IN THE CLAIMS:

Claims 1, 2, and 33 are amended. No claims are cancelled or added. All pending claims and their present status are produced below.

1. (Currently amended) A method for providing a unique identification of monitored 1 2 network data instances flowing across various connections between networked devices, the unique identification being derived from information contained entirely 3 within each instance of the network data, the method comprising: 4 using at least one monitoring device to monitor a network data instance flowing 5 across at least one data connection; 6 deriving from the data instance certain information which collectively provides a 7 unique identification of the network data instance; 8 9 assembling the derived information into an input string for a hash function; and using the output string of the hash function as a signature which represents a unique 10 11 identifier identifier of the network data instance. 2. (Currently amended) The method according to Claim 1, wherein the deriving step 1 includes: 2 deriving from the data instance a source and destination address for the data; 3 deriving from the data instance a source and destination port associated with the 4 networked devices; 5 6 deriving from the data instance at least one sequence number associated with data 7 instance[;].

- 1 3. (Original) The method according to Claim 1, which further includes:
- attaching the signature to at least one data report associated with the network data
- instance; and
- transmitting the data reports and signatures from each monitoring device to a central
- 5 collecting device.
- 1 4. (Original) The method according to Claim 3, wherein a timestamp is further
- 2 associated with each data report before it is transmitted to the central collector.
- 1 5. (Original) The method according to Claim 3, wherein the central collecting device
- 2 uses the signatures to eliminate duplicate data reports that might come in from
- different monitoring devices positioned at different locations on the network.
- 6. (Original) The method according to Claim 1, wherein network data instances are data
- 2 packets as part of a TCP/IP (Transmission Control Protocol/Internet Protocol) client-
- 3 server network.
- 7. (Original) The method according to Claim 6, wherein the source and destination
- addresses include a client IP address and a server IP address.
- 8. (Original) The method according to Claim 7, wherein the source and destination port
- 2 include a client port number and a server port number.
- 1 9. (Previously Presented) The method according to Claim 2, wherein the at least one
- 2 sequence number includes a client sequence number or a server sequence number.
- 1 10. (Original) The method according to Claim 9, wherein the at least one sequence
- 2 number includes both a client sequence number and a server sequence number.
- 1 11. (Original) The method according to Claim 2, wherein the input string information
- does not include sequence numbers.

- 1 12. (Original) The method according to Claim 11, wherein the network data instances are
- datagrams as part of a UDP/IP (User Datagram Protocol/Internet Protocol) network.
- 1 13. (Original) The method according to Claim 1, which further includes: truncating the signature to include fewer bits than the hash function output string.
- 1 14. (Original) The method according to Claim 1, which further includes: adding flag bits
- to the signature which indicate the type of application associated with the network
- data instance.
- 1 15. (Original) The method according to Claim 3, wherein the monitor serves as a data
- 2 reduction device for data report and signature information being sent to the central
- data collector.
- 1 16. (Original) The method according to Claim 1, wherein the monitoring device operates
- 2 to directly monitor the network data.
- 1 17. (Original) The method according to Claim 1, wherein the monitoring device operates
- 2 to indirectly monitor the network data.
- 1 18. (Original) An apparatus for providing a unique identification of monitored network
- data instances flowing across various connections between networked devices, the
- 3 unique identification being derived from information contained entirely within each
- instance of the network data, the apparatus comprising:
- at least one monitoring device positioned to monitor a network data instance flowing
- 6 across at least one data connection;
- a hash function device having an input string and an output string, the input string
- assembled from certain information derived from the network data instance,

9		the information collectively providing a unique identification of the network
10		data instance;
11	·	wherein the output string is used as a signature which represents a unique identifier of
12		the network data instance.
1	19.	(Original) The apparatus according to Claim 18, wherein information derived from
2		the network data instance includes at least:
3		a source and destination address derived from the network data instance;
4		a source and destination port associated with the networked devices; and
5		at least one sequence number associated with network data instance.
1	20.	(Original) The apparatus according to Claim 18, which further includes:
2		at least one data report associated with the network data instance, the signature being
3		attached to the data report; and
4		a central collection device that receives transmitted data reports and signatures from
5		each monitoring device.
1	21.	(Original) The apparatus according to Claim 20, wherein a timestamp is further
2		associated with each data report before it is transmitted to the central collector.
1	22.	(Original) The apparatus according to Claim 20, wherein the central collecting
2		device uses the signatures to eliminate duplicate data reports that might come in from
3		different monitoring devices positioned at different locations on the network.
1	23.	(Previously presented) The apparatus according to Claim 19, wherein network data
2		instances are data packets as part of a TCP/IP (Transmission Control
3		Protocol/Internet Protocol) client-server network.

- 1 24. (Original) The apparatus according to Claim 23, wherein the source and destination 2 addresses include a client IP address and a server IP address.
- 1 25. (Original) The apparatus according to Claim 24, wherein the source and destination
 2 port include a client port number and a server port number.
- 1 26. (Original) The apparatus according to Claim 25, wherein the at least one sequence number includes a client sequence number or a server sequence number.
- 1 27. (Original) The apparatus according to Claim 26, wherein the at least one sequence
 2 number also includes both a client sequence number and a server sequence number.
- 1 28. (Original) The apparatus according to Claim 19, wherein the input string information
 2 does not include sequence numbers.
- 1 29. (Original) The apparatus according to Claim 28, wherein the network data instances
 2 are datagrams as part of a UDP/IP (User Datagram Protocol/Internet Protocol)
 3 network.
- 1 30. (Original) The method according to Claim 18, wherein the signature is truncated to include fewer bits than the hash function output string.
- 1 31. (Original) The method according to Claim 18, wherein flag bits are added to the signature which indicate the type of application associated with the network data instance.
- 1 32. (Original) The method according to Claim 20, wherein the monitor serves as a data
 2 reduction device for data report and signature information being sent to the central
 3 data collector.
- 1 33. (Currently amended) A method for providing a unique signature of monitored
 2 network data packets flowing across various connections between networked devices,

3	the unique signature being derived from information contained entirely within each
4	instance of the network data packet, the method comprising:
5	using at least one monitoring device to monitor a network data packet flowing across
6	at least one data connection;
7	deriving from the data packet a source and destination address for the data;
8	deriving from the data packet a source and destination port associated with the
9	networked devices;
10	deriving from the data packet at least one sequence number associated with data
11	instance;
12	assembling the derived addresses, ports, and at least one sequence number
13	information into an input string for a hash function; and
14	using the output string of the hash function as the signature which represents a unique
15	identifier of the network data packet[.];
16	attaching the signature to at least one data report associated with the network data
17	packet; and
18	transmitting the data reports and signatures from each monitoring device to a central
19	collecting device for analysis.