Class Test 2 (Solution)

2nd September, 2025

- Q1. Given any space X, consider the equivalence relation : $x \sim y$ if and only if x and y are in the same connected component.
 - a) $X/_{\sim}$ is a T_1 space.

Proof: For any $x \in X/_{\sim}$, we have $q^{-1}(x)$ is a connected component of X, which is closed. But the $\{x\}$ is closed in the quotient topology. So, $X/_{\sim}$ is T_1 .

b) $X/_{\sim}$ is a T_2 space.

Counterexample: Consider the space

$$X = \{p = (0,0), \ q = (0,1)\} \cup \bigcup_{n \ge 1} \left\{\frac{1}{n}\right\} \times [0,1] \subset \mathbb{R}^2.$$

The connected components of X are

$${p}, {q}, {q}, {\frac{1}{n}} \times [0, 1], n \ge 1.$$

Now, for any saturated open sets $p \in U, q \in V$, it follows that infinitely many $\left\{\frac{1}{n}\right\} \times [0,1]$ are in the intersection $U \cap V$. Consequently, the equivalence classes $[\{p\}], [\{q\}] \in X/_{\sim}$ cannot be separated by disjoint open sets. Hence, $X/_{\sim}$ is not T_2 .

Alternative counterexample: Consider the space

$$Y = \{a, b, x_1, x_2, \dots\},\$$

with the topology

$$\mathcal{T} \coloneqq \{\emptyset, Y\} \cup \mathcal{P}(\{x_i\}_{i=1}^{\infty})$$

$$\{\{a\} \cup A \mid A \subset \{x_i\}_{i=1}^{\infty} \text{ is cofinite}\}$$

$$\{\{b\} \cup B \mid B \subset \{x_i\}_{i=1}^{\infty} \text{ is cofinite}\}$$

$$\{\{a, b\} \cup C \mid C \subset \{x_i\}_{i=1}^{\infty} \text{ is cofinite}\}$$

Then, (Y,\mathcal{T}) is totally disconnected. Now, for the equivalence classes [a] and [b], observe that for any two open sets $[a] \in U \subset Y/_{\sim}$, $[b] \in V \subset Y/_{\sim}$, we have $q^{-1}(U) \cap q^{-1}(V) \neq \emptyset$ (in fact there are infinitely many elements). Hence, $U \cap V \neq \emptyset$. So Y/\sim is not T_2 .

c) If $X/_{\sim}$ is a discrete space, then X has finitely many connected components.

Counterexample: Consider X to be any infinite discrete space. Then, X is totally disconnected, and thus, have infinitely many components. Clearly, $X/_{\sim} \cong X$ is again a discrete space.

d) If $X/_{\sim}$ is an indiscrete space, then X is connected.

Proof: Since $X/_{\sim}$ is T_1 , the only possibility is that $X/_{\sim}$ is a singleton. But then X is connected.

e) If $X/_{\sim}$ is a connected space, then X is connected.

Proof: Suppose $X/_{\sim}$ is connected but X is disconnected. We then have a surjective continuous map $f:X\to\{0,1\}$. Now, for any connected component C, we must have $C\subset f^{-1}(0)$ or $C\subset f^{-1}(1)$. Then, we have a well-defined induced map $\tilde{f}:X\to\{0,1\}$, satisfying $\tilde{f}\circ q=f$, which is continuous by the property of the quotient topology. Since f is surjective, so is \tilde{f} . But this contradicts that $X/_{\sim}$ is connected. Hence, X must be connected.

f) If X is totally disconnected, then the quotient map $q: X \to X/_{\sim}$ is a homeomorphism.

Proof: By the definition of totally disconnected, it follows that q is a bijection. q is a continuous map, as it is a quotient map. For any $U \subset X$ open, it follows that $U = q^{-1}(q(U))$, and hence, q(U) is open in $X/_{\sim}$. Thus, q is a homeomorphism.