ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский университет «Высшая школа экономики»

Московский институт электроники и математики Национального исследовательского университета «Высшая школа экономики»

Кафедра «Компьютерная безопасность»

Курсовая работа по дисциплине «Программирование алгоритмов защиты информации»

Выполнил: студент группы СКБ-171 Лисьев А. Н. Проверил: Нестеренко А. Ю.

Задание

Реализовать алгоритм вычисления кратной точки для заданной кривой (Монтгомери), используя набор функций из библиотеки GMP.

Математическое описание

Кривая Монтгомери — это эллиптическая кривая над полем F_q , заданная в аффинных координатах уравнением:

$$Bv^2 = x^3 + Ax^2 + x$$
. где $B \neq 0$. $A^2 \neq 4$

Нейтральный элемент — это такой элемент 0, который обладает свойствами:

1.
$$0 + 0 = 0$$

2.
$$0 + (x, y) = (x, y) + 0 = (x, y)$$

Операции сложения и удвоения зависят от эллиптической кривой, над которой происходит вычисление кратной точки.

В аффинных координатах формулы сложения двух точек и удвоение требуют выполнения неэффективной операции деления. По этой причине осуществляется переход в проективные координаты:

$$x = \frac{X}{Z}$$
, $y = \frac{Y}{Z}$, где $Z = \overline{1, p-1}$

T. е. точка (x, y) переходит в (X, Y, Z).

Кривая в форме Монтгомери в проективных координатах выглядит следующим образом:

$$BY^2Z \equiv X^3 + AX^2Z + XZ \pmod{p}$$

Коэффициенты кривых в формах Монтгомери и скрученного Эдвардса выражаются через друг друга по формулам:

$$A = 2\frac{e+d}{e-d}, B = \frac{4}{e-d}, x = \frac{1+v}{1-v}$$

В проективных координатах требуемые формулы имеют вид:

1. Сложение:

a.
$$X_{2n+1} = ((X_n - Z_n)(X_{n+1} + Z_{n+1}) + (X_n + Z_n)(X_{n+1} - Z_{n+1}))^2 Z_1$$

b. $Z_{2n+1} = ((X_n - Z_n)(X_{n+1} + Z_{n+1}) - (X_n + Z_n)(X_{n+1} - Z_{n+1}))^2 X_1$

2. Улвоение:

a.
$$X_{2n} = (X_n - Z_n)^2 (X_n + Z_n)^2$$

b. $Z_{2n} = ((X_n + Z_n)^2 - (X_n - Z_n)^2)((X_n + Z_n)^2 + \frac{A-2}{4}((X_n + Z_n)^2 - (X_n - Z_n)^2))$

Алгоритм сложения точек хАDD:

Algorithm 1: xADD: differential addition on \mathbb{P}^1

```
Input: (X_P, Z_P), (X_Q, Z_Q), and (X_{\ominus}, Z_{\ominus}) in \mathbb{F}_q^2 such that (X_P : Z_P) = \mathbf{x}(P),
                   (X_Q : Z_Q) = \mathbf{x}(Q), and (X_{\ominus} : Z_{\ominus}) = \mathbf{x}(P \ominus Q) for P and Q in \mathcal{E}(\mathbb{F}_q)
     Output: (X_{\oplus}, Z_{\oplus}) in \mathbb{F}_q^2 such that (X_{\oplus} : Z_{\oplus}) = \mathbf{x}(P \oplus Q) if P \ominus Q \notin \{O, T\},
                      otherwise X_{\oplus} = Z_{\oplus} = 0
     Cost: 4M + 2S + 3a + 3s, or 3M + 2S + 3a + 3s if Z_{\ominus} is normalized to 1
1 V<sub>0</sub> ← X<sub>P</sub> + Z<sub>P</sub> // 1a
                                                                                       8 V<sub>3</sub> ← V<sub>3</sub><sup>2</sup> // 1S
2 V<sub>1</sub> ← X<sub>Q</sub> − Z<sub>Q</sub> // 1s
                                                                                       9 V<sub>4</sub> ← V<sub>1</sub> − V<sub>2</sub> // 1s
3 V_1 \leftarrow V_1 \cdot V_0 // 1M
                                                                                     10 V<sub>4</sub> ← V<sub>4</sub><sup>2</sup> // 1S
4 V<sub>0</sub> ← X<sub>P</sub> − Z<sub>P</sub> // 1s
                                                                                     11 X_{\oplus} \leftarrow Z_{\ominus} \cdot V_3 // 1M / 0M \text{ if } Z_{\ominus} = 1
                                                                                     12 Z_{\oplus} \leftarrow X_{\ominus} \cdot V_4 // 1M
5 V<sub>2</sub> ← X<sub>Q</sub> + Z<sub>Q</sub> // 1a
6 V<sub>2</sub> ← V<sub>2</sub> · V<sub>0</sub> // 1M
                                                                                     13 return (X_{\oplus} : Z_{\oplus})
7 V_3 \leftarrow V_1 + V_2 // 1a
```

Алгоритм удвоения точки **xDBL**:

Algorithm 2: xDBL: pseudo-doubling on \mathbb{P}^1 from $\mathcal{E}_{(A,B)}$

```
Input: (X_P, Z_P) in \mathbb{F}_q^2 such that (X_P : Z_P) = \mathbf{x}(P) for P in \mathcal{E}(\mathbb{F}_q)

Output: (X_{[2]P}, Z_{[2]P}) in \mathbb{F}_q^2 such that (X_{[2]P} : Z_{[2]P}) = \mathbf{x}([2]P) if P \notin \{O, T\}, otherwise Z_{[2]P} = 0

Cost: 2M + 2S + 1c + 3a + 1s

1 V_1 \leftarrow X_P + Z_P // 1a

6 V_1 \leftarrow V_1 - V_2 // 1s

2 V_1 \leftarrow V_1^2 // 1S

7 V_3 \leftarrow ((A+2)/4) \cdot V_1 // 1c

3 V_2 \leftarrow X_P - Z_P // 1s

8 V_3 \leftarrow V_3 + V_2 // 1a

4 V_2 \leftarrow V_2^2 // 1S

9 Z_{[2]P} \leftarrow V_1 \cdot V_3 // 1M

5 X_{[2]P} \leftarrow V_1 \cdot V_2 // 1M

10 return (X_{[2]P} : Z_{[2]P})
```

Алгоритм:

- 1. Получаем на вход k и P
- 2. k переводится в двоичное представление $k = k_1 ... k_i ... k_n$
- 3. R = P, Q = 0 (0 = (0, 1, 0))
- 4. Для каждого k_i , $i = \overline{1, n}$:
 - а. Если $k_i == 0$

i.
$$R = R + Q$$
; $Q = [2]Q$

i.
$$Q = Q + R$$
; $R = [2]R$

В конце алгоритма можно перевести точку обратно в аффинные координаты, но, поскольку Z в знаменателе, нужно рассмотреть два случая:

$$P = (X, Z) o \begin{cases} (x, z), & \text{если } P = (x, 1) \\ (1, 0), & \text{если } P = 0 = (0, 1, 0) \end{cases}$$

Тесты

p — характеристика простого поля, над которым определяется эллиптическая кривая;

q — порядок подгруппы простого порядка группы точек эллиптической кривой.

Перед вычислением кратной точки можно убедиться, что указанная точка Р лежит на заданной кривой, с помощью символа Якоби. Для этого необходимо вычислить $n = y^2 = (x^3 + Ax^2 + x)/B$ и посчитать значение символа Якоби для n и p. Если он равен 1, точка принадлежит эллиптической кривой.

Для тестирования алгоритма можно использовать следующие свойства:

- 1. $[q \pm 1]P = P$;
- 2. [q]P = e единичный элемент.

Библиотека GMP

Библиотека позволяет проводить вычисления над большими числами. Целые числа в GMP представлены типом mpz_t .

Для инициализации и определения переменных типа mpz_t будут использоваться следующие функции:

- 1. $void\ mpz_inits(mpz_t\ a)\ -\$ инициализация одной переменной a нулем;
- 2. $void\ mpz_inits(mpz_t\ a, mpz_t\ b, ..., 0)$ инициализация нескольких переменных a, b, ... нулем;
- 3. $void\ mpz_set(mpz_t\ a, mpz_t\ b)$ установить значение a равным b
- 4. $void\ mpz_set_str(mpz_t\ a, const\ char\ *\ c, int\ i)$ установить значение a равным c в системе счисления c основанием i;
- 5. $void\ mpz_init_set_str(mpz_t\ a, const\ char\ *\ c, int\ i)$ проинициализировать переменную a, а затем установить ее значение равным c в системе счисления c основанием i.

Для освобождения ресурсов будут использоваться следующие функции:

- 1. $void\ clear(mpz_t\ a)$ очистить память, в которой хранится a
- 2. $void\ clear(mpz_t\ a, mpz_t\ b, ..., 0)$ очистить память, в которой хранится a, b, ...

Вычисление необходимых математических операций будет осуществляться с помощью функций:

- 1. $void mpz_add(mpz_t r, mpz_t a, mpz_t b)$ сложить a и b, а результат записать в r;
- 2. $void\ mpz_sub(mpz_t\ r, mpz_t\ a, mpz_t\ b)$ вычесть b из a, а результат записать в r;
- 3. $void\ mpz_mul(mpz_t\ r, mpz_t\ a, mpz_t\ b)$ умножить a на b, а результат записать в r;
- 4. $void\ mpz_mod(mpz_t\ r, mpz_t\ a, mpz_t\ p)$ привести a по модулю p, а результат записать в r;
- 5. $void\ mpz_invert(mpz_t\ r, mpz_t\ a, mpz_t\ p)$ вычислить a^{-1} по модулю p, а результат записать в r;
- 6. $void\ mpz_invert(mpz_t\ r, mpz_t\ a, mpz_t\ pow, mpz_t\ p)$ вычислить a^{pow} по модулю p, а результат записать в r;
- 7. $int mpz_jacobi(mpz_t a, mpz_t p)$ вычислить (a/p)

В реализации алгоритма также используются некоторые вспомогательные функции:

- 1. $int\ gmp_printf\ (const\ char\ *,...)$ эквивалентно функции printf
- 2. void gmp_randinit_default (gmp_randstate_t) используется для инициализации рандомного состояния gmp_randstate_t state
- 3. $void\ mpz_urandomm\ (mpz_t\ r, gmp_randstate_t\ state, mpz_t\ max)$ получение рандомного числа в диапазоне от $0\$ до 2^{max-1} с помощью state и запись результата в r
- 4. void gmp_randclear (gmp_randstate_t state) освобождение памяти, выделенной под state
- 5. $int mpz_sgn (const mpz_t a)$ сравнение с нулем
- 6. int mpz_tstbit (const mpz_t a, mp_bitcnt_t bit_index) проверяет значение бита index в ор
- 7. size_t mpz_sizeinbase (mpz_srcptr a, int base) проверяет длину представления числа а в системе счисления с основанием base

Список литературы:

- 1. **Bernstein Daniel и Lange Tanja** Montgomery curves and the Montgomery ladder [В Интернете]. Technische Universiteit Eindhoven, The Netherlands; University of Illinois at Chicago, USA. https://eprint.iacr.org/2017/293.pdf.
- 2. **ГОСТ РЕКОМЕНДАЦИИ ПО СТАНДАРТИЗАЦИИ** Параметры эллиптических кривых для криптографических алгоритмов и протоколов.
- 3. **Ю. Нестеренко А.** Курс лекций «Методы программной реализации СКЗИ»