Bidang Fokus : Pertahanan dan Keamanan Luaran : Kebijakan dan Draft Hak Cipta

Kode / Rumpun Ilmu : 410 / Ilmu Teknik

PROPOSAL PENELITIAN INOVATIF PENUGASAN FAKULTAS DANA RKAT FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

SISTEM INFROMASI KONSERVASI ENERGI DAN AIR FAKULTAS TEKNIK UNDIP

TIM PENGUSUL

Karnoto, ST, MT (NIP 0196907091997021001)
Dr. Abdul Syakur, ST, MT (NIP 197204221999031004)
Ir. Eflita Yohana, MT, PhD (NIP 196204281990012001)
W Dwianugrah Tambunan (NIM 21060117140075)
Dimaz Aji Laksono (NIM 21050117120008)

FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO TAHUN 2021

HALAMAN PENGESAHAN PROPOSAL PENELITIAN INOVATIF

Judul Penelitian : Sistem Informasi Konservasi Energi dan Air Fakultas Teknik Luaran Penelitian : Kebijakan Konservari Energi dan Air Fakultas Teknik UNDIP

Ketua Penelitian :

a. Nama lengkap : Karnoto, ST, MT

b. NIP/NIDN : 196907091997021001 / 00009076905

c. Jabatan Fungsional : Lektor Kepalad. Program Studi : Teknik Elektroe. Nomer HP 08122815920

f. Alamat email : arnot0907@gmail.com

Anggota Penelitian 1 :

a. Nama lengkap : Dr, Abdul Syakur, ST, MT

b. NIP/NIDN : 197204221999031004/0022047201

c. Program Studi : Teknik Elektro d. Nomer HP 085643212347

Anggota Penelitian 2

a. Nama lengkap : Ir. Eflita Yohana, MT, PhD

b. NIP/NIDN : 196204281990012001/0028056209

c. Program Studi : Teknik Mesind. Nomer HP 085201207619

Anggota Mahasiswa:

1. W Dwianugrah Tambunan (NIM 21060117140075)

2. Dimaz Aji Laksono (NIM 21050117120008)

Lama Penelitian : 7 (tujuh) bulan Biaya Penelitian : Rp 20.000.000,-

Sumber Dana : RKAT Fakultas Teknik Undip Tahun 2021

Semarang, 26 Februari 2021 Ketua Peneliti,

(Karnoto, ST, MT.) NIP. 196907091997021001

RINGKASAN

Peralatan energi listrik yang dipakai gedung sangat bervariasi dari yang sangat sederhana sampai peralatan berteknologi tinggi. Penggunaan peralatan energi listrik harus sudah direncanakan dengan baik sejak dari perencanaan, sehingga pengoperasian alat tersebut menjadi maksimal dengan kebutuhan listrik yang mencukupi untuk pengoperasian peralatan tersebut.

Konservasi Energi dan air Pemakaian energi listrik dan air dalam bangunan harus dipikirkan sejak dari perencanaan agar standarisasi dan ketersediaan energi dan air dapat terpenuhi secara maksimal. Dengan demikian penggunaan energi dan air dan pengaruh pengaturan operasinya harus sudah dipikirkan sebelumnya, sehingga instalasi energi dan air yang ada sanggup menunjang pengoperasian peralatan yang ada sesuai standar instalasi serta keamanan dan keselamatan lebih terjamin. Namun demikian untuk bangunan yang sudah terlanjur terbangun perlu Audit energi dan evaluasi instalasi agar pemakaian energi dan air dan instalasinya dapat diketahui untuk pengelolaan dan pengoperasian yang lebih baik dan aman baik bagi instalasi maupun keselamatan peralatan dan manusianya.

Konservasi Energi dan air Fakultas Teknik Universitas Diponegoro merupakan langkah awal untuk memperoleh informasi kondisi infrastruktur, tingkat intensitas konsumsi energi dan air, permasalah energi dan air, peluang penghematan energi dan air apakah masih memenuhi persyaratan. Dengan kegiatan ini akan diperoleh data yang kongkrit mengenai konsumsi , kondisi eksisting peralatan dan instalasi yang ada pada bangunan gedung di Fakultas Teknik serta pemeliharaan instalasi sehingga diharapkan pelayanan Fakultas Teknik semakin baik

Fakultas Teknik Undip sendiri telah memiliki Sistem Penjaminan Mutu Internal (SPMI) melalui ISO 9001:2015. SPMI merupakan sistem penjaminan mutu yang berjalan di dalam satuan pendidikan dan dijalankan oleh seluruh komponen dalam satuan pendidikan yang mencakup seluruh aspek penyelenggaraan pendidikan dengan memanfaatkan berbagai sumberdaya. Sistem Informasi Konservasi Energi dan Air sangat diperlukan untuk mendukung implementasi SMK3 dan SPMI lingkungan Fakultas Teknik Undip selalu memberikan pelayanan pada mahasiswa

Penelitian ini akan dilakukan dalam beberapa tahap, yang diawali dengan audt enrgi dan air untuk mengetahui penerapan Konservasi Energi dan air saat ini di setiap lingkungan departemen di Fakultas Teknik Undip. Keberadaan energi dan air dan permasalahan serta PHE(Peluang Hemat Energi) setiap fasilitas akan dilakukan dalam pemetaan tersebut. Kemudian akan disusun dokumen untuk setiap departemen sesuai temuan pada Audit Energi dan Air, yaitu meliputi dokumen konservasi Energi dan air, struktur organisasi Konservasi Energi dan air, serta beberapa Standard Operating Procedure (SOP) Konservasi Energi dan Air, PHE, Implementasi PHE, prosedur pelaporan Konservasi Energi dan Air, serta form-form yang menyertai setiap kegiatan tersebut. Selanjutnya, dokumen Konservasi Energi dan Air yang sudah tersusun akan diintegrasikan kedalam klausul SPMI yang telah dimiliki Fakultas Teknik Undip. Hasil akhir penelitian akan berupa kebijakan yang secara teknis langsung dapat diterapkan di seluruh lingkungan departemen Fakultas Teknik Undip. Dengan adanya kebijakan SPMI yang mempertimbangkan Konservasi energi, maka setiap aktivitas yang dilakukan di Fakultas Teknik Undip dapat terjamin pemakaian energi an air menjadi lebih Efisien dan menjadi budaya bagi personil yang melakukannya juga bagi aset yang dimiliki Fakultas Teknik Undip.

Kata kunci: Konservas , audit, energi, air, efisien

DAFTAR ISI

HALAMAN PENGESAHAN	1
DAFTAR ISI	2
RINGKASAN	4
BAB 1. PENDAHULUAN	5
1.1. Latar Belakang	5
1.2. Rumusan Masalah	6
1.3. Tujuan Penelitian	7
1.4. Urgensi Penelitian	7
BAB 2. TINJAUAN PUSTAKA	8
2.1. Manajemen Sisi Kebutuhan	8
2.2. Audit Energi	<u></u> 9
2.3 Beban Penerangan	
2.4 Beban <i>Air Conditioner</i> dan lain lain	12
2.5. Intensitas Konsumsi Energi listrik (IKE)	14
2.6 Analisa Ekonomi	16
2.7 Sistem Informasi Konsevasi Energi dan Air	19
BAB 3. METODE PENELITIAN	20
3.1. Bagan Penelitian	
3 2. Waktu dan Tempat Penelitian	22
3 3. Metode Pengumpulan Data	22
35. Metode Pengolahan Data	22
BAB 4. BIAYA DAN JADWAL PENELITIAN	24
41. Anggaran Biaya	24
4 2. Jadwal Penelitian	24
DAFTAR PUSTAKA	
LAMPIRAN	
Lampiran A. Justifikasi Anggaran Penelitian	
Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	
Lampiran C. Biodata Ketua dan Anggota-Dosen dan Mahasiswa	
Lampiran D. Surat Pernyataan Ketua Peneliti	
Lampiran E. Formulir Desk Evaluasi Proposal Penelitian Strategis	

BAB 1. PENDAHULUAN

1.1. Latar Belakang

Pembangunan akan sarana atau fasilitas khususnya sarana Pendidikan terutama di Fakultas Teknik Universitas Diponegoro menuntut pelayanan dan fasilitas yang terbaik. Fungsi dan efektifitas fasilitas penunjang pendidikan diharapkan dapat menjadi yang terbaik dalam pelayanan kepada Mahaiswa. Salah satu sarana pendukung yang cukup vital adalah elektrikal atau kelistrikan yang senantiasa dibutuhkan guna peningkatan pelayanan tersebut mengingat kelistrikan sangat rentan dengan perhitungan beban, jenis dan kebutuhannya.

Peralatan energi dan air yang dipakai gedung sangat bervariasi dari yang sangat sederhana sampai peralatan berteknologi tinggi. Penggunaan peralatan energi listrik harus sudah direncanakan dengan baik sejak dari perencanaan, sehingga pengoperasian alat tersebut menjadi maksimal dengan kebutuhan listrik yang mencukupi untuk pengoperasian peralatan tersebut. Namun demikian apabila ada peralatan yang sudah terlanjur dipasang perlu adanya evaluasi instalasi yang tersedia serta kebutuhan listrik yang tersedia. Sistem kelistrkan Fakultas Teknik sejak pindah dari tahun 1997 sampai sekarang mengalami perkembangan jumlah peralatan yang cukup banyak dari penambangan alat penunjang pendidikan dan alat laboratorium. Kerusakan infrastruktur sistem tenaga listrik juga terus beruntun (Rusak panel Tegangan Menengah Teknik Kimia 2010, Teknik Elektro 2012, dan teknik Mesin 2015) dan masih perlu perhatian untuk jurusan yang lain.

Pemakaian energi dan ar beserta instalasinya dalam bangunan sejak dari perencanaan agar standarisasi dan ketersediaan energi dan air dapat terpenuhi secara maksimal. Dengan demikian penggunaan motor listrik, pemilihan lampu, pendingin, pengunaan air dan pengaruh pengaturan operasinya harus sudah dipikirkan sebelumnya, sehingga instalasi energi dan air yang ada sanggup menunjang pengoperasian peralatan yang ada sesuai standar instalasi peralatan energi dan air baik serta keamanan dan keselamatan baik kualitas dan kapasitas lebih terjamin. Namun demikian untuk bangunan yang sudah terlanjur terbangun perlu Audit energi dan evaluasi instalasi agar pemakaian energi dan air beserta instalasinya dapat diketahui untuk pengelolaan dan pengoperasian yang lebih baik dan aman baik bagi instalasi maupun keselamatan peralatan dan manusianya.

Audit Energi dan air Fakultas Teknik Universitas Diponegoro merupakan langkah awal untuk memperoleh informasi mengenai tingkat intensitas konsumsi energi, peluang penghematan energi pada sebuah bangunan dan kondisi infrastruktur instalasi energi dan aor

yang pakai apakah masih memenuhi persyaratan. Dengan kegiatan ini akan diperoleh sistem informasi konservasi energi dan air berupa data yang kongkrit mengenai konsumsi energi, kondisi eksisting peralatan dan instalasi yang ada pada bangunan gedung di Fakultas Teknik serta pemeliharaan instalasi energi sehingga diharapkan pelayanan Fakultas Teknik semakin baik

1.2. Perumusan Masalah

Konservasi Energi dan air selama ini belum sepenuhnya menjadi bagian dalam institusi pendidikan. Saat ini, kebijakan mengenai Konservasi Energi dan Air baru disebutkan secara implisit sebagai bagian dari tugas pokok Gugus Penjaminan Mutu (GPM) departemen, namun belum dituliskan secara eksplisit dalam prosedur penjaminan mutu yang dilakukan. Fakta ini cukup untuk menggambarkan kepentingan dan posisi penelitian Konservasi Energi dan Air saat ini.

Penelitian ini merupakan pengembangan dari penelitian-penelitian dasar sebelumnya. Penelitian ini juga menjadi fondasi bagi penelitian selanjutnya, yang bersifat perbaikan berkelanjutan. *Road map* penelitian ini digambarkan pada Tabel 1.

Tabel 1. Peta jalan penelitian

	Penelitian terdahulu yang menunjang (s.d. 2020)	Penelitian yang diajukan (2021)	Penelitian berikutnya (2022 dst)
	Identifikasi data infrastruktur energi dan air pola konsumsi dan ketersedianan energi dan air		
Tahap Inisiasi	Efek pelatihan Konsevasi energi dan Air terhadap pengetahuan, sikap, dan praktik Konservasi energi dan air		
Tahap Pembuatan Sistem Inforamasi dan		Sistem Infomasi Konservasi energi aan Air (SIKEA) Fakultas Teknik Undip	
Program Konservasi Energi dan air (KEA)		Perancangan Program SIKEA Fakultas Teknik Undip	
Tahap Pelaksanaa n Pogram KEA			Penerapan Program SIKEA di lingkungan Fakultas Teknik Undip

1.3. Tujuan Penelitian

Tujuan penelitian adalah

- a. Mengetahui Intensitas Konsumsi Energi banguan di Fakultas Teknik Univesitas
 Diponegro
- b. Pengukuran dan Ivestigasi termal kondisi eksisting instalasi listrik Fakultas Teknik
- c. Menganalisis kondisi eksisteing sistem instalasi listrik Fakultas Teknik
- d. Membuat rekomendasi perbaikan agar instalasi sesuai dengan persyaratan instalasi listrik yang berlaku di Indonesia.
- e. Implementasi Program Konservasi energi dan air

1.4. Urgensi Penelitian

Program Konservasi Energi untuk menjaga pemakaian energi dan air menjadi sebuah kebutuhan dan perubahan sikap dan menjadi budaya bagi segenap civitas akademika Fakulatas Teknik Undip. Kenyataan inilah yang mendasari pentingnya penelitian ini. Konservasi Energi an air menjadi prioritas dalam mendukung setiap aktivitas pelayanan yang diberikan oleh Fakultas Teknik Undip. Dukungan ketersedian Enegi dan Air akan menjaminan kelancaran setiap personil dosen, tenaga kependidikan, mahasiswa, dan juga tamu selama beraktivitas di lingkungan Fakultas Teknik Undip. Dengan demikian, aspek konservasi energi dan air sebagai salah satu faktor penting untuk mendukung diintegrasikan kedalam Sistem Penjaminan Mutu Internal (SPMI) Fakultas Teknik Undip.

BAB 2. TINJAUAN PUSTAKA

Pemakaian energy dalam sebuah bangunan harus sudah dipikirkan sejak dari perencanaan dan merupakan hasil kesepakatan antara perencana, pemilik dan pelaksana (Hon Kwok Wong). Dengan demikian pemilihan lampu, pendingin dan pengaruh pengaturan operasinya harus sudah dipikirkan sebelumnya sehingga biaya pemakian energi listrik dapat ditekan seoptimum mumgkin. Namun demikian untuk bangunan yang sudah terlanjur belum disentuh progaram konservasi energi perlu ada upaya untuk mengkaji kembali atas pemakaian energi lewat Audit energi

Menurut Syofyan Syawaludin, 2003 pemakaian lampu yang hemat energi dapat menhasilkan penghematan biaya listrik. Selain lampu terdapat pula pendingin (AC) yang digunakan dalam bangunan gedung. Pemakaian Air Conditioning, tidak terlepas dari pemakian refrigeran yang dapat menggunakan Freon atau hydrokarbon. Penggunaan refrigeran hydrokarbon akan membawa pengaruh yang lebih ekonomis dan aman lingkungan (Maulana Agus, 2003). Dengan demikian diperlukan manajemen beban dan pengaturan dan operasi pemakaian energi listrik.

2.1 Manajemen Sisi Kebutuhan

Manajemen sisi kebutuhan adalah rangkaian kegiatan institusi yang meliputi perencanaan, pelaksanaan, dan pemantauan yang dilakukan oleh pengusaha untuk mempengaruhi pola konsumsi pelanggan tenaga listrik yang menangkut dan waktu penggunaanya tanpa merugikan pengusaha atau konsumen. Dengan manajemen sisi kebutuhan pengusaha dapat mengupaya pengurangan pertumbuhan beban puncak sistem, menciptakan iklim yang kompetitif dalam meningkatkan efisiensi pemakaian dan produktifitas, memberikan penghematan biaya konsumsi energi listrik, dan melestarikan sumber daya alam serta mengurangi dampak lingkungan.

Strategi manajemen sisi kebutuhan terdiri dari *peak cliping* (pemangkasan beban puncak), *Valley Filling, load shifting*, konservasi energi, *startegi load growth*, dan *flexible load shape. Peak Cliping* adalah program untuk mengurangi beban pada saat Waktu Beban Puncak (WBP). *Valley Filling* adalah program untuk menambah beban pada saat luar waktu beban puncak (LWBP). *Load shifting* adalah penggeseran beban dari beban puncak ke beban luar beban puncak. Konservasi energi adalah program untuk menghemat pemakaian energi listrik. Startegi load growth adalah program untuk menaikan pemakaian energi listrik. *Flexible load*

shape adalah program untuk memperbaiki dan menjaga sistem dengan mengurangi pemadaman.

Faktor yang mempengaruhi menajemen sisi kebutuhan adalah

- Kepercayaan pelanggan meliputi kondisi dan karakteristik sektor pelanggan dan Citra perusahaan dimata pelanggan
- 2. Tanggapan pelanggan meliputi pola konsumsi sistem peralatan dan perubahan karakteristik dan teknologi peralatan
- Strategi pemasaran kepada pelanggan meliputi tingkat pengetahuan pelanggan, hubungan langsung dengan pelanggan, iklan, pemberian insentif kepada pelanggan, pemberian insentif melalui tarif khusus dan kerjasama dengan asosiasi dan produsen alat

2. 2. Audit Energi

Audit energi adalah teknik untuk menghitung besarnya konsumsi energi dan mengenali cara-cara untuk penghematanya. Proses audit energi secara bertahap adalah sebagai berikut :

i. Audit awal

Menghitung dan menganalisa konsumsi energi lsistrik berdasar data dari rekening listrik dan pengamatan visual kondisi dari data gedung beserta peralatannya. Data yang dibutuhka data rekening listrik, data beban dan instalasinya, dan *single diagram* sistem kelistrikan. Dengan data tersebut dapat diketahui luas bangunan, konsumsi energi listrik pertahun, itensitas Konsumsi Energi (IKE).

ii. Audit rinci

Dari audit rinci dilakukan apabila yang IKE tidak sesuai target yang diinginkan. Audit enrgi rinci perlu dilakukan untuk mengetahui profil penggunaan energi pada bangunan gedung sehingga dapat diketahui peralatan pengguna energi apa saja yang pemakaianya cukup besar. Kegiatan yang dilakukan dengan pengukuran parameter konsumsi energi listrik seperti Arus, tegangan, daya (Watt, VA, VAR), faktor daya, dan lux.

iii. Identifikasi dan analisa peluang hemat energi

Dari Hasil auditawal dan audit rinci dapat diketahui peluang peluang penghematan energi yang dikaitan dengan biaya energi listrik.

2. 3. Beban Penerangan

Dalam perencanaan penerangan bangunan gedung, badan internasional telah merekomendasi tingkat kuat penerangan (*Recommended Illumination*) yang berpedoman pada "Guide on Interior Lighiting" of the international Commission on Illumination (Publication No. 29/2) seperti pada tabel 1.

Tabel 2.1 Rekomendasi tingkat kuat penerangan secara horisontal (horizontal illuminance recommendation) berdasarkan CIE.

Jenis Sistem Penerangan	Level Iluminasi (lux)	Tempat atau Jenis Kegiatan	
	20	Minimum area bebas	
General Lighting	30	Gudang/toko di luar bangunan	
untuk ruangan	50	Jalan setapak luar bangunan, area parkir mobil	
atau area dengan	75	Dok, dermaga	
aktifitas visual sederhana	100	Ruang Teater, aula/hall, tempat tidur hotel, kamar mandi	
sedemana	150	Ruang stok barang, toko, area bebas indoor indistri	
	200	Minimum pada benda kerja	
	300	Ruang kerja kasar, Ruang mesin, industri makanan, General proses pada industri kimia,	
General Lighting untuk ruang kerja	500	Ruang kerja medium, kantor perakitan kendaraan bermotor, Ruang mesin cetak, ruang kantor umum, toko.	
dalam ruangan	750	Ruang gambar, Laboratorium, Ruang kantor dengan mesin khusus.	
	1000 atau	Ruang kerja halus, Ruang pemeriksaan gambar, membedakan warna,	
	lebih	ruang instrument perakitan, ruang kerja presisi lainnya.	
Penerangan	2000	Ruang kerja yang membutuhkan presisi tinggi, Ruang operasi.	
tambahan untuk	atau		
jenis penerangan	lebih		
terlokalisir	tinggi		

Sedangkan di Indonesia, standarisasi tata pencahayaan berpedoman pada Badan Standar Nasional (BSN). Adapun rekomendasi untuk tingkat kuat penerangan dapat dilihat pada tabel 2 dan Kebutuhan daya setiap jenis ruang dalam Watt/m² ditunjukkan tabel 3.

Tabel 2.2. Rekomendasi tingkat penerangan berbagai jenis ruang dalam bangunan menurut BSN

Jenis Bangunan	Fungsi Ruangan	Level Iluminasi/lux
	Teras, garasi	60
	Ruang tamu	120 – 150
	Ruang makan	120 – 250
Down by Connect	Ruang kerja	120 – 250
Rumah tinggal	Kamar tidur	120 – 250
	Kamar mandi	250
	Dapur	250
	Garasi	60
Jenis Bangunan	Fungsi Ruangan	Level Iluminasi/lux
	Ruang Direktur	350
	Ruang kerja	350
	Ruang computer	350
Perkantoran	Ruang rapat	300
	Ruang gambar	750
	Gudang arsip	150
	Ruang arsip aktif	300
	Ruang kelas	250
Lembaga	Perpustakaan	300
Pendidikan	Laboratorium	500
	Ruang gambar	750
	Kantin	200
Rumah	Masjid	200
Ruman ibadah	Gereja	200
Ivauali	Vihara	200

Tabel 2.3 Rekomendasi Kebutuhan daya setiap jenis ruang

Lokasi	Daya Pencahayaan	Lokasi	Daya Pencahayaan
	maksimum (Watt/m²)		maksimum
			(Watt/m ²)
Ruang Kantor	15	Tangga	10
Auditorium	25	Ruang Parkir	5
Pasar swalayan	20	Ruang perkumpulan	20
Hotel		Industri	20
Kamar tamu	17	Pintu masuk dengan kanopi	
Daerah umum	20	Lalulintas sibuk (hotel, bandara, teater)	30
Rumah sakit		Lalulintas sedang (kantor, sekolah)	15
Ruang Pasien	15	Jalan da Lapangan	
Gudang	5	Tempat Penimbunan /tempat kerja	2
Kafetaria	10	Tempat untuk santai (taman rekereasi)	1
Garasi	2	Jalan kendaraan dan pejalan kaki	1,5
Restauran	25	Tempat parkir	2
Lobi	10		

2.4. Beban Air Conditioner dan lain-lain

Peralatan tata udara ini direkomendasikan untuk memenuhi effisiensi minimum dan kriteria seperti ditunjuk pada tabel 4. Effisiensi ini harus diuji kebenarannya melalui data yang diberikan oleh pabrik pembuat dengan sertifikasi melalui cara pengetesan dan pengujian yang telah diakui.

Tabel 2.4 Efisiensi minimum dari peralatan tata udara

Jenis Peralatan	Kapasitas unit	Sub Katagori	Effisiensi minimum
	(Btu/jam)		(COP)
		Sistem split	2,6
Pendinginan udara	< 65.000	Sistem paket	2,5
	65.000 s/d 135.000	Sistem split dan paket tunggal	2,5
,	135.000 s/d 240.000	Sistem split dan paket tunggal	2,5
	240.000 s/d 760.000	Sistem split dan paket tunggal	2,5
	>. 760.000	Sistem split dan paket tunggal	2,4
	< 65.000		2,73
Pendinginan	65.000 s/d 135.000		3.08
air	2135.000 s/d 240.000		2,81
an	< 240.000		2,81

Catatan:

1 TR = 12.000 Btu/jam= 3517,2 W. COP = Coefficient of Performance EER = Energy Efficient Ratio

ARI = AirConditioning and Refrigeration Institute.

Peralatan tata udara chiller ini harus memenuhi persyaratan dengan effisiensi minimum seperti ditunjukkan pada tabel 5, apabila diiakukan pengetesan sesuai cara pengetesan yang telah disetujui. Effisiensi ini harus diuji kebenarannya melalui data yang diberikan oleh pabrik pembuat dengan sertifikasi melalui cara pengetesan dan pengujian yang telah diakui.

a. Sistem Fan

Rancangan sistem fan harus memenuhi ketentuan :

- a) Untuk sistem fan dengan volume tetap, daya yang dibutuhkan motor pada sistem fan gabungan tidak melebihi 1,36 W/(m ³ /jam)
- b) Untuk sistem fan dengan volume aliran berubah, daya yang dibutuhkan motor untuk sistem fan gabungan tidak melebihi 2,12 W/(m ³ /jam)
- c) Setiap fan pada sistem volume aliran berubah atau VAV (*Variable Air Volume*) dengan motor 60 kW atau lebih, harus memiliki kontrol dan peralatan yang diperlukan agar fan tidak membutuhkan daya lebih dari 50% daya rancangan pada 50% volume rancangan berdasarkan data uji;

Ketentuan diatas tidak berlaku untuk fan dengan daya lebih kecil dari 7,5 kW b. Sistem Pompa

Sistem pompa dan pemipaan harus memenuhi ketentuan sebagai berikut:

- a) Sistem pemipaan harus dirancang agar laju kehilangan tekanan akibat gesekan tidak melebihi dari 4 meter air per 100 meter panjang ekuivalen pipa;
- Sistem pompa yang melayani katup kontrol yang dirancang untuk membuka dan menutup kontinu atau berlangkah harus dirancang untuk memompakan aliran fluida yang variabel;
- c) Aliran fluida harus dapat diubah dengan penggerak pompa berkecepatan variabel, pompa ganda bertahap (multi stage), atau pompa yang bekerja pada kurva performasi karakteristik;
- Ketentuan di atas tidak harus dipenuhi, jika sistem pompa hanya melayani satu katup kontrol, dan atau jika aliran minimum yang diperlukan lebih dari 50% aliran rancangan;

Ketentuan di atas tidak berlaku untuk sistem pompa dengan daya motor kurang dari 7,5 kW.

Tabel 2.5 Tabel isolasi Minimum untuk Pipa Air Sejuk*)

Sistem pemipaan	Temperatur Fluida ("C)	Tebal isolasi minimum untuk ukuran pipa (mm)			
Jenis	Jelajah **)	Hingga 50 mm	Hingga 25 mm	31 - 50 mm	Diatas 200 mm
Air Sejuk	4,5-13	12	12	20	25
Refrigerator	< 4,5	25	25	38	38

Catatan:

- *) a. bila pipa berada di lingkungan ambien perlu ditambah isolasi 12 mm.
 - b. tebal isolasi perlu ditambah bila ada kemungkinan terjadi kondensasi permukaan
 - c. tebal isolasi ini berlaku untuk bahan dengan resistansi termal 28 hingga 32 m² K/W per meter tebal isolasi
 - pada temperatur rata-rata permukaan 24°C.
- **) berlaku untuk tarikan sambungan pipa ke unit-unit terminal atau koil pendingin hingga panjang 4 meter.

2. 5. Intensitas Konsumsi Energi listrik (IKE)

Intensitas Konsumsi Energi (IKE) adalah pembagian antara konsumsi energi dengan satuan luas bangunan gedung. Menurut pedoman pelaksanaan koversi energi listrik dn pengawasannya di Lingkungan Departemen Pendidikan Nasional dalam menetukan prestasi penghematan energi seperti pada tabel 7 dan tabel 8.

Tabel 2.6. Kriteria IKE Bangunan Gedung ber-AC

KRITERIA	KETERANGAN
Sangat Efisien (4,17 – 7,92) kWh/m²/bulan	Desain gedung sesuai standar tatacara perencanaan teknis konservasi energi Pengoperasian peralatan energi dilakukan dengan prinsip-prinsip management energi
(7,93 – 12,08) kWh/m²/bulan	 a) Pemeliharaan gedung dan peralatan energi dilakukan sesuai prosedur b) Efisiensi penggunaan energi masih mungkin ditingkatkan melalui penerapan system manajemen energi terpadu
Cukup Efisien (12,08 – 14,58) kWh/m²/bulan	 a) Penggunaan energi cukup efisien melalui pemeliharaan bangunan dan peralatan energi masih memungkinkan b) Pengoperasian dan pemeliharaan gedung belum mempertimbangkan prinsip konservasi energi
Agak Boros (14,58 – 19,17) kWh/m²/bulan	 a) Audit energi perlu dipertimbangkan untuk menentukan perbaikan efisiensi yang mungkin dilakukan b) Desain bangunan maupun pemeliharaan dan pengoperasian gedung belum mempertimbangkan konservasi energi
Boros (19,17 – 23,75) kWh/m²/bulan	a) Audit energi perlu dipertimbangkan untuk menentukan langkah-langkah perbaikan sehingga pemborosan energi dapat dihindari b) Instalasi peralatan dan desain pengopeasian dan pemeliharaan tidak mengacu pada penhematan energi
Sangat Boros (23,75 – 37,5) kWh/m²/bulan	 a) Agar ditinjau ulang atas semua instalasi /peralatan energi serta penerapan managemen energi dalam pengelolan bangunan b) Audit energi adalah langkah awal yang perlu dilakukan

Tabel 2.7 . Kriteria IKE Bangunan Gedung Tidak ber-AC

KRITERIA	KETERANGAN
Efisien (0,84 – 1,67) kWh/m²/bulan	a) Pengeloaan gedung dan peralatan energi dilakukan dengan prinsip konversi energi listrik b) Pemeliharaan peralatan energi dilakukan sesuai dengan prosedur c) Efisiensi pengguanaan energi masih mungkin ditingkatkan melalui penerapan system manajemen energi terpadu
Cukup Efisien (1,67 – 2,5) kWh/m²/bulan	a) Penggunaan energi cukup efisien namun masih memiliki peluang konservasi nergi b) Perbaikan efisiensi melalui pemeliharaan bangunan dan peraltan nergi masih dimungkinkan
Boros (2,5 – 3,34) kWh/m²/bulan	a) Audit energi perlu dilakukan untukmenentukan langkah-langkah pernbaikan sehingga pemborosan energi dapat dihindari b) Desain bangunan maupun pemeliharaan dan pengoperasian gedung belum mempertimbangkan konservasi energi
Sangat Boros (3,34 – 4,17) kWh/m²/bulan	 a) Instalasi peralatan, desain pengoperasian dan pemeliharaan tidak mengacu pada penghematan energi b) Agar dilakukan peninjauan ulang atas semua instalasi /peralatan eenergi serta penerapan managemen energi dalam pengelolaan bangunan c) Audit energi adalah langkah awal yang perlu dilakukan

Sedangkan Intensitas Konsumsi Energi (IKE) menurut pedoman Permen ESDM no 13 tahun 2012 adalah sebagai berikut :

Tabel 2.8. Kriteria IKE Bangunan Gedung AC

Kriteria	Konsumsi Energi Spesifik (KWH/m2/bulan)
Sangat Efisien	IKE < 8,5
Efisien	8,5 ≤IKE < 14
Cukup Efisien	14 ≤ IKE < 18,5
Boros	IKE ≥ 18,5

Tabel 2.9 . Kriteria IKE Bangunan Gedung Tidak Ber-AC

Kriteria	Konsumsi Energi Spesifik (KWH/m2/bulan)	
Sangat Efisien	IKE < 3,4	
Efisien	$3,4 \le IKE < 5,6$	
Cukup Efisien	5,6 ≤ IKE < 7,4	
Boros	IKE ≥ 7,4	

2.6 Analisis Ekonomi

2.6.1 Metode dan Kriteria Analisa

Konsep dasar yang menjadi pendekatan harus menjadi perhatian dalam melakukan evaluasi ekonomi yaitu bahwa kegiatan (proyek) biasanya dilakukan dalam waktu relatif lama sehingga dimensi waktu harus dimasukkan dalam analisa melalui penggunaan diskonto. Diskonto merupakan suatu teknik untuk merubah/memerankan manfaat yang diperoleh pada masa yang akan datang dan azas biaya menjadi nilai biaya pada masa sekarang atau sebaliknya. Berarti harus memperkirakan biaya dan benefit pada waktu sekarang dan yang akan datang.

Pada hakekatnya, melalui pemikiran proyek dapat ditarik kesimpulan:

- a. Melalui evaluasi proyek dapat diketahui apakah benefit suatu proyek lebih besar atau lebih kecil dari pada benefit suatu kesempatan investasi proyek marginal.
- b. Melalui evaluasi proyek dapat ditentukan urutan (urutan sebagai proyek) di dalam serangkaian kesempatan investasi yang lebih baik dari proyek marginal sedemikian rupa sehingga proyek yang menghasilkan benefit lebih besar menjadi prioritas utama.

Dengan demikian, metode yang dievaluasi adalah nilai waktu dan ruang.

Dalam rangka mencari sistim ukuran yang menyeluruh sebagai dasar penerimaan atau penolakan atau pengurutan suatu proyek telah dikembangkan berbagai kriteria investasi. Kriteria investasi yang digunakan adalah:

- 1. NPW (Net present worth)
- 2. Benefit cost ratio
- 3. Rate of return
- 4. Pay back period
- 5. Life cycle cost (LCC)

Dari kriteria tersebut secara aktif digunakan untuk mengevaluasi dari suatu proyek atau penggantian alat dari pabrik tekstil, pabrik kertas, atau pabrik gelas.

1. Net present worth (NPW)

NPW dari suatu proyek merupakan nilai harga sekarang (*present worth*) dari selisih antara *benefit* (manfaat) dengan *cost* (biaya) pada *discount rate* tertentu. *NPW* menunjukkan kelebihan *benefit* (manfaat) dibandingkan dengan *cost* (biaya). Jika *NPW benefit* lebih besar dari *present worth* biaya berarti proyek tersebut layak dengan kata lain *NPW* lebih besar dari pada nol (*NPW* > 0)

$$NPW = -CFO + B.DF > 0$$
(1)

dimana:

NPW = harga/nilai sekarang,

CFO = cash flow pada awal / dimaksudkan adalah nilai investasi,

B = benefit (besarnya nilai efesiensi yang di dapat),

DF = discount factor, atau

$$DF = \frac{(1+i)^n - 1}{i(1+i)^n}$$
 (2)

I = tingkat biaya,

n = periode pinjaman.

Apabila hasil $NPW \ge 0$, maka proyek/penggantian mesin (investasi) yang dilakukan layak.

2. Rate of return (ROR)

Metode (kriteria) ini diawali dengan menentukan nilai spesifik dari *discount rate* (i) dan mereduksi harga sekarang menjadi nol.

Specific Discount Rate disebut Rate Of Return (ROR) sehingga rumus yang digunakan adalah:

$$-CFO + B.DF = 0 (3)$$

-
$$CFO = cash flow$$

ROR pada dasarnya menunjukkan discount factor (DF) dimana NPW = 0

Dengan demikian, untuk mencari *ROR*, *discount factor* harus dinaikkan sehingga *NPW* = 0 tercapai. Berdasarkan pada hal tersebut, maka langkah-langkah perhitungan *ROR* adalah sebagai berikut:

- a) Memilih discount factor tertentu untuk mencapai NPW = 0
- b) Pada *discount factor* pemilihan pertama, *NPW* dilihat, misalnya pada *discount factor* tertentu diperoleh *NPW* = positif
- c) Karena NPW masih positif sedangkan diharapkan NPW = 0, maka dipilih discount factor yang cocok sehingga diharapkan diperoleh NPW = 0.
- d) Misalkan dengan memilih DF tertentu diperoleh NPW = negatif

e) Karena *NPW* diperoleh positif dan negatif maka harus dibuat interpolasi antara *NPW* positif dan negatif dengan menggunakan rumus:

$$ROR = i_1 + \frac{NPW^+}{NPW^- - NPW^-} (i_2 - i_1)$$
(4)

3. Benefit cost ratio (BCR)

Dalam audit energi harus memanfaatkan rumus sebagai berikut:

$$BCR = \frac{\sum_{K=0}^{N} B_K(DF_K)}{\sum_{K=0}^{N} C_K DF_K}$$
 (5)

dimana:

N = periode proyek

 B_K = benefit pada bunga dan faktor diskonto tertentu

 $C_K = cost$ pada tahun 0 = CFO

4. Pay back period

Masa pengendalian investasi yang ditanamkan apabila $pay\ back\ period$ lebih rendah dari $life\ time\ period$ proyek (N). Jadi Y < N, maka proyek sudah dapat dilaksanakan atau proyek jadi legal.

Rumus sample pay back period adalah =
$$\frac{\text{Nilai Investasi(CFO)}}{\text{Nilai Benefit}}$$
(6)

5. Life cycle cost (LCC)

Prosedur *life cycle cost* relatif sangat simple dihitung dengan *LCC* yang terendah yang dimanfaatkan.

Rumus yang digunakan adalah:

LCC = (total biaya operasional) x discount factor + Nilai Investasi ...(7)

Apabila dari 2 alternatif investasi, maka dengan nilai *LCC* yang terendah merupakan alternatif yang terbaik untuk invetasi.

Contoh untuk dapat menghitung *LCC* harus memenuhi hal-hal sebagai berikut: Dalam penerapan, pemilik pabrik mempunyai 2 opsi untuk investasi yang dapat diuraikan sebagai berikut:

- a) Penggantian hanya/mesin dengan nilai investasi tertentu akan meningkatkan efesiensi 60% – 66% dimana sangat mempengaruhi pemakaian energi.
- b) Penggantian seluruh 4 mesin selain lebih efisien dan juga efektif, pemakaian mesin secara keseluruhan apabila dilakukan penggantian seluruhnya, maka akan dibutuhkan investasi tertentu dan akan tercapai efesiensi energi dari 60% 85%.

2.7. Sistem Informasi Konservasi Energi dan Air

Sistem informasi Konservasi Energi dan Air (SKEA) ini berbasis web jadi pengguna harus menggunakan web browser untuk mengakses Sistem Informasi ini. Setelah selama sebulan monitoring, user dapat melihat report data penggunaan listrik dan air di masing masing Departemen

Gambar 2.1 Sistem Informasi Konservasi Energi

BAB 3. METODE PENELITIAN

3.1 Bagan Penelitian

Jalannya penelitian ini dapat dilihat pada diagram alir audit energy dan air seperti pada gambar 1 dengan urutan sebagai berikut :

- 1. Perumusan masalah dan tinjauan pustaka yang berhubungan dengan penelitian yang akan dilakukan.
- Audit Awal berupa pengumpulan data historis gedung Fakutas Teknik Kampus UNDIP Tembalang
- 3. Audit Rinci Energi dan air berupa Pengukuan 24 jam beban, Lux, effisiensi trafo, konsumsi beban, kampus UNDIP Tembalang
- 4. Analisa data pengukuran energi dan air
- 5. Identifikasi dan analisa Peluang Penghematan energi (PHE) dan Penghematan biaya.
- 6. Sistem Informasi energi dan air Fakultas Teknik Kampus Undip Tembalang
- 7. Program Konservasi energi dan air Fakultas Teknik Undip

Gambar 3.1 Diagram Alir Konservasi Energi dan air

3.1. Waktu dan Tempat Penelitian

Penelitian ini dilakukan di lingkungan Fakultas Teknik Universitas Diponegoro selama 7 (tujuh) bulan di tahun 2021.

3.2. Metode Pengumpulan Data

Teknik pengumpulan data yang digunakan dalam penelitian ini antara lain:

1. Studi literatur

Studi literatur yang digunakan ialah mengenai Konservasi energi dan air Bangunan gedung. Sumber literatur yang dapat digunaan tidak hanya buku teks, namun juga artikel penelitian terkini dan majalah ilmiah rutin terkait Konservasi energi dan air

2. Audit energi dan air

Kegiatan ini dilakukan untuk meninjau langsung kondisi di lapangan, terkait sarana dan prasarana energi dan air, aktivitas pemeliharaan sarana dan prasarana energi dan air, aktivitas Konservasi energi dan air, dan lain sebagainya.

3. Wawancara

Wawancara dilakukan selama onsite visit dan saat verifikasi draft SIKEA kepada para pihak yang berkepentingan, seperti penanggung jawab KEA departemen atau yang diwakili oleh TIM KEA, ketua departemen, wakil dekan, dan kepala Tata Usaha Fakultas Teknik Undip.

3.3. Metode Pengolahan Data

Data hasil pengumpulan data KEA kemudian akan disusun kedalam Form data SIKEA yang akan memperlihatkan kegiatan rutin dan non rutin yang dilakukan di lokasi yang bersangkutan, lengkap dengan kondisi KEA pada masing -masing bangunan Gedung. Kegiatan ini akan menjadi dasar penyusunan program KEA. Selanjutnya, draft SIKEA akan disusun, yang terdiri atas klasul:

1. Pendahuluan

- 1.1 Ruang Lingkup
- 1.2 Organisasi
- 1.3 Kebijakan KEA
- 1.4 Sasaran KEA
- 1.5 Pendekatan Proses

- 2. Acuan Normatif
- 3. Istilah dan Definisi
- 4. Konteks Organisasi
 - 4.1. Memahami Organisasi Dan Konteksnya
 - 4.2. Memahami Kebutuhan Dan Harapan Pemangku Berkepentingan
 - 4.3. Menetapkan Lingkup SIKEA
 - 4.4. Sistem Manajemen energi dan air dan proses-Prosesnya
- 5. Kepemimpinan
 - 5.1. Kepemimpinan dan Komitmen
 - 5.2 Kebijakan
 - 5.3. Aturan Organisasi, Tanggung jawab, dan Wewenang
- 6. Program KEA
 - **6.1 SWOT**
 - 6.2 Sasaran dan rencana program KEA untuk mencapainya
 - 6.3 Rencana PHEA
- 7. Operasi
 - 7.1. Sumber Daya
 - 7.2. Kompetensi
 - 7.3 Kesadaran
 - 7.4 Komunikasi
 - 7.5 Informasi terdokumentasi
- 8. Operasional
 - 8.1 Perencanaan dan pengendalian program
 - 8.2 Persyaratan untuk peralatan KEA
 - 8.3 Perancangan dan Pemasangan perlatanan KEA
 - 8.4 Pemeliharaan peralatan KEA
- 9. Evaluasi Kinerja
 - 9.1 Pemantauan, pengukuran, analisa dan evaluasi
 - 9.2 Audit Energi dan Air
 - 9.3 Tinjauan Program KEA
- 10. Peningkatan
 - 10.1 Umum
 - 10.2 Ketidaksesuaian dan Tindakan perbaikan
 - 10.3 Peningkatan berkelanjutan

BAB 4. BIAYA DAN JADWAL PENELITIAN

4.1. Anggaran Biaya

Penelitian dilakukan dengan dana sebesar Rp 20.000.000,- yang dialokasikan untuk kegiatan pada Tabel 2.

Tabel 2. Rencana anggaran biaya

No	Jenis Pengeluaran	Biaya yang Diusulkan	Proporsi
1	Belanja honorarium diluar dosen peneliti	Rp 6.000.000,-	30%
2	Belanja barang	Rp 3.250.000,-	17%
3	Belanja barang non operasional lainnya	Rp 3.750.000,-	18%
4	Belanja perjalanan	Rp 7.000.000,-	35%
Jum	lah	Rp 20.000.000,-	100%

4.2. Jadwal Penelitian

Penelitian dijalankan mengikuti jadwal yang direncanakan, sesuai pada Tabel 3.

Tabel 3. Jadwal kegiatan penelitian

No	Vocioton	Bulan ke- 1 2 3 4 5 6						
110	Kegiatan				4	5	6	7
1	Pembuatan Form KEA							
2	Penyusunan KEA							
3	Penyusunan kebutuhan sarana dan prasarana KEA							
4	Penyusunan SOP KEA							
5	Penyusunan form-form KEA							
6	Penyusunan SIKEA							
7	Program KEA							
8	Penyusunan laporan penelitian							

DAFTAR PUSTAKA

- Alexander M Bill, etc., 1999, *Houseold energy Conservation Investment and the Uninformed Cosumer hypotesis*, Tufts University, Medford.
- ASHRAE, 1980, Standard on Energy Conservation in New Building deisgn
- BOCA, 2000, International Energy Conservation Code
- Butarbutar, Abdul Hakim, 2000, Manajemen Faktor Daya di Industri, Energi, Yogyakarta
- Chaturvedi, Pradeep, *Energy Conservation in India*, Indian Association for the Advancement of Science, New Delhi, India
- Darmasetiawan, Christian, dkk, 1991, Titik pencahayaan dan tata letak lampu, penerbit PT Gramedia Widiasarna Indonenesia,
- Endro, Herman, 2003, Teknik Penghematan Energi Pada System Pencahayaan, Bagian Proyek Pelaksanaan Efisiensi Energi DEPDIKNAS. Jakarta
- Fischer, 1975, Lighting Manual, NV philips Gloeilampenfabrieken
- Hasen, Christopher Joshin & John Bower, 2003, An Economic Evaluation of small scale

 Distributed Electricity Generation technologies, Oxford Instituted, ISBN 1-901-795306
- Hasan, M Igbal Ir, MM, 2002, Statistik 2, PT Bumi Aksara, Jakarta
- Harten, M Igbal, E Setiawan, 1985, Instalasi Listrik Arus Kuat 1,2,3, Binacipta Bandung
- Hon Kwok Wong, Application of Overall Energy Approach in Building Design, Hongkong
- Kadir, Abdul, 1990, Energi, Penerbit Universitas Indonesia pres
- Koomey, Jonathan, Arthur H Rosenfeld, Ashok Gadgil, 1990, Conservation screening curves to compare efficiency investments to power plants: applications to commercial sector conservation programs, proceedings ACEEE Summer Study on Energy Efficiency in Buildings Asiloma.
- Mardira, Karl ,1998, Demand Side Management Power Audit at St Lucia Campus, University Queensland
- Mahmudsyah, Syariffudin ,Akhmad Fajar Ridlo, 2000, Implementasi Demand side management untuk Opimalisasi istem beban listrik PT PLN Distribusi Wilayah Jawa Timur, SSTE -1, Bandung
- Meredydd Evans, 2001 Demand Side Energy Effisiency and the Kyoto Mechanism , ECEE 2001 paper 6.126

- Rustandi, Iwan , 2003, Audit Energi Gedung Perkantoran , Bagian Proyek Pelaksanaan Efisiensi Energi DEPDIKNAS. Jakarta
- Syofyan, Syawaludin, 2003, Kebijakan tariff dasar listrik dan Demand Side Management, Bagian Proyek Pelaksanaan Efisiensi Energi DEPDIKNAS. Jakarta
- Turiel Isaac, Benoit lebot, Mc Collister george, Susan Alexander, 1998, Compact Commercial sector demand side management impact assessment, Lawrence Berkeley Laboratory
- William Payne, John J.McGraw; 1988, Energy Management for Building Handbook, The
 Farmont Press. Inc

 Standar Tata gabaya Parangenean Taknis Konservesi Energi Bangunan Godung

......, Standar Tata cahaya Perencanaan Teknis Konservasi Energi Bangunan Gedung,
Departemen Pekerjaan Umum, Yayasan LPMB, Bandung,
......, PUIL 2000

2

LAMPIRAN

Lampiran A. Justifikasi Anggaran Penelitian

RENCANA PENGGUNAAN DANA HIBAH PENELITIAN INOVASI FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

Ketua Peneliti : Karnoto,ST, MT

Golongan : IV a

Departemen : Teknik Elektro

Fakultas : Teknik

Judul Penelitian : Sistem Informasi Konservasi Energi dan Air Fakultas Teknik Undip

Total Dana (100%) : Rp 20.000.000,-

No	Uraian	Vol	Satuan	Biaya Satuan (Rp)	Jumlah (Rp)	
a	b	c	d	e	f=c×e	
I	BELANJA HONORARIU	M DIL	UAR DOSEN PEN	VELITI (Maks. 30%)		
1	Asisten peneliti	1	Orang	1.000.000	1.000.000	
	(2 jam/minggu, 5 bulan)					
2	Surveyor tahap 1	1	ls	2.500.000	2.500.000	
3	Surveyor tahap 2	1	ls	2.500.000	2.500.000	
Subtotal (Rp)						
II	BELANJA BARANG					
2	Fotokopi	1	Ls	150.000	150.000	
3	Penjilidan	6	Berkas	120.000	120.000	
4	Pembelian buku teks	1	Unit	980.000	980.000	
5	Pembelian ATK	1	Ls	1.000.000	1.000.000	
				Subtotal (Rp)	3.250.000	
III	BELANJA BARANG NO	N OPE	ERASIONAL LAIN	NYA		
1	Konsumsi dan akomodasi	1	ls	3.750.000	3.750.000	
				Subtotal (Rp)	3.750.000	
IV	BELANJA PERJALANAN	N/SPD				
1	Perjalanan	2	Orang	2.000.000	2.000.000	
	Subtotal (Rp)					
				Jumlah total(Rp)	20.000.000	

Semarang, 26 Februari 2021 Ketua Peneliti,

(Karnoto, ST, MT)

NIP. 196907091997021001

Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama	NIP/NIM	Departemen	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Karnoto, ST, MT	19690709 199702 1 001	Teknik Elektro	Managemen energi dan Konservasi Energi	10	 Membagi tugas Menganalisis hasil penelitian Menyusun laporan kemajuan dan laporan akhir penelitian Menyusun
2	Dr. Abdul Syakur, MT		Teknik Elektro	Managemen energi dan Konservasi Energi	10	 Membagi tugas Menganalisis hasil penelitian Menyusun laporan kemajuan dan laporan akhir penelitian Menyusun
3	Ir. Eflita Yohana, MT, PhD		Teknik Mesin	Managemen energi dan Konservasi Energi	10	 Membagi tugas Menganalisis hasil penelitian Menyusun laporan kemajuan dan laporan akhir penelitian Menyusun SIKEA

Lampiran C. Biodata Ketua dan Anggota-Dosen dan Mahasiswa

Karnoto,ST, MT

Ketua Peneliti

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Karnoto, ST, MT	
2	Jenis Kelamin	L	
3	Jabatan Fungsional	Lektor Kepala	
4	NIP	196907091997021001	
5	NIDN	0009076905	
6	Tempat dan Tanggal Lahir	Purworejo / 9 Juli 1969	
7	E-mail	karnoto69@gmail.com	
8	Nomor Telepon/HP	08122815920	
9	Alamat Kantor	Teknik Elektro FT UNDIP	
10	Nomor Telepon/Faks	024 7460057	
11	Lulusan yang Telah Dihasilkan	S-1	
12	Mata Kuliah yang Diampu	Konservasi dan Managemen Energi Listrik	
		2. Keamanan dan Keselamatan Kerja	
		3. Pengantar Analisis Rangkaian	
		4. Transmisi Arus Bolak Balik	
		5. Proteksi Tenaga Listrik	

B. Riwayat Pendidikan

·		T
	S-1	S-2
Nama Perguruan	UNDIP	UGM
Tinggi		
Bidang Ilmu	Teknik Elektro	Teknik Elektro
Tahun Masuk-Lulus	1989	2004
Judul Skripsi/Tesis	Analisis Pemasangan Kapasitor	Audit Energi Kampus UNDIP
	Bank Pada Jaringan Distribusi	Tembalang
Nama Pembimbing/	Ir. Soehardjo	Dr. Ir T Haryono, MSc
Promotor	Ir. Juningtyatuti, MT	Dr. Ir. Tumiran

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

			Pendanaan	
No	Tahun	Judul Penelitian	Sumber	Jml (Juta
				Rp)
1	2018	Pengaruh Sumber Energi listrik dalam	DIPA FT UNDIP	10
		Upaya Konservasi Energi Pengelolaan stadion		

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No	Tahun	Judul Pengabdian	Per	ndanaan
110	Tanun	Judui i engabulan	Sumber	Jml (Juta Rp)
1	2019	Pengayaan Pupuk Organik dengan	RPP UNDP	50
		Plant Growth Promoting		
		Rhizobacteria (PGPR) Untuk		
		Ketahanan Sistemik Tanaman		
		Kentang Mikrobiologi/ Bioteknologi		

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No	Tahun	Judul Artikel Ilmiah	Nama Jurnal	Volume/Nomer/Tahun
1	2019	Ketahanan Sistemik Tanaman	bioma	edisi Desember 2019
		Kentang Oleh Aplikasi PGPR		
		The Potato Plants Systemic		
		Resistance Induced by PGPR		
		Application		
		Susiana Purwantisari 1 , Sarjana		
		Parman 1, and Karnoto 2,		

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No	Tahun	Nama Pertemuan	Nama Pertemuan Judul Artikel	
		Ilmiah/Seminar	Ilmiah	
1	2009	International Symposium on	Energy Mix Forecast	Yogyakarta,
		Sustainable Energy &	For Central Java	November 23 - 26,
		Environmental Protection	With The Leap	2009
			Model	

G. Karya Buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit
1	Buku Manual	2003	150	Badan Penerbit
	Perencanaan			Universitas
	Pengembangan			Diponegoro
	Sistem Tenaga			Semarang 2003
				ISBN
	Listrik			978.979.704.593.7

H. Perolehan HKI dalam 5-10 Tahun Terakhir

No	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
-	-	-	-	-

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No	Judul/Tema/Jenis Rekayasa Sosial	Tahun	Tempat	Respon
	Lainnya yang Telah Diterapkan		Penerapan	Masyarakat
1	Reperda RUED Prov Jateng	2018	Prov Jateng	
2	Reperda Ketenagalistrikan Prov Jateng	2019	Prov Jateng	

J. Penghargaan dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya

No	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Karya Satya Lencana (10 tahun)	Presiden RI	2013
2	Karya Satya Lencana (20 tahun)	Presiden RI	2018

Mitra Bestari/Reviewer Jurnal Ilmiah/Proposal Penelitian:

1.

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya.

Semarang, 26 Februari 2021 Pengusul,

(Karnoto, ST, MT)
NIP. 196907091997021001

Ir. Eflita Yohana, MT, PhD

Anggota Peneliti 1

A. Identitas Diri

1	Nama Lengkap	Ir. Eflita Yohana, MT., Ph.D.	
2	Jenis Kelamin	Perempuan	
3	Program Studi	S1-Teknik Mesin	
4	NIDN	0028056209	
5	Tempat dan Tanggal Lahir	Lirik- Rengat, 28 April 1962	
6	Alamat Email	efnan2003@yahoo.com	
7	Nomor Telepon/HP	081325959317	

B. Riwayat Pendidikan

Gelar Akademik	Sarjana (S1)	Magister (S2)	Doktor (S3)
Nama Institusi	Universitas Brawijaya	Universitas Gadjah Mada	Pukyong National University Busan, Korea Selatan
Jurusan/Prodi	Teknik Mesin	Teknik Mesin	Mechanical Engineering
Tahun Masuk- Lulus	1981 - 1987	1997 - 2000	2004- 2011

C. Pengalaman Penelitian 5 (lima) Tahun Terakhir (diurut berdasarkan tahun terakhir)

Judul Riset	Tahun Riset (dari dan sampai dengan)	Nilai Pendanaan Riset	Sumber Pendanaan Riset	Peran/ Posisi	Mitra Riset
Komersialisasi produk nanopolifenol teh hijau bebas kafein sebagai inkorporasi functional food melalui teknik inaktivasi enzimatis	2020	1.205.000.000	Direktorat Riset dan Pengabdian Masyarakat Deputi Bidang Penguatan Riset dan Pengembangan Kementrian Riset dan Teknologi /Badan Riset Dan Inovasi Nasional	-	•
Pengembangan Produksi Powder The Hijau Bebas	2020	157.562.200	Direktorat Riset dan Pengabdian Masyarakat	-	-

Kafein melalui			Danuti Didana		
			Deputi Bidang		
Spray Dryer			Penguatan Riset		
Dengan Teknik			dan		
Dehumidifikasi			Pengembangan		
Menggunakan			Kementrian Riset		
Liquid Dessicant			dan Teknologi		
			/Badan Riset Dan		
			Inovasi Nasional		
D 1 CTI . 1 1			LPPM (Lembaga		
Potential of Fly Ash			Penelitian dan		
and Bentonite	2019	112.500.000	Pengabdian	_	_
Composites as	2019	112.000.000	kepada		
Landfill Liners			Masyarakat)		
Danamaanaan			iviasyarakat)		
Perancangan Pasistan Binalisis					
Reaktor Pirolisis			Alokasi anggaran		
Tempurung Kelapa			RKAT Fakultas		
dengan Kapasitas	2019	20.000.000	Teknik Undip	-	-
Proses 1000 kg			Tahun 2019.		
sebagai Penghasil			Tunun 2017.		
Arang dan Bio-Oil					
Identifikasi					
Kepuasan dan			Alokasi anggaran		
Harapan Stacholder	2010	20,000,000	RKAT Fakultas		
terhadap Fakultas	2018	20.000.000	Teknik Undip	-	-
Teknik Universitas			Tahun 2018.		
Diponegoro					
Analytical Method					
Of Vibro Fluidized			Alokasi anggaran		
Bed Dryer Green	2018	20.000.000	RKAT Fakultas		
_	2018	20.000.000	Teknik Undip	-	-
Tea Using Finite			Tahun 2018.		
Element Method					
Implementasi					
Inverter sebagai					
Pengembangan			Alokasi anggaran		
Protable Spot			RKAT Fakultas		
Welding untuk	2018	50.000.000		-	-
Industri Rumahan			Teknik Undip		
bagi Masyarakat			Tahun 2018.		
Ter-PHK d					
Semarang					
The Aplication Of			Riset Publikasi		
Vibro-	2018	75.000.000	Internasional	_	_
Dehumidication	2010	75.000.000	(RPI)	_	_
Denumulcation			(KFI)		

Absorption Drying Process In The Production Development Of High Catechin Green Tea Ctc Powder					
Development of innovative design of texturing and hydrophobic coating – a study on a newly developed technologies towards "green bearing"	2018	75.000.000	Riset Publikasi Internasional Bereputasi Tinggi (RPIBT)	-	-
Development of an artificial reef knockdown system for shore protection – A novel concept towards multipurpose sustainable solutions	2018	75.000.000	Riset Publikasi Internasional (RPI)	-	-
Upaya pemanfaatan limbah padat Geothermal Dieng menjadi Adsorben Silika Aerogel Superhidrofilik bagi optimalisasi Produk Biodiesel serta Hasil Samping Gliserin dan Metanol	2017		Riset Unggulan Universitas Diponegoro (RUU)	-	-
Refining Minyak Sawit Untuk Reduksi Senyawa	2017	Rp. 200.000.000	Penelitian Unggulan	-	-

ruangan dengan menggunakan					
udara dari sistem dehumidifikasi					
Pengembangan Produksi Super Biodisel Kontinyu dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke- II)	2015	Rp. 150.000.000	Penelitian Unggulan Dikti	-	-
Torefaksi Kontinyu pada Biomassa Briket Campuran Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler. (Tahun ke-II)	2016	Rp. 50.000.000	Ditlitabmas Dikti	-	-
Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol	2015	Rp. 30.000.000	Internal Fakultas	-	-
Pengembangan Teknologi Pencairan Dan Penyimpanan Biogas Cair Dengan Alat Penukar Kalor Cryogenic	2015	Rp. 168.000.000	Kemenristekdikti	-	-
Torefaksi Kontinyu pada Biomassa Briket Campuran	2015	Rp. 65.000.000	Ditlitabmas Dikti	-	-

Kulit Mete dan Sekam Padi Supaya Terjadi Peningkatan Nilai Kalor dan Dapat di Gunakan sebagai Bahan Bakar Alternatif Boiler.					
(Tahun ke-I)					
Pengembangan Produksi Super Biodisel Kontinyu dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif (Tahun ke-I)	2015	Rp. 90.000.000	Kemenristekdikti	-	-
Pengaruh Variasi Temperatur Udara Masuk Pada Sistem Regenerator Menggunakan Liquid Desiccant	2015	Rp. 15.000.000	Internal Fakultas	-	-
Pengembangan Mini Plant Super Teh Hijau Kompetitif melalui Proses Inaktivasi dengan menggunakan Mechanically Dispersed-Rotary Steamer	2014-2015	1.082.347.000	RISPRO LPDP DEPKEU	Anggota	PTTK Gambung
Pengurangan Kelembaban Menggunakan Sistem Absopsi	2014	Rp. 10.000.000	Pemerintah Daerah	-	-

D. Prestasi (yang relevan dengan judul riset)

D.1. Publikasi

No	Tahun	Judul Artikel Ilmiah	Volume/	Nama Jurnal
			Nomor	
1.	2020	Effect of vortex limiter position and metal rod insertion on the flow field, heat rate, and performance of cyclone separator	Volume 377, Pages 464-475 ISSN 0032- 5910	Podwer technology
2.	2020	Inovasi Komposter Sebagai Upaya Pengelolaan Sampah Di Kelurahan Gedawang Semarang, Jawa Tenga	e-ISSN: 2685- 886X Vol. 2, No. 2 Tahun 2020 https://ejournal 2.undip.ac.id/in dex.php/pasopa ti/article/view/ 5753	JURNAL PASOPATI
3.	2020	Potensi Energi Listrik Dari Konversi Biogas Di Kampung Tematik Sapi Perah Desa Gedawang Kecamatan Banyumanik Kota SEMARANG	e-ISSN: 2685- 886X Vol. 2, No. 1 Tahun 2020 http://ejournal2 .undip.ac.id/ind ex.php/pasopat i	JURNAL PASOPATI
4.	2020	Analisis Tekanan dan Jumlah Pompa untuk Menginjeksi 35000 BWPD di Echo Flow Station Milik Pertamina Hulu Energy Offshore North West Java (ONWJ)	p-ISSN: 1411- 027X; e-ISSN: 2406 – 9620 Vol 22, No 3 (2020) https://ejournal .undip.ac.id/ind ex.php/rotasi/ar ticle/view/3251	Jurnal Teknik Mesin

5.	2020	Effect of particle size and bed height on the characteristic of a fluidized bed dryer	Volume 7, Issue 1, 2020 ISSN: 2331- 1916 https://www.co gentoa.com/arti cle/10.1080/23 311916.2020.1 738185	Cogent Engineering
6.	2019	Analisis Pengaruh Temperatur dan Laju Aliran Massa Cooling Water Terhadap Efektivitas Kondensor di PT. Geo Dipa Energi Unit Dieng	p-ISSN: 1411- 027X; e-ISSN: 2406 – 9620 Vol 21, No 3 (2019) https://ejournal .undip.ac.id/ind ex.php/rotasi/is sue/view/2606	Jurnal Teknik Mesin
7.	2019	Analisis Kekuatan Material Air Receiver Drum Berdasarkan ASME Section VIII Division I	p-ISSN: 1411- 027X; e-ISSN: 2406 – 9620 Vol 21/No.1/2019 https://ejournal. undip.ac.id/ind ex.php/rotasi/is sue/view/2565	Jurnal Teknik Mesin
8.	2018	Analisis Distribusi Temperatur dan Aliran Fluida pada Proses Pengeringan Butiran Teh Bentuk Silinder Di Dalam Fluidized Bed Dryer Menggunakan Computational Fluid Dynamic (CFD)	p-ISSN: 1411- 027X; e-ISSN: 2406 – 9620 Vol 20/No.4/2018 https://ejournal. undip.ac.id/ind ex.php/rotasi/is sue/view/2499	Jurnal Teknik Mesin

9.	2018	Analisis Perpindahan Panas dan Exergi pada Boiler Wanson I Tipe Fire Tube	ISSN 2303- 1972 Vol. 20/No. 2/ Tahun2018 https://ejournal .undip.ac.id/ind ex.php/rotasi/is sue/view/2361	Jurnal Teknik Mesin
10.	2018	Numerical analysis on Effect of the vortex finder diameter and the length of vortex limiter on flow field and particle collection in a new cyclone separator	Vol. 5(1), 1562319. https://doi.org/ 10.1080/23311 916.2018.1562 319	Cogent Engineering
11.	2017	Analisa Efisiensi Isentropik dan Exergy Destruction pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap	ISSN 2303- 1972 Vol. 19/No. 3/ Tahun2017 https://ejournal .undip.ac.id/ind ex.php/rotasi/is sue/view/2204	Jurnal Teknik Mesin
12.	2017	Simulasi Distribusi Temperatur dan Kelembaban Relatif Ruangan dari Sistem Dehumidifikasi Menggunakan Computational Fluids Dynamics (Cfd)	ISSN 2303- 1972 Vol. 19/No. 1/ Tahun2017 https://ejournal .undip.ac.id/ind ex.php/rotasi/is sue/view/1989	Jurnal Teknik Mesin
13.	2017	CFD Analysis of Dehumidification Characteristics of Cross Flow	ISSN 0973- 4562 Vol. 12/No. 7	International Journal of Applied

		Dehumidifier with Calcium Chloride as Liquid Desiccant	/ Tahun2017 https://www.rip ublication	Engineering Research
14.	2016	A Study of Slip Position on Improving The Hydrodynamic Lubrication Performance of Single-Textured Bearing Using a Mass Conserving Numerical Approach	ISSN 0975- 4024 Vol. 8/No. 2/ Tahun2016 http://www.engg journals.c	Internationa 1 Journal of Engineering and Technology
15.	2016	Anilisis CFD Distribusi Temperatur dan Kelembapan Relatif pada Proses Dehumidifikasi Sample House dengan Konsentrasi Liquid Dessicant 60% dan Suhu Liquid Dessicant 10°C"	ISSN 2303- 1972 Vol. 4/No. 2/ Tahun2016 http://ejournal- s1.undip	Jurnal Teknik Mesin
16.	2016	Simulasi Distribusi Temperatur dan Kelembapan Relatif pada Ruang Steamer dengan menggunakan Metode Computational Fluid Dynamics	ISSN 2303- 1972 Vol. 4/No. 1/ Tahun2016 http://ejournal- s1.undip	Jurnal Teknik Mesin
17.	2016	Effect of Temperature and Relative Humidity on the Performance of Steamer Using Computational Fluid Dynamic (CFD)	ISSN 0975- 4024 Vol. 8/No. 4/ Tahun2016 DOI: 10.21817/ijet/20	Internationa 1 Journal of Engineering and Technology
18.	2016	Analisis Efisiensi Siklus Combine Cycle Power Plant (CCPP) Gas Turbine Generator Terhadap Benan Operasi PT Krakatau Daya Listrik	ISSN 2406- 9621 Vol. 18/No. 4/ Tahun2016 http://ejournal.u ndip.ac	ROTASI

19.	2016	Analisis Numerik dan Validasi Kasus Kavitasi Pompa Setrifugal Mission Magnum I Menggunakan CFD	ISSN 2406- 9620 Vol. 18/No. 3/ Tahun2016 http://ejournal.u ndip.ac	ROTASI
20.	2016	Analisa Perhitungan Efisiensi Circulating Water Pump 76LKSA- 18 Pembangkit Listrik Tenaga Uap Menggunakan Metode Analitik	ISSN 2406- 9620 Vol. 18/No. 1/ Tahun2016 http://ejournal.u ndip.ac	ROTASI
21.	2016	Analisis Total Efisiensi HRSG (Heat Recovery Steam Generator) pada Combine Cycle Power Plant (CCPP) 120 MW PT Krakatau Daya Listrik	ISSN 2406- 9620 Vol. 18/No. 2/ Tahun2016 http://ejournal.u ndip.ac	ROTASI
22.	2015	Pengurangan Kelembaban Udara Menggunakan Larutan Calsium Chloride (Cacl2) pada Waktu Siang Hari dengan Variasi Spraying Nozzle	ISSN 2406- 9620 Vol. 17/No. 1/ Tahun2015 https://ejournal .undip.ac.id/ind ex.php/rotasi/is sue/view/1442	ROTASI
23.	2015	Analisis Pengaruh Kekentalan Fluida Air dan Minyak Kelapa pada Performansi Pompa Sentrifugal	ISSN 2303- 1972 Vol. 3/No. 2/ Tahun2015 http://ejournal- s1.undip	Jurnal Teknik Mesin
24.	2014	Induction Hardening of Carbon Steel Material: The Effect of Specimen Diameter	ISSN 1022- 6680 Vol. 911/No.2014/ Tahun2014 http://www.scie ntific.net	Advanced Materials Research

25.	2014	Mampu Bentuk Plastik pada Proses Vacuum Forming dengan Variasi Tekanan 0.979 bar, 0.959 bar, 0.929 bar, 0.909 bar pada Temperatur 200 °C	ISSN 2303- 1972 Vol. 2/No. 2/ Tahun2014 http://ejournal- s1.undip	Jurnal Teknik Mesin
26.	2014	The Aerodynamics Analysis of Airfoils for Horizontal Axis Wind Turbine Blade Using Computational Fluid Dynamic	ISSN 1411- 027X Vol. 16/No. 3/ Tahun2014 http://ejournal.u ndip.ac	ROTASI

D.2. Paten/Hak Kekayaan Intelektual lainnya

No	Tahun	Judul/Tema HKI	Jenis	Nomor Pendaftaran/ Sertifikat
1.	2019	Sistem Pemanfaatan Evaporative Cooling untuk Penghematan Energi Listrik pada AC Split	Paten Sederhana	IDS000002394
2.	2016	Metode Pengeringan Serbuk Daun The Hijau Menggunakan Pengering Unggun Terfluidisasi	Paten Indonesia	HKI-3- HI.05.02.04.No. S00201606703- DS 1786
3.	2015	Super Teh Hijau Kompetitif melalui Proses Inaktivasi Enzimatis dengan menggunakan Mechanically Dispersed-Rotary Steamer	Paten Indonesia	No. ES09201500066

D.3. Penghargaan Riset/Inovasi

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penelitian Inovatif Hibah Bersaing Dana RKAT Fakultas Teknik Undip.

Semarang, 25-02-2021 Ketua Penelitian

(Ir. Eflita Yohana, M.T. PhD

William Dwianugrah Tambunan

Anggota Peneliti 1 (Mahasiswa)

Nama Lengkap : William Dwianugrah Tambunan

NIM 21060116140075

Jurusan/Angkatan : S1-Teknik Elektro / 2017

Tempat, Tanggal Lahir: Rumbai, 14 Mei 1999

Alamat : Jl Mulawarman No.43 Semarang

No. HP 081268408333

E-mail : williamdwiaungrah@gmail.com

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya.

Semarang, 26 Februari 2021

(William Dwianugrah Tambunan) NIM. 21060116140075

Dimaz Aji Laksono

Anggota Peneliti 2 (Mahasiswa)

1.	Nama Lengkap	Dimaz Aji Laksono
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S-1 Teknik Mesin
4.	NIM	21050117120008
5.	Tempat dan Tanggal Lahir	Banyumas, 11 Oktober1999
6.	Alamat E-mail	dimazaji199@gmail.com
7.	Nomer Telepon/HP	085868891617

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya.

Semarang, 26 Februari 2021

(Dimaz Aji Laksono) NIM. 21050117120008

Lampiran D. Surat Pernyataan Ketua Peneliti

SURAT PERNYATAAN KETUA PENELITI

Yang bertanda tangan di bawah ini: Nama : Karnoto,ST, MT

NIP/NIDN : 196907091997021001/ 00009076905

Pangkat/Golongan: IV A

Jabatan fungsional: Lektor Kepala

Dengan ini menyatakan bahwa proposal penelitian saya dengan judul "Integrasi Sistem Informasi Konservasi Energi dan Air Fakultas Teknik Undip" yang diusulkan dalam skema Penelitian Inovatif Hibah Bersaing Dana RKAT Fakultas Teknik UNDIP untuk tahun anggaran 2021 **bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain**.

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Semarang, 26 Februari 2021 Yang menyatakan,

(Karnøto, ST, MT) NIP. 196907091997021001

Lampiran E. Formulir Desk Evaluasi Proposal Penelitian Inovatif

FORMULIR DESK EVALUASI PROPOSAL PENELITIAN INOVATIF DANA RKAT FAKULTAS TEKNIK UNDIP TAHUN 2021

Teknik Undip

Luaran Penelitian : Kebijakan Konservari Energi dan Air Fakultas Teknik UNDIP

Ketua Penelitian :

a. Nama lengkap : Karnoto,ST, MT

b. NIP/NIDN : 1969070919970021001 / 0009076905

c. Jabatan fungsional : Lektor Kepala
Anggota Penelitian : 2(dua) orang
Lama Penelitian : 7 (tujuh) bulan
Biaya Penelitian : Rp 20.000.000,-

Sumber Dana : RKAT Fakultas Teknik Undip Tahun 2021

No	Komponen Penilaian	Bobot (B)	Skor (S)	Nilai (B×S)
1	Keterkaitan antara proposal dengan RIP/ Bidang	10		
	Unggulan/ PIP Undip			
2	Kejelasan perumusan masalah	10		
3	Keutuhan peta jalan penelitian	25		
4	Tim peneliti:	20		
	a. Komitmen dan kesungguhan			
	b. Rekam jejak			
5	Kesesuaian penelitian dengan rekam jejak	10		
6	Potensi tercapainya luaran:	25		
	Kebijakan dan Hak Cipta			
	Total	100	-	

Keterangan: Skor: 1=sangat kurang, 2=kurang, 4=baik, 5=sangat baik

 $Nilai = Bobot \times Skor$

Komentar Penilai:		
	Semarang,	
	Penilai,	

(_____)