Question 2:

(a)

	α=0.1	α=0.5	α=0.9
(i) $N_T=1$, $N_s=100$	5.86	21.61	38.64
(ii) $N_T=10$, $N_s=1000$	2.25	8.12	14.46
(iii) $N_T=100$, $N_s=10000$	0.86	2.94	5.19
(iv) N _T =1000, N _s =100000	0.36	1.06	1.82

(v)

We notice that as we increase the importance of error in the target domain α for a given setting, the cross-generalization error bound increases because β is low (the number of labeled source domain data is much higher than the target domain). When $N_T=1000$, $N_s=100000$ and $\alpha=0.1$, we get a generalization bound of 0.36 which is less than 0.5, which might be expected as we get a lower generalization error when we increase the number of training points and lower importance of target domain data.

(b)

For N_T =10, optimal α = 0.000629 \approx For N_T =100, optimal α = 0.006888 \approx For N_T =1000, optimal α = 0.99999 \approx For N_T =10000, optimal α = 0.99999 \approx

As seen in the plots, for lowers values of target domain training points (small β), ϵ increases as α increases because the dominant term in equation 6 will be α^2/β which is directly proportional to ϵ , so we got small optimal values of α for the first 2 cases . On the other hand, for higher values of N_T , when it exceeds the number of points in the source domain N_S , β will be relatively large and the term $(1-\alpha)^2/(1-\beta)$ will be more dominant and it has inverse proportion with ϵ , and hence ϵ decreases as α increases for $0<\alpha<1$. Thus, we got large optimal α values for the last two cases.

(c)

For $N_s=10$, optimal $\alpha=0.999999\approx 1$

For $N_s=100$, optimal $\alpha=0.999999\approx1$

For $N_s=1000$, optimal $\alpha=0.006888\approx0$

For $N_s=10000$, optimal $\alpha=0.00175\approx0$

Following a similar argument, we can see in eq.6 that for lower values of N_S , β will be high which makes (1- α)²/(1- β) is the dominant term and hence ϵ decreases with α , so we got high optimal values of α for the first two cases. For higher values of N_S , β will be relatively small which makes the term α^2/β more dominant and hence ϵ increases with α , so we got low optimal values of α for the last two cases.

(d)

(i)

default choice $\alpha = \beta$ is better since it gives lower cross_domain generalization bound ε for all cases from part (b) and (c), as seen in the following tables:

	$\alpha = 0.5$	$\alpha = \beta$
$N_T=10, N_s=1000$	8.194468756126083	1.7117759913120953
$N_T=100, N_s=1000$	2.9587345942832277	1.76331389579287
$N_T=1000, N_s=1000$	1.7216700323794591	1.7216700323794591
N _T =10000, N _s =1000	1.6588500994779338	0.9341146778434084
$N_T=100, N_s=10$	12.085523466988201	6.9290303614707405
$N_T=100, N_s=100$	4.587719163486929	4.587719163486929
$N_T=100, N_s=1000$	2.9587345942832277	1.76331389579287
N _T =100, N _s =10000	2.970587850198958	0.6773441287522688

Which is expected since all plots are increasing or decreasing, and $\alpha = \beta$ will at the lower side of the plot rather than in the middle, and hence ε will be lower at $\alpha = \beta$.

As expected and as seen in equation 6, N and ε have inverse relation which is evident in the above plots. Also, we have lower generalization bounds for $\alpha = \beta$ than for $\alpha = 0.5$ in the three settings, which is expected since we showed that $\alpha = \beta$ have lower generalization error bounds both algebraically and experimentally in the previous parts.