Note: The extra question I did was 6.2, 7.9, 7.10, 7.12

Extra Question:

6.2

Assume for sake of contradiction that there exists some infinite subset of MIN_{TM} that is Turing-Recognizable. Let this subset be S. Since S is Turing-recognizable, we have that there exists some enumerator E that enumerates S. Consider the following turing machine M:

M = On input x:

- 1. Obtain own source code $\langle M \rangle$
- 2. Use E to enumerate elements of S until you find a TM T output by E such that $|< M>| \ < \ |< T>|$
- 3. Output T(x).

We have that step 1 is possible by the recursion theorem. In step 2 will eventually find such a TM T because S is infinite and hence its elements lengths are not bounded. Hence, we have that the above Turing machine M effectively simulates T on all its inputs. i.e., M accepts, rejects and loops on exactly those inputs that are accepted, rejected and looped on respectively by T. Therefore M is equivalent to T. But we have that $|\langle M \rangle| < |\langle T \rangle|$. This is a contradiction as T is supposed to be minimal. Hence, MIN_{TM} has no infinite subset that is Turing recognizable.

7.9

We construct a TM M that decides TRIANGLE in polynomial time.

M =" On input < G > where G is a graph:

- 1. For each triple of vertices v_1 , v_2 , v_3 in G:
- 2. If edges $(v_1, v_2), (v_1, v_3)$, and (v_2, v_3) , are all edges of G,accept.
- 3. No triangle has been found in G, so reject."

A graph with m vertices has $m!/(3!(m-3)!) = O(m^3)$ triples of vertices. Therefore, stage 2 will be repeated at most $O(m^3)$ times. In addition, each stage can be implemented to run in polynomial time. Therefore, $TRIANGLE \in P$.

7.10

 ALL_{DFA} is the set of every language that is deterministically computed. In other words, there is always a finite number of steps to be computed and the machine never has to make any decisions, it always knows its next state. The class P is defined as a class of

languages that are decidable in polynomial time on a deterministic single tape Turing machine. So, given a TM where we run an input string w, if it is accepted as decidable in polynomial time, then it is Deterministic and therefore in Class P.

M = "On input < B, w >, where B is a DFA and w is a string:

- 1. Simulate B on input w.
- 2. If the simulation ends in an accept state, accept. If it ends in a non-accepting state, reject."

If input is accepted, then it is in class P.

7.12

A nondeterministic polynomial time algorithm for ISO operates as follows:

"On input $\langle G, H \rangle$ where G and H are undirected graphs:

- 1. Let m be the number of nodes of G and H. If they do not have the same number of nodes, reject.
- 2. Nondeterministically select a permulation π of m elements.
- 3. For each pair of nodes x and y of G check that (x,y) is an edge of G iff $(\pi(x), \pi(y))$ is an edge of H. If all agree, accept. If any differ, reject."

Stage 2 can be implemented in polynomial time nondeterministically. Stage 3 takes polynomial time. Therefore $ISO \in NP$.

Required Question:

6.1

```
LISP:
((LAMBDA (X) (LIST X (LIST (QUOTE QUOTE) X)))
(QUOTE (LAMBDA (X) (LIST X (LIST (QUOTE QUOTE) X)))))

Python:
a = "print 'a = ', repr(a), '\n', repr(a)[1:-5]', a"
print 'a = ', repr(a),'\n', repr(a)[1:-5]

C language:
#include <stdio.h>
```

int main() { char *s = "#include <stdio.h>%cint main() { char *s = %c%s%c; printf(s, 10, 34, s, 34); return 0; }"; printf(s, 10, 34, s, 34); return 0;}

6.6

To solve this problem, we have to be careful about circular definitions, that is, defining M in terms of N, and N in terms of M. Remember that q(w) is a T.M. that prints w on its tape, and halts.

M = "On input w:

- (a) Ignore input.
- (b) Obtain $\langle M \rangle$ by the recursion theorem.
- (c) Compute $q(\langle M \rangle)$, and write it to the tape.
- (d) Halt"

We let $N = q(\langle M \rangle)$. When M runs, it writes $N = \langle q(\langle M \rangle) \rangle$ in its tape, and when N runs, it writes $\langle M \rangle$ in its tape.

7.6

P is closed under union. For any two P-languages L_1 and L_2 , let M_1 and M_2 be the TMs that decide them in polynomial time. We construct a TM $M^{/}$ that decides the union of L_1 and L_2 in polynomial time:

M/="On input < w >:

- 1. Run M_1 on w. If it accepts, accept.
- 2. Run M_2 on w. If it accepts, accept. Otherwise, reject."

 M^{\prime} accepts w if and only if either M_1 and M_2 accept w. Therefore, M^{\prime} decides the union of L_1 and L_2 . Since both stages take polynomial time, the algorithm runs in polynomial time.

P is closed under concatenation. For any two P-language L_1 and L_2 , let M_1 and M_2 be the TMs that decide them in polynomial time. We construct a TM $M^{/}$ that decides the concatenation of L_1 and L_2 in polynomial time:

M/=" On input < w >:

- 1. For each way to cut w into two substrings $w = w_1 w_2$:
- 2. Run M_1 on w_1 and M_2 on w_2 . If both accept, accept.
- 3. If w is not accepted after trying all the possible cuts, reject."

M' accepts w if and only if w can be written as w_1w_2 such that M_1 accepts w_1 and M_2 accepts w_2 . Therefore, M' decides the concatenation of L_1 and L_2 . Since stage 2 runs in polynomial time and is repeated at most O(n) times, the algorithm runs in polynomial time.

P is closed under complement. For any P-language L, let M be the TM that decides it in polynomial time. We construct a TM $M^{/}$ that decides the complement of L in polynomial time:

 $M^{\prime} =$ " On input $\langle w \rangle$:

- 1. Run M on w.
- 2. If M accepts, reject. If it rejects, accept."

 $M^{/}$ decides the complement of L. Since M runs in polynomial time, $M^{/}$ also runs in polynomial time.

7.7

NP is closed under union. For any two NP-languages L_1 and L_2 , let M_1 and M_2 be the NTMs that decide them in polynomial time. We construct a NTM M^{\prime} that decides the union of L_1 and L_2 in polynomial time:

M/= " On input < w >:

- 1. Run M_1 on w. If it accepts, accept.
- 2. Run M_2 on w. If it accepts, accept. Otherwise, reject."

In both stages 1 and 2. $M^{/}$ uses its nondeterminism when the machines being run make nondeterministic steps. $M^{/}$ accepts w if and only if either M_1 and M_2 accept w. Therefore, $M^{/}$ decides the union of L_1 and L_2 . Since both stages take polynomial time, the algorithm runs in polynomial time.

NP is closed under concatenation. For any two NP-languages L_1 and L_2 , let M_1 and M_2 be the NTMs that decide them in polynomial time. We construct a NTM $M^{/}$ that decides the concatenation of L_1 and L_2 in polynomial time:

M/= " On input < w>:

- 1. For each way to cut w into two substrings $w = w_1 w_2$:
- 2. Run M_1 on w_1 .
- 3. Run M_2 on w_2 . If both accept, accept; otherwise continue with the next choice of w_1 and w_2 .
- 4. if w is not accepted after trying all the possible cuts, rejects."

In both stages 2 and 3, $M^{/}$ uses its nondeterminism when the machines being run make nondeterministic steps. $M^{/}$ accepts w if and only if w can be expressed as w_1w_2 such that M_1 accepts w_1 and M_2 accepts w_2 . Therefore, $M^{/}$ decides the concatenation of L_1 and L_2 . Since stage 2, stage 3 runs in polynomial time and is repeated for at most O(n) time, the algorithm runs in polynomial time.

7.8

Here is the high-level description of TM M that decides CONNECTED M = "On input $\langle G \rangle$, the encoding of a graph G:

- 1. Select the first node of G and mark it.
- 2. Repeat the following stage until no new nodes are marked:
- 3. For each node in G, mark it if it is attached by an edge to a node that is already marked.
- 4. Scan all the nodes of G to determine whether they are all marked. If they are, accept; otherwise, reject."

Here we give a high-level analysis of the algorithm. This analysis is sufficient to allow us to conclude that it runs in polynomial time. A more detailed analysis would go into the head motion of the TM, but we do not do that here. The algorithm runs in $O(n^3)$ time.

Stage 1 takes at most O(n) steps to locate and mark the start node. Stage 2 causes at most n+1 repititions, because each repetition except for the last repetition marks at least one additional node. Each execution of stage 3 uses at most $O(n^2)$ steps by examining all adjacent nodes to see whether any have been marked. Therefore in total, stage 2 and 3 take $O(n^3)$ time. Stage 4 uses O(n) steps to scan all nodes.

Therefore the algorithm runs in $O(n^3)$ time and CONNECTED is in P.