PTC 3360

3.4 Camada física: meios de transmissão

Setembro 2025

CAPÍTULO 3. Camada de enlace e física

- 3.1 Introdução
- 3.2 Controle de acesso ao canal compartilhado
 - 3.2. I Particionamento de canal
 - 3.2.2 Acesso Aleatório
 - A Slotted ALOHA
 - B ALOHA puro
 - C CSMA
 - D Exemplos: Ethernet e Wi-Fi
 - 3.2.3 Revezamento
- 3.3 Endereçamento MAC e switches
- 3.4 Camada física: meios de transmissão
- 3.5 Rádio Enlaces

Função da camada física

Enlace: transferência de quadros entre elementos vizinhos na rede

Física: representação dos quadros por meio de sinais adequados ao meio de transmissão

- Duração/taxa de transmissão ?
- Forma da onda, banda ocupada ?

Passo intermediário: encapsulamento em novo quadro com bits adicionais auxiliares à recepção (sincronização, correção de erro, etc.)

Aplicação
Transporte
Rede
Enlace

Física

Introdução 1-3

Lembrando: meios de transmissão

Meios guiados: ondas confinadas no espaço por meio sólido: cobre, fibra, coaxial

- Par trançado (redes locais, DSL)
 - Categoria 5: 100 Mbps, I Gpbs Ethernet
 - Categoria 6: 10 Gbps
- Cabo coaxial (TV e Internet a cabo)
 - dois condutores de cobre concêntricos
- Fibra ótica
 - fibra de vidro carregando pulsos de luz

Lembrando: meios de transmissão (2)

Meios não guiados: ondas não confinadas, por exemplo,

rádio

LAN sem fio (e.g., WiFi)

Área ampla (e.g., celular)

Micro-ondas terrestre

Satélite

Adiante, veremos rádio-enlaces em maior detalhe: por exemplo, como estimar o limite superior para a área de cobertura de um ponto de acesso WiFi?

Por que a ênfase em meios não guiados?

Comunicações sem fio provêem:

- Mobilidade
- Baixo custo
- Alcance
- Ubiquidade: presentes praticamente em qualquer lugar

É peça fundamental para o funcionamento de redes extremamente relevantes.

Exemplos:

- * Rede celular
- * Redes locais sem fio
- Internet das Coisas
- * Radio difusão

Exemplo: IEEE 802.11g (WiFi)

Canais de largura ~20 MHz na faixa de 2,4 GHz:

IEEE STANDARDS ASSOCIATION

IEEE Standard for Information technology—
Telecommunications and information exchange between systems
Local and metropolitan area networks—
Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

Como exemplo e motivação para o que segue, vamos ver alguns pontos desta especificação

Exemplo de configuração de ponto de acesso

IEEE 802. I Ig: encapsulamento

IEEE 802. I Ig: modulações possíveis

IEEE Std 802.11-2016

IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements
Part 11: Wireless LAN MAC and PHY Specifications

Estudaremos modulações no próximo capítulo.

IEEE 802. I Ig: espectro transmitido

IEEE Std 802.11-2016

IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements
Part 11: Wireless LAN MAC and PHY Specifications

Figure 17-13—Transmit spectrum mask for 20 MHz transmission

Veremos a relação do espectro transmitido com a taxa de transmissão e a modulação escolhida

Escala logarítmica: decibéis (dB)

Para uma relação entre potências de sinais:

$$\left(\frac{P_1}{P_2}\right)_{\text{dB}} = 10 \log_{10} \frac{P_1}{P_2}$$

Exemplos:
$$\frac{P_1}{P_2} = 1 \to 0 \text{ dB}$$
, $\frac{P_1}{P_2} = 10 \to 10 \text{ dB}$, $\frac{P_1}{P_2} = 0.1 \to -10 \text{ dB}$.

* Para uma potência: $(P)_{dBm} = 10 \log_{10} \frac{P}{1mW}$

Exemplos:
$$P_1 = 1\text{W} \rightarrow 30 \text{ dBm}$$
, $P_2 = 0.1P_1 \rightarrow 30 \text{ dBm} - 10 \text{ dB} = 20 \text{ dBm}$

IEEE 802. I Ig: sensibilidade

Nível recebido para uma taxa de erro de pacotes (1000 bytes) de 10 %

Exemplo:

Modulation	Coding rate (R)	Minimum sensitivity (dBm) (20 MHz channel spacing)
BPSK	1/2	-82
BPSK	3/4	-81
QPSK	1/2	-79
QPSK	3/4	-77

Veremos a relação entre a probabilidade de erro, a potência recebida e a modulação

Referência

802.11-2016 - IEEE Standard for Information technology-Telecommunications and information exchange between systems
Local and metropolitan area networks--Specific requirements - Part
II: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications:

https://ieeexplore.ieee.org/document/7786995