ALGORITHMIC DESIGN - HOMEWORK - SORTING

Keerthana C J

September 2020

1 Sorting

The INSERTION SORT, QUICK SORT, BUBBLE SORT, SELECTION SORT, and HEAP SORT have been implemented and they are compared with their time in the best, worst and a random case. The following figures represent the comparisons.

Figure 1: Comparison of the various sorting algorithms

- 1. HEAP SORT on a array A whose length is n takes time O(n) Argument: The complexity of building a heap from an array A is $\Theta(n)$. The complexity of extracting the minimum value from the heap is $O(\log n)$ In a heap sort, we build the heap from A and use the extract_min for for n-1 times. Hence, a Heap sort cannot be done in a time of O(n)
- 2. What is the worst case complexity for HEAP SORT? **Answer**: Complexity = $T(build_heap) + n.T(extract_min) \le \Theta(n) + n.O(log_2n) \le O(n.log_2n)$
- 3. QUICK SORT on an array A whose length is n takes time $O(n^3)$ Argument: The worst case scenario for a quick sort is when |S| = 0 or |G| = 0, where the complexity is $O(n^2)$. Hence, a quick sort on an array taking time $O(n^3)$ is not possible.
- 4. What is the complexity of Quick Sort? **Answer**: Best case complexity = $\Theta(n.log_2n)$ Worst case complexity = $O(n^2)$
- 5. BUBBLE SORT on an array A whose length is n takes time $\Omega(n)$ Argument: The best case complexity of Bubble sort is $\Theta(n^2)$. Hence the above statement cannot occur.
- 6. What is the complexity of BUBBLE SORT? **Answer**: Complexity = $\Theta(n^2)$