Syntaks og semantik

Lektion 3

15 februar 2007

Endelige automater

Regulære sprog

Lukningsegenskaber

Forord

Endelige automater Regulære sprog Lukningsegenskaber

- tilstande + transitioner
- $(Q, \Sigma, \delta, q_0, F)$: tilstande, (input)alfabetet, transitionsfunktionen, starttilstand, accepttilstande
- $\bullet \ \delta : \mathsf{Q} \times \mathsf{M} \to \mathsf{Q}$
- deterministisk: givet en tilstand og et inputsymbol, kender vi næste tilstand
- accepterer et ord $w \in \Sigma^*$ hvis der findes $w_1, w_2, \ldots, w_n \in \Sigma$ og $r_0, r_1, \dots, r_n \in Q$ således at $w = w_1 w_2 \dots w_n$ og
- **1** $r_0 = q_0$, **2** $r_{i+1} = \delta(r_i, w_{i+1})$ for alle i = 0, 1, ..., n-1, og **3** $r_n \in F$.
- genkender sproget [M] = {w | M accepterer w}

Endelige automater

Lukningsegenskaber

3/30

- Definition: Et sprog siges at være regulært hvis der findes en endelig automat der genkender det.
- Vigtig, hidtil ubevist Sætning: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.
- Ligeså vigtig, også hidtil ubevist Sætning: Der findes sprog der ikke er regulære.

regulære sprog, da er også følgende sprog regulære: Lad Σ være et alfabet og $A_1, A_2 \subseteq \Sigma^*$. Hvis A_1 og A_2 er

- $A_1 \cup A_2$
- $A_1 \cap A_2$ $\overline{A}_1 = \Sigma^* \setminus A_1$
- $\bullet \ A_1 \circ A_2$
- A*

Regulære sprog

Endelige automater

Lukningsegenskaber

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

 $\mathsf{RE} \Rightarrow \mathsf{NFA}$

5/30

regulære sprog, da er også følgende sprog regulære: Lad Σ være et alfabet og $A_1, A_2 \subseteq \Sigma^*$. Hvis A_1 og A_2 er

• $A_1 \cup A_2$ • $A_1 \cap A_2$ • $\overline{A}_1 = \Sigma^* \setminus A_1$ Lad $M = (Q, \Sigma, \delta, q_0, F)$ være en endelig automat med $[\![M]\!] = A_1$. Lad $F' = Q \setminus F$ og $M' = (Q, \Sigma, \delta, q_0, F')$, da er $[\![M']\!] = \overline{A}_1$.

Problem: Flertydigheder i sammensætninger. F.eks. ved

- $A_1 = \{a, ab\}, A_2 = \{ba\}$

Non-determinisme

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

RE ⇒ NFA

Non-deterministiske endelige automater Motivation

At genkende sprog Nondeterminisme er ligegyldig (?)

Regulære udtryk genererer regulære sprog Lukningsegenskaber ved regulære sprog

Ønske: Givet endelige automater M_1 og M_2 , konstruér en "sammensat" automat M således at $\llbracket M \rrbracket = \llbracket M_1 \rrbracket \circ \llbracket M_2 \rrbracket$.

Ó

"sammensat" automat M således at $\llbracket M \rrbracket = \llbracket M_1 \rrbracket \circ \llbracket M_2 \rrbracket$. **Onske**: Givet endelige automater M_1 og M_2 , konstruér en

transitionsfunktionen uspecificeret Problem: Hvis M_1 har transitioner mellem acceptilistande, bliver

Eksempel, med $[\![M_1]\!] = \{a, ab\}, [\![M_2]\!] = \{ba\}$:

Ønske: Givet endelige automater M_1 og M_2 , konstruér en "sammensat" automat M således at $\llbracket M \rrbracket = \llbracket M_1 \rrbracket \circ \llbracket M_2 \rrbracket$.

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

RE ⇒ NFA

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

 $RE \Rightarrow NFA$

11/30

9/30

transitionsfunktionen uspecificeret Problem: Hvis M_1 har transitioner mellem acceptilistande, bliver

Eksempel, med $[M_1] = \{a, ab\}, [M_2] = \{ba\}$:

ldé: Tillad hvad vi ikke kan undgå!

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

- tillad at der er flere end én transition med samme label fra en tilstand
- tillad at der er ingen transitioner med et bestemt label fra en tilstand
- tillad transitioner der ikke læser input-symboler

- ved flere end én mulige transitioner: gå til alle mulige tilstande samtidigt
- hvis ingen mulige transitioner: dø
- ullet ved arepsilon-transitioner: bliv i tilstanden, men gå også hen til den
- acceptér hvis en accept-tilstand kan nås

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

RE ⇒ NFA

Definition 1.37: En nondeterministisk endelig automat er en

5-tupel $(Q, \Sigma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- $\delta: \mathbf{Q} \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(\mathbf{Q})$: transitions-funktionen
- $q_0 \in Q$: starttilstanden
- $lackbox{6}\ F\subseteq Q$: mængden af accepttilstande

Transitions-funktionen:

- deterministisk automat (fra sidste lektion): $\delta: Q \times \Sigma \to Q$ input: tilstand + tegn
- output: ny tilstand
- nondeterministisk automat: $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ input: tilstand + tegn eller ε
- output: en mængde af nye tilstande
- $\mathcal{P}(Q)$: potensmængden af Q; mængden af alle delmængder af Q: $\mathcal{P}(Q) = \{S \mid S \subseteq Q\}$

13/30

Motivation NFA

At genkende sprog $NFA \Leftrightarrow DFA$

Lukningsegenskaber

lber RE ⇒ NFA

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

RE ⇒ NFA

15/30

Eksempel 1.38:

Terminologi: Fra nu af:

- deterministisk endelig automat (DFA): dem fra sidste lektion med $\delta: Q \times \Sigma \to Q$
- nondeterministisk endelig automat (NFA): dem med $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$
- ullet $\Sigma \cup \{arepsilon\}$ skrives også $\Sigma_arepsilon$
- Husk: $\mathcal{P}(Q) = \text{potensmængden}$ ("power set") af Q: $\mathcal{P}(Q) = \{S \mid S \subseteq Q\}$
- enhver DFA er også en NFA
- og enhver NFA kan laves om til en DFA! (bevis kommer lige om lidt)

Definition: Lad $M=(Q,\Sigma,\delta,q_0,F)$ være en endelig automat og $w\in\Sigma^*$. Da siges M at acceptere w hvis der findes $m\in\mathbb{N}$ og

 $y_1,y_2,\ldots,y_m\in\Sigma_{\varepsilon}$ (!) og $r_0,r_1,\ldots,r_m\in Q$ således at $w=y_1y_2\ldots y_m$ og

- $r_0 = q_0,$
- **2** $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., m-1, og
- \circ $r_m \in F$.

Sproget som genkendes af M er

$$[\![M]\!] = L(M) = \{w \mid M \text{ accepterer } w\}$$

16/30

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

RE ⇒ NFA

• $W = 00 = \varepsilon 00$:

$$q_0 \to \{q_{20}, q_{30}\} \to \{q_{21}, q_{31}\} \to \{q_{20}, q_{32}\} \Rightarrow \mathsf{Jep}$$

• $W = 000 = \varepsilon 000$:

$$q_0 o \{q_{20}, q_{30}\} o \{q_{21}, q_{31}\} o \{q_{20}, q_{32}\} o \{q_{21}, q_{30}\} \Rightarrow {\sf Jep.}$$
• $w = 0000 = \varepsilon 0000$:

$$q_0
ightharpoonup q_{20}
ightharpoonup q_{21}
ightharpoonup q_{20}
ightharpoonup q_{21}
ightharpoonup q_{20}
ightharpoonup ext{dep}$$
 (Nok med $\acute{e}t$ accepterende \emph{run} .)

• $W = 00000 = \varepsilon 00000$:

$$\begin{array}{l} q_0 \to \{q_{20}, q_{30}\} \to \{q_{21}, q_{31}\} \to \{q_{20}, q_{32}\} \to \{q_{21}, q_{30}\} \to \\ \{q_{20}, q_{31}\} \to \{q_{21}, q_{32}\} & \Rightarrow \text{Nej.} \end{array}$$

(*Alle* runs er ikke-accepterende.)

NFA At genkende sprog NFA ⇔ DFA Lukningsegenskaber RE ⇒ NFA

17/30

 $\mathsf{med} \ \llbracket M \rrbracket = \llbracket N \rrbracket.$ Vigtig sætning 1.39: Til enhver NFA N findes der en DFA M

sprog. Eller: Til enhver NFA findes der en DFA der genkender samme

Eller: Til enhver NFA findes der en ækvivalent DFA (Hvis vi siger at to maskiner er ækvivalente hvis de genkender

samme sprog.)

20/30

18/30

med [M] = [N]Vigtig sætning 1.39: Til enhver NFA N findes der en DFA M

skal vi holde styr på mængder af tilstande. Bevisidé: Når vi ser efter om vores NFA N accepterer et ord

af tilstande i N. ⇒ Tilstandene i M afspejler mængder at tilstande i N. Dvs. vi skal konstruere en DFA M der holder styr på mængder

NFA At genkende sprog NFA ⇔ DFA Lukningsegenskaber RE ⇒ NFA

19/30

med [M] = [N].Vigtig sætning 1.39: Til enhver NFA N findes der en DFA M

Bevis: Skriv $N=(Q,\Sigma,\delta,q_0,F)$. Vi konstruerer en DFA $M=(Q',\Sigma,\delta',q_0',F')$:

- $\bullet \ \ Q'=\mathcal{P}(Q)$ tilstande i M er mængder af tilstande i N
- $F' = \{ R \subseteq Q \mid R \cap F \neq \emptyset \}$

vi accepterer hvis én af Ns tilstande er accepterende

Virker ikke helt: mangler at tage ε -transitioner: $\delta'(R,a)$ skal Transitionsfunktionen: første forsøg: $\delta'(R,a) = \{\delta(r,a) \mid r \in R\}$ • $q_0' = \{q_0\}$ M starter i Ns starttilstand

tilstande i N der kan nås fra q_0 via ε -transitioner. *Hovsa!* der er også problemer med q_0' : q_0' skal bestå af alle de læse et a, plus alle de tilstande vi så kan nå via arepsilon-transitioner! være den mængde af tilstande vi kan nå fra tilstande i R ved at

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

RE ⇒ NFA

Bevis: Skriv $N=(Q,\Sigma,\delta,q_0,F)$. Vi konstruerer en DFA $M=(Q',\Sigma,\delta',q_0',F')$:

- $Q' = \mathcal{P}(Q)$
- $F' = \{ R \subseteq Q \mid R \cap F \neq \emptyset \}$

For enhver delmængde $R \subseteq Q$ lad

 $E(R) = \{q \in Q \mid q \text{ kan nås fra } R \text{ ved } 0 \text{ eller flere } \varepsilon\text{-transitioner}\}$

 ε -aflukningen af R.

- $q'_0 = E(\{q_0\})$ $\delta'(R, a) = \{q \in Q \mid q \in E(\{\delta(r, a)\}) \text{ for et } r \in R\}$ = $\bigcup_{r \in R} E(\{\delta(r, a)\})$

For at vise at $\llbracket M \rrbracket = \llbracket N \rrbracket$, skal vi vise at

- ethvert $w \in [N]$ accepteres af M, og at
- ethvert $w \in \llbracket M \rrbracket$ accepteres af N.

Motivation NFA At genkende sprog NFA ⇔ DFA Lukningsegenskaber RE ⇒ NFA

 $A_1 \cup A_2$ et regulært sprog over Σ . Hvis A_1 og A_2 er regulære sprog over et alfabet Σ , da er også Sætning 1.45: (havde vi allerede, men nu med nyt bevis!)

Bevis: Lad N_1 og N_2 være NFAs med $[\![N_1]\!] = A_1$ og $[\![N_2]\!] = A_2$. Skriv $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2),$ og konstruér en ny NFA $N = (Q, \Sigma, \delta, q_0, F)$ ved

- $Q = Q_1 \cup Q_2 \cup \{q_0\},$ (en ekstra ny starttilstand)
- $F = F_1 \cup F_2$ og

 $\delta_1(q, a)$ hvis $q \in Q_1$ $\delta_2(q, a)$ $\{q_1, q_2\}$ hvis $q = q_0$ og $a = \varepsilon$ hvis $q \in Q_2$

Da er $\llbracket N \rrbracket = A_1 \cup A_2$. hvis $q = q_0$ og $a \neq \varepsilon$

Ó

Ŏ

22/30

 $A_1 \cup A_2$ et regulært sprog over Σ . Hvis A_1 og A_2 er regulære sprog over et alfabet Σ , da er også Sætning 1.45: (havde vi allerede, men nu med nyt bevis!

Bevis: Lad N_1 og N_2 være NFAs med $[\![N_1]\!] = A_1$ og $[\![N_2]\!] = A_2$. Skriv $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, og konstruér en ny NFA $\mathcal{N}=(Q,\Sigma,\delta,q_0,F)$ ved

- $Q = Q_1 \cup Q_2 \cup \{q_0\}$, (en ekstra *ny* starttilstand)
- $F = F_1 \cup F_2$ og $\delta_1(q, a)$

 $\delta(q, a) =$ $\delta_2(q, a)$ $\{q_1,q_2\}$ hvis $q = q_0$ og $a = \varepsilon$ hvis $q \in Q_2$ hvis $q \in Q_1$ hvis $q = q_0$ og $a \neq \varepsilon$

Da er $[N] = A_1 \cup A_2$.

:

Ó

Intuitivt!

21/30

Motivation

NFA

23/30

At genkende sprog NFA ⇔ DFA Lukningsegenskaber RE ⇒ NFA

 Σ , da er også $A_1 \circ A_2$ et regulært sprog over Σ . Sætning 1.47: Hvis A₁ og A₂ er regulære sprog over et alfabet

Skriv $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1), N_2=(Q_2,\Sigma,\delta_2,q_2,F_2),$ og konstruér en ny NFA $N=(Q,\Sigma,\delta,q_1,F_2)$ ved Bevis: Lad N_1 og N_2 være NFAs med $[N_1] = A_1$ og $[N_2] = A_2$.

- $Q=Q_1\cup Q_2$
- (starttilstanden er q_1 , accepttilstandene er F_2)

 $\int \delta_1(q,a)$ $\delta_1(q,a)$ hvis $q \in Q_1$ og $q \notin F_1$

 $\delta_1(q,a) \cup \{q_2\}$ hvis $q \in F_1$ og a =hvis $q \in Q_2$ hvis $q \in F_1$ og $a \neq \varepsilon$

Da er $[\![N]\!] = A_1 \circ A_2$. $\delta_2(q,a)$

0 0

 \bigcirc 0

24/30

0

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

RE ⇒ NFA

Sætning 1.47: Hvis A_1 og A_2 er regulære sprog over et alfabet Σ , da er også $A_1 \circ A_2$ et regulært sprog over Σ .

Bevis: Lad N_1 og N_2 være NFAs med $[\![N_1]\!] = A_1$ og $[\![N_2]\!] = A_2$ Skriv $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1), N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2),$ og konstruér en ny NFA $N = (Q, \Sigma, \delta, q_1, F_2)$ ved

- $Q = Q_1 \cup Q_2$
- (starttilstanden er q₁, accepttilstandene er F₂)

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{hvis } q \in Q_1 \text{ og } q \notin F_1 \\ \delta_1(q,a) & \text{hvis } q \in F_1 \text{ og } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & \text{hvis } q \in F_1 \text{ og } a = \varepsilon \\ \delta_2(q,a) & \text{hvis } q \in Q_2 \end{cases}$$

Da er $[\![N]\!] = A_1 \circ A_2$.

 \bigcirc

25/30

Sætning 1.49: Hvis A er et regulært sprog over et alfabet Σ , da er også A^* et regulært sprog over Σ .

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

 $RE \Rightarrow NFA$

Bevis: Lad $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ være en NFA med $[\![N_1]\!]=A$. Konstruér en ny NFA $N=(Q,\Sigma,\delta,q_0,F)$ ved

- $Q = Q_1 \cup \{q_0\},$
- $\bullet \ F = F_1 \cup \{q_0\} \ \text{og} \qquad \begin{cases} \delta_1(q,a) & \text{hvis } q \in Q_1 \ \text{og } q \notin F_1 \\ \delta_1(q,a) & \text{hvis } q \in F_1 \ \text{og } a \neq \varepsilon \end{cases}$ $\delta(q,a) = \begin{cases} \delta_1(q,a) \cup \{q_1\} & \text{hvis } q \in F_1 \ \text{og } a = \varepsilon \\ \{q_1\} & \text{hvis } q = q_0 \ \text{og } a = \varepsilon \end{cases}$ $\emptyset \qquad \text{hvis } q = q_0 \ \text{og } a \neq \varepsilon$

:

Sætning 1.49: Hvis A er et regulært sprog over et alfabet Σ , da er også A^* et regulært sprog over Σ .

Bevis: Lad $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ være en NFA med $[\![N_1]\!]=\lambda$ Konstruér en ny NFA $N=(Q,\Sigma,\delta,q_0,F)$ ved

- $Q = Q_1 \cup \{q_0\},$
- $F=F_1\cup\{q_0\} ext{ og } egin{array}{ll} \delta_1(q,a) & ext{hvis } arphi \ \delta_1(q,a) & ext{hvis } arphi \ \delta_1(q,a)\cup\{q_1\} & ext{hvis } arphi \ \{q_1\} & ext{hvis } arphi \end{array}$

hvis $q \in Q_1$ og $q \notin F_1$

 $egin{aligned} & ext{hvis } q \in F_1 ext{ og } a
eq arepsilon \ & ext{hvis } q \in F_1 ext{ og } a = arepsilon \ & ext{hvis } q = q_0 ext{ og } a = arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
eq arepsilon \ & ext{hvis } q = q_0 ext{ og } a
ext{ of } a
ext{ of } a = v
ext{$

Motivation NFA At genkende sprog NFA \Leftrightarrow DFA Lukningsegenskaber $extbf{RE} \Rightarrow extbf{NFA}$

27/30

Eller: Givet et alfabet Σ og $L \subseteq \Sigma^*$, da er L et regulært sprog hvis og kun hvis der findes et regulært udtryk R over Σ således at $L = [\![R]\!]$.

beskrives ved et regulært udtryk.

Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan

(Bevis til første halvdel nu, til anden halvdel næste gang.)

28/30

NFA

RE ⇒ NFA

Lemma 1.55: Givet et alfabet Σ og et sprog $L\subseteq \Sigma^*$. Hvis der findes et regulært udtryk R over Σ med $[\![R]\!]=L$, da er L regulært.

Bevis (ved strukturel induktion):

- Hvis $L = \llbracket a \rrbracket$ for et $a \in \Sigma$: Lad $M = \longrightarrow \bigcirc \xrightarrow{a} \bigcirc$, da er $\llbracket M \rrbracket = \{a\} = L$.
- Proof with $C = [[\varepsilon]]$: Lad $M = \longrightarrow [0]$, da er $[M] = \{\varepsilon\} = L$.
- ⓐ Hvis $L = \llbracket \emptyset \rrbracket$: Lad $M = \longrightarrow$, da er $\llbracket M \rrbracket = \emptyset = L$.
- 4 Hvis $L = \llbracket R_1 \cup R_2 \rrbracket$: Ved induktionsantagelsen har vi NFAs M_1 og M_2 således at $\llbracket M_1 \rrbracket = \llbracket R_1 \rrbracket$ og $\llbracket M_2 \rrbracket = \llbracket R_2 \rrbracket$. Derfor er $\llbracket R_1 \rrbracket$ og $\llbracket R_2 \rrbracket$ regulære sprog, med sætning 1.45 altså også $\llbracket R_1 \rrbracket \cup \llbracket R_2 \rrbracket = \llbracket R_1 \cup R_2 \rrbracket = L$.
- Hvis $L = [\![R_1 \cup R_2]\!]$ eller $L = [\![R_1^*]\!]$: Analogt til tilfælde 4, bortset fra at sætning 1.47 hhv. 1.49 skal benyttes.

29/30

Eksempel 1.56: Konvertér $(ab \cup a)^*$ til en NFA.

Motivation

NFA

At genkende sprog

NFA ⇔ DFA

Lukningsegenskaber

RE ⇒ NFA

 $ab \cup a$ $\xrightarrow{\varepsilon} \xrightarrow{a} \xrightarrow{\varepsilon} \xrightarrow{b}$

 $(b \cup a)^*$ $(b \cup a)^*$