

Guía de Ejercicios $N^{\underline{o}}$ 1: Física de Semiconductores

Constante	Valor			
\overline{q}	$1,602 \times 10^{-19} \mathrm{C}$			
k	$1,381 \times 10^{-23} \mathrm{J/K} = 8,617 \times 10^{-5} \mathrm{eVK}$			
ϵ_0	$88.5\mathrm{fF/cm}$			
$\epsilon_r(\mathrm{Si})$	11,7			
$\epsilon_r(\mathrm{SiO}_2)$	3,9			
$T_{ m amb}$	$27^{\circ}{\rm C} = 300{\rm K}$			

Tabla 1: Constantes útiles.

Propiedad	Descripción	Silicio (Si)	Germanio (Ge)	Arseniuro de galio (GaAs)
$n_i [\mathrm{cm}^{-3}]$	Concentración intrínseca de portadores	10^{10}	2×10^{13}	2×10^6
$\mu_{\rm n0} \ [{\rm cm}^2/({\rm Vs})]$	Movilidad de los e^- a $T_{\rm amb}$	1450	3900	9000
$\mu_{\mathrm{p}0}~[\mathrm{cm}^2/(\mathrm{Vs})]$	Movilidad de los h a $T_{\rm amb}$	500	2300	460

Tabla 2: Propiedades de materiales semiconductores. Las movilidades son para semiconductores intrínsecos.

Parte I: Distribuciones de carga

- 1. La distribución de carga en un bloque de silicio se muestra en la figura 1.
 - a) Determine el signo del campo eléctrico en $x=-750\,\mathrm{nm},\,x=-250\,\mathrm{nm},\,x=250\,\mathrm{nm}$ y $x=750\,\mathrm{nm}.$
 - b) Determine el valor del campo eléctrico en $x=-250\,\mathrm{nm}.$
 - c) ¿Dónde es máximo el campo eléctrico? (Responda sin hacer cuentas)
 - d) Haga un gráfico del campo eléctrico en función de la posición.

Figura 1

DISPOSITIVOS SEMICONDUCTORES Última actualización: $1^{\rm er}$ Cuatrimestre de 2023

- 2. La distribución de carga en un bloque de silicio se muestra en la figura 2:
 - a) Encuentre el espesor Δ para que la muestra sea eléctricamente neutra. Dejar fijo $\rho(-300\,\mathrm{nm})$.
 - b) Encuentre el valor del campo eléctrico en $x=-250\,\mathrm{nm}$ y $x=150\,\mathrm{nm}$.
 - c) Grafique el campo eléctrico en función de la posición E(x).
 - d) Si el potencial $\phi(-\infty) = 0 \,\text{mV}$, encuentre el valor del potencial eléctrico en $x = 350 \,\text{nm}$.

Figura 2

- 3. El campo eléctrico en un bloque de silicio se muestra en la figura 3:
 - a) Grafique la densidad de carga $\rho(x)$.
 - b) Si $\phi(x=-2 \, \mu \text{m}) = -500 \, \text{mV}$, ¿cuánto vale el potencial en x=0?
 - c) ¿Cuánto vale el potencial en $x=2\,\mu\mathrm{m}$?

NOTA: no es necesario encontrar la expresión del potencial para responder esta pregunta.

d) Grafique el potencial eléctrico $\phi(x)$ sabiendo que $\phi(x=-2\,\mu\mathrm{m})=-500\,\mathrm{mV}.$

Figura 3

- 4. La distribución de cargas en un bloque de silicio se muestra en la figura 4. La densidad superficial representada por la delta de Dirac es $\sigma = 2\,\mu\text{C/cm}^2$.
 - a) Grafique el campo eléctrico en función de la posición E(x).
 - b) Grafique el potencial suponiendo que $\phi(-\infty) = 0 \,\text{mV}$.

NOTA: no se debe prestar atención a la altura de la delta de Dirac en el gráfico, ya que las unidades de σ son distintas a las del eje de ordenadas. Solamente es relevante la posición de la delta sobre el eje de abscisas.

Figura 4

Parte II: Semiconductores intrínsecos y extrínsecos

- 5. Una oblea de silicio a temperatura ambiente está dopada con átomos donores con una concentración de $N_{\rm D}=1\times10^{15}\,{\rm cm}^{-3}$.
 - a) ¿Cuál son las concentraciones de electrones n_0 (cm⁻³) y huecos p_0 (cm⁻³) a temperatura ambiente?
 - b) Calcular nuevamente n_0 y p_0 para los siguientes valores de $N_{\rm D}$: $10^8\,{\rm cm}^{-3}$, $10^{10}\,{\rm cm}^{-3}$ y $10^{12}\,{\rm cm}^{-3}$. Graficar.
 - c) ¿Qué sucede si en lugar de dopar con átomos donores $(N_{\rm D})$ se lo hace con aceptores $(N_{\rm A})$?
- 6. Se tiene una oblea de silicio a temperatura ambiente dopada con una concentración de átomos aceptores de $N_{\rm A}=1\times10^{14}\,{\rm cm^{-3}}$. Se agregan átomos donores con una concentración de $N_{\rm D}=7.5\times10^{15}\,{\rm cm^{-3}}$ en una región de la oblea.
 - a) ¿Cuál son las concentraciones de electrones n_0 (cm⁻³) y huecos p_0 (cm⁻³) a temperatura ambiente?
 - b) Esta región de la oblea, ¿es tipo N o tipo P?
- 7. Tres obleas, cada una de un material semiconductor distinto (Si, Ge y GaAs) son dopadas con átomos donores con una concentración $N_{\rm D}=1\times10^{10}\,{\rm cm^{-3}}$. ¿Cuál es la concentración de electrones y huecos a temperatura ambiente en cada uno de los materiales? ¿Cuánto cambian en cada caso respecto de las concentraciones para los materiales intrínsecos?

Parte III: Densidades de corriente y conductividad

- 8. Calcular la conductividad del silicio, germanio y arseniuro de galio a temperatura ambiente. Considerar que todos los materiales sean intrínsecos.
- 9. Dado un bloque de silicio cristalino intrínseco de 12 μm de largo y 4 μm² de sección, considerando equilibrio térmico y temperatura ambiente, se pide:

DISPOSITIVOS SEMICONDUCTORES

Última actualización: 1er Cuatrimestre de 2023

- a) Calcule la resistencia entre los extremos de la barra de silicio.
- b) Hallar la expresión de la corriente si se aplica una diferencia de potencial $V_{\rm EXT}$ entre los extremos del bloque. Indicar esquemáticamente el sentido del movimiento de los portadores.
- 10. Se tienen distintas obleas de Si a temperatura ambiente dopadas con B. Cada una es dopada con una concentración distinta, estas son: 10⁸ cm⁻³, 10¹⁰ cm⁻³, 10¹² cm⁻³ y 10¹⁵ cm⁻³. Graficar como varían las siguientes propiedades entre oblea y oblea: la movilidad de los electrones y de los huecos (utilice el gráfico de movilidad en función del dopaje); y la conductividad de la oblea.
- 11. Se tiene una oblea de silicio tipo P levemente dopada con una resistividad de $250\,\Omega\,\mathrm{cm}$. La geometría es tal que puede considerarse una situación unidimensional. En una cierta región de la muestra se mide una corriente de arrastre de $1\times10^4\,\mathrm{A/cm^2}$. Estime a temperatura ambiente la magnitud de:
 - a) La concentración del dopaje.
 - b) El campo eléctrico.
 - c) La contribución relativa de los electrones y los huecos a la corriente de arrastre total.
 - d) La velocidad de arrastre de los huecos y los electrones.
- 12. En una muestra de silicio que tiene una concentración de donores de $N_D = 1 \times 10^{13} \,\mathrm{cm}^{-3}$, se aplica un campo eléctrico en la dirección +x de magnitud $1 \,\mathrm{kV/cm}$.
 - a) ¿Cuál es la velocidad de arrastre de los electrones y huecos (magnitud y signo)?
 - b) ¿Cuál es la densidad de corriente de arrastre de los electrones y huecos (magnitud y signo)?
 - c) Realizar un gráfico cualitativo de la muestra con las direcciones de las velocidad y densidad de corriente de cada portador.
 - d) ¿Por qué el aporte de electrones a la corriente es mucho mayor que el de huecos?
- 13. A lo largo de una muestra de silicio de $2\,\mu\mathrm{m}$ de longitud se establece un exceso de concentración de huecos minoritarios que está dado por $\Delta p(x) = 10^8\,\mathrm{cm}^{-4} \times x$, donde x es la coordenada en la dirección del gradiente de concentración. La concentración de donores en la muestra es $1 \times 10^{16}\,\mathrm{cm}^{-3}$. Encuentre la magnitud y signo de la densidad de corriente de difusión de huecos.

Parte IV: Electroestática de los SC y relaciones de Boltzmann

- 14. Se tienen dos regiones en una oblea de silicio. Una está dopada con una concentración $N_D = 5 \times 10^{16} \, \mathrm{cm}^{-3}$ y la otra $N_A = 2 \times 10^{17} \, \mathrm{cm}^{-3}$.
 - a) ¿Qué tipo de material es cada región?
 - b) Calcule la concentración de electrones y huecos en cada una de las regiones.
 - c) ¿Cuál es la diferencia de potencial entre las cada regiones?
- 15. Se tienen dos regiones en una oblea de silicio. Una está dopada con una concentración $N_{D1} = 1 \times 10^{13}$ cm⁻³ y la otra $N_{D2} = 1 \times 10^{18}$ cm⁻³.
 - a) ¿Qué tipo de material es cada región?
 - b) Calcule la concentración de electrones y huecos en cada una de las regiones.
 - c) ¿Cuál es la diferencia de potencial entre cada región?
- 16. Se tiene un bloque de silicio de 100 µm de largo cuyo nivel de dopaje cumple con la siguiente función: $N_A(x) = (10^{17} + x \cdot 10^{16} \, \text{µm}^{-1}) \, \text{cm}^{-3}$ con x en micro-metros. Suponer válida la hipótesis de cuasi-neutralidad.
 - a) Graficar n_0 y p_0 en función de x.
 - b) Calcular la diferencia de potencial entre los extremos del bloque.
- 17. Se tiene una oblea de silicio tipo N de 100 µm de largo con una distribución de dopante no uniforme. Conocidas las funciones de la variación espacial de dopantes $(N_D(x) = 4 \times 10^{19} \,\mathrm{cm}^{-4} \,x + 10^{17} \,\mathrm{cm}^{-3})$ y portadores mayoritarios $(n(x) = 3 \times 10^{19} \,\mathrm{cm}^{-4} \,x + 1.5 \times 10^{17} \,\mathrm{cm}^{-3})$, determinar el campo eléctrico máximo.

DISPOSITIVOS SEMICONDUCTORES Última actualización: 1^{er} Cuatrimestre de 2023

Parte V: Integradores

- 18. Tres muestras de silicio con misma geometría (largo y área) son dopadas con tres densidades de impurezas donoras distintas, obteniéndose tres valores de movilidad distintos: $\mu = 1400; 800; 300 \, \text{cm}^2/(\text{Vs})$. A cada una de ellas se le aplica la misma tensión V, obteniéndose 3 corrientes distintas circulando por cada muestra que cumplen $I_1 > I_2 > I_3$. Relacionar cada corriente obtenida con cada uno de los dopajes y movilidades. Explicar por qué varía la movilidad, indicando un valor aproximado de densidad de dopaje para cada muestra. Justificar la respuesta.
- 19. En la Fig. 6 se presenta una resistencia para circuitos integrados basada en silicio que se construye realizando una impurificación con dopantes aceptores de concentración volumétrica N_A entre dos contactos metálicos, sobre un sustrato semiconductor tipo N. Se satisface que $N_A \gg N_D$.
 - a) Obtener el valor de N_A para que a a temperatura ambiente la concentración de los portadores generados térmicamente sea 5 órdenes de magnitud menor que p_0 .
 - b) Sabiendo que $d=6,65\,\mu\mathrm{m}$ determinar la relación entre L y W para que la resistencia a temperatura ambiente entre los contactos sea $1\,\mathrm{k}\Omega$.

NOTA 1: el SiO_2 es un material aislante.

NOTA 2: Considerar que no existe circulación de corriente entre la zona tipo P/P⁺ y la zona tipo N.

Figura 5: Resistencia para circuitos integrados

Figura 6

20. Se tiene el divisor resistivo de la Fig. 7. Ambos resistores están construidos con germanio y tienen las mismas dimensiones. R_1 se encuentra dopado con $N_D=5\times 10^{15}\,\mathrm{cm}^{-3}$, mientras que R_2 está dopado con $N_A=1\times 10^{18}\,\mathrm{cm}^{-3}$. Calcular la tensión en el nodo V_o a temperatura ambiente.

Figura 7

21. Se tiene el circuito RC de la Fig. 8. La constante de tiempo es $\tau=90\,\mathrm{ns}$ y el capacitor tiene 1 pF de capacidad. El resistor está elaborado con silicio levemente dopado tipo N, tiene un área de 100 μ m² y una longitud de 10 μ m. Determinar el valor de su dopaje.

DISPOSITIVOS SEMICONDUCTORES Última actualización: $1^{\rm er}$ Cuatrimestre de 2023

Figura 8