2º ano

Universidade do Minho

Módulo 7

Challenge 1 - Localidade e SuperEscalaridade

Problema

Considere que tem um conjunto de dados em vírgula flutuante precisão simples organizado como um cubo tri-dimensional:

Para cada fatia bidimensional do cubo (Cube[x][y=0..N-1][z=0..N-1]) pretende-se calcular a expressão abaixo, sendo os resultados guardados no vector

```
float Res[N];  // vector Resultados
```

$$Res[x] = \sum_{y=0}^{N-1} \sum_{z=0}^{N-1} \frac{Cube[x][y][z] + 10.0}{\sqrt[2]{Cube[x][y][0]}}$$

O código abaixo implementa esta operação.

Exercício 1 – Copie o ficheiro /share/acomp/P07-Challenge.zip, construa o executável e preencha a primeira linha da tabela abaixo para N=512.

Para tal deve escrever

```
qsub -F "512 1" P07Challenge.sh
```

2º ano

N - F43

		N = 512			
Versão	Observações	T (ms)	#I (G)	СРІ	L1_DCM (M)
P07-Challenge1()	Versão inicial não optimizada.				
P07-Challenge2()	Rearranjo dos loops (x,y,z)				
P07-Challenge3()	Variável local				
P07-Challenge4()	Expression simplification				
P07-Challenge5()	Loop unrolling				
P07-Challenge0()	Versão optimizada pela equipa docente.				

Exercício 2 — Pretende-se que aplicando as técnicas estudadas ao longo do semestre optimize o código acima reduzindo o tempo de execução.

As técnicas a aplicar incluem:

- optimização da localidade nos acessos à memória;
- redução do número de instruções a executar através da simplificação de expressões;
- redução do número de instruções a executar através do loop unrolling;
- exploração do ILP através da superescalaridade.

Fica portanto vedada a utilização de optimizações relacionadas com processamento vectorial ou utilização de mais do que um núcleo de processamento (*multicore*).

A versão optimizada desenvolvida pela equipa docente pode ser executada com o comando:

Use a tabela acima para anotar os resultados que for obtendo com cada versão da função. Pretende-se essencialmente que aplique o seu espírito crítico na análise dos resultados obtidos.

Para desenhar P07-Challenge4() note que:

$$Res[x] = \sum_{y=0}^{N-1} \sum_{z=0}^{N-1} \frac{Cube[x][y][z] + 10.0}{\sqrt[2]{Cube[x][y][0]}} = \sum_{y=0}^{N-1} \left[\frac{1.0}{\sqrt[2]{Cube[x][y][0]}} * \left(10.0 * N + \sum_{z=0}^{N-1} Cube[x][y][z] \right) \right]$$