Name: Tan Ze Xin Dylan Student ID: 1004385

Question 1

Without knowing the actual values of any nodes, X_1 and X_6 are **independent** of each other.

If we are given the values of nodes X_5 and X_{10} , using Bayes' Ball algorithm, since X_5 is closed, X_1 and X_6 are still **independent** of each other.

Question 2

Nodes X_1 and X_6 are at the ends and thus, they only have 2-1 = 1 effective parameter. Nodes X_9 depend on X_6 , X_7 and X_8 , therefore 2 x 2 x 2 x (2-1) = 8 effective parameters. The rest of the nodes have 2 x (2-1) = 2 effective parameters.

Node	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	X ₁₀	X ₁₁
No. of effective parameters	1	2	2	2	2	1	2	2	8	2	2

The total number of effective parameters needed for the Bayesian Network is:

$$1 + 2 + 2 + 2 + 2 + 1 + 2 + 2 + 8 + 2 + 2 = 26$$
 effective parameters.

Given that node X_3 , X_8 and X_9 can take 5 different values and all other nodes can only take 4 different values:

Nodes X_1 and X_6 are at the ends and thus, they only have 4-1 = 3 effective parameters.

Nodes X_3 and X_8 have 4 x (5-1) = 16 effective parameters.

Nodes X_4 and X_{10} have 5 x (4-1) = 15 effective parameters.

Nodes X_9 depend on X_6 , X_7 and X_8 , therefore 4 x 4 x 5 x (5-1) = 320 effective parameters.

The rest of the nodes have $4 \times (4-1) = 12$ effective parameters.

Node	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉	X ₁₀	X ₁₁
No. of effective parameters	3	12	16	15	12	3	12	16	320	15	12

The total number of effective parameters needed for the Bayesian Network is: 3 + 12 + 16 + 15 + 12 + 3 + 12 + 16 + 320 + 15 + 12 = 436 effective parameters.

Question 3

(a)

From the graph, given X_4 , nodes X_1 , X_2 , X_3 and X_5 , X_6 , X_7 , X_8 , X_9 , X_{10} , X_{11} are conditionally independent of each other, thus:

$$P(X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11} \mid X_1, X_2, X_3, X_4) = P(X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11} \mid X_4)$$

This means that:

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11})$$

$$= P(X_1, X_2, X_3, X_4) P(X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11} | X_1, X_2, X_3, X_4)$$

=
$$P(X_1, X_2, X_3, X_4) P(X_5, X_6, X_7, X_8, X_9, X_{10}, X_{11} | X_4)$$

This also means that:

 $P(X_3, X_4)$

$$= \sum_{X_{1}, X_{2}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}, X_{11}} P(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}, X_{11})$$

$$= \sum_{X_{1}, X_{2}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}, X_{11}} P(X_{1}, X_{2}, X_{3}, X_{4}) P(X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}, X_{11} \mid X_{4})$$

$$= \sum_{X_{1}, X_{2}} P(X_{1}, X_{2}, X_{3}, X_{4}) \sum_{X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}, X_{11}} P(X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, X_{10}, X_{11} \mid X_{4})$$

$$= \sum_{X_1, X_2} P(X_1, X_2, X_3, X_4)$$

$$= \sum_{X_1, X_2} P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_2) P(X_4 \mid X_3)$$

$$= \sum_{X_{2}} P(X_{3} \mid X_{2}) P(X_{4} \mid X_{3})$$

Therefore,

$$P(X_3 = 1 | X_4 = 2)$$

$$= \frac{P(X_3 = 1, X_4 = 2)}{\sum_{i = \{1, 2\}} P(X_3 = i, X_4 = 2)}$$

$$= \frac{\sum_{X_2} P(X_3 = 1 | X_2) P(X_4 = 2 | X_3 = 1)}{\sum_{i = \{1, 2\}} P(X_3 = i, X_4 = 2)}$$

$$= \frac{\sum_{i = \{1, 2\}} P(X_3 = i, X_4 = 2)}{(0.3 + 0.3) \times 0.9 + (0.7 + 0.7) \times 0.5}$$

$$= 0.435$$

Therefore, the conditional probability of $P(X_3 = 1 | X_4 = 2)$ is **0.435.**

= 0.438

If we look closer at the probability tables of X_3 and X_{10} , their values are the same regardless of the given values. Therefore, we can infer that X_3 is independent of X_2 and X_{10} is independent of X_9 . Since this is so, value of X_5 will not depend on the given values of X_1 , X_2 and X_{11} such that:

$$\begin{split} &P(X_5=2\mid X_2=1,\,X_{11}=2,\,X_1=1)\\ &=P(X_5=2)\\ &=P(X_5=2\mid X_4=1)\,P(X_4=1)+P(X_5=2\mid X_4=2)\,P(X_4=2)\\ &P(X_3=1)=0.3\\ &P(X_3=2)=0.7\\ \\ &P(X_4=1)\\ &=P(X_4=1\mid X_3=1)\,P(X_3=1)+P(X_4=1\mid X_3=2)\,P(X_3=2)\\ &=0.1\,x\,0.3+\,0.5\,x\,0.7\\ &=0.38\\ \\ &P(X_4=2)\\ &=P(X_4=2\mid X_3=1)\,P(X_3=1)+P(X_4=2\mid X_3=2)\,P(X_3=2)\\ &=0.9\,x\,0.3+\,0.5\,x\,0.7\\ &=0.62\\ \\ ∴,\\ \\ &P(X_5=2\mid X_4=1)\,P(X_4=1)+P(X_5=2\mid X_4=2)\,P(X_4=2)\\ &=0.5\,x\,0.38+0.4\,x\,0.62 \end{split}$$

Therefore, the conditional probability of $P(X_5=2 \mid X_2=1, X_{11}=2, X_1=1)$ is **0.438**.

Question 4

Using Maximum Likelihood estimation to estimate the probability tables for the nodes,

	X ₇				
X_5	1	2			
1	1/4	3/4			
2	3/4	1/4			

			X ₉		
X ₆	X ₇	X ₈	1	2	
1	1	1	1/3	2/3	
1	1	2	1	0	
1	2	1	1	0	
1	2	2	1/2	1/2	
2	1	1	1	0	
2	1	2	0	1	
2	2	1	1	0	
2	2	2	0	1	