REDES NEURONALES 2020

Práctico 2

Realizá un programa que integre numéricamente el problema de valor inicial para el modelo integrateand-fire.

$$\tau_m \frac{\partial V_m}{\partial t} = V(t) + E_t + R_m I_e(t),$$

donde E_L es el potencial en reposo, $I_e(t)$ es la intesidad de la corriente eléctrica que se inyecta (output), R_m es la resistencia y τ_m es el tiempo que tarda el sistema en decaer a 1/e. Esto se puede reescribir como:

 $\frac{dV_m}{dt} = \frac{1}{\tau_m} (V(t) + E_t + R_m I_e(t)) = f(t, V(t)).$

- a) Resolvé esta ecuación analíticamente, sin incorporar por ahora el umbral de disparo. Discutí e interpretá.
- b) Usá el método de Runge Kutta de cuarto orden para resolver el problema de valor inicial

$$\frac{dV_m}{dt} = \frac{1}{\tau_m} \left(V(t) + E_t + R_m I_e(t) \right) \qquad \text{con} \qquad V(t=0) = E_L$$

para $t_i = 0$ y $t_f = 200s$ con paso h = 0.05s. Ahora debés agregar en la simulación el umbral de disparo propio del modelo Integrate-and-Fire. O sea, si V(t) sobrepasa el valor V_{th} , debés restituir el valor de V(t) a E_L .

Usá los siguientes valores:

$$V(0) = E_L = -65mV$$
, $R = 10M\Omega$, $V_{th} = -50mV$, $\tau_m = 10ms$

La corriente externa $I_e(t)$ debe ser constante y tomar el valor $I_e = 2nA$.

Presentá la solución con un gráfico del valor aproximado de V(t) entre 0 y 200s con los disparon y sin los disparos.

- c) Ahora variá los valores de I_e entre 0 y 10 y calculá para cada valor la frecuencia de disparo. Graficá la frecuencia ω vs. I_e . Intentá resolver esta ecuación analíticamente (no es obligatorio esto).
- d) Repetí el punto b) pero ahora con una corriente aleatoria con distribución uniforme entre 0~nA y 5~nA para cada actualización.