Computational Game Theory

Implementation Exercises on Nash Equilibrium in Mixed-Strategies for nxm games.

1. Zero-Sum Games

Consider the following payoff matrix:

1\2	Left	Middle	Right
Top	30,-30	-10,10	20,-20
Bottom	-10,10	20,-20	-20,20

- a) Use Linear Programming to compute the Nash equilibrium. {Solution: (4/7, 3/7), (0, 4/7, 3/7).}
- b) Implement a function to compute the Nash equilibrium of a Zero-Sum game.

2. General-Sum Games

Consider the following payoff matrix:

		Player 2	
		4	5
Player 1	1	3, 3	3, 2
	2	2, 2	5, 6
	3	0, 3	6, 1

Use Linear Programming to search for a Nash equilibrium with the following supports:

- a) $X=\{1,2,3\}, Y=\{4,5\}.$
- b) $X=\{1,2\}, Y=\{4,5\}.$
- c) $X=\{1,3\}, Y=\{4,5\}.$

3. Enumeration method for nondegenerate games

Consider a nondegenerate General-Sum nxm game.

- a) Implement a function to compute all equal-sized mixed strategy supports ordered by size.
- b) Implement a function that given a mixed strategy support computes the respective Nash equilibrium (or proves that there is no such equilibrium with that support).
- c) Use the above functions to implement the enumeration method for nondegenerate games.
- d) Consider the game in question 2. Use the enumeration method to find **one** Nash equilibrium.
- e) Consider the game in question 2. Use the enumeration method to find all Nash equilibria.