Statistical Process Control (SPC)

Nicholas Howe

Agenda

- > What is SPC?
- > Introduction to SPC Charts
- > Examples
- > Diagnostics

What is SPC?

- > To detect out of control process:
 - Significant change in mean
 - Significant change in variance
- > Examples:
 - Smartphone battery life
 - Particulate filtration efficiency
- > Quality control
 - Six Sigma standards

Introduction to SPC Charts

Types of SPC Charts

- > Variable
 - Continuous data
- > Time Weighted
 - Increased sensitivity to out of control process
- > Attribute
 - Counts data

Assumptions

- Independence
- Normally distributed

Summary of SPC charts

Variable

- \bar{x} , s
- \bar{x} , R
- x, R
- S
- s^2
- R

Time Weighted

- EWMA
- TabularCusum

Attribute

- p-chart
- np-chart
- c-chart
- u-chart

SPC Chart Components

- UCL = $\mu_0 + L\hat{\sigma}$
- Center = μ_0
- LCL = $\mu_0 L\hat{\sigma}$

Setting Up SPC Charts

Phase I

- Get process under control or select a period where process is under control
- · Estimate required parameters from in control data
- · Construct SPC chart

Phase II

- Use SPC chart to monitor process
- Determine assignable cause when process signals out of control

General Formula (L-sigma control limit)

- UCL = $\mu_0 + L\hat{\sigma}$
- Center = μ_0
- LCL = $\mu_0 L\hat{\sigma}$

Variable Control Charts: *x*, *R* Chart

- Individual observation chart (x)
- > Parameter Estimation

$$\mu_0 = \bar{x}$$

•
$$\hat{\sigma} = \overline{MR}/1.128$$

Moving Range:

$$\blacksquare MR_i = |x_{i+1} - x_i|$$

$$\blacksquare \overline{MR} = \frac{1}{m-1} \sum_{i=1}^{m-1} MR_i$$

Chart Parameters (L-sigma control limit)

- UCL = $\mu_0 + L\hat{\sigma} = \mu_0 + L * \overline{MR}/1.128$
- Center = μ_0
- LCL = $\mu_0 L\hat{\sigma} = \mu_0 L * \overline{MR}/1.128$

Note:

 $W=R/\sigma$ is the relative range statistic. When $X{\sim}N(\mu,\sigma^2)$ and n=2, then $E(R)=\sigma E(W)=1.128\sigma$, So estimate $\widehat{\sigma}$ by $\overline{MR}/1.128$

Time Weighted Control Charts - EWMA

- > Exponentially Weighted Moving Average (EWMA)
 - Better detection of small changes in mean
- > Parameter Estimation
 - $\mu_0 = \bar{x}$
 - $\hat{\sigma} = \overline{MR}/1.128$

EWMA Formula

- $z_0 = \mu_0$
- $z_i = \lambda x_i + (1 \lambda)z_{i-1}$, $0 < \lambda < 1$, i = 1, 2, ...

Chart Parameters (L-sigma control limit)

- UCL_i = $\mu_0 + L * \sigma \sqrt{\frac{\lambda}{2-\lambda} [1 (1-\lambda)^{2i}]}$
- Center = μ_0
- LCL_i = $\mu_0 L * \sigma \sqrt{\frac{\lambda}{2-\lambda}} [1 (1-\lambda)^{2i}]$

Note: Typically choose $\lambda = 0.1$

Attribute Control Charts - c-chart

- > Useful for counts data
- > Suppose $Y \sim Poisson(\mu_0)$, then $E(Y) = \mu_0$ and $Var(Y) = \mu_0$
- > Parameter Estimation

$$\mu_0 = \bar{x}$$

- Non-zero lower limit
 - If LCL < 0, set LCL = 0

Chart Parameters (L-sigma control limit)

- UCL = $\mu_0 + L\hat{\sigma} = \mu_0 + L * \sqrt{\mu_0}$
- Center = μ_0
- LCL = $\mu_0 L\hat{\sigma} = \mu_0 L * \sqrt{\mu_0}$

Examples

Individual Blood Glucose Tracking (1/2)

1. Select in-control data

- SPC Chart: Individual control chart
- Period selected: 1989-09-01 to 1989-10-14
- μ_0 is set to \bar{x}
- $\hat{\sigma}$ estimated by moving range

2. Check Assumptions

- Ljung-Box Test: No significant autocorrelation up to lag 10
- Jarque-Bera Test: Distribution is not significantly different from Gaussian

Individual Blood Glucose Tracking (2/2)

3. Construct Individual Control chart

Process first signals out of control on 1989-10-29

EWMA detects out of control mean 2 days earlier!

4. Construct EWMA Chart

Process first signals out of control on 1989-10-27

Singapore COVID-19 Cases (1/2)

1. Select in-control data

- SPC Chart: c-chart
- Period selected: 2020-02-15 to 2020-03-05
- μ_0 is set to \bar{x}
- $\hat{\sigma}$ is set as $\sqrt{\bar{x}}$

2. Check Assumptions

- Ljung-Box Test: No significant autocorrelation up to lag 10
- Chi-sq Goodness of fit Test:
 Distribution is not significantly different from Poisson

Singapore COVID-19 Cases (2/2)

3. Construct Individual Control chart

Process first signals out of control on 2020-03-06

Diagnostics

Violations of Assumptions

- > Violation of Normality
 - Skewed distributions
 - Heavy-tailed distributions
- > Violation of Independence
 - Autocorrelated process

Properties of Normal Distribution

- Skewness = 0
- Kurtosis = 3

Skewed distributions (1/3)

- > Results in false positives
- Can be transformed into approximately Gaussian using the Yeo-Johnson Transformation
- The Yeo-Johnson transformation is defined as:

$$x_i^{(\lambda)} = egin{cases} [(x_i+1)^{\lambda}-1]/\lambda & ext{if } \lambda
eq 0, x_i \geq 0, \ \ln{(x_i+1)} & ext{if } \lambda = 0, x_i \geq 0 \ -[(-x_i+1)^{2-\lambda}-1]/(2-\lambda) & ext{if } \lambda
eq 2, x_i < 0, \ -\ln{(-x_i+1)} & ext{if } \lambda = 2, x_i < 0 \end{cases}$$

- > Build individual control chart based on transformed data
- > Reverse transform control limits and transformed data

Skewed distributions (2/3) Gamma Distribution (Right Skewed)

KDE and QQnorm for Gamma Distribution

Yeo-Johnson Transformation

KDE and QQnorm for Transformed Distribution

Skewed distributions (3/3) Gamma Distribution (Right Skewed)

Skewed distributions (3/3) Gamma Distribution (Right Skewed)

Heavy-tailed distributions (1/2) Student's t-distribution

Individual Control Chart

Remedies

- · Live with additional false positives
- · Increase control limit

Heavy-tailed distributions (2/2) Student's t-distribution

L-sigma Coverage for t-dist and normal dist

Autocorrelated Process (1/2) AR1 Simulation

- > Results in false positives
- > Fit an Auto-Regressive (AR) model to remove autocorrelation.
- > In general, fit an AR1 model:

$$X_t = \beta_0 + \beta_1 X_{t-1} + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2)$$

> Calculate residuals:

$$e_t = X_t - \hat{X}_t$$
, where $\hat{X}_t = b_0 + b_1 X_{t-1}$

- > Build individual control chart based on residuals
- Reverse transform control limits and residuals by adding the predicted values to all the chart parameters

> E.g:
$$e_t + \hat{X}_t = X_t - \hat{X}_t + \hat{X}_t = X_t$$

Autocorrelated Process (2/2) AR1 Simulation

Fit AR1 model and calculate residuals

Back transform Control Limits and residuals

Thank You!

Appendix