华中科技大学物理学院 2016~2017 学年第1学期

《大学物理(二)》课程考试试卷(A卷)

(闭卷)

考试日期: 2017.01.07.上午 考试时间: 150 分钟

题号	_	11	=			许厶	统分 签名	教师 签名	
			1	2	3	4	总分	签名	签名
得分									

得 分	
评卷人	

一. 选择题(每小题 3 分,共 30 分。以下每题只有一个正确答案,将正确答案的序号填入题号前括号中)

]1、在一密闭容器中,储有 A、B、C 三种理想气体,处于平衡状态。A 种 气体的分子数密度为 n_1 ,它产生的压强为 P_1 ,B种气体的分子数密度为 $2n_1$,C种气 体的分子数密度为 $3n_1$,则混合气体的压强P为:

- (A) $3P_1$ (B) $4P_1$ (C) $5P_1$ (D) $6P_1$

- Γ]2、关于可逆过程和不可逆过程有以下几种说法。
 - (1) 可逆过程一定是准静态过程:
 - (2)准静态过程一定是可逆过程:
 - (3)不可逆过程一定找不到另一过程使系统和外界同时复原;
 - (4) 非准静态过程一定是不可逆过程。

以上说法正确的是:

- (A) (1), (2), (3);
- (B) (2), (3), (4);
- (C) (1), (3), (4);
- (D) (1), (2), (3), (4)

[]3、一简谐波沿 x 轴负方向传播,圆频率为 ω ,周期为 T,波速为 u,设 $t = \frac{T}{2}$ 时刻的波形如图所示,则该波的表达式为:

(B)
$$y = A\cos[\omega(t+x/u) + \frac{\pi}{2}]$$

(C)
$$y = A\cos[\omega(t + x/u)]$$

(D)
$$y = A\cos[\omega(t+x/u) + \pi]$$

- []4、当机械波在媒质中传播时,一媒质质元的最大形变发生在(A 是振动振幅):
 - (A) 媒质质元离开其平衡位置最大位移处;
 - (B) 媒质质元离开其平衡位置 $(\frac{\sqrt{2}A}{2})$ 处;
 - (C) 媒质质元在其平衡位置处;
 - (D) 媒质质元离开其平衡位置 $\frac{A}{2}$ 处。
- []5、在弦线上有一简谐波,其表达式为

$$y_1 = 2.0 \times 10^2 \cos[100\pi(t + \frac{x}{20}) - \frac{4\pi}{3}] \text{ (SI)}$$

为了在此弦线上形成驻波,并使 x=0 处为一波腹,此弦线上还应有一简谐波,其表达式为:

(A)
$$y_2 = 2.0 \times 10^2 \cos[100\pi(t - \frac{x}{20}) + \frac{\pi}{3}]$$
 (SI)

(B)
$$y_2 = 2.0 \times 10^2 \cos[100\pi(t - \frac{x}{20}) + \frac{4}{3}\pi]$$
 (SI)

(C)
$$y_2 = 2.0 \times 10^2 \cos[100\pi(t - \frac{x}{20}) - \frac{\pi}{3}]$$
 (SI)

(D)
$$y_2 = 2.0 \times 10^2 \cos[100\pi(t - \frac{x}{20}) - \frac{4}{3}\pi]$$
 (SI)

[]6、若星光的波长为 550nm, 孔径为 127cm 的大型望远镜所能分辨的两颗星的最小角距离 θ (从地面上一点看两星的视线间夹角)是:

(A)
$$1.8 \times 10^{-5} \text{ rad}$$

(B)
$$4.3 \times 10^{-7} \, \text{rad}$$

(C)
$$5.3 \times 10^{-7}$$
 rad

(D)
$$4.3 \times 10^{-9} \, \text{rad}$$

[]7、自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,					
则知折射光为;					
(A)完全线偏振光且折射角是30°;					
(B) 部分偏振光且只是在该光由真空入射到折射率为 $\sqrt{3}$ 的介质时,折射角是 30° ;					
(C)部分偏振光,但必须知道两种介质的折射率才能确定折射角;					
(D)部分偏振光且折射角是 30°。					
[]8、在双折射的课堂演示实验中,一束自然光射入方解石晶体中,将折射出两束光线(o光和e光)。若用偏振片检验这两束光线的偏振态,当旋转偏振片的偏振化方向时,将会观察到: (A)o光和e光亮度都不变。 (B)o光和e光同时变亮,同时变暗,并且有完全消光。 (C)o光和e光同时变亮,同时变暗,最暗时不会完全消光。 (D)o光最亮时e光亮度变成零,e光最亮时o光亮度变成零。					
[]9、某放射性核素的半衰期为 30 年,放射性活度减为原来的 12.5%所需要					
的时间是年。					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
30 (B) 60 (C) 90 (D) 120 (E) 240					
[]10、P型半导体中杂质原子所形成的杂质能级叫做受主能级,该能级在能					
带结构中处于:					
(A)满带中 (B)禁带中靠近满带的位置					
(C)导带中 (D)禁带中靠近导带的位置					
得 分 二. 填空题 (每题 3 分, 共 30 分) 评卷人 1、三个容器内分别贮有 1mol 氦(He)、1mol 氢(H ₂)和 1mol 氦(NH ₃)(均视为刚性分子的理想气体),若它们的温度都升高 1K,则三种气体的内能的增加值分别为: 氦:					
J,氢: J,氨: J,氨: J。					

2 、一定重理想气体从 A 状态(压强为 $2P_1$,体积为 V_1)经历 $P=V$ 图上的准静态直线过程到 B 状态(压强为 P_1 ,体积为 $2V_1$),则 AB 过程中系统做功,内能改变。
3、一质点作谐振动,周期为 T ,质点由平衡位置到二分之一最大位移处所需要的最短时间为。
4、两个同方向同频率的谐振动,振动表达式分别为:
$x_1 = 6 \times 10^{-2} \cos (5t - \frac{1}{2}\pi)$ (m), $x_2 = 2 \times 10^{-2} \sin(\pi - 5t)$ (m),
它们的合振动的振幅为m,初位相为rad。
5、课堂上用音叉演示拍现象,在1秒时间内听到有2次强音和2次弱音(即"拍频"为2Hz),已知其中一音叉的固有振动频率为800Hz,则另一音叉的振动频率为Hz。
6、 真空中有一平面电磁波的电场表达式如下: $E_{\rm x}=0\ ,\ E_{\rm y}=0.60\cos\bigl[2\pi\times10^8\bigl(t-x/c\bigr)\bigr]\bigl({\rm V\cdot m^{-1}}\bigr)\!,\ E_z=0\ .$ 则磁场强度的三个分量分别
为: $H_{\rm x}=$
$H_z = \underline{\hspace{1cm}}$
(真空介电常数 ε_0 =8.85×10 ⁻¹² C²/(N·m²),真空磁导率 μ_0 =4 π ×10 ⁻⁷ T·m/A)
7、用真空中波长 λ =589. 3nm 的单色光垂直照射折射率为 1.50 的劈尖薄膜,产生等厚 干 涉 条 纹 , 测 得 相 邻 暗 条 纹 间 距 $l=0.15$ cm , 那 么 劈 尖 角 θ 应 是rad。
8、如果单缝夫琅和费衍射的第一级暗纹发生在衍射角 30°的方向上,所用单色光波长 $\lambda = 500 \text{nm}$,则单缝宽度为µm。
9、已知 X 射线光子的能量为 0.6 MeV,若在康普顿散射中散射光子的波长变化了 20%,则反冲电子的动能为MeV。
10、根据量子力学理论,氢原子中电子的轨道角动量为 $L=\sqrt{l(l+1)}\hbar$,当主量子数
<i>n</i> =3 时,电子轨道角动量的可能取值为。

三. 计算题 (每题 10 分, 共 40 分)

得 分	
评卷人	

- 1、一卡诺热机做正循环,工作在温度分别为 T_1 =300K 和 T_2 =100K 的热源之间,每次循环对外做净功 6000J,在 T_2 -S 图中画出此循环,并求出:
- (1) 在每次循环过程中从高温热源吸收的热量;
- (2) 在每次循环过程中向低温热源放出的热量;
- (3) 此循环的效率。

得分	
评卷人	

2、按要求设计定向辐射天线阵。如图所示,三根相同的天线在一条直线上等间距排列,其长度方向均垂直纸面。已知每根天线单独辐射时左右两侧的辐射强度都为 I_0 ,波长为 λ ,现要求天线阵向左侧的辐射尽可能强而向右侧辐射为零,试确定相邻两天线之间的距离 d 和天线之间的初位相之差 $\Delta \varphi_0$ ($\Delta \varphi_0 = \varphi_{20} - \varphi_{10} = \varphi_{30} - \varphi_{20}$),并求此时左侧的辐射强度。(注:为了使天线阵的尺寸尽可能小,d 应取符合要求的最小值)

得分	
评卷人	

3、一束平行光垂直入射到光栅上,该光束有两种波长的光: λ_1 =420nm, λ_2 =630nm。 经过观测,两种波长的谱线(不计中央明纹)第二次重合于衍射角 θ =60 0 的方向上, 求此光栅的光栅常数 d。

得 分	
评卷人	

4、已知粒子在一维无限深势阱中运动,其波函数为

$$\psi(x) = A \sin \frac{2\pi x}{a} \qquad (0 \le x \le a)$$

试求:

- (1) 归一化常数A;
- (2) 该粒子位置坐标的概率分布函数 (即概率密度);
- (3) 在何处找到粒子的概率最大。