Introduction to PHY207

Dr. Fly

(Chung Fei Fang)

(Siti Khatijah)

Course Objectives

The objectives of this course are to:

- 1. Guide students to investigate physics problem by designing an experiment.
- 2. Introduce student different kinds of sensors used in experiment.
- 3. Train students work together in group to solve a problem.

Course Learning Outcomes

At the end of this course, students will be able to:

- 1. Adapt an experimental setup to investigate physical problems or scenarios (P5,PLO3)
- 2. Work together in pairs or a group to plan, setup and implement the experimental investigation (A3, PLO4)
- 3. Work together in pairs or a group to plan, setup and implement the experimental investigation (A5,PLO5)
- 4. Construct charts and graphs using graphical software for the analysis of experimental findings(P4,PLO6)
- 5. Organize a functional team with diverse roles to tackle different aspects of the experimental investigation(A4,PLO8)

Assessment

Method of Assessment	Total
Instructor's Observation	40%
• Lab Report	30%
Viva Voce(Progress/Final Presentation)	30%
•	
TOTAL	100%

Roles of group members

Manager: Hosting meeting, Planning project and budget, Purchasing

Engineer: Designing and assembling equipment, setting up and conducting experiment

Programmer: Developing Apps for controlling equipment, collecting and analyzing data,

p.u	
Week 1	Online meeting
	Introduction to the course and Project
	- Spectroscopy and its applications.
	- Preparation of materials.
	- Suggestions:
	Determine the grating constant for different brands of cd or dvd.
	2. Beer-Lambert Law
	Measurement of Planck's constant
	Absorption spectrum
	5. Solar Spectrum
	or osiai oposiumi
Week 2	Online meeting
	Microsoft Teams Group meeting 1(~ 30 minutes)
	- Hosted by each group in English
	- To brainstorm the project direction
	- To distribute the work
Week 3	Online meeting
	Introduction to
	- Error analysis
	- Scientific report writing
	* Each group should have got the essential parts for the project.
	* Each group can add on any tools or devices subjected to the budget.
Week 4	Online meeting
	Microsoft Teams Group meeting 2(~ 30 minutes)
	-Hosted by each group in English
	- Finalized the project direction with a preliminary design
Week 5	Progress Report -hosted by the lecturer
	-Students should have all the essential parts and a preliminary design.
	- Online meeting
Week 6	Microsoft Teams Group meeting 3(~ 30 minutes)
	-Hosted by each group

Spectroscopy

(Electromagnetism + Modern Physics)

Dr. Fly

Importance of Spectroscopy

Continuous, emission, and absorption spectra

absorption line spectrum - Google

Spectrum of a Star

Absorption and Emission

$$L = \underline{rmv = n}\hbar$$

$$E = \frac{1}{2}mv^2 - K\frac{e^2}{r} = -\frac{E_0}{n^2}$$

Electron transitions for the Hydrogen atom

Rayleigh and Raman Scattering

Black body spectrum

Number of modes

$$N = \frac{8\pi f^2}{c^3}$$

$$ar{E} = rac{\sum nhfe^{-nhf/kT}}{\sum e^{-nhf/kT}} \ = rac{hf}{e^{hf/kT} - 1}$$

Photoelectric experiment

$$eV = hf - W$$

$$h = \frac{\Delta V}{\Delta f}$$

LED

Process of light emission in LED

Physics and Radio-Electronics

A Light-Emitting Diode (LED)

DIY spectrometer

(54) How to build a spectrometer from the College of Natural Sciences - CSU Online - YouTube

(54) DIY Spectrograph - YouTube

Calibration with LED

$$h \approx 7.0 \times 10^{-34} Js$$

White LED

Candle

LED monitor

