

Name	Default	$_{\mathrm{type}}$	code name	unit	Range/Options	Comments
TIME AND RESOLUTION						
Total time	1d0	double		Myr		
Write checkpoints	-1	integer		timestep		-1=false, otherwise indicate the timestep frequency
Resume from checkpoint	-1	integer		$_{\rm timestep}$		to activate it, indicate a positive integer
Output times 1D	1.d-4	double		Myr		
Output times 2D and 3D	1.d-3	double		$_{ m Myr}$		3D output is in the .vtu format (for Paraview)
Number of the thermal cells in the crust, angular direction	15	integer	nangt	#		must be an odd number
Number of the thermal cells in	15	integer	nrt	#		
the radial direction						
Number of core shells	50	integer	ncore	#		just for microphysical calculations
MAGNETIC FIELD						
Magnetic field evolution	true	bool		true/false		
Poloidal normalization	1.d0	double	$\operatorname{bpol_init}$	$10^{12}{ m G}$	$\lesssim 10^4$	normalisation wrt the maximum B_r at the surface
Toroidal normalization	1.d1	double	$btor_init$	$10^{12} { m G}$	$\lesssim 10^4$	*needs reassessing*
TEMPERATURE						
Temperature evolution	true	bool		true/false		
Envelope model	Gudm	string		-	see Tab. 2	
Initial temperature	8.d1	double		$10^8\mathrm{K}$	$\gtrsim 40^{\dagger}$	
STRUCTURE						
EoS	SLy4mu	string		-	see Tab. 3	for just a shell, "simple"
Central pressure	1.36e35	double		erg/cc		sets the total mass. E.g. for the SLy4 EoS: 1.36e35 \rightarrow 1.4M $_{\odot}$, 7e35 \rightarrow 2 M $_{\odot}$, 6.5e34 \rightarrow 1M $_{\odot}$
Crust/envelope pressure	1e28	double		erg/cc		e.g. $1e28 \rightarrow 1e10$ g/cc; $5e26 \rightarrow 1e9$ g/cc; $1e25 \rightarrow 1e8$ g/cc
fh and eta profiles	realist	string		-	realist [†] ; uniform, Vigan21, Clara22	realist follows from the specified EoS
Use relativistic grid	true	bool		true/false	,	
Impurity parameter in the crust	1d0	double	Qimp	#		

Name	Default	type	code name	unit	Range/Options	Comments
Impurity parameter in the pasta phase	1d2	double	Qpasta	#		see Pons, Viganò Rea Nature
SUPERFLUIDITY (needs an EoS	specified)					
SF n crust	SFB †	string		-	see Tab. 4	0=deactivate
SF n core	TToa †	string		-	see Tab. 4	0=deactivate
SF p core	$CCDKp^{\dagger}$	string		-	see Tab. 4	0=deactivate
NUMERICAL METHODS FOR I	MAGNETIO	CFIELDS				
Time advance method	RK4	string		-	Eul,RK2,RK3,RK4,	
Courant pre-factor in adaptive	0.1d0	double				set=0 to fix timestep to dtb0
timestep Minimum magnatis timester	1d-8	double	$\mathrm{dtb0}$	Mari		
Minimum magnetic timestep Scheme for Etor computation	Center [†]	string	arbu	Myr -	Center, Upwind	
	Center	5011118			Center, opwing	
COOLING TIMESTEP						
Minimum cooling timestep	1d-7	double	$\min_{dt_cooling}$	Myr		
Maximum cooling timestep	1d-3	double	max_dt_cooling	Myr		
Timestep/time in cooling advance	double	0.1d0	$eps_dt_cooling$	Myr		timestep is time*eps_dt_cooling
OUTBURST	<u> </u>					
Outburst trigger condition	false	bool		true/false		parameters are specified in a dedicated input file
RADIAL GRID CONTROL						
Use uniform radial grid	true	bool		true/false		
Contrast between the maximum	0.9d0	double	xdr	,		if above=false
and minimum radial step dr	,					
Radius of transition between	0.8^{\dagger}	double	$xr_{transition}$	radius		if above=false
large and small dr Size of transition between large	$0.2 \mathrm{d}0^\dagger$	double	sigma_transition	radius		if above=false
and small dr	0.200	<u> aoubie</u>	sigma_transition	radius		II above—taise
INITIAL MULTIPOLE WEIGHT	S					

 ℓ, m decomposition of the initial field, for the poloidal and toroidal components, in units of the normalisation selected above. **nb** pay close attention to the hard-coded radial profile for the different multipoles

MATINS label	composition	magnetised?	ref.
Iron_PPP15	Fe	yes	Potekhin, Pons & Page (2015)
Accr	light elements	no	Potekhin et al. (2003)
Gudm	Fe	no	Gudmundsson et al. (1983)
$Iron_PMG09$	Fe	yes	Pons Melatos Geppert (2009)
Iron_PY01	Fe	yes	Potekhin & Yakovlev (2001)
$Iron_DV13$	Fe	yes	Viganò (2013)
Accr_mag	light elements	yes	Potekhin et al. (2003)

Table 2: Available envelope models.

MATINS label	particle species	d Urca threshold mass $\rm M_{\odot}$
Sly4	npe	N/A
SLy4mu	$\mathrm{npe}\mu$	N/A
SLy2mu	$\mathrm{npe}\mu$	N/A
SkMpmu	$\mathrm{npe}\mu$	N/A
Skamu	$\mathrm{npe}\mu$	1.23
SKbmu	$\mathrm{npe}\mu$	N/A
CMF2mu	$\mathrm{npe}\mu$	0
CMF6mu	$\mathrm{npe}\mu$	1.78
BSk24	$\mathrm{npe}\mu$	1.5

Table 3: Available EoSs. Adapted from the CompOSE database (https://compose.obspm.fr/home).

type	MATINS label	ref.
$^{1}\mathrm{S}_{0}$ neutrons	CCDKn	Ho et al. (2015)
	GIPSF	"
	SFB	"
	WAP	"
	An05-d	Andersson 2005
	GC08nf	Gezerlis and Carlson 2008
	$Ho12_n$	Ho et al. 2012
$^{1}\mathrm{S}_{0}$ protons	CCDKn	Ho et al. (2015)
	$Ho12_n$	Ho et al. 2012
	BS	Ho et al. 2012
	An05-d	Andersson 2005
	Ho12-s	Ho et al. (2012)
$^3\mathrm{P}_2$ neutrons	Ho12-d	Ho et al. (2012)
	An05-j	Andersson 2005
	An05-k	Andersson 2005
	TToa	Ho et al. 2015

Table 4: Available superfluid gap models with the parametrisation of Kaminker, Yakovlev, Gnedin, Astron. Astroph. 383 (2002) 1076 .