PRELIMINARY AMENDMENT

Version with markings to show changes made

In the specification

Kindly replace the last paragraph on page 18 continuing onto page 19 as follows:

A first alloy system has the composition $Co_a(Fe_{l-c}Mn_c)_bNi_dM_eSi_xB_yC_z$, with M indicating one or more elements from the group Nb, Mo, Ta, Cr, W, Ge, and/or P and a+b+d+e+x+y+z

= 100, with

Co: a = 40 - 82 at%, preferably 55 < a < 72 at%,

Fe+Mn: b = 3 - 10 at%,

Mn/Fe: c = 0 - 1, preferably $[x]\underline{c} < 0.5$,

Ni: d = 0 - 30 at%, preferably d < 20 at%,

M: e = 0 - 5 at%, preferably e < 3 at%,

Si: x = 0 - 18 at%, preferably x > 1 at%,

B: y = 8 - 26 at%, preferably 8 - 20 at%,

C: z = 0 - 3 at%,

15 < e+x+y+z < 30, preferably 20 < e+x+y+z < 30.

In the claims

1. (Amended) An [I]interface module for local data networks having an inductive component [(7)] used as a transformer for coupling interface circuits to a data line used to connect computers, with the inductive component having a magnetic core [(9)] and multiple windings applied to the core, [characterized in that] wherein the inductive component [(7)]

PRELIMINARY AMENDMENT

used as a transformer has a magnetic core [(9)] made of an amorphous or nanocrystalline alloy with a permeability $\mu > 15,000$ and the number of turns of the windings is between 5 and 25.

- 2. (Amended) The [I]interface module according to claim 1, [characterized in that] wherein the amorphous or nanocrystalline alloy has a permeability $\mu > 30,000$.
- 3. (Amended) The [I]interface module according to claim 1 [or 2], [characterized in that] wherein the alloy has the composition Co_a(Fe_{1-c}Mn_c)_bNi_dM_eSi_xB_yC_z, with M indicating one or more elements from the group Nb, Mo, Ta, Cr, W, Ge, and/or P and a+b+d+e+x+y+z = 100, with

Co
$$a = 40 - 82$$
 at%

Fe+Mn
$$b = 3 - 10$$
 at%

Mn/Fe
$$c = 0 - 1$$

Ni
$$d = 0 - 30$$
 at%

M
$$e = 0 - 5$$
 at%

Si
$$x = 0 - 17$$
 at%

B
$$y = 8 - 26$$
 at%

C
$$z = 0 - 3$$
 at%

and 15 at% < e+x+y+z < 30 at%.

PRELIMINARY AMENDMENT

4. (Amended) The [I]interface module according to claim 3, [characterized in that] wherein the following relationships apply:

Co
$$a = 55 - 72$$
 at%

Mn/Fe
$$c = 0 - 0.5$$

Ni
$$d = 0 - 20$$
 at%

M
$$e = 0 - 3$$
 at%

B
$$y = 8 - 20$$
 at%

Si
$$x = 1 - 18$$
 at%

and 20 at% < e+x+y+z < 30 at%.

5. (Amended) The [I]interface module according to claim 1 [or 2], [characterized in that] wherein the alloy has the composition $Fe_xCu_yM_zSi_vB_w$, with M indicating an element from the group Nb, W, Ta, Zr, Hf, Ti, Mo, or a combination of these and x + y + z + v + w = 100%, with

Fe
$$x = 100\% - y - z - v - w$$

Cu
$$y = 0.5 - 2$$
 at%

M
$$z = 1 - 6$$
 at%

Si
$$v = 6.5 - 18$$
 at%

B
$$w = 5 - 14$$
 at%

with v + w > 18 at%.

PRELIMINARY AMENDMENT

6. (Amended) The [I]interface module according to claim 5, [characterized in that] wherein the following relationships apply:

Cu
$$y = 1$$
 at%

M
$$z = 2 - 4$$
 at%

Si
$$v = 14 - 17$$
 at%,

with v + w = 20 to 24 at%.

7. (Amended) The [I]interface module according to claim 1 [or 2], [characterized in that] wherein the alloy has the composition $Fe_xZr_yNb_zB_vCu_w$, with x + y + z + v + w = 100 at%, with

Fe
$$x = 100$$
 at% - y - z - v - w

$$Zr y = 2 - 5 at\%$$

Nb
$$z = 2 - 5$$
 at%

B
$$v = 5 - 9$$
 at%

Cu
$$w = 0.5 - 1.5 \text{ at}\%$$

with y + z > 5 at% and y + z + v > 11 at%.

8. (Amended) <u>The [I]interface module according to claim 7, [characterized in that]</u> wherein the following relationships apply:

Fe
$$x = 83 - 86$$
 at%

$$Zr y = 3 - 4 at\%$$

Nb
$$z = 3 - 4$$
 at%

Cu
$$w = 1$$
 at%

with y + z > 7 at% and y + z + v > 12 to 16 at%.

9. (Amended) The [I]interface module according to claim 1 [or 2], [characterized in that] wherein the alloy has the composition $Fe_xM_yB_zCu_w$, with M indicating an element from the group Zr, Hf, Nb and x + y + z + w = 100 at%, with

Fe
$$x = 100$$
 at% - y - z - w

M
$$y = 6 - 8$$
 at%

B
$$z = 3 - 9$$
 at%

Cu
$$w = 0 - 1.5$$
 at%.

10. (Amended) The [I]interface module according to claim 9, [characterized in that] wherein the following relationships apply:

Fe
$$x = 83 - 91$$
 at%

M
$$y = 7$$
 at%.

11. (Amended) The [I]interface module according to claim 1 [or 2], [characterized in that] wherein the alloy has the composition $(Fe_{0.98}Co_{0.02})_{90-x}Zr_7B_{2+x}Cu_1$, with x = 0 - 3 at%, with the residual alloy component Co able to be replaced by Ni with appropriate equalization.

Express Mail Label No. EL209599882US

U.S. National Phase Entry of PCT/EP00/09882

"Interface Module for a Local Data Network"

Filed: 18 January 2002

PRELIMINARY AMENDMENT

- 12. (Amended) The [I]interface module according to claim 11, [characterized in that] wherein x = 0.
- 13. (New) The interface module according to claim 2, wherein the alloy has the composition $Co_a(Fe_{1-c}Mn_c)_bNi_dM_eSi_xB_yC_z$, with M indicating one or more elements from the group Nb, Mo, Ta, Cr, W, Ge, and/or P and a+b+d+e+x+y+z=100, with

Co
$$a = 40 - 82$$
 at%

Fe+Mn
$$b = 3 - 10$$
 at%

Mn/Fe
$$c = 0 - 1$$

Ni
$$d = 0 - 30$$
 at%

M
$$e = 0 - 5$$
 at%

Si
$$x = 0 - 17$$
 at%

B
$$y = 8 - 26$$
 at%

C
$$z = 0 - 3$$
 at%

and 15 at% < e+x+y+z < 30 at%.

14. (New) The interface module according to claim 2, wherein the alloy has the composition $Fe_xCu_yM_zSi_vB_w$, with M indicating an element from the group Nb, W, Ta, Zr, Hf, Ti, Mo, or a combination of these and x + y + z + v + w = 100%, with

Fe
$$x = 100\% - y - z - v - w$$

Cu
$$y = 0.5 - 2$$
 at%

$$z = 1 - 6$$
 at%

$$v = 6.5 - 18$$
 at%

$$w = 5 - 14$$
 at%

with v + w > 18 at%.

15. (New) The interface module according to claim 2, wherein the alloy has the composition $Fe_xZr_yNb_zB_vCu_w$, with x + y + z + v + w = 100 at%, with

H

N

$$x = 100 at\% - y - z - v - w$$

$$y = 2 - 5$$
 at%

$$z = 2 - 5$$
 at%

$$v = 5 - 9$$
 at%

$$w = 0.5 - 1.5$$
 at%

with y + z > 5 at% and y + z + v > 11 at%.

16. (New) The interface module according to claim 2, wherein the alloy has the composition $Fe_xM_yB_zCu_w$, with M indicating an element from the group Zr, Hf, Nb and x + y

$$+z+w = 100$$
 at%, with

$$x = 100 \text{ at}\% - y - z - w$$

$$y = 6 - 8$$
 at%

$$z = 3 - 9$$
 at%

$$w = 0 - 1.5$$
 at%.

17. (New) The interface module according to claim 2, wherein the alloy has the composition $(Fe_{0.98}Co_{0.02})_{90-x}Zr_7B_{2+x}Cu_1$, with x = 0 - 3 at%, with the residual alloy component Co able to be replaced by Ni with appropriate equalization.