Crack detection Using deep learning approach

By:Addisu

Amare

Zena

content

- Problem statement
- Introduction
- Methodology
- Result
- conclusion

Problem statement

- The problem is to develop an effective and efficient system for the detection of cracks in structures, such as buildings or bridges.
- This involves creating a model capable of accurately identifying and localizing cracks in images or sensor data.
- The goal is to automate the detection process, providing a reliable tool for structural health monitoring to prevent potential failures and ensure the safety and integrity of infrastructure.
- Manual crack detection is laborious, time-consuming, and prone to subjective judgments from inspectors.
- Particularly challenging for tall buildings and bridges, manual inspection becomes impractical.

Introduction

- Detecting cracks is a crucial aspect of monitoring the structural integrity of concrete structures and other surface structures
- The goal of this project is to develop a robust crack detection system using deep learning techniques.
- The system will analyse images of surfaces to identify and localize crack
- Automated methods offer a more efficient and objective solution to identify and analyze surface cracks in concrete structures.

Methodology:

1 using deep learning approach

2 using non max suppression approach and edge detector

Dataset

Data set consist of 40000 images

preprocessing

crack

Non crack

Out[14]:

Split the DataSet

	Filepath	Label
0	C:\Users\HP\Downloads\archive (4)\Positive\038	Positive
1	C:\Users\HP\Downloads\archive (4)\Positive\128	Positive
2	C:\Users\HP\Downloads\archive (4)\Positive\150	Positive
3	C:\Users\HP\Downloads\archive (4)\Negative\167	Negative
4	C:\Users\HP\Downloads\archive (4)\Positive\092	Positive
39995	C:\Users\HP\Downloads\archive (4)\Positive\078	Positive
39996	C:\Users\HP\Downloads\archive (4)\Negative\125	Negative
39997	C:\Users\HP\Downloads\archive (4)\Positive\051	Positive
39998	C:\Users\HP\Downloads\archive (4)\Positive\121	Positive
39999	C:\Users\HP\Downloads\archive (4)\Negative\130	Negative

40000 rows × 2 columns

```
h train_df, test_df = train_test_split(all_df.sample(30000, random_state=1),
                  train_size=0.7,
                   shuffle=True,
                   random_state=42)
```

```
n [48]:

    ★ train_df.shape

  Out[48]: (21000, 2)

★ test_df.shape

n [49]:
  Out[49]: (9000, 2)
```

Data augmentation and pre-processing

```
gen = ImageDataGenerator(rescale
                                         = 1./255.
                        horizontal flip = True,
                        vertical flip
                                         = True,
                                         = 0.05,
                         zoom range
                         rotation range
                                         = 25)
```

modeling

•

- 1. Input Layer:
- tf.keras.Input(shape=(120, 120, 3))
- Defines the input layer with a shape of (120, 120, 3), indicating an input image size of 120x120 pixels with 3 color channels (RGB).
- 2. Convolutional Layers:
- x = tf.keras.layers.Conv2D(filters=16, kernel_size=(3, 3),
 activation='relu')(inputs)
- \odot x = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(x)
- x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3),activation='relu')(x)
- \bullet x = tf.keras.layers.MaxPool2D(pool_size=(2, 2))(x)
- Applies two convolutional layers with 16 and 32 filters, respectively, each using a 3x3 kernel.
- Applies max pooling with a 2x2 pool size after each

Conti.....

- 3. Global Average Pooling Layer:
- x=tf.keras.layers.GlobalAveragePooling2D()(x)
- Performs global average pooling to reduce the spatial dimensions to a single value per channel, creating a flat vector.
- 4. Output Layer:
- \odot outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
- Connects the output of the global average pooling layer to a dense layer with a single neuron (for binary classification) and a sigmoid activation function.

Training model ¶

Training from scratch

```
In [53]: | inputs = tf.keras.Input(shape=(128,128,3))
            x = tf.keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu')(inputs)
             x = tf.keras.layers.MaxPool2D(pool size=(2,2))(x)
             x = tf.keras.layers.Conv2D(filters=32, kernel size=(3,3), activation='relu')(x)
             x = tf.keras.layers.MaxPool2D(pool size=(2,2))(x)
             x = tf.keras.layers.Conv2D(filters=64, kernel size=(3,3), activation='relu')(x)
             x = tf.keras.layers.MaxPool2D(pool size=(2,2))(x)
             x = tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation='relu')(x)
             x = tf.keras.layers.MaxPool2D(pool size=(2,2))(x)
             x = tf.keras.layers.GlobalAveragePooling2D()(x)
             outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
```

	Layer (type)	Output Shape	Param #
	input_4 (InputLayer)	[(None, 128, 128, 3)]	0
	conv2d_11 (Conv2D)	(None, 126, 126, 16)	448
	max_pooling2d_11 (MaxPooli ng2D)	(None, 63, 63, 16)	0
	conv2d_12 (Conv2D)	(None, 61, 61, 32)	4640
Model summary of	<pre>max_pooling2d_12 (MaxPooli ng2D)</pre>	(None, 30, 30, 32)	0
training from scratch	conv2d_13 (Conv2D)	(None, 28, 28, 64)	18496
	<pre>max_pooling2d_13 (MaxPooli ng2D)</pre>	(None, 14, 14, 64)	0
	conv2d_14 (Conv2D)	(None, 12, 12, 128)	73856
	<pre>max_pooling2d_14 (MaxPooli ng2D)</pre>	(None, 6, 6, 128)	0
	global_average_pooling2d_3 (GlobalAveragePooling2D)	(None, 128)	0

For 15000 sample

```
Epoch 1/10
280/280 [============ ] - 97s 342ms/step - loss: 0.1775 - accuracy: 0.9312 - val loss: 0.0585 - val accurac
y: 0.9790
Epoch 2/10
y: 0.9862
Epoch 3/10
y: 0.9853
Epoch 4/10
280/280 [=======================] - 33s 118ms/step - loss: 0.0539 - accuracy: 0.9839 - val_loss: 0.0475 - val accurac
y: 0.9839
Epoch 5/10
y: 0.9857
```

Cont...

For 30,000 sample

```
Epoch 1/10
cy: 0.9807
Epoch 2/10
cy: 0.9705
Epoch 3/10
y: 0.9886
Epoch 4/10
y: 0.9879
Epoch 5/10
y: 0.9862
Epoch 6/10
y: 0.9924
Epoch 7/10
y: 0.9912
Epoch 8/10
y: 0.9829
Epoch 9/10
v: 0.9900
```

Using Resnet_v2

```
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_resnet_v2/inception_resnet_v2_w eights_tf_dim_ordering_tf_kernels_notop.h5
```

Unfreezing number of layers in base model = 0

Epoch 1/3

WARNING:tensorflow:From C:\Users\HP\AppData\Roaming\Python\Python39\site-packages\keras\src\utils\tf_utils.py:492: The name tf.ragged.RaggedTensorValue is deprecated. Please use tf.compat.v1.ragged.RaggedTensorValue instead.

WARNING:tensorflow:From C:\Users\HP\AppData\Roaming\Python\Python39\site-packages\keras\src\engine\base_layer_utils.py:384:
The name tf.executing_eagerly_outside_functions is deprecated. Please use tf.compat.v1.executing_eagerly_outside_functions in nstead.

Performance metric

True Positive Rate (TPR) =
$$\frac{TP}{TP + FN}$$
False Positive Rate (FPR) =
$$\frac{FP}{FP + TN}$$
Specificity =
$$\frac{TN}{FP + TN}$$
Accuracy =
$$\frac{TP + TN}{TP + FN + TN + FP}$$
Precision =
$$\frac{TP}{TP + FP}$$

Training and Validation Accuracy Over Time

Result

For 15000 sample

For 30000 sample

Using pretrained model

Result

```
▶ def evaluate model(model, test data):
      results = model.evaluate(test data, verbose=0)
      loss = results[0]
      acc = results[1]
      print(" Test Loss: {:.5f}".format(loss))
      print("Test Accuracy: {:.2f}%".format(acc * 100)

► evaluate model(model, test data)

      Test Loss: 0.02858
  Test Accuracy: 99.10%
```

Confusion matrix

Cont.....

Classification Report:							
	precision	recall	f1-score	support			
NEGATIVE	0.98	1.00	0.99	4451			
POSITIVE	1.00	0.98	0.99	4549			
accuracy			0.99	9000			
macro avg	0.99	0.99	0.99	9000			
weighted avg	0.99	0.99	0.99	9000			

Using non max suppression and edge detector

Conclusion

- By comparing result of using pretrained model and training from scratch
- Utilizing pre-trained model is better than training from scratch in term s of accuracy.

Challenges and future work

- When I reduce the number of sample, overfitting happened
- Incorporate better accurate model to hard ware .make it more real time.
 - Applying non max suppression with deep learning

Thank you