Homework 2, Section 7.3 Solutions

1

Claim: If a is the only element of a group G whose order is 2, then a is in the center G.

Proof. Let $b \in G$ be given. By the closure property, there is some $c \in G$ such that $c = b^{-1}ab$. Then for c^2 we have

$$c^{2} = (b^{-1}ab)^{2}$$

$$= b^{-1}abb^{-1}ab$$

$$= b^{-1}aeab$$

$$= b^{-1}aab$$

$$= b^{-1}eb$$

$$= b^{-1}b$$

$$= e.$$

The order of c is 2, and only $a \in G$ has order 2, so c = a and $a = b^{-1}ab$. Applying the group operation with b on the left of both terms of this equation gives

$$ba = bb^{-1}ab$$
$$= eab$$
$$= ab,$$

so the equation $c = b^{-1}ab$ implies ba = ab, and a is in the center of G.

$\mathbf{2}$

Claim: Let p be a prime integer. Then for any integer a, $a^p \equiv a \mod p$.

Proof. First we will show that for any b in \mathbb{Z}_p^* , $b^{p-1}=1$. Since \mathbb{Z}_p^* is a finite multiplicative group, by Theorem 7.16 \mathbb{Z}_p^* is cyclic. So there is some $c \in \mathbb{Z}_p^*$ that generates \mathbb{Z}_p^* , or $\langle c \rangle = \mathbb{Z}_p^*$. Since p is prime, every nonzero element of \mathbb{Z}_p is relatively prime to p, so \mathbb{Z}_p^* has p-1 elements and |c|=p-1 is the highest order of an element in \mathbb{Z}_p^* .

Being a cyclic group, \mathbb{Z}_p^* is abelian, so by Corollary 7.10, |b| divides p-1. If follows that $b^{p-1}=1$.

Now let b be the congruence class of a in \mathbb{Z}_p^* . Then $a^{p-1} \equiv 1 \mod p$ and $aa^{p-1} = a^p \equiv a \mod p$.