Analysis of Algorithms

LECTURE 24

Shortest Paths III

- All-pairs shortest paths
- Matrix-multiplication algorithm
- Floyd-Warshall algorithm
- Johnson's algorithm

10/12/2010

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- - One pass of Bellman-Ford: O(V + E)

10/12/2010

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(VE + V^2 \lg V)$
- General
 - Three algorithms today.

10/12/2010

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, 1\}$..., n}, with edge-weight function $w: E \to \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths

 $\delta(i, j)$ for all $i, j \in V$.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., L\}$..., n}, with edge-weight function $w: E \to \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2E)$.
- Dense graph $(\Theta(n^2) \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!

10/12/2010

10/12/2010

Dynamic programming

Consider the $n \times n$ weighted adjacency matrix $A = (a_{ii})$, where $a_{ii} = w(i, j)$ or ∞ , and define d_{ii} = weight of a shortest path from *i* to *j* that uses at most *m* edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for m = 1, 2, ..., n - 1,

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.$$

10/12/2010

10/12/2010

10/12/2010

Proof of claim

Proof of claim Relaxation! for $k \leftarrow 1$ to n **do if** $d_{ij} > d_{ik} + a_{kj}$ **then** $d_{ij} \leftarrow d_{ik} + a_{kj}$ $\leq m-1$ edges

Proof of claim $d_{ii}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{ki} \}$ Relaxation! for $k \leftarrow 1$ to n

Note: No negative-weight cycles implies $\delta(i, j) = d_{ii}^{(n-1)} = d_{ii}^{(n)} = d_{ii}^{(n+1)} = \cdots$

10/12/2010

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} .$$

Time = $\Theta(n^3)$ using the standard algorithm.

10/12/2010

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} .$$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and ":" \rightarrow "+"?

10/12/2010

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} .$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "+"
$$\rightarrow$$
 "min" and "." \rightarrow "+"?

$$c_{ii} = \min_{k} \{a_{ik} + b_{ki}\}.$$

Thus,
$$D^{(m)} = D^{(m-1)}$$
 "×" A.

Identity matrix = I =
$$\begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} = D^0 = (d_{ij}^{(0)}).$$

11

Matrix multiplication (continued)

The (min, +) multiplication is associative, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

$$\begin{array}{ll} D^{(1)} = & D^{(0)} \cdot A = A^1 \\ D^{(2)} = & D^{(1)} \cdot A = A^2 \\ & \vdots & & \vdots \\ D^{(n-1)} = & D^{(n-2)} \cdot A = A^{n-1} \,, \end{array}$$

yielding $D^{(n-1)} = (\delta(i, j))$.

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. No better than $n \times B$ -F.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$. Compute A^2 , A^4 , ..., $A^{2\lceil \lg(n-1) \rceil}$.

$$O(\lg n)$$
 squarings

Note:
$$A^{n-1} = A^n = A^{n+1} = \cdots$$
.

Time =
$$\Theta(n^3 \lg n)$$
.

To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

10/12/2010

Ţ Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ii}^{(k)}$ = weight of a shortest path from ito *i* with intermediate vertices belonging to the set $\{1, 2, ..., k\}$.

Thus, $\delta(i, j) = c_{ii}^{(n)}$. Also, $c_{ii}^{(0)} = a_{ii}$.

10/12/2010

Floyd-Warshall recurrence

$$c_{ij}^{(k)} = \min \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$$

intermediate vertices in $\{1, 2, ..., k-1\}$

Pseudocode for Floyd-Warshall

$$\begin{aligned} & \textbf{for } k \leftarrow 1 \textbf{ to } n \\ & \textbf{do for } i \leftarrow 1 \textbf{ to } n \\ & \textbf{do for } j \leftarrow 1 \textbf{ to } n \\ & \textbf{do if } c_{ij} > c_{ik} + c_{kj} \\ & \textbf{then } c_{ij} \leftarrow c_{ik} + c_{kj} \end{aligned} \right\} \textit{relaxation}$$

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.

10/12/2010

16

Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\lor, \land) instead of (min, +):

$$t_{ii}^{(k)} = t_{ii}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)}).$$

Time = $\Theta(n^3)$.

10/12/2010

Theorem. Given a function $h: V \to \mathbb{R}$, *reweight* each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

10/12/2010

Theorem. Given a function $h: V \to \mathbb{R}$, *reweight* each edge $(u, v) \in E$ by $w_h(u, v) = w(u, v) + h(u) - h(v)$. Then, for any two vertices, all paths between them are reweighted by the same amount.

Proof. Let $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ be a path in G. We

$$\begin{split} w_h(p) &= \sum_{\substack{i=1\\k-1}}^{k-1} w_h(v_i, v_{i+1}) \\ &= \sum_{\substack{i=1\\k-1}}^{k} \left(w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}) \right) \\ &= \sum_{\substack{i=1\\k-1}}^{k} w(v_i, v_{i+1}) + h(v_1) - h(v_k) & \textbf{Same} \\ &= w(p) + h(v_1) - h(v_k) & \textbf{Import} \end{split}$$

10/12/2010

Corollary. $\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$.

10/12/2010 21

Shortest paths in reweighted graphs

Corollary. $\delta_h(u, v) = \delta(u, v) + h(u) - h(v)$.

IDEA: Find a function $h: V \to \mathbb{R}$ such that $w_h(u, v) \ge 0$ for all $(u, v) \in E$. Then, run Dijkstra's algorithm from each vertex on the reweighted graph.

NOTE: $w_h(u, v) \ge 0$ iff $h(v) - h(u) \le w(u, v)$.

10/12/2010 22

19

Ţ Johnson's algorithm

- 1. Find a function $h: V \to \mathbb{R}$ such that $w_h(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints $h(v) h(u) \le w(u, v)$, or determine that a negative-weight cycle exists.
 - Time = O(VE).
- 2. Run Dijkstra's algorithm using w_h from each vertex $u \in V$ to compute $\delta_h(u, v)$ for all $v \in V$.
 - Time = $O(VE + V^2 \lg V)$.
- 3. For each $(u, v) \in V \times V$, compute $\delta(u, v) = \delta_h(u, v) h(u) + h(v) .$ Time $= O(V^2)$.

Total time = $O(VE + V^2 \lg V)$.

23