Digital Signal Processing

Shivanshu AI21bBTECH11027

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
Abstract—This manual provides a simple introduction to digital signal processing		

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/Sound Noise. wav

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

*The author is a student with the Department of Artificial Intelligence, Indian Institute of Technology, Hyderabad 502285 India email: ai21btech11027@iith.ac.in .

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('Sound Noise.wav'
#sampling frequency of Input signal
sampl freq=fs
#Hello
#order of the filter
order=4
#cutoff frquency 4kHz
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and denominator
   polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
output signal = signal.filtfilt(b, a,
   input signal)
#output \ signal = signal.lfilter(b, a,
   input signal)
#write the output signal into .wav file
sf.write('Sound With ReducedNoise.wav',
   output signal, fs)
```

2.4 The output of the python script 2.3 in Problem is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n). Solution: Graph of x(n) has been plotted in part 1 of Fig. 3.2.

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/xnyn.py

Fig. 3.2

3.3 Repeat the above exercise using a C code. **Solution:** The following code is in c and doing the same function as the above one is doing.

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: Given that,

$$X(z) = \mathcal{Z}\{x(n)\}\tag{4.4}$$

$$=\sum_{n=-\infty}^{\infty}x(n)z^{-n} \tag{4.5}$$

So.

$$\mathcal{Z}\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$
 (4.6)

let n-1=k,

$$= \sum_{k=-\infty}^{\infty} x(k) z^{-(k+1)}$$
 (4.7)

$$= z^{-1} \sum_{k=-\infty}^{\infty} x(k) z^{-k}$$
 (4.8)

$$= z^{-1} \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 (4.9)

$$= z^{-1}X(z) (4.10)$$

From (4.1),

$$\mathcal{Z}\lbrace x(n-k)\rbrace = \sum_{\substack{n=-\infty\\\infty}}^{\infty} x(n-1)z^{-n}$$
 (4.11)

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.12)

$$Z\{x(n-k)\} = z^{-k}X(z)$$
 (4.13)

Hence proved.

4.2 Obtain X(z) for x(n) defined in problem 3.1. **Solution:** Given

$$x(n) = \begin{cases} 1, 2, 3, 4, 2, 1 \end{cases}$$
 (4.14)

and the Z-transform of x(n) is defined as

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$
 (4.15)

$$\sum_{n=0}^{5} x(n)z^{-n} = z^{0} + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.16)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.17}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: since *Z*-transform is a linear operator therefore

$$y(z) = Y(z)$$
 and $x(z) = X(z)$
So,

on applying (4.13) in (3.2), we get

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.18)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.19}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.20)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.21)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1 \tag{4.22}$$

Solution: The Z-transform of δn is,

$$\mathcal{Z}\left\{\delta n\right\} = \sum_{n=-\infty}^{\infty} \delta\left(n\right) z^{-n} \tag{4.23}$$

$$=\delta\left(0\right)z^{0}\tag{4.24}$$

$$= 1 \tag{4.25}$$

and the Z-transform of unit-step function u(n) is,

$$U(n) = \sum_{n = -\infty}^{\infty} u(n) z^{-n}$$
 (4.26)

$$= 0 + \sum_{n=0}^{\infty} 1.z^{-n} \tag{4.27}$$

$$= 1 + z^{-1} + z^{-2} + \dots (4.28)$$

and from (4.21),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.29)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.30}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.31}$$

Solution: The Z- transform will be

$$Z\{a^n u(n)\} = \sum_{n=0}^{\infty} a^n z^{-n}$$
 (4.32)

$$= 1 + \frac{a}{z} + \left(\frac{a}{z}\right)^2 + \dots$$
 (4.33)

Above is a infinite geometric series with first term 1 and common ratio as $\frac{a}{z}$ and it can be written as,

$$Z\{a^n u(n)\} = \frac{1}{1 - \frac{a}{z}} : |a| < |z|$$
 (4.34)

Therefore,

$$a^{n}u(n) \stackrel{Z}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$
 (4.35)

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.36)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of x(n).

Solution: The following code plots Fig. 4.6.

wget https://github.com/Shivanshu8211/ EE3900/blob/master/codes/dtft.py

Fig. 4.6: $|H(e^{j\omega})|$

4.7 Express x(n) in terms of $H(e^{j\omega})$

Solution: Using (4.19) and (4.17)

$$H(e^{j\omega}) = \frac{1 + e^{-2j\omega}}{1 + \frac{e^{-j\omega}}{2}}$$
 (4.37)

$$\Longrightarrow \left| H\left(e^{j\omega}\right) \right| = \frac{\left| 1 + e^{-2j\omega} \right|}{\left| 1 + \frac{e^{-j\omega}}{2} \right|} \tag{4.38}$$

$$= \frac{\left|1 + e^{2j\omega}\right|}{\left|e^{2j\omega} + \frac{e^{j\omega}}{2}\right|} \tag{4.39}$$

$$= \frac{\left|1 + e^{2j\omega}\right|}{\left|e^{j\omega}\right| \left|e^{j\omega} + \frac{1}{2}\right|} \tag{4.40}$$

And we know that $|e^{j\omega}| = 1$

$$= \frac{|1 + \cos 2\omega + j \sin 2\omega|}{\left|e^{j\omega} + \frac{1}{2}\right|} \tag{4.41}$$

$$= \frac{\left|4\cos^2(\omega) + 4j\sin(\omega)\cos(\omega)\right|}{|2e^{j\omega} + 1|}$$

$$= \frac{|4\cos(\omega)||\cos(\omega) + j\sin(\omega)|}{|2\cos(\omega) + 1 + 2j\sin(\omega)|}$$
(4.43)

$$\therefore \left| H\left(e^{j\omega}\right) \right| = \frac{|4\cos(\omega)|}{\sqrt{5 + 4\cos(\omega)}} \tag{4.44}$$