Clustering

LING 570

Fei Xia

Week 10: 12/02/2009

Outline

The task

Clustering algorithms

Evaluation measures

• Hw10

The task

- Input: A collection of objects
- Output: clusters

- Potential benefits:
 - Document clustering
 - Unsupervised POS tagging
 - Smoothing for LM
 - Generalization (e.g., for MT)

— . . .

An example

Input: All the words in a language

- Output: word clusters
 - Ex: Mon, Tues, Wed, ...
 - Ex: Mike, Bryan, Joshua, ...
 - Ex: claim, announce, declare, ...
 - Ex: politicians, lawyers, salesmen, ...

Another example

Input: A collection of documents

- Output: document clusters
 - sports, politics, business, travel, ...
 - docs with the similar style: e.g., news, chat room, talk shows, …
 - docs written by similar kinds of authors
 - docs focusing on the same topic

Questions

- What should a cluster represent?
 - Two objects are similar.

How can we find good clusters?

How can one evaluate clustering results?

How can one benefit from clustering?

Similarity

Between two instances

Between an instance and a cluster

Between two clusters

Some similarity functions

$$p = (p_1, p_2, ..., p_n)$$
 and $q = (q_1, q_2, ..., q_n)$

Euclidean distance:

$$dist(p,q) = \sqrt{\sum_{i}(p_i - q_i)^2}$$

Cosine similarity:

$$cos(\theta) = \frac{\sum_{i} p_{i} q_{i}}{\sqrt{\sum_{i} p_{i}^{2}} \sqrt{\sum_{i} q_{i}^{2}}}$$

Outline

The task

Clustering algorithms

Evaluation measures

• Hw10

Types of clustering algorithms

- Flat vs. hierarchical clustering
 - Flat: partition n objects into k clusters
 - Hierarchical: create a hierarchy

- Hard vs. soft clustering
 - Hard clustering: each instance belongs to one cluster
 - Soft clustering: an instance can belong to multiple clusters (e.g., with different costs)

K-means vs. k-medoids

 k-means (MacQueen, 1967): Each cluster is represented by the center of the cluster

 k-medoids (Kaufman & Rousseeuw, 1987): Each cluster is represented by the medoid of the cluster

K-means algorithm

Select k initial centroids at random.

- Repeat until there is no more change
 - Assign each object to the cluster with the nearest centroid.
 - Compute each centroid as the mean of the objects assigned to it.

K-means (cont)

- Relatively efficient: O(t k n)
 - t: number of iteration
 - k: number of clusters
 - n: number of objects
- Need to specify k
- Often terminates at a local optimum
- Applicable only when mean is defined (what about categorical data?)
- Trouble with noisy data and outliers

K-medoids algorithm

Select k objects as the initial medoids

- Repeat until the medoids do not change
 - Assign each object to the cluster with the nearest medoid.
 - Find the new medoid for each cluster

Find the medoid of a cluster

 A medoid is an object in a cluster whose average dissimilarity to all the objects in the cluster is minimal.

- To find the medoid in a cluster
 - for each p, calculate $f(p) = \sum_{q} sim(p, q)$
 - choose p with the highest f(p).

Hierarchical clustering: Greedy, bottom-up approach

Initialization: Create a separate cluster for each object

- Repeat until all the objects are in the same cluster:
 - Find two most similar clusters and merge

Outline

The task

Clustering algorithms

Evaluation measures

• Hw10

Evaluation

- When compared with a gold standard
 - Rand index
 - Precision/recall
 - Variation of information

- Other methods:
 - Task-based evaluation
 - Human inspection

The setting

• Given a set of objects $S = \{O_1, ..., O_n\}$

- Partition $X = \{x_1, x_2, ..., x_r\}$
- Partition $Y = \{y_1, y_2, ..., y_r\}$

	In the same set in X	In different sets in X
In the same set in Y	а	d
In different sets in Y	С	b

Rand index

http://en.wikipedia.org/wiki/Rand_index

	In the same set in X	In different sets in X
In the same set in Y	а	d
In different sets in Y	С	b

 Rand index calculates how well the two partitions agree.

$$R = \frac{a+b}{a+b+c+d} \qquad R \in [0,1]$$

Precision and recall

 Treat one partition as gold standard, and the other as system output

 For each pair in a set in the system partition, check whether it appears in one set in the gold standard

Calculate precision, recall, and f-score.

Variations of information

 http://en.wikipedia.org/wiki/Variation_of_inf ormation

$$VI(X,Y) = H(X) + H(Y) - 2*MI(X,Y)$$

$$H(X) = -\sum_{x} P(x)logP(x)$$

$$MI(X;Y) = \sum_{x} \sum_{y} P(x,y) log \frac{P(x,y)}{P(x)P(y)}$$

Outline

The task

Clustering algorithms

Evaluation measures

• Hw10

Hw10

- Unsupervised POS tagging
 - One method: clustering words
- Features: the previous words and the next words
 - Ex: "book L=the 15 R=of 3 …"
- Clustering algorithm: k-medoids algorithm (with cosine as the similarity function)
- Evaluation: tagging accuracy after mapping sys clusters to clusters in gold standard

Q1: create_vector.sh

 create_vector.sh train_file output_file word_list feat_list

- train_file: w1 w2 ...
- word_list: word freq
- feat_list: word freq
- output_file: word fn1 fv1 fn2 fv2 ...

"fn1 fv1"

- fn:
 - Format: featidx_(L|R)=x
 - Ex: "new york" appears 919 times, and "new" is the 37th feature (i.e., appearing on the 38th line) in the feature file.
 - → "york 37_L=new 919"
- fv:
 - The occurrence of the bigrams
 - Ex: "york ... 37_L=new 919 ...137_R=new 0 ..."

The order of vector file

Lines are sorted by the order in word_list

• (fn, fv) pairs are sorted by feature index.

```
has 0_L=, 260 7_L=and 69 8_L='s 12 ... 100_R=, 5 101_R=the 55 102_R=. 4 103_R=of 3 ...
```

- Why do we need to sort features?
 - It can make the calculation of cosine faster.

Q2: k-medoids.sh

 k-medoids.sh vector_file cluster_size sys_cluster

- vector_file is created in Q1
- cluster_size is an integer
- sys_cluster:
 - "medoid word1 word2 ..."
 - medoid serves as the name of the cluster

Q2: k-medoids.hs

similarity function: cosine

initial medoids:

The i-th medoid is at line $x = (i-1) * \lfloor N/C \rfloor$

N is the number of vectors, C is the number of clusters.

Ex: N=100, C=34, |N/C|=2

Initial medoids are at line 0, 2, 4, ..., 66.

Mapping sys cluster to gold cluster: greedy one-to-one

	g1	g2	g3
s1	2	10	9
s2	7	4	2
s3	0	9	6
s4	5	0	3

- (1) find the largest number in the matrix
- (2) remove both the row and the column
- (3) repeat (1)-(2) until no more row left

$$s1 \Rightarrow g2 = 10$$
 Acc= $(10+7+6)$ /sum
 $s2 \Rightarrow g1 = 7$
 $s3 \Rightarrow g3 = 6$

Mapping sys cluster to gold cluster: greedy many-to-one

	g1	g2	g3
s1	2	10	9
s2	7	4	2
s3	0	9	6
s4	5	0	3

- (1) find the largest number
- (2) remove the row, but not the column
- (3) repeat (1)-(2) until no more row left.

$$s1 => g2 10$$

$$s3 => g2$$
 9

$$s2 => g1$$
 7

$$s4 => g1$$
 5

Q3: calc_acc.sh

- calc_acc.sh gold_cluster sys_cluster flag > map_file
 2>acc_file
- gold_cluster: "cluster_name w1 w2 ..."
- sys_cluster: "medoid w1 w2 ..."
- flag:
 - 0: one-to-one mapping
 - 1: many-to-one mapping
- map_file: "sys_cluster => gold_cluster cnt"
- acc_file: Acc=xx

Q4: wrapper.sh

 wrapper.sh train_file word_list feawt_list cluster_size gold_cluster output_dir

- output_dir:
 - vectors: created by Q1
 - sys_cluster: created by Q2
 - res.*.map and res.*.acc: created by Q3

Q5: Fill out a table

word	feat	cluster	gold	output	1-to-1	many-to-1	running
list	list	size	cluster	dir	Acc	Acc	time
word.100	word.100	34	gold.100	100-100-34			
word.100	word.500	34	gold.100	100-100-34			
word.500	word.100	36	gold.500	500-100-36			
word.500	word.500	36	gold.500	500-500-36			
word.1000	word.100	39	gold.1000	1K-100-39			
word.1000	word.500	39	gold.1000	1K-500-39			
word.5000	word.100	41	gold.5000	5K-100-41			
word.5000	word.500	41	gold.5000	5K-500-41			

Calculating cosine function

$$cos(\theta) = \frac{\sum_{i} p_{i} q_{i}}{\sqrt{\sum_{i} p_{i}^{2}} \sqrt{\sum_{i} q_{i}^{2}}}$$
$$= \sum_{i} \frac{p_{i}}{\sqrt{\sum_{i} p_{i}^{2}}} \frac{q_{i}}{\sqrt{\sum_{i} q_{i}^{2}}}$$