This is Start

Vine

2022年7月2日

目录

12	无穷	级数
	12.1	常数项级数的概念和性质
		12.1.1 数项级数的概念
		12.1.2 收敛级数的基本性质
		12.1.3 柯西审敛原理
	12.2	常数项级数审敛法
		12.2.1 正项级数及其审敛法
		12.2.2 交错级数审敛法
		12.2.3 绝对收敛与条件收敛
		12.2.4 绝对收敛级数的性质
	12.3	幂级数
		12.3.1 函数项级数的概念 :
		12.3.2 幂级数及其收敛性
		12.3.3 幂级数的运算
	12.4	函数展开成幂级数 6
	12.5	函数的幂级数展开应用
		12.5.1 近似计算
		12.5.2 微分方程的幂级数解法
		12.5.3 欧拉公式 6
	12.6	函数项级数的一致收敛性及一致收敛函数的基本性质
	12.0	12.6.1 函数项级数的一致收敛性
		12.6.2 一致收敛级数的基本性质
	19 7	傅里叶级数
	12.1	12.7.1 三角级数 三角函数的正交性
		12.7.2 函数展开成傅里叶级数

12无穷级数

12.1常数项级数的概念和性质

12.1.1 数项级数的概念

数列 $\mu_1, \mu_2, \mu_3, \dots + \mu_n, \dots$, 表达式 $\mu_1 + \mu_2 + \mu_3 + \dots + \mu_n + \dots$ 称为 (常数项) 无穷级数, 简称 (常数项) 级数, 记为 $\sum_{i=1}^{\infty} \mu_i = \mu_1 + \mu_2 + \mu_3 + \dots + \mu_n + \dots$, 第 n 项 μ_n 叫做级数的一般项

$$S_n = \sum_{i=1}^n \mu_i = \mu_1, \mu_2, \mu_3, \dots + \mu_n$$
 级数部分和

新数列 $\{S_n\}$ $S_1, S_2, \ldots, S_n, \ldots$

 $\lim_{n\to\infty} S_n = s \Rightarrow \sum_{i=1}^{\infty} \mu_i$ 收敛, $s = \mu_1 + \mu_2 + \mu_3 + \cdots + \mu_n + \ldots$ 无穷级数 $\sum_{i=1}^{\infty} \mu_i$,无穷级数的部分和数列 $\{S_n\}$, $\lim_{n\to\infty} S_n = \infty($ 不存在 $) \Rightarrow \sum_{i=1}^{\infty} \mu_i$ 发散

$$r_n = s - S_n = S_{n+1} + S_{n+2} + \dots$$
 余项
$$\sum_{i=1}^{\infty} \mu_i = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{i=1}^{\infty} \mu_i$$

$$\sum_{i=1}^{\infty} aq^i = a + aq + aq^2 + \dots + aq^i + \dots$$
 等比级数,
$$S_n = a + aq + \dots + aq^{n-1} = \frac{a - aq^n}{1 - q}$$
 部分和数列
$$|q| \geqslant 1,$$
 发散,
$$|q| \leqslant 1,$$
 收敛
$$S_n = S_1 + (S_2 - S_1) + \dots + (S_n - S_{n-1}) + \dots = S_1 + \sum_{i=2}^{\infty} = \sum_{i=1}^{\infty} \mu_i$$

12.1.2 收敛级数的基本性质

级数
$$\sum_{n=1}^{\infty} \mu_n$$
 收敛于 s, 则级数 $\sum_{n=1}^{\infty} k\mu_n$ 收敛于 s, 和为 ks, 数乘同敛散

级数
$$\sum_{n=1}^{\infty} \mu_n$$
 与 $\sum_{n=1}^{\infty} v_n$ 分别收敛于 s 与 σ , 级数 $\sum_{n=1}^{\infty} (\mu_n \pm v_n)$ 也收敛, 和为 $s \pm \sigma$, 收敛和收敛 级数中去掉,加上,改变有限项,不会改变级数的收敛性

级数
$$\sum_{\substack{n=1\\ \infty}}^\infty \mu_n$$
 收敛于 s,任意项加括号组成的级数仍收敛,和为 s,括号发散源发散

级数
$$\sum_{n=1}^{\infty} \mu_n$$
 收敛于 s(必要条件),一般项趋近 0,即 $\lim_{n\to\infty} \mu_n = 0$

调和级数
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 发散

12.1.3 柯西审敛原理

级数
$$\sum_{n=1}^{\infty} \mu_n$$
 收敛 $\Leftrightarrow \forall \varepsilon > 0, \exists N > 0, when \quad n > N, \forall p \in Z^+, |\mu_{n+1} + \mu_{n+2} + \dots + \mu_{n+p}| < \varepsilon$

常数项级数审敛法 12.2

12.2.1正项级数及其审敛法

各项是正数或零的级数正项级数

正项级数
$$\sum_{n=1}^{\infty} \mu_n$$
 收敛于 $s \Leftrightarrow$ 部分和数列 $\{S_n\}$ 有界

正项级数
$$\sum_{n=1}^{\infty} \mu_n, \sum_{n=1}^{\infty} v_n, \mu_n \leqslant v_n, \sum_{n=1}^{\infty} v_n$$
 收敛, $\sum_{n=1}^{\infty} \mu_n$ 收敛; $\sum_{n=1}^{\infty} \mu_n$ 发散, $\sum_{n=1}^{\infty} v_n$ 发散

正项级数
$$\sum_{n=1}^{\infty} \mu_n, \sum_{n=1}^{\infty} v_n$$
,存在正整数 N, $\mu_n \leqslant kv_n (n > N, k > 0), \sum_{n=1}^{\infty} v_n$ 收敛, $\sum_{n=1}^{\infty} \mu_n$ 收敛; $\sum_{n=1}^{\infty} \mu_n$ 发散, $\sum_{n=1}^{\infty} v_n$ 发散 无项级数 $\sum_{n=1}^{\infty} \mu_n$, $\sum_{n=1}^{\infty} u_n$ 以数, $\sum_{n=1}^{\infty} u_n$ 以数

正项级数
$$\sum_{n=1}^{\infty} \mu_n$$
, $if \lim_{n\to\infty} \frac{\mu_n}{v_n} = l$, $\{0 \le l < \infty\}$, $\sum_{n=1}^{\infty} v_n$ 收敛, 则 $\sum_{n=1}^{\infty} \mu_n$ 收敛 $\lim_{n\to\infty} \frac{\mu_n}{v_n} = l$, $\{l > 0, +\infty\}$, $\sum_{n=1}^{\infty} v_n$ 发散, 则, $\sum_{n=1}^{\infty} \mu_n$ 发散 $\inf \rho > 1 \ (=\infty)$ 发散 (不可能收敛) $\inf \rho < 1$ 收敛 $\inf \rho = 1$ 可能收敛

when
$$\rho < 1, \forall \rho + \varepsilon = r < 1, \exists m, when $n \ge m, \frac{\mu_{n+1}}{\mu_n} = \rho < \rho + \varepsilon = r < 1, \mu_{n+1} < r\mu_n, \mu_{n+k} < r^k\mu_n$ 级数 $\sum_{n=1}^{\infty} r^k\mu_n$ 收敛, 级数 $\sum_{n=1}^{\infty} \mu_{n+k}$ 收敛$$

$$\sum_{n=1}^{\infty} \mu_n = \sum_{n=1}^{\infty} \mu_{n+k} + \sum_{n=1}^{k} \mu_n \text{ plows } \sum_{n=1}^{\infty} \mu_n, \sum_{n=1}^{\infty} \mu_{n+k} \text{ loops, } 3\text{ some } 4\text{ plows}$$

$$n=1$$
 $n=1$ $n=$

when
$$\rho < 1, \mu_n < r^n (r < 1),$$
级数 $\sum_{n=1}^{\infty} r^n$ 收敛, 则 $\sum_{n=1}^{\infty} \mu_n$ 收敛

正项级数
$$\sum_{n=1}^{\infty} \mu_n$$
, if $\lim_{n\to\infty} n^p \mu_n = \frac{\mu_n}{\frac{1}{n^p}} = l$, $\{0 \leqslant l < \infty, p > 1\}$, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 收敛, 则级数 $\sum_{n=1}^{\infty} \mu_n$ 收敛 if $\lim_{n\to\infty} n\mu_n = \frac{\mu_n}{\frac{1}{n}} = l$, $\{l > 0, \infty\}$, $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 则级数 $\sum_{n=1}^{\infty}$ 发散 μ_n

12.2.2 交错级数审敛法

各项正负交错,可以写成
$$\mu_1 - \mu_2 + \mu_3 - \mu_4 + \dots$$
, 其中 $\mu_n > 0$ $-\mu_1 + \mu_2 - \mu_3 + \mu_4 - \dots$,

各项正负交错,可以写成
$$\frac{\mu_1 - \mu_2 + \mu_3 - \mu_4 + \dots,}{-\mu_1 + \mu_2 - \mu_3 + \mu_4 - \dots,} \quad \text{其中 } \mu_n > 0$$
 交错级数
$$\sum_{n=1}^{\infty} \mu_n$$
 满足条件:
$$\frac{(1)}{(2)} \quad \mu_n \geqslant \mu_{n+1} \left(n = 1, 2, 3, \dots \right) }{(2)}$$
 ,那么级数收敛,其和 $s \leqslant \mu_1$,余项绝对值 $|r_n| \leqslant \mu_{n+1}$

12.2.3 绝对收敛与条件收敛

级数
$$\sum_{n=1}^{\infty} \mu_n$$
, 正项级数 $\sum_{n=1}^{\infty} |\mu_n|$ 收敛,则级数 $\sum_{n=1}^{\infty} \mu_n$ 绝对收敛 正项级数 $\sum_{n=1}^{\infty} |\mu_n|$ 发散,级数 $\sum_{n=1}^{\infty} \mu_n$ 收敛,则级数 $\sum_{n=1}^{\infty} \mu_n$ 条件收敛 级数 $\sum_{n=1}^{\infty} \mu_n$ 绝对收敛,则级数 $\sum_{n=1}^{\infty} \mu_n$ 必定收敛 $v_n = \frac{1}{2} (\mu_n + |\mu_n|)$

12.2.4 绝对收敛级数的性质

绝对收敛级数经改变项位置后构成的级数也收敛,且与原级数有相同的和 $S_n^* \leqslant S_m \leqslant s, \mu_n = 2v_n - |\mu_n|$ 级数 $\sum \mu_n, \sum v_n$ 绝对收敛, 和分别为 s, σ , 所有项的可能乘积 $\mu_i v_i$

柯西乘积 (级数)
$$\mu_1 v_1 + (\mu_1 v_2 + \mu_2 v_1) + \cdots + (\mu_1 v_n + \mu_2 v_{n-1} + \cdots + \mu_n v_1) + \cdots$$
 绝对收敛,和为 $s\sigma$ $\mu_1 v_1 + (\mu_1 v_2 + \mu_2 v_2 + \mu_2 v_1) + (\mu_1 v_3 + \mu_2 v_3 + \mu_3 v_3 + \mu_3 v_2 + \mu_3 v_1) + \cdots = (\mu_1 + \mu_2 + \cdots + \mu_n) \cdot (v_1 + v_2 + \cdots + v_n)$

12.3幂级数

12.3.1函数项级数的概念

区间 I 上函数列 $\mu_1(x), \mu_2(x), \mu_3(x), \dots, \mu_n(x), \dots$ 表达式 $\mu_1(x) + \mu_2(x) + \mu_3(x) + \dots + \mu_n(x) + \dots$, 区间 I 上的 (函数项) 无穷级数, (函数项) 级数 对于每个确定值 $x_0 \in I$, $\mu_1(x_0) + \mu_2(x_0) + \mu_3(x_0) + \cdots + \mu_n(x_0) + \cdots$ 常数项级数,收敛点 x_0 $S(x) = \mu_1(x) + \mu_2(x) + \mu_3(x) + \dots + \mu_n(x) + \dots$, 和函数 部分和 $S_n(x)$, $\lim_{n\to\infty} S_n(x) = S(x)$, 余项 $r_n(x) = S(x) - S_n(x)$, $\lim_{n\to\infty} r_n(x) = 0$

12.3.2 幂级数及其收敛性

$$\begin{split} \sum_{n=0}^{\infty} a_n x^n &= a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 幂级数 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ $x = x_0$, 幂级数收敛, $if \quad |x| < |x_0|$, 幂级数绝对收敛 $x = x_0$, 幂级数发散, $if \quad |x| > |x_0|$, 幂级数发散 $\lim_{n \to \infty} a_n x_0^n = 0 \Rightarrow |a_n x_0^n| \leqslant M \Rightarrow |a_n x^n| = |a_n x_0^n| \cdot \left| \frac{x}{x_0} \right|^n \end{split}$

|x| < R, 幂级数绝对收敛

幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 不是一点收敛,也不是整个数轴收敛, $\exists R > 0, |x| > R$,幂级数发散

 $|x| = \pm R$, 幂级数可能收敛

幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
, $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$, 收敛半径 $R = \begin{cases} \frac{1}{\rho}, & \rho \neq 0 \\ +\infty, & \rho = 0 \\ 0, & \rho = +\infty \end{cases}$

12.3.3 幂级数的运算

除
$$\frac{a_0+a_1x+a_2x^2+\cdots+a_nx^n+\cdots}{b_0+a_1x+b_2x^2+\cdots+b_nx^n+\cdots}=c_0+c_1x+c_2x^2+\cdots+c_nx^n+\cdots$$
 区间取小 $a_0=c_0b_0$ $a_1=c_0b_1+c_1b_0$ 解得 $c_0,c_1,c_2,\cdots,c_n,\cdots$

幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 $S_n(x)$ 在收敛域 I 上连续

幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 的和函数 $S_n(x)$ 在收敛域 I 上可积,所得收敛同半径
$$\int_0^x S(t) dt = \int_0^x \left[\sum_{n=0}^{\infty} a_n t^n \right] dt = \sum_{n=0}^{\infty} \int_0^x a_n t^n dt = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1} (x \in I)$$
 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 $S_n(x)$ 在收敛域 I 上可导,所得收敛同半径

$$S^{'}(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right)^{'} = \sum_{n=0}^{\infty} \left(a_n x^n\right)^{'} = \sum_{n=0}^{\infty} n a_n x^{n-1} \left(x \in I\right)$$
幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数 $S_n\left(x\right)$ 在收敛域 I 上具有任意阶导数

12.4 函数展开成幂级数

$$\begin{split} f\left(x\right) &= \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(x_0\right) \left(x-x_0\right)^n, x \in U\left(x_0\right) \, \text{ 泰勒级数} \left(\, \text{极限}\right), \, \, \text{ 泰勒展开式} \\ \text{函数} \, f\left(x\right) \, \dot{\alpha} \, U\left(x_0\right) \, \text{內具有各阶导数}, \, f\left(x\right) \, \dot{\text{能展开成泰勒级数}} \, \Leftrightarrow \, \text{永项满是} \, \sum_{n=0}^{\infty} R_n\left(x\right) = 0 \\ f\left(x\right) &= \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}\left(0\right) \left(x-0\right)^n, x \in U\left(0\right) \, \dot{\text{麦克劳林级数}} \left(\, \text{极限}\right), \, \, \, \dot{\text{麦克劳林RHT}} \, \\ \sin^n x \, &= \sin\left(x+n\pi\right) \\ &= \sum_{n=0}^{\infty} \frac{1}{n!} x^n, \left(-\infty < x < \infty\right) \\ \sin x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \left(-\infty < x < \infty\right) \\ \frac{1}{x+1} &= \sum_{n=0}^{\infty} \left(-1\right)^n x^n, \left(-1 < x < 1\right) \\ \exists \text{ 日阳展开, } \, \dot{\text{云β}} \, \dot{\text{得RH}} \, \dot{\text{H}} \\ \left(1+x\right)^m &= 1+mx + \frac{m(m-1)}{2!} x^2 + \dots + \frac{m(m-1)\dots(m-n+1)}{n!} x^n + \dots, \left(-1 < x < 1\right) \, \exists \text{ 可展开式} \\ \left(1+x\right)^{\frac{1}{2}} &= 1 + \frac{1}{2} x + \frac{\frac{1}{2} - \frac{1}{2}}{2!} x^2 + \dots + \frac{\frac{1}{2} - \frac{1}{2} - \frac{3}{2} x^n}{n!} + \dots = \frac{\prod(3-2n)}{(2n)!!} x^n, \left(-1 < x < 1\right) \, \exists \text{ 可展开式} \\ \left(1+x\right)^{-\frac{1}{2}} &= 1 - \frac{1}{2} x + \frac{-\frac{1}{2} - \frac{3}{2}}{2!} x^2 + \dots + \frac{\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{3}{2}}{n!} x^n + \dots = \frac{\prod(1-2n)}{(2n)!!} x^n, \left(-1 < x < 1\right) \, \exists \text{ 可展开式} \\ F\left(x\right) &= \left(1+x\right)^m = 1 + mx + \frac{m(m-1)}{n!} x^2 + \dots + \frac{m(m-1)\dots(m-n+1)}{n!} x^{n-1} \dots \right] \\ x^F\left(x\right) &= m \left[1 + \frac{m-1}{1} x + \dots + \frac{(m-1)\dots(m-n+1)}{(n-1)!} x^{n-1} + \frac{*1(m-n)}{n!} x^n + \frac{*1}{(n-1)!} x^n + \dots \right] \\ \vdots \\ \vdots \\ \left(1+x\right) F'\left(x\right) &= m \left[1 + mx + \frac{*(m-n+1)}{(n-1)!} x^{n-1} + \frac{*(m-n+1)}{(n-1)!} x^n + \dots \right] \\ x^{P}\left(x\right) &= \frac{F(x)}{(1+x)^m}, \varphi\left(0\right) = F\left(0\right) = 1 \\ \varphi'\left(x\right) &= \frac{F'(x)(1+x)^m - m(1+x)^{m-1} F(x)}{(1+x)^{2m}} = \frac{(1+x)^{m-1} \left[(1+x)F'(x) - mF(x)\right]}{(1+x)^{2m}} = 0 \\ \varphi\left(x\right) &= 1, F\left(x\right) = (1+x)^m \end{aligned}$$

12.5 函数的幂级数展开应用

12.5.1 近似计算

12.5.2 微分方程的幂级数解法

$$\frac{dy}{dx}=f\left(x,y
ight),y=\sum_{n=0}^{\infty}a_{n}x^{n}$$
 $y^{''}+P\left(x
ight)y^{'}+Q\left(x
ight)y=0,P,Q$ 定义域内可展开为幂级数,方程解形如 $y=\sum_{n=0}^{\infty}a_{n}x^{n}$

12.5.3 欧拉公式

$$\begin{cases} \cos y = \frac{e^{yi} + e^{-yi}}{2} \\ \sin y = \frac{e^{yi} - e^{-yi}}{2i} \end{cases}$$
 依拉公式

12.6 函数项级数的一致收敛性及一致收敛函数的基本性质

12.6.1 函数项级数的一致收敛性

$$x + (-x + x^2) + (-x^2 + x^3) + \dots + (-x^{n-1} + x^n) + \dots \quad s(x) = \lim_{n \to \infty} s_n(x) = \begin{cases} 0, 0 \leqslant x < 1 \\ 1, x = 1 \end{cases}$$
函数项级数 $\sum_{n=0}^{\infty} u_n(x)$ 在区间 I 收敛于 $s(x) \Leftrightarrow \forall x_0 \in I$, 数项级数 $\sum_{n=0}^{\infty} u_n(x_0)$ 收敛于 $s(x_0)$ $\forall \varepsilon, x_0 \in I, \exists N(\varepsilon, x_0), when \quad n > N, |r_n(x_0)| = \left|\sum_{i=n+1}^{\infty} u_i(x_0)\right| < \varepsilon$ 函数项级数收敛 $\forall \varepsilon, x_0 \in I, \exists N(\varepsilon), when \quad n > N, |r_n(x_0)| = \left|\sum_{i=n+1}^{\infty} u_i(x_0)\right| < \varepsilon$ 函数项级数 $-$ 致收敛 函数项级数 $-$ 致收敛 函数项级数 $-$ 数数项级数 $-$ 函数项级数 $-$ 数数项级数 $-$ 数收敛

12.6.2 一致收敛级数的基本性质

在区间 I,级数
$$\sum_{n=0}^{\infty}u_n(x)$$
 一致收敛于 $s(x)$,各项 $u_n(x)$ 连续, $s(x)$ 在区间 I 连续 在区间 I,级数 $\sum_{n=0}^{\infty}u_n(x)$ 一致收敛于 $s(x)$,各项 $u_n(x)$ 连续, 级数 $\sum_{n=0}^{\infty}u_n(x)$ 可逐项积分
$$\int_{x_0}^x s(x)\,dx = \int_{x_0}^x u_1(x)\,dx + \int_{x_0}^x u_2(x)\,dx + \cdots + \int_{x_0}^x u_n(x)\,dx + \ldots (x_0 < x \in I)$$
 右端级数在区间 I 一致收敛 在区间 I,级数 $\sum_{n=0}^{\infty}u_n(x)$ 收敛于 $s(x)$,各项 $u_n(x)$ 具有连续导数 $u_n'(x)$,级数 $\sum_{n=0}^{\infty}u_n'(x)$ 一致收敛, 则级数 $\sum_{n=0}^{\infty}u_n(x)$ 一致收敛, 且可逐项求导
$$s'(x) = u_1'(x) + u_2'(x) + \cdots + u_n'(x) + \ldots$$
 幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 的收敛半径 R>0,在闭区间 $I \in (-R,R)$, 幂级数一致收敛

幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R>0, 在闭区间 $I \in (-R,R)$,幂级数一致收敛 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 R>0, 在闭区间 $I \in (-R,R)$ 其和函数可导,级数可逐项求导 $s^{'}(x) = (\sum_{n=0}^{\infty} a_n x^n)^{'} = \sum_{n=0}^{\infty} a_n n x^{n-1}$ 右端级数与原级数同收敛半径

12.7 傅里叶级数

三角函数组成的函数项级数 (三角级数)

12.7.1 三角级数 三角函数的正交性

A振幅 $y = A\sin\left(\omega t + \varphi\right)$ ω角频率 φ 初相 $f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n)$ $= A_0 + \sum_{n=1}^{\infty} A_n \cdot \left[\sin(n\omega t) \cos(\varphi_n) + \cos(n\omega t) \sin(\varphi_n) \right]$ 谐波分析 $= A_0 + \sum_{n=1}^{\infty} \left[A_n \cdot \cos \left(\varphi_n \right) \sin \left(n\omega t \right) + A_n \cdot \sin \left(\varphi_n \right) \cos \left(n\omega t \right) \right]$ $= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \sin\left(n\omega t\right) + b_n \cos\left(n\omega t\right) \right)$ $\frac{\omega = \frac{\pi}{l}}{2} + \sum_{n=1}^{\infty} \left[a_n \sin\left(n\frac{\pi}{l}t\right) + b_n \cos\left(n\frac{\pi}{l}t\right) \right], (T = 2l)$ A_0 直流分量 $A_1 \sin (\omega t + \varphi_1)$ 一次谐波 (基波) $\frac{dt=x}{2} = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \sin(nx) + b_n \cos(nx) \right], (T=2\pi)$ 三角函数系 $1,\sin x,\cos x,\sin 2x,\cos 2x,\ldots,\sin nx,\cos nx,\ldots$ 任意两函数乘积在区间 $[-\pi,\pi]$ 上积分为零 $\int_{-\pi}^{\pi} \cos nx dx = 0 \quad (n = 1, 2, 3, \cdots)$ $\int_{-\pi}^{\pi} \sin nx dx = 0 \quad (n = 1, 2, 3, \dots)$ $\int_{-\pi}^{\pi} \sin kx \cos nx dx = 0 \quad (k, n = 1, 2, 3, \dots)$ $\int_{-\pi}^{\pi} \cos kx \cos nx dx = 0 \quad (k, n = 1, 2, 3, \dots, k \neq n)$ $\int_{-\pi}^{\pi} \sin kx \cos nx dx = 0 \quad (k, n = 1, 2, 3, \dots, k \neq n)$ $\int_{-\pi}^{\pi} 1^2 dx = \frac{\pi}{2}, \int_{-\pi}^{\pi} \sin^2(nx)^2 dx = \pi, \int_{-\pi}^{\pi} \cos^2(nx)^2 dx = \pi$

12.7.2 函数展开成傅里叶级数

$$f\left(x\right) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right]$$

$$\int_{-\pi}^{\pi} f\left(x\right) dx = \int_{-\pi}^{\pi} \frac{a_0}{2} dx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} \left[a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right] dx$$

$$= \int_{-\pi}^{\pi} \frac{a_0}{2} dx + \sum_{n=1}^{\infty} \left[a_n \int_{-\pi}^{\pi} \cos\left(nx\right) dx + b_n \int_{-\pi}^{\pi} \sin\left(nx\right) dx\right]$$

$$= \int_{-\pi}^{\pi} \frac{a_0}{2} dx$$

$$= \pi a_0$$

$$f\left(x\right) \sin\left(kx\right) = \frac{a_0}{2} \sin\left(kx\right) + \sin\left(kx\right) \sum_{n=1}^{\infty} \left[a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right]$$

$$\int_{-\pi}^{\pi} f\left(x\right) \sin\left(kx\right) dx = \int_{-\pi}^{\pi} \frac{a_0}{2} \sin\left(kx\right) dx + \int_{-\pi}^{\pi} \sin\left(kx\right) \sum_{n=1}^{\infty} \left[a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right] dx$$

$$= \int_{-\pi}^{\pi} \frac{a_0}{2} \sin\left(kx\right) dx + \sum_{n=1}^{\infty} \left[a_n \int_{-\pi}^{\pi} \sin\left(kx\right) \cos\left(nx\right) dx + b_n \int_{-\pi}^{\pi} \sin\left(kx\right) \sin\left(nx\right) dx\right]$$

$$= b_k \int_{-\pi}^{\pi} \sin\left(kx\right) \sin\left(kx\right) dx$$

$$= \pi b_k$$

$$f\left(x\right) \cos\left(kx\right) = \frac{a_0}{2} \cos\left(kx\right) + \cos\left(kx\right) \sum_{n=1}^{\infty} \left[a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right]$$

$$\int_{-\pi}^{\pi} f\left(x\right) \cos\left(kx\right) dx = \int_{-\pi}^{\pi} \frac{a_0}{2} \cos\left(kx\right) dx + \int_{-\pi}^{\pi} \cos\left(kx\right) \sum_{n=1}^{\infty} \left[a_n \cos\left(nx\right) + b_n \sin\left(nx\right)\right] dx$$

$$= \int_{-\pi}^{\pi} \frac{a_0}{2} \cos\left(kx\right) dx + \sum_{n=1}^{\infty} \left[a_n \int_{-\pi}^{\pi} \cos\left(kx\right) \cos\left(nx\right) dx + b_n \int_{-\pi}^{\pi} \cos\left(kx\right) \sin\left(nx\right) dx\right]$$

$$= a_k \int_{-\pi}^{\pi} \cos\left(kx\right) \cos\left(kx\right) dx$$

$$= \pi a_k$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x\right) \cos\left(kx\right) dx$$

$$= \pi a_k$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x\right) \cos\left(kx\right) dx$$

$$= \pi a_k$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(x\right) \cos\left(kx\right) dx$$

$$b_k = \int_{-\pi}^{\pi} f\left(x\right) \sin\left(kx\right) dx$$

- f(x) 是周期为 2π 的周期函数,满足
- (1)一个周期内连续,或只有有限个第一类间断点
- (2)一个周期内至多只有有限个极值点