Math 107

Introduction to Hypothesis Tests (Sections 4.1-4.4)

Does drinking beer make you more attractive to mosquitos?

OPEN aCCESS Freely available online

Beer Consumption Malaria Mosquitoes

Human Attractiveness to

Thierry Lefèvre^{1*}, Louis-Clément Gouagna^{2,3}, Kounbobr Roch Dabiré^{3,4}, Eric Elguero¹, Didier Fontenille², François Renaud¹, Carlo Costantini^{2,5}, Frédéric Thomas^{1,6}

1 Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, Montpellier, France, 2 Caractérisation et Contrôle des Populations de Vecteurs, IRD/UR 016, Montpellier, France, 3 Institut de Recherche en Science de la Santé, Bobo-Dioulasso, Burkina Faso, 4 Laboratoire de Parasitologie et d'Entomologie Médicale, Centre Muraz, Bobo-Dioulasso, Burkina Faso, 5 Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Camerour, 6 Institut de Recherche en Biologie Végéfale, Université de Montréal, Montréal, Canada

Abstrac

Background: Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso.

Background

"Malaria and alcohol consumption both represent major public health problems. Alcohol consumption is rising in developing countries and, as efforts to manage malaria are expanded, understanding the links between malaria and alcohol consumption becomes crucial. Our aim was to ascertain the effect of beer consumption on human attractiveness to malaria mosquitoes in semi field conditions in Burkina Faso."

.efèvre T, Gouagna LC, Dabiré KR, Elguero E, Fontenille D, et al. (2010) PLoS ONE 5(3): e9546. doi:10.1371/journal.pone.)009546 http://journals.olos.org/plosone/article/jd=info:doi/10.1371/journal.pone.0009546

Methodology

- Study performed in Burkina Faso, Africa
- 25 volunteers consumed a liter of beer
- 18 volunteers consumed a liter of water
- Attractiveness of mosquitos to volunteer tested before and after consumption
- Mosquitos released and caught in traps as they approached the volunteers

Your Turn

• Is this an experiment or an observational study?

E	3eer	Wa	ter	
27	26	24	21	12
19	28	29	19	24
20	20	21	13	24
20	27	21	22	21
23	19	18	15	19
17	25	27	22	18
21	31	20	15	16
24	24		22	23
31	28		20	20

Your Turn • What's the parameter in this situation? What's the statistic? Your Turn • Is a mean difference of 4.4 mosquitos enough evidence that beer consumption increases human attractiveness to mosquitos? Or was this due to random chance? • If not, why? • How could this be determined?

Logic of hypothesis testing

Framework

- 1. Formulate two competing hypotheses
- 2. Calculate a statistic summarizing the relevant information to the claims
- 3. Look at the behavior of the statistic assuming that the "initial claim" is true
- 4. Compare the observed statistic to the distribution created in step 3 to determine whether it is "extreme"

Beer	•	Water
27 26	24	21 12
19 28	29	19 24
20 20	21	13 24
20 27	21	22 21
23 19	18	15 19
17 25	27	22 18
21 31	20	15 16
24 24		22 23
31 28		20 20

Beer			Wa	ter
27	26	24	21	12
19	28	29	19	24
20	20	21	13	24
20	27	21	22	21
23	19	18	15	19
17	25	27	22	18
21	31	20	15	16
24	24		22	23
31	28		20	20

E	Beer				ter
27	21	20		13	24
20	20	24		19	15
19	22	31		28	23
26	16	22		21	18
25	21	20		19	24
23	18	15		27	24
22	12	29		20	21
27	24			21	20
17	28			31	19

Е	Beer			
21	19	19	19	31
21	24	17	20	28
24	16	15	23	15
29	24	20	21	18
20	24	22	23	13
25	28	18	21	19
26	20	27	22	24
12	27		31	20
20	21		27	22

Е	3eer		,	Wa	ter
24	28	23		20	27
13	22	21		24	21
19	15	21		20	27
16	31	23		18	20
27	15	25		26	20
19	22	18		21	19
20	31	24		21	28
17	12			24	19
24	20			29	22

Compare the observed to behavior under the null hypothesis

Radomization (i.e. permutation) tests

Beer				Wa	ter
27	26	24		21	12
19	28	29		19	24
20	20	21		13	24
20	27	21	Diff· 4 4	22	21
23	19	18	DIII. 4.4	15	19
17	25	27		22	18
21	31	20		15	16
24	24			22	23
31	28			20	20
Mean: 23.6 Mean: 19					

Beer Water 27 21 20 13 24 20 20 24 19 15 19 22 31 28 23 26 16 22 21 18 Diff: 0.5 25 21 20 19 24 23 18 15 27 24 22 12 29 20 21 27 24 21 20 17 28 31 19 Mean: 22 Mean: 21.5

Е	3eer			Wa	ter
21	19	19		19	31
21	24	17		20	28
24	16	15		23	15
29	24	20	Diff: -0.5	21	18
20	24	22	DIII0.5	23	13
25	28	18		21	19
26	20	27		22	24
12	27			31	20
20	21			27	22
Mea	an: 2	21.6		Ме	an: 22

E	3eer		Wa	ter		
24	28	23		20	27	
13	22	21		24	21	
19	15	21		20	27	
16	31 23	Diff: -1.4	18	20		
27	15	25	DIII: - 1.4	26	20	
19	19 22 18 20 31 24 17 12		21	19		
20			21	28		
17			24	19		
24	20			29	22	
Mea	Mean: 21.2					

