MAT4400: Notes on Linear analysis

Morten Tryti Berg and Isak Cecil Onsager Rukan. ${\it March~28,~2024}$

3 σ -Algebras

Definition 3.1 (σ -Algebra). A family $\mathscr A$ of subsets of X with:

- (i) $X \in \mathcal{A}$,
- (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
- (iii) $(A_n)_{n\in\mathbb{N}}\in\mathscr{A}\Rightarrow\bigcup_{n\in\mathbb{N}}$

Theorem 3.2 (and Definition).

- (i) The intersection of arbitrarily many σ -algebras in X is againg a σ -algebra in X.
- (ii) For every system of sets $p \subset \mathcal{P}(X)$ there exists a smallest σ -algebra containing.

 This is the σ -algebra generated by p, denoted $\sigma(p)$, and $\sigma(p)$ is called its generator.

Definition 3.3 (Borel). The σ -algebra $\sigma(\mathcal{O})$ generated by the open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called **Borel** σ -algebra, and its members are called **Borel sets** or **Borel measurable sets**.

5 Uniqueness of Measures

Lemma 5.1. A Dynkin system D is a σ -algebra iff it is stable under finite intersections, i.e. $A, B \in D \Rightarrow A \cap B \in D$.

Theorem 5.2 (Dynkin). Assume X is a set, S is a collection of subsets of X closed under finite intersections, that is, if $A, B \in S \Rightarrow A \cap B \in S$. Then $D(S) = \sigma(S)$.

Proof. We clearly have that $D(S) \subset \sigma(S)$. If we can show that D(S) is a σ -algebra, that is, that a Dynkin system generated by a subset $S \subset X$ (where S is \cap -stable) is a σ -algebra, then the inverse conclusion $D(S) \supset \sigma(S)$ follows logically. This is the case because the σ -algebra $\sigma(S)$ is the smallest σ -algebra containing S, and so if D(S) is a σ -algebra it must be a greater or equal (in some sense) than $\sigma(S)$.

Using Lemma 5.1 we only need to show that D(S) is stable under finite intersections, to prove that D(S) is a σ -algebra. Consider:

$$D_A := \{ B \subset X : B \cap A \in D(S) \},$$

for some $A \in D(S)$. Notice that this set is \cap -stable, and so if we can show that $D_A = D(S)$ we must have that (by Lemma 5.1) D(S) is a σ -algebra. Firstly, however, let us show that D_A is a **Dynkin system**.

- 1. \varnothing must be in D_A , since $\varnothing \cap A = \varnothing \in D(S)$.
- 2. Let $B \in D_A$. Then

$$A \cap B^c = A \setminus (A \cap B) = (A^c \cup (A \cap B))^c,$$

here $A \cap B$ and A^c must be in D(S). Furthermore, since disjoint unions of set from D(S) are still in D(S), we me must have $A^c \in D_A$.

3. Assume that $(B_n)_{n\in\mathbb{N}}\subset D_A$ is a pairwise disjoint sequence. Then

$$(B_n \cap A)_{n \in \mathbb{N}} \in D(S) \text{ (by def. of } D_A)$$

$$\Rightarrow \bigcup_{n \in \mathbb{N}} (B_n \cap A) = \left(\bigcup_{n \in \mathbb{N}} B_n\right) \cap A \in D(S)$$

$$\Rightarrow \bigcup_{n \in \mathbb{N}} B_n \in D_A.$$

So D_A is indeed a Dynkin system.

We now want to show that D(S) is \cap -stable, we have:

$$S \subset D_A \ \, \forall \ \, A \in S$$

$$\Rightarrow D(S) \subset D_A \ \, \forall \ \, A \in S \ \, \text{(since D_A is a Dynkin system)}$$

$$\Rightarrow B \cap A \in D(S) \ \, \forall \ \, B \in S, \ \, \forall \ \, A \in D(S) \ \, \text{(by the definition of D_A)}$$

$$\Rightarrow B \in D_A \ \, \forall \ \, B \in S, \ \, \forall A \in D(S)$$

$$\Rightarrow S \subset D_A \ \, \forall \ \, A \in D(S)$$

$$\Rightarrow D(S) \subset D_A \ \, \forall \ \, A \in D(S) \ \, \text{(since D_A is a Dynkin system)}$$

$$\Rightarrow A \cap B \in D(S) \ \, \forall \ \, A, B \in D(S),$$

and so D(S) is \cap -stable and then $D(S) \supset \sigma(S) \Rightarrow D(S) = \sigma(S)$.

Theorem 5.3 (uniqueness of measures). Let (X, B) be a measurable space, and $S \subset P(X)$ be the generator of B, i.e. $B = \sigma(S)$. If S satisfies the following conditions:

- 1. S is stable under finite intersections (\cap -stable), i.e. $A, C \in S \Rightarrow A \cap C \in S$.
- 2. There exists an exhausting sequence $(G_n)_{N\in\mathbb{N}}\subset with\ G_N\uparrow X$. Assume also that there are two measures μ,ν satisfying:

3.
$$\mu(A) = \nu(A), \ \forall A \in S$$
.

4.
$$\mu(G_n) = \nu(G_n) < \infty$$
.

Then $\mu = \nu$.

Proof (outline). Define

$$D_n := \{ A \in B : \mu(G_n \cap A) = \nu(G_n \cap A) \ (< \infty) \},$$

and show that it is a Dynkin system. Then, use the fact that S is \cap -stable and Theorem 5.2 to argue that $D(S) = \sigma(S)... \rightarrow ... B = D_n$.

6 Existence of Measures

Theorem 6.1 (Carathéodory). Let $S \subset P(X)$ be a semi-ring and $\mu : S \to [0, \infty)$ a pre-measure. Then μ has an extension to a measure μ^* on $\sigma(S)$, i.e. that $\mu(s) = \mu^*(s)$, $\forall s \in \sigma(S)$.

Also, if S contains an exhausting sequence, $S_n \uparrow X$, s.t. $\mu(S_n) < \infty$, then the extension is unique.

Proof (outline). Firstly, let us define an outer measure.

Definition 6.2 (Outer measure). An outer measure is a function $\mu^* : P(X) \to [0, \infty)$ with the following properties:

- 1. $\mu^*(\emptyset) = 0$,
- 2. $A \subset B \Rightarrow u^*(A) \leq \mu^*(B)$,

3.
$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \mu^* (A_n),$$

and define for each $A \subset X$ the family of countable S-coverings:

$$C(A) := \left\{ (S_n)_{n \in \mathbb{N}} \subset S : \bigcup_{n \in \mathbb{N}} S_n \supset A \right\},$$

and the set function

$$\mu^*(A) := \inf \left\{ \sum_{n \in \mathbb{N}} \mu(S_n) : (S_n)_{n \in \mathbb{N}} \in C(A) \right\}.$$

Step 1: Claim: $\mu^*(A)$ is an outer measure.

Proof.

- 1. $C(\emptyset) = \{\text{any sequence in } S \text{ containing } \emptyset\} \Rightarrow \mu^*(\emptyset) = 0.$
- 2. Assume $A \subset B$. Then $C(A) \subset C(B) \Rightarrow \mu^*(A) < \mu^*B$.
- 3. If $\mu^*(A_n) = \infty$ for some n, then there is nothing to prove. Thus, assume $\mu^*(A_n) < \infty \ \forall n$. Fix $\epsilon > 0$, and for every n choose $A_{n_k} \in S$ s.t.

$$A_n \subset \bigcup_{k \in \mathbb{N}} A_{n_k}, \ \sum_{k \in \mathbb{N}} \mu^*(A_{n_k}) < \mu^*(A_n) + \frac{\epsilon}{2^n}.$$

Then

$$\bigcup_{n\in\mathbb{N}} A_n \subset \bigcup_{k\in\mathbb{N}} \bigcup_{n\in\mathbb{N}} A_{n_k},$$

so

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \sum_{k \in \mathbb{N}} \mu \left(A_{n_k} \right)$$
$$< \sum_{n \in \mathbb{N}} \left(\mu^* (A_n) + \frac{\epsilon}{2^n} \right)$$
$$= \sum_{n \in \mathbb{N}} \mu^* (A_n) + \epsilon.$$

As ϵ was arbitrarily, we get that

$$\mu^* \left(\bigcup_{n \in \mathbb{N}} A_n \right) \le \sum_{n \in \mathbb{N}} \mu^*(A_n),$$

so μ^* fulfills all the conditions for being an outer measure.

Step 2: Showing that μ^* extends μ , i.e. $\mu^*(s) = \mu(s) \ \forall s \in S$.

Step 3: Define μ^* -measurable sets

$$\Sigma^* := \{ A \subset X : \mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A) \ \forall \ Q \subset X \}$$

Step 4: Show that $\mu|_{\Sigma^*}$ is a measure. In particular, $\mu|_{\sigma(S)}$ is a measure which extends μ .

6

7 Measurable Mappings

We consider maps $T: X \to X'$ between two measurable spaces (X, \mathcal{A}) and (X', \mathcal{A}') which respects the measurable structurs, the σ -algbras on X and X'. These maps are useful as we can transport a measure μ , defined on (X, \mathcal{A}) , to (X', \mathcal{A}') .

Definition 7.1. Let (X, \mathcal{A}) , (X', \mathcal{A}') b measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable if the pre-imag of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A}, \quad \forall A' \in \mathcal{A}'.$$
 (1)

- A $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^m)$ measurable map is often called a Borel map.
- The notation $T:(X,\mathcal{A})\to (X',\mathcal{A}')$ is often used to indicate measurability of the map T.

Lemma 7.2. Let (X, A), (x', A') be measurable spaces and let $A' = \sigma(G')$. Then $T: X \to X'$ is A/A'-measurable iff $T^{-1}(G') \subset A$, i.e. if

$$T^{-1}(G') \in \mathcal{A}, \ \forall G' \in \mathcal{G}'.$$
 (2)

Theorem 7.3. Let (X_i, A_i) , i = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be A_1/A_2 and A_2/A_3 -measurable maps respectively. Then $S \circ T : X_1 \to X_3$ is A_1/A_3 -measurable.

Corollary 7.4. Every continuous map between metric spaces is a Borel map.

Definition 7.5. (and lemma) Let $(T_i)_{i \in I}$, $T_I : X \to X_i$, be arbitrarily many mappings from the same space X into measurable spaces (X_i, A_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\left(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\right)$$
(3)

Corollary 7.6. A function $f:(X,\mathcal{B})\to\mathbb{R}$ is measurable if $f((a,+\infty))\in\mathcal{B}$, $\forall a\in\mathbb{R}$.

Corollary 7.7. Assume (X, \mathcal{B}) is a measurable space, (Y, d) is a metric space, $(f_n : (X, \mathcal{B}) \to Y)_{n=1}^{\infty}$ is a sequence of measurable maps. Assume this sequence of images $(f_n(x))_{n=1}^{\infty}$ is convergent in $Y \ \forall x \in X$. Define

$$f: X \to Y, \quad by \ f(x) = \lim_{n \to \infty} f_n(x).$$
 (4)

Then f is measurable.

Theorem 7.8. Let (X, A), (X', A') be measurable spaces and $T: X \to X'$ be an A/A'-measurable map. For every measurable μ on (X, A),

$$\mu'(A') := \mu(T^{-1}(A')), \quad A' \in \mathcal{A}',$$
 (5)

defines a measure on (X', A').

Definition 7.9. The measure $\mu'(\cdot)$ in the above theorem is called the push forward or image measure of μ under T and it is denoted as $T(\mu)(\cdot)$, $T_{*\mu}(\cdot)$ or $\mu \circ T^{-1}(\cdot)$.

Theorem 7.10. If $T \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\lambda^n = T(\lambda^n)$.

Theorem 7.11. Let $S \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then

$$S(\lambda^n) = |\det s^{-1}|\lambda^n = |\det S|^{-1}\lambda^n.$$
(6)

Corollary 7.12. Lebesgue measure is invariant under motions: $\lambda^n = M(\lambda^n)$ for all motions M in \mathbb{R}^n . In particular, congruent sets have the same measure. Two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry

8 Measurable Functions

A measurable function is a measurable map $u: X \to \mathbb{R}$ from some measurable space (X, \mathscr{A}) to $(\mathbb{R}, \mathscr{B}(\mathbb{R}^1))$. They play central roles in the theory of integration.

We recall that $u: X \to \mathbb{R}$ is $\mathscr{A}/\mathscr{B}(\mathbb{R}^1)$ -measurable if

$$u^{-1}(B) \in \mathscr{A}, \ \forall B \in \mathscr{B}(\mathbb{R}^1).$$
 (7)

Moreover from a lemma from chapter 7, we actually only need to show that

$$u^{-1}(G) \in \mathcal{A}, \ \forall G \in \mathcal{G} \text{ where } \mathcal{G} \text{ generates } \mathcal{B}(\mathbb{R}^1).$$
 (8)

Proposition 8.1.

- 1 If $f, g: (X, \mathcal{B}) \to \mathbb{C}$ are measurable, then the function f+g, $f \cdot g$, cf, $(c \in \mathbb{C})$ are measurable.
- 2 If $b: \mathbb{C} \to \mathbb{C}$ is Borel and $b: (\mathbb{C}, \mathscr{B}) \to \mathbb{C}$ is measurable, then $b \circ f$ is measurable.
- 3 If $f(x) = \lim_{n \to \infty} f_n(x)$, $x \in X$ and f_n are measurable, then f is measurable.
- 4 If $X = \bigcup_{n=1}^{\infty} A_n$, $(A_n \in \mathcal{B})$, $f|_{A_n} : (A_n, \mathcal{B}_{A_n}) \to \mathbb{C}$ is measurable $\forall n$, then f is measurable.

Definition 8.2. Given a measurable space (X, \mathcal{B}) , a measurable function $f:(X,\mathcal{B})\to\mathbb{C}$ is called simple if

$$f(x) = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}(x), \tag{9}$$

for some $c_k \in \mathbb{C}$, $A_k \in \mathcal{B}$, where $\mathbb{1}$ is the characteristic function,

$$\mathbb{1}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases} \tag{10}$$

The representation of simple function is **not** unique. We denote the standard representation of f by

$$f(x) = \sum_{n=0}^{N} z_n \mathbb{1}_{B_n}(x), \quad N \in \mathbb{N}, \ z_n \in \mathbb{R}, \ B_n \in \mathscr{A}, \ X = \bigcup_{n=1}^{N} B_n, \ \text{ for } B_n \cap B_m = \emptyset, \ n \neq m.$$

$$\tag{11}$$

The set of simple functions is denoted $\mathcal{E}(\mathscr{A})$ of \mathcal{E} .

Definition 8.3. Assume μ is a measure on (X, \mathcal{B}) . Given a *positive* simple function

$$f = \sum_{k=1}^{N} c_k \mathbb{1}_{A_k}, \quad (c_k \ge 0).$$
 (12)

We define

$$\int_{X} f d\mu = \sum_{k=1}^{n} c_{k} \mu(A_{k}) \in [0, +\infty].$$
(13)

We also denote this by $I_{\mu}(f)$.

Lemma 8.4. This is well defined, that is, $\int_x f d\mu$ does not depend on the presentation of the simple function f.

Properties 8.5. For every positive simple function

1
$$\int_X cf d\mu = c \int_X f d\mu$$
, for only $c \ge 0$

$$2 \int_X (f+g)d\mu = \int_X f d\mu + \int_X g d\mu.$$

Corollary 8.6. If $f \ge g \ge 0$ are simple functions, then

$$\int_{X} f d\mu \ge \int_{X} g d\mu. \tag{14}$$

Definition 8.7. If $f: X \to [0, +\infty)$ is measurable, then we define

$$\int_{X} f d\mu = \sup \left\{ \int_{Y} g d\mu : f \ge g \ge 0, \ g \text{ is simple} \right\}$$
 (15)

Remark. This means that any measurable function can be approximated by simple functions.

Properties 8.8. Measurable functions like this have the following properties

$$1 \int_X c f d\mu = c \int_X f d\mu, \quad \forall c \ge 0.$$

2 If $f \ge g \ge 0$, then $\int_X f d\mu \ge \int_X g d\mu$ for any measurable g, f.

3 If $f \ge 0$ is simple, then $\int_X f d\mu$ is the same value as obtained before.

To advance in measure theory we consider measurable functions

$$f: X \to [0, +\infty].$$

Measurability is understood w.r.t the σ -algebra $\mathscr{B}([0,+\infty])$ generated by $\mathscr{B}([0,+\infty))$ and $\{+\infty\}$. In other words, $A \subset [0,+\infty] \in B([0,+\infty])$ iff $A \cap [0,+\infty) \in \mathscr{B}([0,+\infty))$.

Remark. Hence $f: X \to [0, +\infty]$ is measurable iff $f^{-1}(A)$ is measurable $\forall A \in \mathscr{B}([0, +\infty))$.

Definition 8.9. For measurable functions $f_X \to [0, +\infty]$, we define

$$\int_X f d\mu = \sup \left\{ \int_x g d\mu : f \ge g \ge 0 : g \text{ is simple} \right\} \in [0, +\infty].$$
 (16)

Theorem 8.10. Monotone convergence theorem Assume (X, \mathcal{B}, μ) is a measure space, $(f)_{n=1}^{\infty}$ is an increasing sequence of measurable positive functions $f_n: X \to [0, +\infty]$. Define $f(x) = \lim_{n \to \infty} f_n(x)$. Then f is measurable and

$$\int_{X} f d\mu = \lim_{n \to \infty} \int_{X} f_n d\mu. \tag{17}$$

Theorem 8.11. Assume (X, \mathcal{B}) is a measurable space and $f: X \to [0, +\infty]$ is measurable. Then there are simple functions g_n , s.t.

$$0 \le g_1 \le g_2 \le \dots$$
, $g_n(x) \to f(x)$, $\forall x \in X$.

Moreover, if f is bounded, we can choose g_n s.t. the convergence is uniform, that is,

$$\lim_{n \to \infty} \sup_{x \in X} |g_n(x) - f(x)| = 0.$$
 (18)

9 Integration of measurable functions

Through this chapter (X, \mathscr{A}, μ) will be some measure space. Recall that $\mathcal{M}^+(\mathscr{A})$ $[\mathcal{M}^+_{\mathbb{R}}(\mathscr{A})]$ are the \mathscr{A} -measurable positive functions and $\mathcal{E}(\mathscr{A})$ $[\mathcal{E}^+_{\mathbb{R}}(\mathscr{A})]$ are the positive and simple functions.

The fundamental idea of *Integration* is to measure the area between the graph of the function and the abscissa. For positive simple functions $f \in \mathcal{E}^+(\mathscr{A})$ in standard representation, this is done easily

if
$$f = \sum_{i=0}^{M} y_i \mathbb{1}_{A_i} \in \mathcal{E}^+(\mathscr{A})$$
 then $\sum_{i=0}^{M} y_i \mu(A_i)$ (19)

would be the μ -area enclosed by the graph and the abscissa. We note that the representation of f should not impact the integral of f.

Lemma 9.1. Let $\sum_{i=0}^{M} y_i \mathbb{1}_{A_i} = \sum_{k=0}^{N} z_k \mathbb{1}_{B_k}$ be two standard representations of the same function $f \in \mathcal{E}^+(\mathscr{A})$. Then

$$\sum_{i=0}^{M} y_i \mu(A_i) = \sum_{k=0}^{N} z_k \mu(B_k).$$
 (20)

Definition 9.2. Let $f = \sum_{i=0}^{M} y_i \mathbb{1}_{A_i} \in \mathcal{E}^+(\mathscr{A})$ be a simple function in standard representation. Then the number

$$I_{\mu}(f) = \sum_{i=0}^{M} y_i \mu(A_i) \in [0, \infty]$$
 (21)

(which is independent of the representation of f) is called the μ -integral of f.

Proposition 9.3. Let $f, g \in \mathcal{E}^+(\mathscr{A})$. Then

- (i) $I_{\mu}(\mathbb{1}_A) = \mu(A) \quad \forall A \in \mathscr{A}.$
- (ii) $I_{\mu}(\lambda f) = \lambda I_{\mu}(f) \quad \forall \lambda \geq 0.$
- (iii) $I_{\mu}(f+g) = I_{\mu}(f) + I_{\mu}(g)$.
- (iv) $f \leq g \Rightarrow I_{\mu}(f) \leq I_{\mu}(g)$.

In theorem 8.8 we saw that we could for every $u \in \mathcal{M}^+(\mathscr{A})$ write it as an increasing limit of simple functions. By corollary 8.10, the suprema of simple functions are again measurable, so that

$$u \in \mathcal{M}^+(\mathscr{A}) \Leftrightarrow u = \sup_{n \in \mathbb{N}} f_n, \quad f \in \mathcal{E}^+(\mathscr{A}), \quad f_n \le f_{n+1} \le \dots$$

We will use this to "inscribe" simple functions (which we know how to integrate) below the graph of a positive measurable function u and exhaust the μ -area below u.

Definition 9.4. Let (X, \mathscr{A}, μ) be a measure space. The (μ) -integral of a positive function $u \in \mathcal{M}_{\bar{\mathbb{p}}}^+(\mathscr{A})$ is given by

$$\int ud\mu = \sup \left\{ I_{\mu}(g) : g \le u, \ g \in \mathcal{E}^{+}(\mathscr{A}) \right\} \in [0, +\infty]. \tag{22}$$

If we need to emphasize the *integration variable*, we write $\int u(x)\mu(dx)$. The key observation is that the integral $\int \dots d\mu$ extends I_{μ} .

Lemma 9.5. For all $f \in \mathcal{E}^+(\mathscr{A})$ we have $\int f d\mu = I_{\mu}(f)$.

The next theorem is one of many convergence theorems. It shows that we could have defined 22 using any increasing sequence $f_n \uparrow u$ of simple functions $f_n \in \mathcal{E}^+(\mathscr{A})$.

Theorem 9.6. (<u>Beppo Levi</u>) Let (X, \mathcal{A}, μ) be a measure space. For an increasing sequence of functions $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+_{\mathbb{R}}(\mathcal{A}),\ 0\leq u_n\leq u_{n+1}\leq\ldots$, we have for the supremum $u=\sup_{n\in\mathbb{N}}u_n\in\mathcal{M}^+_{\mathbb{R}}(\mathcal{A})$ and

$$\int \sup_{n \in \mathbb{N}} u_n d\mu = \sup_{n \in \mathbb{N}} \int u_n d\mu. \tag{23}$$

Note we can write $\lim_{n\to\infty}$ instead of $\sup_{n\in\mathbb{N}}$ as the supremum of an increasing sequence is its limit. Moreover, this theorem holds in $[0,+\infty]$, so the case $+\infty = +\infty$ is possible.

Corollary 9.7. Let $u \in \mathcal{M}_{\mathbb{R}}^+(\mathscr{A})$. Then

$$\int u d\mu = \lim_{n \to \infty} \int f_n d\mu$$

holds for every sequence $(f_n)_{n\in\mathbb{N}}\subset\mathcal{E}^+(\mathscr{A})$ with $\lim_{n\to\infty}f_n=u$.

Proposition 9.8. (of integral) Let $u, v \in \mathcal{M}_{\bar{\mathbb{R}}}^+(\mathscr{A})$. Then

- (i) $\int \mathbb{1}_A d\mu = \mu(A) \quad \forall A \in \mathscr{A}.$
- (ii) $\int \alpha u d\mu = \alpha \int u d\mu \quad \forall \alpha \geq 0.$
- (iii) $\int u + v d\mu = \int u d\mu + \int v d\mu.$
- (iv) $u \le v \Rightarrow \int u d\mu \le \int v d\mu$.

Corollary 9.9. Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+_{\mathbb{R}}(\mathscr{A})$. Then $\sum_{n=1}^{\infty}u_n$ is measurable and we have

$$\int \sum_{n=1}^{\infty} u_n d\mu = \sum_{n=1}^{\infty} \int u_n d\mu$$

(including the possibility $+\infty = +\infty$.)

Theorem 9.10. (<u>Fatou</u>) Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{M}^+_{\mathbb{R}}(\mathscr{A})$ be a sequence of positive measurable functions. Then $u=\liminf_{n\to\infty}u_n$ is measurable and

$$\int \liminf_{n \to \infty} u_n d\mu = \liminf_{n \to \infty} \int u_n d\mu \tag{24}$$

10 Integrals of Measurable Functions

We have defined our integral for positive measurable functions, i.e. functions in $\mathcal{M}^+(\mathscr{A})$. To extend our integral to not only functions in $\mathcal{M}^+(\mathscr{A})$ we first notice that

$$u \in \mathcal{M}_{\mathbb{R}}(\mathscr{A}) \Leftrightarrow u = u^+ - u^-, \ u^+, u^- \in \mathcal{M}_{\mathbb{R}}^+,$$
 (25)

i.e. that every measurable function can be written as a sum of **positive** measurable functions.

Definition 10.1 (μ -integrable). A function $u: X \to \overline{\mathbb{R}}$ on (X, \mathscr{A}, μ) is μ -integrable, if it is $\mathscr{A}/\mathscr{B}(\overline{\mathbb{R}})$ -measurable and if $\int u^+ d\mu$, $\int u^- d\mu < \infty$ (recall the definition for the integral of positive measurable functions). Then

$$\int ud\mu := \int u^+ d\mu - \int u^- d\mu \in (-\infty, \infty)$$
 (26)

is the $(\mu$ -)integral of u. We write $\mathcal{L}^1(\mu)$ for the set of all real-valued μ -integrable functions ¹.

Theorem 10.2. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then the following conditions are equivalent:

- (i) $u \in \mathcal{L}^{\frac{1}{\mathbb{D}}}(\mu)$.
- (ii) $u^+, u^- \in \mathcal{L}^{\frac{1}{\mathbb{R}}}(\mu)$.
- (iii) $|u| \in \mathcal{L}^{\underline{1}}_{\overline{\mathbb{R}}}(\mu)$.
- (iv) $\exists w \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu) \text{ with } w \geq 0 \text{ s.t. } |u| \leq w.$

Theorem 10.3 (Properties of the μ -integral). The μ -integral is: **homogeneous**, additive, and:

(i)
$$\min\{u, v\}, \max\{u, v\} \in \mathcal{L}^1_{\overline{\mathbb{D}}}(\mu)$$
 (lattice property)

(ii)
$$u \le v \Rightarrow \int u d\mu \le \int v d\mu$$
 (monotone)

(iii)
$$\left| \int u d\mu \right| \le \int |u| d\mu$$
 (triangle inequality)

Remark. If $u(x) \pm v(x)$ is defined in $\overline{\mathbb{R}}$ for all $x \in X$ then we can exclude $\infty - \infty$ and the theorem above just says that the integral is linear:

$$\int (au + bv)d\mu = a \int ud\mu + b \int vd\mu.$$
 (27)

¹In words, we extend our integral to positive measurable functions by noticing that we can write every measurable function as a sum of positive measurable functions, something that we do know how to integrate. We don't want to run into the problem of $\infty - \infty$, thus we require the integral of the positive and negative parts to both (separately) be less than infinity.

This is always true for real-valued $u, v \in \mathcal{L}^1(\mu) = \mathcal{L}^1_{\mathbb{R}}(\mu)$, making $\mathcal{L}^1(\mu)$ a vector space with addition and scalar multiplication defined by

$$(u+v)(x) := u(x) + v(x), \ (a \cdot u)(x) := a \cdot u(x), \tag{28}$$

and

$$\int ...d\mu : \mathcal{L}^1(\mu) \to \mathbb{R}, \ u \mapsto \int u d\mu, \tag{29}$$

is a positive linear functional.

11 Null sets and the Almost Everywhere (lecture 08, 05. Feb.)

Definition 11.1. A $(\mu$ -)null set $N \in \mathcal{N}_{\mu}$ is a measurable set $N \in \mathscr{A}$ satisfying

$$N \in \mathcal{N}_{\mu} \iff N \in \mathscr{A} \text{ and } \mu(N) = 0.$$
 (30)

This can be used generally about a 'statement' or 'property', but we will be interested in questions like 'when is u(x) equal to v(x)', and we answer this by saying

$$u = v \text{ a.e.} \Leftrightarrow \{x : u(x) \neq v(x)\} \text{ is (contained in) a } \mu\text{-null set.,}$$
 (31)

i.e.

$$u = v \quad \mu\text{-a.e.} \Leftrightarrow \mu\left(\left\{x : u(x) \neq v(x)\right\}\right) = 0.$$
 (32)

The last phrasing should of course include that the set $\{x: u(x) \neq v(x)\}$ is in \mathscr{A} .

Theorem 11.2. Let $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, then:

- (i) $\int |u| d\mu = 0 \Leftrightarrow |u| = 0$ a.e. $\Leftrightarrow \mu \{u \neq 0\} = 0$,
- (ii) $\mathbb{1}_N u \in \mathcal{L}^1_{\overline{\mathbb{R}}}(\mu) \ \forall \ N \in \mathcal{N}_{\mu},$
- (iii) $\int_N u d\mu = 0$.
- (i) is really useful, later we will define \mathcal{L}^p and the $||\cdot||_p$ -(semi)norm. Then (i) means that if we have a sequence u_n converging to u in the $||\cdot||_p$ -norm then $u_n(x) = u(x)$ a.e.

Corollary 11.3. Let $u = v \mu$ -a.e. Then

- (i) $u, v \ge 0 \Rightarrow \int u d\mu = \int v d\mu$,
- (ii) $u \in \mathcal{L}^{1}_{\overline{\mathbb{D}}}(\mu) \Rightarrow v \in \mathcal{L}^{1}_{\overline{\mathbb{D}}}(\mu) \text{ and } \int u d\mu = \int v d\mu.$

Corollary 11.4. If $u \in \mathcal{M}_{\overline{\mathbb{R}}}(\mathscr{A})$, $v \in \mathcal{L}^{1}_{\overline{\mathbb{R}}}(\mu)$ and $v \geq 0$ then

$$|u| \le v \text{ a.e. } \Rightarrow u \in \mathcal{L}^{\underline{1}}_{\mathbb{R}}(\mu).$$
 (33)

Proposition 11.5 (Markow inequality). For all $u \in \mathcal{L}^1_{\mathbb{R}}(\mu)$, $A \in \mathscr{A}$ and c > 0

$$u\left(\left\{|u| \ge c\right\} \cap A\right) \le \frac{1}{c} \int_{A} |u| d\mu,\tag{34}$$

if A = X, then (obviosly)

$$u\{|u| \ge c\} \le \frac{1}{c} \int |u| d\mu. \tag{35}$$

Completions of measure spaces

Definition 11.6. A measure space (X, \mathcal{B}, μ) is called **complete** if whenever $A \in \mathcal{B}$ and $\mu(A) = 0$, we have $B \in \mathcal{B} \ \forall B \subset A$.

Remark. Any measure space can be completed as follows: Let $\bar{\mathcal{B}}$ be the σ -algebra generated by \mathcal{B} and all sets $B \subset X$ s.t. there exists $A \in \mathcal{B}$ with $B \subset A$ and $\mu(A) = 0$.

Proposition 11.7. The σ -algebra $\bar{\mathscr{B}}$ can also be described as follows:

$$\bar{\mathscr{B}} := \{ B \subset X : A_1 \subset B \subset A_2 \text{ for some } A_1, A_2 \in \mathscr{B} \text{ with } \mu(A_2 \backslash A_1) = 0 \},$$
(36)

with B, A_1, A_2 as above, we define

$$\bar{\mu} := \mu(A_1) = \mu(A_2)$$
 (37)

Then $(X, \bar{\mathscr{B}}, \bar{\mu})$ is a complete measure space.

Definition 11.8. If μ is a Borel measure on a **metric** space (X, d), then the completion $\bar{\mathcal{B}}(X)$ of the Borel σ -algebra with respect to μ is called the σ -algebra of μ -measurable sets.

Remark. For $\mu = \lambda_n$ on \mathbb{R}^n we talk about the σ -algebra of Lebesgue measurable sets. Instead of $\bar{\lambda}_n$ we still write λ_n and call it the Lebesgue measure. A function $f : \mathbb{R}^n \to \mathbb{C}$, measurable w.r.t. the σ -algebra of Lebesgue measurable sets is called the Lebesgue measurable.

The following result shows that any Lebesgue measurable function coincides with a Borel function a.e.

Proposition 11.9. Assume (X, \mathcal{B}, μ) is a measure space and consider its completion $(X, \bar{\mathcal{B}}, \bar{\mu})$. Assume $f: X \to \mathbb{C}$ is $\bar{\mathcal{B}}$ -measurable. Then there is a \mathcal{B} -measurable function $g: X \to \mathbb{C}$ s.t. $f = g \bar{\mu}$ -a.e.

12 Convergence Theorems and Their Applications (lecture 9, 8. Feb.)

- To interchange limits and integrals in **Riemann integrals** one typically has to assume uniform convergence. ;- The set of Riemann integrable functions is somewhat limited, see theorem 12.4

Theorem 12.1 (Generalization of Beppo Levi, monotone convergence).

(i) Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$ be s.t. $u_1\leq u_2\leq ...$ with limit $u:=\sup_{n\in\mathbb{N}}u_n=\lim_{n\to\infty}u_n$. Then $u\in\mathcal{L}^1(\mu)$ iff

$$\sup_{n\in\mathbb{N}}\int u_n d\mu < +\infty,$$

in which case

$$\sup_{n\in\mathbb{N}}\int u_n d\mu = \int \sup_{n\in\mathbb{N}} u_n d\mu.$$

(ii) Same thing only with a decreasing sequence ... $> -\infty$ in which case

$$\inf_{n\in\mathbb{N}}\int u_n d\mu = \int \inf_{n\in\mathbb{N}} u_n d\mu.$$

Theorem 12.2 (Lebesgue; dominated convergence). Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^1(\mu)$ s.t.

- (a) $|u_n|(x) \le w(x), w \in \mathcal{L}^1(\mu),$
- (b) $u(x) = \lim_{n \to \infty} u_n(x)$ exists in \mathbb{R} ,

then $u \in \mathcal{L}^1(\mu)$ and we have

- (i) $\lim_{n \to \infty} \int |u_n u| d\mu = 0;$
- (ii) $\lim_{n\to\infty} \int u_n d\mu = \int \lim_{n\to\infty} u_n d\mu = \int u d\mu$;

Application 2: Riemann vs Lebesgue Integration

Consider only $(X, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$.

Theorem 12.3. Let $u:[a,b] \to \mathbb{R}$ be a measurable and Riemann integrable function. Then

$$u \in \mathcal{L}^1(\lambda) \ and \int_{[a,b]} u d\lambda = \int_a^b u(x) dx.$$
 (38)

Theorem 12.4. Let $u:[a,b] \to \mathbb{R}$ be a bounded function, it is Riemann integrable *iff* the points in (a,b) where u is discontinuous are a (subset of) Borel measurable null set.

Improper Riemann Integrals

- The Lebesgue integral extends the (proper) Riemann integral. However, there is a further extension of the Riemann integral which cannot be captured by Lebesgue's theory. u is Lebesgue integrable iff |u| ha finite Lebesgue integral. i-The Lebesgue integral does not respect sign-changes and cancellations. However, the following $improper\ Riemann\ integral\ does$:

$$(R)\int_{0}^{\infty} u(x)dx := \lim_{n \to \infty} (R)\int_{0}^{a} u(x)dx.$$
 (39)

Corollary 12.5. Let $u:[0,\infty)\to\mathbb{R}$ be a measurable, Riemann integrable function for every interval $[0,N],\ N\in\mathbb{N}$. Then $u\in\mathcal{L}^1[0,\infty)$ iff

$$\lim_{N \to \infty} (R) \int_{0}^{N} |u(x)| dx < \infty.$$
 (40)

In this case, $(R) \int_0^\infty u(x) dx = \int_{[0,\infty)} u d\lambda$

Proposition 12.6 (appearing as example 12.13 in Schilling). Let $f_{\alpha}(x) := x^{\alpha}, x > 0$ and $\alpha \in \mathbb{R}$. Then

- (i) $f(\alpha) \in \mathcal{L}^1(0,1) \Leftrightarrow \alpha > -1$.
- (ii) $f(\alpha) \in \mathcal{L}^1[1,\infty) \Leftrightarrow \alpha < -1$.

13 The Function Spaces \mathcal{L}^p (lecture 11, 15. Feb.)

Assume V is a vector space over $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$.

Definition 13.1. A seminorn on V is a map $p: V \to [0, +\infty)$ s.t.

- (1) $p(cx) = |c|p(x) \ \forall x \in V, \forall c \in \mathbb{K}.$
- (2) $p(x+y) \le p(x) + p(y) \ \forall x, y \in V$. triangle inequality.

A seminorm is called a norm if we also have

$$p(x) = 0 \iff x = 0.$$

A norm is commonly denoted ||x||, and a vectorspace equipped with a norm is called a **normed space**.

Definition 13.2. Assume (X, d) is a measure space. Fix $1 \le p \le \infty$. For every measurable function $f: X \to \mathbb{C}$ we define the following

$$||f||_p = \left(\int_X |f|^p d\mu\right)^{1/p} \in [0, +\infty].$$
 (41)

We can see that $||cf||_p = |c|||f||_p \ \forall c \in \mathbb{C}$.

Notice that by Theorem 11.2(i) we have that $||f||_p = 0 \Rightarrow f = 0$ a.e. Consider for example $\lim_{n\to\infty} ||f_n - f||_p = 0$, then we can find a subsequence s.t. $\lim_{k\to\infty} |f_{n(k)} - f| = 0$ a.e., i.e. $\lim_{k\to\infty} f_{n(k)} = f$ a.e.

Lemma 13.3.

$$||f+g||_p \le ||f||_p + ||g||_p. \tag{42}$$

Definition 13.4. We define

$$\mathcal{L}^p(X, d\mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_p < \infty \}.$$

This is a vector space with seminorm $f \mapsto ||f||_p$. And in general this is not a normed space, since $||f||_p = 0 \iff f = 0$ a.e.

Generally, if p is a seminorm on a vectorspace V, then

$$V_0 = \{ x \in V \mid p(x) = 0 \}$$
(43)

which is a subspace of V. Then we consider the quotient/factor space V/V_0 .

Definition 13.5. For $x, y \in V$, define

$$x \sim y \iff x - y \in V_0. \tag{44}$$

This is an equivalence relation on V. The representation class of V is defined by [x] or $x + V_0$.

Then V/V_0 is equals the set of equivalence classes. We can show that it is a normed space.

$$[x] + [y] = [x + y]$$
, $c[x] = [cx]$, $||[x]|| = p(x)$.

Applying this to $\mathcal{L}^p(X, d\mu)$ we get the normed space

$$L^{p}(X, d\mu) := \mathcal{L}^{p}(X, d\mu) / \mathcal{N} = \mathcal{L}^{p}(X, d\mu) /_{\sim}. \tag{45}$$

Where \mathcal{N} is the space of measurable functions f s.t. f=0 a.e. The equivalence relation \sim is defined by

$$u \sim v \iff \{u \neq v\} \in \mathcal{N}_{\mu} \iff \mu \{u \neq v\} = 0,$$

and so $L^p(X, d\mu)$ consists of all equivalence classes $[u]_p = \{v \in \mathcal{L}^p | u \sim v\}$. So for every $u \in L^p$ there is no $v \in L^p$ such that $\mu\{u \neq v\} \neq 0$.

We will further continue to denote the norm by $||\cdot||_p$, and we will normally **not** distinguish between $f \in \mathcal{L}^p(X, d\mu)$ and the vector in $L^p(X, d\mu)$ that f defines.

Definition 13.6. A normed space $(X, ||\cdot||)$ is called a Banach space if V is complete w.r.t the metric d(x, y) = ||x - y||.

Theorem 13.7. If (X, \mathcal{B}, μ) is a measure space, $1 \leq p \leq \infty$, then $L^p(X, d\mu)$ is a Banach space.

Definition 13.8. A measurable function $f: X \to \mathbb{C}$ is called **essentially bounded** if there is $c \geq 0$ s.t.

$$\mu(\{x : |f(x)| > c\}) = 0. \tag{46}$$

That is $|f| \leq c$ a.e. The smallest such c is called the essential supremum of f and is denoted by $||f||_{\infty}$.

Definition 13.9.

$$\mathcal{L}^{\infty}(X, d\mu) = \{ f : X \to \mathbb{C} \mid f \text{ is measurable and } ||f||_{\infty} < \infty \}.$$

$$L^{\infty}(X, d\mu) = \mathcal{L}^{\infty}(X, d\mu)/\mathcal{N}.$$

Where by the previous definiton these spaces become the spaces of all essentially bounded functions.

Theorem 13.10. If (X, \mathcal{B}, μ) is a σ -finite measure space, then $L^{\infty}(X, d\mu)$ is a Banach space.

Convergence in \mathcal{L}^p and completeness

Lemma 13.11. For any sequence $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(\mu), p\in[1,\infty)$, of positive functions $u_n\geq 0$ we have

$$\left| \left| \sum_{n=1}^{\infty} u_n \right| \right|_p \le \sum_{n=1}^{\infty} ||u_n||_p.$$

Theorem 13.12 (Riesz-Fischer). The spaces $\mathcal{L}^p(\mu)$, $p \in [1, \infty)$, are complete, i.e. every Cauchy sequence $(u_n)_{n \in \mathbb{N}} \subset \mathcal{L}^p(\mu)$ converges to some limit $u \in \mathcal{L}^p(\mu)$

Corollary 13.13. Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(\mu), p\in[1,\infty)$ with $\mathcal{L}^p-\lim_{n\to\infty}u_n=u$. Then there exists a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ s.t. $\lim_{k\to\infty}u_{n_k}(x)=u(x)$ holds for almost every $x\in X$.

Theorem 13.14. Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(\mu), p\in[1,\infty)$, be a sequence of functions s.t. $|u_n|\leq w\ \forall n\in\mathbb{N}$ and some $w\in\mathcal{L}^p(\mu)$. If $u(x)=\lim_{n\to\infty}u_n(x)$ exists for (almost) every $x\in X$, then

$$u \in \mathcal{L}^p$$
 and $\lim_{n \to \infty} ||u - u_n||_p = 0.$

Theorem 13.15 (F. Riesz (convergence theorem)). Let $(u_n)_{n\in\mathbb{N}}\subset\mathcal{L}^p(\mu), p\in[1,\infty)$, be a sequence s.t. $\lim_{n\to\infty}u_n(x)=u(x)$ for almost every $x\in X$ and some $u\in\mathcal{L}^p(\mu)$. Then

$$\lim_{n \to \infty} ||u_n - u||_p = 0 \Longleftrightarrow \lim_{n \to \infty} ||u_n||_p = ||u||_p.$$

17 Dense and Determining Sets (lecture 12, 19. Feb.)

Definition 17.1 (Dense Sets). A set $\mathcal{D} \subset \mathcal{L}^p(\mu), p \in [0, \infty]$, is called *dense* if for every $u \in \mathcal{L}^p(\mu)$ there exist a sequence $(f_n)_{n \in \mathbb{N}} \subset \mathcal{D}$ s.t. $\lim_{n \to \infty} ||u - f_n||_p = 0$.

Theorem 17.2. Assume X, d is a metric space and μ is a Borel measure that is finite on every ball $1 \leq p < \infty$. Then the space of bounded continuous functions with bounded support is dense in $\mathcal{L}^p(X, d\mu)$. Where bounded support means that f vanishes outside some ball.

Theorem 17.3. Assume (X,d) is a separable locally compact metric space and μ is a Borel Measure on X s.t. $\mu(K) < \infty \ \forall$ compact $K \subset K$. Then the space $C_c(X)$ of continuous compactly supported functions is dense in $\mathcal{L}^p(X,d\mu)$.

In particular, either theorem shows that if μ is a Borel measure on \mathbb{R}^n s.t. the measure of every ball is finite, then $C_c(\mathbb{R}^n)$ is dense in $\mathcal{L}^p(\mathbb{R}^n, d\mu)$, $1 \leq p < \infty$. Later we will see that even $C_c^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n, d\mu)$.

Remark. These results do not extend to $p = \infty$ in general. For $\mu = \lambda_n$ we write simply $\mathcal{L}^p(\mathbb{R}^n)$.

Remark. Theorem 17.8 in the book is WRONG. For example, $X = \mathbb{Q}$ with the usual metric is σ -compact, supports nonzero finite measure, but $C_c(\mathbb{Q}) = 0$.

Modes of Convergence (mixture of ex. 11.12 and ch. 22 p. 258-261.)

Assume (X, \mathcal{B}, μ) is a measure space. Given measurable functions $f_n, f: X \to \mathbb{C}$, recall that

$$f_n \to f$$
 a.e.

means that $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ for all x outside a set of measure zero.

Theorem 17.4 (Egorov). Assume $\mu(X) < \infty$ and $f_n \to f$ a.e. Then, $\forall \epsilon > 0$, there exists $X_{\epsilon} \in \mathcal{B}$ s.t. $\mu(X_{\epsilon}) < \epsilon$ and $f_n \to f$ uniformly on $X \setminus X_{\epsilon}$.

In addition to pointwise and uniform convergence we also consider the following:

 $f_n \to f$ in the *p-th mean* if $||f_n - f||_p \xrightarrow[n \to \infty]{} 0$. For p = 1 we say in mean, for p = 2 we say in quadratic mean.

 $f_n \to f$ in measure if $\forall \epsilon > 0$ we have

$$\mu\left(\left\{x:\left|f_n(x)-f(x)\right|\geq\epsilon\right\}\right)\xrightarrow[n\to\infty]{}0.$$

Theorem 17.5 (Lemma 22.4 in the book?). Assume $(X, \mathcal{B}, d\mu)$ is a measure space, $1 \leq p < \infty$, $f_n, f: X \to \mathbb{C}$ are measurable functions. Then

- (i) If $f_n \to f$ in the p-th mean, then $f_n \to f$ in measure.
- (ii) If $f_n \to f$ in measure, then there is a subsequence $(f_{n_k})_{k=1}^{\infty}$ s.t. $f_{n_k} \to f$ a.e.
- (iii) If $f_n \to f$ a.e. and $\mu(X) < \infty$, then $f_n \to f$ in measure.

In particular, if $f_n \to f$ in the p-th mean, then $f_{n_k} \to f$ a.e. for a subsequence $(f_{n_k})_k$.

26 Abstract Hilbert Spaces (lecture 13, 22. Feb)

Assume \mathcal{H} is a vector space over \mathbb{C} .

Definition 26.1. A pre-inner product on \mathcal{H} is a map $(\cdot, \cdot) : H \times H \to \mathbb{C}$ which is

(i) Sesquilinear: linear in the first variable and antilinear in the second:

$$(\alpha u + \beta v, w) = \alpha(u, w) + \beta(v, w),$$

$$(w, \alpha u + \beta v) = \bar{\alpha}(u, w) + \bar{\beta}(v, w), \ u, v, w \in H \text{ and } \alpha, \beta \in \mathbb{C}.$$

(ii) Hermitian: $(u, v) = \overline{(u, v)}$.

(iii) Positive semidefinite: $(u, v) \ge 0$.

It is called an **inner product**, or a scalar product, if instead of (iii) the map is positive definite; (u, v) > 0. This definition also works for \mathbb{R} instead of \mathbb{C} .

Cauchy-Schwartz inequality If (\cdot, \cdot) is a pre-inner product, then $|(u, v)| \le (u, u)^{1/2} (v, v)^{1/2}$.

Corollary 26.2. Assume we have a seminorm $||u|| := (u, u)^{1/2}$. It is a norm iff (\cdot, \cdot) is an inner product.

Definition 26.3 (Hilbert space). A Hilbert space is a complex vector space \mathcal{H} with an inner product (\cdot, \cdot) s.t. \mathcal{H} is complete with respect to the norm $||u|| = (u, u)^{1/2}$.

- 1. The norm on a Hilbert space is determined by the inner product, but the inner product can also be recovered by the norm by the polarization identity: $(u,v) = \frac{||u+v||^2 ||u-v||^2}{4} + i \frac{||u+iv||^2 ||u-iv||^2}{4}$.
- 2. Parallelogram law: $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$.
- 3. A norm on a vector space is given by an inner product iff it satisfies the parallelogram law, and then the scalar product is uniquely determined by the polarization identity.

Recall that a subset C of a vector space is called *convex* if

$$u, w \in \mathcal{C} \to tu + (1-t)w \in \mathcal{C} \ \forall t \in (0,1).$$

The following is one of the key properties of the Hilbert space

Theorem 26.4 (projection theorem). Assume \mathcal{H} is a Hilbert space and $\mathcal{C} \subset H$ is a closed convex subset. Then for every $u \in H$ there is a unique $u_0 \in \mathcal{C}$ (minimizer) s.t.

$$||u - u_0|| = d(u, \mathcal{C}) (= \inf_{x \in \mathcal{C}} ||u - x||).$$

Orthogonal Projections (lecture 14, 26. Feb.)

For a Hilbert space \mathcal{H} and a subset $A \subset H$, let

$$A^{\perp} := \left\{ x \in H : x \bot y \ \forall y \in A \right\},\,$$

where $x \perp y$ means that (x, y) = 0. A^{\perp} is a closed subspace of \mathcal{H} .

Proposition 26.5. Assume \mathcal{H}_0 is a closed subspace of a Hilbert space \mathcal{H} . Then every $u \in H$ uniquely decomposes as

$$u = u_0 + u_1$$
, with $u_0 \in H$ and $u_1 \in \mathcal{H}_0^{\perp}$.

Moreover,
$$||u - u_0|| = d(u, \mathcal{H}_0)$$
 and $||u||^2 = ||u_0||^2 + ||u_1||^2$.

For a closed subspace $\mathcal{H}_0 \subset \mathcal{H}$, consider the map $P: H \to \mathcal{H}_0$ s.t. $Pu \in \mathcal{H}_0$ is the unique element satisfying $u - Pu = H_0^{\perp}$. The operator P is linear. It is also contractive, meaning that $||Pu|| \leq ||u||$, since $||u||^2 = ||Pu||^2 + ||u - Pu||^2$. It is called the orthogonal projection onto \mathcal{H}_0 .

If \mathcal{H}_0 is finite dimensional with an orthonormal basis $u_1, ..., u_n$ then

$$Pu = \sum_{k=1}^{n} (u, u_k) u_k.$$

Orthonormal bases can be defined for arbitrary Hilbert spaces.

Definition 26.6 (orthonormal system). An orthonormal system in \mathcal{H} is a collection of vectors $u_i \in H$ $(i \in I)$ s.t.

$$(u_i, u_j) = \delta_{ij} \ \forall i, j \in I.$$

It is called an *orthonormal basis* if span $\{u_i\}_{i\in I}$ denotes the linear span of $\{u_i\}_{i\in I}$, the space of finite linear combinations of the vectors u_i .

Definition 26.7. A Hilbert space \mathcal{H} is said to be *separable* if \mathcal{H} contains a countable dense subset $G \subset \mathcal{H}$.

Theorem 26.8. Every Hilbert space \mathcal{H} has an orthonormal basis. If \mathcal{H} is separable, then there is a countable orthonormal basis.

Proposition 26.9. Assume $\{u_i\}_{i\in I}$ is an orthonormal system in a Hilbert space H. Take $u \in \mathcal{H}$. Then

- (i) Bessel's inequality: $\sum_{i \in I} |(u, u_i)|^2 \le ||u||^2$, in particular, $\{i : (u, u_i) \ne 0\}$ is countable.
- (ii) Parseval's identity: If $\{u_i\}_{i\in I}$ is an orthonormal basis, then $\sum_{i\in I} |(u,u_i)|^2 = ||u||^2$.

If $(u_i)_{i\in I}$ is an orthonormal basis, then the numbers (u, u_i) are called the **Fourier coefficients** of u with respect to $(u_i)_{i\in I}$. The Parseval identity then suggests that u is determined by its Fourier coefficients. This is true, and even more, we have:

Proposition 26.10. Assume $(u_i)_{i\in I}$ is an orthonormal basis in a Hilbert space \mathcal{H} . Then for every vector $(c_i)_{i\in I} \in l^2(I)$ there is a unique vector $u \in \mathcal{H}$ with Fourier coefficients c_i , and we write

$$u = \sum_{i \in I} c_i u_i.$$

Remark. Equivalently, the element $u = \sum_{i \in I} c_i u_i$ can be described as the unique element in \mathcal{H} s.t. $\forall \epsilon > 0$ there is a finite $F_0 \subset I$ s.t. $||u - \sum_{i \in F} c_i u_i|| < \epsilon \ \forall$ finite $F \supset F_0$.

Corollary 26.11. We have a linear isomorphism $U: l^2(I) \xrightarrow{\sim} \mathcal{H}$, $U((c_i)_{i \in I}) = \sum_{i \in I} c_i u_i$. By Parseval's identity this isomorphism is isometric, that is, $||Ux|| = ||x|| \forall x \in l^2(I)$. By the polarization identity this is equivalent to

$$(Ux, Uy) = (x, y) \ \forall x, y \in l^2(I).$$

Therefor U is unitary.

Corollary 26.12. Up to a unitary isomorphism, there is only one infinite dimensional separable Hilbert space, namely, l^2 .

Dual spaces (lecture 15, 29. Feb.)

Lemma 26.13. Assume V is a normed space over $K = \mathbb{R}$ or $K = \mathbb{C}$. Consider a linear functional $f: V \to K$. The following are equivalent (TFAE):

- (i) f is continuous;
- (ii) f is continuous at 0;
- (iii) There is a $c \ge 0$ s.t. $|f(x)| \le c||x|| \ \forall x \in V$.

If (i)-(iii) are satisfied, then f is called a bounded linear functional. The constant c in (iii) is denoted by ||f||. We have $||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{||x|| = 1} |f(x)| = \sup_{||x|| < 1} |f(x)|$.

Proposition 26.14. For every normed vector space V over $K = \mathbb{R}$ or $K = \mathbb{C}$, the bounded linear functionals on V form a Banach space V^* .

Remark. The sequence $\{||f_n - f_m||\}_{m=1}^{\infty}$ actually converges, since

$$\left| ||f_n - f_m|| \right| \le ||f_m - f_n||.$$

When we study/use normed spaces, it is often important to understand the dual spaces. For Hilbert spaces this is particularly easy:

Theorem 26.15 (Riesz). Assume \mathcal{H} is a Hilbert space. Then every $f \in \mathcal{H}^*$ has the form

$$f(x) = (x, y),$$

for a uniquely defined $y \in \mathcal{H}$. Moreover, we have ||f|| = ||y||.

For every Hilbert space \mathcal{H} we can define the *conjugate Hilbert space* $\bar{\mathcal{H}}$, which has its elements as the symbols \bar{x} for $x \in \mathcal{H}$, with the linear structure and inner product defined by

$$\bar{x} + \bar{y} = \overline{x + y}, c \cdot \bar{x} = \overline{c}\overline{x}, (\bar{x}, \bar{y}) = \overline{(x, y)} = (y, x).$$

Corollary 26.16. For every Hilbert space \mathcal{H} , we have an isometric isomorphism $\bar{\mathcal{H}} \xrightarrow{\sim} \mathcal{H}^*$, $\bar{x} \mapsto (\cdot, x)$.

Appendix

H Regularity of measures (lecture 10, 12. Feb.)

We let (X, d) be a metric space and denote by \mathcal{O} the open, by \mathcal{C} the closed and $\mathscr{B}(X) = \sigma(\mathcal{O})$ the Borel set of X.

Definition H.1. A measure μ on $(X, d, \mathcal{B}(X))$ is called outer regular, if

$$\mu(B) = \inf \{ \mu(U) \mid B \subset U, \ U \text{ open} \}$$
 (47)

and inner regular, if $\mu(K) < \infty$ for all compact sets $K \subset X$ and

$$\mu(U) = \sup \{ \mu(K) \mid K \subset U, K \text{ compact} \}. \tag{48}$$

A measure which is both inner and outer regular is called **regular**. We write $\mathfrak{m}_r^+(X)$ for the family of regular measures on $(X, \mathcal{B}(X))$.

Remark. The space X is called σ -compact if there is a sequence of compact sets $K_n \uparrow X$. A typical example of such a space is a locally compact, separable metric space.

Theorem H.2. Let (X, d) be a metric space. Every finite measure μ on $(X, \mathcal{B}(X))$ is outer regular. If X is σ -compact, then μ is also inner regular, hence regular.

Theorem H.3. Let (X,d) be a metric space and μ be a measure on (X,B(X)) such that $\mu(K) < \infty$ for all compact sets $K \subset X$.

- 1 If X is σ -compact, then μ is inner regular.
- 2 If there exists a sequence $G_n \in \mathcal{O}$, $G_n \uparrow X$ such that $\mu(G_n) < \infty$, then μ is outer regular.

Hahn-Banach Theorem

Theorem H.4 (Hahn-Banach). Assume V is a real vector space, $V_0 \subset V$ a subspace, $e: V \to \mathbb{R}$ a convex function and $f: V_0 \to \mathbb{R}$ a linear functional s.t. $f \leq e$ on V_0 . Then f can be extended to a linear functional F on V s.t. $F \leq e$.

Theorem H.5 (Hahn-Banach). Assume V is a real or complex vector space, p a seminorm on V_0 , $V_0 \subset$, and f a linear functional on V_0 s.t.

$$|f(x)| \le p(x) \ \forall x \in V_0.$$

Then f can be extended to a linear functional F on V s.t. $|F(x)| \le p(x) \ \forall x \in V$.

Corollary H.6. Assume V is a normed real or complex vector space, $V_0 \subset V$ and $f \in V_0^*$. Then there is a $F \in V^*$ s.t.

$$F|_{V_0}f$$
 and $||F|| = ||f||$.

Corollary H.7. Assume V is a normed space and $x \in V, x \neq 0$. Then there is a $F \in V^*$ s.t. ||F|| = 1 and F(x) = ||x||.

Such an F is called a *supporting functional at* x.

Figure 1: Tangent space?

If V is a normed vector space, then every $x \in X$ defines a bounded linear functional on V^* by

$$V^* \ni f \mapsto f(x)$$
.

As $|f(x)| \leq ||f|| \cdot ||x||$, this functional has norm $\leq ||x||$. By using a supporting functional at x, we actually see that we get norm ||x||. Thus, we have an isometric embedding $V \subset V^{**} := (V^*)^*$. We can therefor see view V as a subspace of V^{**} .

Definition H.8. A normed space V is called reflexive if $V^{**} = V$.

Remark. This is stronger than requiring $V \cong V^{**}$.

Remark. Every Hilbert space \mathcal{H} is reflexive. Indeed, $\mathcal{H}^* = \bar{\mathcal{H}}$. By Riesz' theorem every bounded linear functional f on $\bar{\mathcal{H}}$ has the form

$$f(\bar{x}) = (\bar{x}, \bar{y}) = (y, x),$$

for some $y \in \mathcal{H}$, which exactly means that f = y in \mathcal{H}^{**} .

As we will see later, the spaces $\mathcal{L}^p(X, d\mu)$, with μ σ -finite and $1 , are reflexive. The spaces <math>\mathcal{L}'(X, d\mu)$ and $\mathcal{L}^{\infty}(X, \mu)$ are usually not reflexive.