Gate-Level Minimization Karnaugh map or K-map

Gate-Level Minimization

- Design task of finding an optimal gate-level implementation of the Boolean functions describing a digital circuit
- The complexity of implementing digital logic gates is directly related to the complexity of the algebraic expression
- Simple straightforward procedure for minimizing Boolean functions is
 - Karnaugh map or K-map

Karnaugh map

- Diagram of squares
- Each square represents one minterm of the function that is to be minimized

Two-variable K-map

- Two variables
- Four minterms
- The K-map consists of four squares, one for each minterm

m_0	m_1
m_2	m_3

ع	G	
00	01	
10	11	

0	0	
0	1	
1	0	
1	1	

Two-variable K-map

• Minimize the function $m_1 + m_2 + m_3$

•
$$m_1 + m_2 + m_3 = x'y + xy' + xy = x + y$$

m_0	m_1
m_2	m_3

x'y'	x'y
xy'	xy

B

Three-variable K-map

- Three variable K-map
- There are eight minterms
- ∴ Eight squares
- Characteristic: Only one bit changes

m_0	m_1	m ₃	m_2
m_4	<i>m</i> ₅	m ₇	m_6

Three-variable K-map

- Simplify the Boolean function $F(x, y, z) = \Sigma(2, 3, 4, 5)$
- xy' + x'y

Δ