

Análisis de oscilaciones en sistemas de conversión de energía eólica

Plan de trabajo de tesis doctoral de Nicolás Costa

Doctorado en Ingeniería Departamento de Ingeniería Eléctrica y de Computadoras Universidad Nacional del Sur

Directores: Dr. Diego M. Alonso (UNS)

Dr. Roberto D. Fernández (UNPSJB)

Colaboración: Dr. Gustavo Revel (UNS)

Análisis de oscilaciones en sistemas de conversión de energía eólica

Sistemas de potencia — Sincronismo 50Hz

Análisis de oscilaciones en sistemas de conversión de energía eólica

Sistemas de potencia — Sincronismo 50Hz

Oscilaciones de frecuencia diferente a la del sincronismo

Interacciones Subsincrónicas ——— Oscilaciones de frecuencia menor a 50Hz

Análisis de oscilaciones en sistemas de conversión de energía eólica

Sistemas de potencia Sincronismo 50Hz

Oscilaciones de frecuencia diferente a la del sincronismo

Interacciones Subsincrónicas ——— Oscilaciones de frecuencia menor a 50Hz

Línea de Transmisión

Análisis de oscilaciones en sistemas de conversión de energía eólica

Sistemas de potencia Sincronismo 50Hz

Oscilaciones de frecuencia diferente a la del sincronismo

Interacción Subsincrónica de Control (SSCI)

Registro de datos SSCI en Texas (2009)

Estudio de SSCI por análisis de autovalores

Dado un **sistema lineal**
$$\dot{x} = Ax$$

Estable \longrightarrow autovalores de A tienen parte real negativa

Estudio de SSCI por análisis de autovalores

Dado un **sistema lineal** $\dot{x} = Ax$

$$\dot{x} = Ax$$

Estable \longrightarrow autovalores de A tienen parte real negativa

Una compensación serie introduce 4 autovalores:

1 par complejo conjugado de frecuencia > 50 Hz λ_{sup}

1 par complejo conjugado de frecuencia < 50 Hz λ_{sub}

Nivel de compensación

$$\mu = \frac{X_C}{X_L} \qquad 0 < \mu < 1$$

Estudio de SSCI por análisis de autovalores

Modelado matemático

Ecuaciones diferenciales

$$\dot{x} = f(x,\mu) \longrightarrow$$
 No lineal

- $\rightarrow x$ variables
- $\rightarrow \mu$ parámetros

Nivel de compensación

$$\mu = \frac{X_C}{X_L} \qquad 0 < \mu < 1$$

Estudio de SSCI por análisis de autovalores

Modelado matemático

Ecuaciones diferenciales

$$\dot{x} = f(x,\mu) \longrightarrow \text{No lineal}$$

- $\rightarrow x$ variables
- $\rightarrow \mu$ parámetros

Linealización del sistema

$$\dot{x} = A(\bar{x}, \bar{\mu})x$$

$$A(\bar{x}, \bar{\mu}) = \left. \frac{\partial f}{\partial x} \right|_{(\bar{x}, \bar{\mu})}$$

Autovalores de $A(\bar{x}, \bar{\mu})$

Nivel de compensación

$$\mu = \frac{X_C}{X_L} \qquad 0 < \mu < 1$$

Estudio de SSCI por análisis de autovalores

Modelado matemático

Ecuaciones diferenciales

$$\dot{x} = f(x,\mu) \longrightarrow$$
 No lineal

- $\rightarrow x$ variables
- $\longrightarrow \mu$ parámetros

Linealización del sistema

$$\dot{x} = A(\bar{x}, \bar{\mu})x$$

$$A(\bar{x}, \bar{\mu}) = \left. \frac{\partial f}{\partial x} \right|_{(\bar{x}, \bar{\mu})}$$

Autovalores de $A(\bar{x}, \bar{\mu})$

Análisis selectivo de Modos (SMA)

$$\dot{x} = A(\bar{x}, \bar{\mu})x \longrightarrow \dot{x}_r = A_r x_r \quad A_r \in \Re^{4 \times 4}$$

¡Los 4 autovalores de A_r son los autovalores SSCI!

Tabla de parámetros de las líneas

Barras	I	mpedancia		Voltaje	Longitud	Obs.					
	R	X	В	[kV]	[km]	_					
1008-11	2.750E-3	3.384E-2	4.1888	500	354	2 líneas					
11-10	_	X_c^{\dagger}	_	_	-	Compens.					
10-221	0	3.000E-2	_	500/132	_	Trafo					
221-246	6.337E-3	2.579E-2	0.0060	132	13	2 líneas					
221-223	2.047E-2	8.332E-2	0.0194	132	42.5	2 líneas					
223-225	2.427E-3	9.879E-3	0.0023	132	5	2 líneas					
10-224	0	2.700E-2	_	500/330	_	Trafo					
224-200	2.000E-5	1.400E-4	0.0018	330	0.47	_					
200-220	0	1.400E-2	_	330/132	_	Trafo					
220-494	1.178E-2	3.866E-2	0.0076	132	16	_					
220-230	3.170E-3	1.243E-2	0.0029	132	5.7	_					
230-253	6.300E-3	2.290E-2	0.0051	132	10	_					
230-240	4.306E-2	1.423E-1	0.0310	132	62	_					
		I I	1		1 1						
		I I	-		1 1						

Tabla de parámetros generación y carga

Tabla de parametros generación y carga									
Parque	POI	Trafo*	(Colectores		Trafo**	P		
		X_T	R	X	В	X_T	[MW]		
	246	2.000E-1	1.645E-2	1.667E-2	0.0088	1.607E-1	50		
		2.000E-1	3.853E-2	3.812E-2	0.0048	1.607E-1	20		
PMADR		2.000E-1	1.546E-2	1.581E-2	0.0097	1.607E-1	50		
		2.000E-1	1.959E-2	2.004E-2	0.0102	1.607E-1	50		
		2.000E-1	1.496E-2	1.499E-2	0.0094	1.607E-1	50		
LBLANC13	223	1.250E-1	1.047E-2	1.896E-2	0.0489	1.800E-1	50		
		1.250E-1	1.357E-2	1.345E-2	0.0048	1.800E-1	50		
LBLANC24	225	1.250E-1	1.008E-2	1.652E-2	0.0221	1.800E-1	50		
		1.250E-1	8.610E-3	1.949E-2	0.0024	1.800E-1	50		
			į			I			
			į			! !			
		!	!			! '			

$$\dot{x} = f(x, \mu) \qquad x \in \Re^{690}$$

$$\dot{x} = f(x, \mu) \qquad x \in \Re^{690}$$

Procedimiento sistemático

1. Definir $\bar{\mu}$

$$\dot{x} = f(x, \mu) \qquad x \in \Re^{690}$$

Procedimiento sistemático

- 1. Definir $\bar{\mu}$
- 2. Calcular una semilla para el equilibrio x^*
 - 2.1 Calcular flujos de potencia

$$\sum \{P,Q\} = 0 \longrightarrow i_L^* v_b^*$$

$$\dot{x} = f(x, \mu) \qquad x \in \Re^{690}$$

Procedimiento sistemático

- 1. Definir $\bar{\mu}$
- 2. Calcular una semilla para el equilibrio x^*
 - 2.1 Calcular flujos de potencia

$$\sum \{P,Q\} = 0 \longrightarrow i_L^* v_b^*$$

2.2 Se resuelve el equilibrio en cada parque

$$\dot{x}_{P\{i\}} = f(x_{P\{i\}}) = 0 \longrightarrow x_{P\{i\}}^*$$

$$\dot{x} = f(x, \mu) \qquad x \in \Re^{690}$$

Procedimiento sistemático

- 1. Definir $\bar{\mu}$
- 2. Calcular una semilla para el equilibrio x^*
 - 2.1 Calcular flujos de potencia

$$\sum \{P,Q\} = 0 \longrightarrow i_L^* v_b^*$$

2.2 Se resuelve el equilibrio en cada parque

$$\dot{x}_{P\{i\}} = f(x_{P\{i\}}) = 0 \longrightarrow x_{P\{i\}}^*$$

2.3 Con la semilla $x^* = \left\{i_L^*, v_b^*, x_{P\{i\}}^*\right\}$

$$\dot{x} = f(x, \bar{\mu}) = 0 \longrightarrow \bar{x}$$

$$\dot{x} = f(x, \mu) \qquad x \in \Re^{690}$$

Procedimiento sistemático

- 1. Definir $\bar{\mu}$
- 2. Calcular una semilla para el equilibrio x^*
 - 2.1 Calcular flujos de potencia

$$\sum \{P,Q\} = 0 \longrightarrow i_L^* v_b^*$$

2.2 Se resuelve el equilibrio en cada parque

$$\dot{x}_{P\{i\}} = f(x_{P\{i\}}) = 0 \longrightarrow x_{P\{i\}}^*$$

2.3 Con la semilla $x^*=\left\{i_L^*,v_b^*,x_{P\{i\}}^*\right\}$ $\dot{x}=f(x,\bar{\mu})=0$ \longrightarrow $\bar{\mathcal{X}}$

3. Obtener

$$A(\bar{x}, \bar{\mu}) = \left. \frac{\partial f}{\partial x} \right|_{(\bar{x}, \bar{\mu})}$$

$$\dot{x} = f(x, \mu) \qquad x \in \Re^{690}$$

Procedimiento sistemático

- 1. Definir $\bar{\mu}$
- 2. Calcular una semilla para el equilibrio x^*
 - 2.1 Calcular flujos de potencia

$$\sum \{P,Q\} = 0 \longrightarrow i_L^* v_b^*$$

2.2 Se resuelve el equilibrio en cada parque

$$\dot{x}_{P\{i\}} = f(x_{P\{i\}}) = 0 \longrightarrow x_{P\{i\}}^*$$

2.3 Con la semilla $x^*=\left\{i_L^*,v_b^*,x_{P\{i\}}^*\right\}$ $\dot{x}=f(x,\bar{\mu})=0$ \longrightarrow $\bar{\mathcal{X}}$

3. Obtener

$$A(\bar{x}, \bar{\mu}) = \left. \frac{\partial f}{\partial x} \right|_{(\bar{x}, \bar{\mu})}$$

4. Calcular $A_r \in \Re^{4 imes 4}$ con SMA

(Pasos 2 - 4 para cada $ar{\mu}$)

Ubicación de autovalores SSCI a medida que se aumenta el factor de compensación de la línea

Estado actual de la investigación

Estudio de los autovalores del sistema

- Estudio de interacciones de los autovalores SSCI con otros.
- Influencia de diversos parámetros del sistema en la ubicación de los autovalores de la SSCI.

Análisis Selectivo de Modos (SMA)

- Estudio de convergencia del algoritmo SMA para SSCI.
- Transformación de estados para convergencia de SMA.

Continuación de la condición de inestabilidad

• Implementación de SMA para continuar la inestabilidad en SSCI. (Encontrar los \bar{x} que sean equilibrio y que además $\Re\{\lambda_{sub}\}=0$)

Imposible para sistemas de orden mayor a 100.

Posible con SMA.

Muchas gracias por su tiempo

¿Preguntas?