REDES DE COMPUTADORES II

Topologias de Arquiteturas de Comunicação

Índice

- 1. Introdução
- 2. Topologias
- 3. Exercícios

Topologias de Infra-estruturas de Comunicação

Objetivo

Prover a funcionalidade de comunicação desejada para o sistema. E.g. onde colocar um servidor de impressão, visto que metade das máquinas deseja utilizá-lo, e o fluxo de informação é muito grande?

Topologia física

- É a forma com que nodos e conexões estão organizados
- É uma informação estrutural do sistema

Topologia lógica

- É a forma como os sinais trafegam sobre a topologia física
- É uma informação comportamental do sistema

Fatores decisivos na escolha da topologia

- Relação custo/desempenho
- Adequação aos requisitos da aplicação
 - No caso ideal, a interconexão da topologia corresponde exatamente ao padrão de comunicação da aplicação
 - Exemplo: árvore binária favorece algoritmos de divisão e conquista

Compreensão de Conceitos

- Diferencie a topologia física da topologia lógica de uma infraestrutura de comunicação
- 2. É possível implementar uma topologia lógica em uma topologia física completamente diferente? Qua(l)/(is) a(s) consequência(s)?
- 3. Qual das alternativas abaixo melhor descrevem uma topologia?
 - O processo de transferência de um pacote
 - Uma forma de roteamento
 - Múltiplos tipos de rede
 - O arranjo físico das máquinas e conexões ou o arranjo lógico do trafego de mensagens nos fios
 - 4. Como a aplicação alvo pode influenciar na escolha da topologia de rede?

Topologias de Infra-estruturas de Comunicação

- Critérios básicos para avaliação de topologias
 - Complexidade de conexões
 - Número total de ligações entre componentes
 - Grau do nó
 - Número de ligações diretas que cada componente possui
 - Diâmetro
 - Maior distância entre dois componentes
 - Escalabilidade
 - Capacidade da rede interligar novos componentes mantendo as características originais da rede
 - Desempenho
 - Capacidade e velocidade de transferir informações
 - Indicadores são vazão e latência
 - Redundância
 - Existência de caminhos alternativos que permitem novos caminhos para as mensagens em caso de falha ou congestionamento

Compreensão de Conceitos

- Relacione alguns critérios básicos descritos (consequência do aumento de um frente ao outro). Justifique as relações
 - Grau do nó x Desempenho da rede
 - Grau do nó x Escalabilidade
 - Grau do nó x Diâmetro
 - Diâmetro x Desempenho da rede
 - Complexidade das conexões x Escalabilidade
 - Redundância x Complexidade das conexões
 - Desempenho x Redundância

Índice

- 1. Introdução
- 2. Topologias
- 3. Exercícios

Barramento

Característica

- Todos os nodos estão diretamente conectados a meio físico compartilhado
- Rede dinâmica, multiponto, temporal
- Escalabilidade reduzida a uma centena de nodos
 - Utilizado em multiprocessadores com número moderado de nodos (< 100)
 - Comprimento do meio físico e número máximo de nodos determinado pela atenuação do sinal e pela qualidade da interface de HW (entre nodo e meio físico)
- Grau

2

Diâmetro

1

A B C D ··· E

Número de conexões

1

Comunicação

- Nodos se comunicam diretamente através do barramento compartilhado
- Problema de sobrecarga do barramento

Redundância de comunicação

- Falha em conexão local não afeta a rede
- Falha no barramento o problema em alguma interface bloqueia o funcionamento de todo o sistema

Barramento Segmentado

Característica

- Todos os nodos estão diretamente conectados a meios físicos compartilhados e estes meios físicos podem estar conectados
- Rede dinâmica, ponto-a-ponto (ligação entre segmentos) e multiponto (em cada segmento), espaço-temporal
- Escalabilidade reduzida a uma centena de nodos por segmento

Comunicação

Nodos se comunicam diretamente através de barramentos compartilhados

Redundância de comunicação

- Falha em conexão local não afeta a rede
- Falha em um segmento pode particionar a rede
- Problema em alguma interface bloqueia o funcionamento de um segmento

Redes Linear

Característica

- Cada máquina é diretamente a uma ou duas máquinas
- Rede dinâmica ou estática, ponto a ponto, espacial ou espaço-temporal
- Escalabilidade alta, embora grande número de nodos acarrete baixo desempenho

Grau

2 (nas pontas) ou 4 (demais) → todas as conexões são bidirecionais

Diâmetro

n-1 (n é o número de nós)

Número de conexões

$$2 \times (n-1)$$

Comunicação

Em geral lenta → depende muito do mapeamento de tarefas nos nós

Redundância de comunicação

Muito baixa → a quebra de apenas uma conexão já particiona a rede

Rede Totalmente Conectada

Característica

- Cada nodo é diretamente conectado com todos os demais
- Rede estática, ponto a ponto, espacial
- Escalabilidade muito reduzida devido ao grau dos nodos
- Grau

$$2 \times (n-1)$$

Diâmetro

1

Número de conexões

- Comunicação
 - Muito rápida → somente uma conexão
- Redundância de comunicação
 - Muito alta → muitas conexões precisam falhar para o sistema ser particionado em subsistemas não comunicantes

Rede Hierárquica

Característica

- Nodos são organizados como uma árvore
- Rede dinâmica ou estática, ponto a ponto, espacial ou espaço-temporal
- Configuração comum para redes corporativas: escritórios individuais são conectados ao escritório principal
- Escalabilidade limitada em largura, mas livre em profundidade

Comunicação

- Direta entre pais e filhos
- Demais comunicações exigem máquinas intermediárias

Redundância de comunicação

 Falha de um pai implica particionamento da rede

Árvores Binárias

Característica

- Cada nodo pai está conectado a exatamente dois nodos filhos
- Rede dinâmica ou estática, ponto a ponto, espacial ou espaço-temporal
- Escalabilidade alta, embora aumento da profundidade reduza o desempenho da rede

Grau

2 (folhas), 4 (raíz) ou 6 (demais nodos)

Diâmetro

Diâmetro cresce de forma linear em relação à altura da árvore Diâmetro cresce de forma logarítmica em relação ao número de nós $2 \times \log_2(n + 1) - 2$ (para árvores binárias completas)

Número de conexões

$$2 \times (n-1)$$

Comunicação

 Todo fluxo de dados entre a sub-árvore esquerda e direita passa pela raiz (gargalo da rede) → Inadequada para muitas aplicações

Redundância de comunicação

 Muito baixa → Falha de um nodo resulta perda da ligação com toda a sub-árvore abaixo

Rede Estrela

Característica

- Um nodo se conecta a todos os demais. N\u00e3o existe qualquer outra conex\u00e3o entre os demais nodos
- Rede dinâmica ou estática, ponto a ponto, espacial ou espaço-temporal
- Número de nodos limitado pelo nodo central
- Fácil de colocar novas conexões e modificar conexões existentes
- Escalabilidade baixa → limitada pelo nodo central

Grau

 $2 \times (n-1)$ (raiz) e 2 (demais nodos)

Diâmetro

1 ou 2

Número de conexões

$$2 \times (n-1)$$

Comunicação

 Toda comunicação tem apenas e sempre um nodo intermediário (nodo central). Esse esquema de transferência não garante rapidez visto que o nodo central pode estar sobrecarregado

Redundância de comunicação

- Quebra em uma única conexão afetará apenas nodo a ela conectado
- Quebra de nodo central derruba toda rede
- Usualmente confiável

Rede Anel

Característica

- Cada nodo é sempre conectado a exatamente outros dois nodos
- Rede dinâmica ou estática, ponto a ponto, espacial ou espaço-temporal
- Alta escalabilidade embora comprometa o desempenho da rede

Grau

2 (unidirecional), 4 (bidirecional)

Diâmetro

n / 2 (bidirecional)

n-1 (unidirecional)

Número de conexões

n (unidirecional), $2 \times n$ (bidirecional)

Comunicação

- Unidirecional
 - Uma conexão é de entrada e outra é de saída. Quebra de uma conexão derruba rede
- Bidirecional
 - cada nodo pode transmitir informação para ambos vizinhos. Suporta quebra de uma conexão. Quebra de mais de uma conexão particiona a rede

Rede Anel (Outras topologias)

Características

- Nodos podem ter mais de duas conexões
- Redes dinâmica ou estática, ponto a ponto, espacial ou espaço-temporal
- Redundância e custos da comunicação aumentam com o número de cordas
- Escalabilidade menor que a rede anel simples → dependente do número de cordas

Malha 2D

Característica

- Nodos se conectam de forma a gerar uma forma matricial
- Rede dinâmica ou estática, ponto a ponto, espaço-temporal
- Alta escalabilidade
- Aplicadas em áreas que requerem um grande poder de processamento

Grau

4, 6 e 8 (todos os nodos centrais)

Diâmetro

$$2 \times (sqrt(n) - 1)$$

Número de conexões

$$4 \times (n - sqrt(n))$$

Comunicação

 Existência de caminhos alternativos entre nós aumenta confiabilidade e diminui risco de gargalos

Redundância de comunicação

A rede tem que quebrar em vários pontos para ser particionada

Toro Dobrado 2D

Característica

- Nodos se conectam de forma a gerar uma forma matricial com comunicação entre os limites da matriz
- Rede dinâmica ou estática, ponto a ponto, espaço-temporal
- Alta escalabilidade
- Aplicadas em áreas que requerem um grande poder de processamento

Grau

8

Diâmetro

sqrt(n) - 1

Número de conexões

 $4 \times n$

Comunicação

 Existência de caminhos alternativos entre nos aumenta contrabilidade e diminui risco de gargalos

Redundância de comunicação

A rede tem que quebrar em vários pontos para ser particionada

Hipercubo 3D

Característica

- Cada nodo se conecta a exatamente outros três, formando um cubo
- Rede dinâmica ou estática, ponto a ponto, espaço-temporal
- Não escalável
- Grau

6

Diâmetro

$$log_2(n) = 3$$

Número de conexões

$$3 \times n = 24$$

- Estrutura adequada para comunicações entre máquinas que requerem alto paralelismo
- Redundância de comunicação
 - Muito alta → diversas conexões tem que quebrar para particionar a rede

Hipercubo 4D

Característica

- Cada nodo se conecta a exatamente outros quatro, formando cubos totalmente conectados
- Rede dinâmica ou estática, ponto a ponto, espaço-temporal
- Não escalável

Grau

8

Diâmetro

$$sqrt(n) = 4$$

Número de conexões

$$4 \times n = 64$$

- Comunicação
 - Estrutura adequada para comunicações entre máquinas que requerem alto paralelismo

Redundância de comunicação

Muito alta → diversas conexões tem que quebrar para particionar a rede

Matriz de Chaveamento (crossbar)

Características

- Infraestrutura de comunicação de alto custo
- Permite chaveamento entre dois nodos quaisquer
- Rede dinâmica, ponto a ponto ou multiponto, espacial
- Não é bloqueante
 - Sem contenção
- Baixa escalabilidade
 - O que limita é o número de portas
 - Permite acréscimo de nodos aos pares
- Grau

2

Diâmetro

1

Número de conexões

 $2 \times n^2$

Comunicação

 Inviabiliza, por razões econômicas, sua utilização para interconexão de muitos processadores

Uso

- Infraestrutura de comunicação unilateral para ligar processadores a memórias em um multiprocessador
- infraestrutura de comunicação bilateral para interligar processadores de um multicomputador

Rede Multinível Ômega

Característica das conexões

- Número de linhas dado pela metade do número de nodos
- Log₂ n matrizes de chaveamento por caminho
- Existe apenas um caminho possível entre entrada e saída
 - A escolha do caminho é muito eficiente e pode ser feita de forma descentralizada
 - Essa falta de redundância torna a rede bloqueante

Rede Híbrida (Barramento-estrela)

Composição de Topologias

- Também chamadas de topologias híbridas
- Caso mais comum para grandes corporações e WANs

Características Topológicas

(preencha o que falta)

Redes	Grau do nó	Diâmetro da rede	Número conexões
Linear	2 e 4	???	2 × (n – 1)
Totalmente conectada	???	1	n² – n
Árvore binária (completa)	2, 4 e 6	$2 \times \log_2(n+1) - 2$???
Estrela	2 e 2 × (n – 1)	???	2 × (n – 1)
Anel simples (bi)	4	n / 2	???
Malha 2D (quadrada)	???	$2\times(\sqrt{n}-1)$	$4 \times (n - \sqrt{n})$
Toro dobrado 2D	8	$\sqrt{\frac{n}{n}}$ - 1	$4 \times (n - \sqrt{n})$???
Hipercubo 3D	6	log ₂ (n)	3×n
Hipercubo 4D	8	\sqrt{n}	4×n
Barramento	2	1	1
Crossbar (bi)	2	1	2 × n ²
Rede Omega	4	3	3×n

Características Topológicas

Redes	Grau do nó	Diâmetro da rede	Número conexões
Linear	2 e 4	n _1	2 × (n – 1)
Totalmente conectada	2 × (n - 1)	1	n² – n
Árvore binária (completa)	2, 4 e 6	$2 \times \log_2(n+1) - 2$	2 × (n – 1)
Estrela	2 e 2 × (n – 1)	1 ou 2	2 × (n - 1)
Anel simples (bi)	4	n/2	2×n
Malha 2D (quadrada)	4, 6 e 8	$2\times(\sqrt{n}-1)$	$4 \times (n - \sqrt{n})$
Toro dobrado 2D	8	\sqrt{n} -1	4×n
Hipercubo 3D	6	log ₂ (n)	3×n
Hipercubo 4D	8	\sqrt{n}	4×n
Barramento	2	1	1
Crossbar (bi)	2	1	2 × n ²
Rede Omega	4	3	3×n

Eficiência Topológica para Diferentes Requisitos de Escritores e Leitores

Redes	1-para-1 (Unicast)	Todos-para-1	1-para-todos (Broadcast)	Máximo simultâneo
Linear	n – 1	(n² – n) / 2	n – 1	2 × (n – 1)
Total. conectada	1	1	1	n² – n
Árvore binária	2 × (log ₂ (n+1) -1)	n – 1	$2 \times (\log_2(n+1) - 1)$	2 × (n – 1)
Estrela	2	n – 1	2	2 × (n – 1)
Anel simples (bi)	n / 2	n / 2	n/2	2 × n
Malha 2D	$2\times (\sqrt{n}-1)$	[n/2]	$2\times (\sqrt{n}-1)$	$4 \times (n - \sqrt{n})$
Toro dobrado 2D	\sqrt{n}	\sqrt{n}	\sqrt{n}	4×n
Hipercubo 3D	log ₂ (n)	log ₂ (n)	log ₂ (n)	3 × n
Hipercubo 4D	\sqrt{n}	\sqrt{n} + 1	\sqrt{n}	4×n
Barramento	1	n – 1	1	1
Crossbar (bi)	1	1	1	2 × (n – 1)
Rede Omega	log ₂ (n)	$n \times \log_2(n)$	log₂(n)	n

Índice

- 1. Introdução
- 2. Topologias
- 3. Exercícios

- 1. Cite algumas topologias físicas de redes
- 2. Quais as semelhanças entre a topologia tipo barramento e a topologia de rede estrela?
- Compare diversas topologias de rede em termos de redundância de caminhos de comunicação
- 4. Compare duas topologias com relação ao quesito tolerância a falhas
- 5. Compare a rede malha com a rede ômega com relação à contenção de pacotes

- 9. Em uma arquitetura de 6 processadores, calcule o tempo total para cada processador enviar uma mensagem para os outros 5 processadores, com infraestruturas de comunicação do tipo: (a) barramento, (b) anel bidirecional simples, (c) crossbar e (d) torus 2D. Desenhe as infraestruturas de comunicação
- 10. Quando se deseja uma maior flexibilidade de interconexão, se utilizam redes dinâmicas. Apresente uma rede dinâmica do tipo bloqueante e outra do tipo não bloqueante. Qual a mais utilizada, e por qual razão?
- 11. Desenhe uma infraestrutura de comunicação que possua grau 4 para interligar 7 processadores
- 12. Defina os parâmetros "grau do nó" e "diâmetro de uma rede" em arquiteturas tipo MIMD conectada por uma rede. De o grau dos nós e o diâmetro das seguintes redes:

Rede	Grau	Diâmetro
Anel simples bidirecional		
Árvore binária completa		
Toro 2D		

- 13. Você foi contratado para projetar uma rede para os seguintes ambientes descritos a seguir. Quais configurações de rede você irá utilizar? Justifique
 - Um campus universitário e
 - Um andar de dormitórios
- 14. Explique como a escolha de uma infraestrutura de comunicação pode aumentar o desempenho de uma aplicação. É possível que uma infraestrutura de comunicação tenha um ótimo resultado em uma aplicação e ruim em outra?
- 15. (ENADE 2005 Eng. II 52) Considere os seguintes custos para os componentes de uma rede de computadores: R\$ 1000,00 para um nó, R\$ 200,00 para uma placa adaptadora entre uma conexão bidirecional e um nó, e R\$ 100,00 para estabelecer uma conexão física bidirecional entre dois nós. Foram implementadas três redes (R1, R2 e R3), conectando-se quatro nós em três topologias distintas: R1 em estrela, R2 em anel e R3 totalmente conectada. Os custos das redes R1, R2 e R3, respectivamente, serão:
 - a) R\$ 6000,00, R\$ 6000,00 e R\$ 6000,00
 - b) R\$ 6000,00, R\$ 5200,00 e R\$ 6200,00
 - c) R\$ 5500,00, R\$ 6000,00 e R\$ 7000,00
 - d) R\$ 5000,00, R\$ 7000,00 e R\$ 7800,00
 - e) R\$ 5500,00, R\$ 7000,00 e R\$ 7000,00

Resposta de Exercícios

- 13. Você foi contratado para projetar uma rede para os seguintes ambientes descritos a seguir. Quais configurações de rede você irá utilizar? Justifique
 - Um campus universitário e
 - Um andar de dormitórios
- 14. Explique como a escolha de uma infraestrutura de comunicação pode aumentar o desempenho de uma aplicação. É possível que uma infraestrutura de comunicação tenha um ótimo resultado em uma aplicação e ruim em outra?
- 15. (ENADE 2005 Eng. II 52) Considere os seguintes custos para os componentes de uma rede de computadores: R\$ 1000,00 para um nó, R\$ 200,00 para uma placa adaptadora entre uma conexão bidirecional e um nó, e R\$ 100,00 para estabelecer uma conexão física bidirecional entre dois nós. Foram implementadas três redes (R1, R2 e R3), conectando-se quatro nós em três topologias distintas: R1 em estrela, R2 em anel e R3 totalmente conectada. Os custos das redes R1, R2 e R3, respectivamente, serão:
 - a) R\$ 6000,00, R\$ 6000,00 e R\$ 6000,00
 - b) R\$ 6000,00, R\$ 5200,00 e R\$ 6200,00
 - c) R\$ 5500,00, R\$ 6000,00 e R\$ 7000,00
 - d) R\$ 5000,00, R\$ 7000,00 e R\$ 7800,00
 - e) R\$ 5500,00, R\$ 7000,00 e R\$ 7000,00

16. Mostre que a infraestrutura abaixo é bloqueante fixando um caminho e mostrando outro que não podem ser utilizado ao mesmo tempo (considerando chaveamento de circuito)

- 17. Compare uma infraestrutura de comunicação do tipo barramento com uma rede tipo estrela com relação à escalabilidade, segurança, desempenho e contenção de pacotes
- 18. Discuta a afirmação: "É importante destacar que não adianta quebrar a memória principal em vários módulos se a rede de interconexão não suportar múltiplas transações"
- 19. Como uma rede crossbar pode ser usada para a construção de um multicomputador (desenhe)?

Resposta de Exercícios

16. Mostre que a infra-estrutura abaixo é bloqueante fixando um caminho e mostrando outro que não podem ser utilizado ao mesmo tempo (considerando chaveamento de circuito)

Comunicação 3-A conflita com comunicação 1-B

- 17. Compare uma infra-estrutura de comunicação do tipo barramento com uma rede tipo estrela com relação à escalabilidade, segurança, desempenho e contenção de pacotes
- 18. Discuta a afirmação: "É importante destacar que não adianta quebrar a memória principal em vários módulos se a rede de interconexão não suportar múltiplas transações"
- 19. Como uma rede crossbar pode ser usada para a construção de um multicomputador (desenhe)?