

independent identically distributed

Canonical name IndependentIdenticallyDistributed

Date of creation 2013-03-22 14:27:29 Last modified on 2013-03-22 14:27:29

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification msc 60-00

Synonym iid

Synonym independent and identically distributed

Defines identically distributed

Two random variables X and Y are said to be *identically distributed* if they are defined on the same probability space (Ω, \mathcal{F}, P) , and the distribution function F_X of X and the distribution function F_Y of Y are the same: $F_X = F_Y$. When X and Y are identically distributed, we write $X \stackrel{d}{=} Y$.

A set of random variables X_i , i in some index set I, is identically distributed if $X_i \stackrel{d}{=} X_j$ for every pair $i, j \in I$. A collection of random variables X_i $(i \in I)$ is said to be *independent iden*-

A collection of random variables X_i ($i \in I$) is said to be independent identically distributed, if the X_i 's are identically distributed, and http://planetmath.org/Independent independent (every finite subfamily of X_i is independent). This is often abbreviated as iid.

For example, the interarrival times T_i of a Poisson process of rate λ are independent and each have an exponential distribution with mean $1/\lambda$, so the T_i are independent identically distributed random variables.

Many other examples are found in statistics, where individual data points are often assumed to realizations of iid random variables.