Physics 151 Problem Set 8

Problem 37

Problem 4.10. Rapid increase in the number of states (Gould and Tobochnik)

(a) Consider an Einstein solid of N=20 distinguishable particles. What is the total number of accessible microstates $\Omega(E)$ for $E=10,10^2,10^3,...$? Is $\Omega(E)$ a rapidly increasing function of E for fixed N?

Solution:

The number of microstates of an Einstein solid composed of N particles with total energy E is given by

$$\Omega = \frac{(E+N-1)!}{E!(N-1)!} \tag{1}$$

Using this expression, we get different values of Ω for varying E and with N=20. This is shown in Table 1. The log plot in Figure 1 shows that Ω is a rapidly increasing function of E.

Table 1: Number of microstates for fixed N and varying E

Energy	Number of microstates
10	2.00×10^{7}
10^{2}	4.91×10^{21}
10^{3}	9.93×10^{39}
10^{4}	8.38×10^{58}
10^{5}	8.24×10^{77}

Figure 1: Log plot of the number of microstates for different energies

(b) Is Ω a rapidly increasing function of N for fixed E?

Solution:

A plot of the number of microstates Ω for different values of N and a fixed E=10 is shown in Figure 2. From this plot, we can see that Ω is also a rapidly increasing function of N since the curve is exponential-like.

Figure 2: Log plot of the number of microstates for different number of particles