

Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models

Aneesh Komanduri¹, Chen Zhao², Feng Chen³, and Xintao Wu¹ ¹ University of Arkansas, Fayetteville, AR, USA ² Baylor University, Waco, TX, USA ³ University of Texas at Dallas, Richardson, TX, USA

Motivation

- Diffusion models have shown impressive capability for image generation, but counterfactual generation (i.e., generating hypothetical scenarios consistent with a causal graph) has not been explored much.
- Why counterfactual generation? In domains such as healthcare, modeling causal variables that underlie the image generation process can lead to the ability to generate hypothetical scenarios that help with reducing data collection costs and planning treatments.

How can we utilize causality in diffusion models to improve counterfactual generation capabilities?

Methodology

- We propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation.
- **General Strategy:**
 - Model latent causal mechanisms: Encode image to a noise representation \mathbf{u} and map to causal variables \mathbf{z}_{causal} via neural networks

$$z_i = f_i(z_{\mathbf{pa}_i}, u_i)$$

Representation-conditioned diffusion model: Condition the diffusion model on causal variables \mathbf{z}_{causal} extracted from high dimensional input data along with stochastic noise \mathbf{X}_T

$$\mathcal{L}_{\text{CausalDiffAE}} = \sum_{t=1}^{T} \mathbb{E}_{\mathbf{x}_{0}, \epsilon_{t}} \Big[\| \epsilon_{\theta}(\mathbf{x}_{t}, t, \mathbf{z}_{\text{causal}}) - \epsilon_{t} \|_{2}^{2} \Big]$$

$$+ \gamma \Big\{ \mathcal{D}_{KL} (q_{\phi}(\mathbf{z}_{\text{causal}} | \mathbf{x}_{0}, \mathbf{y}) \| p(\mathbf{z}_{\text{causal}} | \mathbf{y}))$$

$$+ \mathcal{D}_{KL} (q_{\phi}(\mathbf{u} | \mathbf{x}_{0}) \| \mathcal{N}(\mathbf{0}, \mathbf{I})) \Big\}$$

$$p(\mathbf{z}_{\text{causal}} | \mathbf{y}) = \prod_{i=1}^{n} p(z_{i} | y_{i}) = \prod_{i=1}^{n} \mathcal{N}(z_{i}; \mu_{\nu}(y_{i}), \sigma_{\nu}^{2}(y_{i}) \mathbf{I})$$

 Generate Counterfactuals: Manipulate latent variable and deterministically decode to counterfactual with intervened latents $\bar{\mathbf{z}}_{\text{causal}}$

$$\mathbf{x}_{t-1}^{CF} = \sqrt{\alpha_{t-1}} \left(\frac{\mathbf{x}_{t}^{CF} - \sqrt{1 - \alpha_{t}} \epsilon_{\theta}(\mathbf{x}_{t}^{CF}, t, \bar{\mathbf{z}}_{\text{causal}})}{\sqrt{\alpha_{t}}} \right) + \sqrt{1 - \alpha_{t-1}} \epsilon_{\theta}(\mathbf{x}_{t}^{CF}, t, \bar{\mathbf{z}}_{\text{causal}})$$

Experimental Evaluation

Counterfactual Generation

Weak Supervision Case-Study

Strategy: Jointly train conditional and unconditional diffusion model with only fraction of data labeled

 $\bar{\epsilon}_{\theta}(\mathbf{x}_{t}, t, \bar{\mathbf{z}}_{\text{causal}}) = \omega \epsilon_{\theta}(\mathbf{x}_{t}, t, \bar{\mathbf{z}}_{\text{causal}}) + (1 - \omega) \epsilon_{\theta}(\mathbf{x}_{t}, t)$ causal conditional model unconditional model

CausalCircuit

Enables granular control over generated counterfactuals as we change ω !

Disentanglement

- DCI disentanglement score to evaluate the degree of non-overlapping in learned causal factors
- High disentanglement in causal diffusion-based objective implies controllability of learned variables

Dataset	Model	DCI ↑
MorphoMNIST	CausalVAE DiffAE CausalDiffAE	0.784 ± 0.01 0.358 ± 0.01 0.993 ± 0.01
Pendulum	CausalVAE DiffAE CausalDiffAE	0.885 ± 0.01 0.353 ± 0.01 $\mathbf{0.999 \pm 0.01}$
CausalCircuit	CausalVAE DiffAE CausalDiffAE	0.8860 ± 0.01 0.353 ± 0.01 0.999 ± 0.01

MorphoMN

Contact Email: akomandu@uark.edu

Effectiveness

- The effectiveness metric evaluates how accurate the counterfactual is with respect to the true counterfactual
 - (1) Train anti-causal classifiers for each causal variable given a training dataset
 - (2) Generate counterfactual via generative model, feed into trained anti-causal classifier and compare prediction to ground-truth counterfactual label values
- CausalDiffAE generated counterfactuals yield low MAE for nearly all predicted causal factors upon interventions on learned causal factors

Factor	Model	Intervention			
1 detoi	Model	d	$\mathbf{o}(t)$	do	$\mathbf{o}(i)$
Thickness	CausalVAE	3.763 ± 0.01		4.645 ± 0.01	
(t)	DisDiffAE	0.377 ± 0.02		0.326 ± 0.02	
	CausalDiffAE	0.392 ± 0.02		$\boldsymbol{0.309 \pm 0.02}$	
Intensity	CausalVAE	13.233 ± 0.01		15.087	± 0.01
(i)	DisDiffAE	0.794 ± 0.02		0.262 ± 0.02	
	CausalDiffAE	$\boldsymbol{0.503 \pm 0.01}$		$\boldsymbol{0.256 \pm 0.01}$	
Factor	Model _	Intervention			
		do(a)	do(lp)	do(sl)	do(sp)

Factor	Model	Intervention			
	Model	$\mathbf{do}(a)$	do(lp)	$\mathbf{do}(sl)$	$\mathbf{do}(sp)$
Angle	CausalVAE	24.860	23.030	20.470	11.580
(a)	DisDiffAE	0.668	0.648	0.647	0.647
	CausalDiffAE	0.297	0.132	0.031	0.034
LightPos	CausalVAE	34.200	26.010	35.490	47.060
(lp)	DisDiffAE	0.656	0.654	0.630	0.651
	CausalDiffAE	0.045	0.434	0.035	0.064
ShadowLen	CausalVAE	1.946	1.43	2.02	1.72
(sl)	DisDiffAE	0.550	0.527	0.560	0.516
	CausalDiffAE	0.136	0.322	0.492	0.082
ShadowPos	CausalVAE	52.52	72.50	57.03	32.78
(sp)	DisDiffAE	0.474	0.475	0.479	0.534
	CausalDiffAE	0.146	0.303	0.064	0.471

* Standard error is roughly in the range ± 0.01 to ± 0.02 for all averages.