1. Цель работы

Разработать имитационную модель в среде AnyLogic. Выполнить сравнительную оценку результатов имитационного моделирования и аналитического.

2. Задание

СМО - билетная касса с одним окошком (N=1) и неограниченной очередью. Касса продаёт билеты в пункты А и В. Пассажиров, желающих купить билет в пункт А, проходит в среднем трое за 20 мин, пункт В - двое за 20 мин. Поток пассажиров можно считать простейшим. Кассир в среднем обслуживает трёх пассажиров за 10 мин. Время обслуживания - показательное. Определить характеристики СМО: среднее число заявок в СМО, среднее число пассажиров в очереди, среднее время пребывания пассажиров в системе, среднее время простаивания пассажиров в очереди.

3. Ход выполнения работы

3.1 Работа имитационной модели:

Рисунок 1. Работа имитационной модели

3.2 Анимация моделируемого процесса:

Рисунок 2. Анимация модулируемого процесса

3.3 Формулы для расчета характеристик СМО:

Таблица 1. Формулы для расчета

CMO M M 1				
Вероятностные	Временные	Количественные		
характеристики	характеристики	характеристики		
$\rho = \lambda \overline{T_{\text{ofc}}}$ $P = 1 - \rho$	$\overline{T_{\text{oж}}} = \frac{\overline{T_{\text{oбc}}} \rho}{\frac{1-\rho}{T_{\text{oбc}}}}$ $\overline{T_{\text{np}}} = \frac{\overline{T_{\text{oбc}}}}{1-\rho}$	$L = \frac{\rho^2}{1-\rho}$ $M = \frac{\rho}{1-\rho}$		

3.4 Сравнительные характеристики СМО:

Таблица 2. Сравнительные характеристики

Характеристика	Аналитическое	Имитационное	Сравнительная
	моделирование	моделирование	оценка
ρ	0.075		0
P	0.925		0
T_{osc}	0.02	0.01	0.01
L	0.006	0	0.006
T_{np}	0.314	0.31	0.004
M	0.081	0.08	0.001

4. Вывод

В ходе выполнения лабораторной работы была разработана имитационная модель в среде AnyLogic. Выполнена сравнительная оценка результатов имитационного и аналитического моделирования.