ENSEMBLES OF ARIMA AND ARIMAX MODELS FOR FLU FORECASTING

Victor Felix

2024-06-11

LOADING LIBRARIES

```
library("tidyr")
library("MMWRweek")
library("data.table")
library("caret")
## Loading required package: ggplot2
## Loading required package: lattice
library("purrr")
##
## Attaching package: 'purrr'
## The following object is masked from 'package:caret':
##
##
       lift
## The following object is masked from 'package:data.table':
##
##
       transpose
library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
       between, first, last
##
## The following objects are masked from 'package:stats':
##
       filter, lag
##
```

```
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library("tseries")
## Registered S3 method overwritten by 'quantmod':
##
    method
                       from
##
     as.zoo.data.frame zoo
library("gtools")
library("forecast")
library("scoringutils")
## Note: scoringutils is currently undergoing major development changes (with an update planned for the
library("covidHubUtils")
library("parallel")
library("future") #https://cran.r-project.org/web/packages/future/vignettes/future-4-issues.html
##
## Attaching package: 'future'
## The following object is masked from 'package:tseries':
##
##
       value
## The following object is masked from 'package:caret':
##
       cluster
library("listenv")
##
## Attaching package: 'listenv'
## The following object is masked from 'package:purrr':
##
##
       map
library("epitools")
library("ggplot2")
library("sf")
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
library("forcats")
```

LOADING DATA

```
load("ARIMA_MODELS_correct.Rdata")
load("ADJACENT_MODELS_correct.Rdata")
load("TEMPERATURE_MODELS_correct.Rdata")
load("EPIWEEK_MODELS_correct.Rdata")
```

*SAVE AS FUNCTIONS LATER

```
calculate_mean_wis <- function(state_list) {</pre>
  # Capture the name of the input list
  list_name <- deparse(substitute(state_list))</pre>
  # Get the number of states in the list
  num_states <- length(state_list)</pre>
  # Initialize vectors to store state names and mean values
  state names <- vector("character", length = num states)</pre>
  mean_values <- vector("numeric", length = num_states)</pre>
  # Iterate through the states
  for (state in 1:num states) {
    # Get the name of the state
    state_name <- names(state_list)[state]</pre>
    # Get the mean WIS value for the state
    mean_wis <- mean(state_list[[state]] $WIS, na.rm = TRUE) # Use na.rm = TRUE to handle NA values
    # Store the state name and mean value in the vectors
    state_names[state] <- state_name</pre>
    mean_values[state] <- mean_wis</pre>
  # Create a data frame with a dynamic column name
  results df <- data.frame(State = state names)</pre>
  results_df[[list_name]] <- mean_values</pre>
  # Return the data frame
  return(results df)
}
```

COMPARING WIS RESULTS FOR 1-4 WEEKS AHEAD

```
# AUTO ARIMA RESULTS
AUTO_AR_W1 <- calculate_mean_wis(AUTO_ARIMA_WEEK1_list)
ES27_AR_W1 <- calculate_mean_wis(ES27_ARIMA_WEEK1_list)
ES64_AR_W1 <- calculate_mean_wis(ES64_ARIMA_WEEK1_list)
# ADJACENT ARIMAX RESULTS
AUTO_ADJ_W1 <- calculate_mean_wis(AUTO_ADJACENT_WEEK1_list)
ES27_ADJ_W1 <- calculate_mean_wis(ES27_ADJACENT_WEEK1_list)
ES64_ADJ_W1 <- calculate_mean_wis(ES64_ADJACENT_WEEK1_list)
# TEMPERATURE ARIMAX RESULTS
AUTO_TMP_W1 <- calculate_mean_wis(AUTO_TEMPERATURE_WEEK1_list)
```

```
ES27_TMP_W1 <- calculate_mean_wis(ES27_TEMPERATURE_WEEK1_list)
ES64 TMP_W1 <- calculate_mean_wis(ES64_TEMPERATURE_WEEK1_list)
# EPIWEEK ARIMAX RESULTS
AUTO_EPI_W1 <- calculate_mean_wis(AUTO_EPIWEEK_WEEK1_list)
ES27_EPI_W1 <- calculate_mean_wis(ES27_EPIWEEK_WEEK1_list)</pre>
ES64_EPI_W1 <- calculate_mean_wis(ES64_EPIWEEK_WEEK1_list)
# AUTO ARIMA RESULTS
W1 <- merge(AUTO_AR_W1, ES27_AR_W1, by = "State")
W1 <- merge(W1, ES64 AR W1, by = "State")
# ADJACENT ARIMAX RESULTS
W1 <- merge(W1, AUTO_ADJ_W1, by = "State")
W1 <- merge(W1, ES27_ADJ_W1, by = "State")
W1 <- merge(W1, ES64_ADJ_W1, by = "State")
# TEMPERATURE ARIMAX RESULTS
W1 <- merge(W1, AUTO_TMP_W1, by = "State")
W1 <- merge(W1, ES27_TMP_W1, by = "State")
W1 <- merge(W1, ES64_TMP_W1, by = "State")
# EPIWEEK ARIMAX RESULTS
W1 <- merge(W1, AUTO_EPI_W1, by = "State")
W1 <- merge(W1, ES27_EPI_W1, by = "State")
W1 <- merge(W1, ES64_EPI_W1, by = "State")
# Rename columns for clarity
colnames(W1)[1] <- "NAME"</pre>
colnames(W1)[2] <- "AUTO AR"
colnames(W1)[3] <- "ES27 AR"
colnames(W1)[4] <- "ES64 AR"</pre>
colnames(W1)[5] <- "AUTO_ADJ"</pre>
colnames(W1)[6] <- "ES27_ADJ"</pre>
colnames(W1)[7] <- "ES64_ADJ"</pre>
colnames(W1)[8] <- "AUTO_TMP"</pre>
colnames(W1)[9] <- "ES27_TMP"</pre>
colnames(W1)[10] <- "ES64_TMP"</pre>
colnames(W1)[11] <- "AUTO_EPI"</pre>
colnames(W1)[12] <- "ES27_EPI"</pre>
colnames(W1)[13] <- "ES64_EPI"</pre>
# Identify the best result for each state
#W1$Best_Result <- apply(W1[,2:13], 1, function(x) {
# which.min(x)
#})
W1$Best_Result <- apply(W1[, 2:13], 1, function(x) {
  colnames(W1)[which.min(x) + 1] # +1 to shift the index to account for column 1
})
# REORDER BY FREQUENCY
W1$Best_Result <- fct_infreq(W1$Best_Result)</pre>
# Print merged results
head(W1)
```

```
AUTO_AR ES27_AR ES64_AR AUTO_ADJ ES27_ADJ ES64_ADJ
## 1
        Alabama 103.52566 104.22019 105.13084 101.45966 100.16864 109.01477
## 2
        Arizona 46.36650 46.54965 47.65001 45.60075 44.65202
## 3
                 24.39505 23.79665 23.91488 25.13808 24.97169
       Arkansas
                                                                 24.84641
## 4 California 156.69245 155.90429 154.73430 156.10423 152.45771 159.10129
## 5
       Colorado 70.02388 69.43872 69.44417 66.94344 66.72838
## 6 Connecticut 51.35660 51.02642 52.19473 50.28933 51.06828
     AUTO_TMP ES27_TMP ES64_TMP AUTO_EPI ES27_EPI ES64_EPI Best_Result
## 1 104.32674 105.67750 107.36301 109.15158 108.02119 107.24986
                                                                ES27 ADJ
    46.79212 46.39031 46.86298 48.55342 47.42529
                                                    47.81730
                                                                ES27_ADJ
## 3 25.05808 24.27697
                        24.64173
                                  25.41587
                                           25.32682
                                                     25.04705
                                                                 ES27_AR
## 4 158.70497 157.59665 156.44105 163.92647 160.31558 161.32314
                                                                 ES27_ADJ
    70.28172 70.23868 70.34410 72.15381
                                           71.43358 71.59568
                                                                ES27_ADJ
## 6 52.18867 53.30628 55.10654 53.68471 52.95653 54.84014
                                                                AUTO_ADJ
```

Best Model based on WIS for 47 U.S. states (1 Week Ahead)

WEEK 2

```
W2<-NULL
# AUTO ARIMA RESULTS
AUTO_AR_W2 <- calculate_mean_wis(AUTO_ARIMA_WEEK2_list)</pre>
```

```
ES27_AR_W2 <- calculate_mean_wis(ES27_ARIMA_WEEK2_list)
ES64_AR_W2 <- calculate_mean_wis(ES64_ARIMA_WEEK2_list)
# ADJACENT ARIMAX RESULTS
AUTO ADJ W2 <- calculate mean wis(AUTO ADJACENT WEEK2 list)
ES27_ADJ_W2 <- calculate_mean_wis(ES27_ADJACENT_WEEK2_list)
ES64_ADJ_W2 <- calculate_mean_wis(ES64_ADJACENT_WEEK2_list)
# TEMPERATURE ARIMAX RESULTS
AUTO TMP W2 <- calculate mean wis(AUTO TEMPERATURE WEEK2 list)
ES27_TMP_W2 <- calculate_mean_wis(ES27_TEMPERATURE_WEEK2_list)
ES64 TMP W2 <- calculate mean wis(ES64 TEMPERATURE WEEK2 list)
# EPIWEEK ARIMAX RESULTS
AUTO_EPI_W2 <- calculate_mean_wis(AUTO_EPIWEEK_WEEK2_list)
ES27_EPI_W2 <- calculate_mean_wis(ES27_EPIWEEK_WEEK2_list)</pre>
ES64_EPI_W2 <- calculate_mean_wis(ES64_EPIWEEK_WEEK2_list)
# MERGE
# AUTO ARIMA RESULTS
W2 <- merge(AUTO_AR_W2, ES27_AR_W2, by = "State")
W2 \leftarrow merge(W2, ES64\_AR\_W2, by = "State")
# ADJACENT ARIMAX RESULTS
W2 <- merge(W2, AUTO_ADJ_W2, by = "State")
W2 <- merge(W2, ES27_ADJ_W2, by = "State")
W2 <- merge(W2, ES64_ADJ_W2, by = "State")
# TEMPERATURE ARIMAX RESULTS
W2 <- merge(W2, AUTO TMP W2, by = "State")
W2 <- merge(W2, ES27 TMP W2, by = "State")
W2 <- merge(W2, ES64 TMP W2, by = "State")
# EPIWEEK ARIMAX RESULTS
W2 <- merge(W2, AUTO_EPI_W2, by = "State")
W2 <- merge(W2, ES27_EPI_W2, by = "State")
W2 <- merge(W2, ES64_EPI_W2, by = "State")
# Rename columns for clarity
colnames(W2)[1] <- "NAME"</pre>
colnames(W2)[2] <- "AUTO_AR"</pre>
colnames(W2)[3] <- "ES27_AR"
colnames(W2)[4] <- "ES64_AR"
colnames(W2)[5] <- "AUTO ADJ"</pre>
colnames(W2)[6] <- "ES27_ADJ"</pre>
colnames(W2)[7] <- "ES64_ADJ"</pre>
colnames(W2)[8] <- "AUTO_TMP"</pre>
colnames(W2)[9] <- "ES27 TMP"</pre>
colnames(W2)[10] <- "ES64 TMP"
colnames(W2)[11] <- "AUTO_EPI"</pre>
colnames(W2)[12] <- "ES27 EPI"</pre>
colnames(W2)[13] <- "ES64_EPI"</pre>
# Identify the best result for each state
\#W2\$Best\_Result \leftarrow apply(W2[,2:13], 1, function(x) {
# which.min(x)
#})
W2$Best_Result <- apply(W2[, 2:13], 1, function(x) {
```

```
colnames(W2)[which.min(x) + 1] # +1 to shift the index to account for column 1
})
# REORDER BY FREQUENCY
W2$Best_Result <- fct_infreq(W2$Best_Result)</pre>
# Print merged results
head(W2)
           NAME
                 AUTO_AR ES27_AR ES64_AR AUTO_ADJ ES27_ADJ ES64_ADJ
        Alabama 176.79786 176.96306 178.52469 171.95069 172.52208 177.73171
## 1
       Arizona 66.90538 67.09085 67.65570 67.06929 63.08093 66.23576
## 3
       Arkansas 36.02066 35.26628 35.49205 35.12591 35.52973 36.71324
## 4 California 260.52832 255.15947 252.74800 255.61425 247.38170 261.95766
## 5
       Colorado 105.23882 103.34093 103.45301 99.62816 100.35423 106.69538
## 6 Connecticut 81.83815 82.48860 83.44493 79.07029 80.26900 87.33474
     AUTO TMP ES27 TMP ES64 TMP AUTO EPI ES27 EPI ES64 EPI Best Result
##
## 1 175.99935 175.20471 179.15741 180.54717 178.18208 174.87487
                                                                AUTO ADJ
                                                                ES27 ADJ
## 2 66.82924 65.87824 66.15905 69.35285 67.99691 67.71082
## 3 36.45988 35.66592 35.15920 36.66010 36.89276 36.66611
                                                                AUTO ADJ
## 4 263.99879 259.19018 254.48401 270.69366 260.59695 261.69534
                                                                ES27_ADJ
## 5 105.29249 104.49503 104.66056 107.52025 105.35086 104.82870
                                                                AUTO_ADJ
## 6 82.32661 85.30291 88.43351 84.00331 82.09353 85.10770
                                                                AUTO ADJ
# ----- WEEK1 MODELS ----- #
ggplot(W2,aes(x=Best_Result)) + geom_bar()+
```

labs(title = "Best Model based on WIS for 47 U.S. states (2 Weeks Ahead)",

x = "", y="Number of states")

Best Model based on WIS for 47 U.S. states (2 Weeks Ahead)

WEEK 3

```
W3<-NULL
# AUTO ARIMA RESULTS
AUTO_AR_W3 <- calculate_mean_wis(AUTO_ARIMA_WEEK3_list)
ES27_AR_W3 <- calculate_mean_wis(ES27_ARIMA_WEEK3_list)
ES64_AR_W3 <- calculate_mean_wis(ES64_ARIMA_WEEK3_list)
# ADJACENT ARIMAX RESULTS
AUTO_ADJ_W3 <- calculate_mean_wis(AUTO_ADJACENT_WEEK3_list)
ES27_ADJ_W3 <- calculate_mean_wis(ES27_ADJACENT_WEEK3_list)</pre>
ES64 ADJ W3 <- calculate mean wis(ES64 ADJACENT WEEK3 list)
# TEMPERATURE ARIMAX RESULTS
AUTO_TMP_W3 <- calculate_mean_wis(AUTO_TEMPERATURE_WEEK3_list)
ES27_TMP_W3 <- calculate_mean_wis(ES27_TEMPERATURE_WEEK3_list)</pre>
ES64_TMP_W3 <- calculate_mean_wis(ES64_TEMPERATURE_WEEK3_list)
# EPIWEEK ARIMAX RESULTS
AUTO_EPI_W3 <- calculate_mean_wis(AUTO_EPIWEEK_WEEK3_list)
ES27_EPI_W3 <- calculate_mean_wis(ES27_EPIWEEK_WEEK3_list)</pre>
ES64_EPI_W3 <- calculate_mean_wis(ES64_EPIWEEK_WEEK3_list)
# MERGE
# AUTO ARIMA RESULTS
W3 <- merge(AUTO_AR_W3, ES27_AR_W3, by = "State")
W3 <- merge(W3, ES64_AR_W3, by = "State")
# ADJACENT ARIMAX RESULTS
```

```
W3 <- merge(W3, AUTO_ADJ_W3, by = "State")
W3 <- merge(W3, ES27_ADJ_W3, by = "State")
W3 <- merge(W3, ES64_ADJ_W3, by = "State")
# TEMPERATURE ARIMAX RESULTS
W3 <- merge(W3, AUTO_TMP_W3, by = "State")
W3 <- merge(W3, ES27_TMP_W3, by = "State")
W3 <- merge(W3, ES64_TMP_W3, by = "State")
# EPIWEEK ARIMAX RESULTS
W3 <- merge(W3, AUTO_EPI_W3, by = "State")
W3 <- merge(W3, ES27_EPI_W3, by = "State")
W3 <- merge(W3, ES64_EPI_W3, by = "State")
# Rename columns for clarity
colnames(W3)[1] <- "NAME"</pre>
colnames(W3)[2] <- "AUTO_AR"</pre>
colnames(W3)[3] <- "ES27_AR"
colnames(W3)[4] <- "ES64_AR"</pre>
colnames(W3)[5] <- "AUTO_ADJ"</pre>
colnames(W3)[6] <- "ES27_ADJ"</pre>
colnames(W3)[7] <- "ES64_ADJ"</pre>
colnames(W3)[8] <- "AUTO_TMP"</pre>
colnames(W3)[9] <- "ES27_TMP"</pre>
colnames(W3)[10] <- "ES64 TMP"
colnames(W3)[11] <- "AUTO_EPI"</pre>
colnames(W3)[12] <- "ES27 EPI"
colnames(W3)[13] <- "ES64 EPI"
# Identify the best result for each state
#W3$Best_Result <- apply(W3[,2:13], 1, function(x) {
# which.min(x)
#})
W3$Best_Result <- apply(W3[, 2:13], 1, function(x) {
  colnames(W3)[which.min(x) + 1] # +1 to shift the index to account for column 1
})
# REORDER BY FREQUENCY
W3$Best_Result <- fct_infreq(W3$Best_Result)</pre>
# Print merged results
head(W3)
                   AUTO_AR ES27_AR ES64_AR AUTO_ADJ ES27_ADJ ES64_ADJ
##
            NAME
         Alabama 235.22029 233.10051 233.25307 225.47845 228.68316 233.72299
         Arizona 85.92363 86.98650 86.42503 89.34112 81.79289 86.83246
## 2
        Arkansas 46.66508 45.96886 46.07627 43.84153 44.93023 47.18693
## 4 California 357.35130 347.97447 343.41673 353.63997 338.98427 360.02395
       Colorado 142.30657 138.75233 138.96848 133.67369 136.41442 142.03129
## 6 Connecticut 106.74678 111.81782 110.64044 102.61978 105.16778 115.12742
      AUTO_TMP ES27_TMP ES64_TMP AUTO_EPI ES27_EPI ES64_EPI Best_Result
## 1 233.29858 230.85754 232.48676 236.44039 232.47689 227.20783
                                                                    AUTO ADJ
## 2 85.40273 84.04960 83.72061 90.40414 89.00180 88.16697
                                                                     ES27 ADJ
## 3 46.92462 46.37374 43.97295 46.74298 47.21512 46.45097
                                                                     AUTO ADJ
```

```
## 4 361.10793 355.07486 348.09042 374.25618 359.89251 360.09505 ES27_ADJ ## 5 141.47293 140.57502 140.36094 143.39508 139.77563 139.55267 AUTO_ADJ ## 6 107.29540 115.28619 116.48950 108.21244 108.31155 110.32945 AUTO_ADJ
```

Best Model based on WIS for 47 U.S. states (3 Weeks Ahead)

WEEK 4

```
# AUTO ARIMA RESULTS

AUTO_AR_W4 <- calculate_mean_wis(AUTO_ARIMA_WEEK4_list)

ES27_AR_W4 <- calculate_mean_wis(ES27_ARIMA_WEEK4_list)

ES64_AR_W4 <- calculate_mean_wis(ES64_ARIMA_WEEK4_list)

# ADJACENT ARIMAX RESULTS

AUTO_ADJ_W4 <- calculate_mean_wis(AUTO_ADJACENT_WEEK4_list)

ES27_ADJ_W4 <- calculate_mean_wis(ES27_ADJACENT_WEEK4_list)

ES64_ADJ_W4 <- calculate_mean_wis(ES64_ADJACENT_WEEK4_list)

# TEMPERATURE ARIMAX RESULTS

AUTO_TMP_W4 <- calculate_mean_wis(AUTO_TEMPERATURE_WEEK4_list)

ES27_TMP_W4 <- calculate_mean_wis(ES27_TEMPERATURE_WEEK4_list)

ES64_TMP_W4 <- calculate_mean_wis(ES64_TEMPERATURE_WEEK4_list)

# EPIWEEK ARIMAX RESULTS
```

```
AUTO_EPI_W4 <- calculate_mean_wis(AUTO_EPIWEEK_WEEK4_list)
ES27_EPI_W4 <- calculate_mean_wis(ES27_EPIWEEK_WEEK4_list)
ES64_EPI_W4 <- calculate_mean_wis(ES64_EPIWEEK_WEEK4_list)
# MERGE
# AUTO ARIMA RESULTS
W4 <- merge(AUTO_AR_W4, ES27_AR_W4, by = "State")
W4 <- merge(W4, ES64 AR W4, by = "State")
# ADJACENT ARIMAX RESULTS
W4 <- merge(W4, AUTO_ADJ_W4, by = "State")
W4 <- merge(W4, ES27_ADJ_W4, by = "State")
W4 <- merge(W4, ES64_ADJ_W4, by = "State")
# TEMPERATURE ARIMAX RESULTS
W4 <- merge(W4, AUTO_TMP_W4, by = "State")
W4 <- merge(W4, ES27_TMP_W4, by = "State")
W4 <- merge(W4, ES64_TMP_W4, by = "State")
# EPIWEEK ARIMAX RESULTS
W4 <- merge(W4, AUTO_EPI_W4, by = "State")
W4 <- merge(W4, ES27_EPI_W4, by = "State")
W4 <- merge(W4, ES64_EPI_W4, by = "State")
# Rename columns for clarity
colnames(W4)[1] <- "NAME"</pre>
colnames(W4)[2] <- "AUTO_AR"</pre>
colnames(W4)[3] <- "ES27 AR"
colnames(W4)[4] <- "ES64 AR"
colnames(W4)[5] <- "AUTO ADJ"</pre>
colnames(W4)[6] <- "ES27_ADJ"</pre>
colnames(W4)[7] <- "ES64_ADJ"</pre>
colnames(W4)[8] <- "AUTO_TMP"</pre>
colnames(W4)[9] <- "ES27_TMP"</pre>
colnames(W4)[10] <- "ES64_TMP"
colnames(W4)[11] <- "AUTO_EPI"</pre>
colnames(W4)[12] <- "ES27_EPI"
colnames(W4)[13] <- "ES64_EPI"
# Identify the best result for each state
\#W4\$Best_Result \leftarrow apply(W4[,2:13], 1, function(x) {
# which.min(x)
#})
W4$Best_Result <- apply(W4[, 2:13], 1, function(x) {
  colnames(W4)[which.min(x) + 1] # +1 to shift the index to account for column 1
})
W4$Best_Result <- fct_infreq(W4$Best_Result)
# Print merged results
head(W4)
```

NAME AUTO_AR ES27_AR ES64_AR AUTO_ADJ ES27_ADJ ES64_ADJ ## 1 Alabama 275.66774 271.88125 269.38839 261.97143 267.69536 276.10864

```
Arizona 102.79288 105.28864 104.04873 110.11997 99.88912 105.71256
       Arkansas 55.71614 55.86489 55.51852 52.27712 53.97451 56.75355
## 4 California 454.04404 440.95016 431.53238 449.01139 429.54003 453.86590
       Colorado 174.26179 170.52616 170.28629 162.99582 167.77916 172.18651
## 6 Connecticut 130.60123 146.54939 141.40292 122.84062 132.30592 142.95744
      AUTO TMP ES27 TMP ES64 TMP AUTO EPI ES27 EPI ES64 EPI Best Result
## 1 274.93785 270.40965 268.35784 278.85890 269.67093 263.56600
                                                                  AUTO ADJ
                                                                  ES64 TMP
## 2 102.77459 100.92540 99.46926 109.09777 107.06585 105.55045
## 3 56.16726 56.44215 52.45936 56.43826 57.19076 55.85982
                                                                  AUTO ADJ
## 4 454.72572 447.55868 437.97009 478.56280 456.37471 455.32237
                                                                  ES27_ADJ
## 5 173.44942 172.78770 171.68062 174.27810 171.00633 170.60375
                                                                  AUTO_ADJ
## 6 134.29882 150.17829 147.67298 133.59970 137.09017 139.77165
                                                                  AUTO_ADJ
```

Best Model based on WIS for 47 U.S. states (4 Weeks Ahead)

COMPARING AUTO ARIMA AND ADJACENT STATES ARIMAX WIS RESULTS FOR 1-4 WEEKS AHEAD

```
########
# WEEK1
W1_<-NULL
# AUTO ARIMA RESULTS
AUTO_AR_W1_ <- calculate_mean_wis(AUTO_ARIMA_WEEK1_list)</pre>
```

```
colnames(W1_)[1] <- "NAME"</pre>
colnames(W1_)[2] <- "AUTO_AR"</pre>
colnames(W1_)[3] <- "ES27_ADJ"</pre>
#######
# WEEK2
W2 <-NULL
# AUTO ARIMA RESULTS
AUTO AR W2 <- calculate mean wis(AUTO ARIMA WEEK2 list)
ES27_ADJ_W2_ <- calculate_mean_wis(ES27_ADJACENT_WEEK2_list)</pre>
# AUTO ARIMA RESULTS
W2_ <- merge(AUTO_AR_W2_, ES27_ADJ_W2_, by = "State")
# Rename columns for clarity
colnames(W2_)[1] <- "NAME"</pre>
colnames(W2_)[2] <- "AUTO_AR"</pre>
colnames(W2_)[3] <- "ES27_ADJ"</pre>
#######
# WEEK3
W3_<-NULL
# AUTO ARIMA RESULTS
AUTO_AR_W3_ <- calculate_mean_wis(AUTO_ARIMA_WEEK3_list)
ES27 ADJ W3 <- calculate mean wis(ES27 ADJACENT WEEK3 list)
# AUTO ARIMA RESULTS
W3_ <- merge(AUTO_AR_W3_, ES27_ADJ_W3_, by = "State")
# Rename columns for clarity
colnames(W3_)[1] <- "NAME"</pre>
colnames(W3_)[2] <- "AUTO_AR"</pre>
colnames(W3_)[3] <- "ES27_ADJ"
#######
# WEEK4
W4_<-NULL
# AUTO ARIMA RESULTS
AUTO_AR_W4_ <- calculate_mean_wis(AUTO_ARIMA_WEEK4_list)
ES27_ADJ_W4_ <- calculate_mean_wis(ES27_ADJACENT_WEEK4_list)
# AUTO ARIMA RESULTS
W4_ <- merge(AUTO_AR_W4_, ES27_ADJ_W4_, by = "State")
# Rename columns for clarity
colnames(W4_)[1] <- "NAME"</pre>
colnames(W4_)[2] <- "AUTO_AR"</pre>
colnames(W4_)[3] <- "ES27_ADJ"</pre>
# Improved WIS
hist(W1_$AUTO_AR-W1_$ES27_ADJ, main="ES27 ADJACENT STATES vs AUTO ARIMA (1 Week Ahead)", xlab = "Positi
```

ES27_ADJ_W1_ <- calculate_mean_wis(ES27_ADJACENT_WEEK1_list)</pre>

W1_ <- merge(AUTO_AR_W1_, ES27_ADJ_W1_, by = "State")

AUTO ARIMA RESULTS

Rename columns for clarity

ES27 ADJACENT STATES vs AUTO ARIMA (1 Week Ahead)

Positive Values means Improved WIS for ES27_ADJ

hist(W2_\$AUTO_AR-W2_\$ES27_ADJ, main="ES27 ADJACENT STATES vs AUTO ARIMA (2 Weeks Ahead)", xlab = "Posit

ES27 ADJACENT STATES vs AUTO ARIMA (2 Weeks Ahead)

Positive Values means Improved WIS for ES27_ADJ

hist(W3_\$AUTO_AR-W3_\$ES27_ADJ, main="ES27 ADJACENT STATES vs AUTO ARIMA (3 Weeks Ahead)", xlab = "Posit

ES27 ADJACENT STATES vs AUTO ARIMA (3 Weeks Ahead)

Positive Values means Improved WIS for ES27_ADJ

hist(W4_\$AUTO_AR-W4_\$ES27_ADJ, main="ES27 ADJACENT STATES vs AUTO ARIMA (4 Weeks Ahead)", xlab = "Posit

ES27 ADJACENT STATES vs AUTO ARIMA (4 Weeks Ahead)

Positive Values means Improved WIS for ES27_ADJ

log(WIS) MAPS for 1-4 WEEKS AHEAD

```
# MAPPING THE MEAN PERFORMANCE OF THE ES64, ES27
# AND AUTO ARIMA MODELS FOR THE 50 STATES OF THE U.S. #
# BASED ON THE SUMMARY RESULTS OF THE CURRENT MODELS. #
states <- read_sf("cb_2018_us_state_500k/cb_2018_us_state_500k.shp")</pre>
# ES27 ARIMAX by ADJACENT STATES - 1 WEEK AHEAD #
map_week1<-left_join(states, W1, by=join_by("NAME"))%>%
 drop_na()
ES_1WEEK<- ggplot(map_week1, fill ="lightgrey") + theme_light() + geom_sf(aes(fill=log(ES27_ADJ))) +
x_limits <- c(-130, -65) # Set the desired longitude range
y_limits <- c(20, 55)
                  # Set the desired latitude range
ES_1WEEK + coord_sf(xlim = x_limits, ylim = y_limits)
```


ES27 ARIMAX by ADJACENT STATES (4 WEEKS AHEAD)


```
ES27_ADJ_mean_wis_by_week<-data.frame("W1"= W1_$ES27_ADJ, "W2" = W2_$ES27_ADJ,"W3"= W3_$ES27_ADJ, "W4" =
# Convert to long format and add column number as ID
long_data <- ES27_ADJ_mean_wis_by_week %>%
pivot_longer(
    cols = everything(),
    names_to = "variable",
    values_to = "value"
    ) %>%
    mutate(id = as.integer(factor(variable, levels = names(ES27_ADJ_mean_wis_by_week))))
# Print long format data
print(long_data)
```

```
## # A tibble: 188 x 3
##
     variable value
                       id
              <dbl> <int>
##
      <chr>
              100.
## 1 W1
                        1
## 2 W2
              173.
              229.
## 3 W3
                        3
              268.
## 4 W4
                        4
## 5 W1
               44.7
                        1
                       2
               63.1
## 6 W2
## 7 W3
               81.8
                        3
               99.9
## 8 W4
```

```
## 9 W1 25.0 1
## 10 W2 35.5 2
## # i 178 more rows
```

ES27 ADJACENT STATES - WIS for 47 U.S. states by N weeks ahead

