Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-1: Linear Algebra for Machine/Deep Learning

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

Scalar

2

- Single number
 - In contrast to other objects in linear algebra, which are usually arrays of numbers
- Represented in lower-case italics: s, n, a, b,
- Can be real-valued or be integers
 - E.g., let $s \in \mathbb{R}$ be the slope of the line
 - · Defining a real-valued scalar
 - E.g., let $n \in \mathbb{N}$ be the number of data points
 - · Defining a natural number scalar

	0	167	20
	1	145	12
	2	170	21
	3	180	24
	4	189	25
	5	155	20
	6	163	22
	7	178	23
	8	173	23
	9	176	24

height age

Scalar
scalar = torch.tensor(9.42)
print("Scalar: ", scalar)

Output: Scalar: tensor(9.4200)

Prof Monidina Das Department of CSE IIT (ISM) Dhanhad

Scalar in NumPy


```
import numpy as np
#Scalar
scalar2=9.24
print("The type of scalar1 is: ",type(scalar2))
print("The scalar1 is: ",scalar2)
print("Scalar2 is a scalar:", np.isscalar(scalar2))

scalar1=np.array(9.42)
print("\nThe type of scalar1 is: ",type(scalar1))
print("The scalar1 is: ",scalar1)
print("The dimension of the scalar1 is: ", scalar1.ndim)
print("The shape of the scalar1 is: ", scalar1.shape)
print("Scalar1 is a scalar:", np.isscalar(scalar1))
```

Output

```
The type of scalar1 is: <class 'float'>
The scalar1 is: 9.24
Scalar2 is a scalar: True

The type of scalar1 is: <class 'numpy.ndarray'>
The scalar1 is: 9.42
The dimension of the scalar1 is: 0
The shape of the scalar1 is: ()
Scalar1 is a scalar: False
```

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Vector

- An array of numbers arranged in order
- Each no. identified by an index
- Written in lower-case bold such as x
 - its elements are in italics lower case, subscripted

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

- If each element is in \mathbb{R} then $x \in \mathbb{R}^n$
- We can think of vectors as points in space
 - Each element gives coordinate along an axis
 - E.g. data points in the dataset

```
# Vector
vector = torch.tensor([1, 2, 3])
print("Vector: ", vector)
```

Output: Vector: tensor([1, 2, 3])

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Vector in NumPy


```
#Vector
vector1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print("\nThe vector1 is: ",vector1)
print("The dimension of the vector1 is: ",vector1.ndim)
print("The shape of the vector1 is: ",vector1.shape)
print("\nThe vector1 type is: ",type(vector1))
```

Output

```
The vector1 is: [ 1 2 3 4 5 6 7 8 9 10]
The dimension of the vector1 is: 1
The shape of the vector1 is: (10,)
The vector1 type is: <class 'numpy.ndarray'>
```

Prof Monidina Das Department of CSE IIT (ISM) Dhanhad

Dot Product and Angles

- **Dot product** of vectors, $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \sum_i u_i \cdot v_i$
 - It is also referred to as inner product, or scalar product of vectors
 - The dot product $\mathbf{u} \cdot \mathbf{v}$ is also often denoted by $\langle \mathbf{u}, \mathbf{v} \rangle$
- The dot product is a symmetric operation, $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u} = \mathbf{v} \cdot \mathbf{u}$
- Geometric interpretation of a dot product: angle between two vectors
 - I.e., dot product $\mathbf{v} \cdot \mathbf{w}$ over the norms of the vectors is $\cos(\theta)$

- If two vectors are orthogonal: $\theta = 90^\circ$, i.e., $\cos(\theta) = 0$, then $\mathbf{u} \cdot \mathbf{v} = 0$
- Also, in ML the term $\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$ is sometimes employed as a measure of closeness of two vectors/data instances, and it is referred to as cosine similarity

Prof Monidina Das Department of CSE JIT (ISM) Dhanhad

Vector Projection

- Orthogonal projection of a vector y onto vector x
 - The projection can take place in any space of dimensionality ≥ 2
 - The unit vector in the direction of \mathbf{x} is $\frac{\mathbf{x}}{\|\mathbf{x}\|}$
 - · A unit vector has norm equal to 1
 - The length of the projection of y onto x is $\|\mathbf{y}\| \cdot cos(\theta)$
 - The orthogonal project is the vector $\mathbf{proj}_{\mathbf{x}}(\mathbf{y})$

$$proj_x(y) = \frac{x \cdot ||y|| \cdot cos(\theta)}{||x||}$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Norm of a Vector

- Used for measuring the size of a vector
- Norms map vectors to non-negative values
- Norm of vector $\mathbf{x} = [x_1, ..., x_n]^T$ is distance from origin to \mathbf{x}
 - It is any function f that satisfies:

$$f(x)=0 \Rightarrow x=0$$
 $f(x+y) \le f(x)+f(y)$ Triangle Inequality
 $\forall \alpha \in R \quad f(\alpha x)=\left|\alpha\right|f(x)$

• Definition: $\left\| \boldsymbol{x} \right\|_p = \left(\sum_i \left| x_i \right|^p \right)^{\frac{1}{p}}$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanba

Norm of a Vector

- For p=2, we have ℓ_2 norm
- $\|\mathbf{x}\|_2 = \left| \sum_{i=1}^n x_i^2 = \sqrt{\mathbf{x}^T \mathbf{x}} \right|$ Also called Euclidean norm
 - The squared ℓ_2 norm is more convenient to work with mathematically and computationally than the ℓ_2 norm itself.

- It is the most often used norm
- ℓ_2 norm is often denoted just as $\|\mathbf{x}\|$ without subscript 2
- For p=1, we have ℓ_1 norm or p-1, we have \mathfrak{t}_1 norm

 Uses the absolute values of the elements $\|\mathbf{x}\|_1 = \sum_{i=1}^{n} |x_i|_1$

Discriminate between zero and non-zero elements

may be undesirable It increases very slowly near the origin.

In many contexts, the squared ℓ₂ norm

Need a function that grows at the same rate in all locations: ℓ₁ norm

matrix = torch.tensor([[1, 2, 3], [4, 5, 6]])

Output: Matrix: tensor([[1, 2, 3],

[4, 5, 6]]

print("Matrix: ", matrix)

- For $p = \infty$, we have ℓ_{∞} norm
 - $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$ Known as infinity norm, or max norm
 - Outputs the absolute value of the largest element
- ℓ_0 norm outputs the number of non-zero elements
 - It is not an ℓ_p norm, and it is not really a norm function either (it is incorrectly called a norm)

Matrices

- 2-D array of numbers
 - So each element identified by two indices
- Denoted by **bold typeface (upper-case, italics)**: A
 - Elements indicated by name in italics but not bold
 - $A_{1,1}$ is the top left entry and $A_{m,n}$ is the bottom right entry

• E.g.,
$$\mathbf{A} = \begin{bmatrix} A_{1,1} & \dots & A_{1,n} \\ \dots & \dots & \dots \\ A_{m,1} & \dots & A_{m,n} \end{bmatrix}$$

- We can identify numbers in vertical column j by writing: for the horizontal coordinate
- $A_{i:}$ is i th row of A, $A_{:j}$ is j th column of A
- If A has shape of height m and width n with real values then $A \in \mathbb{R}^{m \times n}$

Matrix in NumPy

Output

```
The matrix1 is:

[[1 2]

[3 4]]
The dimension of the matrix1 is: 2
The shape of the matrix1 is: (2, 2)

The matrix1 type is: <class 'numpy.ndarray'>
```

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Matrix Norms

- Frobenius norm
 - measures the size of a matrix;
 - the square-root of the summed squares of the elements of matrix \boldsymbol{X}
 - This norm is similar to Euclidean norm of a vector

$$\|\mathbf{X}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}^{2}}$$

• $L_{2,1}$ norm – is the sum of the Euclidean norms of the columns of matrix X

$$\|\mathbf{X}\|_{2,1} = \sum_{j=1}^{n} \sqrt{\sum_{i=1}^{m} X_{ij}^2}$$

Max norm – is the largest element of matrix X

$$\|\mathbf{X}\|_{\max} = \max_{i,j} (X_{ij})$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Tensor in NumPy and PyTorch


```
#Tensor
tensor1 = np.array([[
       [1, 2, 3],
        [4, 5, 6]],
        [[7, 8, 9],
        [10, 11, 12]])
print("\nThe tensor1 is:\n",tensor1 )
print("The dimension of the tensor1 is: ",tensor1 .ndim)
                                                            # Tensor
print("The shape of the tensor1 is: ",tensor1 .shape)
                                                            tensor = torch.tensor([[[1, 2, 3], [4, 5, 6]],
print("\nThe tensor1 type is: ",type(tensor1))
                                                                                 [[7, 8, 9], [10, 11, 12]]])
                                                            print("Tensor: ", tensor)
                                                                      Output: Tensor: tensor([[[ 1, 2, 3],
The tensor1 is:
 [[[ 1 2 3]
                                                                                       [4, 5, 6]],
 [456]]
                                                                                      [[7, 8, 9],
 [[7 8 9]
                                                                                       [10, 11, 12]]])
 [10 11 12]]]
The dimension of the tensor1 is: 3
The shape of the tensor1 is: (2, 2, 3)
The tensor1 type is: <class 'numpy.ndarray'>
```

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanba

Matrix Transpose

- The transpose of a matrix A is denoted as A^{T}
- Defined as $(\mathbf{A}^{\mathrm{T}})_{i,j} = \mathbf{A}_{i,i}$
 - The mirror image across a diagonal line
 - · Called the main diagonal, running down to the right starting from upper

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{1,3} & A_{2,3} & A_{3,3} \end{bmatrix}$$

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,2} \\ A_{2,1} & A_{2,2} & A_{3,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{1,3} & A_{2,3} & A_{3,3} \end{bmatrix}$$

- Vectors are matrices with a single column: $\mathbf{x} = [x_1, x_2, \dots x_n]^T$
- A scalar is a matrix with one element: $a = a^{T}$

Matrix Addition

- We can add matrices to each other if they have the same shape, by adding corresponding elements
 - If A and B have same shape (height m, width n)

$$C = A + B \Longrightarrow C_{i,j} = A_{i,j} + B_{i,j}$$

A scalar can be added to a matrix or multiplied

$$D = aB + c \Longrightarrow D_{i,j} = aB_{i,j} + c$$

- Less conventional notation used in ML:
 - Vector added to matrix

$$C = A + b \Longrightarrow C_{i,j} = A_{i,j} + b_{j}$$

Called broadcasting since vector b added to each row of A

Matrix Multiplication

- For product C = AB to be defined, A has to have the same no. of columns as the no. of rows of B
 - If ${\bf \it A}$ is of shape $m \times n$ and ${\bf \it B}$ is of shape $n \times p$ then matrix product ${\bf \it C}$ is of shape $m \times p$

 $C = AB \Longrightarrow C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$

- Note that the standard product of two matrices is not just the product of two individual elements
 - Such a product does exist and is called the element-wise product or the Hadamard product $A \odot B$
- Dot product between two vectors x and y of same dimensionality is the matrix product $x^{\mathrm{T}}y$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Matrix Product Properties

- Distributivity over addition: A(B+C)=AB+AC
- Associativity: A(BC) = (AB)C
- Not commutative: AB=BA is not always true
- Transpose of a matrix product has a simple form: $(AB)^T = B^TA^T$
- Dot product between vectors is commutative: $x^{T}y = y^{T}x$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Linear Transformation

- Ax = b
 - where ${\pmb A} \in \mathbb{R}^{n \times n}$ and ${\pmb b} \in \mathbb{R}^n$
 - More explicitly

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n = b_n$$

Can view A as a linear transformation of vector x to vector b

$$\begin{bmatrix} A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \vdots & \vdots \\ A_{n,1} & \cdots & A_{nn} \end{bmatrix} & \mathbf{x} = \begin{bmatrix} x_{l} \\ \vdots \\ x_{n} \end{bmatrix} & \mathbf{b} = \begin{bmatrix} b_{l} \\ \vdots \\ b_{n} \end{bmatrix} \\ \mathbf{n} \times \mathbf{n} & \mathbf{n} \times \mathbf{1} & \mathbf{n} \times \mathbf{1} \end{bmatrix}$$

• Sometimes we wish to solve for the unknowns $x = \{x_1, ..., x_n\}$ when A and b provide constraints

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Example in the context of Machine Learning

A linear classifier with bias eliminated $y = Wx^T$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Systems of Equations

• Consider following equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

• Can be expressed in the form:

$$A\mathbf{x} = \mathbf{b}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

- A linear system of equations may have
 - No solution
 - Infinite number of solutions
 - Exactly one solution
- If x and y are solutions then $z=\alpha x + (1-\alpha)y$ is a solution for any real α

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Identity Matrix

- Identity matrix does not change value of vector when we multiply the vector by identity matrix
 - Denote identity matrix that preserves n-dimensional vectors as \boldsymbol{I}_n
 - Formally $I_n \in \mathbb{R}^{n \times n}$ and $\forall_x \in \mathbb{R}^n$, $I_n x = x$
 - Example of $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Prof. Monidipa Das. Department of CSE, IIT (ISM) Dhanbad

Inverse Matrix

- Matrix inversion is a powerful tool to analytically solve Ax = b
- Inverse of square matrix A defined as $A^{-1}A = I_n$
- We can now solve Ax = b as follows:

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$I_n x = A^{-1}b$$

$$x = A^{-1}b$$

Matrix cannot be inverted if

- More rows than columns
- More columns than rows
- Redundant rows/columns ("linearly dependent", "low rank")
- This depends on being able to find A^{-1}
- If A^{-1} exists there are several methods for finding it
- In order for A^{-1} to exist, Ax=b must have exactly one solution for every value of b
- Is it possible to solve Ax = b if A is not square or square but singular?
 - Yes; Methods other than matrix inversion are used

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Systems of Equations [contd.]

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \\ \vdots \\ a_{m2} \end{bmatrix} + x_3 \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \\ \vdots \\ \vdots \\ a_{m3} \end{bmatrix} + \dots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

- $Ax = \sum_{i} x_i A_{::i}$
- Column can be thought of as specifying direction from origin
- Each element of x specify how far we should move in each of these direction
- Formally, this is a linear combination of the set of vectors
- Span of set of vectors is the set of all points obtainable by linear combination of the original vectors
- Hence, Ax = b represents:
 - Testing whether b is in span of column of A
 - Span is known as column space or range of A

Prof Monidina Das Department of CSF IIT (ISM) Dhanba

Linear Independence

- A set of n vectors $v_1, v_2, ..., v_n$ is linearly independent if no vector in the set is a linear combination of the remaining n-1 vectors
- In other words, the only solution to $c_1v_1 + c_2v_2 + c_3v_3 + ... + c_nv_n = 0$ is $c_1 = c_2 = \cdots = c_n = 0$ (c_i 's are scalars)
- In general, given a set of linearly independent vectors $u_1, u_2, ..., u_n \in \mathbb{R}^n$, we can express any vector $z \in \mathbb{R}^n$ as a linear combination of these vectors.
 - · This set of vectors is called a basis

- We can now find the α_i 's using Gaussian Elimination (Time Complexity: $O(n^3)$)
- If we have **orthonormal basis** the complexity will be $O(n^2)$

Prof Monidina Das Department of CSF JIT (ISM) Dhanbad

Special kinds of Matrices

- A symmetric matrix equals to its transpose: $A = A^{T}$
 - E.g., a distance matrix is symmetric with $A_{i,j}=A_{j,i}$
- Diagonal Matrix has mostly zeros, with nonzero entries only in diagonal
 - $A_{i,j} = 0, i \neq j$
 - E.g., identity matrix, where all diagonal entries are 1
- $\operatorname{diag}(v)$ denotes a square diagonal matrix with diagonal elements given by entries of vector v
- Multiplying vector \mathbf{x} by a diagonal matrix is efficient
 - To compute diag(v)x we only need to scale each x_i by v_i
- Inverting a square diagonal matrix is efficient
 - Inverse exists iff every diagonal entry is nonzero, in which case diag $(v)^{-1}$ =diag $([1/v_i,...,1/v_n]^T)$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanba

Special Kinds of Vectors

- Unit Vector
 - A vector with unit norm $||x||_2 = 1$
- Orthogonal Vectors
 - A vector x and a vector y are orthogonal to each other if $x^Ty = 0$
 - If vectors have nonzero norm, vectors at 90 degrees to each other
- Orthonormal Vectors
 - Vectors are orthogonal and have unit norm
- Orthogonal Matrix
 - A square matrix whose rows are mutually orthonormal: $A^{T}A = AA^{T} = I$
 - $A^{-1} = A^{\mathrm{T}}$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

28

Questions?

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad