ISTEC

Licenciatura em Engenharia Informática Arquitetura de Computadores

	<mark>Resolução</mark> do Exame Tipo	Fevereiro de 2024
Nome:		Num.

- 1. Enumere quatro atividades principais realizadas por um Processador.
 - Lê, interpreta, e executa e instruções.
 - Lê e armazena dados, da e na RAM, respetivamente.
 - Usa os sinais de controle para o controle geral das operações do Sistema.
 - Emite e recebe sinais de interrupções.
- 2. Qual a finalidade do Chipset, referenciando-se às pontes norte (Northbridge) e sul (Southbridge).

É o controlador que controla os acessos às Memórias RAM e Periféricos:

Northbridge - controla as Memórias (placa). Southbridge - controla os Periféricos.

3. Qual a finalidade da BIOS e que tipo de programas contém?

BIOS (Basic Input Output System) é o conjunto de Programas básicos que testa preliminarmente o Hardware (Programas POST), deteta e verifica a presença dos dispositivos I/O, inicia o Sistema Operativo e controla a Entrada e Saída (I/O) do Sistema. É um programa firmware que se encontra armazenado na Motherboard, numa ROM.

- 4. Em referência ao Ciclo da Máquina:
 - a) Descreva, de uma forma concreta e sintética, mas passo a passo, a fase de **FETCH,** de uma instrução elementar do tipo **X = X + Y.**
 - O registo PC (Program Counter) é carregado com o endereço da instrução a ser trazida da RAM para o Processador para descodificação.

- O valor do registo PC é então carregado no registo de endereços MAR (Memory Address Register).
- O valor do registo MAR é carregado (os sinais que compõem o endereço da instrução) no Address Bus (via de endereços).
- O Processador emite o Sinal de Controle Read (para leitura da Memória).
- A localização da RAM (onde se encontra a instrução) é acedida e dá-se a transferência do código da instrução (X = X + Y) para o Data Bus (via de dados).
- O valor do código da instrução que se encontra no data bus é carregado no registo MBR (Memory Buffer Register).
- O valor do MBR é transferido para o registo IR (Instruction Register), para descodificação da instrução, dando assim por terminada a fase fetch do ciclo da máquina e inicio da fase Interpretação da Instrução.

b) Qual a relevância do registo MBR (Memory Buffer Register) durante o ciclo da máquina?

É um registo do Processador que serve de memória auxiliar temporária tanto de dados como instruções, daí a sua importância.

5. De uma forma breve e básica, caracterize os seguintes conceitos:

a) SDRAM

SDRAM (**S**ynchronous **D**ynamic **R**andom Access **M**emory) é uma memória de acesso aleatório que é sincronizada com o Clock e o barramento do sistema. Ou seja, é uma memória que está sincronizada com os ciclos da motherboard. É dinâmica porque precisa que as células que armazenam os bits sejam atualizadas, através de um processo conhecido por *Refreshing*.

b) SRAM

SRAM (Static Random Access Memory) é um tipo de memória de acesso aleatório que mantém os dados armazenados desde que seja mantida sua alimentação e é estática já que não precisa que as células que armazenam os bits sejam atualizadas. É a memória usada nas memórias CACHE.

c) EEPROM

EEPROM (Electrically Erasable Programmable ROM) é uma Rom programável e apagável eletricamente.

d) Cilindro

Os Cilindros são formados verticalmente pelas trilhas, do mesmo número em cada disco, de um conjunto de discos.

Permitem uma boa organização no armazenamento da informação, conducente a um bom desempenho e acesso mais fácil aos dados.

6. Qual é a finalidade de um descodificador (decoder)? Exemplifique

Um descodificador recebe endereços de memória ou de outros circuitos e determina qual o banco de memória ou circuito que deve selecionar, (por exemplo, um dos blocos de memória de 512MB) pelo que necessita encontrar o endereço real do circuito em questão.

Desta forma, um descodificador pode ser utilizado de modo a determinar qual circuito deve ser ativado para leitura ou escrita.

Se considerarmos, como exemplo, que 2 bits de endereçamento são 00, o chip 0 deve ser ativado, caso os 2 sejam 11, o chip 3 deve ser ativado.

Sendo assim a saída do descodificador é usada para ativar um e apenas um chip, entre vários

7. Que tipos de Transferências de dados que conhece?

Do Processador para a Memória. Da Memória para o Processador.

Do processador para o Sistema I/O.

Do Sistema I/O para o Processador.

8. Mencione três sinais de Controlo do Processador, à sua escolha

Read (Memória, I/O) Write (Memória, I/O) Int (Interrupt)

9. Qual a finalidade do segmento STACK? Apresente um caso da sua utilização.

Serve para armazenar dados de uma forma do tipo LIFO (Last In First Out). Um caso de utilização:

Na salvaguarda dos endereços de retorno das chamadas às funções.

Ou salvaguarda temporária de valores de registos, com a finalidade de recuperá-los mais tarde, permitindo assim a reutilização dos registos sem perda dos seus valores originais.

10. Realize as seguintes representações:

a. 87 (base 10) em hexadecimal e binário

```
Binário: 0 1 0 1 0 1 1 1 (87 base 10)
```

Hexadecimal: $01010111 \rightarrow 0101 0111 = 57$

b. <u>- 57</u>

```
(1^{\circ}) 001111001 \rightarrow (2^{\circ}) 11000110 \rightarrow (3^{\circ}) +1 \rightarrow (4^{\circ}) 11000111
```

Passos:

1º - Representação binária do número positivo do pedido (Neste caso, é o +57)

2º - Aplicação do NOT (inversão)

3º - Adiciona-se mais um (+1) ao valor obtido no passo 2, produzindo o resultado final

11. Dado o seguinte excerto de programa:

.Data

```
info db 'ISTEC Lumiar$'
```

.Code

lea si, info

mov cx, 1

I1: inc cx

cmp cx,4

jz fim

inc si

mov ah,2

mov dl, [si]

int 21H

add si,2

jmp l1

fim: ...

...

a) O que faz este excerto de código?

Mostra no ecrã as seguintes letras (que fazem parte da string "ISTEC Lumiar"):

SC

- b) Qual o modo de endereçamento da instrução mov al, [si]?
 Indireto.
- c) Defina o modo de endereçamento **directo**. Apresente um exemplo da sua utilização.

O modo de endereçamento direto, consiste em um dos operandos ser uma variável (val), cuja memória, que lhe está associada, pode ser acedida diretamente.

Exemplo:

.Data val dw ?

.Code mov ax, 10 mov val, ax

Neste exemplo, uma cópia do valor de ax é carregada diretamente na posição de memória onde se encontra alocada a variável **va**l.

d) Como funciona a instrução:

lea si, info?

Carrega no registo **SI** o endereço-offset, relativamente à base do Data Segment, da letra **I**, que é a 1ª letra da string "ISTEC Lumiar".

12. Simule o seguinte excerto de programa, acompanhando, passo a passo, a execução de cada instrução, e indicando, no final, quais os valores armazenados nos registos intervenientes. Justifique completamente.

•••

mov ax, 1

mov bx, 1

mov cx, 2

salto: inc cx

cmp cx, 4

jz fim

inc ax

inc bx

jmp salto

inc ax

add ax,bx

fim: add ax,cx

•••

Resposta:

Os resultados finais armazenados nos registos intervenientes são:

Registo AX = 6

Registo BX = 2

Registo CX = 4

O quadro abaixo comprova estes resultados, mostrando como foram obtidos, passo a passo, tal como foi feito na aula, até aos seus valores finais:

AX	BX	CX
1	1	2
		3
2		
	2	
		4
<mark>6</mark>		

Grupo II

Sistema Operativos

1.		al das seguintes componentes requer um device driver (controlador de
	disp	p <mark>ositivo)?</mark>
		ROM RAM
		chipset
		Nenhuma das opções acima.
2.	A ge	estão da Memória Física e Virtual é da responsabilidade do componente:
		Sistema de Ficheiros
		Shell
		Kernel
		Nenhuma das opções acima
_		
3.	Um	time slice ou quantum é um termo normalmente associado:
		Ao tempo de uma execução completa de um processo criado pelo Windows 10
		Ao tempo de uma execução completa de um processo criado pelo Linux
		A uma partilha ou fatia de tempo de execução atribuída pelo escalonador a um processo, em ambiente de sistemas multitarefa.
		Nenhuma das opções acima
<mark>4.</mark>	A áı	rea de <i>swap</i> (permutação de processos) encontra-se situada (localização) na/no:
		RAM
		ROM
		Kernel
		Nenhuma das opções acima

5. Por que razão um processo pode encontrar-se no estado *Blocked* (Bloqueado)?

Quando está espera da execução de um determinado recurso ou evento, estando assim dependente disso para poder continuar.

6. Por que razão um processo pode encontrar-se estado Suspenso?

Sempre que um time slice expira.