Module 2 – Part I Setting up Deep Forecasting Environment (Python)

JON M.

HUNTSMAN

UtahStateUniversity

Road map!

- Module 1- Demystifying Timeseries Data and Modeling
- Module 2- Setting up Deep Forecasting Environment (Python)
- Module 3- Exponential Smoothing
- Module 4- ARIMA models
- Module 5- Machine Learning for Time series Forecasting
- Module 6- Deep Neural Networks
- Module 7- Deep Sequence Modeling (RNN, LSTM)
- Module 8- Prophet and Neural Prophet

Course prerequisites

Install

- Anaconda is a distribution of the Python and R programming languages for scientific computing, that aims to simplify package management with conda environments.
- Anaconda offers the easiest way to perform data science and machine learning on a single machine.
- Install Anaconda @ https://www.anaconda.com/

JupyterLab

- <u>JupyterLab</u> is the latest web-based interactive development environment for notebooks, code, and data
- Jupyter's name is a reference to the three core programming languages supported by Jupyter, which are Julia, Python and R

Prof. Pedram Jahangiry

- VS Code is one of the most popular source code editors
- Features include support for debugging, syntax highlighting, intelligent code completion, code refactoring, and embedded Git.
- Install VS code @ https://code.visualstudio.com/

- <u>Colab</u> is a free hosted Jupyter notebook-style environment that runs entirely in the cloud and requires no setup to use. It also provides access to machine learning libraries and computing resources including GPU.
- Colab allows anybody to write and execute arbitrary python code through the browser, and is especially well suited to machine learning, data analysis and education. https://colab.research.google.com/

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest,

Examples

Dimensionality reduction

Reducing the number of random variables to

Applications: Visualization, Increased efficiency Algorithms: PCA, feature selection, non-negative matrix factorization, and more...

Regression with an object.

Predicting a continuous-valued attribute associated

Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more...

Examples

Model selection

Comparing, validating and choosing parameters and

Applications: Improved accuracy via parameter tun-

Algorithms: grid search, cross validation, metrics, and more...

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, meanshift, and more...

Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms. Algorithms: preprocessing, feature extraction, and

- Scikit-learn is an open-sourced Python library and includes a variety of unsupervised and supervised learning techniques.
- It is based on technologies and libraries like Matplotlib, Pandas and NumPy and helps simplify the coding task.
- Install Scikit-learn @ https://scikitlearn.org/stable/install.html

PICARET

- PyCaret is an open-source, low-code machine/statistical learning library in Python that automates machine learning workflows.
- PyCaret is essentially a Python wrapper around several machine/statistical learning libraries and frameworks
- Install PyCaret @ https://pycaret.gitbook.io/docs/get-started/installation

```
from pycaret.time_series import *

exp = TSForecastingExperiment()
exp.setup(data = df, target='Passengers' , fh = 12, coverage=0.95)

# comparing all models
best = exp.compare_models()
```


- List of <u>Timeseries models</u> available in PyCaret
- This is the [Full] version.
- pip install pycaret[full]

```
from pycaret.time_series import *

exp = TSForecastingExperiment()
exp.setup(data = df, target='Passengers'

# comparing all models
best = exp.compare_models()
```


ID	Description			
naive	Naive Forecaster			
grand_means	Grand Means Forecaster			
snaive	Seasonal Naive Forecaster			
polytrend	Polynomial Trend Forecaster			
arima	ARIMA (Autoregressive Integrated Moving Average)			
auto_arima	Auto ARIMA			
exp_smooth	Exponential Smoothing			
ets	ETS (Error, Trend, Seasonality)			
theta	Theta Forecaster			
stlf	STLF (Seasonal and Trend decomposition using Loess)			
croston	Croston's method for intermittent demand forecasting			
lr_cds_dt	Linear Regression with Conditional Deseasonalizing and Detrending			
en_cds_dt	Elastic Net with Conditional Deseasonalizing and Detrending			
ridge_cds_dt	Ridge Regression with Conditional Deseasonalizing and Detrending			
lasso_cds_dt	Lasso Regression with Conditional Deseasonalizing and Detrending			
llar_cds_dt	Lasso Least Angular Regressor with Cond. Deseasonalizing and Detrending			
br_cds_dt	Bayesian Ridge with Cond. Deseasonalizing and Detrending			
huber_cds_dt	Huber Regressor with Cond. Deseasonalizing and Detrending			
omp_cds_dt	Orthogonal Matching Pursuit with Cond. Deseasonalizing and Detrending			
knn_cds_dt	K Neighbors Regressor with Cond. Deseasonalizing and Detrending			
dt_cds_dt	Decision Tree Regressor with Cond. Deseasonalizing and Detrending			
rf_cds_dt	Random Forest Regressor with Cond. Deseasonalizing and Detrending			
et_cds_dt	Extra Trees Regressor with Cond. Deseasonalizing and Detrending			
gbr_cds_dt	Gradient Boosting Regressor with Cond. Deseasonalizing and Detrending			
ada_cds_dt	AdaBoost Regressor with Cond. Deseasonalizing and Detrending			
xgboost_cds_dt	XGBoost Regressor with Cond. Deseasonalizing and Detrending			
lightgbm_cds_dt	LightGBM Regressor with Cond. Deseasonalizing and Detrending			
catboost_cds_dt	CatBoost Regressor with Cond. Deseasonalizing and Detrending			

- Keras is a high-level, open-source neural network library written in Python. It was developed to make it easier for researchers and developers to build and experiment with deep learning models.
- The Keras API became the official high-level API for TensorFlow 2.0 in 2019. https://keras.io/

Platforms and Packages

Listed below are some Python packages and platforms that will be used in the deep learning and deep forecasting courses.

Pedram, Jahangiry

Setting up Deep Learning Environment

Personal Workstation

Cloud Platforms

Google Colaboratory

Pros

- Full control over hardware and software
- Work offline
- Fixed cost

- Powerful computing resources
- Scalability
- Ease of use
- Cost-effective: Pay-as-you-go
- Collaboration

- Powerful computing resources (GPU, TPU)
- Ease of use
- Collaboration
- No need to set up a local environment

Cons

- Scalability
- Maintenance (both hardware and software)
- Expensive for large-scale experiments
- Dependency on the provider
- Limited control
- Internet connection
- Security

- Time limit
- Hardware limitation
- Data storage
- Limited control
- Internet connection
- Security

Kaggle Survey 2022

- Kaggle runs a yearly survey among machine learning and data science professionals worldwide.
- This survey is one of our most reliable sources about the state of the industry!!!

Programming Languages

Most Popular Programming Languages in 2022

Popular IDE's

Most Popular IDE's in 2022

Popular IDE's

Python packages

Package	Metrics	ML	DL	Focus
statsmodels	*			Statistics, Econometrics
learn	~	*		General Machine Learning
K Keras			*	General Deep Learning
PYCARET	*	*		Auto ML, Rapid prototyping, Comparison
Darts	*	~	*	Advanced timeseries and forecasting
GLUONTS	~	~	*	Large Scale probabilistic Models
>>> NIXTLA	*	*	*	Workflows, SOTA methods

Module 2 – Part II Setting up Deep Forecasting Environment (Time Series Basics in Python)

Road map!

- Module 1- Demystifying Timeseries Data and Modeling
- Module 2- Setting up Deep Forecasting Environment (Python)
- Module 3- Exponential Smoothing
- Module 4- ARIMA models
- Module 5- Machine Learning for Time series Forecasting
- Module 6- Deep Neural Networks
- Module 7- Deep Sequence Modeling (RNN, LSTM)
- Module 8- Prophet and Neural Prophet

Road map!

- ✓ Module 1- Demystifying Timeseries Data and Modeling
- ✓ Module 2- Setting up Deep Forecasting Environment (Python)
- Module 3- Exponential Smoothing
- Module 4- ARIMA models
- Module 5- Machine Learning for Time series Forecasting
- Module 6- Deep Neural Networks
- Module 7- Deep Sequence Modeling (RNN, LSTM)
- Module 8- Prophet and Neural Prophet

