

Image as Set of Points

Xu Ma, Yuqian Zhou, Huan Wang, Can Qin, Bin Sun, Chang Liu, Yun Fu (Northeastern University, Adobe Inc.) – ICLR 2023

Jeeyoung Kim

University of Ulsan College of Medicine,
Asan Medical Center
77imjee@gmail.com

2023.05.19 Fri

Introduction

Convolutional Networks

- a collection of arranged pixels in a rectangle form
- extract local features using convolution in a sliding window fashion
- inductive biases like locality made CNNs to be more efficient and effective

Vision Transformers

- a sequence of patches
- extract features via attention mechanism in a global range
- · inherent inductive biases are abandoned

Hybrid Networks (CNN + ViT)

- scan images in grid (conv) / mutual relationships of a sequence (attention)
- locality prior (conv) without sacrificing global reception (attention)
- But the insights and knowledge are still restricted to CNNs and ViTs

Introduction

- New paradigm of feature extraction except CNN and ViT
 - → Context Clusters (CoCs)

- Great generalization to different data domains
- Provide nice interpretability by visualizing each cluster
- Achieves competitive performance compared with CNNs and ViTs

Related works

- SuperPixel (Ren & Malik, 2003)
 - segment an image into regions by grouping a set of pixels that share common characteristics
 - common practice for image preprocessing
 - clusters pixels over the entire image → heavy computational cost
- SLIC (Achanta et al., 2012)
 - limits the clustering operation in a local region
 - evenly initialized the K-means centers for better and faster convergence
- → for image processing or specific task
- → No work was conducted for a general visual representation via clustering

Context Cluster architecture

- 1. From image to set of points
- 2. Points reducing
- 3. Context clustering
- 4. Feature aggregating and dispatching

From image to set of points

- given an input image, $\mathbf{I} \in \mathbb{R}^{3 \times w \times h}$
- $\mathbf{I}_{i,j} = \left[\frac{i}{w} 0.5, \frac{j}{h} 0.5\right]$ It is feasible to investigate further positional augmentation techniques to potentially improve performance
- converted to a collection of points (i.e., pixels) $\mathbf{P} \in \mathbb{R}^{5 \times n}$
- each point contains both feature (color) and position (coordinates) information → unordered and disorganized

Points reducing

- $\mathbf{P} \in \mathbb{R}^{5 \times n} \rightarrow \mathbf{P} \in \mathbb{R}^{n \times d}$
- 16 points with 4 proposed anchors for point reduction,
 each of which takes its closest 4 neighbors into account.
 All neighbors are concatenated along the channel dimension,
 and a FC layer is used to lower the dimensional number and
 fuse the information.

(a) Illustration of anchors for points reduction.

Context clustering

- linearly project feature points P to P_s
- Following SLIC, evenly propose c centers whose features are computed by averaging its k nearest points
- calculate the pair-wise cosine similarity matrix S between P_s and set of c
- allocate each point to the most similar center, resulting in c clusters
- each cluster may have a different number of points

Feature aggregating

- m points in a cluster, similarity s between the m points and the cluster center
- map the points to a value space of d'-dim, center v_c in the value space
- aggregated feature (g)

$$g = \frac{1}{C} \left(v_c + \sum_{i=1}^m \operatorname{sig} \left(\alpha s_i + \beta \right) * v_i \right), \quad \text{s.t., } C = 1 + \sum_{i=1}^m \operatorname{sig} \left(\alpha s_i + \beta \right) \quad \text{C: control the magnitude}$$

Feature dispatching

match the feature dimension (d' to d) with FC layer

$$p'_i = p_i + FC(sig(\alpha s_i + \beta) * g)$$

- adaptively dispatch to each point based on the similarity
- the points an communicate with one another and share features from all points in the cluster

Architecture initialization

- try to align with other networks and make CoCs compatible with most detection and segmentation algorithms
- reduce the number of points by a factor of 16, 4, 4, 4
- 16, 9, 9, 9 nearest neighbors for selected anchors in each stage

Region partition

- calculating the similarity between n d-dim points and c clusters → high computational cost
- split the points into several local regions like Swin Transformer

Fixed or dynamic centers for cluster

- Fixed: inference efficiency, compromise between accuracy and speed
- Dynamic: exorbitant computing costs, inference time increases exponentially

· Overlap or non-overlap clustering

- allocate the points solely to a specific center
- to demonstrate that the simple and traditional algorithm can serve as a generic backbone, adhere to the nonoverlap clustering

Image Classification on ImageNet-1K

Table 1: Comparison with representative backbones on ImageNet-1k benchmark. Throughput (images / s) is measured on a single V100 GPU with a batch size of 128, and is averaged by the last 500 iterations. All models are trained and tested at 224×224 resolution, except ViT-B and ViT-L.

	Method	Param.	GFLOPs	Top-1	Throughputs (images/s)
	* ResMLP-12 (Touvron et al., 2022)	15.0	3.0	76.6	511.4
MLP	ResMLP-24 (Touvron et al., 2022)	30.0	6.0	79.4	509.7
	 ResMLP-36 (Touvron et al., 2022) 	45.0	8.9	79.7	452.9
	MLP-Mixer-B/16 (Tolstikhin et al., 2021)	59.0	12.7	76.4	400.8
\geq	MLP-Mixer-L/16 (Tolstikhin et al., 2021)	207.0	44.8	71.8	125.2
	♣ gMLP-Ti (Liu et al., 2021a)	6.0	1.4	72.3	511.6
	gMLP-S (Liu et al., 2021a)	20.0	4.5	79.6	509.4
	 ViT-B/16 (Dosovitskiy et al., 2020) 	86.0	55.5	77.9	292.0
=	 ViT-L/16 (Dosovitskiy et al., 2020) 	307	190.7	76.5	92.8
<u>.</u>	PVT-Tiny (Wang et al., 2021)	13.2	1.9	75.1	-
e	PVT-Small (Wang et al., 2021)	24.5	3.8	79.8	-
Attention	 ◆ T2T-ViT-7 (Yuan et al., 2021a) 	4.3	1.1	71.7	-
4	 DeiT-Tiny/16 (Touvron et al., 2021) 	5.7	1.3	72.2	523.8
	DeiT-Small/16 (Touvron et al., 2021)	22.1	4.6	79.8	521.3
	◆ Swin-T (Liu et al., 2021b)	29	4.5	81.3	-
	ResNet18 (He et al., 2016)	12	1.8	69.8	584.9
Convolution	 ResNet50 (He et al., 2016) 	26	4.1	79.8	524.8
Ę	ConvMixer-512/16 (Trockman et al., 2022)	5.4	-	73.8	-
ĕ	ConvMixer-1024/12 (Trockman et al., 2022)	14.6	-	77.8	-
ුදි	ConvMixer-768/32 (Trockman et al., 2022)	21.1	-	80.16	142.9
H	Context-Cluster-Ti (ours)	5.3	1.0	71.8	518.4
St.	Context-Cluster-Ti‡ (ours)	5.3	1.0	71.7	510.8
Cluster	Context-Cluster-Small (ours)	14.0	2.6	77.5	513.0
	Context-Cluster-Medium (ours)	27.9	5.5	81.0	325.2

‡ denotes a different region partition approach that we used to divide the points into [49, 49, 1, 1] in the four stages Default: [64, 16, 4, 1]

Visualization of activation map

Figure 4: Visualization of activation map, class activation map, and clustering map for ViT-B/16, ResNet50, our CoC-M, and CoC-T without region partition, respectively. We plot the results of the last block in the four stages from left to right. For ViT-B/16, we select the [3rd, 6th, 9th, 12th] blocks, and show the cosine attention map for the cls-token. The clustering maps show that our Context Cluster is able to cluster similar contexts together, and tell what model learned visually.

Object Detection and Instance Segmentation on MS-COCO

Table 4: COCO object detection and instance segmentation results using Mask-RCNN (1×).

Family	Backbone	Params	APbox	AP ₅₀ ^{box}	AP ₇₅ ^{box}	AP ^{mask}	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}
Conv.	AResNet-18	31.2M	34.0	54.0	36.7	31.2	51.0	32.7
Attention	♦ PVT-Tiny	32.9M	36.7	59.2	39.3	35.1	56.7	37.3
	♥ CoC-Small/4	33.6M	35.9	58.3	38.3	33.8	55.3	35.8
Cluster	CoC-Small/25	33.6M	37.5	60.1	40.0	35.4	57.1	37.9
	♥ CoC-Small/49	33.6M	37.2	59.8	39.7	34.9	56.7	37.0

Table 8: COCO object detection and instance segmentation results using Mask-RCNN ($1\times$).

Family	Backbone	Params	APbox	AP_{50}^{box}	AP_{75}^{box}	AP ^{mask}	AP ₅₀ ^{mask}	AP ₇₅ ^{mask}
Conv.	AResNet-50	44.2M	38.0	58.6	41.4	34.4	55.1	36.7
Atten	♦ PVT-Small	44.1M	40.4	62.9	43.8	37.8	60.1	40.3
Cluster	CoC-Medium/4	42.1M	38.6	61.1	41.5	36.1	58.2	38.0
Cluster	CoC-Medium/25	42.1M	40.1	62.8	43.6	37.4	59.9	40.0
Cluster	CoC-Medium/49	42.1M	40.6	63.3	43.9	37.6	60.1	39.9

Semantic Segmentation on ADE20K

Table 5: Semantic segmentation performance of different backbones with Semantic FPN on the ADE20K validation set.

Backbone	Params	mIoU(%)
AResNet18	15.5M	32.9
PVT-Tiny	17.0M	35.7
CoC-Small/4	17.7M	36.6
CoC-Small/25	17.7M	36.4
♥ CoC-Small/49	17.7M	36.3

Table 7: Semantic segmentation results of different backbones with Semantic-FPN on the ADE20K validation set.

Family	Backbone	Params	mIoU(%)
Conv.	ResNet50	28.5M	36.7
Atten.	PVT-Small	28.2M	39.8
Cluster	CoC-Medium/4	25.2M	40.2
Cluster	CoC-Medium/25	25.2M	40.6
Cluster	CoC-Medium/49	25.2M	40.8

Conclusion

- The authors proposed Context Cluster, a novel feature extraction paradigm for visual representation
- CoC is fundamentally distinct from CNNs and ViTs, no convolution or attention is involved
- Instead of chasing SOTA performance, CoCs can achieve comparable or even better results than CNN and ViT baselines on multiple tasks and domains
- Departing from the current framework on detection and segmentation to apply CoC philosophy to other tasks is also worthwhile direction to pursue