MODULE: 3

DC chopper

Chopper is a converter to convert fixed DC to Variable DC converter (simply DC to DC converter)

Step down (or step up) chopper

working:

- Switch is ON, current flows through the inductor and load.
- Switch is OFF, the stored energy in the inductor discharged through the load and the freewheeling diode.
- Hence output voltage is less than the input voltage and it is called a step-down Chopper.
- Duty cycle, α=Ton/T
- $\bullet \quad \mathbf{T} = T_{ON} + T_{OFF}$
- Output voltage $V_0 = D.V_{in}$

Problems

1. A step-up chopper has input voltage of 220V and output voltage of 660V. If the total time period of thyristor-chopper is 300μs, then compute its duty cycle (α) and turn ON time (TON).

Solution

$$T=300\mu s$$

$$V_o = \text{Vin}/(1-\alpha)$$

$$660 = 220/(1-\alpha)$$

$$660-220 = 660\alpha$$

Solving
$$\alpha = 440/660 = \frac{2}{3}$$

TON= α T
Solving TON = $2/3 \times 300 = 200 \mu s$

2. A step-down chopper has input voltage of 440V and output voltage of 220V. If the total time period of thyristor-chopper is 300μs, then compute its duty cycle (D) and turn ON time (TON)

Solution

Vin = 440V

Vo=220V

 $T=300 \mu s$

Vo=DVin

Duty ratio, D = Vo/Vin=220/440 = 0.5

On time TON = DT = $0.5 \times 300 \mu s = 150 \mu s$

Chopper control strategies

Output of dc voltage can be controlled by 2 methods

(a)Constant frequency method

- In this method, ON time T_{ON} is varied keeping chopping frequency constant(ie, T is constant because T = 1/f).
- It is also called pulse width modulation scheme.
- Variation of T_{ON} means adjust the pulse width.

(b) Variable frequency method

- In this method, the chopping frequency is varied (ie, T is varied)
- It is also called frequency modulation scheme.

Keeping Ton constant

Keeping Toff constant

Types of choppers

Chopper is classified as follows,

- 1. Type A chopper or First quadrant chopper
- 2. Type B chopper or second quadrant chopper
- 3. Type C chopper or Two quadrant type A chopper
- 4. Type D chopper or Two quadrant type B chopper
- 5. Type E chopper or Fourth quadrant chopper

Type A chopper

- Type A chopper works in the first quadrant.
- In this chopper, the voltage and current both are positive and flows in the same direction.

- When CH is on, $V_0 = V_s$ and current I_0 flows from source to load.
- When CH is on, $V_0 = 0$ but current I_0 flowing in the same direction through freewheeling diode.
- Power from source to load and the average output voltage is less than input DC voltage.

Type B chopper

- Type B chopper operates in second quadrant
- The load must always contain a dc source E.
- When the chopper is on, V_0 is zero but the load voltage E drives the current through the inductor L and the chopper. L stores energy
- Output current I_{0 is} negative.
- When the chopper is off, $V_0 = E + V_L$
- \bullet The load voltage will be more than the voltage V_s
- Since V_O positive and the current I₀ negative. Power is negative
- Power flow will be from load to source.

Type C chopper

Chopper Two Quadrant

- It is the parallel combination of type A and type B chopper.
- It is a two-quadrant chopper.
- Type A operates in first quadrant. Power flows from source to load
- Type B operates in second quadrant. Power flows from load to source
- V_s CH1-FD- Load (L&E) forms Type A chopper

- V_s D2- CH2- Load (L&E) forms Type B chopper
- $V_0 = 0$ when CH2 on and FD (freewheeling diode conducts)
- $V_0 = V_s$ when CH1 on and D2 conducts
- I_0 = positive when CH1 on and FD conducts
- I_0 = negative when CH2 on and D2 conducts

• Type D chopper

Two Quadrant Type B-chopper or D-chopper Circuit

- Two quadrant chopper.
- Operates in first and fourth quadrants.
- When CH1 and CH2 are on, current flows through V_s $-CH1 load CH2 V_s$
- Output voltage $V_0 = V_s$ is positive and I_0 is positive
- When both choppers are off D1 & D2 conducts due to inductor in the load section. Output voltage is negative
- Current flows from load to source D1- V_s -D2-Load. I_O is positive

Type E chopper

- The type E chopper is a four quadrant chopper.
- The type E chopper is parallel combination of two type C chopper.
- chopper CH1, chopper CH2, diode D1 and diode D2 makes one type C chopper
- chopper CH3, chopper CH4, diode D3 and diode D4 forms the other type C chopper.

Applications of chopper

- Switched mode power supplies, including DC to DC converters.
- Speed controllers for DC motors
- Driving brushless DC torque motors or stepper motors in actuators
- Class D electronic amplifiers
- Switched capacitor filters
- Variable-frequency drives
- D.C. voltage boosting
- Battery-operated electric cars
- Battery chargers
- Railway traction
- Lighting and lamp control

Buck converter

Buck Converter

- It is a dc to dc converter.
- o/p voltage is less than input voltage.
- Power mosfet or IGBT is used as the controller switch.
- 2 modes of operation.
 - o Mode:1(switch S1 is closed)
 - ✓ Current flows through voltage source, s1,inductor L and load R
 - ✓ Power delivered to load
 - ✓ Inductor stores energy
 - ✓ This period is called ON time (Ton) of buck converter
 - Mode :2 (switch S1 is open)
 - ✓ Energy stored in L delivered to load
 - ✓ Continous current is obtained through freewheeling diode.
 - ✓ Capacitor smoothens the o/p current.
 - ✓ This period is called Off (Toff) time.

Boost Converter

- It is a dc to dc converter
- o/p voltage is less than input voltage.
- Vs is connected in series with inductor
- 2 modes of operation.
 - o Mode 1 (S is closed)
 - o Source is directly connected to inductor L
 - o L offer zero resistance to current
 - o Current flows through Vs- L-S-Vs
 - o Inductor stores energy
 - o This period of operation is called Ton time
 - o Mode 2 (S is open)

- Diode forward biased
- o Current flows through Vs-L-D-load-Vs
- o Input voltage Vs and energy stored in L obtained across load as o/p voltage

Comparison of Buck and Boost converter

Sl.No	Buck converter	Boost converter		
1	o/p voltage is less than i/p	o/p voltage is higher than i/p		
	voltage	voltage		
<u>2</u> 3	Large filters are required	Small filters are required		
3	Poor power factor correction	High power factor correction		
4	Also called step down converter	Also called step up converter		
5	The input current is	the input current is		
	discontinuous in nature	continuous in nature		
6	Not suited for PV cells	Suited for PV cells		
7	Used in self-regulating	They are used in regulated		
	power supplies, advanced	power supplies, regenerative		
	telecommunication and data	braking of DC motor and portable		
	communication	device applications		
	systems			

Cycloconverters

- Cycloconverters convert AC power of fixed frequency to AC power of variable frequency.
- It is an AC to AC converter without using dc link.

Types of cycloconverter

- I. <u>Based on output frequency</u>
 - Step up cycloconverter (o/p frequency > i/p frequency)
 - Step down cycloconverter(o/p frequency \leq i/p frequency)
- II. Based on no.of phases
 - 1\phi to 1\phi
 - 3\phi to 3\phi
 - 3\phi to 1\phi

Single phase step up cycloconverter

- During the positive half cycle, positive group thyristors P1 & N2 are forward biased for $\omega t = 0$ to $\omega t = \pi$.
- SCR P1 is fired to turn it.
- Load voltage is positive with terminal A positive and O negative.
- At $\omega t = \omega t 1$, P1 is force commutated and the forward biased thyristor N2 is fired to turn it ON.
- During the period N2 conducts, the load voltage is negative because O is positive & this time.
- At $\omega t = \omega t^2$, N2 is force commutated and P1 is turned ON.
- The load voltage is now positive.
- At $\omega t = \pi$, terminal "b" is positive with respect to terminal "a"; both SCRs P2 & N1 are therefore forward biased from $\omega t = \pi$ to $\omega t = 2\pi$.
- When P2 is turned on, the load voltage is positive
- To make the load voltage negative P2 is force commutated and N1 is triggered
- This process is repeated in the negative half cycle
- The frequency of output wave form is greater than input voltage and it is determined by proper switching of SCRs

