Příklad (5)

Find all distributions U on \mathbb{R} satisfying $\sin \cdot U = 0$.

Řešení

Nejprve dokážeme, že "supp $U\subseteq\{k\cdot\pi|k\in\mathbb{Z}\}=:\pi\mathbb{Z}$ ": Máme-li $\varphi\in\mathcal{D}(\mathbb{R})$ takovou, že supp $\varphi\subset(a,b)$ pro nějaký interval $[a,b]\cap\pi\mathbb{Z}=\emptyset$, potom definujme

$$\psi(x) = \begin{cases} 0, & x \notin (a, b) \\ \frac{\varphi(x)}{\sin(x)}, & x \in (a, b) \end{cases}.$$

Potom ψ je zřejmě dobře definované, nebot $\sin(x) \neq 0$ pro žádné $x \in (a, b)$. Navíc podíl dvou C^{∞} funkcí, kde jmenovatel nenabývá nuly, je C^{∞} funkce^a, a zřejmě každá derivace bude mít support uvnitř (a, b). Tedy $\psi \in C^{\infty}$. Tudíž dostáváme, co jsme chtěli dokázat:

$$0 = (\sin \cdot U)(\psi) = U(\sin \cdot \psi) = U(\varphi).$$

Nyní mějme $\varepsilon < 1/4$ a hladké jádro h_{ε} . Definujme $\xi_k = \chi_{B(k \cdot \pi, \varepsilon)} * h_{\varepsilon}$ a pro $\varphi \in \mathcal{D}(\mathbb{R})$ definujme $\varphi_k = \xi_k \cdot \varphi$. Potom supp $\varphi_k \subset B(k \cdot \pi, 1/2)$ a supp $(\varphi - \sum_{k=-\infty}^{\infty} \varphi_k) \cap \pi \mathbb{Z} = \emptyset$ (v sumě je pouze konečně mnoho nenulových prvků, protože supp φ je kompaktní). Tedy (s použitím linearity U):

$$U(\varphi) = U\left(\left(\varphi - \sum_{k=-\infty}^{\infty} \varphi_k\right) + \sum_{k=-\infty}^{\infty} \varphi_k\right) = U\left(\varphi - \sum_{k=-\infty}^{\infty} \varphi_k\right) + \sum_{k=-\infty}^{\infty} U(\varphi_k).$$

První člen napravo je nulový z Větičky 12 bod c), druhý "člen" pak má pro každé k tvar $U(\varphi_k) = \sum_{\alpha, |\alpha| \leq N_k} c_{k,\alpha} D^{\alpha} \Lambda_{\delta_{k,\pi}}$ pro $c_{k,\alpha} \in \mathbb{R}$ a nějaké $N_k \in \mathbb{N}_0$, neboť buď je $k \cdot \pi \in \text{supp } U$ a pak je supp $U|_{B(k \cdot \pi, 1/2)} = \{k \cdot \pi\}$, tedy použijeme Větičku 12 bod e), nebo je $k \cdot \pi \notin \text{supp } U$ a pak je $U|_{B(k \cdot \pi, 1/2)} = 0$ (to nám přidává všechna $c_{k,\alpha} = 0$).

 [&]quot;Použijeme $g'=\left(\frac{1}{f}\right)'=\frac{-f'}{f^2}=-f\cdot g\cdot g$, což je součin tří derivovatelných funkcí.

Řešení (závěr)

Navíc umíme dokázat, že pro libovolné celé k a přirozené $\alpha \neq 0$ je $c_{k,\alpha} = 0$. BÚNO k = 0 (celou situaci můžeme libovolně posouvat o násobky π). Buď pro spor $\alpha \neq 0$ největší takové, že $c_{0,\alpha} \neq 0$. Potom dosazením^a $\xi_0 \cdot \sin^{\alpha-1}$ do $\sin \cdot U = 0$ dostaneme

$$0 = U(\xi_0 \cdot \sin^{\alpha}) = \sum_{k = -\infty}^{\infty} \sum_{\tilde{\alpha}, |\tilde{\alpha}| \leq N_k} c_{k,\tilde{\alpha}} D^{\tilde{\alpha}} \Lambda_{\delta_{k,\pi}} (\xi_0 \cdot \sin^{\alpha}) = \sum_{\tilde{\alpha} \leq \alpha} c_{0,\tilde{\alpha}} D^{\tilde{\alpha}} \Lambda_{\delta_0} (\xi_0 \cdot \sin^{\alpha}) = \sum_{\tilde{\alpha} \leq \alpha} c_{0,\tilde{\alpha}} (D^{\tilde{\alpha}} \sin^{\alpha}) (0) = c_{0,\alpha} \cdot (\alpha!).$$

(Poslední rovnost z toho, že jediný způsob, jak ze $\sin^{\alpha} = \sin \cdot ... \cdot \sin$ dostat v nule nenulovou funkci, je z derivace součinu situace, kdy na každý činitel aplikujeme alespoň jednou derivaci. Pak ale $\tilde{\alpha} \geq \alpha$. A v případě $\tilde{\alpha} = \alpha$ máme přesně α ! posloupností, jak aplikovat na každý činitel alespoň jednu, tj. jednu, derivaci, a vždy dostaneme \cos^{α} , který je v nule roven 1.)

Tedy všechna taková U jsou přesně

$$U = \sum_{k=-\infty}^{\infty} c_{k,0} D^0 \Lambda_{\delta_{k,\pi}} = \sum_{k=-\infty}^{\infty} c_k \Lambda_{\delta_{k,\pi}},$$

kde pro všechna k je $c_k \in \mathbb{R}$. $U \in \mathcal{D}'(\mathbb{R})$ máme z toho, že $U|_{\mathcal{D}_K(\mathbb{R})}$ je spojitá (Tvrzení 6 bod (3) a uzavřenost $\mathcal{D}'(\mathbb{R})$ na sčítání). Zároveň zřejmě sin U = 0, protože

$$\forall \varphi \in \mathcal{D}(\mathbb{R}) : \sin \cdot U(\varphi) = U(\sin \cdot \varphi) = \sum_{k=-\infty}^{\infty} c_k \Lambda_{\delta_{k,\pi}}(\sin \cdot \varphi) = \sum_{k=-\infty}^{\infty} c_k \sin(k\pi) \cdot \varphi(k\pi) =$$
$$= \sum_{k=-\infty}^{\infty} c_k \cdot 0 \cdot \varphi(k\pi) = 0.$$

 $[^]a\xi_0$ z předchozího odstavce pro support neprotínající $\pi\mathbb{Z}$ v jiném bodě než 0 a zároveň neovlivňující derivace v 0.

Find all distributions V on \mathbb{R} satisfying $\sin V = \Lambda_1$.

Řešení

Г

Jsou-li V_1 a V_2 takové distribuce, pak $\sin \cdot (V_1 - V_2) = \sin \cdot V_1 - \sin \cdot V_2 = \Lambda_1 - \Lambda_1 = 0$. Tedy všechna taková V se liší právě o řešení předchozí části.

Tedy hledáme jedno řešení (ostatní řešení dostaneme právě přičtením řešení první části). Ukážeme, že jedno takové řešení je

$$\Lambda(\varphi) := \lim_{n \to \infty} \Lambda_n(\varphi) := \lim_{n \to \infty} \int_{\mathbb{R} \setminus (\pi \mathbb{Z} + B(\mathbf{o}, \frac{1}{\alpha}))} \frac{\varphi(x)}{\sin(x)} dx, \qquad \varphi \in \mathcal{D}(\mathbb{R}).$$

Z Banachovy-Steinhausovy věta pro distribuce nám stačí ukázat, že Λ_n jsou distribuce a že $\exists \lim_{n\to\infty} \Lambda_n(\varphi) \neq \pm \infty$ pro každé φ . To, že $\Lambda_n = \Lambda_f$, kde f = 0 na $\pi \mathbb{Z} + B\left(\mathbf{o}, \frac{1}{n}\right)$ a $f = \frac{1}{\sin}$ jinak, je distribuce je jasné, neboť f je lokálně integrovatelná, neboť je dokonce omezená.

BÚNO supp $\varphi \subset \left(-\frac{3}{4}\pi, \frac{3}{4}\pi\right)$, protože jinak použijeme na všechny nenulové funkce $\varphi_k = \varphi(\chi_{\{k\cdot\pi\}+\left(-\frac{1}{2}\pi,\frac{1}{2}\pi\right)}*h_{\frac{1}{4}\pi})$ a na $\varphi - \sum_{k\in\mathbb{Z}}\varphi_k$. Potom z definice derivace $\varphi'(0)$, která existuje z hladkosti φ , $\exists \ \varepsilon > 0$ a $C_1 := 2\varphi'(0)$, že $\varphi(x)$ je mezi $\varphi(0)$ a $\varphi(0) + C_1 \cdot x$ na intervalu $(-\varepsilon,\varepsilon)$. Navíc můžeme z definice derivace $\sin'(0) = 1$ (-1 v případě lichých k) zvolit ε takové, aby i $|\sin(x)| > C_2 \cdot |x| := \frac{1}{2} \cdot |x|$ na intervalu $(-\varepsilon,\varepsilon)$. Nechť $m > n > \frac{1}{\varepsilon}$, potom

$$|\Lambda_{n}(\varphi) - \Lambda_{m}(\varphi)| = \left| \int_{\mathbb{R} \setminus \left(\pi\mathbb{Z} + B\left(\mathbf{o}, \frac{1}{n}\right)\right)} \frac{\varphi(x)}{\sin(x)} dx - \int_{\mathbb{R} \setminus \left(\pi\mathbb{Z} + B\left(\mathbf{o}, \frac{1}{m}\right)\right)} \frac{\varphi(x)}{\sin(x)} dx \right| =$$

$$= \left| \int_{-\frac{1}{n}}^{-\frac{1}{m}} \frac{\varphi(x)}{\sin(x)} dx + \int_{\frac{1}{n}}^{\frac{1}{n}} \frac{\varphi(x)}{\sin(x)} dx \right| =$$

$$= \left| \int_{-\frac{1}{n}}^{-\frac{1}{m}} \frac{\varphi(0)}{\sin(x)} dx + \int_{\frac{1}{m}}^{\frac{1}{n}} \frac{\varphi(0)}{\sin(x)} dx + \int_{-\frac{1}{n}}^{-\frac{1}{m}} \frac{\varphi(x) - \varphi(0)}{\sin(x)} dx + \int_{\frac{1}{m}}^{\frac{1}{n}} \frac{\varphi(x) - \varphi(0)}{\sin(x)} dx \right| \leq$$

$$\leq \left| \int_{-\frac{1}{n}}^{-\frac{1}{m}} \frac{C_1 \cdot |x|}{C_2 \cdot |x|} dx + \int_{\frac{1}{m}}^{\frac{1}{n}} \frac{C_1 \cdot |x|}{C_2 \cdot |x|} dx \right| = 2 \cdot \frac{C_1}{C_2} \left(\frac{1}{n} - \frac{1}{m} \right) \leq 2 \cdot \frac{C_1}{C_2} \cdot \varepsilon \xrightarrow{\varepsilon \to 0} 0.$$

Tedy dle B–C (pro každé $n > \frac{1}{\varepsilon}$ můžeme ε zmenšit na $\frac{1}{n}$, čímž nám předpoklady pořád platí, C_1, C_2 jsou na ε nezávislé) podmínky posloupnost konverguje.