TD VI : Analyse de Fourier sur \mathbb{R}

Exercice 1. Soient $f, g : \mathbb{R} \to \mathbb{R}$

- 1. Étudier la parité de f*g lorsque f et g sont des fonctions paires, et lorsque l'une est paire et l'autre impaire.
- 2. Pour tout $\xi \in \mathbb{R}$, exprimer $\hat{f}(-\xi)$ en fonction de $\hat{f}(\xi)$. Si f est paire, montrer que $\hat{f}(\xi) \in \mathbb{R}$ pour tout $\xi \in \mathbb{R}$. Que se passe-t-il si f est impaire?
- 3. Que deviennent les résultats précédents si f est à valeur complexe ?

Exercice 2. Soit $g: \mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = \begin{cases} 0 & \text{si } |x| > 1\\ 1+x & \text{si } -1 \le x < 0\\ 1-x & \text{si } 0 \le x \le 1 \end{cases}$$

Calculer \hat{g} et en déduire $\int_0^{+\infty} \frac{\sin^2 t}{t^2} dt$ et $\int_0^{+\infty} \frac{\sin^4 t}{t^4} dt$.

Exercice 3. Transformée de Fourier de la Gaussienne

Pour $\sigma > 0$, on note $g_{\sigma}(x) = \frac{1}{\sigma} e^{-\frac{x^2}{2\sigma^2}}$. Le but est de calculer \hat{g}_{σ} .

- 1. Montrer que \hat{g}_{σ} est dérivable et exprimer $\hat{g}'_{\sigma}(\xi)$ en fonction de $\hat{g}_{\sigma}(\xi)$ (Utiliser une IPP).
- 2. En déduire $\hat{g}_{\sigma}(\xi)$ pour tout $\xi \in \mathbb{R}$. Que peut-on dire de \hat{g}_1 ?

Exercice 4. Soient $f, g : \mathbb{R} \to \mathbb{C}$ définies par $f(x) = e^{-|x|}$ et $g(x) = \frac{1}{1+x^2}$.

- 1. Calculer \hat{f} .
- 2. Justifier que $f(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{e^{ixs}}{1+s^2} ds$ pour tout $x \in \mathbb{R}$. En déduire $\int_{\mathbb{R}} \frac{\cos t}{1+t^2} dt$ et $\hat{g}(\xi)$ pour tout $\xi \in \mathbb{R}$.
- 3. Calculer f * f et en déduire la transformée de Fourier de $h(x) = \frac{1}{(1+x^2)^2}$.
- 4. En utilisant les propriétés de dérivation, calculer la transformée de Fourier de $k(x) = \frac{x}{(1+x^2)^2}$.

Exercice 5. Formule de réciprocité

Soient $f, g \in L^1(\mathbb{R})$. Montrer que $f\hat{g} \in L^1(\mathbb{R})$ et $\hat{f}g \in L^1(\mathbb{R})$, et que $\int_{\mathbb{R}} f\hat{g}d\lambda_1 = \int_{\mathbb{R}} \hat{f}gd\lambda_1$

1 Pour s'entrainer, pour aller plus loin

Exercice 6. Pour tout a > 0, on note $f_a = \mathbb{1}_{[-a,a]}$. Calculer \hat{f}_a et en déduire $\int_0^{+\infty} \frac{\sin^2 t}{t^2} dt$.

Exercice 7. Soit $f \in L^1(\mathbb{R})$.

1. Pour tout s > 0, on note f_s la fonction définie par $f_s(x) = \frac{1}{s} f(\frac{x}{s})$. Montrer que $f_s \in L^1(\mathbb{R})$ et exprimer \hat{f}_s en fonction de \hat{f} .

2. Pour tout $y \in \mathbb{R}$, exprimer $\widehat{\tau_y f}$ en fonction de \hat{f} .

Exercice 8. Extrait d'un sujet d'examen

Soit $f = \mathbb{1}_{[-\frac{\pi}{2},\frac{\pi}{2}]}$, et soit $g: \mathbb{R} \to \mathbb{R}$ définie par

$$g(x) = \begin{cases} 0 & \text{si } |x| > \frac{\pi}{2} \\ \cos x & \text{si } -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \end{cases}.$$

- 1. Calculer les transformées de Fourier \hat{f} et \hat{g} .
- 2. Calculer f * g et $\widehat{f * g}$.
- 3. Justifier que les intégrales suivantes sont bien définies et les calculer en utilisant ce qui précède.

(a)
$$\int_{-\infty}^{+\infty} \frac{\sin^2 t}{t^2} dt.$$

(b)
$$\int_{-\infty}^{+\infty} \frac{\sin t}{t(\pi^2 - t^2)} dt.$$

Exercice 9. Extrait d'un sujet d'examen

Soient $f, g : \mathbb{R} \to \mathbb{C}$ définies par $f(x) = xe^{-|x|}$ et $g(x) = \frac{x}{(1+x^2)^2}$.

- 1. Calculer \hat{f} .
- 2. Justifier que $f(x) = \frac{-2i}{\pi} \int_{\mathbb{R}} \frac{se^{ixs}}{(1+s^2)^2} ds$ pour tout $x \in \mathbb{R}$. En déduire $\int_{\mathbb{R}} \frac{t \sin t}{(1+t^2)^2} dt$ et $\hat{g}(\xi)$ pour tout $\xi \in \mathbb{R}$.