BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Course No: CSE306

Course Name: Computer Architecture Sessional

Name of the Experiment:

Assignment on Floating Point Adder

Level/Term: 3-1

Section: B2

Group No: 02

Student ID: 1705092

1705111

1705116

1705118

1705121

Date of Submission: 31-05-2021

Introduction

A floating point number has three parts, sign, exponent and fraction. A Floating Point Adder is a digital circuit used to add two floating point numbers.

The IEEE-754 standard defines a floating point number as,

$$(-1)^{Sign} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

For a 16 bit floating point number, the representation is,

S	ign	Exponent	Fraction
1	bit	4 bit	11 bit

And,
$$Bias = 2^{(4-1)} - 1 = 7$$

Problem Specification:

In this assignment, we will design a floating point adder circuit which takes two floating point numbers as inputs and provides their sum, another floating point number as output. Each floating point number will be 16 bits long with following representation:

Sign	Exponent	Fraction
1 bit	4 bit	11 bit

Flow Chart of the Addition Algorithm

Figure: Flowchart of Floating Point Addition algorithm

High-Level Block Diagram of Floating Point Adder

Figure: High-Level Block Diagram of Floating Point Adder

Circuit Diagram

Floating Point Adder:

Figure: Circuit diagram of Floating Point Adder

Splitter:

Splitter splits the input numbers into significand and exponent parts.

Figure: Circuit diagram of Splitter

Negator:

Negator negates a number checking its sign bit.

Figure: Circuit diagram of Negator

Normalizer:

Normalizes a number.

Figure: Circuit diagram of Normalizer

Shift Counter:

Finds the first high bit from most significant bit to determine the number of times the number needs to be shifted.

Figure: Circuit diagram of Shifter

ICs used with count

Components	IC Number	Count of ICs
16 bit Right Shifter		3
16 bit Left Shifter		1
16 bit Comparator		1
Negator		3
4 bit Subtractor		3
4 bit Adder	IC7483	5
16 to 4 Priority		1
Encoder		
2x1 MUX	74157	7
4x2 MUX		2
AND	IC74LS08	1
NOR	IC74LS02	1

Simulator used

The simulation software used in this Floating Point Adder experiment is *logisim-win-2.7.1.exe.*

Discussion

The input numbers are considered to be limited in Normalized form.

For rounding, truncation is done as per the instruction of the respected course teacher.

In the case of a zero result, i.e., if two equal numbers with opposite signs are given in inputs, the output bits are all made zero as per the zero representation in the binary floating point numbers.

As truncation is done, renormalizing was not necessary and is not implemented.