Project 2: House Hunting for Families in King County

Name:Sam Lim

Course: Data Science Full Time

Date: 3/26/21 4:30 pm EST

Instructor: Claude Fried

```
In [296]:
          # Your code here - remember to use markdown cells for comments as well!
          import pandas as pd
          import matplotlib.pyplot as plt
          %matplotlib inline
          import numpy as np
          import seaborn as sns
          import statsmodels.api as sm
          import statsmodels.stats.api as sms
          import statsmodels.formula.api as smf
          from statsmodels.formula.api import ols
          from sklearn.linear_model import LinearRegression
          import scipv.stats as stats
          from sklearn.preprocessing import OneHotEncoder, StandardScaler
          from sklearn.datasets import make regression
          import sklearn.metrics as metrics
          from random import gauss
          from sklearn.model selection import train test split
          from sklearn.linear model import Lasso
          from statsmodels.stats import outliers influence
          from sklearn.metrics import mean_absolute_error
          import sklearn
          sns.set_theme(color_codes=True)
```

Business Problem

A realtorship is experiencing an influx of smaller families coming into King County as Microsoft has expanded and hired substantial amount of workers. It is your job to find a home for these families, and many also live alone.

Data Observation and Cleaning

Data Keys

id - unique identified for a house price- Price is prediction target bedrooms- Number of Bedrooms/House bathrooms- Number of bathrooms/bedrooms sqft_living- Square footage of the home sqft_lot- Square footage of the lot

```
floors- Total floors (levels) in house
waterfront - House which has a view to a waterfront
condition - How good the condition is ( Overall )
grade - overall grade given to the housing unit, based on King County grading system
yr built - Built Year
```

Data Prep and Cleaning

First, unnecessary columns are dropped as well as some rows that contained incorrect data across the independent variables. New data series are created as well. The grade and condition columns are changed to type string so that it is seen as categorical data and not numerical.

```
kc_data=pd.read_csv('data/kc_house_data.csv')
In [213]:
           kc_new=kc_data.drop(columns=['zipcode','date','view','sqft_above','sqft_basement
           kc new=kc new.set index('id')
           kc_new['bldg_age']=2021-kc_new['yr_built']
  In [ ]: # kc new.loc[kc new['bedrooms']==33]=3
           #seemed to be an error because there were only 1.75 bathrooms and saft living was
           # kc new=kc new.drop(index=2402100895, axis=0)
           #3 beds, baths, sqft living, etc. everything was 3
           # kc new['bldg age']=2021-kc new['yr built']
           # kc new['qrade']=kc new['qrade'].astype('str')
                                                                       # grade and condition wer
           # kc_new['condition']=kc_new['condition'].astype('str') # they are still categori
           # kc new['zipcode']=kc new['zipcode'].astype('str')
In [167]: kc_new.head()
Out[167]:
                          price bedrooms bathrooms sqft_living sqft_lot floors condition grade yr_buil
                    id
            7129300520 221900.0
                                       3
                                               1.00
                                                         1180
                                                                 5650
                                                                         1.0
                                                                                   3
                                                                                         7
                                                                                               195
            6414100192 538000.0
                                       3
                                               2.25
                                                         2570
                                                                 7242
                                                                         2.0
                                                                                         7
                                                                                               195
            5631500400 180000.0
                                       2
                                                          770
                                                                10000
                                                                                   3
                                               1.00
                                                                         1.0
                                                                                         6
                                                                                               1930
            2487200875 604000.0
                                                                 5000
                                               3.00
                                                         1960
                                                                         1.0
                                                                                   5
                                                                                         7
                                                                                               196
            1954400510 510000.0
                                               2.00
                                                         1680
                                                                 8080
                                       3
                                                                         1.0
                                                                                   3
                                                                                         8
                                                                                               1987
```

Data Training

```
In [237]: mse_train = np.sum((y_train-yhat_train)**2)/len(y_train)
mse_test = np.sum((y_test-yhat_test)**2)/len(y_test)
print('Train Mean Squarred Error:', mse_train)
print('Test Mean Squarred Error:', mse_test)
```

Train Mean Squarred Error: 59755332738.083984 Test Mean Squarred Error: 58952013622.75533

```
In [193]: sm.graphics.qqplot(train_residuals,dist=stats.norm,line='45',fit=True)
    plt.title('Train Residuals')
    sm.graphics.qqplot(test_residuals,dist=stats.norm,line='45',fit=True)
    plt.title('Test Residuals')
    plt.show()
```


We can observe that the difference between the test and train MSE are not too different, and that the residuals fit well on the Q-Q plot.

Data Modeling

After creating a new database, used the OLS function to find the coefficients.

```
In [215]: outcome = 'price'
    predictors = kc_new.drop(['price'], axis=1)
    pred_sum = '+'.join(predictors.columns)
    formula = outcome + '~' + pred_sum
    print(formula)
```

 $\verb|price-bedrooms+bathrooms+sqft_living+sqft_lot+floors+condition+grade+yr_built+bldg_age|$

Out[216]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.618
Model:	OLS	Adj. R-squared:	0.618
Method:	Least Squares	F-statistic:	4363.
Date:	Mon, 29 Mar 2021	Prob (F-statistic):	0.00
Time:	20:58:21	Log-Likelihood:	-2.9700e+05
No. Observations:	21597	AIC:	5.940e+05
Df Residuals:	21588	BIC:	5.941e+05
Df Model:	8		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.4482	0.032	44.960	0.000	1.385	1.511
bedrooms	-4.915e+04	2123.053	-23.151	0.000	-5.33e+04	-4.5e+04
bathrooms	5.286e+04	3587.694	14.734	0.000	4.58e+04	5.99e+04
sqft_living	187.4021	3.421	54.784	0.000	180.697	194.107
sqft_lot	-0.2459	0.038	-6.439	0.000	-0.321	-0.171
floors	2.128e+04	3592.816	5.922	0.000	1.42e+04	2.83e+04
condition	1.962e+04	2583.883	7.593	0.000	1.46e+04	2.47e+04
grade	1.311e+05	2238.758	58.577	0.000	1.27e+05	1.36e+05
yr_built	-541.9966	8.997	-60.240	0.000	-559.632	-524.361
bldg_age	3468.7420	66.559	52.115	0.000	3338.282	3599.202

 Omnibus:
 17302.265
 Durbin-Watson:
 1.984

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1207162.645

 Skew:
 3.353
 Prob(JB):
 0.00

 Kurtosis:
 39.007
 Cond. No.
 2.45e+19

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 6.99e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

While the R-squared value seemed to show potential, variables such as the yr_built and floors did not seem necessary as well. At this point, I had also noticed that the coefficients were negative for bedrooms and sq. ft lot; however, since I couldn't do much about it, I decided to proceed.

```
In [217]: outcome = 'price'
    predictors = kc_new.drop(['price','yr_built','floors'], axis=1)
    pred_sum = '+'.join(predictors.columns)
    formula = outcome + '~' + pred_sum
    print(formula)
```

price~bedrooms+bathrooms+sqft living+sqft lot+condition+grade+bldg age

```
In [218]: model = ols(formula=formula, data=kc_new).fit()
model.summary()
```

Out[218]:

OLS Regression Results

Dep. Variable: price R-squared: 0.617 Model: OLS Adj. R-squared: 0.617 Method: Least Squares F-statistic: 4974. **Date:** Mon, 29 Mar 2021 Prob (F-statistic): 0.00 Time: 20:58:25 Log-Likelihood: -2.9702e+05 No. Observations: 21597 AIC: 5.941e+05 **Df Residuals:** 21589 BIC: 5.941e+05

Df Model: 7

Covariance Type: nonrobust

std err P>|t| [0.025 0.975]coef Intercept -1.076e+06 1.79e+04 -60.126 0.000 -1.11e+06 -1.04e+06 bedrooms -4.96e+04 2123.402 -23.356 0.000 -5.38e+04 -4.54e+04 bathrooms 5.798e+04 16.639 0.000 3484.667 5.12e+04 6.48e+04 sqft_living 54.441 0.000 192.460 185.7714 3.412 179.083 sqft_lot -0.2600 0.038 -6.815 0.000 -0.335 -0.185condition 1.76e+04 2563.288 6.866 0.000 1.26e+04 2.26e+04 1.334e+05 2206.957 60.457 0.000 1.29e+05 1.38e+05 grade bldg_age 3925.1267 67.697 57.981 0.000 3792.437 4057.817

 Omnibus:
 17191.902
 Durbin-Watson:
 1.981

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1180961.717

 Skew:
 3.324
 Prob(JB):
 0.00

 Kurtosis:
 38.611
 Cond. No.
 5.14e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.14e+05. This might indicate that there are strong multicollinearity or other numerical problems.

After observing that the R-squared value seemed to represent a statistically significant model, I checked to see if it passed the 3 assumptions of linear regression. The p-values of the independent variables also seemed to show homoscedesticity, but the model had high condition number, which indicated strong multicollinearity (or other numerical problems).

```
In [178]: data=kc_new
    price_unlog=round(np.exp(data['price']),2)
    plot=plt.figure(figsize=(11,6))
    ax_beds=sns.regplot(x='bedrooms',y='price',data=data,x_jitter=.1, line_kws={'color
    ax_beds.set_yticklabels(kc_new['price'])
    ax_beds.set(xlabel='Number of Bedrooms',ylabel='Price',title='Relationship between the color of t
```

First detected an outlier, a house with more than 30 rooms

```
In [179]:
          plot=plt.figure(figsize=(11,6))
          ax_baths=sns.regplot(x='bathrooms',y='price',data=data,x_jitter=.1, line_kws={'colored"}
          ax_baths.set_yticklabels(kc_new['price'])
          ax baths.set(xlabel='Number of Bathrooms',ylabel='Price',title='Relationship betv
                                           . . .
In [183]: data2=kc new
          plot=plt.figure(figsize=(11,6))
          ax living=sns.regplot(x=data2['sqft living'],y='price',data=data2,x jitter=.1, li
          ax_living.set_yticklabels(kc_new['price'])
          ax_living.set_xticklabels(data2['sqft_living'])
          ax living.set(xlabel='Size of Living Space in Sq. ft.',ylabel='Price',title='Rela
In [187]: |plot=plt.figure(figsize=(11,6))
          data2=kc new
          ax lot=sns.regplot(x='sqft lot',y='price',data=data2,x jitter=.1, line kws={'color
          ax_lot.set_yticklabels(kc_new['price'])
          ax lot.set xticklabels(data2['sqft lot'].sort values())
          ax_lot.set(xlabel='Size of Lot Space',ylabel='Price',title='Relationship between
```

First located the house with more than 33 rooms and found that it only had 3 bathrooms, and the house was not big enough to have that many rooms, and while checking to see if there were any other errors, found a house with 3 sq. ft of living space, lot, bedrooms, and etc. Decided to drop the entire row.

```
In [219]: kc_new.loc[kc_new['bedrooms']==33]=3
# seemed to be an error because there were only 1.75 bathrooms and sqft_living wo
kc_new=kc_new.drop(index=2402100895, axis=0)
# 3 beds,baths,sqft_living, etc. everything was 3
```

Logarithmic Scaling

The data had to be normalized because the independent variables coefficients were too large. The coefficients were too large and the values were too large (sqft living and lot, price). In order to normalize the data, I created a new database that contained log-scaled values of the original the original data. Not all independent variables were logarithmically scaled, but the dependent variable, price were also log-scaled. This helped normalize the data. Before log scaling and normalizing the values, our data shows no sign of linearity nor homoscedesticity. The regressions of the variables did fit the Q-Q plot; failing to meet 2 of the 3 assumptions of linear regression.

After trying to use logged versions, i couldnt so i had to scale them, but after i did, i had to unscale the price because the price coudlnt be in the negatives lol

```
In [241]:
          logsqft living=np.log(kc new['sqft living'])
          logsqft lot=np.log(kc new['sqft lot'])
          log_age=np.log(kc_new['bldg_age'])
          log_price=np.log(kc_new['price'])
          # Creating new database
          kc fin=pd.DataFrame([])
          # transferring over varible values
          kc_fin['bedrooms']=kc_new['bedrooms']
          kc fin['bathrooms']=kc new['bathrooms']
          kc_fin['sqft_living']=logsqft_living
          kc fin['sqft lot']=logsqft lot
          kc_fin['condition']=kc_new['condition']
          kc fin['grade']=kc new['grade']
          kc_fin['bldg_age']=log_age
          kc_fin=pd.concat([log_price, kc_fin],axis=1)
```


In [223]: ax2_baths=sns.regplot(x='bathrooms',y='price',data=data,x_jitter=.1, line_kws={'

In [224]: ax2_living=sns.regplot(x=data2['sqft_living'],y='price',data=data2,x_jitter=.1,]

In [225]: ax2_lot=sns.regplot(x='sqft_lot',y='price',data=data2,x_jitter=.1, line_kws={'col

The values were log transformed, but were not scaled.

```
In [249]:
          logsqft_living=np.log(kc_new['sqft_living'])
          logsqft lot=np.log(kc new['sqft lot'])
          log_age=np.log(kc_new['bldg_age'])
          log_price=np.log(kc_new['price'])
          # Scaling logged values
          scaled living=(logsqft living-np.mean(logsqft living))/np.sqrt(np.var(logsqft li√
          scaled_lot=(logsqft_lot-np.mean(logsqft_lot))/np.sqrt(np.var(logsqft_lot))
          scaled age=(log age-np.mean(log age))/np.sqrt(np.var(log age))
          kc_fin['bedrooms']=kc_new['bedrooms']
          kc_fin['bathrooms']=kc_new['bathrooms']
          kc fin['sqft living']=scaled living
          kc_fin['sqft_lot']=scaled_lot
          kc fin['condition']=kc new['condition']
          kc fin['grade']=kc new['grade']
          kc_fin['bldg_age']=scaled_age
          kc_fin=pd.concat([log_price, kc_fin],axis=1)
```

In [243]: data=kc_fin
ax2_beds=sns.regplot(x='bedrooms',y='price',data=data,x_jitter=.1, line_kws={'col

In [244]: ax2_baths=sns.regplot(x='bathrooms',y='price',data=data,x_jitter=.1, line_kws={'


```
In [245]: ax2_living=sns.regplot(x=data['sqft_living'],y='price',data=data,x_jitter=.1, lir
```


In [246]: | ax2_lot=sns.regplot(x='sqft_lot',y='price',data=data,x_jitter=.1, line_kws={'color

After log transforming and scaling the transformed values, the model showed homoscedesticity except in the sqft_lot. This is because many apartments/condos do not have much lot space that is not used for living space. Since many of these apartments/condos are more expensive, there is a much wider variation in price where the sqft lot is near 0.

price~bedrooms+bathrooms+sqft_living+sqft_lot+condition+grade+bldg_age

Out[248]:

OLS Regression Results

0.613	R-squared:	price	Dep. Variable:
0.613	Adj. R-squared:	OLS	Model:
4888.	F-statistic:	Least Squares	Method:
0.00	Prob (F-statistic):	Mon, 29 Mar 2021	Date:
-6536.1	Log-Likelihood:	21:14:16	Time:
1.309e+04	AIC:	21596	No. Observations:
1.315e+04	BIC:	21588	Df Residuals:
		7	Df Model:

Df Model: 7

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	11.1141	0.031	356.045	0.000	11.053	11.175
bedrooms	-0.0520	0.003	-15.655	0.000	-0.059	-0.046
bathrooms	0.0772	0.005	15.121	0.000	0.067	0.087
sqft_living	0.2076	0.005	43.584	0.000	0.198	0.217
sqft_lot	-0.0657	0.002	-26.443	0.000	-0.071	-0.061
condition	0.0430	0.004	11.479	0.000	0.036	0.050
grade	0.2350	0.003	76.396	0.000	0.229	0.241
bldg_age	0.1463	0.003	49.405	0.000	0.140	0.152

 Omnibus:
 56.412
 Durbin-Watson:
 1.957

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 70.993

 Skew:
 0.031
 Prob(JB):
 3.84e-16

 Kurtosis:
 3.274
 Cond. No.
 133.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The model seems to be improving as multicollinearity does not seem to be an issue. While the data cannot be reproduced again for now, condition and/or grade had negative coefficients, meaning that if the grade or the condition of a house was better, it would be cheaper. Later I found out that these types of variables should be set as categorical variables.

```
In [254]: logsqft living=np.log(kc new['sqft living'])
          logsqft_lot=np.log(kc_new['sqft_lot'])
          log age=np.log(kc new['bldg age'])
          log price=np.log(kc new['price'])
          # Scaling logged values
          scaled_living=(logsqft_living-np.mean(logsqft_living))/np.sqrt(np.var(logsqft_liv)
          scaled lot=(logsqft lot-np.mean(logsqft lot))/np.sqrt(np.var(logsqft lot))
          scaled age=(log age-np.mean(log age))/np.sqrt(np.var(log age))
          kc_fin=pd.DataFrame([])
          kc_fin['bedrooms']=kc_new['bedrooms']
          kc_fin['bathrooms']=kc_new['bathrooms']
          kc_fin['sqft_living']=scaled_living
          kc fin['sqft lot']=scaled lot
          kc_fin['bldg_age']=scaled_age
          cond_dummies=pd.get_dummies(kc_new['condition'],prefix='cnd',drop_first=True).ast
          grade_dummies=pd.get_dummies(kc_new['grade'],prefix='grade',drop_first=True).asty
          kc fin=pd.concat([log price, kc fin, cond dummies, grade dummies],axis=1)
```

Out[254]:

	price	bedrooms	bathrooms	sqft_living	g sqft_lot bldg_age		cnd_2	cnd_3	cnc
id									
7129300520	12.309982	3	1.00	-1.125577	-0.388446	0.689504	0	1	
6414100192	13.195614	3	2.25	0.709431	-0.113256	0.771426	0	1	
5631500400	12.100712	2	1.00	-2.131918	0.244461	1.090038	0	1	
2487200875	13.311329	4	3.00	0.070657	-0.523930	0.460747	0	0	
1954400510	13.142166	3	2.00	-0.292744	0.008125	-0.233989	0	1	
263000018	12.793859	3	2.50	-0.513225	-2.171614	-1.683985	0	1	
6600060120	12.899220	4	2.50	0.457991	-0.356917	-2.434420	0	1	
1523300141	12.904459	2	0.75	-1.469084	-1.975398	-1.683985	0	1	
291310100	12.899220	3	2.50	-0.407763	-1.343132	-1.199044	0	1	
1523300157	12.691580	2	0.75	-1.469084	-2.226878	-1.572543	0	1	
21596 rows	× 20 columi	ns							

```
In [255]: outcome = 'price'
    predictors = kc_fin.drop(['price'], axis=1)
    pred_sum = '+'.join(predictors.columns)
    formula = outcome + '~' + pred_sum
    print(formula)
    model = ols(formula=formula, data=kc_fin).fit()
    model.summary()
```

 $\label{linear_price} price \sim bedrooms + bathrooms + sqft_living + sqft_lot + bldg_age + cnd_2 + cnd_3 + cnd_4 + cnd_5 + grade_4 + grade_5 + grade_6 + grade_7 + grade_8 + grade_9 + grade_10 + grade_11 + grade_12 + grade_13$

Out[255]:

OLS Regression Results

0.617	R-squared:	price	Dep. Variable:
0.617	Adj. R-squared:	OLS	Model:
1829.	F-statistic:	Least Squares	Method:
0.00	Prob (F-statistic):	Mon, 29 Mar 2021	Date:
-6428.5	Log-Likelihood:	21:21:31	Time:
1.290e+04	AIC:	21596	No. Observations:
1.306e+04	BIC:	21576	Df Residuals:

Df Model: 19
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	12.8057	0.332	38.535	0.000	12.154	13.457	
cnd_2[T.1]	-0.0779	0.066	-1.186	0.236	-0.207	0.051	
cnd_3[T.1]	0.0476	0.061	0.780	0.435	-0.072	0.167	
cnd_4[T.1]	0.0702	0.061	1.149	0.251	-0.050	0.190	
cnd_5[T.1]	0.1551	0.061	2.523	0.012	0.035	0.276	
grade_4[T.1]	-0.2688	0.332	-0.809	0.418	-0.920	0.382	
grade_5[T.1]	-0.2851	0.327	-0.872	0.383	-0.926	0.356	
grade_6[T.1]	-0.1618	0.326	-0.496	0.620	-0.801	0.478	
grade_7[T.1]	0.0213	0.326	0.065	0.948	-0.618	0.661	
grade_8[T.1]	0.2545	0.326	0.780	0.436	-0.385	0.894	
grade_9[T.1]	0.5361	0.327	1.642	0.101	-0.104	1.176	
grade_10[T.1]	0.7550	0.327	2.311	0.021	0.115	1.395	
grade_11[T.1]	0.9813	0.327	3.001	0.003	0.340	1.622	
grade_12[T.1]	1.2590	0.329	3.832	0.000	0.615	1.903	
grade_13[T.1]	1.4842	0.339	4.376	0.000	0.819	2.149	
bedrooms	-0.0487	0.003	-14.671	0.000	-0.055	-0.042	
bathrooms	0.0735	0.005	14.276	0.000	0.063	0.084	

sqft_living	0.2101	0.005	43.957	0.000	0.201	0.219
sqft_lot	-0.0688	0.003	-27.194	0.000	-0.074	-0.064
bldg_age	0.1465	0.003	48.427	0.000	0.141	0.152

Omnibus: 33.919 Durbin-Watson: 1.958

Prob(Omnibus): 0.000 Jarque-Bera (JB): 40.919

Skew: 0.009 **Prob(JB):** 1.30e-09

Kurtosis: 3.213 **Cond. No.** 2.11e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.11e+03. This might indicate that there are strong multicollinearity or other numerical problems.

I saw that the p-values were generally higher for the grade variable compared to the condition variable, and the building age variable did not seem to affect the price. These two variables were removed.

```
In [257]: kc fin=pd.DataFrame([])
          kc fin['bedrooms']=kc new['bedrooms']
          kc fin['bathrooms']=kc new['bathrooms']
          kc_fin['sqft_living']=scaled_living
          kc_fin['sqft_lot']=scaled_lot
          cond dummies=pd.get dummies(kc new['condition'],prefix='cnd',drop first=True).ast
          kc_fin=pd.concat([log_price, kc_fin, cond_dummies],axis=1)
          outcome = 'price'
          predictors = kc_fin.drop(['price'], axis=1)
          pred_sum = '+'.join(predictors.columns)
          formula = outcome + '~' + pred sum
          print(formula)
          model = ols(formula=formula, data=kc fin).fit()
          model.summary()
```

price~bedrooms+bathrooms+sqft living+sqft lot+cnd 2+cnd 3+cnd 4+cnd 5

Out[257]:

OLS Regression Results

Dep. Variable: price 0.485 R-squared: Model: OLS Adj. R-squared: 0.485 Method: Least Squares F-statistic: 2546. Date: Mon, 29 Mar 2021 Prob (F-statistic): 0.00 Time: 21:25:55 Log-Likelihood: -9615.8 No. Observations: 21596 AIC: 1.925e+04 **Df Residuals:** 21587 BIC: 1.932e+04 Df Model:

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975] **Intercept** 13.1479 0.072 182.727 0.000 13.007 13.289 cnd_2[T.1] -0.0770 0.076 -1.015 0.310 -0.226 0.072 cnd_3[T.1] 0.0368 0.070 0.523 0.601 -0.101 0.175 0.070 1.451 0.147 -0.036 cnd_4[T.1] 0.1021 0.240 cnd_5[T.1] 0.2094 0.071 2.955 0.003 0.071 0.348 bedrooms -0.0883 0.004 -23.726 0.000 -0.096 -0.081 bathrooms 0.0621 0.005 11.484 0.000 0.051 0.073 sqft_living 0.3869 0.005 82.139 0.000 0.378 0.396 sqft_lot -0.0460 0.003 -16.218 0.000 -0.052 -0.040

Omnibus: 94.066 **Durbin-Watson:** 1.978 Prob(Omnibus): 0.000 Jarque-Bera (JB): 93.154

 Skew:
 0.148
 Prob(JB):
 5.91e-21

 Kurtosis:
 2.876
 Cond. No.
 263.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Data Selection

Because the majority of the clients are small to mid-size families, houses with more than 5 bedrooms and houses with more than 4 bathrooms were dropped. This also helped with the linear regression model as the before-mentioned houses tended to be outliers

```
In [258]: kc_fin2=kc_fin.drop(index=kc_fin.loc[kc_fin['bedrooms']>5].index.append(kc_fin.lockc_fin2.head()
```

Out[258]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	cnd_2	cnd_3	cnd_4	cnd_5
id									
7129300520	12.309982	3	1.00	-1.125577	-0.388446	0	1	0	0
6414100192	13.195614	3	2.25	0.709431	-0.113256	0	1	0	0
5631500400	12.100712	2	1.00	-2.131918	0.244461	0	1	0	0
2487200875	13.311329	4	3.00	0.070657	-0.523930	0	0	0	1
1954400510	13.142166	3	2.00	-0.292744	0.008125	0	1	0	0
4									•

```
In [259]: kc_fin2.info()
```

<class 'pandas.core.frame.DataFrame'>

Int64Index: 21061 entries, 7129300520 to 1523300157

Data columns (total 9 columns):

memory usage: 1.0 MB

#	Column	Non-Null Count	Dtype
0	price	21061 non-null	float64
1	bedrooms	21061 non-null	int64
2	bathrooms	21061 non-null	float64
3	sqft_living	21061 non-null	float64
4	sqft_lot	21061 non-null	float64
5	cnd_2	21061 non-null	category
6	cnd_3	21061 non-null	category
7	cnd_4	21061 non-null	category
8	cnd_5	21061 non-null	category
dtyp	es: category(4), float64(4),	int64(1)

After cleaning, transforming, and selecting the data I needed, I constructed an OLS model that had scaled, normalized data with correct data types and did not have much multicollinearity issue other than in the categorical variables.

```
In [138]: model = ols(formula=formula, data=kc_fin2).fit()
model.summary()
```

Out[138]:

OLS Regression Results

Dep. Variable: R-squared: 0.461 price Model: OLS Adj. R-squared: 0.461 Method: Least Squares F-statistic: 2253. **Date:** Mon, 29 Mar 2021 Prob (F-statistic): 0.00 Log-Likelihood: Time: 14:50:33 -9178.8 No. Observations: 21061 AIC: 1.838e+04 **Df Residuals:** 21052 BIC: 1.845e+04

Df Model: 8

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	13.2128	0.073	181.587	0.000	13.070	13.355	
cnd_2[T.1]	-0.0868	0.076	-1.136	0.256	-0.237	0.063	
cnd_3[T.1]	0.0444	0.071	0.626	0.531	-0.095	0.183	
cnd_4[T.1]	0.1066	0.071	1.501	0.133	-0.033	0.246	
cnd_5[T.1]	0.2132	0.071	2.984	0.003	0.073	0.353	
bedrooms	-0.0968	0.004	-23.666	0.000	-0.105	-0.089	
bathrooms	0.0391	0.006	6.785	0.000	0.028	0.050	
sqft_living	0.3929	0.005	81.695	0.000	0.384	0.402	
sqft lot	-0.0485	0.003	-16.956	0.000	-0.054	-0.043	

 Omnibus:
 68.943
 Durbin-Watson:
 1.980

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 68.132

 Skew:
 0.127
 Prob(JB):
 1.60e-15

 Kurtosis:
 2.887
 Cond. No.
 259.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Zipcode

While trying to determine what other factors could play into the house pricing other than the house features themselves, I realized that location mattered greatly. It was an outside variable that was able to provide me with data representing of designated groupings of the locations of the houses.

```
In [268]: kc_new=kc_data.drop(columns=['date','view','sqft_above','sqft_basement','yr_renov
kc_new['zipcode']=kc_new['zipcode'].astype('str')
kc_new=kc_new.set_index('id')
kc_new
```

Out[268]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	condition	grade	yr_buil
id									
7129300520	221900.0	3	1.00	1180	5650	1.0	3	7	195
6414100192	538000.0	3	2.25	2570	7242	2.0	3	7	195 ⁻
5631500400	180000.0	2	1.00	770	10000	1.0	3	6	1930
2487200875	604000.0	4	3.00	1960	5000	1.0	5	7	196
1954400510	510000.0	3	2.00	1680	8080	1.0	3	8	1987
263000018	360000.0	3	2.50	1530	1131	3.0	3	8	2009
6600060120	400000.0	4	2.50	2310	5813	2.0	3	8	2014
1523300141	402101.0	2	0.75	1020	1350	2.0	3	7	2009
291310100	400000.0	3	2.50	1600	2388	2.0	3	8	2004
1523300157	325000.0	2	0.75	1020	1076	2.0	3	7	2008
21597 rows	× 10 colum	nns							>

```
In [283]: logsqft living=np.log(kc new['sqft living'])
          logsqft_lot=np.log(kc_new['sqft_lot'])
          log_price=np.log(kc_new['price'])
          # Scaling logged values
          scaled_living=(logsqft_living-np.mean(logsqft_living))/np.sqrt(np.var(logsqft_liv)
          scaled lot=(logsqft lot-np.mean(logsqft lot))/np.sqrt(np.var(logsqft lot))
          kc fin=pd.DataFrame([])
          kc fin['bedrooms']=kc new['bedrooms']
          kc_fin['bathrooms']=kc_new['bathrooms']
          kc fin['sqft living']=scaled living
          kc_fin['sqft_lot']=scaled_lot
          kc fin['zipcode']=kc new['zipcode'].astype('str')
          cond_dummies=pd.get_dummies(kc_new['condition'],prefix='cnd',drop_first=True).ast
          # zip_dummies=pd.get_dummies(kc_new['zipcode'],prefix='zip',drop_first=True).asty
          kc fin=pd.concat([log price, kc fin, cond dummies],axis=1)
In [284]: kc_fin2=kc_fin.drop(index=kc_fin.loc[kc_fin['bedrooms']>5].index.append(kc_fin.loc
          kc fin2.head()
Out[284]:
```

		price	bedrooms	bathrooms	sqft_living	sqft_lot	zipcode	cnd_2	cnd_3	cnd_
	id									
-	7129300520	12.309982	3	1.00	-1.125582	-0.388439	98178	0	1	
	6414100192	13.195614	3	2.25	0.709463	-0.113243	98125	0	1	
	5631500400	12.100712	2	1.00	-2.131943	0.244481	98028	0	1	
	2487200875	13.311329	4	3.00	0.070676	-0.523926	98136	0	0	
	1954400510	13.142166	3	2.00	-0.292732	0.008140	98074	0	1	
4	4									•

```
In [286]:
            model fin = ols(formula=formula, data=kc fin2).fit()
             model fin.summary()
              zipcode[T.98004]
                                1.2340
                                         0.017
                                                 74.069 0.000
                                                                  1.201
                                                                          1.267
              zipcode[T.98005]
                                0.8073
                                          0.020
                                                 40.067 0.000
                                                                  0.768
                                                                         0.847
              zipcode[T.98006]
                                          0.015
                                                 51.673 0.000
                                                                  0.743
                                                                         0.801
                                0.7722
              zipcode[T.98007]
                                0.7153
                                          0.022
                                                 33.201 0.000
                                                                  0.673
                                                                         0.758
              zipcode[T.98008]
                                0.7274
                                          0.017
                                                 42.815 0.000
                                                                  0.694
                                                                         0.761
              zipcode[T.98010]
                                0.2264
                                          0.024
                                                  9.409 0.000
                                                                  0.179
                                                                         0.274
              zipcode[T.98011]
                                0.4667
                                          0.019
                                                 24.675 0.000
                                                                  0.430
                                                                         0.504
              zipcode[T.98014]
                                0.2561
                                          0.022
                                                  11.436 0.000
                                                                  0.212
                                                                         0.300
              zipcode[T.98019]
                                0.2944
                                          0.019
                                                 15.448 0.000
                                                                  0.257
                                                                         0.332
              zipcode[T.98022]
                                0.0737
                                          0.018
                                                   4.116 0.000
                                                                  0.039
                                                                         0.109
              zipcode[T.98023]
                                0.0056
                                          0.015
                                                  0.386 0.700
                                                                 -0.023
                                                                         0.034
              zipcode[T.98024]
                                0.3936
                                          0.027
                                                 14.564 0.000
                                                                  0.341
                                                                         0.447
              zipcode[T.98027]
                                0.5536
                                          0.015
                                                 35.949 0.000
                                                                  0.523
                                                                          0.584
```

Creating an unlogged version of the data after unwanted houses were dropped to un-log/unnormalize values to represent real-world values.

```
In [287]:
          kc new2=kc new.copy()
          kc new2=kc new2.drop(index=kc new2.loc[kc new2['bedrooms']>5].index.append(kc new
          kc new2
In [300]:
          kc unlog=pd.DataFrame([])
          kc_unlog['bedrooms']=kc_new2['bedrooms']
          kc unlog['bathrooms']=kc new2['bathrooms']
          kc_unlog['living']=kc_new2['sqft_living']
          kc_unlog['lot']=kc_new2['sqft_lot']
          kc_unlog['price_sqft_living']=kc_new2['price']/kc_new2['sqft_living']
          kc_unlog['price_sqft_lot']=kc_new2['price']/kc_new2['sqft_lot']
          # Shows how much each sq. ft of living space is
          zip_dummies=pd.get_dummies(kc_new2['zipcode'],prefix='zip',drop_first=True).asty
          cond_dummies=pd.get_dummies(kc_new2['condition'],prefix='cnd',drop_first=True).as
          price=kc new2['price']
          kc unlog=pd.concat([price,kc unlog,zip dummies,cond dummies],axis=1)
In [301]: kc_unlog
```

<ipython-input-302-44b7a1ab731d>:9: UserWarning: FixedFormatter should only be
used together with FixedLocator
 zip_price.set_yticklabels(labels=round(price_by_zipcode['price'].sort_values
(),2))

Model Check

Using the Mean Absolute Error, determining how accurate the model is in portraying the housing prices in King County

```
In [330]: lr=LinearRegression()
          predictors=kc_new2.drop(['price'],axis=1)
          predictors=sm.add constant(predictors)
          X_train, X_test, y_train, y_test = train_test_split(predictors,kc_new2['price'],
          X_train.shape, X_test.shape, y_train.shape, y_test.shape
Out[330]: ((10530, 10), (10531, 10), (10530,), (10531,))
In [331]: lr.fit(X_train,y_train)
          yhat train=lr.predict(X train)
          yhat_test=lr.predict(X_test)
In [336]: mae=mean absolute error
          mae(yhat_train,np.delete(yhat_test,0))
```

Out[336]: 272470.3814412837

Using the Mean Absolute Error, we are able to determine that the model has an mean absolute error of \$272,470.38.

Multicollinearity Check

The model has some multicollinearity. First between the categorical variables and another between the number of bathrooms and the sqft_living, but that is to be expected. In this model, because the number of bathrooms as well as the sqft living space is both important in determining the appropriate housing for the clients, neither variables will not be taken out.

```
In [15]: abs(predictors.corr()) >.75
```

Out[15]:

	bedrooms	bathrooms	sqft_living	sqft_lot
bedrooms	True	False	False	False
bathrooms	False	True	False	False
sqft_living	False	False	True	False
sqft_lot	False	False	False	True

```
In [16]: kc_pred=kc_fin2.drop(['price'],axis=1)
    pred_df=kc_pred.corr().abs().stack().reset_index().sort_values(0, ascending=False
    # zip the variable name columns (Which were only named Level_0 and Level_1 by dep
    pred_df['pairs'] = list(zip(pred_df.level_0, pred_df.level_1))

# set index to pairs
    pred_df.set_index(['pairs'], inplace = True)

# d rop Level columns
    pred_df.drop(columns=['level_1', 'level_0'], inplace = True)

# rename correlation column as cc rather than 0
    pred_df.columns = ['cc']

# drop duplicates. This could be dangerous if you have variables perfectly correl
    # for the sake of exercise, kept it in.
    pred_df.drop_duplicates(inplace=True)

In [17]: pred_df[(pred_df.cc>.75) & (pred_df.cc <1)]

...

In [18]: sns.heatmap(predictors.corr(), center=0);
...</pre>
```

Linear Regression Assumptions

Proving that the assumptions regarding regression is met using the linear regression model above

Linearity

The scatter plot of the independent variables to the dependent variables show that they have a linear relationship, meeting the linearity assumption. The scatter plots also show that the data is homoscedastic, meeting two of the three assumptions.

```
In [127]: living_unlog=round(np.exp(logsqft_living),3)
    data2=kc_fin2
    plot=plt.figure(figsize=(11,6))
    ax_living=sns.regplot(x='sqft_living',y='price',data=data2,x_jitter=.1, line_kws=
    # ax_living.set_yticklabels(price_unlog)
    # ax_living.set_xticklabels('sqft_living')
    ax_living.set(xlabel='Size of Living Space in Sq. ft.',ylabel='Price',title='Relata')
    ...
```

While we may assume heteroscedasticity for the sqft_lot, this is because there are many apartments meaning many of these houses have 0 sqft_lot. The price difference between apartments varies significantly depending on location, sqft of living space, commodities, and etc. If we overlook the top and bottom part of the scatter plot where sqft_lot is near 0, the rest of the plot is very linear.

```
In [156]: plot=plt.figure(figsize=(11,6))
    data2=kc_fin2
    ax_lot=sns.regplot(x='sqft_lot',y='price',data=data2,x_jitter=.1, line_kws={'color
    ax_lot.set_yticklabels(data['price'])
    # ax_lot.set_xticklabels('sqft_lot')
    ax_lot.set(xlabel='Size of Lot Space',ylabel='Price',title='Relationship between
    ...
```

Normality

Q-Q Plot of the residuals

First by building a residuals data frame, I was able to create a Q-Q plot of the residuals using model.resid. The Q-Q plot shows that while it is not perfectly normally distributed, it is quite close.

Without log transforming and normalizing the values, the graphs look like this, however, these graphs do show a relationship between the said independent variable and price with real world values.

```
In [26]: data=kc_fin2
    price_unlog=round(np.exp(data['price']),2)
    plot=plt.figure(figsize=(11,6))
    ax_beds=sns.regplot(x='bedrooms',y=price_unlog,data=data,x_jitter=.1, line_kws={'ax_beds.set_yticklabels(price_unlog)}
    ax_beds.set(xlabel='Number of Bedrooms',ylabel='Price',title='Relationship betweenders')
```

```
In [27]: plot=plt.figure(figsize=(11,6))
          ax baths=sns.regplot(x='bathrooms',y=price unlog,data=data,x jitter=.1, line kws=
          ax baths.set yticklabels(price unlog)
          ax baths.set(xlabel='Number of Bathrooms',ylabel='Price',title='Relationship betv
In [115]:
          living unlog=round(np.exp(logsqft living),3)
          data2=kc unlog
          plot=plt.figure(figsize=(11,6))
          ax_living=sns.regplot(x=data2['living'],y=price_unlog,data=data2,x_jitter=.1, lin
          ax living.set yticklabels(price unlog)
          ax living.set xticklabels(data2['living'].sort values())
          ax living.set(xlabel='Size of Living Space in Sq. ft.',ylabel='Price',title='Rela
In [116]:
          plot=plt.figure(figsize=(11,6))
          data2=kc unlog
          ax_lot=sns.regplot(x=data2['lot'],y=price_unlog,data=data2,x_jitter=.1, line_kws=
          ax lot.set yticklabels(price unlog)
          ax_lot.set_xticklabels(data2['lot'].sort_values())
          ax_lot.set(xlabel='Size of Lot Space',ylabel='Price',title='Relationship between
In [297]: residual df=pd.DataFrame(sorted(model.resid), columns=['residual'])
In [298]: residual_df['z_actual']=(residual_df['residual'].map
                                     (lambda x: (x-residual df['residual'].mean())/residual d
          residual df['rank']=residual df.index+1
          residual_df['percentile']=residual_df['rank'].map(lambda x: x/len(residual_df.res
          residual df['theo']=stats.norm.ppf(residual df['percentile'])
          residual df['error']=residual df['z actual']-residual df['theo']
          residual df.head()
Out[298]:
               residual
                        z_actual rank percentile
                                                   theo
                                                           error
             -1.163943
                       -3.081664
                                   1
                                      0.000046 -3.909181
                                                       0.827516
             -1.120740
                      -2.967281
                                      0.000093
                                              -3.738367
                                                       0.771086
             -1.100164 -2.912804
                                      0.000139
                                              -3.635140 0.722337
             -1.094431 -2.897625
                                      0.000185 -3.560295 0.662670
                                   4
             -1.084504 -2.871343
                                      0.000232 -3.501269 0.629926
```

```
In [299]: with plt.style.context('ggplot'):
    plt.figure(figsize=(9,6))
    plt.scatter(residual_df['theo'],residual_df['z_actual'],color='blue')
    plt.xlabel('Theoretical Quantile')
    plt.ylabel('Sample Quantile')
    plt.plot(residual_df['theo'],residual_df['theo'])
```


Rechecking normality. While it does seem less normal than before, the model does not seem to be over or underfitting.

In [305]: sm.graphics.qqplot(model_fin.resid, dist=stats.norm, line='45', fit=True)

Histogram of Residuals

Like the Q-Q plots, the histogram of the residuals also shows that the data is nearly normally distributed.

```
In [148]: sns.histplot(residual_df['residual'],bins=60, kde=True, cbar=True)
plt.xlim((-2,2))
plt.show()
```

Visualizing Error Terms

This section has a better visual representation of the linearity and homoscedasticity of the data.

• The Y and Fitted vs. X graph plots the dependent variable against our predicted values with a confidence interval. The positive relationship shows that independent variable and price are correlated, i.e., when one variable increases the other increases.

- The Residuals versus height graph shows our model's errors versus the specified predictor variable. Each dot is an observed value; the line represents the mean of those observed values. If there's no pattern in the distance between the dots and the mean value, the OLS assumption of homoskedasticity holds.
- The Partial regression plot shows the relationship between the independent variable and price, taking in to account the impact of adding other independent variables on our existing coefficient.
- The Component and Component Plus Residual (CCPR) plot is an extension of the partial regression plot. It shows where the trend line would lie after adding the impact of adding our other independent variables on the price.

```
In [149]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "bedrooms", fig=fig)
    plt.show()

In [150]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "bathrooms", fig=fig)
    plt.show()

In [151]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "sqft_living", fig=fig)
    plt.show()

In [152]: fig = plt.figure(figsize=(15,8))
    fig = sm.graphics.plot_regress_exog(model, "sqft_lot", fig=fig)
    plt.show()
```

Evaluation

By taking bedrooms, bathrooms, size of living space and lot, and the zipcodes, I believe I was able to portray housing prices in King County well. While zipcode had been ignored at start, the price differences between houses of similar specs could not be explained very well, but with the introduction of zip codes, I realized that much of the price difference had been caused by location.

- Because the variable zip codes was categorical, it could not be graphed like condition; however, after observing the mean housing price by zip codes, it was very apparant that zip code played a much bigger role in price determination.
- Because apartments/condos account for higher prices for houses with a lot size of 0(or other very small number), and thus explains the negative relationship between price and lot size.

Conclusion

The biggest challenges were first, trying to figure out why the relationship between lot size and number of bedrooms to the price were negative, and much effort was put into trying to make the coefficients be positive in the model. Realizing that area played an important role in determining housing price was very important as it allowed me to view zip codes as a necessary independent variable. While not having much information regarding the actual geographical location of each area as well as other amenities of each zip code may hinder in providing the best recommendation, knowing that each zip code has different price ranges will help narrowing down potential housing for the clients.

- Organize and categorize different zip codes with housing price range and amenities such as public education, transportation, and other facilities in order to facilitate faster and more suitable recommendations.
- Start oragnizing advertisements targeted to those that are looking to move to the King County area to gain possible clients.
- In the future, having a better understanding of the local traffic, local shopping/food/activities
 areas, and other factors that clients are looking for in their new neighborhood, would be able
 to create more fitted lists for the clients.
- Locate houses that are less expensive than those in its neighborhood and are in areas (zip codes) with higher average house price due to a lower condition or etc.
- Using the lot size variable, determine if the housing is an apartment/condo, a town house, or a suburban house.
- When showing possible candidates, show the price of each sq. ft of living space compared to that of zip code average to help the clients determine the price level of the house.