Exploring Design Verifier

NATASHA Y JEPPU

(STUDENT NITK, SURATHKAL)

Autodestruct

Requirements

- A) If the Input <= 25 degrees then Autodestruct = TRUE
- B) If the input >= 25 degrees then Autodestruct = TRUE

ELSE

C) Autodestruct = FALSE

Auto Destruct

Auto Destruct

Out1

compare_error_prove.slx

Delay OnOff

Requirements

- A) If the input is TRUE and holds TRUE for a duration of TON (20) Frames then output = TRUE
- B) If the input is FALSE and holds FALSE for a duration of TOFF (40) Frames then the output = FALSE

ELSE

C) The output shall be equal to previous value (NO CHANGE)

delay_on_off_prove.slx
delay_on_off_test.slx

Antiwindup Integrator

Requirements

The output shall be computed as Input * DT (0.01 sec) + Previous Output

- $O_k = O_{k-1} + I_k * (0.01)$
- If $I_k = I_{k-1} = 0$ then $O_k = O_{k-1}$
- If $O_{k-1} >= 0.5 \text{ AND } I_k < 0 \text{ then } O_k < 0.5$
- If $O_{k-1} \le -0.5$ AND $I_k > 0$ then $O_k > -0.5$

Where k is the current frame. O is the output and I the input.

integ_verify_prove.slx

Hysteresis

Requirements

- If I₁ > 65 then O₁ = TRUE
- If $I_1 \le 65$ then $O_1 = FALSE$

For all k>1

- If $I_k < 60$ then $O_k = FALSE$
- If $I_k > 70$ then $O_k = TRUE$
- If $I_k <= 70 \text{ AND } I_k >= 60 \text{ then } O_k = O_{k-1}$

In the first frame

Where k is the current frame, I is the input and O is the output

logical_hystersis_prove.slx

Priority Requirements

- Priority circuit shall have 8 inputs and 8 outputs.
- Only one output can be TRUE at a time.
- If I_n = TRUE AND (all inputs of higher precedence than I_n) = FALSE then

$$O_n = TRUE$$

i.e.
$$I_1, I_2, I_3, ..., I_{n-1}$$
 is FALSE.

Eg: O_1 =TRUE implies I_1 = TRUE

$$O_2$$
=TRUE implies I_1 = FALSE AND I_2 = TRUE

• If sum of inputs >=1 then sum of outputs = 1 taking Booleans 0 and 1 as integers INPUTS IN ORDER OF PRIORITY

priority 01 error.slx

priority 01 prove.slx

priority prove.slx

Rate limiter

Requirements

 ${}^{\bullet}O_1 = I_1$

For all k > 1

- If $abs\{(O_k-O_{k-1})/DT\} < 1$ then $O_k = I_k$
- abs $\{(O_k-O_{k-1})/DT\} \le 1 \text{ for all } k>1$

Where k is the current frame, I is the input and O is the output. DT is the sampling time.

The output rate should be limited to 1

rate_limit_prove.slx

Window counter

Requirements

• If $(I_k + I_{k-1} + \dots + I_{k-9}) > 3$ then $O_k = TRUE$ else $O_k = FALSE$

window_counter_prove.slx window_counter_test.slx

On ground circuit

Requirements

Weight on wheels

- If any two of (WOWN,WOWL,WOWR) = TRUE then ONGROUND = TRUE
 Alternate on ground
- If CAS < 60 AND RADALT < 100 AND for 20 frames then ONGROUND = TRUE</p>
- If CAS > 70 OR RADALT > 150 AND for 40 frames then ONGROUND = FALSE
- If first frame AND CAS <= 65 AND RADALT <= 125 then ONGROUND = TRUE</p>

wow_correct_prove.slx wow_fail_prove.slx

Transient free switch

Requirements

For input A and B bounded between -1 and 1 the output shall be bounded between -1 and 1.

This block has caused problems in flight controls. In case of the LCA program it caused a slat failure by giving a negative value where the output was to be bounded between 0 and 1. SDV proves this very easily and comes with a test case. The second model used in other flight programs does not have this problem

Refer:

http://www.mathworks.com/matlabcentral/fileexchange/39047-testing-of-safety-critical-control-systems

TFS.slx