

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Slattery et al., (2022). Cabana: A Performance Portable Library for Particle-Based Simulations. Journal of Open Source Software, 7(72), 4115, https://doi.org/10.21105/joss.04115

Physics applications

CabanaMD

Molecular

dynamics

Application codes

Computational motifs

Cabana

Performance portable, multi-node particle, structured-grid, and particle-grid motifs

Distributed parallelism

MPI

Multi-node computation

ArborX

Geometric search

heFFTe *FFTs*

hypre Structured

solvers

HDF5
Particle
I/O

Threaded parallelism

KokkosOn-node performance portability

Threaded backends

OpenMP

CUDA

HIP

SYCL

Cabana: created during ECP to support particle work

Lab leads

PI: Sue Mniszewski, LANL

Co-PI: Jim Belak, LLNL

Site Lead: C-S Chang, PPPL

Site Lead: Salman Habib, ANL

Site Lead: Steve Plimpton, SNL

Site Lead: Stuart Slattery, ORNL

FFTX Lead: Phil Collela, LBNL

Cabana resources

- GitHub: https://github.com/ECP-CoPA/Cabana
 - We welcome issues and pull requests
 - Examples/tutorials in source code
 - GitHub wiki
- YouTube tutorial (2021): https://youtu.be/VAS7JdprQqE
- Slack https://kokkosteam.slack.com #cabana
- Email (<u>reevest@ornl.gov</u>)

Configure, Build, and Test

Information on how to configure, build, and test Cabana on a variety of c

Programming Guide

The Cabana programming guide covers core particle and structured grid library API.

Doxygen API

Up-to-date builds of Doxygen for the Cabana master branch.

Video tutorial

Cabana tutorial from the 2021 ECP Annual Meeting.

Benchmarks

Performance measurements across Cabana functionality.

Applications and proxy apps

Links and descriptions of the proxy applications using Cabana.

Primary Core library features

- Particle data structures (View extensions)
- Binning/sorting
 - Including spatial binning with Cabana::LinkedCellList
- Neighbor interactions
 - Neighbor lists and Cabana::neighbor_parallel_for
 - Cabana::VerletList (bin-accelerated N² search)
 - ArborX interface (tree based search)
 - Cabana::LinkedCellList (binning only)
- MPI Communication
 - Particle migration Cabana::migrate
 - Particle halo Cabana::{Gather,Scatter}

Array-of-Structs (AoS)

Primary Grid library features

- Domain decomposed structured grids
 - Grid objects: indices for Cabana::Grid::grid_parallel_for
 - Mesh objects: physical cell details
- Particle-grid interpolation: Cabana::Grid::{p2g, g2p}
- Algorithms
 - FFTs (heFFTe interface)
 - Solvers/preconditioners (HYPRE interface)
 - Load balancing (ALL interface)
- MPI Communication: Cabana::Grid::Halo
- Sparse grids (logically dense)
 - Only allocate the portion of the grid fields where particles exist

Cell

Face

Cabana benchmarks (Frontier 1 GCD/node)

Cabana performance (Frontier)

Particle binning as a replacement for neighbor list storage.

- Creation (binning)
- Parallel iteration with and without sorting

Cabana performance (Frontier)

Speedup from stored Verlet-style list and binning-only as a neighbor list

- Creation (binning)
- Parallel iteration with and without sorting

CabanaMD proxy app

Memory/ flop kernel

MD data

Communication

Single MD timestep

- 1. Halo exchange of ghost cells and redistribution
- 2. Construct neighbor lists (Not done every timestep)
- 3. Compute forces on particles due to short-range neighbors
- 4. Integrate equations of motion (particle update)
- 5. Resorting of particles (Not done every timestep)

 Cabana::AoSoA, Kokkos::Views, and Cabana::Grid::UniformMesh

- Cabana::migrate(Cabana::Distributor(...), AoSoA);
 Cabana::gather(Cabana::Halo(...), x);
- Cabana::VerletList(x, ...);
- Cabana::neighbor_parallel_for(...); // with x, f
- Kokkos::parallel_for(...); // with x, v, f
- Cabana::permute(Cabana::LinkedCellList(x, AoSoA), AoSoA);

CabanaPD: peridynamics timestep

- 0. Construct neighbor lists
- 1. Halo exchange of ghosts
- 2. Compute forces on particles due to short-range neighbors & bond-breaking
- 3. Integrate equations of motion (particle update)
- 4. Apply boundary conditions
 - 5. Compute energy (Not done every step)

- Cabana::VerletList(x, ...);
- Cabana::Gather::apply();

- Cabana::neighbor_parallel_for(...); // with ∪, x, f
- Kokkos::parallel_for(...); // with u, v, f
- Kokkos::parallel_for(...); // with f
- Cabana::neighbor_parallel_reduce(...); // with u, x, f

CabanaPD

- New fracture mechanics code using mesh-free peridynamics
- Current extension to contact problems and multi-physics

ExaMPM proxy app

Communication

1. Particle to grid

2. Field solve on the grid

3. Grid to particle

4. Apply boundary conditions and correct positions

Kokkos::parallel_for with

Cabana::Grid::P2G::{gradient, value}

And Cabana::Grid::Halo::gather

Cabana::Grid::grid_parallel_for

Kokkos::parallel_for with Cabana::Grid::G2P::{gradient, value}

1.0e+00

- And Cabana::Grid::Halo::scatter
- Kokkos::parallel_for and Cabana::Grid::grid_parallel_for

^{*} Could replace with Cabana::Grid::{p2g, g2p}, if fusing the kernels is not performance critical

Cabana proxy applications (https://github.com/ECP-CoPA)

- CabanaMD (EXAALT) [LAMMPS]
 - Classical molecular dynamics
- HACCabana (ExaSky, ANL) [HACC]
 - Potential exploratory use alongside production HACC
- ExaMPM [PicassoMPM]
 - New material point method for additive manufacturing
- CabanaPIC (LANL) [VPIC]
 - Plasma PIC

Cabana applications, continued

- Beatnik (UNM PSAAP): Z-model interface solver
- CabanaPD (ORNL LDRD): Peridynamics for fracture
- CabanaPF (ORNL SULI): Pseudospectral phase field
- CabanaMPCD (Julich): Multi-particle collision dynamics
- Finch (ORNL MDF): Heat transfer for additive manufacturing
- Hyperion (LANL LDRD): multi-physics hybrid PIC
- MultiSim (UCLA): Material point method for graphics
- PUMI-PIC (RPI): PIC library using Cabana data structures

Cabana interoperability

- Cabana has been built to connect and unify across disparate scientific communities
- We are completely intertwined with Kokkos and MPI
 - But we do support interfaces with other portability strategies
 - heFFTe & hypre vs ArborX & KokkosComm
- Primary current effort is better separation of data structure and algorithm
 - Accept Kokkos::View anywhere we use Cabana::slice
 - The particle data could be Unmanaged and therefore wrap user data without significant code intrusion

Current status and future possibilities

- ORNL science areas for Cabana-based applications
 - Fracture mechanics (fusion, materials science)
 - Materials and manufacturing (additive, etc.)
 - Plasma physics (fusion)
 - Mesh generation
- Develop at the application level
 - Generalize and move code to Cabana where appropriate
 - Generalize and move code to Kokkos{Comm, FFT} where appropriate
 - Generalize and move code to Kokkos where appropriate

Moving code upstream

- From ExaAM Picasso into Cabana
 - Cabana::ParticleList for user type-tagged particle fields
 - Cabana::particleGridMigrate to determine particle destinations based on mesh
 - Cabana::Grid::createParticles(Cabana::{InitRandom, InitUniform}, ...)
- In progress from CabanaPD into Cabana
 - Cabana::particleGrid{Gather, Scatter}
- Hypothetically Cabana::AoSoA into Kokkos
 - View extension with extra dimension for SIMD/SIMT width
 - Supports packing multiple fields together
 - Associated execution policies and parallel_for

Work performed under the auspices of the U.S. DOE under contract DE-AC05-00OR22725 for Oak Ridge National Laboratory.

This research was sponsored by the Oak Ridge National Laboratory Directed Research and Development program VERTEX Initiative.

Cabana references

- Slattery, S., Reeve, S. T., Junghans, C., Lebrun-Grandié, D., et al. (2022). Cabana: A performance portable library for particle-based simulations. Journal of Open Source Software, 7(72), 4115. https://doi.org/10.21105/joss.04115
- Mniszewski, S. M., Belak, J., et al. (2021). Enabling particle applications for exascale computing platforms. The International Journal of High Performance Computing Applications, 35(6), 572-597.
- Qiu, Y., Reeve, S. T., Li, M., Yang, Y., Slattery, S. R., & Jiang, C. (2023). A Sparse Distributed Gigascale Resolution Material Point Method. ACM Transactions on Graphics, 42(2), 1-21.
- Desai, S., Reeve, S. T., & Belak, J. F. (2022). Implementing a neural network interatomic model with performance portability for emerging exascale architectures. Computer Physics Communications, 270, 108156.