การทดลองที่ 1 การใช้งาน อินพุต-เอาต์พุต พอร์ทโดย LED และ Switch

<u>วัตถุประสงค์</u>

- 1. เพื่อให้นิสิตสามารถเขียนโปรแกรมภาษา C อย่างง่ายในการควบคุมไมโครคอนโทรลเลอร์ได้
- 2. เพื่อให้นิสิตเข้าใจการทำงานในลักษณะเอาต์พุตจากพอร์ทของไมโครคอนโทรลเลอร์ได้ โดยผ่าน LED และ 7 segments
- 3. เพื่อให้นิสิตเข้าใจการทำงานในลักษณะอินพุตจากพอร์ทของไมโครคอนโทรลเลอร์ได้ โดยผ่าน Switch

<u>อุปกรณ์ในการทดลอง</u>

- 1. บอร์ดไมโครคอนโทรลเลอร์ MCS-51
- 2. เครื่องคอมพิวเตอร์ PC พร้อมโปรแกรมสำหรับการเขียนและคอมไพล์ภาษา C
- โปรแกรม Keil51 v.xx
- 3. สายต่อพอร์ตอนุกรม

วิธีการทดลอง

- 1. ใช้ IDE สำหรับพัฒนาชุดคำสั่งของ MCS-51 ด้วยภาษา C โดยใช้ Keil51เพื่อเขียนโปรแกรม Lab01_x.c
- 2. สร้างโปรเจ็คใหม่โดยเลือก New project ตั้งชื่อเป็น Lab01 แล้วกด ok

3. เดือก CPU : Philips P89C51RD2xx

4. จากนั้นคลิ้กที่ปุ่มวงกลมสีแดง เพื่อสร้างหน้าต่างสำหรับเขียนโปรแกรม(หน้าต่าง Text1) สร้างไฟล์ใหม่ เขียนโปรแกรมและ save โดยใช้ชื่อ Lab01_x.c (x แทนหมายเลขการทดลอง)

Lab 1

5. คลิ้กขวาที่ Source Group 1 แล้วเลือก Add file to group 'Source Group 1' แล้วเลือก File Lab01_x.c

- 6. เขียนโปรแกรมให้เสร็จแล้วคลิ้กที่ วงกลมที่ 1 เพื่อทำการ compile ถ้าหากว่าไม่พบ Error โดยที่ถ้าเกิด error ขึ้น โปรแกรมจะแสดงว่า error กี่ที่ (ดู windows output ด้านล่างของโปรแกรม) คลิ้กที่ วงกลมที่ 2 เพื่อให้ keil ตรวจสอบ และทำการ debug พร้อมทั้งตรวจสอบขนาดของโปรแกรมที่เราสร้างขึ้นและพร้อมสำหรับการทดสอบการทำงานโปรแกรม
- 7. Build โปรแกรมที่เขียน และให้เลือก option → create hex file โดยเลือกที่ check box Hex file ที่ ได้จะมีชื่อเหมือกับ ชื่อโปรเจ็ค คือ Lab01.hex

18. ทำการทดลองการโหลดโปรแกรมลงบนบอร์ด MCS-51 โดยใช้บอร์ดไมโครคอนโทรลเลอร์ซึ่งมีลักษณะวงจรดังนี้

19. ต่อสายอนุกรมจากพอร์ตอนุกรมของเครื่องคอมพิวเตอร์ (com1) ไปยังพอร์ตอนุกรมของบอร์ด Microcontroller (RS232) โดย**ใช้สายและ connector ที่แจกให้เท่านั้น** ทำการโหลดผ่านโปรแกรม Flash magic ดังต่อไปนี้

a. เปิดโปรแกรม Flash magic โดยทำการตั้งค่าต่างๆ ดังนี้ เลือกที่ Options----> Advanced Options

b. คลิ้กเลือก Use DTR to control RST ออก

c. ที่หมายเลข 1 เลือกรุ่นของ MCS-51 และ com port ให้ตรงกับที่เราใช้ ตั้งค่าอื่นๆ ตามหมายเลข 2 และ 4 ตามรูปพร้อมทั้ง Browse ไฟล์ที่หมายเลข 3 เลือก Hex file จากนั้นคลิ้กเลือก Start ที่หมายเลข 5แล้ว โปรแกรมจะให้ Reset MCS-51 เพื่อโหลด Hex file ลงอุปกรณ์

d. กดปุ่ม reset ที่บอร์ดไมโครคอนโทรลเลอร์

e. เอาสาย serial ออกแล้ว การต่อสาย จากบอร์ด MCS-51 กับ connector 24B port ของบอร์ด LED ดัง ตาราง และ ต่อ ground ของทั้งสองบอร์ดเข้าด้วยกัน (มองหาดูดีๆก็เจอ)

Port	ขา บอร์ด LED
x.0	18
x.1	17
x.2	16
x.3	15
x.4	19
x.5	20
x.6	21
x.7	22

การนับขา IC และConnector

f. ต่อสวิตช์สองอันเข้ากับ p3.2 และ p3.3 (ขอคำแนะนำจากครูช่าง)

- 20. ให้นิสิตทำการทดลองที่เหลือ โดยเมื่อทำการทดลองใหม่ให้สร้างไฟล์ใหม่ เขียนโปรแกรมและ save เป็นชื่อใหม่ เช่น สร้างไฟล์ใหม่ชื่อ Lab01_2.c (2แทนหมายเลขการทดลองที่ 2)
- 21. จากนั้น Click ที่ Source group แล้ว click ขวาที่ Lab01_1.c ซึ่งอยู่ใน Source group เลือก Remove file ' Lab01_1.c' เพื่อเอา file Lab01_1.c ออกจาก project
- 22. Click ขวาที่ Source group เลือก Add file to group แล้วเลือก File Lab01_2.c
- 23. ทำเช่นนี้จนครบทุกการทดลอง
- 24 ทำแบบฝึกหัดท้ายการทดลองแล้วส่งผลการทดลองกับครูช่าง

<u>การทดลองที่ 1.1</u>

/* Filename Lab01_1.C Compiler Keil uvision 3

Description Test Output for Port1 by LED */

Clock 11.0592 Mhz #include<reg51.h>

```
#include <intrins.h>
                                                              P1 = 0x02;
/****** BASIC FUNCTION *******/
                                                              dmsec(500);
void dmsec (unsigned int count) // mSec Delay
                                                              P1 = 0x04;
{ unsigned int i; // Keil CA51 (x2)
                                                              dmsec(500);
  while (count)
                                                              P1 = 0x08;
{
                                                              dmsec(500);
    i = 230; while (i>0) i--;
                                                              P1 = 0x10;
    count--; }
                                                              dmsec(500);
}
                                                              P1 = 0x20;
/****** MAIN PROGRAM ******/
                                                              dmsec(500);
void main()
                                                              P1 = 0x40;
                                                              dmsec(500);
P1 = 0xff;
                                                              P1 = 0x80;
while(1)
                                                              dmsec(500);
                                                              }// end of while(1)
                                                      }// end of main()
        P1 = 0x01;
        dmsec(500);
```

การทดลองที่ 1.2

ปฏิบัติการ วิชา การเชื่อมต่อไมโครคอมพิวเตอร์และไมโครคอนโทรลเลอร์ รายวิชา 305381

ภาควิชาไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร

```
char myloop;
/****** BASIC FUNCTION *******/
                                                                   for(myloop=0;myloop<7;myloop++)</pre>
void dmsec (unsigned int count) // mSec Delay
                                                                           {
                                                                           P1 = portLED;
{
unsigned int i; // Keil CA51 (x2)
                                                                           portLED = _crol_(portLED,1);
  while (count)
                                                                           dmsec(500);
        {
        i = 230; while (i > 0) i--;
                                                                   for(myloop=0;myloop<7;myloop++)</pre>
        count--;
                                                                           {
        }
                                                                           P1 = portLED;
                                                                           portLED = _cror_(portLED,1);
/****** MAIN PROGRAM *******/
                                                                           dmsec(500);
void main()
                                                                   }/// end of while(1)
{
                                                          }// end of main()
P1 = 0xff;
portLED = 0x01;
while(1)
```

การทดลองที่ 1.3

```
char portLED;
                                                                                       {
                                                                                       P1 = portLED;
      char myloop;
      sbit sw0 = P3^2;
                                                                                       portLED = _crol_(portLED,1);
      sbit sw1 = P3^3;
                                                                                       dmsec(500);
      /****** BASIC FUNCTION *******/
      void dmsec (unsigned int count) // mSec Delay
      { unsigned int i; // Keil CA51 (x2)
                                                                               if(sw1 == 0)
          while (count)
         i = 230; while (i>0) i--; count--;
                                                                                       portLED = 0x10;
      }
                                                                               for(myloop=0;myloop<8;myloop++)</pre>
/****** MAIN PROGRAM ******/
                                                                                       {
      void main()
                                                                                       P1 = portLED;
                                                                                       portLED = _cror_(portLED,1);
      P1 = 0xff;
                                                                                       dmsec(500);
      while(1)
                                                                                       }
              {
              if(sw0 == 0)
                      {
                      portLED = 0x01;
                      for(myloop=0;myloop<8;myloop++)</pre>
```

Reference

http://www.keil.com/support/man/docs/c166/c166_libref.htm

<u>แบบฝึกหัด</u>

1. ต่อ LED กับ port 1 ต่อสวิตซ์ 0 ที่ p3.5 และสวิตซ์ 1 ที่ p3.6 แล้วเขียนโปรแกรมโดย

LED ติดแสดงเลขฐานสองเท่ากับจำนวนครั้งที่กดสวิตซ์ 0

เมื่อกดสวิตซ์ 1 LED จะดับทั้งหมด และเมื่อกด อีกครั้ง LED จะติดเช่นเดิม