MATH239 Intro to Combinatorics

Brandon Yeh MWF 2:30-3:30 MC4021

Contents

1	Pre	eface	3		
2	Lecture 1 - September 9 2013				
	2.1	Contact Information	3		
	2.2	Weekly Schedules	3		
	2.3	Grading Scheme	3		
	2.4	Course Overview	3		
	2.5	Questions	3		
		2.5.1 Other Problems	4		
	2.6	Section 1.1	4		
		2.6.1 Composition	4		
		2.6.2 Binary String	4		
	2.7	Section 1.2	5		
		2.7.1 Review	5		
		2.7.2 Cartesian Product	5		
		2.7.3 Cartesian Power	5		
3	Lec	ture 2 - September 11 2013	6		
	3.1	Last Lecture	6		
	3.2	Chapter 1.2 Continued	6		
		3.2.1 Cartesian Power	6		
		3.2.2 Sets of Compositions	6		
	3.3	Section 1.3 - Binomial Coefficients	7		
4	Lec	ture 3 - September 13 2013	8		
4	4.1	Last Lecture	8		
	4.2	Section 1.3 Continued	8		
	4.3	Section 1.4 - Generating Series	10		
	4.0	4.3.1 Generating Series	10		
		4.9.1 Generating peries	10		
5	Lec	ture 4	11		
	5.1	Last Lecture	11		
	5.2	Section 1.4 Continued	11		
		5.2.1 Theorem 1.4.3	12		
	5.3	Section 1.5 - Formal Power Series	12		
		5.3.1 Discussion	12		
		5.3.2 Formal Power Series	13		
6	Def	initions	15		
U	6.1	Chapter 1	15		
	0.1	6.1.1 Section 1.1	15		
		6.1.2 Binary Strings	15		

6.1.3	Union	1!
6.1.4	Cartesian Product	15
6.1.5	Cartesian Power	1.

1 Preface

These lecture notes will be compiled using Konstantinos Georgiou's lecture material supplemented by the course notes.

2 Lecture 1 - September 9 2013

2.1 Contact Information

 $\begin{array}{c} {\rm Konstantinos\ Georgiou} \\ {\rm MC6316} \end{array}$

email: k2georgiou@math

Please add MATH239 in subject

2.2 Weekly Schedules

Weekly Lectures

MWF 2:30-3:20pm, MC4021

Weekly Office Hours

MW 5:30-6:30, MC6316 or by appointment

Weekly Tutorials

Starting week of Sept 16 W 4:30-5:20, MC4059

2.3 Grading Scheme

Best 8/9 Assignments - 10%Midterm - 30%Final exam - 60%

2.4 Course Overview

Combinatorics - The study of finite or countable discrete objects

- Combinatorial Analysis
 Compositions and Strings
 Recurrences
- Graph Theory

2.5 Questions

What problems are we solving in combinatorial analysis?

Problem 1 How many binary strings are there of length n, that avoi blocks of two 0's and two 1's?

$$b_n = [x^n] \frac{1 - x^2 + x^3}{1 - 2x + x^2 - x^3}, n/geq0$$

What problems are we solving in graph theory?

Problem 3 The following pictures represent people and their relations. Are these configurations different?

Problem 4 How many colours do we need to colour the map of Spain?

2.5.1 Other Problems

- How do we systematically traverse a graph?
- Can we draw a circuit on a plane so that no two wires overlap?
- Two grops of men and women declare their partner-preferences. Is there a matching satisfying them all?

2.6 Section 1.1

Main question we study: Count how many objects are there of certain type Two objects to study: Compositions and Binary Strings

2.6.1 Composition

Definition

Fix integers $n \geq 0$. A sequence of positive integers. $(m_1, m_2, m_3, ..., m_r)$, for which $m_1 + m_2 + m_3 + \cdots + m_r = n$ is called a composition of m.

 $m_i \rightarrow$ is called a part of the composition $m \rightarrow$ is called the weight of the composition

Example of Composition

(2,3,3,4,1) is a composition of weight 13

Questions to Study

- How many compositions of m are there?
- How many compositions are there with k parts?
- How many compositions of n are there where all parts are all integers?

2.6.2 Binary String

Definition A binary string of length n is sequence $a_1, a_2, ..., a_n$ where $a_i \in \{0, 1\}, i = 1, ..., n$

Example of Binary String

0001 is a binary string of length 4.

Questions to Study

- How many binary strings of length n are there? 2^n
- How many binary strings of length n, that avoid 1010?

2.7 Section 1.2

2.7.1 Review

Let A,B be two sets. We define $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Example

$$A_0 = \{1, 2, 3\}$$
 $B_0 = \{3, 7, 8, 4\}$ $A_0 \cup B_0 = \{1, 2, 3, 7, 8, 4\}$

|A| denotes the size of set A

 \emptyset denotes the empty set, the set with no elements

Example

$$|\emptyset| = 0 \qquad |\{\emptyset\}| = 1$$

Question When is it true that $|A \cup B| = |A| + |B|$?

Answer Exactly when the intersection of A, B is the empty set i.e. $A \cap B = \{x : x \in A \text{ AND } x \in B\}$ is empty

In such cases, we call A, B disjoint.

Example: $A_0 \cap B_0 = \{3\}$

2.7.2 Cartesian Product

Definition Let A, B be two sets. Their cartesian product is $A \times B = \{(a, b) : a \in A, b \in B\}$.

i.e. all ordered pairs (a, b), where $a \in A, b \in B$.

Example
$$A_1\{1,2\}, B_1 = \{a,b,c\}$$
 $A_1 \times B_1 = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$

Lemma $|A \times B| = |A| \cdot |B|$

2.7.3 Cartesian Power

Definition For a positive integer k and a set A. Define the Cartesian Power A^k as follows:

$$A^1 := A$$
$$A^{k+1} := A \times A^k, k \ge 1$$

Example

$$B = \{0, 1\}$$
 $B^4 = \{(b_1, b_2, b_3, b_4) : b_i \in \{0, 1\}, c = 1, 2, 3, 4\}$ Binary sring of length 4

3 Lecture 2 - September 11 2013

3.1 Last Lecture

$$A \times B$$

$$|A \times B| = |A| \cdot |B|$$

$$A^k = A \times A \times A \times \cdots \times A \ k$$

$$B = 0,1$$
 $B^4 = \{(b_1, b_2, b_3, b_4) : b_i \in B, i = 1, 2, 3, 4\}$

3.2 Chapter 1.2 Continued

3.2.1 Cartesian Power

Lemma
$$|A^k| = |A|^k$$

Example

for
$$B = \{0, 1\}$$
 as before, $B^4 = 2^4$

3.2.2 Sets of Compositions

Definition Let A,B be two sets of compositions. For every $(a,b) \in A \times B$, where a,b are compositions. We define the weight of (a,b) as weight of a plus the weight of b. We denote it by w(a,b).

Reminder that (2, 3, 3, 4, 1) is a composition of weight 13.

Example

$$a=(3,3,2)$$
 a composition of 8
 $b=(1,2)$ a composition of 3
 $w(a,b)=w(a)+w(b)=8+3=11$

Lemma
$$w_k(A \times B) = \sum_{i=0}^k w_i(A) \cdot w_{k-1}(B)$$

This is the number of elements of $A \times B$ that have weight k.

In order for w(a,b) = k We need w(a) = i and w(b) = k - i since w(a,b) = w(a) + w(b) = k

Proof Let A_i denote the subset of A of elements of weight i. Let B_j denote the subset of B of elements of weight j.

• All elements of $A_i \times B_j$ have weight i + j and weight is exactly k if j = k - i(i = 0, 1, ..., k)

- $\forall i, j | A_i \times B_j | = |A_i| \times |B_j| = w_i(A) \cdot w_j(B)$
- $A_0 \times B_k, A_1 \times B_{k-1}, ..., A_k \times B_0$ are pairwise disjoint.

Hence,
$$w_k(A \times B) = \sum_{i=0}^k |A_i \times B_{k-i}| = \sum_{i=0}^k w_i(A) \cdot w_{k-1}(B)$$

3.3 Section 1.3 - Binomial Coefficients

Example/Lemma

In how many ways can we order n distinct elements? (n-permutations)

Solution

Position 1 2 3 4
$$\cdots$$
 n
of Options n $n-1$ $n-2$ $n-3$ \cdots 1 $n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 = n!$

Example/Lemma

in how many ways can you permute r elements chosen out of n elements. r-permutations of n elements.

Solution

Position 1 2 3
$$\cdots$$
 n
of Options n $n-1$ $n-2$ \cdots $n-(r-1)\star$
Overall, $n \cdot (n-1) \cdot (n-2) \cdots (n-r+1)$

Comment Previous formula stays true when r > n

Definition We define 0! = 1 in which case we write \star

$$\frac{n!}{(n-r)!} \star \star \qquad n \ge r$$

Please verify that \star and $\star\star$ agree.

Theorem For non negative integers n, k the number of k-element subsets of an n-element set equals:

$$\frac{n \cdot (n-1) \cdots (n-(k-1))}{k!}$$

The above counts the different ways we can choose k elements out of n.

Proof - Combinatorial Argument We do not know that the number of k-permutations of n objects are $n \cdot (n-1) \cdots (n-(k-1))$.

Equivalently, we can first choose k many elements out of n and suppose that this can be done in x many ways. We know that this k elements can be permuted in k! many ways.

 $x \cdot k!$ is the number of different ways we can permute k objects out of n.

$$x \cdot k! = n \cdot (n-1) \cdots (n-(k-1))$$

$$x = \frac{n \cdot (n-1) \cdots (n-(k-1))}{k!}$$
Solve for x.

Notation "n choose k"

$$\left(\begin{array}{c} n \\ k \end{array}\right) := \frac{n \cdot (n-1) \cdot \cdot \cdot (n-(k-1))}{k!}$$

Example
$$\binom{n}{k} = 1$$

$$\mathbf{Lemma} \quad \left(\begin{array}{c} n \\ k \end{array} \right) = \left(\begin{array}{c} n \\ n-k \end{array} \right)$$

4 Lecture 3 - September 13 2013

4.1 Last Lecture

Binomial Coefficient:
$$\binom{n}{k} := \frac{n \cdot (n-1) \cdots (n-(k-1))}{k!}$$

Count number of different ways we can choose k elements out of n many. Ordering dos not matter repetition is not allowed.

4.2 Section 1.3 Continued

Observation

When $0 \le k \le n$:

$$\left(\begin{array}{c} n\\ k \end{array}\right) = \frac{n!}{k!(n-k)!}$$

Binomial Theorem
$$\forall x \in \mathbb{R}, \forall n \in \mathbb{N}_{\geq 0}, (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Example

$$(1+x)^3 = 1 + 3x + 3x^2 + x^3 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} x + \begin{pmatrix} 3 \\ 2 \end{pmatrix} x^2 + \begin{pmatrix} 3 \\ 3 \end{pmatrix} x^3$$

Proof

 $(1+x)^n = (1+x) \cdot (1+x) \cdot (1+x) \cdots (1+x)$ n many factors (brackets)

- If we expand and collect common monomials x^k , what would be the coefficient of x^k ?
- Every term is a product of 1's and x's each chose from each of the factors

$$(1+x)^2 = (1+x)(1+x) = 1(1+x) + x(1+x) = 1 \cdot 1 + 1 \cdot x + x \cdot 1 + x \cdot x$$

We obtain x^k for each different we choose k many x's. (from equally many factors) out of the n factors. We know taht there are $\binom{n}{k}$ different ways we can choose k brackets out of n.

Hence,
$$(1+x)^m = \sum_{k=0}^n \binom{n}{k} x^k \square$$

Binomial Theorem
$$(1+x)^m = \sum_{k=0}^n \binom{n}{k} x^k$$

Corollary
$$2^n = \sum_{k=0}^n \binom{n}{k}$$

Proof 1

In Binomial Theorem, set x = 1

Proof 2

Consider the set $\{1, 2, ..., n\} = [n]$. LHS counts the different subsets [n].

Let A_i denote the subsets of [n] with size exactly i. All different subsets of n are exactly:

$$A_0 \cup A_1 \cup \cdots \cup A_n$$

Observe that all A_i are pairwise disjoint.

$$|A_0 \cup A_1 \cup \dots \cup A_n| = \sum_{i=0}^k |A_i| = \sum_{i=0}^n \binom{n}{i}$$

Example

$$\forall n, k \ge 0$$
 (LHS) $\binom{n+k}{n} = \sum_{i=0}^{k} \binom{n+i-1}{n-1}$ (RHS)

$$\binom{n}{k} = \binom{n}{n-k}$$

Proofs (Combinatorial Argument) LHS: counts the different n-sized subsets of $A = \{1, 2, ..., n, n + 1, ..., k\}$

Let \mathcal{L} denote all size-n subsets of A

Ovservation: Any subsets of A of size m, has largest element either n or n+1 or,...,or n+k

How many such subsets of \mathcal{L} have largest elements equal to n?

 $\binom{n-1}{n-1}$ since we need to choose n-1 elements out of $\{1,2,...,n-1\}$

How many subsets of A of size n, have largest elements n + 1?

$$\binom{n}{n-1}$$

What about element n+i

$$\binom{n-1+i}{n-i}$$
 i ranges from 0 up to k

 $\mathcal{L}_0, \mathcal{L}_1, ..., \mathcal{L}_k$ are positive disjoint and $\mathcal{L} = \mathcal{L}_0 \cup \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_k$

$$\binom{n+k}{n} = |\mathcal{L}| \sum_{i=0}^{k} |\mathcal{L}_i| = \sum_{i=0}^{k} \binom{n-1+i}{n-1} \quad \Box$$

4.3 Section 1.4 - Generating Series

High level Description

Let S ne a set of "configurations" (objects). For each $\sigma \in S$ we will have a non-negative weight $w(\sigma)$. Given an integer k, how many objects are there in S of weight k?

Example

Let S denote all subsets of $\{1, 2, ..., n\} \forall \sigma \in S$, we define $w(\sigma)$ as the size of σ . Let α_k denote the number of configurations in S with weight k.

Question $\alpha_k = ?$

Answer
$$\alpha_k = \binom{n}{k}$$

Definition

Let S be a set of configurations with weight function w.

4.3.1 Generating Series

The **Generating Series** for S with respect to w is $\Phi_s(x) = \sum_{\sigma \in S} x^{w(\sigma)}$

Informal

 $\Phi_s(x)$ is a polynomial (in x) with one summond x^k , for each configuration of weight k. summond is a term that you sum up.

Corollary

If α_k denotes the number of elements of S with weight k, then:

$$\Phi_s(x) = \sum_{k \ge 0} \alpha_k x^k$$

Example Let S denote all subsets of $\{1, 2, ..., n\} \forall \sigma \in S$, we define $w(\sigma)$ as the size of σ . What is the configuration?

$$\Phi_s(x) = \sum_{k=0}^n \binom{n}{k} x^k = (1+x)^n \quad \Box$$

5 Lecture 4

5.1 Last Lecture

Let S be a set of configurations.

 $w(\sigma)$ is the weight of $\sigma \in S$.

Generating series of S $\Phi_s(x) = \sum_{\sigma \in S} x^{w(\sigma)}$

= $\sum_{k>0}$ (number of configurations in S with weight k)· x^k

Main Idea We need to count number of configurations with weight k. It will be easy to find generating series.

5.2 Section 1.4 Continued

Example

$$A = \{1, 3, 5\} \qquad \forall a \in A \ w(a) = a$$
$$B = \{2, 4\} \qquad \forall b \in B \ w(b) = b$$

$$\Phi_A(x) = x^1 + x^3 + x^5$$

$$\Phi_B(x) = x^2 + x^4$$

$$A \times B = \{(1,2), (1,4), (3,2), (3,4), (5,2), (5,4)\}$$

Define
$$w(a, b) = w(a) + w(b)$$

$$\Phi_{A\times B}(x) = x^3 + x^5 + x^5 + x^7 + x^7 + x^9$$

= $x^3 + 2x^5 + 2x^7 + x^9$

This shows that we have 1 configuration of weight 3, 2 configurations of weight 5, 2 for weight 7 and 1 for weight 9.

5.2.1 Theorem 1.4.3

Let $\Phi_S(x)$ be a generating series for a finite set S with respect to some weight function w. Then:

- (i) $\Phi_S(1) = |S|$
- (ii) Sum of weights of configuration in S is $\Phi_S'(1)$ First derivative at x=1
- (iii) Average weight of a configuration in S is $\frac{\Phi_S'(1)}{\Phi_S(1)}$

Proof

(i)
$$\Phi_S(x) = \sum_{\sigma \in S} x^{w(\sigma)}$$

$$\Phi_S(1) = \sum_{\sigma \in S} 1^{w(\sigma)} = |S|$$

(ii)
$$\Phi_S'(x) = \sum_{\sigma \in S} w(\sigma) \cdot x^{w(\sigma)-1}$$

$$\Phi_S'(1) = \sum_{\sigma \in S} w(\sigma) \cdot 1^{w(\sigma)-1}$$

$$\Phi_S'(1) = \sum_{\sigma \in S} 1w(\sigma)$$

(iii) follows from (i),(ii) □

Example S is composed by all subsets of $\{1, 2, ..., n\}$ $\forall \sigma \in S, w(\sigma)$ =the size of subset σ . Where σ is a subset of $\{1, 2, ..., n\}$

We have shown that $\Phi_S(x) = (1+x)^n$. Previous theorem says $|S| = \Phi_S(i) = 2^n$

Theorem (ii) says sum of weight of configuration in S is $\Phi_S'(1)$

$$\Phi_S'(x) = n(1+x)^{n-1}$$
, so sum of weights of σ in S is $n \cdot 2^{n-1}$

According to previous theorem (iii), average weight of $\sigma \in S$ is:

$$\frac{n\cdot 2^{n-1}}{2^n}=\frac{n}{2}$$

5.3 Section 1.5 - Formal Power Series

5.3.1 Discussion

S is a set of configurations

If S is finite, $\Phi_S(x)$ is a polynomial If S is infinite, $\Phi_S(x)$ is an infinite sum

5.3.2Formal Power Series

Definition An expression:

$$A(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \cdots$$
$$\sum_{k>0} \alpha_k \cdot x^k$$

where $\{\alpha_k\}_k$ sequence of rational numbers is called a formal power series (FPS)

 α_k is called the coefficient of x^k in A(x)

We also introduce notation $[x^k]A(x) := \alpha_k$

Example: $[X^1]A(x) = \alpha_1$

Comments

Every polynomial is a FPS.

Example

$$P(x) = 1 + x + 3x^{2}34 \ P(x) = \sum_{k \geq 0} \alpha_{k} x^{k} \ \alpha_{0} = 1, \alpha_{1} = 1, \alpha_{234} = 3, \alpha_{i} = 0 \ \forall i \neq 0, 1, 234$$
$$[X^{5}]P(x) = 0$$

$$A(x) = \sum_{k \ge 0} \alpha_k x^k$$
, $B(x) = \sum_{k \ge 0} \alpha_k x^k$ are equal $(A(x) = B(x))$ if $\forall k \ge 0, \alpha_k - \beta_k$

$$A(x) + B(x) = \sum_{k \ge 0} (\alpha_k + \beta_k) x^k \text{ (sum of the two fps)}$$

$$A(x) = B(x) - \sum_{k \ge 0} \left(\sum_{k \ge 0}^n \alpha_k + \beta_k\right) x^k \text{ (product of two filter)}$$

$$A(x) \cdot B(x) = \sum_{n \ge 0} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k} \right) x^n$$
 (product of two fps)

$$\begin{split} & \textbf{Example} \\ & A(x) = \sum_{k \geq 0} k x^k, \ B(x) = \sum_{k \geq 0} x^k \\ & A(x) \cdot B(x) = \sum_{n \geq 0} \left(\sum_{k=0}^n k \cdot 1 \right) x^n = \sum_{n \geq 0} \frac{n(n+1)}{2} \cdot x^n \\ & [X^2 34] A(x) \cdot B(x) = \frac{239 \cdot 240}{2} \end{split}$$

Example

Does there exists
$$A(x) = \sum_{k \ge 0} \alpha_k x^k$$
 satisfying $(1 - x - x^2)A(x) = 1 + x$?

Let
$$1 + x = \sum_{k \ge 0} B_k x^k$$

Answer LHS =
$$1 - x - x^2$$
 · $A(x)$ = $(1 - x - x^2) \sum_{k \ge 0} \alpha_k x^k$ = $\sum_{k \ge 0} \alpha_k x^k - x \sum_{k \ge 0} \alpha_k x^k = x^2 \sum_{k \ge 0} \alpha_k x^k$ = $\sum_{k \ge 0} \alpha_k x^k - \sum_{k \ge 0} \alpha_k x^{k+1} - \sum_{k \ge 0} \alpha_k x^{k+2}$ = $\sum_{k \ge 0} \alpha_k x^k - \sum_{k \ge 1} \alpha_{k-1} x^k - \sum_{k \ge 2} \alpha_{k-2} x^k$ = $\alpha_0 + (\alpha_1 + \alpha_0) x' + \sum_{k \ge 2} (\alpha_k - \alpha_{k-1} - \alpha_{k-2}) x^k$ Take $\alpha_0 = \beta_0 = 1, \alpha_1 = \beta_1 = 1, \alpha_k - \alpha_{k-1} - \alpha_{k-2} = B_k = 0 \ \forall k \ge 2$ \square

6 Definitions

6.1 Chapter 1

6.1.1 Section 1.1

Composition

A composition of a non-negative integer n is a sequence: $m_1, ..., m_r$ of positive integers such that

$$m_1 + \cdots m_r = n$$

The numbers $m_1, ..., m_r$ are called the **parts** of the composition.

The **weight** of the composition is the sum of its parts.

6.1.2 Binary Strings

A binary string of length n is a sequence $a_1, ..., a_n$ where each a_i is 0 or 1.

6.1.3 Union

The **Union** $A \cup B$ is defined by:

$$A \cup B := \{x : x \in Aorx \in B\}$$

If A and B are **Disjoint**, that is, $A \cap B = \emptyset$ then,

$$|A \cup B| = |A| + |B|$$

We define define |S| as the number of elements in set S.

6.1.4 Cartesian Product

The Cartesian Product $A \times B$ of sets A and B is the set of all ordered pairs whose first element is an element of A and second element is an element of B, that is:

$$A \times B := \{(a, b) : a \in A, b \in B\}$$

Then

$$|A \times B = |A||B|$$

6.1.5 Cartesian Power

We define the **Cartesian Power** A^k inductively by setting $A^1 = A$ and:

$$A^{k+1} := A \times A^k$$

We have that $|A^k| = |A|^k$. The elements of A^k are the ordered k-tuples of elemnts from A.