GreenDroid: Diagnosis of Energy Inefficiency in Android Applications

S.C. Cheung

in collaboration with

State Key Lab for Novel Software, Nanjing University

Chang Xu

Yepang Liu, Chang Xu, and S.C. Cheung. Where Has My Battery Gone? Finding Sensor Related Energy Black Holes in Smartphone Applications. In Proceedings of the 11th IEEE International Conference on Pervasive Computing and Communications (PERCOM 2013), pp. 2-10, San Diego, California, USA, Mar 2013.

Smartphone apps

1 million applications (November 2013)

1/31

Energy Problem

Frequent sensor usage

Energy Problem

Frequent sensor usage

Energy Inefficiency

Full Network access

2/29 2/29

Energy Problem

- Problem magnitude
 - Thousands of apps are NOT energy efficient
 - Millions of users affected and complained
 - Phone batteries drained in a few hours

(Pathak et al. Hotnets 2011)

- Major reasons
 - Hardware management burden (e.g., sensors)
 - Lack of dedicated QA, short time to market
 - Difficulty in problem diagnosis

3/31

Motivation

- What are the common causes of energy problems?
- Can we distill patterns to enable automated diagnosis?

4/31

Our Work

Investigated Subjects

174 popular open-source Android apps (randomly selected)

5/31 6/31

Investigated Subjects

33 apps with bug reports on energy problems (problems in 24 apps have been fixed)

Observations

Diagnosis difficulty

- Reproduce problem (extensive testing, energy profiling)
- Figure out root cause (instrumentation, runtime logging)

7/31

Observations

Diagnosis difficulty

- Reproduce problem (extensive testing, energy profiling)
- Figure out root cause (instrumentation, runtime logging)

Problem causes

• Common causes (10/24): improper use of sensors

Patterns

Missing sensor deactivation

7/31 8/31

Patterns

Missing sensor deactivation

"Always un-register sensor listeners timely!" – Android documentation

Patterns

Missing sensor deactivation

"Always un-register sensor listeners timely!" - Android documentation

Sensory data underutilization

8/31 8/31

Patterns

Missing/untimely sensor deactivation

"Always un-register sensor listeners timely!" – Android documentation

Sensory data underutilization

Update notification bar only? (Geohash Droid issue 24) Render invisible maps? (Osmdroid issue 53)

8/31

Sensory Data Underutilization (Examples)

"GeoHashDroid should slow down sensor update significantly if nothing besides the notification bar is listening."

(GeoHashDroid Issue 24)

"GPS sensor should be timely disabled if location data are used to update an invisible map."

(Osmdroid Issue 53)

Approach Overview (GreenDroid)

- Dynamic analysis (on top of Java PathFinder)
- Goal: Simple, scalable, and effective

Approach Overview (GreenDroid)

- Dynamic analysis (on top of Java PathFinder)
- Goal: Simple, scalable, and effective

10/31

Approach Overview (GreenDroid)

- Dynamic analysis (on top of Java PathFinder)
- Goal: Simple, scalable, and effective

Output Input Application **Under Analysis Analysis** Runtime Sensory Data Report Controller **Utilization Analyzer** *.class Java PathFinder Application state Energy inefficiency

Approach Overview (GreenDroid)

- Dynamic analysis (on top of Java PathFinder)
- Goal: Simple, scalable, and effective

10/31 10/31

Approach Overview (GreenDroid)

- Dynamic analysis (on top of Java PathFinder)
- Goal: Simple, scalable, and effective

10/31

Approach Overview (GreenDroid)

- Dynamic analysis (on top of Java PathFinder)
- Goal: Simple, scalable, and effective
- Major Challenges
 - App execution and state exploration in Java PathFinder
 - Sensory data identification and utilization analysis (no metrics)

10/31

App Execution in JPF (Problems)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

App Execution in JPF (Problems)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

11/31

App Execution in JPF (Solutions)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)

Handler scheduling policies

• Essentially interactive (valid user input generation)

(AEM Model)

Temporal rules

Android Specs

(AEM Model)

Input: (1) app execution history (2) Newly received event Output: next handler to execute

Decision procedure

14/31

App Execution in JPF (Solutions)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

Identify native methods

15/31

App Execution in JPF (Solutions)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

App Execution in JPF (Solutions)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

16/31

App Execution in JPF (Solutions)

- Absence of explicit control flow (event-driven)
- Heavy reliance on native system libs (platform specific)
- Essentially interactive (valid user input generation)

16/31

State Exploration

• State changes as the app continuous handles events (user events, system events etc.)

State Exploration

• State changes as the app continuous handles events (user events, system events etc.)

//31

Sensory Data Tracking & Identification

Data Lifecycle: Data enter app Transformed and consumed Data leave app

Sensory Data Tracking & Identification

18/31

Sensory Data Tracking & Identification

Sensory Data Tracking & Identification

Taint Propagation Policy

Index	Bytecode Instruction	Taint Propagation Rule
1	Const-op C	$T(stack[o]) = \emptyset$
2	Load-op index	$T(stack[o]) = T(localVar_{index})$
3	LoadArray-op arrayRef, index	T(stack[o]) = T(arrayRef) U T(arrayRef [index])
4	Store-op index	T(localVar _{index}) = T(stack'[o])
5	StoreArray-op arrayRef, index	T(arrayRef [index]) = T(stack'[o])
6	Binary-op	$T(stack[o]) = T(stack'[o]) \cup T(stack'[1])$
7	Unary-op	T(stack[o]) = T(stack'[o])
8	GetField-op index	T(stack[o]) = T(stack'[o].instanceField) U T(stack'[o])
9	GetStatic-op index	T(stack[o]) = T(ClassName.staticField)
10	PutField-op index	T(stack'[1].instanceField) = T(stack'[0])
1	PutStatic-op index	T(ClassName.staticField) = T(stack'[0])
12	Return-op(non-void)	T(callerStack[o]) = T(calleeStack'[o])

Example

Compute acceleration

Input: accEvent from accelerometer

20/31

19/31

Example

Compute acceleration

Input: accEvent from accelerometer

Example

Tainted Data

accEvent

values (Rule 8)

Compute acceleration

Input: accEvent from accelerometer

20/31 20/31

Example

Tainted Data

accEvent

values (Rule 8)

x (Rule 3)

y (Rule 3)

z (Rule 3)

Compute acceleration

Input: accEvent from accelerometer

20/31

Example

Compute acceleration

Input: accEvent from accelerometer

Tainted Data accEvent

values (Rule 8)

x (Rule 3)

y (Rule 3)

z (Rule 3)

acc (Rule 6)

20/3

Sensory data usage measurement

$$usage(s,d) = \sum_{i \in Instr(s,d)} weight(i,s) \times rel(i)$$

Usage Accumulation

Sensory data usage measurement

$$usage(s,d) = \sum_{i \in Instr(s,d)} weight(i,s) \times rel(i)$$
 Usage Accumulation

Osmdroid issue 53:

21/31 21/31

Sensory data usage measurement

Sensory data usage measurement

22/31 22/31

Usage Comparison

$$utilization_coefficient(s,d) = \frac{usage(s,d)}{Max_{s' \in S,d' \in D}(usage(s',d'))}$$

Index	Usage	Utilization coefficient
State 1	n	0.5
State 2	0	0.0
State 3	2n	1

Usage Comparison

$$utilization_coefficient(s,d) = \frac{usage(s,d)}{Max_{s' \in S,d' \in D}(usage(s',d'))}$$

Index	Usage	Utilization coefficient
State 1	n	0.5
State 2	0	0.0
State 3	2n	1

Report

- Event sequence
- Sensory data usage details

23/31 23/31

Usage Comparison

$$utilization_coefficient(s,d) = \frac{usage(s,d)}{Max_{s' \in S, d' \in D}(usage(s',d'))}$$

Index	Usage	Utilization coefficient
State 1	n	0.5
State 2	0	0.0
State 3	2n	1

Report

- Event sequence
- Sensory data usage details

23/31

Evaluation

- RQ1 (Effectiveness): Can GreenDroid effectively detect energy problems?
- RQ2 (Efficiency): How much overhead does
 GreenDroid incur? Is GreenDroid practical enough to handler real-world large subjects?

24/31

Subjects

Application	Basic Information			
Application	Revision No.	Lines of code	Downloads	Availability
Osmdroid	750	18,091	10K—50K	Google Play
Zmanim	322	4,893	10K—50K	Google Play
Omnidroid	863	12,427	1K—5K	Google Play
DroidAR	204	18,106	1K—5K	Google Code
Recycle-locator	68	3,241	1K—5K	Google Play
GPSLogger	15	659	1K—5K	Google Code
Ushahidi	9doaa75	10,186	5K—10K	Google Play
Sofia Public Transport Nav.	114	1,443	10K—50K	Google Play
Geohash Droid	Vo.8.1-pre2	6,682	10K—50K	Google Play

Effectiveness

Energy Problem	Problem type	New problem
OsmDroid issue 53	Sensory data underutilization	No
Zmanim issue 50/56	Sensory data underutilization	No
Sofia Public Transport Nav. issue 38	Sensory data underutilization	No
Geohash Droid issue 24	Sensory data underutilization	No
DroidAR issue 27	Missing sensor deactivation	No
Recycle-Locator issue 33	Missing sensor deactivation	No
Ushahidi issue 11	Missing sensor deactivation	No
Omnidroid issue 179	Sensory data underutilization	Yes
GPSLogger issue 7	Sensory data underutilization	Yes

GreenDroid found nine real problems. Six are caused by poor sensory data utilization. Three are caused by missing sensor deactivation.

25/31 26/31

Effectiveness

Energy Problem	Problem type	New problem
OsmDroid issue 53	Sensory data underutilization	No
Zmanim issue 50/56	Sensory data underutilization	No
Sofia Public Transport Nav. issue 38	Sensory data underutilization	No
Geohash Droid issue 24	Sensory data underutilization	No
DroidAR issue 27	Missing sensor deactivation	No
Recycle-Locator issue 33	Missing sensor deactivation	No
Ushahidi issue 11	Missing sensor deactivation	No
Omnidroid issue 179	Sensory data underutilization	Yes
GPSLogger issue 7	Sensory data underutilization	Yes

First seven problems were confirmed before our experiments. The Last two were new problems found by GreenDroid (both confirmed).

27/31

Efficiency

Application	Analysis Overhead		
	Time (seconds)	Space (MB)	
Osmdroid (18 KLOC)	151	591	
Zmanim	110	205	
Omnidroid (12 KLOC)	220	342	
DroidAR (18 KLOC)	276	217	
Recycle-locator	43	153	
GPSLogger	35	149	
Sofia Public Transport Nav.	17	204	
Ushahidi	32	175	
Geohash Droid	185	229	

Large applications of 18KLOC can be explored in a few minutes. Memory Consumption is well supported by modern PCs even without optimization.

Effectiveness

Energy Problem	Problem type	
OsmDroid issue 53	Sensory data underutilization	
Zmanim issue 50/56	Sensory data underutilization	
Sofia Public Transport Nav. issue 38	Sensory data underutilization	
Geohash Droid issue 24	Sensory data underutilization	
DroidAR issue 27 Missing sensor deactivatio		
Recycle-Locator issue 33	Missing sensor deactivation	
Ushahidi issue 11 Missing sensor deactivation		
Omnidroid issue 179*	Sensory data underutilization	
GPSLogger issue 7* Sensory data underutilization		

New bugs found

"Completely true, Omnidroid does suck up way more energy than necessary. I'd be happy to accept a patch in this regard". (Omnidroid issue 179)

27/31

Efficiency

Application	Analysis Overhead		
	Time (seconds)	Space (MB)	
Osmdroid (18 KLOC)	151	591	
Zmanim	110	205	
Omnidroid (12 KLOC)	220	342	
DroidAR (18 KLOC)	276	217	
Recycle-locator	43	153	
GPSLogger	35	149	
Sofia Public Transport Nav.	17	204	
Ushahidi	32	175	
Geohash Droid	185	229	

Large subjects' analysis overhead suggests that GreenDroid is practical enough to handle real world Android applications.

Discussion

- Patching GPSLogger
 - Invited to provide a patch
 - Built the patch by following a real one (Geohash Droid issue 24)
 - Patch accepted and released online.
- GreenDroid limitations
 - Complex inputs generation (e.g., password)
 - Dynamic GUI updates (GUI models are extracted statically)

29/31 30/31

Conclusion

Future Work

- More energy problem patterns
 - Initial evidence: 16% energy problems was caused by network issues (e.g., energy-inefficient data transmission)
- Integration to Android framework
 - Modify Dalvik VM for data utilization analysis
 - On-device detection of energy problems

Thank you!