

Examen final : Électronique 1

16 janvier 2017

Durée: 2 heures

Nom et prénom :	Note sur 20 :

Consignes de l'examen :

- Les documents sont interdits.
- Les calculatrices sont interdites.
- Les portables doivent être éteints.
- Les résultats doivent être récapitulés à l'intérieur des cases de réponses prévues dans le sujet.
- Un résultat non justifié sera considéré erroné.
- Les exercices peuvent être traités dans un ordre quelconque

Exercice n°1: Dipôles

Quelle est l'expression de l'impédance complexe \underline{Z}_{AB} du dipôle électrique constitué par l'association des éléments R_0 , L et C ci-dessous?

En déduire les grandeurs caractéristiques suivantes :

- le module Z_{AB} du dipôle
- l'argument φ du dipôle
- la résistance R du dipôle
- la réactance X du dipôle

<u>Z</u> _{AB} =		Z_{AB} =
φ =	R =	X =

Pr. A. BAGHDAD Examen final «Électronique 1 » 1/5

Exercice n°2: Quadripôles

- **I°)** Calculer pour le quadripôle en gamma (Γ) ci-dessous, les matrices caractéristiques suivantes :
 - 1°) chaine directe (<u>a</u>)
 - 2°) impédance (z)
 - **3°)** admittance (<u>y</u>)
 - **4°)** hybride directe (<u>h</u>)

Récapitulation des résultats :

$$(\underline{a}) = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \quad (\underline{z}) = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \quad (\underline{y}) = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \quad (\underline{h}) = \begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$$

 II°) Le quadripôle en gamma (Γ) est inséré entre un générateur et une charge comme indiqué ci-dessous :

Pr. A. BAGHDAD Examen final «Électronique 1 » 2/5

On vous demande de calculer les caractéristiques du montage suivantes :

- **1°)** l'amplification en tension \underline{A}_{v} .
- **2°)** l'amplification en courant \underline{A}_{i} .
- **3°)** l'amplification en puissance A_p .
- **4°)** l'impédance d'entrée Z_E.
- **5°)** l'impédance de sortie \underline{Z}_s .
- **6°)** l'impédance caractéristique Z_c .
- **7°)** l'impédance de transfert direct Z_{TD} .
- **8°)** l'impédance de transfert inverse Z_{TI} .
- **9°)** l'admittance de transfert direct \underline{Y}_{TD} .
- **10°)** l'admittance de transfert inverse \underline{Y}_{TI} .

Récapitulation des résultats :

$\underline{A}_v =$		$\underline{\underline{A}}_i =$		A_p =	
<u>Z</u> _E =		<u>Z</u> _S =		Z _C =	
<u>Z</u> _{TD} =	<u>Z</u> _{TI} =		$\underline{\mathbf{Y}}_{TD} =$	<u>Y</u> _{TI} =	

Exercice n°3: Diodes

On considère le circuit à pont de diodes ci-dessous, les quatre diodes qui le constitue sont supposées idéales ($V_0 = 0$ et $r_D = 0$), la tension à la sortie du secondaire du transformateur $V_e(t)$ est alternative sinusoïdale, vaut $E \sin(\omega t)$.

- **1°)** En fonction de l'état de fonctionnement des diodes, établir l'expression de la tension de sortie du montage V_s .
- 2°) Représenter sur le même croquis de V_e , la tension de sortie $V_s = f(t)$.
- **3°)** Tracer le graphe de transfert $V_s = f(V_e)$
- **4°)** Que réalise t-on avec ce montage ?

Pr. A. BAGHDAD Examen final «Électronique 1 » 3/5

Récapitulation des résultats :

1°) Tableau résumé de l'état de fonctionnement des diodes

Tension d'entrée V _e	État de la diode D ₁	État de la diode D ₂	État de la diode D ₃	État de la diode D4	La tension de sortie du montage V _s
$V_e > 0$					
V _e < 0					

2°) Tracé du graphe $V_s = f(t)$

3°) Tracé du graphe de transfert $V_s = f(V_e)$

4°) Que réalise t-on avec ce montage ?

Pr. A. BAGHDAD Examen final «Électronique 1 » 4/5

Exercice n°4: Diodes

On considère le circuit électronique ci-dessous dont la diode sera représentée par son modèle idéal ($\mathbf{V_0} = \mathbf{0}$ Volt et $\mathbf{r_D} = \mathbf{0} \Omega$).

- **1°)** Exprimer en fonction des éléments du montage le courant \mathbf{I} débité par le générateur et le courant \mathbf{I}_d qui traverse la diode s'il est conductrice.
- **2**°) Même question si l'on inverse la position de la diode dans le montage.

Récapitulation des résultats :

$$I \circ I = I_d = I_$$

Exercice n°5: Amplificateur opérationnel

On considère le montage électronique ci-dessous, l'AO est supposé parfait.

- **1**°) Exprimer V_s en fonction de V_1 , V_2 , et V_3 .
- 2°) Quelle est la fonction mathématique réalisée par ce montage?

Récapitulation des résultats :

1°)	2°)
-----	-----

Pr. A. BAGHDAD Examen final «Électronique 1 » 5/5