

## planetmath.org

Math for the people, by the people.

## proof of theorem on equivalent valuations

 ${\bf Canonical\ name} \quad {\bf ProofOfTheoremOnEquivalentValuations}$ 

Date of creation 2013-03-22 14:55:40 Last modified on 2013-03-22 14:55:40

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 12

Author rspuzio (6075)

Entry type Proof

Classification msc 13A18

It is easy to see that  $|\cdot|$  and  $|\cdot|^c$  are equivalent valuations for any constant c > 0 — it follows from the fact that  $0 \le x^c < 1$  if and only if  $0 < x \le 1$ .

Assume that the valuations  $|\cdot|_1$  and  $|\cdot|_2$  are equivalent. Let b be an element of K such that  $0 < |b|_1 < 1$ . Because the valuations are assumed to be equivalent, it is also the case that  $0 < |b|_2 < 1$ . Hence, there must exist positive constants  $c_1$  and  $c_2$  such that  $|b|_1^{c_1} = \frac{1}{2}$  and  $|b|_2^{c_2} = \frac{1}{2}$ . We will show that show that  $|x|_1^{c_1} = |x|_2^{c_2}$  for all  $a \in K$  by contradiction.

Let a be any element of k such that  $0 < |a|_1 < 1$ . Assume that  $|a|_1^{c_1} \neq$  $|a|_{2}^{c_{2}}$ . Then either  $|a|_{1}^{c_{1}} < |a|_{2}^{c_{2}}$  or  $|a|_{1}^{c_{1}} > |a|_{2}^{c_{2}}$ . We may assume that  $|a|_{1}^{c_{1}} < |a|_{2}^{c_{2}}$  $|a|_2^{c_2}$  without loss of generality.

Since  $|a|_{2}^{c_{2}}/|a|_{1}^{c_{1}}>1$ , there exists an integer m>0 such that  $(|a|_{2}^{c_{2}}/|a|_{1}^{c_{1}})^{m}>1$ 2. Let n be the least integer such that  $2^n|a|_2^{mc_2} > 1$ . Then we have

$$2^{n}|a|_{1}^{mc_{1}} < 2^{n-1}|a|_{2}^{mc_{2}} < 1 < 2^{n}|a|_{2}^{mc_{2}}.$$

Since  $2 = |b^{-1}|_1^{c_1} = |b^{-1}|_2^{c_2}$ , this implies that

$$\left| \frac{a^m}{b^n} \right|_1^{c_1} < 1 < \left| \frac{a^m}{b^n} \right|_2^{c_2},$$

but then

$$\left| \frac{a^m}{b^n} \right|_1 < 1$$

and

$$\left| \frac{a^m}{b^n} \right|_2 > 1,$$

which is impossible because the two valuations are assumed to be equivalent.

Q.E.D