Distribuição Log-Normal

Propriedades e aplicações

Luiz Fernando Palin Droubi* Norberto Hochheim[†] Willian Zonato[‡] 13/06/2018

1 INTRODUÇÃO

A transformação de variáveis é um procedimento comum na Engenharia de Avaliações. No entanto, a transformação dos dados por vezes é realizada sem uma análise profunda do comportamento das variáveis. A Food and Drug Administration (FDA), órgão federal dos EUA que atua no controle da comercialização de alimentos e medicamentos no país, recomenda:

A transformação desnecessária de dados deve ser evitada. Caso tenha sido realizada transformação de dados, uma justificativa para a escolha da transformação junto com a interpretação das estimativas dos efeitos do tratamento com base nos dados transformados deve ser fornecida. (FDA, 1988 apud KEENE (1985))

No entanto, a transformação logarítmica é especial, por uma série de aspectos, como pode ser visto em KEENE (1985).

A distribuição lognormal apresenta diversas aplicações práticas. É comum, na área de avaliação de imóveis, mas não apenas¹, nos depararmos com dados que seguem esta distribuição. Neste artigo pretendemos demonstrar as principais características da distribuição lognormal, sua relação com a distribuição normal de Gauss, assim como debatemos a melhor maneira de se lidar com dados lognormais.

2 REVISÃO BIBLIOGRÁFICA

2.1 Formulação

A formulação da distribuição lognormal para os parâmetros μ e σ pode ser vista abaixo (ACTION)

$$\begin{cases} f(x; \mu, \sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\log(x) - \mu)^2}{2\sigma^2}\right) & \forall x > 0 \\ 0 & \text{se } x = 0 \end{cases}$$

2.2 Propriedades

2.2.1 Valor Esperado e Variância

O valor Esperado $\mathbb E$ de uma variável aleatória com distribuição lognormal X é (ACTION):

$$\mathbb{E}(X) = \exp\left(\mu + \frac{\sigma^2}{2}\right)$$

E sua variância é:

$$Var(X) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$$

^{*}SPU/SC, luiz.droubi@planejamento.gov.br

[†]UFSC, hochheim@gmail.com

[‡]SPU/SC, willian.zonato@planejamento.gov.br

¹Dados estritamente positivos, como valores em moeda, altura, peso, etc, normalmente seguem a distribuição lognormal.

2.2.2 Medidas de Tendência Central

A figura 1 mostra a posição das medidas de tendência central (moda, média e mediana) para um variável aleatória de distribuição log-normal.

Figura 1: Ilustração das posições de medidas de tendência central numa distribuição lognormal.

2.2.3 Efeito das variações do desvio-padrão na forma da distribuição

Figura 2: Distribuição lognormal com $\mu=0$ e diversos valores de σ

2.2.4 Relação com a distribuição normal

Lembrando que a função densidade de probabilidade de uma variável aleatória com distribuição normal é dada por:

$$f(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\frac{(t-\mu)^2}{\sigma^2}}$$

E que para a distribuição normal-padrão (N(0,1)) a função densidade de probabilidade torna-se:

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2}$$

Seja X uma variável aleatória de distribuição normal padronizada $(X \sim N(0,1)), f_X$ a função densidade de probabilidade e $Y = e^X$. Então (F_Y) é igual a:

$$F_Y(y) = \mathbb{P}(e^X \le y) = \mathbb{P}(X \le \ln(Y)) = \int_{-\infty}^{\ln(y)} f_X(x) dx = \int_{-\infty}^{\ln(y)} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

o que equivale a:

$$F_Y(y) = \int_0^y \frac{1}{x} \frac{1}{\sqrt{2\pi}} e^{-\ln(x)^2/2}$$

Ou seja, a distribuição de uma variável $Y = e^X$, em que $X \sim N(0,1)$ é equivalente a distribuição de uma variável lognormal com parâmetros $\mu = 0$ e $\sigma = 1$.

A figura 3 ilustra este fato.

Figura 3: Comparação entre distribuições normal e lognormal padronizadas.

2.2.5 Analogia com o Teorema do Limite Central

Assim como o resultado da soma de diversas variáveis independentes com distribuições quaisquer resulta numa variável aleatória de distribuição normal (Teorema do Limite Central), o produto de diversas variáveis aleatórias resulta numa distribuição lognormal.

3 EXEMPLO

3.1 Dados

Os dados utilizados aqui são oriundos de Hochheim (2015, pp. 21–22) e são reproduzidos no ANEXO I.

3.2 Ajuste de distribuições aos dados

3.3 Gráficos

As figuras 4 e 5 mostram que os valores observados para a variável valor do conjunto de dados mencionados acima (HOCHHEIM, 2015, pp. 21–22) apresentam distribuição aproximadamente lognormal, com parâmetros $\mu = ln(\bar{valor})$

a. Densidade

Figura 4: Função densidade de probabilidade com parâmetros obtidos dos dados da variável valor b. Histograma com densidade superposta

Figura 5: Histograma das variável valor com função densidade de probabilidade superposta.

c. Cumulativa

Figura 6: Função cumulativa de densidade de probabilidade com parâmetros obtidos dos dados da variável valor

d. Distribuição da variável ln(valor)

A figura 7

Figura 7: Histograma com função densidade de probabilidade normal superposta

3.4 Modelos

Detectando-se a presença de variável resposta com distribuição lognormal, pode-se proceder da seguinte maneira:

3.4.1 Modelo linear com a variável resposta transformada

É fácil mostrar que o modelo linear com a variável resposta logaritmizada, ou seja, com distribuição normal, é melhor ajustado que o modelo linear de uma variável resposta lognormal.

A função máxima verossimilhança de Box-Cox também vai apresentar como transformação ótima a transformação logarítimica, como demonstra a figura 8

Figura 8: Gráfico da função verossimilhança de Box-Cox

Na tabela 1 é possível comparar os modelos com e sem a transformação da variável resposta, assim como o modelo de regressão de poisson, que será visto na próxima seção.

3.5 Retransformação de variáveis

O problema da transformação da variável resposta no logarítmo da variável resposta original, é que devemos estudar como proceder na retranformação da variável, para efetuar a avaliação do imóvel.

Para isto, utilizamos o valor esperado da variável log-normal, ou seja:

$$\mathbb{E}(X) = \exp(x + 0.5\sigma^2)$$

4 CONCLUSÃO

Foi possível demonstrar de maneira gráfica que os dados da variável valor apresentados se ajustam bem a uma distribuição lognormal equivalente. Por definição, então, o logaritmo da variável possui distribuição normal.

0 valor mais provável para a variável resposta, então, é Valor Esperado da variável. Logo, a retransformação da variável deve ser feita para a média da variável log-normal.

Tabela 1: Comparação entre modelos com e sem transformação da variável resposta

	Dependent var	riable:		
	valor	$\log(\text{valor})$		
	(1)	(2)		
area_total	2,893.178	0.002		
_	(2,065.405, 3,720.951)	(0.001, 0.002)		
	t = 6.850	t = 4.886		
	$p = 0.00000^{***}$	$p = 0.00002^{***}$		
quartos	73,524.375	0.169		
	(-34,814.143, 181,862.894)	(0.084, 0.255)		
	t = 1.330	t = 3.870		
	p = 0.191	$p = 0.0004^{***}$		
suites	111,000.591	0.088		
	(8,045.131, 213,956.052)	(0.007, 0.170)		
	t = 2.113	t = 2.121		
	$p = 0.041^{**}$	p = 0.040**		
garagens	148,427.448	0.175		
	(49,657.102, 247,197.795)	(0.097, 0.253)		
	t = 2.945	t = 4.394		
	$p = 0.006^{***}$	$p = 0.0001^{***}$		
dist_b_mar	-223.217	-0.0003		
	(-434.862, -11.571)	(-0.0004, -0.0001)		
	t = -2.067	t = -3.215		
	$p = 0.045^{**}$	p = 0.003***		
padraomedio	-146,549.393	0.268		
	(-354,850.457,61,751.672)	(0.103, 0.433)		
	t = -1.379	t = 3.190		
	p = 0.176	$p = 0.003^{***}$		
padraoalto	-56,064.550	0.334		
	(-264,003.525, 151,874.426)	(0.169, 0.498)		
	t = -0.528	t = 3.975		
	p = 0.600	$p = 0.0003^{***}$		
Constant	33,953.788	12.315		
	(-267,469.800, 335,377.375)	(12.076, 12.553)		
	t = 0.221	t = 101.170		
	p = 0.827	$p = 0.000^{***}$		
Observations	50	50		
R^2	0.906	0.940		
Adjusted R^2	0.890	0.930		
Akaike Inf. Crit.	1,375.659	-29.275		
Residual Std. Error ($df = 42$)	207,903.003	0.165		
F Statistic (df = 7 ; 42)	57.731***	94.063***		
Note:	* .0.1	; **p<0.05; ***p<0.0		

ANEXO I

valor	area total	quartos	suites	garagang	dist b mar	padrao
1060000	350.00	quartos 3		garagens 2	720	medio
			1			
510000	136.56	3	1	1	665	medio
780000	164.77	3	1	2	415	medio
550000	174.58	3	1	1	320	medio
850000	123.01	3	1	3	895	alto
300000	89.83	2	0	1	645	baixo
750000	174.00	2	1	2	860	alto
650000	123.00	3	1	1	745	alto
620000	121.00	3	1	1	745	alto
740000	109.00	3	1	1	300	medio
770000	170.00	3	1	2	590	medio
680000	141.00	3	1	1	290	medio
850000	174.00	3	1	1	465	medio
420000	105.00	3	1	0	60	baixo
547000	128.00	3	1	1	745	alto
1600000	163.00	4	2	2	90	alto
1320000	230.00	3	1	2	215	alto
615000	108.00	3	1	1	745	alto
705000	174.00	2	1	$\stackrel{-}{2}$	900	alto
418000	85.00	1	0	1	620	alto
270000	71.00	2	0	0	1380	baixo
418000	100.00	1	1	1	620	alto
650000	90.00	2	1	1	215	alto
700000	161.00	$\frac{2}{2}$	1	2	500	alto
680000	174.00	2	1	2	860	alto
420000	76.00	2	1	1	700	baixo
195000	48.00	1	0	0	730	baixo
290000	66.00	1	0	1	745	baixo
272000	50.00	1	0	1	1430	baixo
430000	61.00	2	0	1	170	baixo
895000	109.00	3	1	1	530	medio
450000	89.00	2	0	1	745	medio
1950000	393.00	3	1	3	550	alto
2150000	578.00	3	2	3	260	alto
940000	182.00	3	1	2	200	medio
1400000	262.00	4	1	1	60	alto
1090000	205.00	3	0	3	465	medio
1272000	196.00	3	3	2	610	alto
2800000	463.00	3	3	3	590	alto
1796000	273.00	3	3	4	140	medio
1400000	330.00	4	2	2	655	alto
3000000	533.00	4	3	4	427	alto
1200000	221.00	3	3	2	607	alto
800000	220.00	3	1	1	1000	medio
950000	127.00	2	1	1	60	medio
2061000	362.00	3	3	4	310	alto
1326000	315.00	3	3	3	600	alto
850000	151.00	3	1	2	660	medio
1650000	246.00	3	3	3	307	alto
650000	159.72	3	1	1	120	medio

REFERÊNCIAS

 $ACTION,\ P.\ Distribuição\ log-normal..\ Disponível\ em:\ < http://www.portalaction.com.br/probabilidades/615-distribuicao-log-normal>..$

FDA. Guideline for the format and content of the clinical and statistical sections of new drug applications. Food and Drug Administration, Public Health Service, US Department of Health and Human Services, 1988.

HOCHHEIM, N. Engenharia de avaliações - módulo básico. Florianópolis: IBAPE - SC, 2015.

KEENE, O. N. The log transformation is special. Statistics in Medicine, v. 14, p. 811–819, 1985.