4 Base & dimension d'un espace vectoriel

Famille génératrice

Une famille finie $F = (e_1; e_2; ...; e_n)$ de vecteurs d'un espace vectoriel E est dite **génératrice** si $E = \langle e_1; e_2; ...; e_n \rangle$, c'est-à-dire si tout vecteur de E est combinaison linéaire des vecteurs de F.

- 4.1 Donner une famille finie de vecteurs de \mathbb{R}^n qui soit génératrice.
- **4.2** 1) Donner une famille finie de vecteurs de $\mathbb{R}_n[x]$ qui soit génératrice.
 - 2) Montrer qu'il n'existe pas de famille finie de vecteurs de $\mathbb{R}[x]$ qui soit génératrice.
- 4.3 Montrer que les vecteurs $e_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, e_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, e_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $e_4 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ engendrent \mathbb{R}^3 et exprimer le vecteur $u = \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix}$ comme combinaison linéaire de ces vecteurs.

Famille libre

Une famille finie $F = (e_1; e_2; \dots; e_n)$ de vecteurs d'un espace vectoriel E est dite **libre** si la seule combinaison linéaire des éléments de F qui donne le vecteur nul est la combinaison triviale :

$$\alpha_1 \cdot e_1 + \alpha_2 \cdot e_2 + \ldots + \alpha_n \cdot e_n = 0 \implies \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$$

Une famille qui n'est pas libre est dite **liée**.

Les vecteurs d'une famille libre sont dits linéairement indépendants. Les vecteurs d'une famille liée sont dits linéairement dépendants.

- **4.4** Montrer que les vecteurs $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} -1 \\ 13 \\ 5 \end{pmatrix}$ de \mathbb{R}^3 sont liés.
- **4.5** Montrer que les vecteurs $\begin{pmatrix} 1\\1\\-1 \end{pmatrix}$, $\begin{pmatrix} 0\\2\\1 \end{pmatrix}$ et $\begin{pmatrix} 0\\0\\5 \end{pmatrix}$ de \mathbb{R}^3 sont linéairement indépendants.

- 4.6 La famille $\left\{ \begin{pmatrix} 1\\1\\0\\2 \end{pmatrix}; \begin{pmatrix} -1\\0\\2\\1 \end{pmatrix}; \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix}; \begin{pmatrix} 1\\3\\4\\8 \end{pmatrix} \right\}$ de \mathbb{R}^4 est-elle libre?
- 4.7 Montrer que les vecteurs $\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$ de \mathbb{R}^3 sont libres et qu'ils engendrent le même espace que les vecteurs $\begin{pmatrix} 4 \\ 6 \\ 7 \end{pmatrix}$ et $\begin{pmatrix} -8 \\ 12 \\ -2 \end{pmatrix}$.
- 4.8 Soient f, g et h trois éléments de $\mathcal{F}_{\mathbb{R}-\{-1;1\}}$ définis par : $f(x) = \frac{2x+1}{x^2-1} \qquad g(x) = \frac{3}{x-1} \qquad h(x) = \frac{1}{2x+2}$ La famille (f;g;h) est-elle libre?
- 4.9 1) Dans \mathbb{R}^3 on donne les vecteurs $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ et $\begin{pmatrix} m \\ -1 \\ 2 \end{pmatrix}$. Pour quelle valeur de m forment-ils une famille liée?
 - 2) Même question avec les vecteurs $\begin{pmatrix} m \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ m \\ 3 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.
- **4.10** Considérons une famille finie $F = (e_1; e_2; ...; e_n)$ de vecteurs d'un espace vectoriel E. Montrer que les affirmations suivantes sont équivalentes :
 - 1) la famille F est libre;
 - 2) aucun vecteur de E ne peut s'écrire sous la forme de deux combinaisons linéaires distinctes des vecteurs e_1, e_2, \ldots, e_n .

Base

Une base d'un espace vectoriel est une famille génératrice et libre.

L'exercice 4.10 implique qu'une famille \mathcal{B} de vecteurs forme une base d'un espace vectoriel E si et seulement si tout vecteur de E s'écrit de manière unique comme combinaison linéaire des vecteurs de \mathcal{B} .

Soient $\mathcal{B} = (e_1; \ldots; e_n)$ une base d'un espace vectoriel E et u un vecteur de E. On appelle **composantes** du vecteur u dans la base \mathcal{B} les uniques nombres u_1, \ldots, u_n tels que :

$$u = u_1 \cdot e_1 + \ldots + u_n \cdot e_n \quad \Longleftrightarrow \quad u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

4.11 Soient u et v des vecteurs d'un espace vectoriel E et α un scalaire.

Si u_1, \ldots, u_n et v_1, \ldots, v_n désignent les composantes respectives de u et v dans une base $\mathcal{B} = (e_1; \ldots; e_n)$, montrer que les composantes des vecteurs u + v et $\alpha \cdot u$ sont données par :

$$u + v = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix} \qquad \alpha \cdot u = \alpha \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} \alpha u_1 \\ \vdots \\ \alpha u_n \end{pmatrix}$$

4.12 Montrer que la famille $\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$ forme une base de \mathbb{R}^n .

On appelle \mathcal{B} la base canonique de \mathbb{R}^n .

- **4.13** Montrer que la famille $\mathcal{B} = (1; x; x^2; \dots; x^n)$ forme une base de $\mathbb{R}_n[x]$. On appelle \mathcal{B} la base canonique de $\mathbb{R}_n[x]$.
- 4.14 Déterminer une base de l'ensemble des solutions de chacun des systèmes :

1)
$$\begin{cases} x - 3y + z = 0 \\ 2x - 6y + 2z = 0 \\ 3x - 9y + 3z = 0 \end{cases}$$
 2)
$$\begin{cases} x + y + z = 0 \\ 3x + 2y - 2z = 0 \\ 4x + 3y - z = 0 \\ 6x + 5y + z = 0 \end{cases}$$

4.15 Trouver une base du sous-espace vectoriel E de \mathbb{R}^4 défini par :

$$E = \{(x; y; z; t) \in \mathbb{R}^4 : x + y = z - t = 0\}.$$

Dimension

Un espace vectoriel E est dit de **dimension finie** s'il est engendré par une famille finie de vecteurs.

Dans le cas contraire, on dit que E est de dimension infinie.

Exemple : l'exercice 4.2 a montré que $\mathbb{R}_n[x]$ est de dimension finie, mais que $\mathbb{R}[x]$ est de dimension infinie.

Théorème Toute famille libre d'un espace vectoriel de dimension finie peut être complétée de manière à former une base.

Preuve Soit $L = (l_1; ...; l_m)$ une famille libre.

Si L engendre l'espace vectoriel E, alors la famille L forme d'ores et déjà une base de E. On supposera donc que L n'engendre pas E.

Puisque l'espace vectoriel E est de dimension finie, il possède une famille génératrice finie $G = (g_1; \ldots; g_n)$.

Du moment que L n'engendre pas $E = \langle g_1; \ldots; g_n \rangle$, il y a au moins un vecteur g_i de G qui n'est pas combinaison linéaire des vecteurs de L.

Posons $L^* = (l_1; \ldots; l_n; g_i)$. Montrons que L^* est libre.

$$\alpha_1 \cdot l_1 + \dots + \alpha_n \cdot l_n + \beta \cdot g_i = 0$$
 implique $\beta \cdot g_i = -\alpha_1 \cdot l_1 - \dots - \alpha_n \cdot l_n$.

On doit avoir $\beta=0$: sinon, on aurait $g_i=-\frac{\alpha_1}{\beta}\cdot l_1-\ldots-\frac{\alpha_n}{\beta}\cdot l_n$, de sorte que g_i s'écrirait comme combinaison linéaire des vecteurs de L.

L'équation $\alpha_1 \cdot l_1 + \dots + \alpha_n \cdot l_n + \beta \cdot g_i = 0$ devient $\alpha_1 \cdot l_1 + \dots + \alpha_n \cdot l_n = 0$ d'où suit aussitôt $\alpha_1 = \dots = \alpha_n = 0$, vu que L est une famille libre.

On a ainsi montré que la famille L^* est libre.

Ou bien la famille L* engendre E et la démonstration est terminée, ou bien le même raisonnement nous assure de l'existence d'un vecteur g_j de G tel que la famille L* = $(l_1; \ldots; l_n; g_i; g_j)$ soit libre. Si cette famille n'engendre pas E, le procédé d'extraction des vecteurs de G se poursuit. Lorsqu'il s'arrête, nous aurons complété L en une famille libre engendrant E, c'est-à-dire en une base de E.

Théorème On peut extraire une base de toute famille génératrice d'un espace vectoriel non nul de dimension finie.

Preuve Soit $G = (g_1; \ldots; g_n)$ une famille génératrice de l'espace vectoriel E. Puisque $E \neq \{0\}$, il existe $l_1 \in G$ tel que $l_1 \neq 0$.

Alors la famille $L = (l_1)$ est libre.

La preuve précédente montre que l'on peut compléter la famille L à partir des vecteurs de G, de façon à former une base de E.

Remarque : ce théorème signifie que tout espace vectoriel non nul de dimension finie admet une base.

4.16 Trouver une base du sous-espace vectoriel de \mathbb{R}^3 engendré par :

$$\left(\begin{pmatrix} 3\\2\\-2 \end{pmatrix}; \begin{pmatrix} 7\\-3\\1 \end{pmatrix}; \begin{pmatrix} -11\\8\\-4 \end{pmatrix}; \begin{pmatrix} 4\\-5\\3 \end{pmatrix} \right)$$

Théorème $Si(e_1; ...; e_n)$ est une base d'un espace vectoriel E, toute famille de vecteurs $(u_1; ...; u_k)$ avec k > n est liée.

Preuve Supposons par l'absurde que la famille $(u_1; \ldots; u_k)$ soit libre. En décomposant u_1 dans la base $(e_1; \ldots; e_n)$, on obtient :

$$u_1 = \alpha_1 \cdot e_1 + \alpha_2 \cdot e_2 + \ldots + \alpha_n \cdot e_n.$$

Comme u_1 n'est pas nul, au moins l'une des composantes $\alpha_1, \alpha_2, \ldots, \alpha_n$ n'est pas nulle. Quitte à énumérer autrement les termes de la base, nous pouvons admettre que cette composante est α_1 . Il en résulte :

$$e_1 = \frac{1}{\alpha_1} u_1 - \frac{\alpha_2}{\alpha_1} \cdot e_2 - \ldots - \frac{\alpha_n}{\alpha_1} \cdot e_n.$$

Puisque $\langle u_1; e_2; \ldots; e_n \rangle = \langle e_1; e_2; \ldots; e_n \rangle = E$, la famille $(u_1; e_2; \ldots; e_n)$ engendre E. Écrivons à présent u_2 comme combinaison linéaire de vecteurs de cette famille :

$$u_2 = \beta_1 \cdot u_1 + \beta_2 \cdot e_2 + \ldots + \beta_n \cdot e_n.$$

Les coefficients β_2, \ldots, β_n ne sont pas tous nuls, sinon u_1 et u_2 seraient linéairement dépendants. Sans restreindre la généralité, nous pouvons admettre que β_2 n'est pas nul, ce qui nous permet d'écrire :

$$e_2 = -\frac{\beta_1}{\beta_2} \cdot u_1 + \frac{1}{\beta_2} \cdot u_2 - \frac{\beta_3}{\beta_2} \cdot e_3 - \dots - \frac{\beta_n}{\beta_2} \cdot e_n$$

Vu que $\langle u_1; u_2; e_3; \dots; e_n \rangle = \langle u_1; e_2; e_3; \dots; e_n \rangle = E$, la famille de vecteurs $(u_1; u_2; e_3; \dots; e_n)$ engendre E.

En poursuivant ce procédé, on remplace successivement e_3, \ldots, e_n par u_3, \ldots, u_n , d'où l'on conclut que la famille $(u_1; u_2; \ldots; u_n)$ engendre E.

Par conséquent, le vecteur u_k s'écrit comme une combinaison linéaire des vecteurs u_1, \ldots, u_n , ce qui signifie que la famille $(u_1; \ldots; u_k)$ n'est pas libre.

Corollaire Toutes les bases d'un espace vectoriel de dimension finie ont le même nombre d'éléments.

Preuve Soient $\mathcal{B} = (e_1; \dots; e_n)$ et $\mathcal{B}^* = (e_1^*; \dots; e_k^*)$ deux bases.

D'après le précédent théorème, la famille de vecteurs $(e_1^*; \dots; e_k^*)$ ne peut être libre que si $k \leq n$.

En échangeant le rôle des bases \mathcal{B} et \mathcal{B}^* dans l'application du précédent théorème, on obtient $n \leq k$.

Les deux inégalités $k \leq n$ et $n \leq k$ impliquent n = k.

On appelle **dimension** d'un espace vectoriel non nul E de dimension finie le nombre d'éléments d'une quelconque de ses bases. Si E se réduit au seul vecteur nul, on dit que sa dimension est nulle. La dimension de E se note $\dim(E)$.

- 4.17 Déterminer la dimension des espaces vectoriels suivants :
 - 1) \mathbb{R}^n

 $2) \mathbb{R}_n[x]$

3) $M_{m,n}(\mathbb{R})$

Remarques : Soit E un espace vectoriel de dimension finie non nulle n.

- 1) Toute famille libre de n éléments est une base.
- 2) Toute famille génératrice de n éléments est une base.
- 3) Toute famille de moins de n éléments ne peut être génératrice.
- 4) Toute famille de plus de n éléments est liée.
- 5) Si F est un sous-espace vectoriel de E, alors $\dim(F) \leq \dim(E)$. $\dim(F) = \dim(E)$ si et seulement si E = F.
- **4.18** Montrer que la famille $\begin{pmatrix} 3 & 6 \ 3 & -6 \end{pmatrix}$; $\begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}$; $\begin{pmatrix} 0 & -8 \ -12 & -4 \end{pmatrix}$; $\begin{pmatrix} 1 & 0 \ -1 & 2 \end{pmatrix}$ est une base de $M_2(\mathbb{R})$.
- 4.19 Montrer que la famille $(2-x;1+2x;1-x^2)$ est une base de $\mathbb{R}_2[x]$. Calculer les composantes relativement à cette base des polynômes suivants :
 - 1) x^2

- 2) $(2x-1)^2$
- 3) $2x^2 4x + 3$
- **4.20** Soit $(e_1; e_2)$ une base de \mathbb{R}^2 . Montrer que $(e_2; e_1)$, $(e_1; e_1 + e_2)$, $(e_1 e_2; e_1 + e_2)$ et $(e_1 + \alpha e_2; e_2)$ sont aussi des bases de \mathbb{R}^2 . Quelles sont les composantes de e_1 et de e_2 relativement à chacune de ces bases?

Réponses

4.1
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

4.2 1)
$$p_n = x^n, p_{n-1} = x^{n-1}, \dots, p_2 = x^2, p_1 = x, p_0 = 1$$

4.3 2)
$$u = (-3 - \alpha) e_1 + 2 e_2 + (2 - \alpha) e_3 + \alpha e_4$$
 avec $\alpha \in \mathbb{R}$

- 4.6 Non : elle est liée.
- 4.8 Non : elle est liée.

4.9 1)
$$m = \frac{2}{5}$$
 2) $m = 1$ ou $m = 6$

4.14 1)
$$\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
; $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 2) $\begin{pmatrix} 4 \\ -5 \\ 1 \end{pmatrix}$

$$\mathbf{4.15} \qquad \left(\begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}; \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right)$$

4.16
$$\left(\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}; \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix} \right)$$

4.17 1)
$$n$$
 2) $n+1$ 3) mn

4.19 1)
$$\begin{pmatrix} \frac{2}{5} \\ \frac{1}{5} \\ -1 \end{pmatrix}$$
 2) $\begin{pmatrix} \frac{14}{5} \\ -\frac{3}{5} \\ -4 \end{pmatrix}$ 3) $\begin{pmatrix} \frac{14}{5} \\ -\frac{3}{5} \\ -2 \end{pmatrix}$

4.20 1)
$$e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 2) $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $e_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 3) $e_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ $e_2 = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ 4) $e_1 = \begin{pmatrix} 1 \\ -\alpha \end{pmatrix}$ $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$