Definition 37.42. Given normed vector spaces E, F, and G, for every continuous bilinear map $f: E \times F \to G$, we define the *norm* ||f|| of f as

$$||f|| = \inf \{k \ge 0 \mid ||f(x,y)|| \le k||x|| ||y||, \text{ for all } x \in E, y \in F\}$$

= $\sup \{||f(x,y)|| \mid ||x||, ||y|| \le 1\}.$

From Definition 37.41, for every continuous bilinear map $f \in \mathcal{L}_2(E, F; G)$, we have

$$||f(x,y)|| \le ||f|| ||x|| ||y||,$$

for all $x, y \in E$. It is easy to verify that $\mathcal{L}_2(E, F; G)$ is a normed vector space under the norm of Definition 37.42.

Given a bilinear map $f: E \times F \to G$, for every $u \in E$, we obtain a linear map denoted $fu: F \to G$, defined such that, fu(v) = f(u, v). Furthermore, since

$$||f(x,y)|| \le ||f|| ||x|| ||y||,$$

it is clear that fu is continuous. We can then consider the map $\varphi \colon E \to \mathcal{L}(F; G)$, defined such that, $\varphi(u) = fu$, for any $u \in E$, or equivalently, such that,

$$\varphi(u)(v) = f(u, v).$$

Actually, it is easy to show that φ is linear and continuous, and that $\|\varphi\| = \|f\|$. Thus, $f \mapsto \varphi$ defines a map from $\mathcal{L}_2(E, F; G)$ to $\mathcal{L}(E; \mathcal{L}(F; G))$. We can also go back from $\mathcal{L}(E; \mathcal{L}(F; G))$ to $\mathcal{L}_2(E, F; G)$. We summarize all this in the following proposition.

Proposition 37.60. Let E, F, G be three normed vector spaces. The map $f \mapsto \varphi$, from $\mathcal{L}_2(E, F; G)$ to $\mathcal{L}(E; \mathcal{L}(F; G))$, defined such that, for every $f \in \mathcal{L}_2(E, F; G)$,

$$\varphi(u)(v) = f(u, v),$$

is an isomorphism of vector spaces, and furthermore, $\|\varphi\| = \|f\|$.

As a corollary of Proposition 37.60, we get the following proposition which will be useful when we define second-order derivatives.

Proposition 37.61. Let E, F be normed vector spaces. The map app from $\mathcal{L}(E; F) \times E$ to F, defined such that, for every $f \in \mathcal{L}(E; F)$, for every $u \in E$,

$$app(f, u) = f(u),$$

is a continuous bilinear map.