UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL - 7020 SISTEMAS DIGITAIS

EXP. 7: CIRCUITOS SEQÜÊNCIAIS/FLIP-FLOPS

1. Introdução:

Os circuitos seqüênciais são uma classe de circuitos digitais onde o estado das saídas num dado instante depende não somente das entradas mas também de variáveis de estado referentes a um instante anterior. Essas variáveis de estado são características para cada circuito sequencial. Os contadores digitais e registradores de deslocamento são circuitos seqüênciais bastante utilizados.

Os Flip-Flops são elementos biestáveis (as saídas apresentam dois estados estáveis e complementares, $Q \in \overline{Q}$) de grande aplicação prática e são implementados a partir de portas lógicas.

A mudança de estado das saídas dos Flip-Flop está associada à ocorrência de um sinal de sincronismo (clock). A mudança pode ocorrer quando o sinal de clock atinge um dos níveis lógicos (sensível a borda) ou durante a passagem de um nível a outro (sensível a transição e).

Dependendo da lógica existente nas entradas pode-se obter diferentes Flip-Flops:

Flip-Flop JK

TABELA DE FUNÇÃO

J	K	CLK	Q(t+1)
0	0	\downarrow	Qt
0	1	\downarrow	0
1	0	\downarrow	1
1	1	\rightarrow	Qt

CLR - quando vai a zero, Q = 0PR - quando vai a zero, Q = 1

Flip-Flop J-K

Flip-Flop D ("Delay")

D	CLK	Qt+1
0	\downarrow	0
1	\downarrow	1

Flip-Flop T ("Toggle")

T	CLK	Qt+1
0	\downarrow	Qt
1	\downarrow	Qt

Flip-Flop D (delay)

Flip-Flop T (Toggle)

2. Parte Experimental

- 2.1 Verifique o funcionamento de um Flip-Flop JK.
- 2.2 Implemente os Flip-Flops D e T a partir de um JK.
- 2.3 Monte um contador de 4 bits com FF JK configurado como FF tipo T. Observe na tabela de função do FF JK quando "J e K" são "1 1"na transição do clock o estado seguinte é o complemento do estado anterior. Isto equivale na prática dividir a frequência do clock por 2. Este princípio é utilizado na implementação de contadores como mostrado abaixo.

Faça a Tabela de Transição do circuito

DIAGRAMA DE TEMPO DO CONTADOR

DM7476

Dual Master-Slave J-K Flip-Flops with Clear, Preset, and **Complementary Outputs**

General Description

This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flop after a complete clock pulse. While the clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the clock is high the J and K inputs are disabled. On the negative transition of the clock, the data from the master is transferred to the slave. The logic state of J and K inputs must not be allowed to change while the clock is high. The data is transfered to the outputs on the falling edge of the clock pulse. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Features

■ Alternate Military/Aerospace device (5476) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Dual-In-Line Package

Order Number 5476DMQB, 5476FMQB, DM5476J, DM5476W or DM7476N See Package Number J16A, N16E or W16A

Function Table

Inputs				s Outputs		
PR	CLR	CLK	J	К	Q	Q
L	Н	Х	Х	Х	Н	L
н	L	×	Х	X	L	Н
L	L	×	Х	X	Н	Н
					(Note 1)	(Note 1)
н	Н		L	L	Q_0	$\overline{\mathbf{Q}}_{\mathrm{o}}$
н	Н	л.	Н	L	Н	L
Н	Н	л.	L	Н	L	Н
н	Н	л.	Н	н	Toggle	

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

__ = Positive pulse data. The J and K inputs must be held constant while the clock is high. Data is transfered to the outputs on the falling edge of the clock

Q₀ = The output logic level before the indicated input conditions were estab-

Toggle = Each output changes to the complement of its previous level on each complete active high level clock pulse.

Note 1: This configuration is nonstable; that is, it will not persist when the preset and/or clear inputs return to their inactive (high) level.