Dynamical Systems - Proofs to Remember

Thomas Chaplin, Nikki Easton

1 Sharkovskii's Theorem

Theorem 1.1 (Sharkovskii's Theorem). If $f: I \to I$ is continuous and there is a point of prime period 3. Then for each $n \in \mathbb{N}$ there is a periodic point of prime period n.

The proof proceeds by a number of lemmata.

Lemma 1.2. Given $I \subseteq [0,1]$ a closed interval ,if $f(I) \supseteq I$ or $f(I) \subseteq I$ then I contains a fixed point for f.

Proof. Use the ITV on g(x) = f(x) - x and consider the endpoints.

Lemma 1.3 (Whittling down intervals). If $I, I' \subseteq [0, 1]$ are closed intervals and f(I) = I', then \exists a closed interval $I_0 \subseteq I$ such that $f(I_0) = I'$.

Proof. Suppose I' = [a, b] then let

$$A := f^{-1}(a) \cap I$$
$$B := f^{-1}(b) \cap I$$

then take $x_0 = \sup(A)$ and $y_0 = \inf(B)$. Then $I_0 := [x_0, y_0]$ will do the job.

Lemma 1.4. Assume that we have closed intervals $I_1, \ldots, I_n \subseteq [0,1]$ such that

- $f(I_n) \supseteq I_1$,
- $f(I_i) \supseteq I_{i+1}$ for all appropriate j,

then there is a fixed point x for f^n such that

$$x \in I_1, f(x) \in I_2, \dots, f^{n-1} \in I_n$$

Proof. We can just apply the whittling lemma to the intervals in reverse order so

$$\exists I'_n \subseteq I_n \qquad s.t. \quad f(I'_n) = I_1$$

$$\exists I'_{n-1} \subseteq I_{n-1} \quad s.t. \quad f(I'_{n-1}) = I'_n$$

$$\vdots$$

$$\exists I'_1 \subseteq I_1 \qquad s.t. \quad f(I_1)' = I'_2$$

In particular we have that $f^n(I_1') = I_1 \supseteq I_1'$ and hence the first lemma gives us the desired fixed point.

Proof. of Theorem 1.1.

Let $f^3(x) = x$ be our point of prime period 3. For now we will assume that

$${x, f(x), f^{2}(x)} = {x_{1}, x_{2}, x_{3}}$$

where $0 \le x_1 < x_2 < x_3 \le 1$. We also assume $f(x_1) = x_2$, $f(x_2) = x_3$ and $f(x_3) = x_1$. Other cases are similar. Let $I_0 := [x_1, x_2]$ and $I_1 := [x_2, x_3]$. Observe that

- (a) $f(I_0) \supseteq I_1$, and
- (b) $f(I_1) \supseteq I_0 \cup I_1$.

We now split the proof into a number of cases:

Case 1: (n = 3) This follows from the assumption.

Case 2: (n = 1) This follows from the first lemma thanks to (b).

Case 3: $(n = 2 \text{ or } n \ge 4)$

Note that we can make a chain of intervals as in the last Lemma.

$$I_0 \xrightarrow{f} I_1 \xrightarrow{f} I_1 \xrightarrow{f} \dots \xrightarrow{f} I_1 \xrightarrow{f} I_0$$

$$\xrightarrow{n-1 \text{ times}} I_0$$

where $A \leadsto B$ means $f(A) \supseteq B$. Hence there is a fixed point for f^n which starts in I_0 spends n-1 in I_1 and then returns to I_0 . Because the earliest return is at time n we can be sure that this is our prime period.

2 Independence of Lifts

3 Dense Irrational Orbits

Theorem 3.1. If $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ then for any $z \in \mathcal{K}$ we have

$$\{R_{\alpha}^n(x)\mid n\in\mathbb{N}\}$$

is a dense set in the circle K.

Proof. Get yourself some pigeons. If you put a pigeon on the circle for every point in the orbit up to time $\frac{1}{\epsilon} + 1$ then two pigeons, Kenny k and Lenny l, must be ϵ close.

$$d(R_{\alpha}^{l}(p),R_{\alpha}^{k}(p))<\epsilon$$

Without loss of generality, assume that Kenny is further along the orbit then Lenny so that

$$m := k - l > 0$$
.

Then for any $x \in \mathcal{K}$ we have $d(R^m_{\alpha}(x), x < \epsilon)$. Hence the orbit $\{x, R^m_{\alpha}(x), R^{2m}_{\alpha}(x), R^{3m}_{\alpha}(x), \dots\}$ is ϵ dense in the circle.

4 Rational Points and Periodic Points

Theorem 4.1. If $f: \mathcal{K} \to \mathcal{K}$ has a periodic point x_0 of period m then $\alpha(f) \in \mathbb{Q}$.

Proof. Let $F: \mathbb{R} \to \mathbb{R}$ be some lift then we must have

$$F^m(x) - x = k \in \mathbb{Z}$$

where $\rho(x) = x_0$. Then we can write any integer as n = pm + r where $p \ge 0$ and $r \in [0, m)$. Hence

$$F^{n}(x) = F^{pm+r}(x) = F^{r}(x) + pk$$

Then we can conclude

$$\lim_{n \to \infty} \frac{1}{n} F^n(x) = \lim_{p \to \infty} \frac{1}{pm + r} \left(F^r(x) + pk \right) = \frac{k}{m} \in \mathbb{Q}$$

Theorem 4.2. If $f: \mathcal{K} \to \mathcal{K}$ has 0 rotation number then f has a fixed point.

Proof. • Take a lift \widetilde{F} that gives $\lim_{n\to\infty} \frac{\widetilde{F}^n(x)}{n} = m$.

- Create a nicer lift $F := \widetilde{F} m$ so that the limit becomes 0.
- Assume d has no fixed point then by the IVT we can assume WLOG F(y) > y for all $y \in \mathbb{R}$.
- Hence $(F^n(0))_{n\in\mathbb{N}}$ is increasing so we just need to show boundedness.
- Suppose unbounded then $|F^{n_0}(0)| > 1$ and hence for all m we have $|F^{mn_0}(0)| > m$.

$$\frac{|F^{mn_0}(0)|}{mn_0} > \frac{m}{mn_0} = \frac{1}{n_0}$$

which cause a contradiction with the earlier 0 limit.

• It can be seen that the limit of this sequence is a fixed point.

Note: As a corollary if the rotation number is $\frac{a}{b} \in \mathbb{Q}$ then f^b has 0 rotation number and hence fixed point. Therefore, f has a periodic point.

4.1 Tending to periodic orbits

Theorem 4.3. Let f be a circle homeomorphism. Prove that if its rotation number $\rho \in \mathbb{Q}$ is rational then any point $x \in \mathcal{K}$ is either period or converges to some periodic orbit. More succinctly there is a point $p \in \mathcal{K}$ such that

$$\lim_{n \to \infty} d(f^n(x), f^n(p)) = 0$$

Proof. We have seen that circle homeomorphisms of rational degree certainly have periodic orbits. We can therefore partition the circle using the periodic points of some period m. For simplicity let's assume m = 1.

By slicing the circle into arcs between fixed points we can assume that on each arc f(z) > z or f(z) < z. Without loss of generality lets assume the former.

Claim: The iterates $(f^n(z))_{n=0}^{\infty}$ form a bounded, increasing sequence.

This follows because f is a circle homeomorphism. This is thanks to injectivity which prevents iterated from "jumping over" a fixed point into the next arc where we might have f(z) < z.

So the sequence must have a limit x_* . Moreover, this limit can easily be shown to be a fixed point and therefore (thanks to our previous division of the circle) must be the fixed point at the end of the arc.

What about m > 1?

We can certainly get the iterated $f^{nm}(x)$ and $f^{nm}(p)$ to tend to one another as $n \to \infty$, but what about the points in between? Since \mathcal{K} is compact there is a fixed δ such that points δ close will stay ϵ close over the next m-1 iterates. This gives convergence of the entire sequence.

5 Poincaré's Theorem and Minimality

A homeomorphism is called minimal if every orbit is dense.

Example: Any irrational rotation R_{α} is minimal.

Theorem 5.1 (Poincaré's Theorem). Any minimal circle homeomorphism is topologically conjugate to an irrational rotation.

Given a circle homeomorphism $f: \mathcal{K} \to \mathcal{K}$ and some lift F we define the following countable sets

$$\Lambda_{x_0} := \{ F^n(x_0) + m \mid m, n \in \mathbb{Z} \}$$

$$\Omega := \{ n\rho + m \mid m, n \in \mathbb{Z} \}$$

for some fixed $x_0 \in \mathbb{R}$ and where $\rho = \rho(f)$ is the rotation number. Note that $\Lambda_{x_0} = \pi^{-1} \{f^n(\pi x_0)\}$ and $\Omega = \pi^{-1} \{R^n_{\rho}(0)\}$ where π is the usual projection.

Lemma 5.2. Let f be a circle homeomorphism and $x_0 \in \mathcal{K}$. If the rotation number ρ is irrational then the map $T: \Lambda_{x_0} \to \Omega$ given be

$$T(F^n(x_0) + m) = n\rho + m$$

is a bijection. Moreover,

- 1. T is strictly increasing
- 2. T(x+1) = T(x) + 1
- 3. $T(F(x)) = T(x) + \rho$ for all $x \in \Lambda_{x_0}$.

Proof. This is omitted but might be worth glancing over.

Proof. of Poincaré's Theorem Since f is minimal, it has no periodic points because their orbits would be finite and hence not dense. So the rotation number ρ is irrational.

Take a lift F of f and $x_0 \in \mathbb{R}$ and write $\Lambda = \Lambda_{x_0}$. The sets Ω and Λ are dense in \mathbb{R} due to the minimality of R_{ρ} and f respectively.

Thus $\pi(\Omega)$ and $\pi(\Lambda)$ must be dense in \mathcal{K} . Moreover, the Lemma tells us that $T: \Lambda \to \Omega$ is strictly increasing. Consequently, we can extend to a unique continuous function $H: \mathbb{R} \to \mathbb{R}$ (which restricts to T on Λ). Moreover, H is strictly increasing, H is continuous and so is its inverse.

Note: This is non-trivial. It is an exercise to show that given dense sets $X, Y \subseteq \mathbb{R}$ and $f: X \to Y$ a bijection, there exists a unique homeomorphism extension to \mathbb{R} .

By continuity H inherits the properties (2) and (3) in the previous Lemma. The first says that H is a lift of circle homeomorphism h. The second say that $h \circ f = R_{\rho} \circ h$.

So we now know that if f is a circle homeomorphism then there is a unique homeomorphism h satisfying

$$h(f(x)) = h(x) + \rho \pmod{1} \quad \forall x \in \mathcal{K}$$

Note that this is a linear equation on h. We can conclude that a solution to this equation is unique up to adding a constant corresponding to choosing with point in K is sent to zero. For a hand-wavey explanation of this, see the lecture notes.

6 Expanding Maps

6.1 Fixed Points

Theorem 6.1. If $f: \mathcal{K} \to \mathcal{K}$ is an expanding, orientation preserving map and $d = \deg(f)$, then there are exactly $d^n - 1$ points $p \in \mathcal{K}$ such that $f^n(p) = p$.

Proof. We'll do n = 1 then $\deg(f^n) = \deg(f)^n$ implies the rest. Take a lift $F : \mathbb{R} \to \mathbb{R}$ and recall that F(1) = F(0) + d.

#fixed points for
$$f = \#\{x \in [0,1) \mid x = F(x) \mod 1\}$$

= #integer values assumed by $g(x) := F(x) - x$ in the range $[0,1)$

But g is monotone increasing (take derivative) and g(1) - g(0) = F(1) - F(0) - 1 = d - 1. Therefore g assumes d - 1 integer values on the range [0, 1).

Theorem 6.2. Let $f: \mathbb{R} \to \mathbb{R}$ be an expanding map, than there exists a dense G_{δ} set of points whose orbits are dense. (Recall that a dense G_{δ} set is a countable intersection of open dense sets).

Proof. Choose a countable dense set of points $\{x_n\}$ and for each natural $m \ge 1$ consider the ball $B\left(x_n, \frac{1}{m}\right)$. A point x has a dense orbit if and only if it intersects every one of these balls. That is for all n and m there is a k such that $f^k(x) \in B\left(x_n, \frac{1}{m}\right)$ or more precisely

$$x \in \bigcap_{n} \bigcap_{m} \bigcup_{k} f^{-k} B\left(x_{n}, \frac{1}{m}\right)$$

Note that the $\bigcup_k f^{-k} B\left(x_n, \frac{1}{m}\right)$ are open and dense since any expanding map is mixing and so at least transitive.

6.2 Conjugacy to shift maps

Theorem 6.3. If $f: \mathcal{K} \to \mathcal{K}$ is an expanding map, preserves orientation and has degree 2 then there is a semi-conjugacy $h: \Sigma \to \mathcal{K}$ to the full shift on two symbols.

$$\begin{array}{ccc}
\Sigma & \xrightarrow{\sigma} & \Sigma \\
h \downarrow & & \downarrow h \\
\mathcal{K} & \xrightarrow{f} & \mathcal{K}
\end{array}$$

Proof. Take any $n \in \mathbb{N}$. Then $\deg f^n = (\deg f)^n$ so there are w^n pre-images of p under f^n . These are numbered p_j starting with $p_0 = p$ and number consecutively anticlockwise. These points define intervals which we denote $A_{\omega_0...\omega_{n-1}}$ where the sequence of ω_i is just the binary representation of the position in the circle.

Let K denote the uniform bound away from 1 of the derivative. We have a number of results:

- 1. $f^n(A^{\circ}_{\omega_0...\omega_{n-1}}) = \mathcal{K} \setminus \{p\}$
- 2. $A_{\omega_0...\omega_{n-1}}$ is a closed interval of length $< K^{-n}$.
- 3. $A_{\omega_0...\omega_{n-1}\omega_n} \subseteq A_{\omega_0...\omega_{n-1}}$.
- 4. $f^n(A_{\omega_0...\omega_n}) = A_{\omega_n}$.
- 5. $f(A_{\omega_0...\omega_n}) = A_{\omega_1...\omega_n}$.

Now we can define our conjugacy $h: \Sigma \to \mathcal{K}$. Given $\omega = (\omega_k)_{k=0}^{\infty} \in \Sigma$ let $B_n(\omega) = A_{\omega_0...\omega_{n-1}}$. These are the points in the circle that start in the ω_0 interval then go to ω_1 , then to ω_2 and after f^{n-1} are in the ω_{n-1} interval. The properties implies that $B_{n+1}(\omega) \subseteq B_n(\omega)$. The sets are also closed and their diameters go to 0. Hence their infinite intersection is a single points which we define to be $h(\omega)$. The proof of their desired properties is discussed below in vague detail but is written in the lecture notes with more rigour.

7 Finding semi-conjugacies/conjugacies

If you can partition your space X into n subsets I_1, \ldots, I_n where one could conceivably go from any partition element I_a to any other I_b , then you might be able to find a semi-conjugacy to the full shift on n symbols.

The trick is to define a map $\pi: \Sigma \to X$ by

$$\pi(\mathbf{x}) = \bigcap_{n=1}^{\infty} T^{-n} I_{x_n}$$

If the sets $I(x_0, ..., x_n) := \bigcap_{k=0}^n T^{-k} I_{x_k}$ are closed and nested and their diameter tends to zero as $n \to \infty$ then this map is well-defined because the infinite intersection contains one point. Moreover, it is continuous because if \mathbf{x} and \mathbf{y} agree up to N places then they both lie in $I(x_0, ..., x_{N-1})$ whose diameters goes to 0 as $N \to \infty$.

The commutative relationship $T \circ \pi = \pi \circ \sigma$ then follows rather quickly. To get surjectivity, it suffices to show that the image of Σ is dense. This usually involves taking in point $x \in X$ such that no $T^n x$ lies on the boundary between any I_j for some $n \geq 0$ and then this points orbit will describe its pre-image in Σ .

Note: Shift spaces are totally disconnected, i.e. the connected components are one-point sets. In particular, they are disconnected and so this can often be used to rule out the existence of conjugacies to more familiar sets.

8 Transitivity and Mixing

Note: A compact metric space has a countable dense set of points!

Theorem 8.1 (Baire's Theorem). Given a compact metric space X, the intersection of countably many open, dense subsets of X is itself dense in X.

Theorem 8.2. If a map $T: X \to X$ on a compact metric space X is topologically transitive then there exists a dense orbit.

Proof. There is a countable dense set of points $\{x_k\}$ so if we can find an orbit the gets ϵ close to every x_k for arbitrary ϵ then we are done. So we want x such that for every x_k and $m \ge 1$ there is an $n \in \mathbb{Z}$ such that

$$x \in T^{-n} \mathbb{B}\left(x_k, \frac{1}{m}\right)$$

or equivalently we want to find

$$x \in \bigcap_{k,m} \bigcup_{n \in \mathbb{Z}} T^{-n} \mathbb{B}\left(x_k, \frac{1}{m}\right)$$

which is a countable intersection (over m) of open dense sets. By Baire's Theorem our desired point exists.

Proof. (Alternate). Since we're in a compact space, there is a countable dense set. Then we can choose a sequence of open discs around these dense set $(U_n)_{n=1}^{\infty}$. Choose N_1 such that $T^{-N_1}(U_2) \cap U_1 \neq \emptyset$. Then choose an open disc V_1 of radius less than a half such that

$$V_1 \subseteq \overline{V_1} \subseteq U_1 \cap T^{-N_1}(U_2)$$

Then choose N_2 such that $T^{-N_2}(U_3) \cap V_1 \neq \emptyset$ and subsequently choose an open disc V_2 of radius less that $\frac{1}{4}$ such that

$$V_2 \subseteq \overline{V_2} \subseteq V_1 \cap f^{-N_2}(U_3)$$

By induction we get a sequence of discs

$$V_1 \supset V_2 \supset V_3 \supset \dots$$

such that $diam(V_n) \leq \frac{1}{2^n}$. So choose the point x in $\cap_n V_n$ then $T^{N_{n-1}}(x) \in U_n$ for each $n \geq 1$. Therefore $(T^n(x))$ forms a dense orbit.

8.1 Shift Spaces

Theorem 8.3. The shift map $\sigma: \Sigma_A \to \Sigma_A$ is mixing if and only if the matrix A is aperiodic.

Proof. Suppose the matrix A is aperiodic. Then it suffices to show that any two cylinder sets U, V of the same length have the mixing property, i.e. there is an N such that for all $n \geq N$ we have $T^{-n}U \cap V \neq \emptyset$. Write $U := [u_0, \ldots u_n]$ and $V := [v_0, \ldots, v_n]$. Then there is an N such that we can go from any symbol to any other symbol in N or more steps. So for all $m \geq N$ we can find a point in U that looks like

$$u_0, \ldots, u_n, \underbrace{\ldots, \ldots}_{\text{length } m}, v_0, \ldots, v_n, \ldots$$

Hence for all $m \geq N$ we have that $\sigma^{m+n+1}(U) \cap V \neq \emptyset$ and hence σ is mixing.

Conversely, suppose that σ is mixing then the cylinder sets are all open so there is a common $m \geq 1$ such that

$$\sigma^m[i]\cap[j]\neq\emptyset$$

So then given any pair (i, j) there is a sequence ω such that $\omega_0 = i$ and $\omega_m = j$, and hence $(A^m)_{i,j} \geq 1$ because there is at least one path of length m from i to j.

Theorem 8.4. The shift map $\sigma: \Sigma_A \to \Sigma_A$ is transitive if and only if the matrix A is irreducible.

Proof. Suppose A is irreducible then given any two open sets we can find cylinders U and V inside them. Write

$$U = [u_0, \dots, u_n] \quad V = [v_0, \dots, v_n]$$

then A is transitive so there exists an admissible path p_0, \ldots, p_k of some length from u_n to v_0 . Then $(u_0, \ldots, u_n, p_1, \ldots, p_{k-1}, v_0, \ldots, v_n, \ldots) \in U \cap \sigma^{-(n+k)}V$ where we just fill the rest of the sequence out with random junk.

Now suppose that σ is transitive. Then the cylinder sets U := [i] and V := [j] are open and hence there is an n such that $\sigma^{-n}U \cap V \neq \emptyset$, i.e. there is a sequence which starts at j and after n arrives at i. Therefore $(A^n)_{i,j} \geq 1$ and hence A is transitive.

9 Arithmetic Progressions

We say a subset $C \subseteq \mathbb{Z}$ contains arithmetic progressions of arbitrary length if

 $\forall k > 1 \quad \exists c \in \mathbb{Z} \text{ and } d \in \mathbb{N} \text{ such that }$

$$c, c + d, c + 2d, \dots, c + (k-1)d \in C$$

Similarly we say a map $T: X \to X$ is multiple mixing if for any non-empty open set $U \subseteq X$ and $k \ge 1$ there exists $d \ge 1$ such that

$$U \cap T^{-d}U \cap T^{-2d}U \cap \cdots \cap T^{-(k-1)d}U \neq \emptyset$$

Theorem 9.1 (van der Waerden's Theorem). Given any finite integer partition $\mathbb{Z} = \bigcup_{i=1}^{M} C_i$ there is an i such that C_i contains arithmetic progressions of arbitrary length.

To prove this via a dynamical approach we must create a dynamical formulation. To a partition of \mathbb{Z} we associate a single infinite sequence $\mathbf{x} = (x_n) \in \{1, \dots, M\}^{\mathbb{Z}}$ defined by

$$x_n = i$$
 if $n \in C_i$

Let $X = \overline{\bigcup_{n \in \mathbb{Z}} \sigma^n \mathbf{x}}$ be the closure of the orbit of \mathbf{x} where σ is the shift map.

Lemma 9.2 (Dynamic Formulation). Assume that for some [i] (cylinder set) we have that

$$X \cap [i] \cap \sigma^{-d}[i] \cap \sigma^{-2d}[i] \cap \dots \sigma^{-(k-1)d}[i] \neq \emptyset$$

for some $k, d \ge 1$ then C_i contains an arithmetic progression of length k.

Proof. The space is the closure of the orbit of \mathbf{x} and this set is non-empty and open. The orbit itself is dense in X and hence intersects our open set. So there is $n \in \mathbb{Z}$ such that $\sigma^n x$ is in our set. This means that $x_{n+jd} = i$ for $j = 0, \ldots, k-1$ and hence $n+jd \in C_i$ for these j.

Proposition 9.3 (Multiple Recurrence). The shift map is multiple mixing when restricted to a minimal subset $Y \subseteq X$.

Proof. of van der Waerden's Theorem Take a minimal subset $Y \subseteq X$. Taking U = [i] where i is chosen such that $[i] \cap Y \neq \emptyset$, we see the set from the dynamical formulation is open and hence non-empty by multiple recurrence so we have arbitrary arithmetic progressions.

10 Hyperbolic Toral Automorphisms

Given a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that ad - bc = 1 we can associate an automorphism $f: \mathbb{T}^2 \to \mathbb{T}^2$ by

$$f(x,y) := (ax + by, cx + dy) \mod 1$$

We say this is hyperbolic if no eigenvalue of A lives on the unit circle.

Theorem 10.1. The fixed points of a hyperbolic toral automorphism are precisely those $(x_1, x_2) \in T^2$ such that $x_1, x_2 \in \mathbb{Q}$.

Proof. Take $(x_1, x_2) \in \mathbb{T}^2$ such that $x_1, x_2 \in \mathbb{Q}$. We can therefore write $x_1 = \frac{m_1}{d}$ and $x_2 = \frac{m_2}{d}$ for some integers $m_1, m_2 \in \mathbb{Z}$. Write $m := (m_1, m_2)$ then

$$A^k x^T = \frac{1}{d} A^k m^T \quad \forall k \in \mathbb{Z}$$

But by the pigeonhole principle, since we are only looking for a fixed point $\mod 1$, there are only l^2 distinct pairs of values that $A^k m^T$ can assume. Hence there is $k_1 < k_2$ such that

$$A^{k_1} m^T = A^{k_2} m^t \mod 1$$

Set $n := k_2 - k_1 > 0$. Then $A^n x^t = x^t \mod 1$.

Conversely, suppose that x is a periodic point of f. Then $A^n x = x \mod 1$ or, more succinctly, there exists integers k_1, k_2 such that

$$(A^n - I)x = \binom{k_1}{k_2}$$

But then $A^n - I$ is an integer matrix and hence its inverse has rational entries, so x must have rational entries.

Theorem 10.2. The number of fixed points for f^n where f is a hyperbolic toral automorphism is $|tr(A^n) - 2|$.

Proof. Note that the number of fixed points for f^n precisely the number of $x \in \Delta := [0,1) \times [0,1)$ such that $(A^n - I)x \in \mathbb{Z}^2$. But the number of lattice points in $(A^n - I)(\Delta)$ is equal to the area of the parallelogram $(A^n - I)(\Delta)$. But Δ has unit areas so the parallelogram has area $|\det(A^n - I)|$. Then

$$|\det(A^n - I)| = |(1 - \lambda_+^n)(1 - \lambda_-^n)| = |2 - (\lambda_+^n + \lambda_-^n)| = |tr(A^n) - 2|$$

Theorem 10.3. Hyperbolic toral automorphisms are topologically mixing.

Proof. (Sketch).

- Take $U, V \subseteq \mathbb{T}^2$ open and non-empty.
- Let l_{\pm} be the lines spanned by the eigenvectors.
- These lines have irrational slope and hence their projection to the torus is dense. (Why!?)
- Take small parallelograms $U' \subseteq U$ and $V' \subseteq V$ with sides parallel to l_{\pm} .
- Density implies that the projected lines intersect U' and V'.
- Then as we take f^n on U' for larger and larger n we stretch along W_+ and shrink along W_- .
- Eventually $f^n(U')$ will reach the part of W_+ which intersects V' and continue to intersect for all future n.

10.1 Markov Partitions

We wish to divide the torus up into a partition $\mathcal{P} := \{P_0, \dots, P_{k-1}\}$ with the properties

- $\bigcup_i P_i = \mathbb{T}^2$
- $\operatorname{int}(P_i) \cap \operatorname{int}(P_i) = \emptyset$.
- The Markov property if there are points $x, y \in \mathbb{T}^2$ and a sequence $(\omega_n)_{n \in \mathbb{Z}}$ such that

$$T_A^n(x) \in \operatorname{int}(P_{\omega_n}) \quad \forall n \ge 0$$

$$T_A^n(y) \in \operatorname{int}(P_{\omega_n}) \quad \forall n \le 0$$

then there is a $z \in \mathbb{T}^2$ such that $T_A^n(z) \in \text{int}(P_{\omega_n}) \quad \forall n \in \mathbb{Z}$.

Such a partition is called a Markov partition.

Theorem 10.4. We can divide the torus up into a Markov partition for any linear hyperbolic toral automorphisms $f: \mathbb{T}^2 \to \mathbb{T}^2$.

Once we have this partition we can create a semi conjugacy to a subshift of finite type $\pi: \Sigma_b \to \mathbb{T}^2$.

Proof. (Sketch). We divide the torus up by extending the eigenvectors sufficiently far and making sure that when we finish we don't leave any dangling ends. Having obtained the Markov partition $\mathcal{P} = \{P_1, \ldots, P_k\}$ we define a matrix B by

$$B(i,j) := \begin{cases} 1 & \text{if } f(P_i^{\circ}) \cap P_j \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Thanks to the Markov property we have the following property. If i_{-n}, \ldots, i_n satisfy

$$\bigcap_{k=-n}^n f^{-k}(P_{i_k}^{\circ}) \neq \emptyset$$

and $i_{-(n+1)}$, i_n and i_n , i_{n+1} are admissible, then

$$\bigcap_{k=-(n+1)}^{n+1} f^{-k}(P_{i_k}^{\circ}) \neq \emptyset$$

That is, along as we take admissible steps, we can be sure that an admissible sequence is non-empty. Hence given a sequence $\omega = (\omega_n)_{n=-\infty}^{\infty}$ we may conclude that

$$\bigcap_{k=-\infty}^{\infty} f^{-k}(P_{i_k}^{\circ}) \neq \emptyset$$

Moreover, since the diameters of the finite intersections are decreasing, it is a single point which we denote by $\pi(\omega)$. This is a semi-conjugacy, similar to the proof for circle maps we've seen before. \square

11 Entropy

Theorem 11.1. We can calculate entropy through minimal spanning sets $S(n, \epsilon)$ and maximal separated sets $N(n, \epsilon)$.

Proof.

$$S(n,\epsilon) \le N(n,\epsilon) \le S\left(n,\frac{\epsilon}{2}\right)$$

For the first inequality, show that an (n, ϵ) separated set is an (n, ϵ) spanning set. For the second, take an $(n, \frac{\epsilon}{2})$ spanning set and then any (n, ϵ) separated set would contain at most one point from each $(n, \frac{\epsilon}{2})$ ball. Moreover, every element of a separated set would fall in at least one ball. Hence $N(n, \epsilon) \leq S\left(n, \frac{\epsilon}{2}\right)$.

11.1 of Shift Maps

Theorem 11.2 (Gelfand's theorem). Let ||A|| be a norm of A and λ_1 a maximal, positive, real eigenvalue. Then

$$\lambda_1 = \lim_{k \to \infty} ||A^k||^{1/k}$$

Theorem 11.3. If the transition matrix A is aperiodic, then the topological entropy is

$$h(\sigma_A) = \log \rho(A)$$

where $\rho(A)$ is the spectral radius of the matrix A.

Proof. 1. Get your head around the balls

Take a point $\alpha \in \Sigma_A$ then

$$B(\alpha, n, 2^{-k}) = [a_0, \dots, \alpha_{n+k}]$$

2. Show that admissible cylinders are non-empty

Let $W_m(A)$ denote the set of admissible strings of length m. Since A is aperiodic (although irreducible will do), given any admissible $\alpha_0 \dots \alpha_m$ the cylinder $[\alpha_0 \dots \alpha_m]$ is non-empty. This is because we can keep adding rubbish on the end.

3. Relate admissible cylinders to separated and spanning sets

Note that admissible cylinders of length m are pairwise disjoint and union to Σ_A . Hence

$$S(n, 2^{-k}) \le \#W_{n+k+1} \le N(n, 2^{-k})$$

4. Compute the entropy

When taking the limit we can get rid of the k.

$$h(\sigma_A) = \limsup_{n \to \infty} \frac{\log(\#W_{n+1}(A))}{n}$$

5. Relate #admissible cylinders to the spectral radius

We can choose the norm $||A^n|| = \sum_{i,j=1}^N |A_{i,j}^n|$. The (i,j)th entry of A^n tells us how many admissible words of length n start at i and end at j. Hence $||A^n|| = \#W_{n+1}(A)$. Then, using Gelfand's Theorem we have that

$$h\left(\sigma_{A}\right) = \lim_{n \to \infty} \frac{\log(\#W_{n+1}(A))}{n} = \lim_{n \to \infty} \frac{\log||A^{n}||}{n} = \log \lambda_{1}$$

11.2 of Toral Automorphisms

Theorem 11.4. Given a hyperbolic toral automorphism with eigenvalues $\lambda_+ > 1 > \lambda_- > 0$ then

$$h(f) = \log \lambda_+$$

12 Preserved Quantities

12.1 Semi-Conjugacies

Given continuous maps $T:X\to X$ and $S:Y\to Y$, a semi-conjugacy from T to S is a continuous surjective map $\pi:Y\to X$ such that

$$T \circ \pi = \pi \circ S$$

$$\begin{array}{ccc} X & \xrightarrow{T} & X \\ \pi \uparrow & & \uparrow \pi \\ Y & \xrightarrow{S} & Y \end{array}$$

Theorem 12.1. Let $T: X \to X$ and $S: Y \to Y$ be continuous maps on compact metric spaces and $\pi: Y \to X$ a semi-conjugacy then $h(S) \ge h(T)$.

$$\begin{array}{c} X \stackrel{T}{\longrightarrow} X \\ \pi \uparrow & \uparrow \pi \\ Y \stackrel{}{\longrightarrow} Y \end{array}$$

This makes sense because the dynamics of T are contained in the dynamics of S and hence S must be at least as "complex" as T.

12.2 Conjugacies

- Rotation number of circle homeomorphisms.
- Transitivity and mixing.
- Topological entropy.

13 Known Conjugacies

13.1 Semi-Conjugacies

• $\pi: \Sigma \to \mathcal{K}$ from full one-sided shift on two symbols to the doubling map.

13.2 Conjugacies

- Expanding maps of the same degree are conjugate (through the linear map of the same degree).
- Smale Horseshoe and full two-sided shift on two symbols.

Theorem 13.1 (Poincarés Theorem). A minimal circle homeomorphism with irrational ration number is conjugate to R_{α} .

Theorem 13.2 (Denjoy's Theorem). If $f: \mathcal{K} \to \mathcal{K}$ is a homeomorphism with irrational rotation, $f \in \mathcal{C}^1$ and $w := \log |f'|$ has bounded variation then f is conjugate to R_{α} .