DÉCOUVERTE: PROPORTIONNALITÉ, FONCTIONS LINÉAIRES

1 Situation 1: la loi d'Ohm

U est la tension, en volts (V), aux bornes d'un conducteur ohmique de résistance R, en Ohms (Ω) , traversé par un courant d'intensité I, en ampères. On a effectué quelques mesures, réunies dans le tableau ci-dessous :

I	0,2	0,5	1	1,5	1,8	2,4
U	5	12,5	25	37,5	45	60

1. Ce tableau est-il un tableau de proportionnalité?

2. Quel est le coefficient de proportionnalité?.....

3. Place les points du tableau dans le repère ci-dessous. Retrouve-t-on le fait que ce tableau est de proportionnalité?

4. En utilisant le graphique, et en étant le plus précis possible, pouvez-vous compléter le tableau suivant?

I	0,3	2,1	3,5	5,2			
U					10	50	120

5. En fait, la **loi d'Ohm** nous permet d'affirmer que $U = R \times I$. Combien vaut la résistance R, en Ohms?

6. On a donc $U = 25 \times I$; on dit que l'on a **exprimé** U **en fonction de** I. Retrouver les résultats de la question **4.** par le calcul.

2 Situation 2 : Aire et périmètre d'un carré.

On considère un carré de côté x. On pose \mathscr{A} l'aire de ce carré, et \mathscr{P} son périmètre.

1. Complétez le tableau suivant :

x en cm	6,4	8	10,8	12	17,2	20.6
ℱ en cm						
\mathscr{A} en cm ²						

.....

4. En utilisant le graphique, avec toute la précision possible, pouvez-vous compléter le tableau suivant? Confirmez par le calcul.

x en cm	10	16				
ℱ en cm			50	80		
\mathscr{A} en cm ²					140	350

3 Qu'est-ce qu'une fonction linéaire?

Lorsque l'on étudie le procédé selon lequel, à tout nombre x (ou I, ou... peu importe la notation) on associe le produit $a \times x$ (où a est un nombre « fixe »), on définit **la fonction linéaire** de **coefficient** a.

- ▶ Ainsi la situation 1 définit une **fonction linéaire**; en effet, à toute intensité I (exprimée en Ampères), on associe la tension U (exprimée en Volts) calculée comme le produit $R \times I$. On a même vu que, dans notre exemple, $R = 25\Omega$, et donc 25 est le **coefficient** de cette fonction linéaire. On notera cette fonction de la façon suivante : $U: I \longmapsto 25I$.
- ▶ La situation 2 définit une fonction linéaire de coefficient 4, notée \mathscr{P} : $x \mapsto 4x$. Mais elle définit également une autre fonction, notée \mathscr{A} : $x \mapsto x^2$, qui **n'est pas** une fonction linéaire.