MATHF-3001 — Théorie de la mesure Résolution des TPs

R. Petit

Année académique 2018 - 2019

1 Séance 1

Exercice 1.1. Soient (X, \mathfrak{F}) un espace mesurable et $Y \subset X$. Mq $\mathfrak{F}_Y := \mathfrak{F} \cap Y$ est une σ -algèbre sur Y.

Résolution.

- 1. $\emptyset \in \mathcal{F}$, donc $\emptyset \cap Y = \emptyset \in \mathcal{F}_Y$.
- 2. Soit $F\in \mathfrak{F}.$ $F\cap Y\in \mathfrak{F}_Y$ et donc :

$$Y \setminus (F \cap Y) = Y \setminus F \cup \emptyset = Y \cap F^{C} \in \mathcal{F}_{Y}$$

car $F^{C} \in \mathcal{F}$.

3. Soit $(F_n)_{n\geqslant 0}\in \mathcal{F}^{\mathbb{N}}$. On sait que $\bigcup_{n\geqslant 0}F_n\in \mathcal{F}$. De plus $(F_n\cap Y)_{n\geqslant 0}\in \mathcal{F}_Y^{\mathbb{N}}$. Donc :

$$\bigcup_{n\geqslant 0}(F_n\cap Y)=\bigcup_{n\geqslant 0}F_n\cap Y\in \mathfrak{F}_Y.$$

Exercice 1.2.

1. Soit X un ensemble fini. Décrire la σ-algèbre engendrée par la classe des parties finies de X. Que peut-on dire si X est fini ?

2. Dans X = [0, n], on considère $A = \{0\}$ et $B = \{\{0\}, \{1, 2\}\}$. Décrire $\sigma(A)$ et $\sigma(B)$.

Résolution.

1. Soit $\mathcal{F} = \sigma(\{Y \in \mathcal{P}(X) \text{ s.t. } Y \text{ est fini } \})$. Alors :

$$\mathfrak{F} = \{Y \in \mathfrak{P}(X) \text{ s.t. } Y \text{ est au plus dénombrable ou } Y^\complement \text{ est au plus dénombrable} \}$$

car la famille doit être stable par complémentaire (d'où la définition symétrique par complémentarité) et par union dénombrable (d'où le fait que Y ou Y^{\complement} soit au plus dénombrable). Si X est fini, alors l'ensemble des parties finies de X est exactement $\mathfrak{P}(X)$ qui est une σ -algèbre. Donc $\mathfrak{F}=\sigma(\mathfrak{P}(X))=\mathfrak{P}(X)$.

2. $\sigma(\mathcal{A})$ est la σ -algèbre engendrée par un unique élément donc : $\sigma(\mathcal{A}) = \{\emptyset, \{0\}, \{0\}^\complement, [\![0,n]\!]\}$ où $\{0\}^\complement = [\![1,n]\!]$.

$$\sigma(\mathfrak{B}) = \{\emptyset, \{0\}, \{1,2\}, \{0,1,2\}, [\![3,n]\!]\,, [\![1,n]\!]\,, \{0\} \cup [\![3,n]\!]\,, [\![0,n]\!]\}.$$

Exercice 1.3. *Soient* X, Y *deux ensembles, et* $f: X \rightarrow Y$.

- 1. Si \mathcal{F} est une σ -algèbre sur Y, mq $\mathcal{A} := f^{-1}(\mathcal{F})$ est une σ -algèbre sur X.
- 2. Soit A une σ -algèbre sur X.
 - (a) $Mq \mathcal{F} := \{B \in \mathcal{P}(Y) \text{ s.t. } f^{-1}(B) \in \mathcal{A}\} \text{ est une } \sigma\text{-algèbre sur } Y.$
 - (b) Que peut-on dire de f(A)?

Résolution.

1.

- $\emptyset \in \mathcal{F} \operatorname{donc} \emptyset = f^{-1}(\emptyset) \in f^{-1}(\mathcal{F}).$
- Soit $A \in \mathcal{A}$. Il existe $B \in \mathcal{F}$ s.t. $f^{-1}(B) = A$. $f^{-1}(Y \setminus B) = X \setminus A \in \mathcal{A}$.
- $\text{ Soit } (A_n)_{n\geqslant 0} \in \mathcal{A}^{\mathbb{N}}. \text{ Il existe } (B_n)_{n\geqslant 0} \in \mathcal{F}^{\mathbb{N}} \text{ s.t. } \forall n\geqslant 0: A_n = f^{-1}(B_n). \bigcup_{n\geqslant 0} A_n = \bigcup_{n\geqslant 0} f^{-1}(B_n) = f^{-1}\left(\bigcup_{n\geqslant 0} B_n\right) \in f^{-1}(\mathcal{F}).$

2.

- (a)
- $-\emptyset \in \mathcal{A} \text{ donc } \emptyset \in \mathcal{F}.$
 - Soient $B \in \mathcal{F}$, $A := f^{-1}(B)$. $f^{-1}(B^{\complement}) = f^{-1}(Y) \setminus f^{-1}(B) = f^{-1}(B)^{\complement} \in \mathcal{A}$.
 - Soit $(B_n)_{n\geqslant 0} \in \mathcal{F}^{\mathbb{N}}$. On pose $B := \bigcup_{n\geqslant 0} B_n$.

$$f^{-1}(B)=\bigcup_{n\geqslant 0}f^{-1}(B_n)=\bigcup_{n\geqslant 0}A_n\in\mathcal{A}$$

où
$$\forall n \geqslant 0 : A_n = f^{-1}(B_n) \in \mathcal{A}$$
. Donc $B \in \mathcal{F}$.

(b) f(A) n'est pas nécessairement une σ -algèbre : l'égalité $f(A^{\complement}) = f(A)^{\complement}$ n'est pas vraie en général. Par exemple pour $f: [\pm \varepsilon] \to [0, \varepsilon^2] : x \mapsto x^2$, on a :

$$[0, \varepsilon^2] = f([-\varepsilon, 0]) = f([\pm \varepsilon] \setminus [0, +\varepsilon]) \neq f([\pm \varepsilon]) \setminus f([0, \varepsilon]) = [0, \varepsilon^2] \setminus [0, \varepsilon^2] = \emptyset.$$

Donc rien ne garantit que f(A) est stable par passage au complémentaire.

TODO: Donner un contre-exemple avec des σ -algèbres finies sur de petits ensembles.

Exercice 1.4. Soient $(X, \mathcal{A}), (Y, \mathcal{B})$ espaces mesurables. Soit $\mathcal{F} \subset \mathcal{P}(Y)$. Si $\mathcal{B} = \sigma(\mathcal{F})$, mq $f: X \to Y$ est mesurable ssi $f^{-1}(\mathcal{F}) \subseteq \mathcal{A}$.

 $\underline{\Leftarrow}$: on pose $\mathcal{B}' \coloneqq \{B \in \mathcal{B} \text{ s.t. } f^{-1}(B) \in \mathcal{A}\}$. Par le point précédent, \mathcal{B}' est une σ -algèbre. Par hypothèse : $\mathcal{F} \subset \mathcal{B}'$, et donc $\sigma(\mathcal{F}) \subset \sigma(\mathcal{B}') = \mathcal{B}'$. Or $\mathcal{B} = \sigma(\mathcal{F})$. De plus, puisque $\mathcal{B}' \subset \mathcal{B}$, on a $\mathcal{B} \subset \mathcal{B}' \subset \mathcal{B}$, ce qui implique $\mathcal{B} = \mathcal{B}'$, i.e. :

$$\forall B \in \mathcal{B} : f^{-1}(B) \in \mathcal{A}.$$

Exercice 1.5.

- 1. Mq toute intersection (non-vide) de classes de Dynkin est une classe de Dynkin.
- 2. Mq pour tout $\mathfrak{F} \subset \mathfrak{P}(X)$ il existe une plus petite classe de Dynkin au sens de l'inclusion (notée $\lambda(\mathfrak{F})$).
- 3. Mg si $\mathbb D$ est une classe de Dynkin stable par intersections finies, alors $\mathbb D$ est une σ -algèbre.

4. Mq si $\mathfrak{F} \subset \mathfrak{P}(X)$ est stable par intersections finies, alors $\lambda(\mathfrak{F}) = \sigma(\mathfrak{F})$.

Résolution.

- 1. [Exactement même raisonement que pour les σ -algèbres] Soit $(\mathcal{D}_i)_{i \in I}$ une famille non-vide de classes de Dynkin et soit $\mathfrak{D} \coloneqq \bigcap_{i \in I} \mathfrak{D}_i$.
 - \forall i ∈ I : \emptyset ∈ \mathcal{D}_i donc \emptyset ∈ \mathcal{D} .
 - Soit $D \in \mathcal{D}$. Puisque $\forall i \in I : D \in \mathcal{D}_i$ et que les \mathcal{D}_i sont des classes de Dynkin, on a $\forall i \in I : D^{\complement} \in \mathcal{D}_i$ et donc $D^{\complement} \in \mathcal{D}$.
 - Soit $(D_n)_{n\geqslant 0}\in \mathcal{D}^{\mathbb{N}}$. On sait que $\forall i\in I: \bigsqcup_{n\geqslant 0}D_n\in \mathcal{D}_i$ et donc $\bigsqcup_{n\geqslant 0}D_n\in \mathcal{D}$.
- 2. Comme pour les σ -algèbres, on peut définir :

$$\lambda(\mathfrak{F})\coloneqq\bigcap_{\substack{\mathfrak{D}\ \mathrm{Dynkin}\ \mathfrak{F}\subset\mathfrak{D}}}\mathfrak{D}.$$

Par le point ci-dessus, $\lambda(\mathcal{F})$ est une classe de Dynkin et toute classe de Dynkin $\mathcal{D}' \supset \mathcal{F}$ contient $\lambda(\mathcal{F})$ par définition.

- 3. Soit $\mathbb D$ une classe de Dynkin stable par intersections finies et soit $(D_n)_{n\geqslant 0}\in \mathbb D^{\mathbb N}$. Montrons donc que $\bigcup_{n\geqslant 0}D_n\in\mathcal{D}.$ On pose $B_0\coloneqq D_0$ et pour n>0, on pose $B_n\coloneqq A_n\cap(\bigcap_{j=1}^{n-1}B_j^\complement).$ Par récurrence, on observe que les B_n sont dans $\mathcal D$ par stabilité sous intersections finies. De plus les B_n sont disjoints deux à deux et leur union est égale à l'union des D_n . Donc $\bigcup_{n\geqslant 0}D_n\in \mathfrak{D}.$
- 4. Soit $D \in \lambda(\mathfrak{F})$. On pose $\mathfrak{D}_D \coloneqq \{Q \in \lambda(\mathfrak{F}) \text{ s.t. } Q \cap D \in \lambda(\mathfrak{F})\} \subset \lambda(\mathfrak{F})$. Montrons que \mathfrak{D}_D est une classe de Dynkin.

complément, stabilité par union disjointe.

— Soit $(Q_n)_{n\geqslant 0}\in \mathcal{D}_D^{\mathbb{N}}$ deux à deux disjoints. On a :

$$\bigsqcup_{n\geqslant 0}Q_n\cap D=\bigsqcup_{n\geqslant 0}(\underbrace{Q_n\cap D}_{\in\lambda(\mathfrak{F})})\in\lambda(\mathfrak{F}).$$

On remarque également que si $D \in \mathcal{F} : \mathcal{F} \subset \mathcal{D}_D \subset \lambda(\mathcal{F})$, ce qui implique $\lambda(\mathcal{F}) = \mathcal{D}_D$.

Or par symétrie de l'intersection, pour D, $Q \in \lambda(\mathcal{F})$ on $a : Q \in \mathcal{D}_D \iff D \in \mathcal{D}_Q$. Dès lors on a une équivalence entre les deux assertions suivantes :

- ∀(D, Q) ∈ 𝓕 × λ(𝓕) : Q ∈ 𝔻_D (autrement dit ∀D ∈ 𝓕 : λ(𝓕) = 𝔻_D);
- ∀(D, Q) ∈ 𝓕 × λ(𝓕) : D ∈ 𝔻_O (autrement dit ∀Q ∈ λ(𝓕) : 𝓕 ⊂ 𝔻_O).

On peut alors en déduire que $\forall Q \in \lambda(\mathcal{F}) : \lambda(\mathcal{F}) = \mathcal{D}_Q$. Dès lors, montrer que $\lambda(\mathcal{F})$ est stable par instersections finies revient à montrer que $\forall D, Q \in \lambda(\mathcal{F}) : D \cap Q \in \lambda(\mathcal{F})$, i.e. $D \in \mathcal{D}_Q = \lambda(\mathcal{F})$. On a donc bien la stabilité de $\lambda(\mathcal{F})$ sous intersections finies, on peut donc déduire que $\lambda(\mathcal{F})$ est une σ -algèbre qui contient \mathcal{F} , donc $\sigma(\mathcal{F}) \subset \lambda(\mathcal{F})$. Or toute σ -algèbre est une classe de Dynkin, donc $\lambda(\mathcal{F}) \subset \sigma(\mathcal{F})$, ce qui permet de conclure.

2 Séance 2

Exercice 2.1. Soient (X, \mathfrak{F}) un espace mesurable et μ une fonction additive sur \mathcal{A} à valeurs dans \mathbb{R}^+ . Mq les conditions suivantes sont équivalentes :

- 1. μ est σ -additive;
- 2. µ est continue à gauche;
- 3. µ est continue à droite.

Donner un exemple de mesure $\mu: \mathcal{A} \to [0, +\infty]$ qui ne satisfait pas le point 3. Que faut-il ajouter comme hypothèse pour ce résultat ?

Résolution.

 $\underline{1.\Rightarrow 2.}$ Soit $(B_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$. On pose $A_0\coloneqq B_0$ et $\forall n>0$: $A_n\coloneqq B_n\setminus B_{n-1}$, ce qui donne (car les A_n sont dans \mathcal{A}):

$$\mu\left(\bigcup_{n\geqslant 0}B_n\right)=\mu\left(\bigsqcup_{n\geqslant 0}A_n\right)=\sum_{n\geqslant 0}\mu(A_n)=\lim_{N\to+\infty}\underbrace{\sum_{n=0}^N\mu(A_n)}_{=\mu(B_N)}=\lim_{N\to+\infty}\mu(B_N).$$

 $\underline{2. \Rightarrow 1.}$ Soit $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$ deux à deux disjoints. On pose $B_0\coloneqq A_0$ et $\forall n>0$: $B_n\coloneqq A_n\cup B_{n-1}$. Les B_n forment une suite croissante dans \mathcal{A} . On a alors :

$$\mu\left(\bigsqcup_{n\geqslant 0}A_n\right)=\mu\left(\bigcup_{n\geqslant 0}B_n\right)=\lim_{n\to +\infty}\mu(B_n)=\lim_{n\to +\infty}\mu\left(\bigsqcup_{j=0}^nA_j\right)=\lim_{n\to +\infty}\sum_{j=0}^n\mu(A_j)=\sum_{n\geqslant 0}\mu(A_n).$$

 $\underline{2. \Rightarrow 3.}$ Soit $(C_n)_{n\geqslant 0}\in \mathcal{A}^\mathbb{N}$ une suite décroissante. On a alors que $(C_n^{\mathfrak{C}})_{n\geqslant 0}$ est une suite croissante dans $\mathcal{A}.$ Donc :

$$\mu\left(\bigcup_{n\geqslant 0}C_n^{\mathfrak{C}}\right)=\lim_{n\to+\infty}\mu(C_n^{\mathfrak{C}})=\mu(X)-\lim_{n\to+\infty}\mu(C_n^{\mathfrak{C}})$$

car $\mu(X) < +\infty$. De plus :

$$\mu\left(\bigcup_{n\geqslant 0}C_n^{\mathfrak{C}}\right)=\mu\left(\left(\bigcap_{n\geqslant 0}C_n\right)^{\mathfrak{C}}\right)=\mu(X)-\mu\left(\bigcap_{n\geqslant 0}C_n\right).$$

Par finitude de µ, on conclut :

$$\mu\left(\bigcap_{n\geqslant 0}C_n\right)=\lim_{n\to+\infty}\mu(C_n).$$

 $\underline{3.\Rightarrow 2.}$ Exactement même raisonnement par passage au complémentaire. Si la mesure n'est pas finie, on peut construire une suite $(C_n)_n$ telle que $\forall n\geqslant 0: \mu(C_n)=+\infty$ et $\bigcap_{n\geqslant 0}C_n=\emptyset$. Par exemple, dans l'espace mesuré $(\mathbb{N},\mathcal{P}(\mathbb{N}),\#=|\cdot|): \forall n\geqslant 0: C_n:=\{\mathfrak{m}\in\mathbb{N} \text{ s.t. }\mathfrak{m}>n\}$ est de mesure $+\infty$ et $\bigcap_{n\geqslant 0}C_n=\emptyset$. On a donc :

$$\mu\left(\bigcap_{n\geqslant 0}C_n\right)=\mu(\emptyset)=0\neq +\infty=\lim_{n\to +\infty}+\infty=\lim_{n\to +\infty}\mu(C_n).$$

Il faut donc supposer que pour la suite $(C_n)_n$, il existe $n_0 \in \mathbb{N}$ s.t. $\mu(C_n) \nleq +\infty$ afin d'éviter le cas où $(\mu(C_n))_{n\geqslant 0}$ est infinie pour tous les termes.

Exercice 2.2. Soit X un ensemble non dénombrable et $A = \{A \in \mathcal{P}(X) \text{ s.t. A ou } A^{\complement} \text{ est dénombrable}\}$. Soit $\mu: A \to \{0,1\}$ où $\mu(A) = 0 \iff A$ est dénombrable. Mq μ est une mesure sur (X,A).

Résolution. A est une σ -algèbre (voir cours).

- $\mu(\emptyset) = 0$ car \emptyset est fini.
- Soit $(A_n)_{n\geqslant 0}\in \mathcal{A}^\mathbb{N}$ deux à deux disjoints. On note $A:=\bigsqcup_{n\geqslant 0}A_n$. On a soit $\mu(A)=0$ ou $\mu(A)=1$, et:

$$\mu(A) = 0 \iff \underbrace{\forall n \geqslant 0 : \mu(A_n) = 0}_{\text{i.e. tous les } A_n \text{ dénombrables}},$$

et donc:

$$\mu(A)=0=\sum_{n\geqslant 0}0=\sum_{n\geqslant 0}\mu(A_n)$$

Exercice 2.3. Soit (X, A, \mathbb{P}) un espace de probabilité. Mq $\mathfrak{T} := \{A \in A \text{ s.t. } \mathbb{P}(A) \in \{0, 1\}\}$ est une σ -algèbre.

Résolution.

- $\mathbb{P}(\emptyset) = 0 \text{ donc } \emptyset \in \mathfrak{T}.$
- Soit $A \in \mathcal{T}$. En particulier $A \in \mathcal{A}$ et $\mathbb{P}(A) \in \{0,1\}$. Puisque \mathbb{P} est une mesure (finie), on a $\mathbb{P}(A^{\complement}) = \mathbb{P}(X) \mathbb{P}(A) = 1 \mathbb{P}(A) \in \{0,1\}$. Donc $A^{\complement} \in \mathcal{T}$.
- Soit $(A_n)_{n\geqslant 0}\in \mathfrak{I}^{\mathbb{N}}.$ On note $A\coloneqq\bigcup_{n\geqslant 0}A_n.$ Mq $\mathbb{P}(A)\in\{0,1\}.$
 - si $\forall n \geqslant 0$: $\mathbb{P}(A_n) = 0$, alors par σ-sous-additivité $0 \leqslant \mathbb{P}(A) \leqslant \sum_{n \geqslant 0} \mathbb{P}(A_n) = 0$.
 - si $\exists n_0 \in \mathbb{N}$ s.t. $\mathbb{P}(A_{n_0}) = 1$, alors par monotonie, puisque $A_{n_0} \subseteq A \subseteq X$:

$$1 = \mathbb{P}(A_{n_0}) \leqslant \mathbb{P}(A) \leqslant \mathbb{P}(X) = 1.$$

Exercice 2.4. Soient (X, \mathcal{A}, μ) un espace mesuré, (Y, \mathcal{B}) un espace mesurable et $g: X \to Y$ une application mesurable. On pose :

$$\nu: \mathcal{B} \to [0, +\infty]: \mathcal{B} \mapsto \mu(\mathfrak{q}^{-1}(\mathcal{B})).$$

Mq ν est une mesure sur (Y, \mathcal{B}) .

<u>Résolution</u>. On sait que $\forall B \in \mathcal{B} : g^{-1}(B) \in \mathcal{A}$ puisque g est mesurable. Donc v est bien définie. Mq v est une mesure.

- $\nu(\emptyset) = \mu(g^{-1}(\emptyset)) = \mu(\emptyset) = 0$ car μ est une mesure.
- Soient $(B_n)_{n\geqslant 0} \in \mathcal{B}^{\mathbb{N}}$ deux à deux disjoints. Mq ν est σ-additive.

$$\nu\left(\bigsqcup_{n\geqslant 0}B_n\right)=\mu\left(g^{-1}\left(\bigsqcup_{n\geqslant 0}B_n\right)\right)=\mu\left(\bigsqcup_{n\geqslant 0}g^{-1}(B_n)\right)=\sum_{n\geqslant 0}\mu(g^{-1}(B_n))=\sum_{n\geqslant 0}\nu(B_n).$$

Exercice 2.5. *Soit* (X, A) *un espace mesurable.*

- 1. Pour $x \in X$, $mq \delta_x$ est une mesure.
- 2. Mq si μ est une mesure sur (X, A) s.t. $\forall A \in A : \mu(A) = 0 \iff x \notin A$ alors $\exists C \ngeq 0$ s.t. $\mu = C\delta_x$.

Résolution.

- 1. Mq δ_x est une mesure.
 - $-\delta_{\mathbf{x}}(\emptyset) = 0 \operatorname{car} \mathbf{x} \notin \emptyset.$
 - Soit $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$ 2 à 2 disjoints. Mq $\delta_x(\bigsqcup_{n\geqslant 0}A_n)=\sum_{n\geqslant 0}\delta_x(A_n)$.
 - Si $\delta_x(\bigsqcup_{n\geq 0} A_n) = 0$, alors $\forall n \geq 0 : x \notin A_n$, i.e. $\forall n \geq 0 : \delta_x(A_n) = 0$.
 - Si $\delta_x(\bigsqcup_{n\geqslant 0}A_n)=1$, alors $\exists n_0 \text{ s.t. } x\in A_{n_0}.$ Et puisque les A_n sont disjoints, $\forall n\neq n_0: x\not\in A_n.$
- 2. Soient B, $C \in \mathcal{A}$ s.t. $\mu(B) \neq 0 \neq \mu(C)$. Alors $\delta_x(B) = 1 = \delta_x(C)$. Mq $\mu(B) = \mu(C)$. B \cap $C \neq \emptyset$ puisque $x \in B \cap C$. On pose $\tilde{C} \coloneqq C \cap B^{\complement}$ et $\tilde{B} \coloneqq C^{\complement} \cap B$. On a alors que B et \tilde{C} sont disjoints (C et \tilde{B} également). De plus, $x \notin \tilde{B}$ et $x \notin \tilde{C}$, et donc $\mu(\tilde{B}) = \mu(\tilde{C}) = 0$. On a donc :

$$\mu(C) = \mu(C) + \mu(\tilde{B}) = \mu(C \sqcup \tilde{B}) = \mu(B \cup C) = \mu(B \sqcup \tilde{C}) = \mu(B) + \mu(\tilde{C}) = \mu(B).$$

On a donc $\mu : \mathcal{A} \to \{0, C\}$ où $\mu(A) \iff \delta_{\kappa}(A) = 1$.

Exercice 2.6. Soit (X, A) un espace mesurable. Mq la mesure de comptage est une mesure.

Résolution.

- $-- |\emptyset| = 0.$
- La σ-additivité est triviale : $\left| \bigsqcup_{n \geqslant 0} A_n \right| = \sum_{n \geqslant 0} |A|_n$.

Exercice 2.7. Soit X un ensemble fini non-vide. Mq $\mu = \frac{|\cdot|}{|X|}$ est une mesure de proba sur $(X, \mathcal{P}(X))$.

Résolution.

- $-\mu(\emptyset) = 0/|X| = 0.$
- Soient $(A_n)_{n\geqslant 0}\in \mathcal{P}(X)^{\mathbb{N}}$ 2 à 2 disjoints.

$$\mu(\bigsqcup_{n\geqslant 0}A_n)=\frac{\sum_{n\geqslant 0}|A_n|}{|X|}=\sum_{n\geqslant 0}\frac{|A_n|}{|X|}.$$

Note: si (X, \mathcal{A}, μ) est un espace mesuré, alors $\forall \alpha > 0 : \alpha \mu : \mathcal{A} \to [0, +\infty] : A \mapsto \alpha \cdot \mu(A)$ est une mesure sur (X, \mathcal{A}) . Donc l'exercice peut être simplement résolu par le fait que μ est la mesure de comptage normalisée par $|X| \in \mathbb{R}^{+*}$

Exercice 2.8. *Soit* (X, A) *un espace de mesure.*

- 1. Soit $(\mu_n)_{n\geq 0}$ une suite croissante de mesures sur (X,A). Mq $\mu:=\lim_{n\to+\infty}\mu_n$ est une mesure.
- 2. Soit $(\mu_n)_{n\geqslant 0}$ une suite de mesures. Est-ce que $\mu\coloneqq\sum_{n\geqslant 0}\mu_n$ est une mesure?
- 3. Pour $n \ge 0$, on définit la mesure μ_n sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ par $\mu_n(A) = |A \cap [n, +\infty)|$.
 - Mq $\forall n \geqslant 0$: μ_n est bien une mesure et que la suite $(\mu_n)_n$ est décroissante.
 - Est-ce que $\mu = \lim_{n \to +\infty} \mu_n$ est une mesure sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$? Caractériser entièrement μ .

Résolution.

- 1. On note que puisque la suite des μ_n est croissante, pour tout $A \in \mathcal{A}$, $\mu(A)$ est bien définie car soit la suite $(\mu_n(A))_n$ converge vers une valeur réelle, soit elle diverge vers $+\infty$.
 - $\mu(\emptyset) = \lim_{n \to +\infty} \mu_n(\emptyset) = 0.$
 - Soient $(A_n)_{n\geqslant 0}$ 2 à 2 disjoints.

$$\begin{split} \mu\left(\bigsqcup_{n\geqslant 0}A_n\right) &= \lim_{k\to +\infty}\mu_k\left(\bigsqcup_{n\geqslant 0}A_n\right) = \lim_{k\to +\infty}\lim_{N\to +\infty}\sum_{n=0}^N\mu_k(A_n)\\ &= \lim_{N\to +\infty}\sum_{n=0}^N\lim_{k\to +\infty}\mu_k(A_n) = \sum_{n\geqslant 0}\lim_{k\to +\infty}\mu_k(A_n) = \sum_{n\geqslant 0}\mu(A_n). \end{split}$$

2

- $--\mu(\emptyset) = \sum_{n\geqslant 0} \mu_n(\emptyset) = 0.$
- Soient $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$ 2 à 2 disjoints. On note $A\coloneqq\bigsqcup_{n\geqslant 0}A_n$. Par non-négativité des $(\mu_k(A_n))_{n,k}$, on a que les sommes sur k et n commutent, i.e. :

$$\sum_{k\geqslant 0}\sum_{n\geqslant 0}\mu_k(A_n)=\sum_{n\geqslant 0}\sum_{k\geqslant 0}\mu_k(A_n)\text{,}$$

et donc $\mu(A) = \sum_{n \geqslant 0} \mu(A_n)$.

On en déduit donc que $\mu = \sum_{k \geqslant 0} \mu_k$ est une mesure sur (X, \mathcal{A}) . De plus, puisque $\alpha \cdot \mu$ (pour $\alpha > 0$, μ mesure sur (X, \mathcal{A})) est également une mesure sur (X, \mathcal{A}) , on a que pour $(\alpha_n)_{n \geqslant 0} \in (\mathbb{R}^{+*})^{\mathbb{N}} : \mu = \sum_{n \geqslant 0} \alpha_n \mu_n$ est une mesure également.

3.

- Soit $n \in \mathbb{N}$.
 - $\mu_n(\emptyset) = |\emptyset| = 0.$
 - La σ-additivité est triviale par la σ-additivité de la mesure de comptage.

De plus, pour
$$A \in \mathcal{P}(\mathbb{N})$$
 et $n \in \mathbb{N}$: $\mu_n(A) = \Big|\underbrace{A \cap [n, +\infty)}_{\supseteq A \cap [n+1, +\infty)}\Big| \geqslant \mu_{n+1}(A)$.

- Soit $A \in \mathcal{P}(\mathbb{N})$. Deux cas sont à distinguer :
 - (a) Soit A est fini, en quel cas max A est fini et donc $\forall n > \max A : \mu_n(A) = 0$, et donc $\mu(A) = 0$.
 - (b) Soit A est infini, et donc dénombrable. On a alors $\forall n \geqslant 0: A \cap [n, +\infty) \neq \emptyset$ car si il existe un $n \geqslant 0$ tel que $A \cap [n, +\infty) = \emptyset$, alors $A \subset [0, n) \cap \mathbb{N}$, et donc A est fini. Dès lors $\mu(A) > 0$. De plus: $\forall n \geqslant 0: \mu_n(A) = +\infty$. Car si $\exists n \geqslant 0$ s.t. $\mu_n(A) \lneq +\infty$, alors $\mu_n(A) = |A \cap [n, +\infty)| = k \in \mathbb{N}$ et donc $A \cap [n, +\infty) = \{m_1, \dots, m_k\}$. Dans ce cas: $\mu_{m_k+1}(A) = 0$, ce qui est une contradiction.

On en déduit que si A est infini (dénombrable), alors $\mu(A) = +\infty$.

 μ vaut donc 0 sur les parties finies de $\mathbb N$ et $+\infty$ sur les parties dénombrables. μ n'est donc pas une mesure car : $\mu(\mathbb N) = \sum_{n \in \mathbb N} \mu(\{n\}) = \sum_{n \geq 0} 0 = 0 \neq +\infty$.

Exercice 2.9. Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_n)_{n\geqslant 0}\in \mathcal{A}^{\mathbb{N}}$.

1. *Mq*:

$$\mu\left(\liminf_{n\to+\infty}A_n\right)\leqslant \liminf_{n\to+\infty}\mu(A_n).$$

2. $Si \exists n_0 \in \mathbb{N} \text{ s.t. } \mu\left(\bigcup_{n \geqslant n_0} A_n\right) \leqslant +\infty, mq$:

$$\mu\left(\limsup_{n\to+\infty}A_n\right)\geqslant \limsup_{n\to+\infty}\mu(A_n).$$

Résolution.

1. Pour $n \ge 0$: on pose $B_n := \bigcap_{m \ge n} A_m$. La suite $(B_n)_{n \ge 0}$ est trivialement croissante. On a donc:

$$\mu\left(\liminf_{n\to+\infty}A_n\right)=\mu\left(\bigcup_{n\geqslant0}B_n\right)=\lim_{n\to+\infty}\mu(B_n),$$

et:

$$\liminf_{n\to +\infty}\mu(A_n)=\lim_{n\to +\infty}\inf_{k\geqslant n}\mu(A_k).$$

De plus : $\mu(B_n) = \mu\left(\bigcap_{k\geqslant n}A_k\right) \leqslant \mu(A_m)$ pour $m\geqslant n$ par monotonie de μ , et donc en particulier $\mu(B_n)\leqslant\inf_{k\geqslant n}\mu(A_k)$. Dès lors la suite $\mu(B_n)_n$ est dominée par $(\inf_{k\geqslant n}\mu(A_k))_n$. Dès lors :

$$\mu\left(\liminf_{n\to+\infty}A_n\right)=\lim_{n\to+\infty}\mu(B_n)\leqslant \lim_{n\to+\infty}\inf_{k\geqslant n}\mu(A_k)=\liminf_{n\to+\infty}\mu(A_n).$$

2. On pose $C_n := \bigcup_{m \geqslant n} A_m$. On sait qu'il existe $n_0 \in \mathbb{N}$ s.t. $\mu\left(C_{n_0}\right) \lneq +\infty$. Les C_n forment une suite décroissante. On a donc :

$$\mu\left(\limsup_{n\to+\infty}A_n\right)=\mu\left(\bigcap_{n\geqslant 0}C_n\right)=\lim_{n\to+\infty}\mu(C_n).$$

De plus:

$$\limsup_{n \to +\infty} \mu(A_n) = \lim_{n \to +\infty} \sup_{k \to n} \mu(A_k).$$

Or $\forall k \geqslant n : C_n \supseteq A_k$ et donc $\forall k \geqslant n : \mu(C_n) \geqslant \mu(A_k)$, et en prticulier $\mu(C_n) \geqslant \sup_{k \geqslant n} \mu(A_k)$. Dès lors on conclut :

$$\mu\left(\limsup_{n\to+\infty}A_n\right)=\lim_{n\to+\infty}\mu(C_n)\geqslant \lim_{n\to+\infty}\sup_{k\geqslant n}\mu(A_k)=\limsup_{n\to+\infty}\mu(A_n).$$

Exercice 2.10. Soit (X,\mathcal{A}) un espace mesurable. Soient μ,ν deux mesures finies sur (X,\mathcal{A}) telles que $\forall A \in \mathcal{A}: \mu(A) \leqslant \frac{1}{2} \Rightarrow \mu(A) = \nu(A).$

- 1. $Mq \mu = \nu$
- 2. Mq le résultat est faux si l'inégalité est changée en inégalité stricte.

Résolution.

1. Soit $B \in \mathcal{A}$ s.t. $\mu(B) \ngeq \frac{1}{2}$. Alors $\mu(B^\complement) = \mu(X) - \mu(B) = 1 - \mu(B) < \frac{1}{2}$. Dès lors $\mu(B^\complement) = \nu(B^\complement)$ par hypothèse, et on en déduit $\mu(B) = 1 - \mu(B^\complement) = 1 - \nu(B^\complement) = \nu(B)$, et donc $\mu = \nu$.

2. Si l'inégalité devient stricte, on peut choisir, sur l'espace mesurable $(\{0,1\}, \mathcal{P}(\{0,1\}))$, μ la mesure d'une Bernoulli de proba $\frac{1}{2}$ et ν la mesure d'une Bernoulli de proba $\frac{1}{3}$. On a alors :

A	μ(A)	$\nu(A)$
Ø	0	0
{0} {1} {0,1}	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{2}{3}$ $\frac{1}{3}$ 1

Puisque $\mathcal{B} := \{A \in \mathcal{P}(\{0,1\}) \text{ s.t. } \mu(A) \nleq \frac{1}{2}\} = \{\emptyset\}, \text{ on a bien } \mu = \nu \text{ sur } \mathcal{B}, \text{ mais } \mu \neq \nu.$

Exercice 2.11. Soient (X, A) un espace mesurable et une partie stable par intersections finies $\mathfrak{F} \subset \mathfrak{P}(X)$ s.t. $\sigma(\mathfrak{F}) =$ A. Si μ et ν sont deux mesures finies sur (X, A) telles que $\nu(X) = \mu(X)$ et $\mu = \nu$ sur \mathfrak{F} . Mq $\mu = \nu$.

Résolution. On pose $\mathcal{D} := \{A \in \mathcal{A} \text{ s.t. } \mu(A) = \nu(A)\}$. Mq \mathcal{D} est une classe de Dynkin :

- $--\emptyset \in \mathcal{D} \stackrel{\cdot}{\operatorname{car}} \mu(\emptyset) = 0 = \nu(\emptyset).$
- $\text{Soit } A \in \mathcal{D}. \ \mu(A^{\complement}) = \mu(X) \mu(A) = \nu(X) \nu(A) = \nu(A^{\complement}) \text{ et donc } A^{\complement} \in \mathcal{D}.$ $\text{Soient } (A_n)_{n \geqslant 0} \in \mathcal{A}^{\mathbb{N}} \ 2 \ \text{a} \ 2 \ \text{disjoints et } A \coloneqq \bigsqcup_{n \geqslant 0} A_n.$

$$\mu(A) = \sum_{n\geqslant 0} \mu(A_n) = \sum_{n\geqslant 0} \nu(A_n) = \nu(A).$$

On en conclut $A \in \mathcal{D}$.

De plus par hypothèse $\mathfrak{F}\subset \mathfrak{D}$, et donc par l'exercice 1.5 on a $\mathfrak{D}=\sigma(\mathfrak{F})=\mathcal{A}$. Dès lors $\mu=\nu$ sur \mathcal{A} , et donc

3 Séance 3

Exercice 3.1. *Soient* \mathbb{B} *la tribu borélienne sur* \mathbb{R} *et* \mathcal{L} *la mesure de Lesbesgue sur* \mathbb{B} .

- 1. $Mq \ \forall x \in \mathbb{R} : \{x\} \in \mathbb{B}$.
- 2. $Mq \mathbb{Q} \in \mathbb{B} \ et \mathcal{L}(\mathbb{Q}) = 0.$
- 3. Mq une union non-dénombrable d'ensembles négligeables n'est pas nécessairement négligeable.
- 4. Mq $N \in \mathbb{B}$ est un ensemble négligeable ssi $\forall \epsilon > 0 : \exists U_{\epsilon} \text{ s.t. } N \subseteq U_{\epsilon} \text{ et } \mathcal{L}(U_{\epsilon}) < \epsilon.$

Résolution.

- 1. $\{x\} = [x, x]$ est fermé dans \mathbb{R} , et $\mathcal{L}(\{x\}) = x x = 0$.
- 2. $\mathcal{L}(\mathbb{Q}) = \mathcal{L}(\bigsqcup_{q \in \mathbb{Q}} \{q\}) = \sum_{q \in \mathbb{Q}} \mathcal{L}(\{q\}) = 0.$
- 3. $\mathcal{L}(\mathbb{R}) = +\infty$, or : $\bigsqcup_{x \in \mathbb{R}} \{x\}$.
- 4. \leq : par monotonie, si $\forall \epsilon > 0$: $N \subseteq U_{\epsilon}$, alors $\mathcal{L}(N) \leqslant \mathcal{L}(U_{\epsilon}) < \epsilon$. On en déduit $\mathcal{L}(N) = 0$, et donc N est négligeable.

 $\underline{\Rightarrow}$: Soit $N \in \mathbb{B}$ s.t. $\mathcal{L}(N) = 0$. Pour $\epsilon > 0$: mq $\exists U_{\epsilon}$ ouvert s.t. $\mathcal{L}(U_{\epsilon}) < \epsilon$ et $N \subset U_{\epsilon}$. Rappelons la mesure extérieure de Lebesgue :

$$\mathcal{L}^*(A) \coloneqq \inf_{(\mathrm{I}_n)_{n\geqslant 0} \in \mathfrak{C}_A} \sum_{n\geqslant 0} \text{Vol}(\mathrm{I}_n).$$

Soit $(I_n)_{n\geqslant 0}\in \mathcal{C}_N$. Les I_n sont compacts. On peut prendre une nouvelle suite $(J_n)_{n\geqslant 0}$ s.t. $\forall n\geqslant 0$: $Vol(\overline{J_n})< Vol(I_n)+\frac{\epsilon}{2^{n+1}}$ et $I_n\subseteq J_n$. Par σ -sous-additivité (parce que les J_n ne sont pas forcément mutuellement disjoints), pour $J=\bigcup_{n\geqslant 0}J_n\supseteq N$:

$$\mathcal{L}^*(N) \leqslant \mathcal{L}^*(\bigcup_{n\geqslant 0} J_n) \leqslant \sum_{n\geqslant 0} \mathcal{L}^*(J_n).$$

Or, pour $n \ge 0$: $\mathcal{L}^*(J_n) \le \text{Vol}(I_n) + \frac{\varepsilon}{2^{n+1}}$. Finalement :

$$\mathcal{L}^*(J) < \sum_{n \geqslant 0} \left(\operatorname{Vol}(I_n) + \frac{\epsilon}{2^{n+1}} \right) = 0 + \epsilon.$$

<u>Note</u>: si on définit un ensemble négligeable comme étant inclus dans un ensemble de mesure nulle (et pas comme étant un ensemble de mesure nulle, comme considéré ci-dessus), l'implication \Leftarrow est triviale.

Exercice 3.2. Montrer qu'une droite E dans \mathbb{R}^2 est de mesure nulle pour \mathcal{L} .

 $\underline{\textit{R\'esolution}}. \ \grave{A} \ x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2 \ \text{fix\'es, } E = \{x + ty\}_{t \in \mathbb{R}}. \ \text{Pour } \alpha < \beta \in \mathbb{R}, \ \text{on d\'efinit } E_\alpha^\beta \coloneqq \{x + ty\}_{t \in [\alpha, \beta]}. \ \text{Mq} \ \mathcal{L}(E_\alpha^\beta) = 0.$

Si $y=(0,\lambda)$ (ou si $y=(\lambda,0)$ par symétrie), on peut recouvrir E_{α}^{β} par l'intervalle compact $[x_1\pm\epsilon]\times[x_2+\alpha\lambda,x_2+\beta\lambda]$ de volume arbitrairement petit (pour ϵ aussi petit que nécessaire), et donc $\mathcal{L}(E_{\alpha}^{\beta})=0$.

Sinon, soit $(I_n)_{n\geqslant 0}$ un recouvrement de E_α^β par des intervalles compacts. Pour $n\geqslant 0$: $I_n=[a_n^1,b_n^1]\times [a_n^2,b_n^2]$ et $Vol(I_n)=(b_n^1-a_n^1)(b_n^2-a_n^2)$.

1. Par exemple en prenant l'intervalle ouvert $J_n=(\alpha-\epsilon/2^{n+2},b+\epsilon/2^{n+2})$ pour $I_n=[\alpha,b].$

Montrons qu'il existe $(J_n)_{n\geqslant 0}$ s.t. $\sum_{n\geqslant 0} \operatorname{Vol}(J_n) < \frac{1}{2} \sum_{n\geqslant 0} \operatorname{Vol}(I_n)$.

Soit $n \ge 0$. $I_n = [a_n^1, b_n^1] \times [a_n^2, b_n^2]$ où les 4 coins sont $C_1 = (a_n^1, a_n^2)$, $C_2 = (a_n^1, b_n^2)$, $C_3 = (b_n^1, a_n^2)$, $C_4 = (a_n^1, a_n^2)$, $C_5 = (a_n^1, a_n^2)$, $C_7 = (a_n^1, a_n^2)$, $C_8 = (a_n^1, a_n^2)$, $C_$ (b_n^1, b_n^2) . WLOG supposons $\left| \mathsf{E}_{\alpha}^{\beta} \cap \{\mathsf{C}_i\}_{i=1}^4 \right| = 2$, i.e. E passe par deux coins de I_n (soit C_1 et C_3 , soit C_2 et $(C_4)^2$. On définit alors :

$$\begin{cases} J_{2n} & \coloneqq [a_n^1, \frac{1}{2}(b_n^1 + a_n^1)] \times [a_n^2, \frac{1}{2}(b_n^2 + a_n^2)] \\ J_{2n+1} & \coloneqq [\frac{1}{2}(b_n^1 + a_n^1), b_n^1] \times [\frac{1}{2}(b_n^2 + a_n^2), b_n^2] \end{cases}$$

si $E \cap \{C_1, C_3\}$; et :

$$\begin{cases} J_{2n} & \coloneqq [\alpha_n^1, \frac{1}{2}(b_n^1 + \alpha_n^1)] \times [\frac{1}{2}(b_n^2 + \alpha_n^2), b_n^2] \\ J_{2n+1} & \coloneqq [\frac{1}{2}(b_n^1 + \alpha_n^1), b_n^1] \times [\alpha_n^2, \frac{1}{2}(b_n^2 + \alpha_n^2)] \end{cases}$$

sinon.

On a bien $Vol(I_n) = 2 \left(Vol(J_{2n}) + Vol(J_{2n+1}) \right)$, et donc $\sum_{n\geqslant 0} Vol(I_n) = 2 \sum_{n\geqslant 0} Vol(J_n)$.

Et donc:

$$\mathcal{L}^*(\mathsf{E}_\alpha^\beta) = \inf_{(\mathsf{I}_\mathfrak{n})_\mathfrak{n} \in \mathcal{C}_{\mathsf{E}_\alpha^\beta}} \sum_{\mathfrak{n} \geqslant 0} Vol(\mathsf{I}_\mathfrak{n}) = 0.$$

On a alors que E_{α}^{β} est mesurable et de mesure de Lebesgue nulle. Et on trouve que :

$$\mathcal{L}^*(\mathsf{E}) = \mathcal{L}^*(\bigcup_{n \geq 0} \mathsf{E}_{-n}^{+n}) = \lim_{n \to +\infty} \mathcal{L}^*(\mathsf{E}_{-n}^{+n}) = 0.$$

Donc E est également mesurable pour \mathcal{L} et est de mesure nulle.

Exercice 3.3. Pour $B \in \mathbb{B}^n$ et $\lambda > 0$, on définit $\lambda B = {\lambda b}_{b \in B}$.

- 1. $Mq \ \forall \lambda > 0, B \in \mathbb{B}^n : \lambda B \in \mathbb{B}^n$.
- 2. $Mq \mathcal{L}(\lambda B) = \lambda^n \mathcal{L}(B)$.

Résolution. On note $\mathcal{B}_{\lambda} := \{B \in \mathbb{B}^n \text{ s.t. } \lambda B \in \mathbb{B}^n\}.$

- (a) Mq \mathcal{B}_{λ} est une σ -algèbre.

 - $\begin{array}{l} \emptyset \in \mathcal{B}_{\lambda} \text{ car } \lambda \emptyset = \emptyset. \\ \text{ Soit } B \in \mathcal{B}_{\lambda} . \lambda B^{\complement} = (\lambda B)^{\complement} \in \mathbb{B}^{n} \text{ par stabilité par passage au complémentaire.} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n \mathbb{N}} . \lambda \bigcup_{n \geqslant 0} B_{n} = \{\lambda b \text{ s.t. } \exists n \geqslant 0, b \in B_{n}\} = \bigcup_{n \geqslant 0} \lambda B_{n} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n \mathbb{N}} . \lambda \bigcup_{n \geqslant 0} B_{n} = \{\lambda b \text{ s.t. } \exists n \geqslant 0, b \in B_{n}\} = \bigcup_{n \geqslant 0} \lambda B_{n} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n \mathbb{N}} . \lambda \bigcup_{n \geqslant 0} B_{n} = \{\lambda b \text{ s.t. } \exists n \geqslant 0, b \in B_{n}\} = \bigcup_{n \geqslant 0} \lambda B_{n} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n \geqslant 0} \in \mathbb{B}^{n} \text{ par stabilité} \\ \text{ Soit } (B_{n})_{n$
- $\begin{array}{l} \text{(b) } Mq\left\{\prod_{k=1}^{n}(-\infty,b_{k}]\right\}_{(b_{1},\ldots,b_{n})\in\mathbb{R}^{n}}\subset\mathcal{B}_{\lambda}. \, \text{Soit}\,(b_{1},\ldots,b_{n})\in\mathbb{R}^{n}. \, \text{On sait que}\, \prod_{k=1}^{n}(-\infty,b_{k}]\in\mathbb{B}^{n}\\ \text{et donc}\, \lambda\prod_{k=1}^{n}(-\infty,b_{k}]=\prod_{k=1}^{n}(-\infty,\lambda b_{k}]\in\mathbb{B}^{n}. \, \text{On a donc}\, \left\{\prod_{k=1}^{n}(-\infty,b_{k}]\right\}_{(b_{1},\ldots,b_{n})\in\mathbb{R}^{n}}\subseteq\mathcal{B}_{\lambda}. \end{array}$ Et donc $\mathbb{B}^n\subseteq\sigma\left(\left\{\prod_{k=1}^n(-\infty,b_k]\right\}_{(b_1,\dots,b_n)\in\mathbb{R}^n}\right)\subseteq\mathcal{B}_\lambda\subseteq\mathbb{B}^n$, et donc $\mathcal{B}_\lambda=\mathbb{B}^n$.
- 2. On voit que $(I_n)_{n\geqslant 0}$ recouvre B ssi $(\lambda I_n)_{n\geqslant 0}$ recouvre λB . Et donc :

$$\mathcal{L}^*(\lambda B) = \inf_{(I_{\mathfrak{n}})_{\mathfrak{n}} \in \mathfrak{C}_B} \sum_{n \geqslant 0} Vol(\lambda I_{\mathfrak{n}}) = \inf_{(I_{\mathfrak{n}})_{\mathfrak{n}} \in \mathfrak{C}_B} \sum_{n \geqslant 0} \lambda^{\mathfrak{n}} \, Vol(I_{\mathfrak{n}}) = \lambda^{\mathfrak{n}} \inf_{(I_{\mathfrak{n}})_{\mathfrak{n}} \in \mathfrak{C}_B} \sum_{n \geqslant 0} Vol(I_{\mathfrak{n}}) = \lambda^{\mathfrak{n}} \mathcal{L}^*(B).$$

^{2.} En effet, si ce n'est pas le cas, on peut "réduire" I_n afin que ce soit le cas (et qui est donc de volume strictement inférieur).

Exercice 3.4 (Vrai ou Faux). *Justifier les affirmations suivantes :*

- 1. $Si \to \mathbb{R}^n$ est négligeable, alors $\overline{\mathbb{E}}$ est négligeable.
- 2. Il existe un ensemble non-mesurable sur \mathbb{R}^n de complémentaire de mesure extérieure de Lebesgue nulle.
- 3. Il existe des ensemble non-mesurables dont l'union est mesurable.
- 4. Si $A \subset \mathbb{R}^n$ satisfait $\mathcal{L}(\mathring{A}) = \mathcal{L}(\overline{A})$, alors A est mesurable.

Résolution.

- 1. Faux : \mathbb{Q} est négligeable et $\overline{\mathbb{Q}} = \mathbb{R}$ n'est pas négligeable.
- 2. Faux : si A^{\complement} est de mesure extérieure de Lebesgue nulle, alors A^{\complement} est mesurable, et donc $A^{\complement} \in \mathcal{M}_{\mathcal{L}^*}$. Or l'ensemble des mesurables est une σ -algèbre, et donc $A = A^{\complement^{\complement}} \in \mathcal{M}_{\mathcal{L}^*}$.
- 3. Vrai : si A est non-mesurable, alors $A^{\mathbb{C}}$ ne l'est pas non plus. Or $\mathfrak{M}_{\mathcal{L}^*} \ni X = A \cup A^{\mathbb{C}}$.
- 4. Vrai : par définition de complétion de mesure. Si \mathring{A} et \overline{A} sont mesurables et de même mesure, alors $\mathring{A} \subseteq A \subseteq \overline{A}$ et $\mathcal{L}(\overline{A} \setminus \mathring{A}) = 0$. Dès lors $A \in \mathcal{M}_{\mathcal{L}^*}$ et par monotonie : $\mathcal{L}(A) = \mathcal{L}(\mathring{A}) = \mathcal{L}(\overline{A})$.

4 Séance 4

Exercice 4.1. *Soit* $f:(X, A) \to \mathbb{R}$. Mq $si \forall q \in \mathbb{Q}: f^{-1}((q, +\infty) \in A, alors f est mesurable.$

<u>Résolution</u>. Pour cela, montrons que $f^{-1}((r, +\infty)) \in \mathcal{A}$ pour $r \in \mathbb{R} \setminus \mathbb{Q}$. Par densité de \mathbb{Q} dans \mathbb{R} , on sait que pour $r \in \mathbb{R}$:

$$(r,+\infty) = \bigcup_{q \in (r,+\infty) \cap \mathbb{Q}} (q,+\infty).$$

Dès lors, pour
$$r \in \mathbb{R}$$
 : $f^{-1}((r, +\infty)) = \bigcup_{q \in (r, +\infty) \cap \mathbb{Q}} \underbrace{f^{-1}((q, +\infty))}_{\in \mathcal{A}} \in \mathcal{A}$.

Exercice 4.2. *Mq les fonctions* f *et* g *sont mesurables sur* (\mathbb{R}, \mathbb{B}) .

Résolution. Pour cela, on utilise le fait qu'un produit de fonctions mesurables est mesurable et que :

- les fonctions caractéristiques sur des boréliens sont mesurables;
- α : \mathbb{R} → \mathbb{R} : $x \mapsto x^2$ est mesurable car α = Id · Id;
- $(\mathbb{R} \setminus \mathbb{Q}) \cap [0,1]$ est mesurable car [0,1] est mesurable et \mathbb{Q}^{\complement} est mesurable aussi.

Donc puisque $f=\alpha\chi_{[0,1]}+\chi_{(1,2)}$ et $g=\alpha\chi_{\mathbb{Q}^0\cap[0,1]}$, on a f et g mesurables.

Exercice 4.3. Soient (X, A) un espace mesurable et $(f_k)_{k\geqslant 0}$ une suite de fonctions mesurables de X dans \mathbb{R} . Mq l'ensemble $A \coloneqq \{x \in X \text{ s.t. } \lim_{k \to +\infty} f_k(x) \text{ existe}\}$ est mesurable.

<u>Résolution</u>. La limite de la suite $(f_k(x))_{k\geqslant 0}$ existe ssi $f_1\coloneqq \limsup_{k\to +\infty} f_k$ et $f_2\coloneqq \liminf_{k\to +\infty} f_k$ existent en x et sont identiques. On sait que f_1 et f_2 sont mesurables, et donc que f_1-f_2 l'est également. Or $A=(f_1-f_2)^{-1}(\{0\})$, donc $A\in \mathcal{A}$.

Résolution alternative par les suites de Cauchy. À $x \in X$ fixé, la suite $(f_k(x))_{k\geqslant 0}$ est une suite réelle et donc converge ssi elle est de Cauchy, i.e. $\lim_{k\to +\infty} f_k(x)$ existe ssi

$$\forall \epsilon > 0: \exists N \in \mathbb{N} \text{ s.t. } \forall m,n \geqslant N: \left|f_m(x) - f_n(x)\right| < \epsilon.$$

Donc A peut s'écrire comme union/intersection de Boréliens. Pour $m, n \in \mathbb{N}$, posons $f_{m,n} := |f_m - f_n|$. Par mesurabilité des $f_{m,n}$, on observe :

$$A = \left\{x \in X \text{ s.t. } \forall \epsilon > 0: \exists N \in \mathbb{N} \text{ s.t. } \forall m,n \geqslant N: f_{m,n}(x) < \epsilon \right\} = \bigcap_{\epsilon \in \mathbb{Q}^*} \bigcup_{N \in \mathbb{N}} \bigcap_{m,n \geqslant N} f_{m,n}^{-1}((\pm \epsilon)) \in \mathbb{B}.$$

Exercice 4.4. Soient $f: \mathbb{R} \to \mathbb{R}$ Borel-mesurable et $g: \mathbb{R} \to \mathbb{R}$ s.t. $g \neq f$ sur un ensemble D au plus dénombrable. Mq g est Borel-mesurable.

Résolution. Rappelons d'abord que les singletons sont des fermés et donc des Boréliens. Dès lors, $D \in \mathbb{B}$ et $\mathcal{L}(D) = 0$. De plus, par passage au complémentaire, on sait que $D^{\complement} \in \mathbb{B}$ également. Pour $b \in \mathbb{R}$:

$$g^{-1}((-\infty,b]) = \left[\underbrace{f^{-1}((-\infty,b]) \cap D^{\complement}}_{=:A}\right] \sqcup \left[\underbrace{g^{-1}((-\infty,b]) \cap D}_{=:B}\right].$$

Puisque B \subseteq D, on a B au plus dénombrable, et en particulier B \in B. Par mesurabilité de f, on sait que $f^{-1}((-\infty,b]) \in \mathbb{B}$, et puisque $D^{\complement} \in \mathbb{B}$, on déduit que $A \in \mathbb{B}$. Dès lors $g^{-1}((-\infty,b])$ est union de deux Boréliens, et est donc un Borélien.

Exercice 4.5. Sur un espace mesurable (X, A), mag χ_A est mesurable ssi $A \in A$.

Résolution. \Rightarrow : si χ_A est mesurable, alors $A = \chi_A^{-1}(\{1\}) \in \mathcal{A}$.

 \leq : si $A \in A$, alors:

- $\begin{array}{l} \quad \quad -\chi_A^{-1}(\{0,1\}) = X \in \mathcal{A} \text{ et } \chi_A^{-1}(\emptyset) = \emptyset \in \mathcal{A} \text{ puisque } \mathcal{A} \text{ est une } \sigma\text{-algèbre sur } X; \\ \quad -\chi_A^{-1}(\{1\}) = A \in \mathcal{A} \text{ par hypothèse}; \\ \quad -\text{ et } \chi_A^{-1}(\{0\}) = A^\complement \in \mathcal{A} \text{ par passage au complémentaire}. \end{array}$

Exercice 4.6. Soient (X, A) un espace mesurable et $f: X \to \mathbb{R}$ une fonction mesurable. Mq f^+ et f^- sont mesurables.

Résolution. Trivial: min et max de fonctions mesurables sont mesurables et la fonction $0: X \to \{0\}: x \mapsto 0$ est constante donc mesurable.

Exercice 4.7.
$$Mq \ f: [0,1) \to [0,1): x \mapsto \begin{cases} 2x & \text{si } x \in [0,1/2) \\ 2x-1 & \text{si } x \in [1/2,1) \end{cases}$$
 est mesurable.

Mg pour tout $E \subset [0,1)$ mesurable : $\mathcal{L}(E) = \mathcal{L}(f^{-1}(E))$.

Résolution. Soit $M \subseteq [0,1)$ mesurable.

$$f^{-1}(M) = (f^{-1}(M) \cap [0,1/2)) \sqcup (f^{-1}(M) \cap [1/2,1)) = \{x \in [0,1/2) \text{ s.t. } f(x) \in M\} \sqcup \{x \in [1/2,1) \text{ s.t. } f(x) \in M\}.$$

Notons respectivement M_1 et M_2 ces deux ensembles. $M_1 = \{x \in [0, 1/2) \text{ s.t. } 2x \in M\} = \{x/2\}_{x \in M} \in \mathcal{M}$ et $M_2 = \{x \in [1/2, 1) \text{ s.t. } 2x - 1 \in M\} = \{(1+x)/2\}_{x \in M} \in \mathcal{M} \text{ car la transformation affine d'un ensemble } x \in M$ \mathcal{L} -mesurable est \mathcal{L} -mesurable. Donc $f^{-1}(M)=M_1\sqcup M_2\in \mathcal{M}$ car \mathcal{M} est une σ -algèbre.

De plus, $\mathcal{L}(f^{-1}M) = \mathcal{L}(M_1 \sqcup M_2) = \mathcal{L}(M_1) + \mathcal{L}(M_2)$. Par invariance par translation de \mathcal{L} , on a $\mathcal{L}(M_2) = \mathcal{L}(M_1 \sqcup M_2)$ $\mathcal{L}(M_1) = \frac{1}{2}\mathcal{L}(M)$. Donc $\mathcal{L}(f^{-1}M) = 2\mathcal{L}(M_1) = \mathcal{L}(M)$.

Exercice 4.8 (Vrai ou Faux). *Justifier* :

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ s.t. $f \circ f$ est mesurable. Alors f est mesurable.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ s.t. |f| est mesurable. Alors f est mesurable.
- 3. Soient $f: \mathbb{R} \to \mathbb{R}$ mesurable et $g: \mathbb{R} \to \mathbb{R}$ continue. Alors $g \circ f$ est mesurable.
- *4.* Si f : $\mathbb{R} \to \mathbb{R}$ est continue presque partout, alors f est mesurable.

Résolution.

- 1. Faux. Prenons $N \notin M$ s.t. $N \cap \{0,1\} = \emptyset$. Alors χ_N n'est pas mesurable, mais $\chi_N \circ \chi_N = \mathbf{0}$ est constante donc mesurable.
- 2. aux. Prenons à nouveau $N \notin \mathcal{M}$. On pose $f := \chi_N \chi_{N^\complement} : \mathbb{R} \to \{-1, +1\}$ où donc f(x) = 1 si $x \in N$ et f(x) = -1 sinon. f n'est pas mesurable, mais $|f| = 1 : \mathbb{R} \to \{1\} : x \mapsto 1$ est constante donc mesurable.

- 3. Mq continuité implique Borel-mesurabilité. Soit $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$. Pour $b \in \mathbb{R}$: $f^{-1}((-\infty,b))$ est ouvert et est donc borélien. Donc ici g et f sont toutes deux Borel-mesurables et la composition d'applications Borel-mesurables est Borel-mesurable.
- 4. On pose $N \coloneqq \{x \in \mathbb{R} \text{ s.t. } f \text{ n'est pas continue en } x\}$. N est négligeable et f est continue sur $\mathbb{R} \setminus N$. On trouve pour $b \in \mathbb{R}$:

$$f^{-1}((-\infty,b)) = \left(f^{-1}((-\infty,b)) \cap N^\complement\right) \sqcup \underbrace{\left(f^{-1}((-\infty,b)) \cap N\right)}_{\subseteq N \ donc \ \in \mathbb{M}}.$$