§8.5 多元复合函数与隐函数的求导法则

2017-2018 学年 II

Outline

1. 复合函数的求导法则

2. 隐函数的求导法则

We are here now...

1. 复合函数的求导法则

2. 隐函数的求导法则

设有二元函数 z = f(u, v)

设有二元函数
$$z = f(u, v)$$

•
$$\psi u = \varphi(t), \quad v = \psi(t), \quad \emptyset z = f(\varphi(t), \psi(t))$$

问
$$\frac{dz}{dt}$$
 =?

设有二元函数
$$z = f(u, v)$$

•
$$\psi u = \varphi(t), \quad v = \psi(t), \quad \emptyset z = f(\varphi(t), \psi(t))$$

问
$$\frac{dz}{dt}$$
 =?

设有二元函数 z = f(u, v)

•
$$\mathfrak{g} u = \varphi(t)$$
, $v = \psi(t)$, $\mathfrak{g} z = f(\varphi(t), \psi(t))$

$$z = v$$

问
$$\frac{dz}{dt}$$
 =?

•
$$\psi u = \varphi(x, y), \ v = \psi(x, y), \ \emptyset \ z = f(\varphi(x, y), \psi(x, y))$$

设有二元函数 z = f(u, v)

•
$$\mathfrak{g} u = \varphi(t)$$
, $v = \psi(t)$, $\mathfrak{g} z = f(\varphi(t), \psi(t))$

$$z = v$$

问
$$\frac{dz}{dt} = ?$$

• $\mathfrak{g} u = \varphi(x, y), \ v = \psi(x, y), \ \mathfrak{g} z = f(\varphi(x, y), \psi(x, y))$

设有二元函数 z = f(u, v)

•
$$\mathfrak{g} u = \varphi(t)$$
, $v = \psi(t)$, $\mathfrak{g} z = f(\varphi(t), \psi(t))$

$$z = v$$

问
$$\frac{dz}{dt} = ?$$

• $\mathfrak{g} u = \varphi(x, y), \ v = \psi(x, y), \ \mathfrak{g} z = f(\varphi(x, y), \psi(x, y))$

问
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ =?

设有二元函数 z = f(u, v)

•
$$\mathfrak{g} u = \varphi(t)$$
, $v = \psi(t)$, $\mathfrak{g} z = f(\varphi(t), \psi(t))$

$$z = v$$

问
$$\frac{dz}{dt} = ?$$

• $\mathfrak{g} u = \varphi(x, y), \ v = \psi(x, y), \ \mathfrak{g} z = f(\varphi(x, y), \psi(x, y))$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt}$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(t)$, $v = \psi(t)$, 则 $z = f(\varphi(t), \psi(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
=

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} +$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot$$

例设
$$z = uv$$
,而 $u = e^{-t}$, $v = \sin t$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$
$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$
$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$
$$= v \cdot$$

$$\begin{aligned} \frac{dz}{dt} &= \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} \\ &= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t \\ &= v \cdot (-e^{-t}) + \end{aligned}$$

$$\begin{aligned} \frac{dz}{dt} &= \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} \\ &= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t \\ &= v \cdot (-e^{-t}) + u \cdot \end{aligned}$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$=$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

例设
$$z = uv$$
,而 $u = e^{-t}$, $v = \sin t$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$\therefore z = uv =$$

例设
$$z = uv$$
,而 $u = e^{-t}$, $v = \sin t$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

例 设
$$z = uv$$
,而 $u = e^{-t}$, $v = \sin t$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) =$$

例设
$$z = uv$$
,而 $u = e^{-t}$, $v = \sin t$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t +$$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$\therefore z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_{u} \cdot (e^{-t})'_{t} + (uv)'_{v} \cdot (\sin t)'_{t}$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$
$$= (-e^{-t}) \cdot \sin t + e^{-t} \cdot \cos t$$

解法一

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

$$= (uv)'_u \cdot (e^{-t})'_t + (uv)'_v \cdot (\sin t)'_t$$

$$= v \cdot (-e^{-t}) + u \cdot \cos t$$

$$= \sin t \cdot (-e^{-t}) + e^{-t} \cdot \cos t$$

$$= e^{-t}(\cos t - \sin t)$$

$$z = uv = e^{-t} \cdot \sin t$$

$$\therefore \frac{dz}{dt} = \frac{d}{dt}(e^{-t}\sin t) = (e^{-t})_t' \cdot \sin t + e^{-t} \cdot (\sin t)_t'$$
$$= (-e^{-t}) \cdot \sin t + e^{-t} \cdot \cos t = e^{-t}(\cos t - \sin t)$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} =$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} =$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} =$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_{x}.$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t +$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})'_x \cdot (e^t)'_t + (\frac{y}{x})'_y \cdot (1 - e^{2t})'_t$$
$$= -\frac{y}{x^2}.$$

$$z \xrightarrow{\frac{\partial z}{\partial x}} x \xrightarrow{\frac{\partial x}{\partial t}} t$$

$$z \xrightarrow{\frac{\partial z}{\partial y}} y \xrightarrow{\frac{\partial y}{\partial x}} t$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{y}{x^2} \cdot$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot (-2e^{2t}) =$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_x' \cdot (e^t)_t' + (\frac{y}{x})_y' \cdot (1 - e^{2t})_t'$$
$$= -\frac{y}{x^2} \cdot e^t + \frac{1}{x} \cdot (-2e^{2t}) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^t +$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_{x}' \cdot (e^{t})_{t}' + (\frac{y}{x})_{y}' \cdot (1 - e^{2t})_{t}'$$

$$= -\frac{y}{x^{2}} \cdot e^{t} + \frac{1}{x} \cdot (-2e^{2t}) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^{t} + \frac{1}{e^{t}} \cdot (-2e^{2t})$$

$$=$$

$$z \xrightarrow{\frac{\partial z}{\partial x}} x \xrightarrow{\frac{dx}{dt}} t$$

$$z \xrightarrow{\frac{\partial z}{\partial y}} y \xrightarrow{\frac{dy}{dt}} t$$

例设
$$z = \frac{y}{x}$$
,而 $x = e^t$, $y = 1 - e^{2t}$,求全导数 $\frac{dz}{dt}$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} = (\frac{y}{x})_{x}' \cdot (e^{t})_{t}' + (\frac{y}{x})_{y}' \cdot (1 - e^{2t})_{t}'$$

$$= -\frac{y}{x^{2}} \cdot e^{t} + \frac{1}{x} \cdot (-2e^{2t}) = -\frac{1 - e^{2t}}{e^{2t}} \cdot e^{t} + \frac{1}{e^{t}} \cdot (-2e^{2t})$$

$$= -e^{-t} - e^{t}$$

$$z \xrightarrow{\frac{\partial z}{\partial x}} x \xrightarrow{\frac{\partial x}{\partial t}} z$$

公式 设
$$z = f(u, v, w)$$
, $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数
$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v, w)$$
, $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数
$$\frac{dz}{dt} = \frac{dz}{dt} = \frac{dz}{dt}$$

公式 设
$$z = f(u, v, w)$$
, $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数
$$\frac{dz}{dt} =$$

公式 设
$$z = f(u, v, w)$$
, $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数 dz

公式 设
$$z = f(u, v, w)$$
, $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数 $dz = \partial z = du$

 $\frac{1}{dt} = \frac{1}{\partial u} \cdot \frac{1}{dt}$

$$z \xrightarrow{\frac{\partial z}{\partial u}} v \xrightarrow{\frac{du}{dt}} t$$

$$z \xrightarrow{\frac{\partial z}{\partial v}} v \xrightarrow{\frac{dv}{dt}} t$$

$$w \xrightarrow{\frac{dw}{dt}} t$$

公式 设 z = f(u, v, w), $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt}$$

公式 设 z = f(u, v, w), $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} \quad \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} \quad \frac{\partial z}{\partial w} \cdot \frac{dw}{dt}$$

公式 设 z = f(u, v, w), $u = \varphi(t)$, $v = \psi(t)$, $w = \omega(t)$, 则 $z = f(\varphi(t), \psi(t), \omega(t))$ 的全导数

$$\frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{du}{dt} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dt} + \frac{\partial z}{\partial w} \cdot \frac{dw}{dt}$$

公式 设 z = f(u, v), $u = \varphi(x, y)$, $v = \psi(x, y)$,

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$\frac{\partial Z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial Z}{\partial X} =$$

$$, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} +$$

公式 设
$$z = f(u, v)$$
, $u = \varphi(x, y)$, $v = \psi(x, y)$, 则复合函数
$$z = f(\varphi(x, y), \psi(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

例设 $z = e^{2u} \sin v$, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\mathbf{\widetilde{\beta}} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot$$

$$\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

 $= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{y} \cdot$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_u \cdot (x^3y)'_x + (e^{2u}\sin v)'_v \cdot (x^2 + y^2)'_x$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_u \cdot (x^3y)'_x + (e^{2u}\sin v)'_v \cdot (x^2 + y^2)'_x$$

= $2e^{2u}\sin v \cdot 3x^2y +$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, $求 \frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^3 y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^2 + y^2)'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^2 y + e^{2u} \cos v \cdot 2x$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, $求 \frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_x$$

$$= 2e^{2u} \sin v \cdot 3x^2 y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^3 y} \sin(x^2 + y^2).$$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_{u} \cdot (x^3y)'_{x} + (e^{2u}\sin v)'_{v} \cdot (x^2 + y^2)'_{x}$$

$$= 2e^{2u}\sin v \cdot 3x^2y + e^{2u}\cos v \cdot 2x$$

 $=2e^{2x^3y}\sin(x^2+v^2)\cdot 3x^2v +$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_{u} \cdot (x^3y)'_{x} + (e^{2u}\sin v)'_{v} \cdot (x^2 + y^2)'_{x}$$

$$= 2e^{2u}\sin v \cdot 3x^2v + e^{2u}\cos v \cdot 2x$$

 $=2e^{2x^3y}\sin(x^2+v^2)\cdot 3x^2y+e^{2x^3y}\cos(x^2+v^2)\cdot$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_u \cdot (x^3y)'_x + (e^{2u}\sin v)'_v \cdot (x^2 + y^2)'_x$$

$$= 2e^{2u}\sin v \cdot 3x^2v + e^{2u}\cos v \cdot 2x$$

$$2e^{2x^3}V = (e^2 + e^2) + 2e^2 + e^2 +$$

$$= 2e^{2x^3y}\sin(x^2+y^2)\cdot 3x^2y + e^{2x^3y}\cos(x^2+y^2)\cdot 2x$$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$, $v = x^2 + y^2$, $求 \frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\widetilde{H} \quad \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_{u} \cdot (x^3y)'_{x} + (e^{2u}\sin v)'_{v} \cdot (x^2 + y^2)'_{x}$$

$$= 2e^{2u}\sin v \cdot 3x^2v + e^{2u}\cos v \cdot 2x$$

$$= 2e^{2x^3y}\sin(x^2+y^2)\cdot 3x^2y + e^{2x^3y}\cos(x^2+y^2)\cdot 2x$$

$$\frac{\partial Z}{\partial y} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 解 $\frac{\partial z}{\partial x}$ $\frac{\partial z}{\partial y}$ $\frac{\partial z}{\partial y}$ $\frac{\partial z}{\partial y}$

$$= \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_u \cdot (x^3 y)'_x + (e^{2u} \sin v)'_v \cdot (x^2 + y^2)'_x$$

$$= 2e^{2u} \sin v \cdot 3x^2 y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^3 y} \sin(x^2 + y^2) \cdot 3x^2 y + e^{2x^3 y} \cos(x^2 + y^2) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{v} +$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{v} + (e^{2u} \sin v)'_{v} \cdot$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\begin{aligned}
\dot{x} &= \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\
&= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x} \\
&= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x \\
&= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x
\end{aligned}$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$
$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\widetilde{H} \quad \frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \sin v \cdot x^{3} +$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\widetilde{\mathbf{R}} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\widetilde{H} \frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial Z}{\partial v} \cdot \frac{\partial V}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$, $v = x^2 + y^2$, $求 \frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_{u} \cdot (x^3y)'_{x} + (e^{2u}\sin v)'_{v} \cdot (x^2 + y^2)'_{x}$$

$$= 2e^{2u}\sin v \cdot 3x^2y + e^{2u}\cos v \cdot 2x$$

$$= 2e^{2x^3y}\sin(x^2 + y^2) \cdot 3x^2y + e^{2x^3y}\cos(x^2 + y^2) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设
$$z = e^{2u}\sin v$$
, $u = x^3y$, $v = x^2 + y^2$, $求 \frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u}\sin v)'_{u} \cdot (x^3y)'_{x} + (e^{2u}\sin v)'_{v} \cdot (x^2 + y^2)'_{x}$$

$$= 2e^{2u}\sin v \cdot 3x^2y + e^{2u}\cos v \cdot 2x$$

$$= 2e^{2x^3y}\sin(x^2 + y^2) \cdot 3x^2y + e^{2x^3y}\cos(x^2 + y^2) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + v^{2}) \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot x^{3} + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot x^{3}$$

例设
$$z = e^{2u} \sin v$$
, $u = x^3 y$, $v = x^2 + y^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{x} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{x}$$

$$= 2e^{2u} \sin v \cdot 3x^{2}y + e^{2u} \cos v \cdot 2x$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot 3x^{2}y + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2x$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

$$= (e^{2u} \sin v)'_{u} \cdot (x^{3}y)'_{y} + (e^{2u} \sin v)'_{v} \cdot (x^{2} + y^{2})'_{y}$$

$$= 2e^{2u} \sin v \cdot x^{3} + e^{2u} \cos v \cdot 2y$$

$$= 2e^{2x^{3}y} \sin(x^{2} + y^{2}) \cdot x^{3} + e^{2x^{3}y} \cos(x^{2} + y^{2}) \cdot 2y$$

公式 设 z = f(x, y, u), u = u(x, y),

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial Z}{\partial x} =$$
 , $\frac{\partial Z}{\partial y} =$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数
$$z = f(x, y, u(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \qquad , \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} =$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数 $z = f(x, y, u(x, y))$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} +$$

公式 设
$$z = f(x, y, u)$$
, $u = u(x, y)$, 则复合函数

$$z = f(x, y, u(x, y))$$

的偏导数是:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}, \quad \frac{\partial z}{\partial y} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}$$

We are here now...

1. 复合函数的求导法则

2. 隐函数的求导法则

公式 设 y = y(x) 满足 F(x, y) = 0,

公式 设 y = y(x) 满足 F(x, y) = 0, 即 F(x, y(x)) = 0,

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$:: F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) =$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$: F(x, y(x)) = 0$$

$$\therefore 0 = \frac{d}{dx} F(x, y(x)) = F_X +$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$:: F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) = F_x + F_y \cdot \frac{dy}{dx}$$

公式 设
$$y = y(x)$$
 满足 $F(x, y) = 0$,即 $F(x, y(x)) = 0$,则
$$\frac{dy}{dx} = -\frac{F_x}{F_y} \qquad (F_y \neq 0)$$

$$F(x, y(x)) = 0$$

$$\therefore \quad 0 = \frac{d}{dx} F(x, y(x)) = F_x + F_y \cdot \frac{dy}{dx}$$

$$\therefore \quad \frac{dy}{dx} = -\frac{F_x}{F_y}$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{r_x}{F_y} =$$

例设
$$y = f(x)$$
 满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一 注意
$$\sin y + e^x - xy^2 = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F} =$$

F(x, y) = 0

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,
 $F(x, y) = 0$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} =$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} =$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{(\sin y + e^x - xy^2)_y'}$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二 注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二 注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x, y) = 0$$
,所以
$$dy F_x (\sin y + e^x - xy^2)_x' e^x$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

方法一注意
$$\sin y + e^x - xy^2 = 0$$
,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y'$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x$$

例设
$$y = f(x)$$
满足 $\sin y + e^x = xy^2$,求 $\frac{dy}{dx}$

方法一 注意
$$\sin y + e^x - xy^2 = 0$$
, 令 $F(x, y) = \sin y + e^x - xy^2$,则

$$F(x,y)=0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x - y^2 - 2xy \cdot y'$$

方法一注意 $\sin y + e^x - xy^2 = 0$,令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x - y^2 - 2xy \cdot y'$$

$$= e^x - y^2 + (\cos y - 2xy)y'$$

方法一 注意 $\sin y + e^x - xy^2 = 0$, 令 $F(x, y) = \sin y + e^x - xy^2$,则

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\sin y + e^x - xy^2)_x'}{(\sin y + e^x - xy^2)_y'} = -\frac{e^x - y^2}{\cos y - 2xy}$$

方法二注意
$$\sin y(x) + e^x - xy(x)^2 = 0$$
,所以
$$0 = (\sin y(x) + e^x - xy(x)^2)_x'$$

$$= (\sin y(x))_x' + (e^x)_x' - (xy(x)^2)_x'$$

$$= \cos y \cdot y' + e^x - y^2 - 2xy \cdot y'$$

$$= e^x - y^2 + (\cos y - 2xy)y'$$

所以 $y' = -\frac{e^x - y^2}{\cos y - 2xy}$

F(x, y) = 0,所以

例设 y = f(x) 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

例设 y = f(x) 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

$$F(x, y) = 0$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = 0$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

則
$$F(x, y) = 0$$
,所以
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

例设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

则
$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

例 设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

则
$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

$$=-\frac{\frac{2x}{x^2+y^2}+3y}{}$$

例 设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

則
$$F(x, y) = 0$$
,所以
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

$$= -\frac{\frac{2x}{x^2 + y^2} + 3y}{\frac{2y}{x^2 + y^2} + 3x}$$

例 设
$$y = f(x)$$
 满足 $\ln(x^2 + y^2) + 3xy = 4$,求 $\frac{dy}{dx}$

解注意
$$ln(x^2 + y^2) + 3xy - 4 = 0$$
, 令

$$F(x, y) = \ln(x^2 + y^2) + 3xy - 4$$

则
$$F(x, y) = 0$$
,所以

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(\ln(x^2 + y^2) + 3xy - 4)_x'}{(\ln(x^2 + y^2) + 3xy - 4)_y'}$$

$$= -\frac{\frac{2x}{x^2 + y^2} + 3y}{\frac{2y}{x^2 + y^2} + 3x}$$

$$= -\frac{2x + 3x^2y + 3y^3}{2y + 3xy^2 + 3x^3}$$

隐函数的求导法Ⅱ

公式 设 z = z(x, y) 满足 F(x, y, z) = 0,

隐函数的求导法Ⅱ

公式 设 z = z(x, y) 满足 F(x, y, z) = 0, 即 F(x, y, z(x, y)) = 0,

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = , \frac{\partial z}{\partial y} =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$, 即 $F(x, y, z(x, y)) = 0$, 则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明
$$: F(x, y, z(x, y)) = 0$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明
$$: F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明
$$:: F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) =$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明
$$:: F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

$$\therefore \quad \frac{\partial Z}{\partial x} = -\frac{F_X}{F_Z},$$

公式 设
$$z = z(x, y)$$
 满足 $F(x, y, z) = 0$,即 $F(x, y, z(x, y)) = 0$,则

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} \qquad (F_z \neq 0)$$

证明

$$F(x, y, z(x, y)) = 0$$

$$\therefore \quad 0 = \frac{\partial}{\partial x} F(x, y, z(x, y)) = F_x + F_z \cdot \frac{\partial z}{\partial x}$$

∴
$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
, $= \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

例设z = f(x, y)满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设z = f(x, y)满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$F(x, y, z) = 0$$

$$\frac{\partial Z}{\partial X} = -\frac{F_X}{F_Z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$ 解令 $F(x, y, z) = x + y + xz - e^z + 1$, $F(x, y, z) = 0$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} =$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x + y + xz - e^z + 1)_y'}{(x + y + xz - e^z + 1)_z'}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
= -

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)'_y}{(x+y+xz-e^z+1)'_z}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
= -

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{(x+y+xz-e^z+1)_z'}{(x+y+xz-e^z+0)}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0-0}{0+0+x-e^z+0}$$

例设
$$z = f(x, y)$$
满足 $x + y + xz = e^z - 1$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

解令
$$F(x, y, z) = x + y + xz - e^z + 1$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(x+y+xz-e^z+1)_x'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{1+0+z-0+0}{0+0+x-e^z+0} = -\frac{1+z}{x-e^z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(x+y+xz-e^z+1)_y'}{(x+y+xz-e^z+1)_z'}$$
$$= -\frac{0+1+0-0+0}{0+0+x-e^z+0} = -\frac{1}{x-e^z}$$

例设z = f(x, y)满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

例设z = f(x, y)满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

 $\mathbf{F}(x, y, z) = 0$

$$\frac{\partial Z}{\partial x} = -\frac{F_X}{F_Z} =$$

$$\frac{\partial z}{\partial v} = -\frac{F_y}{F_z} =$$

例设z = f(x, y)满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$

$$\mathbb{H} \diamondsuit F(x, y, z) = 2\sin(x + 2y - 3z) - x - 2y + 3z,$$

 $F(x, y, z) = 0$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} =$$

$$\frac{\partial z}{\partial v} = -\frac{F_y}{F_z} =$$

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{(2\sin(x+2y-3z)-x-2y+3z)_z'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= -

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{-1}{-6\cos(x+2y-3z)}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

● 整角大⁴

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{-6\cos(x+2y-3z)+3}{-6\cos(x+2y-3z)+3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= -

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)}{-6\cos(x+2y-3z)+3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

§8.5 多元复合函数与隐函数的求导法则

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= ---

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

= - -----

$$F(x, y, z) = 0$$
,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$

$$-6\cos(x+2y-3z)+3$$

例设 z = f(x, y) 满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial y}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$4\cos(x+2y-3z)$$

 $-6\cos(x+2y-3z)+3$

$$\mathbf{F}(x, y, z) = 2\sin(x + 2y - 3z) - x - 2y + 3z, 则$$
 $\mathbf{F}(x, y, z) = 0,$ 所以

例设 z = f(x, y) 满足 $2\sin(x + 2y - 3z) = x + 2y - 3z$,求 $\frac{\partial z}{\partial y}$ 和 $\frac{\partial z}{\partial y}$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_x'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{2\cos(x+2y-3z)-1}{-6\cos(x+2y-3z)+3} = \frac{1}{3}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(2\sin(x+2y-3z)-x-2y+3z)_y'}{(2\sin(x+2y-3z)-x-2y+3z)_z'}$$
$$= -\frac{4\cos(x+2y-3z)-2}{-6\cos(x+2y-3z)+3}$$

例设
$$z = f(x, y)$$
满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解

$$\frac{\partial Z}{\partial x} =$$

$$\frac{\partial Z}{\partial y} =$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$

$$\frac{\partial Z}{\partial X} =$$

$$\frac{\partial z}{\partial y} =$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial Z}{\partial x} = -\frac{F_X}{F_Z} =$$

$$\frac{\partial z}{\partial v} = -\frac{F_y}{F_z} =$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{1 + xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{1}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

例设
$$z = f(x, y)$$
 满足 $z - y - x + xe^{z-y-x} = 0$,求 dz

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1}{(z - y - x + xe^{z - y - x})_z'}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{1 + xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1}{1 + xe^{z - y - x}}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1 - xe^{z - y - x}}{1 + xe^{z - y - x}}$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1 - xe^{z - y - x}}{1 + xe^{z - y - x}} = 1$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy =$$

解令
$$F(x, y, z) = z - y - x + xe^{z-y-x}$$
,则 $F(x, y, z) = 0$,所以

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_x'}{(z - y - x + xe^{z - y - x})_z'}$$
$$= -\frac{-1 + e^{z - y - x} - xe^{z - y - x}}{1 + xe^{z - y - x}} = \frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{(z - y - x + xe^{z - y - x})_y'}{(z - y - x + xe^{z - y - x})_z'} = -\frac{-1 - xe^{z - y - x}}{1 + xe^{z - y - x}} = 1$$

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = -\frac{1 + (x - 1)e^{z - y - x}}{1 + xe^{z - y - x}}dx + dy$$

