高等数学 B (II) 2023-2024 春季学期期末试题

考试时间: 2024年6月16日

一、(10分)求幂级数

$$\sum_{n=1}^{\infty} \frac{x^{n^3}}{10^n}$$

的收敛域。

- 二、 $(10 \, \mathcal{G})$ 在 (-1,1) 上展开函数 $\arctan x + \frac{1}{2} \ln \frac{1+x}{1-x}$ 为幂级数。
- 三、(10 分) 求瑕积分 $\int_0^1 \sqrt{\frac{x^5}{1-x}} dx$ 的值。(本题可用 B 函数和 Γ 函数。)

四、(10分)判别级数

$$\sum_{n=1}^{\infty} \frac{\sin(2n)}{n + \frac{1}{n}} \left(1 + \frac{1}{n}\right)^n$$

的敛散性。

五、(10 分)设E为实数。

- (1) (5 分) 求出所有的实数 E 使得 $\int_0^{+\infty} \sum_{n=0}^{\infty} (\frac{(Ex)^n}{n!} e^{-x}) dx$ 收敛。
- (2) (5 分)求出所有的实数 E 使得 $\sum_{n=0}^{\infty}\int_0^{+\infty}\left(\frac{(Ex)^n}{n!}e^{-x}\right)\mathrm{d}x$ 收敛。(本小题可用 Γ 函数。)

六、(10 分) 对于每个 $x \in [0,1], n = 1, 2, \cdots$ 定义

$$f_1(x) = \int_0^x \sqrt{1+t^4} \, dt, \qquad f_{n+1}(x) = \int_0^x f_n(t) \, dt.$$

证明 $\sum_{n=1}^{\infty} f_n(x)$ 在 [0,1] 上一致收敛。

七、(15分)设b是实数。

- (1) (5 分) 证明: 含参变量 b 的无穷积分 $\int_0^{+\infty} e^{-x^2} x \cos(2bx) dx$ 在 $(-\infty, +\infty)$ 上一致收敛。
- (2) (10 分) 证明

$$\int_0^{+\infty} e^{-x^2} \sin(2bx) \, dx = e^{-b^2} \int_0^b e^{t^2} \, dt.$$

八、(15分)

- (1) (10 分) 设 $f: \mathbb{R} \to \mathbb{R}$ 是周期为 2π 的函数, f(x) 在 $(-\pi, \pi]$ 上等于 e^x . 求出 f(x) 的傅里叶级数, 并且求出 f(x) 的傅里叶级数在 $x = \pi$ 处的和。
- (2) (5 分) 求出级数 $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ 的和。
- 九、 (10 分) 设级数 $\sum_{n=0}^{\infty} a_n$ 收敛,每项 $a_n > 0$,T 是序列 $\{a_n\}$ 中最大项。对于每个实数 x > 0,定义 L(x) 是序列 $\{a_n\}$ 中大于 x 的项的个数。
 - (1) (2 分) 证明 0 是 L(x) 的瑕点。
 - (2) (8 分) 证明: 瑕积分 $\int_0^T L(x) dx$ 收敛, 并且

$$\int_0^T L(x) \, \mathrm{d}x = \sum_{n=0}^\infty a_n.$$