k-CENTER via Parametric Pruning

Given: A complete graph G=(V,E) with edge costs $c\colon E\to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

$$cost(S) := max_{v \in V} c(v, S)$$

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

$$cost(S) := max_{v \in V} c(v, S)$$

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

optimal for k = 3? better solution?

Given: A complete graph G = (V, E) with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Given: A complete graph G = (V, E) with edge costs $c \colon E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

today: 2-approximation of metric *k*-center using *parametric pruning.*

Idea 1: Reduce optimization problem to decision problem

Idea 1: Reduce optimization problem to decision problem

```
optimization: minimize cost of solution (or maximize) decision (t): find answer to: Is there a feasible solution with cost \leq t?
```

Idea 1: Reduce optimization problem to decision problem by solving decision(t) for increasing t until answer is yes optimization: minimize cost of solution (or maximize)

decision (t): find answer to: Is there a feasible solution with cost $\leq t$?

```
Idea 1: Reduce optimization problem to decision problem by solving decision(t) for increasing t until answer is yes optimization: minimize cost of solution (or maximize) decision (t): find answer to: Is there a feasible solution with cost \leq t?
```

Idea 2 (pruning): Given instance I of optimization problem, obtain instance I(t) by removing parts that cannot be used in solution with cost $\leq t$

Idea 1: Reduce optimization problem to decision problem by solving decision(t) for increasing t until answer is yes optimization: minimize cost of solution (or maximize) decision (t): find answer to: Is there a feasible solution with cost $\leq t$?

Idea 2 (pruning): Given instance I of optimization problem, obtain instance I(t) by removing parts that cannot be used in solution with cost $\leq t$

Idea 3 (lower bound): factor- α approximation algorithm consists of two steps

```
Idea 1: Reduce optimization problem to decision problem by solving decision(t) for increasing t until answer is yes optimization: minimize cost of solution (or maximize) decision (t): find answer to: Is there a feasible solution with cost \leq t?
```

Idea 2 (pruning): Given instance I of optimization problem, obtain instance I(t) by removing parts that cannot be used in solution with cost $\leq t$

Idea 3 (lower bound): factor- α approximation algorithm consists of two steps 1.) use family of instances I(t) to compute lower bound t^* for OPT

Idea 1: Reduce optimization problem to decision problem by solving decision(t) for increasing t until answer is yes optimization: minimize cost of solution (or maximize) decision (t): find answer to: Is there a feasible solution with cost $\leq t$?

Idea 2 (pruning): Given instance I of optimization problem, obtain instance I(t) by removing parts that cannot be used in solution with cost $\leq t$

Idea 3 (lower bound): factor- α approximation algorithm consists of two steps

- 1.) use family of instances I(t) to compute lower bound t^* for OPT
- 2.) find solution in instance $I(\alpha t^*)$

Metric k-center: What is the decision problem? How do the pruned instances I(t) look like?

Let $E = \{e_1, \ldots, e_m\}$ with $c(e_1) \leq \ldots \leq c(e_m)$.

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \leq \dots \leq c(e_m)$. Suppose we want to decide whether $OPT \leq c(e_j)$.

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \leq \dots \leq c(e_m)$. Suppose we want to decide whether $OPT \leq c(e_j)$.

Let $E = \{e_1, \dots, e_m\}$ with $c(e_1) \leq \dots \leq c(e_m)$. Suppose we want to decide whether $OPT \leq c(e_j)$.

...try each pruned instance G_j .

Def.

Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D.

Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

Def. A vertex set D of a graph H is dominating if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by dom(H).

...but computing dom(H) is NP-hard.

Square of a Graph – Lower bounding k-Center

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

```
Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution
```

```
Ingredient 1: square of G_j \approx "coarsened" G_j.
```

Def. The square H^2 of a graph H has the same vertex set as H.

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H.

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within (graph-)distance at most two in H.

Obs. If OPT $\geq c(e_j)$ then a dominating set with at most k elements in G_j^2 is a 2-approximation for metric k-CENTER.

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within (graph-)distance at most two in H.

Obs. If OPT $\geq c(e_j)$ then a dominating set with at most k elements in G_j^2 is a 2-approximation for metric k-CENTER.

Why?

Idea: step 1.) Find a maximal set of vertices that have to connect to different centers step 2.) show that this set gives an approximate solution

Ingredient 1: square of $G_j \approx$ "coarsened" G_j .

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within (graph-)distance at most two in H.

Obs. If OPT $\geq c(e_j)$ then a dominating set with at most k elements in G_j^2 is a 2-approximation for metric k-CENTER.

 G_j U' U G_j

Why? triangle inequality

Def. A vertex set *I* in a graph is called independent (or stable) if no pair of vertices in *I* forms an edge.

Def. A vertex set *I* in a graph is called independent (or stable) if no pair of vertices in *I* forms an edge.

Def. A vertex set *I* in a graph is called independent (or stable) if no pair of vertices in *I* forms an edge. An independent set is called **maximal** if no superset of it is independent.

Def. A vertex set *I* in a graph is called independent (or stable) if no pair of vertices in *I* forms an edge. An independent set is called **maximal** if no superset of it is independent.

lependent ninating

Obs. Maximal independent sets are dominating sets!

```
Lemma. For a graph H and an independent set I in H^2, |I| \leq \text{dom}(H).
```

```
Lemma. For a graph H and an independent set I in H^2, |I| \leq \text{dom}(H).
```

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq dom(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq dom(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq dom(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq dom(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq dom(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq dom(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq dom(H)$.

Lemma. For a graph H and an independent set I in H^2 , $|I| \leq \text{dom}(H)$.


```
Lemma. For a graph H and an independent set I in H^2, |I| \leq dom(H).
```


Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1 to m do
```

```
Metric-k-CENTER(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1 to m do

Construct G_j^2
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1 to m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1 to m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

if |I_j| \leq k then

c

return I_j
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1 to m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

if |I_j| \leq k then

return I_j
```

```
Lemma. For j provided by the algorithm, it holds that c(e_j) \leq OPT.
```

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1 to m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

if |I_j| \leq k then

| return I_j
```

```
Lemma. For j provided by the algorithm, it holds that c(e_j) \leq OPT.
```

because for i < j: $dom(G_i) \ge |I_i| > k$.

```
Metric-k-Center(G = (V, E; c), k)

Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)

for j = 1 to m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

if |I_j| \leq k then

return I_j
```

```
Lemma. For j provided by the algorithm, it holds that c(e_j) \leq OPT.
```

because for i < j: $dom(G_i) \ge |I_i| > k$.

Theorem. The above algorithm is a factor-2 approximation algorithm for the metric k-CENTER problem.

```
Metric-k-Center(G = (V, E; c), k)
  Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      if |I_i| \leq k then
          return I_i
```

```
For j provided by the algorithm,
Lemma.
          it holds that c(e_i) \leq OPT.
```

because for i < j: $dom(G_i) \ge |I_i| > k$.

Theorem. The above algorithm is a factor-2 approximation I_j dominating in G_i^2 : algorithm for the metric k-CENTER problem.

 $cost(I_i) \le 2c(e_i) \le 2OPT$

```
Metric-k-Center(G = (V, E; c), k)
  Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)
  for j = 1 to m do
      Construct G_i^2
      Find a maximal independent set I_i in G_i^2
      if |I_i| \leq k then
          return I_i
```

recall: parametric pruning:

- reduce to decision problem, work on pruned instance I(t)
- step 1: Use family of I(t) to compute lower bound t^*
- step 2: find solution in $I(\alpha t^*)$

```
For j provided by the algorithm,
Lemma.
          it holds that c(e_i) \leq OPT.
```

because for i < j: $dom(G_i) \ge |I_i| > k$.

Theorem. The above algorithm is a factor-2 approximation I_j dominating in G_i^2 : algorithm for the metric k-CENTER problem.

 $cost(I_i) \le 2c(e_i) \le 2OPT$

What about a tight example?

What about a tight example?

What about a tight example?

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-CENTER.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k,

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k,

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-Center. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'. If $dom(G) \le k$, then cost(S) = 1.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'. If $dom(G) \le k$, then cost(S) = 1.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'. If $dom(G) \le k$, then cost(S) = 1. If dom(G) > k, then cost(S) = 2.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'. If $dom(G) \le k$, then cost(S) = 1. If dom(G) > k, then cost(S) = 2.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

Let S be a metric k-center of G'. If $dom(G) \le k$, then cost(S) = 1. If dom(G) > k, then cost(S) = 2.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

\∆-inequality holds

Let S be a metric k-center of G'.

If $dom(G) \le k$, then cost(S) = 1.

If dom(G) > k, then cost(S) = 2.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

Why does this prove that,

e.g., 1.5-approximation is

NP-hard?

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

\∆-inequality holds

Let S be a metric k-center of G'.

If $dom(G) \le k$, then cost(S) = 1.

If dom(G) > k, then cost(S) = 2.

What about a tight example?

Theorem.

Assuming P \neq NP, there is no factor- $(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof.

Reduce from dominating set to metric k-CENTER. Given graph G = (V, E) and integer k, construct complete graph $G' = (V, E \cup E')$

with
$$c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$$

\∆-inequality holds

Let S be a metric k-center of G'.

If $dom(G) \le k$, then cost(S) = 1.

If dom(G) > k, then cost(S) = 2.

Why does this prove that, e.g., 1.5-approximation is NP-hard?

1.5-approx. allows to distinguish between 1 and 2, and these are the only possible answers.

3-approximation for METRIC-WEIGHTED-CENTER

Metric-k-Center

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{>0}$ and a natural number $k \leq |V|$.

For $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

METRIC-K-CENTER WEIGHTED

Given: A complete graph G = (V, E) with metric edge costs $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$.

For $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

METRIC-K-CENTER WEIGHTED

Given: A complete graph G = (V, E) with metric edge costs

 $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$., vertex weights

 $w: V \to \mathbb{Q}_{\geq 0}$ and a budget $W \in \mathbb{Q}_+$

For $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V} c(v, S)$ is minimized.

METRIC-K-CENTER WEIGHTED

Given: A complete graph G = (V, E) with metric edge costs

 $c: E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$., vertex weights

 $w: V \to \mathbb{Q}_{\geq 0}$ and a budget $W \in \mathbb{Q}_+$

For $S \subseteq V$, c(v, S) is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $cost(S) := max_{v \in V} c(v, S)$ is minimized. vertex set S of weight at most W

```
Algorithm Metric-
                      -CENTER
  Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_j in G_i^2
      if |I_j| \leq k then
        return I_i
```

```
Algorithm Metric-Weighted-CENTER
  Sort the edges of G by cost : c(e_1) \le ... \le c(e_m)
  for j = 1, \ldots, m do
      Construct G_{i}^{2}
      Find a maximal independent set I_j in G_i^2
      if |I_j| \leq k then
         return I_i
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
      Construct G<sup>2</sup>:
       Find a maximal independent set I_j in G_i^2
                                              what about the weights?
      if |I_j| \leq k then
          return I_i
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_i^2
       Find a maximal independent set I_i in G_i^2
                                              what about the weights?
      if |I_j| \leq k then
           return I<sub>i</sub>
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_{:}^{2}
       Find a maximal independent set I_j in G_i^2
                                                 what about the weights?
       if |I_j| \leq k then
           return I<sub>i</sub>
     s_j(u) := \text{lightest node in } N_{G_i}(u) \cup \{u\}
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_{:}^{2}
       Find a maximal independent set I_j in G_i^2
                                                 what about the weights?
       if |I_j| \leq k then
           return I<sub>i</sub>
     s_j(u) := \text{lightest node in } N_{G_i}(u) \cup \{u\}
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
  for j = 1, \ldots, m do
      Construct G_i^2
      Find a maximal independent set I_j in G_i^2
      Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_i| \leq k then
          return Ii
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_i^2
       Find a maximal independent set I_j in G_i^2
       Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return I_j
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_i^2
       Find a maximal independent set I_j in G_i^2
       Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return I_j u \in I_j
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_i^2
       Find a maximal independent set I_j in G_i^2
       Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then return I_{S_i}
                          w(S_j) \leq W
```

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost : c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_i^2
       Find a maximal independent set I_j in G_i^2
       Compute S_i := \{ s_i(u) \mid u \in I_i \}
       if |I_j| \le k then return I_{S_i}
                           \sim w(S_j) \leq W
                                                               |s_j(u)|
\leq 3c(e_j) because of
```

triangle inequality

```
Algorithm Metric-Weighted-CENTER
   Sort the edges of G by cost: c(e_1) \leq \ldots \leq c(e_m)
   for j = 1, \ldots, m do
       Construct G_i^2
       Find a maximal independent set I_j in G_i^2
       Compute S_i := \{ s_i(u) \mid u \in I_i \}
      if |I_j| \le k then w(S_j) \le W return S_j
                                                            |s_j(u)| \le 3c(e_j) because of
```

triangle inequality

$$s_j(u) := \text{lightest node in } N_{G_i}(u) \cup \{u\}$$

Theorem. The above is a factor-3 approximation algorithm for Metric-Weighted-Center.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

How can we generalize this to larger W?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

How can we generalize this to larger W?

Summary

```
parametric pruning: decision problem \rightarrow pruned instance I(t) \rightarrow lower bound t^* opt OPT & find solution in I(\alpha t^*)
```

Metric k-Center: 2-approximation using pruned instances G_j , and finding a maximal independent set in G_j^2 (square of G_j)

Metric Weighted-Center: 3-approximation by same algorithm but taking for each v in independent set, lowest weight vertex in neighborhood

Note Alternative 2-approximation algorithm (Gonzalez 1985): Pick an arbitrary vertex as first center, then greedily add the vertex with largest distance (cost) to centers selected, until *k* centers have been selected.