CHAPTER 1

Continuous Functions in Euclidean Spaces

1. Continuous Functions

DEFINITION 1.1. Let $(X; \rho)$ and $(Y; \eta)$ be two metric spaces, $f: X \to Y$ and $x_0 \in X$.

- f is continuous at x_0 if $\forall \epsilon > 0 \; \exists \delta > 0$ such that $\forall x \in X$, if $\rho(x, x_0) < \delta$ then $\eta(f(x), f(x_0) < \epsilon)$
 - f is continuous if f is continuous at all $x_0 \in X$.

Remark 1.2. We may consider the "more general" setting

$$f: D \subseteq X \to Y, x_0 \in D.$$

f is continuous at x_0 if $\forall \epsilon > 0 \; \exists \delta > 0$ such that $\forall x \in D$, if $\rho(x, x_0) < \delta$ then $\eta(f(x), f(x_0) < \epsilon$.

But this is not more general than the definition since it coincides with the case when D is considered as a metric space with the metric $\rho|_{D\times D}$.

FACT 1.3. Let $(X; \rho)$ and $(Y; \eta)$ be two metric spaces, $f: X \to Y$ and $x_0 \in X$. TFAE:

- (i) f is continuous at x_0
- (ii) $\forall \epsilon > 0 \; \exists \delta > 0 \; such \; that \; f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(f(x_0))$
- (iii) $\forall U \in \mathcal{V}(f(x_0)) \exists V \in \mathcal{V}(x_0) \text{ such that } f(V) \subseteq U.$
- (iv) $\forall U$ open in Y such that $f(x_0) \in U \exists V$ open in X such that $x_0 \in V$ and $f(V) \subseteq U$.

The last characterization shows that continuity is a topological concept.

DEFINITION 1.4. Let $(X; \mathcal{T})$ and $(Y; \mathcal{Y})$ be topological spaces. Let $f: X \to Y$ be a function and $x_0 \in X$.

f is continuous at x_0 if $\forall U \in \mathcal{Y}$ such that $f(x_0) \in U \; \exists V \in \mathcal{T}$ such that $x_0 \in V$ and $f(V) \subseteq U$.

Continuity is related to the more general concept of limit.

DEFINITION 1.5. Let $(X; \rho)$ and $(Y; \eta)$ be topological spaces, $D \subseteq X$. Let $f: D \to Y$ be a function and $x_0 \in X, y_0 \in Y$.

f has limit y_0 at x_0 if:

- x_0 is an accumulation point for D
- $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{such that} \; \forall x \in D \setminus \{x_0\}, \; \text{if} \; \rho(x, x_0) < \delta \; \text{then} \; \eta(f(x), y_0) < \epsilon.$

REMARK 1.6. If f has limit y_0 at x_0 then y_0 is unique, hence we can denote:

$$\lim_{x \to x_0} f(x) = y_0.$$

FACT 1.7.

- (1) $f: D \subseteq X \to Y$, metric spaces, $x_0 \in X$.
 - (i) if x_0 is isolated in D then f is continuous at x_0
 - (ii) if x_0 is an accum. point for D then f is cont. at x_0 iff

$$\lim_{x \to x_0} f(x) = f(x_0).$$

(2)

(3) $f: D \to Y$ function, $x_0 \in D$ accumulation point and $y_0 \in Y$. Then

$$\lim_{x \to x_0} f(x) = y_0 \iff \forall (x_n)_{n \ge 1} \text{ with all } x_n \in D$$

$$and \ x_n \ne x_0 \ \forall n$$

$$and \ \lim_{n \to \infty} x_n = x_0$$

$$we \ have \ \lim_{n \to \infty} f(x_n) = y_0.$$

PROOF. "\Rightarrow" $\forall \epsilon > 0 \ \exists \delta > 0 \ \text{such that} \ \forall x \in D \setminus \{x_0\}, \ \text{if} \ \rho(x, x_0) < \delta \ \text{then} \ \eta(f(x), y_0) < \epsilon.$

Take $(x_n)_{n\geq 1}$ a sequence in X, $x_n \neq x_0 \ \forall n$ and $\lim_{n\to\infty} x_n = x_0$.

Then $\exists N_{\delta} \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, if $n \geq N_{\delta}$ then $\rho(x_n, x_0) < \delta$ hence: $\eta(f(x_n), y_0) < \epsilon$.

"
\(\infty\)" Assume that $\forall (x_n)_{n\geq 1}$ seq. with all elements in D such that $x_n \neq x_0 \ \forall n \in \mathbb{N}$ and $\lim_{n\to\infty} x_n = x_0$ we have $\lim_{n\to\infty} f(x_n) = y_0$.

By contradiction assume that f(x) does not converge to y_0 as x approaches x_0 .

Then $\exists \epsilon_0 > 0$ such that $\forall \delta > 0 \ \exists x \in D \setminus \{x_0\}$ with $\rho(x, x_0) < \delta$ and $\eta(f(x), y_0) \ge \epsilon_0$.

 $\forall n \in \mathbb{N}, \text{ take } \delta = \frac{1}{n} > 0 \text{ hence } \exists x_n \in D \setminus \{x_0\} \text{ with } \rho(x_n, x_0) < \delta = \frac{1}{n} \text{ and } \eta(f(x_n), y_0) \ge \epsilon_0$

$$\eta(f(x_n), y_0) \ge \epsilon_0$$
hence $x_n \xrightarrow{\rho} x_0$ but $f(x_n) \not\xrightarrow[n \to \infty]{\eta} y_0$.

~ V

(4) (Sequential Characterization of Continuity) Let $f: X \to Y$ function and $x_0 \in X$.

Then f is continuous at
$$x_0 \Leftrightarrow \forall (x_n)_{n\geq 1}$$
 seq. in X

such that
$$x_n \xrightarrow[n]{\rho} x_0$$

we have
$$f(x_n) \xrightarrow{\eta} y_0$$
.

(5) (Composition of Functions) Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ functions between metric spaces.

(i)

(ii)

Assume that $x_0 \in X$

f is cont. at x_0 g is cont. at $f(x_0)$

Then $g \circ f$ is continuous at x_0 .

(6) (Functions Between Euclidean Spaces) Let $D \subseteq \mathbb{R}^p$ and $f: D \to \mathbb{R}^q$ be a function, hence $f(x) = (f_1(x), \dots, f_q(x)), \forall x \in D$ where $f_j: D \to \mathbb{R}$ function $\forall j = 1, \dots, q$.

(i) Let
$$x_0 \in D'$$
, i.e. x_0 is an accumulation point for D and $y^{(0)} = (y_1^{(0)}, \dots, y_q^{(0)}) \in \mathbb{R}^q$. Then

$$\lim_{x \to x_0} f(x) = y^{(0)} \Leftrightarrow \forall j = 1, \dots, q \lim_{x \to x_0} f_j(x) = y_j^{(0)}.$$

(ii) Let $x_0 \in D$. Then

f is cont. at $x_0 \Leftrightarrow \forall j = 1, \dots, q$, f_i is cont. at x_0 .

Proof.

(i) "\Rightarrow". Assume that $\lim_{x\to x_0} f(x) = y^{(0)}$ and use the $\|\cdot\|_{\infty}$. $\forall \epsilon>0 \ \exists \delta>0$ such that $\forall x\in D\setminus \{x_0\}$, if $\|x-x_0\|<\delta$ then $\|f(x)-y^{(0)}\|_{\infty}<\epsilon$. Let $j\in\{1,\ldots,q\}$, then

$$|f_j(x) - y_j^{(0)}| \le ||f(x) - y^{(0)}||_{\infty} < \epsilon.$$

"\(= \)". Assume that $\forall j = 1, \ldots, q$

$$\lim_{x \to x_0} f_j(x) = y_j^{(0)}.$$

Then $\forall \epsilon > 0 \ \exists \delta_j > 0$ such that $\forall x \in D \setminus \{x_0\}$, if $\|x - x_0\|_{\infty} < \delta_j$ then $|f_j(x) - y_j^{(0)}| < \epsilon$.

Take $\delta := \min\{\delta_1, \dots, \delta_q\} > 0$.

Then $\forall j = 1, ..., q$, if $||x - x_0||_{\infty} < \delta \le \delta_j$ then $|f_j(x) - y_j^{(0)}| < \epsilon$ hence

$$||f(x) - y^{(0)}||_{\infty} = \max_{j=1}^{q} \{|f_j(x) - y_j^{(0)}|\} < \epsilon.$$

- (ii) if x_0 isolated, nothing to prove.
 - if x_0 accum. point for D, we use (i).

(1)
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- f continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$
- (0,0) is an accum. point for \mathbb{R}^2 and f does not have a limit $(x,y) \to (0,0)$

$$x = 0, y \to 0 \Rightarrow f(0, y) = 0 \to 0$$
$$y = 0, x \to 0 \Rightarrow f(x, 0) = 0 \to 0$$
$$x = y \to 0 \Rightarrow f(x, y) = \frac{1}{2} \to \frac{1}{2}$$

$$(2) f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- f continuous on \mathbb{R}^2
- at $(x_0, y_0) \neq (0, 0)$, clear
- at (0,0)

$$|f(x,y)| = \frac{|xy|}{\sqrt{x^2 + y^2}} \le \frac{\sqrt{x^2 + y^2}}{2} = \frac{\|(x,y)\|_2}{2}$$

DEFINITION 1.9. • A curve in \mathbb{R}^2 is a continuous function $\gamma: I \to \mathbb{R}^q, q \geq 1$ where I is an interval.

- If the interval I = [a, b] is compact, then the curve has *endpoints* $x = \gamma(a)$ and $y = \gamma(b)$. In this case we say that γ is a *path* joining x and y.
 - A curve with endpoints x and y is called *closed* if x = y.

EXAMPLE 1.10. (1) $\gamma(t) = (\cos t, \sin t), \gamma : [0, 2\pi] \to \mathbb{R}^2$ $\gamma(0) = \gamma(2\pi)$ so γ is a closed curve.

(2) $\gamma(t) = (t^2, t^3), \dot{\gamma} : [0, 1] \to \mathbb{R}^2$

 $\gamma(0) = (0,0) \ \gamma(1) = (1,1)$ a curve with endpoints but not closed.

(3) $\gamma(t) = (t\cos t, t\sin t, t), \gamma : \mathbb{R} \to \mathbb{R}^3$

is a curve with no endpoints

a spiral inside $\{(x, y, z)|x^2 + y^2 = |z|\}$ a cone

DEFINITION 1.11. A surface in \mathbb{R}^q $(q \geq 2)$ is a continuous function $F: A \to \mathbb{R}^q$, D open, nonempty in \mathbb{R}^2 , $D \subseteq A \subseteq \bar{D}$.

Example 1.12.

(1) 2-dimensional sphere in \mathbb{R}^3

$$F: [0, 2\pi) \times \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \mathbb{R}^3$$

 $F(\theta, \phi) = (\cos \theta \cos \phi, \sin \theta \cos \phi, \sin \phi)$

$$G: B \to \mathbb{R}^3$$

$$G(x, y, z) = \left(x, y, \sqrt{1 - x^2 - y^2}\right)$$

$$B = \left\{(x, y) | x^2 + y^2 \le 1\right\}$$

2. Continuity and Topology

THEOREM 2.1. (Topological Characterization of Continuity) Let $(X; \rho)$, $(Y; \eta)$ be metric spaces. $f: X \to Y$ a function. TFAE:

- (i) f is continuous.
- (ii) For all U open in Y, $f^{-1}(U)$ is open in X.
- (iii) For all F closed in Y, $f^{-1}(F)$ is closed in X.

Proof.

(i)
$$\Rightarrow$$
 (ii). Let U open in Y and $x \in f^{-1}(U)$, i.e. $f(x) \in U$.
Then $\exists \epsilon > 0$ s.t. $B_{\epsilon}(f(x)) \subseteq U$.
Since f is cont. at $x \exists \delta > 0$ s.t. $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x)) \subseteq U$
hence $B_{\delta}(x) \subseteq f^{-1}(B_{\epsilon}(f(x))) \subseteq f^{-1}(U)$, i.e. $f^{-1}(U)$ is open.

(ii) \Rightarrow (i). Let $x \in X$ and $\epsilon > 0$. Then $B_{\epsilon}(f(x))$ is open in Y hence $f^{-1}(B_{\epsilon}(f(x)))$ is open in X. Since $x \in f^{-1}(B_{\epsilon}(f(x)))$ it follows that $\exists \delta > 0$ s.t. $B_{\delta}(x) \subseteq f^{-1}(B_{\epsilon}(f(x)))$, i.e. $f(B_{\delta}(x)) \subseteq B_{\epsilon}(f(x))$. Hence f is cont. at each $x \in X$.

(ii) \Leftrightarrow (iii). Since $f^{-1}(Y \setminus A) = f^{-1}(Y) \setminus f^{-1}(A) = X \setminus f^{-1}(A)$.

COROLLARY 2.2. Let $\emptyset \neq D \subseteq \mathbb{R}^p$, $f: D \to \mathbb{R}^q$ a function. TFAE:

- (i) f is continuous.
- (ii) For all U open in \mathbb{R}^q , $f^{-1}(U)$ is relatively open in D.
- (iii) For all F closed in \mathbb{R}^q , $f^{-1}(F)$ is relatively closed in D.

COROLLARY 2.3. Let $\emptyset \neq D \subseteq \mathbb{R}^p$ open, $f: D \to \mathbb{R}^q$ a function. TFAE:

- (i) f is continuous.
- (ii) For all U open in \mathbb{R}^q , $f^{-1}(U)$ is open in \mathbb{R}^p .
- (iii) For all F closed in \mathbb{R}^q , $f^{-1}(F)$ is closed in \mathbb{R}^p .

- 3. Continuity and Compactness
- ${\bf 4. \ \ Continuity \ and \ \ } {\bf Connectedness}$
 - 5. Uniform Continuity
 - 6. Sequences of Functions
 - 7. Series of Functions