

Homework 1 Recitation

SEPTEMBER 16, 2022

10-417 / 10-617 Intermediate Deep Learning

Reminder: AWS Credits Signup

- Please fill up the google form before September 19 at 5 PM
- You need a unique AWS account for this course
- If you don't do it before the deadline, you'll need to pay yourself for any AWS resource you'll need during the course
- Please refer to the <u>Piazza post</u> for more details

Agenda

- 1. Homework 1 overview
- 2. Probability review
- 3. Feed-forward neural network architecture
- 4. Backpropagation
- 5. Programming tips

Homework 1 Overview

- Released: Wednesday, September 14, 2022
- Due: Monday, October 3, 2022
- Written:
 - 4 questions for students in 10-417 (40 pts)
 - 5 questions for students in 10-617 (50 pts)
- Programming (60 pts)
 - Auto-grader (24 pts)
 - Experiments (36 pts)
- Start early!

Homework 1 Overview

Important instructions

- You may submit to Gradescope as often as you'd like before the deadline
- You have 5 late days for the semester, and you can use at most 3 per homework
 - If you are 1 minute late, that is considered 1 day
 - Your latest submission between written and programming is considered for the late days
- Write your answers in Latex within the solution boxes
- Do not change the location and dimensions of the solution boxes

Maximum Likelihood Estimate (MLE)

Given $\{y_i\}_{i=1}^N$ from a probability distribution P with parameter θ and probability density function $f_{\theta}(x)$, the MLE for θ is

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}\left(y_1, \dots, y_N\right)$$

Where the likelihood \mathcal{L} is given by

$$\mathcal{L}(y_1, \dots, y_N) = \prod_{i=1}^N f_{\theta}(y_i)$$

It is often useful to consider the log-likelihood $\ell(y_1, ..., y_N) = \log \mathcal{L}(y_1, ..., y_N)$

Laplace distribution (or double exponential distribution)

- Denoted $Lap(\mu, b)$
- Probability density function

$$f(x;\mu,b) = \frac{1}{2b}e^{\frac{-|x-\mu|}{b}}$$

0.6

Image source: https://www.vosesoftware.com/riskwiki/Laplacedistribution.php

Expectation and variance

Let X be a random variable with support X and PMF/PDF f. Let $g: X \to \mathbb{R}$ be a measurable function

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x \in \mathcal{X}} g(x) f(x), & \text{X is discrete} \\ \int_{\mathcal{X}} g(x) f(x) dx, & \text{X is continuous} \end{cases}$$

 $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$

Properties of Expectation and Variance

If X, Y are random variable and $a, b, c \in \mathbb{R}$

Linearity of Expectation

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

For variance

$$Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y)$$

Decomposition of variance

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

What's the power of neural networks?

Play around with neural networks and see what they can do:

https://playground.tensorflow.org/

Activation functions

• Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic tangent

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• Rectified Linear Unit

$$ReLU(x) = \max(0, x)$$

Dropout

- At training time, we drop a neuron with probability \boldsymbol{p} .
- Helps prevent overfitting
 - Neurons might otherwise learn codependencies between them
- At test time, we don't dropout, instead we scale the output by 1-p

Momentum

Gradient descent without momentum

$$\theta_t \leftarrow \theta_{t-1} - \lambda \frac{\partial L}{\partial \theta_{t-1}}$$

Gradient descent with momentum

$$G_t \leftarrow \alpha G_{t-1} + \frac{\partial L}{\partial \theta_{t-1}}$$
$$\theta_t \leftarrow \theta_{t-1} - \lambda G_t$$

Recall: Chain Rule

Let y = f(z) and z = g(x), then

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$$

Optimizing networks

$$J(w) = z_3$$

$$z_3 = f_3(w_3, z_2)$$

$$z_2 = f_2(w_2, z_1)$$

$$z_1 = f_1(w_1, x)$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial z_3} \frac{\partial z_3}{\partial z_2} \frac{\partial z_2}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

Backpropagation

- Forward pass: the layer takes in \boldsymbol{x} and the weights \boldsymbol{w} and outputs \boldsymbol{y}
- Backward pass: the layer takes in the derivative of the loss with respect to \mathbf{y} , $\frac{\partial J}{\partial \mathbf{y}}$, and outputs the derivative with respect to the weights, $\frac{\partial J}{\partial \mathbf{w}}$, and to its input, $\frac{\partial J}{\partial x}$

Multivariate chain rule

$$g_1(x) = 3x$$

 $g_2(x) = 5x$
 $f(z_1, z_2) = 2z_1 + 7z_2$
 $y = f(g_1(x), g_2(x))$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g_1} \frac{\partial g_1}{\partial x} + \frac{\partial f}{\partial g_2} \frac{\partial g_2}{\partial x}$$

Scalar to vector to scalar

$$y = f(\mathbf{z})$$
$$\mathbf{z} = g(x)$$

$$\frac{\partial y}{\partial x} = \sum_{j} \frac{\partial y}{\partial z_{j}} \frac{\partial z_{j}}{\partial x}$$

Vector to vector to vector

$$y = f(z)$$
$$z = g(x)$$

$$\frac{\partial y_i}{\partial x_k} = \sum_j \frac{\partial y_i}{\partial z_j} \frac{\partial z_j}{\partial x_k}$$

Numerator-layout vs denominator layout

	Numerator layout	Denominator layout	
Shape	# Outputs × # Inputs	# Inputs × # Outputs	
Vector in, scalar out $y = f(x)$ $y \in \mathbb{R}, x \in \mathbb{R}^M$	$\frac{\partial y}{\partial x} \in \mathbb{R}^{1 \times M}$	$\frac{\partial y}{\partial x} \in \mathbb{R}^{M \times 1}$	
Vector in, vector out $y = f(x)$ $y \in \mathbb{R}^N$, $x \in \mathbb{R}^M$	$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{M \times N}$	

Matrix in, scalar out

Dimensions of derivative are the same as the matrix

$$y = f(X)$$

$$y \in \mathbb{R}, X \in \mathbb{R}^{N \times M}$$

$$\frac{\partial y}{\partial \mathbf{X}} \in \mathbb{R}^{N \times M}$$

Derivatives of Functions with Respect to Vectors

	Numerator layout	Denominator layout	Notes
$\frac{\partial}{\partial \mathbf{v}} \mathbf{v}$	I_N	I_N	$\mathbf{v} \in \mathbb{R}^N$
$\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T$	I_N	I_N	$\mathbf{v} \in \mathbb{R}^N$
$\frac{\partial}{\partial \mathbf{v}} t\mathbf{v}$	tI_N	tI_N	$\mathbf{v} \in \mathbb{R}^N$
$\frac{\partial}{\partial \mathbf{u}} \ \mathbf{u}^T \mathbf{v}$	\mathbf{v}^T	v	
$\frac{\partial}{\partial \mathbf{v}} \ \mathbf{u}^T \mathbf{v}$	\mathbf{u}^T	u	
$\frac{\partial}{\partial \mathbf{v}} \ \mathbf{v}^T \mathbf{v}$	$2\mathbf{v}^T$	$2\mathbf{v}$	
$\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T A \mathbf{v}$	$\mathbf{v}^T(A+A^T)$	$(A+A^T)\mathbf{v}$	
$\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T A \mathbf{v}$	$2\mathbf{v}^TA$	$2A\mathbf{v}$	If $A = A^T$
$\frac{\partial}{\partial \mathbf{v}} A \mathbf{v}$	A	A^T	
$\frac{\partial}{\partial \mathbf{v}} \mathbf{v}^T A$	A^T	A	

Make sure your dimensions make sense!

When in doubt, refer to the matrix cookbook: http://www.cs.toronto.edu/~bonner/courses/2012s/csc3 38/matrix cookbook.pdf

Programming

Omniglot Dataset

Programming

Classes to implement

- ReLU (with dropout)
- LinearMap
- SoftmaxCrossEntropyLoss
- SingleLayerMLP
- TwoLayerMLP

Methods to implement

- forward()
- backward()
- step()
- zerograd()
- getW(), getb()
- loadparams()

You are being asked to implement the mlp.py file

```
class Transform:
   def __init__(self):
    def forward(self, x):
    def backward(self, grad_wrt_out):
    def step(self):
    def zerograd(self):
        Usually called before backward()
```

Programming

Training Loop

For epoch

Shuffle training set

For batch

Reset gradients

Forward pass

Calculate loss & gradient

Backward pass

Apply gradients

Programming Tips

Use NumPy to vectorize operations!

- In Problem 4 (written part), you'll derive the matrix form of backpropagation
- Use NumPy to do matrix operations instead of using "for" loops (batch operations)
- You could get by without using NumPy for this homework, but that won't be possible in homework 2 so better get used to it now!