${\sf P}$ азложение z_k

Разложение функции Ламберта из статьи

Следующая формула взята из статьи "On the Lambert W Function" (DOI:10.1007/BF02124750), формула (4.20):

$$W_k(z) = \log z + 2\pi i k - \log(\log z + 2\pi i k) + \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} c_{km} \log^m (\log z + 2\pi i k) (\log z + 2\pi i k)^{-k-m}$$
(1)

Для того, чтоб ветви функции Ламберта совпадали с общепринятыми, ветви $\log z$ необходимо так же брать привычными — с разрезом на отрицательных числах и нулевой мнимой частью при положительных z. Коэффициенты c_{km} определены в статье после формулы (4.18):

$$c_{km} = \frac{(-1)^k}{m!}c(k+m,k+1) \tag{2}$$

c(k+m,k+1) — это беззнаковые числа Стирлинга первого рода. В вольфраме они обозначаются как "Abs@StirlingS1[k+m, k+1]".

В нашей же задаче, требуется определить $z_k=\frac{i}{2}W_k(-2i\alpha\gamma)$. Обозначая $z=-2i\alpha\gamma$, k+m=n, получаем:

$$-2iz_{k} = W_{k}(z)$$

$$= \log z + 2\pi i k - \log(\log z + 2\pi i k) + \dots$$

$$\dots + \sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{(-1)^{n-m}}{m!} c(n, n-m+1) \frac{\log^{m}(\log z + 2\pi i k)}{(\log z + 2\pi i k)^{n}}$$
(3)

В такой форме наглядно видно разложение по малости остаточных членов. В дальнейшем будет видно, что большим параметром при разложении здесь является номер функции Ламберта -k. Ещё можно использовать знаковые числа Стирлинга $(s(n,k)=(-1)^{n-k}c(n,k)\Rightarrow (-1)^{n-m}c(n,n-m+1)=(-1)^{n+1}s(n,n-m+1))$, однако в этом нет пока необходимости.

Метод перевала с остаточными членами

Общая теория метода перевала

Следует быть осторожным при использовании чужих формул по методу перевала. Сейчас будет сформулировано утверждение под названием "Perron's formula" 1 . Это формула для нахождения интеграла через перевальную точку z_0 вдоль кривой наискорейшего спуска γ .

$$\int_{\gamma} e^{\lambda f(z)} dz = e^{\lambda f(z_0)} \sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) \frac{c_{2n}}{\lambda^{n + \frac{1}{2}}}$$

$$c_{2n} = \frac{1}{(2n)!} \left[\left(\frac{d}{dz}\right)^{2n} \left\{ \frac{(z - z_0)^2}{f(z) - f(z_0)} \right\}^{n + \frac{1}{2}} \right]_{z = z_0}$$
(4)

 $^{^1}$ Формула (2.5) в файле "Метод перевала с остаточными членами". Сразу рассмотрим более частный случай, имеющий непосредственное влияние на нашу задачу. А именно возьмём перевальную точку второго порядка m=2, положим функцию рядом с экспонентой под интегралом g(z)=1, будем считать, что контур проходит через перевальную точку, а не имеет в ней начало или конец, как это приведено в книге.

Если же использовать разложение функции f в ряд Тейлора, то можно получить "Campbell – Froman – Walles – Wojdylo formula"².

$$f(z) = f(z_0) + \sum_{p=0}^{\infty} a_p (z - z_0)^{p+2}$$

$$c_{2n} = \frac{1}{a_0^{n+\frac{1}{2}}} \sum_{j=0}^{2n} C_{-n-\frac{1}{2}}^j \hat{B}_{2n,j} (a_1, a_2, \dots, a_{2n-j+1})$$
(5)

Обобщённые числа Стирлинга

Они упоминаются в английской вики на странице о числах Стирлинга. Там же приводится ссылка на книгу Кометта, посвящённую комбинаторике. (см. papers)

$$\exp\left(u\left(\frac{t^r}{r!} + \frac{t^{r+1}}{(r+1)!} + \dots\right)\right) = \sum_{n=(r+1)k,k=0}^{\infty} S_r(n,k)u^k \frac{t^n}{n!}$$
 (6)

Для чисел Стирлинга есть рекуррентная формула всё в той же книжке "Advanced combinatorics":

$$S_r(n+1,k) = kS_r(n,k) + C_n^r S_r(n-r+1,k-1)$$
(7)

Немного о полиномах Белла

$$\exp\left(u\sum_{j=1}^{\infty}x_{j}t^{j}\right) = \sum_{n\geq k\geq 0}\hat{B}_{n,k}\left(x_{1}, x_{2}, \dots, x_{n-k+1}\right)t^{n}\frac{u^{k}}{k!}$$
(8)

Подставляя необходимые x_i в нашем случае, получаем следующий ряд:

$$\sum_{n\geq k\geq 0} \hat{B}_{n,k} \left(\frac{1}{r!}, \frac{1}{(r+1)!}, \dots, \frac{1}{(n-k+r)!} \right) t^n \frac{u^k}{k!} = \exp\left(\frac{u}{t^{r-1}} \left(\frac{t^r}{r!} + \frac{t^{r+1}}{(r+1)!} + \dots \right) \right)$$

$$= \sum_{n,k}^{\infty} S_r(n,k) \frac{u^k}{t^{(r-1)k}} \frac{t^n}{n!}$$

$$= \sum_{n,k}^{\infty} S_r(n+(r-1)k,k) u^k \frac{t^n}{(n+(r-1)k)!}$$
(9)

$$\hat{B}_{n,k}\left(\frac{1}{r!}, \frac{1}{(r+1)!}, \dots, \frac{1}{(n-k+r)!}\right) = \frac{k!}{(n+(r-1)k)!} S_r(n+(r-1)k, k)$$
(10)

Применение теории

Как упоминается в приложении к диплому:

$$\sum_{n=0}^{\infty} \frac{\alpha^n e^{i\gamma n^2}}{n!} = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\gamma}} \int_{-\infty}^{\infty} e^{-i\frac{x^2}{\gamma} + \alpha e^{2ix}} dx = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\gamma}} \int_{-\infty}^{\infty} e^{\frac{1}{\gamma} \left(-ix^2 + \alpha\gamma e^{2ix}\right)} dx \tag{11}$$

 $^{^{2}}$ формула (1.11) в книжке по методу перевала.

В таком виде очевидно, что в формуле 4 будут использоваться следующие замены: $\lambda \leadsto \frac{1}{\gamma}$, $f(x) \leadsto -ix^2 + \alpha \gamma e^{2ix} = -ix^2 - \frac{z}{2i}e^{2ix}$. (А так же вспомним обозначение из первой части $z=-2i\alpha\gamma$).

$$\frac{f(x) - f(z_k)}{(x - z_k)^2} = \sum_{p=0}^{\infty} \frac{f^{(p+2)}(z_k)}{(p+2)!} (x - z_k)^p$$

$$= \underbrace{\left(-i - ize^{2iz_k}\right)}_{a_0} - \sum_{p=1}^{\infty} \underbrace{\frac{(2i)^{p+1}ze^{2iz_k}}{(p+2)!}}_{a_1, a_2, \dots} (x - z_k)^p$$
(12)

Теперь мы готовы воспользоваться формулой 5 и выразить интеграл по перевальному контуру через z_k (а так же используем формулу 5.6 из моего диплома):

$$\int_{\gamma_{k}} e^{\frac{1}{\gamma}\left(-ix^{2}+\alpha\gamma e^{2ix}\right)} dx = \exp\left(\frac{z_{k}(1-iz_{k})}{\gamma}\right) \sum_{n=0}^{\infty} \Gamma\left(n+\frac{1}{2}\right) c_{2n} \gamma^{n+\frac{1}{2}}$$

$$c_{2n} = \sum_{j=0}^{2n} C^{j}_{-n-\frac{1}{2}} \frac{1}{\left(-i-ize^{2iz_{k}}\right)^{n+j+\frac{1}{2}}} \hat{B}_{2n,j} \left(-\frac{(2i)^{2}ze^{2iz_{k}}}{3!}, -\frac{(2i)^{4}ze^{2iz_{k}}}{4!}, \dots, -\frac{(2i)^{2n-j+2}ze^{2iz_{k}}}{(2n-j+3)!}\right)$$
(13)

Для упрощения последнего выражения нам понадобиться пара свойств полиномов Белла. А именно можно использовать их однородность и экспоненциальные полиномы Белла:

$$\hat{B}_{2n,j}(\zeta x_1, \zeta x_2, \dots, \zeta x_{2n-j+1}) = \zeta^j \hat{B}_{2n,j}(x_1, x_2, \dots, x_{2n-j+1})$$

$$\hat{B}_{2n,j}(\zeta x_1, \zeta^2 x_2, \dots, \zeta^{2n-j+1} x_{2n-j+1}) = \zeta^{2n} \hat{B}_{2n,j}(x_1, x_2, \dots, x_{2n-j+1})$$
(14)

Из этого следует:

$$\hat{B}_{2n,j}\left(-\frac{(2i)^2ze^{2iz_k}}{3!}, -\frac{(2i)^4ze^{2iz_k}}{4!}, \dots, -\frac{(2i)^{2n-j+2}ze^{2iz_k}}{(2n-j+3)!}\right) =
= (-2ize^{2iz_k})^j (2i)^{2n} \hat{B}_{2n,j}\left(\frac{1}{3!}, \frac{1}{4!}, \dots, \frac{1}{(2n-j+3)!}\right)$$
(15)

Используя выше перечисленное³, можно написать:

$$c_{2n} = \sum_{j=0}^{2n} C_{-n-\frac{1}{2}}^{j} \frac{(-2ize^{2iz_{k}})^{j}(2i)^{2n}}{(-i-ize^{2iz_{k}})^{n+j+\frac{1}{2}}} \frac{j!}{(2n+2j)!} S_{3}(2n+2j,j)$$

$$= \sum_{j=0}^{2n} \frac{n!(2n+2j)!}{(n+j)!(2n)!j!(2i)^{2j}} \frac{(-2ize^{2iz_{k}})^{j}(2i)^{2n}}{(-i-ize^{2iz_{k}})^{n+j+\frac{1}{2}}} \frac{j!}{(2n+2j)!} S_{3}(2n+2j,j)$$

$$= \sum_{j=0}^{2n} \frac{n!}{(n+j)!(2n)!} \frac{(-2ize^{2iz_{k}})^{j}(2i)^{2n-2j}}{(-i-ize^{2iz_{k}})^{n+j+\frac{1}{2}}} S_{3}(2n+2j,j)$$

$$(16)$$

Альтернативное переписывание

Как можно было заметить, в полученных формулах много некрасивостей. Сейчас, когда мы уже знаем, какие выражения придётся ворочить, предлагается сделать следующие пере-

 $^{^3}$ А также $\Gamma\left(\frac{1}{2}-n\right)=rac{(2i)^{2n}n!}{(2n)!}\sqrt{\pi}$

обозначения:

$$A \leadsto \alpha$$

$$\Gamma \leadsto \gamma$$

$$Z = Re^{i\Phi} = -2iA\Gamma \leadsto -2i\alpha\gamma$$
(17)

Мотивация следующая:

- 1. Большие буквы обозначают неизменность, что важно в контексте множества сумм, парамтров и всего такого
- $2. \ A$ позволит не путать моё ошибочно выбранное обозначение с общепринятым
- 3. Γ совпадает с общепринятым обозначением
- 4. Большая буква Z обозначает неизменную комплексную величину 4

Так же для упрощения формул с методом перевала немного переписать подынтегральную функцию:

$$\sum_{n=0}^{\infty} \frac{A^n e^{i\Gamma n^2}}{n!} = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\Gamma}} \int_{-\infty}^{\infty} e^{-i\frac{z^2}{\Gamma} + Ae^{2iz}} dz$$

$$= \frac{e^{\frac{i\pi}{4}}}{2\sqrt{\pi\Gamma}} \int_{-\infty}^{\infty} e^{-i\frac{z^2}{4\Gamma} + Ae^{iz}} dz$$

$$= \frac{e^{\frac{i\pi}{4}}}{2\sqrt{\pi\Gamma}} \int_{-\infty}^{\infty} \exp\left(\frac{-i\frac{z^2}{2} + Zie^{iz}}{2\Gamma}\right) dz$$
(18)

Сделаем следующее обозначение:

$$f(z) = \frac{z^2}{2i} + iZe^{iz} \tag{19}$$

Теперь решения $f'(z_k) = 0$ можно просто обозначить в виде:

$$e^{iz_k} = \frac{z_k}{iZ} \Rightarrow z_k = iW_k(Z)$$
 (20)

По-моему, такие обозначения просто прекрасны. Вот, например, разложение вокруг перевальной точки:

$$f(z) = \underbrace{\frac{z_k^2}{2i} + z_k}_{f(z_k)} + \underbrace{\frac{2-i}{4}}_{a_0} (z - z_k)^2 + \sum_{n=1}^{\infty} \underbrace{\frac{-i^n}{(n+2)!}}_{a_1, a_2, \dots} (z - z_k)^{n+2}$$
(21)

Полагая $\lambda = \frac{1}{2\Gamma}$ можно написать⁵:

$$\int_{\gamma_k} \exp(\lambda f(z)) dz = \exp(\lambda f(z_k)) \sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) \frac{c_{2n}}{\lambda^{n + \frac{1}{2}}}$$

$$c_{2n} = \sum_{j=0}^{2n} C_{-n - \frac{1}{2}}^{j} \frac{1}{a_0^{n+j+\frac{1}{2}}} \hat{B}_{2n,j} \left(a_1, a_2, \dots, a_{2n-j+1}\right)$$
(22)

⁴Надеюсь на благоразумие читателей, потому что автор против Z-движения в России

 $^{^5}$ Надеюсь, что читатель не перепутает Γ и Γ -функцию. Для удобства чтения использования числа Γ после него не будет скобочек.

Можно заметить, что сумма, стоящая после $\exp{(\lambda f(z_k))}$ совершенно не зависит от z_k . Более того, все c_{2n} — это просто числа.

$$\int_{-\infty}^{\infty} \exp\left(\lambda f(z)\right) dz = \sum_{k=0}^{-\infty} \int_{\gamma_k} \exp\left(\lambda f(z)\right) dz = \left(\sum_{k=0}^{-\infty} \exp\left(\lambda f(z_k)\right)\right) \left(\sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) \frac{c_{2n}}{\lambda^{n + \frac{1}{2}}}\right) \tag{23}$$

Смелые идеи

Полученную сумму $\sum_{k=0}^{-\infty} \exp\left(\lambda f(z_k)\right)$ можно было бы переписать в виде интеграла, а затем переписать полученное выражение с помощью метода перевала. Это получился бы метод перевала в квадрате! Покажу первые шаги:

$$\sum_{k=0}^{-\infty} \exp\left(\lambda f(z_k)\right) = \frac{1}{2\pi i} \int_C \frac{e^{\lambda f(z)}}{-ize^{-iz} - Z} g(z) dz \tag{24}$$

Контур C необходимо выбрать так, чтоб он обходил все z_k . Функцию g(z) необходимо выбрать из следующих соображений:

$$\operatorname{Res}_{z=z_k} \frac{e^{\lambda f(z)}}{-ize^{-iz} - Z} g(z) = e^{\lambda f(z_k)}$$
(25)

Или же, в предположении целости функции g:

$$g(z_k) = \frac{d}{dz} \left(-ize^{-iz} - Z \right)_{z=z_k} = \underbrace{-(i+z_k)e^{-iz_k}}_{z=z_k} = -(i+z_k)\frac{iZ}{z_k} = \underbrace{-i(1+Ze^{iz_k})e^{-iz_k}}_{z=z_k}$$
(26)

Любой из обведённых вариантов удобен для задании функции g в зависимости от поведения модуля подынтегральной функции на комплексной плоскости. Очень важно, чтоб контур интегрирования деформировался удобным образом.