CONJUGACY CLASSES AND AUTOMORPHISMS

COLTON GRAINGER (MATH 6130 ALGEBRA)

6. Assignment due 2018-10-17

6.1. [1, No. 4.2.9]. If p is a prime and G is a group of order p^{α} for some $\alpha \in \mathbb{N}$, then every subgroup of index p is normal in G. Therefore every group of order p^2 has a normal subgroup of order p.

Given. A group G of order p^{α} with p prime and $\alpha \in \mathbb{N}$.

To prove. Every subgroup of index p is normal in G.

Proof à la carte. (We proved this in class as an application of the third isomorphism theorem; it's also in the text as a corollary of Cayley's theorem.)

Suppose $H \le G$ and |G:H| = p. Let π_H be the permutation representation $\pi: G \to S_G$ afforded by left multiplication of the cosets of H in G, let $K = \ker \pi_H$, and let |H:K| = k. Now |G:K| = |G:H| |H:K| = pk. Since H has p left cosets, G/K is isomorphic to a subgroup of S_p be the first isomorphism theorem. By Lagrange's theorem, pk = |G/K| divides p = |G/H|. Thus k divides (p-1)! But all the prime divisors of k are at least as large as k. With k chosen minimally, we're forced to accept k = 1, so k = H, and therefore $k \neq G$. k = 1

Given. A group G of order p^2 .

To prove. There exists a subgroup H of G where |H| = p.

Proof. By Cauchy's theorem, there's an element of order p in G, call it x. Now $|G:\langle x\rangle|=p^2/p=p$. By the result à la carte, $\langle x\rangle$ is normal in G. \square

6.2. [1, No. 4.2.11]. Let G be a finite group and let $\pi: G \to S_G$ be the left regular representation. If x is an element of G of order n and |G| = mn, then $\pi(x)$ is a product of m n-cycles. Therefore $\pi(x)$ is an odd permutation if and only if |x| is even and $\frac{|G|}{|x|}$ is odd.

Given. A finite group G of order mn, an element x of order n, and the left regular representation $\pi: G \to S_G$, arising from the action of G on itself by left multiplication.

To prove. The permutation $\pi(x)$ is a product of m disjoint n-cycles.

Proof. Since x has order n, the cyclic subgroup $\langle x \rangle$ has index mn/n = m in G. Now choose m representatives $\{g_i\}_{i=1}^m$ from the right cosets $\langle x \rangle \backslash G$. Observe that each coset $\langle x \rangle g_i$ is recovered by n repeated left multiplications by x, that is,

$$\langle x \rangle g_i = \bigcup_{j \in \mathbb{Z}} x^j g_i = \bigsqcup_{j=1}^n x_j g_i \text{ for all } g_i.$$

We'll now argue $\pi(x)$ is a product of m n-cycles by writing each element of G in the form $\pi^j(x)(g_i) = x^j g_i$ and counting. Our goal is to recover G as a disjoint union of the images of the representatives p_1, \ldots, p_m under the action of $\pi^j(x)$ for $j = 1, \ldots, n$. So,

$$G = \bigsqcup_{i=1}^{m} \bigsqcup_{j=1}^{n} x^{j} g_{i} = \bigsqcup_{i=1}^{m} \bigsqcup_{j=1}^{n} \pi^{j}(x)(g_{i}).$$

We conclude that $\pi(x)$ is the product of *m n*-cycles. \square

Date: 2018-10-05. Compiled: 2018-10-17.

1

Corollary. For a finite group G, a left regular representation $\pi \colon G \to S_G$, and an element $x \in G$, the permutation $\pi(x)$ is odd if and only if |x| is even and |G|/|x| is odd.

Proof. With the lemma below, $\pi(x)$ is odd if and only if its cycle type contains an odd number of even integers, which occurs precisely when the disjoint cycle representation of $\pi(x)$ is a factorization containing an odd number of even length cycles. Well, borrowing notation from the proof above,

the cycle type of
$$\pi(x)$$
 is $\underbrace{(n, n, \dots, n)}_{m \text{ times}}$.

So $\pi(x)$ is odd if and only if |G|/|x| = m is odd and |x| = n is even. \square

Lemma. A permutation $\sigma \in S_G$ is odd if an only if an odd number of the τ_i in the disjoint cycle decomposition of σ have even cycle length.

Proof. The sign of a permutation is a group homomorphism $\epsilon \colon S_G \to \{-1,1\}$. Now for $\sigma \in S_G$ with disjoint cycle decomposition $\sigma = \tau_1 \tau_2 \cdots \tau_m$, we have $\epsilon(\sigma) = -1$ if and only if $\epsilon(\tau_1) \epsilon(\tau_2) \cdots \epsilon(\tau_m) = -1$ if and only if an odd number of the τ_i are of even cycle length. \square

6.3. [1, No. 4.3.13]. The only finite group with exactly two conjugacy classes is isomorphic to the cyclic group C_2 .

(That C_2 has two conjugacy classes is clear: they are the singletons {1} and {-1}. We'll focus on uniqueness—showing that C_2 is (up to isomorphism) the *only* group with exactly two conjugacy classes.)

Given. A finite group G with exactly two conjugacy classes.

To prove. G is isomorphic to C_2 .

*Proof.*¹ Consider the class equation

$$|G| = \frac{|G|}{|C_G(g_1)|} + \frac{|G|}{|C_G(g_2)|}.$$

By hypothesis $G \neq \{1\}$. It follows that each $C_G(g_i)$ contains at least two elements, 1 and g_i . Now let $n_1 = |C_G(g_1)|$ and $n_2 = |C_G(g_2)|$, and without loss of generality suppose $n_1 \leq n_2$. To satisfy the class equation, we must have

$$1 = \frac{1}{n_1} + \frac{1}{n_2}.$$

Then $1 \le \frac{2}{n_2}$, so $n_1 \le 2$. Moreover $n_2 \le \frac{1}{1-\frac{1}{2}} = 2$. Therefore $n_1 = 2$ and $n_2 = 2$.

So for both of the representatives g_i in G, we have $C_G(g) = 1, g$. Certainly one of the g_i is the identity 1. The other is its own inverse, distinct from the identity.² Therefore $G \cong C_2$. \square

6.4. [1, No. 4.3.19]. Assume H is a normal subgroup of G, \mathcal{K} is a conjugacy class of G contained in H and $x \in \mathcal{K}$. We show \mathcal{K} is a union of k conjugacy classes of equal size in H, where $k = |G: HC_G(x)|$.

Given. $H \triangleleft G$, \mathcal{K} a conjugacy class of G, $\mathcal{K} \subset H$.

To prove. For $x \in \mathcal{H}$, we have that \mathcal{H} is a union of $k = |G: HC_G(x)|$ conjugacy classes in H.

Proof. G acts transitively by conjugation on \mathcal{K} —for every pair of elements a and b in \mathcal{K} is conjugate to the other in G. Now recall from the previous assignment [1, No. 4.1.9]:

[When] G acts transitively on the finite set A and H is a normal subgroup of G, with $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_k$ the distinct orbits of H on A, we have that

(a) G is transitive on $\{\mathcal{O}_1, \dots, \mathcal{O}_k\}$ and all orbits of H on A have the same cardinality.

¹Keith Conrad [2] presents a general case for any finite number of conjugacy classes. Vipul Naik does so too here: https://groupprops.subwiki.org/wiki/There_are_finitely_many_finite_groups_with_bounded_number_of_conjugacy_classes.

²Why is the other forced to be its own inverse? This argument is awfully myopic.

Therefore, in our specific case, G acts transitively on the orbits of the conjugation action of H on \mathcal{K} . If these orbits of H on \mathcal{K} are denoted $\mathcal{O}_1, \ldots, \mathcal{O}_k$, then $|\mathcal{O}_1| = \cdots = |\mathcal{O}_k|$.

We now want to show that the number of such orbits $k = |G: HC_G(x)|$. Perhaps relabelling indices, let $x \in \mathcal{O}_1 \subset \mathcal{K}$. Citing again [1, No. 4.1.9], we have:

(b) If
$$a \in \mathcal{O}_1$$
, then $|\mathcal{O}_1| = |H: H \cap \operatorname{Stab}_G(a)|$. Furthermore, $k = |G: H\operatorname{Stab}_G(a)|$.

In our specific case, both G and H act on \mathcal{K} by conjugation. We thus recognize $\operatorname{Stab}_G(a) = C_G(a)$ for points a in \mathcal{K} . That $k = |G: HC_G(x)|$ is immediate. For clarity of argument, however, we'll find k directly from the diamond isomorphism theorem, ignoring the result [1, No. 4.1.9] (b).

Onwards! Consider the centralizer of x in G and $C_G(x)$ and $H \triangleleft G$. Now by the diamond isomorphism theorem we have the lattice

where we've observed that $C_H(x) = \{h \in H : hx = xh\} = \{g \in G : g \in H \text{ and } gx = xg\} = H \cap C_G(x)$ for the bottom node. As a consequence of the diamond isomorphism theorem,

$$\frac{HC_G(x)}{H} \cong \frac{C_G(x)}{C_H(x)} \quad \text{therefore} \quad |HC_G(x)| = \frac{|C_G(x)|\,|H|}{|C_H(x)|}.$$

By orbit stabilizer for the action of G and H on \mathcal{K} ,

$$|\mathcal{K}| = \frac{|G|}{|C_G(x)|}$$
 and, zooming in to action of H , $|\mathcal{O}_1| = \frac{|H|}{|C_H(x)|}$.

Noting \mathcal{K} is the union of disjoint orbits \mathcal{O}_i of the same size, we find $k = \frac{|\mathcal{K}|}{|\mathcal{O}_i|}$ as follows

$$k = |\mathcal{K}| \cdot \frac{1}{|\mathcal{O}_1|}$$

$$= \frac{|G|}{|C_G(x)|} \cdot \frac{|C_H(x)|}{|H|}$$

$$= \frac{|G|}{|HC_G(x)|}$$

$$= |G: HC_G(x)|.$$

Therefore \mathcal{K} is the union of $|G:HC_G(x)|$ equally sized orbits of H. \square

Corollary. A conjugacy class in S_n that consists of even permutations is either a single conjugacy class under the action of A_n or is a union of two classes of the same size in A_n .

Proof. Say that \mathcal{K} is a conjugacy class of S_n that consists of only even permutations. We recognize A_n is normal in S_n , so the hypotheses of the previous result are satisfied our specific case. Thus, \mathcal{K} is the union $|A_nC_G(x)|$ equally sized orbits of A_n acting by conjugation on \mathcal{K} . Since

$$\frac{n!}{2} = |A_n| \le |A_n C_G(x)|$$

we must have the index of $A_nC_G(x)$ in S_n either 1 or 2. \square

³I had to revise it anyways.

6.5. [1, No. 4.3.23]. If M is a maximal subgroup of G then either $N_G(M) = M$ or $N_G(M) = G$. Therefore, if M is a maximal subgroup of G that is not normal in G then the number of nonidentity elements of G that are contained in conjugates of M is at most $(|M| - 1) \cdot |G| \cdot M|$.

Given. A maximal subgroup M of G.

To prove. Either $N_G(M) = M$ or $N_G(M) = G$. Also, the number of non-identity elements of G that are contained contained in conjugates of M is at most $(|M| - 1) \cdot |G| \cdot M|$.

Proof. Since $M \le N_G(M) \le G$ and M is maximal in G, either $N_G(M) = M$ or $N_G(M) = G$. Now to put an upper bound on the number of nonidentity elements of G contained in conjugates of M, assuming M is *not* normal in G. The key idea is to note that conjugation is an automorphism of G, so any conjugate gMg^{-1} is isomorphic to M. Since the identity is only conjugate to itself, the number of non-identity elements in each conjugate gMg^{-1} is |M| - 1. We can partition G into |G:M| disjoint left cosets of M, but we can't partition G into conjugates of M, for conjugation fixes the identity element. So we have at most (|M| - 1) non-identity elements of M to work with. Since the index of M in G is |G:M|, we conclude there are at most (|M| - 1)|G:M| distinct non-identity elements of G in conjugates of M. □

6.6. [1, No. 4.3.24]. Assume H is a proper subgroup of the finite group G. Then G is not the union of the conjugates of any proper subgroup, i.e.,

$$G \neq \bigcup_{g \in G} gHg^{-1}$$
.

Proof. If G is a proper subgroup of G, then $H \leq M$ for some maximal subgroup $M \leq G$. By [1, p. 4.3.23],

$$\left| \bigcup_{g \in G} gHg^{-1} \right| \le (|M| - 1)|G: M|$$

$$= |G| \cdot \frac{|M| - 1}{|M|}$$

$$< |G|.$$

We conclude that G is not the union of conjugates of the proper subgroup H. \square

6.7. The size of each conjugacy class in S_n [1, No. 4.3.33]. Let σ be a permutation in S_n and let m_1, \ldots, m_s be distinct integers that appear in the cycle type of σ (including 1-cycles). For each $i \in \{1, 2, \ldots, s\}$ assume σ has k_i cycles of length m_i (so that $\sum_{i=1}^{s} k_i m_i = n$). Then the number of conjugates of σ is

$$\frac{n!}{(k_1!m_1^{k_1})(k_2!m_2^{k_2})\cdots(k_s!m_s^{k_s})}.$$

Proof. Suppose $\sigma \in S_n$ is as described above. Place out parentheses according to the cycle type of σ . There are n! ordered arrangements of exactly n distinct indices without repetition into the parentheses.⁴

Now cyclic permutations of indices in a set of parentheses are equivalent, so for each m_i cycle in σ we mod out the n! arrangements by $m_i^{k_i}$, the number of cyclic permutations of indices affecting equivalent arrangements of the indices in the m_i cycles.

Furthermore, permutations of the order in which order disjoint cycles are listed in the cycle decomposition of σ are equivalent, so for each k_i , we mod out $n!/\left(\prod_{i=1}^s m_i^{k_i}\right)$ by the possible reorderings $k_i!$ for each k_i that's the number of m_i -length cycles appearing in the decomposition of σ .

Therefore, the number of distinct conjugates of σ in S_n is given by

$$n/\left(\prod_{i=1}^{s} k_{i}! m_{i}^{k_{i}}\right) = \frac{n!}{(k_{1}! m_{1}^{k_{1}})(k_{2}! m_{2}^{k_{2}}) \cdots (k_{s}! m_{s}^{k_{s}})}.$$

⁴Being polite: We assume the parentheses are not nested, we require there are *n* total positions in between all the pairs, and we also assume that the parentheses are open and closed ecumenically.

Examples. If $n \ge m$ then the number of m-cycles in S_n is given by

$$\frac{n(n-1)(n-2)\dots(n-m+1)}{m}.$$

If $n \ge 4$ then the number of permutations in S_n that are the product of two disjoint 2-cycles is n(n-1)(n-2)(n-3)/8. The later will come into use as a base case for determining the order of the conjugacy classes of elements with order 2 in S_n

6.8. [1, No. 4.4.3]. Under any automorphism of D_8 , r has at most 2 possible images and s has at most 4 possible images. Thence $|\operatorname{Aut}(D_8)| \le 8$.

Demonstration. Suppose φ is an automorphism of D_8 . Now φ preserves some structural group properties, e.g., elements of an order are mapped to elements of the same order. Hence

 $r \mapsto r$ or r^3 , which are elements of order 4.

Note we cannot have $s \mapsto r^2$ for then

$$\varphi(\underbrace{rs}_{|rs|=2}) \neq \varphi(r)\varphi(s) = \underbrace{r^3 \text{ or } r}_{\text{order } 4}.$$

Therefore, by order considerations

$$s \mapsto s, rs, r^2s, r^3s$$
.

Now φ is determined by the images of the generators r and s. Observe the are at most $2 \cdot 4$ distinct choices for these images. Hence $|\operatorname{Aut}(D_8)| \le 8$. \square

- 6.9. [1, No. 4.4.8]. Suppose G is a group with subgroups H and K where $H \le K$.
 - (b) If H is characteristic in K and K is characteristic in G, then H is characteristic in G. Thence the *Viergruppe* V_4 is characteristic in S_4 .

Proof. For each $\varphi \in \operatorname{Aut}(G)$, observe $\varphi|_K$ is automorphism of K. Note $\varphi|_K(H) = H$ because HcharK. Extending back to φ , we have $\varphi(H) = H$, as desired to show HcharG. \square

In the specific case of V_4 characteristic in A_4 , characteristic in S_4 , transitivity implies V_4 is characteristic in S_4 .

To show the first two relations, say $\varphi \in \operatorname{Aut}(G)$. Note $V_4 = \langle (1\,2)(3\,4), (1\,3)(2\,4) \rangle$. The automorphism φ maps conjugate elements to eachother. By the lattice isomorphism theorem, $V_4 = \varphi(V_4) = \langle \varphi((1\,2)(3\,4)), \varphi((1\,3)(2\,4)) \rangle$. For the second relation, suppose $\psi \in \operatorname{Aut}(S_4)$. By order considerations, ψ must map any two distinct 3-cycles in A_4 to other distinct 3-cycles in A_4 . Therefore $\psi(A_4) = \langle \psi((i_1i_2i_3)), \psi((j_1j_2j_3)) \rangle = A_4$, since 3-cycles generate A_4 .

We have seen V_4 is characteristic in A_4 is characteristic in S_4 . Hence V_4 is characteristic in S_4 .

(c) If H is normal in K and K is characteristic in G, then H need not be normal in G.

Consider $H = \langle (12)(34) \rangle$, $K = V_4$, and $G = A_4$. Since V_4 is abelian, H is normal in V_4 . Yet for $\sigma = (123) \in A_4$, conjugation by σ of H produces the element $(13)(24) \notin H$. So $H \not A_4$.

- 6.10. [1, No. 4.4.18]. For $n \neq 6$ every automorphism of S_n is inner. Fix an integer $n \geq 2$ with $n \neq 6$.
 - (a) The automorphism group of a group G permutes the conjugacy classes of G, i.e., for each $\sigma \in \operatorname{Aut}(G)$ and each conjugacy class $\mathscr K$ of G the set $\sigma(\mathscr K)$ is also a conjugacy class of G.

Given. A group G, its automorphism group Aut(G), and the collection $\Omega = \{\mathcal{K} : \text{conjugacy classes in } G\}$.

To prove. If $\sigma \in \text{Aut}(G)$ and $\mathcal{K} \in \Omega$, then $\sigma(\mathcal{K}) \in \Omega$.

Proof. Suppose a and b are conjugate elements in G. Then for some $g \in G$, $a = gbg^{-1}$. Consider the image under automorphism, $\sigma(a) = \sigma(g)\sigma(b)\sigma(g)^{-1}$. So $\sigma(a)$ and $\sigma(b)$ are conjugate.

Pairwise conjugacy of the points in the image of \mathcal{K} under σ implies $\sigma(\mathcal{K}) \subset \mathcal{F} \in \Omega$. Now to show $\mathcal{F} \subset \sigma(\mathcal{K})$. Let $c \in \mathcal{F}$. Then $\sigma(a) = hch^{-1}$ for some $h \in G$. Applying the inverse automorphism σ^{-1} , we see a is conjugate to $\sigma^{-1}(c)$, thus $\sigma^{-1}(c) \in \mathcal{K}$. Thus $\sigma^{-1}(\mathcal{F}) \subset \mathcal{K}$. Applying σ , we conclude $\mathcal{F} \subset \sigma(\mathcal{K})$.

(b) Let \mathcal{K} be the conjugacy class of transpositions in S_n and let \mathcal{K}' be the conjugacy class of any element of order 2 in S_n that is not a transposition. Then $|\mathcal{K}| \neq |\mathcal{K}'|$. Furthermore, any automorphism of S_n sends transpositions to transpositions.

If n < 4 the only elements of order 2 are transpositions. Therefore $\mathcal{H}' = \emptyset$. So suppose $n \ge 4$. Elements of order 2 in S_n that are not transpositions are products of k many disjoint 2-cycles. We observe $2 \le 2 \le \lceil n \rceil$.

We now show $|\mathcal{K}| \neq |\mathcal{K}'|$ for all n, k with the exception of (n, k) = (6, 3), for which there are 15 elements in both the conjugacy class \mathcal{K} of transpositions and in the class $\mathcal{K}' = \{\text{products of 3 disjoint 2-cycles}\}$.

We generate a heatmap plot of the value $|\mathcal{K}'| - |\mathcal{K}|$, where both are defined:

```
dim = 10
A = np.full([dim,dim], float('nan'))
for n in np.arange(2,b):
    for k in np.arange(2,int(n/2.0)+1):
        A[n,k] = -(n*(n-1)/2) + np.math.factorial(n)/(np.math.factorial(k)*2**k)
```


Figure 1. heat

By previous exercise, we have

$$|\mathcal{K}| = \frac{n(n-1)}{2}$$
 and $|\mathcal{K}'| = \frac{n!}{k!2^k}$.

The heatmap provides a base case, and it's clear that $|\mathcal{K}'|$ strictly dominates $|\mathcal{K}|$ for, say, $n \ge 9$ and $k \ge 4$.

Since σ must preserve the order of both conjugacy classes and elements in them, we see that σ stabilizes the set \mathcal{K} of transpositions, as desired.

(c) For each $\sigma \in \text{Aut}(S_n)$ we have

$$\sigma: (12) \mapsto (ab_2), \qquad \sigma: (13) \mapsto (ab_3), \quad \dots, \quad \sigma: (1n) \mapsto (ab_n)$$

for some distinct integers $a, b_2, b_3, \dots, b_n \in \{1, 2, \dots, n\}$.

Say $(1 \ j) \mapsto (a \ b)$ and $(1 \ j) \mapsto (c \ d)$. Then $(i \ j)(1 \ i)(i \ j) = (1 \ j)$. If $\{a, b\}$ and $\{c, d\}$ are disjoint, there's no $\sigma \in S_n$ such that

$$\sigma(ab)\sigma = (cd)$$
,

a contradiction. So $\{a,b\}$ and $\{c,d\}$ meet. Since σ is injective, the only available conclusion is apparent:

$$\sigma: (12) \mapsto (ab_2), \qquad \sigma: (13) \mapsto (ab_3), \quad \dots, \quad \sigma: (1n) \mapsto (ab_n)$$

for some distinct integers $a, b_2, b_3, \dots, b_n \in \{1, 2, \dots, n\}$.

(d) Therefore $(1\ 2), (1\ 3), \dots, (1\ n)$ generate S_n . Furthermore S_n is uniquely determined by its action on these elements. Then by (c), S_n has at *most* n! automorphisms. We conclude that $\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n)$ for $n \neq 6$.

In class we showed that S_n is generated by simple transpositions. These in turn are generated by the set of transpositions including the index 1, e.g., $(i \ j) = (1 \ j)(1 \ i)(1 \ j)$. Since there are precisely n! arrangements of $1, 2, 3, \ldots, n$ mapping bijectively to a, b_2, b_3, \ldots, b_n , we see that $|\operatorname{Aut}(S_n)| \le |S_n|$. But also $|S_n| = |\operatorname{Inn}S_n| \le |\operatorname{Aut}(S_n)|$. Therefore $|\operatorname{Inn}S_n| = \operatorname{Aut}(S_n)$. \square

6.11. [1, No. 4.4.20]. For any finite group P, let d(P) be the minimum⁵ number of generators of P. Let m(P) be the maximum of the integers d(A) as A runs⁶ over all *abelian* subgroups of P. Define the *Thompson subgroup* of P as

$$J(P) = \langle A : A \text{ is an abelian subgroup of } P \text{ with } d(A) = m(P) \rangle.$$

- (a) J(P) is a characteristic subgroup of P.
- (b) For each of the following groups P, we exhaustively list all abelian subgroups A of P that satisfy d(A) = m(P).
 - Q8
 - D₈
 - D_{16}
- QD_{16} (the quasidihedral group of order 16)

⁵For example, d(P) = 1 if and only if P is a nontrivial cyclic group and $d(Q_8) = 2$.

⁶For example, $m(Q_8) = 1$ and $m(D_8) = 2$.

6.12. Classification of simple groups of size less than 60. If a simple group has order less than 60, then it is abelian.

Given. The set \mathcal{S} of all groups G such that $1 \leq |G| \leq 59$.

To show. Exhaustively, that each group G in $\mathcal S$ is abelian or not simple.

Demonstration.

- The trivial group {1} is not simple, by definition of simple as having no *nontrivial* proper normal subgroup.
- By Lagrange's theorem, groups of prime order are cyclic, therefore abelian.
- By the class equation, groups of prime power order p^{α} for p prime and $\alpha \in \mathbb{Z}_{\geq 0}$ have non-trivial centers.
 - Either center of the group is the group itself and the group is abelian, or
 - or the center of the group is a (normal) nontrivial proper subgroup, in which case the group is not simple.
- By the lemma below, groups of order pq (where p and q are primes) are not simple.
- By the lemma below, groups of order p^2q (where p and q are primes) are not simple.
- What orders of groups in \mathcal{S} remain to be discussed?

order	prime factorization
24	$2^3 \cdot 3$
30	$2 \cdot 3 \cdot 5$
36	$2^2 \cdot 3^2$
40	$2^2 \cdot 3^2$
42	$2 \cdot 3 \cdot 7$
48	$2^4 \cdot 3$
60	$2^2 \cdot 3 \cdot 7$

Lemma. Groups of order pq (where p and q are primes) are not simple. Moreover, groups of order p^2q are also not simple.

Given. Primes p and q (WLOG p < q), a group G of order pq, a group K of order p^2q .

To prove. Both *G* and *K* posses normal nontrivial proper subgroups.

Proof.

7. References

- [1] D. S. Dummit and R. M. Foote, *Abstract algebra*, 3rd ed. Hardcover; Prentice Hall, 2004 [Online]. Available: http://www.worldcat.org/isbn/0471433349
- $\label{thm:config} \begin{tabular}{ll} [2] K. Conrad, "Conjugation" [Online]. Available: $$http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/conjclass.pdf \end{tabular}$