### 模拟电路与数字电路

#### 第十一章习题参考答案

- 11.1 图题 11.1 为由 JK 触发器组成的移位寄存器。
- (1) 假定要串行输入数 101, 说明其工作过程, 画出波形图。输入波形应与 CP 脉冲同步, 说明此时并行输入控制信号是高电平还是低电平。
- (2) 假定要并行输入数码 A=0,B=1,C=0,说明工作过程。



解: 写出状态方程。

 $P=0:\ Q_0^{n+1}=D,\ Q_1^{n+1}=Q_0^n,\ Q_2^{n+1}=Q_1^n;\$ 同步移位方式

P=1:  $Q_0=A$ ,  $Q_1=B$ ,  $Q_2=C$ ; 异步置数方式。

(1) 控制信号低电平: P=0



(2) 并行置数, P=1。各触发器异步置数。

11-6 试分析图题 11.6 所示电路的功能, 画出在 CP 作用下  $f_c$ 的波形。



解: 74160 为同步十进制计数器。在计数器输出值为  $Q_3Q_2Q_1Q_0=X1X1$  时, 计数器异步置零。可见其有效状态循环为 0000-0001-0010-0011-0100。输出  $\ell_0$  的逻辑表达式为:

$$f_c = \overline{Q_1 \cdot \bar{Q}} = \bar{Q}_1 + Q$$
  
输出波形:



# 11.7 试用中规模集成四位二进制计数器 74161 实现模 13 计数器。

解: 采用同步置零法: 在计数至 1100B=12D 时,使 LD=1,在下一个同步时钟脉冲下降沿到来之际 74161 置零;

采用异步清零法:在计数至 1101B=13D 时,使 R₀=1,异步置零。



#### 11.8 试用中规模集成四位二进制计数器 74161 实现模 193 计数器。

解:采用并行进位及整体置零法实现模193计数器。

193D= 1100 0001B。在计数至 192D=1100 0000B 时,产生同步置数信号 LD。如图所示。



# 11.10 试用中规模集成四位二进制计数器 74161 实现 5421BCD 码计数器。

解: 5421BCD 码计数器状态循环表:

|      |           | _ |
|------|-----------|---|
| 十进制数 | 5421BCD 码 |   |
| 0    | 0000      |   |
| 1    | 0001      |   |
| 2    | 0010      |   |
| 3    | 0011      |   |
| 4    | 0100      |   |
| 5    | 1000      |   |
| 6    | 1001      |   |
| 7    | 1010      |   |
| 8    | 1011      |   |
| 9    | 1100      |   |

采用置数法实现。置数时刻分别为 0100-1000 和 1100-0000。故而可以 Q2 作为同步置数信号,置数值为 Q3'000。如下图所示:



11.16 试分析以下电路的逻辑功能。写出触发器驱动方程, 电路的状态方程和输出方程, 列出状态表, 画出状态图。



解:驱动方程: $J_1=\overline{X\overline{\overline{Q_1}Q_2}}=ar{X}+\overline{Q_1}Q_2, K_1=ar{X};\ J_2=X, K_2=Q_2$ 

状态方程:  $Q_1^{n+1} = J_1 \bar{Q}_1^n + \bar{K}_1 Q_1^n = (\bar{X} + \overline{Q_1} Q_2) \bar{Q}_1^n + X Q_1^n = \bar{X} \bar{Q}_1^n + \bar{Q}_1^n Q_2^n + X Q_1^n$ 

 $Q_1^{n+1}=X\odot Q_1^n+\bar{Q}_1^nQ_2^n$ 

 $Q_2^{n+1} = X\bar{Q}_2^n + \bar{Q}_2^n Q_2^n = X\bar{Q}_2^n$ 

 $Z = XQ_1\bar{Q}_2$ 

状态转移表:

|     | •   |   |       |       |   |
|-----|-----|---|-------|-------|---|
| Q1N | Q2N | Χ | Q1n+1 | Q2n+1 | Ζ |
| 0   | 0   | 0 | 1     | 0     | 0 |
| 0   | 0   | 1 | 0     | 1     | 0 |

| 0 | 1 | 0 | 1 | 0 | 0 |
|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 |



11-20 试用下降沿触发的 JK 触发器设计一个模六可逆同步计数器。计数器受 x 输入信号控制,当 x=0 时,计数器加法计数;当 x=1 时,计数器做减法计数。

解: 列真值表, 模六计数器需要用三个触发器实现。

| СР | $Q_2^n$ | $Q_1^n$ | $Q_0^n$ | Х | $Q_2^{n+1}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ |
|----|---------|---------|---------|---|-------------|-------------|-------------|
| Z  | 0       | 0       | 0       | 0 | 0           | 0           | 1           |
| 고  | 0       | 0       | 1       | 0 | 0           | 1           | 0           |
| Z  | 0       | 1       | 0       | 0 | 0           | 1           | 1           |
| 72 | 0       | 1       | 1       | 0 | 1           | 0           | 0           |
| Z  | 1       | 0       | 0       | 0 | 1           | 0           | 1           |
| K  | 1       | 0       | 1       | 0 | 0           | 0           | 0           |
| Z  | -       | -       | -       | 0 | -           | -           | -           |
| 7  | -       | -       | -       | 0 | -           | -           | -           |
| 卫  | 0       | 0       | 0       | 1 | 1           | 0           | 1           |
| 7  | 0       | 0       | 1       | 1 | 0           | 0           | 0           |
| Z  | 0       | 1       | 0       | 1 | 0           | 0           | 1           |
| Z  | 0       | 1       | 1       | 1 | 0           | 1           | 0           |
| Z  | 1       | 0       | 0       | 1 | 0           | 1           | 1           |
| Z  | 1       | 0       | 1       | 1 | 1           | 0           | 0           |
| Z  | 1       | 1       | 1       | 1 | -           | -           | -           |
| Z  | -       | -       | -       | - | -           | -           | -           |

 $Q_0^{n+1} = \bar{Q}_0^n \Rightarrow J_0 = K_0 = 1$ 

| $Q_2^n Q_1^n   Q_0^n x$ | 00 | 01  | 11 | 10 |
|-------------------------|----|-----|----|----|
| 00                      | 1  | 1 ) | 0  | 0  |
| 01                      | 1  | 1   | 0  | 0  |
| 11                      | -  | - / | _  | _  |
|                         | \  |     |    |    |

10 1 1 0 0

 $\overline{Q_1^{n+1}} = Q_1^n \overline{Q_0^n} \overline{X} + Q_2^n \overline{Q_1^n} \overline{Q_0^n} X + Q_1^n Q_0^n X + \overline{Q_2^n} \overline{Q_1^n} Q_0^n \overline{X} = Q_1^n (\overline{Q_0^n} \overline{X} + Q_0^n X) + \overline{Q_1^n} (Q_2^n \overline{Q_0^n} X + \overline{Q_2^n} Q_0^n \overline{X}) \Rightarrow J_1 = Q_2^n \overline{Q_0^n} X + \overline{Q_2^n} Q_0^n \overline{X}; K_1 = Q_0^n \oplus X = \overline{X} Q_0^n + X \overline{Q_0^n};$ 

| 02 00 / / / /           |     | 2 00 | • 2      | 00 / |
|-------------------------|-----|------|----------|------|
| $Q_2^n Q_1^n   Q_0^n x$ | 00  | 01   | 11       | 10   |
| 00                      | 0   | 0    | 0        | (1)  |
| 01                      | (1) | 0    | 1        | 0    |
| 11                      | (-  | -    | <u> </u> | -    |
| 10                      | 0 ( | 1    | 0        | 0    |

 $\overline{Q_{2}^{n+1}} = Q_{2}^{n} \overline{Q}_{0}^{n} \overline{X} + \overline{Q}_{2}^{n} Q_{1}^{n} Q_{0}^{n} \overline{X} + Q_{2}^{n} Q_{0}^{n} X + \overline{Q}_{2}^{n} \overline{Q}_{1}^{n} \overline{Q}_{0}^{n} X = Q_{2}^{n} (\overline{Q}_{0}^{n} \overline{X} + Q_{0}^{n} X) + \overline{Q}_{2}^{n} (Q_{1}^{n} Q_{0}^{n} \overline{X} + \overline{Q}_{2}^{n} \overline{Q}_{0}^{n} X) \Rightarrow J_{2} = Q_{1}^{n} Q_{0}^{n} \overline{X} + \overline{Q}_{1}^{n} \overline{Q}_{0}^{n} X; K_{2} = Q_{0}^{n} \oplus X = \overline{X} Q_{0}^{n} + X \overline{Q}_{0}^{n};$ 

| <del>1</del> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 12 | τ.   | L & U | · 1   | ₹0, |
|--------------------------------------------------|----|------|-------|-------|-----|
| $Q_2^n Q_1^n   Q_0^n$                            | x  | 00   | 01    | 11    | 10  |
| 00                                               |    | 0    | 1     | 0     | 0   |
| 01                                               |    | 0    | 0     | 0     | 1   |
| 11                                               |    | (-)1 | -     | (- 'J | -   |
| 10                                               |    | 1    | 0     | 1     | 0   |



验证自启动。在状态为110时。

$$Q_0^{n+1} = \bar{Q}_0^n = 1;$$

 $Q_1^{n+1} = Q_1^n \bar{Q}_0^n \bar{X} + Q_2^n \bar{Q}_1^n \bar{Q}_0^n X + Q_1^n Q_0^n X + \bar{Q}_2^n \bar{Q}_1^n Q_0^n \bar{X} = \bar{X}, \ \ X = 1, Q_1^{n+1} = 0; X = 0, Q_1^{n+1} = 1$ 

 $Q_2^{n+1} = Q_2^n \bar{Q}_0^n \bar{X} + \bar{Q}_2^n Q_1^n Q_0^n \bar{X} + Q_2^n Q_0^n X + \bar{Q}_2^n \bar{Q}_1^n \bar{Q}_0^n X = \bar{X}, X = 1, Q_2^{n+1} = 0; X = 0, Q_2^{n+1} = 1$  在减法计数时,110->001,进入主循环:在加法计数时,110->111。

在状态为 111 时, $Q_0^{n+1} = \bar{Q}_0^n = 0$ ;

$$\begin{aligned} Q_1^{n+1} &= Q_1^n \bar{Q}_0^n \bar{X} + Q_2^n \bar{Q}_1^n \bar{Q}_0^n X + Q_1^n Q_0^n X + \bar{Q}_2^n \bar{Q}_1^n Q_0^n \bar{X} = X; X = 1, Q_1^{n+1} = 1; X = 0, Q_1^{n+1} = 0; \\ Q_2^{n+1} &= Q_2^n \bar{Q}_0^n \bar{X} + \bar{Q}_2^n Q_1^n Q_0^n \bar{X} + Q_2^n Q_0^n X + \bar{Q}_2^n \bar{Q}_1^n \bar{Q}_0^n X = X; X = 1, Q_2^{n+1} = 1; X = 0, Q_2^{n+1} = 0; \end{aligned}$$



- 11.1 下图为由 JK 触发器组成的移位寄存器。
- (1) 假定要串行输入 101, 说明其工作过程, 画出波形图。说明此时并行输入控制信号是高电平还是低电平。
- (2) 假定要并行置数 A=0,B=1,C=0,说明工作过程。

解:根据 JK 触发器特性方程, $\bar{Q}_{n+1}=J\bar{Q}_n+\bar{K}Q_n=D(\overline{Q_n}+Q_n)=D$ ,可见构成 D 触发器。



此时并行输入控制信号=0

- (2) 并行置数时, S=R'=D,并行控制信号=1, 异步 D 触发器置数。
- 11-6 试分析下图所示电路的功能, 画出在 CP 作用下 fc 的波形。

解:74160 为同步十进制计数器。在输出 0101 时异步清零,循环状态为 0000-0100。fc 为下降沿触发 D 触发器输出, $f_c=\overline{Q_1 \overline{Q}}$ 



11.7 试用四位二进制计数器 74161 实现模 13 计数器。

解:可以在 1100=12 时,使 $\overline{LD}=0$  进行同步置 0,也可以在 1101=13 时采用异步清 0。



11.8 使用 74161 实现模 193 计数器。

解: 193D=1100 0001B, 在 192=1100 0000 时,进行同步置 0。采用并行进位方式。



11.10 试用 74161 实现 5421BCD 码计数器。

解: 5421 编码表 Q3Q2Q1Q0: 0000-0100, 1000-1100。使用 Q2'=LD 进行置数, 置数值 Q3'000。在 Q3=1 时, 置 0000; 在 Q3=0 时, 置 1000。

