mined by equating the coch of (18) i.e., Thus the Legendre polynomials $P_0(x)$, $P_1(x)$, $P_2(x) \cdots P_n(x) \cdots$ appear as coefficients of t^0 , t^1 , t^2 , t^n ... etc. in the expansion of $(1-2xt+t^2)^{-1}$, then $(1-2xt+t^2)^{-1}$ is the generating function of the Legendre polynomials i.e., $\begin{aligned} 2 \cdot 4 \cdot 6 \cdots 2n \\ &= \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \cdot \frac{2 \cdot 4 \cdots 2n}{2 \cdot 4 \cdots 2n} \\ &= \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots (2n-1) \cdot 2n}{2^n \cdot n! \cdot 2^n \cdot n!} = \frac{(2n)!}{2^{2n}(n)!} \end{aligned}$ $\frac{d^{n}}{dx^{n}}(x^{2}-1)^{n} = \frac{d^{n}}{dx^{n}}v = U = C \cdot P_{n}(x)$ (18) The coefficient of x^n in $P_n(x)$ is $\frac{(2n)!}{2^n(n!)^2}$ (obtained by the operation $x = \ln r_n(x)$ is $\frac{2^n}{2^n(n)^2}$ (obtained by utting m = 0 in (15)). The coefficient of x^n in L.H.S. of (18) arises lely from the n-fold differentiation of the term of ghest degree i.e., x^{2n} $(1-2xt+t^2)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}P_n(x)\cdot t^n$ Now using this result, expand $(1-2xt+t^2)^{-\frac{1}{2}}$ Result 1: $P_n(1) = 1$ for any n. Put x = 1 in (20). Then $2n(2n-1)(2n-2)\cdots(2n-(n-1)).$ $= \left[1 - (2xt - t^2)\right]^{-\frac{1}{2}} = \left[1 - \left\{t(2x - t)\right\}\right]^{-\frac{1}{2}}$ $\sum_{n=0}^{\infty} P_n(1)t^n = (1 - 2t + t^2)^{-\frac{1}{2}}$ $= (2n)(2n-1)(2n-2)\cdots(n+1)\cdot \frac{n!}{n!}$ $=\left((1-r)^2\right)^{-\frac{1}{2}}=(1-r)^{-1}$ $=1+\frac{2!}{2^2(1!)^2}t\cdot(2x-t)+\frac{4!}{2^4(2!)^2}t^2(2x-t)^2+\dots$ $=\frac{(2n)!}{n!}$ $=1+t+t^{2}+\cdots+t^{n}+\cdots$ $\frac{1}{2^{2(n-k)} \left\{ (n-k)! \right\}^2} t^{n-k} (2x-t)^{n-k} + \dots$ $\frac{(2n)!}{n!} = C \cdot \frac{(2n)!}{2^n(n!)^2}$ the coefficients of t^n on both sides $P_n(1) = 1$ for any n. **rult 2:** $P_n(-1) = (-1)^n$ for any n. but x = -1 in (20). Then g C from (19) in (18), we get the Rodrigue's $+\frac{(2n)!}{2^{2n}\cdot(n!)^2}t^n(2x-t)^n+\cdots$ (21) $\sum_{n=0}^{\infty} P_n(-1)t^n = (1+2t+t^2)^{-\frac{1}{2}}$ Coefficients of t^n appear only in the first (n+1) terms. Consider the (n-k)th term: t^n arises as product of t^{n-k} and t^k arising out of $(2x-t)^{n-k}$. Thus the coefficient of t^n in $t^{n-k} \cdot (2x-t)^{n-k}$ is the coefficient of t^n in $t^{n-k} \cdot (2x-t)^{n-k}$ is the coefficient of t^k in $(2x-t)^{n-k}$. $P_n(x) = \frac{1}{C}U = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} \left\{ (x^2 - 1)^n \right\}$ $= \left[(1+t)^2 \right]^{-\frac{1}{2}} = (1+t)^{-1}$ $= 1 - t + t^2 - \dots + (-1)^n t^n +$ efficients of t^n , $P_n(-1) = (-1)^n$. $(n-k)_{C_k}(2x)^{(n-k)-k}\cdot (-1)^k$ $(1 - 2xt + t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} t^n \cdot P_n(x)$ Result 3: $=\frac{(n-k)!(-1)^k}{k!(n-2k)!}\cdot (2x)^{n-2k}$ $P_n(0) = \begin{cases} 0, & \text{when } n \text{ is ode} \\ (-1)^{\frac{n}{2}} \cdot \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots n}, & \text{if } n \text{ is even} \end{cases}$ Therefore the coefficient of t^n is (see 21) $(1-y)^{-n} = 1 + ny + \frac{n(n+1)}{1 \cdot 2}y^2$ Put x = 0 in (20). Then $\left[\frac{(2n-2k)!}{2^{2n-2k}\{(n-k)!\}^2}\right]\cdot \left[\frac{(n-k)!}{k!(n-2k)!}(-1)^k(2x)^{n-2k}\right]$ $+\frac{n(n+1)(n+2)}{1\cdot 2\cdot 3}y^3+\cdots$ $\sum_{n=0}^{\infty} P_n(0)t^n = (1+t^2)^{-\frac{1}{2}}$ $=\frac{(-1)^k(2n-2k)!}{2^nk!(n-k)!(n-2k)!}\cdot x^{n-2k}$ $=1-\frac{1}{2}t^2+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+1\right)}{1\cdot 2}t^4+\cdots$ $(1-y)^{-\frac{1}{2}} = 1 + \frac{1}{2}y + \frac{\frac{1}{2} \cdot \frac{3}{2}}{2!}y^2$ collecting and summing up for k all the co of t^n from the first (n + 1) terms, we get $+\frac{\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{5}{2}}{3!}y^3+\cdots$ $+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}+1\right)\cdots\left(-\frac{1}{2}-(n-1)\right)}{1\cdot 2\cdot 3\cdots n}t^{2n}$ $=1-\frac{1}{2}r^2+\frac{1\cdot 3}{2\cdot 4}r^4+\cdots$ $\sum_{k=0}^{M} \frac{(-1)^k (2n-2k)!}{2^n (n-k)! k! (n-2k)!} \cdot x^{n-2k} = P_n(x)$ $(1-y)^{-\frac{1}{2}} = 1 + \frac{1}{2}y + \frac{1\cdot 3}{2\cdot 4}y^2 + \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}y^3 + \dots$ $+\frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots 2n}\cdot y^n+\cdots$ $+\frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} \cdot t^{2n} + \cdots$ where $M = \frac{n}{2}$ or $\frac{n-1}{2}$ according as n is even or odd.