GNSS Introduction

Fabio Dovis

Politecnico di Torino - Electronics Department

Part II

Basic principles

The problem of positioning

- The problem of obtaining a position is always been a matter of:
 - Geodesy
 - Timekeeping
 - Astronomy
- Modern systems also involve
 - Aerospace engineering
 - Telecommunications

Some Historical notes

- In order to specify the position a reference system is needed:
 - Latitude is not hard to measure from the altitude of the Pole star or the sun at the highest point
 - Longitude calculation is trickier. It has been based on timekeeping: the difference in longitude can be determined if the difference in local times is known

Latitude and longitude

Measurement of latitude

Measurement of longitude

Some History notes

- The comparison of times was perfromed using
- Mechanical clocks: a "precise" clock was transported in order to compare it with local time
 - 4 minutes of error are equal to 1 deg: in 1500 a good clock have an error of 10 min/day
- Astronomical methods: observation of a known celestial event and compare the time of the same event observed at the reference point
 - Galileo(1600): observation of Jupiter's orbit
 - Newton-Halley(1700): observation of lunar orbits

Long-range navigation system (LORAN)

- Developed during the II world war in the US by the MIT (Loran-A) for ships
- Loran-C developed in late '50
- Hyperbolic system in LF band 90-110kHz
- Chain of transmitters made of a master and 2-3 secondary stations separated by about 1000 km
- In the US 29 stations (13 chains) covering the coastal regions
- Synchronized transmitters of RF pulses
- The ship measures the time difference between the arrival of master and secondary stations

The TRANSIT system

- First satellite based system (1964)
- 4-7 satellites at 1100 km
- Nearly circular orbit, polar orbit
- Signal at 150 Mhz and 400 Mhz
- Measured Doppler shift from a single station is sufficient if the satellite orbit is known

Global Positioning System

- A military system managed by the Department of Defense (DOD) of the United States of America
- Started in the '80
- Modernized and maintained through new satellite vehicles (SV) constantly added

GPS Segments

- space
 - 24 satellites constellation
- control
 - tracking stations
 - continuously monitoring the orbital data
 - master station
 - data processing, update orbits and time scale
 - up-loading stations
 - transmit updated data to satellites
- users
 - receivers determining their own position, velocity and time

GPS constellation

- The baseline nominal constellation
 - Semi-major axis: a=26560 km
 - Altitude 20,200 km
 - Eccentricity <0.01 (about circular orbit)
 - Period: about 12 h.
 - Six orbital planes (A-F) with inclination at 55 degrees.
 The RAAN of the six orbital planes are separated by
 60 deg in the equatorial plane
 - Four satellites per plane distributed unevenly (to minimize the effect of a single satellite failure)

GPS constellation

GPS Constellation from the ground

The Control Segment

User Segment

- The user segment is made of a wide range of different receivers, with different performance levels
- The receiver estimates the position of the user on the basis of the signals transmitted by the satellites
- The functionalities common to any kind of receiver can be summarized as
 - Identification of the satellites in view
 - Estimation of the distance user-satellite
 - Triangulation
- Additional functionalities aim at
 - easing and/or improving the position estimation (augmentations)
 - improve the user output interface
 - added value services (e.g. route calculation, integration with communication systems)

User segment

- See as an example:
- http://www.tramsoft.ch/gps/

User segment

Functional basics (1)

 If a satellites transmit a pulse at t₀, it is received at time t₀+τ and the distance between TX and RX can be estimated as:

$$R=c\cdot \tau$$

where **c** is the speed of light

If both the oscillators are perfect the measure of t₀+τ allows for R determination

Functional basics (2)

- The satellite payload hosts synchronous satellites
- It is not possible to have user clocks aligned with the satellite time scale at low cost and complexity
- Being δt_u the user clock misalignment the measured distance is the pseudorange

$$\rho = c \cdot \tau + c \cdot \delta t_u = R + c \cdot \varepsilon$$

Functional basics (3)

Functional basics (4)

- Let consider in the following ôt^S=0
- The user measuring four pseudoranges r_j with respect to 4 satellites with known coordinates (x_{sj}, y_{sj}, z_{sj}) determines its postion (x_u, y_u, z_u) and the correction δt_u to apply to its own clock

$$\begin{cases} \rho_{1} = \sqrt{(x_{s1} - x_{u})^{2} + (y_{s1} - y_{u})^{2} + (z_{s1} - z_{u})^{2}} + c \cdot \delta t_{u} \\ \rho_{2} = \sqrt{(x_{s2} - x_{u})^{2} + (y_{s2} - y_{u})^{2} + (z_{s2} - z_{u})^{2}} + c \cdot \delta t_{u} \\ \rho_{3} = \sqrt{(x_{s3} - x_{u})^{2} + (y_{s3} - y_{u})^{2} + (z_{s3} - z_{u})^{2}} + c \cdot \delta t_{u} \\ \rho_{4} = \sqrt{(x_{s4} - x_{u})^{2} + (y_{s4} - y_{u})^{2} + (z_{s4} - z_{u})^{2}} + c \cdot \delta t_{u} \end{cases}$$

Functional basics (5)

Remarks

- In order to estimate its position a receiver must have at least four satellites in view
- The satellite must be in Line-of-sight
- If a larger number of satellites is in view a better estimation is possible. In the past the combination of four satellites giving the best performance was chosen
- Modern receivers use up to 12 channels in order to perform the position estimation

Satellites Signal-In-Space

- The propagation time is estimated processing a signal transmitted by each satellite
- As an example in GPS:
 - each satellite transmits over two carriers (L1, L2) modulated with a binary pseudonoise sequence
 - each satellite uses the same frequencies
 - each satellite is identified by a different PN sequence (CDMA scheme)

GPS receiver measurements

- Code phase measurements: the propagation time between SV and user is estimated measuring the ∆t between a local replica of the C/A code and the received SIS
- Carrier phase measurements: the phase difference between a local carrier and the received one is evaluated; through proper techniques the number N of integer cycles is estimated

GPS receiver measurements

Code phase measurements

Received satellite signal

 $\rho = c \Delta t$

Locally generated signal

Carrier Phase measurements

The generic pseudorange

$$\rho_{j} = \sqrt{(x_{sj} - x_{u})^{2} + (y_{sj} - y_{u})^{2} + (z_{sj} - z_{u})^{2}} - c \cdot \delta t_{u}$$

can be approximated through the Taylor expansion around a known location

$$\hat{\rho}_{j} = \sqrt{(x_{sj} - \hat{x}_{u})^{2} + (y_{sj} - \hat{y}_{u})^{2} + (z_{sj} - \hat{z}_{u})^{2}} - c \cdot \delta \hat{t}_{u}$$

at a first order approximation

$$\Delta \rho_j = \rho_j - \hat{\rho}_j$$

$$\Delta \rho_j = a_{xj} \Delta x_u + a_{yj} \Delta y_u + a_{zj} \Delta z_u - c \Delta t_u$$

$$a_{xj} = \frac{x_j - \hat{x}_u}{\hat{r}_j}, a_{yj} = \frac{y_j - \hat{y}_u}{\hat{r}_j}, a_{zj} = \frac{z_j - \hat{z}_u}{\hat{r}_j}$$

• where $\mathbf{a}_{j} = (\mathbf{a}_{xy}, \mathbf{a}_{yj}, \mathbf{a}_{zj})$ are unitary vectors steering from the approximation point towards the j-th satellite

$$\begin{cases} \Delta \rho_1 = a_{x1} \Delta x_u + a_{y1} \Delta y_u + a_{z1} \Delta z_u - c \Delta t_u \\ \Delta \rho_2 = a_{x2} \Delta x_u + a_{y2} \Delta y_u + a_{z2} \Delta z_u - c \Delta t_u \\ \Delta \rho_3 = a_{x3} \Delta x_u + a_{y3} \Delta y_u + a_{z3} \Delta z_u - c \Delta t_u \\ \Delta \rho_4 = a_{x4} \Delta x_u + a_{y4} \Delta y_u + a_{z4} \Delta z_u - c \Delta t_u \end{cases}$$

$$\boldsymbol{\Delta \rho} = \begin{bmatrix} \Delta \rho_1 \\ \Delta \rho_2 \\ \Delta \rho_3 \\ \Delta \rho_4 \end{bmatrix}$$

$$\Delta \mathbf{\rho} = \begin{bmatrix} \Delta \rho_1 \\ \Delta \rho_2 \\ \Delta \rho_3 \\ \Delta \rho_4 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} a_{x1} & a_{y1} & a_{z1} & 1 \\ a_{x2} & a_{y2} & a_{z2} & 1 \\ a_{x3} & a_{y3} & a_{z3} & 1 \\ a_{x4} & a_{y4} & a_{z4} & 1 \end{bmatrix} \qquad \Delta \mathbf{x} = \begin{bmatrix} \Delta x_u \\ \Delta y_u \\ \Delta z_u \\ -c\Delta t_u \end{bmatrix}$$

$$\mathbf{\Delta x} = \begin{bmatrix} \Delta x_u \\ \Delta y_u \\ \Delta z_u \\ -c\Delta t_u \end{bmatrix}$$

$$\Delta \rho = H \Delta x$$

In case four satellite are used

$$\Delta x = \mathbf{H}^{-1} \Delta \rho$$

If a larger number of satellite is used

$$\mathbf{H} = \begin{bmatrix} a_{x1} & a_{y1} & a_{z1} & 1 \\ a_{x2} & a_{y2} & a_{z2} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ a_{xn} & a_{yn} & a_{zn} & 1 \end{bmatrix}$$

- For n>4 a least square solution must be used
- The solution is given by the value of ∆x that minimizes the square of the residual:

$$R_{SE}(\Delta \mathbf{x}) = (\mathbf{H} \Delta x - \Delta \rho)^2$$

 The solution can be obtained differentiating with respect to Δx to obtain the gradient of R_{SF} .

$$\nabla R_{SE} = 2(\Delta \mathbf{x})^T \mathbf{H}^T \mathbf{H} - 2(\Delta \boldsymbol{\rho})^T \mathbf{H}$$

- The gradient is set to zero and solved for ∆x to seek a minimum value
- Taking the transpose and setting it to zero:

$$2\mathbf{H}^T\mathbf{H}(\Delta \mathbf{x}) - 2\mathbf{H}^T(\Delta \mathbf{p}) = 0$$

Provided that H^TH is non-singular, the equation solution is:

$$\Delta \mathbf{x} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \Delta \mathbf{\rho}$$

- Such a solution is theoretical and does not take into account:
 - errors in the pseudorange measurements
 - geometrical factors

With n satellites a Least Square solution can be obtained

$$\Delta \mathbf{x} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \Delta \mathbf{\rho}$$

- Such a solution is theoretical and does not take into account:
 - errors in the pseudorange measurements
 - geometrical factors

Positioning errors

The pseudorange measurement is error affected

$$\rho_{j} = \sqrt{(x_{sj} - x_{u})^{2} + (y_{sj} - y_{u})^{2} + (z_{sj} - z_{u})^{2}} - c \cdot t_{u} + c \cdot t_{a} + E_{j} + \eta$$

- where
 - t_a is the atmosferical error due to the propagation in the ionosphere and troposphere (t_{iono} + t_{tropo})
 - $-E_i$ is the ephemeris error for the j-th satellite
 - η represent other error sources (multipath, receiver noise,)

Positioning errors

The set of equations to solve is then

$$\Delta \rho + \delta \rho = H(\Delta x + \delta x)$$

• where δx represents the error in the postion and time estimation

$$\delta \mathbf{x} = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \mathbf{H}^T \delta \boldsymbol{\rho}$$

The LS solution is valid under the hypotesis of linearly independent equations

Remarks

There are two different contribution to the error

$$\left(\mathbf{H}^T\mathbf{H}\right)^{-1}\mathbf{H}^T$$

depends only on the satellite geometry

depends on the error in the pseudorange estimation

- The pseudorange errors can be modeled as random variables
- The elements of the error vector δρ can be considered as random variables
 - gaussian with zero mean
 - identically distributed
 - independent
 - with variance σ²_{UERE}

$$\mathbf{cov}(\mathbf{\delta x}) = E\left(\mathbf{H}^T\mathbf{H}\right)^{-1}\mathbf{H}^T\mathbf{\delta\rho\delta\rho}^T\mathbf{H}\left(\mathbf{H}^T\mathbf{H}\right)^{-1}\right)$$

$$\mathbf{cov}(\mathbf{\delta x}) = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{cov}(\mathbf{\delta \rho}) \mathbf{H} (\mathbf{H}^T \mathbf{H})^{-1}$$

$$\operatorname{cov}(\delta \rho) = \mathbf{I}_{n \times n} \sigma_{UERE}^2$$

$$\mathbf{cov}(\mathbf{\delta x}) = \left(\mathbf{H}^T \mathbf{H}\right)^{-1} \sigma_{UERE}^2$$

Let's define

$$\mathbf{cov}(\mathbf{\delta x}) = \mathbf{G}\sigma_{UERE}^2$$

where

$$\mathbf{G} = (\mathbf{H}^T \mathbf{H})^{-1} = \begin{bmatrix} g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44} \end{bmatrix}$$

 It is then possible to observe the relation of the error for each dimension

$$\sigma_x^2 = g_{11}\sigma_{UERE}^2$$

$$\sigma_y^2 = g_{22}\sigma_{UERE}^2$$

$$\sigma_z^2 = g_{33}\sigma_{UERE}^2$$

$$\sigma_{c\Delta t}^2 = g_{44}\sigma_{UERE}^2$$

Geometric Dilution Of Precision

The GDOP factor is defined as

$$GDOP = \sqrt{tr \left\{ \left(\mathbf{H}^T \mathbf{H} \right)^{-1} \right\}}$$

obtaining

$$\sqrt{tr\{\operatorname{cov}(\boldsymbol{\delta}\mathbf{x})\}} = \sqrt{\sigma_{x_u}^2 + \sigma_{y_u}^2 + \sigma_{z_u}^2 + \sigma_{c\Delta t}^2} =$$

$$=GDOP\times\sigma_{UERE}$$

The geometrical problem

 The impact of the pseudorange error on the final estimated position depends on the displacement of the satellites (reference points)

Dilution of precision

- Partial factors can be defined:
- Position Dilution of Precision

PDOP =
$$\sqrt{g_{11} + g_{22} + g_{33}}$$

Time Dilution of Precision

$$TDOP = \sqrt{g_{44}}$$

Horizontal Dilution of Precision

$$HDOP = \sqrt{g_{11} + g_{22}}$$

GDOP example

End of Part II

