Let $f\colon V\to W$ be a linear map. The kernel of f, denoted by $\ker f$, is defined to be the inverse image of $0\in W$ under f and is a subspace of the domain V. The image of f, denoted by $\operatorname{im} f$, is defined to be the linear subspace $\{f(v)\mid v\in V\}$ of the codomain. The cokernel of f, denoted by $\operatorname{coker} f$, is defined to be the quotient space $W/\operatorname{im} f$ of the codomain by the image. The coimage of f, denoted by $\operatorname{coim} f$, is defined to be the quotient space $V/\operatorname{im} f$ of the domain by the kernel.

- 1. Let $f: V \to W$ be a linear map. Show that
 - (a) f is injective \iff the kernel of f is trivial (i.e., $\{0\}$).
 - (b) f is surjective \iff the cokernel of f is trivial.
 - (c) f is isomorphism \iff both kernel and cokernel of f are trivial.
 - (d) f is surjective \iff for any linear map g: $W \to Z$, $gf = 0 \implies g = 0$.
 - (e) f is injective \iff for any linear map h: $U \to V$, $fh = 0 \implies h = 0$.

Now we assume that V and W are finite dimensional, say $V=\mathbb{F}^n$ and $W=\mathbb{F}^m$, then f is the multiplication by an $m\times n$ -matrix A.

- (f) Please translate the five statements above into the corresponding statements about matrix A.
- 2. Let $f: V \to W$ be a set map between linear spaces. Show that
 - (a) its graph $\Gamma_f := \{(v, f(v)) \mid v \in V\}$ is a linear subspace of the product linear space $V \times W \iff f$ is a linear map.
 - (b) in case f is linear, its domain is naturally linearly equivalent to its graph: domain $f \equiv \Gamma_f$.
- 3. We say a linear map $f: V \to W$ is an imbedding if the map $\bar{f}: V \to \text{image } f$ that sends v to f(v) is a linear equivalence. Show that f is an imbedding $\iff f$ is one-to-one.

An optional exercise: We say a topological map (i.e., continuous map) $f\colon X\to Y$ is an imbedding if the map $\bar f\colon X\to \mathrm{image}\, f$ that sends x to f(x) is a topological equivalence (i.e., homeomorphism). Show that f is an imbedding implies that f is one-to-one, but the converse is not true.

4. Let V be a linear subspace of W and \sim be this equivalence relation on W:

$$w \sim w'$$
 if and only if $w - w' \in V$.

We let W/V denote the set of equivalence classes.

(a) Show that there is a unique linear structure on W/V such that the quotient map $q: W \to W/V$ is a linear map.

(b) Show that, for any linear map $\phi: W \to Z$ such that $\phi(v) = 0$ for any $v \in V$, there is a unique linear map $\bar{\phi}: W/V \to Z$ such that

$$\bar{\phi} \circ q = \phi.$$

(This statement is called the $universal\ property$ for the quotient q.) Schematically we write

$$W \xrightarrow{\forall \phi} Z$$

$$\downarrow q \qquad \exists! \bar{\phi}$$

$$W/V$$

Remark: W/V is called the quotient space of W by the subspace V and is also called algebraic normal space of V in W. It is a fact that $\dim W/V = \dim W - \dim V$.

- (c) Let V be a linear subspace of W. Then the inclusion map $\iota\colon V\hookrightarrow W$ is a linear map with image inside V. Please formulate and prove the universal property for the inclusion map ι . Hint: One way to get it is to dualize the universal property for the quotient map $W\to W/V$. Note that $V=\ker q$.
- 5. Let V be a linear space and S be a spanning set for V. Show that S is a minimal spanning set for $V \iff S$ is a linearly independent set. Note that S here is not required to be finite.