

DaDA: Distortion-aware Domain Adaptation for Unsupervised Semantic Segmentation

Sujin Jang

Joohan Na

Dokwan Oh

Samsung Advanced Institute of Technology (SAIT)

Unsupervised Domain Adaptation for Semantic Segmentation

Target Domain

Cityscapes w/o Labels

Domain Adaptation

Source Domain

GTAV w/ Labels

Unsupervised Domain Adaptation for Semantic Segmentation

[Tsai et al. 2018]

[Vu et al. 2019]

[Araslanov et al. 2021]

Unsupervised Domain Adaptation for Semantic Segmentation

No Geometric and Optical

Distortion

[Araslanov et al. 2021]

[Ma et al. 2021]

Wide-Angle Cameras

Woodscape Dataset for Autonomous Driving

Wide-Angle Cameras

Woodscape Dataset for Autonomous Driving

Distortion-aware Unsupervised Domain Adaptation

Target Domain

Visual
+
Distortion
Domain
Adaptation

Source Domain

Cityscapes GTAV

Woodscape Fisheye Driving Dataset(FDD)*

Unlabeled Fisheye Images

Labeled Rectilinear Images

DaDA: Distortion-aware Domain Adaptation

Our Contributions:

- New UDA benchmarks introducing geometric optical distortion;
- DaDA framework to solve such challenging but practically important tasks;
- Extensive experimental results to validate our approach.

DaDA: Distortion-aware Domain Adaptation

Relative Distortion Learnig (RDL)

Diffeomorphic Transformation

- Globally one-to-one mapping
- Continuous and smooth
- Differentiable and invertible

$$G(I_S, I_T) = u(\phi^{(0)})$$

$$\frac{\partial \phi^{(t)}}{\partial t} = u(\phi^{(t)}), \quad u \in \mathbb{R}^{2 \times w \times h}$$

Squaring-and-Scaling Integration

$$\phi^{(1/2^T)} = \phi^{(0)} + u/2^T$$

$$\phi^{(1/2^{t-1})} = \phi^{(1/2^t)} \circ \phi^{(1/2^t)}$$

Forward field: $\Phi_{S \to T}$

Backward field: $\Phi_{T \to S}$

DaDA: Distortion-aware Domain Adaptation

Distortion-aware Losses

$$\mathcal{L}_{recon} = ||I_S - I_S'||_1 + ||I_T - I_T'||_1,$$

where $I_S' = I_{S \to T} \circ \Phi_{T \to S}, \ I_T' = I_{T \to S} \circ \Phi_{S \to T}$

$$\mathcal{L}_{sem} = \|M(I_S) \circ \Phi_{S \to T} - M(I_{S \to T})\|_1 + \|M(I_T) \circ \Phi_{T \to S} - M(I_{T \to S})\|_1.$$

Distortion-aware Discriminator and Adversarial Loss

$$\mathcal{L}_{D_G} = \mathbb{E}_{I_S \sim \mathcal{S}, I_T \sim \mathcal{T}} [1 - D_G(I_S \circ \Phi_{S \to T}, \nabla(I_S \circ \Phi_{S \to T}))] + \mathbb{E}_{I_T \sim \mathcal{T}} [D_G(I_T, \nabla I_T)].$$

$$\mathcal{L}_{adv\ G} = \mathbb{E}_{I_S \sim \mathcal{S}, I_T \sim \mathcal{T}} [D_G(I_S \circ \Phi_{S \to T}, \nabla(I_S \circ \Phi_{S \to T}))],$$

Experiments – Diffeomorphic and Affine Transformation

Experiments – Quantitative Results

Comparisons with the baseline adaptation methods.

	Cityscapes		GTAV		Cityscapes		GTAV	
	\rightarrow Woodscape		\rightarrow Woodscape		\rightarrow FDD		\rightarrow FDD	
Method	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain
SourceOnly	32.39		29.32		34.76		32.13	
AdaptSeg [33]	46.33		35.94		39.07		36.90	
AdaptSeg+RA	50.44	+4.11	36.88	+0.94	39.42	+0.35	37.22	+0.32
AdaptSeg+RDL	50.88	+4.55	37.36	+1.42	41.35	+2.28	39.29	+2.39
AdaptSeg+RA+RDL	52.59	+6.26	37.73	+1.78	41.07	+2.00	39.64	+2.74
AdvEnt [34]	45.26		34.70		38.87		37.25	
AdvEnt+RA	50.60	+5.34	36.64	+1.94	41.58	+2.71	38.75	+1.50
AdvEnt+RDL	50.94	+5.68	36.39	+1.69	42.43	+3.56	39.93	+2.68
AdvEnt+RA+RDL	52.64	+7.38	37.62	+2.92	42.32	+3.45	40.87	+3.62

Effect of DaDA on self-supervised learning (SSL)

		Cityscapes → Woodscape		GTAV → Woodscape		Cityscapes → FDD		$ GTAV \\ \rightarrow FDD$	
SSL Method	+DaDA	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain	mIoU(%)	gain
IAST [26]	,	47.00	<i>c</i> 02	38.83	1.00	39.60	4.06	37.47	2.50
	√	53.82	+6.82	40.75	+1.92		+4.86	40.06	+2.59
IntraDA [27]		48.92		36.10		40.36		38.61	
	\checkmark	53.24	+4.32	39.85	+3.75	45.28	+4.92	42.10	+3.49
ProDA [40]		50.69		34.44		39.72		35.97	
	✓	54.83	+4.14	35.75	+1.31	42.14	+2.42	37.09	+1.12

Distortion-aware mIoU(%)

Ablation results on the distortion-aware losses.

Base Method	$+\mathcal{L}_{adv_G}$	$+\mathcal{L}_{sem}$	$+\mathcal{L}_{recon}$	Cityscapes → Woodscape	$ GTAV \rightarrow Woodscape $
AdaptSeg [33]				46.33	35.94
	√			49.61	36.45
	√	√		50.29	36.75
	√		√	49.97	37.17
	√	√	√	50.88	37.36
AdvEnt [34]				45.26	34.70
	√			47.77	35.36
	√	√		49.22	35.77
	√		√	50.32	36.11
	√	√	√	50.94	36.39

Experiments – Qualitative Result

Qualitative Examples

Experiments – Qualitative Result

Class Activation Visualizations

w/o DaDA

w/ DaDA (ours)

Conclusion

- New unsupervised domain adaptation benchmarks posing challenging tasks (visual+distortion domain gaps);
 - Fisheye Driving Dataset (FDD) available at https://sait-fdd.github.io/
- A novel distortion-aware domain adaptation (DaDA) framework;
- A solid baseline and new perspective on geometric distortion in unsupervised domain adaptation.

Thanks for Watching!

FDD Dataset &
&
More Information
https://sait-fdd.github.io/

