WESA GAM, ZIP, & ZINB models by station

Sarah Popov

2023-02-06

Data summary

Data summary

Dataset: one count record per station per survey date, 1387 records. 11.3% of the records are zeroes.

Histogram of WESA count

Figure 1: Histogram of WESA count per station per survey date. Plenty of zeroes...

Full dataset variables vs. WESA count

Models

From the initial glmmTMB explorations, two things jumped out:

- 1. The negative binomial distribution fits the data best.
- 2. A simplified random effects structure eliminates all model convergence issues.
- 3. A non-linear approach (GAM) potentially might fit the data better.

```
# Base script by Gavin Simpson
# https://fromthebottomoftheheap.net/2017/05/04/compare-mqcv-with-qlmmtmb/
# https://qist.qithub.com/qavinsimpson/8a0f0e072b095295cf5f7af2762e05a7
library("mgcv")
library("glmmTMB")
## Poisson Models
pgam0 <- gam(predicted wesa ~ station n + year c + s(dos) + s(year,
    bs = "re"), data = dat, family = poisson, method = "ML")
pgam1 <- gam(predicted_wesa ~ station_n + s(flow) + year_c +</pre>
    s(dos) + s(year, bs = "re"), data = dat, family = poisson,
    method = "ML")
pgam2 <- gam(predicted_wesa ~ station_n + s(flow) + station_n:flow +
    year_c + s(dos) + s(year, bs = "re"), data = dat, family = poisson,
    method = "ML")
pm0 <- glmmTMB(predicted_wesa ~ station_n + year_c + I(dos^2) +</pre>
    (1 | year), data = dat, family = poisson)
pm1 <- glmmTMB(predicted_wesa ~ station_n + scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), data = dat, family = poisson)
pm2 <- glmmTMB(predicted_wesa ~ station_n * scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), data = dat, family = poisson)
AIC(pgam0, pgam1, pgam2)
##
               df
                       AIC
## pgam0 38.00000 13327684
## pgam1 47.00000 13095451
## pgam2 51.99883 12651156
AIC(pm0, pm1, pm2)
##
       df
               AIC
## pm0 9 13767483
## pm1 10 13673799
## pm2 15 13274866
## Negative binomial models
nbgam0 <- gam(predicted_wesa ~ station_n + year_c + s(dos) +</pre>
    s(year, bs = "re"), data = dat, family = nb, method = "ML")
nbgam1 <- gam(predicted_wesa ~ station_n + s(flow) + year_c +</pre>
    s(dos) + s(year, bs = "re"), data = dat, family = nb, method = "ML")
nbgam2 <- gam(predicted_wesa ~ station_n + s(flow) + station_n:flow +</pre>
```

```
year_c + s(dos) + s(year, bs = "re"), data = dat, family = nb,
    method = "ML")
nbm0 <- glmmTMB(predicted_wesa ~ station_n + year_c + I(dos^2) +</pre>
    (1 | year), data = dat, family = nbinom2)
nbm1 <- glmmTMB(predicted_wesa ~ station_n + scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), data = dat, family = nbinom2)
nbm2 <- glmmTMB(predicted wesa ~ station n * scale(flow) + year c +</pre>
    I(dos^2) + (1 | year), data = dat, family = nbinom2)
AIC(nbgam0, nbgam1, nbgam2)
##
                df
                         AIC
## nbgam0 31.00055 26240.13
## nbgam1 34.73274 26237.07
## nbgam2 39.06017 26232.10
AIC(nbm0, nbm1, nbm2)
##
        df
                ATC
## nbm0 10 26275.99
## nbm1 11 26274.30
## nbm2 16 26271.95
## Zero-inflated Poisson mgcv's ziplss can only fit using
## REML
zipgam0 <- gam(list(predicted_wesa ~ station_n + year_c + s(dos) +</pre>
    s(year, bs = "re"), ~station_n), data = dat, family = ziplss,
    method = "REML")
zipgam1 <- gam(list(predicted_wesa ~ station_n + s(flow) + year_c +</pre>
    s(dos) + s(year, bs = "re"), ~station_n), data = dat, family = ziplss,
    method = "REML")
zipgam2 <- gam(list(predicted_wesa ~ station_n + s(flow) + station_n:flow +</pre>
    year_c + s(dos) + s(year, bs = "re"), ~station_n + flow),
    data = dat, family = ziplss, method = "REML")
zipgam3 <- gam(list(predicted_wesa ~ station_n + year_c + s(dos) +</pre>
    s(year, bs = "re"), ~station_n * flow), data = dat, family = ziplss,
    method = "REML")
## check the things converged zipgam0$outer.info ## full
## convergence zipgam1$outer.info ## full convergence
## zipgam2$outer.info ## full convergence
## zipgam3$outer.info ## full convergence
zipm0 <- glmmTMB(predicted_wesa ~ station_n + year_c + I(dos^2) +</pre>
    (1 | year), zi = ~station_n, data = dat, family = poisson)
zipm1 <- glmmTMB(predicted_wesa ~ station_n + scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), zi = ~station_n, data = dat, family = poisson)
zipm2 <- glmmTMB(predicted_wesa ~ station_n + scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), zi = ~station_n + flow, data = dat,
    family = poisson)
zipm3 <- glmmTMB(predicted_wesa ~ station_n * scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), zi = ~station_n * flow, data = dat,
```

```
family = poisson)
# nbinom2 better fit than nbinom1 in all 3
zinb0 <- glmmTMB(predicted_wesa ~ station_n + year_c + I(dos^2) +</pre>
    (1 | year), zi = ~station_n, data = dat, family = nbinom2)
zinb1 <- glmmTMB(predicted_wesa ~ station_n + scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), zi = ~station_n + flow, data = dat,
    family = nbinom2)
zinb2 <- glmmTMB(predicted_wesa ~ station_n * scale(flow) + year_c +</pre>
    I(dos^2) + (1 | year), zi = ~station_n + flow, data = dat,
    family = nbinom2)
AIC(zipgam0, zipgam1, zipgam2, zipgam3)
##
                 df
                         AIC
## zipgam0 44.00000 11172183
## zipgam1 53.00000 10942997
## zipgam2 60.43551 10652362
## zipgam3 50.00000 11172151
AIC(zipm0, zipm1, zipm2, zipm3, zinb0, zinb1, zinb2)
##
                    AIC
         df
## zipm0 15 11666470.11
## zipm1 16 11577970.86
## zipm2 17 11577969.07
## zipm3 27
## zinb0 16
               25619.28
## zinb1 18
               25614.86
## zinb2 23
               25618.58
# Compare them all
bbmle::AICtab(pgam0, pgam1, pgam2, pm0, pm1, pm2, nbgam0, nbgam1,
    nbgam2, nbm0, nbm1, nbm2, zipgam0, zipgam1, zipgam2, zipm0,
    zipm1, zipm2, zinb0, zinb1, zinb2)
##
           dAIC
                      df
## zinb1
                  0.0 18
## zinb2
                  3.7 23
## zinb0
                 4.4 16
               617.2 39.1
## nbgam2
## nbgam1
               622.2 34.7
## nbgam0
                625.3 31
## nbm2
                657.1 16
## nbm1
                659.4 11
                661.1 10
## nbm0
## zipgam2 10626746.7 60.4
## zipgam1 10917382.0 53
## zipgam0 11146567.6 44
## zipm2 11552354.2 17
## zipm1
           11552356.0 16
## zipm0
           11640855.3 15
```

```
## pgam2 12625540.9 52

## pgam1 13069835.9 47

## pm2 13249251.6 15

## pgam0 13302069.5 38

## pm1 13648184.1 10

## pm0 13741868.1 9
```

Best-fit diagnostics

Diagnostics indicate underdispersion in our data. Even though it's the best-fit model, it's underpredicting zeros.


```
$uniformity
##
##
##
    One-sample Kolmogorov-Smirnov test
##
  data: simulationOutput$scaledResiduals
##
   D = 0.02614, p-value = 0.2995
   alternative hypothesis: two-sided
##
##
##
  $dispersion
##
    DHARMa nonparametric dispersion test via sd of residuals fitted vs.
##
##
    simulated
##
## data: simulationOutput
```

```
## dispersion = 0.59606, p-value = 0.104
## alternative hypothesis: two.sided
##
##
## $outliers
##
## DHARMa outlier test based on exact binomial test with approximate
## expectations
##
## data: simulationOutput
## outliers at both margin(s) = 11, observations = 1387, p-value = 1
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.003965475 0.014145965
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
##
                                              0.007930786
## $uniformity
##
  One-sample Kolmogorov-Smirnov test
##
##
## data: simulationOutput$scaledResiduals
## D = 0.02614, p-value = 0.2995
## alternative hypothesis: two-sided
##
##
## $dispersion
##
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 0.59606, p-value = 0.104
## alternative hypothesis: two.sided
##
##
## $outliers
##
## DHARMa outlier test based on exact binomial test with approximate
##
  expectations
##
## data: simulationOutput
## outliers at both margin(s) = 11, observations = 1387, p-value = 1
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.003965475 0.014145965
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
                                              0.007930786
```

Test for zero inflation

##

Figure 2: The zero-inflation test indicates we're fitting the zeros very well with the base model.

```
## DHARMa zero-inflation test via comparison to expected zeros with
## simulation under H0 = fitted model
##
## data: simulationOutput
## ratioObsSim = 0.99556, p-value = 0.968
## alternative hypothesis: two.sided

Full model
## Family: nbinom2 ( log )
## Formula:
```

```
## predicted_wesa ~ station_n * scale(flow) + year_c + scale(mean_temp) +
      scale(elev_range) + tide + scale(total_precip) + scale(u) +
##
      I(dos^2) + (1 \mid year)
## Zero inflation:
## Data: dat
##
                BIC logLik deviance df.resid
##
       AIC
   25458.2 25672.8 -12688.1 25376.2
                                         1346
##
## Random effects:
##
## Conditional model:
## Groups Name
                      Variance Std.Dev.
          (Intercept) 0.1574 0.3968
## year
## Number of obs: 1387, groups: year, 24
## Zero-inflation model:
                      Variance Std.Dev.
## Groups Name
         (Intercept) 0.7673 0.876
## vear
## Number of obs: 1387, groups: year, 24
## Dispersion parameter for nbinom2 family (): 0.887
## Conditional model:
##
                                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                      0.129524 -1.19 0.2350
## station_nView corner
                                      -0.153823
## station_nPilings
                                      -1.010683
                                                  0.099284 -10.18
                                                                    <2e-16 ***
## station_nBend
                                                  0.143827 -12.74
                                      -1.832555
                                                                    <2e-16 ***
## station n34th St pullout
                                                  0.121980 -11.50
                                                                    <2e-16 ***
                                      -1.402858
## station_nCoal Port
                                      -1.008139
                                                 0.098812 -10.20
                                                                    <2e-16 ***
## scale(flow)
                                      -0.006661
                                                  0.078038
                                                           -0.09
                                                                    0.9320
## year_c
                                      -0.180841
                                                  0.087564 -2.07
                                                                    0.0389 *
                                                          -0.26
                                                                    0.7954
## scale(mean_temp)
                                      -0.009402
                                                  0.036256
                                                            -1.72
## scale(elev_range)
                                      -0.065923
                                                  0.038363
                                                                    0.0857 .
## tiderising
                                       0.168633
                                                  0.078030
                                                             2.16
                                                                    0.0307 *
## scale(total_precip)
                                       0.030669
                                                  0.032968
                                                             0.93
                                                                    0.3522
## scale(u)
                                       0.011724
                                                  0.033612
                                                             0.35
                                                                    0.7272
## I(dos^2)
                                                  0.030653 -27.30
                                                                    <2e-16 ***
                                      -0.836862
## station_nView corner:scale(flow)
                                      -0.030466
                                                  0.129237
                                                            -0.24
                                                                    0.8136
## station_nPilings:scale(flow)
                                      -0.156612
                                                  0.101124
                                                          -1.55
                                                                    0.1215
```

-0.023932 0.143571 -0.17

0.8676

station_nBend:scale(flow)

```
## station n34th St pullout:scale(flow) -0.220996
                                                              -1.85
                                                                      0.0650 .
                                                   0.119776
## station_nCoal Port:scale(flow)
                                                                      0.4332
                                       -0.081179
                                                   0.103589
                                                              -0.78
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Zero-inflation model:
##
                                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                       -5.31096
                                                   0.47644 -11.147 < 2e-16 ***
## station_nView corner
                                       -3.04408
                                                   3.22833 -0.943 0.34572
## station_nPilings
                                        1.74292
                                                   0.41308
                                                             4.219 2.45e-05 ***
## station_nBend
                                        2.17631
                                                   0.47731
                                                             4.560 5.13e-06 ***
## station_n34th St pullout
                                                   0.64251
                                        0.99957
                                                             1.556 0.11978
## station_nCoal Port
                                        2.38157
                                                   0.39384
                                                             6.047 1.48e-09 ***
                                       -0.50076
                                                   0.34725 -1.442 0.14928
## scale(flow)
                                                   0.21860 -1.806 0.07096 .
## year_c
                                       -0.39474
## scale(mean_temp)
                                       -0.27744
                                                   0.12419
                                                            -2.234 0.02549 *
## scale(elev_range)
                                       -0.13957
                                                   0.11809 -1.182 0.23724
## tiderising
                                        1.09014
                                                   0.24368
                                                            4.474 7.69e-06 ***
                                                   0.11804 -1.626 0.10387
## scale(total_precip)
                                       -0.19198
## scale(u)
                                        0.03478
                                                   0.11229
                                                             0.310 0.75674
## I(dos^2)
                                        0.53286
                                                   0.09778
                                                             5.450 5.04e-08 ***
## station nView corner:scale(flow)
                                                   2.53179 -0.663 0.50734
                                       -1.67855
## station_nPilings:scale(flow)
                                                             2.976 0.00292 **
                                                   0.37977
                                        1.13032
## station nBend:scale(flow)
                                        0.42895
                                                   0.41877
                                                             1.024 0.30568
## station_n34th St pullout:scale(flow) 2.11627
                                                   0.51867
                                                             4.080 4.50e-05 ***
## station_nCoal Port:scale(flow)
                                        0.30585
                                                   0.37004
                                                           0.827 0.40849
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Final model

Backwards stepwise selection; first removed insignificant terms from zi model, then subsequently removed insignificant terms from full model using AIC backwards selection (drop1 command).

```
## Family: nbinom2 ( log )
## Formula:
## predicted_wesa ~ station_n + scale(flow) + year_c + scale(elev_range) +
       tide + I(dos^2) + (1 | year)
## Zero inflation:
## ~station_n + year_c + tide + I(dos^2) + station_n:flow
## Data: dat
##
##
                       logLik deviance df.resid
        AIC
                 BIC
   25479.3 25625.9 -12711.7 25423.3
##
##
## Random effects:
##
## Conditional model:
## Groups Name
                       Variance Std.Dev.
           (Intercept) 0.1685
   year
## Number of obs: 1387, groups: year, 24
##
## Dispersion parameter for nbinom2 family (): 0.881
```

```
##
## Conditional model:
##
                           Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                       0.12066
                           10.49033
                                                86.94
                                                         <2e-16 ***
## station nView corner
                           -0.14755
                                       0.12982
                                                -1.14
                                                         0.2557
## station nPilings
                           -1.00465
                                       0.09967 -10.08
                                                         <2e-16 ***
## station nBend
                                       0.14381 - 12.71
                                                         <2e-16 ***
                           -1.82833
## station n34th St pullout -1.38356
                                       0.12172 -11.37
                                                         <2e-16 ***
## station nCoal Port
                           -1.00826
                                       0.09779 -10.31
                                                         <2e-16 ***
## scale(flow)
                           -0.10049
                                       0.04665
                                                -2.15
                                                        0.0312 *
## year_c
                           -0.18713
                                       0.08971
                                                -2.09
                                                         0.0370 *
                                                -1.75
## scale(elev_range)
                                       0.03803
                                                         0.0793 .
                           -0.06675
## tiderising
                            0.17856
                                       0.07781
                                                 2.29
                                                        0.0217 *
## I(dos^2)
                           -0.83248
                                       0.03036 -27.42
                                                        <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Zero-inflation model:
##
                                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                -3.194e+00 8.634e-01 -3.700 0.000216 ***
## station_nView corner
                                 1.986e+00 4.092e+00 0.485 0.627473
## station nPilings
                                -1.551e+00 1.003e+00 -1.545 0.122256
## station_nBend
                                 6.235e-01 1.097e+00 0.568 0.569932
## station n34th St pullout
                                -5.821e+00 1.875e+00 -3.104 0.001908 **
## station nCoal Port
                                 1.229e+00 9.373e-01 1.311 0.189763
## year c
                                -3.696e-01 1.162e-01 -3.181 0.001466 **
## tiderising
                                 1.279e+00 2.029e-01 6.304 2.90e-10 ***
## I(dos^2)
                                 4.435e-01 8.763e-02 5.061 4.17e-07 ***
## station_nBrunswick Point:flow -5.290e-04 2.847e-04 -1.858 0.063141 .
## station_nView corner:flow
                                -2.134e-03 2.119e-03 -1.007 0.313860
                                 4.371e-04 1.391e-04
## station_nPilings:flow
                                                       3.143 0.001674 **
## station_nBend:flow
                                -1.464e-05 1.989e-04 -0.074 0.941327
## station_n34th St pullout:flow 1.432e-03 3.494e-04
                                                       4.098 4.16e-05 ***
## station_nCoal Port:flow
                                -2.251e-04 1.218e-04 -1.848 0.064642 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

predicted wesa

Final model diagnostics

```
##
  $uniformity
##
##
   One-sample Kolmogorov-Smirnov test
##
## data: simulationOutput$scaledResiduals
## D = 0.030382, p-value = 0.1544
  alternative hypothesis: two-sided
##
##
##
  $dispersion
##
##
   DHARMa nonparametric dispersion test via sd of residuals fitted vs.
   simulated
##
##
  data: simulationOutput
  dispersion = 0.57669, p-value = 0.08
##
  alternative hypothesis: two.sided
##
##
## $outliers
##
##
   DHARMa outlier test based on exact binomial test with approximate
##
   expectations
##
```


Figure 3: Residual diagnostics.

```
## data: simulationOutput
## outliers at both margin(s) = 13, observations = 1387, p-value = 0.5429
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.004999762 0.015974353
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
##
                                              0.009372747
## $uniformity
##
## One-sample Kolmogorov-Smirnov test
##
## data: simulationOutput$scaledResiduals
## D = 0.030382, p-value = 0.1544
## alternative hypothesis: two-sided
##
##
## $dispersion
## DHARMa nonparametric dispersion test via sd of residuals fitted vs.
## simulated
##
## data: simulationOutput
## dispersion = 0.57669, p-value = 0.08
## alternative hypothesis: two.sided
##
## $outliers
##
## DHARMa outlier test based on exact binomial test with approximate
## expectations
## data: simulationOutput
## outliers at both margin(s) = 13, observations = 1387, p-value = 0.5429
## alternative hypothesis: true probability of success is not equal to 0.007968127
## 95 percent confidence interval:
## 0.004999762 0.015974353
## sample estimates:
## frequency of outliers (expected: 0.00796812749003984 )
##
                                              0.009372747
##
## DHARMa zero-inflation test via comparison to expected zeros with
## simulation under HO = fitted model
## data: simulationOutput
## ratioObsSim = 1.0007, p-value = 0.976
## alternative hypothesis: two.sided
```

Residuals vs. predicted

##

Figure 4: Testing for overdispersion. Still not quite predicting the number of zeroes exactly correctly but better than before.

dos

Residual vs. predictor Quantile deviations detected (red curves) Combined adjusted quantile test significant

year_c

Residual vs. predictor Quantile deviations detected (red curves) Combined adjusted quantile test significant

tide

flow

Quantile deviations detected (red curves)
Combined adjusted quantile test significant

OUT 92.0 02.0 0.2 0.4 0.6 0.8 1.0

Residual vs. predictor

dat[[i]] (rank transformed)

##
mean_temp

Residual vs. predictor No significant problems detected

##
elev_range

Residual vs. predictor No significant problems detected

Residual vs. predictor No significant problems detected

Residual vs. predictor No significant problems detected

