

호텔 예약 취소 여부 예측_project

진행 일정

2022.11.22~2022.11.29

Project 설명

소비자가 호텔 예약을 취소할 지 실제 이용할 지를 예측 > 이진 분 류

0. 데이터 설명

필요한 라이브러리 설치

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.inspection import permutation_importance

!pip install category_encoders import category_encoders as ce

 $from \ sklearn.model_selection \ import \ train_test_split$

from collections import Counter

from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

from sklearn.ensemble import VotingClassifier

 $from \ sklearn.ensemble \ import \ AdaBoostClassifier$

import warnings

warnings.filterwarnings('ignore')

변수 설명

hotel	호텔 종류 / 문자형	credit_card	신용카드 고유번호
lead_time	몇 일 전에 예약했는지 / 숫자	reserved_room_type	예약한 룸 타입
arrival_date_year	도착 연도 / 숫자	assigned_room_type	실제 배정받은 룸 타입
arrival_date_month	도착 월 / 문자	booking_changes	예약 변경 여부
arrival_date_week_number	도착 주 차	deposit_types	예치금
arrival_date_day_of_month	도착 일	agent	예약대행 회사
stays_in_weekend_nights	주말이 몇 일 포함되어있는지	phone_number	핸드폰 번호

stays_in_week_nights	평일이 몇 일 포함되어있는지	Email	고유 이메일			
adults	성인의 수	Name	이름			
children	미성년자의 수	Reservation_status_date	reservation_status를 언 제 고객이 행동하였는지			
babies	아이의 수	previous_bookings_not_canceld	과거 취소하지 않은 이력			
meal	BB(Bed&Breakfast) / HB(Half Board) / FB(Full Board) / SC(파악 불가ㅠ) / Undefined	total_of_special_requests	고객이 특수한 요청을 한 횟수(ex twin bed, high floor)			
country	국적	Required_car_parking_spaces	고객이 요청한 주차 공간 갯수			
market_segment	어떤 유통 채널으로 예약했는지(TA" : "Travel Agents" , "TO" : "Tour Operators")	Adr	1일 평균 요금(모든 숙박 거래의 합계를 총 숙박일수 로 나누어 계산)			
distribution_channel	어떤 유통 채널으로 예약했는지(TA" : "Travel Agents" , "TO" : "Tour Operators")	Customer_type	transient / transient- party / contract / group			
is_repeated_guest	과거 방문 여부	Days_in_waiting_list	예약이 고객에게 확인되기 전까지 대기자 명단에 있었 던 일 수			
previous_cancellations	과거 취소 이력	Company	예약을 하였거나 예약을 지 불할 책임이 있는 '회사/단 체'의 ID			

데이터의 Feature는 34개이고, target변수는 "is_canceled"

데이터 확인

```
train = pd.read_csv('kuggle_train.csv')
train.info()
train = train.drop(columns=['Unnamed: 0'],axis=1)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 76409 entries, 0 to 76408 Data columns (total 35 columns): Non-Null Count Dtype # Column Π Unnamed: 0 76409 non-null int64 76409 non-null object hotel lead_time 76409 non-null 76409 non-null 76409 non-null arrival_date_year arrival_date_month int64 object arrival_date_week_number arrival_date_day_of_month 76409 non-null 76409 non-null 5 6 7 8 int64 int64 76409 non-null 76409 non-null stays_in_weekend_nights int64 stays_in_week_nights adults int64 9 10 76409 non-null int64 children babies 76406 non-null float64 76409 non-null int64 11 76409 non-null 76098 non-null 12 13 object country object 14 15 market_segment 76409 non-null 76409 non-null object distribution_channel is_repeated_guest object 76409 non-null int64 previous_cancellations previous_bookings_not_canceled reserved_room_type 76409 non-null int64 76409 non-null int64 76409 non-null object 76409 non-null 76409 non-null 20 21 22 23 24 25 assigned_room_type booking_changes object 76409 non-null 65885 non-null object float64 deposit_type agent company days_in_waiting_list customer_type 4312 non-null float64 76409 non-null int64 26 27 28 29 30 76409 non-null object 76409 non-null 76409 non-null adr float64 required_car_parking_spaces int64 76409 non-null 76409 non-null total_of_special_requests int64 name object 31 32 email 76409 non-null 76409 non-null phone-number object 33 credit_card 76409
34 is_canceled 76409
dtypes: float64(4), int64(17), object(14)
memory usage: 20.4+ MB 76409 non-null object 76409 non-null int64

```
test = pd.read_csv('kuggle_test.csv')
test.info()
test = test.drop(columns=['Unnamed: 0'],axis=1)
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19102 entries, 0 to 19101
Data columns (total 34 columns):
                                                Non-Null Count Dtype
 0
      Unnamed: 0
                                                19102 non-null
      hotel
lead_time
                                                19102 non-null
19102 non-null
                                                                    object
int64
      arrival_date_year
                                                19102 non-null
                                                                     int64
                                                19102 non-null
19102 non-null
      arrival_date_month
arrival_date_week_number
                                                                    object
                                                                     int64
      arrival_date_day_of_month
stays_in_weekend_nights
                                                19102 non-null
19102 non-null
 6
7
                                                                     int64
                                                                     int64
      stays_in_week_nights
                                                19102 non-null
                                                                     int64
                                                19102 non-null
                                                                     int64
      adults
 10
      children
                                                19101 non-null
                                                                    float64
 11
     babies
                                                19102 non-null
                                                                    int64
 12
13
                                                19102 non-null
                                                                    object
     mea.l
     country
                                                19027 non-null
                                                                    object
                                                19102 non-null
 14
15
      market_segment
                                                                    object
      distribution_channel
                                                19102 non-null
      is_repeated_guest
previous_cancellations
                                                19102 non-null
19102 non-null
 16
                                                                    int64
 18
      previous_bookings_not_canceled
                                               19102 non-nul I
                                                                     int64
                                                19102 non-null
      reserved_room_type
                                                                    object
 20
      assigned_room_type
                                                19102 non-null
                                                                    object
 21
      booking changes
                                                19102 non-null
                                                                     int64
      deposit_type
                                                19102 non-null
                                                                     object
     agent
company
                                                16509 non-null
1117 non-null
 23
                                                                    float64
                                                                    float64
                                                19102 non-null
19102 non-null
 25
      days_in_waiting_list
                                                                    int64
 26
      customer_type
                                                                    object
                                                19102 non-null
19102 non-null
 27
28
                                                                    float64
     required_car_parking_spaces
total_of_special_requests
                                                                    int64
 29
                                                19102 non-null
                                                                     int64
 30 name
                                                19102 non-null
                                                                    object
                                                19102 non-null
 31
      email
                                                                    object
 32 phone-number
                                                19102 non-null
                                                                    object
33 credit_card 1910/
dtypes: float64(4), int64(16), object(14)
memory usage: 5.0+ MB
                                                19102 non-null
                                                                    object
```

1. 전처리

결측치 확인

```
# train 결측치 확인 -> 결측치 확인하는 함수 생성

def check_missing_col(dataframe):
    missing_col = []
    counted_missing_col = 0
    for i, col in enumerate(dataframe.columns):
        missing_values = sum(dataframe[col].isna())
        is_missing = True if missing_values >= 1 else False
        if is_missing:
            counted_missing_col += 1
                 print(f'결측치가 있는 컬럼은: {col}입니다')
                       print(f'해당 컬럼에 총 {missing_values}개의 결측치가 존재합니다.')
                       missing_col.append([col, dataframe[col].dtype])

if counted_missing_col == 0:
                      print('결측치가 존재하지 않습니다')
                       return missing_col

missing_col = check_missing_col(train)
```

결측치가 있는 컬럼은: children입니다 해당 컬럼에 총 3개의 결혹치가 존재합니다. 결혹치가 있는 컬럼은: country입니다 해당 컬럼에 총 311개의 결혹치가 존재합니다. 결혹치가 있는 컬럼은: aspent입니다 해당 컬럼에 총 10524개의 결혹치가 존재합니다. 결촉치가 있는 컬럼은: company입니다 해당 컬럼에 총 72097개의 결혹치가 존재합니다.

```
# test 결측치 확인
missing_col = check_missing_col(test)
```

결혹치가 있는 컬럼은: children입니다 해당 컬럼에 총 1개의 결혹치가 존재합니다. 결촉치가 있는 컬럼은: country입니다 해당 컬럼에 총 75개의 결촉치가 존재합니다. 결촉치가 있는 컬럼은: agent입니다 해당 컬럼에 총 2553개의 결촉치가 존재합니다. 결촉치가 있는 컬럼은: company입니다 해당 컬럼에 총 17985개의 결촉치가 존재합니다.

결측치 처리

```
# agent와 company로 예약했는지의 여부
# agent(대 여러종류가 있겠지)로 예약했으면 1, 빈칸이면 0 (compamy도 동일한 방식)
train[['agent', 'company']] = train[['agent', 'company']].notna().astype(int)
test[['agent', 'company']] = test[['agent', 'company']].notna().astype(int)

# reserved_room_type과 assigned_room_type0 같은지의 여부
train['room_type'] = (train['reserved_room_type'] == train['assigned_room_type']).astype(int)
test['room_type'] = (test['reserved_room_type'] == test['assigned_room_type']).astype(int)

# children의 결측치를 제거
train = train.dropna(subset=['children'], axis=0)
test = test.dropna(subset=['children'], axis=0)
```

원래 reserved_room_type과 assigned_room_type이 같으면 T, 다르면 F를 출력함 but .astype(int) 때문에 같으면 1, 다르면 0 출력

인코딩

천저리 완료된 데이터 확인

```
train = train.drop(['country', 'market_segment', 'reserved_room_type', 'assigned_room_type', 'name', 'email', 'phone-number', 'credit_
train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 76406 entries, 0 to 76408
Data columns (total 28 columns):
                                         Non-Null Count Dtype
 0
     Tead_time
                                         76406 non-null
                                                           int64
     arrival_date_year
                                          76406 non-null
                                                           int64
                                         76406 non-null
                                                           int64
     arrival_date_month
                                          76406 non-null
     arrival_date_week_number
     arrival_date_day_of_month
stays_in_weekend_nights
                                         76406 non-null
                                                           int64
                                          76406 non-null
                                                           int64
     stays_in_week_nights
                                          76406 non-null
                                                           int64
                                          76406 non-null
     adults
                                                           int64
 Ŕ
     children
                                          76406 non-null
                                                           float64
 9
     babies
                                         76406 non-null
76406 non-null
                                                           int64
                                                           float64
     meal
     distribution_channel
 11
                                         76406 non-null
                                                           float64
                                         76406 non-null
                                                           int64
     is_repeated_guest
     previous_cancellations
                                          76406 non-null
                                                           int64
                                         76406 non-null
     previous_bookings_not_canceled
 14
                                                           int64
     booking_changes
                                          76406 non-null
     deposit_type
agent
                                         76406 non-null
76406 non-null
 16
17
                                                           float64
                                                           int64
 18
19
                                         76406 non-null
76406 non-null
     company
                                                           int64
     days_in_waiting_list
                                                           int64
     customer_type
                                          76406 non-null
                                                           float64
                                         76406 non-null
 21
     adr
                                                           float64
                                          76406 non-null
                                                           int64
 22
23
     required_car_parking_spaces
     total_of_special_requests
                                          76406 non-null
                                                           int64
 24
                                          76406 non-null
     is_canceled
                                                           int64
     room_type
hotel_City Hotel
 25
26
                                         76406 non-null
                                                           int64
```

test = test.drop(['country', 'market segment', 'reserved room type', 'assigned room type', 'name', 'email', 'phone-number', 'credit car test.info()

27 hotel_Resort Hotel 76 dtypes: float64(6), int64(20), uint8(2) memory usage: 15.9 MB

<class 'pandas.core.frame.DataFrame'> Int64Index: 19101 entries, 0 to 19101 Data columns (total 27 columns):

total_of_special_requests

26 hotel_Resort Hotel 19 dtypes: float64(6), int64(19), uint8(2) memory usage: 3.8 MB

24

room_type

hotel_City Hotel

76406 non-null

76406 non-null uint8

uint8

Non-Null Count Dtype # Column 0 lead_time arrival_date_year 19101 non-null int64 19101 non-null int64 arrival_date_month 19101 non-null int64 arrival_date_week_number 19101 non-null int64 arrival_date_day_of_month 19101 non-null int64 stays_in_weekend_nights 19101 non-null int64 stays_in_week_nights 19101 non-null int64 adults 19101 non-null 19101 non-null int64 children float64 babies 19101 non-null int64 10 float64 19101 non-null mea.l distribution_channel 19101 non-null 12 is_repeated_guest 19101 non-null int64 previous_cancellations 19101 non-null int64 previous_bookings_not_canceled 19101 non-null int64 15 19101 non-null int64 booking_changes 16 deposit_type 19101 non-null float64 17 agent company 19101 non-null int64 18 19101 non-null int64 19 20 days_in_waiting_list customer_type 19101 non-null 19101 non-null int64 float64 21 22 adr 19101 non-null float64 required car parking spaces 19101 non-null int64

19101 non-null

19101 non-null

19101 non-null

19101 non-null

int64

int64

uint8

2. EDA

data_description = train.describe() data_description

	lood_ti	e arrival_date_year	errival_date_nonth	arrival_date_wook_number	arrival_date_day_of_month	otayo_In_wookand_nighto	etayo_In_wook_nighte	edulto	on! Idren	bab tea		company	days_In_walting_list	oustoner_type	adr	required_car_parking_apaces	total_of_special_requests	Iq_canceled	room_type	notel_City Hotel	hotel_Recort Hotel
count	76406.00000	0 76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76405.000000	7	6406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000	76406.000000
mean	103.94399	7 2016.156781	6.557535	27.188284	15.815080	0.926498	2.501822	1.856032	0.104900	0.008180		0.056435	2.844620	0.871113	101.891700	0.062403	0.571866	0.371083	0.875468	0.664788	0.335262
std	106.8204	1 0.708405	3.098747	13.639386	8.780418	1.002198	1.910022	0.576647	0.399434	0.102829		0.230762	17.876717	0.066004	51.930666	0.246232	0.799970	0.483098	0.330190	0.472085	0.472085
min	0.00000	0 2015.000000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.000000	0.118980	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	18,0000	0 2016.000000	4,000000	16,000000	8.000000	0.000000	1.000000	2.000000	0.000000	0.000000		0.000000	0.000000	0.408230	69.500000	0.000000	0.000000	0.000000	1.000000	0.0000000	0.000000
50%	69,0000	0 2016.000000	7.000000	28.000000	16.000000	1.000000	2.000000	2.000000	0.000000	0.000000		0.000000	0.000000	0.408230	94.500000	0.000000	0.000000	0.000000	1.000000	1,000000	0.000000
75%	160.00000	0 2017.000000	9.000000	38,000000	23.000000	2.000000	3.000000	2.000000	0.000000	0.000000		0.000000	0.000000	0.408230	126.000000	0.000000	1,000000	1.000000	1.000000	1.000000	1.000000
mix	737.00000	0 2017.000000	12.000000	53,000000	81.000000	19.000000	50.000000	55.000000	3.000000	10.000000		1.000000	991.000000	0.408230	5400.000000	8.000000	5.000000	1.000000	1.000000	1,000000	1.000000
8 rows	× 28 columns																				


```
def visualize(axx, yfield):
    sns.regplot(x='is_canceled', y=yfield, data=train, color='#eaa18a', line_kws= {'color': '#f55354'} , ax = axx)
    axx.set_title(yfield)

figure, ((ax1,ax2,ax3,ax4),(ax5,ax6,ax7,ax8),(ax9,ax10,ax11,ax12),(ax13,ax14,ax15,ax16),(ax17,ax18,ax19,ax20),(ax21,ax22,ax23,ax24),(a
figure.set_size_inches(20,12)
for i in range(len(interest_coloumns)):
    visualize(eval(f'ax{i+1}'),interest_coloumns[i])
figure.tight_layout()
```


plt.figure(figsize=(12,10))
sns.heatmap(data = train.corr(method='pearson'), annot=True, fmt = '.2f', linewidths=.5, cmap='Blues')
plt.title('Correlation between features', fontsize=30)

3. 변수 선택

```
X = train.drop(["is_canceled"], axis = 1)
y = train['is_canceled']
```

선택한 독립변수 :

'country', 'market_segment', 'reserved_room_type', 'assigned_room_type','name', 'email', 'phone-number', 'credit_card' feature만 제거

제거한 이유 :

'country', 'name', 'email', 'phone-number', 'credit_card' 는 고객의 고유 개인 정보이기 때문에 target변수와 관련 없다고 판단 reserved_room_type', 'assigned_room_type'은 앞에서 room_type 변수로 합쳤음 'market_segment'과 distribution_channel이 유사해 market_segment 삭제

4. Modeling

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.2, random_state = 777)
```

parameter 튜닝

```
# RandomForest parameter 튜닝
rf_clf = RandomForestClassifier(random_state=777)
grid_parameters={'max_depth':[15], 'min_samples_leaf':[2, 3, 4], 'n_estimators':[100, 200, 300]}
\verb|grid_rf| = \verb|GridSearchCV(rf_clf, param_grid| = \verb|grid_parameters|, cv| = 5, refit| = True)
{\tt grid\_rf.fit(X\_train,y\_train)}
print('GridSearchCV 최적 파라미터:',grid_rf.best_params_)
print("GridSearchCV 최고 정확도:",grid_rf.best_score_)
                           GridSearchCV 최적 파라미터: {'max_depth': 15, 'min_samples_leaf': 2, 'n_estimators': 300}
                           GridSearchCV 최고 정확도: 0.829821320356749
# Decision tree parameter 튜닝
dt_clf = DecisionTreeClassifier(random_state=777)
grid\_parameters = \{ \texttt{'max\_depth':} [13,14,15], \texttt{'min\_samples\_leaf':} [4,5,6], \texttt{'min\_samples\_split':} [2,3,4] \}
grid_dtree = GridSearchCV(dt_clf, param_grid=grid_parameters, cv = 5, refit = True) grid_dtree.fit(X_train,y_train)
print('GridSearchCV 최적 파라미터:',grid_dtree.best_params_)
print("GridSearchCV 최고 정확도:",grid_dtree.best_score_)
                 GridSearchCV 최적 파라미터: {'max_depth': 15, 'min_samples_leaf': 4, 'min_samples_split': 2}
                 GridSearchCV 최고 정확도: 0.8141809789184039
# GB parameter 튜닝
gb = GradientBoostingClassifier(random_state=777)
grid\_parameters = \{ \texttt{'max\_depth':} [4,5], \texttt{'learning\_rate':} [0.3,0.4], \texttt{'min\_samples\_leaf':} [3,4] \}
\verb|grid_gb| = \verb|GridSearchCV(gb, param_grid=grid_parameters, cv = 5, refit = True)|
grid_gb.fit(X_train,y_train)
print('GridSearchCV 최적 파라미터:',grid_gb.best_params_)
print("GridSearchCV 최고 정확도:",grid_gb.best_score_)
                 GridSearchCV 최적 파라미터: {'learning_rate': 0.4, 'max_depth': 5, 'min_samples_leaf': 4}
                 GridSearchCV 최고 정확도: 0.8347948311362793
# XGB parameter 튜닝
xgb = XGBClassifier(random_state=777)
grid_parameters={'max_depth':[4,5],'early_stopping_rounds':[100,200],'learning_rate' :[0.3,0.4]}
grid_xgb = GridSearchCV(xgb, param_grid=grid_parameters, cv = 5, refit = True)
grid_xgb.fit(X_train,y_train)
print('GridSearchCV 최적 파라미터:',grid_xgb.best_params_)
print("GridSearchCV 최고 정확도:",grid_xgb.best_score_)
                  GridSearchCV 최적 파라미터: {'early_stopping_rounds': 100, 'learning_rate': 0.4, 'max_depth': 5}
                  GridSearchCV 최고 정확도: 0.8355310451208616
# Adaboost parameter 튜닝
ada = AdaBoostClassifier(random_state=777)
```

```
grid_parameters={'n_estimators':[100,200],'learning_rate':[0.3,0.4]}
grid_ada = GridSearchCV(ada, param_grid=grid_parameters, cv = 5, refit = True)
grid_ada.fit(X_train,y_train)

print('GridSearchCV 최적 파라미터:',grid_ada.best_params_)
print("GridSearchCV 최고 정확도:",grid_ada.best_score_)
```

GridSearchCV 최적 파라미터: {'learning_rate': 0.4, 'n_estimators': 200} GridSearchCV 최고 정확도: 0.8074896627342719

```
# LogisticRegression parameter 튜닝
lgr = LogisticRegression(random_state=777)
grid_parameters = {'penalty':['l2', 'l1'],'C':[0.01, 0.1, 1]}
grid_lgr = GridSearchCV(lgr, param_grid = grid_parameters, cv = 5, refit = True)
grid_lgr.fit(X_train, y_train)
print('GridSearchCV 최적 파라미터:',grid_lgr.best_params_)
print("GridSearchCV 최고 정확도:",grid_lgr.best_score_)
```

GridSearchCV 최적 파라미터: {'C': 1, 'penalty': '12'} GridSearchCV 최고 정확도: 0.7436847363304168

voting

```
# Soft Voting

rf_clf = RandomForestClassifier(max_depth= 12, min_samples_leaf=3, n_estimators=150,random_state=42)

dt_clf = DecisionTreeClassifier(max_depth= 12, min_samples_leaf= 5, min_samples_split=2,random_state=42)

gb = GradientBoostingClassifier(learning_rate = 0.3, max_depth=5, min_samples_leaf=4,random_state=42)

xgb = XGBClassifier(early_stopping_rounds = 100, learning_rate = 0.4, max_depth= 5,random_state=42)

ada = AdaBoostClassifier(learning_rate = 0.4, n_estimators = 200, random_state=42)

lgr = LogisticRegression(penalty='l2', C=1 , random_state=42)

vo_clf=VotingClassifier(estimators=[('RF',rf_clf),('DT', dt_clf),('GB',gb),('XGB',xgb),('ADA',ada),('LGR',lgr)], voting='soft', random

vo_clf.fit(X_train,y_train)

pred = vo_clf.predict(X_test)

print( "Soft Voting \( \frac{\delta\tilde{\text{PST}}}{\delta\tilde{\text{PST}}}, accuracy_score(y_test,pred))
```

Soft Voting 정확도: 0.8415796044418161

fin

vo_clf(우리가 앞에서 만든 model인)로 실제 임의의 데이터 test를 넣어 취소 여부를 직접 예측하는 코드

```
test = pd.read_csv('test.csv')
final_pred = vo_clf.predict(test)
final_pred.to_csv("team_C.csv") # 예측한 파일을 csv로 저장
```

project comment

결과적으로 예측한 취소 여부의 정확도는 다른 팀에 비해 낮은 수준이었다. 팀별로 사용했던 model은 비슷했기 때문에 modeling과정은 다들 비슷했다. 전처리와 변수 선택 과정에 있어서 옳지 않은 판단을 한 것 같다. 결측치가 많은 변수에서 결측치를 0으로 대체했던 것과 여러 인코딩 방법중 target 인코딩을 사용했던 것이 문제인 것 같다. 모델의 성능만을 높이는 데에만 집중하다보니 전처리 과정을 놓친것 같다. 이 데이터는 특히 변수가 많기 때문에 변수 선택에 있어서 target 변수간의 중요도를 잘못판단 했을 수 있다는 생각을 했다. 변수 중요도를 EDA를 통해 확인했지만 다중공선성의 문제도 생각해봐야한다.

내가 생각한 해결 방법 : 변수 줄이기, 다른 인코딩 방법 사용해보기, 결측치를 0말고 데이터를 더 보존할 수 있는 값으로 대체 해보기,...

우리 팀이 진행한 방법

- 결측치 찾고 해결방안 생각하기
- 인코딩 방안 생각하기
- 타겟변수의 분포 확인하기
- 개별 변수들 사이의 상관관계 파악하기
- 개별 변수들의 분포 확인하기
- 개별 변수들과 타겟 변수사이의 관계 파악하기
- 존재하는 변수들로 새로운 변수 만들기