

Unit 01.03.03 CS 5220: COMPUTER COMMUNICATIONS

#### **Digital Communication Fundamentals**

XIAOBO ZHOU, Ph.D.

Professor, Department of Computer Science



### **Interests of Interest**



- How long will it take to transmit a message?
  - How many bits are in the message (text, image)?
  - How fast does the network/system transfer information?
- Can a network/system handle a voice (video) call?
  - How many bits/second does voice/video require?
- How long will it take to transmit a message?
- What transmission speed is possible over radio, copper cables, fiber, ...?

### Bits, numbers, information

- Bit: number with value 0 or 1
  - n bits: digital representation for 0, 1, ..., 2<sup>n</sup>
  - Byte or Octet, n = 8
  - Computer word, n = 16, 32, or 64
- n bits allows enumeration of 2<sup>n</sup> possibilities
  - n-bit field in a header
  - n-bit representation of a voice sample
  - Message consisting of n bits
- The number of bits required to represent a message is a measure of its information content; more bits means more content

#### **Block vs. Stream Information**



#### **Block**

- Information that occurs in a single block
  - Text message
  - Data file
  - JPEG image
- Size = Bits / block or bytes/block
  - 1 kbyte = 2<sup>10</sup> bytes
  - 1 Mbyte = 2<sup>20</sup> bytes
  - 1 Gbyte = 2<sup>30</sup> bytes

#### **Stream**

- Information that is produced & transmitted continuously
  - Real-time voice
  - Streaming video
- Bit rate = bits / second
  - 1 kbps = 10³ bps
  - 1 Mbps = 106 bps
  - 1 Gbps =109 bps

### **Delay – Propagation Delay**



- The delay of communication between two nodes has two components, the propagation delay and the transmission delay
- The propagation delay  $t_{prop} = d/v$ 
  - $t_{prop}$  time for signal to propagate across medium
  - d distance between two nodes in meters
  - v speed of light in the transmission medium (3x10<sup>8</sup> m/s in vacuum)



### **Delay - Transmission Delay**



- The transmission delay: t<sub>trans</sub> = L/R
- Overall Delay = t<sub>prop</sub> + t<sub>trans</sub> = d/v + L/R
  - L number of bits in message
  - R bandwidth of digital transmission system in bps

Use data compression to reduce L
Use higher bandwidth modem to increase R
Place server closer to reduce d

### Compression

- Information usually not represented efficiently
- Data compression algorithms
  - Represent the information using fewer bits
  - Noiseless: original information recovered exactly
    - E.g. zip, compress, GIF, fax
  - Noisy: recover information approximately
    - E.g., JPEG
    - Tradeoff: # bits vs. quality
- Compression Ratio
   #bits (original file) / #bits (compressed file)

### **Examples of Block Information**



| Туре           | Method           | Format                                                                | Original          | Compresse d(Ratio)    |
|----------------|------------------|-----------------------------------------------------------------------|-------------------|-----------------------|
| Text           | Zip,<br>compress | ASCII                                                                 | Kbytes-<br>Mbytes | (2-6)                 |
| Fax            | CCITT<br>Group 3 | A4 page<br>200x100<br>pixels/in²                                      | 256<br>kbytes     | 5-54 kbytes<br>(5-50) |
| Color<br>Image | JPEG             | 8x10 in <sup>2</sup> photo<br>400 <sup>2</sup> pixels/in <sup>2</sup> | 38.4<br>Mbytes    | 1-8 Mbytes<br>(5-30)  |

## **Examples of Digital Video Signals**



| Туре                | Method | Format                                     | Original     | Compressed   |
|---------------------|--------|--------------------------------------------|--------------|--------------|
| Video<br>Conference | H.261  | 176x144 or<br>352x288 pix<br>@10-30 fr/sec | 2-36<br>Mbps | 64-1544 kbps |
| Full Motion         | MPEG2  | 720x480 pix<br>@30 fr/sec                  | 249<br>Mbps  | 2-6 Mbps     |
| HDTV                | MPEG2  | 1920x1080<br>@30 fr/sec                    | 1.6<br>Gbps  | 19-38 Mbps   |



#### **Trans. of Stream Information**



- Constant bit-rate
  - Signals such as digitized telephone voice produce a steady stream: e.g. 64 kbps
  - Network must support steady transfer of signal, e.g. 64 kbps circuit
- Variable bit-rate
  - Signals such as digitized video produce a stream that varies in bit rate, e.g. according to motion and detail in a scene
  - Network must support variable transfer rate of signal, e.g. packet switching or rate-smoothing with constant bit-rate circuit

### Stream Quality-of-Service (QoS) Issues



#### **Network Transmission Impairments**

- Delay: Is information delivered in timely fashion?
- Jitter: Is information delivered in sufficiently smooth fashion?
- Loss: Is information delivered without loss? If loss occurs, is delivered signal quality acceptable?
- Applications & application layer protocols developed to deal with these impairments

### **A Transmission System**

#### **Transmitter**

- Converts information into signal suitable for transmission
- Injects energy into communications medium or channel
  - Telephone converts voice into electric currenn; Modem converts bits into tones

#### Receiver

- Receives energy from medium
- Converts received signal into form suitable for delivery to user
  - Telephone converts current into voice; Modem converts tones into bits



### **Transmission Impairments**





#### **Communication Channel**

- Pair of copper wires
- Coaxial cable
- Radio
- Light in optical fiber
- Infrared

#### **Transmission Impairments**

- Signal attenuation
- Signal distortion
- Spurious noise
- Interference from other signals



# Digital Long-Distance Communications



- Regenerator (repeater) recovers original data sequence and retransmits on next segment
- Each regeneration is like the first time!
  - Can redesign so error probability is very small



#### **Twisted Pair**



- A twisted pair consists of two insulated copper wires, typically about 1mm thick; twisted together to reduce the susceptibility to interference.
- More twists per cm leads to less crosstalk and better quality over longer distance



(a) Category 3 UTP (16 MHz).

(b) Category 5 UTP (100 MHz).

#### **Twisted Pair Bit Rates**



#### Data rates of 24-gauge twisted pair

| Standard  | Data Rate   | Distance            |
|-----------|-------------|---------------------|
| T-1       | 1.544 Mbps  | 18,000 feet, 5.5 km |
| DS2       | 6.312 Mbps  | 12,000 feet, 3.7 km |
| 1/4 STS-1 | 12.960 Mbps | 4500 feet, 1.4 km   |
| 1/2 STS-1 | 25.920 Mbps | 3000 feet, 0.9 km   |
| STS-1     | 51.840 Mbps | 1000 feet, 300 m    |

- Twisted pairs can provide high bit rates at short distances
- Asymmetric Digital Subscriber Loop (ADSL)
  - High-speed Internet Access
  - Lower 3 kHz for voice
  - Upper band for data
  - 64 kbps inbound
  - 640 kbps outbound
- Much higher rates possible at shorter distances
  - Strategy for telephone companies is to bring fiber close to home & then twisted pair

#### **Ethernet LANs**





- Category 3 unshielded twisted pair (UTP): ordinary telephone wires
- Category 5 UTP: tighter twisting to improve signal quality
- Shielded twisted pair (STP): to minimize interference; costly
- 10BASE-T Ethernet
  - 10 Mbps, Baseband, Twisted pair
  - Two Cat3 pairs
  - Manchester coding, 100 meters
- 100BASE-T4 *Fast* Ethernet
  - 100 Mbps, Baseband, Twisted pair
  - Four Cat3 pairs
  - Three pairs for one direction at-a-time
  - 100/3 Mbps per pair;
  - 3B6T line code, 100 meters
- Cat5 & STP provide other options



### **Coaxial Cable**



- A good combination of high bandwidth and excellent interference immunity
  - Higher bandwidth than twisted pair
  - Cable TV distribution;
  - Long distance telephone transmission
  - Used in the original Ethernet LAN medium



### **Optical Fiber**





- Light sources generate pulses of light that are transmitted on optical fiber
  - Very long distances (>1000 km), and very high speeds (>40 Gbps/wavelength)
  - Nearly error-free (Bit-Error-Rate of 10-15)
- Profound influence on network architecture
  - Dominates long distance transmission
  - Distance less of a cost factor in communications
  - Plentiful bandwidth for new services

### **Optical Fiber Properties**



#### **Advantages**

- Very low attenuation
- Noise immunity
- Extremely high bandwidth
- Security: very difficult to tap without breaking
- No corrosion
- More compact & lighter than copper wire

#### **Disadvantages**

- New types of optical signal impairments & dispersion
  - Wavelength dependence
- Limited bend radius
  - If physical arc of cable too high, light lost or won't reflect
  - Will break
- Difficult to splice
- Mechanical vibration becomes signal noise

### **Bit Rates of Digital Transmission Systems**



| System                 | Bit Rate (Bandwidth)                     | Observations                                      |
|------------------------|------------------------------------------|---------------------------------------------------|
| Telephone twisted pair | 33.6-56 kbps                             | 4 kHz telephone channel                           |
| Ethernet twisted pair  | 10 Mbps, 100 Mbps                        | 100 meters of unshielded twisted copper wire pair |
| Cable modem            | 500 kbps-4 Mbps                          | Shared CATV return channel                        |
| ADSL twisted pair      | 64-640 kbps in, 1.536-<br>6.144 Mbps out | Coexists with analog telephone signal             |
| 2.4 GHz radio          | 2-11 Mbps                                | IEEE 802.11 wireless LAN                          |
| 28 GHz radio           | 1.5-45 Mbps                              | 5 km multipoint radio                             |
| Optical fiber          | 2.5-10 Gbps                              | 1 wavelength                                      |
| Optical fiber          | >1600 Gbps                               | Many wavelengths                                  |

### **Summary of the Lesson**



 Different digital transmission systems have various bit rate, cost, bit-error-rate, and usages.