GZ Theoretische Informatik (WS16/17)

Lösungsvorschlag zu Aufgabenblatt 4

Aufgabe 1

- 1. Für zwei Wörter $v=a^{2^{lv}}\in L_0$ und $w=a^{2^{lw}}\in L_0$ mit |v|<|w| gilt $|w|-|v|\geq 2l_v$ (w ist um mindestens $2l_v$ Elemente länger als v)

 Sei $N\in\mathbb{N}$ beliebig. Wähle $x=a^{2^N}\in L_0$. Sei uvw beliebige Unterteilung von x mit $|uv|\leq N$ und |v|>0. (Dann gilt $v\in\{a^1,...,a^N\}$) Wähle i=2. uv^iw ist mindestens um 1 Zeichen länger als x und maximal um N Zeichen länger als x. Also gilt $uv^iw\notin L_0$. Somit ist L_0 nicht regulär.
- 2. Sei $N \in \mathbb{N}$ beliebig. Wähle $x = [N]^N \in L_1$. Sei uvw beliebige Unterteilung von x mit $|uv| \leq N$ und |v| > 0. (Dann gilt $v \in [+]$) Wähle i = 0. uv^iw enthält mindestens ein] mehr als [s. Also gilt $uv^iw \notin L_1$. Somit ist L_1 nicht regulär.

Aufgabe 2

Sei $M = (\Sigma, Q, F, s, \Delta)$ ein Automat, der L akzeptiert. Sei N = |Q| und seien u, v, w Wörter mit $uvw \in L$ und |v| = N. Sei |u| = l, |v| = n = N und |w| = k. Da $uvw \in L$ existiert ein Pfad $q_0, q_1, ..., q_{l+n+k}$ mit $q_0 = s$, $q_{l+n+k} \in F$ und $\forall i < l+n+k$:

- $(q_i, u_{i+1}) \Delta q_{i+1}$ falls i < l
- $(q_i, v_{i+1-l})\Delta q_{i+1}$ falls $l \leq i < l+n$
- $(q_i, w_{i+1-l-n})\Delta q_{i+1}$ falls $l+n \le i < l+n+k$

Da n+1>|Q|, gibt es mehr Zustände $q_l,...,q_{l+n}$ als M verschiedene Zustände besitzt. Daher existieren i,j mit $l\le i< j\le l+n$ und $q_i=q_j$. Seien xyz=v mit |x|=i-l und |y|=j-i>0. Dann existiert ein Teilpfad $q_0...q_i$ mit der Beschriftung ux, ein Teilpfad $q_i...q_j$ mit der Beschriftung y und ein Teilpfad $q_j...q_{l+n+k}$ mit der Beschriftung zw. Da $q_i=q_j$ können wir diesen Teilpfad beliebig oft, c-mal, durchlaufen und erhalten weiterhin einen Pfad $q_0...q_{l+n+k}$ mit dem das Wort uxy^czw akzeptiert wird. Damit gilt $uxy^czw\in L$.

Aufgabe 3

(a) Jedes Wort $uvw \in L$ enthält entweder aa als Teilstring, oder $\#_a(uvw) = 2^l$. Sei N=3. Fallunterscheidung über v:

```
Fall 1, v enthält mindestens ein b: wähle für y ein beliebiges b in v \Rightarrow alle Teilstrings aa bleiben erhalten und \#_a bleibt konstant in uxy^izw, für bel. i\in\mathbb{N}.
```

```
Fall 2, v enthält kein b: wähle erstes a aus aaa als y \Rightarrow a^iaa enthält aa als Teilstring für bel. i \in \mathbb{N}.
```

Aus Fall 1 und Fall 2 folgt, das L die starke Pumping-Eigenschaft hat.

(b) Sei $w_n = (ab)^n$. w_n hat offensichtlich keinen Teilstring aa. Für m < n, und beliebiges l mit $2^{l-1} > n$ gilt: $(ab)^{2^l-n} \in F_L(w_n)$, da $(ab)^n(ab)^{2^l-n}$ genau 2^l a hat. Aber $(ab)^{2^l-n} \notin F_L(w_m)$, da $(ab)^m(ab)^{2^l-n}$ zwar mehr als 2^{l-1} a hat, da $2^l - n > 2^{l-1}$. Aber weniger als 2^l a, da $2^l - n + m < 2^l$, für m < n. $\Rightarrow F_L(w_n) \neq F_L(w_m)$ für m < n beliebig. Also ist L nicht regulär.

Aufgabe 4

Ein DEA, der die beschriebene Sprache akzeptiert, ist gegeben durch:

GZ Theoretische Informatik (WS16/17)

Lösungsvorschlag zu Aufgabenblatt 4

Entsprechend vorrausgehenden Aufgaben gilt im Zustand q_n für den bereits gelesenen Teilstring $v < v > \mod 3 = n$.

Sei für i, j < 3 und a < 3, r_{ij}^a der reguläre Ausdruck, der alle Beschriftungen von Pfaden von q_i nach q_j beschreibt, die q_a nicht als internen Knoten enthalten. Da der DEA nur einen Endzustand q_1 besitzt, sind die Pfade, die in q_0 starten und in q_1 enden die akzeptierenden Pfade. Es existiert nur ein Ausdruck r_{01}^1 , der von q_0 nach q_1 führt ohne q_1 mehrmals zu durchlaufen.

$$r_{01}^1 = r_{00}^1 1 = 0^* 1.$$

Es werden nun die Ausdrücke angehängt, die von q_1 wieder nach q_1 führen. Man betrachte zuerst nur die Pfade, die von q_1 nach q_1 führen ohne q_1 als internen Knoten zu durchlaufen.

$$r_{11}^1 = 1r_{00}^1 1 + 0r_{22}^1 0 = 10^* 1 + 01^* 0$$

Wir erhalten alle Pfade von q_1 nach q_1 durch die kleenesche Hülle dieser einfachen Pfade. Der gesuchte Ausdruck lautet damit: 0*1(10*1+01*0)*

Aufgabe 5

Der folgende NKA akzeptiert die Sprache L_1 :

- $\Sigma = \{ [,] \}$
- $\Gamma := \{L, \#\}$
- # als Kellerboden
- $Q := \{q_0, q_1\}$
- $s = q_0$
- $F := \{q_0\}$
- $\Delta := \{q_0, \ a, \ [, \ aL, \ q_0\} \ \cup \ \{q_0, \ L, \], \ \varepsilon, \ q_0\} \ \cup \ \{q_0, \ \#, \], \ \#, \ q_1\} \ , \forall a \in \Gamma$

Argumentation: Der Automat startet im Zustand q_0 mit leerem Keller. Jede eingelesene [merkt sich der Automat, indem er ein L, auf den Keller legt. Liest der Automat ein], wird ein L vom Keller entfernt. Dies ist solange möglich, bis alle L entfernt wurden. Liest der Automat bei leerem Keller ein], so ist die Bedingung 'korrekt geklammert' verletzt. Dann geht der Automat in den Zustand q_1 über und akzeptiert nie.

Der Automat akzeptiert im Zustand q_0 , bei leerem oder nicht leerem Keller.