RÓWNANIA RUCHU

Na tych laboratoriach skupimy się na scałkowaniu równania ruchu:

$$M\ddot{x} = f - Sx$$

Gdzie ${\bf x}$ to odkształcenie, ${\bf f}$ to siła, ${\bf M}$ to macierz masowa, zaś ${\bf S}$ to macierz sztywności.

Na początek przez ${\bf y}$ oznaczmy prędkość odkształcenia, czyli ${\bf y}=\dot{\bf x}$. Teraz mamy układ równań pierwszego rzędu:

$$egin{cases} \mathbf{M}\dot{\mathbf{y}} &= \mathbf{f} - \mathbf{S}\mathbf{x} \ \dot{\mathbf{x}} &= \mathbf{y} \end{cases}$$

Zastępując pochodną po lewej stronie przez różnicę skończoną mamy:

$$egin{cases} \mathbf{M} rac{\mathbf{y}^{n+1} - \mathbf{y}^n}{\mathrm{dt}} &= \mathbf{f} - \mathbf{S} \mathbf{x} \ rac{\mathbf{x}^{n+1} - \mathbf{x}^n}{\mathrm{dt}} &= \mathbf{y} \end{cases}$$

Po prawej stronie równania możemy użyć \mathbf{x} i \mathbf{y} z nowej (n+1), bądź starej (n) iteracji. W zależności co użyjemy otrzymamy mniej lub bardziej uwikłane równanie, a schemat będzie jawny (explicit) bądź niejawny (implicit).

Uwaga: aby porównać różne schematy, każdy schemat zapisz w oddzielnej funkcji, której nagłówek powinien mieć postać:

void Dynamics_schemat(int N, double *x, double *y, double *f, double t_m

gdzie x i y to początkowe wartości x i y, f to wektor sił, t_{max} to całkowity czas całkowania, a dt to krok czasowy.

Schemat prawie jawny (almost explicit)

Na początek wstawmy po prawej stronie wartości ze starej iteracji. Otrzymamy:

$$\begin{cases} \mathbf{M}\mathbf{y}^{n+1} &= \mathbf{M}\mathbf{y}^n + \mathrm{dt}(\mathbf{f} - \mathbf{S}\mathbf{x}^n) \\ \mathbf{x}^{n+1} &= \mathbf{x}^n + \mathrm{dt}\mathbf{y}^n \end{cases}$$

Zadanie

Napisz funkcję mnożącą przez macierz masową \mathbf{M} . W pliku MesLib.h jest ona zdefiniowana w analogiczny sposób jak macierz sztywności: przez globalną tablicę M i globalną stałą Mm.

Uwaga: W mnożeniu przez macierz masową, należy także zamrozić wybrane stopnie swobody.

Zadanie

Napisz funkcję całkującą równanie ruchu układu według następującego schematu:

- Oblicz $\mathbf{b}^n = \mathbf{M}\mathbf{y}^n + \mathrm{dt}(\mathbf{f} \mathbf{S}\mathbf{x}^n),$
- Oblicz $\mathbf{x}^{n+1} = \mathbf{x}^n + \mathrm{dt}\mathbf{y}^n$,
- Rozwiaż układ: $\mathbf{M}\mathbf{y}^{n+1} = \mathbf{b}^n$.
- Co 10-tą iterację wyświetl belkę.

Zadanie

Przeanalizuj dla jakich dt układ jest stabilny, a dla jakich nie.

Zadanie

Jak wygląda wzór na całkowitą energię układu (energia potencjalna sprężystości + energia kinetyczna)? Zróżniczkuj ją po t i pokaż, że jest stała.

Zadanie

Wydrukuj w konsoli jak zmienia się całkowita energia układu w czasie.

Schemat pół niejawny (semi-implicit)

Prostą modyfikacją jest użycie po prawej stronie ${\bf x}$ ze starej iteracji i ${\bf y}$ z nowej, otrzymując:

$$\begin{cases} \mathbf{M}\mathbf{y}^{n+1} &= \mathbf{M}\mathbf{y}^n + \mathrm{dt}(\mathbf{f} - \mathbf{S}\mathbf{x}^n) \\ \mathbf{x}^{n+1} &= \mathbf{x}^n + \mathrm{dt}\mathbf{y}^{n+1} \end{cases}$$

Zadanie

Przekopiuj funkcje Dynamics i zmodyfikuj ją tak aby układ na y^{n+1} był rozwiązywany przed obliczeniem \mathbf{x}^{n+1} .

Zadanie

Przeanalizuj dla jakich dt układ jest stabilny. Wydrukuj zmienność energii.

Schemat niejawny (fully-implicit)

Możemy także po prawej stronie wziać obie wartości z nowej iteracji, otrzymujac:

$$\begin{cases} \mathbf{M}\mathbf{y}^{n+1} &= \mathbf{M}\mathbf{y}^n + \mathrm{dt}(\mathbf{f} - \mathbf{S}\mathbf{x}^{n+1}) \\ \mathbf{x}^{n+1} &= \mathbf{x}^n + \mathrm{dt}\mathbf{y}^{n+1} \end{cases}$$

Wstawiając drugie równanie do pierwszego otrzymujemy:

$$\mathbf{M}\mathbf{y}^{n+1} = \mathbf{M}\mathbf{y}^n + dt(\mathbf{f} - \mathbf{S}(\mathbf{x}^n + dt\mathbf{y}^{n+1}))$$

Po przekształceniu:

$$(\mathbf{M} + dt^2 \mathbf{S}) \mathbf{y}^{n+1} = \mathbf{M} \mathbf{y}^n + dt (\mathbf{f} - \mathbf{S} \mathbf{x}^n)$$

Zadanie

Napisz funkcje mnożaca przez $\mathbf{M} + dt^2 \mathbf{S}$

Zadanie

Zmodyfikuj kod, by realizował schemat w pełni niejawny, zamieniając macierz M na $\mathbf{M} + \mathrm{dt}^2 \mathbf{S}$ w obliczeniu y-ka.

Zadanie

Przeanalizuj dla jakich dt układ jest stabilny. Wydrukuj zmienność energii.

W pół kroku (midpoint)

Ostatnia z metod, którymi się zajmiemy bierze po prawej stronie średnią z wartości w nowej i starej iteracji:

$$\begin{cases} \mathbf{M}\mathbf{y}^{n+1} &= \mathbf{M}\mathbf{y}^n + \mathrm{dt}\left(\mathbf{f} - \mathbf{S}\frac{\mathbf{x}^{n+1} + \mathbf{x}^n}{2}\right) \\ \mathbf{x}^{n+1} &= \mathbf{x}^n + \mathrm{dt}\frac{\mathbf{y}^{n+1} + \mathbf{y}^n}{2} \end{cases}$$

Po wstawieniu drugiego równania do pierwszego mamy:

$$\mathbf{M}\mathbf{y}^{n+1} = \mathbf{M}\mathbf{y}^n + \mathrm{dt}\left(\mathbf{f} - \mathbf{S}\frac{\mathbf{x}^n + \mathrm{dt}\frac{\mathbf{y}^{n+1} + \mathbf{y}^n}{2} + \mathbf{x}^n}{2}\right)$$

Po uproszczeniu:

$$\mathbf{M}\mathbf{y}^{n+1} = \mathbf{M}\mathbf{y}^n + \mathrm{dt}\left(\mathbf{f} - \mathbf{S}\left(\mathbf{x}^n + \mathrm{dt}\frac{\mathbf{y}^{n+1} + \mathbf{y}^n}{4}\right)\right)$$

Ostatecznie:

$$\left(\mathbf{M} + \frac{\mathrm{dt}^2}{4}\mathbf{S}\right)\mathbf{y}^{n+1} = \mathbf{M}\mathbf{y}^n + \mathrm{dt}\left(\mathbf{f} - \mathbf{S}\left(\mathbf{x}^n + \mathrm{dt}\frac{\mathbf{y}^n}{4}\right)\right)$$

Zadanie

Napisz funkcję mnożącą przez $\mathbf{M} + \frac{\mathrm{dt}^2}{4} \mathbf{S}$.

Zadanie

Napisz funkcję całkującą równanie ruchu według następującego schematu (dla uproszczenia zapisu pominęliśmy number n iteracji):

- Oblicz $\mathbf{x} = \mathbf{x} + \frac{dt}{4}\mathbf{y}$, Oblicz $\mathbf{b} = \mathbf{M}\mathbf{y} + dt(\mathbf{f} \mathbf{S}\mathbf{x})$,
- Oblicz $\mathbf{x} = \mathbf{x} + \frac{\mathrm{dt}}{4}\mathbf{y}$,
- Rozwiąż układ: $(\mathbf{M} + \frac{dt^2}{4}\mathbf{S})\mathbf{y} = \mathbf{b}$,
- Oblicz $\mathbf{x} = \mathbf{x} + \frac{\mathrm{dt}}{2}\mathbf{y}$,
- Co 10-ta iterację wyświetl belkę.

Zadanie

Przeanalizuj dla jakich dt układ jest stabilny. Wydrukuj zmienność energii.

Zadanie

Udowodnij, że metoda "w pół kroku" zachowuje energię całkowitą układu. 1