Germline Variant Calling in Formalin-fixed Paraffin-embedded Tumours

Eva Yap, MSc. Student

October 31, 2017

- 1 Background
- 2 Research Question
- 3 Methods
- 4 Results
- **5** Conclusions

- 1 Background
- 2 Research Question
- 3 Methods
- 4 Results
- 5 Conclusions

Background Research Question Methods Results Conclusions

Germline variants have important clinical implications

Cancer Predisposition

- Preventive measures
- Sibling testing

Pharmacogenomics

- Treatment tolerance
- Adverse drug reaction (ADR)

The tumour genome contains germline information

Clinical tumour sequencing could be a practical, cost-effective approach to provide germline testing

Challenge: Distinguishing between germline and somatic variants in the tumour genome

- 1 Background
- 2 Research Question
- 3 Methods
- 4 Results
- 5 Conclusions

Research question

Can we accurately identify germline variants in tumour genomes?

- 1 Background
- 2 Research Question
- 3 Methods
- 4 Results
- 6 Conclusions

Variant allele frequency (VAF)

VAF in tumour specimens can deviate from diploid zygosity

DNA damage induced by formalin (e.g. fragmentation and sequence artifacts)

Somatic VAF in tumour specimens can deviate from diploid zygosity

Mixture of tumour and normal cells

Somatic VAF in tumour specimens can deviate from diploid zygosity

Tumour heterogeneity

Study Design

		Predicted variant status			
Detection in matched blood		Germline	Somatic		
	Present	True positive	False negative	Sensitivity = TP / (TP + FN) PPV = TP / (TP + FP)	
	Absent	False positive	True negative		

- 1 Background
- 2 Research Question
- 3 Methods
- 4 Results
- 6 Conclusions

ackground Research Question Methods **Results** Conclusions

VAF of germline variants in blood and FFPE tumours

Sensitivity in detection of germline variants at different VAF thresholds

VAF (%)	False Negative	Negative True Positive		Sensitivity 95% CI	
10	0	1981	1.0	1.0-1.0	
15	13	1968	0.99	0.99-1.0	
20	46	1935	0.98	0.97-0.98	
25	77	1904	0.96	0.95 - 0.97	
30	117	1864	0.94	0.93 - 0.95	
35	192	1789	0.90	0.89 - 0.92	
40	313	1668	0.84	0.83 - 0.86	
45	458	1523	0.77	0.75 - 0.79	

VAF of germline and somatic variants in FFPE tumour

High positive predictive value can be achieved for referral of germline variants to downstream confirmatory testing

VAF (%)	False Positive	True Positive	Total Calls	PPV	95% CI
10	431	1981	2412	0.82	0.81-0.84
15	319	1968	2287	0.86	0.85 - 0.87
20	273	1935	2208	0.88	0.86-0.89
25	245	1904	2149	0.89	0.87-0.90
30	203	1864	2067	0.90	0.89-0.91
35	178	1789	1967	0.91	0.90-0.92
40	146	1668	1814	0.92	0.91 - 0.93
45	118	1523	1641	0.93	0.91 - 0.94

- 1 Background
- 2 Research Question
- 3 Methods
- 4 Results
- **5** Conclusions

Conclusions

• A VAF approach demonstrates high sensitivity and precision at separating between germline and somatic variants.

Conclusions

- A VAF approach demonstrates high sensitivity and precision at separating between germline and somatic variants.
- At 30% VAF threshold, sensitivity for detection of germline variants in FFPE tumour is 0.94 and the positive predictive value for referral to downstream confirmatory testing is 0.90.

Conclusions

- A VAF approach demonstrates high sensitivity and precision at separating between germline and somatic variants.
- At 30% VAF threshold, sensitivity for detection of germline variants in FFPE tumour is 0.94 and the positive predictive value for referral to downstream confirmatory testing is 0.90.
- Germline variants could be accurately identified in FFPE tumour sequencing.

Acknowledgements

Dr. Aly Karsan

Dr. Jennifer Grants

Dr. Jeremy Parker

Dr. Kieran O'Neill

Dr. Marion van den Bosch

Dr. Rawa Ibrahim

Dr. Sergio Martinez-Hoyer

Angela Mo

Patrick Coulombe

Rod Docking

Jenny Li

Deborah Deng

Helen Lin

Committee members:

Dr. Martin Hirst

Dr. Ryan Morin

Centre for Clinical Genomics

Canada's Michael Smith Genome Sciences Centre

Patients from The OncoPanel Pilot study (H14-01212)

