

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesores: Constanza del Campo, Camilo Sánchez

AYUDANTES: AGUSTÍN GILBERT, MARTINA RUZ,

SANTIAGO MARCANO, OMAR NEYRA

## Introducción al Álgebra y Geometría - MAT1207 Ayudantía 3

## 26 de Marzo, 2024

**Ejercicio 1:** Demuestre que para todo  $n \in \mathbb{N}$ , 24 divide a  $2 \cdot 7^n + 3 \cdot 5^n - 5$ .

**Ejercicio 2:** Demuestre que para cada  $n \in \mathbb{N}$ ,

$$\sum_{k=n}^{2n} \frac{1}{k+1} \le \frac{5}{6}.$$

**Ejercicio 3:** Sea  $r \in \mathbb{R}$  con |r| < 1. Demuestre que para todo  $n \in \mathbb{N}$ 

$$|r|^n \le \frac{|r|}{n(1-|r|)+|r|}.$$

**Ejercicio 4:** Sea  $A = \{1, 2, \{1, 3, \{4\}\}\}$ . Determine cuáles de las siguientes afirmaciones son verdad

- 1.  $1 \in A$ ,
- $2. 1 \subseteq A$
- $3. \ 3 \subseteq A$
- 4.  $\{4\} \subseteq A$ ,
- 5. Existe un subconjunto  $B \subseteq A$  tal que  $\{3\} \in B$ ,
- 6.  $\{2\} \subseteq A$ .

**Ejercicio 5:** Sean A, B y C conjuntos. Demuestre que si  $A \cap C \subseteq B \cap C y A \cup C \subseteq B \cup C$ , entonces  $A \subseteq B$ . **Ejercicio 6:** Sean  $A, B, C \subseteq U$ . Pruebe las siguientes afirmaciones

- 1.  $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$ , donde para dos conjuntos X, Y definimos  $X \triangle Y := (X \setminus Y) \cup (Y \setminus X)$ .
- 2.  $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$ .

**Ejercicio 7:** (Propuesto) Definimos  $S_n$  como la suma de los números naturales m tales que  $2^n < m < 2^{n+1}$ . Demuestre que  $S_n$  es divisible por 3.

**Ejercicio 8:** (Propuesto) Demuestre que  $A\triangle(B\triangle C)=(A\triangle B)\triangle C$ .

Los siguientes ejercicios, si bien se pueden resolver con materia actual, son de un nivel mas avanzado y no se espera que puedan resolverlos antes de la prueba de conjuntos. Tómenlos como un desafío.

**Ejercicio 9:** (Propuesto difícil) Sea  $X \neq \emptyset$  un conjunto. Decimos que una colección no vacía  $\mathcal{F}$  de subconjuntos de X es un filtro sobre X si satisface las siguientes propiedades:

- 1.  $\varnothing \notin \mathcal{F}$ ,
- 2. Si  $A \in \mathcal{F}$  y  $X \supseteq B \supseteq A$ , entonces  $B \in \mathcal{F}$ ,
- 3. Si  $A, B \in \mathcal{F}$ , entonces  $A \cap B \in \mathcal{F}$ .

Dado  $M \subseteq X$  no vacío, definimos  $\mathcal{F}_M := \{A \subseteq X : A \supseteq M\}$ . Demuestre que  $\mathcal{F}_M$  es un filtro sobre X. **Ejercicio 10:** (Propuesto difícil) Sea  $X \neq \emptyset$  un conjunto. Decimos que una colección no vacía  $\mathcal{F}$ de subconjuntos de X es un  $\sigma$ -álgebra si

- 1.  $X \in \mathcal{F}$ ,
- 2. Es cerrada bajo complementos, es decir,  $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ ,
- 3. Es cerrada bajo uniones numerables, es decir,  $A_1, \ldots, A_n \in \mathcal{F} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$ .

Dados un conjunto X no vacío y una  $\sigma$ -álgebra  $\mathcal{F}$ , demuestre que:

- 1.  $\varnothing \in \mathcal{F}$ ,
- 2.  $\mathcal{F}$  es cerrada bajo uniones finitas,
- 3.  $\mathcal{F}$  es cerrada bajo intersecciones numerables y finitas,
- 4.  $\mathcal{F}$  es cerrada bajo diferencia de conjuntos, es decir, dados  $A, B \in \mathcal{F}, A \setminus B \in \mathcal{F}$ .

**Ejercicio 11:** (Propuesto difícil) Sea  $X \neq \emptyset$  un conjunto. Decimos que una colección no vacía  $\tau$ de subconjuntos de X es una topología en X si

- 1.  $\emptyset, X \in \tau$ ,
- 2.  $\tau$  es cerrada bajo uniones arbitrarias, es decir, dado un conjunto de índices J y elementos  $A_j \in \tau$  para cada  $j \in J$ ,  $\bigcup_{j \in J} A_j \in \tau$ ,
- 3.  $\tau$  es cerrada bajo intersecciones finitas, es decir, dados  $A_1, \ldots, A_n \in \tau, \bigcap_{k=1}^n A_k \in \tau$ .

Dados X un conjunto no vacío y  $\tau$  una topología en X, diremos que un subconjunto A de X es **abierto** si  $A \in \tau$  y que es **cerrado** si  $A^c \in \tau$ . Demuestre que

- 1.  $\emptyset$  y X son conjuntos abiertos y cerrados.
- 2. Para un conjunto de índices J y conjuntos cerrados  $A_j \subseteq X, j \in J$ , se tiene que  $\bigcap_{j \in J} A_j$  es un conjunto cerrado.
- 3. Si  $A_1, \ldots, A_n \subseteq X$  son cerrados, entonces  $\bigcup_{k=1}^n A_k$  es un conjunto cerrado.