```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
      [] => []
      | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman

What is Static Checking?

Static checking

- Static checking is anything done to reject a program after it (successfully) parses but before it runs
- Part of a PL's definition: what static checking is performed
 - A "helpful tool" could do more checking
- Common way to define a PL's static checking is via a type system
 - Approach is to give each variable, expression, etc. a type
 - Purposes include preventing misuse of primitives (e.g., 4/"hi"),
 enforcing abstraction, and avoiding dynamic checking
 - Dynamic means at run-time
- Dynamically-typed languages do (almost) no static checking
 - Line is not absolute

Example: ML, what types prevent

In ML, type-checking ensures a program (when run) will **never** have:

- A primitive operation used on a value of the wrong type
 - Arithmetic on a non-number
 - e1 e2 where e1 does not evaluate to a function
 - A non-boolean between if and then
- A variable not defined in the environment
- A pattern-match with a redundant pattern
- Code outside a module call a function not in the module's signature
- ...

(First two are "standard" for type systems, but different languages' type systems ensure different things)

Example: ML, what types allow

In ML, type-checking does *not* prevent any of these errors

- Instead, detected at run-time
- Calling functions such that exceptions occur, e.g., hd []
- An array-bounds error
- Division-by-zero

In general, no type system prevents logic / algorithmic errors:

- Reversing the branches of a conditional
- Calling f instead of g

(Without a program specification, type-checker can't "read minds")

Purpose is to prevent something

Have discussed facts about *what* the ML type system does and does not prevent

 Separate from how (e.g., one type for each variable) though previously studied many of ML's typing rules

Language design includes deciding what is checked and how

Hard part is making sure the type system "achieves its purpose"

- That "the how" accomplishes "the what"
- More precise definition next

A question of eagerness

"Catching a bug before it matters" is in inherent tension with "Don't report a bug that might not matter"

Static checking / dynamic checking are two points on a continuum

Silly example: Suppose we just want to prevent evaluating 3 / 0

- Keystroke time: disallow it in the editor
- Compile time: disallow it if seen in code
- Link time: disallow it if seen in code that may be called to evaluate main
- Run time: disallow it right when we get to the division
- Later: Instead of doing the division, return +inf.0 instead
 - Just like 3.0 / 0.0 does in every (?) PL (it's useful!)