Objective 4 - Inverse

Find the inverse of a function, if it exists.

Link to section in online textbook

First, watch <u>this video</u> to learn when a function has an inverse and how to find the inverse of a function. Feel free to pause the video and fill out the notes as you go.

Question 1 Determine whether the function below is 1-1.

$$f(x) = ??$$

Yes

Feedback(attempt): "Yes" or "No".

If f(x) is 1-1, find the inverse and define the domain on which the inverse is valid. If f(x) is not 1-1, put "NA" for all answer blocks.

$$f^{-1}(x) = \boxed{??}$$

Feedback(attempt): To find the inverse of a function, switch x and y, then solve for y. Don't round.

Domain of $f^{-1}(x)$: (??, ??)

Hint: Think about the shape of the original function: are there places whether the function is not defined?

Question 2 Determine whether the function below is 1-1.

$$f(x) = ??$$

No

Learning outcomes:

Author(s): Darryl Chamberlain Jr.

Feedback(attempt): "Yes" or "No".

If f(x) is 1-1, find the inverse and define the domain on which the inverse is valid. If f(x) is not 1-1, put "NA" for all answer blocks.

$$f^{-1}(x) = \boxed{NA}$$

Feedback(attempt): To find the inverse of a function, switch x and y, then solve for y. Don't round.

Domain of $f^{-1}(x)$: NA NA, NA NA

Hint: Think about the shape of the original function: are there places whether the function is not defined?

Question 3 Determine whether the function below is 1-1.

$$f(x) = ??$$

Yes

Feedback(attempt): "Yes" or "No".

If f(x) is 1-1, find the inverse and define the domain on which the inverse is valid. If f(x) is not 1-1, put "NA" for all answer blocks.

$$f^{-1}(x) = \boxed{??}$$

Feedback(attempt): To find the inverse of a function, switch x and y, then solve for y. Don't round.

Domain of $f^{-1}(x)$: $(\cite{??},\cite{??})$

Hint: Think about the shape of the original function: are there places whether the function is not defined?

Question 4 Determine whether the function below is 1-1.

$$f(x) = ??$$

Yes

Feedback(attempt): "Yes" or "No".

If f(x) is 1-1, find the inverse and define the domain on which the inverse is valid. If f(x) is not 1-1, put "NA" for all answer blocks.

$$f^{-1}(x) = \boxed{??}$$

Feedback(attempt): To find the inverse of a function, switch x and y, then solve for y. Don't round.

Domain of $f^{-1}(x)$: [[??] [

Hint: Think about the shape of the original function: are there places whether the function is not defined?

Question 5 Determine whether the function below is 1-1.

$$f(x) = ??$$

Yes

Feedback(attempt): "Yes" or "No".

If f(x) is 1-1, find the inverse and define the domain on which the inverse is valid. If f(x) is not 1-1, put "NA" for all answer blocks.

$$f^{-1}(x) = \boxed{??}$$

Feedback(attempt): To find the inverse of a function, switch x and y, then solve for y. Don't round.

Domain of $f^{-1}(x)$: (??, ??)

Hint: Think about the shape of the original function: are there places whether the function is not defined?