Using Tensor Diagrams to Represent and Solve Geometric Problems

Introduction

A Geometry Problem Cubic Curves

$$f(X,Y) = AX^{3} + 3BX^{2}Y + 3CXY^{2} + DY^{3}$$
$$+3EX^{2} + 6FXY + 3GY^{2}$$
$$+3HX + 3JY$$
$$+K = 0$$

Possible Cubic Curve

Shapes

$$f(X,Y) = AX^3 + 3BX^2Y + 3CXY^2 + DY^3$$

 $+3EX^2 + 6FXY + 3GY^2$
 $+3HX + 3JY$
 $+K = 0$

$$\mathbf{D}(A,B,C,...,J,K)$$

Quadratic Curves

$$f(X,Y) = AX^{2} + 2BXY + CY^{2}$$
$$+2DX + 2EY$$
$$+F = 0$$

Discriminant of Quadratic

$$\mathbf{D}(A,B,C,D,E) = 0$$

$$ACF + 2BED - D^{2}C - E^{2}A - B^{2}F = 0$$

D has 5 terms

$$\stackrel{\mbox{\'e}A}{\mbox{\'e}B} \quad B \quad D ù \\
 \stackrel{\mbox{\'e}B}{\mbox{\'e}B} \quad C \quad E^{\acute{\mbox{\'u}}}_{\acute{\mbox{\'u}}} = 0 \\
 \stackrel{\mbox{\'e}D}{\mbox{\'e}D} \quad E \quad F \acute{\mbox{\'e}}$$

Discriminant of Cubic

 $\mathbf{D}(A,B,C,D,E,F,G,H,J,K)=0$

G. Salmon (1879):

 ${f D}$ is degree 12 in A...K

D has over 10,000 terms

Discriminant of Cubic

$$\mathbf{D} = 64S^3 + T^2$$

S: degree 4 in

A...K

has 25 terms $s = -\frac{1}{24}$

T: degree 6 in A...

K

Discriminant of Quadratic

$$\mathbf{D}(A,B,C,D,E)=0$$

$$ACF + 2BED - D^2C - E^2A - B^2F = 0$$

$$\det_{\hat{\mathbf{e}}}^{\hat{\mathbf{e}}A} \begin{array}{ccc} B & D \mathbf{\hat{u}} \\ E & C & E \mathbf{\hat{u}} = 0 \\ E & E & E \mathbf{\hat{u}} \end{array}$$

Tensor Diagrams

- Express complicated polynomials visually
- Aid in manipulation of polynomials
- Derive existing results easily
- Derive new results (?)

Homogeneous Geometry

$$P = \begin{bmatrix} X & Y \end{bmatrix}$$

$$P = \begin{bmatrix} x & y & w \end{bmatrix}$$

$$aP = \begin{bmatrix} ax & ay & aw \end{bmatrix}$$

The Homogeneous Universes

$$f(X) = AX^{2} + BX + C$$

$$f(X, w) = Ax^{2} + Bxw + Cw^{2}$$

$$f(X,Y) = DX^{2} + EY + F$$

$$f(X, y, w) = Dx^{2} + Eyw + Fw^{2}$$

$$f(X,Y,Z) = GX^2 + HY + JZ$$
 3D (Surfaces)
$$f(x,y,z,w) = Gx^2 + Hyw + Jzw$$

The Homogeneous Universes

	Euclidea n	Projective
Polynomi als	1D: [X]	1DH: [x w]
Curves	2D: [X Y]	2DH: [x y w]
Surfaces	3D: [X Y Z]	3DH: [x y z w]

The Matrix of Knowledge

	1DH	2DH	3DH
Linear			
Quadratic			
Pairs of quadratics			
Cubic			
Quadratic and Cubic			
Pair of Cubics			
Quartic			

Tensor Diagrams

- A Work in Progress
 - Some simple results not complete
 - Lot of stuff is still rough around the edges
 - Tutorial notes are obsolete
- Want to show what I've figured out so far
- Enlist others in finding more results

Basic Homogeneous Geometry The Problems

2DH Points and Lines

$$\mathbf{P} = [x \ y \ w]$$

2DH Point on a Line

$$ax +by +cw = 0$$

$$[x \quad y \quad w] \hat{e}^{\dot{\alpha}\dot{u}}_{\dot{e}\dot{c}\dot{\eta}} = 0$$

$$\hat{e}^{\dot{c}\dot{\eta}}_{\dot{e}\dot{c}\dot{\eta}} = 0$$

$$\mathbf{P}\mathbf{X} = 0$$

2DH Two Points Make A Line

$$\mathbf{P}_1 \cdot \mathbf{P}_2 = \mathbf{L}$$

$$\begin{bmatrix} x_1 & y_1 & z_1 \end{bmatrix} = \hat{e}a\dot{u}$$

$$\begin{bmatrix} x_2 & y_2 & z_2 \end{bmatrix} = \hat{e}b\dot{u}$$

$$\hat{e}c\dot{u}$$

$$a = \det \stackrel{\text{\'e}y_1}{\stackrel{\text{\'e}}{\text{e}y_2}} \quad \stackrel{\text{\it W_1 \'u}}{\stackrel{\text{\it W_2 \'u}}{\text{\'u}}}$$

$$b = \det \hat{e}_{w_2}^{\acute{e}w_1} \quad \begin{array}{c} x_1 \mathring{\mathbf{u}} \\ x_2 \mathring{\mathbf{u}} \end{array} \quad c = \det \hat{e}_{x_2}^{\acute{e}x_1} \quad \begin{array}{c} y_1 \mathring{\mathbf{u}} \\ \mathring{e}_{x_2} \end{array}$$

2DH Three Collinear Points

$$\mathbf{P}_{1} \cdot \mathbf{P}_{2} \times \mathbf{P}_{3} = 0$$

2DH Two Lines Make A Point

$$\mathbf{L}_1 \cdot \mathbf{L}_2 = \mathbf{P}$$

$$x = \det \hat{e} \begin{pmatrix} b_1 & b_2 \dot{\mathbf{u}} \\ \hat{e} & c_2 \dot{\mathbf{u}} \end{pmatrix} \qquad y = \det \hat{e} \begin{pmatrix} c_1 & c_2 \dot{\mathbf{u}} \\ \hat{e} & a_2 \dot{\mathbf{u}} \end{pmatrix}$$

$$z = \det \stackrel{\acute{e}a_1}{\stackrel{e}{e}b_1} \quad \begin{array}{cc} a_2 \mathring{\mathbf{u}} \\ b_2 \mathring{\mathbf{u}} \end{array}$$

2DH Three CoPointar Lines

$$\mathbf{L}_1 \cdot \mathbf{L}_2 \times \mathbf{L}_3 = 0$$

2DH Transforming Points

$$PT = \hat{P}$$

$$[x \quad y \quad \overset{\ \, \acute{e}T_{11}}{\mathring{e}T_{21}} \quad T_{12} \quad T_{13} \mathring{u} \\ \mathring{e}T_{21} \quad T_{22} \quad T_{23} \mathring{u} = [\hat{x} \quad \hat{y} \quad \hat{w}] \\ \mathring{e}T_{31} \quad T_{32} \quad T_{32} \mathring{u}$$

2DH Transforming Lines

$$0 = \hat{\mathbf{J}} \mathbf{K} \hat{\mathbf{Q}} \quad \hat{\mathbf{U}} \quad 0 = \mathbf{J} \mathbf{K} \mathbf{Q}$$

$$\mathbf{P} \mathbf{X} = \mathbf{P} \left(\mathbf{T} \mathbf{T}^{-1} \right) \mathbf{L}$$
$$= \left(\mathbf{P} \mathbf{T} \right) \left(\mathbf{T}^{-1} \mathbf{L} \right)$$
$$= \hat{\mathbf{P}} \left(\mathbf{T}^{-1} \mathbf{L} \right)$$

$$\mathbf{T}^{-1}\mathbf{L} = \hat{\mathbf{L}}$$

2DH Matrix Adjoint

$$\mathbf{T} = \stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}}{\stackrel$$

$$\mathbf{TT}^* = (\det \mathbf{T}) \stackrel{\text{\'e}}{\hat{\mathbf{e}}} 0 \quad 0 \stackrel{\text{\'u}}{\mathbf{0}} \qquad \mathbf{T}^* = (\det \mathbf{T}) \mathbf{T}^{-1}$$

$$\stackrel{\text{\'e}}{\hat{\mathbf{e}}} 0 \quad 0 \quad 1 \stackrel{\text{\'u}}{\mathbf{0}} \qquad \mathbf{T}^* = (\det \mathbf{T}) \mathbf{T}^{-1}$$

2DH Transforming Points and Lines

$$\mathbf{PT} = \hat{\mathbf{P}}$$

$$[x \quad y \quad w] \stackrel{\text{\'e}T_{11}}{\hat{\text{e}}} \quad T_{12} \quad T_{13} \grave{\text{u}} \\ \stackrel{\text{\'e}T_{21}}{\hat{\text{e}}} \quad T_{22} \quad T_{23} \stackrel{\text{\'u}}{\text{u}} = [\hat{x} \quad \hat{y} \quad \hat{w}] \\ \stackrel{\text{\'e}T_{31}}{\hat{\text{e}}} \quad T_{32} \quad T_{33} \stackrel{\text{\'e}}{\text{u}}$$

$$T^*L = \hat{L}$$

2DH Point on Quadratic Curve

$$Ax^{2} + 2Bxy + 2Cxw$$

$$+Dy^{2} + 2Eyw$$

$$+Fw^{2} = 0$$

$$[x y w] \stackrel{\text{\'e}A}{\stackrel{\text{\'e}B}{\stackrel{\text{\'e}B}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}}\stackrel{\text{\'e}C}{\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}}\stackrel{\text{\'e}C}{\stackrel{\text{\'e}C}}}\stackrel{\text{\'e}C}{\stackrel{\text{\'e}C}}}\stackrel{\text{\'e}C}}{\stackrel{\text{\'e}C}}}\stackrel{\text{\'e}C}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C}}\stackrel{\text{\'e}C$$

$$\mathbf{P} \mathbf{X} \mathbf{P}^T = 0$$

2DH Transforming a Quadratic = 0 $\hat{\mathbf{P}}\hat{\mathbf{Q}}\hat{\mathbf{P}}^T = 0$

$$\mathbf{PQP}^{T} = d^{2} \mathbf{P} \left(\mathbf{TT}^{*} \right) \mathbf{Q} \left(\mathbf{TT}^{*} \right)^{T} \mathbf{P}^{T}$$

$$= d^{2} \left(\mathbf{PT} \right) \left(\mathbf{T}^{*} \mathbf{QT}^{*T} \right) \left(\mathbf{PT} \right)^{T}$$

$$= d^{2} \hat{\mathbf{P}} \left(\mathbf{T}^{*} \mathbf{QT}^{*T} \right) \hat{\mathbf{P}}^{T}$$

$$\mathbf{T}^*\mathbf{Q}\mathbf{T}^{*T} = \hat{\mathbf{Q}}$$

2DH Tangent at a Point

$$0 = \mathbf{P}\mathbf{Q}\mathbf{P}^{T}$$

$$= \mathbf{P} \mathbf{A}\mathbf{L}$$

2DH Tangent at a Point

$$0 = \mathbf{P}\mathbf{Q}\mathbf{P}^{T}$$

$$= \mathbf{P} \mathbf{A}\mathbf{L}$$

2DH Line Tangent to Quadric

$$0 = \mathbf{L}^T \mathbf{Q}^* \mathbf{L}$$
$$= \left(\mathbf{L}^T \mathbf{Q}^* \right) \mathbf{L}$$

2DH Line Tangent to Quadric

$$0 = \mathbf{L}^T \mathbf{Q}^* \mathbf{L}$$
$$= \left(\mathbf{L}^T \mathbf{Q}^* \right) \mathbf{L}$$

2DH Point on Cubic Curve

$$Ax^{2} +3Bx^{2}y +3Cxy^{2} +Dy^{3}$$

$$+3Ex^{2}w+6Fxyw+3Gyw^{2}$$

$$+2Hxw^{2} +3Jyw^{2}$$

$$+Kw^{2} = 0$$

2DH Cubic Curve

$$Ax^{2} +3Bx^{2}y +3Cxy^{2} +Dy^{3}$$
$$+3Ex^{2}w+6Fxyw+3Gyw^{2}$$
$$+2Hxw^{2} +3Jyw^{2}$$
$$+Kw^{2} = 0$$

$$\left\{\mathbf{PCP}^{T}\right\}\mathbf{P}^{T}=0$$

2DH Curves of Various Orders

Now 3D (Homogeneous)

3DH Points and Planes

$$P = \begin{bmatrix} x & y & z & w \end{bmatrix}$$

3DH Point on Plane

$$[x \quad y \quad z \quad w] \stackrel{\text{\'e}}{\hat{e}_B} \stackrel{\text{\'u}}{\hat{u}} = 0$$

$$\stackrel{\text{\'e}}{\hat{e}_C} \stackrel{\text{\'u}}{\hat{u}} = 0$$

$$\stackrel{\text{\'e}}{\hat{e}_D} \stackrel{\text{\'u}}{\hat{u}} = 0$$

$$\mathbf{P} \times \mathbf{E} = 0$$

3DH Transformations

$$\mathbf{PT} = \mathbf{P}^{\ddagger}$$

$$\mathbf{T}^*\mathbf{E} = \mathbf{E}^{\ddagger}$$

3DH Plane thru 3 Points

$$cross(\mathbf{P}_1,\mathbf{P}_2,\mathbf{P}_3) = \mathbf{E}$$

$$cross \stackrel{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}}{\overset{\boldsymbol{\xi}}}}\overset{\boldsymbol{\xi}}}{\overset{\boldsymbol{\xi}}}}}\overset{\boldsymbol{\xi$$

$$c = \det_{\hat{\mathbb{C}}}^{\acute{\mathbb{C}} y_{1}} \quad y_{1} \quad w_{1} \dot{u} \\ e \dot{\mathbb{C}} y_{2} \quad y_{2} \quad w_{2} \dot{u} \\ e \dot{\mathbb{C}} y_{3} \quad y_{3} \quad w_{3} \dot{\mathbb{C}}$$

3DH Three Collinear points

$$cross_{\mathcal{C}}^{\mathcal{C}}[x_{2} \quad y_{1} \quad z_{1} \quad w_{1}], \ddot{o} \quad \stackrel{\text{\'e}0\dot{u}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}0\dot{u}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}0\dot{u}}}}{\stackrel{\text{\'e}$$

3DH Rewrite Equation

$$cross_{C}^{C}[x_{2} \quad y_{1} \quad z_{1} \quad w_{1}], \ddot{o} \quad \stackrel{\text{\'e}0\dot{u}}{\hat{e}0\dot{u}}$$

$$cross_{C}^{C}[x_{2} \quad y_{2} \quad z_{2} \quad w_{2}], \stackrel{\text{\'e}0\dot{u}}{\dot{e}0\dot{u}}$$

$$\stackrel{\text{\'e}0\dot{u}}{\hat{e}0\dot{u}}$$

$$\stackrel{\text{\'e}0\dot{u}}{\hat{e}0\dot{u}}$$

$$0 = y_3 \det \stackrel{\text{\'e}z_1}{\stackrel{\text{\'e}}{\text{\'e}}} \quad \begin{array}{ccc} w_1 \stackrel{\text{\'e}}{\text{\'u}} & z_3 \det \stackrel{\text{\'e}y_1}{\stackrel{\text{\'e}}{\text{\'e}}} & w_1 \stackrel{\text{\'u}}{\text{\'u}} + w_3 \det \stackrel{\text{\'e}y_1}{\stackrel{\text{\'e}}{\text{\'e}}} & \stackrel{\text{\'u}}{\text{\'u}} \\ \stackrel{\text{\'e}y_2}{\stackrel{\text{\'e}z_2}{\text{\'e}}} & w_2 \stackrel{\text{\'u}}{\text{\'u}} & w_2 \stackrel{\text{\'u}}{\text{\'u}} + w_3 \det \stackrel{\text{\'e}y_1}{\stackrel{\text{\'e}z_2}{\text{\'e}}} & \stackrel{\text{\'u}}{\text{\'e}} \\ \stackrel{\text{\'e}z_2}{\text{\'e}} & w_2 \stackrel{\text{\'u}}{\text{\'u}} & \stackrel{\text{\'e}z_2}{\text{\'e}} & \stackrel{\text{\'e}z_2}{\text{\'e}} & \stackrel{\text{\'e}z_2}{\text{\'e}} \\ \end{array}$$

$$0 = \stackrel{\acute{e}}{\stackrel{}{=}} 0 \quad \det \stackrel{\acute{e}}{\stackrel{}{=}} \stackrel{W_1}{\stackrel{}{=}} \stackrel{U}{\stackrel{}{=}} \stackrel{V_1}{\stackrel{}{=}} \stackrel{W_1}{\stackrel{}{=}} \stackrel{U}{\stackrel{}{=}} \stackrel{U}{\stackrel{}}{=} \stackrel{U}{\stackrel{}} \stackrel{U}{\stackrel{}}{=} \stackrel{U}{\stackrel{}}{=} \stackrel{U}{\stackrel{}}{=} \stackrel{U}{\stackrel{}}{=} \stackrel{U}{\stackrel{}}{$$

3DH Separate P₁P₂ from P₃

$$p = \det \stackrel{\text{\'e}z_1}{\hat{e}} \quad \underset{w_2}{w_1} \stackrel{\text{\'u}}{\dot{u}} \qquad q = \det \stackrel{\text{\'e}y_1}{\hat{e}} \quad \underset{w_2}{w_1} \stackrel{\text{\'u}}{\dot{u}} \qquad r = \det \stackrel{\text{\'e}y_1}{\hat{e}} \quad \underset{z_2}{z_1} \stackrel{\text{\'u}}{\dot{u}}$$

$$s = \det \stackrel{\text{\'e}z_1}{\hat{e}} \quad \underset{w_2}{w_1} \stackrel{\text{\'u}}{\dot{u}} \qquad t = \det \stackrel{\text{\'e}x_1}{\hat{e}} \quad \underset{z_2}{z_1} \stackrel{\text{\'u}}{\dot{u}} \qquad u = \det \stackrel{\text{\'e}x_1}{\hat{e}} \quad \underset{x_2}{y_1} \stackrel{\text{\'u}}{\dot{u}} \qquad u = \det \stackrel{\text{\'e}x_1}{\hat{e}} \quad \underset{x_2}{y_1} \stackrel{\text{\'u}}{\dot{u}} \qquad u = \det \stackrel{\text{\'e}x_1}{\hat{e}} \quad \underset{x_2}{y_1} \stackrel{\text{\'u}}{\dot{u}} \qquad u = \det \stackrel{\text{\'e}x_1}{\hat{e}} \quad \underset{x_2}{y_2} \stackrel{\text{\'u}}{\dot{u}} \qquad u = \det \stackrel{\text{\'e}x_2}{\hat{e}} \quad \underset{x_2}{\dot{u}} \qquad u = \det \stackrel{\text{\'e}x_2}{\hat{e}} \qquad u = \det \stackrel{\text{\'e}x_2}{\hat{e}} \qquad u = \det \stackrel{\text{\'e}x_2}{\hat{e}} \qquad$$

$$pu-qt+sr=0$$

3DH Point on Line

$$\mathbf{LP}^T = \mathbf{0}$$

3DH Point not on Line = Plane

$$\mathbf{LP}^{T} = \mathbf{E}$$

3DH Transforming a Line

$$\mathbf{LP}^T = \mathbf{E} \hat{\mathbf{U}} \mathbf{LP}^T = \mathbf{E}$$

$$\mathbf{T}^*\mathbf{L}(\mathbf{T}^*)^T = \mathbf{L}\mathbf{C}$$

3DH Point on 3 Planes

$$cross(\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3) = \mathbf{P}$$

$$x = \det_{\hat{\mathbb{C}}}^{\hat{\mathbb{C}}_1} \quad b_2 \quad b_3 \dot{\mathbf{u}} \\ x = \det_{\hat{\mathbb{C}}}^{\hat{\mathbb{C}}_2} \quad c_2 \quad c_3 \dot{\mathbf{u}}' \\ \hat{\mathbb{C}}_3 \quad d_2 \quad d_3 \dot{\mathbb{U}} \\ \hat{\mathbb{C}}_4 \quad d_3 \dot{\mathbb{U}} \\ \hat{\mathbb{$$

3DH Three Collinear Planes

$$\begin{array}{c} \stackrel{\textstyle \mbox{$\not e$}}{\text{$\not e$}}_1 \mathring{\mbox{u}} \stackrel{\textstyle \mbox{$\not e$}}{\text{$\not e$}}_2 \mathring{\mbox{u}} \stackrel{\textstyle \mbox{$\not e$}}{\text{$\not e$}}_3 \mathring{\mbox{$\not u$}} \stackrel{\textstyle \mbox{$\not e$}}{\text{$\not e$}}_3 \mathring{\mbox{$\not e$}}_3 \mathring{\mbox{$\not$$

3DH Separate E₁E₂ from E₃

$$[a_3 \quad b_3 \quad c_3 \quad d_3] \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{=}} e \quad 0 \quad h \quad -j \stackrel{\text{\'u}}{\stackrel{\text{\'u}}{=}} = [0 \quad 0 \quad 0 \quad 0]$$

$$\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{=}} g \quad j \quad -k \quad 0 \stackrel{\text{\'u}}{\stackrel{\text{\'u}}{=}} = [0 \quad 0 \quad 0 \quad 0]$$

$$e = \det \stackrel{\text{\'e}C_1}{\hat{\mathbf{e}}} \quad \begin{array}{ccc} c_2 \, \dot{\mathbf{u}} \\ \dot{\mathbf{e}} \\ d_1 & d_2 \, \dot{\mathbf{u}} \end{array} \quad f = \det \stackrel{\text{\'e}b_1}{\hat{\mathbf{e}}} \quad \begin{array}{ccc} b_2 \, \dot{\mathbf{u}} \\ \dot{\mathbf{e}} \\ d_1 & d_2 \, \dot{\mathbf{u}} \end{array} \quad g = \det \stackrel{\text{\'e}b_1}{\hat{\mathbf{e}}} \quad \begin{array}{ccc} b_2 \, \dot{\mathbf{u}} \\ \dot{\mathbf{e}} \\ c_1 & c_2 \, \dot{\mathbf{u}} \end{array}$$

$$h = \det \stackrel{\acute{e}a_1}{\stackrel{e}{e}d_1} \quad \stackrel{a_2}{\stackrel{\circ}{u}} \qquad j = \det \stackrel{\acute{e}a_1}{\stackrel{e}{e}} \quad \stackrel{a_2}{\stackrel{\circ}{u}} \qquad k = \det \stackrel{\acute{e}a_1}{\stackrel{\circ}{e}} \qquad k = \det \stackrel{\acute{e}a_1$$

3DH Line embedded in Plane

 $\mathbf{E}^T\mathbf{K} = \mathbf{0}$

3DH Line Not in Plane = Point

$$\begin{bmatrix} a & b & c & d \end{bmatrix} \stackrel{\acute{e}}{\stackrel{\circ}{e}} \stackrel{\circ}{-e} \stackrel{\circ}{0} \stackrel{\circ}{-h} \stackrel{\circ}{0} \stackrel{\circ}{0} \stackrel{\circ}{-h} \stackrel{\circ}{0} \stackrel{\circ}{0} \stackrel{\circ}{u} = \begin{bmatrix} x & y & z & w \end{bmatrix}$$

 $\mathbf{E}^T\mathbf{K} = \mathbf{P}$

3DH Two Forms of Line

$$\mathbf{LP}^{T} = \mathbf{E}$$

$$\mathbf{E}^T\mathbf{K} = \mathbf{P}$$

3DH Converting Between Two Forms of Line

$$\mathbf{L} = \begin{pmatrix} \acute{\mathbf{e}} & 0 & p & -q & r \grave{\mathbf{u}} \\ \acute{\mathbf{e}} & p & 0 & s & -t \acute{\mathbf{u}} \\ \acute{\mathbf{e}} & q & -s & 0 & u \acute{\mathbf{u}} \\ \acute{\mathbf{e}} & -r & t & -u & 0 \acute{\mathbf{u}} \end{pmatrix}$$

$$e = -u$$
, $f = t$, $g = -s$
 $h = -r$, $j = q$, $k = -p$

Two Problems

Rows vs. Columns

More than Two Indices

A First Look at Tensor Diagrams The Solution

Three Kinds of Matrix

$$[point] \mathbf{XQ} = [line]^T$$

$$[line]^T \mathbf{Q}^* = [point]$$

Old Index Types

$$\mathbf{P} = \begin{bmatrix} P_1 & P_2 & P_3 \end{bmatrix}$$

$$\mathbf{L} = \hat{\mathbf{e}} L_1 \hat{\mathbf{u}} \qquad \text{row}$$

$$\mathbf{L} = \hat{\mathbf{e}} L_2 \hat{\mathbf{u}} \qquad \hat{\mathbf{e}} L_3 \hat{\mathbf{u}} \qquad \text{column}$$

New Index Types

Three Kinds of Matrix

The Multiplication Machine

$$\begin{aligned} \mathbf{P} \mathbf{M} &= [P_1 \quad P_2 \quad P_1] \hat{\mathbf{e}} L_1 \hat{\mathbf{u}} \\ \hat{\mathbf{e}} L_2 \hat{\mathbf{u}} \\ \hat{\mathbf{e}} L_3 \hat{\mathbf{u}} \end{aligned}$$

$$= P^1 L_1 + P^2 L_2 + P^3 L_3$$

$$= \mathbf{a}_i \quad P^i L_i$$

$$= P^3 E_a$$
Einstein Index
Notation

The Tensor Diagram of Dot Product

 P^aL_a

Three Kinds of Matrix

$$P^{j}T_{j}^{i} = \hat{P}^{i} \qquad \boxed{\mathbf{P}} \xrightarrow{j} = \boxed{\hat{\mathbf{P}}} \xrightarrow{i}$$

$$P^{i}Q_{ij} = L_{j} \qquad \boxed{\mathbf{P}} \xrightarrow{i} \boxed{\mathbf{Q}} \xleftarrow{j} = \boxed{\mathbf{L}} \xleftarrow{j}$$

$$L_{i} \left(Q^{*}\right)^{ij} = P^{j} \qquad \boxed{\mathbf{L}} \xrightarrow{i} \boxed{\mathbf{Q}^{*}} \xrightarrow{j} = \boxed{\mathbf{P}} \xrightarrow{j}$$

General Tensor Contraction

$$F_{ij}^k H_{km}^{lu} R^j S_u = W_{im}^l$$

Rearranging Nodes Doesn't Change Value

Sum of Terms

$$P = RT + S$$

Outer Product

$$\mathbf{L} \mathbf{P} = \mathbf{T}$$

$$\rightarrow (L) (P) \rightarrow = \rightarrow (T) \rightarrow$$

Scalar Product

$$P = aR + bS$$

$$|P\rangle \Rightarrow = \alpha |R\rangle \Rightarrow + \beta |S\rangle$$

$$= \alpha \qquad \qquad + \beta \qquad \qquad + \beta \qquad \qquad \rightarrow$$

Adjoint (of mixed tensor)

$$\mathbf{TT}^* = (\det \mathbf{T}) \mathbf{I}$$

$$T_i^j \left(T^*\right)_j^k = \left(\det \mathbf{T}\right) d_i^k$$

Adjoint (of covariant tensor)

$$\mathbf{QQ}^* = |\det \mathbf{Q}| \mathbf{I}$$

$$Q_{i,j}(Q^*)^{j,k} = (\det \mathbf{T}) d_i^k$$

Point on a Line

$$ax + by + cw = 0$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \hat{e}^{\dot{\alpha}\dot{u}} \hat{e}^{\dot{\omega}\dot{u}} = 0$$

$$\hat{e}^{\dot{\alpha}\dot{u}} \hat{e}^{\dot{\omega}\dot{u}} = 0$$

$$\hat{e}^{\dot{\alpha}\dot{u}} \hat{e}^{\dot{\alpha}\dot{u}} = 0$$

$$P^{i}L_{i}=0$$

$$P \rightarrow L = 0$$

Point on a Quadratic Curve

$$Ax^{2} + 2Bxy + 2Cxw$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u} = x \mathring{u} = 0$$

$$= A B C \mathring{u} = x \mathring{u}$$

$$\mathbf{P} \mathbf{X} \mathbf{P}^T = 0$$

$$P^iQ_{ij}P^j=0$$

$$P \xrightarrow{i} Q \xleftarrow{j} P = 0$$

Point on a Cubic Curve

$$Ax^{2} +3Bx^{2}y+3Cxy^{2} +Dy^{3}$$

$$+3Ex^{2}w+6Fxyw+3Gyw^{2}$$

$$+2Hxw^{2} +3Jyw^{2}$$

$$+Kw^{2} = 0$$

$$P^i P^j P^k C_{ijk} = 0$$

Transforming a Point

$$\mathbf{PT} = \mathbf{P}$$

$$P^iT_i^j = (P')^j$$

$$P \rightarrow T \rightarrow P' \rightarrow$$

Transforming a Line

$$(\mathbf{T}^*)\mathbf{L} = \mathbf{L}$$
¢

$$\left(T^*\right)_j^i L_i = \left(L'\right)_j \qquad \longrightarrow \boxed{T}^* \longrightarrow \boxed{L} = \longrightarrow \boxed{L}$$

Transforming A Quadratic Curve

$$\left(\mathbf{T}^{*}\right)\mathbf{Q}\left(\mathbf{T}^{*}\right)^{T}=\mathbf{Q}$$
¢

$$\left(T^*\right)_k^i Q_{ij} \left(T^*\right)_l^j = \left(Q'\right)_{kl}$$

Transforming a Cubic Curve

$$\left(T^*\right)_l^i \left(T^*\right)_m^j \left(T^*\right)_n^k C_{ijk} = \left(\hat{C}\right)_{lmn}$$

Tangent to Quadratic Curve

$$\mathbf{P} \mathbf{Q} = \mathbf{L}^T$$

$$P^iQ_{ij} = L_j$$

Dimensionality in Diagrams

$$2D: P^{1}L_{1} + P^{2}L_{2}$$

$$3D: P^1L_1 + P^2L_2 + P^3L_3$$

$$\sqrt[4]{D}: b_{1}T^{1} + b_{2}T^{2} + b_{3}T^{3} + b_{4}T^{4}$$

Dimensionality in Diagrams

$$2D: ax +bw$$

$$3D: ax + by + cw$$

$$Mp + ZO + \Lambda Q + XD : \Box T$$

Same Across Dimensionality

$$P \rightarrow L = 0$$

$$P \rightarrow Q \leftarrow P = 0$$

$$\begin{array}{c} P \\ \hline P \\ \hline \end{array} = 0$$

$$T^* \to C$$

$$T^*$$

$$T^*$$

Changes with Dimensionality

- Cross Products
 - 3D (2DH)
 - 4D (3DH)
 - 2D (1DH)

3D (2DH) Levi-Civita Epsilon

$$e_{123} = e_{231} = e_{312} = +1$$
 $e_{321} = e_{132} = e_{213} = -1$
 $e_{ijk} = 0$ otherwise

3D (2DH) Cross Product

$$[x_1 \quad y_1 \quad w_1] \stackrel{\text{\'e}e}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}}}}}}}}}}}}}}}} \\ [x_1 \quad y_1 \quad y_2 \quad y_2 \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2 \quad y_1 \quad y_2} \quad y_1 \quad y_2 \quad y_1 \quad y_2 \quad y_1 \quad y_2}$$

$$(P1)^{i}(P2)^{j}e_{ijk}=L_{k}$$

Levi-Civita Epsilon Diagram

Levi-Civita Epsilon Diagram

 e_{ijk}

Cross Product

$$P'R=L$$

$$P^{i}R^{j}e_{ijk}=L_{k}$$

Anti-Symmetry and Epsilon

$$P'R = -R'P$$

Levi-Civita Epsilon

COvariant

e_{ijk}

CONTRAvari ant e^{ijk}

The Other Cross Product

$$\begin{array}{lll} & \stackrel{e}{\leftarrow} L_1 \mathring{\mathbf{u}} & \stackrel{e}{\leftarrow} M_1 \mathring{\mathbf{u}} \\ & \stackrel{e}{\leftarrow} L_2 \mathring{\mathbf{u}} & \stackrel{e}{\leftarrow} M_2 \mathring{\mathbf{u}} \\ & \stackrel{e}{\leftarrow} L_3 \mathring{\mathbf{u}} & \stackrel{e}{\leftarrow} M_3 \mathring{\mathbf{u}} \end{array} = \begin{array}{lll} P^2 & P^3 \mathring{\mathbf{u}} \\ & & & \mathbf{L} & \mathbf{M} = \mathbf{P} \end{array}$$

$$L_i M_j e^{ijk} = P^k$$

Triple Product

$$P'RXS=R'SXP=S'PXR$$

$$L'MXN=M'NXL=N'LXM$$

Adjoint of Matrix

$$(M^*)^{23} = M_{21}M_{13} - M_{11}M_{23}$$

$$(M^*)^{ji} = \frac{1}{2}e^{jab}e^{igd}M_{ag}M_{bd}$$

Adjoint of Matrix

Determinant of Matrix

$$\mathbf{M}\mathbf{M}^* = (\det \mathbf{M})\mathbf{I}$$

Trace of Matrix

$$\operatorname{trace} \mathbf{T} = \mathbf{\mathring{a}}_{i} T_{i}^{i}$$

trace
$$I = I = 3$$

Determinant of Matrix

Determinant of Matrix

Levi-Civita Epsilon 4D (3DH)

 $e_{ijkl} = +1$ if ijkl is an even permutation of 1234

 $e_{ijkl} = -1$ if ijkl is an odd permutation of 1234

 $e_{ijkl} = 0$ otherwise

Anti-Symmetry of Epsilons

Notation for Anti-Symmetry of 4D Epsilon

3 Points and 3 Planes

2 Points and 2 Planes = Line

Relation between 2 Line Tensors

Adjoint and Determinant

2D (1DH) Homogeneous Polynomials

$$Ax + Bw = \begin{bmatrix} x & w \end{bmatrix} \stackrel{\text{\'e}}{\text{e}} \stackrel{\text{\'e}}{\text{B}} \stackrel{\text{\'u}}{\text{\'u}}$$

$$Ax^{2} + 2Bxw + Cw^{2} = \begin{bmatrix} x & w \end{bmatrix} \stackrel{\text{\'e}A}{\text{\'e}B} \stackrel{B\grave{\text{u\'e}}x\grave{\text{u}}}{C \stackrel{\text{\'u\'e}}{\text{u\'e}}w\stackrel{\text{\'u}}{\text{u}}}$$

$$P \rightarrow Q \leftarrow P$$

$$Ax^{3} + 3Bx^{2}w + 3Cxw^{2} + Dw^{3}$$

$$= \begin{bmatrix} x & w \end{bmatrix} \stackrel{\text{\'e}eA}{\stackrel{\text{\'e}eB}{\stackrel{\text{\'e}}B}} C \stackrel{\text{\'u}}{\stackrel{\text{\'e}}C} \stackrel{\text{\'e}C}{\stackrel{\text{\'u}}{\stackrel{\text{\'e}e}B}} D \stackrel{\text{\'u}\acute{\text{\'u}}\acute{\text{\'e}}}{\stackrel{\text{\'u}\acute{\text{\'u}}\acute{\text{\'e}}}} \stackrel{\text{\'u}\acute{\text{\'e}}}{\stackrel{\text{\'u}\acute{\text{\'e}}}C} D \stackrel{\text{\'u}\acute{\text{\'u}}\acute{\text{\'e}}}{\stackrel{\text{\'u}\acute{\text{\'u}}\acute{\text{\'e}}}C} \stackrel{\text{\'u}\acute{\text{\'u}}\acute{\text{\'e}}}{\stackrel{\text{\'u}\acute{\text{\'e}}}C} \stackrel{\text{\'u}\acute{\text{\'e}}}{\stackrel{\text{\'u}\acute{\text{\'e}}}}{\stackrel{\text{\'u}\acute{\text{\'e}}}C} \stackrel{\text{\'u}\acute{\text{\'e}}}{\stackrel{\text{\'u}\acute{\text{\'e}}}} \stackrel{\text{\'u}\acute{\text{\'e}}}{\stackrel{\text{\'e}}}$$

$$[x \ w] \stackrel{\text{\'e}a}{\stackrel{\text{\'e}}{e}} \stackrel{b\grave{u}}{d \mathring{u}} = [x' \ w']$$

2D (1DH) Levi-Civita Epsilon

$$e_{12} = 1$$
 $e_{21} = -1$
 $e_{ij} = 0$ otherwise

$$e = \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\text{e}}} 1 \quad 0 \stackrel{\text{\'u}}{\text{\'u}}$$

Anti-Symmetry of 2D Epsilon

Homogeneous Equality

$$\frac{x_1}{w_1} = \frac{x_2}{w_2}$$

$$x_1 w_2 - w_1 x_2 = 0$$

$$\begin{bmatrix} x_1 & w_1 \end{bmatrix} \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{=}}} \stackrel{1 \text{\'u\'e}}{0 \text{\'u\'e}} \stackrel{\text{\'u}}{\stackrel{\text{\'e}}{\stackrel{\text{\'e}}{=}}} \stackrel{\text{\'u}}{0} = 0$$

Identities

$$=0 \qquad trace \mathop{\operatorname{ce}}_{\overset{\cdot}{\operatorname{e}}}^{\overset{\cdot}{\operatorname{e}}} B \quad B \stackrel{\cdot}{\operatorname{u}} \stackrel{\cdot}{\operatorname{e}} 0 \quad 1 \stackrel{\cdot}{\operatorname{u}} \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{ce}}_{\overset{\cdot}{\operatorname{e}}} B \quad A \stackrel{\cdot}{\operatorname{u}} \stackrel{\cdot}{\operatorname{e}} \\ \mathop{\operatorname{e}} \overset{\cdot}{\operatorname{e}} B \quad C \stackrel{\cdot}{\operatorname{u}} \stackrel{\cdot}{\operatorname{e}} 1 \quad 0 \stackrel{\cdot}{\operatorname{u}} \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{ce}}_{\overset{\cdot}{\operatorname{e}}} C \quad B \stackrel{\cdot}{\operatorname{u}} \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{e}}} C \quad B \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{u}}} C \quad B \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{e}}} C \quad B \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{e}}} C \quad B \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{u}}} C \quad B \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{e}}} C \quad B \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{e}}} C \quad B \stackrel{\cdot}{\operatorname{u}} = trace \mathop{\operatorname{e}}_{\overset{\cdot}{\operatorname{u}}} C \quad B \stackrel{\cdot}{\operatorname{$$

Adjoint and Determinant

Solving Linear Equation

$$Ax + Bw = \begin{bmatrix} x & w \end{bmatrix} \stackrel{\text{\'e}A\grave{u}}{\grave{e}B\overset{\text{\'u}}{u}} = \boxed{P} \longrightarrow \boxed{L} = 0$$

$$[x \ w] = [-B \ A]$$

Dimensionality and Epsilon

MAJOR PUNCHLINE

Another Determinant Identity

Transformationally Invariant Diagrams

Invariants of Cubic Curve

The Epsilon-Delta Identity

The Basic Tool for Manipulating Tensor Diagrams

3D(2DH) Epsilon-Delta Rule

$$e_{a,j,k}e^{a,l,m}=D_{j,k}^{l,m}$$

3D(2DH) Epsilon-Delta Rule

$$e_{a,j,k}e^{a,l,m}=d_j^ld_k^m-d_j^md_k^l$$

Kronecker Delta

$$d_j^i$$

$$\xrightarrow{j}$$
 \xrightarrow{i}

Epsilon-Delta Rule

$$\varepsilon_{\alpha j k} \varepsilon^{\alpha l m} = \delta^l_j \delta^m_k - \delta^m_j \delta^l_k$$

Epsilon-Delta Rule

$$A \times \mathbf{d} \times C = \mathbf{d} \cdot C B - \mathbf{d} \cdot B C$$

Projection from L thru C onto

G

$$L'C=R$$

 $G'R=S$

$$S = aL + bC$$

 $S \times G = 0$

$$(a\mathbf{L} + b\mathbf{C}) \times \mathbf{G} = 0$$

$$a(\mathbf{L} \times \mathbf{G}) + b(\mathbf{C} \times \mathbf{G}) = 0$$

$$a = (\mathbf{C} \times \mathbf{G}), b = -(\mathbf{L} \times \mathbf{G})$$

$$S = (C \times G) L - (L \times G) C$$

Determinant of Product of

$$\stackrel{\text{d. AL}}{\hat{\mathbf{e}}} \stackrel{\text{def}}{\mathbf{BL}} \stackrel{\text{def}}{\overset{\text{def}}{\mathbf{e}}} \mathbf{M} \stackrel{\text{Mu}}{\mathbf{M}} = \stackrel{\text{def}}{\hat{\mathbf{e}}} \mathbf{A} \times \mathbf{C} \quad \mathbf{A} \times \mathbf{D} \stackrel{\text{u}}{\mathbf{u}} = \mathbf{M}$$

$$\stackrel{\text{d. AL}}{\hat{\mathbf{e}}} \stackrel{\text{u}\hat{\mathbf{e}}}{\mathbf{B}} \mathbf{M} \stackrel{\text{u}\hat{\mathbf{e}}}{\mathbf{M}} = \stackrel{\text{def}}{\hat{\mathbf{e}}} \mathbf{B} \times \mathbf{C} \quad \mathbf{B} \times \mathbf{D} \stackrel{\text{u}}{\mathbf{u}} = \mathbf{M}$$

$$[\mathbf{L} \ \mathbf{C}' \mathbf{D} \mathbf{L}] \overset{\acute{e}}{\hat{e}} \mathbf{A}' \mathbf{B}^{\acute{\mathbf{U}}}_{\acute{\mathbf{U}}} = \det \mathbf{M}$$

$$\overset{\acute{e}}{\hat{e}} \ \mathsf{M} \ \overset{\acute{\mathbf{U}}}{\mathbf{g}}$$

4D (3DH) Epsilon Delta

$$e_{a,i,j,k}e^{a,l,m,n} = d_i^l d_j^m d_k^n + d_i^m d_j^n d_k^l + d_i^n d_j^l d_k^m - d_i^l d_j^m d_k^m - d_i^m d_j^l d_k^n - d_i^m d_j^l d_k^n - d_i^m d_j^l d_k^n$$

$$\frac{i}{j} \frac{n}{m} = \frac{i}{k} \frac{n}{m} + \frac{i}{j} \frac{n}{m} + \frac{i}{k} \frac{n}{m} = \frac{i}{j} \frac{n}{m} - \frac{i}{j} \frac{n}{m} = \frac{i}{k} \frac$$

Determinant of Product of Matrices

2D(1DH) Epsilon Delta

$$e_{a,i}e^{a,j}=d_i^j$$

Another Epsilon Delta

$$e_{i,j}e_{k,l} = e_{i,k}e_{j,l} - e_{i,l}e_{j,k}$$

Another Interpretation

$$(A-B)(C-D) = (A-C)(B-D) + (B-C)(D-A)$$

$$AC - AD - BC + BD + (AB - AB) + (CD - CD)$$

$$= AB - BC - AD + CD$$

$$+ BD - CD - AB + AC$$

Yet Another Epsilon Delta

Yet Yet Another

EpsDel in all Three Dimensions

2D (1DH)

3D (2DH)

4D (3DH)

$$D_1 = 0 + D_1$$

$$D_1 = -D_1 + D_2$$

$$D_1 = \frac{1}{2}D_2$$

$$D_1 = 0 + d_2 d_3$$

Substitution

Sub-Atomic Particles

Molecules

SubAtomic Physics

Sum of Matrices

$$T = A + B$$

Determinant of T

Determinant of T

Determinant of T

$$\frac{\text{det}\mathbf{T}}{\text{A}} = \frac{-1/2}{\text{A}} + \frac{-1}{\text{B}} + \frac{-1/2}{\text{B}}$$

$$\det(\mathbf{A} + \mathbf{B}) = \det \mathbf{A} + fcn(\mathbf{A}, \mathbf{B}) + \det \mathbf{B}$$

Eigenvectors/Eigenvalues

$$TL = / L$$

Characteristic Equation 2D(1DH)

$$\det(\mathbf{T} - / \mathbf{I}) = 0$$

Characteristic Equation 3D(2DH)

$$\det(\mathbf{T} - / \mathbf{I}) = 0$$

Outer Product

$$\mathbf{L} \mathbf{P} = \mathbf{T}$$

$$\rightarrow (L) (P) \rightarrow = \rightarrow (T) \rightarrow$$

Outer Product is Singular

$$\det \hat{e}^{ax} \quad awu \\ bwu = axbw - bxaw = 0$$

Sum of Outer Products

$$\mathbf{T} = \mathbf{L}_1 \mathbf{P}_1 + \mathbf{L}_2 \mathbf{P}_2$$

$$\rightarrow \stackrel{}{\text{T}} \rightarrow = +$$

$$\rightarrow \stackrel{}{\text{L}_1} \stackrel{}{\text{P}_1} \rightarrow$$

$$\rightarrow +$$

$$\rightarrow \stackrel{}{\text{L}_2} \stackrel{}{\text{P}_2} \rightarrow$$

Determinant of Sum of Outer Products

Determinant of Sum of Outer Products

Determinant of Sum of Outer Products

Symmetric Tensors

$$[x \quad y \quad w] \stackrel{\text{\'e}}{\hat{e}} B \quad D \stackrel{\text{\'e}}{u} \stackrel{\text{\'e}}{e} V \stackrel{\text{\'e}}{u} = \mathbf{PQP}^T = 0$$

$$\stackrel{\text{\'e}}{e} D \quad E \quad F \stackrel{\text{\'e}}{u} \stackrel{\text{\'e}}{e} w \stackrel{\text{\'e}}{q}$$

Factorable Quadratic Tensor

$$\begin{aligned} &(\mathbf{PL}_{1})(\mathbf{PL}_{2}) = 0 \\ = &[x \quad y \quad w] \stackrel{\acute{e}a\grave{u}}{\stackrel{\acute{e}b\acute{u}}{\stackrel{\acute{e}}b}} p \quad q \quad r] \stackrel{\acute{e}x\grave{u}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}}{\stackrel{\acute{e}v\acute{u}}}{\stackrel{\acute{e}v\acute{u}}}}}$$

Factorable Quadratic Tensor

$$\mathbf{Q} = \mathbf{L}_1 \mathbf{L}_2^T + \mathbf{L}_2 \mathbf{L}_1^T$$

$$\mathbf{PQP}^{T} = \mathbf{PL}_{1}\mathbf{L}_{2}^{T}\mathbf{P}^{T} + \mathbf{PL}_{2}\mathbf{L}_{1}^{T}\mathbf{P}^{T} = 2(\mathbf{PL}_{1})(\mathbf{PL}_{2})$$

Determinant of Factorable Quadratic

$$= 0$$

Factorable Cubic Tensor

After The Break

- Polynomial Roots and Discriminants
- Polynomial Resultants and Generalizations
- Quadratic and Curves and Theorem of Pascal
- Properties of Cubic Curves