

WHAT IS CLAIMED IS:

1. A ferroelectric memory comprising:

a memory cell including a ferroelectric capacitor
5 having a ferroelectric film capable of taking different
electric capacitances C_{f0} and C_{f1} in an initial state and
first and second electrodes formed to hold said
ferroelectric film therebetween;

10 a circuit applying a read voltage V_R to said first
electrode; and

a detector capable of detecting the difference
between the electric capacitances C_{f0} and C_{f1} of said
ferroelectric film when the potential difference of said
second electrode corresponding to the difference between
15 the electric capacitances C_{f0} and C_{f1} of said ferroelectric
film is in excess of a detection limit voltage V_s , wherein
the electric capacitance C_2 of said second electrode
is set to satisfy the following expression:

$$C_{f0} < C_2 \leq 1/2 \times \{(C_{f1} - C_{f0})V_R/V_s - (C_{f1} + C_{f0})\}$$

20

2. The ferroelectric memory according to claim 1,
wherein

the electric capacitance C_2 of said second electrode
is substantially expressed as follows:

$$25 C_2 = (C_{f1} \times C_{f0})^{1/2}$$

3. The ferroelectric memory according to claim 1,
wherein

a voltage applied to said ferroelectric film is less
5 than a voltage causing polarization inversion of said
ferroelectric film when holding data in a polarization
direction opposite to the direction of application of said
read voltage in data reading.

10 4. The ferroelectric memory according to claim 3,
wherein

said voltage applied to said ferroelectric film is
greater than said voltage causing polarization inversion
of said ferroelectric film when holding data in a
15 polarization direction identical to the direction of
application of said read voltage in data reading.

5. The ferroelectric memory according to claim 1,
wherein

20 said memory cell includes a memory cell having said
second electrode connected with a gate electrode of a
transistor.

25 6. The ferroelectric memory according to claim 5,
wherein

5 said detector includes a current sense amplifier.

7. The ferroelectric memory according to claim 5,
wherein

5 said first electrode is connected to a word line.

8. The ferroelectric memory according to claim 3,
wherein

10 said memory cell includes a memory cell constituted
of a ferroelectric capacitor consisting of said first
electrode and said second electrode formed to extend in
directions intersecting with each other and said
ferroelectric film arranged between said first electrode
and said second electrode.

15

9. The ferroelectric memory according to claim 8,
wherein

 said detector includes a voltage sense amplifier.

20 10. The ferroelectric memory according to claim 8,
wherein

 said first electrode is a word line, and
 said second electrode is a bit line.

25 11. The ferroelectric memory according to claim 3,

wherein

 said memory cell includes a memory cell having said second electrode connected to either a source region or a drain region of a transistor.

5

 12. The ferroelectric memory according to claim 11,
wherein

 said detector includes a voltage sense amplifier.

10 13. The ferroelectric memory according to claim 11,
wherein

 said first electrode is connected to a plate line.

15 14. The ferroelectric memory according to claim 1,
further comprising a row decoder selecting said first
electrode corresponding to a row address,

 said row decoder including said circuit applying said
read voltage V_R to said first electrode.

20 15. The ferroelectric memory according to claim 1,
wherein

 said initial state is an initial state applying no
voltage.

25 16. A ferroelectric memory comprising:

a memory cell including a ferroelectric capacitor having a ferroelectric film capable of taking different electric capacitances C_{f0} and C_{f1} in an initial state and first and second electrodes formed to hold said

5 ferroelectric film therebetween;

means applying a read voltage V_R to said first electrode; and

detection means capable of detecting the difference between the electric capacitances C_{f0} and C_{f1} of said

10 ferroelectric film when the potential difference of said second electrode corresponding to the difference between the electric capacitances C_{f0} and C_{f1} of said ferroelectric film is in excess of a detection limit voltage V_S , wherein

the electric capacitance C_2 of said second electrode

15 is set to satisfy the following expression:

$$C_{f0} < C_2 \leq 1/2 \times \{(C_{f1} - C_{f0})V_R/V_S - (C_{f1} + C_{f0})\}$$

17. The ferroelectric memory according to claim 16,
wherein

20 the electric capacitance C_2 of said second electrode
is substantially expressed as follows:

$$C_2 = (C_{f1} \times C_{f0})^{1/2}$$

18. The ferroelectric memory according to claim 16,
25 wherein

a voltage applied to said ferroelectric film is less than a voltage causing polarization inversion of said ferroelectric film when holding data in a polarization direction opposite to the direction of application of said
5 read voltage in data reading.

19. The ferroelectric memory according to claim 16,
wherein

10 said memory cell includes a memory cell having said second electrode connected with a gate electrode of a transistor.

20. The ferroelectric memory according to claim 18,
wherein

15 said memory cell includes a memory cell constituted of a ferroelectric capacitor consisting of said first electrode and said second electrode formed to extend in directions intersecting with each other and said ferroelectric film arranged between said first electrode
20 and said second electrode.

21. The ferroelectric memory according to claim 18,
wherein

25 said memory cell includes a memory cell having said second electrode connected to either a source region or a

drain region of a transistor.

22. The ferroelectric memory according to claim 16,
wherein

5 said initial state is an initial state applying no
voltage.