Wspomaganie decyzji w warunkach ryzyka Projekt

Paweł Szynkiewicz, Przemysław Piórkowski

1. Zaproponować dwukryterialny model kosztu i ryzyka ze średnią jako miarą kosztu i odchyleniem przeciętnym jako miarą ryzyka.

Zbiory:

M - Zbiór maszyn.

P - Zbiór części.

Parametry:

S - Liczba scenariuszy.

 $t_{\it mp}~$ - czasy produkcji p-tej części przez m-tą maszynę w minutach. $\forall~m{\in}M~,~\forall~p{\in}P$

 d_p - zapotrzebowanie na p-tą część.

 $\forall p \in P$

 c_{sm} - koszt jednej godziny pracy m-tej maszyny w s-ym scenariuszu. $\forall\,s\!\in\!\{1..S\},\;\forall\,m\!\in\!M$

 p_s - prawdopodobieństwo s-ego scenariusza.

 $\forall s \in \{1..S\}$

l - maksymalny miesięczny czas pracy jednej maszyny w godzinach.

 $l^a \;$ - maksymalny czas na jaki można wydzierżawić jedną maszyne w miesiącu.

r - dodatkowa opłata od każdej godziny przy wydzierżawieniu.

(modelu z ustalonym progiem maksymalnej miary kosztu)

 $\mu^{\it max}$ - maksymalna dopuszcalna miara kosztu.

$$\mu^{u} > 0$$

(model ze średnią ważoną miary kosztu i rysyka)

 λ - współczynnik awarsji do ryzyka.

$$\lambda > 0$$

Zmienne:

 X_{mp} - czasy pracy m-tej maszyny nad p-tą częścią na podstawowych warunkach w godzinach (wartość całkowitoliczbowa).

$$\forall m \in M', \forall p \in P \ x_{mn} \ge 0$$

 χ^a_{mp} - czasy pracy m-tej maszyny nad p-tą częścią przy dodatkowym wydzierżawieniu w godzinach (wartość całkowitoliczbowa).

$$\forall m \in M, \forall p \in P \ x_{mp}^a \ge 0$$

Funkcja celu:

FC.1. minimalizacja miary kosztu i miary ryzyka (semiodcylenie przeciętne) pomnożonego przez współczynnik awersji do ryzyka.

$$f = \min\left(\mu + \lambda \frac{\overline{\delta}}{2}\right)$$

FC.2. minimalizacja miary ryzyka (odcylenie przeciętne) przy ustalonej maksymalnej wartości miary kosztu.

$$f = min(\bar{\delta})$$

Ograniczenia:

Ogr.1. Spełnienie zapotrzebowania

$$\left[\sum_{m}^{M} \frac{\left(x_{mp} + x_{mp}^{a}\right)}{\left(t_{mp} / 60\right)}\right] \leq d_{p} , \forall p \in P$$

Ogr.2. Ograniczenie standardowego czasu pracy maszyn

$$\left(\sum_{p}^{P} x_{mp}\right) \le l$$
 , $\forall p \in P$

Ogr.3. Ograniczenie dodatkowego czasu pracy maszyn

$$\left(\sum_{p}^{P} x_{mp}\right) \le l^{a}$$
 , $\forall p \in P$

Ogr.4. Koszt pracy maszyn dla każdego ze scenariuszy

$$z_{s} = \sum_{m}^{M} \left[\sum_{p}^{P} (x_{mp} * c_{sm}) + \sum_{p}^{P} x_{mp}^{a} * (s_{sm} + r) \right], \quad \forall s \in \{1...S\}$$

Ogr.5. Ograniczenie kosztu pracy maszyn (tylko w modelu z ustalonym progiem maksymalnej miary kosztu)

$$\mu \leq \mu^{\max}$$

Ogr.6. Średnia z kosztów scenariuszy

$$\mu = \sum_{1}^{S} \left(z_{s} * p_{s} \right)$$

Ogr.7. Odchylenie przeciętne z kosztów scenariuszy

$$\bar{\delta} = \sum_{1}^{s} (|\mu - z_{s}| * p_{s})$$

Zagadnienie optymalnego rozkładu zadań produkcyjnych zaostało zamodelowane jako problem zadania programowania całkowitoliczbowego. Zakładamy że każda z maszyn może zostać przydzielona do produkcji części na określoną liczbę godzin w miesiącu (może się okazać, że maszyna nie zostanie wykorzystana w 100%).

W modelu rozpatrywano dwie różne funkcjieskalaryzujące; suma ważona miar kosztu i rysyka (FC.1) i minimalizacji ryzyka przy ustalonej maksymalnej wartości miary kosztu (FC.2). W przypadku FC.1 ograniecznie Ogr.5 nie jest brane pod uwagę.

Ograniczenie Ogr.1 zapewnia taki przydział maszyn do produkcji części, że zapotrzebowanie na części zostanie spełnione. Ogr.2 i Ogr.3 nie pozwalają przekroczyć limitów czasu pracy maszyn w miesiącu. Ogr.4 służy do wyliczenia kosztów pracy maszyn dla poszczególnych scenariuszy. Ogr.5 jest wykorzystywane tylko w FC.2 i wymusza takie rozwiązanie , że nie zostanie przekroczona pewna ustalona wartość miary kosztu. W Ogr.6 i Ogr.7 wyliczane są miary kosztu i ryzyka.

W ograniczeiu Ogr.7 występuje moduł. Aby zachować liniowość zadania w modelu stosuje się dodatkowe zmienne i ograniczenia:

$$y_s$$
 - zmienna pomocnicza. $\forall s \in \{1..S\}$ $y_s \ge 0$

Ogr.7.1. koszty scenariuszy (mniejsze od średniej)
$$(\mu - z_s) \le y_s$$
, $\forall s \in \{1..S\}$

Ogr.7.2. koszty scenariuszy (większe od średniej)
$$(\mu - z_s) \ge -y_s$$
 , $\forall s \in \{1..S\}$

Ogr.7.3. Odchylenie przeciętne z kosztów scenariuszy

$$\overline{\delta} = \sum_{1}^{s} (y_s * p_s)$$

2. Wyznaczyć obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko.

Rysunek 1: Zbiór rozwiązań efektywnych

Rysunek 1. przedstawia zbiór rozwiazań efektwynwy otrzymanych dla funkcji skalaryzującej FC.1 (czerwone kółka) i FC.2 (niebieskie gwazdki). W przypadku FC.1, czyli średniej ważonej wyznaczano rozwiązania dla różncych wartości λ (współ. awersji do ryzyka). Wykres dla FC.2, czyli minimalizacji ryzyka przy maksymalnej wartości kosztu, otrzymano rozwiazując problem dla różnych wartości progu μ^{max} .

Ponieważ jest to zadanie całkowitoliczbowe, a zbiór punktów dopuszczalnych w dziedzinie kryteriów wydaje się być niewypukły, model wykorzystujacy średnią ważoną (FC.1) nie znalazł większości rozwiązań efektwynych. Jedyne znalezione rozwiązania to punkty ze zbioru roz. dopuszczalnych, które leżą na stycznej do zbioru, tak że żaden punkt dopuszczalny nie leży pod tą styczną. Stasując minimalizację ryzyka przy określinej maksyumalnej wartości kosztu otrzymano znacznie więcej rozwiązań efektwynych.

Tabelka ze znalezionymi rozwiązaniami na końcu sprawozdania.

3. Wskazać rozwiązania efektywne minimalnego ryzyka i minimalnego kosztu. Jakie odpowiadają im wartości w przestrzeni ryzyko-koszt?

Każdemu rozwiązaniu w przestrzeniu ryzyko-koszt $(\bar{\delta},\lambda)$ odpowiada wektor kosztów (z_1, z_2, z_3, z_4) którego kolejne elementy są równe kosztom poniesionym w wypadku spełnienia się i-tego scenariusza.

- Rozwiązaniu efektywnemu minimalnego kosztu wektor kosztów (z_1, z_2, z_3, z_4) wynosi (8100, 12800, 10350, 15650) i odpowiada mu punkt (2755, 11755) w przestrzeni ryzyko-koszt
- Rozwiązaniu efektywnemu minimalnego ryzyka wektor kosztów (z_1, z_2, z_3, z_4) wynosi (12650, 17910, 15240, 16050) i odpowiada mu punkt (1554, 15240) w przestrzeni ryzyko-koszt

4. Wybrać trzy dowolne rozwiązania efektywne. Sprawdzić czy zachodzi pomiędzy nimi relacja dominacji stochastycznej pierwszego i drugiego rzędu. Wyniki skomentować odnieść do ogólnego przypadku.

Wybieramy trzy rozwiązania efektwyne:

• Rozwiązanie efektywne minimalnego kosztu:

$$Z^{1} = (8100, 12800, 10350, 15650)$$

• Rozwiązanie efektywne minimalnego ryzyka:

$$Z^2 = (12650, 17910, 15240, 16050)$$

• Rozwiązanie efektywne przy współczynnik awersji do ryzyka $\lambda = 2$ (FC.1), lub progu maksymalnym kosztów $\mu^{max} = 12055$ (FC.2):

$$Z^3 = (8800, 13450, 10950, 15100)$$

Ponieważ rozważany problem jest zadaniem minimalizacji liczona będzie dystrybuanta $F_{-Z}^{(1)}$ dla zmiennej loswej -Z, gdzie Z to zmienna losowa kosztu. Dla tego przypadku zachodzi równoważność $-Z' \geq_{FSD} -Z'' \Leftrightarrow F_{-Z'}^{(1)} \leq F_{-Z''}^{(1)}$ i odpowiednio $-Z' \geq_{SSD} -Z'' \Leftrightarrow F_{-Z'}^{(2)} \leq F_{-Z''}^{(2)}$

Obliczamy dystrybuanty pierwszego rzędu przy prawdopodobieństwach scenariuszy (0.3, 0.2, 0.2, 0.3):

$$F_{-Z^{1}}^{(1)} = \begin{cases} 0 & dla \ z < -15650 \\ 0.3 & dla \ -15650 \le z < -12800 \\ 0.5 & dla \ -12800 \le z < -10350 \\ 0.7 & dla \ -10350 \le z < -8100 \\ 1 & dla \ z > -8100 \end{cases}$$

$$F_{-Z^{2}}^{(1)} = \begin{cases} 0 & dla \ z < -17910 \\ 0.3 & dla \ -17910 \le z < -16050 \\ 0.5 & dla \ -16050 \le z < -15240 \\ 0.8 & dla \ -15240 \le z < -12650 \\ 1 & dla \ z > -12650 \end{cases}$$

$$F_{-z^{3}}^{(1)} = \begin{cases} 0 & dla \ z < -15100 \\ 0.3 & dla \ -15100 \le z < -13450 \\ 0.5 & dla \ -13450 \le z < -10950 \\ 0.7 & dla \ -10950 \le z < -8800 \\ 1 & dla \ z > -8800 \end{cases}$$

Dystrybuanta pierwszego rzedu dla punktow -Z¹, -Z², -Z³

Rysunek 2: Dystrybuanty pierwszego rzędu

Na podstawie wykresu można stwierdzić, że między punktami zachodzą następujące relacje dominacji stochastycznej:

 $-Z^1 \ge_{FSD} -Z^2$ i $-Z^3 \ge_{FSD} -Z^2$. Racjonalny decydent preferuje rozwiązania Z^1 i Z^3 nad rozwiązaniem Z^3 .

Obliczamy dystrybuanty drugiego rzędu dla zmiennej -Z:

$$F_{-Z^{1}}^{(2)} = \begin{cases} 0 & dla \ z < -15650 \\ 0.3x + 4695 & dla -15650 \le z < -12800 \\ 0.5x + 7255 & dla -12800 \le z < -10350 \\ 0.7x + 9325 & dla -10350 \le z < -8100 \\ x + 11755 & dla \ z > -8100 \end{cases}$$

$$F_{-Z^{2}}^{(2)} = \begin{pmatrix} 0 & dla \ z < -17910 \\ 0.3x + 3582 & dla -17910 \le z < -16050 \\ 0.5x + 8397 & dla -16050 \le z < -15240 \\ 0.8x + 11447 & dla -15240 \le z < -12650 \\ x + 15242 & dla \ z > -12650 \end{pmatrix}$$

$$F_{-z^{3}}^{(2)} = \begin{cases} 0 & dla \ z < -15100 \\ 0.3x + 2640 & dla -15100 \le z < -13450 \\ 0.5x + 4830 & dla -13450 \le z < -10950 \\ 0.7x + 8165 & dla -10950 \le z < -8800 \\ x + 13945 & dla \ z > -8800 \end{cases}$$

Wyliczone dystrybuanty drugiego rzedu naniesiono na wykres:

Dystrybuanta drugiego rzedu dla punktow $-Z^1$, $-Z^2$, $-Z^3$

Rysunek 3: Dystrybuanta drugiego rzędu

Podobnie jak dla FSD, zachodzą relacje $-Z^1 \ge_{SSD} - Z^2$ i $-Z^3 \ge_{SSD} - Z^2$. Relacja stochastycznej dominacji drugiego rzędu nazwana jest relacją "mniejszego ryzyka". Mimo iż rozwiazanie Z^3 wiąże się z najmniejszą miarą ryzyka, to koszty w przypadku każdego ze scenariuszy są na tyle wysokie, że żaden racjonalny decydent z awersją do ryzyka, nie wybierze tego rozwiązania.

Dodatek A - tabela wyników rozwiazań efektywnych

Próg kosztu	Koszt	Ryzyko	12371.5000	12371.5000	2185.5000	12802.5000	12802.5000	1889.5000
11755.0000	11755.0000	2755.0000	12372.5000	12372.5000	2175.5000	12835.0000	12835.0000	1880.0000
11784.5000	11784.5000	2718.5000	12405.0000	12405.0000	2166.0000	12837.0000	12837.0000	1879.0000
11814.0000	11814.0000	2682.0000	12407.0000	12407.0000	2165.0000	12855.0000	12848.0000	1873.8000
11855.0000	11843.5000	2645.5000	12408.0000	12408.0000	2155.0000	12855.0000	12838.0000	1873.8000
11873.0000	11873.0000	2609.0000	12440.5000	12440.5000	2145.5000	12863.5000	12863.5000	1872.5000
11902.5000	11902.5000	2572.5000	12442.5000	12442.5000	2144.5000	12865.5000	12865.5000	1871.5000
11955.0000	11952.0000	2536.0000	12455.0000	12443.5000	2134.5000	12867.5000	12867.5000	1870.5000
11955.0000	11932.0000	2536.0000	12476.0000	12476.0000	2125.0000	12870.5000	12870.5000	1869.3000
11961.5000	11961.5000	2499.5000	12478.0000	12478.0000	2124.0000	12892.0000	12892.0000	1865.0000
11991.0000	11991.0000	2463.0000	12479.0000	12479.0000	2114.0000	12894.0000	12894.0000	1864.0000
12020.5000	12020.5000	2426.5000	12480.0000	12480.0000	2104.0000	12896.0000	12896.0000	1863.0000
12055.0000	12050.0000	2390.0000	12512.5000	12512.5000	2094.5000	12898.0000	12898.0000	1862.0000
12082.5000	12082.5000	2380.5000	12514.5000	12514.5000	2093.5000	12899.0000	12899.0000	1856.4000
12084.5000	12084.5000	2379.5000	12515.5000	12515.5000	2083.5000	12924.5000	12924.5000	1855.5000
12085.5000	12085.5000	2369.5000	12548.0000	12548.0000	2074.0000	12926.5000	12926.5000	1854.5000
12118.0000	12118.0000	2360.0000	12550.0000	12550.0000	2073.0000	12927.5000	12927.5000	1844.5000
12120.0000	12120.0000	2359.0000	12555.0000	12551.0000	2063.0000	12928.5000	12928.5000	1841.1000
12121.0000	12121.0000	2349.0000	12583.5000	12583.5000	2053.5000	12955.0000	12954.0000	1838.0000
12155.0000	12153.5000	2339.5000	12585.5000	12585.5000	2052.5000	12956.0000	12956.0000	1837.0000
12155.5000	12155.5000	2338.5000	12586.5000	12586.5000	2042.5000	12958.0000	12958.0000	1836.0000
12156.5000	12156.5000	2328.5000	12587.5000	12587.5000	2032.5000	12982.5000	12982.5000	1830.5000
12157.5000	12157.5000	2318.5000	12620.0000	12620.0000	2023.0000	12984.5000	12984.5000	1829.5000
12190.0000	12190.0000	2309.0000	12622.0000	12622.0000	2022.0000	12986.5000	12986.5000	1828.5000
12192.0000	12192.0000	2308.0000	12655.0000	12633.0000	2012.0000	12988.5000	12988.5000	1827.5000
12193.0000	12193.0000	2298.0000	12655.0000	12623.0000	2012.0000	12989.5000	12989.5000	1823.7000
12225.5000	12225.5000	2288.5000	12655.5000	12655.5000	2002.5000	13015.0000	13015.0000	1821.0000
12227.5000	12227.5000	2287.5000	12657.5000	12657.5000	2001.5000	13017.0000	13017.0000	1820.0000
12255.0000	12248.5000	2277.5000	12658.5000	12658.5000	1991.5000	13018.0000	13018.0000	1810.8000
12255.0000	12228.5000	2277.5000	12691.0000	12691.0000	1982.0000	13049.5000	13049.5000	1810.5000
12261.0000	12261.0000	2268.0000	12693.0000	12693.0000	1981.0000	13050.5000	13050.5000	1806.3000
12263.0000	12263.0000	2267.0000	12694.0000	12694.0000	1971.0000	13055.0000	13054.5000	1805.7000
12264.0000	12264.0000	2257.0000	12695.0000	12695.0000	1961.0000	13073.0000	13073.0000	1796.0000
12265.0000	12265.0000	2247.0000	12727.5000	12727.5000	1951.5000	13075.0000	13075.0000	1795.0000
12297.5000	12297.5000	2237.5000	12729.5000	12729.5000	1950.5000	13077.0000	13077.0000	1794.0000
12299.5000	12299.5000	2236.5000	12755.0000	12740.5000	1940.5000	13079.0000	13079.0000	1793.4000
12300.5000	12300.5000	2226.5000	12755.0000	12730.5000	1940.5000	13090.0000	13090.0000	1791.0000
12333.0000	12333.0000	2217.0000	12763.0000	12763.0000	1931.0000	13125.5000	13125.5000	1786.5000
12335.0000	12335.0000	2216.0000	12765.0000	12765.0000	1930.0000	13127.5000	13127.5000	1785.5000
12355.0000	12346.0000	2206.0000	12766.0000	12766.0000	1920.0000	13129.5000	13129.5000	1784.7000
12355.0000	12336.0000	2206.0000	12798.5000	12798.5000	1910.5000	13155.0000	13148.5000	1778.1000
12368.5000	12368.5000	2196.5000	12800.5000	12800.5000	1909.5000	13155.0000	13138.5000	1778.1000
12370.5000	12370.5000	2195.5000	12801.5000	12801.5000	1899.5000	13176.0000	13176.0000	1778.0000

13178.0000	13178.0000	1777.0000	13543.5000	13543.5000	1702.5000	13910.0000	13910.0000	1632.0000
13180.0000	13180.0000	1776.0000	13545.5000	13545.5000	1701.5000	13912.0000	13912.0000	1631.0000
13191.0000	13191.0000	1773.6000	13547.5000	13547.5000	1700.5000	13955.0000	13949.0000	1623.0000
13222.5000	13222.5000	1771.5000	13555.0000	13549.5000	1699.5000	13955.0000	13919.0000	1623.0000
13224.5000	13224.5000	1770.5000	13560.5000	13560.5000	1695.3000	13962.5000	13962.5000	1622.5000
13226.5000	13226.5000	1769.5000	13596.0000	13596.0000	1693.0000	13971.5000	13971.5000	1614.9000
13228.5000	13228.5000	1768.5000	13598.0000	13598.0000	1692.0000	13995.5000	13995.5000	1614.3000
13230.5000	13230.5000	1767.5000	13600.0000	13600.0000	1691.0000	14013.0000	14013.0000	1614.0000
13255.0000	13239.5000	1760.7000	13655.0000	13649.0000	1682.4000	14014.0000	14014.0000	1609.0000
13279.0000	13279.0000	1760.0000	13655.0000	13609.0000	1682.4000	14016.0000	14016.0000	1608.0000
13281.0000	13281.0000	1759.0000	13661.5000	13661.5000	1677.9000	14018.0000	14018.0000	1607.0000
13288.0000	13288.0000	1751.0000	13695.0000	13695.0000	1677.0000	14020.0000	14020.0000	1606.0000
13299.0000	13299.0000	1745.4000	13697.0000	13697.0000	1676.0000	14031.0000	14031.0000	1599.6000
13334.5000	13334.5000	1744.5000	13699.0000	13699.0000	1675.0000	14055.0000	14051.0000	1599.6000
13336.5000	13336.5000	1743.5000	13701.0000	13701.0000	1674.0000	14055.0000	14031.0000	1599.6000
13338.5000	13338.5000	1742.5000	13755.0000	13750.0000	1665.0000	14067.5000	14066.5000	1599.5000
13355.0000	13351.5000	1740.9000	13755.0000	13710.0000	1665.0000	14068.5000	14068.5000	1598.5000
13383.0000	13383.0000	1737.0000	13758.5000	13758.5000	1657.5000	14070.5000	14070.5000	1597.5000
13385.0000	13385.0000	1736.0000	13760.5000	13760.5000	1656.5000	14079.5000	14079.5000	1588.5000
13387.0000	13387.0000	1735.0000	13769.5000	13769.5000	1649.7000	14155.0000	14142.0000	1582.2000
13389.0000	13389.0000	1734.0000	13809.0000	13809.0000	1649.0000	14155.0000	14132.0000	1582.2000
13400.0000	13400.0000	1728.0000	13811.0000	13811.0000	1648.0000	14169.5000	14169.5000	1581.5000
13435.5000	13435.5000	1727.5000	13822.0000	13822.0000	1645.2000	14171.5000	14171.5000	1580.5000
13437.5000	13437.5000	1726.5000	13853.5000	13853.5000	1643.5000	14173.5000	14173.5000	1580.1000
13439.5000	13439.5000	1725.5000	13855.0000	13853.5000	1643.5000	14180.5000	14180.5000	1571.5000
13455.0000	13448.5000	1716.5000	13855.5000	13855.5000	1642.5000	14224.0000	14224.0000	1571.4000
13501.0000	13501.0000	1710.6000	13857.5000	13857.5000	1641.5000	14229.0000	14229.0000	1564.0000
13525.0000	13525.0000	1710.0000	13859.5000	13859.5000	1640.5000	14231.0000	14231.0000	1563.0000
13538.5000	13538.5000	1709.5000	13861.5000	13861.5000	1639.5000	14255.0000	14250.0000	1554.0000
13540.5000	13540.5000	1708.5000	13870.5000	13870.5000	1632.3000			