Model fitting challenges

Understanding model fit

Underfitting/Overfitting is one of the main causes for poor model accuracy

Underfitting

Not modelling the data well enough!

- Inadequate learning while training for the exam
- Consequently, bad performance in the exam

Overfitting

Fitting data at all costs!

NSE talent IIIT Hyderabad

Overfitting

Overfitting

linear regression (polynomial degree = 1)

linear regression with higher degree polynomial features to approximate nonlinear functions

Detecting Overfitting

The key indicator

TRAINING ACCURACY

TESTING ACCURACY

Detecting Underfitting/Overfitting

Summary

Reasons for Underfitting

Short training

Simplistic model

Lack of enough features

Learning noise in the data

Using a complex model for a simple task

Inappropriate model hyperparameters

NSE talent / IIIT Hyderabad

Learning noise in the data

NSE talent

Using a complex algorithm for a simple task

A Rube Goldberg machine, named after American cartoonist Rube Goldberg, is a machine intentionally designed to perform a simple task in an indirect and overly complicated way.

https://towardsdatascience.com/simplicity-vs-complexity-in-machine-learning

NSE talent

Inappropriate model hyperparameter(s)

A simple decision tree built on this data will iteratively split the data along one or the other axis according to some quantitative criterion

With default max_depth = None, the nodes are expanded until all leaves are pure

<u>Python Data Science Handbook</u> by Jake VanderPlas

Hyperparameter tuning – Decision tree

Demo_Overfitting_Diabetes

Dataset: Diabetes dataset

 Objective: To understand the influence of tuning hyperparameters to avoid Overfitting

Addressing Overfitting

Use More Data → Can learn more parameters

- Reduce the number of features or dimensions
 - Select which features to keep
 - Reduce dimension
 - Select which model to use

How to prevent/reduce overfitting?

- Train with more data
- Reduce/Remove features
- Early Stopping
- Regularization
- Ensembling

Early Stopping

Regularization

Regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting.

What to Minimize? (regularization)

We were minimizing:

$$\varepsilon = \sum_{i} (z_i - y_i)^2 = \sum_{i} (z_i - f(x_i))^2$$

We can minimize

Fit error + some measure of complexity of the model

- € + Sum of squares of Weights
- € + Number of Non-zero Weights

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Ridge Regression (L2-Norm), Lasso Regression (L1-norm) - Least Absolute Shrinkage and Selection Operator

Effect of Regularization

Fit a curve to the data

Learn W to fit the following polyn regression

$$y = w_{25}.x^{25} + w_{24}.x^{24} + .. + w_{1}.x + w_{0} = 0.25$$

Blue curve represents the true function

Curve fitting with different regularizations

No Regularisation

L1 Regularisation $\lambda = 0.0125$

L2 Regularisation $\lambda = 0.0125$

Lambda=Regularization Parameter (alpha)

Polynomial Regression

160.0759

170.3994

101.963

-4.17172

-4.0303-3.88889

Third Degree Polynomial Feature Transformation

Second Degree Polynomial Feature Transformation

-7	311		
-6.85859	335.524		
-6.71717	328.288		
-6.57576	275.292	200	•
-6.43434	296.536	350 -	*
-6.29293	297.0199	300 -	•
-6.15152	292.7438	250 -	
-6.0101	222.7077	S	
-5.86869	225.9115	⊒ 200 ⋅	* * * * * * * * * * * * * * * * * * *
-5.72727	254.3554	Y-Values	
-5.58586	264.0392		****
-5.44444	201.963	100 -	
-5.30303	186.1267	50 -	0.00
-5.16162	173.5305	0.	• • • • • • • • • • • • • • • • • • • •
-5.0202	203.1742		-6 -4 -2 0 2 4 6
-4.87879	214.0579		X-Values
-4.73737	182.1815	From	n the plot, it is seen that there is no line
-4.59596	190.5451		•
-4.45455	196.1488	relati	tionship between X and Y.

From the plot, it is seen that there is no linear	Γ.
relationship between X and Y.	

-			-		1		_		
$(1+X)^2=1+2x+X^2=(1,X,X^2)$			$(1+X)^3=1+3X+3X^2+X^3=(1, X, X^2, X^3)$						
f1	f2	f3	Y	f1	f2	f3	14	Υ	
1	-7	49	311	1	-7	49	-343	311	
1	-6.85859	47.0402	335.524	1	-6.85859	47.0402	-322.629	335.524	
1	-6.71717	45.1204	328.288	1	-6.71717	45.1204	-303.081	328.288	
1	-6.57576	43.24059	275.292	1	-6.57576	43.24059	-284.34	275.292	
1	-6.43434	41.40078	296.536	1	-6.43434	41.40078	-266.387	296.536	
1	-6.29293	39.60096	297.0199	1	-6.29293	39.60096	-249.206	297.0199	
1	-6.15152	37.84114	292.7438	1	-6.15152	37.84114	-232.78	292.7438	
1	-6.0101	36.12131	222.7077	1	-6.0101	36.12131	-217.093	222.7077	
1	-5.86869	34.44149	225.9115	1	-5.86869	34.44149	-202.126	225.9115	
1	-5.72727	32.80165	254.3554	1	-5.72727	32.80165	-187.864	254.3554	
1	-5.58586	31.20182	264.0392	1	-5.58586	31.20182	-174.289	264.0392	
1	-5.44444	29.64198	201.963	1	-5.44444	29.64198	-161.384	201.963	
1	-5.30303	28.12213	186.1267	1	-5.30303	28.12213	-149.133	186.1267	
1	-5.16162	26.64228	173.5305	1	-5.16162	26.64228	-137.517	173.5305	
1	-5.0202	25.20243	203.1742	1	-5.0202	25.20243	-126.521	203.1742	
1	-4.87879	23.80257	214.0579	1	-4.87879	23.80257	-116.128	214.0579	
1	-4.73737	22.44271	182.1815	1	-4.73737	22.44271	-106.32	182.1815	
1	-4.59596	21.12284	190.5451	1	-4.59596	21.12284	-97.0797	190.5451	
1	-4.45455	19.84298	196.1488	1	-4.45455	19.84298	-88.3914	196.1488	

Now, instead of using 'X ' as input features, We will use f1,f2,f3,... as features for modeling . So it becomes simply a multivariable regression problem.

Summary

- Find model that is simple and fitting the data.
- Problem of overfitting.
 - How to detect? What to observe during learning?
 - How to avoid.
- Regularize the solution by adding extra term that also minimize the "complexity".
- Right way to design solution with
 - Train, Val and Test splits.

Thanks!!

Questions?