5.5. Determinações astro-graniméticas do Desvio da 30
Vertical e do geóide;

5.5.1 - Potencial perturbodor e disturbio da grandade; Formula de Bruns;

Potencial perturbador (T)

$$T=W-U$$
L experiencial $(U=Z+\overline{\Phi})$
L geopotencial $(W=V+\overline{\Phi})$

- aplicando o operador gradiente (₹):

em módulo: [5g = g - P] = distúrlio da gravidade é a diferença entre o valor da gravidade real (g) e a gravidode normal/teórica (r) num mesmo ponto P.

O potencial perturbodor ou potencial anomalo (T) é a diferença entre os potenciais produzidos num ponto P pela Terra real (W) e pela Terra Mormal (U). Pode su considerado como o potencial grado pelas massas "anômalas", que transformam a Terra normal na Terra real.

Desferopotencial em P (Vp) pode ser dado por:

E o potencial perturbodor em P (Tp):

Como, por definição, tem-se que o esferopotencial na superficie de elipsoide de referência (Vo) é igual as geopotencial na superficie do géoide (VO):

Salve-se que o distírbio da gravidade num ponto p é dado por:

mas
$$P_p = P_p' - 0,3086. N$$
gradiente da gravidade

e da formula de Bruns:
$$N = \frac{T_e}{T_e}$$

$$\delta g_P = g_P - P_P + 0,3086. \frac{T_P}{P_P}$$

dificil de prince a relação entre disturbio e anomalia. da gravidade que reescrita da seguinte forma:

$$\frac{-\partial T}{\partial H} = \Delta g - \frac{\partial P}{\partial H} \cdot N$$

 $-\frac{\partial T}{\partial H} = \Delta g - \frac{\partial P}{\partial H} \cdot N$ & conhecida como equação lundamental. d- Gordenia fundamental da Geodésia Física

5.5.2_ Problema do Valor de Contorno da Gudesia: (93)

PVCG - determinar o campo da gravidade esterno da Terra e suas implicações na forma e dimensões da Terra a partir do conhecimento do potencial e/ou sua derivada normal na superficie limite (gralmente desconleida)

anomalia da gravidade Ag = gpi - Pp"

Disturbio da gravidade 8g = gp - Pp

Sas quantidades que relacionam a Terra real com a modela, mostram as discrepâncias entre a real e o modelo perfeito.

5.5.3 - Férmula de Stokes; Co-géoide; Efeito Indireto 99

a formula de stokes propicia a separação geoides eliproide (N. altura geoidal) como função das arromalias da

gravidade (Ag).

(1849)

Stokes propos uma formulação para obter o potencial perturbador (T) em função da anomalia de gravidade sobre a superficie gesidal, usando uma aproximação esferica:

A azimute da direção PP'

. R i o rais da esfera, pode ser por escemplo $R = \sqrt[3]{a^2b^3}$ (esfera de mesmo volume que o elipsoide de revolução)

. Y é a distância angular entre o ponto P e o elemento de superficie dS, al que ces Y = sen Y sen Y' + cos Y cos Y'cos (1'-1)

. Pi o ponto de cálculo (para o qual se quer olter o valor de T) e dS é o elemento de superfície para o qual se conhece o volor médio da anomalia de gravidade (Dg).

5(4) é denominada função de stokes

$$S(Y) = \csc\left(\frac{Y}{2}\right) - 6 \operatorname{sen}\left(\frac{Y}{2}\right) + 1 - 5 \cos Y - 3 \cos Y \ln\left[\operatorname{sen}\left(\frac{Y}{2}\right) + \operatorname{sen}^{2}\left(\frac{Y}{2}\right)\right]$$

& Teorema de Bruns:

$$N = \frac{T}{\gamma}$$

a formula de Stokes para o potencial perturbodor pode ser rescrita para a altura gesidal:

$$N = \frac{R}{4\pi r} \int_{S} \Delta g \ S(\Psi) \ dS$$

Ní função, portanto, das anomalias da gravidade em todo o globo (necessario a integração sobre toda a superfície S). Para evitar a integração sobre todo o globo, na prática se redez o calculo de N por decomposiçãos espectral (que não será abordado aqui!)

Porém a resolução proposta por Stokes ou Pizetli-Stokes, supor que now existem massas externas ao giáide. Logo, esta solução, na realidade, conduz ao denominado co-geside. a diferença produzida pela existência de massos acima do géoide é denominada de efeito indireto e pode ser modelada.

Fornecem as componentes 9, 19 do desvio da vertical:

$$= -\frac{\sin^{4} \pi}{4\pi p} \iint_{00}^{\pi} \Delta g \frac{\partial S(Y)}{\partial Y} \sin Y \qquad dA dY$$

$$\int_{00}^{\pi} \Delta g \frac{\partial S(Y)}{\partial Y} \sin Y \qquad sen A$$

Com A sendo o azimete da direção considerada. Ma prática, torna-se um somatório e pode ser resolvida também por alcomposição espectral.

Exemplo de aplicação: cálculo do geóide nos oceanos

Satelite altímetro

orlita

r ("medido" pelo altímetro)

condeido

N.M (nível do man)

55H (Sen surfae height)

eliproide

→ com passagens successivas do satélite, é possível determinar o NMM (nível médio do mar) e a inclinação deste relativamente ao elipsoide de referência (com isso é possível ter uma estimativa inicial de 7 e 1 considerando que a inclinação do NMM é muito próxima da inclinação do geóide). → a partir des valores aproximades de 3 e η realiza-se uma primeira estimativa de Δg pelas fórmulas de Veining-Meinesz

→ aplica esta estimativa de Δg na fórmula de Stokes

e obtém-se N (uma primeira estimativa do geóide)

→ obtém-se novamente 3 e η ⇒ N ⇒ ... de forma

iterativa

atualmente N nos oceanos é melhor que 2 cm.

5.5.5. Teoria de Molodenskii, Teluroide e Ausse-gevide.

Molodenskii propôs uma nova formulação para o problema fundamental da geodésia, tratando se de um problema problema as massas que utiliza a superfície física como externo as massas que utiliza a superfície física como limite, dado o desconhecimento de um modelo de distribuição limite, dado o desconhecimento de um modelo de distribuição de densidade no interior da crosta da Terra \Rightarrow ou siga de densidade no interior da crosta da Terra \Rightarrow ou siga propõe trabalhar sem as reduções (necessárias na teoria propõe trabalhar sem as reduções (necessárias na teoria de Stokes) e sobre uma superfície limite conhecida (5.F).

a anomalia de altura (3) é a distância as longo da normal entre a superfície terrestre e o teluróide.

De 3 for representada a partir do elipsoide se obtém o quard geoide.

- > teluroide, quase geoide e cogeoide mas sas superficies equipotenciais
- geoide e quase géoide são identicos em áreas marinhas

→ V2 pode ser determinado de forma iterativa a partir de Vo e assim modelar a anomalia de altura (3)

molodenskii definiu também uma anomalia da gravidade sobre a S.F da Terra como:

-> do teorema de Bruns, agora com $\frac{1}{2} \frac{1}{2} \frac{1}$ a potencial perturbodor (T) seferindo se

$$\Rightarrow 7 = \frac{R}{4\pi\gamma} \int_{S} (u_0 + u_1 + u_2) S(4) dS$$
corregar do terreno

-> Np = 3 + gm - Pm Hp } relaciona anomalia de altura (?)
com altura geoidal (N)