

LICENCE LICENCES PHYSIQUE CHIMIE ET SCIENCES POUR L'INGÉNIEUR

 S_1 PC - SPI - SPA

Lundi 23 novembre 2020

PARTIEL DE CHIMIE n°2

Durée: 1h30

Les calculettes collège sont autorisées

Une grande importance devra être accordée à la présentation de la copie (marge, indication des exercices et des questions, mise en évidence des réponses, calculs littéraux puis numériques etc....) et à la rédaction (claire avec des réponses justifiées).

Chaque étudiant doit posséder sa propre calculette collège. L'échange de calculettes est interdit pendant le partiel. Le barème est donné à titre indicatif.

Données : Constante de Rydberg : $R_H = 1,09677 \cdot 10^7 \text{ m}^{-1}$

Charge de l'électron : $e = 1,602 \cdot 10^{-19} \text{ C}$.

Energie d'ionisation de l'hydrogène dans son état fondamental : E₀=13,6 eV

Constante de Planck : h=6,62 10⁻³⁴ J·s.

Célérité de la lumière dans le vide : $c=3,00 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$ Constante d'Avogadro : $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$

Exercice 1 Configurations électroniques et tableau périodique

- 1. Déduire le numéro atomique Z et la configuration électronique des éléments suivants connaissant leur place dans la classification périodique :
 - a) Bore B: 2ème période, 13ème colonne;
 - b) Chlore Cl: 3ème période, 17ème colonne;
 - c) Manganèse Mn: 4ème période, 7ème colonne;
 - d) Baryum Ba: 6ème période, 2ème colonne;
 - e) Cadmium Cd: 5ème période, 12ème colonne.

Parmi tous les éléments cités, lesquels sont des métaux de transition du bloc d?

2. Famille de l'azote :

- a. Donner la configuration électronique de l'atome d'azote (Z = 7) dans son état fondamental.
- a. Citer un autre élément appartenant à la même famille que l'azote.
- b. Donner son numéro atomique et sa configuration.
- c. Lequel des deux éléments entre l'azote et l'élément que vous avez choisi est le plus électronégatif?
- 3. Classer les éléments suivants par électronégativité croissante : F, Si, S, Cl, Ca, Mn, en justifiant votre réponse.
- 4. On donne les rayons atomiques, en pm, des éléments suivants :

Elément	Li	В	С	Ne		
Rayon (pm)	163	82	65	36		

Justifier l'évolution observée.

Tableau périodique des éléments incomplet

	1	2		3	4	5	6	7	8	9	10) 11	12	13	14	15	16	17	18
1																			
2																			
3	Na	Mg												Al	Si	P	S	Cl	Ar
4	K	Ca		Sc	Ti	V	Cr	Mn	Fe	C	o N	i Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	ı R	h Po	d Ag	Cd	In	Sn	Sb	Te	I	Xe
6	Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	s I1	r P	t Au	l Hg	T1	Pb	Bi	Po	At	Rn
7	Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	s M	[t D	s Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb																		
		*	La	Ce	Pr	Nd	Pn	ı Sr	n .	Eu	Gd	Tb	Dy	Но	Er	Tm	Yt)	
	:	**	Ac	Th	Pa	U	Np	Pu	u A	4m	Cm	Bk	Cf	Es	Fm	Md	No)	

Exercice 2: Formules de Lewis et VSPER

1) Etablir le schéma de Lewis des molécules suivantes et les représenter en notation de Cram en justifiant la géométrie proposée à l'aide de la théorie de la VSEPR.

- 2) A la suite des travaux de N. Bartlett en 1962, il a été découvert plusieurs composés associant le xénon et le fluor : le difluorure de xénon XeF₂, le tétrafluorure de xénon XeF₄, l'oxytétrafluorure de xénon XeOF₄ et l'anion XeOF₃.
 - a) Quelles sont les configurations électroniques des atomes de xénon (Z=54), d'oxygène et de fluor ?
 - b) En vous appuyant sur la question précédente, donner le nombre d'électrons de valence du xénon.
 - c) Donner les formules de Lewis de XeF₂, XeF₄, XeOF₄ et XeOF₃. L'atome central est le xénon Xe.
 - d) La règle de l'octet est-elle respectée pour l'atome de xénon et pour l'atome de fluor ? Justifier votre réponse.
 - e) Donner la figure de répulsion de ces composés ainsi que leur géométrie.
 - f) Quels sont les angles idéaux F-Xe-F obtenus pour les molécules de XeF₂, XeF₄ et XeOF₄ et XeOF₃.?
 - g) Une étude expérimentale et théorique de l'anion XeOF₃ (*J. Am. Chem. Soc.* 2010, 132, 31, 10935–10943) a montré que l'angle F-Xe-O entre l'atome d'oxygène, l'atome de xénon et deux des atomes de fluor est de 93,1° alors qu'il est de 86,9° pour certains angles F-Xe-F. Identifier clairement ces angles sur une figure. Expliquer ces résultats.

Exercice 3: Mésomérie

1) On considère la molécule de borazine B₃N₃H₆, dont la représentation du squelette sigma reliant les atomes de bore et d'azote est la suivante :

- a) Donner le nombre d'électrons de valence de chacun des atomes et en déduire le nombre total de doublets d'électrons de valence.
- b) Ecrire les structures de Lewis plausibles pour cette molécule, en faisant apparaître, si nécessaire, les charges formelles.
- c) Montrer que l'on peut passer d'une formule à l'autre par les règles de la mésomérie, en déplaçant des doublets.
- d) Combien de liaisons B-N de longueur différentes y a-t-il dans cette molécule ? Justifier.
- 2) On considère l'ion ClO₃⁻ (atome central en gras).
 - a) Donner le nombre d'électrons de valence de chacun des atomes et en déduire le nombre total de doublets d'électrons de valence.
 - b) Ecrire les structures de Lewis plausibles pour cet ion, en faisant apparaître, si nécessaire, les charges formelles.
 - c) D'après les formules correctes sélectionnées, en appliquant les règles de la VSEPR, déduire la géométrie de l'ion.
 - d) Combien de liaisons Cl-O de longueurs différentes y a-t-il dans ClO₃⁻? Justifier.