数学科学学院 2018 年统计计算 3-2 期末考试试卷

回忆人: 张绰棋 2018 年 4 月

一、请描述用逆变换法生成服从分布 F(x) 的方法,并证明之.

- 二、(筛选抽样法) 若密度函数 f(x) 可表成 f(x)=cg(x)h(x),其中 h(x) 为一密度函数, $0 \le g(x) \le 1$, $c \le 1$ 为一常数,则可根据如下方法抽取 $X \sim f(x)$:
- i) 从 U(0,1) 中抽取 u,然后从 h(y) 中抽取 Y;
- ii) 若 $u \leq g(Y)$, 则令 X = Y;
- iii) 若 $u \ge g(Y)$, 则回到 i).
- (1) 证明上述抽样方法的有效性.
- $(2)f(x) = \sqrt{\frac{2e}{\pi}}e^{-\frac{(x-1)^2}{2}}e^{-x}, \ \ \text{请利用逆变换法以及筛选抽样法描述生成服从} \ f(x) \ \ \text{随机数的步骤}.$
- 三、两个独立的随机变量 $X \sim U(0,2), Y \sim U(0,2)$, 请利用 X,Y 描述一种简便的近似估计 π 的方法.
- 四、请描述用二分法求取方程的根的方法步骤,并描述二分法的优点(至少一个)和缺点(至少一个).
- 五、请描述 Monte Carlo 方法求定积分 $\int_0^3 e^{x^7+x}$ 的步骤.
- 六、设 X 为随机变量, f(x) 与 g(x) 均为单调递增的函数, 证明 $Cov(f(x),g(x)) \ge 0$.
- 七、请用牛顿法求 $g(x) = -\frac{\ln 2x}{2x+1}$ 的最小值.

八、Zero-inflated 二项分布: 设 X_i 以概率 1-p 服从常数零分布,以概率 p 服从 $B(n_i,r)$, i=1,2,...,m. 其中, X_i 之间相互独立, n_i 均为已知正整数, p,r 为待估参数. 令 $Z_i=1$, 若 X_i 来自常数零分布; $Z_i=0$, 若 X_i 来自二项分布. 请利用 EM 算法求参数 p,r 的极大似然估计.

九、观测数据 x_i 与 y_i 有如下线性回归方程 $y_i = \alpha + \beta x_i + \epsilon_i$, 其中 ϵ_i 相互独立并服从 $N(0,\sigma^2)$, i=1,2,...,n. 记观测数据通过最小二乘法得到的 β 估计值为 $\hat{\beta}$,分别写出参数 bootstrap 法以及非参数 bootstrap 法估计 $\hat{\beta}$ 绝对值的对数的方差,即估计 $Var(\log |\hat{\beta}|)$.

参数法: 非参数法: