

Deep Learning methods

• • • Why Deep Learning?

- Deep learning has helped to boost performance in multiple fields
 - Speech recognition
 - Language translation
 - Image processing
 - ...
- In most cases,
 - Data were structured in regular grids
 - Parameter sharing was advantageous
- How can we use DL on point clouds?
 - More generally, on graphs?

Speech recognition & Language translation

 Recurrent Neural Networks (RNNs)

Deep learning w/images

 Convolutional Neural Networks (CNNs)

IM&GENET

Convolutional Neural Networks (CNN)

- Coarse of dimensionality
 - Images of $\sim 10^6$ pixels
 - Very small ratio samples / dimension
 - CNNs useful for high-dimensional problems
 - Locality / Parameter sharing

• • • Compositional assumption

- Data (images, videos, sounds) are compositional
 - They are formed of patterns that are
 - Local
 - Stationary
 - Multi-scale (hierarchical)
- Convolutional neural networks
 - Leverage the compositionality structure of data
 - They extract compositional features

Locality

- Local
- Stationary
- Multi-scale (hierarchical)

- Inspired in the visual cortex
- Local receptive fields
 - Activate in the presence of local features

Stationarity

- Global stationarity
 - Translation invariance

- Stationary
- Multi-scale (hierarchical)

- Local stationarity
 - Similar patches are shared across the data domain
 - Local invariance
 - Good for intra-class variation

Multi-scale

- Local
- Stationary
- Multi-scale (hierarchical)

- Simple structures can be combined
 - To compose more abstract features
 - Those can be re-combined again in a similar fashion
 - Inspired by the brain
 - Visual primary cortex

• • • Compositional layers

 $\begin{array}{lll} \mathbf{f}_l & = & l\text{-th image feature (R,G,B channels), } \dim(\mathbf{f}_l) = n \times 1 \\ \mathbf{g}_l^{(k)} & = & l\text{-th feature map, } \dim(\mathbf{g}_l^{(k)}) = n_l^{(k)} \times 1 \end{array}$

Convolutional layer
$$\mathbf{g}_{l}^{(k)} = \xi \left(\sum_{l'=1}^{q_{k-1}} \mathbf{W}_{l,l'}^{(k)} \star \xi \left(\sum_{l'=1}^{q_{k-2}} \mathbf{W}_{l,l'}^{(k-1)} \star \xi \left(\cdots \mathbf{f}_{l'} \right) \right) \right)$$

Activation, e.g.
$$\xi(x) = \max\{x, 0\}$$
 rectified linear unit (ReLU)

Pooling
$$\mathbf{g}_{l}^{(k)}(x) = \|\mathbf{g}_{l}^{(k-1)}(x') : x' \in \mathcal{N}(x)\|_{p} \quad p = 1, 2, \text{ or } \infty$$

Compositional layers

Convolutional layers

- Parameters are shared across different "neurons"
- Huge reduction in computational complexity
 - With respect to Fully-Connected (FC) layers

Data domain for CNNs

- Domains with regular sampling structures
- 1-D Euclidean domain
 - Sentences, words
 - Sound
- 2-D Euclidean domain
 - Images
- 3-D Euclidean domain
 - Video
 - Volumes

How about point clouds? Input points are inherently not ordered

format ascii 1.0 element vertex 50140 property float x property float y property float z element face 99698 property list uchar int vertex_index 3.060000 -98.770000 -141.990000 9.430000 -104.880000 -139.440000 10.770000 -104.740000 -137.530000 10.400000 -108.510000 -138.260000 10.520000 -106.680000 -137.630000 8.570000 -98.240000 -142.080000 10.410000 -98.130000 -140.020000 10.330000 -97.290000 -140.040000 9.890000 -96.610000 -137.690000 9.960000 -98.340000 -137.080000 9.880000 -98.140000 -136.340000 10.200000 -95.580000 -140.100000 10.230000 -93.930000 -140.330000 9.820000 -94.990000 -138.350000 9.680000 -96.190000 -135.970000 9.550000 -95.620000 -133.700000 9.770000 -97.880000 -135.490000 9.630000 -93.270000 -138.780000 3.340000 -92.920000 -136.73000 9.290000 -93.270000 -135.460000 9.690000 -95.640000 -137.120000 9.510000 -94.540000 -136.370000 9.400000 -93.950000 -134.440000 9.310000 -93.260000 -132.070000 10.730000 -93.320000 -141.410000 9.460000 -88.070000 -140.420000 10.060000 -90.110000 -141.020000 9.490000 -87.160000 -140.250000 8.760000 -86.630000 -137.330000 9.810000 -89.620000 -140.580000 8.700000 -82.260000 -139.540000 9.050000 -85.310000 -140.120000 8.870000 -82.470000 -142.240000

format ascii 1.0 element vertex 82938 property float x property float v property float z element face 165137 property list uchar int vertex index -59.760000 -36.120000 -149.910000 -60.070000 06.140000 148.260000 -59.150000 -37.290000 -151.650000 -59.460000 -37.310000 -150.300000 -60.430000 -33.580000 -148.200000 -59.580000 -34.810000 -151.750000 -59.910000 -34.880000 -150.250000 -60.270000 -34.890000 -148.310000 -59 420000 -36.070000 -151.490000 -60.830000 -32.330000 -145.950000 -60.680000 -33.610000 -146.530000 -60.540000 -34.880000 -146.580000 -55.530000 -69.120000 -152.370000 -55.410000 -69.300000 -152.810000 -55.950000 -67.920000 -150.810000 -55.720000 -68.250000 -151.860000 -55.380000 -68.420000 -153.080000 -55.620000 -68.520000 -152.160000 -55.650000 -68.870000 -151.960000 -55.390000 -68.840000 -152.980000 -56.090000 -67.270000 -150.110000 -56.270000 -64.760000 -149.950000 -56.240000 -65.980000 -149.530000 -55.740000 -67.810000 -151.860000 -56.170000 -64.160000 -151.020000 -56.310000 -64.280000 -150.060000 -56.480000 -64.330000 -148.940000 -56.430000 -64.830000 -148.850000 -56.310000 -65.360000 -149.210000 -56.740000 -63.710000 -147.800000 -56.710000 -64.240000 -147.600000 -56.520000 -63.790000 -149.100000 -56.800000 -63.110000 -147.720000

How about point clouds? Input points are inherently not ordered

This does not work because surface points are not in correspondence

How can we apply DL to point clouds?

- Transform the representation
 - Voxelization
 - 3D-CNN
 - Projection / rendering
 - 2D-CNN
 - Feature extraction
 - Fully-connected networks
- Networks specifically designed for point clouds
 - PointNet / PointNet++
- Graph Neural Netowkrs
 - Generalization to non-Euclidean sampling grids

DL on point-clouds Transformed Representations

- Voxelization
 - 3D-CNN
- Projection / rendering
 - 2D-CNN
- Feature extraction
 - Fully-connected networks

Front View

DL on point-clouds: PointNet

End-to-end learning for point data

Scattered

Unordered

 Unified framework for various tasks

PointNet

- Unordered point set as input
 - The model should be invariant to permutations

Invariance to rigid transformations

Regularization:

Transform matrix A close to orthogonal:

$$L_{reg} = ||I - AA^T||_F^2$$

• • • PointNet

The model should be invariant to permutations

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples

$$f(x_1, x_2, ..., x_n) = \max\{x_1, x_2, ..., x_n\}$$
$$f(x_1, x_2, ..., x_n) = x_1 + x_2 + ... + x_n$$

. . .

- Then:
 - How can we construct a family of symmetric functions with neural networks?

PointNet

- For the function below
 - f is symmetric if g is symmetric

$$f(x_1,x_2,\ldots,x_n)=\gamma\circ g(h(x_1),\ldots,h(x_n))$$

PointNet

- In PointNet
 - g was chosen to be the MAX function
 - γ was chosen to be a Multi-Layer Perceptron (MLP)

PointNet

PointNet architecture

• • • Non-Euclidean data

Regulatory networks

3D shapes

Graphs/ Networks

Non-Euclidean data

 Can be handled generically by using graphs

• Graph
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

• Vertices
$$\mathcal{V} = \{1, \dots, n\}$$

• Edges
$$\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$$

• Vertex weights
$$b_i > 0 \text{ for } i \in \mathcal{V}$$

• Edge weights
$$a_{ij} \geq 0 \text{ for } (i,j) \in \mathcal{E}$$

• Vertex fields
$$L^2(\mathcal{V}) = \{f : \mathcal{V} \to \mathbb{R}^h\}$$

Represented as $\mathbf{f} = (f_1, \dots, f_n)$

• • • DL in Non-Euclidean data

Assumptions

- Non-Euclidean data are
 - Locally stationary
 - Compositional

Challenges

- How can we extend CNNs to graph-structure data?
 - How can we extend convolutions to graphs?
- How to define compositionality on graphs?
 - Convolution
 - Pooling
- How can we make the above operations efficient?
 - Computation in graphs tends to be expensive

• • • DL in Non-Euclidean data

- How about a direct extension based on neighborhoods?
 - Convolution / Pooling

Euclidean neighborhood

Non-Euclidean neighborhood

DL in Non-Euclidean data

- How about a direct extension based on neighborhoods?
 - Convolution / Pooling
- Numerous disadvantages
 - Non-regular neighborhoods
 - Variable sizes / cardinality
 - Cannot properly order points
 - Cannot share weights
 - Not compositional
 - Not efficient

Non-Euclidean neighborhood

• • • DL in Non-Euclidean data

- How about a direct extension based on neighborhoods?
 - Convolution / Pooling
- 3 main solutions have been proposed
 - DL extensions based on RNNs
 - Message passing between neighboring nodes
 - DL extensions based on CNNs
 - Convolutions in the spectral domain
 - Convolutions directly on the graph

- Relies on the decomposition of the surface geometry into its spatial frequency components,
 - Much like a Fourier transform for 1D signals

- The spectrum from the Laplacian operator
 - Eigen-decomposition
 - Eigen-values are the spatial frequencies
 - Eigenvectors are the basis functions
 - Illustration from the 1-D case
 - The sampled function is defined over a uniform 1-D grid

$$\Delta x = -K x$$

$$K = \left(egin{array}{ccccc} 2 & -1 & & & -1 \ -1 & 2 & -1 & & & \ & \ddots & \ddots & \ddots & \ & & -1 & 2 & -1 \ -1 & & & -1 & 2 \end{array}
ight)$$

- Illustration from the 1-D case
 - The sampled function is defined over a uniform 1-D grid

- Illustration from the 1-D case
 - The sampled function is defined over a uniform 1-D grid
 - The eigendecomposition yields

$$\Delta \phi_j = \lambda_j \phi_j \qquad \phi_j \quad \begin{cases} \sqrt{1/n} & \text{if } j = 1 \\ \sqrt{2/n} \sin(2\pi h \lfloor j/2 \rfloor/n) & \text{if } j \text{ is even} \\ \sqrt{2/n} \cos(2\pi h \lfloor j/2 \rfloor/n) & \text{if } j \text{ is odd} \end{cases} .$$

$$\Delta x = -K x$$

$$K = \left(egin{array}{ccccc} 2 & -1 & & & -1 \ -1 & 2 & -1 & & & \ & \ddots & \ddots & \ddots & \ & & -1 & 2 & -1 \ -1 & & & -1 & 2 \end{array}
ight)$$

- The graph Laplacian
 - Multiple definitions have been proposed
 - The straight-forward generalization is known as the combinatorial Laplacian
 - Also called unnormalized Laplacian

$$\Delta = D - A$$

$$A_{ij} = egin{cases} 1 & i \ and \ j \ are \ neighbors \ 0 & otherwise \end{cases}$$

$$D_{ij} = \begin{cases} d_i = |N(i)| & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

1-D case
$$\Delta x = -K \, x$$

$$A_{ij} = \begin{cases} 1 & i \text{ and } j \text{ are neighbors} \\ 0 & \text{otherwise} \end{cases}$$

$$D_{ij} = \begin{cases} d_i = |N(i)| & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

$$K = \begin{pmatrix} 2 & -1 & & -1 \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ -1 & & & -1 & 2 \end{pmatrix}$$

- The graph Laplacian
 - Multiple definitions have been proposed
 - The straight-forward generalization is known as the combinatorial Laplacian
 - Also called unnormalized Laplacian
 - The adjacency can be further generalized to edge weights W

$$\Delta = D - W$$

$$W_{ij} = w(e_{ij}) = w_{ij}$$

$$w: E \to \mathbb{R}^+$$
, whenever $(i, j) \in E$.

$$D_{ii} = \sum_{j \in N(i)} w_{ij}$$

- The graph Laplacian
 - Multiple definitions have been proposed
 - The straight-forward generalization is known as the combinatorial Laplacian

$$\Delta = D - A$$

Normalized Laplacian

$$\mathbf{\Delta} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$$

- Laplace-Beltrami Operator
 - Geometric Laplacian

$$\mathbf{L}(\mathbf{x}_i) = \frac{1 b_i}{2 A_M} \sum_{j \in N_1(\mathbf{x}_i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{x}_i - \mathbf{x}_j)$$

- The Laplacian on a graph of n vertices
 - Can be decomposed in n eigenvectors

$$\Delta \phi_k = \lambda_k \phi_k, \quad k = 1, 2, \dots \qquad \Delta = \Phi^T \Lambda \Phi$$

• Eigenvectors are real and orthonormal

$$\langle \phi_k, \phi_{k'} \rangle_{L^2(\mathcal{V})} = \delta_{kk'}$$

- The eigenvectors of the Lalpacian are analogous to the Fourier basis functions on the graph
 - Later, we take advantage of this and use the convolution theorem

• • • Spectral methods on graphs

- Have been applied to a wide variety of problems
 - Mesh segmentation & correspondence
 - Surface smoothing and reconstruction
 - Watermarking

Reconstructions obtained with an increasing number of eigenfunctions.

• • • Spectral convolution

- Given two continuous functions f, g
 - Their convolution defined as

$$(f \star g)(x) = \int_{-\pi}^{\pi} f(x')g(x - x')dx'$$

• Maps into a product in the Fourier domain

$$\mathcal{F}\{f \star g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\}$$

In the case of discrete signals (vectors)

$$\mathbf{f} = (f_1, \dots, f_n)^{\top} \text{ and } \mathbf{g} = (g_1, \dots, g_n)^{\top}$$
 $\mathbf{f} \star \mathbf{g} = \mathbf{\Phi} (\mathbf{\Phi}^{\top} \mathbf{g} \circ \mathbf{\Phi}^{\top} \mathbf{f})$
Fourier basis

• • • Spectral convolution

• In graphs, we work by analogy to the discrete case

$$\mathbf{f} = (f_1, \dots, f_n)^{\top} \text{ and } \mathbf{g} = (g_1, \dots, g_n)^{\top}$$

 $\mathbf{f} \star \mathbf{g} = \mathbf{\Phi} (\mathbf{\Phi}^{\top} \mathbf{g} \circ \mathbf{\Phi}^{\top} \mathbf{f})$

Where the Fourier basis comes from the Laplacian

$$\mathbf{\Delta} = \mathbf{\Phi}^T \mathbf{\Lambda} \mathbf{\Phi}$$
• Therefore
$$\mathbf{f} \star \mathbf{g} = \mathbf{\Phi}^T \mathbf{g} \circ \mathbf{\Phi}^T \mathbf{f}$$

$$\hat{g}_{\theta}(\mathbf{\Lambda}) = \operatorname{diag}(\theta)$$

$$= \mathbf{\Phi} \hat{g}(\mathbf{\Lambda}) \mathbf{\Phi}^T \mathbf{f}$$

 $\theta \in \mathbb{R}^n$ is a vector of Fourier coefficients

• • • Spectral convolution

• In graphs, we work by analogy to the discrete case

$$\mathbf{f} = (f_1, \dots, f_n)^{\top} \text{ and } \mathbf{g} = (g_1, \dots, g_n)^{\top}$$

 $\mathbf{f} \star \mathbf{g} = \mathbf{\Phi} (\mathbf{\Phi}^{\top} \mathbf{g} \circ \mathbf{\Phi}^{\top} \mathbf{f})$

Where the Fourier basis comes from the Laplacian

$$\mathbf{\Delta} = \mathbf{\Phi}^T \mathbf{\Lambda} \mathbf{\Phi}$$

Theretore

$$\mathbf{f} \star \mathbf{g} = \mathbf{\Phi} (\mathbf{\Phi}^{\top} \mathbf{g} \circ \mathbf{\Phi}^{\top} \mathbf{f})$$

$$\hat{g}_{\theta}(\mathbf{\Lambda}) = \operatorname{diag}(\theta)$$

$$= \mathbf{\Phi} \hat{g}(\mathbf{\Lambda}) \mathbf{\Phi}^{\top} \mathbf{f} = \hat{g}(\mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^{\top}) \mathbf{f} = \hat{g}(\mathbf{\Delta}) \mathbf{f}$$

 $\theta \in \mathbb{R}^n$ is a vector of Fourier coefficients

• • • Graph pooling

- Equivalent to graph downsampling
 - Graph coarsening
 - Graph partitioning
 - Lots of research
 - But NP-hard problem

- Approximate solutions
 - Not guaranteed to be optimal
 - But often suffice for our needs
- Structured pooling
 - Arrangement of the node indexing
 - Adjacent nodes are hierarchically merged

- Structured pooling
 - Arrangement of the node indexing
 - Adjacent nodes are hierarchically merged
 - Requires adding "ghost" nodes
 - As efficient as a 1D-Euclidean grid pooling

- Structured pooling
 - Arrangement of the node indexing
 - Adjacent nodes are hierarchically merged
 - Requires adding "ghost" nodes
 - As efficient as a 1D-Euclidean grid pooling

- Structured pooling
 - Arrangement of the node indexing
 - Adjacent nodes are hierarchically merged
 - Requires adding "ghost" nodes
 - As efficient as a 1D-Euclidean grid pooling

- Structured pooling
 - Arrangement of the node indexing
 - Adjacent nodes are hierarchically merged
 - Requires adding "ghost" nodes
 - As efficient as a 1D-Euclidean grid pooling

- Structured pooling
 - Arrangement of the node indexing
 - Adjacent nodes are hierarchically merged
 - Requires adding "ghost" nodes
 - As efficient as a 1D-Euclidean grid pooling

- Structured pooling
 - Arrangement of the node indexing
 - Adjacent nodes are hierarchically merged
 - Requires adding "ghost" nodes
 - As efficient as a 1D-Euclidean grid pooling

• • • Vanilla graph CNNs

Graph convolutional layer

$$\mathbf{f}_l = l$$
-th data feature on graphs, $\dim(\mathbf{f}_l) = n \times 1$

 $\mathbf{g}_l = l$ -th feature map, $\dim(\mathbf{g}_l) = n \times 1$

Conv. layer
$$\mathbf{g}_l = \xi \left(\sum_{l'=1}^p \mathbf{W}_{l,l'} \star \mathbf{f}_{l'} \right)$$

Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU)

• • • Vanilla spectral graph CNNs

The convolutional layer in the spatial domain

$$\mathbf{g}_{l} = \xi \left(\sum_{l'=1}^{p} \mathbf{W}_{l,l'} \star \mathbf{f}_{l'} \right)$$

 Can be replaced by a filter expressed in the spectral domain

$$\mathbf{g}_{l} = \xi \left(\sum_{l'=1}^{p} \mathbf{W}_{l,l'} \star \mathbf{f}_{l'} \right) \qquad \mathbf{g} \star \mathbf{f} = \mathbf{\Phi} \, \hat{g}(\mathbf{\Lambda}) \mathbf{\Phi}^{\top} \mathbf{f}_{l'}$$

$$\mathbf{\Phi} \hat{\mathbf{W}}_{l,l'} \mathbf{\Phi}^{\top} \mathbf{f}_{l'}$$
• (n × n) diagonal matrix

• Filter coefficients in the spectral domain

• • • Graph Compositional layers

 $\mathbf{f}_l = l \, l$ -th data feature on graphs, $\dim(\mathbf{f}_l) = n \times 1$ $\mathbf{g}_l^{(k)} = l \, l$ -th feature map, $\dim(\mathbf{g}_l) = n \times 1$

Convolutional layer
$$\mathbf{g}_l^{(k)} = \xi \left(\sum_{l'=1}^{q^{(k-1)}} \mathbf{\Phi} \mathbf{\hat{W}}_{l,l'}^{(k)} \mathbf{\Phi}^{\top} \mathbf{g}_{l'}^{(k-1)} \right)$$

$$\xi(x) = \max\{x, 0\}$$
 rect

Activation, e.g. $\xi(x) = \max\{x, 0\}$ rectified linear unit (ReLU)

$$\mathbf{g}_{l}^{(k)}(x) = \|\mathbf{g}_{l}^{(k-1)}(x') : x' \in \mathcal{N}(x)\|_{p} \quad p = 1, 2, \text{ or } \infty$$

Graph CNNs on a synthesized graph

- MNIST digits database
 - Images were sub-sampled
 - **400** points
 - Non-regular graph

• Example of the first two eigenvectors of the Laplacian

• • • Spectral domain issues

• Direct operation in spectral domain

$$\mathbf{g}_{l}^{(k)} = \xi \left(\sum_{l'=1}^{q^{(k-1)}} \mathbf{\Phi} \hat{\mathbf{W}}_{l,l'}^{(k)} \mathbf{\Phi}^{\top} \mathbf{g}_{l'}^{(k-1)} \right)$$

- Allows to compute convolutions on a graph
- But is computationally expensive
 - O(n) parameters to be learned in each layer
 - O(n²) complexity to transform between domains
 - Fourier and invers Fourier
 - O(n³) complexity for the eigen-decomposition of the Laplacian
- No guarantee of spatial localization of filters

• • • Toward spatial localization

- Localization in space
 - Implies smoothness in the spectrum
- SplineNet
 - Re-define the spectral filter parameters
 - As linear combinations of smooth kernel functions
 - Based on splines
- ChebNet
 - Re-define the spectral filter parameters
 - With polynomials of the Laplacian eigenvalues

$$w_{\alpha}(\lambda) = \sum_{j=0}^{r} \alpha_j \lambda^j$$

• • • ChebNet

- Re-define the spectral filter parameters
 - With polynomials of the Laplacian eigenvalues

$$w_{\alpha}(\lambda) = \sum_{j=0}^{r} \alpha_j \lambda^j$$

- Spectral filters of this type will be r-localized (in space)
 - Equivalent spatial coefficients beyond rneighbors will be zero
- Exact control of the spatial support of the filters
- Parameter complexity reduced to O(r)

• • • ChebNet

Chebynet

Spectral GCNN

$$\mathbf{g}_{l}^{(k)} = \xi \left(\sum_{l'=1}^{q^{(k-1)}} \mathbf{\Phi} \mathbf{W}_{l,l'}^{(k)} \mathbf{\Phi}^{\top} \mathbf{g}_{l'}^{(k-1)} \right)$$

Spectral polynomials
$$\mathbf{g}_{l}^{(k)} = \xi \left(\sum_{l'=1}^{q^{(k-1)}} w_{\alpha}^{(k)}(\boldsymbol{\Delta}) \mathbf{g}_{l'}^{(k-1)} \right)$$

Therefore

- O(n) parameters $\Rightarrow O(r)$ parameters
- O(n²) complexity to transform between domains
 - Reduced to approximately O(n) for sparse graphs
- O(n³) complexity for eigen-decomposition of Laplacian
 - No need to explicitly compute the spectrum of the graph

- Recursive formulation of filters
 - Using Chebyshev polynomial expansion
 - More stable under perturbations
 - Better behavior for optimization
 - Approximate solution
 - The Laplacian must be scaled appropriately

$$w_{\alpha}(\Delta)\mathbf{f} = \sum_{j=0}^{r} \alpha_j \Delta^j \mathbf{f}$$

$$w_{\alpha}(\Delta)\mathbf{f} = \sum_{j=0}^{r} \alpha_{j} \Delta^{j}\mathbf{f}$$
 $\omega_{\alpha}(\tilde{\Delta})\mathbf{f} = \sum_{j=0}^{r} \alpha_{j} T_{j}(\tilde{\Delta})\mathbf{f}$

$$T_j(\tilde{\lambda}) = 2\tilde{\lambda}T_{j-1}(\tilde{\lambda}) - T_{j-2}(\tilde{\lambda})$$

$$T_0(\tilde{\lambda}) = 1, \quad T_1(\tilde{\lambda}) = \tilde{\lambda}$$

Experiments in a Euclidean grid

- Digit recognition
 - MNIST database

Graph: a 8-NN graph of the Euclidean grid

Model	Order	Accuracy
LeNet5	-	99.33%
SplineNet	25	97.75%
ChebNet	25	99.14%

Running time

Beyond ChebNet I: CayleyNet

- Some graphs are difficult for ChebNet
 - For example, community graphs
 - In such cases ChebNet requires relatively high-order polynomials

Synthetic graph with 15 communities

Beyond ChebNet I: CayleyNet

- CayleyNet
 - Use the Cayley transform

$$C(\lambda) = \frac{\lambda - i}{\lambda + i}$$

- To map the (scaled) eigenvalues of the Laplacian
 - Non-linearly to the unit circle
 - Spectral zoom

$$C(\underline{h\lambda}) = (h\lambda - i)(h\lambda + i)^{-1}$$

Cayley transform $C(h\lambda)$ for (left-to-right) $h=0.1,\,1,\,$ and 10 of the 15-communities graph Laplacian spectrum

Beyond ChebNet I: CayleyNet

- Cayley polynomials of order r
 - Are a family of real-valued rational functions
 - With complex coefficients

$$\tau_{\mathbf{c}}(h\boldsymbol{\Delta}) = \boldsymbol{\Phi}\bigg(c_0 + \sum_{j=1}^r c_j C(h\boldsymbol{\Lambda})^j + \sum_{j=1}^r \bar{c_j} C(h\boldsymbol{\Lambda})^{-j}\bigg)\boldsymbol{\Phi}^T =$$

$$= c_0 + \sum_{j=1}^r c_j C(h\boldsymbol{\Delta})^j + \sum_{j=1}^r \bar{c_j} C(h\boldsymbol{\Delta})^{-j}$$

ChebNet vs CayleyNet on a Euclidean grid

• Chebyshev filters of order 3

Chebyshev filters of order 7

ChebNet vs CayleyNet on a Euclidean grid

• Chebyshev filters of order 3

• Cayley filters of order 3

ChebNet vs CayleyNet

- Cayley polynomials
 - Are richer than Chebychev polynomials
 - Can be understood as a generalization
 - Improved performance
- Computational cost
 - ChebNet is faster
 - Laplacian inversion
 - Exact O(n³)
 - Approximate solutions O(n)

Limitations of Spectral Graph CNNs

- Poor generalization to different graphs
 - Based on the spectrum of the Laplacian
 - Have been developed for fixed graphs only
 - Fourier basis not stable under graph perturbation
 - Difficult to generalize to variable graphs

$$\bullet \quad \text{Graph} \qquad \quad \mathcal{G} = (\mathcal{V}, \mathcal{E})$$

• Vertices
$$\mathcal{V} = \{1, \dots, n\}$$

• Edges
$$\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$$

• Vertex weights
$$b_i > 0$$
 for $i \in \mathcal{V}$

• Edge weights
$$a_{ij} \geq 0 \text{ for } (i,j) \in \mathcal{E}$$

• Vertex fields
$$L^2(\mathcal{V}) = \{f : \mathcal{V} \to \mathbb{R}^h\}$$

Represented as $\mathbf{f} = (f_1, \dots, f_n)$

Laplace-Beltrami Spectrum

- Takes into account the geometry of the graph
 - Not only the connectivity
 - Different geometries will have different spectrum
 - But the spectrum should be equivalent
 - Example of the first Laplace Beltrami eigenvectors
 - For two different shapes
 - Most of the times we are not so lucky.....

• • • Laplace-Beltrami Spectrum

- Takes into account the geometry of the graph
 - Not only the connectivity
 - Different geometries will have different spectrum
 - But the spectrum should be equivalent
 - Example of the first Laplace Beltrami eigenvectors
 - For two different shapes
 - Eigenvectors 5 to 8

• • • Laplace-Beltrami Spectrum

- Example of the first Laplace Beltrami eigenvectors
 - For two different local patches on the facial surface

RNN vs CNN motivation for Graph Neural Networks

- A Recurrent Neural Network (RNN)
 - Can be thought of as a special type of graph

Message passing

Graph Convolutional Nets can be seen equivalently

$$\mathbf{h_0} \quad \mathbf{h_1} \quad \cdots$$

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

RNN vs CNN motivation for Graph Neural Networks

- Both approaches developed from independent paths
 - They were shown to converge to similar formulations

Graph Neural Networks

- Applications to multiple domains
 - Computer graphics
 - Body pose and gestures
 - Citation networks / Social networks
 - Matrix completion
 - Molecule structure

• • • Additional Sources

- Slides inspired from several talks available on-line
 - Xavier Bresson
 - https://www.youtube.com/watch?time_continue=2&v=v3jZ RkvIOIM&feature=emb_logo
 - Federico Monti
 - https://www.youtube.com/watch?v=nCv05re-8lQ&t=1316s
 - Alex Gaunt
 - https://www.youtube.com/watch?time_continue=2&v=cWI eTMklzNg&feature=emb_logo

• • • Additional Sources

- J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, "Spectral networks and locally connected networks on graphs," in Proc. of ICLR, 2014.
- M. Defferrard, X. Bresson, and P. Vandergheynst, "Convolutional neural networks on graphs with fast localized spectral filtering," in Proc. of NIPS, 2016
- T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in Proc. of ICLR, 2017.
- F. Monti, M. Bronstein, and X. Bresson, "Geometric matrix completion with recurrent multi-graph neural networks," in Proc. of NIPS, 2017,

Reviews

- Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey on graph neural networks. *arXiv* preprint
- Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: going beyond euclidean data. *IEEE Signal Processing Magazine*