Lecture 18 - The Bipolar Junction Transistor (II)

REGIMES OF OPERATION

April 17, 2003

Contents:

- 1. Regimes of operation.
- 2. Large-signal equivalent circuit model.
- 3. Output characteristics.

Reading assignment:

Howe and Sodini, Ch. 7, §§7.3, 7.4

Announcements:

Quiz 2: 4/16, 7:30-9:30 PM, Walker (lectures #10-17) open book, must bring calculator

Extra Office Hours: 4/15, 2-4pm, 38-201; 4/16, 9am-12 & 1-4pm, 24-320

Key questions

- What other regimes of operation are there for the BJT?
- What is unique about each regime?
- How do equivalent circuit models for the BJT look like?

1. Regimes of operation

- forward active: device has good isolation and high gain; most useful regime;
- saturation: device has no isolation and is flooded with minority carriers ⇒ takes time to get out of saturation; avoid
- reverse: poor gain; not useful;
- *cut-off*: negligible current: nearly an open circuit; useful.

\square Forward-active regime: $V_{BE} > 0, V_{BC} < 0$

Minority carrier profiles (not to scale):

• Emitter injects electrons into base, collector collects electrons from base:

$$I_C = I_S \exp \frac{qV_{BE}}{kT}$$

• Base injects holes into emitter, recombine at emitter contact:

$$I_B = \frac{I_S}{\beta_F} (\exp \frac{qV_{BE}}{kT} - 1)$$

• Emitter current:

$$I_E = -I_C - I_B = -I_S \exp \frac{qV_{BE}}{kT} - \frac{I_S}{\beta_F} (\exp \frac{qV_{BE}}{kT} - 1)$$

- State-of-the-art IC BJT's today: $I_C \sim 0.1 1 \ mA$, $\beta_F \simeq 50 300$.
- β_F hard to control tightly \Rightarrow circuit design techniques required to be insensitive to variations in β_F .

\square Reverse regime: $V_{BE} < 0, V_{BC} > 0$

Minority carrier profiles:

• Collector injects electrons into base, emitter collects electrons from base:

$$I_E = I_S \exp \frac{qV_{BC}}{kT}$$

• Base injects holes into collector, recombine at collector contact and buried layer:

$$I_B = \frac{I_S}{\beta_R} (\exp \frac{qV_{BC}}{kT} - 1)$$

• Collector current:

$$I_C = -I_E - I_B = -I_S \exp \frac{qV_{BC}}{kT} - \frac{I_S}{\beta_R} (\exp \frac{qV_{BC}}{kT} - 1)$$

• Typically, $\beta_R \simeq 0.1 - 5 \ll \beta_F$.

Forward-active Gummel plot $(V_{CE} = 3 \ V)$:

Reverse Gummel ($V_{EC} = 3 V$):

$$\square$$
 Cut-off: $V_{BE} < 0, V_{BC} < 0$

Minority carrier profiles:

• Base extracts holes from emitter:

$$I_{B1} = -\frac{I_S}{\beta_F} = -I_E$$

• Base extracts holes from collector:

$$I_{B2} = -\frac{I_S}{\beta_R} = -I_C$$

• These are tiny leakage currents ($\sim 10^{-12} A$).

\square Saturation: $V_{BE} > 0, V_{BC} > 0$

Minority carrier profiles:

Saturation is superposition of forward active + reverse:

$$I_{C} = I_{S}(\exp \frac{qV_{BE}}{kT} - \exp \frac{qV_{BC}}{kT}) - \frac{I_{S}}{\beta_{R}}(\exp \frac{qV_{BC}}{kT} - 1)$$

$$I_{B} = \frac{I_{S}}{\beta_{F}}(\exp \frac{qV_{BE}}{kT} - 1) + \frac{I_{S}}{\beta_{R}}(\exp \frac{qV_{BC}}{kT} - 1)$$

$$I_{E} = -\frac{I_{S}}{\beta_{F}}(\exp \frac{qV_{BE}}{kT} - 1) - I_{S}(\exp \frac{qV_{BE}}{kT} - \exp \frac{qV_{BC}}{kT})$$

- I_C and I_E can have either sign, depending on relative magnitude of V_{BE} and V_{BC} , and β_F and β_R .
- \bullet In saturation, collector and base flooded with excess minority carriers \Rightarrow takes lots of time to get transistor out of saturation.

2. Large-signal equivalent circuit model

System of equations that describes BJT operation:

$$I_{C} = I_{S}(\exp \frac{qV_{BE}}{kT} - \exp \frac{qV_{BC}}{kT}) - \frac{I_{S}}{\beta_{R}}(\exp \frac{qV_{BC}}{kT} - 1)$$

$$I_{B} = \frac{I_{S}}{\beta_{F}}(\exp \frac{qV_{BE}}{kT} - 1) + \frac{I_{S}}{\beta_{R}}(\exp \frac{qV_{BC}}{kT} - 1)$$

$$I_{E} = -\frac{I_{S}}{\beta_{F}}(\exp \frac{qV_{BE}}{kT} - 1) - I_{S}(\exp \frac{qV_{BE}}{kT} - \exp \frac{qV_{BC}}{kT})$$

Equivalent-circuit model representation: $Non-Linear\ Hybrid-\pi\ Model$

Three parameters in this model: I_S , β_F , and β_R . Model equivalent to Ebers-Moll model in text.

Simplifications of equivalent-circuit model:

• Forward-active regime: $V_{BE} > 0, V_{BC} < 0$

For today's technology: $V_{BE,on} \simeq 0.7 \ V$. I_B depends on outside circuit.

• Reverse: $V_{BE} < 0, V_{BC} > 0$

For today's technology: $V_{BC,on} \simeq 0.5 \ V$. I_B also depends on outside circuit.

I_B vs. V_{BE} for $V_{CE} = 3 V$:

 I_B vs. V_{BC} for $V_{EC} = 3$ V:

• Saturation: $V_{BE} > 0, V_{BC} > 0$

Today's technology: $V_{CE,sat} = V_{BE,on} - V_{BC,on} \simeq 0.2 \ V$. I_B and I_C depend on outside circuit.

• Cut-off: $V_{BE} < 0, V_{BC} < 0$

|

Only negligible leakage currents.

3. Output characteristics

First, I_C vs. V_{CB} with I_B as parameter:

Next, common-emitter output characteristics $(I_C \text{ vs. } V_{CE} \text{ with } I_B \text{ as parameter})$:

I_C vs. V_{CB} for $0 \le I_B \le 100 \ \mu A$:

I_C vs. V_{CE} for $0 \le I_B \le 100 \ \mu A$:

I_C vs. V_{CE} for $0 \le I_B \le 100 \ \mu A$:

Key conclusions

• Forward-active regime: most useful, device has gain and isolation. For bias calculations:

• Saturation: device flooded with minority carriers. Not useful. For bias calculations:

• Cut-off: device open. Useful. For bias calculations:

