Dr. Z. Radovilsky BAN 673 Time Series Analytics: Summary of Process Steps

Step	Name	Main Decisions	Comments
1	Define Goal	 Descriptive and/or predictive goal Forecasting horizon (long-term vs. short-term). Forecasting usage (stakeholders and periodic adjustments). Forecast expertise (inhouse or outsourcing; how many and how often to forecast; software for time series forecasting). 	 Forecasting is a combination of science and art. Popular software in business time series forecasting: Excel (for simple time series forecasting), R (for simple and advanced forecasting methods), Python (for simple and advanced forecasting methods), end-user general statistical software (e.g., JMP, Stata, SPSS, Minitab), professional forecasting software in enterprise resource planning (ERP) systems (e.g., Oracle, SAP, Microsoft, etc.)
2	Get Data	 Data quality Temporal frequency Series granularity Domain expertise 	 In business, typical frequencies of historical data are monthly, quarterly, daily, weekly, and yearly. Minimum data requirements in time series analytics: at least 36 monthly periods (3 years) for monthly data; at least 16 quarterly periods (4 years) for quarterly data; at least 104 weekly periods (2 years) of weekly data. Sometimes, it is very useful to aggregate the data and then forecast it to achieve better accuracy results.
3	Explore & Visualize Series	 Summary statistics of historical time series (mean, median, standard deviation, etc.). Time series patterns (components): Level (Stationary), Trend, Seasonality, and Noise (Randomness). Additive vs. multiplicative components (specifically, for seasonality). Autocorrelation in various lags. Visualize series with a data plot to check for data series patterns (components). 	 Not all time series have trend and/or seasonality, but all contain level and noise (randomness). Significant autocorrelation coefficients: lag 1 > trend; lag 4 -> seasonality in quarterly data; lag 12 -> seasonality in monthly data; autocorrelation coefficients decline rapidly to being insignificant (0) after 2nd or 3rd lags -> level in time series data. To remove trend and/or seasonality from time series apply differencing method. For data predictability evaluation: Approach 1 -> hypothesis testing of the autoregression coefficient in AR(1) model, Ho: β = 1. If Ho is rejected (p-value is <= 0.05), this time series is predictable, otherwise – it is random walk; Approach 2 -> consider autocorrelation coefficients for first differenced data. If the balk

		Evaluate data predictability (time series is 'random walk' -> forecasting methods other than naïve forecast may not be useful; time series is not 'random walk' -> various forecasting methods may be used)	portion of them is random, specifically in lags 1-4 and seasonality lags, this is random walk; otherwise – time series is predictable.
4	Pre-Process Data	Detect and clean potential issues in time series data: outliers, missing values, unequal spacing, irrelevant periods, etc.	 Apply domain expertise to remove or keep outliers in time series historical data. Utilize a standard imputation approach to replace missing values (similar to Data Mining/Machine Learning imputation). If unequal spacing is expected in a data set (e.g., in daily stock market data), consider using the data frequency of 1. Remove records with irrelevant periods.
5	Partition Time Series	 Training partition (period) is used for model development. Validation (test) partition (period) is used for model testing. 	 Nonrandom selection of partition period. Early period in historical data -> training partition with 70-80% of historical data. Later period in historical data -> validation partition with 20-30% of historical data. The smaller the time series, the less data will go into validation period. Recombine partitions to the entire data set for the final forecasting model development and forecasting into the future. If data patterns in the validation period are significantly different from those in the training period, the data partitioning may not be useful -> apply the entire data set for model development and forecasting.
6	Apply Forecasting Method(s)	 Model-driven methods (e.g., linear/non-linear regression, autoregressive models, ARIMA) Data-driven methods (e.g., naïve and seasonal naïve trailing and weighted moving average, simple and advanced exponential smoothing). Two-level forecasting (e.g., Level 1 -> regression model with trend and seasonality; Level 2 -> simple 	 Always select several alternative models (at least 2-3) for development in training period and performance comparison in the validation period. Examples of alternative models for time series with level component only: naïve, trailing MA, simple exponential smoothing (SES), ARIMA, and auto ARIMA. Examples of alternative models for times series with level and trend components only: naïve, regression with linear/nonlinear trend, Holt's model, AR, non-seasonal ARIMA, auto ARIMA, two-level, and ensembles.

		exponential smoothing for regression errors; Two-level forecast -> combination of Level 1 and 2 forecasts). • Ensemble methods (resulting forecast is the average of several forecasting methods in respective periods; can be weighted average with specific forecast's weight proportional method performance). • Additional methods	 Examples of alternative models for times series with level and seasonality components only: seasonal naïve, regression with seasonality, Holt-Winter's, AR, seasonal ARIMA, auto ARIMA, two-level, and ensembles. Examples of alternative methods for times series with level, trend, and seasonality components: naïve, seasonal naïve, regression with linear/nonlinear trend and seasonality, Holt-Winter's, AR, trend and seasonal ARIMA, auto ARIMA, two-level, and ensembles. Develop each model using training partition (period) and test it in validation partition (period). For the final forecast into the future, use the entire data set to develop the model or several alternative models. For additional time series methods consider Hyndman, R.J. & Athanasopoulos, G. Forecasting: Principles and Practice, 2nd Ed., https://otexts.com/fpp2/.
7	Evaluate & Compare Performance	 Common accuracy performance measures (ME, RMSE, MAE, MPE, MAPE, MASE, ACF1, Theil's U). Used to select the best model for forecasting. Prediction (confidence) intervals to identify forecast range in the forecasting period. 	 The lower the value of each accuracy measure, the more accurate the associated model. Usually compare performance measures in validation period and/or entire data set. MAPE and RMSE should be considered as the preferred performance measures for model selection, with MAPE being of higher importance than RMSE in business time series forecasting. Typical prediction intervals are based on 95% confidence level probability (in R, default to 80% and 95% confidence level).
8	Implement Forecast/ System	 Incorporate forecast into the existing enterprise IT system. Create and maintain IT support system. Periodic review and reevaluation of forecast. 	 As new historical data becomes available, consider reevaluating the forecasting model. The reevaluation interval should be approximately every 3-6 months (from one quarter to semi-annual), and should include steps 2-8 of the time series analytics process.