

Ogólne zasady cyklu komórkowego

Pojedynczy cykl komórkowy można podzielić na kilka głównych faz, które reguluje tykający zegar biologiczny:

I. Interfaza - okres pomiędzy podziałami komórki

-faza G1 - wysoka aktywność metaboliczna, wzrost komórki - komórka wykonuje zadania, do których została powołana, i przygotowuje się do skopiowania swojego materiału genetycznego, czyli replikacji DNA;

- faza 5 (synteza) - replikacja DNA

- faza G2 - końcowe przygotowania do podziału;

- faza 60 - komórki znajdujące się w fazie 60 też pełnią funkcje, do których zostały powołane przez organizm, ale przestają się dzielić (takimi komórkami są np. dojrzałe neurony). Niektóre komórki mogą wracać z fazy 60 do cyklu komórkowego i dalej się dzielić, jeślizostaną odpowiednio pobudzone na przykład przez hormony albo czynniki wzrostowe

II. Podział mitotyczny

 faza M - mitoza - podział, w którym powstają dwie komórki potomne o tej samej liczbie chromosomów.

Regulacja aktywności białek po przez chemiczna modyfikację (kowalencyjne przyłączanie grup chemicznych do AA w białkach)

- 1. Acetylacja
- 2. Glikozylacja
- 3. Fosforylacja (dlaczego w cyklu komórkowym ???)
- grupy fosforanowe dołączane przez kinazy
- -grupy fosforanowe odłączane przez fosfatazy

Proteoliza białek

- degradacja białek do aminokwasów w lizosomach bądź proteosomach (białka regulatorowe)
- proces katalizowany przez proteazy (kompleks proteosomu)

- regulacja cyklu komórkowego obejmującabiquitin degradacje regulatorów

Regulatory

Partick

Fosforylacja:

- dodawanie grup fosforanowych do białek
- katalizowana przez kinazy białkowe
- modyfikacja odwracalna (działanie fosfataz białkowych)
- regulacja aktywności białek
- istotna rola w ścieżkach przekazywania sygnałów
- białka mogą być fosforylowane w wielu miejscach

REGULACJA CYKLU KOMÓRKOWEGO

Kontrola cyklu komórkowego

1. PUNKT RESTRYKCYJNE (START) - późna faza G1

- 1, Komórki drożdży podejmują decyzje na podstawie wielkości komórek, która jest uzależniona od dostępności składników odżywczych
- 2. Komórki zwierzęce podejmują decyzje na podstawie obecności białkowych czynników wzrostu zwanych mitogenami, które stymulują wzrost komórki

II. Kompleksy Cdk (cyklinozależne kinazy)

- 1. Heterodimeryczne kinazy białkowe, które regulują cykl komórkowy:
- cyklina: podjednostka regulatorowa
- Cdk kinaza: podjednostka katalityczna
- różne kompleksy Cdk dla róznych faz cyklu komórkowego

Cykliny

- cykliny to białka, których poziom w komórce zmienia się w różnych fazach cyklu komórkowego
- cykliny łączą się ze swoimi kinazami cyklinozależnymi (fosforylacja) i zmieniają ich aktywność

-degradowane w procesie proteolizy w specyficznych punktach cyklu komórkowego

Rodzaje cyklin

Typ cykliny	Typ kinazy	Funkcja kompleksu
Cykliny D1, D2 i D3 Cykliny E Cykliny A, B Cykliny A i B Cykliny H	CDK4, 6 CDK2, 3 CDK2 CDK1 (p34) CDK7	fosforylacja w fazie G1 fosforylacja na granicy faz G1/S fosforylacja w fazie S i G2 fosforylacja na granicy faz G1/S i G2/M fosforylacja kinaz CDK, wszystkie fazy

Zmiany aktywności poszczególnych cyklin w fazach cyklu komórkowego, w miarę przechodzenia komórki przez fazy G1, G2 i S gwałtownie wzrasta poziom cyklin typu D, A, E i w końcu B.

Kinazy zależne od cyklin

Kinazy to enzymy, które przyłączają grupy fosforanowe do innych cząsteczek, czyli przeprowadzają fosforylację tych cząsteczek; słowo 'cyklinozależne' wskazuje na to, że aktywność tych kinaz jest regulowana przez cykliny.

Typ cykliny	Typ kinazy	Funkcja kompleksu
Cykliny D1, D2 i D3 Cykliny E Cykliny A, B Cykliny A i B Cykliny H	CDK4, 6 CDK2, 3 CDK2 CDK1 (p34) CDK7	fosforylacja w fazie G1 fosforylacja na granicy faz G1/S fosforylacja w fazie S i G2 fosforylacja na granicy faz G1/S i G2/M fosforylacja kinaz CDK, wszystkie fazy

Kompleksy Cdk specyficzne dla danej fazy cyklu komórkowego

III. Mitotyczne kompleksy Cdk tzw. MPF

Kompleksy fazy G1

-po raz pierwszy aktywowany jest sygnał do replikacji

-przygotowanie komórki do fazy S

 fosforylacja czynników transkrypcyjnych, które podwyższają transkrypcję genów kodujących enzymy wymagane przy replikacji DNA

Faza G1

Kompleksy fazy S

-początkowa regulacja procesu replikacji DNA

-aktywność tych kompleksów jest regulowana przez specyficzny inhibitor: kompleksy Cdk fazy G1 powodują degradację inhibitorów kompleksów fazy S w późnej fazie G1, której wynikiem jest aktywacja tych kompleksów

-ufosforylowane białka przyłączają się do miejsc ori replikacji, której wynikiem jest jedna runda powielanie DNA

Faza S

Faza G2

Kompleksy mitotyczne Cdk

MPF (mitosis-promoting factor) - przejście z późnej fazy G2 do fazy M

Regulacja mitozy przez aktywację:

Wysoki poziom MPF

Niski poziom MPF

Kondensacja chromosomów
Uszkodzenia otoczki jądrowej
Tworzenie (montowanie) wrzeciona
Aktywacja kompleksów anafazy

Segregacja chromosomów

Dekondensacja chromosomów

Odtwarzanie otoczki jądrowej

Replikacja DNA

Podwojenie centrosomu

Fosforylacja specyficznych białek przez MPF

G2 Mitoza

- 1. Laminy jądrowe we wczesnej profazie MPF fosforyluje specyficzne reszty serynowe i treoninowe w laminach powodując ich depolimeryzacje, a w konsekwencji dezitegrację jądra
- 2. Fosforylacja Histonu H1 i innych białek rusztowania chromosomu
- 3. MPF fosforyluje miejsca w łańcuchu lekkim miozyny, przez co hamuje aktywność ATPazy i wiązanie z elementami aktynowymi blokowanie cytokinezy we wczesnej fazie mitozy

Na początku anafazy MPF ulega rozkładowi.

Mitotyczna regulacja kompleku CdK

Regulacja APC (anaphase-promoting complex)

APC - anaphase-promoting complex

- 1. Aktywowany przez mitotyczny kompleks (MPF)
- 2. Decyduje, które białko ulega degradacji:
- inhibitor anafazy
- MPF
- 3. Kompleks ten pozwala na rozejście się siostrzanych chromatyd

Inhibitory białkowe kompleksów CDK-cykliny - dodatkowy poziom regulacji i jeszcze bardziej kompleksowa kontrola cyklu komórkowego

Nazwa rodziny inhibitorów	Cel inhibitora
roc	Izina p16
p16/INK4a, p15/INK4b, p18/INK4c, p19/INK4d	kinazy CDK4 i 6
roc	Izina p21
p21, p27, p57	wszystkie kompleksy cyklina/CDK
	inne
p40, Far1	kinaza cdc28

Punkty kontrolne w regulacji cyklu komórkowego

Punkty kontroli cyklu z udziałem białka p53

Białko p53

Niektóre geny aktywowane przez białko p53

Nazwa genu	Funkcja biologiczna produktu genu	Skutek biologiczny	
CIP1/WAF1	inhibitor kinaz CDK	zatrzymanie cyklu komórkowego w fazie G1/S i G2/M	
MDM2	białko wiążące TP53, czynnik transkrypcyjny	inhibitor aktywności transkrypcyjnej TP53	
Cyklina G,* Cyklina D1	białka niezbędne do aktywności kinaz CDK	zatrzymanie cyklu komórkowego w fazie G1	
EGFR	receptor nabłonkowego czynnika wzrostu		
TGF0.	cytokina – czynnik wzrostu		
RB1	białko wiążące czynniki transkrypcyjne rodziny E2F	zatrzymanie cyklu komórkowego	
PCNA	białko uczestniczące w replikacji i naprawie DNA		
GADD45	białko systemu naprawczego	zatrzymanie cyklu komórkowego na granicy faz G2/M	
14-3-3*	uczestniczy w indukcji odpowiedzi na czynniki jonizujące	zatrzymanie cyklu komórkowego na granicy faz G2/M	
BAX	wiąże antyapoptotyczne białko BCL2	indukcja apoptozy	
WSPÓłzawodniczy o wiązanie białka BCL2 z białkiem BAX		zahamowanie apoptozy	
FAS/APOI	receptor błonowy	aktywacja apoptozy	
czynniki uwalniane w odpowiedzi na stres oksydacyjny		apoptoza lub zatrzymanie cyklu komórkowego	

^{*} Zachowano zwyczajowe nazwy genów.

Białka Rb

Nazwa genów	Funkcja biologiczna produktów genowych
RB1, RB2, RB3	rodzina białek przenoszących inne białka
E2F1, E2F2, E2F3, E2F4, E2F5 E2F6(EMA)	(białka kieszeniowe) rodzina czynników transkrypcyjnych fazy G1 nieznana
DP1, DP2, DP3	białka pomostowe wzmacniające siłę wiązania
	 A construction of the construction of the construction.

8 października 2001r. Komitet Noblowski przy szwedzkim Instytucie Karolinska ogłosił nazwiska laureatów Nagrody Nobla w dziedzinie medycyny i fizjologii -

Leland H. Hartwell z USA oraz R. Timothy Hunt i Paul M. Nurse z Wielkiej Brytanii - za odkrycie podstawowych regulatorów cyklu komórkowego w organizmach eukariotycznych.

punkty kontrolne aktywowane kinazy

cykliny