Devoir surveillé n°8 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Endomorphismes cycliques d'un espace vectoriel.

Soit E un espace-vectoriel réel et $f \in \mathcal{L}(E)$.

On dit que f est cyclique s'il existe $a \in E$ tel que la famille $(f^k(a))_{k \in \mathbb{N}}$ engendre E. Dans cette situation, on dit que a est $associ\'{e}$ à f.

On note $\mathscr{C}(f) = \{ g \in \mathscr{L}(E) \mid g \circ f = f \circ g \}$ l'ensemble des endomorphismes commutant avec f.

On note $\mathscr{P}(f) = \left\{ \alpha_0 \mathrm{Id}_E + \alpha_1 f + \dots + \alpha_k f^k \mid k \in \mathbb{N}, \ (\alpha_0, \dots, \alpha_k) \in \mathbb{R}^{k+1} \right\}$ l'ensemble des polynômes en f.

Partie I: Questions préliminaires.

- 1) Démontrer que $\mathscr{C}(f)$ est un sous-espace vectoriel de $(\mathscr{L}(E), +, \cdot)$, contenant Id_E et stable par composition.
- **2)** Soit $g \in \mathcal{C}(f)$, montrer que $\mathcal{P}(g) \subset \mathcal{C}(f)$.

Partie II: Étude en dimension finie.

On suppose dans cette partie que E est de dimension finie, égale à n, que f est cyclique et l'on considère $a \in E$ associé à f.

- 3) Justifier l'existence d'un plus grand entier naturel p tel que $(a, f(a), \ldots, f^{p-1}(a))$ soit une famille libre.
- 4) Démontrer que $(a, f(a), \ldots, f^{p-1}(a))$ est une base de E. Que vaut donc p?
- 5) Soit $g \in \mathcal{C}(f)$, soit $\alpha_0, \ldots, \alpha_{n-1}$ tels que $g(a) = \alpha_0 a + \alpha_1 f(a) + \cdots + \alpha_{n-1} f^{n-1}(a)$. On note $h = \alpha_0 \mathrm{Id}_E + \alpha_1 f + \cdots + \alpha_{n-1} f^{n-1}$. Démontrer que g = h.
- **6)** En déduire que $\mathscr{C}(f) = \mathscr{P}(f)$.
- 7) Démontrer que $(\mathrm{Id}_E, f, \ldots, f^{n-1})$ est une base de $\mathscr{P}(f)$.

Partie III : Dérivations discrète et formelle en dimension finie.

On suppose que $E = \mathbb{R}_n[X]$, soit a un réel non nul. On considère les endomorphismes D et Δ de $\mathbb{R}_n[X]$ définis par

$$D: P \to P'$$
 et $\Delta: P \to P(X+a) - P(X)$.

- 8) Montrer que si $P \in \mathbb{R}_n[X]$ n'est pas constant, alors $\deg(\Delta(P)) = \deg(P) 1$.
- 9) En déduire que Δ est cyclique. Quels sont les polynômes associés à Δ ?
- **10)** Montrer que $D \in \mathscr{P}(\Delta)$.
- 11) Démontrer que D est cyclique.
- 12) Montrer que $\mathscr{C}(D) = \mathscr{C}(\Delta)$.

Partie IV : Étude de ces dérivations en dimension infinie.

On considère maintenant les endomorphismes D et Δ étendus à $\mathbb{R}[X]$. Soit $\varphi \in \mathscr{C}(\Delta)$.

- **13)** Soit $P \in \mathbb{R}[X]$ et $n \in \mathbb{N}$. Démontrer que $P \in \mathbb{R}_n[X] \Leftrightarrow \Delta^{n+1}(P) = 0$.
- **14)** En déduire que, pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par φ .
- **15)** Démontrer alors que, pour tout $P \in \mathbb{R}[X]$, $\varphi(P') = [\varphi(P)]'$.
- **16)** Démontrer que $\mathscr{C}(\Delta) = \mathscr{C}(D)$.
- 17) Montrer que Δ n'appartient pas à $\mathscr{P}(D)$.

II. Résolution d'une équation fonctionnelle.

L'objet de ce problème est de résoudre dans certains cas l'équation fonctionnelle suivante :

 $\forall x \in \mathbb{R}, \ f(x) - \int_0^x (x - t)f(t) \, \mathrm{d}t = g(x), \tag{\mathscr{E}}$

où f est une fonction inconnue supposée continue sur $\mathbb R$ et g une fonction donnée définie sur $\mathbb R$.

A- Dans cette partie on suppose que la fonction g est deux fois dérivable sur \mathbb{R} .

1) Montrer que les fonctions f solutions de (\mathscr{E}) sont elles aussi deux fois dérivables et qu'elles vérifient l'équation :

$$\forall x \in \mathbb{R}, \ f''(x) - f(x) = g''(x). \tag{\mathscr{F}}$$

- 2) En déduire la solution de l'équation (\mathscr{E}) quand g est une fonction polynomiale de degré au plus 1.
 - On explicitera notamment le cas où la fonction g est nulle.
- 3) Déduire aussi que l'équation ($\mathscr E$) (que g soit dérivable ou non) a au plus une solution.
- 4) Montrer que les solutions de (\mathcal{F}) sont les fonction f de la forme :

$$f(x) = \frac{e^x}{2} \left[\int_0^x e^{-t} g''(t) dt + k_A \right] - \frac{e^{-x}}{2} \left[\int_0^x e^t g''(t) dt + k_B \right].$$

5) Montrer que si la fonction f écrite ci-dessus vérifie les relations :

$$f(0) = g(0)$$
 et $f'(0) = g'(0)$,

alors f est solution de (\mathcal{E}) .

6) Expliciter la solution f de (\mathscr{E}) quand g est la fonction exponentielle $(g(x) = e^x)$.

B- Dans cette partie, on suppose que la fonction g est seulement continue.

On note E l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .

7) On définit l'application A qui à une fonction f de E associe la fonction (notée A(f)) définie par :

$$\forall x \in \mathbb{R}, \ A(f)(x) = \int_0^x (x-t)f(t) \, \mathrm{d}t.$$

Montrer que l'application A est une application de E dans E injective.

8) Montrer que A(f) est deux fois dérivable et donner l'expression de (A(f))''. Montrer également que A(f) et (A(f))' s'annulent en 0.

On désigne par A^n la n^e itérée de l'application A : si $f \in E$, $A^0(f) = f$, $A^1(f) = A(f)$, $A^2(f) = A(A(f))$, et si $n \in \mathbb{N}$:

$$A^n(f) = A(A^{n-1}(f)) = \underbrace{(A \circ \cdots \circ A)}_{n \text{ fois}}(f).$$

- 9) Montrer que pour tout $f \in E$, $A^2(f): x \mapsto \int_0^x \frac{1}{3!} (x-t)^3 f(t) dt$.
- 10) Généraliser ce résultat à $A^n(f)$. Justifier votre réponse.

On pose pour tout $n \in \mathbb{N}$:

$$U_n = A + A^2 + \dots + A^n = \sum_{k=1}^n A^k.$$

Soit $U: f \mapsto U(f)$ l'application de E dans E définie par :

$$\forall f \in E, \ U(f) : x \mapsto \int_0^x \operatorname{sh}(x-t)f(t) \, \mathrm{d}t.$$

11) Montrer que pour tout $u \in \mathbb{R}$ on a :

$$\left| \operatorname{sh}(u) - \sum_{k=1}^{n} \frac{u^{2k-1}}{(2k-1)!} \right| \leqslant \operatorname{ch}(u) \frac{|u|^{2n+1}}{(2n+1)!}.$$

12) En déduire que pour tout réel x:

$$|U(f)(x) - U_n(f)(x)| \le \operatorname{ch}(x) \frac{|x|^{2n+1}}{(2n+1)!} \left| \int_0^x |f(t)| \, \mathrm{d}t \right|.$$

- 13) Montrer les égalités : $U \circ A = A \circ U = U A$.
- 14) Soit $I: f \mapsto f$ l'application identité de E dans E. Montrer que les application I A et I + U sont des bijections de E dans E, réciproques l'une de l'autre. En déduire la fonction de E solution de l'équation (\mathscr{E}).
- 15) Expliciter f pour la fonction g paire et telle que g est définie sur \mathbb{R}_+ par :

$$g: x \mapsto \left\{ \begin{array}{ccc} x & \text{si} & x \in [0, 1[\\ 2 - x & \text{si} & x \in [1, 2[\\ 0 & \text{si} & x \geqslant 2 \end{array} \right.$$

— FIN —