

DE L'3 Maths pour l'Info L'3, automne 2015

7DE: Mathématiques pour l'informatique <u>solutions</u>

Exercice 1 Déterminisation.

Soit l'automate A₁ sur l'alphabet {a b}:

ı auı	i automate Al sui i aipmatet (a,b).				
	état	а	b		
S	Α	-	Α		
Ε	В	-	D,E		
	С	C,D,E	Α		
	D	-	B,C,D		
E/S	E	В	C,E		

Construire un automate déterministe complet A_{1dc} équivalent à cet automate.

Solution

	état	a	b
E/S	BE	В	CDE
	В	Р	DE
S	CDE	BCDE	ABCDE
S	DE	В	BCDE
S	BCDE	BCDE	ABCDE
S	ABCDE	BCDE	ABCDE
	Р	Р	Р

Exercice 2 Standardisation

Obtenir un automate A₂ reconnaissant tout le langage reconnu par l'automate A₁ défini dans l'exercice 1.

Solution II y a évidemment une erreur de copier-coller dans cette formulation, car si l'on la prend à la lettre, le l'automate le plus évident reconnaissant tout le langage reconnu par l'automate A₁ c'est tout simplement A₁ lui-même. Du fait que l'exercice est noté « standardisation », on peut deviner (?) que la formulation souhaitée était soit (a) « automate **standard** A₂ reconnaissant tout le langage reconnu par l'automate A₁ », soit, même plus probablement, (b) « automate A₂ reconnaissant tout le langage reconnu par l'automate A₁ à l'exception du mot vide ». Les deux interprétations sont acceptées.

Interprétation (a1): on peut prendre l'automate d'origine tel quel et le standardiser, ou bien on peut obtenir un automate standard à partir de l'automate déterministe obtenu en premier exercice. Le premier choix donne l'automate suivant:

Détail :

l'entrée i est sortie car l'automate reconnait le mot vide, et les transitins de *i* sont obtenues ainsi :

EbE	\rightarrow	ibE
EaB	\rightarrow	iaB
EbC	\rightarrow	ibC
BbE	\rightarrow	ibE (une seconde fois)
RhD	\rightarrow	ihD

L'3, automne 2015

Le deuxième choix résulte en le même automate déterministe A_{1dc} qu'on avait obtenu car on remarque qu'il est

b) Interprétation (b) : on enlève la flèche de sortie sur *i* ou sur BE.

standard. Le rôle de l'état *i* est joué par l'état BE.

Exercice 3 Langage complémentaire.

Soit l'automate A₃ suivant :

DE L'3

 $Construire \ un \ automate \ A_4 \ reconnaissant \ le \ langage \ complémentaire \ \grave{a} \ celui \ reconnu \ par \ l'automate \ A_3.$

Solution: L'automate A₃ est déterministe mais pas complet. Avant de le complémentariser, il faut le compléter. Voici le résultat:

Automate déterministe complet équivalent à A₃ Automate A₄ reconnaissant le langage complémentaire :

On voit que dans l'automate A₄, c'est l'état 1 qui est devenu une poubelle.

Exercice 4 Minimisation et le langage complémentaire

 $A = \{a,b\}$ est l'alphabet.

Pour l'automate A₅ défini par la table de transitions ci-dessous :

	état	a	b
S	0		
S	1	3	5
E/S	2	4	0
S	3	0	1
S	4	3	5
S	5	4	0

DE L'3 Maths pour l'Info L'3, automne 2015

a) Construire un automate <u>déterministe complet minimal</u> A₆ équivalent.

Solution: On complète l'automate et on sépare les états terminaux et le seul état non terminal, $car \Theta_0 = \{T, NT\} où T = \{0,1,2,6,4,5\}, NT = \{P\}$

	état	а	a b		sous Θ ₀	
	0	Р	Р	NT	NT	
	1	3	5	Т	Т	
_	2	4	0	Т	Т	
Т	3	0	1	Т	Т	
	4	3	5	Т	Т	
	5	4	0	Т	Т	
NT	Р	Р	Р			

L'itération 1 (sous Θ_0) donne $\Theta_1 = \{(0), A, (P)\}$ où $A = \{1,2,6,4,5\}$

L'itération 2 (sous Θ_1):

état	а	b	sous	Θ_1
1	3	5	Α	Α
2	4	0	Α	0
3	0	1	0	Α
4	3	5	Α	Α
5	4	0	Α	0

On obtient $\Theta_2 = \{(0), (1,4), (2,5), (3), (P)\}$. L'itération 3:

	Θ2	sous			
pas de	25	3	5	3	1
séparation	25	3	5	3	4
pas de	0	1 4	0	4	2
pas de séparation	0	1 4	0	4	5

Donc $\Theta_3 = \Theta_2 = \Theta_{fin}$

L'entrée : groupe (2,5). Les sorties : tous les groupes sauf P. Les transitions :

S	0	Р	Р
S	14	3	2 5
E/S	2 5	1 4	0
S	3	0	1 4
	Р	Р	Р

b) Construire un automate <u>déterministe complet minimal</u> A₇ reconnaissant le <u>complémentaire</u> du langage reconnu

Solution : il suffit de complémentariser l'automate minimal obtenu

DE L'3 Maths pour l'Info L'3, automne 2015

Exercice 5

a) Construire un automate reconnaissant le langage

$$L = \{ ((a+b)(a+b))^* + ((a+b)(a+b)(a+b)(a+b))^* \}$$

suivant les règles formelles données dans le cours.

Puis, au choix,

soit

- b) déterminiser et
- c) minimiser

l'automate obtenu en (a) (c'est assez compliqué!),

soit (c'est plus facile à réaliser)

- b) simplifier graphiquement et déterminiser, puis
- c) minimiser

l'automate simplifié graphiquement.

soit

(b+c) produire directement l'automate déterministe complet minimal que vous devriez obtenir en (c), si vous savez le faire <u>et si vous savez l'expliquer</u>. Dans ce cas, vous n'êtes pas tenus de faire le (b), mais vous devez toujours faire le (a).

Notation pour cette exo: a) 33.3%, b) 33.3%, c) 33.3%.

b) Je choisis de déterminiser un automate graphiquement simplifié :

notation					on en ε-
	comp	clô	tures		
			a ou b		
E/S	013489	25	E/S	0'	2'5'
	25	1369		2'5'	3'6'
S	1369	27	S	3'6'	2'7'
	27	13489		2'7'	3'8'
S	13489	25	S	3'8'	2'5'

L'automate déterministe obtenu :

ÉCOLES D'INGÉNIEUR généralistes du numérique

DE L'3 Maths pour l'Info L'3, automne 2015

d) Lors de la minimisation, il ne se produit aucune séparation :

	0'	2'5'	NT
Т	3'6'	2'7'	NT
	3'8'	2'5'	NT
NТ	2'5'	3'6'	Т
NT	2'7'	3'8'	Т

Donc l'automate minimal n'a que deux états :

On aurait pu évider le processus de déterminisation et minimisation, en arguant que le langage

$$L = \{((a+b)(a+b))^* + ((a+b)(a+b)(a+b)(a+b))^*\} = \{((a+b)(a+b))^*\}$$
 car tous les multiples de 4 font partie des multiples de 2, et donc l'automate minimal est un cycle de longueur 2 avec la sortie en position 0.

Exercice 6

Trouver le langage reconnu par l'automate suivant :

Vous pouvez utiliser soit la méthode de l'arrivée, soit celle d'élimination d'états. Aucune solution basée sur de « l'intuition » ne sera acceptée.

Solution: Par la méthode de l'arrivée:

$$\begin{cases} 0 = \varepsilon + 0a + 2b & (1) \\ 1 = 0b + 1a & (2) \\ 2 = 1a & (3) \\ L = 1 & \end{cases}$$

(2) \Rightarrow 1=0ba*, et donc 2=1a=0ba*a=0ba+. Remplaçant dans (1), on obtient $0 = \varepsilon + 0a + 0ba+b = \varepsilon + 0(a + ba+b)$, donc $0 = \varepsilon(a + ba+b)* = (a + ba+b)*$. Donc 1=0ba*=(a+ ba+b)*ba* = L.

esigetel

DE L'3 Maths pour l'Info L'3, automne 2015

Par la méthode d'élimination d'états :

1) L'ajout des états i et t :

2) a) élimination de 2 :

b) élimination de 1 :

ce qui est la même chose que

Donc L = (a+ba*ab)*ba*.

On peut obtenir, en changeant l'ordre des opérations, d'autres expressions rationnelles dont l'égalité à celle-ci n'est pas immédiatement evidente.

Ouestions de cours

1. Un automate standard est-il obligatoirement déterministe ? Si la réponse est non, donner un exemple d'automate standard non déterministe.

Non, voici un exemple:

2. Un automate déterministe est-il obligatoirement standard? Si la réponse est non, donner un exemple d'automate déterministe non standard.

Non, voici un exemple:

ÉCOLES D'INGÉNIEUR généralistes du numérique

DE L'3 Maths pour l'Info L'3, automne 2015

- 3. Un automate complet contient-il toujours un état poubelle (entourer la bonne réponse) NON
- 4. Combien il y a-t-il d'états initiaux dans un automate minimal? Un seul
- 5. Combien il y a- t-il d'états terminaux dans un automate minimal? Jusqu'au nombre d'états moins un, à l'exception de l'automate minimal reconnaissant A*, où le seul état de l'automate est une entrée/sortie.

 Attention: j'ai accepté ici des formulations en réalité absurdes, comme « un nombre infini » (?!), « autant qu'on veut » (qui ? Et si j'en veux mille ?), « on ne peut pas savoir » (minimisez, et vous le saurez), « ce nombre n'est pas défini » (idem) etc.
- 6. Pour chacun des couples d'automates A, B et C, dire si l'automate en haut reconnaît le langage complémentaire à celui reconnu par l'automate en bas. Expliquer le oui et le non en phrases courtes. La réponse vous donne des points uniquement si toutes les trois réponses sont bonnes.

A: non, car l'automate du haut n'est pas déterministe. Les deux ne reconnaissent pas le mot 'b'.

B: non, car l'automate du haut n'est pas complet. Les deux ne reconnaissent pas le mot 'aa'.

C: non, car si l'automate du haut est un ADC, la sortie sur 2 figure toujours dans l'automate du bas. Les deux automates reconnaissent 'ab'.