HỆ THỰC TRUY HỒI

- Các khái niệm
- Mô hình hóa bằng hệ thức truy hồi
- Giải hệ thức truy hồi tuyến tính thuần nhất

- Hệ thức truy hồi đối với dãy {a_n} là một phương trình có dạng a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k}), ∀n ≥ n₀ ≥ 0
- **Ví dụ 1** $a_n = a_{n-1} a_{n-2}, \forall n \ge 2$
 - Nếu cho $a_0=3$ và $a_1=5$ thì có thể xác định $a_2=a_1-a_0=5-3$ =2, $a_3=a_2-a_1=2-5=-3,...$

- Dãy {a_n} được gọi là nghiệm của hệ thức truy hồi nếu các số hạng của nó thỏa mãn hệ thức truy hồi này
- **Ví dụ 2** Kiểm tra xem $a_n=3n$ và $a_n=5$ với n=0, 1,... có là các nghiệm của hệ thức $a_n=2a_{n-1}$ a_{n-2} , $\forall n \geq 2$ hay không
 - Với a_n =3n, ta có $2a_{n-1}$ a_{n-2} =2(3(n-1))-3(n-2)=3n= a_n vậy a_n =3n là một nghiệm
 - Với $a_n=5$, ta có $2a_{n-1}$ $a_{n-2}=2.5-5=5=a_n$ nên $a_n=5$ cũng là một nghiệm

- Các điều kiện đầu là các giá trị của các số hạng của dãy đi trước số hạng đầu tiên kể từ đó hệ thức truy hồi có hiệu lực
- Ví dụ 3 a₀ = 3, a₁=5 đối với hệ thức truy hồi a_n=a_{n-1}-a_{n-2},
 ∀n ≥ 2, là các điều kiện đầu

- Hệ thức truy hồi với điều kiện đầu xác định một dãy (nghiệm) duy nhất của nó
- Điều kiện đầu và hệ thức truy hồi cung cấp một định nghĩa đệ qui cho một dãy

- Có thể xác định mọi số hạng của dãy sau một số lần truy hồi nào đó khi có điều kiện đầu
- Hệ thức truy hồi $a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$ xác định một dãy duy nhất khi có k điều kiện đầu $a_0 = C_0$, $a_1 = C_1$, ..., $a_{k-1} = C_{k-1}$

- Ví dụ 1 Một người gửi 10.000\$ vào tài khoản tại ngân hàng với lải kép 11% mỗi năm. Hỏi sau 30 năm anh ta có bao nhiêu tiền trong tài khoản.
- Giải Gọi P_n là tổng số tiền có sau n năm, vì số tiền sau n năm bằng số tiền sau n-1 năm cộng với số tiền lải kép năm thứ n (0.11.P_{n-1})

$$P_n = P_{n-1} + 0.11P_{n-1} = 1.11P_{n-1}$$
, hay $P_n = 1.11P_{n-1}$, $P_0 = 10.000$ \$

$$P_1 = (1.11)P_0, P_2 = (1.11)P_1 = (1.11)^2P_0, \dots, P_n = (1.11)^nP_0$$

$$\triangleright$$
 Vậy $P_{30} = (1.11)^{30}10.000\$ = 228922,97\$$

- Ví dụ 2 Tìm tất cả các xâu nhị phân n bits không có 2 số
 0 liên tiếp
- Giải ?

- **Giải** Gọi S_n là số xâu nhị phân n bits không có 2 số 0 liên tiếp. Chia tập các xâu như vậy thành 2 tập $B_1 = \{(b_1b_2...b_{n-1}1) \mid b_ib_{i+1} \neq 00\}$ và $B_2 = \{(b_1b_2...b_{n-1}0) \mid b_ib_{i+1} \neq 00\}$.
 - $> S_n = |B_1| + |B_2|$
 - $\triangleright |B_1| = S_{n-1}$
 - > $|B_2| = S_{n-2}$ (vì $b_n = 0$ nên $b_{n-1} = 1$, $B_2 = \{(b_1b_2...b_{n-2}10)| b_ib_{i+1} \neq 00\}$)
 - $ightharpoonup Vậy S_n = S_{n-1} + S_{n-2}, S_1 = 2, S_2 = 3$
 - > $S_3 = S_2 + S_1 = 3 + 2 = 5$
 - $> S_4 = S_3 + S_2 = 5 + 3 = 8, \dots$

- Ví dụ 3 Tìm công thức truy hồi cho C^k_n
- Giải ?

 Một hệ thức truy hồi tuyến tính thuần nhất bậc k > 0 là một hệ thức dạng

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}, n \ge k$$
 (1)

- Với c_1 , c_2 , ..., c_k là các hằng số thực, $c_k \neq 0$
- Ví dụ Hệ thức Fibonacci a_n = a_{n-1} + a_{n-2}, ∀n ≥ 2 là hệ thức truy hồi tuyến tính thuần nhất bậc 2

- Phương trình (2) được gọi là phương trình đặc trưng của (1),
 và nghiệm của nó được gọi là nghiệm đặc trưng
- Lưu ý: Hệ thức bậc hai a_n = c₁a_{n-1} + c₂a_{n-2}, n≥2 có PT đặc trưng là

$$r^2 - c_1 r - c_2 = 0$$

• **Định Lý 1** Cho c_1 , c_2 là các hằng số. Giả sử r^2 - c_1 r - c_2 = 0 có hai nghiệm phân biệt r_1 , r_2 . Khi đó dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi a_n = c_1a_{n-1} + c_2a_{n-2} nếu và chỉ nếu a_n = $\alpha_1r_1^n$ + $\alpha_2r_2^n$ với n = 0,1, 2,.... Trong đó α_1 , α_2 là các hằng số

Chứng minh

Giả sử $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ với $\forall n \ge 0$, do r_1 và r_2 là nghiệm của $r^2 - c_1 r - c_2 = 0$ nên

$$c_{1}a_{n-1}+c_{2}a_{n-2}=c_{1}(\alpha_{1}r_{1}^{n-1}+\alpha_{2}r_{2}^{n-1})+c_{2}(\alpha_{1}r_{1}^{n-2}+\alpha_{2}r_{2}^{n-2})$$

$$=\alpha_{1}r_{1}^{n-2}(c_{1}r_{1}+c_{2})+\alpha_{2}r_{2}^{n-2}(c_{1}r_{2}+c_{2})$$

$$=\alpha_{1}r_{1}^{n-2}r_{1}^{2}+\alpha_{2}r_{2}^{n-2}r_{2}^{2}$$

$$=\alpha_{1}r_{1}^{n}+\alpha_{2}r_{2}^{n}=a_{n}$$

Vậy dãy $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$, $\forall \ge 0$ là một nghiệm cùa $a_n = c_1 a_{n-1} + c_2 a_{n-2}$

Chứng minh

```
Giả sử dãy \{a_n\} là một nghiệm của a_n=c_1a_{n-1}+c_2a_{n-2} thỏa điều kiện đầu a_0=C_0, a_1=C_1, khi đó có \alpha_1 và \alpha_2 để \{\alpha_1r_1^n+\alpha_2r_2^n\} thỏa ĐKĐ này. Thật vậy, với a_0=C_0=\alpha_1+\alpha_2 và a_1=C_1=\alpha_1r_1+\alpha_2r_2 Ta suy ra \alpha_1=(C_1-C_0r_2)/(r_1-r_2) \alpha_2=(C_0r_1-C_1)/(r_1-r_2) Vậy \{a_n\} và \{\alpha_1r_1^n+\alpha_2r_2^n\}, \forall n \ \square \ 0 cùng là một nghiệm của hệ thức a_n=c_1a_{n-1}+c_2a_{n-2}, hay a_n=\alpha_1r_1^n+\alpha_2r_2^n
```

- **Ví dụ 1** Tìm một nghiệm của hệ thức truy hồi tuyến tính thuần nhất bậc hai $a_n = a_{n-1} + 2a_{n-2}$, $n \ge 2$ với $a_0 = 2$, $a_1 = 7$
- **Giải** Phương trình đặc trưng r² r 2 =0
 - \triangleright Nghiệm phương trình đặc trưng $r_1 = 2$, $r_2 = -1$
 - ➤ Nghiệm hệ thức $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n = \alpha_1 2^n + \alpha_2 (-1)^n$, n = 0,1,...
 - ightharpoonup Thế điều kiện đầu $\Rightarrow \alpha_1 + \alpha_2 = 2$ và $\alpha_1 + \alpha_2 = 7$
 - \triangleright suy ra $\alpha_1 = 3$ và $\alpha_2 = -1$
 - \triangleright Vậy nghiệm của hệ thức truy hồi là $a_n = 3.2^n (-1)^n$, $n \ge 0$

- **Ví dụ 2** Tìm nghiệm của hệ thức truy hồi Fibonacci $f_n = f_{n-1} + f_{n-2}$, $n \ge 2$, $f_0 = 0$, $f_1 = 1$
- Giải?

• **Định Lý 2** Cho c_1 , c_2 là các hằng số. Giả sử r^2 - $c_1 r$ - c_2 = 0 chỉ có một nghiệm kép r_0 . Khi đó dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ nếu và chỉ nếu $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$ với n = 0,1,2,... Trong đó α_1 , α_2 là các hằng số

- **Ví dụ 3** Tìm một nghiệm của hệ thức truy hồi tuyến tính thuần nhất bậc hai $a_n = 6a_{n-1} 9a_{n-2}$, $n \ge 2$ với $a_0 = 1$, $a_1 = 6$
- Giải Phương trình đặc trưng r² 6r + 9 = 0
 - ➤ Nghiệm kép phương trình đặc trưng r = 3
 - ightharpoonup Nghiệm hệ thức $a_n = \alpha_1 r^n + \alpha_2 n r^n = \alpha_1 3^n + \alpha_2 n 3^n$, n = 0,1,...
 - ightharpoonup Thế điều kiện đầu $\Rightarrow \alpha_1 = 1$ và $\alpha_1 3 + \alpha_2 3 = 6$
 - \triangleright suy ra $\alpha_1 = 1$ và $\alpha_2 = 1$
 - ightharpoonup Vậy nghiệm của hệ thức truy hồi là $a_n = 3^n + n3^n$, $n \ge 0$

• **Định Lý 3** Cho c_1 , c_2 , ..., c_k là các hằng số. Giả sử phương trình đặc trưng r^k - $c_1 r^{k-1}$ - ... - c_k = 0 có k nghiệm phân biệt r_1 , r_2 ,..., r_k . Khi đó dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ nếu và chỉ nếu $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + ... + \alpha_k r_k^n$ với n = 0,1, ... Trong đó α_1 , α_2 ,..., α_k là các hằng số

- **Ví dụ 4** Tìm một nghiệm của hệ thức truy hồi bậc ba $a_n = 6a_{n-1}$ $11a_{n-2} + 6a_{n-3}$, $n \ge 3$, với $a_0 = 2$, $a_1 = 5$, $a_2 = 15$
- **Giải** Phương trình đặc trưng r^3 $6r^2$ +11r 6 = 0
 - \triangleright Nghiệm phương trình đặc trưng $r_1 = 1$, $r_2 = 2$, $r_3 = 3$
 - ightharpoonup Nghiệm hệ thức $a_n = \alpha_1 1^n + \alpha_2 2^n + \alpha_3 3^n$, n = 0,1,...
 - > Thế điều kiện đầu \Rightarrow α_1 + α_2 + α_3 = 2, α_1 + $2\alpha_2$ + $3\alpha_3$ = 5 và α_1 + $4\alpha_2$ + $9\alpha_3$ = 15
 - \triangleright suy ra $\alpha_1 = 1$ và $\alpha_2 = -1$, $\alpha_3 = 2$
 - ightharpoonup Vậy nghiệm của hệ thức truy hồi là $a_n = 1 2^n + 2.3^n$, $n \ge 0$

• **Định Lý 4** Cho c₁, c₂, ..., c_k là các hằng số. Giả sử phương trình đặc trưng r^k - $c_1 r^{k-1}$ - ... - c_k = 0 có t nghiệm r_1 , r_2 , ..., r_t bội tương ứng m₁, m₂,..., m_t. Khi đó dãy {a_n} là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ nếu và chỉ nếu $a_n = (\alpha_{1,0} + \alpha_{1,1} n + ... + \alpha_{1,m_1-1} n^{m_1-1}) r_1^n + (\alpha_{2,0} + \alpha_{2,1} n^{m_1-1}) r_1^n$ $+...+\alpha_{2,m_2-1}n^{m_2-1})r_2^n +...+(\alpha_{t,0}+\alpha_{t,1}n+...+\alpha_{t,m_{t-1}}n^{m_{t-1}})r_t^n$ với n= 0, 1, 2, ... Trong đó $\alpha_{i,j}$, i=1,...t, j=0..., m_t -1 là các hằng số

Ví dụ 5 Giả sử phương trình đặc trưng có nghiệm là 2, 2, 2, 5, 5,
 9 thì nghiệm của hệ thức truy hồi là:

$$a_n = (\alpha_{1,0} + \alpha_{1,1} n + \alpha_{1,2} n^2) 2^n + (\alpha_{2,0} + \alpha_{2,1} n) 5^n + \alpha_{3,0} 9^n$$

• Ví dụ 6 Tìm một nghiệm của

$$a_n = -3a_{n-1}-3a_{n-2}-a_{n-3}$$
, $n \ge 3$, với $a_0 = 1$, $a_1 = -2$, $a_2 = -1$

- Giải PT đặc trưng $r^3+3r^2+3r+1=0$
 - ▶ PT đặc trưng có một nghiệm là r=-1 bội 3
 - ightharpoonup Nghiệm HT $a_n = (\alpha_{1,0} + \alpha_{1,1} n + \alpha_{1,2} n^2)(-1)^n$
 - > Thế điều kiện đầu $\alpha_{1, 0}$ =1, $\alpha_{1, 0}$ + $\alpha_{1, 1}$ + $\alpha_{1, 2}$ =2, $\alpha_{1, 0}$ + $2\alpha_{1, 1}$ + $4\alpha_{1, 2}$ =-1, suy ra $\alpha_{1, 0}$ =1, $\alpha_{1, 1}$ =3 và $\alpha_{1, 2}$ =-2
 - $ightharpoonup Vậy a_n = (1 + 3n + -2n^2)(-1)^n, n \ge 3$

BÀI TẬP VỀ NHÀ

- Đọc chương 4 (sách Nguyễn Hòa, Nguyễn Nhựt Đông)
- Làm các bài tập chương 4 đã cho theo nhóm và cá nhân