Exercise 1: High-dimensional Gaussian Distributions

Consider a random vector $X = (X_1, \dots, X_p)^{\top} \sim \mathcal{N}(0, \mathbf{I})$, i.e., a multivariate normally distributed vector with mean vector zero and covariance matrix being the identity matrix of dimension $p \times p$. In this case, the coordinates X_1, \dots, X_p are i.i.d. each with distribution $\mathcal{N}(0, 1)$.

- (a) Show that $\mathbb{E}(\|X\|_2^2) = p$ and $\text{Var}(\|X\|_2^2) = 2p$, where $\|\cdot\|_2$ is the Euclidean norm. Hint: $\mathbb{E}_{Y \sim \mathcal{N}(0,1)}(Y^4) = 3$.
- (b) Use (a) to infer that $|\mathbb{E}(\|X\|_2 \sqrt{p})| \leq \frac{1}{\sqrt{p}}$ by using the following steps:

(i) Write
$$||X||_2 - \sqrt{p} = \underbrace{\frac{||X||_2^2 - p}{2\sqrt{p}}}_{=(1)} - \underbrace{\frac{(||X||_2^2 - p)^2}{2\sqrt{p}(||X||_2 + \sqrt{p})^2}}_{=(2)}.$$

- (ii) Compute $\mathbb{E}[(1)]$.
- (iii) Note that $0 \le \mathbb{E}[(2)] \le \frac{\mathsf{Var}(\|X\|_2^2)}{2p^{3/2}}$ holds due to $\|X\|_2 \ge 0$.
- (iv) Put (i)-(iii) together.
- (c) Use (b) to infer that $Var(||X||_2) \le 2$ by using the following steps:
 - (i) Write $Var(||X||_2) = Var(||X||_2 \sqrt{p})$.
 - (ii) For any random variable Y it holds that $Var(Y) \leq \mathbb{E}(Y^2)$.
 - (iii) If you encounter the term $\mathbb{E}[\|X\|_2]$ write it as $\mathbb{E}[\underbrace{\|X\|_2 \sqrt{p}}_{=(*)}] + \sqrt{p}]$ and use (b) for (*).
- (d) Now let $X' = (X'_1, \dots, X'_p)^{\top} \sim \mathcal{N}(0, \mathbf{I})$ be another multivariate normally distributed vector with mean vector zero and covariance matrix being the identity matrix of dimension $p \times p$. Further, assume that X and X' are independent, so that $Z := \frac{X X'}{\sqrt{2}} \sim \mathcal{N}(0, \mathbf{I})$. Conclude from the previous that

$$\left| \mathbb{E}(\|X - X'\|_2 - \sqrt{2p}) \right| \le \sqrt{\frac{2}{p}} \text{ and } Var(\|X - X'\|_2) \le 4.$$

(e) From the cosine rule we can infer that for any $x, x' \in \mathbb{R}^p$ it holds that

$$\langle x, x' \rangle = \frac{1}{2} (\|x\|_2^2 + \|x'\|_2^2 - \|x - x'\|_2^2).$$

Use this to show that $\mathbb{E}\langle X, X' \rangle = 0$. Moreover, derive that $\mathsf{Var}(\langle X, X' \rangle) = p$.

- (f) For different dimensions p, e.g. $p \in \{1, 2, 4, 8, ..., 1024\}$ create two sets consisting of 100 i.i.d. random observations from $\mathcal{N}(0, \mathbf{I})$, respectively and
 - (i) compute the average Euclidean length of (one of) the sampled sets and compare it to \sqrt{p} ;
 - (ii) compute the average Euclidean distances between the sampled sets and compare it to $\sqrt{2p}$;
 - (iii) compute the average inner products between the sampled sets;
 - (iv) compute in (i)–(iii) also the empirical variances of the respective terms.

Visualize your results in an appropriate manner.