

slido

Join at slido.com #3123588

Click **Present with Slido** or install our <u>Chrome extension</u> to display joining instructions for participants while presenting.

LECTURE 7

Visualization I

Visualizing distributions and KDEs

Data 100, Summer 2025 @ UC Berkeley

Josh Grossman and Michael Xiao

Homework 2A due tonight!

Lab 2B due tomorrow!

Homework 2B due Monday, July 7th

Reminder to make sure your **DSP accommodations are submitted ASAP**

- **By Sunday, July 6th** at the latest
- Very important if you have exam accommodations

Goals for this Lecture

Lecture 7, Data 100 Summer 2025

Understand the theories behind effective visualizations and start to generate plots of our own

- The necessary "pre-thinking" before creating a plot
- Python libraries for visualizing data

Where Are We?

Data Wrangling Intro to EDA

Working with Text Data Regular Expressions (today)

Plots and variables seaborn
KDE

Viz principles
Transformations

(Part I: Processing Data)

(Part II: Visualizing and Reporting Data)

Goals of visualization

Visualizing distributions

Visualization

- Kernel density estimation (KDE)

Agenda

Lecture 7, Data 100 Summer 2025

Goals of Visualization

Lecture 7, Data 100 Summer 2025

Visualization

- Goals of visualization
- Visualizing distributions
- Kernel density estimation (KDE)

Visualizations in Data 8 (and Data 100, so far)

You have worked with several types of visualizations so far.

Line plot

Scatterplot

Histogram from Homework #1

What did these plots achieve?

- High-level **summary** of a complex dataset.
- Communicate trends to viewers.

Goals of Data Visualization

3123588

Goal 1: To **help your own understanding** of your data/results.

- Essential part of EDA.
- Summarize trends visually.
- Lightweight, iterative, and flexible.

Goal 2: To communicate results/conclusions to others.

- Highly editorial and selective.
- Be thoughtful and careful!
- Fine-tuned to achieve a communications goal.
- Considerations: clarity, accessibility, and context.

What do these goals imply?

Visualizations aren't a matter of making "pretty" pictures.

We need to do a lot of thinking about what stylistic choices communicate ideas most effectively.

Goals of Data Visualization ("Data Viz")

Visualizations aren't a matter of making "pretty" pictures.

We need to **think hard** about what stylistic choices communicate ideas most effectively.

1st half of Data 100 viz: **Choosing the "right" plot**

- Different plots for different variable types
- Frameworks+code required to generate

2nd half of Data 100 viz: **Stylizing plots**

- Transformations of visual data
- Context through labels and color

Big mindset change: Minimize your audience's **cognitive burden** by shouldering that burden yourself. You want to make your plot so smooth+intuitive that the reader spends little to no time thinking about how hard you worked. Don't make lazy plots.

Visualizing Distributions

Lecture 7, Data 100 Summer 2025

Visualization

- Goals of visualization
- Visualizing distributions
- Kernel density estimation (KDE)

Distributions

A univariate distribution describes:

- The set of possible values of one variable.
- The frequency of each value.

Counts should **sum to the total # of datapoints**.

Cal Undergrad Major	# of Degrees (2024)
Computer Science	891
Data Science	846
Economics	678

Source

Example distribution

Percentages should sum to 100%.

Technical note: This is the description of a <u>discrete</u> univariate distribution. We will not work much with <u>continuous</u> distributions in Data 100.

slido

Does this chart show a distribution?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

While about half of teens post their accomplishments on social media, few discuss their religious or political beliefs

% of U.S. teens who say they ever post about their __ on social media

Note: Respondents were allowed to select multiple options. Respondents who did not give an answer are not shown. Source: Survey conducted March 7-April 10, 2018. "Teens' Social Media Habits and Experiences"

PEW RESEARCH CENTER

Does this chart show a distribution?

No.

The chart shows percentages of individuals in different categories.

But, this is <u>not</u> a distribution because categories overlap. See fine print!

The percentages do not sum to 100%.

slido

Does this chart show a distribution?

Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

Does this chart show a distribution?

SHARE OF AMERICAN ADULTS IN EACH INCOME TIER

19% Upper

52% Middle

29% Lower

Yes!

The values are the proportions of individuals in each category.

Each individual is in exactly one category.

The total percentage is 100%.

Variable Types Should Inform Plot Choice

Some plots are better suited for particular types of variables. Our friends from Lecture 5!

Step 1 of visualization: Pick the variables to visualize. Then, select an appropriate plot type.

Bar Plots: Distributions of Qualitative Variables

Bar plots are the most common way of displaying the **distribution** of a **qualitative** variable.

3123588

<u>Horizontal bars are often</u> preferable to vertical bars!

World Bank Dataset

We will be using the wb dataset about world countries for most of our work today.

	Continent	Country	Primary completion rate: Male: % of relevant age group: 2015	Primary completion rate: Female: % of relevant age group: 2015	Lower secondary completion rate: Male: % of relevant age group: 2015	Lower secondary completion rate: Female: % of relevant age group: 2015	Youth literacy rate: Male: % of ages 15-24: 2005- 14	Youth literacy rate: Female: % of ages 15-24: 2005- 14	Adult literacy rate: Male: % ages 15 and older: 2005- 14	Adult literacy rate: Female: % ages 15 and older: 2005- 14
0	Africa	Algeria	106.0	105.0	68.0	85.0	96.0	92.0	83.0	68.0
1	Africa	Angola	NaN	NaN	NaN	NaN	79.0	67.0	82.0	60.0
2	Africa	Benin	83.0	73.0	50.0	37.0	55.0	31.0	41.0	18.0
3	Africa	Botswana	98.0	101.0	86.0	87.0	96.0	99.0	87.0	89.0
5	Africa	Burundi	58.0	66.0	35.0	30.0	90.0	88.0	89.0	85.0

Generating Bar Plots: Matplotlib

In Data 100, we will use three libraries to make plots: <u>matplotlib</u>, <u>seaborn</u>, and <u>plotly</u>.

3123588

Most matplotlib plotting functions follow the same structure: Pass in a sequence (list, array, or series) of x-axis values, and a sequence of y-axis values.

```
import matplotlib.pyplot as plt
plt.example_plotting_function(x_values, y_values)
```

To add labels and a title:

```
plt.xlabel("x axis label")
plt.ylabel("y axis label")
plt.title("Title of the plot");
```


Generating Bar Plots: matplotlib

3123588

```
To create a bar plot in matplotlib: plt.bar(____)
[Documentation]
```

continents = wb["Continent"].value_counts()

Africa
Europe
Asia
N. America
Oceania
S. America
Oceania
S. America

Name: Continent, dtype: int64

Generating Bar Plots: pandas Native Plotting

To create a bar plot in native pandas: .plot(kind='bar')

Africa 47
Europe 43
Asia 34
N. America 18
Oceania 13
S. America 11
Name: Continent, dtype: int64

wb["Continent"].value_counts().plot(kind='bar')

In general, don't use pandas for anything but basic+default plots in EDA.

Generating Bar Plots: seaborn

seaborn has different syntax: Pass in a DataFrame and specify which column(s) to plot.

```
Seaborn alias is sns (<u>This is why</u>)
import seaborn as sns
sns.example_plotting_function(data=df, x="x_col", y="y_col")
```

To add labels and a title, use the same syntax as before:

```
plt.xlabel("x axis label")
plt.ylabel("y axis label")
plt.title("Title of the plot");
```

seaborn is actually just **matplotlib** under the hood, but with an easier-to-use interface for working with **DataFrame**s and creating certain types of plots.

Generating Bar Plots: seaborn

To create a bar plot in **seaborn**: **sns.countplot(____)**

Documentation

countplot operates at a
higher level of abstraction!

You give it the entire **DataFrame** and it does the counting for you.

import seaborn as sns

sns.countplot(data=wb, x="Continent");

Distributions of Quantitative Variables

Why are bar plots only appropriate for **qualitative** variables, and not **quantitative**?

3123300

Consider the distribution of gross national income per capita, as a bar chart:

A bar plot has a separate bar for each **unique** x-axis value.

There are almost as many bars as data points! Not helpful.

Distributions of Quantitative Variables

Appropriate plots for continuous **quantitative** variables:

Histograms

A histogram:

- Groups datapoints with similar values into shared bins.
- Each bin's **area** (not height!) is the **percentage** of all datapoints it contains (as in <u>Data 8</u>).

The first bin has a width of \$16410 and a height (**density**) of 4.77×10^{-5}

This means that it contains $16410 \times (4.77 \times 10^{-5}) = 78.3\%$ of all datapoints in the dataset.

27

Histograms in Code

In matplotlib [Documentation]: plt.hist(x_values, density=True)

In seaborn [Documentation]: sns.histplot(data=df, x="x_column", stat="density")

matplotlib

Overlaid Histograms

Overlay histograms to compare **quantitative** distributions across **qualitative** categories.

The **hue** parameter of **seaborn** plotting functions sets the column that should be used to determine color.

```
sns.histplot(data=wb, hue="Hemisphere",
x="Gross national income...")
```

Always include a legend when color is used to encode information!

Interpreting Histograms

The **skew** of a histogram describes the direction in which its "tail" extends.

- A distribution with a long right tail is **right/positive** skewed \rightarrow Mean > Median
- A distribution with a long left tail is left/negative skewed → Mean < Median

A histogram with no clear skew is called symmetric.

Interpreting Histograms

The **mode** is the **mo**st frequent value of a distribution.

- A distribution with one clear peak is called unimodal.
- Two peaks: bimodal.
- More peaks: multimodal.

Quartiles

For a quantitative variable:

- 1st quartile (Q1): 25th percentile.
- 2nd quartile: 50th percentile (**median**).
- **3rd quartile** (**Q3**): 75th percentile.

The interval **[Q1, Q3]** contains "middle 50%" of data.

Interquartile range (IQR) measures spread.

• IQR = Q3 - Q1.

Definition of an **outlier**:

- Values > Q3 + 1.5 * IQR
- Values < Q1 1.5 * IQR

The length of this region is the IQR

Box Plots

Outliers (> Q3 + 1.5*IQR) 10 **Whisker**: Largest <u>actual</u> value that is not an outlier. **3rd quartile** (75th percentile) Gross domestic product: % growth : 2016 **2nd quartile** (median) 1st quartile (25th percentile) Whisker: Smallest actual value that is not an outlier. Outliers (< Q1 - 1.5*IQR) -10

What's the minimum possible length of a boxplot whisker?

Hypothetical Slido boxplot

Outliers (> Q3 + 1.5*IQR)

Side-by-side Box Plots

What if we wanted to incorporate a *qualitative* variable as well? For example, compare the distribution of a quantitative continuous variable *across* different qualitative **categories**.

3123588

sns.boxplot(data=wb, x="Continent", y="Gross domestic product: % growth : 2016");

GDP growth: quantitative continuous

Note: Color has no meaning here! seaborn defaults to different colors.

Violin Plots

Violin plots are just box plots with smoothed density curves.

- The width indicates the density of points.
- Q1, median, Q3, and "whiskers" are still present - look closely!

Which of the following can show the modality of a distribution?

Box plots cannot show modality

This distribution is (arguably) multimodal.

You cannot know this based on just the boxplot.

Comparing box plots and Violin Plots

2-min stretch!

data-to-viz.com → A beautiful
resource for exploring plots!

BOX & BEARD PLOT

Kernel Density Estimation (KDE)

Lecture 7, Data 100 Summer 2025

Visualization

- Goals of visualization
- Visualizing distributions
- Kernel density estimation (KDE)

Kernel Density Estimation (KDE): Intuition

Sometimes, we want to identify *general* trends of a distribution, rather than focus on details. Smoothing a distribution helps **generalize** the structure of the data and reduce **noise**.

A KDE curve and histogram for the **same** data

Idea: Approximate the data-generating distribution.

- Assign an "error range" (kernel) to each data point, to account for randomness in sampling.
- Sum up the kernels across all data points.
- 3. **Scale** the resulting distribution to have area=1.

Kernel Density Estimation (KDE): Process

Idea: Approximate the data-generating distribution.

- Place a **kernel** at each data point.
- **Normalize** kernels so that total area = 1.
- 3. **Sum** all normalized kernels.

A **kernel** is a function that tries to capture the randomness of our sampled data.

The **kernel** models the probability of us sampling that datapoint.

Area below integrates to 1.

A **datapoint** in our dataset

Step 1 - Place a Kernel at Each Data Point

Consider a fake dataset with just five datapoints.

- Place a Gaussian (i.e., normal) kernel with bandwidth of $\alpha = 1$ ("alpha=1").
- We will precisely define both the Gaussian kernel and bandwidth in a few slides.

Each line represents a datapoint in the dataset (e.g., one country's HIV rate). This is a **rug plot**.

Place a kernel on top of each datapoint.

Step2 - Normalize Kernels

In Step 3, we will sum the kernels to produce a distribution.

- We want the result to be a valid probability distribution that has area=1.
- We have n=5 different kernels, each with an area 1.
- So, in Step 2 we **normalize** by multiplying each kernel by **%**.

Each normalized kernel has density 1/5.

46

Step 3 – Sum the Normalized Kernels

At each point in the distribution, add up the values of all kernels. This gives us a smooth curve with area=1 \rightarrow an approximation of a probability distribution!

3123588

Sum the five normalized curves together.

The final KDE curve.

Producing a KDE plot with seaborn

Rug plot of the original data.

sns.rugplot(points)

Each line represents a datapoint in the dataset (e.g., one country's HIV rate).

The density at each x is the sum of the height of all 5 normalized kernels at that x.

Producing a KDE plot with seaborn - Alternate Method

Rug plot of the original data.

sns.rugplot(points)

Each line represents a datapoint in the dataset (e.g., one country's HIV rate).

The density at each x is the sum of the height of all 5 normalized kernels at that x.

displot is a wrapper for **histplot**, **kdeplot**, and **ecdfplot** to plot distributions.

Summary of KDE

3123588

$$f_{\alpha}(x) = \frac{3}{n} \sum_{i=1}^{4} K_{\alpha}(x, x_i)$$

A general "KDE formula" function is given above.

 $f_a(x)$ is the end result \rightarrow **Height** of the final KDE curve at any x-value.

 $K_a(x, x_i)$ is the height of the chosen **kernel** function for observation i, at any x-value. The **center** of the kernel is at the specific x-value of observation i.

Summary of KDE

 $f_a(X)$

$$f_{\alpha}(x) = \frac{1}{n} \sum_{i=1}^{3} K_{\alpha}(x, x_i)$$

A general "KDE formula" function is given above.

- $f_a(x)$ is the end result \rightarrow **Height** of the final KDE curve at any x-value.
- $K_a(x, x_i)$ is the height of the chosen **kernel** function for observation i, at any x-value. The **center** of the kernel is at the specific x-value of observation i.
- \mathfrak{g} n is the # of data points.
 - We multiply by 1/n to normalize the kernels so that total area = 1.
- Each x_i (x_1 , x_2 , ..., x_n) represents an observed data point. We sum the n kernels (one for each datapoint) to create the final KDE curve.

a is the **bandwidth** or **smoothing parameter**.

Kernels

3123588

- A **kernel** is a valid density function, meaning:
 - It must be non-negative for all inputs.
 - It must integrate to 1 (area under curve = 1).

- Gaussian = Normal distribution = bell curve.
- Here, x represents any input, and x_i represents the ith observed datapoint.
- Each kernel is **centered** on an observed x_i value.
- a is the bandwidth parameter. It controls the smoothness of our KDE. Here, it is also the standard deviation of the Gaussian.

$$K_{\alpha}(x,x_i) = \frac{1}{\sqrt{2\pi\alpha^2}} e^{-\frac{(x-x_i)^2}{2\alpha^2}}$$

Don't memorize this formula! Understand its shape and how the bandwidth parameter \mathbf{a} smoothes the KDE.

Effect of Bandwidth on KDEs

3123588

 $\mathbf{a} = 2$

50

Bandwidth is analogous to the width of each **bin** in a histogram.

- As **a** increases, the KDE becomes smoother.
- \mathbf{a} too small \rightarrow Noisy
- a too big → Hides important distributional info (e.g., multimodality).

0.08

0.06

0.04

0.02

10

Other Kernels: Boxcar

Another example kernel: the **boxcar kernel**.

- **Uniform** (i.e., constant) density to points within a "window" of the observation, and 0 elsewhere.
- Resembles a histogram... sort of.

$$K_{\alpha}(x, x_i) = \begin{cases} \frac{1}{\alpha}, & |x - x_i| \le \frac{\alpha}{2} \\ 0, & \text{else} \end{cases}$$

 Not of any practical use! Presented as a simple theoretical alternative to test KDE knowledge.

A boxcar kernel centered on $x_i = 4$ with

Which of the following are valid kernel density plots?

Have a Normal Day!

LECTURE 7

Visualization I

Content credit: <u>Acknowledgments</u>

