Traffic Prediction

LUCY LENNEMANN

1 OVERVIEW

- Goal: Develop an application to predict traffic trends in Los Angeles based on historical Caltrans data
- Architecture: Streamlit frontend +
 Flask API → deployed using a
 Docker container and Google
 Cloud Run
- Use: User selects a station, frequency, and number of periods to predict → application will display hourly and weekly trends of average speed in that area

2 DATA

- Collecting: Used Selenium to scrape one year of traffic data for 4000+ stations placed near LA's major highways
 - Wrote script to combine monthly data into one CSV and organize files
- Processing: Filtered out stations with insufficient data, then reduced number of stations by a factor of 10 to reduce computation/memory requirements

3 MODELING

- Modeling: Forecasted traffic trends with Facebook's Prophet procedure
- Performance: Weekly and hourly trends correspond to expectation about times of higher congestion lower speeds during Monday through Friday, 8am and 5pm

4 TAKEAWAYS

- Lessons learned: cloud deployment, data pipelines, and backend/frontend integration
- Next steps: scale up my application with more data, experiment with more efficient data storage and file formats, incorporate routes to my application, DevOps practices

Los Angeles traffic prediction •

Select a station to forecast traffic

You selected station WESTWOOD		
Select frequency		
O Hours		
Opays		
Number of periods to predict		
24	-	+
Predict for station WESTWOOD?		