PC3261: Classical Mechanics II

Assignment 6

1. [40 pts] Consider a system consisting of two beads, a massless spring and a circular light hoop. The beads are connected by the spring and they slide without friction on the hoop. The hoop lies in the yz-plane with its center at the origin of the coordinate system. The yz-plane is horizontal and the spring is parallel to the y-axis. Each bead has mass m, the force constant of the spring is k and the radius of the hoop is k. The equilibrium length k0 of the spring is less that the diameter of the hoop, i.e. k0 < k1. Suppose the hoop rotates about the k2-axis with a constant angular speed k2.

(a) Express the Lagrangian in terms of cylindrical coordinates and show that it can be written in the one-dimensional form:

$$\mathcal{L} = \frac{1}{2} \, \mu \dot{z}^2 - V_{\text{eff}}(z) \,,$$

where μ is the position-dependent effective mass and $V_{\rm eff}$ is the one-dimensional effective potential. Determine the expressions for μ and $V_{\rm eff}(z)$.

- (b) Determine the equilibrium points z_{ω} of the beads. And, determine the stability of these equilibrium points. Show that there exists a critical angular speed $\omega_{\rm crit}$ at which the stability of these equilibrium points should depend on whether $\omega > \omega_{\rm crit}$, $\omega = \omega_{\rm crit}$ or $\omega < \omega_{\rm crit}$ respectively.
- (c) Now, suppose the axis of rotation of the hoop is turned through an angle α about the y-axis. Determine the effect of a uniform gravitational field $\mathbf{g} = -g \,\hat{\mathbf{e}}_x$ on the above results.
- (d) Determine the angular frequencies of small oscillations about the equilibrium points when $\alpha=0$. Express the results in terms of ω , $\omega_{\rm crit}$ and $\omega_0\equiv\sqrt{2k/m}$.

Remark: This system is a mechanical equivalent of a thermodynamic system where the state is characterized by three physical variables: z_{ω} , ω and g. This simple system provides insights into topics like spontaneous symmetry breaking, phase transitions, order parameters and critical exponents in the thermodynamic system. The angular speed ω is analogous to the temperature in a thermodynamic system. The equilibrium positions z_{ω} play the role of an order parameter which 'spontaneously' acquires a non-zero value growing as $\sqrt{\omega_{crit}-\omega}$ just below ω_{crit} . The critical exponent for this order parameter is 1/2 which is very familiar in the Landau theory for various systems with second-order phase transitions. The role of the gravitational force is to cause an explicit symmetry breaking illustrating the difference between explicit and spontaneous symmetry breaking.

Assignment 6 Page 2 of 2

2. [30 pts] A system consists of two identical particles P_1 and P_2 of mass m connected by a light inextensible string of length a. The particle P_1 is constrained to move along a fixed smooth horizontal rail and the whole system moves under uniform gravity in the vertical plane through the rail.

- (a) Using x and θ as generalized coordinates, find the Hamiltonian of the system.
- (b) Hence, obtain differential equations for x and θ governing the dynamics of the system.
- 3. [30 pts] A particle of mass m can slide freely along a light wire AB whose perpendicular distance to the origin O is h. The line OC rotates about the origin at a constant angular speed Ω . The position of the particle can be described in terms of the angle θ and the distance q to the point C. The initial conditions are $\theta(0) = 0$, q(0) = 0 and $\dot{q}(0) = 0$.

- (a) Using q as the generalized coordinate, find the Hamiltonian of the system.
- **(b)** Is the total mechanical energy given by the Hamiltonian? Is the total mechanical energy conserved? Explain.
- (c) Obtain equation of motion using Hamilton equation of motion. Solve for q(t).

Last updated: October 28, 2023 10:25 am