## MATH 567: Lecture 18 (03/18/2025)

Today: \* lifted cover inequalities

\* \* Separation problem

Recall définitions on knapsack cover inequalities:

Def  $C \subseteq \{1,2,...,n\} = N$  is a cover if  $\overline{a}(C) = \beta$ , where  $\overline{a}(C) = \sum_{i \in C} a_i$ . Further, we say that C is a minimal cover if C is a cover, but  $C \setminus \{i\}$  is not a cover  $\forall i \in C$ .

let  $Y = \{ \overline{x} \in \$0, 1 \}^{\frac{1}{7}} | 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_4 \leq 19 \}$   $C_1 = \{1, 4, 5\}$  is a minimal cover.  $C_2 = \{3, 4, 5, 6\}$  is a minimal cover.  $C_3 = \{3, 4, 5, 6\}$  is a cover, but is not minimal.  $C_3 = \{3, 4, 5, 6\}$  is a cover, but is not minimal.

Claim C is a cover  $\Rightarrow \overline{\mathbf{x}}(C) \leq |C|-1$  is valid for Y. Here,  $\overline{\mathbf{x}}(C) = \sum_{j \in C} x_j$ .

 $C_1: X_1 + X_4 + X_5 \leq 2$  is valid for Y. (1)

C2: X3+X4+X5+X6≤3 is valid for Y (2)

 $C_3: X_3 + X_4 + X_5 + X_6 + X_7 \le 4$  is valid for  $Y_7$  (3)

Def The extension of a cover C<sub>1</sub> is  $E(C) = \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \frac{1}{3} + \frac{2}{3} +$ 

Claim  $\bar{X}(E(C)) \leq |C|-1$  is valid for Y.

So,  $x_3+x_4+x_5+x_6 \le 3$ —(2) can be strengthened to  $x_1+x_2+x_3+x_4+x_5+x_6 \le 3$ —(4). This is an extended cover cut/inequality.

But,  $2x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 3$  is also valid for Y.

Recall,  $Y = \{ \overline{x} \in \$0, 13^{7} | 11x_{1} + 6x_{2} + 6x_{3} + 5x_{4} + 5x_{5} + 4x_{6} + x_{7} \leq 19 \}$ 

(5) holds, as  $X_1=1 \implies (X_2+\cdots+X_6) = 1$  (19-11=8).

Note that (5) is stronger than (4).

How did we get (5)? By lifting coefficient (6)!

We lifted the coefficient of X, from 1 to 2.

In a more general setting, we could lift the coefficient of some Xi from 0 to the largest possible value. Also, the idea of lifting Could be applied to other classes of inequalities as well, and not just for covers.

Given a cover C, with  $1 \notin C$ , we know  $\overline{\chi}(C) \leq |C|-1$  is a valid inequality for  $(\overline{d}\overline{\chi})(C) \leq \beta$ , where  $(\overline{d}\overline{\chi})(C) = \sum_{j \in C_i} a_j x_j$ . We want  $x_i$  such that  $x_i + \overline{\chi}(C) \leq |C|-1$  is valid for  $a_i x_i + (\overline{d}\overline{\chi})(C_i) \leq \beta$ .

If 
$$x_i = 0$$
,  $\alpha_i$  can be any valid value ( $\alpha_i = 0$ ).

|x|=1,  $|\alpha|+|x|(c)|\leq |c|-1$  should hold for all  $|x|\in\{0,1\}^n$ such that  $\alpha_1 + (\bar{\alpha}^{\top}\bar{x})(G) \leq \beta$ .

let 
$$Z = \begin{cases} \max \overline{X}(C) \\ s \cdot t \cdot (\overline{a}\overline{x})(C) \leq \beta - \alpha_1 \end{cases}$$
 (KP)  
 $\overline{X} \in \{0,1\}^n$ 

Then we have  $Z \leq |C|-1-\alpha_1 \Rightarrow \alpha_1 \leq |C|-1-Z$ , an upper bound on on, The best of, is ICI-1-2, but by choosing  $Z=Z_{\rm u}$ , the <u>LP-relaxation</u> objective function value of (KP), we still get a good value for  $\alpha_1$ .

So, we set  $\alpha_1 = |C| - 1 - Z_u$ :

In general, we do not want to solve a subproblem as an IP — always solve only  $LP_s$  as subproblems.

Y=
$$\{ \overline{x} \in S_0, 1\}^{\frac{3}{4}} | 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_4 \le 19 \}$$
  
Consider  $C_2 = \{3, 4, 5, 6\} \Rightarrow 1$ .

(KP) here is 
$$Z = \begin{cases} max & x_{3} + x_{4} + x_{5} + x_{6} \\ s.t. & 6x_{3} + sx_{4} + 5x_{5} + 4x_{6} \leq |9 - 1| = 8 \\ x_{3}, x_{4}, x_{5}, x_{6} \in \S_{0,1} \end{cases}$$

Z=1 here 
$$(x_j=1)$$
 for any one  $j\in G_2$ .  $\Rightarrow \alpha_1=|C_2'|-1-Z$   $=4-1-1=2$ 

Solving the LP relaxation of RP), we get

 $Z_u = 1.8$  ( $X_b = 1$ , and  $X_5 = 0.8$  or  $X_4 = 0.8$ )  $\Rightarrow \alpha_1 = |C_2| - 1 - Z_u = 1.2$ , (which is still better than 1). So, the new

lifter cover inequality is  $1-2x_1+x_3+x_4+x_5+x_6 \leq 3$ .

How did I get Zu=1-8? Essentially using a "greedy" approach to some the knapsack problem.

 $\max_{s.t.} c_{1}x_{1}+...+c_{n}x_{n} \qquad c_{j}, a_{j} \geq 0$   $s.t. \quad a_{1}x_{1}+...+a_{n}x_{n} \leq \beta$   $0 \leq x_{j} \leq U_{j}$ 

Sort the xis in the decreasing order of Gi, and set xis to min 2 ly, 3/aj 3, where B' is the "updated" B, i.e, B-B-B, X; after setting Xi in the previous step.

## Separation Problem

In general, for any combinatorial optimization problem (COP):  $\max = \{\overline{c}^T \overline{x} \mid \overline{x} \in X \subseteq \mathbb{R}^n \}$ ,



and given  $\overline{X}^* \in \mathbb{R}^n$ , is  $\overline{X}^* \in conv(X)$  ? If YES, prove it. If NO, find an inequality  $\overline{a}\overline{X} \leq \beta$  satisfied by all  $\overline{X} \in X$ , but is violated by  $\overline{X}^*$ , i.e.,  $\overline{a}\overline{X}^* > \beta$ .

The inequality with  $(\bar{a} \bar{x}^{*} - \beta)$  largest is the "most violated" separating inequality.

We consider the separation problem in the context of knapsack cover inequalities.

Let  $Y = \{ \overline{x} \in \{0,1\}^n | \overline{d} \overline{x} \leq \beta \}$ ,  $a_i, \beta \in \mathbb{Z}_{>0}$ , and let  $\overline{x}^* \in \mathbb{R}^n$ , but  $\overline{x}^* \notin \{0,1\}^n$ , i.e.,  $0 < x_j^* < 1$  for at least one  $j \in \mathbb{N}$ . We want to separate  $\overline{x}^*$  using a cover inequality, i.e., find a cover  $C_i$  such that  $\overline{d} \overline{x}^* (C) > \beta$  and  $\overline{x}^* (C) > |C|-1$ .

Define y Exo, 13 as the incidence vector of C. We need

$$\begin{cases}
\sum_{j=1}^{n} x_{j}^{*} y_{j} - \sum_{j=1}^{n} y_{j} - 1 \\
\sum_{j=1}^{n} a_{j} y_{j} > \beta \\
y_{j} \in 50,17 + j
\end{cases}$$

 $\begin{array}{c}
\Rightarrow \\
1 > \sum_{j=1}^{n} (i-x_{j}^{*}) y_{j} \\
\\
= \\
\sum_{j=1}^{n} a_{j} y_{j} = \beta + 1 \\
y_{j} \in \S_{0,1} \end{cases} \Rightarrow \text{as } a_{j}, \beta \in \mathbb{Z}_{\geq 0}$ 

So, we can find  $Z = \begin{cases} min & \sum_{j=1}^{n} (1-x_{j}^{*}) y_{j} \\ S \cdot t \cdot & \sum_{j=1}^{n} a_{j} y_{j} = \beta + 1 \end{cases}$   $y_{j} \in \mathcal{L}_{0,1} \setminus \mathcal{L}_{j}$ 

If z=1, the cover we seek exists, and its incidence vector is given by  $\overline{y}$ . Hence  $\overline{x}^*$  violates the cover inequality  $\overline{x}(C) \leq |C|-1$ .

Example

$$Y = \{ \overline{x} \in S_{0,1} \}^{\frac{3}{4}} | 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_4 \le 19 \}$$

let  $\overline{X}^* = [0,0,1,1,1,\frac{3}{4},0]^T$ . Find a separating cover for  $\overline{X}^*$ .

We solve

min 
$$Z = y_1 + y_2 + \frac{1}{4}y_6 + y_7$$
  
s.t.  $1|y_1 + 6y_2 + 6y_3 + 5y_4 + 5y_5 + 4y_6 + y_7 = 20$   
 $y_1 \in \{0,13, j^{=1},...,7.$ 

Optimal solution:  $\bar{y} = [0,0,1,1,1,0]$ ,  $z^* = \frac{1}{4}$ .

Hence  $\overline{x}^*$  violates  $x_3 + x_4 + x_5 + x_6 \leq 3$ .

9ndeed,  $x^*(C_i) = 3 = 3 = 3$ .

Note that a greedy approach gives the optimal integer solution for this knapsack problem!