

Curso de Tecnologia em Sistemas de Computação Disciplina: Fundamentos de Algoritmos para Computação Professoras: Susana Makler e Sulamita Klein Gabarito AD1 - Primeiro Semestre de 2018

Nome -Assinatura -

Questões:

1. (1,0) Verifique se cada uma das seguintes afirmações é verdadeira ou falsa. Se for verdadeira prove, se for falsa justifique.

(a)
$$\emptyset \in \{\{\emptyset\}\}$$
.

Resposta: Falsa. O único elemento do conjunto em questão é $\{\emptyset\}$. As afirmações $\{\emptyset\} \in \{\{\emptyset\}\}$ e $\emptyset \subseteq \{\{\emptyset\}\}$ estariam corretas.

(b)
$$\{\emptyset\} \subseteq \{\{\emptyset\}\}.$$

Resposta: Falsa. Esta afirmação só seria verdadeira se \emptyset fosse elemento do conjunto. Entretanto, o único elemento do conjunto em questão é $\{\emptyset\}$. As afirmações $\{\emptyset\} \in \{\{\emptyset\}\}, \{\{\emptyset\}\} \subseteq \{\{\emptyset\}\}\}$ estariam corretas.

(c) $A \cup (B-C) = (A-B) \cup (A-C)$. sendo $A \in B$ conjuntos quaisquer.

Resposta: Falsa. Observe os diagramas de Venn da Figura 1.

Figura 1: Diagramas de Venn

2. (1,5) Usando o Princípio de Inclusão e Exclusão, determine o número de permutacoes de (1,2,3,4,5,6,7,8) nas quais nem o 2 ocupa o 2° lugar nem o 6 ocupa o 6° lugar.

Resposta: Vamos considerar A como o conjunto das permutações de (1,2,3,4,5,6,7,8) nas quais o 2 ocupa o 2° lugar, B como o conjunto das permutações de (1,2,3,4,5,6,7,8) nas quais o 6 ocupa o 6° lugar, U como o conjunto de todas as permutações de (1,2,3,4,5,6,7,8) e P como o conjunto de permutações de (1,2,3,4,5,6,7,8) nas quais nem o 2 ocupa o 2° lugar nem o 6 ocupa o 6° lugar. Para calcular o número de elementos de P, vamos usar a noção de complemento e o PIE para 2 conjuntos, dado por:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Utilizando a noção de complemento, podemos escrever n(P) da seguinte forma:

$$n(P) = n(U) - n(A \cup B)$$

onde $n(A \cup B)$ é calculado usando o PIE, como descrito acima.

CÁLCULO DAS CARDINALIDADES DOS CONJUNTOS

- $n(U) = P_8 = 8!$. Basta permutar os 8 algarismos.
- $n(A) = P_7 = 7!$. Como o algarismo 2 está fixado na segunda posição, basta permutarmos os outros 7 algarismos.
- $n(B) = P_7 = 7!$. Como o algarismo 6 está fixado na sexta posição, basta permutarmos os outros 7 algarismos.
- $n(A \cap B) = P_6 = 6!$. Como os algarismos 2 e 6 estão fixados nas segunda e sexta posições, respectivamente, basta permutarmos os outros 6 algarismos.

Pelo PIE, temos: $n(A \cup B) = 7! + 7! - 6! = 2 \times 7! - 6! = 2 \times 7 \times 6! - 6! = (14 - 1)6! = 13 \times 6!$

Logo, $n(P) = 8! - 13 \times 6!$.

3. (2,0) Mostre pelo Princípio da Indução Matemática que:

(a) $2.6.10.14\cdots(4n-2) = \frac{(2n)!}{n!}$

para todo número natural n.

Resposta: Seja $P(n): 2.6.10.14 \cdots (4n-2) = \frac{(2n)!}{n!}, \forall n \text{ natural.}$

BASE DA INDUÇÃO: Vamos mostrar que P(1) é verdadeira. Como 4(1)-2=2 e $\frac{(2\times 1)!}{1!}=2!=2$, temos que P(1) é verdadeira.

HIPÓTESE DA INDUÇÃO: Suponha que P(k): 2.6.10.14. · · · .(4k-2) = $\frac{(2k)!}{k!}$ seja verdadeira, $\forall k \geq 1$.

PASSO DA INDUÇÃO: Vamos mostrar que se P(k) é verdadeira, então $P(k+1): 2.6.10.14. \cdots .(4k-2).(4(k+1)-2) = \frac{(2[k+1])!}{(k+1)!}$ é verdadeira.

$$\underbrace{2.6.10.14.\cdots.(4k-2)}_{\text{H.I.}}.(4(k+1)-2) = \underbrace{\frac{(2k)!}{k!}(4k+2)}_{k!}$$

$$= \underbrace{\frac{(2k)!2(2k+1)}{k!}} \times \underbrace{\frac{(k+1)}{(k+1)}}$$

$$= \underbrace{\frac{(2k)!2(k+1)(2k+1)}{k!(k+1)}}$$

$$= \underbrace{\frac{(2k+2)(2k+1)(2k)!}{(k+1)!}}$$

$$= \underbrace{\frac{(2k+2)!}{(k+1)!}}$$

$$= \underbrace{\frac{(2k+2)!}{(k+1)!}}$$

Logo, pelo PIM, $P(n): 2.6.10.14 \cdots (4n-2) = \frac{(2n)!}{n!}$ é verdadeira $\forall n$ natural.

(b)
$$\sum_{i=3}^{n} \frac{i}{2^i} = 1 - \frac{n+2}{2^n}$$

para todo número natural $n \geq 3$.

Resposta: Seja $P(n): \sum_{i=3}^{n} \frac{i}{2^i} = 1 - \frac{n+2}{2^n}, n \ge 3.$

BASE DA INDUÇÃO: Vamos mostrar que P(3) é verdadeira.

De fato, como $\frac{3}{2^3} = \frac{3}{8}$ e $1 - \frac{3+2}{2^3} = 1 - \frac{5}{8} = \frac{3}{8}$, P(3) é verdadeira.

HIPÓTESE DA INDUÇÃO: Suponha que $P(k): \sum_{i=3}^k \frac{i}{2^i} = 1 - \frac{k+2}{2^k}$ seja verdadeira, $\forall k \geq 3$.

PASSO DA INDUÇÃO: Vamos mostrar que se P(k) é verdadeira, então $P(k+1):\sum_{i=3}^{k+1}\frac{i}{2^i}=1-\frac{(k+1)+2}{2^{k+1}}$ é verdadeira.

$$\sum_{i=3}^{k+1} \frac{i}{2^{i}} = \sum_{i=3}^{k} \frac{i}{2^{i}} + \frac{k+1}{2^{k+1}}$$

$$= \left(1 - \frac{k+2}{2^{k}}\right) + \frac{k+1}{2^{k+1}}$$

$$= 1 - \left(\frac{k+2}{2^{k}} - \frac{k+1}{2^{k+1}}\right)$$

$$= 1 - \left(\frac{2(k+2) - (k+1)}{2^{k+1}}\right)$$

$$= 1 - \left(\frac{2k+4-k-1}{2^{k+1}}\right)$$

$$= 1 - \left(\frac{k+3}{2^{k+1}}\right)$$

$$= 1 - \left(\frac{(k+1)+2}{2^{k+1}}\right)$$

Logo, pelo PIM, $P(n): \sum_{i=3}^{n} \frac{i}{2^i} = 1 - \frac{n+2}{2^n}$, é verdadeira $\forall n \geq 3$.

- 4. (2.0) Para usar um aplicativo, deve ser escolhida uma senha de 8 caracteres formada por algumas das 26 letras do alfabeto e/ou por algums dos 10 dígitos (0,1,2,3,4,5,6,7,8,9). As letras e os números não podem estar repetidos. As letras devem ser maiúsculas. De quantas maneiras podem ser escolhidas se cada senha deve conter:
 - (a) pelo menos 1 letra? Justifique,

Resposta: Vamos usar a noção de complemento neste caso. Para tal, vamos calcular a quantidade total de senhas e subtrair a quantidade de senhas que NÃO possuem letras. A quantidade total de senhas com 8 caracteres é dada por: $A_{36}^8 = \frac{36!}{28!}.$ A quantidade de senhas que NÃO possuem letras é dada por: $A_{10}^8 = \frac{10!}{2!}.$ Logo, utilizando a noção de complemento, a quantidade de senhas é dada por $\frac{36!}{28!} - \frac{10!}{2!}.$

(b) a letra Z? Justifique,

Resposta: Como a letra Z está fixada, temos que escolher e posicionar os outros 7 dígitos e, em seguida, vamos escolher uma posição para a letra Z. Para escolher e posicionar os 7 dígitos, temos $A_{35}^7 = \frac{35!}{28!}$ formas. Posicionados esses dígitos, temos 8 espaços para posicionar a letra Z, ou seja, 8 formas de posicionar a letra Z. Pelo PM, a quantidade de senhas que possuem a letra Z é dada por: $8 \times \frac{35!}{28!}$.

(c) os dígitos 7 e 9 sempre juntos? Justifique.

Resposta: Começaremos escolhendo e posicionando os outros dígitos da senha. Para isso, temos $A_{34}^5 = \frac{34!}{29!}$. Vamos considerar que os dígitos 7 e 9 são um único algarismo e escolher um lugar para posicioná-los entre os algarismos já posicionados. Note que temos 6 espaços e, portanto, 6 maneiras de posicionar o 7 e 9. Note também que temos duas configurações possíveis para o 7 e 9: ou vão aparecer como 79 ou como 97. Logo, pelo PM, a quantidade de senhas que possuem os dígitos 7 e 9 sempre juntos é dada por $\frac{34!}{29!} \times 6 \times 2 = \frac{34!}{29!} \times 12$.

- 5. (1.5) Numa classe de 12 estudantes um grupo de 7 será selecionado para uma excursão. De quantas maneiras diferentes esse grupo poderá ser formado:
 - (a) se não houver restrições? Justifique.

Resposta: Neste caso, não importa a ordem das escolhas. Portanto, a excursão pode ser montada de $C_{12}^7 = \frac{12!}{7!5!}$ formas.

(b) se 2 dos 12 estudantes são namorados e só irão juntos? Justifique.

Resposta: Vamos separar em dois casos: os namorados vão e os namorados não vão.

• CASO 1: NAMORADOS VÃO Neste caso, basta escolher os outros 5 estudantes dentre os 10 restantes. Logo, temos $C_{10}^5 = \frac{10!}{5!5!}$ maneiras de formar essa excursão.

• CASO 2: NAMORADOS NÃO VÃO Neste caso, basta escolher os 7 estudantes dentre os 10 restantes. Logo, temos $C_{10}^7 = \frac{10!}{7!3!}$ maneiras de formar essa excursão. Pelo PA, temos $\frac{10!}{5!5!} + \frac{10!}{7!3!}$ maneiras de formar esta excursão.

- 6. (2.0) Quantos são os anagramas da palavra ARARUAMA:
 - (a) sem restrições? Justifique;

Resposta: A palavra ARARUAMA possui 4 A's, 2 R's, 1 U e 1 M, totalizando 8 letras. Logo, o número total de anagramas desta palavra é dado por $P_8^{4,2,1,1} = \frac{8!}{4!2!1!1!}$.

(b) que contenham as vogais todas juntas? Justifque;

Resposta: Vamos considerar todas as vogais como uma única letra \mathcal{V} . Note que existem $P_5^{4,1} = \frac{5!}{4!1!} = 5$ configurações diferentes para \mathcal{V} . Em seguida, vamos posicionar as consoantes. Temos $P_3^{2,1} = \frac{3!}{2!1!} = 3$ maneiras de posicioná-las. Depois de posicioná-las, temos 4 espaços para posicionar \mathcal{V} . Logo, pelo PM, temos $5 \times 3 \times 4 = 60$ anagramas nos quais as vogais estão todas juntas.

(c) que contenham as vogais todas juntas e as consoantes também todas juntas? Justifique

Resposta: No item (b), constatamos que existem 5 configurações para \mathcal{V} . Vamos assumir que as consoantes também são uma única letra \mathcal{C} . Neste caso, temos $P_3^{2,1} = \frac{3!}{2!1!} = 3$ configurações distintas para \mathcal{C} . Note que, como vogais devem estar todas juntas e consoantes também, ou temos vogais e consoantes (nesta ordem), ou consoantes e vogais (nesta ordem). Portanto, 2 configurações distintas. Assim, pelo PM, temos $5 \times 3 \times 2 = 30$ anagramas nos quais as vogais todas juntas e as consoantes também todas juntas.