WHAT IS CLAIMED IS:

1	1.	An isolated nucleic acid comprising a polynucleotide sequence, or		
2	complement thereo	f, encoding a polypeptide comprising		
3	an a	mino acid sequence at least 40% identitical to DMT Domain A; or		
4	an a	mino acid sequence at least 40% identitical to DMT Domain B; or		
5	an a	mino acid sequence at least 40% identitical to DMT Domain C; or		
6		mbination thereof.		
1	2.	The isolated nucleic acid of claim 1, wherein the polypeptide is at		
2	least 70% identical to SEQ ID NO:2.			
1	3.	The isolated nucleic acid of claim 1, wherein the polypeptide is		
2	SEQ ID NO:2.			
1	4.	The nucleic acid of claim 1, wherein the polypeptide comprises an		
2	amino acid sequence identical to a domain of claim 1.			
1	5.	The nucleic acid of claim 1, wherein the polypeptide is capable of		
2	exhibiting at least one of the following biological activities:			
3	(a)	glycosylase activity;		
4	(b)	demethylation of polynucleotides;		
5	(c)	DNA repair;		
6	(d)	wherein expression of the polypeptide in a plant modulates organ		
7		identity;		
8	(e)	wherein expression of the polypeptide in a plant modulates organ		
9		number;		
10	(f)	wherein expression of the polypeptide in a plant modulate		
11		meristem stem and/or activity;		
12	(g)	wherein enhanced expression of the polypeptide in a plant results		
13		in a delay in flowering time;		
14	(h)	wherein introduction of the polypeptide into a cell results in		
15		modulation of methylation of chromosomal DNA in the cell;		
16	(i)	wherein reduction of expression of the polypeptide in a plant		
17		results in modulation of endosperm development.		

18	(1)	wherein expression of the polypeptide in an Arabidopsis leaf	
19	results in modulation	n of expression of the MEDEA gene.	
1	6.	The nucleic acid of claim 5, wherein the polypeptide comprises	
2	either a	· · · · ·	
3	(i)	basic region;	
4	(ii)	nuclear localization signal;	
5	(iii)	leucine zipper;	
6	(iv)	helix-hairpin-helix structure;	
7	(v)	glycine-proline rich loop with a terminal aspartic acid or	
8	(vi)	helix that is capable of binding DNA.	
1	7.	The isolated nucleic acid of claim 1, wherein the nucleic acid	
2	further comprises a p	promoter operably linked to the polynucleotide.	
1	8.	The isolated nucleic acid of claim 7, wherein the promoter is a	
2	constitutive promoter	т.	
1	9.	The isolated nucleic acid of claim 7, wherein the promoter is from	
2	a DMT gene.		
1	10.	The isolated nucleic acid of claim 9, wherein the promoter	
2	comprises a polynucl	eotide at least 70% identical to a sequence selected from the group	
3	consisting of SEQ ID	NO:3, SEQ ID NO4 and SEQ ID NO:6.	
1	11.	The isolated nucleic acid of claim 10, wherein the promoter is	
2	selected from the grou	up consistiing of SEQ ID NO:3, SEQ ID NO4 and SEQ ID NO:6.	
1	12.	The isolated nucleic acid of claim 7, wherein the polynucleotide	
2	sequence is linked to	the promoter in an antisense orientation.	
1	13.	An expression cassette comprising a promoter operably linked to a	
2	heterologous polynucleotide sequence, or a complement thereof, encoding the		
3	polypeptide of claim	1.	
1	14.	The expression cassette of claim 13, wherein the polynucleotide	
2	sequence is linked to t	the promoter in an antisense orientation.	

1	15.	A host cell comprising an exogenous polynucleotide sequence		
2	comprising a polynucleotide sequence, or complement thereof, encoding the polypeptide			
3	of claim 1.			
1	16.	The host cell of claim 15, wherein the nucleic acid further		
2	comprises a promoter operably linked to the polynucleotide sequence.			
1	17.	The host cell of claim 16, wherein the host cell is a plant cell.		
1	18.	A method of modulating transcription, the method comprising,		
2	(a)	introducing into a host cell an expression cassette of claim 13; and		
3	(b)	selecting a host cell with modulated transcription.		
1	19.	The method of claim 18, wherein the expression cassette is		
2	introduced by Agrobacterium.			
1	20.	The method of claim 18, wherein the expression cassette is		
2	introduced by a sexual cross.			
1	21.	The method of claim 18, wherein the polypeptide is capable of		
2	exhibiting at least or	ne of the following biological activities:		
3	(a)	wherein enhanced expression of the polypeptide in a plant results		
4	in a delay in flowering time;			
5	(b)	wherein introduction of the polypeptide into a cell results in		
6	modulation of methylation of chromosomal DNA in the cell;			
7	(c)	wherein reduction of expression of the polypeptide in a plant		
8	results in enhanced endosperm development;			
9	(d)	wherein expression of the polypeptide in an Arabidopsis leaf		
10	results in expression of the MEDEA gene.			
1	22.	The method of claim 18, wherein the promoter is operably linked		
2	to the heterologous polynucleotide in the antisense orientation.			
1	23.	A method of detecting a nucleic acid in a sample, comprising		
2	(a)	providing an isolated nucleic acid molecule according to claim 1.		

5	(b) contacting the isolated nucleic acid molecule with a sample u	nder		
4	conditions which permit a comparison of the sequence of the isolated nucleic acid			
5	molecule with the sequence of DNA in the sample; and			
6	(c) analyzing the result of the comparison.			
1	24. A transgenic plant cell or transgenic plant comprising a			
2	polynucleotide sequence, or complement thereof, encoding a polypeptide of claim 1.			
1	25. A plant which has been regenerated from a plant cell according	ıg to		
2	24.			
1	26. The plant of claim 25, wherein the polypeptide is capable of			
2	exhibiting at least one of the following biological activities:			
3	(a) wherein enhanced expression of the polypeptide in a plant res	ults		
4	in a delay in flowering time;			
5	(b) wherein introduction of the polypeptide into a cell results in			
6	modulation of methylation of chromosomal DNA in the cell;			
7.	(c) wherein reduction of expression of the polypeptide in a plant			
8	results in enhanced endosperm development;			
9	(d) wherein expression of the polypeptide in an Arabidopsis leaf			
10				
1	27. An expression cassette for the expression of a heterologous			
2	polynucleotide in a plant cell, wherein			
3	the expression cassette comprises a promoter at least 70% identical to a			
4	sequence selected from the group consisting of SEQ ID NO:3, SEQ ID NO:4 and SEQ ID			
5	NO:6, and			
6	the promoter is operably linked to a heterologous polynucleotide.			
1	28. The expression cassette of claim 27, wherein the promoter is			
2	selected from the group consistiing of SEQ ID NO:3, SEQ ID NO4 and SEQ ID NO:6.			
1	29. The expression cassette of claim 27, wherein the promoter			
2	specifically directs expression of the heterologous polynucleotide in a female			
3	gametophyte when the expression cassette is introduced into a plant			