# What is SOI?

Do we really need it?

Benefit for Processors, RF



Cork, Ireland

AMD

#### 1- What is SOI?

- 2- Bulk MOSFET vs. SOI MOSFET
- **3- Bulk & SOI MOSFET fundamentals**Types of SOI transistors
- 4- What is so special about SOI MOSFETs?
  Partially depleted MOSFET
  DTMOS/MTCMOS
  Fully Depleted SOI
- 5- Unified body effect representation
  Simple and physics-based comparison of body effect
  between devices
- **5- SOI for Microprocessors**
- **6- SOI for High-Temperature Circuits**
- 7- SOI for RF Circuits



# SOI = Silicon On Insulator



NANO KISS



# SOI = Silicon On Insulator

Silicon Layer

 $0.1~\mu m_{\perp}$ or less Insulator (SiO<sub>2</sub>) 1000 µm 1000 µm Silicon Silicon Wafer Wafer



"Bulk" silicon SOI







Formation of cracks near the projected range of a silicon wafer implanted with hydrogen.

A: Bonding of the handle wafer to the seed wafer B: Formation of a crack network near the projected range upon annealing.

TEM micrograph of a crack





| Product Family                        | Thin SOI                            |                                 | HM UNIBOND™ | Thick SOI |                                |                    |
|---------------------------------------|-------------------------------------|---------------------------------|-------------|-----------|--------------------------------|--------------------|
| Products by Applications              | Ultra-Thin<br>UNIBOND™<br>XUT, XUT+ | Ultra-Thin<br>UNIBOND™<br>UTSOI | sS0I        | UNIBOND™  | UNIBOND <sup>TM</sup><br>+ Epi | Engineered<br>BSOI |
| CMOS logic                            |                                     | •                               | •           |           |                                |                    |
| Power management ICs -                |                                     |                                 |             | -         | _                              | -                  |
| Analog & mixed signal                 | <b>—</b>                            |                                 |             | -         | _                              | -                  |
| RF & microwave components -           | <b>—</b>                            |                                 |             | -         | _                              |                    |
| Discrete power devices -              |                                     |                                 |             |           | _                              | _                  |
| Radiation hard & high temperature ICs | <b>—</b>                            |                                 |             | _         | _                              |                    |
| Imaging -                             |                                     |                                 |             |           | -                              | -                  |
| M(0)EMS                               | _                                   |                                 |             | -         | _                              | _                  |
| Memories -                            |                                     |                                 |             |           |                                |                    |
| Silicon photonics -                   | _                                   |                                 |             |           |                                |                    |
| Solid state lighting                  |                                     |                                 |             |           |                                |                    |

Current offering



#### 1- What is SOI?

#### 2- Bulk MOSFET vs. SOI MOSFET

### 3- Bulk & SOI MOSFET fundamentals

Types of SOI transistors

#### 4- What is so special about SOI MOSFETs?

Partially depleted MOSFET DTMOS/MTCMOS Fully Depleted SOI

#### 5- Unified body effect representation

Simple and physics-based comparison of body effect between devices

- **5- SOI for Microprocessors**
- 6- SOI for High-Temperature Circuits
- 7- SOI for RF Circuits



## Latch-up and S&D capacitances



A: Cross section showing the latchup path in a bulk CMOS inverter.

B: Cross section of an SOI CMOS inverter.

The drain parasitic capacitances are also presented.



# Leakage currents





NANO KISS

## Soft Errors



Ion strike on A: a bulk PN junction, and B: an SOI junction.



- 1- What is SOI?
- 2- Bulk MOSFET vs. SOI MOSFET
- 3- Bulk & SOI MOSFET fundamentals

Types of SOI transistors

4- What is so special about SOI MOSFETs?

Partially depleted MOSFET

DTMOS/MTCMOS

Fully Depleted SOI

5- Unified body effect representation

Simple and physics-based comparison of body effect between devices

- **5- SOI for Microprocessors**
- **6- SOI for High-Temperature Circuits**
- 7- SOI for RF Circuits



### A few definitions....





# Types of (single-gate) SOI MOSFETs





Fully depleted SOI MOSFET

Source Gate

N+ N-type N+

Accumulation-mode
SOI MOSFET

Si substrate
(back gate)



Hybrid/MTCMOS/ DTMOS FET

15

- 1- What is SOI?
- 2- Bulk MOSFET vs. SOI MOSFET
- **3- Bulk & SOI MOSFET fundamentals**Types of SOI transistors
- 4- What is so special about SOI MOSFETs?

  Partially depleted MOSFET

DTMOS/MTCMOS Fully Depleted SOI

- 5- Unified body effect representation
  Simple and physics-based comparison of body effect
  between devices
- **5- SOI for Microprocessors**
- **6- SOI for High-Temperature Circuits**
- 7- SOI for RF Circuits



## Kink Effect: Implications





Fig. 86. Characteristic curves of CMOS-SOS devices having 5.0- $\mu$ m channel lengths and exhibiting two drain saturation regions.

A.C. Ipri AC (1981), "The properties of silicon-on-sapphire substrates, devices, and integrated circuits", Applied Solid-State Sciences, Supplement 2, Silicon Integrated Circuits, Part A, Ed. by. D. Kahng, Academic Press, pp. 253-395, 1981

Good: - increased drain current

<u>Bad</u>: - poor output conductance, low Early voltage

- kink effect generates noise \*

Simoen E, Magnusson U, Rotondaro ALP. The kink-related excess low-frequency noise in silicon-on-insulator MOST's. IEEE Transactions on Electron Devices, vol.41, no.3, March 1994, pp.330-9

- 1- What is SOI?
- 2- Bulk MOSFET vs. SOI MOSFET
- **3- Bulk & SOI MOSFET fundamentals**Types of SOI transistors
- 4- What is so special about SOI MOSFETs?
  Partially depleted MOSFET
  DTMOS/MTCMOS
  Fully Depleted SOI
- 5- Unified body effect representation
  Simple and physics-based comparison of body effect
  between devices
- **5- SOI for Microprocessors**
- **6- SOI for High-Temperature Circuits**
- 7- SOI for RF Circuits



## Gate-to-channel coupling; Body Effect



Body factor: n = ...1.05... in an FDSOI MOSFET (vs. 1.5 in bulk)

JP Colinge: What is SOI?

## Basic MOSFET equations

•Triode 
$$I_D = \mu C_{ox} \frac{W}{L} \left[ (V_G - V_{TH}) V_D - \frac{1}{2} n V_D^2 \right]$$

•Saturation 
$$I_{Dsat} = \frac{1}{2n} \mu C_{ox} \frac{W}{L} (V_G - V_{TH})^2$$

•Subthreshold swing 
$$S = \frac{kT}{q} \ln (10)$$

•Transconductance/current 
$$\frac{g_m}{I_D} = \sqrt{\frac{2\mu C_{ox}W/L}{nI_D}}$$

### "A lower *n* value improves everything"



## Gate-to-channel coupling; Body Effect

$$n \equiv \frac{dV_G}{d\Phi_S} = \frac{C_{ox} + C_{depl}}{C_{ox}} = 1 + \frac{C_{depl}}{C_{ox}} = 1 + \frac{C_{channel to ground}}{C_{channel to gate}}$$

### **FDSOI**

$$n \equiv \frac{dV_G}{d\Phi_S} = \frac{C_{ox} + C_{depl}}{C_{ox}} = 1 + \frac{C_{si}C_{ox2}}{C_{ox1}(C_{si} + C_{ox2})} = 1 + \frac{C_{channel to ground}}{C_{channel to gate}}$$







#### **End of Roadmap Research**







### **Planar**





#### **TriGate**



Tri-Gate transistors can have multiple fins connected together to increase total drive strength





**Basic ID-VG** 

Kuhn: Tyndall 2011





Good news:

Tri-gate short channel improvement → loff improvement

Kuhn: Tyndall 2011





22nm extension → similar ID-VG shape

Kuhn: Tyndall 2011





EXCELLENT news: Improved performance at high voltage and an *unprecedented* performance gain at low voltage

Kuhn: Tyndall 2011



### **E-beam Lithography and Process**



Lay out view of fabricated device















### **Fabricated Device: TEM**





# Future?



# Nanowires and Quantum Dots







# Stress and Strain



Kuhn: Tyndall 2011

# New Materials

#### Si vs Ge MOSFETs



Intel 45nm HiK-MG Si device



Intel HiK-MG Ge device

The introduction of manufacturable HiK-MG transistors has led to the reconsideration of Ge channels



# III-V materials

# III-V vs Ge: NMOS The Lure of High Mobility



Kuhn: Tyndall 2011





