Notes on Mathematical Logic By Ian Chiswell and Wilfrid Hodges

Sixuan Thomas Lou

April 4, 2016

Contents

1	Bas	sic Notions	2
	1.1	Statement:	2
	1.2	set of statements	2
	1.3	Sequent	2
		1.3.1 Sequent rules	2
	1.4	Natural Deduction	2
		1.4.1 Natural Deduction Rules	2
	1.5	Simple logical connectives with introduction / elimination rules	į
		1.5.1 And (\land)	3
		1.5.2 Implication (\rightarrow)	4
		1.5.3 Equivalence (\leftrightarrow)	4
		1.5.4 Negation (\neg)	-
		1.5.5 Or (V)	7
	1.6	First order language	8

1 Basic Notions

1.1 Statement:

Later formalized with first-order language

1.2 set of statements

1.3 Sequent

 $\Gamma \vdash \phi$

where Γ is a set of statements (assumptions) ϕ is a statement (conclusion) The sequent is correct if and only if there is a proof of ϕ with no undischarged assumptions

1.3.1 Sequent rules

- Axiom: If $\phi \in \Gamma$, then $\Gamma \vdash \phi$ is correct
- Transitivity: If $\Delta \vdash \phi$ and for all statements δ in Δ , the sequent $\Gamma \vdash \delta$ is correct, then $\Gamma \vdash \phi$ is correct

1.4 Natural Deduction

Natural Deduction rules tells how to build a $\underline{\text{proof}}$ for sequents, especially called derivations.

Derivations + rules of using them gives natural deduction calculus

1.4.1 Natural Deduction Rules

• Axiom:

Let ϕ be a statement, then

 ϕ

is a derivation whose conclusion is ϕ , with one undischarged assumption, namely ϕ

1.5 Simple logical connectives with introduction / elimination rules

1.5.1 And (∧)

- 1. Natural Deduction Rules
 - If $\frac{D}{\phi}$ and $\frac{D'}{\psi}$ are derivations of ϕ and ψ respectively, then

$$\frac{D \quad D'}{\phi \quad \psi} (\land I)$$

is a derivation of $(\phi \wedge \psi)$.

• If $\frac{D}{\phi \wedge \psi}$ is a derivation of $(\phi \wedge \psi)$, then

$$\frac{D}{\frac{\phi \wedge \psi}{\phi}} (\wedge E)$$

$$\frac{D}{\frac{\phi \wedge \psi}{\psi}} (\wedge E)$$

are derivations of ϕ and ψ respectively.

- 2. Sequent Rules
 - If $\Gamma \vdash \phi$ and $\Delta \vdash \psi$ are correct sequents, then $\Gamma \cup \Delta \vdash (\phi \land \psi)$ is a correct sequent.
 - If $\Gamma \vdash (\phi \land \psi)$ is a correct sequent, then $\Gamma \vdash \phi$ and $\Gamma \vdash \psi$ are correct sequents.

1.5.2 Implication (\rightarrow)

- 1. Natural Deduction Rules
 - If $\frac{D}{\phi}$ is a derivation of ψ , ϕ is a statement,

then

$$\begin{array}{c} \phi \\ D \\ \hline \psi \\ \hline \phi \rightarrow \psi \end{array} (\rightarrow I)$$

is a derivation of $(\phi \to \psi)$.

• If $\frac{D}{\phi}$ and $\frac{D'}{\phi \to \psi}$ are derivations of ϕ and $\phi \to \psi$ respectively,

then

$$\begin{array}{ccc} D & D' \\ \hline \phi & \phi \to \psi \\ \hline & \psi \end{array} (\to E)$$

is a derivation of ψ .

- 2. Sequent Rules
 - If $\Gamma \cup \{\phi\} \vdash \psi$ is a correct sequent, then $\Gamma \vdash (\phi \rightarrow \psi)$ is also correct.
 - If $\Gamma \vdash (\phi \vdash \psi)$ and $\Delta \vdash \phi$ are correct sequents, then so is $\Gamma \cup \Delta \vdash \psi$.

1.5.3 Equivalence (\leftrightarrow)

- 1. Natural Deduction Rules

then

$$\frac{D \qquad D'}{\frac{\phi \to \psi \qquad \psi \to \phi}{\phi \leftrightarrow \psi}} \left(\leftrightarrow I \right)$$

is a derivation of $(\phi \leftrightarrow \psi)$.

• If $D \atop \phi \leftrightarrow \psi$ is a derivation of $(\phi \leftrightarrow \psi)$,

then

$$\frac{D}{\phi \leftrightarrow \psi} \left(\leftrightarrow E \right)$$

$$\frac{D}{\frac{\phi \leftrightarrow \psi}{\psi \to \phi}} (\leftrightarrow E)$$

are derivations of $(\phi \to \psi)$ and $(\psi \to \phi)$ respectively.

- 2. Sequent Rules
 - If $\Gamma \vdash \phi \rightarrow \psi$ and $\Delta \vdash \psi \rightarrow \phi$ are correct sequents, then so is $\Gamma \cup \Delta \vdash \phi \leftrightarrow \psi$
 - If $\Gamma \vdash \phi \leftrightarrow \psi$ is a correct sequent, then so is $\Gamma \vdash \phi \rightarrow \psi$ and $\Gamma \vdash \psi \rightarrow \phi$

1.5.4 Negation (\neg)

- 1. Natural Deduction Rules
 - If $D \atop \perp$ is a derivation if \bot ,

then

is a derivation of $(\neg \phi)$.

• If $\frac{D}{\phi}$ and $\frac{D'}{\neg \phi}$ are derivations of ϕ and $(\neg \phi)$ respectively,

then

$$\begin{array}{cc} D & D' \\ \hline \phi & \neg \phi \\ \hline \bot & (\neg E) \end{array}$$

is a derivation of \perp .

• If $D \atop \perp$ is a derivation of \bot ,

then

$$\begin{array}{c}
(> \phi) \\
D \\
\frac{\perp}{\phi} \text{ (RAA)}
\end{array}$$

is a derivation of ϕ .

- 2. Sequent Rules
 - If $\Gamma \cup \{\phi\} \vdash \bot$ is a correct sequent, then $\Gamma \vdash (\neg \phi)$ is also a correct sequent.
 - If $\Gamma \vdash \phi$ and $\Delta \vdash \neg \phi$ are correct sequents, then $\Gamma \cup \Delta \vdash \bot$ is also correct.
 - If $\Gamma \cup \{(\neg \phi)\} \vdash \bot$ is a correct sequent, then $\Gamma \vdash \phi$ is also correct.
- 3. Example. Find natural deduction proofs of the following sequent.

$$\{(\neg(\phi\leftrightarrow\psi))\}\vdash(\neg\phi)\leftrightarrow\psi$$

$$\frac{\cancel{\phi} \quad \cancel{\phi} \quad \cancel{\psi} \quad \cancel{\phi}}{\frac{\bot}{\psi} \quad \cancel{\phi}} \quad \cancel{\phi} \quad \cancel$$

1.5.5 Or (\vee)

- 1. Natural Deduction Rules
 - If $\begin{array}{c} D \\ \phi \end{array}$ is a derivation of ϕ and ψ is a statement, then

$$\frac{D}{\phi \vee \psi} (\vee I)$$

• If $\frac{D}{\psi}$ is a derivation of ψ and ϕ is a statement, then

$$\frac{D}{\psi} (\forall I)$$

• If $D \to X$, $D' \to X$ and $D'' \to X$ are derivations of $(\phi \lor \psi)$ and $\chi \to X$ respectively, then,

$$\begin{array}{ccc} & \not \phi & \not \phi \\ D & D' & D'' \\ \underline{(\phi \lor \psi)} & \chi & \chi \\ \hline & \chi & (\lor E) \end{array}$$

2. Sequent Rules

- If $\Gamma \vdash \phi$ is a correct sequent, ψ is a statement, then $\Gamma \vdash (\phi \lor \psi)$ is also a correct sequent.
- If $\Gamma \vdash \psi$ is a correct sequent, ψ is a statement, then $\Gamma \vdash (\phi \lor \psi)$ is also a correct sequent.
- If $\Gamma \cup \{\phi\} \vdash \chi$, $\Delta \cup \{\psi\} \vdash \chi$ are correct sequents, then $\Gamma \cup \Delta \cup \{(\phi \lor \psi)\} \vdash \chi$ is correct.

1.6 First order language