

UNIVERSIDADE ESTADUAL DE MARINGÁ – UEM CENTRO DE TECNOLOGIA – CTC DEPARTAMENTO DE INFORMÁTICA – DIN BACHARELADO EM INFORMÁTICA

DISCIPLINA: LINGUAGENS FORMAIS E AUTÔMATOS PROFESSOR: YANDRE MALDONADO E GOMES DA COSTA

Lista de Exercícios nº 8 - Máquina de Turing

- 1) Construa Máquinas de Turing determinísticas transdutoras com as seguintes características:
 - a) Receba como entrada uma seqüência binária e produza como resultado o valor binário multiplicado por 4;

b) Receba como entrada uma seqüência binária e produza como resultado o valor binário incrementado em uma unidade;

2) Descreva o resultado do processamento da cadeia "111" pela MT construída no item b do exercício número 2.

	início ↓					
(1	1	1	β	β	
		início ↓				
<	1	1	1	β	β	
			início ↓			
<	1	1	1	β	β	
				início ↓		
<	1	1	1	β	β	
			soma ↓			
<	1	1	1	β	β	
		vai um ↓				
<	1	1	0	β	β	
	vai um ↓					
<	1	0	0	β	β	
vai um ↓						
<	0	0	0	β	β	
	estouro ↓					
<	0	0	0	β	β	
		avança ↓				
<	1	0	0	β	β	
			avança ↓			
<	1	0	0	β	β	
				avança ↓		
<	1	0	0	β	β	
			retorno ↓			
<	1	0	0	0	β	
		retorno ↓				
<	1	0	0	0	β	
	retorno ↓					

<	1	0	0	0	β	
retorno ↓						
(1	0	0	0	β	
	saída ↓					
(1	0	0	0	β	

3) Construa Máquinas de Turing determinísticas reconhecedoras para as seguintes linguagens:

a)
$$\{w \in \{a, b\}^* \mid |w|_a = |w|_b\};$$

$$M = (\sum, Q, \delta, S_0, F, V, \beta, \langle), \text{ onde:}$$

$$\Sigma = \{a, b\}$$

$$Q = \{S_0, S_1, S_2, S_3, S_4\}$$

$$S_0 = \text{estado inicial}$$

$$S_0$$
 = estado inicia

$$F = \{S_4\}$$

$$V = \{A, B\}$$

$$\beta$$
 = símbolo branco

 δ = função programa, conforme tabela abaixo:

Tabela de transições:

δ	(a	b	Α	В	β
S_0	-	(S ₁ ,A,D)	(S_3,B,D)	(S ₀ ,A,D)	(S_0,B,D)	(S_4,β,E)
S_1	_	(S_1,a,D)	(S_2,B,E)	(S_1,A,D)	(S_1,B,D)	-
S ₂	(S_0,\langle,D)	(S ₂ ,a,E)	(S ₂ ,b,E)	(S ₂ ,A,E)	(S_2,B,E)	-
S ₃	-	(S ₂ ,A,E)	(S ₃ ,b,D)	(S ₃ ,A,D)	(S ₃ ,B,D)	-
S ₄	-	-	-	-	-	-

Diagrama de transições:

4) Fale sobre a importância da Teoria da Computação para a Ciência da Computação.

Um importante papel da Teoria da Computação na formação de um Cientista da Computação é ajudar a entender o que é computação e todos os elementos

envolvidos neste contexto - entre eles podemos ressaltar programas, máquinas e os limites computacionais.

O estudo de Teoria da Computação justifica-se pela necessidade de se estabelecer que problemas são solucionáveis e que problemas são computáveis. De outra forma podemos dizer que estuda-se os limites da computabilidade, ou seja, quais problemas podem ser resolvidos com um computador. Esta verificação é importante a fim de se evitar por exemplo que sejam despendidos esforços em busca da solução de problemas que não têm solução. A Máquina de Turing, enquanto modelo que define os limites computacionais, é muito importante neste contexto.

Assim sendo, algumas das questões muito importantes que o conhecimento contido nesta disciplina ajuda a responder são:

- Existe programa para solucionar um determinado problema?
- De que forma um programa pode ser especificado?
- Dado um programa qualquer, ele sempre tem parada garantida?
- Dois programas A e B são equivalentes entre si?
- Duas máquinas X e Y são equivalentes entre si?
- Uma determinada solução é a melhor solução para um determinado problema?
- Qual o significado de um determinado programa?
- Como construir um programa correto?

Além disso, a Teoria da Computação favorece o desenvolvimento do raciocínio lógico e formal, e traz também conceitos fundamentais para algumas subáreas da computação, como:

- Representação de linguagens: mecanismos de reconhecimento e geração de linguagens. Importante para o desenvolvimento de compiladores e de forma mais geral para o estudo de Linguagens de Programação;
- Processamento de funções: importante para a resolução de problemas e otimização de programas;
- O conceito de não determinismo (não seqüencial) e sua relação com o conceito de concorrência.