CALIFORNIA STATE UNIVERSITY SACRAMENTO

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

EEE 117 Network Analysis

Text: Electric Circuits by J. Nilsson and S. Riedel Prentice Hall

Lecture Set 4: Laplace Transform in Circuit Analysis

Instructor: Riaz Ahmad

Laplace Transform in Circuit Analysis

- Preview
- Circuit Elements in the "s" Domain
- Circuit Analysis in the "s" Domain
- The Transfer Function
- The Transfer Function in Partial Fraction Expansions
- The Transfer Function and the Steady-State Sinusoidal Response
- The Impulse Function in Circuit Analysis
- Bode Diagram
- What is Decibel (dB)
- Magnitude in terms of Linear versus dB
- Bode Plot for Real, First-Order Poles and Zeros
- Bode Plot for Complex Poles and Zeros

Preview

$$\mathscr{L}\left\{f(t)\right\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

- The Laplace transform has two unique characteristics:
- First, it transforms a set of linear constant-coefficient differential equations into a set of linear polynomial equations, which are easier to manipulate.
- Second, it automatically introduces into the polynomial equations the initial values of the current and voltage variables. Thus, initial conditions are an inherent part of the transform process.

Time Domain

Volts
$$\leftarrow$$
 Volts sec

Amps \leftarrow Amps sec

$$\Omega = \frac{V}{A} \leftarrow$$
 $\frac{V \sec}{A \sec} = \frac{V}{A} = \Omega$

Circuit Elements in the "s" Domain

- The procedure for developing an s-domain equivalent for each circuit element is simple and straightforward.
- Find Laplace transform of each element.

Resistor: A resistive circuit in time domain can be represented:

$$v = Ri$$

Take the Laplace of both sides

V(s) = R I(s) Where $V = \mathcal{L}\{v\}$

And $I = \mathcal{L}\{i\}$

Inductor: An Inductive circuit can be represented as:

$$v = L \frac{di}{dt}$$

Take the Laplace of both sides

$$V = L \left[sI - i(0^{-}) \right] = sLI - L \underbrace{i(0^{-})}_{I_0}$$
$$= sLI - LI_0$$

■ The same inductor element can be modeled by a parallel connection by solving the previous equation for I. (or by source transformation)

$$V = sLI - LI_0 \implies I = \frac{V + LI_0}{sL} = \frac{V}{sL} + \frac{I_0}{s}$$

■ Thus, the inductor can also be shown as:

■ Note that the passive sign convention determines the direction of current flow.

Capacitor: A Capacitive circuit can be represented as:

$$i = C\frac{dv}{dt}$$

Take the Laplace of both sides

$$I = C \left[sV - v(0^{-}) \right] = \frac{V}{\frac{1}{sC}} - CV_0$$

$$\begin{array}{c|c}
+ & i & + \\
v & C & V_0 \\
- & - & -
\end{array}$$

$$I = \frac{V}{\frac{1}{sC}} - CV_0$$

Note that
$$Z_C = \frac{1}{sC}$$

■ The same capacitor element can be modeled by a series connection by solving the previous equation for V. (or by source transformation)

$$I = sCV - CV_0 \implies V = \frac{I + CV_0}{sC} = I\frac{1}{sC} + \frac{V_0}{s}$$

 Note that the passive sign convention again determines the direction of current flow.

TABLE 13.1 Summary of the s-Domain Equivalent Circuits

TIME DOMAIN

FREQUENCY DOMAIN

$$i \bigvee_{v} \begin{matrix} \bullet & a & + \\ i \bigvee_{v} \begin{matrix} \bullet & C V_0 \\ - & b & - \end{matrix}$$
$$i = C \frac{dv}{dt},$$
$$v = \frac{1}{C} \int_{0}^{t} -i dx + V_0$$

Circuit Analysis in the "s" Domain

■ When no initial conditions are present, we can write the following equation in the "s" domain for any of the three circuit elements.

$$V = ZI$$

For the resistor Z = R Ohms.

For the inductor Z = sL Ohms.

For the capacitor Z = 1/(sC) Ohms.

The Transfer Function

■ The transfer function is defined as the s-domain ratio of the (Laplace transformed) output to the input with all initial conditions =0 y(s)

$$H(s) = \frac{Y(s)}{X(s)}$$

- \blacksquare Y(s) is called the response of the system.
- \blacksquare X(s) is the input to the system.
- For linear lumped parameter circuits (which is most of your undergraduate study), H(s) is always a rational function of s.

$$H(s) = \frac{1000(s + 5000)}{s^2 + 6000s + 25 \times 10^6}.$$

■ The poles of are the roots of the denominator.

$$p_1 = -3000 - j4000,$$
$$p_2 = -3000 + j4000.$$

■ The zeros of are the roots of the numerator.

$$z_1 = -5000.$$

- Complex poles and zeros always appear in conjugate pairs.
- The poles (from the denominator) of H(s) must lie in the left-hand plane (LHP) for a bounded response.
- The zeros (from the numerator) of H(s) may lie anywhere.
- We can write the circuit output Y(s) as the product of the transfer function H(s) and the driving function X(s).

$$Y(s) = H(s)X(s)$$

- For the inputs of common use in circuits, the input X(s) is also a rational function.
- Thus, by partial fraction expansion, we can form the poles of H(s) and X(s) into a summation of terms.
- The terms generated by poles of X(s) give rise to the steady state component of total response.
- The terms generated by poles of H(s) give rise to the transient components of total response.

Ex-1: The circuit shown below is driven by a voltage source whose voltage increases linearly with time, namely $v_g = 50$ t

- a) Use the transfer function to find v_o .
- b) Identify the transient component of the response.
- c) Identify the steady-state component of the response.
- d) Sketch v_o versus t for $0 \le t \le 1.5$ ms.

The Transfer Function and the Steady-State Sinusoidal Response

Consider the following sinusoidal signal:

$$x(t) = A\cos(\omega t + \phi),$$

$$x(t) = A\cos\omega t\cos\phi - A\sin\omega t\sin\phi,$$

- Note, cosφ and sinφ are constant values.
- Take Laplace of both sides.

$$X(s) = \frac{(A\cos\phi)s}{s^2 + \omega^2} - \frac{(A\sin\phi)\omega}{s^2 + \omega^2} = \frac{A(s\cos\phi - \omega\sin\phi)}{s^2 + \omega^2}$$
$$= \frac{A(s\cos\phi - \omega\sin\phi)}{(s - j\omega)(s + j\omega)}$$

Note that the input transforms to the s-domain is complex conjugate. ■ The output can be written as:

$$Y(s) = H(s)X(s) = H(s)\frac{A(s\cos\phi - \omega\sin\phi)}{(s - j\omega)(s + j\omega)}$$

$$Y(s) = \frac{K}{s - j\omega} + \frac{K^*}{s + j\omega} + \sum$$
 terms generated by the poles of $H(s)$

- Now poles of H(s) contributes only to the transient response and not to steady state response.
- Since we are interested in the steady-state solution at the moment, this allows us to simplify the derivation.
- Thus, the first two terms on the right-hand side of equation determine the steady-state response.

$$Y(s) = \frac{K}{s - j\omega} + \frac{K^*}{s + j\omega}$$

$$Y(s) = H(s) \cdot A \left(\frac{s \cos \phi - \omega \sin \phi}{(s - j\omega)} \right) = \frac{\kappa}{(s - j\omega)} + \frac{\kappa^*}{(s + j\omega)} - 0$$

$$H(s) \cdot A \left(\frac{s \cos \phi - \omega \sin \phi}{(s - j\omega)} \right) = \kappa \left(\frac{s - j\omega}{(s - j\omega)} \right) + \kappa^* \left(\frac{s - j\omega}{(s - j\omega)} \right)$$

$$For s = j\omega$$

$$H(j\omega) \cdot A \left(\frac{j\omega \cos \phi - \omega \sin \phi}{(s - \omega)} \right) = \kappa \left(\frac{j\omega + j\omega}{(s - j\omega)} \right)$$

$$K = H(j\omega) \cdot A \left(\frac{j\omega \cos \phi - \omega \sin \phi}{(s - \omega)} \right)$$

$$2j\omega$$

$$K = H(j\omega) \cdot A \left(\frac{j\omega \cos \phi + j \sin \phi}{(s - \omega)} \right)$$

$$2j\omega$$

$$K = H(j\omega) \cdot A \left(\frac{j\omega \cos \phi + j \sin \phi}{(s - \omega)} \right)$$

$$K = H(j\omega) \cdot A \left(\frac{j\phi}{2} \right)$$

$$In general H' is a Complex quality so$$

$$H(j\omega) = H L\theta = H e^{j\theta}$$

$$K = |H| e^{j\theta} \cdot A e^{j\phi} = |H| e^{j(\theta + \phi)} \cdot A$$

$$K = \frac{A}{2} \cdot |H| e^{j(\theta + \phi)}$$

$$\kappa^* = \frac{A}{2} \cdot |H| \cdot e^{j(\theta + \phi)}$$

$$\rho ut it in eq 0$$

$$Y(s) = \frac{A}{2} |H| e^{j(\theta+\phi)} + \frac{A}{2} |H| e^{j(\theta+\phi)}$$

$$Y(s) = \frac{A}{2} |H| \left[e^{j(\theta+\phi)} \cdot \frac{1}{(s-j\omega)} + e^{-j(\theta+\phi)} \cdot \frac{1}{(s+j\omega)} \right]$$
Take inverse laplace of both sides.
$$Y(t) = \frac{A}{2} \cdot |H| \left[e^{j(\theta+\phi)} \cdot e^{j\omega t} + e^{-j(\theta+\phi)} \cdot e^{-j\omega t} \right]$$

$$Y(t) = \frac{A}{2} \cdot |H| \left[e^{j(\omega t + \theta + \phi)} + e^{-j(\omega t + \theta + \phi)} \right]$$

$$Y(t) = \frac{A}{2} \cdot |H| \left[e^{j(\omega t + \theta + \phi)} + e^{-j(\omega t + \theta + \phi)} \right]$$

$$Y(t) = A \cdot |H| \left[e^{j(\omega t + \theta + \phi)} + e^{-j(\omega t + \theta + \phi)} \right]$$

$$Y(t) = A \cdot |H| \left[e^{j(\omega t + \theta + \phi)} + e^{-j(\omega t + \theta + \phi)} \right]$$

$$Y(t) = A \cdot |H| \left[e^{j(\omega t + \theta + \phi)} + e^{-j(\omega t + \theta + \phi)} \right]$$

Ex-2: For the circuit shown below, the sinusoidal source voltage is $120 \cos(5000t + 30^0)$ V. Find the steady-state expression for v_o .

The Impulse Function in Circuit Analysis

- Impulse functions occur in circuit analysis either because of a switching operation or because a circuit is excited by an impulsive source.
- If we create the frequency domain equivalent circuit correctly, these impulse functions are handled as a routine matter in the course of solving the frequency domain circuit equations.

Ex-3: Step Response of a Parallel RLC Circuit.

Find the current i_L through the inductor for t > 0.

Assume that the switch has been closed for "a long time".

Ex-4: A 500 Ω resistor, a 16 mH inductor, and a 25 nF capacitor are connected in parallel. Find the zeros and poles.

316mH

_ 25 n F

\$500M

Analyze the circuit and find the zeros and poles.

Ex-5: In the circuit above, the capacitor C_1 is charged to an initial voltage V_0 prior to closing the switch at t = 0.

The capacitor C_2 is discharged so that $V_{C2} = 0$ prior to closing the switch at t = 0.

Analyze the circuit and find the current i(t) expression.

Bode Diagram

- A Bode diagram is a graphical technique that gives a feel for the frequency response of the circuit.
- Diagrams are named after Hendrick W. Bode.
- Dr. Bode was an engineer for Bell Telephone Laboratories.
 He proposed this approach now known by his name.
- We can approximate the complete frequency response by selecting a few appropriate frequencies. Then we draw a straight-line approximation to the complete response.
- There are many software programs that can plot the frequency response very accurately. But as always, the "hand" analysis confirms the validity of the computer program.
- A Bode diagrams consists of two separate plots. One plot shows how the amplitude of $H(j\omega)$ varies with frequency. The other plot shows how the phase $\theta(j\omega)$ varies with frequency.

■ The plots are made on semi log paper so that a wide range of frequency values may be plotted.

■ The magnitude is given in decibels.

What is Decibel (dB)

- A unit used to measure the intensity of a sound or the power level of an electrical signal.
- The decibel (symbol: dB) is a relative unit of measurement corresponding to one tenth of a bel (B). It is used to express the ratio of one value of a power quantity to another, on a logarithmic scale.

1 dB = 10 log
$$[\frac{P1}{P2}]$$

dB for a voltage quantity.

$$10\log_{10}\left(\frac{P_{1}}{P_{2}}\right) = 10\log_{10}\left(\frac{\frac{V_{1}^{2}}{R_{1}}}{\frac{V_{2}^{2}}{R_{2}}}\right) = 10\log_{10}\left(\frac{V_{1}^{2}}{V_{2}^{2}}\frac{R_{2}}{R_{1}}\right)$$

$$= 10\log_{10}\left(\frac{V_{1}}{V_{2}}\right)^{2} + 10\log_{10}\left(\frac{R_{2}}{R_{1}}\right)$$

$$= 20\log_{10}\left(\frac{V_{1}}{V_{2}}\right) + 10\log_{10}\left(\frac{R_{2}}{R_{1}}\right)$$

If R1 = R2 then

$$dB = 20\log_{10}\left(\frac{V_1}{V_2}\right) + 10\log_{10}\left(1\right) = 20\log_{10}\left(\frac{V_1}{V_2}\right)$$

dB for a current quantity.

$$10\log_{10}\left(\frac{P_1}{P_2}\right) = 10\log_{10}\left(\frac{I_1^2R_1}{I_2^2R_2}\right)$$

$$= 10 \log_{10} \left(\frac{I_1}{I_2} \right)^2 + 10 \log_{10} \left(\frac{R_1}{R_2} \right)$$

If R1 = R2 then

$$dB = 20\log_{10}\left(\frac{I_1}{I_2}\right) + 10\log_{10}\left(1\right) = 20\log_{10}\left(\frac{I_1}{I_2}\right)$$

Magnitude in terms of Linear versus dB

Linear A	$A_{ m dB}$	
Voltage or Current		
10 ⁻⁶	-120	
10 ⁻⁵	-100	
10-4	-80	
10-3	-60	
10-2	-40	
10-1	-20	
$\frac{1}{2}$	-6	
$\frac{1}{\sqrt{2}} = 0.707$	-3	
$10^0 = 1$	0	
$1.41 = \sqrt{2}$	3	
	6	
2 10 ¹	20	
10^2	40	
10^3	60	
104	80	
10 ⁵	100	
10 ⁶	120	

Bode Plot for Real, First-Order Poles and Zeros

 As mentioned before, bode diagrams consists of two separate plots; Amplitude plot and the Phase plot.

Straight-Line Amplitude Plots:

- The straight-line magnitude plot has the following rules:
- Change the transfer function into standard format which can be one of the following types:

$$\mathsf{H(s)} = \ \frac{K(1+\frac{s}{z_1})(1+\frac{s}{z_2})(1+\frac{s}{z_3})}{(1+\frac{s}{p_1})(1+\frac{s}{p_2})(1+\frac{s}{p_3})} \quad \mathsf{H(s)} = \ \frac{Ks(1+\frac{s}{z_1})(1+\frac{s}{z_2})(1+\frac{s}{z_3})}{(1+\frac{s}{p_1})(1+\frac{s}{p_2})(1+\frac{s}{p_3})} \quad \mathsf{H(s)} = \ \frac{K(1+\frac{s}{z_1})(1+\frac{s}{z_2})(1+\frac{s}{z_3})}{s(1+\frac{s}{p_1})(1+\frac{s}{p_2})(1+\frac{s}{p_3})}$$

- First order Zeros will have a slope = 20 dB / decade
- First order Poles will have a slope = -20 dB / decade
- Slopes will start at the corner frequency.
- "K" will contribute a constant value in the plot = 20 log K

Straight-Line Phase Plots:

- The phase angle associated with the constant "K" is zero.
- The phase angle associated with a first-order zero or pole at the origin is a constant, +90° for zeros and -90° for poles.
- For a first-order zero or pole not at the origin, the straight-line approximations are as follows:
 - For frequencies less than one tenth the corner frequency, the phase angle is assumed to be zero.
 - For frequencies greater than 10 times the corner frequency, the phase angle is assumed to be +90° and -90° for zeros and poles respectively.
 - Between one tenth the corner frequency and 10 times the corner frequency, the phase angle plot is a straight line that goes through 0° at one-tenth the corner frequency, \pm 45° at the corner frequency, and \pm 90° at 10 times the corner frequency.

Summary of Bode straight-line magnitude and phase plots.

Factor	Magnitude		Phase		
	20 log ₁₀ K				
<i>K</i>	<u></u>	_ -	0°		
		ω			ω
$(j\omega)^N$	20N dB/decade	/	90№		
	1	— > ω			→ ω
$\frac{1}{(j\omega)^N}$	1	ω			- ω
	-20N dB/decade	\	-90N°		
$\left(1+\frac{j\omega}{z}\right)^N$	20N dB/decade	/		9	0 N °
	2	ω	$\frac{0^{\circ}}{\frac{z}{10}}$	10z	ω
$\frac{1}{(1+j\omega/p)^N}$	P	> ω	<u>p</u> 10 P	10p	— →
	-20N dB/decade		* \		

Ex-6: Draw Bode diagram for the following Transfer function.

H(s)=
$$\frac{100(s+1)}{(s+10)(s+100)}$$

Ex-7: Draw Bode plot for the following Transfer function.

H(s)=
$$\frac{50(s+200)(s+2000)}{(s+20)(s+20000)}$$

Ex-8: Draw Bode plot for the following Transfer function.

H(s)=
$$\frac{100s}{(s+10)(s+100)}$$

Ex-9: Draw Bode plot for the following Transfer function.

H(s)=
$$\frac{10000(s+1)}{(s+10)(s+100)^2}$$

Bode Plot for Complex Poles and Zeros

- Complex poles/zeros in the expression for H(s) require special attention when you make amplitude and phase angle plots.
- The complex poles and zeros of H(s)always appear in conjugate pairs.
- The first step in making either an amplitude or a phase angle plot of a transfer function that contains complex poles is to combine the conjugate pair into a single quadratic term.
- Express conjugate pair in the form: $s^2 + 2\zeta\omega_n s + \omega_n^2$
- Then change it into standard form: $1 + (s/\omega_n)^2 + 2\zeta(s/\omega_n)$

Straight-Line Amplitude Plots:

- For $\omega < \omega_n$, the straight line lies along the 0 dB axis.
- For $\omega = \omega_n$, the amplitude is 0 dB.
- For $\omega > \omega_n$, the straight line has a slope of -40 dB/decade.

Straight-Line Phase Plots:

- For $\omega = \omega_n$, phase is $\pm 90^\circ$.
- The straight-line approximations are as follows:
 - For frequencies less than one tenth the corner frequency, the phase angle is assumed to be zero.
 - For frequencies greater than 10 times the corner frequency, the phase angle is assumed to be +180° and -180° for zeros and poles respectively.
 - Between one tenth the corner frequency and 10 times the corner frequency, the phase angle plot is a straight line that goes through 0° at one-tenth the corner frequency, $\pm 90^{\circ}$ at the corner frequency, and $\pm 180^{\circ}$ at 10 times the corner frequency.

Ex-10: Draw Bode plot for the following Transfer function.

$$H(s) = \frac{4(s+25)}{(s^2+4s+100)}$$