A decision procedure for bisimilarity of generalized regular expressions

M. Bonsangue^{1,2} G. Caltais⁵ E. Goriac⁵ D. Lucanu⁴ J. Rutten^{1,3} A. Silva¹

Centrum Wiskunde & Informatica, The Netherlands
 LIACS - Leiden University, The Netherlands
 Radboud Universiteit Nijmegen, The Netherlands
 Faculty of Computer Science - Alexandru Ioan Cuza University, Romania
 School of Computer Science - Reykjavik University, Iceland

IPA Herfstdagen, November 2010

Deterministic automata (DA)

- Widely used model in Computer Science.
- Acceptors of languages

Regular expressions

- User-friendly alternative to DA notation.
- Many applications: pattern matching (grep), specification of circuits, . . .

Deterministic automata (DA)

- Widely used model in Computer Science.
- Acceptors of languages

Regular expressions

- User-friendly alternative to DA notation.
- Many applications: pattern matching (grep), specification of circuits, . . .

Kleene's Theorem

Let $A \subseteq \Sigma^*$. The following are equivalent.

- **1** A = L(A), for some finite automaton A.
- 2 A = L(r), for some regular expression r.

In previous work ...

We presented:

- a generalized notion of regular expressions;
- an analogue of Kleene's theorem;
- and sound and complete axiomatizations with respect to bisimilarity

for a large class of systems (labelled transition systems, Mealy machines, probabilistic automata).

All the above was derived modularly from the type of each system.

Question: Can we automate the reasoning on equivalence of expressions, also in a modular way?

In previous work ...

We presented:

- a generalized notion of regular expressions;
- an analogue of Kleene's theorem;
- and sound and complete axiomatizations with respect to bisimilarity

for a large class of systems (labelled transition systems, Mealy machines, probabilistic automata).

All the above was derived modularly from the type of each system.

Question: Can we automate the reasoning on equivalence of expressions, also in a modular way?

In previous work ...

We presented:

- a generalized notion of regular expressions;
- an analogue of Kleene's theorem;
- and sound and complete axiomatizations with respect to bisimilarity

for a large class of systems (labelled transition systems, Mealy machines, probabilistic automata).

All the above was derived modularly from the type of each system.

Question: Can we automate the reasoning on equivalence of expressions, also in a modular way?

The ultimate goal...

In this talk, we will be focusing on 1) and 3).

The ultimate goal...

In this talk, we will be focusing on 1) and 3).

Outline

- Generalized regular expressions
- Equivalence of expressions
- Snapshot of the tool

011

$$(S, \delta: S \rightarrow 2 \times S^A)$$

$$(S, \delta : S \to (B \times S)^A)$$

$$(S, \delta: S \to 1 + (\mathcal{P}S)^A)$$

$$(S, \delta: S \rightarrow 2 \times S^A)$$

$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow 1 + (\mathcal{P}S)^A)$$

$$(S, \delta: S \rightarrow 2 \times S^A)$$

$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow 1 + (\mathcal{P}S)^A)$$

$$(S, \delta: S \rightarrow 2 \times S^A)$$

$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow 1 + (\mathcal{P}S)^A)$$

$$(S, \delta: S \rightarrow 2 \times S^{A})$$

$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow 1 + (\mathcal{P}S)^A)$$

$$(S, \delta: S \rightarrow 2 \times S^{A})$$

$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow \mathbf{1} + (\mathcal{P}S)^{\mathbf{A}})$$

 $(S, \delta : S \rightarrow GS)$

$$(S, \delta: S \rightarrow 2 \times S^A)$$

$$(S, \delta: S \to (B \times S)^A)$$

$$(S, \delta: S \rightarrow \mathbf{1} + (\mathcal{P}S)^{A})$$

 $(S, \delta: S \rightarrow \S S)$ \S -coalgebras

Coalgebras

Kripke polynomial coalgebras

- Generalizations of deterministic automata
- ullet Kripke polynomial coalgebras: set of states S and t:S o GS

$$\mathfrak{G}::= Id \mid B \mid \mathfrak{G} \times \mathfrak{G} \mid \mathfrak{G} + \mathfrak{G} \mid \mathfrak{G}^{A} \mid \mathfrak{P}\mathfrak{G}$$

P finite

Examples

$$\circ$$
 9 = 2 × Id^A

•
$$g = (B \times Id)^A$$

•
$$9 = 1 + (PId)^A$$

...

Deterministic automata
Mealy machines

LTS (with explicit termination)

Coalgebras

Kripke polynomial coalgebras

- Generalizations of deterministic automata
- ullet Kripke polynomial coalgebras: set of states S and t:S o GS

$$\mathfrak{G}::= Id \mid B \mid \mathfrak{G} \times \mathfrak{G} \mid \mathfrak{G} + \mathfrak{G} \mid \mathfrak{G}^{A} \mid \mathfrak{P}\mathfrak{G}$$

P finite

Examples

•
$$9 = 2 \times Id^A$$

•
$$\mathfrak{G} = (B \times Id)^A$$

•
$$\mathfrak{G} = 1 + (\mathfrak{P}Id)^A$$

• . . .

Deterministic automata

Mealy machines

LTS (with explicit termination)

The power of 9

The functor 9 determines:

- notion of observational equivalence (coalg. bisimulation)
- behaviour (final coalgebra)
- set of expressions describing finite systems
- axioms to prove bisimulation equivalence of expressions

The power of 9

The functor 9 determines:

- notion of observational equivalence (coalg. bisimulation)
- behaviour (final coalgebra)
- set of expressions describing finite systems
- axioms to prove bisimulation equivalence of expressions

The power of 9

The functor 9 determines:

- notion of observational equivalence (coalg. bisimulation)
- behaviour (final coalgebra)
- 3 set of expressions describing finite systems
- axioms to prove bisimulation equivalence of expressions
- 1 + 2 are standard universal coalgebra; 1 + 1 are [BRS10]

In a nutshell — beyond deterministic automata

In a nutshell — beyond deterministic automata

$$E ::= \underline{\emptyset} \mid \epsilon \mid E \cdot E \mid E + E \mid E^*$$

$$E_{\mathfrak{G}}$$
 ::= ?

$$E \quad ::= \quad \underline{\emptyset} \mid \epsilon \mid E \cdot E \mid E + E \mid E^*$$

 $E_{q} ::= ?$

How do we define $E_{\rm q}$?

Examples

Deterministic automata expressions – $9 = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{\mathfrak{G}} \mid$$

Examples

Deterministic automata expressions – $g = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{g} \mid I\langle \qquad \rangle \qquad \qquad \mid r\langle \qquad \rangle$$

Deterministic automata expressions – $g = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{\mathcal{G}} \mid \underbrace{I\langle \underbrace{1}_{2} \rangle \mid I\langle \underbrace{0}_{2} \rangle \mid r\langle \underbrace{a(\varepsilon)}_{Id^{A}} \rangle}_{Id^{A}}$$

Deterministic automata expressions – $9 = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{\mathcal{G}} \mid \underbrace{I\langle \underbrace{1}_{2} \rangle \mid I\langle \underbrace{0}_{2} \rangle \mid r\langle \underbrace{a(\varepsilon)}_{Id^{A}} \rangle}_{\times}$$

LTS expressions – $\mathfrak{G} = 1 + (\mathfrak{P}Id)^A$

$$\varepsilon$$
 ::= $\underline{\emptyset} \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{x}.\gamma$

Deterministic automata expressions – $g = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{\mathcal{G}} \mid \underbrace{I\langle \underbrace{1}_{2} \rangle \mid I\langle \underbrace{0}_{2} \rangle \mid r\langle \underbrace{a(\varepsilon)}_{Id^{A}} \rangle}_{\times}$$

LTS expressions $-\mathfrak{G} = 1 + (\mathfrak{P}Id)^A$

$$\varepsilon ::= \emptyset \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{x}.\gamma \mid \sqrt{} \mid \partial \mid \mathbf{a}.\varepsilon$$

Deterministic automata expressions – $g = 2 \times Id^A$

$$\varepsilon ::= \underbrace{\emptyset \mid \varepsilon \oplus \varepsilon \mid \mu x. \gamma}_{\mathcal{G}} \mid \underbrace{I\langle \underbrace{1}_{2} \rangle \mid I\langle \underbrace{0}_{2} \rangle \mid r\langle \underbrace{a(\varepsilon)}_{Id^{A}} \rangle}_{\times}$$

LTS expressions $-\mathfrak{G} = 1 + (\mathfrak{P}Id)^A$

$$\varepsilon \quad ::= \quad \underline{\emptyset} \mid \varepsilon \oplus \varepsilon \mid \mu \mathbf{X}.\gamma \mid \underbrace{\hspace{1cm}}_{I[*]} \quad | \underbrace{\hspace{1cm}}_{I[\underline{\emptyset}]} \quad | \underbrace{\hspace{1cm}}_{a.\varepsilon} \\ r[\mathbf{a}(\{\varepsilon\})]$$

The set of G-expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

- ... provides an operational semantics for the set of expressions
- ... defines the dynamics of the system
- ...is used for observing the behaviour of the system

The set of G-expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

- ... provides an operational semantics for the set of expressions
- ... defines the dynamics of the system
- ...is used for observing the behaviour of the system

The set of G-expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

- ...provides an operational semantics for the set of expressions
- ... defines the dynamics of the system
- ...is used for observing the behaviour of the system

The set of \mathcal{G} -expressions has a coalgebraic structure given by

$$\delta_{\mathcal{G}} : \mathsf{Exp}_{\mathcal{G}} \to \mathcal{G}(\mathsf{Exp}_{\mathcal{G}})$$

- ...provides an operational semantics for the set of expressions
- ...defines the dynamics of the system
- ... is used for observing the behaviour of the system

$$\varepsilon ::= \underline{\emptyset} \mid \varepsilon \oplus \varepsilon \mid \mu x.\gamma \mid \sqrt{\mid \delta \mid a.\varepsilon}$$

$$\delta : \mathsf{Exp} \to \mathsf{1} + (\mathcal{P}\mathsf{Exp})^{A}$$

$$\vdots$$

$$\delta(\sqrt{)} = \star$$

$$\delta(\partial) = \lambda a.\emptyset$$

$$\delta(a.\varepsilon) = \lambda a'. \begin{cases} \{\varepsilon\} & a = a' \\ \emptyset & oth. \end{cases}$$

$$\varepsilon ::= \underline{\emptyset} \mid \varepsilon \oplus \varepsilon \mid \mu x.\gamma \mid \sqrt{\mid \delta \mid a.\varepsilon}$$

$$\delta : \operatorname{Exp} \to 1 + (\operatorname{\mathcal{P}Exp})^{A}$$

$$\vdots$$

$$\delta(\sqrt{)} = \star$$

$$\delta(\partial) = \lambda a.\emptyset$$

$$\delta(a.\varepsilon) = \lambda a'. \begin{cases} \{\varepsilon\} & a = a' \\ \emptyset & oth. \end{cases}$$

$$\delta(\varepsilon_{1} \oplus \varepsilon_{2}) = \begin{cases} \star & \delta(\varepsilon_{1}) = \star \text{ and } \delta(\varepsilon_{2}) = \star \\ s_{1} \cup s_{2} & \delta(\varepsilon_{1})(a) = s_{1} \text{ and } \delta(\varepsilon_{2})(a) = s_{2} \end{cases}$$

$$\delta(\delta(\varepsilon_{1} \oplus \varepsilon_{2}) = \delta(\varepsilon_{1})(\delta(\varepsilon_{2}) = \delta(\varepsilon_{1})(\delta(\varepsilon_{2})) = \delta(\varepsilon_{2})(\delta(\varepsilon_{2})) = \delta(\varepsilon_{1})(\delta(\varepsilon_{2})) = \delta(\varepsilon_{1})(\delta(\varepsilon_{2})) = \delta(\varepsilon_{2})(\delta(\varepsilon_{2})) = \delta(\varepsilon_{2})(\delta(\varepsilon_{$$

A generalized Kleene theorem

G-coalgebras $\Leftrightarrow G$ -expressions

Theorem

- Let (S,g) be a G-coalgebra. If S is finite then there exists for any $s \in S$ a G-expression ε_s such that $\varepsilon_s \sim s$.
- **2** For all G-expressions ε , there exists a finite G-coalgebra (S,g) such that $\exists_{s \in S} s \sim \varepsilon$.

In the proof of ② lies the kernel of decidability of equivalence of expressions.

$$\varepsilon = \mu x. r \langle a(r \langle b(x) \rangle) \rangle \oplus I \langle 1 \rangle$$

$$\varepsilon \xrightarrow{\delta_a} \langle 1, r \langle b(\varepsilon) \rangle \rangle \xrightarrow{\delta_b} \langle 1, \varepsilon \rangle$$

In the proof of ② lies the kernel of decidability of equivalence of expressions.

$$\varepsilon = \mu x. r \langle a(r\langle b(x)\rangle) \rangle \oplus I\langle 1 \rangle$$

$$\varepsilon \xrightarrow{\delta_{a}} \langle 1, r\langle b(\varepsilon) \rangle \rangle \xrightarrow{\delta_{b}} \langle 1, \varepsilon \rangle$$

$$\downarrow^{\delta_{a}} \qquad \qquad \langle 0, \emptyset \rangle$$

In the proof of ② lies the kernel of decidability of equivalence of expressions.

$$\varepsilon = \mu x. r \langle a(r\langle b(x)\rangle) \rangle \oplus I\langle 1 \rangle$$

$$\varepsilon \xrightarrow{\delta_{a}} \langle 1, r\langle b(\varepsilon) \rangle \rangle \xrightarrow{\delta_{b}} \langle 1, \varepsilon \rangle$$

$$\downarrow^{\delta_{a}} \qquad \downarrow^{\delta_{a}}$$

$$\langle 0, \emptyset \rangle$$

It's all about unraveling! But ...

$$\varepsilon = \mu x. r \langle a(x \oplus x) \rangle$$

It's all about unraveling! But ...

$$\varepsilon = \mu x. r \langle a(x \oplus x) \rangle$$

$$\varepsilon \stackrel{\delta}{\longmapsto} \langle \mathbf{0}, \varepsilon \oplus \varepsilon \rangle$$

It's all about unraveling! But ...

$$\varepsilon = \mu x. r \langle a(x \oplus x) \rangle$$

$$\varepsilon \stackrel{\delta}{\longmapsto} \langle 0, \varepsilon \oplus \varepsilon \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \dots$$

It's all about unraveling! But ...

$$\varepsilon = \mu x. r \langle a(x \oplus x) \rangle$$

$$\varepsilon \overset{\delta}{\longmapsto} \langle 0, \varepsilon \oplus \varepsilon \rangle \overset{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \overset{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \dots$$

We need ACI!

It's all about unraveling! But ...

$$\varepsilon = \mu x. r \langle a(x \oplus x) \rangle$$

$$\varepsilon \stackrel{\delta}{\longmapsto} \langle 0, \varepsilon \oplus \varepsilon \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \stackrel{\delta}{\longmapsto} \langle 0, (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \oplus (\varepsilon \oplus \varepsilon) \rangle \dots$$

We need ACI!

$$(\mu x.r\langle a(x\oplus x)\rangle)$$
 a

Decision procedure for bisimilarity of regular expressions

Unraveling the expressions modulo ACI guarantees that only a finite number of states are reachable. The *bisimulation game* is then decidable!

Decision procedure for bisimilarity of regular expressions

Unraveling the expressions modulo ACI guarantees that only a finite number of states are reachable. The *bisimulation game* is then decidable!

CIRC

CIRC

Coinductive prover based on algebraic specifications

language of expressions (9-expressions)

coalgebraic structure ($\delta_{\rm G}$)

algebraic specification

Conclusions and Future work

Conclusions

- Framework to uniformly derive language and axioms for Kripke polynomial coalgebras
- Generalization of Kleene theorem and Kleene algebra, parametric on the functor.
- Automation in Circ: decision procedure for equivalence of expressions.

Future work

- Making the tool more user friendly;
- Apply it to a serious case study (circuit design, compiler optimization, ...)

Conclusions and Future work

Conclusions

- Framework to uniformly derive language and axioms for Kripke polynomial coalgebras
- Generalization of Kleene theorem and Kleene algebra, parametric on the functor.
- Automation in Circ: decision procedure for equivalence of expressions.

Future work

- Making the tool more user friendly;
- Apply it to a serious case study (circuit design, compiler optimization, ...)