Topic 4: Predicate Logic

Ch1.4 Predicates and Quantifiers

TABLE 1 Quantifiers.				
Statement	When True?	When False?		
$\forall x P(x) \\ \exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .		

 \forall : universal quantifier; \exists : existential quantifier.

- ∀: "all of", "for each", "given any", "for arbitrary", and "for any"; ∃: "for some", "for at least one", or "there is".
- \forall and \exists have higher precedence than all logical operators

 $S \equiv T$: S and T (involving predicates and quantifiers) are logically equivalent.

TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.	
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .	

Ch1.5 Nested Quantifiers

The Order of Quantifiers

- $\forall x \forall y \; P(x,y)$ and $\forall y \forall x \; P(x,y)$ have the same meaning
- $\exists y \forall x \; P(x,y)$ and $\forall x \exists y \; P(x,y)$ are not logically equivalent

TABLE 1 Quantifications of Two Variables.				
Statement	When True?	When False?		
$\forall x \forall y P(x, y) \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.		
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .		
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.		
$\exists x \exists y P(x, y) \exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .		

Ch1.3 Propositional Equivalences

tautology: always true; contradiction: always false; contingency: neither of the above.

 $p \equiv q$: p and q are logically equivalent if $p \leftrightarrow q$ is a tautology. (\Leftrightarrow is sometimes used instead of \equiv)

Ch1.6 Rules of Inference

Argument: A sequence of propositions; **premises**: All but the final proposition; **conclusion**: The final proposition; **valid**: if the truth of all its premises implies that the conclusion is true.

Rules of Inference for Propositional Logic & Quantified Statements

See Appendix D-1 & 2 for the table.

Topic 4: Predicate Logic