Dérivation

Mathématiques - Première/Terminale spécialité

I. Nombre dérivé

Le taux d'accroissement est le coefficient directeur de la droite passant par A(a; f(a)) et M(a + h; f(a + h)).

On dit que f est dérivable en a si et seulement si le taux d'accroissement de f entre a et a+h admet comme limite un nombre réel quand h tend vers 0.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

II. Tangente

Le nombre dérivé de f en a est donc par définition le coefficient directeur de la tangente à \mathcal{C}_f en a.

f admet une tangente T au point A(a; f(a)), et cette tangente a pour équation réduire :

$$T: y = f'(a)(x - a) + f(a)$$

III. Fonction dérivée

Si f admet un nombre dérivé pour tout réel a d'un intervalle I de \mathbb{R} , on dit que f est dérivable sur I.

Une autre situation de non dérivabilité est un point où la courbe est « pointue » : on parle de point anguleux. Cela correspond à une situation où le taux d'accroissement admet des limites différentes selon que l'on se rapproche du point par la droite ou par la gauche (exemple : la fonction valeur absolue $f:x\to |x|$ n'est pas dérivable en 0).

Fonction	Définie sur	Dérivée	Dérivable sur
f(x) = k	\mathbb{R}	f'(x)=0	\mathbb{R}
f(x) = x	\mathbb{R}	f'(x) = 1	\mathbb{R}
$f(x) = x^n$	\mathbb{R}	$f'(x) = nx^{n-1}$	\mathbb{R}
$f(x) = \frac{1}{x^n}$	\mathbb{R}^*	$f'(x) = -\frac{n}{x^{n-1}}$	\mathbb{R}^*
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$	\mathbb{R}^*
$f(x) = \sqrt{x}$	[0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$]0; +∞[

IV. Opération sur les dérivées

Fonction	Dérivée	
$k \times f$	$k \times f'$	
f + g	f' + g'	
$u \times v$	u'v + uv'	
u^2	2u'u	
u	u'v - uv'	
$\frac{\overline{v}}{v}$	$\overline{v^2}$	
1	v'	
$\frac{\overline{v}}{v}$	$-\frac{1}{v^2}$	
$u \circ v$	$u' \times (v' \circ u)$	
$\frac{f(ax+b)}{u^n}$	$a \cdot f'(ax + b)$	
u^n	$nu^{n-1} \times u'$	
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	

V. Applications

a. Sens de variation

- f est croissante sur I si et seulement si $f'(x) \ge 0$ pour tout $x \in I$;
- f est décroissante sur I si et seulement si $f'(x) \le 0$ pour tout $x \in I$;
- f est constante sur I si et seulement si f'(x) = 0 pour tout $x \in I$.

b. Recherche d'extrema

Si $f(x_0)$ est un extremum de f sur I, alors $f'(x_0) = 0$

Cependant, l'inverse n'est pas forcément vrai. Si f' s'annule en x_0 en changeant de signe, alors $f(x_0)$ est un extremum local de f sur I.