

INGENIERÍA DE PROCESOS FUNDICIÓN HOJA DE PROCESO FUSIÓN

Fecha Emisión: Febrero 2015. Elaboró: Ingeniero Procesos Fundición Código: DHPF- 051

Fecha Revisión: Agosto 2017. Aprobó: Jefe de Fundición

Revisión No.: 04

CARACTERÍSTICAS

CLIENTE: MERCADO DE REFACCIONES.

PRODUCTO: ÁRBOL DE LEVAS (FX-123, FX-135, FX-121, FX-145, FX-158, FX-140, FX-141).

TIPO DE ALEACIÓN: HIERRO NODULAR PERLÍTICO D7003. MOLDEO NO BAKE.

NORMA DE FABRICACIÓN: DE ACUERDO A SAE J434.

ANÁLISIS QUÍMICO PRELIMINAR.													
	%C	%Si	%Mn	%Cr	%Mo	%Ni	%Cu	%Sn					
Preliminar	3.70-3.78	*	*	0.15 máx.	0.15 máx.	0.15 máx.	*	0.073-0.078					
	%S	%AI	%Ti	%P	%Pb	%V							
Preliminar	0.011 - 0.018	0.025 máx.	0.035 máx.	0.05 máx.	0.004 máx.	0.040 máx.							

Características.

Tiempo de vaciado por molde: Menor (m).

Tiempo desde nodulización hasta último molde vaciado (fading): Crítica (<>).

Temperatura de vaciado a molde: Crítica (<>). Tiempo de desprensado por olla: Menor (m). Temperatura de sangrado del horno: Mayor (M).

Temperatura sangrado	Temperatura vaciado	Inoculante	Nodulizante	Fading nodulizante	Tiempo por molde	Tiempo de prensado	Tiempo desmoldeo					
1470 °C.	1385 °C.	2.3-2.70 kg.	8.0 kgs.	12 minutos	8–14 seg.	5 minutos	45 minutos					
1520 °C.	1420 °C.		9.0 kgs.	máximo			mínimo					
*OPCIONES DE PRELIMINAR.												
#1		#2		#3		#4						
Si= 1.20 – 1.25%		Si= 1.25 – 1.30%		Si= 1.31 – 1.38%		Si= 1.39 – 1.44%						
Mn= 0.82 - 0.95%		Mn= 0.85 – 0.99%		Mn = 0.87 - 0.	Mn= 0.87 – 0.98%		Mn= 0.92 - 1.00%					
Cu= 0.82 - 0.90%		Cu= 0.85 - 0.95%		Cu= 0.90 - 1.00%		Cu= 0.92 - 1.00%						
		Mo= 0.04 - 0.10%		Mo= 0.05 - 0.10%		Cr = 0.06 - 0.08%						
#5				#6								
Si= 1.45 – 1.50	% Cr= 0.	08 – 0.13%		Si= 1.51 – 1.6	Si= 1.51 – 1.60% Mo= 0.09 – 0.13%							
Mn= 0.96 – 1.05% Mo= 0		.08 - 0.13%		Mn = 1.02 - 1.	Mn= 1.02 – 1.06% Ni= 0.09 – 0.13%							
Cu= 0.96 - 1.05	5%			Cu = 1.02 - 1.0	06% Cr=	: 0.09 – 0.13%						

INDICACIONES.

- 1º. La temperatura para sacar la muestra preliminar del horno es 1400 °C. mínimo si es Desulco, cualquier otro grafito la temperatura mínima es1440 °C.
- 2º. No se permite agregar ninguna otra ferroaleación en la olla tundish ni en la olla de vaciado.
- 3º. Agréquese la misma cantidad de inoculante de la producción anterior. En caso de anormalidades en la microestructura y/o dureza del producto, consultar a Ingeniería de Procesos Fundición.
- 4º. Usar báscula para pesar el metal a tratar en la olla tunidsh. Las ollas de vaciado deben tener báscula durante el vaciado del metal a los moldes.
- 5º. Está prohibido echar piezas, cargadores o pedazos de colada a la olla de vaciadoy ollas tundish con metal fundido para bajar la temperatura.
- 6º. Escoriar 1 ó 2 veces o más el metal de la olla de vaciado después de inocular y antes de vaciar el primer molde. Después de tomar la temperatura de vaciado se debe sopletear o barrer por afuera la parte superior de la olla para quitar escoriador y escoria que pudo haberse precipitado. Durante el vaciado a los moldes se debe limpiar el pico de la olla de escoria con una varilla con una punta al rojo vivo, según lo amerite, esto a criterio del vaciador o avudante de vaciador.
- 7º. Quemar los gases que se generen en el vaciado (llenado del molde) con una varilla con un extremo al rojo vivo.
- 8º. Lingotear todo el metal remanente que quede en la olla de vaciado antes de volver a llenarla.
- 9º. Si la aleación requiere un ajuste después de conocer el primer resultado, se debe ajustar con paca, placa, Ni, Cu, grafito, ferroaleaciones, etc., y sacar la siguiente preliminar 5 mint. después de haber agregado el último material de ajuste al horno.
- 10°. Se permite una tolerancia de +0.02para el C; para del S de +0.002; los demás elementos no tienen tolerancia.
- 11º. La muestra final para el espectrómetro de emisión se debe tomar de uno de los 3 últimos moldes, no debe hacerse antes de estos moldes; hacerlo sobre un molde lleno, nunca sobre uno vacío.
- 12º. Los números de parte de la presente hoja de proceso se pueden vaciar con la DHPF-084 y/o DHPF-089.
- 13°. La DHPF-049 complementa y forma parte de la presente DHPF-051.
- 14º. Para la evaluación final de producto se debe tomar la DHIF-053.

Formato FOF-004 Emisión.: Mayo 2015 Revisión No. 04 Revisión: Julio 2017

> DHPF-051 Ana Núñez