Temporal & Multivariate Data

Visualization & Visual Analytics

Types of Data

- One-dimensional linear data
 - e.g., age distribution
 - includes sequential data such as text, program source codes
- Two-dimensional: planar or map data
 - e.g., geographical maps, floorplans, newspaper layouts
- Three-dimensional: real-world objects
 - e.g medical scans, architectural design
- Temporal
 - e.g. timelines, weather

Types of Data

- Multidimensional or Multivariate
 - e.g., financial data, customer behaviour
- Tree (hierarchical data)
 - e.g., file structure, evolution
- Network (relational data)
 - e.g., social network, air traffic
- The above classification is not mutually exclusive
 - E.g., how about air traffic data?
 - multivariate, geographical, network, and temporal

The Iris Sample Data Set

- Created by R.A. Fisher
- Possibly the best known data set in the pattern recognition community
- 3 classes (types of iris)
- 50 objects in each class
- 5 attributes
 - sepal length & width (cm)
 - petal length & width (cm)

Iris Setosa

Iris Versicolour

Iris Virginica

[wikipedia]

The Iris Sample Data Set

# ▼ iris.data Sepal Length	▶ l₀o	# iris.data Sepal Width	# iris.data Petal Length	# iris.data Petal Width	Abc iris.data Class
5.10	000	3.50000	1.40000	0.20000	lris-setosa
4.90	000	3.00000	1.40000	0.20000	Iris-setosa
4.70	000	3.20000	1.30000	0.20000	Iris-setosa
4.600	000	3.10000	1.50000	0.20000	Iris-setosa
5.000	000	3.60000	1.40000	0.20000	Iris-setosa
5.400	000	3.90000	1.70000	0.40000	Iris-setosa
4.600	000	3.40000	1.40000	0.30000	Iris-setosa
5.000	000	3.40000	1.50000	0.20000	Iris-setosa
4.400	000	2.90000	1.40000	0.20000	Iris-setosa
4.900	000	3.10000	1.50000	0.10000	Iris-setosa

Some Basic Plots

Bar Charts / Histograms

- To show distribution of values of a single variable
- Values are divided into bins
- A bar plot is used so that the height of each bar indicates the number of objects in each bin
- Shape of histogram depends on the number of bins

 Conventional histograms / distribution plots might not be space-efficient.

https://machinelearningmastery.com/data-visualization-in-r/

 An efficient way to show quantitative distribution of 1D data

For normal distribution (symmetric)

2D Bar Charts

 To show the joint distribution of the values of two variables

3D effect not good in showing the exact values, but the correlation can be seen clearly

Line Graphs

 Points connected by lines to show how something changes in value (usually over time)

Issues:

- occlusion when too many lines,
- when to use piecewise or smooth lines

Scatter Plots

 A plot of points showing the relationship between two variables of a set of data

 Point position determined by attribute values

Scatter Plots

 A plot of points showing the relationship between two variables of a set of data

- Point position determined by attribute values
- Additional attributes can be marked by size, shape, or color for each item

Scatter Plots

- 2D scatter plots are commonly used, and there are also 3D scatter plots
- Can compare two attributes at a time only. What
 if we have a lot of pairwise comparisons to show?
 - have an array (a matrix) of scatter plots

Scatter Plot Matrices

- Iris setosa
- Iris versicolor
- Iris virginica

- Diagonal plot show the distribution of the 1D data
- Can also make use of the diagonal space for other kinds of 1D visualization, e.g., a histogram
- Matrix plot can be used not only for scatter plot, but anything that can deal with a bivariate plot

Contour Plots

- To show continuous attributes measured on a spatial grid
- Partition the space into regions of similar values; boundaries of regions are contour lines called iso-value lines, or isolines.

Contour Plots

- Commonly used in scientific visualization
- Examples: height fields, temperature, rainfall, etc.

[3DFieldPro]

[OriginLab]

Temporal Data

Time-Series Data

- Set of values that change over time
- Examples:
 - Finance (stock prices, exchange rates)
 - Science (temperatures, pollution levels, electric potentials)
 - Public policy (crime rates, public health)
- Common requirements:
 - Able to compare many time series simultaneously
 - Able to use different visualizations in combination

Index Charts

- Interactive line chart showing % change based on a selected index point
- Useful for showing relative changes

percentage change of selected stock prices according to the day of purchase

[Heer et al.]

Stacked Graphs

Stacked Graphs

- Stack area charts on top of each other
- Useful for showing summation of time-series values (aggregation)
- Limitation:
 - negative numbers not supported
 - difficult to interpret trends accurately
 - meaningless for some kind of data (e.g., temperatures)

24

Horizon Graphs

US unemployment rate, 2000-2010.

Positive values: above average unemployment

Negative values: below average unemployment

[Heer et al.]

Horizon Graphs

- To divide the area plot into horizontal bands and layer them over each others.
- Useful for increasing the data density (i.e. save space) without sacrificing resolution.
- Limitation: Not intuitive and takes time to learn

Spiral Graphs

- Use a spirally shaped time axis
- Good for showing or identifying periodic structure of data

[Aigner et al., "Visual Methods for Analyzing Time-Oriented Data", IEEETVCG, 2008.]

Multivariate Data

Chernoff Faces

- Relate data to facial features, something which we find easy to differentiate
- Each feature, e.g., mouth, encode a data dimension by their shape, size, placement and orientation

Chernoff Faces

- Represent only trends but not actual values
- Drawback: Affected by our perceived importance of a facial feature

Heat Maps

NBA per game performance of top 50 scorers

- Encode values stored in table entries as colors
- Rows and columns can be reordered to better expose features.

[M. Ward]

column: patient

row: gene

Heatmap from DNA microarray data showing genes expressed differently for two types of leukemia.

[Warwick, http://www2.warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/heatmap/]

- How to present all n axes of the n dimensions on a 2D plane?
- Use parallel axes instead of orthogonal axes

[http://mbostock.github.io/d3/talk/20111116/iris-parallel.html]

- Each attribute value of a data item corresponds to a point on a coordinate axis, and the data item is represented as a polyline connecting these points
- A distinct class of objects can sometimes be seen as a group of lines on some axes
- Ordering of axes is important for seeing patterns

[Ward]

Parallel coordinate plot showing the distribution (i.e., centers and extents) of clusters

Parallel correlation

[Wong and Bergeron, "30 Years of Multidimensional Multivariate Visualization," Scientific Visualization: Overviews, Methodologies & Techniques, 1997.]

Parallel correlation

Parallel coordinate plot of six-dimensional data illustrating correlations of ρ (correlation coefficient) =1, .8, .2, 0, -.2, -.8 and -1.

[Wegman, "Hyperdimensional Data Analysis Using Parallel Coordinates", Journal of the American Statistical Association, 1990.]

Dimension Reduction

- To remove some of the dimensions out from the display to avoid cluttering
 - Examples: Principle Component Analysis (PCA), Multidimensional Scaling (MDS), Self Organizing Maps (SOM)
- Issue: Resulting dimensions are not the original ones, not intuitive to users

Dimension Ordering

- Crucial for the effectiveness of many visualization techniques
- Relationship among adjacent dimensions are easier to detect than relationship among those positioned far apart, e.g., Parallel Coordinates, Heat Maps
- Use for attribute mapping to highlight important dimensions, e.g., Chernoff face
- An NP-complete problem equivalent to the Travelling Salesman Problem (TSP)
- Use approximation to compute ordering or by manual ordering (interaction needed)

Visualization Gallery

- Take a look at:
 - Tableau Public (https://public.tableau.com/s/gallery)
 - D3.js(http://d3js.org/)
 - Google Charts
 (https://developers.google.com/chart/interactive/docs/gallery)
- Try visualize the Iris data set with the different techniques taught in this class using the above tools.
- What can/cannot be done by these tools?

Reference

- Jeffrey Heer, Michael Bostock, and Vadim
 Ogievetsky. 2010. A tour through the visualization
 zoo. Commun. ACM 53, 6 (June 2010), 59-67.
 (http://hci.stanford.edu/jheer/files/zoo/)
- Matthew Ward, Georges Grinstein and Daniel Keim, "Interactive Data Visualization: Foundations, Techniques, and Applications", 2010 [Chapters 6 & 7]