Notes from Introduction toDynamical Systems

by Michael Brin and Garret Stuck

taken by Samuel T. Wallace

Contents

0.1	Hyper	bolic Dynamics
	0.1.1	Hyperbolic Sets
	0.1.2	ε -Orbits
	0.1.3	Invariant Cones
	0.1.4	Stability of Hyperbolic Sets
	0.1.5	Stable and Unstable Manifolds 6
	0.1.6	Inclination Lemma
	0.1.7	Horseshoes and Transverse Homoclinic Points 9
	0.1.8	Local Product Structure and Locally Maximal Hyperbolic
		Sets
	0.1.9	Anosov Diffeomorphisms
	0.1.10	Axiom A and Structural Stability

0.1 Hyperbolic Dynamics

0.1.1 Hyperbolic Sets

Throughout, M is a C^1 Riemannian manifold, $U \subset M$ a non-empty open subset, and $f: U \to M$ a C^1 diffeomorphism.

Definition 1. A compact, f-invariant subset $\Lambda \subset U$ is called hyperbolic if there are $\lambda \in (0,1)$, C > 0, and regular distributions $E_x^s, E_x^u \subset T_xM$; $x \in \Lambda$ such that for all x:

- 1. $T_xM = E_x^s \oplus E_x^u$
- 2. $||T_x f^n v^s|| \le C\lambda^n ||v^s||$ for all $v^s \in E_x^s$
- 3. $||T_x f^{-n} v^u|| \le C \lambda^n ||v^u|| \text{ for all } v^u \in E_x^u$
- 4. $(T_x f)(E_x^s) = E_{f(x)}^s$ and $(T_x f)(E_x^u) = E_{f(x)}^u$

The distributions E^s and E^u are called the stable and unstable distribution of $f \upharpoonright_{\Lambda}$. If $\Lambda = M$, then f is called an *Anosov diffeomorphism*.

Proposition 1. Let Λ be a hyperbolic set of f. Then the stable and unstable distributions are smooth and regular.

Proposition 2. Let Λ be a hyperbolic set of f with constants C and λ . Then for $\varepsilon > 0$ there is a C^1 Riemannian metric $\langle \cdot, \cdot \rangle'$ in a neighborhood of Λ called the Lyapunov or adapted metric, for which f is hyperbolic with new constants C' = 1 and $\lambda' = \lambda + \varepsilon$, and the unstable and unstable distributions are ε -orthogonal $(\langle v^s, v^u \rangle' < \varepsilon$ for unit vectors in the respective distributions).

A fixed point of a differentiable map f is hyperbolic if no eigenvalue of $T_x f$ lies on the unit circle. A periodic point of period k is called hyperbolic if no eigenvalue of $T_x f^k$ lies on the unit circle.

0.1.2 ε -Orbits

An ε -orbit is a finite or infinite sequence $(x_n) \subset U$ satisfying $d(f(x_n), x_{n+1}) \, \forall n$. These are also called *pseudo-orbits*.

Theorem 1. Let Λ be a hyperbolic set of $f: U \to M$. Then there is an open $O \subset U$ containing Λ and there are positive ε_0 , δ_0 satisfying: $\forall \varepsilon > 0 \ \exists \delta \ \forall g: O \to M$ with $\mathrm{dist}_1(g,f) < \varepsilon_0$, any homeomorphism $h: X \to X$ and any continuous map $\phi: X \to O$ with $\mathrm{dist}_0(\phi \circ h, g \circ \phi) < \delta$, then there is a continuous map $\psi: X \to O$ with $\psi \circ h = g \circ \psi$ and $\mathrm{dist}_0(\phi, \psi) < \varepsilon$. Additionally, ψ is unique in the sense that $\psi' \circ h = g \circ \psi'$ & $\mathrm{dist}_0(\phi, \psi) < \delta_0$, then $\psi = \psi'$.

Corollary 1. Let Λ be a hyperbolic set of $f: U \to M$. Then for every $\epsilon > 0$ there is $\delta > 0$ such that if (x_k) is a (in)finite δ -orbit of f and $\mathrm{dist}(x_k, \Lambda) < \delta$ then there is $x \in \Lambda_{\varepsilon}$ with $\mathrm{dist}((f^k(x), x_k) < \varepsilon$.

Proof. Choose O satisfying the conditions in 1 and δ such that $\Lambda_{\delta} \subset O$. If (x_k) is (semi-in)finite, add to (x_k) the preimages of some $y_0 \in \Lambda$ whose distance to the first point in the sequence is $< \delta$, and/or the images of some $y_m \in \Lambda$ whose distance to the last point of the sequence is $< \delta$ to obtain a δ -orbit lying in the δ -neighborhood of Λ . Let $X = (x_k)$ with the discrete topology, g = f, $h: X \to X$ the shift $x_k \mapsto x_{k+1}$ and $\phi: X \to U$ be the inclusion into the manifold. Since (x_k) is a δ -orbit, $\mathrm{dist}(\phi(h(x_k)), f(\phi(x_k))) < \leq$, then theorem 1 applies and the corollary follows.

Recall the set of nonwandering points $\mathrm{NW}(f)$ is the set of points where the iterate of any neighborhood intersects the neighborhood, and the Periodic points of f, $\mathrm{Per}(f)$. If Λ is f-invariant, we can speak of $\mathrm{NW}(f \upharpoonright_{\Lambda})$. In general, $\mathrm{NW}(f \upharpoonright_{\Lambda}) \neq \mathrm{NW}(f) \cap \Lambda$.

Proposition 3. If Λ is a hyperbolic set of $f: U \to M$, then $\overline{\operatorname{Per}(f \upharpoonright_{\Lambda})} = \operatorname{NW}(f \upharpoonright_{\Lambda})$.

Corollary 2. If $f: M \to M$ is Anosov, then $\overline{Per(f)} = NW(f)$.

0.1.3 Invariant Cones

Let Λ be a hyperbolic set of $f: U \to M$. Since the distributions E^s and E^u are continuous, we can extend them to continuous distributions in a neighborhood $U(\Lambda) \supset \Lambda$. If $x \in \Lambda$ and $v \in T_xM$, then $v = v^s + v^u$. Now assume the metric is adapted with constant λ . For $\alpha > 0$, define the (un)stable cones of size α by

$$K_{\alpha}^{s}(x) = \{ v \in T_{x}M | : ||v^{u}|| \le \alpha ||v^{s}|| \}$$

$$K_{\alpha}^{u}(x) = \{ v \in T_{x}M : ||v^{s}|| < \alpha ||v^{u}|| \}$$

For a cone K, let $\mathring{K} = \operatorname{int}(K) \cup \{0\}$. Let $\Lambda_{\varepsilon} = d_{\Lambda}^{-1}([0, \varepsilon))$.

Proposition 4. For every $\alpha > 0$ there is $\varepsilon = \varepsilon(\alpha)$ such that $f^i(\Lambda_{\varepsilon}) \subset U(\Lambda)$, i = -1, 0, 1 and for every $x \in \Lambda_{\varepsilon}$:

$$T_x f(K^u_\alpha(x)) \subset \mathring{K}^u_\alpha(f(x)); \ (T_{f(x)} f^{-1})(K^s_\alpha(f(x))) \subset \mathring{K}^s_\alpha(x)$$

Proposition 5. For every $\delta > 0$, there are $\alpha > 0$ and $\varepsilon > 0$ such that $f^i(\Lambda_{\varepsilon} \subset U(\Lambda), i = -1, 0, 1$ and for every $x \in \Lambda_{\varepsilon}$:

$$||T_x f^{-1}(v)|| \le (\lambda + \delta) ||v||, \ v \in K_{\alpha}^u(x)$$

$$||T_x f(v)|| \le (\lambda + \delta) ||v||, \ v \in K_{\alpha}^s(x)$$

Proposition 6. Let Λ be a compact invariant set of $f: U \to M$. Suppose that there is a $\alpha > 0$ and for every $x \in \Lambda$ there are continuous subspaces E_x^s , E_x^u such that $E_x^s \oplus E_x^u = T_x M$ and the α -cones $K_{\alpha}^s(x)$ and $K_{\alpha}^U(x)$ determined by the subspaces satisfy

1.
$$(T_x f)(K^u_{\alpha}(x)) \subset K^u_{\alpha}(x)$$
 and $(T_{f(x)} f^{-1})(K^u_{\alpha}(x)) \subset K^s_{\alpha}(x)$

2. $||T_x f(v)|| < ||v||$ for non-zero $v \in K^s_{\alpha}(x)$, and $||T_x f^{-1} v|| < ||v||$ for non-zero $v \in K^u_{\alpha}(x)$.

Then Λ is a hyperbolic set of f.

Let

$$\Lambda_{\varepsilon}^{s} = \{ x \in U : d_{\Lambda}(f^{n}(x)) < \varepsilon \ \forall n \}$$

$$\Lambda_{\varepsilon}^{u} = \{ x \in U : d_{\Lambda}(f^{-n}(x)) \ \forall n \}$$

Note that both sets are contained in Λ_{ε} and $f(\Lambda_{\varepsilon}^s) \subset \Lambda_{\varepsilon}^s$, and $f^{-1}(\Lambda_{\varepsilon}^u) \subset \Lambda_{\varepsilon}^u$.

Proposition 7. Let Λ be a hyperbolic set of f with adapted metric. Then for every $\delta > 0$ there is $\varepsilon > 0$ such that the distributions E^s and E^u can be extended to Λ_{ε} so that

1. E^s is continuous on Λ^s_{ε} , E^u is continuous on Λ^u_{ε} .

2.
$$x \in \Lambda_{\varepsilon} \cap f(\Lambda_{\varepsilon}) \Rightarrow (T_x f)(E_x^s) = E_{f(x)}^s$$
 and $(T_x f)(E_x^u) = E_{f(x)}^u$

3.
$$\|(T_x f)(v)\| < (\lambda + \delta)\|v\|$$
 for every $x \in \Lambda_{\varepsilon}$ and $v \in E_x^s$.

4.
$$||(T_x f^{-1})(v)|| < (\lambda + \delta)||v||$$
 for every $x \in \Lambda_{\varepsilon}$ and $v \in E_x^u$.

0.1.4 Stability of Hyperbolic Sets

Proposition 8. Let Λ be a hyperbolic set of $f: U \to M$. There is an open set $U(\Lambda) \supset \Lambda$ and $\varepsilon_0 > 0$ such that if $K \subset U(\Lambda)$ is a compact invariant subset of a diffeomorphism $g: U \to M$ with $\operatorname{dist}_1(g, f) < \varepsilon_0$, then K is a hyperbolic set of g.

Let $Diff^1(M)$ be the space of C^1 diffeomorphisms of M with the C^1 topology.

Corollary 3. The set of Anosov diffeomorphisms of a given compact manifold is open in $Diff^1(M)$.

Proposition 9. Let Λ be a hyperbolic set of $f: U \to M$. For every open set $V \subset U$ containing Λ and every $\varepsilon > 0$, there is $\delta > 0$ such that $\forall g: V \to M$ with $\operatorname{dist}_1(g,f) < \delta$, there is a hyperbolic set $K \subset V$ of g and a homeomorphism $\chi: K \to \Lambda$ such that χ cojugates f to g and $\operatorname{dist}_0(\chi, \operatorname{Id}) < \varepsilon$.

A C^1 diffeomorphism f of a C^1 manifold is called *structurally stable* if for every $\varepsilon > 0$ there is $\delta > 0$ such that if $g \in \operatorname{Diff}^1(M)$ and $\operatorname{dist}_1(g, f) < \delta$, then there is a homeomorphism $h: M \to M$ conjugated f and g and $\operatorname{dist}_0(h, \operatorname{Id}) < \varepsilon$.

Corollary 4. Anosov diffeomorphisms are structurally stable.

0.1.5 Stable and Unstable Manifolds

For $\delta > 0$, let B_{δ} be the ball of radius δ at 0.

Proposition 10 (Hadamard-Perron). Let $f_n : B_{\delta}to\mathbb{R}^m$ be a sequence of C^1 diffeomorphisms onto their images such that $\forall n \ f_n(0) = 0$. Suppose that for each n there is a splitting $\mathbb{R}^m = E_n^s \oplus E_n^u$ and $\lambda \in (0,1)$ such that

- 1. $T_0 f_n(E_n^s) = E_{n+1}^s$ and $T_0 f_n(E_n^u) = E_{n+1}^u$
- 2. $||T_0 f_n v^s|| < \lambda ||v^s|| \text{ for all } v^s \in E_n^s$
- 3. $||T_0f_nv^u|| > \lambda ||v^u||$ for all $v^u \in E_n^u$
- 4. The angles between E_n^u and E_n^s are uniformly bounded away from 0
- 5. (Tf_n) are an equicontinuous family of functions $Tf_n: B_{\delta} \to \mathrm{GL}_m(\mathbb{R})$.

THEN there are $\varepsilon > 0$ and a sequence $\phi = (\phi_n)$ of uniformly Lipschitz continuous maps $\phi_n : B^s_{\varepsilon} = E^s_n \cap B_{\varepsilon} \to E^u_n$ such that

- 1. graph $(\phi_n) \cap B_{\varepsilon} = W^s_{\varepsilon}(n)$, where the latter set is defined as $\{x \in B_{\varepsilon} : \|f_{n+k-1} \circ \dots \circ f_{n+1} \circ f_n(x)\| \to 0 \text{ as } k \to \infty\}$
- 2. $f_n(\operatorname{graph}(\phi_n)) \subset \operatorname{graph}(\phi_{n+1})$
- 3. $x \in \operatorname{graph}(\phi_n) \Rightarrow ||f_n(x)|| \leq \lambda ||x|| \Rightarrow f_n^k(x) \to 0$ exponentially as $k \to \infty$
- 4. for $x \in B_{\varepsilon} \backslash \operatorname{graph}(\phi_n)$,

$$||P_{n+1}^u f_n(x) - \phi_{n+1} (P_{n+1}^s f_n(x))|| > \lambda^{-1} ||P_n^u x - \phi_n (P_n^s x)||$$

Where P_n^s (P_n^u) denotes the projection onto E_n^s (E_n^u) parallel to the other subspace

- 5. ϕ_n is differentiable at 0, $T_0\phi_n 0 = 0 \Rightarrow$ the tangent plane to graph (ϕ_n) is E_n^s .
- 6. ϕ depends continuously on f in the topologies by the following distance functions:

$$d_0(\phi, \psi) = \sup_{x,n} 2^{-n} |\phi_n(x) - \phi_n(x)|$$
$$d(f, g) = \sup_{x,n} \operatorname{dist}_1(f_n, g_n)$$

Let $\Phi(L,\varepsilon)$ be the space of sequences $\phi=(\phi_n)$ where $\phi_n: B^s_{\varepsilon} \to E^u_n$ is Lipschitz-continuous map with Lipschitz constant L and $\phi_n(0)=0$, with a metric $d(\phi,\psi)=\sup_{n,x}|\phi_n(x)-\psi_n(x)|$, which is complete.

We now define an operator $F: \Phi(L, \varepsilon) \to \Phi(L, \varepsilon)$ called the *graph transform*. Let $\phi \in \Phi(L, \varepsilon)$. The next lemma will show that $f_n^{-1}(\operatorname{graph}(\phi_{n+1}))$ projected onto E_n^s covers $E_\varepsilon^s(n)$ and $f_n^{-1}(\operatorname{graph}(\phi_{n+1}))$ contains the graph of a continuous function $\psi_n: B_\varepsilon^s \to E_\varepsilon^u(n)$ with Lipschitz constant L. Take $F(\phi)_n = \psi_n$.

Lemma 1. For any L > 0, there exists $\varepsilon > 0$ such that the graph transform F is a well-defined operator on $\Phi(L, \varepsilon)$.

Lemma 2. There are $\varepsilon > 0$ and L > 0 such that F is a contracting operator.

Theorem 2. Let $f: M \to M$ be a C^1 diffeomorphism of a differentiable manifold and Λ a hyperbolic set of f with constant λ and adapted metric.

Then there are $\varepsilon > 0$, $\delta > 0$ such that for every $x^s \in \Lambda^s_{\delta}$ and every $x^u \in \Lambda^u_{\delta}$:

1. the sets

$$W_{\varepsilon}^{s}(x^{s}) = \{ y \in M : \operatorname{dist}(f^{n}(x^{s}), f^{n}(y)) < \varepsilon \ \forall n \}$$

$$W_{\varepsilon}^{u}(x^{u}) = \{ y \in M : \operatorname{dist}(f^{-n}(x^{u}), f^{-n}(y)) < \varepsilon \ \forall n \}$$

called the local stabale manifold of x^s and the local unstable manifold of x^u , are C^1 embedded disks,

- 2. $T_{y^s}W^s_{\varepsilon}(x^s)=E^s_{y^s}$ for all $y^s\in W^s_{\varepsilon}(x^s)$ and similarly for the unstable manifolds and subspaces,
- 3. $f(W^s_{\varepsilon}(x^s)) \subset W^s_{\varepsilon}(f(x^s))$ and $f^{-1}(W^u_{\varepsilon}(f(x^u))) \subset W^u_{\varepsilon}(x^u)$
- 4. if $y^s, z^s \in W^s_{\varepsilon}(x^s)$, then $d^s(f(y^s), f(z^s)) < \lambda d^s(y^s, z^s)$, where d^s is the distance along $W^s_{\varepsilon}(x^s)$, and a similar result for the local unstable manifold using the inverse map
- 5. if $0 < \operatorname{dist}(x^s, y) < \varepsilon$ and $\exp_{x^s}^{-1}(y)$ lies in the δ -cone $K^u_{\delta}(x^s)$, then $\operatorname{dist}(f(x^s), f(y)) > lambda^{-1}\operatorname{dist}(x^s, y)$ and if $0 < \operatorname{dist}(x^u, y) < \varepsilon$ and $\exp_{x^u}^{-1}(y)$ lies in the δ -cone $K^s_{\delta}(x^u)$, then $\operatorname{dist}(f(x^u), f(y)) < \lambda \operatorname{dist}(x^s, y)$
- 6. if $y^s \in W^s_{\varepsilon}(x^s)$, then $W^s_{\alpha}(y^s) \subset W^s_{\varepsilon}(x^s)$ for some $\alpha > 0$, and if $y^u \in W^u_{\varepsilon}(x^u)$, then $W^u_{\beta}(y^u) \subset W^s_{\varepsilon}(x^u)$ for some $\beta > 0$.

Let Λ be a hyerbolic set of $f: U \to M$ and $x \in \Lambda$. The (global) stable and unstable manifolds of x are defined by

$$W^{s}(x) = \{ y \in M : d(f^{n}(x), f^{n}(y)) \to 0, n \to \infty \}$$
$$W^{u}(x) = \{ y \in M : d(f^{-n}(x), f^{-n}(y)) \to 0, n \to \infty \}$$

Proposition 11. There is $\varepsilon_0 > 0$ such that for all $\varepsilon \in (0, \varepsilon_0)$ and every $x \in \Lambda$,

$$W^{s}(x) = \bigcup_{n>0} f^{-n}(W^{s}_{\varepsilon}(f^{n}(x)))$$
$$W^{u}(x) = \bigcup_{n>0} f^{n}(W^{u}_{\varepsilon}(f^{-n}(x)))$$

Corollary 5. The global stable and unstable manifolds are embedded C^1 submanifolds of M homeomorphic to unit balls in corresponding dimensions.

0.1.6 Inclination Lemma

Recall the definition of two submanifolds to intersect transversely.

Denote by B^i_{ε} the open ball of radius ε centered at 0 in \mathbb{R}^i . For $v \in \mathbb{R}^m = \mathbb{R}^k \times \mathbb{R}^l$ denote by $v^u \in \mathbb{R}^k$ and $v^s \in \mathbb{R}^l$ the components of $v = v^u + v^s$, and $\pi^u : \mathbb{R}^m \to \mathbb{R}^k$ the projection. For $\delta > 0$ let $K^u_{\delta} = \{v \in \mathbb{R}^m : \|v^s\| \le \delta \|v^u\|\}$ and the stable cone $K^s_{\delta} = \{v \in \mathbb{R}^m : \|v^s\| \le \delta \|v^u\|\}$

Lemma 3. Let $\lambda \in (0,1), \varepsilon > 0, \delta \in (0,0.1)$. Suppose $f: B_{\varepsilon}^k \times B_{\varepsilon}^l \to \mathbb{R}^m$ and $\phi: B_{\varepsilon}^k \to B_{\varepsilon}^l$ are C^1 amps such that:

- 1. 0 is a hyperbolic fixed point of f
- 2. $W_{\varepsilon}^{u}(0) = B_{\varepsilon}^{k} \times \{0\}$ and $W_{\varepsilon}^{s} = \{0\} \times B_{\varepsilon}^{l}$
- 3. $||T_x f(v)|| \ge \lambda^{-1} ||v||$ for every $v \in K^u_\delta$ whenever both $x, f(x) \in B^k_\varepsilon \times B^l_\varepsilon$
- 4. $||T_x f(V)|| \le \lambda ||v||$ for every $v \in K^s_{\delta}$ whenever both $x, f(x) \in B^k_{\varepsilon} \times B^l_{\varepsilon}$
- 5. $T_x f(K_{\delta}^u) \subset K_{\delta}^u$ whenever $x, f(x) \in B_{\varepsilon}^k \times B_{\varepsilon}^l$
- 6. $T_x f^{-1}(K_{\delta}^s) \subset K_{\delta}^s$ whenever $x, f^{-1}(x) \in B_{\varepsilon}^k \times B_{\varepsilon}^l$
- 7. $T_{(y,\phi(y))}\operatorname{graph}(\phi) \subset K^u_{\delta}$ for every $y \in B^k_{\varepsilon}$

Then for every n there is a subset $D_n \subset B_{\varepsilon}^k$ diffeomorphic to B^k such that the image I_n under f^n of the graph of the restriction $\phi \upharpoonright_{D_n}$ has the following properties: $\pi^u(I_n) \supset B_{\varepsilon/2}^k$ and $T_x I_n \subset K_{\delta \lambda^{2n}}^u$ for each $x \in I_n$.

The meaning of the lemma is that the tangent planes to the image of the grap of ϕ under f^n are exponentially (in n) close to the "horizontal" space \mathbb{R}^k , and the image spreads over B^k_{ε} in the horizontal direction.

The next theorem, sometimes called the Lambda Lemma, implies that if f is C^r with $r \geq 1$, and D is any C^1 —disk that intersects transversely the stable manifold $W^s(x)$ of a hyperbolic fixed point of x, then the forwards images of D converge in the C^r topology to the unstable manifold $W^u(x)$. The proof only covers C^1 convergence. Let B^u_R be the ball of radius R centered at x in $W^u(x)$ in the induced metric.

Theorem 3 (Inclination Lemma). Let x be a hyperbolic fixed point of a diffeomorphism $f: U \to M$, $\dim(W^u(x)) = k$ and $\dim(W^s(x)) = l$. Let $y \in W^s(x)$ and suppose that $D \ni y$ is a C^1 submanifold of dimension k intersecting $W^s(x)$ transversely at y.

Then for every R > 0 and $\beta > 0$ there are n_0 and for each $n \ge n_0$, a subset $\tilde{D} = \tilde{D}(R, \beta, n)$, $y \in \tilde{D} \subset D$, diffeomorphic to an open k-disk and such that the C^1 distance between $f^n(\tilde{D})$ and B^u_R is less than β .

0.1.7 Horseshoes and Transverse Homoclinic Points

Let $\mathbb{R}^{>}=\mathbb{R}^{k}\times\mathbb{R}^{l}$. We will refer to \mathbb{R}^{k} and \mathbb{R}^{l} as the unstable and stable subspaces, respectively, and denote by π^{u} and π^{s} the projections to these spaces. For $v\in\mathbb{R}^{m}$ denoted by $v^{u}=\pi^{u}(v)\in\mathbb{R}^{k}$ and $v^{s}=\pi^{s}(v)\in\mathbb{R}^{l}$. For $\alpha\in(0,1)$, call the sets $K_{\alpha}^{u}=\{v\in\mathbb{R}^{m}:|v^{s}|\leq\alpha|v^{u}|\}$ and $K_{\alpha}^{s}=\{v\in\mathbb{R}^{m}:|v^{u}|\leq\alpha|v^{s}|\}$ the unstable and stable cones, respectively. Let $R^{u}=\{x\in\mathbb{R}^{k}:|x|\leq1\}$, $R^{s}=\{x\in\mathbb{R}^{l}:|x|\leq1\}$, and $R=R^{u}\times R^{s}$. For $z=(x,y)\in\mathbb{R}^{k}\times\mathbb{R}^{l}$, the sets $F^{s}(z)=\{x\}\times R^{s}$ and $F^{u}(z)=R^{u}\times\{y\}$ will be called the stable and unstable fibers, respectively. We say that a C^{1} map $f:R\to\mathbb{R}^{m}$ has a horseshoe if there are $\lambda,\alpha\in(0,1)$ such that:

- 1. f is one-to-one on R
- 2. $f(R) \cap R$ has at least two components $\Delta_0, \ldots, \Delta_{q-1}$
- 3. if $z \in R$ and $f(z) \in \Delta_i$, $0 \le i < q$, then the sets $G_i^u(z) = f(F^u(z)) \cap \Delta_i$ and $G_i^s(z) = f^{-1}(F^s(f(z)) \cap \Delta_i)$ are connected, and the restriction of π^u to $G_i^u(z)$ and of π^s to $G_i^s(z)$ are bijective
- 4. if $z, f(z) \in R$, then the derivative $T_z f$ preserves the unstable cones K^u_α and $\lambda |T_z f(v)| \ge |v|$ for every $v \in K^u_\alpha$, and the inverse $T_{f(z)} f^{-1}$ preserves the stable cones K^s_α and $\lambda |T_{f(z)} f^{-1}(v)| \ge |v|$.

The intersection $\Lambda = \bigcap_{n>0} f^n(R)$ is called a horseshoe.

Theorem 4. The horseshoe $\Lambda = \bigcap_{n>0} f^n(R)$ is a hyperbolic set of f. If $f(R) \cap R$ has q components, then the restriction of f to Λ is topologically conjugate tot he full two-sided shift σ in the space of Σ_q of bi-infinite sequences in the alphabet $\{0,1,\ldots,q-1\}$

Corollary 6. If a diffeomorphism has a horseshoe, then the topological entropy of f is positive.

Let p be a hyperbolic fixed periodic point of a diffeomorphism $f: U \to M$. A point q is called *homoclinic* (for p) if $q \neq p$ and $q \in W^s(p) \cap W^u(p)$; it is called *transverse homoclinic* (for p) if in addition $W^s(p)$ and $W^u(p)$ intersect transversely at q.

Theorem 5. Let p be a hyperbolic periodic point of a diffeomorphism $f: U \to M$, and let q be a transverse homoclinic point of p. Then for every $\varepsilon > 0$ the union of ε -neighborhoods of the orbits of p and q contains a horseshoe of f.

0.1.8 Local Product Structure and Locally Maximal Hyperbolic Sets

A hyperbolic set Λ of $f: U \to M$ is called *locally maximal* if there is an open set V such that $\Lambda \subset V \subset U$ and $\Lambda = \bigcap_{n>0} f^n(V)$. Since every closed invariant subset of a hyperbolic set is also a hyperbolic set, the geometric structure of a

hyperbolic set may be very complicated and difficult to describe. However, due to their special properties, locally maximal hyperbolic sets allow a geometric characterization.

Since $E_x^s \cap E_x^u = \{0\}$, the local stable and unstable manifolds of x intersect at x transversely. By continuity, this transversality extends to a neighborhood of the diagonal in $\Lambda \times \Lambda$.

Proposition 12. Let Λ be a hyperbolic set of f. For every samll enough $\varepsilon > 0$ there is $\delta > 0$ such that if $x, y \in \Lambda$ and $d(x, y) < \delta$, then the intersection $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ is transverse and consists of exactly one point [x, y], which depends continuously on x and y. Furthermore, there is $C_p = C_p(\delta) > 0$ such that if $x, y \in \Lambda$ and $d(x, y) < \delta$, then $d^s(x, [x, y]) \leq C_p d(x, y)$ and $d^u(x, [x, y]) \leq C_p d(x, y)$, where d^s and d^u are distances along the stable and unstable manifolds, respectively.

Let
$$\varepsilon > 0, k, l \in \mathbb{N}$$
, let $B_{\varepsilon}^k \subset \mathbb{R}^k$, and $B_{\varepsilon}^l \subset \mathbb{R}^l$ be ε -balls.

Lemma 4. For every $\varepsilon > 0$ there is a $\delta > 0$ such that if $\phi : B_{\varepsilon}^k \to \mathbb{R}^l$ and $\psi : B_{\varepsilon}^l \to \mathbb{R}^k$ are differentiable maps and $|\phi(x)|, ||T\phi(x)||, ||\psi(y)|, ||T\phi(y)|| < \delta$ for all $x \in B_{\varepsilon}^k$ and $y \in B_{\varepsilon}^l$, then the intersection graph $(phi) \cap \text{graph}(psi) \subset \mathbb{R}^{k+l}$ is transverse and consists of exactly one point, which depend continuously on ϕ and ψ in the C^1 topology.

The following property of hyperbolic sets plays a major role in their geometric description and is equivalent to local maximality. A hyperbolic set Λ has a local product structure if there area (small enough) $\varepsilon > 0$ and $\delta > 0$ such that

- 1. $\forall x, y \in \Lambda$, the intersection $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ consists of at most one point, belonging to Λ
- 2. $\forall x, y \in \Lambda$ with $d(x, y) < \delta$, the intersection consists of exactly one point of Λ , denoted by $[x, y] = W_{\varepsilon}^{s}(x) \cap W_{\varepsilon}^{u}(y)$, and the intersection is transverse.

If a hyperbolic set Λ has a local product structure, then for every $x \in \Lambda$ there is a neighborhood U(x) such that

$$U(x) \cap \Lambda = \{ [y, z] : y \in U(x) \cap W_{\varepsilon}^{s}(x), z \in U(x) \cap W_{\varepsilon}^{u}(x) \}$$

Proposition 13. A hyperbolic set Λ is locally maximal iff it has a local product structure.

0.1.9 Anosov Diffeomorphisms

Recall that a C^1 diffeomorphism f of a connected differentiable manifold M is called Anosov if M is a hyperbolic set for f; it follows then that M is a locally maximal and compact.

An important class of Anosov diffeomorphisms is as follows: Let N be a simply connected nilpotent Lie group, and Γ a uniform discrete subgroup of N. The quotient $M = N/\Gamma$ is a compact nilmanifold. Let \overline{f} be an automorphism

of N that preserves Γ and whose derivative at the identity is hyperbolic. The induced diffeomorphism f of M is Anosov. Up to finite coverings, all known Anosov diffeomorphisms are topologically conjugate to automorphisms of nilmanifolds.

The families of stable and unstable manifolds of an Anosov diffeomorphism for two foliations called the *stable foliation* W^s and unstable foliation W^u These foliations are in general not C^1 , or even Lipschitz, but they are Hölder continuous. In spite of lack of Lipschitz continuity, the stable and unstable foliations possess a uniqueness property similar to the uniqueness theorem for ordinary differential equations.

Proposition 14. LEt $f: M \to M$ be an Anosov diffeomorphism. Then there are $\lambda \in (0,1)$, $C_p > 0$, $\varepsilon > 0$, $\delta > 0$ and for each $x \in M$, a splitting $T_xM = E_x^s \oplus E_x^u$ such that:

- 1. $T_x f(E_x^s) = E_{f(x)}^s$ and $T_x f(E_x^u) = E_{f(x)}^u$
- 2. $||T_x f(v^s)|| \le \lambda ||v^s||$ and $T_x f^{-1}(v^u) \le \lambda ||v^u||$ for $v^s \in E_x^s, v^u \in E_x^u$.
- 3. $W^s(x)=\{y\in M: d(f^n(x),f^n(y))\to 0 \text{ as } n\to\infty\} \text{ and } d^s(f(x),f(y))\leq \lambda d^s(x,y) \text{ for every } y\in W^s(x)$
- 4. $W^{u}(x) = \{y \in M : d(f^{-n}(x), f^{-n}(y)) \to 0 \text{ as } n \to \infty \}$ and $d^{u}(f^{-1}(x), f^{-1}(y)) \le \lambda d^{u}(x, y)$ for every $y \in W^{u}(x)$
- 5. $f(W^s(x)) = W^s(f(x))$ and $f(W^u(x)) = W^u(f(x))$
- 6. $T_x W^s(x) = E_x^s \text{ and } T_x W^u(x) = E_x^u$
- 7. if $d(x,y) < \delta$, then the intersection $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ is exactly one point [x,y], which depends continuously on x and y, and $d^s([x,y],x) \leq C_p d(x,y)$; $d^u([x,y],y) \leq C_p d(x,y)$.

A diffeomorphism is structurally stable if $\forall \varepsilon > 0$ there is a neighborhood $\mathcal{U} \subset \mathrm{Diff}^1(M)$ of f such that $\forall g \in \mathcal{U}$ there is a homeomorphism h conjugating f and g and $\mathrm{dist}_0(h,\mathrm{Id}) < \varepsilon$.

Proposition 15. 1. Anosov diffemorphisms form n open (possibly empty) subset in the C^1 topology.

- 2. Anosov diffeomorphisms are structurally stable.
- 3. The set of periodic points of an Anosov diffeomorphism is dense in the set of non-wandering points.

Theorem 6. Let $f: M \to M$ be an Anosov diffeomorphism. Then TFAE:

- 1. NW(f) = M
- 2. Every unstable manifold is dense in M

- 3. every stable manifold is dense in M
- 4. f is topologically transitive
- 5. f is topologically mixing

0.1.10 Axiom A and Structural Stability

A diffeomorphism satisfies Smale's Axiom A if the set NW(f) is hyperbolic and $\overline{Per(f)} = NW(f)$.

For a hyperbolic periodic point p of f, denote by $W^s(O(p))$ and $W^u(O(p))$ the unions of the stable and unstable manifolds of p and its images, respectively. If p and q are hyperbolic periodic points, we write $p \leq q$ when $W^s(O(p))$ and $W^u(O(p))$ have a point of transverse intersection. \leq is reflexive and transitive. If $p \leq q$ and $q \leq p$, we write p q and say that p and q are heteroclinically related. This is an equivalence relation.

Theorem 7 (Smale's Spectral Decomposition Theorem). If f satisfies Axiom A, then there is a unique representation of NW(f),

$$NW(f) = \Lambda_1 \cup \cdots cup \Lambda_k$$

as a partition of closed f-invariant subsets (called basic sets) such that:

- 1. each Λ_i is a locally maximal hyperbolic set of f
- 2. f is topologically transitive on each λ_i
- 3. each Λ_i is a disjoint union of closed sets Λ_i^j , $i \leq j \leq m_i$, with f cycically permuting the set Λ_i^j and f^{m_i} is topologically mixing on each Λ_i^j .

The basic sets are precisely the closures of the equivalence classes of . For two basic sets, we write $\Lambda_i \leq \Lambda_j$ if there are periodic points $q \in \Lambda_j$ and $p \in \Lambda_i$ such that $p \leq q$.

Let f satisfy Axiom A. f satisfies the *strong transversality condition* if $W^s(x)$ intersects $W^u(y)$ transversely (at all point of intersection) for all $x, y \in NW(f)$.

Theorem 8. A C^1 diffeomorphism is structurally stable iff it satisfies Axiom A and the strong transversality condition.