0.1 Complex analysis

Definition 0.1.1. A polydisc $D(z,r) \subseteq \mathbb{C}^n$ is $D(z_1,r_1) \times \cdots \times D(z_n,r_n)$

Definition 0.1.2 (Wirtinger derivatives).

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

Note.

$$rac{\partial}{\partial z} = rac{\partial}{\partial x} rac{\partial x}{\partial z} + rac{\partial}{\partial y} rac{\partial y}{\partial z}, rac{\partial}{\partial ar{z}} = rac{\partial}{\partial x} rac{\partial x}{\partial ar{z}} + rac{\partial}{\partial y} rac{\partial y}{\partial ar{z}} \ dz \wedge dar{z} = -2idx \wedge dy$$

Definition 0.1.3. $f: \Omega \to \mathbb{C}$ is **holomorphic** at $z_0 \in \Omega$ if f'(z) exists around z_0 . f is **univalent** if f is injective

Theorem 0.1.4 (Cauchy-Riemann equations). If we write z = x + iy, f(z) = u(x, y) + iv(x, y), then the existence of f'(z) implies that $\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}$ which give the **Cauchy-Riemann equations**

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$

If f satisfies Cauchy-Riemann equations around z_0 , then f is holomorphic at z_0

Lemma 0.1.5. A univalent map is a biholomorphism to its image

Theorem 0.1.6 (Goursat). If f is holomorphic on $\Omega \subseteq \mathbb{C}$, $\overline{T} \subseteq \Omega$ is a triangle, then $\oint_T f(z)dz = 0$

Theorem 0.1.7 (Cauchy's integral theorem). If f is holomorphic on $\Omega \subseteq \mathbb{C}$, $\gamma \subseteq \Omega$ is a piecewise C^1 curve, then $\oint_{\gamma} f(z)dz = 0$

Theorem 0.1.8 (Morera's theorem). $U \subseteq \mathbb{C}$ is open, if $\oint_T f(z)dz = 0$ for any triangle $T \subseteq U$, then f is holomorphic on D

Cauchy-Pompeiu formula

Theorem 0.1.9 (Cauchy-Pompeiu formula). f is a complex valued C^1 function on a disc $D \subseteq \mathbb{C}$, then

$$f(\zeta) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)dz}{z - \zeta} - \frac{1}{\pi} \iint_{D} \frac{\partial f(z)}{\partial \bar{z}} \frac{dx \wedge dy}{z - \zeta}$$

In particular, if f is holomorphic, then

$$f(\zeta) = rac{1}{2\pi i} \int_{\partial D} rac{f(z)}{z - \zeta} dz$$

Proof. Denote $D_{\epsilon} = D - B(0, \epsilon)$, consider

$$\eta = rac{f(w)dw}{w-z}, d\eta = rac{\partial f(w)}{\partial ar{w}} rac{dar{w} \wedge dw}{w-z}$$

By Stokes' theorem

$$\frac{1}{2\pi i} \int_{\partial D_\epsilon} \eta = \frac{1}{2\pi i} \int_{D_\epsilon} d\eta$$

As $\epsilon \searrow 0$

$$f(\zeta) = rac{1}{2\pi i} \int_{\partial D} rac{f(w)dw}{w-z} + rac{1}{2\pi i} \iint_{D} rac{\partial f(w)}{\partial ar{w}} rac{dw \wedge dar{w}}{w-z}$$

Lemma 0.1.10 (Osgood's lemma). f is continuous on an open subset $\Omega \subseteq \mathbb{C}^n$ and holomorphic on each variable, then f is holomorphic

Proof. For each $a \in \Omega$, pick $P = D(a, r) \subseteq \Omega$, since $\frac{\partial f}{\partial \bar{z}_j} \equiv 0$ on Ω , fix z_2, \dots, z_n , then

$$f(w_1, z_2, \cdots, z_n) = \frac{1}{2\pi i} \int_{|z_1-a_1|=r_1} \frac{f(z_1, \cdots, z_n)}{z_1 - w_1} dz_1$$

For $w_1 \in D(a_1, r_1)$, iterate and we get

$$f(w_1, \cdots, w_n) = rac{1}{(2\pi i)^n} \int_{|z_1 - a_1| = r_1} \cdots \int_{|z_n - a_n| = r_n} rac{f(z_1, \cdots, z_n)}{\prod (z_j - w_j)} dz_1 \cdots dz_n$$

For $w \in P$. Since f is continuous, it is bounded on \overline{P} , $\frac{1}{z_j - w_j} = \sum_{m=0}^{\infty} \frac{(w_j - a_j)^m}{(z_j - a_j)^{m+1}}$ converges uniformly on compact subsets of $D(a_j, r_j)$. Hence $f(w) = \sum c_{\alpha}(w - a)^{\alpha}$, where

$$c_{lpha} = rac{1}{(2\pi i)^n} \int_{|z_1-a_1|=r_1} \cdots \int_{|z_n-a_n|=r_n} rac{f(z)}{\prod (z_j-a_j)^{lpha_j+1}} dz_1 \cdots dz_n$$

Corollary 0.1.11 (Cauchy inequality).

Maximum principle

Theorem 0.1.12 (Maximum principle).

Theorem 0.1.13. $\{f_n\}$ are holomorphic on $\Omega \subseteq \mathbb{C}^n$, f_n are uniformly convergent on each compact subset, then f_n converges to a holomorphic function f, and $D^{\alpha}f_n \to D^{\alpha}f$ on each compact subset

Montel's theorem

Theorem 0.1.14 (Montel's theorem). $\mathcal{F} = \{f_n\}$ are holomorphic on $\Omega \subseteq \mathbb{C}^n$ and locally uniformly bounded, i.e. for any $z_0 \in \Omega$, there exists a neighborhood U and M such that $\sup_{z \in K} |f_n| \leq M$, then \mathcal{F} is normal

Schwarz lemma

Lemma 0.1.15 (Schwarz lemma). f is holomorphic on the unit disc $D \subseteq \mathbb{C}$, f(0) = 0 and $|f| \le 1$ on D, then $|f(z)| \le |z|$ and $|f'(0)| \le 1$, if |f(z)| = |z| for some nonzero z or |f'(0)| = 1, then f(z) = az, a = f'(0)

Proof. Define $g(z) = \frac{f(z)}{z}$, since f(0) = 0, 0 is a removable singularity, since $|f(z)| \le 1$, $|g(z)| \le 1$ on ∂D , by maximum principle 0.1.12, $|g(z)| \le 1$ on D, thus $|f(z)| \le |z|$ on D and $|f'(0)| = |g(0)| \le 1$, if |f(z)| = |z| for some nonzero z or |f'(0)| = 1, then g attains maximum within D, then $g \equiv a$ for some |a| = 1, thus f(z) = az

Corollary 0.1.16. $D \xrightarrow{f} D$ is a biholomorphic, then $f = e^{i\phi} \frac{z-a}{1-\bar{a}z}$ for some ϕ and $a \in D$

Proof. Denote $\psi_a(z) = \frac{z-a}{1-\bar{a}z}$, ψ_{-a} is the inverse of ψ_a

Assume f(a)=0, consider $g(z)=f\circ\psi_{-a}$, then g(0)=0, by Schwarz lemma 0.1.15, $g=e^{i\phi}$, $f=g\circ\phi_a=e^{i\psi}\frac{z-a}{1-\bar{a}z}$

Lemma for Riemann mapping theorem

Lemma 0.1.17. Suppose $0 \in U \subsetneq D$ is a simply connected open set, there exists $U \xrightarrow{f} D$ univalent such that f(0) = 0, |f'(0)| > 1. Note that this is impossible if U = D due to Schwarz lemma 0.1.15

Proof. Denote $\psi_a(z) = \frac{z-a}{1-\bar{a}z}$, $\psi'_a(z) = \frac{1-|a|^2}{(1-\bar{a}z)^2}$. Consider $f = \psi_{g(a)} \circ g \circ \psi_{-a}$ with some $\psi_{-a}(U) \xrightarrow{g} D$ univalent, then f(0) = 0

$$f'(0) = rac{1 - |g(a)|^2}{(1 - |g(a)|^2)^2} g'(a) (1 - |a|^2) = rac{1 - |a|^2}{1 - |g(a)|^2} g'(a)$$

Since U is simply connected, so is $\psi_{-a}(U)$ given $-a \in D \setminus U$, we can take $g(z) = \sqrt{z}$ to be one branch, since |a| < 1, we get

$$|f'(0)| = \frac{1 - |a|^2}{1 - |a|} \frac{1}{2\sqrt{|a|}} = \frac{1 + |a|}{2\sqrt{|a|}} > 1$$

Lemma for finding zeros

Lemma 0.1.18. φ is holomorphic on D, f is meromorphic on D and $f \neq 0$ on ∂D , a_1, \dots, a_m and b_1, \dots, b_n are the zeros and poles of order k_1, \dots, k_m and l_1, \dots, l_n of f in D, then

$$rac{1}{2\pi i}\int_{\partial D}arphi(z)rac{f'(z)}{f(z)}dz=\sum_{i=1}^mk_iarphi(a_i)-\sum_{i=1}^nl_iarphi(b_i)$$

Proof. $f(z) = g(z) \prod_{i=1}^{m} (z - z_i)^{q_i}$ with $g \neq 0$ on \overline{D} , z_i, q_i could be a_i, k_i or $b_i, -l_i$ depending on whether it is a zero or a pole, hence

$$\begin{split} \frac{1}{2\pi i} \int_{\partial D} \varphi(z) \frac{f'(z)}{f(z)} dz &= \frac{1}{2\pi i} \int_{\partial D} \varphi(z) \frac{g'(z) \prod_{i=1}^m (z-z_i) + g(z) \sum_{i=1}^m \prod_{j \neq i} (z-z_j)}{g(z) \prod_{i=1}^m (z-z_i)} dz \\ &= \frac{1}{2\pi i} \int_{\partial D} \left[\frac{\varphi(z)g'(z)}{g(z)} + \sum_{i=1}^m \frac{\varphi(z)}{z-z_i} \right] dz \\ &= \sum_{i=1}^m k_i \varphi(a_i) - \sum_{i=1}^n l_i \varphi(b_i) \end{split}$$

Rouche's theorem

Theorem 0.1.19 (Rouché's theorem).

Hurwitz's theorem

Theorem 0.1.20 (Hurwitz's theorem). $U \subseteq \mathbb{C}$ is open connected, holomorphic functions $\{f_n\}$ converges uniformly to f on compact subsets of U and $f \not\equiv 0$, f has order m at z_0 , for r small enough, there exists K such that for any $k \geq K$, f_k has precisely m zeros in $B(z_0, r)$, counting multiplicities, and these zeros converge to z_0 as $k \to \infty$

Remark 0.1.21. $B(z_0, r)$ can't be arbitrarily large. For example, $f_n(z) = z - 1 + \frac{1}{n}$ converges uniformly to f(z) = z - 1 on compact subsets, f has no zeros in the unit disc D, but f_n all have zeros in D

Proof. For r small enough, f doesn't vanish on $\partial B(z_0, r)$ on which |f| attains minimum, then apply Rouché's theorem 0.1.19

Corollary 0.1.22. U is open connected, univalent maps $\{f_n\}$ converges to f on compact subsets, then f is either univalent or constant

Proof. If f is not a constant and $f(z_0) = f(w_0) = \zeta$, then $f(z) - \xi$ has z_0 , w_0 as zeros, by Hurwitz's theorem 0.1.20, there exist $\{z_k\}$, $\{w_k\}$ converging to z_0 , w_0 such that $f_{n_k}(z_k) = f_{n_k}(w_k) = \xi$, but f_n 's are univalent, hence $z_k = w_k \Rightarrow z_0 = w_0$, i.e. f is univalent

Theorem 0.1.23 (Riemann mapping theorem). $U \subsetneq \mathbb{C}$ is a nonempty simply connected open subset, $z_0 \in U$, then there is a unique biholomorphism f from U to the unit disc such that $f(z_0) = 0$, $f'(z_0) > 0$

Proof of uniqueness. Suppose $U \xrightarrow{f_1, f_2} D$ are biholomorphisms such that $f_i(z_0) = 0$, $f'_i(z_0) > 0$, consider $g = f_2 f_1^{-1}$, g(0) = 0, $|g| \le 1$ on D and $g'(0) = \frac{f'_2(z_0)}{f'_1(z_0)} > 0$, by Schwarz lemma 0.1.15, g(z) = z, i.e. $f_1 = f_2$

Proof of existence. Fix $a \notin U$, $z_0 \in U$. Define

$$\mathcal{F} = \{f \text{ univalent on } U | |f| \le 1, f(z_0) = 0\}$$

Since U is simply connected, we can pick one branch $h(z) = \sqrt{z-a}$, then $h(U) \cap -h(U) = \varnothing$, $\frac{h(z) - h(z_0)}{h(z) + h(z_0)}$ is univalent and bounded, scale to get some $f_0 \in \mathcal{F} \Rightarrow \mathcal{F}$ is nonempty Let $A = \sup_{f \in \mathcal{F}} |f'(z_0)| > 0$, $f'_n(z_0) \to A$ for some $\{f_n\} \subseteq \mathcal{F}$, by Montel's theorem 0.1.14, f_{n_k}

Let $A = \sup_{f \in \mathcal{F}} |f'(z_0)| > 0$, $f'_n(z_0) \to A$ for some $\{f_n\} \subseteq \mathcal{F}$, by Montel's theorem 0.1.14, f_{n_k} converges to g uniformly on compact subsets, then $|g| \le 1$, $g(z_0) = 0$ and $0 < A = |g'(z_0)| < \infty$, according to Hurwitz's theorem 0.1.20, g is also univalent, i.e. $g \in \mathcal{F}$ attains maximal derivative at z_0

Suppose $0 \in g(U) \subsetneq D$, if not, by Lemma 0.1.17, there exists univalent map $g(U) \xrightarrow{f} D$ such that f(0) = 0, |f'(0)| > 1, then $f \circ g \in \mathcal{F}$, but $|(f \circ g)'(z_0)| = |f'(0)g'(z_0)| > |g'(z_0)|$ which is a contradiction

Remark 0.1.24. Suppose $f_1, f_2 \in \mathcal{F}$ and f_1 is biholomorphic, then $g = f_2 f_1^{-1}$ is a map $D \to D$, with g(0) = 0, according to Schwarz lemma 0.1.15, $\frac{|f_2'(z_0)|}{|f_1'(z_0)|} = |g'(0)| \le 1$, and if $|f_2'(z)| = |f_1'(z)|$, $g = e^{i\phi}$, f_2 is also biholomorphic

Example 0.1.25. $U = \mathbb{C} - \{z \geq 0\}$, then $h(z) = \sqrt{z}$ maps U to the upper half plane

Theorem 0.1.26 (Runge's theorem). $K \subseteq \mathbb{C}$ is compact, then $\mathbb{C} \setminus K$ is the union of its connected components whereas the components are either bounded or not, denote

Hartogs's extension theorem

Theorem 0.1.27 (Hartogs's extension theorem). An isolated singularity is always a removable singularity when $n \geq 2$

Proof. It suffices to consider the case $P = \{|z_1| \le 1, |z_2| \le 1\}$ is a polydisc, f is holomorphic on ∂P , then f is holomorphic on PLemma for Remmert-Stein theorem

Lemma for Remmert-Stem to

Lemma 0.1.28. $\Omega \subseteq \mathbb{C}^n$ is connected, $\Omega \xrightarrow{f} \partial B^n$ is holomorphic, then $f \equiv \text{const}$

Proof. If h is holomorphic, then $\frac{\partial^2}{\partial z \partial \bar{z}} |h|^2 = |h'|^2$, hence

$$0 = \frac{\partial^2}{\partial z \partial \bar{z}} |f|^2 = \sum_{i=1}^n \frac{\partial^2}{\partial z \partial \bar{z}} |f_i|^2 = \sum_{i=1}^n |f_i'(z)|^2 \Rightarrow f_i'(z) = 0 \Rightarrow f \equiv \text{const}$$

Theorem 0.1.29 (Remmert-Stein). $U_1 \subseteq \mathbb{C}^{n_1}$, $U_2 \subseteq \mathbb{C}^{n_2}$ are nonempty connected open subsets, $B = \{|z| < 1\} \subseteq \mathbb{C}^n$, then there is no proper holomorphic map $U_1 \times U_2 \to B$

Proof. Suppose $f: U_1 \times U_2 \to B$ is a proper holomorphic map. For any $(x,y) \in U_1 \times \partial U_2$, there is a discrete sequence $\{y_\nu\} \subseteq U_2$ converging to y as in Exercise ??, apply Lemma ?? to $f(x,y): \{x\} \times U_2 \to B$, $\{f(x,y_\nu)\}$ is discrete, thus there exists a subsequence $\{y_\mu\} \subseteq \{y_\nu\}$ such that $f(x,y_\mu)$ such that $f(x,y) = \lim_{x \to \infty} f(x,y_\mu) \in \partial B$. Then $f(x,y): U_1 \times \{y\} \to \partial B$ is a

holomorphic, by Lemma 0.1.28, f(x, y) is constant on $U_1 \times \{y\}$, hence $U_1 \times \{y\} \subseteq f^{-1}(f(x, y))$ which is noncompact since it has noncompact image under projection to U_1 . This contradicts the fact that f is proper

Corollary 0.1.30 (Poincaré). The 2 polydisc $P = \{|z_1| < 1, |z_2| < 1\}$ and the 2 ball $B = \{|z_1|^2 + |z_2|^2 < 1\}$ are not biholomorphic

Theorem 0.1.31 (Weierstrass preparation theorem). f is analytic near 0, f(0) = 0, f(z) written as power series around 0 has terms only involve z_1 which can always be achieved by a change of variables as in Exercise ??, then f = wh, where $w(z) = z_1^k + g_{k-1}z^{k-1} + \cdots + g_0$ is a **Weierstrass polynomial**, i.e. $g_i(z)$ are analytic around 0 and $g_i(0) = 0$, h(z) is analytic around 0 and $h(0) \neq 0$

Theorem 0.1.32 (Weierstrass division theorem). Suppose f, g are analytic near 0, g is a Weierstrass polynomial of degree k, then there exist unique h, r such that f = gh + r, where r is a polynomial of degree less than k

Conformal mapping 0.2

Definition 0.2.1. A conformal mapping is a map preserves angles and orientation

Note. Antiholomorphic map preserves angles but changes orientation

Definition 0.2.2. Möbius transformations are $f(z) = \frac{az+b}{cz+d}$, $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$, Möbius group acts regularly on $\mathbb{C}P^1$ and preserves cross ratio $(z_0, z_1; z_2, z_3) = \frac{(z_2-z_0)(z_3-z_1)}{(z_3-z_0)(z_2-z_1)}$ Schwarz reflection principle

Lemma 0.2.3 (Schwarz reflection principle). If f is holomorphic on $\{\text{Im} z > 0\}$ and continuous on $\{\text{Im}z \geq 0\}$ with real values on Imz = 0, then it can be extended to \mathbb{C} with $f(\bar{z}) = \overline{f(z)}$ for $\mathbf{z}<\mathbf{0}$

0.3 Weierstrass functions

Definition 0.3.1. $\Lambda \subseteq \mathbb{C}$ is a lattice. Weierstrass sigma function associated to lattice Λ is

$$\sigma(z) = z \prod_{\omega \in \Lambda^*} \left(1 - rac{z}{\omega}
ight) e^{rac{z}{\omega} + rac{1}{2} (rac{z}{\omega})^2}$$

Weierstrass zeta function is the logarithmic derivative of σ

$$\zeta(z) = \frac{\sigma'(z)}{\sigma(z)} = \frac{1}{z} + \sum_{u \in \Lambda^*} \frac{1}{z - w} + \frac{1}{w} + \frac{z}{w^2}$$

Weierstrass eta function is

$$\eta(w) = \zeta(z+w) - \zeta(z), w \in \Lambda$$

This is independent of choice of zWeierstrass elliptic function is

$$\wp(z) = -\zeta'(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda^*} \left(\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} \right)$$

$$\wp'(z) = -\sum_{\omega \in \Lambda} \frac{2}{(z+\omega)^3}$$

0.4 Zeta function

Theorem 0.4.1 (Euler's reflection formula). $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin(\pi z)}, z\notin \mathbb{Z}$