Министерство образования и науки РФ
Санкт-Петербургский государственный электротехнический университет
им.Ульянова(Ленина) «СПбГЭТУ «ЛЭТИ»
Факультет компьютерных технологий и информатики
Кафедра автоматики и процессов управления

Стенд для проведения эмпирического эксперимента измерения температуры воздуха в ёмкости

По дисциплине Элементы и Устройства СУ

Составил:

аспирант группы 8931 Сердитов Ю.Н.

Научный руководитель:

профессор Душин С.Е.

Санкт-Петербург 2019

1 Общие требования

- 1. Цель задания решить 3 типа задачи:
- 1) задача для студентов ознакомление с датчиками, ознакомление со способами установки датчиков, сравнение теоретических результатов с результатами полученными на стенде;
- 2) задача для бакалавра стенд (ОУ), СУ (3/4 метода), моделирование тех. процесса;
- 3) задача для промышленности решение конкретной проблемы связанной с датчиками.
- 2. Инструменты:
- 1) SimInTech/COMSOL;
- 2) C/C++;
- 3) Eclipse;
- 4) DeepTrace;
- 5) Doxygen;
- 6) Gitlab.
- 3. Аппаратная часть:
- 1) MCU (AVR/STM32) зависит от кол-ва вх./вых. пинов, АЦП и интерфейсов (SPI/CAN) в наличии;
- 2) Sensors точность этих датчиков должна быть выше точности промышленных датчиков + необходимо согласовать интерфейс и, при необходимости, точность АЦП; 3) Motor на ИМ также нужна ОС для реализации СУ;
- 4) Wi-fi/Bluetooth возможность в будущем поставить модуль связи для создания mesh-сети;
- 5) Безопасность датчики тока, плавкие предохранители, светодидная индикация.

Содержание

1	Общие требования	2
2	Техническое задание	4
3	Требования к системе	5
4	Входные данные	6
5	Выходные данные	7
6	Требования к программному изделию	8
7	Стадии и этапы разработки	9
8	Приложение	12

2 Техническое задание

Основания для разраоотки (формулировка проолемы):		
_		
		
Назначение разработки:		
_		
····		
Цель задания – решить 3 задачи:		
1) задача для студентов – ознакомление с датчиками, сравнение теоретических результатов с		
результатами полученными на стенде (компенсация ТЭДС холодного спая),;		
2) задача для бакалавра – стенд (ОУ), СУ (П, ПИ, ПД, ПИД, Fuzzy), моделирование тех. про-		
цесса (SimInTech(составить модель)/COMSOL);		
3) задача для промышленности – на данном этапе невозможно, т.к. эти задачи сводятся к улуч-		
шению характеристик самого датчика(не наша задача).		

3 Требования к системе

Характеристика объекта: — высокая степень инерционности процесса теплообмена; — температурный диапозон (-30..120 'C); Требования к системе: — пожаробезопасность (внутренность должна покрыта негорящим материалом); — обработка ЧС; — повышеная изоляция (создание псевдозамкнутой системы); — наглядность;

4 Входные данные

....

5 Выходные данные

....

6 Требования к программному изделию

- 1. Требования к программному изделию:
 - 1) Непрерывный (обычный режим без подключения к РС);
 - 2) Логирования (режим записи н.у., значений температуры по UART на PC).
- 2. В документировании ПО должн быть использован инструмент Doxygen.

. . . .

7 Стадии и этапы разработки

- 0. Стадии и этапы разработки:
 - формулировка проблемы обеспечить создание температурного диапазона (-30..120 'C);
 - выдвижение гипотезы, что эл-т Пельте и керамический нагреватель нам подходят.
- 1. Сборка ИМ (проверка гипотезы):
 - 1) Проверка возможности нагрева ИМ до 120 'С + установить его предел;
 - 2) Проверка возможности охлаждения ИМ до -30 'С + установить его предел;
- * Измерение температуры провести при непосредственном контакте термопары с ИМ или с помощью пирометра (сбор эмпирических данных).
- ** Реализовать воздушное охлаждение радиатора, т.к. водное охлаждение сложно сделать с КПД выше чем у воздушного в кустарных условиях.
- 2. Моделирование ИМ (верификация, создание теории).
- 3. Моделирование основ. стенда совместно с ИМ (прогнозирование, создание теории);
- 4. Составление спецификации на основ. стенд и электронику;
- 0) Выбор корпуса, материалов, креплений (пожаробезопасность(установленные пределы), изолированность);
 - 1) Выбор МСU;
 - 2) Выбор Sensors;
- 3) Проверить согласование точности, измеряемого диапазона, скоростей передачи, используемых протоколов всех эл-ов системы.
- 5. Сборка основ. стенда;

Учесть:

- а. пожаробезопасность;
- б. изолированность;
- в. пазы под ИМ, датчики (3 шт. * 2 секции), промышленные датчики (4 термопары +1/2 термосопротивления);
 - г. в боковой/нижней части каждой секции оставить место под вентилятор.
- 6. Сборка основ. стенда совместно с ИМ;
- 7. Промежуточная проверка функционирования стенда:
 - 1) Проверка нагрева ИМ в составе основ. стенда до установленного предела;
 - 2) Проверка охлаждения ИМ в составе основ. стенда до установленного предела;
- * Проверки проводить в шахматном порядке длительностью не менее 10 мин. в количестве 3 шт. для каждой.
 - 3) Визуальная проверка ОСНОВ. СТЕНДА на повреждения.
- 8. Монтаж датчиков, промышленных датчиков, вторичного вентилятора;
- 9. Промежуточная проверка функционирования основ. стенда:
 - 1) Проверка нагрева ИМ в составе основ. стенда до установленного предела;

- 2) Проверка охлаждения ИМ в составе основ. стенда до установленного предела;
- * Проверки проводить в шахматном порядке длительностью не менее 10 мин. в количестве 3 шт. для каждой.
 - 3) Визуальная проверка ИЗОЛЯЦИИ ПРОВОДОВ на повреждения;
- 4) Проверка ПРОМЫШЛЕННЫХ ДАТЧИКОВ (кроме термисторов) и ВТОРИЧНОГО ВЕНТИЛЯТОРА на работу.
- 10. Составление спецификации на доп. стенд и электронику;
 - 0) Выбор корпуса, материалов, креплений;
 - 1) Выбор МСИ (возможно АТМеда);
 - 2) Выбор 1/2 промышленного датчика термосопротивления;
- 3) Проверить согласование точности, измеряемого диапазона, скоростей передачи, используемых протоколов всех эл-ов системы.
- 11. Проектирование и сборка доп. стенда проверки 1/2 термисторов;

Учесть:

- а. возможность изменения сопротивления (3 шт. потенциометра + дисплей 16х4);
- б. возможность выбора схемы подключения(двух, трёх и четырёхпроводную);
- * на дисплей выводятся 4-и сопротивления и температура на промышленном датчике.
- ** Доп. стенд, возможно сделать, как печатную плату в САПР DeepTrace.
- 12. Монтаж 1/2 промышленного датчика термосопротивления на доп. стенд;
- 13. Программирование доп. стенда проверки 1/2 термисторов;
- 14. Проверка функционирования доп. стенда проверки 1/2 термисторов:
 - 1) Проверка нагрева ИМ в составе доп. стенда до установленного предела;
 - 2) Проверка охлаждения ИМ в составе доп. стенда до установленного предела;
- * Проверки проводить в шахматном порядке длительностью не менее 10 мин. в количестве 3 шт. для каждой.
 - 3) Визуальная проверка ИЗОЛЯЦИИ ПРОВОДОВ на повреждения;
 - 4) Проверка работы дисплея;
 - 5) Проверка работы моста сопротивлений;
- 4) Проверка работы 1/2 ПРОМЫШЛЕННОГО(ЫХ) ДАТЧИКА(ОВ) ТЕРМОСОПРОТИВ-ЛЕНИЯ.
- 15. Программирование основного функционала основ. стенда;
- 16. Автономная проверка функционирования всей системы:
- 1) Проверка нагрева ИМ в составе всей системы (т.е. дистан. с MCU) до установленного предела;
- 2) Проверка охлаждения ИМ в составе всей системы (т.е. дистан. с MCU) до установленного предела;
- * Проверки проводить в шахматном порядке длительностью не менее 10 мин. в количестве 3 шт. для каждой.

- 3) Визуальная проверка ИЗОЛЯЦИИ ПРОВОДОВ на повреждения;
- 4) Проверка работы дисплея (отображает значения температуры для 2-ух секций);
- 5) Проверка работы вторичного вентилятора;
- 6) Проверка работы датчиков температуры для 2-ух секций.
- 17. Сравнить полученные результаты с результатами моделирования:
 - 1) Связать МСU с РС;
 - 2) Записать значения температур с (3-ёх датчиков * 2 секции) в терминал (файл) РС;
 - 3) Построить графики распределения температур с помощью PyPlot;
 - 4) Сравнить с полученные результаты с результатами моделирования.
- 18. Программирование СУ основ. стенда:
 - 1) Реализация П-регулятора;
 - 2) Реализация ПИ-регулятора;
 - 3) Реализация ПД-регулятора;
 - 4) Реализация ПИД-регулятора;
 - 5) Реализация Fuzzy-регулятора;
- 19. Комплексная проверка функционирования всей системы:
 - 1) Поддержание положительной температуры (0, 10, 24, 50, 70, 90, 110, 115, 118, 119);
 - 2) Поддержание отрицательной температуры(-1, -3, -6, -10, -18, -20, -22, -25, -28, -29);
 - * Проверки осуществить всем функционалом регуляторов.
 - ** Возмущением является открытость системы (псевдозамкнутость) открытие крышки.
 - 3) Проверка обработки ЧС;
- 20. На основе полученных данных с использованием различных регуляторов построить семейство графиков;
- 21. Проанализировать полученные результаты.

8 Приложение

В данном приложение находятся трёхмерные эскизы и функциональные схемы стенда для проведения эмпирического эксперимента измерения температуры воздуха в ёмкости.

Рис. 1: Трёхмерный эскиз "коробки" основного стенда проверки термопары

Рис. 2: Трёхмерный эскиз "крышки" основного стенда проверки термопары

Функциональная схема основного стенда для проведения эмпирического эксперимента измерения температуры воздуха в ёмкости

Рис. 3: Функциональная схема основного стенда для проведения эмпирического эксперимента измерения температуры воздуха в ёмкости

Функциональная схема дополнительного стенда для проведения эмпирического эксперимента измерения температуры воздуха в ёмкости

Рис. 4: Функциональная схема дополнительного стенда для проведения эмпирического эксперимента измерения температуры воздуха в ёмкости