PLS-models in Practice: sparse and sparse group extensions

Lecture 1/3

MSc Health Data Analytics – Computational epidemiology – February 11, 2021

Marc Chadeau-Hyam

m.chadeau@imperial.ac.uk

Imperial College London

Implementing complex study designs: Experimental studies

- Experimental studies: controlling the environment and assess individual variation
 - Inter-individual variability: related to specific individual characteristics (e.g. genome, BMI, behaviours)
 - Intra-individual variability: related to changes between experimental conditions

⇒ need to decompose the sources of variability
⇒ what is the variability of interest?

Implementing complex study designs: Experimental studies

- Experimental studies: controlling the environment and assess individual variation
 - Inter-individual variability: related to specific individual characteristics (e.g. genome, BMI, behaviours)
 - Intra-individual variability: related to changes between experimental conditions
 - ⇒ need to decompose the sources of variability
 ⇒ the intra-individual variability captures the response to the experimental changes

Implementing complex study designs: Experimental studies

- Experimental studies: controlling the environment and assess individual variation
 - Inter-individual variability: related to specific individual characteristics (e.g. genome, BMI, behaviours)
 - Intra-individual variability: related to changes between experimental conditions
 - ⇒ need to decompose the sources of variability
 ⇒ the intra-individual variability captures the response to the experimental changes
- PISCINA study: a pre-post intervention study
 - Design: 60 participants were enrolled to swim for 40 minutes in a chlorinated pool
 - Data: exposure (exhaled breath) and OMICs (blood) measured before and after swimming (N=2/participant)
 - OMICs data: proteins (N=13), Metabolites (N \sim 6,000), Transcripts (N \sim 30K)

PISCINA study: LMM parametrisation

- Metabolite data: outcome, Y
 - N=6,471 peaks measured in the whole population
 - Data is standardised to unit variance (for comparability)
- Exposure data: predictor
 - Five DBP measured in exhaled breath
 - Log-transformed exposures
 - Exposures are centered on the average level across 'pre'-measurements
- Two measurements per participant: setting up a linear mixed model with an individual ID random intercept:

Y
$$\sim$$
 Expo + (1|ID)
$$\Sigma = \left(\begin{array}{cc} \sigma_{pre}^2 & \color{red} \delta \\ & \sigma_{post}^2 \end{array}\right)$$

PISCINA study: model comparison

⇒ highly consistent results

⇒ Pre-post indicator may act as proxy for exposure

PISCINA study: model comparison

• Results overview (van Veldhoven et al., Env Int, 2018):

 \Rightarrow 293 features associated to at least one exposure

• Results overview (van Veldhoven *et al.*):

⇒ No association survives adjustment for Pre-post indicator

• Results overview (van Veldhoven *et al.*):

⇒ strong overlap across exposure-associated features (>60% associated to >3 exposures)

• Results overview (van Veldhoven *et al.*):

⇒ Confounding by the experiment (e.g. PA): feature annotation identified 13 chlorinated compounds)

Results from PISCINA study: transcriptomics ($N \sim 27,000$)

• Nuisance variation modelling: for $BrCH_3$ and $ClCH_3$

⇒ Hybridisation generated far more noise (<3% null variance estimates)
 ⇒ RE estimates are similar for all exposures

Results from PISCINA study: transcriptomics ($N \sim 27,000$)

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Blood transcriptional and microRNA responses to short-term exposure to disinfection by-products in a swimming pool *

Almudena Espín-Pérez^{a,}, Laia Font-Ribera^b, Karin van Veldhoven^c, Julian Krauskopf^a, Lutzen Portengen^d, Marc Chadeau-Hyam^c, Roel Vermeulen^d, Joan O. Grimalt^e, Cristina M. Villanueva^b, Paolo Vineis^c, Manolis Kogevinas^b, Jos C. Kleinjans^a, Theo M. de Kok^a

• Numerous associations: overlapping transcripts and enriched pathways

Exposures	Pathways	Exposures	Pathways	
BDCM Br3CH CI3CH DBCM TTHM	Validated targets of C-MYC transcriptional repression		JAK STAT pathway and regulation	
	FAS pathway and Stress induction of HSP regulation	1	TNF alpha Signaling Pathway	
	mapkinase signaling pathway	1	CXCR4-mediated signaling events	
	Insulin Signaling	1	TRAIL signaling pathway	
	Apoptosis Modulation and Signaling		miR-targeted genes in epithelium and in squamous cell- TarBase	
	Osteoclast differentiation		Caspase activation via extrinsic apoptotic signalig pathway	
	Direct p53 effectors	1	Transcriptional misregulation in cancer	
	Influenza A		IL6, IL-3 Signaling Pathway, IL2	
BDCM Br3CH DBCM	Regulation of toll-like receptor signaling pathway		Interferon type I signaling pathways	
	HIF-1 signaling pathway	BDCM CI3CH	Fc-epsilon R and receptor I signaling in mast cells	
DBCIVI	Processing and activation of SUMO	DBCM TTHM	transcription regulation by methyltransferase of carm1	
BDCM CI3CH]		
DBCM	RHO GTPases Activate NADPH Oxidases		Integrated Cancer pathway	
	IL4		Hepatitis B	
	role of mitochondria in apoptotic signaling		Apoptosis and apoptosis Modulation by HSP70	
	Coregulation of Androgen receptor activity		Fas	
BDCM CI3CH TTHM	JAK STAT MolecularVariation 2		ceramide signaling pathway	
	RAC1 signaling pathway		Natural killer cell mediated cytotoxicity	
	EGFR1		NOTCH1 Intracellular Domain Regulates Transcription	
	Tuberculosis		keratinocyte differentiation	
		DDOM B-2011		
	Toxoplasmosis	BDCM Br3CH	Epithelial cell signaling in Helicobacter pylori infection	
	างxงpiasinosis	BDCM Br3CH	Epimenal cen signaling in Hericopacter pylon infection	
	miR-targeted genes in lymphocytes - TarBase	DBCM TTHM	Meiosis	
		BDCM DBCM		
		TTHM	Oxidative Stress Induced Senescence	

Results from PISCINA study: proteins (N=13)

Environment International 105 (2017) 1-11

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Acute changes in serum immune markers due to swimming in a chlorinated pool

Jelle Vlaanderen^{a,*}, Karin van Veldhoven^b, Laia Font-Ribera^{c,d,e,f}, Cristina M. Villanueva^{c,d,e,f}, Marc Chadeau-Hyam^b, Lützen Portengen^a, Joan O. Grimalt^g, Christian Zwiener^h, Dick Heederik^a, Xiangru Zhangⁱ, Paolo Vineis^{b,j}, Manolis Kogevinas^{c,d,e,f}, Roel Vermeulen^a

• Consistent associations for all exposure, and TTHM (total)

Table 2. Association between swimming in a chlorinated pool and change in concentration of selected serum immune markers.

Immune	% changeª	% change ^a	% change ^a	TTHMd	Kcald	TTHMd
marker		adjusted	adjusted for			adjusted for
		for TTHM ^b	Kcal ^c			Kcal ^c
CCL11	-12.5%	-7.0%	-22.9%	8.03e-03	-5.65e-02	-1.04e-02
	(q=1.12e-03)	(q=7.51e-01)	(q=8.52e-02)	(q=1.21e-03)	(q=8.16e-03)	(q=1.32e-01)
CCL22	-8.8%	-4.1%	-8.0%	-5.75e-03	-4.45e-02	-4.68e-03
	(q=1.39e-05)	(q=7.51e-01)	(q=2.30e-01)	(q=1.05e-05)	(q=5.19e-05)	(q=1.80e-01)
CRP	-7.5%	-7.0%	-10.7%	-4.51e-03	-3.53e-02	-3.45e-03
	(q=1.67e-05)	(q=3.46e-01)	(q=8.52e-02)	(q=9.80e-05)	(q=2.65e-04)	(q=2.44e-01)
CXCL10	-13.4%	-10.6%	-13.6%	-8.23e-03	-6.65e-02	-5.08e-03
	(q=3.95e-12)	(q=7.91e-02)	(q=2.86e-02)	(q=2.74e-10)	(q=7.15e-10)	(q=1.32e-01)
IL-1RA	17.6%	1.1%	13.3%	1.22e-02	9.04e-02	1.26e-02
	(q=1.39e-05)	(q=8.96e-01)	(q=2.85e-01)	(q=1.39e-06)	(q=3.10e-05)	(q=6.02e-02)
IL-8	-14.6%	-8.3%	-8.6%	-9.28e-03	-7.63e-02	-4.95e-03
	(q=4.93e-04)	(q=7.51e-01)	(q=4.29e-01)	(q=6.01e-04)	(q=5.37e-04)	(q=4.49e-01)

Results from PISCINA study: Conclusions

- The OMICS data sets investigated
 - Proteins (N=13 inflammatory markers)
 - Metabolomics (N \sim 6,000 features)
 - \circ Transcriptomics: (N \sim 30,000 transcripts)
- Main conclusions:
 - Effects of the experiment was detected at all 3 molecular levels
 - Irrespective of the platform, strong overlap across markers of each exposure
- Exposure Correlations: strong co-occurence

 \Rightarrow is the strong overlap across exposure due to their correlation?

Investigating effects of multivariate exposures (Jain et al.)

JECH Online First, published on March 21, 2018 as 10.1136/jech-2017-210061 Theory and met

A multivariate approach to investigate the combined biological effects of multiple exposures

Pooja Jain, ¹ Paolo Vineis, ^{1,2} Benoît Liquet, ^{3,4} Jelle Vlaanderen, ⁵ Barbara Bodinier, ¹ Karin van Veldhoven, ¹ Manolis Kogevinas, ^{6,7,8,9} Toby J Athersuch, ^{1,10} Laia Font-Ribera, ^{6,7,8,9} Cristina M Villanueva, ^{6,7,8,9} Roel Vermeulen, ^{1,5} Marc Chadeau-Hyam^{1,5}

• Question: due to exposure co-occurence, are all exposures needed to explain the inflammatory response?

 \Rightarrow is there a 'mixture effect'?

- \Rightarrow use all exposures as predictor and assess the most relevant ones
- Need to account for the multidimensional nature of the response
- Method: (sparse) PLS model of (N=4) exposures vs. (N=13) proteins
- Multi-level extension accounts for the repeated measure design
- Aim: identify molecular signatures of exposures:
 - which (sets of) exposure are affecting proteins level (X selection)
 - which (sets of) proteins are affected by exposures (Y selection)
 - what set of exposures most affect a subset of the proteins (X& Y selection)

Refresher on Partial Least Square model

- Refresher on the PCA:
 - Unsupervised approach
 - \circ For each principal component h, find loadings u_h such that:

$$\max_{||u_h||=1} \operatorname{Var}(X_h u_h) \quad h \in \{1, \dots, H\}$$

- Partial Least Square (PLS): supervised extension, *i.e.* summarises the information in X that is relevant to a (multivariate) outcome Y
- Objective: estimate the loadings u_h and v_h summaring X and Y, respectively such that the variance covariance between the projections is maximal

$$\max_{||u_h||=1, ||v_h||=1} Cov(X_h u_h, Y_h v_h) \quad h \in \{1, \dots, H\}$$

$$X_{h} = \begin{pmatrix} x_{h_{11}} & \dots & x_{h_{1p}} \\ \dots & \dots & \dots \\ x_{h_{n1}} & \dots & x_{h_{np}} \end{pmatrix} u_{h} = \begin{pmatrix} u_{h}^{1} \\ \dots \\ u_{h}^{p} \end{pmatrix} Y_{h} = \begin{pmatrix} y_{h_{11}} & \dots & y_{h_{1p}} \\ \dots & \dots & \dots \\ y_{h_{n1}} & \dots & y_{h_{np}} \end{pmatrix} v_{h} = \begin{pmatrix} v_{h}^{1} \\ \dots \\ v_{h}^{p} \end{pmatrix}$$

Partial Least Square: estimation procedure univariate case

• Initialisation: Find \hat{u}_1 such that

$$\hat{u}_1 = \underset{||u_1||=1}{\operatorname{argmax}} \operatorname{Cov}(Xu_1, Y) = \frac{X^T Y}{||X^T Y||}$$

 \Rightarrow Scores of the first component of X are computed from linear combination of X with loadings coefficients in u: $S_{X1} = Xu$ (rescaled coefficients from standardised linear regression)

- Iterative algorithm:
 - 1. Deflation step: the variance of X_{h-1} explained by component (h-1) is removed in X_h to ensure orthogonality

$$X_h = X_{h-1} - S_{h-1}c^T$$
, where c: reg. coeff of $X_{h-1} S_{h-1}$

 \Rightarrow remove from X the information of X captured by comp. h-1

$$Y_h = Y_{h-1} - dS_{h-1}$$
, where d: reg. coeff of Y_{h-1} S_{h-1}

 \Rightarrow remove from Y the part explained by the X comp. h-1

2. Find
$$\hat{u}_h$$
 such that: $\hat{u}_h = \underset{||u_h||=1}{\operatorname{argmax}} \operatorname{Cov}(X_h u_h, Y_h)$

PLS: estimation procedure multivariate case

• Parameter estimation for multivariate Y now we have loadings for Y(v)

$$\max_{||u_h||=1, ||v_h||=1} \text{Cov}(X_h u_h, Y_h v_h) \quad h \in \{1, \dots, H\}$$

- Initialisation: set h = 1, and $Y_1 = Y$
 - 1. Set w_h as the first column of Y_h
 - 2. Calculate X loadings: $u_h = \frac{X_h^T w_h}{w_h^T w_h}$ and scale u_h to 1
 - 3. Compute the scores of X_h : $S_h = X_h u_h$
 - 4. Derive the Y loadings (regressing Y_h on the X scores: $v_h = \frac{Y_h^T S_h}{S_h^T S_h}$
 - 5. Compute the scores of Y_h and set $w_h = Y_h v_h$ (Y scores)
 - 6. Repeat 2 to 5 until convergence (limited changes in v and u)
 - 7. Compute the regression coefficients c_h (or e_h) from the regression of X_h (or Y_h) onto S_h
 - 8. Deflation step: compute the residual matrices $X_{h+1} = X_h S_h c_h^T$ and $Y_{h+1} = Y_h S_h e_h^T$
 - 9. Increment *h*