# **Data Preprocessing Documentation**

# Tech-Triathlon Datathon Challenge

# **Executive Summary**

This document outlines the comprehensive data preprocessing pipeline implemented for the government service prediction system. Our approach transforms raw booking, task, and staffing data into machine-learning-ready features for two primary prediction tasks: service completion time estimation and staffing requirement forecasting.



# **Dataset Overview**

**Input Datasets** 

- Bookings Dataset: 11 columns containing citizen appointment details and processing times
- Tasks Dataset: 4 columns mapping task IDs to sections (requires manual completion)
- Staffing Dataset: 4 columns with daily staffing levels and workload metrics

# **Data Quality Assessment**

- Missing Values: Minimal missing data in core datasets
- **Data Types**: Mixed numeric, categorical, and datetime fields
- Outliers: Processing times > 8 hours removed as anomalous
- Temporal Range: Historical data from 2021-2024

# Phase 1: Tasks Dataset Completion

# Challenge

The tasks dataset arrived with empty task\_name and section\_name fields, requiring manual completion while preserving existing IDs.

#### Solution

```
# Define 6 government sections
section_mapping = {
    'SEC-001': 'First-time Passport Applications',
    'SEC-002': 'Renewals and Updates',
    'SEC-003': 'Corrections and Amendments',
    'SEC-004': 'Lost/Stolen Passport Reissue',
    'SEC-005': 'Document Verification',
    'SEC-006': 'Special Cases'
}
```

### Rationale

- Domain Alignment: Chose Immigration & Emigration services for realistic government context
- Balanced Distribution: Ensured logical task distribution across sections
- **ID Preservation**: Maintained original task\_id and section\_id mappings

# Phase 2: Target Variable Engineering

### Task 1: Processing Time Calculation

```
processing_time_minutes = (check_out_time - check_in_time).total_seconds()
/ 60
```

### **Data Cleaning Steps:**

- Removed negative processing times (data entry errors)
- Capped maximum processing time at 480 minutes (8 hours)

• Filtered out extreme outliers using IQR method

### **Statistical Summary:**

- Mean processing time: ~48 minutes
- Standard deviation: ~24 minutes
- Range: 5-217 minutes after cleaning

# Task 2: Employee Count Target

- Direct extraction from employees\_on\_duty field
- No transformation required as already in target format
- Range: 1-8 employees per section per day

# Phase 3: Feature Engineering

**Temporal Features** 

### **Date/Time Decomposition:**

```
# Extract meaningful time components
day_of_week = appointment_date.dt.dayofweek
month = appointment_date.dt.month
hour = appointment_time.dt.hour
is_weekend = day_of_week.isin([5, 6])
```

#### **Rationale:**

- Day of Week: Government offices have different patterns on weekdays vs weekends
- **Hour**: Processing times vary by appointment time (morning rush, lunch breaks)
- Month: Seasonal variations in service demand
- Weekend Flag: Binary feature for non-working days

### Categorical Encoding

### **Label Encoding Strategy:**

```
# Fit encoders on combined train+test data
all_task_ids = set(train_tasks) | set(test_tasks)
le_task.fit(all_task_ids)
```

#### **Benefits:**

- Handles unseen categories in test data
- Preserves ordinal relationships where applicable
- · Memory efficient compared to one-hot encoding

### **Historical Aggregation Features**

#### **Task-Level Averages:**

```
task_avg_time = bookings.groupby('task_id')['processing_time'].mean()
section_avg_time = bookings.groupby('section_id')['processing_time'].mean()
```

### **Feature Types:**

- Task Average Time: Historical mean processing time per task type
- **Section Average Time**: Historical mean processing time per section
- Hour Average Time: Time-of-day patterns in processing duration
- Section Average Employees: Historical staffing patterns
- Workload Metrics: Total task time per employee ratios

#### Rationale:

- Captures domain-specific patterns not evident in raw features
- Provides baseline estimates for new/unseen combinations
- Reduces model complexity by pre-computing statistical patterns

# Phase 4: Data Integration and Validation

# **Dataset Joining Strategy**

```
# Join bookings with task information
enhanced_df = bookings.merge(tasks, on='task_id', how='left')
```

#### Validation Checks:

- Verified all task\_ids have corresponding section mappings
- Ensured no data leakage between training and test sets
- Confirmed temporal consistency across datasets

### Missing Value Handling

### Strategy by Column:

- Categorical: Mode imputation or "Unknown" category
- Numerical: Mean/median imputation based on distribution
- **Temporal**: Forward-fill for time series patterns
- Historical Averages: Global mean when specific patterns unavailable

# Phase 5: Feature Selection and Scaling

### **Final Feature Sets**

### Task 1 (Processing Time):

• Temporal: day\_of\_week, month, hour, is\_weekend

- Categorical: task id encoded, section id encoded
- Contextual: num\_documents, queue\_number
- Historical: task\_avg\_time, section\_avg\_time, hour\_avg\_time

### Task 2 (Staffing Needs):

- Temporal: day\_of\_week, month, is\_weekend
- Categorical: section\_id\_encoded
- Workload: total\_task\_time\_minutes, section\_avg\_workload
- Historical: section\_avg\_employees

# **Scaling Decision**

### No explicit scaling applied for Random Forest models as they are:

- Tree-based algorithms (scale-invariant)
- Handle mixed data types naturally
- Robust to outliers without preprocessing

# Results and Validation

# **Data Quality Metrics**

- Completeness: 99.8% complete after preprocessing
- Consistency: All temporal relationships validated
- Coverage: Test set categories covered in training data

### Feature Importance Analysis

### **Top contributors for Task 1:**

- 1. Historical task averages (81% importance)
- 2. Queue number (4.9% importance)
- 3. Month(3.5% importance)

### **Top contributors for Task 2:**

- 1. Total task time minutes (98% importance)
- 2. Month (0.8% importance)

# Challenges and Solutions

# Challenge 1: Unseen Categories in Test Data

**Problem**: Test data contained task\_ids not in training set **Solution**: Implemented safe encoding with fallback defaults

### Challenge 2: Temporal Consistency

**Problem**: Future prediction dates beyond training range **Solution**: Extracted cyclical features (day, month) rather than absolute dates

# Challenge 3: Missing Historical Context

**Problem**: New tasks/sections without historical averages **Solution**: Global mean imputation with domain-reasonable defaults

# Conclusion

The preprocessing pipeline successfully transformed raw government service data into robust machine-learning features. Key innovations include:

- Comprehensive temporal decomposition capturing government office patterns
- Multi-level historical aggregation providing context-aware baselines
- Robust encoding strategies handling unseen test scenarios
- **Domain-informed feature engineering** leveraging government service knowledge

This foundation enables accurate prediction of both service completion times and staffing requirements, directly supporting the datathon's goal of optimizing citizen service delivery.