Efficient iterative solvers for director-based models of LCDs

Alison Ramage
Mathematics and Statistics
University of Strathclyde
Glasgow, Scotland

Eugene C. Gartland, Jr.
Mathematics
Kent State University
Ohio, USA

Liquid Crystals

occur between solid crystal and isotropic liquid states

Liquid Crystals

occur between solid crystal and isotropic liquid states

- may have different equilibrium configurations
- switch between stable states by altering applied voltage, magnetic field, boundary conditions, ...

Liquid Crystal Displays

twisted nematic device

Static and Dynamic Continuum Theory of Liquid Crystals, lain W. Stewart (2004)

Modelling: Director-based Models

• director: average direction of molecular alignment unit vector $\mathbf{n} = (\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)$

order parameter: measure of orientational order

$$S = \frac{1}{2} < 3\cos^2\theta_m - 1 >$$

Finding Equilibrium Configurations

minimise the free energy

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \phi, \nabla \theta, \nabla \phi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

Finding Equilibrium Configurations

minimise the free energy

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \phi, \nabla \theta, \nabla \phi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

 if fixed boundary conditions are applied, surface energy term can be ignored

Finding Equilibrium Configurations

minimise the free energy

$$\mathcal{F} = \int_{V} F_{bulk}(\theta, \phi, \nabla \theta, \nabla \phi) + \int_{\mathcal{S}} F_{surface}(\theta, \phi) d\mathcal{S}$$
$$F_{bulk} = F_{elastic} + F_{electrostatic}$$

 if fixed boundary conditions are applied, surface energy term can be ignored

solutions with least energy are physically relevant

Elastic Energy

Frank-Oseen elastic energy

$$F_{elastic} = \frac{1}{2}K_1(\nabla \cdot \mathbf{n})^2 + \frac{1}{2}K_2(\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + \frac{1}{2}K_3(\mathbf{n} \times \nabla \times \mathbf{n})^2 + \frac{1}{2}(K_2 + K_4)\nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}]$$

Frank elastic constants

$$K_1$$
 splay K_2 twist K_3 bend $K_2 + K_4$ saddle-splay

One-Constant Approximation

set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

One-Constant Approximation

set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

vector identities

$$(\nabla \times \mathbf{n})^2 = (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + (\mathbf{n} \times \nabla \times \mathbf{n})^2$$
$$\nabla (\mathbf{n} \cdot \mathbf{n}) = 0$$
$$[(\nabla \cdot \mathbf{n})^2 + (\nabla \times \mathbf{n})^2] + \nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}] = \|\nabla \mathbf{n}\|^2$$

One-Constant Approximation

set

$$K = K_1 = K_2 = K_3, \qquad K_4 = 0$$

vector identities

$$(\nabla \times \mathbf{n})^2 = (\mathbf{n} \cdot \nabla \times \mathbf{n})^2 + (\mathbf{n} \times \nabla \times \mathbf{n})^2$$
$$\nabla (\mathbf{n} \cdot \mathbf{n}) = 0$$
$$[(\nabla \cdot \mathbf{n})^2 + (\nabla \times \mathbf{n})^2] + \nabla \cdot [(\mathbf{n} \cdot \nabla)\mathbf{n} - (\nabla \cdot \mathbf{n})\mathbf{n}] = \|\nabla \mathbf{n}\|^2$$

• elastic energy $F_{elastic} = \frac{1}{2}K \|\nabla \mathbf{n}\|^2$

Electrostatic Energy

- applied electric field \mathbf{E} of magnitude E
- electrostatic energy

$$F_{electrostatic} = -\frac{1}{2}\epsilon_0 \epsilon_{\perp} \mathbf{E}^2 - \frac{1}{2}\epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2$$

• dielectric anisotropy $\epsilon_a = \epsilon_{\parallel} - \epsilon_{\perp}$

$$\epsilon_a = \epsilon_{\parallel} - \epsilon_{\perp}$$

 permittivity of free space ϵ_0

Model Problem: Twisted Nematic Device

two parallel plates distance d apart

strong anchoring parallel to plate surfaces (n fixed)

• rotate one plate through $\pi/2$ radians

• electric field $\mathbf{E} = (0, 0, E(z))$, voltage V

Equilibrium Equations 1

• equilibrium equations on $z \in [0, d]$

$$F = \frac{1}{2} \int_0^d \left\{ K \|\nabla \mathbf{n}\|^2 - \epsilon_0 \epsilon_\perp E^2 - \epsilon_0 \epsilon_a (\mathbf{n} \cdot \mathbf{E})^2 \right\} dz$$

- director $\mathbf{n} = (u, v, w)$, $|\mathbf{n}| = 1$
- electric potential U: $E = \frac{dU}{dz}$
- unknowns u, v, w, U

Equilibrium Equations 2

• nondimensionalise: $\bar{z} = \frac{z}{d}, \quad \bar{U} = \frac{U}{V}$

• nondimensionalised equilibrium equations on $z \in [0, 1]$

$$F = \frac{1}{2} \int_0^1 \left[(u_z^2 + v_z^2 + w_z^2) - \alpha^2 \pi^2 (\beta + w^2) U_z^2 \right] dz$$

dimensionless parameters

$$\alpha^2 = \frac{\epsilon_0 \epsilon_a V^2}{K \pi^2}, \qquad \beta = \frac{\epsilon_\perp}{\epsilon_a}$$

boundary conditions:

at
$$z = 0$$
: $\mathbf{n} = (1, 0, 0)$, at $z = 1$: $\mathbf{n} = (0, 1, 0)$

Off State

$$\theta(z) \equiv 0, \qquad \phi(z) = \frac{\pi}{2}z, \qquad U(z) = z$$

On State

Critical Voltage

switching occurs at

$$V_c = \frac{\pi}{2} \sqrt{\frac{3K}{\epsilon_0 \epsilon_a}}$$

Discrete Free Energy

- grid of N+1 points z_k a distance Δz apart, n=N-1 unknowns for each variable
- piecewise linear approximation, weighted average

$$\mathcal{F} \simeq \frac{\Delta z}{2} \sum_{k=0}^{N-1} \left\{ \left[\frac{u_{k+1} - u_k}{\Delta z} \right]^2 + \left[\frac{v_{k+1} - v_k}{\Delta z} \right]^2 + \left[\frac{w_{k+1} - w_k}{\Delta z} \right]^2 - \alpha^2 \pi^2 \left(\beta + \left[\frac{w_k^2 + w_{k+1}^2}{2} \right] \right) \left[\frac{U_{k+1} - U_k}{\Delta z} \right]^2 \right\}$$

 equivalent to mid-point finite differences, linear finite elements

discrete free energy

$$F \simeq \frac{\Delta z}{2} f(u_1, \dots, u_n, v_1, \dots, v_n, w_1, \dots, w_n, U_1, \dots, U_n)$$

• minimise F subject to pointwise constraint

$$u_j^2 + v_j^2 + w_j^2 = 1, j = 1, ..., n$$

 constraints are applied via Lagrange multipliers: minimise

$$G = \frac{\Delta z}{2} \left[f - \lambda_1 (u_1^2 + v_1^2 + w_1^2 - 1) - \dots \right]$$
$$\lambda_n (u_n^2 + v_n^2 + w_n^2 - 1)$$

set

$$\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k}$$

equal to zero

set

$$\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k}$$

equal to zero

• solve
$$\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$$
 for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$

N+1 gridpoints $\Rightarrow n=N-1$ unknowns

set

$$\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k}$$

equal to zero

$$\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$$

• solve
$$\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$$
 for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$

$$N+1$$
 gridpoints $\Rightarrow n=N-1$ unknowns

use Newton's method: solve

$$\nabla^2 \mathbf{G}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{G}(\mathbf{x}_j)$$

• set $\frac{\partial G}{\partial u_k}, \frac{\partial G}{\partial v_k}, \frac{\partial G}{\partial w_k}, \frac{\partial G}{\partial U_k}, \frac{\partial G}{\partial \lambda_k}$ equal to zero

- solve $\nabla \mathbf{G}(\mathbf{x}) = \mathbf{0}$ for $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$ N+1 gridpoints $\Rightarrow n = N-1$ unknowns
- use Newton's method: solve

$$\nabla^2 \mathbf{G}(\mathbf{x}_j) \cdot \delta \mathbf{x}_j = -\nabla \mathbf{G}(\mathbf{x}_j)$$

• $5n \times 5n$ coefficient matrix is Hessian $\nabla^2 \mathbf{G}(\mathbf{x})$

$$\nabla^{2}\mathbf{G} = \begin{bmatrix} \nabla_{\mathbf{n}\mathbf{n}}^{2}\mathbf{G} & \nabla_{\mathbf{n}\lambda}^{2}\mathbf{G} & \nabla_{\mathbf{n}\mathbf{U}}^{2}\mathbf{G} \\ \nabla_{\lambda\mathbf{n}}^{2}\mathbf{G} & \nabla_{\lambda\lambda}^{2}\mathbf{G} & \nabla_{\mathbf{U}\lambda}^{2}\mathbf{G} \\ \nabla_{\mathbf{U}\mathbf{n}}^{2}\mathbf{G} & \nabla_{\lambda\mathbf{U}}^{2}\mathbf{G} & \nabla_{\mathbf{U}\mathbf{U}}^{2}\mathbf{G} \end{bmatrix}$$

• matrix notation: $\nabla^2_{nn} \mathbf{G} = A$

$$A = \begin{bmatrix} \nabla_{\mathbf{u}\mathbf{u}}^{2} \mathbf{G} & 0 & 0 \\ 0 & \nabla_{\mathbf{v}\mathbf{v}}^{2} \mathbf{G} & 0 \\ 0 & 0 & \nabla_{\mathbf{w}\mathbf{w}}^{2} \mathbf{G} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

• A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks

• matrix notation: $\nabla^2_{nn} \mathbf{G} = A$

$$A = \begin{bmatrix} \nabla_{\mathbf{u}\mathbf{u}}^{2} \mathbf{G} & 0 & 0 \\ 0 & \nabla_{\mathbf{v}\mathbf{v}}^{2} \mathbf{G} & 0 \\ 0 & 0 & \nabla_{\mathbf{w}\mathbf{w}}^{2} \mathbf{G} \end{bmatrix} = \begin{bmatrix} A_{uu} & 0 & 0 \\ 0 & A_{vv} & 0 \\ 0 & 0 & A_{ww} \end{bmatrix}$$

- A_{uu} , A_{vv} and A_{ww} are $n \times n$ symmetric tridiagonal blocks
- $A_{uu}=A_{vv}=rac{1}{\Delta z} exttt{tri}(-1,2-\Delta z^2 \lambda_j,-1)$
- $A_{ww} = \frac{1}{\Delta z} \text{tri}(-1, 2 \Delta z^2 \lambda_j \gamma_j, -1)$

$$\gamma_j = \frac{\alpha^2 \pi^2}{2} [(U_{j+1} - U_j)^2 + (U_j - U_{j-1})^2]$$

Eigenvalues of A

• off state: first Newton step, linear U, constant λ

$$\lambda_j = \lambda = \frac{4}{\Delta z^2} \sin^2 \left(\frac{\pi \Delta z}{4}\right)$$

block matrices are Toeplitz

Eigenvalues of A

• off state: first Newton step, linear U, constant λ

$$\lambda_j = \lambda = \frac{4}{\Delta z^2} \sin^2 \left(\frac{\pi \Delta z}{4}\right)$$

- block matrices are Toeplitz
- $\sigma_{\min}(A_{uu}) = \sigma_{\min}(A_{vv}) \simeq \frac{3\pi^2}{4}\Delta z > 0$

 A_{uu} and A_{vv} are positive definite

•
$$\sigma_{\min}(A_{ww}) \simeq \left(\frac{3\pi^2}{4} - \alpha^2 \pi^2\right) \Delta z$$

 A_{ww} is positive definite iff $V < V_c$

Eigenvalues of A

• off state: first Newton step, linear U, constant λ

$$\lambda_j = \lambda = \frac{4}{\Delta z^2} \sin^2 \left(\frac{\pi \Delta z}{4}\right)$$

- block matrices are Toeplitz
- $\sigma_{\min}(A_{uu}) = \sigma_{\min}(A_{vv}) \simeq \frac{3\pi^2}{4}\Delta z > 0$

 A_{uu} and A_{vv} are positive definite

•
$$\sigma_{\min}(A_{ww}) \simeq \left(\frac{3\pi^2}{4} - \alpha^2 \pi^2\right) \Delta z$$

 A_{ww} is positive definite iff $V < V_c$

ullet number of negative eigenvalues increases with V

• matrix notation: $\nabla_{\mathbf{n}\lambda}^2 \mathbf{G} = B$

• the $3n \times n$ matrix B has structure

$$B = -\Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad egin{array}{l} B_u = exttt{diag}(\mathbf{u}) \\ B_v = exttt{diag}(\mathbf{v}) \\ B_w = exttt{diag}(\mathbf{w}) \end{array}$$

• matrix notation: $\nabla_{\mathbf{n}\lambda}^2 \mathbf{G} = B$

• the $3n \times n$ matrix B has structure

$$B = -\Delta z \begin{bmatrix} B_u \\ B_v \\ B_w \end{bmatrix}, \qquad egin{array}{l} B_u = exttt{diag}(\mathbf{u}) \\ B_v = exttt{diag}(\mathbf{v}) \\ B_w = exttt{diag}(\mathbf{w}) \end{array}$$

• $B^TB = \Delta z^2 I_n$ when constraints are satisfied

• $\operatorname{rank}(B) = \operatorname{rank}(B^T) = \operatorname{rank}(BB^T) = \operatorname{rank}(B^TB) = n$

- matrix notation: $\nabla^2_{\mathbf{IJI}}\mathbf{G} = -C$
- the $n \times n$ matrix C is symmetric and tridiagonal

• matrix notation: $\nabla^2_{\mathbf{III}}\mathbf{G} = -C$

$$\nabla^2_{\mathbf{U}\mathbf{U}}\mathbf{G} = -C$$

• the $n \times n$ matrix C is symmetric and tridiagonal

•
$$C = \frac{1}{\Delta z} \mathrm{tri}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$$

$$a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_{j-1}^2 + w_j^2)) > 0$$

$$a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_j^2 + w_{j+1}^2)) > 0$$

• matrix notation: $\nabla^2_{\mathbf{III}}\mathbf{G} = -C$

$$\nabla^2_{\mathbf{IJIJ}}\mathbf{G} = -C$$

- the $n \times n$ matrix C is symmetric and tridiagonal
- $C = \frac{1}{\Lambda_2} \operatorname{tri}(-a_{j-\frac{1}{2}}, a_{j-\frac{1}{2}} + a_{j+\frac{1}{2}}, -a_{j+\frac{1}{2}})$

$$a_{j-\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_{j-1}^2 + w_j^2)) > 0$$

$$a_{j+\frac{1}{2}} = \alpha^2 \pi^2 (\beta + \frac{1}{2} (w_j^2 + w_{j+1}^2)) > 0$$

diagonally dominant with positive real diagonal entries

C is positive definite

• matrix notation: $\nabla^2_{\mathbf{n}\mathbf{U}}\mathbf{G} = D$

$$D = \frac{\alpha^2 \pi^2}{\Delta z} \begin{bmatrix} 0 \\ 0 \\ D_w \end{bmatrix}$$

• the $n \times n$ matrix D_w is tridiagonal

$$D_w = \text{diag}(\mathbf{w}) \text{tri}(U_j - U_{j-1}, U_{j-1} - 2U_j + U_{j+1}, U_j - U_{j+1})$$

Hessian Components 4

• matrix notation: $\nabla^2_{\mathbf{nU}}\mathbf{G} = D$

$$D = \frac{\alpha^2 \pi^2}{\Delta z} \begin{bmatrix} 0 \\ 0 \\ D_w \end{bmatrix}$$

• the $n \times n$ matrix D_w is tridiagonal

$$D_w = \text{diag}(\mathbf{w}) \text{tri}(U_j - U_{j-1}, U_{j-1} - 2U_j + U_{j+1}, U_j - U_{j+1})$$

- D_w has complex eigenvalues in conjugate pairs and one zero eigenvalue (N even)
- $\operatorname{rank}(D) = n 1$

Full Hessian Structure

$$\nabla^{2}\mathbf{G} = \begin{bmatrix} \nabla_{\mathbf{n}\mathbf{n}}^{2}\mathbf{G} & \nabla_{\mathbf{n}\lambda}^{2}\mathbf{G} & \nabla_{\mathbf{n}\mathbf{U}}^{2}\mathbf{G} \\ \nabla_{\lambda\mathbf{n}}^{2}\mathbf{G} & \nabla_{\lambda\lambda}^{2}\mathbf{G} & \nabla_{\mathbf{U}\lambda}^{2}\mathbf{G} \\ \nabla_{\mathbf{U}\mathbf{n}}^{2}\mathbf{G} & \nabla_{\lambda\mathbf{U}}^{2}\mathbf{G} & \nabla_{\mathbf{U}\mathbf{U}}^{2}\mathbf{G} \end{bmatrix}$$

$$\nabla^2 \mathbf{G} = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

saddle-point problem

Four Saddle-Point Problems

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{U}, \lambda]$

$$H = \begin{bmatrix} A & D & B \\ \hline D^T & -C & 0 \\ B^T & 0 & 0 \end{bmatrix}$$

$$H = \left[egin{array}{c|cccc} A & D & B \\ \hline D^T & -C & 0 \\ B^T & 0 & 0 \end{array}
ight] \qquad H = \left[egin{array}{c|cccc} A & D & B \\ \hline D^T & -C & 0 \\ \hline B^T & 0 & 0 \end{array}
ight]$$

• for unknown vector ordered as $\mathbf{x} = [\mathbf{u}, \mathbf{v}, \mathbf{w}, \lambda, \mathbf{U}]$

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \qquad H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ \hline D^T & 0 & -C \end{bmatrix}$$

double saddle-point structure

Iterative Solution

• outer iteration: Newton's method tol=1e-4

• inner iteration: MINRES tol=1e-4

check accuracy by calculating energy of final solution

MINRES

Paige and Saunders (1975)

Construct iterates $\mathbf{x}_k = \mathbf{x}_0 + V_k \mathbf{y}_k$ with properties

- \mathbf{x}_k minimises $\|\mathbf{r}_k\|_2 = \|\mathbf{b} H\mathbf{x}_k\|_2$
- uses three-term recurrence relation

$$V_k = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$$

 \mathbf{v}_k form an orthonormal basis for Krylov subspace

$$\kappa(H, \mathbf{r}_0, k) = \operatorname{span}\{\mathbf{r}_0, H\mathbf{r}_0, \dots, H^{k-1}\mathbf{r}_0\}$$

- use Lanczos method to find \mathbf{v}_k
- solve resulting least squares problem for y_k using Givens rotations and QR factorisation

Convergence of MINRES

• at step *k*:

$$\|\mathbf{r}_k\|_2 \le \min_{p_k \in \Pi_k^1} \max_i |p_k(\lambda_i)| \|\mathbf{r}_0\|_2$$

Convergence of MINRES

• at step *k*:

$$\|\mathbf{r}_k\|_2 \le \min_{p_k \in \Pi_k^1} \max_i |p_k(\lambda_i)| \|\mathbf{r}_0\|_2$$

• symmetric intervals: $[-\lambda_{\max}, -\lambda_{\min}] \cup [\lambda_{\min}, \lambda_{\max}]$

$$k \propto \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$$

Matrix Conditioning

- eigenvalues of H lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

\overline{N}	condest	$\lambda_{\min}(H)$	$\lambda_s(H)$	$\lambda_{s+1}(H)$	$\lambda_{\max}(H)$
8	1.64e+6	-6.68e+2	-5.40e-4	1.88e-1	3.07e+1
16	2.58e+7	-1.44e+3	-6.26e-5	2.19e-1	6.33e+1
32	4.09e+8	-2.98e+3	-7.68e-6	1.28e-1	1.28e+2
64	6.51e+9	-6.07e+3	-9.56e-7	6.60e-2	2.56e+2
128	1.04e+11	-1.23e+4	-1.20e-7	3.33e-2	5.12e+2
256	1.66e+12	-2.46e+4	-1.50e-8	1.67e-2	1.03e+3
	$O(N^4)$	O(N)	$O(N^{-3})$	$O(N^{-1})$	O(N)

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

 Idea: use information about nullspace of B to eliminate constraint blocks

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

- Idea: use information about nullspace of ${\cal B}$ to eliminate constraint blocks
- use $Z \in \mathbb{R}^{3n \times 2n}$ whose columns form a basis for the nullspace of B^T

$$B^T Z = Z^T B = 0$$

• $\operatorname{rank}(Z) = 2n$

Newton system:

$$\begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \lambda \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -\nabla_{\mathbf{n}} G \\ -\nabla_{\lambda} G \\ -\nabla_{\mathbf{U}} G \end{bmatrix}$$

- Idea: use information about nullspace of B to eliminate constraint blocks
- use $Z \in \mathbb{R}^{3n \times 2n}$ whose columns form a basis for the nullspace of B^T

$$B^T Z = Z^T B = 0$$

- $\operatorname{rank}(Z) = 2n$
- system size will reduce from $5n \times 5n$ to $3n \times 3n$

$$A\delta\mathbf{n} + B\delta\lambda + D\delta\mathbf{U} = -\nabla_{\mathbf{n}}G \tag{1}$$

$$B^T \delta \mathbf{n} = -\nabla_{\lambda} G \tag{2}$$

$$D^T \delta \mathbf{n} - C \delta \mathbf{U} = -\nabla_{\mathbf{U}} G \tag{3}$$

$$A\delta\mathbf{n} + B\delta\lambda + D\delta\mathbf{U} = -\nabla_{\mathbf{n}}G \tag{1}$$

$$B^T \delta \mathbf{n} = -\nabla_{\lambda} G \tag{2}$$

$$D^T \delta \mathbf{n} - C \delta \mathbf{U} = -\nabla_{\mathbf{U}} G \tag{3}$$

write solution of (2) as

$$\delta \mathbf{n} = \widehat{\delta \mathbf{n}} + Z\mathbf{z}$$

- particular solution satisfies $B^T \widehat{\delta \mathbf{n}} = -\nabla_{\lambda} G$
- $Z\mathbf{z} \in \mathbb{R}^{2n}$ lies in nullspace of B^T

$$A\delta\mathbf{n} + B\delta\lambda + D\delta\mathbf{U} = -\nabla_{\mathbf{n}}G \tag{1}$$

$$B^T \delta \mathbf{n} = -\nabla_{\lambda} G \tag{2}$$

$$D^T \delta \mathbf{n} - C \delta \mathbf{U} = -\nabla_{\mathbf{U}} G \tag{3}$$

write solution of (2) as

$$\delta \mathbf{n} = \widehat{\delta \mathbf{n}} + Z\mathbf{z}$$

- particular solution satisfies $B^T \widehat{\delta \mathbf{n}} = -\nabla_{\lambda} G$
- $Z\mathbf{z} \in \mathbb{R}^{2n}$ lies in nullspace of B^T
- find $\widehat{\delta \mathbf{n}}$ via $\widehat{\delta \mathbf{n}} = -B(B^TB)^{-1}\nabla_{\lambda}G$
- here B^TB is diagonal so solve is cheap

reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla_{\mathbf{n}} G + A \widehat{\delta \mathbf{n}}) \\ -\nabla_{\mathbf{U}} G - D^T \widehat{\delta \mathbf{n}} \end{bmatrix}$$

reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla_{\mathbf{n}} G + A \widehat{\delta \mathbf{n}}) \\ -\nabla_{\mathbf{U}} G - D^T \widehat{\delta \mathbf{n}} \end{bmatrix}$$

recover full solution from

$$\delta \mathbf{n} = Z\mathbf{z} + \widehat{\delta \mathbf{n}}$$

$$\delta \lambda = (B^T B)^{-1} B^T (-\nabla_{\mathbf{n}} G - A \delta \mathbf{n} - D \delta \mathbf{U})$$

reduced system:

$$\begin{bmatrix} Z^T A Z & Z^T D \\ D^T Z & -C \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \delta \mathbf{U} \end{bmatrix} = \begin{bmatrix} -Z^T (\nabla_{\mathbf{n}} G + A \widehat{\delta \mathbf{n}}) \\ -\nabla_{\mathbf{U}} G - D^T \widehat{\delta \mathbf{n}} \end{bmatrix}$$

recover full solution from

$$\delta \mathbf{n} = Z\mathbf{z} + \widehat{\delta \mathbf{n}}$$

$$\delta \lambda = (B^T B)^{-1} B^T (-\nabla_{\mathbf{n}} G - A \delta \mathbf{n} - D \delta \mathbf{U})$$

• here B^TB is diagonal so solve is cheap

Nullspace of B^T I

permute entries of B:

$$B = -\Delta z \begin{bmatrix} \mathbf{n}_1 & & & \\ & \mathbf{n}_2 & & \\ & & \ddots & \\ & & \mathbf{n}_n \end{bmatrix}, \quad \mathbf{n}_j = \begin{bmatrix} u_j \\ v_j \\ w_j \end{bmatrix}$$

Nullspace of B^T I

permute entries of B:

$$B = -\Delta z \begin{bmatrix} \mathbf{n}_1 & & & \\ & \mathbf{n}_2 & & \\ & & \ddots & \\ & & \mathbf{n}_n \end{bmatrix}, \quad \mathbf{n}_j = \begin{bmatrix} u_j \\ v_j \\ w_j \end{bmatrix}$$

eigenvectors of orthogonal projection

$$I - \mathbf{n}_{j} \otimes \mathbf{n}_{j} = \begin{bmatrix} 1 - u_{j}^{2} & -v_{j}u_{j} & -w_{j}u_{j} \\ -u_{j}v_{j} & 1 - v_{j}^{2} & -w_{j}v_{j} \\ -u_{j}w_{j} & -v_{j}w_{j} & 1 - w_{j}^{2} \end{bmatrix}$$

will be orthogonal to n_j

Nullspace of B^T II

eigenvectors of orthogonal projection: e.g.

$$\mathbf{l}_{j} = \begin{bmatrix} -\frac{v_{j}}{u_{j}} \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{m}_{j} = \begin{bmatrix} -\frac{w_{j}}{u_{j}} \\ 0 \\ 1 \end{bmatrix} \quad (u_{j} \neq 0)$$

orthonormalise:

$$\mathbf{l}_{j} = \frac{1}{\sqrt{u_{j}^{2} + v_{j}^{2}}} \begin{bmatrix} -v_{j} \\ u_{j} \\ 0 \end{bmatrix}, \qquad \mathbf{m}_{j} = \frac{1}{\sqrt{u_{j}^{2} + v_{j}^{2}}} \begin{bmatrix} -u_{j}w_{j} \\ -v_{j}w_{j} \\ u_{j}^{2} + v_{j}^{2} \end{bmatrix}$$

• at least one of u_j, v_j, w_j nonzero as $|\mathbf{n}_j| = 1$

Nullspace of B^T III

$$Z = \begin{bmatrix} \mathbf{l}_1 & \mathbf{m}_1 & & & & \\ & \mathbf{l}_2 & \mathbf{m}_2 & & & \\ & & & \ddots & & \\ & & & \mathbf{l}_n & \mathbf{m}_n \end{bmatrix}$$

Nullspace of B^T III

$$Z = \begin{bmatrix} \mathbf{l}_1 & \mathbf{m}_1 \\ & \mathbf{l}_2 & \mathbf{m}_2 \\ & & \ddots & \\ & & \mathbf{l}_n & \mathbf{m}_n \end{bmatrix}$$

• consider $B^T Z \mathbf{p}$ where $\mathbf{p} = [p_1, q_1, p_2, q_2, \dots, p_n, q_n]^T$:

$$B^{T}Z\mathbf{p} = \begin{bmatrix} \mathbf{n}_{1}^{T} & & & \\ & \mathbf{n}_{2}^{T} & & \\ & & \ddots & \\ & & & \mathbf{n}_{n}^{T} \end{bmatrix} \begin{bmatrix} p_{1}\mathbf{l}_{1} + q_{1}\mathbf{m}_{1} \\ p_{2}\mathbf{l}_{2} + q_{2}\mathbf{m}_{2} \\ \vdots \\ p_{n}\mathbf{l}_{n} + q_{n}\mathbf{m}_{n} \end{bmatrix} = 0$$

• columns of Z form a basis for nullspace of B^T

Condition of Reduced System

- eigenvalues of \mathcal{H} lie in $[\lambda_{\min}, \lambda_s] \cup [\lambda_{s+1}, \lambda_{\max}]$
- estimate of matrix conditioning:

N	condest	$\lambda_{\min}(\mathcal{H})$	$\lambda_s(\mathcal{H})$	$\lambda_{s+1}(\mathcal{H})$	$\lambda_{\max}(\mathcal{H})$
8	1.28e+3	-7.44e+2	-2.13e+1	1.71e+0	3.39e+3
16	1.51e+4	-1.51e+3	-9.77e+0	8.14e-1	1.89e+4
32	2.13e+5	-3.06e+3	-4.77e+0	4.04e-1	1.40e+5
64	3.29e+6	-6.20e+3	-2.37e+0	2.02e-1	1.10e+6
128	4.97e+7	-1.24e+4	-1.18e+0	1.01e-1	8.78e+6
256	7.84e+8	-2.50e+4	-5.91e-1	5.05e-2	7.02e+7
	$O(N^4)$	O(N)	$O(N^{-1})$	$O(N^{-1})$	$O(N^3)$

Preconditioning

dea: instead of solving $\mathcal{H}\mathbf{x} = \mathbf{b}$, solve

$$\mathcal{P}^{-1}\mathcal{H}\mathbf{x} = \mathcal{P}^{-1}\mathbf{b}$$

or some preconditioner ${\cal P}$

Choose ${\mathcal P}$ so that

- (i) eigenvalues of $\mathcal{P}^{-1}\mathcal{H}$ are well clustered
- (ii) $\mathcal{P}\mathbf{u} = \mathbf{r}$ is easily solved

Preconditioning

dea: instead of solving $\mathcal{H}\mathbf{x} = \mathbf{b}$, solve

$$\mathcal{P}^{-1}\mathcal{H}\mathbf{x} = \mathcal{P}^{-1}\mathbf{b}$$

or some preconditioner ${\cal P}$

Choose ${\mathcal P}$ so that

- (i) eigenvalues of $\mathcal{P}^{-1}\mathcal{H}$ are well clustered
- (ii) $\mathcal{P}\mathbf{u} = \mathbf{r}$ is easily solved

Extreme cases:

- $\mathcal{P} = \mathcal{H}$: good for (i), bad for (ii)
- $\mathcal{P} = I$: good for (ii), bad for (i)

Solving the Reduced System

• write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$:

$$\mathcal{H} = \left[\begin{array}{cc} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{array} \right]$$

Solving the Reduced System

• write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$:

$$\mathcal{H} = \left[\begin{array}{cc} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{array} \right]$$

• block preconditioner: $\mathcal{P} = \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix}$

Solving the Reduced System

• write $\bar{A} = Z^T A Z$ and $\bar{D} = Z^T D$:

$$\mathcal{H} = \begin{bmatrix} \bar{A} & \bar{D} \\ \bar{D}^T & -C \end{bmatrix}$$

• block preconditioner: $\mathcal{P} = \begin{bmatrix} A & 0 \\ 0 & C \end{bmatrix}$

• preconditioned matrix:

$$\tilde{\mathcal{H}} = \mathcal{P}^{-1/2}\mathcal{H}\mathcal{P}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

$$M = C^{-1/2} \bar{D} \bar{A}^{-1/2}$$

Preconditioned Spectrum

$$\tilde{\mathcal{H}} = \mathcal{P}^{-1/2}\mathcal{H}\mathcal{P}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

- $M = C^{-1/2}Z^TD(Z^TAZ)^{-1/2}$
- rank(M)=n-1
- non-zero singular values σ_k

Preconditioned Spectrum

$$\tilde{\mathcal{H}} = \mathcal{P}^{-1/2}\mathcal{H}\mathcal{P}^{-1/2} = \begin{bmatrix} I & M^T \\ M & -I \end{bmatrix}$$

- $M = C^{-1/2}Z^TD(Z^TAZ)^{-1/2}$
- rank(M)=n-1
- non-zero singular values σ_k
- 3n eigenvalues of $\tilde{\mathcal{H}}$ are
 - (i) 1 with multiplicity n+1
 - (ii) -1 with multiplicity 1

(iii)
$$\pm \sqrt{1+\sigma_k^2}$$
 for $k=1,\ldots,n-1$

Sample Eigenvalue Plots

eigenvalue plots for N=64 first and last Newton iteration

Estimate of MINRES convergence

eigenvalues in two symmetric intervals

$$[-\beta, -1] \cup [1, \beta], \qquad \beta = \sqrt{1 + \sigma_{\text{max}}^2}$$

Estimate of MINRES convergence

eigenvalues in two symmetric intervals

$$[-\beta, -1] \cup [1, \beta], \qquad \beta = \sqrt{1 + \sigma_{\text{max}}^2}$$

• to achieve $\|\mathbf{r}_k\| \leq \epsilon \|\mathbf{r}_0\|$ need

$$k \simeq \frac{1}{2}\sqrt{1+\sigma_{\max}^2}\ln\left(\frac{2}{\epsilon}\right)$$

Diagonal Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$\mathcal{D} = \left[egin{array}{cccc} D_A & 0 & 0 & 0 \ 0 & \Delta z^3 I & 0 \ 0 & 0 & D_C \end{array}
ight] \qquad egin{array}{cccc} D_A &= \operatorname{diag}(A) \ D_C &= \operatorname{diag}(C) \end{array}$$

Diagonal Preconditioning

$$H = \begin{bmatrix} A & B & D \\ B^T & 0 & 0 \\ D^T & 0 & -C \end{bmatrix}$$

$$\mathcal{D} = \left[egin{array}{cccc} D_A & 0 & 0 & 0 \ 0 & \Delta z^3 \, I & 0 \ 0 & 0 & D_C \end{array}
ight] \qquad egin{array}{cccc} D_A &= \operatorname{diag}(A) \ D_C &= \operatorname{diag}(C) \end{array}$$

• estimated condition of $\mathcal{D}^{-1}H$ is $O(N^2)$

$$\lambda_{\min} = -2$$
, $\lambda_s = O(N^{-2})$, $\lambda_{s+1} = O(N^{-2})$, $\lambda_{\max} = 2$

Iteration Counts

diagonal scaling

N	8	16	32	64	128	256
first Newton step	15	40	117	382	1293	5126
last Newton step	37	134	414	1617	7466	34755

Iteration Counts

diagonal scaling

N	8	16	32	64	128	256
first Newton step	15	40	117	382	1293	5126
last Newton step	37	134	414	1617	7466	34755

reduced block preconditioning

N	8	16	32	64	128	256
first Newton step	5	5	5	5	5	5
last Newton step	5	5	5	5	5	5

independent of problem size and Newton iteration

Computing Time

- elapsed time (tic/toc)
- A: full direct, B: reduced direct, C: reduced block

Computing Time

- elapsed time (tic/toc)
- A: full direct, B: reduced direct, C: reduced block

N	Α	В	С
8	7.54e-02	7.17e-02	2.85e-03
16	7.67e-03	7.37e-03	2.60e-03
32	1.11e-02	1.06e-02	3.51e-03
64	1.67e-02	1.56e-02	4.95e-03
128	3.55e-02	3.30e-02	8.62e-03
256	1.18e-01	1.26e-01	1.26e-02
512	4.89e-01	4.40e-01	2.26e-02
1024	1.40e+00	1.37e+00	4.64e-02
2048	5.25e+00	5.15e+00	1.12e-01
4096	2.11e+01	2.12e+01	1.78e-01

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.
- Can the convergence analysis be pushed further?
- Does the same method work well for more complicated liquid crystal cells?
- What about 2D models?
- Reduced block preconditioner is cheap to invert here: could approximate solves (e.g. multigrid) be used for other problems with less structure?

Conclusions and the Future

- Reduced block preconditioner is very efficient for this problem.
- Nullspace method is ideal for this simple 1D director model.
- Can the convergence analysis be pushed further?
- Does the same method work well for more complicated liquid crystal cells?
- What about 2D models?
- Reduced block preconditioner is cheap to invert here: could approximate solves (e.g. multigrid) be used for other problems with less structure?

THANKS!