

Beam Lead Schottky Diodes for Mixers and Detectors (1-26 GHz)

Technical Data

HSCH-5300 Series

Features

- **Platinum Tri-Metal System** High Temperature Stability
- Silicon Nitride Passivation Stable, Reliable Performance
- Low Noise Figure Guaranteed 7.5 dB at 26 GHz
- High Uniformity
 Tightly Controlled Process
 Insures Uniform RF
 Characteristics
- Rugged Construction 4 Grams Minimum Lead Pull
- Low Capacitance 0.10 pF Max. at 0 V
- Polyimide Scratch Protection

Description

These beam lead diodes are constructed using a metal-semiconductor Schottky barrier junction. Advanced epitaxial techniques and precise process control insure uniformity and repeatability of this planar passivated microwave semiconductor. A nitride passivation layer provides immunity from contaminants which could otherwise lead to $I_{\rm R}$ drift.

The Agilent beam lead process allows for large beam anchor pads for rugged construction (typical 6 gram pull strength) without degrading capacitance.

Outline 07

DIMENSIONS IN µm (1/1000 inch)

Maximum Ratings

Pulse Power Incident at $T_A = 25^{\circ}C$	1 W
Pulse Width = 1 μ s, Du = 0.001	
CW Power Dissipation at $T_A = 25^{\circ}C$	150 mW
Measured in an infinite heat sink derated	linearly
to zero at maximum rated temperature	
T _{OPR} - Operating Temperature Range	65°C to +175 °C
T _{STG} - Storage Temperature Range	65°C to +200°C
Minimum Lead Strength	4 grams pull on any lead
Diode Mounting Temperature	+350°C for 10 sec. max.

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Applications

The beam lead diode is ideally suited for use in stripline or microstrip circuits. Its small physical size and uniform dimensions give it low parasitics and repeatable RF characteristics through K-band.

The basic medium barrier devices in this family are DC tested HSCH-5310, -5312, and -5316. A batch matched version is available as the HSCH-5317. Equivalent low barrier devices are HSCH-5330, -5332, and -5336. Batch matched

versions are available as HSCH-5331 and -5333.

For applications requiring guaranteed RF-tested performance up to 26 GHz, the HSCH-5340 is selected with batch match units available as the HSCH-5341. The HSCH-5318 is selected for 6.2 dB maximum noise figure at 9.375 GHz; with RF batch match units available as the HSCH-5319. The HSCH-5314 is rated at 7.2 dB maximum noise figure at 16 GHz with RF batch match units available as the HSCH-5315.

Assembly Techniques

Thermocompression bonding is recommended. Welding or conductive epoxy may also be used. For additional information see Application Note 979, "The Handling and Bonding of Beam Lead Devices Made Easy," or Application Note 993, "Beam Lead Device Bonding to Soft Substrates."

Table IA. Electrical Specifications for RF Tested Diodes at $T_A = 25$ °C

Part Number	Batch* Matched		Max. Noise Figure	Impe	l _F dance (Ω)	Max.	Min. Break- down Voltage	Max. Dynamic Resis- tance	Max. Total Capaci- tance	Max. Forward Voltage	Max. Leakage Current
HSCH-	HSCH-	Barrier	NF (dB)	Min.	Max.	SWR	Voltage V _{BR} (V)	$\mathbf{R}_{\mathbf{D}}(\Omega)$	C _T (pF)	Voltage V _F (mV)	I _R (nA)
5318	5319	Medium	6.2 at 9.375 GHz	200	400	1.5:1	4	12	0.25	500	100
5314	5315		7.2 at 16 GHz					16	0.15		
5340	5341	Low	7.5 at 26 GHz	150	350	1.5:1	4	20	0.10	375	400
Test Conditions	$\begin{array}{l} \Delta NF \leq \\ 0.3 \text{ dB} \\ \Delta Z_{IF} \leq \\ 25 \Omega \end{array}$		DC Load Resistance - 0 Ω LO Power = 1 mW I_F = 30 MHz, 1.5 dB NF				$I_R \le 10 \ \mu A$	$I_F = 5 \text{ mA}$	$V_R = 0 V$ f = 1 MHz	$I_F = 1 \text{ mA}$	$V_R = 1 \text{ V}$

^{*}Minimum batch size 20 units.

Note:

^{1.} $C_T = C_J + 0.02 \text{ pF (fringing cap)}.$

Table IB. Electrical Specifications for DC Tested Diodes at T_A = 25 $^{\circ}\text{C}$

Part Number HSCH-	Batch* Matched HSCH-	Barrier	Minimum Breakdown Voltage V _{BR} (V)	$\begin{array}{c} \mathbf{Maximum} \\ \mathbf{Dynamic} \\ \mathbf{Resistance} \\ \mathbf{R_D} \ (\Omega) \end{array}$	Maximum Total Capacitance C _T (pF)	Maximum Forward Voltage V _F (mV)	Maximum Leakage Current I _R (nA)
5316 5312 5310	5317	Medium	4	12 16 20	0.25 0.15 0.10	500	100
5336 5332 5330	5333 5331	Low	4	12 16 20	0.25 0.15 0.10	375	400
Test Conditions	$\begin{array}{c} \Delta V_F \leq 15 \text{ mV} \\ \text{@ 5 mA} \end{array}$		$I_R \le 10 \ \mu A$	$I_F = 5 \text{ mA}$	$V_R = 0 \text{ V}$ f = 1 MHz	$I_F = 1 \text{ mA}$	$V_R = 1 V$

^{*}Minimum batch size 20 units.

Typical Detector Characteristics at $T_A = 25^{\circ}C$

Medium Barrier and Low Barrier (DC Bias)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-54	dBm	20 μA Bias, $R_L = 100 \text{ K}\Omega$ Video Bandwidth = 2 MHz
Voltage Sensitivity	γ	6.6	mV/μW	f = 10 GHz
Video Resistance	R _V	1400	Ω	

Low Barrier (Zero Bias)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-44	dBm	Zero Bias, $R_L = 10 \text{ M}\Omega$ Video Bandwidth = 2 MHz
Voltage Sensitivity	γ	10	mV/μW	f = 10 GHz
Video Resistance	R_V	1.8	MΩ	

SPICE Parameters

Parameter	Units	HSCH-5316 HSCH-5318	HSCH-5312 HSCH-5314	HSCH-5310	HSCH-5330 HSCH-5340	HSCH-5332	HSCH-5336
B _V	V	5	5	5	5	5	5
C _{J0}	pF	0.2	0.13	0.09	0.09	0.13	0.20
E_{G}	eV	0.69	0.69	0.69	0.69	0.69	0.69
I_{BV}	A	10E-5	10E-5	10E-5	10E-5	10E-5	10E-5
I_{S}	A	3 x 10E-10	3 x 10E-10	3 x 10E-10	4 x 10E-10	4 x 10E-8	4 x 10E-8
N		1.08	1.08	1.08	1.08	1.08	1.08
R_S	Ω	5	9	13	13	9	6
P _B	V	0.65	0.65	0.65	0.5	0.5	0.5
P_{T}		2	2	2	2	2	2
M		0.5	0.5	0.5	0.5	0.5	0.5

Typical Parameters

Figure 1. Typical Forward Characteristics for Medium Barrier Beam Lead Diodes. HSCH-5310 Series.

Figure 2. Typical Forward Characteristics for Low Barrier Beam Lead Diodes. HSCH-5330, -5340 Series.

Figure 3. Typical Noise Figure vs. Frequency.

Figure 4. Typical Admittance Characteristics with 1 mA Self Bias. HSCH-5340 and -5341.

Figure 5. Typical Admittance Characteristics with External Bias. HSCH-5340 and -5341.

Figure 6. Typical Admittance Characteristics with Self Bias. HSCH-5314 and -5315.

Figure 7. Typical Admittance Characteristics with External Bias. HSCH-5314 and -5315.

Figure 8. Typical Admittance Characteristics with Self Bias. HSCH-5318 and -5319.

Figure 9. Typical Admittance Characteristics with External Bias. HSCH-5318 and -5319.

Models for Each Beam Lead Schottky Diode

HSCH-5340, -5341 1 mA Self Bias

Other HSCH-53XX

	1.0 mA Self Bias			1.5 mA Self Bias			3.0 mA Self Bias		
Part Numbers	$\mathbf{R}_{\mathbf{S}}$ (Ω)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)	$\mathbf{R}_{\mathbf{S}}$ (Ω)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)	$\mathbf{R}_{\mathbf{S}}$ (Ω)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)
HSCH-5314, -5315	5.0	393	0.11	5.2	232	0.11	5.0	150	0.12
HSCH-5318, -5319	5.1	244	0.16	5.0	178	0.16	5.0	109	0.19

HSCH-5340, -5341

	20 μ A l	DC Bias	50 μ A D	C Bias	150 μA DC Bias	
Part Numbers	$\mathbf{R_{j}}(\Omega)$	C _j (pF)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)
HSCH-5340, -5341	1300	0.09	560	0.09	187	0.10

Other HSCH-53XX External Bias

	20 μADC Bias			50	50 μ ADC Bias			150 μ ADC Bias		
Part Numbers	$\mathbf{R}_{\mathbf{S}}$ (Ω)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)	$\mathbf{R}_{\mathbf{S}}$ (Ω)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)	$\mathbf{R}_{\mathbf{S}}$ (Ω)	$\mathbf{R_{j}}(\Omega)$	C _j (pF)	
HSCH-5314, -5315	2.8	1300	0.11	4.7	520	0.12	2.7	180	0.13	
HSCH-5318, -5319	5.1	1300	0.18	3.9	520	0.19	4.7	180	0.20	

www.semiconductor.agilent.com
Data subject to change.
Copyright © 1999 Agilent Technologies
5965-8849E (11/99)