

RAMRAO ADIK INSTITUTE OF TECHNOLOGY

D. Y. PATIL VIDYANAGAR, SECTOR - 7, NERUL, NAVI MUMBAI - 400 706 WEBSITE: http://www.dypatil.edu/engineering

Course Code	Course Name	Teaching Scheme (Contact Hours)					Credits Assigned				
		Theor	ry Pr	act.	Tut.		Гheory	Tut.	Pr/ Oral.	Total	
ILOT5014	Mechatronics	3		-	-		3	-	-	3	
Course Code	Course Name	Examination Scheme									
		Theory									
		Internal Assessment				End	Exam.		Pr/		
		Test1	Test2	Avg.	Mid Sem Exam	Sem Exam	Duration (in Hrs)	TW	Oral.	Total	
ILOT5014	Mechatronics	20	20	20	20	60	2	-	-	100	

Course Prerequisite

1. None

Course Objectives

The aim of this course is to provide in-depth treatment on methods and techniques in

- 1. To learn the architecture of the mechatronics system design
- 2. To introduce broad spectrum characteristics of the mechanical
- 3. and electrical actuators and their selection for mechatronic systems.
- 4. To familiarize development of process plan and templates for design of mechatronic systems.

Course Outcomes After successful completion of the course student will be able to ...

- 1. Develop the mechatronic system.
- 2. Analyze the concept of system modeling.
- 3. Identify the suitable sensor and actuator for a mechatronic system.
- 4. Design feedback and intelligent controllers.
- 5. Implement mechatronic system validation.
- 6. Integrate the components in mechatronics system.

RAMRAO ADIK INSTITUTE OF TECHNOLOGY

D. Y. PATIL VIDYANAGAR, SECTOR - 7, NERUL, NAVI MUMBAI - 400 706 **WEBSITE: http://www.dypatil.edu/engineering**

Module	Detailed Content	Hours	CO
1	Introduction to mechatronics systems:		
	Definition and evolution levels of mechatronics, integrated		
	design issues in mechatronics, key elements of mechatronics,	06	CO1
	mechatronics design process- modeling and simulation,		COI
	prototyping, deployment /life cycle, advanced approaches in		
	mechatronics.		
2	Modeling and Simulation of physical systems:		
	Simulation and block diagrams, Analogies and impedance		
	diagrams, electrical system-bridge circuit system, transformer,		
	mechanical translational and rotational systems-sliding block		
	with friction, elevator cable system, mass-damper system,	09	CO2
	automobile suspension system, mechanical lever system, geared		
	elevator system, electromechanical coupling- DC motor, fluid		
	systems-three tank liquid system, hydraulic actuator and		
	hydraulic pressure regulator.		
3	Hardware components:		
	Sensors: motion and position measurement, force, torque and		
	tactile sensors, ultrasonic and range sensors, fiber optic sensors,		
	micro sensors.		
	Actuators: Pneumatic and hydraulic-directional and pressure		
	control valves, cylinders, servo proportional control valves,		
	rotary actuators,		CO3
	Electrical actuation: A.C and DC motors, stepper motors,		
	mechanical switches and solid state switches.		
	Mechanical Actuation: types of motion, kinematic chain, cams,		
	gears, ratchets and pawl, belt and chain drives, bearings,		
	mechanical aspects of motor selection, piezoelectric actuators,		
	magnetostrictive actuators, memory metal actuators,		
	Programmable Logic Controller		
4	Intelligent control:		
	Automatic control methods, Artificial Neural Network(ANN) –		
	Modeling, basic model of neuron, characteristics of ANN,	07	CO4
	perceptron, learning algorithms, fuzzy logic – propositional logic,	07	001
	membership function, fuzzy logic and fuzzy rule generation,		
	defuzzification, time dependent and temporal fuzzy logic.		
5	Components based modular design and system validation:		
	Components based modular design view, system validation,	04	CO5
	validation methodology- integrated and design dependence,	04	
	distributed local level, validation schemes, fusion technique		
6	Integration:		-
	Advanced actuators, consumer mechatronic products, hydraulic		
	fingers, surgical equipment, industrial robot, autonomous guided	04	CO6
	vehicle, drilling machine		
	70. 4.1	20	
	Total	39	

DYPATIL UNIVERSITY — RAMRAO ADIK— INSTITUTE OF TECHNOLOGY NAVI MUMBAI

RAMRAO ADIK INSTITUTE OF TECHNOLOGY

D. Y. PATIL VIDYANAGAR, SECTOR - 7, NERUL, NAVI MUMBAI - 400 706 WEBSITE: http://www.dypatil.edu/engineering

Evaluation Scheme:

1. <u>In-Semester Assessment:</u>

- a. Assessment consists of two Internal Assessments (IA1, IA2) out of which; one should be compulsory class test (on minimum 02 Modules) and the other is a class test / assignment on case studies / course project.
- b. Mid Semester Examination (MSE) will be based on 40-50% of the syllabus.

2. End-Semester Examination:

- Question paper will comprise of full syllabus.
- In the question paper, weightage of marks will be proportional to the total number of lecture hours as mentioned in the syllabus.

Text books:

- 1. Devdas Shetty and Richard Kolk, "Mechatronics System Design", Thomson Learning, 2nd reprint, 2010.
- 2. W. Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education Ltd, 6th edition, 2018.
- 3. Nitaigour Mahalik, "Mechatronics- Principles, Concepts and Applications", Tata McGraw Hill, 2004.

Reference Books:

- 1. Stamatios V. Kartalopoulos, "Understanding Neural Networks and fuzzy Logic", PHI,3rd reprint, 2013.
- 2. Zhijun Li, Shuzhi Sam Ge, "Fundamentals in Modeling and Control of Mobile Manipulators", March 30, 2017, by CRC Press.
- 3. Sergey Edward Lyshevski, "Mechatronics and Control of Electromechanical Systems", May 30, 2017, by CRC Press.
- 4. Bodgan Wilamowski, J. David Irwin, "Control and Mechatronics", October 12, 2017, by CRC Press.
- 5. Takashi Yamaguchi, Mitsuo Hirata, Justin Chee Khiang Pang, "High-Speed Precision Motion Control", March 29, 2017, by CRC Press.
- 6. David Allan Bradley, Derek Seward, David Dawson, Stuart Burge, "Mechatronics and the Design of Intelligent Machines and Systems",

November 17, 2000, by CRC Press.

- 7. Clarence W. de Silva, Farbod Khoshnoud, Maoqing Li, Saman K. Halgamuge, "Mechatronics: Fundamentals and Applications", December 12, 2018, by CRC Press.
- 8. Clarence W. de Silva, "Mechatronics: A Foundation Course", June 4, 2010 by CRC Press.