COMPUTER NETWORK PRACTICUM PRACTICUM 2

Writed by:

Name: Ainayah Syifa Hendri

NIM : L200183203

Class : X

INFORMATION TECHNOLOGY FACULTY OF COMMUNICATION AND INFORMATICS MUHAMMADIYAH UNIVERSITY OF SURAKARTA 2020

1. Activity 1

In the first activity there are router components, switches, and devices that are connected by connectors. Each connector has a lamp that symbolizes that the connector is connected. The red color represents the connector is not connected, the orange color represents the connector is being installed / the connection process, the green color represents the connector is connected.

2. Activity 2. Creating a Peer to Peer Network

Creating a network design

Set IP

• Check the connection by pinging from one PC and entering another PC's IP

```
Physical Config Desktop Programming Attributes

Command Prompt

Recket Tracer PC Command Line 1.0
C:\>ping 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time=13lms TTL=128
Reply from 192.168.1.1: bytes=32 time<1ms TTL=128
Right from 192.168.1.1: bytes=32 time<1ms TTL=128
Ri
```

Peer to peer two workstations there are no obstacles. Each connection can be proven by pinging each other successfully and there is no RTO as shown in the message column.

3. Activity 3. Make a network with a switch

Picture of network design by division of IP

 Check the ping connection from PC 1 to PC 2. And the connection can be connected

```
Physical Config Desktop Programming Attributes

Command Prompt

C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time=lms TTL=128
Reply from 192.168.1.2: bytes=32 time<lms TTL=128
Reply from 192.168.1.2: bytes=32 time=2ms TTL=128
Reply from 192.168.1.2: bytes=32 time=2ms TTL=128
Reply from 192.168.1.2: bytes=32 time=2ms TTL=128

Ping statistics for 192.168.1.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 3ms, Average = 1ms
```

 Check ping connections from PC 3 to PC 3. And RTO connections due to differences in different networks.

After the circuit is complete, ping between:

- a. PC1 to PC2: is clear without any constraints.
- b. PC3 to PC5: experiences RTO due to differences in network ID.

4. Activity 4. Wireless Network

Network design using Access points with IP divisions.

• Ping to check and the connection results are connected

```
Physical Config Desktop Programming Attributes

Command Prompt

Packet Tracer PC Command Line 1.0
C:\>PING 192.168.123.2

Pinging 192.168.123.2 with 32 bytes of data:

Reply from 192.168.123.2: bytes=32 time=42ms TTL=128
Reply from 192.168.123.2: bytes=32 time=14ms TTL=128
Reply from 192.168.123.2: bytes=32 time=10ms TTL=128
Reply from 192.168.123.2: bytes=32 time=0fms TTL=128
Reply from 192.168.123.2: bytes=32 time=26ms TTL=128

Ping statistics for 192.168.123.2:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 10ms, Maximum = 42ms, Average = 23ms

C:\>
```

Replacing computer components into wireless components and connecting 2 computers with wireless components. There are 1 access point and 2 workstations. Ping clearly without any problems.

ASSIGNMENT

Network Design

• Check the connection by pinging from IP computer 192.168.10.10 to another computer that has a different connection switch

Information:

5 switches. Each switch consists of 10 workstations. Each of which has an IP 192.168.10.10-192.168.10.60

Can be seen all workstations connected succesfull (ping).

It would be more effective if there is a router device, so that IP can be configured via DHCP.