Avaliação de resolvedores para problemas de localização de facilidades com capacidade limitada

Guilherme Akira Demenech Mori

May 18, 2023

Abstract

C	Contents	
1	Introdução	2
2	Atividades desenvolvidas	2
3	Revisão da literatura	2
4	Definição e modelagem dos problemas	2
	4.1 MS-CFLP: problema de localização de facilidades com capacidade limitada e múltiplas fontes	2
	4.2 SS-CFLP: problema de localização de facilidades com capacidade limitada e fonte única	3
	4.3 MS-CFLP-CI: problema de localização de facilidades com capacidade limitada e incompatibilidade de clientes	5
5	Experimentos computacionais	5
6	Referências	5
${f L}$	ist of Tables	
	1	6
	2	7
	3	8
	4	9 10

1 Introdução

2 Atividades desenvolvidas

- 1. Estudo de modelos de otimização linear:
- 2. Estudo de solução gráfica e método simplex:
- 3. Estudo de modelos de otimização inteira:
- 4. Estudo do método branch-and-bound:
- 5. Estudo da configuração padrão e dos recursos disponíveis de cada pacote computacional escolhido:
- 6. Implementação de um modelo clássico de otimização utilizando os pacotes computacionais escolhidos:
- 7. Estudo de uma técnica de decomposição de um problema prático e o surgimento do modelo escolhido como subproblema:
- 8. Testes computacionais e avaliação comparativa dos resultados:

3 Revisão da literatura

4 Definição e modelagem dos problemas

No problema da localização de facilidades com capacidade limitada (Capacitated Facility Location Problem, CFLP) são minimizados os custos de instalação de facilidades e de designação de clientes a elas, de forma a respeitar as limitações de capacidade das facilidades e a satisfazer as demandas dos clientes. Se não forem definidas outras restrições além da capacidade das facilidades e da demanda dos clientes, nada impede que a demanda de um cliente seja satisfeita designando mais do que uma facilidade para ele, o que caracteriza o CFLP com múltiplas fontes (multi-source, MS-CFLP) [4.1].

Quando cada demanda deve ser atendida por somente uma facilidade, tem-se o CFLP com fonte única (*single-source*, SS-CFLP) [4.2].

4.1 MS-CFLP: problema de localização de facilidades com capacidade limitada e múltiplas fontes

São dados o conjunto de facilidades I e o conjunto de clientes J. Para cada facilidade $i \in I$, tem-se o custo de abertura $f_i \in \mathbb{R}$ e a capacidade máxima de atendimento $s_i \in \mathbb{Z}$. Tem-se também a demanda de produtos $d_j \in \mathbb{Z}$ para cada cliente $j \in J$. Para cada par de facilidade e cliente $\langle i,j \rangle \in I \times J$, há o custo $c_{ij} \in \mathbb{R}$ do atendimento de j por i por unidade do produto demandado.

O modelo pode ser descrito da seguinte forma:

$$\min \sum_{i \in I} (f_i y_i + \sum_{j \in J} c_{ij} x_{ij}) \tag{1}$$

sujeito a

$$\sum_{i \in I} x_{ij} \ge d_j \quad \forall j \in J \tag{2}$$

$$\sum_{i \in J} x_{ij} \le y_i s_i \quad \forall i \in I \tag{3}$$

$$y_i \in \{0, 1\}, \ x_{ij} \ge 0, \ x_{ij} \in \mathbb{Z} \quad \forall i \in I, \ j \in J$$
 (4)

O atendimento da demanda do cliente $j \in J$ pela facilidade $i \in I$ é representado pela variável inteira não-negativa x_{ij} , cujo valor é a quantidade de unidades do produto são fornecidas por i para j. A restrição 2 garante que a soma de todos os atendimentos de cada cliente por todas as facilidades satisfaça sua demanda d_j . Os custos de atendimento são somados na função objetivo (1) de acordo com o custo c_{ij} por unidade.

A abertura da facilidade $i \in I$ é representada pela variável binária y_i , que assume valor 0 quando i estiver fechada e 1 se tiver sido instalada. A restrição 3 exige que, se a soma dos atendimentos prestados por i para todos os seus clientes for positiva, a facilidade deva ser aberta $(y_i = 1)$. Essa restrição também limita a soma dos atendimentos à capacidade s_i da facilidade. O custo de instalação f_i da facilidade será somado ao custo na função objetivo (1) se $y_i = 1$.

Observação 1 É importante ressaltar que esse modelo considera que o produto possui unidades indivisíveis e que, portanto, os atendimentos x_{ij} , as capacidades s_i e as demandas d_j são inteiros.

Caso fossem fornecidas capacidades reais $s_i' \in \mathbb{R}$, bastaria utilizar $s_i = \lfloor s_i' \rfloor$. Se fossem demandas reais $d_j' \in \mathbb{R}$, bastaria utilizar $d_j = \lceil d_j' \rceil$.

Contudo, sendo necessário utilizar valores fracionários de atendimento, capacidade e demanda, bastará alterar a restrição 4 para que sejam reais as variáveis $x_{ij} \in \mathbb{R}$. A modelagem do problema funciona para atendimentos no domínio dos reais.

4.2 SS-CFLP: problema de localização de facilidades com capacidade limitada e fonte única

A modelagem pode ser essencialmente a mesma do MS-CFLP [4.1], simplesmente se alterando o domínio de cada $x_{ij} \in \{0, d_j\}$ na restrição 4. Porém a restrição para uma única fonte permite algumas alterações razoáveis.

Novamente são dados o conjunto de facilidades I e o conjunto de clientes J, bem como o custo de abertura $f_i \in \mathbb{R}$ e a capacidade máxima de atendimento $s_i \in \mathbb{Z}$ para cada facilidade $i \in I$. Então, para cada par de facilidade e cliente $\langle i,j \rangle \in I \times J$, há a demanda $p_{ij} \in \mathbb{Z}$ (quantas unidades do produto i deveria fornecer a j caso o atenda) e o custo $g_{ij} \in \mathbb{R}$ de atendimento de toda essa

demanda. A possibilidade de a demanda ser diferente se for atendida por facilidades diferentes é uma generalização razoável permitida pela restrição maior das fontes de atendimento.

$$\min \sum_{i \in I} (f_i y_i + \sum_{j \in J} g_{ij} x_{ij}) \tag{5}$$

sujeito a

$$\sum_{i \in I} x_{ij} = 1 \quad \forall j \in J \tag{6}$$

$$\sum_{j \in J} p_{ij} x_{ij} \le y_i s_i \quad \forall i \in I \tag{7}$$

$$y_i \in \{0, 1\}, \ x_{ij} \in \{0, 1\}, \ \forall i \in I, \ j \in J$$
 (8)

Dessa vez, x_{ij} é definida como variável binária, representando se a facilidade i atende o cliente j. A restrição 6 garante que exatamente uma facilidade atenda cada cliente. Os custos de atendimento são somados na função objetivo (5) de acordo com o custo total q_{ij} .

Novamente, y_i é a variável binária que representa se a facilidade $i \in I$ está aberta. A restrição 7 exige que, se a soma dos atendimentos prestados por i para todos os seus clientes for positiva, a facilidade deva ser instalada $(y_i = 1)$. Essa restrição também limita a soma dos atendimentos (considerando a quantidade de produtos p_{ij} de cada um deles) à capacidade s_i da facilidade. Serão somados na função objetivo (5) os custos de instalação f_i das facilidades abertas $(y_i = 1)$.

Observação 2 Assim como o modelo MS-CFLP [4.1], esse modelo considera indivisibilidade de unidades do produto nas capacidades s_i e demandas p_{ij} inteiras. Mas se elas fossem reais não haveria nenhuma alteração de funcionamento, dispensando alteração de domínio das variáveis.

Observação 3 Embora tenha mudado a representação, não houve alteração nos dados de custo de atendimento. Pode-se substituir, neste modelo, $g_{ij} = c_{ij}p_{ij}$ e, no MS-CFLP [4.1], $g_{ij} = c_{ij}d_j$.

4.2.1 De MS-CFLP para SS-CFLP

Para utilizar dados de uma instância do MS-CFLP [4.1] e utilizá-la SS-CFLP, basta que, para todo $i \in I$ e $j \in J$, $p_{ij} = d_j$ e $g_{ij} = c_{ij}p_{ij} = c_{ij}d_j$ (conforme a observação 3).

Os demais dados são os mesmos para ambos.

4.3 MS-CFLP-CI: problema de localização de facilidades com capacidade limitada e incompatibilidade de clientes

Algumas instâncias que foram utilizadas apresentavam uma restrição a mais. Além da função objetivo (1), da restrição de atendimento de demanda 2, de limitação de capacidade 3 e das variáveis definidas na restrição 4, é adicionado um conjunto de pares de clientes incompatíveis $\Gamma \subset J^2$. Os clientes desses pares não podem ser atendidos pela mesma facilidade.

$$x_{ij_1} \le \lambda_{ij_1j_2} s_i, \ x_{ij_2} \le (1 - \lambda_{ij_1j_2}) s_i \quad \forall i \in I, \langle j_1, j_2 \rangle \in \Gamma$$
 (9)

Para isso, são definidas as variáveis de disjunção $\lambda_{ij_1j_2}$

$$\lambda_{ij_1j_2} \in \{0,1\} \quad \forall i \in I, \langle j_1, j_2 \rangle \in \Gamma$$
 (10)

- 5 Experimentos computacionais
- 6 Referências

References

				CBC			CPLEX			GUROBI	
$Inst \hat{a}ncias$			120			120		009	120	300	009
	ع ا	Média				0	1		0,01	0	0
	qap	Mediana				0			0	0	0
	Ë	Média				17,76			28,70	28,87	28,76
sobolev.ss	тше	Mediana				14,44			19,77	19,75	19,73
	Node	Média		l.		12440,43	l		20989,02	21176,65	21176,65
	TACCES	Mediana				9752			14843	14843	14843
	$\#\mathrm{Opt}$					100	l .		66	100	100
	$\# \mathrm{Fact}$					100			100	100	100
	$\rm \#OfM$					0			0	0	0
	$\# \mathrm{TL}$				0	0	0		0	0	0
	2	Média				0	l		0	0	0
	qap	Mediana				0			0	0	0
6	Ë	Média			1	0,57			0,59	0,60	0,59
holmberg.ss	TILLIE	Mediana				0,14			0,13	0,13	0,13
	Nodes	Média				718,46	l		747,58	747,58	747,58
	TACACS	Mediana				0			0	0	0
	$\#\mathrm{Opt}$					71			71	71	71
	$\# \mathrm{Fact}$					71			71	71	71
	$\rm \#OfM$					0			0	0	0
	$\# \mathrm{TL}$					0			0	0	0
	2	Média				0			0	0	0
	dap	ã				0			0	0	0
	Time	Média				0,07			0.06	0.06	90,0
beasley.small.ss	TITIE	Mediana				0,04			0,04	0,04	0,04
	Nodes	Média				0,62	l		0	0	0
	TAORES	Mediana				0			0	0	0
	$\#\mathrm{Opt}$					24			24	24	24
	$\# \mathrm{Fact}$					24			24	24	24
	$\rm \#OfM$					0			0	0	0
	$\# \mathrm{TL}$					0			0	0	0

Table 1:

				CBC			CPLEX		•	GUROBI	
$Inst \hat{a}ncias$			120	300	009	120	300	009	120	300	009
	ځ	Média	80,44	80,05	55,24	4,24	1,01	0,58	5,36	1,13	0,53
	Gap	Mediana	78,50	78,06	77,94	3,13	0	0	5,27	0,41	0
	;;;	Média	129,87	313,05	609,31	120,05	241,57	322,60	120,11	292,33	446,46
beasley.large.ss	TILLIE	Mediana	128,53	308,43	601,07	120,04	256,37	252,09	120,02	300,01	452,43
	Nodo	Média	0	1,58	128,83	77,58	1376,33	2211,25	1279,75	1858,75	3475,42
	Sanovi	Mediana	0	0	4,50	0	1079,50	1886	1284	1367	2813,50
	#Obt		0	0	0	0	2	6	0	3	6
	$\# { m Fact}$		12	12	12	12	12	12	12	12	12
	MOfM		0	0	0	0	0	0	0	0	0
	#TI		0	0	0	0	0	0	0	0	0

				CBC			CPLEX			GUROBI	
$Inst \hat{a}ncias$			009	1800	3600	009		3600		1800	
	٤	Média	19,53	17,34	15,14	2,40		0,92		1,25	
	qap	Mediana	29,47	21,24	9,41	1,99		0,59		1,07	
		Média	509,77	1517,66	2978,46	481,98	1	2553,62		1410,30	
mess.ss	TIME	Mediana	597,25	1794,17	3571,55	600,21		3601		1800,06	3600,04
	7 (14	Média	4341	22587,15	65098,17	31113,92		154435,20		67568,38	1
	Sapori	Mediana	672	2127	10508	540	8167	39436	1813	8099	
	$\#\mathrm{Opt}$		2	2	2	3	1	3		3	3
	$\# \mathrm{Fact}$		7	7	7	13	11	10	13	13	11
	#OfM		0	0	0	0	2	3	0	0	1
	# TI		9	9	7.5	0	0	0	0	0	0

8

				CBC			CPLEX			GUROBI	
$Inst \hat{a}ncias$			120	300	009	120	300	009	120	300	009
	ځ	Média	0,03	0,01	0	0	0	0	0	0	0
	Сар	Mediana	0	0	0	0	0	0	0	0	0
	i i	Média	3,69	6,19	8,49	0,25	0,26	0,25	0,17	0,17	0,17
holmberg.ms	тше	Mediana	0.36	0,33	0,34	0,13	0,14	0,12	0,11	0,11	0,11
	Nodo	Média	188,49	354,62	583,15	72,42	72,42	72,42	10,76	10,76	10,76
	INOUES	Mediana	2	2	2	0	0	0	0	0	0
	$\#\mathrm{Opt}$		20	20	71	71	71	71	71	71	71
	$\# { m Fact}$		71	71	71	71	71	71	71	71	71
	#OfM		0	0	0	0	0	0	0	0	0
	$\# \mathrm{TL}$		0	0	0	0	0	0	0	0	0
	30	Média	0	0	0	0	0	0	0	0	0
	dap	Mediana	0	0	0	0	0	0	0	0	0
9	E	Média	0,39	0,39	0,39	80,0	80,0	80,0	0,02	0,02	0,02
beasley.small.ms	тше	Mediana	0,11	0,11	0,11	90,0	90,0	90,0	0,04	0,04	0,04
	Nodog	Média	45,17	45,17	45,17	11,46	11,46	11,46	0	0	0
	T O O C	Mediana	9	9	9	0	0	0	0	0	0
	#Obt		24	24	24	24	24	24	24	24	24
	$\# { m Fact}$		24	24	24	24	24	24	24	24	24
	#OfM		0	0	0	0	0	0	0	0	0
	$\# \mathrm{TL}$		0	0	0	0	0	0	0	0	0
	200	Média	82,74	82,45	69,94	1,92	0,59	0,42	5,31	1,70	0,31
	dap	Mediana	80,94	80,61	80,50	$0,\!32$	0	0	4,01	0,75	0
	Time	Média	130,41	$308,\!56$	607,54	106,23	183,49	258,48	111,08	261,11	392,52
beasley.large.ms	TITIE	Mediana	128,40	309,72	603,09	120,07	183,93	183,28	120,02	300,03	371,93
	Nodos	Média	0	0,17	22,33	580,83	2314,75	3291,58	1043,17	1182,50	1641,83
	INOUES	Mediana	0	0	0	546,50	2847	2847	1262	1312,50	1546,50
	$\#\mathrm{Opt}$		0	0	0	5	6	6	2	2	10
	$\# \mathrm{Fact}$		12	12	12	12	12	12	12	12	12
	#OfM		0	0	0	0	0	0	0	0	0
	$\# \mathrm{TL}$		0	0	0	0	0	0	0	0	0

Table 4:

				CBC			\mathbf{CPLEX}			GUROBI	
$Inst \hat{a}ncias$			009	1800	3600	009	1800	3600	009	1800	3600
	ا ع	Média	10,16		6,16	0,13	0,07	0,03	0,11	0,04	0,02
	чар	Mediana	2,57		2,19	0	0	0	0,09	0	0
	Ë	1	490,95		2625,29	279,55	731,79	985,22	356,01	883,96	1104,66
mess.ms	TILLE	Mediana	591	1762,92	3437,64	209,53	210,01	45,26	600,10	810,70	152,61
		Média	4285,33	10993,40	22013,58	10715,88	25935,38	44222,29	7694,91	21289,90	24029,50
	rones	Mediana	1176	4239	3582,50	7133,50	15520,50	6271	2675	10121,50	14357
	#Opt		3	3	4	5	ಬ	9	5	9	9
	$\# \mathrm{Fact}$		15	15	12	∞	∞	7	11	10	∞
	MOfM			0	3	0	0	П	3	3	2
	$\# \mathrm{TL}$		0	0	0	0	0	0	0	0	0

10