Topic Cheatsheet for GCP's Professional Machine Learning Engineer Beta Exam

Authors/contributors: David Chen, PhD

Credits & disclaimers can be found in README section of the source repository. Some references are included as %comments or hyperlinks the source file.

Abbreviations

Common abbreviations. ML, machine learning; DL, deep learning; AI, artificial intelligence, CV, computer vision; GC(P), Google Cloud (Platform); CI/CD: continuous integration / continuous delivery; SDK, software development kit; API, application programming interface; K8s, Kubernetes; GKE, Google Kubernetes Engine. MLE, maximum likelihood estimation; ROC, receiver-operation curve; AU(RO)C, area under the (receiver-operation) curve

I. Preparation for ML

Understanding the "Data Science Steps for ML"

- 1. Data extraction
- 2. Exploratory data analysis
- 3. Data preparation for the ML Task
- 4. Model training
- 5. Model evaluation
- 6. Model validation
- 7. Model serving
 - Microservices with REST API
 - Deployment on mobile devices
 - Batch predictions
- 8. Model monitoring

Defining an ML Problem

ML as Solution to Business Problems

- (Re)define your business problems
- Consider whether the problem could be solved without ML
- Define/anticipate utility of the ML output
- Identify data sources
- Pre-define "success" to solving the business challenge
 - Metric(s) used to define success
 - Key results (product or deliverables)
 - Incorrect or low-quality output (i.e. "unsuccessful" models)

Components of an ML Solution

- Define Predictive Outcome
- Identify Problem Type: Supervised (Classification or Regression), Unsupervised, Reinforcement
- Identify Input Feature Format
- Feasibility and implementation

Data Preparation

Data Ingestion

- Obtaining & importing data for use or storage
- File input types
- Database maintenance, migration
- Streaming data (from IoT devices, databases, or enduser)

Exploratory Data Analysis (EDA)

- Evaluation of data quality (domain- and organizationspecific knowledge/information may be needed)
- Data visualization (descriptive statistics)
- Inferential statistics (e.g. t-test to compare means, KS-tests to compare distributions) as needed, scale as needed

Feature Engineering

- Necessary (e.g. time series) or beneficial in many ML tasks:
- Encoding structured data types
- Feature Crosses: used to define a *synthetic feature* when data cannot be linearly separated (e.g. feature cross products x₁ × x₂
- Feature selection, e.g.
 - Univariate statistical methods (e.g. χ^2 test, t-test/linear model)
 - Recursive Feature Elimination (RFE)

Special considerations

- Imbalanced class distributions
 - Needs to be *known*, at minimum
 - Affects the metrics to employ (e.g. F1 score, AUC would be superior to crude accuracy in imbalanced binary classification)
 - Can affect optimization choices: modify objective function; oversampling the minority class(es)
- Data Leakage
 - Certain features available in your training data might not be available in the unknowns to predict!
 - When training, be careful not to include raw or engineered features that are computed from the classification/regression label

Data Pipelines

- Should be designed & built in advance for at-scale applications
- Batching vs. Streaming
 - Batching: Use of data stored in data lakes, processed in periodic intervals
 - Streaming (data streams): Use of data from live streams.
 Unique challenge due to 3Vs: Volume, Velocity (realtime), Variety (esp. unstructred data) (useful tool: Cloud Dataflow)
- Monitoring
 - "Four Golden Signals" of your cloud-based service: latency, traffic, error, saturation
 - Dashboards (Stackdriver Cloud Monitoring Dashboards API) can be a powerful tool in displaying multiple metrics
- Privacy, compliance, legal issues: Know what the restrictions are and plan ahead (e.g. privacy-preserving ML/AI, corrupting input, ...) (useful tool: Cloud IAM)

II. ML Model Development Model Development At-a-Glance

Generic ML Workflow

- 1. Training
 - Choose a model framework
 - Supervised
 - Unsupervised
 - Consider *Transfer Learning* (if applicable)
 - Monitoring / tracking metrics
 - Strategies to handle overfitting (e.g. regularization, ensemble learning, drop-out) & underfitting (increase model complexity)
 - Interpretability
- 2. Validation
 - · Check overfitting & underfitting
 - Compare trained model against pre-defined baseline (e.g. simple model or benchmark)
 - Unit tests
- 3. Scale-up & Serving**
 - Unit tests
 - Cloud AI model explainability
 - Distributed training
 - Scalable Model Analysis

ML Models

Gradient descent is used to optimize the *objective functions* of a machine-learning model:

Gradient Descent	п	Resolution
Full-batch Mini-batch	all (N) 1 < n < N	complete intermediate
Stochastic	1	noisy approximation

An *epoch* is the number of passes through the entire training dataset, and is a *hyperparameter* to be defined/tuned by the user.

Supervised Learning (with related concepts)

- Naive Bayes (flavors: Gaussian, Bernoulli, Multinomial)
- Decision trees (concept of *entropy*)
- Support Vector Machine (SVM)
 - Linearly vs. non-linearly separable
 - Kernels

Unsupervised Learning

- Clustering
 - K-means
 - Hierarchical Clustering
 - DBSCAN
- Dimensionality reduction
 - Principal Component Analysis (PCA)
 - t-SNE
- Gaussian Mixture Model (GMM), optimized by Expectation-Maximization (EM):

- 1. E step
- 2. M step Repeat until convergence

Overfitting

Bias-variance trade-off

- Characteristics of Loss vs. iteration curves, separately plotted for
 - Training set
 - Validation and/or test set
- Underfitting vs. overffiting patterns

Ways to address overfitting

- 1. Get more high-quality, well-labeled training data
- 2. Regularization
 - L2 penalty
 - L1 (LASSO) penalty
 - Elastic net
- 3. Ensemble learning
 - Bagging
 - Random Forest: Only the randomly chosen $1 \le m < M$ features used in split
 - Bagged Trees: all M features available used in split
 - Boosting (e.g. Gradient Boosted Trees/XGBoost)

Recommendation Systems

	Use	er info	Domain knowledge
Content-based Collaborative Filtering	./		✓
Knowledge-based	Ť		\checkmark

A *hybrid recommendation systems* uses more than one of the above, though not 100% possible at all times, it is generally the preferred solution.

Deep Learning

Subtypes of Neural Networks

- Feed forward neural network
- Convolutional Neural Network (CNN) & computer vision
- Recurrent Neural Network (RNN)
 - Sequence data (speech/text, time series)
 - Vanishing gradient problem
 - Gated Recurrent Units (GRU)
 - Long-short term memory (LSTM)
 - Application to Natural Language Processing (NLP)
 - * Language models
 - * Embeddings
 - * Architectures (e.g. transformers)
- Autoencoders (deep learning)
 - General architecture
 - * Encoding layers
 - Lower-dimensional representation (returned or used as input for subsequent autoencoder in a stack)
 - * Decoding layers
 - Flavors to address trival solutions:

- * Undercomplete autoencoder
- * De-noising autodencoders
- Sparse autencoders
- Application
 - * Data representation (feature engineering)
 - * Dimensionality reduction / data compression

III. Production-level ML with Cloud

MLOps: CI/CD in an ML System

	DevOps	Data Engineering	MLOps
Version ctrl.	Code	Code	Code, data, model
Pipeline	-	Data, ETL	Training, serving
Validation	Unit tests	Unit tests	Model valid.
CI/CD	Production	Data pipeline	(both)

Tools for virtualization:

- Virtual Machines (VMs)
- Containers
 - Clusters
 - Pods
- Kubernetes (K8s)

GCP tools:

- BigQuery
 - Google-managed data warehouse
 - Highly scalable, fast, optimized
 - Suitable for analysis & storage of structured data
 - Multi-processing enabled
- Cloud Dataprep
 - Managed cloud service for quick data exploration & transformation
 - Auto-scalable, eases data-preparation process
- Cloud Dataflow: provides serverless, parallel, distributed infrastructure for both batch & stream data processing by making use of Apache Beam TM
- Cloud ML APIs
 - Cloud Vision AI
 - Cloud Natural Language
 - Cloud Speech to Text
 - Cloud Video Intelligence

ML Pipeline Design

The ML code is only a small part of a production-level ML system

- Identify components, parameters, triggers, compute needs
- Orchestration Framework
 - Cloud Composer (based on Apache Airflow deployment)
 - GCP App Engine
 - Cloud Storage
 - Cloud Kubernetes Engine
 - Cloud Logging & Monitoring
- Strategies beyond single cloud:
 - Hybrid Cloud: blend of public & private cloud for mixed computing, storage, & services, allowing for agility (i.e. quick adaptation during business digital transformation)

 Multi Cloud: multiple clouds designated for different tasks (*but unlike parallel computing, synchronization across different ventors is NOT essential)

Procedures during Implementing a Training Pipeline

- Perform data validation (e.g. via Cloud Dataprep)
- Decouple components with Cloud Build (fully server-less CI/CD platform supporting any language)
 - Add layer of technical abstraction
 - Separate content producer & end users
 - Ensures software components are not tightly dependent on one another
- Construct & test parametrized pipeline definition in SDK (e.g. gcloud ml-engine)
- Tune compute performance
- Store data & generated artifacts (e.g. binaries, tarballs) via Cloud Storage

	Type	Transac.?	Complex Q?	Cap.
Cloud Datastore	NoSQL	√	Х	Terabytes+
Bigtable	NoSQL	(limited)	X	Petabytes+
Cloud Storage	Blobstore	X	X	Petabytes+
Cloud SQL	SQL	\checkmark	\checkmark	Terabytes
Cloud Spanner	SQL	\checkmark	\checkmark	Petabytes
BigQuery	SQL	X	\checkmark	Petabytes+

Considerations for Implementing the Serving Pipeline

- Model binary options
- Google Cloud serving options
- Testing for target performance
- Setup of trigger & pipeline schedule

Deployment with CI/CD (final step in MLOps), along with

- A/B testing: Google Optimize
- Canary testing, automated by GKE with Spinnaker

ML Solution Monitoring

Considerations in monitoring ML solutions:

- Monitor performance/quality of ML model predictions on an ongoing-basis (via Cloud Monitoring (Compute Engine) with a metric model), and then debug with Cloud Debugger
- Use robust logging strategies (e.g. Cloud Logging, especially Stackdriver (aka Cloud Operations) with beautiful dashboards)
- 3. Establish *continuous evaluation* metrics

Troubleshoot ML Solutions:

- Permission issues (IAM)
- Training error
- Serving error
- ML system failures/biases (at production)

Tune performance of ML solutions in production

- Simplify (optimize) of input pipeline
 - Reduce data redundancy in NLP model
 - Utilize Cloud Storage (e.g. object storage)
 - Simplification can take place in various places during the pipeline
- Identify of appropriate retraining policy
 - Under what circumstance(s)? How often? (e.g. when significant deviation or drift identified; periodically)
 - How? (e.g. by batch vs. online learning)