$\bf Aufgabe~1$ (Black-Scholes-Modell; 4 Punkte). Zeigen Sie, dass das Semimartingal

$$X_t = X_0 e^{\sigma W_t + t(\mu - \sigma^2/2)}$$

für $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}_+$ und einer Standard Brown'schen Bewegung W folgende Darstellung besitzt

$$dX_t = \mu X_t dt + \sigma X_t dW_t = X_t d(\mu t + \sigma W_t).$$

Wir wenden die Itô-Formel auf $f(Y_t) = e^{Y_t}$ mit $Y_t = \sigma W_t + t(\mu - \sigma^2/2)$ an Da Y_t stetig ist, gilt $Y_- = Y$ und $\langle Y^c, Y^c \rangle = \langle Y \rangle = \sigma^2 t$. Zunächst ist nämlich $\sigma^2 t$ stetig, verschwindet für t = 0 und ist wachsend, also ist $\sigma^2 t \in \mathcal{V}$. Es müsste noch gezeigt werden, dass $Y_t^2 - \sigma^2 t$ ein Martingal ist. Mit $f'(Y_t) = f''(Y_t) = e^{Y_t} = X_t$ erhalten wir

$$X_t = X_0 + \int_0^t X_s dY_s + \frac{1}{2} \int_0^t X_s d\langle Y \rangle_s.$$

Durch Nachdifferenzieren, sowie $d\langle Y\rangle_s = \sigma^2 ds$, erhalten wir

$$= X_0 + \int_0^t X_s \sigma dW_s + \int_0^s \left(\mu - \frac{\sigma^2}{2}\right) ds + \frac{1}{2} \int_0^t X_s \sigma^2 ds$$

= $X_0 + \int_0^t X_s \sigma dW_s + \int_0^s X_s \mu ds$.

Nach Definition 1 von Blatt 9 mit $H_t = \mu X_t$ und $K_t = \sigma X_t$ besitzt X_t dann die angegebene Darstellung.

Aufgabe 4 (4 Punkte). Sei S ein lokal beschränkter càdlàg Prozess. Die Menge $K^{\text{simple}} \subset L^{\infty}(\Omega, \mathcal{A}, P)$ sei gegeben durch

$$K^{\text{simple}} := \{ (H \cdot S)_{\infty} \mid H = \sum_{i=1}^{n} h_{i} \mathbb{1}_{\llbracket \tau_{i-1}, \tau_{i} \rrbracket} \text{ einfacher Prozess, } S^{\tau_{n}} \text{ beschränkt} \}.$$

Weiter existiere ein Maß Q mit den Eigenschaften

- 1. $Q \sim P$, d.h. Q ist äquivalent zu P, und
- 2. der Prozess S ist ein lokales Martingal unter Q.

Sei weiter $L^{\infty}_{+}(\Omega, \mathcal{A}, P) := \{ f \in L^{\infty}(\Omega, \mathcal{A}, P \mid f \geq 0) \}$. Zeigen Sie

$$K^{\text{simple}} \cap L^{\infty}_{+}(\Omega, \mathscr{A}, P) = \{0\}.$$

Formulieren Sie die ökonomische Interpretation dieser Aussage.

Hinweis: Verwenden Sie Aufgabe 5.

Das ist eine Richtung des Fundamental Theorem of Asset Pricing – Existiert ein äquivalentes Martingalmaß Q, so ist der Markt frei von Arbitrage.

Aufgabe 5 (Bonus 4 Punkte). Zeigen Sie: Ein lokal beschränkter càdlàg Prozess S ist ein lokales Martingal genau dann, wenn

$$E[(H \cdot S)_{\infty}] = 0,$$

für alle einfachen Prozesse $H=\sum_{i=1}^n h_i \mathbb{1}_{\llbracket \tau_{i-1}, \tau_i \rrbracket}$, sodass S^{τ_n} beschränkt ist.

Hinweis: Betrachten Sie eine lokalisierende Folge von Stoppzeiten $(T_n)_{n\in\mathbb{N}}$, sodass S^{T_n} ein beschränkter Prozess ist. Die Martingaleigenschaft von S^{T_n} folgt nun, falls $E[S^{T_n}_{\sigma_2} \mid \mathscr{F}_{\sigma_1}] = S^{T_n}_{\sigma_1}$ für alle Stoppzeiten $\sigma_1 \leq \sigma_2 \leq T_n$ (Diese Aussage muss ebenfalls gezeigt werden).

Sei zunächst S ein lokales Martingal, H ein einfacher Prozess, sodass S^{τ_n} beschränkt ist. Dann ist für die lokalisierende Folge $(T_k)_{k\in\mathbb{N}}$ von S der Prozess S^{T_k} ein Martingal. Sei $k\in\mathbb{N}$ so, dass $T_k\geq \tau_n$, dann sind auch die S^{τ_i} Martingale. Nach Definition 2 von Blatt 3 gilt $(H\cdot S)_t=\sum_{i=1}^n h_i(S_t^{\tau_i}-S_t^{\tau_{i-1}})$ mit $h_i\in L^\infty(\mathscr{F}_{\tau_{i-1}})$. Somit gilt für $t=\infty$, dass $(H\cdot S)_\infty=\sum_{i=1}^n h_i(S_{\tau_i}-S_{\tau_{i-1}})$. Entsprechend dem Beweis von Theorem 216 im Skript zur Vorlesung Wahrscheinlichkeitstheorie gilt wegen der Definition des stochastischen Integrals für einfache Prozesse

$$E[(H \cdot S)_{\infty}] = \sum_{i=1}^{n} E_{Q}[h_{i}(S_{\tau_{i}} - S_{\tau_{i-1}})].$$

Mit der Turmeigenschaft der bedingten Erwartung erhalten wir

$$= \sum_{i=1}^{n} E[E[h_i(S_{\tau_i} - S_{\tau_{i-1}}) \mid \mathscr{F}_{\tau_{i-1}}]].$$

Da die h_i jeweils $\mathscr{F}_{\tau_{i-1}}$ -messbar sind, folgt

$$= \sum_{i=1}^{n} E \big[h_i E[S_{\tau_i} - S_{\tau_{i-1}} \mid \mathscr{F}_{\tau_{i-1}}] \big] \,.$$

Da S^{T_k} ein Martingal ist, erhalten wir schließlich

$$= \sum_{i=1}^{n} E[h_i(S_{\tau_{i-1}} - S_{\tau_{i-1}})] = 0.$$

Es gelte andererseits $E[(H\cdot S)_{\infty}]=0$ für alle einfachen Prozesse H, sodass S^{τ_n} beschränkt ist. Wir wollen zeigen, dass S ein lokales Martingal ist, also eine Folge von Stoppzeiten $(T_n)_{n\in\mathbb{N}}$ finden, sodass S^{T_n} für jedes $n\in\mathbb{N}$ ein Martingal ist. Da S lokal beschränkt ist gibt es eine Folge $(T_n)_{n\in\mathbb{N}}$, sodass S^{T_n} beschränkt ist. Gilt nun $E[S^{T_n}_{\sigma_2}\mid\mathscr{F}_{\sigma_1}]=S^{T_n}_{\sigma_1}$ für alle $\sigma_1\leq\sigma_2\leq T_n$, so gilt auch $E[S^{T_n}_t\mid\mathscr{F}_{\sigma_1}]=S^{T_n}_{\sigma_1}$ für alle $t>T_n$, denn hier gilt $S^{T_n}_t=S_{T_n}$. Somit ist S^{T_n} dann ein Martingal. Es sollte noch gezeigt werden, dass S^{T_n} Prozess gleichgradig integrierbar ist. Außerdem sollte noch gezeigt werden, dass wenn für alle einfachen Prozesse H sodass S^{T_n} beschränkt ist gilt $E[(H\cdot S)_{\infty}]=0$, wir $E[S^{T_n}_{\sigma_2}\mid\mathscr{F}_{\sigma_1}]=S^{T_n}_{\sigma_1}$ erhalten.