1. R.D. Budd (1989, *American Journal of Drug and Alcohol Abuse* 15: 375-382) reported cocaine levels (microgram/ml) in 70 victims of violent death, in three categories.

	Suicide	Accident	Homicide
n	8	12	50
mean	1.094	1.511	1.387
stdev	1.002	2.175	1.319
alpha	0.05	0.05	0.05
lower limit	0.256	0.129	1.013
upper limit	1.932	2.892	1.762

If the alpha for homicides decreases does the CI increase or decrease? <u>increase</u> [1]

2. Mendel (1865) as reprinted in *Experiments in Plant Hybridization*, Harvard University Press (1933) reported the frequency of yellow and green pea seeds in a breeding experiment.

	Yellow	Green
Observed in sample	25	11
Expected in population	27	9

If the probability of a seed being yellow is p, then the odds in favour of a yellow seed are defined as Odds = p/q where q = 1! p. Read the expression $(Odds = \underline{p/q} : 1)$ as "odds are ____ to 1."

The odds ratio, for a sample relative to a population, is defined as the odds for the sample, divided by the odds for the population.

What is the probability that a seed is yellow, in the sample of 36 seeds? $p = \underline{0.694}$ [1]

What were the odds of obtain a yellow seed in the sample? Odds = 25/11=2.27:1 [1]

What is the expected (population) probability of a yellow seed ? $p = \underline{27/36=0.75}$ [1]

What are the expected odds of obtaining yellow seeds? Odds = $\frac{27}{9} = 3:1$ [1]

What is the odds ratio, for the sample relative to the population? $OR = \frac{2.27}{3} = 0.76$ [1]

3a. Complete the following computations.	[2]
$(10 \text{ km})^{1.2} = 10^{1.2} \text{ km}^{1.2} = 15.85 \text{ km}^{1.2}$	
$R = (1000 \text{ kg})/\text{kg} \log_{10}(R) = \frac{\log_{10} 10^3 = 3}{2}$	
3b. Convert 15 kilometres travelled in 24 hours to speed in metre/second $\frac{15km}{24hr} \frac{1000m}{1km} \frac{1hr}{60 \min} \frac{1\min}{60 \sec} = 0.1736m / \sec$	[1]
4. Hypothesis testing is carried out with frequency distributions, either observed or theoretical.	
What is the principal advantage of using an observed distribution ?	[1]
No assumptions	
What is the principal disadvantage (or cost) of using an observed distribution?	[1]
It takes far longer to obtain a p-value from an observed distribution than to obtain a p-value from a theoretical distribution	
What is the principal advantage of using a theoretical distribution ?	[1]
It takes little time to compute a p-value	
5. In the blank spaces below list the 5 parts of a well defined biological quantity then give a five-part definition of human eyeblink rate. The numerical values you list must be biologically reasonable. If you don't have a watch, you can count seconds by repeating to yourself 1 monkey, 2 monkey, 3 monkey	[5]
Name Symbol Procedural Statement Values Units Eyeblink rate 1/min to 60/min	

6. Type I error is a potential problem when rejecting the null (chance) hypothesis, while Type II error is a potential problem when accepting the null hypothesis. Circle either I or II to indicate the <u>potential</u> problem with each of the following decisions. [4]
A epidemiologist concludes that mortality risk depends on exposure to strong magnetic fields in the workplace, hence safer equipment must be bought. II
If this type of error is made, who bears the cost of the error? (Circle one) workers the employer
An epidemiologist concludes that mortality risk does not depend on exposure to strong magnetic fields in the workplace. I
If this type of error is made, who bears the cost of the error? (Circle one) the workers the employer
7. The larger the mammalian heart, the greater the tension (T) exerted by some pressure p on the myocardium having radius r and thickness h. $T=p\ @r$
If tension is held constant, and radius is reduced to one-third of its original value, by what factor do we expect pressure p to change?
If pressure has units of g^1 cm ¹ sec ^{! 2} cm ^{! 2} and r has unit of cm. What units does tension T have ? g sec ^{! 2} [1]
<u>M</u> <u>L</u> <u>T</u>
1 0 Dimensions of mass concentration (kg cm ^{! 3})
10! 2 Dimensions of tension T [1]
1 l 2 Dimensions of pressure p [1]
O 1 0 Dimensions of radius r [1]

