ASK_10	Romaniak Hubert	Informatyka	Semestr zimowy	
		niestacjonarna III rok	2024/25	

Zadania

1. Licznik BCD asynchroniczny

Rysunek 1 - zadany schemat logiczny licznika BCD asynchronicznego

Rysunek 2 - schemat logiczny licznika BCD asynchronicznego z układem zatrzaskującym stan pośredni między 9 a 0

Dla licznika BCD asynchronicznego zbudowanego według zadanego schematu, ostatnia wartość na wyjściach licznika, podczas przełączania się z 9 na 0, to wartość 8. Posiada on zatem stan przejściowy.

2. Licznik BCD synchroniczny

Rysunek 3 - zadany schemat logiczny licznika BCD synchronicznego

Rysunek 4 - schemat logiczny licznika BCD synchronicznego z układem zatrzaskującym stan pośredni między 9 a 0

Dla licznika BCD synchronicznego zbudowanego według zadanego schematu, ostatnia wartość na wyjściach licznika, podczas przełączania się z 9 na 0, to wartość 0. Nie posiada on zatem stanu przejściowego.

3. Licznik mod 20 asynchroniczny

x_{4_n}	x_{3_n}	x_{2_n}	x_{1_n}	x_{0_n}	$x_{4_{n+1}}$	$x_{3_{n+1}}$	$x_{2_{n+1}}$	$x_{1_{n+1}}$	$x_{0_{n+1}}$
0	0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	1	0
0	0	0	1	0	0	0	0	1	1
0	0	0	1	1	0	0	1	0	0
0	0	1	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1	1	0
0	0	1	1	0	0	0	1	1	1
0	0	1	1	1	0	1	0	0	0
0	1	0	0	0	0	1	0	0	1
0	1	0	0	1	0	1	0	1	0
0	1	0	1	0	0	1	0	1	1
0	1	0	1	1	0	1	1	0	0
0	1	1	0	0	0	1	1	0	1
0	1	1	0	1	0	1	1	1	0
0	1	1	1	0	0	1	1	1	1
0	1	1	1	1	1	0	0	0	0
1	0	0	0	0	1	0	0	0	1
1	0	0	0	1	1	0	0	1	0
1	0	0	1	0	1	0	0	1	1
1	0	0	1	1	0	0	0	0	0
1	0	1	0	0	Х	Х	х	х	Х
1	0	1	0	1	Х	х	х	х	Х
1	0	1	1	0	Х	Х	х	х	Х

1	0	1	1	1	Х	Х	Х	Х	Х
1	1	0	0	0	х	х	х	х	х
1	1	0	0	1	Х	х	х	х	х
1	1	0	1	0	х	х	х	х	х
1	1	0	1	1	Х	х	х	х	х
1	1	1	0	0	х	х	х	х	х
1	1	1	0	1	Х	х	х	х	х
1	1	1	1	0	х	х	х	х	х
1	1	1	1	1	Х	Х	Х	х	Х

Tabela 1 - tabela przejść licznika mod 20 asynchronicznego

Rysunek 5 - schemat logiczny licznika mod 20 asynchronicznego z układem sterownika 5-bit \rightarrow BCD dla dwóch wyświetlaczy 7-segmentowych

Do układu licznika mod 20 asynchronicznego został podpięty sterownik pozwalający na wyświetlanie liczb od 0 do 19 w formacie dziesiętnym. Sterownik ten przyjmuje 5-bitową liczbę w formacie binarnym i zwraca dwie liczby w formacie BCD.

4. Licznik 4-bitowy synchroniczny dwukierunkowy

Rysunek 6 - zadany schemat logiczny licznika BCD synchronicznego

Rysunek 7 - schemat logiczny licznika 4-bitowego synchronicznego dwukierunkowego

Ze względu na brak wejścia **ENT** i wyjścia **RCO** w zbudowanym liczniku, układ mógł zostać w znaczący sposób uproszczony, a ilość bramek logicznych zmniejszona. Zamiast 10 bramek **AND** i 5 bramek **OR**, zostały użyte 3 bramki **XNOR** oraz 2 bramki **AND**.

Wnioski

Budowa liczników synchronicznych pozwala na wykluczenie stanów przejściowych występujących przy zmianie stanu. Wiąże się to jednak z tym, że ich budowa, w przeciwieństwie do liczników asynchronicznych, jest bardziej złożona.

Ze względu na szeregowość i powtarzalność budowy liczników dwójkowych, jest możliwość zwiększenia ich limitu, do którego mogą liczyć, poprzez proste dodanie kolejnego przerzutnika i podpięcia go w sposób analogiczny do poprzednich. Dodanie jednego przerzutnika do licznika 4-bitowego (liczącego od 0 do 15) pozwala na dwukrotne zwiększenie zakresu liczenia (od 0 do 31).

Poprzez dodanie odpowiednich bramek logicznych pomiędzy przerzutnikami, możliwe jest również skonfigurowanie takiego licznika tak, aby mógł liczyć zarówno do przodu, jak i do tyłu – w zależności od stanu dodatkowego wejścia, określającego kierunek liczenia.