ImageBind: One Embedding Space To Bind Them All

Подготовил: Федоров Никита, БПМИ202

nmfedorov@edu.hse.ru

Основная идея статьи

Сделать общее пространство эмбеддингов для картинок, видео, аудио, текста и других модальностей

План

- 1. Краткое описание всех модальностей
- 2. Особенность именно этой статьи
- 3. Детали процесса обучения
- 4. Результаты/эксперименты
 - 4.1. Emergent zero-shot classification
 - 4.2. Таблички и графики
 - 4.3. Прочие плюшки, которые дает общее признаковое пространство
 - 4.3.1. Cross-modal retrieval
 - 4.3.2. Multimodal embedding space arithmetic
 - 4.3.3. Upgrading text-based detectors to audio-based
 - 4.3.4. Upgrading text-based diffusion models to audio-based
- 5. Сильные и слабые стороны статьи

Модальности

IMU Egocentric Videos ()>>>>

Depth

Особенность этой статьи

Обучение велось только на сетах, содержащих пары (картинка, другая модальность)

Процесс обучения

- для каждой модальности заводим энкодер (в данной статье все энкодеры трансформерные)
- энкодеры для **текста и картинок** берем из **CLIP** и **замораживаем** их веса
- для текста и видео использовался один энкодер
- функция потерь InfoNCE:

$$L_{\mathcal{I},\mathcal{M}} = -\log \frac{\exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_i / \tau)}{\exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_i / \tau) + \sum_{j \neq i} \exp(\mathbf{q}_i^{\mathsf{T}} \mathbf{k}_j / \tau)}$$

$$L_{\mathcal{I},\mathcal{M}} + L_{\mathcal{M},\mathcal{I}}$$

Emergent zero-shot classification

Результаты в zero-shot

							(1))				>>>
	IN1K	P365	K400	MSR-VTT	NYU-D	SUN-D	AS-A	VGGS	ESC	LLVIP	Ego4D
Random	0.1	0.27	0.25	0.1	10.0	5.26	0.62	0.32	2.75	50.0	0.9
IMAGEBIND	77.7	45.4	50.0	36.1	54.0	35.1	17.6	27.8	66.9	63.4	25.0
Text Paired	-	-	-	-	41.9*	25.4*	28.4 [†] [27]	-	68.6 [†] [27]	-	-
Absolute SOTA	91.0 [82]	60.7 [67]	89.9 [80]	57.7 [79]	76.7 [21]	64.9 [21]	49.6 [39]	52.5 [36]	97.0 [9]	-	-

	Emergent	Cl	otho	AudioCaps		ESC					
	77	R@1	R@10	R@1	R@10	Top-1					
Uses audio and text supervision											
AudioCLIP [27]	X	-	-	_	-	68.6					
Uses audio and text loss											
AVFIC [51]	X	3.0	17.5	8.7	37.7	_					
No audio and text supervision											
IMAGEBIND	✓	6.0	28.4	9.3	42.3	66.9					
Supervised											
AVFIC finetuned [51]	X	8.4	38.6 45.4	_	_	_					
ARNLQ [53]	X	12.6	45.4	24.3	72.1	_					

Cross-modal retrieval

Multimodal embedding space arithmetic

Upgrading text-based detectors and diffusion models to audio-based

Сильные стороны статьи

- можно натренировать по одному энкодеру для каждой модальности и потом решать очень много кросс модальных задач (экономия ресурсов)
- используют только naturally-paired данные, можно натренировать при отсутствии датасетов для каждой пары модальностей

Слабые стороны статьи

- идея довольно очевидная, никаких новых методов не предложено (сори за душноту)
- (чисто мой наброс) возможно пространства данных в разных модальностях могут отличаться структурно (например, некоторые предметы на картинках могут вовсе не ассоциироваться с каким-то звуком). Поэтому выравнивание эмбеддингов всех модальностей на картинки (как и в целом идея общего признакового пространства) может приводить к просадке качества по сравнению с узкоспециализированными алгоритмами