Some notes on solutions to selected problems.

2.3 (v) $f(x) = 1 + \frac{1-x^2}{1-x^2}$ is defined for all x except when $1-x^2=0$ i.e., when x=1 or -1. So the domain is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$ (equiv: $1R/\{-1, 1\}$

The Ronge is all of IR

2.4 (i)

A funcion f is $\begin{cases} even & \text{if } f(-x) = f(x) \\ \text{odd} & \text{if } f(-x) = -f(x) \end{cases}$ neither otherwise

Here $f(x) = \frac{x}{x^2+1}$. So $f(-x) = \frac{x}{(-x)^2+1} = -\frac{x}{x^2+1} = -f(x)$ So f is odd

(iii) f(x) = x |x| so f(-x) = -x(-x) = -x|x|So f io odd.

4.2 (i) Let $f(x) = \frac{1}{3}x^3$. Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{1}{3} \frac{(x+h)^3 - \frac{1}{3}x^3}{h} = \frac{1}{3} \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$ $= \frac{1}{3} \lim_{h \to 0} \left(3x^2 + 3xh + h^2 \right) = x^2$

MA211 Problem Set 1

p2/2

We need to calculate

5.5

lim sin(xth) - sin(x)
h > 0

Sin(x+h) = sin(x) cos(h) + cos(x) sin(h)So lim sin(x+h) - sin(x) $h \rightarrow 0$ =

 $\sin(x)$ $h \Rightarrow 0$ $\frac{\sin(h)}{h}$ $+ \cos(x)$ $\frac{\sin(h)}{h}$ $= \cos(x)$ because $\frac{\sin(h)}{h} = 0$

and lim sin(h)

l'Hopitul's rule tells us that $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{f'(x)}{g'(x)}$

So $\lim_{x\to 0} \frac{\sin(x)}{2c} = \lim_{x\to 0} \frac{\cos(x)}{1} = 1$.