Name:	Signature:	Student Number:

1. Computers cannot do exact arithmetic; they represent approximations of real numbers using floating-point arithmetic. It is thus impossible to test if two real numbers are equal; the best we can do is test to see if they are approximately equal. Let us say that two real numbers x and y are approximately equal, and write $x \approx y$, if, and only if, they differ by no more than $1/1\,000\,000$. Thus, the relation \approx on $\mathbb R$ is defined as follows:

$$\approx = \left\{ (x,y) : |x-y| < \frac{1}{1000000} \right\}$$

Intuitively this ought to be an equivalence relation (reflexive, symmetric and transitive). Explain why it isn't.

ANSWER:		
		,

2. Match the property of the binary relation R on A listed on the left to a characterisation of that property on the right:

ANSWER:		
reflexive	•	$\bullet R \circ R \subseteq R$
irreflexive	•	$\bullet id_A \cap R = \emptyset$
symmetric	•	$\bullet R = R^{-1}$
antisymmetric	•	$ullet$ $\mathrm{id}_A\subseteq R$
transitive	•	$\bullet R \cap R^{-1} \subseteq id_A$