

Supplementary Figure 1
Spectra of fruit weight for three tomato groups.

Determination of ΔK using STRUCTURE.

 ΔK analysis for a different number of clusters (K) for a tomato population consisting of 331 accessions (excluding 10 wild accessions). ΔK showed a peak at 2, suggesting two clusters as the optimal option.

Principal-component analysis (PCA) of 331 tomato accessions.

A total of 2,340,973 whole-genome SNPs (MAF > 10%, missing \leq 5%) were used for PCA. Two-dimension coordinates were plotted for the 331 tomato accessions. CER (orange) and BIG (blue) accessions have a relatively concentrated distribution, whereas PIM accessions (green) are dispersed widely.

Distribution of private SNPs in three tomato groups.

Private SNPs are presented for each chromosome in PIM (green), CER (orange) and BIG (blue).

Genome-wide average LD decay in three tomato groups.

LD decay is estimated by the squared correlations of allele frequency (ℓ^2) against distance between polymorphic sites in PIM (green), CER (orange) and BIG (blue).

Distribution of fruit weight and size of the 500 F₂ individuals.

(a) Frequency distribution of fruit weight in the F_2 population. The fruit weight of both parents and the F_1 are shown. (b) Fruit appearances of individuals from the F_2 population. The two bulks (big bulk and small bulk) are constructed by selecting the fruits shown in the first and last two rows, respectively.

Supplementary Material index

Supplementary Tables	page 2
Supplementary Note	page 7

Supplementary Tables

Supplementary Table 1. Summary of the sampled collection of tomato (available in separate file.xls).

Supplementary Table 2. Distribution of SNPs within various genomic regions in tomato.

	SNP	Intergenic	5' UTR	CDS	Intron	3' UTR	Synony	Non-syno
							mous [#]	nymous#
ch01	1,220,209	1,042,008	7,638	42,231	119,758	8,574	17,834	25,223
ch02	661,454	538,279	2,303	33,348	82,576	4,948	13,903	19,567
ch03	885,683	758,364	2,199	33,523	86,679	4,918	13,843	19,752
ch04	1,063,878	948,625	1,853	29,732	79,513	4,155	12,112	17,681
ch05	1,014,026	925,488	1,386	24,272	59,663	3,217	9,594	14,702
ch06	813,858	690,607	2,157	31,045	85,168	4,881	12,860	18,265
ch07	1,131,425	1,028,751	1,686	27,386	69,966	3,636	11,368	16,074
ch08	1,032,516	932,747	1,616	25,462	69,281	3,410	10,257	15,244
ch09	1,160,963	1,050,579	1,796	28,495	76,229	3,864	11,773	16,798
ch10	831,011	752,219	409	23,400	53,970	1,013	9,135	14,285
ch11	785,079	695,596	9	22,660	66,802	12	9,405	13,255
ch12	824,248	738,611	15	24,215	61,385	22	9,542	14,673
ch00	196,167	189,245	62	2,695	3,973	192	909	1,787
Total	11,620,517	10,291,119	23,129	348,464	914,963	42,842	142,535	207,306

[#] Because SNPs are annotated independently, some SNPs are located in overlapped regions of different transcripts, resulting in synonymous SNPs in one transcript, and non-synonymous SNPs in another transcript. The sum of synonymous and non-synonymous SNPs may be higher than the number of SNPs in the corresponding CDS regions.

Supplementary Table 3. Distribution of indels within various genomic regions in tomato.

	indel	Intergenic	5' UTR	CDS	Intron	3' UTR	Non-frame shift	Frame shift
ch01	152,744	117,870	1,723	1,966	28,726	2,459	1,453	513
ch02	94,943	71,204	832	1,633	19,854	1,420	1,216	417
ch03	110,385	85,325	748	1,619	21,190	1,503	1,177	442
ch04	113,612	91,707	607	1,439	18,602	1,257	1,060	379
ch05	105,244	88,694	498	1,199	13,864	989	873	326
ch06	92,855	70,513	651	1,419	18,924	1,348	1,048	371
ch07	112,547	93,379	559	1,304	16,224	1,081	944	360
ch08	105,363	85,960	514	1,184	16,698	1,007	852	332
ch09	109,130	89,989	559	1,212	16,228	1,142	894	318
ch10	98,091	83,801	163	1,180	12,622	325	899	281
ch11	90,249	73,622	1	1,025	15,595	6	718	307
ch12	100,584	85,112	3	1,253	14,210	6	865	388
ch00	17,466	16,392	19	127	881	47	109	18
Total	1,303,213	1,053,568	6,877	16,560	213,618	12,590	12,108	4,452

Supplementary Table 4. SNP loci selected for validation by PCR and Sanger sequencing (available in separate file.xls).

Supplementary Table 5. SNP loci selected for validation by the SNP array dataset*.

Accession	Group	Consistent	Inconsistent	Missing Data	Accuracy
TS-3	BIG	6,386	13	112	99.80%
TS-6	BIG	6,164	4	343	99.94%
TS-8	BIG	6,337	4	170	99.94%
TS-9	BIG	6,007	248	256	96.04%
TS-10	BIG	6,383	82	46	98.73%
TS-14	PIM	6,086	146	279	97.66%
TS-15	PIM	6,253	6	252	99.90%
TS-17	PIM	6,143	70	298	98.87%
TS-22	PIM	6,205	28	278	99.55%
TS-31	CER	6,436	4	71	99.94%
TS-33	CER	5,978	298	235	95.25%
TS-34	CER	6,358	8	145	99.87%
TS-43	BIG	6,345	24	142	99.62%
TS-49	BIG	6,248	2	261	99.97%
TS-72	CER	5,933	378	200	94.01%
TS-87	CER	5,199	397	915	92.91%
TS-92	PIM	4,453	241	1,817	94.87%
TS-98	CER	6,287	5	219	99.92%
TS-107	CER	3,971	255	2,285	93.97%
TS-122	BIG	3,586	22	2,903	99.39%
TS-123	PIM	5,871	287	353	95.34%
TS-128	BIG	6,353	99	59	98.47%
TS-133	BIG	5,351	13	1,147	99.76%
TS-145	PIM	5,690	15	806	99.74%
TS-151	BIG	6,358	2	151	99.97%
TS-154	CER	6,433	2	76	99.97%
TS-155	BIG	5,894	3	614	99.95%
TS-156	PIM	6,316	34	161	99.46%
TS-158	CER	5,844	585	82	90.90%
TS-163	BIG	6,382	2	127	99.97%
TS-171	BIG	5,246	10	1,255	99.81%
TS-181	CER	6,170	6	335	99.90%
TS-192	BIG	6,340	3	168	99.95%
TS-221	CER	6,300	2	209	99.97%
TS-224	BIG	4,677	118	1,716	97.54%
TS-228	BIG	6,000	2	509	99.97%
TS-229	CER	6,457	2	52	99.97%
TS-237	BIG	4,427	8	2,076	99.82%
TS-239	BIG	4,905	861	745	85.07%
TS-240	CER	5,999	232	280	96.28%
TS-244	PIM	5,060	20	1,431	99.61%
TS-264	BIG	6,242	8	261	99.87%
TS-266	PIM	5,001	1,050	460	82.65%
TS-267	CER	5,915	182	414	97.01%
TS-291	PIM	4,773	6	1,732	99.87%
TS-298	CER	6,284	2	225	99.97%
TS-299	CER	5,731	617	163	90.28%
TS-420	PIM	5,744	581	186	90.81%

^{*} The array dataset is from S. C. Sim et al. 2012

Supplementary Table 6. Best fitting parameters for the three-population model in three tomato groups by demographic analysis.

	CER				BIG			
	Lower	Higher	Mean	Mean ^a	Lower	Higher	Mean	Mean ^a
Population size at bottleneck	0.0017	0.0019	0.0018	295	0.050	0.102	0.076	12,217
Final size of population	0.081	0.092	0.086	13,941	0.057	0.062	0.059	9,558
Duration of bottleneck (years)	0.00066	0.00071	0.00068	109.8	0.00019	0.00024	0.00021	34.4
Time after bottleneck to final	0.039	0.052	0.045	7.295.8	0.0025	0.0032	0.0028	458.6
population (years)	0.037	0.032	0.0-13	1,275.0	0.0023	0.0032	0.0020	450.0

We estimate the ancient population size by the formula $4N_e \times \mu \times L = \theta$, where μ is the mutation rate, L is the generation time and θ is the genetic diversity.

Supplementary Table 7. Putative domestication sweeps (available in separate file.xls).

Supplementary Table 8. Putative improvement sweeps (available in separate file.xls).

Supplementary Table 9. Genes within the putative domestication sweeps (available in separate file.xls).

Supplementary Table 10. Genes within the putative improvement sweeps (available in separate file.xls).

^a Values are calculated by multiplying $2N_e$ (1.615×10⁵) and the best fitting parameters.

Supplementary Table11. Summary of known fruit weight loci during domestication and improvement.

Genes/QTLs	Linked Marker	Chr.	Type	Sweep number	Reference
fw1.1	TG301	ch01	domestication	IS003	1
fw2.1	cTOD_16_E7, TG151	ch02	improvement	IS029-IS034	2
fw2.2*		ch02	improvement	IS033	3
fw2.3	CG59, TG154	ch02	improvement	IS035	1
lc(lcn2.1)*		ch02	improvement	IS29-IS30	4
lcn2.2	T347, TG167	ch02	improvement	IS033	5
fw3.1	TG246, SSR320	ch03	improvement	IS054-IS056	2,6
fw3.2*		ch03	improvement	IS054	7
fw5.2	CT118, cLEX-13-G5	ch05	domestication	DS065	8
fw7.2	TG183	ch07	domestication	DS126-DS133	8
fw9.1	TG254, TG9	ch09	improvement	IS098-IS102	1
fw9.3	CT74, TG328	ch09	improvement	IS110-IS113	1
lcn10.1	CT234	ch10	improvement	IS114-IS118	8
fw11.1	TG400, TG26	ch11	improvement	IS128-IS130	2
fw11.2	TG46	ch11	improvement	IS128	1
fw11.3	EP1057, EP1573	ch11	improvement	IS131	9
fw12.1	TG180, cLEC-67-B16	ch12	domestication	DS174-DS177	2
lcn12.1	TG167, TG151	ch12	domestication	DS180	8

^{*} It shows these genes were cloned.

Supplementary Note

Validation of SNP calling

To evaluate the accuracy of SNPs, we first randomly selected 349 SNPs in three accessions for

PCR and Sanger sequencing (Supplementary Table 4). As a result, 347 SNPs could be amplified

and sequenced successfully in all three accessions and two SNPs in one accession, resulting in

1,043 genotypes. Some genotypes could not be amplified and sequenced successfully, and

presumably other additional variants may be present in the primer sequences. As a result, we

found only 1.6% of genotypes were different from those for PCR and Sanger sequencing.

Secondly, we compared 285,508 SNPs from 48 tomato accessions to a previously published

tomato SNP array dataset. As a result, only 6,987 SNPs (2.4%) are different from those

determined using re-sequencing data (Supplementary Table 5). Therefore, the accuracy of our

SNP calling is estimated to be 98.4% and 97.6% based on the two different validation approaches,

respectively.

Private SNP distribution in different groups

The private SNPs of different groups were identified, and we found PIM has substantially more

private SNPs (582,954) than those in CER (207,892) and BIG (194,919). Meanwhile, we found

that ~55% of private SNPs were located on chromosomes 6 and 9 in BIG (Supplementary Figure

4).

Ancestral SNP distribution in three groups

We identified a total of 23,509,525 SNPs using the MUMmer package¹⁰ (version 3.0, nucmer and

show-snps programs with default parameters) between S. pennellii and the reference Heinz 1706

genomes. Among these SNPs, 3,480,199 (14.8%) can be reliably recovered in the ~11.6 million

SNP sites. Among the ~3.5 million SNPs, those identical to SNPs in S. pennellii, representing

presumably ancestral alleles, were identified in each accession. As a result, on average PIM

accessions have a higher percentage (30.4%) of ancestral alleles than CER (6.6%) and BIG

(2.8%).

Determination of the cutoffs for selective sweep identification

The genetic diversity (π) at the whole-genome level was calculated for each of the three groups

(PIM, CER and BIG), using 100 kb window with a step size of 10 kb. High positive correlation

was found between PIM and CER ($R^2 = 0.6$), as well as CER and BIG ($R^2 = 0.4$). By scanning the

ratios of the genetic diversity (π_{PIM}/π_{CER} and π_{CER}/π_{BIG}), we selected windows with the top 5%

ratio cutoffs (3.0 and 6.9) as candidate swept regions. Both cutoffs were confirmed based on the

permutation tests.

1. To confirm the appropriate cutoffs, all the accession genotypes in the combined groups of

PIM and CER, as well as CER and BIG were reshuffled and then we performed selective

sweep detection with the same parameters ten times. No positive signals were found to pass

the empirical cutoffs.

2. As a negative control, we used the value of π_{CER}/π_{PIM} to detect the low diversity regions in

PIM. With the same method, the low diversity regions of CER were also scanned. We found

that the highest value is 1.6 and 1.5, both far lower than positive signals.

Both the positive and negative tests indicated that the empirical cutoffs selected could generate

selection signals with very low false discovery rates.

Bulked-segregant analysis and whole-genome resequencing of the F₂ population

Approximately 51 Gb and 54 Gb data for big and small bulks were generated through Illumina

high-throughput sequencing, respectively (Fig. 2e and Supplementary Fig. 6). The reads of

Big-bulk (48× depth) and Small-bulk (51× depth) covered 93.3% and 93.8% of the assembled

genome, respectively. Approximate 2.3 million SNPs between the parents were identified with the

base quality value >= 20 and the SNP quality value >= 20. The SNP-index for both bulks was

calculated and Δ SNP-index was used for fruit QTL detection. We found the peak regions (out of

95% confidence values) resided on three chromosomes, including the distal end of the long arm of

chromosome 2, both distal ends of chromosome 9 and the distal end of the long arm of

chromosome 11. As a result, 10 QTLs (fw2.1, fw2.2, fw2.3, lcn2.1, lcn2.2, fw9.1, fw9.3, fw11.1,

fw11.2 and fw11.3) for improvement were found in the F_2 population (Fig. 2f,g). These results

indicate that improvement sweeps play important roles in controlling fruit size during tomato

evolution. However, minor QTLs are less easily detected using this method, as shown in the

simulation test in a previous study¹¹.

Supplementary References:

- 1. Grandillo, S., Ku, H. & Tanksley, S. Identifying the loci responsible for natural variation in fruit size and shape in tomato. *Theor. Appl. Genet.* **99**, 978-987 (1999).
- 2. Ashrafi, H., Kinkade, M.P., Merk, H.L. & Foolad, M.R. Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. *Mol. Breeding* **30**, 549-567 (2012).
- 3. Frary, A. *et al. fw2.2*: a quantitative trait locus key to the evolution of tomato fruit size. *Science* **289**, 85-88 (2000).
- 4. Munos, S. *et al.* Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near *WUSCHEL*. *Plant Physiol.* **156**, 2244-2254 (2011).
- 5. Barrero, L. & Tanksley, S. Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. *Theor. Appl. Genet.* **109**, 669-679 (2004).
- Doganlar, S., Frary, A., Ku, H.-M. & Tanksley, S.D. Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). *Genome* 45, 1189-1202 (2002).
- 7. Chakrabarti, M. *et al.* A cytochrome P450 regulates a domestication trait in cultivated tomato. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 17125-17130 (2013).
- 8. Van der Knaap, E. & Tanksley, S. The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. *Theor. Appl. Genet.* **107**, 139-147 (2003).
- 9. Huang, Z. & van der Knaap, E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. *Theor. Appl. Genet.* **123**, 465-474 (2011).
- Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
- 11. Takagi, H. *et al.* QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. *Plant J.* **74**, 174-183 (2013).