School of Physics and Astronomy

MPhys Project Astrophysics

AGN Host Galaxy Properties

Alexander S. Wheaton February 24, 2021

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Declaration

I declare that this project and report is my own work.

Signature: Date: February 24, 2021

Supervisor: Professor A. Lawrence, FRSE, FRaS 22 Weeks

Contents

1	Introduction	2
2	The XSHOOTER Data	2
3	Blind Testing	2

1 Introduction

2 Fitting with Bagpipes

The parameter space minimally covered is:

- $\bullet\,$ functional form of the SFH
- ullet host galaxy redshift
- velocity dispersion
- dust attenuation curve

3 The XSHOOTER Data

TDE	Host Galaxy	RA	Dec	Mag	Hubble Morphology
AT2019qiz	WISEA J044637.88-101334.9	04:46:37.880	-10:13:34.90	15	0.01513
AT2019azh	KUG 0810+227	08:13:16.945	+22:38:54.03	15	0.022
AT2018hyz	WISEA J100650.83+014133.4	10:06:50.871	+01:41:34.08	17	0.04573
AT2019dsg	WISEA J205702.96+141216.2	20:57:02.974	+14:12:15.86	15	0.0512
iPTF16fnl	iPTF16fnl	00:29:57.010	+32:53:37.24	16	0.018
AT2019ahk	WISEA J070011.40-660224.7	07:00:11.546	-66:02:24.14	17	0.026211
ASASSN-15oi	ASASSN-15oi	20:39:09.18	-30:45:20.10	16	0.0484
AT2018fyk	LCRS B224721.6-450748	22:50:16.090	-44:51:53.50	17	0.06
ASASSN-14li	ASASSN-14li	12:48:15.23	+17:46:26.44	15	0.0206
ASASSN-14ae	ASASSN-14ae	11:08:40.12	+34:05:52.23	17	0.0436

4 Blind Testing

Figure 1: A priori and posterior SFH.

Figure 2: A priori and posterior SFH.

Figure 3: A priori and posterior SFH.

Figure 4: A priori and posterior SFH.

Figure 5: A priori and posterior SFH.

Figure 6: A priori and posterior SFH.

Figure 7: A priori and posterior SFH.

Figure 8: A priori and posterior SFH.

Figure 9: A priori and posterior SFH.

Figure 10: A priori and posterior SFH.