Nome	RA	Curso/Turma
Vitor Hugo Ferrari Ribeiro	112481	Física / 34

Experimento VIII

Campo Magnético

I. Considerações Gerais

O módulo campo magnético no centro de uma bobina retangular de N espiras, de lados a e b, devido á uma corrente elétrica (i) que a percorre é dado pela expressão:

$$B_B = \frac{2 \cdot N \cdot \mu_0 \cdot i \cdot (a^2 + b^2)^{\frac{1}{2}}}{\pi \cdot a \cdot b}$$

O campo magnético resultante (\vec{B}_R) no centro da espira retangular devido à contribuição da componente horizontal do campo magnético terrestre local (\vec{B}_T) e do campo da bobina (\vec{B}_B) é dado por:

$$\vec{B}_R = \vec{B}_T + \vec{B}_B$$

A Figura 1 ilustra as contribuições dos campos magnéticos \vec{B}_T e \vec{B}_B no centro da bobina retangular.

Figura 1. Contribuição do campo magnético da bobina e do campo magnético da Terra no centro de uma espira retangular. Sendo N, S, L e O são as coordenadas geográficas norte, sul, leste e oeste, respectivamente.

A relação entre o $\left| \overrightarrow{B}_{T} \right|$ e $\left| \overrightarrow{B}_{B} \right|$ é dada por:

$$\tan \theta = \frac{|\vec{B}_B|}{|\vec{B}_T|}$$

Na qual θ é o ângulo entre \vec{B}_T e \vec{B}_R .

O módulo campo magnético de uma espira quadrada, de N voltas de lado a, em função da distância, ao longo do seu eixo, percorrida por uma corrente elétrica i sendo expresso por: 4,065025 / $a^2=0,065025$

$$B_B(x) = \frac{4 \cdot N \cdot \mu_0 \cdot a^2 \cdot i}{\pi \cdot (a^2 + 4 \cdot x^2) \cdot \sqrt{2 \cdot a^2 + 4 \cdot x^2}}$$

II. Campo Magnético De Uma Bobina E Campo Magnético Terrestre Local

- 1. Posicione a bússola sobre o cavalete (Fig. 2), na marcação zero, e direcione o cavalete até que a bússola aponta para o norte geográfico;
- 2. Faça a montagem ilustrada na Fig. 2, com a bobina de 4 volta(s). A conexão do amperímetro ao circuito deve ser feita pelo conector de 20 *A*;
- 3. Ligue a fonte e aumente a tensão lentamente, até no máximo de 10 V, e observe o que ocorre com a bússola;
- 4. Inverta os terminais na fonte e observe o que ocorre;
- 5. Com uma corrente elétrica de 0.26 ± 0.03 *A* varie o número de voltas na bobina e anote os desvios angulares (θ em graus) da bússola na Tabela 1;
- 6. Meça as dimensões da bobina: a = 0.255 m e b = 0.255 m;
- 7. Com a bobina com 4 voltas e uma corrente elétrica inicial de 0,2 A varie a corrente elétrica de 0,2 em 0,2 A até 1,6 A, anotando os respectivos desvios angulares da bússola na Tabela 2. Antes de iniciar este procedimento certifique-se que sem a presença de corrente elétrica na bobina a bússola esteja orientada para o norte geográfico;
- 8. Com a bobina com 10 voltas, ajuste a fonte para uma corrente elétrica de *i* = 0,90 *A* e varie a posição da bússola, de acorda com as marcações no cavalete, para cada posição anote os valores dos desvios angulares da bússola, utilize a Tabela 3 para registrar seus dados experimentais.

Tabela 1. Desvios angulares da bússola, para corrente elétrica fixa, em função do número de espiras na bobina (vídeo: II.Variando_as_Voltas.mp4).

N	$m{ heta} \pm \Delta m{ heta} \ (^o)$	$\tan heta$	
3	10 ° ± 3	0,176	
6	20°±3	0,364	
9	30 ° ± 3	0,577	
12	40 ° ± 3	0,839	
$i = 0.266 \pm 0.030 (A)$			

Tabela 2. Dados obtidos para as medidas desvios angulares da bússola em função da corrente elétrica (vídeo: "III.Variando_a_Corrente.mp4").

$i \pm \Delta i (A)$	$oldsymbol{ heta} \pm \Delta oldsymbol{ heta} \left(oldsymbol{^o} ight)$	$\tan heta$
$0,205 \pm 0,001$	10° ± 3	0,176
$0,410 \pm 0,001$	25° ± 3	0,466
$0,603 \pm 0,001$	35 ± 3	0,700
$0,810 \pm 0,001$	45 ± 3	1,000
$1,005 \pm 0,001$	50 ± 3	1,192
$1,208 \pm 0,001$	55 ± 3	1,428
$1,409 \pm 0,001$	60 ± 3	1,732
$1,606 \pm 0,001$	65 ± 3	2,144

Tabela 3. Dados obtidos para as medidas dos desvios angulares da bússola em função da posição ao longo do eixo da bobina (vídeo: "IV.Variando_Distancia.mp4").

<i>x</i> (<i>m</i>)	$\theta \pm \Delta \theta (^{o})$	$B_{B_{exp}} = B_{T_{local}} \cdot \tan \theta$	$B_{B_{calc}}$
0	75 ± 3	$5,053 \times 10^{-5}$	$5,59 \times 10^{-5}$
0,05	70 ± 3	$3,719 \times 10^{-5}$	$4,67 \times 10^{-5}$
0,10	60 ± 3	$2,345 \times 10^{-5}$	$3,03 \times 10^{-5}$
0,15	35 ± 3	$0,948 \times 10^{-5}$	$1,80 \times 10^{-5}$
0,20	15 ± 3	$0,363 \times 10^{-5}$	$1,08 \times 10^{-5}$
0,25	05 ± 3	$0,118 \times 10^{-5}$	$0,675 \times 10^{-5}$
0,30	00 ± 3	0	$0,441 \times 10^{-5}$
0,35	00 ± 3	0	0.300×10^{-5}

Figura 2. Esquema para a montagem de medidas de campo magnético. No circuito ao lado o indutor (L) é a bobina de N voltas.

III. Discussão Dos Resultados Obtidos:

1) Discuta sobre o comportamento do \vec{B}_B em função da variação da variação do número N de voltas da bobina, utilizando os dados coletados na tabela 1.

Do experimento, percebemos que quando aumentamos o número de voltas da bobina o ângulo de deflexão da agulha da bússola também varia; portanto, temos que quando há uma variação do ângulo da bússola, é sinal de que existe um campo magnético atuando sobre ela; podemos concluir que quanto maior a deflexão, mais intenso é o campo magnético, devido ao aumenta da quantidade de espiras da bobina.

2) Discuta sobre o comportamento do \vec{B}_B em função da variação da corrente elétrica.

Perceba que N, S,O e L são os pontos cardeais. \vec{B}_T , \vec{B}_B , \vec{B}_R são respectivamente os campos magnéticos da terra, da bobina, e o resultante da soma vetorial dos dois primeiros. São a e b os comprimentos laterais da bobina. θ o ângulo entre o campo da bobina e o campo da terra. e, finalmente, i a corrente elétrica que passa pelo fio da bobina. O módulo do campo magnético da bobina calculado no ponto central desta é dado por:

$$B_B = \frac{2 \cdot n \cdot \mu_0 \cdot i \cdot (a+b)}{\pi \cdot a \cdot b}$$

Tal que n é o número de espiras enroladas na bobina, e μ_0 a chamada permeabilidade magnética do vácuo. Se considerarmos uma bobina quadrada, ou seja, de modo que a=b, o módulo do campo magnético fica:

$$B_B = \frac{2 \cdot \sqrt{2} \cdot n \cdot \mu_0 \cdot i}{\pi \cdot a}$$

Mantendo a fixo, e variando a corrente elétrica que passa pelas espiras, é fácil perceber que o módulo de \vec{B}_B cresce linearmente com i, isto é:

$$B_R \propto i$$

3) Calcule os valores das tangentes dos desvios angulares da bússola $(\tan \theta)$, anotando-os na Tabela 2, e construa o gráfico de $\tan \theta$ em função da corrente elétrica.

4) A partir do gráfico tan θ em função da corrente elétrica determine o valor do campo magnético terrestre local $(|\vec{B}_T|)$ e compare com seu valor esperado $(|\vec{B}_T| = 1,8786 \times 10^{-5} \, T; "geomag.nrcan.gc.ca")$.

Temos que a relação entre o campo da terra e o criado pelas espiras em relação à graduação é igual a:

$$\tan \theta = \frac{|\vec{B}_B|}{\vec{B}_T}$$

Ou ainda:

$$\left| \vec{B}_B \right| = \left| \vec{B}_T \right| \cdot \tan \theta$$

Além disso, segundo a análise do gráfico, sendo α correspondente ao coeficiente angular da reta "fitting" do gráfico, temos a seguinte expressão:

$$\tan \alpha = \frac{\Delta \tan \theta}{\Delta i}$$

Ou ainda:

$$\tan \theta = i \cdot \tan \alpha$$

Substituindo as equações anteriores, temos:

$$B_T = \frac{2 \cdot \sqrt{2} \cdot n \cdot \mu_0}{\pi \cdot a \cdot \tan \alpha}$$

A partir do gráfico e dos dados temos que $a = 0,250 \, m, n = 4 \, e \, \alpha = 1,337$, portanto:

$$B_T = 1{,}3539 \times 10^{-5} T$$

Que se trata do módulo do campo magnético terrestre experimental.

Considerando o campo magnético terrestre local como o fornecido igual a $B_T = 1,8786 \times 10^{-5} T$, temos que o campo encontrado experimentalmente conta com um erro percentual de 38% este erro pode ser creditado aos erros sistemáticos como a influência de campos de celulares, redes elétricas do prédio, além de uma baixíssima precisão da bússola e uma difícil determinação do ponto central exato da bobina, tudo isto, somado aos possíveis erros

grosseiros de leitura dos equipamentos, aliados à baixa precisão dos pontos de distância da expira, podem ter favorecido para este erro percentual.

5) Calcule o valor do módulo do campo magnético da bobina em função da distância, ao longo de seu eixo, primeiramente utilizando o campo magnético terrestre local, obtido no item anterior, e depois utilizando a equação 4. Anote os valores calculados na Tabela 3.

$$B_B(x) = \frac{4 \cdot N \cdot \mu_0 \cdot a^2 \cdot i}{\pi \cdot (a^2 + 4 \cdot x^2) \cdot \sqrt{2 \cdot a^2 + 4 \cdot x^2}}$$

Com o módulo do campo magnético da terra B_B obtido e com os desvios causados na bússola, é possível calcular o valor experimental do campo produzido pela bobina ao longo do eixo e comparar com os valores teóricos, presentes na tabela 3.

6) Construa em um mesmo gráfico os comportamentos de $B_{B(experimental)}$ e $B_{B(calculado)}$ em função da distância ao longo do eixo da bobina. Utilize os dados da Tabela 3.

7) A partir do gráfico obtido no item anterior discuta sobre o comportamento do campo da bobina em função da distância.

Com base no gráfico, podemos observar que o campo cai abruptamente proporcional à distância até cerca de 0,2 m de distância da bobina, a partir deste ponto, o campo começa a decair mais suavemente, tomando um comportamento assintótico com o eixo X.

Em relação à compatibilidade dos dados, podemos observar que os pontos experimentais mais afastados da espira coincidem mais com os teóricos, já os mais próximos se divergem um pouco, fato esse devido provavelmente à dificuldade em determinar o centro da expira, além do erro sistemático devido à precisão da bússola.

Anotações_____
