Contents

A	rithmetical Functions and Dirichlet Multiplication	
2	1 Mobius function	
2	2 The Euler totient function	
2	3 The Dirichlet product	
2	4 The Mangoldt function Λ	
2	5 Multiplicative functions	
2	6 Liouville's function λ	
2	7 The divisor function σ_{α}	
2	8 Generalized convolution	
2	9 Formal power series	
2	10 The Selberg theorem	,

Chapter 1

The Fundamental Theorem of Arithmetic

induction, well-ordering principle, divisibility, gcd is commutative, associative, and distributive, relatively prime, primes, fundamental theorem of arithmetic.

1.1 The series of reciprocals of the primes

Theorem 1.1. The infinite series $\sum \frac{1}{p_n}$ diverges.

Proof. Suppose it does not, let $Q = p_1 \dots p_k$. Then, for all $r \geq 1$,

$$\sum_{n=1}^{r} \frac{1}{1 + nQ} \le \sum_{t=1}^{\infty} \left(\sum_{m=k+1}^{\infty} \frac{1}{p_m} \right)^t$$

Euclidean algorithm, division algorithm, gcd algorithm. Exercises

1.
$$1,2,(a,c) = 1 \implies (a,bc) = (a,b),18,28,29,30$$

Chapter 2

Arithmetical Functions and Dirichlet Multiplication

Definition: A function $f: \mathbb{N} \to \mathbb{C}$ is an arithmetical function.

2.1 Mobius function

The Mobius function μ , is defined as $\mu(1)=1$ and for n>1 if $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$

$$\mu(n) = \begin{cases} (-1)^k & \alpha_1 = \dots = \alpha_k = 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 2.1. If $n \ge 1$,

$$\sum_{d|n} \mu(d) = \left\lfloor \frac{1}{n} \right\rfloor = \begin{cases} 1 & n = 1 \\ 0 & \text{otherwise} \end{cases}$$

2.2 The Euler totient function

The Euler totient function ϕ is defined as

$$\phi(n) = \sum_{k=1}^{n} 1 = \left| \left\{ 1 \le k \le n \, \middle| \, (k, n) = 1 \right\} \right|$$

Theorem 2.2. If $n \ge 1$,

$$\sum_{d|n} \phi(d) = n$$

Theorem 2.3. If $n \ge 1$,

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

2.2.1 The product formular for $\phi(n)$

Theorem 2.4. For any $n \geq 1$,

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Corollary 2.5.

- 1. $\phi(p^{\alpha}) = (p-1)p^{\alpha-1}$.
- 2. $\phi(mn) = \phi(m)\phi(n)\frac{d}{\phi(d)}$ where d = (m, n).
- 3. If $a \mid b$, then $\phi(a) \mid \phi(b)$.
- 4. $\phi(n)$ is even for $n \geq 3$. Moreover, if n has r distinct odd prime factos, then $2^r \mid \phi(n)$.

2.3 The Dirichlet product

Definition: Let f and g be two arithmetical functions, their **Dirichlet product** is defined as

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Then, we can write $\phi = \mu * N$ where N(n) = n.

Theorem 2.6.

- 1. f * g = g * f.
- 2. (f * q) * k = f * (q * k).

Definition: The identity function, $I(n) = \lfloor \frac{1}{n} \rfloor$.

Theorem 2.7. For any arithmetical function f, I * f = f * I = f.

Theorem 2.8. If f is an arithmetical function with $f(1) \neq 0$, there is a unique arithmetical function f^{-1} , called the Dirichlet inverse of f such that

$$f * f^{-1} = f^{-1} * f = I$$

Moreover, f^{-1} is given by $f^{-1}(1) = \frac{1}{f(1)}$ and for n > 1

$$f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d < n}} f\left(\frac{n}{d}\right) f^{-1}(d)$$

Remark 1. The set of all arithmetical functions f with $f(1) \neq 0$ is an Abelian group under Dirichlet multiplication.

Proposition 2.9. $(f * g)^{-1} = f^{-1} * g^{-1}$.

Definition: The unit function u(n) = 1 for all n. Since $\sum_{d|n} \mu(d) = I(n)$, then $\mu * u = I$ and thus by uniqueness of inverse $\mu^{-1} = u$.

Theorem 2.10 (Mobius inversion formula). If

$$f(n) = \sum_{d|n} g(n)$$

then,

$$g(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right) \tag{2.1}$$

Proof. Since f = g * u, then $g = f * u^{-1} = f * \mu$.

2.4 The Mangoldt function Λ

Definition: For every integer $n \geq 1$, we define

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^m \text{ for some prime } p \text{ and } m \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 2.11. For $n \geq 1$,

$$\log(n) = \sum_{d|n} \Lambda(n)$$

and

$$\Lambda(n) = \sum_{d|n} \mu(d) \log\left(\frac{n}{d}\right) = -\sum_{d|n} \mu(d) \log(d)$$

2.5 Multiplicative functions

Definition: An arithmetical function f is multiplicative if $f \not\equiv 0$ and

$$f(mn) = f(m)f(n)$$

whenver (m, n) = 1. The function f is said to be **completely multiplicative** if for all m, n

$$f(mn) = f(m)f(n)$$

Remark 2. Multiplicative functions for a subgroup under *.

Proposition 2.12. If f is multiplicative, then f(1) = 1.

Theorem 2.13. Given an arithmetical function f with f(1) = 1

- 1. f is multiplicative if and only if $f(\prod p_i^{\alpha_i}) = \prod f(p_i^{\alpha_i})$
- 2. If f is multiplicative, then f is completely multiplicative if $f(p^{\alpha}) = (f(p))^{\alpha}$.

Theorem 2.14. If f and g are both multiplicative, then f * g is multiplicative. If g and f * g are both multiplicative, then f is multiplicative.

2.5.1 Inverse of completely multiplicative functions

Theorem 2.15. Let f be a multiplicative function. Then, f is completely multiplicative if and only if

$$f^{-1}(n) = \mu(n)f(n)$$

Remark 3. Note that $N = \phi * u$ and $\phi = N * \mu$ therefore, $\phi^{-1} = \mu^{-1} * N^{-1} = u * N^{-1}$. Since N is completely multiplicative, $\phi^{-1} = u * \mu N$. That is,

$$\phi^{-1}(n) = \sum_{d|n} d\mu(d)$$

Theorem 2.16. If f is multiplicative,

$$\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p))$$

2.6 Liouville's function λ

Definition: The Liouville function λ is defined as $\lambda(1) = 1$ and if $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, then

$$\lambda(n) = (-1)^{\alpha_1 + \dots + \alpha_k}$$

and also $\lambda^{-1}(n) = |\mu(n)|$.

2.7 The divisor function σ_{α}

Definition: For all $\alpha \in \mathbb{C}$, $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha} = u \times N^{\alpha}$

Proposition 2.17. The divisor function σ_{α} is multiplicative. Therefore,

$$\sigma_{\alpha}(p^{k}) = 1 + p^{\alpha} + \dots + p^{k\alpha} = \begin{cases} \frac{p^{(k+1)\alpha} - 1}{p^{\alpha} - 1} & \alpha \neq 0\\ k + 1 & \alpha = 0 \end{cases}$$

Theorem 2.18. For $n \ge 1$, we have

$$\sigma_{\alpha}^{-1}(n) = \sum_{d|n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)$$

2.8 Generalized convolution

Let $F:]0, \infty[\to \mathbb{C}$ such that F(x) = 0 for 0 < x < 1. Let f be an arithmetical function

$$f \circ F(x) = \sum_{n \le x} f(n) F\left(\frac{x}{n}\right)$$

is a function such that $f \circ F(x) = 0$ for 0 < x < 1 and defined on $]0, \infty[$.

Remark 4. In general, \circ is not commutative nor associative.

Theorem 2.19. Let f and q be two arithmetical functions

$$f \circ (g \circ F) = (f * g) \circ F$$

Theorem 2.20 (Inverse formula). Let f have inverse f^{-1} , then the equation

$$G(x) = \sum_{n \le x} f(x) F\left(\frac{x}{n}\right)$$

implies

$$F(x) = \sum_{n \le x} f^{-1}(x) G\left(\frac{x}{n}\right)$$

Theorem 2.21 (Generalized Mobius inversion). Let f be a completely multiplicative function

$$G(x) = \sum_{n < x} f(n) F\left(\frac{x}{n}\right) \iff F(x) = \sum_{n < x} \mu(n) f(n) G\left(\frac{x}{n}\right)$$

2.9 Formal power series

Definition of formal power series as usual with equality, sum, and multiplication. Therefore, formal power series form a ring with 0 and 1. If the leading coefficient is non-zero, then the formal power series is invertible.

Definition: Let f be an arithmetical function and p be a prime

$$f_p(x) = \sum_{n=0}^{\infty} f(p^n) x^n$$

is the Bell series of f modulo p.

Theorem 2.22. If f and g are multiplicative, then f = g if and only if $f_p = g_p$ for all p.

Example 2.1.

$$\mu_p(x) = 1 - x$$
 $I_p(x) = 1$ $\lambda_p(x) = \frac{1}{1 + x}$ $\phi_p(x) = \frac{1 - x}{1 - px}$ $u_p(x) = \frac{1}{1 - x}$ $N_p^{\alpha}(x) = \frac{1}{1 - p^{\alpha}x}$

Theorem 2.23. Let f and g be two arithmetical functions and h = f * g, then $h_p = f_p g_p$ for all p.

As a result,

$$(\sigma_{\alpha})_{p}(x) = N_{p}^{\alpha}(x)u_{p}(x) = \frac{1}{1 - p^{\alpha}x} \frac{1}{1 - x} = \frac{1}{1 - (p^{\alpha} + 1)x + p^{\alpha}x^{2}} = \frac{1}{1 - \sigma_{\alpha}(p) + p^{\alpha}x^{2}}$$

Definition: The derivative arithmetical function f is defined by

$$f'(n) = f(n)\log(n)$$

Theorem 2.24.

1.
$$(f+g)' = f' + g'$$
.

2.
$$(f * q)' = f' * q + f * q'$$
.

3.
$$(f^{-1})' = -f' * (f * f)^{-1}$$
 provided that $f(1) \neq 0$.

2.10 The Selberg theorem

Theorem 2.25. For $n \geq 1$,

$$\Lambda(n)\log(n) + \sum_{d|n} \Lambda(d)\Lambda\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d)\log^2\left(\frac{n}{d}\right)$$

Chapter 3

Averages of Arithmetical Functions

Arithmetical functions fluctuate a lot, by taking averages we can determine their behaviour

$$\tilde{f}(n) = \frac{1}{n} \sum_{k=1}^{n} f(k)$$

3.1 Asymptotic equality of function

 $f(x) \in O(g(x))$ if there exists M > 0 and a such that for all $x \ge a$, $|f(x)| \le M|g(x)|$. Usually, g is taken to be positive.

Definition: If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$, then f is asymptotic to g as $x\to\infty$ and we write $f(x)\sim g(x)$ as $x\to\infty$.