HPI Bayesian Course

Contents

1	Week 1				
	1.1	Discrete random variables			
	1.2	Discrete random variables: the binomial			
	1.3	Continuous random variables (PDFs)			
	1.4	Continous RVs: the normal distribution			
	1.5	Maximum Likelihood estimates			
	1.6	Bivariate and multivariate distributions (Discrete case)			

Terms and abbreviations

- *PMF*: probability mass function (binomial)
- CMF: cumulative mass function (binomial)
- *PDF*: probability density function (continuous)
- CDF: cumulative density function (continuous)
- k: number of successes
- n: number of trials
- θ : the probability of success

1 Week 1

1.1 Discrete random variables

- random variables are functions that map one set to the set of real numbers
 - associates to each outcome to a particular real number

There's a set of events that *can* happen, like tossing a coin. A random variable maps each of these possible events to a real number. In tossing a coin until you get a heads, a random variable would be the number of tosses until you get a 'success' (heads). In principle it could be an infinite set, because you could in theory toss the coin an infinite number of times without ever getting a heads (though this is extremely improbable).

Alternatively, the random variable can be a finite set if we are interested in looking whether *one* toss results in a head or a tails.

PMF: probability mass function, PDF: probability density function

• PMF = for discrete distributions

- PDF: for continuous
- CDF: cumulative distribution function; gives a mapping from a particular numerical value to a probability; means the probability of getting that number or something less than it.

Simulate tossing a coin 10 times with probability of heads = 0.5, with a Bernoulli random variable.

```
# simulate tossing a coin 10 times
extraDistr::rbern(n = 10, prob = .5)
## [1] 0 0 0 0 1 0 1 0 1 0
What's the probability of getting a tails or a heads? The d-family of functions:
extraDistr::dbern(0,prob=.5)
## [1] 0.5
extraDistr::dbern(1,prob=.5)
## [1] 0.5
Cumulative probability distribution function: the p-family of functions
# probability distribution function
## for whichever case we coded as 0
extraDistr::pbern(0,.5)
## [1] 0.5
## for whichever case we coded as 1
extraDistr::pbern(1,.5)
## [1] 1
```

1.2 Discrete random variables: the binomial

When we toss a coin only once, this is a Bernoulli random variable. If we toss the coin more than once, this is a *binomial*. Both Bernoulli and Binomial have a PMF associated with them.

```
# generate random binomial data
rbinom(n = 10, size = 1, prob = .5)
## [1] 1 0 0 1 0 1 1 1 0 0
# compute probabilites of a particular outcome
probs <- round(dbinom(0:10, size = 10, prob = .5),3); probs</pre>
## [1] 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001
x < -0:10
rbind(x,probs)
##
          [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
         0.000 1.00 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.00 10.000
## probs 0.001 0.01 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.01 0.001
# compute cumulative probabilities of all possible outcomes
pbinom(0:10, size=10, prob = .5)
   [1] 0.0009765625 0.0107421875 0.0546875000 0.1718750000 0.3769531250
## [6] 0.6230468750 0.8281250000 0.9453125000 0.9892578125 0.9990234375
## [11] 1.0000000000
```

Compute quantiles using the inverse of the CDF: what is the quantile q such that the probability of X is greater than x?

```
# generate distribution (0:10 outcomes or less, for 10 repetitions, with probability .5)
probs <- pbinom(0:10,size = 10, prob = .5)

# compute the inverse CDF; qbinom takes as its input a probability of an outcome and outputs the invers
qbinom(probs, size = 10, prob=.5)

## [1] 0 1 2 3 4 5 6 7 8 9 10</pre>
```

1.2.1 Binomial distribution quiz

Q1: Consider participating in a lottery ten times. Each time the probability of winning a prize is 0.10. What is the probability of winning exactly 5 times?

[1] 0.001

Q2: Consider lending 10 books from a library. The probability of getting a damaged book is 0.15. Compute the cumulative probability of having 2 or fewer damaged books rounded to three digits.

```
# use pbinom to compute CDF
round(
  pbinom(2, # successes
     size = 10, # out of 10
     prob = .15 # with prob of .15

),
3)
```

[1] 0.82

1.2.2 My summary notes

d-p-q-r family of functions

RV	Function(arguments)	Outcome
	rbern(n,prob)	generate random data
Bernoulli	dbern(x,prob)	PMF: probability of outcome x
	pbern(q,prob)	CMF: cumulative PDF of $\leq x$
	rbinom(n, size, prob)	generate random data with $n = of$ successes
D: : 1	dbinom(q,size,prob)	PMF: probability of outcome x
Binomial	<pre>pbinom(q,size,prob)</pre>	CMF: cumulative PDF of $\leq x$
	qbinom(prob,size)	inverse CMF: cumulative PMF of $>=x$
	<pre>rnorm(n,mean,sd)</pre>	generate random data
	<pre>dnorm(x,mean,sd)</pre>	PDF: probability of outcome x
normal	<pre>pnorm(q,mean,sd)</pre>	CDF: cumulative PDF of $\leq x$

RV	Function(arguments)	Outcome
	<pre>pnorm(q,mean,sd, lower.tail=F)</pre>	inverse CDF: cumulative PDF of $>=x$
	<pre>qnorm(prob,size)</pre>	Compute quantiles corresponding to probabilities

1.3 Continuous random variables (PDFs)

- in discrete RV cases, we compute the probability of a particular outcome
- in continous RV cases, probability is defined by the area under the curve (AUC)
- we use the cumulative distribution function associated with a normal distribution to compute this AUC; i.e., the probability of observing a value between x1 and x2

1.4 Continous RVs: the normal distribution

- the standard normal distribution:
 - Normal(mean = 0, sd = 1)
 - Prob(-1 < X < 1) = 68%
 - Prob(-1.96 < X < 1.96) = 95%
 - Prob(-3 < X < 3) = 99.7%
- for any other normal distribution (with varying mean and sd):
 - Prob(-1*sd < X < 1*sd) = 68%
 - Prob(-1.96*sd < X < 1.96*sd) = 95%
 - Prob(-3*sd < X < 3*sd) = 99.7%
- the continuous vales on the x-axis (here, |-1,2,3|) are the quantiles

rnorm(n,mean,sd): Generate random data usin

```
rnorm(n=5,
    mean = 0,
    sd = 1)
```

[1] 1.6504110 -0.9172424 -0.9734959 -1.0934093 -0.3640965

pnorm(q): Compute probabilities using CDF

```
pnorm(q = 2,
    mean = 0,
    sd = 1)
```

[1] 0.9772499

pnorm(q,lower.tail=F): Compute inverse probabilities using CDF

```
pnorm(q = 2,
    lower.tail=F,
    mean = 0,
    sd = 1) # don't look the left (equal to or less than q), but the right (equal or greater than q)
```

[1] 0.02275013

qnorm(p,mean,sd)): Compute quantiles corresponding to probabilities using the inverse of the CDF

```
qnorm(p = 0.9772499,
    mean = 0,
    sd = 1)
```

[1] 2.000001

dnorm(): Compute the probability density for a quantile value - not the probability of a particular outcome
- rather the density of that particular value, i.e., the y-axis value

```
dnorm(x = 2,
    mean = 0,
    sd = 1)
```

[1] 0.05399097

1.4.1 Normal distribution quiz

Q1: Given a standard normal distribution, what is the probability of getting a value lower than -3? pnorm(-3)

```
## [1] 0.001349898
```

Q2: Given a standard normal distribution, what is the probability of getting a value higher than -3? pnorm(-3, lower.tail=F)

[1] 0.9986501

1.5 Maximum Likelihood estimates

Spoiler: it's pretty much the mean/mode/median of normally distributed data (where the three be the same); gives us the most likely value that the parameter θ has given the data

- the 'expectation' (discrete case)
- if you were to do an experiment with a larger and larger sample size, you'd get closer to the expected value (e.g., value of .5 successes in repeated coin tosses)
- we can estimate θ (θ -hat), but we'll never know the true value of θ

From my book notes from SMLP 2022:

In real exerimental situations we never know the true value of θ (probability of an outcome), but it can be derived from the data: θ hat = k/n, where k = number of observed successess, n = number of trials, and θ hat = observed proportion of successes. θ hat = maximum likelihood estimate of the true but unknown parameter θ . Basically, the mean of the binomial distribution. The variance can also be estimated by computing $(n(\theta))(1 - \theta)$. These estimates can be be used for statistical inference.

From my class notes from SMLP 2022:

- common misunderstanding of the maximum likelihood estimate (MLE): it doens't represent the true value of θ , because it's the MLE (best guess) for the data you have
- but the MLE will be closer to the true value of θ assample size increases
- e.g., the PMF (binomial) contains three terms:
 - k: number of successes
 - -n: total number of trials
 - θ : probability of success (can have values between 0 and 1)
- the PMF is a function of these parameters, based on the data (given our data we know the values of k and n so they are fixed quantities and no longer random), so θ can be treated as a variable
- the **likelihood function** is the PMF (or PDF) as a function of the parameters, rather than a function of the data

- the MLE from a particular sample of data doesn't necessarily give us an accurate estimate of the true value of θ (because it's just a sample, of course)
 - larger sample sizes get MLEs that more accurately represent the true value of θ (again, duh because of the point made above regarding the expectation)

1.6 Bivariate and multivariate distributions (Discrete case)