An Application of QPE: Order-Finding

Renato Neves

Table of Contents

Introduction

Renato Neves Introduction 2 / 23

Period-Finding

The Problem

A periodic function f. Find its period.

Introduction 3 / 23

Period-Finding

The Problem

A periodic function f. Find its period.

Problem can be difficult (particularly if f has no obvious structure, such as being trigonometric)

We will see how quantum computation tackles it

Renato Neves Introduction 3 / 23

Order-Finding

Actually we tackle only a specific case \Rightarrow order-finding

The latter is handled efficiently via QPE

Integer factorisation reduces to it

The only quantum component in Shor's algorithm

Renato Neves Introduction 4 / 23

Table of Contents

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

A Handful of Definitions

Definition

We call the integer x a divisor of the integer y if $k \cdot x = y$ for some integer k

Examples

2 is a divisor of 10 and 5 is a divisor of 15. What are the divisors of a prime number?

Definition

For two integers x and y, gcd(x, y) is the greatest divisor common to x and y

Examples

$$gcd(8,12) = 4$$
 and $gcd(10,15) = 5$

A Handful of Definitions pt. II

Definition

Two integers x and y are called co-prime if gcd(x, y) = 1

Examples

8 and 9 are co-prime and 13 and 15 are co-prime as well. The integers 12 and 15 are not co-prime.

Modular Arithmetic

Definition

Given an integer N the set of integers mod N is $\{0, 1, ..., N-1\}$

We can think of this set as a circular circuit with different positions and where the position after ${\it N}-1$ is 0

Definition

For two integers x and y we write $x \equiv y \pmod{N}$ if $x \mod N = y$

Examples

 $5\equiv 0\,(\mathrm{mod}\,5)$ and $6\equiv 1\,(\mathrm{mod}\,5)$

Order-Finding

Definition

For co-prime integers a < N the order of $a \pmod{N}$ is the smallest integer r > 0 s.t. $a^r \equiv 1 \pmod{N}$

Example

If N=5 the sequence $3^0,3^1,3^2,3^3,3^4,3^5,3^6,\dots$ leads to the sequence $1,3,4,2,\frac{1}{1},3,4,\dots$

Order of $3 \pmod{5}$ is thus 4

Exercise

What is the order of $2 \pmod{11}$?

Table of Contents

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

Order-Finding

The Problem

Co-prime integers a < N

What is the order of $a \pmod{N}$?

Order-Finding

The Problem

Co-prime integers a < N

What is the order of $a \pmod{N}$?

Classically, problem can be difficult for large integers

Quantumly, it can be solved efficiently via QPE

QPE Revisited

Recall the QPE circuit

Need to choose suitable U and $|\psi\rangle$ to disclose the order

Table of Contents

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in $\ensuremath{\mathsf{QPE}}$

Choosing the Right Unitary

Take co-prime integers a < N

Let
$$m = \lceil \log_2 N \rceil$$
 and define $U : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$

$$U|x\rangle = \begin{cases} |xa \pmod{N}\rangle & \text{if } 0 \le x \le N-1 \\ |x\rangle & \text{otherwise} \end{cases}$$

Exercise

Show that $U|a^n \pmod{N}\rangle = |a^{n+1} \pmod{N}\rangle$

Choosing the Right Unitary

Take co-prime integers a < N

Let
$$m = \lceil \log_2 N \rceil$$
 and define $U : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$

$$U|x\rangle = \begin{cases} |xa \pmod{N}\rangle & \text{if } 0 \le x \le N-1 \\ |x\rangle & \text{otherwise} \end{cases}$$

Exercise

Show that
$$U|a^n \pmod{N}\rangle = |a^{n+1} \pmod{N}\rangle$$

Next step is to identify suitable eigenvectors

Starting with an Example

Recall: if N=5 sequence $3^0,3^1,3^2,3^3,3^4,3^5,3^6,\dots$ leads to $\underline{1,3,4,2,1},3,4,\dots$

Order r of $3 \pmod{5}$ is 4. We then calculate,

$$U\left(\frac{1}{\sqrt{r}}(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$$

$$= U\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|3^{i} \pmod{5}\rangle\right)$$

$$= \frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|3^{i+1} \pmod{5}\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|3\rangle + |4\rangle + |2\rangle + |1\rangle\right)$$

$$= \frac{1}{\sqrt{r}}\left(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$$

The latter state is therefore an eigenvector of U

A First Approach

Previous example alludes to the equation

$$U\Big(\tfrac{1}{\sqrt{r}}\textstyle\sum_{i=0}^{r-1}\left|a^i\left(\operatorname{mod}N\right)\right\rangle\Big)=\tfrac{1}{\sqrt{r}}\textstyle\sum_{i=0}^{r-1}\left|a^i\left(\operatorname{mod}N\right)\right\rangle$$

Unfortunately, corresponding eigenvalue is $1 = e^{i2\pi 0} \frac{1}{2^n}$

It does not disclose any information about the period r:(

A First Approach

Previous example alludes to the equation

$$U\Big(\tfrac{1}{\sqrt{r}}\textstyle\sum_{i=0}^{r-1}\left|a^i\left(\operatorname{mod}N\right)\right\rangle\Big)=\tfrac{1}{\sqrt{r}}\textstyle\sum_{i=0}^{r-1}\left|a^i\left(\operatorname{mod}N\right)\right\rangle$$

Unfortunately, corresponding eigenvalue is $1 = e^{i2\pi 0} \frac{1}{2^n}$

It does not disclose any information about the period r:(

Need to find eigenvectors with more informative eigenvalues

A Second Approach

Let
$$\omega = e^{i2\pi \cdot \frac{1}{r}}$$
 (division of the unit circle in r slices)

$$\begin{split} &U\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|a^{i}\left(\operatorname{mod}N\right)\right\rangle\right)\\ &=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|a^{i+1}\left(\operatorname{mod}N\right)\right\rangle\\ &=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-(i+1)}\left|a^{i+1}\left(\operatorname{mod}N\right)\right\rangle\\ &=\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-(i+1)}\left|a^{i+1}\left(\operatorname{mod}N\right)\right\rangle\right)\\ &=\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|a^{i}\left(\operatorname{mod}N\right)\right\rangle\right) \end{split}$$

Exercise

Formally justify all the steps in the calculation above

A Second Approach

Let
$$\omega = e^{i2\pi \cdot \frac{1}{r}}$$
 and $|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i} |a^i \pmod{N}\rangle$

Previous slide says $U\ket{\psi_1} = \omega\ket{\psi_1}$

So if we feed QPE with $\frac{U}{V}$ and $|\psi_1\rangle$ we obtain an approximation of $\frac{1}{r}$ with good success probability $(\geq \frac{4}{\pi^2} \approx 0.4)$

A Second Approach

Let
$$\omega = e^{i2\pi \cdot \frac{1}{r}}$$
 and $|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i} |a^i \pmod{N}\rangle$

Previous slide says $U\left|\psi_{1}\right\rangle =\omega\left|\psi_{1}\right\rangle$

So if we feed QPE with U and $|\psi_1\rangle$ we obtain an approximation of $\frac{1}{r}$ with good success probability ($\geq \frac{4}{\pi^2} \approx 0.4$)

However $|\psi_1\rangle$ is difficult to construct. Can you see why?

A Third Approach

We define a superposition of eigenvectors that is equal to $|1\rangle$:

set
$$|\psi_k\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-ik} |a^i \pmod{N}\rangle$$
 and $|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |\psi_k\rangle$

Exercise

Then show $U|\psi_k\rangle = \omega^k |\psi_k\rangle$

Exercise

Finally show $|\psi\rangle=|1\rangle$ (hint: show $\langle 1|\psi\rangle=1$ or alternatively use the closed-form formula of geometric series)

A Third Approach

$$U|\psi_k\rangle = \omega^k |\psi_k\rangle = e^{i2\pi\frac{k}{r}} |\psi_k\rangle$$
 and $|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} |\psi_k\rangle$. Therefore

returns $\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}\left(\left|\tilde{\phi}_{k}\right\rangle|\psi_{k}\right)$ where each $\left|\tilde{\phi}_{k}\right\rangle$ is the best *n*-bit approximation of $\frac{k}{r}$ with probability $\geq \frac{4}{\pi^{2}}$

A Third Approach

$$U|\psi_k\rangle = \omega^k |\psi_k\rangle = \mathrm{e}^{i2\pi\frac{k}{r}} |\psi_k\rangle$$
 and $|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} |\psi_k\rangle$. Therefore

returns $\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}\left(\left|\tilde{\phi}_{k}\right\rangle|\psi_{k}\right)$ where each $\left|\tilde{\phi}_{k}\right\rangle$ is the best ${n \over r}$ -bit approximation of ${k \over r}$ with probability $\geq {4 \over \pi^{2}}$

But how to extract r from $\left|\tilde{\phi}_{k}\right\rangle$?

Extracting the Period

Let φ be the best *n*-bit approximation of some $\frac{k}{r}$

Theorem

If $\left|\frac{k}{r} - \varphi\right| \leq \frac{1}{2r^2}$ then we can extract $\frac{k}{r}$ in <u>reduced form</u>, and with complexity $O(m^3)$

Proof.

Uses the continued fractions alg. (see Appendix 4, Nielsen and Chuang, $Quantum\ Computation\ and\ Quantum\ Information)$

Previous theorem tells we need to use a minimum number n of qubits to represent φ . Particularly,

Extracting the Period

recall:
$$m = \lceil log_2 N \rceil$$

$$2^{n+1} \ge 2r^2$$

$$\Leftrightarrow 2^{n+1} \ge 2(2^m)^2 \qquad \qquad \{r \le N \le 2^m\}$$

$$\Leftrightarrow 22^n \ge 2(2^m)^2$$

$$\Leftrightarrow 2^n \ge 2^{2m}$$

$$\Leftrightarrow n > 2m$$

Thus the number of qubits to use in the approximation φ should be at least 2m

Finally...

In order to obtain the order r, proceed with the following steps

- 1. run QPE + continued fractions alg. twice to obtain two reduced fractions $\frac{k_1}{r_1}$ and $\frac{k_2}{r_2}$
- 2. if $gcd(k_1, k_2) = 1$ repeat previous step else set r := least common multiple of r_1 and r_2
- 3. if $a^r \pmod{N} \equiv 1$ output r else go back to step 1

Finally...

In order to obtain the order r, proceed with the following steps

- 1. run QPE + continued fractions alg. twice to obtain two reduced fractions $\frac{k_1}{r_1}$ and $\frac{k_2}{r_2}$
- 2. if $gcd(k_1, k_2) = 1$ repeat previous step else set r := least common multiple of r_1 and r_2
- 3. if $a^r \pmod{N} \equiv 1$ output r else go back to step 1

In step 2, probability of $gcd(k_1, k_2) = 1$ is $\geq \frac{1}{4}$. Hence whole algorithm has constant probability of success

In step 2, computation of gcd and least common multiple has complexity $O(m^2)$. Hence the whole algorithm must be efficient