

PALESTRA 4

20 de outubro de 2011

Jonathan D. Mahnken, Ph.D., PStat®

Esboço

- Propósito do estudo
- □ Populações e amostras
 - Tipos de amostras
 - Parâmetros de populações
 - Estatísticas de amostras
- Considerações de delineamento
 - Tipos de estudos
 - Tipos de inferências
 - Fases da pesquisa
 - Tamanho da amostra
 - Significância estatística versus relevância clínica
 - Ética de determinação de tamanho de amostra

Esboço (cont.)

- □ Seção de análise de dados de concessões e protocolos
 - Descrevendo medidas/variáveis
 - Pesquisa e hipóteses nulas
 - Teste estatístico
 - Suposições
- Multiplicidade
- Análise interina
- Segurança de dados e plano de monitoramento

Revisão de Contexto

- □ Estatístico GCRC
 - Aprovação de seções bioestatísticas para estudos conduzidos em GCRC
- NIH
 - Revisor estatístico para a Seção de Estudos de Ciências Cardiovasculares Clínicas e Integrativas
 - NIDCR
- Concessão de desenvolvimento para investigadores
- Revisor bioestatístico PRMC
 - Aprovação de seções de bioestatística para estudos relacionados ao câncer conduzidos na KUMC
 - Formulário de revisão da PRMC

Papel como revisor estatístico: Avaliar se o estudo pode ou não responder a pergunta da pesquisa © 2011 Jonathan D. Mahnken. Todos os Direitos Reservados 4

Propósito do Estudo

□ Qual é a pergunta da pesquisa?

- "a"
 - "Cada ensaio deve ter uma questão primária... A questão principal deve ser aquela que os investigadores estão mais interessados em responder e uma que possa ser adequadamente respondida. É a questão sobre a qual o tamanho da amostra do estudo se baseia... (Friedman et al. 1998, Fundamentals of Clinical Trials, p 16)
 - O desfecho primário deve estar claramente identificado
 - Deve estar consistente com a questão primária da pesquisa
 - Desfechos secundários devem estarem claramente identificados como tais
 - Desfecho primário "...deve ser enfatizado ao se relatar os resultados do ensaio clínico" (Friedman et al. 1998, Fundamentals of Clinical Trials, p 16)

Propósito do Estudo (cont)

□ Foque a pesquisa

- É comum para investigadores tentarem responder perguntas demais num único (e frequentemente pequeno) estudo
- Toda questão da pesquisa feita deve ter uma discussão adequada de:
 - Por que foi selecionada
 - Variáveis (medidas)
 - Testes estatísticos
 - Quais inferências poderiam ser retiradas dos resultados dos testes

Populações e amostras

Definições

- "Uma população (por vezes referida como uma população estatística) é uma coleção (ou agregado) de medições sobre a qual uma inferência é desejada. "" A amostra é constituída por um número finito de medições escolhidas de uma população." (Rao, p. 3, 5)
- "Uma população é um conjunto completo de pessoas com um conjunto específico de características, e uma amostra é o subconjunto da população." (Hulley et al., p. 25)

Populações e amostras (cont)

□ Definições (cont)

 "Uma população é qualquer conjunto de itens ou medições de interesse, e uma amostra é qualquer subconjunto de itens selecionados a partir daquela população. Qualquer característica dessa população é chamada de um parâmetro e qualquer característica da amostra é denominada uma estatística. Uma estatística pode ser considerada uma estimativa de algum parâmetro populacional, e sua precisão da estimativa pode ser boa ou ruim." (Kleinbaum et al., p. 14)

Department of Biostatistics

Populações e amostras (cont)

□ Definições (cont)

 "População é o termo que os estatísticos usam para descrever um grande conjunto ou coleção de itens que tem algo em comum. No campo da saúde, população geralmente refere-se a pacientes ou outros organismos vivos, mas o termo também pode ser usado para denotar coleções de objetos inanimados, tais como conjuntos de relatórios de autópsia, despesas hospitalares, ou certidões de nascimento. Uma amostra é um subconjunto da população, selecionada de modo a ser representativa da população maior." (Dawson and Trapp, p. 69)

Department of Biostatistics

Populações e amostras (cont)

Definições (cont)

 "A estatística se preocupa principalmente com as conclusões e previsões decorrentes de resultados ao acaso que ocorrem em experimentos ou investigações cuidadosamente planejados. No caso finito, estes resultados constituem um subconjunto, ou amostra de medições ou observações a partir de um conjunto maior de valores chamados de população. No caso contínuo eles são geralmente os valores de variáveis aleatórias identicamente distribuídas, cuja distribuição nos referimos como a distribuição da população, ou a população infinita amostrada. A palavra "Infinito" implica que não há, logicamente falando, nenhum limite para o número de valores que pudemos observar. "(Fruend, p.291)

Tipos de Amostras

- Amostra aleatória
 - Cada pessoa possui uma chance igual se ser selecionada
- □ Amostra de conveniência
 - Pessoas são selecionadas porque estão prontamente disponíveis
- □ Amostra sistemática
 - Pessoas selecionadas baseado num padrão
- Amostra estratificada
 - Pessoas selecionada de dentro de um subgrupo
- □ Censo
 - Toda a população é incluída na amostra © 2011 Jonathán D. Mahnken. Todos os Direitos Reservados

Parâmetros de População

- Parâmetros são números que descrevem populações
 - Parâmetros de localização (tendência central)
 - Parâmetros de dispersão (variação)
- □ Exemplos de Parâmetros de população
 - Média aritmética ou "média" (μ)
 - Desvio quadrado médio a partir da média ou "variância" (σ²)
 - "Desvio Padrão" (σ)
 - 50° percentil da "mediana" (η)

□ Distribuição IMC; μ=26

- □ Versus distribuição de IMC de sujeitos saudáveis;
 µ=21
 - Como as populações são diferentes?

- Versus Distribuição IMC de Fast Food 2x/dia; μ=30
 - Como as populações são diferentes?

□ Alterações na dispersão (σ²)

□ Alterações em localização e dispersão

- □ Frequentemente interessado em fazer uma inferência sobre um parâmetro de população desconhecido
 - Exemplo de perguntas de pesquisa
 - Qual é o IMC médio entre os alunos da 5^a série?
 - Qual a proporção de pacientes de hospital vão adquirir uma infecção hospitalar?
 - O escore da gravidade da lesão está associado com aumento da mortalidade?
- Para se determinar exatamente os valores destes parâmetros seria necessário um censo

Estatísticas de amostras

- Estatísticas são números que descrevem amostras
 - Estatísticas de Localização (tendência central)
 - Estatísticas de dispersão (variação)
- Exemplos de estatísticas de amostras
 - Média da amostra (\overline{y})
 - Variância da amostra (s²)
 - Desvio padrão da amostra (s)
 - Mediana da amostra (y_(n/2))
- Utilizamos <u>estatísticas</u> geradas a partir de <u>amostras</u> para fazer inferências sobre os <u>parâmetros</u> que descrevem <u>populações</u>

Sample Statistics (cont)

- Variabilidade amostral
 - Utilize <u>estatísticas</u> de amostras para fazer inferência sobre um <u>parâmetro</u> de população desconhecido.
 - Ex. Quero avaliar se o IMC médio entre pacientes com diabetes é >30
 - Amostra aleatória de 5 pacientes da clínica, e o IMC médio da amostra (média da amostra, ou \overline{y}) foi de 31,3
 - E se eu repetisse o experimento, e selecionasse outros 5 pacientes?
 - A média da amostra seria igual a 31,3?
- Utilizamos esta variabilidade amostral para fazer declarações de probabilidade (inferências) sobre parâmetros desconhecidos sob certas suposições (hipóteses)

Design Considerations

- Que tipos de estudos podem ser conduzidos?
 - Ensaio Clínico controlado
 - Randomizado
 - Cruzado (Crossover)
 - Estudo observacional
 - Prospectivo
 - Longitudinal
 - Transversal (cross-sectional)
 - Retrospectiva
 - Caso-controle
 - Coorte

Ensaios Controlados

□ Ensaio controlado randomizado

- Tratamento alocado aleatoriamente
 - Benefícios da randomização
 - Equilibra variáveis de confusãonão mensuradas
 - Funciona melhor quando o estudo é amplo
- Randomização Simples
- Frequentemente bloqueadas
 - Ex. 1:1 randomização a cada 10 sujeitos
 - Aumenta a probabilidade de equilíbrio do tratamento mesmo se o objetivo de competência não tenha sido atingido (acontece muitas vezes)
- Amostragem aleatória estratificada
- Amostragem por conglomerados

Ensaios Controlados(cont)

Delineamento cruzado

- Sujeitos recebem ambos os tratamentos
- O que é randomizado?
 - Ordem de tratamento
 - Efeito de repercussão
- Cada sujeito atua como seu próprio controle

Cegamento ou mascaramento

- Simplesmente cego: os sujeitos desconhecem a atribuição do tratamento
- Duplo-cego: os sujeitos e os avaliadores desconhecem a atribuição do tratamento
- Qual o propósito do cegamento?

Estudos Observacionais

- □ Diferente de ensaios controlados
 - Sem intervenção (nenhum controle do experimentador)
- Prospectivo
 - Coorte identificado e depois medida/observada no futuro
 - Longitudinal: grupos com características de linha de base diferentes são comparados em ocasiões de follow-up
 - Ocasião de follow-up única
 - Ocasiões de follow-up múltiplas
 - Follow-ups contínuos como em análise de sobrevivência
 - » Dados Tempo-para-Evento (Time-to-event data)
 - Transversal
 - Todas as medições (variáveis de resposta e explanatórias) tiradas num único ponto no tempo
 - "Ponto isolado" no tempo

Department of Biostatistics

Retrospectiva

- Sujeitos identificados e depois olham para quais eram as medidas no passado
 - Caso-controle
 - Casos (sujeitos positivos para a doença) identificados
 - Identificar controles (sujeitos negativos para a doença) com características similares em relação a tudo EXCETO o status da doença
 - Comparar o status de exposição entre casos vs controles
 - » Para doenças raras, OR ≈ RR
 - Coorte
 - Coorte (do passado) identificada
 - Status da doença e da exposição obtidos
 - Compare a taxa da doença entre os expostos vs taxa da doença entre os que não foram expostos (RR)

Planejamento do Estudo

- As inferências variam de acordo com o planejamento do estudo?
 - Associação vs causação
 - Um estudo transversal (cross-sectional) pode mostrar causação?
 - Resultado: A,B associados (p=0.003)
 - Associação prova causação?
 - A causa B, ou B causa A?
 - Critérios de Hill
 - Relação temporal
- O delineamento do estudo deve estar pareado com a pergunta da pesquisa
 - Uma nova dieta ajuda diabéticos a reduzir o IMC
 - Um estudo transversal (cross-sectional) pode responder esta questão?
 - As pessoas que estão acima do peso são menos ativas fisicamente ?
 - Um estudo transversal (cross-sectional) pode responder esta questão?

Planejamento do Estudo (cont)

- Qual é o objetivo de um estudo de pesquisa?
 - Tratar pacientes <u>OU</u> responder uma pergunta
 - "Sujeitos" vs "pacientes"

Planejamento do Estudo (cont)

- □ Todos os estudos devem ser ensaios clínicos grandes e definitivos?
 - Por que não?
 - Há riscos envolvidos com pesquisa
 - Deve-se equilibrar os riscos com os benefícios
 - » E se a doença for letal?
 - » E se o tratamento for potencialmente letal?
 - » E se o tratamento for letal e ineficaz?
 - Pode haver a necessidade de uma resposta antes que um estudo possa ser concluído
 - A "marcha da ciência" (Ralph O'Brien, 2005 Association of GCRC Statisticians Annual Meeting, Minneapolis, MN)

Department of Biostatistics

Trabalho pré-clínico

Pesquisa de ciência básica

Phase I

Segurança, tolerabilitdade da dose, PK/PD (sujeitos saudáveis); Planejamentos Step-up/step-

down

jmahnken@kumc.edu

Phase IIa

Eficácia do piloto; prova clínica do conceito, segurança, PK/PD (pacientes)

Phase IIb

Resposta da dose (eficácia e segurança em função da dose); dose ideal para a Fase III

Phase III

Segurança Pivotal e ensaio de eficácia, risco / benefício para o rótulo, muitas vezes dois estudos positivos

- Às vezes adequado pular etapas
 - Considere o risco aos sujeitos da pesquisa
 - Efeitos colaterais de baixos a inexistentes, o único risco pode ser financeiro
 - Riscos substanciais devido ao tratamento requer maior consideração da razão risco/benefício
 - Consideração deve ser dada em mais etapas ao longo do caminho

Planejamento do Estudo (cont)

- Escopo do estudo deve dar passos progressivos no conhecimento
 - "Marcha da ciência"
 - Saltos gigantes podem ser arriscados demais (ex. Efeitos colaterais não previstos)
- Estudos iniciais pequenos
 - Prova de conceito
 - Geram estimativas iniciais dos tamanhos de efeito a se projetar um estudo futuro definitivo
 - Pouco ou nenhum conhecimento do efeito no desfecho primário
 - O foco deve estar na estimativa do tamanho do efeito e na precisão desta estimativa
 - Exemplo: 15 sujeitos/grupo permitirão uma estimativa de 95% CI para aumento na perda de peso médio devido a intervenção dentro de 7.5 lbs
 - Irrealista esperar potência de 80% de tais estudos
 - Ênfase na estimativa em vez de testagem de hipótese... Por quê?
 - Experiência Pessoal
 - Investigadores gostariam de pular essa parte pois não irá resultar em publicação de alto impacto
 - Investigadores pensam que os resultados de um ensaio com 20 sujeitos será suficiente para mudar uma prática clínica

Tamanho da Amostra

- De quantos sujeitos eu preciso? vs. Quantos sujeitos posso obter?
 - Qual fase ou que tipo de estudo é?
 - Onde você está na "marcha da ciência"?
 - Estatísticas "Elevator"
 - Quantos sujeitos eu posso ter recursos para manter?
 - Quantos sujeitos eu posso acumular?
 - Estes justificam o tamanho da sua amostra?
 - Questão: Por que você possui este tamanho amostral? Resposta: Pois esta é a quantidade que eu preciso para responder a pergunta da pesquisa.
 - Razão de Risco/benefício
 - Qual a probabilidade de benefícios? / Qual a probabilidade de riscos?
 - Quão bom são os benefícios? / Quão ruim são os riscos?

Tamanho da Amostra (cont)

- Informação necessária para se estimar potência, precisão ou tamanho da amostra (em geral)
 - Informação fornecida pelo investigador
 - Tamanho de efeito clinicamente relevante
 - Variância estimada do efeito
 - Taxa de erro do tipo I (α)
 - Potência desejada (1-β) ou tamanho da amostra (n)
 - O estatístico vai calcular valor não dado
 - Potência (1-β) ou tamanho da amostra (n)

Tamanho da Amostra (cont)

- Fator mais importante do tamanho do efeito clinicamente relevante
 - "...os mesmos clínicos que encontram dificuldade em fixar um limiar de significância clínica a priori, muitas vezes não têm dificuldade em fazê-lo após o fato, examinando dados de um estudo e declarando um resultado post hoc a ser de importância clínica ou não." (Kraemer et al. 2006, Arch Gen Psychiatry)
- □ É ético conduzir um estudo grande com falta de informação sobre o tamanho do efeito clinicamente relevante?
 - Como pode se equilibrar risco/benefício sem esta informação
 - Se a intervenção for estatisticamente substancial, isso significa algo?
 - Valor de P é uma função de n

Tamanho da Amostra (cont)

- □ É ético conduzir um estudo com tamanho insuficiente de amostra para se responder a pergunta da pesquisa?
 - Improvável para se detectar um resultado se ele existe
 - Resultado não-positivo pode impedir pesquisa futura
- Solução: Modificar a pergunta da pesquisa para uma que possa ser respondida
- É ético conduzir um estudo com mais sujeitos arbitrários (por exemplo 2-3x) que o necessário?
 - Dando a alguns sujeitos tratamento inferior desnecessariamente
 - Colocando pacientes em risco desnecessariamente —pergunta já pode ser respondida
 - Pode fazer com que resultados clinicamente <u>in</u>significantes se tornem estatisticamente significantes
 - Impacto na competência futura se a pesquisa desenvolver uma reputação de resíduos/desperdício

Análise dos Dados

□ Descreva medidas

- Resposta (resultado), explanatória (preditor ou exposição), e co-variáveis
- Indica qual medida é proxy (substituta / representante)
- Descrever tipo de medida
 - Contínua (listar amplitude)
 - Escala, Ex. 1(1)7
 - Categórica, listar categorias

Análise dos Dados (cont)

- Registre a hipótese da pesquisa
 - Objetivos específicos e/ou Delineamento de pesquisa e seções de métodos
 - Hipótese da pesquisa é resultado antecipado
- Tipos de medidas e a hipótese da pesquisa determinam a análise estatística
 - Hipótese da pesquisa deve ser um complemento da hipótese nula para teste estatístico
 - Falha em rejeitar a hipótese nula não é prova de uma hipótese nula — frequentemente quer dizer que o estudo não chegou a resultados conclusivos
 - Tradução: Pode ser preciso refazer o estudo!
 - Marcha da ciência

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Análise dos Dados (cont)

- Descreva claramente o teste estatístico
 - Especifique o teste
 - Especifique as medidas a serem utilizadas preferivelmente para cada teste
 - Variável resposta
 - Variável explicativa
 - Co-variáveis
 - Isso deve amarrar as medidas a serem coletadas para a hipótese da pesquisa
 - É assim que o estudo vai responder a pergunta da pesquisa

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Análise dos Dados (cont)

□ Exemplo

- Hipótese da pesquisa: Droga ativa diminui pressão arterial sistólica (PAS)
- Seção de análise de dados: Vamos utilizar regressão linear para comparar se o tratamento (droga ativa vs placebo) diminui a PAS, ajustando para idade e sexo
 - Qual é a variável resposta ?
 - Qual é variável explicativa?
 - Há outras co-variáveis?
 - Qual método estatístico será utilizado?
- A análise é apropriada?

THE UNIVERSITY OF KANSAS Medical Center Department of Biostatistics

Análise dos Dados (cont)

□ Exemplo

- Hipótese da pesquisa: Droga ativa diminui pressão arterial sistólica
- Seção de análise de dados: Vamos utilizar regressão para analisar nossos dados
 - Qual é a variável resposta ?
 - Qual é a variável explicativa?
 - Há outras co-variáveis?
 - Qual método estatístico será utilizado?
- A análise é apropriada?

Análise dos Dados (cont)

- □ As suposições de testes estatísticos serão avaliadas?
 - Estratégias alternativas são propostas caso não sejam cumpridas?
 - Ex. Testes não paramétricos para tamanhos pequenos de amostras
- A análise está de acordo com a pergunta da pesquisa?
 - Testes estatísticos para testagem de hipótese
 - Aponte estimativas e CIs para estimação
- A pessoa conduzindo a análise é qualificada para fazê-la? © 2011 Jonathan D. Mahnken. Todos os Direitos Reservados

Department of Biostatistics

"Um Paradoxo Aparente"

- "Um investigador compara três tratamentos A, B e C. A única diferença significativa é entre B e C, com um valor nominal P de 0,04. No entanto, quando qualquer procedimento de comparação múltipla é usado, o resultado já não alcança significância estatística. Do outro lado da cidade, três investigadores diferentes estão conduzindo três experimentos diferentes. Um deles está comparando A com B, o segundo está comparando A com C, e o terceiro está comparando B com C. E eis que eles obtém os mesmos valores de P que o investigador que está fazendo experiência combinada. O investigador comparando B com C obtém um valor P de 0,04 e não tem nenhum ajuste para fazer, sendo assim, 0,04 permanece e o investigador terá maior facilidade para impressionar os outros com o resultado
- "Por que o investigador, que analisou os três tratamentos de uma só vez deve ser penalizado quando o investigador que dirigia uma única experiência não é? Isto é parte do argumento de Kenneth Rothman de que não deve haver nenhum ajuste para comparações múltiplas; que todos os resultados significativos devem ser relatados e cada resultado irá permanecer ou cair, dependendo se ele é replicado por outros cientistas."
- "Eu acho essa visão equivocada. Os dois valores de P são bastante diferentes, embora ambos são 0,04. No primeiro caso (grande experimento) o investigador sentiu a necessidade de trabalhar com três grupos. Isto sugere um tipo diferente de intuição do que a do cientista que investigou a única comparação. O investigador trabalhando com muitos tratamentos deve reconhecer que há uma maior chance de alcançar significância nominal e deve estar preparado para pagar o preço para garantir que muitas pistas falsas não entrem na literatura científica. O cientista que trabalha com a comparação simples, por outro lado, diminuiu as possibilidades desde o início e pode ter mais confiança no resultado. Para o primeiro cientista, "Eu fiz três comparações e apenas uma foi pouco significativa." Para o segundo cientista "Uma diferença, exatamente onde eu esperava!"

Dallal GE. Internet: http://www.tufts.edu/~gdallal/mc.htm acessado em 16 de maio de 2007

Análise dos Dados (cont)

Desfechos primários múltiplos

- Erro tipo I : rejeitar H₀ quando é verdadeiro
- Arriscamos cometer um erro tipo I com todos os testes
- Gerir este risco com α pequeno
- Muitos testes cada um com α pequeno —somar
 - α 's tomados coletivamente combinados à taxa de erro tipo I do experimento
 - Não é mais pequeno
 - Alta chance de erro tipo I
 - Não se tem ideia de qual resultado significante é o erro tipo I

Soluções

- Ajustar cada teste de erro tipo I a fim de que experimentalmente o erro tipo I = α
- Reduzir o número de desfechos para único, desfecho primário
 - O sucesso/fracasso do ensaio é baseado neste desfecho

Análise Interina

- □ Avaliar desfecho antes de completar a competência
 - Qual o propósito da análise interina?
 - Pode parar o estudo antes do tempo se há vantagem clara do tratamento
 - Mais segura para se pesquisar sujeitos
 - Potencial para ser mais rentável
 - Pode-se parar o estudo mais cedo se for inútil
- Cada avaliação possui a possibilidade de erro tipo I
 - Ajustes para controlar experimento nível α
 - Custo associado com "olhadas" extras nos dados

Segurança dos Dados e Plano de

Monitoramento

- Exame periódico dos AEs
 - Frequência depende do risco
 - Ex. Tratamento de câncer com efeitos colaterais perigosos devem ser examinados mais frequentemente
 - DSMB
 - Encontros agendados e de ad hoc
 - Revisão na base ad hoc
 - Ex. Se há mais de X SAEs
 - Pode recomendar que se encerre o ensaio
- Regras para interrupção
 - Projetadas no estudo (automático)
 - Estudos para determinação da dosagem
 - Estudos de tolerabilidade
 - Planejamentos Step-up/step-down

Referências

- □ Dawson B, Trapp RG (2001). *Basic and Clinical Biostatistics*, 3rd ed. McGraw-Hill, New York, NY.
- □ Fruend JE (1992). *Mathematical Statistics*, 5th ed. Prentice Hall, Inc., Englewood Cliffs, NJ.
- □ Hulley SB, Cummings SR, Browner WS, Grady D, Hearst N, Newman TB (2001). Designing Clinical Research, 2nd ed. Lippincott Williams & Wilkins, Philadelphia, PA.
- Kleinbaum DG, Kupper LL, Muller KE, Nizam A (1998). Applied Regression Analysis and Other Multivariable Methods, 3rd ed. Brooks/Cole Publishing Company, Pacific Grove, CA.
- □ Rao PV (1998). Statistical Research Methods in the Life Sciences. Brooks/Cole Publishing Company, Pacific Grove, CA.