opg b
$$u=e^{-\omega^2c^2t}\cos(\omega x)$$

We insert it into the heat

e quation. $du=c^2\frac{d^2u}{dx^2}$
 $dt=c^2c^2t$. $\cos(\omega x)=c^2\frac{d^2u}{dx^2}$. $e^{-\omega^2c^2t}$. $\cos(\omega x)$
 $-\omega^2c^2t$. $\cos(\omega x)=c^2\frac{d}{dx}$. $e^{-\omega^2c^2t}$. ω . $-\sin(\omega x)$
 $-\omega^2c^2e$. $\cos(\omega x)=c^2\frac{d}{dx}$. $e^{-\omega^2c^2t}$. ω . $-\sin(\omega x)$