Instituto Federal do Norte de Minas Gerais - IFNMG - Campus Januária Bacharelado em Sistemas de Informação - BSI

INSTITUTO FEDERAL

Norte de Minas Gerais Campus Januária

Redes de Computadores - Camada de Rede -

Camada de Rede

Arquitetura TCP / IP Modelo OSI Camada de Aplicação Camada de Aplicação Camada de Apresentação Camada de Sessão Camada de Transporte Camada de Transporte **Camada Internet / Inter-Redes** Camada de Rede Camada de Enlace Camada Host / Rede ou Interface de Rede Camada de Física

Camada de Rede

- Responsável pela entrega de um pacote, desde sua origem até o seu destino final.
- Essa entrega possivelmente terá que atravessar diversos enlaces e/ou redes intermediárias.

inter-network

Nível Enlace

Nível Rede

internet vs. Internet

- Como identificar o destinatário desejado?
- Como localizar o destinatário desejado?
- Como descobrir uma rota até o destinatário?

Níveis de Endereçamento

Arquitetura TCP / IP Endereços Camada de Aplicação Domínio Camada de Transporte **Porta Camada Internet / Inter-Redes** IP (LAN) Ethernet / WiFi: MAC Camada Host-Rede ou (WAN) Frame Relay: DLCI Interface de Rede (WAN) ATM: VPI-VCI

Camada de Rede

- A principal função da camada de rede é fazer o roteamento dos pacotes.
- *Roteamento*: Processo realizado para encontrar uma rota entre uma origem e um destino.

Encaminhamento x Roteamento

Encaminhamento

 Transferência de um pacote de um enlace de entrada para um enlace de saída, conforme uma tabela previamente conhecida.

Roteamento

 Processo realizado pelos roteadores, cujas interações (segundo um protocolo) determinam o preenchimento da tabela de encaminhamento.

Encaminhamento

Modelos de Rede

- Redes Orientadas a Conexão
 - □ Redes de Circuitos Virtuais
 - ATM, Frame-Relay, X.25, Telefonia Fixa.

- Redes Não Orientadas a Conexão
 - Redes de Datagramas
 - □ Internet Protocol (IP)

Visões

Redes Orientadas a Conexão

"A rede deve garantir recursos para uma qualidade mínima de serviço aos usuários."

Redes Não Orientadas a Conexão

"A tarefa da rede é somente movimentar os pacotes pela rede, sem nenhuma garantia de qualidade do serviço."

Redes Orientadas a Conexão

Redes de Circuitos Virtuais

Redes de Circuitos Virtuais

Fase 1: Solicitação

Redes de Circuitos Virtuais

■ Fase 2: Estabelecimento

Fluxo: Rede Circuito Virtual

Redes de Circuitos Virtuais

Vantagens:

- Recursos podem ser reservados para cada CV.
- QoS (Qualidade de Serviço).
- Entrega ordenada.

Desvantagens:

- Roteadores devem guardar estado.
- Não escalável.

Redes de Datagramas

Redes Não Orientadas a Conexão

Redes de Datagramas

Redes de Datagramas

Vantagens:

- Núcleo da rede simples.
- Escalabilidade.

Desvantagens:

- Recursos são alocados sob demanda.
- Sem garantias de entrega.
- Difícil implementação de QoS.

Leitura Recomendada...

Seção 4.1 Seção 4.2

Arquitetura TCP/IP

Arquitetura TCP/IP

Endereço IP

- □ Versão 4.
- Endereço lógico.
- Hierárquico e Roteável.
- □ Tamanho de 32 bits.
- Representado como 4 conjuntos de bytes.
- Formato IPv4: W.X.Y.Z

Endereço IPv4					
Octeto 1	Octeto 2	Octeto 3	Octeto 4		
0000000 1111111	0000000 1111111	0000000 1111111	00000000 11111111		
0 – 255	0 – 255	0 – 255	0 – 255		
W	X	Υ	Z		

Cada nó em uma rede TCP/IP deve possuir um endereço IP exclusivo, e que permite identificar tanto a rede como o host.

■ Todo endereço IP é dividido em duas partes:

Net ID

Identifica uma rede.

Host ID

Identifica o host em uma rede.

Endereçamento Classful

Padrão de Endereçamento Classful

Net Id	Host Id	
192.168.0	5	

Net Id			Host Id
Octeto 1	Octeto 2	Octeto 3	Octeto 4
192	168	0	5

Endereçamento Classful

Exercícios

- Converta os seguintes endereços IP para o formato binário.
 Indique em qual classe cada endereço pertence:
 - a) 9.3.158.1
 - b) 100.8.5.4
 - c) 143.54.8.10
 - d) 200.248.3.1
 - e) 222.8.1.8
- Qual é o número máximo de hosts que podem coexistir em uma rede classe C?
- Qual é o número máximo de redes existentes na classe B?

Endereços Reservados

- Endereço de Rede/Sub-Rede
 - Define a rede como um todo.
 - Todos os Bits do Host-ID com valor 0.
- Endereço de Broadcast
 - Define o endereço para comunicação broadcast.
 - Todos os Bits do Host-ID com valor 1.
- Endereço Localhost
 - Endereço local, que referencia o próprio host.
 - □ Faixa 127.0.0.0/8 => 127.0.0.1 127.255.255.254

Segmentação de Redes

Roteador / Router

- O roteador é a fronteira de uma rede.
- Isolamento de Domínios de Broadcast.

Órgãos de Controle

- Quem gerencia a distribuição de endereços IP's na rede Internet?
- IANA (Internet Assigned Numbers Authority)

"IANA is responsible for global coordination of the Internet Protocol addressing systems, as well as the Autonomous System Numbers used for routing Internet traffic"

Órgãos de Controle

- Quem gerencia a distribuição de endereços IP's na rede Internet?
 - ICANN: Internet Corporation for Assigned Names and Numbers.
 - LACNIC: Registros para a América Latina e Caribe.
 - CGI.Br: Comitê Gestor da Internet no Brasil.
 - Visite o LINK

- $= 2^{32} = 4.294.967.296$ (4 Bilhões de endereços possíveis).
- Parece muito, porém, praticamente já se esgotaram todos os endereços disponíveis.
- O protocolo n\u00e3o foi projetado considerando uma rede de escala mundial => Internet.
- Soluções paliativas adiaram o esgotamento imediato do IPv4: CIDR, VLSM e NAT.
- IPv6 como solução definitiva, ainda em transição...

OS ENDEREÇOS IP IRÃO SE ESGOTAR!

CALMA...

Nada que uma boa GAMBIARRA não resolva...

IPcalipse

■ 1ª Medida:

- Tenho 300 hosts => Esquema Classful => Classe B.
- Porém, uma faixa Classe B oferece endereços para até 65.536 hosts.
- Desperdício de 65.000 endereços.

Classless Inter-Domain Routing

Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy

Problem, Goal, and Motivation

As the Internet has evolved and grown over in recent years, it has become evident that it is soon to face several serious scaling problems. These include:

- 1. Exhaustion of the class B network address space. One fundamental cause of this problem is the lack of a network class of a size which is appropriate for mid-sized organization; class C, with a maximum of 254 host addresses, is too small, while class B, which allows up to 65534 addresses, is too large for most organizations.
- Growth of routing tables in Internet routers beyond the ability of current software, hardware, and people to effectively manage.
- Eventual exhaustion of the 32-bit IP address space.

Definida pela RFC 1519.

- Classless Inter-Domain Routing
- Proposta: Dividir uma rede classful A, B ou C em redes menores, ou sub-redes.

Máscara de Rede

- O prefixo de uma rede é identificado através da máscara de rede.
- Máscara de Rede Notação 1:
- Todos os bits que representam NET-ID possuem valor 1, e bits de Host-ID o valor 0:
 - Máscara da Classful A = 255.0.0.0
 - Máscara da Classful B = 255.255.0.0
 - Máscara da Classful C = 255.255.255.0

Máscara de Rede

- O prefixo de uma rede é identificado através da máscara de rede.
- Máscara de Rede Notação 2:
- W.X.Y.Z / N
 - Onde N é a quantidade de bits que identificam o prefixo da rede (NET-ID).
 - Classful A = W.X.Y.Z / 8
 - Classful B = W.X.Y.Z / 16
 - Classful C = W.X.Y.Z / 24

 No CIDR uma faixa de rede /24 pode ser "dividida" em em 04 sub-redes /26.

1º Octeto		2º Octeto	3º Octeto	4º Octeto	
Rede /24 NNNNNNN		NNNNNNN	NNNNNNN	нининини	
Rede /26	NNNNNNN	NNNNNNN	NNNNNNN	NN HHHHHHH	
Nova Máscara	255	255	255	<mark>192</mark>	

 Os dois bits H, agora convertidos em N, poderão definir 4 sub-redes, cada qual com uma quantidade reduzida de hosts.

- Voltando ao problema inicial...
 - □ Tenho 300 hosts => Esquema Classful => Classe B.
 - Porém, uma faixa Classe B oferece endereços para até 65.536 hosts.
 - Desperdício de 65.000 endereços.

Qual a máscara CIDR ideal para essa organização?

- Voltando ao problema inicial...
 - □ Tenho 300 hosts => Esquema Classful => Classe B.
 - Porém, uma faixa Classe B oferece endereços para até 65.536 hosts.
 - Desperdício de 65.000 endereços.

Qual a máscara CIDR ideal para essa organização?

Rede /23 => sobram 9 bits para Host => 2⁹ = 512 - 2 = 510 Rede /23 permite 510 endereços válidos. Máscara /23 == 255.255.254.0

<i>34</i>		www.netadm.com.br				
Prefixo CIDR	Máscara em Decimal	Máscara em Hexadecimal	Máscara Reversa	Máscara de Rede em Binário	Nº de Redes Classful	Nº de hosts
/1	128.0.0.0	80 00 00 00	127.255.255.255	1000 0000 0000 0000 0000 0000 0000 0000	128 As	2,147,483,646
/2	192.0.0.0	CO 00 00 00	63.255.255.255	1100 0000 0000 0000 0000 0000 0000 0000	64 As	1,073,741,822
/3	224.0.0.0	E0 00 00 00	31.255.255.255	1110 0000 0000 0000 0000 0000 0000 0000	32 As	536,870,910
/4	240.0.0.0	F0 00 00 00	15.255.255.255	1111 0000 0000 0000 0000 0000 0000 0000	16 As	268,435,454
/5	248.0.0.0	F8 00 00 00	7.255.255.255	1111 1000 0000 0000 0000 0000 0000 0000	8 As	134,217,726
/6	252.0.0.0	FC 00 00 00	3.255.255.255	1111 1100 0000 0000 0000 0000 0000 0000	4 As	67,108,862
/7	254.0.0.0	FE 00 00 00	1.255.255.255	1111 1110 0000 0000 0000 0000 0000 0000	2 As	33,554,430
/8	255.0.0.0	FF 00 00 00	0.255.255.255	1111 1111 0000 0000 0000 0000 0000 0000	1 A or 256 Bs	16,777,214
/9	255.128.0.0	FF 80 00 00	0.127.255.255	1111 1111 1000 0000 0000 0000 0000 0000	128 Bs	8,388,606
/10	255.192.0.0	FF C0 00 00	0.63.255.255	1111 1111 1100 0000 0000 0000 0000 0000	64 Bs	4,194,302
/11	255.224.0.0	FF E0 00 00	0.31.255.255	1111 1111 1110 0000 0000 0000 0000 0000	32 Bs	2,097,150
/12	255.240.0.0	FF F0 00 00	0.15.255.255	1111 1111 1111 0000 0000 0000 0000 0000	16 Bs	1,048,574
/13	255.248.0.0	FF F8 00 00	0.7.255.255	1111 1111 1111 1000 0000 0000 0000 0000	8 Bs	524,286
/14	255.252.0.0	FF FC 00 00	0.3.255.255	1111 1111 1111 1100 0000 0000 0000 0000	4 Bs	262,142
/15	255.254.0.0	FF FE 00 00	0.1.255.255	1111 1111 1111 1110 0000 0000 0000 0000	2 Bs	131,07
/16	255.255.0.0	FF FF 00 00	0.0.255.255	1111 1111 1111 1111 0000 0000 0000 0000	1 B or 256 Cs	65,534
/17	255.255.128.0	FF FF 80 00	0.0.127.255	1111 1111 1111 1111 1000 0000 0000 0000	128 Cs	32,766
/18	255.255.192.0	FF FF CO OO	0.0.63.255	1111 1111 1111 1111 1100 0000 0000 0000	64 Cs	16,382
/19	255.255.224.0	FF FF E0 00	0.0.31.255	1111 1111 1111 1111 1110 0000 0000 0000	32 Cs	8,19
/20	255.255.240.0	FF FF F0 00	0.0.15.255	1111 1111 1111 1111 1111 0000 0000 0000	16 Cs	4,094
/21	255.255.248.0	FF FF F8 00	0.0.7.255	1111 1111 1111 1111 1111 1000 0000 0000	8 Cs	2,046
/22	255.255.252.0	FF FF FC 00	0.0.3.255	1111 1111 1111 1111 1111 1100 0000 0000	4 Cs	1,022
/23	255.255.254.0	FF FF FE 00	0.0.1.255	1111 1111 1111 1111 1111 1110 0000 0000	2 Cs	510
/24	255.255.255.0	FF FF FF 00	0.0.0.255	1111 1111 1111 1111 1111 1111 0000 0000	1 C	254
/25	255.255.255.128	FF FF FF 80	0.0.0.127	1111 1111 1111 1111 1111 1111 1000 0000	1/2 C	126
/26	255.255.255.192	FF FF CO	0.0.0.63	1111 1111 1111 1111 1111 1111 1100 0000	1/4 C	62
/27	255.255.255.224	FF FF FF EO	0.0.0.31	1111 1111 1111 1111 1111 1111 1110 0000	1/8 C	30
/28	255.255.255.240	FF FF FF F0	0.0.0.15	1111 1111 1111 1111 1111 1111 1111 0000	1/16 C	14
/29	255.255.255.248	FF FF FF F8	0.0.0.7	1111 1111 1111 1111 1111 1111 111000	1/32 C	6
/30	255.255.255.252	FF FF FF FC	0.0.0.3	1111 1111 1111 1111 1111 1111 1110	1/64 C	2
/31	255.255.255.254	FF FF FF FE	0.0.0.1	1111 1111 1111 1111 1111 1111 1111 1110	1/128 C	0
/32	255.255.255.255	FF FF FF FF	0.0.0.0	1111 1111 1111 1111 1111 1111 1111 1111	1/256 C	1

Exercícios CIDR

- Considere o endereço IP 196.34.201.137. Se a máscara de rede for 255.255.255.192, qual é o endereço da sub-rede e de difusão?
- Considere o endereço classe B 140.140.0.0.
- Determine a máscara que segmenta essa rede em sub-redes com até 2046 hosts cada.
- Com essa máscara, quantas sub-redes você pode criar na rede **140.140.0.0**?

Exercícios CIDR

- Uma organização recebeu uma faixa de rede
 156.1.1.0/24, e precisa segmentá-la em 4 sub-redes.
 Considerando que a maior sub-rede deve suportar 45 hosts. Defina o seguinte:
 - a) máscara de rede utilizada;
 - b) endereço de cada sub-rede;
 - c) endereço broadcast de cada sub-rede
 - d) faixa de endereços de host para cada sub-rede;
 - e) endereço do roteador e default gateway para cada sub-rede.

VLSM

Variable Length Subnet Masking

IPcalipse

2ª Medida:

 Todos computadores conectados à rede mundial Internet necessitam ter um endereço IP global para acesso?

- Na década de 90, a <u>RFC 1918</u> estabeleceu que 03 faixas de rede IP não seriam mais roteáveis na Internet.
- Essas faixas, denominadas faixas de <u>Rede Privada</u>, seriam utilizadas apenas para endereçar hosts internos às redes locais, sejam domésticas ou empresariais...

```
RFC 1918 Address Allocation for Private Internets February 1996
```

3. Private Address Space

The Internet Assigned Numbers Authority (IANA) has reserved the following three blocks of the IP address space for private internets:

```
10.0.0.0 - 10.255.255.255 (10/8 prefix)
172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)
```

Endereços Reservados

- Faixa de endereços foram reservados para utilização em LANs privadas:
 - \Box Classe A = 10.0.0.0/8
 - \Box Classe B = 172.16.0.0/12
 - □ Classe C = 192.168.0.0/16 -

Faixa de endereços não utilizados na **rede pública** (Internet)

Endereços Privados (não roteáveis).

- Com essa técnica, os hosts de redes locais não necessitam mais consumir endereços globalmente únicos da Internet (chamados <u>Endereços Públicos</u>).
- As diversas redes LANs podem usar a mesma faixa de rede, por exemplo, 192.168.10.0/24, sem que uma interfira no funcionamento das outras, afinal, eram redes apenas de âmbito local.
- Mas isso gerou um problema para a interconexão de redes...

- Como responder à uma requisição de um cliente em rede privada?
- Como acessar um serviço provido em uma rede privada?

SOLUÇÃO: os hosts locais devem compartilhar um endereço globalmente válido (endereço público).

- No mundo real, provedores não propagam pacotes cujo IP de origem ou destino são das faixas definidas pela RFC 1918.
- A comunicação abaixo só é possível após a configuração de um NAT, geralmente realizado no gateway das bordas da rede.

- No mundo real, provedores não propagam pacotes cujo IP de origem ou destino são das faixas definidas pela RFC 1918.
- A comunicação abaixo só é possível após a configuração de um NAT, geralmente realizado no gateway das bordas da rede.

- No mundo real, provedores não propagam pacotes cujo IP de origem ou destino são das faixas definidas pela RFC 1918.
- A comunicação abaixo só é possível após a configuração de um NAT, geralmente realizado no gateway das bordas da rede.

NAT/PAT (Network/Port Address Translation)

RFC 1918

Public IP

Mas não há nada ruim que...

CGNAT / RFC 6598

- Com o número crescente de assinantes de planos de Internet, além do sucesso do 3G/4G, cada vez era maior a escassez de endereços IP públicos para que os provedores conseguissem atender seus clientes.
- Em 2012 a IANA estabeleceu uma nova faixa de endereços privados, para serem utilizados exclusivamente por provedores (RFC 6598).
- Essa nova faixa é a 100.64.0.0/10.

AGORA É NECESSÁRIO FAZER NAT DO NAT... TAMBÉM CHAMADO CGNAT

CGNAT / RFC 6598

CGNAT / RFC 6598

Atividade CGNAT

Assista a esse vídeo…

Leia essa matéria...

Estude esse conteúdo...

IPv6

- Espaço de Endereçamento de 128 bits;
- Suporte a qualidade diferenciada QoS;
- Autoconfiguração de Endereço
 - Baseado nos endereços MAC (SLAAC)
- Computação Ubíqua "Internet das coisas"
 - Dezenas ou centenas de equipamentos estarão conectados em residências e escritórios simultaneamente.

- Notação do Endereçamento IPv6:
 - 8 grupos de 4 dígitos hexadecimais;
 - 2001:0db8:85a3:08d3:1319:8a2e:0370:7344
 - Cada dígito hexadecimal representa 4 bits (16 combinações);

- Abreviação do Endereçamento IPv6
 - Zeros à esquerda dentro dos quartetos podem ser omitidos.
 - 2001:0db8:85a3:00d3:1319:8a2e:0370:0044
 - 2001:db8:85a3:d3:1319:8a2e:370:44
 - Grupos de vários dígitos 0 podem ser omitidos.
 - 2001:0db8:85a3:0000:0000:0000:0000:7344
 - 2001:0db8:85a3::7344

- Conversão IPv4 => IPv6
 - Necessário em ambientes de transição
 - 80 Bits setados como '0'
 - 16 Bits setados como 'F'
 - Endereço IPv4 de 32 Bits
 - □ IPv4: 177.30.132.212
 - □ IPv6: ::ffff:b11e:84d4

Livro Completo IPv6

