Case Study: Risky Dealer Risk Assessment by an Explainable Model

Mohammad Toutiaee
Cox Automotive

Mohammad Toutiaee (pronounce: Two-T-Ya-E)

- PhD in Computer Science, The University of Georgia
- M.Sc. in Statistics, The University of Georgia
- Data Scientist Intern, Cox Automotive (vAuto)
- Been a Teaching Assistant and a Lab Instructor since 2015.
- Worked in Equifax, State Farm as a Data Scientist

Research:

Responsible Data Science

Problem Description

DealShiled

- Affects buyer's transactional history
- Loss of investor's capital and interest
- Damages reputation as a responsible guarantor
- Can potentially affect car's sale price

Missing Values	Treatment	
CarMake (2)	Added to UNKNOWN	
JDPowersCat (356)	Imputed by Mode(SalePrice, CarMake, CarYear)	
Autocheck_Score (9320)	Imputed by Mode(SalePrice, CarMake, Mileage)	
ConditionReport (~200K)	Imputed by NN(SalePrice, CarMake) Apply t-statistic to check for difference	
Returned (~250K)	Removed in training	

Dirty Values	Treatment	
CarMake	Group similar records Example: B M W => BMW	
ConditionReport Group by similar Mean(SalePrice, CarMake) Example: A, A3 => 20		

Feature Engineering

- Original Dataset: 22 Predictors
- One-hot Encoding: JDPowersCat, CarMake, SellingLocation, DayOfWeek
- Added extra engineered features:
 - Number of Distinct Seller per Buyer
 - Number of Purchase per Buyer
 - Avg SalePrice per Buyer
 - Number of Days Since Last Purchase per Buyer
 - etc
- Total features: 291
- Target Variable: Risky or Not Risky (1=Risky, 0=NotRisky)

Model Building

Predicted Class

	Risky	Not Risky
Risky	TP	FN Type III Emor
Not Risky	FP Type II⊞rnoom	TN

Actual Class

Model Building

Baseline: Lasso Logistic Regression

AUC Score:

Train set: 0.82

Test set: 0.80

Precision: 0.72 Recall: 0.60 F1-score: 66

No. Selected Vars: 65

Top 20 Variables

Model Building

Top 20 Variables

Random Forest

AUC Score:

Train set: 0.87Test set: 0.72

Precision: 0.67 Recall: 0.71

F1-score: .69

Rejected Application Explanation by LIME

Feature	Value
Arbitrated	0.40
CarMakeTAO.TAO	0.00
CarMakePGMFG	0.00
CarMakeFC.COMMER	0.00
SellingLocationNVAA	0.00
SellingLocationMAA	0.00
LIGHTR	0.60
SellingLocationAAA	0.00
OVE	0.00
CarMakeXWCCXX	0.00

Model Selection

Tr-Ts (67%,33%)	Lasso LR	RF (selected Features)	RF
ROC_AUC	80%	72%	70%
F1-Score	66%	69%	65%
	<u> </u>		

- Interpretable
- Easy to Implement

Conclusion

- Complex machine learning methods need more data (IEEE BDS' 21, MiLeTS' 21).
- Model debiasing may be required to prevent discrimination (e.g location, age, etc.)
- Interpretation techniques are useful to explain the black box models and provide insights.
- Model's performance can be improved via data augmentation, feature engineering and hyperparameters optimization.
- Toolsets:

Thank you for your attention!

Questions ...