Algorithmique:

Correction: Divide-and-Conquer 1

1 Element majoritaire

1.1 Divide-and-Conquer (1 points)

Le 'divide' correpond à la division des éléments par couples, le 'conquer' à leur comparaison, et le 'combine' à l'établissement de la liste qui contient les éléments appartenant à des couples 'doublons'.

1.2 Implémentation (3 points)

Se référer au fichier majority correction.py

1.3 Nombre d'étapes (2 points)

Le nombre d'étapes nécessaires semble ne pas dépendre de la taille de la liste. Cela peut se comprendre de la manière suivante : dans le cas d'une liste mélangée homogénement, la probabilité, lorsqu'on prend un élément au hasard, que cet élément soit l'élément majoritaire, est par définition supérieure à 1/2. Or, dès qu'une liste, suite à un appel à reduce, est de longueur impaire, on vérifie si l'un de ses éléments est l'élément majoritaire, afin de l'éléminer et de ramener la longueur de la liste à un nombre pair. D'un autre côté, l'algorithme naïf fait uniquement cela : vérifier, pour chaque élément, s'il est majoritaire. Ainsi on comprend aisément que dans le cas de liste homogènes, l'algorithme Divide-and-Conquer ne présente pas d'avantage; il est même sensiblement moins rapide.

Cependant, considérons maintenant une liste inhomogène : par exemple A = [1, 2, 3, 4, 4, 4, 4]. L'algorithme naïf va vérifier n/2 éléments avant de trouver l'élément majoritaire. Pour chacune de ces vérifications, il va compter le nombre d'occurences de l'élément considéré dans la liste, ce qui lui demandera n opérations. La complexité de l'algorithme naïf est donc $O(n/2 \cdot n) = O(n^2)$. L'algorithme Divide-and-Conquer ne souffre pas de ce défaut puisque les appels à reduce transforment la liste. On peut, enfin, considérer le cas où il n'y a pas d'élément majoritaire : la discussion est alors la même que ci-dessus.

2 Exponentiation

2.1 Algorithme naïf

L'algorithme le plus simple est implémenté au travers de la fonction $naive_pow(x, n)$ dans le fichier exponentiation.py. Il consiste à multiplier n fois x par lui-même. Cela peut être fait par une fonction récursive ou avec une boucle : dans les deux cas, le nombre de multiplications à effectuer est évidemment de n.

2.2 Exponentiation rapide

Premièrement, notons que le nombre de bits nécessaire pour écrire n en base 2 vaut $\lfloor log_2 n \rfloor + 1$. On peut donc écrire n comme :

$$n = \sum_{i=0}^{\lfloor \log_2 n \rfloor + 1} a_i \cdot 2^i,$$

avec a_i des coefficients binaires (0 ou 1), alors on a :

$$x^n = \prod_{i=0}^{\lfloor \log_2 n \rfloor + 1} \left(x^{2^i} \right)^{a_i}.$$

La complexité en temps du calcul des x^{2^i} est de $O(log_2n)$, et la combinaison des différents facteurs de l'expression ci-dessus également, ce qui donne une complexité en demps de $O(log_2n)$.

L'algorithme divide-and-conquer découlant de cette vision des choses est le suivant :

```
fonction quick_exponant(x,n):
if n == 1:
  return x
elif n%2 == 0:
  return quick_exponant(x*x, n/2)
else:
  return x*quick_exponant(x*x, (n-1)/2)
```

Si n est pair, alors on 'descend' d'un bit, en appellant la procédure pour n/2, avec x^2 en input, tandis que si elle est impair, on se ramène au cas pair en multipliant x par le résultat de exponentiation-rapide $(x^2, (n-1)/2)$. La fonction fast_pow du fichier exponentiation.py donne une implémentation de cet algorithme.