Search History

SCORE Search Results Details for Application 09522753 and Search Result us-09-522-753c-4.rge.

Score Home Page

Retrieve Application

List

SCORE System Overview

SCORE FAQ

Comments / **Suggestions**

This page gives you Search Results detail for the Application 09522753 and Search Result us-09-522-753c-4.rge.

start

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on:

July 30, 2006, 05:48:17; Search time 30835 Seconds

(without alignments)

17754.301 Million cell updates/sec

Title:

US-09-522-753C-4

Perfect score: 8561

Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

6366136 seqs, 31973710525 residues

Total number of hits satisfying chosen parameters:

12732272

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 60 summaries

Database :

GenEmbl:*

1: gb env:*

2: gb_pat:*

3: gb ph:*

4: gb pl:*

5: gb pr:*

6: gb ro:*

7: gb_sts:*

gb_sy:* 8:

9: gb_un:*

10: gb vi:*

11: gb_ov:*

12: gb_htg:*

13: gb_in:*

14: gb_om:*

15: gb_ba:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			8				
Res	ult		Query				
	No.	Score	Match	Length	DB	ID	Description
	1	8561	100.0	8561	5	AF113003	AF113003 Homo sapi
	2	8469.4	98.9	8854	2	CS186449	CS186449 Sequence
	3	8344.6	97.5	8686	5	AF125672	AF125672 Homo sapi
	4	8238.8	96.2	9053	2	AR447713	AR447713 Sequence
	5	8058.6	94.1	8548	5	AY965853	AY965853 Homo sapi
	6	5475	64.0	5989	5	HSU37146	U37146 Human silen 🗢
	7	5048.4	59.0	8544	6	AF125671	AF125671 Mus muscu
	8	4992.8	58.3	8388	6	AF113001	AF113001 Mus muscu
	9	4389.4	51.3	7465	6	AF113002	AF113002 Mus muscu
	10	4253.8	49.7	4686	5	AB209089	AB209089 Homo sapi
	11	3963.8	46.3	6339	2	CQ722208	CQ722208 Sequence
	12	2773.8	32.4	2842	5	BC004326	BC004326 Homo sapi
	13	2628	30.7	2930	.5	S83390	S83390 T3 receptor
	14	1715	20.0	2964	6	BC047524	BC047524 Mus muscu
С	15	1146.2	13.4	205283	5	AC073916	AC073916 Homo sapi
	16	956.8	11.2	161970	12	AC027706	AC027706 Homo sapi
	17	898.4	10.5	956	2	BD270289	BD270289 Human nuc
	18	898.4	10.5	956	2	AX035226	AX035226 Sequence
	19	898.4	10.5	956	2	AX342080	AX342080 Sequence
	20	898.4	10.5	956	2	AX342140	AX342140 Sequence
	21	898.4	10.5	956	2	AX441143	AX441143 Sequence
	22	856.4	10.0	1925	11	CR926317	CR926317 Xenopus t
	23	854.6	10.0	1896	11	BC082706	BC082706 Xenopus l
	24	854.6	10.0	1917	11	BC054296	BC054296 Xenopus 1
С	25	744.2	8.7	79494	12	AC068837	AC068837 Homo sapi
•	26	652.8	7.6	752	2	CQ769363	CQ769363 Sequence
	27	650	7.6	650	2	AX677743	AX677743 Sequence
	28	631.6	7.4	7949	5	AB028970	AB028970 Homo sapi
	29	630	7.4	7940	2	CQ847916	CQ847916 Sequence
	30	630	7.4	7940	2	AR779086	AR779086 Sequence
	31	630	7.4	7940	2	AX578069	AX578069 Sequence
	32	630	7.4	7940	5	AF044209	AF044209 Homo sapi
	33	629.6	7.4	7780	2	AR779087	AR779087 Sequence
	34	629.6	7.4	7780	6	MMU35312	U35312 Mus musculu
	35	626.8	7.3	3120	5	AF303586	AF303586 Homo sapi
	36	626.8	7.3	8018	5	AF087856	AF087856 Homo sapi
	37	615.8	7.2	7264	6	BC086657	BC086657 Mus muscu
	38	572.2	6.7	8626	11	BC099620	BC099620 Xenopus t
	39	570	6.7	725	7	BV448749	BV448749 NCOR2 795
	40	568.4	6.6	8959	11	AF495886	AF495886 Xenopus 1
	41	555	6.5	555	2	AX677866	AX677866 Sequence
С	42	554.8	6.5	560	5	HSU80761	U80761 Homo sapien
C	43	553.6	6.5	560	5	HSU80750	U80750 Homo sapien
С	44	542.4	6.3	718	2	AX753058	AX753058 Sequence
C	45	540.6	6.3	1891	5	BC050594	BC050594 Homo sapi
	46	534	6.2	534	2	AX778323	AX778323 Sequence
	47	533.4	6.2	1850	5	BC058511	BC058511 Homo sapi
	48	533.4	6.2	1808	5	BC068996	BC068996 Homo sapi
	49	531.8	6.2	1741	5	BC056862	BC056862 Homo sapi
	50	. 516	6.0	1152	11	AY498876	AY498876 Xenopus 1
	51	510.6	6.0	2145	11	BC073704	BC073704 Xenopus 1
	52	494.6	5.8	2914	2	CQ850622	CQ850622 Sequence
	JZ	7)4.U	5.0	C J 1 4	_	0200002	- 2111111 00 4 4 0 11 0 1

	53	494.6	5.8 2914	5 AK127788	AK127788 Homo sapi
	54	479.2	5.6 1839	11 BC106607	BC106607 Xenopus l
С	55	472.4	5.5 218129	12 AC136560	AC136560 Rattus no
	56	472.4	5.5 219339	12 AC121005	AC121005 Rattus no
С	57	472.4	5.5 254449	12 AC097560	AC097560 Rattus no
	58	458.8	5.4 527	2 CQ923115	CQ923115 Sequence
С	59	441.8	5.2 191100	6 AC139377	AC139377 Mus muscu
	60	430.2	5.0 3025	11 BC049302	BC049302 Danio rer

```
RESULT 1
AF113003
                                    8561 bp
                                               mRNA
                                                        linear
                                                                 PRI 20-MAR-1999
LOCUS
DEFINITION Homo sapiens silencing mediator of retinoic acid and thyroid
            hormone receptor alpha mRNA, complete cds.
            AF113003
ACCESSION
            AF113003.1 GI:4454551
VERSION
KEYWORDS
SOURCE
            Homo sapiens (human)
 ORGANISM
           Homo sapiens
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini;
            Hominidae; Homo.
REFERENCE
            1 (bases 1 to 8561)
            Ordentlich, P., Downes, M., Xie, W., Genin, A., Spinner, N.B. and
 AUTHORS
            Unique forms of human and mouse nuclear receptor corepressor SMRT
 TITLE
 JOURNAL
            Proc. Natl. Acad. Sci. U.S.A. 96 (6), 2639-2644 (1999)
            10077563
   PUBMED
            2 (bases 1 to 8561)
REFERENCE
 AUTHORS
            Downes, M.R., Ordentlich, P. and Evans, R.M.
 TITLE
            Direct Submission
            Submitted (11-DEC-1998) Gene Expression Laboratory, The Salk
  JOURNAL
            Institute for Biological Studies, 10010 North Torrey Pines Road, La
            Jolla, CA 92037, USA
FEATURES
                     Location/Qualifiers
     source
                     1. .8561
                     /organism="Homo sapiens"
                     /mol type="mRNA"
                     /db xref="taxon:9606"
                     /chromosome="12"
                     /map="12q24"
                     /tissue_type="pituitary"
     CDS
                     2. .7555
                     /function="transcriptional co-repressor"
                     /note="hSMRT alpha; longer isoform than previously
                     reported"
                     /codon_start=1
                     /product="silencing mediator of retinoic acid and thyroid
                     hormone receptor alpha"
                     /protein_id="AAD20946.1"
                     /db xref="GI:4454552"
                     /translation="MSGSTQLVAQTWRATEPRYPPHSLSYPVQIARTHTDVGLLEYQH
                     HSRDYASHLSPGSIIQPQRRRPSLLSEFQPGNERSQELHLRPESHSYLPELGKSEMEF
                     IESKRPRLELLPDPLLRPSPLLATGQPAGSEDLTKDRSLTGKLEPVSPPSPPHTDPEL
                     ELVPPRLSKEELIQNMDRVDREITMVEQQISKLKKKQQQLEEEAAKPPEPEKPVSPPP
                     IESKHRSLVQIIYDENRKKAEAAHRILEGLGPQVELPLYNQPSDTRQYHENIKINQAM
                     RKKLILYFKRRNHARKQWKQKFCQRYDQLMEALEKKVERIENNPRRRAKESKVREYYE
```

SCORE Search Results Details for Application 09522753 and Search Result us-09-522-753c-4.rni.

Score Home Page

Retrieve Application List

SCORE System <u>Overview</u>

SCORE FAQ

Comments / Suggestions

This page gives you Search Results detail for the Application 09522753 and Search Result us-09-522-753c-4.rni.

start

Go Back to previous pag

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on:

July 30, 2006, 05:57:58; Search time 1397 Seconds

(without alignments) 11466.401 Million cell updates/sec

US-09-522-753C-4 Title:

Perfect score: 8561

Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

1403666 seqs, 935554401 residues Searched:

2807332 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100%

Listing first 60 summaries

Database : Issued_Patents_NA:*

1: /EMC Celerra SIDS3/ptodata/2/ina/1_COMB.seq:* 2: /EMC Celerra_SIDS3/ptodata/2/ina/5_COMB.seq:* 3: /EMC_Celerra_SIDS3/ptodata/2/ina/6A_COMB.seq:* 4: /EMC Celerra SIDS3/ptodata/2/ina/6B_COMB.seq:* 5: /EMC Celerra_SIDS3/ptodata/2/ina/7_COMB.seq:* 6: /EMC_Celerra_SIDS3/ptodata/2/ina/H_COMB.seq:* 7: /EMC Celerra SIDS3/ptodata/2/ina/PCTUS_COMB.seq:* 8: /EMC Celerra_SIDS3/ptodata/2/ina/PP_COMB.seq:* 9: /EMC Celerra SIDS3/ptodata/2/ina/RE_COMB.seq:* 10: /EMC Celerra SIDS3/ptodata/2/ina/backfiles1.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			*				
Res	ult		Query				
	No.	Score	Match	Length	DB	ID .	Description
	1	8238.8	96.2	9053	3	US-09-976-594-306	Sequence 306, App
	2	630	7.4	7912	3	US-09-949-016-3804	Sequence 3804, Ap
	3	630	7.4	7940	3	US-09-632-033B-1	Sequence 1, Appli
	4	629.6	7.4	7780	3	US-09-632-033B-2	Sequence 2, Appli
	5	311.2	3.6	312	3	US-09-513-999C-33415	Sequence 33415, A
	6	187.8	2.2	789	4	US-09-297-648-4382	Sequence 4382, Ap
	7	142	1.7	1922	2	US-08-372-652-9	Sequence 9, Appli
	8	142	1.7	1922	7	PCT-US95-16311-9	Sequence 9, Appli
С	9	133.4	1.6	350	4	US-09-880-107-341	Sequence 341, App
	10	107.8	1.3	3489	2	US-08-728-323A-1	Sequence 1, Appli
	11	107.8	1.3	3489	3	US-09-298-568-1	Sequence 1, Appli
	12	107.8	1.3	3489	3	US-09-410-399-1	Sequence 1, Appli
	13	107.8	1.3	3489	3	US-09-894-273-1	Sequence 1, Appli
С	14	107.8	1.3	32207	2	US-08-770-379-20	Sequence 20, Appl
С	15	107.8	1.3	32207	3	US-08-757-669A-20	Sequence 20, Appl
С	16	107.8	1.3	32207	3	US-09-230-371A-20	Sequence 20, Appl
	17	104.6	1.2	187595	3	US-09-949-016-15546	Sequence 15546, A
	18	98.8	1.2	1337	4	US-09-297-648-4735	Sequence 4735, Ap
	19	96.2	1.1	1926	3	US-09-249-585A-2	Sequence 2, Appli
	20	96.2	1.1	1926	. 3	US-09-410-399-3	Sequence 3, Appli
	21	96.2	1.1	2580	3	US-09-050-863-2	Sequence 2, Appli
	22	96.2	1.1	2580	3	US-09-359-081-2	Sequence 2, Appli
С	23	96.2	1.1	5452	2	US-09-130-114-1	Sequence 1, Appli
c	24	96.2	1.1	8705	3	US-09-647-344A-14	Sequence 14, Appl
	25	96.2	1.1	9600	3	US-08-910-647-1	Sequence 1, Appli
	26	96.2	1.1	9600	3	US-09-620-925-1	Sequence 1, Appli
	27	96.2	1.1	10596	2	US-07-884-811-15	Sequence 15, Appl
	28	96.2	1.1	10596	2	US-07-885-971-15	Sequence 15, Appl
	29	96.2	1.1	10596	2	US-08-087-783A-15	Sequence 15, Appl
	30	96.2	1.1	10596	2	US-08-194-088B-15	Sequence 15, Appl
	31	96.2	1.1	10596	2	US-08-194-087-15	Sequence 15, Appl
	32	96.2	1.1	10596	7	PCT-US93-04648-15	Sequence 15, Appl
С	33	96.2	1.1	16080	3	US-09-724-566A-48	Sequence 48, Appl
С	34	96.2	1.1	16080	3	US-09-471-669A-48	Sequence 48, Appl
	35	94.8	1.1	127	3	US-09-680-420A-17	Sequence 17, Appl
	36	94.8	1.1	127	4	US-09-833-031A-17	Sequence 17, Appl
С	37	94.8	1.1	601	3	US-09-949-016-135614	Sequence 135614,
	38	93	1.1	94	3	US-09-513-999C-29269	Sequence 29269, A
	39	92	1.1	1852	3	US-09-969-852-4	Sequence 4, Appli
С	40	90	1.1	1926	3	US-09-249-585A-4	Sequence 4, Appli
С	41	90	1.1	1931	2	US-09-130-114-2	Sequence 2, Appli
C	42	89.8	1.0	7218	2	US-08-232-463-14	Sequence 14, Appl
	43	86.2	1.0	1995	2	US-08-425-069-3	Sequence 3, Appli
	44	86.2	1.0	1995	2	US-08-317-844B-3	Sequence 3, Appli
С	45	.85.4	1.0	16442	3	US-08-781-891-208	Sequence 208, App
С	46	85.4	1.0	16442	3	US-09-618-166-208	Sequence 208, App
	47	82.8	1.0	767677	3	US-09-949-016-12147	Sequence 12147, A
	48	82.8		767677	3	US-09-949-016-17361	Sequence 17361, A
	49	82.4	1.0	2093	3	US-10-104-047-1666	Sequence 1666, Ap
С	50	82	1.0	12695	3	US-09-949-016-16775	Sequence 16775, A
	51	81.6	1.0	2338	2	US-08-425-069-1	Sequence 1, Appli
	52	81.6	1.0	2338	2	US-08-317-844B-1	Sequence 1, Appli
	53	81.4	1.0	9551	2	US-08-056-200-93	Sequence 93, Appl
	54	81.4	1.0	9551	2	US-08-800-644-93	Sequence 93, Appl
C	55	80.2	0.9	4403765	3	US-09-103-840A-2	Sequence 2, Appli
С	56	79.4	0.9	150394	3	US-09-949-016-13042	Sequence 13042, A
	57	79.2	0.9	1588	3	US-09-490-291-7	Sequence 7, Appli

```
0.9 51259 3
                                                            Sequence 209, App
   58
         77.6
                                US-08-781-891-209
C
   59
         77.6
                 0.9
                      51259 3
                                US-09-618-166-209
                                                            Sequence 209, App
C
   60
                        203 3
                                US-09-043-303-7
                                                            Sequence 7, Appli
```

```
RESULT 1
US-09-976-594-306
; Sequence 306, Application US/09976594
; Patent No. 6673549
 GENERAL INFORMATION:
  APPLICANT: Furness, Michael
  APPLICANT: Buchbinder, Jenny
  TITLE OF INVENTION: GENES EXPRESSED IN C3A LIVER CELL CULTURES TREATED WITH STEROIC
  FILE REFERENCE: PA-0041 US
  CURRENT APPLICATION NUMBER: US/09/976,594 ·
  CURRENT FILING DATE: 2001-10-12
  PRIOR APPLICATION NUMBER: 60/240,409
  PRIOR FILING DATE: 2000-10-12
  NUMBER OF SEQ ID NOS: 1143
  SOFTWARE: PERL Program
 SEQ ID NO 306
   LENGTH: 9053
   TYPE: DNA
   ORGANISM: Homo sapiens
   FEATURE:
:
   NAME/KEY: misc feature
   OTHER INFORMATION: Incyte ID No. 6673549 898877.6
   NAME/KEY: unsure
   LOCATION: 2006, 2012
   OTHER INFORMATION: a, t, c, g, or other
US-09-976-594-306
                     96.2%; Score 8238.8; DB 3;
                                             Length 9053;
 Query Match
                     98.5%; Pred. No. 0;
 Best Local Similarity
                                                               10;
 Matches 8456; Conservative
                           0; Mismatches
                                         38:
                                             Indels
          1 CATGTCGGGCTCCACACAGCTTGTGGCACAGACGTGGAGGGCCACTGAGCCCCGCTACCC 60
Qу
           519 CATGTCGGGATCCACACAGCCTGTGGCACAGACGTGGAGGGCCACTGAGCCCCGCTACCC 578
Db
         61 GCCCACAGCCTTTCCTACCCAGTGCAGATCGCCCGGACGCACACGGACGTCGGGCTCCT 120
Qy
           579 GCCCACAGCCTTTCCTACCCAGTGCAGATCGCCCGGACGCACACGGACGTCGGGCTCCT 638
Db
        121 GGAGTACCAGCACCACTCCGGGACTATGCCTCCCACCTGTCGCCGGGCTCCATCATCCA 180
Qу
           639 GGAGTACCAGCACCACTCCGCGGACTATGCCTCCCACCTGTCGCCCGGCTCCATCATCCA 698
Db
        181 GCCCCAGCGGCGGAGGCCCTCCCTGCTGTCTGAGTTCCAGCCCGGGAATGAACGGTCCCA 240
Qy
           699 GCCCCAGCGGGGGGCCCTCCCTGCTGTCTGAGTTCCAGCCCGGGAATGAACGGTCCCA 758
Db
        241 GGAGCTCCACCTGCGGCCAGAGTCCCACTCATACCTGCCCGAGCTGGGGAAGTCAGAGAT 300
Qy
           759 GGAGCTCCACCTGCGGCCAGAGTCCCACTCATACCTGCCCGAGCTGGGGAAGTCAGAGAT 818
Db
        301 GGAGTTCATTGAAAGCAAGCGCCCTCGGCTAGAGCTGCTGCCTGACCCCCTGCTGCGACC 360
Qv
```

SCORE Search Results Details for Application 09522753 and Search Result us-09-522-753c-4.r

Score Home Page Retrieve Application List SCORE System Overview SCORE FAQ Comments / Sugg

This page gives you Search Results detail for the Application 09522753 and Search Result us-09-52 4.rnpbm.

start | next page

Go Back to p

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on:

July 30, 2006, 09:26:05; Search time 8988 Seconds (without alignments)

11703.877 Million cell updates/sec

Title:

US-09-522-753C-4

Perfect score: 8561

Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

18892170 seqs, 6143817638 residues

Total number of hits satisfying chosen parameters:

37784340

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 60 summaries -

Database :

Published Applications NA Main:*

1: /EMC Celerra SIDS3/ptodata/2/pubpna/US07_PUBCOMB.seq:* 2: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US08_PUBCOMB.seq:* 3: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09A_PUBCOMB.seq:* 4: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09B_PUBCOMB.seq:*
5: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US09C_PUBCOMB.seq:*
6: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10A_PUBCOMB.seq:*
7: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10B_PUBCOMB.seq:* 8: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10C_PUBCOMB.seq: 9: /EMC Celerra SIDS3/ptodata/2/pubpna/US10D_PUBCOMB.seq:* 10: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10E_PUBCOMB.seq: * 11: /EMC Celerra SIDS3/ptodata/2/pubpna/US10F_PUBCOMB.seq:*

12: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US10G_PUBCOMB.seq:* 13: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11A_PUBCOMB.seq: *

14: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11B_PUBCOMB.seq: *

15: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11C_PUBCOMB.seq: *
16: /EMC_Celerra_SIDS3/ptodata/2/pubpna/US11D_PUBCOMB.seq: *

Pred. No. is the number of results predicted by chance to have a. score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			€.				
Re:	sult		Query				
	No.	Score	Match	Length	DB	ID	Description
	1	8561	100.0	8561	7	US-10-174-014-11	Sequence 11, Appl
	2	8561	100.0	8561	13		Sequence 1, Appli
	3	8479.2	99.0	8667	6	US-10-087-192-653	Sequence 653, App
	4	8344.6	97.5	8686	3	US-09-819-104A-1	Sequence 1, Appli
	5	8344.6	97.5	8686	7	US-10-174-014-4	Sequence 4, Appli
	6	8344.6	97.5	8686	9	US-10-723-860-1739	Sequence 1739, Ap
С	7	8242.2	96.3	9079	9	US-10-723-860-6114	Sequence 6114, Ap
	8	7554	88.2	7554	7	US-10-414-692-14	Sequence 14, Appl
	9	7334.6	85.7	7521	3	US-09-819-104A-3	Sequence 3, Appli
	10	5048.4	59.0	8544	3	US-09-819-104A-4	Sequence 4, Appli
	11	5048.4	59.0	8544	10		Sequence 1526, Ap
	12	4797	56.0	7386	3	US-09-819-104A-6	Sequence 6, Appli
	13	4554.6	53.2	7534	6	US-10-087-192-650	Sequence 650, App
	14	2628	30.7		6	US-10-146-473-14	Sequence 14, Appl
	. 15	2628	30.7	2930	7	US-10-174-014-13	Sequence 13, Appl
	16	1158.6		233380	6	US-10-087-192-652	Sequence 652, App
	17	1146.2		221000	7	US-10-174-014-12	Sequence 12, Appl
	18	958.2	11.2	1027	3	US-09-925-297-9	Sequence 9, Appli
	19	898.4	10.5	956	3	US-09-887-527-42	Sequence 42, Appl
	20	898.4	10.5	956	8	US-10-796-174-42	Sequence 42, Appl
	21	630	7.4	7940	7	US-10-341-434-235	Sequence 235, App
	22	630	7.4	7940	9	US-10-473-974-191	Sequence 191, App
	23	630	7.4	7940	10	US-10-887-553A-664	Sequence 664, App
	24	630	7.4.		10	US-10-956-157-1580	Sequence 1580, Ap
	25		7.4	7940	10	US-10-745-237-221	Sequence 221, App
	26	630	7.4	7940	16	US-11-245-147-191	Sequence 191, App
_	27	626.8	7.3	2745 692	7 6	US-10-414-692-15 US-10-027-632-102554	Sequence 15, Appl Sequence 102554,
C	28 29	553.6 553.6	6.5	692	6	US-10-027-632-102555	Sequence 102555,
c	30	553.6	6.5		7	US-10-027-632-102554	Sequence 102554,
C	31	553.6	6.5		7	US-10-027-632-102555	Sequence 102555,
c	32	542.4	6.3	718	9	US-10-278-698-515	Sequence 515, App
c	.33	542.4	6.3	718	9	US-10-278-698-1031	Sequence 1031, Ap
·	34	444.4	5.2	91141	6	US-10-087-192-649	Sequence 649, App
	35	409.4	4.8	427	10	US-10-779-543-12895	Sequence 12895, A
	36	376	4.4		10	US-10-779-543-8757	Sequence 8757, Ap
	37	370	4.3	381	3	US-09-918-995-7653	Sequence 7653, Ap
	38	314.4	3.7	458	3	US-09-918-995-20064	Sequence 20064, A
	39	268.6	3.1	520	3	US-09-920-300A-485	Sequence 485, App
	40	268.6	3.1	520	6	US-10-033-528-485	Sequence 485, App
	41	268.6	3.1	520	7	US-10-099-926-485	Sequence 485, App
	42	268.6	3.1	520	10	US-10-961-527-485	Sequence 485, App
	43	258.4	3.0	3969	7	US-10-006-285-471	Sequence 471, App
	44	211.4	2.5	499	3	US-09-918-995-19696	Sequence 19696, A
С	45	191.4	2.2	390	7	US-10-355-716-86	Sequence 86, Appl
С	46	190.6	2.2	559	16	US-11-136-527-1693	Sequence 1693, Ap
	47	190.6	2.2	559	16	US-11-136-527-5789	Sequence 5789, Ap
	48	187.8	2.2	789	10	US-10-779-543-5226	Sequence 5226, Ap
C	49	186.2	2.2	609	4	US-09-925-065A-841377	Sequence 841377,
С	50	186.2	2.2	. 609	5	US-09-925-065A-841377	Sequence 841377,
	51	186.2	2.2	658	6	US-10-027-632-102075	Sequence 102075,
	52	186.2	2.2	658	6	US-10-027-632-102076	Sequence 102076,
	53	186.2	2.2	658	7	US-10-027-632-102075	Sequence 102075,
	54	186.2	2.2	658	7	US-10-027-632-102076	Sequence 102076,

```
Sequence 151931,
   55
          180
                  2.1
                         733
                               6
                                  US-10-027-632-151931
C
          180
                         733
                              7
                                  US-10-027-632-151931
                                                               Sequence 151931,
   56
                  2.1
C
                                                               Sequence 87, Appl
   57
          171
                  2.0
                         504
                              7
                                  US-10-355-716-87
                         888
                              12
                                   US-10-301-480-553156
                                                                Sequence 553156,
   58
          161
                  1.9
C
                  1.9
                         888
                                   US-10-301-480-1166565
                                                                Sequence 1166565,
   59
          161
                              12
C
                               3 US-09-960-352-7433
                                                               Sequence 7433, Ap
C
   60
        159.6
                  1.9
                         198
```

```
RESULT 1
US-10-174-014-11
; Sequence 11, Application US/10174014
; Publication No. US20040005292A1
; GENERAL INFORMATION:
  APPLICANT: C. Frank Bennett
  APPLICANT: Susan M. Freier APPLICANT: Kenneth W. Dobie
  TITLE OF INVENTION: ANTISENSE MODULATION OF SMRT EXPRESSION
  FILE REFERENCE: PTS-0012
  CURRENT APPLICATION NUMBER: US/10/174,014
  CURRENT FILING DATE: 2002-06-17
  NUMBER OF SEQ ID NOS: 73
 SEQ ID NO 11
   LENGTH: 8561
   TYPE: DNA
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (2)...(7555)
US-10-174-014-11
                     100.0%; Score 8561;
                                       DB 7;
                                             Length 8561;
 Query Match
 Best Local Similarity
                     100.0%;
                             Pred. No. 0;
                           0;
                              Mismatches
                                          0;
                                             Indels
                                                         Gaps
                                                                0:
 Matches 8561; Conservative
         1 CATGTCGGGCTCCACACACTTGTGGCACAGACGTGGAGGCCCACTGAGCCCCGCTACCC 60
Qy
           1 CATGTCGGGCTCCACACAGCTTGTGGCACAGACGTGGAGGGCCACTGAGCCCCGCTACCC 60
Db
         61 GCCCCACAGCCTTTCCTACCCAGTGCAGATCGCCCGGACGCACACGGACGTCGGGCTCCT 120
Qy
           61 GCCCCACAGCCTTTCCTACCCAGTGCAGATCGCCCGGACGCACACGGACGTCGGGCTCCT 120
Db
        121 GGAGTACCAGCACCACTCCGGGACTATGCCTCCCACCTGTCGCCGGGCTCCATCATCCA 180
Qy
           121 GGAGTACCAGCACCACTCCCGCGACTATGCCTCCCACCTGTCGCCGGGCTCCATCATCCA 180
Db
        181 GCCCCAGCGGCGGAGGCCCTCCCTGCTGTCTGAGTTCCAGCCCGGGAATGAACGGTCCCA 240
Qy
           181 GCCCCAGCGGCGGAGGCCCTCCCTGCTGTCTGAGTTCCAGCCCGGGAATGAACGGTCCCA 240
Db
        241 GGAGCTCCACCTGCGGCCAGAGTCCCACTCATACCTGCCCGAGCTGGGGAAGTCAGAGAT 300
Qy
           241 GGAGCTCCACCTGCGGCCAGAGTCCCACTCATACCTGCCCGAGCTGGGGAAGTCAGAGAT 300
Db
        301 GGAGTTCATTGAAAGCAAGCGCCCTCGGCTAGAGCTGCTGCCTGACCCCCTGCTGCGACC 360
Qy
           301 GGAGTTCATTGAAAGCAAGCGCCCTCGGCTAGAGCTGCTGCCTGACCCCCTGCTGCGACC 360
Db
```

SCORE Search Results Details for Application 09522753 and Search Result us-09-522-753c-4.rst.

Score Home Page

Retrieve Application

SCORE System Overview

SCORE FAQ

Comments / **Suggestions**

This page gives you Search Results detail for the Application 09522753 and Search Result us-09-522-753c-4.rst.

start

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on:

July 30, 2006, 05:48:19; Search time 23790 Seconds

(without alignments)

20122.968 Million cell updates/sec

Title:

US-09-522-753C-4

Perfect score: 8561

Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

48236798 segs, 27959665780 residues

Total number of hits satisfying chosen parameters:

96473596

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 60 summaries

Database :

EST: *

1: gb_est1:*

2: gb_est3:*

3: gb_est4:*

gb est5:*

gb_est6:* 5:

6: gb_htc:*

7: gb est2:*

8: gb est7:*

9: gb est8:*

10: gb est9:*

gb_gssl:* 11:

12: gb_gss2:* 13: gb_gss3:*

gb_gss4:*

Pred. No. is the number of results predicted by chance to have a

score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			8				•
Res	ult		Query				
	No.	Score	Match	Length	DB	ID	Description
	1	5314.4	62.1	8660	6	AK147394	AK147394 Mus muscu
	2	5140.2	60.0	7372	14	AY412686	AY412686 Homo sapi
	3	4216.6	49.3	6836	14	AY412687	AY412687 Pan trogl
	4	3522.8	41.1	5672	6	AK147308	AK147308 Mus muscu
	5	3315.2	38.7	7013	14	AY412688	AY412688 Mus muscu
	6	1577.4	18.4	3596	6	AK170097	AK170097 Mus muscu
	7	1473.6	17.2	2000	6	BC033087	BC033087 Homo sapi
	8	1297.4	15.2	1362	6	BC020427	BC020427 Homo sapi
	9	887.8	10.4	1093	3	BM909096	BM909096 AGENCOURT
	10	868.6	10.1	965	3	BM555371	BM555371 AGENCOURT
	11	841.8	9.8	846	3	BU557144	BU557144 AGENCOURT
	12	815.6	9.5	1126	2	BM553310	BM553310 AGENCOURT
	13	798.2	9.3	984	3	BQ690869	BQ690869 AGENCOURT
	14	796.4	9.3	1051	2	BM423558	BM423558 AGENCOURT
	15	796.2	9.3	1159	3	BM802749	BM802749 AGENCOURT
	16	795.2	9.3	1057	2	BM477568	BM477568 AGENCOURT
	17	787.6	9.2	1022	3	BM910785	BM910785 AGENCOURT
	18	779	9.1	1010	3	BM915686	BM915686 AGENCOURT
	19	776.6	9.1	875	3	BQ711119	BQ711119 AGENCOURT
	20	774.6	9.0	892	3	BU538827	BU538827 AGENCOURT
	21	768.8	9.0	1036	3	BM910476	BM910476 AGENCOURT
	22	766.2	8.9	1030	3	BM558844	BM558844 AGENCOURT
	23	760.8	8.9	882	4	BX397973	BX397973 BX397973
	24	747.6	8.7	868	4	BX368971	BX368971 BX368971
	25	746.8	8.7	882	3	BU180236 .	BU180236 AGENCOURT
	26	746	8.7	923	4	BX390462	BX390462 BX390462
	27	744.2	8.7	1075	2	BM461469	BM461469 AGENCOURT
С	28	740	8.6	916	3	BQ892847	BQ892847 AGENCOURT
	29	737.4	8.6	1045	3	BM560255	BM560255 AGENCOURT
	30	730.8	8.5	1038	3	BM910704	BM910704 AGENCOURT
	31	730.6	8.5	1066	2	BM471347	BM471347 AGENCOURT
	32	728.4	8.5	882	2	BI089430	BI089430 602854662
	33	720.8	8.4	769	4	BX368972	BX368972 BX368972
	34	712.6	8.3	898	3	BU172348	BU172348 AGENCOURT
	35	711.8	8.3	958	2	BG831424	BG831424 602766347
C	36	711.4	8.3	880	8	CV806970	CV806970 AGENCOURT
	37	711	8.3	875	3	BQ691710	BQ691710 AGENCOURT
	38	707.4	8.3	923	3	BU184403	BU184403 AGENCOURT
	39	706.8	8.3	1094	3	BM560912	BM560912 AGENCOURT
	40	703	8.2	876	2	BG252161	BG252161 602365028
	41	703	8.2	1067	2	BM472005	BM472005 AGENCOURT BU164114 AGENCOURT
	42	700.6	8.2	928	3	BU164114	CF135847 UI-HF-BNO
C .	43	695.8	8.1	772	5	CF135847 BU632778	BU632778 UI-H-FE1-
С	44 45	692.8 692	8.1 8.1	727 830.	3 8	CO648233	CO648233 ILLUMIGEN
					3	BU191146	BU191146 AGENCOURT
_	46 47	688 683	8.0 8.0	861 737	ა 5	CD742837	CD742837 UI-H-FT2-
С	48	679.6	7.9	1087	2	BG252257	BG252257 602365136
С	48	678.8	7.9	784	4	CB321637	CB321637 UI-CF-EN1
٢	50	674.2	7.9	787	7	BE793487	BE793487 601588814
	51	672	7.8	1113	3	BM811122	BM811122 AGENCOURT
	52	670.8	7.8	674	9	CX873148	CX873148 HESC4 77
	53	668.4	7.8	804	í	BE728145	BE728145 601563413
				-	•		

	54	668.4	7.8	1032	3	BQ070408	BQ070408 AGENCOURT
	55	664.4	7.8	900	3	BQ214358	BQ214358 AGENCOURT
С	56	663.4	7.7	764	3	BM981385	BM981385 UI-CF-EN1
	57	661	7.7	700	7	BE900740	BE900740 601673910
	58	660.6	7.7	1111	7	BF307042	BF307042 601889875
	59	652	7.6	743	8	CO401621	CO401621 AGENCOURT
	60	651	7.6	887	3	BU542258	BU542258 AGENCOURT

```
RESULT 1 ·
AK147394
LOCUS
             AK147394
                                         8660 bp
                                                      mRNA
                                                                linear
                                                                          HTC 21-SEP-2005
             Mus musculus cDNA, RIKEN full-length enriched library,
DEFINITION
             clone:M5C1029F22 product:nuclear receptor co-repressor 2, full
             insert sequence.
             AK147394
ACCESSION
VERSION
             AK147394.1 GI:74184520
KEYWORDS
             HTC; CAP trapper.
SOURCE
             Mus musculus (house mouse)
  ORGANISM
             Mus musculus
             Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
             Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
             Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE
  AUTHORS
             Carninci, P. and Hayashizaki, Y.
             High-efficiency full-length cDNA cloning
  TITLE
  JOURNAL -
             Meth. Enzymol. 303, 19-44 (1999)
   PUBMED
             10349636
REFERENCE
  AUTHORS
             Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K.,
             Itoh, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y.
  TITLE
             Normalization and subtraction of cap-trapper-selected cDNAs to
             prepare full-length cDNA libraries for rapid discovery of new genes
  JOURNAL
             Genome Res. 10 (10), 1617-1630 (2000)
   PUBMED
REFERENCE
  AUTHORS
             Shibata, K., Itoh, M., Aizawa, K., Nagaoka, S., Sasaki, N., Carninci, P.,
             Konno, H., Akiyama, J., Nishi, K., Kitsunai, T., Tashiro, H., Itoh, M.,
             Sumi, N., Ishii, Y., Nakamura, S., Hazama, M., Nishine, T., Harada, A.,
             Yamamoto, R., Matsumoto, H., Sakaguchi, S., Ikegami, T., Kashiwagi, K.,
             Fujiwake, S., Inoue, K., Togawa, Y., Izawa, M., Ohara, E., Watahiki, M., Yoneda, Y., Ishikawa, T., Ozawa, K., Tanaka, T., Matsuura, S., Kawai, J.,
             Okazaki, Y., Muramatsu, M., Inoue, Y., Kira, A. and Hayashizaki, Y.
  TITLE
             RIKEN integrated sequence analysis (RISA) system--384-format
             sequencing pipeline with 384 multicapillary sequencer
  JOURNAL
             Genome Res. 10 (11), 1757-1771 (2000)
   PUBMED
             11076861
REFERENCE
  AUTHORS
             Kawai, J., Shinagawa, A., Shibata, K., Yoshino, M., Itoh, M., Ishii, Y.,
             Arakawa, T., Hara, A., Fukunishi, Y., Konno, H., Adachi, J., Fukuda, S., Aizawa, K., Izawa, M., Nishi, K., Kiyosawa, H., Kondo, S., Yamanaka, I., Saito, T., Okazaki, Y., Gojobori, T., Bono, H., Kasukawa, T., Saito, R.,
             Kadota, K., Matsuda, H., Ashburner, M., Batalov, S., Casavant, T.,
             Fleischmann, W., Gaasterland, T., Gissi, C., King, B., Kochiwa, H.,
             Kuehl, P., Lewis, S., Matsuo, Y., Nikaido, I., Pesole, G.,
             Quackenbush, J., Schriml, L.M., Staubli, F., Suzuki, R., Tomita, M.,
             Wagner, L., Washio, T., Sakai, K., Okido, T., Furuno, M., Aono, H.,
             Baldarelli, R., Barsh, G., Blake, J., Boffelli, D., Bojunga, N.,
```

SCORE Search Results Details for Application 09522753 and Search Result us-09-522-753c-4.rnpbn.

Score Home <u>Page</u>

Retrieve Application

SCORE System Overview

SCORE **FAQ**

Comments / Suggestions

This page gives you Search Results detail for the Application 09522753 and Search Result us-09-522-753c-4.rnpbn.

<u>start</u>

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on:

August 4, 2006, 21:46:53; Search time 793 Seconds

(without alignments)

17098.629 Million cell updates/sec

Title:

US-09-522-753C-4

Perfect score:

Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

2193277 segs, 791917567 residues

Total number of hits satisfying chosen parameters:

4386554

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 60 summaries

Database :

Published_Applications_NA_New: *

- 1: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US09_NEW_PUB.seq:*
- /EMC_Celerra_SIDS3/ptodata/1/pubpna/US06_NEW_PUB.seq:*
- 3: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US07_NEW_PUB.seq:*
- 4: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US08_NEW_PUB.seq:*
- 5: /EMC_Celerra_SIDS3/ptodata/1/pubpna/PCT_NEW_PUB.seq:*
- 6: /EMC Celerra SIDS3/ptodata/1/pubpna/US10 NEW PUB.seq:*
- 7: /EMC_Celerra_SIDS3/ptodata/1/pubpna/US11 NEW PUB.seq:* /EMC_Celerra_SIDS3/ptodata/1/pubpna/US11_NEW_PUB.seq1:*
- /EMC_Celerra_SIDS3/ptodata/1/pubpna/US60_NEW_PUB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Res	ult		Query					
	No.	Score		Length	DB	ID	Description	
	1	8561	100.0	8561	8	US-11-283-329-203	Sequence 20	
_	2	8344.6	97.5	8686	8	US-11-266-748A-23081	Sequence 23	
С	3 4	1311 1311	15.3 15.3		8 8	US-11-266-748A-225635	Sequence 22	
_	5	1283.6	15.0	1324 1483	8	US-11-266-748A-240202 US-11-266-748A-247117	Sequence 24	
c	6	1203.6	14.3	1220	8	US-11-266-748A-82872	Sequence 24 Sequence 82	
c	7	1220	14.3	1220	8			
C	8	1220	14.3	1220	8	US-11-266-748A-111439	Sequence 11 Sequence 13	
	9	1069.4	12.5	1656	8	US-11-266-748A-90734	Sequence 90	
С	10	1069.4	12.5	1656	8	US-11-266-748A-143545	Sequence 14	•
c	11	1008.4	11.8	1260	8	US-11-266-748A-368438	Sequence 36	
_	12	1008.4	11.8	1260	8	US-11-266-748A-451817	Sequence 45	
	13	981.6	11.5	1000	8	US-11-266-748A-116592	Sequence 11	
С	14	981.6	11.5	1000	8	US-11-266-748A-158756	Sequence 15	
•	15	981.6	11.5	1000	8	US-11-266-748A-287269	Sequence 28	-
С	16	981.6	11.5	1000	8	US-11-266-748A-338698	Sequence 33	•
	17	981.6	11.5	1000	8	US-11-266-748A-397920	Sequence 39	
С	18	981.6	11.5	1000	8	US-11-266-748A-468966	Sequence 46	•
С	19	907.8	10.6	1148	. 8	US-11-266-748A-183721	Sequence 18	-
С	20	907.8	10.6	1148	8	US-11-266-748A-191121	Sequence 19	-
	21	907.8	10.6	1148	8	US-11-266-748A-240203	Sequence 24	•
	22	751.6	8.8	954	8	US-11-266-748A-170725	Sequence 17	-
С	23	666.8	7.8	1090	8	US-11-266-748A-370741	Sequence 37	-
	24	666.8	7.8	1090	8	US-11-266-748A-454120	Sequence 45	•
	25	630	7.4	7940	8	US-11-266-748A-29708	Sequence 29	•
	26	630	7.4	7940	8	US-11-283-329-195	Sequence 19	•
	27	626.8	7.3	3120	8	US-11-283-329-197	Sequence 19	
	28	626.8	7.3	8018	8	US-11-266-748A-22953	Sequence 22	
	29	613.8	7.2	629	8	US-11-266-748A-54126	Sequence 54	
	30	552	6.4	1089	8	US-11-266-748A-98563	Sequence 98	
C	31	552	6.4	1089	8	US-11-266-748A-151374	Sequence 15	1374,
C	32	543.2	6.3	600	8	US-11-266-748A-177072	Sequence 17	7072,
	33	543.2	6.3	600	8	US-11-266-748A-247938	Sequence 24	
	34	540.6	6.3	1891	8	US-11-266-748A-27715	Sequence 27	715, A
	35	495.6	5.8	513	8	US-11-266-748A-8487	Sequence 84	87, Ap
С	36	484.6	5.7	514	8	US-11-266-748A-179122	Sequence 17	9122,
	37	484.6	5.7	514	8	US-11-266-748A-248437	Sequence 24	
	38	465	5.4	530	8	US-11-266-748A-103238	Sequence 10	
C	39	465	5.4	530	8	US-11-266-748A-156049	Sequence 15	6049,
	40	456.2	5.3	590	8	US-11-266-748A-170524	Sequence 17	
	41	442.6	5.2	911	8	US-11-266-748A-186813	Sequence 18	
	42	438	5.1	576	8	US-11-266-748A-10968	Sequence 10	
	43	245.8	2.9	539	8	US-11-266-748A-260913	Sequence 26	
С	44	245.8	2.9	539	8	US-11-266-748A-321430	Sequence 32	
	45	240.6	2.8	260	8	US-11-266-748A-173616	Sequence 17	
	46	236.4	2.8	1266	8	US-11-266-748A-99378	Sequence 99	
С	47	236.4	2.8	1266	8	US-11-266-748A-152189	Sequence 15	
	48	219	2.6	629	8	US-11-266-748A-172360	Sequence 17	
	49	197	2.3	1165	8	US-11-266-748A-15619	Sequence 15	
	50	197	2.3	1165	8	US-11-266-748A-21269	Sequence 21	
_	51	147.4	1.7	1556	8	US-11-266-748A-187638	Sequence 18	
С	52	141	1.6	630	8	US-11-266-748A-172361	Sequence 17	
	53	139.8	1.6	798	8	US-11-266-748A-82871	Sequence 82	
_	54 55	139.8	1.6	798	8	US-11-266-748A-111458	Sequence 11	
С	55 56	139.8	1.6	798	8	US-11-266-748A-135682	Sequence 13	
	56 57	134.6	1.6	2471	8	US-11-283-329-201	Sequence 20 Sequence 23	
	58	134.6	1.6 1.6	3997 3997	8 8	US-11-266-748A-23524 US-11-283-329-199	Sequence 23	
	70	134.6	1.0	3771	J	03-11-203-323-133	sequence 19	a, wbb

```
59
       115
                   30191
                           6
                            US-10-540-898-631
                                                          Sequence 631, App
60
     113.4
                   72352
                          6 US-10-540-898-43
                                                          Sequence 43, Appl
```

```
RESULT 1
US-11-283-329-203
; Sequence 203, Application US/11283329
 Publication No. US20060134670A1
 GENERAL INFORMATION:
  APPLICANT: Piu, Fabrice
  TITLE OF INVENTION: ENABLING TOOLS TO IDENTIFY LIGANDS FOR
  TITLE OF INVENTION: HORMONE NUCLEAR RECEPTORS
  FILE REFERENCE: ACADIA.043A
  CURRENT APPLICATION NUMBER: US/11/283,329
  CURRENT FILING DATE: 2005-11-18
  PRIOR APPLICATION NUMBER: 60/629,811
  PRIOR FILING DATE: 2004-11-19
  NUMBER OF SEQ ID NOS: 242
  SOFTWARE: FastSEQ for Windows Version 4.0
 SEO ID NO 203
   LENGTH: 8561
   TYPE: DNA
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: CDS
   LOCATION: (2)...(7555)
   OTHER INFORMATION: NCOR-2
US-11-283-329-203
 Query Match
                     100.0%;
                             Score 8561;
                                       DB 8; Length 8561;
 Best Local Similarity
                     100.0%; Pred. No. 0;
 Matches 8561; Conservative
                           0; Mismatches
                                          0; Indels
                                                         Gaps
                                                                0:
          1 CATGTCGGGCTCCACACAGCTTGTGGCACAGACGTGGAGGGCCACTGAGCCCCGCTACCC 60
Qy
           Db
         1 CATGTCGGGCTCCACACAGCTTGTGGCACAGACGTGGAGGCCCACTGAGCCCCGCTACCC 60
         61 GCCCACAGCCTTTCCTACCCAGTGCAGATCGCCCGGACGCACACGGACGTCGGGCTCCT 120
Qy
           DЪ
         61 GCCCACAGCCTTTCCTACCCAGTGCAGATCGCCCGGACGCACACGGACGTCGGGCTCCT 120
        121 GGAGTACCAGCACCACTCCGGGACTATGCCTCCCACCTGTCGCCGGGCTCCATCATCCA 180
Qy
           Db
        121 GGAGTACCAGCACCACTCCGGGACTATGCCTCCCACCTGTCGCCGGGCTCCATCATCCA 180
Qy
        181 GCCCCAGCGGCGGAGGCCCTCCCTGCTGTCTGAGTTCCAGCCCGGGAATGAACGGTCCCA 240
           Db
        181 GCCCCAGCGGCGGAGGCCCTCCCTGCTGTCTGAGTTCCAGCCCGGGAATGAACGGTCCCA 240
Qy
        241 GGAGCTCCACCTGCGGCCAGAGTCCCACTCATACCTGCCCGAGCTGGGGAAGTCAGAGAT 300
           Db
        241 GGAGCTCCACCTGCGGCCAGAGTCCCACTCATACCTGCCCGAGCTGGGGAAGTCAGAGAT 300
Qу
        301 GGAGTTCATTGAAAGCAAGCGCCCTCGGCTAGAGCTGCTGCCTGACCCCCTGCTGCGACC 360
           301 GGAGTTCATTGAAAGCAAGCGCCCTCGGCTAGAGCTGCTGCCTGACCCCTGCTGCGACC 360
Db
        361 GTCACCCCTGCTGGCCACGGGCCAGCCTGCGGGATCTGAAGACCTCACCAAGGACCGTAG 420
Qy
```

SCORE Search Results Details for Application 09522753 and Search Result us-09-522-753c-4.rng.

Score Home <u>Page</u>

Retrieve Application

SCORE System Overview

SCORE FAO

Comments / Suggestions

This page gives you Search Results detail for the Application 09522753 and Search Result us-09-522-753c-4.rng.

start | next page

Go Back to previous page

GenCore version 5.1.9 Copyright (c) 1993 - 2006 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on:

July 29, 2006, 13:26:29; Search time 3157 Seconds

(without alignments)

18907.006 Million cell updates/sec

Title:

US-09-522-753C-4

Perfect score: 8561

Sequence:

Scoring table: IDENTITY NUC

Gapop 10.0 , Gapext 1.0

Searched:

5244920 seqs, 3486124231 residues

Total number of hits satisfying chosen parameters:

10489840

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 60 summaries

Database :

N Geneseq 8:*

- 1: geneseqn1980s:*
- geneseqn1990s:*
- 3: geneseqn2000s:*
- 4: geneseqn2001as:*
- 5: geneseqn2001bs:*
- 6: geneseqn2002as:*
- 7: geneseqn2002bs:*
- 8: geneseqn2003as:*
- 9: geneseqn2003bs:*
- 10: geneseqn2003cs:*
- 11: geneseqn2003ds:*
 12: geneseqn2004as:*
- 13: geneseqn2004bs:*
- 14: geneseqn2005s:*
- 15: geneseqn2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			8			00.22.00	
Re	sult		Query				
•••	No.	Score		Length	DR	ID	Description
_							bescription
	1	8561	100.0	8561	12	ADG86298	Adg86298 Human SMR
	2	8561	100.0	8561	12	ADN04304	Adn04304 Antipsori
	3	8561	100.0	8561	14	AEB92295	Aeb92295 Human SMR
	4	8561	100.0	8561		AED18610	Aed18610 Fibrotic
	5	8515.2	99.5	8564	3	AAC74783	Aac74783 Human ORF
	6	8479.2	99.0	8667	11	ACN44283	Acn44283 Human mRN
	7	8469.4	98.9	8854	14	AED61908	Aed61908 Human nuc
	8	8437.2	98.6	8533	13	ADQ84524	Adq84524 Human tum
	9	8437.2	98.6	8533	13	ACN39603	Acn39603 Tumour-as
	10	8344.6	97.5	8686	8	ACA62249	Aca62249 cDNA enco
	11	8344.6	97.5	8686	10	ADL13811	Adl13811 Osteoarth
	12	8344.6	97.5	8686	12	ADG86290	Adg86290 Human SMR
	13	8344.6	97.5	8686	12	ADQ18920	Adq18920 Human sof
С		8242.2	96.3	9079	12	ADQ23294	Adq23294 Human sof
. ~	15	8238.8	96.2	9053	12	ADL12577	Adl12577 Human ste
	16	7554	88.2	7554	12	ADJ92815	Adi92815 Human co-
	17	7337.6	85.7	7524	10	ADL13812	Adl13812 Osteoarth
	18	7334.6	85.7	7521	8	ACA62250	Aca62250 Human nuc
	19	5475	64.0	5989	6	ABK84305	Abk84305 Human cDN
	20	5048.4	59.0	8544	8	ACA62451	Aca62451 cDNA enco
	21	5048.4	59.0	8544	14	ADZ61802	Adz61802 Murine Nc
	22	4797	56.0	7386	8	ACA62452	Aca62452 Mouse nuc
		4554.6	53.2	7534	11	ACN44281	Acn44281 Mouse mRN
	24	2628	30.7	2930	10	ADC35130	Adc35130 Human bre
	25	2628	30.7	2930	12	ADG86301	Adg86301 Human SMR
	26	1158.6		233380	11	ACN44282	Acn44282 Human gen
	27	1146.2	13.4	220756	12	ADG86300	Adg86300 Human SMR
	28	958.2	11.2	1027	3	AAC98781	Aac98781 Human pan
	29	898.4	10.5	956	3	AAA98862	Aaa98862 Human pro
	30	898.4	10.5	956	3	AAA98144	Aaa98144 Human pro
	31	898.4	10.5	956	6	AAD29973	Aad29973 Human pha
c	32	760.6	8.9	2336	10	ADE31306	Ade31306 Human dia
	33	652.8	7.6	752	10	ADI62646	Adi62646 Human apo
	34	650	7.6	650	8	ACA57401	Aca57401 Human adi
	35	630	7.4	7914	12	ADQ83959	Adq83959 Human tum
	36	630	7.4	7914	13	ADQ87683	Adq87683 Human tum
	37	630	7.4	7940	8	ABZ34833	Abz34833 Coding se
	38	630	7.4	7940	13	ADQ89791	Adq89791 Antagonis
	39	630	7.4	7940	14	AD249335	Adz49335 Insulin s
	40	630	7.4	7940	14	AED11617	Aed11617 Human nuc
	41	629.6	7.4	7780	3	AAA60630	Aaa60630 HNRCR nuc
	42	629.6	7.4	7780	14	AED11618	Aedl1618 Murine nu
	43	626.8	7.3	2745	12	ADJ92816	Adj92816 Human co-
	44	626.8	7.3	7900	3	AAA60629	Aaa60629 Human HNR
	45	555	6.5	555	8	ACA57524	Aca57524 Human adi
С		542.4	6.3	718	10	ADE76358	Ade76358 Human BSK
	47	534	6.2	534	10	ADF79924	Adf79924 Leukaemia
	48	494.6	5.8	2914	13	ADR07585	Adro7585 Full leng
	49	458.8	5.4	527	13	ADU13876	Adul 3876 Solid tum
	50 51	444.4	5.2	91141 427	11	ACN44280	Acn44280 Mouse gen
	52	409.4 376	4.8 4.4	872	5 3	AAF67220 AAA02670	Aaf67220 Novel hum Aaa02670 Human col
	32	3/0	4.4	012	J	AAAU20/U	MadUZO/U NUMAN COI

```
53
       370
              4.3
                     381
                          9 ACH20441
                                                        Ach20441 Human adu
54
     349.8
                     554
              4.1
                          13 ADQ56131
                                                         Adq56131 Novel can
55
     314.4
              3.7
                     458
                          9 ACH32852
                                                        Ach32852 Human end
56
     311.2
              3.6
                     312 3
                             AAC29340
                                                        Aac29340 Human sec
57
     291.6
              3.4
                     710 4
                             AAI97539
                                                        Aai97539 Human neu
58
     282.8
              3.3
                     673
                          8
                             ACA57523
                                                        Aca57523 Human adi
59
     268.6
              3.1
                     520
                          6
                             ABK44934
                                                        Abk44934 cDNA enco
60
     258.4
              3.0
                    3969
                          10
                              ADI22661
                                                         Adi22661 Human liv
```

```
RESULT 1
ADG86298
ID
     ADG86298 standard; cDNA; 8561 BP.
XX
AC
     ADG86298;
XX
DT
     11-MAR-2004 (first entry)
\mathbf{X}\mathbf{X}
DE
     Human SMRT encoding cDNA SEQ ID NO:12.
XX
KW
     SMRT; silencing mediator for retinoid and thyroid hormone action;
KW
     SMRT inhibitor; cytostatic; antiinflammatory; antiarthritic;
KW
     antirheumatic; antisense therapy; inflammatory disorder;
KW
     rheumatoid arthritis; hyperproliferative disorder; cancer; leukaemia;
KW
     breast cancer; human; gene; ss.
XX
OS
     Homo sapiens.
XX
     Key
                      Location/Qualifiers
FH
FΤ
     CDS
                      2. .7555
FT
                      /*tag= a
                      /product= "SMRT"
FT
XX
PN
     WO2003106645-A2.
XX
PD
     24-DEC-2003.
XX
     17-JUN-2003; 2003WO-US018923.
PF
XX
     17-JUN-2002; 2002US-00174014.
PR
\mathbf{X}\mathbf{X}
PA
     (ISIS-) ISIS PHARM INC.
XX
PΙ
     Bennett CF, Freier SM,
                               Dobie KW:
XX
DR
     WPI; 2004-082184/08.
DR
     P-PSDB; ADG86299.
DR
     GENBANK; NM 006312.
XX
PT
     Novel antisense compound targeted to nucleic acid encoding SMRT
     (silencing mediator for retinoid and thyroid hormone action), useful for
PT
PT
     treating animal having disease associated with SMRT such as cancer,
PT
     rheumatoid arthritis.
XX
PS
     Example 15; SEQ ID NO 12; 260pp; English.
XX
CC
     The present invention describes a compound (I) 8-50 nucleobases in length
     targeted to a nucleic acid molecule encoding SMRT (silencing mediator for
CC
```


SADEDVDGEPERQRMFPMDSKPSLLNPTGSILVSSPLKPNPLDLPQLQHRAAVIPPMV SCTPCNIPIGTPVSGYALYQRHIKAMHESALLEEQRQRQEQIDLECRSSTSPCGTSKS PNREWEVLQPAPHQVITNLPEGVRLPTTRPTRPPPPLIPSSKTTVASEKPSFIMGGSI SQGTPGTYLTSHNQASYTQETPKPSVGSISLGLPRQQESAKSATLPYIKQEEFSPRSQ NSQPEGLLVRAQHEGVVRGTAGAIQEGSITRGTPTSKISVESIPSLRGSITQGTPALP QTGIPTEALVKGSISRMPIEDSSPEKGREEAASKGHVIYEGKSGHILSYDNIKNAREG TRSPRTAHEISLKRSYESVEGNIKQGMSMRESPVSAPLEGLICRALPRGSPHSDLKER TVLSGSIMQGTPRATTESFEDGLKYPKQIKRESPPIRAFEGAITKGKPYDGITTIKEM GRSIHEIPRQDILTQESRKTPEVVQSTRPIIEGSISQGTPIKFDNNSGQSAIKHNVKS LITGPSKLSRGMPPLEIVPENIKVVERGKYEDVKAGETVRSRHTSVVSSGPSVLRSTL **HEAPKAQLSPGIYDDTSARRTPVSYQNTMSRGSPMMNRTSDVTISSNKSTNHERKSTL** TPTQRESIPAKSPVPGVDPVVSHSPFDPHHRGSTAGEVYRSHLPTHLDPAMPFHRALD PAAAAYLFQRQLSPTPGYPSQYQLYAMENTRQTILNDYITSQQMQVNLRPDVARGLSP REQPLGLPYPATRGIIDLTNMPPTILVPHPGGTSTPPMDRITYIPGTQITFPPRPYNS **ASMSPGHPTHLAAAASAEREREREREKERERERIAAASSDLYLRPGSEQPGRPGSHGY** VRSPSPSVRTQETMLQQRPSVFQGTNGTSVITPLDPTAQLRIMPLPAGGPSISQGLPA SRYNTAADALAALVDAAASAPOMDVSKTKESKHEAARLEENLRSRSAAVSEOOOLEOK TLEVEKRSVQCLYTSSAFPSGKPQPHSSVVYSEAGKDKGPPPKSRYEEELRTRGKTTI TAANFIDVIITRQIASDKDARERGSQSSDSSSSLSSHRYETPSDAIEVISPASSPAPP QEKLQTYQPEVVKANQAENDPTRQYEGPLHHYRPQQESPSPQQQLPPSSQAEGMGQVP RTHRLITLADHICQIITQDFARNQVSSQTPQQPPTSTFQNSPSALVSTPVRTKTSNRY SPESQAQSVHHQRPGSRVSPENLVDKSRGSRPGKSPERSHVSSEPYEPISPPQVPVVH EKQDSLLLLSQRGAEPAEQRNDARSPGSISYLPSFFTKLENTSPMVKSKKQEIFRKLN SSGGGDSDMAAAQPGTEIFNLPAVTTSGSVSSRGHSFADPASNLGLEDIIRKALMGSF DDKVEDHGVVMSQPMGVVPGTANTSVVTSGETRREEGDPSPHSGGVCKPKLISKSNSR KSKSPIPGQGYLGTERPSSVSSVHSEGDYHRQTPGWAWEDRPSSTGSTQFPYNPLTMR MLSSTPPTPIACAPSAVNQAAPHQQNRIWEREPAPLLSAQYETLSDSDD"

ORIGIN

```
1 gacccaggtg aatgacagca tcagtgctga gacagcagag cagatggatg tagatcagca
  61 ggagcacagt gctgaagagg gttctgtttg tgatccccca cccgctacca aagctgactc
121 tgtggacgtt gaagtgaggg tgccagaaaa ccatgcatct aaagttgaag gtgataatac
181 caaagaaaga gacttggata gagccagtga gaaggtggaa cctagagatg aagatttggt
241 ggtageteag caaataaatg cecaaaggee egageeecag teagacaatg attecagtge
301 cacqtqcaqc gctgatqaqq atqtqqatqq aqaqccaqaq aqqcaqaqaa tqtttcctat
361 gqactcaaaq cettcactgt taaaccccac tggatctata ctcgtctcat ctccgttaaa
421 accaaatcca ctggatctgc cacagcttca gcatcgagct gctgttatcc caccaatggt
481 atcctgcacc ccatgtaaca taccaattgg aaccccagtg agcggctatg ctctctacca
541 gcgacacatt aaagcaatgc atgagtcagc actcctggag gagcagcggc agagacaaga
 601 acagatagat ttggaatgta gaagttctac aagtccatgt ggcacatcca agagtccaaa
 661 cagagagtgg gaagteette ageetgetee acateaagtg ataactaate teeetgaagg
 721 egtteggett eegacaacte gaccaaccag gecacegeee ceteteatee egteateeaa
781 aaccacagtg gcttcagaaa aaccatcttt tataatggga ggctccatct cacagggaac
 841 accaggeact tatttgactt ctcataatca ggetteetae acteaagaaa caeceaagee
 901 gtcagtggga tctatctctc ttggactgcc acggcaacag gaatctgcca aatcagctac
 961 tttgccctac atcaagcagg aagaattttc tccccgaagc caaaactcac aacctgaggg
1021 tetgttggte agggeecaae atgaaggtgt agteagaggt acegeaggag ceatacaaga
1081 aggaagtata actcggggaa ctccaaccag caaaatttca gtggagagca ttccatccct
1141 acggggetet ateaeteagg geaeceegge tetgeeceag aetggeatae caacagagge
1201 tttggtgaag gggtccattt cgagaatgcc cattgaagac agcagtcctg agaaaggcag
1261 agaggaagct gcatccaaag gccatgttat ttatgaaggc aaaagtggac atatcttgtc
1321 atatgataat attaagaatg cccgagaagg gactaggagt ccaagaacag ctcatgaaat
1381 caqtttaaaq aqaaqctatq aatcaqtgga aggaaatata aagcaaggga tgtcaatgag
1441 ggagteteet gtateageae egttagaggg getgatatge egageattae eeagggggag
1501 tecteattet gaceteaaag aaaggaetgt attgtetgge tecataatge aggggacace
1561 aagagcaaca actgaaagct ttgaagatgg ccttaaatat cccaaacaaa ttaaaaggga
1621 aagtootooc atacgagoat ttgaaggtgo cattaccaaa ggaaaaccat atgatggoat
1681 caccaccatc aaagaaatgg ggcgttccat tcatgagatt ccaaggcaag atattttaac
1741 tcaggaaagt cggaaaactc cagaagtggt ccagagcaca cggccgataa ttgagggttc
1801 catttcccag ggcacaccaa taaagtttga caacaactca ggtcaatctg ccatcaaaca
1861 caatgtcaaa teettaatea eggggeetag caaactatee egtggaatge eteegetgga
```

```
1921 aattgtgcca gagaacataa aagtggtaga acggggaaaa tatgaggatg tgaaagcagg
1981 egagacegtg egtteeegge acacgteagt ggtaagetet ggeeecteeg ttettaggte
2041 cacactgcat gaagctccca aagcacaact gagccctggg atttatgatg acaccagtgc
2101 acggaggacc cctgtgagtt atcaaaacac catgtccaqa ggctcaccca tgatgaacag
2161 aacttetgat gttacaattt ettetaacaa gtetaceaat catgaaagga aategacact
2221 gacccctacc cagagggaaa gtatcccagc gaagtctcca gtgcctqqqq tqqaccctqt
2281 cgtgagccac agtccgtttg atccccatca cagaggcagc actgcaggcg aggtttatcg
2341 gagccacctg cccacgcact tggatccagc catgcctttt cacagggctt tggatcctgc
2401 ageggetget tacctgttte agagacaget tteaceaact ceaggttace caagteagta
2461 teagetttae geaatggaga acacaagaea gacaatetta aatgattaea ttaceteaca
2521 acagatgcaa gtgaacttgc gtccagatgt ggccagagga ctctccccaa gagagcagcc
2581 actgggtctc ccatacccag caacgagagg aatcattgac ctgaccaata tgcctccaac
2641 aattttagtg cctcatccag ggggaacaag cactcctccc atggacagaa tcacttatat
2701 tectggtaca cagattactt teceteceag geegtacaae tetgetteea tgteteeagg
2761 acacccaaca caccttgcag ctgctgcaag tgctgagagg gaacgggaac gggagcggga
2821 gaaggagcgg gagcgggaac ggattgctgc agcttcctcc gacctctacc tgcggccagg
2881 ctcagaacag cctggccgac ctggcagtca tggatatgtt cgctcccctt ccccttcagt
2941 aagaactcag gagaccatgt tgcaacagag acccagtgtt ttccaaggaa ccaatggaac
3001 cagtgtaatc acacetttgg atecaactge teagetacga ateatgecae tgeetgetgg
3061 gggcccttca ataagccaag gcctgccagc ctcccgttac aacactgctg cggatgccct
3121 ggctgctctt gtggatgctg cagcttctgc accccagatg gatgtgtcca aaacaaaaga
3181 gagtaagcat gaagctgcca ggttagaaga aaatttgaga agcaggtcag cagcagttag
3241 tgaacagcag cagctagagc agaaaaccct ggaggtggag aagagatctg ttcagtgttt
3301 atacacttct tcagcctttc caagtggcaa gccccagcct cattcttcag tagtttattc
3361 tgaggetggg aaagataaag ggeeteetee aaaateeaga tatgaggaag agetaaggae
3421 cagagggaag actaccatta ctgcagctaa cttcatagac gtgatcatca cccggcaaat
3481 tgcctcggac aaggatgcga gggaacgtgg ctctcaaagt tcagactctt ctagtagctt
3541 atetteteae aggtatgaaa eaeetagega tgetattgag gtgataagte etgeeagete
3601 acctgcgcca ccccaggaga aactgcagac ctatcagcca gaggttgtta aggcaaatca
3661 agoggaaaat gatootacca gacaatatga aggaccatta catcactato gaccacagca
3721 ggaatcacca tctccccaac aacagctgcc cccttcttca caggcagagg gaatggggca
3781 agtgcccagg acccatcggc tgatcacact tgctgatcac atctgtcaaa ttatcacaca
3841 agattttgct agaaatcaag tttcctcgca gactccccag cagcctccta cttctacatt
3901 ccagaactca ccttctgctt tggtatctac acctgtgagg actaaaacat caaaccgtta
3961 cageccagaa teccaggete agtetgteea teateaaaga eeaggtteaa gggtetetee
4021 agaaaatett gtggacaaat ecaggggaag taggeetgga aaateeceag agaggagtea
4081 cqtctcttcq qaqccctacq aqcccatctc cccaccccaq qttccqqttq tqcatqaqaa
4141 acaggacago ttgctgctct tgtctcagag gggcgcagag cctgcagagc agaggaatga
4201 tgcccgctca ccagggagta taagctactt gccttcattc ttcaccaagc ttgaaaatac
4261 atcacccatg gttaaatcaa agaagcagga gatttttcgt aagttgaact cctctggtgg
4321 aggtgactct gatatggcag ctgctcagcc aggaactgag atctttaatc tgccagcagt
4381 tactacgtca ggctcagtta gctctagagg ccattctttt gctgatcctg ccagtaatct
4441 tgggctggaa gacattatca ggaaggctct catgggaagc tttgatgaca aagttgagga
4501 teatggagtt gteatgteec ageetatggg agtagtgeet ggtaetgeea acaceteagt
4561 tgtgaccagt ggtgagacac gaagagagga aggggaccca tcacctcatt caggaggagt
4621 ttgcaaacca aagctgatca gcaagtcaaa cagcaggaaa tctaagtctc ctatacctgg
4681 gcaaggctac ttaggaacgg aacggccctc ttcagtctcc tctgtacatt cagaagggga
4741 ttaccatagg cagacgccag ggtgggcctg ggaagacagg ccctcttcaa caggctcaac
4801 tragtttect tataaccete tgactatgeg gatgeteage agtacteeae caacacegat
4861 tgcatgtgct ccctctgcgg tgaaccaagc agctcctcac caacagaaca ggatctggga
4921 gcgagagcct gccccactgc tctcagcaca gtacgagacc ctgtcggata gtgatgactg
4981 aactgcacaa agtgagggga acagggtgca ggagagggat ctctagtttt tgtggtttaa
5041 tttttagtag caggtcaaaa acctgccctc ctgtgactta ttccctgaga cttttcagga
5101 gagccagccc acagatgatg aagaaatgat ggaagttcat ttggagagtc aaatgggaaa
5161 aaaacaaaca aaaaactgcc tttgatacag gcaattcagt ggactataat aatagtggag
5221 ggttgagatg tagagttttt aaaaagtgaa cagttgctgt tcttacatct gtaaagaaaa
5281 ccataatgto tttaaatcac tottotgtaa atagatgaco tttttgcagt gtatatooco
5341 ttgctgtagt atctggtgta cttatgttca aatcagcgca tcaactttgg gggtgatttt
5401 taaaaatett tttgtetate tatettttta accetageet tetaaacaac eteatacage
5461 ccagttacat aatgttggct gtcacgggca ttgtactttt atctgatatt gtttcctcta
```

```
5521 aattcagctt tccagtgatg tttaaaatct tgtgaaaatg tttagatttt taacacagac 5581 cctgtcataa aatctgtaca ttagggtcaa aaggtaaaag taacaaattc tgccatattg 5641 taaatttcca gtgcaggctt taattttttt ttttcattag tagcactgaa aaaatattac 5701 tgcatgggta tgttctagtt cagtttataa agttttaaag gcttatttga ggcatacctc 5761 actgttacgc acactggtaa tttaaccatg cccctaagta ttccttttct cctgcatttg 5821 atgcagccca acaaagcttt tgttttgaaa taaatttgac taccctgtcc at
```

<u>Disclaimer | Write to the Help Desk</u> <u>NCBI | NLM | NIH</u>

Aug 15 2006 13:27:38

PALM INTRANET

Day: Thursday

Date: 9/7/2006 Time: 16:46:31

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
evans	ron	Search

To go back use Back button on your browser toolbar.

PALM INTRANET

Day: Thursday

Date: 9/7/2006 Time: 16:48:58

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
chen		Search

To go back use Back button on your browser toolbar.

ģ	#	\Box	Λ	ŧ	M	IA	17		٨	A			~
0 (- T	М	£	181	117	₹ ₹	**	M	11	4		ŧ

Day: Thursday

Date: 9/7/2006 Time: 16:48:58

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
ordentlich	pet	Search

To go back use Back button on your browser toolbar.

. PALM INTRANET

Day: Thursday

Date: 9/7/2006 Time: 16:48:58

Inventor Name Search

Enter the **first few letters** of the Inventor's Last Name. Additionally, enter the **first few letters** of the Inventor's First name.

Last Name	First Name	
downes	mich	Seerich

To go back use Back button on your browser toolbar.