

Name: Hemanth Thatavarthi Batch: COMET.FWC33 Date: 04 August 2025

Tenth International Olympiad, 1968

- 1. Prove that there is one and only one triangle whose side lengths are consecutive integers, and one of whose angles is twice as large as another.
- 2. Find all natural numbers x such that the product of their digits (in decimal notation) is equal to $x^2 10x 22$.
- 3. Consider the system of equations $ax_1^2 + bx_1 + c = x_2$ $ax_2^2 + bx_2 + c = x_3$

 $ax_n^2 + bx_n + c = x_1$, with unknowns x_1, x_2, \ldots, x_n , where a, b, c are real and $a \neq 0$. Let $\Delta = (b-1)^2 - 4ac$. Prove that for this system:

- (a) if $\Delta < 0$, there is no solution,
- (b) if $\Delta = 0$, there is exactly one solution,
- (c) if $\Delta > 0$, there is more than one solution.
- 4. Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which are the sides of a triangle.
- 5. Let f be a real-valued function defined for all real numbers x such that, for some positive constant a, the equation $f(x+a) = \frac{1}{2} + \sqrt{f(x) [f(x)]^2}$ holds for all x.
 - (a) Prove that the function f is periodic (i.e., there exists a positive number b such that f(x+b) = f(x) for all x).
 - (b) For a = 1, give an example of a non-constant function with the required properties.
- 6. For every natural number n, evaluate the sum $\sum_{k=0}^{\infty} \left\lfloor \frac{n+2k}{2k+1} \right\rfloor = \left\lfloor \frac{n+1}{2} \right\rfloor + \left\lfloor \frac{n+2}{4} \right\rfloor + \cdots + \left\lfloor \frac{n+2k}{2k+1} \right\rfloor + \cdots$ (The symbol |x| denotes the greatest integer not exceeding x.)

Eleventh International Olympiad, 1969

- 1. Prove that there are infinitely many natural numbers a with the following property: the number $z = n^4 + a$ is not prime for any natural number n.
- 2. Let a_1, a_2, \ldots, a_n be real constants, x a real variable, and $f(x) = \cos(a_1 + x) + \frac{1}{2}\cos(a_2 + x) + \frac{1}{4}\cos(a_3 + x) + \cdots + \frac{1}{2^{n-1}}\cos(a_n + x)$. Given that $f(x_1) = f(x_2) = 0$, prove that $x_2 x_1 = m\pi$ for some integer m
- 3. For each value of k = 1, 2, 3, 4, 5, find necessary and sufficient conditions on the number a > 0 so that there exists a tetrahedron with k edges of length a, and the remaining 6 k edges of length 1.
- 4. A semicircular arc γ is drawn on AB as diameter. C is a point on γ other than A and B, and D is the foot of the perpendicular from C to AB. We consider three circles, $\gamma_1, \gamma_2, \gamma_3$, all tangent to the line AB. Of these, γ_1 is inscribed in $\triangle ABC$, while γ_2 and γ_3 are both tangent to CD and to γ , one on each side of CD. Prove that γ_1, γ_2 , and γ_3 have a second tangent in common.
- 5. Given n > 4 points in the plane such that no three are collinear. Prove that there are at least $\binom{n-3}{2}$ convex quadrilaterals whose vertices are four of the given points.
- 6. Prove that for all real numbers $x_1, x_2, y_1, y_2, z_1, z_2$, with $x_1 > 0$, $x_2 > 0$, $x_1y_1 z_1^2 > 0$, $x_2y_2 z_2^2 > 0$, the inequality $\frac{8}{(x_1 + x_2)(y_1 + y_2) (z_1 + z_2)^2} \le \frac{1}{x_1y_1 z_1^2} + \frac{1}{x_2y_2 z_2^2}$ is satisfied. Give necessary and sufficient conditions for equality.

Twelfth International Olympiad, 1970

- 1. Let M be a point on the side AB of triangle $\triangle ABC$. Let r_1, r_2, r be the radii of the inscribed circles of triangles $\triangle AMC, \triangle BMC$, and $\triangle ABC$, respectively. Let q_1, q_2, q be the radii of the escribed circles of the same triangles that lie in the angle $\angle ACB$. Prove that $\frac{r_1}{q_1} \cdot \frac{r_2}{q_2} = \frac{r}{q}$.
- 2. Let a, b, n be integers greater than 1, and let a and b be the bases of two number systems. Let A_n, A_{n-1} be numbers in the system with base a, and B_n, B_{n-1} be numbers in the system with base b, defined as follows: $A_n = x_n x_{n-1} \cdots x_0$, $A_{n-1} = x_{n-1} x_{n-2} \cdots x_0$, $B_n = x_n x_{n-1} \cdots x_0$, $B_{n-1} = x_{n-1} x_{n-2} \cdots x_0$, with $x_n \neq 0$, $x_{n-1} \neq 0$. Prove that $\frac{A_{n-1}}{A_n} < \frac{B_{n-1}}{B_n}$ if and only if a > b.
- 3. The real numbers $a_0, a_1, \ldots, a_n, \ldots$ satisfy the condition: $1 = a_0 \le a_1 \le a_2 \le \cdots \le a_n \le \cdots$ Define the numbers $b_1, b_2, \ldots, b_n, \ldots$ by $b_n = \sum_{k=1}^n \left(\frac{1-a_{k-1}/a_k}{\sqrt{a_k}}\right)$.
 - (a) Prove that $0 \le b_n < 2$ for all n.
 - (b) Given c with $0 \le c < 2$, prove that there exist numbers a_0, a_1, \ldots with the above properties such that $b_n > c$ for large enough n.
- 4. Find the set of all positive integers n such that the set $\{n, n+1, n+2, n+3, n+4, n+5\}$ can be partitioned into two subsets whose products are equal.
- 5. In the tetrahedron ABCD, $\angle BDC = 90^{\circ}$. Suppose the foot H of the perpendicular from D to the plane ABC is the intersection of the altitudes of $\triangle ABC$. Prove that $(AB + BC + CA)^2 \le 6(AD^2 + BD^2 + CD^2)$. For what tetrahedra does equality hold?
- 6. In a plane there are 100 points, no three of which are collinear. Consider all possible triangles having these points as vertices. Prove that no more than 70% of these triangles are acute-angled.