	notes, no 'cheat sheet', no calculators allowed. nones during the exam. e space provided.
-	SECTION:
_	ocode for the InsertAfter (p, e) operation in a doubly-linked list, where a ent e is inserted between node p and its successor. What is the worst-case time?
Algorithm insertA	ter(p, e):
Create a new node a	,
$v.\text{element} \leftarrow e$	
	/* link v to its predecessor */
	/* link v to its successor $*/$
	/* link p's old successor to v */
	/* link p to its new successor, v */
return v	
Running time:	
2. Describe how to imp	plement a queue using two stacks. What is the worst-case running time o

2. Describe how to implement a queue using two stacks. What is the worst-case running time of the enqueue() and dequeue() methods in this case?

(6 points)

3. A matched string is a sequence of $\{, \}, (,), [, \text{ and }]$ characters that are properly matched. For example, " $\{\{()[]\}\}$ " is a matched string, but this " $\{\{()]\}$ " is not, since the second $\{$ is matched with a]. Show how to use a stack so that, given a string of length n, you can determine if it is a matched string in O(n) time.

(6 points)

4. Suppose we perform a DeleteMax operation on the max heap H = [11, 8, 7, 3, 5, 6, 2, 1] (the heap is stored here implicitly in the form of an array). Show the steps performed after deletion to restore the heap order of elements.

(5 points)

6. Let T be an ordered tree with more than one node. Is it possible that the preorder traversal of T visits the nodes in the same order as the postorder traversal of T? If so, give an example; otherwise, argue why this cannot occur. Likewise, is it possible that the preorder traversal of T visits the nodes in the reverse order of the postorder traversal of T? If so, give an example; otherwise, argue why this cannot occur.

(6 points)

7. Suppose T is a binary search tree of height 4 (including the external nodes) that is storing all the integers in the range from 1 to 15, inclusive. Suppose further that you do a search for the number 11. Explain why it is impossible for the sequence of numbers you encounter in this search to be (9, 12, 10, 11).

(6 points)