Зміст

1.	Ряди Фур'є.	2
	1.1. Поява. Передмова	2
	1.2. Комплексна форма ряду Фур'є	2
	1.3. Випадок дійснозначної функції	3
	1.4. Не 2π -періодичні функції	4
	1.5. Аналіз збіжності ряду	5
	1.6. Збіжність часткових сум	6
	1.7. Рівномірна збіжність ряду Фур'є	7
	1.8. Середні по Чезаре	7
	1.9. Теорема Фейера	9
	1.10. Рівність Ларсеваля	9
2.	Перетворення Фур'є.	10
3.	Зворотнє перетворення Фур'є.	10
4.	Операційне числення. Перетворення Лапласа.	12

Ряд Фур'є

1. Ряди Фур'є.

1.1. Поява. Передмова.

Нехай g(z) – аналітична в кільці $K = \left\{z \mid 1 - \varepsilon_1 < |z| < 1 + \varepsilon_2\right\}; \left\{z \mid |z| = 1\right\} \subset K.$ Розкладаємо g(z) в ряд Лорана за степенями z в цьому кільці:

$$g(z) = \sum_{n = -\infty}^{\infty} C_n \cdot z^n , \text{ де } C_n = \frac{1}{2\pi i} \int_{|z| = 1} \frac{g(z)}{z^{n+1}} dz$$

$$z : |z| = 1 \implies z = e^{ix} \implies x \in [0, 2\pi] \implies g(z) = g(e^{ix}) = f(x)$$

$$C_n = \frac{1}{2\pi i} \int_{|z| = 1} \frac{g(z)}{z^{n+1}} dz = \begin{vmatrix} z = e^{ix} \\ dz = ie^{ix} dx \\ x \in [0, 2\pi] \end{vmatrix} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx$$

Отримали комплексну форму ряду Фур'є:

$$f(x) = \sum_{n = -\infty}^{\infty} C_n \cdot e^{inx}, \ C_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx$$

1.2. Комплексна форма ряду Фур'є.

 $f \in D[0,2\pi]$ — періодична, інтегрова на $[0,2\pi]$. За функцією f(x) будуємо ряд Фур'є:

$$S(x) = \sum_{n=-\infty}^{\infty} C_n \cdot e^{inx}, \ C_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx$$

Питання:

- 1) Збіжність ряду.
- 2) Якщо збігається, то зв'язок між S(x) та f(x).

1.3. Випадок дійснозначної функції.

Розглянемо ряд Фур'є:

$$\sum_{n=-\infty}^{-1} C_n \cdot e^{inx} + C_0 + \sum_{n=1}^{\infty} C_n e^{inx} = \begin{vmatrix} B & I & \text{cymi:} \\ n & = -k \end{vmatrix} = \sum_{k=1}^{\infty} C_{-k} \cdot e^{-ikx} + C_0 + \sum_{n=1}^{\infty} C_n e^{inx} \iff 0$$

Окремо розглянемо $C_{-k}e^{-ikx}$: $C_{-k}e^{-ikx} = \overline{C_k e^{ikx}}$:

$$C_n = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot (\cos(nx) - i\sin(nx)) dx =$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot \cos(nx) dx - i\frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot \sin(nx) dx$$

$$\Re C_n e^{inx} = \Re \left[\frac{1}{2\pi} \int_0^{2\pi} f(x) \cos(nx) dx - i \frac{1}{2\pi} \int_0^{2\pi} f(x) \sin(nx) dx \right] \cdot (\cos(nx) + i \sin(nx)) =$$

$$= \frac{1}{2\pi} \cos(nx) \int_{0}^{2\pi} f(x) \cdot \cos(nx) dx + \frac{1}{2\pi} \sin(nx) \int_{0}^{2\pi} f(x) \cdot \sin(nx) dx$$

$$C_0 = rac{1}{2\pi} \int\limits_0^{2\pi} f(x) dx$$
 Отримали дійсну форму ряда Фур'є.

$$f(x) \mapsto \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx),$$

де
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx, n \in \mathbb{N} \cup \{0\}; \ b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx, n \in \mathbb{N} \cup \{0\}.$$

1.4. Не 2π -періодичні функції.

f-2l періодична, або задана на [0,2l], інтегрована. Розглянемо відображення:

$$[0, 2\pi] \leftarrow [0, 2l]$$
 $x \in [0, 2\pi]$ $x = \frac{t}{l}\pi$ $t \in [0, 2\pi]$

Тоді $f(x)=f(\frac{t}{l}\pi)=g(t).$ g(t) - задана на [0,2l].

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx = \frac{1}{l} \int_0^{2l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx = \frac{1}{l} \int_0^{2l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$$

$$g(t) = f(x) \mapsto \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi nt}{l} + b_n \sin\left(\frac{\pi nt}{l}\right)\right)$$

$$a_n = \frac{1}{l} \int_0^{2l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt \qquad b_n = \frac{1}{l} \int_0^{2l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$$

Частіше всього, зручно обчислювати коефіцієнти ряду інакше:

$$a_n = \frac{1}{l} \int_{-l}^{l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt$$
 $b_n = \frac{1}{l} \int_{-l}^{l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$

1.5. Аналіз збіжності ряду.

Лема (Рімана). f – інтегрована на [a,b] навіть в невласному сенсі.

Тобто $\int_a^b f(x) dx$ – збігається. Тоді:

1)
$$\int_{a}^{b} f(x) \cos(\lambda x) dx \xrightarrow{\lambda \to \infty} 0$$

2)
$$\int_{a}^{b} f(x) \sin(\lambda x) dx \xrightarrow{\lambda \to \infty} 0$$

Надалі розглядаємо:

$$S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos(nx) + b_n \sin(nx)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$

Теорема 1.1. $f(x) - 2\pi$ -періодична, інтегрована. Тоді:

$$S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos(nx) + b_n \sin(nx)$$

Часткова сума ряду Фур'є дорівнює:

$$S_k(t) = \frac{1}{\pi} \int_{0}^{\pi} \left[f(x+u) + f(x-u) \right] \cdot \frac{\sin \frac{2k+1}{2} u}{2 \sin \frac{u}{2}} du$$

Підінтегральний множник $\frac{\sin\frac{2k+1}{2}u}{2\sin\frac{u}{2}}=D_k(u)$ називається ядром Діріхле.

Властивості ядра Діріхле:

- 1) $D_k(u)$ парна, 2π період функції;
- $2) \int_{-\pi}^{\pi} D_k(u) \mathrm{d}u = 1;$

1.6. Збіжність часткових сум.

Розглядаємо:

$$S_k(x) - C = \frac{1}{\pi} \int_0^{\pi} \left[f(x+u) + f(x-u) \right] \cdot D_k(u) du - C \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} D_k(u) du =$$

$$= \frac{1}{\pi} \int_0^{\pi} \left[f(x+u) + f(x-u) - 2C \right] \cdot D_k(u) du$$

Позначимо: $f(x+u) + f(x-u) - 2C = g_{C,x}(u)$. Отже:

$$S_k(x) - C = \frac{1}{\pi} \int_{0}^{\pi} g_{C,x}(u) D_k(u) du$$

Теорема 1.2 (Ознака Діні для рядів Фур'є). $f(x) - 2\pi$ -періодична, інтегрована.

Якщо
$$\exists \delta > 0 : \int_{0}^{\delta} \frac{|g_{C,x}(u)|}{u} du$$
 – збігається, то: $S_{\delta}(x) \xrightarrow[k \to \infty]{} C$.

Наслідок. f(x) – диференційована в т. x_0 , тоді:

$$S_k(x_0) \xrightarrow[k \to \infty]{} f(x_0) \iff f(x_0) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx_0) + b_n \sin(nx_0)$$

Наслідок. $f(x) - 2\pi$ -періодична, інтегрована. x_0 — точка розриву 1го роду ("стрибок"). f(x) має в т. x_0 ліву та праву похідні. Тоді:

$$S_k(x_0) \xrightarrow[k \to \infty]{} \frac{1}{2} (f(x_0+) + f(x_0-))$$

Означення. f(x) задовольняє умові Ліпшиця в околі т. x_0 , якщо:

$$\forall x_1, x_2 \in (x_0 - \delta, x_0 + \delta) | f(x_1) - f(x_2) | \le L |x_1 - x_2|$$

Наслідок. $f(x) - 2\pi$ -період., інтегрована та задов. ум. Ліпшиця в околі т. x_0 . Тоді:

$$S_k(x_0) \xrightarrow[k \to \infty]{} f(x_0)$$

1.7. Рівномірна збіжність ряду Фур'є.

Теорема 1.3. $f(x) - 2\pi$ -періодична та кусково-неперервно диференційована. Тоді ряд Фур'є функції f(x) рівномірно збігається.

Доведення. Дуже велике доведення – дивіться в конспекті:)

1.8. Середні по Чезаре

Означення. $f(x) - 2\pi$ -періодична, інтегрована.

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$
 – ряд Фур'є для $f(x)$;

$$S_k = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos{(nx)} + b_n \sin{(nx)}$$
 – часткові суми;

$$\mathcal{G}_n(x)=rac{1}{n}(S_1(x),S_2(x),\ldots,S_{n-1}(x))$$
 — середні по Чезаро.

Отримаємо інтегральний вид середніх по Чезаро. Отримали:)

Лема. $f(x) - 2\pi$ -періодична, інтегрована.

$$S_k = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos{(nx)} + b_n \sin{(nx)}$$
 – часткові суми;

$$G_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(x)$$
 — середні по Чезаре;

Тоді $\mathcal{G}_n(x)$ має інтегральний вигляд:

$$G_n(x) = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} [f(x+2v) + f(x-2v)] F_n(v) dv,$$

де
$$F_n(v) = \frac{\sin^2(nv)}{\pi n \sin^2 v} -$$
ядро Фейера.

Властивості ядра Фейера:

1)
$$F_n(-v) = F_n(v)$$
;

2)
$$F_n(v) - \pi$$
-періодична;

3)
$$\int_{0}^{\frac{\pi}{2}} F_n(v) dv = \frac{1}{2}$$
.

Властивості коефіцієнтів ряда Фур'є.

1) f(x) – непарна, задана на (-l;l). Тоді:

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx = 0;$$

2) f(x) – парна, задана на (-l;l). Тоді:

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx = 0.$$

3) f(x) – парна, з періодом 2l.

Якщо функція неперервна на (-l,l), то вона неперервна на \mathbb{R} .

4) f(x) – непарна. Тоді:

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx = \frac{2}{l} \int_{0}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx$$

f(x) – парна. Тоді:

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx = \frac{2}{l} \int_{0}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx$$

6) $f(x) - 2\pi$ період. $f(x + \pi) = -f(x)$, тоді: $a_n = b_n = 0$ при $n = 2k, k \in \mathbb{N}$.

1.9. Теорема Фейера.

Теорема 1.4 (Фейера). Задана функція $f \in C[0, 2\pi]$. Тоді:

$$\mathcal{G}_n(f) \rightrightarrows f$$
 на $[0,2\pi]$ $n \to \infty$

Наслідок (1). $f \in C[0, 2\pi]$ тоді $\forall \varepsilon > 0$ існує тригонометричний многочлен:

$$T_{\varepsilon}(x) = A_0 + \sum_{n=1}^{N(\varepsilon)} A_n \cos nx + B_n \sin nx$$

такий, що $||f-T_{\varepsilon}||=\max_{[0,2\pi]}|f(x)-T_{\varepsilon}(x)|<\varepsilon.$

Наслідок. 2 $f \in C[a,b]$ тоді $\forall \varepsilon > 0$ $\exists P_{\varepsilon}(x)$ – многочлен, такий що:

$$||f - P_{\varepsilon}|| = \max_{[a,b]} |f(x) - P_{\varepsilon}(x)| < \varepsilon$$

1.10. Рівність Ларсеваля.

Теорема 1.5 (Рівність Ларсеваля). $f - 2\pi$ -періодична, інтегрована.

Тоді виконується рівність:

$$\int_{0}^{2\pi} f^{2}(x) dx = \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$$

Приклад (застосування).

$$f(x) = x x \in [-\pi, \pi] - \text{непарна, moму } a_n = 0 \ \forall n \ge 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx dx = \begin{vmatrix} u = x & du = dx \\ dv = \sin nx dx \\ v = -\frac{\cos nx}{n} \end{vmatrix} = \frac{1}{\pi} \left(-\frac{x \cos nx}{n} \Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \frac{\cos nx dx}{n} \right) =$$

$$= \frac{1}{\pi n} \left(-\pi (-1)^n - \pi (-1)^n \right) = \frac{2(-1)^{n+1}}{n}$$

$$\int_{-\pi}^{\pi} f^2(x) dx = \int_{-\pi}^{\pi} x^2 dx - \frac{x^3}{3} \Big|_{-\pi}^{\pi} = \frac{2\pi^3}{3\pi} \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{2\pi^3}{3\pi} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

2. Перетворення Фур'є.

Означення. f(x) задана на $\mathbb R$ така, що інтеграл: $\int\limits_{-\infty}^{\infty}|f(x)|\,\mathrm{d}x$ збігається.

Перетворенням Фур'є функції f(x) називають:

$$\widehat{f}(\lambda) = F[f] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{i\lambda x} dx$$

Властивості:

- $1) \int\limits_{-\infty}^{\infty} |f(x)| \,\mathrm{d}x \text{ збігається} \Longrightarrow \int\limits_{-\infty}^{\infty} f(x) e^{i\lambda x} \mathrm{d}x \text{збігається рівномірно на } \mathbb{R}.$
- 2) $\widehat{f}(\lambda)$ неперервна на \mathbb{R} .
- 3) f(x) така, що $\int\limits_{-\infty}^{\infty} \left(1+|x|^k\right)|f(x)|\,\mathrm{d}x<\infty$, тоді:

$$\exists \left(\widehat{f}(\lambda)\right)^k = \widehat{[(ix)^k \cdot f}(x)](\lambda)$$

4) $f(x)\in C^{(k-1)}(\mathbb{R})$ $\exists f^{(k)}(x)$ – інтегрована на \mathbb{R} та $f^{(k)}(x)\xrightarrow[x\to\pm\infty]{}$ 0. Тоді:

$$\widehat{[f^{(k)}]}(\lambda) = (-i\lambda)^k \widehat{f}(\lambda)$$

cos та sin-перетворення Фур'є.

- cos-перетворення: $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos \lambda t dt$
- sin-перетворення: $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \sin \lambda t dt$

3. Зворотнє перетворення Фур'є.

$$g(\lambda):$$

$$\int_{-\infty}^{\infty} |g(\lambda)| \, \mathrm{d}\lambda < \infty$$

$$\tilde{g}(x) = F^{-1}[g] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(\lambda)e^{-i\lambda x} d\lambda$$

При цьому маємо:

$$\frac{1}{2\pi} \int_{-A}^{A} \widehat{f}(\lambda)e^{-i\lambda x} dx = \frac{1}{\pi} \int_{0}^{\infty} \left[f(x+t) + f(x-t) - 2i \right] \frac{\sin At}{t} dt$$

Позначимо: h(t) = f(x-t) + f(x+t) - 2i

Теорема 3.1 (Ознака Діні для пертворення Фур'є).

$$f(x) \longrightarrow \int_{-\infty}^{\infty} |f(x)| dx < \infty$$

Якщо $\exists \delta > 0 : \int_{0}^{\delta} \left| \frac{h(t)}{t} \right| dt < \infty :$

$$\frac{1}{\pi} \int_{0}^{\infty} h(t) \frac{\sin At}{t} dt \xrightarrow[A \to \infty]{} 0$$

Наслідок (1). f(x) — неперервно-дифференційована в т. x_0 , тоді:

$$\overset{\times}{f}(\lambda) = f(x_0)$$

Наслідок (1). f(x) – дифференційована в лівому та правому околі т. x_0 , тоді:

$$f(\lambda) = \frac{f(x_0+) + f(x_0-)}{2}$$

4. Операційне числення. Перетворення Лапласа.

Означення. Функція f(t) називається **оригіналом**, якщо задовільняє умовам:

- f(t) = 0 для t < 0.
- f(t) кусково-неперервна.
- $\exists M \ \exists \alpha : |f(t)| < Me^{\alpha t}$

Означення. Функція Хевісайда: $\chi(t) = \begin{cases} 1, & t \geq 0; \\ 0, & t < 0. \end{cases}$

Означення. f(t) – оригінал. Степенню зростання f(x) називається число:

$$\sigma(f) = \inf \left\{ \alpha : \exists M \ |f(t)| < Me^{\alpha t} \right\}$$