FCC TEST REPORT

for

SHENZHEN HAINATIANYUAN ECOMMERCE CO.,LTD

7 inch 2G/3G phoneTablet PC

Model Number: MD706

Serial Number: MC706

FCC ID: 2AH96-MD706

Prepared for : SHENZHEN HAINATIANYUAN ECOMMERCE CO.,LTD

Address : 308, Jinyuanjia Industrial Park, Xialilang Ind Area,

Nanwan St., Longgang, Shenzhen, Guangdong, China

Prepared by : Keyway Testing Technology Co., Ltd.

Address : Baishun Industrial Zone, Zhangmutou Town,

Dongguan, Guangdong, China

Tel: 86-769-8718 2258 Fax: 86-769-8718 1058

Report No. : 16KWE053745F

Date of Test : Apr. 27~Jun.08, 2016

Date of Report: Jun. 08, 2016

TABLE OF CONTENTS

Tes	st F	Report Declaration	Page
1.	TE	EST SUMMARY	4
2.	G	ENERAL PRODUCT INFORMATION	4
	.1.	Product Function	
2.	.2.	Description of Device (EUT)	
2.	.3.	Independent Operation Modes	
2.	.4.	Test Supporting System	
2.	.5.	TEST SITES	
2.	.6.	List of Test and Measurement Instruments	6
3.	TE	EST SET-UP AND OPERATION MODES	7
3.	.1.	Principle of Configuration Selection	7
3.	.2.	Block Diagram of Test Set-up	7
3.	.3.	Test Operation Mode and Test Software	
	.4.	Special Accessories and Auxiliary Equipment	
3.	.5.	Countermeasures to Achieve EMC Compliance	7
4.	Εľ	MISSION TEST RESULTS	8
4.	.1.	Conducted Emission at the Mains Terminals Test	8
4.	.2.	Radiated Emission Test	
5.	В	AND EDGE COMPLIANCE TEST	33
	.1.	Limits	
_	.2.	Test setup	
_	.3.	Test Procedure	
6.	60	DB&20DB BANDWIDTH TEST	40
	.1.	Limits	
_	.2.		
_		UTPUT POWER TEST	
	.1.	Limits	
	.2.	Test procedure	
	.3.	TEST SETUP	
8. [']		OWER SPECTRAL DENSITY TEST	
_	.1.	Limits	
_	. 1. .2.		
	.2. .3.	Test setup Test result	
		NTENNA REQUIREMENTS	
_	.1. .2.	Limits Result	
_			
10.		PHOTOGRAPHS OF TEST SET-UP	
11.		PHOTOGRAPHS OF THE EUT	62

Keyway Testing Technology Co., Ltd.

SHENZHEN HAINATIANYUAN ECOMMERCE CO.,LTD Applicant: 308, Jinyuanjia Industrial Park, Xialilang Ind Area, Address: Nanwan St., Longgang, Shenzhen, Guangdong, China SHENZHEN HAINATIANYUAN ECOMMERCE CO.,LTD Manufacturer: 308, Jinyuanjia Industrial Park, Xialilang Ind Area, Address: Nanwan St., Longgang, Shenzhen, Guangdong, China E.U.T: 7 inch 2G/3G phoneTablet PC **Model Number:** MD706 Serial Model: MC706 **Trade Name: HAEHNE** Serial No.: **Date of Receipt:** Apr. 26, 2016 **Date of Test:** Apr. 27~Jun.08, 2016 **Test Specification:** FCC Part 15, Subpart 15.247: Oct. 1, 2015 ANSI C63.10:2013 KDB558074 D01 DTS Meas Guidance v03r05 **Test Result:** The equipment under test was found to be compliance with the requirements of the standards applied. Issue Date: Jun. 08, 2016 Reviewed by: Tested by: Approved by: Keven Wu / Engineer Mike Xu / Supervisor Andy Gao / Supervisor Other Aspects: None. Abbreviations: OK/P=passed fail/F=failed n.a/N=not applicable E.U.T=equipment under tested

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Keyway Testing Technology Co., Ltd.

1.TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emissions	15.207	PASS
Radiated Emissions	15.205(a)/15.209/15.247(d)	PASS
6dB&99% Bandwidth	15.247(a)(2)	PASS
Power density	15.247(e)	PASS
Maximum Peak Output Power	15.247(b)(3)	PASS
Emissions from out of band	15.247(d)	PASS
Antenna Requirement	15.203	PASS

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	7 inch 2G/3G phoneTablet PC
Model No.:	MD706
Serial Model:	MC706
Model Difference	All the models are the same circuit and RF module, except the model names and colour.
	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Operation Frequency:	2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11n(H20) ,7 for 802.11n(H40)
Modulation technology:	Direct Sequence Spread Spectrum (DSSS) for (IEEE 802.11b) Orthogonal Frequency Division Multiplexing(OFDM) for (IEEE 802.11g/802.11n)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	FPCB
Antenna gain:	1.0dBi
Power supply:	DC 3.7V or DC 5V from adapter
Adapter:	Model:JHD-AP010U-050180BA INPUT:100-240V~50/60Hz 0.3A OUTPUT:5V,1800mA

2.3. Independent Operation Modes

The basic operation modes are:

2.3.1. EUT work WFI TX mode, and frequency as below:

		Frequency	
Mode 1	902 11h	2412MHz	
Wiode I	802.11b	2437MHz	
		2462MHz	
		2412MHz	
Mode 2	802.11g	2437MHz	
		2462MHz	
		2412MHz	
Mode 3	802.11n(HT20)	2437MHz	
		2462MHz	
		2422MHz	
Mode 4	802.11 n(HT40)	2437MHz	
		2452MHz	
Mode 5	LINK Mode		

Remark: According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 802.11b mode:1Mbps ,802.11g mode:6Mbps , 802.11n HT20 mode:MCS0, 802.11n HT20 mode:MCS0

2.4. Test Supporting System

None.

2.5. TEST SITES

2.5.1. Test Facilities

Lab Qualifications : Certificated by Industry Canada

Registration No.: 9868A

Date of registration: December 8, 2011

Certificated by FCC, USA Registration No.: 370994

Date of registration: February 21, 2012

Certificated by CNAS China Registration No.: CNAS L5783 Date of registration: August 8, 2012

2.6. List of Test and Measurement Instruments

2.6.1. For conducted emission at the mains terminals test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 09,16	Apr. 09,17
Artificial Mains Network	Rohde&Schwarz	ENV216	101315	Apr. 09,16	Apr. 09,17
Artificial Mains Network (AUX)	Rohde&Schwarz	ENV216	101314	Apr. 09,16	Apr. 09,17
RF Cable	FUJIKURA	3D-2W	944 Cable	Apr. 09,16	Apr. 09,17

2.6.2. For radiated emission test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESCI	101156	Apr. 09,16	Apr. 09,17
Bilog Antenna	ETS-LINDGREEN	3142D	135452	Apr. 09,16	Apr. 09,17
Spectrum Analyzer	Agilent	E4411B	MY4511304	Apr. 09,16	Apr. 09,17
3m Semi-anechoic Chamber	ETS-LINDGREEN	966	KW01	Apr. 09,16	Apr. 09,17
Signal Amplifier	SONOMA	310	187016	Apr. 09,16	Apr. 09,17
Signal Amplifier	Agilent	8449B	3008A00251	Apr. 09,16	Apr. 09,17
RF Cable	IMRO	IMRO-400	966 Cable 1#	N/A	N/A
MULTI-DEVICE Controller	ETS-LINDGREEN	2090	126913	N/A	N/A
Horn Antenna	SCHWARZBECK	BBHA9170	9170-068	Apr. 09,16	Apr. 09,17
Attenuation	MCE	24-10-34	BN9258	Apr. 09,16	Apr. 09,17
Spectrum Analyzer	Agilent	E4408B	MY44211125	Apr. 09,16	Apr. 09,17
High Pass filter	Micro	HPM50111	324216	Apr. 09,16	Apr. 09,17
Constant temperature and humidity box	GF	GTH-800-40-1P	MAA9906-005	Apr. 09,16	Apr. 09,17
Attenuation	MCE	24-10-34	BN9258	Apr. 02,16	Apr. 02,17
Loop Antenna	ARA	PLA-1030/B	1029	Apr. 02,16	Apr. 02,17

3. TEST SET-UP AND OPERATION MODES

3.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

3.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

(EUT: 7 inch 2G/3G phoneTablet PC)

- 3.3. Test Operation Mode and Test Software None.
- 3.4. Special Accessories and Auxiliary Equipment None.
- 3.5. Countermeasures to Achieve EMC Compliance None.

4. EMISSION TEST RESULTS

4.1. Conducted Emission at the Mains Terminals Test

4.1.1. Limit 15.209 limits

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBμV)		
	Quasi-peak	Average	
0.15-0.5 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50	

4.1.2. Test Setup

The EUT was put on a wooden table which was 0.8 m high above the ground and connected to the AC mains through the Artificial Mains Network (AMN). Where the mains cable supplied by the manufacture was longer than 0.8 m, the excess was folded back and forth parallel to the cable at the centre so as to form a bundle no longer than 0.4 m.

The EUT was kept 0.4 m from any other earthed conducting surface. Both sides of AC line were checked to find out the maximum conducted emission levels according to the test procedure during the conducted emission test.

The frequency range from 150 kHz to 30 MHz was investigated.

The bandwidth of the test receiver was set at 9 kHz.

Pretest for all mode, The test data of the worst case condition(s) was reported on the following page.

120V/60Hz Line

	Freq	Level	Limit Line	Over Limit	Remark
-	MHz	dBuV	dBuV	dB	
1	0.151	44.79	55.96	-11.17	Average
2	0.151	50.02	65.96	-15.94	QP
3	0.198	41.63	53.71	-12.08	Average
4	0.198	46.66	63.71	-17.05	QP
5	0.334	34.48	49.35	-14.87	Average
6	0.334	40.25	59.35	-19.10	QP
7	0.813	32.56	46.00	-13.44	Average
8	0.813	40.20	56.00	-15.80	QP
9	2.055	31.61	46.00	-14.39	Average
10	2.055	38.11	56.00	-17.89	QP
11	10.733	38.89	50.00	-11.11	Average
12	10.733	45.21	60.00	-14.79	QP

Neutral

	Freq	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dB	dB	
1	0.151	46.26	55.96	-9.70	Average
2	0.151	55.30	65.96	-10.66	QP
3	0.171	44.81	54.90	-10.09	Average
4	0.171	51.32	64.90	-13.58	QP
5	0.830	33.89	46.00	-12.11	Average
6	0.830	41.57	56.00	-14.43	QP
7	1.010	32.27	46.00	-13.73	Average
8	1.010	37.69	56.00	-18.31	QP
9	2.033	30.25	46.00	-15.75	Average
10	2.033	36.21	56.00	-19.79	QP
11	7.290	35.30	50.00	-14.70	Average
12	7.290	43.25	60.00	-16.75	QP

240V/60Hz Line:

	F	1 1	Limit	Over Limit	Remark
	Freq	Level	Line	PIMIC	Remetr
-	MHz	dBuV	dBuV	dB	\$
1	0.150	31.28	56.00	-24.72	Average
2	0.150	46.12	66.00	-19.88	QP
3	0.190	40.95	54.02	-13.07	Average
4	0.190	51.24	64.02	-12.78	QP
5	0.238	37.90	52.17	-14.27	Average
6	0.238	48.36	62.17	-13.81	QP
7	0.286	32.38	50.63	-18.25	Average
8	0.286	44.66	60.63	-15.97	QP
9	0.614	23.62	46.00	-22.38	Average
10	0.614	35.40	56.00	-20.60	QP
11	3.820	21.84	46.00	-24.16	Average
12	3.820	33.11	56.00	-22.89	QP

Neutral

	Freq	Level	Limit Line	Over Limit	Remark
<u> 22</u>	MHz	dBuV	dBuV	dB	
1	0.150	26.88	56.00	-29.12	Average
2	0.150	45.33	66.00	-20.67	QP
3	0.190	39.13	54.02	-14.89	Average
4	0.190	51.06	64.02	-12.96	QP
5	0.238	36.51	52.17	-15.66	Average
6	0.238	47.12	62.17	-15.05	QP
7	0.286	32.16	50.63	-18.47	Average
8	0.286	43.28	60.63	-17.35	QP
9	0.334	28.94	49.35	-20.41	Average
10	0.334	41.36	59.35	-17.99	QP
11	0.373	22.52	48.43	-25.91	Average
12	0.373	40.22	58.43	-18.21	QP

4.2. Radiated Emission Test

4.2.1. Limit 15.209 limits

FREQUENCY	DISTANCE	FIELD STREN	NGTHS LIMIT
MHz	Meters	$\mu V/m$	dB(μV)/m
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV	/)/m (Peak)
		$54.0 \text{ dB}(\mu\text{V})/\text{m} \text{ (Average)}$	

4.2.2. Restricted bands of operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits.

4.2.3. Test setup

The EUT was placed on a turn table which was 0.8 m(above 1GHz, the high was 1.5m) above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

The EUT was tested in the Chamber Site. It was pre-scanned with a Peak detector from the spectrum, and all the final readings from the test receiver were measured with the Quasi-Peak detector.

The bandwidth of the EMI test receiver is set at 120kHz for frequency range from 30MHz to 1000 MHz.

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure above 1GHz, Both PK and AV measure, PK detector is used.

The frequency range from 30MHz to 10th harmonic (25GHz) are checked. and no any emissions were found from 18GHz to 25 GHz, So the radiated emissions from 18GHz to 25GHz were not record.

Notes: 1. Emission Level = Antenna Factor + Cable Loss + Meter Reading-Preamp Factor.

- 2. Measurement Uncertainty: ±3.2 dB at a level of confidence of 95%.
- 3. For emissions above 1GHz, if peak level comply with average limit, then the average level is deemed to comply with average limit.
- 4. For emissions below 1GHz, pretest for all mode, The test data of the worst case condition(s) was reported on the following pages.
- 5. For Both PK and AV value above 1GHz, PK detector is used.
- 6.EUT Pre-scan X/Y/Z orientation, only worst case is presented in the report (Z orientation).

Radiated Emission Test-Up Frequency Below 30MHz

Below 1GHz

Above 1GHz

Below 1GHz

Horizontal

		Freq	Preamp Factor		Cable Loss		Limit Line	Over Limit	Remark
	-	MHz	dB	dBuV	dB	dBuV/m	dBuV/m	dB	
1		160.95	31.22	57.33	1.30	36.70	43.50	-6.80	QP
2	!	206.54	31.09	56.83	1.46	38.51	43.50	-4.99	QP
3	!	352.04	30.66	55.61	2.10	42.72	46.00	-3.28	QP
4		561.56	30.88	46.80	3.12	38.68	46.00	-7.32	QP
5	!	641.10	30.77	49.10	3.58	43.27	46.00	-2.73	QP
6	1	720.64	30.65	46.97	3.96	42.76	46.00	-3.24	OP

Above 1GHz

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
	Low Channel (2412 MHz)-Above 1G							
4824.012	47.87	10.44	58.31	74	-15.69	Pk	Vertical	
4824.012	38.11	10.44	48.55	54	-5.45	AV	Vertical	
7236.000	39.12	12.39	51.51	74	-22.49	pk	Vertical	
4824.012	45.74	10.44	56.18	74	-17.82	pk	Horizontal	
4824.012	37.54	10.44	47.98	54	-6.02	AV	Horizontal	
7236.000	30.54	12.39	42.93	74	-31.07	pk	Horizontal	
	Mid Channel (2437 MHz)-Above 1G							
4874.043	47.19	10.40	57.59	74	-16.41	pk	Vertical	
4874.043	37.76	10.40	48.16	54	-5.84	AV	Vertical	
7311.147	36.87	12.75	49.62	74	-24.38	Pk	Vertical	
4874.043	47.31	10.40	57.71	74	-16.29	Pk	Horizontal	
4874.043	38.11	10.40	48.51	54	-5.49	AV	Horizontal	
7311.147	30.23	12.75	42.98	74	-31.02	Pk	Horizontal	
		High Ch	annel (2462	MHz)- Above 1G				
4924.124	49.12	10.39	59.51	74	-14.49	pk	Vertical	
4924.124	37.99	10.39	48.38	54	-5.62	AV	Vertical	
7386.076	39.13	12.68	51.81	74	-22.19	pk	Vertical	
4924.124	47.15	10.39	57.54	74	-16.46	pk	Horizontal	
4924.124	35.42	10.39	45.81	54	-8.19	AV	Horizontal	
7386.033	31.56	12.68	44.24	74	-29.76	pk	Horizontal	

Note: 802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average didn't record. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has not to be reported.

Spurious Emission in Restricted Band (1-25G) :

All the modulation modes have been tested and all other emissions more than 20dB below the limit, the worst result was report as below:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
			802.11	b	<u> </u>		
Vertical	3264	37.78	7.34	45.12	74	-28.88	Pk
Horizonta	3264	36.55	7.34	43.89	74	-30.11	PK
Vertical	3336	37.52	7.56	45.08	74	-28.92	Pk
Horizontal	3336	36.24	7.56	43.80	74	-30.2	PK
Vertical	4100	37.24	7.56	44.8	74	-29.2	Pk
Horizontal	4100	36.54	7.56	44.1	74	-29.9	PK
Vertical	11764	31.65	13.07	44.72	74	-29.28	Pk
Horizonta	11764	30.12	13.07	43.19	74	-30.81	PK
Vertical	17732	30.88	14.36	45.24	74	-28.76	Pk
Horizonta	17732	29.95	14.36	44.31	74	-29.69	PK
			802.11				
Vertical	3264	36.12	7.34	43.46	74	-30.54	Pk
Horizonta	3264	35.47	7.34	42.81	74	-31.19	PK
Vertical	3336	36.43	7.56	43.99	74	-30.01	Pk
Horizontal	3336	34.22	7.56	41.78	74	-32.22	PK
Vertical	4100	35.12	7.56	42.68	74	-31.32	Pk
Horizontal	4100	36.52	7.56	44.08	74	-29.92	PK
Vertical	11776	33.23	13.07	46.3	74	-27.7	Pk
Horizonta	11776	31.34	13.07	44.41	74	-29.59	PK
Vertical	17753	32.84	14.36	47.2	74	-26.8	Pk
Horizonta	17753	29.36	14.36	43.72	74	-30.28	PK
			802.11n(20)	1	I.	U
Vertical	3264	35.83	7.34	43.17	74	-30.83	Pk
Horizonta	3264	35.09	7.34	42.43	74	-31.57	PK
Vertical	3336	36.42	7.56	43.98	74	-30.02	Pk
Horizontal	3336	33.84	7.56	41.4	74	-32.6	PK
Vertical	4100	35.57	7.56	43.13	74	-30.87	Pk
Horizontal	4100	36.32	7.56	43.88	74	-30.12	PK
Vertical	11764	35.23	13.07	48.3	74	-25.7	Pk
Horizonta	11764	34.67	13.07	47.74	74	-26.26	PK
Vertical	17736	34.27	14.36	48.63	74	-25.37	Pk
Horizonta	17736	27.34	14.36	41.7	74	-32.3	PK
			802.11n(40)			
Vertical	3264	35.32	7.34	42.66	74	-31.34	Pk
Horizonta	3264	35.02	7.34	42.36	74	-31.64	PK
Vertical	3336	36.45	7.56	44.01	74	-29.99	Pk
Horizontal	3336	33.35	7.56	40.91	74	-33.09	PK
Vertical	4100	35.11	7.56	42.67	74	-31.33	Pk
Horizontal	4100	35.56	7.56	43.12	74	-30.88	PK
Vertical	11795	34.22	13.07	47.29	74	-26.71	Pk
Horizonta	11795	33.62	13.07	46.69	74	-27.31	PK
Vertical	17769	33.29	14.36	47.65	74	-26.35	Pk
Horizonta	17769	27.34	14.36	41.7	74	-32.3	PK

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

Conducted Spurious Emissions at Antenna Port: 802.11b Low Channel

802.11b Middle Channel

802.11g Low Channel

802.11g Middle Channel

802.11g High Channel

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

802.11n-HT40 High Channel

Spurious Emission in Band Edge:

	Frequency (MHz)	Antenna polarization (H/V)	Emission (dBuV/m)	Band edge Limit (dBuV/m)		Result
		(1 11 4)	PK	PK	AV	Pass
	2390	Н	50.23	74.00	54.00	Pass
802.11b	2390	V	49.76	74.00	54.00	Pass
002.110	2483.5	Н	50.25	74.00	54.00	Pass
	2483.5	V	49.34	74.00	54.00	Pass
	2390	Н	50.32	74.00	54.00	Pass
802.11g	2390	V	49.46	74.00	54.00	Pass
602.TI	2483.5	Н	50.34	74.00	54.00	Pass
	2483.5	V	49.22	74.00	54.00	Pass
	2390	Н	50.28	74.00	54.00	Pass
802.11n(HT20)	2390	V	49.76	74.00	54.00	Pass
002.1111(11120)	2483.5	Н	50.43	74.00	54.00	Pass
	2483.5	V	49.23	74.00	54.00	Pass
802.11n(HT40)	2390	Н	51.32	74.00	54.00	Pass
	2390	V	50.52	74.00	54.00	Pass
002.1111(11140)	2483.5	Н	51.36	74.00	54.00	Pass
	2483.5	V	50.78	74.00	54.00	Pass

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

5. BAND EDGE COMPLIANCE TEST

5.1. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see §15.205(c)).

5.2. Test setup

5.3. Test Procedure

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

Frequency Band MHz	Delta to band emission (dBc)	>Limit (dBc)	Result					
802.11b mode								
2400	41.03	30	Pass					
2483.5	53.58	30	Pass					
	802.11g mode							
2400	37.89	30	Pass					
2483.5	48.32	30	Pass					
802.11n-HT20 mode								
2400	40.60	30	Pass					
2483.5	45.48	30	Pass					
802.11n-HT40 mode								
2400	36.20	30	Pass					
2483.5	41.86	30	Pass					

802.11b: Band Edge, high channel

802.11g: Band Edge, low channel

802.11g: Band Edge, high channel

802.11n-HT20: Band Edge, high channel

Freq Offset

0.00000000 Hz

Signal Track

Off

Sweep 22.11 ms (401 pts)

Amplitude

-20.76 dBm

-56.96 dBm

#VBW 300 kHz

X Axis

2.4194 GHz

2.4000 GHz

Туре

Frea

Freq

#Res BW 100 kHz

Trace

(1) (1)

Marker

Scale Type Lin 802.11n-HT40: Band Edge, high channel * Agilent 15:55:35 Jun 8, 2016 Freq/Channel 2.483500 GHz -59.84 dBm Ref 10 dBm #Atten 20 dB Center Freq #Avg 2.46500000 GHz Log 10 ō Start Freq dB/ 2.43000000 GHz Stop Freq 2.50000000 GHz -48.0 CF Step dBm 7.00000000 MHz Auto Man Start 2.43 GHz Stop 2.5 GHz Freq Offset Sweep 11.47 ms (401 pts) #Res BW 100 kHz #VBW 300 kHz 0.00000000 Hz Amplitude Marker Trace Туре X Axis 2.460625 GHz (1) Freq -17.98 dBm 2 (1) Freq 2.483500 GHz -59.84 dBm Signal Track 0n <u> 0ff</u> Scale Type Lin

6.6DB&20DB BANDWIDTH TEST

6.1. Limits

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

6.2. Test Procedure

6dB bandwidth

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 \times RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the freq uencies associated with the two outermost amplitude points (upper and lower fr equencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

20dB bandwidth

C63.10 Occupied Bandwidth (OBW=20dB bandwidth)

- 1. Set RBW = 1%-5% OBW.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Set the span range between 2 times and 5 times of the OBW.
- 4. Sweep time=Auto, Detector=PK, Trace=Max hold.
- 5. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst-case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the 20 dB levels with respect to the reference level

Test data:

	Frequency (MHz)	6dB Bandwidth (MHz)	20dB Bandwidth (MHz)	Limit (MHz)	Result
802.11b	2412	10.082	15.137	>0.5	Pass
	2437	10.059	14.726	>0.5	Pass
	2462	10.005	14.422	>0.5	Pass
802.11g	2412	16.405	18.645	>0.5	Pass
	2437	16.416	18.660	>0.5	Pass
	2462	16.411	18.891	>0.5	Pass
802.11n (HT20)	2412	17.633	19.378	>0.5	Pass
	2437	17.632	19.515	>0.5	Pass
	2462	16.491	19.261	>0.5	Pass
802.11n (HT40)	2422	36.266	39.188	>0.5	Pass
	2437	36.323	39.481	>0.5	Pass
	2452	35.991	39.574	>0.5	Pass

Test plot as follows: 6dB bandwith

802.11g 2412MHz

802.11b 2437MHz

802.11g 2437MHz

802.11b 2462MHz

802.11g 2462MHz

802.11n (HT20) 2412MHz

802.11n (HT40) 2422MHz

802.11n (HT20) 2437MHz

802.11n (HT40) 2437MHz

802.11n(HT20) 2462MHz

802.11n (HT40)2452MHz

20dB bandwith

802.11b 2412MHz

802.11g 2412MHz

802.11b 2437MHz

802.11g 2437MHz

802.11b 2462MHz

802.11g 2462MHz

802.11n (HT20) 2412MHz

802.11n (HT40) 2422MHz

802.11n (HT20) 2437MHz

802.11n (HT40) 2437MHz

802.11n(HT20) 2462MHz

802.11n (HT40)2452MHz

7. OUTPUT POWER TEST

7.1. Limits

For systems using digital modulation in the 2400~2483.5MHz, The out put Power shall not exceed 1W (30dBm)

7.2. Test procedure

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

7.3. TEST SETUP

Test Channe	Frequency (MHz)	Maximum Conducted Output Power (dBm)	LIMIT			
TX 802.11b Mode						
CH01 2412 12.38 30						
CH06	2437	12.45	30			
CH11	2462	12.21	30			
TX 802.11g Mode						
CH01	2412	9.30	30			
CH06	2437	9.49	30			
CH11	2462	9.30	30			
TX 802.11n(20) Mode						
CH01	2412	8.50	30			
CH06	2437	8.31	30			
CH11	2462	7.84	30			
TX 802.11n(40) Mode						
CH03	2422	7.55 30				
CH06	2437	7.54	30			
CH09	2452	7.95	30			

Note: For power test the duty cycle is 100% in continous transmitting mode.

Test plots The Average Power

802.11b 2412MHz

802.11g 2412MHz

802.11b 2437MHz

802.11g 2437MHz

802.11b 2462MHz

802.11g 2462MHz

802.11n (HT20) 2412MHz

802.11n (HT40) 2422MHz

802.11n (HT20) 2437MHz

802.11n (HT40) 2437MHz

802.11n(HT20) 2462MHz

802.11n (HT40)2452MHz

Test plot of Duty Cycle for 802.11b

Test plot of Duty Cycle for 802.11g

Test plot of Duty Cycle for 802.11n(HT20)

Test plot of Duty Cycle for 802.11n(HT40)

8. POWER SPECTRAL DENSITY TEST

8.1. Limits

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

8.2. Test setup

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW =3kHz.
- 4. Set the VBW ≥3 times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.

8.3. Test result

802.11b	Channel Frequency (MHz)	Power density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	2412	-13.30	8	Pass
	2437	-13.36	8	Pass
	2462	-13.50	8	Pass
802.11g	2412	-15.30	8	Pass
	2437	-15.36	8	Pass
	2462	-15.63	8	Pass
802.11n (HT20)	2412	-12.83	8	Pass
	2437	-13.42	8	Pass
	2462	-14.33	8	Pass
802.11n (HT40)	2422	-16.44	8	Pass
	2437	-17.49	8	Pass
	2452	-17.60	8	Pass

802.11b 2412MHz

802.11b 2437MHz

802.11b 2462MHz

802.11g 2412MHz

802.11g 2437MHz

802.11g 2462MHz

802.11n (HT20) 2412MHz

802.11n(HT20) 2462MHz

802.11 n (HT40) 2422MHz

802.11 n (HT40) 2437MHz

9. ANTENNA REQUIREMENTS

9.1. Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2. Result

The antennas used for this product is external antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 3.3dBi.

10. PHOTOGRAPHS OF TEST SET-UP

Conducted Emission

Radiated Emission Test

11. PHOTOGRAPHS OF THE EUT

Reference to the test report No.16KWE053743F.
END