	- ^	-		_	_	$\overline{}$	
- N	1	N	/	В	D	L,	
- I N				•	\mathbf{r}	P /	

• Cada	pregunta tier	ne (esnero) iina :	ഗദവിവ	าเทล	resnuesta	corrects	Marcad	con	un asna	เไล	onción	elegida
Cada	preguma ne	ne (espero	, una	y BOIO	una	respuesta	correcta.	marcaa	COII	um aspe	ı ıa	opeion	cicgida.

• Cada respuesta correcta suma un punto; cada respuesta incorrecta resta medio punto; las respuestas en blanco ni suman ni restan. Estad ojo avizor y suerte. Está prohibidísimo copiar.

1. Considérense las expresiones, en las que los numerales 2, 1 se suponen de ([2],1) (2:[],1:[]) (2:[]):1 [2]:[1]:[] ¿Cuál de las siguientes afirmaciones es cierta? ○ Hay exactamente tres que están mal tipadas ○ Hay exactamente dos que están mal tipadas ○ Hay exactamente una que está mal tipada	e tipo Int:
2. Considérense las expresiones de tipo (que solo difieren en los paréntesis):	$ au_1 = (a \rightarrow a \rightarrow a) \rightarrow a \rightarrow (a \rightarrow a)$ $ au_2 = (a \rightarrow (a \rightarrow a)) \rightarrow a \rightarrow a \rightarrow a$ $ au_3 = a \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a \rightarrow a$
$ \begin{array}{l} $	
3. Considérese el operador infix1 4 ** y las expresiones (que solo difieren el $e_1 \equiv e_3 \neq e_2$ $e_1 \equiv e_3 \neq e_2$ $e_1 \neq e_2 \neq e_3 \neq e_1$ $e_1 \equiv e_2 \neq e_3$	en los paréntesis): $e_1 = f x y ** y ** x$ $e_2 = (**) (f x y) (** y x)$ $e_3 = (** x) ((** y) ((f x) y))$
4. La evaluación de la expresión foldr (\x y -> not y) e [False,True,undefined] da como resultado True, para alguna expresión e de tipo Bool Un error, para toda expresión e de tipo Bool Las dos anteriores son falsas.	
 5. La evaluación de la expresión fold1 (\x y → not y) e [False,True,undefined] da como resultado ○ True, para alguna expresión e de tipo Bool ○ Un error, para toda expresión e de tipo Bool ○ Las dos anteriores son falsas. 	
6. La evaluación de [take j [3i] i <- [14], i > 2, j <- [i-: Una lista de números, siendo los dos primeros iguales entre sí Una lista de listas de números, siendo las dos primeras listas vacías Una lista de longitud cuatro, cuyos dos últimos elementos son iguales	1,i]] produce como resultado
7. La reducción de la expresión (\x y z -> x y (y z)) (\x y -> x y) (\sigma y z -> x y (y z)) (\x y -> x y)	(\x -> x+1) 2 producirá el resultado
8. Sea f definida por f x y z = x y (y z). El tipo de f es: ((a -> b) -> b -> c) -> (a -> b) -> a -> c (b -> a -> c)-> (b -> a) -> b -> c f está mal tipada	
9. La unificación de [X [X,U Y]] con [b,Z,Z] No tiene éxito Tiene éxito, con las ligaduras X/b,Z/b,U/b,Y/[] Tiene éxito, con las ligaduras X/b,Z/b,U/[],Y/[b]	

 10. Sea e una expresión de un cierto tipo. Considérense las siguientes situaciones: La evaluación de length e termina pero la de head e no La evaluación de length e termina pero la de last e no last e da error de tipos y la evaluación de length e termina Se tiene que: Ninguna de las tres situaciones es posible Una de las tres situaciones es posible pero las otras dos no Dos de las situaciones son posibles pero la otra no
11. Sea f definida por las siguientes ecuaciones: f y False = not y ¿Cuál de las siguientes afirmaciones es cierta? f x y = x && y La función no es estricta en ninguno de sus dos argumentos La función es estricta en el segundo pero no en el primer argumento Las dos anteriores son falsas.
12. ¿Cuál de las siguientes funciones f hace que la expresión map f (iterate (takeWhile (< 10)) (iterate (+ 1) 0)) esté mal tipada? (Suponemos que 0,1,10 son de tipo Int)
 13. ¿Qué podemos afirmar de la evaluación de last (filter (< n) (iterate (+ 1) m)) , siendo n y m dos números concretos de tipo Int? ○ La evaluación terminará, con independencia de n y m ○ La evaluación no terminará, con independencia de n y m ○ Las dos anteriores son falsas.
14. ¿ Cuál de los siguientes programas lógicos expresa de forma natural la función Haskell dada por $f(Z) = S Z$? $f(S x) = S (f x)$
 15. La evaluación de la expresión let {y= 1:x ; x=y++[2]} in head x produce como resultado: 1 Un error Un cómputo no terminante
16. ¿Cuántas de las siguientes definiciones de tipos (independientes unas de otras) son correctas? data Tip = A B Int Tip C (Int,Tip,Tip) data Tap = A B (Int,Bool) A (Int,Int,Tap) data Top = A B a O Una de las tres O Dos de las tres Ninguna de las tres
17. ¿Cuáles de las siguientes expresiones representan correctamente la acción de IO que lee una línea y escribe su longitud? let x = getLine in length x return (length getLine) do x <- getLine print (length x) La segunda y la tercera La segunda y ninguna otra Las dos anteriores son falsas.
18. El objetivo Prolog var(Y),f(0,1,Y) = [F,U,V,2],Y is U+V ○ Tiene éxito y Y queda ligada a 1 (y puede haber más ligaduras) ○ Tiene éxito y Y queda ligada a 2 (y puede haber más ligaduras) ○ No tiene éxito

N()	MB	RE_{Σ}	
- N ()	VIII	1 1 1 1	

• Cada	pregunta tier	ne (esnero) iina :	ഗദവിവ	าเทล	resnuesta	corrects	Marcad	con	un asna	เไล	onción	elegida
Cada	preguma ne	ne (espero	, una	y BOIO	una	respuesta	correcta.	marcaa	COII	um aspe	ı ıa	opeion	cicgida.

• (Cada r	respuesta	correcta	suma u	n punto	o; cada	a respuesta	incorrect a	resta	\mathbf{medio}	punto;	las re	espuestas	en b	olanco
ni s	suman	ni restan.	Estad oio	avizor v	suerte.	Está p	rohibidísimo	copiar.							

1.	Considérese el operador infixl 4 ** y las ex	presiones (que solo difieren en los paréntesis):	$e_1 = f x y ** y ** x$ $e_2 = (**) (f x y) (** y x)$ $e_3 = (** x) ((** y) ((f x) y))$
\bigcirc	$e_1 \equiv e_3 \not\equiv e_2$		
	$e_1 \neq e_2 \neq e_3 \neq e_1$ $e_1 \equiv e_2 \neq e_3$		
_	C1 = C2 ≠ C3		
2.		x y (y z)) (\x y -> x y) (\x -> x+1) 2	producirá el resultado
\bigcirc	Sea f definida por f x y z = x y (y z). El ((a -> b) -> b -> c) -> (a -> b) -> a - (b -> a -> c)-> (b -> a) -> c f está mal tipada		
d d	¿Cuántas de las siguientes definiciones de tipo ata Tip = A B Int Tip C (Int ata Tap = A B (Int,Bool) A (Int ata Top = A B a Una de las tres Dos de las tres Ninguna de las tres		?
) (E) (C) (C) (C)	Considérense las expresiones, en las que los manifoldes [2],1) (2:[],1:[]) (2:[]):1 [2]: uál de las siguientes afirmaciones es cierta? Hay exactamente tres que están mal tipadas Hay exactamente dos que están mal tipadas Hay exactamente una que está mal tipada	umerales 2, 1 se suponen de tipo Int: :[1]:[]	
	La unificación de [X [X,U Y]] con [b,Z,Z] No tiene éxito Tiene éxito, con las ligaduras X/b,Z/b,U/b,Y Tiene éxito, con las ligaduras X/b,Z/b,U/[],		
tip	¿Cuál de las siguientes funciones f hace que la da? (Suponemos que $0,1,10$ son de tipo Int) $f \equiv \text{take } 5$ $f \equiv \text{length}$ $f \equiv (+1)$	la expresión map f (iterate (takeWhile (<	10)) (iterate (+ 1) 0)) esté ma
• • Se	Sea e una expresión de un cierto tipo. Consid- La evaluación de length e termina pero la de La evaluación de length e termina pero la de last e da error de tipos y la evaluación de le tiene que: Ninguna de las tres situaciones es posible Una de las tres situaciones es posible pero las Dos de las situaciones son posibles pero la otr	e head e no e last e no ength e termina s otras dos no	
9.	¿ Cuál de los siguientes programas lógicos exp	oresa de forma natural la función Haskell dada	por $f(Z) = S Z$? f(S x) = S (f x)
0	f(z,s(z)). f(s(X),Y) := f(X,s(Y)).	$\begin{array}{ll} f(z,s(z)). \\ f(s(X),s(Y)) := f(X,Y). \end{array}$	$ \int f(z,s(z)). $ $f(s(X),s(f(X,Y))). $

10. ¿Cuáles de las siguientes expresiones representan correctamente la acción let x = getLine in length x return (length getLine)	do x <- getLine print (length x)
 La segunda y la tercera La segunda y ninguna otra Las dos anteriores son falsas. 	Prince (roughl it)
11. Considérense las expresiones de tipo (que solo difieren en los paréntesis):	$ au_1 = (a \rightarrow a \rightarrow a) \rightarrow a \rightarrow (a \rightarrow a)$ $ au_2 = (a \rightarrow (a \rightarrow a)) \rightarrow a \rightarrow a \rightarrow a$ $ au_3 = a \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a \rightarrow a$
$ \bigcirc \tau_1 \equiv \tau_2 \equiv \tau_3 \\ \bigcirc \tau_1 \equiv \tau_2 \not\equiv \tau_3 \\ \bigcirc \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1 $	
 12. La evaluación de [take j [3i] i <- [14], i > 2, j <- [i-] Una lista de números, siendo los dos primeros iguales entre sí Una lista de listas de números, siendo las dos primeras listas vacías Una lista de longitud cuatro, cuyos dos últimos elementos son iguales 	1,i]] produce como resultado
13. Sea f definida por las siguientes ecuaciones: f y False = not y f x y = x && y La función no es estricta en ninguno de sus dos argumentos La función es estricta en el segundo pero no en el primer argumento Las dos anteriores son falsas.	5
14. El objetivo Prolog var(Y),f(0,1,Y) = [F,U,V,2],Y is U+V ○ Tiene éxito y Y queda ligada a 1 (y puede haber más ligaduras) ○ Tiene éxito y Y queda ligada a 2 (y puede haber más ligaduras) ○ No tiene éxito	
15. La evaluación de la expresión let {y= 1:x ; x=y++[2]} in head x prod 1 Un error Un cómputo no terminante	luce como resultado:
16. La evaluación de la expresión foldr (\x y -> not y) e [False,True,undefined] da como resultado True, para alguna expresión e de tipo Bool Un error, para toda expresión e de tipo Bool Las dos anteriores son falsas.	
17. La evaluación de la expresión foldl (\x y -> not y) e [False,True,undefined] da como resultado True, para alguna expresión e de tipo Bool Un error, para toda expresión e de tipo Bool Las dos anteriores son falsas.	
 18. ¿Qué podemos afirmar de la evaluación de last (filter (< n) (itera de tipo Int? La evaluación terminará, con independencia de n y m La evaluación no terminará, con independencia de n y m Las dos anteriores son falsas. 	ate $(+1)$ $m)$) , siendo n y m dos números concreto

3 T	_		-	-	_
N	<i>(</i>)	N /I	Ľ	D.	ы,
1.0	()	ΙVΙ	1)	Iλ.	ĽJ.

• Cada	pregunta tier	ne (esnero) iina :	ഗദവിവ	าเทล	resnuesta	corrects	Marcad	con	un asna	เไล	onción	elegida
Cada	preguma ne	ne (espero	, una	y BOIO	una	respuesta	correcta.	marcaa	COII	um aspe	ı ıa	opeion	cicgida.

• Cada respuesta correcta suma un punto; cada respuesta incorrecta resta medio punto; las respuestas en blanco ni suman ni restan. Estad ojo avizor y suerte. Está prohibidísimo copiar.

1.	¿Cuáles de las siguientes expresiones representan correctamente la acción let x = getLine in length x return (length getLine)	de IO que lee una lír do x <- getL print (le	ine
\bigcirc	La segunda y la tercera La segunda y ninguna otra Las dos anteriores son falsas.	primo (10	
\bigcirc	La evaluación de la expresión let {y= 1:x ; x=y++[2]} in head x prod- 1 Un error Un cómputo no terminante	uce como resultado:	
3.	¿ Cuál de los siguientes programas lógicos expresa de forma natural la fun	ción Haskell dada po	r f(Z) = S Z ? $f(S x) = S (f x)$
0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$).	f(z,s(z)). f(s(X),s(f(X,Y))).
$\mathop{\bigcirc}\limits_{\bigcirc}$	¿Qué podemos afirmar de la evaluación de last (filter (< n) (iteratipo Int? La evaluación terminará, con independencia de n y m La evaluación no terminará, con independencia de n y m Las dos anteriores son falsas.	ate (+ 1) m)) , si	iendo $n \ge m$ dos números concreto
	¿Cuál de las siguientes funciones f hace que la expresión map f (iterate pada? (Suponemos que $0,1,10$ son de tipo Int) $f\equiv {\tt take}\ 5$ $f\equiv {\tt length}$ $f\equiv ({\tt +}\ 1)$	e (takeWhile (< 10)) (iterate (+ 1) 0)) esté ma
6.	El objetivo Prolog var(Y),f(0,1,Y) = [F,U,V,2],Y is U+V Tiene éxito y Y queda ligada a 1 (y puede haber más ligaduras) Tiene éxito y Y queda ligada a 2 (y puede haber más ligaduras) No tiene éxito		
7.	Considérense las expresiones de tipo (que solo difieren en los paréntesis):	$ au_1 = (a \rightarrow a \rightarrow a)$ $ au_2 = (a \rightarrow (a \rightarrow a))$ $ au_3 = a \rightarrow (a \rightarrow a)$	a)) -> a -> a -> a
\bigcirc	$ \tau_1 \equiv \tau_2 \equiv \tau_3 \tau_1 \equiv \tau_2 \not\equiv \tau_3 \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1 $		
fo	La evaluación de la expresión ldr (\x y -> not y) e [False,True,undefined] da como resultado True, para alguna expresión e de tipo Bool Un error, para toda expresión e de tipo Bool Las dos anteriores son falsas.		
fo:	La evaluación de la expresión ldl (\x y -> not y) e [False,True,undefined] da como resultado True, para alguna expresión e de tipo Bool Un error, para toda expresión e de tipo Bool Las dos anteriores son falsas.		

10. La unificación de [X [X,U Y]] con [b,Z,Z]
No tiene éxito
 ○ Tiene éxito, con las ligaduras X/b,Z/b,U/b,Y/[] ○ Tiene éxito, con las ligaduras X/b,Z/b,U/[],Y/[b]
Tiene extee, con his figuration h, b, 2, b, o, [1], 1, [b]
11. Considérese el operador infixl 4 ** y las expresiones (que solo difieren en los paréntesis): $e_1 = f x y ** y ** x$ $e_2 = (**) (f x y) (** y x)$ $e_3 = (** x) ((** y) ((f x) y)$
$\bigcirc \ e_1 \equiv e_3 \neq e_2$
$\bigcirc \ e_1 \neq e_2 \neq e_3 \neq e_1$
$\bigcirc \ e_1 \equiv e_2 \not\equiv e_3$
12. La reducción de la expresión (\x y z -> x y (y z)) (\x y -> x y) (\x -> x+1) 2 producirá el resultado 3 0 4 5
13. Sea f definida por f x y z = x y (y z). El tipo de f es:
((a -> b) -> b -> c) -> (a -> b) -> a -> c (b -> a -> c)-> (b -> a) -> c
f está mal tipada
14. Considérense las expresiones, en las que los numerales 2, 1 se suponen de tipo Int: ([2],1) (2:[],1:[]) (2:[]):1 [2]:[1]:[] ¿Cuál de las siguientes afirmaciones es cierta? () Hay exactamente tres que están mal tipadas () Hay exactamente dos que están mal tipadas
O Hay exactamente una que está mal tipada
15. ¿Cuántas de las siguientes definiciones de tipos (independientes unas de otras) son correctas? data Tip = A B Int Tip C (Int,Tip,Tip) data Tap = A B (Int,Bool) A (Int,Int,Tap) data Top = A B a Una de las tres Dos de las tres Ninguna de las tres
16. La evaluación de [take j [3i] i <- [14], i > 2, j <- [i-1,i]] produce como resultado ○ Una lista de números, siendo los dos primeros iguales entre sí ○ Una lista de listas de números, siendo las dos primeras listas vacías ○ Una lista de longitud cuatro, cuyos dos últimos elementos son iguales
 17. Sea e una expresión de un cierto tipo. Considérense las siguientes situaciones: La evaluación de length e termina pero la de head e no La evaluación de length e termina pero la de last e no last e da error de tipos y la evaluación de length e termina Se tiene que: Ninguna de las tres situaciones es posible Una de las tres situaciones es posible pero las otras dos no
O Dos de las situaciones son posibles pero la otra no
18. Sea f definida por las siguientes ecuaciones: f y False = not y ¿Cuál de las siguientes afirmaciones es cierta? f x y = x && y
 La función no es estricta en ninguno de sus dos argumentos La función es estricta en el segundo pero no en el primer argumento Las dos anteriores son falsas.

7 . 1	\sim	ъ.	r	· T	
		1	IP	ЗB	: H:
1 1		1 V	11.	,,,,	

• Cada pregunta tiene (espero) una y solo una respuesta correcta. Marcad con un aspa la opción el	• C	ada	pregunta 1	tiene	(espero)	una	v solo	una	respuesta	correcta.	Marcad	con	un a	aspa	la c	pción	eleg	ida.
---	-----	-----	------------	-------	----------	-----	--------	-----	-----------	-----------	--------	-----	------	------	------	-------	------	------

• Cada respuesta correcta suma un punto; cada respuesta incorrecta resta medio punto; las respuestas en blanco ni suman ni restan. Estad ojo avizor y suerte. Está prohibidísimo copiar.

1. Considérese el operador infixl 4 ** y las expresiones (que solo difieren en los paréntesis):	$e_1 = f x y ** y ** x$ $e_2 = (**) (f x y) (** y x)$ $e_3 = (** x) ((** y) ((f x) y))$
$\bigcirc e_1 \equiv e_3 \neq e_2$ $\bigcirc e_1 \neq e_2 \neq e_3 \neq e_1$ $\bigcirc e_1 \equiv e_2 \neq e_3$	os (1) ((j) ((1 1) j))
 2. La evaluación de la expresión fold1 (\x y -> not y) e [False,True,undefined] da como resultado True, para alguna expresión e de tipo Bool Un error, para toda expresión e de tipo Bool Las dos anteriores son falsas. 	
 3. La evaluación de la expresión foldr (\x y -> not y) e [False,True,undefined] da como resultado True, para alguna expresión e de tipo Bool Un error, para toda expresión e de tipo Bool Las dos anteriores son falsas. 	
 4. El objetivo Prolog var(Y),f(0,1,Y) = [F,U,V,2],Y is U+V Tiene éxito y Y queda ligada a 1 (y puede haber más ligaduras) Tiene éxito y Y queda ligada a 2 (y puede haber más ligaduras) No tiene éxito 	
 5. Sea e una expresión de un cierto tipo. Considérense las siguientes situaciones: La evaluación de length e termina pero la de head e no La evaluación de length e termina pero la de last e no last e da error de tipos y la evaluación de length e termina Se tiene que: Ninguna de las tres situaciones es posible Una de las tres situaciones es posible pero las otras dos no Dos de las situaciones son posibles pero la otra no 	
6. La evaluación de la expresión let {y= 1:x ; x=y++[2]} in head x produce como resultado 1 Un error Un cómputo no terminante	0:
7. Considérense las expresiones, en las que los numerales 2, 1 se suponen de tipo Int: ([2],1) (2:[],1:[]) (2:[]):1 [2]:[1]:[] ¿Cuál de las siguientes afirmaciones es cierta? Hay exactamente tres que están mal tipadas Hay exactamente dos que están mal tipadas Hay exactamente una que está mal tipada	
8. La evaluación de [take j [3i] i <- [14], i > 2, j <- [i-1,i]] produce co Una lista de números, siendo los dos primeros iguales entre sí Una lista de listas de números, siendo las dos primeras listas vacías Una lista de longitud cuatro, cuyos dos últimos elementos son iguales	omo resultado
9. ¿Cuál de las siguientes funciones f hace que la expresión map f (iterate (takeWhile (< tipada? (Suponemos que $0, 1, 10$ son de tipo Int) $\bigcap f \equiv \text{take } 5$	10)) (iterate (+ 1) 0)) esté ma

10. La reducción de la expresión (\x y z -> x y (y z)) (\x y -> x y) (\bigcirc 3 \bigcirc 4 \bigcirc 5	$\x \rightarrow x+1$) 2 producirá el resultado
11. Sea f definida por f x y z = x y (y z). El tipo de f es: ((a -> b) -> b -> c) -> (a -> b) -> a -> c (b -> a -> c)-> (b -> a) -> c f está mal tipada	
12. ¿ Cuál de los siguientes programas lógicos expresa de forma natural la func	tión Haskell dada por $f(Z) = S Z$? $f(S x) = S (f x)$ $f(z,s(z)).$ $f(s(X),s(f(X,Y))).$
 13. La unificación de [X [X,U Y]] con [b,Z,Z] No tiene éxito Tiene éxito, con las ligaduras X/b,Z/b,U/b,Y/[] Tiene éxito, con las ligaduras X/b,Z/b,U/[],Y/[b] 	
 14. ¿Qué podemos afirmar de la evaluación de last (filter (< n) (iterat de tipo Int? La evaluación terminará, con independencia de n y m La evaluación no terminará, con independencia de n y m Las dos anteriores son falsas. 	e (+ 1) m)) , siendo n y m dos números concretos
15. Sea f definida por las siguientes ecuaciones: f y False = not y f x y = x && y La función no es estricta en ninguno de sus dos argumentos La función es estricta en el segundo pero no en el primer argumento Las dos anteriores son falsas.	¿Cuál de las siguientes afirmaciones es cierta?
16. ¿Cuántas de las siguientes definiciones de tipos (independientes unas de otre data Tip = A B Int Tip C (Int,Tip,Tip) data Tap = A B (Int,Bool) A (Int,Int,Tap) data Top = A B a Una de las tres Dos de las tres Ninguna de las tres	ras) son correctas?
	$ au_1 = (a \rightarrow a \rightarrow a) \rightarrow a \rightarrow (a \rightarrow a)$ $ au_2 = (a \rightarrow (a \rightarrow a)) \rightarrow a \rightarrow a \rightarrow a$ $ au_3 = a \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a \rightarrow a$
$ \bigcirc \tau_1 \equiv \tau_2 \equiv \tau_3 \\ \bigcirc \tau_1 \equiv \tau_2 \not\equiv \tau_3 \\ \bigcirc \tau_1 \not\equiv \tau_2 \not\equiv \tau_3 \not\equiv \tau_1 $	
 18. ¿Cuáles de las siguientes expresiones representan correctamente la acción de let x = getLine in length x return (length getLine) La segunda y la tercera La segunda y ninguna otra Las dos anteriores son falsas. 	de IO que lee una línea y escribe su longitud? do x <- getLine print (length x)

Nota previa: debe declararse el tipo de todas las funciones que se programen

1. **(1 punto)**

(a) Escribe una expresión Haskell cuya evaluación produzca la lista infinita

$$[(1,1),(4,2),(3,9),(16,4),(5,25),(36,6),...$$

Nota: puedes usar funciones del preludio de Haskell, listas intesionales o lambda expresiones, pero no otras funciones auxiliares.

(b) Razona brevemente cuál es el tipo de la función definida por la ecuación

$$f x y z = x y (y z)$$

2. (2 puntos)

- Define un tipo de datos polimórfico para representar árboles generales, en los que cada nodo tiene una información y n hijos ($n \ge 0$, y puede variar con cada nodo). No se consideran árboles vacíos.
- Programa las siguientes funciones:
 - suma t, que obtiene la suma de los contenidos de todos los nodos del árbol t.
 - creciente t, que es la propiedad que expresa que para cada nodo del árbol t y cada hijo t' de ese nodo, la suma de los nodos de t' es mayor que la suma de todos los nodos de todos los hermanos de t' situados a su izquierda.
- Declara explícitamente el tipo de los árboles como instancia de la clase Eq, de manera que el orden definido sea el mismo que resultaría de usar deriving Eq.

3. (1 punto)

Define (sin utilizar foldr) la siguiente variante de foldr que opera con listas no vacías, especificada como:

foldr1
$$\bigoplus [x_1, x_2, \dots, x_n] = x_1 \bigoplus (x_2 \bigoplus (x_3 \dots \bigoplus (x_{n-1} \bigoplus x_n) \dots))$$

Expresa mediante foldr1 la función last.

4. (1 punto)

Dado el programa lógico

$$p(a). \qquad q(c(X,Y),Z) := q(X,Z).$$

$$p(b). \qquad q(c(X,Y),Y).$$

- (i) Construye el árbol de resolución del objetivo q(c(c(b,d),Y),a),X),p(X).
- (ii) Indica cómo cambia el árbol si la primera cláusula de p se cambia por p(a) :- !.
- (ii) Indica cómo cambia el árbol si la primera cláusula de q se cambia por q(c(X,Y),Z) :- q(X,Z),!. (Este cambio es independiente del anterior)

5. (1 punto)

Programa en Prolog los siguientes predicados:

- (a) mas_corta(Xs,Ys) ⇔ la lista Xs tiene menos longitud que Ys.
 Nota: no pueden usarse predicados primitivos, ni siquiera is.
- (b) rep_sum(Xs,Ys) ⇔ Ys resulta de reemplazar cada elemento de Xs por la suma de todos los elementos de Xs. Ejemplo: rep_sum([1,2,3,1],Ys) debe tener éxito con respuesta Ys = [7,7,7,7].

Nota: se supone, sin necesidad de comprobación, que Xs es una lista formada por números.

Renota: programarlo con un solo recorrido de Xs tiene una bonificación de 0,5 puntos.