রসায়ন : দ্বিতীয় পত্র

অধ্যায়-৫: অর্থনৈতিক রসায়ন

ক, রি-সাইকেল কী?

ফুয়েল সেল পরিবেশবান্ধব কেন?

 উদ্দীপকের শিল্প উৎপাদটির প্রস্তুতির মূলনীতি প্রয়োজনীয় বিক্রিয়াসহ লেখা।

 উদ্দীপকের শিল্প উৎপাদটি প্রস্তুতকালে সৃষ্ট দূষকসমূহ দ্বারা পরিবেশের উপর সম্ভাব্য প্রভাব ব্যাখ্যা করো।

১ নং প্রশ্নের উত্তর

ক রিসাইকেল হচ্ছে এমন একটি প্রক্রিয়া যার মাধ্যমে পুরাতন বা বর্জ্য পদার্থ পরিবর্তন ও প্রক্রিয়াকরণ করে নতুন পদার্থে পরিণত করা হয়।

যু ফুয়েল সেল হচ্ছে এমন একটি তড়িৎ রাসায়নিক কোষ যার মাধ্যমে হাইড্রোজেন অথবা হাইড্রোজেনঘটিত জ্বালানিকে সরাসরি বৈদ্যুতিক শক্তি ও তাপে পরিণত করা হয়। এখানে উৎপাদ হিসেবে জলীয়বাষ্প ছাড়া আর কোনো পরিবেশ দূষণকারী ক্ষতিকর বর্জা উৎপাদিত হয় না। এজন্য ফুয়েল সেলকে পরিবেশবান্ধব বলা হয়।

উদ্দীপকে উল্লিখিত শিল্প উৎপাদটি হচ্ছে সিমেন্ট।
সিমেন্ট উৎপাদনের মূলনীতি: সূক্ষ্মভাবে চূর্ণ চুনাপাথর (CaCO₃),
ম্যাণনেসিয়াম কার্বনেট (MgCO₃) এবং SiO₂ (বালি) সমৃদ্ধ কাদামাটি
(Fe₂O₃, SiO₂, Al₂O₃ এর মিগ্রণ) এর মিগ্রণকে বিশেষ ধরনের
ঘূর্ণায়মান চুল্লীতে 1400 ~ 1600°C উচ্চ তাপমাত্রায় উত্তপ্ত করলে এক
ধরনের চূর্ণাকার মিগ্রণ পাওয়া যায়, যাকে ক্লিংকার বলে।

ক্রিংকারকে পেষণ যন্ত্রে অতি সৃক্ষভাবে চূর্ণ করলে এক ধরনের ধূসর বর্ণের পাউডার পাওয়া যায়, যাকে সিমেন্ট বলে। কাঁচামাল হিসেবে ব্যবহৃত বিভিন্ন অক্সাইড (প্রধানত CaO, SiO2, Al2O3, Fe2O3, MgO) চুল্লীর অভান্তরে ভশ্মীকরণ (Calcining) তাপমাত্রায় দ্বিবিয়োজন বা প্রশমন বিক্রিয়া দ্বারা ডাইক্যালসিয়াম সিলিকেট (C2S); ট্রাইক্যালসিয়াম সিলিকেট (C3S); ট্রাইক্যালসিয়াম আালুমিনেট (3CaO.Al2O3) গঠিত হয়, এগুলোই সিমেন্টের প্রধান উপাদান। MgO য়ুক্ত অবস্থায় থাকে। K2O এবং Na2O এগুলো CaO, Al2O3, SiO2 ইত্যাদির সজো বিক্রিয়া করে। এছাড়া সিমেন্ট যাতে ধীরে ধীরে জমাট বাঁধে সে উদ্দেশ্যে সিমেন্টে জিপসাম (CaSO4. 2H2O) ব্যবহার করা হয়। কারণ সিমেন্ট দুত জমাট বাঁধলে সিমেন্টের ভিতরে ফাঁকা স্থান তৈরি হয়। ফলে সিমেন্টের সেটিং দুর্বল এবং ভক্লার হয়। অতএব সিমেন্টে জিপসাম ব্যবহৃত হলে, সিমেন্টের সেটিং মজবুত, শক্ত ও দীর্ঘস্থায়ী হয়।

 $2 \text{ CaO} + \text{SiO}_2 \longrightarrow 2 \text{CaO.SiO}_2$ (ডাইক্যালসিয়াম সিলিকেট)

3 CaO + SiO₂ → 3CaO.SiO₂ (ট্রাইক্যালসিয়াম সিলিকেট)

3 CaO + Al₂O₃ → 3CaO.Al₂O₃ (ট্রাইক্যালসিয়াম অ্যালুমিনেট) এসব বিক্রিয়ার সজে কাদামাটির নির্জনীকরণ এবং চুনাপাথরের ভ্রমীকরণও ঘটে।

 $CaCO_1 \xrightarrow{900 \sim 1000^{\circ}C} CaO + CO_2$

দ্রা উদ্দীপকের শিল্প উৎপাদ অর্থাৎ সিমেন্ট তৈরির সময় কাঁচামাল প্রধানত লাইমন্টোন বা চুনাপাথর ও ক্লে প্রথমে মেসিনে ভেঙে ছোট টুকরো এবং পরে মেশিনে পিষে পাউডার অবস্থায় পরিণত করা হয়। পরে মিশ্রণকে ঘূর্ণায়মান চুল্লি (rotary kiln) তে উত্তপ্ত করা হয়। এর্পে প্রাপ্ত ক্লিংকারকে জিপসামের সাথে মিশানো হয়। প্রতিটি ধাপে এ সব কঠিন পদার্থ অতি ক্ষুদ্র কণা আকারে বাতাসে ছড়িয়ে যায়। এর্পে সিমেন্ট কারখানার চিমনি থেকে নির্গত কঠিন পদার্থের সূক্ষ কণা বাতাসে ভাসমান অবস্থায় দূর দূরান্তে ছড়িয়ে পড়ে বায়ুমগুলকে দূষিত করে। বাতাসে ছড়িয়ে পড়া এসব কঠিন পদার্থের সূক্ষ্ম কণা বিভিন্ন স্থানে ধূলা হিসেবে জমা হয়।

এছাড়া সিমেন্ট কারখানায় ক্লিংকার তৈরিতে ঘূর্ণায়মান চুল্লিতে প্রচুর কয়লা অথবা প্রাকৃতিক গ্যাস পোড়ানো হয়। চুল্লির বর্জ্য গ্যাসে CO₂ ও SO₂ গ্যাস থাকে। এর সাথে CO গ্যাস ও নাইট্রোজেনের অক্সাইডসমূহ, NOҳ বায়ুদ্যকর্পে অবস্থান করে। এসব দ্যক গ্যাস ও কঠিন রাসায়নিক বস্তুর সূক্ষ কণাসমূহ মানুষের শ্বাসনালী ও ফুসফুসে চুকে শ্বাসয়প্রের ক্ষতিকর রোগ সৃষ্টি করে। এছাড়া সালফার ও নাইট্রোজেনের অয়ধর্মী অক্সাইডসমূহ বাতাসের জলীয় বাষ্প ও অক্সিজেনের সাথে বিক্রিয়া করে যথাক্রমে H₂SO₄ ও HNO₃ উৎপন্ন করে, যা বৃষ্টির পানিতে মিশে এসিড বৃষ্টি সৃষ্টি করে। এসিড বৃষ্টির প্রভাবে জমির pH এর মান কমে গিয়ে মাটি উর্বরতা হারায় এবং অনেক গাছ-পালা বিনন্ট হয়। নদ-নদীর পানি ও প্রদের পানির pH এর মান কমে গেলে মাছসহ জলজ প্রাণীর অস্তিত্ব বিপন্ন হয়ে পড়ে।

ক. লবণ সেতু কী?

থ. প্লুকোজ পানিতে দ্ৰবণীয় কেন?

ণ্ ইউরিয়া উৎপাদনের মূলনীতি সমীকরণসহ লেখো।

ঘ. উদ্দীপকের X যৌগটির সর্বোচ্চ পরিমাণ উৎপাদনের জন্য নিয়ামকসমূহের প্রভাব আলোচনা করো। ৪

২ নং প্রশ্নের উত্তর

★ KCI, KNO3 ইত্যাদি এর সম্পৃক্ত দ্রবণ দ্বারা পূর্ণ U আকৃতির
কাচনল যা অর্ধকোষদ্বয়ের মাঝে পরোক্ষ সংযোগ সৃষ্টি করে এবং
অ্যানোড ও ক্যাথোড দ্রবণে আয়নের ভারসাম্য রক্ষা করে তাকে লবণ
সত্রবলে।

রুকোজ পানিতে দ্রবণীয় কারণ পোলার পানির অণু গ্লুকোজ অণুর সাথে সংযুক্ত হয়। পানির অণু ডাইপোল-ডাইপোল আকর্ষণের মাধ্যমে গ্লুকোজে বিদ্যমান OH মূলককে আক্রমণ করে H-বন্ধন গঠন করে। দুটি পাশ্ববতী গ্লুকোজ অণুর মধ্যবতী আকর্ষণ বল অপেক্ষা গ্লুকোজের অণুর ওপর পানির আকর্ষণ বল বেশি হওয়ায় পানি গ্লুকোজকে ক্রিন্টাল থেকে মুক্ত করে। এ প্রক্রিয়া ততক্ষণ চলতে থাকে যতক্ষণ না গ্লুকোজ পানিতে সম্পূর্ণ দ্রবীভূত হয়। এজন্য গ্লুকোজ পানিতে দ্রবণীয় হয়।

ইউরিয়া উৎপাদনের মূলনীতি: ইউরিয়া উৎপাদনের দুটি ইউনিট রয়েছে। যথা— অ্যামোনিয়া সংশ্লেষণ ও ইউরিয়া উৎপাদন। অ্যামোনিয়া সংশ্লেষণ: তরল বায়ু হতে আংশিক পাতন প্রণালীতে — 196°C তাপমাত্রায় N₂ এবং প্রাকৃতিক গ্যাস হতে H₂ সংগ্রহ করা হয়। প্রাপ্ত H₂ এবং N₂, 200 aux চাপে 1 ঃ 3 অনুপাতে পেষণ যত্নে প্রভাবকের উপস্থিতিতে NH₃ তে পরিণত হয়।

তরল বায়ু (N₂ + O₂) — আংশিক পাতন —196°C N₂

 $CH_4 \xrightarrow{1100^{\circ}C} C + 2H_2(g)$ Fe, 200 atm

 $N_2(g) + 3H_2(g) \xrightarrow{f(g) = 100} 2NH_3$ CO_2 ¶ δ ¬ : $CH_4(g) + 2O_2(I) \longrightarrow CO_2 + 2H_2O(I)$ ইউরিয়া উৎপাদন: অ্যামোনিয়া হতে সলভে প্রণালীতে ইউরিয়া উৎপাদন করা হয়। সংকৃচিত CO_2 এবং তরল NH_3 কে 1 * 2 মোলার অনুপাতে 378 atm বায়ুচাপে ও $200-210^{\circ}C$ তাপমাত্রায় বিক্রিয়া প্রকোন্টে প্রেরণ করা হয়। ফলে প্রথমে অ্যামোনিয়াম কার্বনেট ও পরে ইউরিয়ায় পরিণত হয়।

$$CO_2 + 2NH_3 \Longrightarrow O = C < \frac{ONH_4}{NH_2} \xrightarrow{\Delta} O = C < \frac{NH_2}{NH_2} + H_2O$$

$$CO_2 + NH_3$$

$$1 \quad 3 \quad 2$$

$$378 \text{ atm, } 200 - 210 ^{\circ}C$$

$$NH_3 \longrightarrow \text{Prior} \text{ First } \text{ prior} \text{ Figure}$$

$$NH_3 \longrightarrow \text{Residue} \text{ Prior} \text{ First } \text{ prior} \text{ Figure}$$

$$NH_3 \longrightarrow \text{Residue} \text{ NH}_3 \rightarrow \text{ Prior} \text{ Figure}$$

$$NH_3 \longrightarrow \text{Residue} \text{ NH}_3 \rightarrow \text{ Prior} \text{ Figure}$$

$$NH_3 \longrightarrow \text{Residue} \text{ NH}_3 \rightarrow \text{ Prior} \text{ Figure}$$

$$NH_3 \longrightarrow \text{ Prior} \text{ Prior}$$

$$NH_3 \longrightarrow \text{ Prior} \text{ Figure}$$

$$NH_3 \longrightarrow \text{ Prior} \text{ Prior}$$

$$NH_3 \longrightarrow \text$$

উৎপন্ন পিশুকে ফ্রাশ স্ট্রিপারে পাঠালে দানাদার ইউরিয়া উৎপন্ন হয় এবং অপরিবর্তিত CO₂ ও NH, পুনরায় রিসাইকেল করা হয়।

ষ্টেদীপকের X যৌগটি অ্যামোনিয়া। এক্ষেত্রে সংশ্লিষ্ট বিক্রিয়াটি হপো—
N₂(g) + 3H₂(g) —→ 2NH₃(g); ΔH = −92.4 kJ/mol
বিক্রিয়াটি তাপ উৎপাদী। তাই তাপমাত্রা বাড়ালে বিক্রিয়া পশ্চাৎ দিকে
গমন করবে এবং NH₃ এর উৎপাদন স্তাস পাবে। আবার তাপমাত্রা স্তাস
করা হলে বিক্রিয়া সামনের দিকে অগ্রসর হবে। কিন্তু বিক্রিয়ার গতি প্রাস
পাবে ফলে উৎপাদনের হার স্তাস পাবে। এ দুটি বিপরীত অবস্থার
কারণে বিক্রিয়াটি অত্যানুকুল তাপমাত্রায় (450 – 550°C) ও Al₂O₃
প্রভাবকের উপস্থিতিতে চালনা করা হয়। এতে বিক্রিয়ার গতি ও
উৎপাদন যথেন্ট হয়, য়া শিয় ক্ষেত্রে কামা। আবার বিক্রিয়াটিতে একই
আয়তনে মোল সংখ্যা স্তাস পায়। তাই চাপ বৃশ্বি করলে বিক্রিয়া সামনে
এবং শ্রাস করলে পিছনে অগ্রসর হবে। এ কারণে অ্যামোনিয়া উৎপাদনে

200 atm চাপ প্রয়োগ করা যায় এবং এক্ষেত্রে যথেন্ট পরিমাণ উৎপাদ পাওয়া সম্ভব। আবার, বিক্রিয়াটিতে N_2 এবং H_2 এর ঘনমাত্রা বৃদ্ধি এবং ন্যুনতম একটি উৎপাদকে বিক্রিয়াস্থল থেকে অপসারণের মাধ্যমে যথেন্ট উৎপাদ পাওয়া যায়।

তাই উপরোক্ত পর্যালোচনা শেষে বলা যায় যে, NH3 এর সর্বোচ্চ পরিমাণ উৎপাদ পাওয়ার জন্য নিয়ামকসমূহের যথেক্ট ভূমিকা রয়েছে।

প্রনা ১০ ইউরিয়া একটি নাইট্রোজেন ঘটিত সার। পৃথিবীতে সার হিসেবে এর ব্যবহার ৩য় স্থানে। /ঢা. বো. ২০১৫/

ক্. ব্যাপন কী?

থ. H₂O একটি উভধমী পদার্থ— ব্যাখ্যা করো।

গ. উদ্দীপকে উল্লেখিত সারটি প্রাকৃতিক গ্যাস থেকে তৈরির মূলনীতি লেখো।

 উদ্দীপকে উল্লেখিত সারটির উৎপাদন শিল্প হতে সৃষ্ট ক্ষতিকর প্রভাব বিশ্লেষণ করে।

৩ নং প্রশ্নের উত্তর

ক পদার্থের অণুসমূহের বেশি ঘনত্বের স্থান থেকে কম ঘনত্বের দিকে স্বতঃস্ফূর্তভাবে ছড়িয়ে পড়ার ঘটনাকে ব্যাপন বলে।

প্রাটনীয় মতবাদ অনুসারে যেসব অণু বা আয়ন অবস্থাভেদে প্রোটন দাতা ও গ্রহীতা উভয় প্রকার আচরণ করে অর্থাৎ অন্ধ ও কারক উভয়রূপে ক্রিয়া করে তাদেরকে উভধমী পদার্থ বলে। পানি একটি উভধমী পদার্থ। কারণ পানি ক্ষারের সাথে বিক্রিয়া করার সময় ক্ষারকে প্রোটন দান করে, আবার এসিডের সাথে বিক্রিয়া করার সময় প্রোটন গ্রহণ করে।

 $NH_3 + H_2O = NH_4^+ + OH^-$

 $H\dot{C}I + H_2O = H_3O^+ + CI^-$ সূতরাং এসিড ও ক্ষার উভয়ের সাথে ক্রিয়া করায় পানি একটি উভধর্মী পদার্থ।

উদ্দীপকে উল্লিখিত সারটি হলো ইউরিয়া। উচ্চ চাপে ও 170-190° তাপমাত্রায় NH₃ ও CO₂ এর মধ্যে বিক্রিয়া ঘটিয়ে ইউরিয়ার শিক্লোৎপাদন করা হয়। প্রাকৃতিক গ্যাস থেকে ইউরিয়া তৈরি তিনটি ধাপে সম্পন্ন হয়।

অবশিষ্ট অংশ ১১ (গ)নং সৃজনশীল প্রশ্লোত্তর দ্রুষ্টব্য।

য় উদ্দীপকে উল্লেখিত সারটি হলো ইউরিয়া। ইউরিয়া উৎপাদনের প্রতিটি ধাপে কোনো না কোনো দৃষক পরিবেশকে দৃষিত করে। এসব দৃষকের মধ্যে রয়েছে গ্যাসীয়, তরল ও কঠিন দৃষক। বায়ু দৃষকগুলোর মধ্যে C. N. S এর অক্সাইড ও NH3 আছে।

প্রাকৃতিক গ্যাস থেকে অ্যামোনিয়া গ্যাস উৎপাদনের সময় বায়ৄ
দূষকর্পে CO₂, N এর অক্সাইডসমূহ (NOҳ), SO₂ ও CO গ্যাস উৎপর
হয়।

ii. ইউরিয়া উৎপাদনের সময় বিভিন্ন ধাপে কারখানা থেকে NH, নির্গত হয়ে বায়ুর দূষণ ঘটায়। প্রতি টন ইউরিয়া উৎপাদনের সময় (a) অ্যামোনিয়া রিসাইক্লিংকালে 0.1-0.5 kg NH, (b) ইউরিয়া দ্রবণ ঘনীভূত করার সময় 0.1-0.2 kg NH, (c) দানাদার ইউরিয়া তৈরি করার সময় 0.2-0.7 kg NH, টাওয়ার ও অন্যান্য অংশ থেকে নির্গত হয়ে বায়ুমগুলে মিশে যায়।

বর্জ্য পানিতে দূষকসমূহ: আমোনিয়া উৎপাদনের সময় প্রতি ঘনমিটার বর্জ্য পানিতে প্রচুর পরিমাণে (প্রায় 1kg/m²) আমোনিয়া দূষক হিসেবে থাকে। প্রতি টন ইউরিয়া উৎপাদনের সময় প্রতি ঘনমিটার বর্জ্য পানিতে 0.1-2.6 kg ইউরিয়া ও নাইট্রোজেন থৌগ থাকে।

কঠিন দূষক: প্রাকৃতিক গ্যাস থেকে H_2 উৎপাদন ও NH_3 সংশ্লেষণে ব্যবহৃত প্রভাবকসমূহের কার্যক্ষমতা দ্রাসা পেলে তা পরিবেশে বর্জা পদার্থরূপে পরিত্যক্ত হয়। এসব ধাতব কঠিন পদার্থ পরিবেশে দূষকরূপে কাজ করে। এছাড়া চুনাপাথর ও চুনের গুঁড়া এবং ইউরিয়া প্যাকেজিং এ ব্যবহৃত প্লাশ্টিক ব্যাগ পরিত্যক্ত অবস্থায় দূষকের মধ্যে পড়ে।

প্রশ্ন > 8 A শিরের জ্বালানি —→ কয়লা

B শিরের উৎস \longrightarrow Na₂SiO₃, CaSiO₃

C শিয়ের উৎস → নরম কাঠ

ब्रा. त्या. २०५९/

क. BOD की?

খ. ফুয়েল সেল পরিবেশবান্ধব—ব্যাখ্যা করো।

গ. 'B' এর শিল্পোৎপাদনের মূলনীতি বর্ণনা করো।

ঘ. বায়ু দূষণে A ও C শিক্সের মধ্যে কোনটির ভূমিকা অধিক? বিশ্লেষণ করো।

৪ নং প্রশ্নের উত্তর

ত্র অণুজীব দ্বারা পানিতে বিদ্যমান বিভিন্ন দৃষকসমূহের জারণ প্রক্রিয়ায় যে পরিমাণ অক্সজেন প্রয়োজন হয় তাকে BOD (Biochemical Oxygen Demand) বলে।

🔃 ১ (খ)নং সূজনশীল প্রশ্নোত্তর দ্রন্টব্য।

ত্র উদ্দীপকের B শিল্পের উৎস অর্থাৎ কাঁচামাল ইচ্ছে Na₂SiO₃, CaSiO₃ । কাজেই B শিল্পটি হলো কাচ উৎপাদন শিল্প।

কাচ উৎপাদনের মূলনীতি: প্রথমে বালি বা কোয়ার্টজ অন্যান্য ধাতব অক্সাইড বা কার্বনেটের (সোডিয়াম ও পটাশিয়াম কার্বনেট ছাড়া) সাথে যেমন— চুন, অ্যালুমিনা বা লেড অক্সাইড ইত্যাদি মিপ্রিত করে উত্তপ্ত করলে সিলিকেটের একটি গলিত মিপ্রণ পাওয়া যায়। যখন এটিকে শীতল করা হয়, তখন কাচে পরিণত হয়। কাচের নির্দিষ্ট কোনো সংযুতি নেই। তরল কাচ দুত শীতল করলে স্বচ্ছ, বর্ণহীন কাচরূপ পদার্থ পাওয়া যায়, তাই এটিকে অতিশীতলীকৃত তরল বলা হয়। কাচ তৈরির প্রধান কাঁচামালসমূহ হচ্ছে— বালি বা বিশুন্ধ কোয়ার্টজ, সোডা, চুন, ফেল্ডস্পার, বোরাক্স, সন্টকেক, কালেট ইত্যাদি।

রাসায়নিক বিক্রিয়া: কাচ উৎপাদনে নিম্নলিখিত রাসায়নিক বিক্রিয়া সংঘটিত হয়—

 $Na_2CO_3 + aSiO_2 \rightarrow Na_2O.aSiO_2 + CO_2$ $CaCO_3 + bSiO_2 \rightarrow CaO.bSiO_2 + CO_2$ $Na_2SO_4 + cSiO_2 + C \rightarrow Na_2O.cSiO_2 + SO_2 + CO$ শেষ বিক্রিয়াটি নিম্নলিখিত তিনটি ধাপে সংঘটিত হয়-

 $Na_2SO_4 + C \rightarrow Na_2SO_3 + CO$

 $2Na_2SO_4 + C \rightarrow 2Na_2SO_3 + CO_2$

 $Na_2SO_3 + cSiO_2 \rightarrow Na_2O.cSiO_2 + SO_2$

য় উদ্দীপকের A হচ্ছে কর্মলাভিত্তিক বিদ্যুৎকেন্দ্র এবং C হচ্ছে কাগজ শিল্প।

কয়লাভিত্তিক বিদ্যুৎকেন্দ্র থেকে যে কালো ধোয়া বের হয় তাতে প্রচ্ব পরিমাণে দৃষক গ্যাস থাকে। নির্গত CO₂ বিশ্ব উষ্ধায়ন ও জলবায়ু পরিবর্তন্ধের জন্য দায়ী। কয়লার দহনে সৃষ্ট SOҳ, NOҳ প্রভৃতি এসিড বৃষ্টি ঘটায়। কয়লা নবায়নয়োগ্য ছ্বালানি নয়। এটির দহনে CO গ্যাস সৃষ্টি হয় য় পরিবেশের মারায়্মক দূষণ ঘটায়। বর্জাতাপ বায়ুতে মিশে অথবা নদী য়প্রদের পানিকে উত্তপ্ত করে পরিবেশের উপর বির্প প্রভাব ফেলে। কয়লার দয়নের ফলে নির্গত সীসা ওৢআর্সেনিক খাদ্যশৃঙ্গলে প্রবেশ করে পরিবেশের উদ্ভিদ ও প্রাণী উভয়ের উপর বির্প প্রভাব ফেলে। অপরদিকে কাগজ শিল্পে নির্গত দূষকের মধ্যে রয়েছে Hg, H₂S, সালফাইড, মারক্যাপটান, এসিড বাষ্প প্রভৃতি। এদের মধ্যে অধিকাংশ দূষকই পানির pH এর মান পরিবর্তন করে জলজ জীবের জন্য বির্প পরিবেশ সৃষ্টি করে। তবে বায়ু দূষণে এ শিল্পের ভূমিকা কয়লা ভিত্তিক শিল্পের ভূলনায় অনেক কম থাকে। কারণ এখানে নির্গত দূষকসমূহ অধিকাংশ পানি অথবা মাটি দূষণ ঘটায়।

উপরিউক্ত আলোচনার প্রেক্ষিতে বলা যায় যে, বায়ুর দূষণে কয়লাভিত্তিক শিল্প হতে নির্গত দূষকের ভূমিকা অধিক।

প্রয় > ৫

क. ppm की?

থ. 96 গ্রাম O2 এর জন্য ভ্যান্ডারওয়ালস সমীকরণ লেখো।

ণ. 🖪 থেকে B প্রস্তুতির পম্প্রতি বর্ণনা করো।

ঘ. C থেকে কীভাবে B পুনরুস্ধার করা যায় তার বর্ণনা দাও। 8

৫ নং প্রয়ের উত্তর

ক্র ppm (parts per million) হলো প্রতি million অর্থাৎ দশ লক্ষ ভাগ দ্রবণে বা প্রতি 106 অংশ দ্রবণে যত ভাগ অংশ দ্রব দ্রবীভূত থাকে।

96 গ্রাম O₂ এর জন্য ভ্যান্ডার ওয়ালস সমীকরণ :

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

$$\Rightarrow \left(P + \frac{9a}{V^2}\right)(V - 3b) = 3RT$$

$$= \frac{96}{32} \text{ mol}$$

$$= 3 \text{ mol}$$

এটাই 96 গ্রাম O2 গ্যাসের জন্য ভ্যানভার ওয়ালসের সমীকরণ।

উদ্দীপকের কঠি, বাঁশ ইত্যাদির প্রক্রিয়াজাতকরণের মাধ্যমে তৈরিকৃত যে উপকরণের কথা বলা হয়েছে তা হলো কাগজ। আর কাগজ উৎপাদনের জন্য মন্ত বা পালৃপ প্রধান উপকরণ যা কঠি, বাঁশ, খড় ইত্যাদি থেকে তৈরি করা হয়। কঠি ও বাঁশ থেকে কাগজ উৎপাদন প্রধান দুইটি ধাপে সম্পন্ন হয়। যথা—

অবশিষ্ট অংশ ৭ (গ) নং সৃজনশীল প্রশ্নোত্তর দুষ্টব্য।

নিম্নলিখিত উপায়ে C হতে B পুনরুস্থার করা যাবে। ব্যবহৃত ও অব্যবহৃত কাগজ ও কাগজের টুকরাগুলোকে সংগ্রহ করা হয়। একে চাপ প্রয়োগ করে বান্ডিলে পরিণত করে নেওয়া হয়। অতঃপর একে রিসাইকেল কারখানায় নিয়ে কাটার মেশিনে টুকরা করে ট্যাংকের মধ্যে ফেলা হয়। ট্যাংকের মধ্যে পর্যাপ্ত পানির প্রবাহ রাখা হয় যাতে কাগজে লেগে থাকা কাদামাটি ও অন্যান্য দ্রবণীয় উপাদানসমূহ অপসারিত হয়।
এখান থেকে কাগজকে চলমান বেল্টের স্যহায্যে রিফাইনিং চেম্বারে
নেওয়া হয়। এখানে একটি মোচাকার স্বেল থাকে। সেলের ভিতর
অনেকগুলো দাঁত ও ঘূর্ণায়ম্বান কোর থাকে। এর প্রভাবে কাগজের
টুকরাগুলো সৃষ্ট্র কণায় পরিণত হয়ে যায় এবং বেশির ভাগ পানি
অপসারিত হয়ে যায়।

অনেকটা পেস্ট আকারের এ উপাদানের মধ্যে কোনোরূপ সাদা লিকার বা কুকিং এজেন্ট যোগ করার প্রয়োজন হয় না। কারণ কাগজের টুকরার মধ্যে কোনো লিগনিন থাকে না। এ অবস্থায় একে ব্লিচ করা হয়। যা কাণজের অবাঞ্চিত বর্ণকে দূর করে। এ পর্যায়ে এতে সামান্য ফিলিং এজেন্ট যোগ করে সিলিভার মেশিনে প্রেরণ করা হয়। এতে 5–7 টি সমান্তরাল ভ্যাট থাকে। প্রতিটি ভ্যাটে সদৃশ বা অদৃশ লঘু পেপার স্টক থাকে। প্রতিটি ভ্যাটের মধ্যে ঘূর্ণায়মান সিলিভার ভুবানো থাকে। এর ফলে সিলিন্ডারের ভিতর থেকে পানি অপসারিত হয়ে যায়। সিলিন্ডারটি এমনভাবে চলে যেন পেপার স্টক সিলিভারের উপরিভাগে জমা হয় এবং ভেজা স্তর চলমান বেন্টের সাথে লেগে যায়। কাগজসহ বেন্টটিকে আরও কিছুক্ষণ ঘুরানোর ফলে এটি অপর একটি সিলিন্ডারের সংস্পর্শে আসে এবং সেখান থেকে আরও একটি সিক্ত কাণজের স্তরকে সংগ্রহ করে নেওয়া হয়। চাপ প্রয়োগের ফলে এ দুটি স্তর লেগে গিয়ে নতুন শীটের সৃষ্টি করে। এ প্রক্রিয়াটি পুনঃপুন চলতে থাকে। এভাবে ভেজা শিট পাওয়া যায়। প্রাপ্ত শিটকে প্রেস রোল, স্টিম দ্বারা উত্তপ্ত করা শৃষ্ককারক রোল ও সবশেষে মসৃণকারী রোলার মেশিনের মধ্যে চালনা করে শৃষ্ক, মসৃণ ও অপেক্ষাকৃত ভারী কাগজের শিট উৎপন্ন করা হয়ে থাকে।

图湖▶6

2

KING COLUMN

क. COD की?

থ. অনুবন্ধী অম্ল ও অনুবন্ধী কারক ব্যাখ্যা করো।

গ. উদ্দীপকের শিল্পটি কীভাবে পরিবেশকে দূষিত করে?
 আলোচনা করো।

ঘ. উদ্দীপকে উল্লিখিত শিল্প কর্তৃক পরিবেশ দূষণ কীভাবে রোধ করা যায়? আলোচনা করো।

৬ নং প্রশ্নের উত্তর

ক বিয়োজন যোগ্য ও বিয়োজন অযোগ্য দূষকসমূহের জারণের জন্য প্রয়োজনীয় মোট অক্সিজেনের চাহিদাকে COD (Chemical Oxygen Demand) বলে।

কোনো ক্ষারকের সাথে একটি প্রোটন সংযোগের ফলে যে অল্পের সৃষ্টি হয় তাকে সে ক্ষারকের অনুবন্ধী অয় বলা হয়। য়য়য়ন:

কারক প্রোটন অনুবন্ধী অন্ন কোন অন্ন থেকে একটি প্রোটন অপসারণের ফলে যে ক্ষারক সৃষ্টি হয় তাকে সে অন্নের অনুবন্ধী ক্ষারক বলে। যেমন:

 $HCl \Longrightarrow H^+ + Cl^-$ এসিড প্রোটন অনুবন্ধী কারক

বা উদ্দীপকের টেক্সটাইল শিল্প পরিবেশকে যেভাবে দূষিত করে তা

 বর্জ্য পানিতে বিদ্যমান কঠিন ভাসমান পদার্থসমূহ প্রাকৃতিক জলীয় পরিবেশে বিরূপ প্রভাব সৃষ্টি করে। বিভিন্ন রাসায়নিক প্রজাতির এসব ভাসমান কঠিন তলানী হিসেবে জলাশয়ে সঞ্চিত হয়। মাছ ও জলজ প্রাণির ক্ষেত্রে এশব তলানী ক্ষতিকর প্রভাব ফেলে।

- বর্জ্যের কলয়েড জাতীয় এবং ভাসমান অপদ্রব্যসমূহ খাল, নদী, জলাশয়ের পানিকে ঘোলা করে। পানি ঘোলা হওয়ার কারণে সালোক সংশ্লেষণ প্রক্রিয়া বাধাগ্রস্থ হয়।
- iii. বর্জ্যের উচ্চ pH মান জলীয় জীবনের জন্য অত্যন্ত ক্ষতিকর। এ ধরনের উচ্চ pH মানে জলজ উদ্ভিদের বৃদ্ধি ও বিকাশ বাধাগ্রন্ত হয়।
- iv. দ্রবীভূত খনিজ লবণ পানির লবণাক্ততা বৃদ্ধি করে। ফলে এ পানি সেচ কাজে ব্যবহারের অনুপ্রোগী হয়ে পড়ে।
- ক্রোমিয়াম, অ্যানিলিন, সালফাইড জাতীয় পদার্থসমূহ মাছ ও অন্যান্য প্রয়োজনীয় অণুজীবের জন্য হুমকি হিসেবে কাজ করে।
- vi. তরল বর্জ্যে বিদ্যমান প্রধান দূষক, রঞ্জক পদার্থসমূহ জলজ জীবনের জন্য চরম ক্ষতিকর হিসেবে পরিগণিত হয়। রঞ্জক পদার্থসমূহ তরল বর্জ্যে দ্রবীভূত হিসেবে থাকে। এগুলো পানির বর্ণের পরিবর্তন ঘটায়।

য টেক্সটাইল শিল্পের দূষিত পানিতে প্রায় 72 ধরনের রাসায়নিক পদার্থ থাকে। এ ধরনের পানি থেকে অধিকাংশ রাসায়নিক পদার্থকে ETP (Effluent Treatment Plant) এর মাধ্যমে সরানো যায়। কাজেই এ শিল্পের বর্জা পানিকে পরিবেশে যুক্ত করার পূর্বে এর দূষকসমূহকে অপসারণ অত্যন্ত জরুরি। এতে পরিবেশ দূষণের হাত থেকে রক্ষা পাওয়া যায়।

ETP তে শিল্পজাত বর্জ্য বিশোধনে জীব প্রযুক্তি অন্যতম একটি গুরুত্বপূর্ণ পদ্ধতি। এটি বাতারয়ন সক্রিয়কৃত ল্লাজ প্রক্রিয়া নামেও অভিহিত। প্রাথমিক বিশোধন প্রক্রিয়া থেকে প্রাপ্ত তরল বর্জ্যকে (Q) বাতারয়ন ট্যাংকে প্রেরণ করা হয়। এখানে শুন্ধিকারক থেকে আগত সক্রিয় লাজের সাথে তরল বর্জ্যকে উত্তমরূপে মিপ্রিত করা হয়। বাতারয়ন ট্যাংকে ক্রমাগত বায়ু প্রবাহ চালনা করা হয়। এই ট্যাংকে তরল বর্জ্যকে অণুজীবের সংমিশ্রণের সংস্পর্শে নিয়ে আসা হয়। বাতাল্লয়ন ট্যাংকের অভ্যন্তরস্থ তরলকে মিপ্রিত লিকার বলা হয়।

বাতারয়ন ট্যাংকের অণুজীবের ঘনমাত্রা সাধারণত মিশ্রিত লিকার ভাসমান কঠিন হিসেবে পরিমাপ করা হয়। বাতারয়ন ট্যাংকে অণুজীব স্বাভাবিক প্রক্রিয়ায় বিকশিত হয়। অক্সিজেনের উপস্থিতিতে অণুজীবসমূহ বর্জার জৈব বস্তুকে সংগ্লেষণ ও শক্তির জন্য ব্যবহার করে। কোষের জৈবিক কার্য অক্ষুপ্ন রাখা ও প্রজননের জন্য শর্করা, লিপিড ও প্রোটিনের উৎপাদনের সাথে সাংগ্লেষিক কার্যক্রম সংগ্লিষ্ট। শ্বসন প্রক্রিয়ার মাধ্যমে জৈব বস্তুর জারণে শক্তি উৎপন্ন হয়। এ শক্তি অণুজীবের প্রাণ রাসায়নিক বিক্রিয়ার জন্য ব্যবহৃত হয়। পরবর্তী পর্যায়ে মিপ্রিত লিকারকে শুন্দিকারকে প্রেরণ করে অণুজীবকে বর্জার তরল অংশ থেকে পৃথক করা হয়। জীবভর শুন্দিকারকের তলদেশে জমা হয় এবং সক্রিয় অণুজীব সমৃন্ধ য়াজকে (R) চক্রায়িত করে নতুন তরল বর্জার সাথে যুক্ত শরে বাতারয়ন ট্যাংকে প্রেরণ করা হয়। শুন্দিকারকের উপরিভাগ থেকে পরিশোধিত তরলকে টারশিয়ারি বিশোধন প্রক্রিয়ার জন্য পাঠানো হয়। সেকেভারি বিশোধন প্রক্রিয়ায় বর্জার পানির BOD ব্যাপকভাবে হ্রাস করা হয়।

এভাবে টেক্সটাইল শিল্পের বর্জ্য থেকে পরিবেশ দৃষণ রোধ করা হয়।

প্রদা > ৭ X → শিখা বা মুদ্রণের কাজে ব্যবহৃত হয়

Y → বিভিং তৈরিতে ব্যবহৃত হয়

/দি

19. CAT. 2039/

ক. রেফারেন্স তড়িৎদার কী?

খ. পানির অস্থায়ী খরতা কীভাবে দূর করা যায়?

গ. X-এর উৎপাদন প্রক্রিয়া বর্ণনা করো।

 ঘ. Y-তৈরির সময় নির্ণত দৃষক্সমূহ মানব জীবনের জন্য ত্রমকিস্বর্প— ব্যাখ্যা করে।

৭ নং প্রশ্নের উত্তর

কানো একক তড়িংছারের বিভব শ্নর্গয়ের জন্য একে তড়িংছার বিভব জানা আছে এ রকম যে তড়িংছারের সজ্যে সংযোগ স্থাপন করে তড়িং রাসায়নিক কোষ গঠন করা হয় তাকে নির্দেশকে তড়িংছার বলে।

য় যখন পানিতে ক্যালসিয়াম ও ম্যাগনেসিয়াম লবণ বাইকার্বোনেট হিসেবে উপস্থিত থাকে তখন পানিতে যে খরতার সৃষ্টি হয় তাকে পানির অস্থায়ী খরতা বলে। দুটি পস্ধতিতে পানির অস্থায়ী খরতা দূর করা যায়।

i. স্ফুটন পন্ধতি: অস্থায়ী খর পানিকে ফুটালে এই পানিতে উপস্থিত Ca ও Mg এর বাইকার্বনেট লবণগুলো অদ্রবণীয় কার্বনেট লবণে পরিণত হয়ে অধঃক্ষিপ্ত হয়।

 $Ca(HCO_3)_2 \longrightarrow CaCO_3 \downarrow + CO_2 \uparrow + H_2O$ $Mg(HCO_3)_2 \longrightarrow MgCO_3 \downarrow + CO_2 \uparrow + H_2O$

ii. ক্লার্ক পন্ধতি: এই পন্ধতিতে অস্থায়ী খর পানি গণনার সাহায়ে।
নিণীত উপযুক্ত পরিমাণ কলিচুন $Ca(OH)_2$ মিশিয়ে আলোড়িত করা হয়।
ফলে, দ্রবণীয় বাইকার্বনেট লবণগুলো অদ্রবণীয় কার্বনেট লবণে পরিণত
হয়ে অধঃক্ষিপ্ত হয়।

 $Ca(HCO_3) + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$ $Mg(HCO_3)_2 + Ca(OH)_2 \longrightarrow MgCO_3 \downarrow + CaCO_3 \downarrow + 2H_2O$

তিলীপকের X হচ্ছে কাগজ যা লিখা বা মুদ্রণের কাজে ব্যবহৃত হয়। কাগজ উৎপাদন প্রক্রিয়া নিম্নলিখিত ধাপে সম্পন্ন হয়।

১. কাঠ/বাঁশ থেকে পাল্প বা মন্ড উৎপাদন: বিভিন্ন রাসায়নিক দ্রব্য যেমন NaS, Na₂CO₃, NaOH, Ca(OH)₂, Ca(HSO₃)₂ ইত্যাদি দ্রারা তৈরি কুকিং লিকার ব্যবহার করে কাঠ বা বাঁশ থেকে লিগনিন এবং অন্যান্য অসেলুলোজীয় পদার্থ দ্রবীভূত করে পৃথক করা হয় এবং সেলুলোজ সংগ্রহ করা হয়। এভাবে উৎপন্ন সেলুলোজের কাই এর নামই মন্ড (Pulp)।

কাঠ/বাঁশ + কুকিং লিকার $\xrightarrow{\Delta}$ RCOOH + ROH + মণ্ড , (NaOH/Na₂CO₃/Na₂S)

- ২. কাগজ উৎপাদন: প্রাপ্ত মন্ডকে বিভিন্ন ইউনিট প্রোসেস ও ইউনিট অপারেশন দ্বারা অস্বচ্ছ, ছিদ্রহীন, মসৃণ পৃষ্ঠতল বিশিষ্ট পাতলা শীট এ পরিণত করা হয়। এরই নাম কাগজ শীট। মন্ডকে কাগজে পরিণত করার জন্য তিনটি ধাপ অনুসরণ করা হয়। যথা:
- বিটিং: একটি যান্ত্রিক beater এ মন্তবে beating করে সুষম মন্তে পরিণত করা হয়।
- ii. রিফাইনিং: এ মন্ডের সজো ফিলার, সাইজিং দ্রব্য হিসাবে Na₂CO₃, Na₂SO₄ ও বিরঞ্জক হিসেবে Ca(OCI)CI যোগ করলে সাদা, মসৃণ, পাল্প পাওয়া যায়।
- iii. পেপার শীট উৎপাদন: একে একটি ফোর দ্রিনিয়ার মেশিনে দ্রাইং ও বারবার চাপ প্রদানের সাহায্যে মসৃণ শীট এ পরিণত করা হয়।
- ত্ব উদ্দীপকের Y যৌগটি হচ্ছে সিমেন্ট যা বিভিং তৈরিতে ব্যবহৃত হয়।
 সিমেন্ট তৈরির সময় কাঁচামাল প্রধানত লাইমন্টোন বা চুনাপাথর ও ক্লে
 প্রথমে মেশিনে ভেজেগ ছোট টুকরা এবং পরে মেশিনে পিষে পাউভার
 করা হয়। পরে মিশ্রণকে ঘূর্ণায়মান চুন্নিতে উত্তপ্ত করা হয়। প্রতিটি ধাপে
 এসব কঠিন পদার্থ অতি ক্ষুদ্র কণা আকারে বাতাসে ছড়িয়ে পড়ে।
 এর্পে সিমেন্ট কারখানার চিমনি থেকে নির্গত কঠিন পদার্থের সূক্ষ্ম কণা
 বাতাসে ভাসমান অবস্থায় দূর দূরান্তে ছড়িয়ে পড়ে বায়ুমন্ডলকে দূষিত
 করে। বাতাসে ছড়িয়ে পড়া এসব কঠিন পদার্থের সূক্ষ্ম কণা বিভিন্ন

স্থানে ধূলা হিসেবে জমা হয়। সিমেন্ট কারখানায় ক্লিংকার তৈরিতে ঘূর্ণায়মান চুল্লিতে প্রচুর পরিমাণ কয়লা অথবা প্রাকৃতিক গ্যাস পোড়ানো হয়। চুল্লির বর্জা গ্যাসে CO2 ও SO2 গ্যাস থাকে। এর সাথে অবস্থিত CO ও নাইট্রোজেনের অক্সাইডসমূহ, NOX বায়ুকে দূষিত করে। এসব দূষক গ্যাস ও কঠিন রাসায়নিক বস্তুর সূক্ষ কণাসমূহ মানুষের শ্বাসনালী ও ফুসফুসে ঢুকে শ্বাসয়ন্তের ক্ষতিকর রোগ সৃষ্টি করে। তাই বলা যায়, সিমেন্ট শিশ্লে নির্গত দূষকসমূহ মানব জীবনের জন্য হুমকিস্বরূপ।

প্র: ▶৮ টেক্সটাইল শিল্প দূষিত গ্যাস বায়ু

/मि. त्या. २०*३७*/

- ক, পরম শূন্য তাপমাত্রা কী?
- খ. C4H8 জ্যামিতিক সমাণুতা প্রদর্শন করে— ব্যাখ্যা করো।
- গ. উদ্দীপকের শিল্পটি কীভাবে বায়ুকে দূষিত করে? ব্যাখ্যা করো।
- কীতাবে উল্লিখিত শিল্প কর্তৃক বায়ু দৃষণ রোধ করা যায়?
 বিশ্লেষণ করো।

৮ নং প্রশ্নের উত্তর

ক যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয় তাকে পরম শূন্য তাপমাত্রা বলে।

য় কোনো অণুতে মৃক্ত আবর্তন সম্ভব না হলে একই আণবিক সংকৈত ও গাঠনিক সংকেত বিশিষ্ট দুটি কনফিগারেশনের সৃষ্টি হয়। এদেরকে পরস্পরের জ্যামিতিক সমাণু বলে। সাধারণত দ্বিবন্ধন ও চাক্রিক যৌগের ক্ষেত্রে জ্যামিতিক সমাণুতা দেখা যায়। C₄H₈ যৌগের ক্ষেত্রে

$$CH_3$$
 $C = C < CH_3$
 H
 $C = C < CH_3$
 CH_3
 CH_3
 $C = C < CH_3$
সিস-সমাণু
 CH_3
 CH_3
 CH_3

দ্বি বন্ধনে আবন্ধ পরমাণু দুটির মুক্ত ঘূর্ণন সম্ভব নয় কেননা এক্ষেত্রে C=C বন্ধনে আবন্ধ উভয় কার্বন ত্রিকোণী সংকরিত আালকিনের α বন্ধনে আবন্ধ পরমাণু তিনটি একই সমতলে অবন্ধান করলেও অসংকরিত 2p অরবিটাল সমকোণে অবন্ধান করে, ফলে C=C বন্ধনের কার্বন-কার্বন মুক্ত ঘূর্ণন সম্ভব নয়। তাই যৌগটি জামিতিক সমাণুতা প্রদর্শন করে।

🗿 টেব্রুটাইল শিল্পে প্রধানত পানি ও মাটি দৃষণ ঘটলেও বায়ুদূষণের মাত্রাও উল্লেখযোগ্যভাবে ঘটে। টেক্সটাইল শিল্পের ক্ষেত্রে বস্তুকণা ও ডায়িং ইউনিট থেকে উদ্বায়ী জৈব যৌগসমূহ বায়ূ দূষণ ঘটায়। এ শিল্পে ৰাহ্যিক ৰামূ দূষণ (outdoor air pollution) ও অভান্তরীণ ৰামূ দূষণ ঘটে (indoor air pollution)। উভয় ক্ষেত্রেই বিভিন্ন আকারের বস্তু কণার উদ্ভব হয়। যেসৰ বস্তুকণা 2.5µm থেকে 10µm ব্যাস বিশিষ্ট তাদেরকে স্থূল কণা (coarse particles), 2.5 µm ব্যাসের কম আকারের কণাকে সূক্ষ (fine) এবং 0.1µm ব্যাসের কম আকারের কণাসমূহকে অতিসূক্ষ (ultratine) কণা বলা হয়। টেক্সাটাইল শিৱ থেকে উদ্ভূত 50 μm ব্যাসের বস্তুকণাসমূহ বায়ূমণ্ডল থেকে সহজে ভূ– পৃষ্ঠে পতিত হয় বলে দেহাভাত্তরে এদের প্রবেশের সম্ভাবনা অনেক কম থাকে। আবার 2.5µm থেকে 5µm ব্যাস বিশিষ্ট কণাসমূহ দেহের ভৌত প্রক্রিয়া দ্বারা অপসারিত হতে পারে। অপরদিকে, 5µm এর কম ব্যাস বিশিষ্ট কণাসমূহ সচরাচর ফুসফুস পর্যন্ত বিনা বাধায় পৌছতে সক্ষম এবং কোষ পৃষ্ঠে অধিশোষিত হয়। এ সকল বস্তুকণাসমূহ মানবদেহের জন্য অত্যন্ত ক্ষতিকর। টেক্সটাইল শিল্প থেকে সৃষ্ট বম্বুকণা কৃষিক্ষেত্রেও বিরূপ প্রভাব সৃষ্টি করে। বস্তুকণা সবুজ পাতার উপর আচ্ছাদন সৃষ্টি করে সালোকসংগ্লেষণ প্রক্রিয়াকে বাধাগ্রস্থ করে।

আবার টেক্সটাইল শিল্পের ক্ষেত্রে ভায়িং পর্যায়ে বিভিন্ন উদ্বায়ী যৌগের ব্যবহার করা হয়। এসব যৌগ সহজেই বায়ুতে স্থানান্তরিত হয়ে বায়ু দূষণ ঘটায়।

টেক্সটাইল শিল্প থেকে উত্তুত বায়ু দূষণ রোধে সৃক্ষ হাঁকনি ব্যবহার করতে হবে। এতে 5µm এর চেয়ে ক্ষুন্ততর বস্তুকণার নিয়ন্ত্রণ পদ্ধতির ক্ষেত্রে বস্তুকণা সংবলিত গ্যাসকে ব্যাগ হাউজের ফেব্রিক হাঁকনির মধ্য দিয়ে অতিক্রম করানো হয়। এর ফলে বস্তুকণাসমূহ পরিস্রাবিত হয় এবং বস্তুকণা মুক্ত বায়ু নিক্ষান্ত হয়। ক্ষুন্ত কণাসমূহ প্রথমিকভাবে ফেব্রিকের ওপর বিভিন্ন কৌশলে আবন্ধ হয়। এসব কৌশলের যেমন নিম্নপতন, জড়তা সংশ্লিষ্ট অভিখাত ব্যাপন, পরিস্রাবন ইত্যাদিতে ফিন্টার ব্যাগসমূহ টিউব আকৃতি কিংবা ইনভেলাপ আকৃতি সম্পন্ন হয়ে থাকে। এগুলো 0.5µm আকারের ক্ষুদ্রাতিক্ষুদ্র কণাকেও অপসারণে সক্ষম। টেক্সটাইল শিল্পের বায়ু দূষণ রোধকল্পে ফেব্রিক ফিন্টার হাড়াও স্থির বৈদ্যুতিক অধঃক্ষেপ্ক (electrostatic precipitator) এবং গ্যাসীয় ও বস্তুকণার দূষণ রোধে ক্ষ্যাবার (scrubber) ব্যবহার করা হয়।

ক. সক্রিয়কারী মূলক কী?

খ, জারণ অর্ধকোষ বলতে কী বুঝ?

গ. উদ্দীপকের A এর প্রস্তৃতির মূলনীতি বর্ণনা করো।

ঘ. 🔥 এর প্রস্তৃতিতে রিসাইক্লিং এর প্রয়োজনীয়তা আছে কিনা বিশ্লেষণ করো। ৪

৯ নং প্রশ্নের উত্তর

যেসব মূলক বেনজিন বলয়ে উপস্থিত থেকে বেনজিন বলয়ের সক্রিয়তা বৃদ্ধি করে তালেরকে সক্রিয়কারীমূলক বলে।

য় যে অর্থকোষে জারণ বিক্রিয়া সম্পন্ন হয় তাকে জারণ অর্থকোষ বলে। যেমন ডেনিয়েল সেলে জিংক অর্থকোষ, $Zn(s)/Zn^{2\tau}(aq)$ হচ্ছে জারণ অর্থকোষ।

Zn(s) ---- Zn2+(aq) + 2e (জারণ বিক্রিয়া)

া উদ্দীপকের A হচ্ছে কাগজ যা রিসাইক্লিং প্রক্রিয়ায় প্রস্তুত কর। হয়েছে।

রিসাইক্লিং প্রক্রিয়ায় কাগজ উৎপাদনের মূলনীতি : কাগজ রিসাইকেলের জন্য নিমন্ত্রপ পদক্ষেপ নিতে হবে—

- বিভিন্ন উৎস হতে ছেঁড়া, অব্যবহৃত, পরিত্যক্ত বিভিন্ন ধরনের কাগত
 সংগ্রহ করে শ্রেণিবিন্যাস করে কাগজ কোম্পানিতে স্থানাত্তর করা
 হয়।
- ii. শ্রেণিবিন্যাসকৃত পেপার হতে পিন, গ্লু-প্লাফিক আলাদা করে সারান ও পানি ছারা পৌত করে ধূলো বালি ও অন্যানা অপদ্রব্য অপসারপ করা হয়। এরপর সাধারণ পানিতে মিণিয়ে Sharry উৎপাদন করা হয়। উরেখ্য ডিইনকিং প্রক্রিয়ায় NaOH ও Na₂CO₃ ব্যবহার করে সব কালি দূর করা হয়।
- Slurry এর সাথে বিভিন্ন রাসায়নিক পদার্থ মিশিয়ে পেপার পায় বা মন্ড উৎপাদন করা।
- iv. রোলার ব্যবহার করে মন্ডকে বড় বড় পেপার সিট উৎপাদন কর। হয়।
- সর্বশেষ পেপার সিট শুকিয়ে কাঞ্জিত আকার দেওয়া হয়।

- য় পুরাতন বা বর্জ্য কাগজকে নতুন কাগজের পারের সঞ্চো মিশিয়ে কাগজ উৎপাদন করার প্রক্রিয়াকে কাগজ রিসাইক্রিং বলে। কাগজ রিসাইক্রিং এর প্রয়োজনীয়তা:
- প্রথমত কাগজ তৈরি করতে হয় কাঠ হতে। এক টন খবরের কাগজ রিসাইক্রিং করলে প্রায় ১ টন কাঠ বেঁচে যায়, প্রিন্টেড কাগজ রিসাইক্রিং করলে দুই টন কাঠ সাশ্রয় হয়।
- কাগজ তৈরিতে পানিতে যে পরিমাণ দৃষণ ঘটে কাগজ রিসাইক্লিং এ ততটা ঘটে না।
- কাঠ হতে কাগজ তৈরি করতে যে শক্তি/জ্বালানি খরচ হয় তার প্রায়
 ৪০-৬০% কম লাগে রিসাইক্লিং-এ।
- iv. জমি ভরাট করা হতে রক্ষা পাওয়া যায়।
- নতুন কাগজ উৎপাদনের তুলনায় কাগজ রিসাইক্লিং এ গানি দৃষণ
 ৩৫% কম এবং বায়ু দৃষণ ৭৪% কম ঘটে।
- vi. ইউরোপে ব্যবহৃত কাগজের প্রায় ৬০% রিসাইকেলত কাগজ। সূতরাং উপরোক্ত কারণেই বলা যায়, কাগজ রিসাইক্রিং এর প্রয়োজনীয়তা অনস্বীকার্য এবং এটি পরিবেশ বান্ধব ও অর্থ সাম্রয়ী।

বাংলাদেশের রিরোলিং মিলসমূহ বিভিন্ন অবকাঠামোতে ব্যবহার উপযোগী ধাতব সামগ্রী প্রস্তুত করে। মিলসমূহ পুরানো অকেজো জাহাজের ভাজাা অংশ এবং হকারদের মাধ্যমে সংগৃহীত ব্যবহার অনুপযোগী ধাতব দ্রব্যাদি কাঁচামাল হিসেবে ব্যবহার করে। ফলে লোহার খনি না থাকা সত্ত্বেও বাংলাদেশে ধাতুটি প্রচুর পরিমাণে পাওয়া যায়।

- क. न्याता क्या की?
- খ. লেড ধাতু কীভাবে হিমোগ্লোবিন বিনর্থী করে? ব্যাখ্যা করে। ২
- গ. উদ্দীপকের ধাতুটির রিসাইক্লিং পদ্ধতি বর্ণনা করে।
- য় বাংলাদেশের প্রেক্ষিতে উদ্দীপক ধাতৃটির রিসাইক্লিং জরুরী— মূল্যায়ন করো।

১০ নং প্রশ্নের উত্তর

- 🚰 1–100 nm দৈর্ঘ্য বা আকার বিশিষ্ট বস্তুকে ন্যানো কণা বলে।
- লেডের প্রধান প্রাণরাসায়নিক বিরুপ ক্রিয়া হচ্ছে, এটি রক্তের হিমোপ্লোবিনের হিম সংশ্লেষণে বাধা প্রদান করে। যা প্রকারান্তরে হেমাটোলোজিক্যাল সিস্টেমকে ক্ষতিগ্রম্থ করে। লেড হিম সংশ্লেষণ প্রক্রিয়ায় অংশগ্রহণকারী ক্ষতিপয় গুরুত্বপূর্ণ এনজাইমের জৈবিক কার্যক্রমকে বাধাগ্রম্থ করে।
- প্রদুত্ত উদ্দীপকের ধাতুটি হলো লোহা। লোহাকে নিম্নলিখিত উপায়ে রিসাইক্লিং করা যায়—

টুকরা লোহা এবং ব্যবহৃত লোহা জাতীয় বস্তুর সংগ্রহ: পুনঃচক্রায়নের প্রথম ধাপ হলো, লোহা ও লোহাজাত বস্তুকে সংগ্রহ করে পুনঃচক্রায়ন কেন্দ্রে থানয়ন করা। এদব বস্তুর মধ্যে উল্লেখযোগ্য হলো পুরাতন গাড়ির অংশ, স্টিল, লৌহ নির্মিত পাইপ, বিভিন্ন লোহার টুকরা, পুরাতন গৃহসামগ্রী ইত্যাদি। সংগৃহীত লৌহ নির্মিত বস্তুসমূহের অধিকাংশই ক্যকৃত অবস্থায় থাকে। এ ক্ষয়কৃত পৃষ্ঠতলবিশিষ্ট লৌহ হতে মরিচা সহজেই অপসারণ করে প্রক্রিয়াকরণের পরবর্তী ধাপের জন্য প্রস্তুত করা হয়।

পৃথকীকরণ এবং ক্দুদ্রাংশকরণ: সংগৃহীত ধাতুর টুকরাসমূহ থেকে মাটি, কাদা, মরিচা অপসারণের পর এদের পৃথকীকরণ সম্পন্ন করা হয়। পৃথকীকরণ প্রক্রিয়ায় লোহা স্টিল ও লৌহজাত বস্তুকে অন্যান্য ধাতু বা বস্তু থেকে আলাদা করা হয়। এক্ষেত্রে চুম্বক ব্যবহার করে লোহা এবং স্টিলজাত বস্তুকে অ্যালুমিনিয়াম থেকে পৃথক করা হয়। স্টিল ক্যানগুলো থেকে বহিঃপ্রলেপন (টিনের প্রলেপন) অপসারণে কস্টিক সোডা ব্যবহার করা হয়। অধিকাংশ পুনঃচক্রায়ন কেন্দ্রে বিপুল পরিমাণ স্ক্যাপকে ক্ষুদ্র অংশে পরিণত করে আয়তন প্রাস করা হয়। এ প্রক্রিয়াকে ক্ষুদ্রংশানরণ বা Shredding বলা হয়।

গাঁট বাধা ও গলন: লৌহজাত পদার্থগুলোকে এ ধাপে গাঁট বাধা প্রক্রিয়ায় আনয়ন করা হয়। গাঁট বাধনের ফলে পদার্থসমূহের পরিবহন সহজতর হয়। গাঁট বাধাইকৃত ব্লকসমূহকে এবার চুল্লিতে ফেলে 1537°C তাপমাত্রায় (2800°F) গলিয়ে ছাঁচে ঢালাই করে ইনগটে রূপান্তর করা হয়। ধাতুর ইনগটগুলো ঠাণ্ডা হলে কঠিন রূপ ধারণ করে। এগুলো তখন নতুন লৌহ বয়ু হিসেবে বিভিন্ন উপকরণ নির্মাণে ব্যবহার করা হয়। এদের মধ্যে রয়েছে, গাড়ির চেসিস ধাতুর পাইপ, টিনের ক্যান, আসবাবপত্র, নির্মাণ সামগ্রি প্রভৃতি। অনেক ক্ষেত্রে লৌহজাত রাসায়নিক পদার্থের উৎপাদনেও পুনঃপ্রক্রিয়াকৃত লোহার ব্যবহার করা হয়। ফেরাস ধাতুর যৌগ শিক্ষজাত বজ্য পানির বিশোধনে ব্যবহার করা হয়।

📆 বাংলাদেশে লোহার কোনো খনি নেই। ফলে লোহার আকরিক পাওয়ার সম্ভাবনাও নেই। দেশের নির্মান শিল্প, যোগাযোগ ব্যবস্থা, ব্রিজ, কালভার্টসহ সর্বক্ষেত্রেই লোহা এবং লোহাজাত উপকরণের প্রয়োজন। প্রতি বছর লোহার চাহিনা প্রায় পঞ্জাশ লক্ষাধিক টন। এ চাহিদার প্রায় পুরো অংশই মেটানো হয় রিসাইক্লিং প্রক্রিয়ার মাধ্যমে। লোহার ক্রমবর্ধমান চাহিদার সাথে সংগতি রেখে চট্টগ্রাম সমূদ্র সৈকতের সীতাকুন্ড এলাকার বিস্তীর্ণ অঞ্চল জুড়ে গড়ে উঠেছে জাহাজ ভাজা শিল্প। জাহাজ ভাজা থেকে প্রাপ্ত স্ক্র্যাপকে কাঁচামাল হিসেবে ব্যবহার করে প্রায় 350 এরও অধিক রি-রোলিং মিল লোহার রিসাইক্লিং করে স্টিল তৈরি করে। এই প্রক্রিয়ায় বর্জা পরিতাক্ত লোহাকে ব্যবহারোপযোগী করে তোলা হয়। রিসাইকেল প্রক্রিয়ার সাথে যুক্ত রয়েছে প্রায় 50,000 শ্রমিক, অনেক শিক্ষিত যুবক, ইঞ্জিনিয়ার ও অনেক শ্রেণি পেশার মানুষ। লোহার রিসাইক্লিং প্রক্রিয়ায় এ কর্মসংস্থান সৃষ্টি হয়েছে। পরিবেশগত দিক থেকেও লোহার রিসাইক্লিং এর গুরুত্ব অপরিসীম। বাংলাদেশের ক্ষেত্রে লোহার রিসাইক্রিং এর সুবিধা হলো— পরিবেশ সংরক্ষণ, কাঁচামালের আমদানী হ্রাসকরণ, শক্তির সাগ্রয় এবং ল্যান্ডফিন্ডে আবর্জনা হ্রাসকরণ।

উপরোক্ত আলোচনার প্রেক্ষিতে সহজভাবেই বলা যায়, বাংলাদেশের প্রেক্ষিতে লোহার রিসাইক্লিং জরুরী।

প্রস্ল >১১ (i) প্রাকৃতিক গ্যাস + বায়ু ightarrow A

বাশঝাড়

বৰ্জ্য কাগজ

^ ∧ জৈব সার এবং B শিক্ষা উপকরণ

15. (41. 2039)

- ক. লুকাস বিকারক কী?
- খ. শিল্পে ETP ব্যবহার করা হয় কেন?
- গ. উদ্দীপকের A যৌগটি উৎপাদনের মূলনীতি লেখো।
- উদ্দীপকের X অপেক্ষা Y উৎস থেকে B উৎপাদন অধিকতর লাভজনক হবে কিনা—বিশ্লেষণ করো।

১১ নং প্রশ্নের উত্তর

ক অনার্দ্র ZnCl2 এবং গাড় HCl এর মিশ্রণকে লুকাস বিকারক বলে।

শিল্প কারখানার বর্জ্য পানি (effluent) থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ETP (Effluent Treatment Plant) বলে। রাসায়নিক শিল্প কারখানার বর্জ্য পানিতে বিভিন্ন জৈব ও অজৈব দৃষক দ্রবীভূত থাকে। এসব বর্জ্য পানি বেরিয়ে ড্রেন বা একটু দূরে খালে বা নদীতে বা অন্য কোনো জলাশয়ে পতিত হয়। এতে ব্যাপকভাবে পরিবেশ দূষণ ঘটে এবং জীবকূলের উপর বিরূপ প্রভাব ঘটায়। এ কারণে শিল্প নির্গত তরল বর্জ্যকে দৃষণমুক্ত করার জন্য ETP ব্যবহার করা হয়।

তা উদ্দীপকের A হচ্ছে ইউরিয়া যা একটি জৈব সার। ইউরিয়া নাইট্রোজেন সমৃন্ধ সার যা কার্বনিক এসিডের ডাইঅ্যামাইড। অবশিষ্ট অংশ ২ (গ) নং সৃজনশীল প্রশ্নোত্তর দ্রুইবা।

য়া উদ্দীপকের X হচ্ছে বাঁশ ঝাড় এবং Y হচ্ছে বর্জ্য কাগজ। কাগজ বাশঝাড় হতে ব্যবহার করে উৎপাদনের তুলনায় বর্জ্য কাগজ রিসাইক্লিং অধিক পরিবেশবান্ধব ও সুবিধাজনক। নিম্নে এদের তুলনামূলক বিশ্লেষণ করা হলো-

অবশিষ্ট অংশ ৯ (ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

15. (41. 2034)

ক. নিৰ্দেশক কাকে বলে?

খ. বেনজিন অ্যারোমেটিক যৌগ কেন?

গ. উদ্দীপকের কোন কোন যৌগ ব্যবহার করে ইউরিয়া উৎপাদন করা যায়? সমীকরণসহ লেখো।

ঘ. ওজোনস্তরের সাথে উদ্দীপকের কোন যৌগটির বিক্রিয়া পরিবেশের জন্য ক্ষতিকর?— বিশ্লেষণ করো।

১২ নং প্রশ্নের উত্তর

🔂 যেসব পদার্থ তাদের বর্ণের পরিবর্তন ঘটিয়ে অ্যাসিড-ক্ষার বিক্রিয়ার সমাপ্তি বা প্রশমন ক্রিয়া সম্পূর্ণ হওয়ার সঠিক মুহূর্তটিকে নির্দেশ করে তাদেরকে নির্দেশক বলে।

যে সকল যৌগ অ্যারোমেটিসিটি অর্থাৎ হাকেল তত্ত্ব মেনে চলে তাদেরকে অ্যারোমেটিক যৌগ বলে। হাকেল তত্ত্ব মতে যেসব বলয়াকার সমতলীয় জৈব যৌগের অণুতে সম্বরণশীল (4n + 2) সংখ্যক পাই (π) ইলেকট্রন থাকে তাদেরকে অ্যারোমেটিক যৌগ বলে।

বেনজিনের গঠন চেল্টা সমতলীয় চাক্রিক এবং বলয় গঠনকারী পরমাণুর সংখ্যা 6।

ii. বলয় গঠনকারী প্রতিটি পরমাণুতে p-অরবিটাল আছে। আণবিক অরবিটালে সঞ্চারণশীল π ইলেকট্রন সংখ্যা 6 যা $|4n+2=4\times 1|$ + 2 = 6 (যখন n = 1)] হাকেল তত্ত্বকে অনুসরণ করে।

একারণে বেনজিন একটি অ্যারোমেটিক যৌগ।

্রা উদ্দীপকের (iii) নং যৌগ, CO₂ এবং (iv) নং যৌগ, NH, ব্যবহার করে ইউরিয়া উৎপাদন করা যায়। এক্ষেত্রে অধিক চাপে (120 – 130 atm) ও 180 – 190°C তাপমাত্রায় অ্যামোনিয়া ও CO2 এর বিক্রিয়ায় প্রথমে অ্যামোনিয়াম কার্বামেট এবং পরে এটি নিরুদিত হয়ে ইউরিয়া উৎপন্ন করে।

$$2NH_3(g) + CO_2 \xrightarrow{180^{\circ}C, 130 \text{ atm}} H_2NCOONH_4$$
অ্যামোনিয়াম কার্বামেট

ত্তা ওজোন স্তরের সাথে উদ্দীপকের (ii) নং যৌগ, CFC এর বিক্রিয়া পরিবেশের জন্য ক্ষতিকর। কারণ CFC যৌগ নিষ্ক্রিয়, অদাহ্য ও গ্যাসীয় হওয়ায় উৎস থেকে সহজে বায়ুমন্ডলের ট্রাপোস্ফিয়ারে ছড়িয়ে পড়ে। ভূ-পৃষ্ঠ হতে 12–50 km পর্যন্ত স্ট্রাটোস্ফিয়ার অঞ্চলে বিস্তৃত এলাকা জুড়ে ওজোনস্তর বিদ্যমান। এ ওজোনস্তর সূর্যালোক থেকে আগত ক্ষতিকর অভিবেগুনি (UV) রশ্যির হাত থেকে পৃথিবীর জীবকুলকে রক্ষা করে।

CFC বা ফ্রিয়ন গ্যাসটি ওজোনস্তর ধ্বংস বা ক্ষয়ে অগ্রণী ভূমিকা রাখে। কয়েক ধরনের CFC বা ফ্রিয়ন গ্যাস রয়েছে। যেমন বায়ুমণ্ডলের স্ট্র্যাটোম্ফিয়ার স্তরে রয়েছে ওজোন (O3) যা সূর্য থেকে প্রাপ্ত অতিবেগুনি রশিকে শোষণ করে আমাদেরকে ক্ষতিকর প্রভাব (ক্যান্সার সৃষ্টিতে সহায়ক) থেকে রক্ষা করে। প্রথমে UV রশ্যির প্রভাবে ফ্রেয়ন বিযোজিত হয়ে মৃক্ত ক্লোরিন (CI*) উৎপন্ন করে। এটিই O3 এর সাথে বিক্রিয়া করে

*OCI মুক্ত রেডিক্যাল সৃষ্টি করে থাকে। CFC ওজোন স্তরকে ভেঙে ফ্রি-র্যাডিকেল তৈরি করে। অতিবেগুনি রশ্যির প্রভাবে CFC ফটোলাইসিস প্রক্রিয়ার মাধ্যমে দ্রি-রেডিকেল বা সক্রিয় ক্লোরিন সৃষ্টি করে।

$$CFCl_3 \xrightarrow{h\nu} {^*}CFCl_2 + Cl^*$$

 $CF_2Cl_2 \xrightarrow{h\nu} CF_2Cl + Cl$

ক্লোরিন ফ্রি-র্য়াডিকেল ওজোনের সাথে বিক্রিয়া করে ক্লোরিন অক্লাইড ফ্রি-র্য়াডিকেল (CIO*) ও অক্সিজেন ফ্রি-র্য়াডিকেল সৃষ্টি করে। উৎপন্ন CIO" পুনরায় ওজোনের সাথে বিক্রিয়া করে O2 অপু ও সক্রিয় ক্লোরিন (CI°) উৎপর করে। উৎপর CI° পুনরায় O3 এর সাথে বিক্রিয়া করে O2 অণু সৃষ্টি করে থাকে।

$$Cl^* + O_3 \longrightarrow ClO^* + O_2$$
; $O_2 \stackrel{hv}{\longrightarrow} 2O^*$
 $ClO^* + O^* \longrightarrow Cl^* + O_2$; $ClO^* + O_3 \stackrel{}{\longrightarrow} {}^*ClO_2 + O_2$
এসব বিক্রিয়া শিকলের ন্যায় চলতে থাকে। একটি ক্লোরিন ফ্রি
র্যাডিকেল লক্ষাধিক ওজোন অণু বিনষ্ট করে। ফলে সূর্য থেকে উৎপন্ন
অতিবেগুনি রশ্মি বিনা বাধায় পৃথিবীতে পৌছায় এবং ক্যান্সার সৃষ্টিসহ
বিভিন্ন ক্ষতিসাধন করে।

$$(ii) C + H_2O \xrightarrow{\underline{\text{Mel}} \text{de} -1} CO + H_2$$
 $(ii) nCO + (2n+1)H_2 \xrightarrow{\underline{\text{Mel}} \text{de} -2} C_nH_{2n+2} + nH_2O$
 $(iii) CO + H_2 + H_2O \xrightarrow{\underline{\text{Mel}} \text{de} -3} CO_2 + 2H_2$
 $[5, 6n, 2036]$

ক. বয়েলের সূত্র কী?

জ্যামিতিক সমাণুতা বলতে কী বুঝ?

উদ্দীপকের কোন বিক্রিয়ার সাহায্যে কয়লা হতে L.P.G উৎপাদন সম্ভব— ব্যাখ্যা করো।

"উদ্দীপকের সংশ্লিষ্ট বিক্রিয়ার সাহায্যে কয়লা ব্যবহার করে নাইট্রোজেন ফিব্রেশন সম্ভব"— উক্তিটির যথার্থতা প্রতিপাদন

১৩ নং প্রলের উত্তর

📾 স্থির তাপমাত্রায় নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন, গ্যাসের উপর প্রযুক্ত চাপের ব্যস্তানুপাতিক।

🚰 একই আণবিক ও গাঠনিক সংকেত বিশিষ্ট জৈব যৌগের কার্বন– কার্বন বন্ধনের অক্ষ বরাবর মুক্ত আবর্তন সম্ভব না হলে তখন ভিন্ন কনফিগারেশন বা জ্যামিতিক গাঠনিক বিন্যাসযুক্ত দুই ধরনের যৌগ অণু সৃষ্টি হয়, তাদেরকে জ্যামিতিক সমাণু এবং যৌগের এর্প ধর্মকে জ্যামিতিক সমাণুতা বলে।

IPG বা তরলীকৃত পেট্রোলিয়াম গ্যাস (Liquefied Petroleum Gas) নিম্ন আণবিক ভর বিশিষ্ট হাইড্রোকার্বনের মিশ্রণ, যাকে তরল অবস্থায় সিলিভারে সঞ্চিত করা হয়, কিন্তু গ্যাসীয় অবস্থায় জ্বালানি হিসেবে ব্যবহার করা হয়। এর মূল উপাদানগুলো হলো n-বিউটেন, প্রোপেন, আইসোবিউটেন ও বিউটিন। এছাড়াও স্বল্প পরিমাণে প্রোপিন ও ইথেন থাকে।

উদ্দীপকের (i) ও (ii) নং বিক্রিয়া ব্যবহার করে LPG গ্যাস উৎপাদন সম্ভব। উদ্দীপকের (i) নং বিক্রিয়াতে কয়লা (C) ও পানির মিশ্রণে উপযুক্ত পরিবেশে CO ও H2 গ্যাস উৎপন্ন হয়।

 $C + H_2O \xrightarrow{\mathfrak{GSI} \circ \Phi} CO + H_2$ উৎপন্ন CO ও H2 নির্দিষ্ট অনুপাতে সংযুক্ত হয়ে উচ্চতর অ্যালকেন বা LPG গ্যাস প্রস্তুত করে।

$$nCO + (2n+1)H_2 \xrightarrow{\mathfrak{S} \otimes 140} C_nH_{2n+2} + nH_2O$$

যেমন : $4 CO + 9H_2 \rightarrow C_4H_{10} + 4H_2O$
(বিউটেন গ্যাস)

এভাবে LPG গ্যাস উৎপাদন সম্ভব।

ত্ব উদ্দীপকের (i) ও (iii) নং বিক্রিয়া দুটি পরোক্ষভাবে নাইট্রোজেন ফিব্লেশনের জন্য দায়ী। কয়লা থেকে গ্যাসকরণ প্রক্রিয়ায় এক ধরনের সাংশ্লেষিক গ্যাস (সিনগ্যাস) প্রস্তুত করা হয়। এটি মূলত; CO, H₂, CO₂ এবং জলীয় বাচ্পের মিশ্রণ।

3C (কয়লা) + O_2 + H_2O $\xrightarrow{\Delta \otimes | \Delta e_2|}$, $[H_2$ + 3CO] (সিনগ্যাস)। প্রান্তিক উৎপাদ হাইড্রোজেন কাঞ্ছিত হলে, সিন গ্যাসকে অতিরিক্ত জলীয় বাচ্পের সাথে বিক্রিয়া করানো হয়। বিক্রিয়াটি হলো—

CO + H₂ + H₂O প্রভাবক-3 → CO₂ + 2H₂
বিক্রিয়াটিতে উৎপন্ন CO₂ এবং বাণিজ্যিক ভিত্তিতে বায়ুস্থ N₂ ও H₂
হতে উৎপন্ন NH₃ গ্যাসের বিক্রিয়ায় ইউরিয়া সার উৎপাদন করা হয়।

কৃষি জমিতে ইউরিয়া সার হিসেবে ব্যবহৃত হয়। পরবর্তীতে এটি উদ্ভিদ কর্তৃক ব্যবহৃত হয়। সূতরাং উদ্দীপকের (i) ও (ii) নং বিক্রিয়ার সাহায্যে কয়লা ব্যবহার করে নাইট্রোজেন ফিক্সেশন সম্ভব।

প্রস্ক > 38 A = NH 4 এর অনুবন্ধী ক্ষারক, B = প্রধান গ্রিন হাউজ গ্যাস

$$A + B \xrightarrow{170^{\circ} - 210^{\circ}C} C$$

19. CT. 2034

ক. বোল্টজম্যান ধ্রুবক কী?

খ. চামড়ার ট্যানিং এ মিল্ক অব লাইম (Milk of Lime)
 গুরুত্বপূর্ণ কেন?

 উদ্দীপক অনুসারে C উৎপাদনে A এবং B গ্যাস কীভাবে পরিবেশকে দৃষিত করে? বর্ণনা করো।

ঘ. উদ্দীপকের C এর উৎপাদন প্রণালী সংশ্লিষ্ট সমীকরণসহ বর্ণনা করো।

১৪ নং প্রশ্নের উত্তর

ত্র অণু প্রতি মোলার গ্যাস ধুবকের জন্য প্রাপ্ত মানকে বোন্টজ ম্যান ধ্রবক (K) বলে।

চামভার ট্যানিং প্রক্রিয়ায় মিল্ক অব লাইম দ্বারা লাইমিং করা হয়।
এতে—

- i. লোম ও কেরাটিন প্রোটিন দূরীভূত হয়।
- ii. কেরাটিন প্রোটিন মিশে
- লাইমিং এর ফলে চামড়ার কোলাজেন ট্যানিং উপযোগী হয়ে ওঠে।
 কারীয় pH মানে কোলাজেন প্রোটিন স্ফীত হয়।
- iv. গ্রিজ ও চর্বি অপসারিত হয়।

ভালিপকের C হচ্ছে ইউরিয়া। এর উৎপাদনে A অর্থাৎ অ্যামোনিয়া (NH₃) এবং B অর্থাৎ কার্বন ডাই অক্সাইড গ্যাস ব্যবহৃত হয়। A(NH₃) ও B (CO₂) পরিবেশ দূষণ ও বৈশ্বিক উন্ধায়নে গুরুত্বপূর্ণ ভূমিকা রাখে। অ্যামোনিয়া উৎপাদন প্ল্যান্ট থেকে উদ্ভূত বর্জা পানি অত্যন্ত ক্ষারীয় হয়ে থাকে। বর্জা পানির pH মানের আদর্শ পরিসর হচ্ছে: 6.5-8.5। এ কারণে ইউরিয়া থেকে উৎসারিত বর্জা পানি অপরিশোধিত অবস্থায় পরিত্যাগ করা হলে জলজ প্রাণির ক্ষেত্রে বিরূপ প্রভাব সৃষ্টি হয়। ভূ-পৃষ্ঠীয় পানিতে ইউরিয়া শিল্পের জলীয় বর্জা সরাসরি নিক্ষিপ্ত হলে সেটা জলীয় পরিবেশে ইউট্রিফিকেশন বা অনাকাক্ষিত শৈবালের উৎপত্তি ঘটায়। বায়ুমভলে অ্যামোনিয়া, সালফিউরিক এসিডের সাথে বিক্রিয়া করে অ্যামোনিয়াম সালফেট হিসেবে অধঃক্ষিপ্ত হয়। B যৌগটি (CO₂) অবলোহিত রশ্মি শোষণ করে ভূ-পৃষ্ঠের তাপমাত্রা বৃদ্ধি করে। বৈশ্বিক তাপমাত্রা বৃদ্ধির কারণে জলবায়ুর পরিবর্তনের ঘটনা ঘটছে। বৈশ্বিক

তাপমাত্রা বৃন্ধির ফলে সমুদ্র পৃষ্ঠের গড় উচ্চতা বৃন্ধি পাবে। এর ফলে উপকূলবর্তী নিম্নাঞ্চল জলমগ্ন হবে এবং এতে লবণাক্ততার প্রকোপ বেড়ে যাবে।

প্রাপ্ত উদ্দীপকে $A = NH^+$ এর অনুবন্ধী ক্ষারক এবং $B = প্রধান গ্রীন হাউজ গ্যাস। আমরা জানি, <math>NH_4^+$ এর অনুবন্ধী ক্ষারক হলো NH_3 এবং প্রধান গ্রীন হাউস গ্যাস হলো CO_2 । অতএব $A = NH_3$ এবং $B = CO_2$ । সুতরাং উদ্দীপকের বিক্রিয়াটি হবে—

$$NH_3 + CO_2 \xrightarrow{170^\circ - 210^\circ C} H_2N - CO - NH_2$$

ইউরিয়া (C)

অবশিক্ট অংশ ৫ (গ)নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

ক, ইটিপি কী?

থ, কয়লায় সালফারের উপস্থিতি ক্ষতিকর কেন?

উদ্দীপকের আলোকে A এর উৎপাদন প্রক্রিয়া সমীকরণসহ
বর্ণনা করো।

ম্ল্যায়ন করো।

১৫ নং প্রশ্নের উত্তর

ক শিল্প কারখানায় উৎপন্ন বর্জ্য পানি (Effluent) থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ইটিপি (Effluent Treatment Plant) বলে।

ব্যালায় সালফার যৌগ (ক) পিরাইট (খ) জৈব সালফার যৌগ (গ) সালফেট যৌগ (CaSO₄) উপস্থিত থাকতে পারে। কয়লায় সালফার থাকা বাঞ্চণীয় নয়। সালফার থাকায় কয়লার দহনে SO₂ উৎপত্ন হয় য় বায়ু দূয়ণ ও এসিড বৃষ্টি সৃষ্টি করে পরিবেশের উপর ক্ষতিকর প্রভাব ফেলে। বায়ুতে SO₂ বাচ্প থাকলে তা বৃষ্টির পানির সাথে মিশে এসিড বৃষ্টি সৃষ্টি করে।

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

 $SO_3 + H_2O \longrightarrow H_2SO_4$

এসব কারণেই কয়লায় সালফারের উপস্থিতি ক্ষতিকর।

গ ৭ নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

ঘ ৯ (ঘ)নং সৃজনশীল প্রশ্নোতর দ্রফীব্য।

প্রা
$$\searrow$$
 (i) $C + H_2O \xrightarrow{\text{প্রভাবক-1}} CO + H_2$

(ii) nCO + (2n + 1)
$$H_2 \xrightarrow{\underline{\text{প্রভাবক-2}}} C_n H_{2n+2} + nH_2O$$

(iii)
$$CO + H_2 + H_2O \xrightarrow{\Delta GGGGGGG} CO_2 + 2H_2$$

· [19, cer, 2030]

ক. তড়িৎ রাসায়নিক কোষ কী?

খ. লিথিয়াম আয়ন ব্যাটারি ব্যবহারের সুবিধা কী? ২

গ. উদ্দীপকের কোন কোন বিক্রিয়ার সাহায্যে কয়লা হতে LPG উৎপাদন সম্ভব? ব্যাখ্যা করো।

"উদ্দীপকের সংশ্লিষ্ট বিক্রিয়ার সাহায্যে কয়লা ব্যবহার করে
নাইট্রোজেন সার উৎপাদন সম্ভব।"— উত্তিটির যথার্থতা
প্রতিপাদন করো।

১৬ নং প্রশ্নের উত্তর

ক্র যেসব কোষে রাসায়নিক শক্তিকে ব্যবহার করে তড়িৎ শক্তি উৎপন্ন করা হয় তাদেরকে তড়িৎ রাসায়নিক কোষ বলে।

রিচার্জেবল ব্যাটারিসমূহের মধ্যে লিথিয়াম আয়ন ব্যাটারির চাহিদা সবচেয়ে বেশি এবং এর সুবিধা অনেক। যেমন- উচ্চ শক্তি ঘনত্ব বিশিষ্ট। ফলে অতি ছোট সাইজ ব্যাটারিও উচ্চ ক্ষমতাসম্পন্ন হয়। লিথিয়াম আয়ন ব্যাটারির স্ব-বিদ্যুৎ ক্ষরণ হার খুব কম। রক্ষণাবেক্ষণ করাও অনেক সহজ। অত্যন্ত হালকা ও সহজে বহনযোগ্য।

🗿 ১৩ (গ)নং সৃজনশীল প্রশ্নোত্তর দ্রন্টব্য।

য ১৩ (ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

প্রশ্ন \triangleright ১৭ $X \xrightarrow{\Lambda}$ মেলামাইন

A. CAT. 507 8/

ক. প্রডিউসার গ্যাস কী?

খ, পানির COD বলতে কী বুঝ?

উদ্দীপকের বিক্রিয়াটি সমীকরণসহ পূর্ণ করে।

ঘ. উদ্দীপকে X এর বিভিন্নক্ষেত্রে অতিরিক্ত ব্যবহার যথার্থ কী?
 বিশ্লেষণ করো।

১৭ নং প্রশ্নের উত্তর

ক কার্বন মনোক্সাইড ও নাইট্রোজেন গ্যাসের সমমোলার (CO + N₂)
মিশ্রণকে প্রভিউসার গ্যাস বলে।

প্রতি লিটার সারফেস ওয়াটারের নমুনায় থাকা দূষক পচনশীল জৈব বস্তু ও অপচনশীল জৈব যৌগকে সম্পূর্ণ জারিত করে CO_2 , NH_3 , H_2S ও পানিতে পরিণত করতে যে পরিমাণ ভরের অক্সিজেন ঐ পানির DO থেকে দরকার হয় তাকে ঐ পানির COD বলা হয়। অর্থাৎ COD হচ্ছে বিয়োজনযোগ্য ও বিয়োজন অযোগ্য দূষকসমূহের জারণের জন্য প্রয়োজনীয় মোট অক্সিজেনের চাহিদা।

া উদ্দীপকের X যৌগটি হচ্ছে ইউরিয়া। TiO2 প্রভাকের উপস্থিতিতে ইউরিয়াকে উত্তপ্ত করলে মেলামাইন উৎপন্ন হয়।

$$H_2N \searrow_{C} N_2H \xrightarrow{TiO_2} A \xrightarrow{H_2N} C \xrightarrow{N} C -NH_2 + 3CO_2 + 6NH_3$$

$$\downarrow N \qquad \downarrow N \qquad \downarrow$$

ত্ব উদ্দীপকের X পদার্থটি হচ্ছে ইউরিয়া এর অতিরিক্ত ব্যবহার কোনো ক্ষেত্রেই যর্থার্থ নয়।

ইউরিয়া হচ্ছে অ্যামোনিয়ার যৌগ যা পানিতে পতিত হলে pH কাজ্ঞিত মান থেকে অনেক বেড়ে যায়। এতে অনেক জলজ জীবের জীবনধারণ সংকটাপর হয়ে পড়ে। আবার জমিতে প্রয়োগকৃত ইউরিয়া সার পানি দ্বারা বিয়োজিত হয়ে NH, উপর করে। উৎপন্ন অ্যামোনিয়া মাটির নাইট্রিফাইং ব্যাকটেরিয়া দ্বারা জারিত হয়ে নাইট্রিক এসিডে পরিণত হয় যা মাটির ক্ষারের সাথে বিক্রিয়া করে নাইট্রেট লবণ উৎপন্ন করে। মানবদেহে নাইট্রেট আয়ন প্রবেশ করলে Blue Baby Syndrome সহ ক্যাসার হওয়ার সম্ভাবনা থাকে। ইউরিয়ার অতিরিক্ত ব্যবহারের ফলে মাটি, ফসলের গুণাগুণ এবং সর্বোপরি বাস্তুসংস্থানের ওপর বিরূপ প্রভাবের সৃষ্টি হয়। কৃষিক্ষেত্রে প্রয়োগকৃত অতিরিক্ত ইউরিয়া বাম্পীভবন, ডিনাইট্রিফিকেশন এবং leaching প্রক্রিয়ায় পরিবেশে অন্তর্ভক্ত হয়। এর ফলে ভূগর্ভস্থ পানি ও ভূপৃষ্ঠীয় পানি দৃষিত হয়ে পড়ে।

图3 ≥ /p

চামড়া শিল্প বর্জ্য পদার্থ → নদী → পরিবেশ দূষণ

/য বেল ২০১৭/

ক. জুইটার আয়ন কী?

খ. C.F.C কীভাবে ওজন স্তরকে ধ্বংস করে?

গ্, উদ্দীপকে প্রদত্ত কাঁচামালটির ট্যানিং এ Na₂Cr₂O₇

H₂SO₄ এর ভূমিকা সমীকরণসহ লেখো।

ঘ. উদ্দীপকে উপ্লিখিত শিল্পের পরিবেশ দূষণে দূষকসমূহ দূরীকরণ সম্ভব কী? বিশ্লেষণ করো। 8

১৮ নং প্রশ্নের উত্তর

ক অ্যামাইনো এসিডের —COOH মূলকটি প্রোটন ত্যাগ করে কার্বক্সিলেট আয়নে (—COO) এবং —NH, মূলকটি সে প্রোটন গ্রহণ করে অ্যামোনিয়াম (—NH,) আয়নে পরিণত হয়ে যে ছিমেরুযুক্ত আয়ন সৃষ্টি করে তাকে জুইটার আয়ন বলে।

ক্রোরোফ্রোরোকার্বন (CFC) অণু UV রশ্মি দ্বারা আক্রান্ত হলে C-C। বন্ধন ভেজাে মুক্ত ইলেকট্রনযুক্ত ক্রোরিন পরমাণু উৎপন্ন হয়। বিজােড় ইলেকট্রন Cl পরমাণু অধিক সক্রিয় হওয়ায় ওজােন অণু (O₃) এর সাথে বিক্রিয়ায় প্রথমে ClO^{*} এবং O₂ উৎপন্ন করে। পরে ClO^{*} মুক্তমূলক অক্সিজেন পরমাণুর সাথে বিক্রিয়া করে O₂ অণু ও ক্লোরিন পরমাণু তৈরি হয়। এভাবে ওজনশুর ক্ষরপ্রাপ্ত হয়।

$$CF_2Cl_2 \xrightarrow{uv} CF_2Cl^* + Cl^*$$

 $O_3 + Cl^* \longrightarrow ClO^* + O_2$
 $ClO^* + O \longrightarrow Cl^* + O_2$

শ্বী উদ্দীপকের কাঁচামালটি হচ্ছে চামড়া যার ক্রোম ট্যানিং প্রক্রিয়ায় $Na_2Cr_2O_7$ ও H_2SO_4 ব্যবহৃত হয়। এ দুটির মিশ্রণে ক্রোমিক এসিড পাওয়া যায়। এ প্রক্রিয়ায় চামড়ার কোলোজেন এবং ক্রোমিয়াম আয়নের মধ্যে জটিল সল্লিবেশ বন্ধন গঠিত হয়। ক্রোমিয়াম (III) সালফেট $[Cr(H_2O)_6]_2(SO_4)_3$ অত্যন্ত দক্ষ ও কার্যকর ট্যানিং এজেন্ট হিসেবে পরিগণিত। Cr(III) সালফেট দ্রবীভূত হয়ে হেয়া আ্যাকোয়া ক্রোমিয়াম (III) ক্যাটায়ন $[Cr(H_2O)_6]^{3+}$ প্রদান করে এবং পলিক্রোমিয়াম (III) যৌগ গঠন করে যা ট্যানিং প্রক্রিয়ার সক্রিয় এজেন্ট হিসেবে কোলাজেন শিকলের সাথে ক্রস সংযোগ গঠন করে।

এক্ষেত্রে ক্রোমিয়াম দুটি প্রোটিন চেইনের মধ্যে সেতু বন্ধন সৃষ্টি করে এবং বহুসংখ্যক ক্রোমিয়াম অক্সিজেনের মাধ্যমে একে অপরের সাথে যুক্ত হয়ে একটি বৃহদাকার চেইন সৃষ্টি করে।

হাইড্রোক্সাইডের উপস্থিতিতে কোলাজেনের আর্দ্রবিশ্লেষণে আয়নিত কার্বব্রিল (RCO) গঠিত হয়। ট্যানিং এজেন্ট ক্রোমিয়াম লবণ অন্তর্ভুব্তির পূর্বেই লাইমিং প্রক্রিয়ার সময় এ রূপান্তরটি ঘটে।

ক্রোমিয়াম এজেন্ট যোগ করার পরপরই NaHCO3 যোগ করে ট্যানিং বাথের pH মান 4.0 – 4.3 পর্যন্ত বৃদ্ধি করা হয়। এতে ক্রোমিয়াম ও কোলাজেনের মধ্যে ক্রস সংযোগ [-NH2-Cr-OOC-] গঠনের অনুকূল পরিবেশ সৃষ্টি হয়।

ক্রোমট্যানিং এ সংঘটিত রাসায়নিক বিক্রিয়া :

 $Na_2Cr_2O_7 + 3H_2SO_4 + 3Na_2S_2O_3 \rightarrow 4Na_2SO_4 +$

 $2Cr(OH)SO_4 + 3S + 2H_2O$

য় উদ্দীপকের উল্লিখিত শিল্পের দূষক অর্থাৎ চামড়া শিল্পের দূষক দূষক সৃষ্টিকারী শিল্পের মধ্যে অন্যতম। এ শিল্পে কঠিন, তরল এবং গ্যাসীয় তিন প্রকারের বর্জাই উৎপন্ন হয়। চামড়া শিল্পের বর্জা পানিতে দ্রবীভূত ও অদ্রবীভূত এবং জৈব ও অজৈব দূষক বিদ্যমান থাকে। কঠিন দূষকসমূহ হচ্ছে চুন, Na2S, অ্যামোনিয়াম লবণ প্রভৃতি। তরল দূষকসমূহের মধ্যে H2SO4, ক্রোমিয়ামের লবণের দ্রবণ উল্লেখযোগ্য। আর গ্যাসীয় দূষকসমূহের মধ্যে H2S, NH, এবং বিভিন্ন উদ্বায়ী যৌগ।

এ শিল্পের এ মারাত্মক দূষকসমূহ দূরীকরণ সম্ভব যদি বর্জ্য পদার্থকে নদীতে বা অন্যকোনো জলাশয়ে পতিত হওয়ার আগে ETP এর সাহায়ো বিশোধন করা হয়। এক্ষেত্রে ETP এর নিম্নোক্ত তিনটি প্রক্রিয়ায় ব্যবহার

/श. *বো. ২০১* १/ করা যেতে পারে।

i. তড়িৎ বিশ্লেষণ প্রক্রিয়া : এ প্রক্রিয়ায় বর্জ্য পানিতে বিদ্যমান ধাতব আয়ন দূর করা হয়। এক্ষেত্রে সংশ্লিষ্ট বিক্রিয়া—

Mⁿ⁺ + ne⁻ → M [M = ধাতব আয়ন]

 প্রভাবন প্রক্রিয়া : বর্জা পানিতে বিদ্যমান ক্ষতিকারক জৈব যৌগসমূহকে প্রভাবকের উপস্থিতিতে অক্সিজেন দ্বারা জারিত করে CO2, H2O এবং N2 গ্যাসে পরিণত করা হয়।

iii. জীব প্রযুক্তি: এ পন্ধতিতে ব্যাকটেরিয়া বা অন্য কোনো জৈব অণু বীজ ব্যবহার করে জৈব ও অজৈব পদার্থকে জারিত বা বিয়োজিত করে CO2, NH3 ও H2O তে পরিণত করা হয়।

- পোর্টল্যান্ড সিমেন্ট কাকে বলে?
- কাচ অত্যাধিক শীতলীকৃত তরল— ব্যাখ্যা কর্মে।
- উদ্দীপকে বর্ণিত কারখানা থেকে নির্গত দূষকসমূহের মানুষের উপর প্রভাব ব্যাখ্যা করে
- সিমেন্ট A এবং B এর ক্রিমানীতির পার্থক্যের কারণ বিশ্লেষণ

১৯ নং প্রশ্নের উত্তর

ক বিভিন্ন সংযুক্তির ক্যালসিয়াম অ্যালুমিনেট ও ক্যালসিয়াম সিলিকেটের মিহি চর্ণের মিশ্রণকে উত্তপ্ত করলে এক প্রকার চর্ণাকার মিশ্রণ পাওয়া যায়, যা পানির উপস্থিতিতে জমাট বেঁধে দৃঢ় ও শক্ত কঠিন পদার্থে পরিণত হয়, এ মিশ্রণকে পোর্টল্যান্ড সিমেন্ট বলে।

আকৃতিদানের পর কাচ সামগ্রিকে কিছুক্ষণ গলনাভেকর কাছাকাছি একটি বিশেষ তাপমাত্রায় (কোমলায়ন তাপমাত্রা) রাখা হয়। এরপর একে ক্রম হ্রাসমান তাপমাত্রায় রেখে ধীরে ধীরে শীতল করা হয়। ফলে প্রাপ্ত কাচ স্বচ্ছ, শক্তিশালী ও সুষম ঘনত্ব বিশিষ্ট হয়। এজন্য একে অত্যধিক শীতলীকৃত তরল বলা হয়।

🖥 ৭ (ঘ) নং সৃজনশীল প্রশ্নোতর দুষ্টব্য।

য় সিমেন্ট B হচ্ছে জিপসামবিহীন সিমেন্ট। এতে পানি যোগ করলে উপস্থিত ক্যালসিয়াম যৌগগুলো বিষোজিত হয়ে ক্যালসিয়াম হাইড্রক্সাইড, পানি সংযোজিত ক্যালসিয়াম সিলিকেট ও ক্যালসিয়াম অ্যালুমিনেটের কেলাস সৃষ্টি করে। এ কেলাসগুলো ধীরে ধীরে একটি অপরটির মধ্যে প্রবেশ করে একটি বিরাট সৃদৃঢ় জালকের সৃষ্টি করে এবং দৃঢ়ভাবে জমাট বাধে। কিন্তু সিমেন্ট A তে জিপসাম যোগ করায় জমাট বাঁধা মন্দীভূত হয়। কারণ জিপসাম ট্রাইক্যালসিয়াম অ্যালুমিনেট এর সাথে বিক্রিয়া করে অদ্রবণীয় ক্যালসিয়াম সালফো অ্যালুমিনেট উৎপন্ন করে। এর ফলে দুত জমাট বাঁধতে সাহায্য করে এরূপ ট্রাইক্যালসিয়াম অ্যালুমিনেট আপাত দৃষ্টিতে দূরীভূত হয়। সে কারণে সিমেন্ট দ্রুত জমাট বাঁধতে পারে না।

 $3CaO.Al_2O_3 + 3(CaSO_4. 2H_2O) + 2H_2O \rightarrow 3CaO.$

 $Al_2O_3 3CaSO_4 .2H_2O + 6H_2O$

তবে এতে জমাট বাঁধতে পানির উপস্থিতিতে কয়েক সপ্তাহ সময় লাগলেও উৎপন্ন কঠিন পদার্থের দৃঢ়তা ও শক্তির বৃদ্ধি ঘটে। এর প্রভাবে জমাট বাধার পর সিমেন্ট আরো শক্ত ও দীর্ঘস্থায়ী হয়।

14. Cat. 2039/

পরম শূন্য তাপমাত্রা কী?

মোলার দ্রবণকে প্রমাণ দ্রবণ বলা হয় কেন?

উদ্দীপকের প্রয়োজনীয় দ্রবাদি ব্যবহার করে একটি শিল্পদ্রব্যের প্রস্তৃতির মূলনীতি লেখো।

১নং চিত্রের 1.52 g নমুনাকে দ্রবীভূত করতে সম্পূর্ণ এসিড দ্ৰবণ প্ৰয়োজন হলে নমুনাটি বিশৃন্থ কিনা– বিশ্লেষণ করো।৪ ২০ নং প্রশ্নের উত্তর

ক্ত যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয় তাকে পরম শূন্য তাপমাত্রা বলে (0 Kelvin) ৷

যে দ্রবণের আয়তন নির্দিষ্টভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বলে। মোলার দ্রবণের প্রতিলিটার আয়তনে একমোল দ্রব দ্রবীভূত থাকে যা আমাদের জানা। যেমন 1M HCl দ্রবণের প্রতি লিটারে 36.5 g HCl দ্রবীভূত থাকে। এজন্য মোলার দ্রবণ একটি প্রমাণ দ্রবণ।

🚰 উদ্দীপকের উল্লিখিত দ্রব্যাদি অর্থাৎ চুনাপাথর, কাদামাটি ও জিপসাম ব্যবহার করে সিমেন্ট প্রস্তুত করা যায়। অবশিষ্ট অংশ ১ (গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

যা উদ্দীপকে ১নং নমুনাটি হচ্ছে চুনাপাথর (CaCO3)। এসিড দ্রবণটির জন্য—

সূত্রমতে,
$$S = \frac{W}{MV} \times 1000$$

$$\therefore W = \frac{S \times M \times V}{1000}$$

$$= \frac{0.40 \times 36.5 \times 75}{1000}$$

= 1.095g

তাপমাত্রা, V = 75 mL ঘনমাত্রা, S = 0.40M আণবিক ভর্ব, M = 36.5 এসিডের ডর, w = ?

চুনাপাথরের সাথে HCI এসিডের বিক্রিয়া নিম্নরূপ— $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$ 100g 2×36.5

বিক্রিয়ানুসারে,

100 g CaCO3 দ্রবীভূতকরণে HCI প্রয়োজন 2 × 36.5 g

1.52 g CaCO₃ " HCl " =
$$\frac{2 \times 36.5 \times 1.52}{100}$$

= 1.1096 g

প্রয়োজনের তুলনায় অতিরিক্ত HCI প্রয়োজন হয়েছে

$$= (1.1095 - 1.095) g$$

= 0.0146 g

যেহেতু নমুনাটি দ্রবীভূতকরণে কাঞ্জিত মান থেকে অতিরিক্ত এসিডের প্রয়োজন হয়েছে। সূতরাং প্রদত্ত মমুনাটি বিশুদ্ধ নয়।

$$A_2 + B_2 \xrightarrow{450^{\circ}C} C \longrightarrow কার্বামেট \xrightarrow{\Delta} D$$

ক. টি,এন,টি কী?

CO কে নীরব ঘাতক বলা হয় কেন?

D এর দূষকগুলো কীভাবে এর ক্ষতিকর প্রভাব ফেলে-ব্যাখ্যা করো।

উৎপাদ C এর 99.7% পাওয়ার জন্য প্রয়োজনীয় শর্তসমূহ বিশ্লেষণ করো।

২১ নং প্রশ্নের উত্তর

ক টি,এন,টি (TNT) হলো 2, 4, 6-ট্রাইনাইট্রো টলুইন, যায় সংকেত—

তে বর্ণহীন, গন্ধহীন গ্যাস। তাই পরিবেশে এর উপস্থিতি মানুষ সহজে বুঝতে পারে না। CO নিঃশ্বাসের সজ্যে প্রাণিদেহে ঢুকে রক্তের হিমোগ্নোবিনের সজ্যে জটিল যৌগ গঠন করে এবং প্রাণিদেহে অক্সিজেন পরিবহনে ব্যাহত ঘটায়। ফলে বিভিন্ন শ্বাস কন্টজনিত রোগ সৃষ্টি হয়। এ ছাড়া O_2 পরিবহনে অসুবিধার কারণে শরীরের টিস্যুতে O_2 সরবরাহের জন্য হুদপিডের উপর চাপ পড়ে। ফলে হৃদরোগে আক্রান্ত হওয়ার সম্ভাবনা বেড়ে যায়। এ ঘটনাটি প্রাণীর অগোচরে ঘটে। এজন্য CO কে নীরব ঘাতক বলা হয়।

া উদ্দীপকের D যৌগটি হলো ইউরিয়া (NH2CONH2)। 450°C তাপমাত্রা ও 200 atm. চাপে N2 ও H2 বিক্রিয়া করে NH3 তৈরি করে। পরে এটি কার্বামেটে রুপান্তরিত হয়, যা উত্তাপে ইউরিয়াতে পরিণত হয়। ইউরিয়া শিল্পের দূষক পদার্থগুলো হলো— NH3, N2, CH4, CO2, NO3, SO2 ইত্যাদি। ইউরিয়া এর দূষকগুলো পরিবেশের উপর ক্ষতিকর প্রভাব ফেলে।

i. ইউরিয়া মাটির পানি দ্বারা আর্দ্র বিশ্লেষিত হয়ে NH3 ও CO2 উৎপর করে। উৎপর NH3 বিভিন্ন ব্যাকটেরিয়ার সাহায্যে HNO3 এ রূপান্তরিত হয়। উদ্ভিদ নাইট্রেট লবণ গ্রহণ করার পরও কিছু অব্যবহৃত নাইট্রেট লবণ থাকে, যা বিভিন্ন ক্ষতি করে।

ii. নাইট্রেট আয়ন যুক্ত পানি গ্রহণ করলে শিশুদের রক্তের হিমোগ্লোবিনের ক্ষতি হয় ও blue baby syndrome নামক রোগ হয়।

iii. এর ফলে ক্যান্সার হতে পারে। ইউরিয়া ডোমোয়িক এসিড নামক এক প্রকার টক্সিন তৈরি করে। এটা এক্সাইটেটরী নিউরনকে মাটিতে শক্তভাবে যুক্ত করে রাখে। ইউরিয়ার ফলে মাটিতে টারবৃথিলেজিন প্রাস্থ পায়। সার হিসেবে ইউরিয়া ব্যবহার করলে, এটি যদি বেশিমাত্রায় ব্যবহার করা হয় তাহলে বৃষ্টির পানির সাথে মিশে নদী, পুকুর ইত্যাদি জলাশয়ে চলে যায়। ফলে জলজ প্রাণীর জীবন হুমকিস্বরূপ হয়ে পড়ে। অনেক সময় মাহ মারা গিয়ে পুকুরে ভেসে উঠে। সূতরাং D এর দৃষকগুলো বিভিন্নভাবে ক্ষতিকর প্রভাব ফেলে।

প্রাপ্ত উদ্দীপকের (ঘ) নং প্রশ্নে C এর অবস্থানে D হবে। কারণ C যৌগ অর্থাৎ NH, এর 99.7% উৎপাদন পাওয়া সম্ভব নয়। কাজেই 99.7% উৎপাদন বিশিষ্ট যৌগটি হবে ইউরিয়া (D)। উৎপাদ D এর 99.7% পাওয়ার জন্য প্রথমে NH, ও CO₂ কে (3:1) 175 atm চাপ্রে আলাদাভাবে সংকৃচিত করা হয়। অতঃপর গ্যাস প্রবাহে 170–190°C তাপমাত্রায় উত্তপ্ত করা হয়। অটোক্রেন্ডে NH, ও CO₂ এর বিক্রিয়ায় অ্যামোনিয়াম কার্বামেট উৎপর হয়, পরে এটি আংশিকভাবে বিয়োজিত হয়ে ইউরিয়া ও পানি উৎপর করে। এভাবে 1.5–2 ঘণ্টা রাখা হয়। অতঃপর 140°C তাপমাত্রায় ও 27 atm চাপে রাখা একটি বাম্পকারকে স্থানান্তর করা হয়।

এখানে অপরিবর্তিত NH3 এবং CO2 কে আলাদা করে পুনরায় ব্যবহারের জন্য সরিয়ে ফেলা হয়। বাষ্পকারকে রক্ষিত ইউরিয়া ও অ্যামোনিয়াম কার্বামেটকে 1 atm চাপে ফ্রান দ্রামে প্রেরণ করা হয়। এখানে অ্যামোনিয়াম কার্বামেটের পুনরায় বিধে।জন ঘটে ইউরিয়া উৎপর হয়। ফ্রান দ্রামে সৃষ্ট NH3 ও CO2 কে পুনরায় ব্যবহার করা হয়। এভাবে প্রাপ্ত ইউরিয়াকে নির্বাত বাষ্পকারকের মধ্য দিয়ে চালনা করে তরল ইউরিয়া উৎপর (৪০%) করা হয়। সর্বশেষ গলিত ইউরিয়াকে একটি উচু টাওয়ারের ওপর দিক থেকে চালনা করে নিচের দিক থেকে

তপ্ত বায়ু প্রবাহিত করলে গলিত ইউরিয়ার পানি বাহ্পীভূত হয়ে দানাদার 99.7% ইউরিয়া পাওয়া যায়।

열림 > 22

14. 18. 2030/

ক. c. m.f এর সংজ্ঞা দাও।

খ. জৈব যৌগে কাৰ্বঝ্রিলিকমূলক কীভাবে সনাস্ত করবে?

গ. উদ্দীপক 'B' হতে নির্গত অগ্নীয় দূষক গ্যাসসমূহ নিয়ন্ত্রণের মূলনীতি লেখো।

ঘ. 'A' উদ্দীপকের কোন গ্যাসটি বায়ুমশুলের ওজোনস্তরের জন্য ক্ষতিকর। যথায়থ সমীকরণসহ ব্যাখ্যা করো। ৪

২২ নং প্রশ্নের উত্তর

তাড়িৎ রাসায়নিক কোষে সৃষ্ট বিভব যা তড়িৎ চার্জকে প্রবাহিত গা চালিত করে তাকে কোষের তড়িৎচ্চালক বল বা e.m.f (Electromotive Force) বলে।

নি লিটমাস পরীক্ষা কিংবা NaIICO; দ্রবণ পরীক্ষার সাহায়ে। কার্বব্রিলমূলক সনাস্ত করা যায়। জলীয় দ্রবণে জৈব এলিডের ।। আয়ন নীল লিটমাসকে লাল করে। যেমন:

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^-$

H₃O* + নীল লিটমাস → লাল লিটমাস + H₃O এছাড়া NaHCO₃ দ্রবণের সজো কার্বজ্ঞিল মূলকযুক্ত জৈব এসিডের বিক্রিয়ায় বুদবুদ আকারে CO₂ গ্যাস বের হয় যা চুলের পানিকে খোলা করে।

 $CH_3COOH(aq)+NaHCO_3(aq)\rightarrow CH_3COONa(aq)+CO_2(g)+H_2O(f)$ $Ca(OH)_2(aq)+CO_2(g)\longrightarrow CaCO_3(s)+H_2O(f)$ ্যোগা চুনের পানি

ক্ষা কয়লাভিত্তিক বিদ্যুৎ কেন্দ্রে কয়লার দহনে সৃষ্ট তাপ শক্তি বিদ্যুৎ
শক্তিতে রুপান্তরিত হয়। কয়লার মূল উপাদান কার্বন হলেও কয়লার
মধ্যে বিভিন্ন অ্যারোমেটিক যৌগ ও বিষাক্ত পদার্থ থাকে। এজন্য কয়লার
দহনকালে অগ্নীয় দৃষক গ্যাস যেমন CO₂, SO₂, NO₂ প্রভৃতি বায়ুমগুল
ছড়িয়ে পড়ে।

অমীয় দূষক গ্যাসসমূহকে নিয়ন্ত্রণের জন্য দূষক গ্যাস দ্রবীভূত করণের মূলনীতি: FGD (Flue Gas Desulpharation) গ্রান্ট এ SO: গ্যাসকে কারীয় দ্রবণে দ্রবীভূত করা হয়। যেমন Ca(OH): গ্রারা SO: গ্যাসকে অপসারণ করা যায়।

Ca(OH)₂ + SO₂ → CaSO₃ + H₂O অনুৰূপভাবে CO₂, NO₂ প্ৰভৃতি গ্যাসের নিয়ন্ত্রণের জন্য কারীয় দ্রবণ ৰ্যবহার করা হয়।

$$CO_2 + NaOH \longrightarrow Na_2CO_3 + H_2O$$

 $2NO_2 + CaO + \frac{1}{2}O_2 \longrightarrow Ca(NO_3)_2$

য় বায়ুমগুলের গ্যাসগুলোর মধ্যে CO₂, CH₄, CFC, N₂O, O₃, H₂O(g) এগুলো প্রিন হাউজ গ্যাস নামে পরিচিত। এসব প্রিন হাউজ গ্যাসগুলোর মধ্যে CFC গ্যাসটি বায়ুমগুলের ওজোনস্তরের জন্য ক্ষতিকর। অবশিষ্ট অংশ ১২ (ঘ) নং সৃজনশীল প্রশ্নোত্তর দুষ্টব্য।

[भग्नभनित्रः शानित्र क्याद्यर्धे कदनवा]

ক. পাইরেক্স গ্লাস কি?

খ. বিটুমিনাস কয়লা বলতে কি বুঝ?

গ. Z শিল্পটির উজ্জ্বলতা বৃদ্ধির সাথে সংশ্লিষ্ট রাসায়নিক বিক্রিয়া ব্যাখ্যা করো।

ঘ. X ও Y এর রিসাইক্লিং পরিবেশ বান্ধন— ব্যাখ্যা করো। ২৩ নং প্রয়ের উত্তর

ক্র এক ধরনের বোরোসিলিকেট গ্লাস যেখানে বোরিক এসিড এর পরিমাণ অন্যান্য গ্লাসের চেয়ে বেশি তাকে পাইরেক্স গ্লাস বলে।

🔞 বিটুমিনাস কয়লা কালো, নরম ও শস্ত হতে পারে। বিটুমিনাস কয়লার তিনটি শ্রেণি রয়েছে। যেমন, সাববিটুমিনাস, বিটুমিনাস ও সুপার বিটুমিনাস। এদের মধ্যে আর্দ্রতার শতকরা হার ক্রমান্বয়ে কমে এবং এদের মধ্যে ফিক্সড কার্বনের শতকরা পরিমাণ ও ক্যালরিফিক মান ক্রমে বাড়ে। এদের শ্রেণিভেদে আর্দ্রতা 2.2–15.9% হয়ে থাকে এবং ফিব্রড কার্বনের পরিমাণ 44-78% থাকে। জ্বালানি মান 11000-15000 BTU হয়। বিদ্যুৎ উৎপাদনে বিটুমিনাস কয়লা ব্যবহৃত হয়।

ব্যা উদ্দীপকের Z পাল্লের উজ্জ্বলতা বৃন্ধির জন্য একে বিরঞ্জন করতে হয়। নিম্নে পাল্ল তৈরি ও বিরঞ্জন প্রক্রিয়ার সাথে সংশ্লিষ্ট রাসায়নিক विकिशा छैत्त्रथ कता श्रामा :

সালফেট পাল্প তৈরিতে নিম্নোক্ত বিক্রিয়া সংঘটিত হয়।

$$S + O_2 \longrightarrow SO_2$$

 $SO_2 + H_2O + CaCO_3 \longrightarrow Ca(HSO_3)_2 + CO_2$

 $SO_2 + H_2O + MgCO_3 \longrightarrow Mg(HSO_3)_2 + CO_2$

 $SO_2 + Mg(OH)_2 \longrightarrow Mg(HSO_3)_2$

 $SO_2 + H_2O + NH_3 \longrightarrow NH_4HSO_3$

বিরঞ্জন ক্রিয়ার রাসায়নিক বিক্রিয়া : ব্রিচিং পাউডারের সহযোগে বিরঞ্জন করা হয়।

$$Ca(OCI) CI \xrightarrow{H_2O} Ca(OH)_2 + Cl_2$$

 $Cl_2 + H_2O \longrightarrow HCI + [O]$
 $2HCI + [O] \longrightarrow H_2O + [CI]$

উৎপন্ন সক্রিয় জায়মান অক্সিজেন ও ক্লোরিন রঙিন কাগজে উজ্জত করে। রঙিন বন্তু + [O] —→ বণহীন বন্তু

ত্ব উদ্দীপকের Y শিল্পটি হলো সিমেন্ট। সিমেন্ট শিল্প থেকে নির্গত দূষক NO2, CO2, CO, SO2 বিভিন্ন ধূলিকণা ও ধাতব পদার্থ পরিবেশের জন্য ক্ষতিকর। তাছাড়া CO_2 , NO_x , SO_x ইত্যাদি এসিড বৃষ্টি সৃষ্টি করতে পারে। মানুষের শ্বাস-প্রশ্বাস জনিত সমস্যা সৃষ্টি করতে পারে। এসিড বৃষ্টির ফলে pH মান কমে গেলে জলজ উদ্ভিদ ও প্রাণীর বিভিন্ন রোগ সৃষ্টি হতে পারে। এমনকি মৃত্যুও হতে পারে। তাছাড়া সিমেন্ট রিসাইকেলযোগ্য না হওয়ায় এই শিল্প কর্তৃক দূষণ ক্রমান্বয়ে বাড়তে থাকবে।

অপরদিকে উদ্দীপকের X পদার্থটি হলো কাচ। পরিবেশ ও অর্থনৈতিক উভয় ক্ষেত্রে কাচ রিসাইকেলের গুরুত্ব অনেক। কাচ স্বচ্ছ, কঠিন পদার্থ এবং 100% রিসাইকেলযোগ্য। এটিকে গলানোর পর বিভিন্ন সামগ্রী প্রস্তুত করা সম্ভব সহজলভ্য কাচের সামগ্রী বাসা বাড়িতে ব্যবহার করা হয়। বাড়ি ও গাড়ির জানালাতে প্রচুর কাচ ব্যবহার করা হয়। কাচ আঘাতে ভজাুর হওয়ায় বর্জা কাচের পরিমাণও অনেক। বর্তমানে ভাঙা

কাঁচ সংগ্রহ করে ফ্যাইরিতে যোগান দেওয়া হচ্ছে। এ বর্জা কাচ রিসাইকেলে পাওয়া যাচেছ নতুন কাচ এতে করে একদিকে যেমন জ্বালানি কাঁচামাল বায় কম হচ্ছে অন্যদিকে পরিবেশ দৃষণ রোধ ও স্বাস্থ্য ঝুঁকি হ্রাস পাঙ্ছে। তাছাড়া কাচের দামও কমেছে। অতএব, Y শিল্পটি পরিবেশ বান্ধব না হলেও X শিল্পটির রিসাইকেল পরিবেশ বান্ধব।

8

ক, এসিড বৃষ্টি কি?

Fe²⁺ একটি বিজারক –ব্যাখ্যা করে।

সমীকরণসহ A উৎপাদনের মূলনীতি লিখ।

ঘ. উদ্দীপকের A উৎপাদনের ক্ষেত্রে পরিবেশের ক্ষতিকর প্রভাব বর্ণনা করো।

২৪ নং প্রশ্নের উত্তর

ক্র বায়ুমগুলে অধঃক্ষেপণ বৃষ্টিতে pH এর মান 5.6 এর কম হলে ঐ অধঃক্ষেপণ বৃষ্টিকে এসিড বৃষ্টি বলে।

 $Fe^{2+} - e^{-} \longrightarrow Fe^{3+}$

উপরের বিক্রিয়াটিতে Fe²⁺ একটি ইলেকট্রন ত্যাগ করে জারিত হয়েছে। যে বিক্রিয়ায় কোনো রাসায়নিক পদার্থ ইলেকট্রন ত্যাগ করে তাকে বিজারক বলে ৷ এই বিক্রিয়ায় Fe²⁺ ইলেকট্রন ত্যাপ করায় Fe²⁺ একটি বিজারক।

$$FeCl_2 + Cl_2 \longrightarrow FeCl_3$$

বিজারক

গা ১ (গ) নং সূজনশীল প্রশ্নোত্তর দুষ্টব্য।

য ১ (ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রফব্য।

의위 ▶ ২৫

উচ্চচাপে CO,

তরণ ১	$ H_3 $ বিক্রিয়া $\rightarrow A \rightarrow $ গাঢ় $A \rightarrow A$	এর স্ফটিক
	/অয়পূ	दशंधे धार्नम क्याटकचे करनज
ক.	COD কাকে বলে?	3
휙.	সিমেন্টে জিপসাম ব্যবহার করা হয় কেন	? 2

A উৎপাদের মূলনীতি বর্ণনা করো।

ঘ. পরিবেশের উপর A এর সুবিধা ও অসুবিধা লিখ।

২৫ নং প্রশ্নের উত্তর

🐼 পানির নমুনায় পচনশীল ও অপচনশীল সব ধরনের জৈব দূষক পদার্থকে বিযোজনের জন্য প্রয়োজনীয় অক্সিজেনের পরিমাণকে COD (Chemical Oxygen Demand) বলে ।

ৰ জিপসাম (CaSO₄.2H₂O) এর উপস্থিতিতে সিমেন্টের জমাট বাঁধার প্রক্রিয়া ধীরণতিতে ঘটে। কারণ, জিপসাম ট্রাইক্যালসিয়াম অ্যালুমিনেট এর সাথে বিক্রিয়া করে অদ্রবণীয় ক্যালসিয়াম সালফো অ্যালুমিনেট উৎপন্ন করে। এর ফলে দ্রুত জমাট বাঁধতে সাহায্য করে এরপ ট্রাইক্যালসিয়াম অ্যালুমিনেট আপাত দৃষ্টিতে দূরীভূত হয়। যে কারণে সিমেন্ট দুত জমাট বাধতে পারে না।

 $3 \text{ CaO.Al}_2\text{O}_3 + 3(\text{CaSO}_4.2\text{H}_2\text{O}) + 2\text{H}_2\text{O} \xrightarrow{\bullet} 3\text{CaO. Al}_2\text{O}_3.$

 $3CaSO_4.2H_2O + 6H_2O$

তবে এর প্রভাবে সিমেন্টের সম্পূর্ণরূপে জমাট বাধতে যথেষ্ট পরিমাণ পানির উপস্থিতিতে কয়েক সপ্তাহ সময় লাগলেও উৎপন্ন কঠিন পদার্থের দৃঢ়তা ও শক্তির বৃদ্ধি ঘটে।

📆 ১১(গ)নং সৃজনশীল প্রশ্লোত্তর দুষ্টব্য।

সুবিধা: ইউরিয়া সার উদ্ভিদের জন্য নিম্নাক্তভাবে কাজে লাগে—
মাটিতে দ্রবীভূত অবস্থায় ইউরিয়া ইউরিয়েজ এনজাইমের প্রভাবে ধীরে
ধীরে বিয়োজিত হয়ে অ্যামোনিয়া ও CO₂ এ পরিণত হয়। অ্যামোনিয়া
পানিতে দ্রবীভূত হয়ে অ্যামোনিয়াম হাইদ্রোঅক্সাইজে পরিণত হয়।
অ্যামোনিয়াম হাইদ্রোঅক্সাইজ NH₄* আয়ন ও OII আয়নে
আংশিকভাবে বিয়োজিত অবস্থায় থাকে। উদ্ভিদ NH₄* আয়ন
পরিশোষণ করে।

(NH₂)₂ C = O + H₂O = ইউরিয়েজ 2NH₃ + CO₂
NH₃ + H₂O ⇒ NH₄OH
NH₄OH + H₂O ⇒ NH₄* + OH + H₂O

এ বিক্রিয়ায় সময় কিছু পরিমাণ অ্যামোনিয়া গ্যাসীয় আকারে নির্গত হয়।
এভাবে ইউরিয়া সার হিসেবে কাজ করে।

অসুবিধা: i. বিপুল পরিমাণ তরল বর্জোর সৃষ্টি: ইউরিয়া থেকে উৎসারিত বর্জা পানি অবিশোধিত অবস্থায় পরিত্যাগ করা হলে জলজ প্রাণের ক্ষেত্রে বিরূপ প্রভাব সৃষ্টি হয়। বর্জ্য তরলে অ্যামোনিয়াম পরিমাণ থেকে প্রায় lkg/m³ এবং নাইট্রোজেনের পরিমাণ প্রতি টন উৎপাদে 0.1-2kg হয়ে থাকে। ভূপৃষ্ঠীয় পানিতে ইউরিয়ার বর্জা সরাসরি নিক্ষিপ্ত হলে সেটা জলীয় পরিবেশ ইউট্রোফিকেশন বা অনাকাজ্ঞিত শৈবালের উৎপত্তি ঘটে। এসব শৈবালের জীবভাজানে পানির দ্রবীভূত অক্সিজেন ব্যবহৃত হয়। ফলে, জলজ পরিবেশের দ্রবীভূত অক্সিজেন ব্যাপকভাবে হ্রাস পায়। গ্যাসীয় দূষক : ইউরিয়া শিয়ে গ্যাসীয় দূষকসমূহের মধ্যে মিথেন, SO₂, NO₂, CO₂ বস্তুকণা ও অ্যামোনিয়া অন্যতম। উভয় CH₄ এবং CO2 অবলোহিত রশ্মি শোষণ করে ভূপৃষ্ঠের তাপমাত্রা বৃদ্ধি করে। এ কারণে গ্রিন হাউজ গ্যাসের নির্গমণ হ্রাস কল্পে বিশ্বব্যাপী নানাবিধ কর্মসূচি গ্রহণ করা হচ্ছে। বায়ুমণ্ডলম্থ অ্যামোনিয়া, সালফিউরিক এসিডের সাথে বিক্রিয়া করে অ্যামোনিয়াম সালফেট বিন্দুকণা হিসেবে অধঃক্ষিপ্ত হয়।

 $H_2SO_{4(eq)}+2NH_{3(g)} \rightarrow (NH_4)_2SO_{4(eq)}$ পানিতে অ্যামোনিয়ার পরিমাণ $10-50\mu g$ প্রতি লিটারের বেশি হলে মাছসহ অন্যান্য জলজ প্রাণীর জীবদ বিপন্ন হয়ে পড়ে।

/तःशुत कारण्डि करमण्

ক. লুকাস বিকারক কী?

খ, ফেনলের অম্বধ্মীতা ব্যাখ্যা করো।

A উৎপাদনের মৃলনীতি বর্ণনা করো।

 ম. A এর উপাদনের রিসাইক্রিং অত্যন্ত গুরুত্বপূর্ণ কি না ব্যাখ্যা করো।

২৬ নং প্রশ্নের উত্তর

ক অনার্দ্র ZnCl2 এবং গাঢ় HCl এর মিশ্রণকে লুকাস বিকারক বলে।

কোরণে বেনজিন চক্রে অপুরণন বা রেজোন্যান্স ঘটে। অপুরণনের কারণে ফেনলের –OH মূলকের অক্সিজেন পরমাণুটি আংশিক ধনাত্মক চার্জযুক্ত হয়ে পড়ে। এ অক্সিজেন পরমাণুটি O–H বন্ধন ইলেকট্রনকে আকর্ষণ করে, ফলে O–H বন্ধন দুর্বল হয়ে পড়ে। পানির উপস্থিতিতে ঐ –OH মূলকের H পরমাণুটি H' হিসেবে পৃথক হয়ে পড়ে। আরহেনিয়াস মতবাদ অনুসারে, যে পদার্থ জলীয় দ্রবণে H⁺ আয়ন প্রদান করে সেটি অন্ধ্রমী। সুতরাং ফেনল অন্নধর্মী। এটি নীল লিটমাসকে লাল করে।

বা ৯(গ) নং সূজনশীল প্রশ্লোতর দ্রুইবা।

য ৯(ঘ) নং সৃজনশীল প্রয়োতর দুউব্য।

ক. ETP বলতে কি বুঝ?

খ, কাঁচ তৈরিতে কাঁচকে অ্যালিনিং করার প্রয়োজন হয় কেন?

[स्मीनमारमाठै सामको समाम हो गा

গ. উদ্দীপকে C এবং E প্রস্তুতির মূলনীতি ব্যাখ্যা করো।

ঘ. E গ্যাস থেকে কি প্লাস্টিক থেকে প্রস্তুত করা সম্ভব? ব্যাখ্যা কর।

২৭ নং প্রশ্নের উত্তর

क ETP এর পূর্ণরূপ হল Effluent Treatment Plant।

আকৃতি দেওয়া দ্রব্যকে আঘাত ও তাপমাত্রায় সহনীয় করার জন্য আানিলিং প্রক্রিয়ার মাধ্যমে পান দেওয়া হয়। সব ধরনের কাচকেই পান দেওয়া প্রয়োজন। কাচকে পান না দিলে তা তাপ এমনকি কিছু সময় রেখে দিলে ভেজো যাবে। কারণ কাচে পান না দিলে এটি তাপমাত্রায় পরিবর্তন কিংবা আঘাত সহ্য করতে পারে না। পান দেওয়ার ফলে কাচ সুষম হয়। ফলে কাচ তাপমাত্রাসহ, ঘাতসহ ও টেকসই হয়। এজনাই কাচে আানিলিং করার প্রয়োজন হয়।

বা উদ্দীপকের বিক্রিয়াটির পূর্ণরূপ নিচে দেওয়া হলো :

সুতরাং, C হলো অ্যামোনিয়া

D হলো ইউরিয়া

অ্যামোনিয়া তৈরির মূলনীতি:

$$CO_2 + 2NH_3 \Longrightarrow O = C$$
 ONH_4 ONH_2 ONH_2 ONH_2 ONH_2 OCC ONH_4 OCC OCC ONH_4 OCC OCC OCC ONH_4 OCC OCC

উদ্দীপকে A গ্যাসটি হলো ইউরিয়া। ইউরিয়া থেকে মেলামাইন পলিমার প্রস্তুতি সম্ভব। নিয়ে ব্যাখ্যা করা হলো-

ইউরিয়া থেকে মেলামাইন ও মেলামাইন পলিমার মেলাড়ুর প্রস্তুতি
প্রথমে TiO_2 প্রভাবকের উপস্থিতিতে ইউরিয়া বা কার্বামাইডকে উত্তপ্ত
করে মেলামাইন প্রস্তুত করা হয়। পরে মিথান্যাল ও মেলামাইন (এটি
নিজেই কার্বামাইড বা ইউরিয়ার একটি পলিমার) মিশ্রণকে উত্তপ্তকরণে
পুনঃপলিমারকরণ (অর্থাৎ কো-পরিমারাইজ) প্রক্রিয়ায় মেলামাইন-পলিমার নামক নতুন পলিমার গঠন করে। একে মেলামাইন রেজিন বা
মেলাড়র মেলামাইন প্লাপ্টিক বলে।

21개 > 26

i. W_2 + $3X_2$ $\xrightarrow{Fe,200atm}$ Y + গ্রীন হাউস গ্যাস → Z

ii. CaO. SiO2 Al2O3, Fe2 O3. MgO. SO3 44 CaSO4

|बित्रभाम काएडाँ करमण/

- क. न्याता क्या कि?
- খ, উদ্দীপকের (ii) নং কিভাবে পরিবেশের সমস্যা সৃষ্টি করে?
- ণ্ উদ্দীপকের (ii) নং শিল্পটি উৎপাদের মূলনীতি ব্যাখ্যা করো। ৩

২৮ নং প্রশ্নের উত্তর

100 nm আকার বিশিষ্ট ত্রিমাত্রিক ষ্ণুদ্র কণাকে ন্যানো পার্টিক্যাল বলে।

সিমেন্ট শিল্পে বিভিন্ন কর্মকান্ডের ফলে উৎপন্ন CO_2 -এর 5% তৈরি করে, যার মধ্যে 50% রাসায়নিক প্রক্রিয়ায় এবং 40% জ্বালানি দহনের মাধ্যমে। প্রতি 1000 কিলোগ্রাম সিমেন্ট উৎপাদনের জন্য 900 কিলোগ্রাম CO_2 উৎপন্ন হয়।

CO2 গ্যাসের পাশাপাশি অল্প পরিমাণে CO গ্যাসও এ শিল্প ছতে উৎপর হয়। সিমেন্ট শিল্পে ব্যবহৃত জ্বালানি থেকে প্রচুর পরিমাণে NO_x(NO এর NO₂ মিশ্রণ) বাতাসে নির্গত হয়। বিভিন্ন শিল্প কারখানা থেকে উৎপর NO_x এর মধ্যে শতকরা প্রায় 2 ভাগ NO_x সিমেন্ট শিল্প থেকে হয়, সিমেন্ট শিল্পে মোট NO_x এর মধ্যে 95% NO। সিমেন্ট শিল্পে ব্যবহৃত কাঁচামাল ও জ্বালানি থেকে SO_x প্রধানত SO₂(99%) উৎপর হয়। বিভিন্ন উৎস থেকে উৎপন্ন মোট SO_x এর মধ্যে গড়ে প্রতি বছর 1–2%

SO_x সিমেন্ট শিল্প থেকে বাতাসে নির্ণত হয়। কিছু কিছু ক্ষেত্রে বিশেষ করে কাঁচামালের উৎস এবং সংযুক্তির উপর নির্ভর করে, চুনাপাথর এবং কাদার উচ্চ তাপমাত্রায় ভস্মীকরণের ফলে বায়ুমণ্ডলে নিঃসৃত গ্যাসের সাথে উদ্বায়ী ধাতু, যেমন— থেলিয়াম (TI), ক্যাডমিয়াম (Cd) ও পারদ (Hg) ইত্যাদি কণা আকারে হেড়ে দেয়। ফলে পরিবেশ দৃষিত হয়।

উদ্দীপকের (ii)নং এর কাচামাল দিয়ে সিমেন্ট উৎপাদন করা যাবে।
সিমেন্ট উৎপাদনের মূলনীতি নিচে ব্যাখ্যা করা হলো:

মূলনীতি: পোর্টল্যান্ড সিমেন্ট উৎপাদনে দুটি পশ্বতি অনুসরণ করা হয়। যথা— (১) শুষ্ক পশ্বতি ও (২) আর্দ্র পশ্বতি। উদ্দীপকে আর্দ্র পশ্বতির প্রক্রিয়াকরণ দেখানো হয়েছে।

আর্ন্র পন্ধতিতে কাঁচামালের উপাদানগুলো পানির উপস্থিতিতে চূর্ণ করে মেশানো হয় এবং ভেজা অবস্থাতেই গুঁড়া করে স্থারি করা হয়। এই স্লারিতে 35-40% পানি থাকে। একে আধারে সংরক্ষণ করা হয়। এ পন্ধতিতে বিভিন্ন উপাদানের অনুপাত সঠিক রাখা হয়। এই স্লারি সরাসরি চুল্লিতে ঢোকানো হয়।

শুক্ষ ও আর্দ্র উভয় পন্ধতিতে সূক্ষভাবে চূর্ণিত মিশ্রণকে ঘূর্ণায়মান চুল্লিতে 1400-1500°C তাপমাত্রায় উত্তপ্ত করা হয়। চুল্লিতে নিম্নোক্ত রাসায়নিক পরিবর্তন ঘটে।

রাসায়নিক পরিবর্তনমূহ:

CaCO₃
$$\xrightarrow{1000^{\circ}\text{C}}$$
 CaO + CO₂
3CaO + SiO₂ $\xrightarrow{1300 - 1450^{\circ}\text{C}}$ 3CaO, SiO₂
2CaO + SiO₂ $\xrightarrow{\Delta}$ 2CaO.SiO₂
3CaO + Al₂O₃ $\xrightarrow{\Delta}$ 3CaO.Al₂O₃
4CaO + Al₂O₃ + Fe₂O₃ \rightarrow 4CaO.Al₂O₃.Fe₂O₃

উৎপন্ন সিমেন্ট ক্লিংকার এর সাথে 2% জিপসাম (CaSO₄.2H₂O) যোগ করে গুঁড়া করা হয়। এটিই পোর্টল্যান্ড সিমেন্ট।

📆 উদ্দীপকের Y হলো অ্যামোনিয়া (NH3) এবং এর সাথে গ্রীনহাউস গ্যাস CO2 মিলিতভাবে ইউরিয়া (Z) উৎপন্ন করে।

 NH_3 ও CO_2 গ্যাসকে 130 atm চাপে 180°C তাপমাক্রায় উত্তপ্ত করলে প্রথমে অ্যামোনিয়াম কার্বামেট ও পরে ইউরিয়া উৎপন্ন হয়। $2NH_3 + CO_2 \Longrightarrow NH_4CO_2NH_2$

$$NH_4CO_2NH_2 \Longrightarrow H_2N - C - NH_2 + H_2O$$
(Z)

প্রাকৃতিক গ্যাস ও বায়ু হতে H_2 ও N_2 কে সংগ্রহ করা হয়। প্রাকৃতিক গ্যাসের মধ্যে ভেজাল থাকে বলে গ্রকে সালফার গার্ড এর মধ্য দিয়ে চালনা করে সালফার বিমুক্ত করা হয়।

$$CH_4(g) + H_2O_{(\overrightarrow{Po}_N)} \xrightarrow{Ni} CO_{(g)} + H_{2(g)} + CO_{2(g)}$$

 $CH_4 + \overline{q}$ प्र् $\rightarrow CO_{(g)} + CO_{2(g)} + 2H_{2(g)} + N_{2(g)}$ এ প্রক্রিয়াটি রিফমিং প্লান্টে সম্পন্ন করা হয়। এ গ্যাস মিশ্রণকে কার্বনেট দ্রবণে শোষণ করে CO_2 অপসারিত করা হয়। অবশিষ্ট গ্যাসকে (N_2, H_2, CO) কপার লিকারের ভিতর দিয়ে চালনা করে CO অপসারিত হয়। অবশিষ্ট গ্যাসে 1:3 অনুপাতে N_2 ও H_2 বর্তমান থাকে। প্রাপ্ত N_2 ও H_2 কে 1000 atm চাপে ফিন্টার বক্সের মধ্যে চালনা করা হয়। ফলে ভেজাল পৃথক হয়ে যায়।

বায়ুকে এমনভাবে নিয়ন্ত্রণ করা হয় যাতে N₂ ও H₂ প্রবাহে তাদের মোলার অনুপাত 1 : 3 থাকে। থাকে এ বিশুন্থ গ্যাস মিথেনকে 300 atm চাপে প্রভাবক উদ্দীপকসহ আয়রন প্রভাবকের উপস্থিতিতে 500°C তাপমাত্রায় চালনা করলে NH₃ উৎপন্ন হয়।

উৎপন্ন NH, কে প্রথমে ঠান্ডা পানি ও পরে NH, রেফ্রিজারেশন দ্বারা ঘনীকরণ করে সরিয়ে নেওয়া হয়। অপরিবর্তিত N₂ ও H₂ কে পুনঃসঞ্জালন করে পুনরায় NH, তে পরিণত করা হয়।

অ্যামোনিয়া উৎপাদনের (i)নং বিক্রিয়াটি উভমুখী বিক্রিয়া এবং উৎপদ্র অ্যামোনিয়াকে সাথে সাথে অপসারণ করতে হয়। চাপ, তাপমাত্রা ও বিভিন্ন প্রভাবক ব্যবহার করে অত্যন্ত জটিল একটি প্রক্রিয়ার মাধ্যমে প্রাকৃতিক গ্যাসথেকে N₂ ও H₂ পৃথক করে NH₃ করা হয়। তাই ইউরিয়া উৎপাদনের ক্ষেত্রে NH₃ উৎপাদন একটি স্বাভাবিক প্রক্রিয়া নয়।

SIN > 59

[मिछेत्र एक्य करनान, एका।

ক, শ্লেজিং কী?

থ, ন্যানো পার্টিকেলের ধর্ম নিজম্ব পরমাণু থেকে ভিন্নতর— ব্যাখ্যা কর।

গ. উদ্দীপকের A ও B শিল্পের দূষক নিয়ন্ত্রণে ETP তে সংঘটিত বিক্রিয়াগুলো লিখ।

২৯ নং প্রশ্নের উত্তর

সিরামিক পণ্যের পৃষ্ঠদেশে কুদ্রাতিকুদ্র ছিদ্রকে পূর্ণ করার জন্য স্বল্প গলনযোগ্য কাচের আবরণ দেয়াকে গ্লেজিং বলে।

ন্যানো কণার পৃষ্ঠতল ক্ষেত্রফল এর পরমাণুর তুলনায় অনেক বেশি থাকে। আনুপাতিকভাবে বৃহত্তর সক্রিয় পৃষ্ঠতলের কারণে ন্যানোকণাসমূহ রাসায়নিকভাবে অনেক সক্রিয়। ZnO ন্যানোকণা অর্ধপরিবাহী হিসেবে কাজ করলেও Zn-কণা অর্ধপরিবাহী নয়। ন্যানো ZnO-এর ব্যান্ড গ্যাপ শক্তি Zn-এর চেয়ে অনেক কমে যায়, ফলে এটি অর্ধপরিবাহী হিসেবে কাজ করে। কার্বনের পরিবাহিতা বা অর্ধপরিবাহিতা নেই কিত্র এর ন্যানো, কণা গ্রাফিন, কার্বন টিউব ও ফুলারিনের মধ্যে তা বিদ্যমান এবং এদের ব্যবহারের ব্যাপকতা ও অনেক। কার্বনের ন্যানো কণার বিভিন্ন আকৃতি ও গঠনের কারণে এদের পৃষ্ঠতল ক্ষেত্রফল অনেক বৃদ্ধি পায়। অতএব, ন্যানো কণার ধর্ম পরমাণু থেকে আলাদা।

উদ্দীপকের A ও B যথাক্রমে ইউরিয়া ও ট্যানারী শিল্প এবং এসব শিল্প কারখানা থেকে নির্গত দূষকগুলোর মধ্যে CO₂, CO, NO₂, NO, SO₂, SO₃ অদহনকৃত হাইড্রোকার্বন ধূলাবালি, বিষাক্ত ধাতুর সূক্ষকণা, ধোঁয়া অন্যতম। তাছাড়া চামড়া শিল্প থেকে ক্রমাগত ক্রোমিয়ামের বিভিন্ন যৌগ পরিবেশে আসছে। এসব দূষক নিয়ন্ত্রণে ETP পশ্বতি নিম্নে আলোকপাত করা হলো:

- তড়িৎ বিশ্লেষণ প্রক্রিয়া : যে সব শিল্প কারখানার বর্জা পানিতে ধাতুর আয়নের পরিমাণ বেশি থাকে, ঐ সব ক্ষেত্রে বর্জা পানির ধাতব আয়ন পৃথক করার জন্য তড়িৎ-বিশ্লেষণ প্রয়োগ করা য়য়। যেমন ট্যানারির ক্রোমিয়াম আয়ন এ প্রক্রিয়ায় পৃথক করা য়য়।
- Mⁿ⁺ + ne⁻ → M

 প্রভাবকীয় রূপান্তর : বিভিন্ন প্রকৃতির জারক ও বিজারকধর্মী
 প্রভাবক ব্যবহার করে শিল্প কারখানা হতে নির্গত দূষক গ্যাস
 জারণ অথবা বিজারণ বিক্রিয়ার মাধ্যমে অপেক্ষাকৃত কম দূষক
 পদার্থে রূপান্তর করা যায়। বায়ুদূষণ নিয়ন্ত্রণে প্রভাবকীয় রূপান্তর
 দূই ধাপে সম্পন্ন করা হয়।

He, CO, NO
$$\rightarrow$$
 Pt \rightarrow CO₂, N₂, N₂O anges with an

৩. জীব প্রযুদ্ধি প্রয়োগ: ব্যাকটেরিয়া বা বিভিন্ন অণু জীব বর্জা পানিতে থাকা বিভিন্ন জৈব যৌগ ও জৈব পদার্থকে জারিত বা বিয়োজিত করে CO2, NH3 ও H2O প্রভৃতি যৌগে পরিণত করে। পানিতে বিদ্যমান জৈব যৌগ ও জৈব পদার্থের ওপর নির্ভর করে বিভিন্ন ধরনের ব্যাকটেরিয়া ব্যবহৃত হয়। বর্জা পানিকে থিতানোর পর নির্দিষ্ট অনুজীব যোগ করে চৌবাচ্চায় রাখা হয়। অনুজীব বৃদ্ধির পৃষ্টিকারক (nutrient) পানিতে যোগ করে বায়ু চালনা করা হয়। অণুজীব জৈব পদার্থ ও জৈব যৌগকে CO2, NH3 ও H2O যৌগে রুপান্তরিত করে। বর্তমানে বিভিন্ন কোম্পানি জীব প্রযুদ্ধি ব্যবহার করে পানি শোধনের জন্য ক্রুপ্র প্রান্ট বিক্রি করে।

ত্ব কাগজ শিল্প থেকে নিৰ্গত দূষকসমূহ হলো : CO, SO₂, NO₂, NO তাছাড়া কিছু উদ্বায়ী পদাৰ্থ এবং PCB, PAH ইত্যাদি।

সিমেন্ট শিল্প কর্তৃক সৃষ্ট দূষকসমূহ: SO_x, NO_x, সৃক্ষ সিমেন্ট, চুন, গুঁড়া, উড়ন্ত ছাই, ধোঁয়া ইত্যাদি।

সিমেন্ট শিয়ের দূষণ : সিমেন্ট শিরের প্রসার ঘটেছে ঠিকই কিন্তু তার সাথে পাল্লা দিয়ে বেড়েছে এ শিল্পের দৃষণ। সিমেন্ট শিল্প থেকে প্রত্যক্ষ ও পরোক্ষভাবে প্রচুর পরিমাণের ${
m CO}_2$ উৎপন্ন হয়। আমরা জানি, সিমেন্ট তৈরির জন্য CaCO3 কে তাপ দিয়ে CaO এ পরিণত করা হয়। তখন প্রচুর পরিমাণে ${
m CO}_2$ গ্যাস উৎপন্ন হয় যা সরাসরি বাতাসে মিশে যায়। CO₂ গ্রিণ হাউস গ্যাস নামে পরিচিত এবং পরিবেশের তাপমাত্রা বৃদ্ধি করে। সিমেন্ট তৈরির সময় উচ্চতাপ প্রয়োগের জন্য বিভিন্ন রকমের জ্বালানি যেমন কোক, কয়লা, গ্যাস, পেট্রোলিয়াম জাতীয় দ্রব্য ইত্যাদি ব্যবহার করা হয়। এসব জ্বালানির দহনে প্রচুর CO₂ উৎপন্ন হয়। World Business Council for Sustainable Development 4₹ 2002 এর একটি সমীক্ষা থেকে জানা গেছে পৃথিবীতে মানুষের তৈরি CO₂ গ্যাসের মধ্যে 5% উৎপন্ন হয় সিমেন্ট শিল্প থেকে কাগজ ও সিমেন্ট শিল্প থেকে নির্গত বিভিন্ন গ্যাস যেমন SO2, NO2 ইত্যাদি কোন কোন ধাপে উৎপন্ন হয়। SO₂, NO₂ গ্যাসগুলো জলীয় বাম্পের সাথে মিশে এসিড বৃষ্টিরূপে ভূ-পৃষ্ঠে পড়ে এতে শিল্পাঞ্চল এলাকায় বেশ ক্ষতি হয়। সিমেন্ট শিল্পের বর্জাকে ভালভাবে রিসাইক্লিং করা না গেলে পরিবেশ এক সময় হুমকির মুখে পড়বে।

কাগজ শিল্প থেকে নির্গত পদার্থ বিভিন্ন ভাবে PCB উৎপন্ন করে উৎপন্ন PCB মৎসা ও জীবকুলের বিভিন্ন রোগের কারণ। জানা গেছে PCB মানুষের DNA এর সাথে যুক্ত হয়ে ক্যান্সার সৃষ্টি করতে পারে।

প্রশ্ন 🕨 ৩০

/जावाउँक केंग्रज भरतन करनान, ठाका,

- ক, নিৰ্দেশক কি?
- খ. টটোমারিজম কি? উদাহরণ দাও।
- গ, ক-শিক্সের উৎপাদনের মূলনীতি বর্ণনা করো।
- উদ্দীপকের খ-শিল্প দ্বারা সৃষ্ট দৃষণের ক্ষতিকর প্রভাব আলোচনা করো।

৩০ নং প্রয়ের উত্তর

ব্যাসব পদার্থ তাদের বর্ণের পরিবর্তন ঘটিয়ে অ্যাসিড-ক্ষার বিক্রিয়ার সমাপ্তি বা প্রশমন ক্রিয়া সম্পূর্ণ হওয়ার সঠিক মুহূর্তটিকে নির্দেশ করে তাদেরকে নির্দেশক বলে। ইটিমারিজম হল এক বিশেষ ধরনের কার্যকরীমূলক সমাণুতা। যেখানে সমাণুগুলো সাধারণ অবস্থায় স্বতঃস্ফূর্তভাবে সম্পূর্ন ভিন্ন কার্যকরী মূলকযুক্ত যৌগে রূপান্তরিত হয়। এক্ষেত্রে উভয় গঠন কাঠামোর মধ্যে একটি গতিশীল সাম্যাবস্থার সৃষ্টি হয়। এ কারণে টটোমারিজমকে গতিশীল কার্যকরী মূলক সমাণুতা বলা হয়ে থাকে। যেমন— C₃H₆O আণবিক সংকেত দ্বারা টটোমার সমানু দুটি-

OH
CH₁-C=CH₂ == CH₃-C-CH₂
(প্রোপিন -2- অল) (প্রোপানোন)

🔞 ১১ (গ) নং সৃজনশীল প্রশ্নোত্তরের দুউব্য।

ত্র উদ্দীপকে 'খ' শিল্প তথা চামড়া শিল্প হতে গ্যাসীয় তরল ও কঠিন এই তিন শ্রেণির দূষক নির্গত হয়। নিম্নে এদের ক্ষতিকর প্রভাব আলোচনা করা হল—

গ্যাসীয় দূষক : পানির সংস্পর্শে চামড়া হতে চর্বি ও প্রোটিনের বিযোজনে বিভিন্ন ফ্যাটি এসিউ ও অ্যামাইনো এসিউ উৎপন্ন হয়। এছাড়া নির্গত H₂S গ্যাস মানুষের বিষক্রিয়ায় মৃত্যু ঘটাতে পারে। বাতাসে সর্বোচ্চ অনুমোদিত অ্যামোনিয়ার ঘনমাত্রা হলে 50mg/m³। অথচ অনেক ক্ষেত্রে বাতাসে এর কাছাকাছি বা বেশি পরিমাণে H₂S এবং NH₃ থাকে।

বর্জ্য-পানি দূষক: চামজা কারখানায় ব্যবহৃত প্রচুর NaCl বর্জ্য পানিতে মিশে থাকে। এছাড়া চুন, Na2S ও অ্যামোনিয়াম লবণ, H2SO4, ক্রোমিয়াম লবণ ইত্যাদি ঐ বর্জা পানিতে থাকে। ফলে পানিতে মোট দ্রবীভূত কঠিন পদার্থের পরিমাণ (TDS) ও ক্রোরাইড আয়নের পরিমাণ খুব বেশি থাকে। বর্তমানে পৃথিবীতে প্রতি বছর 6.5 মিলিয়ন টন চামড়া প্রক্রিয়াজাত করা হয়। এর জন্য প্রায় 3.5 মিলিয়ন টন রাসায়নিক দ্রব্য ব্যবহৃত হয়। এর বেশির ভাগ বর্জা-পানিতে মিশে প্রাকৃতিক দূষণ ঘটায়। প্রতি টন চমড়া উৎপাদনে 45-50 কিউবিক মিটার পানির অপচয় ঘটে। ট্যানারি বর্জা-পানি শোধন না করে অনেক কারখানার নিকটবর্তী জমিতে ফেলে। এর ফলে জমির উর্বরতা নন্ট ও পরিবেশের পানি দূষিত হয়। খাদ্য শৃঙ্খলে ধাতব আয়ন যেমন ক্রোমিয়াম আয়ন প্রবেশের মাধ্যমে উদ্ভিদ, পশু-পাখি ও মানব শরীরে প্রবেশ করলে বিভিন্ন রোগের সৃষ্টি হয়।

কঠিন দূষক পদার্থ : তোমরা এর মধ্যে জেনেছ, প্রতি টন চামড়া প্রক্রিয়াজাতকরণের পর 800 kg কঠিন বর্জ্য পদার্থ উৎপন্ন হয়। এ সবের মধ্যে বর্জা চামড়ার টুকরা, পশুর লোম, চামড়ার সাথে যুক্ত পশুর মাংস ও ক্রোমিয়াম আয়ন থাকে। এ সব প্রোটন জাতীয় জৈব পদার্থের পচন ও বিয়োজনের ফলে বিভিন্ন বিষাক্ত ও দূর্গন্থ গ্যাস উৎপন্ন হয়। আবার বর্জা-চামড়া থেকে তৈরি poultry-food হাঁস-মুরণির খাদ্যরূপে ব্যবহারে খাদ্য-শৃঞ্জলে ক্রোমিয়াম দূষণ ঘটে।

$$X_2 + Y_2 \xrightarrow{450^{\circ}C} Z \rightarrow NH_4COONH_4 \xrightarrow{\Delta} D$$

/बारें 6ग्रान म्कून এक करनक, गठि केन, ठाका/

9

- ক. বোল্টজম্যান ধুবক কি?
- ব. অ্যালকিন ও অ্যালকাইনের মিশ্রণকে কীভাবে পৃথক করা
 যাবে

 বিক্রিয়াসহ ব্যাখ্যা কর।
- গ. উদ্দীপকের D যৌগের গুরুত্ব ব্যাখ্যা কর।
- ঘ. উদ্দীপকের D যৌগের উৎপাদনে উৎপন্ন দূষকগুলির ক্ষতিকর প্রভাব এবং দূষক কীভাবে নিয়ন্ত্রণ করা যায় ব্যাখ্যা কর। 8

৩১ নং প্রশ্নের উত্তর

ব্র অণু প্রতি গ্যাস ধ্রুবকের মানকে বোল্টজম্যান ধ্রুবক বলে। যেমন, $k = rac{R}{N_A}$ ।

য

- অ্যালকাইন তরল অ্যামোনিয়ায়ুত্ত ধাতব Na-এর সাথে বিক্রিয়া
 করবে, কিন্তু অ্যালকিন বিক্রিয়া করবে না।
- আলকাইন ডাই আদিন সিলভার কোরাইড বিকারকের সাথে বিক্রিয়া করবে, কিন্তু আলকিন করবে না। এভাবেই আলকিন ও আলকাইনকৈ পার্থকাকরণ করা যাবে।

 $2R - C \equiv C - H + 2Na \xrightarrow{\text{CSFF NH}_3} 2R - C \equiv C - Na + H_2 \uparrow$ $R - C \equiv C - H + [Ag(NH_3)_2]CI \longrightarrow R - C \equiv C - Ag + NH_3 + HCI$

্রী উদ্দীপকের D যৌগটি খলো ইউরিয়া (H2N – C – NH2)। ইউরিয়া পুরুত্ব :

- (ii) আঠালো ধ্নু তৈরিতে ব্যাপকভাবে ইউরিয়া ব্যবহৃত হয়।
- (iii) সিনথেটিক ফাইবার প্রস্তুতিতে ইউরিয়া ব্যবহৃত হয়।
- (iv) ঔষধ শিল্পে বিভিন্নভাবে এটি ব্যবহৃত হয়।
- (১) ইউরিয়ার সবচেয়ে গুরুত্বপূর্ণ বাবহার হলো কৃষিতে; সার হিসেবে। ইউরিয়া সারের 46% হলো উদ্ভিদের প্রধান পৃষ্টি উপাদান নাইট্রোজেন। উদ্ভিদের বৃদ্ধির জন্য নাইট্রোজেন অতীব গুরুত্বপূর্ণ উপাদান। উদ্ভিদ মাটি হতে অ্যামোনিয়ম আয়নর্পে নাইট্রোজেন সংগ্রহ করে। তাই উদ্ভিদকে নাইট্রোজেন সরবরাহ করার জন্য আমরা ইউরিয়াকে সার হিসেবে ব্যবহার করি। মাটিতে দ্রবীভূত অবস্থা ইউরিয়া ইউরিয়েজ এনজাইমের প্রভাবে ধীরে ধীরে বিয়োজিত হয়ে অ্যামোনিয়া ও কার্বন ডাইঅক্সাইডে পরিণত হয়। অ্যামোনিয়া পানিতে দ্রবীভূত হয়ে অ্যামোনিয়াম হাইদ্রোক্সাইডে পরিণত হয়। অ্যামোনিয়াম হাইদ্রোক্সাইড NH4' ও OH আয়নে আংশিকভাবে বিয়োজিত অবস্থায় থাকে। উদ্ভিদ NH4' আয়ন পরিশোষণ করে নাইট্রোজেনের চাহিলা পূরণ করে।

(NH₂)₂ C = O + H₂O → 2NH₃ + CO₂ NH₃(l) + H₂O (l) ⇒ NH₄OH(aq) NH₄OH(aq) + H₂O (l) ⇒ NH₄⁺(aq) + OH (aq) + H₂O (l) এভাবে ইউরিয়া সার মাটিতে উদ্ভিনের জন্য পৃষ্টি উপাদান সরবরাহ করে।

🔟 ৩(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

2# > ○ HCHO + [H] Zn-Hg+HCl A + H₂O

/डिकाबुनानिमा नृग म्कुन এड बरमक, छ।का/

- ক. জারণ বিভব কাকে বলে?
- ৰ. BF3 আচধৰ্মী কেন?
- গ. ∧ যৌগকে কাঁচামাল হিসেবে ব্যবহার করে একটি গুরুত্বপূর্ণ সার উৎপাদন প্রক্রিয়া বর্ণনা কর।
- য়. 'গ' নং প্রশ্নের উদ্ধেখিত শিল্প কারখানা দ্বারা পরিবেশের কি ক্ষতি সাধিত হয়? কীভাবে এর প্রতিকার সম্ভব বলে তুমি মনে করো। ৪

৩২ নং প্রশ্নের উত্তর

ক একটি ধাতুর পাতকে ঐ ধাতুর লবণের জলীয় দ্রবণে ভুবালে, যদি ধাতুর পরমাণুর পজিটিভ আয়ন গঠনের প্রবণতা বেশি হয়, তাহলে ঐ ধাতুর পাত এবং দ্রবণের মধ্যে যে বিভব পার্থক্যের সৃষ্টি হয় তাকে জারণ বিভব বলে। বু লুইস তত্ত্বানুসারে অদ্ধ হলো এমন একটি যৌগ বা আয়ন যা একটি নিঃসজা ইলেকট্রন জোড় গ্রহণ করে। সাধারণত যেসব যৌগের কেন্দ্রীয় পরমাণুর অন্টক অপূর্ণ থাকে সেগুলো লুইস এসিড হিসেবে ক্রিয়া করে। BF, একটি লুইস আন্ন যা NH, থেকে একজোড়া ইলেকট্রন গ্রহণ কঁরে সন্নিবেশ সমযোজী বন্ধনে আবন্ধ হয়। তাই BF3 একটি লুইস অমু।

১১(গ) নং সৃজনশীল প্রশ্নোত্তরের অনুরূপ।

য় আমাদের দেশে প্রাকৃতিক গ্যাস মিথেন হতে ইউরিয়া উৎপাদন নিম্নোক্ত তিনটি ধাপে সম্পন্ন হয়। যথা-

- প্রাকৃতিক গ্যাস হতে H₂ ও CO₂ গ্যাস উৎপাদন।
- N_{2.}ও H₂ হতে NH₃ উৎপাদন |
- NII, ও CO2 হতে ইউরিয়া উৎপাদন।

প্রতিটি ধাপেই কোনো না কোনো দূষক পরিবেশকে দূষিত করে। এসব দুষকের মধ্যে গ্যাসীয়, তরল ও কঠিন দুষক রয়েছে। প্রাকৃতিক গ্যাসের দহনের মাধ্যমে গ্যাসীয় দূষক যেমন CO2 উৎপন্ন হয়। একই সাথে প্রাকৃতিক গ্যাস হতে ${
m H_2}$ গ্যাস তৈরি হয়। ${
m H_2}$ ও ${
m N_2}$ গ্যাসকে (বায়ু হতে সংগৃহীত) কে সংযুক্ত করে NH3 উৎপাদন করা হয়। NH3 একটি বায়বীয় পদার্থ এবং কারীয়। এটি বাতাসে মিশে ধেমন দৃষণ ঘটাতে পারে তেমনি পানিতে মিশে এটি পানিকে ক্ষারীয় করে। অ্যামোনিয়া ও ইউরিয়া উৎপাদনের সময় অ্যামোনিয়া মিশ্রিত পানি নদীতে পড়লে পানি দূষণ ঘটে এবং মাছ মারা যায়। এছাড়া জমিতৈ ইউরিয়া সার প্রয়োগ করলে তা পানি দ্বারা বিয়োজিত হয়ে NH3 উৎপন্ন করে। উৎপন্ন NH3 মাটির নাইট্রিফাইং ব্যাকটেরিয়া দ্বারা জারিত হয়ে নাইট্রিক এসিডে পরিণত হয় যা মাটির ক্ষারের সাথে বিক্রিয়া করে নাইট্রেট লবণ উৎপন্ন করে। মানবদেহে নাইট্রেট আয়ন প্রবেশ করলে Blue baby syndrome রোগ, ক্যান্সার রোগ হওয়ার সম্ভাবনা থাকে। কাজেই ইউরিয়া শিল্প হতে নির্গত NH₃ পানি ও বায়ুদূষণ এবং মানবদেহে রোগ সৃষ্টিতে ভয়াবহ ভূমিকা রাখে।

এছাড়া প্রাকৃতিক গ্যাস হতে H₂ উৎপাদন ও NH₃ সংগ্লেষণে ব্যবহৃত প্রভাবকসমূহের কার্যকারিতা হ্রাস পেলে তা পরিবেশে বর্জ্য পদার্থরূপে পরিত্যক্ত হয়। এসব ধাতব কঠিন পদার্থ পরিবেশে দৃষক রূপে কাজ করে। কাজেই ইউরিয়া শিরের প্রধান দূষকসমূহ হলো CO2, NH3 ও অন্যান্য প্রভাবক হিসেবে ব্যবহৃত ধাতব মৌলসমূহ।

এ ক্ষতিকর প্রভাব থেকে পরিবেশকে রক্ষা করার উপায় :

এ শিল্প কারখানায় ব্যবহৃত কাঁচামাল NH3 ও CO2 এর নিয়ন্ত্রিত ব্যবহার। CO2 ও NH, কে নিয়ন্ত্রণের জন্য দ্রবীভূতকরণ পর্ম্বতি ব্যবহার করা হয়। এ পন্ধতিতে Scrubber এ রক্ষিত তরল পদার্থের মধ্যে দিয়ে দুষণযুক্ত বায়ু চালনা করলে তরল দ্রবীভূত হয় এবং বায়ু পরিশুদ্ধ হয়। আবার ফারীয় গ্যাস যেমন NH3 দূরীকরণের জন্য Scrubber-এ এসিডীয় দ্রবণ রাখা থাকে।

চিত্র: স্ক্রাবার এ বায়ু দূষক দ্রবীভূতকরণ

দ্রবীভূত যৌগ $NH_3 + HCI \longrightarrow NH_4CI$ দূষক দ্রবণ $NaOH \rightarrow Na_2CO_3 + H_2O$

দৃষক

প্রশা ১ ৩৩

শিল্প উৎপাদ	কাঁচামাল
X	SiO ₂ , Na ₂ CaCO ₃ .B ₂ O ₃
Y	কাঠ, বাঁশ, তুলা ইত্যাদি

(पाईनटरीम करनन, जका)

ক, কাইরাল কার্বন কী?

খ. সিমেন্ট ক্লিংকারের সাথে জিপসাম মিশ্রিত করা হয় কেন?

X উৎপাদনের মূলনীতি সংশ্লিষ্ট বিক্রিয়াসহ লিখো।

ঘ, উদ্দীপকে উল্লেখিত 'Y এর রিসাইক্লিং পরিবেশ বান্ধব ও অর্থ সাত্রায়ী' উক্তিটি বিশ্লেষণ করো।

৩৩ নং প্রয়ের উত্তর '

ক কোন যৌগে একই কার্বন পরমাণুতে চারটি ভিন্ন পরমাণু বা মূলক যুক্ত থাকলে এ কার্বন পরমাণুর সাপেক্ষে যৌগটি অপ্রতিসম হয়ে থাকে, তখন ঐ কার্বনকে কাইরাল কার্বন বলে।

্রী জিপসাম (CaSO₄₋2H₂O) এর উপস্থিতিতে সিমেন্টের জমাট বাঁধার প্রক্রিয়া ধীরণতিতে ঘটে। কারণ, জিপসাম ট্রাইক্যালসিয়াম অ্যালুমিনেট এর সাথে বিক্রিয়া করে অদ্রবর্ণীয় ক্যালসিয়াম সালফো অ্যালুমিনেট উৎপন্ন করে। এর ফলে দুত জমাট বাঁধতে সাহায্য করে এরুপ ট্রাইক্যালসিয়াম অ্যালুমিনেট আপাত দৃষ্টিতে দূরীভূত হয়। যে কারণে সিমেন্ট দুত জমাট বাঁধতে পারে না।

 $3 \text{ CaO.Al}_2\text{O}_3 + 3(\text{CaSO}_4.2\text{H}_2\text{O}) + 2\text{H}_2\text{O} \rightarrow$

3CaO. Al₂O₃.3CaSO₄.2H₂O + 6H₂O তবে এর প্রভাবে সিমেন্টের সম্পূর্ণরূপে জমাট বাধতে যথেষ্ট পরিমাণ পানির উপস্থিতিতে কয়েক সপ্তাহ সময় লাগলেও উৎপন্ন কঠিন পদার্থের দৃঢ়তা ও শক্তির বৃদ্ধি ঘটে।

🗿 ৪(গ) নং সৃজনশীল প্রশ্নোতর দ্রফীব্য।

য ৯(ঘ) নং সূজনশীল প্রশ্নোত্তরের অনুরূপ।

প্রানী > 08 X → লিখা বা মুদ্রণের কাজে ব্যবহৃত হয়। Y → বিন্ডিং তৈরিতে ব্যবহৃত হয়।

ক. আয়োডোমিতি কী?

খ. মৃদু এসিড ও তীব্র ক্ষারের টাইট্রেশনে ফেনলথ্যালিন কে নির্দেশক হিসেবে ব্যবহৃত হয় কেন?

X এর উৎপাদন প্রক্রিয়া বর্ণনা কর।

 প তৈরিতে সময় নির্গত দৃষকসমূহ মানব জীবনের জন্য হুমকীষ্বরূপ বিশ্লেষণ কর।

৩৪ নং প্রশ্নের উত্তর

ক যে প্রক্রিয়ায় একটি জারক পদার্ষের সজো আয়োভিন লবণের (KI) বিক্রিয়ায় বিমুক্ত আয়োডিনকে প্রশাণ থায়োসালফেট দ্রবণ দ্বারা ট্রাইটেশন করে মুক্ত আয়োভিনের পরিমাণ নির্ধারণ করা হয় তাকে আয়োভোমিতি বলে।

য়া মৃদু এসিড ও শক্তিশালী ক্ষারের টাইট্রেশনে জলীয় দ্রবণে অসম শক্তির এসিড-ক্ষারের লবণ আর্দ্র বিশ্লেষিত হয়। তাই মৃদু অয় ও তীব্র ক্ষারকের বিক্রিয়ায় উৎপন্ন লবণ আর্দ্র বিশ্লেষিত হয়ে তীব্র ক্ষার উৎপন্ন করে। এজন্য এ জাতীয় এসিড-ক্ষারকের প্রশমন বিন্দুতে pH এর মান 7 এর উপরে (প্রায় ৪-10) থাকে । এ পরিসরে ফেনলফথ্যালিন বিয়োজিত হয়। ফলে মৃদু অন্ধ-শক্তিশালী ক্ষারের টাইট্রেশনে ফেনলফথ্যালিন একটি कार्यकरी निर्मिणक।

- থা ৭(গ) নং সূজনশীল প্রশ্নোতরের দ্রুইব্য ।
- য ১(ঘ) নং সৃজনশীল প্রশ্নোত্তরের দুষ্টব্য।

(भाकी भूत क्यानीनरभन्ते करनका

ą.

- क. SATP की?
- খ্ সানস্ক্রিন লোশনে ন্যানো ZnO ব্যবহার করা হয় কেন?
- B গ্যাসকে কীভাবে প্রস্তুত করবে?
- ঘ, A ধাপে সংগঠিত বিক্রিয়া ও পরিবর্তন বিশ্লেষণ কর।

৩৫ নং প্রশ্নের উত্তর

ক্র SATP (Standard Ambient Temperature and Pressure) দ্বারা বায়ুমণ্ডলের প্রমাণ তাপমাত্রা (25°C) ও চাপ (1 atm) বোঝায়।

- ন্যানো ZnO কণার ক্ষুদ্র আকারের কারণে এর পৃষ্ঠতল ক্ষেত্রফল অনেক বেশি। ফলে এর কর্মক্ষম পৃষ্ঠতল অনেক বেশি। ন্যানো ZnO এর অতিক্ষুদ্র আকারের কারণে uv রিশ্য প্রতিহত বা শোষণ করার ক্ষমতা অনেক বেশি। তাই এটি সানক্ষিন লোশনে ব্যবহার করা হয়। এর ফলে ত্বকে uv লাইনের ক্ষতিকর প্রভাব পড়ে না। ত্বকের খসখসা দূরীভূত হয়ে মসূণতা বৃশ্বি পায়।
- কাচ উৎপাদনের জন্য চুল্লীতে প্রচুর পরিমাণ তাপ দিতে হয়। এই কারণে জ্বালানির প্রয়োজন। উদ্দীপকের A হলো চুল্লী ও B হলো জ্বালানি গ্যাস। নিম্নে B গ্যাস তথা জ্বালানি উৎপাদনের পশ্বতি বর্ণনা করা হলো:

জ্বালানী হিসেবে প্রাকৃতিক গ্যাস ও LPG গ্যাস ব্যবহার করা হয়। কয়লার গ্যাসীকরণের মাধ্যমে প্রাকৃতিক গ্যাস প্রস্তুত করা হয়।

- (১) কার্বনিকরণ: 4(C₂H₄)_n → nC₆H₆ + 5nC + 3H₂ + nCH₄
- (২) গ্যাসীকরণ: 4C + O₂ + H₂O → 4CO + 2H₂

কয়লাকে গ্যাসীয় জ্বালানিতে রূপান্তর করার জন্য অতি উত্তপ্ত কার্বনের মধ্যদিয়ে চালনা করা হয়।

- $C + H_2O$ ($\P^{(p)}$) $\longrightarrow CO + H_2$ (i)
- $C + H_2O$ (वाध्य) $\longrightarrow CO_2 + H_2$ (ii)
- (i) নং ও (2) নং বিক্রিয়ায় উৎপন্ন H₂ গ্যাসের কিছু অংশ কার্বণের সাথে যুক্ত হয়ে মিথেন গ্যাস উৎপন্ন করে।
- $C + 2H_2 \longrightarrow CH_4$

 $CO + 3H_2 \longrightarrow CH_4 + H_2O$

কয়লা থেকে একইভাবে LPG (g) জ্বালানি তৈরি করা যায়।

 $nCO + (2n + 1)H_2 \xrightarrow{\text{প্রভাবক-2}} C_nH_{2n+2} + nH_2O$

যখন n=3 তখন C_3H_8 প্রোপেন এবং n=4 তখন C_4H_{10} বিউটেন

LPG (g) হলো (75% বিউটেন + 25% প্রোপেন) কাচ শিল্পের জন্য একটি গুরুত্বপূর্ণ জ্বালানি

ত্র উদ্দীপকের প্রবাহচিত্রটি হলো কাচ উৎপাদের প্রক্রিয়া। প্রবাহ চিত্রের

A ধাপটি হলো চুল্লী। চুল্লিতে বলল প্রক্রিয়াটি সম্পন্ন হয়। নিম্নে তা
বিক্রিয়াসহ বর্ণনা করা হলো:

চুনাপাথর, ডলোমাইট ও ফেলস্পার এর মিশ্রণকে বল মিলের মধ্যে নিয়ে চূর্ণ-বিচূর্ণ করা হয়। বালি, সোডাডস্ম, বোরাক্স ও অন্যান্য উপাদানগুলোকে উত্তপ্ত ও শুস্ক করে উপযোগী আকারে পরিণত করা হয়। অতঃপর তাদেরকে প্রয়োজন অনুপাত্রে একত্রে মিশানো হয়। এ মিশ্রণকে কাচ দ্রব্য বলা হয়। কাচ দ্রব্যকে গলানোর জন্য ট্যাংক চুন্নিতে

নেওয়া হয়। এ চুন্নির ধারণক্ষমতা প্রায় 1500 টন। এ কাচ দ্রব্যকে ট্যাংক চুন্নির রিফ্রান্টরি রকের নির্মিত বৃহৎ আকৃতিব্রু ট্যাংকের এক প্রান্তে প্রবেশ করানো হয়। চুন্নিকে প্রায় 1400°C তাপমাত্রায় উত্তপ্ত করা হয়। এ তাপমাত্রায় কাচদ্রব্য গলে যায় এবং একটি পুলের সৃষ্টি করে। এ তরল উপাদানের উপর দিয়ে অগ্নিশিখা পর্যায়ক্রমে একপ্রান্ত হতে অন্যপ্রান্তে চলতে থাকে। ফলে 'Fined' কাচ উৎপন্ন হয়। এ সময় নিচের বিক্রিয়াগুলো ঘটে থাকে।

 $\begin{array}{l} Na_2CO_3 + aSiO_2 \longrightarrow Na_2O.aSiO_2 + CO_2 \\ CaCO_3 + bSiO_2 \longrightarrow CaO. bSiO_2 + CO_2 \\ Na_2SO_4 + C \longrightarrow Na_2SO_3 + CO \\ 2Na_2SO_4 + C \longrightarrow Na_2SO_3 + CO_2 \end{array}$

 $Na_2SO_3 + CSiO_2 \longrightarrow Na_2O.CSiO_2 + SO_2$ $Na_2O.aSiO_2 + CaO.bSiO_2 \longrightarrow Na_2O.CaO(a + b)SiO_2$

(কাচ)

উৎপর Fined কাচকে ট্যাংকের বিপরীত প্রাপ্ত দিয়ে অপসারণ করে নেওয়া হয়। এভাবে প্রক্রিয়াটি অবিরাম চলতেই থাকে।

প্রমা ১০৬ নিচের উদ্দীপকটি পড়ো এবং প্রশ্নগুলোর উত্তর দাও:

i. CO₂, NO, NO₂, SO₂, SO₃, O₃ → বায়ু দূষণ

(এম है এইচ वातिक करनवा, कानावाड़ी, शांजी पुत)

- क. न्याता भाष्टिकान की?
- খ. কাচে পান দেওয়া বলতে কী বুঝ?
- গ, উদ্দীপকের যে গ্যাসটি বায়ুমণ্ডলের তাপমাত্রাবৃদ্ধি করে তার RMS বেগ নির্ণয় কর।
- ঘ. উদ্দীপকের (i)নং এর আলোকে বায়ুদূষণ নিয়য়পের
 কৌশলসমূহ বিয়েষণ কর।

৩৬ নং প্রয়ের উত্তর

ক 1-100 nm আকার বিশিষ্ট ক্রিমাত্রিক ক্ষুদ্র কণাকে ন্যানো পার্টিক্যাল বলে।

আকৃতি দানের পর কাঁচ সামগ্রীকে গলন তাপের কাছাকাছি একটি বিশেষ তাপমাত্রায় রেখে দেওয়া হয়। একে কোমলায়ন তাপমাত্রা বলে। এরপর এদেরকে ধীরে ধীরে শীতল করলে স্বচ্ছ, শক্তিশালী ও সুষম ঘনত্ব বিশিষ্ট কাঁচ সামগ্রী পাওয়া যায়। এ প্রক্রিয়াকে কাঁচের পাইন দেওয়া বা আানেলিং বলে।

্র উদ্দীপকের গ্যাসগুলোর মধ্যে CO₂ গ্যাস বায়ুমণ্ডলের তাপমাত্রা বৃদ্ধি করে। নিম্নে CO₂ গ্যাসের rms বেগ বের করা হলো—

CO₂ এর, আণবিক ভর M = 44gmol⁻¹ = 44 × 10⁻³ kg mol⁻¹

মোলার গ্যাস ধ্বক R = 8.314 J mol⁻¹k⁻¹

তাপমাত্রা T = (273 + 25) k

= 298 k

আমরা জানি,

$$C_{\text{rms}} = \sqrt{\frac{3RT}{M}}$$

$$= \sqrt{\frac{3 \times 8.314 \times 298}{44 \times 10^{-3}}} \text{ ms}^{-1}$$

$$C_{\text{rms}} = 411 \text{ ms}^{-1}$$

∴ স্বাভাবিক বা কক্ষ তাপমাত্রায় CO2 এর rms বেগ 411ms⁻¹।

য ৩০ (গ) নং সৃজনশীল প্রশ্নোত্তর দুউব্য।

ভার ১৩৭ সিলিকা + অ্যালুমিনা + লাইম + আয়রন অক্সাইড — ১

চূর্ণ X বস্তু — শস্ত কঠিন পদার্থ।

/मतकाति रकारम् करनवः, (गाभामगञ्ज/

- क. न्यारमा क्या की?
- কাচ তৈরীর উপাদানগুলো লেখ।
- গ, উদ্দীপকের 🗙 বস্তুর উপাদানগুলোর সংকেত ও শতকরা সংযুক্তি
- ষ. উদ্দীপকের বস্তুটির প্রস্তুত প্রণালী বিক্রিয়াসহ লেখ।

৩৭ নং প্রশ্নের উত্তর

1-100 nm আকার বিশিষ্ট ত্রিয়াত্রিক ছন্ত্র কণাকে ন্যানো পার্টিক্যাল বলে।

কাচ তৈরীর উপাদানগুলো ফলো :

বালি (SiO₂), সোডিয়াম কার্বনেট (Na₂CO₃), ক্যালসিয়াম কার্বনেট (CaCO₃), কিউলেট ইত্যাদি।

💶 উদ্দীপকে সিলিকা, অ্যালুমিনা, লাইম, আয়রন অক্সাইড এর মিশ্রণকে উত্তপ্ত করলে চূর্ণ X বস্ত উৎপন্ন হয়। অর্থাৎ চূর্ণ X বস্তটি হলো সিমেন্ট।

উপরোক্ত মিশ্রণকে চুল্লিতে নিয়ে বিভিন্ন তাপমাত্রায় উত্তপ্ত করে বিগলনের পর যে উৎপাদ পাওয়া যায় তাকে ক্লিংকার বলে। ক্লিংকারকে বল মিলে বিচর্ণ করে জিপসাম যোগ করে 200 ম্যাশ বা 74 মাইক্রোন আকারের যে কণার সমষ্টি পাওয়া যায় সেটিই সিমেন্ট।

একটি ভালো উন্নতমানের সিমেন্টের মধ্যে চুন (CaO), সিলিকা (SiO₂). অ্যালুমিনা (Al₂O₃), ম্যাগনেসিয়াম অক্সাইড (MgO) এবং আয়রন অক্সাইড (FeO) থাকে। যৌগগুলোর শতকরা সংযৃতি হলো:

CaO ---> 60-70%

 $SiO_2 \longrightarrow 20-24\%$

 $Al_2O_3 \longrightarrow 5-9\%$ $MgO \longrightarrow 1.5\%$

 $Fe_2O_3 \longrightarrow 2-4\%$

🔞 উদ্দীপকের বস্তুটি হলো সিমেন্ট। সিমেন্ট উৎপাদন তিন ধাপে সম্পন্ন হয়। যথা:

- কাঁচামালের মিশ্রণ প্রস্তৃতি
- ২. ক্লিংকার উৎপাদন
- ক্রংকার চূর্ণ করে সিয়েন্ট পরিণতকরণ।

আর্দ্র পন্ধতিতে চুনাপাথর টুকরাকে চলমান মিলের সাহায্যে বিচর্ণ করে সিলিকা সমৃন্ধ ক্লে এর সাথে যুক্ত করে পানিতে মিশিয়ে মারী প্রস্তুত করা হয়। স্লারী থেকে পানি সরিয়ে মাড বানানো হয়। তারপর একে চুরীতে নিয়ে বিভিন্ন তাপমাত্রায় উত্তপ্ত করলে নিম্নোক্ত বিক্রিয়া সংঘটিত হয়।

1350°C 2CaSiO₃ + Ca₃(Al₂O₃)₂ 8CaO + Al2O3. 2SiO2. 2H2O -+ 2H₂O

চুল্লির নিম্নভাগের তাপমাত্রা প্রায় 1500°C হয়। এ তাপমাত্রায় লাইম ও ক্লে পরস্পর বিক্রিয়া করে ক্যালসিয়াম অ্যালুমিনেট, CaSiO₂ এবং টেট্টাক্যালসিয়াম অ্যালুমিনো ফেরাইট উৎপন্ন করে।

 $2CaO + SiO_2 \longrightarrow 2CaO.SiO_2$ $3CaO + SiO_2 \longrightarrow 3CaO.SiO_2$

 $4CaO + Al_2O_3 \longrightarrow Fe_2O_3 \longrightarrow 4CaO.Al_2O_3.Fe_2O_3$ $2CaO + Al_2O_3 \longrightarrow 2CaO.Al_2O_3$ $3CaO + Al_2O_3 \longrightarrow 3CaO.Al_2O_3$

বিগলনের পর প্রাপ্ত উৎপাদকে ক্লিংকার বলে। ক্লিংকারকে বল মিলে নিয়ে বিচূর্ণ করা হয়। ক্লিংকারের সাথে 3-4% (CaSO₄.2H₂O) যোগ করা হয়। এখানে কণার আকার 200 ম্যাশ বা 74 মাইক্রোনে পরিণত হয়। এভাবে প্রাপ্ত উপাদানই সিমেন্ট। পরে পানির উপস্থিতিতে এটি জমাট বাঁধে।

প্রশ্ন 🕨 ৩৮

ক, ক্ৰোম ট্যানিং কী?

٥

8

কাচের এনিলিং করা হয় কেন? ব্যাখ্যা করো।

গ উদ্দীপকের উৎপাদটির সাধারণ সংকেত এবং উপাদানের সংযুক্তি লিখ।

ঘ. উদ্দীপকের শিল্পের দৃযকগুলোর প্রভাব এবং তাদের প্রতিকারের উপায় বিশ্লেষণ করো।

৩৮ নং প্রমের উত্তর

ক্রোমিয়াম সালফেট বা ক্রোমিক এসিডের মাধ্যমে চামড়াকে ট্যানিং করায় প্রক্রিয়াকে ক্রোম ট্যানিং বলে।

🔞 সব ধরনের কাঁচকেই পান দেওয়া প্রয়োজন। কাঁচকে পান না দিলে তা তাপ এমনকি কিছু সময় রেখে দিলে ভেজো যাবে। কারণ কাঁচে পান না দিলে এটি তাপমাত্রার পরিবর্তন কিংবা আঘাত সহ্য করতে পারে না। প্রতিটি কাঁচে এর গলনাভেকর নিচে একটি সংকট তাপমাত্রা থাকে। কাঁচকে উত্তপ্ত করে তার সংকট তাপমাত্রার উপর বেশ কিছুকণ রেখে ধীরে ধীরে ঠান্ডা করা হয়। ফলে কাঁচের পান দেওয়া সম্পন্ন হয়। পান দেওয়ার ফলে কাঁচ সুষম হয়। ফলে কাঁচ তাপমাত্রাসহ, ঘাতসহ ও টেকসই হয়। এ পশ্বতিকে অ্যাদেলিং বলে।

🗹 উদ্দীপকের উৎপাদনটি হলো সিমেন্ট। সিমেন্ট এর সাধারণ সংকেত হলো-

- 3CaO.SiO₂(50%)
- ii. 2CaO.SiO2(25%)
- iii, 3CaO.Al₂O₃ (10%)

iv. 4CaO.Al₂O₃.Fe₂O₃ (10%)

উৎপর এ মিশ্রণটিকে সিমেন্ট ক্লিংকার বলে। সিমেন্ট এর উপাদানসমূহের সংযুক্তি নিম্নরূপ—

- a. ₱₹ (CaO) → 60 70%
- b. সিলিকা (SiO₂) → 20 24%
- c. |অ্যালুমিনা (Al₂O₃) → 3 8%
- d. ম্যাগনেসিয়া (MgO) → 1 4%
- e. আয়রন অক্সাইড (Fe₂O₃) → 2.5
- সালফার ট্রাইঅব্রাইড → 1.5%

ঘ ৭(ঘ) নং সূজনশীল প্রশ্নোতর দ্রফীব্য।

凶当▼のち

क. निউक्विउकारेन की?

গ্লিসারিনের শনান্তকরণ বিক্রিয়া লিখ।

গ. X•যৌগটির ক্ষেত্রে রি-সাইকেলিং সম্ভব কি না— ব্যাখ্যা কর। ৩

ঘ্র উদ্দীপকের উৎপাদের উৎপাদন প্রক্রিয়া সমীকরণসহ বিশ্লেষণ কর।

৩৯ নং প্রশ্নের উত্তর

🐼 যে সকল বিকারক নিউক্লিয়াসের প্রতি আকর্ষণ অনুভব করে এবং বিক্রিয়াকালে ইলেকট্রন দান করে তাদেরকে নিউক্লিওফাইল বলে।

বি গ্লিসারিন শনান্তকরণে অ্যাক্রোলিন পরীকা : গ্লিসারিনকে নিরুদক KHSO4 বা P2O5 সহযোগে উভগু করলে প্রতি অণু গ্লিসারিন হতে দুই অণু পানি অপসারিত হয়ে বিশ্রী গন্ধযুক্ত আক্রোলিন উৎপন্ন হয়।

👔 🗶 যৌগটি হচ্ছে কাচ। ভাঙ্গা কাচের টুকরাকে রিসাইকেল করে পুনরায় নতুন কাচ হিসাবে পাওয়া যায়। কাচ রিসাইকেলিং প্রক্রিয়া নিম্নে ব্যাখ্যা করা হলো-

পরিত্যক্ত, বর্জ্য, ভাঙা কাচের টুকরা সংগ্রহ করে রিসাইকেল কারখানায় নেওয়া হয়। এভাবে সংগৃহীত ভাঙা কাচের টুকরাকে কুলেট বলে। চিপার মেশিনে আরও ছোট ছোট টুকরা করে পটচুল্লিতে নিয়ে গলানো হয়। এ চুল্লির একবারের রিসাইকেল করার ক্ষমতা সবীচ্চ দুই টন। প্রাকৃতিক গ্যাসকে জ্বালানি হিসেবে ব্যবহার করে পট চুন্নিকে প্রায় 1400°C তাপমাত্রায় উত্তপ্ত করা হয়। চুন্নির কাচ গলে একটি পুলের সৃষ্টি করে। এর উপর দিয়ে অগ্নিশিখা পর্যায়ক্রমে এক প্রান্ত থেকে অপর প্রান্তে থেলতে থাকে। উৎপন্ন রিসাইকেল কাচকে চুল্লির এক প্রান্তের নির্গমপথ দিয়ে বের করে নেওয়া হয়। এ প্রক্রিয়াটি অবিরাম চলতে থাকে। নির্গম পথ দিয়ে বেরিয়ে আসা কাচকে যান্ত্রিক উপায়ে প্রয়োজনীয় নানাবিধ আকার প্রদান করা হয়ে থাকে। কোনো কোনো ক্ষেত্রে হাত দারা এবং ফ্রো-নলের সাহায্যে ফুঁ দিয়ে এ কাজটি করা হয়। খুব অর সময়ের মধ্যেই কাচ তরল অবস্থা হতে পরিষ্কার কঠিন অবস্থায় পরিণত হয়।

ঢাকার হাজারীবাগ, পোস্তা ও কাটাসুরে এ ধরনের বেশ কয়েকটি রিসাইকেল কারখানা প্রতিষ্ঠিত হয়েছে। এছাড়া প্রতিটি কাচ উৎপাদনকারী কারখানাতে কাচ তৈরির সময় কাঁচামালের সাথে কুলেট চূর্ণ মেশানো হয়। এর ফলে কাচ উৎপাদন খরচ কমে যায় এবং এটি কাঁচামালের বিণলনের সাহায্য করে। বর্তমান কোনো কোনো কাচ শিল্পে প্রায় ৩০ ভাগ কুলেট ব্যবহার করা হয়ে থাকে।

টা উদ্দীপকের উৎপাদটি হচ্ছে কাচ। কাচ এক প্রকার স্বচ্ছ, শস্ত ও অনিয়তাকার কঠিন পদার্থ। কাচের মুখ্য উপাদান বালি (SiO2), চুন (CaO) ও সোডা (Na₂CO₃) এবং গৌণ উপাদানগুলো হলো বোরাক্স (Na₂B₄O₇, 10 H₂O) সন্ট কেক (Na₂SO₄), ফেলস্পার (A₂O, Al₂O₃ 6SiO₂) এখানে A₂O = Na₂O বা K₂O), B₂O₃, As₂O₃ ও অন্যান্য লবণ। এছাড়া ডাঙা কাচের টুকরাও কাঁচামাল হিসেবে ব্যবহৃত হয়। উৎপাদন পদ্ধতি : कारूद উৎপাদন প্রক্রিয়া চারটি ধাপে সম্পন্ন হয়। (১) গলন, (২) আকৃতি প্রদান, (৩) পান দেওয়া ও (৪) ফিনিশিং। গলন : চুনাপাথর, ডলোমাইট ও ফেলস্পার এর মিশ্রণকে বল মিলের মধ্যে নিয়ে চূর্ণ-বিচূর্ণ করা হয়। বালি সোডাভন্ম, বোরাক্স ও অন্যান্য উপাদানগুলোকে উত্তপ্ত ও শৃষ্ক করে উপযোগী আকারে পরিণত করা হয়। অতঃপর তাদেরকে প্রয়োজন অনুপাতে একত্রে মিশানো হয়। এ মিশ্রণকে কাচ দ্রব্য বলা হয়। কাচ দ্রব্যকে গলানোর ন্দন্য ট্যাংক চুল্লিতে নেওয়া হয়। এ চুলির ধারণক্ষমতা প্রায় 1500 টন। এ কাচ দ্রব্যকে ট্যাংক চুন্নির রিফ্রাক্টরি ব্লকের নির্মিত বৃহৎ আকৃতির ট্যাংকের এক প্রান্তে প্রবেশ করানো হয়। চুন্নিকে প্রায় 1400°C তাপমাত্রায় উত্তপ্ত করা হয়। এ তাপমাত্রায় কাচদ্রব্য গলে যায় এবং একটি পুলের সৃষ্টি করে। এ তরল উপাদানের উপর দিয়ে অগ্নিশিখা পর্যায়ক্রমে একপ্রান্ত হতে অন্যপ্রান্তে চলতে থাকে। ফলে 'Fined' কাচ উৎপন্ন হয়। এ সময় নিচের বিক্রিয়াগুলো ঘটে থাকে।

 $2Na_2SO_4 + C \rightarrow Na_2SO_3 + CO_2$ $Na_2CO_3 + aSiO_2 \rightarrow Na_2O$. + CSiO₂ $aSiO_2 + CO_2$ Na₂SO₃ bSiO₂ CaCO₃ $Na_2O.CSiO_2 + SO_2$ CaQ RSiO₂ + CO₂ Na₂O.aSiO₂ + CaO.bSiO₂ → $Na_2SO_4 + C \rightarrow Na_2SO_3 + CO$ $Na_2O.CaO(a+b)SiO_2(\Phi lb)$ উৎপন্ন 'Fined' ভাচকে ট্যাংকের বিপরীত প্রান্ত দিয়ে অপসারণ করে নেওয়া হয়। এভাবে প্রক্রিয়াটি অবিরাম চলতেই থাকে।

 আকৃতি প্রদান : Fined কাচকে যাত্রিক উপায়ে প্রয়োজনীয় আকার প্রদান করা হয়। মাত্র কয়েক সেকেন্ড সময়ের মধ্যেই কাচ ভিসকাস তরল অবস্থা হতে পরিষ্কার কঠিন অবস্থায় পরিণত হয়।

 পান দেওয়া বা আানেলিং : সব ধরনের কাচকেই পান দেওয়া প্রয়োজন। কাচকে পান। দিলে তা তাপ এমনকি কিছু সময় রেখে দিরে তা ভেঙে যাবে। কারণ কাচে পান না দিলে এটি তাপমাত্রার পরিবর্তন এমনকি আঘাত সহা করতে পারে না। প্রতিটি কাচে এর গলনাডেকর নিচে একটি সংকট তাপমাত্রা থাকে। কাচকে উত্তপ্ত করে তার সংকট তাপমাত্রার উপর বেশ কিছুক্ষণ রেখে ধীরে ধীরে ঠান্ডা করা হয়। ফলে কাচের পান দেওয়া সম্পন্ন হয়। পান দেওয়ার ফলে কাচ সুষম হয়। ফলে কাচ তাপমাত্রাসহ, ঘাতসহ ও টেকসই হয়।

 ফিনিশিং : সবশেষে কাচকে ফিনিশিং করা হয়। পরিফ্কারকরণ. গ্রেডিং, পলিশকরণ, কর্তন, গ্লেজিং এসবই ফিনিশিং কাজের অন্তর্ভুক্ত।

প্রশ ▶80

 35°C তাপমাত্রায় আনোড তড়িৎদারে AI → AI³⁺ (0.02) M) + 3e বিক্রিয়া ঘটলে— এর বিভব কত?

গ. উদ্দীপকের আলোকে A এর উৎপাদন প্রক্রিয়া সমীকরণসহ বর্ণনা কর।

ঘ. A শিল্প পণ্যটির রিসাইক্লিং পরিবেশবান্ধব ও অর্থ সাশ্রয়ী মৃল্যায়ন কর।

৪০ নং প্রশ্নের উত্তর

ক অ্যামাইনো এসিডের –COOH মূলকটি প্রোটন ত্যাগ করে কার্বক্সিলেট আয়নে (-COO) এবং -NH2 মূলকটি সে প্রোটন গ্রহণ করে অ্যামোনিয়াম (–NH3⁺) আয়নে পরিণত হয়ে যে দ্বিমেরুযুক্ত আয়ন সৃষ্ট্রি করে তাকে জুইটার আয়ন বলে।

ৰা নাৰ্সট সমীকরণ:
$$E_{AVAI^{1+}} = E^{\circ}_{AVAI^{1+}} - \frac{2.303RT}{nF} \log \frac{[AI^{3+}]}{[AI]}$$
এখানে, $T = (35 + 273) \ K = 308 \ K$
 $R = 8.314 \ Jk^{-1} mol^{-1}$
 $F = 96500 \ Coul$
 $[AI] = 1$
 $[AI^{3+}] = 0.02 \ M$
 $n = 3$
এবং $E_{AVAI^{3+}} = 1.66 \ V$

$$E_{AVAI^{3+}} = E_{AVAI^{3+}} - \frac{2.303 \times 8.314 \times 308}{3 \times 96500} \log \left(\frac{0.02}{1} \right)$$

$$= 1.66 - 0.02037 \times (-1.6989)$$

$$= 1.66 + 0.0402$$

$$= 1.7002 \text{ Volt}$$

∴ বিভব = 1.7002 Volt।

৭(গ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

ষ ৯(ঘ) নং সৃজনশীল প্রশ্নোতর দুষ্টব্য।

- ক, প্লাশ্টিসিটি কি?
- খ. ফেনল থেকে প্যারাসিটামল প্রস্তুতির বিক্রিয়া লিখ।
- গ. Z যৌগের উৎপাদনের মূলমীতি সমীকরণসহ লিখ।
- ম মে থৌগের সর্বোচ্চ উৎপাদনের জন্য নিয়ামকসমূহের প্রভাব আলোচনা করো।

৪১ নং প্রশ্নের উত্তর

ত্ত্ব তাপ প্রয়োগে পলিমার বন্ধুর নমনীয়তা এবং চাপ প্রয়োগে এর বিভিন্ন আকৃতি লাভ করার ধর্মকে প্লান্টিসিটি বলে।

🛐 প্যারাসিটামল প্রস্তুতির সমীকরণ :

🛐 ১১ নং প্রশ্নের 'গ' নং প্রশ্নের উত্তর দ্রুফীবা।

য় 'X' গ্যাসটি হচ্ছে অ্যামোনিয়া (NH₂)। অ্যামোনিয়া উৎপাদনের বিক্রিয়াটি নিমন্ত্রপ—

N₂(g) + 3H₂(g) ← 2NH₂(g): ΔH = - 92 kJ
আমোনিয়া উৎপাদনের জনা ব্যবহৃত এই বিক্রিয়াটি উভমুখী ও
তাপোৎপাদী অর্থাৎ, এই বিক্রিয়ার উৎপাদের উপর তাপমাত্রা ও চাপের
প্রভাব আছে। নিম্নে নিয়ামকগুলোর প্রভাব ব্যাখ্যা করা হলো—

চাপের প্রভাব: সমীকরণ হতে দেখা যায় যে, বিক্রিয়কের তুলনায় উৎপাদ অণুর সংখ্যা কম। তাই একই আয়তন চাপ কমে। সূতরাং চাপ বৃদ্ধি করা হলে উৎপন্ন NH, এর পরিমাণ বৃদ্ধি পাবে। এই প্রক্রিয়ায় অ্যামোনিয়া উৎপাদনের জন্য 200 atm চাপ ব্যবহার করা হয়।

তাপমাত্রার প্রভাব: অ্যামোনিয়া উৎপাদন বিক্রিয়াটি একটি তাপোৎপাদী বিক্রিয়া। সূতরাং লা-শ্যাটেলিয়ার নীতি অনুয়ায়ী বিক্রিয়ার তাপমাত্রা য়ত কম হবে NH, উৎপাদন তত বেশি হবে কিন্তু নিম্ন তাপমাত্রায় বিক্রিয়ার গতি প্রাস পায়। আবার, তাপমাত্রা বৃদ্ধি করলে সাম্যাবস্থায় আ্যামোনিয়ার উৎপাদন প্রাস পায়। এ দুটি বিপরীত শর্তের জন্য এমন একটি তাপমাত্রা বেছে নেওয়া হয়, য়ে তাপমাত্রায় কম সময়ে আশানুরূপ উৎপাদন লাভ করা য়ায়। এই তাপমাত্রাকে অত্যানুকুল তাপমাত্রা বলা হয়। আবার, প্রভাবক বিক্রিয়ার বেগকে ত্বরায়্বিত করে কিন্তু সাম্যাবস্থার কোন পরিবর্তন ঘটায় না।

এই বিক্রিয়ার জন্য Fe₃O₄ প্রভাবকের সাথে KOH বা Al₂O₃ প্রভাবক সহায়ক হিসাবে ব্যবহার করা হয় এবং অত্যানুকুল তাপমাত্রা হয় 400-500°C।

আবার, প্রভাবক Fe_3O_4 এর সাথে প্রভাবক সহায়ক হিসাবে মলিবডেনাম (M_o) ব্যবহার করলে $500^{\circ}\mathrm{C}$ ও $200\mathrm{atm}$ চাপেও সর্বোচ্চ উৎপাদন সম্ভব।

অ্যামোনিয়ার সর্বোচ্চ উৎপাদনের জন্য প্রভাবকের ভূমিকাই মুখ্য তাই উপরিউক্ত অবস্থায় তাপমাত্রা, চাপ ও প্রভাবক ব্যবহার করলে অ্যামোনিয়ার সর্বোচ্চ উৎপাদন পাওয়া সম্ভব । বিক্রিয়া—

$$N_2(g) + 3H_2(g) \xrightarrow{Fe_3O_4} 2NH_3(g)$$
 $KOH/Al_2O_3,400-500^{\circ}C$

প্রনা ▶ ৪২ উদ্দীপকের আলোকে নিচের প্রশ্নের উত্তর দাও :

ক. ব্লাঞ্ছিং কি?

۵

Ž,

9

থ হেসের সূত্র উপযুক্ত উদাহরণসহ ব্যাখ্যা কর।

 গ. (2) নং পাত্রের পদার্থটি থেকে মাখন তৈরির প্রক্রিয়া প্রবাহচিত্রের মাধ্যমে সংক্ষেপে বর্ণনা কর।

प. (1) ও (3) নং পাত্রের দ্রব বা কণাগুলোকে মিশ্রণ থেকে
 পৃথকীকরণের কৌশলের তুলনামূলক ব্যাখ্যাপূর্বক পন্ধতি দুটির
 নাম লিখ।
 ৪

৪২ নং প্রশ্নের উত্তর

থোসা ছাড়ানো ও টুকরা করা কাঁচা খাদ্য বস্তুকে ফুটন্ত পানিতে বা ফুটন্ত পানির পাষ্পে 5–10 মিনিট উত্তপ্ত করার প্রক্রিয়াকে রাঞ্ছিং বলে।

কার্বন ও অক্সিজেনের সমন্বয়ে কার্বন ডাই-অক্সাইড উৎপাদনের বিক্রিয়াটি সরাসরি এবং বিভিন্ন ধাপে সংঘটিত করা যায় :

১ম উপায়ে : কার্বন ও অক্সিজেন সরাসরি যুক্ত হয়ে CO₂ উৎপাদনের ফলে –393,50 kJ তাপ উৎপন্ন হয়।

 $C(s) + O_2(g) = CO_2(g) : \Delta H = -393.50 \text{ kJ}$

২য় উপায়ে: এক্ষেত্রে কার্বন ও অক্সিজেনের বিক্রিয়াটি নিম্নান্ত দুটি ধাপে সম্পন্ন করা যায়। কার্বনকে প্রথমে অল্প পরিমাণে অক্সিজেনের সাতে বিক্রিয়ায় কার্বন মনোক্সাইডে এবং পরে অতিরিক্ত অক্সিজেনের সাথে বিক্রিয়ায় কার্বন ডাই-অক্সাইডে পরিণত করা হয়।

 $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$; $\Delta H_1 = -110.54 \text{ kJ/mol}$

 $CO(s) + \frac{1}{2} O_2(g) \rightarrow CO_2(g)$; $\Delta H_2 = -282.96 \text{ kJ/mel}$

মোট বিক্রিয়া $C(s) + O_2(g) \rightarrow CO_2(g)$; $\Delta H' = \Delta H_1 + \Delta H_2 = -110.54 + (-282.96) = -393.50 kJ$

দুটি উপায়ে সংঘটিত উপরোক্ত বিক্রিয়া থেকে দেখা যায় প্রত্যক্ষ বা পরোক্ষ যেভাবেই বিক্রিয়া ঘটানো হউক না কেন প্রতি ক্ষেত্রেই বিক্রিয়া তাপ $\Delta H = \Delta H = -393.50 \text{ kJ/mol}$ হয়। সুতরাং হেসের সূত্রটি প্রতিষ্ঠিত হলো।

গ্ৰ দৃধ থেকে মাখন প্ৰস্তুত প্ৰণালি :

কাঁচা দৃধ একটি পরিম্কার পাত্রে নিয়ে রেফ্রিজারেটরে ২০-২৫
ঘণ্টা রাখা হয় যাতে করে উপরে ক্রিমের স্তর গঠিত হয়।

ii. একটি ডিপার (dipper) দিয়ে ওপর থেকে ক্রিম সরিয়ে (skim off) নেওয়া হয়। মনে রাখতে হবে, ক্রিম যত পুরনো হয় বাটার তিত তাড়াতাড়ি তৈরি হয়।

 ক্রিমকে ৬০-৬২° সে. উষ্ণতায় রেখে পাস্তুরিত করা হয়। এর ফলে বাটারে অনুজীব জন্মাতে পারে না।

iv. একটি ব্লেন্ডারের অর্ধেক ক্রিম দ্বারা ভর্তি করা হয়।

শ্বর্থ গতিতে ব্রেন্ডার চালানো হয়। দেখা যায় উপরে চর্বির পিশু
ভেসে উঠছে।

vi. বাটার মিল্ক (ঘোল) ঢেলে সরিয়ে নিয়ে মাখনপিশুকে অপর একটি পাতে নেওয়া হয়।

vii. সছিদ্র কাপড়ের ছাঁকনিতে মাখনপিশুকে নিয়ে পানি দিয়ে বার বার ধুতে হয় যতক্ষণ বেরোনো পানি স্বচ্ছ না দেখায়।

viii. সবশেষে চাপ দিয়ে দলিত করে (neading) আটকানো অবশিষ্ট পানি সরিয়ে নেওয়া হয়।

ix. এরপর স্বাদ বৃন্ধির জন্য বাটারের সক্ষো একটু লবণ মেশানো হয়।

- x. সুবিধাজনক পাত্রে মাখনকে শস্ত করে বিভিন্ন সাইজে কাটা হয়।
- xi. রেফ্রিজারেটরে রেখে মাখন সংরক্ষণ করা হয়। পরে ব্যবহার বা বাজারজাত করা হয়।

দুধ থেকে পানিমুক্ত মাখন প্রভূতির ফ্লোচার্টটি নিম্নর্প–

ত্র উদ্দীপকের (i) নং হলো শিল্পবর্জাযুক্ত পানি এবং এর মধ্যে দ্রবীভূত SO₂, SO₃, P₂O₅ CO, CO₂ ও অন্যান্য জৈব পদার্থ থাকে। ETP মূলনীতির উপর ডিত্তি করে জৈব প্রযুক্তি ব্যবহার করে জৈব বর্জাকে পৃথকীকরণ করা যাবে।

উদ্দীপকের 3 নং হলো এন্টাসিডযুক্ত পানি এবং এতে Al³⁺ ও Mg²⁺ আয়ন বিদ্যমান। ETP এর তড়িৎ বিশ্লেষণ প্রক্রিয়ার মাধ্যমে Al³⁺ ও Mg²⁺ আয়নকে পৃথকীকরণ করা সম্ভব। নিম্নে পন্থতিগুলোর বর্ণনা দেয়া হলো— জীব প্রযুক্তি (Biotechnology) : শিল্প প্রক্রিয়া ও উৎপাদন এবং পরিবেশের ক্ষেত্রে প্রাণ-রসায়ন, জীববিজ্ঞান, অনুজীববিজ্ঞান ও রাসায়নিক কৌশলের প্রয়োগকে জীব প্রযুদ্তি বলে। নিচে বিক্রিয়া (i) এর ক্ষেত্রে জৈব যৌগের জারণে শক্তি উৎপন্ন হয় এবং বিক্রিয়া (ii) এর মাধ্যমে নতুন অণুজীবীয় কোষ গঠনে জৈব পদার্থ সংশ্লেষিত হয়। জীব প্রযুক্তি প্রয়োগ করে জৈবিক উপায়ে বর্জ্যের জীব ভাঙনযোগ্য জৈব পদার্থকে বিশ্লেষিত করা হয়। বর্জ্য পানির সহজাত অনুজীব জৈব কার্বনকে (নাইট্রোজেন ও ফসফরাসের উপস্থিতিতে) ব্যবহার করে আরো অধিক অণুজীব, বিশেষত ব্যাকটেরিয়া জন্মায়। ব্যাকটেরিয়া তাদের শক্তি ও কার্বন উৎসের জন্য জৈব বস্তু ব্যবহার করে। জৈব বস্তুর জারণে উচ্চত শক্তি অণুজীবের প্রাণ রাসায়নিক পথ পরিক্রমায় ধৃত হয় এবং জৈব বস্তুর কিয়দাংশ জীব ভরের (অণুজীবিয় কোষ) সংশ্লেষণে ব্যবহৃত হয়।

i. জৈব পদার্থ + $O_2 \rightarrow CO_2 + H_2O + শক্তি$

ii. জৈব পদার্থ + O_2 + N + P $\xrightarrow{\text{soft}}$ $C_{60}H_{87}O_{23}N_{12}P$ (নতুন soft)

তড়িৎ বিশোধন: এ প্রক্রিয়ায় পানিতে দ্রবণীয় বর্জাসমূহের মধ্যে আধান যুক্ত বর্জা কণা Electrocoagulation ও Electro flotation প্রক্রিয়ার মাধ্যমে দ্রবণ হতে অধঃক্ষিপ্ত হয়। এক্ষেত্রে Al, Fe, C কে ইলেকট্রোড হিসেবে ব্যবহার করা হয়। তবে উপরোক্ত দুটি প্রক্রিয়ার মাধ্যে Electrocoagulation প্রক্রিয়া অপেক্ষাকৃত উত্তম ও গ্রহণযোগ্য। এ প্রক্রিয়ায় স্বল্প ব্যরে, সাধারণ প্রযুক্তি ব্যবহার করে বর্জাকে সন্তোষজনকভাবে সম্পূর্ণরূপে অপসারিত করা হয়ে থাকে। তাছাড়া এ প্রযুক্তিতে রক্ষণাবেক্ষণ ব্যয়ও স্বল্প। এ প্রযুক্তিতে কোয়াগুলেটিং এজেন্ট হিসেবে Al2(SO4)3, FeSO4, FeCl3 কে ব্যবহার করা হয়। তড়িৎ প্রবাহ চালনা করা হয়। ফলে Al ধাতু Al⁺³ আয়নে পরিণত হয়।

অ্যানোড তড়িৎদ্বারের

বিক্রিয়া : $2AI \rightarrow 2AI^{+3} + 6e$, $6H_2O + 6e \rightarrow 6OH_- + 3H_2$ $2AI + 6H_2O \rightarrow 2AI^{+3} + 6e + 6H^+ + 6OH^- \rightarrow 2AI(OH)_3 + 3H_2$ উৎপন্ন AI^{3+} আয়ন OH^- আয়নের সাথে যুক্ত হয়ে $AI(OH)_3$ উৎপন্ন করে এবং অধঃক্ষেপ সৃষ্টি করে। এভাবে $AI(OH)_3$ এর অধঃক্ষেপের সাথে সাথে দৃষকসমূহ কোয়াগুলেট হয়ে পানি থেকে পৃথক হয়ে পড়ে। স্বল্প
মাত্রার বিদ্যুৎ প্রবাহের ফলেই পানিতে উপস্থিত ব্যাক্টোরিয়াসহ অন্যান্য
ঝণাত্মক আধানযুক্ত কণা কোয়াগুলেট করে এক পর্যায়ে অধঃক্ষিপ্ত হয়।
এভাবে চার্জযুক্ত আয়নসমূহ পানি হতে অপসার্রিত হয়। ফলে পানি দূষণ
মুক্ত হয়। এ পানিকে বিশেষভাবে নির্মিত ফিল্টারের সাহায্যে ছেঁকে
নিলেই পরিক্ষার বিশুন্থ পানি পাওয়া যায়।

প্রন ▶80 (i) এনজাইম + Pb²+ বা AsO₃³- → জটিল যৌগ

/वशुक्त काम्बेनरभक्ते भावनिक स्कून ७ करनव/

क. कृरान সেन की?

খ. কাচে অ্যানেলিং করা হয় কেন?

গ. (ii) এ যথেকী পরিমাণ HC। যোগ করলে প্রমাণ অবস্থায় কী পরিমাণ CO₂ পাওয়া যাবে?

ঘ. উদ্দীপকের (i) নং এর ভারী ধাতু দ্বারা মানব স্বাস্থ্যের ক্ষতিকর প্রভাব ও তা প্রতিকারের উপায় ব্যাখ্যা কর। 8

৪৩ নং প্রশ্নের উত্তর

ক্র যে কোষে তড়িৎ রাসায়নিক বিক্রিয়ার মাধ্যমে হাইড্রোজেন অথবা হাইড্রোজেন ঘটিত জ্বালানিকে সরাসরি বৈদ্যুতিক শক্তিতে পরিণত করা হয় তাকে কুয়েল সেল বলে।

বা কাচের আকৃতি দানের পরবর্তী ধাপে অ্যানিলিং করা হয়। অ্যানিলিং ধাপে কাচ সামগ্রীকে গলন তাপের কাছাকাছি একটি বিশেষ তাপমাত্রায় রেখে দেওয়া হয়। একে কোমলায়ন তাপমাত্রা বলে। এরপর এদেরকে ধীরে ধীরে শীতল করে স্বচ্ছ, শক্তিশালী ও সুষম ঘনত্ব বিশিষ্ট কাচ সামগ্রী উৎপাদন করা হয়।

ু চুনাপাথরে HCI যোগ করলে সংঘটিত বিক্রিয়া—
CaCO₃ + 2HCI → CaCl₂ + H₂O + CO₂
100 g
22.4 L
চুনাপাথরের নমুনায় CaCO₃ এর পরিমাণ = (160 × 0.95) g
= 152 g

.: 100g CaCO3 হতে প্রমাণ অবস্থায় প্রাপ্ত CO2 এর আয়তন 22.4 L

:. 152g CaCO₃ " " " CO_2 " $\pm \frac{22.4}{100} \times 152 L$ = 34.048 L (Ans.)

(i) নং এর ভারী ধাতৃটি হচ্ছে লেড (Pb)। নিম্নে মানব স্বাস্থ্যের উপর Pb এর প্রভাব ব্যাখ্যা করা হলো—
খাদ্যশৃঙ্খলের মাধ্যমে Pb শরীরে প্রবেশ করলে হিমোগ্লোবিন সংগ্লেষণ
সাহায্যকারী এনজাইমকে নিচ্ফিয় করে হিমোগ্লোবিন উৎপাদনে বাধা
দেয়। ফলে অ্যানিমিয়ার সৃষ্টি হয়। অন্যান্য ভারী ধাতুর ন্যায় সালফারের
প্রতি খুব বেশি আসক্তির কারণ এনজাইমের —S —H বন্ধনকে ভেঙে
দেয়।

$$S-H$$
 $S-H$ $+ Pb^{2+} \longrightarrow$ এনজাইম $S > Pb + 2H^{+}$

এছাড়া লেড এনজাইমের কার্বক্সাইল ও ফসফোরাইল গ্রুপকেও আক্রমণ করে থাকে। লেড ধাতু রক্তে হেম (heme) সংশ্লেষণে বাধা প্রদান করে, ফলে হিমোগ্লোবিন বিনম্ট হয়। হেম সংশ্লেষণের জন্য প্রয়োজনীয় এনজাইমের কার্যকারিতা Pb বাধাগ্রস্ত করে। ফলে হিমোগ্লোবিন সংশ্লেষণ বিশ্লিত হয়। লেডের মাত্রা বেড়ে গেলে কিডনি সিন্টেমের জটিলতা দেখা দেয়। শরীরের হাড়ের Ca কে Pb প্রতিস্থাপিত করে ঐ স্থানে স্থায়ীভাবে নিজে

জমা হতে থাকে। জমাকৃত Pb আবার ফসফেট সহযোগে স্থানন্তরিত

হয়ে নরম টিস্যাতে জমা হতে থাকে। ফরে দীর্ঘমেয়াদি বিষক্রিয়ার সৃষ্টি হয়। লেড ধাতু শিশুর মন্তিম্ক কোষের বিভাজনের ক্ষেত্রে বাধা সৃষ্টি করে। ফলে শিশুর আইকিউ এর মারাশ্বক প্রাস ঘটে।।

প্রর > 88 বর্তমান বিশ্বে আধুনিক বাসস্থান তৈরির জন্য একটি গুরুত্বপূর্ণ উপাদানের কাঁচামাল হলো চুনাপাথর। উপাদানটি বিভিন্ন ধাপের মাধ্যমে উৎপাদন করা হয়।

/সরকারি গরীদ বুলবুল কলেজ, পাবনা/

- क. ETP की?
- খ. চামড়া ট্যানিং এর মূলনীতি লেখো।
- গ. উদ্দীপকের যে উপাদানের কথা বলা হয়েছে সেটি উৎপাদনের মূলনীতি ধাপসহ বর্ণনা করো।
- উদ্দীপকের উপাদানটি উৎপাদনের বিভিন্ন ধাপে যে সব বায়ু
 দৃষণ ঘটে তা বর্ণনা করো।

৪৪ নং প্রশ্নের উত্তর

শিল্প কারখানায় উৎপন্ন বর্জা পানি (Effluent) থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ইটিপি বা ETP (Effluent Treatment Plant) বলে।

কারকীয় ক্রোমিয়াম সালফেট বা ক্রোমিক এসিডের চবণে চামড়া ভিজিয়ে রাখলে চামড়া মধ্যস্থিত কোলাজেন প্রোটিনের দৃটি গ্রুপ অ্যামিন ও কার্বক্সিলিক গ্রুপ Cr এর সাথে যুক্ত হয়ে কোলাজেন ক্রোমিয়াম জটিল যৌগ উৎপন্ন করে। ক্রোমিয়াম দৃটি প্রোটিন চেইনের মধ্যে একটি শক্তিশালী ব্রিজ লিংক তৈরি করে থাকে। এভাবে বহু সংখ্যক Cr জটিল একে অপরের সাথে যুক্ত হয়ে বৃহত্তর ব্রিজ গঠন করে। ফলে পিকলিং ধাপে প্রোটিনের মধ্যে সৃষ্ট লিংকেজগুলোকে পূর্ণ করে দেয়।

- 🖥 ১(গ) নং সৃজনশীল প্রশ্নোত্তর দ্রুটব্য।
- ঘ ১(ঘ) নং সৃজনশীল প্রশ্নোত্তর দুস্টব্য।

প্রর ▶৪৫ নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও:

একটি ট্যানারি প্রতিদিন অ্যালবুমিন, প্রোটিন ও ক্রোমিয়াম বর্জা নিঃসরণ করে। ঐ ট্যানারিকে রুথিকা সরকার তড়িৎ বিশ্লেষ্য প্রক্রিয়ায় বর্জা পরিশোধন করার পরামর্শ দেন। *দিনাজপুর সরকারি মহিলা কলেজ, দিনাজপুর*/

- क. ETP की?
- খ. কোনো BOD 100 mg/L দ্বারা কী বুঝায়?
- গ. উদ্দীপকের যে উপাদান খাদ্যশৃঙ্খল যুক্ত হয়ে মানব স্বাস্থ্যের ক্ষতি করে তা ব্যাখ্যা কর।
- উদ্দীপকে রুথিকা সরকারের পরামর্শ অনুসারে পরিশোধিত বর্জ্য
 জলাশয়ে যুক্ত করার প্রভাব বিশ্লেষণ কর।

 ৪

৪৫ নং প্রশ্নের উত্তর

শিল্প কারখানায় উৎপন্ন বর্জ্য পানি (Effluent) থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ইটিপি বা ETP (Effluent Treatment Plant) বলে।

কোনো দূষিত পানির জৈব দূষকের জারণের জন্য প্রয়োজনীয় অক্সিজেনের পরিমাণই হলো ঐ পানির BOD বা Biochemical Oxyden Demand.

কোনো পানির BOD এর মান 100mg/L বলতে বুঝায়, নমুনা পানির 1 লিটারে দ্রবীভূত থাকা জৈব দৃষক পদার্থকে অনুজীব (ব্যাকটেরিয়া) দ্বারা জারিত করতে 100mg অক্সিজেনের প্রয়োজন হয়েছে।

া ট্যানারি শিল্পে ব্যবহৃত ক্রোমিয়াম যৌগ খাদ্য শৃঙ্খলে প্রবেশ করে মানবদেহে বিভিন্ন জটিল রোগ সৃষ্টি করছে।

ক্রোমিয়াম দূষণ দ্বারা মানুষের পরিপাকতন্ত্র, শ্বাসতন্ত্র, প্রজনন তন্ত্র, রোগ প্রতিরোধ সিস্টেম প্রভৃতি আক্রান্ত হয়। Cr (VI) আয়ন মানুষের শরীরে ক্যান্সার সৃষ্টিকারী 'কারসিনোজেন' হিসেবে গণ্য। মানুষের দেহে ক্রোমিয়ামের প্রবেশ পথ অনুসারে ঐ সব স্থান ক্যান্সারপ্রবণ হয়। যেমন, প্রশ্বাসের মাধ্যমে ক্রোমিয়াম (VI) দূষণ দ্বারা ফুসফুসে ক্যান্সার সৃষ্টি হয়। বিশ্ব স্বাস্থ্য সংস্থার (WHO) জরিপে বাংলাদেশের ঢাকার হাজারিবাগের ট্যানারির প্রায় ৪,০০০ শ্রমিক পরিপাকতন্ত্রে বিভিন্ন রোগ, চর্মরোগ ও অন্যান্য রোগে আক্রান্ত হয় এবং অনধিক পঞ্চাশ বছর আয়ুস্কালে তারা মারা যায়। ইপ্রিয়ার কানপুরে ট্যানারি শ্রমিকের ওপর জরিপেও দেখা গেছে, ক্রোমিয়াম দূষণে শ্বাস্থান্তে রোগাক্রান্ত শ্রমিকের সংখ্যা বেশি। সে (III) যৌগের চেয়ে সে (VI) যৌগের বিষক্রিয়া অধিক মারাত্মক। অধিক সে দূষণের ফলে RBC তে লৌহ (Fe²) শোষণ বাধা পায়। ফলে অ্যানিমিয়া বা রক্তশুণ্যতা রোগ দেখা দেয়। এক্ষেত্রে হিমোগ্নোবিনের হিমে (heme)-এর অন্টতলকীয় কম্পেক্সের কন্দ্রেশ্বর দূহ² আয়নকে সে আয়ন প্রতিস্থাপন করে। এতে O2 লিগ্যাভর্পে যুক্ত হতে বাধা পায়।

বুঞ্জিকা সরকারের পরামর্শ অনুসারে তড়িং বিশ্লেষণ প্রক্রিয়ায় চামড়া শিল্প থেকে নিঃসৃত বিভিন্ন ধাতব বর্জ্য যেমন NaCl, TDS বং সর্বোপরি এ-এর বিভিন্ন যৌগকে অপসারণ করা সম্ভব। কিন্তু চামড়া শিল্প থেকে নির্গত এছাড়াও বিভিন্ন গ্যাসীয়, বর্জ্য-পানি দূষক ও কঠিন দূষক পদার্থ নির্গত হয়।

যা তড়িৎ বিশোধন প্রক্রিয়ায় বিশোধন করা সম্ভব নয়। রুথিকা সরকারের পরামর্শে তড়িৎ বিশ্লেষণ করার পর যেসব বর্জ্য জলাশয়ে মুক্ত হয়, সেগুলো হলো—

- দ্রবীভূত ও অদ্রবীভূত জৈব ও অজৈব পদার্থ; যা পানির DO এর পরিমাণ হ্রাস করে।
- প্রোটিন জাতীয় পদার্থের বিয়োজনে উৎপর H₂S যা বিষাত্ত ও অত্যন্ত দুর্গন্ধযুক্ত বাতাসে 20 ppm H₂S মানুষের মৃত্যু ঘটায়।
- iii. প্রতি টন চামড়া প্রক্রিয়াজাতকরণের পর 800kg কঠিন বর্জা পদার্থ উৎপন্ন হয়। এদের বেশির ভাগই পানিও পরিবেশকে দৃষণ করছে।
- iv. ট্যানারি শিল্প থেকে নির্গত বিভিন্ন গ্যাসীয় দূষক CO₂, CO, SO₂, SO₃ পানির pH কমিয়ে দেয়। ফলে বিভিন্ন জলজ প্রাণীর মৃত্যু হয় এবং মাছের বিভিন্ন রোগ সৃষ্টি হয়।
- পানির সংস্পর্শে চামড়া হতে চর্বি ও প্রোটিনের বিয়োজনে H₂S এর সাথে সাথে NH₃ উৎপন্ন হয়। বাতাসে NH₃ এর অনুমোদিত ঘনমাত্রা হলো 50mg/m³.

এভাবে চামড়া শিল্প থেকে নিঃসৃত বর্জ্য মানব জীবনের বিভিন্ন প্রতিনিয়ত সমস্যার সৃষ্টি করছে।

গ্র‼ ▶8৬

 $H_2(g) + N_2(g) \longrightarrow A(g) \longrightarrow Y \longrightarrow Z + H_2O$ $CaCO_3(s) \longrightarrow B(g) \longrightarrow Y \longrightarrow Z + H_2O$

[कारिनस्पर्धे भावतिक मुक्त ७ वरनवः, तःभूत]

- ক. প্রমাণ দ্রবণের সংজ্ঞা দাও।
- খ. E⁰Cn²⁺/Cu = 0.34v দারা কী বোঝায়?
- গ. 'Z' যৌগটির উৎপাদনের মূলনীতি সমীকরণসহ বর্ণনা করো। ৩
- ঘ. সার হিসাবে 'Z' যৌগটির কার্যপ্রণালী উল্লেখপূর্বক পরিবেশে এর ক্ষতিকারক প্রভাব আলোচনা করো।

. ৪৬ নং প্ররের উত্তর

🐼 যে দ্রবণের ঘনমাত্রা নির্দিষ্টভাবে জানা থাকে তাকে প্রমাণ দ্রবণ বলে।

কপারের প্রমাণ বিজারণ বিভব 0.34 Volt বলতে বুঝাঁয় যে প্রমাণ হাইজ্রোজেন ইলেকট্রোডের আপেক্ষিক একক সক্রিয়তাবিশিন্ট Cu²⁺ এর দ্রবণে কপার দণ্ড নিমজ্জিত করে উৎপন্ন অর্ধ কোষে বিজারণ বিক্রিয়া সংঘটিত হওয়ার প্রবণতা বা বিভব 0.34 Volt।

🜃 ২(গ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

্র 'Z' যৌগটি হচ্ছে NH_2 — $CO-NH_2$ সারহিসাবে যৌগটির কার্যপ্রণালী নিম্নে ব্যাখ্যা করা হল—

সিক্ত মাটিতে ইউরিয়া যোগ করলে প্রথমেই এটি পানি দ্বারা আর্দ্র বিশ্লেষিত হয়ে NH₃ ও CO₂ উৎপন্ন করে। উৎপন্ন NH₃ মাটিতে উপস্থিত নাইট্রিফাইয়িং ব্যাকটেরিয়া যেমন— নাইট্রোমোনাস, নাইট্রোব্যান্টর এর দ্বারা জারিত হয়ে HNO3 এ পরিবর্তিত হয়। এ HNO3 মাটিতে উপস্থিত ক্ষারের সাথে বিক্রিয়া করে দ্রবণীয় নাইট্রেট লবণ উৎপন্ন করে যা উদ্ভিদ শোষণ করে থাকে।

 $(NH_2)_2 CO + H_2O \longrightarrow 2NH_3 + CO_2$ $2NH_3 + 4O_2 \xrightarrow{\text{ব্যাকটেরিয়া}} 2HNO_3 + 2H_2O$

পরিবেশের উপর ইউরিয়ার প্রভাব:

পানির সাথে মিশেও এটি NH, ও CO₂ তে বিযোজিত হয়। NH₃ পানির সাথে মিশে NH₄OH উৎপন্ন করে যা মাছ ও অন্যান্য জলজ প্রাণী ও উদ্ভিদের জন্য হুমকিম্বরূপ। মানুষের জন্যও ক্ষতিকর। আবার অন্যদিকে ইউরিয়া হতে উৎপন্ন CO₂ বাতাসে মিশে যায় যা একটি গ্রীনহাউস গ্যাস।

সূতরাং, ইউরিয়া সারের অধিক ব্যবহার গ্রীনহাউজ প্রক্রিয়াকে তুরান্বিত করে।

সূতরাং, ইউরিয়া সব মাটি ও ফসলের জন্য উপযুক্ত সার হলেও পরিবেশের উপর এর ফতিকর প্রভাব বিদ্যমান।

$$24 > 89$$
 A(CO₂) + B (NH₃) \rightarrow C \rightarrow D (Urea) + H₂O

/भूनिय मार्डेश म्हल এड करमण, उरभूत/

ক, পেপটাইড বন্ধন কী?

খ, লবণ সেতুর ভূমিকা লিখ।

গ্র উপযুক্ত শর্তে D তৈরির মূলনীতি সমীকরণসহ লিখ।

ঘ. A সংগ্রহের পদ্ধতি এবং B তৈরির পশ্ধতি উপযুক্ত বিক্রিয়ার সাহায্যে বর্ণনা কর।

৪৭ নং প্রশ্নের উত্তর

ক্র একটি অ্যামাইনো এসিডের কার্বক্সিল মূলক অপর একটি অ্যামাইনো এসিডের α-অ্যামাইনো মূলকের সাথে বিক্রিয়ায় পানির অণু অপসারণের পর পরস্পর যুক্ত হয়ে যে অ্যামাইড বন্ধন (—CONH—) গঠন করে তাকে পেপটাইড বন্ধন বলে।

র i) লবণ সেতু উভয় অর্ধকোষে সংঘটিত জারণ-বিজারণ ক্রিয়ার ভারসাম্য রক্ষা করে।

ii) অর্ধকোষ হয়ের তরলের মধ্যে বৈদ্যুতিক নিরপেক্ষতা বজায় রাখে।

iii) উভয় অর্ধকোষের মধ্যে সংযোগ রক্ষা করে।

্যা ৩ (গ) প্রশ্নোত্তর অনুরূপ।

উদ্দীপকের B গ্যাসটি হলো NH, গ্যাস। হেবার পশ্বতিতে N₂ ও H₂ থেকে NH, সংশ্লেষণ করা হয়। বাংলাদেশের প্রাকৃতিক গ্যাস থেকে H₂ উৎপন্ন করে তরলীকৃত বায়ু হতে প্রাপ্ত নাইট্রোজেনের সাথে 3:1 অনুপাতে পেষণ যন্ত্রে 200 atm চাপে মিপ্রিত করা হয় এবং এই গ্যাস মিপ্রণকে প্রভাবকের উপস্থিতিতে বিক্রিয়া প্রকান্তে পাঠানো হয়। এখানে NH, উৎপন্ন হয় এবং কিছু N₂ ও H₂ গ্যাস অপরিবর্তিত থেকে যায়। এই মিশ্রণকে শীতকালে প্রকোষ্ঠে নিয়ে NH₃ কে তরল আকারে পৃথক করা হয়।

তরল বায়ু
$$(N_2 + O_2)$$
 $\xrightarrow{\text{sulf-flat MISA}}$ N_2 $CH_4 \xrightarrow{\text{Fg.200 atm.}}$ $C + 2H_2$

N₂ + 3H₂ Fe,200 atm,500°C Al₂O₃ বা MoO

অপরদিকে Λ হলো CO_2 গ্যাস। প্রাকৃতিক গ্যাসকে বায়ুর O_2 এর সাথে বিক্রিয়া করালে CO_2 গ্যাস উৎপন্ন হয়।

 $CH_4 + O_2 \longrightarrow CO_2 + 2H_2O$

প্রান ▶8৮

ক, কিউলেট কী?

খ, সিমেন্ট প্রস্তুতির সময় জিপসাম ব্যবহার করা হয় কেন?

প্রাকৃতিক গ্যাস থেকে A যৌগ প্রস্তুতির মূলনীতি সমীকরণসহ
লিখ।

ঘ. A যৌগটির উৎপাদন শিল্প হতে ক্ষতিকর প্রভাব বিশ্লেষণ করো।

৪৮ নং প্রশ্নের উত্তর

ক কাচ তৈরির সময় কাঁচামাল হিসেবে পরিত্যক্ত বা ভাজাা কাচ ব্যবহার করা হয় যা কুলেট নামে পরিচিত।

জিপসাম (CaSO₄,2H₂O) এর উপস্থিতিতে সিমেন্টের জমাট বাঁধার প্রক্রিয়া ধীরগতিতে ঘটে। কারণ, জিপসাম ট্রাইক্যালসিয়াম অ্যালুমিনেট এর সাথে বিক্রিয়া করে অদ্রবণীয় ক্যালসিয়াম সালফো আালুমিনেট উৎপদ্ধ করে। এর ফলে দ্রুত জমাট বাঁধতে সাহায্য করে এর্প ট্রাইক্যালসিয়াম অ্যালুমিনেট আপাত দৃষ্টিতে দূরীভূত হয়। যে কারণে সিমেন্ট দুত জমাট বাঁধতে পারে না।

3 CaO.Al₂O₃ + 3(CaSO₄,2H₂O) + 2H₂O \rightarrow 3CaO. Al₂O₃. 3CaSO₄,2H₂O + 6H₂O

তবে এর প্রভাবে সিমেন্টের সম্পূর্ণরূপে জমাট বাঁধতে যথেক্ট পরিমাণ পানির উপস্থিতিতে কয়েক সপ্তাহ সময় লাগলেও উৎপন্ন কঠিন পদার্থের দৃঢ়তা ও শক্তির বৃদ্ধি ঘটে।

র্ব ২ (গ) নং সজ্নশীল প্রশ্নোত্তর দ্রুইব্য ।

ঘ ৩ (ঘ) নং সজৃনশীল প্রশ্নোত্তর দুষ্টব্য।

প্রর ▶৪৯

/ठाँधाम करनवर, ठाउँधाम/

5

ক, পানির খরতা কী?

খ. সিমেন্ট তৈরিতে জিপসাম ব্যবহার করা হয় কেন?

গ. 'B' উৎপাদনের মূলনীতি বর্ণনা কর।

৪৯ নং প্রশ্নের উত্তর

কি মিঠা পানিতে পর্যাপ্ত পরিমাণ দ্বিধনাত্মক ক্যাটায়ন যেমন : Ca^{2^+} : Mg^{2^+} ও Fe^{2^+} আয়ন দ্রবীভূত থাকলে তাকে পানির খরতা বলে।

জিপসাম (CaSO₄.2H₂O) এর উপস্থিতিতে সিমেন্টের জমাট বাঁধার প্রক্রিয়া ধীরণতিতে ঘটে। কারণ, জিপসাম ট্রাইক্যালসিয়াম অ্যালুমিনেট এর সাথে বিক্রিয়া করে অদ্রবণীয় ক্যালসিয়াম সালফো অ্যালুমিনেট উৎপর করে। এর ফলে দুত জমাট বাঁধতে সাহায্য করে এর্প ট্রাইক্যালসিয়াম অ্যালুমিনেট আপাত দৃষ্টিতে দূরীভূত হয়। যে কারণে সিমেন্ট দুত জমাট বাঁধতে পারে না।

3 CaO.Al₂O₃ + 3(CaSO₄.2H₂O) + 2H₂O \rightarrow 3CaO. Al₂O₃. 3CaSO₄.2H₂O + 6H₂O

তবে এর প্রভাবে সিমেন্টের সম্পূর্ণর্পে জমাট বাঁধতে যথেন্ট পরিমাণ পানির উপস্থিতিতে কয়েক সপ্তাহ সময় লাগলেও উৎপন্ন কঠিন পদার্থের দৃঢ়তা ও শক্তির বৃদ্ধি ঘটে।

আ ৫ নং প্রশ্নের 'গ' দুর্ভীব্য।

য ৯ নং প্রশ্নের 'ঘ' দুষ্টব্য।

|इँग्लाशनी भारतिक म्कुल ७ करनवा, ४व्रेश/४/

- ক. পরমশ্ন্য তাপমাত্রা কী?
- খ. NH3 অপেক্ষা CH2-NH2 অধিক ক্ষারধর্মী কেন ব্যাখ্যা করো ৷২
- গ্র উদ্দীপকের শিল্প উৎপাদটির উৎপাদনের মূলনীতি প্রয়োজনীয় সমীকরণসহ লিখ।
- ঘ, উন্নয়নশীল দেশ হিসেবে এদেশের উত্ত শিল্প উৎপাদটির উৎপাদনের সম্ভাবনা ও গুরুত্ব মূল্যায়ন করো। 8

৫০ নং প্রশ্নের উত্তর

যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয়,
 তাকে পরমশূন্য তাপমাত্রা বলে।

আ আ্রামোনিয়া (NH3) ও মিথাইল অ্যামিন (CH3NH2) উভয়ের অণুর N পরমাণুতে নিঃসজা ইলেকট্রন যুগল থাকায় এরা প্রোটেন গ্রহণ করতে পারে। তাই উভয়ই ক্ষারক। জলীয় দ্রবণে NH3 ও CH3NH2 পানির সাথে উভমুখী বিক্রিয়ায় পানি থেকে প্রোটন গ্রহণ করে ঝণাত্মক OH— আয়ন ও যথাক্রমে ধনাত্মক NH4 আয়ন ও মিথাইল অ্যামোনিয়াম আয়ন (CH3NH4) উৎপন্ন করে।

H
$$H = N^*$$
 + H=OH $\frac{H}{pK_b = 4.74}$ H $\frac{H}{H} = N^* - H + OH^*$
H $\frac{H}{h} = \frac{H}{h} = \frac{H$

উৎপন্ন মিথাইল অ্যামোনিয়াম আয়নের ধনাত্মক চার্জ নাইট্রোজেন পরমাণু ও একটি কার্বন পরমাণু শেয়ার করে থাকে। ধনাত্মক চার্জের বিস্তারণের ফলে তুলনামূলকভাবে মিথাইল অ্যামোনিয়াম আয়ন অধিক সুস্থিত হয়। ফলে CH_3NH_2 ও পানির উভমুখী বিক্রিয়া NH_3 ও পানির উভমুখী বিক্রিয়ার তুলনায় অধিকতর সম্মুখমুখী হয়ে থাকে। তখন CH_3NH_2 ও পানির বিক্রিয়ার ক্ষেত্রে OH^- আয়নের পরিমাণ বৃদ্ধি পায় অর্থাৎ এর আয়নীকরণ ধ্বক K_b এর মান বেড়ে $K_b = 4.4 \times 10^{-4}$ এবং $pK_b = 3.36$ হয়। কিব্রু NH_3 ও পানির বিক্রিয়ার ক্ষেত্রে আয়নীকরণ বৃদ্ধি করার সুযোগ না থাকায় এর $K_b = 1.8 \times 10^{-5}$ এবং $pK_b = 4.74$ হয়। উল্লেখ্য ক্ষারকের pK_b এর মান যত কম হবে ঐ ক্ষারক তত বেশি সবল ক্ষারক হবে। তাই মিথাইল অ্যামিন (CH_3NH_2) অধিক ক্ষারধর্মী।

১(গ)নং সৃজনশীল প্রশ্নোতর দুইবা।

যা আমাদের দেশের অবকাঠামো নির্মাণে, বিশেষ করে রাস্তাঘাট, বাঁধ, সেতু, ঘরবাড়ি, দালানকোঠা প্রভৃতি তৈরির কাজে এটি ব্যবহৃত হয়। একটি দেশের সার্বিক অবকাঠামো নির্মাণে সিমেন্ট শিল্পের বিকল্প নেই। ৬৮ হাজার বর্গমাইলের এই দেশে বিশেষ করে সিলেট, সুনামগঞ্জ, মৌলভীবাজার, বগুড়া, জয়পুরহাট প্রভৃতি জেলায় চুনাপাথর পাওয়া যায়। এই চুনাথাথরই (CaCO₃) সিমেন্টের কাঁচামাল। এই CaCO₃ হতে সিমেন্ট উৎপাদনের জন্য তিনটি বড় আকারের সিমেন্ট শিল্প কারখানা আছে।

- a. লাফার্জ সিমেন্ট কোম্পানি, সুনামগঞ্জ।
- b. ছাতক সিমেন্ট কোম্পানি, সিলেট।
- c. চিটাগাং সিমেন্ট কোম্পানি, চট্টগ্রাম।

সিমেন্ট উৎপাদনের অন্যান্য কাঁচামাল বিদেশ হতে আমদানি করা হয়। বিদেশ হতে আমদানিকৃত কাঁচামালের অধিকাংশ ব্যবহৃত হয় চট্টগ্রাম সিমেন্ট ও ক্রিংকার কারখানায়, ছাতক সিমেন্ট ফ্যাক্টরি ও লাফার্জ সিমেন্ট কারখানায় টেকেরঘাট থেকে উত্তোলিত এবং ভারতের মেঘালয়ের কোমরা থেকে রজ্জুপথে আমদানিকৃত চুনাপাথর (CaCO3) ব্যবহৃত হয়। থেহেতু সিমেন্ট উৎপাদনের অনেক কাঁচামাল বিদেশ থেকে আমদানিকরা হয়; এই আমদানির ক্ষেত্রে নদীমাতৃক সবচেয়ে সহজসাধ্য ও সাশ্রয়ী। বাংলাদেশ একটি নদীমাতৃক দেশ, তাই এদেশে এই আমদানির কাজটি খুব সহজেই সাগর ও নদীপথে করা যায়।

নদী বা সাগরের পার্শ্ববর্তী অঞ্চলে সিমেন্ট মিল স্থাপন করলে আরও অনেক সুবিধা আছে। যেমন— পানির সহজ সভ্য প্রাপ্যতা, কাঁচামাল সরবরাহে সুবিধা। তাছাড়া বাংলাদেশে বেকার সমস্যার কারণে এদেশে প্রমিকদের নিম্ন মুজুরি ও শ্রমিকের প্রাপ্ততা অনেক বেশি। দেশের জ্বালানির প্রাপ্যতা, বিশেষ করে কয়লার বাণিজ্যিক উত্তোলন সম্ভব হলে সিমেন্ট শিল্পের বিপুল সম্ভাবনা রয়েছে।

SE > 67

ক. TDS কি?

খ. BOD এবং COD এর মধ্যে কোনটি বড়-ব্যাখ্যা কর।

গ, উদ্দীপকের 'A' যৌগ উৎপাদনের মূলনীতি লিখ।

য়, জনাপকের 'A' বোগ ভংগাপনের মূলনাত লব।

ঘ. উদ্দীপকের 'A' যৌগটির রিসাইক্রিং 'পরিবেশ বান্ধব ও
লাভজনক' ব্যাখ্যা কর।

÷

৫১ নং প্রশ্নের উত্তর

ক পানিতে দ্রবীভূত কঠিন পদার্থের মোট পরিমাণকে TDS (Total , Dissolved Solid) বলে।

বি কোন নমুনায় COD এর মান BOD থেকে বেশি হয়। কেননা
COD প্রক্রিয়ায় সকল প্রকার জীব ভাঙনযোগ্য ও অভাঙনযোগ্য প্দার্থ
জারিত হয়। এর ফলে অক্সিজেনের ব্যবহার বেশি হয়। কিন্তু BOD
প্রক্রিয়ায় কেবলমাত্র জীব ভাঙনযোগ্য পদার্থসমূহ জারিত হওয়ায়
অক্সিজেনের ব্যবহার কম হয়। সূতরাং বলা যায়, কোনো নমুনায় BOD
অপেক্ষা COD এর মান বেশি হয়।

🐠 ৪(গ) নং সৃজনশীল প্রশ্নোত্তরের দুউব্য।

য়া উদ্দীপকের A হলো কাচ। কাচ এর রিসাইকেল পরিবেশ ও অর্থনৈতিক উভয়ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ। নিচে তা বিশ্লেষণ করা হলো— কাচ একটি অত্যন্ত ভঙ্গার পদার্থ। ভাঙ্গা কাচ পরিবেশের মারাত্মক কতি করে। এটি কোনো অবস্থাতেই পরিবেশের সাথে মিশে যেতে পারে না। তাছাড়া কাচ উৎপাদনের সময় প্রচুর পরিমাণে ${
m CO_2}$ গ্যাসসহ ${
m SO_2}$. NO_x ইত্যাদি গ্যাস নির্গত হয় যা পরিবেশকে দৃষিত করে। কাচ উৎপাদনে যেসব কাঁচামাল ব্যবহার করা হয় তা থেকে বিভিন্ন ধাপে Pb ও Mn নিসৃত হয় যা দূরীকরণের জন্য ETP ব্যবহার করা হয় এবং এটি একটি ব্যয়বহুল প্রক্রিয়া। কাঁচ শিল্প এলাকার নির্গত CO এর কারণে ঐসব এলাকায় বসবাসরত মানবকুলের বিভিন্ন শ্বাসপ্রশ্বাস জনিত সমস্যা সৃষ্টি হতে পারে। কাঁচ রিসাইকেল করা হলে কাঁচামালজনিত উৎপাদন খরচ অনেক কমে যায়। তাছাড়া কাঁচামাল থেকে নতুন কাঁচ তৈরির জন্য যে পরিমাণ জ্বালানির প্রয়োজন ভাঙা, পুরাতন, পরিত্যক্ত কাচ গলিয়ে কাচ তৈরি করা হলে সেক্ষেত্রে অনেক কম জ্বালানি প্রয়োজন হয়। সূতরাং জ্বালানি থরচ অনেক কম হয়। সূতরাং কাচ রিসাইকেল করা হলে একদিকে পরিবেশ দৃষণের মাত্রা কমে যায় অপরদিকে অর্থনৈতিকভাবে লাভবান হওয়া যায়।

- ক, রিসাইকেল কী?
- য় পিয়ে ETP এর ব্যবহার করা হয় কেন?
- উদ্দীপকের A এর শিল্লোৎপাদনের শৃষ্ক পশ্বতি ব্যাখ্যা কর। ৩
- ঘ়, পরিনেশের উপর উদ্দীপকে উরেখিত A উৎপাদন শি**র** হতে সৃষ্ট ক্ষতিকর প্রভাব বিশ্লেষণ কর।

৫২ নং প্রয়োর উত্তর

🐼 পরিত্যক্ত শিল্প পশাকে পুনঃপ্রক্রিয়াজাতকরণের মাধ্যমে পুনরায় ব্যবহার উপযোগী করার প্রক্রিয়াকে রিসাইক্রিং বলে।

- 📆 শিল্প কারখানার বর্জা পানি (effluent) থেকে ক্ষতিকর রাসায়নিক পদার্থকে পৃথক করার প্রক্রিয়াকে ETP (Effluent Treatment Plant) বলে। বতমান বিশ্বে টেক্সটাইল ও ডায়িং, চামড়া, পেপার পার, সিমেন্ট, ঔষধ, চিনি, সার প্রভৃতি শিল্পের বর্জ্য দ্বারা পানি দৃষিত হয়। এতে ন্যাপকভাবে পরিবেশ দুষণ ঘটে এবং জীবকুলের উপর বিরূপ প্রভাব পড়ে। দূষকসমূহের মধ্যে জৈব ও অজৈব দুই রকম পদার্থই রয়েছে। এ দূষিত গানিকে শোধন করে বিশৃন্ধরূপে পরিবেশে ত্যাগ ও পুনরায় ব্যবহার উপযোগী করার জন্য ETP ব্যবহার করা হয়।
- 🛂 ৩৭ (ঘ) নং সৃজনশীল প্রয়োত্তর দুইব্য ।
- 📆 উদ্দীপকের \Lambda হলো সিমেন্ট। পোর্টল্যান্ড সিমেন্ট তৈরির প্রত্যেকটি ধাপে পরিবেশের উপর প্রভাব বিস্তরণকারী বস্তুর উদ্ভব ঘটে। বায়ুবাহিত দুমণ যেমন ধুলিকণা, গ্যাস, শব্দ দুষণ এ শিক্ষের নৈমিত্তিক ব্যাপার। সিমেন্ট তৈরিতে যে বিশৃন্ধ পরিমাণে জ্বালানি বিশেষ করে কয়লা ও তেল ব্যবহৃত হয় তার দহনে CO₂ এর নিঃসরণ ঘটে। এমনকি সিমেন্ট তৈরির কাঁচামাল হলেও CO2 উৎপন্ন হয়। জ্বালানি দহনের সময় SO2 ও নির্গত হয়। এটিও ক্ষতিকর গ্যাস। সিমেন্ট তৈরির সময় যে, CO₂ উৎপন্ন হয় তা তিনটি উৎস থেকে আসে।
- ১. CO2 উৎপন্ন হয় চুনাপাথর (CaCO3 এর বিয়োজন থেকে)
- ২. CO₂ উৎপত্ন হয় জ্বালানির দহনে
- ৩. CO₂ উৎপন্ন হয় কারখানার বিভিন্ন দ্রব্য পরিবহনে ব্যবহৃত যানবাহন

এক বিসাব অনুযায়ী দেখা যায় যে, প্রতি কেজি সিমেন্ট থেকে প্রায় 0.24 – 0.47 Kg CO: গ্যাস উৎপন্ন হয়। তদুপরি সিমেন্ট তৈরি কারখানায় যে বিপুল পরিমাণ বর্জা তৈরি হয় তাতে দাহ্যবস্তু থাকে। তাই অনেক সময় এই বর্জা জ্বালানি হিসেবে ব্যবহার করা যেতে পারে, তা না হলে সেটা পরিবেশের ক্ষতি করবে।

সূতরাং বলা যায়, সিমেন্ট শিল্প হতে সৃষ্ট ক্ষতিকর প্রভাব পরিবেশের উপর অনেক বেশি।

ব্রধ্য 🕨 ৫৩

- গ. 'A' এর উৎপাদন প্রক্রিয়া সমীকরণসহ বর্ণনা কর।
- ঘ. 'A' শিল্পপণ্যটির রিসাইক্লিং পরিবেশ বাস্থব ও অর্থসাশ্রয়ী 🗕 भृनााग्रन कर्त्र ।

৫৩ নং প্রশ্নের উত্তর

কেনো একক তড়িৎন্নারের বিভব নির্ণয়ের জন্য একে তড়িৎন্নার বিভব জানা আছে এ রকম যে তড়িৎদারের সজো সংযোগ স্থাপন করে তড়িৎ রাসায়নিক কোষ গঠন করা হয় তাকে রেফারেন্স তড়িৎদ্বার বলে।

🔇 আকৃতি দেওয়া দ্রব্যকে আঘাত ও তাপমাত্রায় সহনীয় করার জন। অ্যানিলিং প্রক্রিয়ার মাধ্যমে পান দেওয়া হয়। সব ধরনের কাচকেই পান দেওয়া প্রয়োজন। কাচকে পান না দিলে তা তাপ এমনকি কিছু সময় রেখে দিলে ভেঞ্চো যাবে। কারণ কাচে পান না দিলে এটি তাপমাত্রায় পরিবর্তন কিংবা আঘাত সহ্য করতে পারে না। পান দেওয়ার ফলে কাচ সুষম হয়। ফলে কাচ তাপমাত্রাসহ, ঘাতসহ ও টেকসই হয়। এজন্যই কাচে অ্যানিলিং করার প্রয়োজন হয়।

💵 ৭(গ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

য ৭(ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

일위 > 68

- ক, পরমশুনা তাপমাত্রা কী?
- খ. কাচে অ্যানিলিং করা হয় কেন?
- গ. A উৎপাদনের মূলনীতি লেখ।
- ঘ, ধাপ-১ ও ধাপ-২ এর মধ্যে কোনটি সাশ্রয়ী? বিশ্লেষণ কর। ৫৪ নং প্রশ্নের উত্তর

🚰 যে তাপমাত্রায় কোনো গ্যাসের আয়তন তাত্ত্বিকভাবে শূন্য হয় সেই তাপমাত্রাকে পর্মশূনা তাপমাত্রা বলে। পর্ম শূন্য তাপমাত্রার মান 🗕

🚰 আকৃতি দেওয়া দ্রব্যকে আঘাত ও তাপমাত্রায় সহনীয় করার জন্য আনিলিং প্রক্রিয়ার মাধ্যমে পান দেওয়া হয়। সব ধরনের কাচকেই পান দেওয়া প্রয়োজন। কাচকে পান না দিলে তা তাপ এমনকি কিছু সময় রেখে দিলে ভেজো যাবে। কারণ কাচে পান না দিলে এটি তাপমাত্রায় পরিবর্তন কিংবা আঘাত সহ্য করতে পারে না। পান দেওয়ার ফলে কাচ সুষম হয়। ফলে কাচ ডাপমাত্রাসহ, ঘাতসহ ও টেকসই হয়। এজন্যই কাচে অ্যানিলিং করার প্রয়োজন হয়।

🚮 উদ্দীপকের \Lambda পণ্যটি হলো কাগজ। বাংলাদেশের অধিকাংশ পেপার মিলে ক্রাফ্ট পন্ধতি ব্যবহার করে কাঁচামাল থেকে কাগজ উৎপাদন করা হয়। কাগজ উৎপাদন প্রক্রিয়া নিম্নলিখিত দুইটি ধাপে সম্পন্ন হয়।

১. কাঠ/বাঁশ থেকে পাল্প বা মন্ড উৎপাদন : বিভিন্ন রাসায়নিক দ্রব্য যেমন— NaS, Na₂CO₃, NaOH, Ca(OH)₂, Ca(HSO₃)₂ ইত্যাদি দ্বারা তৈরি কুকিং লিকার ব্যবহার করে কাঠ বা বাঁশ থেকে লিগনিন এবং অন্যান্য অসেলুলোজীয় পদার্থ দ্রবীভূত করে পৃথক করা হয় এবং সেলুলোজ সংগ্রহ করা হয়। এভাবে উৎপন্ন সেলুলোজের কাই এর নামই मङ (Pulp) ।

কাঠ/বাঁশ + কুকিং লিকার $\stackrel{\Delta}{\longrightarrow}$ RCOOH + ROH + মণ্ড (NaOH/ Na2CO3/ Na2S)

- ২. কাণজ উৎপাদন : প্রাপ্ত মন্ডকে বিভিন্ন ইউনিট প্রোসেস ও ইউনিট অপারেশন দ্বারা অস্বচ্ছ, ছিদ্রহীন, মসৃণ পৃষ্ঠতল বিশিষ্ট পাতলা শীট এ পরিণত করা হয়। এরই নাম কাগজ শীট। মন্ডকে কাগজে পরিণত করার জন্য তিনটি ধাপ অনুসরণ করা যায়। যথা-
- i. বিটিং: একটি যান্ত্রিক beater এ মন্তকে beating করে সুধম মন্তে পরিণত করা হয়।
- রিষ্টাইনিং: এ মণ্ডের সজো ফিলার, সাইজিং দ্রব্য হিসাবে Na₂CO₃. Na2SO4 ও বিরঞ্জক হিসেবে Ca(OCI)CI যোগ করলে সাদা, মসৃণ পাল্ল পাওয়া যায়।
- iii. পেপার শীট উৎপাদন : একে একটি ফোর দ্রিনিয়ার মেশিনে দ্রাইং ও বারবার চাপ প্রদানের সাহায্যে মসৃণ শীট এ পরিণত করা হয়।

য় উদ্দীপকের ধাপ-১ হলো কাঁচামাল থেকে মন্ড উৎপাদন ও এ থেকে কাগজ উৎপাদন এবং ধাপ-২ হলো রিসাইক্রিং এর মাধ্যমে কাগজ উৎপাদন। নিম্নে কাগজ শিল্পের জন্য রিসাইক্রিং এর গুরুত্ব ও উপযোগিতা বর্ণনা করা হলো—

আমাদের দৈনন্দিন জীবনে কাণজ খুবই গুরুত্বপূর্ণ। সব বইপুস্তক, পত্রিকা, ম্যাগাজিন প্রভৃতি কাগজে ছাপা হয়। কাগজে লিখে ছাত্র-ছাত্রীরা লেখাপড়া করে; অন্যরা অফিসের কাজ করে অথবা হিসাব নিকাশ করে। এসব কাজে প্রতিদিন বিশাল পরিমাণ কাগজ ব্যবহৃত হয় এবং সময়মতো ও পুরানো কাগজরূপে পরিত্যক্ত হয়। শুধু সংবাদ-পত্রিকা শিল্পে নিউজপ্রিন্টের বার্ষিক চাহিদা হলো এক লক্ষ বিশ হাজার টন; এর মধ্যে আমদানি করতে হয় পঞ্চাশ হাজার টন। বই-পুস্তক, অফিস আদাল ও অন্যান্য ক্ষেত্রে নিউজপ্রিন্টের তুলনায় কয়েক গুণ পরিমাণ উন্নতমানের সাদা কাণজ কর্ণফুলি পেপার মিল যোগ দেয়। দিন, মাস ও বছর শেষে এ সব কাগজ পুরানো বই-পত্র, খাতা, পত্রিকারূপে ফেরিওয়ালারা সংগ্রহ করে। পুরাতন এসব কাগজ থেকে তৈরি হয় দোকানিদের জন্য ঠোঙা এবং অধিকাংশ পুরানো কাগজের রিসাইকেলের জন্য পেপার মিলে ফিরে যায়। এর্পে পুরানো কাগজের রিসাইকেলের সামাজিক গুরুত্ব হলো পুরানো কাগজ সংগ্রহকারী ফেরিওয়ালা ও ঠোঙা তৈরির কাজে যুক্ত লোকদের জীবিকা সংস্থান।

 কাগজ রিসাইকেল পরিবেশ সংরক্ষণ ও গ্রিন হাউজ প্রভাব দ্রাসকরণে ভূমিকা রাখে।

নিম্নোক্ত কারণে পেপার রিসাইক্রিং পরিবেশ বান্ধব :

- কাগজের রিসাইকেলের ফলে দেশের চাহিদা মিটাতে উদ্ভিদ থেকে কাগজের মণ্ড তৈরির প্রয়োজনীয় পরিমাণ কমে যায়। এক টন কাগজের প্রয়োজনীয় মণ্ড তৈরি করতে প্রয়োজন হয় 17 টি বড় গাছ, 7000 গ্যালন পানি, 380 গ্যালন জ্বালানি তেল এবং 4000 কিলোওয়াট শক্তি। অর্থাৎ এক টন পেপার রিসাইকেল প্রায় সমপরিমাণ উপাদান ও শক্তি সাশ্রয় করে।
- ৩. জ্বালানি থেকে সৃষ্ট CO₂ দ্বারা গ্রিন হাউজ প্রভাব মুক্ত পরিবেশ থাকে। তাই উন্নত দেশসমূহ পেপার রিসাইকেল গুরুত্বসহকারে কার্যকর রাখে। যেমন 2010 সালে আমেরিকা যুক্তরাক্ট্রে 63.5% কাগজ-সামগ্রীকে রিসাইকেল করা হয়। বাস্তবে সমগ্র পৃথিবীতে কাগজ রিসাইকেলের পরিমাণ কাচ, প্রাশ্টিক ও অ্যালুমিনিয়ামের রিসাইকেলের পরিমাণসমূহের সমষ্টির চেয়েও বেশি হয়।

আলোচনার প্রেক্ষিতে এটাই প্রতিয়মান যে, কাঁচামাল থেকে পেপার উৎপাদনের চেয়ে এর রিসাইক্লিং এর মাধ্যমে উৎপাদন পরিবেশ বান্ধব ও সাম্রয়ী।

214 Dag

- ক, অসামগ্রস্য বিক্রিয়া কাকে বলে?
- ফেনল ও কার্বক্সিলিক এসিডের মধ্যে পার্থকা সমীকরণসহ
 লিখাে?
- গ. উদ্দীপক অনুসারে X ধাপের বর্ণনা দাও।
- ঘ. উদ্দীপক অনুসারে উপরোক্ত শিল্পের দূষক সমূহের বর্ণনা করো এবং পরিবেশের উপর উপরোক্ত শিল্পের দূষকের ক্ষতিকর প্রভাব বিশ্লেষণ করো।

৫৫ নং প্রশ্নের উত্তর

যে বিক্রিয়ায় একই পরমাণুর জারণ ও বিজারণ উভয়ই ঘটে তাকে
 অসামঞ্জস্য বিক্রিয়া বলে।

য ফেনল ও কার্বক্সিলিক এসিডের পার্থকা:

বিকারক	R-COOH (Acid)	Phenol
NaHCO ₃	R-COOH + NaHCO ₃ \rightarrow R -COONa + CO_2 ↑ + H_2O	-NO CO ₂
Na	2-R-COOH + 2Na → 2R-COONa + H ₂ ↑	-NO H ₂

ত্রী উদ্দীপকের X প্রক্রিয়াটি চামড়া ট্যানিং পন্ধতির ব্যাসিং ধাপ।

এ ধাপে চুলহীন চামরাকে চুন মুক্ত করা হয়। সাধারণত চামরার উপরের
চুলকে মেশিনের মাধ্যমে দূরীভূত করে একে চুন দ্রবণে রাখা হয়। ট্যানিং
এর পূর্বে চামড়া থেকে এ চুন দূর করতেই ব্যাসিং করা হতো।
ব্যাসিং ধাপে, চলহীন চামডাকে কিছু এনজাইম সহ NH₂Cl দ্রবণে ২

ব্যাসিং ধাপে, চুলহীন চামড়াকে কিছু এনজাইম সহ NH₄Cl দ্রবণে ২ দিনের জন্য রাখা হয়। এতে চামড়া নরম হয় এবং চুন সম্পূর্ণরূপে দূর হয়। এরপর চামড়াকে হালকাভাবে ধৌত করে ট্যানিং এর উপযোগী করা হয়।

ত্র উদ্দীপকে ট্যানারি শিল্পের কিছু প্রক্রিয়াকে তুলে ধরা হয়েছে। নিচে ট্যানারি শিল্পের দূষক ও পরিবেশের উপর এ দূষণের ক্ষতিকর প্রভাব আলোচনা করা হলো:

পশুর চামড়া থেকে পশম দূরীকরণে H_2S ব্যবহার করা হয়। এতে বায়ু দূষণ ঘটে। চুন দূরকরণ প্রক্রিয়ায় NH_3 নির্গত হয়। ট্যানিং প্রক্রিয়ায় ব্যবহৃত জৈব দ্রাবকসমূহ বায়ু দূষণ ঘটায়।

ট্যানিং প্রক্রিয়ায় অসংখ্য রাসায়নিক দ্রব্যাদি ব্যবহার করা হয়। যা বর্জ্য পানিতে মিশে নদীর পানি, মাটি ইত্যাদি দূষণ ঘটায়। এক টন হাইড ও স্কিন পাকা চামড়াতে রূপান্তরিত করতে 20-80m³ ঘোলা ও দুর্গন্ধময় বর্জা পানি তৈরি হয়। এতে পানিতে 100-400 মিলিগ্রাম/লিটার ক্রমিয়াম এবং 200-400 মিলি গ্রাম/লিটার সালফাইড মাত্রা থাকে। এ প্রক্রিয়ায় চর্বি ও অন্যান্য কার্বন দ্রব্যের বর্জা পাওয়া যায় যা প্যাথোজেনযুক্ত। চামড়া প্রক্রিয়াতেকরণ প্রক্রিয়ায় অনেক সময় পেন্টিসাইড ব্যবহার করা হয় যা পানিতে দূষণ ঘটায়।

প্রা > ৫৬

[भतकाती रेमग्रम शएज्य वाली करणवा, रविनाल]

- ক. পটাশ এলামের সংকেত লিখো।
- খ. লবণ সেতুর উপযোগীতা আলোচনা করো।
- গ. উদ্দীপকের C শিশ্লের দূষক পদার্থের ক্ষতিকর প্রভাব কীর্ণ হতে পারে— ব্যাখ্যা করো।
- উদ্দীপকের C উৎপাদকটি 98% পেতে হলে প্রয়োজনীয় শর্তগুলো বিশ্লেষণ করো।

৫৬ নং প্রয়ের উত্তর

- ক পটাশ এলাম এর সংকেত হলো— K₂SO₄.Al₂(SO₄)₃. 24H₂O
- বা তড়িৎ রাসায়নিক কোষে লবণ সেতু ব্যবহার করার কারণ হলো--
- → লবণ সেতু অর্ধকোম্বদ্ধয়ের উভয় দ্রবণের মধ্যে সংযোগ স্থাপন
 করে কোমের বর্তনী পূর্ণ করে ৷
- → লবণ সৈতুর মধ্যস্থ তড়িৎ বিশ্লেষ্য যেমন, KNO₃ উভয়
 অর্ধকোষের দ্রবণের সাথে কোন রাসায়নিক বিক্রিয়া করে না; বরং
 উভয় তরলের মধ্যে প্রয়োজনমত ধনাত্মক ও ঝণাত্মক আয়ন
 বিনিময়ের ব্যাপন প্রক্রিয়ার মাধ্যমরূপে কাজ করে।
- → লবণ সেতু উভয় অর্ধকোয়ের দ্রবণের তড়িং-নিরপেক্ষতা বজায়
 রাখতে কাজ করে।

→ লবণ সেত্র অভাবে উভয় অর্ধকোষে জারণ-বিজারণ ক্রিয়া বাধাপ্রাপ্ত হয়ে অল্প সময়ের মধ্যে কোষ বিক্রিয়া তথা বিদ্যুৎ প্রবাহ বন্ধ হয়ে যায়।

গ্র ৩(গ) নং সূজনশীল প্রশ্নোভরের অনুরূপ।

য় উদ্দীপকের C যৌগটি হলো উইরয়া।

 $N_2 + 3H_2 \longrightarrow 2NH_3 \dots (1)$

 $2NH_1 + CO_2 = \frac{170-190^{\circ}C}{170 \text{ atm}} H_2N - COO-NH_4 (Carbamate) ... (2); (H = -vc)$

 $H_2N-COONH_4 \Longrightarrow NH_2-CO-NH_2 + H_2O ... (3); (H = +ve)$ (urea)

98% ইউরিয়া পাওয়ার শর্ত:

- i. endothermic reaction তাই বাইরে থেকে heat দিতে হবে। বাস্তবে ২য় reaction থেকে পাওয়া heat এখানে ব্যবহার করা হয়।
- ii. Le chodeliers Principle অনুযায়ী সাম্যবস্থায় চাপ কমালে carbamate থেকে urea বেশি পাওয়া যাবে। সেজন্য conversim বাড়াতে চাপ 175 atm থেকে 1 atm এ নামিয়ে আনতে হবে।
- iii. এ ছাড়া biproduct হিসেবে তৈরি হওয়া বাইইউরেটকে সরাতে পারলে purity বাড়িয়ে 98% করা সম্ভব।
- iv. গলিত urea কে উঁচু prileing tower এর ওপর থেকে নিচে চালনা করে নিচের দিকে তপ্ত বায়ু চালনা করলে evaporation হয়ে দানাদার 98% পাওয়া যাবে।

211 > 09

[ियतभुत्र विश्वविদ्यानग्न करनवा, ग्राका]

- क. न्यारना প্রযুক্তি কি?
- খ. ETP কি?
- গ্র ইউরিয়া উৎপাদন এর মূলনীতি সমিকরণসহ লেখ।
- ঘ, উদ্দীপকের X যৌগটির সর্বোচ্চ পরিমাণ উৎপাদনের জন্য নিয়ামকসমূহের প্রভাব আলোচনা কর।

৫৭ নং প্রশ্নের উত্তর

- ক ন্যানো প্রযুক্তি বলতে ন্যানো স্কেলডিত্তিক যেমন : 1 nm থেকে 100 nm এর কম দৈর্ঘ্যের কণাবস্তুর ভৌত ও রাসায়নিক ধর্মাবলি এবং এদের প্রস্তুতির প্রযুক্তি বিজ্ঞানকে বোঝায়।
- বা রাসায়নিক শিল্প কারখানার বর্জ্য পানি বা তরল পদার্থে জৈব ও অজৈব পদার্থ মিশ্রিত থাকে। এ বর্জ্য পানিকে Effluent বলা হয়। এরূপ শিল্প কারখানার Effluent থেকে ক্ষতিকর রাসায়নিক পানার্থকে পৃথক করার প্রক্রিয়াকে Effluent Treatment Plant বা ETP বলে। কারখানার প্রকৃতিভেদে বর্জ্য পানিতে দৃষকের বিভিন্ন প্রকৃতি যেমন ধাতব আয়ন, জৈব পদার্থ এবং জৈব যৌগ হতে পারে। এ বর্জ্যসমূহকে তড়িৎ বিশ্লেষণ প্রক্রিয়া, প্রভাবক প্রক্রিয়া অথবা জীব প্রযুক্তি প্রয়োগ করে পৃথক করা হয়।
- বা ২(গ)নং সূজনশীল প্রশ্নোত্তর দুষ্টব্য।
- ত্র এখানে,

$$CH_4 + O_2 \xrightarrow{\text{দহন}} CO_2 + H_2O$$

(প্রাকৃতিক গ্যাস)
আবার, $N_2 + 3H_2 \rightarrow 2NH_3$
[X]

$$CO_2 + 2NH_3 \rightarrow O = C$$

Selfant NH₂

NH3 সর্বোচ্চ পরিমাণ উৎপাদনের নিয়ামকগুলোর প্রভাব—

তাপমাত্রার প্রভাব:

 $N_2 + 3H_2 \implies 2NH_3 \Delta H = -92 \text{ kJ mol}^{-1}$ যেহেতু, একটি তাপোৎপাদী বিক্রিয়া এটি লা-শাতলীয়ের সূত্র মতে, তাপমাত্রা কমালে বিক্রিয়াটি সামনের দিকে এগোবে। অর্থাৎ বেশি NH3 উৎপন্ন হবে। কিন্তু তাপমাত্রা বেশি কমালে বিক্রিয়ার গতি খুব ধীর হয়ে যাবে। সাধারণত 400–450°C তাপমাত্রায় পর্যাপ্ত NH3 পাওয়া যায়। চাপের প্রভাব: সমীকরণের বাম পাশে আছে 4 অণু ও ডান পাশে 2 অণু আছে। লা শাতৃলীয়ের সূত্র মতে, চাপ প্রয়োগ করলে বেশি NH3 পাওয়া যায়। কিন্তু 200 atm চাপের মধ্যেই কাজ্ঞিত NH3 পাওয়া যায়।

প্রস ▶৫৮ টেক্সটাইল শিল্প

क. पृषक की?

কাচ উৎপাদনের মূলনীতি বর্ণনা কর।

গ. উদ্দীপকের শিল্পটি কীভাবে বায়ুকে দৃষিত করে?

ঘ় উল্লেখিত শিল্প কর্তৃক বায়ুদূষণ রোধ করা যায়? একটি বিশ্লেষণ মূলক আলোচনা কর।

৫৮ নং প্রশ্নের উত্তর

ক যে সকল পদার্থ পরিবেশে স্বাভাবিক পরিমাণের চেয়ে বেশি পরিমাণে উপস্থিত থেকে মানুষ ও জীবের স্বাভাবিক জীবন্যাত্রাকে ব্যাহত করে তাকে দৃষক বলে।

বা কাচ তৈরীর কাচামাল হলো—

বালি (SiO_2), সোডিয়াম কার্বনেট (Na_2CO_3), ক্যালসিয়াম কার্বনেট (CaCO3), কিউলেট ইত্যাদি।

উল্লেখিত কাঁচামালগুলোকে পৃথকভাবে চুর্ণ করে প্রয়োজনীয় অনুপাতে মিশিয়ে উত্তাপে বিগলন করা হয়। চুল্লীতে প্রায় 1400°C তাপমাত্রা উৎপন্ন করা হয়। এ তাপমাত্রায় মিশ্রণটি গলে স্বচ্ছ ও উচ্চ সান্দ্রতা বিশিষ্ট যে তরলে পরিণত হয় তাই কাচ। এর বিক্রিয়াসমূহ নিমন্ত্রপ-

 $Na_2CO_3 + x SiO_2 \longrightarrow Na_2O. x SiO_2 + CO_2$ $Na_2SO_4 + C \longrightarrow Na_2O + CO_2 + SO_2$

 $Na_2O + x SiO_2 \longrightarrow Na_2O. x SiO_2$

 $CaCO_3 + y SiO_2 \longrightarrow CaO. y SiO_2 + CO_2$ Ingredients এর ক্ষারকীয় (Na₂O, CaO, MgO অম্লীয় অংশ SiO₂ এর সজ্যে বিক্রিয়া করে ক্ষারকীয় double Silicate তথা কাচ গঠন করে।

 $Na_2CO_3 + Na_2SO_4 + x SiO_2 \rightarrow Na_2O$. CaO. $x SiO_2 + CO_2 + H_2O$

বা ৮(গ) নং সৃজনশীল প্রশ্নোতরের দ্রফীব্য।

ঘ ৮(ঘ) নং সৃজনশীল প্রশ্নোত্তরের দ্রুইব্য।

প্রা ▶৫৯ বাঁশ ও কাঠ → কাগজ [एका यशभगत यश्मि करमण, एका] ক, BOD কি? খ. কার্বাক্সলিক মূলক কে কীভাবে সণাস্ত করা যায়? গ. A থেকে B প্রস্তৃতি বর্ণনা কর।

ঘ. C থেকে B কীভাবে পুনঃউন্ধার করা যায় বিশ্লেষণ কর। ৫৯ নং প্রয়ের উত্তর

ক পানিতে উপস্থিত জৈব দৃষক পদার্থের জৈব বিযোজনের জন্য প্রয়োজনীয় অক্সিজেনের পরিমাণকে জৈব রাসায়নিক অক্সিজেন চাহিদা ৰা BOD (Biochemical Oxygen Demand) বলৈ ।

ৰ লিটমাস পরীক্ষা কিংবা NaHCO3 দ্রবণ পরীক্ষার সাহায্যে কার্বক্সিলমূলক সনাস্ত করা যায়। জলীয় দ্রবণে জৈব এসিডের H⁺ আয়ন নীল লিটমাসকে লাল করে। যেমন:

 $CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$ $H_3O^+ +$ নীল লিটমাস \longrightarrow লাল লিটমাস $+ H_2O$ এছাড়া NaHCO₃ দ্রবণের সজো কার্বক্সিল মূলকযুক্ত জৈব এসিডের বিক্রিয়ায় বুদবুদ আকারে CO₂ গ্যাস বের হয় যা চুনের পানিকে ঘোলা

 $CH_3COOH(aq)+NaHCO_3(aq)\rightarrow CH_3COONa(aq)+CO_2(g)+H_2O(I)$ $Ca(OH)_2(aq)+CO_2(g)-\longrightarrow CaCO_3(s)+H_2O(I)$ ঘোলা চুনের পানি

গ ৫(গ) নং সৃজনশীল প্রশ্নোত্তরের দুইটবা।

য ৫(ঘ) নং সৃজনশীল প্রশ্নোত্তরের দ্রুইব্য।

/দানিয়া কলেজ/

क. न्यारना कवा की?

খ. চামড়া ট্যানিং করা প্রয়োজন হয় কেন?

গ. B থেকে A-এর উৎপাদন প্রক্রিয়া বর্ণনা করো।

 ম পদার্থ রিসাইকেল করা সম্ভব কী? সম্ভব হলে রিসাইকেলের গুরুত বিশ্লেষণ করো।

৬০ নং প্রয়োর উত্তর

1-100 nm আকার বিশিষ্ট ত্রিমাত্রিক ক্ষুদ্র কণাকে ন্যানো পার্টিক্যাল বলে।

জীবিত পশুর শরীরের চামড়া সাধারণত নরম ও নমনীয় যা দৃঢ় ও টেকসই হয়। কিন্তু মৃত পশুর চামড়া আর্দ্র হলে পঁচে যায় এবং শুক্ষ হলে শক্ত ও ভজাুর হয়। ট্যানিং প্রক্রিয়ায় চামড়াকে সুস্থিত করা এবং রাসায়নিক প্রক্রিয়ায় পঁচনশীলতা রোধ করা য়য়।

সূতরাং চামড়াকে পঁচনশীলতা ও ভজ্যুরতার হাত থেকে রক্ষা করতে ট্যানিং করা প্রয়োজন হয়।

💶 ৭(গ) নং সৃজনশীল প্রশ্লোতর দ্রুইব্য।

A পদার্থ হল কাগজ। কাগজ রিসাইকেল কলা যায়। প্রক্রিয়ার
প্রবাহ চিত্র দেয়া হল:

কাগজ সংগ্রহ কাটার মেশিন কাগজ টুকরা \rightarrow পানির ট্যাঙ্ক \rightarrow অপদ্রব্য অপসারণ \rightarrow বিকাইনিং চেম্বার \rightarrow পোস্ট $\xrightarrow{Ca(OCI)CI}$ পরিষ্কার পোস্ট \rightarrow সাদা নিউজপ্রিন্ট \rightarrow পেপার \rightarrow ব্যবহার \rightarrow বর্জা কাগজ \rightarrow কাগজ সংগ্রহ।

কাগজ রিসাইকেল অনেক গুরুত্বপূর্ণ। কাগজ রিসাইকেল এর একটি অন্যতম গুরুত্ব হল এর কাঁচামাল সংশ্লিষ্ট। যত বেশি রিসাইকেল হবে তত কাঁচামাল কম প্রয়োজন হবে তাই গাছ কাটার আর প্রয়োজন হবে না। আবার কাগজ যে জায়গা দখল করে তার জন্য সহজেই পরিষ্কার করা যায়। রিসাইক্রিং না হলে এই কাগজ আবর্জনার মত ভিসপোজ করার প্রয়োজন হত। কাগজ পোড়ানো পরিবেশের জন্য ভয়াবহ। কাগজ অব্রিজেনের অনুপস্থিতিতে পচলে মিথেন (CH4) উৎপন্ন করে আর পোড়ালে কার্বনভাই অক্সাইড যা গ্রিন হাউস এর সাথে সরাসরি জড়িত। অর্থনৈতিক দিক দিয়ে রিসাইকেল করা পাল্প তৈরি, গাছ থেকে পাল্প বেশি খরচ সাপেক্ষ এছাড়া এর জন্য শক্তিও ব্যয় বেশি হয়।

∴ পানির প্রয়োজনও রিসাইক্রিং এর থেকে সরাসরি উৎপাদনে অনেক বেশি।

🗠 কাগজ রিসাইক্লিং পরিবেশ বান্ধব ও অর্থসাশ্রয়ী।

প্রম >৬১ নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাও:

A এর কাঁচামাল: SiO₂, Na₂CO₃, CaCO₃ B এর কাঁচামাল: i. Al₂O₃, 2SiO₂, 2H₂O

ii. SiO₂

iii. ফেন্ডস্পার

/डेंक्स शहे मुन्न এठ करनण/

क. BTU की?

খ. আয়োডোমিতি এবং আয়োডিমিতি কী?

গ. A যৌগকে রঙিন ও মসৃণ করার কৌশল ব্যাখ্যা করো।

ম. A এবং B এর মধ্যে কোনটির রিসাইকেল লাভজনক
 কারণ
 ব্যাখ্যা করো।

 ৪

৬১ নং প্রয়ের উত্তর

1 পাউভ পানির তাপমাত্রা ।° ফারেনহাইট বৃদ্ধি করতে যে পরিমাণ তাপের প্রয়োজন, তাকে । BTU বলে ।

ব্ধ প্রমাণ আয়োডিন দ্রবণের সাহায্যে বিক্রিয়ায় উপস্থিত বিজারকের পরিমাণ নির্ণয়ের পদ্ধতি হলো আয়োডিমিতি। এবং রাসায়নিক বিক্রিয়ায় উৎপন্ন মুক্ত আয়োডিন থেকে সংশ্লিষ্ট জারক পদার্থের পরিমাণ নির্ণয়ের পদ্ধতিকে আয়োডোমিতি বলে।

া A যৌগটি হলো কাচ। কাচ একটি স্বচ্ছ পদার্থ। তবে বিভিন্ন কাজে ব্যবহার করতে কাঁচকে রঙিন করার প্রয়োজন পরে। কাঁচ রঙিন করার জন্য কাঁচ এর কাচামালের সাথে অবস্থান্তর মোল সমূহ যেমন— G. Mn, Fe, CO, Ni, Cu যোগ করা হয়ে থাকে। এ অবস্থান্তর মৌল সমূহ বিভিন্ন মাত্রায় কাচামাল হিসেবে ব্যবহৃত হয়ে ভিন্ন ভিন্ন রঙ এর কাচ তৈরি করে। কাচের তৈরি জিনিস সমূহকে ঘাতসহ করার জন্য অ্যানিলিং করা হয়ে থাকে। অ্যানিলিং এর পরবর্তী ব্যবহৃত হয় কাচকে মসৃণ করার জন্য। এ উদ্দেশ্যে grading, কাটিং ও polishing করা হয়ে থাকে। ছাচে তৈরি কাচের জিনিসের বাড়তি অংশ কাটার মাধ্যমে বিচ্ছিন্ন করা হয়। এর পর কাচকে আরো চকচকে ও মসৃণ করতে polishing করা হয়।

বিসাইক্লিং প্রক্রিয়ার লাভ কাচামালের সহজলভাতা, জ্বালানি খরচ, ব্যবহৃত যন্ত্রপাতির বাজারমূল্য, প্রয়োজনীয় রাসায়নিক পদার্থ ইত্যাদির উপর নির্ভর করে। কাচ রিসাইক্লিং এর মাধ্যমে কাচের নতুন আসবাবপত্র তৈরি করা হয় এক্ষেত্রে শক্তির যেমন সাশ্রয় হয় তেমনি খরচ কম পড়ে। ভাজাা কাচকে প্রথমে ক্ষুদ্র আকারে ভাজাা হয়। এ পর এগুলোকে পাউভার এর পরিণত করা হয় এবং পাউভার কনভেয়র দ্বারা মিশ্রণ মেশিনে নেয়া হয়। এরপর কাচের মিশ্রণ গুড়াকে বেকিং মেশিনে নিয়ে বেকিং করার পর সংগ্রহ করা হয়। এবং এর পরবর্তীতে এগুলো অন্য শিল্পের কাচামাল হিসেবে ব্যবহৃত হয়। কিন্তু সিরামিক রিসাইক্লিং এর ক্ষেত্রে পুরাতন সিরামিক প্রক্রিয়াকরণের মাধ্যমে ব্যবহার উপযোগী করা যেমন ব্যায়বহুল তেমনি সময় সাপেক্ষ এবং প্রক্রিয়া করণে ব্যবহৃত রাসায়নিক পদার্থের সংখ্যা ও মূল্য কাঁচ রিসাইক্লিং এ ব্যবহৃত রাসায়নিক পদার্থ অপেক্ষা অধিকতর।

সর্বপরি বলা যায়, সিরামিক অপেকা কাঁচ রিসাইক্লিং বেশি লাভজনক।

241 163

[33X Heavy Metal]

/मतकाति रतगका। करनवः, मुनिगक।

ক, বৈঞ্চিক উষ্ধায়ন (Global Warming) কী?

খ, চামড়ার ট্যানিং-এ লবণযুক্ত করা হয় কেন?

গ. বাংলাদেশের কতিপয় জেলার ভূগর্ভস্থ পানিতে 'X' ধাতৃটির প্রাকৃতিক দূষণ ব্যাখ্যা করো।

ঘ. উদ্দীপকের 2 → 3 → 4 পথ পরিক্রমায় উদ্দীপকের 'X' ধাতুটির প্রক্রিয়াপুলো বিশ্লেষণ কর এবং অবস্থা থেকে কিভাবে পরিত্রাণ পাওয়া য়য় আলোচনা করো।

৬২ নং প্রশ্নের উত্তর

ক বিভিন্ন ধরনের জীবাশা জ্বালানির দহনে উৎপন্ন বর্জ্য গ্যাসে CO₂, CO, SO₂, SO₃, NO₂, CH₄, CFC প্রভৃতি গ্যাস সমূহ বায়ু দূষক হিসেবে উপস্থিত থেকে বায়ুর দূষণ ঘটায় এবং বায়ুমন্ডলের তাপমাত্রায় যে বৃদ্ধি ঘটায় তাকে বৈঞ্জিক উষ্ধায়ন বলে।

চামড়ার দ্রবণের pH অত্যাধিক অন্নীয় বলে ক্রোমিয়াম (III) সালফেট লবণ যোগ করা হয়, যার ফলে চামড়ার ট্যানিং এর সময় চামড়ার দ্রবণের pH এর মান বৃদ্ধি পায়। চামড়ার ট্যানিং এ পিকলিং করার জন্য বেটিং সম্পন্ন হওয়ার পর চামড়াকে খাদ্য লবণ ও H_2SO_4 দ্রবণ দ্বারা সিন্ত করা হয়, ফলে pH আবার দ্রাস পায়। pH দ্রাস পাওয়ার ফলে চামড়ার যে ক্ষতি হতো তা নিয়ন্তিত হয়। সূতরাং ট্যানিং এর সময় লবণ যোগ করে চামড়ার দ্রবণের pH এর মান নিয়ন্ত্রণ করা হয়।

'X' মৌলটি হচ্ছে আর্সেনিক 'As'। নিয়ে পানিতে ধাতুটির প্রাকৃতিক দৃষণ ব্যাখ্যা করা হলো—

পানির আর্সেনিক দৃষণ ও বিষক্রিয়া এক অর্প্বে দীর্ঘমেয়াদি এবং ভয়াবহ। বিভিন্ন দেশের বহুসংখ্যক মানুষ এর বিষক্রিয়া আক্রান্ত। আর্সেনিক প্রকৃতিতে সাধারণত মুক্ত অবস্থায় পাওয়া যায় না। ভূত্বকের খনিজে As খনিজ হিসেবে থাকে। এর মধ্যে রিয়্যালগার (As4S4), অর্পিমেন্ট (As₂S₃) প্রধান। তবে আর্সেনিকের ত্রিযোজী ও পঞ্চযোজী অবস্থাই এক বিষক্রিয়া সৃষ্টিতে সর্বাধিক উপযোগী। ভূত্বকের মাটির স্তরে As যৌগ কখনই স্থির থাকে না বরং তা মাটির স্তর ভেদ করে ভূগর্ভস্থ পানির স্তরে পৌছে। মাটিতে AI ও Fe এর পরিমাণ কম হলে As এর প্রবেশের ক্ষমতা আরো বেড়ে যায়। ভূগর্ভস্থ কঠিন শিলাতে As যুক্ত বিভিন্ন প্রকার খনিজ যেমন ইনার্জাইট স্পলটাইট (CoAs₃), নিকোলাইট (NiAs), স্করোভাইট (Fe₂O₃ . Al₂O₃ . 4H₂O) অপিমিমাইড (As₂S₃), অর্সেনিক্যাল পাইরাইটস (Fe AsS) প্রভৃতি উপস্থিত থাকে। ভূগর্ভস্থ পানি এসব খনিজের মধ্য দিয়ে প্রবাহিত হওয়ার সময় As³⁺ ও As⁵⁺ জারণ অবস্থায় আর্সেনিক কণা পানিতে মিশে যায়। বর্তমানে ভূগর্ভস্থ পানির ব্যাপক ব্যবহারের ফলে, পানির স্তর নেমে যাওয়ার ফলে এ প্রক্রিয়াটি আরো সহজতর হয়েছে। As পাইরাইট অপিমিমাইড (As₂S₃) পানির সংস্পর্শে এসে জারণ প্রক্রিয়ার মাধ্যমে পানিতে দ্রবীভূত হয়ে থাকে।

FeAs.S + H_2O + O_2 \longrightarrow Fe^{2+} + AsO_4^{3-} + SO_4^{2-} + H^+ \longrightarrow $Fe(OH)_2$ + H_3AsO_4 + H_2SO_4 .

 $AsS_3 + H_2O + O_2 \longrightarrow H_2SO_4 + H_3AsO_4$

ভূগর্ভস্থ পানির স্ব-পরিপ্রাবণের সময়ও As পানিতে প্রবেশ করে থাকে। $Fe^{2^+} + 2H_2O + O_2 \longrightarrow Fe(OH)_3 + H^+$

 $H_3AsO_4 + Fe(OH)_3 \longrightarrow H_2AsO_4^- + Fe(OH)_3 + H^*$

 $H_2AsO_4^- + Fe(OH)_3 \longrightarrow FeAsO_4 + H_2O$

উৎপন্ন FeAsO₄ এর অধ্যক্ষেপ বিভিন্নভাবে বিশ্লেষিত হয়ে As³⁺ ও As³⁺ আয়ন হিসেবে ভূগর্ভস্থ পানিতে মিশে থাকে। এভাবে ভূগর্ভস্থ পানি As সংক্রমণের ফলে বিধাক্ত হয়।

উদ্দীপকের 2 → 3 → 4 অর্থাৎ, খাদ্য শৃঙ্খলে As যুক্ত হওয়ার
কারণ এবং প্রক্রিয়া বিশ্লেষণ করা হলো

As যুক্ত হওয়ার কারণ: খাদ্যশৃত্থলে As এর দূষণ অনেকটাই প্রাকৃতিক নিয়মে ঘটে। ভূগর্ভম্প পানির দূষণ যা প্রাকৃতিক নিয়মে ঘটে। আর্সেনিকের বিভিন্ন খনিজ ভূগর্ভম্প পানির মধ্য দিয়ে প্রবেশের সময় As³+ ও As⁵+ জারণ অবস্থার সৃষ্টি করে। As³+ ও As⁵+ অবস্থায় আর্সেনিক কণা পানিতে দ্রবীভূত হতে পারে। ভূগর্ভম্প এ দূষিত পানি উত্তোলন করে কৃষিকাজে ব্যবহারের ফলে বিভিন্ন শস্য বীজের মধ্যে এর অধিশোষণ ও এনজাইম ক্রিয়া ঘটে শস্য বীজে জমা হয় এবং পরে তা জীবের দেহে সংক্রমিত হয়। উদ্ভিদের দেহের সঞ্চিত আর্সেনিক উদ্ভিদভোজী প্রাণী যেমন গরু, ছাগল, ভেড়া, মহিষ ইত্যাদির দেহে প্রবেশ করে পশুর দেহের চর্বিতে সঞ্চিত হয়। পশুর চর্বি হতে আর্সেনিক খাদ্যশৃত্থালের মাধ্যমে মানুষের শরীরে প্রবেশ করে। কৃষিক্ষেত্রে ব্যবহৃত

বিভিন্ন কীটনাশক এর মাধ্যমেও আর্মেনিক খাদ্যশৃঁজ্ঞালে প্রবেশ করে থাকে। জলজ প্রাণী বিশেষ করে মাছ এর দেহে আর্মেনিক যুক্ত পানি থেকে As^{3+} প্রবেশ করে। মানুষের খাদ্য তালিকায় মাছকে খাদ্য হিসেবে গ্রহণ করলে খাদ্যশৃজ্ঞাল আর্মেনিক প্রবেশ করে। আর্মেনিকযুক্ত ভূগভূম্থ পানি পান করার ফলে সরাসরি আর্মেনিক খাদ্যশৃঙ্খালে প্রবেশ করে। কয়লাতে আর্মেনো পাইরাইটস ($Fe_2As_2S_2$) হিসেবে As বর্তমান থাকে। কয়লার দহনে উৎপন্ন ফ্লাই অ্যান্থে 6300 mg kg⁻¹ পরিমাণ আর্মেনিক থাকে। আকরিক হতে Pb, Cr, Cd ধাতু নিম্কাশনের সময় কিছু পরিমাণ আর্মেনিক পরিবেশে মুক্ত হয়।

24	5	g

কয়লা ভিত্তিক	টেক্সটাইল শিল্পবর্জা, ডাইং		
বিদ্যুতকেন্দ্ৰ	শিল্পবর্জা, চামড়া শিল্পবর্জা		
Α	B		

/ब्राक्षभाषी भवकाति घरिमा करमक, ताकभाषी/

ক. গ্লেজিং কী?

খ, বিয়ার্ট-ল্যাম্বার্ট সূত্রটি ব্যাখ্যা করো।

গ. উদ্দীপকের A ও B শিল্পের নির্গত দূষক পরিবেশের দূষণ ঘটায়— আলোচনা করো।

ঘ. A-শিল্পে ও B-শিল্পগুলো কর্তৃক নির্গত বর্জ্যের প্রভাবে পরিবেশের দৃষণের মাত্রার ক্ষতিকর প্রভাবের তুলনামূলক বিশ্লেষণ করো। ৪ ৬৩ নং প্রশ্লের উত্তর

ক্র গ্লেজিং হল ছিদ্রযুক্ত অমসৃণ সিরামিকের ওপর কাচ তৈরির মিশ্রণ দিয়ে উত্তপ্ত করে গলিত কাচের পাতলা আবরণ সৃষ্টি করা।

বিয়ার্ট-ল্যাম্বার্ট সূত্রটি, $I = I_0 \cdot 10^{-(K_1 K_2)/c}$

বা, $1/l_0 = 10^{-e/c}$

এখানে, ∈ = K₁K₂

বা, $\log \frac{I_q}{I} = \varepsilon I c$

বা, A = ɛ/c

এখানে, \Lambda = আবজর্বেন্স

হ = মোলার অ্যাবজপটিভিটি

া = মাধ্যমের পুরুত্ব

c = দ্রবণের ঘনমাত্রা।

A শিল্প অর্থাৎ কয়লাভিত্তিক বিদ্যুৎ কেন্দ্র থেকে নির্ণত দূষক সমূহ
 হলো বর্জা গ্যাস ও ছাই।

এবং B শিল্প অর্থাৎ টেক্সটাইল, ডাইং ও চামড়া শিল্পের দূষকগুলো হলো জৈব এসিড, রাসায়নিক রং, G, Cd মুক্ত Cl, ফেনল সালফাইড, জৈব রং, মারক্যাপটান, H_2SO_4 NH_4 '-লবণ ইত্যাদি।

কয়লাভিত্তিক বিদ্যুৎকেন্দ্রে কয়লা দহনের ফলে বিপুল পরিমাণ ছাই উৎপন্ন হয় যা বাতাস, নদী, সাগর ও জলাভূমির পানিতে মিশে পরিবেশ দৃষণ ঘটায়। এছাড়াও কয়লার মধ্যে বিদ্যুমান S, N, P, As দহনের ফলে এদের অক্সাইড এ রূপান্তরিত হয়। যেমন S দহনের ফলে SO $_2$ এবং তা জলীয় বাচ্পের সাথে মিশে $_{12}SO_{4}$ উৎপন্ন করে। যা এসিড বৃদ্ধির কারণ।

চামড়া শিল্পের অন্যতম দূষক পচনশীল বর্জ্য যার মদ্যে লোম, ছেড়া চামড়ার টুকরা, সিং, মাংসের টুকরা অন্যতম এছাড়া ব্যবহৃত এনজাইম, G³+, G⁴+, Ca²+-লবণ যেগুলো পরিবেশে মিশে ইকোসিস্টেম এর উপর ব্যাপক বিরুপ প্রভাব সৃষ্টি করে ডাইং শিল্প থেকে ঘন কালো বর্জ্য তরল নির্গত হয় যা ধ্বংসপ্রাপ্ত হয় না ফলে এ ধরনের বর্জ্য পানিতে মিশলে তা পানির তলদেশে সূর্যালোক প্রবেশে বাধা সৃষ্টি করে ও জলজ উদ্ভিদের সালোকসংশ্লেষণ বাধাগ্রস্ত করে টেক্সটাইল শিল্পজাত বর্জ্য সোডিয়াম, জৈব এসিড, রঞ্জক পদার্থ, Pb, G, Cd এর কিছু যৌগ যা একই সাথে বাতাস ও পানি দৃষণ করে থাকে।

উদ্দীপকে উল্লিখিত শিল্পক্তে সমূহ থেকে নির্গত দূষক সমূহ
পরিবেশের উপর বিরূপ প্রভাব ফেলার সাথে সাথে পরিবেশের ব্যাপক
ক্ষতিসাধন করে।

কয়লাভিত্তিক বিদ্যুৎকেন্দ্র থেকে নির্গত দূষকসমূহের মধ্যে সৃক্ষছাই, সালফার ঘটিত বর্জা প্রধান তাছাড়া রয়েছে কিছু ক্ষতিকর বর্জা গ্যাস। যেগুলো সাধারণত ব্যাপকভাবে বায়ুদূষণ ঘটায়। বর্জা গ্যাসে বিদ্যমান সালফার SO₂ গঠন করে ও এসিড বৃট্টি ঘটায় যা মাটির অয় ও ক্ষারের ভারসাম্য নক্ষ করে। মাটি উর্বরতা নক্ষ করে ইকোসিন্টেম এর উপর প্রভাব সৃক্টি করে যা পরিবেশকে হুমকির সম্মুখীন করে।

অন্যদিকে রয়েছে টেক্সটাইল, ডাইং ও চামড়া শিল্প বর্জা। যার মধ্যে H_2S , NH_3 , প্রাণিজ তরুতে রং করার এসিড ডাই, চর্বিজাতীয় পদার্থ, Pb, G, Cd প্রধান। যেগুলো প্রধানত পানি দৃষণ ঘটায় তাছাড়া একই সাথে মাটি ও বায়ু দৃষণ ঘটিয়ে থাকে। সাধারণত দেখা যায় ১ টন হাই ও শ্কিন পাকা চামড়াতে রূপান্তর করতে $20-80m^3$ ঘোলা দুর্গন্ধময় বর্জ্যপানি তৈরি হয়। চামড়া প্রক্রিয়াজাতকরণে ব্যবহৃত পেশ্টিসাইড পানি দৃষণ ঘটায়।

পরিসংখ্যান থেকে দেখা যায় পানি দৃষণের ১৭-২০% আসে টেক্সটাইল ডাই শিল্প হতে বর্জ্য পানি দ্বারা যা পানির সাথে ফসলের মাধ্যমে খাদ্য শৃঙ্খলে প্রবেশ করে ও প্রাণির সাম্থ্যের উপর প্রভাব সৃষ্টি করে।

ত্রা ► ৬৪ জ্বালানি সম্পদ যে কোন দেশের অর্থনীতিতে একটি চালিকা শক্তি। এটি যেমন জ্বালানি হিসাবে ব্যবহৃত, তেমনি আবার বিভিন্ন শিল্পজাত দ্রব্যের কাঁচামাল হিসাবে এর ভূমিকা হতে পারে অনন্য। এছাড়া শিল্পজ্বের জৈব রিসাইকেল শক্তির অন্যতম উৎস।

/ख्यानी मुन्त এङ करनल, डाळगारी/

- क. द्वाभ ग्रानिश की?
- খ. কয়লার ক্যালরিফিক মান 5500 BTU ব্যাখ্যা কর।
- মিথেনকে জ্বালানি হিসাবে ব্যবহার করে ইউরিয়া উৎপাদনের মূলনীতি ব্যাখ্যা কর।
- ছালানী শক্তির অপচয় রোধ ও পরিবেশের দূষণ রোধে রিসাইকেলের গুরুত্ব আলোচনা কর।

৬৪ নং প্রশ্নের উত্তর

ক্রামিয়াম সালফেট বা ক্রোমিক এসিডের মাধ্যমে চামড়াকে ট্যানিং করার প্রক্রিয়াকে ক্রোম ট্যানিং বলে।

- BTU হল British Thermal Unit. কয়লার ক্যালরিভিত্তিক তাপ 5500 BTU বলতে বুঝায় যে, এক পাউন্ত কয়লা পোড়ালে 5500 ক্যালরি তাপশক্তি উৎপন্ন হয়।
- 🗿 ২(গ)নং সৃজনশীল প্রশ্নোত্তর দেউব্য।
- আ জ্বালানী শক্তির অপচয় রোধ ও পরিবেশের দূষণ রোধে রিসাইকেল নতুন মাত্রা যোগ করেছে। জ্বালানী শক্তির অপচয় রোধে বিভিন্ন বস্তুর রিসাইক্রিং বিভিন্ন ভাবে ভূমিকা রাখছে। যেমন— এক পাউভ PET বোতল রিসাইকেল করলে 12,000 BTU শক্তি সঞ্চয় করা যায়।

কপার আকরিক থেকে বিশুন্থ কপার পেতে যে শক্তি ব্যয় করতে হয় তার মাত্র 10% শক্তি লাগে কপার রিসাইক্রিং করতে। এই শক্তি সাশ্রয়ে জ্বালানি তেল, গ্যাস অথবা কয়লার সাশ্রয় ঘটে।

কাঠ থেকে কাণজ করতে যে জ্বালানি শক্তি ব্যবহার হয় তার প্রায় 40-60% কম হয় রিসাইক্লিং এ।

পরিবেশ দূষণ রোধে রিসাইক্রিং এর বিকল্প নেই। রিসাইক্রিং করা হলে CO_2 বায়ুতে কম নির্গত হয়। এতে গ্রীন হাউজ প্রভাব সীমিত হয়। পরিবেশ রক্ষা পায়। খনি হতে তামা নিষ্কাশনের সময় ধূলিকণা, বর্জ্য গ্যাস যেমন SO_2 উৎপদ্ধ হয়। এটা পরিবেশের উপর মারাত্মক প্রভাব কেলে। রিসাইক্রিং SO_2 উৎপাদনকে প্রাস করে। পরিবেশকে বাঁচায়। কাগজ রিসাইক্রিং করলে বনভূমি ধ্বংস রক্ষা পায়। ফলে CO_2 শোষণের হার বাড়ে এবং জলবায়ু পরিবর্তন রোধ করে।

প্রম ১৬৫ বাঁশ ও কাঠ → কাগজ → ব্যবহৃত কাগজ

A B C
| ব্যক্ত কাগজ | A
| ব্যবহৃত কাগজ | A
| ব্যক্ত কাগজ

ক ppm(parts per million) হলো প্রতি million অর্থাৎ দশ লক্ষ ভাগ দ্রবণে বা প্রতি 10⁶ অংশ দ্রবণে যত ভাগ অংশ দ্রব দ্রবীভূত থাকে।

৬৫ নং প্রশ্নের উত্তর

বা কয়লায় সালফার যৌগ (ক) পিরাইট (খ) জৈব সালফার যৌগ (গ) সালফেট যৌগ (CaSO₄) উপস্থিত থাকতে পারে। কয়লায় সালফার থাকা বাঞ্চণীয় নয়। সালফার থাকায় কয়লার দহনে SO₂ উৎপন্ন হয় যা বায়ু দূষণ ও এসিড বৃষ্টি সৃষ্টি করে পরিবেশের উপর ক্ষতিকর প্রভাব ফেলে। বায়ুতে SO₂ বাষ্প থাকলে তা বৃষ্টির পানির সাথে মিশে এসিড বৃষ্টি সৃষ্টি করে।

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

 $SO_3 + H_2O \longrightarrow H_2SO_4$

এসব কারণেই কয়লায় সালফারের উপস্থিতি ক্ষতিকর।

৫(গ) নং সৃজনশীল প্রশ্নোত্তরের দ্রুইব্য ।

য ৫(ঘ) নং সৃজনশীল প্রশ্নোত্তরের দ্রুইব্য।

প্রনা >৬৬
 Y→ লিখা বা মুদ্রণের কাজে ব্যবহৃত হয়
 Y→ পানা দালান তৈরিতে ব্যবহার হয়

/भारत जानुरछात मतकात्रि करनल, ठक्रेशाय/

ক, নির্দেশক তড়িৎদার কী?

খ. মিথাইল অ্যামিন অ্যামোনিয়া অপেক্ষা অধিক ক্ষারকীয় কেন? ২

গ. X-এর উৎপাদন প্রক্রিয়া বর্ণনা করো।

ঘ. Y-তৈরির সময় নির্গত দূষক সমূহ মানবজীবনের জন্য হুমকিস্বরূপ— ব্যাখ্যা করো।

৬৬ নং প্রশ্নের উত্তর

ক্র কোনো একক তড়িংছারের বিভব নির্ণয়ের জন্য একে তড়িংছার বিভব জানা আছে এ রকম যে তড়িংছারের সঞ্জো সংযোগ স্থাপন করে তড়িং রাসায়নিক কোষ গঠন করা হয় তাকে রেফারেস তড়িংছার বলে।

আমেনিয়া (NH₃) ও মিথাইল আমিন (CH₃NH₂) উভয়ের অণুর N পরমাণুতে নিঃসজা ইলেকট্রন যুগল থাকায় এরা প্রোটন গ্রহণ করতে পারে। তাই উভয়ই ক্ষারক। জলীয় দ্রবণে NH₃ ও CH₃NH₂ পানির সাথে উভমুখী বিক্রিয়ায় পানি থেকে প্রোটন গ্রহণ করে ঝণাত্মক OH—আয়ন ও যথাক্রমে ধনাত্মক NH₄ আয়ন ও মিথাইল অ্যামোনিয়াম আয়ন (CH₃NH₃) উৎপর করে।

$$\stackrel{\text{H}}{\underset{\text{H}}{\longrightarrow}}$$
 N; + H-OH $\stackrel{\text{H}}{\underset{\text{pK}_b = 4.74}{\longrightarrow}}$ $\stackrel{\text{H}}{\underset{\text{H}}{\longrightarrow}}$ N - H + OH

মিধাইল অ্যামিন

মিথাইল অ্যামোনিয়াম আরন

উৎপন্ন মিথাইল অ্যামোনিয়াম আয়নের ধনাত্মক চার্জ নাইট্রোজেন পরমাণু ও একটি কার্বন পরমাণু শেয়ার করে থাকে। ধনাত্মক চার্জের বিন্তারণের ফলে তুলনামূলকভাবে মিথাইল অ্যামোনিয়াম আয়ন অধিক সুস্থিত হয়। ফলে $\mathrm{CH_3NH_2}$ ও পানির উভমুখী বিক্রিয়া $\mathrm{NH_3}$ ও পানির উভমুখী বিক্রিয়ার তুলনায় অধিকতর সম্মুখমুখী হয়ে থাকে। তখন $\mathrm{CH_3NH_2}$ ও পানির বিক্রিয়ার ক্ষেত্রে $\mathrm{OH^-}$ আয়নের পরিমাণ বৃন্ধি পায় অর্থাৎ এর আয়নীকরণ ধ্রুবক $\mathrm{K_b}$ এর মান বেড়ে $\mathrm{K_b} = 4.4 \times 10^{-4}$ এবং $\mathrm{pK_b} =$

3.36 হয়। কিন্তু NH_3 ও পানির বিক্রিয়ার ক্ষেত্রে আয়নীকরণ বৃশ্বি করার সুযোগ না থাকায় এর $K_b=1.8\times 10^{-5}$ এবং $pK_b=4.74$ হয়। উল্লেখ্য ক্ষারকের pK_b এর মান যত কম হবে ঐ ক্ষারক তত বেশি সবল ক্ষারক হবে। তাই মিথাইল অ্যামিন (CH_3NH_2) অধিক ক্ষারধর্মী।

প ৭(গ) নং সৃজনশীল প্রশ্নোতর দুষ্টব্য।

ঘ ৭(ঘ) নং সূজনশীল প্রশ্নোত্তর দুষ্টব্য।

প্রা ১৬৭ সামনেই ঈদুল আযহা। শিল্প পাড়ায় কর্ম ব্যস্ততা ও অর্থনীতির পতিশীলতা শুরু হয়েছে। ব্যবসায়ীরা বড় বড় বিদেশী অর্ডার পাছে। এখন শুধু কাঁচামাল সংগ্রহ ও তার প্রক্রিয়াজাতকরা করা এটাই মূল উদ্দেশ্য।

/খানকাঠি সরকারি কলেল, ঝানকাঠি

ক. রিসাইকেল কী?

খ. সিমেন্টে জিপসাম যোগ করা হয় কেন? .

প. উদ্দীপকের কাঁচামালের শিল্প প্রক্রিয়াজাত করে ব্যবহার উপযোগী করার পশ্বতি ব্যাখ্যা দাও।

ঘ. এ শিক্সের দৃষকের সাথে ডাইং মিলের শিল্পবর্জের দৃষকসমূহের তুলনামূলক আলোচনা করো।

৬৭ নং প্রশ্নের উত্তর

ক পরিত্যক্ত শিল্প পণ্যকে পুনঃপ্রক্রিয়াজাতকরণের মাধ্যমে পুনরায় ব্যবহার উপযোগী করার প্রক্রিয়াকে রিসাইক্লিং বলে।

জিপসাম (CaSO₄.2H₂O) এর উপস্থিতিতে সিমেন্টের জমাট বাঁধার প্রক্রিয়া ধীরগতিতে ঘটে। কারণ, জিপসাম ট্রাইক্যালসিয়াম অ্যালুমিনেট এর সাথে বিক্রিয়া করে অদ্রবণীয় ক্যালসিয়াম সালফো অ্যালুমিনেট উৎপন্ন করে। এর ফলে দুত জমাট বাঁধতে সাহায্য করে এর্প ট্রাইক্যালসিয়াম অ্যালুমিনেট আপাত দৃষ্টিতে দূরীভূত হয়। যে কারণে সিমেন্ট দুত জমাট বাঁধতে পারে না।

 $3~\text{CaO.Al}_2\text{O}_3 + 3(\text{CaSO}_4.2\text{H}_2\text{O}) + 2\text{H}_2\text{O} \rightarrow$

3CaO. Al₂O₃.3CaSO₄.2H₂O + 6H₂O তবে এর প্রভাবে সিমেন্টের সম্পূর্ণরূপে জমাট বাঁধতে যথেন্ট পরিমাণ পানির উপস্থিতিতে কয়েক সপ্তাহ সময় লাগলেও উৎপন্ন কঠিন পদার্থের দৃঢ়তা ও শক্তির বৃদ্ধি ঘটে।

সদুল আযহা গরু, মহিষ, ছাগল ইত্যাদি মৃত পশুর শরীর হতে যে চামড়া পাওয়া যায় তা বিভিন্ন ধাপে প্রক্রিয়াজাত করে ব্যবহার উপযোগী করা হয়। এ ধাপগুলার মধ্যে অন্যতম হল চামড়া ট্যানিং করা। এ প্রক্রিয়ায় কাঁচা চামড়াকে পাকা চামড়ায় পরিণত করা হয়। তবে কাঁচা চামড়াকে সরাসরি টেনিং করা যায় না, তবে একে সরাসরি করার আগে টেনিং উপযোগী করতে হয়। এই পদ্ধতিগুলো প্রি-টেনিং ধাপ বলা হয়ে থাকে। এ ধাপে যা যা সম্পন্ন করা হয় তা হল— ১. সোকিং, ২. পশম অপসারণ, ৩. বেটিং ও ৪. পিকলিং।

- সোকিং: এ ধাপে পানির সাহায্যে চামড়ার সাথে যুক্ত লবণ, ধুলাবালি, রক্ত, অন্যান্য ময়লা, কাদামাটি ও দ্রবণীয় প্রোটন অপসারণ করা হয়ে থাকে।
- ২. পশম অপসারণ: চামড়াকে অতিরিক্ত চুনের দ্রবণের মধ্যে ডুবানো হয়। চুন পশমের গোড়ার প্রোটিনের সাথে বিক্রিয়া করে এর মধ্যে উৎপাদিত সন্ট লিংকেজগুলো ভেঙে দেয়। ফলে প্রোটিন পরিবর্তিত হয়ে অ্যামিনো এসিডে পরিণত হয়। পশমের কেরাটিনাস প্রোটিন সহজে ভেঙে যায় ও অতি দুত আর্দ্র বিশ্লেষণ ঘটে। ফলে এ পর্যায়ে পশমগুলোকে ব্ল্যান্ট ছুরির সাহায়্যে চামড়া হতে অপসারণ করা হয়ে থাকে।
- ৩. বেটিশু বেটিং করার জন্য চামড়াকে NH₄CI দ্রবণে ডুবিয়ে এর মধ্যে পেনঞ্জিয়েটিক এনজাইম যোগ করা হয়। ফলে চামড়ার সাথে যুক্ত অতিরিক্ত চুন ও কোলাজেন প্রোটিন ছাড়া অন্যান্য সব ধরনের প্রোটিন অপরিবর্তিত অবস্থায় অপসারিত হয়।

8. পিকলিং পিকলিং করার জন্য চামড়াকে 0.05M H₂SO₄ দ্রবণ ও IM NaCl দ্রবণের মিশ্রণের মধ্যে ডুবিয়ে রাখা হয়। ফলে চামড়ার সাথে যুক্ত Ca লবণসমূহ অপসারিত হয়। প্রোটিনের Ca লবণ এসিডের সাথে বিক্রিয়া করে Ca²⁺ সালফেট গঠন করে অপসারিত হয় আর প্রোটিনের মধ্য লিংকেজ সৃষ্টি করে। অর্থাৎ চামড়াকে ক্রোম টেনিং এর উপযোগী করে তোরা।

1-NH₂-Ca-OOC-1 + H₂SO₄ → 1NH₃' লবণ লিগুকজ OOC1 + CaSO₄ পিকলিং ধাপ অতিক্রম না করা পর্যন্ত চামড়াকে ক্রোমো টেনিং করা যায় না।

পোশাক শিল্পের ব্যাপক প্রসারের ফলে বাংলাদেশে চামড়া ও ডায়িং
শিল্পেরও ব্যাপক উরতি হয় তবে তার সাথে দেশের এই শিল্পজনিত দৃষণ
ব্যাপক হারে বেড়ে যায়। এসব শিল্প কারখানার বেশিরভাগই অবস্থিত
ঢাকা ও চউপ্রামের নদীর পাশে যেখানে প্রচুর পরিমাণে বর্জা ফেলে
দেওয়া হয়। চামড়া শিল্পে পচনশীল শক্ত আবর্জনা যেমন লোম, চামড়ার
ছেড়া টুকরা, হাড় ও সিং এর টুকরা সরাসরি বুড়িগজা ও কর্নফুলি
নদীতে ফেলা হয়। এদের বর্জা পদার্থের ফলে আশেপাশের পরিবেশের
ক্ষতিসাধন হয়।

উৎপন্ন শিল্প বর্জ্যের তুলনা:

- চামড়া শিল্প হতে মারক্যাপটন, সালফাইড, Cr³⁺, Cr⁴⁺, Ca²⁺ এ জাতীয় পদার্থ, রং, তেল, NH₄⁺ লবণ, NaCl, H₂SO₄, অ্যালবুমিন, জৈব পদার্থের কঠিন কণা, দ্রবণীয় প্রোটিন ইত্যাদি।
- ভায়িং শিল্প হতে কন্টিক সোডা, মুক্ত Cl₂, ফেনল, মিথাইল, মারক্যাপটন, সালফাইড, পেন্টাক্লোরো ফেনল, Cr, Cd, Pb, Cu, জৈব রং, গ্রিজ, তেল ইত্যাদি উৎপন্ন হয়।

শিল্পের প্রভাব:

- চামড়া শিয়ের প্রভাব: চামড়া হতে লোম মুক্ত করার জন্য যে চুন ব্যবহার করা হয় তা কোলাজেন-প্রোটিনের সাথে বিক্রিয়া করে ফতি করে যা এড়ানোর জন্য Ca(OH)2 এর সাথে লাইমিং এজেন্ট হিসেবে Na2S, NaHS, As2S3 যোগ করা হয় যা পরিবেশের ফতি করে।
 - এ বর্জ্যে প্রচুর জৈব পদার্থ দ্রবণীয় ও বেশির ভাগ অদ্রবণীয় অবস্থায় থাকে। এছাড়া কঠিন, কালো, দুর্গন্ধযুক্ত তরল তৈরি হয় যা পরিবেশকে ধ্বংস করে।
- ii. ভায়িং শিক্ষের প্রভাব: এ শিক্ষের দূষক বর্জ্য সবধরনের দূষণের মাত্রাকে অতিক্রম করেছে। ঘন কালো তরল বর্জ্যের যেসব রাসায়নিক বর্জ্য নিঃসৃত হয় তা ধ্বংসপ্রাপ্ত না হয়ে পানিতে মিশে পানিও কালো করে ফেলে যা জীবজগতের ওপর মারাত্মক প্রভাব ফেলে। সূর্যালোক প্রবেশ না করতে পারায় জলজ উদ্ভিদগুলোও সালোকসংশ্লেষণ করতে পারে না। এই বর্জ্যে উপস্থিত ট্রেস ধাতু যেমন— Cr, Pb, Cd, Ca ইত্যাদি মিশ্রিত তরল উর্বর মাটিতে এসে তার ফার্টিলিটি চিরদিনের জন্য নন্ট করে ফলে পানির স্থায়ীভাবে দূষণ ঘটায়।

রসায়ন দ্বিতীয় পত্র

	শ্বিম অধ্যায়:	অর্থনৈতিব	হ রসায়ন		A SERVICE LANGUE DE LA CONTRACTOR DE LA	ना द्धान्त्र সংব	কত কোন	रि? (कान) 🗸	मिनाक पृत
-	চ্তিক গ্যাসে বিদ			(0		F-2030/ Al ₂ O ₃ ,2SiO ₃ CaO,Al ₂ O ₃ ,		Al ₂ O	3.K2O.SiO2
	C1 - C2	@ C1-	Cs		(3)	Na ₂ O.Al ₂ O ₃	.6SiO ₂		0
323	C1 - C4	® C₁-	C10	0	৩৫০.সির	ামিকের হলুদ	ৰৰ্ণের য	ল্য কোনটি	ব্যবহৃত .
	শাদেশের সবচেয়ে		1000 345 / 2004 3	0)}	হয়:	(ভा ন)			
(det-		- 1849 - 1950/1515	ma=un anomone		3	COO ₂	3	SiO ₂	
⊗	ছাতক	জালা	লাবাদ		•	Fe ₂ O ₃	(1)	FeS	0
•	তিতাস	ত্ত বাখর	াবাদ	a	৩৫১. সেং	লোল বৈশিট্য	কোনটি1	(জান)	1.00
००%, जाह	প্রাকৃতিক গ্যাসে	कार्दन সংখ্য	কত? (জ্ঞান)		•	সরল শিকল	•	শাখায়িত শি	कन .
(3)	$C_1 - C_2$	③ C₁ -	C ₃	V-2	•	শাখাবিহীন	1	এক প্রকার গ	भाव 🚭
•	C1 - C4	③ C₁ -	C10	•	৩৫২. কু	केः निकास	কী পরিষ	M NaOH	ব্যবস্থৃত
080, সিএ	দেজি ন্টেশনে ব্যব্	তে প্রাকৃতিক	भारत भिष्यत्व	•	रस:	(আন)			222
70	করা পরিমাণ কত?	(कान)	*:		3	27.1%	•	14.3%	1-21
3	69%	€ 89%	Š.			58.6%		62.5%	0
•		® 96%		3	৩৫৩, সিধি	পকা বালিতে F	eO পাক	লে কাচের বর্ণ	ক্ৰিৰূপ
	ানটি গ্যাস বিপণন				হয়:	(জন)		G	
A.S. a. T. a.	BAPEX	THE	VRON	- 5	- 3	नान	•	সবুজ	540
•	SANTOS		0.00	an an	•	ञामा	(B)	হলুদাভ	0
(9)	S. Sandara Miles S. Constant		22 0222	0	৩৫৪.ডি	লাইমিং এ ব্যব			(આ ન)
७८२.नि		গ্ৰকৃতিক গ	णारमञ्ज क्षेत्राम	Si.	3	KCI		NaCl	- 2
100	পদ্ৰব্য ? (জ্ঞান)	⊕ H₂S	. " 17 , .	1		(NH ₄) ₂ SO ₄	The state of the s	KNO ₃	•
	NO ₂			0		রিয়া পানি ছার	। विद्याणि	ত হয়ে উৎপঃ	व करत्र?
①	H₂O পাদনের উপর বি	® NH ₃		2.5		nen) NO₂	(2)	NO ₃	
	গোপদের ভগর । চ প্রকার? (স্থান)	Old ACH C	aldion and		(9)	NH ₃		N ₂	0
3		3		18	®	াণ্যঃ ত্তিরক হিসেবে			_
	4	© 5		a		Hg		TiO ₂	main)
	লার মূল জ্বালানি [†]		(MATEL)		•	H ₂ S		Fe	•
100	SO ₂	® SiO			F100 1	শোলার বায়ুতে			
®		® CS ₂		0	€ 1.40	SO ₂		NH ₃	
_	লার অন্তর্গুম পার				•	H ₂ SO ₄		co	0
	। (अनुधारत)	=	2 1000000	*:		74			
	লঘু তেল	(1) মধ্য	ম তেল		Acres 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	গর সর্বাপেকা		তিকারক ডগ	ואואוט
<u>@</u>	Self-Chair Street Service	ভারী		0		(জান) <i>(ডাকা বো</i>		- Prilitaria	
	মেন্টের মূল উপাদা	100		1990	W 14 51	কার্বন		নাইট্রোজেন	(A)
	CaO	· @ SiO				সালফার	(3)		
•	: R.S.171	(1) Mg(@		নটি বাড়লে) <i>(রাজণার্থী বোর্ড</i> -		গুলগতমান	AICA P.
	চকে বৰ্ণহীন ক			7	(G)	ছাই		উদ্বায়ী পদাৰ্থ	k.
	বহুত হয়? (জান)		2		•	ফিক্সড কার্বন	5753	সালফার	0
3	the state of the s	< Mn(02			গদেশের কোন			
•	NH _i CI	@ Cr20),	0	Committee of the commit	মাণ সর্বাধিক?		to a second from the first from the	
৩৪৮.পট	াশ ক্ষেত্তস্পার এর	সংকেত কী	? (आन)			भिक करमण, गांका/		E.C. DANIEL	NO VICE
	K2O.Al2O3.SiG		See the second second		•	বড়পুকুরিয়া	•	ফুলবাড়ি	E Service
1	K2O.Al2O3.6S	O2® K2O	.AIO3.SO2	•	1	লামালগঞ্জ	(19)	খালিশপুর	0

পঞ্চম অধ্যায়: অর্থনৈতিক রসায়ন রসায়ন দ্বিতীয় পত্র ७५). नाता क्यांत्र प्राकृष्ठि यामा- क्रिक्यूम (बर्च-१०४४) ৩৭১,উন্নতমানের কাগজে কোন উপাদান কম থাকে? (खान) 1 − 10 nm (₹) 1-50 nm ি লিগনিন পাল্ল **⑨** 1–100 nm (₹) 1–200 nm चित्र শেল্লাজ ৩৬২, মানুষের চুলের ব্যাস কড? (জান) ৩৭২,বোরাক্স এর সংকেত কী? (ভান) 3 20000-40000nm (1) Na2S4O7 Na₂B₄O₇ (1) 30000-60000nm NaB₄O₇ (1) 50000-60000nm ৩৭৩.৪১ প্যাসের--- (প্রয়োগ) 0 (1) 50000-100000nm भन्ध भेंठा फिरमत नााग्र ৩৬৩.মিহি ও সৃদ্ধ কণার আকার কতা (জান) উপস্থিতি প্রাকৃতিক গ্যানের মানকে নিয়মুখী করে ③ 100−200nm 100-250nm পরিমাণ প্রাকৃতিক গ্যাসে অতিমাত্রায় **№** 100-2500nm @ 250-300nm নিচের কোনটি সঠিক? ৩৬৪.সাধারণ মর্ণের বৈশিষ্ট্য কী? (জান) 3 i 8 ii ♥ i Siii তড়িৎ অপরিবাষী তড়িৎ পরিবাষী M ii S iii (T) i, ii (C) iii তড়িং সুপরিবাহী তড়িং কুপরিবাহী ৩৭৪.প্রাকৃতিক গ্যাসে—(অনুধারন) ৩৬৫.Sunscreen Lotion এ ব্যবস্থ হয় কোনটি? মিথেনের পরিমাণ 93.68 - 98% (অনুধাৰন) MnO In ZnO N2 গ্যাসের পরিমাপ 0.05 - 0.90% 1 MgO (K20 CO2 গ্যাসের পরিমাণ অতি সামান্য ৩৬৬. ন্যানো স্বর্ণের আকার কত? (ভান) নিচের কোনটি সঠিক? ∅.5 nm **€** 1.5nm 3 i 8 ii Ti Bin ② 2.5nm ® 5.5nm (B) i, ii 8 iii Mi Bii (P) ৩৬৭.1BTU সমান কড? (জান) ৩৭৫,এনপ্রাসাইট কয়লা —(অনুধানন) ③ 5510 時刊 5501 জুল 1055 1050 জুল উন্নতমানের কয়লা ৩৬৮. Ag ন্যানো কণার আকার কত? (জান) পিট কয়লার রূপান্তরের ফলে উৎপন্ন হয় 12−212nm ③ 10−12nm iii. ক্যালরিফিক ভ্যালু অনেক উচ্চ (1) 120 -122 120-212nm নিচের কোনটি সঠিক? ৩৬৯, ফুড আডিটিভ হিসেবে ব্যবহৃত হয় কোনটি? ii Bi (T) i S iii (ख्यान) M ii S iii (i, ii G iii त्रिनिका न्यात्ना भागित्कन ৩৭৬.কয়লাকে গ্যাসীয় জ্বালানিতে পরিণত করার সিলভার ন্যানো পার্টিকেল (1) আয়রন ন্যানো পার্টিকেল (11) সময় — (উচ্চতর দকতা) মারকারি ন্যানো পার্টিকেল দ্যীম চালনা করা হয় ৩৭০. জুস, টি ও চকোলেট মিল্কের স্বাদ বৃশ্বিতে ব্যবস্থৃত মিথেন গ্যাস উৎপন্ন হয় হয় কোনটি? (অনুধাৰন) উৎপদ্ন গ্যাসটি গ্রীন হাউজ প্রভাবের জন্য দায়ী TiO₂ ন্যানো পার্টকেল নিচের কোনটি সঠিক? আয়রন ন্যানো পার্টিকেল ➂ @ i 8 ii (i e iii সিলভার ন্যানো পার্টিকেল ii B iii . (i, ii S iii শেড ন্যানো পার্টিকেল

পঞ্চম অধ্যায়: অর্থনৈতিক রসায়ন রসায়ন দ্বিতীয় পত্র ৩৭৭.N₂ + 3H₂ ----> X; X যৌগটি ----(প্রয়োগ) iii. 28 আণবিক ভর বিশিষ্ট i. ইউরিয়া উৎপাদনে ব্যবহৃত হয় নিচের কোনটি সঠিক? ii. সমযোজী প্রকৃতির (i & i (1) i G iii iii. সরাসরি সার থিসেবে ব্যবহৃত হয় Ti Siii Ti Siii নিচের কোনটি সঠিক? ৩৮২.SO2 অপসারণে ব্যবহৃত হয়—(প্রয়োগ) 1 Gii (i g iii চুনাপাথরে দ্রবীভূতকরণ Ti Giii 1, ii 8 iii ii. Ca(OH)2 দ্বারা অপসারণ ভাগ ও চাপ iii. SO2 কে জিপসামে রূপান্তর 096,2NH3(q) + Y -নিচের কোনটি সঠিক? H₂NCOONH₄; विक्रिग्राग्र-— (উচ্চতর দকতা) ⊕ i ଓ ii iii 🕑 i 📵 Y হলো CO2 (1) ii (1) (1) (1) (1) (1) (1) (1) ii. তাপমাত্রা 180°C ৩৮৩.পরিবেশ দৃষপরোধে নিমোক্ত ব্যবস্থা শিল্প ক্ষেত্রে iii. 519 130 atm बाबहुण रहा— (तरहान) /जारेकितन सून वड बरनव, নিচের কোনটি সঠিক? भारतिका, जनग i e ii (i e iii ETP প্রক্রিয়ায় বর্জা পানি থেকে ধাতব m ii S iii ® i, ii 8 iii আয়ন পৃথক করা হয় 098. Na2SO4 + 2A ETP প্রক্রিয়ায় দৃষক অ<u>দী</u>য় গ্যাস শোষণ করা বিক্রিয়ায়— (অনুধাবন) iii. ক্যাটালাইটিক কনভার্টারের A পদার্থটি কয়লা ii. জারিত হয়েছে দূষকের রূপান্তর করা হয় iii. বিজারিত হয়েছে নিচের কোনটি সঠিক? নিচের কোনটি সঠিক? (d) i e iii i & ii (iii & i (f) i e ii i, ii e iii இ ப் பே (8) i, ii 8 iii @ ii e iii ৩৮৪.ETP এর সঠিক পূর্ণরূপ কোনটি? (অনুধানন) *বিজ্ঞা* CATE-2030/ Effective Temperature and Pressure পরিবেশ দৃষণের কারণ Environmental Treatment Plant ii. H₂SO₄ তৈরিতে ব্যবহার করা যায় Effluent Treatment Plant iii. বিরঞ্জক হিসেবে ব্যবহার করা যায় The Energy Producing Plant নিচের কোনটি সঠিক? ৩৮৫.বিষাক্ত পদার্থ —(অনুধারন) ® i Sii . (i S iii As Pd M ii G iii iii 8 ii i iii. Cd ৩৮১.3H₂ + X₂ → 2NH₃: X উপাদানটি -নিচের কোনটি সঠিক? मध्यका) 3 i Gii iii Bi (B) আংশিক পাতন দ্বারা সংগ্রহ করা হয় iii V ii ,ii V – 196°C স্ফুটনাডক বিশিষ্ট iii B ii 🕦

রসায়ন দ্বিতীয় পত্র	পুষ্ম অধ্যায়: অর্থনৈতিক রসায়ন
৩৮৬.রিসাইক্লিং এর ফলে প্রাপ্ত সুবিধা হল—	⊕ N₁ ⊕ P
(अनुधावन) /गन्म (जर्ज-२०३४/	⊕ Ca
্ i পণ্যের দাম কম হয়	৩৯১, উল্লেখিত সার উৎপাদনে উৎপাদের সাথে কোনটি
ii, বর্জ্য ব্যবস্থাপনা সুষ্ঠ হয়	মিশ্রিত করা হয়? (প্রমাণ)
iii. পরিবেশ দূষণ কম হয়	® CO₂ ® PO₄-3
নিচের কোনটি সঠিক?	
® i gii	9
	৩৯২ বিক্রিয়ায় প্রাপ্ত উৎপাদটিতে নাইট্রোজেন থাকা
O 11 - 11 O 1, 11 - 11	সম্ভেও সার হিসেবে ব্যবহৃত হয় না, কারণ
উদ্দীপকের আলোকে ৩৮৭-৩৮৯ নং প্রশ্নের উত্তর দাও :	—(উচ্চতর সঞ্চতা)
উসমানিয়া গ্লাস ফ্যাক্টরী বালু ও লাইমস্টোন মিপ্রিত করে	i. গ্যাসীয় অবস্থায় থাকে
1400°C তাপমাত্রায় তাপ প্রদান করে একটি অনিয়মিত	ii. তরল অবস্থায় দ্বুত বাষ্পীভূত হয়
करत्र करिन भनार्थ रेजित करत्र या न्थाभना भिरम्न गाभक	iii. পরিমিত নাইট্রোজেন অনুপম্থিত
ভাবে ব্যবস্থৃত হয়।	নিচের কোনটি সঠিক?
৩৮৭,প্রতিষ্ঠানটির উৎপন্ন পদার্থ কোনটি? (অনুধাবন)	(i) 9 i 9 ii 9 i
ভি সিমেন্টভি কাচ	@ !! @ !! !! @ f' !! @ !!
🕣 সার 🕦 লোহা 🗿	উদ্দীপকের আলোকে ৩৯৩-৩৯৫ নং প্রল্লের উত্তর দাও :
৩৮৮ লাইমস্টোন ছাড়া আর কোনটি ব্যবহার করে	চুনাপাথর ≯চুর্লকরণ
প্রতিষ্ঠানটি কাজ্ঞিত উৎপাদ পেতে পারে?	মিশ্রণ >বলমিল > A > ক্লিংকার
(প্রয়োগ) ক্টি Nia ₂ CO ₃ ক্টি ZnCO ₃	क्र → अग्रानिश सम्बद्धाः । स्ट्रानिश
	and the same of th
৩৮৯,উসমানিরা ফ্যাক্টরীর উৎপন্ন পদার্ঘট—(উচ্চতর	৩৯৩. A ধাপটির নাম কী? (অনুধানন)
নক্জা) i. নিয়মিত আকার বিহীন	 জ দ্রায়িং ব র-মিলিং
i. নিৰ্দিষ্ট গলনাভক ও স্ফুটনাভক বিশিষ্ট	 মিক্সিং
iii. Co, Mn भिनिरह तिकान कहा याह्य	৩৯৪. উদ্দীপকের উৎপাদন প্রক্রিয়ায় কোন ধাপটি সবচেয়ে
নিচের কোনটি সঠিক?	পুরুতপূর্ণ? (প্রয়োগ)
	 কুর্করণ প্রয়াশিং
S 137	ඉ মিশ্রণ জ মেশ্রন স্ব মিশ্রণ স্ব মিশ্বন স্ব মিশ্বন স্ব মিশ্বন স্ব মিশ্বন স্ব মিশ্বন স্ব মিশ্বন স্ব মিশ্বন স্ব মিশ্বন স্ব মি
(a) ii a iii (b) i' ii a iii (b)	৩৯৫. ম ধাপে —— (প্রয়োগ)
উদ্দীপকের আলোকে ৩৯০-৩৯২ নং প্রশ্নের উত্তর দাও :	i. চুল্লী সামান্য বাঁকানো থাকে
X ₂ + 3Y ₂ <u>550°C</u> 2XY ₃ ; বিক্রিয়ায় প্রাপ্ত	ii. জিপসাম মেশানো হয়
2001am উৎপাদটি গুরুত্বপূর্ণ সার তৈরিতে ব্যবহৃত হয়।	iii. সমগ্র বিক্রিয়া সম্পন্ন হয়
৩৯০.সারটি মাটিতে কোন উপাদান সরবরাহ করে?	নিচের কোনটি সঠিক?
(अवशहन)	® i 5 ii

ரு ii பேர் இ i, ii பேர்