Lecture 1: Basics of Probability

(Luise-Vitetta, Chapter 8)

Why probability in data science?

- → Data *acquisition* is noisy
 - ⇒ Sampling/quantization
 - ⇒ external factors: If you record your voice saying 'machine learning' you will never get the same function!
 - → The function is deterministic, once recordered, but it is not predictable as f(machine learning)!
- → Data *analysis* often works on predictions.
 - ⇒ We live in a world of untecertainty!
 - → It rains tomorrow? How many cm?

Probability is the core mathematical tool for working with noisy data and uncertain events

⇒ Some concepts are not intuitive and we need some basic theory!

\sim	linr	NIKOL	\mathbf{I}
121112	1 11 11	111 (-)	11
lenia	1 11 11		ı

Counting Outcomes: some examples (intuitive and not)

Three important remarks

→ For independent events, the hystory does not matter!!

⇒ After 10 heads, the probability of tossing a coin and getting another head is still ½!

→ For combinatorial analysis of objects of the same class, each object has to be considered singularly!

⇒ What it the probability fo extracting two consecutive white balls from a set of white and black balls in a box?

→ Information matters!

⇒ A priori probability can be updated, once partial information is disclosed!

Head or Tail?

→ Consider one unbiased coin

- ⇒ In one flip, ½ head, ½ tail
- ⇒ In two flips?
 - \rightarrow HH, HT, TH, TT each with equal probability (1/4)
- ⇒ Assume that we already did 10 flips with the outcome HHHHHHHHHH
 - → What is the probability to have now head or tail at the next flip?

Head or Tail?

- → Two soccer teams are equally good: they have the same probabiltiy to win a match
- → What is the most likely length for reaching 4 successes?
 - ⇒ Flip a coin until 4 heads or 4 tails are reached.
 - ⇒ Is it more likely to have 6 or 7 flips?
- → To reach 4 successes, after 5 flips, we need to have 3H, 2T or 3T, 2H
 - $\Rightarrow \frac{1}{2}$ it ends 4 to 2 (6 flips)
 - \Rightarrow ½ it ends 4 to 3 (7 flips)

Silver or Gold

- →One bag has two silver coins, another has two gold coins, and the third has one of each
- →One bag is selected at random. One coin from it is selected at random. It turns out to be gold
- → What is the probability that the other coin is gold?
 - ⇒ Be careful to 'ordered' events!!!!

Analysis of Outcomes

A priori:

- → 3 choices of bag
- → 2 ways to order bag contents
- → 6 equally likely **outcomes**

After we see a gold coin:

- only 3 outcomes are possible
- two of the remaining three events are gold coins
 - ⇒ 2/3 probability2 ways to order bag contents

Monty Hall Problem

- → Announcer hides prize behind one of 3 doors at random
- → You select some door
- → Announcer opens one of others with no prize
- → You can decide to keep or switch
 - ⇒ What to do?

Analysis of Outcomes

- → Sample space = {prize behind door 1, prize behind door 2, prize behind door 3}
- → Each has probability 1/3

Staying:

We win, if we chose the correct door Probability = 1/3

Switching:

We win, if we chose the incorrect door Probability = 2/3

Trick: "After one door is opened, others are equally likely..."
But his action is not independent of yours!

Information matters.. we will see more later Imagine a similar problem with 100 doors!

Basic Theory

Experiments

- → Experiment: any process or procedure for which more than one outcome is possible
- → Sample Space: The sample space S of an experiment is a set consisting of all of the possible experimental outcomes
- → Example 1: a manager supervises the operation of three power plants, at any given time, each of the three plants can be classified as either generating electricity (1) or being idle (0).

$$S = \{(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)\}$$

- **Example 2:** the roll of a die has $S = \{1, 2, 3, 4, 5, 6\}$
- **Example 3:** the roll of two dice has 36 possible outcomes $S=\{(1, 1), (1, 2), (1, 3), ... (6, 1), (6, 2), ... (6,6)\}$

Events and Complements

- → An event A is a subset of the sample space S. It collects outcomes of particular interest.
 - ⇒ The probability of an event is obtained by summing the probabilities of the outcomes contained within the event A
- → An event is said to occur if one of the outcomes contained within the event occurs.
- → Events that consist of an individual outcome are sometimes referred to as elementary events or simple events
- → If A and B are events, then AUB is an event too
- → the complement of event A, is the event consisting of everything in the sample space S that is not contained within the event A.

Axiomatic Definition

- → Probability Space: (Sample Space, Event Class, Pr law)
- → Axioms:
 - \Rightarrow Pr(A)>0;
 - \Rightarrow Pr(S)=1;
 - $\Rightarrow A \cap B = \emptyset \rightarrow Pr(A \cup B) = Pr(A) + Pr(B)$
- → It follows:
 - \Rightarrow Pr(S-A)=1-Pr(A)
 - ⇒ Pr(A)<=1
 - \Rightarrow Pr(A \cup B)=Pr(A)+Pr(B)-Pr(B \cap A)
- \rightarrow Pr(B \cap A) is called joint probability
- → Pr(B/A) is called conditioned probability
 - \Rightarrow Pr(B/A)=Pr(A \cap B)/Pr(B)

Events and Complements

→ A sample spage consists of eight outcomes with a probability value.

$$P(A) = 0.10 + 0.15 + 0.30 = 0.55$$

$$P(A') = 0.10 + 0.05 + 0.05 + 0.15 + 0.10 = 0.45$$

Notice that P(A) + P(A') = 1.

Events and Complements

→ GAMES OF CHANCE

- even = { an even score is recorded on the roll of a die }

= { 2,4,6 }
$$P(\text{even}) = P(2) + P(4) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

- A = { the sum of the scores of two dice is equal to 6 }

$$= \{ (1,5), (2,4), (3,3), (4,2), (5,1) \}$$

$$P(A) = \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{5}{36}$$

A sum of 6 will be obtained with two fair dice roughly 5 times out of 36 on average, that is, on about 14% of the throws.

- B = { at least one of the two dice records a 6 } = ????

(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1,5) A	(1, 6)
1/36	1/36	1/36	1/36	1/36	1/36
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
1/36	1/36	1/36	1/36	1/36	1/36
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
1/36	1/36	1/36	1/36	1/36	1/36
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
1/36	1/36	1/36	1/36	1/36	1/36
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
1/36	1/36	1/36	1/36	1/36	1/36
(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)
1/36	1/36	1/36	1/36	1/36	1/36

Examples: Intersection of Events

FIGURE 1.26 • Events A and B

FIGURE 1.27 • The event $A \cap B$

$$P(A) = 0.01 + 0.07 + 0.19 = 0.27$$

$$P(B) = 0.07 + 0.19 + 0.04 + 0.14 + 0.12 = 0.56$$

$$P(A \cap B) = 0.07 + 0.19 = 0.26$$

Example: Intersection of Events

FIGURE 1.28 • The event $A' \cap B$

$$P(A' \cap B) = 0.04 + 0.14 + 0.12 = 0.30$$

$$P(A \cap B') = 0.01$$

$$P(A \cap B) + P(A \cap B') = 0.26 + 0.01 = 0.27 = P(A)$$

$$P(A \cap B) + P(A' \cap B) = 0.26 + 0.30 = 0.56 = P(B)$$

Example: Union of Events

→ It includes outcomes in A, outcomes in B, outcomes in A and B.

Example: Conditional Probabilities

→ GAMES OF CHANCE

- A fair die is rolled.

$$P(6) = \frac{1}{6}$$

$$P(6 \mid even) = \frac{P(6 \cap even)}{P(even)} = \frac{P(6)}{P(even)}$$
$$= \frac{P(6)}{P(2) + P(4) + P(6)} = \frac{1/6}{1/6 + 1/6 + 1/6} = \frac{1}{3}$$

- A red die and a blue die are thrown.

A = { the red die scores a 6 }

B = { at least one 6 is obtained on the two dice }

$$P(A) = \frac{6}{36} = \frac{1}{6} \text{ and } P(B) = \frac{11}{36}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(A)}{P(B)}$$

$$= \frac{1/6}{100} = \frac{6}{100}$$

FIGURE 1.60
$$\bullet$$

 $P(A|B) = P(A \cap B)/P(B)$

Bayes Theorem

- → Event probability conditioned to the occurrence of other certain events
 - ⇒ The event space is no more the total space, but it becomes the conditioning event
- \rightarrow Pr(A/B)=Pr(A \cap B)/Pr(B)
 - \Rightarrow Pr(A \cap B)=Pr(A/B) Pr(B) = Pr(B/A) Pr(A)
 - \Rightarrow Pr(A/B)=Pr(B/A) Pr(A)/Pr(B)

Bayes Theorem Relevance

- → A mammograms detects cancer in 80% of the cases, if there is
- → A mammograms detects a false positive in 9.6% of the cases, if there is no cancer
 - ⇒ Test positive: 80% YES, 9.6% NO
 - ⇒ Test negative: 20% YES, 90.4% NO
- → Cancer incidence is about 1% of woman population.
- → What is the percentage to have a cancer is the result is positive?
 - ⇒ Possible positive events:
 - \rightarrow 80% of 1% of population: 0.008;
 - \rightarrow 9.6% of 99% of population: 0.095;
 - ⇒ Conditioned probability:
 - \rightarrow Real positive results / total events = 0.008/(0.008+0.095)=0.0776

Bayes Theorem and Monty Hall

- → Why Bayes and the Monty Hall Problem?
 - ⇒ At first, 3 equal doors A, B, C with Pwinning probability equal to 1/3
 - ⇒ Assume we pick door A and the opened door is C.
 - → P(C open)=P(A car) * $\frac{1}{2}$ + [1-P(A car)]*(P(B car/A no car))*1 + P(C car/A no car))* 0) =1/2*1/3 + 2/3*(1/2+0)=1/2.
- → What we **learn** on door A, after one door is opened, given that the opened door will be always an empty door?
 - ⇒ Nothing! The selected door does not depend in any case from door A.
 - \Rightarrow P(A car/C open)=P(C open/A car)*P(A car)/P(C open)=P(A car)=1/3
- → What we **learn** on door B?
 - ⇒ A lot! The selected door depends on node B state.
 - \Rightarrow P(B car/C open)=P(C open/B car) P(B car)/P(C open)=1*1/3/0.5=2/3
- → Can we generalize to the 100 doors case?

Monty Hall Generalization

- 1. Let A be the first selected door, X be the final door left closed and let C1, C2, .. C98 the other doors sequentially opened. At each step:
 - ⇒ P(A car/C1 opened) = P(C1 opened/ A car) P(A car)/P(C1 opened)=P(A car)=1/100
 - ⇒ P(X car/C1 opened) = P(C1 opened/ X car) P(X car)/P(C1 opened)=1/98 * 1/100 * 99=99/98 * 1/100 -> I am improving over 1/100!
- 2. Now we open C2:
 - ⇒ P(X car/C1, C2 open)=P(C1, C2 open/X car) P(Xcar) / P(C1, C2 open)=
 - ⇒ P(C2 open/C1 open, X car)*P(C1 open, X car)/[P(C2 open/C1 open)*P(C1 open)]=1/97 * 1/98*1/100 / (1/98 * 1/99) = 99/97 * 1/100
- 3. Now we open C3, C4, ... C98
 - ⇒ P(X car/C1, C2, ... C98 open) = 99/100!

Other Pr definitions

→Frequency analysis

- ⇒Limit for number of experiments growing to infinity of event occurrence
- ⇒Kolmogorov axioms verified

Composing Experiments

- → Given two experiments with sample space S1 and S2, an ordered couple of outcomes from each one is a composed experiment
- → If experiments are independent
 - \Rightarrow Pr(A1xA2)=Pr(A1)Pr(A2)
- → ..otherwise it is not possible to have the probability law of the composed experiment
- → Bernoulli formula:
 - ⇒ Probability of n identical experiments with outcomes 0/1

Random Variables

Definition

→ We can associate a numerical value to an event

⇒ E.g. 0 to an head tossing, 1 to a tail tossing

→ Formally:

- \Rightarrow Let (Ω, S, Pr) a probability space with sample space Ω , event class S and probability law Pr
- \Rightarrow Let $X(\omega) \in \mathbb{R}$ a real number associated to each experiment outcome ω
- \Rightarrow X(Ω), i.e. the set of all the outcome images in R is a random variable if:
 - $\rightarrow \forall a \in R$, the set $\{\omega : X(\omega) \le a\}$ is an event

Probability Distribution Function

- → From the definition or random variable, it follows that the set of ω values for which X(ω)<a is an event
 - \Rightarrow { ω : a<X(ω)<=b} is also an event with its occurrence probability
 - ⇒ We can indicate the event probability as Pr{a<X<=b}
- **→** Distribution function:

$$\Rightarrow$$
 Fx(x)=Pr{X<=x}

→ Properties:

- \Rightarrow 0<=Fx(x)<=1
- $\Rightarrow \lim_{x\to\infty} Fx(x)=1$
- $\Rightarrow \lim_{x\to\infty} Fx(x)=0$
- \Rightarrow x2>x1, Fx(x2)>=Fx(x1)
- $\Rightarrow \lim_{h\to 0+} Fx(x+h) = Fx(x)$
- \Rightarrow If x* is a point in which the function is not continous, $Pr\{X=x^*\}=Fx(x^*+)-Fx(x^*-)$
- \Rightarrow Pr{a<X<=b}=Fx(b)-Fx(a)

Discrete, Continous and Mixed Variables

- → Depending on Fx, a random variable can be discrete, continous or mixed
 - ⇒ X may assume only a finit set of values
 - → The probability to have these values is called probability mass function

⇒ X may assume continous values in R with Fx(x) continous function

⇒ X may assume continous values, but Fx(x) with discontinuities

Probability density function

→Alternative description of random variables

- \Rightarrow fx(x)=D[Fx(X)]
- \Rightarrow From which: $\int_{-\infty}^{x} fx(t)dt$

→ Properties:

- \Rightarrow fx(x)>=0
- \Rightarrow Pr{a<X<=b}=Fx(b)-Fx(a)= $\int_a^b fx(t)dt$
- $\Rightarrow \int_{-\infty}^{\infty} fx(t)dt = 1$

→ Examples:

- ⇒ Uniform distribution
- ⇒ Discrete variables
- ⇒ Exponential variables (often used for device lifetime)

Expectations

→ Expectation of a discrete random variable with p.m.f

$$P(X = x_i) = p_i \longrightarrow E(X) = \sum_i p_i x_i$$

→ Expectation of a continuous random variable with p.d.f f(x)

$$E(X) = \int_{\text{state space}} x f(x) dx$$

→ The expected value of a random variable is also called the mean of the random variable

Expectations of Continuous Random Variables

→Symmetric Random Variables

 \Rightarrow If x has a p.d.f f(x) that is symmetric about

a point μ

so that
$$f(\mu + x) = f(\mu - x)$$

$$\Rightarrow$$
 Then, $E(X) = \mu$ (why?)

⇒So that the expectation of the random variable is equal to the **point of symmetry**

Variance

\rightarrow Variance(σ)

- ⇒ A positive quantity that measures the spread of the distribution of the random variable about its mean value
- ⇒ Larger values of the variance indicate that the distribution is more spread out
- \Rightarrow Definition: $Var(X) = E((X E(X))^2)$

$$=E(X^2)-(E(X))^2$$

→ Standard Deviation

- ⇒ The positive square root of the variance
- \Rightarrow Denoted by σ

→ Example: gaussian variable

 \Rightarrow Z=sum_i X_i i.i.d., fz(z) is gaussian!

Interpretation of Variance

$$Var(X) = E((X - E(X))^{2})$$

$$= E(X^{2} - 2XE(X) + (E(X))^{2})$$

$$= E(X^{2}) - 2E(X)E(X) + (E(X))^{2}$$

$$= E(X^{2}) - (E(X))^{2}$$

Two distribution with identical mean values but different variances

Jointly Distributed Random Variables

→ Joint Probability Distributions

→ Joint Cumulative Distribution

$$\Rightarrow \text{ Discrete } \quad F(x,y) = P(X \le x_i, Y \le y_j) \\ F(x,y) = \sum_{i: x_i \le x} \sum_{j: y_i \le y} p_{ij}$$

⇒ Continuous

$$F(x,y) = \int_{w=-\infty}^{x} \int_{z=-\infty}^{y} f(w,z) dz dw$$

Marginal Probability Distributions

→ Marginal probability distribution

⇒ Obtained by summing or integrating the joint probability distribution over the values of the other random variable

$$\Rightarrow$$
 Discrete $P(X=i) = p_{i+} = \sum_{i} p_{ij}$

$$\Rightarrow$$
 Continuous $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$

Conditional Probability Distributions

→ Conditional probability distributions

- ⇒ The probabilistic properties of the random variable X under the knowledge provided by the value of Y
- ⇒ Discrete

$$p_{i|j} = P(X = i \mid Y = j) = \frac{P(X = i, Y = j)}{P(Y = j)} = \frac{p_{ij}}{p_{+j}}$$

⇒ Continuous

$$f_{X|Y=y}(x) = \frac{f(x,y)}{f_Y(y)}$$

⇒ The conditional probability distribution is a **probability distribution**.

Independence and Covariance

→Two random variables X and Y are said to be independent if

⇒Discrete

$$p_{ij} = p_{i+}p_{+j}$$
 for all values i of X and j of Y

⇒ Continuous

$$f(x,y) = f_X(x)f_Y(y)$$
 for all x and y

Independence and Covariance

→ Covariance

$$Cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

$$= E(XY) - E(X)E(Y)$$

$$Cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

$$= E(XY - XE(Y) - E(X)Y + E(X)E(Y))$$

$$= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y)$$

$$= E(XY) - E(X)E(Y)$$

- ⇒ May take any positive or negative numbers.
- ⇒ Independent random variables have a covariance of zero

Independence and Covariance

→Correlation:

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

⇒ Values between -1 and 1, and independent random variables have a correlation of zero

Examples

→ Remark:

- \Rightarrow X and Y independent -> Cov(X,Y)=0;
- \Rightarrow X and Y dependent does not imply Cov(X,Y)=0!!! (give a look to third row)
- ⇒ Cov useful for linear relations between X and Y