Eric Du		Math 104
HW 01	Real Analysis	January 19, 2023

Using proof by induction to prove that: For every $n \in \mathbb{N}, \sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$.

Solution: Let $A \subset N$ be the set of naturals which satisfies the above proposition. First, we show that $m = 1 \in A$

- (a) Prove $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$ for all positive integers n.
- (b) The principle of mathematical induction can be extended as follows. A list P_m, P_{m+1}, \ldots of propositions is true provided (i) P_m is true, P_{n+1} is true whenever P_n is true and $n \ge m$.
 - (i) Prove $n^2 > n+1$ for all integers $n \ge 2$.
 - (ii) Prove $n! > n^2$ for all integers $n \ge 4$. [Recall $n! = n(n-1) \cdots 2 \cdot 1$; for example, $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$.]

Prove: $\sqrt{3}$ is not a rational number

Prove: $\sqrt{2} + \sqrt{3}$ is not a rational number.

- (a) Show $|b| \le a$ if and only if $-a \le b \le a$.
- (b) Prove $||a| |b|| \le |a b|$ for all $a, b \in \mathbb{R}$.

Given a nonempty set $A \subset \mathbb{R}$. Using the definition of supremum/infimum, show that

- $\bullet \ \sup A \geq \inf A$
- If $\max A \pmod{A}$ exists, then $\sup A = \max A \pmod{A}$
- inf $A = -(\sup(-A))$, where $-A = \{-a|a \in A\}$

Using the completeness axiom theorem to prove the theorem for strong induction:

Theorem 1. Assume A is a subset of \mathbb{N} , if A satisfies the following two properties:

(1)
$$1 \in A$$

(2) If
$$\{1, 2, 3, ..., n\} = \{x | x \le n, x \in N\} \subset A$$
, then $n + 1 \in A$

Then
$$A = \mathbb{N}$$

Hint: Use proof by contradiction.