Algoritmi e Strutture Dati a.a. 2014/15

Compito del 27/05/2015

Cognor	ne:			Nome:			
Matricola:			E-mail:				
1.		eguente tabella indi	icando la comples	cizio vale 2 punti)		no a un dizionario di <i>n</i> 1'operazione.	
		Ricerca	Massimo	Successore	Minimo	Costruzione	
	Albero binario	di					
	ricerca Min-Heap						
	_						
2.	Si confrontino le	e seguenti funzioni $f(n)$ $10n^3 + \log n$ $n!$		azioni O , Ω e Θ (giu $g(n)$) $n^2 + \log 2^n$) g n ⁵	oste):	
	2 ⁿ			2^{n+100}			
3.	pesi positivi si p	ouò risolvere iterar npia la tabella sotto	ndo $ V $ volte l'algostante, specificar	oritmo di Dikstra o ndo le complessità de	ppure utlizzando egli algoritmi ind	esato $G=(V, E, w)$ con l'algoritmo di Floydlicati in funzione della	
			Grafo s	parso	Grafo denso		
	Iterated_	Dijkstra (array)					
	Iterated_	Dijkstra (heap)					
	Floy	d-Warshall					

Supponendo che il grafo sia aciclico, quale algoritmo conviene usare? Perché?

Algoritmi e Strutture Dati

a.a. 2014/15

Compito del 27/05/2015

Cognome:	Nome:
Matricola:	E-mail:

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

- 1. Dato un albero binario, i cui nodi sono colorati di bianco, rosso o verde:
 - a. scrivere una funzione efficiente che stabilisca se esiste un cammino di tre nodi nell'albero i cui colori formano la bandiera italiana. (Il cammino può partire da un nodo qualsiasi, non necessariamente dalla radice.)
 - b. Fornire la chiamata della funzione dal programma principale.
 - c. Analizzare la complessità di tale funzione.

Il tipo **Node** utilizzato per rappresentare l'albero binario è il seguente:

char * colore; struct node * left; struct node * right;

typedef struct node {

} * Node;

Per l'esame da 12 CFU, deve essere fornita una funzione C.

Per l'esame da 9 CFU, è sufficiente specificare lo pseudocodice.

- 2. Nell'ipotesi di indirizzamento aperto, scrivere uno pseudocodice per HASH-DELETE e modificare HASH-INSERT per gestire il valore DELETED. Analizzare la complessità delle due procedure nel caso pessimo.
- 3. Il seguente algoritmo accetta in ingresso la matrice di adiacenza di un grafo non orientato e restituisce un valore Booleano (TRUE / FALSE)

```
MyAlgorithm( A )
      n = rows(A)
                               /* determina il numero di vertici del grafo */
1.
 2.
      let B an n x n matrix
                               /* alloca memoria per una matrice B n x n */
      for i = 1 to n
 3.
 4.
         for j = 1 to n
            b[i,j] = 0
for k = 1 to n
 5.
 6.
 7.
               b[i,j] = b[i,j] + a[i,k]*a[k,j]
      for i = 1 to n
 8.
         for j = i + 1 to n
11.
              if a[i,j]*b[i,j] <> 0 then
                 return FALSE
12.
      return TRUE
13.
```

Si calcoli la complessità computazionale di MyAlgorithm e si determini la sua funzione (in quali casi restituisce TRUE? in quali casi FALSE?). (Nota: Nel determinare la complessità si ignori per comodità la complessità delle istruzioni 1 e 2).

Si simuli inoltre il suo comportamento sui seguenti due grafi, verificando che restituisca il risultato atteso:

4.	Sia $G = (V, E)$ un grafo non orientato, connesso e pesato e sia $(S, V \setminus S)$ un taglio di G . Si supponga che l'arco leggero che attraversa il taglio sia unico e lo si denoti con (u,v) . In altri termini, per tutti gli altri archi (x,y) che attraversano il taglio, si avrà $w(u,v) < w(x,y)$. Si dimostri che <i>tutti</i> gli alberi di copertura minima di G dovranno necessariamente contenere l'arco (u,v) .						