Solution:

Using the op amp model in Fig. 5.4, we obtain the equivalent circuit of Fig. 5.6(a) as shown in Fig. 5.6(b). We now solve the circuit in Fig. 5.6(b) by using nodal analysis. At node 1, KCL gives

$$\frac{v_s - v_1}{10 \times 10^3} = \frac{v_1}{2000 \times 10^3} + \frac{v_1 - v_o}{20 \times 10^3}$$

Multiplying through by 2000×10^3 , we obtain

$$200v_s = 301v_1 - 100v_0$$

or

$$2v_s \simeq 3v_1 - v_o \quad \Rightarrow \quad v_1 = \frac{2v_s + v_o}{3}$$
 (5.1.1)

At node O,

$$\frac{v_1 - v_o}{20 \times 10^3} = \frac{v_o - Av_d}{50}$$

But $v_d = -v_1$ and A = 200,000. Then

$$v_1 - v_o = 400(v_o + 200,000v_1)$$
 (5.1.2)

Substituting v_1 from Eq. (5.1.1) into Eq. (5.1.2) gives

$$0 \simeq 26,667,067v_o + 53,333,333v_s \implies \frac{v_o}{v_s} = -1.9999699$$

This is closed-loop gain, because the $20\text{-k}\Omega$ feedback resistor closes the loop between the output and input terminals. When $v_s=2$ V, $v_o=-3.9999398$ V. From Eq. (5.1.1), we obtain $v_1=20.066667$ μ V. Thus,

$$i = \frac{v_1 - v_o}{20 \times 10^3} = 0.19999 \text{ mA}$$

It is evident that working with a nonideal op amp is tedious, as we are dealing with very large numbers.

If the same 741 op amp in Example 5.1 is used in the circuit of Fig. 5.7, calculate the closed-loop gain v_o/v_s . Find i_o when $v_s = 1$ V.

Answer: 9.00041, 657 μ A.

5.3 Ideal Op Amp

To facilitate the understanding of op amp circuits, we will assume ideal op amps. An op amp is ideal if it has the following characteristics:

- 1. Infinite open-loop gain, $A \simeq \infty$.
- 2. Infinite input resistance, $R_i \simeq \infty$.
- 3. Zero output resistance, $R_o \approx 0$.

Practice Problem 5.1

Figure 5.7 For Practice Prob. 5.1.

An ideal op amp is an amplifier with infinite open-loop gain, infinite input resistance, and zero output resistance.

Although assuming an ideal op amp provides only an approximate analysis, most modern amplifiers have such large gains and input impedances that the approximate analysis is a good one. Unless stated otherwise, we will assume from now on that every op amp is ideal.

For circuit analysis, the ideal op amp is illustrated in Fig. 5.8, which is derived from the nonideal model in Fig. 5.4. Two important characteristics of the ideal op amp are:

1. The currents into both input terminals are zero:

$$i_1 = 0, i_2 = 0$$
 (5.5)

This is due to infinite input resistance. An infinite resistance between the input terminals implies that an open circuit exists there and current cannot enter the op amp. But the output current is not necessarily zero according to Eq. (5.1).

2. The voltage across the input terminals is equal to zero; i.e.,

$$v_d = v_2 - v_1 = 0 ag{5.6}$$

or

$$v_1 = v_2$$
 (5.7)

Thus, an ideal op amp has zero current into its two input terminals and the voltage between the two input terminals is equal to zero. Equations (5.5) and (5.7) are extremely important and should be regarded as the key handles to analyzing op amp circuits.

Figure 5.8 Ideal op amp model.

The two characteristics can be exploited by noting that for voltage calculations the input port behaves as a short circuit, while for current calculations the input port behaves as an open circuit.

Example 5.2

 $v_{s} \stackrel{i_{2} = 0}{\stackrel{v_{1}}{=}} 0$ $v_{s} \stackrel{i_{1} = 0}{\stackrel{v_{1}}{=}} 0$ $40 \text{ k}\Omega \qquad 0$ $v_{o} \stackrel{v_{o}}{=} 20 \text{ k}\Omega$

Figure 5.9 For Example 5.2.

Rework Practice Prob. 5.1 using the ideal op amp model.

Solution:

We may replace the op amp in Fig. 5.7 by its equivalent model in Fig. 5.9 as we did in Example 5.1. But we do not really need to do this. We just need to keep Eqs. (5.5) and (5.7) in mind as we analyze the circuit in Fig. 5.7. Thus, the Fig. 5.7 circuit is presented as in Fig. 5.9. Notice that

$$v_2 = v_s \tag{5.2.1}$$

Since $i_1 = 0$, the 40-k Ω and 5-k Ω resistors are in series; the same current flows through them. v_1 is the voltage across the 5-k Ω resistor. Hence, using the voltage division principle,

$$v_1 = \frac{5}{5 + 40} v_o = \frac{v_o}{9} \tag{5.2.2}$$

According to Eq. (5.7),

$$v_2 = v_1 (5.2.3)$$

Substituting Eqs. (5.2.1) and (5.2.2) into Eq. (5.2.3) yields the closed-loop gain,

$$v_s = \frac{v_o}{9} \qquad \Rightarrow \qquad \frac{v_o}{v_s} = 9 \tag{5.2.4}$$

which is very close to the value of 9.00041 obtained with the nonideal model in Practice Prob. 5.1. This shows that negligibly small error results from assuming ideal op amp characteristics.

At node O,

$$i_o = \frac{v_o}{40+5} + \frac{v_o}{20} \text{mA}$$
 (5.2.5)

From Eq. (5.2.4), when $v_s = 1$ V, $v_o = 9$ V. Substituting for $v_o = 9$ V in Eq. (5.2.5) produces

$$i_0 = 0.2 + 0.45 = 0.65 \,\mathrm{mA}$$

This, again, is close to the value of 0.657 mA obtained in Practice Prob. 5.1 with the nonideal model.

Repeat Example 5.1 using the ideal op amp model.

Practice Problem 5.2

Answer: -2, 200 μ A.

5.4 Inverting Amplifier

In this and the following sections, we consider some useful op amp circuits that often serve as modules for designing more complex circuits. The first of such op amp circuits is the inverting amplifier shown in Fig. 5.10. In this circuit, the noninverting input is grounded, v_i is connected to the inverting input through R_1 , and the feedback resistor R_f is connected between the inverting input and output. Our goal is to obtain the relationship between the input voltage v_i and the output voltage v_o . Applying KCL at node 1,

$$i_1 = i_2 \implies \frac{v_i - v_1}{R_1} = \frac{v_1 - v_o}{R_f}$$
 (5.8)

But $v_1 = v_2 = 0$ for an ideal op amp, since the noninverting terminal is grounded. Hence,

$$\frac{v_i}{R_1} = -\frac{v_o}{R_f}$$

Figure 5.10 The inverting amplifier.

A key feature of the inverting amplifier is that both the input signal and the feedback are applied at the inverting terminal of the op amp.