קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(87 / 6מסטר ב 2011 - מועד א6 / 87 (סמסטר ב 2011 - מועד א6

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

להלן משחק מזל: מטילים 3 פעמים מטבע תקין.

E אשר H אם ב-3 ההטלות הללו מקבלים יותר פעמים

אנה H מטילים שוב את המטבע עד שמקבלים לראשונה

: H אך אם מקבלים יותר פעמים

מטילים שוב את המטבע עד שמקבלים לראשונה T.

יהי Y המשתנה המקרי המוגדר על-ידי $\frac{1}{2}$ כל ההטלות שמבוצעות במשחק (כולל 3 ההטלות הראשונות).

א. 1. מהי פונקציית ההסתברות של Yי א. 1. מהי פונקציית החסתברות של

רשום אותה באופן מדויק: ערכים אפשריים והסתברויות מתאימות.

Y מהן התוחלת והשונות של Y

(0 איא <math>T היא T מטילים פעמיים מטבע, שההסתברות לקבל בו T היא

 $_{
m H}$, מטילים שוב את המטבע עד שמקבלים לראשונה H, מטילים לראשונה לראשונה הללו מקבלים לראשונה $_{
m H}$, מטילים שוב את המטבע עד שמקבלים לראשונה H, מטילים שוב את המטבע עד שמקבלים לראשונה

יהי W המשתנה המקרי המוגדר על-ידי σ כל ההטלות שמבוצעות במשחק (כולל 2 ההטלות הראשונות).

W ב. מהי פונקציית ההסתברות של ב. (10 נקי)

רשום אותה באופן מדויק: ערכים אפשריים והסתברויות מתאימות.

שאלה 2 (25 נקודות)

נתונים כדורים, המסודרים במבנה משולש כמתואר באיור:

בוחרים באקראי אחד מהכדורים.

יהיו: X השורה שממנה נבחר הכדור;

. המקום בשורה שממנו נבחר הכדור Y

i עד וכי המקומות בשורה (i=1,2,...,n) ממוספרים משמאל לימין, מ-1 עד נניח כי

2

X ו- X

יה? האם המשתנים או בלתי-תלויים Y ו-Y בלתי-תלויים המחנים (6 נקי) נמק את תשובתך.

 $P\{Y \le 2 \mid X \ge 4\}$ ד. חשב את ד. חשב (6)

20425 / 87 - ¬2011

שאלה 3 (25 נקודות)

ילד משחק ב-12 קלפים: על <u>שלושה</u> מהם כתובה הספרה 0, על <u>שישה</u> מהם הספרה 1 ועל <u>שלושה</u> הספרה 2. נניח שהילד מסדר באקראי בשורה את 12 הקלפים, כך שכל הסידורים מתקבלים בהסתברויות שוות.

- (8 נקי) א. מהי ההסתברות שבארבעת המקומות הראשונים משמאל בשורה תופיע השנה 2011:
- ב. יהי X משתנה מקרי המוגדר על-ידי מספר הפעמים שהרצף 2011 מופיע בשורת הקלפים. (למשל, עבור השורה: $\frac{12011}{2001102}$ מתקיים $\frac{1}{2}$).
 - X טשב את התוחלת של (8 נקי) .1
 - X חשב את השונות של 2. חשב את השונות של 9.

שאלה 4 (25 נקודות)

 $f_x(x)=ae^{-x/9}$, x>9 :יהי X משתנה מקרי רציף, שפונקציית הצפיפות שלו נתונה על-ידי

- . *a* א. חשב את (6 נקי)
- $rac{1}{9}$ משתנה מקרי מעריכי עם הפרמטר איני ב.
- (כלומר, מהי הפונקציה שמקשרת בין X ל-Y? (כלומר, מהי הפונקציה שמקשרת בין X ל-Y?) הוכח את טענתך.
 - X חשב את התוחלת ואת השונות של .2 מקי) .2
 - X חשב את הפונקציה יוצרת המומנטים של 3. חשב את הפונקציה יוצרת המומנטים של

שאלה 5 (25 נקודות)

- - $i \neq j$ לכל $Cov(X_i, X_i) = -np_i p_i$ הוכח כי
- ב. יהיו X_1,\dots,X_2 משתנים מקריים בלתי-תלויים, שלכל אחד מהם התפלגות ברנולי ברנולי .0.5 עם הפרמטר

0.6 ל- 0.4 המינימלי, שעבורו ממוצע ה- X_i -ים יימצא בין 0.4 ל- 0.6 כלומר בקטע הפתוח (0.4,0.6), בהסתברות שעולה על 0.75

- (6 נקי) 1. לפי אי-שוויון ציבישב;
- (*ז* נקי) 2. לפי משפט הגבול המרכזי .

בהצלחה!

 $\Phi(z)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5000	0.5120	0.5160	0.5100	0.5220	0.5270	0.5210	0.5359
0.0	0.5000 0.5398	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	
0.1	0.5398	0.5438 0.5832	0.5478 0.5871	0.5517 0.5910	0.5557 0.5948	0.5596 0.5987	0.5636 0.6026	0.5675 0.6064	0.5714 0.6103	0.5753 0.6141
0.2	0.5793	0.5852	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.3	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.4	0.0334	0.0391	0.0028	0.0004	0.0700	0.0730	0.0772	0.0808	0.0644	0.0879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9995	0.9995
3.3	0.9995	0.9995	0.9994	0.9994	0.9994	0.9994	0.9994	0.9993	0.9993	0.9993
3.4	0.9993	0.9993	0.9993	0.9990	0.9990	0.9990	0.9990	0.9990	0.9990	0.9997
J. 4	U.777/	U.7771	U.777/	U.777/	U.フプブ /	U.フプブ /	U.777/	U.7771	U.フプブ /	0.2220

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

4

20425 / 87 - 12011

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	<i>ה</i> שונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i=0,1,,n$	בינומית
$pe^{t}/(1-(1-p)e^{t})$ $t<-\ln(1-p)$	$(1-p)/p^2$	1/ p	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$\frac{\left(pe^t/(1-(1-p)e^t)\right)^r}{t < -\ln(1-p)}$	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i = r, r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1,, m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a)$, $a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוטחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 מוטחת הכפל
$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוטחת ההסתברות השלמה
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S \text{ אוחודם הוא } S$$
 זרים ואיחודם הוא
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S \text{ אוחודם הוא } S$$
 נוטחת בייט
$$E[X] = \sum_x x p_X(x) = \int_x f(x) dx$$
 מוחלת של פונקציה של מ"מ
$$Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$
 שונות
$$Var(aX + b) = a^2 Var(X)$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+tig|X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_{x}xp_{X\mid Y}(x\mid y)=\int xf_{X\mid Y}(x\mid y)dx$$
 תוחלת מותנית

 $Var(X | Y = y) = E[X^{2} | Y = y] - (E[X | Y = y])^{2}$ שונות מותנית $E[X] = E[E[X \mid Y]] = \sum_{v} E[X \mid Y = y] p_{Y}(y)$ נוסחת התוחלת המותנית $E[X \cdot g(Y)] = E[g(Y)E[X \mid Y]]$ (טענה מתרגיל ת26, עמוד 430) Var(X) = E[Var(X|Y)] + Var(E[X|Y])נוסחת השונות המותנית $E\left|\sum_{i=1}^{n}X_{i}\right|=\sum_{i=1}^{n}E[X_{i}]$ תוחלת של סכום משתנים מקריים Cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]שונות משותפת $Cov\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{m} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_{i}, Y_{j})$ $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}(X_{i}, X_{j})$ שונות של סכום משתנים מקריים $\rho(X,Y) = \text{Cov}(X,Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$ מקדם המתאם הלינארי $M_X(t) = E[e^{tX}]$; $M_{aX+b}(t) = e^{bt}M_X(at)$ פונקציה יוצרת מומנטים $M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\cdot\ldots\cdot M_{X_n}(t)$: כאשר X_i מיים ביית מתקיים $E \left| \sum_{i=1}^{N} X_i \right| = E[N]E[X]$ תוחלת, שונות ופונקציה יוצרת מומנטים של סכום מקרי $\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right) = E[N]\operatorname{Var}(X) + (E[X])^{2}\operatorname{Var}(N)$ (כאשר X_i מיימ ביית שייה) $M_{Y}(t) = E \left[\left(M_{X}(t) \right)^{N} \right]$ $P\{X \geq a\} \leq E[X]/a$, a > 0 , שלילי Xאי-שוויון מרקוב $P\{|X-\mu| \ge a\} \le \sigma^2/a^2$, a > 0, $\mu, \sigma^2 < \infty$ אי-שוויון צ'בישב $P\Big\{\left(\sum\limits_{i=1}^{n}X_{i}-n\mu
ight)igg/\sqrt{n\sigma^{2}}\leq a\Big\} \underset{n o\infty}{ o}\Phi(a) \quad , \quad \mu,\sigma^{2}<\infty \ , \ \ i$ משפט הגבול המרכזי וש"ה X_{i}

- אם B ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ב"ת על הניסוי A המאורע A יתרחש לפני המאורע A המאורע A יתרחש לפני המאורע A
- ullet סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.

$$\begin{split} \sum_{i=0}^{n} i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^{\infty} \frac{x^i}{i!} &= e^x \qquad ; \qquad \sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \qquad , \qquad -1 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)}(ax+b)^{n+1} \qquad , \qquad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b) \\ \int e^{ax} dx &= \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \\ \log_n a &= \log_m a/\log_m n \qquad ; \qquad \log_n(a^b) = b \cdot \log_n a \qquad ; \qquad \log_n(ab) = \log_n a + \log_n b \end{split}$$