Lecture 9

Generalized eigenventors of a squere matrix.

Recall: Let Anxo be a matrix.

 $A \neq 0$ in \mathbb{C}^{n} is an eigenventor of A corrects elgenshed.

⇒ (A-AI)x =0

Support og is an eigenshu of A of multiplicity m.

Then there may not exists in l.i ergenvertors of A Corresponding to 2.

For eg: for $A=\begin{bmatrix}0\\0\\0\end{bmatrix}$, The elgenvalue $\lambda=0$ has multiplicity 2 but A does not have 2 l.i eigenventus of A Corr, to $\lambda=0$.

Question. Can we have some kind of on rectors which one I-i Com to an exgende & of A of multipliety m? Defin Let A be an $n \times n$ matrix over \mathbb{C} .

A vertor $\underline{\mathcal{X}} \in \mathbb{C}^n$ is called a generalized eigenventor of type x of A converponding to the eigenvalue λ , if $(A-\lambda \mathbb{I})^n \underline{\mathcal{X}} = \underline{0}$ Q $(A-\lambda \mathbb{I})^n \underline{\mathcal{X}} + \underline{0}$.

Remork's generalizet eigenventors of type I all preisely the ligenventors of A Corr to A.

what about their existance?

Let $V_1 = \{ \underline{x} \in C^{\gamma} | (A - \lambda \underline{I}) \underline{x} = \underline{o} \} \subseteq C^{\gamma}$ $V_2 = \{ \underline{x} \in C^{\gamma} | (A - \lambda \underline{I})^2 \underline{x} = \underline{o} \} \subseteq C^{\gamma}$ $V_k = \{ \underline{x} \in C^{\gamma} | (A - \lambda \underline{I})^k \underline{x} = \underline{o} \} \subseteq C^{\gamma}$ \vdots $\Rightarrow V_1 \subseteq V_2 \subseteq \dots \subseteq V_k \subseteq \dots \subseteq C^{\gamma}$ $\Rightarrow \text{ then exists } k_0 \text{ s. } \epsilon$

Solt Set
$$x = \begin{pmatrix} x \\ y \end{pmatrix}$$
 be a genelyenuetry of A of type 2 Com. to $y = 2$.

$$(A - 2I)^{2}x = 0 \quad 2 \quad (A - 2I)x \neq 0$$

$$(A - 2I)^{2} = \begin{bmatrix} 3 & 0 & 2 \\ 2 & -1 & 1 \\ -5 & 1 & -3 \end{bmatrix} \begin{bmatrix} 3 & 0 & 2 \\ 2 & -1 & 1 \\ -5 & 1 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 2 & 0 \\ -1 & 0 & 0 \\ 2 & 4 & 0 \end{bmatrix}$$

$$(A^{-2}I) = 0 \Rightarrow \begin{bmatrix} -1 & 2 & 0 \\ -1 & 2 & 0 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -2 + 2y \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 2 \\ 2 - 1 \\ -5 \end{bmatrix} \begin{bmatrix} 2 \\ y \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3x + 2 \\ 2x - y + 2 \\ -5x + y - 32 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 6y + 2z \\ 3y + 2 \\ -7y - 3z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3y + 2 + 0 \\ 2 + 3y \end{bmatrix}$$

All that reatons $\begin{pmatrix} x \\ y \end{pmatrix}$ such that x = 2y & $z \neq -3y$

are the gen-eigenventors of type 2. Con to d=2.

For ey $2-\binom{0}{1}$ is a gen-eigenventor. Find gen elgen vertos of type 2 Corr. to the eigenvalue $\lambda = 4$ of $A = \begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$ Soli_ Let $\alpha = \binom{n}{y}$ be a gen. edgenvector of type 2 corr. to $\lambda = 4$. $(A-4I)^{2} = 0$ $Q(A-4I)^{2} + 0$ $(A + I)^2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $(A-4I)x+0 \Rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} y \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ => [y+0) i. All ventor (2), y + 1 an gen. ligenvertors

ol. A com to 1-11

T 17 - 0-4.

Define Let $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in C^2$ be a gen-ligenventor of type in Consesponding to the eigenshe & of Ann. Then the chain generated by x is the set of verfors $\left\{ \underline{x} = \underline{x}_{m}, \underline{x}_{m-1}, \ldots, \underline{x}_{1} \right\},$ where on = x $2m-1 = (A-\lambda I) 2m$ $\frac{\chi_{m-2}}{\cdot} := (A - \lambda I)^2 \chi_m = (A - \lambda I) \chi_{m-1}$ $\frac{\chi_1}{2} = (A - \lambda I)^{M-1} = (A - \lambda I) \frac{\chi_2}{2}$

Thus: $\{2^{2}, (A-\lambda I)^{2}, (A-\lambda I)^{2}, -, (A$

In general notation, $\gamma_j := (A-\lambda I) \chi_m + j=1,2,-,m-1$

Theorem! From above notation, x; a generalized eigenrenter of type j Corresponding to the eigenshie & of A. = To show: $(A-\lambda I)^{j}a_{j}=0$ $(A-\lambda I)^{i-1} + \underline{o}.$ (purider $(A-\lambda I)^{j} = (A-\lambda I)^{j} (A-\lambda I)^{m-j}$ = (A-)I) m $(A-\lambda I)^{j-1} = (A-\lambda I)^{m-1}$

Theorem' A chain is a liket of rectors.

i.e., If $x \in \mathbb{C}^n$ is a gen-eigenventor of type on Corresponding to the eigenvalue $\lambda \in A$, then $\begin{cases} x \\ A-\lambda I x \\ x \end{cases} = ---, \quad A-\lambda I x \end{cases}$

a liv Mt.of m vertos. proof. Let $x_j = (A-\lambda I)^{m-j}$ $x_j = (, 3-5m-1)$ To show: { 24, --> 24} 'y l.i. $C_{m} \underbrace{2_{m} + \cdots + C_{l} \underbrace{2_{l}}}_{C_{l} \underbrace{-0}} \longrightarrow \emptyset$ for som $C_{l} \underbrace{--, C_{n}}_{C} \in \mathbb{C}$. Suppor Now pre-multophy by $(A-JI)^{m-1}$ then we get Cm (A-) I 2m + c-(A-) I 2m-1 +--- $+ \varsigma \left(A - A \mp \right)^{\frac{m}{2}} = 0 \rightarrow (*)$ NOW for any j=1, 2,-, m-1 $(A-\lambda I)\frac{m-1}{2i} = (A-\lambda I)\frac{m-1-1}{2i}(A-\lambda I)\frac{n}{2i}$ = (A-) I m-1-j

gen. eignert

gen. eignert Fron (x)

 $c_m \left(A - \lambda I \right) \frac{\chi_m}{\chi_m} = 0$ NOW pre-muliply (8) with (A-JI) m-2 get $C_{m-1} = 0$ the chain genby x y li