

Basel Biometrics Society seminar Basel, 26th June 2018

BBS Seminar:

RCTs, personalized medicine, and surrogacy

Date: Tuesday, June 26, 2018, 15:30-17.45 Venue: Auditorium Building 71, Roche Campus,

Grenzacherstrasse, Basel

A statistical approach for personalized medicine and benefit / risk assessment

Marc Buyse, ScD San Francisco, CA

Limitations of current analyses of clinical trials

- A single (« primary ») endpoint drives decision-making
- Composite endpoints consider time to *first* event, instead of time to *most relevant* endpoint
- « Secondary » endpoints are analyzed descriptively
- Safety is informally balanced against efficacy, resulting in debatable risk / benefit analyses
- Patient preferences are not formally taken into account

Leucovorin and Fluorouracil With or Without Oxaliplatin as First-Line Treatment in Advanced Colorectal Cancer

By A. de Gramont, A. Figer, M. Seymour, M. Homerin, A. Hmissi, J. Cassidy, C. Boni, H. Cortes-Funes, A. Cervantes, G. Freyer, D. Papamichael, N. Le Bail, C. Louvet, D. Hendler, F. de Braud, C. Wilson, F. Morvan, and A. Bonetti

<u>Conclusion</u>: The LV5FU2-oxaliplatin combination seems beneficial as first-line therapy in advanced colorectal cancer, demonstrating a prolonged progression-free survival with acceptable tolerability and maintenance of QoL.

J Clin Oncol 18:2938-2947. © 2000 by American Society of Clinical Oncology.

Advanced colorectal cancer

420 subjects with previously untreated metastatic colorectal cancer

new combination of 5-fluorouracil, leucovorin and oxaliplatin

standard regimen of 5-fluorouracil and leucovorin

until disease progression, intolerance to treatment, or death

Progression-free survival

Ref: de Gramont et al, J Clin Oncol 18:2938, 2000.

Survival

Ref: de Gramont et al, J Clin Oncol 18:2938, 2000.

Problems?

1. The two endpoints (OS and PFS) are analyzed separately. PFS reached statistical significance, OS did not

Problems?

1. The two endpoints (OS and PFS) are analyzed separately. PFS reached statistical significance, OS did not

2. Neither endpoint is perfect:

- PFS not confounded by further line treatments, less affected by non cancer deaths, and has more events
- OS clinically most relevant and measured without bias or error

Problems?

1. The two endpoints (OS and PFS) are analyzed separately. PFS reached statistical significance, OS did not

2. Neither endpoint is perfect:

- PFS not confounded by other treatments, less affected by non cancer deaths, and has more events
- OS clinically most relevant and measured without bias or error

3. PFS ignores the time between progression and death. The time to first event ignores subsequent events. LV5FU2 + oxaliplatin might prolong PFS, but shorten OS afterwards.

A DIFFERENT APPROACH

A new method of analysis...

Generalized pairwise comparisons:

- Compare every patient in the treated group with every patient in the control group
- each pair may favor treatment, control, or neither in terms of several prioritized outcomes (OS first priority, TTP second)
- This approach naturally leads to the « net treatment effect »

TREATMENT GROUP

CONTROL GROUP

TREATMENT GROUP

CONTROL GROUP

ALL PAIRWISE COMPARISONS (36)

ALL PAIRWISE COMPARISONS (36)

TREATMENT BETTER (19 PAIRS)

CONTROL BETTER (6 PAIRS)

UNINFORMATIVE PAIRS: TIES (2 PAIRS)

UNINFORMATIVE PAIRS: CENSORING (9 PAIRS)

19 PAIRS FAVOR TREATMENT 6 PAIRS FAVOR CONTROL 11 PAIRS ARE UNINFORMATIVE

A general measure of treatment effect

Consider a generalization of the Wilcoxon-Mann-Whitney *U*-statistic

$$U_{ij} = \begin{cases} +1 & \text{if } (X_i, Y_j) \text{ pair is favorable} \\ -1 & \text{if } (X_i, Y_j) \text{ pair is unfavorable} \\ 0 & \text{otherwise} \end{cases}$$

$$U = \frac{1}{m \cdot n} \sum_{i=1}^{n} \sum_{j=1}^{m} U_{ij}$$

U is the difference between the proportion of favorable pairs and the proportion of unfavorable pairs. We call this general measure of treatment effect the « net benefit » (Δ).

Pocock *et al.* proposed a similar (relative) measure of treatment effect called the « win ratio ».

Net benefit (Δ)

For a binary variable, Δ is equal to the difference in proportions

$$\Delta = p_T - p_C$$

For a continuous variable , Δ is related to the effect size d

$$\Delta = 2 \cdot \phi(d/\sqrt{2}) - 1$$

For a time-to-event variable, Δ is related to the hazard ratio λ and the proportion of informative pairs f

$$\Delta = f \cdot \frac{1 - \lambda}{1 + \lambda}$$

Refs: Moser and McCann, Clinical Trials 5:248, 2008; Buyse, Clinical Trials 5:641, 2008.

Net benefit (Δ)

 Δ is a linear transformation of Harrell's c-index (or probabilistic index)

$$U = \Delta = 2 \cdot P(X > Y) - 1$$

Situation	P(X > Y)	Δ
${\it T}$ uniformly worse than ${\it C}$	0	-1
T no different from C	0.5	0
${\it T}$ uniformly better than ${\it C}$	1	+1

Prioritized outcomes

Priority	Outcome	Threshold of clinical relevance		
1	OS	12 months		
2	OS	6 months		
3	OS	0 month		

Prioritized outcomes

Priority	Outcome	Description		
1	OS	Time to death from any cause		
2	TTP	Time to progression of disease		

11 UNINFORMATIVE PAIRS

1 UNINFORMATIVE PAIR

Prioritized outcomes

GENERALIZED PAIRWISE COMPARISONS $(210 \times 210 = 44,100 \text{ pairs})$

Difference in	Oxliplatin better	Standard better	Δ	Cumulative Δ	<i>P</i> -value *
OS	42.6%	32.5%	10.1%	10.1%	0.050
TTP	9.1%	4.4%	4.7%	14.8%	0.0054

^{*} Unadjusted for multiplicity

CONCLUSIONS

 Generalized pairwise comparisons provide a versatile and powerful analysis method when multiple prioritized outcomes are of interest.

• The net benefit (Δ) is a measure of overall treatment effect (benefit / risk) that has direct clinical meaning.

The priority of outcomes can be patient-dependent.

References

- Buyse M. Reformulating the hazard ratio to enhance communication with clinical investigators. *Clin Trials* 5: 641-2, 2008.
- Buyse M. Generalized pairwise comparisons for prioritized outcomes in the two-sample problem. *Statist Med* 29: 3245-57, 2010.
- Péron J, Buyse M, Ozenne B, Roche L, Roy P. An extension of generalized pairwise comparisons for prioritized outcomes in the presence of censoring. *Statist Meth Med Res* DOI: 10.1177/0962280216658320, 2017.
- Péron J, Roy P, Ding K, Parulekar W, Roche L, Buyse M. Benefit-risk assessment of adding erlotinib to gemcitabine for the treatment of advanced pancreatic cancer. *Brit J Cancer* 112: 971-976, 2015.
- Péron J, Roy P, Ozenne B, Roche L, Buyse M. The net chance of a longer survival as a patient-oriented measure of benefit in randomized clinical trials. *JAMA Oncology* DOI: 10.1001/jamaoncol.2015. 6359, 2016.
- Péron J, Roy P, Conroy T, Desseigne F, Ychou M, Gourgou-Bourgade S, Stanbury T, Roche L, Ozenne B, Buyse M. An assessment of the benefit-risk balance of FOLFORINOX in metastatic pancreatic adenocarcinoma. Oncotarget 7:82953-60, 2017.