数值分析第 2 次上机作业

学号: 221840189, 姓名: 王晨光

§ 1 问题一

1.1 问题

编写并测试子程序, 计算 y = x - sin x, 使得有效位的丢失最多 1 位.

1.2 算法思路

由精度丢失定理, $1-\frac{sinx}{x}\geqslant\frac{1}{2}$ 时,x-sinx至多丢失 1 个精度,可以直接代入计算.当 $1-\frac{sinx}{x}<\frac{1}{2}$ 时,考虑 x-sinx 的 Taylor 级数展开:

$$x - \sin x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}.$$

令 $a_n = \frac{x^{2n+1}}{(2n+1)!}$ 往证上述级数中每两项在进行计算时的有效位丢失至多为 1 位:

$$1 - \frac{a_{n+1}}{a_n} = \frac{x^2}{(2n+1)(2n+3)}$$

$$\geqslant 1 - \frac{1.9^2}{3 \times 6}$$

$$\geqslant 0.79$$

$$\geqslant \frac{1}{2}$$

故当 $1 - \frac{\sin x}{x} \le \frac{1}{2}$ 时,通过 Taylor 级数计算,有效位的丢失也至多为 1 位.

Algorithm 1 计算 x - sinx

Require: 实数 x.

12: end function

Ensure: y = x - sinx 的值.

1: **function**
$$y(x)$$

2: $y \leftarrow 0, n \leftarrow 1$
3: **if** $1 - \frac{\sin x}{x} \geqslant \frac{1}{2}$ **then**
4: $y \leftarrow x - \sin x$
5: **else**
6: $a_n \leftarrow (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$
7: **while** $|a_n| \geqslant 10^{-16}$ **do**
8: $y \leftarrow y + a_n, n \leftarrow n + 1$
9: $a_n \leftarrow (-1)^{n+1} \frac{x^{2n+1}}{(2n+1)!}$
10: **end while**
11: **end if**

1.3 结果分析 2

1.3 结果分析

由上述证明可知,该算法可以使得有效位的丢失限定在一位.以下是部分运算结果:

x	y
-0.0001	-1.666666666666667e-13
-0.001	-1.666666666666669e-10
-0.01	-1.6666583333333337e-07
-0.1	-0.0001665833531718475
-1.0	-0.1585290151921035
-10.0	-10.54402111088937
0.0001	$1.666666666666667 \mathrm{e}\text{-}13$
0.001	$1.666666666666669 \mathrm{e}\text{-}10$
0.01	$1.6666583333333337\mathrm{e}\text{-}07$
0.1	0.0001665833531718475
1.0	0.1585290151921035
10.0	10.54402111088937

表 1: y = x - sinx 的部分计算结果

§ 2 问题二

2.1 问题

计算

$$y = \int_0^1 x^n e^x dx \quad (n \geqslant 0).$$

由分部积分法得 $y_{n+1} = e - (n+1)y_n$, 数值不稳定.

2.2 算法分析

计算得 $y_0 = \int_0^1 e^x dx = e - 1 \approx 1.718 \cdots \rightarrow \hat{y_0}$. $\hat{y_0}$ 无法避免舍入误差,且由于递推公式 $y_{n+1} = e - (n+1)y_n$ 中 y_n 前的系数 n+1 大于 1,并且会随着 n 线性增长,那么初始值 $\hat{y_0}$ 的误差会被阶乘级别不断放大:

$$\epsilon_n = y_n - \hat{y_n} = n \cdot (y_{n-1} - \hat{y_{n-1}}) = \dots = n! \cdot (y_0 - \hat{y_0}) = n! \cdot \epsilon_0.$$

由此可见该算法的误差会爆炸式地增长,算法极其不稳定.

2.3 结果分析 3

2.3 结果分析

\overline{n}	y_n	$\hat{y_n}$
0	1.7182818284590453	1.7182818284590453
2	0.7182818284590453	0.7182818284590455
4	0.46453645613140715	0.46453645613141115
6	0.34468454164698736	0.34468454164710893
8	0.27436153301797617	0.2743615330247846
10	0.22800151548644187	0.22800151609920905
12	0.19509993116082067	0.19510001204609795
14	0.17052370130176747	0.17053842242224038
16	0.1514608855385012	0.15499395445201403
18	0.13623989097759065	1.2173589785125256
19	0.1297238998848238	-20.41153876327894
20	0.12380383076256998	410.94905709403787

表 2: 积分递推式所得估计值 \hat{y} 与实际值 y 的比较

实际值可以通过 Python 的 Scipy 库中的 integrate.quad 函数计算得到.

从表格可以看出,误差被不断放大,以至在 n=16 之后呈现爆炸式增长,甚至会交替地出现负值,故该算法极不稳定.

§ **3** 问题三

3.1 问题

考虑由

$$\begin{cases} x_0 = 1, x_1 = 1/3 \\ x_{n+1} = \frac{13}{3}x_n - \frac{4}{3}x_{n-1}, & (n \ge 1) \end{cases}$$

定义的实数序列,算法不稳定.

将初值改为 $x_0 = 1, x_1 = 4$ 数值稳定吗?

3.2 算法分析

通过特征根法处理 $x_{n+1} = \frac{13}{3}x_n - \frac{4}{3}x_{n-1}$,求得通项公式 $x_n = A \cdot \frac{1}{3^{n-1}} + B \cdot 4^{n-1}$,分别代入 $x_0 = 1, x_1 = 1/3$ 与 $x_0 = 1, x_1 = 4$ 得到序列 1 通项公式为 $x_n = \frac{1}{3^n}$,序列 2 通项公式为 $x_n = 4^n$,由 此可以直接得到递推公式的各项实际值,并与计算机通过递推公式计算得到的序列值做比较,通过实验验证算法的数值稳定性.

由初值 $x_0=1, x_1=1/3$ 给出的实数序列算法不稳定,原因在于初值 $x_1=1/3$ 在存储中会出现舍入误差,在计算 x_2 时, x_1 造成的误差会被系数 $\frac{13}{3}(\frac{13}{3}>1)$ 扩大;计算 x_3 时,误差来源于两项相减,但 $\frac{13}{3}\cdot\frac{13}{3}\gg\frac{4}{3}$,误差无法相互抵消,如此递推,误差无法收敛,会不断放大,最终导致算法数值不稳定.

3.3 结果分析 4

由初值 $x_0 = 1, x_1 = 4$ 给出的实数序列算法理论上稳定,因为初值不存在舍入误差,不会在计算过程中被放大,误差来源为每次计算时系数的舍入误差产生的,但系数的误差相当小且不会被放大,故算法应该是数值稳定的.

3.3 结果分析

\overline{n}	x_n	$\hat{x_n}$
0	1.0	1.0
3	0.03703703703703703	0.03703703703703626
6	0.0013717421124828527	0.0013717421124321456
9	5.0805263425290837e- 05	$5.0805260179967644 \mathrm{e}\text{-}05$
12	$1.8816764231589195 \mathrm{e}\text{-}06$	$1.8814687224716613\mathrm{e}\text{-}06$
15	$6.969171937625627\mathrm{e}\text{-}08$	$5.63988753916179\mathrm{e}\text{-}08$
18	$2.5811747917131946 \mathrm{e}\hbox{-}09$	$-8.481608402251475 \mathrm{e}\text{-}07$
21	$9.559906635974793\mathrm{e}\text{-}11$	$-5.444739336201271\mathrm{e}\text{-}05$
24	$3.540706161472145\mathrm{e}\text{-}12$	-0.0034846392899683535
27	$1.3113726523970905 \mathrm{e}\text{-}13$	-0.22301691478444863
30	4.856935749618853e-15	-14.2730825462131

表 3: $x_0 = 1, x_1 = \frac{1}{3}$ 时通项估计值 $\hat{x_n}$ 与实际值 x_n 的比较

可以看到,误差被不断放大,甚至在 n=18 时出现了负值,通项收敛于 0 的性质被完全改变. 故该算法不稳定.

n	x_n	$\hat{x_n}$
0	1	1.0
2	16	15.99999999999998
4	256	255.99999999999999999999999999999999999
6	4096	4095.999999999998
8	65536	65535.99999999997
10	1048576	1048575.99999999995
12	16777216	16777215.9999999993
14	268435456	268435455.99999988
16	4294967296	4294967295.999998
18	68719476736	68719476735.99997
20	1099511627776	1099511627775.9995

表 4: $x_0 = 1, x_1 = 4$ 时通项估计值 $\hat{x_n}$ 与实际值 x_n 的比较

可见该算法数值稳定.

§4 **结论**

1. 结合精度丢失定理与 Taylor 展开,我们可以求出令 y=x-sinx 丢失精度尽可能少的优良算法.

2. 对于数值计算而言,很多时候误差项难以完全避免,但如果产生误差的项前的系数不能被很好的控制,会导致误差随着迭代次数增多被严重放大,使得算法极不稳定. 故应在实际的程序数值计算中避免产生误差的项前的系数大于 1 的情况,或者使大于 1 的系数快速递减收敛于 1.

§5 附录:程序代码

```
注: 3 道题目共用同一个 ipynb 程序文件.
1
   import math
   def x_sinx(x):
2
3
       if 1-math. \sin(x)/x>=0.5:
           return x-math.sin(x)
4
5
       else:
           n=1
6
           y=0.
7
8
           while abs((x**(2*n+1.))/(math. factorial(2*n+1)))>1e-17:
               an = (-1)**(n+1)*(x**(2*n+1.))/(math. factorial(2*n+1))
9
10
               y=y+an
11
               n=n+1
12
           return y
13
   # 初始化列表用于存储结果
14
   results1 = []
15
16
   x = -1e-4
17
   while x \ge -10:
18
19
       y = x_sinx(x)
       results1.append((x, y))
20
       x *= 10
21
   # 从 1e-4 开始逐项乘以 10 直到 10
22
   x = 1e-4
23
   while x \le 10:
24
25
       y = x_sinx(x)
26
       results1.append((x, y))
       x *= 10
27
28
  # 打印结果
29
30
   for x, y in results1:
       print(f "x={x}, y={y}")
31
  # 初始化列表用于存储结果
1
   results2 = []
2
3
  x = -1e-4
4
   while x \ge -10:
5
       y = x-math.sin(x)
6
       results2.append((x, y))
7
       x *= 10
  # 从 1e-4 开始逐项乘以 10 直到 10
10 x = 1e-4
```

```
11
   while x \ll 10:
12
       y = x-math.sin(x)
13
        results2.append((x, y))
14
        x *= 10
15
16
   # 打印结果
   for x, y in results2:
17
        print ( f " x={x}, y={y} " )
18
1
   results3 = []
2
   from scipy.integrate import quad
   def integral (y,n):
3
4
        result = math.e - (n+1)*y
        return result
5
6
7
   def origin_function(x):
8
        return math.exp(x)
9
10
   y0=quad(func=origin\_function, a=0,b=1)[0]
   y=y0
11
12
   for n in range (21):
        results3.append((n,y))
13
       y=integral(y,n)
14
15
   # 打印结果
16
   for n, y in results3:
17
        print ( f " n={n}, y={y} " )
18
1
   def integral_function(x,n):
2
        return x**n*math.exp(x)
3
   results4 = []
4
   for n in range (21):
5
        y=quad(func=integral_function, a=0,b=1,args=(n,))
6
 7
        results4.append((n,y[0]))
   # 打印结果
9
   for n, y in results4:
10
11
        print ( f " n={n}, y={y} " )
1
   results5 = []
2
   for n in range (0,31,3):
3
       y = (1/3) **n
4
        results5.append((n,y))
5
   for n,y in results5:
```

```
7
        print(f'n=\{n\},y=\{y\}')
   results7 = []
1
2 x0=1.
3 x1=1/3
   for n in range (31):
4
        if n==0:
5
6
             y=x0
             results7.append((n,y))
7
8
             continue
        elif n==1:
9
            y=x1
10
             results7.append((n,y))
11
12
             continue
        else:
13
             y=13/3*x1-4/3*x0
14
             results7.append((n,y))
15
16
             x0=x1
             x1=y
17
18
    for n,y in results7:
19
        if n\%3 == 0:
20
21
             print(f'n={n},y={y}')
   results6 = []
1
   for n in range (0,21,2):
2
3
        y = (4) **n
        results6.append((n,y))
4
5
6
   for n,y in results6:
7
        print(f'n={n},y={y}')
1 \operatorname{results} 8 = []
2 x0=1.
   x1=4
3
   for n in range (0,21,1):
4
        if n==0:
5
6
             y=x0
7
             results8.append((n,y))
8
             continue
        elif n==1:
9
10
11
             results8.append((n,y))
12
             continue
13
        else:
14
             y=13/3*x1-4/3*x0
```