A Quick Review of Sets and Equivalence Relations

Liver Szabo

2024

Definition 0.1. Set Subtraction. Given two sets A, B, the difference set A - B is the set $\{x \in A | x \notin B\}$.

Lots of high schools only teach unions and intersections.

Example 0.2. Prove that for any set B, the set A satisfies $A = (A \cap B) \cup (A - B)$.

Proof: $A \cap B$ is $\{x \in A | x \in B\}$, while A - B is $\{x \in A | x \notin B\}$. So performing the union operation on these two sets will return A.

Definition 0.3. Cartesian Product. The Cartesian Product $A \times B$ is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.

Definition 0.4. Equivalence Relation. A binary relation \sim over a set A, defined to be a subset of $A \times A$, is an equivalence relation on A if $\forall a, b, c \in A$:

- 1. $a \sim a \ (Reflexivity)$
- 2. $a \sim b \Rightarrow b \sim a$ (Symmetry)
- 3. $a \sim b \wedge b \sim c \Rightarrow a \sim c$ (Transitivity)

Definition 0.5. Equivalence Class. For a set A and an equivalence relation \sim on A, the equivalence class of $a \in A$ is $\{x \in A | x \sim a\}$, also written as [a].

Theorem 0.6. Given an equivalence relation \sim on A, the distinct equivalence classes of \sim are mutually disjoint subsets of A that, when combined with cup, form A in its entirety. Conversely, given a decomposition of A as a union of mutually disjoint, nonempty subsets, we can define an equivalence relation such that these subsets form different equivalence classes.

Proof Outline: This is a dense (but important) result. First, let's consider what happens when two equivalence classes are not disjoint. Let's call these equivalence classes [a], [b] for $a, b \in A$. There must be an element in both, denoted z. Since $z \in [a] \land z \in [b]$, $a \sim z$ and $z \sim b$. But this means that $a \sim b$ (transitivity). Therefore, $[a] \subset [b]$. Since this argument goes both ways (symmetry), [a] = [b]. All distinct equivalence classes must thus be disjoint.

For the converse, let $A = \bigcup A_i$. We can define the equivalence relation $a \sim b$ as "a and b are in the same A_i ". This is obviously an equivalence relation that creates distinct subsets (using an argument along the lines of that above.)