# Day 3 Notes

### J. Mann

## 3 September, 2015

### 1 Intro

One fundamental formula for surfaces & adsorption is the differential 1-form

$$-d\gamma = \bar{S}dT - \tau dP + \sum_{n=1}^{e} \Gamma_n d\mu_n \tag{1}$$

Where  $\bar{S}, \tau, \{\Gamma_c\}$  are excess quantities.

A second formula is the Gibbs' phase rule

$$f = c - p + 2 \tag{2}$$

- (2) requires that <u>any two</u> of the excess must be set to zero. That determines the "Convention". The lecture today will start from this point.
  - The "Gibbs convention"  $\tau = 0, \Gamma_1 = 0$
  - The "Hansen convention"  $\Gamma_1 = 0, \Gamma_2 = 0$

# 2 Surface excess entropy

$$\bar{S} \times \mathbf{A} \equiv S^s$$

- $\bar{S}$  is intensive,  $S^s$  is extensive.
- Surface excess entropy is defined using  $\lambda_1$  and  $\lambda_2$  determined with (1).
- Be sure to tell the reader the convention you're using!

Also

$$\Gamma_c \times \boldsymbol{A} \equiv N_c^s \text{Mole Number Excess}$$
 
$$U = ST - PV + \sum_{c=1}^{N} \mu_c N + \gamma A$$
 
$$\check{U}^+ = \check{S}^+ T - P + \sum_{c=1}^{N} \mu_c \check{N}^+$$
 
$$\check{U}^- = \check{S}^- T - P + \sum_{c=1}^{N} \mu_c \check{N}^-$$

 $\tau \times \mathbf{A} \equiv V^s$  Volume Excess

$$U^{s} = U - \lambda^{+} \check{U}^{+} - \lambda^{-} \check{U}^{-} \text{similar for } S^{s}, \text{ etc.}$$
$$\therefore U^{s} = S^{s} T - P V^{s} + \sum_{c=1}^{N} \mu_{c} N^{s} + \gamma A$$

**Note:** F is the Helmholtz Free Energy, typically defined in texts as A

Now to compute  $dU^s$ . Recall that we know a 1-form for  $-d\gamma$  so that

$$dU^{s} = TdS^{s} - PdV^{s} + \sum_{c=1}^{N} \mu_{c} dN_{c}^{s} + \gamma dA$$

Now recall the Euler Integral theorem to find

$$U^{s} = TS^{s} - PdV^{s} + \sum_{c=1}^{N} \mu_{c} N_{c}^{+} \gamma A H^{s} \equiv U^{s} + PV^{s}$$

$$F^{s} \equiv U^{s} - TS^{s}$$

$$dF^{s} = -S^{s} dT - PdV^{s} + \sum_{c=2}^{\#\text{components}} \mu_{c} dN_{c}^{s} + \gamma dA$$

If T is constant, dT = 0, and in the Gibbs convention,  $V^s = 0$ , and  $N_1^s = 0$ . Also if the composition is constant,  $dN_2^s = 0$ ,  $dN_3^s = 0$ ,... Then

$$\mathrm{d}F^s = \gamma \mathrm{d}A$$

(Here  $\gamma$  is the Helmholtz free Energy per Area  $\gamma = \frac{\partial F}{\partial Area})$ 

#### 2.1 Some Details

$$F^{s} = U^{s} - TS^{s}$$
$$dF^{s} = dU^{s} - TdS^{s} - S^{s}dT$$

You have a differential 1-form for  $\mathrm{d}U^s$ , upon substitution  $+T\mathrm{d}S^s$  adds out the  $-T\mathrm{d}S^s$  term.

$$dU^{s} = TdS^{s} - PdV^{s} + \sum_{i=1}^{N} \mu_{c} dN_{c}^{s} + \gamma dA$$

$$H^{s} = U^{s} + PV^{s}$$

$$F^{s} = U^{s} - TS^{s}$$

$$dF^{s} = -S^{s} dT - pdV^{s}$$

If T is constant and the mole numbers are constant,  $\mathrm{d}T=0$ ,  $\mathrm{d}N_c^s=0$ , assume Gibbs convention  $V^s=0$ . Then  $dF^s=\gamma\mathrm{d}A$  Here  $\gamma$  is Helmholtz free energy per unit area

## 3 Concentration and Surface Tension

$$-\mathrm{d}\gamma = \bar{S}\mathrm{d}T - \tau\mathrm{d}P + \Gamma_{\mathrm{H_2O}}\mathrm{d}\mu_{\mathrm{H_2O}} + \Gamma_s\mathrm{d}\mu_s$$

Assume p is constant

$$\tau = 0, \Gamma_{\rm H_2O} = 0 \text{ (Gibbs Convention)}$$
 
$$dT = 0$$
 then 
$$-d\gamma = \Gamma_s d\mu_s$$
 
$$\Gamma_s = -\frac{\partial \gamma}{\partial \mu_s}$$
 
$$\mu_s = \mu_s^\circ + k_B T \ln{(a_s)}$$
 
$$a_s = \alpha C_s$$

 $\gamma, \nu$  constant.???

# 4 How to find a derivative given noisy function

At some point you will be taking experimental  $\gamma$  vs C data and estimating  $\frac{\partial \gamma}{\partial \ln{(C)}}$  - how to do this keeping in mind that there is always some error associated with measuring  $\gamma$  is a point of interest. Suppose you know that a smooth formula works well in representing your data.

y = f(x) so that  $\frac{dy}{dx} = f'(x)$  is smooth in the sense that

$$f'(x) = \lim_{h \to 0} \frac{(f(x-h) - f(x))}{h}$$

exists at each point x.

Now do a measurement and find that there is experimental error at each point so that  $y = f(x) + \epsilon(x)$  where  $\epsilon$  is a random number from the uncertainty of the measurement.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x) + \epsilon(x)$$

$$\epsilon'(x) = \lim_{h \to 0} \frac{\epsilon(x-h) - \epsilon(x)}{h} \text{ (In general, does not exist!)}$$

## 5 Gibbs Approach



Figure 1: A system of liquid and vapor Argon. The vertical axis is distance normal to the surface, and the horizontal axis is density of Argon,  $\rho_{\text{Argon}}$ . The density is constant at some distance from the interface, then changes (following a hyperbolic tangent curve) as the interface is approached.  $\varepsilon_g$  is defined as the line where the areas (above and below the curve) match.

Consider the gibbs approach. Define  $\varepsilon^+$  as the vapor,  $\varepsilon^-$  as the liquid (as in Figure 1). These are the two asymptotes of a hyperbolic tangent curve. Then we will have  $\rho^z - \rho^+ \geq 0$  for z in the range of tanh curve. Similarly  $\rho^z - \rho^- \leq 0$  for z in the same range.

$$\Gamma \equiv \int_{\varepsilon_{z}}^{\varepsilon^{+}} (\rho^{z} - \rho^{+}) dz + \int_{\varepsilon^{-}}^{\varepsilon^{g}} (\rho^{z} - \rho^{-}) dz$$

Now then:  $\Gamma_1 = 0$  therefore, excess of the major component is 0. More generally,

$$\Gamma_c = \int_{\varepsilon^-}^{\varepsilon^g} (\rho_c(z) - \rho_c^-) dz + \int_{\varepsilon_g}^{\varepsilon^+} (\rho_c(z) - \rho_c^+) dz$$

if  $\Gamma_1=0$  then there is some  $\varepsilon_g$  such that in/out  $\Gamma_1=0$ . By correlation, this fixes the location of the gibbs surface at  $\varepsilon_g$ .

However,  $\Gamma_c, c \neq 0$  may be either  $\Gamma_c > 0$  or  $\Gamma_c < 0$ , although for the usual surfactants,  $\Gamma_c > 0$ .



Figure 2: Work done by Mann wih MD simulation showing the agreement with a tanh curve, and showing the Gibbs Surface of Argon.

6



Figure 3: Gibbs Surface Corresponding to  $\varepsilon_q$ 

With this definition,  $\Gamma_{c(c\neq 1)} = \int_{-\infty}^{+\infty} \rho_c(z) - \rho_c^{(\pm)} dz$ +, – are the two phases with density  $\rho_c^+, \rho_c^-$  Only for c=1 does  $\Gamma_1=0$ which determines the rest of the excess. Also in the Gibbs convention,

$$V_{\text{total}} = V^+ + V^-$$



Figure 4: The pendant drop method. This method is axisymmetric, and takes advantage of the fact that the contact angle of a drop on a surface,  $\theta$ , is a constant.

### 7 The Case of Curved Surfaces

To determine the surface tension - you determine the boundary function, then fit it to a model. You need the relationship between the surface tension, the local radii of curvature, and thee pressure drop <u>across</u> the interface - the jump of the pressure. Consider Figure 5. Anywhere on the curved surface of the phase,



Figure 5: A generic curved surface.  $\hat{e}_1, \hat{e}_2$  are tangent to the surface, making  $\hat{n} = \hat{e}_1 \times \hat{e}_2$  normal to the surface, provided  $\hat{e}_1 \neq \hat{e}_2$ 

you can construct a normal. What you have to think about is the pressure drop across this interface. That is the jump in the pressure as you approach the interface

$$[P] \equiv \lim_{z \downarrow \text{surface}} (P^+) - \lim_{z \uparrow \text{surface}} (P^-)$$

.