近世代数 (抽象代数) 笔记

管清文

2020年3月5日

目录

1	基本	概念	2
	1.1	代数运算	2
		运算律	
		同态	
	1.4	等价关系与集合分类	3
2	群论		4
		群的定义和性质	
		群的同态	
		变换群	
	2.4	子群	6
3	环		6
4	域		6

1 基本概念 2

1 基本概念

1.1 代数运算

注意 1 近世代数 (或抽象代数) 的主要内容就是研究所谓代数系统,即带有运算的集合。

定义 2 (映射)

$$A_1 \times A_2 \times \dots \times A_n \to D$$

 $(a_1, a_2, \dots, a_n) \mapsto d = \phi(a_1, a_2, \dots, a_n) = \overline{(a_1, a_2, \dots, a_n)}$

注意 3 判断一个法则 φ 是映射的充要条件: (i) 都有象 (ii) 象唯一.

定义 4 (代数运算)

$$A \times B \to D$$

 $(a,b) \mapsto d = \phi(a,b) = \circ(a,b) = a \circ b$

注意 5 A = B 时, 对于代数运算 $A \times A \rightarrow D$, $a \circ b$ 和 $b \circ a$ 都有意义, 但不一定相等.

定义 6 (A 的代数运算, 二元运算) 假如 \circ 是一个 $A \times A \rightarrow A$ 的代数运算 (即 A = B = D), 我们说集合 A 对于代数运算 \circ 来说是闭的, 也说, \circ 是 A **的代数运算**或二元运算.

1.2 运算律

定义 7 (结合率) 我们说,一个集合 A 的代数运算。满足结合律,假如对于 A 的任何三个元素 a,b,c 来 说都有

$$(a \circ b) \circ c = a \circ (b \circ c)$$

定义 8 假如对于 A 的 n ($n \ge 2$) 个固定的元素 a_1, a_2, \dots, a_n 来说,所有的加括号方式 $\pi(a_1 \circ a_2 \circ \dots \circ a_n)$ 都相等,我们就把这些步骤可以得到的唯一的结果,用 $a_1 \circ a_2 \circ \dots \circ a_n$ 来表示.

定理 9 若 A 的代数运算。满足结合律,则对于 A 的任意 $n(n \ge 2)$ 个元素 a_1, a_2, \dots, a_n 来说,对于任意的加括号的方法 π , $\pi(a_1 \circ a_2 \circ \dots \circ a_n)$ 都相等, $a_1 \circ a_2 \circ \dots \circ a_n$ 也就总有意义.

定义 10 (交換律) A 上的二元运算 \circ , $a \circ b = b \circ a$ (a 与 b 可交换) $\forall a, b \in A$ 成立,则称 \circ 满足**交换律**.

定理 11 若 A 上的二元运算。满足结合律与交换律,则 $a_1 \circ a_2 \circ \cdots \circ a_n$ 可以任意交换顺序.

定义 12 (分配率) \odot 和 \oplus 都是 A 上的二元运算,

- i) 若 $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c), \forall a, b, c, 则称 \odot 和 \oplus 满足第一分配率.$
- ii) 若 $(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c), \forall a, b, c, 则称 \odot 和 \oplus 满足第二分配率.$

定理 13 若 A 上的二元运算 \oplus 满足结合律, \odot 和 \oplus 满足第一分配率, 则

$$a \odot (b_1 \oplus b_2 \oplus \cdots \oplus b_n) = (a \odot b_1) \oplus (a \odot b_2) \oplus \cdots \oplus (a \odot b_n)$$

定理 14 若 A 上的二元运算 \oplus 满足结合律, \odot 和 \oplus 满足第二分配率, 则

$$(a_1 \oplus a_2 \oplus \cdots \oplus a_n) \odot b = (a_1 \odot b) \oplus (a_2 \odot b) \oplus \cdots \oplus (a_n \odot b)$$

1 基本概念 3

1.3 同态

定义 15 (满射) 映射 $\phi: A \to \bar{A}$ 被称为满射, 如果 $\forall \hat{a} \in \bar{A}, \exists a \in A \text{ s.t. } \bar{a} = \hat{a}. \ (\phi^{-1})$ 都有象)

定义 16 (单射) 映射 $\phi: A \to \bar{A}$ 被称为单射, 如果 $\forall a, b \in A, a \neq b \Rightarrow \bar{a} \neq \bar{b}$. $(\phi^{-1}$ 象唯一)

定义 17 (一一映射) 既是满射又是单射.

注意 18 (一一映射判别) (i) 是映射 (都有象、象唯一) (ii) 满的 (iii) 单的.

定义 19 (变换) 从 A 到 A 的映射 $\tau: A \to A, a \mapsto \tau(a) = a^{\tau}$ 叫 A 上的变换.

- 如果 τ 是满的,则称为满变换.
- 如果 τ 是单的,则称为**单变换**.
- 如果 τ 是一一的,则称为一一**变换**.

定义 20 (同态映射) 对于 $\phi: A \to \bar{A}, A$ 上有二元运算 \circ , \bar{A} 上有二元运算 $\bar{\circ}$. 如果 $\overline{a \circ b} = \bar{a} \bar{\circ} \bar{b}$, 则称 ϕ 是 A 到 \bar{A} 的同态映射.

注意 21 (同态映射判别) (i) 是映射 (都有象、象唯一) (ii) $\overline{a \circ b} = \bar{a} \circ \bar{b}$

定义 22 (同态满射、同态) 如果 A 到 \bar{A} 存在 一个同态映射 ϕ , 且它是满的, 则称 A 与 \bar{A} (关于 \circ 与 $\bar{\circ}$ 来说) **同态**. 称这个映射是一个**同态满射**.

注意 23 (同态满射判别) (i) 是映射 (都有象、象唯一) (ii) 同态 (iii) 满

定义 24 (同构映射、同构) 如果 A 到 \bar{A} 存在 一个同态映射 ϕ , 且它是既是满的又是单的 (一一的), 则称 A 与 \bar{A} (关于。与 $\bar{\circ}$) **同构**, 记为 $A \cong \bar{A}$. 称这个映射是一个 (关于。与 $\bar{\circ}$ 的) **同构映射** (简称同构).

注意 25 (同构映射判别) (i) 是映射 (都有象、象唯一) (ii) 同态 (iii) 满 (iv) 单

定理 26 假定对于代数运算 \circ 和 $\bar{\circ}$ 来说, A 与 \bar{A} 同态, 那么

- i) 若。满足结合律, ō 也满足结合律;
- ii) 若。满足交换律, ō 也满足交换律.

定理 27 ① 和 \oplus 是 A 的两个代数运算, ① 和 \oplus 是 \bar{A} 的两个代数运算, 有 ϕ 既是 A 与 \bar{A} 的关于 ① 和 $\bar{\odot}$ 的同态满射, ϕ 也是 A 与 \bar{A} 的关于 \oplus 和 $\bar{\oplus}$ 的同态满射, 则

- i) 若 ⊙ 和 ⊕ 满足第一分配率,则 ⊙ 和 ⊕ 也满足第一分配率.
- ii) 若 ⊙ 和 ⊕ 满足第二分配率, 则 ⊙ 和 ⊕ 也满足第二分配率.

定义 28 (自同构) 对于 \circ 和 \circ 来说的一个 A 与 A 之间的 同构映射 叫做一个对于 \circ 来说的 A 的自同构.

1.4 等价关系与集合分类

定义 29 (关系[Relation]) $R: A \times A \rightarrow D = \{ \forall j, \exists j \in B \}$, 若 $R(a,b) = \forall j \in B \}$, 称 $R(a,b) = \forall j \in B \}$ 。 证为 $R(a,b) = \forall j \in B \}$ 。 证为 $R(a,b) = \forall j \in B \}$ 。 证为 $R(a,b) = \forall j \in B \}$ 。 证为 $R(a,b) = \forall j \in B \}$ 。 证为 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 证书 $R(a,b) = \forall j \in B \}$ 。 $R(a,b) = \forall j \in B \}$ 。 R(a,

定义 30 (等价关系) 如果 \sim 是 A 的元素间的关系,满足

- i) 自反性, $\forall a \in A, a \sim a$.
- ii) 对称性, $\forall a, b \in A$, 若 $a \sim b$, 则 $b \sim a$.
- iii) 传递性, $\forall a, b, c \in A$, 若 $a \sim b$, $b \sim c$, 则 $a \sim c$.

则称 ~ 为等价关系.

定义 31 (集合分类、划分) 集合 A 分成若干子集,满足 (i) 每个元素属于都某子集 (ii) 每个元素只属于某子集. 这些类的全体叫做集合 A 的一个分类.

$$A = A_1 \cup A_2 \cup \cdots \cup A_n, A_i \cap A_i = \emptyset, i \neq j$$

2 群论 4

定理 32 集合上的一个分类,确定一个集合的元素之间的等价关系.

定理 33 集合上的一个等价关系,确定一个集合的分类.

定义 34 (模 n 的剩余类) $\{[0],[1],\cdots,[n-1]\},[i]=\{kn+i\mid k\in\mathbb{Z}\}$

2 群论

2.1 群的定义和性质

注意 35 群是一个代数系统 (定义代数运算的集合), 其中群里只有一个代数运算. 便利起见 $\phi(a,b)=a\circ b$ 写成 ab

定义 36 (群[Group]的第一定义) 在集合 $G \neq \emptyset$ 上规定一个叫做乘法的 代数运算 . 这个代数系统被称为群, 如果

- I 乘法封闭, $\forall a, b \in G, ab \in G$
- II 乘法结合, $\forall a, b, c \in G$, (ab)c = a(bc)
- III $\forall a, b \in G, ax = b, ya = b$ 在 G 中都有解.

注意 37 (乘法) 以后提到乘法, 都是指某个集合 A 上的代数运算 $A \times A \rightarrow A$, 自然要求 I(乘法封闭).

定理 38 (IV[左单位元]) 对于群 G 中至少有一个元 e, 叫做 G 的一个左单位元, 使得 $\forall a \in G$ 都有 ea = a.

定理 39 (V[**左逆元**]) 对于群 G 中的任何一个元素 a, 在 G 中存在一个元 a^{-1} , 叫做 a 的**左逆元**, 能让 $a^{-1}a=e$.

定义 40 (群[Group]的第二定义) 在集合 $G \neq \emptyset$ 上规定乘法. 这个代数系统被称为群, 如果

- I 乘法封闭
- II 乘法结合
- IV $\exists e \in G$ 使 ea = a 对 $\forall a \in G$ 都成立.
- V $\forall a \in G, \exists a^{-1}$ 使 $a^{-1}a = e$.

定义 41 (群的阶) 如果 |G| 有限, 称其为**有限群**, 称他的**阶**是 G 的元素个数.

如果 G 中有无穷多个元素, 称其为无限群, 称他的M无限.

定义 42 (交換群、Abel 群) 群中交换律不一定成立, 如果乘法满足交换律 ($\forall a,b \in G,ab=ba$), 则称之为**交换群** (**Abel 群**).

定理 43 (单位元) 在一个群 G 里存在且只存在一个元 e, 使得 ea = ae = a 对于 $\forall a \in G$ 成立. 这个元素 被称为群 G 的**单位元**.

定理 44 (逆元) 对于群 G 的任意一个元素 a 来说,有且只有一个元素 a^{-1} ,使 $a^{-1}a = aa^{-1} = e$. 这个元素被称为 a 的**逆元**,或者简称**逆**.

定义 45 规定
$$a^n = \underbrace{aa\cdots a}_{n \uparrow}, a^0 = e, a^{-n} = (a^{-1})^n, n \in \mathbb{Z}^+$$

定理 46 $a^n a^m = a^{n+m}, (a^n)^m, n, m \in \mathbb{Z}$

定义 47 (元素的阶) 在一个群 G 中,使得 $a^n = e$ 的最小正整数,叫做 a 的**阶**. 若这样的 n 不存在,称 a 是无穷阶的,或者叫 a 的阶是无穷.

定理 48 (III'[消去律]) 群的乘法满足: $ax = ax' \Rightarrow x = x', ya = y'a \Rightarrow y = y'$

推论 49 在群里, ax = b 和 ya = b 都有唯一解.

定理 50 (有限群的另一定义) 一个带有乘法的 有限集合 $G \neq \emptyset$, 若满足 I、II、III', 则 G 是一个群.

2 群论 5

2.2 群的同态

定理 51 G 与 \bar{G} 关于他们的乘法同态,则 G 是群 $\Rightarrow \bar{G}$ 也是群.

定理 52 假定 G 和 \bar{G} 是两个群, 在 G 到 \bar{G} 的一个同态满射之下, G 的单位元 e 的象是 \bar{G} 的单位元, G 的元 a 的逆元 a^{-1} 的象是 a 的象的逆元.

注意 53 总结下来, 如果 A 与 \bar{A} 同态, 那么前者有什么后面就也有什么:

- 前面有结合,后面就也有结合
- 前面有交换,后面就也有交换
- 前面有分配,后面就也有分配
- 前面是群,后面就也是群

定理 54 G 与 \bar{G} 关于他们的乘法同构, 则 G 是群 $\Leftrightarrow \bar{G}$ 是群.

2.3 变换群

定义 55 (变换的乘法) $\tau_1\tau_2: a \mapsto (a^{\tau_1})^{\tau_2}$

定理 56 (变换乘法结合) $(\tau_1\tau_2)\tau_3 = \tau_1(\tau_2\tau_3)$

定理 57 G 是集合 A 的若干变换构成的集合, 如果 G 基于变换的乘法做成一个群, 则 G 中的变换一定是一一变换.

定义 58 (变换群) 如果一个集合 A 的若干 $\boxed{ ——变换}$ 对于变换的乘法能够做成一个群,则称这个群为 A 的一个变换群.

定理 59 一个集合 A 上的所有一一变换做成一个变换群 G.

定理 60 任何一个群都与一个变换群同构.

定义 61 (置換) 有限集合 上的 ——变换 叫做**置换**, 一般用 π 表示.

定义 62 (置换群) 有限集合上的若干置换做成的群叫置换群.

定义 63 (对称群) 一个 n 元集合 $A = \{a_1, a_2, \dots, a_n\}$ 上的所有置换 (有 n! 个) 做成的群叫做 n 次**对称** 群, 用 S_n 来表示.

定理 64

$$\pi_{1} = \begin{pmatrix} j_{1} & \cdots & j_{k} & j_{k+1} & \cdots & j_{n} \\ j_{1}^{(1)} & \cdots & j_{k}^{(1)} & j_{k+1} & \cdots & j_{n} \end{pmatrix} \\
\pi_{2} = \begin{pmatrix} j_{1} & \cdots & j_{k} & j_{k+1} & \cdots & j_{n} \\ j_{1} & \cdots & j_{k} & j_{k+1}^{(2)} & \cdots & j_{n}^{(2)} \end{pmatrix} \Rightarrow \pi_{1}\pi_{2} = \begin{pmatrix} j_{1} & \cdots & j_{k} & j_{k+1} & \cdots & j_{n} \\ j_{1}^{(1)} & \cdots & j_{k}^{(1)} & j_{k+1}^{(2)} & \cdots & j_{n}^{(2)} \end{pmatrix}$$

定义 65 (*k*-循环置换) 如果 S_n 中的置换满足 a_{i_1} 的象是 a_{i_2} , a_{i_2} 的象是 a_{i_3} , \cdots , $a_{i_{k-1}}$ 的象是 a_{i_k} , a_{i_k} 的象是 a_{i_1} , 其他元素,如果还有的话,象是不变的,则称之为 *k*-循环置换. 用 $(i_1 i_2 i_3 \cdots i_{k-1} i_k)$ 或 $(i_2 i_3 \cdots i_{k-1} i_k i_1)$ 或 \cdots 或 $(i_k i_1 i_2 i_3 \cdots i_{k-1})$ 来表示.

定理 66 任何一个置换都可以写成若干没有共同数字的循环置换的乘积.

定理 67 任何一个有限群都与一个置换群同构.

定义 68 (循环群) 若一个群 G 的每一个元都是 G 的某一固定元 a 的乘方, 我们就称 G 是一个**循环群**, a 是 G 的一个生成元, 并记 G = (a), 且说 G 是由元 a 生成的。

定义 69 (\mathbb{Z}_n [**模** n 的剩余类加群]) G 包含所有模 n 的剩余类, $G = \{[0], [1], \cdots, [n-1]\}$, 定义乘法 (叫做 加法) [a] + [b] = [a+b], 可以证明 (G, +) 做成一个群, 叫做**模** n 的剩余类加群.

定理 70 假定 G 是由 a 生成的循环群, 则 G 的构造可以完全由 a 的阶来决定:

- 如果 a 的阶无限, 则 $G \cong \mathbb{Z}$.
- 如果 a 的阶为 n, 则 $G \cong \mathbb{Z}_n$.

2.4 子群

定义 71 (子群) 如果一个群 G 的一个子集 H 关于群 G 的乘法也能做成一个群,则称 H 为 G 的一个子 **群**.

定理 72 一个群 G 的一个非空子集 H 做成 G 的子群, 当且仅当

- (i) $a, b \in H \Rightarrow ab \in H$
- (ii) $a \in H \Rightarrow a^{-1} \in H$

推论 73 若 $H \in G$ 的子群, 则, H 的单位元就是 G 的单位元, $a \in H$ 中的逆就是 a 的 G 中的逆.

定理 74 一个群 G 的一个非空子集 H 做成 G 的子群, 当且仅当 (iii) $a,b \in H \Rightarrow ab^{-1} \in H$

定理 75 一个群 G 的一个非空 有限 子集 H 做成 G 的子群, 当且仅当 (i) $a,b \in H \Rightarrow ab \in H$

注意 76 (验证非空集合是群的方法) (1) I, II, III (2) I、II、IV, V (3) 有限集: I, II, III' (4) 子群: (i), (ii) (5) 子群: (iii) (6) 有限子群: (i)

定义 77 (生成子群) 对于群 G 的非空子集 S, 包含 S 的最小子群, 被称为由 S 生成的子群, 记为 (S). **定理 78** $S = \{a\}$ 时, (S) = (a).

3 环

4 域