

«Московский государственный технический университет имени Н.Э. Баумана»

Кафедра ИУ9 – «Теоретическая информатика и компьютерные технологии»

Презентация к дипломной работе на тему:

Ориентация монокулярной камеры с использованием точек схождения перспективы

Выполнил: Кудеров П.В.

Проверил: Домрачева А.Б.

Распространенные способы решения задачи позиционирования

- Спутниковые системы навигации (GPS, GLONASS, GALILEO и другие их аналоги).
 - универсальность, пассивность, без дрейфа.
 - невозможность локализации при неустойчивом спутниковом сигнале, дороговизна в случае использования профессиональных приемников
- Инерциальные системы навигации (акселерометры + гироскоп)
 - автономность, помехозащищенность, возможность полной автоматизации всех процессов навигации, низкое энергопотребление
 - наличие дрейфа
- Системы локального позиционирования:
 - ориентация по заранее расставленным приемникам с использованием инфракасных или ультразвуковых передатчиков, использование RFIDметок и так далее
 - эхолокация инфракрасными, ультразвуковыми, лазерными датчиками
 - фотографирование + методы компьютерного зрения

Постановка задачи

- Реализация метода, предложенного Вилле Хуттуненом и Робертом Пише
- Проверка работоспособности метода (на изображениях, снятых внутри помещений)
- Перенос метода в условия городской среды (с тестированием на наборе изображений городской застройки)
- Проверка применимости подхода при ориентации среди объектов живой природы

Метод Хуттунена-Пише

 Поиск сегментов линий (СЛ) на изображении методом Джиои

• Выделение трех наибольших кластеров СЛ алгоритмом RANSAC $v_1 = 0^\circ$

$$k \ge \frac{\log(1-p)}{\log(1-r^2)}$$

$$\delta(v, l, \epsilon_{\alpha}) = dist(v, l) < \epsilon_{\alpha}$$

Допущения метода Хуттунена-Пише

• Рассматривается модель камеры-обскуры

 При проекции параллельные прямые пересекаются в точках схождения перспективы (ТСП)

$$vp = \lim_{\alpha \to \infty} x(\alpha) = \lim_{\alpha \to \infty} P(A) + \alpha KRd = KRd$$

Алгоритмы метода Хуттунена-Пише

• Уточнение каждой найденной ТСП (решение переопределенной СЛАУ, образованной линиями кластера)

$$incidence(l, vp) = l^{T} * vp = 0$$
 $L = lcp(K^{-1}l_{A}, K^{-1}l_{B})$ $A_{l}^{T} * vp = [l_{1} ... l_{n}]^{T} * vp = 0$ $A_{L}^{T} * d_{vp} = [L_{1} ... L_{n}]^{T} * d_{vp} = 0$ $vp = \underset{x}{\operatorname{argmin}}(A_{l}^{T} * x)$ $d_{vp} = \underset{x}{\operatorname{argmin}}(A_{L}^{T} * x)$

 Матрица поворота камеры – векторы-столбцы единичных направлений ТСП

$$D = [d_1 d_2 d_3]$$

• Ортогонализация полученной матрицы методом сингулярного разложения

$$\widehat{D} = UV^T, \quad D = U\Sigma V^T$$

$$R = \widehat{D}^T$$

Соглашение об используемуемом представлении углов

• В качестве представления углов ориентации использованы углы Эйлера в нотации (1, 2, 3)

$$u = \begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix} \quad R(u) = R_{1}(\phi) * R_{2}(\theta) * R_{3}(\psi)$$

$$u_{123}(R) = \begin{bmatrix} \phi_{123}(R) \\ \theta_{123}(R) \\ \psi_{123}(R) \end{bmatrix} = \begin{bmatrix} atan2(r_{23}, r_{33}) \\ -asin(r_{13}) \\ atan2(r_{12}, r_{11}) \end{bmatrix},$$

$$atan2(y, x) = \begin{cases} atan(\frac{y}{x}), & x > 0 \\ atan(\frac{y}{x}) - \pi, & x < 0, y < 0 \\ atan(\frac{y}{x}) + \pi, & x < 0, y > 0 \end{cases}$$

Структурная схема тестового ПО

- Создано тестовое приложение
 - 32-разрядное под OC Windows
 - На языке C++ с использованием среды разработки Visual Studio 2010
 - С использованием библиотеки алгоритмов компьютерного зрения с открытым исходным кодом OpenCV версии 3.0.0 beta
- Приложение состоит из трех функциональных блоков:
 - организация конфигурации запуска приложения и управления тестированием
 - управление процессом обработки изображения
 - управление процессом тестирования набора изображений

Проблемы технологического характера

- Подбор тестовых данных
- Выделение информации об изображениях базы тестовых данных из бинарного формата «.m» среды MATLAB в текстовый формат
- Использование библиотеки OpenCV:
 - компиляция из файлов исходного кода
 - подключение к проекту разрабатываемого приложения
 - поиск существующих реализаций необходимых методов и алгоритмов
 - разбор документации библиотеки

Данные тестирования

- Тестирование проводилось на базе изображений YorkUrbanDb, которая содержит:
 - 45 снимков помещений
 - 57 снимков городской местности города Торонто (Канада)
 - информацию о внутренних параметрах используемой камеры
 - матрицу рассчитанных единичных направлений трех найденных на изображении ТСП
 - список распознанных сегментов линий с отмеченным соответствием их точкам схождения перспективы

Результаты тестирования метода Хуттунена-Пише «внутри помещения»

Вектор среднего отклонения углов полученных направлений ТСП от «верных» (в градусах):

$$M = [1,43; 0,58; 1,54]$$

Вектор среднеквадратичного отклонения углов полученных ТСП от «верных» (в градусах):

$$V = [0,24;0,04;0,25]$$

По каждой из осей:

50-я перцентиль ≤ 1 градуса 90-я перцентиль < 3 градусов

- Обработано 45 снимков внутри помещений из коллекции базы YorkUrbanDb
- Рабочая среда: Core i7 920, 2.66 GHz, 6Gb Ram
- Время обработки: \sim 4,28 сек (\sim 10,5 fps)

Результаты тестирования на наборе изображений «внутри помещения»

Плотность распределения ошибок определения направлений ТСП в соответствии с осями координат на изображениях "внутри помещений"

Распределение точности найденных направлений ТСП на наборе «внутри помещения»

Функция распределения ошибок определения направлений ТСП в соответствии с осями координат на изображениях "внутри помещений"

направления оси, градусы

Снимок, обработанный с наилучшей точностью среди набора изображений «внутри помещения»

• Средний вектор ошибки направлений ТСП в градусах —(0,10; 0.08; 0,12)

Снимок, обработанный с наихудшей точностью среди набора изображений «внутри помещения»

• Средний вектор ошибки направлений ТСП в градусах —(14,74; 1,92; 14,90)

Результаты тестирования метода Хуттунена-Пише «вне помещения»

Вектор среднего отклонения углов полученных направлений ТСП от «верных» (в градусах):

$$M = [1,81;1,13;1,94]$$

Вектор среднеквадратичного отклонения углов полученных ТСП от «верных» (в градусах):

$$V = [0,36; 0,10; 0,36]$$

По каждой из осей:

50-я перцентиль \cong 1,7 градусов 90-я перцентиль < 3,7 градусов

- Обработано 57 снимков вне помещений из коллекции базы YorkUrbanDb
- Рабочая среда: Core i7 920, 2.66 GHz, 6Gb Ram
- Время обработки: ~ 9.4 сек (~ 6.0 fps)

Результаты тестирования на наборе изображений «вне помещения»

Диаграмма плотности распределения углов абсолютного отклонения осей координат от верных значений

Распределение точности найденных направлений ТСП на наборе «вне помещения»

Диаграмма распределения точности обработки изображений по величине углов абсолютного отклонения осей координат от верных значений

Снимок, обработанный с наилучшей точностью среди набора изображений «вне помещения»

• Средний вектор ошибки направлений ТСП в градусах —(0,20; 0,26; 0,29)

Снимок, обработанный с наихудшей точностью среди набора изображений «вне помещения»

• Средний вектор ошибки направлений ТСП в градусах —(6,34; 1,99; 7,07)

Пример результата на изображении, сделанном внутри помещения вручную с некалиброванной камеры.

Пример результата работы приложения на синтетическом тесте.

Пример неудачного результата работы приложения на снимке здания МІТ Stata.

Пример неудачной работы метода на изображении живой природы

Пример относительно удачной работы метода на изображении живой природы

Результаты работы

- Создано тестовое приложение, реализующее метод Хуттунена-Пише
- Проверена работоспособность метода на тестовых данных изображений, снятых внутри помещений
- Сделан перенос метода в условия городской застройки. По результатам тестирования подтвержден высокий уровень точности работы на изображениях городской среды базы данных YorkUrbanDb
- Применение метода в условиях природного и городского окружения без наличия выраженных взаимно ортогональных направлений требует модификаций, повышающих точность такого позиционирования
- Точность метода в благоприятных условиях сравнима с точностью ИНС потребительского класса

Экономическая часть

Диаграмма Ганта выполняемых работ

			Исполнители			Календарные дни											
№	Название этапа	Продолжительность, раб. дни	Категория	Число	10.03-15.03	16.03-22.03	1		1	13.04-19.04	1	27.04-03.05		11.05-17.05	18.05-24.05	25.05-31.05	
					4	5	5	5	5	5	5	4	4	4	5	5	
1	Техническое задание	6	инженер-программист 1 категории	1	1	2											
1			инженер по научно-технической информации	1	4	2											
2	Эскизный проект	8	инженер-программист 1 категории	1		3	5										
			инженер по научно-технической информации	1		3	3										
3	Технический проект	17	инженер-программист 1 категории	1				. 5	5	5	2						
			инженер по научно-технической информации	1				3		3							
4	Рабочий проект	19	инженер-программист 1 категории	2							3	4	4	4	4		
5	Внедрение	6	инженер-программист 1 категории	1											1	5	
			инженер по научно-технической информации	1											1		

Стоимость продукта:

1 513 000 рублей