

CLAIMS

1. A compound of the formula:

wherein Ar represents an aromatic ring assembly group
 5 which may be substituted or a fused aromatic group
 which may be substituted;
 X represents (i) a bond, (ii) -S-, -SO- or -SO₂-, (iii)
 a C₁₋₆ alkylene, C₂₋₆ alkenylene or C₂₋₆ alkynylene
 group, each of which may be substituted by 1 to 3
 10 substituents selected from the group consisting of oxo
 and C₁₋₆ alkyl, (iv) -CO-O- or (v) a group of the
 formula: -(CH₂)^p-X¹-, -(CH₂)^p-X¹-(CH₂)^q-,
 -(CH₂)^r-CO-X¹-, -SO₂-NR⁸- or -(CH₂)^r-SO₂-NR⁸-
 wherein X¹ represents O or NR⁸,
 15 R⁸ represents a hydrogen atom, a hydrocarbon group
 which may be substituted or an acyl, p represents an
 integer of 0 to 5, q represents an integer of 1 to 5,
 p+q is an integer of 1 to 5, and r represents an
 integer of 1 to 4;
 20 Y represents a divalent C₁₋₆ aliphatic hydrocarbon
 group which may contain an oxygen atom or a sulfur atom
 and may be substituted;
 R¹ and R² each represents a hydrogen atom or a lower
 alkyl which may be substituted, or
 25 R¹ and R² form, taken together with the adjacent
 nitrogen atom, a nitrogen-containing heterocyclic ring
 which may be substituted;
 Ring A represents a benzene ring which may be further
 substituted apart from the group of the formula: -X-Ar
 30 wherein each symbol is as defined above; and
 Ring B represents a 4- to 8-membered ring which may be

further substituted apart from the group of the formula: -Y-NR¹R² wherein each symbol is as defined above;

provided that, when the fused ring to be formed by Ring A and Ring B is an indole ring, the group of the formula: -X-Ar wherein each symbol is as defined above is substituted on 4-, 6- or 7-position of the indole ring,

or a salt thereof.

10 2. A compound of claim 1, wherein

Ar is (i) an aromatic ring assembly group which is composed of two or three rings selected from the class consisting of a C₆₋₁₄ aromatic hydrocarbon, a C₆₋₁₄ quinone and a 5- to 14-membered aromatic heterocyclic ring containing 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur and oxygen atoms in addition to carbon atoms, which rings are directly bonded to each other via a single bond, and which assembly group may be substituted by 1 to 5

15 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano,

optionally halogenated C₁₋₆ alkyl, optionally

halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio,

25 hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered

30 heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-

carboxamido, C₆-10 aryl-carboxamido, C₁-6 alkoxy-
carboxamido, C₁-6 alkylsulfonylamino, C₁-6 alkyl-
carbonyloxy, C₆-10 aryl-carbonyloxy, C₁-6 alkoxy-
carbonyloxy, mono-C₁-6 alkyl-carbamoyloxy, di-C₁-6
5 alkyl-carbamoyloxy, C₆-10 aryl-carbamoyloxy,
nicotinoyloxy and C₆-10 aryloxy, or
(ii) a fused bi- or tri-cyclic C₁₀-14 aryl or 9- to 14-
membered aromatic heterocyclic group containing 1 to 4
hetero atoms selected from the group consisting of
10 nitrogen, oxygen and sulfur atoms in addition to carbon
atoms, which group may be substituted by 1 to 5
substituents selected from the group consisting of
halogen atoms, C₁-3 alkylenedioxy, nitro, cyano,
optionally halogenated C₁-6 alkyl, optionally
15 halogenated C₃-6 cycloalkyl, optionally halogenated C₁-
6 alkoxy, optionally halogenated C₁-6 alkylthio,
hydroxy, amino, mono-C₁-6 alkylamino, di-C₁-6
alkylamino, 5- to 7-membered saturated cyclic amino,
formyl, carboxy, carbamoyl, C₁-6 alkyl-carbonyl, C₁-6
20 alkoxy-carbonyl, C₆-10 aryl-carbonyl, C₆-10 aryloxy-
carbonyl, C₇-16 aralkyloxy-carbonyl, 5- or 6-membered
heterocycle carbonyl, mono-C₁-6 alkyl-carbamoyl, di-C₁-
6 alkyl-carbamoyl, C₆-10 aryl-carbamoyl, 5- or 6-
membered heterocycle carbamoyl, C₁-6 alkylsulfonyl, C₆-
25 10 arylsulfonyl, formylamino, C₁-6 alkyl-carboxamido,
C₆-10 aryl-carboxamido, C₁-6 alkoxy-carboxamido, C₁-6
alkylsulfonylamino, C₁-6 alkyl-carbonyloxy, C₆-10 aryl-
carbonyloxy, C₁-6 alkoxy-carbonyloxy, mono-C₁-6 alkyl-
carbamoyloxy, di-C₁-6 alkyl-carbamoyloxy, C₆-10 aryl-
30 carbamoyloxy, nicotinoyloxy and C₆-10 aryloxy;

R⁸ is (a) a hydrogen atom,
(b) a C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl being optionally condensed with one benzene ring, C₆₋₁₄ aryl or C₇₋₁₉ aralkyl group which may be
5 substituted by 1 to 5 substituents selected from the group consisting of (1) halogen atoms, (2) C₁₋₃ alkylenedioxy, (3) nitro, (4) cyano, (5) optionally halogenated C₁₋₆ alkyl, (6) optionally halogenated C₃₋₆ cycloalkyl, (7) optionally halogenated C₁₋₆ alkoxy, (8)
10 optionally halogenated C₁₋₆ alkylthio, (9) hydroxy, (10) amino, (11) mono-C₁₋₆ alkylamino, (12) di-C₁₋₆ alkylamino, (13) formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-
15 carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl or C₆₋₁₀ arylsulfonyl, (14)
formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-
20 carboxamido, C₁₋₆ alkoxy-carboxamido or C₁₋₆ alkylsulfonylamino, (15) C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy or nicotinoyloxy, (16) 5- to 7-
25 membered saturated cyclic amino, (17) sulfo, (18) a phenyl or 5- or 6-membered aromatic heterocyclic group containing 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in addition to carbon atoms, each of which may be
30 substituted by 1 to 5 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy,

nitro, cyano, optionally halogenated C₁₋₆ alkyl,
optionally halogenated C₃₋₆ cycloalkyl, optionally
halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆
alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋
5 6 alkylamino, 5- to 7-membered saturated cyclic amino,
formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆
alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-
carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered
heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋
10 6 alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-
membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋
10 arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido,
C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆
alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-
15 carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-
carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-
carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, (19) an
aromatic ring assembly group which is composed of two
or three rings selected from the class consisting of a
20 C₆₋₁₄ aromatic hydrocarbon, a C₆₋₁₄ quinone and a 5- to
14-membered aromatic heterocyclic ring containing 1 to
4 hetero atoms selected from the group consisting of
nitrogen, sulfur and oxygen atoms in addition to carbon
atoms, are directly bonded to each other via a single
bond, and which group may be substituted by 1 to 5
25 substituents selected from the group consisting of
halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano,
optionally halogenated C₁₋₆ alkyl, optionally
halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋
30 6 alkoxy, optionally halogenated C₁₋₆ alkylthio,
hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆

alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, and (20) a fused bi- or tri-cyclic C₁₀₋₁₄ aryl or 9- to 14-membered aromatic heterocyclic group containing 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in addition to carbon atoms, which group may be substituted by 1 to 5 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-

membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, or
5 (c) formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl or C₆₋₁₀ arylsulfonyl;

10 Y is a C₁₋₆ alkylene, a C₂₋₆ alkenylene, a C₂₋₆ alkynylene or a group of the formula:
-(CH₂)_m-Y¹-(CH₂)_n- wherein -Y¹- is -O-, -S-, -SO- or
-SO₂-,
m is an integer of 0 to 4,
20 n is an integer of 1 to 5, and
m+n is an integer of 1 to 5;
R¹ and R² each is a hydrogen atom or a C₁₋₆ alkyl which may be substituted by 1 to 5 substituents selected from the group consisting of halogen atoms,
25 C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy.

carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl,
C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆
aralkyloxy-carbonyl, 5- or 6-membered heterocycle
carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-
5 carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered
heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀
arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido, C₆₋
10 aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆
alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-
10 carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-
carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-
carbamoyloxy, nicotinoyloxy, C₆₋₁₀ aryloxy and C₆₋₁₀
aryl or
15 R¹ and R² form, taken together with the adjacent
nitrogen atom, a 3- to 8-membered nitrogen-containing
heterocyclic ring having one nitrogen atom and
optionally having 1 to 3 hetero atoms selected from the
group consisting of nitrogen, oxygen and sulfur atoms
in addition to carbon atoms, which ring may be
20 substituted by 1 to 5 substituents selected from the
group consisting of (1) halogen atoms, (2) C₁₋₃
alkylenedioxy, (3) nitro, (4) cyano, (5) optionally
halogenated C₁₋₆ alkyl, (6) optionally halogenated C₃₋₆
cycloalkyl, (7) optionally halogenated C₁₋₆ alkoxy, (8)
25 optionally halogenated C₁₋₆ alkylthio, (9) hydroxy,
(10) amino, (11) mono-C₁₋₆ alkylamino, (12) di-C₁₋₆
alkylamino, (13) formyl, carboxy, carbamoyl, C₁₋₆
alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-
carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-
30 carbonyl, 5- or 6-membered heterocycle carbonyl, mono-
C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀

aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl,
C₁₋₆ alkylsulfonyl or C₆₋₁₀ arylsulfonyl, (14)
formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-
carboxamido, C₁₋₆ alkoxy-carboxamido or C₁₋₆
5 alkylsulfonylamino, (15) C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀
aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆
alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀
aryl-carbamoyloxy or nicotinoyloxy, (16) 5- to 7-
membered saturated cyclic amino, (17) sulfo, (18) a
10 phenyl or 5- or 6-membered aromatic heterocyclic group
containing 1 to 4 hetero atoms selected from the group
consisting of nitrogen, oxygen and sulfur atoms in
addition to carbon atoms, each of which may be
substituted by 1 to 5 substituents selected from the
15 group consisting of halogen atoms, C₁₋₃ alkylenedioxy,
nitro, cyano, optionally halogenated C₁₋₆ alkyl,
optionally halogenated C₃₋₆ cycloalkyl, optionally
halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆
alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋
20 6 alkylamino, 5- to 7-membered saturated cyclic amino,
formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆
alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-
carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered
heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋
25 6 alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-
membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋
10 arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido,
C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆
alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-
30 carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-
carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀

aryl-carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy,
(19) an aromatic ring assembly group which is composed
of two or three rings selected from the class
consisting of a C₆₋₁₄ aromatic hydrocarbon, a C₆₋₁₄
5 quinone and a 5- to 14-membered aromatic heterocyclic
ring containing 1 to 4 hetero atoms selected from the
group consisting of nitrogen, sulfur and oxygen atoms
in addition to carbon atoms, are directly bonded to
each other via a single bond, and which group may be
10 substituted by 1 to 5 substituents selected from the
group consisting of halogen atoms, C₁₋₃ alkylenedioxy,
nitro, cyano, optionally halogenated C₁₋₆ alkyl,
optionally halogenated C₃₋₆ cycloalkyl, optionally
halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆
15 alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋
6 alkylamino, 5- to 7-membered saturated cyclic amino,
formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆
alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-
carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered
20 heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋
6 alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-
membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋
10 arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido,
C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆
25 alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-
carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-
carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-
carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, (20) a
fused bi- or tri-cyclic C₁₀₋₁₄ aryl or 9- to 14-
30 membered aromatic heterocyclic group containing 1 to 4
hetero atoms selected from the group consisting of

nitrogen, oxygen and sulfur atoms in addition to carbon atoms, which group may be substituted by 1 to 5 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano,
5 optionally halogenated C₁₋₆ alkyl, optionally halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7-membered saturated cyclic amino,
10 formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, (21) an oxo and (22) C₇₋₁₉ aralkyl;

Ring A is a benzene ring which may be further substituted by 1 to 3 substituents selected from the group consisting of halogen atoms, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₁₋₆ alkoxy, hydroxy and amino, apart from the group of the formula: -X-Ar wherein each symbol is as defined above; and

30 Ring B is a 4- to 8-membered ring of the formula:

wherein --- is a single bond or a double bond, and Z is (i) a bond, (ii) a C₁₋₄ alkylene, (iii) a C₂₋₄ alkenylene, (iv) -O-CH₂- , (v) -O-CH₂-CH₂- or (vi) a group of the formula: -NR^{8a}-CH₂- or -NR^{8a}-CH₂-CH₂- wherein R^{8a} is (a) a hydrogen atom, (b) a C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl being optionally condensed with one benzene ring, C₆₋₁₄ aryl or C₇₋₁₉ aralkyl group which may be substituted by 1 to 5 substituents selected from the group consisting of (1) halogen atoms, (2) C₁₋₃ alkylenedioxy, (3) nitro, (4) cyano, (5) optionally halogenated C₁₋₆ alkyl, (6) optionally halogenated C₃₋₆ cycloalkyl, (7) optionally halogenated C₁₋₆ alkoxy, (8) optionally halogenated C₁₋₆ alkylthio, (9) hydroxy, (10) amino, (11) mono-C₁₋₆ alkylamino, (12) di-C₁₋₆ alkylamino, (13) formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl or C₆₋₁₀ arylsulfonyl, (14) formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido or C₁₋₆ alkylsulfonylamino, (15) C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy or nicotinoyloxy, (16) 5- to 7-

membered saturated cyclic amino, (17) sulfo, (18) a phenyl or 5- or 6-membered aromatic heterocyclic group containing 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in
5 addition to carbon atoms, each of which may be substituted by 1 to 5 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₃₋₆ cycloalkyl, optionally
10 halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-
15 carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido,
20 C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, (19) an
25 aromatic ring assembly group which is composed of two or three rings selected from the class consisting of a C₆₋₁₄ aromatic hydrocarbon, a C₆₋₁₄ quinone and a 5- to 14-membered aromatic heterocyclic ring containing 1 to 4 hetero atoms selected from the group consisting of
30 nitrogen, sulfur and oxygen atoms in addition to carbon atoms, are directly bonded to each other via a single bond, and which group may be substituted by 1 to 5

substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋

5 6 alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-
10 carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido,
15 C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, and (20)
20 a fused bi- or tri-cyclic C₁₀₋₁₄ aryl or 9- to 14-membered aromatic heterocyclic group containing 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in addition to carbon atoms, which group may be substituted by 1 to 5
25 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋

30 6 alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7- membered saturated cyclic

amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl,
C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀
aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-
membered heterocycle carbonyl, mono-C₁₋₆ alkyl-
5 carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-
carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆
alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆
alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-
carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-
10 carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-
carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆
alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy,
nicotinoyloxy and C₆₋₁₀ aryloxy, or
(c) formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl,
15 C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀
aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-
membered heterocycle carbonyl, mono-C₁₋₆ alkyl-
carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-
carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆
20 alkylsulfonyl or C₆₋₁₀ arylsulfonyl, which ring may be
further substituted by 1 to 3 substituents selected
from the group consisting of oxo, C₁₋₆ alkyl and
hydroxy, apart from the group of the formula: -Y-NR¹R²
wherein each symbol is as defined above.

25 3. A compound of claim 1, wherein Ar is an aromatic
ring assembly group which may be substituted.

4. A compound of claim 3, wherein the aromatic rings
of the aromatic ring assembly group are two or three
aromatic rings selected from the group consisting of
30 benzene, thiophene, pyridine, pyrimidine, 1,2,4-
oxadiazole, 1,3,4-oxadiazole, naphthalene and

benzofuran.

5. A compound of claim 3, wherein the aromatic ring assembly group is 2-, 3- or 4-biphenylyl.
6. A compound of claim 1, wherein Ar is a 4-
5 biphenylyl which may be substituted by 1 to 3
substituents selected from the group consisting of
halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano,
optionally halogenated C₁₋₆ alkyl, optionally
halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋
10 6 alkoxy, optionally halogenated C₁₋₆ alkylthio,
hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆
alkylamino, 5- to 7-membered saturated cyclic amino,
formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆
alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-
15 carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered
heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋
6 alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-
membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋
10 arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido,
20 C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆
alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-
carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-
carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-
carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy.
- 25 7. A compound of claim 1, wherein X is a divalent C₁₋
6 aliphatic hydrocarbon group which may contain an
oxygen atom.
8. A compound of claim 1, wherein X is a C₁₋₆
alkylene.
- 30 9. A compound of claim 1, wherein X is a group of the
formula: -(CH₂)_p-X¹- wherein each symbol has the same

meaning as in claim 1.

10. A compound of claim 9, wherein p is 1.
11. A compound of claim 10, wherein X¹ is O.
12. A compound of claim 10, wherein X¹ is NR^{8b} wherein
5 R^{8b} is hydrogen or C₁₋₆ alkyl-carbonyl.
13. A compound of claim 1, wherein X¹ is a group of
the formula: -SO₂-NR⁸⁻ wherein each symbol has the same
meaning as in claim 1.
14. A compound of claim 13, wherein R⁸ is hydrogen.
- 10 15. A compound of claim 1, wherein Y is a divalent C₁₋₆ aliphatic hydrocarbon group.
16. A compound of claim 1, wherein Y is C₁₋₆ alkylene.
17. A compound of claim 1, wherein R¹ and R² each is C₁₋₆ alkyl.
- 15 18. A compound of claim 1, wherein Ring A is a benzene ring substituted by the group of the formula: -X-Ar wherein each symbol has the same meaning as in claim 1.
19. A compound of claim 1, wherein Ring B is a 4- to 8-membered ring of the formula:

20

wherein Z is (i) a bond, (ii) a C₁₋₄ alkylene, (iii) a C₂₋₄ alkenylene, (iv) -O-CH₂-, (v) -O-CH₂-CH₂- or (vi) a group of the formula: -NR^{8a}-CH₂- or -NR^{8a}-CH₂-CH₂- wherein R^{8a} is (a) a hydrogen atom,

25 (b) a C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl being optionally condensed with one benzene ring, C₆₋₁₄ aryl or C₇₋₁₉ aralkyl group which may be substituted by 1 to 5 substituents selected from the group consisting of (1) halogen atoms, (2) C₁₋₃

alkylenedioxy, (3) nitro, (4) cyano, (5) optionally halogenated C₁₋₆ alkyl, (6) optionally halogenated C₃₋₆ cycloalkyl, (7) optionally halogenated C₁₋₆ alkoxy, (8) optionally halogenated C₁₋₆ alkylthio, (9) hydroxy,
5 (10) amino, (11) mono-C₁₋₆ alkylamino, (12) di-C₁₋₆ alkylamino, (13) formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-
10 C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl or C₆₋₁₀ arylsulfonyl, (14)
C₁₋₆ alkylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido or C₁₋₆
15 alkylsulfonylamino, (15) C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy or nicotinoyloxy, (16) 5- to 7-membered saturated cyclic amino, (17) sulfo, (18) a
20 phenyl or 5- or 6-membered aromatic heterocyclic group containing 1 to 4 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in addition to carbon atoms, each of which may be substituted by 1 to 5 substituents selected from the
25 group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆

alkoxy-carbonyl, C₆-10 aryl-carbonyl, C₆-10 aryloxy-carbonyl, C₇-16 aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁-6 alkyl-carbamoyl, di-C₁-6 alkyl-carbamoyl, C₆-10 aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁-6 alkylsulfonyl, C₆-10 arylsulfonyl, formylamino, C₁-6 alkyl-carboxamido, C₆-10 aryl-carboxamido, C₁-6 alkoxy-carboxamido, C₁-6 alkylsulfonlamino, C₁-6 alkyl-carbonyloxy, C₆-10 aryl-carbonyloxy, C₁-6 alkoxy-carbonyloxy, mono-C₁-6 alkyl-carbamoyloxy, di-C₁-6 alkyl-carbamoyloxy, C₆-10 aryl-carbamoyloxy, nicotinoyloxy and C₆-10 aryloxy, (19) an aromatic ring assembly group which is composed of two or three rings selected from the class consisting of a C₆-14 aromatic hydrocarbon, a C₆-14 quinone and a 5- to 14-membered aromatic heterocyclic ring containing 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur and oxygen atoms in addition to carbon atoms, are directly bonded to each other via a single bond, and which group may be substituted by 1 to 5 substituents selected from the group consisting of halogen atoms, C₁-3 alkylenedioxy, nitro, cyano, optionally halogenated C₁-6 alkyl, optionally halogenated C₃-6 cycloalkyl, optionally halogenated C₁-6 alkoxy, optionally halogenated C₁-6 alkylthio, hydroxy, amino, mono-C₁-6 alkylamino, di-C₁-6 alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁-6 alkyl-carbonyl, C₁-6 alkoxy-carbonyl, C₆-10 aryl-carbonyl, C₆-10 aryloxy-carbonyl, C₇-16 aralkyloxy-carbonyl, 5- or 6-membered heterocycle carbonyl, mono-C₁-6 alkyl-carbamoyl, di-C₁-6 alkyl-carbamoyl, C₆-10 aryl-carbamoyl, 5- or 6-

membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, and (20) 5 a fused bi- or tri-cyclic C₁₀₋₁₄ aryl or 9- to 14-membered aromatic heterocyclic group containing 1 to 4 10 hetero atoms selected from the group consisting of nitrogen, oxygen and sulfur atoms in addition to carbon atoms, which group may be substituted by 1 to 5 15 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally 20 halogenated C₃₋₆ cycloalkyl, optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ 25 alkylamino, 5- to 7-membered saturated cyclic amino, formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered 30 heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl, C₆₋₁₀ arylsulfonyl, formylamino, C₁₋₆ alkyl-carboxamido, C₆₋₁₀ aryl-carboxamido, C₁₋₆ alkoxy-carboxamido, C₁₋₆ alkylsulfonylamino, C₁₋₆ alkyl-carbonyloxy, C₆₋₁₀ aryl-carbonyloxy, C₁₋₆ alkoxy-carbonyloxy, mono-C₁₋₆ alkyl-carbamoyloxy, di-C₁₋₆ alkyl-carbamoyloxy, C₆₋₁₀ aryl-

carbamoyloxy, nicotinoyloxy and C₆₋₁₀ aryloxy, or
 (c) formyl, carboxy, carbamoyl, C₁₋₆ alkyl-carbonyl,
 C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀
 aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-
 5 membered heterocycle carbonyl, mono-C₁₋₆ alkyl-
 carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-
 carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆
 alkylsulfonyl or C₆₋₁₀ arylsulfonyl,
 which ring may be further substituted by 1 to 3
 10 substituents selected from the group consisting of oxo,
 C₁₋₆ alkyl and hydroxy, apart from the group of the
 formula: -Y-NR¹R² wherein each symbol has the same
 meaning as in claim 1.

20. A compound of claim 19, wherein R^{8a} is hydrogen,
 15 optionally halogenated C₁₋₆ alkyl, C₁₋₆ alkyl-carbonyl,
 C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀
 aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-
 membered heterocycle carbonyl, mono-C₁₋₆ alkyl-
 carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-
 carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆
 alkylsulfonyl or C₆₋₁₀ arylsulfonyl.

21. A compound of claim 1, wherein Ring B is a 6-
 membered carbocyclic or heterocyclic ring substituted
 by a group of the formula: -Y-NR¹R² wherein each symbol
 25 has the same meaning as in claim 1.

22. A compound of claim 1, wherein Ring B is a ring of
 the formula:

wherein Za is C₁₋₃ alkylene or a group of the formula:

-NR^{8C}-CH₂- wherein R^{8C} is hydrogen, optionally halogenated C₁₋₆ alkyl, C₁₋₆ alkyl-carbonyl, C₁₋₆ alkoxy-carbonyl, C₆₋₁₀ aryl-carbonyl, C₆₋₁₀ aryloxy-carbonyl, C₇₋₁₆ aralkyloxy-carbonyl, 5- or 6-membered 5
heterocycle carbonyl, mono-C₁₋₆ alkyl-carbamoyl, di-C₁₋₆ alkyl-carbamoyl, C₆₋₁₀ aryl-carbamoyl, 5- or 6-membered heterocycle carbamoyl, C₁₋₆ alkylsulfonyl or C₆₋₁₀ arylsulfonyl.

23. A compound of claim 22, wherein Za is ethylene.
10 24. A compound of claim 1, wherein the fused ring to be formed by Ring A and Ring B is a ring of the formula:

15

25. A compound of claim 1, wherein Ar is 2-, 3- or 4-biphenylyl which may be substituted by 1 to 3 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl,
20 optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, formyl and C₁₋₆ alkylcarboxamido;

25 X is C₁₋₃ alkylene which may contain an oxygen

atom;

Y is C₁₋₆ alkylene;

R¹ and R² each is C₁₋₆ alkyl;

5 Ring A is a benzene ring substituted by the group of the formula: -X-Ar wherein each symbol has the same meaning as in claim 1; and

Ring B is a 6-membered carbocyclic or heterocyclic ring substituted by the group of the formula: -Y-NR¹R² wherein each symbol has the same meaning as in claim 1.

10 26. A compound of claim 1, which is a compound of the formula:

wherein R⁰ is 1 to 3 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl, optionally halogenated C₁₋₆ alkoxy, optionally halogenated C₁₋₆ alkylthio, hydroxy, amino, mono-C₁₋₆ alkylamino, di-C₁₋₆ alkylamino, formyl and C₁₋₆ alkylcarboxamido; and

15 R^{1a} and R^{2a} each is C₁₋₆ alkyl, or a salt thereof.

20 27. A compound of claim 1, which is a compound of the formula:

wherein Ar^a is (i) 2, 3- or 4-biphenylyl which may be substituted by 1 to 3 substituents selected from the group consisting of halogen atoms, C₁₋₃ alkylenedioxy, nitro, cyano, optionally halogenated C₁₋₆ alkyl,

optionally halogenated C₁₋₆ alkoxy, optionally
 halogenated C₁₋₆ alkylthio, amino, formyl and C₁₋₆
 alkyl-carboxamido, (ii) 4-(2-thienyl)phenyl or 4-(3-
 thienyl)phenyl, (iii) 4-(3-pyridyl)phenyl, (iv) 6-
 phenyl-3-pyridyl which may be substituted by a C₁₋₆
 5 alkoxy, (v) 5-phenyl-1,3,4-oxadiazol-2-yl, (vi) 4-(2-
 naphthyl)phenyl, (vii) 4-(2-benzofuranyl)phenyl, (viii)
 1- or 2-naphthyl, (ix) 2-quinolyl, (x) 2-benzothiazolyl
 or (xi) 2-benzofuranyl;

10 X' is -CH₂-O-, -SO₂-NH- or a group of the formula:

-CH₂-NR^{8'}- wherein R^{8'} is hydrogen or C₁₋₃ alkyl-
 carbonyl;

Y' is C₁₋₆ alkylene;

Z' is -CH₂-CH₂- or a group of the formula:

15 -NR^{8''}-CH₂- wherein R^{8''} is hydrogen, C₁₋₃ alkyl, C₁₋₃
 alkyl-carbonyl or C₁₋₃ alkylsulfonyl; and

R^{1'} and R^{2'} each is C₁₋₆ alkyl which may be
 substituted by 1 to 5 substituents selected from the
 group consisting of di-C₁₋₃ alkylamino, C₁₋₃ alkoxy-
 20 carbonyl and phenyl, or

R^{1'} and R^{2'} form, taken together with the adjacent
 nitrogen atom, a pyrrolidin-1-yl, piperidino or
 piperazin-1-yl which may be substituted by 1 to 3
 substituents selected from the group consisting of
 25 hydroxy, C₁₋₃ alkoxy-carbonyl, piperidino, phenyl and
 benzyl, or a salt thereof.

28. A compound of claim 1 which is 6-(4-
 biphenylyl)methoxy-2-[2-(N,N-
 dimethylamino)ethyl]tetralin,
 30 6-(4-biphenylyl)methoxy-2-(N,N-
 dimethylamino)methyltetralin,
 2-(N,N-dimethylamino)methyl-6-(4'-methoxybiphenyl-4-

yl)methoxytetralin,
 (+)-6-(4-biphenylyl)methoxy-2-[2-(N,N-dimethylamino)ethyl]tetralin,
 (+)-6-(4-biphenylyl)methoxy-2-[2-(N,N-diethylamino)ethyl]tetralin,
 5 (+)-2-[2-(N,N-dimethylamino)ethyl]-6-(4'-methylbiphenyl-4-yl)methoxytetralin,
 (+)-2-[2-(N,N-dimethylamino)ethyl]-6-(4'-methoxybiphenyl-4-yl)methoxytetralin,
 10 (+)-6-(2',4'-dimethoxybiphenyl-4-yl)methoxy-2-[2-(N,N-dimethylamino)ethyl]tetralin,
 (+)-6-[4-(1,3-benzodioxol-5-yl)phenyl]methoxy-2-[2-(N,N-dimethylamino)ethyl]tetralin, or
 (+)-6-(3',4'-dimethoxybiphenyl-4-yl)methoxy-2-[2-(N,N-dimethylamino)ethyl]tetralin, or a salt thereof.

29. A process for producing of a compound of claim 1, which comprises;

i) subjecting a compound of the formula:

20 wherein Xa represents an oxygen atom, a sulfur atom which may be oxidized or a group of the formula: NR⁸ wherein R⁸ represents a hydrogen atom, a hydrocarbon group which may be substituted or an acyl; and the other symbols have the same meanings as in claim 1, or
 25 a salt thereof, to alkylation or acylation and optionally followed by aryl-coupling of the resultant compound;

ii) subjecting a compound of the formula:

30 wherein Ya represents a group to be formed by removing a methylene from Y; and the other symbols have the same meanings as in claim 1, or a salt thereof, to

reduction; or

iii) subjecting a compound of the formula:

wherein L represents a leaving group; and the other
5 symbols have the same meanings as in claim 1, to
amination.

30. An optical isomer of the compound of the formula:

wherein R^{1b} and R^{2b} each represents methyl or ethyl, k
10 represents 1 or 2, and * indicates the position of the
asymmetric carbon, or a salt thereof.

31. A pharmaceutical composition which comprises a
compound of claim 1.

32. A pharmaceutical composition of claim 31 which is
15 an inhibitor for production and/or secretion of
amyloid- β protein.

33. A pharmaceutical composition of claim 31 which is
for preventing and/or treating neurodegenerative
diseases caused by amyloid- β protein.

20 34. A pharmaceutical composition of claim 32, wherein
the neurodegenerative disease caused by amyloid- β
protein is Alzheimer's disease.

35. A method of inhibiting production and/or secretion
of amyloid- β protein in mammal, which comprises
25 administering to said mammal an effective amount of a
compound of claim 1 or a pharmaceutically acceptable
salt thereof with a pharmaceutically acceptable
excipient, carrier or diluent.

36. Use of a compound of claim 1 or a salt thereof for
30 manufacturing a pharmaceutical composition for

inhibiting production and/or secretion of amyloid- β protein.

37. An inhibitor for production and/or secretion of amyloid- β protein, which comprises a compound of the
5 formula:

wherein Ar' represents an aromatic group which may be substituted;

X represents (i) a bond, (ii) -S-, -SO- or -SO₂-, (iii) 10 a C₁₋₆ alkylene, C₂₋₆ alkenylene or C₂₋₆ alkynylene group, each of which may be substituted by 1 to 3 substituents selected from the group consisting of oxo and C₁₋₆ alkyl, (iv) -CO-O- or (v) a group of the formula: -(CH₂)_p-X¹-, -(CH₂)_p-X¹-(CH₂)_q-,

15 -(CH₂)_r-CO-X¹-, -SO₂-NR⁸- or -(CH₂)_r-SO₂-NR⁸- wherein X¹ represents O or NR⁸,

R⁸ represents a hydrogen atom, a hydrocarbon group which may be substituted or an acyl, p represents an integer of 0 to 5, q represents an integer of 1 to 5, 20 p+q is an integer of 1 to 5, and r represents an integer of 1 to 4;

Y represents a divalent C₁₋₆ aliphatic hydrocarbon group which may contain an oxygen atom or a sulfur atom and may be substituted;

25 R¹ and R² each represents a hydrogen atom or a lower alkyl which may be substituted, or

R¹ and R² form, taken together with the adjacent nitrogen atom, a nitrogen-containing heterocyclic ring which may be substituted;

30 Ring A represents a benzene ring which may be further substituted apart from the group of the formula: -X-Ar

wherein each symbol is as defined above; and
 Ring B represents a 4- to 8-membered ring which may be
 further substituted apart from the group of the
 formula: -Y-NR¹R² wherein each symbol is as defined
 above,

or a salt thereof.

38. A method of inhibiting production and/or secretion
 of amyloid- β protein in mammal, which comprises
 administering to said mammal an effective amount of a
 compound of the formula:

wherein Ar' represents an aromatic group which may be substituted;

X represents (i) a bond, (ii) -S-, -SO- or -SO₂-, (iii)

a C₁₋₆ alkylene, C₂₋₆ alkenylene or C₂₋₆ alkynylene group, each of which may be substituted by 1 to 3 substituents selected from the group consisting of oxo and C₁₋₆ alkyl, (iv) -CO-O- or (v) a group of the

formula: -(CH₂)_p-X¹- , -(CH₂)_p-X¹-(CH₂)_q- ,

-(CH₂)_r-CO-X¹- , -SO₂-NR⁸- or -(CH₂)_r-SO₂-NR⁸-

wherein X¹ represents O or NR⁸,

R⁸ represents a hydrogen atom, a hydrocarbon group which may be substituted or an acyl, p represents an integer of 0 to 5, q represents an integer of 1 to 5,

p+q is an integer of 1 to 5, and r represents an integer of 1 to 4;

Y represents a divalent C₁₋₆ aliphatic hydrocarbon group which may contain an oxygen atom or a sulfur atom and may be substituted;

R¹ and R² each represents a hydrogen atom or a lower alkyl which may be substituted, or

R^1 and R^2 form, taken together with the adjacent nitrogen atom, a nitrogen-containing heterocyclic ring which may be substituted;

5 Ring A represents a benzene ring which may be further substituted apart from the group of the formula: $-X-Ar$ wherein each symbol is as defined above; and
 Ring B represents a 4- to 8-membered ring which may be further substituted apart from the group of the formula: $-Y-NR^1R^2$ wherein each symbol is as defined
 10 above, or a pharmaceutically acceptable salt thereof with a pharmaceutically acceptable excipient, carrier or diluent.

39. Use of a compound of the formula:

15 wherein Ar' represents an aromatic group which may be substituted;
 X represents (i) a bond, (ii) $-S-$, $-SO-$ or $-SO_2-$, (iii) a C_{1-6} alkylene, C_{2-6} alkenylene or C_{2-6} alkynylene group, each of which may be substituted by 1 to 3
 20 substituents selected from the group consisting of oxo and C_{1-6} alkyl, (iv) $-CO-O-$ or (v) a group of the formula: $-(CH_2)p-X^1-$, $-(CH_2)p-X^1-(CH_2)q-$,
 $-(CH_2)r-CO-X^1-$, $-SO_2-NR^8-$ or $-(CH_2)r-SO_2-NR^8-$ wherein X^1 represents O or NR^8 ,
 25 R^8 represents a hydrogen atom, a hydrocarbon group which may be substituted or an acyl, p represents an integer of 0 to 5, q represents an integer of 1 to 5, $p+q$ is an integer of 1 to 5, and r represents an integer of 1 to 4;
 30 Y represents a divalent C_{1-6} aliphatic hydrocarbon group which may contain an oxygen atom or a sulfur atom

and may be substituted;

R¹ and R² each represents a hydrogen atom or a lower alkyl which may be substituted, or

R¹ and R² form, taken together with the adjacent nitrogen atom, a nitrogen-containing heterocyclic ring which may be substituted;

5 Ring A represents a benzene ring which may be further substituted apart from the group of the formula: -X-Ar wherein each symbol is as defined above; and

10 Ring B represents a 4- to 8-membered ring which may be further substituted apart from the group of the formula: -Y-NR¹R² wherein each symbol is as defined above, or a salt thereof for manufacturing a pharmaceutical composition for inhibiting production

15 and/or secretion of amyloid- β protein.