

NTN from 5G to 6G: Standardization and Sustainability Aspects

26th February 2025 40 min

www.thalesgroup.com

Content

>Views on the 5G NTN standard and the lessons learned

>A perspective of NTN in the 6G context

>Considerations on sustainability aspects.

NTN in 5G lessons learned

www.thalesgroup.com

Rational for initiating standardisation activity in NTN at 3GPP (1/2)

>Vision

- SatCom is a shrinking niche market.
- Open new market opportunities
 through the integration in the mobile
 eco system
- Users want to escape from service provider's lock: limited services and terminal diversity
- Satellite Network Operators want to escape from network vendor lock

>Conditions for success

- Minimum impact on UE, RAN and core network
- Being able to address the consumer market: smart phones, cars
- A single technology framework to address all SatCom services and markets

Rational for initiating standardisation activity in NTN at 3GPP (2/2)

>Foreseen added value of SATELLITE IN 5G

- 1/ Foster the roll out of 5G service in unserved areas (e.g. isolated/remote areas, on board aircrafts or vessels) and underserved areas (e.g. sub-urban/rural areas),
- 2/ Reinforce the service reliability: robust service delivery for M2M/IoT devices or for passengers on board moving platforms, service availability anywhere
- 3/ Enable network scalability with multicast/broadcast for data delivery towards network edges.

3GPP defined Non-Terrestrial Network in 5G: Overview

<u>3GPP NTN:</u> the **first and true global and open standard for all SatComs** (*any device, orbit, service, frequency bands, beam size/type*) and **supported by the 3GPP eco system** (satellite, mobile and vertical stakeholders)

NTN added value wrt
TN: service continuity
and reinforced
reliability/availability

3 NTN reference scenarios wrt terminal types:

- IoT devices (Narrowband: hundreds of kbps) in < 7 GHz
- Smartphones/vehicle (Wideband: few Mbps) in < 7 GHz
- Flat panel antenna terminal on moving platforms (Broadband: hundreds of Mbps) in > 10 GHz

Common 5G technology framework to best manage (Perf., QoS, Security, Slicing) across the access technologies

3GPP NTN standard in 5G: Release 17 and beyond main features

- Addressing specific NTN issues
 - Any orbit: Propagation, Extended & variable delays & Doppler
 - Any payload: Transparent/Regenerative
 - Any radio cells: any size, Earth fixed/moving, possibly cross borders.
 - Any frequency bands: satellite service allocated below 6GHz and above 10 GHz
 - Service continuity between Terrestrial Network and NTN.

Implicit compatibility to support HAPS (High Altitude Platform Station) and ATG (Air To Ground) scenarios

NTN impact on the SatCom eco system

3GPP: a framework enabling

- Economy of scale / Global market
- Multi vendor interoperability
- Open certification of User Equipment
- Continuous innovation of services and capabilities
- Backward capabilities ensured between the releases of a given generation

NTN standard designed to support

- any device, orbit, service, frequency bands, beam size/type
- natively 5G features (e.g. slicing, QoS, Security, energy saving)
- Minimum impact on legacy 5G system (UE, RAN and Core network level)
- global service continuity, improved QoE and reliability through multi connectivity / mobility across
- terrestrial & satellite access; NGSO and GSO access spectrum coexistence (adjacent band) of satellite with mobile systems

NTN->SatCom: From a shrinking niche market to a segment of a global market

3GPP Standardisation activities to support NR-NTN development

Top	pic	Releases							
		Rel-15	Rel-16	Rel-17	Rel-18	Rel-19	Rel-20		
Freeze date	е	June 2015	July 2020	June 2022	June 2024	Dec 2025			
Service requirements		5G NTN Use cases and service requiremen ts				Mesh connectivity (UE-SAT-UE communication) GNSS independent operation,	5G Advanced: - Multi-orbit satellite networks - Resilient Notification - Enh. Emergency communications by satellite - Enh KPIs 6G: introducing 'Ubiquitous' connectivity as a 6G pillar		
Syster archit e	m tectur		Study key issues	Enablers for the support of Satellite	-	Regenerative payload UE-SAT-UE communication Mesh connectivity Dual steer (GSO/NGSO, TN/NTN)			

3GPP Standardisation activities to support NR-NTN development

Topic	Releases						
	Rel-15	Rel-16	Rel-17	Rel-18	Rel-19	Rel-20	
Radio Access network aspects	Channel model for 0.5 – 100 GHz	Study key issues	Support of NGSO/GSO, Earth fixed/moving beams	Verified UE location, UL coverage enh, TN/NTN and NTN/NTN mobility enh	DL coverage enh, broadcast (MBS) enhancements, UL capacity enh, E-UTRAN TN to NR NTN inter-RAT mobility, Regen payload (gNB on board) Channel bandwidth < 5 MHz		
Targeted terminals	-	-	Smart phones (23 dBm)	Fixed VSAT for GSO/NGSO, Mobile VSAT only for GSO	RedCAP UE, High power Tx UE (Smart phones + vehicle mounted) Mobile VSAT for NGSO		
Frequency bands	-	-	S, L bands in FDD mode	Extended L band, Ka band in FDD mode	Ku band in FDD mode		
Application Enablers					Application enablement for satellite access enabled 5G services.		

3GPP Standardisation activities to support IoT-NTN development

	Topic		Releases				
Ī		Rel-17	Rel-18	Rel-19	Rel-20		
Completion June 2022 date (Core)		March 2024	June 2025	-			
	Service requirements			Store and forward	- IMS call over GEO(IoT NTN)- Enh. Emergencycommunications forIoT NTN- Enh. KPIs		
	System architecture	-	Discontinuous coverage	Store and forward	-		
	Radio Access network aspects	Support of NGSO/GSO, Earth fixed/moving beams,	Mobility enh Performance enh Discontinuous coverage	Store & Forward Uplink capacity enhancements Further Mobility enhancements Support of TDD with NB-IoT Support emergency broadcast messaging using the mechanisms for PWS	-		
	Targeted terminals	Power class 3 devices (23 dBm)	-	High power Tx UE	-		
1	Frequency bands	S, L bands in FDD mode	Extended L band	L band in TDD mode	_		

3GPP NTN technology is being rolled-out

Deployment scenarios	A	В		С		D	Е		F	
Service	loT-	oT-NTN, Messaging & voice				Broadband				
3GPP NTN RAT	IoT-NTN	IoT-N	IOT-NTN IOT-NTN		NR-	-NTN	NR-NTN		NR-NTN	
Orbit	GSO	NG:	SO	NGSO	NC	GSO	GSO		NGSO	
Duplex mode	FDD	FD	D	TDD FDD		FDD		FDD		
Payload	Transparent Transparent			sparent/Regen	ent/Regenerative			t	Regenerat	ive
Bands		Below 7.125 GHz (e.g. L/S bands)					Above 10 GHz (e.g. Ku/Ka band)			
Targeted devices	lo	T & Smartpl	hones (D2	2D) Smartphones		Fiexed and Mobile VSAT				
Potential SNOs	EchoStar Viasat/Inmarsat Ligado TerreStar Solutions Thuraya	Sate OC Echo OmniS	QT Star	Iridium	Echosto	ar, MSS-A	Hispasat Intelsat, JSA KTSAT, Ovzo Eutelsat Grou	n	SpaceRIS Eutelsat Gro	
Earliest service opening for each scenario (and		2024	2025	2026	2027	2028	2029	2	030	

NTN in 5G versus other satellite access technology

STRENGTHS

- Strong interest from user groups including verticals and mobile network operators.
- A potential large supply chain for user equipment and network element to drive the cost down.
- A SatCom market segregated between respectively network and terminal vendors.
- Interoperability between NTN and TN: spectrum coexistence (adjacent band), mobility, multi connectivity
- Support of regulatory services (emergency call, Lawful intercept, Warning ,..)

OPPORTUNITIES

- Technology enabling new roles for satellite communication systems integrated in cellular network
 - Contribution to the ubiquitous connectivity, resiliency and possibly the sustainability of the mobile system.
- Fast availability of NTN capable smartphones for satellite networks operating in FR1 bands (below 7GHz)
- Early D2D service to IoT and smartphone devices with IoT-NTN

WEAKNESSES

- D2D: Slow deployment of NTN capable space infrastructure
- **BB** in bands above 10 GHz:
 - GNSS resilient operation is yet missing
 - Availability of the needed NTN capable chipsets may require additional work in 3GPP Rel-20.
 - Potential performance degradation compared to legacy/proprietary satellite radio interfaces on the downlink (e.g. wrt DVB-S2x) in specific deployment scenarios

THREATS

 For D2D, 3GPP but non NTN capable access technology may compete in the short term with the 3GPP defined NTN technology in order to address already commercialised user equipment.

NTN in 5G/5GA system: Key recommendations

- > Aggregate the demand for UEs across several industrial satellite network programs
- to ensure the availability and affordability of chipset/front-end of terminal devices as well as the necessary support of NTN features in network solutions (RAN and core networks).
- > Develop the necessary test cases for the certification of NTN capable UE.

NTN in 6G context

www.thalesgroup.com

An evolving market context for Satellite communications

Trends	New SatCom roles / impacts on operation		
from service to user centric approach	Space segment shall adapt to the targeted UE which shall adapt to the usage constraints		
	e.g. Pedestrian, Automotive, Drone use cases		
The « fast response time »	NGSO: Reinforced role		
requirement	GSO: restricted to back-up or more ?		
telecom networks increasingly at the basis of the (digital) economy	from coverage extension to network resiliency / Multi orbit infra (with ISL)		
Spectrum scarcity	Towards Spectrum sharing with Mobile Service		
Sustainability	Towards converged space infrastructures (Telecom, navigation, observation) / Multi orbit , Multi mission satellite systems?		

NTN targeted market segments (see 3GPP \$1-241041)

Consumer market:

- Includes connectivity to smartphones or wearable devices & cars;
- Need for guaranteed coverage;
- By 2030, at least:
 - 7.5% of the total number of mobile subscribers (5.2Bn) expected to be NTN;
 - 5% of the new cars (~75 million per year) are expected to be NTN capable.

Enterprise market:

- Need for services in rural areas or less developed areas and moving platforms;
- Unique UE for both NTN/TN;
- Similar use cases to today (e.g. office, media & entertainment);
- As the technology becomes cheaper and compact and easier to access, the adoption is expected to rise.

Vertical markets:

- Utilities, agriculture (e.g. sensors), transport (aeronautic, maritime, railway), governmental users (e.g. broadband communication);
- Specific requirements: e.g. sensor data collection over a wide area, autonomy, security, resilience and mobility;
- Several millions of users are expected to require satellite connectivity.

6G-NTN: 2 family use cases

- Satellite connectivity to smart phones and loT devices (D2D) in frequency bands up to 8 GHz
 - enhanced performances compared to 5G (data rate, coverage, throughput, ..)
- Satellite connectivity to vehicle/building mounted devices (Flat Panel Antenna) in frequency bands above 10 GHz (e.g. Ku, Ka, Q/V band).
 - Terminal (SWAP) adapted to vehicles from the automotive, public safety, transport (aeronautic, railways, drone, maritime), utilities, agriculture and media & entertainment sectors are assumed.

NTN in 6G: Service Requirements (via satellite access network)

Improved user experience

- Improved service continuity over the coverage
 - Enhanced NTN/TN mobility/multi connectivity especially in connected mode
- Improved coverage
 - Provision of emergency services (at least SMS) via satellite in <u>light indoor/in vehicle conditions</u>
 - Mobility in sub-urban/dense forest (i.e. several hundred ms fading duration)
- Support of device diversity
 - o Handheld/IoT, vehicle/drone mounted
- Improved data rate/throughput

Improved network capabilities

- Resiliency
 - o GNSS independent operation (i.e. initial access, ..)
 - GNSS independent capability for the UE to determinate its location
 - Service continuity with respect to temporary failure of a given node (e.g. NGSO, GSO, HAPS, TN node);
 - Fast set-up of an autonomous network over a specific region via satellite(s) and/or HAPS with no or intermittent connectivity to core networks (e.g. for crisis response)
- Sustainability: Minimise overall consumption
 - Energy based access network selection: under traffic or zero traffic conditions
- Overall spectrum usage efficiency
 - Multi access technology spectrum coexistence (i.e. NTN/TN)

NTN in 6G: Possible performances

Target service performances	NTN in 5G (As per 3GPP &/or ITU-R IMT2020 satellite requirements)	NTN in 6G	
Peak data rate (DL/UL) wrt smartphones	1/0.1 Mbps (Outdoor only) @ up to 3	Outdoor conditions: Tens of Mbps @ up to 250 km/h	
& low cost IoT devices	km/h	Light indoor/in car conditions: At least Short Message Service capability	
Peak data rate (DL/UL) wrt Vehicle or drone (flying and surface) mounted devices	[50/25] Mbps @ up to 250 km/h (with 60 cm aperture)	Hundreds of Mbps (Outdoor only) @ up to 250 km/h (with <20 cm equivalent aperture)	
Peak data rate (DL/UL) wrt Large Aeronautic, maritime platforms mounted devices	[50/25] Mbps @ up to 1000 km/h	Thousands of Mbps (Outdoor only) @ up to 1200 km/h (with <60 cm equivalent aperture)	
Location service (target accuracy and acquisition time) in outdoor conditions only	respectively 1 meter and < 100 seconds (reliability through Network verification)	respectively 100 meter (TBC) @ 95% reliability through RAT dependent positioning method	
Coverage	Outdoor only	Maximum Coupling Loss able to address light indoor/In car	

NTN in 6G: 3D Network architecture concept

Multi-multilayer & multiband 6G architecture

Deterministic nodes (predictable orbits)

GSO platforms

- broadcast & multicast for fixed ground stations
- broadband access
 - backup coverage in case of lower constellation satellite(s) failures
 - complementary capacity for non-delay sensitive traffic offloading from the NGSO.
- Control and management planes to the NGSO in case of no feeder links / ground segment

NGSO platforms

broadband access to handhelds and/or VSAT-like UEs

"Opportunistically" deployed nodes

> HAPs or drones (heavy drones)

- capacity to specific areas with no TN, e.g., disaster, emergency, etc
- additional capacity for sudden traffic increase e.g., concerts, sport events w/wo TN coverage

NTN in 6G: architectural solutions

Conventional architecture – homogeneous satellites

- All satellites have the same functionalities
 - User link to UEs (multibeam)
 - 2 feeder links (redundancy and/or seamless ground station handover)
 - 4 OISL to 4 adjacent satellites (same and adjacent orbital planes)
 - 1 Ka-band payload for the ISL to GEO satellites
 - All RAN and, possibly, some CN functionalities

Distributed architecture – heterogeneous nodes (same altitude)

- Feeder Nodes with higher computational capabilities
 - 2 Feeder links to GW / no user link to UE
 - 4 OISLs to 4 service nodes
 - 2 OISLs to 2 feeder nodes
 - 1 Ka-band payload for the ISL to GEO satellites
 - Upper layers RAN functionalities/CN functionalities
- Service Nodes with lower computational capabilities
 - User link to UEs (multibeam) / no feeder link to GW
 - 1 OISL to 1 feeder node
 - Lower PHY functionalities (RU)

NTN functional architecture and mapping on space segment (1)

Transparent (RF) payload

Regenerative payload

NTN functional architecture and mapping on space segment (2)

6G radio interface: NTN related enablers (1/2)

Spectrum efficient and flexible waveform optimized for both terrestrial and non-terrestrial network components

Candidate radio interface features	Rationale				
Multi carrier waveform enhancements	 OFDM evolution offering relaxed synchronization requirements. Supporting UE without GNSS capabilities (also referred as « GNSS free operation ». Mitigating specific satellite constraints: Reduce the Peak-to-Average Power Ratio (PAPR) on the downlink to maximize the spectral efficiency in case of reduced number of channels in a single on board amplifier. 				
Advanced modulation, coding and multiple access schemes	 Minimizing error rate performance under low SNR conditions. Enabling the support of extended Maximum Coupling Loss to mitigate challenging radio link conditions (e.g. to overcome building penetration loss). 				
Design flexible UL/DL framing structure	 Adapt the frame structure to satellite Orbit, frequency range etc Reduce the overhead penalty since there are quasi no multi-paths in satellite propagation channel. 				

See details in 3GPP 6GWS-250040

6G radio interface: NTN related enablers (2/2)

Candidate radio interface features	Rationale				
Design appropriate robust reference signals for enhanced positioning	 Support reliable (i.e. trusted) network based solution for accurate and fast response Positioning, Navigation and Timing (PNT) service. Potential narrow-band synchronization signals could be also designed, where the PRS resources could be defined over multiple slots. 				
Support of broadcast and multicast	 Leverage the large coverage area of satellites 				
Enablers for Artificial Intelligence driven radio resource control	 Increase the "goodput" of a radio link through dynamic optimisation of the radio interface configuration (e.g. Modulation, coding, power, signal occupancy, interleaving depth, HARQ) according to the radio link conditions 				
Spectrum sharing between TN and NTN	 Revise the methodology of coexistence study and RF/RRM specification, and potentially consider adjacent channel coexistence between TN and NTN. 				
New spectrum	Some additional MSS allocations may be granted at the WRC-2027 as per agenda items 1.12, 1.13 and 1.14. Moreover, some additional bands such as Q/V bands should be considered for broadband connectivity.				
FDD and TDD support	 Adapted to paired and unpaired spectrum 				

See details in 3GPP 6GWS-250040

TN = Terrestrial Network
NTN = Non Terrestrial Networks (Satellite, HAPS)

6G TN & NTN: 3GPP and ITU-R

NTN in 6G system: Key recommendations

- > Hooks for 6G RAT to support NTN shall be defined in 6G from day one
- to enable ubiquitous connectivity with quasi seamless service continuity
- to contribute to the overall resiliency and sustainability of the 6G system.
- > NTN shall operate without dependency to 3rd party system (e.g. GNSS)

What about sustainability?

www.thalesgroup.com

Sustainability in NTN for 6G

Mega constellation based satellite network:

- a LEO space segment able to provide global coverage but oversized to meet a peak traffic demand over a specific geographical area and setting high constraints on the coexistence with other constellations,
- satellites with short lifetime leading to high replacement rate,
- a relatively high average power consumption of the terminal due to continuous tracking of the successive serving satellites.

> Vs Multi orbit satellite network

- space segment level
 - Take advantage of
 - GEO for broadcast/multicast traffic, and common signalling (e.g. idle mode)
 - MEO for navigation and broadband traffic
 - › LEO for broadband traffic
 - Optimization of
 - > LEO sizing (overall mass to be launched) to the average traffic demand
 - => off load to MEO or GEO the geographically localized and/or temporary peak traffic demand,
 - > LEO and MEO space segment power and extended lifetime
 - > => Beam deactivation when no traffic demand

Terminal level

- Reduced Tx peak power
- Energy saving:
 - served via the GSO space segment when in idle mode state. (no satellite tracking)

Nicolas Chuberre

5G/6G Solution Line Manager

+33 6 80 94 84 32

□ nicolas.chuberre@thalesaleniaspace.com

Note that

- the views expressed in this presentation may not necessarily be the ones of Thales Alenia Space
- Part of the content of this presentation leverages the outcomes of the Horizon Europe 6G-NTN R&D project

Some references

 « 3GPP Non-Terrestrial Network: A Global Standard for Satellite Communication Systems », Special Issue of the International Journal of Satellite Communications and Networking, Pages: 217-301, Edited by Mohamed El Jaafari and Nicolas Chuberre, published by Wiley, May/June 2023,

- https://onlinelibrary.wiley.com/toc/15420981/2023/41/3
- « 5G Non-Terrestrial Networks » by Prof. Alessandro Vanelli-Coralli, Mohamed El Jaafari, Nicolas Chuberre, Gino Masini, Alessandro Guidotti, published by Wiley-IEEE Press, 12th January 2024
 - https://www.amazon.co.uk/5G-Non-Terrestrial-Networks-Vanelli-Coralli/dp/1119891159

