Apply

Get Eliminated

Problem

Submissions

Discussions

Problem Statement

You are given a binary string S of size N. In one operation, you can remove S_i and S_{i+1} if S_i is equal to S_{i+1} and S_i is equal to S_i for each i and $0 \le i < |S| - 1$. You need to perform this operation until no further operations can be done. Each operation must be performed on the new string. You need to find the maximum number of continuous 0's in the final string.

Input Format

- First line will contain T, the number of test cases.
- Each line of the test case will contain the string S.

Constraints

- 1. $1 \le T \le 10^3$
- 2. $1 \le |S| \le 10^5$. Here | | means the length of the string.

Output Format

• Output the maximum number of continuous 0's.

Sample Input 0

011110010101111100110 01101110 1110000111 000

Sample Output 0

4

2

0

3

Explanation 0

In the first test case, the final string will look like 0001010000 where the number of continuous 0's are 3,1 and 4. So, the answer is 4 which is maximum.

Contest ends in 2 hours 7 minutes 55 seconds

Submissions: 8 Max Score: 1

Rate This Challenge:

Interview Prep | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy |