Overview

1. Find some data

2. Design a network 3. Train the network

Neural Architecture Search (NAS)

Algorithm 1 Standard NAS

generator = RNN()

for i=1:N do

net = generator.generate()

trained_net = net.train()

▷ Training a net every step is expensive generator.update(trained_net)

chosen_net = generator.generate()

NAS is slow

Is there a property of networks without training that we can use?

Linear Regions in Neural Networks

Linear Regions

[1] Hanin, B. and Rolnick, D., 2019. Deep relu networks have surprisingly few activation patterns. In *Advances in Neural Information Processing Systems* (pp. 361-370).

Correlating Linear Regions

Correlating Linear Regions

Scoring Jacobians

- 1. Get the input-output Jacobian (J) for one minibatch of data
- 2. Take eigenvalues of the correlation matrix of J
- 3. Score by KL divergence between two Gaussians:
 - one with 2, as the kernel
 - one with an uncorrelated kernel

```
def eval_score(jacob):
corrs = np.corrcoef(jacob)
v, _ = np.linalg.eig(corrs)
k = 1e-5
return -np.sum(np.log(v + k) + 1./(v + k))
```

Results

Results

Results

Questions?

Code: https://github.com/BayesWatch/nas-without-training

Control studies

(c) vary white noise input