Applied Multivariate Statistical Analysis: A Note

2017年12月28日

1 Linear Algebra

Theorem 给定正定矩阵 $B_{p \times p}$ 以及标量 b > 0,我们有

$$\frac{1}{|\Sigma|^b} e^{-\text{tr}(\Sigma^{-1}B)/2} \le \frac{1}{|B|^b} (2b)^{pb} e^{-pb}$$

等号成立当且仅当 $\Sigma = \frac{1}{2b}B$.

Theorem 设 A, B 均为 J 阶方阵,记其特征值从大到小排列为 $\{\lambda_j(A)\}_{j=1}^J, \{\lambda_j(B)\}_{j=1}^J, \text{则有}$

$$\sum_{j=1}^{J} [\lambda_j(A) - \lambda_j(B)]^2 \le \operatorname{tr}[(A - B)(A - B)^T]$$

Theorem 设 A 为 J 阶方阵,记其特征值从大到小排列为 $\{\lambda_j(A)\}_{j=1}^J$,U 为 $J \times K$ 阶列正交矩阵,则有

$$\lambda_j(U^T A U) \le \lambda_j(A)$$

等号成立当且仅当 U 的列向量是 A 的前 K 个特征值.

2 Multivariate Normal Distribution

Theorem 设 $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ 服从多元正态分布 $N_P(\mu, \Sigma)$,其中 $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$, $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$. 则在给定 $X_2 = x_2$ 的条件下, X_1 服从均值为 $\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2)$,协方差为 $\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ 的多元正态分布.

Theorem 设 $X \sim N_{n \times p}(M, I_n \otimes \Sigma), A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{p \times q}$,则 Y 是正态矩阵当且仅当下列条件同时成立:

- (i) 存在常数 α 使得 $A1_n = \alpha 1_n$ 或者 $B^T \mu = 0$;
- (ii) 存在常数 β 使得 $AA^T = \beta I_n$ 或者 $B^T \Sigma B = 0$.

如果上述条件同时成立,则 $Y \sim N_{m \times q}(\alpha B^T \mu, \beta B^T \Sigma B)$.

Theorem 设 $X \sim N_{n \times p}(M, I_n \otimes \Sigma)$, C_1, \dots, C_k 是对称矩阵. 如果 $C_r C_s = 0$ 对于一切 $r \neq s$ 均成立,则 $X^T C_1 X, \dots, X^T C_k X$ 相互独立.

Theorem 设 $X \sim N_{n \times p}(M, I_n \otimes \Sigma)$, A, B 均为 n 阶对称幂等矩阵,则 X^TAX 与 X^TBX 相互独立 $\Leftrightarrow AB = O$.

3 Cochran's Theorem

Theorem 设 x 是一个 n 维向量,且存在一列半正定矩阵 $A_j, j = 1, 2, \cdots, k$ 使得 $x^T x = \sum_{j=1}^k x^T A_j x$. 记 $Q_j = x^T A_j x, r_j = \operatorname{rank}(A_j), S_j = \sum_{i=1}^j r_i, j = 1, 2, \cdots, k$,如果 $\sum_{j=1}^k r_j = n$,则存在正交矩阵 C 和向量 y 使得 x = Cy,且有 $Q_j = \sum_{i=S_{j-1}+1}^{S_j} y_i^2$.

Proof 以 n=2 为例,设 $x^Tx=x^TA_1x+x^TA_2x$,并设 $A_1=C\Lambda_1C^T$,其中 C 是正交矩阵, Λ_1 是对角矩阵. 不妨设 Λ_1 的前 r_1 个对角元不为 0,记 x=Cy,则有

$$y^{T}C^{T}A_{1}Cy + y^{T}C^{T}A_{2}Cy = y^{T}\Lambda_{1}y + y^{T}C^{T}A_{2}Cy = \sum_{i=1}^{r_{1}} \lambda_{i}y_{i}^{2} + y^{T}C^{T}A_{2}Cy$$

从而

$$y^{T}C^{T}A_{2}Cy = x^{T}x - \sum_{j=1}^{r_{1}} \lambda_{j}y_{j}^{2} = y^{T}y - \sum_{j=1}^{r_{1}} \lambda_{j}y_{j}^{2} = \sum_{j=1}^{r_{1}} (1 - \lambda_{j})y_{j}^{2} + \sum_{j=r_{1}+1}^{n} y_{j}^{2}$$

等号左边是秩为 r_2 的二次型,为了使等号两边的秩相等,必须有 $1-\lambda_j=0, j=1,2,\cdots,r_1$,从而进一步得到 $C^TA_2C=I$.

Theorem 设 $X \sim N_n(0, \sigma^2 I)$, 且存在一列半正定矩阵 $A_j, j = 1, 2, \dots, k$ 使得 $X^T X = \sum_{j=1}^k X^T A_j X$. 记 $Q_j = X^T A_j X, r_j = \operatorname{rank}(A_j), S_j = \sum_{i=1}^j r_i, j = 1, 2, \dots, k$,如果 $\sum_{j=1}^k r_j = n$,则

i. Q_1, Q_2, \cdots, Q_k 相互独立,

ii. $Q_j \sim \sigma^2 \chi_{r_j}^2, j = 1, 2, \dots, k$,

4 Distributions

4.1 Wishart Distribution

Definition 设 $X_{(i)} \sim N_p(0, \Sigma), i = 1, 2, \cdots, n$ 相互独立,则称随机矩阵

$$W = \sum_{i=1}^{n} X_{(i)} X_{(i)}^{T}$$

服从 Wishart 分布, 记为 $W \sim W_p(n, \Sigma)$.

Theorem 设 $X_{(i)} \sim N_p(0,\Sigma), i = 1, 2, \cdots, n$ 相互独立,则

$$A = \sum_{i=1}^{n} (X_{(i)} - \bar{X})(X_{(i)} - \bar{X})^{T} \sim W_{p}(n-1, p)$$

Theorem 设 $W_i \sim W_p(n_i, \Sigma), i = 1, 2, \cdots, k$ 相互独立,则

$$\sum_{i=1}^{k} W_i \sim W_p(\sum_{i=1}^{k} n_i, \Sigma)$$

Theorem 设 $W \sim W_p(n, \Sigma)$, $C \in \mathbb{R}$ $m \times p$ 矩阵, 则

$$CWC^T \sim W_m(n, C\Sigma C^T)$$

4.2 Hotelling's T^2 Distribution

Definition 设 $X \sim N_p(0,\Sigma), W \sim W_p(n,\Sigma),$ 且 X 与 W 相互独立,则称统计量

$$T^2 = X^T \left(\frac{W}{n}\right)^{-1} X$$

服从 n 个自由度的 T^2 分布, 记为 $T^2 \sim T^2(p,n)$.

Theorem 设 $X_{(i)} \sim N_p(\mu, \Sigma), i = 1, 2, \cdots, n$ 相互独立, 记 $\bar{X} = \frac{\sum_{i=1}^n X_{(i)}}{n}, S = \frac{\sum_{i=1}^n (X_{(i)} - \bar{X})(X_{(i)} - \bar{X})^T}{n-1}$, 则

$$T^2 = n(\bar{X} - \mu)S^{-1}(\bar{X} - \mu)^T \sim T^2(p, n - 1)$$

Theorem 设 $T^2 \sim T^2(p.n)$, 则

$$\frac{n-p+1}{np}T^2 \sim F_{p,n-p+1}$$

5 Linear Regression

Theorem 设 $Y = Z\beta + \varepsilon$, 其中 $\mathbb{E}\varepsilon = 0$, $Cov(\varepsilon) = \sigma^2 I$, 则对任意 c, 估计值 $c^T \hat{\beta}$ 是 $c^T \beta$ 所有线性无偏估计中方差最小的.

Proof 设 a^TY 是 $c^T\beta$ 的无偏估计,则有 $\mathbb{E}(a^TY) = a^TZ\beta = c^T\beta$,从而 $(a^TZ - c^T)\beta = 0$ 对一切 β 均成立,因此令 $\beta = Z^Ta - c$,我们得到 $a^TZ = c^T$. 再注意到 $c^T\hat{\beta} = c^T(Z^TZ)^{-1}Z^TY = (a^*)^TY$,其中 $a^* = Z(Z^TZ)^{-1}c$,注意到 $(a-a^*)^Ta^* = (a^TZ - (a^*)^TZ)(Z^TZ)^{-1}c = (c^T - c^T)(Z^TZ)^{-1}c = 0$,于是有

$$Var(a^{T}Y) = Var(a^{T}\varepsilon) = \sigma^{2}a^{T}a$$

$$= \sigma(a - a^{*} + a^{*})^{T}(a - a^{*} + a^{*})$$

$$= \sigma[(a - a^{*})^{T}(a - a^{*}) + (a^{*})^{T}a^{*}]$$

$$\geq \sigma^{2}(a^{*})^{T}a^{*} = Var((a^{*})^{T}Y)$$