

Analyse de la consommation électrique par la data science

Presentée par:

Alisson NUNES BONNATO João Victor FARIA DE SOUZA Younes OUARHIM Alexandre CHOUERI

Sommaire:

- 1. Introduction
- 2. Traitement des données
- 3. Choix des variables
- 4. Modèle de régression multilinéaire
- 5. Réseau de neurones LSTM
- 6. Modèle de forêts aléatoires
- 7. Conclusion et ouverture

Introduction:

Données initiales: 2 bases de données au format CSV. L'une avec des données temporelles de consommation énergétique moyenne et l'autre avec des données climatiques.

Modèle: Proposer un algorithme de prédiction basé sur les concepts de Machine Learning pour estimer la consommation énergétique.

Rendu: Une base de données au format CSV avec des données de consommation estimées pour les mois suivants.

Pré-traitement des données

Database donées enérgetiques

	time	mean	temp
0	2009-07-15 00:00:00	0.341659	11.6
1	2009-07-15 00:30:00	0.274463	11.5
2	2009-07-15 01:00:00	0.231365	11.4
3	2009-07-15 01:30:00	0.202708	11.3
4	2009-07-15 02:00:00	0.182256	11.2

Database donées

	date	ind	rain	ind.1	temp	ind.2	wetb	dewpt	vappr	rhum	***	ind.3	wdsp	ind.4	wddir	ww	w	sun	vis	clht	clamt
0	2009-07-15 00:00:00	3	0.0	0	11.6	0	11.4	11.3	13.3	98	***	2	6	2	310	2	81	0.0	25000	999	1
1	2009-07-15 01:00:00	3	0.0	0	11.4	0	11.1	10.8	13.0	96	***	2	6	2	310	2	11	0.0	30000	999	1
2	2009-07-15 02:00:00	3	0.1	0	11.2	0	10.9	10.6	12.8	96	1444	2	7	2	290	2	11	0.0	30000	999	1
3	2009-07-15 03:00:00	3	0.0	0	11.1	0	10.8	10.5	12.7	96		2	8	2	300	2	11	0.0	30000	999	1
4	2009-07-15 04:00:00	3	0.0	0	11.4	0	11.1	10.9	13.0	96	1040	2	7	2	310	2	11	0.0	30000	999	1

Traitement des données

Données ajoutées:

	ind	rain	ind.1	temp	ind.2	wetb	dewpt	vappr	rhum	msl	 clamt	weekend	season	work_time	year	month	day	hour	minute	weekofyear
date																				
2009-07-15 00:00:00	3.0	0.00	0.0	11.6	0.0	11.40	11.30	13.30	98.0	1002.80	 1.0	0	2	0	2009	7	15	0	0	29
2009-07-15 00:30:00	3.0	0.00	0.0	11.5	0.0	11.25	11.05	13.15	97.0	1003.15	 1.0	0	2	0	2009	7	15	0	30	29
2009-07-15 01:00:00	3.0	0.00	0.0	11.4	0.0	11.10	10.80	13.00	96.0	1003.50	 1.0	0	2	0	2009	7	15	1	0	29
2009-07-15 01:30:00	3.0	0.05	0.0	11.3	0.0	11.00	10.70	12.90	96.0	1003.95	 1.0	0	2	0	2009	7	15	1	30	29
2009-07-15 02:00:00	3.0	0.10	0.0	11.2	0.0	10.90	10.60	12.80	96.0	1004.40	 1.0	0	2	0	2009	7	15	2	0	29

Choix des variables

$$AIC = 2K - 2ln(L)$$

K: Nombre de variables indépendantes L: Estimateur du maximum de vraisemblance

Modèle de régression multilinéaire

Prévision d'hiver:

Modèle de régression multilinéaire

Prévision d'été:

Modèle de régression multilinéaire

Résultats de prévision:

MAPE: 23,86%

Modèle LSTM

Prévision d'hiver:

Modèle LSTM

Prévision d'été:

Modèle LSTM

Résultats de prévision:

MAPE:13,42%

Entraınement: Split aléatoire et temporelle

Hyperparamètre:

- RandomSearch et après GridSearch autour de le point trouvé par RandomSearch.
- TimeSeriesSplit.
- Scoring: Neg. MAPE

Resultats: Split aléatoire a un MAPE plus petit que le split temporelle.

Prévision d'hiver:

Prévision d'été:

Résultats de prévision:

Résultats de prévision:

	Split Aléatoire	Split Temporelle
MAPE Test Data	7,61%	11,12%
MAPE Fin Dec 2009	3,78%	6,85%
Hyperparamètres	Criterion : poisson n_estimators : 10	Criterion: squared error n_estimators: 50 max_depth: 10

Perspectives:

 Appliquer le modèle LSTM aux erreurs de prédiction pour mieux comprendre et anticiper ces erreurs

• Combiner les modèles pour obtenir une meilleure prédiction

Optimisation du réseau de neurones LSTM

Conclusion:

- Un modèle plus convaincant que les autres : le modèle de forêts aléatoires
- Modèle logiquement utilisé pour compléter les données manquantes
 - Confiance en les prédictions de ces données au vu des résultats obtenues avec ce modèle

Merci Pour votre attention

