ACS234 Maths and Data Modelling

Find in this sheet a series of exercises to work during the holidays and which take up all the topics mentioned during the 3 previous tutorials.

Interpolation

Exercice 1 - Find the function of degree 3 that goes though these 3 points using :

- a) Polynomial interpolation
- b) Lagrange interpolation
- c) Newton interpolation

x	-1	0	1	2
f(x)	-1	1	0	0

Exercice 2 - We have the data below representing the water kinematic viscosity v (in m² s⁻¹) as a function of temperature T (in °C):

Т	15	16	17	18	19	20	21	22	23	24	25	26	27	28
V	1.14	1.11	1.08	1.06	1.03	1.01	0.983	0.960	0.938	0.917	0.896	0.876	0.857	0.839

- 1. What is the kinematic viscosity when $T = 26.5 \,^{\circ}\text{C}$?
- 2. For which temperature do we have $v = 0.9 \text{ m}^2 \text{ s}^{-1}$?

Exercice 3

- a) Find the Lagrange polynomial going though the first three points in red.
- b) Find the Lagrange polynomial going though the first four points in red and blue.
- c) Using both functions, interpolate the value of the f(3). Is it close to the real value in green?

х	0.0	1.0	2.0	3.0	4.0
f(x)	0.0	2.0	36.0	252.0	1040.0

Exercice 1

$$f(x) = \frac{2}{3}x^3 + \frac{-3}{2}x^2 + \frac{-1}{6}x + 1$$

Exercice 2

1) You can choose to interpolate with 2,3 etc points using any methods. Only 2 points seems enough to approximate the function (see figure ex2.png), we have :

26	27
0.876	0.857

$$f(x) = -0.019x + 1.37$$

$$f(26.5) \approx 0.867$$

2)
$$f(x) \approx 0.9$$
 $x = \frac{(0.9 - 1.37)}{-0.019} \approx 24.73$

Exercice 3

a)
$$f_1(x) = a_0 x^2 + a_1 x$$
 $a_0 = 16$ $a_1 = -14$

b)
$$f_2(x) = a_0 x^3 + a_1 x^2 + a_2 x$$
 $a_0 = 35$ $a_1 = -89$ $a_2 = 56$ (see figure ex3.png),

c)
$$f_1(3) = 102$$

 $f_2(3) = 312$

Simple Linear Regression

Exercice 1 - We have the weight of father and son given below. Calculate the coefficients of the linear model as well as the coefficient of determination \mathbb{R}^2 . Give an interpretation.

Father	65	63	67	64
Son	68	66	68	65

Exercice 2 - We have the following linear model $y=a_0+a_1x+e$ and we know : a) the regression line goes though $(x_1,y_1)=(2,2.5)$ b) $\bar{x}=3.0$ and $\bar{y}=5.0$

Find \hat{a}_0 and \hat{a}_1 .

Exercice 3 - Can you write a Matlab (or Python) code to solve the 2 exercices above ?

Exercice 1

$$father = \hat{\beta} \times son$$

$$\hat{\beta} \approx 1.031$$

$$R^2 \approx 0.379$$

The proportionality between the weight of a father and his son is not obvious with a very low coefficient R^2

Exercice 2

We have the following equations:

$$2.5 = a_0 + a_1 \times 2$$

$$5 = a_0 + a_1 \times 3$$

$$\hat{a}_0 = -2.5$$

$$\hat{a}_1 = 2.5$$