Dot Product

David Robinson

The **dot product** of vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is given by the sum of the products of the components.

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

Properties of the Dot Product

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors, and let c be a scalar.

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
 Commutative property $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ Distributive property $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$ Associative property $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$ Property of magnitude

Orthogonal Vectors

The nonzero vectors \mathbf{u} and \mathbf{v} are **orthogonal vectors** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Direction Angles

The angles formed by a nonzero vector and the coordinate axes are called the **direction angles** for the vector. The cosines for these angles are called the **direction cosines**.

Projections

The **vector projection** of \mathbf{v} onto \mathbf{u} represents the component of \mathbf{v} that acts in the direction of \mathbf{u} .

$$\mathrm{proj}_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\left\|\mathbf{u}\right\|^2}\mathbf{u} \quad \mathrm{comp}_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\left\|\mathbf{u}\right\|}$$

Work

When a constant force is applied to an object so the object moves in a straight line from point P to point Q, the work W done by the force \mathbf{F} , acting at an angle θ from the line of motion is

$$W = \mathbf{F} \cdot \overrightarrow{PQ} = \|\mathbf{F}\| \|\overrightarrow{PQ}\| \cos \theta$$