Homework 3

- D Write expression for loss ω/ single datapoint [loss (x,y, w) = (σ(wφ(x))-y)²]
- 2) 72 loss = 2(o(dok))-y) o (dok)) ok) = $24(x)(\sigma(\vec{\omega}\phi(x))-y)\sigma'(\vec{\omega}\phi(x))$ o(2)=(1+e2)-1 $\sigma'(z) = -1(1+e^{z})^{2}(-e^{z})$ $=\frac{e^{2}}{(1+e^{2})^{2}}=\underbrace{\left(\frac{1}{1+e^{2}}\right)\left(\frac{1}{1+e^{2}}\right)e^{2}}_{1+e^{2}}$ = 02(2)e2 $o(z) = \frac{1}{1 + e^{-2}}$ 1+ e== 5(z) e== 5 (2)-1 $= \sigma^2(2)(\bar{\sigma}'(2)-1)$ 0(2)= 0(2)-02(2) = $2\phi(x)\left(\sigma(\mathring{\omega}\phi(x))-y\right)\left(\sigma(\mathring{\omega}\phi(x))-\sigma^2(\mathring{\omega}\phi(x))\right)$ = $2\phi(x)(P-y)(P-p^2)$ = -20(x)P(P-4)XP-1)
- 3 to make $\nabla \div loss 2\Phi(x) P(P-1)^2$ arbitrarily small, and given $\sigma(z) = (1+e^{z})^{-1}$, the value of \vec{w} would have to approach $-\infty$. The $\vec{\nabla}$ magnitude can never be \vec{O} .

(4) Same datapoint:
$$\nabla \delta \log s = -2\phi(x) P(P-1)^2$$

Find largest magnitude.
 $= -2\phi(x) P(P^2-2P+1)$
 $= -2\phi(x) (P^2-2P^2+P)$
 $= -2\phi(x) (P^2-2P^2+P)$ = $-2\phi(x) [3p^2-4p+1]$
 $= -2\phi(x) (3p-1) P(-1)$
largest magnitude can occur @ $P=3$ or $P=1$
 $= 12\phi(x) (3x) (3x) = 0$
 $= 12\phi(x) (3x) = 0$
largest magnitude = $(\frac{8}{27}) \phi(x)$

largest magnitude =
$$(\frac{8}{27})\Phi(x)$$

(5)
$$loss_{b} = (\sigma(\vec{\omega}\phi(x)) - y)^{2} = 0$$
 $loss_{b}' = (\vec{\omega}\phi(x) - y')^{2} = 0$
 $\sigma(\vec{\omega}\phi(x)) - y = 0$
 $\vec{\omega}(\phi(x) - y' = 0)$
 $y = \sigma(\vec{\omega}\phi(x))$
 $y' = \vec{\omega}(\phi(x))$
 $\sigma'(\sigma(\vec{\omega}\phi(x))) = \sigma'(y)$
 $\sigma'(\vec{\omega}(\phi(x))) = \sigma'(y')$
 $\sigma'(\vec{\omega}(\phi(x))) = \sigma'(y')$
 $\sigma'(\phi(x)) = \sigma'(y)$