Level 3 Condensed Matter Physics- Part II Weekly problem 4 solutions

(1) The change in the current (ΔI) cannot be larger than the precision of the measurement and therefore $\Delta I = I(t) - I_0 = -0.001I_0$, where I_0 is the current at t = 0 [1 mark].

Using $I(t) = I_0 \exp(-t/\tau)$:

$$\Delta I = I_o \left[\exp\left(-\frac{t}{\tau}\right) - 1 \right] = -0.001 I_o$$

Substituting t = 1 year gives $\tau = 999$ years. This is a lower limit for the average scattering time. [2 marks]

(2) For a Type I superconductor:

$$B_c(T) = B_c(0) \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$$
 [1 mark]

Substituting T = 4.2 K, $T_c = 7.2 \text{ K}$ and $B_c(0) = 0.080 \text{ T}$ gives $B_c(T = 4.2 \text{ K}) = 0.053 \text{ T}$. [1 mark]

The maximum current is:

$$I_{max} = \frac{2\pi R B_c(T)}{\mu_o} = \frac{2\pi \times (0.5 \times 10^{-3} \text{ m}) \times 0.053\text{T}}{4\pi \times 10^{-7} \text{ H/m}} = 132.5 \text{ A}$$
 [2 marks]

(3) The superconducting phase (beyond the London penetration depth) is a perfect diamagnet and has susceptibility -1. [1 mark]

If the volume fraction of superconducting and normal phase is V_{sc} and V_n respectively, with V_{sc} + V_n = 1, then:

$$\chi = -V_{sc} + (2 \times 10^{-5})V_n = -0.7$$

Solving for V_n gives $V_n = 0.3$ (30%) and hence $V_{sc} = 0.7$ (70%). [2 marks]