Varietà Differenziabili 2.4 Corso di Laurea in Matematica A.A. 2020-2021 Docente: Andrea Loi

- 1. Siano S_1 e S_2 due sottovarietà di due varietà differenziabili M_1 e M_2 rispettivamente. Dimostrare che $S_1 \times S_2$ é una sottovarietà di $M_1 \times M_2$.
- 2. Sia $F: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 6xy + y^2$. Trovare i $c \in \mathbb{R}$ tali che $F^{-1}(c)$ sia una sottovarietà di \mathbb{R}^2 .
- 3. Dire se le soluzioni del sistema

$$\begin{cases} x^3 + y^3 + z^3 = 1\\ z = xy \end{cases}$$

costuiscono una sottovarietà di \mathbb{R}^3 .

4. Un polinomio $F(x_0,\ldots,x_n)\in\mathbb{R}[x_0,\ldots,x_n]$ é omogeneo di grado k se é combinazione lineare di monomi $x_0^{j_1}\ldots x_0^{j_m}$ di grado k, $\sum_{j=1}^m i_j=k$. Dimostrare che

$$\sum_{i=0}^{n} x^{i} \frac{\partial F}{\partial x_{i}} = kF.$$

Dedurre che $F^{-1}(c)$, $c \neq 0$ é una sottovarietà di \mathbb{R}^n di dimensione n-1. Dimostrare, inoltre che per c, d > 0, $F^{-1}(c)$ e $F^{-1}(d)$ sono diffeomorfe e lo stesso vale per c, d < 0. (Suggerimento per la prima parte: usare l'uguaglianza $F(\lambda x_0, \ldots, \lambda x_n) = \lambda^k F(x_0, \ldots, x_n)$ valida per ogni $\lambda \in \mathbb{R}$).

- 5. Dimostare che $SL_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) \mid \det A \neq 0\}$ é una sottovarietà di $M_n(\mathbb{C})$ di dimensione $2n^2 2$.
- 6. Sia $F: N \to M$ un'applicazione liscia tra varietà differenziabili. Dimostare che l'insieme PR_F dei punti regolari di F é un aperto di N.
- 7. Sia $F: N \to M$ un'applicazione liscia tra varietà differenziabili. Dimostrare che se F é chiusa allora VR_F (insieme dei punti regolari di F) é aperto in M.
- 8. Dimostrare che $F: \mathbb{R} \to \mathbb{R}^3, t \mapsto (t, t^2, t^3)$ é un embedding liscio e scrivere $F(\mathbb{R})$ come zero di funzioni.
- 9. Dimostrare che $F: \mathbb{R} \to \mathbb{R}^2, t \mapsto (\cosh t, \sinh t)$ é un embedding liscio e $F(\mathbb{R}) = \{(x, y) \in \mathbb{R}^2 \mid x^2 y^2 = 1\}.$
- 10. Dimostare che la composizione di immersioni é un'immersione e che il prodotto cartesiano di due immersioni é un'immersione.
- 11. Dimostrare che se $F:N\to M$ é un'immersione e $Z\subset N$ é una sottovarietà di N allora $F_{|Z}:Z\to M$ é un'immersione.
- 12. Dimostrare che l'applicazione

$$F: S^2 \to \mathbb{R}^4, (x, y, z) \mapsto (x^2 - y^2, xy, xz, yz)$$

induce un embedding liscio da $\mathbb{R}P^2$ a \mathbb{R}^4 .

13. Dimostrare che un'immersione iniettiva e propria é un embedding liscio. Mostrare che esistono embedding lisci che non sono applicazioni proprie. (Ricorda che un'applicazione continua $f: X \to Y$ tra spazi topologici è propria se $f^{-1}(K)$ è compatto in X per ogni compatto K di Y).

1