## Dijkstra Algorithm

Alia Asheralieva Department of Computer Science and Engineering (CSE) SUSTech

### Dijkstra's algorithm 1

#### Dijkstra 's algorithm

- net topology, link costs known to all nodes
  - accomplished via "link state broadcast"
  - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
  - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

#### notation:

- C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest. v
- p(V): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

# Dijkstra's algorithm 2

```
Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
       then D(v) = c(u,v)
     else D(v) = \infty
6
  Loop
    find w not in N' such that D(w) is a minimum
   add w to N'
    update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

### Demo 1



| 步骤  | dist[1] | dist[2] | dist[3] | dist[4] | 已找到的集合       |
|-----|---------|---------|---------|---------|--------------|
| 第1步 | 8       | 1       | 2       | +∞      | {2}          |
| 第2步 | 8       | ×       | 2       | 4       | {2, 3}       |
| 第3步 | 5       | ×       | ×       | 4       | {2, 3, 4}    |
| 第4步 | 5       | ×       | ×       | ×       | {2, 3, 4, 1} |
| 第5步 | ×       | ×       | ×       | ×       | {2, 3, 4, 1} |

#### Demo 2

| Step | N'          | D(v),p(v) | D(w),p(w) | D(x),p(x) | D(y),p(y) | D(z),p(z) |
|------|-------------|-----------|-----------|-----------|-----------|-----------|
| 0    | u           | 2,u       | 5,u       | 1,u       | ∞         | ∞         |
| 1    | ux <b>←</b> | 2,u       | 4,x       |           | 2,x       | ∞         |
| 2    | uxy⊷        | 2,u       | 3,y       |           |           | 4,y       |
| 3    | uxyv        |           | 3,y       |           |           | 4,y       |
| 4    | uxyvw ←     |           |           |           |           | 4,y       |
| 5    | uxyvwz ←    |           |           |           |           |           |



## Forwarding table

#### resulting shortest-path tree from u:



#### resulting forwarding table in u:

| destination | link  |  |
|-------------|-------|--|
| v           | (u,v) |  |
| X           | (u,x) |  |
| у           | (u,x) |  |
| W           | (u,x) |  |
| Z           | (u,x) |  |

## assignment



- Implement the Dijkstra algorithm, return the shortest distance and path from the source to each node, and print out the forwarding table of the route starting from the source.
- The program must return the above three results and print out the output with different inputs.
  - Tip: fill in the missing part of the code template to implement the Dijkstra algorithm
- Submit the code report and source code.
   The report should include algorithm introduction, screenshots and analysis of results, and summary.