Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Лабораторная работа #1 Вариант #26768

По дисциплине

Программирование

Выполнил студент группы R3138

Глазков В.Н.

Преподаватель:

Кобелев Р.П.

г. Санкт-Петербург 2025 г.

Текст задания

Написать программу на языке Java, выполняющую указанные в варианте действия.

Требования к программе:

- Программа должна корректно запускаться, выполняться и выдавать результат. Программа не должна выдавать ошибки. Программа должна быть работоспособной именно во время проверки, то, что она работала 5 минут назад, дома или в параллельной вселенной оправданием не является.
- 2. Выражение должно вычисляться в соответствии с правилами вычисления математических выражений (должен соблюдаться порядок выполнения действий и т.д.).
- 3. Программа должна использовать математические функции из стандартной библиотеки Java.
- 4. Вычисление очередного элемента двумерного массива должно быть реализовано в виде отдельного статического метода.
- 5. Результат вычисления выражения должен быть выведен в стандартный поток вывода в виде матрицы с элементами в указанном в варианте формате. Вывод матрицы реализовать в виде отдельного статического метода.
- 6. Программа должна быть упакована в исполняемый јаг-архив.
- 7. Выполнение программы необходимо продемонстрировать на сервере helios.

Примечания:

- 1. В случае, если в варианте будут предложены одинаковые имена массивов, для одного из них к имени добавить "1".
- 2. Если в результате вычислений иногда получается NaN возможно так и должно быть.

Введите вариант: 26768

- 1. Создать одномерный массив w типа int. Заполнить его числами от 2 до 19 включительно в порядке убывания.
- 2. Создать одномерный массив x типа float. Заполнить его 14-ю случайными числами в диапазоне от -4.0 до 15.0.
- 3. Создать двумерный массив w размером 18x14. Вычислить его элементы по следующей формуле (где x = x[j]):

$$\circ$$
 если w[i] = 16, то $w[i][j] = \left(4 \cdot \left(0.25 + \sqrt[3]{\left(rac{1}{2} \cdot x
ight)^2}
ight)
ight)^2;$

 \circ если w[i] \in {2, 3, 4, 5, 7, 10, 15, 17, 18}, то $w[i][j] = \left(\arcsin(\cos(x))\right)^{0.5 \cdot \left(3 + \sin\left(\frac{x}{2}\right)\right)}$;

$$\circ$$
 для остальных значений w[i]: $w[i][j] = \left(rac{e^{\left(rac{x+0.5}{0.5}
ight)^2}}{1-\sqrt[3]{\cos(e^x)}}
ight)^2$.

4. Напечатать полученный в результате массив в формате с тремя знаками после запятой.

Исходный код программы

https://github.com/RYAZHENKA-11/itmo-java-labs/blob/main/lab1-26768/App.java

Результат работы программы

NaN	Infinity	y Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			
50,078 120,322 96,032 40,242 44,676 111,319 254,202 128,549 209,004 234,418 96,957 186,048 12,618 11,602												
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			
NaN	Infinity	Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	Infinity	y Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	Infinity	Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	Infinity	Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			
NaN	Infinity	Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	Infinity	Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			
NaN	Infinity	Infinity	NaN	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	Infinity	5,705 3,849
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,183	2 0,354	0,460			
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			
NaN	NaN	1,505 NaN	NaN	0,397 NaN	NaN	1,535 0,416	1,415 0,182	2 0,354	0,460			

Вывод

В процессе работы я:

- Изучил синтаксис и основные конструкции языка Java
- Научился создавать и инициализировать одномерные и двумерные массивы примитивных типов
- Реализовал алгоритм заполнения массивов данными: один последовательными числами в порядке убывания, другой случайными числами в заданном диапазоне
- Изучил условные операторы if-else для реализации логики вычислений

- Изучил математические функции из стандартной библиотеки java.lang. Math для выполнения вычислений, таких как возведение в степень, извлечение корня и тригонометрические операции
- Разделил код на логические части, вынеся вычисление элемента матрицы и её вывод в отдельные статические методы, что улучшило структуру и читаемость программы
- Изучил форматированный вывод данных в консоль с помощью System.out.printf для представления чисел с заданной точностью

В результате была создана работоспособная программа, которая корректно выполняет все вычисления и выводит результат в требуемом формате. Цели лабораторной работы были полностью достигнуты, а практические навыки программирования на Java закреплены.