

Motivation: Understanding Air Quality through Visualization

• Importance of Air Quality:

- Environmental Impact: Urbanization and industrial activities contribute to air pollution.
- Public Health: Poor air quality directly affects respiratory health and well-being.

• Need for Understanding:

- Monitoring air quality is crucial for environmental conservation and public health.
- Raw data often inaccessible to the general public.
- Visualization transforms complex data into accessible insights.
- Uncover patterns and trends in air quality data.

Pseudocode

Load and Clean Data:

- load_data(file_path): Load data from CSV.
- print_clean_data_info(df): Display data shape, info, handle missing values.

Data Visualization:

- plot_monthly_mean_trend(df): Plot trends for pollutants.
- plot yearly mean values(df): Plot yearly mean pollutants.
- plot_pie_chart(mean_percentages): Pie chart of mean pollutant percentages for a particular year.
- plot_correlation_matrix(df): Heatmap of pollutant correlations.
- plot seasonal changes(df): Bar plot of seasonal changes.
- plot average pollutant levels by season(df): Pie charts of average pollutant levels.

Sub-index functions for pollutants:

- calculate_aqi(row): Calculate AQI.
- get_AQI_Category(x): Categorize AQI.

AQI Visualization:

- plot_aqi_categories_over_years(df): Line graph of AQI categories over years.
- plot_aqi_category_pie_by_season(df): Pie charts of AQI categories by season.

Some Pythonic features

Function Application:

```
df['AQI'] = df.apply(calculate_aqi, axis=1)
df['AQI_Category'] = df['AQI'].apply(get_AQI_Category)
```

Pandas Grouping and Resampling:

```
monthly_data = yearly_data.groupby(yearly_data.index.month).mean()
monthly_mean = df.resample('M').mean()
```

Matplotlib Plotting:

```
plt.plot(monthly_data.index, monthly_data['pm2.5'], marker='o', linestyle='-')
plt.pie(values, labels, autopct='%1.1f%%')
```


Observation:

- PM 2.5 and PM 10: Witnessed a consistent decrease in levels over the years, indicating a positive trend in air quality.
- Impact of COVID-19 (2020): Notably, there was a remarkable decline in 2020, due to the restrictions imposed during this period.
- CO, NO2, SO2, and O3: These pollutants demonstrated relatively stable levels with occasional spikes and decrements observed between the years.

- The substantial correlation between PM 10 and PM 2.5 suggests shared sources and similar factors influencing their levels.
- CO, PM 10, and NO2 exhibit some correlation, the strength of their relationship is comparatively lower than that of PM10 and PM2.5.

- The negligible presence of "Satisfactory" days emphasizes the challenges in maintaining a consistently acceptable air quality standards.
- The decreasing trend in "Severe" days is a positive sign but demands continuous vigilance.
- The spike in "Moderate" days in 2020 indicates the direct impact of external events, such as COVID-19 restrictions, on AQI.

- The correlation between severe air quality and autumn conditions highlights the need for targeted interventions during specific seasons.
- The prevalence of "Very Poor" air quality signals a persistent issue that demands comprehensive strategies for improvement.
- The scarcity of "Satisfactory" days underscores the ongoing challenges in maintaining optimal air quality standards.
- AQI levels are greatly impacted by the levels of rainfall/ precipitation and wind speed which are prime facilitators for dispersal of the pollutants / emissions.

References:

- Data collection is from https://waqi.info
- https://matplotlib.org/stable/index.html
- https://pandas.pydata.org/docs/
- https://docs.python.org/3/
- AQI Information CPCB

