

Master professionnel II: Ingénierie mathématique: Option Statistique

Statistique Bayésienne.

Anne Philippe Université de Nantes Laboratoire de Mathématiques Jean Leray

Fiche 6. Prévision bayésienne

Exercice 1. (Suite de l'exercice 1 de la fiche 3)

On veut prévoir S^* le nombre d'étudiants qui dorment plus de 8 heures dans un groupe de taille N^* .

Données : on a observé S le nombre d'étudiants qui dorment plus de 8 heures dans un échantillon de taille N=28. La valeur observée est s=11.

On suppose que conditionnellement à p (la proportion des étudiants qui dorment plus de 8 heures par nuit), les deux échantillons sont indépendants

On suppose que la loi a priori sur le paramètre p est la loi beta de paramètres a=3.4 et b=7.4.

- 1) Quelle est la loi a posteriori de p?
- 2) Quelle est la loi de S^* conditionnellement à (S, p)
- 3) En déduire la loi prédictive de S^* (autrement dit la loi conditionnelle de S^* sachant S).
- 4) Donner une prévision ponctuelle de S^* (optimale au sens L^2)
- 5) Donner pour S^* un intervalle de prévision de niveau de confiance 95%.
- 6) Comparaison avec l'approche non bayésienne :
 - a Quelle est la prévision ponctuelle optimale au sens L^2 de S^* dans un contexte non bayesien?
 - b Quel prédicteur proposez-vous en pratique?
 - c Comparer avec le prédicteur obtenu à la question 4.
- 7) Représenter graphiquement
 - -a- le prédicteur bayesien de S^* en fonction de N^*
 - -b- ajouter les bornes du plus court l'intervalle de prévision de niveau de confiance $80\%,\,90\%,\,95\%$ et 99%

Exercice 2.

Soit $X_1...X_n$ n variables aléatoires définies par

$$X_0 = 0 \label{eq:X0}$$
 pour tout $i = 1, ..., n,$
$$X_i = a X_{i-1} + \varepsilon_i \label{eq:X0}$$

où $\varepsilon_1, ..., \varepsilon_n$ sont des variables aléatoires iid suivant la loi gaussienne $\mathcal{N}(0,1)$ et a est un paramètre réel inconnu.

• Calcul de la vraisemblance :

1) Soit U et V deux variables aléatoires indépendantes. On suppose que la loi de U (respectivement de V) admet une densité f_U (respectivement f_V). Montrer que la loi conditionnelle de W = g(U) + V sachant U admet pour densité

$$f_{W|U}(w|u) = f_V(w - g(u)).$$

- 2) Justifier que les variables aléatoires X_i et ε_{i+1} sont indépendantes.
- 3) En déduire que la loi de X_i sachant X_{i-1} est la loi normale de moyenne aX_{i-1} et de variance 1.
- 4) En déduire la densité $f_a^{(n)}$ de la loi des observations $X_1, ..., X_n$.
- Modèle bayésien. On suppose que la loi a priori sur a est la loi gaussienne $\mathcal{N}(0,1)$.
- 5) Calculer la loi a posteriori de a.
- 6) Quelle est la loi conditionnelle de X_{n+1} sachant $(X_1, ..., X_n, a)$?
- 7) Récupérer le fichier de données ARmodel.txt. Il contient n = 55 observations.

Résultat du cours.

Mélange continu de lois Soit X une variable aléatoire dont la loi admet une densité f par rapport à la mesure de Lebesgue. On suppose que

$$f(x) = \int_{\mathbb{R}^p} h(x|y)g(y) \, dy$$

où g et $h(\cdot|y)$, pour tout $y \in \mathbb{R}^p$, sont des densités de probabilité. Pour simuler un nombre aléatoire x suivant la loi de densité f:

- 1. on simule y suivant la loi de densité g
- 2. on simule x suivant la loi de densité $h(\cdot|y)$
- 3. on retourne x
- 8) Programmer une fonction qui retourne un échantillon suivant la loi prédictive de X_{n+1} sachant $X_1, ... X_n$.
- 9) Simuler un échantillon suivant la loi prédictive pour n = 50
- 10) A partir de l'échantillon simulé, donner
 - -a- une approximation de la densité de la loi prédictive,
 - -b- le plus court intervalle de prévision de niveau de confiance 95 %,
 - -c- un prédicteur ponctuel.
- 11) Comparer avec le vraie valeurs de X_{51} .
- 12) Reprendre les questions précédentes pour n = 51, ..., 54