TO I DE DE DE DE DES

BUNDES EPUBLIK DEUTS HLAND

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) DES0/1508

10/009656

REC'D 28 JUL 2000

WIPO

PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

*

Aktenzeichen:

199 22 176.6

Anmeldetag:

12. Mai 1999

Anmelder/Inhaber:

Osram Opto Semiconductors GmbH & Co KG,

Regensburg/DE

Bezeichnung:

Oberflächenmontierte LED-Mehrfachanordnung

IPC:

H 01 L, F 21 Q, F 21 G

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 13. Juli 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Beschreibung

10

20

25

30

Oberflächenmontierte LED-Mehrfachanordnung

- Die Erfindung betrifft eine oberflächenmontierte LED-Mehrfachanordnung, welche insbesondere in ein Leuchtengehäuse eingebaut werden kann, wie es beispielsweise bei Außenleuchten von Kraftfahrzeugen verwendet werden kann.
 - Im Bereich der Außen- und Innenbeleuchtung von Kraftfahrzeugen, insbesondere für Rücklichter oder Bremsleuchten und dergleichen werden in zunehmendem Maße Lichtemissionsdioden (LEDs) anstelle der konventionellen Glühlampen eingesetzt, da LEDs eine längere Lebensdauer, einen besseren Wirkungsgrad bei der Umwandlung elektrischer Energie in Strahlungsenergie im sichtbaren Spektralbereich und damit verbunden eine geringere Wärmeabgabe und insgesamt geringeren Platzbedarf aufweisen. Im Aufbau muß jedoch zunächst ein gewisser Mehraufwand getrieben werden, denn aufgrund der geringen Leuchtdichte einer einzelnen LED im Vergleich zu einer Glühlampe muß eine zu einem Array geformte Mehrzahl von LEDs aufgebaut werden.
 - Ein derartiges Array kann beispielsweise in der Oberflächenmontagetechnik (SMT, surface mount technology) aus einer Mehrzahl von LEDs auf einer Leiterplatte (PCB, printed circuit board) montiert werden. Dabei wird eine LED-Bauform verwendet, wie sie beispielsweise in dem Artikel "SIEMENS SMTTOPLED für die Oberflächenmontage" von F. Möllmer und G. Waitl in der Zeitschrift Siemens Components 29 (1991), Heft 4, S. 147 im Zusammenhang mit Bild 1 beschrieben ist. Diese Form der LED ist äußerst kompakt und erlaubt gegebenenfalls die Anordnung einer Vielzahl von derartigen LEDs in einer Reihen- oder Matrixanordnung.
- Innerhalb des Gehäuses einer derartigen LED, die beispielsweise auf der Basis von InGaAlP aufgebaut ist und gelb- oder

to the state than the control of the control of the distribution of the control o

20

25

30

wird von der Chipunterseite über die elektrischen Anschlüsse des Bauteils abgeführt. Je nach der Bauform wird bei den von der Anmelderin bekannten Bauelementen unter den Bezeichnungen TOPLED® oder Power TOPLED® die Wärme entweder durch einen oder drei vorhandene Kathodenanschlüsse zunächst aus dem Gehäuse auf die Lötpunkte auf der Leiterplatte geführt. Von den Lötpunkten breitet sich die Wärme zunächst hauptsächlich in den Kupferpads und dann in dem Epoxidharzmaterial in der Ebene der Leiterplatte aus. Anschließend wird die Wärme durch Wärmestrahlung und Wärmekonvektion großflächig an die Umgebung abgegeben. Im Falle einer einzelnen LED auf FR4-Platinenmaterial ist der Wärmewiderstand noch relativ gering (beispielsweise ca. 180 K/W bei einer LED vom Typ Power TOPLED®).

Anders verhält es sich jedoch, wenn viele LEDs dicht nebeneinander auf einer Platine angeordnet sind. Für jede einzelne LED steht jetzt eine geringere anteilige Fläche auf dem PCB für die Wärmeübertragung an die Umgebung zur Verfügung. Dementsprechend höher ist der Wärmewiderstand von dem PCB auf die Umgebung. Bei einem Bauteilabstand von beispielsweise 6,5mm steigt der Wärmewiderstand auf bis zu 550K/W an, wenn die LEDs von dem Typ Power TOPLED® und die Leiterplatte von dem Typ FR4 ist.

Eine Wärmeabgabe geht von allen wärmeerzeugenden Bauteilen auf der Platine aus, also auch von Vorwiderständen, Transistoren, MOS-FETs oder Ansteuer-ICs, die sich in unmittelbarer Umgebung der LEDs befinden. Damit es infolge der Wärmeerzeugung auf der Platine und der mangelhaften Wärmeabfuhr nicht zu einer Zerstörung des Bauteils kommt, muß der Betriebsstrom reduziert werden. Folglich kann die Lichtleistung der LEDs nicht voll genutzt werden.

In dem bereits erwähnten Bereich der Beleuchtung von Kraftfahrzeugen werden LED Anordnungen für das dritte Bremslicht
eingesetzt. Dieses ist ein einzeiliges Array, bei welchem die
thermischen Brobleme noch nicht so ererk ins Gowicht fallen.

els ten laner Andjare der vorble fen en elstinfunt, sine uner-40 flächenmontierte LED-Mehrfachanordnung derart weiterzubilden, daß die Lichtleistung der LEDs möglichst optimal genutzt werden kann. Insbesondere ist es Aufgabe der vorliegenden Erfindung, eine oberflächenmontierte LED-Mehrfachanordnung anzugeben, die sich durch eine verbesserte Wärmeabfuhr auszeichnet.

5

10

15

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Demgemäß beschreibt die Erfindung eine oberflächenmontierte LED-Mehrfachanordnung mit einer Leiterplatte und einer Mehrzahl von auf der Leiterplatte montierten LEDs, wobei die Leiterplatte mit ihrer den LEDs abgewandten Seite auf einen Kühlkörper aufgebracht ist. Der Erfindung liegt somit die Erkenntnis zugrunde, daß bei einer LED-Anordnung hoher Dichte die Wärmeableitung nach hinten unterstützt werden muß.

Der Kühlkörper kann z.B. aus Kupfer oder Aluminium oder aus einem Kühlblech bestehen und die Leiterplatte wird vorzugsweise mit einer Wärmeleitpaste, einem Wärmeleitkleber, einer Wärmeleitfolie oder dergleichen auf ihm befestigt. Auf seiner Rückseite soll er eine möglichst gute Wärmeabstrahlung ermöglichen. Zu diesem Zweck kann er beispielsweise schwarz ange-20 strichen sein und/oder Kühlrippen und/oder eine rauhe Oberfläche aufweisen.

Ferner sollte die Leiterplatte möglichst dünn sein, da das Kunststoffmaterial, aus dem sie aufgebaut ist, im allgemeinen die Wärme schlecht leitet. Die Leiterplatte kann zum Beispiel eine flexible Leiterplatte sein. Die flexible Leiterplatte ist in der Regel aus einem flexiblen Kunststoff hergestellt. Sie kann beispielsweise aus einer Polyester- oder Polyimidfolie bestehen. Besonders bevorzugt ist die Verwendung sogenannter, an sich im Stand der Technik bekannter Flexboards. Diese Flexboards sind im allgemeinen mehrlagige Leiterplatten, die homogen aus einer Mehrzahl von Polyimidträgerfolien aufgebaut sind.

35

15

2.0

verbreitern, bevor die Wärme zur Rückseite der Leiterplatte fließt. Vorzugsweise ist die Rückseite der Leiterplatte mit Kupfer oder einem anderen Metall kaschiert, um bei Lunkern in der Laminierung noch Wärmeleitung quer zu anderen Klebestellen zu ermöglichen. Die Kupferschicht kann beispielsweise mäanderförmig sein, um die Flexibilität der Leiterplatte zu erhalten.

In modifizierten Ausführungsformen wird ein Kühlkörper einer bestimmten dreidimensionalen Form verwendet und eine bereits oben beschriebene flexible Leiterplatte wird auf die solchermaßen verformte oder gekrümmte Oberfläche des Kühlkörpers auflaminiert. Dadurch können aufgrund bestimmter Vorgaben räumlich geformte LED-Module hergestellt werden. Ein LED-Modul kann z.B. als Blinker, Rücklicht, Bremsleuchte oder dergleichen platzsparend an die Außenkontur des Fahrzeugs angepaßt werden. Ein besonders praktisches Ausführungsbeispiel dieser Art ist eine Rundumleuchte, bei der LED-Arrays auf Flexboards um einen zylindrischen Kühlkörper laminiert werden.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

Fig.1 eine Seitenansicht einer grundlegenden Ausführungsform der vorliegenden Erfindung, bei der die Leiterplatte einer oberflächenmontierten LED-Anordnung an einen Kühlkörper befestigt wird;

Fig.2A bis C modifizierte Ausführungsformen der vorliegenden Erfindung mit unterschiedlichen Formen von Kühlkörpern.

Die in Fig.1 dargestellte grundlegende Ausführungsform enthält eine Leiterplatte 1, auf der eine Mehrzahl LEDs 2 durch Oberflächermentigetechnik unfrehracht sind. Debei weist die aufweist. Diese Anschlußflächen werden beispielsweise in einem SMD-Bestückungsautomaten mit Lötaugen versehen und in einem anschließenden Montageschritt werden die LEDs 2 mit ihren elektrischen Kontakten 2a an diese Anschlußflächen angelötet.

5

Die Leiterplatte 1 kann dabei eine starre Leiterplatte, beispielsweise vom Typ FR4 sein und ist demnach im wesentlichen aus einem Epoxidharzmaterial aufgebaut. Sie kann aber auch eine flexible Leiterplatte wie ein oben beschriebenes Flexboard sein. Die Leiterplatte 1 wird mit einem Wärmeleitkleber auf einen Kühlkörper 3 auflaminiert, der aus einem Kühlblech besteht oder aus einem anderen Metall wie Kupfer oder Aluminium gefertigt ist und damit eine hohe Wärmeleitfähigkeit aufweist.

15

20

30

Die der Leiterplatte 1 abgewandte Seite des Kühlkörpers 3 ist vorzugsweise derart gestaltet, daß die Wärmeabgabe an die Umgebung maximiert wird. Zu diesem Zweck ist diese Oberfläche geschwärzt und/oder mit Kühlrippen versehen und/oder mit einer anderen geeigneten Oberflächenstruktur oder -aufrauhung ausgeführt.

In Fig.2A bis C ist gezeigt, wie die Erfindung vorteilhaft genutzt werden kann, um bestimmte dreidimensionale Leuchtkörper herzustellen. In allen gezeigten Fällen wird zunächst ein Kühlkörper 3 mit einer gewünschten Form bereitgestellt, bei der eine Oberfläche durch Aufbringen einer LED-Anordnung als Leuchtfläche ausgebildet werden soll. Sodann wird eine flexible Leiterplatte 1 wie ein Flexboard, welches mit einem Array von LEDs 2 versehen ist, auf den Kühlkörper 3 auflaminiert.

Fig. 2A zeigt beispielsweise in einer Seitenansicht eine beliebige Krümmung eines Kühlkörpers 3, die besonders vorteilhaft für eine Fahrzeugaußenbeleuchtung wie einen Blinker, ein

dedys angepast Werden Kalili.

In dem Ausführungsbeispiel der Fig.2B ist ein achsialer Querschnitt einer Rundumleuchte dargestellt, wie sie beispielsweise bei Einsatzfahrzeugen verwendet werden kann. Bei der Rundumleuchte der Fig.2B ist das mit einem Array aus LEDs 2 versehene Flexboard 1 um einen wie ein Rohr geformten zylindrischen, hohlen Kühlkörper 3 laminiert. In diesem Ausführungsbeispiel können zusätzlich die achsenparallel verlaufenden LEDs des Arrays zu Strängen zusammengefaßt sein, die nacheinander im Uhrzeigersinn (siehe Pfeil) betrieben werden, so daß ein umlaufendes Licht erzeugt wird. Zu einem Zeitpunkt können dabei ein Strang oder eine bestimmte Anzahl benachbarter Stränge gleichzeitig betrieben werden. Die LEDs 2 können zudem zur Bündelung des abgestrahlten Lichts mit Linsen 4 versehen sein. Diese Ausführungsform hat den großen Vorteil, daß praktisch alle mechanischen Teile wegfallen, die bisher für Rundumleuchten konventioneller Bauart notwendig sind. Gewünschtenfalls kann der zylindrische Kühlkörper 3 auch noch zur weiteren Verbesserung der Wärmeabfuhr von einem Gas wie Luft oder einer geeigneten Kühlflüssigkeit durchströmt werden.

10

15

20

30

In Fig.2C ist in einer perspektivischen Ansicht eine dreidimensional gewölbte Lichthaube dargestellt. Die Lichthaube weist eine regelmäßige Form mit einer oberen Fläche und vier schräggestellten Seitenflächen auf, von denen jeweils zwei Seitenflächen achsensymmetrisch zueinander angeordnet sind. In der Darstellung der Fig.2C ist der Kühlkörper selbst nicht sichtbar, da er vollständig von dem Flexboard 1 abgedeckt ist. Das Flexboard 1 weist eine der Flächen des Kühlkörpers entsprechende Anzahl von Sektoren auf, in denen jeweils eine Vielzahl von zu einem Array angeordneten LEDs 2 montiert sind. Die LEDs 2 können gewünschtenfalls mit Linsen zur Bündelung des abgestrahlten Lichts versehen sein. Eine derartige

Patentansprüche

- 1. Oberflächenmontierte LED-Mehrfachanordnung, mit
- einer Leiterplatte (1), und
 - einer Mehrzahl von auf der Leiterplatte (1) montierten LEDs (2),
 - dadurch gekennzeichnet, daß
- die Leiterplatte (1) mit ihrer von den LEDs (2) abgewandten Seite auf einen Kühlkörper (3) aufgebracht ist.

10

- 2. LED-Mehrfachanordnung nach Anspruch 1,
- dadurch gekennzeichnet, daß
- der Kühlkörper (3) aus Metall, insbesondere aus Kupfer oder Aluminium oder einem Blech besteht.
- 3. LED-Mehrfachanordnung nach Anspruch 1,
- dadurch gekennzeichnet, daß
- die der Leiterplatte (1) abgewandte Oberfläche des Kühlkörpers (3) geschwärzt ist und/oder Kühlrippen und/oder eine Oberflächenaufrauhung aufweist.
 - 4. LED-Mehrfachanordnung nach Anspruch 1,
 - dadurch gekennzeichnet, daß
 - die Leiterplatte (1) eine flexible Leiterplatte, insbesondere ein Flexboard ist.
 - 5. LED-Mehrfachanordnung nach Anspruch 4,
- dadurch gekennzeichnet, daß
- 30 die mit der Leiterplatte (1) zu versehende Oberfläche des Kühlkörpers (3) gekrümmt ist.
 - 6. LED Mohrfachanordnung nach Anspruch 1,
 - dadurch gekennzeichnet, daß
- is . His dan tema "o" abdowandto soito dan toitorp'atro "" ro"

- 7. LED-Mehrfachanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die LEDs (2) mit Linsen (4) versehen sind.
- 8. Beleuchtungseinrichtung mit einer LED-Mehrfachanordnung nach einem der vorhergehenden Ansprüche.
- 9. Beleuchtungseinrichtung mit einer LED-Mehrfachanordnung nach Anspruch 8,
 - dadurch gekennzeichnet, daß
 - sie eine Außenbeleuchtung eines Kraftfahrzeugs wie ein Blinker, ein Rücklicht, eine Bremsleuchte oder dergleichen ist, und
- 15 sie eine an die Außenkontor des Kraftfahrzeugs angepaßte Krümmung aufweist.
 - 10. Beleuchtungseinrichtung nach Anspruch 8, dadurch gekennzeichnet, daß
- 20 sie eine Rundumleuchte ist, und
 - der Kühlkörper (3) ein zylindrischer Hohlkörper ist, an dessen Außenwand die Leiterplatte (1) angebracht ist.
 - 11. Beleuchtungseinrichtung nach Anspruch 10, dad urch gekennzeich net, daß
 - achsenparallel verlaufende LEDs des Arrays elektrisch zu Strängen zusammengefaßt sind, die nacheinander umlaufend betrieben werden können.

Zusammenfassung

5

15

Oberflächenmontierte LED-Mehrfachanordnung

Die Erfindung beschreibt ein auf einer Platine (1) wie einem Flexboard oberflächenmontiertes LED-Array, das auf einem Kühlkörper (3) aufgebracht ist, so daß die Wärme optimal abgeführt wird. Der Kühlkörper kann jede gewünschte Form aufweisen, so daß Kraftfahrzeugleuchten wie Blinker oder dergleichen konstruiert werden können, die der Außenkontur des Fahrzeugs angepaßt werden können. Bei einer Rundumleuchte kann die Platine (1) um einen als zylindrischen Hohlkörper ausgebildeten Kühlkörper angebracht werden und umlaufend betrieben werden.

(Fig.1 zu veröffentlichen mit der Zusammenfassung)

5

Bezugszeichenliste

	1	Leiterplatte
	2	LEDs
15	2a	elektrische Kontakt
	3	Kühlkörper
	4	Linsen

Fig. 2 A

Fig. 2B

Fig. 2C