# Generative AI: Large Language Models

Як працюють великі мовні моделі \*

Serhii Zabolotnii zabolotniua@gmail.com

# Вступ

#### 1. Важливість розуміння LLMs:

- 1.1. Штучний інтелект та його роль у сучасному світі.
- 1.2. LLMs як ключова складова Al-революції.

#### 2. Еволюція мовної взаємодії з машинами:

- 2.1. Від простих команд до складної бесіди.
- 2.2. LLMs перетворюють спілкування з машинами на природний процес.

#### 3. Практичне застосування LLMs:

- 3.1. Вплив на освіту, бізнес, розваги та інші сфери.
- 3.2. Розширення можливостей професійної та особистої діяльності.

#### 4. Мета доповіді:

- 4.1. Глибоке розуміння механізмів роботи LLMs.
- 4.2. Огляд тренування та використання LLMs у різних контекстах.



### Ієрархія Штучного Інтелекту

- Штучний інтелект (AI) це дуже широкий термін, але загалом він стосується інтелектуальних машин.
- Машинне навчання (ML) це підгалузь штучного інтелекту, яка спеціально фокусується на розпізнаванні шаблонів у даних. Як ви можете собі уявити, як тільки ви розпізнаєте шаблон, ви можете застосувати його до нових спостережень.
- Глибинне навчання це сфера в ML, яка зосереджена на неструктурованих даних, які включають текст і зображення. Він покладається на штучні нейронні мережі, метод, який (незначно) натхненний людським мозком.
- Великі мовні моделі (LLM) стосуються конкретно тексту, і це буде в центрі уваги цієї доповіді.



#### Основи машинного навчання

Steps

### How it looks in practice

Classification Example: Predicting Music Genre



Приклад Машинного навчання: Задача визначення приналежності (класифікації) пісні до одного із двох музичних жанрів (<u>reggaeton</u> чи <u>R&B</u>) основі аналізу Темпу і Енергійності аудіозапису

## Основа обробки мови (NLP): векторне представлення

### Or what if the input is text?



**Ключова технологія NLP** - Word Embedding (векторне представлення слів/речень/документів)

# Нейронні мережі і глибоке навчання (Deep Learning)



**Нейронні мережі**— це потужні моделі машинного навчання, які дозволяють моделювати довільно складні зв'язки. Вони є двигуном, який дозволяє вивчати такі складні відносини у великому масштабі.

### Мовне моделювання (Великі Мовні Моделі - LLM)

# Language modeling

Imagine the following task: Predict the next word in a sequence

Can we frame this as a ML problem? Yes, it's a classification task.





<sup>&</sup>quot;Велика Мовна Модель" (LLM, від англ. Large Language Model) - це складний (більше 1 млрд. зв'язків) тип нейронних мережу. Її особливість - у здатності глибоко розуміти мову, що дозволяє ефективно генерувати текст та відповідати на запити.

#### Навчання мовних моделей

# Massive training data

We can create vast amounts of sequences for training a language model



We do the same with much longer sequences. For example:

A language model is a probability distribution over sequences of words. [...] Given any sequence of words, the model predicts the next ...

Or also with code:

def square(number):

"""Calculates the square of a number."""

return number \*\* 2

And as a result - the model becomes incredibly good at predicting the next word in any sequence.

"Основне завдання - навчити нейронну мережу (LLM) **передбачати наступне слово**. Для цього використовується велика кількість текстових даних з Інтернету, книг, досліджень тощо. Методика самоконтрольованого навчання дозволяє створювати набори даних без позначення, використовуючи наступне слово як мітку. Робимо це для різноманітних послідовностей, коротких і довгих. Навчання LLM передбачати наступне слово в будь-якій мові і контексті, чи то твіт, вірш чи код, покращує його здатність робити відповідні вибори слова, хоч і не завжди ідеально."

### Генеративні Мовні Моделі (Generative AI)



Завдяки навчанню LLM передбачати слова, ми можемо генерувати тексти, передаючи послідовності назад у модель для передбачення наступних слів. Таким чином, LLM є прикладом **Generative AI**. Важливо, що LLM не обмежується передбаченням найбільш ймовірного слова, але може вибирати з кількох варіантів, абезпечуючи креативність у відповідях. Така стратегія використовується в ChatGPT, де відповіді не завжди однакові. ChatGPT не називається ChatLLM, оскільки мовне моделювання - лише частина його функціоналу, а GPT відображає його здатність до генерування тексту.

# GPT - Генеративний попередньо навчений трансформер.



'G' у GPT означає 'generative', що вказує на здатність моделі генерувати мову. 'P' означає 'попереднє навчання', що відображає етаповий процес навчання моделі. 'T' означає 'трансформер', тип архітектури нейронної мережі, що зосереджує увагу на найважливіших частинах вхідної послідовності, схоже на людське сприйняття.

#### Фази навчання LLM

# Phases of training LLMs (GPT-3 & 4)



#### 1. Pretraining

Massive amounts of data from the internet + books + etc.

Question: What is the problem with that?

Answer: We get a model that can babble on about anything, but it's probably not aligned with what we want it to do.

#### 2. Instruction Fine-tuning

Teaching the model to respond to instructions.

Model learns to respond to instructions.

→ Helps alignment

"Alignment" is a hugely important research topic

#### 3. Reinforcement Learning from Human Feedback

Similar purpose to instruction tuning.

Helps produce output that is closer to what humans want or like.

(1) Попередня підготовка, (2) Точне налаштування інструкцій, (3) Підкріплення за допомогою зворотного зв'язку людини (RLHF).

# Приклади для перевірки нашого розуміння LLM

# Three examples to test our understanding

| Ability                                                      | Explanation                                                            |  |  |  |  |
|--------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|
| Why can an LLM perform <b>Text Summarization</b> ?           | Ability probably learned during pre-training                           |  |  |  |  |
| Why can an LLM perform Question Answering?                   | Knowledge acquired in pre-training, responds nicely due to fine-tuning |  |  |  |  |
| Why does a LLM sometimes answer wrong or even make stuff up? | Let's discuss this next                                                |  |  |  |  |

Чому LLM може виконувати резюмування довшого фрагмента тексту? Чому LLM може відповісти на загальновідомі запитання ? Чому LLM іноді відповідає неправильно і навіть вигадує щось?

### Правдивість VS "Галюцинації"

# Truthfulness



LLM страждають від галюцинацій, але їх можна пом'якшити, надавши додатковий контекст (додаткові дані).

# Провідні провайдери та моделі генеративного ШІ

| Провайдер  | Провідна LLM                                        | Контекстне<br>вікно<br>(токени) | Макс.<br>вихідних<br>токенів | Режим<br>"роздумів"          | Відкриті<br>ваги             | Інші важливі характеристики                                                               |
|------------|-----------------------------------------------------|---------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| OpenAl     | o1, o3<br>GPT-4o                                    | 128 000                         | 4 096                        | Так                          | Hi                           | Мультимодальність (текст, аудіо,<br>зображення, відео)                                    |
| Google     | Gemini 2.5 Pro,<br>Gemini 2.0 Flash                 | 1 000 000 -<br>2 000 000        | 8 192 -<br>65 536            | Так                          | Hi                           | Мультимодальність, інтеграція з Google<br>Workspace, розширене міркування                 |
| Anthropic  | Claude 3.7 Sonnet,<br>Claude 3.5 Sonnet             | 200 000                         | 4 096 -<br>128 000           | Так                          | Hi                           | Акцент на безпеці та пояснюваності,<br>розширений режим мислення                          |
| Meta       | Llama 4 Scout,<br>Llama 4 Maverick,                 | 128 000 - 10<br>000 000         | 4 096 -<br>8 192             | Hi                           | Так                          | Мультимодальність, велике контекстне вікно (Scout), висока продуктивність (Maverick)      |
| Mistral AI | Mistral Large 2,<br>Mistral Small 3.1,<br>Codestral | 131 000 - 256<br>000            | 8 192 -<br>131 000           | Так (в<br>деяких<br>моделях) | Так (в<br>деяких<br>моделях) | Сильні можливості міркування,<br>багатомовність, оптимізація для кодування<br>(Codestral) |

# Чати vs API

| Провайдер  | Режим чат-боту             | API (для розробників)                     |  |  |
|------------|----------------------------|-------------------------------------------|--|--|
| OpenAl     | https://chatgpt.com/       | https://platform.openai.com/              |  |  |
| Google     | https://gemini.google.com/ | https://aistudio.google.com/              |  |  |
| Anthropic  | https://claude.ai/         | https://console.anthropic.com/            |  |  |
| Mistral Al | https://chat.mistral.ai/   | https://console.mistral.ai/               |  |  |
| DeepSeek   | https://chat.deepseek.com/ | https://platform.deepseek.com/            |  |  |
| Qwen       | https://chat.qwen.ai/      | https://bailian.console.alibabacloud.com/ |  |  |

# Рейтинги LLM (<a href="https://lmarena.ai/">https://lmarena.ai/</a> )

| Rank* (UB) | Rank<br>(StyleCtrl) | Model                               | Arena<br>Score | 95% CI A | Votes | Organization A | License     |
|------------|---------------------|-------------------------------------|----------------|----------|-------|----------------|-------------|
| L          | 1                   | Gemini-2.5-Pro-Exp-03-25            | 1437           | +8/-6    | 7431  | Google         | Proprietary |
| 2          | 2                   | ChatGPT-4o-latest (2025-03-26)      | 1406           | +7/-8    | 6612  | OpenAI         | Proprietary |
| 2          | 4                   | Grok-3-Preview-02-24                | 1402           | +5/-5    | 13919 | xAI            | Proprietary |
| 2          | 2                   | GPT-4.5-Preview                     | 1397           | +5/-6    | 13443 | OpenAI         | Proprietary |
| 5          | 8                   | Gemini-2.0-Flash-Thinking-Exp-01-21 | 1380           | +5/-4    | 25266 | Google         | Proprietary |
| 5          | 4                   | Gemini-2.0-Pro-Exp-02-05            | 1380           | +4/-5    | 20136 | Google         | Proprietary |
| 5          | 4                   | DeepSeek-V3-9324                    | 1370           | +7/-7    | 4721  | DeepSeek       | MIT         |
| 7          | 5                   | DeepSeek-R1                         | 1359           | +5/-5    | 15098 | DeepSeek       | MIT         |
| 3          | 13                  | Gemini-2.0-Flash-001                | 1354           | +4/-4    | 21065 | Google         | Proprietary |
| 3          | 4                   | 01-2024-12-17                       | 1350           | +4/-5    | 27831 | OpenAI         | Proprietary |
| L0         | 13                  | Gemma-3-27B-it                      | 1342           | +7/-6    | 9147  | Google         | Gemma       |
| .1         | 13                  | Qwen2.5-Max                         | 1340           | +4/-4    | 19995 | Alibaba        | Proprietary |
| .1         | 10                  | ol-preview                          | 1335           | +5/-4    | 33175 | OpenAI         | Proprietary |
| 14         | 13                  | o3-mini-high                        | 1325           | +6/-4    | 16889 | OpenAI         | Proprietary |
| .4         | 15                  | DeepSeek-V3                         | 1318           | +4/-4    | 22843 | DeepSeek       | DeepSeek    |
| L4         | 20                  | QwQ32B                              | 1315           | +6/-8    | 6729  | Alibaba        | Apache 2.0  |

# Хмарні платформи



Google Cloud Platform (GCP), Microsoft Azure Ta Amazon Web Services (AWS)

# Які завдання можуть виконувати інструменти ШІ?



# Інструменти на основі ШІ



# Магія Штучного Інтелекту



# Thank you