Introducción GRAFOS

aristas o enlaces nodos vertice

GRAFO DE INTERNET

GRAFO	NO	virisi Do
V ₄	Vz	GE TE, V.
Para High A	3	Vy
VE { V1, V2,	V3, V2	1
$= \left\{ \underbrace{\left\{ V_{1}, V_{2} \right\}}_{\text{enlace}}, \right.$	$\{V_2,V_3\}$	$(x) \left\{ V_2, V_3 \right\}, \left\{ V_3, V_4 \right\}$
par <u>no</u> orden	ado	•
$V_1, V_2 = V_1$, V1}	•

GRAFO SIMPLE (ND)

Entre cada par de vértices hay como máximo UNA ARISTA.

GRAFO ND SIMPLE con n vertices. 2 cual es el nº maximo de enlaces?

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$$

MULTI GRHFO

Entre al menos un par de vértices hay aristas paralelas

TEOREMA

$$\sum_{v \in V} \delta(v) = 2|E|$$

J(v) = GRADO del VÉRTICE V ne de enlaces incidentes

#enlaces = 5 $V_{3}(3) = V_{4}(3) \int_{V_{1}}^{1} \int_{V_{2}}^{1} \int_{V_{2}}^{1} \int_{V_{3}}^{1} \int_{V_{4}}^{1} \int_{V_{4}}^{1} \int_{V_{1}}^{1} \int_{V_{2}}^{1} \int_{V_{2}}^{1} \int_{V_{3}}^{1} \int_{V_{4}}^{1} \int_{V_{4}$

Demostracion

>G=1E,V/ = #enlaces de E

en un grafo con l'El enlaces se comple: que Suponemos

enlace |E|+1 $S(v_i) = S(v_i) + 1 = \text{grado de } v' \text{ en el nuevo grafo.}$

S(v") = S(v") + 1 = grado de v" en el nuevo grafe

$$\sum_{v \in V} S^{G}(v) = \sum_{v \in V} S^{G}(v) + 2$$

$$2|E| \qquad 2(|E|+4)$$

2(IEI+1) ne de enlaces de G'

base inducción:

Grafo con lel = 0

grado
$$\sqrt{|E|} = n^2$$
 enlaces

	L(0)	L(4)	L(2)	L(3)	L(4)	L(5)	L(6)	(1)	[L(8)	L(a)	L(10)	
a	(Ø)*	_	-	_	-	_	_		_		_	
b	∞	20	(2a)*	_		-		-		-	_	
C	∞	8	8K	75 76×8K	7b	76	弘	76	76	6e< 1b	(6e)	19
d	∞	30	30-	30-	(3a)*	-	_	_		-	_	
e	∞	8	∞	∞	∞	6d	6d	6d	(5f) 6d>5f	_	_	ž į
£	∞	8	∞	∞	00	41	4d	(4d)*	2.5		_	
9	∞	∞	∞	∞	∞	∞	00	8	54	(5L)*		
h	8	∞	00	3b	3b	(35)*	-					
i	∞	8	00	∞	∞	∞	6h	6h	6h	6h	6h	
3	∞	∞	2K	(2K)*		-	-	_	-	-	-	***
K	00	(1a)*				-	-		1-	-1	-	
l	00	∞	3K	3K	3K	3K	(3K)	_	- 1		_	
		1 14		•				,				ł
						· ·					ŧ	
						;	•			,		; · · · · · · · · · · · · · · · · · · ·

INVARIANTES bajo un isomorfismo (dificultado) (dificultado) (dificultado)

- Nº de nodos y n de enlarces

- Estructa de adyacencia ("dificultad completa")

La lista de grados de nodos (dificultad 2)

LISTA DE ADYACENCIA

 $\frac{V_{3}(2)}{V_{2}}$ $\frac{V_{4}}{V_{2}}$ $\frac{V_{2}}{V_{3}}$ $\frac{V_{3}}{V_{4}}$ $\frac{V_{4}}{V_{4}}$ $\frac{V_{4}}{V_{4}}$ $\frac{V_{4}}{V_{4}}$ $\frac{V_{4}}{V_{5}}$ $\frac{V_{4}}{V_{5}}$

LISTA DE ADYACENCIA EN FORMA DE MATRIZ:

V1 V2 V3 V4 V5

 V_{4} 0 1 0 1 1 \Rightarrow la suma = grado del vértice V_{2} 1 0 1 1 \Rightarrow 4 \Rightarrow 6 \Rightarrow 9 \Rightarrow 10 \Rightarrow 10 \Rightarrow 9 \Rightarrow 9 \Rightarrow 10 \Rightarrow 10

TRAYECTORIA

Trayectoria: Secuencia alternada de vértices y enlaces, que cotermina con mienza

distancia de Hamming (entre palabras formadas por el mismo nº de bii = n= de bits en los que se diferencian las palabras

CÓDIGOS DE GREY

trayectura sample. No may answer repetidos

(iclo o circuito: Trayectoria (de long>0) que comienza y termina en el mismo vértice.

Circuito simple: No hay aristas repetidas.

CONECTIVIDAD EN GRAFOS

Grafo (no dirigido) conexo: Existe una trayectoria entre cualquiera 2 vértices del grafo.

Grafo no conexo: Unión de dos o más grafos conexos que no comparten vértices.

La Subgrafos del grafo no conexo "COMPONENTES CONEXAS"

TEOREMA

Si un grafo tiene exactamente 2 vértices de grado impar hay al menos una trayectoria que une dichos vértices.

(4)

Demostración por reducción al absurdo Suponemos que existe un grafo con exactamente 2 vértices de grafo impar, pero para el que No hay ninguna trayectoria que los une.

2 componentes del grafo (grafo no conexo) [no comparten ningún vértice.]

 $\sum_{v \in V} \int_{(v)} = 2|E|$

Por consiguiente, 2 subgrafos no conectados; cada uno com de los cuales tiene exactamente 1 nodo de grafo impar =>

TEOREMA

El número máximo de aristas de un grafo simple no conexo con N vértices y K componentes. es:

$$\binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$$

- * Igual número de vértices (o nodos).
- * Igual número de aristas (o enlaces).
- * Lista de grados de los vértices.
- * N° de circuitos con longitud K.

$$AD = \begin{pmatrix} 11 & 2 & 6 & 6 \\ 2 & 3 & 4 & \boxed{4} \\ 6 & 4 & 7 & 6 \\ 6 & 4 & 6 & 7 \end{pmatrix}$$

Hay 4 trajectorias distintas de longitud 4 entre V2-> V4. V2-> V1 -> V3 -> V4 -> V4

 $V_2 \rightarrow V_1 \rightarrow V_2 \rightarrow V_4 \rightarrow V_4$ $V_2 \rightarrow V_4 \rightarrow V_4 \rightarrow V_3 \rightarrow V_4$ $V_2 \rightarrow V_4 \rightarrow V_4 \rightarrow V_4 \rightarrow V_4$

TEOREMA El nº de trayectorias de longitud r entre Vi y Vj son vértices del grafo G, cuya matriz de adyacencias es entre Vi y Vj, que MULTIPLICACIÓN DE NATRICES

D = B.C

Dij = E Bik Ckj la elemento [A]ij

Demostración

$$\frac{M}{[A^r]_{ij}} = \sum_{k=1}^{M} [A^{r-i}]_{ik} A_{kj}$$

 $A^{4}=A^{3}A \longrightarrow (A^{4})_{ij} = \sum_{k=1}^{NI} (A^{3})_{ik} A_{kj}$ La ni de trayectorias → n² de trayectorias de

ongitud 4 entre Vi y Vj.

de longitud 3 entre Vi y Vk

nº de trayectorias de longitud 1 entre VK y Yj

nº enlaces VK -> Vj

$(A^{3})_{ik}$. $A_{kj} = se$ forman $V_{i} \xrightarrow{(3)} V_{k} \xrightarrow{(M)} V_{j}$
TRAYECTORIA EULERIANA: Trayectoria que incluye kada "fodas y cada una" arista exactamente una vez.
circuito EULERIANO: Circuito en el que cada arista es incluida exactamente una vez. GRAFO EULERIANO: Grafo que tiene al menos un circuito Euleriano.
TRAYECTORIA HAMILTONIANA: Incluye cada vértice exactamente una vez.
CIRCUITO HAMILTONIANO: GRAFO HAMILTONIANO: Grafo que tiene al menos un circuito hamilton
V_1 $V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_5 \rightarrow V_3 \rightarrow V_4 \rightarrow V_2$ (trayect. $V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_2 // V_3 \rightarrow V_4 \rightarrow V_2 \rightarrow V_3$ (circuito longitud = V_4 $V_4 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_5 \rightarrow V_3 \rightarrow V_4$ (circuito euleriano)
V₁ →V2 → V3 →V4 → V5 (trayectoria hamiltoniana)
Sin circuito hamiltoniano. V1 V2 GRAFO HAMILTONIANO V4 V3 V4 V4 V4 V3 GRAFO EULERIANO V1 V1 V2 GRAFO EULERIANO V4 V3 TRAMECTORIA HAMILTONIANA V2

los vértices tiene grado par.

TEOREMA " Un grafo tiene una trayectoria tiene exactamente dos nodos de grado impar.

Arboles

ARBOLES

Un ÁRBOL es un grafo conexo no dirigido sin circuito simples.

NODO TERMINAL (HOJA)

N₁ es ANTECESOR de N₂

N₁ es padre de N₂

o (exclusivo)

N₁ es antecesor del

padre de N₂

cónigo (BLANCO: Nodo no visitado

GRIS: Nodo visitado (o descubierto) pero no expandido NEGRO: Nodo visitado y expandido.

Búsqueda en anchura

Q -> FiFO QUEVE

La lista de nodos descubiertos, pero aún no explorados ordenado de forma que los primeros de la lista son los nodos descubiertos antes

BREADTH-FIRS

$$Q = \{B_0\}$$

$$Q = \{A_1, F_1\}$$

MINIMO de Coste ARBOLES ABARCADORES

KRUSKAL -> Siempre mínimo (no necesariamente pasos intermedi

- 1. Ordena aristas de menor a mayor peso.

 2. Incorpora las aristas una a una, asegurandonos que no hay ciclo
- 3. Sumar los pesos (peso mínimo resultante).

PRIM -> tiene que ser conexo.

- O. Partiendo de un nodo
- 1. Incluye enlaces de peso mínimo que mantengan subgrafo conexo no formen ciclos.

12 nodos
FRBOL ABARCADOR
Cicuantos enlaces?
11 enlaces
PESO PESO 17

ARISTA	PESO	L'INCLUIR EN ARBOL?			
Āĸ	1	Sí			
ВН	1	Sí			
CE	1	S(S(SC			
DF	1	Sc			
EF	1	Si			
FG	1	Si			
JK	1	St			
ĀB	2	Sí			
KL	2	S(S(S(S(S(
ĀD	3	50			
DE	3				
HI	3	Si			
CK BC	5	No Sc No No			
CK	7	No			

ALGORITHO DE KRUSKAL

12 nodos ARBOL ABARCADOR cicuantos enlaces? 11 enlaces

PESO	peso	17
HÍNIM O	1	

ARISTA	PESC	LINCLUÍR EN ÁRBOL?
ĀK	1	A Sí
BH	1	(4) St
C€	1	9 s
DF	1	9 St 9 St 8 St 0 St
ĒF	1	\$ SC
FG	1	(10) 5(
Jĸ	1	2 ST
ЯB	2	3 Sc
KL	2	5 5%
AD	3	© Si
DE	3	
用 BC CK	3 3 3 5	A Si
BC	5	
ČK	7	

ALGORITHO DE

PRIM

```
(parte) DE BUSQUEDA
                                  EN ANCHURA
ALGORITMO
     d[v] = 0; color[v] = white; d[v] = 0; TT[v] = Nil Vv & V.
    Q = 0; ENQUEUE (Q,s); d[s] = 0; color [s] = GRAY
   while Q \pm \phi
       do u = dequeve (Q)
                                                   S:nodo inicial
           for each v \in Adj.[u]
                                              (correspondiente a la rait del
             do if color [v] = white
                                                  arbol BFS)
                   then color [v] = GRAY
                                                 d[v]: etiqueta numérica del vertice
                       d[v] < d[u] +1
                     TIVICU
                                                -S(s,v) -> longitual de la
                      ENQUEUE (V)
                                               trayectoria más corta
entre 5 y V.
== 00 si 5 y v no están conectados
           color [u] = BLACK
G = \{V, E\}

# vértices |V| # aristas |E|
                                   # de ops. ENQUEUE = |V|
                                   # de ops. DEQUEUE = V
                                 # ops- de búsqueda en lista de adyacencia
                                    2|V| + 2|E| = O(|V| + |E|) = COMPLESTID
INVARIANTE DE BUCLE!
```

Los nodos en a están en

2° caso

Si s y u estan conectados \Rightarrow s y v estan conectados \Rightarrow $\delta(s,v) < \infty$

Cuando BFS termina $|d[v] \ge \delta(s,v)$; $\forall v \in V$

Demostración: POR iNDUCCIÓN en ENQUEUE

- CASO BASE :

Al principio del algoritmo d[v] = 00 WeV $d_{\text{IVI}} \geq \delta(s_{i}v)$

d[s]=0

 $\int (s,s) = 0$

d[s] = 8 (s,s) se umple; y también: d[s] \(Xs,s)

que pramos a explorar u DEQUEUE (Q)
Bantes de explorar u ("d[v] > b(s,v). V v e V. - Suporigamos

Consideremos V ∈ Adj. [u] : (tiene que haber enlace U → V).

-Si v no es white : d[v] no cambia ⇒ d[v] ≥ S(s,v)

- Si v es white: d[v] = d[u] + 1 > S(s,u) + 1 > S(s,v) = (**) Por el LEMA ZZ. 1 $S(s,v) \leq S(s,u) + 1$

 $\Rightarrow d[V] > g(s_1 v)$

```
LEHA (En el cormen lema 22.3)
      Supongamos que en un punto intermedio de BFS: Q= 1/1,1/2,..., Vr/
          (i) d[V_i] \leq d[V_i] + 1
         (ii) d[Vi] ≤ d[Vi+1]; i=1,2,..., r-1
    Demostración
   - CASO BASE: Q -
                                              d[0]=0
                                                          d[4] = d[5]
        1= interacción: Q= 456
                                             9 [2] = 0
                                                          9[0] < 9[2]
   - CASO GENERAL :
        Supongamos que Q= {V1, V2,..., Vr} comple (i) y (ii):
       DEQUEUE (Q) \Rightarrow Q= \{V_2, V_3, ..., V_r\}; u \leftarrow V_1
           (i) d[V_r] \leq d[V_1] + 1 \Rightarrow d[V_r] \leq d[V_1] + 1 \leq d[V_2] + 1 \Rightarrow (ii) d[V_1] \leq d[V_2] + 1 \Rightarrow d[V_r] \leq d[V_2] + 1 (*)
          (ii) d[V1] < d[V2] < d[V3] < ... < d[V-1] < d[V7]
                   \Rightarrow d[V_2] \leq d[V_3] \leq \ldots \leq d[V_r]
d[v2] = d[v3] = ... = d[v] = d[vi+1]; i=2,3,-.., x (**)
  ¿ Pero, qué ocurre tras ENQUEUE? Vmevo € AGI[Va] → [Vmevo] = d[Va] +
Además, debe haber enlace V1 -> Vnuevo
       ENQUEUE (Q, Vnuevo) Q= 1/2, V3, ..., Vr, Vnuevo)
   d[Vnuevo] = d[V1]+1 ≥ d[V1] ⇒ [d[V1] ≤ d[Vnuevo]/(** **)
(**) + (***) => [d[V2] \le d[V3] \le --- \le d[Vr] \le d[Vmevo]] \langle por (ii)
   (d[Vmevo] < d[V2]+1)?
    d[Vauero] = d[V2]+1; d[V2] > d[V2]+1 > d[V2]+1 > d[V2]+1;
                    d[Vmevo] < d[V2] +1
```

Si vi es introducido en la cola antes que Vj: $d[V_i] \leq d[V_i]$

TEOREMA 22.5

BFS descubre todos los vértices accesibles desde S Vv∈V; d[v] = S(siv) at final del algoritmo BFS

Demostración (reducción al absurdo/contradicción)

Supongamos que Jv EV, accesible desde S, para el cual) (*)

final del algoritmo BFS > tenieudo en cuenta (1) Si v no es accesible desde S: $S(s,v) = \infty$ (por def. de "ser accesible").

Por otra parte, si v no es accesible desde 5 =>

⇒ Nunca se actualiza d[v] (que valdrá ∞)

d[v]= \((s,v) => luego tiene que ser accesible

(2) Como v es accesible desde S: $\delta(s,v) < \infty$

Consideremos el enlace u >v, donde u es el predecesor de v en el camino más corto entre 5 m. V.

Para este u si se cumple | d[u] = S(s,u) (**)

 $\delta(s,v) = \delta(s,u) + 1 \Rightarrow \delta(v) > \delta(s,u) + 1 \Rightarrow \delta(v) > \delta(v) > \delta(v) = \delta(v) > \delta(v) >$

(*) d[v] > 8(s,v) ciqué ocurre cuando BFS saca a W de la cola Q?

CASO 1: V es BLANCO: d[V] = d[U]+1; en contradicción con (***) → DESCARTAI
CASO 1: V es BLANCO: d[V] = d[U]+1; en contradicción converseio 22.4

:Aso 2: V es NEGRO: V estaba en la cola antes que U => d[v] \le d[u]; en contradicción con (**) > DESCARTADO sacanob

:ASO 3: V es Gris: Q=\\(\widetilde{\pi}\),..., V.... de acuerdo con L22.3 (i): d[V\(\widetilde{\pi}\)thmo] \le d[\widetilde{\pi}\]+. acuerdo con L22.3 (ii) d[v] \leq d[Villimo]. de

=> d[v] < d[u]+1; en contradicción con (***) > DESCARTADO

Entonces la hipotesis (*) es ERRONEA => BASE CONOCIMIENTO + META NEGADA es contradictoria

por lo que queda demostrado: d[v] = f(s,v) al final de BFS

•

EJERCICIO 1

									-
	Lo	Li	L2	L3	24	15	16	127	1
A	(Q)*	1	_	_	\ -	_	_	-	1
B	8	8	8	4e	(4e)*	-	_		1
С	8	8	35	(3g) ^t	-	_	_	_	†
D	œ	600	00	8	00	8	74	7€	+
E	$\int \infty$	5a	(29)	_	-	-	-	17	+
F	α	5a	5a	5a	5a	(5a)	_	}	$\frac{1}{2}$
G	8	(sa)			-	_		 -	ľ
H	00	∞	∞	8	8	66	66	(66)\$	
I	000	∞	69	69	5c	5c	(Sc)*	-	

	6
h-be	·e=g=a
CAMINO	optimo

PESO MINIMO

MI WINA:

No necesitamos examiar mas aristas porque a se han alcanzado todos los nodos.

ARISTA EXAMINADA	PESO	dE/0?
A-G	1	ϵ
G-E	1	E
€-В	2	E
B-H	2	E
H-D	1	ϵ
B-I	2	E
D-F	Z	ϵ
I-C	2	E

PESO TOTAL MÍNIMO! 13

Esercicio 3

ORDE DE EXPLORACIÓN:

ÁRBOL RESULTANTE:

DISTANCIA

MÍNIMA 3

EJERCICIO 5
® 3
T 1 4 3 6 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1
HETA WICLO

									
,		Lo	14	162	163	14	125	126	7
	A	$ \infty $	3P	39	3p	36	(36)	* _	7
	В	(0)	-	_	_	_	1-	-	$\cdot $
1	C	∞	(46)*		_		1-	-	t
	D	∞	8	(2c)*	-	_	-	<u> </u>	ŀ
	Ε	∞	00	2c	(2c)	_	_	-	
	F	00	8	8	8	8	49	49	
1	G	∞	2b	26	2b	(26)*	_	-	H
L	Н	∞	46	30	3c	3c	3c	(3c)*	1
	I	∞	00	∞	∞	8	@	00	
	2	∞	00	∞	00	∞	00	∞	

ESERCICIO 8

sí que contiene un circuito hamiltoniano:

No contiene circuitos eulerianos ya que no todos sus vertices tienen grado par.

Para que sí que tenga, eliminamos
3 aristas:

- No necesitamos examinav rás aristas porque todos los nodos ya han sido alcanzados.

ARISTA EXAMINADA	PESO	ELEGIDA/DESCARTADI
B-C	1	E
C-D	1	E
C-E	1	ϵ
C-F	1 1	E
F-H	1	E
H-I	1	E
I-2	1	€
B-G	Z 2	E
C-G	2	D
C-H	2	D
D-E	2	D
G-F	2	D
A-B	3	E
G-H	2 2 3 3	
B-H	4	

nº nodos: 11 n° enlaces: 18

(7 vértices (3) jrados (A vértice (2)

2 vértices (4)

1 vértice (5)

nºnodos: 11 enlaces: 18

(7 vértices (3) 1 véctice (2) 2 véctices (4)

1 vértice (5)

; f(6) = K f(a) = h

£(2) = & 1 f(7) = i

(f(8) = C £(3) = a

14(9) = d f(4) = j

· f(10) = 9 · f(11) = f f(5)=b

nº nodos: 11 enlaces: 17

No es isomorfo porque no respeta uno los invariantes que existen bajo un isomerfismo (el nº de enlaces

iqual) es no

