RESOLUCIÓN de ECUACIONES NO LINEALES

Seguiremos la referencia [1].

En esta lección vamos a tratar de encontrar numéricamente las soluciones (raíces) de ecuaciones

$$f(x) = 0, (1)$$

donde f es una función dada, real de variable real. A estas soluciones se les llama también ceros de f. Si f es un polinomio lineal o cuadrático la solución es muy sencilla. La fórmula para encontrar las raíces de un polinomio cúbico se debe a Tartaglia y dal Ferro y la correspondiente a la cuártica a Ferrari. Abel probó que no existe fórmula para encontrar las raíces de un polinomio de grado 5.

Método de bisección. Este es el método más sencillo que existe. Supongamos que en (1) f es continua en un intervalo [a,b] y f toma valores de signo contrario en a y b (f(a) > 0 y f(b) < 0 ó f(a) < 0 y f(b) > 0) En estas condiciones el teorema de Bolzano garantiza que f se anula en algún punto del intervalo. Llamemos $I_0 = [a,b]$. Sea c = (a+b)/2 el punto medio del intervalo. Si f(c) = 0 ya hemos terminado. En caso contrario en uno de los dos intervalos [a,c] ó [c,b] f tiene signo contrario en los extremos. Definimos I_1 el intervalo donde f cambia de signo en los extremos. Ahora estamos en la situación del comienzo con la diferencia de que la longitud del intervalo I_1 es la mitad de la longitud del intervalo I_0 . Podemos iterar el procedimiento de forma que, o bien encontramos un 0 de la función f, o bien garantizamos que el 0 está en un intervalo I_n de longitud $(b-a)/2^n$.

Ejemplo. Consideramos la ecuación de Kepler:

$$x - e \sin x = z$$

donde e es la excentricidad y z es un número conocido. Tomemos e=0.5 y z=0.7 y definamos $f(x)=x-e\sin(x)-z$. Observamos que f(0)=-0.7<0 y f(2)=0.8>0 de modo que podemos comenzar con el intervalo $I_0=[0,2]$. El valor en el punto medio es f(1)<0 de modo que tomamos $I_1=[1,2]$. Tras 5 bisecciones llegamos al intervalo [1.125,1.1875]. Tomando como aproximación a la raiz el punto medio de dicho intervalo $x\approx 1.15625$ estamos seguros de que el error en valor absoluto no supera 0.03125.

El método de la bisección:

- funciona siempre
- da cotas superior e inferior al raiz buscada
- es más lento que otros métodos, que por otra parte, son más inseguros.

Método de la secante. Est método se basa en la interpolación lineal. Sean x_0 y x_1 dos aproximaciones a la raiz α que buscamos. Sea $p_1(x)$ la recta que interpola a f en x_0 y x_1 . En lugar de resolver f(x) = 0 vamos a resolver $p_1(x) = 0$. Si llamamos x_2 a la raiz de p_1 (que verifica $p_1(x_2) = 0$) esperamos que sea una mejor aproximación a α (solución de (1)) que x_0 y x_1 . Ahora iteramos el procedimiento partiendo de x_1 y x_2 y llamando x_3 al cero de la recta que interpola a f en x_1 y x_2 . En general, interpolando en x_n y x_{n+1} obtenemos la recta

$$y = f(x_n) + f[x_n, x_{n+1}](x - x_n).$$

Llamamos x_{n+2} al cero de esta recta:

$$x_{n+2} = x_n - \frac{f(x_n)}{f[x_n, x_{n+1}]}.$$

También podemos escribir la recta en la forma

$$y = f(x_{n+1}) + f[x_n, x_{n+1}](x - x_{n+1}),$$

de modo que

$$x_{n+2} = x_{n+1} - \frac{f(x_{n+1})}{f[x_n, x_{n+1}]}.$$

Observemos que la iteración no se puede aplicar si $f[x_n, x_{n+1}] = 0$. Eso ocurre cuando $f(x_n) = f(x_{n+1})$ y la recta que interpola a f es horizontal de modo que no corta a g = 0 salvo que coincida con esta recta. Podemos parar el cálculo de iterantes cuando o bien $|f(x_n)| < TOL$ donde TOL es una tolerancia fijada por el usuario. O bien, $|x_{n+1} - x_n| < TOL$, o por último si se ha sobrepasado un número máximo de iteraciones posibles.

El método de la secante:

no siempre genera aproximaciones convergentes a la raiz buscada

- cuando da aproximaciones que convergen a la raiz es mucho más rápido que el método de la bisección
- se puede probar que converge super-linealmente si se parte de x_0 próximo a la raiz y si la raiz es simple, pero no alcanza convergencia cuadrática.

Iteración de punto fijo. Para resolver (1) con el método de iteración de punto fijo se define

$$g(x) = x + f(x).$$

Observamos entonces que reolver (1) es lo mismo que buscar x tal que

$$x = g(x)$$
.

El método de iteración de punto fijo parte de un iterante inicial x_0 y genera una sucesión de iterantes satisfaciendo

$$x_{n+1} = g(x_n), \quad n \ge 0.$$

Esperamos que la sucesión de iterantes converja a α , punto fijo de g ($g(\alpha) = \alpha$) que a su vez es un cero de f (($f(\alpha) = 0$). A g se le llama función de iteración. Si g es una función continua y $x_n \to \alpha$ entonces

$$\alpha = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} g(x_n) = g(\lim_{n \to \infty} x_n) = g(\alpha).$$

Por tanto, hemos probado que, si g es continua, si existe el límite de la sucesión de iterantes, es un punto fijo de g y por tanto un cero de f. Observemos además que si $x_n = \alpha$ para algún n entonces $x_{n+1} = g(\alpha) = \alpha$ y la sucesión es constante a partir de ese n. Hay distintas formas de escribir la función g de modo que un punto fijo de g sea un cero de f. Interesa que g varíe poco al variar g.

Atracción local. Sea α un punto fijo de g que es un cero de f. Vamos a dar una condición suficiente para que la sucesión de iterantes converja a α .

Theorem 1. Sea g definida y con derivada continua en $(\alpha - r_0, \alpha + r_0)$, $r_0 > 0$ con $g(\alpha) = \alpha$. Si $|g'(\alpha)| < 1$ entonces existe r > 0 con $r < r_0$ tal que para todo $x_0 \in [\alpha - r, \alpha + r]$ se puede construir la sucesión $x_{n+1} = g(x_n)$, $n = 0, 1, \ldots$ con iterantes en el intervalo $[\alpha - r, \alpha + r]$ y convergente hacia α . Además, si los errores $e_n = x_n - \alpha$ son no nulos entonces los cocientes e_{n+1}/e_n convergen a $g'(\alpha)$ cuando n tiende a infinito.

Proof. Como $|g'(\alpha)| < 1$, por la continuidad de g' existe $r < r_0$ con $|g'(x)| \le M$, M < 1, para $x \in [\alpha - r, \alpha + r]$. Sea x_0 un punto en el intervalo $[\alpha - r, \alpha + r]$. Supongamos que hemos calculado x_1, \ldots, x_n y que están todos en el intervalo $[\alpha - r, \alpha + r]$. Entonces podemos hallar $x_{n+1} = g(x_n)$. Como $g(\alpha) = \alpha$ tenemos que

$$x_{n+1} - \alpha = g(x_n) - g(\alpha).$$

Por el teorema del valor medio se tiene que

$$x_{n+1} - \alpha = g'(\xi)(x_n - \alpha), \quad \xi \in (\alpha, x_n), \quad \text{o} \quad \xi \in (x_n, \alpha).$$

Entonces $\xi \in [\alpha - r, \alpha + r]$. Tomando valores absolutos

$$|e_{n+1}| = |x_{n+1} - \alpha| = |g'(\xi)||x_n - \alpha| = |g'(\xi)||e_n| \le M|e_n| < |e_n| \le r,$$

y por tanto, $x_{n+1} \in [\alpha - r, \alpha + r]$. Como esta prueba es válida para todo n acabamos de probar que si $x_0 \in [\alpha - r, \alpha + r]$ entonces todos los iterantes pertenecen a ese mismo intervalo. Es decir, la sucesión de iterantes que se construye está en el intervalo $[\alpha - r, \alpha + r]$. También hemos visto que $|e_{n+1}| \leq M|e_n|$. Iterando esta desigualdad llegamos a

$$|e_n| \leq M^n |e_0|$$
.

Como M < 1 cuando $n \to \infty$ se tiene que $|e_n| \to 0$ y por tanto, $x_n \to \alpha$, es decir, la sucesión converge. Por último, si los errores son no nulos se tiene

$$\frac{e_{n+1}}{e_n} = \frac{x_{n+1} - \alpha}{x_n - \alpha} = \frac{g(x_n) - g(\alpha)}{x_n - \alpha} \to g'(\alpha),$$

dado que $x_n \to \alpha$ cuando $n \to \infty$.

Observaciones sobre el teorema.

- Si $e_n = 0$ entonces $x_n = \alpha$ y todos los iterantes a partir de n son iguales a α .
- El teorema garantiza la posibilidad de construir la sucesión de iterantes.
- El teorema es local. Solo garantiza convergencia de la sucesión partiendo de un iterante inicial x_0 próximo a α . En la práctica no es posible comprobar la hipótesis $x_0 \in [\alpha r, \alpha + r]$.

Caso de convergencia cuadrática. El caso más favorable es $g'(\alpha) = 0$ pues en ese caso $e_{n+1}/e_n \to 0$ cuando $n \to \infty$ o lo que es lo mismo $e_{n+1} = o(e_n)$, cuando $n \to \infty$.

Theorem 2. En las condiciones del teorema anterior, si $g'(\alpha) = 0$ y existe $g''(\alpha)$ entonces existe r > 0 con $r < r_0$ tal que si $x_0 \in [\alpha - r, \alpha + r]$ se puede construir la sucesión de iterantes, $x_{n+1} = g(x_n)$, $n \ge 0$ con elementos en $[\alpha - r, \alpha + r]$ y que converge a α . Además, si los errores $e_n = x_n - \alpha$ son no nulos los cocientes e_{n+1}/e_n^2 tienden a $g''(\alpha)/2$ cuando $n \to \infty$.

Proof. La posibilidad de construir los iterantes y la convergencia de los mismos son consecuencia del teorema anterior dado que $g'(\alpha) = 0$ es un caso particular de $|g'(\alpha)| < 1$. Queda probar cómo es la convergencia. Para ello, usando desarrollo de Taylor, escribimos

$$x_{n+1} - \alpha = g(x_n) - g(\alpha) = g'(\alpha)(x_n - \alpha) + \frac{1}{2}g''(\alpha)(x_n - \alpha)^2 + o((x_n - \alpha)^2).$$

Ahora, como $g'(\alpha) = 0$ se tiene

$$e_{n+1} = \frac{1}{2}g''(\alpha)e_n^2 + o(e_n^2),$$

de donde

$$\frac{e_{n+1}}{e_n^2} \to \frac{1}{2}g''(\alpha).$$

En el teorema anterior probamos que en el caso $g'(\alpha) = 0$ obtenemos convergencia cuadrática en comparación con la lineal del teorema anterior. En el Teorema 1 el error es asintóticamente proporcional al anterior y en el Teorema 2 es asintóticamente proporcional al cuadrado del anterior.

Puntos fijos repulsores.

Theorem 3. Supongamos que g está definida y tiene derivada continua en un conjunto que contenga un intervalo de la forma $(\alpha - r_0, \alpha + r_0)$, $r_0 > 0$, con $g(\alpha) = \alpha$ y $|g'(\alpha)| > 1$. Entonces las únicas sucesiones de la forma $x_{n+1} = g(x_n)$ que convergen a α son las que tienen todos los términos de uno en adelante iguales a α .

Proof. Como g' es continua existe r > 0, $r < r_0$ tal que $|g'(x)| \ge M$, para M > 1 y todo $x \in [\alpha - r, \alpha + r]$. Razonemos por reducción al absurdo y supongamos que tenemos una sucesión de términos distintos de α con $x_n \to \alpha$. Entonces existirá n_0 tal que para todo $n \ge n_0$ $x_n \in [\alpha - r, \alpha + r]$. Entonces

$$|x_{n+1} - \alpha| = |g(x_n) - g(\alpha)| = |g'(\xi)(x_n - \alpha)| \ge M|x_n - \alpha|, \quad \xi \in (x_n, \alpha), \quad \text{o} \quad \xi \in (\alpha, x_n).$$

Iterando el argumento

$$|x_n - \alpha| \ge M|x_{n-1} - \alpha| \le M^2|x_{n-2} - \alpha| \ge \dots \ge M^{n-n_0}|x_{n_0} - \alpha|.$$

Fijado n_0 esto significa que $|x_{n_0} - \alpha|$ es un número real fijo y de la expresión anterior $|x_n - \alpha| \to \infty$ lo cual es absurdo pues suponíamos que la sucesión convergía a α . Por tanto, hemos probado el teorema. Nótese además que para x_n próximo al punto fijo α el siguiente iterante x_{n+1} está más lejos de α que x_n . Por eso se dice que en este caso el punto fijo es un punto fijo repulsor: los iterantes se alejan de él.

El método de Newton. Dado un iterante inicial x_0 , que es una primera aproximación a la raiz α de (1) se construye la recta tangente a la función f en el punto x_0 . Se toma como aproximación a α el cero de esta recta. Es decir, construimos la recta tangente:

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Igualando a 0 y llamando x_1 a la solución encontramos

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Ahora en el siguiente paso se parte de x_1 , se construye la recta tangente en x_1 y se iguala a cero para encontrar x_2 . En general:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n \ge 0.$$

Es posible aplicar la fórmula anterior siempre que x_n esté en el dominio de definición de f, f sea derivable en x_n y $f'(x_n) \neq 0$. En caso contrario $(f'(x_n) = 0)$ la tangente es horizontal.

Al igual que en el método de la secante, paramos si la diferencia entre dos iterantes consecutivos es menor que una tolerancia dada TOL, es decir, $|x_{n+1} - x_n| \le TOL$ o bien si hemos alcanzado el número

máximo de iteraciones, También podemos considerar como criterio de parada que el valor $f(x_{n+1})$ sea ya suficientemente pequeño.

Observamos que la iteración de Newton es una iteración de punto fijo x = g(x) con función de iteración

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Buscamos α con $f(\alpha) = 0$. Si $f(\alpha) = 0$ entonces $\alpha = g(\alpha)$ de modo que α es un punto fijo de g. Vamos a calcular $g'(\alpha)$. Para ello, derivando g obtenemos

$$g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2}.$$

Evaluando la expresión anterior observamos que $g'(\alpha) = 0$ siempre que $f'(\alpha) \neq 0$. Aplicando el Teorema 2 esto implica que el método de Newton tiene convergencia cuadrática.

Theorem 4. Sea f de clase C^2 en un intervalo de la forma $(\alpha - r_0, \alpha + r_0)$, $r_0 > 0$ y supongamos que $f(\alpha) = 0$ y $f'(\alpha) \neq 0$ (α es raiz simple) y que existe $f'''(\alpha)$. Entonces existe r > 0 con $r < r_0$ tal que para todo $x_0 \in [\alpha - r, \alpha + r]$ se puede construir la sucesión de iterantes y converge a α . Además, si los errores son no nulos los cocientes e_{n+1}/e_n^2 tienen límite finito.

Proof. Comprobamos que podemos aplicar el Teorema 2 a

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

La función g está bien definida porque $f'(\alpha) \neq 0$ y por tanto también es no nula en un entorno de α . La función g tiene derivada continua puesto que f tiene dos derivadas continuas. Además existe $g''(\alpha)$ dado que existe $f'''(\alpha)$. Ya hemos comprobado que $g'(\alpha) = 0$ de modo que se aplica el Teorema 2. Del teorema deducimos que

$$\frac{e_{n+1}}{e_n^2} \to \frac{1}{2}g''(\alpha).$$

Como hemos escrito antes, un punto α con $f(\alpha)=0$ y $f'(\alpha)\neq 0$ se dice que es una raiz simple de f. En el caso en el que f es un polinomio eso significa que el factor $(x-\alpha)$ aparece una sola vez, en la factorización del polinomio. El método de Newton proporciona convergencia cuadrática para el caso de raíces simples.

El método de Newton:

- ullet no siempre converge a un cero de f y puede hacerlo a un cero distinto del que buscábamos. La convergencia está garantizada partiendo de aproximaciones suficientemente próximas al cero que buscamos
- cuando el método de Newton converge lo hace más rápidamente que el método de bisección y de la secante
- requiere la derivabilidad de la función f
- ullet requiere evaluar la derivada de la función. Para ello es necesario o bien derivar f o bien usar alguna forma de aproximar la derivada

References

[1] Jesús María Sanz-Serna. Diez Lecciones de Cálculo Numérico, volume 26 of Secretariado de Publicaciones e Intercambio Científico. Universidad de Valladolid. Universidad de Valladolid, 1998.