Deriving Transition Probabilities for Decision Models

Risha Gidwani, DrPH June 2014

Transition probabilities drive the decision model

 Probability of moving from one health state to another (state-transition model)

 Probability of experiencing an event (discrete-event simulations)

Goal

 (Transition) probabilities are the engine to a decision model

 You will often derive these probabilities from literature-based inputs

Learn when and how you can do this

Acknowledgements

Rita Popat, PhD

Clinical Associate Professor
Division of Epidemiology
Dept. of Health Research and Policy
Stanford University School of Medicine

Probabilities in a Decision Model

 You have a cost-effective model, now you need inputs for your transition probabilities

Probabilities in a Decision Model

■ Does not have to be 2 drugs – can be any strategies

Probability Inputs

Ways to derive model inputs

- Obtain existing data from a single study
- Synthesizing existing data from multiple studies
 - Meta-Analysis
 - Mixed Treatment Comparisons
 - Meta-Regression

USING EXISTING DATA FROM A SINGLE STUDY

Plucking inputs from the literature

If you are extremely lucky, you will read a journal article that will have exactly the type of information you need.

- The vast majority of people are not extremely lucky.

Modify existing literature to derive your model inputs

Using inputs from the literature

- Many types of inputs are available from the literature
 - Probability (risk)
 - Rate (mortality)
 - Relative Risk
 - Odds Ratio
 - Risk Difference
 - Mean
 - Median
 - Mean Difference
 - Standardized Mean Difference
- We need data in the form of probabilities for use in a model

What do these inputs mean?

Statistic	Evaluates	Range
Probability/Risk (aka Incidence Proportion)	# of events that occurred in a time period # of people followed for that time period	0-1
Rate	# of events that occurred in a time period Total time period experienced by all subjects followed	0 to ∞
Relative Risk (aka Risk Ratio)	Probability of outcome in exposed Probability of outcome in unexposed	0 to ∞
Odds	Probability of outcome 1 — Probability of outcome	0 to ∞
Odds Ratio	Odds of outcome in exposed Odds of outcome in unexposed	0 to ∞
Risk Difference	Difference in risk (probability) of event amongst exposed and unexposed	-1 to 1
Survival Curve	Point = # of people who are alive at time t being alive at time t - 1	0 to n
Mean	Sum of all observations Total # of observations	- ∞ to ∞
Mean Difference	Mean of Group 1 – Mean of Group 2	0 to ∞
Standardized Mean Difference	Mean of Group 1 — Mean of Group 2 Pooled Standard Deviation	- ∞ to ∞

Comparative, Non-Comparative Data

Statistic	Evaluates	Type of Data	
Probability/Risk	# of events that occurred in a time period # of people followed for that time period	Non-Comparative	
Rate	# of events Total time period experienced by all subjects followed	Non-Comparative	
Odds	Probability of outcome 1 — Probability of outcome	Non-Comparative	
Odds Ratio	Odds of outcome in exposed Odds of outcome in unexposed	Comparative	
Relative Risk (aka Risk Ratio)	Probability of outcome in exposed Probability of outcome in unexposed	Comparative	Transform to Non-Comparative
Risk Difference	Difference in risk (probability) of event amongst exposed and unexposed	Comparative	Data
Survival Curve	Point = # of people who are alive at time t being alive at time t - 1	Non-Comparative	
Mean	Sum of all observations Total # of observations	Non-Comparative	
Mean Difference	Mean of Group 1 – Mean of Group 2	Comparative	
Standardized Mean Difference	Mean of Group 1 — Mean of Group 2 Pooled Standard Deviation	Comparative	

Inputs for a decision model require non-comparative data:

- Ex. 1) Probability of controlled diabetes with Drug A as the first input
 - 2) Probability of controlled diabetes with Drug B as the second input

Using probabilities from the literature

 Literature-based probability may not exist for your time frame of interest

 Transform this probability to a time frame relevant for your model

Example:

- 6-month probability of controlled diabetes is reported in the literature
- Your model has a 3-month cycle length
- You need a 3-month probability

Probabilities cannot be manipulated easily

Cannot multiply or divide probabilities

100% probability at 5 years does NOT mean a
 20% probability at 1 year

30% probability at 1 year does NOT mean a 120% probability at 4 years

Probabilities and Rates

- Rates can be mathematically manipulated -- added, multiplied, etc.
 - Probabilities cannot

To change time frame of probability:

Probability → **Rate** → **Probability**

Note: Assumes the event occurs at a constant rate over a particular time period

Rates versus probabilities

• In a rate, you care <u>when</u> the event happened – this changes the rate (but not the probability)

- The rate of death is 3/(3+4+1+2) = 3/10:
 - 3 per 10 person-years, 0.3 per person-year
- The probability of death is 3/4:
 - 75%

Rates versus probabilities, 2

Probability-Rate Conversions

Probability to rate

Rate =
$$\frac{-\ln(1-p)}{t}$$

Rate to probability

Probability =
$$1 - exp^{(-rt)}$$

p = probability
t = time
r = rate

Example

- 3-year probability of controlled diabetes is 60%
 - What is the 1-year probability of controlled diabetes?
- Assume incidence rate is constant over 3 years:

- Rate =
$$\frac{-\ln(1-p)}{t}$$

$$- = \frac{-\ln(1-0.6)}{3} = 0.3054$$

- Probability =
$$1 - exp^{(-rt)}$$

= $1 - e^{(-0.3054 \times 1)} = 0.2632$
= 26%

Question

- 30% of people have controlled diabetes at 5 years.
- What is the 1-year probability of controlled diabetes?
 - Probability to rate

Probability =
$$1 - exp^{(-rt)}$$

Rate to probability

Rate =
$$\frac{-\ln(1-p)}{t}$$

```
p = \text{probability}

t = \text{time}

r = \text{rate}
```

Answer

- A 5-year probability of 30% is a 1-year probability of **6.89%**.
- Equations:

Rate:
$$\frac{-\ln(1-0.30)}{5} = 0.0713$$

Probability: $1 - e^{(-0.0713 \times 1)} = 6.89\%$

Converting to Probabilities?

	Statistic	Convert to probability?	
✓	Probability/Risk (aka Incidence Proportion)	Yes (it is already one, but use they apply)	e rates to convert the time period to which
✓	Rate	Yes	
	Relative Risk (aka Risk Ratio)		
	Odds		
	Odds Ratio		
	Risk Difference (x-y=z)		
	Survival Curve		
	Mean		
	Mean Difference	Potentially	Beyond the scope of this
	Standardized Mean Difference	Potentially	seminar

In the beginning...

there were 2 by 2 tables:

Outcome – Yes		Outcome - No
Exposed	a	b
Unexposed	С	d

Probability of outcome in exposed = $\frac{a}{a+b}$

Odds Ratio:
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Relative Risk: $\frac{(\frac{a}{a+b})}{(\frac{c}{c+d})}$

In the beginning...

there were 2 by 2 tables:

	Controlled Diabetes	Uncontrolled Diabetes
Drug A	a	b
Placebo	С	d

Probability of controlled diabetes with Drug $A = \frac{a}{a+b}$

Odds Ratio:
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

Relative Risk: $\frac{(\frac{a}{a+b})}{(\frac{c}{c+d})}$

OR versus RR

Statistic	Evaluates	
Relative Risk (aka Risk Ratio)	Probability of outcome in exposed Probability of outcome in unexposed	
Odds Ratio	Odds of outcome in exposed Odds of outcome in unexposed	
Odds	Probability of outcome 1 — Probability of outcome	

- RR is easier to interpret than OR
- But, the OR has better statistical properties
 - OR of harm is inverse of OR of benefit
 - RR of harm is not the inverse of RR of benefit
- Much data in the literature is reported as OR

Probability from RR

$$RR = \frac{probability\ in\ exposed}{probability\ in\ unexposed}$$

This requires that you are able to find the probability of unexposed in the journal article

Probability from RR, example

Example:

- -RR = 2.37
- Probability in unexposed = 0.17
- Probability in exposed = 2.37 * 0.17

$$= 0.403$$

$$=40.3\%$$

over the entire study period

Probability from RR, caveat

- If the RR is the result of a regression, it has been adjusted for covariates
- But, the probability in the unexposed will be unadjusted

```
Prob (exposed) = RR * prob(unexposed_unadjusted)

Prob (exposed) = prob(exposed_adjusted) * prob (unexposed_unadjusted)

prob(unexposed_adjusted)
```

Therefore, your derived probability estimate will have some bias
 so make sure you vary this extensively in sensitivity analyses!!

RR are nice, but...

 OR are more likely to be reported in the literature than RR

Probability from OR

■ IF the outcome is rare ($\leq 10\%$), then you can assume that the OR approximates the RR

If the outcome is not rare → advanced topic, do not proceed without consulting a statistician

OR versus RR

The relationship between risk ratio (RR) and odds ratio by incidence of the outcome.

OR is a good measure of RR when the outcome is rare

Calculating Probability from OR

- If outcome is rare, assume OR approximates RR
- Prob (exposed) = \aleph * prob(unexposed)

Example:

$$OR = 1.57$$

Prob. of outcome in unexposed: 8% → rare

prob (exposed) = 1.57 * 0.08 = 12.56%

	Outcome - Yes	Outcome - No
Exposed	12	88
Unexposed	8	92

Prob_{Unexposed}

- Whether you can assume the OR approximates RR depends on the probability of outcome in the unexposed
- Should be available in the paper
- If it is not try going to the literature to find this value for a similar group of patients

Probability from Odds

$$odds = \frac{probability}{1 - probability}$$
 $probability = \frac{odds}{1 + odds}$

Odds of 1/7 =

Probability of 0.125

$$Probability = \frac{1/7}{8/7} = \frac{0.143}{1.143} = 0.125$$

Probability from Stata, directly

- "Margins" command
- logistic y i.x
- margins i.x

Will give you predicted probabilities of x, given y = 1

Converting to Probabilities?

	Statistic	Convert to probability?
✓	Probability/Risk (aka Incidence Proportion)	Yes (it is already one, but use rates to convert the time period to which they apply)
✓	Rate	Yes
✓	Odds	Yes
✓	Odds Ratio	Yes, if the outcome is rare ($\leq 10\%$) & you have probability in unexposed
✓	Relative Risk (aka Risk Ratio)	Yes, if you have the probability in the unexposed
	Risk Difference (x-y=z)	
	Survival Curve	
	Mean	

Risk Difference

- Risk in one group minus risk in the other
- Risk = probability

■ Prob_{Drug A}- Prob_{placebo} = Risk Difference

 $\mathbf{0.84} - 0.17 = 0.67$

Risk Difference, con't

- Prob_{treatment}- Prob_{control} = Risk Difference
- If the article gives you Risk Difference, it will often give you Prob_{treatment} or Prob_{control}
- If article gives you Prob_{treatment}, use that directly
- If article Prob_{control}, use that and the Risk Difference to derive Prob_{treatment}

Converting to Probabilities?

	Statistic	Convert to probability?
✓	Probability/Risk (aka Incidence Proportion)	Yes (it is already one, but use rates to convert the time period to which they apply)
✓	Rate	Yes
✓	Odds	Yes
✓	Odds Ratio	Yes, if the outcome is rare ($\leq 10\%$) & you have probability in the unexposed
✓	Relative Risk (aka Risk Ratio)	Yes, if you have the probability in the unexposed
✓	Risk Difference (x-y=z)	Yes, if the paper reports x or y in addition to z
	Survival Curve	
	Mean	

Survival data and probabilities

 All previous probabilities were assumed to be constant throughout the model (Don't have to be, but can be)

 Survival should NOT be assumed to be constant over time

 So, you will have multiple probabilities for "death" in your model – one for each time period of interest.

Sources of survival data

- All-cause mortality (CDC)
 - age- and sex-adjusted <u>rates</u>

- Disease-specific/Treatment-specific literature
 - Probability of death at t
 - Survival Curves

Reported survival rates

Table 3. Number of deaths and death rates, by age, race, and sex: United States, 2010—Con.

[Rates per 100,000 population in specified group. Rates are based on populations enumerated in the 2010 census as of April 1; see Technical Notes. Data for specified races other than white and black should be interpreted with securior because of inconsistencies between reporting race on death certificates and on censuses and surveys; see Technical Notes]

	All races		White ¹		Black ¹		American Indian or Alaska Native ^{1,2}			Asian or Pacific Islander ^{1,3}					
Age (years)	Both sexes	Male	Female	Both sexes	Male	Female	Both sexes	Male	Female	Both sexes	Male	Female	Both sexes	Male	Female
								Rate							
All ages ⁴	799.5	812.0	787.4	861.7	866.1	857.3	682.2	725.4	642.7	365.1	397.5	332.4	301.1	327.0	277.3
Under 1 year ⁵	623.4	680.2	564.0	537.2	584.3	488.0	1,102.1	1,206.5	994.4	455.3	542.5	366.4	389.3	434.4	341.8
1–4	26.5	29.6	23.3	24.6	27.4	21.6	38.1	42.9	33.2	29.4	34.3	24.4	17.9	19.3	16.3
5–9	11.5	12.8	10.1	10.9	12.1	9.7	15.0	16.9	13.0	12.2	15.2	*	8.5	9.6	7.4
10–14	14.3	16.3	12.1	13.6	15.6	11.5	19.1	22.2	16.0	16.6	21.1	12.0	7.8	7.2	8.5
15–19	49.4	69.6	28.1	47.0	64.7	28.3	67.0	102.5	30.5	61.5	87.1	34.5	22.8	29.3	15.9
20–24	86.5	126.4	44.8	82.7	119.2	44.2	122.4	189.1	57.3	102.8	147.5	53.7	36.9	55.3	18.0
25–29	96.0	135.7	55.7	92.6	130.0	53.6	140.3	206.0	79.5	110.4	139.6	79.1	37.9	53.7	23.4
30–34	110.2	147.7	72.6	106.1	141.5	69.5	164.6	228.4	107.1	134.7	174.5	92.6	40.5	51.4	30.8
35–39	138.8	175.4	102.6	133.8	169.5	97.3	208.7	263.0	160.5	175.4	216.1	133.5	51.9	67.2	38.1
40–44	201.1	248.4	154.3	194.7	241.8	146.9	291.4	351.2	237.7	232.1	302.3	160.4	80.3	101.8	61.1
45–49	324.0	401.0	248.9	314.4	392.5	236.7	458.8	549.8	377.8	348.7	431.2	267.6	132.6	164.8	104.0
50–54	491.7	613.5	374.5	471.9	592.7	353.5	731.5	893.0	589.3	477.8	570.0	390.5	207.2	268.6	154.0
55–59	711.7	911.2	524.5	678.9	869.4	496.1	1,104.8	1,425.7	833.0	699.4	878.5	532.2	322.1	427.8	234.2
60–64	1,015.8	1,269.2	781.7	982.4	1,222.1	756.2	1,523.4	1,977.9	1,151.8	892.0	1,047.5	745.9	492.9	632.2	378.1
65–69	1,527.6	1,871.3	1,222.0	1,495.8	1,825.2	1,197.3	2,148.8	2,745.1	1,691.9	1,377.8	1,591.5	1,185.6	765.6	982.5	584.3
70-74	2,340.9	2,031.9	1,926.9	2,315.5	2,792.1	1,905.9	3,041.6	3,862.0	2,457.3	2,202.4	2,555.9	1,906.4	1,285.7	1,555.4	1,062.5
75–79	3,735.4	4,493.7	3,151.9	3,734.9	4,472.1	3,154.8	4,450.5	5,677.3	3,679.8	3,221.2	3,840.9	2,761.3	2,155.2	2,598.0	1,831.3
80–84	6,134.1	7,358.2	5,319.8	6,171.5	7,379.2	5,351.7	6,710.4	8,414.7	5,809.8	4,811.0	5,489.7	4,357.2	3,895.1	4,791.6	3,316.8
85 and over	13,934.3	15,414.3	13,219.2	14,147.6	15,640.3	13,419.3	13,187.2	14,715.3	12,589.9	9,615.3	10,268.1	9,277.9	9,418.1	10,824.5	8,590.1

Survival Rate → **Probability**

Age range	CDC
	numbers
75-79	4493.7
80-84	7358.2
85+	15414.3

Rate	Prob. of death
4493.7/100,000 =0.44937	4.39%
7358.2/100,000 =.073582	7.09%
15414.3/100,000 =0.154143	14.29%

Probability =
$$1 - e^{(-rt)}$$

Cycle	Age	Prob. of death
0	75	.0439
1	76	.0439
2	77	.0439
3	78	.0439
4	79	.0439
5	80	.0709
6	81	.0709
7	82	.0709
8	83	.0709
9	84	.0709
10	85	.1429
11	86	.1429
	•	

Disease-Specific Survival Data

- Kaplan-Meier Curve
 - Unadjusted
 - Use with RCT data

- Cox Proportional Hazards Curve
 - Adjusted
 - Use with observational data

Survival Data from Curves

Deriving probability from mean (continuous distribution)

- 1) Need a validated way to generate a binary variable from a continuous distribution -- threshold
 - HbA1c < 7 = controlled diabetes

- 2) Need an estimate of variation around the mean (SD, variance) or median (IQR, range)
 - Involve a statistician!

Converting to Probabilities?

	Outcome	Convert to probability?
√	Probability/Risk (aka Incidence Proportion)	Yes (it is already one, but use rates to convert the time period to which they apply)
✓	Rate	Yes
✓	Odds	Yes
✓	Odds Ratio	Yes, if the outcome is rare ($\leq 10\%$) & you have prob. in unexposed
✓	Relative Risk (aka Risk Ratio)	Yes, if you have the probability in the unexposed
✓	Risk Difference (x-y= z)	Most likely, because they will give you x or y in addition to z
✓	Survival Curve	Yes, but remember they are conditional and may change with each time period
✓	Mean	Yes, if you have estimate of variation

Estimates of variation

 You will still need to derive estimates of variation around your derived point estimate of probability

Necessary for sensitivity analyses

Advanced Topic

Quality of the literature

■ THE QUALITY OF THE LITERATURE MATTERS GREATLY!!

- Preferences for literature-based inputs:
 - 1. These two treatments studied in a head-to-head RCT
 - 2. a) Drug compared to placebo in RCT, and
 - b) Diet/Exercise/Telehealth compared to placebo in another RCT, and
 - c) these two RCTs enrolled similar patients

Summary

- Need to transform reported data to probabilities for use in a decision model
 - Easiest: Rate, OR if outcome <10%, RR, survival data
 - More difficult, but possible: Continuous data with estimate of variation
 - Advanced topics: OR when outcome > 10%, mean difference, standardized mean difference
- Probs. apply to particular length of time
 - To change the length of time to which a probability applies:
 - Probability → rate → probability

References

- Miller DK and Homan SM. Determining Transition Probabilities: Confusion and Suggestions. *Medical Decision Making* 1994 14: 52.
- Naglie G, Krahn MD, Naimark D, Redelmeier DA, Detsky AS. Primer on Medical Decision Analysis: Part 3 -- Estimating Probabilities and Utilities. *Medical Decision Making* 1997 17: 136.

Questions?

risha.gidwani@va.gov