Component Based Modeling for Relativistic Electrons

Sebastian Micluța-Câmpeanu^{1, 2}

²University of Bucharest ¹JuliaHub

Abstract

ElectronDynamicsModels.jl provides composable models for relativistic electron dynamics within ModelingToolkit, enabling radiation reaction and photon emission studies. Building on LaserTypes.jl, it offers AD compatibility and symbolic manipulation through modular components connected via MTK.

Introduction

ElectronDynamicsModels.jl provides a framework for modeling relativistic electron dynamics within ModelingToolkit. Building upon our previous work in LaserTypes.jl, this new approach offers:

• Automatic differentiation compatibility • Symbolic manipulation capabilities • Composable model architecture • Swappable radiation models

Physical Models

Covariant Formulation

```
Equations of Motion
m rac{du^{\mu}}{d	au} = F_{
m total}^{\mu} = F_{
m Lorentz}^{\mu} + F_{
m rad}^{\mu}
where F^{\mu}_{
m Lorentz} = q F^{\mu 
u} u_{
u}
```

Modular Code Structure

External Fields

Plane Wave

```
Monochromatic plane wave
          \begin{split} \boldsymbol{E} &= E_0 \hat{x} \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) \\ \boldsymbol{B} &= \frac{\boldsymbol{k} \times \boldsymbol{E}}{\omega} = \left( \hat{k} \times \hat{x} \right) \frac{E_0}{c} \cos(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) \end{split}
Propagating along \hat{k} with linear polarization in \hat{x} direction
```

Gaussian Laser Pulse

Figure 1: 3D visualization of focused Gaussian beam

Creating Custom Components

ModelingToolkit Architecture

External Fields PlaneWave, GaussLaser Faraday tensor: $F^{\mu\nu} =$ E_x/c 0 $-B_z$ B_y E_y/c B_z 0 $-B_x$

ParticleDynamics

 $dx^{\mu}/d\tau = u^{\mu}$

 $u_{\mu}u^{\mu} = -c^2$

 $mdu^{\mu}/d au=F_{
m total}^{\mu}$

Figure 2: Component-based architecture with swappable models

```
Modular force composition
# Without radiation:
 _total ~ F_lorentz
# Lorentz force from field tensor
 _lorentz[\mu] ~ q * sum(F\mu\nu[\mu,\nu] * u[\nu] for \nu in 1:4)
# With radiation reaction (optional):
  radiation_model ==
   @named radiation = AbrahamLorentzRadiation(
        charge = q,
       spacetime = spacetime,
       particle = particle
   push!(systems, radiation)
   F_total ~ F_lorentz + radiation.F_rad
```

System Transformation

Unsimplified System (24 equations)

Compiled System (8 ODEs only!)

Get Started GitHub: github.com/SebastianM-C/ElectronDynamicsModels.jl

Poster created with assistance from Claude

Figure-8 Motion Example

Charged particles in plane waves can exhibit figure-8 motion [1], providing an excellent numerical accuracy test.

Numerical Results

Conservation Metrics

```
Four-velocity norm: u_{\mu}u^{\mu}=-c^2 (constant)
Lightfront momentum: p^- = p^0 - p^3 (conserved in plane wave)
Conservation of these quantities validates numerical accuracy
```


Figure 3: Figure-8 trajectories with conservation analysis

Metric	Tsit5 (1e-6)	Vern9 (1e-6)	Vern9 (1e-9)
Time steps	761	366	1287
Function evaluations	4563	5842	20578
Accepted steps	760	365	1286
4-velocity norm error	3.65×10^{-4}	1.65×10^{-7}	$7 imes 10^{-12}$

Energy Evolution

Figure 4: Energy oscillations in plane wave interaction

In plane wave interactions, energy is **not conserved** due to work done by the electromagnetic field. The electron gains and loses energy periodically as it oscillates in the wave field.

References

Bibliography