Étude du problème MP-LWE

Sacha Ben-Arous

31 Août 2023

ENS Paris-Saclay

Plan

Introduction aux réseaux

Définition

Learning With Errors

Variantes structurées

Étude de la réduction

Heuristique gaussienne

Volume et erreur

Schéma de chiffrement

Introduction aux réseaux

Définition

Un réseau euclidien de \mathbb{R}^m est l'ensemble des combinaisons à coefficients entiers de vecteurs linéairements indépendants b_1,\ldots,b_n , que l'on note :

$$\mathcal{L}(b_1, \dots, b_n) := \left\{ \sum_{i=1}^n x_i b_i, x_i \in \mathbb{Z} \right\}$$

Définition

Un **réseau euclidien** de \mathbb{R}^m est l'ensemble des combinaisons à coefficients entiers de vecteurs linéairements indépendants b_1,\ldots,b_n , que l'on note :

$$\mathcal{L}(b_1, \dots, b_n) := \left\{ \sum_{i=1}^n x_i b_i, x_i \in \mathbb{Z} \right\}$$

Le réseau est alors de dimension n, et la famille des $(b_i)_{1 \le i \le n}$ est appelée base de ce réseau.

Définition

Un **réseau euclidien** de \mathbb{R}^m est l'ensemble des combinaisons à coefficients entiers de vecteurs linéairements indépendants b_1,\ldots,b_n , que l'on note :

$$\mathcal{L}(b_1, \dots, b_n) := \left\{ \sum_{i=1}^n x_i b_i, x_i \in \mathbb{Z} \right\}$$

Le réseau est alors de dimension n, et la famille des $(b_i)_{1 \le i \le n}$ est appelée base de ce réseau.

En notant $B:=[b_1,\ldots,b_n]$, on considérera de manière équivalente :

$$\mathcal{L}(B) := \{Bx, x \in \mathbb{Z}^n\}$$

Exemples

Figure 1 – Exemple de réseau [Kat23]

Learning With Errors

Learning With Errors Problem:

On fixe des entiers n et t, un nombre premier q et une distribution de bruit $\mathcal{N}(\sigma)$. On tire un secret $s \hookleftarrow \mathcal{U}(\mathbb{Z}_q^n)$.

Learning With Errors

Learning With Errors Problem:

On fixe des entiers n et t, un nombre premier q et une distribution de bruit $\mathcal{N}(\sigma)$. On tire un secret $s \hookleftarrow \mathcal{U}(\mathbb{Z}_q^n)$.

Le problème est le suivant : à partir de t échantillons

$$(a_i,b_i):=(a_i,\langle a_i,s\rangle+e_i \bmod q)$$

où $a_i \leftarrow \mathcal{U}(\mathbb{Z}_p^n)$ et $e_i \leftarrow \mathcal{N}(\sigma)$, on souhaite retrouver le secret s.

Learning With Errors

Learning With Errors Problem:

On fixe des entiers n et t, un nombre premier q et une distribution de bruit $\mathcal{N}(\sigma)$. On tire un secret $s \hookleftarrow \mathcal{U}(\mathbb{Z}_q^n)$.

Le problème est le suivant : à partir de t échantillons

$$(a_i, b_i) := (a_i, \langle a_i, s \rangle + e_i \mod q)$$

où $a_i \leftarrow \mathcal{U}(\mathbb{Z}_p^n)$ et $e_i \leftarrow \mathcal{N}(\sigma)$, on souhaite retrouver le secret s.

 $\underline{\mathsf{Rq}}$: Sans bruit, le problème est facile à résoudre.

Lien avec les réseaux

Cela revient à chercher le point le plus proche de $A\cdot s + e$ dans le réseau engendré par A

Lien avec les réseaux

Cela revient à chercher le point le plus proche de $A\cdot s + e$ dans le réseau engendré par

$$A' := \left[\begin{array}{ccc} A & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & q \end{array}\right] \in \mathbb{Z}^{t \times (n+t)} \text{ car on travaillait modulo } q$$

Difficulté de LWE

Difficulté de LWE

- $\bullet\,$ Plus γ est petit, plus le problème est dur

Difficulté de LWE

- ullet La difficulté est relié au facteur $\gamma=rac{\lambda_1}{\|e\|}$
- ullet Plus γ est petit, plus le problème est dur
- Si $\gamma=poly(n)$, ce problème est conjecturé exponentiellement dur à résoudre, même sur un ordinateur quantique

Figure 2 – Lien difficulté/gamma [Kat23]

Variantes structurées

Problème : LWE tel quel est peu efficace à cause des grandes matrices aléatoires.

Variantes structurées

Problème : LWE tel quel est peu efficace à cause des grandes matrices aléatoires.

Solution : Rajouter de la structure : polynômes (Stehlé et al. [SSTX09])

Illustration

Concrètement, cela consiste à représenter matriciellement le produit de polynômes, et donc à mettre des blocs structurés dans $\cal A$

Figure 3 – Représentation de la structure d'un réseau [Kat23]

Variantes structurées

Défaut : nouveau paramètre $f \in \mathbb{Z}_q^m[X]$ qui régit la complexité.

$$\underline{\mathsf{Ex}}\,: x^n+1 \text{ et } x^n-1$$

Variantes structurées

Défaut : nouveau paramètre $f \in \mathbb{Z}_q^m[X]$ qui régit la complexité.

$$\underline{\mathsf{Ex}}: x^n+1 \text{ et } x^n-1$$

Roșca *et al.* [RSSS17] introduisent une nouvelle variante structurée, et y réduisent des classes exponentiellement grandes de problèmes P-LWE.

Étude de la réduction

Objectif

• Comprendre le fonctionnement de la réduction, et son impact sur les paramètres de difficulté.

Objectif

- Comprendre le fonctionnement de la réduction, et son impact sur les paramètres de difficulté.
- Établir des propriétés sur le nouveau réseau d'arrivée

On défini $\operatorname{Rot}_f(a)$ pour qu'elle vérifie $\operatorname{Rot}_f(a) \cdot b = (a \times b \mod f)$

On défini $\operatorname{Rot}_f(a)$ pour qu'elle vérifie $\operatorname{Rot}_f(a) \cdot b = (a \times b \mod f)$

$$\underline{\operatorname{Ex}}: \operatorname{Si} f = x^4 + 1$$
 et $a = \sum_{0 \leq i < 4} a_i x^i$, alors :

$$\mathsf{Rot}_f(a) = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 \\ -a_3 & a_0 & a_1 & a_2 \\ -a_2 & -a_3 & a_0 & a_1 \\ -a_1 & -a_2 & -a_3 & a_0 \end{pmatrix}$$

De même pour $\operatorname{Toep}_d(a)$, choisie pour avoir $\operatorname{Toep}_d(a) \cdot b = (a \odot_d b)$

De même pour $\operatorname{Toep}_d(a)$, choisie pour avoir $\operatorname{Toep}_d(a) \cdot b = (a \odot_d b)$

$$\underline{\operatorname{Ex}}$$
 : Si $d=4$ et $a=\sum_{0\leq i<4}a_ix^i$, alors :

$$\mathsf{Toep}(a) = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & 0 & 0 & 0 \\ 0 & a_0 & a_1 & a_2 & a_3 & 0 & 0 \\ 0 & 0 & a_0 & a_1 & a_2 & a_3 & 0 \\ 0 & 0 & 0 & a_0 & a_1 & a_2 & a_3 \end{pmatrix}$$

Heuristique gausienne

Volume d'un réseau $\mathcal{L}(B) := \sqrt{\det{(B^{\top}B)}}$.

 $\underline{\mathsf{Rq}}\,$: ne dépend pas de B

Heuristique gausienne

Volume d'un réseau $\mathcal{L}(B) := \sqrt{\det(B^{\top}B)}$.

 $\ensuremath{\mathsf{Rq}}\,$: ne dépend pas de B

Heuristique gaussienne :

$$|\{ \text{points du réseau de norme} \leq R \}| \simeq \frac{V_n(R)}{\operatorname{vol}(L)} = \frac{R^n V_n(1)}{\operatorname{vol}(L)}$$

En particulier $\lambda_1 \simeq \sqrt{n} \cdot \text{vol}(L)^{\frac{1}{n}}$

Volumes

Théorème : Avec probabilité $\geq 1 - \frac{1}{q^{mt}}$ on a $\operatorname{vol}(\mathcal{L}_1) = q^{m(t-1)}$

Volumes

Théorème : Avec probabilité $\geq 1 - \frac{1}{q^{mt}}$ on a $\operatorname{vol}(\mathcal{L}_1) = q^{m(t-1)}$

Théorème : Avec une probabilité $\geq 1-(\frac{n+d-1}{q})^{\lfloor t/\lceil \frac{n+d-1}{d}\rceil \rfloor}$, on a que $\operatorname{vol}(\mathcal{L}_2)=q^{td-(n+d-1)}$

Volumes

Théorème : Avec probabilité $\geq 1 - \frac{1}{q^{mt}}$ on a $\operatorname{vol}(\mathcal{L}_1) = q^{m(t-1)}$

Théorème : Avec une probabilité $\geq 1-(\frac{n+d-1}{q})^{\lfloor t/\lceil \frac{n+d-1}{d}\rceil \rfloor}$, on a que $\operatorname{vol}(\mathcal{L}_2)=q^{td-(n+d-1)}$

À retenir : $\frac{\operatorname{vol}(\mathcal{L}_1)^{\frac{1}{tm}}}{\operatorname{vol}(\mathcal{L}_2)^{\frac{1}{td}}} = q^{\frac{n}{td}}$, et $td \simeq n$ donc le volume change peu

Idée de preuve

 $\bullet\,$ Il suffit d'avoir que A_1 et A_2 sont de rang plein

Idée de preuve

- ullet Il suffit d'avoir que A_1 et A_2 sont de rang plein
- $\bullet \ \operatorname{Pour} A_1 : \operatorname{utiliser} \operatorname{Rot}_f(a)^{-1} = \operatorname{Rot}_f(a^{-1})$

Idée de preuve

- ullet Il suffit d'avoir que A_1 et A_2 sont de rang plein
- Pour A_1 : utiliser $\operatorname{Rot}_f(a)^{-1} = \operatorname{Rot}_f(a^{-1})$
- ullet Pour A_2 : plus dur car bloc pas carrés, il faut les rassembler. Ma preuve n'utilise pas la structure Toeplitz, et la borne est non optimale.

Résultats expérimentaux

n=22, d=11, t=3, et $q=n^{\beta}\log n$ où on fait varier β . En pratique n est beaucoup plus grand, et dans le schéma $\beta=2.5$. En faisant 10^6 tests, on obtient les résultats suivants :

	Probabilité empirique	Probabilité pour les matrices uniformes	Borne inférieure obtenue dans le théorème 3.2
$\beta = 0.75$ $q = 37$	0.998603	0.99924	0.135135
$\beta = 1$ $q = 71$	0.999629	0.999798	0.549295
$\beta = 1.5$ $q = 331$	0.999979	0.999990	0.903323

Erreurs

•
$$\mathbb{E}(\|e_1\|^2) = tm(\alpha q)^2$$

•
$$\mathbb{E}(\|e_2\|^2) = td(\alpha dSq)^2$$

car $\sigma_2=(\alpha dS)\sigma_1.$ Voir rapport pour détails.

Heuristique gaussienne

Théorème (Minkowski) : $\lambda_1 \leq \sqrt{n} \cdot \text{vol}(\mathcal{L})^{\frac{1}{n}}$

Heuristique gaussienne

Théorème (Minkowski) :
$$\lambda_1 \leq \sqrt{n} \cdot \text{vol}(\mathcal{L})^{\frac{1}{n}}$$

Théorème : Si
$$d=\frac{n}{2}$$
 et $t\geq 4$ alors, avec probabilité $\geq 1-\frac{1}{2^{td-1}q^{t-3}}$, on a :
$$\lambda_1^\infty(\mathcal{L}_2)\geq \frac{1}{2q}\mathrm{vol}(\mathcal{L}_2)^{\frac{1}{dt}}$$

Heuristique gaussienne

Théorème (Minkowski) : $\lambda_1 \leq \sqrt{n} \cdot \text{vol}(\mathcal{L})^{\frac{1}{n}}$

Théorème : Si $d=\frac{n}{2}$ et $t\geq 4$ alors, avec probabilité $\geq 1-\frac{1}{2^{td-1}q^{t-3}}$, on a :

$$\lambda_1^{\infty}(\mathcal{L}_2) \ge \frac{1}{2q} \text{vol}(\mathcal{L}_2)^{\frac{1}{dt}}$$

 $\overline{\text{Rq}}$: Le résultat est en norme infinie, et est trop faible par rapport à ce qui attendu.

Schéma de chiffrement

Théorème [RSS17]: Si $\alpha \leq \frac{1}{16\sqrt{tk\lambda}}$ et $16t(k+1) \leq q$, alors pour tout $\mu \in \{0,1\}^{< d}[X]$, avec probabilité $\geq 1-2^{-\Omega(\lambda)}$ sur (sk,pk) \hookleftarrow KeyGen, on a Decrypt(sk,Encrypt(pk,mu)) = mu

Preuve incorrecte, j'en donne une nouvelle version, avec des hypothèses renforcées.

Schéma de chiffrement

Théorème [RSS17]: Si $\alpha \leq \frac{1}{16\sqrt{tk\lambda}}$ et $16t(k+1) \leq q$, alors pour tout $\mu \in \{0,1\}^{< d}[X]$, avec probabilité $\geq 1 - 2^{-\Omega(\lambda)}$ sur (sk,pk) \hookleftarrow KeyGen, on a Decrypt(sk,Encrypt(pk,mu)) = mu

Preuve incorrecte, j'en donne une nouvelle version, avec des hypothèses renforcées.

Théorème: Si $\alpha \leq \frac{1}{16(k+1)t\sqrt{\lambda}}$ et $8td(k+1) \leq qd \leq e^{\lambda}$, alors pour tout $\mu \in \{0,1\}^{< d}[X]$, avec probabilité $\geq 1-2^{-\Omega(\lambda)}$ sur (sk,pk) \hookleftarrow KeyGen, on a Decrypt(sk,Encrypt(pk,mu)) = mu

Schéma de chiffrement

Théorème [RSS17]: Si $\alpha \leq \frac{1}{16\sqrt{tk\lambda}}$ et $16t(k+1) \leq q$, alors pour tout $\mu \in \{0,1\}^{< d}[X]$, avec probabilité $\geq 1-2^{-\Omega(\lambda)}$ sur (sk,pk) \leftarrow KeyGen, on a Decrypt(sk,Encrypt(pk,mu)) = mu

Preuve incorrecte, j'en donne une nouvelle version, avec des hypothèses renforcées.

Théorème: Si $\alpha \leq \frac{1}{16(k+1)t\sqrt{\lambda}}$ et $8td(k+1) \leq qd \leq e^{\lambda}$, alors pour tout $\mu \in \{0,1\}^{< d}[X]$, avec probabilité $\geq 1-2^{-\Omega(\lambda)}$ sur (sk,pk) \hookleftarrow KeyGen, on a Decrypt(sk,Encrypt(pk,mu)) = mu

 $\underline{\mathrm{Rq}}$: La modification est essentiellement au niveau de α , que l'on a diminué. Cela a pour effet de réduire la variance de l'erreur gaussienne appliquée sur le message, ce qui le rend plus simple à déchiffrer, et facilite donc la preuve.

Conclusion

- MP-LWE gagne sur le plan algébrique tout en conservant la difficulté algorithmique
- Résultat sur l'heuristique gaussienne à améliorer
- Étudier l'influence de la structure sur le rang des réseaux

Références

[Kat23] Katharina Boudgoust, "Hardness Assumptions in Lattice-Based Cryptography"

RSSS17] Miruna Roșca , Amin Sakzad, Damien Stehlé et Ron Steinfeld "Middle-Product Learning With Errors"

SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka et Keita Xagawa "Efficient public key encryption based on ideal lattices"