Сходимость случайных величин

А. Плахин, Н. Аверьянов

Клуб теории вероятностей ФЭН ВШЭ

18 февраля 2022 г.

Равенство почти наверное

Определение (Равенство почти наверное)

Будем говорить, что случайные величины X и Y равны почти наверное (a.s.), если $\mathbb{P}\big(\{\omega\in\Omega:X(\omega)=Y(\omega)\}\big)=1$

Утверждение

Пусть \sim будет отношением, которое определено так: $X \sim Y$ тогда и только тогда, когда когда X = Y а.s. Тогда \sim это отношение эквивалентности на множестве случайных величин на вероятностном прострарнстве.

Для доказательства этого факта потребуется следующее тривиальное заменчание. Если A и B такие события, что $\mathbb{P}(A)=\mathbb{P}(B)=1$, то $\mathbb{P}(A\cap B)=1$. $[0\leq \mathbb{P}((A\cap B)^c)=\mathbb{P}(A^c\cup B^c)\leq \mathbb{P}(A^c)+\mathbb{P}(B^c)=0$]

Равенство почти наверное

Доказательство.

- lacktriangle Очевидно, что $X \sim X$ и из того, что $X \sim Y$ следует, что $Y \sim X$.
- footnotesize The proof of the content of the co

Замечание

В общем, свойство выполнено почти наверное, если событие не выполняется с вероятностью 0.

Сходимости почти наверное

Определение

Последовательность случайных величин (f_n) случайных величин сходится почти наверное к случайной величине g если:

$$\mathbb{P}(\{\omega: f_n(\omega) \to g(\omega), \text{ as } n \to \infty\}) = 1$$

Утверждение

Если $f_n o f$ почти наверное при $n o \infty$ и $f_n o g$ почти наверное при $n o \infty$, то f = g почти наверное.

Доказательство.

Пусть
$$A = \{\omega : f_n(\omega) \to f(\omega)\}, \ B = \{\omega : f_n(\omega) \to g(\omega)\}$$
 и $C = \{\omega : f(\omega) = g(\omega)\}.$ Тогда $\mathbb{P}(A) = 1$ и $\mathbb{P}(B) = 1$ и тогда $P(A \cap B) = 1$. Но $A \cap B \subseteq C$, поэтому $\mathbb{P}(C) = 1$.

Сходимость произведения

Утверждение

Предположим, что $f_n \to f$ почти наверное и $g_n \to g$ почти наверное. Тогда $f_n + g_n \to f + g$ почти наверное и $f_n g_n \to f g$ почти наверное.

Доказательство.

Пусть $A=\{\omega: f_n(\omega)\to f(\omega)\},\ B=\{\omega: g_n(\omega)\to g(\omega)\}.$ Тогда $\mathbb{P}(A)=\mathbb{P}(B)=1$ и поэтому $\mathbb{P}(A\cap B)=1.$ Но каждое из множеств $\{\omega: f_n(\omega)+g_n(\omega)\to f(\omega)+g(\omega)\}$ и $\{\omega: f_n(\omega)+g_n(\omega)\to f(\omega)+g(\omega)\}$ содержат в себе $A\cap B$ и поэтому вероятностная мера от них равна 1.

Сходимость по вероятности

Определение (Сходимость по вероятности)

Последовательность $\{f_n\}$ случайных величин сходится по вероятности к случайной величине f, если

$$\lim_{n\to\infty} \mathbb{P}(\{\omega: |f_n(\omega) - f(\omega)| \ge \epsilon\}) = 0$$

- $f_n \to f, g_n \to g \Rightarrow f_n + g_n \to f + g$
- $f_n \to f, g_n \to g \Rightarrow f_n g_n \to fg$

Сходимость произведения

① Предположим $f_n \to 0$ по вероятности. Тогда $f_n g \to 0, \forall g$ $B_m = \{\omega: |g(\omega)| < m\} \Rightarrow \mathbb{P}(B_m) \uparrow 1 \Rightarrow \mathbb{P}(B_m^c) \to 0$

$$\{\omega: |f_n(\omega)g(\omega)| \geq \epsilon\} \subseteq \{\omega: |f_n(\omega)| \geq \epsilon/m\} \cup \{\omega: |g(\omega)| \geq m\}$$

$$\mathbb{P}(\{\omega: |f_n(\omega)g(\omega)| \ge \epsilon\})$$

$$\leq \mathbb{P}(\{\omega: |f_n(\omega)| \ge \epsilon/m\}) + \mathbb{P}(\{\omega: |g(\omega)| \ge m\}) \to 0$$

- $2 f_n \to 0, g_n \to 0 \Rightarrow f_n g_n \to 0$

Сходимость почти наверное ⇒ по вероятности

Утверждение

 $f_n o f$ почти наверное $f_n o f$ по вероятности

Доказательство.

Обозначим за O множество $\{\omega: \lim f_n(\omega) \neq f\}$

$$A_n = \bigcup_{m \geq n} \{ |f_m - f| \geq \epsilon \}, \ A_{n+1} \subseteq A_n, \ A = \bigcap_n A_n \}$$

Для $\omega \in O^c$ и для какого-то n > N выполняется $|X_n(\omega) - X| < \epsilon$

$$\rightarrow \omega \notin A \Rightarrow A \cap O^c = \emptyset \Rightarrow \mathbb{P}(A) = 0$$

Сходимость по распределению

Определение

Последовательность случайных величин $\{f_n\}$ сходится по распределнию к f, если

$$\lim_{n\to\infty} F_n(x) = F(x)$$

для всех x, в которых F непрерывна.

Теорема (Леви)

Последовательность случайных величин $\{f_n\}$ сходится по распределнию к f тогда и только тогда, когда:

$$\mathbb{E}[e^{iuf_n}] o \mathbb{E}[e^{iuf}]$$
 поточечно

Сходимость в среднем

Определение

Последовательность случайных величин $\{f_n\}$ сходится в среднем порядка r к f, если

$$\lim_{n\to\infty}\mathbb{E}[|X_n-X|^r]=0$$