# Teamnote of 2mic1cup

swishy, lenhanbo, hungcubu

Lát updated on October 11, 2025



| C        | contents                                                                                                                                                                     |                                              |   | 4.7 Extended Euclidean                                                                                                                                      | 14<br>14                                           |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1        | Helpers                                                                                                                                                                      | 2                                            |   | 4.8 Linear Diophantine                                                                                                                                      | $\frac{14}{15}$                                    |
| _        | 1.1 Stress Tester                                                                                                                                                            | 2                                            |   | 4.10 Miller Rabin Primality Test                                                                                                                            | $\frac{15}{15}$                                    |
|          | 1.2 Random                                                                                                                                                                   | $\overline{2}$                               |   | 4.11 Fast Fourier Transform                                                                                                                                 | 15                                                 |
|          |                                                                                                                                                                              |                                              |   | 4.12 OR Convolution                                                                                                                                         | 16                                                 |
| <b>2</b> | Data Structure                                                                                                                                                               | <b>2</b>                                     |   | 4.13 XOR Convolution                                                                                                                                        | 16                                                 |
|          | 2.1 Iterative Segment Tree                                                                                                                                                   | 2                                            |   | 4.19 MOR Convolution                                                                                                                                        | 10                                                 |
|          | 2.2 Lazy Segment Tree                                                                                                                                                        | 2                                            | 5 | String                                                                                                                                                      | 17                                                 |
|          | 2.3 Sparse Table                                                                                                                                                             | 3                                            |   | 5.1 Rolling Hash                                                                                                                                            | 17                                                 |
|          | 2.4 Implicit Treap                                                                                                                                                           | 3                                            |   | 5.2 Z-Function                                                                                                                                              | 17                                                 |
|          | 2.5 Dynamic Segment Tree                                                                                                                                                     | 4                                            |   | 5.3 Prefix Function                                                                                                                                         | 17                                                 |
|          | 2.6 Persistent Segment Tree                                                                                                                                                  | 5                                            |   | 5.4 Manacher's Algorithm                                                                                                                                    | 17                                                 |
|          | 2.7 2D Fenwick Tree                                                                                                                                                          | 5                                            |   | 5.5 Aho-Corasick                                                                                                                                            | 18                                                 |
|          | 2.8 Disjoint Set Union                                                                                                                                                       | 5                                            |   |                                                                                                                                                             |                                                    |
|          | 2.9 Line Container                                                                                                                                                           | 6                                            | 6 | Tree                                                                                                                                                        | 18                                                 |
|          | 2.10 Lichao Tree                                                                                                                                                             | 6                                            |   | 6.1 Tree                                                                                                                                                    | 18                                                 |
|          | 2.11 Ordered Set                                                                                                                                                             | 6                                            |   | 6.2 Lowest Common Ancestor                                                                                                                                  | 19                                                 |
|          | 2.12 Minimum Stack/Deque                                                                                                                                                     | 7                                            |   | 6.3 Heavy Light Decomposition                                                                                                                               | 19                                                 |
|          | 2.13 Dynamic Bitset                                                                                                                                                          | 7                                            |   | 6.4 Centroid Decomposition                                                                                                                                  | 19                                                 |
| 3        | Graph                                                                                                                                                                        | 7                                            | 7 | Geometry (Kactl)                                                                                                                                            | 20                                                 |
|          | 3.1 Graph                                                                                                                                                                    | 7                                            |   | 7.1 Kactl template $\dots$                                                                                                                                  | 20                                                 |
|          | 3.2 Strongly Connected Components                                                                                                                                            | 8                                            |   | 7.2 Point                                                                                                                                                   | 20                                                 |
|          | 3.3 Bridges and Articulations                                                                                                                                                | 8                                            |   | 7.3 CCW                                                                                                                                                     | 20                                                 |
|          | 3.4 Two SAT                                                                                                                                                                  | 9                                            |   | 7.4 Circle Intersection                                                                                                                                     | 21                                                 |
|          | 3.5 MCMF                                                                                                                                                                     | 9                                            |   |                                                                                                                                                             | 21                                                 |
|          | 0.0 1/10/11                                                                                                                                                                  | Э                                            |   | 7.5 Circle Line                                                                                                                                             | 21                                                 |
|          | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10                                           |   | 7.5 Circle Line                                                                                                                                             | 21                                                 |
|          |                                                                                                                                                                              | •                                            |   |                                                                                                                                                             |                                                    |
|          | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10                                           |   | 7.6 Circle Polygon                                                                                                                                          | 21                                                 |
|          | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10<br>11                                     |   | 7.6 Circle Polygon                                                                                                                                          | 21<br>21                                           |
| 4        | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10<br>11                                     |   | <ul> <li>7.6 Circle Polygon</li> <li>7.7 Circle Tagents</li> <li>7.8 Closest pair of points</li> <li>7.9 Convex Hull</li> <li>7.10 Hull Diameter</li> </ul> | 21<br>21<br>22                                     |
| 4        | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10<br>11<br>11<br>12<br>12                   |   | 7.6 Circle Polygon 7.7 Circle Tagents                                                                                                                       | 21<br>21<br>22<br>22                               |
| 4        | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10<br>11<br>11<br>12<br>12<br>12             |   | 7.6 Circle Polygon 7.7 Circle Tagents                                                                                                                       | 21<br>21<br>22<br>22<br>22<br>22<br>22<br>22       |
| 4        | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10<br>11<br>11<br>12<br>12<br>12<br>12<br>13 |   | 7.6 Circle Polygon 7.7 Circle Tagents                                                                                                                       | 21<br>21<br>22<br>22<br>22<br>22<br>22<br>22<br>23 |
| 4        | 3.6 Maximum Flow (Dinic) 3.7 Maximum Matching (Hopcroft Karp) 3.8 General Matching (Blossom)  Math 4.1 Modular Int 4.2 Modular Square Root 4.3 Discrete Log 4.4 Primite Root | 10<br>11<br>11<br>12<br>12<br>12             |   | 7.6 Circle Polygon 7.7 Circle Tagents                                                                                                                       | 21<br>21<br>22<br>22<br>22<br>22<br>22<br>23<br>23 |
| 4        | 3.6 Maximum Flow (Dinic)                                                                                                                                                     | 10<br>11<br>11<br>12<br>12<br>12<br>12<br>13 |   | 7.6 Circle Polygon 7.7 Circle Tagents                                                                                                                       | 21<br>21<br>22<br>22<br>22<br>22<br>22<br>22<br>23 |

# 1 Helpers

#### 1.1 Stress Tester

#### Overview

Simple .bat file for stress testing.

#### Implementation

```
@echo off
   g++ -std=c++20 -o solution test.cpp
   g++ -std=c++20 -o brute brute.cpp
   g++ -std=c++20 -o gen gen.cpp
   for /1 %%x in (1, 1, 1000) do (
       gen > input.in
       solution < input.in > output.out
9
       brute < input.in > output2.out
       fc output.out output2.out > nul
10
11
       if ERRORLEVEL 1 (
12
13
            echo INPUT
            type input.in
14
15
            echo.
            echo SOLUTION OUTOUT
16
            type output.out
            echo.
18
            echo CORRECT OUTPUT
19
20
            type output2.out
21
            echo.
22
23 )
   echo all tests passed
```

#### 1.2 Random

# **■** Overview

Self explanatory.

#### ⟨**/>** Implementation

#### **1** Usage

• uid(a,b) returns random integer between [a,b]

## 2 Data Structure

## 2.1 Iterative Segment Tree

#### Overview

For-loop implementation of segment tree, faster than recursive. Note: Operation that depends on ordering is not supported (For example: Minimum prefix sum)

**§** Time complexity:  $\mathcal{O}(n)$  for constructor,  $\mathcal{O}(\log n)$  for query

## Implementation

```
template<typename T>
   struct SegmentTreeFast{
        vector<T> a;
3
        T defv:
        int n;
6
        SegmentTreeFast(int n, T defv) : n(n), defv(defv){
            a = vector < T > (2 * n, defv);
9
10
        T cmb(T a, T b){ // change if needed}
11
12
            return a + b;
13
14
        void build(){ //array is at i + n index
15
            for (int i = n - 1; i > 0; --i)
16
                a[i] = cmb(a[i << 1], a[i << 1 | 1]);
17
18
19
        void update(int i, T v){
20
            for (a[i += n] = v; i > 1; i >>= 1)
21
22
                a[i >> 1] = cmb(a[i], a[i ^ 1]);
23
24
        T get(int 1, int r){
25
26
            T res = defv;
27
            for (1 += n, r += n; 1 < r; 1 >>= 1, r >>= 1){
28
29
                if (1&1) res = cmb(res, a[1++]);
                if (r&1) res = cmb(res, a[--r]);
30
31
32
            return res;
34
   }:
35
```

## 2.2 Lazy Segment Tree

#### **■** Overview

Segment tree that supports ranged update.

• Time complexity:  $\mathcal{O}(n)$  for constructor,  $\mathcal{O}(\log n)$  for query

#### **⟨/>** Implementation

```
template<typename T>
   class SegmentTreeLazy{
       vector<T> st, lazy;
       T defv;
       SegmentTreeLazy( \verb"int" n, T defv") : n(n), defv(defv) \{
            st = vectorT>(n * 4, defv);
            lazy = vector<T>(n * 4, defv);
10
11
12
        void update(int 1, int r, T v){
13
            _update(0, n - 1, 0, 1, r, v);
14
15
16
       T get(int 1, int r){
17
            return _get(0, n - 1, 1, r, 0);
18
```

```
}
19
20
   private:
21
        T cmb(T 1, T r){
22
23
            return 1 + r;
24
25
        void push(int i, int 1, int r){
   int mid = (1 + r) / 2;
26
27
             lazy[i * 2 + 1] += lazy[i];
28
            lazy[i * 2 + 2] += lazy[i];
29
30
             st[i * 2 + 1] += (mid - 1 + 1) * lazy[i];
             st[i * 2 + 2] += (r - mid) * lazy[i];
32
33
            lazy[i] = 0;
34
35
36
        void _update(int 1, int r, int crr, int q1, int qr,
37
            if (qr < 1 || ql > r)
38
39
                 return:
             if (1 >= q1 && r <= qr){</pre>
41
                 st[crr] += (r - 1 + 1) * v;
42
                 lazy[crr] += v;
43
44
45
46
            push(crr, 1, r);
             int mid = (1 + r) / 2;
48
             _update(1, mid, crr * 2 + 1, ql, qr, v);
49
             _{update(mid + 1, r, crr * 2 + 2, ql, qr, v);}
50
51
             st[crr] = cmb(st[crr * 2 + 1], st[crr * 2 + 2]);
52
53
        }
55
        T _get(int 1, int r, int q1, int qr, int crr){
            if (qr < 1 || ql > r)
56
57
                 return defv;
             if (1 >= q1 && r <= qr)</pre>
58
                 return st[crr];
59
60
             push(crr, 1, r);
             int mid = (1 + r) / 2;
62
            return cmb(_get(1, mid, q1, qr, crr * 2 + 1),
63
             \rightarrow _get(mid + 1, r, ql, qr, crr * 2 + 2));
64
   };
65
```

#### 2.3 Sparse Table

#### Overview

Uses binary lifting for efficient queries, offline only.

# § Time complexity: $\mathcal{O}(n \log n)$ for constructor, $\mathcal{O}(1)$ for query

#### **\'\>** Implementation

```
lg = vector < int > (n + 1, 0);
9
10
              for (int i = 2; i <= n; i++)</pre>
              lg[i] = lg[i / 2] + 1;
for (int i = 0; i < n; i++){</pre>
11
12
                   f.push_back(vector<int>(lg[n] + 1, -1));
13
                   f[i][0] = init[i];
14
15
              for (int j = 1; (1 << j) <= n; j++){
for (int i = 0; (i + (1 << j) - 1) < n; i++)
16
17
                        f[i][j] = cmb(f[i][j-1], f[i+(1 <<
18
                         \hookrightarrow (j - 1))][j - 1]);
19
              }
         }
20
21
         T get(int 1. int r){
22
               int k = lg[r - l + 1];
23
              return cmb(f[1][k], f[r - (1 << k) + 1][k]);</pre>
24
25
26 };
```

## **9** Usage

• Init minimum range query and uses integer type

```
SparseTable<int> rmq(a, [](int a, int b){
return min(a, b);
});
```

#### 2.4 Implicit Treap

## Overview

Implicit treap implementation with range add update and range sum query. push() and upd() functions should be changed accordingly like lazy segment tree.

**§** Time complexity:  $O(\log n)$  on average for all operations, large constant!!

# ⟨♦⟩ Implementation

```
typedef node* pnode;
   struct ImplicitTreap{
   public:
3
        pnode root;
        ImplicitTreap(){
            root = new node(-1, 0);
        void insert(int i, ll val){
            pnode t1, t2;
            split(root, i + 1, 0, t1, t2);
10
            merge(t1, t1, new node(val));
11
12
            merge(root, t1, t2);
13
        void erase(int i){
14
            _erase(root, i + 1, 0);
15
16
        }
        11 query(int 1, int r){
17
            pnode t1, t2, t3;
18
            split(root, r + 2, 0, t2, t3);
19
            split(t2, 1 + 1, 0, t1, t2);
20
21
            11 \text{ res} = t2 -> sum;
22
23
            merge(root, t1, t2);
            merge(root, root, t3);
24
25
```

```
26
            return res;
27
        void update(int 1, int r, 11 val){
28
            pnode t1, t2, t3;
29
            split(root, r + 2, 0, t2, t3);
30
            split(t2, 1 + 1, 0, t1, t2);
32
            t2->add += val;
33
            merge(root, t1, t2);
34
            merge(root, root, t3);
35
36
37
        void split(pnode t, int key, int add, pnode &1,
        → pnode &r){
            if (!t){
38
                1 = r = nullptr;
39
                return:
            }
41
            push(t);
42
            int impl_key = add + _cnt(t->1);
            if (key <= impl_key)</pre>
44
                split(t->1, key, add, l, t->l), r = t;
45
            else
46
47
                split(t->r, key, add + \_cnt(t->l) + 1, t->r,
                 \hookrightarrow r), 1 = t;
            upd(t);
48
        }
49
50
        void merge(pnode &t, pnode 1, pnode r){
51
52
            push(1); push(r);
            if (!1 || !r)
                t = 1? 1 : r;
54
            else if (l->prior > r->prior)
55
                merge(r->1, 1, r->1), t = r;
57
                merge(1->r, 1->r, r), t = 1;
58
59
            upd(t);
        }
60
61
   private:
        void _erase(pnode &t, int key, int add){
62
63
            push(t);
            int impl_key = add + _cnt(t->1);
64
            if (impl_key == key){
65
                pnode it = t;
66
                merge(t, t->1, t->r);
                delete it;
68
69
            else if (key < impl_key)</pre>
70
                _erase(t->1, key, add);
72
                 _erase(t->r, key, add + _cnt(t->l) + 1);
73
            upd(t);
75
        void push(pnode t){
76
            if (!t) return;
77
            t->sum += t->add * (11)_cnt(t);
            t->val += t->add;
79
            if (t->1) t->1->add += t->add;
80
            if (t->r) t->r->add += t->add;
82
            t->add = 0:
83
        }
        int _cnt(pnode t){
85
            if (!t) return 0;
86
87
            return t->cnt;
        11 _sum(pnode t){
89
            if (!t) return 0;
90
91
            push(t);
92
            return t->sum;
93
        void upd(pnode t){
94
            if (!t) return;
            t -> sum = t -> val + _sum(t -> 1) + _sum(t -> r);
96
            t \rightarrow cnt = _cnt(t \rightarrow 1) + _cnt(t \rightarrow r) + 1;
97
98
        }
99 };
```

# 2.5 Dynamic Segment Tree

#### Overview

Range queries and updates on larger range  $(1 \le l \le r \le 10^9)$ 

**Q** Time complexity:  $\mathcal{O}(\log M)$  for every operations, where M is max range

#### **\'>** Implementation

```
ll sum, tl, tr;
        Node *1 = nullptr, *r = nullptr;
3
        Node (ll _tl, ll _tr){
            tl = _tl;
tr = _tr;
6
            sum = 0;
9
10
11
        void extend(){
            if (tl == tr) return;
12
            11 \text{ mid} = (t1 + tr) / 2;
13
14
15
            if (!1)
                1 = new Node(t1, mid);
16
            if (!r)
17
18
                r = new Node(mid + 1, tr);
        }
19
20 };
21
22 class funkysegtree{
        void _upd(Node *node, 11 x, 11 val){
23
            node->sum += val;
24
            if (node->tl > x || node->tr < x)</pre>
25
26
                return;
            if (node->tl == node->tr)
27
28
                return:
29
            11 mid = (node->tl + node->tr) / 2;
30
            node->extend():
31
32
            if (x <= mid)
33
                _upd(node->1, x, val);
34
35
36
                _upd(node->r, x, val);
37
38
        11 _get(Node *node, 11 q1, 11 qr){
39
            if (qr < node->tl || ql > node->tr)
40
                return 0;
41
42
            else if (ql <= node->tl && qr >= node->tr)
43
44
                return node->sum;
45
            11 mid = (node->t1 + node->tr) / 2;
46
            node->extend();
47
48
            if (ql > mid)
49
50
                return _get(node->r, ql, qr);
51
            else if (qr <= mid)</pre>
               return _get(node->1, q1, qr);
52
            else
53
                return _get(node->1, ql, mid) +
54

    _get(node->r, mid + 1, qr);

        }
55
56
57
        Node *root = nullptr;
```

```
59
        ll _size;
60
        funkysegtree(ll __size){
61
            root = new Node(0, __size);
62
            _size = __size;
63
64
65
        void upd(ll x, ll val){
66
            _upd(root, x, val);
67
68
69
        ll get(ll l, ll r){
70
           return _get(root, 1, r);
72
73 };
```

#### 2.6 Persistent Segment Tree

# **■** Overview

Preserving history for every segment tree updates.

**1** Time complexity:  $\mathcal{O}(\log N)$  for every operations

#### **⟨/>** Implementation

```
struct Vertex {
       Vertex *1, *r;
        int sum;
       Vertex(int val) : l(nullptr), r(nullptr), sum(val) {}
        \label{eq:Vertex} \mbox{Vertex *1, Vertex *r) : 1(1), r(r), sum(0) { } \\
            if (1) sum += 1->sum;
            if (r) sum += r->sum;
8
9
   };
10
11
   Vertex* build(ll a[], int tl, int tr) {
12
       if (tl == tr)
13
            return new Vertex(a[t1]);
14
        int tm = (tl + tr) / 2;
15
       return new Vertex(build(a, tl, tm), build(a, tm+1,
16

    tr));
  }
17
18
19
   int get_sum(Vertex* v, int tl, int tr, int l, int r) {
       if (1 > r)
20
21
            return 0;
        if (1 == tl && tr == r)
22
           return v->sum;
       int tm = (t1 + tr) / 2;
24
       return get_sum(v->1, t1, tm, 1, min(r, tm))
25
             + get_sum(v->r, tm+1, tr, max(l, tm+1), r);
  }
27
28
   Vertex* update(Vertex* v, int tl, int tr, int pos, int
29
    → new_val) {
       if (tl == tr)
30
31
            return new Vertex(new_val);
        int tm = (tl + tr) / 2;
32
        if (pos <= tm)</pre>
33
            return new Vertex(update(v->1, tl, tm, pos,
34

    new_val), v->r);
35
            return new Vertex(v->1, update(v->r, tm+1, tr,
36

→ pos, new_val));
37 }
```

#### **0** Usage

• Init and update segment tree with n nodes, each function returns a pointer, save if needed for later.

• Query the segment tree at a specific moment.

```
1 ll res = get_sum(roots[x], 0, n - 1, 1, r);
```

#### 2.7 2D Fenwick Tree

## **■** Overview

Query and update on a 2D array.

• Time complexity:  $\mathcal{O}(\log^2 n)$  for every operations

## ⟨▶ Implementation

```
1 ll bit[1001][1001];
2
   ll n, m;
   void update(ll x, ll y, ll val){
            for (; y <= n; y += (y & (-y))){</pre>
5
                     for (11 i = x; i <= m; i += (i & (-i)))</pre>
6
                             bit[y][i] += val;
            }
8
   }
9
10
   11 query(11 x, 11 y){
11
            11 \text{ res} = 0;
12
            for (ll i = y; i; i -= (i & (-i)))
13
                     for (11 j = x; j; j -= (j & (-j)))
14
                             res += bit[i][j];
15
16
            return res;
   }
17
18
   ll query(ll x1, ll y1, ll x2, ll y2){
19
            11 res = query(x2, y2) - query(x1 - 1, y2) -
20
            \rightarrow query(x2, y1 - 1) + query(x1 - 1, y1 - 1);
            return res;
21
22
   }
```

#### **8** Usage

- query(x, y) returns sum of value from (1,1) to (x,y).
- query(x1, y1, x2, y2) returns sum of value from (x1, y1) to (x2, y2).

#### 2.8 Disjoint Set Union

#### Overview

Union disjoint set lol.

#### • Time complexity: $\mathcal{O}(\alpha(\mathbf{n}))$

# ⟨⟩ Implementation

```
struct DissjointSet{
        vector<int> p;
        int cnt = 0;
3
        DissjointSet(){}
6
        DissjointSet(int n){
            cnt = n;
            p = vector < int > (n, -1);
        }
10
        int find(int n){
11
            return p[n] < 0 ? n : p[n] = find(p[n]);</pre>
12
13
14
        void merge(int u, int v){
15
            if ((u = find(u)) == (v = find(v)))
                 return;
17
18
            cnt--
19
20
            if (p[v] < p[u])</pre>
                 swap(u, v);
21
22
            p[u] += p[v];
23
            p[v] = u;
24
        }
25
26 };
```

#### 2.9 Line Container

#### Overview

Add lines of the form y = kx + m, and query maximum value at point x.

#### • Time complexity: $\mathcal{O}(\log n)$

### Implementation

```
struct Line {
            mutable ll k, m, p;
2
             bool operator<(const Line& o) const { return k <</pre>
3
            bool operator<(ll x) const { return p < x; }</pre>
   };
   struct LineContainer : multiset<Line, less<>>> {
             // (for doubles, use inf = 1/.0, div(a,b) = a/b)
8
            11 div(11 a, 11 b) { // floored division
            return a / b - ((a ^ b) < 0 && a % b); }
bool isect(iterator x, iterator y) {
10
11
                     if (y == end()) return x->p = inf, 0;
12
                      if (x->k == y->k) x->p = x->m > y->m ?
13

    inf : -inf;

                      else x->p = div(y->m - x->m, x->k -
14
                      \hookrightarrow y->k);
                     return x->p >= y->p;
15
16
        //add line y = kx + m
17
             void add(ll k, ll m) {
18
                     auto z = insert({k, m, 0}), y = z++, x =
19
                      while (isect(y, z)) z = erase(z);
20
                      if (x != begin() && isect(--x, y))
21
                      \rightarrow isect(x, y = erase(y));
                      while ((y = x) != begin() \&\& (--x)->p >=
                      → y->p)
```

#### 2.10 Lichao Tree

#### **■** Overview

Add lines of the form y = ax + b, and query maximum value at point x, segment tree implementation.

### • Time complexity: $\mathcal{O}(\log n)$

## **⟨⟩** Implementation

```
struct LichaoTree{
2
        struct Line{
            ll a, b;
            Line(): a(0), b(-inf) {}
4
            Line(ll a, ll b): a(a), b(b) {}
            11 get(11 x){
6
                return a * x + b;
       };
   public:
10
        vector<Line> st;
11
        LichaoTree(int n) : n(n){
13
            st.resize(4 * n):
14
16
        void add_line(Line line, int indx = 1, int l = 0,
        \hookrightarrow int r = -1){
            if (r == -1) r = n;
17
            int m = (1 + r) / 2;
18
            bool left = line.get(1) > st[indx].get(1);
19
20
            bool mid = line.get(m) > st[indx].get(m);
^{21}
            if (mid)
22
23
                swap(line, st[indx]);
            if (r - 1 == 1) return;
24
            else if (left != mid)
                add_line(line, 2 * indx, 1, m);
26
27
                add_line(line, 2 * indx + 1, m, r);
29
        ll query(ll x, int indx = 1, int l = 0, int r = -1){
30
31
            if (r == -1) r = n;
            if (r - l == 1) return st[indx].get(x);
32
            int mid = (1 + r) / 2;
33
            if (x < mid)
34
                return max(st[indx].get(x), query(x, 2 *
35

    indx, 1, mid));
            else
36
37
                return max(st[indx].get(x), query(x, 2 *
                 \hookrightarrow indx + 1, mid, r));
38
        }
   };
39
```

## 2.11 Ordered Set

### **■** Overview

A set that supports finding k-th maximum value, or getting the order of an element.

#### • Time complexity: $O(\log n)$ , large constant

#### ⟨**/>** Implementation

## **0** Usage

 Uses just like a normal set, but with some added functions.

```
ordset<int> s;
s.insert(1);
s.insert(2);
s.insert(4);
s.find_by_order(0) //Returns 1
s.order_of_key(4) //Returns 2
```

## 2.12 Minimum Stack/Deque

### Overview

Maintains minimum value in a stack/deque.

• Time complexity:  $\mathcal{O}(\alpha(\mathbf{n}))$ , large constant

#### ⟨⟩ Implementation

```
struct minstack {
1
            stack<pair<int, int>> st;
2
            int getmin() {return st.top().second;}
            bool empty() {return st.empty();}
            int size() {return st.size();}
            void push(int x) {
                     int mn = x;
                     if (!empty()) mn = min(mn, getmin());
9
                     st.push({x, mn});
10
            void pop() {st.pop();}
            int top() {return st.top().first;}
12
13
            void swap(minstack &x) {st.swap(x.st);}
   };
15
   struct mindeque {
16
            minstack 1, r, t;
17
            void rebalance() {
18
                    bool f = false;
19
20
                     if (r.empty()) {f = true; l.swap(r);}
                     int sz = r.size() / 2;
21
                     while (sz--) {t.push(r.top()); r.pop();}
22
                     while (!r.empty()) {l.push(r.top());
23
                     \hookrightarrow r.pop();}
                     while (!t.empty()) {r.push(t.top());
24
                     \hookrightarrow t.pop();}
                     if (f) 1.swap(r);
            int getmin() {
27
```

```
if (1.empty()) return r.getmin();
28
29
                    if (r.empty()) return l.getmin();
                    return min(l.getmin(), r.getmin());
30
31
32
            bool empty() {return l.empty() && r.empty();}
            int size() {return l.size() + r.size();}
33
            void push_front(int x) {1.push(x);}
34
            void push_back(int x) {r.push(x);}
35
            void pop_front() {if (l.empty()) rebalance();
36
            → 1.pop();}
            void pop_back() {if (r.empty()) rebalance();
37
               r.pop();}
            int front() {if (l.empty()) rebalance(); return
38
            \hookrightarrow 1.top();}
            int back() {if (r.empty()) rebalance(); return
39
            → r.top();}
            void swap(mindeque &x) {1.swap(x.1);
40

    r.swap(x.r);}

41 };
```

## 2.13 Dynamic Bitset

## Overview

Bitset with varied length support. NOTE: This requires relatively new version of GCC, and it might be BUGGED using the shift operator.

• Time complexity: O(n / 32)

## ⟨►⟩ Implementation

```
#include <tr2/dynamic_bitset>
using namespace tr2;
```

## **②** Usage

• Init a dynamic bitset with length n.

```
dynamic_bitset<> bs;
bs.resize(n);
```

# 3 Graph

#### 3.1 Graph

#### Overview

Helper class, some implementations below will use this.

### ⟨▶ Implementation

```
struct Graph{
vector<vector<int>> edg;
int n;

Graph(int n) : n(n){
    edg = vector<vector<int>>(n, vector<int>());
}

void add(int u, int v){
```

```
edg[u].push_back(v);
9
10
        void bi_add(int u, int v){
11
            edg[u].push_back(v);
12
13
            edg[v].push_back(u);
        void clear(){
15
            for (int u = 0; u < n; u++)
16
17
                 edg[u].clear();
18
        void remove_dup(){
19
20
            for (int u = 0; u < n; u++){</pre>
                 sort(edg[u].begin(), edg[u].end());
                 edg[u].erase(unique(edg[u].begin(),
22
                 \rightarrow edg[u].end()), edg[u].end());
            }
^{24}
  };
25
```

## 3.2 Strongly Connected Components

## **■** Overview

Find strongly connected components, compress the graph if needed

#### • Time complexity: $\mathcal{O}(N)$

#### Implementation

```
struct StronglyConnected{
       Graph &G;
2
       vector<vector<int>> components;
       vector<int> low, num, new_num;
        vector<bool> deleted;
       stack<int> st;
       int indx, scc, n;
       StronglyConnected(Graph &G) : G(G), n(G.n){
10
            low = num = new num = vector<int>(n. 0):
            indx = scc = 0;
11
            deleted = vector<bool>(n, 0);
12
13
            for (int i = 0; i < n; i++){</pre>
14
                if (!num[i])
15
                    dfs(i);
16
            }
17
       }
19
        void dfs(int u){
20
            low[u] = num[u] = ++indx;
21
            st.push(u);
23
            for (int v : G.edg[u]){
24
                if (deleted[v]) continue;
                if (!num[v]){
26
                    dfs(v):
27
                    low[u] = min(low[u], low[v]);
28
                }
                else
30
                    low[u] = min(low[u], num[v]);
31
            }
33
            if (low[u] == num[u]){
34
                int crr = -1;
35
                vector<int> cmp;
37
                while (crr != u){
38
                    crr = st.top();
39
                    cmp.push_back(crr);
40
                    st.pop();
41
```

```
42
43
                     new_num[crr] = scc;
                     deleted[crr] = 1;
44
45
46
47
                components.push_back(cmp);
                scc++;
48
            }
49
        }
50
51
        void compress(){
52
53
            Graph _G(scc);
            for (int u = 0; u < n; u++){
                for (int v : G.edg[u]){
55
                     int _u = new_num[u], _v = new_num[v];
56
                     if (_u != _v)
57
                         _G.add(_u, _v);
58
59
            }
60
            G = _G;
61
62
   };
63
```

#### 3.3 Bridges and Articulations

#### Overview

Find bridges and articulations!!

#### • Time complexity: $\mathcal{O}(N)$

## ⟨▶ Implementation

```
struct BridgeArt{
        Graph &G;
2
        vector<int> low, num, arts;
        vector<bool> isart;
        vector<pair<int, int>> bridges;
        int indx. n:
6
        BridgeArt(Graph &G) : G(G), n(G.n){
            indx = 0;
            low = num = vector<int>(n, 0):
10
11
            isart = vector<bool>(n, 0);
12
            for (int i = 0; i < n; i++){</pre>
13
                if (!num[i])
14
                     dfs(i, i);
16
            for (int i = 0; i < n; i++){</pre>
17
                if (isart[i])
18
                     arts.push_back(i);
19
            }
20
        }
21
22
        void dfs(int u, int pre){
23
            low[u] = num[u] = ++indx;
24
            int cnt = 0;
25
            for (int v : G.edg[u]){
27
                if (v == pre) continue;
28
29
                 if (!num[v]){
                     dfs(v, u);
30
                     low[u] = min(low[u], low[v]);
31
32
                     cnt++;
                     if (u == pre){
33
                         if (cnt > 1)
34
                              isart[u] = 1;
35
36
37
                         if (num[u] <= low[v])</pre>
38
```

```
isart[u] = 1;
39
40
                     }
                     if (num[v] == low[v])
41
                          bridges.push_back({u, v});
42
                 }
43
                 else
44
                     low[u] = min(low[u], num[v]);
45
            }
46
47
        }
48
   };
```

#### 3.4 Two SAT

#### **■** Overview

Solve a system of boolean formula, where every clause has exactly two literals.

# • Time complexity: $\mathcal{O}(N+M)$ , M can be a slowing factor

#### Implementation

```
struct TwoSAT{
        vector<vector<int>> edg1, edg2;
2
        vector<int> scc, res;
        vector<bool> b;
        stack<int> topo;
        int n;
        TwoSAT(int n) : n(n){
            edg1 = edg2 = vector<vector<int>>(2 * n);
9
            scc = res = vector < int > (2 * n, 0);
            b = vector < bool > (2 * n, 0);
11
12
13
        void dfs1(ll u){
14
            b[u] = 1;
15
            for (ll v : edg1[u]){
16
                 if (!b[v])
17
                     dfs1(v);
18
            }
19
20
            topo.push(u);
21
22
23
        void dfs2(ll u, ll root){
25
            scc[u] = root;
            for (ll v : edg2[u]){
26
                if (scc[v] == -1)
27
                     dfs2(v, root);
            }
29
        }
30
31
        bool solve(){
32
            for (int i = 0; i < 2 * n; i++){
33
                scc[i] = -1;
34
                 if (!b[i])
35
                     dfs1(i);
36
            }
37
            int j = 0;
39
            while (siz(topo)){
40
41
                11 u = topo.top();
42
                topo.pop();
43
                 if (scc[u] == -1)
44
                     dfs2(u, j++);
45
            }
46
47
```

```
for (int i = 0; i < n; i++){</pre>
48
49
                 if (scc[i * 2] == scc[i * 2 + 1])
                     return 0;
50
                 res[i] = scc[i * 2] > scc[i * 2 + 1];
51
            }
52
53
            return 1;
54
        }
55
56
57
        void add(int x, bool a, int y, bool b){
             int X = x * 2 + (a & 1), Y = y * 2 + (b & 1);
58
             int _X = x * 2 + 1 - (a & 1), _Y = y * 2 + 1 -
59
             \hookrightarrow (b & 1);
60
             edg1[_X].push_back(Y);
61
             edg1[_Y].push_back(X);
63
             edg2[Y].push_back(_X);
            edg2[X].push_back(_Y);
64
65
        }
   };
66
```

## **1** Usage

- The add(x, a, y, b) function add the clause (x OR y), where a, b signify whether x or y is negated or not.
- The solve() function returns 1 if there exist a valid assignment, and 0 otherwise. The valid assignment will then be stored in res.

#### 3.5 MCMF

#### Overview

Find a maximum flow with minimum cost, SPFA implementation.

• Time complexity:  $\mathcal{O}(N^3)$  with a bullshit factor

#### **\'\>** Implementation

```
struct edge{
       int v;
2
       ll cost, capacity;
3
       edge* rv;
5
       edge(int v, ll cost, ll capacity) : v(v),
       6
  };
   struct MCMF{
8
9
       vector<vector<edge*>> edg;
       vector<pair<int, edge*>> par;
10
11
       vector<ll> dis;
12
13
       MCMF(int n){
           edg = vector<vector<edge*>>(n);
14
15
16
       void add_edge(int u, int v, ll capacity, ll cost){
17
           edge* e = new edge(v, cost, capacity);
           edge* re = new edge(u, -cost, 0);
18
19
20
           e->rv = re;
21
           re->rv = e;
22
23
           edg[u].push_back(e);
24
           edg[v].push_back(re);
       }
25
       void spfa(int start){
26
```

```
int n = edg.size();
27
            auto inq = vec(n, 0);
28
            dis = vec(n, inf);
29
            par = vector<pair<int, edge*>>(n, {-1, nullptr});
30
31
            q.push(start);
33
            dis[start] = 0;
34
35
            while (q.size()){
36
                 int u = q.front(); q.pop();
37
                 inq[u] = 0;
38
                 for (auto e : edg[u]){
40
                     if (e->capacity > 0 && dis[e->v] >
41
                     \ \hookrightarrow \ dis[u] \ + \ e\text{-}cost)\{
                          dis[e->v] = dis[u] + e->cost;
42
                         par[e->v] = \{u, e\};
43
                          if (!inq[e->v]){
45
                              inq[e->v] = 1;
46
                              q.push(e->v);
47
                     }
49
50
                 }
            }
51
52
        pl get(int start, int end, ll max_flow = inf){
53
            ll flow = 0, cost = 0;
54
            while (flow < max_flow){</pre>
                 spfa(start);
56
                 if (dis[end] == inf) break;
57
59
                 11 f = max_flow - flow;
                 int u = end;
60
61
                 while (u != start){
                     f = min(f, par[u].y->capacity);
63
                     u = par[u].x;
64
65
66
                 flow += f;
67
                 cost += f * dis[end];
68
                 u = end;
70
                 while (u != start){
71
72
                     par[u].y->capacity -= f;
                     par[u].y->rv->capacity += f;
73
                     u = par[u].x;
74
                 }
75
            if (flow == max_flow || max_flow == inf)
77
78
                 return {flow, cost};
79
            else
                 return {-1, -1};
80
        }
81
82 };
```

## 3.6 Maximum Flow (Dinic)

#### **■** Overview

Maximum flow using Dinic's algorithm.

• Time complexity:  $\mathcal{O}(V^2E)$  for general graphs, but in practice  $\approx \mathcal{O}(E^{1.5})$ 

#### **//>** Implementation

```
template<int V, class T=long long>
2
   class max_flow {
             static const T INF = numeric_limits<T>::max();
3
4
5
             struct edge {
                     int t, rev;
                     T cap, f;
            };
8
9
10
   public:
             vector<edge> adj[V];
11
12
            11 dist[V];
             int ptr[V];
13
14
             bool bfs(int s, int t) {
15
16
                     memset(dist, -1, sizeof dist);
17
                      dist[s] = 0;
                      queue<int> q({ s });
18
                      while (!q.empty() && dist[t] == -1) {
19
20
                               int n = q.front();
                               q.pop();
21
                               for (auto& e : adj[n]) {
22
                                        if (dist[e.t] == -1 &&
23
                                        → e.cap != e.f) {
24
                                                 dist[e.t] =
                                                 \hookrightarrow dist[n] + 1;
                                                 q.push(e.t);
                                        }
26
27
                      return dist[t] != -1;
29
30
31
32
             T augment(int n, T amt, int t) {
                      if (n == t) return amt;
33
34
                      for (; ptr[n] < adj[n].size(); ptr[n]++)</pre>
                               edge& e = adj[n][ptr[n]];
35
                               if (dist[e.t] == dist[n] + 1 &&
36
                               \hookrightarrow e.cap != e.f) {
                                       T flow = augment(e.t,
37
                                        \hookrightarrow min(amt, e.cap -
                                        \hookrightarrow e.f), t);
                                        if (flow != 0) {
38
39
                                                 e.f += flow;
40
                                                 adj[e.t][e.rev].
                                                 \hookrightarrow f -= flow;
                                                 return flow;
42
                              }
43
44
45
                     return 0;
46
47
             void add(int u, int v, T cap=1, T rcap=0) {
48
                     adj[u].push_back({ v, (int)
49
                      \hookrightarrow adj[v].size(), cap, 0 });
                      adj[v].push_back({ u, (int)
                      \rightarrow adj[u].size() - 1, rcap, 0 });
51
52
            T calc(int s, int t) {
53
                     T flow = 0;
54
                      while (bfs(s, t)) {
55
                               memset(ptr, 0, sizeof ptr);
                               while (T df = augment(s, INF, t))
57
                                       flow += df:
58
                      return flow;
60
            }
61
62
             void clear() {
63
                     for (int n = 0; n < V; n++)
64
                              adj[n].clear();
65
66
            }
67
   };
```

# 3.7 Maximum Matching (Hopcroft Karp)

#### Overview

Find maximum matching on bipartite graph.

## • Time complexity: $\mathcal{O}(m\sqrt{n})$ worst case

#### ⟨**/>>** Implementation

```
struct HopcroftKarp{
        vector<int>> edg;
        vector<int> U, V;
        vector<int> pu, pv;
        vector<int> dist;
        //NOTE: This graph is 1-indexed!!!
        HopcroftKarp(int n, int m){
            edg = vector<vector<int>>(n + 1);
9
            for (int i = 0; i < n; i++)
10
                U.push_back(i + 1);
            for (int i = 0; i < m; i++)</pre>
12
                V.push_back(i + 1);
13
15
            pu = vector < int > (n + 1, 0);
            pv = vector < int > (m + 1, 0);
16
            dist = vector<int>(n + 1, inf);
17
18
19
        void add_edge(int u, int v){
20
            edg[u].push_back(v);
21
22
23
        bool bfs(){
24
            queue<int> q;
            for (int u : U){
26
                if (!pu[u]){
27
                     q.push(u);
                     dist[u] = 0;
29
                }
30
31
                     dist[u] = inf;
33
            }
34
            dist[0] = inf;
            while (q.size() > 0){
37
                int u = q.front();
38
                q.pop();
40
                if (dist[u] < dist[0]){</pre>
41
                     for (int v : edg[u]){
42
                         if (dist[pv[v]] == inf){
43
                             q.push(pv[v]);
44
                             dist[pv[v]] = dist[u] + 1;
45
                     }
47
                }
48
            }
49
50
            if (dist[0] == inf)
51
52
                return 0;
            return 1;
54
55
        bool dfs(ll u){
56
            if (u == 0) return 1;
57
            for (int v : edg[u]){
58
                if (dist[pv[v]] == (dist[u] + 1)){
59
                     if (dfs(pv[v])){
60
                         pu[u] = v;
61
                         pv[v] = u;
62
```

```
63
                          return 1;
64
                      }
                 }
65
            }
66
67
             dist[u] = 0;
68
             return 0;
69
70
71
        int solve(){
72
             int res = 0;
73
74
             while (bfs()){
                 for (int u : U){
                      if (!pu[u])
76
                          if (dfs(u))
77
                               res++;
79
80
81
82
            return res;
83
   };
84
```

## 3.8 General Matching (Blossom)

## **■** Overview

Find maximum matching on general graph.

# • Time complexity: $\mathcal{O}(n^3)$ worst case

## ⟨♦⟩ Implementation

```
struct Matching {
        int n;
        vector<vector<int>> g;
        vector<int> mt;
        vector<int> is_ev, gr_buf;
        vector<pi> nx;
6
        int st:
        int group(int x) {
            if(gr_buf[x] == -1 || is_ev[gr_buf[x]] != st)

→ return gr_buf[x];

10
            return gr_buf[x] = group(gr_buf[x]);
11
        void match(int p, int b) {
12
13
            int d = mt[p];
            mt[p] = b;
15
            if(d == -1 || mt[d] != p) return;
            if(nx[p].second == -1) {
16
17
                mt[d] = nx[p].first;
                match(nx[p].first, d);
18
            } else {
19
                match(nx[p].first, nx[p].second);
20
21
                match(nx[p].second, nx[p].first);
22
        }
23
        bool arg() {
24
            is_ev[st] = st;
            gr_buf[st] = -1;
26
            nx[st] = pi(-1, -1);
27
            queue<int> q;
            q.push(st);
29
            while(q.size()) {
30
31
                int a = q.front();
32
                q.pop();
                for(auto b : g[a]) {
33
                    if(b == st) continue;
34
35
                    if(mt[b] == -1) {
                        mt[b] = a;
36
                        match(a, b);
37
```

```
38
                         return true;
                     }
39
                     if(is_ev[b] == st) {
40
                         int x = group(a), y = group(b);
41
                         if(x == y) continue;
int z = -1;
42
                         while(x != -1 | | y != -1) {
44
                             if(y != -1) swap(x, y);
45
                              if(nx[x] == pi(a, b)) {
46
                                  z = x;
47
                                  break;
48
49
                              }
                              nx[x] = pi(a, b);
                             x = group(nx[mt[x]].first);
51
52
                         for(int v : {group(a), group(b)}) {
53
                              while(v != z) {
54
                                  q.push(v);
55
56
                                  is_ev[v] = st;
                                  gr_buf[v] = z;
                                  v = group(nx[mt[v]].first);
58
59
                         }
60
                     } else if(is_ev[mt[b]] != st) {
61
                         is_ev[mt[b]] = st;
62
                         nx[b] = pi(-1, -1);
63
                         nx[mt[b]] = pi(a, -1);
                         gr_buf[mt[b]] = b;
65
66
                         q.push(mt[b]);
67
                     }
                }
68
            }
69
70
            return false:
        Matching(const vector<vector<int>> &_g) :
72
           n(int(_g.size())), g(_g), mt(n, -1), is_ev(n,
            -1), gr_buf(n), nx(n) {
            for(st = 0; st < n; st++)
73
                if(mt[st] == -1) arg();
74
75
        vector<pi> max_match() {
76
            vector<pi> res;
77
            for (int i = 0; i < n; i++){
78
                if(i < mt[i])</pre>
                     res.push_back({i, mt[i]});
80
            }
81
            return res;
82
83
84 };
```

# 4 Math

## 4.1 Modular Int

## **■** Overview

Helper class, some implementations below will use this.

#### **\'\>** Implementation

```
template<1l mod = 1000000007>
struct modu{
    ll val;
    modu(1l x){
        val = x;
        val %= mod;
        if (val < 0) val += mod;
}
modu(){ val = 0; }
</pre>
```

```
operator 11() const { return val; }
11
        modu operator+(modu const& other){ return val +
12

    other.val; }

        modu operator-(modu const& other){ return val -
13
        \hookrightarrow other.val; }
        modu operator*(modu const& other){ return val *
14
        → other.val; }
        modu operator/(modu const& other){ return *this *

    other.inv(); }

        modu operator+=(modu const& other) { *this = *this +
16

    other; return *this; }

        modu operator-=(modu const& other) { *this = *this -
17
        → other; return *this; }
        modu operator*=(modu const& other) { *this = *this *

    other; return *this; }

        modu operator/=(modu const& other) { *this = *this /
19
        → other; return *this; }
        modu operator++(int) {modu tmp = *this; *this += 1;
20

    return tmp;
}
21
        modu operator++() {*this += 1; return *this;}
        modu operator--(int) {modu tmp = *this; *this -= 1;
22
        → return tmp;}
23
        modu operator--() {*this -= 1; return *this;}
        modu operator-() {return modu(-val);}
        friend ostream& operator<<(ostream& os, modu const&</pre>
25
        \rightarrow m) { return os << m.val; }
        friend istream& operator>>(istream& is, modu & m) {

    return is >> m.val; }

27
28
        modu pow(ll x) const{
            if (x == 0)
29
30
                return 1:
            if (x \% 2 == 0){
31
                modu tmp = pow(x / 2);
32
                return tmp * tmp;
33
            }
34
35
            else
36
                return pow(x - 1) * *this;
        }
37
38
        modu inv() const{ return pow(mod - 2); }
39
40 };
```

## 4.2 Modular Square Root

## Overview

Operations on field

$$\langle u, v \rangle = u + v\sqrt{k} \mod p$$

# ⟨**/>>** Implementation

```
11 MOD = 999999893;
1
   11 \text{ sq} = 2;
2
   class EX {
4
     int re, im;
5
      static int trim(int a) {
        if (a \ge MOD) a -= MOD;
        if (a < 0) a += MOD;</pre>
8
9
        return a:
10
     static int inv(const int a) {
11
       int ans = 1:
12
        for (int cur = a, p = MOD - 2; p; p >>= 1, cur = 111
13
        → * cur * cur % MOD) {
         if (p&1) ans = 111 * ans * cur % MOD;
14
```

```
15
       return ans;
16
17
   public:
18
      EX(int re = 0, int im = 0) : re(re), im(im) {}
19
      EX& operator=(EX oth) { return re = oth.re, im =

    oth.im, *this; }

21
      int norm() const {
       return trim((111 * re * re - 111 * sq * im % MOD *

    im) % MOD);

23
24
      EX conj() const {
       return EX(re, trim(MOD - im));
25
26
27
      EX operator*(EX oth) const {
       return EX((111 * re * oth.re + 111 * sq * im % MOD *

→ oth.im) % MOD,

                  (111 * re * oth.im + 111 * im * oth.re) %
29
                  \hookrightarrow MOD);
30
      EX operator/(int n) const {
31
       return EX(111 * re * inv(n) % MOD, 111 * im * inv(n)
32

→ % MOD);

33
      EX operator/(EX oth) const { return *this * oth.conj()
      → / oth.norm(); }
      EX operator+(EX oth) const { return EX(trim(re +
35
      \hookrightarrow oth.re), trim(im + oth.im)); }
      EX operator-(EX oth) const {
36
       return EX(trim(re - oth.re), trim(im - oth.im));
37
38
      EX pow(long long n) const {
39
       EX ans(1);
40
       for (EX a = *this; n; n >>= 1, a = a * a) {
41
42
          if (n\&1) ans = a * ans;
43
       return ans;
44
45
      bool operator==(EX oth) const { return re == oth.re

    and im == oth.im; }

      bool operator!=(EX oth) const { return not (*this ==
47
      \hookrightarrow oth); }
      int real() const& { return re; }
48
     int imag() const& { return im; }
49
   };
```

#### 4.3 Discrete Log

## **■** Overview

Given a, b, m, find any x that satisfy

 $a^x = b \mod m$ 

#### • Time complexity: $\mathcal{O}(N \log \log N)$

## **⟨⟩** Implementation

```
// Returns minimum x for which a ^ x % m = b % m.
int solve(int a, int b, int m) {
    a %= m, b %= m;
    int k = 1, add = 0, g;
    while ((g = gcd(a, m)) > 1) {
        if (b == k)
            return add;
        if (b % g)
            return -1;
        b /= g, m /= g, ++add;
        k = (k * 1ll * a / g) % m;
}
```

```
13
14
        int n = sqrt(m) + 1;
        int an = 1;
15
        for (int i = 0; i < n; ++i)
16
            an = (an * 111 * a) \% m;
17
18
        unordered_map<int, int> vals;
19
        for (int q = 0, cur = b; q <= n; ++q) {</pre>
20
            vals[cur] = q;
21
            cur = (cur * 111 * a) % m;
22
23
24
        for (int p = 1, cur = k; p <= n; ++p) {</pre>
            cur = (cur * 111 * an) % m;
26
            if (vals.count(cur)) {
27
                int ans = n * p - vals[cur] + add;
28
29
                return ans;
30
        }
31
32
        return -1;
33 }
```

#### 4.4 Primite Root

### Overview

Given a, n, find g so that for any a such that gcd(a, n) = 1, there exists k such that

$$g^k = a \mod n$$

#### • Time complexity: $\mathcal{O}(Ans \cdot \log \phi(n) \cdot \log n)$

#### **⟨/>** Implementation

```
int powmod (int a, int b, int p) {
        int res = 1;
        while (b)
3
            if (b & 1)
                res = int (res * 111 * a % p), --b;
5
                a = int (a * 111 * a % p), b >>= 1;
8
        return res:
9
   }
10
   int generator (int p) {
11
        vector<int> fact:
12
        int phi = p-1, n = phi;
        for (int i=2; i*i<=n; ++i)</pre>
14
            if (n % i == 0) {
15
                fact.push_back (i);
16
                while (n % i == 0)
17
                    n /= i;
18
            }
19
        if (n > 1)
20
            fact.push_back (n);
21
22
23
        for (int res=2; res<=p; ++res) {</pre>
            bool ok = true;
            for (size_t i=0; i<fact.size() && ok; ++i)</pre>
25
                ok &= powmod (res, phi / fact[i], p) != 1;
26
27
            if (ok) return res;
28
        return -1:
29
30 }
```

#### 4.5 Euler's Totient Funnction

## Overview

Find  $\phi(i)$  for i from 1 to N.

#### • Time complexity: $\mathcal{O}(N \log \log N)$

#### **⟨/>** Implementation

```
int phi[def];
void phi(int n) {
    phi[0] = 0;
    phi[1] = 1;
    for (int i = 2; i <= n; i++)
        phi[i] = i - 1;

for (int i = 2; i <= n; i++)
    for (int j = 2 * i; j <= n; j += i)
        phi[j] -= phi[i];
}</pre>
```

#### 4.6 Chinese Remainder Theorem

#### Overview

Given a system of congruences

```
a = a_1 \mod M_1, a = a_2 \mod M_2, \dots
```

where  $M_i$  might not be pairwise coprime, find any a that satisfy it.

#### • Time complexity: $\mathcal{O}(N \log \max(M_i))$

#### Implementation

```
typedef __int128_t i128;
   i128 exeuclid(i128 a, i128 b, i128& x, i128& y){
        if (b == 0) {
            x = 1;
            y = 0;
            return a;
6
        i128 x1, y1;
9
        i128 d = exeuclid(b, a % b, x1, y1);
        x = y1;
10
11
        y = x1 - y1 * (a / b);
        return d;
12
13 }
14
    struct CBT{
15
        i128 A = 0, M = 0;
16
        void add(i128 a, i128 m){
17
             a = ((a \% m) + m) \% m;
18
             i128 _M = M;
19
             if (M == 0){
20
                 A = a, M = m;
21
                 return;
23
            if (A == -1) return;
24
25
             i128 p, q;
             i128 g = exeuclid(M, m, p, q);
if ((a - A) % g != 0){
27
                 A = -1, M = -1;
28
                 return;
29
30
             i128 \text{ mul} = (a - A) / g;
31
```

# **9** Usage

- The add(x, y) function add the condition  $a = x \mod y$ .
- If  $a \neq -1$ , the solution a will satisfy  $a = A \mod M$ .

#### 4.7 Extended Euclidean

# **■** Overview

Given a, b, find any x, y that satisfy

$$ax + by = gcd(a, b)$$

Note that the function pass x, y by reference and returns gcd(a, b).

## • Time complexity: $\mathcal{O}(\log n)$

#### **\'>** Implementation

```
int extended_euclid(int a, int b, int& x, int& y) {
       if (b == 0) {
2
           x = 1;
           y = 0;
           return a;
6
       int x1, y1;
       int d = extended_euclid(b, a % b, x1, y1);
       x = y1;
9
       y = x1 - y1 * (a / b);
10
11
       return d;
12 }
```

## 4.8 Linear Diophantine

#### **■** Overview

Given a, b, c, find any x, y that satisfy

$$ax + by = c$$

#### • Time complexity: $\mathcal{O}(\log n)$

#### ⟨→ Implementation

```
if (b < 0) y0 = -y0;
return true;
}</pre>
```

## 4.9 Matrix

#### **■** Overview

Matrix helper class.

## ⟨►⟩ Implementation

```
template <typename T>
    struct Matrix{
        vector<vector<T>> m;
        Matrix (vector<vector<T>> &m) : T(m){}
        Matrix (int r, int c) {
            m = vector<vector<T>>(r, vector<T>(c));
        int row() const {return m.size();}
        int col() const {return m[0].size();}
10
11
        static Matrix identity(int n){
12
            Matrix res = Matrix(n, n);
13
            for (int i = 0; i < n; i++)
14
15
                 res[i][i] = 1;
            return res;
16
17
18
        auto & operator [] (int i) { return m[i]; }
19
        const auto & operator[] (int i) const { return m[i];
20
21
22
        Matrix operator * (const Matrix &b){
            Matrix a = *this;
23
            assert(a.col() == b.row());
24
25
            Matrix c(a.row(), b.col());
            for (int i = 0; i < a.row(); i++)</pre>
27
                 for (int j = 0; j < b.col(); j++)
    for (int k = 0; k < a.col(); k++)</pre>
28
29
                         c[i][j] += a[i][k] * b[k][j];
30
31
            return c:
32
        }
33
        Matrix pow(ll x){
34
35
            assert(row() == col());
            Matrix crr = *this, res = identity(row());
            while (x > 0){
37
                 if (x % 2 == 1)
38
39
                     res = res * crr;
40
                 crr = crr * crr;
                 x /= 2;
41
            }
42
            return res;
43
44
   };
45
```

## 4.10 Miller Rabin Primality Test

#### Overview

Deterministic implementation of Miller Rabin.

## • Time complexity: Should be fast

### ⟨**/>>** Implementation

```
11 binpower(ll base, ll e, ll mod) {
        11 result = 1;
2
        base %= mod;
3
        while (e) {
            if (e & 1)
                result = (__int128_t)result * base % mod;
            base = (__int128_t)base * base % mod;
            e >>= 1;
9
        return result:
10
   }
11
12
   bool check_composite(ll n, ll a, ll d, int s) {
13
        11 x = binpower(a, d, n);
14
        if (x == 1 || x == n - 1)
            return false;
16
        for (int r = 1; r < s; r++) {</pre>
17
            x = (_int128_t)x * x % n;
18
19
            if (x == n - 1)
                return false;
20
21
        }
22
        return true;
   };
23
24
   bool MillerRabin(ll n) { // returns true if n is prime,
25
    \hookrightarrow else returns false.
        if (n < 2)
26
27
            return false:
28
        int r = 0;
29
        11 d = n - 1;
30
31
        while ((d & 1) == 0) {
            d >>= 1;
32
            r++;
33
        }
34
35
        for (int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
36

→ 31, 37}) {
37
            if (n == a)
                return true;
38
            if (check_composite(n, a, d, r))
39
40
                return false:
        }
41
42
        return true;
   }
43
```

## 4.11 Fast Fourier Transform

#### **■** Overview

multiplymod(A, B, M) returns C where

$$C[u] = \sum_{i=1}^{|A|} \sum_{j=1}^{|B|} A_i \cdot B_j \mod M \ (i+j=u)$$

# • Time complexity: $O(n \log n)$

#### Implementation

```
for (int i = len >> 1; i < len; i++) {</pre>
                 roots.emplace_back(roots[i]);
                 double angle = 2 * PI * (2 * i + 1 - len) /
9
                 \hookrightarrow (len * 2):
10
                roots.emplace_back(cos(angle), sin(angle));
11
        }
12
   }
13
14
    void fft(vector<cpx> &z, bool inverse) {
15
        int n = z.size();
16
        assert((n & (n - 1)) == 0);
17
        ensure_capacity(n);
18
        for (unsigned i = 1, j = 0; i < n; i++) {</pre>
19
            int bit = n >> 1;
20
            for (; j >= bit; bit >>= 1)
                j -= bit;
22
            j += bit;
23
            if (i < j)
                 swap(z[i], z[j]);
25
26
        for (int len = 1; len < n; len <<= 1) {</pre>
27
            for (int i = 0; i < n; i += len * 2) {</pre>
                for (int j = 0; j < len; j++) {</pre>
29
                     cpx root = inverse ? conj(roots[j +
30
                     → len]) : roots[j + len];
                     cpx u = z[i + j];
31
                     cpx v = z[i + j + len] * root;
z[i + j] = u + v;
32
33
                     z[i + j + len] = u - v;
                }
35
            }
36
        if (inverse)
38
            for (int i = 0; i < n; i++)</pre>
39
40
                z[i] /= n;
41
   vector<int> multiply_mod(const vector<int> &a, const
42
    \hookrightarrow vector<int> &b, int m) {
43
        int need = a.size() + b.size() - 1;
        int n = 1;
44
        while (n < need)
45
            n <<= 1;
46
        vector<cpx> A(n);
47
        for (size_t i = 0; i < a.size(); i++) {</pre>
48
            int x = (a[i] % m + m) % m;
49
            A[i] = cpx(x & ((1 << 15) - 1), x >> 15);
50
51
        fft(A, false);
52
53
54
        vector<cpx> B(n);
        for (size_t i = 0; i < b.size(); i++) {</pre>
55
            int x = (b[i] % m + m) % m;
56
            B[i] = cpx(x & ((1 << 15) - 1), x >> 15);
57
58
        fft(B, false);
59
60
        vector<cpx> fa(n);
61
        vector<cpx> fb(n);
62
        for (int i = 0, j = 0; i < n; i++, j = n - i) {
63
            cpx a1 = (A[i] + conj(A[j])) * cpx(0.5, 0);
            cpx \ a2 = (A[i] - conj(A[j])) * cpx(0, -0.5);
65
            cpx b1 = (B[i] + conj(B[j])) * cpx(0.5, 0);
66
67
            cpx b2 = (B[i] - conj(B[j])) * cpx(0, -0.5);
            fa[i] = a1 * b1 + a2 * b2 * cpx(0, 1);
68
            fb[i] = a1 * b2 + a2 * b1;
69
        }
70
        fft(fa, true);
72
        fft(fb, true);
73
74
        vector<int> res(need);
        for (int i = 0; i < need; i++) {</pre>
75
            long long aa = (long long)(fa[i].real() + 0.5);
76
            long long bb = (long long)(fb[i].real() + 0.5);
77
            long long cc = (long long)(fa[i].imag() + 0.5);
            res[i] = (aa % m + (bb % m << 15) + (cc % m <<
79
            \rightarrow 30)) % m;
```

#### 4.12 OR Convolution

#### **■** Overview

convoluteor(A, B) returns C where

$$C[u] = \sum_{i=1}^{|A|} \sum_{j=1}^{|B|} A_i \cdot B_j \mod M \ (i|j=u)$$

# • Time complexity: $\mathcal{O}(2^N \cdot N)$

#### **⟨/>** Implementation

```
vector<int> convolute_or(vector<int> &a, vector<int> &b){
        int n = a.size();
2
         for (int i = 0; i < n; i++) for (int j = 0; j < (1)
3
         \hookrightarrow << n); j++){
             if ((j >> i) & 1){
 4
                  a[j] += a[j - (1 << i)];

b[j] += b[j - (1 << i)];
 5
 7
 8
9
        for (int i = n - 1; i >= 0; i--){
             for (int j = (1 << n) - 1; j >= 0; j--){}
10
                  if ((j >> i) & 1)
11
                      a[j] = a[j - (1 << i)];
12
13
        }
14
15
        auto c = vector<int>(n, 0);
         for (int i = n - 1; i < (1 << n); i++)
16
             c[i] = a[i] * b[i];
17
        for (int i = n - 1; i >= 0; i--){
   for (int j = (1 << n) - 1; j >= 0; j--){
18
19
20
                  if ((j >> i) & 1)
21
                       c[j] = c[j - (1 << i)];
22
        }
23
   }
24
```

#### 4.13 XOR Convolution

#### Overview

idk lol.

#### **\'\>** Implementation

```
11
        }
12
   }
13
   void xorconv2(vector<int> &a,int modul){ // chuyen tu
14
       dang dac biet ve dang binh thuong => dap an sau khi
        int n = a.size():
15
16
        for(int m = 1; m<n; m*=2){</pre>
             for(int i = 0 ; i < n; i+= 2 * m){</pre>
17
                 for(int j = 0; j <m; ++ j){</pre>
18
                     int x = a[i + j];
19
20
                      int y = a[i + j + m];
                      a[i + j] = (x + y) \mod ul;
21
                      a[i + j + m] = (x-y+modul) \% modul;
22
                 }
23
            }
        }
25
        for(int i = 0;i<n;++i){</pre>
26
            a[i] = 1LL * (ll)a[i] * binpow(n,modul - 2,
27

    modul) %modul;

28
   }
29
```

# 5 String

# 5.1 Rolling Hash

#### **■** Overview

Rolling hash implementation, use multiple mod if necessary.

#### • Time complexity: $\mathcal{O}(N)$

#### Implementation

```
struct hashu{
1
            11 n;
            vector<dd> p, h;
            hashu(string s){
                    n = s.size();
                    p = vector < dd > (n + 1);
                    h = vector < dd > (n + 1);
9
                    p[0] = \{1, 1\};
10
                    for (int i = 1; i <= n; i++)</pre>
                            p[i] = p[i - 1] * base;
12
                    for (int i = 1; i <= n; i++)
13
                            h[i] = (h[i - 1] * base) + (s[i
                             }
15
16
            dd get(ll 1, ll r){
17
                    return h[r + 1] - (h[1] * p[r - 1 + 1]);
18
            }
19
20
   };
```

#### 5.2 Z-Function

# Overview

Return an array where the i-th element corresponds to the longest sub-string starting from i that matches the prefix of s.

## • Time complexity: $\mathcal{O}(N)$

## ⟨▶ Implementation

```
vector<int> z_func(string s){
             int n = s.size();
2
             vector<int> v(n);
3
4
             int 1 = 0, r = 0;
5
             for (int i = 1; i < n; i++){</pre>
                      if (i < r)
7
                               v[i] = min(r - i, v[i - 1]);
9
                      while ((v[i] + i) < n && s[v[i]] ==</pre>
                      \hookrightarrow s[v[i] + i])
                               v[i]++;
10
11
                      if ((v[i] + i) > r)
                               1 = i, r = v[i] + i;
             }
13
14
15
             return v;
   }
16
```

#### 5.3 Prefix Function

#### Overview

Return an array where the i-th element corresponds to the longest sub-string ending at i that matches the prefix of s.

#### • Time complexity: $\mathcal{O}(N)$

## ⟨♦⟩ Implementation

```
vector<int> pref_func(string s){
        int n = siz(s);
        vector<int> v(n);
3
        for (int i = 1; i < n; i++){</pre>
            11 j = v[i - 1];
6
            while (j > 0 && s[j] != s[i])
                j = v[j - 1];
9
            if (s[j] == s[i])
                j++;
10
            v[i] = j;
11
        }
12
13
14
        return v:
15
   }
```

## 5.4 Manacher's Algorithm

#### Overview

Return an array where the i-th element corresponds to the longest palindrome that has i as the center, note that the algorithm only works for odd length palindrome, even can also be easily handled by inserting a dummy character in every even indicies.

# • Time complexity: O(N)

### Implementation

```
vector<int> manacher(string s) {
       int n = s.size();
2
        s = "$" + s + "^"
3
       vector<int> p(n + 2);
4
       int 1 = 1, r = 1;
        for(int i = 1; i <= n; i++) {</pre>
           p[i] = max(0, min(r - i, p[1 + (r - i)]));
            while(s[i - p[i]] == s[i + p[i]]) {
9
                p[i]++;
10
            if(i + p[i] > r) {
11
12
                l = i - p[i], r = i + p[i];
14
       return vector<int>(begin(p) + 1, end(p) - 1);
15
16
```

#### 5.5 Aho-Corasick

#### **■** Overview

Construct an automaton of Trie nodes, where dp[i][c] is the next state of i when adding character c. If no state exists, we repeatedly go through the next longest available suffix j of i, and try to get dp[j][c].

• Time complexity:  $\mathcal{O}(M*K)$ , where M is the number of nodes in the Trie, and K is the alphabet size

#### Implementation

```
struct node{
        int p[26];
        int link;
        node(){
            for (int i = 0; i < 26; i++)
6
                p[i] = -1;
   };
9
10
    struct Trie{
11
        int indx = 1;
12
        int dp[def][26];
13
        vector<node> p;
15
        Trie(){
16
            p.push_back(node());
17
18
19
        int add(string s){
20
            ll crr = 0;
21
            for (int i = 0; i < s.size(); i++){</pre>
22
                int c = s[i] - 'a';
23
                 if (p[crr].p[c] == -1){
24
                     p[crr].p[c] = indx++;
                     p.push_back(node());
26
27
                crr = p[crr].p[c];
29
            }
30
31
            return crr;
33
34
        void buildsuffix(){
35
            int n = p.size();
36
37
```

```
queue<int> q;
38
39
             q.push(0);
40
             p[0].link = 0;
41
             for (int i = 0; i < n; i++) for (int j = 0; j <
42

→ 26; j++)

                       dp[i][j] = 0;
43
44
             while (q.size()){
45
                  int u = q.front();
46
                  q.pop();
47
48
                  for (int i = 0; i < 26; i++){</pre>
49
                      int v = p[u].p[i];
if (v != -1){
50
51
                           dp[u][i] = v;
                           p[v].link = (u == 0)? 0 :
53
                            \ \hookrightarrow \ dp[p[u].link][i];
                            q.push(v);
54
55
56
57
58
                            dp[u][i] = dp[p[u].link][i];
                  }
59
60
             }
61
        }
  };
62
```

- 6 Tree
- 6.1 Tree
- Overview

Helper class, some implementations below will use this.

#### ⟨⟩ Implementation

```
1
   struct Tree{
       vector<vector<int>> edg;
2
       vector<int> par, depth;
       int n, root;
       Tree(int n, int root) : n(n), root(root){
            edg = vector<vector<int>>(n, vector<int>());
7
8
9
        void add(int u, int v){
10
            edg[u].push_back(v);
            edg[v].push_back(u);
11
12
13
        void clear(){
           for (int u = 0; u < n; u++)
14
                edg[u].clear();
15
16
        void remove_dup(){
17
           for (int u = 0; u < n; u++){
18
                sort(edg[u].begin(), edg[u].end());
19
                edg[u].erase(unique(edg[u].begin(),
20

→ edg[u].end()), edg[u].end());
21
22
       }
23
        void get_info(){
           par = depth = vector<int>(n, 0);
24
            par[root] = -1;
25
            dfs(root, -1);
26
27
        void dfs(int u, int pre){
28
29
            for (int v : edg[u]){
                if (v == pre) continue;
30
                par[v] = u; depth[v] = depth[u] + 1;
31
```

#### 6.2 Lowest Common Ancestor

# **■** Overview

Uses binary lifting to find the k-th parent of a node.

§ Time complexity:  $\mathcal{O}(n \log n)$  for build,  $\mathcal{O}(\log n)$  for query

# **⟨**⟩ Implementation

```
struct LCA{
        vector<vector<int>> f;
        Tree T;
        int n, k;
        LCA(Tree &_T) : T(_T){
            n = T.n; k = log2(n) + 2;
            for (int i = 0; i < n; i++)
                 f.push_back(vector<int>(k, -1));
            T.get_info();
10
11
            for (int i = 0; i < n; i++)
    f[i][0] = T.par[i];</pre>
12
            for (int j = 1; j < k; j++) for (int i = 0; i <
14

    n; i++){
                 int p = f[i][j - 1];
                 if (p != -1)
16
                     f[i][j] = f[p][j - 1];
17
            }
        }
19
20
        int get(int u, int v){
21
            if (T.depth[u] < T.depth[v])</pre>
                 swap(u, v);
23
            for (int i = k - 1; i \ge 0; i - -){
24
                 if (f[u][i] != -1 && T.depth[f[u][i]] >=
25
                     T.depth[v])
                     u = f[u][i];
26
            }
27
            if (u == v) return u;
            for (int i = k - 1; i >= 0; i--){
29
                 if (f[u][i] != -1 && f[u][i] != f[v][i])
30
                     u = f[u][i], v = f[v][i];
31
            return T.par[u];
33
        }
34
35 };
```

## 6.3 Heavy Light Decomposition

## **■** Overview

Clean implementation of HLD, only uses 1 segment, pos[u] is the position of u on the segment. Change the query function if needed, for now it's just max query using a segment tree

# • Time complexity: $\mathcal{O}(n \log n)$ for build, $\mathcal{O}(\log^2 n)$ for query

# Implementation

```
struct HLD{
1
        vector<int> head, par, h, pos, big;
2
        int n, indx = 0;
        Tree T;
4
        HLD(Tree \&_T) : T(_T){
            head = par = h = pos = big = vector<int>(n, 0);
9
            dfs(0, -1);
10
            decompose(0, 0, -1);
11
        int dfs(int u, int pre){
12
13
            11 res = 1;
            big[u] = -1;
14
15
16
            int crr_size = 0;
            for (int v : T.edg[u]){
17
                 if (v == pre)
18
                     continue:
19
20
                 par[v] = u; h[v] = h[u] + 1;
^{21}
                 int child_size = dfs(v, u);
22
23
24
                 if (child_size > crr_size)
                     big[u] = v, crr_size = child_size;
25
                 res += child_size;
26
27
            }
28
            return res:
29
        7
30
        void decompose(int u, int root, int pre){
            head[u] = root, pos[u] = indx++;
if (big[u] != -1)
32
33
                 decompose(big[u], root, u);
34
            for (int v : T.edg[u]){
35
                if (v == pre || v == big[u])
36
37
                     continue;
                 decompose(v, v, u);
38
            }
39
        }
40
41
        11 query(int u, int v){
            ll res = -inf;
42
            while (head[u] != head[v]){
43
                 if (h[head[u]] < h[head[v]])</pre>
44
                     swap(u, v);
45
                 maxi(res, st.get(pos[head[u]], pos[u]));
46
47
                 u = par[head[u]];
            }
48
49
            if (h[u] < h[v])</pre>
50
51
                 swap(u, v);
            maxi(res, st.get(pos[v], pos[u]));
52
53
54
            return res;
        }
55
   };
```

## 6.4 Centroid Decomposition

#### Overview

Uses the centroid of a tree to decompose into smaller subtrees, each node will be recursively decomposed in  $\mathcal{O}(\log)$  times.

## • Time complexity: $O(n \log n)$

#### ⟨▶ Implementation

```
vector<ll> edg[def];
   bool dead[def];
2
   11 cnt[def];
   void dfs(ll u, ll pre){
5
            cnt[u] = 1;
6
            for (ll v : edg[u]){
                     if (v == pre || dead[v])
                             continue;
                     dfs(v, u);
10
11
                     cnt[u] += cnt[v];
12
   }
13
14
   ll centroid(ll u, ll pre, ll n){
            for (11 v : edg[u]){
16
                    if (v == pre || dead[v])
17
                             continue;
18
                     if (cnt[v] > (n / 2))
19
                             return centroid(v, u, n);
20
            }
21
22
            return u;
23
24
   long long get(ll u){
25
            dfs(u, -1);
            11 root = centroid(u, -1, cnt[u]);
26
            dead[root] = 1;
27
28
            for (ll v : edg[root]){
                    if (!dead[v])
30
31
                             get(v);
32
            }
33
            return res;
34 }
```

# 7 Geometry (Kactl)

#### 7.1 Kactl template

## **■** Overview

Kactl implementation sometimes use their own template, reference this for clarity.

#### Implementation

```
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()

typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
```

#### 7.2 Point

#### Overview

Helper class, some implementations below will use this.

#### ⟨⟩ Implementation

```
template <class T> int sgn(T x) { return (x > 0) - (x <</pre>
   template<class T>
   struct Point {
3
           typedef Point P;
           T x, y;
5
            explicit Point(T x=0, T y=0) : x(x), y(y) {}
6
            bool operator<(P p) const { return tie(x,y) <</pre>
            \hookrightarrow tie(p.x,p.y); }
           bool operator==(P p) const { return
8
            \hookrightarrow tie(x,y)==tie(p.x,p.y); }
            P operator+(P p) const { return P(x+p.x, y+p.y);
           P operator-(P p) const { return P(x-p.x, y-p.y);
10
           P operator*(T d) const { return P(x*d, y*d); }
11
           P operator/(T d) const { return P(x/d, y/d); }
12
13
           T dot(P p) const { return x*p.x + y*p.y; }
            T cross(P p) const { return x*p.y - y*p.x; }
14
           T cross(P a, P b) const { return
15
            T dist2() const { return x*x + y*y; }
16
           double dist() const { return
17
              sqrt((double)dist2()); }
18
            // angle to x-axis in interval [-pi, pi]
            double angle() const { return atan2(y, x); }
19
           P unit() const { return *this/dist(); } // makes
20
           P perp() const { return P(-y, x); } // rotates
21
               +90 degrees
           P normal() const { return perp().unit(); }
            // returns point rotated 'a' radians ccw around
23

    → the origin

           P rotate(double a) const {
                    return P(x*cos(a)-y*sin(a),x*sin(a)+y*co |
25
                    \rightarrow s(a)): }
            friend ostream& operator<<(ostream& os, P p) {</pre>
26
                    return os << "(" << p.x << "," << p.y <<
27
                    → ")"; }
  };
28
```

#### 7.3 CCW

## Overview

- Returns where p is as seen from s towards e.  $1/0/-1 \Leftrightarrow \text{left/on line/right}$ .
- If the optional argument *eps* is given 0 is returned if *p* is within distance *eps* from the line.
- P is supposed to be Point;T; where T is e.g. double or long long.
- It uses products in intermediate steps so watch out for overflow if using int or long long.

#### Implementation

```
8     return (a > 1) - (a < -1);
9 }</pre>
```

#### 7.4 Circle Intersection

## Overview

Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

## • Time complexity: $\mathcal{O}(1)$

#### Implementation

```
typedef Point <double > P;
   bool circleInter(P a,P b,double r1,double r2,pair<P, P>*
   \hookrightarrow out) {
            if (a == b) { assert(r1 != r2); return false; }
            P \text{ vec} = b - a;
            double d2 = vec.dist2(), sum = r1+r2, dif =
5
            \hookrightarrow r1-r2.
                    p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 =

→ r1*r1 - p*p*d2;

            if (sum*sum < d2 || dif*dif > d2) return false;
            P mid = a + vec*p, per = vec.perp() *
             \rightarrow sqrt(fmax(0, h2) / d2);
            *out = {mid + per, mid - per};
9
            return true;
10
11
   }
```

#### 7.5 Circle Line

#### Overview

Finds the intersection between a circle and a line. Returns a vector of either 0, 1, or 2 intersection points. P is intended to be Pointidouble.

#### • Time complexity: $\mathcal{O}(1)$

#### Implementation

```
template < class P>
vector < P > circleLine (P c, double r, P a, P b) {

P ab = b - a, p = a + ab * (c-a).dot(ab) /

ab.dist2();

double s = a.cross(b, c), h2 = r*r - s*s /

ab.dist2();

if (h2 < 0) return {};

if (h2 == 0) return {p};

P h = ab.unit() * sqrt(h2);

return {p - h, p + h};

}</pre>
```

#### 7.6 Circle Polygon

## **■** Overview

Returns the area of the intersection of a circle with a ccw polygon.

## • Time complexity: $\mathcal{O}(n)$

#### Implementation

```
#define arg(p, q) atan2(p.cross(q), p.dot(q))
    double circlePoly(P c, double r, vector<P> ps) {
2
             auto tri = [&](P p, P q) {
3
                      auto r2 = r * r / 2;
                      P d = q - p;
auto a = d.dot(p)/d.dist2(), b =
5
6
                       \hookrightarrow (p.dist2()-r*r)/d.dist2();
                       auto det = a * a - b;
7
                       if (det <= 0) return arg(p, q) * r2;</pre>
                       auto s = max(0., -a-sqrt(det)), t =
9
                          min(1., -a+sqrt(det));
                       if (t < 0 || 1 <= s) return arg(p, q) *</pre>
10
                       \hookrightarrow \quad \texttt{r2;} \quad
                      Pu = p + d * s, v = q + d * (t-1);
11
                      return arg(p,u) * r2 + u.cross(v)/2 +
12
                       \hookrightarrow arg(v,q) * r2;
13
             };
             auto sum = 0.0;
14
15
             rep(i,0,sz(ps))
                       sum += tri(ps[i] - c, ps[(i + 1) %]
16
                       \rightarrow sz(ps)] - c);
17
             return sum:
18 }
```

# 7.7 Circle Tagents

## **■** Overview

Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

## • Time complexity: $\mathcal{O}(1)$

#### **⟨/>** Implementation

```
1
   template<class P>
   vector<pair<P, P>> tangents(P c1, double r1, P c2,
2
        double r2) {
            P d = c2 - c1;
            double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - r2
4

    dr * dr;

            if (d2 == 0 || h2 < 0) return {};</pre>
            vector<pair<P, P>> out;
6
            for (double sign : {-1, 1}) {
7
                    P v = (d * dr + d.perp() * sqrt(h2) *

    sign) / d2;

                    out.push_back({c1 + v * r1, c2 + v *
9
                     \rightarrow r2});
10
            if (h2 == 0) out.pop_back();
11
12
            return out;
13 }
```

#### 7.8 Closest pair of points

#### Overview

Finds the closest pair of points.

• Time complexity:  $\mathcal{O}(n \log n)$ 

## **⟨⟩** Implementation

```
typedef Point<1l> P;
   pair<P, P> closest(vector<P> v) {
            assert(sz(v) > 1);
            set<P> S:
            sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
            pair<11, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
            int j = 0;
            for (P p : v) {
                     P d{1 + (ll)sqrt(ret.first), 0};
                     while (v[j].y \le p.y - d.x)
10
                     \hookrightarrow S.erase(v[j++]);
                     auto lo = S.lower_bound(p - d), hi =

    S.upper_bound(p + d);

                     for (; lo != hi; ++lo)
12
                             ret = min(ret, {(*lo -
                             → p).dist2(), {*lo, p}});
                     S.insert(p);
14
            }
            return ret.second;
16
  }
17
```

#### 7.9 Convex Hull

#### **■** Overview

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

## • Time complexity: $O(n \log n)$

#### ⟨**/>** Implementation

```
typedef Point<11> P;
    vector<P> convexHull(vector<P> pts) {
            if (sz(pts) <= 1) return pts;</pre>
             sort(all(pts));
            vector<P> h(sz(pts)+1);
5
            int s = 0, t = 0;
            for (int it = 2; it--; s = --t,

    reverse(all(pts)))

                     for (P p : pts) {
                               while (t >= s + 2 &&
                               \rightarrow h[t-2].cross(h[t-1], p) <=
                               \hookrightarrow 0) t--;
                               h[t++] = p;
10
11
             return {h.begin(), h.begin() + t - (t == 2 &&
12
             \rightarrow h[0] == h[1]);
13
```

## 7.10 Hull Diameter

## Overview

Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

## • Time complexity: $\mathcal{O}(n)$

#### ⟨♦⟩ Implementation

```
typedef Point<11> P;
2
   array<P, 2> hullDiameter(vector<P> S) {
            int n = sz(S), j = n < 2 ? 0 : 1;
            pair<11, array<P, 2>> res({0, {S[0], S[0]}});
4
5
            rep(i,0,j)
                     for (;; j = (j + 1) % n) {
6
                             res = max(res, {(S[i] - 

    S[j]).dist2(), {S[i],

    S[j]}});

                              if ((S[(j + 1) % n] -
8
                              \hookrightarrow S[j]).cross(S[i + 1] - S[i])

→ >= 0)

                                      break;
9
                    }
10
11
            return res.second;
12
```

#### 7.11 Point inside Hull

## Overview

- Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.
- **NOTE:** Requires **7.12** and **7.2**.
- Time complexity:  $\mathcal{O}(\log n)$

#### Implementation

```
bool inHull(const vector<P>& 1, P p, bool strict = true)
1
      -{
            int a = 1, b = sz(1) - 1, r = !strict;
2
            if (sz(1) < 3) return r && onSegment(1[0],</pre>
3
            → l.back(), p);
            if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
4
            if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0],
            \hookrightarrow l[b], p)<= -r)
6
                     return false;
            while (abs(a - b) > 1) {
                     int c = (a + b) / 2;
                     (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
9
            }
10
            return sgn(l[a].cross(l[b], p)) < r;</pre>
11
   }
12
```

#### 7.12 Point on Segment

### **■** Overview

Returns true iff p lies on the line segment from s to e. Use  $segDist(s, e, p) \le epsilon$  instead when using Point;double;.

#### • Time complexity: $\mathcal{O}(1)$

### ⟨⟩ Implementation

# 7.13 Segment Distance

#### **■** Overview

Returns the shortest distance between point p and the line segment from point s to e.

## • Time complexity: $\mathcal{O}(1)$

#### **⟨/>** Implementation

## 7.14 Segment Intersection

#### Overview

- If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned.
- If no intersection point exists an empty vector is returned.
- If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment.
- NOTE: Requires 7.12.

#### • Time complexity: $\mathcal{O}(1)$

#### Implementation

```
template < class P > vector < P > segInter (P a, P b, P c, P d)
       {
            auto oa = c.cross(d, a), ob = c.cross(d, b),
                 oc = a.cross(b, c), od = a.cross(b, d);
            // Checks if intersection is single non-endpoint
            → point
            if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) <</pre>
            \hookrightarrow 0)
                    return {(a * ob - b * oa) / (ob - oa)};
            set<P> s;
            if (onSegment(c, d, a)) s.insert(a);
            if (onSegment(c, d, b)) s.insert(b);
            if (onSegment(a, b, c)) s.insert(c);
10
11
            if (onSegment(a, b, d)) s.insert(d);
            return {all(s)};
13 }
```

#### 7.15 Line Distance

## Overview

- Returns the signed distance between point p and the line containing points a and b.
- Positive value on left side and negative on right as seen from a towards b. a==b gives nan.

## • Time complexity: $\mathcal{O}(1)$

#### ⟨⟩ Implementation

```
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
    return (double)(b-a).cross(p-a)/(b-a).dist();
}
```

#### 7.16 Line Intersection

#### Overview

- If a unique intersection point of the lines going through s1,e1 and s2,e2 exists {1, point} is returned.
- If no intersection point exists  $\{0, (0,0)\}$  is returned and if infinitely many exists  $\{-1, (0,0)\}$  is returned.

## • Time complexity: $\mathcal{O}(1)$

#### ⟨⟩ Implementation