Zadanie 3

Maszyny Turinga M_1 i M_2 nad alfabetem binarnym $\{0,1\}$ nazwiemy podobnymi jeśli dla każdego wejścia $w \in \{0,1\}^*$ zachodzi następujący warunek:

jeśli zarówno M_1 i M_2 uruchomione na w terminują, to wynikowe wypisane przez nie słowa muszą być równe.

Innymi słowy, jeśli f_1 i f_2 to funkcje obliczane przez te maszyny, to dla każdego słowa $w \in \{0, 1\}^*$ ma zachodzić implikacja: jeśli $w \in \text{dom}(f_1)$ oraz $w \in \text{dom}(f_2)$ to $f_1(w) = f_2(w)$.

Rozważmy język L zawierający kod pary $\langle u_1, u_2 \rangle$ gdy u_1 to kod maszyny Turinga M_1 , u_2 to kod maszyny Turinga M_2 i maszyny M_1 i M_2 są podobne.

Należy uzasadnić odpowiedzi na następujące pytania:

- a) Czy język L jest obliczalny?
- b) Czy język L jest częściowo obliczalny?
- \mathbf{c}) Czy dopełnienie języka L jest częściowo obliczalne?

Dodatkowy komentarz

W ramach swojego rozwiązania, przy konstrukcji funkcji obliczalnych (np. na potrzeby redukcji) **nie trzeba** konstruować explicite maszyn Turinga obliczających dane funkcje—wystarczy ściśle zdefiniować odpowiednią funkcję $f \colon A^* \to B^*$ oraz dodać komentarz w stylu: wprost z definicji f widać, że jest ona obliczalna. Oczywiście powinno tak faktycznie być, definicja funkcji f powinna pokazywać jak można ją zaprogramować.