Lecture 2: Bootstrap 101

Raul Riva

FGV EPGE

Invalid Date

• First, we will do some magic and then explain why it works;

- First, we will do some magic and then explain why it works;
- Assume $X_i \sim N(\theta, 1)$;
- Let's say you have a sample of size n from this distribution, X_1, \dots, X_n ;
- One natural estimator of θ is the sample mean, $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$;

- First, we will do some magic and then explain why it works;
- Assume $X_i \sim N(\theta, 1)$;
- ullet Let's say you have a sample of size n from this distribution, X_1,\dots,X_n ;
- One natural estimator of θ is the sample mean, $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$;
- ullet You would like to find a confidence interval for heta
- \bullet You know that $R_n \equiv \sqrt{n} \cdot (\bar{X}_n \theta) \sim N(0,1)$
- But let's say you don't know this finite-sample result...
- How can we use R_n to construct a confidence interval for θ ?

I will propose a way!

- ullet In this case, it would be easy to numerically compute the distribution of R_n because we **know** where the data comes from: resample!
- In practice you cannot ask "for more data"... you have to pull yourself up by your bootstraps!
- The only thing you can use are the numbers you got $(x_1,...,x_n)$.

A Simple Strategy

You cannot resample from the original distribution... but can resample from the empirical distribution...

A Simple Strategy

You cannot resample from the original distribution... but can resample from the empirical distribution...

Ok. let's do this:

- 1. Draw a sample of size n from the empirical distribution of the original sample (x_1, \ldots, x_n) . This is just a random sample with replacement from the original sample. Call this new sample $(x_1^{(j)}, \ldots, x_n^{(j)})$:
- 2. Compute the sample mean of this new sample and call it $\bar{X}_n^{(j)} = \frac{1}{n} \sum_{i=1}^n x_i^{(j)}$;
- 3. Compute $R_n^{(j)} = \sqrt{n} \cdot (\bar{X}_n^{(j)} \bar{X}_n);$
- 4. Repeat steps 1-3 B times to get $R_n^{(1)}, \dots, R_n^{(B)}$;
- 5. Plot a histogram of the $R_n^{(j)}$'s;

$\mathbf{Medium}\ B$

$\mathbf{High}\ B$

What kind of dark magic is this? Do they teach this at Hogwarts?

- Not magic at all: just the bootstrap at work!
- ullet As B increases, the distribution of $R_n^{(j)}$ converges to the distribution of R_n ;
- ullet Notice that we are keeping n fixed throughout the process;
- We were able to approximate the **finite-sample distribution** of this statistic;
- This lecture is a bird's eye view of the bootstrap and why it works (and why it doesn't);

- \bullet Assume X_i comes from some distribution P , and you have and i.i.d. sample X_1,\dots,X_n ;
- ullet Very often, we want to construct confidence intervals for a parameter heta(P);
- \bullet That is a set $C_n=C_n(X_1,...,X_n)$ such that $P(\theta(P)\in C_n)\approx 1-\alpha;$

- \bullet Assume X_i comes from some distribution P , and you have and i.i.d. sample X_1,\dots,X_n ;
- Very often, we want to construct confidence intervals for a parameter $\theta(P)$;
- That is a set $C_n = C_n(X_1,...,X_n)$ such that $P(\theta(P) \in C_n) \approx 1 \alpha$;
- Tipically, we rely on some statistic that is a function of the data and this parameter, $R_n(X_1,\ldots,X_n;\theta(P))\implies$ we call this a *root*.
- Obviously, the distribution of this root might depend on the distribution *P*;

 \bullet Let's define $J_n(x,P) \equiv P\left(R_n \leq x\right) \implies$ the (finite-sample) distribution of the root;

- Let's define $J_n(x,P) \equiv P\left(R_n \leq x\right) \implies$ the (finite-sample) distribution of the root;
- In some cases, it does not depend on *P*;
- \bullet In the "magical example", we had $J_n(x,P)=\Phi(x),$ the CDF of the standard normal;
- In that case, it would be easy to come up with a confidence interval;

- Let's define $J_n(x,P) \equiv P\left(R_n \leq x\right) \implies$ the (finite-sample) distribution of the root;
- In some cases, it does not depend on *P*;
- ullet In the "magical example", we had $J_n(x,P)=\Phi(x)$, the CDF of the standard normal;
- In that case, it would be easy to come up with a confidence interval;
- Even if X_i were not Gaussian, we would still have $J_n(x,P) \to \Phi\left(x/\sigma(P)\right)$ as $n \to \infty$ by the standard CLT;
- Then we could create a confidence set that would be asymptotically valid, at least;

But these two cases are more the exception than the rule...

- 1. Usually, $J_n(x, P)$ depends on P in an unknown way;
- 2. Even if you get a CLT, what is the quality of the approximation? When is n "large enough"?

But these two cases are more the exception than the rule...

- 1. Usually, $J_n(x, P)$ depends on P in an unknown way;
- 2. Even if you get a CLT, what is the quality of the approximation? When is n "large enough"?
- What if you get a CLT, but the limiting distribution is super complicated?
- Also very common: the asymptotic distribution might depend on parameters that hard to estimate...

But these two cases are more the exception than the rule...

- 1. Usually, $J_n(x, P)$ depends on P in an unknown way;
- 2. Even if you get a CLT, what is the quality of the approximation? When is n "large enough"?
- What if you get a CLT, but the limiting distribution is super complicated?
- Also very common: the asymptotic distribution might depend on parameters that hard to estimate...

What we really want is $J_n(x, P)$!

The basic idea is the following:

• We don't know P but we know \hat{P}_n , the empirical distribution of the sample (X_1,\ldots,X_n) ;

$$\hat{P}_n(u) \equiv \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le u\}}$$

The basic idea is the following:

• We don't know P but we know \hat{P}_n , the empirical distribution of the sample (X_1,\dots,X_n) ;

$$\hat{P}_n(u) \equiv \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le u\}}$$

- \bullet If P_n is a good approximation of P , we might have a chance to approximate $J_n(x,P)$ using $J_n(x,\hat{P}_n)$
- Intuitively, this approximation is only good if
 - \circ \hat{P}_n is a good approximation of P;
 - $\circ\ J_n(x,P)$ has some "continuity" with respect to P;

The general algorithm for the (non-parametric) bootstrap:

Definition (Non-parametric Bootstrap)

- 1. Draw a sample of size n with replacement using the empirical distribution \implies it's ok if some observations are repeated!
- 2. Compute the statistic of interest and use moments from \hat{P}_n whenever you need population moments;
- 3. Repeat steps 1-2 B times to get a list of realized statistics $R_n^{(1)},\ldots,R_n^{(B)}$;
- 4. Use the empirical distribution of the $R_n^{(j)}$'s to approximate $J_n(x,P)$;

The general algorithm for the (non-parametric) bootstrap:

Definition (Non-parametric Bootstrap)

- 1. Draw a sample of size n with replacement using the empirical distribution \implies it's ok if some observations are repeated!
- 2. Compute the statistic of interest and use moments from \hat{P}_n whenever you need population moments;
- 3. Repeat steps 1-2 B times to get a list of realized statistics $R_n^{(1)},\ldots,R_n^{(B)}$;
- 4. Use the empirical distribution of the $R_n^{(j)}$'s to approximate $J_n(x,P)$;
- ullet Use the empirical distribution of the $R_n^{(j)}$'s to construct confidence intervals, get quantiles, etc.
- ullet Treat the distribution from the bootstrap as if it were the true distribution of R_n ;

Why does it work?

 \bullet First question: why does \hat{P}_n approximate P?

Why does it work?

- ullet First question: why does \hat{P}_n approximate P?
- A pointwise result is simple to get:

$$\hat{P}_n(u) \xrightarrow{p} P(u) \text{ as } n \to \infty, \forall u \in \mathbb{R}$$

because $\mathbb{E}(I_{X_i < u}) = P(u)$ and we can apply the LLN.

Why does it work?

- First question: why does \hat{P}_n approximate P?
- A pointwise result is simple to get:

$$\hat{P}_n(u) \xrightarrow{p} P(u)$$
 as $n \to \infty, \forall u \in \mathbb{R}$

because $\mathbb{E}(I_{X_{\cdot,\leq u}}) = P(u)$ and we can apply the LLN.

• But we can do so much better than that!

Theorem (Glivenko-Cantelli)

Let X_1,\ldots,X_n be scalar random variables with distribution P. Then, as $n\to\infty$, we have that

$$\sup_{u\in\mathbb{R}}\left|\hat{P}_n(u)-P(u)\right|\overset{p}{\to}0.$$

Glivenko-Cantelli Withouth Math

- ullet As n grows, the empirical distribution \hat{P}_n converges uniformly to the true distribution P;
- ullet This is: for any point in the support of P, \hat{P}_n will do a great job as an approximation!
- ullet If you have enough data, \hat{P}_n is almost as good as being able to observe P directly;
- Caveat: how much is "enough data"?
- You can see the proof on Hansen's book or any Probability book it's not hard.
- It's possible to generalize this result to vector-valued random variables, but we will not do that here.

What about the continuity of $J_n(x, P)$?

- This is quite involved and each type of root might need a different treatment;
- However, we have a well-developed theory for averages t-statistic-type roots;
- We will focus on understanding these results and not on proving them;
- You should definitely check out Bruce Hansen's book on Chapter 10;

Asymptotic Theory

Asymptotic Theory

- The main complication is that \hat{P}_n is a random function;
- \bullet For a given size n, two different samples will induce two different measures;
- ullet To see that, let $X_i \sim U[0,1]$ and n=10 and let's compute the empirical distributions;
- ullet Then we will increase n... what will happen?

Glivenko-Cantelli works, baby!

Asymptotic Theory

- \bullet We actually work with a single realization of the empirical distribution \hat{P}_n ;
- I will denote this realization by P_n^* ;
- Given a sample $(x_1, ..., x_n)$, this is

$$P_n^*(u) \equiv \frac{1}{n} \sum_{i=1}^n I_{\{x_i \le u\}}$$

Important: this is like a conditional CDF!

To get to the main theorem we will need some definitions...

Convergence in Bootstrap Probability

Definition (Convergence in Bootstrap Probability)

We say that a random vector Z_n^* converges in bootstrap probability to Z as $n \to \infty$, denoted $Z_n^* \xrightarrow{p^*} Z$, if for all $\epsilon > 0$

$$P_n^* \left(\|Z_n^* - Z\| > \epsilon \right) \xrightarrow{p} 0.$$

- How is this different than standard convergence in probability?
- There are two probability measures involved: who are they?

Convergence in Bootstrap Distribution

Definition (Convergence in Bootstrap Distribution)

Let Z_n^* be a sequence of random vectors with conditional distributions $G_n^*(x) = P_n^* [Z_n^* \leq x]$.

We say that Z_n^* converges in bootstrap distribution to Z as $n\to\infty$, denoted $Z_n^*\xrightarrow{d^*} Z$, if for all x at which $G(x)=\mathbb{P}[Z\le x]$ is continuous,

$$G_n^*(x) \xrightarrow{p} G(x) \text{ as } n \to \infty.$$

How is this different than standard convergence in distribution?

The Main Theorem

Theorem (Asymptotic Bootstrap Theorem)

If $\{Y_i\}$ are i.i.d. random vectors, $\mathbb{E}\|Y\|^2 < \infty$, and $\Sigma = \mathrm{var}[Y] > 0$, then as $n \to \infty$,

$$\sqrt{n}\left(\overline{Y}^* - \overline{Y}\right) \xrightarrow{d^*} \mathcal{N}(0, \Sigma).$$

where $\overline{Y}^* = \frac{1}{n} \sum_{i=1}^n Y_i^*$ is the sample mean of a bootstrap sample and $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ is the sample mean of the original sample.

The Main Theorem

Theorem (Asymptotic Bootstrap Theorem)

If $\{Y_i\}$ are i.i.d. random vectors, $\mathbb{E}\|Y\|^2 < \infty$, and $\Sigma = \mathrm{var}[Y] > 0$, then as $n \to \infty$,

$$\sqrt{n}\left(\overline{Y}^* - \overline{Y}\right) \xrightarrow{d^*} \mathcal{N}(0, \Sigma).$$

where $\overline{Y}^* = \frac{1}{n} \sum_{i=1}^n Y_i^*$ is the sample mean of a bootstrap sample and $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ is the sample mean of the original sample.

- Notice that this is the same asymptotic distribution we would get for $\sqrt{n}(\overline{Y}-\mathbb{E}[Y_i])$;
- Why is this theorem useful?

The Main Theorem

Theorem (Asymptotic Bootstrap Theorem)

If $\{Y_i\}$ are i.i.d. random vectors, $\mathbb{E}\|Y\|^2 < \infty$, and $\Sigma = \mathrm{var}[Y] > 0$, then as $n \to \infty$,

$$\sqrt{n}\left(\overline{Y}^* - \overline{Y}\right) \xrightarrow{d^*} \mathcal{N}(0, \Sigma).$$

where $\overline{Y}^* = \frac{1}{n} \sum_{i=1}^n Y_i^*$ is the sample mean of a bootstrap sample and $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ is the sample mean of the original sample.

- \bullet Notice that this is the same asymptotic distribution we would get for $\sqrt{n}(\overline{Y}-\mathbb{E}[Y_i]);$
- Why is this theorem useful?
- The centering happens at the sample mean. Why? Any intuition?
- Importantly: the continuous mapping theorem and the Delta method are conserved!
- See details on Hansen's book;

Why don't we just use the bootstrap everywhere?

- ullet It might be super slow: imagine bootstrapping something that takes long to do *once...* now you have to do it B times!
- It might be less efficient than plug-in estimators;
- ullet There are cases where it does not work at all \Longrightarrow you will see one example in the problem set;
- Usually, it will break if your root is not a "smooth" function;
- Example: the maximum or minimum of a sample;

