Apuntes Probabilidad

Hugo Del Castillo Mola

18 de octubre de 2022

Índice general

1.	Espacio de Probabilidad 3														
	1.1.	Experimentos aleatorios													
	1.2.	Espacio Muestral													
		1.2.1. Tipos de Espacios Muestrales													
	1.3.	Sucesos													
	1.4.														
	1.5.	Límites de una sucesión de conjuntos													
		1.5.1. Sucesión de conjuntos convergente													
		1.5.2. Sucesiones Monótonas													
	1.6.	Estructuras con Subconjuntos													
		1.6.1. Álgebra													
	1.7.	Espacio Medibles													
	1.8.	Probabilidad													
	1.9.	Espacio de Probabilidad													
	1.10.	Continuidad Secuencial de la Probabilidad													
	1.11. Probabilidad Condicionada														
		1.11.1. Teorema del producto													
		1.11.2. Teorema de Probabilidad Total													
	1.12.	Independencia de Sucesos													
2.	Modelo Uniforme 13														
	2.1.	Regla de Laplace													
	2.2.	Población y Muestra													
	2.3.	Muestras Ordenadas													
	2.4.	Subpoblaciones													
		Prticiones													
	2.6.	Variaciones, Combinaciones y Permutaciones													
	2.0.	2.6.1. Variaciones de N elementos tomados de n en n 10													
		2.6.2. Variaciones de N elementos tomados de n en n													
		2.6.3. Permutaciones de N elementos													

			Combinaciones de N elementos tomados de n en n Combinaciones con repetición de N elementos tomados											17					
		2.0.0.	de n en n		-														18
3.	Prob	Probabilida sobre la recta real																19	
	3.1.	Probab	ilidad Sobr	e La Red	cta R	eal													19
		3.1.1.	Función d	e distribi	ución	en	\mathbb{R}												19
	3.2.	Probab	oilidad sobre	e \mathbb{R}^n															19
	3.3.	Variabl	e Aleatoria	Real															20
	3.4.	Funció	n Indicador																20
	3.5.	Ley de	Probabilida	a de Una	a Vari	bal	e A	lea	tor	ia									20
	3.6.	Funció	n de Masa																21
	3.7.	Variabl	e Aleatoria	Discreta	a														21
	3.8.	Funnci	ón de Dens	idad sob	re $\mathbb R$														22
	3.9.	Variabl	e Aleatoria	Continu	ıa .														22
	3.10.	Transfo	ormaciones	Medible	S .														23
		3.10.1.	Caso discr	eto															23
		3.10.2.	Caso Cont	inuo															23

Capítulo 1

Espacio de Probabilidad

1.1. Experimentos aleatorios

Definición 1.1 (Experimento Determinista). Experimeto cuyo desarrolo es previsible con certidumbre y sus resultados están perfectamente determinados una vez fijadas las condiciones del mismo.

Ejemplo. Averiguar el espacio recorrido por un cuerpo en caída libre en el vacío al cabo de cierto tiempo t, donde se sabe que $x=\frac{1}{2}gt^2$ con g la gravedad de la Tierra.

Definición 1.2 (Experimento Aleatorio). Experimento en contexto de incertidumbre. Se caracterizan porque su desarrolo no ese previsible con certidumbre.

Ejemplo. Lanzar un dado.

1.2. Espacio Muestral

Definición 1.3 (Espacio Muestral). Dado un experimento aleatorio, Ω es el conjunto de todos los posibles resultados del experimento. Decimos que Ω es el espacio muestral del experimento y los elementos de Ω se llaman sucesos elementales.

Ejemplo. Dado el experiemento "Lanzar un dado y obtener un 6", el espacio muestral es $\Omega = \{1, 2, 3, 4, 5, 6\}$. Si consideramos "Lanzar un dado y obtener un número par", el espacio muestral sería $\Omega = \{ par, impar \}$.

1.2.1. Tipos de Espacios Muestrales

Definición 1.4 (Espacio Muestral Finito). Sea Ω un espacio muestral. Entonces, decimos que Ω es finito si tiene un número finito de elementos.

Ejemplo. Lanzar un dado.

Definición 1.5 (Espacio Muestral Infinito Numerable). Sea Ω un espacio muestral. Entonces, decimos que Ω es infinito numerable si tiene un número infinito y numerable de elementos.

Ejemplo. Lanzar una moneda hasta obtener cara por primera vez. Aquí debemos considerar que se puede dar el caso en el que no se obtenga nunca cara y tiremos la moneda infinitas veces.

Definición 1.6 (Espacio Muestral Continuo). Sea Ω un espacio muestral. Entonces, decimos que Ω es continuo si no hay discontinuidades o cambios abrutos entre los elementos del espacio muestral.

Ejemplo. El nivel del agua de un pantano entre los tiempos t_1, t_2 . El espacio muestral $\Omega = \{f_t : t \in [t_1, t_2]\}$.

1.3. Sucesos

Nota. Sea $A \subset \Omega$. Decimos que se ha presentado el suceso $A \subset A$ si el resultado del experiemento ha sido $w \in A$, un suceso elemental contenido en A.

1.4. Sucesiones de Conjuntos

Definición 1.7 (Sucesión de Conjuntos). Sea Ω espacio muestral, $f: \mathbb{N} \to \mathcal{P}(\Omega)$ una aplicación. Decimos que f es una sucesión de conjuntos y la repesentamos $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$.

1.5. Límites de una sucesión de conjuntos

Definición 1.8 (Límite Inferior). Sea Ω espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ sucesión de conjuntos. Entoces, el límite inferior de $\{A_n\}_{n\in\mathbb{N}}$ es el conjunto de puntos de Ω cuyos elementos pertenecen a todos los A_n excepto a lo

sumo a un número finito de ellso. lím inf A_n .

Definición 1.9 (Límite Superior). Sea Ω espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)$ sucesión de conjuntos. Entoces, el límite superior de $\{A_n\}_{n\in\mathbb{N}}$ es el conjunto de puntos de Ω cuyos elementos pertenecen a infinitos A_n . Y se denota $\lim\sup A_n$.

Observación. $A \in \{A_{2n}\}_{n \in \mathbb{N}} \Rightarrow A \in \limsup A_n \text{ pero } A \notin \liminf A_n$

Proposición 1.1. Sea Ω espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ una sucesión de conjuntos. Entonces,

- (I) lím ínf $A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$,
- (II) $\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$.

Demostración.

(I) (\Rightarrow) Sea $w \in \liminf A_n$. Entonces, $\exists k \in \mathbb{N} : w \in A_n, \forall n \geq k$. Por tanto,

$$w \in \bigcap_{n=k}^{\infty} A_n \Rightarrow w \in \bigcup_{n=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

- (\Leftarrow) Sea $w \in \bigcup_{n=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$. Entonces, $\exists k \in \mathbb{N} : w \in \bigcap_{n=k}^{\infty} A_n \Rightarrow w \in A_k \cap A_{k+1} \cap \cdots \Rightarrow w$ pertenece a infinitos A_n salvo a lo sumo a un número finito de ellos.
- (II) (\Rightarrow) Sea $w \in \limsup A_n$. Entonces, $w \in A_n, \forall n \in \mathbb{N}$

$$\Rightarrow w \in \bigcup_{n=k}^{\infty} A_n \Rightarrow w \in \bigcap_{n=1}^{\infty} \bigcup_{n=k}^{\infty} A_n.$$

(\Leftarrow) Sea $w \in \bigcap_{n=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$. Entonces, $w \in \bigcup_{n=1}^{\infty} A_n \Rightarrow w \in A_n$, $\forall n \in \mathbb{N} \Rightarrow w \in \limsup A_n$.

Proposición 1.2. $\forall \{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)\Rightarrow \liminf A_n\subset \limsup A_n$.

Demostración. Sea $w \in \liminf A_n$. Entonces, $w \in \bigcup_{n=1}^{\infty} \bigcap_{n=k}^{\infty} A_n \Rightarrow \exists k \in \mathbb{N} : w \in \bigcap_{n=k}^{\infty} A_n \Rightarrow w \in A_n, \forall n \geq k \Rightarrow w \in \bigcup_{n=k}^{\infty} A_n \Rightarrow w \in \bigcap_{n=1}^{\infty} \bigcup_{n=k}^{\infty} A_n \Rightarrow w \in \limsup A_n$.

1.5.1. Sucesión de conjuntos convergente

Definición 1.10 (Covergencia). Sea Ω un espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)$ una sucesión. Entonces, decimos que $\{A_n\}_{n\in\mathbb{N}}$ es convergente si y solo si $\liminf A_n = \limsup A_n$.

1.5.2. Sucesiones Monótonas

Definición 1.11 (Sucesión Monótona). Sea Ω un espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{P}(\Omega)$ una sucesión. Entonces, decimos que $\{A_n\}_{n\in\mathbb{N}}$ es monótona creciente si y solo si $\forall n\in\mathbb{N}, A_n\subset A_{n+1}$. Y decimos que $\{A_n\}_{n\in\mathbb{N}}$ es monótona decreciente si y solo si $\forall n\in\mathbb{N}, A_{n+1}\subset A_n$.

Notación.

- (I) $\uparrow A_n$ sucesión monótona creciente,
- (II) $\downarrow A_n$ sucesión monótona creciente.

Proposición 1.3. Sea Ω un espacio muestral, $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{P}(\Omega)$ una sucesión monónota. Entonces, $\liminf A_n=\limsup A_n$.

Demostración. (I) Sea $\downarrow A_n$. Entonces, $A_{n+1} \subset A_n \Rightarrow$

$$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = \bigcap_{k=1}^{\infty} A_k$$

y

$$\liminf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Por tanto, lím inf $A_n = \limsup A_n$.

(II) Sea $\uparrow A_n$. Entonces, $A_n \subset A_{n+1} \Rightarrow$

$$\limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n = \bigcup_{n=1}^{\infty} A_n$$

y

$$\lim\inf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n = \bigcup_{k=1}^{\infty} A_k$$

Por tanto, lím inf $A_n = \limsup A_n$.

1.6. Estructuras con Subconjuntos

1.6.1. Álgebra

Definición 1.12 (Álgebra). Dado el espacio total Ω , una clase $\mathcal{Q} \subset \mathcal{P}(\Omega)$ tiene estructura de álgebra si y solo si

- (I) $\Omega, \emptyset \in \mathcal{Q}$,
- (II) $\forall A \in \mathcal{Q}, A^c \in \mathcal{Q}$
- (III) $\forall A, A' \in \mathcal{Q}, A \cap A' \in \mathcal{Q}$,

Definición 1.13 (σ -Álgebra). Dado el espacio total Ω , una clase $\mathcal{Q} \subset \mathcal{P}(\Omega)$ tiene estructura de σ -álgebra si y solo si

- (I) $\Omega, \emptyset \in \mathcal{Q}$,
- (II) $\forall A \in \mathcal{Q}, A^c \in \mathcal{Q}$
- (III) $\forall \{A_j\}_{j\in J} \subset \mathcal{Q}, \ \bigcap_{j\in J} A_j \in \mathcal{Q}$

1.7. Espacio Medibles

Definición 1.14 (Espacio Medible). Sea Ω espacio muestralm $\mathcal{A} \subset \mathcal{P}(\Omega)$ σ -álgebra. Entoces, al par (Ω, \mathcal{A}) lo llamamos espacio medible. Los elementos de \mathcal{A} se llaman conjuntos medibles.

1.8. Probabilidad

Definición 1.15 (Medida de Probabilida). Sea (Ω, \mathcal{A}) un espacio medible, $P: \mathcal{A} \to \mathbb{R}$ aplicación. Entonces, se dice que P es una medida de probabilidad si cumpe

- (1) $\forall A \in \Omega, P(A) \geq 0$,
- (II) $P(\Omega) = 1$,
- (III) $\forall \{A_i\}_{i \in J} \subset \mathcal{A} : A_i \cap A_j = \emptyset, \forall j \neq i \Rightarrow$

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \sum_{n=1}^{\infty} P(A_n).$$

Proposición 1.4 (Propiedades Medida Probabilidad).

- (I) $P(\emptyset)$,
- (II) $\forall \{A_i\}_{i\in J}$ familia finita con elementos disjuntos dos a dos, entonces

$$P\Big(\bigcup_{k=1}^{n} A_k\Big) = \sum_{k=1}^{k} P(A_k),$$

- (III) $\forall A \in \mathcal{A}, P(A^c) = 1 P(A)$,
- (IV) $\forall A, B \in \mathcal{A} : A \subset B, P(A) \leq P(B)$,
- (v) $\forall A \in \mathcal{A}, P(A) \leq 1$,
- (VI) $\forall A, B \in \mathcal{A}, P(A \cap B) = P(A) + P(B) P(A \cup B)$
- (VII) $\forall \{A_j\}_{j \in J} \subset \mathcal{A}, P(\bigcup_{i=1}^n A_j) = \sum_{j=1} P(A_j) \sum_{j_1, j_1 = 1, j_1 < j_2} P(A_{j_1} \cap A_{j_2}) + \dots + (-1)^{j+1} P(\bigcap_{j=1}^n A_j)$
- (VIII) $\forall A, B \in \mathcal{A}, P(A \cup B) \leq P(A) + P(B)$,
 - (IX) $\forall \{A_i\}_{i\in J} \subset \mathcal{A}$ finita

$$P\Big(\bigcup_{j=1}^{n} A_j\Big) \le \sum_{j=1}^{n} P(A_j)$$

(x)
$$\forall \{A_j\}_{j\in J} \subset \mathcal{A}$$

$$P\Big(\bigcup_{j=1}^{\infty} A_j\Big) \le \sum_{j=1}^{\infty} P(A_j)$$

(XI)
$$\forall \{A_j\}_{j\in J} \subset \mathcal{A}$$
,

$$P\left(\bigcap_{j=1}^{\infty} A_j\right) \ge 1 - \sum_{j=1}^{\infty} P(A_j^c)$$

1.9. Espacio de Probabilidad

Definición 1.16 (Espacio de Probabilidad). Sea Ω espacio muestra, $\mathcal{A} \subset \mathcal{P}(\Omega)$ σ -álgebra, P medida de probabilidad. Entonces, a la terna (Ω, \mathcal{A}, P) se le llama espacio de probabilidad. Los elementos de \mathcal{A} se llaman sucesos.

1.10. Continuidad Secuencial de la Probabilidad

Teorema 1.1. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, $\{A_j\}_{j\in J} \subset \mathcal{A}, \uparrow A_j$. Entonces,

$$P(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} P(A_n).$$

Demostración. $A_n \uparrow \Rightarrow \lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$. Sea A tal que

$$A = A_1 \cup \left[\bigcup_{j=1}^{\infty} (A_{j+1} - A_j) \right]$$

entonces, A es unión de conjuntos disjuntos. Aplicado la aditividad finita tenemos que

$$P(A) = P(A_1) + \sum_{j=1}^{\infty} (A_{j+1} - A_j)$$

$$= P(A_1) + \lim_{n \to \infty} \sum_{j=1}^{n} (P(A_{j+1}) - P(A_j))$$

$$= \lim_{n \to \infty} (P(A_1) + P(A_2) - P(A_1) + P(A_3) - P(A_2) + \dots + P(A_{n+1}) - P(A_n))$$

$$= \lim_{n \to \infty} P(A_{n+1}) = \lim_{n \to \infty} P(A_n).$$

Teorema 1.2. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, $\{A_j\}_{j\in J} \subset \mathcal{A}, \downarrow A_j$. Entonces,

$$P(\lim_{n\to\infty} A_n) = \lim_{n\to\infty} P(A_n).$$

Demostración. $A_n \downarrow \Rightarrow \exists \lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n = A \text{ y } A_n^c \uparrow \Rightarrow \text{ (por la proposición anterior)}$

$$P(\lim_{n\to\infty} A_n^c) = \lim_{n\to\infty} P(A_n^c)$$

donde $\lim_{n\to\infty} A_n^c = A^c$.

Ahora,

$$P(\lim_{n \to \infty} A_n) = P(A) = 1 - P(A^c)$$

$$= 1 - P(\lim_{n \to \infty} A_n^c)$$

$$= 1 - \lim_{n \to \infty} P(A_n^c)$$

$$= 1 - \lim_{n \to \infty} \left\{ 1 - P(A_n) \right\}$$

$$= 1 - 1 + \lim_{n \to \infty} P(A_n) = \lim_{n \to \infty} P(A_n)$$

1.11. Probabilidad Condicionada

Definición 1.17 (Probabilida Condicionada). Sea (Ω, \mathcal{A}, P) un espacio de probabilidad y se $A \subset \mathcal{A}$ un suceso tal que P(A) > 0. Entonces, decimos que

$$P(B|A) = \frac{P(A \cap B)}{P(A)}, P(A) > 0$$

es la probabilidad de B condiconada por A.

1.11.1. Teorema del producto

Teorema 1.3 (Regla multiplicación). Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, $A, B\mathcal{A} : P(A), P(B) > 0$. Entonces,

$$P(A \cap B) = P(A) \cdot P(B|A) \ \mathbf{y}$$

$$P(A \cap B) = P(B) \cdot P(A|B)$$

1.11.2. Teorema de Probabilidad Total

Teorema 1.4 (Probabilidad Total). Sea (Ω, \mathcal{A}, P) espacio de probabilidad, $\{A_n\}_{n\in\mathbb{N}}\subset\mathcal{A}:A_i\cap A_j=\emptyset, \forall i\neq j, \bigcup_{n=1}^{\infty}A_n=\Omega$. Entonces, para $B\in\mathcal{A}$

$$P(B) = \sum_{j=1}^{\infty} P(B|A_j) \cdot P(A_j)$$

donde $P(A_j) > 0, \forall j \in \{1, 2, \dots\}$

Demostración.

$$P(B) = P(B \cap \Omega)$$

$$= P\left(B \cap \left[\bigcup_{i=1}^{\infty} A_i\right]\right)$$

$$= P\left(\bigcup_{i=1}^{\infty} (B \cap A_i)\right)$$

$$= \sum_{i=1}^{\infty} B \cap A_i$$

$$= P(B|A_i) \cdot P(A_i), \ \forall i \in \mathbb{N}.$$

Teorema 1.5 (de Bayes). Sea (Ω, \mathcal{A}, P) espacio de probabilidad, $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{A}$ tal que $P(A_i)>0, \forall i\in\mathbb{N}, B\in\mathcal{A}: P(B)>0$. Entonces,

$$P(A_i|B) = \frac{P(A_i) \cdot P(B|A_i)}{\sum_{i=1}^{\infty} P(A_i)P(B|A_i)}, i \in \mathbb{N}.$$

Demostración.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)}$$

usando la independencia de sucesos y el teorema de la probaibilidad total tenemos que

$$P(A_i|B) = \frac{P(A_i) \cdot P(B|A_i)}{\sum_{i=1}^{\infty} P(A_i) \cdot P(B|A_i)}, i \in \mathbb{N}.$$

1.12. Independencia de Sucesos

Definición 1.18. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, $A, B \in \mathcal{A}$ con P(B) > 0. Entonces, A y B se dicen independientes si y solo si

$$P(A \cap B) = P(A) \cdot P(B).$$

Proposición 1.5. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, $A, B \in \mathcal{A}$ tal que A y B son sucesos independientes. Entoces,

$$P(A|B) = P(A) \operatorname{si} P(B) > 0 \operatorname{y}$$

$$P(B|A) = P(B) \text{ si } P(A) > 0.$$

Proposición 1.6. Sea (Ω, \mathcal{A}, P) un espacio de probabilidad, $A, B \in \mathcal{A}$ tal que A y B son sucesos independientes. Entonces, también lo son A^c y B^c , A y B^c , A^c y B.

Capítulo 2

Modelo Uniforme

2.1. Regla de Laplace

Proposición 2.1 (Regla de Laplace). Sea (Ω, \mathcal{A}, P) espacio de probabilidad tal que el conjunto de sucesos elementales es finito, los sucesos elementales son incompatibles dos a dos y equiprobables. Entonces, si $A \in \mathcal{A}$

$$P(A) = \frac{\textit{n\'umero de sucesos elementales a favor de A}}{\textit{n\'umero de sucesos elemenetales de }\Omega}$$

a este resultado lo llamamos Regla de Laplace

Demostración. Sea a_1, a_2, \dots, a_n el conjunto de sucesos elementales asociados, entonces

$$\Omega = a_1 \cup a_2 \cup \cdots \cup a_n$$

por ser incompatibles dos a dos

$$P(a_1) + P(a_2) + \cdots + P(a_n) = 1$$

y por ser equiprobables, es decir, $P(a_i) = \frac{1}{n}, \forall i \in \{1, \cdots, n\}$. Si $A \in \mathcal{A}$ tal que $A = \bigcup_{j \in J} a_j$ donde $J = \{1, \cdots, k\}, k \leq n$, entonces

$$P(A) = P(a_1) + \dots + P(a_k) = \frac{k}{n}$$

Así, hemos obtenido la Regla de Laplace.

2.2. Población y Muestra

Nota. Dentro del muestreo aleatorio se distingue que la selección sea sin remplazamiento o con remplazamiento.

Definición 2.1 (Selección sin Remplazamiento). Se seleccionan n elementos de la población, mediante n extracciones sucesivas sin remplazamiento, asignando en cada una de ellas probabilidades iguales a los elementos no seleccionados en las anteriores. En, este caso, n es menor o igual que el tamaño de la población.

Definición 2.2 (Selección con Remplazamiento). Se seleccionan n elementos de la población, mediante n extracciones sucesivas con reemplazamiento, asignando en cada una de ellas probabilidades iguales a todos los elementos de la población.

Nota. Distinguimos muestras ordenadas y sin ordenar.

2.3. Muestras Ordenadas

Notación.
$$(N)_n = N \cdot (N-1) \cdot \cdots \cdot (N-n+1), \forall n \leq N.$$

Proposición 2.2. Sea $A = \{a_1, \dots, a_n\}$ y $B = \{b_1, \dots, b_m\}$. Entonces, es posible formar $n \cdot m$ pares tales que (a_i, b_i) donde $a_i \in A, b_j \in B$

Observación. El par (a_i, b_j) y el par (b_j, a_i) son iguales.

Proposición 2.3. Sea A_1, A_2, \dots, A_k con n_1, n_2, \dots, n_k elementos. Entonces el número de ordenaciones de la forma $(x_1, x_2, \dots, x_k) : x_i \in A_i, i \in \{1, \dots, k\}$ es $n_1 \cdot n_2 \cdot \dots \cdot n_k$.

Corolario 2.0.1. k selecciones sucesivas con exactamente n_i opciones posibles en el i-ésimo paso, producen $n_1 \cdots n_k$ resultados diferentes posibles.

Teorema 2.1. De una población de N elementos se pueden seleccionar N^n muestras diferentes con remplazamiento de tamaño n y $(N)_n$ muestras diferentes sin reemplazamiento de tamaño n.

Teorema 2.2. El número de ordenaciones diferentes de N elementos es

$$N! = N \cdot (N-1) \cdot \dots \cdot 2 \cdot 1$$

Teorema 2.3. Si se realiza un muestreo aleatorio con remplazamiento de tamaño n de una población con N elementos, la probabilidad de que en la muestra no aparezca ningún elemento dos veces es

$$p = \frac{(N)_n}{N^n} = \frac{N \cdot (N-1) \cdot \dots \cdot (N-n+1)}{N^n}$$

2.4. Subpoblaciones

Definición 2.3 (Subpoblación). Una Subpoblación de tamaño n es una muestra de tamaño n extraída de una población de tamaño N, cuyos elementos extraidos no han considerado ningún orden.

Notación.

$$\binom{N}{n} = \frac{N!}{n! \cdot (N-n)!}$$

Teorema 2.4. De una población de N elementos se pueden seleccionar $\binom{N}{n}$ subpoblaciones diferentes de tmaño $n \leq N$.

Demostración. El número de subpoblaciones posibles de tamaño n de una población N es el número de ordenaciones distintas de n elementos que es n!. Además, de una población de N elementos se pueden seleccionar $(N)_n$ muestras diferentes sin remplazamiento de tamaño n. Entonces,

$$A = \frac{(N)_n}{n!}$$

Ejemplo. Un equipo está compuesto por 7 miembros y un club cuenta con 20 miembros, se podran formar $\binom{20}{7}$ equipos diferentes.

Teorema 2.5. De una población de N elementos se pueden seleccionar $\binom{N+n-1}{n}$ subpoblaciones diferentes de tamaño n, mediante un muestreo con remplazamiento.

2.5. Prticiones

Definición 2.4 (Partición). Una partición de tamaño r de una población de tamaño N es una división de la población en r grupos ordenados de elementos desordenados donde el grupo i contine n_i elementos $\forall i \in \{1, 2, \cdots, r\}$ y

$$n_1 + n_2 + \dots + n_r = N$$

Teorema 2.6. El número de particiones diferentes de tamaño r en las cuales se puede divir una población de N elementos es

$$\frac{N!}{n_1! \cdot n_2! \cdots n_r!}$$

siendo n_i el tamaño del grupo i, $i \in \{1, \dots, r\}$.

Ejemplo. Se lanza un dado en 10 ocasiones. El número total de formas en las cuales se pueden obtener 3 unos, ningún dos, 2 treses, ningún cuatro, 3 cincos y 2 seises es

$$\frac{10!}{3! \cdot 0! \cdot 2! \cdot 0! \cdot 3! \cdot 2!}$$

2.6. Variaciones, Combinaciones y Permutaciones

2.6.1. Variaciones de N elementos tomados de n en n

Definición 2.5 (Variaciones sin repetición). Las variaciones de N elementos tomados de n en n son los diferentes grupos que se pueden formar a partir de N elementos, tomados de n en n. Cada dos grupos difieren entre sipor

algún elemento o por el orden.

$$V_{N,n} = (N)_n = N \cdot (N-1) \cdot (N-n+1)$$

Observación. Es lo mismo que el número de muestras diferentes de tamaño n seleccionadas mediante un muestreo sin remplazamiento de una poblaciçon de tamaño N.

2.6.2. Variaciones de N elementos tomados de n en n

Definición 2.6 (Variaciones con repetición). Las variaciones repetición de N elementos tomados de n en n son los diferentes grupos que se pueden formar a partir de N elementos, tomados de n en n, en los que pueden aparecer elementos repetidos y dos grupos son distintos entre sí, tiene distintos elementos o estan situados en distintos lugares.

$$RV_{M,n}^N = N^n$$

2.6.3. Permutaciones de N elementos

Definición 2.7 (Permutación). Las Permutaciones de N elementos diferentes son los distintos grupos que pueden formarse entrando en cada uno de llos lo N elementos dados, difiriendo únicamente en el orden de sucesión de sus elementos.

$$P_N = N! = N \cdot (N-1) \cdot \cdot \cdot 2 \cdot 1$$

2.6.4. Permutaciones con repetición

Definición 2.8 (Permutaciones con repetición). Las permutaciones con repetición de r elementos distintos tales que el elemento i aparece n_i veces $\forall i \in \{1, 2, \cdots, r\}$ con $\sum_{i=1}^r n_r = N$ es

$$\frac{N!}{n_1! \cdot n_2! \cdots n_r!}$$

2.6.5. Combinaciones de N elementos tomados de n en n

Definición 2.9 (Combinaciones sin repetición). Son los diferente grupos que se pueden formar con n elementos en cada uno, donde por lo menos cada uno tiene un elemento distinto. No se tiene en cuenta el órden en la disposición.

 $C_{N,n} = \binom{N}{n} = \frac{N!}{n! \cdot (N-n)!}$

2.6.6. Combinaciones con repetición de N elementos tomados de n en n

Definición 2.10 (Combinaciones con repetición). Son la distintas disposiciones que se pueden formar tomando n elementos de los N, entre lo cuales puden aparecer elementos repetidos, y dos disposicones serán distintas entre sí, si tienen distintos elementos. No se tiene en cuenta el órden en la disposición.

$$RC_{N,n} = {N+n-1 \choose n} = {N+n-1 \choose N-1} = \frac{((N+n-1))!}{(N-1)!n!}$$

Capítulo 3

Probabilida sobre la recta real

3.1. Probabilidad Sobre La Recta Real

Notación. Consideramos $(\mathbb{R}, B(\mathbb{R}), P)$ espacio de probabilidad.

3.1.1. Función de distribución en $\mathbb R$

Definición 3.1 (Función de distribución). Sea $F: \mathbb{R} \to \mathbb{R}$ tal que

- (I) F es monótona no decreciente, es decir, $\forall x_1, x_2 \in \mathbb{R} : x_1 < x_2 \Rightarrow F(x_1) < F(x_2)$.
- (II) F es continua por la derecha, $\lim_{h\to 0} F(x+h) = F(x)$
- (III) $\lim_{x\to-\infty} F(x) = 0$,
- (IV) $\lim_{x\to+\infty} F(x) = 1$.

Teorema 3.1. La función $F(x) = P\{(-\infty, x]\}$ es función de distribución en \mathbb{R} .

Teorema 3.2. Sea F función de distribución en \mathbb{R} . Entonces, F induce en $(\mathbb{R}, B(\mathbb{R}))$, espacio probabilizable, una probabilidad P cuya función de distribución es F.

3.2. Probabilidad sobre \mathbb{R}^n

Definición 3.2 (Función de Distribución). *Una función* $F: \mathbb{R}^n \to \mathbb{R}$ *se dice que es de distribución en* \mathbb{R}^n *si y solo si*

- (1) $\forall a, b \in \mathbb{R}^n : a \leq b \Rightarrow F((a, b]) > 0.$
- (II) F continua por la derecha en cada variable, es decir, si $\{x^k\}_{n\in\mathbb{N}}$ \downarrow : $\{x^n\}_{n\in\mathbb{N}} \to x$ con $x^k \in \mathbb{R}^n, \forall k \in \mathbb{N}$, entonces

$$\lim_{n \to \infty} F(x^n) = F(x)$$

(III) $\lim_{x_i \to -\infty} F(x_1, \dots, x_n) = 0, \forall i \in \{1, \dots, n\} \ y F(+\infty, \dots, +\infty) = \lim_{x_1, \dots, x_n \to +\infty} F(x_1, \dots, x_n) = 1.$

3.3. Variable Aleatoria Real

Definición 3.3 (Variable aleatoria). Sea (Ω, \mathcal{A}, P) un espacio de probabilida y sea (\mathbb{R}, \mathbb{B}) un espacio probabilizable. Una aplicación $X : \Omega \to \mathbb{R}$ es una variable aleatoria $\Leftrightarrow X^{-1}(B) \in \mathcal{A}, \forall B \in \mathbb{B}$.

Proposición 3.1. $X: \Omega \to \mathbb{R}$ es v.a si $X^{-1}(-\infty, a] \in \mathcal{A}, \forall a \in \mathbb{R}$.

3.4. Función Indicador

Definición 3.4 (Función Indicador). Sea (Ω, A) un espacio probabilizable. $\forall A \in A$

$$I_A(w) = \begin{cases} 1 \text{ si } w \in A \\ 0 \text{ si } w \notin A \end{cases}$$

es la función indicador.

Observación. La función indicador es variable aleatoria.

Observación. $I_{A \cap B} = I_A \cdot I_B$, $I_A + I_{A^c} = 1$ y $I_{A \cup B} = I_A + I_B - I_{A \cap B}$.

3.5. Ley de Probabilida de Una Varibale Aleatoria

Proposición 3.2. Sea (Ω, \mathcal{A}, P) un espacio de porbabilidad, X una variable aletoria real con $X:(\Omega, \mathcal{A}, P) \to (\mathbb{R}, \mathbb{B})$. Entonces, X induce una medida de probabilidad P_X sobre (\mathbb{R}, \mathbb{B}) tal que $(\mathbb{R}, \mathbb{B}, P_X)$ es un espacio de probabilidad, donde P_X viene definida por

$$P_X(B) = P(X^{-1}(B)) = P(A), \forall B \in \mathbb{B}, \quad donde \ X(A) = B.$$

3.6. Función de Masa

Definición 3.5. Sea X una v.a. sobre (Ω, \mathcal{A}, P) espacio de probabilidad y P_X la probabilidad inducida por X sobre (\mathbb{R}, B) . Llamamos función de masa de X a la aplicación

$$p_X: \mathbb{R} \to [0,1]$$

definida por

$$\forall x \in \mathbb{R}, p_X(x) = P_X\{x\} = P\{X^{-1}(x)\} = P\{w \in \Omega : X(w) = x\}.$$

Proposición 3.3. Sea X v.a. con función de masa p_X y sea $D_X = \{x \in \mathbb{R} : p_X(x) > 0\}$. Entonces, D_X es numerable.

3.7. Variable Aleatoria Discreta

Definición 3.6 (Variable Aleatoria Discreta). Sea X v.a. sobre (Ω, \mathcal{A}, P) con función de masa p_x y

$$D_X = \{ x \in \mathbb{R} : p_X(x) > 0 \}.$$

Si $D_X \neq \emptyset$ y $\sum_{x \in D_x} p_X(x) = 1$, entonces la variable aleatoria X se dice que es discreta y D_X se le llama soporte de X.

Proposición 3.4. Dado $D \subset \mathbb{R}$ numerable y $p : \mathbb{R} \to [0,1]$ tal que

$$p(x) = \begin{cases} 0 \text{ si } x \notin D \\ > 0 \text{ si } x \in D \end{cases}$$

con $\sum_{x \in D} p(x) = 1$. Entonces, se determina una ley de proabilidad P_X sobre

X tal que

$$P_X(B) = \begin{cases} \sum_{x \in B \cap D} p(x), & \forall B \in \mathbb{R} \setminus (B \cap D) \neq \emptyset \\ 0, & \text{si } B \cap D = \emptyset \end{cases}$$

3.8. Funnción de Densidad sobre $\mathbb R$

Definición 3.7. Una función $f: \mathbb{R} \to \mathbb{R}$ se llama función de densidad sobre \mathbb{R} si cumple

- (I) $f(x) \geq 0, \forall x \in \mathbb{R}$
- (II) f admite a lo más un número finito de discontinuidades sobre cada intervalo finito de \mathbb{R} , es decir, f es integrable Riemann.
- (III) $\int_{-\infty}^{+\infty} f(x) dx = 1$

3.9. Variable Aleatoria Continua

Definición 3.8 (Varible Aleatoria Continua). Sea $X:(\Omega,\mathcal{A})\to(\mathbb{R},\mathbb{B})$ se dice continua si su función de distribución F_X puede ser representada $\forall x\in\mathbb{R}$ por

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

donde f_X es una función de densidad sobre \mathbb{R} . A esta función de le llama función de densidad de la variable aleatoria continua X, y al conjunto

$$C_X = \{ x \in \mathbb{R} : f_X(x) > 0 \}$$

se le llama soporte de la variable aleatoria.

Teorema 3.3. Sea X v.a. continua con función de densidad f_X y función de distribución F_X . Entonces se verifica

- (I) F_X es continua,
- (II) Si f_X es continua en $x \Rightarrow F_X$ derivable en X y

$$F_X'(x) = f_X(x)$$

(III)
$$D_X = \{x \in \mathbb{R} : p_X(x) > 0\} = \emptyset$$

(IV) Para cualquier $I \subset \mathbb{R}$ con extremos $a, b, P\{X \in I\} = \int_a^b f(t)dt$.

3.10. Transformaciones Medibles

3.10.1. Caso discreto

Teorema 3.4. Sea X v.a. discreta con soporte D_X y función de masa p_X . Sea $\varphi: \mathbb{R} \to \mathbb{R}$ medible, $Y = \varphi(X)$ v.a. transformada. Entonces, Y es una v.a. discreta con soporte $D_Y = \varphi(D_X)$ y función de masa

$$p_Y(y) = \begin{cases} \sum_{x \in [\{x \in \mathbb{R}: \varphi(x) = y\} \cap D_X]} p_X(x), & \text{ si } y \in D_y \\ 0, & \text{ si } y \not \in D_Y \end{cases}$$

3.10.2. Caso Continuo

Teorema 3.5. Sea X v.a. continua con soporte C_X y función de densidad f_X . Sea $Y = \varphi(Y)$ v.a. transformada. Si $\varphi(C_X)$ es un conjunto discreto entonces Y es v.a. discreta con soporte $D_Y \subset \varphi(C_X)$ y función de masa

$$p_Y(y) = \begin{cases} \int_{\{x: p(x) = y\}} f_X(x) dx, & \text{ si } y \in \varphi(C_X) \\ 0, & \text{ si } y \not \in \varphi(C_X) \end{cases}$$

Teorema 3.6. Sea X v.a. continua con soporte C_X y densidad f_X . Suponemos que $C_X \subset \mathbb{R}$ es un intervalo. Sea $\varphi : \mathbb{R} \to \mathbb{R}$ continua, estrictamente creciente o decreciente sobre C_X tal que φ^{-1} sobre $\varphi(C_X)$ admite una derivada continua. Entonces, Y es una v.a. continua con soporte $C_Y = \varphi(C_X)$ y función de densidad

$$f_Y(y) = \begin{cases} f_X^{-1}(\varphi^{-1}(y)) \cdot |(\varphi^{-1})'(y)|, & \text{ si } y \in C_Y \\ 0, & \text{ si } y \not \in C_Y \end{cases}$$

Teorema 3.7. Sea X v.a. continua con soporte C_X y función de densidad f_x . Sea $\varphi: \mathbb{R} \to \mathbb{R}$ derivable $\forall x \in C_X$ tal que φ' es continua y $\varphi'(x) \neq 0$ salvo un número finito de puntos. Suponemos que $\forall y \in \mathbb{R}$ se cumple una de las siguientes afirmaciones

(I) $\exists x_1(y), \cdots, x_{m(y)}(y) \in C_X$ tal que

$$\varphi(x_k(y)) = y$$
 y $\varphi'(x_k(y)) \neq 0$

(II) Si m(y)=0. Entonces, $\varphi(X)=Y$ es v.a. continua con función de densidad

$$f_Y(y) = egin{cases} \sum_{k=1}^{m(y)} f_X(x_k(y)) \cdot |arphi'(x_k(y))|^{-1}, & ext{ si } m(y) > 0 \ 0, & ext{ si } m(y) = 0 \end{cases}$$