Zertifikatsklausur 24.11.

- Klausurtyp: Open-Book-Exam
- Bearbeitungszeit: 45 Minuten (+ 15 Minuten für Download & Upload)
- Erreichbare Punkte: 45
- Bestehensgrenze: mit 25 Punkten auf jeden Fall bestanden.

Abgabe bis spätestens 20.00 Uhr per E-Mail an kurse@stads.de.

Der Code muss in Python 3.8.5 mit numpy 1.19.2, pandas 1.1.3, matplotlib 3.3.2, seaborn 0.11.0 bzw. plotly 4.12.0 lauffähig sein. Falls weitere Pakete oder andere Versionen verwendet werden, muss die jeweilige Version angegeben werden.

Aufgabe 1: Grundlagen (18 Punkte)

• Erstellen Sie eine Python-Datei mit dem Namen <Nachname>_<Vorname>_exam.py (z.B. kern_moritz_exam.py) und bearbeiten in dieser Datei die Aufgabe.

Aufgabe 1a: Get Started (2 Punkte)

- Definieren Sie die beiden Variablen x und y als −10 bzw. 20 (1 Punkt)
- Geben Sie das Ergebnis des quadrierten Abstands, d.h. (x-y)^2, an. (Tipp: **, print) (1 Punkt)

Aufgabe 1b: Einfache Funktion (6 Punkte)

- Definieren Sie eine Funktion abstand_quadriert , die die zwei Variablen x und y als Input hat. (1 Punkt)
- Die Funktion soll prüfen, ob die Differenz von x und y gleich 0 ist, falls dies der Fall ist: Printe x und y sind gleich. und gebe 0 zurück. *(2 Punkte)
 - o andernfalls, gebe das Ergebnis von (x-y)^2 zurück. (2 Punkte)
- Werten Sie die Funktion aus f
 ür die Inputkombination (x=5, y=5) und (x=4, y=6) (1 Punkt)

Aufgabe 1c: Datentypen (6 Punkte)

- Erstellen Sie eine Variable x mit dem Wert 0. Konvertieren Sie x explizit zu einem Boolean (True/False) und speichern Sie das Ergebnis als z (1 Punkt)
- Definieren Sie die variable z_is_is_bool als TRUE, falls z vom Typ bool, andernfalls als FALSE. Tipp: Verwenden Sie dazu die Funktion isinstance . (1 Punkt)
- Erstellen Sie ein dictionary mit dem Namen semester mit folgendem Mapping auf jeweils eine Liste. (3 Punkte)
 - "FSS" -> ["Fruehjahrs-Sommer-Semester", "01. Februrar"]
 - "HWS" -> ["Herbst-Winter-Semester", "01. September"]
- Lassen Sie sich das Element mit dem Key FSS ausgeben. (1 Punkt)

Aufgabe 1d: Schleifen (4 Punkte)

• Erstellen Sie mit einer for-Schleife folgende Ausgabe (... ausgeschrieben) (4 Punkte)

```
1
-2
3
-4
5
-6
29
-30
```

Aufgabe 2: Wichtige Pakete (27 Punkte)

• Erstellen Sie ein IPython-Notebook mit dem Namen <Nachname>_<Vorname>_exam.ipynb (z.B. kern_moritz_exam.ipynb) und bearbeiten in dieser Datei die Aufgabe.

Aufgabe 2a: Numpy (6 Punkte)

• Erstellen Sie geschickt einen Vektor v, der wie folgt aussieht. (1 Punkt)

```
[ 2000,
                 2008, 2012, 2016, 2020, ..., 2092, 2096]
          2004,
```

- Erstellen Sie eine Matrix ma_diag der Dimension (12,12), die auf ihren Diagonalen überall eine 1 hat sonst nur Nullen. (1 Punkt)
- Setzen Sie das letzte Element rechts oben in der Matrix ma_diag auf np.NaN . (1 Punkt)
- Initialisieren Sie einen Zufallszahlengenerator. (1 Punkt) • Verwenden Sie den Zufallszahlengenerator, um ein auf dem Intervall [0, 1] gleichverteilte Zufallszahl z zu simulieren. (1 Punkt)
- Ersetzen Sie in der Matrix ma_diag das NaN-Element durch Ihre erzeugte Zufallszahl z .
- Berechnen Sie elementweise die Exponentialfunktion von ma_diag und speichern Sie die so erhaltene Matrix als ma_diag_exp. (1 Punkte)

Aufgabe 2b: Pandas Basics (9 Punkte)

Für diese Aufgabe benötigen Sie den Datensatz activity.csv.

- Importieren Sie den Datensatz activity.csv . (2 Punkte)
- Lassen Sie sich die ersten 10 Zeilen ausgeben. (1 Punkt)
- Aus wie vielen Zeilen und Spalten besteht der Datensatz? (1 Punkt)
- Löschen Sie die Spalte country_region_code und wandeln Sie die Spalte date ins Datetime-Format um (Tipp: pd.to_datetime). Speichern Sie den so erhaltenen Datensatz als df ab und verwenden ihn für die folgenden Aufgaben. (2 Punkte)
- Erstellen Sie eine neue Spalte change_from_baseline, die sich als Summe der Spalten retail_and_recreation_percent_change_from_baseline und grocery_and_pharmacy_percent_change_from_baseline ergibt. (1 Punkt)
- Geben Sie die Zeilen mit dem größten Rückgang von der Baseline, also die 5 Zeilen mit den kleinsten Werten in change_from_baseline aus. Wie groß war der change_from_baseline am 15. November (2020-11-15) in Baden-Württemberg? (2 Punkte)

Aufgabe 2c: Pandas Advanced (7 Punkte)

- Geben Sie die Korrelation zwischen retail_and_recreation_percent_change_from_baseline und grocery_and_pharmacy_percent_change_from_baseline an. (2 Punkte)
- Gruppieren Sie den Datensatz nach der Spalte Bundesland. Filtern ihn nach Beobachtungen seit dem 01.09.2020. Verwenden Sie diesen für die nächste Fragestellung. (2 Punkte)
- Geben Sie an, in welchem Bundesland der Rückgang bei Einkäufen im Mittel am größten war, d.h. bestimmen Sie das Bundesland, bei dem grocery_and_pharmacy_percent_change_from_baseline im Mittel am kleinsten war. (2 Punkte)

(z.B. Pandas, Matplotlib, Seaborn, Plotly). (5 Punkte)

Aufgabe 2d: Grafiken (6 Punkte) • Gruppieren Sie den Datensatz nach der Spalte Datum und aggregieren Sie die Spalte

retail_and_recreation_percent_change_from_baseline mit dem Mittelwert. Verwenden Sie diesen Datensatz für die nächste

Aufgabe. (1 Punkte) • Erstellen Sie einen Scatterplot mit dem Datum auf der x-Achse und den retail_and_recreation_percent_change_from_baseline auf der y-Achse. Sie dürfen dabei ein Paket Ihrer Wahl verwenden

Abgabe