IN THE CLAIMS:

Amend the following claims:

1. (Currently Amended) A projection viewing system, comprising:

at least a first display device <u>displaying a first image to be viewed by a first viewer</u> and a second display device <u>displaying a second image to be viewed by a second viewer</u>,

at least a first projection optical system and a second projection optical system,

a diffusing plate, and

an eyepiece optical system, wherein:

said first projection optical system projects an image appearing on said first display device in a first direction toward said first viewer and said second projection optical system projects an image appearing on said second display device in a direction different from said first direction toward said second viewer,

said diffusing plate is located near to images projected through said first and second projection optical systems, and

said eyepiece optical system projects exit pupils of said first and second projection optical systems onto [[an]] a viewer side.

- 2. (withdrawn) The projection viewing system according to claim 1, wherein said diffusing plate has an angle of diffusion of up to 20° at full width half maximum.
- 3. (withdrawn) The projection viewing system according to claim 1, wherein said diffusing plate has an angle of diffusion of up to 40° at a 1/10 full width.
- 4. (withdrawn) The projection viewing system according to claim 1, wherein said diffusing plate has a surface roughness that satisfies the following condition:

where Sm is a mean pit-to-projection space of a diffusing surface according to JIS B0601 (μm), and Ra is a center-line mean roughness of said diffusing surface (μm).

Appl. No. 10/612,092 Amdt. dated July 17, 2006 Reply to Office Action of March 16, 2006

5. (withdrawn) The projection viewing system according to claim 4, which further satisfies the following conditions: for a single transmission type diffusing plate,

$$5 < (Sm/Ra) X (Ep/400) < 70$$
 ... (2)

for a double-transmission type diffusing plate,

for a front-surface reflection type diffusing plate,

for a back-surface reflection type diffusing plate,

where Sm is a mean pit-to-projection space of a diffusing surface of said diffusing plate according to JIS B0601 (μ m), Ra is a center-line mean roughness of said diffusing surface (μ m), and EP is a distance from said diffusing surface to a position of a viewer's eye (mm).

6. (withdrawn) The projection viewing system according to claim 4, which further satisfies the following condition:

- 7. (withdrawn) The projection viewing system according to claim 1, wherein said eyepiece optical system comprises a Fresnel lens.
- 8. (withdrawn) The projection viewing system according to claim 1, wherein said eyepiece optical system comprises a reflecting surface.
- 9. (withdrawn) The projection viewing system according to claim 1, wherein said eyepiece optical system comprises a Fresnel reflecting mirror.
- 10. (withdrawn) The projection viewing system according to claim 1, wherein said eyepiece optical system comprises a Fresnel back-surface reflecting mirror.
- 11. (original) The projection viewing system according to claim 1, wherein said diffusing surface is provided on at least one surface of said eyepiece optical system.

Appl. No. 10/612,092 Amdt. dated July 17, 2006

Reply to Office Action of March 16, 2006

12. (original) The projection viewing system according to claim 1, wherein said diffusing plate

comprises a transmission type hologram, and said eyepiece optical system comprises a concave

mirror.

13. (original) The projection viewing system according to claim 12, wherein said concave

mirror comprises a Fresnel concave reflecting mirror.

14. (original) The projection viewing system according to claim 12, wherein light rays from

said projection optical systems to an exit pupil of said projection viewing system transmits said

diffusing plate twice, wherein said projection optical systems and said diffusing plate are located

such that an angle at which said light rays transmit said diffusing plate at a first time is different

from an angle at which said light rays transmit said diffusing plate at a second time.

15. (original) The projection viewing system according to claim 12, wherein said concave

mirror is located such that axial chief rays from said projection optical systems are obliquely

incident thereon.

16. (original) The projection viewing system according to claim 12, wherein zero-order light

leaving said diffusing plate is kept from being incident on an exit pupil of said projection viewing

system.

17. (original) The projection viewing system according to claim 12, wherein zero-order light

leaving said diffusing plate propagates toward an exit pupil position of said projection viewing

system, and is incident on a portion of said exit pupil spaced away from a center of said exit pupil

at a distance of at least 1/2 of the diameter of said exit pupil.

18. (original) The projection viewing system according to claim 12, wherein said diffusing plate

has a flexion action by diffraction.

19. (original) The projection viewing system according to claim 18, which further satisfies the

- 5 -

Appl. No. 10/612,092 Amdt. dated July 17, 2006 Reply to Office Action of March 16, 2006

following condition:

$$\gamma > 1^{\circ}$$
 ... (7)

where γ is a d-line angle of flexion of an optical axis by said diffusing plate.

20. (original) The projection viewing system according to claim 19, which further satisfies the following condition:

$$\gamma$$
 < 45° ... (8)

where γ is the d-line angle of flexion of an optical axis by said diffusing plate.

- 21. (original) The projection viewing system according to claim 12, wherein a difference in an angle of diffraction of an optical axis by said diffusing plate between 700 nm wavelength light and 400 nm wavelength light is up to 18°.
- 22. (original) The projection viewing system according to claim 12, wherein, at a position of the exit pupil of said projection viewing system, a difference in a position of incidence between a 700 nm wavelength optical axis and a 400 nm wavelength optical axis is up to 1/2 of a diameter of said exit pupil.
- 23. (original) The projection viewing system according to claim 12, which further satisfies the following condition:

$$0^{\circ} < \beta < 45^{0}$$
 ... (9)

where ß is an angle of incidence of a d-line optical axis on said concave mirror.

24. (original) The projection viewing system according to claim 12, which further satisfies the following condition:

$$0.01 < \gamma/\beta < 1,000$$
 ... (10)

where γ is an angle of flexion of a d-line optical axis by said diffusing plate, and β is an angle of incidence of a d-line optical axis on said concave mirror.

25. (withdrawn) The projection viewing system according to claim 1, wherein said projection optical systems are located such that either one of optical axes thereof crosses said eyepiece

Appl. No. 10/612,092 Amdt. dated July 17, 2006

Reply to Office Action of March 16, 2006

optical system, and an angle that a perpendicular to said eyepiece optical system at a point of intersection subtends said optical axis is 10° or greater.

26. (withdrawn) The projection viewing system according to claim 1, wherein at least one of said projection optical systems is made up of a decentered prism comprising at least one decentered prism formed of a medium having a refractive index (n) of greater than 1 (n>1), wherein:

said decentered prism comprises:

an entrance surface through which a light beam scanned by said scanning means enters said prism,

at least one reflecting surface for reflection of said light beam within said prism, and an exit surface through which a light beam leaves said prism, wherein said at least one reflecting surface has a curved surface shape that is rotationally asymmetric enough to make correction for aberrations occurring due to decentration.

27. (withdrawn) The projection viewing system according to claim 26, wherein said reflecting surface comprises a first reflecting surface and a second reflecting surface,

said first reflecting surface providing reflection within said prism of a light beam entered from said entrance surface in said prism, and

said second reflecting surface providing reflection within said prism of a light beam reflected at said first reflecting surface, and

a light beam from said entrance surface toward said first reflecting surface and a light beam from said second reflecting surface toward said exit surface cross each other within said prism.

28. (withdrawn) The projection viewing system according to claim 26, wherein said reflecting surface comprises a first reflecting surface and a second reflecting surface,

said first reflecting surface providing reflection within said prism of a light beam entered from said entrance surface in said prism, and

said second reflecting surface providing reflection within said prism of a light beam reflected at said first reflecting surface, and

Appl. No. 10/612,092

Amdt. dated July 17, 2006

Reply to Office Action of March 16, 2006

said entrance surface and said second reflecting surface are defined by one single surface.

29. (withdrawn) The projection viewing system according to claim 1, wherein images appearing on said display devices are distorted upon display in such a way as to compensate for an image distortion due to said projection optical systems.

30. (withdrawn) The projection viewing system according to claim 26, wherein:

said decentered prism optical system is configured in a shape symmetrical with respect to plane,

said projection optical systems are located such that either one of optical axes thereof crosses said eyepiece optical system, and

an angle that a perpendicular to said eyepiece optical system at a point of intersection subtends said optical axis is 10° or greater.

31. (withdrawn) The projection optical system according to claim 26, wherein:

said decentered prism optical system is configured in a shape symmetrical with respect to plane,

said scanning means is located on an object plane of said decentered prism optical system,

a scanning area formed by said scanning means is projected near to said eyepiece optical system, and

said scanning means is located such that a longitudinal or lateral direction of said scanning area projected is substantially in line with a longitudinal or lateral direction of said eyepiece optical system.

- 32. (withdrawn) The projection viewing system according to claim 1, wherein said projection optical system has a function of making correction for a distortion of a tilted image.
- 33. (withdrawn) The projection viewing system according to claim 1, wherein said light source is an LED or LD.