Механика 2021

Контрольная работа 2

Вариант 2.

1. Найдите экстремаль функционала

$$S[y] = 2y^{2}(\pi) + \int_{0}^{\pi} dx \left((y'(x))^{2} - y^{2}(x) + 3y(x) \cos 2x \right),$$

заданного на пространстве дважды непрерывно дифференцируемых функций $y(x) \in C^2[0,\pi]$ с фиксированным граничным значением y(0) = 0.

2. Найдите экстремаль функционала

$$S[y(x)] = \int_0^{\pi/2} dx \left((y'')^2 - 81y^2 + 18xy' \right),$$

заданного на пространстве гладких функций $y(x) \in C^{\infty}[0,\pi/2]$ с фиксированными граничными значениями:

$$y(0) = 0$$
, $y(\pi/2) = -\frac{1}{9}$, $y'(0) = 0$.

3. Точечная частица массы m движется без трения по поверхности, заданной соотношением:

$$z = \frac{1}{2(x^2 + y^2)},$$

где x, y и z — декартовы прямоугольные координаты в евклидовом пространстве \mathbb{R}^3 . Частица соединена с началом координат невесомой пружиной, потенциальная энергия деформации пружины задается формулой:

$$U(l) = \frac{kl^2}{2},$$

где l — длина пружины, k — коэффициент ее упругости.

- а) Составьте лагранжиан этой механической системы и выпишите уравнения Эйлера-Лагранжа.
- б) Приведите формулы для всех интегралов движения (законов сохранения).
- в) Убедитесь, что уравнения движения допускают стационарные решения, отвечающие постоянному значению z, и найдите, при каких условиях на начальные данные задачи такие решения существуют.
- 4. Точечная частица массы m движется по окружности радиуса R. Вторая точечная частица такой же массы m соединена жестким невесомым стержнем длины ℓ с первой частицей. Стержень может свободно вращаться в плоскости окружности R вокруг первой частицы. Внешние силы отсутствуют, трения нет.
 - а) Составьте лагранжиан этой механической системы и выпишите ее уравнения движения.
 - б) Найдите все интегралы движения (сохраняющиеся величины).