1 | loose definition

$$\int \frac{d}{dx} f(x) dx = f(x)$$

2 | formal definition

The theorem comes in two parts, apparently

2.1 | part 1

If f(x) is continuous over an interval [a,b], and the function F(x) is defined by

$$F(x) = \int_{a}^{x} f(t)dt$$

then F'(x) = f(x) over [a, b].

2.1.1 | intuition

Note that its $\int_a^x f(t)dt$ because x is an argument to the function and t is just the iteration variable.

Note that the integral can start anywhere to the left (arbitrary $\it a$) because that is removed as a constant when taking the derivative

2.1.2 | results

3 | an example

Imagine a function that has the bound of an integral as an argument:

$$g(x) = \int_0^x t \, dt = \frac{x^2}{2}$$
$$\frac{d}{dx}g(x) = \frac{d}{dx}\int_0^x t \, dt = \frac{d}{dx}\frac{x^2}{2} = x$$