

MONASH BUSINESS SCHOOL

2017 Beijing Workshop on Forecasting

Forecast Accuracy and Evaluation

Rob J Hyndman

robjhyndman.com/beijing2017

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- 3 Forecasting residuals
- 4 Measuring forecast accuracy
- 5 Time series cross-validation
- 6 Probability scoring

The statistical forecasting perspective

The statistical forecasting perspective

Sample futures

Forecast intervals

Statistical forecasting

■ Thing to be forecast: a random variable, y_t .

Forecast distributions:

$$y_{t|t-1} = y_t | \{y_1, y_2, \dots, y_{t-1}\}$$

 $y_{T+h|T} = y_{T+h} | \{y_1, y_2, \dots, y_T\}$

- The "point forecast" is the mean (or median) of $y_{T+h|T} = y_{T+h} | \{y_1, y_2, \dots, y_T\}$
- The "forecast variance" is $Var[y_{T+h}|y_1, y_2, ..., y_T]$
- A prediction interval or "interval forecast" is a range of values of y_t with high probability.

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- 3 Forecasting residuals
- 4 Measuring forecast accuracy
- 5 Time series cross-validation
- 6 Probability scoring

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Average method

- Forecast of all future values is equal to mean of historical data $\{y_1, \dots, y_T\}$.
- Forecasts: $\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$

Naïve method

- Forecasts equal to last observed value.
- Forecasts: $\hat{y}_{T+h|T} = y_T$.
- Consequence of efficient market hypothesis.

Seasonal naïve method

- Forecasts equal to last value from same season.
- Forecasts: $\hat{y}_{T+h|T} = y_{T+h-km}$ where m = seasonal period and k = |(h-1)/m|+1.

Drift method

- Forecasts equal to last value plus average change.
- Forecasts:

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

Equivalent to extrapolating a line drawn between first and last observations.

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- **3** Forecasting residuals
- 4 Measuring forecast accuracy
- 5 Time series cross-validation
- 6 Probability scoring

Fitted values

- $\hat{y}_{t|t-1}$ is the forecast of y_t based on observations y_1, \dots, y_{t-1} .
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

Examples:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1}$ for naive method
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.
- $\hat{y}_t = y_{t-m}$ for seasonal naive method

Fitted values

- $\hat{y}_{t|t-1}$ is the forecast of y_t based on observations y_1, \dots, y_{t-1} .
- We call these "fitted values".
- Sometimes drop the subscript: $\hat{y}_t \equiv \hat{y}_{t|t-1}$.
- Often not true forecasts since parameters are estimated on all data.

Examples:

- $\hat{y}_t = \bar{y}$ for average method.
- $\hat{y}_t = y_{t-1}$ for naive method
- $\hat{y}_t = y_{t-1} + (y_T y_1)/(T 1)$ for drift method.
- $\hat{y}_t = y_{t-m}$ for seasonal naive method

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed

Residuals in forecasting: difference between observed value and its fitted value: $e_t = y_t - \hat{y}_{t|t-1}$.

Assumptions

- $\{e_t\}$ uncorrelated. If they aren't, then information left in residuals that should be used in computing forecasts.
- $\{e_t\}$ have mean zero. If they don't, then forecasts are biased.

Useful properties (for prediction intervals)

- $\{e_t\}$ have constant variance.
- $\{e_t\}$ are normally distributed.

Seasonal naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-12}$$
 $e_t = y_t - y_{t-12}$

Australian quarterly beer production

Seasonal naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-12}$$
 $e_t = y_t - y_{t-12}$

Seasonal naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-12}$$
 $e_t = y_t - y_{t-12}$

Residuals from seasonal naive method

Seasonal naïve forecast:

$$\hat{y}_{t|t-1} = y_{t-12}$$
 $e_t = y_t - y_{t-12}$

Residuals from seasonal naive method

- Minimizing the size of forecasting residuals is used for estimating model parameters (e.g., minimizing MSE or maximizing likelihood.
- In general, forecasting residuals cannot be used (directly) for estimating forecast accuracy.
- Forecast accuracy can only be measured using genuine forecasts; i.e., on different data.
- Forecasting residuals can help suggest model improvements.

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- 3 Forecasting residuals
- 4 Measuring forecast accuracy
- 5 Time series cross-validation
- 6 Probability scoring

Training and test sets

- The test set must not be used for *any* aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.
- A model which fits the data well does not necessarily forecast well.
- A perfect fit can always be obtained by using a model with enough parameters. (Compare R^2)
- Problems can be overcome by measuring true out-of-sample forecast accuracy. Training set used to estimate parameters. Forecasts are made for test set.

Training set: T observations

Test set: H observations

$$\begin{aligned} \text{MAE} &= \frac{1}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h|T}| \\ \text{MSE} &= \frac{1}{H} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2 \quad \text{RMSE} \quad = \sqrt{\frac{1}{H} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2} \\ \text{MAPE} &= \frac{100}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h|T}| / |y_{T+h}| \end{aligned}$$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_{T+h} \gg 0$ for all h, and v has a natural zero.

Training set: T observations

Test set: H observations

$$\begin{aligned} \text{MAE} &= \frac{1}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h|T}| \\ \text{MSE} &= \frac{1}{H} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2 \quad \text{RMSE} \quad = \sqrt{\frac{1}{H} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2} \\ \text{MAPE} &= \frac{100}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h|T}| / |y_{T+h}| \end{aligned}$$

- MAE, MSE, RMSE are all scale dependent.
- MAPE is scale independent but is only sensible if $y_{T+h} \gg 0$ for all h, and y has a natural zero.

Mean Absolute Scaled Error

MASE =
$$\frac{1}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h|T}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For non-seasonal time series,

$$Q = \frac{1}{T-1} \sum_{t=2}^{I} |y_t - y_{t-1}|$$

works well. Then MASE is equivalent to MAE relative to a naïve method.

Mean Absolute Scaled Error

MASE =
$$\frac{1}{H} \sum_{h=1}^{H} |y_{T+h} - \hat{y}_{T+h|T}|/Q$$

where Q is a stable measure of the scale of the time series $\{y_t\}$.

Proposed by Hyndman and Koehler (IJF, 2006).

For seasonal time series,

$$Q = \frac{1}{T - m} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

works well. Then MASE is equivalent to MAE relative to a seasonal naïve method.

Measures of forecast accuracy

	RMSE	MAE	MAPE	MASE
Mean method	38.5	34.8	8.28	2.44
Naïve method	62.7	57.4	14.18	4.01
Seasonal naïve method	14.3	13.4	3.17	0.94

Measures of forecast accuracy

Scaling can be used with any measure, and with different scaling statistics.

Mean Squared Scaled Error

MASE =
$$\frac{1}{H} \sum_{h=1}^{H} (y_{T+h} - \hat{y}_{T+h|T})^2 / Q$$

ere $Q = \frac{1}{T - m} \sum_{h=1}^{T} (y_t - y_{t-m})^2$

- Assumes $\{y_t\}$ is difference stationary.
- Minimizing MSSE leads to conditional mean forecasts.
- MSSE < 1 : out-of-sample multi-step forecasts are more accurate than in-sample one-step forecasts.

Measures of forecast accuracy

- Many suggested scale-free measures of forecast accuracy are degenerate due to infinite variance.
- The denominator must be positive with probability one.
- Distribution of most measures are highly skewed when applied to real data.

Poll: true or false?

- Good forecast methods should have normally distributed residuals.
- A model with small residuals will give good forecasts.
- The best measure of forecast accuracy is MAPE.
- If your model doesn't forecast well, you should make it more complicated.
- Always choose the model with the best forecast accuracy as measured on the test set.

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- 3 Forecasting residuals
- 4 Measuring forecast accuracy
- 5 Time series cross-validation
- 6 Probability scoring

Traditional evaluation

$$h = 1$$

$$h = 2$$

$$h = 3$$

$$h = 4$$

$$h = 5$$

$$h = 6$$

Time series cross-validation

Also known as "Evaluation on a rolling forecast origin"

Time series cross-validation

Assume *k* is the minimum number of observations for a training set.

- Select observation k + i + h for test set, and use observations at times 1, 2, ..., k + i to estimate model.
- Compute error on forecast for time k + i + h.
- Repeat for i = 0, 1, ..., T k h 1 where T is total number of observations.
- Compute accuracy measure over all errors.

Which of these models is best?

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data
- Set k = 48 as minimum training set.
- Forecast h = 12 steps ahead based on data to time k + i + h for i = 0, 2, ..., 156.
- Compare MAE values for each forecast horizon.

Which of these models is best?

- Linear model with trend and seasonal dummies applied to log data.
- ARIMA model applied to log data
- ETS model applied to original data
- Set k = 48 as minimum training set.
- Forecast h = 12 steps ahead based on data to time k + i + h for i = 0, 2, ..., 156.
- Compare MAE values for each forecast horizon.

Example: R code

```
k < -48
n \leftarrow length(a10)
mae1 <- mae2 <- mae3 <- matrix(NA.n-k-12.12)
for(i in 1:(n-k-12))
  xshort <- window(a10,end=1995+(5+i)/12)
  xnext < -window(a10, start=1995+(6+i)/12, end=1996+(5+i)/12)
  fit1 <- tslm(xshort ~ trend + season, lambda=0)
  fcast1 <- forecast(fit1,h=12)</pre>
  fit2 <- auto.arima(xshort,D=1, lambda=0)
  fcast2 <- forecast(fit2,h=12)</pre>
  fit3 <- ets(xshort)
  fcast3 <- forecast(fit3,h=12)</pre>
  mae1[i,] <- abs(fcast1[['mean']]-xnext)</pre>
  mae2[i,] <- abs(fcast2[['mean']]-xnext)</pre>
  mae3[i.] <- abs(fcast3[['mean']]-xnext)</pre>
```

Hirotugu Akaike (1927-2009)

Akaike, H. (1974), "A new look at the statistical model identification", *IEEE Transactions on Automatic Control*, **19**(6): 716–723.

$$AIC = -2\log(L) + 2k$$

where *L* is the model likelihood and *k* is the number of estimated parameters in the model.

■ If *L* is Gaussian, then AIC $\approx c + T \log MSE + 2k$ where *c* is a constant, MSE is from one-step forecasts on **training set**, and *T* is the length of the series.

- AICc a bias-corrected small-sample version.
- AIC/AICc much faster than CV

$$AIC = -2\log(L) + 2k$$

where *L* is the model likelihood and *k* is the number of estimated parameters in the model.

■ If *L* is Gaussian, then AIC $\approx c + T \log MSE + 2k$ where *c* is a constant, MSE is from one-step forecasts on **training set**, and *T* is the length of the series.

- AICc a bias-corrected small-sample version.
- AIC/AICc much faster than CV

$$AIC = -2\log(L) + 2k$$

where *L* is the model likelihood and *k* is the number of estimated parameters in the model.

■ If *L* is Gaussian, then AIC $\approx c + T \log MSE + 2k$ where *c* is a constant, MSE is from one-step forecasts on **training set**, and *T* is the length of the series.

- AICc a bias-corrected small-sample version.
- AIC/AICc much faster than CV

$$AIC = -2\log(L) + 2k$$

where *L* is the model likelihood and *k* is the number of estimated parameters in the model.

■ If *L* is Gaussian, then AIC $\approx c + T \log MSE + 2k$ where *c* is a constant, MSE is from one-step forecasts on **training set**, and *T* is the length of the series.

- AICc a bias-corrected small-sample version.
- AIC/AICc much faster than CV

Outline

- 1 The statistical forecasting perspective
- 2 Some simple forecasting methods
- 3 Forecasting residuals
- 4 Measuring forecast accuracy
- 5 Time series cross-validation
- 6 Probability scoring

Probablistic forecasting

Google Stock Price (800 trading days from 25 February 2013)

Probabilistic forecasting

How to evaluate a forecast probability distribution?

- Forecast intervals: percentage of observations covered compared to nominal percentage.
- Density forecasting
- Quantile forecasting
- Distribution forecasting

Probability Integral Transform

Let F = cdf of Y and Z = F(Y). If F is continuous, then Z is standard uniform.

Probability Integral Transform

Calibration

 $Y_{T+h|T}$ has cdf $F_{T+h|T}$. $\hat{F}_{T+h|T}$ is our forecast cdf.

Calibration

- (a) \hat{F} is marginally calibrated if $E[\hat{F}(y)] = P(Y \leq y) \ \forall y \in \mathbb{R}$.
- **(b)** \hat{F} is probabilistically calibrated if $Z = \hat{F}(Y)$ has a standard uniform distribution.
- We could plot a histogram of $Z = \hat{F}(Y)$ and check that it looks uniform.
- → This is a more sophisticated version of testing if prediction intervals have the correct coverage.

Sharpness

 $Y_{T+h|T}$ has cdf $F_{T+h|T}$. $\hat{F}_{T+h|T}$ is our forecast cdf.

Sharpness

- → A "sharp" forecast distribution has narrow prediction intervals
 - A good probabilistic forecast is both calibrated and sharp.
 - Scoring rules combine calibration and sharpness in a single measure.

 $Y_{T+h|T}$ has cdf $F_{T+h|T}$. $\hat{F}_{T+h|T}$ is our forecast cdf. A scoring rule assigns numerical score $S(\hat{F}_{T+h|T}, y_{T+h})$.

Dawid-Sebastiani score:

$$DSS(\hat{F}, y) = \frac{(y - \mu_{\hat{F}})^2}{\sigma_{\hat{F}}^2} + 2\log\sigma_{\hat{F}}$$

Generalization of MSE assuming normality.

A "proper" scoring rule has the property:

$$\mathsf{E}_{\mathsf{F}}[S(\mathsf{F},\mathsf{Y})] < \mathsf{E}_{\mathsf{F}}[S(\hat{\mathsf{F}},\mathsf{Y})]$$

 $Y_{T+h|T}$ has cdf $F_{T+h|T}$. $\hat{F}_{T+h|T}$ is our forecast cdf. A scoring rule assigns numerical score $S(\hat{F}_{T+h|T}, y_{T+h})$.

Dawid-Sebastiani score:

DSS(
$$\hat{F}$$
, y) = $\frac{(y - \mu_{\hat{F}})^2}{\sigma_{\hat{F}}^2} + 2 \log \sigma_{\hat{F}}$

Generalization of MSE assuming normality.

A "proper" scoring rule has the property:

$$\mathsf{E}_{\mathsf{F}}[\mathsf{S}(\mathsf{F},\mathsf{Y})] < \mathsf{E}_{\mathsf{F}}[\mathsf{S}(\hat{\mathsf{F}},\mathsf{Y})]$$

 $Y_{T+h|T}$ has cdf $F_{T+h|T}$. $\hat{F}_{T+h|T}$ is our forecast cdf. A scoring rule assigns numerical score $S(\hat{F}_{T+h|T}, y_{T+h})$.

Dawid-Sebastiani score:

DSS(
$$\hat{F}$$
, y) = $\frac{(y - \mu_{\hat{F}})^2}{\sigma_{\hat{F}}^2} + 2 \log \sigma_{\hat{F}}$

Generalization of MSE assuming normality.

A "proper" scoring rule has the property:

$$E_F[S(F, Y)] < E_F[S(\hat{F}, Y)]$$

 $Y_{T+h|T}$ has cdf $F_{T+h|T}$. $\hat{F}_{T+h|T}$ is our forecast cdf. A scoring rule assigns numerical score $S(\hat{F}_{T+h|T}, y_{T+h})$.

Continuous Ranked Probability Score:

CRPS(
$$\hat{F}, y$$
) = $\int [\hat{F}(x) - 1_{\{y \le x\}}]^2 dx = E_{\hat{F}}|Y - y| - \frac{1}{2}E_{\hat{F}}|Y - Y'|$ where Y and Y' have cdf \hat{F} . Generalization of MAE.

Continuous Ranked Probability Score:

Let $\hat{Q}_{T+h|T} = \hat{F}_{T+h|T}^{-1}$ be the forecast quantile function

CRPS(
$$\hat{Q}, y$$
) = 2 $\int_{0}^{1} [\hat{Q}(p) - y] [1_{\{y < \hat{Q}(p)\}} - p] dp$

 $Y_{T+h|T}$ has cdf $F_{T+h|T}$. $\hat{F}_{T+h|T}$ is our forecast cdf. A scoring rule assigns numerical score $S(\hat{F}_{T+h|T}, y_{T+h})$.

Energy Score

$$ES(\hat{F}, y) = E_{\hat{F}}|Y - y|^{\alpha} - \frac{1}{2}E_{\hat{F}}|Y - Y'|^{\alpha}$$

where Y and Y' have cdf \hat{F} and $\alpha \in (0, 2]$.

Log Score

$$\log S(\hat{F}, y) = -\log \hat{f}(y)$$

where $\hat{f} = d\hat{F}/dy$ is density corresponding to \hat{F} .