14. उष्णतेचे मापन व परिणाम

थोडे आठवा.

- 1. आपल्याला उष्णता कोणकोणत्या स्रोतांपासून मिळते?
- 2. उष्णता स्थानांतरित कशी होते?
- 3. उष्णतेचे कोणकोणते परिणाम तुम्हांला माहीत आहेत? आकृती 14.1 मध्ये उष्णतेचे परिणाम दाखविले आहेत, ते कोणते?

आपण मागील इयत्तांमध्ये पाहिले आहे की उष्णता ही एक प्रकारची ऊर्जा आहे, जी अधिक तापमान असलेल्या वस्तूकडून कमी तापमान असलेल्या वस्तूकडे प्रवाहित होते. एखाद्या वस्तूचे तापमान हे ती वस्तू किती उष्ण किंवा किती थंड आहे हे दर्शविते. थंड वस्तूचे तापमान उष्ण वस्तूच्या तापमानापेक्षा कमी असते, म्हणजेच आइस्क्रीमचे तापमान हे चहाच्या तापमानापेक्षा कमी असते.

14.1 उष्णतेचे विविध परिणाम

आपण हेही पाहिले आहे की उष्णता दिल्यास वस्तूचे प्रसरण होते व वस्तू थंड केल्यास तिचे आकुंचन होते. तसेच उष्णतेमुळे द्रव्याचे अवस्थांतरण होते.

उष्णतेचे SI मधील एकक Joule (ज्यूल) व CGS मधील एकक Calorie (कॅलरी) हे आहे. 1 cal उष्णता 4.18 J एवढी असते. एक ग्रॅम पाण्याचे तापमान 1 $^{\circ}$ C ने वाढण्यासाठी लागणारी ऊर्जा ही एक cal ऊर्जा असते.

सोडवलेली उदाहरणे

उदाहरण 1. 1.5 kg पाण्याचे तापमान $15 \, ^{\circ}\text{C}$ पासून $45 \, ^{\circ}\text{C}$ पर्यंत वाढविण्यास किती ऊर्जा लागेल?उत्तर कॅलरी व ज्यूल या दोन्ही मध्ये द्या.

दिलेले: पाण्याचे वस्तुमान = 1.5 kg = 1500 gm, तापमानातील बदल = $45 \, ^{\circ}\text{C} - 15 \, ^{\circ}\text{C} = 30 \, ^{\circ}\text{C}$ तापमानवाढीसाठी आवश्यक ऊर्जा = ?

तापमानवाढीसाठी आवश्यक ऊर्जा (cal) = पाण्याचे वस्तुमान (gm) x तापमान वाढ (0 C)

- $= 1500 \text{ gm x } 30 \, ^{\circ}\text{C} = 45000 \text{ cal}$
- $= 45000 \times 4.18 = 188100 J$

उदाहरण 2. 300 cal 3800 nn दिल्यावर पाण्याचे तापमान $10 \, ^{\circ}\text{C}$ ने वाढले असल्यास पाण्याचे वस्तुमान किती असेल?

दिलेली उष्णता = 300 cal, तापमानातील बदल = $10 \, ^{\circ}\text{C}$, पाण्याचे वस्तुमान (m) = ? उष्णता = पाण्याचे वस्तुमान (gm) x तापमान वाढ ($^{\circ}\text{C}$) 300 = m x 10 m = 30 gm

उष्णतेचे स्रोत (Sources of Heat)

- 1. सूर्य: सूर्य हा पृथ्वीला मिळणाऱ्या उष्णतेचा सर्वांत मोठा स्रोत आहे. सूर्याच्या केंद्रामध्ये होणाऱ्या केंद्रकीय एकीकरणामुळे (Nuclear fusion) मोठ्या प्रमाणात ऊर्जा निर्माण होते. केंद्रकीय एकीकरण प्रक्रियेमध्ये हायड्रोजनच्या केंद्रकांचा संयोग होऊन हेलियमची केंद्रके तयार होतात व त्यातून ऊर्जा निर्मिती होते. ह्यातील काही ऊर्जा प्रकाश व उष्णतेच्या स्वरूपात पृथ्वीपर्यंत पोहोचते.
- 2. पृथ्वी: पृथ्वीच्या केंद्रातील तापमान अधिक असल्याने पृथ्वी देखील उष्णतेचा स्रोत आहे. ह्या उष्णतेस भू- औष्णिक ऊर्जा म्हणतात.
- 3. रासायनिक ऊर्जा: लाकूड, कोळसा, पेट्रोल इत्यादी इंधनाच्या ज्वलनात इंधनाची ऑक्सिजनबरोबर रासायनिक प्रक्रिया होऊन उष्णता निर्माण होते.
- 4. विद्युत ऊर्जा: विद्युत ऊर्जा वापरून उष्णता निर्माण करण्याचे अनेक प्रकार, जसे विजेची इस्त्री, विद्युत शेगडी इत्यादी तुम्ही दैनंदिन जीवनात पाहिलेच आहेत म्हणजे विद्युतही उष्णतेचा स्नोत असते.

- 5. अणुऊर्जा: काही मूलद्रव्यांच्या, जसे युरेनिअम, थोरिअम इत्यादी, अणूंच्या केंद्रकांचे विभाजन केले असता अत्यंत थोड्या कालावधीत प्रचंड ऊर्जा व उष्णता निर्माण होते. अणुऊर्जा प्रकल्पात ही प्रक्रिया वापरली जाते.
- 6. हवा : आपल्या सभोवताली असलेल्या हवेत देखील बरीच उष्णता सामावलेली असते.

तापमान (Temperature) : एखादी वस्तू किती उष्ण किंवा किती थंड आहे हे आपण त्या वस्तूला हात लावून पाहू शकतो, परंतु आपल्याला जाणवणारी उष्ण किंवा थंड ही संवेदना सापेक्ष असते. हे आपण खालील कृतीवरून समजू शकतो.

- तीन सारखी भांडी घ्या. त्यांना अ, ब व क नावे द्या.
 (आकृती 14.2 पहा)
- 2. अ मध्ये थोडे गरम व ब मध्ये थंड पाणी भरा. क मध्ये अ व ब मधील थोडे थोडे पाणी टाका.
- 3. तुमचा उजवा हात अ मध्ये व डावा हात ब मध्ये बुडवा व 2-3 मिनिटे ठेवा.
- 4. आता दोन्ही हात क मध्ये बुडवा. तुम्हांला काय जाणवते?

14.2 सापेक्ष संवेदना

जरी दोन्ही हात एकाच भांड्यातील पाण्यात, म्हणजे एकाच तापमानाच्या पाण्यात बुडवलेले असले तरी उजव्या हाताला ते पाणी थंड जाणवेल आणि डाव्या हाताला तेच पाणी गरम जाणवेल. ह्याचे काय कारण आहे त्याचा विचार करा.

वरील कृतीवरून तुमच्या लक्षात आले असेल की केवळ स्पर्शाने एखाद्या वस्तूचे किंवा पदार्थांचे तापमान आपण अचूकपणे सांगू शकत नाही. तसेच जास्त गरम किंवा थंड वस्तूस हात लावल्याने इजा होण्याची देखील शक्यता असते. म्हणून तापमान मोजण्यासाठी आपल्याला उपकरणाची गरज भासते. तापमापी (Thermometer) हे तापमान मोजण्यासाठीचे उपकरण आहे. तुम्ही मागील इयत्तेत तापमापीबद्दल वाचले आहे. या पाठात आपण तापमापीच्या रचनेविषयी जाणून घेणार आहोत.

थोडे आठवा.

स्थितिज ऊर्जा व गतिज ऊर्जा म्हणजे काय?

उष्णता व तापमान (Heat and temperature): उष्णता व तापमान ह्यात काय फरक आहे? पदार्थ हा अणूंपासून बनलेला असतो हे आपल्याला माहीत आहे. पदार्थातील अणू सतत गतिशील असतात. त्यांच्या गतिज ऊर्जेचे एकूण प्रमाण हे त्या पदार्थातील उष्णतेचे मापक असते तर तापमान हे अणूंच्या सरासरी गतिज ऊर्जेवर अवलंबून असते. दोन वस्तूंतील अणूंची सरासरी गतिज ऊर्जा समान असल्यास त्यांचे तापमान समान असते.

आकृती 14.3 'अ' व 'ब' मध्ये अधिक तापमान व त्यापेक्षा कमी तापमानाच्या वायूंतील अणूंची गती क्रमशः दाखविली आहे. अणूंना जोडून दर्शविलेल्या बाणांची दिशा व लांबी अनुक्रमे अणूंच्या वेगाची दिशा व परिमाण दर्शवितात. उष्ण वायूतील अणूंचा वेग थंड वायूतील अणूंच्या वेगापेक्षा अधिक आहे.

14.3 वायू व स्थायूमधील अणूंची गती

आकृती 'क' मध्ये स्थायू वस्तूतील अणूंचा वेग बाणांद्वारे दाखविला आहे. स्थायूतील अणू त्यांच्यामधील परस्पर बलाने बांधलेली असतात व त्यामुळे आपल्या स्थानावरून विस्थापित होत नाहीत. उष्णतेमुळे आपल्या स्थिर जागेवरच ते आंदोलित होतात. जितके स्थायूचे तापमान अधिक तितका त्यांचा दोलन वेग अधिक असतो.

समजा अ व ब ह्या एकाच पदार्थापासून बनलेल्या दोन वस्तू आहेत. अ चे वस्तुमान ब च्या वस्तुमानाच्या दुप्पट आहे म्हणजेच अ मधील अणूंची संख्या ही ब मधील अणूंच्या संख्येच्या दृप्पट आहे. जरी अ व ब चे तापमान समान असले, म्हणजे त्यातील अणूंची सरासरी गतिज ऊर्जा समान असली तरी अ मधील अणूंची एकूण गतिज ऊर्जा ब मधील अणूंच्या एकूण गतिज ऊर्जेपेक्षा दुप्पट असेल म्हणजेच जरी अ व ब चे तापमान समान असले तरीही अ मधील उष्णता ही ब मधील उष्णतेपेक्षा दुप्पट असेल.

करून पहा 1. एकाच आकाराची दोन (अ व ब) स्टीलची भांडी घ्या.

- 2. अ मध्ये थोडे पाणी भरा व ब मध्ये त्याच्या दुप्पट पाणी भरा. दोन्ही भांड्यातील पाण्याचे तापमान समान आहे हे सुनिश्चित करा.
- 3. एक स्पिरीट दिवा घेऊन अ व ब मधील पाण्याचे तापमान $10~{}^{0}\mathrm{C}$ ने वाढवा. दोन्ही भांड्यातील तापमान वाढविण्यासाठी तुम्हांला सारखाच वेळ लागला का?

ब मधील पाण्याचे तापमान वाढविण्यास तुम्हांला अधिक वेळ लागला असेल. म्हणजेच समान तापमान वाढीसाठी तुम्हांला ब ला अधिक उष्णता द्यावी लागली. अर्थात अ व ब मधील पाण्याचे तापमान समान असून देखील ब मधील पाण्यातील उष्णता ही अ मधील पाण्यातील उष्णतेपेक्षा अधिक असेल. तापमान मोजण्यासाठी सेल्सियस (°C), फॅरेनहाईट (°F) व केल्व्हीन (K) ही एकके वापरतात. केल्व्हीन हे एकक शास्त्रीय प्रयोगांमध्ये वापरतात तर इतर दोन्ही एकके दैनंदिन व्यवहारात वापरतात. या तिन्हींतील संबंध खालील सूत्राने दाखवता येतो.

$$\frac{(F-32)}{9} = \frac{C}{5}$$
 ----(1)

$$K = C + 273.15$$
 ----(2)

शेजारील तक्त्यात काही विशिष्ट तापमाने सेल्सिअस, फॅरेनहाईट व केल्व्हीन या तीन एककांत दिली आहेत. ती वरील सूत्राप्रमाणे आहेत हे पडताळून पहा व रिकाम्या जागी योग्य त्या किमती लिहा.

वर्णन	$^{0}\mathrm{F}$	°C	K
पाण्याचा उत्कलन बिंदू	212	100	373
पाण्याचा गोठण बिंदू	32	0	273
कक्ष तापमान	72	23	296
पाऱ्याचा उत्कलन बिंदू		356.7	
पाऱ्याचा गोठण बिंदू		-38.8	

सोडवलेली उदाहरणे

उदाहरण 1. 68 ⁰F हे तापमान सेल्सिअस व केल्व्हीन या एककांत किती असेल?

दिलेल: फॅरेनहाईट मधील तापमान = F = 68

सेल्सियस मधील तापमान = C = ?, केल्व्हिनमधील तापमान = K = ?

सूत्र (1) प्रमाणे,
$$\frac{(F-32)}{9} = \frac{C}{5}$$

$$\frac{(68-32)}{9} = \frac{C}{5}$$

$$C = 5 \text{ x} \frac{36}{9} = 20 \, ^{\circ}\text{C}$$
; सूत्र (2) प्रमाणे $K = C + 273.15$

$$K = 20 + 273.15 = 293.15 K$$

सेल्सिअसमधील तापमान = 20 °C व केल्व्हिनमधील तापमान = 293.15 K

उदाहरण 2. कोणते तापमान सेल्सिअस व फॅरेनहाईट या दोन्ही एककांत समान असेल?

दिलेल: सेल्सिअसमधील तापमान C असले तर व फॅरेनहाईटमधील तापमान F हे तेवढेच असेल म्हणजे F = C.

सूत्र (1) प्रमाणे,
$$(F-32)$$
 = C 5

$$(C-32) \times 5 = C \times 9$$

$$5 \text{ C} - 160 = 9 \text{ C}$$

$$4 C = -160$$

C = -40 $^{\circ}C = -40$ $^{\circ}F$ सेल्सिअसमधील व फॅरेनहाईटमधील तापमान -40 $^{\circ}$ असताना समान असतील.

तापमापी (Thermometer): घरी कोणाला ताप आला असताना वापरलेली तापमापी तुम्ही पाहिली असेल. त्या तापमापीला वैद्यकीय तापमापी म्हणतात. याशिवाय इतर प्रकारच्या तापमापी वेगवेगळ्या मापनासाठी वापरल्या जातात. प्रथम साधारण तापमापीच्या कार्याविषयी माहित करून घेऊ.

आकृती 14.4 अ मध्ये एका तापमापीचे चित्र दाखिवले आहे. तापमापीत एक काचेची अरुंद नळी असते जिच्या एका टोकाकडे एक फुगा असतो. नळीत पूर्वी पारा भरलेला असायचा परंतु, पारा आपल्यासाठी हानिकारक असल्याने त्याऐवजी आता अल्कोहोल वापरले जाते. नळीची उरलेली जागा निर्वात असून नळीचे दुसरे टोक बंद केलेले असते. ज्या वस्तूचे तापमान मोजायचे असते त्या वस्तूच्या संपर्कात तापमापीचा फुगा काही काळ ठेवला जातो. त्यामुळे त्याचे तापमान वस्तूच्या तापमाना एवढे होते. वाढलेल्या तापमानामुळे अल्कोहोलचे प्रसरण होते व नळीतील त्याची पातळी वाढते. अल्कोहोलच्या प्रसरणाचे गुणधर्म वापरून (याची चर्चा या पाठात पुढे केली आहे) त्याच्या नळीतील पातळीवरून तापमान जाणून घेता येते व त्याप्रमाणे तापमापीची नळी चिन्हांकित केलेली असते.

आकृती 14.4 ब मध्ये वैद्यकीय तापमापी दाखिवली आहे. एका निरोगी मानवी शरीराचे तापमान 37 °C असते, त्यामुळे वैद्यकीय तापमापीत सुमारे 35 °C ते 42 °C या दरम्यान तापमान मोजता येते. आजकाल वैद्यकीय उपयोगासाठी वरील प्रकारच्या तापमापीऐवजी डिजिटल तापमापी वापरली जाते. ही आकृती 14.4 क मध्ये दाखिवली आहे. यात तापमान मोजण्यासाठी, उष्णतेमुळे होणारे द्रवाचे प्रसरण न वापरता एक संवेदक

(sensor) वापरला जातो, जो शरीरातून निघणाऱ्या उष्णतेचे व त्यावरून तापमानाचे थेट मापन करू शकतो.

प्रयोगशाळेत वापरली जाणारी तापमापी वरील आकृती 14.4 अ प्रमाणेच असते परंतु, त्याचा तापमान मोजण्याचा आवाका मोठा असू असतो. त्याद्वारे 40 °C ते 110 °C मधील, किंवा त्याहूनही कमी किंवा अधिक तापमान मोजता येते. दिवसभरातील किमान व कमाल तापमानाचे मापन करण्यासाठी एक विशिष्ट प्रकारची तापमापी वापरतात ज्यास कमाल-किमान तापमापी महणतात. ही आकृती 14.4 ड मध्ये दाखविली आहे.

14.4 विविध तापमापी

एखादी उष्ण वस्तू व थंड वस्तू एकमेकांच्या संपर्कात ठेवली असता त्या दोन्हींत उष्णतेची देवाणघेवाण होते. उष्ण वस्तू उष्णता देते व थंड वस्तू ती शोषते. यामुळे उष्ण वस्तूचे तापमान कमी होते तर थंड वस्तूचे तापमान वाढते, अर्थात उष्ण वस्तूतील अणूंची गतिज ऊर्जा कमी होत जाते तर थंड वस्तूतील अणूंची गतिज ऊर्जा वाढत जाते. एक स्थिती अशी येते की त्यावेळी दोन्ही अणूंची सरासरी गतिज ऊर्जा समान होते, म्हणजेच त्यांचे तापमान देखील समान होते.

विशिष्ट उष्मा (Specific heat) : पदार्थाचा विशिष्ट उष्मा हा एकक वस्तुमानाच्या पदार्थाचे तापमान एक अंशाने वाढिविण्यासाठी लागणारी उष्णता असते. ह्यास 'c' या चिन्हाने दर्शवितात. याचे SI मधील एकक J/(kg $^{\circ}C)$ व CGS मधील एकक cal/(gm $^{\circ}C)$ हे असते. विशिष्ट उष्मा c व वस्तुमान m असलेल्या वस्तूचे तापमान T_i पासून T_f पर्यंत वाढवायचे असल्यास त्यास Q उर्जा द्यावी लागेल. ही वस्तूचे वस्तुमान, विशिष्ट उष्मा व तापमानवाढीवर अवलंबून असते. ही आपण खालील सूत्राप्रमाणे लिहू शकतो.

$$Q = m \times c \times (T_f - T_i)$$
 ----(3)

वेगवेगळ्या पदार्थांचा विशिष्ट उष्मा वेगवेगळा असतो. पुढील इयत्तांत ह्याबद्दल आपण अधिक जाणून घेणार आहोत. पुढील तक्त्यात काही वस्तूंचा विशिष्ट उष्मा दिला आहे.

पदार्थ	विशिष्ट उष्मा	पदार्थ	विशिष्ट उष्मा
	cal /(gm °C)		cal /(gm °C)
ॲल्युमिनियम	0.21	लोखंड	0.11
अल्कोहोल	0.58	तांबे	0.09
सुवर्ण	0.03	पारा	0.03
हायड्रोजन	3.42	पाणी	1.0

कॅलरीमापी (Calorimeter) : आपण पाहिले की वस्तूचे तापमान मोजण्यासाठी तापमापी वापरली जाते. वस्तूतील उष्णता मोजण्यासाठी कॅलरीमापी हे उपकरण वापरले जाते. या उपकरणाद्वारे एखाद्या रासायनिक किंवा भौतिक प्रक्रियेमध्ये बाहेर पडणाऱ्या किंवा शोषित होणाऱ्या उष्णतेचे मापन आपण करू शकतो. आकृती 14.5 मध्ये एक कॅलरीमापी दाखविली आहे. यात एखाद्या धर्मास फ्लास्कप्रमाणेच आत व बाहेर अशी दोन भांडी असतात ज्यामुळे आतील भांड्यात ठेवलेल्या वस्तूंतील उष्णता आतून बाहेर जाऊ शकत नाही व तसेच उष्णता बाहेरून आत देखील येऊ शकत नाही. म्हणजे आतील भांडे व त्यातील वस्तू सभोवतालापासून औष्णिकदृष्ट्या अलिप्त ठेवल्या जातात. हे भांडे तांब्याचे असते. यात तापमान मोजण्यासाठी एक तापमापी व द्रव ढवळण्यासाठी एक कांडी बसवलेली असते.

- 1. ताप आल्यावर आई लगेच कपाळावर थंड पाण्याच्या पट्ट्या का ठेवते?
- 2. कॅलरीमापी तांब्याची का बनवतात?

कॅलरीमापीत एका स्थिर तापमानाचे पाणी ठेवलेले असते. म्हणजे पाण्याचे व आतील भांड्याचे तापमान समान असते. त्यात एखादी उष्ण वस्तू टाकल्यास ती वस्तू, पाणी व आतील भांडे यांत उष्णतेची देवाणघेवाण होते व त्यामुळे त्यांचे तापमान समान होते. कॅलरीमापीतील आतील भांडे व त्यातील पदार्थ हे सभोवतालच्या इतर सर्व वस्तूंपासून व वातावरणापासून औष्णिकदृष्ट्या अलिप्त ठेवलेले असल्याने उष्ण वस्तूने दिलेली एकूण उष्णता व पाण्याने व कॅलरीमापीने ग्रहण केलेली एकूण उष्णता ही समान असते.

ह्याचप्रमाणे आपण कॅलरीमापीत उष्ण वस्तूच्या ऐवजी थंड वस्तू टाकली असता, ती वस्तू पाण्यातून उष्णता ग्रहण करेल व तिचे तापमान वाढेल. पाण्यातील व कॅलरीमापीतील उष्णता कमी होईल व त्यांचे तापमान कमी होईल.

समजा, कॅलरीमापीच्या आतील भांड्याचे वस्तुमान ' $m_{\rm C}$ ' व तापमान ' $T_{\rm I}$ ' आहेत व त्यात भरलेल्या पाण्याचे वस्तुमान ' $m_{\rm W}$ ' आहे. पाण्याचे तापमान कॅलरीमापीच्या तापमाना एवढेच म्हणजे ' $T_{\rm I}$ ' असेल. त्यात आपण ' $m_{\rm C}$ ' वस्तुमान व ' $T_{\rm C}$ ' तापमान असलेली वस्तू टाकली. $T_{\rm C}$ हे $T_{\rm I}$ पेक्षा अधिक असल्यास ती वस्तू उष्णता पाण्याला व कॅलरी मापीला देईल व लवकरच तिन्हींचे तापमान समान होईल.

या अंतिम तापमानास आपण ' T_F ' म्हणूया. वस्तूने दिलेली एकूण उष्णता (Q_O) ही पाण्याने ग्रहण केलेली उष्णता (Q_W) व कॅलरीमापीने ग्रहण केलेल्या उष्णता (Q_C) यांच्या बेरजे एवढी असेल. हे समीकरण आपण पुढीलप्रमाणे लिहू शकतो.

$$Q_{O} = Q_{W} + Q_{C} - - - - (4)$$

वर पाहिल्याप्रमाणे, Q_o , Q_w व Q_c हे वस्तुमान, तापमानातील बदल, म्हणजेच ΔT (डेल्टा टी) व पदार्थांचा विशिष्ट उष्मा यांवर अवलंबून असते. कॅलरीमापीच्या पदार्थाचा, पाण्याचा व गरम वस्तूच्या पदार्थाचा विशिष्ट उष्मा क्रमशः C_c , C_w व C_o असल्यास, सूत्र (3) वापरून,

$$Q_{O} = m_{O} \times \Delta T_{O} \times C_{O}, \qquad \Delta T_{O} = T_{O} - T_{f}$$

$$Q_{W} = m_{W} \times \Delta T_{W} \times C_{W}, \qquad \Delta T_{W} = T_{f} - T_{i}$$

$$Q_{C} = m_{C} \times \Delta T_{C} \times C_{C}, \qquad \Delta T_{C} = T_{f} - T_{i} = \Delta T_{W}$$

$$AT_{O} \times \Delta T_{C} \times C_{C} + m_{C} \times \Delta T_{C} \times C_{C} \times C_$$

सूत्र (4) प्रमाणे
$$m_{_{\mathrm{O}}} \times \Delta T_{_{\mathrm{O}}} \times C_{_{\mathrm{O}}} = m_{_{\mathrm{W}}} \times \Delta T_{_{\mathrm{W}}} \times C_{_{\mathrm{W}}} + m_{_{\mathrm{C}}} \times \Delta T_{_{\mathrm{C}}} \times C_{_{\mathrm{C}}} - - - - - - - - - - (5)$$

सर्व तापमानांचे व वस्तुमानांचे मापन आपण करू शकतो. तसेच पाण्याचा व कॅलरीमापीचा, म्हणजेच तांब्याचा विशिष्ट उष्मा माहित असल्यास वस्तूच्या पदार्थाचा विशिष्ट उष्मा आपण सूत्र (5) वापरून काढू शकतो. याबद्दल अधिक खोलात आपण पुढील इयत्तांत शिकणार आहोत.

सोडवलेली उदाहरणे

उदाहरण: समजा कॅलरीमापी, त्यात असलेले पाणी व त्यात टाकलेली तांब्याची उष्ण वस्तू यांचे वस्तुमान समान आहे. उष्ण वस्तूचे तापमान $60~^{\circ}$ C व पाण्याचे तापमान $30~^{\circ}$ C आहे. तांब्याचा व पाण्याचा विशिष्ट उष्मा क्रमशः 0.09~cal / (gm $^{\circ}$ C) व 1~cal / (gm $^{\circ}$ C) आहे. पाण्याचे अंतिम तापमान किती असेल?

दिलेले :
$$m_o = m_w = m_c$$
, $= m$, $T_i = 30\,^{\circ}\text{C}$, $T_o = 60\,^{\circ}\text{C}$ $T_f = ?$ सूत्र (4) वरून $m \times (60 - T_f) \times 0.09$ $= m \times (T_f - 30) \times 1 + m \times (T_f - 30) \times 0.09$ $\therefore (60 - T_f) \times 0.09 = (T_f - 30) \times 1.09$ $60 \times 0.09 + 30 \times 1.09 = (1.09 + 0.09) T_f$ $T_f = 32.29\,^{\circ}\text{C}$ पाण्याचे अंतिम तापमान $32.29\,^{\circ}\text{C}$ असेल.

उष्णतेचे परिणाम (Effects of heat)

आपण मागील इयत्तांमध्ये उष्णतेचे पदार्थांवर होणारे दोन परिणाम पाहिले आहेत: 1. आकुंचन/प्रसरण 2. अवस्थांतरण. या पाठात आपण प्रसरणाविषयी अधिक जाणून घेणार आहोत. अवस्थांतराविषयी तुम्ही पुढील इयत्तेत अधिक माहिती घेणार आहात.

प्रसरण (Expansion)

कोणत्याही पदार्थास उष्णता दिली गेल्यास त्याचे तापमान वाढते तसेच त्याचे प्रसरण होते. होणारे प्रसरण त्याच्या तापमान वाढीवर अवलंबून असते. उष्णतेमुळे स्थायू, द्रव व वायू अशा सर्व पदार्थांचे प्रसरण होते.

स्थायूचे प्रसरण (Expansion of solids)

एकरेषीय प्रसरण (Linear Expansion) : स्थायूचे एकरेषीय प्रसरण म्हणजे तापमानवाढीमुळे तार किंवा सळईच्या रूपातील स्थायूच्या लांबीत होणारी वाढ.

एका $\boldsymbol{l}_{_{1}}$ लांबीच्या सळईचे तापमान $\boldsymbol{T}_{_{1}}$ पासून $\boldsymbol{T}_{_{2}}$ पर्यंत वाढिविल्यास तिची लांबी $\boldsymbol{l}_{_{2}}$ होते. सळईच्या लांबीतील वाढ ही सळईची मूळ लांबी व केलेल्या तापमानवाढीच्या ($\Delta T = \boldsymbol{T}_{_{2}} - \boldsymbol{T}_{_{1}}$) अनुपातात असते. म्हणजे लांबीतील बदल खालीलप्रमाणे लिहिता येतो.

लांबीतील बदल α मूळ लांबी x तापमानातील बदल

$$\therefore l_2 - l_1 \propto l_1 \times \Delta T$$

$$\therefore l_2 - l_1 = \lambda \times l_1 \times \Delta T - - - - - - (6)$$

:.
$$l_2^2 = l_1^1 (1 + \lambda \Delta^T)$$
 ----(7)

येथे λ (लॅम्बडा) हा स्थिरांक असून त्यास पदार्थाचा एकरेषीय प्रसरणांक म्हणतात.

वेगवेगळ्या पदार्थांचे प्रसरणांक वेगवेगळे असतात. वरील सूत्रावरून दिसून येते की, दोन पदार्थांच्या समान लांबीच्या सळयांचे तापमान समान परिमाणाने वाढिवले असता (म्हणजे ΔT समान असता) ज्या पदार्थाचा प्रसरणांक जास्त तो पदार्थ जास्त प्रसरण पावेल व त्या पदार्थांच्या सळईची लांबी जास्त वाढेल.

वरील सूत्रावरून आपण पदार्थाचा प्रसरणांक पुढीलप्रमाणे लिहू शकतो.

$$\lambda = (l_2 - l_1) / (l_1 \Delta T) ----(8)$$

म्हणजेच प्रसरणांक हा एकक लांबीच्या सळईचे तापमान एककाने वाढिविल्यावर तिच्या लांबीत होणारा बदल दर्शवितो. वरील सूत्रावरून दिसून येते, की प्रसरणांकाचे एकक तापमानाच्या एककाच्या व्यस्त, म्हणजेच 1/°C असते. खालील तक्त्यात काही पदार्थांचे प्रसरणांक दिलेले आहेत.

***************************************			· · · · · · · · · · · · · · · · · · ·		
स्थायू पदार्थ	एकरेषीय प्रसरणांक	द्रव पदार्थ	घनीय प्रसरणांक	वायू पदार्थ	प्रसरणांक
	$\times 10^{-6} (1/^{0}C)$		$\times 10^{-3} (1/^{0}C)$		$\times 10^{-3} (1/{}^{\circ}\text{C})$
तांबे	17	अल्कोहोल	1.0	हायड्रोजन	3.66
ॲल्युमिनिअम	23.1	पाणी	0.2	हिलीयम	3.66
लोह	11.5	पारा	0.2	नायट्रोजन	3.67
चांदी	18	क्लोरोफोर्म	1.3	सल्फर डाय ऑक्साईड	3.90

14.6 : काही पदार्थांचे प्रसरणांक

सोडवलेली उदाहरणे

उदाहरण : एका अर्धा मीटर लांबीच्या स्टीलच्या सळईचे तापमान $60~^{\circ}$ C ने वाढिविल्यास तिच्या लांबीत किती वाढ होईल? स्टीलचा एकरेषीय प्रसरणांक = $0.000013~1/^{\circ}$ C आहे.

दिलेले: सळईची मूळ लांबी = $0.5~\mathrm{m}$, तापमानातील वाढ = $60~\mathrm{^{\circ}C}$, लांबीतील वाढ = Δ l = ?

सूत्र (6) वापरून Δ l = λ x l₁ x Δ T = 0.000013 x 0.5 x 60 = 0.00039 m लांबीतील वाढ = 0.039 cm

स्थायूचे प्रतलीय प्रसरण (Planar expansion of solids) : स्थायूच्या एकरेषीय प्रसरणाप्रमाणेच स्थायूच्या पत्र्याचे तापमान वाढविल्यावर त्याचे क्षेत्रफळ वाढते. यास स्थायूचे प्रतलीय प्रसरण म्हणतात. ते खालील सूत्राने दिले जाते.

$$A_2 = A_1 (1 + \sigma \Delta T)$$
----(9)

येथे ΔT हा तापमानातील बदल असून A_1 व A_2 ही पत्र्याची आरंभी व अंतिम क्षेत्रफळे आहेत. σ (सिग्मा) हा पदार्थाचा दिवधाती किंवा प्रतलीय प्रसरणांक आहे.

स्थायूचे घनीय प्रसरण (Volumetric expansion of solids): पत्र्याप्रमाणेच स्थायूच्या त्रिमितीय तुकड्याला उष्णता दिली असता त्याचे सर्व बाजूने प्रसरण होते व त्याचे आकारमान वाढते. यास स्थायूचे घनीय प्रसरण म्हणतात. या वाढीचे सूत्र आपण पुढीलप्रमाणे लिहू शकतो.

 $V_{_2} = V_{_1}(1+eta\Delta T)$ -----(10) येथे ΔT हा तापमानातील बदल असून $V_{_2}$ व $V_{_1}$ ही स्थायूची अंतिम व आरंभीची आकारमाने आहेत व β (बीटा) ह<u>ा पदार्था</u>चा घनीय प्रसरणांक आहे.

माहीत आहे का तुम्हांला?

तुम्ही रेल्वेचे रूळ पाहिले आहेत काय? ते लांबच्या लांब सलग नसतात. काही ठराविक अंतरावर त्यात थोडी फट ठेवली जाते म्हणजे तापमानातील बदलाप्रमाणे त्यांची लांबी कमी किंवा जास्त होण्यास वाव असतो. ही फट ठेवली नाही तर उष्णतेने प्रसरण झालेले रूळ वाकडे होतील व अपघात होण्याचा धोका उद्भवेल.

रेल्वेच्या रुळांप्रमाणेच, प्रसरणामुळे उन्हाळ्यात पुलांची लांबी वाढण्याची देखील शक्यता असते. डेन्मार्कमधील $18~\mathrm{km}$ लांबीच्या The great belt bridge याची लांबी उन्हाळ्यात $4.7~\mathrm{m}$ ने वाढते. म्हणून पुलांच्या रचनेत देखील हे प्रसरण सामावून घेण्यासाठी तरतूद केलेली असते.

द्रवाचे प्रसरण (Expansion of liquids)

द्रवाला ठराविक आकार नसतो पण त्यांना ठराविक आकारमान मात्र असते. म्हणून आपण द्रवाचा घनीय प्रसरणांक वरील सूत्राप्रमाणे लिहू शकतो.

$$V_2 = V_1 (1 + \beta \Delta T)$$
----(11)

येथे ΔT हा तापमानातील बदल असून V_2 व V_1 ही द्रवाची अंतिम व आरंभीची आकारमाने आहेत व β हा द्रवाचा प्रसरणांक आहे

जरा डोके चालवा.

द्रवाच्या प्रसरणाचा दैनंदिन जीवनात होणारा कोणता उपयोग तुम्हांला माहित आहे?

उष्णतेचा पाण्यावर होणारा परिणाम हा इतर द्रवांवर होणाऱ्या परिणामांपेक्षा थोडा भिन्न असतो. याला पाण्याचे असंगत आचरण म्हणतात. ह्याविषयी आपण पुढील इयत्तांत शिकणार आहोत.

वायूचे प्रसरण (Expansion of gases)

वायूला ठराविक आकारमानही नसते. वायूला उष्णता दिल्यावर त्याचे प्रसरण होते, परंतु वायू एका ठराविक आकाराच्या बाटलीत बंदिस्त केलेला असल्यास त्याचे आकारमान वाढू शकत नाही व त्याचा दाब वाढतो. हे आकृती 14.7 मध्ये दाखविले आहे.

14.7 उष्णतेचा वायूवरील परिणाम

आकृती 14.7 पाहून खालील प्रश्नांची उत्तरे शोधा.

- 1. घनता = वस्तुमान/आकारमान या सूत्रानुसार बंदिस्त बाटलीतील वायूचे तापमान वाढविल्यावर त्याच्या घनतेवर काय परिणाम होईल?
- बाटली बंदिस्त नसल्यास व त्यात एक सरकणारा दट्ट्या बसविलेला असल्यास वायूच्या घनतेवर काय परिणाम होईल?
 - त्यामुळे दाब स्थिर ठेवून वायूचे प्रसरण मोजले जाते. अशा प्रसरणांकास स्थिर दाब प्रसरणांक म्हणतात. तो खालील सूत्राने दिला जातो.

 $V_2 = V_1 (1 + \beta \Delta T)$ -----(12) येथे ΔT हा तापमानातील बदल असून V_2 व V_1 ही वायूची समान दाबावरील अंतिम व आरंभीची आकारमाने आहेत व β हा वायूचा स्थिर दाब प्रसरणांक आहे.

वायूस उष्णता दिल्यास त्याची घनता कमी होते. याचा उपयोग चित्र 14.1 मधील कुठल्या चित्रात दिसतो?

स्वाध्याय

1. A. माझी जोडी कोणाशी?

'अ' गट

'ब' गट

- अ. निरोगी मानवी शरीराचे तापमान i. 296 K
- आ. पाण्याचा उत्कलन बिंद् ii. 98.6 °F
- इ. कक्ष तापमान
- iii. 0 °C
- ई. पाण्याचा गोठण बिंद्
- iv. 212 °F

B. कोण खरं बोलतोय?

- अ. पदार्थाचे तापमान ज्यूलमध्ये मोजतात.
- आ. उष्णता उष्ण वस्तूकडून थंड वस्तूकडे वाहते.
- इ. उष्णतेचे एकक ज्यूल आहे.
- ई. उष्णता दिल्याने वस्तू आकुंचन पावतात.
- उ. स्थायूचे अणू स्वतंत्र असतात.
- ऊ. उष्ण वस्तूच्या अणूंची सरासरी गतिज ऊर्जा थंड वस्तूंच्या अणूंच्या सरासरी गतिज ऊर्जेपेक्षा कमी असते.

C. शोधाल तर सापडेल.

- अ. तापमापी हे उपकरण मोजण्यास वापरतात.
- आ. उष्णता मोजण्यास हे उपकरण वापरतात.
- इ. तापमान हे वस्तूतील अणूंच्या गतिज ऊर्जेचे प्रमाण असते.
- ई. एखाद्या वस्तूतील उष्णता ही त्यातील अणूंच्यागतिज ऊर्जेचे प्रमाण असते.
- 2. निशिगंधाने चहा बनविण्यासाठी चहाचे घटक टाकून भांडे सौरचुलीत ठेवले. शिवानीने तसेच भांडे गॅसवर ठेवले. कोणाचा चहा लवकर तयार होईल व का?

3. थोडक्यात उत्तरे द्या.

- अ. वैद्यकीय तापमापीचे वर्णन करा. त्यात व प्रयोगशाळेत वापरल्या जाणाऱ्या तापमापीत कोणता फरक असतो?
- आ. उष्णता व तापमानात काय फरक आहे ? त्यांची एकके कोणती ?
- इ. कॅलरीमापीची रचना आकृतीसह समजवा.
- ई. रेल्वेच्या रुळांत ठराविक अंतरावर फट का ठेवली जाते हे स्पष्ट करा.
- वायूचा व द्रवाचा प्रसरणांक म्हणजे काय हे सूत्रांद्वारे स्पष्ट करा.

4. खालील उदाहरणे सोडवा.

अ. फॅरेनहाईट एककातील तापमान किती असल्यास ते सेल्सिअस एककातील तापमानाच्या दुप्पट असेल?

(उत्तर : 320 °F)

आ. एक पूल 20 m लांबीच्या लोखंडाच्या सळईने तयार केला आहे. तापमान 18 °C असताना दोन सळयांत 4 cm अंतर आहे. किती तापमानापर्यंत तो पूल सुस्थितीत राहील?

(उत्तर : 35.4 ⁰C)

इ. आयफेल टॉबरची उंची $15\,^{\circ}$ C वर $324\,\mathrm{m}$ असल्यास, व तो टॉबर लोखंडाचा असल्यास, $30\,^{\circ}$ C ला त्याची उंची किती cm ने वाढेल ?

(उत्तर: 5.6 cm)

ई. अ व ब पदार्थांचा विशिष्ट उष्मा क्रमशः c व 2c आहे. अ ला Q व ब ला 4Q एवढी उष्णता दिली गेल्यास त्यांच्या तापमानात समान बदल होतो. जर अ चे वस्तुमान m असेल तर ब चे वस्तुमान किती असेल?

(उत्तर: 2 m)

3. एक $3~{\rm kg}$ वस्तुमानाची वस्तू 600 कॅलरी ऊर्जा प्राप्त करते तेव्हा तिचे तापमान $10~{\rm ^{0}C}$ पासून $70~{\rm ^{0}C}$ पर्यंत वाढते. वस्तूच्या पदार्थाचा विशिष्ट उष्मा किती आहे?

(उत्तर: 0.0033 cal /(gm ⁰C))

उपक्रम:

द्विधातू पट्टी (bimetallic strip) बद्दल माहिती मिळवा व ती वापरून अग्निसूचक यंत्र कसा बनवतात याबद्दल वर्गात चर्चा करा.

