模块二 三角恒等变换

重点知识回顾

一、和差角公式

- 1. $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$, $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$;
- 2. $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$, $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$;
- 3. $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta}$, $\tan(\alpha \beta) = \frac{\tan \alpha \tan \beta}{1 + \tan \alpha \tan \beta}$;
- 4. 辅助角公式: $a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$, 其中 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$. 在

辅助角公式中,若 a>0 ,则 $\varphi\in(-\frac{\pi}{2},\frac{\pi}{2})$; 若 a<0 ,可先提负号到外面,再用辅助角公式合并.

二、二倍角公式

- 1. 二倍角公式: $\sin 2\alpha = 2\sin \alpha\cos \alpha$, $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1 = 1 2\sin^2 \alpha$, $\tan 2\alpha = \frac{2\tan \alpha}{1 \tan^2 \alpha}$.
- 2. 降次公式: $\sin^2 \alpha = \frac{1-\cos 2\alpha}{2}$, $\cos^2 \alpha = \frac{1+\cos 2\alpha}{2}$, $\sin \alpha \cos \alpha = \frac{1}{2}\sin 2\alpha$.
- 3. 升次公式: $1+\cos 2\alpha = 2\cos^2 \alpha$, $1-\cos 2\alpha = 2\sin^2 \alpha$, $1\pm\sin 2\alpha = (\sin \alpha \pm \cos \alpha)^2$, $1=\sin^2 \alpha + \cos^2 \alpha$.

三、万能公式

1.
$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$
; 2. $\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$; 3. $\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$.

第1节 和差角、辅助角、二倍角公式(★★)

内容提要

和差角、辅助角、二倍角公式是三角函数的核心公式,本节涉及一些有关公式应用的基础题.

【例 1】已知 $\sin(\frac{\pi}{4} + \alpha) = \frac{1}{3}$,则 $\sin 2\alpha = .$

答案: $-\frac{7}{9}$

解法 1: 将 $\sin(\frac{\pi}{4} + \alpha)$ 展开,会出现 $\sin \alpha + \cos \alpha$,平方即可求得 $\sin 2\alpha$,

由題意, $\sin(\frac{\pi}{4} + \alpha) = \sin\frac{\pi}{4}\cos\alpha + \cos\frac{\pi}{4}\sin\alpha = \frac{\sqrt{2}}{2}(\cos\alpha + \sin\alpha) = \frac{1}{3}$, 所以 $\cos\alpha + \sin\alpha = \frac{\sqrt{2}}{3}$,

从而 $(\cos \alpha + \sin \alpha)^2 = \cos^2 \alpha + \sin^2 \alpha + 2\cos \alpha \sin \alpha = 1 + \sin 2\alpha = \frac{2}{9}$,故 $\sin 2\alpha = -\frac{7}{9}$.

解法 2:给值求值问题,也可将已知的角换元,把求值的角转换成已知角,

设 $t = \frac{\pi}{4} + \alpha$, 则 $\alpha = t - \frac{\pi}{4}$, 且 $\sin t = \frac{1}{3}$, 所以 $\sin 2\alpha = \sin 2(t - \frac{\pi}{4}) = \sin(2t - \frac{\pi}{2}) = -\cos 2t = 2\sin^2 t - 1 = -\frac{7}{9}$

【变式】(2022・新高考 II 卷)若 $\sin(\alpha+\beta)+\cos(\alpha+\beta)=2\sqrt{2}\cos(\alpha+\frac{\pi}{4})\sin\beta$,则(

(A) $tan(\alpha + \beta) = 1$

(B) $\tan(\alpha + \beta) = -1$ (C) $\tan(\alpha - \beta) = 1$ (D) $\tan(\alpha - \beta) = -1$

答案: D

解法 1: 可尝试将题干所给等式左右两侧都展开,看能否进一步变形,

由題意, $(\sin \alpha \cos \beta + \cos \alpha \sin \beta) + (\cos \alpha \cos \beta - \sin \alpha \sin \beta) = 2\sqrt{2}(\frac{\sqrt{2}}{2}\cos \alpha - \frac{\sqrt{2}}{2}\sin \alpha)\sin \beta$,

整理得: $(\sin \alpha \cos \beta - \cos \alpha \sin \beta) + (\cos \alpha \cos \beta + \sin \alpha \sin \beta) = 0$,

此时恰好又凑成了正弦、余弦的差角公式, 故再将其合并,

所以 $\sin(\alpha - \beta) + \cos(\alpha - \beta) = 0$, 故 $\tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = -1$.

解法 2: 注意到左侧的 $\sin(\alpha + \beta) + \cos(\alpha + \beta)$ 可以合并,故先将其合并,再看能否进一步变形,

 $\sin(\alpha+\beta)+\cos(\alpha+\beta)=\sqrt{2}\sin(\alpha+\beta+\frac{\pi}{4})\,, \ \text{代入题干等式化简得:} \ \sin(\alpha+\beta+\frac{\pi}{4})=2\cos(\alpha+\frac{\pi}{4})\sin\beta \ \text{①},$

注意到右侧的两个角是 $\alpha + \frac{\pi}{4}$ 和 β ,所以把左侧的 $\alpha + \beta + \frac{\pi}{4}$ 调整为 $(\alpha + \frac{\pi}{4}) + \beta$,再展开看看,

 $\mathbb{X}\sin(\alpha+\beta+\frac{\pi}{4}) = \sin[(\alpha+\frac{\pi}{4})+\beta] = \sin(\alpha+\frac{\pi}{4})\cos\beta + \cos(\alpha+\frac{\pi}{4})\sin\beta$

所以代入式①可得: $\sin(\alpha + \frac{\pi}{4})\cos\beta + \cos(\alpha + \frac{\pi}{4})\sin\beta = 2\cos(\alpha + \frac{\pi}{4})\sin\beta$,

整理得: $\sin(\alpha + \frac{\pi}{4})\cos\beta - \cos(\alpha + \frac{\pi}{4})\sin\beta = 0$, 故 $\sin(\alpha + \frac{\pi}{4} - \beta) = 0$,

所以 $\alpha + \frac{\pi}{4} - \beta = k\pi$, 从而 $\alpha - \beta = k\pi - \frac{\pi}{4}(k \in \mathbb{Z})$, 故 $\tan(\alpha - \beta) = \tan(k\pi - \frac{\pi}{4}) = \tan(-\frac{\pi}{4}) = -\tan(\frac{\pi}{4}) = -\tan(\frac{\pi}{4})$

【反思】结构决定变形方向,我们在对三角代数式变形时,应先观察其结构特征,发现其与常用公式的联 系,寻找变形方向.

【例 2】若 $\tan(\alpha - \frac{\pi}{4}) = \frac{1}{6}$,则 $\tan \alpha = \underline{\hspace{1cm}}$.

答案: ⁷/₅

解析: 由题意, $\tan(\alpha - \frac{\pi}{4}) = \frac{\tan \alpha - \tan \frac{\pi}{4}}{1 + \tan \alpha \tan \frac{\pi}{4}} = \frac{\tan \alpha - 1}{1 + \tan \alpha} = \frac{1}{6}$, 解得: $\tan \alpha = \frac{7}{5}$.

【变式 1】已知 $\tan \alpha = -2$, $\tan(\alpha + \beta) = \frac{1}{7}$,则 $\tan 2\beta$ 的值为.

答案: $-\frac{3}{4}$

解析: 先把 $tan(\alpha + \beta)$ 展开,结合已知的 $tan \alpha$ 可求出 $tan \beta$,再用二倍角公式求 $tan 2\beta$.

由题意, $\tan(\alpha+\beta) = \frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta} = \frac{-2+\tan\beta}{1+2\tan\beta} = \frac{1}{7}$,解得: $\tan\beta=3$,所以 $\tan2\beta = \frac{2\tan\beta}{1-\tan^2\beta} = -\frac{3}{4}$.

【变式 2】已知 α , β 均为锐角, $(1-\sqrt{3}\tan\alpha)(1-\sqrt{3}\tan\beta)=4$,则 $\alpha+\beta=($

(A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) $\frac{3\pi}{4}$ (D) $\frac{\pi}{2}$

答案: B

解析: 先将所给等式的左侧展开,由题意, $(1-\sqrt{3}\tan\alpha)(1-\sqrt{3}\tan\beta)=1-\sqrt{3}(\tan\alpha+\tan\beta)+3\tan\alpha\tan\beta=4$, 上式中有 $\tan \alpha + \tan \beta$ 、 $\tan \alpha \tan \beta$ 这些结构,自然想到往 $\tan(\alpha + \beta)$ 的展开式去变形,

所以 $-(\tan \alpha + \tan \beta) = \sqrt{3}(1 - \tan \alpha \tan \beta)$, 从而 $\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = -\sqrt{3}$, 故 $\tan(\alpha + \beta) = -\sqrt{3}$,

又 α , β 都是锐角, 所以 $\alpha+\beta\in(0,\pi)$, 故 $\alpha+\beta=\frac{2\pi}{3}$.

【例 3】已知 $\theta \in (\frac{3\pi}{2}, 2\pi)$,且 $\cos 2\theta + \cos \theta = 0$,则 $\sin 2\theta + \sin \theta = ($)

(B) $\sqrt{3}$ (C) $-\sqrt{3}$ (D) $\sqrt{2}$

答案: C

解析:将题干等式中的 $\cos 2\theta$ 换成 $2\cos^2\theta-1$,可统一角度和名称,求出 $\cos\theta$,

由题意, $\cos 2\theta + \cos \theta = 2\cos^2 \theta - 1 + \cos \theta = 0$,解得: $\cos \theta = \frac{1}{2}$ 或-1,

又 $\theta \in (\frac{3\pi}{2}, 2\pi)$,所以 $\cos \theta > 0$, $\sin \theta < 0$, 从而 $\cos \theta = \frac{1}{2}$, $\sin \theta = -\sqrt{1-\cos^2 \theta} = -\frac{\sqrt{3}}{2}$,

故 $\sin 2\theta + \sin \theta = 2\sin \theta \cos \theta + \sin \theta = 2 \times (-\frac{\sqrt{3}}{2}) \times \frac{1}{2} + (-\frac{\sqrt{3}}{2}) = -\sqrt{3}$.

【反思】本题求得 $\cos\theta = \frac{1}{2}$ 后,也可结合 $\theta \in (\frac{3\pi}{2}, 2\pi)$ 直接得出 $\theta = \frac{5\pi}{3}$,再计算 $\sin 2\theta + \sin \theta$.

【例 4】 $\cos 15^{\circ} \cos 45^{\circ} - \cos 75^{\circ} \sin 45^{\circ} = .$

答案: $\frac{1}{2}$

解析:看到这个式子,想到凑形式,把 cos 75° 变成 sin 15°,就凑成了余弦和角公式,

 $\cos 15^{\circ} \cos 45^{\circ} - \cos 75^{\circ} \sin 45^{\circ} = \cos 15^{\circ} \cos 45^{\circ} - \sin 15^{\circ} \sin 45^{\circ} = \cos (15^{\circ} + 45^{\circ}) = \cos 60^{\circ} = \frac{1}{2}.$

【变式 1】
$$\frac{\sin 110^{\circ} \sin 20^{\circ}}{\cos^2 155^{\circ} - \sin^2 155^{\circ}} = .$$

答案: $\frac{1}{2}$

解析: 先看角之间的关联, 110° = 90° + 20°, 所以分子诱导后可以利用正弦倍角公式合并,

原式 =
$$\frac{\sin(90^{\circ} + 20^{\circ})\sin 20^{\circ}}{\cos 310^{\circ}} = \frac{\cos 20^{\circ}\sin 20^{\circ}}{\cos(360^{\circ} - 50^{\circ})} = \frac{\frac{1}{2}\sin 40^{\circ}}{\cos 50^{\circ}} = \frac{1}{2} \cdot \frac{\sin 40^{\circ}}{\sin 40^{\circ}} = \frac{1}{2}.$$

【变式 2】 $\tan 25^{\circ} + \tan 35^{\circ} + \sqrt{3} \tan 25^{\circ} \tan 35^{\circ} = .$

答案: √3

解析: 看到 $\tan 25^\circ + \tan 35^\circ$ 和 $\tan 25^\circ \tan 35^\circ$,联想到 $\tan (25^\circ + 35^\circ)$,而 $25^\circ + 35^\circ = 60^\circ$,恰好是特殊角,所以 先用正切和角公式将 $\tan 60^\circ$ 按此拆分展开,

因为 $\tan 60^\circ = \tan(25^\circ + 35^\circ) = \frac{\tan 25^\circ + \tan 35^\circ}{1 - \tan 25^\circ \tan 35^\circ} = \sqrt{3}$,所以 $\tan 25^\circ + \tan 35^\circ = \sqrt{3} - \sqrt{3} \tan 25^\circ \tan 35^\circ$,

故 $\tan 25^{\circ} + \tan 35^{\circ} + \sqrt{3} \tan 25^{\circ} \tan 35^{\circ} = \sqrt{3}$.

【反思】给具体角求值,关键是寻找角的关系,如相加、相减为特殊角可考虑用和差角公式,相加、相减为90°、180°等可考虑用诱导公式,或者角度之间有2倍关系,可考虑用二倍角公式.

【例 5】设 $f(x) = \sin x - \sqrt{3} \cos x$,则 f(x) 的最大值为.

答案: 2

解析: 先利用辅助角公式将解析式合并, $f(x) = \sqrt{1^2 + (-\sqrt{3})^2} \sin(x + \varphi) = 2\sin(x + \varphi)$,所以 $f(x)_{max} = 2$. (因为 f(x) 的定义域为 **R**,所以不用去求辅助角 φ 的值)

【变式 1】设 $f(x) = \sin x - \sqrt{3} \cos x (0 \le x \le \frac{2\pi}{3})$,则 f(x) 的最大值为.

答案: √3

解析: 先利用辅助角公式将解析式合并, $f(x) = \sqrt{1^2 + (-\sqrt{3})^2} \sin(x + \varphi) = 2\sin(x + \varphi)$,

这里因为规定了 $0 \le x \le \frac{2\pi}{3}$,所以必须求出 φ 的值,因为 $\tan \varphi = -\sqrt{3}$ 且 $\varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$,所以 $\varphi = -\frac{\pi}{3}$,

从而 $f(x) = 2\sin(x - \frac{\pi}{3})$,接下来可将 $x - \frac{\pi}{3}$ 换元成 t,借助 $y = 2\sin t$ 的图象来求最值,

设
$$t = x - \frac{\pi}{3}$$
, 则 $f(x) = 2\sin t$, 当 $0 \le x \le \frac{2\pi}{3}$ 时, $-\frac{\pi}{3} \le t = x - \frac{\pi}{3} \le \frac{\pi}{3}$,

函数 $y = 2\sin t$ 的部分图象如图所示,由图可知当 $t = \frac{\pi}{3}$ 时, f(x) 取得最大值 $\sqrt{3}$.

【变式 2】已知 $f(x) = \sin x + 2\cos x (0 \le x \le \frac{\pi}{2})$,则 f(x) 的值域为.

答案: [1,√5]

解析: 由题意, $f(x) = \sqrt{1^2 + 2^2} \sin(x + \varphi) = \sqrt{5} \sin(x + \varphi)$, 为了求值域, 可先将 $x + \varphi$ 换元成 t,

设
$$t = x + \varphi$$
,则 $f(x) = \sqrt{5} \sin t$,因为 $0 \le x \le \frac{\pi}{2}$,所以 $\varphi \le t \le \frac{\pi}{2} + \varphi$,

接下来必须研究辅助角 φ ,才能求出 $y = \sqrt{5} \sin t \, \text{在} \left[\varphi, \frac{\pi}{2} + \varphi \right]$ 上的值域,

由辅助角公式知 $\sin\varphi = \frac{2\sqrt{5}}{5}$, $\cos\varphi = \frac{\sqrt{5}}{5}$, 所以 φ 在第一象限, 不妨设 $\varphi \in (0,\frac{\pi}{2})$,(注意此处 φ 不是变量,

而是一个确定的非特殊角)

从而 $y = \sqrt{5} \sin t$ 在 $[\varphi, \frac{\pi}{2}]$ 上 \nearrow ,在 $[\frac{\pi}{2}, \frac{\pi}{2} + \varphi]$ 上 \searrow ,故当 $t = \frac{\pi}{2}$ 时, f(x) 取得最大值 $\sqrt{5}$;

对于最小值,根据单调性,只需比较左右端点谁更小即可,

又 $\sin \varphi = \frac{2\sqrt{5}}{5} > \sin(\frac{\pi}{2} + \varphi) = \cos \varphi = \frac{\sqrt{5}}{5}$,所以 $y = \sqrt{5} \sin t$ 在 $[\varphi, \frac{\pi}{2} + \varphi]$ 上的图象如图所示,

由图可知, 当 $t = \frac{\pi}{2} + \varphi$ 时, f(x) 取得最小值 1, 故 f(x) 的值域为[1, $\sqrt{5}$].

【反思】即使辅助角 φ 不是特殊角,我们也可以通过求出 $\cos \varphi$ 和 $\sin \varphi$,并用它们来解决问题.

强化训练

1. (2022・南充模拟・★★)锐角
$$\alpha$$
满足 $\sin\alpha = \frac{\sqrt{10}}{10}$,则 $\cos(2\alpha + \frac{\pi}{6}) = .$

答案:
$$\frac{4\sqrt{3}-3}{10}$$

解析: 由题意, $\cos \alpha = \sqrt{1-\sin^2 \alpha} = \frac{3\sqrt{10}}{10}$, 所以 $\sin 2\alpha = 2\sin \alpha \cos \alpha = \frac{3}{5}$, $\cos 2\alpha = 2\cos^2 \alpha - 1 = \frac{4}{5}$,

所以 $\cos(2\alpha + \frac{\pi}{6}) = \cos 2\alpha \cos \frac{\pi}{6} - \sin 2\alpha \sin \frac{\pi}{6} = \frac{4}{5} \times \frac{\sqrt{3}}{2} - \frac{3}{5} \times \frac{1}{2} = \frac{4\sqrt{3} - 3}{10}$.

2. $(2022 \cdot 安徽模拟 \cdot \star \star)$ 若 α 是第二象限的角,且 $\sin(\pi - \alpha) = \frac{3}{5}$,则 $\tan 2\alpha = .$

答案: $-\frac{24}{7}$

解析: 由题意, $\sin(\pi - \alpha) = \sin \alpha = \frac{3}{5}$,又 α 是第二象限的角,所以 $\cos \alpha = -\sqrt{1-\sin^2 \alpha} = -\frac{4}{5}$,

从而 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{3}{4}$, 故 $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = -\frac{24}{7}$.

3. $(2022 \cdot 北京模拟 \cdot \star \star \star)$ 若 $\cos(\pi - \alpha) = -\frac{\sqrt{10}}{10}$, $\alpha \in (0, \frac{\pi}{2})$, $\tan(\alpha + \beta) = \frac{1}{2}$, 则 β 可以为. (写出一个满足条件的 β)

答案: $-\frac{\pi}{4}$ (答案不唯一,满足 $\beta = k\pi - \frac{\pi}{4}(k \in \mathbb{Z})$ 的 β 均可)

解析: 先用诱导公式把 $\cos(\pi - \alpha)$ 化简, $\cos(\pi - \alpha) = -\cos \alpha = -\frac{\sqrt{10}}{10} \Rightarrow \cos \alpha = \frac{\sqrt{10}}{10}$,

又 $\alpha \in (0, \frac{\pi}{2})$,所以 $\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{3\sqrt{10}}{10}$,故 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = 3$,

我们要写出一个 β ,可以先计算 $\tan \beta$,直接把已知的 $\tan(\alpha + \beta)$ 展开即可,

由题意, $\tan(\alpha+\beta) = \frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta} = \frac{3+\tan\beta}{1-3\tan\beta} = \frac{1}{2}$,解得: $\tan\beta=-1$,所以 $\beta=k\pi-\frac{\pi}{4}(k\in\mathbf{Z})$.

4. $(2022 \cdot 全国二模 \cdot \star \star \star)$ 若 $\tan(\frac{\pi}{4} - x) = 2\tan(\frac{\pi}{4} + x)$,则 $\sin 2x = ($)

(A)
$$-\frac{3}{5}$$
 (B) $\frac{3}{5}$ (C) $-\frac{1}{3}$ (D) $\frac{1}{3}$

答案: C

解析: 注意到 $(\frac{\pi}{4}-x)+(\frac{\pi}{4}+x)=\frac{\pi}{2}$, 故若将 $\frac{\pi}{4}-x$ 换元成t,则 $\frac{\pi}{4}+x=\frac{\pi}{2}-t$,可将已知等式用诱导公式化简,

令 $t = \frac{\pi}{4} - x$,则 $x = \frac{\pi}{4} - t$,所以 $x + \frac{\pi}{4} = \frac{\pi}{2} - t$,代入 $\tan(\frac{\pi}{4} - x) = 2\tan(\frac{\pi}{4} + x)$ 可得 $\tan t = 2\tan(\frac{\pi}{2} - t)$,

从而 $\frac{\sin t}{\cos t} = \frac{2\sin(\frac{\pi}{2}-t)}{\cos(\frac{\pi}{2}-t)} = \frac{2\cos t}{\sin t}$,故 $\sin^2 t = 2\cos^2 t$,结合 $\sin^2 t + \cos^2 t = 1$ 可求得 $\cos^2 t = \frac{1}{3}$,

所以 $\sin 2x = \sin 2(\frac{\pi}{4} - t) = \sin(\frac{\pi}{2} - 2t) = \cos 2t = 2\cos^2 t - 1 = -\frac{1}{3}$

5. $(2022 \cdot 全国乙卷 \cdot ★★) \cos^2 \frac{\pi}{12} - \cos^2 \frac{5\pi}{12} = ($)

(A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{3}$ (C) $\frac{\sqrt{2}}{2}$ (D) $\frac{\sqrt{3}}{2}$

答案: D

解法 1: 两项都有平方,可降次,且降次后恰好都化为特殊角,

曲题意, $\cos^2 \frac{\pi}{12} - \cos^2 \frac{5\pi}{12} = \frac{1 + \cos \frac{\pi}{6}}{2} - \frac{1 + \cos \frac{5\pi}{6}}{2} = \frac{1 + \frac{\sqrt{3}}{2}}{2} - \frac{1 + (-\frac{\sqrt{3}}{2})}{2} = \frac{\sqrt{3}}{2}$.

解法 2: 注意到 $\frac{\pi}{12} + \frac{5\pi}{12} = \frac{\pi}{2}$,故用诱导公式将角统一成 $\frac{\pi}{12}$,可利用倍角公式求值,

曲题意, $\cos^2\frac{\pi}{12} - \cos^2\frac{5\pi}{12} = \cos^2\frac{\pi}{12} - \cos^2(\frac{\pi}{2} - \frac{\pi}{12}) = \cos^2\frac{\pi}{12} - \sin^2\frac{\pi}{12} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$.

6. (2022 • 黑龙江模拟 • ★★) 数学家华罗庚倡导的"0.618 优选法"在各领域都有广泛应用, 0.618 就是

黄金分割比 $m = \frac{\sqrt{5}-1}{2}$ 的近似值,黄金分割比还可以表示成 $2\sin 18^\circ$,则 $\frac{2m\sqrt{4-m^2}}{2\cos^2 27^\circ -1} = ($)

(A) 4 (B) $\sqrt{5}+1$ (C) 2 (D) $\sqrt{5}-1$

答案: A

解析: 由题意, $\frac{2m\sqrt{4-m^2}}{2\cos^2 27^\circ - 1} = \frac{4\sin 18^\circ \sqrt{4-4\sin^2 18^\circ}}{\cos 54^\circ} = \frac{4\sin 18^\circ \sqrt{4\cos^2 18}}{\cos 54^\circ} = \frac{8\sin 18^\circ \cos 18^\circ}{\cos 54^\circ}$

 $= \frac{4\sin 36^{\circ}}{\cos 54^{\circ}} = \frac{4\sin(90^{\circ} - 54^{\circ})}{\cos 54^{\circ}} = \frac{4\cos 54^{\circ}}{\cos 54^{\circ}} = 4.$

7. (2022 • 常州模拟 • ★ ★) 已知 $a = \frac{\sqrt{2}}{2}(\cos 1^{\circ} - \sin 1^{\circ})$, $b = \frac{1 - \tan^{2} 22.5^{\circ}}{1 + \tan^{2} 22.5^{\circ}}$, $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ}$,

则 a、b、c 的大小关系为 ()

(A) b > a > c (B) c > b > a (C) c > a > b (D) b > c > a

答案: B

解析: 要比较 a、b、c 的大小,应先把 a、b、c 化为同名三角函数值,

曲题意, $a = \frac{\sqrt{2}}{2}(\cos 1^{\circ} - \sin 1^{\circ}) = \sin 45^{\circ} \cos 1^{\circ} - \cos 45^{\circ} \sin 1^{\circ} = \sin (45^{\circ} - 1^{\circ}) = \sin 44^{\circ}$,

 $b = \frac{1 - \tan^2 22.5^{\circ}}{1 + \tan^2 22.5^{\circ}} = \frac{1 - \frac{\sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ}}}{1 + \frac{\sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ}}} = \frac{\cos^2 22.5^{\circ} - \sin^2 22.5^{\circ}}{\cos^2 22.5^{\circ} + \sin^2 22.5^{\circ}} = \cos^2 22.5^{\circ} - \sin^2 22.5^{\circ} = \cos 45^{\circ} = \sin 45^{\circ},$

 $c = \sin 22^{\circ} \cos 24^{\circ} + \cos 22^{\circ} \sin 24^{\circ} = \sin(22^{\circ} + 24^{\circ}) = \sin 46^{\circ}$,

因为 $y = \sin x$ 在 $(0, \frac{\pi}{2})$ 上 \nearrow , 所以 $\sin 46^\circ > \sin 45^\circ > \sin 44^\circ$, 故 c > b > a .

8. $(\star\star\star)$ 设当 $x=\theta$ 时,函数 $f(x)=\sin x-2\cos x$ 取得最大值,则 $\cos\theta=$.

答案: $-\frac{2\sqrt{5}}{5}$

解析: 先用辅助角公式,将f(x)合并,求出其最大值, $f(x) = \sqrt{5}\sin(x+\varphi)$,所以 $f(x)_{max} = \sqrt{5}$,

由题意, $f(\theta) = \sqrt{5}\sin(\theta+\varphi) = \sqrt{5}$, 所以 $\sin(\theta+\varphi) = 1$, 要求 $\cos\theta$, 可先由此式将 θ 求出来,

从而 $\theta + \varphi = 2k\pi + \frac{\pi}{2}$, 故 $\theta = 2k\pi + \frac{\pi}{2} - \varphi(k \in \mathbf{Z})$, 所以 $\cos \theta = \cos(2k\pi + \frac{\pi}{2} - \varphi) = \sin \varphi$,

由辅助角公式, $\sin \varphi = \frac{-2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$, 故 $\cos \theta = -\frac{2\sqrt{5}}{5}$.

【反思】在辅助角公式 $a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$ 中,若需要用到辅助角 φ ,但 φ 又不是特殊角,则我们可以利用 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$ 来解决问题.