Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

Projekt zespołu 05 na przedmiot Symulacja Systemów Dyskretnych

> Łukasz Łabuz Dawid Małecki Mateusz Mazur

13 grudnia 2023

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

└ Postępy prac

Postępy prac

Prace wykonane na rzecz projektu w okresie od ostatniego spotkania

- 1 Finalizacja prac nad modelem formalnym
- 2 Stworzenie dokumentu z opisem modelu formalnego
- 3 Rozpoczęcie implementacji modelu formalnego
- Implementacja GUI symulatora

Zestawienie osób i wykonanych przez nie zadań

Zadanie	Łukasz Łabuz	Dawid Małecki	Mateusz Mazur
Finalizacja prac nad modelem formalnym	√	✓	✓
Stworzenie dokumentu z opisem modelu formalnego			\checkmark
Rozpoczęcie implementacji modelu formalnego	\checkmark	\checkmark	\checkmark
Implementacja GUI symulatora			✓

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie L-Model formalny

Model formalny

Przypomnienie celu projektu

Celem projektu jest stworzenie modelu symulacyjnego ruchu drogowego na rondzie Grunwaldzkim w krakowie.

Rysunek 1: Obszar symulacji. Źródło: Google My Maps

Materiały źródłowe

Kwerenda literaturowa naszego projektu została podzielona na dwie sekcje - główną oraz pomocniczą.

Materiały z sekcji głównej stanowią podstawę naszego modelu formalnego, natomiast materiały z sekcji pomocniczej są dodatkowymi źródłami informacji, które mogą okazać się przydatne w trakcie jego implementacji.

Główne materiały źródłowe

- Gora P. Adaptacyjne planowanie ruchu drogowego [1]
- Rasouli A. Pedestrian Simulation: A Review [2]

Skale oraz technika symulacji

W materiale [2] przedstawione zostały definicje różnych skal oraz technik symulacji.

W naszym projekcie wykorzystujemy następujące:

Techniki symulacji

Model komórkowy - model polegający na dyskretyzacji obszarów, na których poruszają się symulowane jednostki. Według założenia, każda z nich może zajmować jedną komórkę na siatce w danym momencie. W każdym kroku symulacji, jednostki mogą zmienić swoją pozycję na sąsiednią komórkę.

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie – Model formalny

Skale symulacji

Agent-Based - skala, w której każda jednostka jest rozróżnialna, ma własne, zdefiniowane statystyki oraz zbiór możliwych do podjęcia decyzji. Na jej zachowanie ma wpływ otoczenie, infrastruktura czy też inne jednostki.

Entity-Based - skala, w której jednostki są z założenia nierozróżnialne. Nie wyróżniają się niczym. Zachowują się według ściśle ustalonych reguł. Nie mają wpływu na otoczenie.

Elementy modelu formalnego

Automat komórkowy

W naszym modelu formalnym wykorzystujemy definicję automatu komórkowego przedstawioną w [1] - rysunek 2.

Definicja 1.3.1. Automat komórkowy to krotka:

$$CA = \langle T, C, N, S, S_0, F \rangle,$$
 (1.1)

gdzie:

- T Przedział czasu, w którym odbywa się ewolucja automatu (T = {0,1,2,...,T_{MAX}}, gdzie T_{MAX} ∈ N ∪ {∞})
- C Zbiór komórek
- $N: C- > \mathcal{P}(C)$ Funkcja, która każdej komórce ze zbioru C przyporządkowuje jej otoczenie
- S Zbiór możliwych stanów komórek
- S₀: C− > S Początkowa konfiguracja komórek (stan komórek w chwili t = 0)
- F: T × C− > S Regula przejścia, taka że ∀_{c∈C}∀_{t∈T} c_{t+1} = F(t, c), gdzie c_t stan komórki c w chwili t ∈ T.

Rysunek 2: Definicja Automatu komórkowego przedstawiona w [1]

Jednostki

Algorytmy zachowania jednostek, które wchodzą w skład naszego modelu, przedstawiają następujące rysunki:

- pojazdy rysunek 3
- piesi rysunek 4
- sygnalizacja świetlna rysunek 5.

Algorithm 2 Algorytm ruchu pojazdu car w kroku t

```
Require: G = (V, E), t \in T, car \in CARS(t), turnPenalty, crossroadPenalty, prob
  increaseVelocity(car, t);
  if stopOnSignal(car, t) then
    reduceVelocityOnSignal(car,t)
 else
    if turnOnCrossroad(car, t) then
       reduceVelocity(car, t, turnParameter);
    else
      if crossroad(car, t) then
         reduceVelocity(car, t, crossroadParameter);
      end if
    end if
 end if
  if shouldChangeLane(car, t) then
    changeLane(car, t);
  end if
  safeReduceVelocity(car, t)
  with probability prob: reduceVelocity(car, t);
  makeMove(car, t):
```

Rysunek 3: Algorytm ruchu pojazdów przedstawiony w [1]

Rysunek 4: Algorytm ruchu pieszych przedstawiony w [2]

Algorithm 1 Algorytm przejścia dla sygnalizacji świetlnej s w kroku t

```
Require: s \in SIGNALS(G), t \in T
Ensure: state(s, t + 1) \in \{GREEN, RED\}
  if t_{change}(s) > 0 then
     t_{change}(s) := t_{change}(s) - 1
     state(s, t + 1) := state(s, t)
     return state(s, t+1)
  else
     if state(s, t) = RED then
        t_{change}(s) := t_{green}(s)
        state(s, t + 1) := GREEN
     else
        t_{change}(s) := t_{red}(s)
        state(s, t + 1) := RED
     end if
     return state(s, t + 1)
  end if
```

Rysunek 5: Algorytm działania sygnalizacji świetlnej przedstawiony w [1]

Podsumowanie

Praca [1], oprócz wyżej wymienionych definicji i algorytmów (Rysunki 2, 3, 5), zawiera również szerokie opisy poszczególnych elementów modelu oraz ich zachowań.

Praca [2] zawiera krótki, ale konkretny opis algorytmu ruchu pieszych oraz ich zachowania.

Na bazie tych materiałów, stworzyliśmy model formalny, który posłuży nam jako podstawa implementacji symulatora.

Model formalny

Nasz model jest połączeniem elementów z obu prac.

Dzięki obszernym opisom z pracy [1] łatwo było nam zrozumieć, jak poszczególne elementy modelu powinny ze sobą współpracować oraz jak, do modelu przedstawionego przez jego autora, dodać symulację pieszych z pracy [2].

Stworzenie aplikacji symulacyjnej na podstawie tak przygotowanego modelu nie powinno zatem stanowić problemu. Potwierdzają to dotychczasowe postępy prac.

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

Implementacja symulatora

Implementacja symulatora

Minione zadanie - Próba implementacji prostego modelu NaSch

Jakiś czas temu postanowiliśmy spróbować zaimplementować prosty model NaSch, aby lepiej zapoznać się z biblioteką *CellPyLib* oraz problematyką projektu.

Wyniki zadania pokazały, że implementacja modelu NaSch nie jest trudna, ale biblioteka *CellPyLib* nie nadaje się idealnie do implementacji tego typu modelu.

Po dalszej analizie zdecydowaliśmy się zrezygnować z biblioteki *CellPyLib* i zaimplementować model samodzielnie.

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

└─Implementacja symulatora

Aktualny stan prac

W trakcie ostatnich dwóch tygodni udało nam się zaimplementować podstawowe elementy składowe modelu formalnego.

Naszą uwagę skupiliśmy głównie na implementacji GIU symulatora, aby móc w łatwy sposób testować działanie naszego modelu.

GUI symulatora

Nowe GUI symulatora zostało wykorzystuje o bibliotekę Pygame.

Umożliwia ono wyświetlanie stanu symulatora w czasie rzeczywistym. Możliwe jest przybliżanie (klawisze *z,c*) i przesuwanie widoku widoku (*strzałki*). Obecny wygląd GUI symulatora przedstawiają rysunki 6 oraz 7.

Rysunek 6: GUI symulatora - widok ogólny. Dla zwiększenie czytelności graf dróg jest nanoszony na obraz z map (źródło: OpenStreetMap). Wierzchołki grafu (skrzyżowania) przedstawione są jako szare punkty. Krawędzie składają się z co najmniej jednej, kropkowanej linii. Linie obrazują pasy ruchu, a kropki komórki automatu.

Rysunek 7: GUI symulatora - widok przybliżony. Dla zwiększenie czytelności graf dróg jest nanoszony na obraz z map (źródło: OpenStreetMap). Wierzchołki grafu (skrzyżowania) przedstawione są jako szare punkty. Krawędzie składają się z co najmniej jednej, kropkowanej linii. Linie obrazują pasy ruchu, a kropki komórki automatu.

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie L Pytania

Pytania

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie

Dziękujemy za uwagę

Dziękujemy za uwagę

Symulacja ruchu drogowego na przykładzie ronda Grunwaldzkiego w Krakowie \sqcup Bibliografia

Bibliografia

Bibliografia

- [1] Gora, P. 2010. Adaptacyjne planowanie ruchu drogowego. Uniwersytet Warszawski, Wydział Matematyki, Informatyki i Mechaniki.
- [2] Rasouli, A. 2021. Pedestrian simulation: A review. arXiv preprint arXiv:2102.03289. (2021).