COMCAST CALL CENTER SCHEDULING OPTIMIZATION

Exploratory Data Analysis

(Oct 2017 – Oct 2018)	Total calls	Calls Handled	Calls Abandoned
Totals	32,248,052	31,549,149	698,603
Percentages		97.83	2.17

Call Queue	Count of Calls	%
Billing	8335252	25.85
Loyalty	4495359	13.94
Repair	14978471	46.45
Sales	4438670	13.76
Grand Total	32247752	100.00

Call queue times peaked during evenings 7-9pm. This hints that these peak hours may need help with additional resources.

Comcast employs call center staff both off-shore and on-shore. For billing queries, most calls were handled by offshore team and for the rest of the call types, on-shore handled most calls. This gives us insight as to how we could optimize the staffing model.

	OFF-SHORE			ON-SHORE				
	Billing	Loyalty	Repair	Sales	Billing	Loyalty	Repair	Sales
Total Calls	6,277,514	840,074	7,108,648	584106	1,895,262	3,585,357	7,403,855	3674356
%	20	3	23	2	6	11	24	12

Customers who called for help with "Repair" waited the longest followed by those who called for help with "Billing".

OPTIMIZATION MODELS

Wait Time Minimization Model (CCWTMM)

CCWTMM Formulation

Parameters:

CM_I = Prescribed call mix ratio by location
CH_h = Expected calls by hour of day
CC_I = Cost per call per location
AWT_{Ih} = Historical average wait time by location and hour of day

Decision Variables

CR_{lh} = Calls to be routed to each location for each hour of the day

Objective Function

Minimize Ih (AWT * CH)

Model

```
# Call Center Wait Time Minimization Model (CCWTMM)
# Operating framework
set LOC;
set HOD;
# Parameters used for solution
param CALL_MIX{LOC} >= 0;
param CALLS_BY_HOD{HOD} >= 0;
param CALL COST(LOC) >= 0;
param AWT BY LOC AND HOD{i in HOD, j in LOC} >= 0;
# Parameters used for analysis
param USA_VOL:= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['USA'];
param PHL_VOL:= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['PHL'];
param MEX_VOL:= sum{i in HOD} CALLS BY HOD[i] * CALL_MIX['MEX'];
param JAM_VOL:= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['JAM'];
param USA_COST:= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['USA'] * CALL_COST['USA'];
param PHL_COST:= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['PHL'] * CALL_COST['PHL'];
param MEX_COST:= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['MEX'] * CALL_COST['MEX'];
param JAM_COST:= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['JAM'] * CALL_COST['JAM'];
# Decision variable determines location of calls for each hour
var CALLS ROUTED{i in HOD, j in LOC} >=0;
# Objective is to minimize total wait time experienced by customers
minimize AWT: sum{i in HOD, j in LOC} AWT_BY_LOC_AND_HOD[i,j]*CALLS_ROUTED[i,j];
# Constraints include meeting expected call volume, and sticking to call mix by location
subject to CALLS HANDLED {i in HOD}:
    sum {j in LOC} CALLS_ROUTED[i,j] = CALLS_BY_HOD[i];
subject to MIX_LIMIT USA:
    sum{i in HOD} CALLS ROUTED[i, 'USA'] >= sum{i in HOD} CALLS BY HOD[i] * CALL MIX['USA'];
subject to MIX LIMIT PHL:
    sum{i in HOD} CALLS ROUTED[i, 'PHL'] <= sum{i in HOD} CALLS BY HOD[i] * CALL MIX['PHL'];</pre>
subject to MIX_LIMIT_MEX:
    sum{i in HOD} CALLS_ROUTED[i, 'MEX'] <= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['MEX'];</pre>
subject to MIX_LIMIT_JAM:
    sum{i in HOD} CALLS_ROUTED[i,'JAM'] <= sum{i in HOD} CALLS_BY_HOD[i] * CALL_MIX['JAM'];</pre>
```

Model Output

ampl: include CallCenter_Final_Monahan.run;
Gurobi 8.0.0: optimal solution; objective 1526643
6 simplex iterations

AWT = 1526640

CALLS_	ROUTED [*	,*]			
:	JAM	MEX	PHL	USA	:=
10AM	0	0	0	3739	
10PM	0	0	257	0	
11AM	0	0	0	4623	
11PM	0	120	0	0	
12PM	0	0	0	4628	
1PM	0	0	0	4829	
2PM	0	0	0	4996	
3PM	0	0	0	4822	
4PM	0	0	4602	0	
5AM	0	0	0	120	
5PM	0	0	4327	0	
6AM	0	0	0	256	
6PM	0	3069.2	750.8	0	
7AM	0	0	0	759	
7PM	0	3344	0	0	
8AM	0	0	0	1655	
8PM	1045.55	1571.45	0	0	
9AM	0	0	0	2861	
9PM	1656	0	0	0	
;					

USA_VOL = 27015.5 USA_COST = 373624 PHL_VOL = 16209.3 PHL_COST = 27069.5 MEX_VOL = 8104.65 MEX_COST = 30392.4 JAM_VOL = 2701.55 JAM_COST = 7753.45

Cost Minimization Model (CCMM)

The Call Center Cost Minimization Model (CCMM) focuses on reducing the total staffing costs of a call center while maintaining a predetermined ratio of onshore and offshore employees and satisfying the predetermined call volume by hour. The CCMM is built in AMPL across three distinct files containing text programming of the model itself, the input data, and the execution/result `run' file.

```
#Cost Center Cost Minimization (CCMM) Model
set SALARY;
set TIER;
set TIME;
param salaries{j in TIER,i in SALARY, t in TIME} >= 0;
param calls{j in TIER, t in TIME} >= 0;
param callLimit{TIER} >= 0;
param employeeMix{SALARY} >=0;
var employees{j in TIER, i in SALARY, t in TIME} >=0;
minimize cost: sum{j in TIER, i in SALARY, t in TIME} employees[j,i,t]*salaries[j,i,t];
subject to incomingCalls {i in SALARY, j in TIER, t in TIME}:
    employees[j,i,t]*callLimit[j] >= calls[j,t];
subject to mixUpper {i in SALARY, t in TIME}:
   sum {j in TIER} employees[j,'onshore',t] >=
   (employeeMix['onshore']/employeeMix['offshore'])*
   (sum {j in TIER} employees[j,'offshore',t]);
                     employees salaries
                                              :=
T1 offshore 10AM
                      78
                                    3
T1 offshore 11AM
                      70.6
                                    3
                                    3
T1 offshore 12AM
                      60
                                    3
T1 offshore 1PM
                      55
T1 offshore 2PM
                      70
                                    3
T1 offshore 3PM
                                    3
                      83.75
T1 offshore 4PM
                                    3
                      74.5
                                    3
T1 offshore 5PM
                      65
T1 offshore 8AM
                      75
                                    3
T1 offshore 9AM
                                    3
                      80
T1 onshore 10AM
                     243.5
                                    9.99
T1 onshore 11AM
                     220.533
                                    9.99
T1 onshore 12AM
                     165
                                    9.99
T1 onshore 1PM
                     214.667
                                    9.99
T1 onshore 2PM
                     249.333
                                    9.99
T1 onshore 3PM
                     261.833
                                    9.99
T1 onshore 4PM
                     235.833
                                    9.99
                                    9.99
T1 onshore 5PM
                     182.667
T1 onshore 8AM
                     240.333
                                    9.99
T1 onshore 9AM
                     256
                                    9.99
```