

Integrated Optimization Platform

Igor Grešovnik, Robert Vertnik & Božidar Šarler Dec. 7, 2010

COBIK & Laboratorij za večfazne procese, Univerza v Novi Gorici www.ung.si/si/raziskave/vecfazni-procesi/

This is presentation of plans for integrated optimization platform jointly developed in COBIK and UNG, which will also be used to support the UNG-StoreSteel project.

Why Optimization is Important?

Industrial use of simulations:

- Improvement of Current Processes & Designs
- Virtual Prototyping
 - Optimization used in parameter identification

Development of numerical models:

- Experimental Validation
 - Inverse identification of model parameters

Optimization Problems – Formulation & Algorithms

minimise $f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n$ subject to $c_i(\mathbf{x}) \le 0, i \in I$ and $c_j(\mathbf{x}) = 0, j \in E,$ where $l_k \le x_k \le u_k, k = 1, 2, ..., n$.

• Classification of optimization algorithms:

Search Methods for Solving Continuous Constrained NLPs

Optimization Problems - Solution Scheme

Integrated Optimization Platform

File Format for Data Exchange

```
Analysis input:
{ p1, p2, ... }, { requalcobj, requalconstr, requalcgradobj,
      reqcalcgradconstr }, cd }
 Analysis output file:
   p1, p2 ... },
    calcobi, obi,
    calcconstr, { constr1, constr2, ... },
    calcgradobj, { dobjdp1, dobjdp2, ... },
    calcaradconstr,
      { dconstrldp1, dconstrldp2, ... },

brace dconstr2dp1, dconstr2dp2, ... 
brace,
    errorcode
   reqcalcobj, reqcalcconstr, reqcalcgradobj, reqcalcgradconstr }
  < , { ind1, ind2, ... }, { coef1, coef2, ... }, defdata >
```


THE IDEA OF UNIFIED SIMULATION FRAMEWORK

Interactions with Simulation Development

- Definition of response functions
- Data exchange
- Model control (e.g. coarse/fine models)
- Model adjustment
 - For smoothness of response
 - Differentiation of numerical models
- Investigation of problem characteristics

Conclusion:

• Optimization depends on fitness of simulation software

Simulation Software: Current State:

- Several independent development threads
- Each simulation code developed for specific purpose
- Modularity & extensibility usually not a primary issue
- Remarkable achievements made in narrow areas

Drawbacks

- Duplication of work
- Expensive to maintain
- Difficult to extend & increase complexity
- Weak development potential per software unit
- Short lifetime (overall consequence)

Alternative Way: Unified Simulation Framework

Impulses:

- Industrial demands for solving complex problems
 - Multiphysics
 - Multiphase
 - Multiscale
 - Multibody, with contact interactions
 - Complex 3D geometries
- Academic work in the field becomes increasingly multidisciplinary
- Increased complexity is reflected in Ph.D. subjects

Motivation:

• To alleviate drawbacks of the current approach

Great Advantage: Huge Human Potential

3 Ph.D. students can be actively involved within next 6 months

- Large amount of useful work can be done by this potential
- We must ensure that students will benefit from their involvement
 - Solid framework with extensive base libraries
 - Environment for testing how new methods work in practice
 - Added value to Ph.D. thesis

Current State

- Decision is being made with regard to development platform
- Establishing working conditions
 - Equipment & infrastructure (network, etc.)
 - Workspace
- Organization is roughly planned but must be elaborated
 - Depends on a number of agreements

Plans

- Relevant decisions can be made in 2-3 months
 - We need to discuss this within project teams
- Proof of concept possible by summer
- In 1 year we should catch up with current dynamics of work
 - Work should concentrate on the new framework as much as possible

Organization of Work

• Basic framework is set up by a small team

- Simple example solved (heat conduction, then coupling of fluid flow & conduction)
- Cleaning of code
- Elaboration of design
- Broader discussion of concepts, code review, etc.

• Incorporation of others:

- Introductory tasks (solution of isolated problems under supervision)
- Introduction to the code
- Work under supervision
- Independent work (but coordinated)