Moving brain tumor diagnosis to cost-efficient systems.

Brad Niepceron, Ahmed Nait-Sidi-Moh and Filippo Grassia. University of Picardie Jules Vernes

Speaker: Brad Niepceron. <u>brad.niepceron@etud.u-picardie.fr</u>

INTRODUCTION

Why moving brain tumor diagnosis computation to cost-efficient systems?

Fig 1. Carbon footprint benchmark including a DL model. Source: Strubell et al. Energy and Policy Considerations for Deep Learning in NLP. 2019.

INTRODUCTION

Fig2. Neural network pruning. Source: Song Han. Oreilly.com

Speed-up computation

Reduce memory footprint

Reduce energy consumption

Fig 3. A Spiking Neural Network

Towards a non-abstract Al

Cost-efficient models

Easy large-scale deployment

CNN Compression

1. CNN Compression

Fig 4. U-Net architecture for medical image segmentation. Source: Olaf Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.

1. CNN Compression

Group Normalization

Fig 5. Normalization method comparison. Source: Yuxin Wu, Kaiming He. Group Normalization 2018.

1. CNN Compression

2 Depthwise Separable Convolution (DSC)

Fig 6. Depthwise Separable Convolution. Source: Niepceron et al. Moving Medical Image Analysis to GPU Embedded Systems: Application to Brain Tumor Segmentation. 2020.

Reduces de number of parameters

1. CNN Compression

3 Cost efficient conv. block.

Fig 7. Depthwise Convolutional Block. Source: Niepceron et al. 2020.

- Independent Component Layer
- ResNet-like conv. block.
- Replacing each U-net conv.

1. CNN Compression

Fig 8. Compressed U-Net architecture. Source: Niepceron et al. 2020.

1. CNN Compression

NVIDIA Jetson AGX Xavier

	MAXN	10W	15W	30W_ALL
CPU Cores	8	2	4	8
CPU Max Freq. (MHz)	1377	520	6700	900
GPU Max Freq. (MHz)	2265.6	1200	1200	1200
Memory Max Freq. (MHz)	2133.6	1066	1333	1600

Fig 9. NVIDIA Jetson Xavier properties. Source: Niepceron et al. 2020.

Small weight and size

Low power consumption

Deep Learning Accelerator

JetPack SDK

Large memory

Spike-based model for tumor recognition

2. Spike-based model for tumor recognition

Fig 10. Standard PCNN. Source: Niepceron et al. 2021.

Laterally-connected neurons

2D input image

Iterative model

Outputs a segmentation map

Feeding: Computes voltage with input stimulus

Linking: Updates neuron's internal activity

Pulse: Fire if membrane potential exceeds threshold

2. Spike-based model for tumor recognition

Fig 11. Image Signature (B) of an MRI Slice (A). Source: Niepceron et al. 2021.

Already used for object detection without region selection methods

2. PCNN for visual diagnosis

Fig 12. The Selective Search algorithm. Source: arthurdouillard.com.

2. Spike-based model for tumor recognition

Step 1: Compute Selective Search on M to create B_{ij} bounding boxes

Step 2 : Remove boxes with area greater than threshold θ

Step 3: Extract image patches P_{ij} from the boxes

Step 4: Convert each P_{ij} to signature S_{ij}

Step 5: Compute the Euclidean distance between each S_{ij} and the signature

 M_{sign} obtained from M

Step 6: Retain B_{min} the box that gives the smallest distance D_{min} as the

complete tumor detection box

Fig 13. Tumor detection algorithm based on PCNN feature extraction. Source: Niepceron et al. 2021.

1. CNN Compression

DETAILS

Successful deployment93 % of reductionDecreased training time20 mins per epoch

LIMITS

Feature Maps
DSC not GPU supported

	Dice Score			
Method	Complete	Core	Enhancing	
Proposed	0.81	0.77	0.53	
Zhao (Zhao et al., 2018)	0.82	0.72	0.62	
Pereira (Pereira, Pinto, Alves, & Silva, 2016)	0.84	0.72	0.62	
Dong (Dong et al., 2017)	0.86	0.86	0.65	

Fig 14. Results of our compressed U-Net. Source: Niepceron et al. 2020.

Dice: 0.79

2. PCNN for tumor segmentation

Fig 15. PCNN Segmentation results. Source: Niepceron et al. 2020.

Dice: 0.90

Dice: 0.88

2. PCNN for tumor detection

Fig 16. PCNN Detection results. Source: Niepceron et al. 2020.

CONCLUSION

CONCLUSION

Model Compression

93% of compression obtained with minor penalties.

Leads to perspective for more profitable Al.

Parameter Pruning, Knowledge Distillation ...

Spike-based computation

Explore new methods of light MRI segmentation. Proven efficient for medical data.

Extend to multi-class

QUESTIONS

