

数据库系统概论

An Introduction to Database System

第二章 关系数据库

- THE REPORT OF THE PARTY OF THE
- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性

2.4 关系代数

2.5 小结

关系模型

- 一单一的数据结构
 - 关系 --- 实体及实体之间的联系均用关系来表示
- 二 关系操作
 - **关系代数语言**
 - **关系演算语言**

参照完整性

用户定义完整性

几个概念

- 1. 域(Domain)
- 2. 笛卡尔积(Cartesian Product)
- 3. 关系(Relation)

1. 域(Domain)

域是一组具有相同数据类型的值的集合。例:

▶整数

> 实数

> 介于某个取值范围的整数

>长度指定长度的字符串集合

"","女"}

>.....

2. 笛卡尔积(Cartesian Product)

笛卡尔积

给定一组域 D_1 , D_2 ,…, D_n ,这些域中可以有相同的域。

 D_1 , D_2 , ..., D_n 的笛卡尔积为:

$$D_1 \times D_2 \times ... \times D_n =$$

$$\{ (d_1, d_2, ..., d_n) \mid d_i \in D_i, i=1,$$

所有域的所有取值的一个组合

> 不能重复

笛卡儿积(Cartesian Product)

例: D1=导师集合SUPERVISOR=张清玫, 刘逸 D2=专业集合SPECIALITY=计算机专业, 信息专业 D3=研究生集合POSTGRADUATE=李勇, 刘晨, 王敏

则: D1XD2XD3=

{(张清玫,计算机专业,李勇),

(张清玫,计算机专业,刘晨),

(张清玫, 计算机专业, 王敏),

(张清玫, 信息专业, 李勇),

(张清玫, 信息专业, 刘晨),

(张清玫, 信息专业, 王敏)

(刘逸, 计算机专业, 李勇)

(刘逸, 计算机专业, 刘晨)

(刘逸, 计算机专业, 王敏)

(刘逸,信息专业,李勇),

(刘逸,信息专业,刘晨)。

(刘逸,信息专业,王敏)}

笛卡尔积(续)

- 元组(Tuple)
 - 》笛卡尔积中每一个元素(d_1 , d_2 , ..., d_n)叫作一个n元组(n-tuple)或简称元组(Tuple)

■ 分量(Component)

- 》笛卡尔积元素(d_1 , d_2 ,…, d_n)中的每一个值 d_i 叫作一个**分量**
- 米清玫、计算机专业、李勇、刘晨等都是分量

笛卡尔积(续)

- 基数 (Cardinal number)
 - > 一个域允许的不同取值个数称为这个域的基数
 - \triangleright 若 D_i (i=1, 2, ..., n) 为有限集,其基数为 m_i (i=1,
 - 2, ..., n),则 $D_1 \times D_2 \times ... \times D_n$ 的基数M为:

$$M = \prod_{i=1}^n m_i$$

笛卡尔积的表示方法

> 表中的每行对应一个元组,表中的每列对应一个域

表 2.1 D_1 , D_2 , D_3 的笛卡尔积

SUPERVIS	SOR SPECIALITY	POSTGRADUATE
张清玫	计算机专业	李勇
张 清 玫	计算机专业	刘 晨
张 清 玫	计算机专业	王敏
张 清 玫	信息专业	李 勇
张清玫	信息专业	刘晨
张清玫	信息专业	王敏
刘 逸	计算机专业	李 勇
刘逸	计算机专业	刘 晨
刘逸	计算机专业	王敏
刘逸	信息专业	李勇
刘逸	信息专业	刘晨
刘 逸	信息专业	王 敏 10

3. 关系(Relation)

1) 关系

$$D_1 \times D_2 \times ... \times D_n$$
的子集叫作在域 D_1 , D_2 ,..., D_n 上的**关系**,表示为

$$R (D_1, D_2, ..., D_n)$$

例: R(SUPERVISOR, SPECIALITY, POSTGRADUATE)

{(张清玫, 计算机专业, 李勇)

(张清玫, 计算机专业, 刘晨)

(刘逸,信息专业,王敏)}

- **R**: 关系名
- n: 关系的目或度(Degree)

2) 元组

关系中的每个元素是关系中的元组,通常用*t* 表示。

4) 关系的表示--二维表

表2.2 SAP 关系

SUPERVISOR	SPECIALITY	POSTGRADUATE
张青玫	信息专业	李勇
张青玫	信息专业	刘晨
文逸	信息专业	王敏

- 5)属性
 - 关系中不同列可以对应相同的域
 - ■为了加以区分,必须对每列起一个名字,称为

■n目关系必有n个属性

能唯一地标识关系中的一个元组的一属性组

■如:关系student中的(学号,姓名)

若关系中的某一属性组的值能唯一地标识一个元组,

而其子集不能,则称该属性组为候选r码。

- ■如:关系student中的(学号)
- 候选码是一个特殊的超键。是最小的超键。
- 简单的情况: 候选码只包含一个属性

全码(All-key)

最极端的情况:关系模式的所有属性组是这个关系模式的候选码,称为全码(All-key)

主码

若一个关系有多个候选码,则选定其中一个为**主码**(Primary key) 主码应该选择从不或很少变化的属性。比如地址不应该作为主码 的一部分。

主属性

候选码的诸属性称为<u>主属性</u>(Prime attribute)

不包含在任何侯选码中的属性称为<u>非主属性</u>(Non-Prime attribute)或<u>非码属性</u>(Non-key attribute)

7) 三类关系

基本关系(基本表或基表)

实际存在的表,是实际存储数据的逻辑表示

查询表

查询结果对应的表

视图表

由基本表或其他视图表导出的表,是虚表,不对

- 8)基本关系的性质
- ① 列是同质的(Homogeneous)
- ② 不同的列可出自同一个域
 - ■其中的每一列称为一个属性
 - ■不同的属性要给予不同的属性名
- ③ 列的顺序无所谓,, 列的次序可以任意交换
- 4 任意两个元组的候选码不能相同
- ⑤ 行的顺序无所谓,行的次序可以任意交换

基本关系的性质(续)

⑥ 分量必须取原子值 这是规范条件中最基本的一条

表2.3 非规范化关系

	N N		100
SUPERVISOR	SPECIALITY	POSTGRADUATE	
		PG1	PG2
张清玫	信息专业	李勇	刘晨
刘逸	信息专业	王敏	

2.1 关系数据结构 2.1.1 关系 2.1.2 关系模式 2.1.3 关系数据库

1. 什么是关系模式

- 关系模式(Relation Schema)是对关系的描述
 - > 元组集合的结构

属性构成

属性来自的域

属性与域之间的映象关系

- ▶元组语义以及完整性约束条件
 - > 属性间的数据依赖关系集合
- 关系是值

2. 定义关系模式

关系模式可以形式化地表示为:

R(U, D, DOM, F)

R 关系名

U 组成该关系的属性名集合

D 属性组U中属性所来自的域

DOM 属性向域的映象集合

F 属性间的数据依赖关系集合

定义关系模式(续)

关系模式通常可以简记为

R(U) 或 $R(A_1, A_2, ..., A_n)$

■ R: 关系名

域名及属性向域的映象常常直接说明为 属性的类型、长度

3. 关系模式与关系

THE STATE OF THE S

- <u> 关系模式</u>
 - ■对关系的描述
 - ■静态的、稳定的
- 关系
 - ■关系模式在某一时刻的状态或内容
 - ■动态的、随时间不断变化的

2.1.3 关系数据库

关系数据库

■ 在一个给定的应用领域中, 所有关系的

集合构成一个关系数据库

2.1.4 关系模型的存储结构

- 关系数据库的物理组织
 - ▶有的关系数据库管理系统中一个表对应一个操作系统文件,将物理数据组织交给操作系统完成

了有的关系数据库管理系统从操作系统那里申请 若干个大的文件,自己划分文件空间,组织表 、索引等存储结构,并进行存储管理

第二章 关系数据库

THE STATE OF THE S

- 2.1 关系模型概述
- 2.2 关系操作
- 2.3 关系的完整性

2.4 关系代数

2.5 小结

2.2.1基本关系操作

THE STATE OF THE S

- 常用的关系操作
 - ▶ 查询: 选择、投影、连接、除、并、交、差、笛卡尔积
 - 选择、投影、并、差、笛卡尔积是5种基本操作
 - ▶ 数据更新: 插入、删除、修改
- * 关系操作的特点
 - 集合操作方式:操作的对象和结果都是集合,一次一集
- 合

合的方式

2.2.2 关系数据库语言的分类

- 关系代数语言
 - > 用对关系的运算来表达查询要求
 - ▶ 代表: ISBL
- 关系演算语言: 用谓词来表达查询要求
 - ▶ 元组关系演算语言

▶谓词变元的基本对象是元组变量

▶ 域关系演算语言

- ▶谓词变元的基本对象是域变量
- ▶代表: QBE
- 具有关系代数和关系演算双重特点的语言
 - ➤ 代表: SQL (Structured Query Language)

第二章 关系数据库

- 2.1 关系数据结构及形式化定义
- 2.2 关系操作
- 2.3 关系的完整性

2.4 关系代数

2.5 小结

2.3 关系的完整性

2.3.2 参照完整性

2.3.3 用户定义的完整性

关系的三类完整性约束

• 实体完整性和参照完整性:

关系模型必须满足的完整性约束条件,称为关系的两个不变性。由关系系统自动支持。

用户定义的完整性:

应用领域需要遵循的约束条件,体现了具体

领域中的语义约束

2.3.1 实体完整性约束

- 实体完整性: 一个基本关系的主码值应是 唯一的。所有主码属性都不能取空值。
 - ▶由于主键可唯一地标识某实体,如果某主码属性为空值,表示"不知道",或"无意义"的值,则说明存在不可标识的实体。
- DBMS中允许用户不设定主键(即不进行实体完整性约束检查)

2.3.2 参照完整性

- 2. 外码
- 3. 参照完整性规则

1. 关系间的引用

在关系模型中实体及实体间的联系都是用关系来描述的,自然存在着关系与关系间的引用。

[4]2.1] 学生实体、专业实体

学生(学号,姓名,性别,专业号,年龄)

专业(专业号、专业名)

- 学生关系引用了专业关系的主码"专业号"。
 - ❖ 学生关系中的"专业号"值必须是确实存在的专业的专业号

关系间的引用(续)

例[2.2] 学生、课程、学生与课程之间的多对多联系

学生(学号)姓名,性别,专业号,年龄)

课程(课程号,课程名,学分)

选修(学号,课程号,成绩)

THE STATE OF THE S

关系间的引用(续)

例[2.3] 学生实体及其内部的一对多联系

学生(学号,姓名,性别,专业号,年龄,班长)

学号	姓名	性别	专业号	年龄	班长
801	张三	女	01	19	802
802	李四	男	01	20	802
803	王五	男	01	20	802
804	赵六	女	02	20	805
805	钱七	男	02	19	805

"学号"是主码,"班长"是外码,它引用了本关系的"学号"

"班长"必须是确实存在的学生的学号

2. 外码(Foreign Key)

- 设F是基本关系R的一个或一组属性,但不是关系R的码。 如果F与基本关系S的主码K_s相对应,则称F是R的外码
- 基本关系R称为参照关系(Referencing Relation)
- 基本关系S称为被参照关系(Referenced Relation)

或目标关系(Target Relation)

- [例2.1]中学生关系的"专业号"与专业关系的主码"专业号"相对应
 - > "专业号"属性是学生关系的外码
 - >专业关系是被参照关系,学生关系为参照关

学生关系 <u>专业号</u> 专业关系 (a)

■ [例2.2]中

选修关系的"学号"与学生关系的主码"学号"相对应 选修关系的"课程号"与课程关系的主码"课程号"相对应

- > "学号"和"课程号"是选修关系的外码
- 学生关系和课程关系均为被参照关系
- 选修关系为参照关系

- [例2.3]中"班长"与本身的主码"学号"相对应
 - ▶ "班长"是外码
 - > 学生关系既是参照关系也是被参照关系

- 关系R和S不一定是不同的关系
- 目标关系S的主码K_s和参照关系的外码F必须定义在同一个(或一组)域上
- 外码并不一定要与相应的主码同名
 - 当外码与相应的主码属于不同关系时,往往取相同的名

3. 参照完整性规则

■ 规则2.2 参照完整性规则

若属性(或属性组)F是基本关系R的外码它与基本关系S的主码 K_s 相对应(基本关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:

或者取空值(F的每个属性值均为空值)

》。或者等于S中某个元组的主码值

思考

选修(学号,课程号,成绩)

Student2(<u>学号</u>,姓名,性别,专业号,年龄,班长) 外键分别为学号,课程号和班长,其取值可以为空值?

关系的完整性约束

- 用户定义的完整性: 针对某一具体关系数据库的约束条件。它反映某一具体应用所涉及的数据必须满足的语义要求。包括某属性取唯一值,某一属性值应满足一定的函数关系,某一属性的取值范围等等。
 - ➤ 可采用trigger, check clause

例如选修关系的成绩定义为整数,范围还太大,我们可以写如下规则把成绩限制在0~100之间:

CHECK (GRADE BETWEEN 0 AND 100)

第二章 关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性

2.4 关系代数

2.5 小结

2.4 关系代数

- 关系代数是一种抽象的查询语言,它用对 关系的运算来表达查询
- 关系代数
 - ▶运算对象是关系
 - 运算结果亦为关系
- ★关系代数的运算符有两类:集合运算符和专门的关系运算符
- 传统的集合运算是从关系的"水平"方向即行的角度进行
- **世**专门的关系运算不仅涉及行而且涉及列

2.4 关系代数

表2.4 关系代数运算符

	运	 拿 符	含义
5000000		H 131	并
000 000 000 000	运算符	<u> </u>	差
		Λ	交
D &	l l	×	笛卡尔积
8888888	专门的	σ	选择
	关系	π	投影
8888888	运算符	\bowtie	连接
		•	除

关系代数运算符

比较运算符和逻辑运算符

运算行	夺	含义	运算符	含义
比较运算符	> N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	大于等于 大于等于 小于等于 等于 不等于	逻辑运 算符	非与或

2.4 关系代数

- 传统的集合运算
- 专门的关系运算

1. 并(Union)

R和S

- \triangleright 具有相同的目n(即两个关系都有n个属性)
- ▶相应的属性取自同一个域
- *R*∪*S*

の h 内 力 n 目 关 系 , 由 属 于 R 或 属 于 S 的 元 组 组 成 $R \cup S = \{ t | t \in R \lor t \in S \}$

个元素在并集中只出现一次

并(续)

R	50 50	
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		

$R \cup S$	000	
A	B	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
a_1	b_3	c_2

并(续)

顾客号	姓名	性别	年龄
S01	张宏	男	45
S02	李丽	女	34
S03	王敏	女	28

顾客号	姓名	性别	年龄
S01	张宏	男	45
S02	李丽	女	34
S03	王敏	女	28
S04	钱景	男	50
S06	王平	女	24

2, 72	顾客号	姓名	性别	年龄
WY	S02	李丽	女	34
	S04	钱景	男	50
76, "	S06	王平	女	24

2. 差(Difference)

- R和S
 - ▶具有相同的目n
 - ▶相应的属性取自同一个域
- R S

差(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		

A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

R-S		
A	В	C
a_1	b_1	c_1

差(续)

顾客号	姓名	性别	年龄
S01	张宏	男	45
S02	李丽	女	34
S03	王敏	女	28

顾客号	姓名	性别	年龄
S02	李丽	女	34
S04	钱景	男	50
S06	王平	女	24

顾客号	姓名	性别	年龄
S01	张宏	男	45
S03	王敏	女	28

3. 文(Intersection)

- R和S
 - ▶具有相同的目n
 - ▶相应的属性取自同一个域
- $\blacksquare R \cap S$

$$R \cap S = \{ t | t \in R \land t \in S \}$$

$$R \cap S = R - (R - S)$$

一个元素在交集中只出现一次

交 (续)

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	R		~
a_1 b_2 c_2	A	В	С
	a_1	b_1	c_1
	a_1	b_2	c_2
a_2 b_2 c_1	a_2	b_2	c_1

A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

S

R	\cap	\mathcal{S}

A	В	С
a_1	b_2	c_2
a_2	b_2	c_1

交 (续)

顾客号	姓名	性别	年龄
S01	张宏	男	45
S02	李丽	女	34
S03	王敏	女	28

顾客号	姓名	性别	年龄
S02	李丽	女	34
S04	钱景	男	50
S06	王平	女	24

4. 笛卡尔积(Cartesian Product)

- 严格地讲应该是广义的笛卡尔积 (Extended Cartesian Product)
- R: *n*目关系,*k*₁个元组
- S: *m*目关系,*k*₂个元组
- $-R\times S$

- \triangleright 列: (n+m)列元组的集合
 - ■元组的前n列是关系R的一个元组

■后m列是关系S的一个元组

ightharpoonup行: $k_1 imes k_2$ 个元组

 $R \times S = \{ \widehat{t_r} \, t_s \mid t_r \in R \land t_s \in S \}$

笛卡尔积(续)

R	100 100	202
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1

a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \times S$					
R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	c_1	a_2	b_2	c_1

2.4 关系代数

- 传统的集合运算
- 专门的关系运算

2.4.2 专门的关系运算

先引入几个记号

(1) R, $t \in R$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

 $t \in R$ 表示t是R的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

(2) A, t[A], \overline{A}

若 $A=\{A_{i1}, A_{i2}, \ldots, A_{ik}\}, 其中<math>A_{i1}, A_{i2}, \ldots,$ A_{ik} 是 A_1 , A_2 , ..., A_n 中的一部分,则A称为属 性列或属性组。

A则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_n\}$ A_{ik}}后剩余的属性组。

R为n目关系,S为m目关系。

 $t_{r} \in R$, $t_{s} \in S$, $t_{r} t_{s}$ 称为元组的连接。

 $t_r t_s$ 是一个n + m列的元组,前n个分量为R

中的一个n元组,后m个分量为S中的一个m

元组。

(4) 象集Z_x

给定一个关系R(X, Z),X和Z为属性组。

当*t*[X]=x时,x在R中的象集(Images Set)为:

它表示R中属性组X上值为x的诸元组在Z上分量的

集合

R

 x_1 在R中的象集

$$Z_{x1} = \{Z1, Z2, Z3\},$$

 x_2 在R中的象集

$$Z_{x2} = \{Z2, Z3\},$$

 x_3 在R中的象集

$$Z_{x3} = \{Z1, Z3\}$$

象集举例

4) 学生-课程数据库: 学生关系Student、课程关系Course和选修关系SC

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	cs
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS
XE S				69

Course

50000000000000000000000000000000000000	课程号	课程名	先行课	学分
	Cno	Cname	□ Cpno	Ccredit
10000000	1	数据库	5	4
	2	数学		2
	3	信息系统	1	4
	4	操作系统	6	3
	5	数据结构	7	4
	香港 6	数据处理		2
	7	PASCAL语言	6	4
U Line				

70

C		٦
S	l	ر

学号	课程号	成绩
Sno	Cno	Grade
200215121	1	92
200215121	2	85
200215121	3	88
200215122	2	90
200215122	3	80

(c)

1. 选择(Selection)

按照给定条件从指定的关系中挑选出满足条件的元组构成新的关系。或者说,选择运算的结果是一个表的行的子集。记作

例1

 $\sigma_{Sdept='IS'}(Student)$

学号	姓名	性别	年龄	所在系
Şne	Sname	Şşex	Sage	SCAPE
9 5 001	Sname	Ssex	sage	Sdept
95002	刘晨	女	19	IS
95004	強敏	最	18	NBA
95004	张立	男	19	IS

例2 $\sigma_{Sage < 20}(Student)$

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
95002	潮展	男	29	CS
95002	知魚	女	18	IMEA I
9500	张嫩	男	19	MSA
95004	张立	男	19	IS

选择(续)

• 例,选择系为数学系的男学生信息:

σ_{性别= '男'} AND 系 = '数学系' (STUDENT):

THE STATE OF THE S

学号	姓名	性别	年龄	系
000101	李晨	男	18	信息系
000102	王博	女	19	数学系
010101	刘思思	女	18	信息系
010102	王国美	女	20	物理系
020101	范伟	男	19	数学系

学号	姓名	性别	年龄	系
020101	范伟	男	19	数学系

2. 投影(Projection)

从指定的关系中挑选出某些属性构成新的关系。

Ⅱ ⟨属性表> (〈关系名>)

■ 投影操作主要是从列的角度进行运算

π_{Sname,Sdept} (Student)

学号	姓名姓名 性别在系 年龄	所在系
Sno	Snasmame Sseedept Sage	Sdept
95001	李勇李勇 男 CS 20	CS
95002	刘晨 女 IS 19	IS
95003	王敏王敏 女 MA 18	MA
95004	张	IS

例4 $\pi_{Sdept}(Student)$

新程系	姓名	性别	年龄	所在系
Strept	Sname	Ssex	Sage	所在不同
95008	李勇	男	20	Sdept
80 8	11111111111111111111111111111111111111	全的元组后	-	CS
95003	一刘晨	女	19	IS
				IS
95 00 2	王敏	女	18	MA
				MA
950ექ	张立	□男□	□ 19 L	IS

3. 连接(Join)

- 1)连接也称为θ连接
- 2)连接运算的含义

 $R \bowtie_{A\theta B} S = \{ t_{\mathbf{r}} t_{\mathbf{s}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \theta t_{\mathbf{s}}[B] \}$

►A和B:分别为R和S上度数相等且可比的属性组

▶θ: 比较运算符

连接运算从R和S的广义笛卡尔积R×S中选取 (R关系)在A属性组上的值与(S关系)在B 属性组上值满足比较关系θ的元组

例5连接

	R		1000000 10000000		3	_
Α	В	С	100000	В	E	
a1	b 1	5		b1	3	
a1	b2	6_		b2	7	
	¥.	0	2000000	D3	10	
a2	b3	8	00000000	b3	2	
a2(b4	12	100000000	b5	2	90
						80

D		C
1/	C <e< td=""><td>S</td></e<>	S

Α	R.B	С	S.B	E
a1	b1	5	b2	7
a1	b1	5	b3	10
a1	b2	6	b2	7
a1	b2	6	b3	10
a2	b3	8	b3	10

连接(续)

- 3) 两类常用连接运算
 - ▶ 等值连接(equijoin)
 - ▶什么是等值连接
 - θ为"="的连接运算称为等值连接
 - >等值连接的含义

$$R \bowtie_{A=B} S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

等值连接

R

B

b1

b2

b4

b3 8

5

6

12

a1

a1

a2

a2

В	

b1 3

b2 7

b3 10

b3 2

b5 2

 $R \bowtie_{R.B=S.B} S$

Α	R.B	С	S.B	E
a1	b1	5	b1	3
a1	b2	6	b2	7
a2	b3	8	b3	10
a2	b3	8	b3	2

连接操作的例子(等值连接)

例: student

course

SC

学号	姓名	性别	年龄	系
000101	李晨	男	18	信息系
000102	王博	女	19	数学系
010101	刘思思	女	18	信息系
010102	王国美	女	20	物理系
020101	范伟	男	19	数学系

课程 号	名称
1	数学
2	英语
3	计算机
4	制图

学号	课程号	成绩
000101	1	90
000101	2	85
000101	3	92
010102	1	77
010102	2	80

student 🖂 student.学号=SC.学号SC

Student.学号	姓名	性别	年龄	系	SC.学号	课程号	成绩
000101	李晨	男	18	信息系	000101	1	90
000101	李晨	男	18	信息系	000101	2	85
000101	李晨	男	18	信息系	000101	3	92
010102	王国美	女	20	物理系	010102	1	77
010102	王国美	女	20	物理系	010102	2	80 88

连接(续)

- ▶自然连接(Natural join)
 - ■自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组
 - 产在结果中把重复的属性列去掉

自然连接的含义

R和S具有相同的属性组B

$$R\bowtie S = \{ \widehat{t_r t_s} \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

连接操作的例子(自然连接)

例: student

学号	姓名	性别	年龄	系
000101	李晨	男	18	信息系
000102	王博	女	19	数学系
010101	刘思思	女	18	信息系
010102	王国美	女	20	物理系
020101	范伟	男	19	数学系

course

SC

名称
数学
英语
计算机
制图

学号	课程号	成绩
000101	1	90
000101	2	85
000101	3	92
010102	1	77
010102	2	80

student \bowtie sc

	学号	姓名	性别	年龄	系	课程号	成绩
	000101	李晨	男	18	信息系	1	90
	000101	李晨	男	18	信息系	2	85
	000101	李晨	男	18	信息系	3	92
• •	010102	王国美	女	20	物理系	1	77
	010102	王国美	女	20	物理系	2	80

连接(续)

- 悬浮元组(Dangling tuple)
 - ▶两个关系*R*和*S*在做自然连接时,关系*R*中某些元组有可能在*S*中不存在公共属性上值相等的元组,从而造成*R*中这些元组在操作时被舍
- 产 弃了,这些被舍弃的元组称为悬浮元组。

连接(续)

- 外连接
 - ➤如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)。
- 左外连接
- 如果只把左边关系R中要舍弃的元组保留就叫做 左外连接(LEFT OUTER JOIN或LEFT JOIN)
- 右外连接
 - ➤如果只把右边关系S中要舍弃的元组保留就叫做 右外连接(RIGHT OUTER JOIN或RIGHT JOIN)。

外连接例子

R

Α	В
a1	b1
a2	b2
23 ×	h5

B	С
b1	с1
b2	c2
b3	с3
b4	с4

•左外连接

 $R * \bowtie S$

В **a**3 **b**5 null

自然连接

 $R \bowtie S$

Α	В	C
A1	b1	c1
a2	b2	c2

•右外连接 $R \bowtie^* S$

A	В	С
a1	b1	с1
a2	b2	c2
null	b3	с3
null	b4	с4

•全外连接 $R^* \bowtie * S$

A	В	C
a1	b1	C1
a2	b2	C2
a3	b 5	Null
null	b3	C3
null	b4	C4

R 如何求 a_i 象集?

A	<i>B</i>	<i>C</i>
a_1	\boldsymbol{b}_1	c_2
a_2	b ₃	c_7
∃ a ₃	b ₄	<i>c</i> ₆
a_1	\boldsymbol{b}_2	c_3
a ₄	b ₆	<i>c</i> ₆
a_2	b ₂	c_3
A a	b ₂	c_1

a_i 在R中的象集

A	В	C
a_1	b1	c2
a_1	b2	с3
a_1	b2	c1
a_2	b3	с7
a_2	b2	с3
a ₃	b4	c6
a_4	b6	с6

4. 除(Division)

给定关系R(X,Y)和S(Y,Z),其中X,Y,Z为属性组。

R中的 Y与 S中的 Y可以有不同的属性名,但必须出自相同的域集。

R与S的除运算得到一个新的关系P(X),

P是R中满足下列条件的元组在X属性列上的投影:

元组在X上分量值x的象集 Y_x 包含S在Y上投影的集合,记作:

$$R \div S = \{ t_r [X] \mid t_r \in R \land \pi_Y (S) \subseteq Y_X \}$$

 Y_x : x在R中的象集, $X = t_r[X]$

R

除法例子

1	2	3	4
a1	b1	c1	d1
a1	b1	c2	d2
a1	b1	с3	d3
a2	b2	c1	d1
a2	b2	c2	d2
a3	b3	c1	d1

3	4
c1	d1
c2	d2

1	2
•	
a1	b1
a2	b2

除法例子

ı	7
ı	Ų
ı	1
-	•

	SNO	CNO
	99001	c1
	99001	с4
X	99001	с7
	99002	c8
	99003	с3
¥	99003	с6
/	99004	c2
	99004	c5
W V	99005	c1
	99005	c5
	99005	c7

S

CNO c2 c5

 $T:=R \div S$

SNO 99004

除法例子

R

A	В	C
al	b1	c1
a2	b1	c1
la1	b2	c1
a1	b2	c2
a2	b1	c2
al	b2	с3
al	b2	c4
a1	b 1	c5

S1

S2

	- 8
C	000
0	
c1	000000000000000000000000000000000000000
c2	0000000000

S3

С	
с1	
c2	
с3	
с4	

 $R \div S1$

A	В
a1	b1
a2	b1
a1	b2

 $R \div S2$

A	В
a1	b2
a2	b1

 $R \div S3$

A	В
a1	b2

除法例子

例1:查询先修课程覆盖操作系统先修课程的课程名。

 $\Pi_{课程名, 先修课程号}$ (COURSE) ÷ $\Pi_{先修课程号}$ ($\sigma_{课程名='操作系统'}$ (COURSE))

例2: 查询选修了全部课程的学号和姓名

 Π 学号,姓名,课程号(student \bowtie sc) ÷ Π 课程号(COURSE)

复杂的关系代数表达式

- 可以运用多种关系代数运算构成复杂的查询表达式
- 可以使用关系的别名构成查询表达式

综合举例(续)

[例 8] 查询选修了2号课程的学生的学号。

$$\pi_{\mathsf{Sno}} \; (\sigma_{\mathsf{Cno}='2'} \; (\mathsf{SC}))$$

综合举例(续)

[例9] 查询至少选修了一门其直接先行课为5号课程的的学生姓名

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course \bowtie SC \bowtie Student))$$

或就

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course) \bowtie SC \bowtie \pi_{Sno, Sname}(Student))$$

或

$$\pi_{\text{Sname}}(\pi_{\text{Sno}}(\sigma_{\text{Cpno}='5'}(\text{Course}) \bowtie \text{SC}) \bowtie \pi_{\text{Sno}, \text{Sname}}(\text{Student}))$$

综合举例(续)

- STUDENT(姓名,<u>学号</u>,性别,出生年月,系别)
- •Course(课程名,<u>课程号</u>,学分,开课时间,先修课程号)
- SC(<u>学号</u>, <u>课程号</u>, 成绩)
- 1、查询所有选修课程号为0001的男生的成绩。
- $\Pi_{\text{姓名, 成绩}}$ ($\sigma_{\text{性别= 'm'AND}}$ 课程号= '0001', (STUDENT SC))
- 2、查询至少选修了二门课程的学生姓名
- S G1:= STUDENT ™SC
- $S_G2:=S_G1$
- $\Pi_{\text{姓名}}$ (S_G1 \bowtie S_G1·课程号 \neq S_G2·课程号 and S_G1·学号 \neq S_G2·学号 (S_G2)
- 或者
- SC1 := SC
- П姓名 (П 学号 (SC™ SC. 课程号≠ SC1. 课程号 and SC. 学号= SC1. 学号SC1) STUDENT)

课堂练习

- STUDENT(姓名,<u>学号</u>,性别,出生年月,系别)
- · Course(课程名, 课程号, 学分, 开课时间, 先修课程号)
- SC(<u>学号</u>,<u>课程号</u>,成绩)
- 1. 查询1994年1月1日后出生的女学生
- 2. 查询计算机系的男同学的姓名和学号
 - 3. 查询计算机系学生的姓名、学号、选修的课程和成绩
 - 4.查询学生的姓名、学号、选修的课程和成绩,没有选课的学生也要列出。

2.6 小结

关系数据库系统是目前使用最广泛的数据

库系统

小结(续)

- 关系数据结构
 - > 关系

 - ■笛卡尔积
 - - ▶关系,属性,元组
 - > 候选码, 主码, 主属性
 - ▶基本关系的性质
 - 关系模式
 - 关系数据库

小结(续)

- 关系操作
 - ▶查询

> 数据更新

▶插入、删除、修改

小结(续)

- 关系的完整性约束
 - 文体完整性

>外码

用户定义的完整性

作业

- 1,3,6(用关系代数就可以了) (第5版)
- 补充:
- 1、对于给定的表T

A	В	С	D
a1	b1	c1	d2
a2	b2	c2	d1
a3	b2	c1	d2
a4	b1	c2	d1

请找出所有的侯选键,说明原因。

