

Professional, Technical & Legal Translations

Language Matters

1445 Pearl Street Boulder, Colorado 80302 Tel: 303-442-3471 Fax: 303-442-5805 info@languagematters.com

CERTIFICATE OF ACCURACY

STATE OF COLORADO) SS: 84-1205131 COUNTY OF BOULDER)

ROSANGELA FIORI being duly sworn, deposes and says that she is the Manager of LANGUAGE MATTERS, 1445 Pearl Street, Boulder, CO 80302 and that she is thoroughly familiar with RICHARD VAN EMBURGH who translated the attached document titled:

Patent # 2 225 342

from the GERMAN language into the ENGLISH language, and that the ENGLISH text is a true and correct translation of the copy to the best of her knowledge and belief.

Sworn before me this October 15, 2004

JUDITH E. MORRIS
Notary Public
State of Colorado
My Commission Expires 08/02/2008

FEDERAL REPUBLIC OF GERMANY

GERMAN PATENT OFFICE

German Cl.: [illegible]

Unexamined Patent Application 2 225 342

File number:

P 22 25 342.5-12

Filing date:

May 25, 1972

Disclosure date:

December 6, 1973

Exhibition priority: -

Union priority:

-

Date:

Title:

-

Country:

-

File number:

Length-adjustable Pneumatic Spring

Addition to:

-

Separation from:

Applicant:

SUSPA-Federungstechnik GmbH, 8503 Altdorf

Representative according to § 16 of the Patent Law: -

Named as inventor: Bauer, Fritz, 8503 Altdorf

Examination request is filed according to § 28b of the Patent Law

Language Matters 1445 Pearl Street Boulder, CO 80302 Phone: 303-442-3471 Fax: 303-442-5805

www.languagematters.com

/address information/

"Length-adjustable Pneumatic Spring"

The invention concerns a length-adjustable pneumatic spring, especially for stepless height

adjustment of chair seats or the like, consisting of a housing with a gas filling formed by an outer

tube and an inner tube arranged coaxially in it to form an annular channel, a piston sealed

relative to the inner tube and movable axially in it on a piston rod that is passed in sealed fashion

from one end of the housing through a stopper, and a valve arranged on the other end of the

housing for controlled connection of the internal space of the housing to the annular channel,

which is also connected to the internal space in the region of the stopper, in which a valve lifter

that closes or opens gas flow openings in a valve body is provided.

This type of length-adjustable pneumatic spring, known from DT-OS 1 812 282, is particularly

suitable to serve as a self-supporting, length-adjustable, spring-loaded rotatable element in a

chair post (DT-OS 1 931 012).

In this known pneumatic spring, the valve body is designed in two parts, the outer part being

connected to the outer tube by a continuous welded seam. The stopper opposite the valve body is

provided with a continuous annular groove, into which the outer tube is inserted. To create a

bead, it is essential that the relatively stable outer tube, because of the high gas pressure, be

reduced at this site in wall thickness by turning, so that a shoulder occurs on the outer periphery

that adversely effects the guide properties in a riser during use of the pneumatic spring as a chair

post according to DT-OS 1 931 012. In addition, assembly is relatively difficult, because of the

nature of the two-part design of the stopper and valve body, in which the welded seam between

the outer part of the valve body and the outer tube, in particular, result in manufacturing costs

and sealing problems.

The underlying task of the invention is therefore to improve such a length-adjustable pneumatic

spring, so that its production and assembly are simplified with simultaneous facilitation of

incorporation in a chair as a chair post.

Language Matters 1445 Pearl Street Boulder, CO 80302 Phone: 303-442-3471 Fax: 303-442-5805

This task is solved by to the invention in that the outer tube is designed as a continuous, one-

piece tube, flanged only on its ends around the stopper or valve body of roughly constant outside

diameter and roughly constant inside diameter. Because of this, a situation is achieved in which a

commercial tube of ordinary wall thickness can be used as outer tube, which requires no

additional machining by reducing the wall thickness in the end regions of the tube and/or by

rolling in of a bead to secure the valve body or stopper. The outer tube therefore has a fully

smooth, uninterrupted surface line on the outside and inside. Because of this design, it is also not

necessary for the valve body to be welded to this outer tube, which can lead to weakening of the

cross section, and especially a gas leak, in addition to the extra labor costs. Because of this, an

undisturbed diameter is achieved over the entire length of the housing, which has a particularly

advantageous effect on the use properties, especially as a self-supporting chair post, as described

in DT-OS 1 931 012.

The invention can be modified in particularly advantageous fashion by connecting the valve

body and stopper to the inner tube by force-fitting. Extremely simple assembly is possible

because of this, since the preassembled unit, consisting of the preinstalled valve, inner tube and

stopper, including the piston rod and piston, can be simply inserted into the outer tube, followed

by flanging. A gas-tight connection is simultaneously produced between the valve body and the

inner tube.

It is also very advantageous here if the valve body is designed in one piece and essentially

cylindrical with an outside diameter roughly corresponding to the inside diameter of the outer

tube. Preassembly of the stopper is then particularly simple in a two-part stopper, if the two parts

of the stopper have aligned turned grooves, into which a lip seal can be inserted with force-fitting

of these two parts, so that these parts are already firmly held together during assembly.

Additional advantages and features of the invention are apparent from the description of a

practical example with reference to the drawing, which shows a pneumatic spring according to

the invention in longitudinal section, and a modification with a conical valve region. Each of the

pneumatic springs that form the basis of the invention have a housing (11), consisting essentially

of two tubes (12), (13) positioned concentrically, one in the other, with different diameters. An

Language Matters 1445 Pearl Street Boulder, CO 80302 Phone: 303-442-3471 Fax: 303-442-5805

www.languagematters.com

annular channel (14) is formed between the outer tube (12) and the inner tube (13), because of

the different diameters of the two tubes.

A disk-like piston (15) is arranged axially movable in the inner tube, which is sealed via a

sealing ring (17) arranged in an annular groove (16) relative to the inner tube (13) with its outer

periphery. The piston (15) is fastened to one end of a piston rod (18), passed coaxially through

the housing (11). This piston rod is brought out from one end of the housing (11). The housing

(11) is closed on this end by a stopper (19) introduced to the outer tube (12), which has an

annular groove (20) on its outer periphery, in which an annular seal (21) is arranged, so that gas

passage between the outer periphery of stopper (19) and the inside wall of outer tube (12) is not

possible.

Stopper (19) consists of two parts (22), (23) arranged axially, one behind the other, both of

which have aligned cylindrical turned grooves (24), (25), in addition to a continuous axial hole

for passage of the piston rod (18) into the adjacent regions, in which a the lip seal (26) is

accommodated, through which the piston rod (18) is guided outward, gas- and liquid-tight. The

lip seal (26) sits so tightly in the two turned grooves (24), (25), that it is impossible for gas or

liquid to escape even in this region, and that, especially after joining of the two parts (22), (23) of

stopper (19) with insertion of the lip seal (26), these three parts are firmly held together during

assembly. The part (23) of the stopper (19) facing the internal space (27) of housing (11) has a

centering shoulder (27a), onto which the inner tube (13) is firmly pressed. This part (23) of the

stopper (19) has a recess (28) that connects the annular channel (14) to inner space (27), in which

this connection exists only between the part of the inner space (27) situated between the piston

(15) and stopper (19), owing to the gas-tight guiding of piston (15) in inner tube (13). The

stopper (19), and especially its outer part (22), is secured axially against movements from

housing (11) by flanging (29) of the outer tube (12).

On the other tube of the housing (11), an essentially cylindrical valve body (30) is inserted into

the outer tube (12) that also emerges at this end through the inner tube (13), in which a gas-tight

connection is achieved between the outer periphery of this valve body (30) and the inner

periphery of the outer tube (12) by sealing rings (32) arranged in annular grooves (31) of the

Language Matters 1445 Pearl Street Boulder, CO 80302 Phone: 303-442-3471 Fax: 303-442-5805

valve body. The valve body (30) has a centering shoulder (33) on its end facing inner space (27),

whose diameter is chosen, so that the inner tube (13) can be pressed firmly onto this centering

shoulder (33). A gas-tight connection between the centering shoulder (33) and the pressed-on

end of the inner tube (13) is achieved by an annular seal (35) arranged in an annular groove (34)

of the centering shoulder.

A coaxial hole that extends over the entire length of valve body (30) is situated in the valve

body. An annular groove (37) is formed in this hole (30) by relieving. An oblique hole (38)

extends from this annular groove (37) to the corner, where the centering shoulder (33) begins, so

that a connection exists between the annular groove (37) and the annular channel (14) between

the outer tube (12) and the inner tube (13). On both sides of the annular groove (37), annular

seals (39) are arranged, between which a spacer (40) is situated.

The seals (39) and the spacer (40) are secured against axial movements outward by a guide

bushing (41) made of thermoplastic, which is secured against slipping out of the valve body (30),

owing to the fact that the valve body (30), consisting of aluminum, is caulked at several sites

(42) against the outer collar of the guide bushing (41).

A safety bushing (43), whose collar is also held by caulking of the corresponding edge of the

valve body (30), is inserted into the hole (36) on the side facing the inner space (27) of the

pneumatic spring.

A valve lifter (44), extending through the entire valve body (30), is guided in the guide bushing

(41), and has a stop (45) on its end facing the inner space (27) of housing (11), which lies against

the safety bushing in the closed state of the valve lifter. The valve lifter has an annular turned

groove (46), which is situated in the region of annular groove (37) or spacer (40), i.e., between

the two annular seals (39), in the closed state of the valve lifter (44) depicted in the drawing.

These two annular seals (39) lie tightly against the hole (36) on one side and against the valve

lifter (44) on the other side. The end of the outer tube (12) is flanged around the outer edge of the

valve body (30), so that axial securing of the valve body occurs by this flanging (47).

Phone: 303-442-3471

www.languagematters.com

Fax: 303-442-5805

This embodiment of the pneumatic spring permits extremely easy assembly. The two parts (22) and (23) of the stopper (19) are pushed together during simultaneous insertion of the lip seal (26) into turn grooves (24) and (25), in which, because of the firm seating of the lip seal (26) in the turned grooves (24) and (25), these three parts are firmly held together. The piston rod, already provided with a piston (15), is then pushed through a stopper (19) after insertion of the sealing ring (27) in the annular groove (16) of the piston (15). Following this, the inner tube (13) is forced or pressed via piston (15) onto the centering shoulder (27a) of part (23) of the stopper (19).

At the same time, the spacer (40) is introduced into hole (36) of the valve body (30), and then the annular seals (39), and the guide bushing (41) and the safety bushing (43) are introduced from both sides, and the safety bushing (43) is clamped by caulking the valve body. The preinstalled valve lifter (44) with a stop (45) is then inserted, which is held sufficiently firmly, because of the elastic contact of the two annular seals (39). The three annular seals (32) and (35) are then inserted into the corresponding annular grooves (31) and (34) of the valve body (30), and the valve body (30), with its centering shoulder (33), is forced into the other end of inner tube (13). The flanging (29) of the outer tube (12) is already carried out. This assembly, essentially consisting of upper valves (30) to (46), inner tube (13), and stopper (19) with lip seal (26) and piston rod (18) with piston (15) and sealing ring (17), is then inserted into the flanging (29) and the flanging (47) then produced. The pneumatic spring is thus finally installed.

Filling of the pneumatic spring with compressed gas occurs, so that the valve stem (44) is pushed into the housing (11) far enough that its outer free end lies beneath annular seal (39) adjacent to guide bushing (41), so that the compressed gas can flow into the inner space (27), specifically into the inner space of the pneumatic spring lying between piston (15) and stopper (19), through the guide bushing (41), in the holes (48) situated in spacer (40), the annular groove (37) situated in the hole (36) of the valve body (30), the oblique hole (40), the annular channel (14) between the inner tube (13) and outer tube (12) and the recess (28) in the stopper (19), in which case the piston (15), in addition to the piston rod (18), is moved fully to the stop against valve lifter (44). The valve lifter (44) is then brought back to its rest position depicted in the drawing. Insertion of the valve lifter (44) and removal again for filling of the pneumatic spring with compressed gas

Language Matters 1445 Pearl Street Boulder, CO 80302 Phone: 303-442-3471 Fax: 303-442-5805 www.languagematters.com can be facilitated by the fact that on the outer end of the valve lifter (44), a threaded nipple is mounted, onto which an insertion rod is screwed. This threaded nipple can be removed after filling of the pneumatic spring. The pneumatic spring operates as follows: In the rest position of the valve lifter (44) depicted in the drawing, gas flow through the valve is suppressed, so that the piston (15) and therefore piston rod (18) are situated in a static rest position, around which, however, spring action is possible, because of the compressibility of the gas cushion on both sides of the piston (15). For length adjustment of the pneumatic spring, i.e., to change the relative position of the piston (15) and piston rod (18) relative to the housing (11), the valve lifter (44) is pushed into the valve body (30) far enough that the annular turned groove (46) in the valve lifter (44) bridges the lower annular seal (39) facing the inner space (27) of the pneumatic spring, so that gas flow can occur from the part of inner space (27) situated between piston (15) and the valve body (30) through the annular gap (49) between the safety bushing (43) and the valve lifter (44), the annular turned groove (46) in the valve lifter (44), the throttle openings (48) in the spacer (40), the annular groove (37) in the hole (36) of the valve body (30), the oblique hole (38) in the valve body (30), the annular channel (14) between the inner tube (13) and outer tube (12) and the recess (28) in part (23) of the stopper (19), into the part of inner space (27) between the piston (15) and the stopper (19). Gas flow is naturally equally possible in the opposite direction. If, after opening of the valve, i.e., after insertion of the valve lifter (44), the pneumatic spring is not loaded, the piston rod (18) is pushed outward, because of the prevailing gas pressure, whereas in the case of loading, the piston (15) and the piston rod (18) are pushed into the pneumatic spring. By formation of holes (48) in the spacer (40) as throttle openings and by selecting a small annular gap (49) between the safety bushing (43) and the valve lifter (44), gas flow is throttled, so that during opening of the valve in the unloaded state of the pneumatic spring, the piston rod (18) is pushed only slowly from the housing (11). Owing to the fact that the ratio of cross sections of the inner space (27) and the piston rod (18) is chosen relatively large, a very flat path-force characteristic of the pneumatic spring can be achieved.

The valve body (30), as shown in Fig.2, can also be designed to taper outward, so that a clamping cone according to DT Utility Model 7 019 918 can be mounted for fastening of a tabletop or chair seat on the corresponding conical section (50) of the housing (11), formed by

Language Matters 1445 Pearl Street Boulder, CO 80302 Phone: 303-442-3471 Fax: 303-442-5805 www.languagematters.com

rolling. This type of conical connection is known to have the advantage that it can be produced

by simple insertion of the conical section (50) and clamping one cone into the other.

<u>Claims</u>

1.) A length-adjustable pneumatic spring, especially for stepless height adjustment of chair

seats or the like, consisting of a housing having a gas filling, which is formed by an outer tube

and an inner tube arranged coaxially in it to form an annular channel, a piston, axially movable

in it and sealed relative to the inner tube, on a piston rod guided in sealed fashion from the end of

the housing through a stopper, and a valve arranged on the other end of the housing for

controlled connection of the inner space of the housing to the annular channel, which is

connected in the region of the stopper to the inner space, in which a valve lifter that opens or

closes gas passage openings in a valve body is provided, characterized by the fact that the outer

tube (12) is designed as a continuous one-piece tube, flanged only on its ends around stopper

(19) and the valve body (30) with roughly constant outside diameter and roughly constant inside

diameter.

2.) A pneumatic spring according to Claim 1, characterized by the fact that the valve body

(30) and the stopper (19) are connected to the inner tube (13) by force-fitting.

3.) A pneumatic spring according to Claim 1 or 2, characterized by the fact that the valve

body (30) is made in one piece and essentially cylindrical with an outside diameter

corresponding roughly to the inside diameter of outer tube (12).

4.) A pneumatic spring according to Claim 1 or 2, characterized by the fact that the valve

body (30) is designed in one piece and tapers outward, that its largest diameter corresponds

roughly to the inside diameter of the outer tube (12), and that the outer tube (12) is rolled onto it

according to the tapering of the valve body.

5.) A pneumatic spring with a two-part stopper according to one of the Claims 1 to 4,

characterized by the fact that the two parts (22, 23) of stopper (19) have aligned turned grooves

(24, 25), into which a lip seal (26) can be inserted with force-fit connection of these two parts.

Language Matters 1445 Pearl Street Boulder, CO 80302 Phone: 303-442-3471 Fax: 303-442-5805

DIPL.-ING. H. STEHMANN DIPL.-PHYS. DR. K. SCHWEIMZER DIPL.-ING. DR. M. RAU PATENTANWÄLTE

2225342

85 NÜRNBERG 2 PRSENWEINSTRASSE 4-6

TEL: KANZLEI 0911/203727 PRIVAT: 7743 06
TELEGRAMM-ADRESSE: STEHPATENT
TELEX 06-23136

BANKKONTEN: DEUTSCHE BANK AG. NORNBERG BLZ 74070012 KONTO NR. 341144 POSTSCHECKKONTO: NORNBERG 67081

Nürnberg, den 24.5.1972 18/56

Firma SUSPA-Federungstechnik GmbH, 8503 Altdorf b. Nürnberg

----"Längenverstellbare Gasfeder"

Die Erfindung betrifft eine längenverstellbare Gasfeder, insbesondere zum stufenlosen Höherverstellen von Stuhlsitzen o. dgl., bestehend aus einem eine Gasfüllung aufweisenden Gehäuse, das durch ein Außenrohr und ein koaxial in diesem unter Bildung eines Ringkanals angeordneten Innenrohr gebildet ist, aus einer gegenüber dem Innenrohr abgedichteten, axial in diesem verschiebbaren Kolben an einer abgedichtet aus dem einen Ende des Gehäuses durch einen Stopfen herausgeführten Kolbenstange und aus einem am anderen Ende des Gehäuses angeordneten Ventil zum gesteuerten Verbinden des Innenraums des Gehäuses mit dem Ringkanal, der im Bereich des Stopfens ebenfalls mit dem Innenraum verbunden ist, wobei in einem Ventilkörper ein Gasdurchströmbohrungen verschließender bzw. freigebender Ventilstößel vorgesehen ist.

Eine derartige aus der DT-OS 1 812 282 bekannte längenverstellbare Gasfeder ist besonders gut geeignet, als selbständig tragendes, längenverstellbares, federndes, drehbares Element in einer Stuhlsäule zu dienen (DT-OS 1 931 o12).

Bei dieser bekannten Gasfeder ist der Ventilkörper zweiteilig ausgebildet, wobei der außenliegende Teil mit dem Außenrohr durch eine umlaufende Schweißnaht verbunden ist. Der dem Ventilkörper gegenüberliegende Stopfen ist mit einer umlaufenden Ringnut versehen, in die das Außenrohr eingesickt wird. Zur Erzeugung einer Sicke ist es erforderlich, daß das wegen des hohen Gasdruckes verhältnismäßig stabile Außenrohr an dieser Stelle durch Abdrehen in seiner Wandstärke verringert wird, so daß hier am Außenumfang ein Absatz auftritt, der die Führungseigenschaften in einem Standrohr bei Verwendung der Gasfeder als Stuhlsäule gemäß der DT-OS 1 931 o12 beeinträchtigt. Weiterhin ist durch die Art der zweiteiligen Ausbildung von Stopfen und Ventilkörper die Montage verhältnismäßig schwierig, wobei insbesondere die Schweißnaht zwischen dem äußeren Teil des Ventilkörpers und dem Außenrohr fertigungstechnischen Aufwand und Dichtungsprobleme zur Folge hat.

Der Erfindung liegt daher die Aufgabe zugrunde, eine solche längenverstellbare Gasfeder dahingehend zu verbessern, daß ihre Herstellung und Montage bei gleichzeitiger Erleichterung des Einbaus als Stuhlsäule in einen Stuhl vereinfacht wird.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Außenrohr als durchlaufend einstückiges, lediglich an seinen Enden um den Stopfen bzw. den Ventilkörper umgebördeltes Rohr von durchgehend etwa konstantem Außendurchmesser und etwa konstantem Innendurchmesser ausgebildet ist. Hierdurch wird erreicht, daß als Außenrohr ein handelsübliches Rohr üblicher Wandstärke verwendet werden kann, das keiner zusätzlichen Bearbeitung durch Verringerung der Wandstärke in den Endbereichen des Rohres und/oder durch Einrollen einer Sicke zum Halten des Ventilkörpers bzw. des Stopfens bedarf. Das Außenrohr weist also außen und innen eine völlig glatte, nicht unterbrochene Mantellinie auf. Durch diese Ausbildung ist es weiterhin nicht erforderlich, daß beispielsweise der Ventilkörper an diesem Außen-

rohr angest seist wird, was außer des itemshraufwand auch zu einer Schwächung des Duerschnitts und insbesondere einer Gesundichtheit führen kann. Hierdurch ;
wird auch über die volle Länge des Gehäuses ein ungestörter Durchmesser erzielt, was sich besonders vorteilhaft auf die Gebrauchseigenschaften insbesondere als
selbsttragende Stuhlskule auswirkt, wie sie in der DT-OS

Die Erfindung kann in besonders vorteilhafter Weise dadurch weitergebildet werden, daß der Ventlikorper und der Stopfen mit dem Innenrohr kraftschlüssig verbunden sind. Hierdurch ist eine Mußerst einfache Montage möglich, da die aus dem fertig vormontierten Ventil, dem Innenrohr und dem Stopfen einschließlich Kolbenstange und Kolben bestehende vormontierte Einheit einfach in das Außenrohr eingeschoben werden kann, woran sich das Umbördeln anschließt! Zwischen Ventilkörper und Innenrohr wird hierbei gleichzeitig eine gasdichte Verbindung hergestellt.

Hierbei ist es wiederum sehr vorteilhaft, wenn der Ventilkörper einstückig und im wesentlichen zylindrisch mit etwa dem
Innendurchmesser des Außenrohres entsprechendem Außendurchmesser ausgebildet ist. Die Vormontage des Stopfens ist bei
einem zweiteiligen Stopfen dann besonders einfach, wenn die
beiden Teile des Stopfens miteinander fluchtende Eindrehungen
aufweisen, in die unter kraftschlüssiger Verbindung dieser
beiden Teile eine Lippendichtung einsetzbar ist, so daß diese Teile während der Montage bereits fest zusammenhalten

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung eines Ausführungsbeispieles anhand der Zeichnung, die eine Gasfeder gemäß der Erfindung im Längsschnitt zeigt, und eine Abwandlung mit konischem Ventilbereich.

Genkuse 11 auf; das im wesentlichen aus zwei konzentrisch ineinander gelegerten Rohren 12, 13 mit unterschiedlichen Durchmesser besteht. Zwischen dem Außenrohr 12 und dem Durchmesser besteht. Zwischen dem Außenrohr 12 und dem Innenrohr 13 ist aufgrund des unterschiedlichen Durchmessers der beiden Rohre ein Ringkanal 14 gebildet.

In dem Innenrohr ist ein scheibenförmiger Kolben 15 axial verschiebbar angeordnet, der über einen in einer Ringnut 16 angeordneten Dichtungsring 17 gasdicht mit seinem Außenumfang gegenüber dem Innenrohr 13 abgedichtet ist. Der Kolben 15 ist an einem Ende einer koaxial zum Gehäuse 11 geführten Kolbenstange 18 befestigt. Diese Kolbenstange ist aus einem Ende des Gehäuses 11 herausgeführt! An diesem Ende ist das Gehäuse 11 durch einen in das Außenrohr 12 eingeführten Stopfen 19 verschlossen, der an seineh Außenumfang eine

Ringnut 20 aufweist, in der eine Ringdichtung 21 angeordnet ist, sodaß ein Gasdurchtritt zwischen dem Außenumfang des Stopfens 19 und der Innenwandung des Außenrohres 12 nicht

möglich ist.

Der Stopfen 19 besteht aus zwei axial hintereinander angeordneten Teilen 22, 23, die beide außer einer durchgehenden axialen Bohrung zur Durchführung der Kolbenstange 18 in den aneinandergrenzenden Bereichen jeweils miteinander flüchtende, zylindrische Eindrehungen 24, 25 aufweisen, in denen eine Lippendichtung 26 untergebracht wird, durch die die Kolbenstange 18 gas- und flüssigkeitsdicht nach außen geführt ist. Die Lippendichtung 26 sitzt so stramm in den beiden Eindrehungen 24, 25, daß auch in diesem Bereich ein Gas- oder Plüssigkeitsaustritt unmöglich ist, und daß insbesondere nach dem Zuiummenfügen der beiden Teile 22, 23 des Stopfens 19 unter Einsetzung der Lippendichtung 26 diese drei Teile

con Ochlings 11 zugewandte Toil 23 des Btopfeno 19 weist einer Zentrieranntz 27a auf, duf den das Inhenrohr 13 fest auf pprost wird. Dieser Teil 23 des Stopfeno 19 wolst eine den Ringkanal 14 mit dem Innenraum 27 verbindende Ausnehmung 28 auf, wobsi aufgrund der gasdichten Führung des Kolbens 15 in dem Innenrohr 13 diese Verbindung nur zwischen dem Teil des Innenraums 27 besteht, der sich zwischen dem Kolben 15 und dem Stopfen 19 befindet. Der Stopfen 19 und insbesondere dessen außenliegender Teil 22 wird durch eine Umbördelung 29 des Außenrohres 12 axial gegen Bewegungen aus dem Gehäuse 11 heraus gesichert.

Am anderen Ende des Gehäuses 11 ist ein im wesentlichen zylindrischer Ventilkörper 30 in daz auch an diesem Ende über
das Innenrohr 13 hirausstehende Außehrohr 12 eingesetzt, wobei
eine gasdichte Verbindung zwischen dem Außenumfang dieses Ventilkörpers 30 und dem Innenumfang des Außenrohres 12 durch
in Ringnuten 31 des Ventilkörpers 30 angeordnete Dichtringe 32
erzielt wird. Der Ventilkörper 30 weist an seinem dem Innenraum
27 zugswandten Ende einen Zentrieransatz 33 auf, dessen Durchmesser 30 bemessen ist, daß das Innenrohr 13 fest auf diesen
Zentrieransatz 33 aufgepreßt werden kann. Eine gasdichte Verbindung zwischen dem Zentrieransatz 33 und dem aufgepreßten
Ende des Innenrohres 13 wird durch eine in einer Ringnut 34
des Zentrieransatzes angeordnete Ringdichtung 35 erreicht.

In dem Ventilkörper befindet sich eine koaxiale Bohrung, die sich über die ganze Länge des Ventilkörpers 30 erstreckt. In dieser Bohrung 30 ist eine Ringmit 37 durch Hinterdrehung gebildet. Von dieser Ringmut 37 erstreckt sich eine schrägliegende Bohrung 38 zu der Boke, wo der Zentrieransatz 33 bezinnt, socs seine Verbindung zwischen der Ringmut 37 und dem Ringkanal 14 zwischen dem Außenrohr 12 und dem Innerrohr 13 besteht. Beiderseits der Ringmut 37 sind Ringdichtum-309849/0172

Ben 39 angeormet, swischen denen wich eine Distanzhülse 40 befindete des

Die Dichtimgen 39 und die Distanzhülse 40 werden gegen axiale
Bewegungen nach außen durch eine Führungsbüchse 41 aus thermoplastischem Kunststoff gesichert die gegen ein Herausrutschen
aus dem Ventilkörper 30 dadurch gesichert ist, daß der aus
Aluminium bestehende Ventilkörper 30 gegen den Außenbund
der Führungsbüchse 41 an mehreren Stellen 42 verstemmt ist.

Auf der dem Innenraum 27 der Gasfeder zugewandten Seite ist in die Bohrung 36 eine Sicherungsblohse 43 eingesetzt; deren Bund ebenfalls durch Verstemmen des zugeordneten Randes des Ventilkörpers 30 gehalten wird.

In der Rührungsbüchse 41 wird ein sich durch den ganzen Ventilkörper 30 hindurch erstreckender Ventilstößel 44 geführt, der
an seinem dem Innenraum 27 des Gehäuses 11 zugewandten Ende
einen Anschlagteller 45 aufweist, der in geschlossenem Zustand
des Ventilstößels gegen die Sicherungsbüchse anliegt. Der Ventilstößel weist eine ringförmige Eindrehung 46 auf, die sich in
dem in der Zeichnung dargestellten geschlossenen Zustand des
Ventilstößels 44 im Bereich der Ringmit 37 bzw. der Distanzhülse 40, also zwischen den beiden Ringdichtungen 39 befindet.
Diese beiden Ringdichtungen 39 liegen dicht einerseits an der
Bohrung 36 und andererseits an dem Ventilstößel 44 an. Das
Ende des Außenrohres 12 ist um den Außenrand des Ventilkörpers 30
umgebördelt, sodaß durch diese Umbördelung 47 sine axiale

Diese Ausgestaltung der Gasseder ermöglicht eine außerordentlich einig Montage. Die beiden Teile 22 und 23 des Stopsens 19 werden unter gleichzeitigem Einsetzen der Lippendichtung 26 in die Eindrehungen 24 und 25 zusammengeschoben, wobei ausgrund des fosten Bitzes der Lippendichtung 26 in den Rindrehungen 24 und 25 diese drei Teile fest zusammengshalten werden. An schließend wird die bereits mit den Kolben 15 versehene Kolbenschen nach Zinsetzen des Dichtungsrings 17 in die Ringnut 16 des Kolbens 15 durch den Stopfen 19 hindurchgeschoben. Im An schluß daran wird das Innenrohr 13 über den Kolben 15 hinweg zuf den Zentriersnatz 27a des Teiles 23 des Stopfens 19 aufgedrückt oder gepreßt.

Zeitlich parallel dazu werden in die Bohrung 36 des Ventilkörpers 30 die Distanzhulse 40, dann von beiden Seiten die Ringdichtungen 39 und entsprechend die Führungsbüchse 41 und die Sicherungsbuchse 43 eingeführt und anschließend jeweils die Führungsbüchse 41 und die Sicherungsbüchse 43 durch Verstemmen des Ventilkörpers festgeklemmt. Anschließend wird der fertig vormontierte Ventilstößel 44 mit Anschlagteller 45 eingeschoben, der aufgrund der elastischen Anlage der beiden Ringdichtungen 39 zusreichend fest gehalten wird. Anschließend werden die drei Ringdichtungen 32 und 35 in die zugehörigen Ringmuten 31 bzw. 34 des Ventilkörpers 30 eingelegt und der Ventilkörper 30 mit seinem Zentrieransatz 33 in das andere Ende des Innenrohres 13 eingepreßt. Die Umbördelung 29 des Außenrohres 12 ist bereits vorgenommen. Anschließend wird dieser im wesentlichen aus oberem Ventil 30 bis 46; Innenrohr 13, Stopfen 19 mit Lippendichtung 26 und Kolbenstange 18 mit Kolben 15 und Dichtungsring 17 bestehende Bausatz in das Außenrohr 12 bis gegen die Umbördelung 29 eingeschoben und anschließend die Umbördelung 47 hergestellt. Damit ist die Gasfeder fertig montiert.

Das Füllen der Ge Geder mit Druckgas geht in der Weise vor sich, daß der Ventilstößel 44 so weit in das Gehkuse 11 hirk eingeschoben wird, daß sein Kußeres freies Ende unterhalb ger an die Führungsbüchse 41 angrenzenden Ringdichtung 39 liegt, schaß durch die Führungsbüchse, in der Distanzhülse 40 209819/0172

befindliche bohringen 48, nie in der Ban is 36 des vent korpers To befindlione Ringout 77 die schrigliegende Donring to den Ringkanelela zwie oben Innenrohr 13 und Ausenrohr 12 und die Ausnehmung 28 im Stopfen 19 das Druckgas in den Innenraum 27. und zwar in den zwischen dem Kolben 15 mid dem Btopfen 19 11egenden Innenraum der Gasfeder stromen kann, wobel der Kolben 15 nebst Kolbenstange 18 vollständig bis sum Anschlag gegen den Ventilstößel 44 bewegt wird. Anschließend wird der Ventilstößel 44 wieder in seine in der Zeichnung dargestellte Ruhelage bracht. Das Hinsinschieben des Ventilstößels 44 und das Wiederhinausziehen zum Füllen der Gasfeder mit Druckgas kann dadurch erleichtert werden, daß am Mußeren Ende des Ventilstößels 44 ein Gewindenippel angebracht wird, auf den eine Rinschubstange aufgeschräubt wird. Dieser Gewindenippel kann nach dem Füllen der Gasfeder entfernt werden. Die Gasfeder arbeitet folgendermaßen: In der in der Zeichnung dar gestellten Ruhelage des Ventilstößels 44 ist eine Gasströmung durch das Ventil unterbunden, sodaß der Kolben 15 und damit die Kolbenstange 18 sich in einer statischen Ruhelage befinden, um die allerdings ein Federn aufgrund der Kompressibilität der Gaspolster auf beiden Seiten des Kolbens 15 möglich ist. Zum Längenverstellen der Gasfeder, d.h. zur Veränderung der relativen Lage von Kolben 15 und Kolbenstange 18 gegenüber den Behäuse 11 wird der Ventilstoßel 44 so weit in den Ventilkörper 30 hineingeschoben, das die ringförnige Eindrehung 46 im Ventilstosel 44 die untere, dem Innenraum 27 der Gasfeder zugewandte Ringdichtung 39 überbrückt, sodaß eine Gasströmung vom zwischen Kolben 15 und Ventilkörper 30 befindlichen Teil des Innenraumes 27 durch den Ringspalt 49 zwischen der Sicherungsbüchse 43 und dem Ventilstößel 44, die ringförnige Rindrehung 46 im Ventilstößel 44, die Drosselbohrungen 48 in der Distanzhilse 40, die Ringmut 37 in der Bohrung 36 des Ventilkörpers 30, die sohrigliegende I rung 38 im Ventilkörper 30, den Ringkanal 14

swischen Innehrehr 13 und Außenrehr 12 und in Tell 23 des Stopfens 19 in den swischen Rolben 15 und Stopfen 19 befindlichen Teildes Innenraus 27 erfolgen kann Die Gasströmung ist selbstverständlich gleichermaßen in wage kehrter Richtung möglich. Wird nach Öffnen des Ventils, d.h. nach Binschieben des Ventilstößels 44, die Gasfeder nicht be lastet, so wird aufgrund des herrschenden dasdruckes die Kolbenstange 18 nach außen geschoben, während im Falle einer Belastung Kolben 15 und Kolbenstange 18 in die Gasfeder hineingeschoben werden! Durch Ausbildung der Bohrungen 48 in der Distanzhülse Aogals Drosselbohrungen und durch Wahl eines kleinen Ringspaltes 49 zwischen der Sicherungsbüchse 43: und dem Ventilstößel 44 wird die Gasströmung derartig gedrosselt, daß bei Offnen des Ventils in entlastetes Zustand der Gasfeder die Kolbenstange 18 nur langsam aus dem Cehause 11 hinausgeschoben wird. Dadurch, daß das Verhältnis der Querschnitte des Innenraums 21 und der Kolbenstange 18 verhältnismäßig groß gewählt wird, kann eine sehr flache Weg-Kraft-Kennlinie der Gasfeder erreicht worden.

Der Ventilkörper 30 kann auch, wie in Fig. 2 angedeutet, sich nach außen verjüngend ausgebildet sein, so daß auf dem entsprechenden, durch Anrollen gebildeten konischen Abschnitt 50 des Gehäuses 11 ein Klesskonus entsprechend dem DT-Gbm 7 o19 918 zur Befestigung an einer Tischplatte oder einem Stuhlsitz angebracht werden kann. Eine solche Konusverbindung weist bekanntlich den Vorteil auf, daß sie durch einfaches Ineinanderstecken des konischen Abschnitts 50 und des Klesskonus herstellbar ist

- 1.) Längenverstellbare Gasfeder, insbesondere zum stufenlosen Höherverstellen von Stuhlsitzen o.dgl., bestehend aus einem eine Gasfullung aufweisenden Gehäuse, das durch ein Außenrohr und ein koaxial in diesem unter Bildung eines Ringkanals ange ordneten Innenrohr gebildet ist, aus einem gegenüber dem Innenrohr abgedichteten, axial in diesem verschiebbaren Kolben an einer abgedichtet aus dem einen Ende des Gehluses durch einen Stopfen herausgeführten Kolbenstange und aus einem am anderen Ende des Gehäuses angeordneten Ventil zum gesteuerten Verbinden des Innenraums des Gehäuses mitadem Ringkanal, der im Bereich des Stopfens ebenfalls mit dem Innenraum verbunden ist, wobei in einem Ventilkörper ein Gasdl wistrombohrungen verschließender, bzw. freigebender Ventilstößel vorgesehen ist, dadurch gekennzeichnet, daß das Außenrohr (12) als durchlaufend einstückiges, lediglich an seinen Enden um den Stopfen (19) bzw. den Ventilkörper (30) umgebördeltes Rohr von durchgehend etwa konstantem Außendurchmesser und etwa konstantem Innendurchmesser ausgebildet ist.
- 2.) Gasfeder nach Anspruch 1, dadurch gekennzelchnet, daß der Ventilkörper (30) und der Stopfen (19) mit dem Innenrohr (13) kraftschlüssig verbunden sind.
- 3.) Gasfeder nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ventilkörper (30) einstückig und im wesentlichen zylindrisch mit etwa dem Innendurchmesser des Außenrohres (12) entsprechenden Außendurchmesser ausgebildet ist.
- 4.) Gasfeder nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Ventilkörper (30) einstückig und sich nach außen verjüngend ausgebildet ist, daß sein größter Durchmesser etwa dem Innendurchmesser des Außenrchres (12) entspricht und daß das Außenrchr (12) entsprechend der erjüngung des Ventilkörpers an diesen angerollt ist.

5.) Gasfeder mit einem zweiteiligen Stopfen nach einem der Ansprüche i bis 3, dadurch gekennzeichnet, daß die beiden Teile (22, 23) des Stopfens (19) miteihander fluchtende Eindrehungen (24, 25) aufweisen, in die unter kraftschlüssiger Verbindung dieser beiden Teile eine Lippendichtung (26) einsetzbar ist.

	Louison		18004
	77		
			K
		1604	
7			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☑ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.