How Bitcoin works?

Content

How to establish a digital identity?

Problem 2 of e-Kuna

Who adds the transactions?

Alice

Ledger

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Charlie

Problem 2 of e-Kuna

Who adds the transactions?

Alice

Ledger

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Was it Alice that sent me the funds?

Bob

Charlie

I did not add this transaction!

Alice

Charlie

Problem 2 of e-Kuna

Who adds the transactions?

Alice pays Bob \$50

Alice pays Charlie \$20

Bob pays Charlie \$100

Alice pays Bob \$10000

Alice

Bob

Alice

Bob

Alice

Bob

Alice

Alice

Bob

Alice

Alice

Bob

Alice

Alice

Bob

Alice

Alice = 110101

Bob

Alice

Alice = 110101

Bob

Alice = 110101

Alice Alice = 110101

Charlie

Alice Alice = 110101

Our second cryptographic primitive

A digital signature protocol

- Only Alice can sign her own documents
- Each document has a different signature
- Anyone can check that Alice signed the document

Our second cryptographic primitive

A digital signature protocol

- Only Alice can sign her own documents
- Each document has a different signature
- Anyone can check that Alice signed the document

Consists of three algorithms

- 1. Algorithm for generating public and secret keys
- 2. Algorithm for signing a document
- 3. Algorithm for verifying a signature

Generating keys

Alice

Generate

Generating keys

Generating keys

Generating keys

The Secret key and the public key

Signing a document

Alice (SK,PK)

Signing a document

Alice (SK,PK)

Sign

Signing a document

Signing a document

Signing a document

Verifying digital signatures

Alice (SK,PK)

PK

Verifying digital signatures

Alice (SK,PK)

PK

Verifying digital signatures

PK

• The three algorithms are safe:

Impossible to reconstruct SK if we know PK Impossible to reconstruct SK if we know signed messages

Signature is unfalsifiable and unique:

Signature can only be realized using SK If the document changes, the signature changes

Impossible to reconstruct SK if we know PK

Impossible to reconstruct SK if we know PK

Impossible to reconstruct SK if we know signed messages

Impossible to reconstruct SK if we know signed messages

Fk

Impossible to reconstruct SK if we know signed messages

Impossible to reconstruct SK if we know signed messages

We can sign only with SK

Charlie

We can sign only with SK

We can sign only with SK

We can sign only with SK

We can sign only with SK

F ≠ F'

Who adds the transactions?

Alice pays Bob \$50

Charlie

Alice

Who adds the transactions?

Alice pays Bob \$50 F-A

Charlie

Alice

Who adds the transactions?

Alice

Ledger

Alice pays Bob \$50 F-A

Alice payed me \$50!

Bob

Charlie

Who adds the transactions?

Ledger

Alice pays Bob \$50 F-A

Alice pays Bob \$1000

Charlie

Who adds the transactions?

Alice

Ledger

Alice pays Bob \$50 F-A

Alice pays Bob \$1000 ???

Charlie

Problem 2 of e-Kuna

Who adds the transactions?

Alice

Ledger

Alice pays Bob \$50 F-A

Alice pays Bob \$1000 F-B

Charlie

Problem 2 of e-Kuna

Who adds the transactions?

This was not me!

Alice

Ledger

Alice pays Bob \$50 F-A

Alice pays Bob \$1000 F-B

Charlie

Bob

Problem 2 of e-Kuna

Who adds the transactions?

This was not Alice!

This was not me!

Charlie

Alice

Randomness:

- We need a good source of randomness
- To generate the keys
- To generate the signature (each signature!!!)

Size of the signature:

- Classical algorithms depend on the size of the document
- Solution used these days is to sign the hash of the document

Size of the signature:

- Classical algorithms depend on the size of the document
- Solution used these days is to sign the hash of the document

Alice (SK,PK)

Size of the signature:

- Classical algorithms depend on the size of the document
- Solution used these days is to sign the hash of the document

Digital signature in BitCoin

Elliptic curve digital signature algorithm (ECDSA)

- NIST/NSA standard
- Elliptic curve secp256k1
- 2¹²⁸ bits of security (number of operations needed to break the encryption)

Important sizes:

- SK = 256 bits
- PK = 512 bits (257 bits compressed)
- Message size = 256 bits (well, that's convenient)
- Signature size = 512 bits

BitCoin users

PK allows:

Link a signature to an entity (the person controlling the associated SK)

BitCoin users

PK allows:

Link a signature to an entity (the person controlling the associated SK)

User in a decentralized system:

A PK (that is, a person controlling the SK for this PK)

Peculiarities

Of users in a decentralized system

What is I need more than one user?

- Run the key generation algorithm again
- You can have any number of users (can be problematic)

Is it safe?

- Since no one controls the PKs and SKs, can someone generate mine?
- In theory yes, but practically, the probability is virtually 0 (given a good source of randomness)

Peculiarities

Of users in a decentralized system

Is it safe? (2)

- 100%
- If you manage well your SK (and the signatures randomness again)

What happens if I lose my SK?

- 0% possibility to recuperate it
- Big benefit of banks is allowing to recuperate your password or credit card when lost
- BitCoin is 100% secure cryptographically, but it does not allow this!