Диагностика нетипичных наблюдений

• • План лекции

- Множественные выбросы
 - Кластеризация
 - Изменение функциональной формы
- Одиночные выбросы
 - Классификация выбросов
 - Коррекция

Множественные выбросы (анализ диаграммы рассеяния)

Пусть мы изучаем некую зависимость Y(X) (например, доли расходов на питание в совокупных расходах населения выборки стран от ВВП).

Диаграмма рассеяния говорит о том, что выборка неоднородна.

Множественные выбросы (анализ эмпирических распределений)

Гистограмма и ядерная оценка функции плотности зависимой переменной показывают, что выборка описывается смесью двух распределений

$$F(Y) = (1 - \alpha)F_1(Y) + \alpha F_2(Y)$$

Множественные выбросы (оценивание)

Оценка без учета неоднородности

Оценка с учетом неоднородности

Множественные выбросы (учет кластеризации)

Для учета неоднородности во второй модели используются мультипликативные дамми.

Из таблицы видно, что удачная кластеризация радикально повышает качество подгонки

Переменные	Модель 1	Модель 2
X D D*X _cons	+	1.8380 22.8460*** -7.9744*** -6.5375***
N r2 r2_a	50 0.0049 -0.0158	50 0.9462 0.9427

Множественные выбросы (учет кластеризации)

Анализ остатков регрессий показывает, что кластеризация полностью снимает в случае модели 2 проблему множественных выбросов

Skewness/Kurtosis tests for Normality						
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2	
+-						
e_m1	50	0.8382	0.0006	9.91	0.0071	
e_m2	50	0.8219	0.3623	0.91	0.6333	

Пусть теперь мы изучаем зависимость Y(X), где Y – продажи, а X – реклама.

Диаграмма рассеяния опять говорит нам о том, что выборка неоднородна.

Мы можем проигнорировать неоднородность, можем ввести дамми на кластеры, а можем изменить функциональную

Сопоставим оценки 3-х моделей

Переменные	Модель 1	Модель 2	Модель 3
X	-3.5135***	1.8380	4.2824***
D		12.8460***	
D*X		-7.9744***	
X*X	[-1.8492***
_cons	9.1310***	3.4625***	2.8791***
r2		0.9285	0.9409
r2_a	0.6898	0.9238	0.9384

Сравнение по критериям качества подгонки показывает явное преимущество модели 3 с квадратичной зависимостью от X

Анализ остатков тоже не дает веских оснований сомневаться в качестве 3-ей модели

Skewness/Kurtosis tests for Normality

]01	joint	
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2	
e m1	50	0.0072	0.6422	6.75	0.0342	
e_m2	50	0.8219	0.3623	0.91	0.6333	
e_m3	50	0.0877	0.7959	3.16	0.2063	

• • Множественные выбросы (вывод)

- Нетипичные наблюдения понятие относительное.
- То, что нетипично для одной модели, может вполне удачно вписываться в другую.
- Если нетипичных наблюдений много, следует искать способ улучшить спецификацию модели.

Одиночные выбросы

В одних случаях наличие выбросов почти не меняет вид зависимости

В других возникают довольно заметные искажения

С чем это связано?

Одиночные выбросы (визуальный анализ)

- Рассмотрим пространственную выборку.
- Пусть по графику остатков обнаружен одиночный выброс.

• Одиночные выбросы (теоретический анализ)

- Попробуем выяснить, что будет с оценками, если удалить одиночный выброс
- Переупорядочим наблюдения так, чтобы выброс оказался в последней строке

$$X = \begin{pmatrix} \widetilde{X} \\ X'_n \end{pmatrix} \quad Y = \begin{pmatrix} \widetilde{Y} \\ Y'_n \end{pmatrix} \quad X' = \begin{pmatrix} \widetilde{X} \\ X \end{pmatrix}$$

$$X'X = \widetilde{X}'\widetilde{X} + X_n X_n' \qquad X'Y = \widetilde{X}'\widetilde{Y} + X_n Y_n$$
$$\widetilde{X}'\widetilde{X}\beta_{(-n)} = \widetilde{X}'\widetilde{Y}$$

• $eta_{\scriptscriptstyle (-n)}$ вектор коэффициентов регрессии при удалении выброса

Связь коэффициентов до и после удаления выбросов

• В результате цепочки выкладок получаем

$$\hat{\beta}_{(-n)} = \hat{\beta} - \underbrace{(X'X)^{-1}X_n}_{1-P_{nn}} \hat{\varepsilon}_n$$

- Овалом выделено смещение оценки от удаления выброса
- Выводы:
 - ullet Если остаток $\hat{\mathcal{E}}_n$ велик, оценки могут сильно измениться
 - Если $P_{nn} \approx 1$, то после удаления выброса вообще нельзя будет получить адекватные оценки из-за мультиколлинеарности

Классификация выбросов

- вертикальный выброс (остаток $\hat{\mathcal{E}}_i$ велик)

- точка разбалансировки или выброс с плохим плечом (bad leverage outlier)

$$(P_{ii} \approx 1)$$

Что делать с единичным выбросом?

- Если, как в рассмотренном примере, он одновременно и вертикальный, и с плохим плечом, и при этом его удаление только улучшает результат, его естественно удалить.
- Можно параллельно проводить оценивание с выбросом и без для контроля робастности результатов.
- Ввести дамми на выброс и проверить ее значимость.
- Использовать робастные методы оценивания (медианную регрессию).

Спасибо за внимание!