Machine Learning from Scratch Project Update: Nov 28, 2017

Dan Johnston, Seattle

Project Overview

- Objective: manually code known machine learning algorithms
- Parameters:
 - Python, NumPy, SciPy only for implementation
 - Scikit-Learn for testing datasets and performance comparisons only

Metrics

- o Model metrics (R2, RMSE, Accuracy, Recall, etc) are comparable to sklearn models
- Reach goal: Runtime comparable to sklearn models

Outcome:

- Gain a deeper understanding for commonly used machine learning algorithms
- Ability to relate the algorithms to a broad range of audiences

Current Status

Linear Regression

- Status: completed analytically (using linear algebra)
 - No regularization has been included.
- Boston dataset was used for comparison
- R² scores:
 - From Scratch: 0.740607742865
 - o Sklearn: 0.740607742865
- Runtimes:
 - \circ From Scratch: 153 µs ± 30.5 µs per loop
 - O Sklearn: 438 μs ± 9.06 μs per loop

Logistic Regression

- Status: completed analytically (using linear algebra)
 - No regularization has been included
 - Binary classification only
- Breast Cancer dataset was used for comparison
- Accuracy scores:
 - From Scratch: 0.965034965035
 - Sklearn: 0.979020979021
- Runtimes:
 - From Scratch: 563 μs ± 55.9 μs per loop
 - O Sklearn: 3.52 ms ± 86.3 μs per loop

K Neighbors Regression

- Status: completed with Euclidean distance only (using scipy.spatial.distance.cdist)
- Boston dataset was used for comparison
- R² scores:
 - From Scratch: 0.639665439953224
 - Sklearn: 0.639665439953224
- Runtimes:
 - From Scratch: 2.28 ms ± 79.3 μs per loop
 - O Sklearn: 969 μs ± 29.6 μs per loop

K Neighbors Classifier

- Status: completed with Euclidean distance only (using scipy.spatial.distance.cdist)
 - Classification only, no class probabilities
- Breast Cancer dataset was used for comparison
- Accuracy scores:
 - From Scratch: 0.965034965034965
 - Sklearn: 0.965034965034965
- Runtimes:
 - From Scratch: 5.83 ms ± 68.2 μs per loop
 - O Sklearn: 1.21 ms ± 47 μs per loop
 - Vote counting seems to be the bottleneck

What's next?

More models!

Supervised Learning

- Naive Bayes
- Decision Trees
 - o Ensembles?
- Stochastic Gradient Descent?
- Support Vector Machines?
- Linear Regression with Regularization?

Unsupervised Learning

- K Means clustering
 - Mini-batch too
- DB Scan clustering
- Mean Shift clustering?
- Principal Component Analysis?