Shield para estudio del Recurso Eólico:

Fecha: 29/07/14 Versión: 1.0 Desarrollado por: Matt Little

Este es un shield simple para implementar fácilmente un sistema de registro de datos del recurso eólico. Está diseñado para leer 2 anemómetros mediante una señal de pulsos y 1 veleta.

Está diseñado como Shield para ser montado en la placa principal DataDuino, que es una unidad de adquisición de datos Arduino que almacena datos en una tarjeta SD (como un archivo .csv).

Las instrucciones siguientes muestran la construcción completa, incluyendo montaje en un gabinete estanco (no suministrado por el kit).

Nota: Se requiere una placa DataDuino y una placa USB FTDI para conectar el cable serial para poder efectuar su programación.

<u>Listado de Partes:</u>

Referencia	Descripción	Referencia	Descripción
C1	Capacitor electrolítico 100 uF	R1	10k
C2	Capacitor Filtro (no incluido)	R2	47k
C3	Capacitor Filtro (no incluido)	R3	47k
D1	Diodo Led	R4	47k
P1	Bornera de doble entrada	R5	Termistor 47k NTC
P2	Bornera de doble entrada	R6	1k
P3	Bornera de doble entrada	R7	Resistencia de Pull up (no incluida)
P4	Bornera de doble entrada	R8	Resistencia de Pull up (no incluida)
PCB	Circuito Impreso	SW1	Interruptor de encendido "ON/OFF"
PINS	Conector recto hembra 8 pines x2	SW2	Interruptor de modo "Calibración"
PINS	Conector recto hembra 6 pines x2		

También necesitarás (no incluido aquí):

- Construir una placa DataDuino.
 http://www.reinnovation.co.uk/web12/index.php/en/products-2/dataduino-arduino-dataacquisition-unit) (ver este link que es erróneo)
- Una computadora con el IDE de Arduino instalado.
- Un conector FTDI USB a cable serial con el código: TTL-232R-3V3, como el que se muestra a continuación:

Lo puedes conseguir aquí (como en otros tantos lugares): http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm

Herramientas Requeridas:

Instrucciones:

Paso: 1	Soldar las	resistencias

Identificar las resistencias:

Cantidad	Valor	Referencia de parte
1	10k	R1
3	47k	R2,R3,R4
1	1k	R6

La resistencia R5 es un termistor y se soldara después.

Usa una identificación gráfica o un multímetro para encontrar los valores de resistencia. Soldar en los lugares adecuados, su orientación no importa.

Paso: 2 Soldar los 2 interruptores

Colocar el interruptor de encendido donde dice "Power" y el de calibración donde dice "Calibrate" Asegúrese de que las palancas del interruptor apunten lejos del PCB.

Paso: 3 Soldar el diodo Led

Se puede efectuar un doble chequeo de la orientación del diodo led:

Una forma es observando las patas, la larga es el positivo.

La otra forma es observar el encapsulado del diodo led, el lado plano es el negativo.

Asegúrate de hacer coincidir el lado plano con el diagrama blanco impreso en el PCB.

Paso: 4 Soldar los capacitores

Identificar y luego soldar los capacitores.

Cantidad	Valor	Referencia	Imagen
1	100uF	C1	

Comprueba la orientación en el capacitor C1. La línea blanca en un costado del capacitor marca el lado del negativo.

Hay 2 puntos de soldadura para C1 en el PCB, uno es el terminal redondo y se debe soldar allí el negativo, y en el terminal cuadrado el positivo.

Otra forma de conocer el positivo de C1 es reconocer la pata más larga.

Si es posible, doblar el capacitor para dejarlo apoyando en el circuito impreso.

Paso: 5 Soldar el Termistor

Debemos soldar el termistor en los puntos de soldadura para R5.

El Termistor puede sobresalir ligeramente de la placa para ayudar a sensar la temperatura del aire

Paso: 6 Soldar las borneras

Las borneras se enlazan con slots especiales. Enlazarlas para obtener 3 borneras en una fila. Asegurarse de que se coloquen en la dirección correcta: P2 / P3 / P4 y deben tener el frente hacia afuera del PCB.

La bornera P1 debe colocarse con el frente hacia el otro lado del PCB.

Paso: 7 Soldar los pines de los conectores rectos hembra

Hay 2 conectores hembra de 6 pines y 2 de 8 pines. Coloque los pines del conector en el shield ya construido y luego presione hasta que pasen por el PCB para luego soldarlos al mismo. Esto ayuda a mantener todo recto y hace que sea más fácil montarlo en la placa base DataDuino. Resulta más fácil si ya se tiene un shield para utilizar como plantilla.

Paso: 8 Colocar en la placa base DataDuino

Este shield para estudio del recurso eólico debe encajar fácilmente en la placa base DataDuino (y también en otras placas que respetan el formato de Arduino).

Paso: 9 Cablear y colocar los soportes de las baterías y colocarlos en el gabinete

En el lote inicial de circuitos impresos que se mandaron a fabricar, la P1 BATT se marcó de forma incorrecta con + y GND invertidos.

Para solucionar este error se colocó un sticker en todos los PCB con la correcta polaridad, por lo que se debe seguir esa indicación.

Una placa de base cortada por láser fue diseñada para contener 3 pilas tipo D y los espaciadores de los circuitos impresos.

Paso: 10	Efectuar el cableado desde los 2 anemómetros y la veleta	
		Los anemómetros tiene una salida de señal tipo pulso, por lo
		que no importa la polaridad con la que se los conecte al shield.
		La veleta (en caso que se la utilice) tampoco importa la
		polaridad con la que se la conecte.
		Solo enciéndelo, establece la hora, fecha, referencia y periodo
		de muestreo y ya lo tienes!

Datos de contacto:

Este kit ha sido diseñado y producido por:

Renewable Energy Innovation.

info@re-innovation.co.uk
www.re-innovation.co.uk
Hopkinson GallerY
21 Street Station
Nottingham
NG7 6PD

Nos gustaría que este kit satisfaga sus necesidades. Si usted no estuviera satisfecho por algún motivo, por favor póngase en contacto con nosotros y le ayudaremos a solucionar el problema. Por favor escribanos a info@re-innovation.co.uk con cualquier pregunta o comentario que quiera hacer.

Si falta alguna pieza de su kit por favor envíe un correo electrónico a <u>info@re-innovation.co.uk</u> con todos los detalles, incluyendo dónde se compró el kit.

Puedes encontrar más información técnica ingresando a nuestra web: www.re-innovation.co.uk

Información útil:

Circuito esquemático:

Vista General PCB:

