Recommendation Systems: Rating Predictions with MovieLens Data

Danilo Ferreira de Oliveira

04/22/2021

Contents

1 Introduction

Companies like Amazon, YouTube or Netflix possess massive user ratings datasets, which they were able to collect from thousands of products sold to or used by customers. Recommendation systems use those ratings to make user-specific recommendations. With regard to movies, we can predict what rating a user would give movie pictures they haven't seen by analyzing the ones he or she likes to watch, and then recommend those with relatively high predicted ratings. These are more complicated machine learning challenges because each outcome has a different set of predictors, seeing that different users rate different movies and different quantities of movies.

Netflix used to have a stars rating system (which now changed to a like-dislike system) and its recommendation algorithm would predict how many stars a particular user would give a specific movie. One star suggested the movie in question was not good, whereas five stars suggested it was an excellent one. In October 2006, Netflix proposed the data science community a challenge which was to improve their algorithm by 10%. Inspired by that challenge, we will develop the foundations to a movie recommendation system. Since Netflix data is not publicly available, we will use the GroupLens research lab database, which you can find here. We will be creating our own recommendation system using tools shown throughout all courses in the HarvardX: Data Science Professional Certificate series, including R Language for statistical computing and its most famous IDE, RStudio.

There are various datasets available in the *MovieLens* website, but we will use the 10M version one to make computations a little easier. Released in January 2009, it is a stable benchmark dataset, and provides approximately 10 million ratings applied to near 10,000 movies by 72,000 users.

We will initially run a R script provided by HarvardX to generate our datasets. We continue by analyzing and visualizing the obtained training dataframe, and by developing rating prediction algorithms. With root mean squared error (RMSE) as our loss function, we select the best algorithm and, for its final test, we predict movie ratings in the validation set (the final hold-out test set) as if they were unknown. RMSE will again be used to evaluate how close your predictions are to the true values in the final hold-out test set.

While training machine learning models, we will first follow the approach made by ? and further develop it with the addition of genre effects. We will also train a matrix factorization model.

2 Analysis

2.1 Gathering and structuring datasets

Before we can start gathering our data and generating the different sets, we load the necessary R libraries for the whole report's development.

```
library(caret)
library(tidyverse)
library(ggplot2)
library(lubridate)
library(stringr)
library(recosystem)
library(data.table)
library(kableExtra)
library(tibble)
```

Next, we download the MovieLens data and run code provided by edX to generate the datasets for training and evaluating the final model. The edx set will be used all along the report to train and choose the best model for rating predictions, while the validation set will only be used in the end to evaluate the quality of the final model with a root mean square error function. The provided script begins by downloading files from the GroupLens database and performing transformations in order to obtain the movielens dataframe below.

The validation set will be 10% of movielens. We need to make sure all user and movie IDs in validation are also in edx, so we apply semi_join() transformations. Then, we add rows removed from the validation set back into the training set.

```
set.seed(1, sample.kind="Rounding")
test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.1, list = FALSE)
edx <- movielens[-test_index,]
temp <- movielens[test_index,]

validation <- temp %>%
    semi_join(edx, by = "movieId") %>%
    semi_join(edx, by = "userId")

removed <- anti_join(temp, validation)
edx <- rbind(edx, removed)

rm(dl, ratings, movies, test_index, temp, movielens, removed)</pre>
```

We can now start analyzing the edx dataframe.

2.2 Exploratory data analysis

2.2.1 Exploring the dataframe

To begin, let's take a look at our dataset's columns and variables.

```
edx %>% as_tibble()
```

```
>> # A tibble: 9,000,055 x 6
      userId movieId rating timestamp title
                                                                genres
>>
       <int>
               <dbl> <dbl>
                                 <int> <chr>
                                                                <chr>>
                                                                Comedy | Romance
>>
   1
           1
                  122
                           5 838985046 Boomerang (1992)
>> 2
           1
                  185
                           5 838983525 Net, The (1995)
                                                                Action | Crime | Thriller
                                                                Action|Drama|Sci-Fi|T~
>> 3
           1
                 292
                           5 838983421 Outbreak (1995)
>> 4
           1
                 316
                           5 838983392 Stargate (1994)
                                                                Action | Adventure | Sci-~
>> 5
           1
                 329
                           5 838983392 Star Trek: Generation~ Action|Adventure|Dram~
>> 6
                 355
                           5 838984474 Flintstones, The (199~ Children|Comedy|Fanta~
           1
>>
  7
           1
                 356
                           5 838983653 Forrest Gump (1994)
                                                                Comedy | Drama | Romance | ~
                           5 838984885 Jungle Book, The (199~ Adventure | Children | Ro~
>> 8
           1
                  362
>> 9
           1
                  364
                           5 838983707 Lion King, The (1994)
                                                                Adventure | Animation | C~
>> 10
           1
                  370
                           5 838984596 Naked Gun 33 1/3: The~ Action | Comedy
>> # ... with 9,000,045 more rows
```

It is observed that columns title and genres are of class "character" (<chr>), while movieId and rating are numeric (<dbl>), userId, timestamp are integers (<int>). We should also analyze the number of unique values for each important feature column.

Table 1: Distinct values for userId, movieId, titles and genres

n_userIds	$n_movieIds$	n_titles	n_genres
69878	10677	10676	797

Note, from Table 1, that there are more unique movield variables than there are title ones. We need to investigate why.

```
edx %>% group_by(title) %>%
  summarize(n_movieIds = n_distinct(movieId)) %>% filter(n_movieIds > 1) %>%
  kbl(booktabs = TRUE, caption = "Movies with more than one ID") %>%
  kable_styling(latex_options = c("striped","HOLD_position"))
```

Table 2: Movies with more than one ID

title	n_movieIds
War of the Worlds (2005)	2

Table 2 shows that War of the Worlds (2005) has two distinct movieId numbers. Let's see how many reviews each of them have.

Table 3: Different values of movieId and genres for War of the Worlds (2005)

movieId	title	genres	n
34048	War of the Worlds (2005)	Action Adventure Sci-Fi Thriller	2460
64997	War of the Worlds (2005)	Action	28

Its second movieId received only 28 reviews (Table 3). This is a very low value, and since there is a possibility both IDs are in the validation set, we won't meddle with it.

2.2.2 Ratings

We can now visualize the data. First, we see how the ratings distribution is configured in Figure 1, and from it we can affirm that full star ratings are more common than those with half stars, since 4, 3 and 5 are the most frequent ones.

Figure 1: Distribution of ratings

2.2.3 Movies and users

Our dataset has 10,676 different movies and 69,878 different users. By multiplying these numbers, we can verify that not every user rated every movie. We can think of the dataset as a very large matrix, with users on the rows and movies on the columns, and many empty cells. The task of a recommendation system can

be regarded as filling in the empty values in this matrix. Let's evaluate the frequency distribution of reviews that each user gives and each movie receives by plotting these values.

Figure 2: Frequency of reviews given by a specific user (left) and of reviews received by a specific movie (right)

The x-axis in the generated plots from Figure 2 are both on a logarithmic scale, and the one on the left is right-skewed, meaning its average value is higher than the mode. By inspecting them, we can affirm that the majority of users give 20 to 200 reviews, while each movie frequently receives between 20 and a 1000 reviews, the latter being a pretty broad range.

Plotting histograms for average ratings, we get Figure 3. From the top plot, it is possible to see that it is rare for a user to average rating movies below 2, since there are few users to the left of that number (only 185 of all 69878 in the dataset, to be more exact). We can say the same about averaging over 4.5 (762 users). And from all 10,676 movies, we can also see that few of them average below 1.5 (only 61) and over 4.25 rating (57 films).

By exploring the top 10 most reviewed movies in the dataset (Figure 4) and how many times they were reviewed, we observe that movies that receive the most reviews are normally blockbusters.

Checking for their average ratings in Figure 5, we also notice they have really high values, the lowest of them being 3.66. We can infer that the more a movie is reviewed, the better its rating is. It makes sense, given that the better the movie, the higher its ratings and the more people go watch it, subsequently more users can rate it.

2.2.4 Release date

Since there isn't a column for movie's release date, we will check it by using the str_extract function from the stringr package, as the title column includes each movie's release date inside parenthesis.

```
release_date <- edx$title %>% str_extract('\\([0-9]{4}\\)') %>%
  str_extract('[0-9]{4}') %>% as.integer()
summary(release_date)
```

```
>> Min. 1st Qu. Median Mean 3rd Qu. Max.
>> 1915 1987 1994 1990 1998 2008
```


Figure 3: Frequency of average rating given by users (top) and average rating received by movies (bottom)

Figure 4: Number of reviews for the top 10 most reviewed movies

Figure 5: Average rating for the top 10 most reviewed movies

We first apply this function extracting the date along with the parenthesis, and then the number from inside them. We do it like this because, by extracting only the number, movies like 2001: A Space Odyssey (1968) and 2001 Maniacs (2005) show up when searching for year 2001. To go even further, it also extracts the numbers 1000 and 9000 for House of 1000 Corpses (2003) and Detroit 9000 (1973), respectively.

As an example, we see in Table 4 that the earliest release date in our dataset (1915) only has one movie (and a rather controversial one):

Table 4: Movie with the earliest release date in the dataset

movieId	title	genres	n
7065	Birth of a Nation, The (1915)	Drama War	180

We now compute the number of ratings for each movie and plot it against the year the movie came out, using a boxplot for each year (Figure 6). A logarithmic transformation is applied on the y-axis (number of ratings) when creating the plot.

We see that, on average, movies that came out in the mid 90's get more ratings, reaching values over 30,000 reviews. We also see that with newer movies, starting near 1998, the number of ratings decreases with year: the more recent a movie is, the less time users have had to rate it.

Similarly to before, we compute the average of ratings for each movie and plot it against the release year with boxplots, as shown in Figure 7.

It is possible to see that most movies released until 1973 normally range between 3.0 and 4.0 ratings. From then on, the range gets bigger and values get lower (median values go from averaging over 3.5 to near 3.25). There are even movies from around the 2000's that average 0.5 ratings, but they are outliers and probably only received very few ratings.

Figure 6: Number of reviews the movies received versus the year they were released

Figure 7: Average rating the movies received versus the year they were released

2.2.5 Genres and genre combinations

The genres variable actually represents combinations of a series of unique genres. We will count the number of reviews each different combination that appear in our dataset has and arrange them in descending order. Table 5 shows, as an example, the top 7 most reviewed genre combinations.

Table 5: '	Top g	genre con	nbinations	rated
------------	-------	-----------	------------	-------

rank	genres	count
1	Drama	733296
2	Comedy	700889
3	Comedy Romance	365468
4	Comedy Drama	323637
5	Comedy Drama Romance	261425
6	Drama Romance	259355
7	Action Adventure Sci-Fi	219938

Let's check the genre effect on ratings. We will filter for genre combinations that were reviewed over a thousand times, put them in ascending order of average rating and visualize 15 examples, equally distant inside the arranged dataframe. The indexes to select the combinations in the arranged set are represented by the variable gcomb_15.

Inspecting the plot from Figure 8, we see the clear effect that genre combinations have on ratings, with average values ranging from approximately 2.0 to over 4.5. We can also investigate the effect of each genre that composes these combinations separately. There are 20 different genres in this dataset, and they are shown in Table 6:

Table 6: All unique genres present in the dataset

Comedy	Drama	War	Film-Noir
Romance	Sci-Fi	Animation	Horror
Action	Adventure	Musical	Documentary
Crime	Children	Western	IMAX
Thriller	Fantasy	Mystery	(no genres listed)

We can count how many reviews each genre have had by applying the sapply() function:

```
all_genres_count <- sapply(all_genres, function(g) {
   sum(str_detect(edx$genres, g))
}) %>% data.frame(review_count=.) %>%
   arrange(desc(.))
```


Figure 8: Distribution of average ratings for a few genre combinations possible

The results are displayed on Table 7. The number of reviews per genre range from near 4 million to only 7.

all_genres_count[1:10]		all_genres_count[11:20]	
		an_genres_count[11.20]	
Genre	Count	Genre	Count
Drama	3910127	Horror	691485
Comedy	3540930	Mystery	568332
Action	2560545	War	511147
Thriller	2325899	Animation	467168
Adventure	1908892	Musical	433080
Romance	1712100	Western	189394
Sci-Fi	1341183	Film-Noir	118541
Crime	1327715	Documentary	93066
Fantasy	925637	IMAX	8181
Children	737994	(no genres listed)	7

Table 7: Number of reviews per genre

We must investigate the (no genres listed) genre, which actually represents no genre at all. We can see all movies that belong to it and their respective averages and standard errors:

```
>> movieId userId title genres n avg se
>> 1 8606 7701 Pull My Daisy (1958) (no genres listed) 7 3.642857 0.4185332
```

There is only one movie in the dataset with no genres listed and it has only 7 reviews, giving its average rating a high standard error (0.4185). For this reason, we won't be plotting this genre's average rating along with the others in Figure 9. The forementioned plot shows us that average genre ratings range from under 3.3 to over 4.0, clarifying even further the effect genres have on ratings.

Figure 9: Average rating for each genre

We now observe the top genres reviewed in this dataset and how many reviews each one of them have. We accounted for genres that were reviewed over a million times, resulting in 8 distinct possibilities. The complete genre reviews count has already been shown in the form of Table 7, but we will plot the top 8 most reviewed genres (Fig. 10) to better visualize them and to also compare their shape with their respective movies count plot (Fig. 11).

Generally, the barplot's shapes and proportions look pretty much the same for both review (Fig. 10) and movie counts (Fig. 11), with the exception of *Adventure* and *Action* having less movies than *Thriller*, even though they have more reviews. *Romance* and *Thriller* change positions from one plot to the other, but they are very close in proportion. Meanwhile, *Comedy* and *Drama* dominate in both counts.

2.2.6 Rating date

Since the timestamp column doesn't provide us much value as it is, we create another column that gives us the date and time a movie was rated.

```
edx <- mutate(edx, date = as_datetime(timestamp))
edx %>% as_tibble()
```

>> # A tibble: 9,000,055 x 7

Figure 10: Number of reviews for each of the top 8 most reviewed genres

Figure 11: Number of movies that belong to the top 8 most reviewed genres

```
>>
      userId movieId rating timestamp title
                                                      genres
                                                                    date
       <int>
                <dbl>
                       <dbl>
                                                      <chr>
                                                                    <dttm>
>>
                                  <int> <chr>
>>
    1
           1
                  122
                           5 838985046 Boomerang (~ Comedy|Roma~ 1996-08-02 11:24:06
                  185
    2
           1
                           5 838983525 Net, The (1~ Action|Crim~ 1996-08-02 10:58:45
>>
>>
    3
           1
                  292
                           5 838983421 Outbreak (1~ Action|Dram~ 1996-08-02 10:57:01
    4
           1
                  316
                           5 838983392 Stargate (1~ Action|Adve~ 1996-08-02 10:56:32
>>
                           5 838983392 Star Trek: ~ Action | Adve~ 1996-08-02 10:56:32
>>
    5
           1
                  329
                           5 838984474 Flintstones~ Children | Co~ 1996-08-02 11:14:34
>>
    6
           1
                  355
                             838983653 Forrest Gum~ Comedy|Dram~ 1996-08-02 11:00:53
    7
           1
                  356
>>
>>
    8
           1
                  362
                           5 838984885 Jungle Book~ Adventure | C~ 1996-08-02 11:21:25
>>
    9
           1
                  364
                           5 838983707 Lion King, ~ Adventure | A~ 1996-08-02 11:01:47
                           5 838984596 Naked Gun 3~ Action|Come~ 1996-08-02 11:16:36
           1
                  370
>> 10
         with 9,000,045 more rows
```

The new column date is of a Date-Time class (<dttm>) called "POSIXct", and it makes it better to understand the time of rating. Now we can plot the time effect on the dataset, showing the possible influence time (in which a movie was rated) has on the average value. Along with average ratings, Figure 12 presents a LOESS smooth line that better shows the relationship between variables.

```
edx %>% mutate(date = round_date(date, unit = "week")) %>%
  group_by(date) %>%
  summarize(rating = mean(rating)) %>%
  ggplot(aes(date, rating)) +
  geom_point() + labs(y='average rating') +
  geom_smooth()
```


Figure 12: The review date effect on the average rating

The review date definitely has some effect on ratings, but it isn't significant, so we will not be adding this effect in modeling.

2.3 Feature engineering

Down the line, we will need all genres available in the dataset as binary values, so it is necessary to create columns for all 20 of them. For each row, we attribute value 1 to new columns that are present inside its genres cell, and value 0 to the rest. This means: if a determinate row has its genres value equal to Comedy | Drama, the newly created columns Comedy and Drama will have value 1, while the rest will remain zero. Here we see the first 6 rows, with only movieId, title and genres, so we can compare the genres further in this analysis.

```
edx[,c(2,5,6)] \%\% as_tibble(.rows = 6)
```

```
>> # A tibble: 6 x 3
     movieId title
>>
                                               genres
>>
       <dbl> <chr>
                                               <chr>
         122 Boomerang (1992)
                                               Comedy | Romance
>> 1
>> 2
         185 Net, The (1995)
                                               Action | Crime | Thriller
         292 Outbreak (1995)
                                               Action|Drama|Sci-Fi|Thriller
>> 3
>> 4
         316 Stargate (1994)
                                               Action | Adventure | Sci-Fi
>> 5
         329 Star Trek: Generations (1994) Action | Adventure | Drama | Sci-Fi
>> 6
         355 Flintstones, The (1994)
                                               Children | Comedy | Fantasy
```

We apply the transformation by doing the following for() command. We will also permanently remove columns such as timestamp, title, genres and date, since they won't be needed to train the prediction models.

```
for (var in all_genres) {
   edx <- edx %>% mutate(genre=ifelse(str_detect(genres,as.character(var)),1,0))
   colnames(edx)[ncol(edx)] <- as.character(var)
}
rm(var)
edx <- edx[,-(4:7),drop=FALSE]
edx[,4:23] %>% as_tibble(.rows=6)
```

```
>> # A tibble: 6 x 20
     Comedy Romance Action Crime Thriller Drama `Sci-Fi` Adventure Children Fantasy
      <dbl>
               <dbl>
                      <dbl> <dbl>
                                      <dbl> <dbl>
                                                       <dbl>
                                                                 <dbl>
                                                                           <dbl>
                                                                                    <dbl>
>>
                          0
                                          0
                                                                      0
                                                                               0
>> 1
          1
                   1
                                                 0
                                                           0
                                                                                        0
>> 2
          0
                   0
                          1
                                 1
                                           1
                                                 0
                                                           0
                                                                      0
                                                                               0
                                                                                        0
>> 3
          0
                   0
                          1
                                 0
                                           1
                                                 1
                                                           1
                                                                      0
                                                                               0
                                                                                        0
                   0
                                 0
                                                 0
                                                           1
                                                                      1
                                                                               0
                                                                                        0
>> 4
          0
                          1
                                           0
>> 5
          0
                   0
                          1
                                 0
                                           0
                                                 1
                                                           1
                                                                      1
                                                                                        0
                          0
                                 0
                                           0
                                                           0
>> 6
          1
                                                                                        1
>> # ... with 10 more variables: War <dbl>, Animation <dbl>, Musical <dbl>,
       Western <dbl>, Mystery <dbl>, Film-Noir <dbl>, Horror <dbl>,
       Documentary <dbl>, IMAX <dbl>, (no genres listed) <dbl>
```

Comparing each row in this tibble above with the ones demonstrated earlier, it is possible to see that the genres in the first one are now represented as 1's, while genres that don't appear before are kept as zero values. Therefore, the transformation occurred accurately.

2.4 Creating training and test sets

Before training any model, we need to create a train and a test set. We first set the seed to guarantee the reproducibility of the model, and we divide the edx dataframe into 80-20% partitions.

```
set.seed(123, sample.kind = "Rounding")
index <- createDataPartition(edx$rating, times=1, p=0.2, list= FALSE)
test <- edx[index,]
train <- edx[-index,]</pre>
```

To make sure all user and movie IDs in test are also in train, we apply semi_join() functions, just as we did for the first two datasets in the beginning of the report.

```
test <- test %>%
  semi_join(train, by = "movieId") %>%
  semi_join(train, by = "userId")
```

2.5 Prediction models

Now that we have our training and test sets, we can start evaluating prediction models. We will begin by following approaches proposed by ?, starting with a Overall Average Rating model, going through Movie, Movie + User and Regularized Movie + User effects models. We will also apply a method that includes Genre effect and one that performs Matrix Factorization. To evaluate their quality, we will use the RMSE function.

If N is the number of user-movie combinations, $y_{u,i}$ is the rating for movie i by user u, and $\hat{y}_{u,i}$ is our prediction, then RMSE is defined as follows:

$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{u,i}^{N} \left(\hat{y}_{u,i} - y_{u,i}\right)^2}$$

which is represented by the function:

```
RMSE <- function(true_ratings, predicted_ratings){
  sqrt(mean((true_ratings - predicted_ratings)^2))
}</pre>
```

2.5.1 Overall Average Rating

We start with a model that assumes the same rating for all movies and all users, with all the differences explained by random variation: If μ represents the true rating for all movies and users and ε represents independent errors sampled from the same distribution centered at zero, then:

$$Y_{u,i} = \mu + \varepsilon_{u,i}$$

In this case, the least squares estimate of μ (the estimate that minimizes the root mean squared error) is the average rating of all movies across all users (?). So we predict all ratings as the mean rating of the training set and compare it to the actual ratings in the test set (RMSE(test\$rating, mu)). The calculated RMSE is shown in Table 8.

mu <- mean(train\$rating)</pre>

Table 8: RMSE result for the Average Method

Method	RMSE
Just the Average	1.060013

We can observe that this value is actually the standard deviation of this distribution. Its value is too high, thus not acceptable.

$$\mathrm{RMSE}_{\mu} = \sqrt{\frac{1}{N} \sum_{u,i}^{N} (\mu - y_{u,i})^2} = \sigma$$

2.5.2 Movie effect model

We can improve our model by adding a term, b_i , that represents the effect of each movie's average rating:

$$Y_{u,i} = \mu + b_i + \varepsilon_{u,i}$$

Here, b_i is approximately the average of $Y_{u,i}$ minus the overall mean for each movie i. We can again use least squares to estimate b_i as follows:

```
fit <- lm(rating ~ as.factor(movieId), data=edx)</pre>
```

Because there are thousands of b's, the lm() function will be very slow or cause R to crash, so it is not recommendable using linear regression to calculate these effects (?). We will then calculate all b_i 's in the way shown below, followed by the determination of which b_i corresponds to each line in the test set and addition of μ to them, obtaining our estimates for each rating.

```
movie_avgs <- train %>% group_by(movieId) %>% summarize(b_i = mean(rating-mu))
predicted_ratings <- mu + test %>% left_join(movie_avgs, by='movieId') %>%
   pull(b_i)
summary(predicted_ratings)
```

```
>> Min. 1st Qu. Median Mean 3rd Qu. Max.
>> 0.500 3.217 3.586 3.512 3.878 4.750
```

From the summary above, we can see that the predictions obtained range from 0.5 and 4.75, which are values inside the real range (0.5 to 5). Calculating RMSE(test\$rating, predicted_ratings), we get the results shown in Table 9.

Table 9: RMSE results with the Movie effect model

Method	RMSE
Just the Average	1.0600131
Movie effect model	0.9436204

A 12% drop is a big improvement, but we can still do better.

2.5.3 Movie + User effects model

We further improve our model by adding b_u , the user-specific effect:

$$Y_{u,i} = \mu + b_i + b_u + \varepsilon_{u,i}$$

To fit this model, we could again calculate the least squares estimate by using 1m (?):

```
lm(rating ~ as.factor(movieId) + as.factor(userId))
```

But for the same reason as explained before, we will follow a simpler model approach where b_u is calculated with the difference between rating $Y_{u,i}$ and both overall mean rating and movie-specific coefficient. It is demonstrated in the code chunk below:

```
user_avgs <- train %>% left_join(movie_avgs, by='movieId') %>%
  group_by(userId) %>% summarize(b_u = mean(rating - mu - b_i))

predicted_ratings <- test %>%
  left_join(movie_avgs, by='movieId') %>% left_join(user_avgs, by='userId') %>%
  mutate(pred = mu + b_i + b_u) %>% pull(pred)

summary(predicted_ratings)
```

```
>> Min. 1st Qu. Median Mean 3rd Qu. Max.
>> -0.7161 3.1353 3.5651 3.5127 3.9450 6.0547
```

Predicted ratings, obtained from the sum of μ to each test set line's corresponding coefficients, now have a spread of -0.7161 to 6.0547, which is bigger than the real spread. There are 208 values under 0.5 and 4149 over 5. But what we really need to evaluate is the RMSE value by applying its function.

Table 10: RMSE results with the Movie and User effects model

Method	RMSE
Just the Average	1.0600131
Movie effect model	0.9436204
Movie + User effects model	0.8662966

Table 10 shows another big improvement in the RMSE value, with a 8% drop. Let's proceed improving this model to see how much better it can get.

2.5.4 Movie + User + Genre effects model

Now we try an approach proposed by ?, which was presented but not built up and developed, that adds the genre effect to the model. Its formula is written as shown below:

$$Y_{u,i} = \mu + b_i + b_u + \sum_{k=1}^{K} x_{u,i}^k \beta_k + \varepsilon_{u,i}$$

Here $x_{u,i}^k$ is equal to 1 if $g_{u,i}$ is genre k. We already determined $x_{u,i}$ values earlier by creating binary columns for each of the 20 genres available, both in the training and test data. Now we determine β_k values with the same approach utilized in the last two models, where each β_k is the mean of the subtraction of overall average rating, movie-specific coefficient b_i and user-specific coefficient b_u from ratings $Y_{u,i}$. This way, if a movie belongs to both Comedy and Drama, one β will throw the average rating up (high ratings for Drama) and the other down (low average for Comedy).

To make all process faster down the line, we will first add b_i and b_u columns to the training and test sets, and then we calculate all β_k 's.

```
train <- train %>% left_join(movie_avgs, by='movieId') %>%
  left_join(user_avgs, by='userId')
test <- test %>% left_join(movie_avgs, by='movieId') %>%
  left_join(user_avgs, by='userId')
rm(user_avgs,movie_avgs)

beta_k <- vector()
for (i in seq_along(all_genres)) {
  b_value<- train %>%
    group_by(!!sym(all_genres[[i]])) %>%
    summarize(beta_k=mean(rating-mu-b_i-b_u)) %>%
    filter((.[1])==1) %>% .[[2]]
  beta_k <- append(beta_k, b_value)
}
rm(i,b_value)

df_beta<-data.frame(beta_k)
rownames(df_beta) <- all_genres</pre>
```

To determine these values within a for() loop, we first grouped the training set per specific genre column, with the aid of argument !! and function sym to unquote column names, forming two different groups (genre = 0 and genre = 1). We then obtained each specific genre's beta-value by filtering for values equal to 1 (the genre is present). We appended each one to the beta_k vector and when all β 's have been obtained, we transformed this vector into the dataframe shown in Table 11.

Table 11: Genre-specific beta values

df_beta[1:10]		$df_beta[11:20]$	
genre	beta_l	genre	beta_k
Comedy	-0.0022244	l War	0.0017305
Romance	-0.0035617	Animation	-0.0153201
Action	-0.0126152	2 Musical	-0.0102387
Crime	0.0079932	2 Western	-0.0066510
Thriller	-0.0047380) Mystery	0.0138908
Drama	0.0108468	Film-Noir	0.0306395
Sci-Fi	-0.0119931	Horror	0.0066441
Adventure	-0.0148381	Documentary	0.0624559
Children	-0.0241908	3 IMAX	-0.0016830
Fantasy	-0.0055682	2 (no genres listed)	0.1164495

The summation within this model's prediction equation is represented below:

$$\sum_{k=1}^K x_{u,i}\beta_k = x_{u,i}^{\{1\}}\beta_1 + x_{u,i}^{\{2\}}\beta_2 + \ldots + x_{u,i}^{\{20\}}\beta_{20}$$

We calculate these sums by performing a matrix multiplication between the test set genre columns (test[,4:23]) and all 20 β_k values calculated. This multiplication, between a (1799965, 20) matrix and a (20, 1) vector, results in a (1799965, 1) vector. We then add this as a column to the test set, so we can calculate predictions.

```
sum_x_beta <- as.matrix(test[,4:23])%*%as.matrix(df_beta)
sum_x_beta <- data.frame(sum_x_beta=sum_x_beta[,1])

test <- data.frame(test, sum_x_beta)
rm(df_beta,beta_k,sum_x_beta,all_genres)

predicted_ratings <- test %>%
    mutate(pred = mu + b_i + b_u + sum_x_beta) %>%
    pull(pred)

summary(predicted_ratings)
```

```
>> Min. 1st Qu. Median Mean 3rd Qu. Max.
>> -0.7183 3.1260 3.5581 3.5058 3.9406 6.0652
```

Analyzing the values obtained for ratings, we see there are 216 values under 0.5 and 4157 predicted ratings over 5.

Table	12:	RMSE	results	with	the	Movie,	User	and	Genre	effects	model
-------	-----	------	---------	------	-----	--------	------	-----	-------	---------	-------

Method	RMSE
Just the Average	1.0600131
Movie effect model	0.9436204
Movie + User effects model	0.8662966
Movie + User + Genre effects model	0.8661932

While the work needed to obtain this prediction model was arduous, there was very little improvement from the previous model (as seen in Table 12), so we will try adding regularization.

2.5.5 Regularized Movie + User effects model

When a movie receives ratings from just a few users, or users give very few reviews overall, we have more uncertainty. Therefore, larger estimates of both b_i and b_u , negative or positive, are more likely (?). Consider a case in which we have a movie with 500 user ratings and another film with just one. While the first movie's b_i can be pretty accurate, the estimate for the second movie will simply be the observed deviation from the average rating, which is a clear sign of overtraining. In this cases, it is better to predict it as just the overall average rating μ , which is why we need a form of model penalization. Regularization permits us to penalize large estimates that are formed using small sample sizes.

We will add regularization to one of the previously tried models. Since adding genre didn't have much effect on RMSE, and both optimal λ determination (which we'll perform in this section) and β_k calculations are computationally costly, we will use the Movie + User effects model. So now, instead of minimizing the least

squares equation, we minimize an equation that adds a penalty. We need to apply regularization to both user and movie effects, and we do it as follows:

$$\sum_{u.i} \left(y_{u,i} - \mu - b_i - b_u\right)^2 + \lambda \left(\sum_i b_i^2 + \sum_u b_u^2\right)$$

The formula below shows the new form of calculating b_i , with the inclusion of λ in the mean values calculation. When our sample size n_i is very large, then the regularization cost λ is effectively ignored since $n_i + \lambda \approx n_i$ (?). However, when n_i is small, then the estimate $\hat{b}_i(\lambda)$ is shrunken towards 0. The larger λ , the smaller b_i .

$$\hat{b}_i(\lambda) = \frac{1}{\lambda + n_i} \sum_{i=1}^{n_i} \left(Y_{u,i} - \hat{\mu} \right)$$

In the same way, $\hat{b}_u(\lambda)$ is the regularized b_u , which includes λ in the division denominator.

$$\hat{b}_u(\lambda) = \frac{1}{\lambda + n_u} \sum_{u=1}^{n_u} \left(Y_{u,i} - \hat{b}_i - \hat{\mu} \right)$$

We first calculate various sets of predictions and their respective RMSE values by testing λ varying from 0 to 10, with a 0.25 step-size, and then determine which regularization parameter gives us the lowest RMSE.

```
train <- train %>% select(userId, movieId, rating)
test <- test %>% select(userId, movieId, rating)
lambdas \leftarrow seq(0, 10, 0.25)
rmses <- sapply(lambdas, function(1){</pre>
  b_i <- train %>%
    group_by(movieId) %>%
    summarize(b i = sum(rating - mu)/(n()+1))
  b u <- train %>%
    left_join(b_i, by="movieId") %>%
    group_by(userId) %>%
    summarize(b_u = sum(rating - b_i - mu)/(n()+1))
  predicted_ratings <-</pre>
    test %>%
    left_join(b_i, by = "movieId") %>%
    left_join(b_u, by = "userId") %>%
    mutate(pred = mu + b_i + b_u) %>%
    pull(pred)
  return(RMSE(test$rating, predicted_ratings))
qplot(lambdas, rmses, xlab='lambda', ylab='RMSE')
```

By analyzing the plot and retrieving values from table rmses, we identify that the optimal λ value is 5, and its corresponding RMSE is 0.8655751.

```
>> Min. 1st Qu. Median Mean 3rd Qu. Max.
>> -0.5784 3.1407 3.5624 3.5100 3.9346 5.9789
```

As usual, the summary function shows us that there are predicted values under 0.5 (137 predictions) and over 5.0 (2671).

Figure 13: RMSE values per lambda

Table 13: RMSE results with the Regularized Movie and User effects model

Method	RMSE
Just the Average	1.0600131
Movie effect model	0.9436204
Movie + User effects model	0.8662966
Movie + User + Genre effects model	0.8661932
Regularized Movie + User effects model	0.8655751

Once more there is improvement, but not much. The approach we are taking seems to begin stagnating, so we try a different one: matrix factorization.

2.5.6 Matrix Factorization with recosystem R package

Some groups of movies, as well as some groups of users, have similar rating patterns. We can identify them by inspecting their correlations, which is basically what matrix factorization does. This family of methods, which is a class of collaborative filtering algorithms used in recommendation systems that became widely known during the *Netflix* challenge, works by decomposing the (incomplete) user-movie interaction matrix into the product of two lower dimensionality rectangular matrices (?). This incomplete matrix $R_{m\times n}$, as mentioned in Section 2.2.3, is a matrix composed by rows that represent different users and columns, different movies; with each cell being an attributed rating (or the absence of one).

So we approximate the whole rating matrix $R_{m \times n}$ by the product of two matrices of lower dimensions, $P_{k \times m}$ and $Q_{k \times n}$, as described above and written below (?).

$$R \approx P'Q$$

Let p_u be the *u*-th column of P, and q_i be the *i*-th column of Q, then the rating given by user u on item i would be predicted as p'_uq_i . A typical solution for P and Q is the following (\ref{q}) :

$$\min_{P,Q} \sum_{(u,i) \in R} [f(p_u,q_i;r_{u,i}) + \mu_P ||p_u||_1 + \mu_Q ||q_i||_1 + \frac{\lambda_P}{2} ||pu||_2^2 + \frac{\lambda_Q}{2} ||q_i||_2^2]$$

where (u,i) are locations of observed entries in R, $r_{u,i}$ is the observed rating, f is the loss function, and μ_P , μ_Q , λ_P and λ_Q are, respectively, pairs of L1 and L2 regularization costs for P and Q during gradient descent, to avoid overtraining.

The recosystem package easily performs this factorization. But to do it, we need to input a parse matrix in triplet form, meaning that each line in the file must contain three numbers: user_index, item_index and rating. User and item indexes may start with either 0 or 1, and this can be specified by the index1 parameter in data_memory(). To train and predict, we need to provide objects of class DataSource, such as the previously mentioned data_memory(), which saves datasets as R objects.

After determining the training and test sets, we define an R object with function Reco() and tune it to identify the best parameters possible for our dataset. We need to determine the number of latent factors (k rows for $P_{k\times m}$ and $Q_{k\times n}$) with parameter dim, L2 regularization costs for both P and Q with costp_12 and costq_12, and learning rate for gradient descent lrate. The loss parameter has a default value of 12, so we maintain it and keep L1 costs as zero.

```
train_dm <- data_memory(user_index = train$userId, item_index = train$movieId,</pre>
                           rating = train$rating, index1 = TRUE)
rm(train)
test dm <- data memory(user index = test$userId, item index = test$movieId,
                       index1 = TRUE)
test_rating <- test$rating</pre>
rm(test)
set.seed(123, sample.kind = "Rounding")
r <- Reco()
params = r$tune(train_dm, opts = list(dim = c(15, 20),
                                         costp_11 = 0,
                                         costp_12 = c(0.01, 0.1),
                                         costq_11 = 0,
                                         costq_12 = c(0.01, 0.1),
                                         lrate = c(0.075, 0.1), nthread = 2)
optimal_params = params$min
r$train(train_dm, opts = c(optimal_params, nthread = 1, niter = 20))
```

From tuning, we obtained the optimal parameters dim = 20, costp_11 = 0, costp_12 = 0.01, costq_11 = 0, costq12=0.1, lrate = 0.1, loss_fun = 0.8052602. The model was then trained with these values, and it is now possible to predict ratings for the test set with r\$predict().

```
predicted_ratings = r$predict(test_dm, out_memory())
summary(predicted_ratings)
```

```
>> Min. 1st Qu. Median Mean 3rd Qu. Max.
>> -1.594 3.057 3.543 3.472 3.963 6.300
```

Our predicted ratings are obtained with an object of class Output, called out_memory(), and is returned as an R object. Inspecting the predictions obtained, we observe there are 859 values under 0.5 and 6221 over 5 stars rating. Table 14 shows the results for RMSE(test_rating, predicted_ratings).

Table 14: RMSE results with the Matrix Factorization Model

Method	RMSE
Just the Average	1.0600131
Movie effect model	0.9436204
Movie + User effects model	0.8662966
Movie + User + Genre effects model	0.8661932
Regularized Movie + User effects model	0.8655751
Matrix Factorization Model	0.7951871

A much better result is obtained, so we choose this as our final model, for the final hold-out validation set and conclusion of this report.

3 Results

3.1 Training final model with full edx dataset

To guarantee the final prediction model can be applied to the whole validation set, we will train with full edx set, in a similar way to the previous Section.

3.2 Final predicted ratings and RMSE

Predicting ratings for the validation dataset, we get the following values:

where we perceive 433 values under 0.5 rating and 3586 over 5.

Table 15: RMSE result for the validation set with Matrix Factorization Model

Method	Validation RMSE			
Matrix Factorization Model	0.7887703			

Table 15 provides us with the final RMSE, the Validation one, which gets to a value of 0.7887703. It is an excellent result, if compared to the other models in this report and also to the winning RMSE value in the *Netflix* challenge, which was 0.8712 (?). Even though that challenge utilized a different dataset, it is still remarkable.

4 Conclusion

We visualized the importance of variability between different movies and users, the genre and genre combinations effect on ratings, and some effects not that significant (rating time effect). A lot of models were evaluated, the genre addition didn't have a great effect on the model so we didn't utilize it during the regularized modeling, and the best and easiest model to apply was Matrix Factorization with recosystem R package.

As future improvement, we can determine ceiling and roof limits for the predictions. That is: the predicted values we get that are under 0.5 stars or over 5, we transform them to limit the predictions to a range of 0.5 to 5, further improving our RMSE results.