make sure that your fan morphism is dominant. For example, this can be achieved by factoring the morphism. See SchemeMorphism\_fan\_toric\_variety\_dominant for additional functionality for fibrations.

### **OUTPUT:**

A SchemeMorphism\_fan\_toric\_variety.

#### **EXAMPLES:**

### Slightly more explicit construction:

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: hom_set = P1xP1.Hom(P1)
sage: fm = FanMorphism( matrix(ZZ,[[1],[0]]), P1xP1.fan(), P1.fan() )
sage: hom_set(fm)
Scheme morphism:
   From: 2-d CPR-Fano toric variety covered by 4 affine patches
   To: 1-d CPR-Fano toric variety covered by 2 affine patches
```

```
Defn: Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 1-d lattice N.

sage: P1xP1.hom(fm, P1)
Scheme morphism:
From: 2-d CPR-Fano toric variety covered by 4 affine patches
To: 1-d CPR-Fano toric variety covered by 2 affine patches
Defn: Defined by sending Rational polyhedral fan in 2-d lattice N to Rational polyhedral fan in 1-d lattice N.
```

### as\_polynomial\_map()

Express the morphism via homogeneous polynomials.

#### **OUTPUT:**

A SchemeMorphism\_polynomial\_toric\_variety. Raises a TypeError if the morphism cannot be written in terms of homogeneous polynomials.

# EXAMPLES:

```
sage: A1 = toric_varieties.A1()
sage: square = A1.hom(matrix([[2]]), A1)
sage: square.as_polynomial_map()
Scheme endomorphism of 1-d affine toric variety
   Defn: Defined on coordinates by sending [z] to
        [z^2]

sage: P1 = toric_varieties.P1()
sage: patch = A1.hom(matrix([[1]]), P1)
sage: patch.as_polynomial_map()
Scheme morphism:
   From: 1-d affine toric variety
   To: 1-d CPR-Fano toric variety covered by 2 affine patches
   Defn: Defined on coordinates by sending [z] to
        [z:1]
```

#### factor()

Factor self into injective \* birational \* surjective morphisms.

### **OUTPUT**:

• a triple of toric morphisms  $(\phi_i, \phi_b, \phi_s)$ , such that  $\phi_s$  is surjective,  $\phi_b$  is birational,  $\phi_i$  is injective, and self is equal to  $\phi_i \circ \phi_b \circ \phi_s$ .

The intermediate varieties are universal in the following sense. Let self map X to X' and let  $X_s$ ,  $X_i$  sit in between, that is,

$$X \twoheadrightarrow X_s \to X_i \hookrightarrow X'$$
.

Then any toric morphism from X coinciding with self on the maximal torus factors through  $X_s$  and any toric morphism into X' coinciding with self on the maximal torus factors through  $X_i$ . In particular,  $X_i$  is the closure of the image of self in X'.

See factor() for a description of the toric algorithm.

### **EXAMPLES:**

We map an affine plane into a projective 3-space in such a way, that it becomes "a double cover of a chart of the blow up of one of the coordinate planes":

```
sage: A2 = toric_varieties.A2()
sage: P3 = toric_varieties.P(3)
sage: m = matrix([(2,0,0), (1,1,0)])
sage: phi = A2.hom(m, P3)
sage: phi.as_polynomial_map()
Scheme morphism:
 From: 2-d affine toric variety
 To: 3-d CPR-Fano toric variety covered by 4 affine patches
 Defn: Defined on coordinates by sending [x : y] to
        [x^2*y : y : 1 : 1]
sage: phi.is_surjective(), phi.is_birational(), phi.is_injective()
(False, False, False)
sage: phi_i, phi_b, phi_s = phi.factor()
sage: phi_s.is_surjective(), phi_b.is_birational(), phi_i.is_injective()
(True, True, True)
sage: prod(phi.factor()) == phi
True
```

### Double cover (surjective):

```
sage: phi_s.as_polynomial_map()
Scheme morphism:
  From: 2-d affine toric variety
  To: 2-d affine toric variety
  Defn: Defined on coordinates by sending [x : y] to
        [x^2 : y]
```

### Blowup chart (birational):

```
sage: phi_b.as_polynomial_map()
Scheme morphism:
  From: 2-d affine toric variety
  To: 2-d toric variety covered by 3 affine patches
  Defn: Defined on coordinates by sending [z0 : z1] to
       [z0*z1 : z1 : 1]
```

# Coordinate plane inclusion (injective):

```
sage: phi_i.as_polynomial_map()
Scheme morphism:
   From: 2-d toric variety covered by 3 affine patches
   To: 3-d CPR-Fano toric variety covered by 4 affine patches
   Defn: Defined on coordinates by sending [z0 : z1 : z2] to
        [z0 : z1 : z2 : z2]
```

### fan\_morphism()

Return the defining fan morphism.

### **OUTPUT:**

A FanMorphism.

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: f = P1xP1.hom(matrix([[1],[0]]), P1)
```

```
sage: f.fan_morphism()
Fan morphism defined by the matrix
[1]
[0]
Domain fan: Rational polyhedral fan in 2-d lattice N
Codomain fan: Rational polyhedral fan in 1-d lattice N
```

### is birational()

Check if self is birational.

See is\_birational() for fan morphisms for a description of the toric algorithm.

### **OUTPUT:**

Boolean. Whether self is birational.

### **EXAMPLES:**

```
sage: dP8 = toric_varieties.dP8()
sage: P2 = toric_varieties.P2()
sage: dP8.hom(identity_matrix(2), P2).is_birational()
True

sage: X = toric_varieties.A(2)
sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])]))
sage: m = identity_matrix(2)
sage: f = Y.hom(m, X)
sage: f.is_birational()
True
```

#### is bundle()

Check if self is a bundle.

See is\_bundle() for fan morphisms for details.

### **OUTPUT**:

• True if self is a bundle, False otherwise.

### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_bundle()
True
```

#### is\_dominant()

Return whether self is dominant.

See is\_dominant() for fan morphisms for a description of the toric algorithm.

### **OUTPUT**:

Boolean. Whether self is a dominant scheme morphism.

### **EXAMPLES:**

```
sage: P1 = toric_varieties.P1()
sage: A1 = toric_varieties.A1()
sage: phi = A1.hom(identity_matrix(1), P1); phi
Scheme morphism:
```

```
From: 1-d affine toric variety
To: 1-d CPR-Fano toric variety covered by 2 affine patches
Defn: Defined by sending Rational polyhedral fan in 1-d lattice N
to Rational polyhedral fan in 1-d lattice N.

sage: phi.is_dominant()
True
sage: phi.is_surjective()
False
```

### is\_fibration()

Check if self is a fibration.

See is\_fibration() for fan morphisms for details.

### **OUTPUT:**

• True if self is a fibration, False otherwise.

### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_fibration()
True
```

### is\_injective()

Check if self is injective.

See is\_injective() for fan morphisms for a description of the toric algorithm.

# **OUTPUT**:

Boolean. Whether self is injective.

### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_injective()
False

sage: X = toric_varieties.A(2)
sage: m = identity_matrix(2)
sage: f = X.hom(m, X)
sage: f.is_injective()
True

sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])]))
sage: f = Y.hom(m, X)
sage: f.is_injective()
False
```

### is\_surjective()

Check if self is surjective.

See is\_surjective() for fan morphisms for a description of the toric algorithm.

### **OUTPUT**:

Boolean. Whether self is surjective.

### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: P1xP1.hom(matrix([[1],[0]]), P1).is_surjective()
True

sage: X = toric_varieties.A(2)
sage: m = identity_matrix(2)
sage: f = X.hom(m, X)
sage: f.is_surjective()
True

sage: Y = ToricVariety(Fan([Cone([(1,0), (1,1)])]))
sage: f = Y.hom(m, X)
sage: f.is_surjective()
False
```

### pullback\_divisor (divisor)

Pull back a toric divisor.

#### INPUT:

• divisor – a torus-invariant QQ-Cartier divisor on the codomain of self.

### **OUTPUT**:

The pull-back divisor  $f^*(D)$ .

#### **EXAMPLES:**

```
sage: A2_Z2 = toric_varieties.A2_Z2()
sage: A2 = toric_varieties.A2()
sage: f = A2.hom( matrix([[1,0],[1,2]]), A2_Z2)
sage: f.pullback_divisor(A2_Z2.divisor(0))
V(x)

sage: A1 = toric_varieties.A1()
sage: square = A1.hom(matrix([[2]]), A1)
sage: D = A1.divisor(0); D
V(z)
sage: square.pullback_divisor(D)
2*V(z)
```

Bases: sage.schemes.toric.morphism.SchemeMorphism\_fan\_toric\_variety

Construct a morphism determined by a dominant fan morphism.

A dominant morphism is one that is surjective onto a dense subset. In the context of toric morphisms, this means that it is onto the big torus orbit.

**Warning:** You should not create objects of this class directly. Use the hom() method of toric varieties instead.

### INPUT:

See SchemeMorphism\_fan\_toric\_variety. The given fan morphism must be dominant.

# **OUTPUT**:

A SchemeMorphism\_fan\_toric\_variety\_dominant.

## **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: dP8 = toric_varieties.dP8()
sage: f = dP8.hom(identity_matrix(2), P2); f
Scheme morphism:
   From: 2-d CPR-Fano toric variety covered by 4 affine patches
   To: 2-d CPR-Fano toric variety covered by 3 affine patches
   Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
        to Rational polyhedral fan in 2-d lattice N.
sage: type(f)
<class 'sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety_dominant'>
```

#### **fiber\_component** (domain\_cone, multiplicity=False)

Return a fiber component corresponding to domain\_cone.

#### INPUT:

- domain\_cone a cone of the domain fan of self.
- multiplicity (default: False) whether to return the number of fiber components corresponding to domain\_cone as well.

#### **OUTPUT:**

• either X or a tuple (X, n), where X is a *toric* variety with the embedding morphism into domain of self and n is an integer.

Let  $\phi: \Sigma \to \Sigma'$  be the fan morphism corresponding to self. Let  $\sigma \in \Sigma$  and  $\sigma' \in \Sigma'$  be the image\_cone() of  $\sigma$ . The fiber over any point of the torus orbit corresponding to  $\sigma'$  consists of n isomorphic connected components with each component being a union of toric varieties intersecting along their torus invariant subvarieties. The latter correspond to preimage\_cones() of  $\sigma'$  and X is one of the n components corresponding to  $\sigma$ . The irreducible components correspond to primitive\_preimage\_cones().

# **EXAMPLES:**

```
sage: polytope = LatticePolytope(
         [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
           (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
sage: coarse_fan = FaceFan(polytope)
sage: P2 = toric_varieties.P2()
sage: proj24 = matrix([[0,0],[1,0],[0,0],[0,1]])
sage: fm = FanMorphism(proj24, coarse_fan, P2.fan(), subdivide=True)
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
sage: primitive_cones = fibration.fan_morphism().primitive_preimage_cones(P2.
\rightarrow fan (1) [0])
sage: primitive_cone = primitive_cones[0]
sage: fibration.fiber_component(primitive_cone)
2-d toric variety covered by 4 affine patches
sage: fibration.fiber_component(primitive_cone, True)
(2-d toric variety covered by 4 affine patches, 1)
sage: for primitive_cone in primitive_cones:
         print(fibration.fiber_component(primitive_cone))
2-d toric variety covered by 4 affine patches
```

```
2-d toric variety covered by 3 affine patches
2-d toric variety covered by 3 affine patches
```

### fiber\_dimension(codomain\_cone)

Return the dimension of the fiber over a particular torus orbit in the base.

#### INPUT:

• codomain\_cone – a cone  $\sigma$  of the codomain, specifying a torus orbit  $O(\sigma)$ .

#### **OUTPUT:**

An integer. The dimension of the fiber over the torus orbit corresponding to  $codomain\_cone$ . If the fiber is the empty set, -1 is returned. Note that all fibers over this torus orbit are isomorphic, and therefore have the same dimension.

#### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: f = P1xP1.hom(matrix([[1],[0]]), P1)
sage: f.fiber_dimension(P1.fan(0)[0])
1
sage: f.fiber_dimension(P1.fan(1)[0])
1
sage: f.fiber_dimension(P1.fan(1)[1])
```

Here is a more complicated example that is not a flat fibration:

```
sage: A2_Z2 = toric_varieties.A2_Z2()
sage: O2_P1 = A2_Z2.resolve(new_rays=[(1,1)])
sage: blowup = O2_P1.hom(identity_matrix(2), A2_Z2)
sage: blowup.fiber_dimension(A2_Z2.fan(0)[0])
0
sage: blowup.fiber_dimension(A2_Z2.fan(1)[0])
0
sage: blowup.fiber_dimension(A2_Z2.fan(2)[0])
1
```

This corresponds to the three different fibers:

```
sage: blowup.fiber_generic()
(0-d affine toric variety, 1)
sage: blowup.fiber_component(Cone([(1,0)]))
0-d affine toric variety
sage: blowup.fiber_component(Cone([(1,1)]))
1-d toric variety covered by 2 affine patches
```

# fiber\_generic()

Return the generic fiber.

#### **OUTPUT**:

• a tuple (X, n), where X is a *toric* variety with the embedding morphism into domain of self and n is an integer.

The fiber over the base point with homogeneous coordinates  $[1:1:\cdots:1]$  consists of n disjoint toric varieties isomorphic to X. Note that fibers of a dominant toric morphism are isomorphic over all points of

a fixed torus orbit of its codomain, in particular over all points of the maximal torus, so it makes sense to talk about "the generic" fiber.

The embedding of X is a toric morphism with the domain\_fan() being the kernel\_fan() of the defining fan morphism. By contrast, embeddings of fiber components over lower-dimensional torus orbits of the image are not toric morphisms. Use  $fiber\_component()$  for the latter (non-generic) fibers.

#### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: fiber = P1xP1.hom(matrix([[1],[0]]), P1).fiber_generic()
sage: fiber
(1-d toric variety covered by 2 affine patches, 1)
sage: f = fiber[0].embedding_morphism();
Scheme morphism:
 From: 1-d toric variety covered by 2 affine patches
 To: 2-d CPR-Fano toric variety covered by 4 affine patches
 Defin: Defined by sending Rational polyhedral fan in Sublattice <N(0,\ 1)> to
        Rational polyhedral fan in 2-d lattice N.
sage: f.as_polynomial_map()
Scheme morphism:
 From: 1-d toric variety covered by 2 affine patches
 To: 2-d CPR-Fano toric variety covered by 4 affine patches
 Defn: Defined on coordinates by sending [z0 : z1] to
        [1 : 1 : z0 : z1]
sage: A1 = toric_varieties.A1()
sage: fan = Fan([(0,1,2)], [(1,1,0),(1,0,1),(1,-1,-1)])
sage: fan = fan.subdivide(new_rays=[(1,0,0)])
sage: f = ToricVariety(fan).hom(matrix([[1],[0],[0]]), A1)
sage: f.fiber_generic()
(2-d affine toric variety, 1)
sage: _[0].fan().generating_cones()
(0-d \text{ cone of Rational polyhedral fan in Sublattice} < N(0, 1, 0), N(0, 0, 1)>,)
```

## fiber\_graph (codomain\_cone)

Return the fiber over a given torus orbit in the codomain.

#### INPUT:

• codomain\_cone – a cone  $\sigma$  of the codomain, specifying a torus orbit  $O(\sigma)$ .

# **OUTPUT**:

A graph whose nodes are the irreducible components of a connected component of the fiber over a point of  $O(\sigma)$ . If two irreducible components intersect, the corresponding nodes of the graph are joined by an edge. Note that irreducible components do not have to be of the same dimension.

# See also:

```
fiber_component().
```

#### **EXAMPLES:**

```
sage: polytope = Polyhedron(
...: [(-3,0,-1,-1),(-1,2,-1,-1),(0,-1,0,0),(0,0,0,1),(0,0,1,0),
...: (0,1,0,0),(0,2,-1,-1),(1,0,0,0),(2,0,-1,-1)])
sage: coarse_fan = FaceFan(polytope, lattice=ToricLattice(4))
sage: P2 = toric_varieties.P2()
```

```
sage: proj34 = block_matrix(2,1,[zero_matrix(2,2), identity_matrix(2)])
sage: fm = FanMorphism(proj34, coarse_fan, P2.fan(), subdivide=True)
sage: fibration = ToricVariety(fm.domain_fan()).hom(fm, P2)
sage: fibration.fiber_graph( P2.fan(0)[0] )
Graph on 1 vertex
sage: for c1 in P2.fan(1):
         fibration.fiber_graph(c1)
Graph on 1 vertex
Graph on 1 vertex
Graph on 4 vertices
sage: fibration.fiber_graph(P2.fan(1)[2]).get_vertices()
{0: 2-d toric variety covered by 4 affine patches,
1: 2-d toric variety covered by 3 affine patches,
2: 2-d toric variety covered by 3 affine patches,
3: 2-d toric variety covered by 4 affine patches}
sage: fibration
Scheme morphism:
 From: 4-d toric variety covered by 18 affine patches
 To: 2-d CPR-Fano toric variety covered by 3 affine patches
 Defn: Defined by sending Rational polyhedral fan in 4-d lattice N
        to Rational polyhedral fan in 2-d lattice N.
```

ing\_cone,

ray\_map)

Bases: sage.schemes.generic.morphism.SchemeMorphism, sage.categories.morphism.Morphism

The embedding of an orbit closure.

#### INPUT:

- parent the parent homset.
- defining\_cone the defining cone.
- ray\_map a dictionary {ambient ray generator: orbit ray generator}. Note that the image of the ambient ray generator is not necessarily primitive.

**Warning:** You should not create objects of this class directly. Use the <code>orbit\_closure()</code> method of <code>toric varieties</code> instead.

#### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: H = P1xP1.fan(1)[0]
sage: V = P1xP1.orbit_closure(H)
sage: V.embedding_morphism()
Scheme morphism:
   From: 1-d toric variety covered by 2 affine patches
   To: 2-d CPR-Fano toric variety covered by 4 affine patches
   Defn: Defined by embedding the torus closure associated to the 1-d
        cone of Rational polyhedral fan in 2-d lattice N.
```

## as\_polynomial\_map()

Express the morphism via homogeneous polynomials.

#### **OUTPUT:**

A SchemeMorphism\_polynomial\_toric\_variety. Raises a TypeError if the morphism cannot be written in terms of homogeneous polynomials.

The defining polynomials are not necessarily unique. There are choices if multiple ambient space ray generators project to the same orbit ray generator, and one such choice is made implicitly. The orbit embedding can be written as a polynomial map if and only if each primitive orbit ray generator is the image of at least one primitive ray generator of the ambient toric variety.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: V = P2.orbit_closure(P2.fan(1)[0]); V
1-d toric variety covered by 2 affine patches
sage: V.embedding_morphism().as_polynomial_map()
Scheme morphism:
   From: 1-d toric variety covered by 2 affine patches
   To: 2-d CPR-Fano toric variety covered by 3 affine patches
   Defn: Defined on coordinates by sending [z0 : z1] to
        [0 : z1 : z0]
```

If the toric variety is singular, then some orbit closure embeddings cannot be written with homogeneous polynomials:

```
sage: P2_112 = toric_varieties.P2_112()
sage: P1 = P2_112.orbit_closure(Cone([(1,0)]))
sage: P1.embedding_morphism().as_polynomial_map()
Traceback (most recent call last):
...
TypeError: The embedding cannot be written with homogeneous polynomials.
```

# defining\_cone()

Return the cone corresponding to the torus orbit.

#### **OUTPUT:**

A cone of the fan of the ambient toric variety.

# EXAMPLES:

```
sage: P2 = toric_varieties.P2()
sage: cone = P2.fan(1)[0]
sage: P1 = P2.orbit_closure(cone)
sage: P1.embedding_morphism().defining_cone()
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: _ is cone
True
```

#### pullback\_divisor (divisor)

Pull back a toric divisor.

#### INPUT:

divisor – a torus-invariant QQ-Cartier divisor on the codomain of the embedding map.

# OUTPUT:

A divisor on the domain of the embedding map (the orbit closure) that is isomorphic to the pull-back divisor  $f^*(D)$  but with possibly different linearization.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P1 = P2.orbit_closure(P2.fan(1)[0])
sage: f = P1.embedding_morphism()
sage: D = P2.divisor([1,2,3]); D
V(x) + 2*V(y) + 3*V(z)
sage: f.pullback_divisor(D)
4*V(z0) + 2*V(z1)
```

class sage.schemes.toric.morphism.SchemeMorphism\_point\_toric\_field(X, coordinates, check=True)

Bases: sage.schemes.generic.morphism.SchemeMorphism\_point, sage.categories.morphism.Morphism

A point of a toric variety determined by homogeneous coordinates in a field.

**Warning:** You should not create objects of this class directly. Use the hom() method of toric varieties instead.

#### INPUT:

- X toric variety or subscheme of a toric variety.
- coordinates list of coordinates in the base field of X.
- check if True (default), the input will be checked for correctness.

# **OUTPUT:**

A SchemeMorphism\_point\_toric\_field.

Bases: sage.schemes.generic.morphism.SchemeMorphism\_polynomial, categories.morphism.Morphism

A morphism determined by homogeneous polynomials.

Warning: You should not create objects of this class directly. Use the hom() method of toric varieties instead.

#### INPUT:

Same as for SchemeMorphism\_polynomial.

# **OUTPUT:**

A SchemeMorphism\_polynomial\_toric\_variety.

check=True)

sage.

#### as fan morphism()

Express the morphism as a map defined by a fan morphism.

#### **OUTPUT:**

A SchemeMorphism\_polynomial\_toric\_variety. Raises a TypeError if the morphism cannot be written in such a way.

#### **EXAMPLES:**

```
sage: A1.<z> = toric_varieties.A1()
sage: P1 = toric_varieties.P1()
sage: patch = A1.hom([1,z], P1)
sage: patch.as_fan_morphism()
Traceback (most recent call last):
...
NotImplementedError: expressing toric morphisms as fan morphisms is not implemented yet!
```

# 16.9 Subschemes of toric space

#### **AUTHORS:**

- David Kohel (2005): initial version.
- William Stein (2005): initial version.
- Andrey Novoseltsev (2010-05-17): subschemes of toric varieties.

 ${\bf class} \ \ {\bf sage.scheme\_subscheme\_affine\_toric\_variety}, \\ poly-$ 

nomials)

Bases: sage.schemes.toric.toric\_subscheme.AlgebraicScheme\_subscheme\_toric

Construct an algebraic subscheme of an affine toric variety.

**Warning:** You should not create objects of this class directly. The preferred method to construct such subschemes is to use subscheme () method of toric varieties.

#### INPUT:

- toric\_variety ambient affine toric variety;
- polynomials single polynomial, list, or ideal of defining polynomials in the coordinate ring of toric\_variety.

# **OUTPUT**:

A algebraic subscheme of an affine toric variety.

#### dimension()

Return the dimension of self.

# **OUTPUT**:

• integer.

**EXAMPLES:** 

```
sage: P1xP1.<s0,s1,t0,t1> = toric_varieties.P1xP1()
sage: P1 = P1xP1.subscheme(s0-s1)
sage: P1.dimension()
1
```

A more complicated example where the ambient toric variety is not smooth:

#### is\_smooth (point=None)

Test whether the algebraic subscheme is smooth.

#### INPUT:

• point – A point or None (default). The point to test smoothness at.

#### **OUTPUT**:

Boolean. If no point was specified, returns whether the algebraic subscheme is smooth everywhere. Otherwise, smoothness at the specified point is tested.

## **EXAMPLES:**

```
sage: A2.<x,y> = toric_varieties.A2()
sage: cuspidal_curve = A2.subscheme([y^2-x^3])
sage: cuspidal_curve
Closed subscheme of 2-d affine toric variety defined by:
    -x^3 + y^2
sage: cuspidal_curve.is_smooth([1,1])
True
sage: cuspidal_curve.is_smooth([0,0])
False
sage: cuspidal_curve.is_smooth()
False
sage: circle = A2.subscheme(x^2+y^2-1)
sage: circle.is_smooth([1,0])
True
sage: circle.is_smooth()
True
```

A more complicated example where the ambient toric variety is not smooth:

```
sage: Y.dimension() # Y is a Weil divisor but not Cartier
1
sage: Y.is_smooth()
True
sage: Y.is_smooth([0,0])
True
```

 $\textbf{class} \ \texttt{sage.scheme\_toric\_toric\_subscheme\_AlgebraicScheme\_subscheme\_toric(} \textit{toric\_variety},$ 

poly-

no-

mials)

Bases: sage.schemes.generic.algebraic\_scheme.AlgebraicScheme\_subscheme

Construct an algebraic subscheme of a toric variety.

**Warning:** You should not create objects of this class directly. The preferred method to construct such subschemes is to use subscheme () method of toric varieties.

# INPUT:

- toric\_variety ambient toric variety.
- polynomials single polynomial, list, or ideal of defining polynomials in the coordinate ring of toric\_variety.

# **OUTPUT**:

• algebraic subscheme of a toric variety.

# affine\_algebraic\_patch (cone=None, names=None)

Return the affine patch corresponding to cone as an affine algebraic scheme.

# INPUT:

• cone – a Cone  $\sigma$  of the fan. It can be omitted for an affine toric variety, in which case the single generating cone is used.

### OUTPUT:

An affine algebraic subscheme corresponding to the patch  $Spec(\sigma^{\vee} \cap M)$  associated to the cone  $\sigma$ .

See also affine\_patch(), which expresses the patches as subvarieties of affine toric varieties instead.

# REFERENCES:

David A. Cox, "The Homogeneous Coordinate Ring of a Toric Variety", Lemma 2.2. Arxiv alg-geom/9210008v2

#### **EXAMPLES:**

```
sage: cone = Cone([(0,1),(2,1)])
sage: A2Z2.<x,y> = AffineToricVariety(cone)
sage: A2Z2.affine_algebraic_patch()
Closed subscheme of Affine Space of dimension 3 over Rational Field defined_
 -z0*z1 + z2^2
sage: V = A2Z2.subscheme(x^2+y^2-1)
sage: patch = V.affine_algebraic_patch(); patch
Closed subscheme of Affine Space of dimension 3 over Rational Field defined.

    bv:
 -z0*z1 + z2^2
 z0 + z1 - 1
sage: nbhd_patch = V.neighborhood([1,0]).affine_algebraic_patch(); nbhd_patch
Closed subscheme of Affine Space of dimension 3 over Rational Field defined,
⇒by:
 -z0*z1 + z2^2,
 z0 + z1 - 1
sage: nbhd_patch.embedding_center()
(0, 1, 0)
```

Here we got two defining equations. The first one describes the singularity of the ambient space and the second is the pull-back of  $x^2 + y^2 - 1$ 

#### affine patch(i)

Return the i-th affine patch of self as an affine toric algebraic scheme.

# INPUT:

• i – integer, index of a generating cone of the fan of the ambient space of self.

#### **OUTPUT**:

• subscheme of an affine toric variety corresponding to the pull-back of self by the embedding morphism of the i-th affine patch of the ambient space of self.

The result is cached, so the i-th patch is always the same object in memory.

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: patch1 = P1xP1.affine_patch(1)
sage: patch1.embedding_morphism()
Scheme morphism:
   From: 2-d affine toric variety
   To: 2-d CPR-Fano toric variety covered by 4 affine patches
   Defn: Defined on coordinates by sending [t : x] to
```

```
[1 : t : x : 1]
sage: P1xP1.inject_variables()
Defining s, t, x, y
sage: P1 = P1xP1.subscheme(x-y)
sage: subpatch = P1.affine_patch(1)
sage: subpatch
Closed subscheme of 2-d affine toric variety defined by:
    x - 1
```

#### dimension()

Return the dimension of self.

# **OUTPUT**:

Integer. If self is empty, -1 is returned.

## **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1.inject_variables()
Defining s, t, x, y
sage: P1 = P1xP1.subscheme(s-t)
sage: P1.dimension()
1
sage: P1xP1.subscheme([s-t, (s-t)^2]).dimension()
1
sage: P1xP1.subscheme([s, t]).dimension()
-1
```

# fan()

Return the fan of the ambient space.

OUTPUT:

A fan.

# **EXAMPLES:**

```
sage: P2.<x,y,z> = toric_varieties.P(2)
sage: E = P2.subscheme([x^2+y^2+z^2])
sage: E.fan()
Rational polyhedral fan in 2-d lattice N
```

## is\_nondegenerate()

Check if self is nondegenerate.

# **OUTPUT:**

Whether the variety is nondegenerate, that is, the intersection with every open torus orbit is smooth and transversal.

### **EXAMPLES:**

```
sage: P2.<x,y,z> = toric_varieties.P2()
sage: P2.subscheme([x^3 + y^3 + z^3]).is_nondegenerate()
True
sage: P2.subscheme([x*y*z]).is_nondegenerate()
False
sage: X = P2.subscheme([(x-y)^2*(x+y) + x*y*z + z^3])
```

```
sage: X.is_smooth()
True
sage: X.is_nondegenerate()
False
```

# A K3 surface in $\mathbf{P}^1 \times \mathbf{P}^1 \times \mathbf{P}^1$ :

```
sage: diamond = lattice_polytope.cross_polytope(3)
sage: fan = FaceFan(diamond)
sage: P1xP1xP1 = ToricVariety(fan)
sage: z0, z1, z2, z3, z4, z5 = P1xP1xP1.gens()
sage: t = 5;
sage: F = z0^2*z1^2*z2^2 + z1^2*z2^2*z3^2 + z0^2*z2^2*z4^2\
...: + z2^2*z3^2*z4^2 + t*z0*z1*z2*z3*z4*z5 + z0^2*z1^2*z5^2\
...: + z1^2*z3^2*z5^2 + z0^2*z4^2*z5^2 + z3^2*z4^2*z5^2
sage: X = P1xP1xP1.subscheme([F])
sage: X.is_smooth()
True
sage: X.is_nondegenerate()
False
```

Taking a random change of variables breaks the symmetry, but makes the surface nondegenerate:

```
sage: F1 = F.subs(z0 = 1*z0 + 1*z3, z3 = 1*z0 + 2*z3,
  ....: z1 = -2*z1 + -1*z4, z4 = 1*z1 + 2*z4,
   ....: z2 = -3*z2 + -1*z5, z5 = -3*z2 + 2*z5)
  sage: Y = P1xP1xP1.subscheme([F1])
  sage: Y.is_smooth()
  sage: Y.is_nondegenerate()
  True
This example is from Hamm, :arxiv:`1106.1826v1`. It addresses
an issue raised at :trac:`15239`::
  sage: X = toric_varieties.WP([1,4,2,3], names='z0 z1 z2 z3')
  sage: X.inject_variables()
  Defining z0, z1, z2, z3
  sage: g0 = z1^3 + z2^6 + z3^4
  sage: g = g0-2*z3^2*z0^6+z2*z0^10+z0^12
  sage: Y = X.subscheme([g])
  sage: Y.is_nondegenerate()
  False
```

# It handles nonzero characteristic:

```
sage: P2.<x,y,z> = toric_varieties.P2()
sage: f = x^5 + 2*x*y^4 + y^5 - 2*y^3*z^2 + x*z^4 - 2*z^5
sage: P2.change_ring(GF(5)).subscheme([f]).is_nondegenerate()
True
sage: P2.change_ring(GF(7)).subscheme([f]).is_nondegenerate()
False
```

#### is schon()

Check if self is schon (nondegenerate).

See  $is_n on degenerate$  for further documentation.

#### **EXAMPLES:**

```
sage: P2.<x,y,z> = toric_varieties.P2()
sage: X = P2.subscheme([(x-y)^2*(x+y) + x*y*z + z^3])
sage: X.is_smooth()
True
sage: X.is_schon()
False
```

#### is\_smooth (point=None)

Test whether the algebraic subscheme is smooth.

#### INPUT:

• point - A point or None (default). The point to test smoothness at.

#### **OUTPUT:**

Boolean. If no point was specified, returns whether the algebraic subscheme is smooth everywhere. Otherwise, smoothness at the specified point is tested.

#### **EXAMPLES:**

Any sufficiently generic cubic hypersurface is smooth:

```
sage: P2.subscheme([y^2*z-x^3+z^3+1/10*x*y*z]).is_smooth() True
```

A more complicated example:

```
sage: dP6.<x0,x1,x2,x3,x4,x5> = toric_varieties.dP6()
sage: disjointP1s = dP6.subscheme(x0*x3)
sage: disjointP1s.is_smooth()
True
sage: intersectingP1s = dP6.subscheme(x0*x1)
sage: intersectingP1s.is_smooth()
False
```

A smooth hypersurface in a compact singular toric variety:

#### neighborhood(point)

Return an toric algebraic scheme isomorphic to neighborhood of the point.

#### INPUT:

• point – a point of the toric algebraic scheme.

#### **OUTPUT**:

An affine toric algebraic scheme (polynomial equations in an affine toric variety) with fixed embedding\_morphism() and embedding\_center().

#### **EXAMPLES:**

```
sage: P.<x,y,z>= toric_varieties.P2()
sage: S = P.subscheme(x+2*y+3*z)
sage: s = S.point([0, -3, 2]); s
[0:-3:2]
sage: patch = S.neighborhood(s); patch
Closed subscheme of 2-d affine toric variety defined by:
 x + 2 * y + 6
sage: patch.embedding_morphism()
Scheme morphism:
 From: Closed subscheme of 2-d affine toric variety defined by:
 x + 2 \star y + 6
 To: Closed subscheme of 2-d CPR-Fano toric variety covered by 3 affine.
→patches defined by:
 x + 2*y + 3*z
 Defn: Defined on coordinates by sending [x : y] to
       [-2*y - 6 : y : 2]
sage: patch.embedding_center()
sage: patch.embedding_morphism()(patch.embedding_center())
[0 : -3 : 2]
```

#### A more complicated example:

```
sage: dP6.\langle x0, x1, x2, x3, x4, x5 \rangle = toric_varieties.dP6()
sage: twoP1 = dP6.subscheme(x0*x3)
sage: patch = twoP1.neighborhood([0,1,2, 3,4,5]); patch
Closed subscheme of 2-d affine toric variety defined by:
 3 * × 0
sage: patch.embedding_morphism()
Scheme morphism:
 From: Closed subscheme of 2-d affine toric variety defined by:
 3*x0
 To: Closed subscheme of 2-d CPR-Fano toric variety covered by 6 affine.
⇒patches defined by:
 Defn: Defined on coordinates by sending [x0 : x1] to
        [0: x1:2:3:4:5]
sage: patch.embedding_center()
[0:1]
sage: patch.embedding_morphism()(patch.embedding_center())
[0:1:2:3:4:5]
```

# 16.10 Weierstrass form of a toric elliptic curve

There are 16 reflexive polygons in the plane, see ReflexivePolytopes (). Each of them defines a toric Fano variety. And each of them has a unique crepant resolution to a smooth toric surface [CLSsurfaces] by subdividing the face fan. An anticanonical hypersurface defines an elliptic curve in this ambient space, which we call a toric elliptic curve. The purpose of this module is to write an anticanonical hypersurface equation in the short Weierstrass form  $y^2 = x^3 + fx + g$ . This works over any base ring as long as its characteristic  $\neq 2, 3$ .

For an analogous treatment of elliptic curves defined as complete intersection in higher dimensional toric varieties, see the module <code>weierstrass\_higher</code>.

Technically, this module computes the Weierstrass form of the Jacobian of the elliptic curve. This is why you will never have to specify the origin (or zero section) in the following.

It turns out [VolkerBraun] that the anticanonical hypersurface equation of any one of the above 16 toric surfaces is a specialization (that is, set one or more of the coefficients to zero) of the following three cases. In inhomogeneous coordinates, they are

• Cubic in  $\mathbb{P}^2$ :

$$p(x,y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

• Biquadric in  $\mathbb{P}^1 \times \mathbb{P}^1$ :

$$p(x,y) = a_{22}x^2y^2 + a_{21}x^2y + a_{20}x^2 + a_{12}xy^2 + a_{11}xy + xa_{10} + y^2a_{02} + ya_{01} + a_{00}$$

• Anticanonical hypersurface in weighted projective space  $\mathbb{P}^2[1,1,2]$ :

$$p(x,y) = a_{40}x^4 + a_{30}x^3 + a_{21}x^2y + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

#### **EXAMPLES:**

The main functionality is provided by <code>WeierstrassForm()</code>, which brings each of the above hypersurface equations into Weierstrass form:

```
sage: R.<x,y> = QQ[]
sage: cubic = x^3 + y^3 + 1
sage: WeierstrassForm(cubic)
(0, -27/4)
sage: WeierstrassForm(x^4 + y^2 + 1)
(-4, 0)
sage: WeierstrassForm(x^2*y^2 + x^2 + y^2 + 1)
(-16/3, 128/27)
```

Only the affine span of the Newton polytope of the polynomial matters. For example:

```
sage: R.<x,y,z> = QQ[]
sage: WeierstrassForm(x^3 + y^3 + z^3)
(0, -27/4)
sage: WeierstrassForm(x * cubic)
(0, -27/4)
```

This allows you to work with either homogeneous or inhomogeneous variables. For example, here is the del Pezzo surface of degree 8:

```
sage: dP8 = toric_varieties.dP8()
sage: dP8.inject_variables()
Defining t, x, y, z
sage: WeierstrassForm(x*y^2 + y^2*z + t^2*x^3 + t^2*z^3)
(-3, -2)
sage: WeierstrassForm(x*y^2 + y^2 + x^3 + 1)
(-3, -2)
```

By specifying only certain variables we can compute the Weierstrass form over the polynomial ring generated by the remaining variables. For example, here is a cubic over  $\mathbf{Q}[a]$ 

```
sage: R.<a, x, y, z> = QQ[]
sage: cubic = x^3 + a*y^3 + a^2*z^3
sage: WeierstrassForm(cubic, variables=[x,y,z])
(0, -27/4*a^6)
```

# **REFERENCES:**

sage.schemes.toric.weierstrass.Discriminant (polynomial, variables=None)
The discriminant of the elliptic curve.

## INPUT:

See WeierstrassForm() for how to specify the input polynomial(s) and variables.

# **OUTPUT**:

The discriminant of the elliptic curve.

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass import Discriminant
sage: R.<x, y, z> = QQ[]
sage: Discriminant(x^3+y^3+z^3)
19683/16
sage: Discriminant(x*y*z)
0
sage: R.<w,x,y,z> = QQ[]
sage: quadratic1 = w^2+x^2+y^2
sage: quadratic2 = z^2 + w*x
sage: Discriminant([quadratic1, quadratic2])
-1/16
```

sage.schemes.toric.weierstrass.Newton\_polygon\_embedded(polynomial, variables)

Embed the Newton polytope of the polynomial in one of the three maximal reflexive polygons.

This function is a helper for WeierstrassForm ()

#### INPUT:

Same as WeierstrassForm() with only a single polynomial passed.

## **OUTPUT**:

A tuple  $(\Delta, P, (x, y))$  where

- $\Delta$  is the Newton polytope of polynomial.
- P(x,y) equals the input polynomial but with redefined variables such that its Newton polytope is  $\Delta$ .

# **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass import Newton_polygon_embedded
sage: R. \langle x, y, z \rangle = QQ[]
sage: cubic = x^3 + y^3 + z^3
sage: Newton_polygon_embedded(cubic, [x,y,z])
(A 2-dimensional lattice polytope in ZZ^3 with 3 vertices,
x^3 + y^3 + 1
(x, y)
sage: R.\langle a, x, y, z \rangle = QQ[]
sage: cubic = x^3 + a*y^3 + a^2*z^3
sage: Newton_polygon_embedded(cubic, variables=[x,y,z])
(A 2-dimensional lattice polytope in ZZ^3 with 3 vertices,
a^2 \times x^3 + y^3 + a
 (x, y)
sage: R. \langle s, t, x, y \rangle = QQ[]
sage: biquadric = (s+t)^2 * (x+y)^2
sage: Newton_polygon_embedded(biquadric, [s,t,x,y])
(A 2-dimensional lattice polytope in ZZ^4 with 4 vertices,
s^2*t^2 + 2*s^2*t + 2*s*t^2 + s^2 + 4*s*t + t^2 + 2*s + 2*t + 1,
(s, t))
```

sage.schemes.toric.weierstrass.Newton\_polytope\_vars\_coeffs(polynomial, variables)

Return the Newton polytope in the given variables.

#### INPUT:

See WeierstrassForm () for how to specify the input polynomial and variables.

# **OUTPUT:**

A dictionary with keys the integral values of the Newton polytope and values the corresponding coefficient of polynomial.

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass import Newton_polytope_vars_coeffs
sage: R. < x, y, z, a30, a21, a12, a03, a20, a11, a02, a10, a01, a00> = QQ[]
sage: p = (a30*x^3 + a21*x^2*y + a12*x*y^2 + a03*y^3 + a20*x^2*z +
          a11*x*y*z + a02*y^2*z + a10*x*z^2 + a01*y*z^2 + a00*z^3
sage: p_data = Newton_polytope_vars_coeffs(p, [x,y,z]); p_data
\{(0, 0, 3): a00,
 (0, 1, 2): a01,
 (0, 2, 1): a02,
 (0, 3, 0): a03,
 (1, 0, 2): a10,
 (1, 1, 1): all,
 (1, 2, 0): a12,
 (2, 0, 1): a20,
 (2, 1, 0): a21,
 (3, 0, 0): a30}
sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_
⊶PPL
sage: polytope = LatticePolytope_PPL(list(p_data)); polytope
A 2-dimensional lattice polytope in ZZ^3 with 3 vertices
sage: polytope.vertices()
((0, 0, 3), (3, 0, 0), (0, 3, 0))
```

```
sage: polytope.embed_in_reflexive_polytope()
The map A*x+b with A=
[-1 -1]
[ 0  1]
[ 1  0]
b =
(3, 0, 0)
```

sage.schemes.toric.weierstrass.WeierstrassForm(polynomial, variables=None, transformation=False)

Return the Weierstrass form of an elliptic curve inside either inside a toric surface or  $\mathbb{P}^3$ .

#### INPUT:

- polynomial either a polynomial or a list of polynomials defining the elliptic curve. A single polynomial can be either a cubic, a biquadric, or the hypersurface in  $\mathbb{P}^2[1,1,2]$ . In this case the equation need not be in any standard form, only its Newton polyhedron is used. If two polynomials are passed, they must both be quadratics in  $\mathbb{P}^3$ .
- variables a list of variables of the parent polynomial ring or None (default). In the latter case, all variables are taken to be polynomial ring variables. If a subset of polynomial ring variables are given, the Weierstrass form is determined over the function field generated by the remaining variables.
- transformation boolean (default: False). Whether to return the new variables that bring polynomial into Weierstrass form.

#### **OUTPUT:**

The pair of coefficients (f, g) of the Weierstrass form  $y^2 = x^3 + fx + g$  of the hypersurface equation.

If transformation=True, a triple (X,Y,Z) of polynomials defining a rational map of the toric hypersurface or complete intersection in  $\mathbb{P}^3$  to its Weierstrass form in  $\mathbb{P}^2[2,3,1]$  is returned. That is, the triple satisfies

$$Y^2 = X^3 + fXZ^4 + gZ^6$$

when restricted to the toric hypersurface or complete intersection.

#### **EXAMPLES:**

```
sage: R.<x,y,z> = QQ[]
sage: cubic = x^3 + y^3 + z^3
sage: f, g = WeierstrassForm(cubic); (f, g)
(0, -27/4)
```

Same in inhomogeneous coordinates:

```
sage: R.<x,y> = QQ[]
sage: cubic = x^3 + y^3 + 1
sage: f, g = WeierstrassForm(cubic); (f, g)
(0, -27/4)

sage: X,Y,Z = WeierstrassForm(cubic, transformation=True); (X,Y,Z)
(-x^3*y^3 - x^3 - y^3,
1/2*x^6*y^3 - 1/2*x^3*y^6 - 1/2*x^6 + 1/2*y^6 + 1/2*x^3 - 1/2*y^3,
x*y)
```

Note that plugging in [X:Y:Z] to the Weierstrass equation is a complicated polynomial, but contains the hypersurface equation as a factor:

```
sage: -Y^2 + X^3 + f*X*Z^4 + g*Z^6
-1/4*x^12*y^6 - 1/2*x^9*y^9 - 1/4*x^6*y^12 + 1/2*x^12*y^3
- 7/2*x^9*y^6 - 7/2*x^6*y^9 + 1/2*x^3*y^12 - 1/4*x^12 - 7/2*x^9*y^3
- 45/4*x^6*y^6 - 7/2*x^3*y^9 - 1/4*y^12 - 1/2*x^9 - 7/2*x^6*y^3
- 7/2*x^3*y^6 - 1/2*y^9 - 1/4*x^6 + 1/2*x^3*y^3 - 1/4*y^6
sage: cubic.divides(-Y^2 + X^3 + f*X*Z^4 + g*Z^6)
True
```

Only the affine span of the Newton polytope of the polynomial matters. For example:

```
sage: R.<x,y,z> = QQ[]
sage: cubic = x^3 + y^3 + z^3
sage: WeierstrassForm(cubic.subs(z=1))
(0, -27/4)
sage: WeierstrassForm(x * cubic)
(0, -27/4)
```

This allows you to work with either homogeneous or inhomogeneous variables. For example, here is the del Pezzo surface of degree 8:

```
sage: dP8 = toric_varieties.dP8()
sage: dP8.inject_variables()
Defining t, x, y, z
sage: WeierstrassForm(x*y^2 + y^2*z + t^2*x^3 + t^2*z^3)
(-3, -2)
sage: WeierstrassForm(x*y^2 + y^2 + x^3 + 1)
(-3, -2)
```

By specifying only certain variables we can compute the Weierstrass form over the function field generated by the remaining variables. For example, here is a cubic over  $\mathbf{Q}[a]$ 

```
sage: R.<a, x,y,z> = QQ[]
sage: cubic = x^3 + a*y^3 + a^2*z^3
sage: WeierstrassForm(cubic, variables=[x,y,z])
(0, -27/4*a^6)
```

sage.schemes.toric.weierstrass.WeierstrassForm\_P1xP1 (biquadric, variables=None)
Bring a biquadric into Weierstrass form

Input/output is the same as WeierstrassForm(), except that the input polynomial must be a standard biquadric in  $\mathbb{P}^2$ ,

$$p(x,y) = a_{40}x^4 + a_{30}x^3 + a_{21}x^2y + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

**EXAMPLES:** 

```
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P1xP1
sage: R.<x0,x1,y0,y1>= QQ[]
sage: biquadric = ( x0^2*y0^2 + x0*x1*y0^2*2 + x1^2*y0^2*3
...: + x0^2*y0*y1*4 + x0*x1*y0*y1*5 + x1^2*y0*y1*6
...: + x0^2*y1^2*7 + x0*x1*y1^2*8 )
sage: WeierstrassForm_P1xP1(biquadric, [x0, x1, y0, y1])
(1581/16, -3529/32)
```

Since there is no  $x_1^2y_1^2$  term in biquadric, we can dehomogenize it and get a cubic:

```
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2
sage: WeierstrassForm_P2(biquadric(x0=1,y0=1))
(1581/16, -3529/32)
```

sage.schemes.toric.weierstrass.WeierstrassForm\_P2 (polynomial, variables=None)
Bring a cubic into Weierstrass form.

Input/output is the same as WeierstrassForm(), except that the input polynomial must be a standard cubic in  $\mathbb{P}^2$ .

$$p(x,y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2
sage: R.<x,y,z> = QQ[]
sage: WeierstrassForm_P2( x^3+y^3+z^3 )
(0, -27/4)

sage: R.<x,y,z, a,b> = QQ[]
sage: WeierstrassForm_P2( -y^2*z+x^3+a*x*z^2+b*z^3, [x,y,z] )
(a, b)
```

sage.schemes.toric.weierstrass.WeierstrassForm\_P2\_112 (polynomial, variables=None) Bring an anticanonical hypersurface in  $\mathbb{P}^2[1,1,2]$  into Weierstrass form.

Input/output is the same as WeierstrassForm(), except that the input polynomial must be a standard anticanonical hypersurface in weighted projective space  $\mathbb{P}^2[1,1,2]$ :

$$p(x,y) = a_{40}x^4 + a_{30}x^3 + a_{21}x^2y + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2_112
sage: fan = Fan(rays=[(1,0),(0,1),(-1,-2),(0,-1)],cones=[[0,1],[1,2],[2,3],[3,0]])
sage: P112.<x,y,z,t> = ToricVariety(fan)
sage: (-P112.K()).sections_monomials()
(z^4*t^2, x*z^3*t^2, x^2*z^2*t^2, x^3*z*t^2,
x^4*t^2, y*z^2*t, x*y*z*t, x^2*y*t, y^2)
sage: WeierstrassForm_P2_112(sum(_), [x,y,z,t])
(-97/48, 17/864)
```

sage.schemes.toric.weierstrass.j\_invariant(polynomial, variables=None)
Return the j-invariant of the elliptic curve.

#### INPUT:

See WeierstrassForm() for how to specify the input polynomial(s) and variables.

### **OUTPUT:**

The j-invariant of the (irreducible) cubic. Notable special values:

- The Fermat cubic:  $j(x^3 + y^3 + z^3) = 0$
- A nodal cubic:  $j(-y^2 + x^2 + x^3) = \infty$
- A cuspidal cubic  $y^2=x^3$  has undefined j-invariant. In this case, a ValueError is returned.

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass import j_invariant
sage: R.<x,y,z> = QQ[]
sage: j_invariant(x^3+y^3+z^3)
0
sage: j_invariant(-y^2 + x^2 + x^3)
+Infinity
sage: R.<x,y,z, a,b> = QQ[]
sage: j_invariant(-y^2*z + x^3 + a*x*z^2, [x,y,z])
1728
```

# 16.11 Map to the Weierstrass form of a toric elliptic curve

There are 16 reflexive polygons in 2-d. Each defines a toric Fano variety, which (since it is 2-d) has a unique crepant resolution to a smooth toric surface. An anticanonical hypersurface defines a genus one curve C in this ambient space, with Jacobian elliptic curve J(C) which can be defined by the Weierstrass model  $y^2 = x^3 + fx + g$ . The coefficients f and g can be computed with the <code>weierstrass</code> module. The purpose of this model is to give an explicit rational map  $C \to J(C)$ . This is an  $n^2$ -cover, where n is the minimal multi-section of C.

Since it is technically often easier to deal with polynomials than with fractions, we return the rational map in terms of homogeneous coordinates. That is, the ambient space for the Weierstrass model is the weighted projective space  $\mathbb{P}^2[2,3,1]$  with homogeneous coordinates  $[X:Y:Z]=[\lambda^2 X,\lambda^3 Y,\lambda Z]$ . The homogenized Weierstrass equation is

$$Y^2 = X^3 + fXZ^4 + gZ^6$$

## **EXAMPLES:**

```
sage: R.\langle x,y \rangle = QQ[]
sage: cubic = x^3 + y^3 + 1
sage: f, g = WeierstrassForm(cubic); (f,g)
(0, -27/4)
```

That is, this hypersurface  $C \in \mathbb{P}^2$  has a Weierstrass equation  $Y^2 = X^3 + 0 \cdot XZ^4 - \frac{27}{4}Z^6$  where [X:Y:Z] are projective coordinates on  $\mathbb{P}^2[2,3,1]$ . The form of the map  $C \to J(C)$  is:

```
sage: X,Y,Z = WeierstrassForm(cubic, transformation=True); (X,Y,Z)
(-x^3*y^3 - x^3 - y^3,
1/2*x^6*y^3 - 1/2*x^3*y^6 - 1/2*x^6 + 1/2*y^6 + 1/2*x^3 - 1/2*y^3,
x*y)
```

Note that plugging in [X:Y:Z] to the Weierstrass equation is a complicated polynomial, but contains the hypersurface equation as a factor:

```
sage: -Y^2 + X^3 + f*X*Z^4 + g*Z^6
-1/4*x^12*y^6 - 1/2*x^9*y^9 - 1/4*x^6*y^12 + 1/2*x^12*y^3
- 7/2*x^9*y^6 - 7/2*x^6*y^9 + 1/2*x^3*y^12 - 1/4*x^12 - 7/2*x^9*y^3
- 45/4*x^6*y^6 - 7/2*x^3*y^9 - 1/4*y^12 - 1/2*x^9 - 7/2*x^6*y^3
- 7/2*x^3*y^6 - 1/2*y^9 - 1/4*x^6 + 1/2*x^3*y^3 - 1/4*y^6
sage: cubic.divides(-Y^2 + X^3 + f*X*Z^4 + g*Z^6)
True
```

If you prefer you can also use homogeneous coordinates for  $C \in \mathbb{P}^2$ 

```
sage: R.<x,y,z> = QQ[]
sage: cubic = x^3 + y^3 + z^3
sage: f, g = WeierstrassForm(cubic); (f,g)
(0, -27/4)
sage: X,Y,Z = WeierstrassForm(cubic, transformation=True)
sage: cubic.divides(-Y^2 + X^3 + f*X*Z^4 + g*Z^6)
True
```

The 16 toric surfaces corresponding to the 16 reflexive polygons can all be blown down to  $\mathbb{P}^2$ ,  $\mathbb{P}^1 \times \mathbb{P}^1$ , or  $\mathbb{P}^2[1,1,2]$ . Their (and hence in all 16 cases) anticanonical hypersurface can equally be brought into Weierstrass form. For example, here is an anticanonical hypersurface in  $\mathbb{P}^2[1,1,2]$ 

```
sage: P2_112 = toric_varieties.P2_112()
sage: C = P2_112.anticanonical_hypersurface(coefficients=[1]*4); C
Closed subscheme of 2-d CPR-Fano toric variety
covered by 3 affine patches defined by:
   z0^4 + z2^4 + z0*z1*z2 + z1^2
sage: eq = C.defining_polynomials()[0]
sage: f, g = WeierstrassForm(eq)
sage: X,Y,Z = WeierstrassForm(eq, transformation=True)
sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(C.defining_ideal())
0
```

Finally, you sometimes have to manually specify the variables to use. This is either because the equation is degenerate or because it contains additional variables that you want to treat as coefficients:

```
sage: R.<a, x,y,z> = QQ[]
sage: cubic = x^3 + y^3 + z^3 + a*x*y*z
sage: f, g = WeierstrassForm(cubic, variables=[x,y,z])
sage: X,Y,Z = WeierstrassForm(cubic, variables=[x,y,z], transformation=True)
sage: cubic.divides(-Y^2 + X^3 + f*X*Z^4 + g*Z^6)
True
```

#### REFERENCES:

```
sage.schemes.toric.weierstrass_covering.WeierstrassMap(polynomial, vari-
ables=None)
```

Return the Weierstrass form of an anticanonical hypersurface.

```
You should use sage.schemes.toric.weierstrass.WeierstrassForm() with transformation=True to get the transformation. This function is only for internal use.
```

#### INPUT:

- polynomial a polynomial. The toric hypersurface equation. Can be either a cubic, a biquadric, or the hypersurface in  $\mathbb{P}^2[1,1,2]$ . The equation need not be in any standard form, only its Newton polyhedron is used.
- variables a list of variables of the parent polynomial ring or None (default). In the latter case, all variables are taken to be polynomial ring variables. If a subset of polynomial ring variables are given, the Weierstrass form is determined over the function field generated by the remaining variables.

### **OUTPUT:**

A triple (X, Y, Z) of polynomials defining a rational map of the toric hypersurface to its Weierstrass form in  $\mathbb{P}^2[2,3,1]$ . That is, the triple satisfies

$$Y^2 = X^3 + fXZ^4 + gZ^6$$

when restricted to the toric hypersurface.

#### **EXAMPLES:**

Only the affine span of the Newton polytope of the polynomial matters. For example:

This allows you to work with either homogeneous or inhomogeneous variables. For example, here is the del Pezzo surface of degree 8:

```
sage: dP8 = toric_varieties.dP8()
sage: dP8.inject_variables()
Defining t, x, y, z
sage: WeierstrassForm(x*y^2 + y^2*z + t^2*x^3 + t^2*z^3, transformation=True)
(-1/27*t^4*x^6 - 2/27*t^4*x^5*z - 5/27*t^4*x^4*z^2
     -8/27*t^4*x^3*z^3 - 5/27*t^4*x^2*z^4 - 2/27*t^4*x*z^5
     -1/27*t^4*z^6 - 4/81*t^2*x^4*y^2 - 4/81*t^2*x^3*y^2*z
     -4/81*t^2*x*y^2*z^3 - 4/81*t^2*y^2*z^4 - 2/81*x^2*y^4
     -4/81*x*y^4*z - 2/81*y^4*z^2
0,
1/3*t^2*x^2*z + 1/3*t^2*x*z^2 - 1/9*x*y^2 - 1/9*y^2*z
sage: WeierstrassForm(x*y^2 + y^2 + x^3 + 1, transformation=True)
(-1/27*x^6 - 4/81*x^4*y^2 - 2/81*x^2*y^4 - 2/27*x^5
     -4/81*x^3*y^2 - 4/81*x*y^4 - 5/27*x^4 - 2/81*y^4 - 8/27*x^3
     -4/81*x*y^2 - 5/27*x^2 - 4/81*y^2 - 2/27*x - 1/27
 -1/9*x*y^2 + 1/3*x^2 - 1/9*y^2 + 1/3*x
```

By specifying only certain variables we can compute the Weierstrass form over the function field generated by the remaining variables. For example, here is a cubic over  $\mathbf{Q}[a]$ 

sage.schemes.toric.weierstrass\_covering.WeierstrassMap\_P1xP1(polynomial, variables=None)

Map an anticanonical hypersurface in  $\mathbb{P}^1 \times \mathbb{P}^1$  into Weierstrass form.

Input/output is the same as WeierstrassMap(), except that the input polynomial must be a standard anticanonical hypersurface in the toric surface  $\mathbb{P}^1 \times \mathbb{P}^1$ :

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass covering import WeierstrassMap_P1xP1
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P1xP1
sage: R.<x0,x1,y0,y1,a>= QQ[]
sage: biquadric = (x0^2*y0^2 + x1^2*y0^2 + x0^2*y1^2 + x1^2*v1^2 +
         a * x0*x1*y0*y1*5)
sage: f, g = WeierstrassForm_P1xP1(biquadric, [x0, x1, y0, y1]); (f,g)
(-625/48*a^4 + 25/3*a^2 - 16/3, 15625/864*a^6 - 625/36*a^4 - 100/9*a^2 + 128/27)
sage: X, Y, Z = WeierstrassMap_P1xP1(biquadric, [x0, x1, y0, y1])
sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(biquadric))
sage: R = PolynomialRing(QQ, 'x,y,s,t', order='lex')
sage: R.inject_variables()
Defining x, y, s, t
sage: equation = (s^2 * (x^2 + 2 * x * y + 3 * y^2) + s * t * (4 * x^2 + 5 * x * y + 6 * y^2)
                    + t^2* (7*x^2+8*x*y+9*y^2) )
sage: X, Y, Z = WeierstrassMap_P1xP1(equation, [x,y,s,t])
sage: f, g = WeierstrassForm_P1xP1(equation, variables=[x,y,s,t])
sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
sage: R = PolynomialRing(QQ, 'x,s', order='lex')
sage: R.inject_variables()
Defining x, s
sage: equation = s^2 * (x^2 + 2 * x + 3) + s * (4 * x^2 + 5 * x + 6) + (7 * x^2 + 8 * x + 9)
sage: X, Y, Z = WeierstrassMap_P1xP1(equation)
sage: f, g = WeierstrassForm_P1xP1(equation)
sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
```

Map a cubic to its Weierstrass form

Input/output is the same as WeierstrassMap(), except that the input polynomial must be a cubic in  $\mathbb{P}^2$ ,

$$p(x,y) = a_{30}x^3 + a_{21}x^2y + a_{12}xy^2 + a_{03}y^3 + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

# **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2
sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P2
sage: R.<x,y,z> = QQ[]
sage: equation = x^3+y^3+z^3+x*y*z
sage: f, g = WeierstrassForm_P2 (equation)
sage: X,Y,Z = WeierstrassMap_P2 (equation)
sage: equation.divides(-Y^2 + X^3 + f*X*Z^4 + g*Z^6)
True
```

```
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2
sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P2
sage: R.<x,y> = QQ[]
sage: equation = x^3+y^3+1
sage: f, g = WeierstrassForm_P2(equation)
sage: X,Y,Z = WeierstrassMap_P2(equation)
sage: equation.divides(-Y^2 + X^3 + f*X*Z^4 + g*Z^6)
True
```

sage.schemes.toric.weierstrass\_covering.WeierstrassMap\_P2\_112 (polynomial, variables=None)

Map an anticanonical hypersurface in  $\mathbb{P}^2[1,1,2]$  into Weierstrass form.

Input/output is the same as WeierstrassMap(), except that the input polynomial must be a standard anticanonical hypersurface in weighted projective space  $\mathbb{P}^2[1,1,2]$ :

$$p(x,y) = a_{40}x^4 + a_{30}x^3 + a_{21}x^2y + a_{20}x^2 + a_{11}xy + a_{02}y^2 + a_{10}x + a_{01}y + a_{00}$$

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P2_112
sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2_112
sage: R = PolynomialRing(QQ, 'x,y,a0,a1,a2,a3,a4', order='lex')
sage: R.inject_variables()
Defining x, y, a0, a1, a2, a3, a4
sage: equation = y^2 + a0*x^4 + 4*a1*x^3 + 6*a2*x^2 + 4*a3*x + a4
sage: X, Y, Z = WeierstrassMap_P2_112(equation, [x,y])
sage: f, g = WeierstrassForm_P2_112(equation, variables=[x,y])
sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
```

Another example, this time in homogeneous coordinates:

# 16.12 Weierstrass for elliptic curves in higher codimension

The weierstrass module lets you transform a genus-one curve, given as a hypersurface in a toric surface, into Weierstrass form. The purpose of this module is to extend this to higher codimension subschemes of toric varieties. In general, this is an unsolved problem. However, for certain special cases this is known.

The simplest codimension-two case is the complete intersection of two quadratic equations in  $\mathbb{P}^3$ 

```
sage: R.<w,x,y,z> = QQ[]
sage: quadratic1 = w^2+x^2+y^2
sage: quadratic2 = z^2 + w*x
sage: WeierstrassForm([quadratic1, quadratic2])
(-1/4, 0)
```

Hence, the Weierstrass form of this complete intersection is  $Y^2 = X^3 - \frac{1}{4}XZ^4$ .

```
sage.schemes.toric.weierstrass_higher.WeierstrassForm2 (polynomial, wariables=None, mation=False) variables=None
```

Helper function for WeierstrassForm()

Currently, only the case of the complete intersection of two quadratic equations in  $\mathbb{P}^3$  is supported.

# INPUT / OUTPUT:

```
See WeierstrassForm()
```

Bring a complete intersection of two quadratics into Weierstrass form.

Input/output is the same as sage.schemes.toric.weierstrass.WeierstrassForm(), except that the two input polynomials must be quadratic polynomials in  $\mathbb{P}^3$ .

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass_higher import WeierstrassForm_P3
sage: R.<w,x,y,z> = QQ[]
sage: quadratic1 = w^2+x^2+y^2
sage: quadratic2 = z^2 + w*x
sage: WeierstrassForm_P3(quadratic1, quadratic2)
(-1/4, 0)
```

Bring a complete intersection of two quadratics into Weierstrass form.

Input/output is the same as sage.schemes.toric.weierstrass.WeierstrassForm(), except that the two input polynomials must be quadratic polynomials in  $\mathbb{P}^3$ .

# **EXAMPLES:**

```
sage: from sage.schemes.toric.weierstrass_higher import \
....: WeierstrassMap_P3, WeierstrassForm_P3
sage: R.<w,x,y,z> = QQ[]
sage: quadratic1 = w^2+x^2+y^2
sage: quadratic2 = z^2 + w*x
sage: X, Y, Z = WeierstrassMap_P3(quadratic1, quadratic2)
sage: X
1/1024*w^8 + 3/256*w^6*x^2 + 19/512*w^4*x^4 + 3/256*w^2*x^6 + 1/1024*x^8
sage: Y
1/32768*w^12 - 7/16384*w^10*x^2 - 145/32768*w^8*x^4 - 49/8192*w^6*x^6
- 145/32768*w^4*x^8 - 7/16384*w^2*x^10 + 1/32768*x^12
sage: Z
-1/8*w^2*y*z + 1/8*x^2*y*z
sage: a, b = WeierstrassForm_P3(quadratic1, quadratic2); a, b
(-1/4, 0)
```

```
sage: ideal = R.ideal(quadratic1, quadratic2)
sage: (-Y^2 + X^3 + a*X*Z^4 + b*Z^6).reduce(ideal)
0
```

# 16.13 Set of homomorphisms between two toric varieties

For schemes X and Y, this module implements the set of morphisms Hom(X,Y). This is done by  $SchemeHomset\_generic$ .

As a special case, the Hom-sets can also represent the points of a scheme. Recall that the K-rational points of a scheme X over k can be identified with the set of morphisms  $Spec(K) \to X$ . In Sage, the rational points are implemented by such scheme morphisms. This is done by  $SchemeHomset\_points$  and its subclasses.

Note: You should not create the Hom-sets manually. Instead, use the Hom () method that is inherited by all schemes.

#### **AUTHORS:**

• Volker Braun (2012-02-18): Initial version

#### **EXAMPLES:**

Here is a simple example, the projection of  $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ 

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: hom_set = P1xP1.Hom(P1); hom_set
Set of morphisms
  From: 2-d CPR-Fano toric variety covered by 4 affine patches
  To: 1-d CPR-Fano toric variety covered by 2 affine patches
```

In terms of the fan, we can define this morphism by the projection onto the first coordinate. The Hom-set can construct the morphism from the projection matrix alone:

```
sage: hom_set(matrix([[1],[0]]))
Scheme morphism:
   From: 2-d CPR-Fano toric variety covered by 4 affine patches
   To: 1-d CPR-Fano toric variety covered by 2 affine patches
   Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
        to Rational polyhedral fan in 1-d lattice N.

sage: _.as_polynomial_map()
Scheme morphism:
   From: 2-d CPR-Fano toric variety covered by 4 affine patches
   To: 1-d CPR-Fano toric variety covered by 2 affine patches
   Defn: Defined on coordinates by sending [s : t : x : y] to
        [s : t]
```

In the case of toric algebraic schemes (defined by polynomials in toric varieties), this module defines the underlying morphism of the ambient toric varieties:

```
sage: P1xP1.inject_variables()
Defining s, t, x, y
sage: S = P1xP1.subscheme([s*x-t*y])
sage: type(S.Hom(S))
<class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
```

Finally, you can have morphisms defined through homogeneous coordinates where the codomain is not implemented as a toric variety:

```
sage: P2_toric.<x,y,z> = toric_varieties.P2()
sage: P2_native.<u,v,w> = ProjectiveSpace(QQ, 2)
sage: toric_to_native = P2_toric.Hom(P2_native); toric_to_native
Set of morphisms
 From: 2-d CPR-Fano toric variety covered by 3 affine patches
      Projective Space of dimension 2 over Rational Field
sage: type(toric_to_native)
<class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
sage: toric_to_native([x^2, y^2, z^2])
Scheme morphism:
 From: 2-d CPR-Fano toric variety covered by 3 affine patches
 To: Projective Space of dimension 2 over Rational Field
 Defn: Defined on coordinates by sending [x : y : z] to
        (x^2 : y^2 : z^2)
sage: native_to_toric = P2_native.Hom(P2_toric); native_to_toric
Set of morphisms
 From: Projective Space of dimension 2 over Rational Field
      2-d CPR-Fano toric variety covered by 3 affine patches
sage: type(native_to_toric)
<class 'sage.schemes.generic.homset.SchemeHomset_generic_with_category'>
sage: native_to_toric([u^2, v^2, w^2])
Scheme morphism:
 From: Projective Space of dimension 2 over Rational Field
 To: 2-d CPR-Fano toric variety covered by 3 affine patches
 Defn: Defined on coordinates by sending (u : v : w) to
        [u^2 : v^2 : w^2]
```

```
class sage.schemes.toric.homset.SchemeHomset_points_subscheme_toric_field (X, Y, cat-e-gory=None, check=True, base=Integer Ring)
```

Bases: sage.schemes.toric.homset.SchemeHomset\_points\_toric\_base

#### cardinality()

Return the number of points of the toric variety.

#### **OUTPUT:**

An integer or infinity. The cardinality of the set of points.

## **EXAMPLES:**

```
sage: P2.<x,y,z> = toric_varieties.P2(base_ring=GF(5))
sage: cubic = P2.subscheme([x^3 + y^3 + z^3])
sage: list(cubic.point_set())
[[0 : 1 : 4], [1 : 0 : 4], [1 : 4 : 0], [1 : 2 : 1], [1 : 1 : 2], [1 : 3 : 3]]
sage: cubic.point_set().cardinality()
6
```

class sage.schemes.toric.homset.SchemeHomset\_points\_toric\_base(X, Y, category=None, check=True, base=Integer Ring)

Bases: sage.schemes.generic.homset.SchemeHomset\_points

Base class for homsets with toric ambient spaces

#### INPUT:

• same as for SchemeHomset\_points.

#### **OUTPUT:**

A scheme morphism of type SchemeHomset\_points\_toric\_base.

# **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1(QQ)
Set of rational points of 2-d CPR-Fano toric variety
covered by 4 affine patches
```

## is\_finite()

Return whether there are finitely many points.

**OUTPUT**:

Boolean.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: P2.point_set().is_finite()
False
sage: P2.change_ring(GF(7)).point_set().is_finite()
True
```

 $\textbf{class} \text{ sage.schemes.toric.homset.SchemeHomset\_points\_toric\_field} (X, \quad Y, \quad category=None, \\ check=True, \\ base=Integer \\ Ring)$ 

 $Bases: sage.schemes.toric.homset.Scheme {\tt Homset\_points\_toric\_base}$ 

Set of rational points of a toric variety.

You should not use this class directly. Instead, use the <code>point\_set()</code> method to construct the point set of a toric variety.

### INPUT:

• same as for SchemeHomset\_points.

# **OUTPUT:**

A scheme morphism of type SchemeHomset\_points\_toric\_field.

**EXAMPLES:** 

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1xP1.point_set()
Set of rational points of 2-d CPR-Fano toric variety
covered by 4 affine patches
sage: P1xP1(QQ)
Set of rational points of 2-d CPR-Fano toric variety
covered by 4 affine patches
```

The quotient  $\mathbb{P}^2/\mathbb{Z}_3$  over GF(7) by the diagonal action. This is tricky because the base field has a 3-rd root of unity:

```
sage: fan = NormalFan(ReflexivePolytope(2, 0))
sage: X = ToricVariety(fan, base_field=GF(7))
sage: point_set = X.point_set()
sage: point_set.cardinality()
21
sage: sorted(X.point_set().list())
[[0 : 0 : 1], [0 : 1 : 0], [0 : 1 : 1], [0 : 1 : 3],
[1 : 0 : 0], [1 : 0 : 1], [1 : 0 : 3], [1 : 1 : 0],
[1 : 1 : 1], [1 : 1 : 2], [1 : 1 : 3], [1 : 1 : 4],
[1 : 1 : 5], [1 : 1 : 6], [1 : 3 : 0], [1 : 3 : 5],
[1 : 3 : 2], [1 : 3 : 3], [1 : 3 : 4], [1 : 3 : 5],
```

As for a non-compact example, the blow-up of the plane is the line bundle  $O_{\mathbf{P}^1}(-1)$ . Its point set is the Cartesian product of the points on the base  $\mathbf{P}^1$  with the points on the fiber:

```
sage: fan = Fan([Cone([(1,0), (1,1)]), Cone([(1,1), (0,1)])])
sage: blowup_plane = ToricVariety(fan, base_ring=GF(3))
sage: point_set = blowup_plane.point_set()
sage: sorted(point_set.list())
[[0 : 1 : 0], [0 : 1 : 1], [0 : 1 : 2],
    [1 : 0 : 0], [1 : 0 : 1], [1 : 0 : 2],
    [1 : 1 : 0], [1 : 1 : 1], [1 : 1 : 2],
    [1 : 2 : 0], [1 : 2 : 1], [1 : 2 : 2]]
```

Toric varieties with torus factors (that is, where the fan is not full-dimensional) also work:

```
sage: F_times_Fstar = ToricVariety(Fan([Cone([(1,0)])]), base_field=GF(3))
sage: sorted(F_times_Fstar.point_set().list())
[[0 : 1], [0 : 2], [1 : 1], [1 : 2], [2 : 1], [2 : 2]]
```

#### cardinality()

Return the number of points of the toric variety.

#### OUTPUT

An integer or infinity. The cardinality of the set of points.

# EXAMPLES:

```
sage: o = lattice_polytope.cross_polytope(3)
sage: V = ToricVariety(FaceFan(o))
sage: V.change_ring(GF(2)).point_set().cardinality()
27
sage: V.change_ring(GF(8, "a")).point_set().cardinality()
729
```

```
sage: V.change_ring(GF(101)).point_set().cardinality()
1061208
```

For non-smooth varieties over finite fields, the homogeneous rescalings are solved. This is somewhat slower:

```
sage: fan = NormalFan(ReflexivePolytope(2, 0))
sage: X = ToricVariety(fan, base_field=GF(7))
sage: X.point_set().cardinality()
21
```

Fulton's formula does not apply since the variety is not smooth. And, indeed, naive application gives a different result:

```
sage: q = X.base_ring().order()
sage: n = X.dimension()
sage: d = map(len, fan().cones())
sage: sum(dk * (q-1)**(n-k) for k, dk in enumerate(d))
57
```

Over infinite fields the number of points is not very tricky:

```
sage: V.count_points()
+Infinity
```

#### ALGORITHM:

Uses the formula in Fulton [F], section 4.5.

#### REFERENCES:

# **AUTHORS:**

- Beth Malmskog (2013-07-14)
- Adriana Salerno (2013-07-14)
- Yiwei She (2013-07-14)
- Christelle Vincent (2013-07-14)
- Ursula Whitcher (2013-07-14)

Bases: sage.schemes.generic.homset.SchemeHomset\_generic

Set of homomorphisms between two toric varieties.

#### **EXAMPLES:**

```
sage: P1xP1 = toric_varieties.P1xP1()
sage: P1 = toric_varieties.P1()
sage: hom_set = P1xP1.Hom(P1); hom_set
Set of morphisms
   From: 2-d CPR-Fano toric variety covered by 4 affine patches
   To: 1-d CPR-Fano toric variety covered by 2 affine patches
sage: type(hom_set)
<class 'sage.schemes.toric.homset.SchemeHomset_toric_variety_with_category'>
```

```
sage: hom_set(matrix([[1],[0]]))
Scheme morphism:
   From: 2-d CPR-Fano toric variety covered by 4 affine patches
   To: 1-d CPR-Fano toric variety covered by 2 affine patches
   Defn: Defined by sending Rational polyhedral fan in 2-d lattice N
        to Rational polyhedral fan in 1-d lattice N.
```

# 16.14 Enumerate points of a toric variety

The classes here are not meant to be instantiated manually. Instead, you should always use the methods of the point set of the variety.

In this module, points are always represented by tuples instead of Sage's class for points of the toric variety. All Sage library code must then convert it to proper point objects before returning it to the user.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2(base_ring=GF(3))
sage: point_set = P2.point_set()
sage: point_set.cardinality()
13
sage: next(iter(point_set))
[0 : 0 : 1]
sage: list(point_set)[0:5]
[[0 : 0 : 1], [1 : 0 : 0], [0 : 1 : 0], [0 : 1 : 2]]
```

#### class sage.schemes.toric.points.FiniteFieldPointEnumerator(fan, ring)

Bases: sage.schemes.toric.points.NaiveFinitePointEnumerator

## cardinality()

Return the cardinality of the point set.

# **OUTPUT**:

Integer. The number of points.

#### **EXAMPLES:**

```
sage: fan = NormalFan(ReflexivePolytope(2, 0))
sage: X = ToricVariety(fan, base_ring=GF(7))
sage: point_set = X.point_set()
sage: ffe = point_set._finite_field_enumerator()
sage: ffe.cardinality()
21
```

# cone\_points\_iter()

Iterate over the open torus orbits and yield distinct points.

#### **OUTPUT:**

For each open torus orbit (cone): A triple consisting of the cone, the nonzero homogeneous coordinates in that orbit (list of integers), and the nonzero log coordinates of distinct points as a cokernel.

**EXAMPLES:** 

```
sage: fan = NormalFan(ReflexivePolytope(2, 0))
sage: X = ToricVariety(fan, base_ring=GF(7))
sage: point_set = X.point_set()
sage: ffe = point_set._finite_field_enumerator()
sage: cpi = ffe.cone_points_iter()
sage: cone, nonzero_points, cokernel = list(cpi)[5]
1-d cone of Rational polyhedral fan in 2-d lattice N
sage: cone.ambient_ray_indices()
(2,)
sage: nonzero_points
[0, 1]
sage: cokernel
Finitely generated module V/W over Integer Ring with invariants (2)
sage: list(cokernel)
[(0), (1)]
sage: [p.lift() for p in cokernel]
[(0, 0), (0, 1)]
```

## exp (powers)

Return the component-wise exp of z

#### INPUT:

• powers – a list/tuple/iterable of integers.

#### **OUTPUT**:

Tuple of finite field elements. The powers of the multiplicative\_generator().

#### **EXAMPLES:**

```
sage: F.<a> = GF(5^2)
sage: point_set = toric_varieties.P2_123(base_ring=F).point_set()
sage: ffe = point_set._finite_field_enumerator()
sage: powers = list(range(24))
sage: ffe.exp(powers)
(1, a, a + 3, 4*a + 3, 2*a + 2, 4*a + 1, 2, 2*a, 2*a + 1, 3*a + 1,
4*a + 4, 3*a + 2, 4, 4*a, 4*a + 2, a + 2, 3*a + 3, a + 4, 3, 3*a,
3*a + 4, 2*a + 4, a + 1, 2*a + 3)
sage: ffe.log(ffe.exp(powers)) == tuple(powers)
True
```

#### log(z)

Return the component-wise log of z

## INPUT:

• z - a list/tuple/iterable of non-zero finite field elements.

#### **OUTPUT**

Tuple of integers. The logarithm with base the multiplicative\_generator().

# **EXAMPLES:**

```
sage: F.<a> = GF(5^2)
sage: point_set = toric_varieties.P2_123(base_ring=F).point_set()
sage: ffe = point_set._finite_field_enumerator()
sage: z = tuple(a^i for i in range(25)); z
(1, a, a + 3, 4*a + 3, 2*a + 2, 4*a + 1, 2, 2*a, 2*a + 1, 3*a + 1,
```

```
4*a + 4, 3*a + 2, 4, 4*a, 4*a + 2, a + 2, 3*a + 3, a + 4, 3, 3*a,
3*a + 4, 2*a + 4, a + 1, 2*a + 3, 1)
sage: ffe.log(z)
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 0)
sage: ffe.exp(ffe.log(z)) == z
True
sage: ffe.log(ffe.exp(range(24))) == tuple(range(24))
True
```

#### multiplicative\_generator()

Return the multiplicative generator of the finite field.

#### **OUTPUT**:

A finite field element.

#### **EXAMPLES:**

sage: point\_set = toric\_varieties.P2(base\_ring=GF(5^2, 'a')).point\_set() sage: ffe = point\_set.\_finite\_field\_enumerator() sage: ffe.multiplicative\_generator() a

# multiplicative\_group\_order()

**EXAMPLES**:

# rescaling\_log\_generators()

Return the log generators of rescalings().

#### **OUTPUT**:

A tuple containing the logarithms (see log()) of the generators of the multiplicative group of rescalings().

# **EXAMPLES:**

```
sage: point_set = toric_varieties.P2_123(base_ring=GF(5)).point_set()
sage: ffe = point_set._finite_field_enumerator()
sage: ffe.rescalings()
((1, 1, 1), (1, 4, 4), (4, 2, 3), (4, 3, 2))
sage: list(map(ffe.log, ffe.rescalings()))
[(0, 0, 0), (0, 2, 2), (2, 1, 3), (2, 3, 1)]
sage: ffe.rescaling_log_generators()
((2, 3, 1),)
```

#### root\_generator(n)

Return a generator for roots ().

# INPUT:

n integer.

#### **OUTPUT**:

A multiplicative generator for roots ().

#### **EXAMPLES:**

```
sage: point_set = toric_varieties.P2(base_ring=GF(5)).point_set()
sage: ffe = point_set._finite_field_enumerator()
sage: ffe.root_generator(2)
4
sage: ffe.root_generator(3)
1
sage: ffe.root_generator(4)
2
```

 $\textbf{class} \ \, \textbf{sage.schemes.toric.points.} \textbf{FiniteFieldSubschemePointEnumerator} \, (\textit{polynomials}, \\ \textit{ambi-}$ 

ent)

Bases: sage.schemes.toric.points.NaiveSubschemePointEnumerator

#### cardinality()

Return the cardinality of the point set.

#### **OUTPUT**:

Integer. The number of points.

#### **EXAMPLES:**

#### homogeneous\_coordinates (log\_t, nonzero\_coordinates, cokernel)

Convert the log of inhomogeneous coordinates back to homogeneous coordinates

# INPUT:

- log\_t log of inhomogeneous coordinates of a point.
- nonzero\_coordinates the nonzero homogeneous coordinates in the patch.
- cokernel the logs of the nonzero coordinates of all distinct points as a cokernel. See FiniteFieldPointEnumerator.cone\_points\_iter().

# OUTPUT:

The same point, but as a tuple of homogeneous coordinates.

#### **EXAMPLES:**

#### inhomogeneous\_equations (ring, nonzero\_coordinates, cokernel)

Inhomogenize the defining polynomials

#### INPUT:

- ring the polynomial ring for inhomogeneous coordinates.
- nonzero\_coordinates list of integers. The indices of the non-zero homogeneous coordinates in the patch.
- cokernel the logs of the nonzero coordinates of all distinct points as a cokernel. See FiniteFieldPointEnumerator.cone\_points\_iter().

# **EXAMPLES:**

## solutions (inhomogeneous\_equations, log\_range)

Parallel version of solutions\_serial()

# INPUT/OUTPUT:

Same as <code>solutions\_serial()</code>, except that the output points are in random order. Order depends on the number of processors and relative speed of separate processes.

### **EXAMPLES:**

```
sage: R.<s> = GF(7)[]
sage: P2.<x,y,z> = toric_varieties.P2(base_ring=GF(7))
sage: X = P2.subscheme(1)
sage: point_set = X.point_set()
sage: ffe = point_set._enumerator()
sage: ffe.solutions([s^2-1, s^6-s^2], [range(6)])
```

(continued from previous page)

```
<generator object ...solutions at 0x...>
sage: sorted(_)
[(0,), (3,)]
```

# solutions\_serial (inhomogeneous\_equations, log\_range)

Iterate over solutions in a range.

#### INPUT:

- inhomogeneous\_equations list/tuple/iterable of inhomogeneous equations (i.e. output from inhomogeneous\_equations()).
- log\_range list/tuple/iterable of integer ranges. One for each inhomogeneous coordinate. The logarithms of the homogeneous coordinates.

#### **OUTPUT:**

All solutions (as tuple of log inhomogeneous coordinates) in the Cartesian product of the ranges.

# **EXAMPLES:**

```
sage: R.<s> = GF(7)[]
sage: P2.<x,y,z> = toric_varieties.P2(base_ring=GF(7))
sage: X = P2.subscheme(1)
sage: point_set = X.point_set()
sage: ffe = point_set._enumerator()
sage: ffe.solutions_serial([s^2-1, s^6-s^2], [range(6)])
<generator object ...solutions_serial at 0x...>
sage: list(_)
[(0,), (3,)]
```

#### class sage.schemes.toric.points.InfinitePointEnumerator(fan, ring)

Bases: object

Point enumerator for infinite fields.

# INPUT:

- fan fan of the toric variety.
- ring infinite base ring over which to enumerate points.

# class sage.schemes.toric.points.NaiveFinitePointEnumerator(fan, ring)

Bases: object

The naive point enumerator.

This is very slow.

# INPUT:

- fan fan of the toric variety.
- ring finite base ring over which to enumerate points.

```
sage: from sage.schemes.toric.points import NaiveFinitePointEnumerator
sage: fan = toric_varieties.P2().fan()
sage: n = NaiveFinitePointEnumerator(fan, GF(3))
sage: next(iter(n))
(0, 0, 1)
```

#### cone iter()

Iterate over all cones of the fan

#### **OUTPUT**:

Iterator over the cones, starting with the high-dimensional ones.

#### **EXAMPLES:**

```
sage: ne = toric_varieties.dP6(base_ring=GF(11)).point_set()._naive_
→enumerator()
sage: for cone in ne.cone_iter():
          print(cone.ambient_ray_indices())
(0, 1)
(1, 2)
(2, 3)
(3, 4)
(4, 5)
(0, 5)
(0,)
(1,)
(2,)
(3,)
(4,)
(5,)
()
```

#### coordinate\_iter()

Iterate over all distinct homogeneous coordinates.

This method does NOT identify homogeneous coordinates that are equivalent by a homogeneous rescaling.

# **OUTPUT**:

An iterator over the points.

## **EXAMPLES:**

```
sage: F2 = GF(2)
sage: ni = toric_varieties.P2(base_ring=F2).point_set()._naive_enumerator()
sage: list(ni.coordinate_iter())
[(0, 0, 1), (1, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)]
sage: ni = toric_varieties.P1xP1(base_ring=F2).point_set()._naive_enumerator()
sage: list(ni.coordinate_iter())
[(0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0),
        (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1),
        (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)]
```

#### orbit (point)

Return the orbit of homogeneous coordinates under rescalings.

# OUTPUT:

The set of all homogeneous coordinates that are equivalent to point.

#### **EXAMPLES:**

(continues on next page)

(continued from previous page)

```
[(1, 0, 0), (2, 0, 0), (4, 0, 0)]

sage: sorted(ne.orbit([0, 1, 0]))
[(0, 1, 0), (0, 6, 0)]

sage: sorted(ne.orbit([0, 0, 1]))
[(0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 0, 4), (0, 0, 5), (0, 0, 6)]

sage: sorted(ne.orbit([1, 1, 0]))
[(1, 1, 0), (1, 6, 0), (2, 1, 0), (2, 6, 0), (4, 1, 0), (4, 6, 0)]
```

#### rays()

Return all rays (real and virtual).

#### **OUTPUT**:

Tuple of rays of the fan.

#### **EXAMPLES:**

```
sage: from sage.schemes.toric.points import NaiveFinitePointEnumerator
sage: fan = toric_varieties.torus(2).fan()
sage: fan.rays()
Empty collection
in 2-d lattice N
sage: n = NaiveFinitePointEnumerator(fan, GF(3))
sage: n.rays()
N(1, 0),
N(0, 1)
in 2-d lattice N
```

# rescalings()

Return the rescalings of homogeneous coordinates.

#### **OUTPUT:**

A tuple containing all points that are equivalent to  $[1:1:\cdots:1]$ , the distinguished point of the big torus orbit.

# **EXAMPLES:**

#### roots(n)

Return the n-th roots in the base field

# INPUT:

• n integer.

#### **OUTPUT:**

Tuple containing all n-th roots (not only the primitive ones). In particular, 1 is included.

### **EXAMPLES:**

```
sage: ne = toric_varieties.P2(base_ring=GF(5)).point_set()._naive_enumerator()
sage: ne.roots(2)
(1, 4)
sage: ne.roots(3)
(1,)
sage: ne.roots(4)
(1, 2, 3, 4)
```

#### units()

Return the units in the base field.

#### **EXAMPLES:**

```
sage: ne = toric_varieties.P2(base_ring=GF(5)).point_set()._naive_enumerator()
sage: ne.units()
(1, 2, 3, 4)
```

Bases: object

Point enumerator for algebraic subschemes of toric varieties.

#### INPUT:

- polynomials list/tuple/iterabel of polynomials. The defining polynomials.
- ambient enumerator for ambient space points.

# 16.15 Construct sheaves on toric varieties

A toric vector bundle (on a toric variety) is a vector bundle that is equivariant with respect to the algebraic torus action.

```
sage.schemes.toric.sheaf.constructor.CotangentBundle(X) Construct the cotangent bundle of a toric variety.
```

#### INPUT:

• X – a toric variety. The base space of the bundle.

# OUTPUT:

The cotangent bundle as a Klyachko bundle.

```
sage: dP7 = toric_varieties.dP7()
sage: from sage.schemes.toric.sheaf.constructor import CotangentBundle
sage: CotangentBundle(dP7)
Rank 2 bundle on 2-d CPR-Fano toric variety covered by 5 affine patches.
```

```
sage.schemes.toric.sheaf.constructor.LineBundle (X,D) Construct the rank-1 bundle \mathcal{O}(D).
```

# INPUT:

- X a toric variety. The base space of the bundle.
- D a toric divisor.

#### **OUTPUT:**

The line bundle O(D) as a Klyachko bundle of rank 1.

#### **EXAMPLES:**

```
sage: X = toric_varieties.dP8()
sage: D = X.divisor(0)
sage: from sage.schemes.toric.sheaf.constructor import LineBundle
sage: O_D = LineBundle(X, D)
sage: O_D.cohomology(dim=True, weight=(0,0))
(1, 0, 0)
```

class sage.schemes.toric.sheaf.constructor.SheafLibrary(toric\_variety)
 Bases: object

Utility object to construct sheaves on toric varieties.

**Warning:** You should never construct instances manually. Can be accessed from a toric variety via the sage.schemes.toric.variety.ToricVariety\_field.sheaves attribute.

#### **EXAMPLES:**

```
sage: type(toric_varieties.P2().sheaves)
<class 'sage.schemes.toric.sheaf.constructor.SheafLibrary'>
```

# Klyachko (multi\_filtration)

Construct a Klyachko bundle (sheaf) from filtration data.

#### INPUT:

• multi\_filtration - a multi-filtered vectors space with multiple filtrations being indexed by the rays of the fan. Either an instance of MultiFilteredVectorSpace() or something (like a dictionary of ordinary filtered vector spaces).

## **OUTPUT**:

The Klyachko bundle defined by the filtrations, one for each ray, of a vector space.

```
sage: P1 = toric_varieties.P1()
sage: v1, v2, v3 = [(1,0,0),(0,1,0),(0,0,1)]
sage: F1 = FilteredVectorSpace({1:[v1, v2, v3], 3:[v1]})
sage: F2 = FilteredVectorSpace({0:[v1, v2, v3], 2:[v2, v3]})
sage: P1 = toric_varieties.P1()
sage: r1, r2 = P1.fan().rays()
sage: F = MultiFilteredVectorSpace({r1:F1, r2:F2}); F
Filtrations
    N(-1): QQ^3 >= QQ^2 >= QQ^2 >= 0 >= 0
    N(1): QQ^3 >= QQ^3 >= QQ^1 >= QQ^1 >= 0
sage: P1.sheaves.Klyachko(F)
Rank 3 bundle on 1-d CPR-Fano toric variety covered by 2 affine patches.
```

#### cotangent\_bundle()

Return the cotangent bundle of the toric variety.

#### **OUTPUT:**

The cotangent bundle as a Klyachko bundle.

#### **EXAMPLES**:

```
sage: dP6 = toric_varieties.dP6()
sage: TX = dP6.sheaves.tangent_bundle()
sage: TXdual = dP6.sheaves.cotangent_bundle()
sage: TXdual == TX.dual()
True
```

# divisor(\*args, \*\*kwds)

Return a toric divisor.

#### INPUT:

This is just an alias for sage.schemes.toric.variety.ToricVariety\_field.divisor(), see there for details.

By abuse of notation, you can usually use the divisor D interchangeably with the line bundle O(D).

#### **OUTPUT:**

A toric divisor.

#### **EXAMPLES:**

```
sage: dP6 = toric_varieties.dP6()
sage: dP6.inject_variables()
Defining x, u, y, v, z, w
sage: D = dP6.sheaves.divisor(x*u^3); D
V(x) + 3*V(u)
sage: D == dP6.divisor(x*u^3)
True
```

### line bundle(divisor)

Construct the rank-1 bundle  $\mathcal{O}(D)$ .

#### INPUT:

• divisor – a toric divisor.

# OUTPUT:

The line bundle O(D) for the given divisor as a Klyachko bundle of rank 1.

#### **EXAMPLES:**

```
sage: X = toric_varieties.dP8()
sage: D = X.divisor(0)
sage: O_D = X.sheaves.line_bundle(D)
sage: O_D.cohomology(dim=True, weight=(0,0))
(1, 0, 0)
```

# tangent\_bundle()

Return the tangent bundle of the toric variety.

### **OUTPUT**:

The tangent bundle as a Klyachko bundle.

# **EXAMPLES:**

```
sage: toric_varieties.dP6().sheaves.tangent_bundle()
Rank 2 bundle on 2-d CPR-Fano toric variety covered by 6 affine patches.
```

#### trivial\_bundle(rank=1)

Return the trivial bundle of rank r.

#### INPUT:

• rank – integer (optional; default: 1). The rank of the bundle.

#### **OUTPUT:**

The trivial bundle as a Klyachko bundle.

#### **EXAMPLES:**

```
sage: P2 = toric_varieties.P2()
sage: I3 = P2.sheaves.trivial_bundle(3); I3
Rank 3 bundle on 2-d CPR-Fano toric variety covered by 3 affine patches.
sage: I3.cohomology(weight=(0,0), dim=True)
(3, 0, 0)
```

# sage.schemes.toric.sheaf.constructor.TangentBundle(X)

Construct the tangent bundle of a toric variety.

#### INPUT:

• X - a toric variety. The base space of the bundle.

# **OUTPUT:**

The tangent bundle as a Klyachko bundle.

### **EXAMPLES:**

```
sage: dP7 = toric_varieties.dP7()
sage: from sage.schemes.toric.sheaf.constructor import TangentBundle
sage: TangentBundle(dP7)
Rank 2 bundle on 2-d CPR-Fano toric variety covered by 5 affine patches.
```

#### sage.schemes.toric.sheaf.constructor.TrivialBundle(X, rank=1)

Return the trivial bundle of rank r.

# INPUT:

- X a toric variety. The base space of the bundle.
- rank the rank of the bundle.

# **OUTPUT:**

The trivial bundle as a Klyachko bundle.

```
sage: P2 = toric_varieties.P2()
sage: from sage.schemes.toric.sheaf.constructor import TrivialBundle
sage: I3 = TrivialBundle(P2, 3); I3
Rank 3 bundle on 2-d CPR-Fano toric variety covered by 3 affine patches.
sage: I3.cohomology(weight=(0,0), dim=True)
(3, 0, 0)
```

# 16.16 Klyachko bundles and sheaves

Klyachko bundles are torus-equivariant bundles on toric varieties. That is, the action of the maximal torus on the toric variety lifts to an action on the bundle. There is an equivalence of categories between [Klyachko] bundles and multiple filtrations (one for each ray of the fan) of a vector space. The multi-filtrations are implemented in sage.modules. multi\_filtered\_vector\_space.

#### **EXAMPLES:**

```
sage: X = toric_varieties.dP6xdP6()
sage: TX = X.sheaves.tangent_bundle()
sage: Alt2TX = TX.exterior_power(2); Alt2TX
Rank 6 bundle on 4-d CPR-Fano toric variety covered by 36 affine patches.
sage: K = X.sheaves.line_bundle(X.K())
sage: antiK = X.sheaves.line_bundle(-X.K())
sage: (Alt2TX * K).cohomology(dim=True, weight=(0,0,0,0)) # long time
(0, 0, 18, 0, 0)
sage: G_sum = TX + X.sheaves.trivial_bundle(2)
sage: V_sum = G_sum.wedge(2) * K
                                                       # long time
sage: V_sum.cohomology(dim=True, weight=(0,0,0,0))
                                                      # long time
(0, 0, 18, 16, 1)
sage: Gtilde = G_sum.random_deformation()
sage: V = Gtilde.wedge(2) * K
                                                   # long time
sage: V.cohomology(dim=True, weight=(0,0,0,0))
                                                  # long time
(0, 0, 3, 0, 0)
```

#### REFERENCES:

sage.schemes.toric.sheaf.klyachko.Bundle(toric\_variety, multi\_filtration, check=True)
Construct a Klyacho bundle

# INPUT:

- toric\_variety a toric variety. The base space of the bundle.
- multi\_filtration a multi-filtered vectors space with multiple filtrations being indexed by the onedimensional cones of the fan. Either an instance of MultiFilteredVectorSpace() or something (like a dictionary of ordinary filtered vector spaces).

#### **EXAMPLES:**

```
sage: P1 = toric_varieties.P1()
sage: v1, v2, v3 = [(1,0,0),(0,1,0),(0,0,1)]
sage: F1 = FilteredVectorSpace({1:[v1, v2, v3], 3:[v1]})
sage: F2 = FilteredVectorSpace({0:[v1, v2, v3], 2:[v2, v3]})
sage: P1 = toric_varieties.P1()
sage: r1, r2 = P1.fan().rays()
sage: F = MultiFilteredVectorSpace({r1:F1, r2:F2}); F
Filtrations
    N(-1): QQ^3 >= QQ^2 >= QQ^2 >= 0 >= 0
    N(1): QQ^3 >= QQ^3 >= QQ^1 >= QQ^1 >= 0
```

You should use the *Klyachko* () method to construct instances:

```
sage: P1.sheaves.Klyachko(F)
Rank 3 bundle on 1-d CPR-Fano toric variety covered by 2 affine patches.
```

(continues on next page)

(continued from previous page)

```
sage: P1.sheaves.Klyachko({r1:F1, r2:F2}) # alternative
Rank 3 bundle on 1-d CPR-Fano toric variety covered by 2 affine patches.
```

The above is just a shorthand for:

```
sage: from sage.schemes.toric.sheaf.klyachko import Bundle
sage: Bundle(P1, F)
Rank 3 bundle on 1-d CPR-Fano toric variety covered by 2 affine patches.
```

Bases: sage.structure.sage\_object.SageObject

A toric bundle using Klyachko's representation.

Warning: You should always use the Bundle () factory function to construct instances.

# INPUT:

- toric\_variety a toric variety. The base space of the bundle.
- multi\_filtration a MultiFilteredVectorSpace() with index set the rays of the fan.
- check boolean (default: True). Whether to perform consistency checks.

### **EXAMPLES:**

#### **E\_degree** (alpha, m)

Return the vector subspace  $E^{\alpha}(m)$ .

#### INPUT:

- alpha a ray of the fan. Can be specified by its index (an integer), a one-dimensional cone, or a
   N-lattice point.
- m tuple of integers or M-lattice point. A point in the dual lattice of the fan.

# **OUTPUT**:

The subspace  $E^{\alpha}(\alpha m)$  of the filtration indexed by the ray  $\alpha$  and at the filtration degree  $\alpha*m$ 

# **EXAMPLES:**

```
sage: X = toric_varieties.P2()
sage: M = X.fan().dual_lattice()
```

(continues on next page)

(continued from previous page)

```
sage: V = X.sheaves.tangent_bundle()
sage: V.E_degree(X.fan().ray(0), (1,0))
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
sage: V.E_degree(X.fan(1)[0], (1,0))
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
sage: V.E_degree(0, (1,0))
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
```

# **E\_intersection** (sigma, m)

Return the vector subspace  $E^{\sc}$ sigma (m).

See [Klyachko], equation 4.1.

#### INPUT:

- sigma a cone of the fan of the base toric variety.
- m tuple of integers or M-lattice point. A point in the dual lattice of the fan. Must be immutable.

#### **OUTPUT**:

The subspace  $E^{\sigma}(m)$ 

#### **EXAMPLES:**

```
sage: X = toric_varieties.P2()
sage: fan = X.fan()
sage: V = X.sheaves.tangent_bundle()
sage: V.E_intersection(fan(1)[0], (1,0))
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
sage: V.E_intersection(fan(2)[0], (-1,1))
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[0 1]
```

For the empty cone, this is always the whole vector space:

```
sage: V.E_intersection(fan(0)[0], (1,0))
Vector space of dimension 2 over Rational Field
```

# E\_quotient (sigma, m)

Return the vector space quotient  $E_{\sigma}(m)$ .

See [Klyachko], equation 4.1.

# INPUT:

- sigma a cone of the fan of the base toric variety.
- m tuple of integers or M-lattice point. A point in the dual lattice of the fan. Must be immutable.

#### **OUTPUT:**

The subspace  $E_{\sigma}(m)$ 

#### **EXAMPLES:**

```
sage: X = toric_varieties.P2()
sage: fan = X.fan()
sage: M = fan.dual_lattice()
sage: cone = fan(1)[0]
sage: V = X.sheaves.tangent_bundle()
sage: m = M(1, 0)
sage: m.set_immutable()
sage: V.E_quotient(cone, m)
Vector space quotient V/W of dimension 1 over Rational Field where
V: Vector space of dimension 2 over Rational Field
W: Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
sage: V.E_quotient(fan(2)[0], (-1,1))
Vector space quotient V/W of dimension 0 over Rational Field where
V: Vector space of dimension 2 over Rational Field
W: Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
```

#### **E\_quotient\_projection** (*sigma*, *tau*, *m*)

Return the projection map  $E_{\sigma}(m) \to E_{\tau}(m)$  where  $\sigma$  is a face of  $\tau$ .

#### INPUT:

- sigma a cone of the fan of the base toric variety.
- tau a cone of the fan containing sigma.
- m tuple of integers or M-lattice point. A point in the dual lattice of the fan. Must be immutable.

#### **OUTPUT:**

The restriction map

$$E_{\sigma}(m) \to E_{\tau}(m)$$

### **EXAMPLES:**

```
sage: P3 = toric_varieties.P(3)
sage: rays = [(1,0,0), (0,1,0), (0,0,1)]
sage: F1 = FilteredVectorSpace(rays, {0:[0], 1:[2], 2:[1]})
sage: F2 = FilteredVectorSpace(3, 0)
sage: r = P3.fan().rays()
sage: V = P3.sheaves.Klyachko({r[0]:F1, r[1]:F2, r[2]:F2, r[3]:F2})
sage: tau = Cone([(1,0,0), (0,1,0)])
sage: sigma = Cone([(1,0,0)])
sage: M = P3.fan().dual_lattice()
sage: m = M(2, 1, 0)
sage: m.set_immutable()
sage: V.E_quotient(sigma, m)
Vector space quotient V/W of dimension 2 over Rational Field where
V: Vector space of dimension 3 over Rational Field
W: Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 1 0]
sage: V.E_quotient(tau, m)
```

(continues on next page)

(continued from previous page)

```
Vector space quotient V/W of dimension 2 over Rational Field where
V: Vector space of dimension 3 over Rational Field
W: Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 1 0]
sage: V.E_quotient_projection(sigma, tau, m)
Vector space morphism represented by the matrix:
[1 0]
[0 1]
Domain: Vector space quotient V/W of dimension 2 over Rational Field where
V: Vector space of dimension 3 over Rational Field
W: Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 1 0]
Codomain: Vector space quotient V/W of dimension 2 over Rational Field where
V: Vector space of dimension 3 over Rational Field
W: Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 1 0]
```

#### base\_ring()

Return the base field.

#### **OUTPUT:**

A field.

#### **EXAMPLES:**

```
sage: T_P2 = toric_varieties.P2().sheaves.tangent_bundle()
sage: T_P2.base_ring()
Rational Field
```

# cohomology (degree=None, weight=None, dim=False)

Return the bundle cohomology groups.

### INPUT:

- degree None (default) or an integer. The degree of the cohomology group.
- weight None (default) or a tuple of integers or a M-lattice point. A point in the dual lattice of the fan defining a torus character. The weight of the cohomology group.
- dim Boolean (default: False). Whether to return vector spaces or only their dimension.

# OUTPUT:

The cohomology group of given cohomological degree and torus weight.

- If no weight is specified, the unweighted group (sum over all weights) is returned.
- If no degree is specified, a dictionary whose keys are integers and whose values are the cohomology groups is returned. If, in addition, dim=True, then an integral vector of the dimensions is returned.

# **EXAMPLES:**

```
sage: V = toric_varieties.P2().sheaves.tangent_bundle()
sage: V.cohomology(degree=0, weight=(0,0))
Vector space of dimension 2 over Rational Field
sage: V.cohomology(weight=(0,0), dim=True)
```

(continues on next page)

(continued from previous page)

```
(2, 0, 0)

sage: for i, j in cartesian_product((list(range(-2,3)), list(range(-2,3)))):

...:

HH = V.cohomology(weight=(i,j), dim=True)

...:

if HH.is_zero(): continue

...:

print('H^*i(P^2, TP^2)_M({}, {}) = {}'.format(i,j,HH))

H^*i(P^2, TP^2)_M(-1, 0) = (1, 0, 0)

H^*i(P^2, TP^2)_M(-1, 1) = (1, 0, 0)

H^*i(P^2, TP^2)_M(0, -1) = (1, 0, 0)

H^*i(P^2, TP^2)_M(0, 0) = (2, 0, 0)

H^*i(P^2, TP^2)_M(0, 1) = (1, 0, 0)

H^*i(P^2, TP^2)_M(1, -1) = (1, 0, 0)

H^*i(P^2, TP^2)_M(1, 0) = (1, 0, 0)
```

### $cohomology\_complex(m)$

Return the "cohomology complex"  $C^*(m)$ 

See [Klyachko], equation 4.2.

#### INPUT:

• m – tuple of integers or M-lattice point. A point in the dual lattice of the fan. Must be immutable.

#### **OUTPUT**:

The "cohomology complex" as a chain complex over the base\_ring().

#### **EXAMPLES:**

```
sage: P3 = toric_varieties.P(3)
sage: rays = [(1,0,0), (0,1,0), (0,0,1)]
sage: F1 = FilteredVectorSpace(rays, \{0:[0], 1:[2], 2:[1]\})
sage: F2 = FilteredVectorSpace(rays, {0:[1,2], 1:[0]})
sage: r = P3.fan().rays()
sage: V = P3.sheaves.Klyachko({r[0]:F1, r[1]:F2, r[2]:F2, r[3]:F2})
sage: tau = Cone([(1,0,0), (0,1,0)])
sage: sigma = Cone([(1, 0, 0)])
sage: M = P3.fan().dual_lattice()
sage: m = M(1, 1, 0); m.set_immutable()
sage: V.cohomology_complex(m)
Chain complex with at most 2 nonzero terms over Rational Field
sage: F = CyclotomicField(3)
sage: P3 = toric_varieties.P(3).change_ring(F)
sage: V = P3.sheaves.Klyachko({r[0]:F1, r[1]:F2, r[2]:F2, r[3]:F2})
sage: V.cohomology_complex(m)
Chain complex with at most 2 nonzero terms over Cyclotomic
Field of order 3 and degree 2
```

# direct\_sum(other)

Return the sum of two vector bundles.

#### INPUT:

• other – a Klyachko bundle over the same base.

# OUTPUT:

The direct sum as a new Klyachko bundle.

```
sage: X = toric_varieties.P2()
sage: V1 = X.sheaves.trivial_bundle(1)
sage: V2 = X.sheaves.trivial_bundle(2)
sage: V2.direct_sum(V1)
Rank 3 bundle on 2-d CPR-Fano toric variety covered by 3 affine patches.

sage: V1 = X.sheaves.trivial_bundle(1)
sage: V2 = X.sheaves.trivial_bundle(2)
sage: V2 == V1 + V1
True
```

#### dual()

Return the dual bundle.

# **OUTPUT**:

The dual bundle as a new Klyachko bundle.

#### **EXAMPLES:**

```
sage: P1 = toric_varieties.P1()
sage: H = P1.divisor(0)
sage: L = P1.sheaves.line_bundle(H)
sage: L.dual()
Rank 1 bundle on 1-d CPR-Fano toric variety covered by 2 affine patches.
sage: L.dual() == P1.sheaves.line_bundle(-H)
True
```

# exterior\_power(n)

Return the n-th exterior power.

# INPUT:

• n – integer.

#### **OUTPUT:**

The *n*-th exterior power  $\wedge_{i=1}^n V$  of the bundle *V* as a new Klyachko bundle.

# **EXAMPLES:**

```
sage: X = toric_varieties.P2_123()
sage: TX = X.sheaves.tangent_bundle()
sage: antiK = X.sheaves.line_bundle(-X.K())
sage: TX.exterior_power(2) == antiK
True
sage: TX.wedge(2) == antiK # alias
True
```

# fiber()

Return the generic fiber of the vector bundle.

#### **OUTPUT**:

A vector space over base\_ring().

```
sage: T_P2 = toric_varieties.P2().sheaves.tangent_bundle()
sage: T_P2.fiber()
Vector space of dimension 2 over Rational Field
```

#### filtration intersection (sigma, i)

Return the intersection of the filtered subspaces.

#### INPUT:

- sigma a cone of the fan of the base toric variety.
- i integer. The filtration degree.

#### **OUTPUT**:

Let the cone be spanned by the rays  $\sigma = \langle r_1, \dots, r_k \rangle$ . This method returns the intersection

$$\bigcap_{r \in \{r_1, \dots, r_k\}} E^r(i)$$

# **EXAMPLES:**

```
sage: X = toric_varieties.P2()
sage: fan = X.fan()
sage: V = X.sheaves.tangent_bundle()
sage: V.filtration_intersection(fan(1)[0], 1)
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[1 0]
sage: V.filtration_intersection(fan(2)[0], 1)
Vector space of degree 2 and dimension 0 over Rational Field
Basis matrix:
[]
```

# get\_degree (ray, i)

Return the vector subspace  $E^{\alpha}$  alpha (i).

- ray Integer, a N-lattice point, a one-dimensional cone, or None (default). Specifies a ray of the fan of the toric variety, either via its index or its generator.
- i integer. The filtration degree.

# **OUTPUT**:

A subspace of the fiber() vector space. The defining data of a Klyachko bundle.

#### **EXAMPLES:**

```
sage: TX = toric_varieties.dP6().sheaves.tangent_bundle()
sage: TX.get_degree(0, 1)
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[0 1]
```

### get\_filtration(ray=None)

Return the filtration associated to the ray.

### INPUT:

• ray – Integer, a N-lattice point, a one-dimensional cone, or None (default). Specifies a ray of the fan of the toric variety, either via its index or its generator.

# **OUTPUT:**

The filtered vector space associated to the given ray. If no ray is specified, all filtrations are returned.

```
sage: TX = toric_varieties.dP6().sheaves.tangent_bundle()
sage: TX.get_filtration(0)
QQ^2 >= QQ^1 >= 0
sage: TX.get_filtration([-1, -1])
QQ^2 >= QQ^1 >= 0
sage: TX.get_filtration(TX.variety().fan(1)[0])
QQ^2 >= QQ^1 >= 0
sage: TX.get_filtration()
Filtrations
    N(-1, -1): QQ^2 >= QQ^1 >= 0
    N(-1, 0): QQ^2 >= QQ^1 >= 0
    N(0, -1): QQ^2 >= QQ^1 >= 0
    N(0, 1): QQ^2 >= QQ^1 >= 0
    N(1, 0): QQ^2 >= QQ^1 >= 0
    N(1, 0): QQ^2 >= QQ^1 >= 0
    N(1, 0): QQ^2 >= QQ^1 >= 0
```

# is\_isomorphic(other)

Test whether two bundles are isomorphic.

#### INPUT:

• other - anything.

#### **OUTPUT:**

Boolean.

# **EXAMPLES:**

```
sage: X = toric_varieties.P2()
sage: T_X = X.sheaves.tangent_bundle()
sage: O_X = X.sheaves.trivial_bundle(1)
sage: T_X + O_X == O_X + T_X
False
sage: (T_X + O_X).is_isomorphic(O_X + T_X)
Traceback (most recent call last):
...
NotImplementedError
```

### random\_deformation (epsilon=None)

Return a generic torus-equivariant deformation of the bundle.

# INPUT:

• epsilon – an element of the base ring. Scales the random deformation.

# **OUTPUT**:

A new Klyachko bundle with randomly perturbed moduli. In particular, the same Chern classes.

```
sage: P1 = toric_varieties.P1()
sage: H = P1.divisor(0)
sage: V = P1.sheaves.line_bundle(H) + P1.sheaves.line_bundle(-H)
sage: V.cohomology(dim=True, weight=(0,))
(1, 0)
sage: Vtilde = V.random_deformation()
sage: Vtilde.cohomology(dim=True, weight=(0,))
(1, 0)
```

#### rank()

Return the rank of the vector bundle.

**OUTPUT**:

Integer.

**EXAMPLES:** 

```
sage: T_P2 = toric_varieties.P2().sheaves.tangent_bundle()
sage: T_P2.rank()
2
```

# symmetric\_power(n)

Return the n-th symmetric power.

INPUT:

• n – integer.

**OUTPUT**:

The n-th symmetric power as a new Klyachko bundle.

### **EXAMPLES:**

```
sage: P1 = toric_varieties.P1()
sage: H = P1.divisor(0)
sage: L = P1.sheaves.line_bundle(H)
sage: (L+L).symmetric_power(2)
Rank 3 bundle on 1-d CPR-Fano toric variety covered by 2 affine patches.
sage: (L+L).symmetric_power(2) == L*L+L*L+L*L
True
```

# tensor\_product (other)

Return the sum of two vector bundles.

INPUT:

• other - a Klyachko bundle over the same base.

**OUTPUT**:

The tensor product as a new Klyachko bundle.

### **EXAMPLES:**

```
sage: X = toric_varieties.P2()
sage: OX = X.sheaves.trivial_bundle(1)
sage: X.sheaves.tangent_bundle().tensor_product(OX)
Rank 2 bundle on 2-d CPR-Fano toric variety covered by 3 affine patches.
sage: OX == OX * OX
True
```

#### variety()

Return the base toric variety.

**OUTPUT**:

A toric variety.

```
sage: X = toric_varieties.P2()
sage: V = X.sheaves.tangent_bundle(); V
Rank 2 bundle on 2-d CPR-Fano toric variety covered by 3 affine patches.
sage: V.variety() is X
True
```

#### wedge(n)

Return the n-th exterior power.

# INPUT:

• n – integer.

# **OUTPUT**:

The *n*-th exterior power  $\wedge_{i=1}^n V$  of the bundle V as a new Klyachko bundle.

#### **EXAMPLES:**

```
sage: X = toric_varieties.P2_123()
sage: TX = X.sheaves.tangent_bundle()
sage: antiK = X.sheaves.line_bundle(-X.K())
sage: TX.exterior_power(2) == antiK
True
sage: TX.wedge(2) == antiK # alias
True
```

# sage.schemes.toric.sheaf.klyachko.is\_KlyachkoBundle(X)

Test whether X is a Klyachko bundle

## INPUT:

• X – anything.

# OUTPUT:

Boolean.

```
sage: from sage.schemes.toric.sheaf.klyachko import is_KlyachkoBundle
sage: is_KlyachkoBundle('test')
False
```

# **CHAPTER**

# **SEVENTEEN**

# **INDICES AND TABLES**

- Index
- Module Index
- Search Page

# **BIBLIOGRAPHY**

- [LazarsfeldJacobian] Robert Lazarsfeld: Positivity in algebraic geometry II; Positivity for Vector Bundles, and Multiplier Ideals, page 181.
- [DalbecSturmfels] J. Dalbec and B. Sturmfels. Invariant methods in discrete and computational geometry, chapter Introduction to Chow forms, pages 37-58. Springer Netherlands, 1994.
- [CLS] David A. Cox, John B. Little, Hal Schenck, "Toric Varieties", Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 2011
- [Demazure] M. Demazure Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. Ecole Norm. Sup. 1970, 3, 507–588.
- [Bazhov] Ivan Bazhov: On orbits of the automorphism group on a complete toric variety. Arxiv 1110.4275, doi:10.1007/s13366-011-0084-0.
- [Schubert] Sheldon Katz and Stein Arild Stromme, A Maple package for intersection theory and enumerative geometry.
- [Batyrev1994] Victor V. Batyrev, "Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties", J. Algebraic Geom. 3 (1994), no. 3, 493-535. Arxiv alg-geom/9310003v1
- [Borisov1993] Lev A. Borisov, "Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein Fano toric varieties", 1993. Arxiv alg-geom/9310001v1
- [CD2007] Adrian Clingher and Charles F. Doran, "Modular invariants for lattice polarized K3 surfaces", Michigan Math. J. 55 (2007), no. 2, 355-393. Arxiv math/0602146v1 [math.AG]
- [Nill2005] Benjamin Nill, "Gorenstein toric Fano varieties", Manuscripta Math. 116 (2005), no. 2, 183-210. Arxiv math/0405448v1 [math.AG]
- [BCdlOG] Volker Braun, Philip Candelas, Xendia de la Ossa, Antonella Grassi, *Toric Calabi-Yau Fourfolds, Duality Between N=1 Theories and Divisors that Contribute to the Superpotential*, Arxiv hep-th/0001208
- [FS] William Fulton, Bernd Sturmfels, Intersection Theory on Toric Varieties, Arxiv alg-geom/9403002
- [FultonP65] Page 65, 3rd exercise (Section 3.4) of Wiliam Fulton, "Introduction to Toric Varieties", Princeton University Press
- [Perling] Markus Perling: Divisorial Cohomology Vanishing on Toric Varieties, Arxiv 0711.4836v2
- [CoxTutorial] David Cox, "What is a Toric Variety", http://www.cs.amherst.edu/~dac/lectures/tutorial.ps
- [wp:ChowRing] Wikipedia article Chow\_ring
- [FMSS1] Fulton, MacPherson, Sottile, Sturmfels: *Intersection theory on spherical varieties*, J. of Alg. Geometry 4 (1995), 181-193. http://www.math.tamu.edu/~frank.sottile/research/ps/spherical.ps.gz

- [FultonChow] Chapter 5.1 "Chow Groups" of Fulton, William: *Introduction to Toric Varieties*, Princeton University Press
- [GRIN] Bernd Sturmfels, Serkan Hosten: GRIN: An implementation of Grobner bases for integer programming, in "Integer Programming and Combinatorial Optimization", [E. Balas and J. Clausen, eds.], Proceedings of the IV. IPCO Conference (Copenhagen, May 1995), Springer Lecture Notes in Computer Science 920 (1995) 267-276.
- [ProcSympPureMath62] Bernd Sturmfels: Equations defining toric varieties, Algebraic Geometry Santa Cruz 1995, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, pp. 437-449.
- [GBCP] Bernd Sturmfels: Grobner Bases and Convex Polytopes AMS University Lecture Series Vol. 8 (01 December 1995)
- [BB] Gavin Brown, Jaroslaw Buczynski: Maps of toric varieties in Cox coordinates, Arxiv 1004.4924
- [VolkerBraun] Volker Braun: Toric Elliptic Fibrations and F-Theory Compactifications Arxiv 1110.4883
- [Duistermaat] J. J. Duistermaat, Discrete integrable systems. QRT maps and elliptic surfaces. Springer Monographs in Mathematics. Berlin: Springer. xxii, 627 p., 2010
- [ArtinVillegasTate] Michael Artin, Fernando Rodriguez-Villegas, John Tate, On the Jacobians of plane cubics, Advances in Mathematics 198 (2005) 1, pp. 366–382 doi:10.1016/j.aim.2005.06.004 http://www.math.utexas.edu/users/villegas/publications/jacobian-cubics.pdf
- [CLSsurfaces] Section 10.4 in David A. Cox, John B. Little, Hal Schenck, "Toric Varieties", Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 2011
- [AnEtAl] An, Sang Yook et al: Jacobians of Genus One Curves, Journal of Number Theory 90 (2002), pp.304–315, http://www.math.arizona.edu/~wmc/Research/JacobianFinal.pdf
- [F] Fulton, W., "Introduction to Toric Varieties", Princeton University Press, 1993.
- [Klyachko] Klyachko, Aleksandr Anatolevich: Equivariant Bundles on Toral Varieties, Math USSR Izv. 35 (1990), 337-375. http://iopscience.iop.org/0025-5726/35/2/A04/pdf/0025-5726\_35\_2\_A04.pdf
- [BirknerIltenPetersen] Rene Birkner, Nathan Owen Ilten, and Lars Petersen: Computations with equivariant toric vector bundles, The Journal of Software for Algebra and Geometry: Macaulay2. http://msp.org/jsag/2010/2-1/p03.xhtml http://www.math.uiuc.edu/Macaulay2/doc/Macaulay2-1.8.2/share/doc/Macaulay2/ToricVectorBundles/html/

378 Bibliography

# **PYTHON MODULE INDEX**

# S

```
sage.schemes.affine.affine homset, 99
sage.schemes.affine.affine_morphism, 79
sage.schemes.affine.affine_point,86
sage.schemes.affine.affine rational point, 95
sage.schemes.affine.affine_space,73
sage.schemes.affine.affine_subscheme, 90
sage.schemes.generic.algebraic scheme, 25
sage.schemes.generic.ambient_space, 21
sage.schemes.generic.divisor, 67
sage.schemes.generic.divisor_group,71
sage.schemes.generic.glue, 17
sage.schemes.generic.homset,47
sage.schemes.generic.hypersurface, 45
sage.schemes.generic.morphism, 53
sage.schemes.generic.point, 19
sage.schemes.generic.scheme, 5
sage.schemes.generic.spec, 15
sage.schemes.product_projective.homset, 185
sage.schemes.product_projective.morphism, 188
sage.schemes.product_projective.point, 191
sage.schemes.product_projective.rational_point, 200
sage.schemes.product projective.space, 177
sage.schemes.product projective.subscheme, 196
sage.schemes.projective.projective_homset, 170
sage.schemes.projective.projective_morphism, 116
sage.schemes.projective.projective point, 142
sage.schemes.projective.projective_rational_point, 166
sage.schemes.projective.projective_space, 103
sage.schemes.projective.projective_subscheme, 154
sage.schemes.readme, 1
sage.schemes.toric.chow_group, 293
sage.schemes.toric.divisor, 272
sage.schemes.toric.divisor class, 292
sage.schemes.toric.fano_variety, 239
sage.schemes.toric.homset, 347
sage.schemes.toric.ideal, 304
```

# Sage Reference Manual: Schemes, Release 8.4

```
sage.schemes.toric.library, 257
sage.schemes.toric.morphism, 307
sage.schemes.toric.points, 352
sage.schemes.toric.sheaf.constructor, 360
sage.schemes.toric.sheaf.klyachko, 364
sage.schemes.toric.toric_subscheme, 327
sage.schemes.toric.variety, 205
sage.schemes.toric.weierstrass, 335
sage.schemes.toric.weierstrass_covering, 341
sage.schemes.toric.weierstrass_higher, 345
```

380 Python Module Index

# **INDEX**

# Α

```
A() (sage.schemes.toric.ideal.ToricIdeal method), 306
A() (sage.schemes.toric.library.ToricVarietyFactory method), 258
A1() (sage.schemes.toric.library.ToricVarietyFactory method), 258
A2() (sage.schemes.toric.library.ToricVarietyFactory method), 259
A2_Z2() (sage.schemes.toric.library.ToricVarietyFactory method), 259
add_variables() (in module sage.schemes.toric.fano_variety), 256
affine algebraic patch() (sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme toric method), 329
affine algebraic patch() (sage.schemes.toric.variety.ToricVariety field method), 220
affine open() (sage.schemes.generic.point.SchemeTopologicalPoint affine open method), 19
affine patch() (sage.schemes.product projective.space.ProductProjectiveSpaces ring method), 180
affine patch()
                    (sage.schemes.product_projective.subscheme.AlgebraicScheme_subscheme_product_projective
         method), 196
affine_patch() (sage.schemes.projective.projective_space_ProjectiveSpace_ring method), 111
affine_patch() (sage.schemes.projective_projective_subscheme.AlgebraicScheme_subscheme_projective_method),
affine_patch() (sage.schemes.toric.toric_subscheme.AlgebraicScheme_subscheme_toric method), 330
affine patch() (sage.schemes.toric.variety.ToricVariety field method), 220
AffineHypersurface (class in sage.schemes.generic.hypersurface), 45
AffineScheme (class in sage.schemes.generic.scheme), 5
AffineSpace() (in module sage.schemes.affine.affine_space), 73
AffineSpace_field (class in sage.schemes.affine.affine space), 73
AffineSpace finite field (class in sage.schemes.affine.affine space), 75
AffineSpace_generic (class in sage.schemes.affine.affine_space), 75
AffineToricVariety() (in module sage.schemes.toric.variety), 209
AlgebraicScheme (class in sage.schemes.generic.algebraic scheme), 26
AlgebraicScheme_quasi (class in sage.schemes.generic.algebraic_scheme), 30
AlgebraicScheme_subscheme (class in sage.schemes.generic.algebraic_scheme), 32
AlgebraicScheme subscheme affine (class in sage.schemes.affine.affine subscheme), 91
AlgebraicScheme_subscheme_affine_toric (class in sage.schemes.toric.toric_subscheme), 327
AlgebraicScheme_subscheme_product_projective (class in sage.schemes.product_projective.subscheme), 196
AlgebraicScheme_subscheme_projective (class in sage.schemes.projective_projective_subscheme), 154
AlgebraicScheme subscheme toric (class in sage.schemes.toric.toric subscheme), 329
all rational preimages() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space field
         method), 133
ambient_space() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme method), 27
ambient_space() (sage.schemes.generic.ambient_space.AmbientSpace method), 21
```

```
AmbientSpace (class in sage.schemes.generic.ambient space), 21
anticanonical_hypersurface() (sage.schemes.toric.fano_variety.CPRFanoToricVariety_field method), 248
Anticanonical Hypersurface (class in sage.schemes.toric.fano_variety), 241
as dynamical system() (sage.schemes.affine.affine morphism.SchemeMorphism polynomial affine space method),
as_dynamical_system()
                            (sage.schemes.product_projective.morphism.ProductProjectiveSpaces_morphism_ring
         method), 188
as_dynamical_system() (sage.schemes.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 118
as_fan_morphism() (sage.schemes.toric.morphism.SchemeMorphism_polynomial_toric_variety method), 326
                             (sage.schemes.toric.morphism.SchemeMorphism fan fiber component toric variety
as polynomial map()
         method), 313
as_polynomial_map() (sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety method), 316
as polynomial map() (sage.schemes,toric,morphism.SchemeMorphism orbit closure toric variety method), 324
Aut_dimension() (sage.schemes.toric.variety.ToricVariety_field method), 214
automorphism group() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 119
automorphism group() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space finite field
         method), 140
В
base_cone() (sage.schemes.toric.morphism.SchemeMorphism_fan_fiber_component_toric_variety method), 313
base_extend() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 33
base extend() (sage.schemes.generic.ambient space.AmbientSpace method), 21
base extend() (sage.schemes.generic.divisor group.DivisorGroup generic method), 71
base_extend() (sage.schemes.generic.scheme.AffineScheme method), 5
base extend() (sage.schemes.generic.scheme.Scheme method), 7
base extend() (sage.schemes.projective.projective homset.SchemeHomset points abelian variety field method),
base_extend() (sage.schemes.toric.divisor.ToricDivisorGroup method), 276
base morphism() (sage.schemes.generic.scheme.Scheme method), 8
base ring() (sage.schemes.generic.morphism.SchemeMorphism polynomial method), 59
base ring() (sage.schemes.generic.scheme.Scheme method), 8
base_ring() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 368
base_scheme() (sage.schemes.generic.scheme.Scheme method), 8
BCdlOG() (sage.schemes.toric.library.ToricVarietyFactory method), 260
BCdlOG base() (sage.schemes.toric.library.ToricVarietyFactory method), 260
Bundle() (in module sage.schemes.toric.sheaf.klyachko), 364
C
c() (sage.schemes.toric.variety.ToricVariety_field method), 221
canonical height() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 119
canonical_height() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 145
cardinality() (sage.schemes.generic.homset.SchemeHomset_points method), 50
cardinality() (sage.schemes.toric.homset.SchemeHomset points subscheme toric field method), 348
cardinality() (sage.schemes.toric.homset.SchemeHomset points toric field method), 350
cardinality() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 352
cardinality() (sage.schemes.toric.points.FiniteFieldSubschemePointEnumerator method), 355
cartesian_product() (sage.schemes.projective.projective_space.ProjectiveSpace_ring method), 111
cartesian product() (sage.schemes.toric.fano variety.CPRFanoToricVariety field method), 250
```

```
cartesian product() (sage.schemes.toric.variety.ToricVariety field method), 221
category() (sage.schemes.generic.morphism.SchemeMorphism method), 54
category for() (sage.schemes.generic.morphism.SchemeMorphism method), 54
ch() (sage.schemes.toric.divisor.ToricDivisor generic method), 279
ch() (sage.schemes.toric.variety.ToricVariety_field method), 222
change_ring() (sage.schemes.affine_space_AffineSpace_generic method), 75
change ring() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 33
change ring() (sage.schemes.generic.ambient space.AmbientSpace method), 22
change_ring() (sage.schemes.generic.morphism.SchemeMorphism_point method), 56
change ring() (sage.schemes.generic.morphism.SchemeMorphism polynomial method), 59
change ring() (sage.schemes.product projective.point.ProductProjectiveSpaces point ring method), 192
change ring() (sage.schemes.product projective.space.ProductProjectiveSpaces ring method), 181
change_ring() (sage.schemes.projective.projective_space.ProjectiveSpace_ring method), 112
change ring() (sage.schemes.toric.fano variety.CPRFanoToricVariety field method), 251
change ring() (sage.schemes.toric.variety.ToricVariety field method), 222
chebyshev_polynomial() (sage.schemes.affine_affine_space_AffineSpace_generic method), 76
chebyshev_polynomial() (sage.schemes.projective.projective_space.ProjectiveSpace_ring method), 112
Chern character() (sage.schemes.toric.divisor.ToricDivisor generic method), 278
Chern character() (sage.schemes.toric.variety.ToricVariety field method), 215
Chern_class() (sage.schemes.toric.variety.ToricVariety_field method), 215
chi() (sage.schemes.toric.variety.ToricVariety field method), 223
Chow cycle() (sage.schemes.toric.divisor.ToricDivisor generic method), 278
Chow_form() (sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective method), 154
Chow group() (sage.schemes.toric.variety.ToricVariety field method), 216
ChowCycle (class in sage.schemes.toric.chow_group), 295
ChowGroup class (class in sage.schemes.toric.chow group), 299
ChowGroup_degree_class (class in sage.schemes.toric.chow_group), 302
ChowGroupFactory (class in sage.schemes.toric.chow_group), 298
clear denominators() (sage.schemes.projective.projective point.SchemeMorphism point projective field method),
codimension() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 35
coefficient() (sage.schemes.generic.divisor.Divisor_curve method), 68
coefficient() (sage.schemes.toric.divisor.ToricDivisor_generic method), 279
cohomology() (sage.schemes.toric.divisor.ToricDivisor generic method), 280
cohomology() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 368
cohomology basis() (sage.schemes.toric.variety.ToricVariety field method), 223
cohomology_class() (sage.schemes.toric.chow_group.ChowCycle method), 295
cohomology class() (sage.schemes.toric.divisor.ToricDivisor generic method), 282
cohomology class() (sage.schemes.toric.fano variety.NefCompleteIntersection method), 255
cohomology_complex() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 369
cohomology_ring() (sage.schemes.toric.variety.ToricVariety_field method), 223
cohomology support() (sage.schemes.toric.divisor.ToricDivisor generic method), 282
CohomologyClass (class in sage.schemes.toric.variety), 210
CohomologyRing (class in sage.schemes.toric.variety), 211
complement() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 35
components() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method), 181
cone iter() (sage.schemes.toric.points.NaiveFinitePointEnumerator method), 357
cone_points_iter() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 352
Conifold() (sage.schemes.toric.library.ToricVarietyFactory method), 261
conjugate()
                   (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
```

```
method), 119
conjugating_set() (sage.schemes.projective_projective_morphism_SchemeMorphism_polynomial_projective_space_field
         method), 134
connected rational component() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space field
         method), 134
coordinate iter() (sage.schemes.toric.points.NaiveFinitePointEnumerator method), 358
coordinate_point_to_coordinate() (sage.schemes.toric.fano_variety.CPRFanoToricVariety_field method), 251
coordinate_points() (sage.schemes.toric.fano_variety.CPRFanoToricVariety_field method), 252
coordinate ring() (sage.schemes.affine.affine space.AffineSpace generic method), 77
coordinate_ring() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme method), 27
coordinate ring() (sage.schemes.generic.morphism.SchemeMorphism polynomial method), 62
coordinate_ring() (sage.schemes.generic.scheme.AffineScheme method), 5
coordinate ring() (sage.schemes.generic.scheme.Scheme method), 8
coordinate ring() (sage.schemes.projective.projective space.ProjectiveSpace ring method), 113
coordinate_ring() (sage.schemes.toric.variety.ToricVariety_field method), 224
coordinate_vector() (sage.schemes.toric.chow_group.ChowGroup_class method), 299
cotangent bundle() (sage.schemes.toric.sheaf.constructor.SheafLibrary method), 361
CotangentBundle() (in module sage.schemes.toric.sheaf.constructor), 360
count_points() (sage.schemes.generic.scheme.Scheme method), 9
count_points() (sage.schemes.toric.chow_group.ChowCycle method), 296
count_points() (sage.schemes.toric.variety.ToricVariety_field method), 224
CPRFanoToricVariety() (in module sage.schemes.toric.fano variety), 242
CPRFanoToricVariety_field (class in sage.schemes.toric.fano_variety), 247
create key and extra args() (sage.schemes.generic.homset.SchemeHomsetFactory method), 47
create key and extra args() (sage.schemes.toric.chow group.ChowGroupFactory method), 298
create_object() (sage.schemes.generic.homset.SchemeHomsetFactory method), 48
create_object() (sage.schemes.toric.chow_group.ChowGroupFactory method), 299
critical height()
                   (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 119
critical point portrait() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 119
                   (sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space
critical_points()
         method), 120
critical_subscheme() (sage.schemes.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 120
Cube_deformation() (sage.schemes.toric.library.ToricVarietyFactory method), 261
Cube_face_fan() (sage.schemes.toric.library.ToricVarietyFactory method), 262
Cube nonpolyhedral() (sage.schemes.toric.library.ToricVarietyFactory method), 262
Cube_sublattice() (sage.schemes.toric.library.ToricVarietyFactory method), 263
curve() (sage.schemes.affine.affine space.AffineSpace field method), 73
curve() (sage.schemes.projective.projective space.ProjectiveSpace field method), 105
CurvePointToIdeal() (in module sage.schemes.generic.divisor), 67
cyclegraph()
                    (sage.schemes.affine_morphism.SchemeMorphism_polynomial_affine_space_finite_field
         method), 85
cyclegraph() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space finite field
         method), 141
D
defining_cone() (sage.schemes.toric.morphism_SchemeMorphism_fan_fiber_component_toric_variety method), 314
defining_cone() (sage.schemes.toric.morphism.SchemeMorphism_orbit_closure_toric_variety method), 325
defining ideal() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 36
```

```
defining polynomial() (sage.schemes.generic.hypersurface.AffineHypersurface method), 45
defining_polynomial() (sage.schemes.generic.hypersurface.ProjectiveHypersurface method), 46
defining polynomials() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 36
defining polynomials() (sage.schemes.generic.ambient space.AmbientSpace method), 22
defining_polynomials() (sage.schemes.generic.morphism.SchemeMorphism_polynomial method), 62
deg() (sage.schemes.toric.variety.CohomologyClass method), 210
degree() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space method),
degree() (sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective method), 156
degree() (sage.schemes.toric.chow group.ChowCycle method), 297
degree() (sage.schemes.toric.chow_group.ChowGroup_class method), 300
degree_sequence() (sage.schemes.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 121
dehomogenize() (sage.schemes.product projective.point.ProductProjectiveSpaces point ring method), 192
dehomogenize()
                   (sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 121
dehomogenize() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 146
Delta() (sage.schemes.toric.fano variety.CPRFanoToricVariety field method), 247
Delta polar() (sage.schemes.toric.fano variety.CPRFanoToricVariety field method), 248
Demazure roots() (sage.schemes.toric.variety.ToricVariety field method), 216
dimension() (sage.schemes.affine_subscheme.AlgebraicScheme_subscheme_affine method), 91
dimension() (sage.schemes.generic.ambient space.AmbientSpace method), 22
dimension() (sage.schemes.generic.scheme.AffineScheme method), 5
dimension() (sage.schemes.generic.scheme.Scheme method), 9
dimension() (sage.schemes.product projective.space.ProductProjectiveSpaces ring method), 181
dimension()
                    (sage.schemes.product_projective.subscheme.AlgebraicScheme_subscheme_product_projective
         method), 197
dimension() (sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective method), 156
dimension() (sage.schemes.toric.toric_subscheme.AlgebraicScheme_subscheme_affine_toric method), 327
dimension() (sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme toric method), 331
dimension absolute() (sage.schemes.generic.ambient space.AmbientSpace method), 22
dimension_absolute() (sage.schemes.generic.scheme.AffineScheme method), 6
dimension_absolute() (sage.schemes.generic.scheme.Scheme method), 9
dimension absolute() (sage.schemes.product projective.space.ProductProjectiveSpaces ring method), 182
dimension_absolute_components() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method),
         182
dimension_components() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method), 182
dimension_relative() (sage.schemes.generic.ambient_space.AmbientSpace method), 22
dimension relative() (sage.schemes.generic.scheme.AffineScheme method), 6
dimension relative() (sage.schemes.generic.scheme.Scheme method), 10
dimension_relative() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method), 182
dimension_relative_components() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method),
         182
dimension singularities() (sage.schemes.toric.variety.ToricVariety field method), 225
direct_sum() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 369
Discriminant() (in module sage.schemes.toric.weierstrass), 336
divisor() (sage.schemes.toric.sheaf.constructor.SheafLibrary method), 362
divisor() (sage.schemes.toric.variety.ToricVariety field method), 225
divisor class() (sage.schemes.toric.divisor.ToricDivisor generic method), 282
Divisor_curve (class in sage.schemes.generic.divisor), 67
```

```
Divisor generic (class in sage.schemes.generic.divisor), 68
divisor_group() (sage.schemes.toric.variety.ToricVariety_field method), 226
DivisorGroup() (in module sage.schemes.generic.divisor group), 71
DivisorGroup curve (class in sage.schemes.generic.divisor group), 71
DivisorGroup_generic (class in sage.schemes.generic.divisor_group), 71
dP6() (sage.schemes.toric.library.ToricVarietyFactory method), 270
dP6xdP6() (sage.schemes.toric.library.ToricVarietyFactory method), 270
dP7() (sage.schemes.toric.library.ToricVarietyFactory method), 271
dP8() (sage.schemes.toric.library.ToricVarietyFactory method), 271
dual() (sage.schemes.projective.projective subscheme.AlgebraicScheme subscheme projective method), 157
dual() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 370
dynamical degree() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 123
dynatomic_polynomial()
                                (sage.schemes.affine.affine_morphism.SchemeMorphism_polynomial_affine_space
         method), 80
dynatomic_polynomial() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 123
F
E_degree() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 365
E intersection() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 366
E quotient() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 366
E quotient projection() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 367
Element (sage.schemes.generic.homset.SchemeHomset_generic attribute), 49
Element (sage.schemes.generic.scheme.AffineScheme attribute), 5
Element (sage.schemes.toric.chow_group.ChowGroup_class attribute), 299
Element (sage.schemes.toric.divisor.ToricRationalDivisorClassGroup attribute), 291
Element (sage.schemes.toric.divisor.ToricRationalDivisorClassGroup_basis_lattice attribute), 292
embedding_center() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme method), 27
embedding_morphism() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme method), 28
embedding_morphism() (sage.schemes.toric.variety.ToricVariety_field method), 226
embedding of affine open() (sage.schemes.generic.point.SchemeTopologicalPoint affine open method), 19
enum affine finite field() (in module sage.schemes.affine.affine rational point), 96
enum affine number field() (in module sage.schemes.affine.affine rational point), 97
enum_affine_rational_field() (in module sage.schemes.affine.affine_rational_point), 98
enum product projective finite field() (in module sage.schemes.product projective.rational point), 201
enum product projective number field() (in module sage.schemes.product projective.rational point), 202
enum_product_projective_rational_field() (in module sage.schemes.product_projective.rational_point), 202
enum_projective_finite_field() (in module sage.schemes.projective.projective_rational_point), 166
enum_projective_number_field() (in module sage.schemes.projective_projective_rational_point), 167
enum_projective_rational_field() (in module sage.schemes.projective_projective_rational_point), 168
Euler number() (sage.schemes.toric.variety.ToricVariety field method), 216
exp() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 353
exp() (sage.schemes.toric.variety.CohomologyClass method), 211
extended codomain() (sage.schemes.generic.homset.SchemeHomset points method), 50
exterior_power() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 370
F
factor() (sage.schemes.toric.morphism.SchemeMorphism fan toric variety method), 316
fan() (sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme toric method), 331
```

```
fan() (sage.schemes.toric.variety.ToricVariety field method), 227
fan_morphism() (sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety method), 317
fiber() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 370
fiber component() (sage.schemes.toric.morphism.SchemeMorphism fan toric variety dominant method), 321
fiber_dimension() (sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety_dominant method), 322
fiber_generic() (sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety_dominant method), 322
fiber graph() (sage.schemes.toric.morphism.SchemeMorphism fan toric variety dominant method), 323
filtration intersection() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 370
FiniteFieldPointEnumerator (class in sage.schemes.toric.points), 352
FiniteFieldSubschemePointEnumerator (class in sage.schemes.toric.points), 355
function value() (sage.schemes.toric.divisor.ToricDivisor generic method), 283
G
gen() (sage.schemes.generic.ambient space.AmbientSpace method), 23
gen() (sage.schemes.toric.chow group.ChowGroup degree class method), 302
gen() (sage.schemes.toric.divisor.ToricDivisorGroup method), 277
gen() (sage.schemes.toric.variety.CohomologyRing method), 212
gens() (sage.schemes.generic.ambient space.AmbientSpace method), 23
gens() (sage.schemes.toric.chow_group.ChowGroup_class method), 301
gens() (sage.schemes.toric.chow_group.ChowGroup_degree_class method), 303
gens() (sage.schemes.toric.divisor.ToricDivisorGroup method), 277
gens() (sage.schemes.toric.variety.CohomologyRing method), 212
get_degree() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 371
get_filtration() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 371
global_height() (sage.schemes.affine_morphism.SchemeMorphism_polynomial_affine_space method), 80
global height() (sage.schemes.affine.affine point.SchemeMorphism point affine method), 86
global_height() (sage.schemes.product_projective.morphism.ProductProjectiveSpaces_morphism_ring method), 188
global_height() (sage.schemes.product_projective.point.ProductProjectiveSpaces_point_ring method), 193
global height()
                   (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 123
global_height() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 147
glue along domains() (sage.schemes.generic.morphism.SchemeMorphism method), 54
GluedScheme (class in sage.schemes.generic.glue), 17
gluing maps() (sage.schemes.generic.glue.GluedScheme method), 17
                   (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
green function()
         method), 124
green_function() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 147
height difference bound() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 124
hom() (sage.schemes.generic.scheme.AffineScheme method), 6
hom() (sage.schemes.generic.scheme.Scheme method), 10
homogeneous_coordinates() (sage.schemes.toric.points.FiniteFieldSubschemePointEnumerator method), 355
homogenize() (sage.schemes.affine morphism.SchemeMorphism polynomial affine space method), 81
homogenize() (sage.schemes.affine.affine point.SchemeMorphism point affine method), 87
identity_morphism() (sage.schemes.generic.scheme.Scheme method), 10
```

```
indeterminacy locus() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space field
         method), 134
indeterminacy_points() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space_field
         method), 135
InfinitePointEnumerator (class in sage.schemes.toric.points), 357
inhomogeneous equations() (sage.schemes.toric.points.FiniteFieldSubschemePointEnumerator method), 356
inject_coefficients() (sage.schemes.toric.variety.ToricVariety_field method), 227
integrate() (sage.schemes.toric.variety.ToricVariety_field method), 227
intersection() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 37
intersection_multiplicity() (sage.schemes.affine_point.SchemeMorphism_point_affine_field method), 88
intersection multiplicity() (sage.schemes.affine subscheme.AlgebraicScheme subscheme affine method), 91
intersection_multiplicity() (sage.schemes.product_projective.point.ProductProjectiveSpaces_point_field method), 191
intersection multiplicity() (sage.schemes.product projective.subscheme.AlgebraicScheme subscheme product projective
         method), 197
intersection_multiplicity()
                               (sage.schemes.projective.projective point.SchemeMorphism point projective field
         method), 143
intersection multiplicity() (sage.schemes.projective.projective subscheme.AlgebraicScheme subscheme projective
         method), 158
intersection_with_divisor() (sage.schemes.toric.chow_group.ChowCycle method), 297
irreducible_components() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 37
is affine() (sage.schemes.toric.variety.ToricVariety field method), 228
is AffineScheme() (in module sage.schemes.generic.scheme), 13
is_AffineSpace() (in module sage.schemes.affine.affine_space), 79
is AlgebraicScheme() (in module sage.schemes.generic.algebraic scheme), 43
is_AmbientSpace() (in module sage.schemes.generic.ambient_space), 23
is ample() (sage.schemes.toric.divisor.ToricDivisor generic method), 284
is_birational() (sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety method), 318
is bundle() (sage.schemes.toric.morphism.SchemeMorphism fan toric variety method), 318
is Cartier() (sage.schemes.toric.divisor.ToricDivisor generic method), 283
is ChowCycle() (in module sage.schemes.toric.chow group), 303
is_ChowGroup() (in module sage.schemes.toric.chow_group), 304
is CohomologyClass() (in module sage.schemes.toric.variety), 237
is complete() (sage.schemes.toric.variety.ToricVariety field method), 229
is_conjugate() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space_field
         method), 137
is_CPRFanoToricVariety() (in module sage.schemes.toric.fano_variety), 257
is Divisor() (in module sage.schemes.generic.divisor), 69
is DivisorGroup() (in module sage.schemes.generic.divisor group), 72
is dominant() (sage.schemes.toric.morphism.SchemeMorphism fan toric variety method), 318
is endomorphism() (sage.schemes.generic.morphism.SchemeMorphism method), 55
is fibration() (sage.schemes.toric.morphism.SchemeMorphism fan toric variety method), 319
is_finite() (sage.schemes.toric.homset.SchemeHomset_points_toric_base method), 349
is_homogeneous() (sage.schemes.toric.variety.ToricVariety_field method), 229
is Hypersurface() (in module sage.schemes.generic.hypersurface), 46
is_injective() (sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety method), 319
is_integral() (sage.schemes.toric.divisor.ToricDivisor_generic method), 285
is_irreducible() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 38
is isomorphic() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 372
is isomorphic() (sage.schemes.toric.variety.ToricVariety field method), 230
is_KlyachkoBundle() (in module sage.schemes.toric.sheaf.klyachko), 374
```

```
is morphism() (sage.schemes.product projective.morphism.ProductProjectiveSpaces morphism ring method), 189
is_morphism()
                   (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 124
is_nef() (sage.schemes.toric.divisor.ToricDivisor generic method), 286
is noetherian() (sage.schemes.generic.scheme.AffineScheme method), 7
is_nondegenerate() (sage.schemes.toric.toric_subscheme.AlgebraicScheme_subscheme_toric method), 331
is orbifold() (sage.schemes.toric.variety.ToricVariety field method), 230
is PGL minimal() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 124
is_polynomial() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space_field
         method), 137
is_postcritically_finite() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 125
is_preperiodic() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 148
is_ProductProjectiveSpaces() (in module sage.schemes.product_projective.space), 185
is projective() (sage.schemes.generic.algebraic scheme.AlgebraicScheme method), 29
is projective() (sage.schemes.generic.ambient space.AmbientSpace method), 23
is_projective() (sage.schemes.projective.projective_space.ProjectiveSpace_ring method), 113
is_ProjectiveSpace() (in module sage.schemes.projective.projective_space), 116
is QQ Cartier() (sage.schemes.toric.divisor.ToricDivisor generic method), 283
is_QQ_Weil() (sage.schemes.toric.divisor.ToricDivisor_generic method), 284
is_Scheme() (in module sage.schemes.generic.scheme), 13
is SchemeHomset() (in module sage.schemes.generic.homset), 51
is SchemeMorphism() (in module sage.schemes.generic.morphism), 65
is_SchemeRationalPoint() (in module sage.schemes.generic.point), 20
is SchemeTopologicalPoint() (in module sage.schemes.generic.point), 20
is schon() (sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme toric method), 332
is_smooth() (sage.schemes.affine_subscheme.AlgebraicScheme_subscheme_affine method), 92
                    (sage.schemes.product_projective.subscheme.AlgebraicScheme_subscheme_product_projective
is smooth()
         method), 198
is_smooth() (sage.schemes.projective_projective_subscheme.AlgebraicScheme_subscheme_projective method), 159
is smooth() (sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme affine toric method), 328
is smooth() (sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme toric method), 333
is_smooth() (sage.schemes.toric.variety.ToricVariety_field method), 230
is surjective() (sage.schemes.toric.morphism.SchemeMorphism fan toric variety method), 319
is_ToricDivisor() (in module sage.schemes.toric.divisor), 292
is_ToricRationalDivisorClass() (in module sage.schemes.toric.divisor_class), 293
is_ToricVariety() (in module sage.schemes.toric.variety), 237
is_Weil() (sage.schemes.toric.divisor.ToricDivisor_generic method), 284
J
i_invariant() (in module sage.schemes.toric.weierstrass), 340
jacobian() (sage.schemes.affine_morphism.SchemeMorphism_polynomial_affine_space method), 83
Jacobian() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 32
Jacobian matrix() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 33
K
K() (sage.schemes.toric.variety.ToricVariety_field method), 217
Kaehler cone() (sage.schemes.toric.variety.ToricVariety field method), 217
ker() (sage.schemes.toric.ideal.ToricIdeal method), 306
```

```
Klyachko() (sage.schemes.toric.sheaf.constructor.SheafLibrary method), 361
KlyachkoBundle_class (class in sage.schemes.toric.sheaf.klyachko), 365
Kodaira_map() (sage.schemes.toric.divisor.ToricDivisor_generic method), 278
L
Lattes map() (sage.schemes.projective.projective space.ProjectiveSpace ring method), 110
lift() (sage.schemes.toric.divisor_class.ToricRationalDivisorClass method), 292
lift_to_rational_periodic() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space_field
         method), 137
line bundle() (sage.schemes.toric.sheaf.constructor.SheafLibrary method), 362
linear_equivalence_ideal() (sage.schemes.toric.variety.ToricVariety_field method), 231
LineBundle() (in module sage.schemes.toric.sheaf.constructor), 360
list() (sage.schemes.generic.homset.SchemeHomset points method), 50
local_height() (sage.schemes.product_projective.morphism.ProductProjectiveSpaces_morphism_ring method), 189
local height() (sage.schemes.product projective.point.ProductProjectiveSpaces point ring method), 194
local height()
                    (sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 125
local height() (sage.schemes.projective.projective point.SchemeMorphism point projective ring method), 150
local height arch() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 126
local_height_arch() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 150
log() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 353
M
m() (sage.schemes.toric.divisor.ToricDivisor generic method), 286
minimal_model()
                    (sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 126
module() (sage.schemes.toric.chow_group.ChowGroup_degree_class method), 303
monomial() (sage.schemes.toric.divisor.ToricDivisor generic method), 287
Mori cone() (sage.schemes.toric.variety.ToricVariety field method), 217
morphism() (sage.schemes.generic.point.SchemeRationalPoint method), 19
move_away_from() (sage.schemes.toric.divisor.ToricDivisor_generic method), 287
multiplicative generator() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 354
multiplicative group order() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 354
multiplicity() (sage.schemes.affine_affine_point.SchemeMorphism_point_affine_field method), 89
multiplicity() (sage.schemes.affine affine subscheme.AlgebraicScheme subscheme affine method), 93
multiplicity() (sage.schemes.product projective.point.ProductProjectiveSpaces point field method), 191
multiplicity()
                    (sage.schemes.product_projective.subscheme.AlgebraicScheme_subscheme_product_projective
         method), 199
multiplicity() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_field method), 143
multiplicity() (sage.schemes.projective.projective_subscheme.AlgebraicScheme subscheme projective method), 159
multiplier() (sage.schemes.affine.affine morphism.SchemeMorphism polynomial affine space method), 84
multiplier()
                    (sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 127
multiplier() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 151
multiplier spectra() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 127
Ν
```

NaiveFinitePointEnumerator (class in sage.schemes.toric.points), 357

```
NaiveSubschemePointEnumerator (class in sage.schemes.toric.points), 360
natural_map() (sage.schemes.generic.homset.SchemeHomset_generic method), 49
nef complete intersection() (sage.schemes.toric.fano variety.CPRFanoToricVariety field method), 252
nef partition() (sage.schemes.toric.fano variety.NefCompleteIntersection method), 256
NefCompleteIntersection (class in sage.schemes.toric.fano_variety), 255
neighborhood() (sage.schemes.projective_projective_subscheme.AlgebraicScheme_subscheme_projective_method),
         160
neighborhood() (sage.schemes.toric.toric subscheme.AlgebraicScheme subscheme toric method), 333
Newton_polygon_embedded() (in module sage.schemes.toric.weierstrass), 336
Newton polytope vars coeffs() (in module sage.schemes.toric.weierstrass), 337
ngens() (sage.schemes.affine_space_AffineSpace_generic method), 77
ngens() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme method), 30
ngens() (sage.schemes.generic.ambient space.AmbientSpace method), 23
ngens() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method), 183
ngens() (sage.schemes.projective.projective_space.ProjectiveSpace_ring method), 113
ngens() (sage.schemes.toric.chow group.ChowGroup degree class method), 303
ngens() (sage.schemes.toric.divisor.ToricDivisorGroup method), 277
normal_form() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space_field
         method), 138
normalize_coordinates() (sage.schemes.product_projective.point.ProductProjectiveSpaces_point_ring method), 194
normalize coordinates() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 128
normalize coordinates()
                               (sage.schemes.projective.projective point.SchemeMorphism point projective field
         method), 144
normalize_coordinates()
                               (sage.schemes.projective.projective_point.SchemeMorphism_point_projective_ring
         method), 151
normalize_defining_polynomials() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method),
normalize names() (in module sage.schemes.toric.variety), 237
nth iterate() (sage.schemes.affine.affine morphism.SchemeMorphism polynomial affine space method), 84
nth_iterate() (sage.schemes.affine_point.SchemeMorphism_point_affine method), 87
nth_iterate() (sage.schemes.product_projective.morphism.ProductProjectiveSpaces_morphism_ring method), 190
nth iterate() (sage.schemes.product projective.point.ProductProjectiveSpaces point ring method), 194
nth iterate()
                   (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 129
nth iterate() (sage.schemes.projective.projective point.SchemeMorphism point projective ring method), 152
nth_iterate() (sage.schemes.projective_projective_subscheme.AlgebraicScheme_subscheme_projective_method), 161
nth iterate map() (sage.schemes.affine affine morphism.SchemeMorphism polynomial affine space method), 84
nth iterate map() (sage.schemes.product projective.morphism.ProductProjectiveSpaces morphism ring method),
         190
nth_iterate_map()
                   (sage.schemes.projective.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 129
num_components() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method), 183
numerical points() (sage.schemes.affine homset.SchemeHomset points affine method), 99
numerical points() (sage.schemes.projective.projective homset.SchemeHomset points projective field method),
         171
nvariables() (sage.schemes.toric.ideal.ToricIdeal method), 307
O
orbit() (sage.schemes.affine_morphism_SchemeMorphism_polynomial_affine_space method), 84
orbit() (sage.schemes.affine.affine point.SchemeMorphism point affine method), 88
```

```
orbit() (sage.schemes.product projective.morphism.ProductProjectiveSpaces morphism ring method), 190
orbit() (sage.schemes.product_projective.point.ProductProjectiveSpaces_point_ring method), 195
orbit() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space method), 129
orbit() (sage.schemes.projective.projective point.SchemeMorphism point projective ring method), 152
orbit() (sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective method), 161
orbit() (sage.schemes.toric.points.NaiveFinitePointEnumerator method), 358
orbit closure() (sage.schemes.toric.variety.ToricVariety field method), 231
orbit structure()
                    (sage.schemes.affine.affine morphism.SchemeMorphism polynomial affine space finite field
         method), 86
orbit structure() (sage.schemes.affine.affine point.SchemeMorphism point affine finite field method), 90
orbit_structure() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space_finite_field
         method), 141
orbit structure() (sage.schemes.projective.projective point.SchemeMorphism point projective finite field method),
         144
P
P() (sage.schemes.toric.library.ToricVarietyFactory method), 264
P1() (sage.schemes.toric.library.ToricVarietyFactory method), 264
P1xA1() (sage.schemes.toric.library.ToricVarietyFactory method), 264
P1xP1() (sage.schemes.toric.library.ToricVarietyFactory method), 265
P1xP1_Z2() (sage.schemes.toric.library.ToricVarietyFactory method), 265
P2() (sage.schemes.toric.library.ToricVarietyFactory method), 266
P2 112() (sage.schemes.toric.library.ToricVarietyFactory method), 266
P2_123() (sage.schemes.toric.library.ToricVarietyFactory method), 267
P4 11133() (sage.schemes.toric.library.ToricVarietyFactory method), 267
P4 11133 resolved() (sage.schemes.toric.library.ToricVarietyFactory method), 268
P4 11169() (sage.schemes.toric.library.ToricVarietyFactory method), 268
P4 11169 resolved() (sage.schemes.toric.library.ToricVarietyFactory method), 269
part of degree() (sage.schemes.toric.variety.CohomologyClass method), 211
                   (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
periodic points()
         method), 129
plot() (sage.schemes.toric.variety.ToricVariety field method), 232
point() (sage.schemes.generic.scheme.Scheme method), 11
point() (sage.schemes.projective.projective space.ProjectiveSpace ring method), 114
point() (sage.schemes.projective.projective subscheme.AlgebraicScheme subscheme projective method), 162
point homset() (sage.schemes.generic.scheme.Scheme method), 11
point on affine() (sage.schemes.generic.point.SchemeTopologicalPoint affine open method), 19
point_set() (sage.schemes.generic.scheme.Scheme method), 11
point_transformation_matrix() (sage.schemes.projective.projective_space.ProjectiveSpace_field method), 105
points() (sage.schemes.affine.affine homset.SchemeHomset points affine method), 100
points() (sage.schemes.product_projective.homset.SchemeHomset_points_product_projective_spaces_field_method),
points() (sage.schemes.projective.projective homset.SchemeHomset points projective field method), 172
points() (sage.schemes.projective.projective homset.SchemeHomset points projective ring method), 174
points_of_bounded_height() (sage.schemes.affine_affine_space_field method), 74
points_of_bounded_height() (sage.schemes.product_projective.space.ProductProjectiveSpaces_field method), 178
points of bounded height() (sage.schemes.projective.projective space.ProjectiveSpace field method), 107
polyhedron() (sage.schemes.toric.divisor.ToricDivisor_generic method), 288
possible_periods() (sage.schemes.projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 130
```

```
possible periods() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space finite field
         method), 141
preimage() (sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective method), 163
prime ideal() (sage.schemes.generic.point.SchemeTopologicalPoint prime ideal method), 20
primes of bad reduction() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 130
ProductProjectiveSpaces() (in module sage.schemes.product_projective.space), 177
ProductProjectiveSpaces_field (class in sage.schemes.product_projective.space), 178
ProductProjectiveSpaces finite field (class in sage.schemes.product projective.space), 179
ProductProjectiveSpaces_morphism_ring (class in sage.schemes.product_projective.morphism), 188
ProductProjectiveSpaces_point_field (class in sage.schemes.product_projective.point), 191
ProductProjectiveSpaces_point_finite_field (class in sage.schemes.product_projective.point), 192
ProductProjectiveSpaces point ring (class in sage.schemes.product projective.point), 192
ProductProjectiveSpaces ring (class in sage.schemes.product projective.space), 180
project_to_degree() (sage.schemes.toric.chow_group.ChowCycle method), 298
projective closure() (sage.schemes.affine.affine subscheme.AlgebraicScheme subscheme affine method), 94
projective embedding() (sage.schemes.affine.affine space.AffineSpace generic method), 77
projective_embedding() (sage.schemes.affine_subscheme.AlgebraicScheme_subscheme_affine method), 94
ProjectiveHypersurface (class in sage.schemes.generic.hypersurface), 45
ProjectiveSpace() (in module sage.schemes.projective.projective_space), 104
ProjectiveSpace field (class in sage.schemes.projective.projective space), 105
ProjectiveSpace finite field (class in sage.schemes.projective.projective space), 108
ProjectiveSpace_rational_field (class in sage.schemes.projective.projective_space), 109
ProjectiveSpace ring (class in sage.schemes.projective.projective space), 110
pullback divisor() (sage.schemes.toric.morphism.SchemeMorphism fan fiber component toric variety method),
         314
pullback_divisor() (sage.schemes.toric.morphism.SchemeMorphism_fan_toric_variety method), 320
pullback divisor() (sage.schemes.toric.morphism.SchemeMorphism orbit closure toric variety method), 325
R
random deformation() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 372
rank() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 372
rational_class_group() (sage.schemes.toric.variety.ToricVariety_field method), 232
rational periodic points() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space field
         method), 138
rational points() (sage.schemes.affine.affine space.AffineSpace generic method), 78
rational_points() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_quasi method), 31
rational_points() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 38
rational points() (sage.schemes.product projective.space.ProductProjectiveSpaces finite field method), 179
rational points() (sage.schemes.projective.projective space.ProjectiveSpace finite field method), 108
rational_points() (sage.schemes.projective.projective_space_ProjectiveSpace_rational_field method), 109
rational points dictionary() (sage.schemes.projective.projective space.ProjectiveSpace finite field method), 109
rational preimages() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space field
         method), 138
rational preperiodic graph() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space field
         method), 140
rational_preperiodic_points() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space_field
         method), 140
rays() (sage.schemes.toric.points.NaiveFinitePointEnumerator method), 359
reduce() (sage.schemes.generic.algebraic scheme.AlgebraicScheme subscheme method), 40
```

```
reduced form()
                    (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 130
relation_gens() (sage.schemes.toric.chow_group.ChowGroup_class method), 301
rescaling log generators() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 354
rescalings() (sage.schemes.toric.points.NaiveFinitePointEnumerator method), 359
resolve() (sage.schemes.toric.fano variety.CPRFanoToricVariety field method), 254
resolve() (sage.schemes.toric.variety.ToricVariety field method), 233
resolve to orbifold() (sage.schemes.toric.variety.ToricVariety field method), 234
resultant() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space method),
         130
ring homomorphism() (sage.schemes.generic.morphism.SchemeMorphism spec method), 64
root_generator() (sage.schemes.toric.points.FiniteFieldPointEnumerator method), 354
roots() (sage.schemes.toric.points.NaiveFinitePointEnumerator method), 359
S
sage.schemes.affine.affine homset (module), 99
sage.schemes.affine.affine morphism (module), 79
sage.schemes.affine.affine point (module), 86
sage.schemes.affine_affine_rational_point (module), 95
sage.schemes.affine.affine space (module), 73
sage.schemes.affine.affine subscheme (module), 90
sage.schemes.generic.algebraic_scheme (module), 25
sage.schemes.generic.ambient_space (module), 21
sage.schemes.generic.divisor (module), 67
sage.schemes.generic.divisor_group (module), 71
sage.schemes.generic.glue (module), 17
sage.schemes.generic.homset (module), 47
sage.schemes.generic.hypersurface (module), 45
sage.schemes.generic.morphism (module), 53
sage.schemes.generic.point (module), 19
sage.schemes.generic.scheme (module), 5
sage.schemes.generic.spec (module), 15
sage.schemes.product_projective.homset (module), 185
sage.schemes.product_projective.morphism (module), 188
sage.schemes.product projective.point (module), 191
sage.schemes.product_projective.rational_point (module), 200
sage.schemes.product_projective.space (module), 177
sage.schemes.product_projective.subscheme (module), 196
sage.schemes.projective.projective homset (module), 170
sage.schemes.projective.projective morphism (module), 116
sage.schemes.projective.projective point (module), 142
sage.schemes.projective.projective rational point (module), 166
sage.schemes.projective.projective_space (module), 103
sage.schemes.projective.projective subscheme (module), 154
sage.schemes.readme (module), 1
sage.schemes.toric.chow group (module), 293
sage.schemes.toric.divisor (module), 272
sage.schemes.toric.divisor_class (module), 292
sage.schemes.toric.fano variety (module), 239
sage.schemes.toric.homset (module), 347
```

```
sage.schemes.toric.ideal (module), 304
sage.schemes.toric.library (module), 257
sage.schemes.toric.morphism (module), 307
sage.schemes.toric.points (module), 352
sage.schemes.toric.sheaf.constructor (module), 360
sage.schemes.toric.sheaf.klyachko (module), 364
sage.schemes.toric.toric subscheme (module), 327
sage.schemes.toric.variety (module), 205
sage.schemes.toric.weierstrass (module), 335
sage.schemes.toric.weierstrass covering (module), 341
sage.schemes.toric.weierstrass higher (module), 345
scale by() (sage.schemes.product projective.point.ProductProjectiveSpaces point ring method), 195
scale_by() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space method),
scale_by() (sage.schemes.projective_projective_point.SchemeMorphism_point_projective_ring method), 153
Scheme (class in sage.schemes.generic.scheme), 7
scheme() (sage.schemes.generic.divisor.Divisor generic method), 69
scheme() (sage.schemes.generic.divisor_group.DivisorGroup_generic method), 72
scheme() (sage.schemes.generic.morphism.SchemeMorphism point method), 57
scheme() (sage.schemes.generic.point.SchemePoint method), 19
scheme() (sage.schemes.toric.chow group.ChowGroup class method), 302
SchemeHomset_generic (class in sage.schemes.generic.homset), 48
SchemeHomset_points (class in sage.schemes.generic.homset), 49
SchemeHomset points abelian variety field (class in sage.schemes.projective.projective homset), 170
SchemeHomset points affine (class in sage.schemes.affine.affine homset), 99
SchemeHomset_points_product_projective_spaces_field (class in sage.schemes.product_projective.homset), 186
SchemeHomset points product projective spaces ring (class in sage.schemes.product projective.homset), 187
SchemeHomset points projective field (class in sage.schemes.projective.projective homset), 171
SchemeHomset_points_projective_ring (class in sage.schemes.projective.projective_homset), 174
SchemeHomset_points_spec (class in sage.schemes.affine.affine_homset), 101
SchemeHomset points subscheme toric field (class in sage.schemes.toric.homset), 348
SchemeHomset_points_toric_base (class in sage.schemes.toric.homset), 348
SchemeHomset_points_toric_field (class in sage.schemes.toric.homset), 349
SchemeHomset toric variety (class in sage.schemes.toric.homset), 351
SchemeHomsetFactory (class in sage.schemes.generic.homset), 47
SchemeMorphism (class in sage.schemes.generic.morphism), 53
SchemeMorphism_fan_fiber_component_toric_variety (class in sage.schemes.toric.morphism), 312
SchemeMorphism fan toric variety (class in sage.schemes.toric.morphism), 315
SchemeMorphism fan toric variety dominant (class in sage.schemes.toric.morphism), 320
SchemeMorphism_id (class in sage.schemes.generic.morphism), 55
SchemeMorphism_orbit_closure_toric_variety (class in sage.schemes.toric.morphism), 324
SchemeMorphism point (class in sage.schemes.generic.morphism), 56
SchemeMorphism_point_abelian_variety_field (class in sage.schemes.projective.projective_point), 142
SchemeMorphism_point_affine (class in sage.schemes.affine.affine_point), 86
SchemeMorphism point affine field (class in sage.schemes.affine.affine point), 88
SchemeMorphism_point_affine_finite_field (class in sage.schemes.affine.affine_point), 90
SchemeMorphism_point_projective_field (class in sage.schemes.projective.projective_point), 142
SchemeMorphism_point_projective_finite_field (class in sage.schemes.projective.projective_point), 144
SchemeMorphism point projective ring (class in sage.schemes.projective.projective point), 145
SchemeMorphism point toric field (class in sage.schemes.toric.morphism), 326
```

```
SchemeMorphism polynomial (class in sage.schemes.generic.morphism), 58
SchemeMorphism_polynomial_affine_space (class in sage.schemes.affine_affine_morphism), 79
SchemeMorphism_polynomial_affine_space_field (class in sage.schemes.affine_affine_morphism), 85
SchemeMorphism polynomial affine space finite field (class in sage.schemes.affine.affine morphism), 85
SchemeMorphism_polynomial_projective_space (class in sage.schemes.projective.projective_morphism), 116
SchemeMorphism_polynomial_projective_space_field (class in sage.schemes.projective.projective_morphism), 132
SchemeMorphism polynomial projective space finite field (class in sage.schemes.projective.projective morphism),
SchemeMorphism_polynomial_toric_variety (class in sage.schemes.toric.morphism), 326
SchemeMorphism spec (class in sage.schemes.generic.morphism), 64
SchemeMorphism_structure_map (class in sage.schemes.generic.morphism), 64
SchemePoint (class in sage.schemes.generic.point), 19
SchemeRationalPoint (class in sage.schemes.generic.point), 19
SchemeTopologicalPoint (class in sage.schemes.generic.point), 19
SchemeTopologicalPoint_affine_open (class in sage.schemes.generic.point), 19
SchemeTopologicalPoint prime ideal (class in sage.schemes.generic.point), 19
sections() (sage.schemes.toric.divisor.ToricDivisor generic method), 289
sections_monomials() (sage.schemes.toric.divisor.ToricDivisor_generic method), 290
segre embedding() (sage.schemes.product projective.space.ProductProjectiveSpaces ring method), 183
segre_embedding() (sage.schemes.product_projective.subscheme.AlgebraicScheme_subscheme_product_projective
         method), 199
SheafLibrary (class in sage.schemes.toric.sheaf.constructor), 361
sheaves (sage.schemes.toric.variety.ToricVariety_field attribute), 234
sieve() (in module sage.schemes.projective.projective rational point), 169
sigma invariants() (sage.schemes.projective.projective morphism.SchemeMorphism polynomial projective space
         method), 132
solutions() (sage.schemes.toric.points.FiniteFieldSubschemePointEnumerator method), 356
solutions serial() (sage.schemes.toric.points.FiniteFieldSubschemePointEnumerator method), 357
Spec() (in module sage.schemes.generic.spec), 15
Spec() (sage.schemes.toric.variety.ToricVariety field method), 218
SpecFunctor (class in sage.schemes.generic.spec), 16
specialization() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 41
specialization() (sage.schemes.generic.morphism.SchemeMorphism_point method), 57
specialization() (sage.schemes.generic.morphism.SchemeMorphism polynomial method), 62
Stanley_Reisner_ideal() (sage.schemes.toric.variety.ToricVariety_field method), 219
structure_morphism() (sage.schemes.generic.scheme.Scheme method), 12
subscheme() (sage.schemes.affine.affine space.AffineSpace generic method), 78
subscheme() (sage.schemes.product_projective.space.ProductProjectiveSpaces_ring method), 184
subscheme() (sage.schemes.projective.projective space.ProjectiveSpace ring method), 114
subscheme() (sage.schemes.toric.variety.ToricVariety field method), 235
subscheme from Chow form() (sage.schemes.projective.projective space.ProjectiveSpace field method), 107
support() (sage.schemes.generic.divisor.Divisor curve method), 68
symmetric_power() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle_class method), 373
Т
tangent bundle() (sage.schemes.toric.sheaf.constructor.SheafLibrary method), 362
TangentBundle() (in module sage.schemes.toric.sheaf.constructor), 363
Td() (sage.schemes.toric.variety.ToricVariety_field method), 219
tensor product() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 373
Todd class() (sage.schemes.toric.variety.ToricVariety field method), 219
```

```
toric divisor group() (sage.schemes.toric.variety.ToricVariety field method), 235
ToricDivisor() (in module sage.schemes.toric.divisor), 275
ToricDivisor generic (class in sage.schemes.toric.divisor), 277
ToricDivisorGroup (class in sage.schemes.toric.divisor), 276
ToricDivisorGroup.Element (class in sage.schemes.toric.divisor), 276
ToricIdeal (class in sage.schemes.toric.ideal), 305
ToricRationalDivisorClass (class in sage.schemes.toric.divisor class), 292
ToricRationalDivisorClassGroup (class in sage.schemes.toric.divisor), 290
ToricRationalDivisorClassGroup_basis_lattice (class in sage.schemes.toric.divisor), 291
Toric Variety() (in module sage.schemes.toric.variety), 213
Toric Variety field (class in sage.schemes.toric.variety), 214
Toric Variety Factory (class in sage.schemes.toric.library), 258
torus() (sage.schemes.toric.library.ToricVarietyFactory method), 272
trivial bundle() (sage.schemes.toric.sheaf.constructor.SheafLibrary method), 363
TrivialBundle() (in module sage.schemes.toric.sheaf.constructor), 363
U
union() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 41
union() (sage.schemes.generic.scheme.Scheme method), 12
units() (sage.schemes.toric.points.NaiveFinitePointEnumerator method), 360
V
value_ring() (sage.schemes.generic.homset.SchemeHomset_points method), 50
variety() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 373
veronese embedding() (sage.schemes.projective.projective space.ProjectiveSpace ring method), 115
veronese_embedding()
                          (sage.schemes.projective.projective_subscheme.AlgebraicScheme_subscheme_projective
         method), 165
volume_class() (sage.schemes.toric.variety.ToricVariety_field method), 236
W
wedge() (sage.schemes.toric.sheaf.klyachko.KlyachkoBundle class method), 374
WeierstrassForm() (in module sage.schemes.toric.weierstrass), 338
WeierstrassForm2() (in module sage.schemes.toric.weierstrass_higher), 346
WeierstrassForm P1xP1() (in module sage.schemes.toric.weierstrass), 339
WeierstrassForm_P2() (in module sage.schemes.toric.weierstrass), 340
WeierstrassForm P2 112() (in module sage.schemes.toric.weierstrass), 340
WeierstrassForm_P3() (in module sage.schemes.toric.weierstrass_higher), 346
WeierstrassMap() (in module sage.schemes.toric.weierstrass_covering), 342
WeierstrassMap P1xP1() (in module sage.schemes.toric.weierstrass covering), 343
WeierstrassMap_P2() (in module sage.schemes.toric.weierstrass_covering), 344
WeierstrassMap P2 112() (in module sage.schemes.toric.weierstrass covering), 345
WeierstrassMap P3() (in module sage.schemes.toric.weierstrass higher), 346
weil_restriction() (sage.schemes.affine_morphism_SchemeMorphism_polynomial_affine_space_field_method),
         85
weil_restriction() (sage.schemes.affine_point.SchemeMorphism_point_affine_field method), 89
weil restriction() (sage.schemes.affine.affine space.AffineSpace field method), 74
weil_restriction() (sage.schemes.generic.algebraic_scheme.AlgebraicScheme_subscheme method), 42
WP() (sage.schemes.toric.library.ToricVarietyFactory method), 269
wronskian_ideal() (sage.schemes.projective_projective_morphism.SchemeMorphism_polynomial_projective_space
         method), 132
```

# Χ

 $X() \ (sage.schemes.generic.algebraic\_scheme.AlgebraicScheme\_quasi\ method),\ 31$ 

# Υ

Y() (sage.schemes.generic.algebraic\_scheme.AlgebraicScheme\_quasi method), 31

# Z

zeta\_function() (sage.schemes.generic.scheme.Scheme method), 12 zeta\_series() (sage.schemes.generic.scheme.Scheme method), 13