Lecture 10e

Numerical Algorithms for Unconstrained Optimization: Diminishing Step Size

Outline

- -Introduction
- -Choosing a Step Size
 - -Constant Step Size
 - -Diminishing Step Size

Introduction

Recall that we are examining algorithms of the form

$$x^{k+1} = x^k + \alpha^k d^k$$

$$k = 0, 1, ...$$

(Eq.1.5)

where

 α^k = step size (positive scalar)

 d^k = direction (vector)

Recall that for our analysis purposes, we consider d^k to be a unit vector.

We now investigate two simple methods for choosing the step size

- 1. Constant step size
- 2. Diminishing step size

Constant Step Size

The simplest technique for choosing a step size is to simply use a constant step size.

$$\alpha^k = \beta \quad \forall k$$

where β = positive constant

Scenario01: Cost Function f_A , constant step size with $\beta = 0.5$

Consider a cost function of the form

$$f_A(x) = \frac{1}{2} x^T H_A x + g_A^T x + r_A$$

AE501 - Analytical Methods for Aerospace Engineering

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 $H_A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ $g_A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $r_A = 2$

$$f_{A}(x) = \frac{1}{2} x^{T} H_{A} x + g_{A}^{T} x + r_{A}$$
where $x = {x_{1} \choose x_{2}} H_{A} = {1 \choose 1} 2$ $g_{A} = {1 \choose 2} r_{A} = 2$

$$w(r) = x = {x_{1} \choose x_{2}}; HA = {1 \choose 1} 2; gA = {1 \choose 2}; rA = 2;$$

$$temp = \frac{1}{2} Transpose[x] .HA.x + Transpose[gA] .x + rA;$$

$$Print["f_{A}"]$$

$$fA[x_{1}, x_{2}] = temp[1, 1] // Expand$$

$$Print[""]$$

$$Print["vf_{a}"]$$

$$gradFA[x_{1}, x_{2}] = {D[fA[x_{1}, x_{2}], x_{1}] \choose D[fA[x_{1}, x_{2}], x_{2}]} // Simplify;$$

$$gradFA[x_{1}, x_{2}] // MatrixForm$$

$$Print[""]$$

$$(*Analytically calculate stationary point*)$$

$$Print[""stationary point"]$$

$$temp = Solve[\{gradFA[x_{1}, x_{2}][1, 1] = \emptyset, gradFA[x_{1}, x_{2}][2, 1] = \emptyset\}, \{x_{1}, x_{2}\};$$

$$x_{1}star = x_{1} /. temp[1]$$

$$Print[""]$$

$$Print["f(x')"]$$

$$fA[x_{1}star, x_{2}star]$$

$$Print[""]$$

$$(*Plot the scenario*)$$

$$x_{1}min = -15; x_{1}max = 15; x_{2}min = -15; x_{2}max = 15;$$

$$f_{1}ghContour = ContourPlot[fA[x_{1}, x_{2}], \{x_{1}, x_{1}min, x_{1}max\},$$

$$\{x_{2}, x_{2}min, x_{2}max\}, PlotPoints \rightarrow 25, ColorFunction \rightarrow Hue]$$

$$f_{A}$$

$$Cou[r] = 2 + x_{1} + \frac{x_{1}^{2}}{2} + 2 \times 2 + x_{1} \times 2 + x_{2}^{2}$$

$$Vf_{A}$$

$$Cou[r] = x_{1} + x_{2} + x_{3} + x_{4} + x_{$$

Stationary point

Out[
$$\circ$$
]= -1

 $f(x^*)$

 $Out[\circ]=$ 1

Depending on the initial condition, the algorithm would walk down the contour in successive steps. For example, consider a scenario with

$$\beta = 0.5$$

$$x^0 = \begin{pmatrix} -5 \\ 12 \end{pmatrix}$$

The results are shown below

As can be seen, the converge is reasonable but it takes a relatively large number of iterations to reach the stationary point.

Scenario02: Cost Function f_A , constant step size with $\beta = 2.5$

If we increase the step size to β = 2.5, some interesting behavior emerges

The algorithm "bounces around" the statinoary point as the step size it too large.

	pro	cons
smaller step size	able to find stationary point	slow progress
larger step size	fast progress	may miss stationary point

Scenario03: Cost Function f_B , constant step size with $\beta = 2.5$

We can modify the cost function slightly to illustrate another shortcoming of this approach Consider a cost function of the form

$$f_B(x) = \frac{1}{2} x^T H_B x + g_B^T x + r_B$$

where
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 $H_B = \begin{pmatrix} 1 & 1 \\ 1 & 200 \end{pmatrix}$ $g_B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $r_B = 101$

```
log(a) := HB = \begin{pmatrix} 1 & 1 \\ 1 & 200 \end{pmatrix}; gB = \begin{pmatrix} 1 \\ 200 \end{pmatrix}; rB = 101;
         temp = \frac{1}{2} Transpose[x].HB.x + Transpose[gB].x + rB;
         Print["f<sub>B</sub>"]
         fB[x1_, x2_] = temp[[1, 1]] // Expand
         Print[" "]
         Print["⊽f<sub>B</sub>"]
         gradFB[x1_, x2_] = \begin{pmatrix} D[fB[x1, x2], x1] \\ D[fB[x1, x2], x2] \end{pmatrix} // Simplify;
         gradFB[x1, x2] // MatrixForm
         Print[" "]
         (*Analytically calculate stationary point*)
         Print["Stationary point"]
         temp = Solve[{gradFB[x1, x2] [1, 1] == 0, gradFB[x1, x2] [2, 1] == 0}, {x1, x2}];
         x1star = x1 /. temp[[1]]
         x2star = x2 /. temp[[1]]
         Print[" "]
         Print["f(x*)"]
         fB[x1star, x2star]
         Print[" "]
         (*Plot the scenario*)
         x1min = -15; x1max = 15; x2min = -15; x2max = 15;
         fighContour = ContourPlot[fB[x1, x2], {x1, x1min, x1max},
            \{x2, x2min, x2max\}, PlotPoints \rightarrow 25, ColorFunction \rightarrow Hue]
         f_B
 Out[*]= 101 + x1 + \frac{x1^2}{2} + 200 \times 2 + x1 \times 2 + 100 \times 2^2
Out[•]//MatrixForm=
          \begin{pmatrix} 1 + x1 + x2 \\ x1 + 200 \times (1 + x2) \end{pmatrix}
         Stationary point
  Out[0]= 0
  Outfole -1
         f(x^*)
```

Out[•]= **1**

The results are shown below

As can be seen, it makes very slow converge towards to the stationary point due to the poor scaling of the decision variables.

Diminishing Step Size

An alternative is to choose the step size to be proportional to the norm of the gradient.

$$\alpha^k = \gamma \mid\mid \nabla f(x^k)\mid\mid$$

 γ = scaling factor where

 $||\nabla f(x^k)||$ = norm of the gradient at x^k

The behavior is that when the gradient is large, the step size is large and vice versa.

Scenario 04: Cost Function f_A , diminishing step size with $\gamma = 0.5$

As can be seen, converge is reasonable with initial large steps which then diminish as we approach the stationary point.

Scenario 05: Cost Function f_A , diminishing step size with $\gamma = 0.75$

If the parameter γ is not chosen appropriately, interesting/undesirable behavior can emerge. For example, increasing γ to

Scenario 06: Cost Function f_A , diminishing step size with $\gamma = 0.8$

Further increasing γ to 0.8 yields

The system diverges as the step size is too large.

Scenario07: Cost Function f_B , diminishing step size with $\gamma = 0.009$

As we saw previously, we need to use a small γ to ensure that the system does not diverge. This problem is exacerbated by examining f_B . If we use $\gamma = 0.01$ the system diverges. As such, we chose $\gamma = 0.009$ which yields the result shown below

So we see that there are still issues with the diminishing step size scheme with the poorly scaled problem.