This project is a private project, suitable for beginners like me who study CNN Verilog design

Lenet5 CNN Structure

It has a lighter structure than the original version.

1. 논문들과 같이 병렬 연산을 줄여 리소스를 줄인다.

- 2. 하지만 CNN 구조 자체를 상당한 경량화를 함으로써 다른곳에 쓰일 리소스를 병렬연산에 좀 더 쓸 수 있다.
- 3. 5x5 커널은 병렬연산(25개의 Mac 사용)으로 진행되며 Convolution 2 에서 연산은 out channel1 -> out channel2 -> out channel3 -> out channel4 -> ... out channel12 로 순차적 진행된다. 다만 각 채널의 연산(in channel1, in channel2, in channel3, in channel4 는 병렬(동시)연산된다).
- 4. 실시간으로 maxpooling, relu function 을 지나서 FC layer 로 입력되며 이 layer 에서 즉각 계산하여 버퍼에 저장하고 최종적으로 classification 하기 위한 (0부터 9) 내부 maxpooler 로부터 최종 출력이 나오게 된다.

제가 설계한 파일들 그대로만 사용해서 한번 시뮬레이션 결과를 보고싶다 하시는 분들은,

Test_image.zip 압축해제 하신 뒤 본인이 원하는 숫자의 mem 파일을 넣어주신 뒤

lenet tb fix weight.v 파일에서 \$readmemh("HW_test_num3_1.mem", in_fmap); 부분에서 파일이름만 변경해주시면 됩니다. 예) 4 입력시, \$readmemh("HW_test_num4_1.mem", in_fmap); 혹은 \$readmemh("HW_test_num4_2.mem", in_fmap); 이런식

Test_image.zip 파일은 숫자0의 이미지 10개를 각각 데이터화 한 mem 파일 10개, txt 파일 10개, 숫자1의 이미지 10개를 각각 데이터화 한 mem 파일 10개, txt 파일 10개,

숫자9의 이미지 10개를 각각 데이터화 한 mem 파일 10개, txt 파일 10개 로 구성되어 있습니다.

-----구조를 변경할 경우------

모든 코드는 자동화? 로 되어있다. 따라서 각 레이어의 채널 수를 변경하고 싶거나, 각 레이어 마다 출력 bit 수를 truncate 하는데 이를 조정하고 싶다면 param_clog2.vh 파일에서 해당 부분을 수정하면 된다.

이 후 이에 맞는 가중치와 바이어스 값을 구해야 하는데 이는 MNIST.ipynb 파일에서 코드를 수정하면 된다. 이 코드는 크게 5장의 코드로 되어있다.(구글에서 스윽 할 수 있는 코드들이고 입맛에 맞게 좀 수정하면 된다)

1번째장: MNIST training 및 testing 하는 코드이다. 본인이 원하는 Lenet CNN 구조(채널의 수)에 맞게 코드를 수정하면 된다.

2번째 장 : test image jpg 이미지파일들을(구글에서 받으면 된다) 0~255 범위의 28x28 크기인 txt 파일(SW를 위한)과 동일한 범위와 크기이지만 표현법인 hex인 mem 파일(HW를 위한)을 저장하기 위한 코드이다.

3번째 장: Convolution layer 1의 가중치들을 출력하고 저장하기 위한 코드이다.

기존 가중치에 x128 을 해주어 int 형으로 변경해준다. 이 때 127 보다 큰 값을 8bit 로 받아들이면 HW 에서는 이를 음수로 처리한다(127 = 0111 1111 이고 128부터 MSB가 1이 되므로). 따라서, 10번정도의 트레이닝을 통한 각 가중치를 살펴본다. 그 결과 127을 넘는 양수 가중치는 10개 미만이었고, 그 값들 각각의 차이마저 미비한 수준이었으므로, 127을 넘을 경우 단순히 127로 고정해버린다.(1~10정도의 오차는 있지만 오버플로우는 막는다)이 후 가로로 쌓아서 한번에 배열을 합치는 np.vstack을 사용해서 합친 후 저장하면 매우 편하다.

4번째 장 : Convolution layer 2 의 가중치들을 출력하고 저장하기 위한 코드이다. Layer 1 의 경우, 입력 이미지가 1 채널이기에 가중치의 순서가 헷갈리지 않지만, Layer 2 의 경우, 입력 feature map이 4채널이다. 이를 유의하여 본인의 SW 코드에 맞도록(본인만의 코드가 있다면) stack 을 한 뒤 저장한다. 본인의 경우 conv.cpp 가 작성한 SW 코드이다.

5번째 장: fc layer 의 가중치들과 바이어스 값을 출력하고 저장하기 위한 코드이다. 이 때 바이어스는 16bit 이므로 배수가 다른 점을 유의한다.

MNIST.ipynb 의 경우 반드시 첫 장 코드부터 실행 한 뒤, 결과가 나오는 것을 본 후 2 장부터 실행하여 가중치,바이어스 값을 저장하면 된다.

간단한 구조도 Convolution layer1 의 경우

Convolution layer2 는 layer1 의 경우에서 2가지가 달라진다.

- 1. kernel(weight)의 채널수
 - 2. Output kernel의 수

당연히 설계가 조금은 다르지만 동작 메커니즘은 거의 같다.

이 후 FC layer는 convlayer 2 의 아웃풋을 실시간 입력받아 mac -> 버퍼에 저장을 반복하다 convlayer2 가 종료되면 그 때부터 classification 하게 된다.

예시로 tb file 에서 HW_test_num8_1.mem 파일을 인풋으로 넣었을 경우 출력 결과 8 로 정상적으로 나옴 현재까지 100개 정도 실행했는데 2개? 3개? 제외하고 정확한 답을 내놓는 정확성을 보이지만, 더 많은 결과를 확인하거나, 트레이닝을 다시 한 뒤, 새로 얻은 가중치로 하면 또 다른 정확성을 보일 수 있음. 제대로 된 가중치를 얻 어내는 것도 중요

Synthesis 결과

1개의 warning 이 존재하지만, 이는 FC layer 에서 bias bit를 30bit 로 만들어 주기 위함에서 14bit 증가됬다고 뜨는 일반적인 메시지 무시가능

