Health Insurance Premium ChargesFactors and Their Influence

By Alex Ferrone and Akanksha Rai

Table of Contents

- 1. Introduction
- 2. Data Collection
- 3. Data Cleaning
- 4. Exploratory Data Analysis
- 5. Regression Models
- 6. Validation Testing

The Complexity of Risk Underwriting

% of people in the US with any type of Health Insurance from 1990 to 2022

Data Collection

Age

Sex

BMI

Children

Smoker

Region

Charges - dependent variable

Child_bool*

Data Cleaning

The outliers...

Who smokes more men or women?

Percentage of Smokers by Sex

Who has a higher BMI men or women?

The largest contributor to price of premiums

Checking for normalization of independent variables

Final preparation for linear regression

Multi-Linear Regression

Adj R-Squared: 0.778

F-Statistic: 468.2

Jarque-Bera (JB): 1225.146

Mean Absolute Error: 0.2999

Coefficients: All p_values < 0.05

Smoker_yes: 1.5348

Age: 0.4948

BMI: 0.0790

Children: 0.1267

Sex_male: -0.0715

Region_northwest: -0.0951

Region_southeast: -0.1465

Region_southwest: -0.1420

Polynomial Regression

Degrees = 2

Adj R-Squared: 0.851

F-Statistic: 164.5

Jarque-Bera (JB): 8340.519

Mean Absolute Error: 0.2149

Smallest Eigenvalue: 1.09e-29

- Might indicate strong multicollinearity
- Or design matrix is singular

VIF and Durbin watson statistics to assess the model

feature VIF const 5.4290

age 1.0168

bmi 1.1066

children 1.004

sex_male 1.0089

smoker_yes 1.01207

region_northwest 1.5188

region_southeast 1.6522

region_southwest 1.5294

Durbin-Watson Statistic: 2.0464

Confusion Matrix

Accuracy: 0.91 Precision: 0.89 Recall: 0.93

F1 Score: 0.91

Residual plot to assess the performance of the model

Q-Q Plot

Predicted vs Actual values

Conclusion

Simple is sometimes better: Linear Regression

Additional Independent Variables

Demographic data

Medical History data

Policyholder Behavior data

Additional models to consider:

K-means clustering

Sentiment Analysis

Thank You!

Q&A

Any questions?

Sources

Statista

Kaggle

GeeksforGeeks

W3Schools

Collab.Research.Google

ChatGPT

MSBA 502 Slide Decks